

Tetrahedron 63 (2007) 8619-8635

Tetrahedron

Tandem intramolecular benzyne-furan cycloadditions. Total synthesis of vineomycinone B₂ methyl ester

Steven M. Sparks,[†] Chi-Li Chen and Stephen F. Martin*

Department of Chemistry and Biochemistry, The University of Texas at Austin, 1 University Station A5300, Austin, TX 78712-0165, United States

Received 4 March 2007; revised 7 April 2007; accepted 11 April 2007 Available online 19 April 2007

Abstract—We have exploited tandem intramolecular benzyne—furan cycloadditions employing three different benzyne precursors to generate substituted bisoxabenzonorbornadienes in a *single* operation. The regiochemical outcomes in these Diels—Alder reactions were effectively controlled by using disposable silicon tethers to link the reacting benzyne and furan moieties. Two different methods for converting the intermediate bisoxabenzonorbornadienes to substituted anthrarufins were developed. The first tactic entails the initial cleavage of the silicon tethers followed by regioselective ring opening of the oxabicycloheptadienes and oxidation of the central ring giving the target anthrarufin, whereas the second features the regioselective ring opening of the oxabicycloheptadienes followed by protiodesilylation and oxidation. When the starting furans bear carbohydrate substitutents, this new methodology enables the rapid assembly of the glycosyl-substituted aromatic cores of complex *C*-aryl glycoside antibiotics from simple starting materials. The utility of this novel approach to anthrarufins and *C*-aryl glycosides is exemplified in a triply convergent synthesis of vineomycinone B₂ methyl ester.

1. Introduction

The vineomycins A_1 , A_2 , B_1 , and B_2 comprise a group of antibiotics that were isolated from a culture of *Streptomyces matensis vineus* and found to be active against Grampositive bacteria and sarcoma-180 solid tumors in mice. Although the structures of vineomycins A_1 and B_2 have been determined as 1 and 2, respectively, vineomycins A_2 and B_1 have not been fully characterized. Vineomycin A_1 has been shown to be identical with a *Streptomyces* metabolite P-1894B that was previously reported as a potent inhibitor of prolyl hydroxylase (IC₅₀=2.2 μ M), which as one of the key enzymes in collagen biosynthesis catalyzes the

hydroxylation at the 4-position of specific prolyl residues in the peptide precursor of collagen.³ Vineomycin A_1 has been shown to be effective for treating hypertrophic scar tissue or keloid in vivo,⁴ and vineomycin B_2 (2) has been used as a biochemical tool to study collagen prolyl hydroxylase.⁵ There are a number of natural products that are structurally similar to those of the vineomycin family. These compounds, which also exhibit significant biological activities, include: balmoralmycin, an inhibitor of protein kinase C- α ,⁶ saquaymycins A and B, which are active against several lines of tumor cells,⁷ amicenomycins A and B, which exhibit antimicrobial activity,⁸ and the antibacterial agents himalomycins A and B.⁹

† Present address: GlaxoSmithKline, 5 Moore Drive, Research Triangle Park, NC 27709, United States.

^{*} Corresponding author. Tel.: +1 512 471 3915; fax: +1 512 471 4180; e-mail: sfmartin@mail.utexas.edu

Owing to their intriguing structures and biological activities, a number of studies have been performed with members of the vineomycin family. The biosynthesis of the vineomycins was first studied by Õmura and co-workers. ¹⁰ In their pioneering work, they performed feeding experiments with singly and doubly ¹³C-labeled acetate and found that the tetracyclic ring system of vineomycinone A_1 (1) and all of the carbon atoms of the central core of vineomycinone B_2 (2) were derived from a single decaketide chain. ¹¹

During the course of structural studies of the vineomycins. it was discovered that when either 1 or 2 was heated in methanolic HCl, the degradation product vineomycinone B₂ methyl ester (3) was obtained. 1b Interestingly, 3 was also generated from the acid-catalyzed methanolysis of aquayamycin.¹² Vineomycinone B₂ methyl ester (3) bears an olivose residue appended to one ring of the anthrarufin core and is thus a representative member of the C-aryl glycoside family of natural products. 13 The other ring of the anthrarufin core is further endowed with a 3(R)-hydroxyisovaleryl side chain, thereby making vineomycinone B₂ methyl ester an intriguing natural product of modest complexity. Indeed, the structure of 3 coupled with the potential anticancer activity of the vineomycins and related compounds has rendered vineomycinone B₂ methyl ester the object of a number of investigations, four of which have culminated in its total synthesis. 14,15

Vineomycinone B₂ methyl ester (3)

Like many natural products that have been previously prepared, 3 remains an inspiration for the design and development of new chemistries. In this context, it is noteworthy that we recently developed a general entry to the four major classes of C-aryl glycoside natural products by an approach that features the ring opening of cycloadducts that are obtained from Diels-Alder cycloadditions of substituted benzynes with glycosyl furans. 16 We demonstrated the utility of this methodology by its application to a formal synthesis of galtamycinone¹⁷ and 2-aryl naphthol derivatives.¹⁸ Owing to the unsymmetrical arrangement of carbohydrate and functionalized side-chain substituents on the anthrarufin nucleus, it was apparent that vineomycinone B₂ methyl ester (3) posed a significant challenge to our methodology. Hence, we decided to embark on the total synthesis of 3 as a more demanding test of the general efficacy of our approach to C-aryl glycosides, and we now report the details of these investigations. 19

