Home work 5

Vasanth Reddy Baddam

04/20/2020

I pledge that this test/assignment has been completed in compliance with the Graduate Honor Code and that I have neither given nor received any unauthorized aid on this test/assignment

Name: Vasanth Reddy Baddam

Signature: VB

 $\mathbf{Q2}$.

In Prim's Algorithm, we should select one vertex and start spreading the edges from that vertex. I se-

lected vertex A and extended the edges from that vertex.

$\mathbf{Q3}$.

If a graph is given G = (V, E) is a directed graph then the transpose of that such graph would be obtained by reversing the direction of arrows we get $G^T = (V, E^T)$. In adjacent matrix case, Adjacency matrix for graph G is given by $A = [a_{ij}]$. Adjacency matrix for G^T is given by $A^T = [a_{ij}^T]$, where $a_{ij}^T = a_{ji}$. So, we need to find the transpose of the matrix A

Algorithm 1 Transpose of Adjacency matrix

- 0: **procedure** Matrix Transpose(G, G^T)
- 0: e = number of edges
- 0: **for** i in range of e **do**
- 0: **for** j in range of e **do**
- 0: $G^{T}[i][j] = G[j][i]$

As the algorithm is running it's all vertices twice. Time complexity of the above algorithm is ${\rm O}(e^2)$, i.e ${\rm O}(V^2)$

Algorithm 2 Transpose of Adjacency List

- 0: **procedure** Adjacency List Transpose(G)
- 0: **for** u in range of V[G] **do**
- 0: **for** element $v \in Adj[u]$ **do**
- 0: Insert u in front of Adj[v]

Time complexity is O(V+E)

Q4.

edge(i, j)	White	Gray	Black
White	T,B,F,C	В,С	\mathbf{C}
Gray	T,F	T,F,B	T,F,C
Black		В	T,F,B,C

Table 1: Directed Graph

Q5.

After running the Slow-all-pairs-shortest-path algorithm, we get the following output :

edge(i, j)	White	Gray	Black
White	т,в	Т,В	
Gray	т,в	Т,В	Т,В
Black		$_{ m T,B}$	$_{ m T,B}$

Table 2: UnDirected Graph

L⁽¹⁾ (Initial matrix)

$$\begin{bmatrix} 0 & \infty & \infty & \infty & -1 & \infty \\ 1 & 0 & \infty & 2 & \infty & \infty \\ \infty & 2 & 0 & \infty & \infty & -8 \\ -4 & \infty & \infty & 0 & 3 & \infty \\ \infty & 7 & \infty & \infty & 0 & \infty \\ \infty & 5 & 10 & \infty & \infty & 0 \end{bmatrix}$$

$$L^{(2)} (m = 2)$$

$$\begin{bmatrix} 0 & 6 & \infty & \infty & -1 & \infty \\ -2 & 0 & \infty & 2 & 0 & \infty \\ 3 & -3 & 0 & 4 & \infty & -8 \\ -4 & 10 & \infty & 0 & -5 & \infty \\ 8 & 7 & \infty & 9 & 0 & \infty \\ 6 & 5 & 10 & 7 & \infty & 0 \end{bmatrix}$$

$$L^{(3)} (m = 3)$$

$$\begin{bmatrix} 0 & 6 & \infty & 8 & -1 & \infty \\ -2 & 0 & \infty & 2 & -3 & \infty \\ -2 & -3 & 0 & -1 & 2 & -8 \\ -4 & 2 & \infty & 0 & -5 & \infty \\ 5 & 7 & \infty & 9 & 0 & \infty \\ 3 & 5 & 10 & 7 & 5 & 0 \end{bmatrix}$$

$$L^{(4)} (m = 4)$$

$$\begin{bmatrix} 0 & 6 & \infty & 8 & -1 & \infty \\ -2 & 0 & \infty & 2 & -3 & \infty \\ -5 & -3 & 0 & -1 & -3 & -8 \\ -4 & 2 & \infty & 0 & -5 & \infty \\ 5 & 7 & \infty & 9 & 0 & \infty \\ 3 & 5 & 10 & 7 & 2 & 0 \end{bmatrix}$$

$$L^{(5)} (m = 5)$$

$$\begin{bmatrix} 0 & 6 & \infty & 8 & -1 & \infty \\ -2 & 0 & \infty & 2 & -3 & \infty \\ -5 & -3 & 0 & -1 & -6 & -8 \\ -4 & 2 & \infty & 0 & -5 & \infty \\ 5 & 7 & \infty & 9 & 0 & \infty \\ 3 & 5 & 10 & 7 & 2 & 0 \end{bmatrix}$$

Q6.

