# Визуализация данных в реальном времени. Лямбда-архитектура

# На этом уроке

- 1. Об отличиях пакетной и потоковой обработки данных.
- 2. Почему пакетная обработка данных подходит не для всех задач.
- 3. Технические особенности решения ВІ задачи на основе потока данных.

## Теория

- 1. Отличия пакетного и потокового подходов к преобразованию данных.
- 2. Примеры задач на построение визуализации по данным в режиме реального времени.
- 3. Решения для построения визуализации по потоку данных.
- 4. Lambda- и Карра-архитектуры.

## Потоковая обработка данных

Традиционный ETL-процесс включает в себя фазу Extract (буквально по определению), которая посвящена извлечению данных из источника. Таким образом, **аналитическое хранилище всегда отстает от источника** при использовании такого подхода. Отставание может составлять часы, сутки и даже недели и месяцы в зависимости от частоты выполнения ETL-процесса.

Такая модель распространения данных называется *pull*-моделью (от англ. pull — тянуть): данные «затягиваются» в хранилище ETL-процессом. Однако **источник может поставлять данные в хранилище самостоятельно**, реализуя *push*-модель распространения данных (от англ. push — толкать). Например, при каждом обновлении данных в «боевой» БД отправлять информацию об обновлении в аналитическую инфраструктуру.

При таком подходе **источник создает поток данных**. В традиционном подходе пакетной (англ. batch) обработки поток обрабатываемых данных ограничен — например, таблицей или партицией таблицы, которые выступают, по сути, «пакетом» данных. В случае же потоковой обработки **поток данных является неограниченным источником данных** (англ. unbounded source), а таблица является ограниченным источником (англ. bounded) данных.

Технически принципы работы с такими источниками концептуально отличаются: в случае пакетной обработки один шаг преобразований обрабатывает конечный объем данных, тогда как **обработка потока данных происходит непрерывно**.

Однако логически обработка потока данных и ограниченной таблицы могут не отличаться значительно: оба формата представляют набор событий, т.е. фактов, привязанных ко времени. Поэтому **те же преобразования, которые выполняются над данными в случае пакетной обработки, возможны и в потоковом случае**: например, событие-транзакция может содержать идентификатор пользователя, по которому можно сопоставить транзакции измерение-регион или измерение-возраст пользователя.

**Отличия будут присутствовать на уровне инфраструктуры данных**. Если описанную выше операцию («притягивание» информации о пользователе к транзакции) выполнять над пакетом данных, оптимальным будет использование реляционных СУБД. Записи в потоке данных же могут обогащаться индивидуально, поэтому для такого случае лучше подойдет in-memory key-value хранилище (впрочем, на уровне реализации реляционная СУБД может использовать схожий подход для сопоставления записей).

Как и в случае традиционного ETL, который преобразует данные для использования в аналитических задачах, потоковая обработка данных является методом для обеспечения потоковой аналитики. Данные из

обработанного потока визуализируются с использованием средств ВI и используются в системах поддержки принятия решений.

#### Примеры задач на потоковую аналитику

Потоковая аналитика полезна в отраслях, где требуется оперативное принятие решений, чаще всего с участием человека. Задача похожа на технический мониторинг (например, нагрузки на сайт), однако ориентирована на бизнес-метрики.

Примером домена, в котором применима потоковая аналитика, является логистика: менеджер магазина или склада может следить за заполненностью полок, количеством активных сотрудников и другими показателями, на основе которых можно принимать решения «в моменте».

Маркетинг в офлайн-ритейле также может быть основан на потоковой аналитике. Например, агентства недвижимости могут подбирать клиенту персонализированные предложения в момент визита, чтобы побудить покупателя к действию.

Информацию о клиента в таком случае можно почерпнуть по данным, собранным устройствами-«маяками», которые «узнают» устройство пользователя, когда оно попадает в радиус действия их сети. Например, смартфон пользователя может выполнить запрос доступных сетей WiFi, передав свой MAC-адрес, по которому связанная рекламная площадка предоставит магазину связанные с клиентом атрибуты: покупательную способность, класс дохода, место проживания — эти факторы далее используются при выборе подходящего предложения

Потоковая аналитика также обобщается на случай автоматизированного принятия решений на основе потока данных.

Другая сфера применения потоковой аналитики — информационная безопасность. Отслеживание подозрительной активности пользователей в режиме реального времени позволяет блокировать доступ злоумышленникам для избежания, например, DDoS-атак.

