

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058, India (Autonomous College Affiliated to University of Mumbai)

End Semester Examination

Max. Marks: 100

Class: Direct Second Year

Course Code: MA202

Semester: III Branch: ALL

Duration: 3 Hrs

Name of the Course: Foundation of Mathematics-I

Instructions:

(1) All questions are compulsory.

(2) Assume suitable data if necessary.

(3) Use of scientific calculator is allowed.

Q NO.		Max Marks	СО
Q.1	(A) Resolve into partial fractions $\frac{(x+4)}{(x-1)^2(x+1)}$	05	CO 1
	(B) Find $\frac{dy}{dx}$ if $y = \frac{e^x + e^{-x}}{e^x - e^{-x}}$	05	CO 1
	(C) I If $u = sin^{-1}(\frac{x}{y})$, prove that $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$	05	CO 1
1	(D) Use the properties of determinants and without expanding evaluate 2	05	CO 6
Q.2	(A) If $y = (x^2 - 1)^n$, prove that $(x^2 - 1)y_{n+2} + 2xy_{n+1} - n(n+1)y_n = 0$	07	CO3
C E	(B) Discuss maxima and minima of $x^3 + 3xy^2 - 3x^2 + 4$	07	CO 2
	OR Discuss maxima and minima of $u = xy + a^3(\frac{1}{x} + \frac{1}{y})$ (C) Prove that $x \cos e c x = 1 + \frac{x^2}{6} + \frac{7x^4}{360} + \dots$	06	CO 4
Q.3			00.1
	(A) If $z = f(x, y), x = \log u, y = \log v,$ prove that $\frac{\partial^2 z}{\partial x \partial y} = uv \frac{\partial^2 z}{\partial u \partial v}$	07	COI
	(B) Find inverse of a matrix by adjoint method for $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 3 \\ 2 & 1 & 2 \end{bmatrix}$	07	CO 5

		8.	
*	(C) Prove that $\log(secx) = \frac{x^2}{2} + \frac{x^4}{12} + \frac{x^6}{45} + \cdots$ OR	06	CO 4
	Expand in powers of x, $e^x secx$		
Q.4	(A) If $u = f(2x - 3y, 3y - 4z, 4z - 2x)$, and $u = f(l, m, n)$ prove that $\frac{1}{2} \frac{\partial u}{\partial x} + \frac{1}{3} \frac{\partial u}{\partial y} + \frac{1}{4} \frac{\partial u}{\partial z} = 0$	06	COI
	(B) If $A = \begin{bmatrix} 1 & -2 & 3 \\ 2 & 1 & 3 \\ 0 & 2 & -1 \end{bmatrix}$ then find the value of $A^3 + 8A^2 + 7A + 2I$	06	CO5
	Verify whether $A = \frac{1}{3} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ -2 & 2 & -1 \end{bmatrix}$ is orthogonal or not		
	(C) a) Find the dot product and cross product of the vector from $\vec{a} = 2\hat{\imath} + 3\hat{\jmath} - \hat{k}$ to $\vec{b} = \hat{\imath} - 4\hat{\jmath} + 2\hat{k}$	04	CO6
	b) Show that the vectors $2\hat{\imath} - 3\hat{\jmath} + 4\hat{k}$ and $-4\hat{\imath} + 6\hat{\jmath} - 8\hat{k}$ are collinear	04	CO6
Q.5	(A) Calculate the value of √10 to four values of decimals by using Taylor's Theorem OR	07	CO4
9	Apply Taylor's Theorem to find approximately the value of $f(11/10)$ where $f(x) = x^3 + 3x^2 + 15x - 10$		
	(B) Find the nth derivative of $y = \frac{(x-1)}{(x+1)(2x+3)}$	06	CO3
¥	(C) If $x = u + v + w$, $y = uv + vw + wu$, $z = uvw$, prove that $x \frac{d\phi}{dx} + 2y \frac{d\phi}{dy} + 3z \frac{d\phi}{dz} = u \frac{d\phi}{du} + v \frac{d\phi}{dv} + w \frac{d\phi}{dw}$	07	CO2

-----XXXXX-----