2. Results and discussion

2.1. Development of the synthetic plan

The successful application of our methodology for preparing C-aryl glycosides to the synthesis of vineomycinone B_2

methyl ester (3) relies on being able to control the regiochemical outcome of two Diels-Alder reactions of unsymmetrical benzyne and furan substrates to assemble the substituted aromatic framework. Although unsymmetrical benzynes are known to undergo regioselective Diels-Alder reactions, such cycloadditions more typically proceed with poor regioselectivity, 20,21 so our entry to C-aryl glycosides that involved using disposable silicon tethers to link the reacting benzyne and furan moieties was of particular interest. 16c, 22 After considering a number of possibilities, a novel and highly convergent strategy eventuated for the synthesis of vineomycinone B₂ methyl ester (3) (Scheme 1). The approach features tandem intramolecular benzyne-furan cycloadditions originating from the key intermediate 5 to generate the bisoxabenzonorbornadiene 4, thereby swiftly assembling the entire skeletal framework in a single operation. The conversion of 4 into 3 requires cleavage of the silicon tethers, regioselective ring opening of the oxabenzonorbornene core, global removal of the oxygen protecting groups, and adjustment of the oxidation level in the alkyl side chain. The precursor 5 for the tandem cycloaddition sequence would be prepared by the iterative Mitsunobu coupling of a hydroquinone 7, which would be suitably substituted to serve as a bis-benzyne precursor, with the silicon-substituted furans 6 and 8, both of which would be derived from readily available starting materials.

Scheme 1. Retrosynthetic analysis.

Me

2.2. Feasibility of tandem benzyne-furan cycloadditions

Given the somewhat speculative nature of our strategy for the synthesis of vineomycinone B2 methyl ester, we deemed it advisable to conduct some simple model studies to evaluate the underlying efficacy of preparing anthrarufins via tandem benzyne-furan cycloadditions and ring opening. Several important issues were to be evaluated in these preliminary investigations. The first task was to identify a substituted hydroquinone derivative 7 that would twice serve as a benzyne precursor. We and others have found that halohydroguinone derivatives could be readily converted into benzynes upon regioselective deprotonation with alkyllithium reagents, 16,23 so 7 (X=H; Y=Cl or Br) emerged as likely candidates. Hart has shown that tetrabromobenzenes can serve as bisbenzyne precursors in Diels-Alder reaction,²⁴ so **7** (X=Y= Br) might also be a suitable starting material. In earlier work, we developed silicon tethers containing one and two carbon atoms, so a second undertaking would be to ascertain which of these would be optimal in tandem benzyne-furan reactions. Hence, we would need to prepare substituted furans of the general structure 9 and 10 (n=1, 2; R^1 , $R^2=H$, Me) and couple these with 7 to provide compounds of the general form 11 (Scheme 2). We would then be in a position to establish the feasibility of the key tandem benzyne-furan Diels-Alder reactions to give 12. The specific tactic used to remove the silicon tethers of 12 to give 13 would depend upon the nature of the tether itself, but the requisite protocols had been developed in previous work. 16c

Si LG X Y LG Si Coupling

9 7 10

Double benzyne-
furan cycloaddition
R1 12

Tether cleavage

R1 1 OH OH

13

OH OH

14

$$R^2$$
 and/or R^1
 R^1
 R^2 and/or R^1
 R^2
 R^3

OH OH

 R^4
 R^4

Scheme 2. Planning for model studies.

Less predictable was the regiochemical issue related to opening of the two oxabenzonorbornene rings in 13 to

 R^{1} . $R^{2} = H$. Me

give, subsequent to oxidation, the desired anthrarufin 14 or its undesired isomer 15. Although there was no direct precedent that could be used to predict the regiochemistry of opening of anthracene-derived oxabicycloheptadienes, there was information that provided some guidance. Namely, prior art in our laboratories revealed that the regiochemistry of acid-catalyzed ring openings of oxabicycloheptadienes was directed by the orientation of substituents on the bicyclic ring. 16c The directing effect of bridgehead substituents in such openings is absolute as only one cleavage mode leads to a naphthol ring. When the substituent is on the carbon carbon double bond, its effect on the direction of ring opening is not as strong, but the product in which the substituent is ortho to the naphthol hydroxyl group is generally the major product.²⁵ Thus, the regiochemistry of ring opening of an adduct 12 in which the substituents R¹ and R² were located on the carbon-carbon double bond would be expected to be different from that of comparably substituted 13. Hence, we reasoned that the orientation of R¹ and R² on 13 would be expected to play a significant role in determining whether 14 or 15 was formed preferentially. In the context of the eventual application of this chemistry to the synthesis of vineomycinone B₂ methyl ester, it appeared likely that the substitution pattern (e.g., on 4) would lead to the preferential formation of the anthrarufin core.

We thus first set to the task of determining what kinds of substrates of the general type 11 would undergo efficient tandem benzyne-furan cycloadditions. Namely, what haloarene would best serve as a bis-benzyne precursor and what was the optimal length of the silicon tether. Toward addressing these questions, we first prepared 17 and 18 by coupling dicholorohydroquinone (20)²⁶ and 2,3,5,6-tetrabromohydroquinone (21) with furan 16 using K₂CO₃ and tetra*n*-butylammonium iodide (TBAI) in DMF at 90 °C (Scheme 3). Although we had previously found that acetone was a good solvent for related alkylations, 16c its use in these reactions provided only small quantities of the alkylated phenols. It is worth noting that the use of acetone as the solvent, which was successful for the alkylation of 2,6-dichoro-4methoxyphenol with alkyl bromides, failed to provide the coupling products. The methyl group on the furan rings in 17 and 18 would obviate any possible side reactions associated with deprotonation of the furan ring during the benzyne generating step(s). When 17 was treated with 2 equiv of either s-BuLi or n-BuLi at low temperatures in accord with our prior work, 16 only trace amounts at best of the cycloadduct 19 were isolated, despite considerable experimentation. Reaction of 18 with *n*-BuLi in Et₂O also produced a complex mixture, but 19 could be reliably isolated in about 5–10% yield. However, all attempts to increase the yield by varying solvent (THF, toluene), temperature (0 °C to room temperature), or by using additives (TMEDA) were fruitless.

