Mathematical Analysis of Algorithms

Calvin Higgins

Department of Computer Science and Statistics University of Rhode Island

September 13, 2025

What is algorithm analysis?

Why do we analyze algorithms?

The Big Picture

Algorithm analysis is the prediction and comparison of algorithm performance.

Algorithm analysis lets us choose or design the best (or good enough) algorithm for a given problem.

How do we mathematically analyze algorithms?

Give a step-by-step procedure.

Mathematical Algorithm Analysis

How to Analyze an Algorithm:

- Define a reasonable model of computation (cost model).
 - What are the basic operations?
 - Mow much does each basic operation cost?
- ② Model the algorithm's cost with a function T(n).
 - How many basic operations are performed for an input of size n?
- \odot Simplify T(n).
- **4** Classify T(n)'s growth rate.
 - How quickly does T(n) grow?
- **1** Interpret T(n)'s growth rate.
 - How suitable is the algorithm for my problem?

Defining a Model of Computation

```
int foo(int n) {
    int A = new int[n];
   A[0] = 1;
    for (int i = 1; i < n; i++)
        A[i] = A[i - 1] * (i + 1);
    int sum = 0:
    for (int i = 0; i < n; i++)
        for (int j = 0; j < i; j++)
            sum += A[i]:
    delete[] A;
    return sum;
```

List as many basic operations as you can think of!

Defining a Model of Computation

```
int foo(int n) {
    int * A = new int[n];
   A[0] = 1;
    for (int i = 1; i < n; i++)
       A[i] = A[i - 1] * (i + 1);
    int sum = 0:
    for (int i = 0; i < n; i++)
        for (int j = 0; j < i; j++)
            sum += A[i]:
    delete[] A;
    return sum;
```

Basic Operations:

- Additions
- Multiplications
- Comparisons
- Branches
- Local variables
- Memory allocations
- Allocated memory
- 8 Loads
- Stores
- Assignments
- **①** ...

Which basic operations are most reasonable? Why?

```
int foo(int n) {
    int* A = new int[n];
   A[0] = 1;
   for (int i = 1; i < n; i++) // Additions?
       A[i] = A[i - 1] * (i + 1); // Additions?
    int sum = 0:
    for (int i = 0; i < n; i++) // Additions?
        for (int j = 0; j < i; j++) // Additions?
           sum += A[i]: // Additions?
    delete[] A;
    return sum:
```

How many additions? T(n) = ?

```
int foo(int n) {
      int * A = new int[n];
      A[0] = 1:
      for (int i = 1; i < n; i++) // \sum_{i=1}^{n-1} 1 additions A[i] = A[i-1] * (i+1); // \sum_{i=1}^{n-1} 2 additions
       int sum = 0:
      for (int i = 0; i < n; i++) // \sum_{i=0}^{n-1} 1 additions
             for (int j = 0; j < i; j++) //\sum_{i=0}^{n-1}\sum_{j=0}^{i}1 additions
                                                            //\sum_{i=0}^{n-1}\sum_{i=0}^{i-1}1 additions
                    sum += A[i]:
      delete[] A;
      return sum;
   T(n) = \sum_{i=1}^{n-1} 1 + \sum_{i=1}^{n-1} 2 + \sum_{i=0}^{n-1} 1 + \sum_{i=0}^{n-1} \sum_{j=0}^{i} 1 + \sum_{i=0}^{n-1} \sum_{j=0}^{i-1} 1
                                                                                                9/38
```

```
int foo(int n) {
    int* A = new int[n];
    A[0] = 1;
    for (int i = 1; i < n; i++)
        A[i] = A[i - 1] * (i + 1); // Multiplications?
    int sum = 0:
    for (int i = 0; i < n; i++)
        for (int j = 0; j < i; j++)
            sum += A[i]:
    delete[] A;
    return sum;
```

How many multiplications? T(n) = ?

```
int foo(int n) {
    int* A = new int[n];
    A[0] = 1:
    for (int i = 1; i < n; i++)
        A[i] = A[i-1] * (i+1); // \sum_{i=1}^{n-1} 1 multiplications
    int sum = 0:
    for (int i = 0; i < n; i++)
        for (int i = 0; i < i; j++)
             sum += A[i];
    delete[] A;
    return sum;
```

