Review of Prerequisite Mathematics

Introduction to Elementary Optimization

Definition (The Jacobian)

Let V be open in \mathbb{R}^n , $\mathbf{x} \in V$, and $g_i: V \to \mathbb{R}$, $i=1,\,2,\,\ldots,\,m$ be C^1 on V. The Jacobian of $\mathbf{g}(\mathbf{x}): \mathbb{R}^n \to \mathbb{R}^m$ is defined as

$$\mathrm{D}\,\mathbf{g}(\mathbf{x}) = \begin{pmatrix} \frac{\partial g_1}{\partial x_1} & \frac{\partial g_1}{\partial x_2} & \dots & \frac{\partial g_1}{\partial x_n} \\ \frac{\partial g_2}{\partial x_1} & \frac{\partial g_2}{\partial x_2} & \dots & \frac{\partial g_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial g_m}{\partial x_1} & \frac{\partial g_m}{\partial x_2} & \dots & \frac{\partial g_m}{\partial x_n} \end{pmatrix} (\mathbf{x})$$

Theorem (The Chain Rule)

Suppose that f and g are vector functions. If g is differentiable at a and f is differentiable at g(a), then $f \circ g$ is differentiable at a and

$$\mathrm{D}(\mathbf{f} \circ \mathbf{g})(\mathbf{a}) = \mathrm{D}\,\mathbf{f}(\mathbf{g}(\mathbf{a})) \,\, \mathrm{D}\,\mathbf{g}(\mathbf{a})$$

More explicitly, if f is a differentiable function of $x_1,\,x_2,\,\ldots,\,x_n$, and each x_j is a differentiable function of $t_1,\,t_2,\,\ldots,\,t_m$, $n,\,m\geqslant 1;$ then f is a differentiable function of $t_1,\,t_2,\,\ldots,\,t_m$ with

$$\frac{\partial f}{\partial t_i} = \frac{\partial f}{\partial x_1} \frac{\partial x_1}{\partial t_i} + \frac{\partial f}{\partial x_2} \frac{\partial x_2}{\partial t_i} + \dots + \frac{\partial f}{\partial x_n} \frac{\partial x_n}{\partial t_i}$$

Let w=f(xz,yz), where f is a differentiable function. Prove that

$$x\frac{\partial w}{\partial x} + y\frac{\partial w}{\partial y} = z\frac{\partial w}{\partial z}.$$

Solution I

Write u(x,y,z)=xz and v(x,y,z)=yz so that $w(x,y,z)=f\big(u(x,y,z),v(x,y,z)\big).$ By the chain rule,

$$\begin{split} &\frac{\partial w}{\partial x}(x,y,z) = \frac{\partial}{\partial x} \big[f\big(u(x,y,z), v(x,y,z) \big) \big] \\ &= \frac{\partial f}{\partial u} \big(u(x,y,z), v(x,y,z) \big) \frac{\partial u}{\partial x}(x,y,z) + \frac{\partial f}{\partial v} \big(u(x,y,z), v(x,y,z) \big) \frac{\partial v}{\partial x}(x,y,z) \\ &= z \frac{\partial f}{\partial u}(xz,yz) \end{split}$$

$$\begin{split} &\frac{\partial w}{\partial y}(x,y,z) = \frac{\partial}{\partial y} \big[f\big(u(x,y,z), v(x,y,z) \big) \big] \\ &= \frac{\partial f}{\partial u} \big(u(x,y,z), v(x,y,z) \big) \frac{\partial u}{\partial y}(x,y,z) + \frac{\partial f}{\partial v} \big(u(x,y,z), v(x,y,z) \big) \frac{\partial v}{\partial y}(x,y,z) \\ &= z \frac{\partial f}{\partial v}(xz,yz) \end{split}$$

Solution II

$$\begin{split} &\frac{\partial w}{\partial z}(x,y,z) = \frac{\partial}{\partial z} \big[f\big(u(x,y,z), v(x,y,z) \big) \big] \\ &= \frac{\partial f}{\partial u} \big(u(x,y,z), v(x,y,z) \big) \frac{\partial u}{\partial z}(x,y,z) + \frac{\partial f}{\partial v} \big(u(x,y,z), v(x,y,z) \big) \frac{\partial v}{\partial z}(x,y,z) \\ &= x \frac{\partial f}{\partial u}(xz,yz) + y \frac{\partial f}{\partial v}(xz,yz) \end{split}$$

So

$$\begin{split} \frac{\partial w}{\partial x} + y \frac{\partial w}{\partial y} &= xz \frac{\partial f}{\partial u}(xz, yz) + yz \frac{\partial f}{\partial v}(xz, yz) \\ &= z \left[x \frac{\partial f}{\partial u}(xz, yz) + y \frac{\partial f}{\partial v}(xz, yz) \right] = z \frac{\partial w}{\partial z} \end{split}$$

Unconstrained Optimization Problems

$\mathsf{Theorem}$

Given $S\subseteq\mathbb{R}^n$ and continuous $f:S\to\mathbb{R}$; if S is compact, then

$$M = \sup \left\{ f(\mathbf{x}) : \mathbf{x} \in S \right\} \quad \text{ and } \quad m = \inf \left\{ f(\mathbf{x}) : \mathbf{x} \in S \right\}$$

are finite real numbers. Moreover, there exists points \mathbf{x}_{M} , $\mathbf{x}_{\mathsf{m}} \in S$ such that $M = f(\mathbf{x}_{\mathsf{M}})$ and $m = f(\mathbf{x}_{\mathsf{m}})$.

