Exercício 1

a)

Considerando f(x) = 1/2XtAX - Xtb

$$f'(x) = A*X - b$$

Para encontrar-se o mínimo, f'(x) = 0, portanto:

A*X - b = 0

A*x = b

b)

The solution is: [2. 3.]

c) Os problemas (a) e (b) se relacionam na medida em que para se encontrar o vetor x que resulta no mínimo da função f(x), é necessário utilizar o sistema de equações lineares apresentado no problema (b)

Exercício 2

```
In [3]: def Dichotomous_Search_Algorithm(a, b, func, tol=1, E = 0.001, max_iter=500):
    ak = a
```

```
bk = b
            iter = 0
            print(f"{'iter':>10} {'ak':>10} {'bk':>10} {'c1':>10} {'c2':>10} {'func(c1)':>15} {'func(c2)':>15} {'midpoint':>12} {'dist
            print("-" * 120)
            while ((bk - ak) > tol) and (iter < max iter):</pre>
                c1 = (ak + bk) / 2 - E
                c2 = (ak + bk) / 2 + E
                iter += 1
                print(f"{iter:10.0f} {ak:10.4f} {c1:10.4f} {c2:10.4f} {func(c1):15.6f} {func(c2):15.6f} {(ak + bk) / 2:12.4f}
                if func(c1) < func(c2): bk = c2</pre>
                else:ak = c1
            print(f"{iter+1:10.0f} {ak:10.4f} {c1:10.4f} {c2:10.4f} {func(c1):15.6f} {func(c2):15.6f} {(ak + bk) / 2:12.4f}
            return (ak + bk) / 2
In [4]: def func1(x):
            return x^{**4} - 14^{*}(x^{**3}) + 60^{*}(x^{**2}) - 70^{*}x
        res 1 = Dichotomous Search Algorithm(0, 2, func1, tol=0.001, E = 0.000001)
        print(f"\nMinimum found at x = \{res 1\}, f(x) = \{func1(res 1)\}")
```

iter	ak	bk	c1	c2	func(c1)	func(c2)	midpoint	distance
1	0.0000	2.0000	1.0000	1.0000	-23.000012	-22.999988	1.0000	-2.0000
2	0.0000	1.0000	0.5000	0.5000	-21.687490	-21.687530	0.5000	-1.0000
3	0.5000	1.0000	0.7500	0.7500	-24.339842	-24.339846	0.7500	-0.5000
4	0.7500	1.0000	0.8750	0.8750	-24.105229	-24.105218	0.8750	-0.2500
5	0.7500	0.8750	0.8125	0.8125	-24.339098	-24.339094	0.8125	-0.1250
6	0.7500	0.8125	0.7812	0.7813	-24.369597	-24.369597	0.7813	-0.0625
7	0.7500	0.7813	0.7656	0.7656	-24.362376	-24.362378	0.7656	-0.0313
8	0.7656	0.7813	0.7734	0.7734	-24.367885	-24.367886	0.7734	-0.0156
9	0.7734	0.7813	0.7773	0.7773	-24.369214	-24.369215	0.7773	-0.0078
10	0.7773	0.7813	0.7793	0.7793	-24.369524	-24.369524	0.7793	-0.0039
11	0.7793	0.7813	0.7803	0.7803	-24.369590	-24.369590	0.7803	-0.0020
12	0.7803	0.7813	0.7803	0.7803	-24.369590	-24.369590	0.7808	-0.0010