Multiplications:
$$T(n) = \sum_{i=1}^{n-1} 1$$

```
int foo(int n) {
    int* A = new int[n];
   A[0] = 1;
    for (int i = 1; i < n; i++) // Comparisons?
       A[i] = A[i - 1] * (i + 1);
    int sum = 0:
    for (int i = 0; i < n; i++) // Comparisons?
        for (int j = 0; j < i; j++) // Comparisons?
            sum += A[i]:
    delete[] A;
    return sum:
```

How many comparisons? T(n) = ?

```
int foo(int n) {
     int * A = new int[n];
    A[0] = 1:
    for (int i = 1; i < n; i++) // \sum_{i=1}^{n} 1 comparisons
         A[i] = A[i - 1] * (i + 1):
     int sum = 0:
    for (int i = 0; i < n; i++) //\sum_{i=0}^{n} 1 comparisons
         for (int j = 0; j < i; j++) //\sum_{i=0}^{n-1} \sum_{j=0}^{i} 1 comparisons
              sum += A[i];
    delete[] A;
    return sum;
```

Comparisons: $T(n) = \sum_{i=1}^{n} 1 + \sum_{i=0}^{n} 1 + \sum_{i=0}^{n-1} \sum_{j=0}^{i} 1$

```
int foo(int n) {
    int* A = new int[n];
   A[0] = 1;
                                     // Memory accesses?
    for (int i = 1; i < n; i++)
       A[i] = A[i-1] * (i+1); // Memory accesses?
    int sum = 0:
    for (int i = 0; i < n; i++)
        for (int j = 0; j < i; j++)
            sum += A[i]:
                                 // Memory accesses?
    delete[] A;
    return sum;
```

How many memory accesses (indexing)? T(n) = ?

```
int foo(int n) {
    int * A = new int[n];
    A[0] = 1;
                                            // 1 memory accesses
    for (int i = 1; i < n; i++)
         A[i] = A[i-1] * (i+1); // \sum_{i=1}^{n-1} 2 \text{ memory accesses}
     int sum = 0:
    for (int i = 0; i < n; i++)
         for (int j = 0; j < i; j++)
                                           //\sum_{i=0}^{n-1}\sum_{i=0}^{i-1}1 memory acces
              sum += A[i];
    delete[] A;
    return sum;
```

Memory Accesses: $T(n) = 1 + \sum_{i=1}^{n-1} 2 + \sum_{i=0}^{n-1} \sum_{j=0}^{i-1} 1$

```
int foo(int n) {
  int* A = new int[n];
                        // Assignments?
  A[i] = A[i - 1] * (i + 1); // Assignments?
  for (int j = 0; j < i; j++) // Assignments?
        sum += A[i]:
                // Assignments?
  delete[] A;
  return sum:
```

How many assignments? T(n) = ?

```
int foo(int n) {
     int * A = new int[n];
                                                     // 1 assignments
     A[0] = 1;
                                                     // 1 assignments
     for (int i = 1; i < n; i++) //\sum_{i=1}^{n-1} 1 assignments
           A[i] = A[i - 1] * (i + 1); // \sum_{i=1}^{n-1} 1 assignments
      int sum = 0:
                                                     // 1 assignments
     for (int i = 0; i < n; i++) //\sum_{i=0}^{n-1} 1 assignments
           for (int j = 0; j < i; j++) //\sum_{i=0}^{n-1}\sum_{j=0}^{i}1 assignments
                                                    //\sum_{i=0}^{n-1}\sum_{i=0}^{i-1}1 assignments
                 sum += A[i]:
     delete[] A;
     return sum:
T(n) = 3 + \sum_{i=1}^{n} 1 + \sum_{i=1}^{n-1} 1 + \sum_{i=0}^{n} 1 + \sum_{i=0}^{n-1} \sum_{j=0}^{i} 1 + \sum_{i=0}^{n-1} \sum_{j=0}^{i-1} 1
```

Addition Cost Function

$$T(n) = \sum_{i=1}^{n-1} 1 + \sum_{i=1}^{n-1} 2 + \sum_{i=0}^{n-1} 1 + \sum_{i=0}^{n-1} \sum_{j=0}^{i} 1 + \sum_{i=0}^{n-1} \sum_{j=0}^{i-1} 1$$

Simplification:

Apply (1) with m = n - 1:

$$\sum_{i=1}^{n-1} 1 = n - 1$$

$$\sum_{i=1}^{m} i = \frac{m(m+1)}{2}$$

Addition Cost Function

$$T(n) = (n-1) + \sum_{i=1}^{n-1} 2 + \sum_{i=0}^{n-1} 1 + \sum_{i=0}^{n-1} \sum_{j=0}^{i} 1 + \sum_{i=0}^{n-1} \sum_{j=0}^{i-1} 1$$

Simplification:

$$\sum_{i=1}^{n-1} 2 = ?$$

What identity should we use?