These failures naturally led us to query the origin of our unexpected difficulties. Examination of models of **19** suggested that it might be highly strained, so we decided to explore the potential of silicon tethers containing two methylene groups. Toward this objective, we used methods previously developed in our laboratories to convert 2-methylfuran (**22**) into **24**. ^{16c} Namely, lithiation of **22** followed by reaction with commercially available chlorodimethylvinylsilane gave **23**, which was hydroborated employing 9-BBN

Scheme 3. Probing the feasibility of one-carbon silicon tethers.

and oxidized (NaOH, H₂O₂) to afford **24** in 72% yield over two steps (Scheme 4).²⁷ We found in ancillary studies that derivatives of **20** did not serve effectively as precursors of bis-benzynes, so we focused on alkylated tetrabromohydroquinones. Accordingly, **24** was coupled with **21** by a double Mitsunobu reaction using diisopropylazodicarboxylate and triphenylphosphine to give **25** in 78% yield. After some experimentation, we discovered that when **25** was treated with a slight excess of *n*-BuLi in Et₂O (0.02 M) at room temperature the bis-cycloadduct **26** could be isolated as a mixture of diastereomers in 68% yield. To our knowledge, this constituted the first example of a tandem intramolecular benzyne–furan Diels–Alder reaction.

Scheme 4. Probing the feasibility of two-carbon silicon tethers.

With the cycloadduct 26 in hand, it remained to explore tactics for its elaboration into an anthraquinone. We initially

hoped to remove the β-dimethylsilylethyl tethers in cycloadduct 26 to afford the hydroquinone 31 (Scheme 5). However, treatment of **26** in THF with excess tetra-*n*-butylammonium fluoride (TBAF) provided a mixture of diastereomeric phenols 27, arising from removal of only one β-dimethylsilylethyl tether from 26. When the reaction was run in DMF, diastereomeric phenols 28 were isolated, even when the solution was warmed. We were thus unable to effect complete removal of the silicon tethers in a single step. We did find that exposure of 28 to acid led to anthrarufin 29, presumably by the facile oxidation of the intermediate anthrol, and we developed a simple two-step procedure for converting 26 into 29 in up to 50% yield. Because this procedure was somewhat irreproducible, we turned to an alternative tactic to cleave bridgehead silicon-carbon bonds using KOH or KO-t-Bu in DMSO that was reported by Rickborn. 28 Indeed, we found that under the Rickborn conditions 26 underwent desilylation to give 30, but the reaction was relatively slow and was accompanied by some decomposition. After extensive screening of various combinations of bases (KOH, NaOH, K₂CO₃) and solvents (DMSO, DMF, water), we developed a modification of the Rickborn protocol and discovered that the use of KOH in DMF/H₂O (10:1) was faster and more effective and provided 30 in 79% yield. Subsequent ring opening of 30 with HCl in ethanol and aerial oxidation delivered 29 in 73% yield. We had thus established the viability of our entry to anthrarufins by a procedure that featured tandem intramolecular benzyne-furan cycloadditions.

Because the furan rings in intermediates related to 5 lack substitution at the 5-position, we decided to conduct one more model study to ascertain whether an acidic proton on the furan might compromise the efficiency of the key tandem intramolecular benzyne–furan Diels–Alder reactions. In the event, furan (32) was converted into 35 in three steps and 65% overall yield following the same procedure used to prepare 25 (Scheme 6). Gratifyingly, the tandem benzyne–furan cycloadditions were then induced by treating 35 with excess n-BuLi (2.6 equiv) in Et₂O (0.02 M) at -20 °C to afford 36 in 50% yield, thereby establishing that acidic protons at the 5-position of the furan are compatible with the sequence.

Scheme 5. Synthesis of a simple anthrarufin.

The conversion of **26** into **29** was accomplished by tether cleavage, followed by acid-catalyzed rearrangement of the oxabicycloheptadienes and oxidation. We queried whether the alternate sequence of rearrangement, followed by tether cleavage and oxidation might also be a viable protocol for

Scheme 6. Alternate route to a simple anthrarufin.

generating anthrarufins. After screening several conditions and acids (TMSOTf, 2,6-lutidine, CH₂Cl₂; CF₃CO₂H, CH₂Cl₂), we discovered that ZnCl₂ was an effective catalyst for converting **36** into **37**. Because **37** was unstable, it was methylated to give **38**. We anticipated that fluoride would induce the cleavage of all silicon–carbon bonds in **38**, but were disappointed to find that treatment of **38** with excess TBAF at 70 °C, followed by oxidation gave **39** in only 22% yield. On the other hand, reaction of **38** with boron trifluoride–acetic acid complex and chloroacetic acid in hexanes at room temperature gave **39** in 57% yield; ³⁰ yields were lower when ether or EtOAc was used as solvent.

In summary, we had convincingly demonstrated the feasibility of conducting tandem intramolecular double benzyne—furan cycloadditions of substrates in which the hydroquinone and furan moieties of the precursor were linked using silicon tethers containing two carbon atoms. The cycloadducts thus obtained could be converted into anthrarufins by two protocols that varied with respect to the ordering of the steps involving tether cleavage and ring opening of the oxabenzonorbornene rings. Based upon these advances, we turned to the more challenging task of the total synthesis of vineomycinone B₂ methyl ester (3) according to the plan outlined in Scheme 1.

