Al for inter-well saturation mapping

Al Berserkers

The problem and solution

Data Driven Method

Take the Data and use ensemble ML models:

- -SciKit Bagging regressor. Train 2 hours. MSE - 0.086
- Catboost CatBoost regressor.Train 10 minutes. MSE 0.055
 - XGBRegressor. Train 20 seconds. MSE-0.076

Data Driven+Physics

Take the Data and use ensemble ML models plus use physical models simulation:

- Archie's law, Archie's - Dahnov formula. We need more parameters for the equation. We use a=1,n=2,m=2 and Pickett plot.

Reformulated for electrical resistivity, the equation reads

$$R_t = a\phi^{-m}S_w^{-n}R_w$$

with R_t for the fluid saturated rock resistivity, and R_w for the brine resistivity.

Challenges deep-dive

Challenge 1

Data interpretation problem.

We try to understand how the data is organise. It takes some time to understand but we manage it.

Challenge 2

Materials about petrophysics.

We try to get some domain specific information about problem.

Challenge 3

Choose right models and combine with physics simulations.

We need to choose ensemble models, deep learning models. What best models Archie,double water ets?

Data Exploration

Porosity Distribution

Clearly see close to normal data distribution.

Resistivity Distribution

Most of the data between 0 and 15.

Water Saturation Distribution

Two peaks 1.0 and 0.8

Pair plot correlation chart between all features. Not seen any good correlation.

3D Cube model.It helps us to correctly interpret the data.

Our Team Strategy

Model: "sequential_8" Param # Layer (type) Output Shape 768 dense 24 (Dense) (None, 256) dense 25 (Dense) (None, 128) 32896 dense 26 (Dense) (None, 64) 8256 dense 27 (Dense) 65 Total params: 41,985

Trainable params: 41,985 Non-trainable params: 0

	loss	mae	mse	val_loss	val_mae	val_mse	epoch
5	0.074617	0.204733	0.074617	0.073983	0.195611	0.073983	5
6	0.074424	0.204024	0.074424	0.074939	0.193552	0.074939	6
7	0.074290	0.204298	0.074290	0.072857	0.205852	0.072857	7
8	0.074230	0.204226	0.074230	0.073058	0.209107	0.073058	8
9	0.074153	0.204061	0.074153	0.074732	0.187833	0.074732	9

Add Neural Net model.Same features - Porosity,Resistivity

because of the lower error.

pred cat = cr.predict(X test) mean squared error(y test, pred cat) 0.054321294506122414

Notice that all the electrical equations shown above to estimate SW require to know the value for the formation water resistivity Rw. This is usually the most important parameter to estimate SW. The table below shows the most popular techniques aimed to estimate either salinity or its companion Rw value at the reservoir temperature:

Remarks

be good to have Vsh.We need

that for the new features Fertl

and Semandu equation.

Source

1	Id	onic Wa	ater Ana	alys	is	Best		Water sample Water sample must be representative. Independent, log free technique		
2	Rw from water bodies and pockets			Good		Logs	Needs to find 100% water bodies to work, like aquifers or water pockets			
3	Hingle Plot			Good		Logs	Logs Same math as Rw from H2O body, but from a cross-plot.			
4	Core SW vs. log SW match			Mediun	n	Logs and Core	Move salinity until match. Needs accurate lab SW measurements.			
5	Pickett Plot			Poor		Logs	Logs Rw & m estimation. Does not work if Phi is almost constant in water body			
6	SP Spontaneous Potential		Worst		Logs	Last resource to try. Seldom yields accurate or usable Rw estimates				
	† Parameter increases	sw	SO or SG		Parameter decreases		SO or	SG	We probably need better Rw	
1	а	Ť	1	1	а	ţ	1		then constant - 0.1, and it could	

Salinity (Rw ↓)

Vsh (φe ↓)

Vsh (Sat. correction)

Fertl a Grain density $(\phi \uparrow)$

CEC Qv

10 11

NaCl or Rw Technique

Reliability

 $Vsh(\phi_e\uparrow)$

9 Vsh (Sat. correction)

Salinity (Rw 1)

12 Grain density (φ↓) CEC Qv