# Оглавление

| 0.1 | Определение предела функции одной переменной при $x \to a$           |
|-----|----------------------------------------------------------------------|
| 0.2 | Первый замечательный предел (вывод формулы)                          |
| 0.3 | Определение производной одной переменной                             |
| 0.4 | Вывод производной синуса, косинуса, $x^2, x^3$                       |
| 0.5 | Вывод формулы производной частного                                   |
| 0.6 | Определение дифференциала функции (привести пример)                  |
| 0.7 | Формула Тейлора для произвольной функции одной переменной            |
| 0.8 | Полный дифференциал функции двух переменных (определение + пример)   |
| 0.9 | Необходимое и достаточное условие экстремума функции двух переменных |

### 0.1 Определение предела функции одной переменной при x o a

Рассмотрим функцию f(x) при  $x \to a$ . Вообще есть два определения, но на лекциях рассказывали про Коши, на экзамене видимо тоже будут спрашивать Коши, поэтому рассмотрю именно его.

$$\lim_{x \to a} f(x) = A \Leftrightarrow \forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) \ \forall x : |x - a| < \delta \Rightarrow |A - f(x)| < \varepsilon$$

Это значит, что какую бы маленькую  $\varepsilon$  окрестность по значениям мы ни взяли, мы всегда сможем выбрать такую  $\delta$  окрестность по x, что значения функции от всех x внтури этой окрестности лежат в  $\varepsilon$  окрестности. Тогда A - предел.

## 0.2 Первый замечательный предел (вывод формулы)

Первый замечательныц предел:

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

Так как sin(x) - четная функция, то можно рассмотреть для положительных малых значений.



Пусть x - угол, тогда сравним площади фигур. Для  $0 < x < \frac{\pi}{2}$  это верно. Тогда можно записать неравенство:

$$tg(x) = \frac{\sin(x)}{\cos(x)}$$

. Разделим все на sin(x): $1 < \frac{x}{sin(x)} < \frac{1}{cos(x)}$  : $cos(x) < \frac{sin(x)}{x} < 1cos(x) = 1x \to 0$ , то  $\frac{sin(x)}{x}$  оказывается зажат(теорема о двух милиционерах) при  $x \to 0$  между 1 и 1, значит

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

### 0.3 Определение производной одной переменной

Пусть функция определена в некторой окрестности точки  $x_0$ , тогда производная функци в точке  $x_0$  - это предел, если он существует:

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{\Delta \to 0} \frac{f(x_0 + \Delta) - f(x_0)}{\Delta}$$

# 0.4 Вывод производной синуса, косинуса, $x^2, x^3$

По определению

$$f'(x) = \lim_{\Delta \to 0} \frac{f(x+\Delta) - f(x)}{\Delta}$$

Тогда для синуса:

$$f^{'}(sin(x)) = \lim_{\Delta \to 0} \frac{sin(x+\Delta) - sin(x)}{\Delta} = \lim_{\Delta \to 0} \frac{sin(x)cos(\Delta) + cos(x)sin(\Delta) - sin(x)}{\Delta}$$

При  $\Delta \to 0$ :  $cos(\Delta) = 1$ ,  $sin(\Delta) = 0$ , значит числитель равен  $sin(x) + cos(x)sin(\Delta) - sin(x) = cos(x)sin(\Delta)$ . По первому замечательному пределу

$$\lim_{\Delta \to 0} \frac{\cos(x)\sin(\Delta)}{\Delta} = \cos(x)$$

Для косинсуса:

$$f^{'}(cos(x)) = \lim_{\Delta \to 0} \frac{cos(x+\Delta) - cos(x)}{\Delta} = \lim_{\Delta \to 0} \frac{cos(x)cos(\Delta) - sin(x)sin(\Delta) - cos(x)}{\Delta}$$

Представим это в виде суммы двух дробей:

$$\lim_{\Delta \to 0} \frac{\cos(x)\cos(\Delta) - \cos(x)}{\Delta} + \frac{-\sin(x)\sin(\Delta)}{\Delta}$$

При  $\Delta \to 0$ :  $cos(\Delta) = 1$ ,  $sin(\Delta) = 0$ , значит числитель первой дроби равен 0, а вторая дробь по первому замечательному пределу равна -sin(x).

