Rank-38 over GF(2)

January 15, 2021

The equation

The equation of the surface is:

$$X_0^3 + X_1^3 + X_2^3 + X_0^2 X_1 = 0$$

General information

Number of lines	3
Number of points	7
Number of singular points	1
Number of Eckardt points	1
Number of double points	0
Number of single points	6
Number of points off lines	0
Number of Hesse planes	0
Number of axes	0
Type of points on lines	3^{3}
Type of lines on points	$3, 1^6$

Singular Points

The surface has 1 singular points:

0:
$$P_3 = \mathbf{P}(0,0,0,1) = \mathbf{P}(0,0,0,1)$$

The 3 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{20} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{20} = \mathbf{Pl}(0, 1, 0, 0, 1, 0)_{11}$$

$$\ell_1 = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{33} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{33} = \mathbf{Pl}(0, 1, 0, 1, 0, 0)_{7}$$

$$\ell_2 = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{27} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{27} = \mathbf{Pl}(0, 1, 0, 1, 1, 0)_{17}$$

Rank of lines: (20, 33, 27)

Rank of points on Klein quadric: (11, 7, 17)

Eckardt Points

The surface has 1 Eckardt points:

 $0: P_3 = \mathbf{P}(0,0,0,1) = \mathbf{P}(0,0,0,1). T = -1$

Double Points

The surface has 0 Double points:

The double points on the surface are:

Single Points

The surface has 6 single points:

The single points on the surface are:

 $0: P_4 = (1,1,1,1)$ lies on line ℓ_2

1 : $P_6 = (1, 0, 1, 0)$ lies on line ℓ_0

 $2: P_7 = (0,1,1,0)$ lies on line ℓ_1

 $3: P_8 = (1, 1, 1, 0)$ lies on line ℓ_2

The single points on the surface are:

4: $P_{13} = (1, 0, 1, 1)$ lies on line ℓ_0

 $5: P_{14} = (0, 1, 1, 1)$ lies on line ℓ_1

Points on surface but on no line

The surface has 0 points not on any line:

The points on the surface but not on lines are:

Line Intersection Graph

 $\begin{array}{c|c} & 0 & 1 & 2 \\ \hline 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 2 & 1 & 1 & 0 \end{array}$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2
in point	P_3	P_3

Line 1 intersects

Line	ℓ_0	ℓ_2
in point	P_3	P_3

Line 2 intersects

Line	ℓ_0	ℓ_1
in point	P_3	P_3

The surface has 7 points:

The points on the surface are:

$$0: P_3 = (0,0,0,1) 1: P_4 = (1,1,1,1) 2: P_6 = (1,0,1,0)$$

 $3: P_7 = (0, 1, 1, 0)$ $4: P_8 = (1, 1, 1, 0)$ $5: P_{13} = (1, 0, 1, 1)$

$$6: P_{14} = (0, 1, 1, 1)$$

$$2 \cdot P_c = (1, 0, 1, 0)$$