Response Under 37 CFR 1.116

Expedited Procedure Examining Group 1742

Application No. 10/695,185

Paper Dated: March 16, 2006

In Reply to USPTO Correspondence of January 20, 2006

Attorney Docket No. 2204-031509

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application:

Listing of Claims

Claim 1 (cancelled).

Claim 2 (cancelled).

Claim 3 (currently amended): A method of manufacturing a ferritic stainless steel sheet having good workability with less anisotropy, which comprises the steps of:

providing a ferritic stainless steel consisting essentially of 0.03 mass % or less of C, 0.03 mass % or less of N, 2.0 mass % or less of Si, 2.0 mass % or less of Mn, 0.07-0.6 mass % of Ni, 9-35 mass % of Cr, 0.15-0.80 mass % of Nb and the balance being Fe except inevitable impurities;

precipitation-heating said stainless steel at a temperature (T) in a range of 450-750°C for a time period (t) not longer than 20 hours with the provision that a value λ defined by a formula of λ =(T + 273)·(20 + log t)/1000, whereby temperature is in degree centigrade and time is measured by hours, is controlled within a range of 13-19 so as to distribute Nb-containing precipitates of 0.5 μ m or less in particle size at a ratio of 0.4 mass % or more; and

finish-annealing said stainless steel at a temperature in a range of 900-1100°C for a time period not longer than 1 minute.

Claim 4 (previously presented): The method of manufacturing according to claim 3, wherein the stainless steel further contains at least one of Ti up to about 0.5 mass %, Mo up to about 3.0 mass %, Cu up to about 2.0 mass % and Al up to about 6.0 mass %.

Response Under 37 CFR 1.116 Expedited Procedure Examining Group 1742 Application No. 10/695,185

Paper Dated: March 16, 2006

In Reply to USPTO Correspondence of January 20, 2006

Attorney Docket No. 2204-031509

Claim 5 (original): The method of manufacturing according to claim 3, wherein fine precipitates are distributed at a total ratio of 0.4-1.2 mass % in a steel matrix by the precipitation-heating.