Definition

Given $S \subseteq \mathbb{R}^n$, $f: S \to \mathbb{R}$ and $B(\mathbf{x},h) \equiv \{\mathbf{y} \in \mathbb{R}^n \mid |\mathbf{y} - \mathbf{x}| < h\}$, f achieves

- $\bullet \ \, \text{global maximum} \, \, f(\mathbf{x}_{\mathsf{M}}) \, \, \text{at} \, \, \mathbf{x}_{\mathsf{M}} \in S \colon \, f(\mathbf{x}_{\mathsf{M}}) \geqslant f(\mathbf{x}), \, \, \forall \, \mathbf{x} \in S.$
- $\bullet \ \, \text{global minimum} \, \, f(\mathbf{x}_{\mathsf{m}}) \, \, \text{at} \, \, \mathbf{x}_{\mathsf{m}} \in S \colon \, f(\mathbf{x}_{\mathsf{m}}) \leqslant f(\mathbf{x}), \, \, \forall \, \mathbf{x} \in S.$
- $\begin{array}{l} \bullet \ \ \text{local maximum} \ f(\mathbf{x}_0) \ \text{at} \ \mathbf{x}_0 \in S \colon \exists \ h_0 > 0 \ \text{s.t.} \ f(\mathbf{x}_0) \geqslant f(\mathbf{x}), \\ \forall \ \mathbf{x} \in B(\mathbf{x}_0, h_0) \ \cap \ S. \end{array}$
- local minimum $f(\mathbf{x}_1)$ at $\mathbf{x}_1 \in S$: $\exists h_1 > 0$ s.t. $f(\mathbf{x}_1) \leqslant f(\mathbf{x})$, $\forall \mathbf{x} \in B(\mathbf{x}_1, h_1) \cap S$.

Theorem (necessary conditions for extremum)

Given $S \subseteq \mathbb{R}^n$ and differentiable $f: S \to \mathbb{R}$, if f achieves extremum at an interior $\mathbf{c} \in S$, then $\nabla f(\mathbf{c}) = \mathbf{0}$.

Proof

If $\mathbf{c} = (c_1, c_2, ..., c_n)$, let

$$g_i(t) \equiv f(c_1, c_2, \dots, c_{i-1}, t, c_{i+1}, \dots, c_n), \quad j = 1, 2, \dots, n$$

For f achieves extremum at \mathbf{c} , $f(\mathbf{c}) = g_j(c_j)$, g_j achieves extremum at $c_j \implies g_j'(t) \, \big|_{t=c_j} = 0 \implies D_j f(\mathbf{c}) = 0 \; \forall \, j$, so $\nabla f(\mathbf{c}) = \mathbf{0}$.

Theorem

Given $S\subseteq\mathbb{R}^n$, if $f:S\to\mathbb{R}$ achieves extremum at $\mathbf{c}\in S$, then \mathbf{c} can possibly be a

- critical point: $\nabla f(\mathbf{c}) = \mathbf{0}$.
- singular point: f is non-differentiable at c.
- ullet boundary point of S.

Definition (Hessian Matrix)

Given $S\subseteq\mathbb{R}^n$, an interior point \mathbf{c} of S, and a differentiable function $f:S\to\mathbb{R}$,

$$\mathbf{H}(f, \mathbf{c}) = \begin{pmatrix} f_{11} & f_{12} & \cdots & f_{1n} \\ f_{21} & f_{22} & \cdots & f_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ f_{n1} & f_{n2} & \cdots & f_{nn} \end{pmatrix}, \quad f_{ij} = \frac{\partial^2 f}{\partial x_j \partial x_i}(\mathbf{c}), \quad i, j = 1, 2, \dots, n.$$

Definition (Matrix Positive/Negative Definiteness)

Given an $n \times n$ real symmetric matrix A. For any $\mathbf{v} \in \mathbb{R}^n \neq \mathbf{0}$, A is

• positive-definite: $\mathbf{v}\mathbf{A}\mathbf{v}^{\top} > 0$

• positive-semidefinite: $\mathbf{v}\mathbf{A}\mathbf{v}^{\top}\geqslant 0$

• negative-definite: $\mathbf{v}\mathbf{A}\mathbf{v}^{\top} < 0$

• negative-semidefinite: $\mathbf{v}\mathbf{A}\mathbf{v}^{\top}\leqslant 0$

Theorem

Given a real symmetric matrix A.

- ullet A is positive-definite \iff all eigenvalues of A are positive.
- ullet A is positive-semidefinite \iff all eigenvalues of A are nonnegative.

Definition (Minor)

Given an
$$n \times n$$
 matrix $\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$ and minor

$$\begin{split} \mathbf{A} \begin{pmatrix} i_1, \, i_2, \, \cdots, \, i_k \\ j_1, \, j_2, \, \cdots, \, j_k \end{pmatrix} = \begin{vmatrix} a_{i_1j_1} & a_{i_1j_2} & \cdots & a_{i_1j_k} \\ a_{i_2j_1} & a_{i_2j_2} & \cdots & a_{i_2j_k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i_kj_1} & a_{i_kj_2} & \cdots & a_{i_kj_k} \end{vmatrix}, \, 1 \leqslant k \leqslant n, \\ 1 \leqslant i_1 < i_2 < \cdots < i_k \leqslant n, \, 1 \leqslant j_1 < j_2 < \cdots < j_k \leqslant n. \end{split}$$

- $\bullet \ \Delta_k \equiv \mathbf{A} \begin{pmatrix} i_1, \ i_2, \cdots, \ i_k \\ i_1, \ i_2, \cdots, \ i_k \end{pmatrix} \text{ is the k-th order principal minor of A}.$
- $M_k \equiv \mathbf{A} \begin{pmatrix} 1, 2, \cdots, k \\ 1, 2, \cdots, k \end{pmatrix}$ is the k-th order leading principal minor of A.

