Integrated Circuit Design

Final Project - Image Processing

Due: 2017/06/26 17:00

1. 問題描述

本題輸入為一灰階影像(如圖 1.所示),此灰階影像存放於 Host 端的灰階圖像記憶體模組 (gray_mem)中,imgproc 端須發送訊號至 Host 端以索取灰階影像資料,再對灰階影像中每個 pixel 各自進行獨立運算,運算後的結果請寫入 Host 端的記憶體模組 (my_mem)內,並在整張影像訊號處理完成後,將 finish 訊號拉為 High,接著系統會自動進行比對整張影像資料的正確 性。

有關 imgproc 的過程描述於後。

圖 1. 灰階影像範例

圖 1. 輸出灰階影像範例

2. 設計規格

2.1 系統方塊圖

圖 2. 系統方塊圖

2.2 輸出入訊號和記憶體描述

Signal Name	I/O	Width	Simple Description	
clk	input	1	positive edge clock system	
rst	input	1	active high asynchronous system reset signal	
orig_addr	output	14	address for input image data	
request	output	1	ask for input image data	
orig_ready	input	1	input image data is ready for your system	
orig_data	input	8	Input image data	
imgproc_addr	output	14	send your output data to this address	
imgproc_ready	output	1	tell host that output data is ready	
imgproc_data	output	8	output image data	
finish	output	1	whole processing is finished	

※ PS:

- 1. orig_addr 和 request 為一組,一起發送出去,跟 HOST 要圖片。
- 2. orig_ready 和 orig_data 為一組, 一起傳回來, 看到 orig_ready 代表 orig_data 可以接收了。
- 3. imgproc_addr, imgproc_ready, imgproc_data 為一組,一起發送出去,將結果送到 HOST 端。
- 4. finish 訊號拉起來之後,開始檢查正確性。

2.3 系統功能描述

本電路功能為當 reset 結束後, imgproc 端才可開始對 Host 端進行動作。當 Host 端在每個時脈訊號負緣觸發時若偵測到 finish 訊號為 Low 且 request 訊號為 High 時表示 imgproc 端對 Host 端要求索取灰階圖像資料。當 orig_ready 訊號為 High,此時 Host 端準備好資料,會依 orig_addr 匯流排所指示的位址將灰階圖像記憶體內的位址資料由 orig_data 匯流排輸入 imgproc 端。

本電路主要功能是將影像作高斯模糊,將影像通過 5*5 的 Gaussian blur filter,小數點部分做四捨五入。

請以 23bit 進行運算 8bit 整數+15bit 小數, Gaussian blur 之各點參數數值可以參考附錄。

記憶體模組的寫入方式如下,當 Host 端在每個時脈訊號負緣觸發時若偵測到 imgproc_ready 訊號為 High 時,就會將目前 imgproc_data 匯流排上的內容,寫入到 imgproc_mem 記憶體模組的 imgproc_addr 匯流排所指示的位址內,當所有 pixel 都處理完畢後,請將 finish 訊號拉為 High,接著 Host 端就會開始進行結果驗證。

由於影像邊界在 filter 的處理上較複雜,非本次作業重點,因此 Host 端僅針對輸出影像中央 124x124 pixels 進行結果驗證。

2.4 灰階圖像記憶體對應方式

灰階圖像大小固定為 128x128 pixels,每個 pixel 為 unsigned 8bit 灰階(每個 8bit 灰階圖像 pixel 的值介於 0 到 255 之間),因此 Host 端的灰階圖像記憶體模組(gray_mem)共有 16384 個位址用以存放各 pixel 的灰階圖像資料,圖像與記憶體模組的對應方式如下圖所示。

2.5 時序規格圖

- a、 reset 訊號持續兩個 Cycle 時間後,電路初始化結束。
- b、 imgproc 端將 **request** 訊號拉為 High, 並且同時將欲索取的灰階圖像 pixel 之位址由 **orig_addr** 匯流排送出 (如上圖 T1)。
- c、 Host 端在時脈訊號負緣觸發若偵測到 request 為 High,將 orig_ready 拉為 High,則會將灰階 圖像記憶體內的 orig_addr 匯流排所指示位址的資料由 orig_data 匯流排送到 imgproc 端 (如上圖 T2)。