3. Total synthesis of vineomycinone B_2 methyl ester

The first phase of the synthesis of vineomycinone B_2 methyl ester (3) was initiated by the preparation of substituted furans related to 6 and 8. Because we had prepared similar compounds in other work, the basic chemistry had been

established. The basic problem, as in many efforts in total synthesis of complex natural products, was one of selecting the proper protecting groups. Inasmuch as our plan involved a global removal of all hydroxyl protecting groups as the final step in the synthesis, we envisioned that benzyl ethers would be well suited to the task. The glycosyl furan 46 thus emerged as an initial subgoal. The synthesis of 46, which closely followed our previous work, 16 commenced with the addition of 3-lithiofuran to the known lactone 4016c to afford a mixture of lactols 41, which were in equilibrium with the open chain keto-alcohol 42 as evidenced by the ¹H NMR spectrum (Scheme 7). When this mixture was treated with ethanolic HCl, a mixture of ethyl acetals 43 was produced. Subsequent stereoselective reduction of 43 was induced by heating in ethanolic HCl in the presence of NaCNBH3 to afford 44 in 82% overall yield. Regioselective deprotonation of 44 followed by trapping the furyl anion thus formed with chlorodimethylvinylsilane furnished the vinylsilane 45, hydroboration and oxidation of which delivered 46 in 66% yield over two steps.

Scheme 7. Synthesis of a glycosyl furan with disposable tether.

The next phase of the synthesis required the synthesis of a substituted furan related to 8. Toward this objective, the first task was the enantioselective preparation of the 3-substituted furan 51, which we envisaged would result from the reaction of 3-lithiofuran with the epoxide 52. We considered two possible approaches to 52. The first would rely upon a useful protocol for the enantioselective epoxidation of homoallylic alcohols using chiral vanadium catalyst that was reported by Yamamoto.³¹ Relevant to the task at hand was the observation that epoxidation of 3-methyl-3-butenol (47) under these conditions provided the corresponding epoxy alcohol in 58% yield and 84% enantiomeric excess. Alternatively, Corey expanded the scope of Sharpless asymmetric dihydroxylation to homoallylic alcohol derivatives and found that dihydroxylation of 1-(4-methoxyphenoxy)-3-methyl-3-butene 48 using (DHQD)₂PYDZ·OsO₄ as the catalyst

provided the enantiomer of 49 in 99% yield and 96% enantiomeric excess.³² Thus, for the specific problem at hand, the Sharpless asymmetric dihydroxylation appeared to be the method of choice. Accordingly, 3-methyl-3-butenol 47 was first protected as its p-methoxyphenyl (PMP) ether 48 and subjected to Sharpless asymmetric dihydroxylation conditions using AD-mix a to afford diol 49 in 93% yield over two steps (96% ee) (Scheme 8). Treatment of diol 49 with tosyl chloride and triethylamine in the presence of a catalytic amount of DMAP selectively afforded the primary tosylate **50**. In initial studies **50** was converted into **51** in two steps via cyclization to the epoxide 52 (K₂CO₃, MeOH, 89%; 3-lithiofuran, BF₃·OEt₂, THF, 89%). However, we discovered a more expeditious one-pot procedure that involved cyclization of **50** by deprotonation with *n*-BuLi followed by facile opening of the intermediate 52 formed in situ with 3-lithiofuran in the presence of BF₃·OEt₂ to provide the tertiary alcohol 51 in 84% yield.

Scheme 8. Synthesis of 3-substituted furan.

Having established a reliable method for preparing the 3-alkyl furan **51**, the next task involved selective introduction of the silicon-derived tether at the 2-position. We envisioned that selective deprotonation at the 2-position might be effected through the agency of a suitable directing group that would also serve as the protecting group for the tertiary alcohol of **51**. Indeed, we had performed related selective deprotonations in earlier work in the area. ^{16c} Because of the known ability of MOM ethers to direct deprotonations, ³³ **51** was protected accordingly to give **53** (Scheme 9). To our

Scheme 9. Attempted selective functionalization of 51.

considerable disappointment, however, sequential reaction of furan 53 with n-BuLi in Et₂O at -78 °C and then chloro-dimethylvinylsilane provided a mixture (3:2) of furans 54 and 55 in modest yield.

Although the directed deprotonation of **53** was not selective, we discovered that electrophilic bromination was. However, since protecting the tertiary alcohol in **51** as its MOM ether would not be compatible with our goal to effect a global deprotection as the final step of the synthesis, **51** was converted into **56** by O-benzylation (Scheme 10). Highly regioselective bromination of **56** was then effected by reaction with NBS to furnish **57** in 86% yield from **51**. Subjection of **57** to metal—halogen exchange and reaction of the intermediate anion with chlorodimethylvinylsilane delivered exclusively the vinylsilane **58** in 87% yield. Subsequent hydroboration and oxidation of the vinyl moiety as before furnished the furan **59**.

Scheme 10. Preparing a 3-substituted furan with disposable tether.

With the requisite furans 46 and 59 in hand, it remained to assemble the appropriate precursor for tandem benzyne–furan Diels–Alder reaction. In an attempt to assemble 63 from 21, 46, and 59 without any protection steps, 59 was treated with 4 equiv of 21, triphenylphosphine, and diisopropylazodicarboxylate in THF, but a complex mixture of products was obtained from which little 60 could be isolated (Scheme 11). In order to circumvent this problem, hydroquinone 21 was monoprotected by reaction with TBSCI

Scheme 11. Setting stage for tandem benzyne-furan cycloaddition.

and imidazole in DMF to give phenol **61**. Subsequent reaction of **61** with **59** via Mitsunobu coupling furnished aryl ether **62** in 75% yield. Removal of the silyl protecting group with HF·pyridine in THF gave the phenol **60**, which was then coupled with furan **46** via a second Mitsunobu reaction to deliver **63** in 72% yield over two steps.

