Lineær optimering: Simplexalgoritme, Afsnit 9.3

05. may 2021

Sandsynlighedsteori og lineær algebra (SLIAL)

Forår 2021

Del I Repetition

Lineær optimeringsproblem

Objektfunktion: c · x

Mulighedsområdet (feasible set):

$$\mathcal{F} = \{ x \in \mathbb{R}^n \colon Ax \le b, x \ge 0 \}$$

Mulig løsning (feasible solution): $x \in \mathcal{F}$

Løsning (solution): $\bar{x} \in \mathcal{F}$ således at

$$c^T \bar{x} = \max_{x \in \mathcal{F}} c^T x$$

Lineær optimeringsproblem

maximize
$$c \cdot x$$
,
subject to $Ax \leq b$,
 $x \geq 0$.

Kanonisk form: som ovenfor. Dvs:

- ▶ max og ikke min
- ► kun ≤ bibetingelser
- ► alle variabler er ikke-negative

Alle lin. optimeringsproblemer kan opskrives i kanonisk form.

Dualitet

LPer kommer i par:

hvor

$$\mathcal{F} = \{ x : Ax \leq b, x \geq 0 \}$$

$$\mathcal{F}^* = \{ y : A^T y \geq c, y \geq 0 \}$$

$$\forall x \in \mathcal{F}, y \in \mathcal{F}^* : c \cdot x \leq b \cdot y$$

- $ightharpoonup \mathcal{F}
 eq \emptyset, \, \mathcal{F}^*
 eq \emptyset \implies$ begge problemer har optimale løsninger.
- ▶ $\bar{x} \in \mathcal{F}$ løser primal, $\bar{y} \in \mathcal{F}^*$ løser dual $\iff c \cdot \bar{x} = b \cdot \bar{y}$.

Del II

Simplexalgoritmen Afsnit 9.3

Oversikt

- ► Opfundet af George Dantzig i 1947 før datamaskiner!
- ► Er i brug siden-fungerer virkelig godt i praxis
- ▶ I værste tilfælde kræver $\binom{n}{m}$ iterationer, hvor $n \ge m$ er antallet af ubekendte og bibetingelser men dette sker sjældent
- Naum Shor i 1972 oppfundet ellipsoid method, som har væsentlig bedre teoretisk kompleksitet, men er supertreg i praxis
- Narendra Karmarkar i 1984 oppfundet indrepunktsmetoder for lineær optimering, som både har godt "værste tilfælde" kompleksitet og er hurtig i praxis. Problemer med 10⁹ variabler/bibetingelser kan løses p.t.

Slackvariabler

Vi vet at løsningen findes i hjørner af det mulige område. Kan vi karakterisere dem på en algebraisk, og ikke geometrisk, måte? Trin 1: omskriver kanonisk form/uligheder til ligheder ved å introdusere slackvariabler:

$$\{x: Ax \leq b, x \geq 0\} \quad \iff \quad \{(x,s): Ax + s = b, x \geq 0, s \geq 0\}$$

Eksempel fra sidst: kan løses grafisk

maximize
$$2x_1 + 3x_2$$

subject to $3x_1 + 2x_2 \le 12$, $x_1 + 2x_2 \le 8$, $x_1 + x_2 \le 4.5$, $x \ge 0$.

Løsning: $(x_1, x_2) = (1, 3.5), c \cdot x = 12.5$

https://www.geogebra.org/calculator/zysewucp

Eksempel fra sidst: slackvariabler

3 bibetingelser = 3 slackvariabler

maximize
$$2x_1 + 3x_2$$

subject to
$$3x_1 + 2x_2 + s_1 = 12,$$
$$x_1 + 2x_2 + s_2 = 8,$$
$$x_1 + x_2 + s_3 = 4.5,$$
$$x \ge 0, s \ge 0.$$

