

Kurdistan Region Government Ministry of Higher Education and Scientific Research Erbil Polytechnic University

Module (Course Syllabus) Catalogue 2024-2025

College/ Institute	Erbil Technical Engineering College				
Department	Information System Engineering				
Module Name	Artificial Intelligent				
Module Code	ARI702				
Degree	Technical Diploma Bachelor				
	High Diploma Master PhD				
Semester	7				
Qualification	PhD In Computer Engineering				
Scientific Title	Lecturer				
ECTS (Credits)	6				
Module type	Prerequisite Core Assist.				
Weekly hours					
Weekly hours (Theory)	(2)hr Class (84)Total hrs Workload				
Weekly hours (Practical)	(2)hr Class (78)Total hrs Workload				
Number of Weeks	14				
Lecturer (Theory)	Shahab Wahhab Kareem				
E-Mail & Mobile NO.	Shahab.kareem@epu.edu.iq				
Lecturer (Practical)	Soran bakhtiyar				
E-Mail & Mobile NO.					
Websites					

Course Book

Course Description	Principles of knowledge-based search techniques, automatic deduction, knowledge representation using predicate logic, machine learning, probabilistic reasoning. Applications in tasks such as problem solving, data mining, game playing, natural language understanding, computer vision, speech recognition, and robotics.				
Course objectives	•	artificial agents of to construct intellicon computational sys	in natural or art ormulate and te gent agents de tems that perfo design useful, ir	ificial systems est hypotheses esign, build, ar erm tasks that estelligent artif	analyze natural and about what it takes nd experiment with require intelligence
Student's obligation					
Required Learning Materials					
		Task	Weight (Marks)	Due Week	Relevant Learning Outcome
		Paper Review			
		Homework	5	5	
	Ass	Class Activity	2	7	
Assignments Evaluation	Report	5	8		
	ments	Seminar			
		Essay			
		Project	5	11	
	Qui		8	4	
	Lab.		10	6	
	Midterm Exam		25	7	

	Final Exam		10	12		
	Total	1	100			
Specific learning outcome:	1- Uninformed Search Methods — Be able to formulate problem solving tasks as searching a state space graph, problem representation in terms of states, goal test, operators, state-space graph search formulation, closed world assumption, expanding a node, frontier list, partial solution path, solution path, search tree, breadth-first search, depth-first search, chronological backtracking, uniform-cost search, iterative-deepening search, bidirectional search, completeness, optimality, admissibility, time and space complexity, detecting repeated states, explored list. 2- Informed Search Methods — Understand heuristic functions, evaluation functions, best-first search, greedy best-first search, beam search, algorithm A, algorithm A*, admissible heuristic, consistent heuristic, better informed heuristic, devising heuristics. 3- Local Search Methods — Local search problem formulation, operators, neighborhood, move set, hill-climbing algorithm, local optima problem, hill-climbing with random restarts, stochastic hill-climbing (simulated annealing) algorithm, escaping local optima, Boltzman's equation, cooling schedule, genetic algorithms, crossover, mutation, fitness function, proportional fitness selection, population, crowding. 4- Game Playing — Zero-sum games, perfect information games, deterministic vs. stochastic games, game playing as search, search tree, branching factor, ply, minimax principle, minimax algorithm, static evaluation function, alpha-beta pruning, cutoff, alpha-beta pruning algorithm, best case and worst case of alpha-beta vs. minimax, iterative-deepening with alpha-beta, horizon effect, quiescence search, representing non-deterministic games, chance nodes, expectimax value, Monte Carlo tree search. 5- Constraint Satisfaction - Problem formulation in terms of variables, domains and constraints, constraint graph, depth-first search, backtracking with consistency checking, most constrained variable heuristic, most constraining					
	 conflicts algorithm, forward checking algorithm, arc consistency algorithm (AC-3). 6- Unsupervised Learning – Inductive learning problem, unsupervised learning problem, feature space, feature, attribute, examples, labels, classes, training set, testing set, classification problems, inductive bias, preference bias, hierarchical agglomerative clustering algorithm, single linkage, complete linkage, average linkage, dendrogram, k-means clustering algorithm, cluster center, distortion cluster quality. 					
Course References:	 Artificial Intelligence: A Modern Approach Stuart Russell and Peter Nor Edition, 2009 – Recommended but not required. – Older editions are also useablebut will have to search the text for the relevant sections – Alternate Book: Computational Intelligence: A Logical Approach by Dav Poole and Alan Mackworth. 					