Theorem (Criteria for Matrix Positive/Negative Definiteness)

Given an $n \times n$ real symmetric matrix **A**, then $\forall k \leq n$, **A** is

- positive-definite $\iff M_k > 0$
- negative-definite $\iff (-1)^k M_k > 0$
- positive-semidefinite $\iff \Delta_k \geqslant 0$
- negative-semidefinite $\iff (-1)^k \Delta_k \geqslant 0$

Equalities Constrained Optimization: The Lagrange Multipliers Method

Theorem

Given an open set $S \subseteq \mathbb{R}^n$, differentiable functions $f: S \to \mathbb{R}$ and $g_j: S \to \mathbb{R}$, $j=1,\,2,\,\ldots,\,m,\,m < n$, and $X_0 = \{\mathbf{x} \in S \mid g_j(\mathbf{x}) = 0,\,j = 1,\,2,\,\ldots,\,m\}$. If f has an extremum at $\mathbf{x}_0 \in S \cap X_0$ and $\det\left(D_ig_j(\mathbf{x}_0)\right) \neq 0$, then

$$\exists\, \lambda_1,\, \lambda_2,\, \dots,\, \lambda_m \quad \text{s.t.} \quad D_i f(\mathbf{x}_0) + \sum_{i=1}^m \lambda_j D_i g_j(\mathbf{x}_0) = 0, \quad i=1,\,2,\,\dots,\,n$$

Remark

Let $\mathcal{L}\equiv f+\sum_{i=1}^m\lambda_j\,g_j$, the sufficient condition can be rewritten as

$$\begin{split} D_i \, \mathcal{L}(\mathbf{x}_0) &= 0, \quad i = 1, \, 2, \, \dots, \, n \\ g_j(\mathbf{x}_0) &= 0, \quad j = 1, \, 2, \, \dots, \, m \end{split}$$

Find the maximum and minimum values of $x^2 - 10x - y^2$ on $x^2 + 4y^2 = 16$.

Solution

Let $\mathcal{L} = x^2 - 10x - y^2 + \lambda (x^2 + 4y^2 - 16)$, then

$$\frac{\partial \mathcal{L}}{\partial x} = 2x - 10 + 2\lambda x = 0 \implies x - 5 + \lambda x = 0 \tag{1}$$

$$\frac{\partial \mathcal{L}}{\partial y} = -2y + 8\lambda y = 0 \implies -y + 4\lambda y = 0 \tag{2}$$

$$x^2 + 4y^2 - 16 = 0 (3)$$

From (2) $(1-4\lambda)y=0$, so $y=0 \lor \lambda=\frac{1}{4}$. If y=0, from (3) $x=\pm 4$; if $\lambda=\frac{1}{4}$, from (1) $(1+\lambda)x=5 \implies x=4$, substituting into (3) gives y=0. Therefore, the extremum points are (x,y)=(4,0), (-4,0); $x^2-10x-y^2$ has a maximum value of 56 (at (x,y)=(-4,0)), and a minimum value of -24 (at (x,y)=(4,0)).

Find the maximum and minimum values of $f(x, y, z) = (x + z) e^y$ on $x^2 + y^2 + z^2 = 6$.

Solution

Let
$$\mathcal{L}=\left(x+z\right)e^{y}+\lambda\left(x^{2}+y^{2}+z^{2}-6\right)$$
, then

$$\frac{\partial \mathcal{L}}{\partial x} = e^y + 2\lambda x = 0$$

$$\frac{\partial \mathcal{L}}{\partial y} = (x+z)e^y + 2\lambda y = 0$$

$$\mathcal{L} = (x + z)\mathcal{L} + 2\mathcal{H}$$

$$\frac{\partial \mathcal{L}}{\partial z} = e^y + 2\lambda z = 0$$

$$x^2+y^2+z^2-6=0 \eqno(7)$$
 From (4), (6) $2\,\lambda(x-z)=0$, so $\lambda=0\,\,\vee\,\,x=z$. If $\lambda=0$, then from (4) $e^y=0$

which is impossible, so x=z. From (4) $e^y=-2\lambda x$, substituting into (5) $2x(-2\lambda x) + 2\lambda y = 0 \implies y = 2x^2$, substituting into (7) gives

$$x^2 + 4x^4 + x^2 = 6 \implies (4x^2 + 6)(x^2 - 1) = 0 \implies x = \pm 1$$
. Therefore, the extremum points are $(x, y, z) = (1, 2, 1), (-1, 2, -1); (x + z) e^y$ has a maximum value of $2e^2$ (at $(x, y, z) = (1, 2, 1)$), and a minimum value of $-2e^2$ (at $(x, y, z) = (-1, 2, -1)$).

(4)

(5)

(6)

(7)

If L is the curve of intersection of $z^2 = x^2 + y^2$ and x - 2z = 3, find the point on L that is closest to the origin and the shortest distance.