After running the Flyod-Warshall algorithm, we get the following output:

D⁽⁰⁾ (Initial matrix)

$$\begin{bmatrix} 0 & \infty & \infty & \infty & -1 & \infty \\ 1 & 0 & \infty & 2 & \infty & \infty \\ \infty & 2 & 0 & \infty & \infty & -8 \\ -4 & \infty & \infty & 0 & 3 & \infty \\ \infty & 7 & \infty & \infty & 0 & \infty \\ \infty & 5 & 10 & \infty & \infty & 0 \end{bmatrix}$$

$$D^{(1)} (k = 1)$$

$$\begin{bmatrix} 0 & \infty & \infty & \infty & -1 & \infty \\ 1 & 0 & \infty & 2 & 0 & \infty \\ \infty & 2 & 0 & \infty & \infty & -8 \\ -4 & \infty & \infty & 0 & -5 & \infty \\ \infty & 7 & \infty & \infty & 0 & \infty \\ \infty & 5 & 10 & \infty & \infty & 0 \end{bmatrix}$$

$$D^{(2)}$$
 (k = 2)

$$\begin{bmatrix} 0 & \infty & \infty & \infty & -1 & \infty \\ 1 & 0 & \infty & 2 & 0 & \infty \\ 3 & 2 & 0 & 4 & 2 & -8 \\ -4 & \infty & \infty & 0 & -5 & \infty \\ 8 & 7 & \infty & 9 & 0 & \infty \\ 6 & 5 & 10 & 7 & 5 & 0 \end{bmatrix}$$

$$D^{(3)}$$
 (k = 3)

$$\begin{bmatrix} 0 & \infty & \infty & \infty & -1 & \infty \\ 1 & 0 & \infty & 2 & 0 & \infty \\ 3 & 2 & 0 & 4 & 2 & -8 \\ -4 & \infty & \infty & 0 & -5 & \infty \\ 8 & 7 & \infty & 9 & 0 & \infty \\ 6 & 5 & 10 & 7 & 5 & 0 \end{bmatrix}$$

$$D^{(4)}$$
 (k = 4)

$$\begin{bmatrix} 0 & \infty & \infty & \infty & -1 & \infty \\ -2 & 0 & \infty & 2 & -3 & \infty \\ 0 & 2 & 0 & 4 & -1 & -8 \\ -4 & \infty & \infty & 0 & -5 & \infty \\ 5 & 7 & \infty & 9 & 0 & \infty \\ 3 & 5 & 10 & 7 & 2 & 0 \end{bmatrix}$$

$$D^{(5)}$$
 (k = 5)

$$\begin{bmatrix} 0 & 6 & \infty & 8 & -1 & \infty \\ -2 & 0 & \infty & 2 & -3 & \infty \\ 0 & 2 & 0 & 4 & -1 & -8 \\ -4 & 2 & \infty & 0 & -5 & \infty \\ 5 & 7 & \infty & 9 & 0 & \infty \\ 3 & 5 & 10 & 7 & 2 & 0 \end{bmatrix}$$

$$D^{(6)} (k = 6)$$

$$\begin{bmatrix} 0 & 6 & \infty & 8 & -1 & \infty \\ -2 & 0 & \infty & 2 & -3 & \infty \\ -5 & -3 & 0 & -1 & -6 & -8 \\ -4 & 2 & \infty & 0 & -5 & \infty \\ 5 & 7 & \infty & 9 & 0 & \infty \\ 3 & 5 & 10 & 7 & 2 & 0 \end{bmatrix}$$