Minimum found at x = 0.7807619379882811, f(x) = -24.369601107124794

```
In [5]: def func2(x):
    return (1/4)*(x**4) - (5/3)*(x**3) - 6*(x**2) + 19*x - 7

res_2 = Dichotomous_Search_Algorithm(-4,4, func2, tol=0.001, E = 0.000001)
print(f"\nMinimum found at x = {res_2}, f(x) = {func2(res_2)}")
```

iter	ak	bk	c1	c2	func(c1)	func(c2)	midpoint	distance	
1	-4.0000	4.0000	-0.0000	0.0000	-7.000019	-6.999981	0.0000	-8.0000	
2	-4.0000	0.0000	-2.0000	-2.0000	-51.666674	-51.666644	-2.0000	-4.0000	
3	-4.0000	-2.0000	-3.0000	-3.0000	-52.749996	-52.750030	-3.0000	-2.0000	
4	-3.0000	-2.0000	-2.5000	-2.5000	-56.192709	-56.192705	-2.5000	-1.0000	
5	-3.0000	-2.5000	-2.7500	-2.7500	-55.665688	-55.665701	-2.7500	-0.5000	
6	-2.7500	-2.5000	-2.6250	-2.6250	-56.202087	-56.202091	-2.6250	-0.2500	
7	-2.6250	-2.5000	-2.5625	-2.5625	-56.262488	-56.262488	-2.5625	-0.1250	
8	-2.6250	-2.5625	-2.5938	-2.5937	-56.248948	-56.248950	-2.5937	-0.0625	
9	-2.5938	-2.5625	-2.5781	-2.5781	-56.259834	-56.259835	-2.5781	-0.0313	
10	-2.5781	-2.5625	-2.5703	-2.5703	-56.262184	-56.262185	-2.5703	-0.0156	
11	-2.5703	-2.5625	-2.5664	-2.5664	-56.262591	-56.262591	-2.5664	-0.0078	
12	-2.5664	-2.5625	-2.5645	-2.5645	-56.262603	-56.262603	-2.5645	-0.0039	
13	-2.5664	-2.5645	-2.5654	-2.5654	-56.262613	-56.262613	-2.5654	-0.0020	
14	-2.5654	-2.5645	-2.5654	-2.5654	-56.262613	-56.262613	-2.5649	-0.0010	

Minimum found at x = -2.564940765014648, f(x) = -56.26261218274178

```
In [ ]: def Fibonacci Search Algorithm(a, b, func, tol=1e-5):
            fib = [1, 1]
            n = 1
            while fib[n] < ((b - a) / tol):
                fib.append(fib[n] + fib[n-1])
                n += 1
            ak = a
            bk = b
            print(f"{'Iter':>6} {'ak':>12} {'bk':>12} {'b-a':>12} {'c1':>12} {'c2':>12} {'f(c1)':>15} {'f(c2)':>15}")
            print("-" * 99)
            for k in range(1, n):
                iter count = k
                L k = bk - ak
                c1 = ak + (fib[n - 2] / fib[n]) * L k
                c2 = bk - (fib[n - 2] / fib[n]) * L k
                f c1 = func(c1)
                f c2 = func(c2)
                if f c1 < f c2: bk = c2
                else: ak = c1
                print(f"{iter count:6.0f} {ak:12.4f} {bk:12.4f} {(bk-ak):12.4f} {c1:12.4f} {c2:12.4f} {f c1:15.6f} {f c2:15.6f}")
            return (ak + bk) / 2
```

```
In [22]: res_1 = Fibonacci_Search_Algorithm(0, 2, func1, tol=0.001)
print(f"\nMinimum found at x = {res_1}, f(x) = {func1(res_1)}")
```

