第三节

第十二章

齐次方程

- 一、齐次方程
- 二、可化为齐次方程

一、齐次方程

形如 $\frac{dy}{dx} = \varphi(\frac{y}{x})$ 的一阶微分方程叫做**齐次方程**.

解法:
$$\Rightarrow u = \frac{y}{x}$$
, 则 $y = ux$, $\frac{dy}{dx} = u + x \frac{du}{dx}$,

代入原方程得 $u + x \frac{\mathrm{d}u}{\mathrm{d}x} = \varphi(u)$

分离变量:
$$\frac{\mathrm{d}u}{\varphi(u)-u} = \frac{\mathrm{d}x}{x} \qquad (\varphi(u)-u \neq 0)$$

两边积分,得
$$\int \frac{\mathrm{d}u}{\varphi(u)-u} = \int \frac{\mathrm{d}x}{x}$$

积分后再用 $\frac{y}{u}$ 代替u, 便得原方程的通解.

若存在 u_0 ,使得 $\varphi(u_0)-u_0=0$,则 $u=u_0$ 也是方程 $u + x \frac{\mathrm{d} u}{\mathrm{d} x} = \varphi(u)$ 的解,

带入原方程, 可知 $y = u_0 x$ 也是齐次方程的解.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \varphi(\frac{y}{x})$$

例 解微分方程 $y' = \frac{y}{x} + \tan \frac{y}{x}$. 解: 令 $u = \frac{y}{x}$, 则y' = u + xu', 代入原方程得

$$u + xu' = u + \tan u$$

 $\frac{\cos u}{\sin u} du = \frac{dx}{x} \quad (u \neq k\pi \ (k \in Z))$ 分离变量

故原方程的通解为 $\sin \frac{y}{x} = Cx$ (C为任意常数)

(当 C = 0 时, $y = k\pi x (k \in \mathbb{Z})$ 也是方程的解)

例 解微分方程 $y' = \frac{y}{x} + e^{-\frac{y}{x}}$. (06-07, 二(5)) 解: 令 $u = \frac{y}{x}$, 则y' = u + xu', 代入原方程得 $u + xu' = u + e^{-u}$

分离变量 $e^u du = \frac{dx}{r}$ 两边积分 $\int e^u du = \int \frac{dx}{r}$

得 $e^u = \ln |x| + C$

故原方程的通解为 $e^{\frac{y}{x}} = \ln |x| + C (C)$ 为任意常数)

例 解微分方程 $(v^2-2xv)dx+x^2dv=0$.

解: 方程变形为 $\frac{dy}{dx} = 2\frac{y}{x} - (\frac{y}{x})^2$, 令 $u = \frac{y}{x}$, 则有 $u + xu' = 2u - u^2$ 分离变量 $\frac{du}{u^2 - u} = -\frac{dx}{x}$ ($u \neq 0, 1$)

$$\mathbb{R}\left(\frac{1}{u-1} - \frac{1}{u}\right) du = -\frac{dx}{x}$$

积分得
$$\ln \left| \frac{u-1}{u} \right| = -\ln |x| + \ln |C|$$
,即 $\frac{x(u-1)}{u} = C$

代回原变量得通解 x(y-x)=Cy (C 为任意常数)

说明: 显然 y=0, y=x 也是原方程的解, y=x 补充 进了通解公式, y=0在求解过程中丢失了.

例 解微分方程 $v^2 + x^2 v' = xv v'$.

解: 方程变形为
$$\frac{dy}{dx} = \frac{y^2}{xy - x^2}$$

方程右端分子分母同时除以 x^2 . 得

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\left(\frac{y}{x}\right)^2}{\frac{y}{x} - 1}$$

为齐次方程,令
$$u = \frac{y}{x}$$
,
则有 $u + xu' = \frac{u^2}{u - 1}$, 即 $x \frac{du}{dx} = \frac{u}{u - 1}$,

分离变量,得
$$\frac{u-1}{u} du = \frac{dx}{x}$$
,

两边积分,得

$$u - \ln |u| = \ln |x| + C(C)$$
为任意常数)

将
$$u = \frac{y}{x}$$
带入,得

$$\frac{y}{x} - \ln \left| \frac{y}{x} \right| = \ln \left| x \right| + C$$

即 $y = x \ln |y| + Cx$ 为原方程的通解。

说明: 显然 y=0 也是原方程的解,但求解过程中丢失了。

$$\frac{u-1}{u} du = \frac{dx}{x},$$

二、可化为齐次方程的方程

方程
$$\frac{dy}{dx} = \frac{ax + by}{a_1x + b_1y}$$
 是齐次微分方程。

方程
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{ax + by + c}{a_1x + b_1y + c_1} \ (c^2 + c_1^2 \neq 0)$$
 不是齐次方程。

$$1.$$
当 $\frac{a_1}{a} \neq \frac{b_1}{b}$ 时,

做变换 x = X + h, y = Y + k (h, k 为待定常数),

则dx = dX, dy = dY.