若要進行連續索取,只需要將 request 維持在 High,並連續改變 orig_addr 匯流排位址,就可在 orig_data 匯流排連續得到該位址資料 (如上圖 T3-T5)。

- d、 接著 imgproc 端就可以針對各 pixel 進行訊號處理流程。
- e、 若 imgproc 端不想要對 Host 端索取任何位址資料,則只須在時脈訊號正緣觸發將 request 拉為 Low,則 Host 端在下個時脈訊號負緣觸發時就不會送出任何位址資料到 gray_data 匯流排,且 orig_ready 也會被拉為 Low (如下圖 T6-T7)。

B. 影像輸出時序圖

a、當 imgproc 端完成處理後,請將各 pixel 的處理結果寫入各相對應的記憶體位址中,其方式為將 imgproc_ready 訊號拉為 High,同時把欲寫入的位址及資料分別放在 imgproc_addr 及 imgproc_data 匯流排 (如上圖 T8); Host 在時脈訊號負緣觸發時,就會進行寫入的動作, golden[7:0]表示 Host 端在此時刻擷取到的資料 (如上圖 T9)。 若想要連續寫入的話,則只需要持續將 imgproc_ready 維持在 High 後改變 imgproc_data 及 imgproc_addr 即可 (如上圖 T10-T11)。

b、如果不想繼續寫入資料的話,將 imgproc_ready 拉為 Low。

c、所有的 pixel 都處理完成了,此時 imgproc 端須將 finish 拉為 High (如上圖 T12)。Host 端就會開始進行驗證了,驗證完成後整個模擬會立即結束。

3. 檔案說明

檔名	說明	
testfixture.v	Testbench for RTL and post synthesis	
	simulation	
testfixture_apr.v	Testbench for post layout simulation	
imgproc.v	YOUR design	
*.f	Scripts for neverilog	
data/	Test and golden data	
syn/	Directory for synthesis	
layout/	Directory for layout	
library/	Library for Encounter	

syn 資料夾

檔名	說明
.synopsys_dc.setup	Settings for design compiler
imgproc.sdc	Standard design constraints
tsmc13_neg.v	Standard cell
run.tcl	Scripts for design compiler

Layout 資料夾

檔名	說明
imgproc_apr.sdc	Standard design constraints
imgproc.conf	Configuration for importing design
imgproc.view	Configuration for importing design
*.tcl	Scripts for encounter

A. RTL

- a. imgproc.v: 已經定義了 imgproc module 的輸入輸出,將描述 imgproc 電路的 verilog code 寫在此檔案裡。
- b. run_RTL.f: 模擬時,直接執行 ncverilog -f run_RTL.f 即可。

B. synthesis

- a. syn/imgproc.sdc: 描述了合成時對電路的 constraints, 只有 cycle time 可以自行修改,預設為 set cycle 20,代表 cycle time 為 20ns。
- b. syn/run.tcl: 在 syn 資料夾內執行 dc_shell -f run.tcl 即可完成 synthesis

(這份是基本版的 script,若有需要可以添加或修改。Ex:如 compile_ultra,compile – map_effort high, optimize_register...等)。

c. run_DC.f: 模擬時,直接執行 ncverilog -f run_DC.f 即可。

C. layout(此部分不計分,同學自行練習)

- a. layout/imgproc_apr.sdc: 描述了佈線時對電路的 constraints, 只有 cycle time 可以自行修改,預設為 set cycle 20, 代表 cycle time 為 20ns。
- b. encounter 操作請大家參考 HW5 的說明。*.tcl 為 encounter 操作之 scripts 檔
 - 01_pre_floor.tcl 對應步驟 4
 - 02_floorplaned.tcl, 03_placed.tcl 對應步驟 5 (timing analysis 請注意 WNS 並判斷需不需要 optimize)
 - 04_powerring.tcl 對應步驟 6
 - 05_powerstripe.tcl 對應步驟 7,8 (DRC check 請注意 layout 上是否有 DRC error)
 - 06_tiehilow.tcl 對應步驟 9(同樣注意一下 timing analysis 資訊)
 - 07_cts.tcl 對應步驟 10,11,12(注意 timing analysis 資訊)
 - 08_powerroute.tcl 對應步驟 13,14(確認是否有 violation 資訊)
 - 09_route.tcl 對應步驟 15,16(同樣注意一下 timing analysis 資訊)
 - 10_output.tcl 對應步驟 17,18