Iter	ak	bk	b-a	c1	c2	f(c1)	f(c2)
1	0.0000	1.2361	1.2361	0.7639	1.2361	-24.360680	-18.958158
2	0.4721	1.2361	0.7639	0.4721	0.7639	-21.098514	-24.360680
3	0.4721	0.9443	0.4721	0.7639	0.9443	-24.360680	-23.592461
4	0.6525	0.9443	0.2918	0.6525	0.7639	-23.837435	-24.360680
5	0.6525	0.8328	0.1803	0.7639	0.8328	-24.360680	-24.287887
6	0.7214	0.8328	0.1115	0.7214	0.7639	-24.257948	-24.360680
7	0.7639	0.8328	0.0689	0.7639	0.7902	-24.360680	-24.366907
8	0.7639	0.8065	0.0426	0.7902	0.8065	-24.366907	-24.349526
9	0.7639	0.7902	0.0263	0.7802	0.7902	-24.369587	-24.366907
10	0.7740	0.7902	0.0163	0.7740	0.7802	-24.368128	-24.369587
11	0.7740	0.7840	0.0101	0.7802	0.7840	-24.369587	-24.369296
12	0.7778	0.7840	0.0062	0.7778	0.7802	-24.369312	-24.369587
13	0.7778	0.7817	0.0038	0.7802	0.7817	-24.369587	-24.369583
14	0.7793	0.7817	0.0024	0.7793	0.7802	-24.369523	-24.369587
15	0.7802	0.7817	0.0015	0.7802	0.7808	-24.369587	-24.369601
16	0.7802	0.7811	0.0009	0.7808	0.7811	-24.369601	-24.369600

Minimum found at x = 0.7806464204687811, f(x) = -24.369599824480176

```
In [31]: res_2 = Fibonacci_Search_Algorithm(-4, 4, func2, tol=0.001)
print(f"\nMinimum found at x = {res_2}, f(x) = {func2(res_2)}")
```

Iter	ak	bk	b-a	c1	c2	f(c1)	f(c2)
1	-4.0000	0.9443	4.9443	-0.9443	0.9443	-28.689037	4.386763
2	-4.0000	-0.9443	3.0557	-2.1115	-0.9443	-53.209169	-28.689038
3	-4.0000	-2.1115	1.8885	-2.8328	-2.1115	-54.984856	-53.209170
4	-3.2786	-2.1115	1.1672	-3.2786	-2.8328	-46.163736	-54.984856
5	-2.8328	-2.1115	0.7214	-2.8328	-2.5573	-54.984856	-56.261557
6	-2.8328	-2.3870	0.4458	-2.5573	-2.3870	-56.261557	-55.755797
7	-2.6625	-2.3870	0.2755	-2.6625	-2.5573	-56.100681	-56.261557
8	-2.6625	-2.4922	0.1703	-2.5573	-2.4922	-56.261557	-56.175255
9	-2.5975	-2.4922	0.1052	-2.5975	-2.5573	-56.245120	-56.261557
10	-2.5975	-2.5324	0.0650	-2.5573	-2.5324	-56.261557	-56.244790
11	-2.5975	-2.5573	0.0402	-2.5726	-2.5573	-56.261700	-56.261557
12	-2.5821	-2.5573	0.0248	-2.5821	-2.5726	-56.257835	-56.261700
13	-2.5726	-2.5573	0.0154	-2.5726	-2.5668	-56.261700	-56.262575
14	-2.5726	-2.5631	0.0095	-2.5668	-2.5631	-56.262575	-56.262540
15	-2.5690	-2.5631	0.0059	-2.5690	-2.5668	-56.262377	-56.262575
16	-2.5668	-2.5631	0.0036	-2.5668	-2.5654	-56.262575	-56.262613
17	-2.5668	-2.5645	0.0022	-2.5654	-2.5645	-56.262613	-56.262605
18	-2.5659	-2.5645	0.0014	-2.5659	-2.5654	-56.262606	-56.262613
19	-2.5659	-2.5651	0.0009	-2.5654	-2.5651	-56.262613	-56.262613

Minimum found at x = -2.565487292094689, f(x) = -56.262612738046975

Os métodos acima apresentam vantagens sobre a diferenciação de funções, pois nem sempre a função ou a sua derivada é conhecida. Além disso, através deles é sempre possível dizer o quão distante você está do ponto mínimo. Por outro lado, a convergência desses métodos dependerá do passo a ser dado e da tolerância estipulada, o que pode demorar muito para ser atingida ou cair em uma região de oscilação indefinida, sem chegar na convergência efetiva do mínimo da função.