Løsning:
$$(x_1, x_2) = (1, 3.5) \implies s_1 = 12 - 3 - 7 = 2,$$

 $s_2 = 8 - 1 - 7 = 0, s_3 = 4.5 - 1 - 3.5 = 0.$

Eksempel fra sidst: matrix form

$$A = \begin{bmatrix} 3 & 2 & 1 & 0 & 0 \\ 1 & 2 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \end{bmatrix} \qquad b = \begin{bmatrix} 12 \\ 8 \\ 4.5 \end{bmatrix} \qquad c = \begin{bmatrix} 2 \\ 3 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$c = \begin{bmatrix} 2 \\ 3 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

maximize
$$c \cdot \tilde{x}$$
 subject to
$$A\tilde{x} = b$$
 $\tilde{x} > 0$.

hvor $\tilde{x} \in \mathbb{R}^5$ inkluderer både $x \in \mathbb{R}^2$ og $s \in \mathbb{R}^3$

Eksempel fra sidst: ekstrempunkter

Mulighedsområdet har 5 ekstrempunkter:

1.
$$(x_1, x_2, s_1, s_2, s_3) = (0, 0, 12, 8, 4.5)$$

2.
$$(x_1, x_2, s_1, s_2, s_3) = (4, 0, 0, 4, 0.5)$$

3.
$$(x_1, x_2, s_1, s_2, s_3) = (3, 1.5, 0, 2, 0)$$

$$(4.)(x_1,x_2,s_1,s_2,s_3)=(1,3.5,2,\underline{0},\underline{0})$$

5.
$$(x_1, x_2, s_1, s_2, s_3) = (0, 4, 4, 0, 0.5)$$

Eksempel fra sidst: ekstrempunkter

Eksempel fra sidst: ekstrempunkter

Algebraisk karakterisering:

1.
$$(x_1, x_2, s_1, s_2, s_3) = (0, 0, 12, 8, 4.5)$$

$$A = \begin{bmatrix} 3 & 2 & 1 & 0 & 0 \\ 1 & 2 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad N = \begin{bmatrix} 3 & 2 \\ 1 & 2 \\ 1 & 1 \end{bmatrix}$$

$$Bs + Nx = b$$
, $x = 0$ \Longrightarrow $s = B^{-1}b = b$

2.
$$(x_1, x_2, s_1, s_2, s_3) = (4, 0, 0, 4, 0.5)$$

$$Bs + Nx = b, \quad x = 0 \implies s = B^{-1}b = b$$
2. $(x_1, x_2, s_1, s_2, s_3) = (4, 0, 0, 4, 0.5)$

$$A = \begin{bmatrix} 3 & 2 & 1 & 0 & 0 \\ 1 & 2 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \end{bmatrix} \quad B = \begin{bmatrix} 3 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \quad N = \begin{bmatrix} 2 & 1 \\ 2 & 0 \\ 1 & 0 \end{bmatrix}$$

$$B\begin{bmatrix} x_1 \\ s_2 \\ s_3 \end{bmatrix} + N\begin{bmatrix} x_2 \\ s_1 \end{bmatrix} = b, \quad \begin{bmatrix} x_2 \\ s_1 \end{bmatrix} = 0 \quad \Longrightarrow \quad \begin{bmatrix} x_1 \\ s_2 \\ s_3 \end{bmatrix} = B^{-1}b = \begin{bmatrix} 4 \\ 4 \\ 0.5 \end{bmatrix}$$

Basisløsninger

Lad oss oppdele alle variabler $\tilde{x} = (x, s)/s$ øjler i A i to grupper (kan gøres på mange måter):

- ► Basisvariabler, *i_B*.
 - Antallet af basisvariabler=antallet af rækker i A
 - ► Søjler svarende til basisvariabler er lineært uafhengige
- ► Ikke-basisvariabler, *i*_N=resten

Mulige basisløsninger

Vi skriver

$$Ax = Bx_B + Nx_N = b$$

Da basissøjler er lin. uafhengige og B er kvadratisk \implies invertibel.