進入 encounter 後,指令輸入 source *.tcl 即可使用該 scripts (Ex: source 01_pre_floor.tcl)

c. run_apr.f: 模擬時,直接執行 ncverilog -f run_apr.f 即可。

d.

所有步驟完成後,點選上圖紅色圓圈處 create ruler,即可測量晶片 layout 後大小。 點選 Floorplan -> Specify Floorplan,紅色方框處也可觀察 layout 大小。

4. 評分標準

本次作業為兩人一組,繳交之報告分為兩部分,須包含以下內容。

A. RTL 部分

請將 ncverilog 模擬畫面截圖放入 Report 中。

僅完成此部分可得60分。

B. Gate level 部分

(1) 文字紀錄合成後的 cell area、cycle time、total time。

Ex:

Cell area = $31139 \mu m^2$

Cycle time = 20 ns

Total time = 1895300 ns

Cell area*Total time = $59017746700 \text{ } \mu\text{m}^2 \cdot ns$

本次作業評分依 Cell area*Total time 大小排名, Cell area*Total time 越小越好, 分數分布 在 70~100

(2) 截圖需要有 (A) desing compiler 的 area report 與 timing report。

(B) gate level netlist 再跑一次 ncverilog 模擬並截圖。(記得 test bench 中的 cycle time 要改成與合成時的 cycle time 一樣再跑模擬。)

