Klausurvorschlag zur Vorlesung im WS 2010/2011 **Algorithmische Eigenschaften von Wahlsystemen I**

Aufgal	be I (Ankreuzaufgaben):
	Die Gewinnerbestimmung von STV ist nicht in P.
	Für $ C =2$ ist der PV Gewinner = Condorcet Gewinner.
	Aus dem Konsistenz-Kriterium folgt: Gewinnt c nicht in der gesamten Wahl, so
	gibt es keine Aufteilung in zwei Unterwahlen in denen ausschließlich c gewinnt.
	Erlaube man beim Condorcet Wahlsystem auch Gleichstände bei der Gewinnerbe-
	stimmung, so wäre es nicht mehr streng monoton.
	Ein Veto-Gewinner ist nie ein Condorcet-Verlierer.
	Young ist homogen.
	Es gibt Wahlen in denen der Condorcet-Gewinner existiert, und er nicht
	der Copeland-Gewinner ist.
	Erfüllt k-Approval für alle k mit $1 \le k \le C - 1$ ein Kriterium, so erfüllt es auch Plurality.
	Alle Scoring-Protokolle sind konsistent.
	Es macht keinen Unterschied, ob man die Majorität von Wählern wie gewohnt als
	$\left \frac{\ V\ }{2}\right + 1$ oder als $\left[\frac{\ V\ }{2}\right]$ definiert.
Lösung	gsvorschlag:
$\square X$	Die Gewinnerbestimmung von STV ist nicht in P.
$\square X$	Für $ C =2$ ist der PV Gewinner = Condorcet Gewinner.
$\mathbf{X} \square$	Aus dem Konsistenz-Kriterium folgt: Gewinnt c nicht in der gesamten Wahl, so
	gibt es keine Aufteilung in zwei Unterwahlen in denen ausschließlich c gewinnt.
$\mathbf{X} \Box$	Erlaube man beim Condorcet Wahlsystem auch Gleichstände bei der Gewinnerbe-
	stimmung, so wäre es nicht mehr streng monoton.
$\square X$	Ein Veto-Gewinner ist nie ein Condorcet-Verlierer.
$\square X$	Young ist homogen.
$\square X$	Es gibt Wahlen in denen der Condorcet-Gewinner existiert, und er nicht
	der Copeland-Gewinner ist.
\mathbf{X}	Erfüllt k-Approval für alle k mit $1 \le k \le C - 1$ ein Kriterium, so erfüllt es auch Plurality.
$\mathbf{X} \square$	Alle Scoring-Protokolle sind konsistent.
$\square X$	Es macht keinen Unterschied, ob man die Majorität von Wählern wie gewohnt als
	$\left \frac{\ V\ }{2}\right + 1$ oder als $\left \frac{\ V\ }{2}\right $ definiert.

Aufgabe 2 (Scoring-Protokolle):

Ein Scoring-Protokoll ist für eine Wahl mit m Kandidaten definiert durch einen Scoring- $Vektor \alpha = (\alpha_1, ..., \alpha_m)$, der die folgende Bedingung erfüllen muss:

$$\alpha_1 \geq \ldots \geq \alpha_m$$

Wird ein Kandidat in einer Stimme auf dem k-ten Platz einsortiert (für $1 \le k \le m$), so erhält er aus dieser Stimme α_k Punkte. Der Kandidat mit der höchsten Punktzahl gewinnt. Es sei ein Scoring-Protokoll $\alpha = (\alpha_1, \alpha_2, ..., \alpha_m)$ gegeben.

- (a) Zeigen oder widerlegen Sie die folgenden beiden Aussagen:
 - Für alle natürlichen Zahlen k ist $\alpha_{+k'}:=(\alpha_1+k,\alpha_2+k,...,\alpha_{m-2}+k,\alpha_{m-1},\alpha_m)$ ein Scoring-Protokoll und es gilt für alle Kandidaten $c\in C$ über jeder Wählermenge V: Kandidat c ist (eindeutiger) Gewinner in (C,V) bezüglich des Scoring-Protokolls α genau dann, wenn Kandidat c (eindeutiger) Gewinner in (C,V) bezüglich des Scoring-Protokolls $\alpha_{+k'}$ ist.
- (b) Begründen Sie warum es Scoring-Protokolle gibt oder nicht geben kann, für welche $\alpha_{+k'}$ beide Eigenschaften erfüllt. Sofern es möglich ist, geben Sie Beispiele aus der Vorlesung an.