Identities:

$$\sum_{i=1}^{m} 1 = m$$

$$\sum_{i=a}^{b} cf(i) = c \sum_{i=a}^{b} f(i)$$
 where c is a **constant** and f is a function

$$\sum_{i=a}^{b} (f(i) + g(i)) = \sum_{i=a}^{b} f(i) + \sum_{i=a}^{b} g(i)$$
where f and g are functions

19 / 38

Addition Cost Function

$$T(n) = (n-1) + \sum_{i=1}^{n-1} 2 + \sum_{i=0}^{n-1} 1 + \sum_{i=0}^{n-1} \sum_{j=0}^{i} 1 + \sum_{i=0}^{n-1} \sum_{j=0}^{i-1} 1$$

Simplification:

Apply (3) with
$$a = 1$$
, $b = n - 1$, $c = 2$ and $f(i) = 1$

$$\sum_{i=1}^{n-1} 2 = \sum_{i=1}^{n-1} 2 \cdot 1 = 2 \sum_{i=1}^{n-1} 1$$

What identity should we use?

Identities:

$$\sum_{i=1}^{m} i = \frac{m(m+1)}{2}$$

$$\sum_{i=a}^{b} (f(i) + g(i)) = \sum_{i=a}^{b} f(i) + \sum_{i=a}^{b} g(i)$$
where f and g are functions

20 / 38

Addition Cost Function

$$T(n) = (n-1) + \sum_{i=1}^{n-1} 2 + \sum_{i=0}^{n-1} 1 + \sum_{i=0}^{n-1} \sum_{j=0}^{i} 1 + \sum_{i=0}^{n-1} \sum_{j=0}^{i-1} 1$$

Simplification:

Apply (3) with
$$a = 1$$
, $b = n - 1$, $c = 2$ and $f(i) = 1$

$$\sum_{i=1}^{n-1} 2 = \sum_{i=1}^{n-1} 2 \cdot 1 = 2 \sum_{i=1}^{n-1} 1$$

Apply (1) with m = n - 1

$$2\sum_{i=1}^{n-1}1=2(n-1)$$

$$\sum_{i=1}^{m} 1 = m$$

$$\sum_{i=1}^{m} i = \frac{m(m+1)}{2}$$

$$\sum_{i=a}^{b} (f(i) + g(i)) = \sum_{i=a}^{b} f(i) + \sum_{i=a}^{b} g(i)$$
where f and g are functions

Addition Cost Function

$$T(n) = (n-1) + 2(n-1) + \sum_{i=0}^{n-1} 1 + \sum_{i=0}^{n-1} \sum_{j=0}^{i} 1 + \sum_{i=0}^{n-1} \sum_{j=0}^{i-1} 1$$

Simplification:

$$\sum_{i=0}^{n-1} 1 = ?$$

What identity should we use?

Identities:

$$\sum_{i=a}^{b} cf(i) = c \sum_{i=a}^{b} f(i)$$
 where c is a **constant** and f is a function

$$\sum_{i=a}^{b} (f(i) + g(i)) = \sum_{i=a}^{b} f(i) + \sum_{i=a}^{b} g(i)$$
where f and g are functions

22 / 38

Addition Cost Function

$$T(n) = (n-1) + 2(n-1) + \sum_{i=0}^{n-1} 1 + \sum_{i=0}^{n-1} \sum_{j=0}^{i} 1 + \sum_{i=0}^{n-1} \sum_{j=0}^{i-1} 1$$

Simplification:

Apply (1) with m=n-1

$$\sum_{i=0}^{n-1} 1 = 1 + \sum_{i=1}^{n-1} 1 = (n-1) + 1 = n$$
 2
$$\sum_{i=1}^{m} i = \frac{m(m+1)}{2}$$

$$\sum_{i=1}^{m} i = \frac{m(m+1)}{2}$$

- **constant** and f is a function

Addition Cost Function

$$T(n) = (n-1) + 2(n-1) + n + \sum_{i=0}^{n-1} \sum_{j=0}^{i} 1 + \sum_{i=0}^{n-1} \sum_{j=0}^{i-1} 1$$