Для  $x^2$ 

$$\lim_{\Delta \to 0} f'(x^2) = \frac{(x+\Delta)^2 - x^2}{\Delta} = \frac{2x\Delta + \Delta^2}{\Delta} = 2x + \Delta = 2x$$

Для  $x^3$ :

$$\lim_{\Delta \to 0} f'(x^3) = \frac{(x+\Delta)^3 - x^2}{\Delta} = \frac{3x^2\Delta + 3x\Delta^2 + \Delta^3}{\Delta} = 3x^2 + 3x\Delta + \Delta^2 = 3x^2$$

### 0.5 Вывод формулы производной частного

$$(\frac{u}{v})^{'} = \lim_{\Delta \to 0} \frac{\frac{u(x+\Delta)}{v(x+\Delta)} - \frac{u(x)}{v(x)}}{\Delta} = \lim_{\Delta \to 0} \frac{u(x+\Delta)v(x) - v(x+\Delta)u(x)}{v(x)v(x+\Delta)\Delta}$$

Добавим и вычтем и из знаменателя u(x)v(x), тогда там образуются две производные, а снизу остнется знаменатель в квадрате:

$$\begin{split} \lim_{\Delta \to 0} \frac{u(x+\Delta)v(x) - u(x)v(x) - v(x+\Delta)u(x) + u(x)v(x)}{v(x)v(x+\Delta)\Delta} &= \\ &= \lim_{\Delta \to 0} \frac{u(x)\frac{du}{dx} - v(x)\frac{dv}{dx}}{v(x)v(x+\Delta)} &= \frac{u^{'}v - uv^{'}}{v^{2}} \end{split}$$

#### 0.6 Определение дифференциала функции (привести пример)

Дифференциал функции в некоторой точке  $x_0$  - линейная часть приращения функции. Обозначается:

$$df(x) = f'(x)dx$$

Примеры: Найти дифференциал фунции  $x^2$ :

$$d(x^2) = f'(x^2)dx = 2xdx$$

Найти дифференцаил функции ln(x):

$$d(ln(x)) = f'(ln(x))dx = \frac{dx}{x}$$

#### Формула Тейлора для произвольной функции одной перемен-0.7ной

Если функция f(x) имеет n+1 производную на отрезке, то ее можно записать в виде многочлена  $P_n(x)$ степени не выше n, значение которого в точке a равняется значению функции в этой точке.

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k} + o((x-x_{0})^{n}), x \to x_{0}$$

Остаточный член в форме Пеано:  $o((x-x_0)^n), x \to x_0$ 

#### Полный дифференциал функции двух переменных (опреде-0.8 ление + пример)

Полный дифференцал функции:

$$dz = z_{x}^{'}dx + z_{y}^{'}dy$$

Найти полный дифференциал функции  $z = x^2 + y^3$ :

$$dz = z_{x}^{'}dx + z_{y}^{'}dy$$

$$z_{x}^{'}=2x,z_{y}^{'}=3y^{2}$$

$$dz = 2xdx + 3y^2dy$$

#### 0.9Необходимое и достаточное условие экстремума функции двух переменных

Теорема (необходимое условие экстремума функции двух переменных). Если функция z = f(x, y) достигает экстремума при  $x=x_0, y=y_0$  то каждая частная производная первого порядка от z или обращается в ноль при этих значениях аргументов, или не существует.

Теорема (достаточное условие экстремума функции двух переменных). Пусть в некоторой области, содержащей точку  $M_0(x_0,y_0)$  функция имеет непрерывные частные производные до третьего порядка включительно. Пусть, кроме того, точка  $M_0(x_0, y_0)$  является критической точкой функции f(x, y), т.е.

$$\begin{cases} f_x^{'}|_{M_0} = 0\\ f_y^{'}|_{M_0} = 0 \end{cases}$$

Составим такую матрицу:

$$\Delta = \begin{vmatrix} f_{xx}^{\prime\prime} & f_{xy}^{\prime\prime} \\ f_{xy}^{\prime\prime} & f_{yy}^{\prime\prime} \end{vmatrix}$$

Тогда при:

- $1)~\Delta>0$  и  $f_{xx}^{\prime\prime}>0$  имеет максимум  $2)~\Delta>0$  и  $f_{xx}^{\prime\prime}<0$  имеет минимум
- 3)  $\Delta < 0$  не имеет экстремума
- 4) если  $\Delta = 0$ , то экстремум может быть, а может и не быть (требуется дополнительное исследование).