Lösungsvorschlag:

Gegeben sei das Scoring-Protokoll $\alpha = (\alpha_1, \alpha_2, ..., \alpha_m)$. Es gilt also

$$\alpha_1 > \dots > \alpha_m$$

Sei $score_{\alpha}(c)$ die Punktzahl von c in der Wahl (C, V) bezüglich des Scoring-Protokolls α .

(a) Wir betrachten erstmal die zwei Teile von $\alpha_{+k'}$ separiert. Aus der obigen Eigenschaft und $k \geq 0$ folgt $\alpha_1 + k \geq ... \geq \alpha_{m-2} + k$. Daraus folgt auch $\alpha_{m-2} + k \geq \alpha_{m-1}$ und $\alpha_{m-1} \geq \alpha_m$ gilt nach Voraussetzung. Damit gilt $\alpha_1 + k \geq \alpha_2 + k \geq ... \geq \alpha_{m-2} + k \geq \alpha_{m-1} \geq \alpha_m$ und $\alpha_{+k'}$ ist ein Scoring-Protokoll.

Gegenbeispiel für die Gewinnererhaltung:

Sei α m-1-Approval und die folgende Wahl gegeben:

$$\begin{array}{ccc}
C_1 = & \{a, b, c, d, \} \\
V_1 : & a b c d \\
& b d c a \\
& a d c b
\end{array}$$

Der Gewinner in α ist c mit 3 Punkten. Sei nun k=1. Damit wären die Gewinner von $\alpha_{+k'}$ $\{a,b,d\}$ mit jeweils 4 Punkten.

(b) Wahlsysteme bei denen Kandidaten, die auf den letzten zwei Positionen stehen, keine Punkte erhalten, und mindestens einen Punkt auf der ersten Position und die Punktzahl für alle übrigen α_i 's gleich ist, können ausgedrückt werden als $(\alpha_1, \alpha_2, ..., \alpha_{m-2}, 0, 0)$. Jeder Kandidat kriegt bei $\alpha_{+k'}$ höchtens $(m-2) \cdot k$ Punkte mehr und trivialerweise kriegt keiner mehr als der Gewinner aus α . Da wir aus der Übung wissen, dass bei einer gleichverteilten Zunahme von Punkten der Gewinner erhalten bleibt, gibt es solche Scoring-Protokolle wie z.B. (m-2)-Approval.

Aufgabe 3 (Manipulation in Regular Cup):

Gegeben sei die Regular Cup-Wahl (C_1, V_1) :

$C_1 =$	$\{a,b,c,d,e,f,g\}$
V_1 :	eadfcgb
	deabfcg
	gfbecad
	afegcdb
	bedgafc

Die Zuteilung der Blätter erfolge alphabetisch von links nach rechts. In der ersten Runde tritt also a gegen b an und c tritt gegen d und e tritt gegen f an. Gleichstände werden lexikographisch gebrochen: Es gewinnt der lexikographisch kleinere Kandidat. Wir betrachten das eindeutige Gewinnermodell.

- (a) Bestimmen Sie den Gewinner der Regular Cup-Wahl (C_1, V_1) .
- (b) Entscheiden Sie, ob (C_1, V_1, S, c) mit ||S|| = 2 eine Ja-Instanz für REGULAR CUP-CONSTRUCTIVE COALITIONAL MANIPULATION ist.
- (c) Entscheiden Sie ob ein Manipulator mit nur einer Stimme ausreichen würde um c zum Gewinner zu machen. Begründen Sie ihre Entscheidung.

Geben Sie bei einer Ja-Instanz die Stimmen der manipulierenden Wähler explizit an. Konstruieren Sie den entsprechenden Binärbäume.

Lösungsvorschlag:

(a) Der Binärbaum sieht folgend aus:

Kandidat e ist also Regular-Cup-Gewinner der Wahl (C_1, V_1) .