Solution

The objective is $x^2 + y^2 + z^2$ with constraints $x^2 + y^2 - z^2 = 0$ and x-2z-3=0. Let $\mathcal{L}=x^2+y^2+z^2+\lambda_1\,(x^2+y^2-z^2)+\lambda_2\,(x-2z-3)$, then

$$x-2z-3=0. \text{ Let } \mathcal{L}=x^2+y^2+z^2+\lambda_1\left(x^2+y^2-z^2\right)+\lambda_2\left(x-2z-3\right),$$

$$\frac{\partial \mathcal{L}}{\partial x}=2x+2\lambda_1x+\lambda_2=0 \implies 2\left(1+\lambda_1\right)x+\lambda_2=0$$

$$\frac{\partial \mathcal{L}}{\partial y} = 2y + 2\lambda_1 y = 0 \implies (1 + \lambda_1)y = 0$$

$$\frac{\partial \mathcal{L}}{\partial z} = 2z - 2\lambda_1 z - 2\lambda_2 = 0 \implies (1 - \lambda_1)z - \lambda_2 = 0$$

 $x^2 + y^2 - z^2 = 0$

$$x-2z-3=0$$

$$\lambda_1)y=0, \text{ so } y=0 \ \lor \ \lambda_1=-1. \ \text{If } y=0, \text{ from (11)}$$

(8)

(9)

(10)

(11)

(12)From (9) $(1 + \lambda_1)y = 0$, so $y = 0 \lor \lambda_1 = -1$. If y = 0, from (11) $x^{2} = z^{2} \implies x = \pm z$. If x = z, from (12) x = z = -3. If x = -z, from (12) x=1, z=-1; if $\lambda_1=-1$, from (8) $\lambda_2=0$, from (10) z=0, substituting into (11) gives x = y = 0, which contradicts (12). Therefore, the extremum points are (x, y, z) = (-3, 0, -3), (1, 0, -1); optimizer: (1, 0, -1).15 / 56

Introduction to Convex Programming

Affine Set

- line through x_1 , x_2 : all points of the form $x = \theta x_1 + (1-\theta)x_2$, $\theta \in \mathbb{R}$
- affine set contains the line through any two distinct points in the set
- e.g. solution set of linear equations $\{x\,|\,Ax=b\}$; every affine set can be expressed as solution set of system of linear equations

Convex Set

- line segment through x_1 , x_2 : all points of the form $x = \theta x_1 + (1 \theta)x_2$, $0 \le \theta \le 1$
- convex set contains the line segment between any two distinct points in the set:

$$x_1,\,x_2\in S\implies\forall\,0\leqslant\theta\leqslant1,\;\theta x_1+(1-\theta)x_2\in S$$

Convex Combination, Convex Hull

- convex combination of x_1 , x_2 , ..., x_k : any point x of the form $x = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k$ with $\theta_1 + \theta_2 + \dots + \theta_k = 1$, $\theta_i \geqslant 0$
- ullet convex hull $\operatorname{conv} S$: sets of all convex combinations of points in S

Convex Cone

- conic (nonnegative) combination of x_1 and x_2 : any point x of the form $x=\theta_1x_1+\theta_2x_2$ with $\theta_i\geqslant 0$
- convex cone set that contains all conic combinations of points in the set

Hyperplane, Halfspace

- hyperplane: set of the form $\{x \mid a^{\top}x = b\}$ with $a \neq 0$
- halfspace: set of the form $\{x \mid a^{\top}x \leqslant b\}$ with $a \neq 0$
- a: normal vector hyperplanes are affine and convex, halfspaces are convex

Euclidean Ball, Ellipsoid

- (Euclidean) ball with center x_c and radius r: $B(x_c,r) = \{x \mid ||x-x_c||_2 \leqslant r\} = \{x_c + ru \mid ||u||_2 \leqslant 1\}$
- ellipsoid: set of the form $\{x\,|\,(x-x_c)^{\top}P^{-1}(x-x_c)\leqslant 1\}$ with $P\in\mathsf{S}^n_{++}$ (P symmetric positive definite), or $\{x_c+A\,u\,|\,\|u\|_2\leqslant 1\}$ with nonsingular A

Norm Ball, Norm Cone

- **norm**: a function $\|\cdot\|$ that satisfies
 - $||x|| \ge 0$; $||x|| = 0 \iff x = 0$
 - ||tx|| = |t|||x||, $\forall t \in \mathbb{R}$
 - $||x + y|| \le ||x|| + ||y||$
- norm ball with center x_c and radius r: $\{x \mid ||x x_c|| \leqslant r\}$
- norm cone: $\{(x,t) | ||x|| \le t\}$
- norm balls and norm cones are convex
- notation for different norms: $\|\cdot\|_2$, $\|\cdot\|_{\text{symb}}$

Figure: Boundary of second-order cone in \mathbb{R}^3 , $\{(x_1, x_2, t) \mid (x_1^2 + x_2^2)^{\frac{1}{2}} \leqslant t\}$.

Polyhedra

- **polyhedron**: solution set of finitely many linear equalities and inequalities $\{x \mid A \ x \preccurlyeq b, \ C \ x = d\}$, where $A \in \mathbb{R}^{m \times n}$, $C \in \mathbb{R}^{p \times n}$, \preccurlyeq is componentwise inequality
- intersection of finite number of halfspaces and hyperplanes

Positive Semidefinite Cone

- S^n : set of symmetric $n \times n$ matrices
- $S_{+}^{n} = \{X \in S^{n} \mid X \geq 0\}$: set of positive semidefinite (symmetric) $n \times n$ matrices; $X \in S_{+}^{n} \iff z^{\top}Xz \geq 0 \ \forall z$; a convex cone, the **positive**

semidefinite cone; Below:
$$\begin{pmatrix} x & y \\ y & z \end{pmatrix} \in S^2_+$$

• $\mathsf{S}^n_{++} = \{X \in \mathsf{S}^n \, | \, X \succ 0\}$: set of positive definite (symmetric) $n \times n$ matrices

Figure: $x \ge 0$, $z \ge 0$, $xz \ge y^2$.