Аналогично примеру со сферой логистики поток данных может быть использован на производстве: в эпоху активного распространения интернета вещей (англ. Internet of Things, IoT) производственные помещения и станки активно снабжаются различными сенсорами, которые отслеживают, например, температуру, давление и прочие характеристики для предупреждения аварий и поломок. Решение о предотвращении критической ситуации может быть принято как человеком, так и автоматизированно.

Другой пример — сбор информации о пользователе в момент посещения им веб-сайта, например, интернет-магазина. Анализ поведения на основе данных о просмотрах товаров, добавлении в корзину, удалении из нее и исторической сводке о поведении пользователя позволяют реактивировать пользователей, конвертируя их просмотры в повторный заказ.

Реальный пример использования потоковой аналитики: 20% населения Нидерландов живут на территориях ниже уровня моря, и еще 50% — не выше одного метра над уровнем моря. Правительство в реальном времени отслеживает состояние транспортной сети, в буквальном смысле управляя даже светофорами, чтобы на основе сенсоров с дамб разгружать участки дорог, которые в текущий момент наиболее уязвимы в случае прорыва плотины.

### Преимущества потоковой обработки данных

Выбор потокового подхода к работе с данными в примерах выше обусловлен преимуществами потоковой обработки над традиционной пакетной обработкой:

- 1. Данные доступны для анализа со значительно меньшим отставанием от источника данных.
- 2. Аналитик работает с актуальными данными, которые постоянно в актуальном состоянии, и может принимать решения в день происхождения события.

3. Обогащение данных в реальном времени позволяет воссоздать «контекст» клиента и уточнять рекомендации «в моменте».

#### Недостатки и технические сложности реализации потоковой обработки данных

В этом разделе потоковая обработка данных сравнивается с традиционной пакетной.

Основной недостаток потокового подхода к обработке заключается в том, что **не все источники поддерживают push-модель**. В случае реализации традиционного ETL-процесса Data Engineer самостоятельно контролирует процесс поставки данных в хранилище: задействовать ресурс разработчиков со стороны источника данных не требуется.

Обычно ETL-процессы извлекают данные из «боевых» баз данных. Данные из таких БД интуитивно забирать порциями («пакетами»), и часто нет возможности получать из них обновления в потоковом режиме, потому как они не предусмотрены для этого. Функциональность, позволяющая представить обновления состояния OLTP базы данных как поток событий, называется change data capture, CDC. Эта опция все чаще появляется в современных базах данных, однако отключена по умолчанию, т.к. требует дополнительного обслуживания со стороны СУБД.

Другая сложность реализации потоковой обработки данных заключается в более жестких требованиях доступности: **инфраструктура данных должна принимать данные непрерывно**, без сбоев. Потоковая аналитика остро реагирует на задержки, т.к. непрерывность поставки и актуальность данных является одним из ключевых ее преимуществ.

Задача упрощается, если инфраструктура данных самого приложения (не аналитическая) реализует event-driven парадигму. В ядре такого приложения обычно находится шина или брокер сообщений, читать события из которого можно с произвольного требуемого момента времени (обычно — с последнего прочитанного сообщения). Таким образом, такой подход объединяет преимущества pull и push моделей распространения данных: если аналитическая инфраструктура будет недоступна, добрать события получится при следующем запуске.

Визуализация потоковых данных также формирует ряд требований к промежуточному хранилищу данных, на основе которого работает ВІ инструмент. Класс подходящих для этих целей решений называется fast data sinks. Они поддерживают быструю запись и множество параллельных подключений на чтение. Хорошими примерами таких решений выступают файлы в файловой системе Hadoop (HDFS) в специальных эффективных форматах Kudu и Parquet, программное обеспечение, ориентированное на поиск (например, Elasticsearch, Cloudera Search и Solr), in-memory БД как MemSQL и хранилища данных как Snowflake.

Fast data sinks — это не ограниченный класс решений, а набор требований к ним. Инструменты потоковой аналитики непрерывно выполняют запросы (англ. continuous queries) к такому источнику, что и формирует перечисленные требования.

Данные попадают в fast data sink через коннекторы из источников данных, формирующих поток: Kafka Connect, Google Cloud Dataflow, Apache NiFi, Spark Streaming, SQLStream. Данные, поступающие в fast data sink могут быть уже обогащены, как было описано выше (см. пример с «притягиванием» пользователя к транзакции).