***************** Report : area Design : imgproc Version: G-2012.06 Date : Thu May 25 17:35:14 2017 Library(s) Used: slow (File: /home/raid7 2/course/cvsd/CBDK IC Contest/CIC/SynopsysDC/db/slow.db) Number of ports: 50 Number of nets: 1838 1187 Number of cells: Number of combinational cells: 846 Number of sequential cells: 307 Number of macros: Θ Number of buf/inv: 127 Number of references: 94 Combinational area: 22636.526924 Noncombinational area: 8502.276485 228341.164062 Net Interconnect area: Total cell area: 31138.803409 Total area: 259479.967472

```
Report : timing
-path full
-delay max
-max_paths 1
Design : imgproc
Version: G-2012.06
Date : Thu May 25 17:35:05 2017
Operating Conditions: slow Library: slow
Wire Load Model Mode: top
      (rising Path Group: clk
Path Type: max
     Des/Clust/Port Wire Load Model
                                                                                                                                                                         Library
      imgproc
                                                                                 tsmc13_wl10
                                                                                                                                                                         slow
                                                                                                                                                                                                                                                                                  Path
      clock clk (rise edge) 0.0
clock network delay (ideal) 0.5
d10_reg_1_/CK (DFFX1) 0.0
d10_reg_1_/Q (DFFX1) 0.4
add_2_root_add_0_root_add_312_14/A_1_ (imgproc_DW01_add_16)
                                                                                                                                                                                                                                                                                  0.00
0.50
0.50 r
0.99 r
                                                                                                                                                                                                                                       0.00
0.50
                                                                                                                                                                                                                                                                                                                               add 0 root add 0 root add 312 24/U19/Y (OAIZDRIXI)
add 0 root add 0 root add 312 24/U17/Y (OAIZDRIXI)
add 0 root add 0 root add 312 24/U17/Y (OAIZDRIXI)
add 0 root add 0 root add 312 24/U5/Y (OAIZDRIXI)
add 0 root add 0 root add 312 24/U5/Y (OAIZDRIXI)
add 0 root add 0 root add 312 24/U5/Y (OAIZDRIXI)
add 0 root add 0 root add 312 24/U5/Y (OAIZDRIXI)
add 0 root add 0 root add 312 24/U5/Y (OAIZDRIXI)
add 0 root add 0 root add 312 24/U5/Y (OAIZDRIXI)
add 0 root add 0 root add 312 24/U5/Y (OAIZDRIXI)
add 0 root add 0 root add 312 24/U5/Y (OAIZDRIXI)
add 0 root add 0 root add 312 24/U5/Y (OAIZDRIXI)
add 0 root add 0 root add 312 24/U5/Y (OAIZDRIXI)
add 0 root add 0 root add 312 24/U5/Y (OAIZDRIXI)
add 0 root add 0 root add 312 24/U5/Y (OAIZDRIXI)
add 0 root add 0 root add 312 24/U5/Y (OAIZDRIXI)
add 0 root add 0 root add 312 24/U5/Y (OAIZDRIXI)
add 0 root add 0 root add 312 24/U5/Y (OAIZDRIXI)
add 0 root add 0 root add 312 24/U5/Y (OAIZDRIXI)
add 0 root add 0 root add 312 24/U5/Y (OAIZDRIXI)
add 0 root add 0 root add 312 24/U111/Y (OADDFRJ)
add 0 root add 0 root add 312 24/U11/Y (OADDFRJ)
add 0 root add 0 root add 312 24/U11/Y (OANDFRJ)
add 0 root add 0 root add 312 24/U11/Y (OANDFRJ)
add 0 root add 0 root add 312 24/U11/Y (OANDFRJ)
add 0 root add 0 root add 312 24/U11/Y (OANDFRJ)
add 0 root add 0 root add 312 24/U11/Y (OANDFRJ)
add 0 root add 0 root add 312 24/U11/Y (OANDFRJ)
add 0 root add 0 root add 312 24/U11/Y (OANDFRJ)
add 0 root add 0 root add 312 24/U11/Y (OANDFRJ)
add 0 root add 0 root add 312 24/U11/Y (OANDFRJ)
add 0 root add 0 root add 312 24/U11/Y (OANDFRJ)
add 0 root add 0 root add 312 24/U11/Y (OANDFRJ)
add 0 root add 0 root add 312 24/U11/Y (OANDFRJ)
add 0 root add 0 root add 312 24/U11/Y (OANDFRJ)
add 0 root add 0 root add 312 24/U11/Y (OANDFRJ)
add 0 root add 0 root add 312 24/U11/Y (OANDFRJ)
add 0 root add 0 root add 312 24/U11/Y (OANDFRJ)
                                                                                                                                                                                                                                       0.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              11.11 f
11.51 f
11.51 f
11.95 r
12.32 f
12.83 r
13.11 f
13.39 r
13.72 f
14.94 r
14.29 f
14.51 r
14.72 f
15.19 r
15.39 f
16.74 f
16.74 f
16.74 f
16.78 f
17.16 r
17.35 f
17.16 r
                                                                                                                                                                                                                                        0.49
     add_2_root_add_0_root_add_312_14/U1_1/CO (ADDFXL) 0.80
add_2_root_add_0_root_add_312_14/U1_2/CO (ADDFXL) 0.50
add_2_root_add_0_root_add_312_14/U1_3/S (ADDFXL) 0.65
add_2_root_add_0_root_add_312_14/SUM_3 (imgproc_DW01_add_16) 0.00
                                                                                                                                                                                                                                                                                 0.99 r
1.79 r
2.29 r
2.94 r
      add_0_root_add_0_root_add_312_14/8_3_ (...,
add_0_root_add_0_root_add_312_14/U1_3/S (ADDFX2) 0.81
add_0_root_add_0_root_add_312_14/SUM_3_ (imgproc_DW01_add_8) 0.00
0.00
0.00
0.00
0.00
                                                                                                                                                                                                                                                                                  2.94 r
3.76 r
                                                                                                                                                                                                                                                                                  3.76 r
3.76 r
4.60 r
4.60 r
5.46 r
6.07 r
    0.00
0.86
                                                                                                                                                                                                                                       0 62
       adu_s_root_adu_e_root_adu_s12_24/b_4_ (imgproc_bWe1_adu_s)
0.00
add_3_root_add_0_root_add_s12_24/U1_4/S (ADDFXL)
0.88
add_3_root_add_0_root_add_s12_24/SUM_4_ (imgproc_bWe1_add_s)
0.00
                                                                                                                                                                                                                                                                                  6.07 r
6.95 f
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             18.96 r
18.96 r
19.30 r
19.58 f
19.58 f
20.00 f
20.00 f
20.00
                                                                                                                                                                                                                                                                                                                                add 318 round/A[7] (imgproc_DW01_inc_10)
add 318 round/U1_1 7/CO (ADDHXL)
add 318 round/U5/Y (XOR2X1)
add 318 round/SUM 8 (imgproc_DW01_inc_10)
U1137Y (AO2XL)
imgproc_data_reg_7_/D (DFFX1)
data_arrival_time
                                                                                                                                                                                                                                                                                  6.95 f
        add_2_root_add_0_root_add_312_24/B_4_ (imgproc_DW01_add_2)
                                                                                                                                                                                                                                                                                  6.95 f
7.80 f
      add 2 root add 0 root add 312 24/U1 4/S (ADDFXL) 0.85
add 2 root add 0 root add 312 24/SUM[4] (imgproc_DW01 add 2) 0.00
                                                                                                                                                                                                                                                                                  7.80 f
       add_1_root_add_0_root_add_312_24/B[4] (imgproc_DW01_add_1)
                                                                                                                                                                                                                                                                                                                                clock clk (rise edge)
clock network delay (ideal)
clock uncertainty
imgproc_data_reg_7_/CK (DFFX1)
library setup time
data required time
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             20.00
20.50
20.40
20.40 r
20.09
20.09
      adu_1_root_adu_0_root_add_312_24/014) (imgproc_DW01_add_1)
add_1_root_add_0_root_add_312_24/U1_4/S (ADDFXL) 0.96
add_1_root_add_0_root_add_312_24/SUM[4] (imgproc_DW01_add_1)
add_0_root_add_0_root_add_312_24/A_4_ (imgproc_DW01_add_0)
                                                                                                                                                                                                                                                                                   8.77 f
                                                                                                                                                                                                                                                                              8.77 f
9.27 r
9.55 f
10.02 r
10.30 f
                                                                                                                                                                                                                                       0.00
0.50
0.27
0.48
0.27
       add @_root_add @_root_add 312_24/U27/Y (OAI21XL)
add @_root_add @_root_add 312_24/U26/Y (OAI28B1X1)
add_@_root_add_@_root_add_312_24/U25/Y (OAI21XL)
add_@_root_add_@_root_add_312_24/U24/Y (OAI28B1X1)
                                                                                                                                                                                                                                                                                                                                   slack (MET)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 0.09
```