Showing a Set is Convex

- apply definition: x_1 , $x_2 \in S \implies \theta x_1 + (1-\theta)x_2 \in S$, $\forall \ 0 \leqslant \theta \leqslant 1$ recommended only for simple sets
- use convex functions (later)
- show that the set is obtained from other simple convex sets (e.g. hyperplanes, halfspaces, norm balls) by operations that preserve convexity:
 - intersection
 - affine mapping
 - perspective mapping
 - linear-fractional mapping
- mostly using last two

Intersection

- intersection of (any number of) convex sets is convex
- $\label{eq:series} \begin{array}{l} \bullet \ \text{e.g.} \ S = \Big\{ x \in \mathbb{R}^m \ \Big| \ |p(t)| \leqslant 1 \ \forall \ |t| \leqslant \frac{\pi}{3} \Big\}, \ \ p(t) = \sum_{k=1}^m x_k \cos kt \\ \text{is convex by } S = \bigcap_{|t| \leqslant \frac{\pi}{3}} \{ x \ | \ |p(t)| \leqslant 1 \}; \ \text{intersection of convex slabs}. \ \text{Below:} \\ m = 2. \end{array}$

Affine Mappings

 \bullet suppose $f:\mathbb{R}^n \to \mathbb{R}^m$ is affine, i.e.

$$f(x) = A\,x + b \quad \text{with } A \in \mathbb{R}^{m \times n}, \; b \in \mathbb{R}^m$$

ullet the **image** of a convex set under f is convex:

$$S \subseteq \mathbb{R}^n \text{ convex } \Longrightarrow f(S) = \{f(x) \, | \, x \in S\} \text{ convex }$$

ullet the **inverse image** of a convex set under f is convex:

$$C\subseteq \mathbb{R}^m \text{ convex } \implies f^{-1}(C)=\{x\in \mathbb{R}^n\,|\, f(x)\in C\} \text{ convex }$$

- e.g. scaling $aS + b = \{ax + b \mid x \in S\}$, $a, b \in \mathbb{R}$ is convex
- \bullet e.g. projection $\operatorname*{proj}_{x}(S)=\{x\,|\,(x,y)\in S\}$ is convex

Perspective and Linear-Fractional Function

• perspective function $p: \mathbb{R}^{n+1} \to \mathbb{R}^n$:

$$p(x,t) = \frac{x}{t}$$
 dom $p = \{(x,t) | t > 0\}$

• linear-fractional function $f: \mathbb{R}^n \to \mathbb{R}^m$:

$$f(x) = \frac{A x + b}{c^{\top} x + d}$$
 dom $f = \{x \mid c^{\top} x + d > 0\}$

 images and inverse images of convex sets under perspective and linear-fractional functions are all convex

Separating Hyperplane Theorem

- if C, D are nonempty disjoint $(C \cap D = \emptyset)$ convex sets, $\exists a \neq 0$, b s.t. $a^{\top}x \leq b$ for $x \in C$, $a^{\top}x \geq b$ for $x \in D$
- the hyperplane $\{x \mid a^{\top}x = b\}$ separates C and D
- ullet strict separating requires additional assumptions (e.g. C is closed; D is a singleton)

Supporting Hyperplane Theorem

- \bullet suppose x_0 is a boundary point of $C\subseteq \mathbb{R}^n$
- supporting hyperplane to C at x_0 : $\{x\,|\,a^\top x=a^\top x_0\}$, where $a\neq 0$ and $a^\top x\leqslant a^\top x_0\ \forall\ x\in C.$
- \bullet if C is convex, then there exists a supporting hyperplane at every boundary point of C

Convex Function

- $f: \mathbb{R}^n \to \mathbb{R}$ is **convex** if $\operatorname{dom} f$ is convex and $\forall \, x, \, y \in \operatorname{dom} f$, $0 \leqslant \theta \leqslant 1$, $f(\theta x + (1 \theta)y) \leqslant \theta f(x) + (1 \theta)f(y)$
- $f: \mathbb{R}^n \to \mathbb{R}$ is **strictly convex** if $\operatorname{dom} f$ is convex and $\forall \, x, \, y \in \operatorname{dom} f, \, x \neq y, \ 0 < \theta < 1, \ f(\theta x + (1 \theta)y) < \theta f(x) + (1 \theta)f(y)$
- f is **concave** if -f is convex

Example Functions on $\mathbb R$

- convex functions
 - $\bullet \ \ \text{affine:} \ \ ax+b\text{,} \ \forall \, a, \ b \in \mathbb{R}$
 - ullet exponential: e^{ax} , $\forall a \in \mathbb{R}$
 - $\bullet \ \ \text{power:} \ \ x^{\alpha} \ \ \text{on} \ \ x>0 \text{,} \ \ \forall \ \alpha\geqslant 1 \ \lor \ \alpha\leqslant 0$
 - power of absolute value: $|x|^{\alpha}$, $\forall \alpha \geqslant 1$
 - positive part (relu): $\max\{x,0\}$
- concave functions
 - affine: ax + b, $\forall a, b \in \mathbb{R}$
 - power: x^{α} on x > 0, $\forall \, 0 \leqslant \alpha \leqslant 1$
 - logarithm: $\log x$ on x > 0
 - entropy: $-x \log x$ on x > 0
 - negative part: $\min\{x,0\}$

Example Convex Functions on \mathbb{R}^n

- affine: $a^{\top}x + b$
- any norm

$$\bullet \ \|x\|_p = \left(|x_1|^p + |x_2|^p + \dots + |x_n|^p\right)^{\frac{1}{p}}, \ \forall \ p > 1$$

$$\bullet \ \|x\|_{\infty} = \max\left\{|x_1|, |x_2|, \, \ldots \, , |x_n|\right\}$$