Simplification:

$$\sum_{i=0}^{n-1} \sum_{j=0}^{i} 1 = ?$$

What identity should we use?

$$\sum_{i=a}^{b} cf(i) = c \sum_{i=a}^{b} f(i)$$
 where c is a **constant** and f is a function

$$\sum_{i=a}^{b} (f(i) + g(i)) = \sum_{i=a}^{b} f(i) + \sum_{i=a}^{b} g(i)$$
where f and g are functions

Addition Cost Function

$$T(n) = (n-1) + 2(n-1) + n + \sum_{i=0}^{n-1} \sum_{j=0}^{i} 1 + \sum_{i=0}^{n-1} \sum_{j=0}^{i-1} 1$$

Simplification:

Apply (1) with m = i

$$\sum_{i=0}^{n-1} \sum_{j=0}^{i} 1 = \sum_{i=0}^{n-1} \left(1 + \sum_{j=1}^{i} 1 \right)$$
$$= \sum_{i=0}^{n-1} (i+1)$$

What identity should we use?

$$\sum_{i=1}^{m} 1 = m$$

$$\sum_{i=a}^{b} (f(i) + g(i)) = \sum_{i=a}^{b} f(i) + \sum_{i=a}^{b} g(i)$$
where f and g are functions

Addition Cost Function

$$T(n) = (n-1) + 2(n-1) + n + \sum_{i=0}^{n-1} \sum_{j=0}^{i} 1 + \sum_{i=0}^{n-1} \sum_{j=0}^{i-1} 1$$

Simplification:

Apply (4) with a = 0, b = n - 1, f(i) = i and g(i) = 1

$$\sum_{i=0}^{n-1} (i+1) = \sum_{i=0}^{n-1} i + \sum_{i=0}^{n-1} 1$$

What identities should we use?

Identities:

$$\sum_{i=1}^{m} 1 = m$$

 $\sum_{i=a}^{b} cf(i) = c \sum_{i=a}^{b} f(i)$ where c is a **constant** and f is a function

26 / 38

Addition Cost Function

$$T(n) = (n-1) + 2(n-1) + n + \sum_{i=0}^{n-1} \sum_{j=0}^{i} 1 + \sum_{i=0}^{n-1} \sum_{j=0}^{i-1} 1$$

Simplification:

Apply (1) with m = n - 1

$$\sum_{i=0}^{n-1} 1 = 1 + \sum_{i=1}^{n-1} 1$$
$$= 1 + (n-1) = n$$

SO

$$\sum_{i=0}^{n-1} i + \sum_{i=0}^{n-1} 1 = n + \sum_{i=0}^{n-1} i$$

$$\sum_{i=1}^{m} 1 = m$$

$$\sum_{i=1}^{m} i = \frac{m(m+1)}{2}$$

$$\sum_{i=a}^{b} cf(i) = c \sum_{i=a}^{b} f(i)$$
 where c is a **constant** and f is a function

Addition Cost Function

$$T(n) = (n-1) + 2(n-1) + n + \sum_{i=0}^{n-1} \sum_{j=0}^{i} 1 + \sum_{i=0}^{n-1} \sum_{j=0}^{i-1} 1$$

Simplification:

Apply (2) with m = n - 1

$$\sum_{i=0}^{n-1} i = 0 + \sum_{i=1}^{n-1} i$$
$$= \frac{(n-1)((n-1)+1)}{2}$$

SO

$$n + \sum_{i=0}^{n-1} i = n + \frac{n(n-1)}{2}$$

$$\sum_{i=1}^{m} 1 = m$$

$$\sum_{i=a}^{b} cf(i) = c \sum_{i=a}^{b} f(i) \text{ where } c \text{ is a}$$
constant and f is a function

Addition Cost Function

$$T(n) = (n-1) + 2(n-1) + n + \left(n + \frac{n(n-1)}{2}\right) + \sum_{i=0}^{n-1} \sum_{j=0}^{i-1} 1$$

Simplification:

$$\sum_{i=0}^{n-1} \sum_{j=0}^{i-1} 1 = ?$$

What is the simplified form?

$$\sum_{i=1}^{m} 1 = m$$

- $\sum_{i=a}^{b} (f(i) + g(i)) = \sum_{i=a}^{b} f(i) + \sum_{i=a}^{b} g(i)$ where f and g are functions