(b) Angenommen, die beiden Wähler in S stimmen wie folgt ab: c g f b a d e und c g f b a d e. Dann entsteht folgende Wahl $(C_1, V_1 \cup S)$:

 \boldsymbol{c} konnte zum eindeutigen Gewinner gemacht werden. Somit handelt es sich um eine Ja- Instanz.

(c) Eine Stimme würde nicht ausreichen, denn c braucht mindestens einen Punkt mehr als a oder b (da Gleichstände lexikographisch gebrochen werden) um diese zu schlagen und damit sind mindestens zwei Stimmen des Manipulators notwendig.

Aufgabe 4 (Das Wahlsystem Bucklin):

Gegeben sei eine Wahl (C, V). Wir definieren das folgende Wahlsystem:

Bucklin: Der sogenannte Bucklin-Score eines Kandidaten der Stufe i ist die Anzahl
der Wähler, die diesen Kandidaten innerhalb ihrer ersten i Positionen stellen. Der
Bucklin-Score von c in einer Wahl (C, V) ist das kleinste i mit der Eigenschaft,
dass der Kandidat bei mindestens einer Majorität von Wählern innerhalb der ersten
i Positionen steht. Alle Kandidaten mit dem kleinsten i und dem höchsten BucklinScore der Stufe i sind die Bucklin-Gewinner.

Eigenschaften von Wahlsystemen: Ein Wahlsystem \mathcal{E} erfüllt das

- (1) *Monotonie-Kriterium*, wenn für jede \mathcal{E} -Wahl (C, V) gilt: Ist Kandidat c ein \mathcal{E} -Gewinner in (C, V) und verbessern wir die Position von c in einigen Stimmen in V, wobei sonst keine Veränderungen vorgenommen werden, so ist c ein \mathcal{E} -Gewinner der veränderten Wahl.
- (2) *Mehrheitskriterium*, wenn in jeder *E*-Wahl immer derjenige Kandidat gewinnt, der von einer absoluten Mehrheit der Wähler auf den ersten Platz gewählt wird (sofern dieser existiert).
- (3) Konsistenz-Kriterium, wenn für jede \mathcal{E} -Wahl (C,V) gilt: Wird die Wählermenge V aufgeteilt in zwei disjunkte Teilmengen V_1,V_2 und ist Kandidat c ein \mathcal{E} -Gewinner in beiden Unterwahlen (C,V_1) und (C,V_2) , so ist c auch in der Wahl (C,V) ein \mathcal{E} -Gewinner.

Seien die folgenden Wahlen $E_2 = (C_2, V_2)$ und $E_3 = (C_3, V_3)$ gegeben:

$C_2 = \{a, b, c, d, e\}$	$C_3 = \{a, b, c, d, e\}$
$V_2: abcde$	$V_3: abced$
abced	aecdb
edcba	cadeb
edcab	cdabe
	cbaed

- (a) Bestimmen Sie die Bucklin Gewinner in den Wahlen E_2 und E_3 .
- (b) Zeigen Sie, oder widerlegen Sie, ob das Wahlsystem Bucklin die drei oben angegebenen Kriterien erfüllt.

Lösungsvorschlag:

(a) Der Stufe 3 Gewinner von E_2 ist c. Der Stufe 1 Gewinner von E_3 ist c.

(b) **Monotoniekriterium:** Jedes Vertauschen des Gewinners nach vorne, kann dessen Bucklin Stufe höchstens verringern. Gleichzeitig kann die Stufe der anderen an dem Tausch beteiligten Kandidaten entweder gleich bleiben oder sich erhöhen.

Mehrheitskriterium: Bucklin erfüllt das Mehrheitskriterium, denn wenn es einen Kandidaten gibt, der in mehr als der Hälfte aller Stimmen auf dem ersten Platz platziert ist, so ist er eindeutiger Stufe 1 Gewinner.

Konsistenz-Kriterium: Bucklin erfüllt nicht das Konsistenz-Kriterium, denn legen wir E_2 und E_3 zusammen, so ist a Stufe 2 Bucklin Gewinner, obwohl c beide Teilwahlen gewonnen hat.