Antag at
$$x_N = 0 \implies x_B = B^{-1}b$$
.

Sådan $\tilde{x}=(x_B,x_N)$ oppfylder $A\tilde{x}=b$ Hvis i tillegg $\tilde{x}\geq 0$, dvs $x_B\geq 0$ da $\tilde{x}\in\mathcal{F}$ kaldes for mulig basisløsning!

Mulige basisløsninger

- Mulige basisløsninger svarer til ekstrempunkter af mulighedsområdet
- ▶ Det kan være flere mulige basisløsninger som svarer til samme ekstrempunkt
- ► Antallet af mulige basisløsninger $\leq \binom{n}{m}$, hvis størrelse af A er $m \times n$, $m \leq n$
- ► Løsningen til optimeringsproblemet findes imellem ekstrempunkter~ mulige basisløsninger

Simplexmetoden er bare en systematisk måde å "besøge" mulige basisløsninger

Optimalitetsbetingelsene

Hvordan kan vi afgøre, om en mulig basisløsning optimal (uten dualitet, uten å sammenligne med andre ekstrempunkter)

$$Bx_B + Nx_N = b \implies x_B = B^{-1}b - B^{-1}Nx_N$$

$$c^T x = c_B^T x_B + c_N^T x_N = c_B^T [B^{-1}b - B^{-1}Nx_N] + c_N^T x_N$$

$$= \underbrace{c_B^T B^{-1}b}_{\text{uafhengig fra } x_N} + [c_N - N^T B^{-T} c_B]^T \underbrace{x_N}_{\geq 0}.$$

- ► Hvis alle komponenter i vektoren $c_N N^T B^{-T} c_B$ er ≤ 0 så kan vi ikke gøre objektfunktionen større ved å endre x_N fra 0. Dvs denne punk er en løsning
- ► Hvis det findes en komponent i $c_N N^T B^{-T} c_B$ som er > 0 så kan vi gøre objektfunktionen større ved å endre denne komponent i x_N fra 0 til > 0

Eksempel: ekstrempunkt 1

$$(x_1, x_2, s_1, s_2, s_3) = (0, 0, 12, 8, 4.5)$$

$$A = \begin{bmatrix} 3 & 2 & 1 & 0 & 0 \\ 1 & 2 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad N = \begin{bmatrix} 3 & 2 \\ 1 & 2 \\ 1 & 1 \end{bmatrix}$$

$$c_{\mathcal{B}} = egin{bmatrix} 0 \ 0 \ 0 \end{bmatrix} \qquad c_{\mathcal{N}} = egin{bmatrix} 2 \ 3 \end{bmatrix}$$

$$c_N - N^T B^{-T} c_B = c_N = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

ikke optimal da det findes koordinter > 0

Eksempel: ekstrempunkt 4

$$(x_{1}, x_{2}, s_{1}, s_{2}, s_{3}) = (1, 3.5, 2, 0, 0)$$

$$A = \begin{bmatrix} 3 & 2 & 1 & 0 & 0 \\ 1 & 2 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \end{bmatrix} \qquad B = \begin{bmatrix} 3 & 2 & 1 \\ 1 & 2 & 0 \\ 1 & 1 & 0 \end{bmatrix} \qquad N = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$c_{B} = \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix} \qquad c_{N} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$c_{N} - N^{T}B^{-T}c_{B} = \begin{bmatrix} -3 \\ -5 \end{bmatrix}$$

optimal da alle koordinter ≤ 0

Trin af simpleksalgoritmen

Vi befinder oss i en mulig basisløsning, som ikke er optimal

Dvs det findes en komponent i $c_N - N^T B^{-T} c_B$ som er > 0

Kan udbedre objektfunktionen ved å bruge værdi > 0 for denne $(x_N)_i$; dvs denne komponenten skal inngå i basisvariabler istedenfor.