 Artificial Intelligence: Foundations of Computational Agents, second edition, Cambridge University Press 2017

Course topics (Theory)	Week	Learning Outcome			
introduction to artificial intelligence and the role of agents.	1	describe what an intelligent agent is identify the goals of Artificial Intelligence classify the inputs and the outputs of various agents			
dimensions of complexity. applications domains.	2				
introduction to knowledge representation.	3	characterize simplifying assumptions made in building Al systems determine what simplifying assumptions particular Al systems are making suggest what assumptions to lift to build a			
agent architecture and control	4	more intelligent system than an existing one			
hierarchical control.	5	Chapter 3 presents the search techniques covered in the lectures as well as other ideas not covered.			
searching and graphs.	6				
uninformed search strategies.	7	define a directed graph represent a problem as a state-space			
bounded search, iterative deepening, branch and bound.	8	graph			
refinements to search strategies, including loop checking, multiple-path pruning, bidirectional search, and dynamic programming.	9	explain how a generic searching algorithm works demonstrate how depth-first search will work on a graph demonstrate how breadth-first search will work on a graph predict the space and time requirements for depth-first and breadth-first searches			
heuristic search, including best-first search and A* search.	10	devise an useful heuristic function for a problem demonstrate how best-first and A * search will work on a graph predict the space and time requirements for best-first and A * search			
Constraint satisfaction problems and consistency algorithms (arc consistency).	11	explain how cycle checking and multiple-path pruning can improve efficiency of search algorithms explain the complexity of cycle checking and multiple-path pruning for different search algorithms justify why the monotone restriction is useful for A * search predict whether forward, backward, bidirectional or island-driven search is better for a particular			

local search, randomized algorithms and genetic algorithms for solving CSPs.		problem demonstrate how dynamic programming works for a particular problem
propositional reasoning and definite clauses. bottom-up proof procedure.	12	show how constraint satisfaction problems can be solved with generate-and-test show how constraint satisfaction problems can be solved with search explain and trace arc-consistency of a constraint graph show how domain splitting can solve constraint problems
top-down proof procedure.	13	explain the model of deterministic planning represent a problem using the STRIPs representation of actions.
action semantics and representations.	14	Explain the components and the architecture of a learning problem Explain why a learner needs a bias Identify the sources of error for a prediction
Practical Topics	Week	Learning Outcome
Introduction to python Classes and Functions	1,2	Download anaconda Identify the classes and function
I	1,2 3,4	
Classes and Functions	,	Identify the classes and function
Classes and Functions Files and exceptions Understanding Object-Oriented	3,4	Identify the classes and function Read , write file
Classes and Functions Files and exceptions Understanding Object-Oriented Basics	3,4 5,6	Identify the classes and function Read , write file Identify the Object-Oriented Basics
Classes and Functions Files and exceptions Understanding Object-Oriented Basics Object-Oriented basics	3,4 5,6 7,8	Identify the classes and function Read , write file Identify the Object-Oriented Basics Object-Oriented Basics

Questions Example Design

Give some real-world applications of Al.

There are various real-world applications of AI, and some of them are given below:

 Google Search Engine: When we start writing something on the google search engine, we immediately get the relevant recommendations from google, and this is because of different AI technologies.

- Ridesharing Applications: Different ride-sharing applications such as Uber uses AI and machine learning to determine the type of ride, minimize the time once the car is hailed by the user, price of the ride, etc.
- Spam Filters in Email: The AI is also used for email spam filtering so that you can get the important and relevant emails only in your inbox. As per the studies, Gmail successfully filters 99.9% of spam mails.
- Social Networking: Different social networking sites such as Facebook, Instagram, Pinterest, etc., use the AI technology for different purposes such as face recognition and friend suggestions, when you upload a photograph on Facebook, understanding the contextual meaning of an emoji in Instagram, and so on.
- Product recommendations: When we search for a product on Amazon, we get the recommendation for similar products, and this is because of different ML algorithms.
 Similarly, on Netflix, we get personalized recommendations for movies and web series.

Extra notes:		
External Evaluator		
Dr. roojwan		
D1. 100jwan		

