Design based on the two-trials rule

Design of replication studies

Sample size of replication study

- Direct replication → procedures of replication study as closely matched as possible to original study
- But same sample size as in original study can lead to a very low power (Goodman, 1992)
 - → proper sample size calculation is essential

STATISTICS IN MEDICINE, VOL. 11, 875-879 (1992)

A COMMENT ON REPLICATION, P-VALUES AND EVIDENCE

STEVEN N. GOODMAN

Johns Hopkins University School of Medicine, Department of Oncology, Division of Biostatistics, 550 N. Broadway, Suite 1103, Baltimore MD 21205, U.S.A.

What is used in practice

Standard sample size calculation

- Goal is to have between 80% and 95% power in the replication study to detect the effect estimate from the original study.
- Original effect estimate is sometimes shrunken by a factor of 50%.
- Uncertainty of original effect estimate is ignored

Standard sample size calculation

Standard sample size calculation

Incorporation of uncertainty

Incorporation of uncertainty

Incorporation of uncertainty

Design prior

- Conditional: ignores uncertainty of original study
- Predictive: reflects that there is uncertainty about the true effect after the original experiment

Power of the two-trials rule

in absolute terms

Conditional design prior

Power =
$$\Phi\left(\frac{\hat{\theta}_o\sqrt{n_r}}{\sigma} - z_{1-\alpha}\right)$$

Power =
$$\Phi\left(\sqrt{\frac{n_o}{n_o + n_r}} \left(\frac{\hat{\theta}_o \sqrt{n_r}}{\sigma} - z_{1-\alpha}\right)\right)$$

Power of the two-trials rule

in relative terms

Conditional design prior

Power =
$$\Phi\left(z_o\sqrt{c}-z_{1-\alpha}\right)$$

Power =
$$\Phi\left(\frac{1}{\sqrt{c+1}}\left(z_o\sqrt{c}-z_{1-\alpha}\right)\right)$$

Power of the two-trials rule

with shrinkage

Conditional design prior

Power =
$$\Phi\left((1-s)z_o\sqrt{c}-z_{1-\alpha}\right)$$

Power =
$$\Phi\left(\frac{1}{\sqrt{c+1}}\left((1-s)z_0\sqrt{c}-z_{1-\alpha}\right)\right)$$

Design based on replication success (the sceptical p-value)

Power for replication success

Conditional design prior

$$\mathsf{Power} = \Phi\left(z_o\sqrt{c}(1-d_{\scriptscriptstyle\mathsf{min}})\right)$$

Power =
$$\Phi\left(\frac{1}{\sqrt{c+1}}\left(z_o\sqrt{c}(1-d_{\min})\right)\right)$$