The stage was now appropriately set for the pivotal tandem benzyne-furan cycloaddition of 63. In our initial studies, we found that dropwise addition of 2.6 equiv of n-BuLi (0.23 M) to a solution of tetrabromide 63 in Et₂O at −20 °C afforded the desired bis-cycloadduct **64** as a mixture of diastereomers in variable and irreproducible yields ranging from 30 to 60% (Scheme 12). It became evident that these variable yields arose from traces of water remaining in the tetrabromide 63 that quenched the aryllithium intermediates. In order to ensure that there was no adventitious water to undermine the yield, 63 was dried in a Kügelrohr oven under vacuum for 2 h at 140 °C. When this dried material was treated with 3.0 equiv of n-BuLi (0.23 M) in Et₂O at -20 °C, the diastereomeric mixture of bis-cycloadducts **64** was obtained in 85% yield. The temperature at which this reaction was performed was found to be important. For example, if 63 was treated with *n*-BuLi at -78 °C or -50 °C, the yield of **64** plummeted to less than 30%, and other products, which were not characterized, were also obtained. It thus appears that the benzyne must be generated at a temperature where the cycloaddition is sufficiently rapid as to avoid deleterious side reactions of the intermediate benzynes.²⁴

The tricky task of cleaving the silicon tethers and opening the two oxabicvcloheptadiene rings to unveil the anthrarufin core was now at hand. As we had observed in our model studies with 26, complete removal of the tethers from 64 with various fluoride sources (e.g., TBAF, TBAT, CsF, HF·Py) in different solvents (e.g., DMF, THF, dichloromethane, DMSO) at several temperatures (e.g., room temperature, 45 °C, 60 °C, 80 °C) was problematic. When these mixtures were then treated with various acids (e.g., TFA, TMSOTf, and BF₃·Et₂O) in several solvents (e.g., THF, dichloromethane, toluene) to complete the removal of the tether and open the oxabicycloheptadienes, complex mixtures containing isomeric anthraquinones and other unidentified compounds were obtained. Inspection of the ¹H NMR spectra of these mixtures revealed some signals that might arise from the desired product 67, but these were minor. However, we again found that the modified Rickborn conditions that we had developed for converting 26 into 29 were also best suited for cleaving the silyl tethers as the first step in transforming 64 into 65. In the event, reaction of 64 with KOH in DMF/H₂O (10:1) proceeded cleanly to provide a mixture of diastereomers 65.

Optimizing the acid-catalyzed reaction to open the oxabicycloheptadienes present in **65** also required some experimentation. A quick survey of various Lewis acids (e.g., ZnCl₂, BF₃·Et₂O, and TiCl₄) revealed that they were not very effective in promoting the desired ring opening of **65** leading to **67**. A more promising result was obtained upon stirring **65** with TFA in CH₂Cl₂ to give a complex mixture from which **67** could be isolated in about 7–20% yield. However, when **65** was heated in ethanolic HCl under carefully defined conditions the desired anthrarufin **67** was

Scheme 12. Construction of substituted anthrarufin core of 3.

reproducibly isolated in 34% overall yield, likely via aerial oxidation of **66** or a related intermediate. The inseparable mixture of several other products was also obtained, and although these compounds could not be fully characterized, an analysis of the H NMR spectrum of the mixture suggested that some of these were isomers of **67**. That **67** possessed the requisite substitution pattern on the anthrarufin core was supported by its H NMR spectrum. Namely, the *ortho* relationship of the phenolic hydroxyl groups and the carbohydrate and alkyl substituents on the two rings was evident from the appearance of four doublets (J=7.9 Hz) at 7.90–7.71 ppm. The downfield chemical shift of the phenolic protons, which appeared as two singlets at 13.1 and 13.2 ppm, is in accord with their being hydrogen bonded to the adjacent carbonyl groups.

Completing the synthesis of vineomycinone B₂ methyl ester (3) required adjusting the oxidation level of the aliphatic side chain to a carboxylic acid, followed by global deprotection that proceeded largely in accord with our original plan. Namely, the PMP group was first cleaved from 67 under oxidative conditions with CAN (20:1 acetonitrile/H₂O, -15 °C) to give alcohol 68 in 74% yield (Scheme 13). Use of other typical solvent systems (e.g., 1:1 CH₂Cl₂/H₂O, 4:1 acetonitrile/H₂O, and 3:1:1 acetonitrile/pyridine/H₂O) gave lower yields of product. Although we found that oxidation of the primary alcohol function in 68 to give the acid 69 could be achieved in one step using PDC in DMF, the yields were modest. On the other hand, treatment of 68 with IBX followed by oxidation of the intermediate aldehyde with NaClO₂ gave 69 cleanly in 70% overall yield.

Scheme 13. Completion of the total synthesis of 3.