START!!! Simulation Start				
Congratulations!!! Every outputs are correct!				
Simulation complete via \$finish(1) at time 1895300 NS + 0 ./testfixture.v:117 \$finish; ncsim> exit				

5. 繳交檔案

本次作業為兩人一組,一組繳交一份檔案即可。

評分所需檔案可分為兩部份,請壓縮後命名為 學號 1_學號 2_final。

RTL category					
Design stage	File	Descirption			
N/A	Report.pdf	Design Report			
RTL Simulation	imgproc.v	Verilog synthesizable RTL code			
Gate-Level category					
Pre-layout Gate-	e- imgproc_syn.v Verilog gate-level netlist generated by Synopsys				
level Simulation		Design Compiler			
	imgproc_syn.sdf	Pre-layout gate-level sdf			

6. 附錄

Gaussian blur filter 之各點參數值

23'h00001a	23'h0000d8	23'h0001b5	23'h0000d8	23'h00001a
23'h0000d8	23'h000707	23'h000e41	23'h000707	23'h0000d8
23'h0001b5	23'h000e41	23'h001ce8	23'h000e41	23'h0001b5
23'h0000d8	23'h000707	23'h000e41	23'h000707	23'h0000d8
23'h00001a	23'h0000d8	23'h0001b5	23'h0000d8	23'h00001a