- sum of squares: $\|x\|_2^2 = x_1^2 + x_2^2 + \dots + x_n^2$
- $\bullet \ \max \ \mathrm{function} \colon \max(x) = \max \left\{ x_1, x_2, \ \ldots \ , x_n \right\}$
- \bullet softmax / log-sum-exp: $\log \left(e^{x_1} + e^{x_2} + \cdots + e^{x_n} \right)$

Example Functions on $\mathbb{R}^{m \times n}$

- Let $X \in \mathbb{R}^{m \times n}$ be the variable
- general affine function

$$f(X) = \operatorname{tr}(A^{\intercal}X) + b = \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij}X_{ij} + b, \quad A \in \mathbb{R}^{m \times n}, \ b \in \mathbb{R}$$

• spectral norm (maximum singular value) is convex:

$$f(X) = \|X\|_2 = \sigma_{\max}(X) = \sqrt{\lambda_{\max}(X^\top X)}$$

• log determinant is concave:

$$f(X) = \log \det X, \quad X \in S_{++}^n$$

Extended-Value Extension

- ullet suppose f is convex on \mathbb{R}^n
- ullet its extended-value extension $ilde{f}:\mathbb{R}^n o \mathbb{R} \cup \{\infty\}$ is defined as

$$\tilde{f}(x) = \begin{cases} f(x) & x \in \text{dom } f \\ \infty & x \notin \text{dom } f \end{cases}$$

• this often simplifies notation; e.g. the condition

$$0 \leqslant \theta \leqslant 1 \implies \tilde{f}(\theta x + (1-\theta)y) \leqslant \theta \tilde{f}(x) + (1-\theta)\tilde{f}(y)$$

(as an inequality in $\mathbb{R} \cup \{\infty\}$), means the same as the two conditions combine

- dom f is convex
- $\bullet \ x,\,y \in \mathrm{dom}\, f,\; 0 \leqslant \theta \leqslant 1 \implies f(\theta x + (1-\theta)y) \leqslant \theta f(x) + (1-\theta)f(y)$

Restriction of a Convex Function to a Line

• $f: \mathbb{R}^n \to \mathbb{R}$ is convex (concave) $\iff g: \mathbb{R} \to R$,

$$g(t) = f(x+t\,v), \quad \operatorname{dom} g = \{t\,|\, x+t\,v \in \operatorname{dom} f\}$$

is convex (concave) in t for all $x \in \text{dom } f$ and $v \in \mathbb{R}^n$

• useful for checking convexity / concavity of multivariate f; e.g. to check the concavity of log determinant: Let $X \in S^n_{++}$, $V \in S^n$,

$$\begin{split} g(t) &= f(X+t\,V) = \log \det(X+t\,V) \\ &= \log \det \big(X^{\frac{1}{2}} \big(I + t\,X^{-\frac{1}{2}} V X^{-\frac{1}{2}} \big) X^{\frac{1}{2}} \big) \\ &= \log \det X + \log \det \big(I + t\,X^{-\frac{1}{2}} V X^{-\frac{1}{2}} \big) \\ &= \log \det X + \sum_{i=1}^n \log(1+t\lambda_i) \end{split}$$

where λ_i are the eigenvalues of $X^{-\frac{1}{2}}VX^{-\frac{1}{2}}$; g is concave in t

First-Order Condition

- $f: \mathbb{R}^n \to \mathbb{R}$ is twice differentiable if $\operatorname{dom} f$ is open and the gradient ∇f exists at each $x \in \operatorname{dom} f$.
- **first-order condition** differentiable f with convex domain is convex $\iff f(y) \geqslant f(x) + \nabla f(x)^\top (y-x), \ \forall \, x, \, y \in \mathrm{dom}\, f$
- ullet first order Taylor approximation of convex f is a **global underestimator** of f

Second-Order Condition

• $f: \mathbb{R}^n \to \mathbb{R}$ is **differentiable** if $\operatorname{dom} f$ is open and the Hessian matrix $\nabla^2 f \in \mathsf{S}^n$ exists at each $x \in \operatorname{dom} f$:

$$\left\{ \nabla^2 f(x) \right\}_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}(x)$$

- second-order condition for twice differentiable f with convex domain is convex:
 - f is convex $\iff \nabla^2 f \succcurlyeq 0$, $\forall x \in \text{dom } f$
 - $\nabla^2 f \succ 0$, $\forall x \in \text{dom } f \implies f$ is strictly convex

Examples I

• quadratic function: $f(x) = \frac{1}{2} x^{\top} P x + q^{\top} x + r$ with $P \in \mathbb{S}^n$

$$\nabla f(x) = Px + q, \quad \nabla^2 f(x) = P$$

convex if $P \geq 0$ (concave if $P \leq 0$)

• least-squares objective: $f(x) = ||Ax - b||^2$

$$\nabla f(x) = 2A^\top (A\, x - b), \quad \nabla^2 f(x) = 2A^\top A$$

convex for any A

• quadratic-over-linear function: $f(x,y) = \frac{x^2}{y}$, y > 0

$$\nabla f(x,y) = \begin{pmatrix} \frac{2x}{y} & -\frac{x^2}{y^2} \end{pmatrix}, \quad \nabla^2 f(x,y) = \frac{2}{y^3} \begin{pmatrix} y^2 & -xy \\ -xy & x^2 \end{pmatrix}$$

convex for y > 0

Examples II

• log-sum-exp function: $f(x) = \log \Big(\sum_{k=1}^n e^{x_k} \Big)$ is convex:

$$\nabla^2 f(x) = \frac{1}{\mathbf{1}^\top z} \operatorname{diag}(z) - \frac{1}{(\mathbf{1}^\top z)^2} z z^\top, \quad z_k = e^{x_k}$$