Although reaction of 69 with methanolic hydrogen chloride gave the methyl ester 70 in 74% yield, we were unable to cleanly remove all of the benzyl protecting groups by hydrogenolysis with either 10% Pd/C or 10% Pd(OH)₂/C at pressures up to 9 atm. On the other hand, reaction of 70 with BBr₃ in dichloromethane at -78 °C quickly cleaved all of the benzyl groups and furnished vineomycinone B2 methyl ester (3) in 77% yield. Alternatively, we developed a onestep procedure for converting 69 into 3 that involved global deprotection of all of the O-benzyl groups using BBr₃ followed by work-up with methanolic hydrogen chloride to deliver synthetic vineomycinone B2 methyl ester (3) in 71% yield. The synthetic 3 thus obtained gave ¹H and ¹³C NMR spectra identical to those of an authentic sample kindly provided by Professor Tius, and it exhibited an optical rotation and melting point identical to those reported in the literature. 14d

4. Conclusion

We have demonstrated the feasibility of performing tandem benzyne–furan intramolecular Diels–Alder cycloadditions using compounds in which the benzyne precursor and the reactant furans were linked with silicon tethers containing two methylene groups. The bisoxabenzonorbornadienes thus obtained can be converted into substituted anthraquinones by two different tactics that differed in the order of tether cleavage and acid-catalyzed opening of the two oxabicycloheptadienes. The practical utility of such constructions was then established by their incorporation as a key step in a novel and highly convergent synthesis of vineomycinone B₂ methyl ester (3) via a process that required a longest linear sequence of 16 steps and proceeded with 2.9% overall yield in the longest linear sequence. This synthesis thus represents the first application of our general procedure for the regioselective synthesis of C-aryl glycosides using silicon tethers as disposable linkers to control the regiochemistry in Diels-Alder reactions of substituted benzynes and furans. Other applications of this strategy for the rapid assembly of the glycosyl-substituted aromatic cores found in complex C-aryl glycoside antibiotics are in progress and will be reported in due course.

5. Experimental

5.1. General

Tetrahydrofuran, dimethylformamide, acetonitrile, and toluene were dried according to the procedure described by Grubbs.³⁶ All solvents were determined to contain less than 50 ppm H₂O by Karl Fischer coulometric moisture analysis. Triethylamine was distilled from calcium hydride prior to use. Reactions involving air or moisture sensitive reagents or intermediates were performed under an inert atmosphere of nitrogen or argon in glassware that was flame dried. Thin layer chromatography was run on pre-coated silica gel plates with a 0.25 mm thickness containing 60 F₂₅₄ indicator (Merck), and the plates were visualized by staining with AMCAN (ammonium molybdate/cerium ammonium nitrate), potassium permanganate, or p-anisaldehyde. Flash chromatography was performed using the indicated solvent system on 230-400 mesh silica gel (E. Merck reagent silica gel 60) according to Still's protocol.³⁷ Melting points are uncorrected. Infrared (IR) spectra were obtained as solutions in the solvent indicated. Proton nuclear magnetic resonance spectra (¹H NMR) were obtained in CDCl₃ solutions, and chemical shifts are reported in parts per million (ppm) referenced to the solvent. Coupling constants (*J*) are reported in hertz and the splitting abbreviations used are: s, singlet; d, doublet; t, triplet; app t, apparent triplet; q, quartet; m, multiplet; comp, complex multiplet; br, broad. Carbon nuclear magnetic resonance spectra (13C NMR) were obtained using CDCl₃ as the internal reference.

5.2. Model studies of benzyne-furan cycloadditions leading to anthrarufins

5.2.1. Bromomethyldimethyl-(5-methyl-furan-2-yl)-silane (16). n-BuLi (6.6 mL of a 1.5 M solution in hexanes, 10.0 mmol) was added dropwise to a solution of 2-methyl-furan 22 (0.82 g, 10.0 mmol) in THF (20 mL) at 0 °C, and the reaction was stirred for 1 h. (Bromomethyl)chlorodimethylsilane (1.5 mL, 11.0 mmol) was added dropwise over 3 min and stirring continued for 30 min. The mixture was diluted with Et₂O (30 mL) and poured onto a mixture of H₂O (15 mL) and brine (15 mL). The organic layer was separated, dried (MgSO₄), and concentrated. The resulting oil

was purified by flash chromatography eluting with pentane to provide 1.98 g (85%) of silane **16** as a colorless oil. 1 H NMR (400 MHz) δ 6.61 (d, J=2.8 Hz, 1H), 5.96 (dt, J=2.8, 0.8 Hz, 1H), 2.60 (s, 2H), 2.31 (d, J=0.8 Hz, 3H), 0.37 (s, 6H); 13 C NMR (100 MHz) δ 157.3, 154.4, 122.5, 105.9, 16.1, 13.7, -4.3; IR (neat) 2961, 2924, 1593, 1494, 1384, 1252, 1215, 1188, 1018, 812 cm $^{-1}$; mass spectrum (CI) m/z 233.0009 [C₈H₁₄OSiBr (M+1) requires 232.9997], 225 (base).

5.2.2. Dimethyl(5-methylfuran-2-yl)vinylsilane (23). n-BuLi (7.0 mL of a 2.6 M solution in hexanes, 18.2 mmol) was added dropwise to a solution of 2-methylfuran 22 (1.50 g, 18.3 mmol) in THF (8 mL) at 0 °C, and the reaction was stirred for 1 h. Chlorodimethylvinylsilane (7.64 mL, 55.3 mmol) was added dropwise over 3 min and stirring continued for 15 min. The mixture was diluted with Et₂O (30 mL) and poured onto a mixture of H₂O (15 mL) and brine (15 mL). The organic layer was separated, dried (MgSO₄), and concentrated to a volume of 6 mL. The resulting red oil was purified by distillation at atmospheric pressure to provide 2.30 g (76%) of vinylsilane 23 as a colorless oil. ¹H NMR (250 MHz) δ 6.54 (d, J=3.0 Hz, 1H), 6.24 (dd, J=19.8, 14.7 Hz, 1H), 6.02 (dd, J=14.7, 4.1 Hz,1H), 5.95 (d, J=3.0 Hz, 1H), 5.77 (dd, J=19.8, 4.1 Hz, 1H), 2.32 (s, 3H), 0.32 (s, 6H); ¹³C NMR (62.5 MHz) δ 156.9, 156.4, 136.9, 133.0, 121.7, 105.7, 13.7, -3.3; IR (NaCl) 3050, 2960, 1493, 1250 cm⁻¹; mass spectrum (CI) m/z 167.0888 [C₉H₁₅OSi (M+1) requires 167.0892], 167 (base), 151.