Addition Cost Function

$$T(n) = (n-1) + 2(n-1) + n + \left(n + \frac{n(n-1)}{2}\right) + \sum_{i=0}^{n-1} \sum_{j=0}^{i-1} 1$$

Simplification:

Apply (1) then (2)

$$\sum_{i=0}^{n-1} \sum_{i=0}^{i-1} 1 = \sum_{i=0}^{n-1} i = \frac{n(n-1)}{2} \quad 2 \quad \sum_{i=1}^{m} i = \frac{m(m+1)}{2}$$

$$\sum_{i=1}^{m} 1 = m$$

$$\sum_{i=1}^{m} i = \frac{m(m+1)}{2}$$

- **constant** and f is a function
- where f and g are functions

Simplification:

We have that

$$T(n) = (n-1) + 2(n-1) + n + \left(n + \frac{n(n-1)}{2}\right) + \frac{n(n-1)}{2}$$
$$= n - 1 + 2n - 2 + n + n + n(n-1)$$
$$= n^2 + 4n - 3$$

so the final answer is

$$T(n) = n^2 + 4n - 3$$

Multiplication Cost Function

$$T(n) = \sum_{i=1}^{n-1} 1$$

Comparisons Cost Function

$$T(n) = \sum_{i=1}^{n} 1 + \sum_{i=0}^{n} 1 + \sum_{i=0}^{n-1} \sum_{j=0}^{i} 1$$

Memory Accesses Cost Function

$$T(n) = 1 + \sum_{i=1}^{n-1} 2 + \sum_{i=0}^{n-1} \sum_{j=0}^{i-1} 1$$

Assignments Cost Function

$$T(n) = 3 + \sum_{i=1}^{n-1} 1 + \sum_{i=1}^{n-1} 1 + \sum_{i=0}^{n-1} 1 + \sum_{i=0}^{n-1} \sum_{j=0}^{i} 1 + \sum_{i=0}^{n-1} \sum_{j=0}^{i-1} 1$$

Try to simplify the other cost functions!

Multiplication Cost Function

$$T(n) = \sum_{i=1}^{n-1} 1$$
$$= n - 1$$

Comparisons Cost Function

$$T(n) = \sum_{i=1}^{n} 1 + \sum_{i=0}^{n} 1 + \sum_{i=0}^{n-1} \sum_{j=0}^{i} 1$$
$$= n + (n+1) + \frac{n(n+1)}{2}$$
$$= \frac{1}{2}n^2 + \frac{5}{2}n + 1$$

Calvin Higgins CSC 212 Review 1 September 13, 2025 34/38

Memory Accesses Cost Function

$$T(n) = 1 + \sum_{i=1}^{n-1} 2 + \sum_{i=0}^{n-1} \sum_{j=0}^{i-1} 1$$
$$= 1 + 2(n-1) + \frac{n(n-1)}{2}$$
$$= \frac{1}{2}n^2 + \frac{3}{2}n - 1$$

Calvin Higgins CSC 212 Review 1 September 13, 2025 35/38

Assignments Cost Function

$$T(n) = 3 + \sum_{i=1}^{n-1} 1 + \sum_{i=1}^{n-1} 1 + \sum_{i=0}^{n-1} 1 + \sum_{i=0}^{n-1} \sum_{j=0}^{i} 1 + \sum_{i=0}^{n-1} \sum_{j=0}^{i-1} 1$$

= 3 + (n-1) + (n-1) + n + $\frac{n(n+1)}{2}$ + $\frac{n(n-1)}{2}$
= $n^2 + 3n + 1$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● める◆

Pitfall: Cannot represent loops with non-one increments using standard summations!

```
int baz(int n) {
    int total = 0;
    for (int i = 0; i < n; i += 2)
        total += i * i;
    return total;
}</pre>
```

Solution: Compute number of operations for small values of *n*, then guess and check the formula OR learn Knuth's summation notation (advanced)!

37 / 38

```
int bar(int n) {
                                           Choose a model of
    int * A = new int[n];
                                            computation and
                                         analyze this algorithm!
    for (int i = 0; i < n; i++)
        A[i] = i + 1;
    int result = 0:
    for (int k = 0; k < n * n; k++)
        for (int i = 0; i \le k; i++)
            for (int i = j; i < n; i++)
                 result += A[i]:
    for (int t = 0; t < 7; t++)
        result += A[0]:
    delete [] A;
    return result:
```