BI-решения, подключившись к fast data sink, регулярно опрашивают его на предмет обновленных данных, что и создает высокую нагрузку на чтение.

Альтернативным вариантом было бы подключение напрямую к потоку данных из ВІ инструмента, однако в более широком класс ВІ задач, чем визуализация потока данных, может требоваться доступ в том числе к историческим данным. Тогда как источник потока данных хранит лишь некоторую ограниченную историю событий в детальном виде, fast data sink может обслуживать в том числе запросы на аналитику на основе полной истории.

## Гибридные архитектуры

Ограничением потоковой обработки выступает сложность вычислений, которые можно производить над потоком данных. Обычно она значительно уступает возможностям, которые обеспечивает пакетная обработка. Преобразования чаще носят «потоковый характер»: к потоку данных может быть применена фильтрация, простые построчные преобразования (каждое событие из потока трансформируется индивидуально).

Агрегация также доступна и обычно производится над временнЫм окном: например, агрегируются данные за последнюю неделю или час, или же агрегат может обновлять состояние с начала потока данных (например, счетчики). Однако вычислить агрегат за всю историю в потоковом режиме может быть невозможно из-за объема данных.

В качестве решения используется **гибридный подход, который совмещает достоинства потоковой и пакетной обработки данных**. Известная архитектура, реализующие такой подход, называется Lambda.

Lambda-архитектура расщепляет поток событий на две копии: первая копия наполняет решение для потоковой аналитики данных (и хранит ограниченную историю), а вторая — традиционное хранилище данных (хранящее полную историю). На мощностях хранилища регулярно (например, раз в час или день) выполняются ресурсоемкие вычисления: подсчет уникальных пользователей, множественные JOIN'ы. Результирующие агрегаты размещаются в fast data sinks и надстраиваются из потока данных в режиме реального времени. Таким образом, более свежие данные обогащают более точные:



Опираясь на родственность потока данных и таблицы фактов, некоторые решения успешно совмещают подходы в унифицированной модели программирования, давая разработчикам возможность работать как с потоковыми данными, так и с пакетными, переиспользуя логику обработки. Код для обработки данных в буквальном смысле остается тем же самым, меняется только источник (и его природа).

Одним из таких решений является бессерверный Google Cloud Dataflow (или open source версия его SDK — Apache Beam). Но важно помнить, что потоковая обработка имеет ограничения на сложность вычислений, описанные в разделе этого урока о технических сложностях реализации. Dataflow также поддерживает промежуточный подход к потоковой обработке — поток данных разбивается на окна ограниченного размера, что позволяет выполнять над ними сложный вычисления уровня, доступного для пакетной обработки. Dataflow самостоятельно определяет «ограниченность» источника данных и унифицирует подход к обработке.

Пример чтения данных с использованием Dataflow:

```
def main(arvg=None):
    parser = argparse.ArgumentParser()
    parser.add_argument(
         '--input-file',
         dest='input_file',
         default='/Users/home/words-example.txt',
    )
    known_args, pipeline_args = parser.parse_known_args(argv)
    pipeline_options = PipelineOptions(pipeline_args)
    p = beam.Pipeline(options=pipeline_options)
    lines = p | 'read' >> ReadFromText(known_args.input_file)
```

Пример выше ориентирован на пакетную обработку, т.к. по умолчанию читает данные из файла. Примерно источника, который создает неограниченный поток данных, выступает Google Cloud PubSub — универсальный сервис очередей сообщений. Чтение из него не отличается значительно от чтения из файла:

```
data = p | beam.io.ReadFromPubSub(topic=known_args.input_topic)
lines = data | 'DecodeString' >> beam.Map(lambda d: d.decode('utf-8'))
```

Следующим образом реализуется разбиение потока на окна:

```
windowed_words = input | beam.WindowInto(window.FixedWindows(60 *
window_size_minutes))
```

Непосредственно обработка данных в Apache Beam на примере задачи подсчета слов реализуется следующим образом:

#### Источники

- 1. Streaming Analytics Use Cases
- 2. Streaming Data Analytics for Fast BI Insights
- 3. Streaming Analytics: The Value is in the Action
- 4. What Is Lambda Architecture?
- 5. Google Cloud Dataflow
- 6. Apache Beam word count example