5.2.3. 2-[Dimethyl-(5-methylfuran-2-yl)silanyl]ethanol (24). The vinylsilane 23 (2.30 g, 13.8 mmol) was added to a solution of 9-BBN (2.53 g, 20.7 mmol) in THF (42 mL) and stirred for 5 h at ambient temperature. The reaction was cooled to 0 °C and 3 N NaOH (8.2 mL) and 30% H₂O₂ (8.2 mL) were added sequentially. The mixture was stirred for 30 min at 0 °C, the organic layer was separated, and the aqueous layer was extracted with Et₂O (2× 20 mL). The combined organics were dried (Na₂SO₄), concentrated, and the crude product was purified by flash chromatography eluting with hexanes/EtOAc (4:1) to provide 2.42 g (95%) of alcohol 24 as a colorless oil. ¹H NMR (250 MHz) δ 6.54 (d, J=3.1 Hz, 1H), 5.95 (d, J=3.1 Hz, 1H), 3.82–3.72 (comp, 2H), 2.32 (s, 3H), 1.50 (br, 1H), 1.22–1.12 (comp, 2H), 0.26 (s, 6H); ¹³C NMR (62.5 MHz) δ 156.8, 156.7, 121.4, 105.7, 59.8, 20.7, 13.6, -3.0; IR (NaCl) 3434, 2956, 1495, 1035 cm⁻¹; mass spectrum (CI) m/z 184.0923 [C₉H₁₆O₂Si requires 184.0920], 184 (base), 139.

5.2.4. 5-Methylfuran-2-yl-dimethyl[2-(2,3,5,6-tetrabromo-4-phenoxy)ethyl]-4-(2-dimethylsilanyl-5-methylfuran-2-yl)ethoxysilane (25). DIAD (0.16 g, 0.79 mmol) was added to a solution of tetrabromohydroquinone (0.17 g, 0.40 mmol), alcohol **24** (0.15 g, 0.81 mmol), and PPh₃ (0.21 g, 0.80 mmol) in THF (3 mL). The reaction was stirred for 3 h at room temperature and then concentrated. The residue was purified by flash chromatography on silica gel eluting with hexanes/EtOAc (50:1) to afford 0.24 g (78%) of **25** as a pale yellow oil. ¹H NMR (250 MHz) δ 6.55 (d, J=3.0 Hz, 2H), 5.96 (d, J=3.0 Hz, 2H), 4.13–4.04 (comp, 4H), 2.32 (s, 6H), 1.55–1.46 (m,

4H), 0.31 (s, 12H); 13 C NMR (62.5 MHz) δ 156.9, 156.2, 151.9, 121.7, 121.5, 105.8, 71.4, 17.6, 13.7, -2.9; IR (NaCl) 2955, 2884, 1347, 1057 cm $^{-1}$; mass spectrum (CI) m/z 752.8322 [C₂₄H₂₉Br₄O₄Si₂ (M-1) requires 752.8338], 731, 621 (base).

5.2.5. Cycloadduct 26. n-BuLi (1.1 mL of a 2.6 M solution in hexanes, 2.8 mmol) was added dropwise at 1.0 mL/h to a solution of **25** (0.91 g, 1.20 mmol) in Et₂O (240 mL) at room temperature. After the addition was complete, the reaction mixture was washed with H₂O (20 mL), dried (MgSO₄). and concentrated. The residue was purified by flash chromatography on silica gel eluting with hexanes/EtOAc (9:1 to 4:1) to provide 0.36 g (68%) of cycloadduct 26 as a pale yellow solid; mp 172–173 °C; ${}^{1}H$ NMR (500 MHz) δ 7.00 (d, J=5.2 Hz, 1H), 6.98 (d, J=5.2 Hz, 1H), 6.84 (d, J=5.2 Hz, 1H), 6.82 (d, J=5.2 Hz, 1H), 4.48 (ddd, J=12.0, 7.5, 2.2 Hz, 1H), 4.42 (ddd, J=12.0, 7.5, 2.2 Hz, 1H), 3.90 (dt, J=12.0, 4.0 Hz, 1H), 3.76 (dd, J=12.5, 4.0 Hz, 1H), 1.97 (s, 3H), 1.95 (s, 3H), 1.56-1.44 (m, 2H), 1.10-1.03 (m, 2H), 0.34 (s, 3H), 0.31 (s, 3H), 0.24 (s, 3H), 0.23 (s, 3H); ¹³C NMR (125 MHz) δ 146.9, 146.6, 146.5, 146.3, 146.1, 145.2, 144.8, 144.4, 141.5, 140.6, 91.6, 91.4, 85.0, 84.7, 72.3, 71.5, 17.0, 16.9, 16.7, 16.6, -3.4, -4.0, -4.1, -4.2;IR (neat) 2934, 1477, 1448, 1365, 1248, 1108, 1040 cm⁻¹; mass spectrum (CI) m/z 438.1677 [C₂₄H₃₀O₄Si₂ requires 438.1683], 339 (base).