• to show that $\nabla^2 f(x) \succcurlyeq 0$, one must verify $v^\top \nabla^2 f(x) \, v \geqslant 0 \, \forall \, v$:

$$\boldsymbol{v}^\top \nabla^2 f(\boldsymbol{x}) \, \boldsymbol{v} = \frac{\big(\sum_k z_k v_k^2\big)\big(\sum_k z_k\big) - \big(\sum_k v_k z_k\big)^2}{\big(\sum_k z_k\big)^2} \geqslant 0$$

by Cauchy-Schwarz inequality $\Big(\sum_k z_k v_k^2\Big)\Big(\sum_k z_k\Big)\geqslant \Big(\sum_k v_k z_k\Big)^2$

• geometric-mean function: $f(x) = \Big(\prod_{k=1}^n x_k\Big)^{\frac{1}{n}}$ on $x\succ 0$ is concave

Epigraph, Sublevel Set

- $\bullet \ \, \alpha\text{-sublevel set of} \,\, f:\mathbb{R}^n \to \mathbb{R} \colon \, C_\alpha = \{x \in \mathrm{dom} \, f \, | \, f(x) \leqslant \alpha \}$
- sublevel sets of convex functions are convex sets
- epigraph of $f:\mathbb{R}^n \to \mathbb{R}$: epi $f = \{(x,t) \in \mathbb{R}^{n+1} \, | \, x \in \mathrm{dom} \, f, \, f(x) \leqslant t \}$
- ullet f is convex \iff $\operatorname{epi} f$ is a convex set

Jensen's Inequality

• basic form: if f is convex, then for x, $y \in \text{dom}\, f$, $0 \leqslant \theta \leqslant 1$

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

• **extension**: if f is convex and z is a random variable on dom f,

$$f(\,\mathsf{E}\,z\,)\leqslant\mathsf{E}\,f(z)$$

• basic form is special case with discrete distribution

$$\mathsf{P}\{z=x\}=\theta,\quad \mathsf{P}\{z=y\}=1-\theta$$

• e.g. for $z \sim N(\mu, \sigma^2)$, let $f(x) = e^x$, then

$$f\big(\operatorname{E} z\,\big) = f(\mu) = e^{\mu} \leqslant e^{\mu + \frac{\sigma^2}{2}} = \operatorname{E} f(z)$$

Showing Convexity of a Function

- apply definition (often simplified by restricting to a line)
- for twice differentiable functions, show $\nabla^2 f(x) \geq 0$
- ullet show that f is obtained from simple convex functions by operations that preserve convexity
 - nonnegative multiple, sum, integral
 - composition with affine function
 - pointwise maximum and supremum
 - · partial minimization
 - composition
 - perspective

Nonnegative Multiple, Sum, Integral

- nonnegative multiple: αf is convex if f is convex and $\alpha \geqslant 0$
- sum: $f_1 + f_2$ is convex if f_1 , f_2 is convex
- \bullet infinite sum: if each of f_i is convex, then $\sum_{i=1}^\infty f_i$ is convex
- integral: if $f(x, \alpha)$ is convex in x for each $\alpha \in \mathcal{A}$, then

$$\int_{\alpha \in \mathcal{A}} f(x,\alpha) \, \mathrm{d}\alpha$$

is convex

analogous rules for concave functions

Composition with Affine Function

- f(Ax + b) is convex if f is convex
- e.g.
 - log barrier for linear inequalities

$$\begin{split} f(x) &= -\sum_{i=1}^m \log \left(b_i - a_i^\top x \right) \\ \operatorname{dom} f &= \{ x \, | \, a_i^\top x < b_i, \ i = 1, 2, \dots, m \} \end{split}$$

• norm approximation error (any norm)

$$f(x) = \|A\,x - b\|$$

Pointwise Maximum

- $f(x) = \max\{f_1(x), f_2(x), \dots, f_m(x)\}$ is convex if each f_i is convex
- e.g.
 - piecewise linear function

$$f(x) = \max_i \left(a_i^\top x + b_i\right)$$

• sum of r largest components of $x \in \mathbb{R}^n$

$$f(x) = x_{[1]} + x_{[2]} + \dots + x_{[r]}$$

where $x_{[i]}$ is *i*-th largest component of x. Note that

$$f(x) = \max \left\{ x_{i_1} + x_{i_2} + \dots + x_{i_r} \, | \, 1 \leqslant i_1 < i_2 < \dots < i_r \leqslant n \right\}$$

Pointwise Supremum

- $g(x) = \sup_{y \in \mathcal{A}} f(x,y)$ is convex if f(x,y) is convex in x for each $y \in \mathcal{A}$
- e.g.
 - distance to farthest point in a set C

$$f(x) = \sup_{y \in C} \, \|x-y\|$$

• maximum eigenvalue of symmetric matrix

$$\lambda_{\max}(X) = \sup_{\|y\|_2 = 1} y^\top X \, y, \quad X \in \mathsf{S}^n$$