Aufgabe 5 (DCWM für STV und 3 Kandidaten):

In der Vorlesung haben Sie die Reduktion von PARTITION auf das Manipulationsproblem DCWM für das Wahlsystem STV mit 3 Kandidaten kennengelernt. Gegeben seien folgende PARTITION-Instanzen: (2,5,6,8,4,1) und (5,5,3,7,8,10).

- (a) Konstruieren Sie gemäß der Reduktion die STV-Wahl (C, V) aus einer der oberen PARTITION-Instanzen. Bestimmen Sie die Stimmen und Gewichte der Manipulatoren in S und berechnen Sie die STV-Punktwerte in den ersten Runden in den Wahlen (C, V) und $(C, V \cup S)$, so dass eine Manipulation erfolgreich ist.
- (b) Konstruieren Sie gemäß der Reduktion die STV-Wahl (C', V') aus einer der oberen PARTITION-Instanzen. Bestimmen Sie die Gewichte der Manipulatoren in S'. Erläutern Sie, weshalb hier keine erfolgreiche Manipulation möglich ist.

Lösungsvorschlag:

- (a) Damit eine Manipulation erfolgreich ist, müssen wir eine Ja-Instanz für PARTITION verwenden. (2,5,6,8,4,1) ist eine Ja-Instanz mit z.B. der Partition $(\{2,5,6\},\{8,4,1\})$. $C = \{a,b,p\}, K = 13$;
 - es gibt 78 Wähler der Form a d b und
 - es gibt 78 Wähler der Form b d a und
 - es gibt 104 Wähler der Form d a b.

$$score_{(C,V)}(a) = 78 \text{ und } score_{(C,V)}(b) = 78 \text{ und } score_{(C,V)}(c) = 103$$

Die Stimmen der 6 Manipulatoren mit den Gewichten sehen folgend aus:

Manipulator i	1	2	3	4	5	6
Gewicht	4	10	12	16	8	2
Präferenz	abd	abd	abd	bad	bad	bad

$$score_{(C,V)}(a) = 104 \text{ und } score_{(C,V)}(b) = 104 \text{ und } score_{(C,V)}(c) = 103$$

Also scheidet c in der ersten Runde aus und die Manipulation ist erfolgreich.

- (b) (5, 5, 3, 7, 8, 10) ist eine Nein-Instanz für PARTITION. $C' = \{a, b, p\}, K = 19;$
 - ullet es gibt 114 Wähler der Form $a\ d\ b$ und

- es gibt 114 Wähler der Form b d a und
- es gibt 151 Wähler der Form d a b.

$$score_{(C',V')}(a) = 114 \ und \ score_{(C',V')}(b) = 114 \ und \ score_{(C',V')}(c) = 151$$

Die Stimmen der 6 Manipulatoren mit den Gewichten sehen z.B. folgend aus:

Manipulator i	1	2	3	4	5	6
Gewicht	10	10	6	14	16	20
Präferenz	?	?	?	?	?	?

Da es keine Ja-Instanz für PARTITION ist, sind die Präferenzen laut der Konstruktion nicht definiert.

Unabhängig von der Verteilung der Präferenzen gilt aber immer, dass der Kandidat a oder der Kandidat b weniger Stimmen bekommt als der Kandidat d und damit in der ersten Runde ausscheiden wird. Laut der Konstruktion gilt, dass falls der Kandidat d nicht in der ersten Runde ausscheidet, kann er nicht mehr am gewinnen gehindert werden und somit die Manipulation nicht erfolgreich sein.

Bonusaufgabe 6 (Funktion S_P für Veto und k-Approval):

Es sei $\mathcal E$ ein Wahlsystem, das für die Präferenz P eines Wählers jedem Kandidaten c einen Punktwert $S_P(c)$ bezüglich P zuweist.

Geben Sie für die Wahlsysteme Veto und k-Approval die Funktion S_P an.

Lösungsvorschlag:

k-Approval:
$$S_P(a) = \lceil \frac{||\{b \in C - a|a \text{ steht vor } b\}|| - n + k + 1}{n} \rceil$$

Veto: $S_P(a) = \lceil \frac{||\{b \in C - a|a \text{ steht vor } b\}||}{n} \rceil$ oder $S_P(a) = \{|\exists b \in C - a|a \text{ steht vor } b|\}$