Skal bare finde, hviklet basisvariable skal ekskluderes fra i_B - dette gjøres ved å se, hviklet basisvariable blir 0 når $(x_N)_i$ medbringes i basis

I praxis:

Vi undgår å løse nye systemer af lineære ligninger (beregne B^{-1}) hver gang vi endrer basis ved hjælp af "pivotering"/rækkeoperationer som i Gausselimination.

Del III

Simplex tableau: traditionel simplex notation

Eksempel fra sidst: kanonisk form

Løsning: $(x_1, x_2) = (1, 3.5), c \cdot x = 12.5$

maximize
$$2x_1+3x_2$$
 subject to
$$3x_1+2x_2\leq 12,$$
 $x_1+2x_2\leq 8,$ $x_1+x_2\leq 4.5,$ $x\geq 0.$

Eksempel fra sidst: slack variabler

maximize
$$2x_1 + 3x_2$$

subject to $3x_1 + 2x_2 + s_1 = 12$, $x_1 + 2x_2 + s_2 = 8$, $x_1 + x_2 + s_3 = 4.5$, $x > 0, s > 0$

Eksempel fra sidst: ny variabel for objektfunktion

eller

$$M = 2x_1 + 3x_2$$

$$M - 2x_1 - 3x_2 = 0$$

$$i_B = (s_1, s_2, s_3)$$

= abject

$$i_B = (s_1, s_2, s_3)$$

	$\frac{x_1}{3}$	<i>X</i> ₂	s ₁	s ₂	s 3	Μ	b
s_1	3	2	1	0	0	0	12
S_2	1	2	0	1	0	0	8
s ₃	1	1	0	0	1	0	4.5
M	-2	-3	0	0	0	0	0
	_						

 \blacktriangleright Vælger mest negative værdi i sidste række: vil inkludere x_2 i basis

$$\frac{12}{2} = 6$$
, $\frac{8}{2} = 4$, $\frac{4.5}{1} = 4.5$

$$i_B = (s_1, s_2, s_3)$$

- ▶ Vælger mest negative værdi i sidste række: vil inkludere x₂ i basis
- ▶ Til å finde hvilket variable skal "ud" fra basis, vi sammenligner b_i/a_{i2} , og vælger det mindste; det er s_2

	X ₁	X_2	<i>s</i> ₁	s ₂	s ₃	Μ	b
s_1	3	2	1	0	0	0	12
s_2	0.5	1	0	0.5	0	0	4
s_3	1	1	0	0	1	0	4.5
M	$\begin{bmatrix} x_1 \\ 3 \\ 0.5 \\ 1 \\ -2 \end{bmatrix}$	-3	0	0	0	0	0

► Vi deler række 2 med 2

	<i>X</i> ₁	X_2	s ₁	s ₂	s ₃	M	b 4 4 4.5
S ₁	2	Ō	1	-1	0	0	4
s_2	0.5	1	0	0.5	0	0	4
S 3	1	1	0	0	1	0	4.5
Μ	2	_3	0	0	0	0	0

► Vi subtragerer 2× række 2 fra række 1

	X ₁	<i>X</i> ₂	<i>s</i> ₁	<i>s</i> ₂ −1 0.5 −0.5	s ₃	M	b]
s_1	2	0	1	-1	0	0	4
s_2	0.5	1	0	0.5	0	0	4
s ₃	0.5	0	0	-0.5	1	0	0.5
M	_2	-3	0	0	0	0	0

► Vi subtragerer 1× række 2 fra række 3

	X ₁	<i>X</i> ₂	s ₁	s ₂	s ₃	Μ	b]
s_1	2	0	-1	-1	0	0	4
s_2	0.5	1.	0	0.5	0	0	4
s_3	0.5	0	0	-0.5	· 1	0	0.5
Μ	2 0.5 0.5 -0.5	0	0	1.5	0	0	[12]

- ► Vi subtragerer −3× række 2 fra række 4.
- ▶ Pivotering er ny fullført, da alle elementer i søjle 2 er nul, bortsett fra 1 i position (2,2).
- ▶ Vi står i ny ekstrempunkt/mulig basisløsning nu (s_2 ud af basis; x_2 ind). Objektfunktion er lig med 12.