 \bullet support function of a set C

$$S_C(x) = \sup_{y \in C} \, y^\top x$$

Partial Minimization

- • the function $g(x) = \inf_{y \in C} f(x,y)$ is called the **partial minimization** of f w.r.t. y
- \bullet if f(x,y) is convex in (x,y) and C is a convex set, then partial minimization g is convex
- e.g.
 - let $f(x,y) = x^{\top}A\,x + 2x^{\top}B\,y + y^{\top}C\,y$ with $\begin{pmatrix} A & B \\ B^{\top} & C \end{pmatrix} \succcurlyeq 0$, $C \succ 0$; minimizing over y gives

$$g(x) = \inf_{y \in C} f(x,y) = x^\intercal \big(A - BC^{-1}B^\intercal\big) \, x$$

g is convex, hence Schur complement $A - BC^{-1}B^{\top} \succcurlyeq 0$

distance to a convex set S

$$\operatorname{dist}(x,S) = \inf_{y \in S} \|x - y\|$$

Composition with Scalar Functions

- composition of $g:\mathbb{R}^n \to \mathbb{R}$ and $h:\mathbb{R}^n \to \mathbb{R}$ is f(x) = h(g(x)) $(f = h \circ g)$
- composition f is convex if
 - ullet g convex, h convex, \tilde{h} nondecreasing; or
 - ullet g concave, h convex, \tilde{h} nonincreasing
- proof for n=1, differentiable g, h

$$f''(x) = h''(g(x)) g'(x)^2 + h'(g(x)) g''(x)$$

- e.g.
 - $\bullet \ f(x) = e^{g(x)} \ \text{is convex if} \ g \ \text{is convex}$
 - $f(x) = \frac{1}{g(x)}$ is convex if g is concave and positive

Composition: General

- composition of $g:\mathbb{R}^n\to\mathbb{R}^k$ and $h:\mathbb{R}^n\to\mathbb{R}$ is $f(x)=h(g_1(x),g_2(x),\dots,g_k(x))$
- \bullet composition f is convex if h is convex and for each i, one of the following holds:
 - ullet g_i convex, \tilde{h} nondecreasing in its i-th argument
 - \bullet g_i concave, \tilde{h} nonincreasing in its i-th argument
 - $ullet \ g_i \ {\it affine}$
- e.g.
 - $\bullet \ \log \Big(\sum_{i=1}^m e^{g_i(x)} \Big)$ is convex if each g_i is convex
 - $\frac{p(x)^2}{q(x)}$ is convex if p is nonnegative and convex and q is positive and concave

Perspective

ullet perspective of $f:\mathbb{R}^n o \mathbb{R}$ is the function $g(x,t):\mathbb{R}^n imes \mathbb{R} o \mathbb{R}$ defined as

$$g(x,t)=t\,f\Big(\frac{x}{t}\Big),\quad \operatorname{dom} g=\Big\{(x,t)\;\Big|\;\frac{x}{t}\in\operatorname{dom} f,\;t>0\Big\}$$

- ullet g is convex if f is convex
- e.g.
 - $f(x) = x^{\intercal}x$ is convex, so $g(x,t) = \frac{x^{\intercal}x}{t}$ is convex if t>0
 - $f(x) = -\log x$ is convex, so the **relative entropy**

$$g(x,t) = t \, \log t - t \, \log x$$

is convex on x > 0, t > 0

Convexity Verification: An Example

- test the convexity of $f(x,y) = \frac{(x-y)^2}{1 \max(x,y)}, \ x < 1, \ y < 1$
- \bullet x, y, and 1 are affine
- $\max(x,y)$ is convex; x-y is affine
- $1 \max(x, y)$ is concave
- $\bullet \ \, \frac{u^2}{v}$ is convex, monontone decreasing in v for v>0
- f is composition of $\frac{u^2}{v}$ with u=x-y, $v=1-\max(x,y)$, hence convex

Convexity Verification: A Caveat

- test the convexity of $f(x) = \sqrt{1+x^2}$
- $\sqrt{\cdot}$ is concave
- 1, x^2 are convex
- $\sqrt{1+x^2}$ is ... indefinite ?
- but, note that $\|\cdot\|_2$ is convex
- $\sqrt{1+x^2}$ can be represented as the 2-norm of vector (1,x) $\|(1,x)\|_2$, hence is convex
- The general composition rules are only sufficient, not necessary

Standard Form of General Optimization

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leqslant 0, \quad i=1,2,\,\dots,\,m \\ & h_i(x)=0, \quad i=1,2,\,\dots,\,p \end{array}$$

- $x \in \mathbb{R}^n$ is the optimization variable
- $f_0(x): \mathbb{R}^n \to \mathbb{R}$ is the objective / cost
- \bullet $f_i(x):\mathbb{R}^n \to \mathbb{R}, \ i=1,2,\, \ldots,\, m$ are the inequality constraints
- $h_i(x): \mathbb{R}^n \to \mathbb{R}, \ i=1,2,\, \dots,\, p$ are the equality constraints

Standard Form of Convex Optimization

$$\begin{aligned} & \text{minimize} & & f_0(x) \\ & \text{subject to} & & f_i(x) \leqslant 0, \quad i=1,2,\cdots,\, m \\ & & a_i^\top x = b_i, \quad i=1,2,\ldots,\, p \end{aligned}$$

- objective and inequality constraints f_0 , f_1 , ..., f_m are convex
- ullet equality constraints are affine, often written as A x = b
- feasible and optimal sets of a convex optimization problem are convex

Local and Global Optima

Theorem

Locally optimal point of a convex optimization problem is (globally) optimal.

Proof

- suppose x is locally optimal, but $\exists y$ with $f_0(y) < f_0(x)$
- x locally optimal means $\exists\,R>0$ such that if x' is feasible and $\|x'-x\|\leqslant R$, then $f_0(x')\geqslant f_0(x)$
- $\bullet \ \, \text{set} \,\, z = \theta y + (1-\theta)x \,\, \text{with} \,\, \theta = \frac{R}{2\|y-x\|_2}$
- $||y x||_2 > R$, so $0 < \theta < \frac{1}{2}$
- ullet z is a convex combination of two feasible points, hence also feasible
- $\bullet \ \|z-x\|_2 = \frac{R}{2} \ \text{and} \ f_0(z) \leqslant \theta f_0(y) + (1-\theta)f_0(x) < f_0(x), \ \text{which contradicts}$ that x is locally optimal