原方程化为

$$\frac{\mathrm{d}Y}{\mathrm{d}X} = \frac{aX + bY + ah + bk + c}{a_1X + b_1Y + a_1h + b_1k + c_1}$$

$$\Rightarrow \begin{cases} ah + bk + c = 0 \\ a_1h + b_1k + c_1 = 0 \end{cases}, \quad \text{解出 } h, k$$

$$\frac{\mathrm{d}Y}{\mathrm{d}X} = \frac{aX + bY}{a_1X + b_1Y} \quad ($$

$$\frac{a_1}{a} \neq \frac{b_1}{b}$$
保证方程组有解

$$\frac{\mathrm{d}Y}{\mathrm{d}X} = \frac{aX + bY}{a_1X + b_1Y} \quad (齐次方程)$$

$$\frac{a_1}{a} \neq \frac{b_1}{b}$$
 保证方程组有

求出其解后,将X=x-h,Y=y-k代入,即得原方 程的解.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{ax + by + c}{a_1x + b_1y + c_1} \qquad x = X + h, y = Y + k$$

2. 当
$$\frac{a_1}{a} = \frac{b_1}{b} = \lambda$$
时,原方程可化为
$$\frac{dy}{dx} = \frac{ax + by + c}{\lambda(ax + by) + c_1}$$
 \quad \text{\gamma} $u = ax + by$, \text{\pm} \frac{du}{dx} = $a + b \frac{dy}{dx}$ \text{\frac{du}{dx}} = $a + b \frac{u + c}{\lambda u + c_1}$ (可分离变量方程)

注:上述方法可适用于下述更一般的方程

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f \Big(\, \frac{a \, x + b \, y + c}{a_1 x + b_1 y + c_1} \, \Big) \ \ (c^2 + c_1^2 \neq 0)$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{ax + by + c}{a_1x + b_1y + c_1}$$

例 解方程
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4x + 6y + 4}{2x + 3y + 6}$$

解: 令
$$u = 2x + 3y$$
, 则 $\frac{du}{dx} = 2 + 3\frac{dy}{dx}$, 代入方程, 得

$$\frac{du}{dx} = 2 + 3 \cdot \frac{2u + 4}{u + 6}$$

$$\frac{du}{dx} = \frac{8u + 24}{u + 6} = 8 \cdot \frac{u + 3}{u + 6}$$

$$\frac{u+6}{u+3}\,du = 8dx,$$

积分得

$$u+3\ln|u+3|=8x+C$$
, (C 为任意常数)
代入 $u=2x+3y$, 得原方程的通解:

$$-6x+3y+3\ln|2x+3y+3|=C$$
. (C 为任意常数)

容易验证 2x+3y+3=0 也是方程的解,但丢失。

$$\frac{u+6}{u+3}\,du=8dx,$$

例 求解
$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x+y+4}{x-y-6} \\ y_{x_2} = -5 \end{cases}$$
解: 令
$$\begin{cases} x_0 + y_0 + 4 = 0 \\ x_0 - y_0 - 6 = 0 \end{cases}$$
 得 $x_0 = 1, y_0 = -5$ 令 $x = X+1, y = Y-5$, 得 $\frac{\mathrm{d}Y}{\mathrm{d}X} = \frac{X+Y}{X-Y}$ 再令 $Y = Xu$, 得 $u + X\frac{\mathrm{d}u}{\mathrm{d}X} = \frac{1+u}{1-u}$ 分离变量,得 $\frac{1-u}{1+u^2}\mathrm{d}u = \frac{\mathrm{d}X}{X}$ 积分得 $\arctan u - \frac{1}{2}\ln(1+u^2) = \ln|X| + C$ (C 为任意常数)

代回原变量, 得原方程的通解:

$$\arctan \frac{y+5}{x-1} - \frac{1}{2} \ln \left[1 + \left(\frac{y+5}{x-1} \right)^2 \right] = \ln |x-1| + C$$

利用
$$y|_{x=2} = -5$$
 得 $C = 0$, 故所求特解为

$$\arctan \frac{y+5}{x-1} = \frac{1}{2} \ln \left[(x-1)^2 + (y+5)^2 \right]$$

$$\arctan u - \frac{1}{2}\ln(1+u^2) = \ln |X| + C \quad u = \frac{Y}{X} = \frac{y+5}{x-1}$$
 (C 为任意常数)