	$\begin{bmatrix} x_1 \\ 2 \end{bmatrix}$	<i>·</i> X ₂	s_1	s_2	s ₃	M	b -
s_1	2	0	1	-1	0	0	4
· X ₂	0.5	-1	0	0.5	0	0	4
s ₃	0.5	0	0	-0.5	1	0	0.5
Μ	-0.5	0	0	1.5	0	0	12
							-

▶ Denne punkt er ikke optimal pga -0.5 < 0 i sidste række; vil inkludere x_1 i basis

$$\frac{4}{2} = 2$$
, $\frac{4}{0.5} = 8$, $\frac{0.5}{0.5} = 1$

- ▶ Denne punkt er ikke optimal pga -0.5 < 0 i sidste række; vil inkludere x_1 i basis
- ► Ser på b/a_{i1} og vælger det mindste; s_3 skal ud

	X_1	<i>X</i> ₂	s ₁	s_2	s 3	Μ	b
s_1	2	0	1	-1	0	0	4
<i>X</i> ₂	0.5	1	0	0.5	0	0	4
s ₃		0	0	1	2	0	1
M	2 0.5 1 -0.5	0	0	1.5	0	0	12

► Ganger række 3 med 2

	X ₁	<i>X</i> ₂	<i>s</i> ₁	s_2	<i>s</i> ₃	Μ	b
s_1	0	0	1	-3	-4	0	2
X_2	0.5	1	0	0.5	0	0	4
s ₃	1	0	0	1	2	0	1
M	0.5 1 -0.5	0	0	1.5	0	0	12

► Subtragerer 2× række 3 fra række 1

	X ₁	<i>X</i> ₂	s_1	s_2	s ₃	Μ	b]
s_1	0	0	1	-3	-4	0	2
<i>X</i> ₂	0	1	0	0	-1	0	3.5
s_3	1	0	0	1	2	0	1
Μ	-0.5	0	0	1.5	0	0	12

► Subtragerer 0.5× række 3 fra række 2

-3	-4	0 2
0	-1	0 3.5
) 1	2	0 1
2	1 1	0 (12.5)
	1 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

- ► Subtragerer –0.5× række 3 fra række 4
- ► Pivotering er ny fullført, da alle elementer i søjle 1 er nul, bortsett fra 1 i position (3, 1).
- ▶ Vi står i ny ekstrempunkt/mulig basisløsning nu (s_3 ud af basis; x_1 ind). Objektfunktion er lig med 12.5.

	\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<i>X</i> ₂	<i>s</i> ₁	s_2	s ₃	Μ	2. 3.5. 1. 12.5]
· S ₁	0	0	1	-3	-4	0	2.	1
· X2	0	1	0	0	-1	0	3.5 ·	ľ
· X ₁	1	0	0	1	2	0	1 ·	I
M	0	0	0	2	1	0	12.5	
	_							-

- ▶ Det er en optimal løsning fordi alle koefficienter i sidste række er > 0
- ► Værdier av basisvariabler står i sidste søjle; dvs $(s_1, x_2, x_1) = (2, 3.5, 1)$
- ► Objektfunktion M = 12.5

Praktiske detaljer

- ► Hvis b ≥ 0, kan det være vanskeligt at finde en mulig basisløsning for å begynne algoritmen. Søg efter "Two phase simplex method" hvis I vill vite mer.
- ▶ Det kan skje, at vi står i det samme ekstrempunkt selvom vi hadde pivoteret til et annet mulige basisløsning. Lidt mer bookkeeping kreves for at unngå "cycling"