Wprowadzenie do systemów liczbowych

Rafał Grot

October 8, 2022

Contents

1	System liczbowy o podstawie R	1
	1.1 DEC \rightarrow SR	2
	1.1.1 przykład	2
	1.2 $SR \rightarrow DEC$	2
	1.2.1 Przykład	2
2	System ZN (Znak moduł)	2
3	NKB	3
	3.1 NKB \rightarrow DEC	3
	3.1.1 Przykład	3
	3.2 DEC \rightarrow NKB	3
4	System U2 (dopełneniowy do 2)	3
	4.1 $L_{\text{U2}} \rightarrow \overrightarrow{\text{DEC}}$	3
	4.1.1 przykład	4
	4.2 DEC \rightarrow U2	4
	MACIE OPANOWAC NKB I U2 wstęp do infrmatyki moo	dle
be	z hasła	

1 System liczbowy o podstawie R

$$R \in \mathbb{N}$$

Alfabet: $A = \{\hat{a}_0, \hat{a}_1, \dots, \hat{a}_0\}$
 $|A| = R$

$1.1 \quad DEC \rightarrow SR$

$$X_{\text{DEC}} = Y_R = (R_N R_{N-1} \dots R_1 R_0)_R$$

1.1.1 przykład

$\textbf{1.2} \quad \textbf{SR} \rightarrow \textbf{DEC}$

$$X_{\text{DEC}} = \sum_{i=0}^{N} a_i \cdot R^i, a_i :\in A$$

1.2.1 Przykład

 $1101110_2 \xrightarrow{?} DEC$

$$X_{\mathrm{DEC}} = 0 \cdot 2^{0} + 1 \cdot 2^{1} + 1 \cdot 2^{2} + 1 \cdot 2^{3} + 0 \cdot 2^{4} + 1 \cdot 2^{5} + 1 \cdot 2^{6} = 0 + 2 + 4 + 8 + 0 + 32 + 64 = 110_{10}$$

2 System ZN (Znak moduł)

$$L_{ZN} = (b_n \underbrace{a_{N-1}a_{N-2} \dots a_1 a_0}_{L_{NKB} \ge 0})_{ZN}$$

$$a_i \in A, i = 0, 1, \dots, N - 1$$

 $b_N \in \{0, 1\}$

gdzie

- $b_N = 0$ oznacza $L \ge 0$
- $b_N = 1$ oznacza L < 0

3 NKB

$$L_{NKB} = (a_{N-1}a_{N-2} \dots a_1a_0)_{NKB}$$

 $3.1 \quad NKB \rightarrow DEC$

$$L_{DEC} = \sum_{i=0}^{N-1} a_i \cdot 2^i$$

3.1.1 Przykład

$$\underset{64}{11011110}_{NKB} = 110_{DEC}$$

 $\textbf{3.2} \quad \textbf{DEC} \rightarrow \textbf{NKB}$

Użyj algorytmu 1.1 dla R=2

4 System U2 (dopełneniowy do 2)

$$L_{U2} = (a_{N-1}a_{N-2} \dots a_1a_0)_{U2}$$

 a_{N-1} – waga ujemna

4.1 $L_{\mathbf{U2}} \to \mathbf{DEC}$

Coś mi się wydaje że to powinno być $L_{\rm DEC}$ ale tak jest(było) na tablicy.

$$\mathbf{L}_{\mathrm{U2}} = -a_{N-1} \cdot 2^{N-1} + \sum_{i=0}^{N-1} a_i \cdot 2^i$$

4.1.1 przykład

$$\underset{-64}{1}10\underset{8}{1}1\underset{2}{1}10_{U2} = -18_{DEC}$$

$\textbf{4.2} \quad \textbf{DEC} \rightarrow \textbf{U2}$

- 1. Użyj algorytmu 1.1 dla R=2 (Czyli tak samo jak 3.2) $\mathcal{L}=(a_{N-1}a_{N-2}\dots a_1a_0)$
- 2. Dostaw "0" do najbardziej znaczącej cyfry

$$L = (0a_{N-1}a_{N-2} \dots a_1 a_0)$$

- 1. dla $L \ge 0$ KONIEC
- $2. \ dla \ L < 0$