5.2.6. Cycloadduct **30.** Potassium hydroxide (two pellets) and H₂O (0.3 mL) were added to a solution of cycloadduct **26** (80 mg, 0.18 mmol) in DMF (3 mL), and the mixture was stirred for 2 h at room temperature. The mixture was diluted with 50% Et₂O/hexanes (50 mL) and washed with brine $(5 \times 5 \text{ mL})$. The organic layer was dried (Na_2SO_4) and concentrated under reduced pressure. The residue was purified by chromatography on silica gel eluting with hexanes/EtOAc (1:2) to afford 68 mg (79%) of 30 as a yellowish oil. ¹H NMR (400 MHz) δ 7.02–6.96 (m, 2H), 6.81 (d, J=5.6 Hz, 2H), 5.69 (dd, J=4.0, 2.0 Hz, 2H), 4.05–3.96 (m, 4H), 1.96 (s, 7H, 2CH₃ and OH), 1.62–1.57 (br, 1H, OH), 1.25–1.12 (m, 4H), 0.20 (s, 12H); ¹³C NMR $(125 \text{ MHz}) \delta 146.6, 146.4, 144.1, 144.0, 143.5, 143.3,$ 142.7, 142.7, 142.1, 141.9, 90.1, 80.2, 80.2, 72.0, 71.6, 19.8, 19.8, 16.9, 16.9, 0.3, 0.3; IR (neat) 3388, 2915, 2853, 1463, 1249 cm^{-1} ; mass spectrum (CI) m/z 474.1874 $[C_{24}H_{34}O_6Si_2 \text{ requires } 474.1894].$

5.2.7. 1,5-Dihydroxy-4,8-dimethylanthraquinone (29). Cycloadduct **30** (68 mg, 0.14 mmol) in MeOH (4 mL) containing concentrated HCl (five drops) was stirred in air for 3 h at 75 °C. The reaction mixture was concentrated under reduced pressure, and the residue was purified by chromatography on silica gel eluting with hexanes/EtOAc (10:1) to afford 28 mg (73%) of **29** as a reddish solid; mp 237–238 °C; ¹H NMR (500 MHz) δ 13.40 (s, 2H), 7.43 (d, J=8.7 Hz, 2H), 7.19 (d, J=8.7 Hz, 2H), 2.72 (s, 6H); ¹³C NMR (125 MHz) δ 190.6, 161.8, 141.0, 134.1, 129.4, 124.8, 117.2, 23.5; IR (CDCl₃) 3155, 2984, 1641, 1470, 1382, 1096 cm⁻¹; mass spectrum (CI) m/z 269.0816 [C₁₆H₁₃O₄ (M+1) requires 269.0814] (base), 253.

5.2.8. 2-[(Furan-2-yl)dimethylsilanyl]ethanol (**34).** *n*-BuLi (27.0 mL of a 2.05 M solution in hexanes, 55.4 mmol) was

added dropwise to a solution of furan (8.0 mL, 110.0 mmol) in ether (160 mL) at -78 °C and stirred for 1 h. Chlorodimethylvinylsilane (7.64 mL, 55.3 mmol) was added dropwise over 3 min. The reaction was stirred at -78 °C for 15 min and then quenched with EtOH (4 mL). The mixture was diluted with Et₂O (200 mL) and washed with brine (2× 80 mL). The organic layer was separated, dried (Na₂SO₄), and concentrated to provide 8.1 g (96%) of 33 as a colorless oil. A portion of 33 (1.30 g, 8.5 mmol) thus obtained was dissolved in THF (34 mL), 9-BBN (2.50 g, 20.5 mmol) was added, and the solution was stirred at ambient temperature for 12 h. The reaction was cooled to 0 °C, and 3 N NaOH (3.90 mL) and $30\% \text{ H}_2\text{O}_2$ (3.90 mL) were added. The mixture was stirred for 25 min at 0 °C, the organic layer was separated, and the aqueous layer was extracted with Et₂O (2× 20 mL). The combined organics were dried (Na₂SO₄), concentrated, and the crude product was purified by flash chromatography eluting with EtOAc/hexanes (1:3) to afford 1.13 g (76%) of alcohol **34** as a colorless oil. ¹H NMR (250 MHz) δ 7.66 (d, J=1.6 Hz, 1H), 6.65 (d, J=3.3 Hz, 1H), 6.38 (dd, J=3.3, 1.6 Hz, 1H), 3.81–3.75 (comp, 2H), 1.39 (br, 1H), 1.23–1.16 (comp, 2H), 0.29 (s, 6H); 13 C NMR (62.5 MHz) δ 158.8, 146.8, 120.2, 109.4, 59.6, 20.6, -3.1; IR (neat) 3364, 2957, 2926, 1412, 1253, 1035 cm⁻¹; mass spectrum (CI) m/z 170.0766 [C₈H₁₄O₂Si requires 170.0763], 125, 75 (base).

5.2.9. Furan-2-yl-dimethyl[2-(2,3,5,6-tetrabromo-4ethoxyphenoxy)ethyl]-4-(2-dimethylsilanylfuran-2-yl)ethoxysilane (35). Diisopropylazodicarboxylate (0.24 g, 1.19 mmol) was added to a solution of tetrabromohydroquinone (0.25 g, 0.59 mmol), alcohol **34** (0.20 g, 1.17 mmol), and triphenylphosphine (0.31 g, 1.18 mmol) in THF (6.0 mL). The reaction was stirred for 2 h at ambient temperature and then concentrated under reduced pressure. The residue was purified by flash chromatography eluting with hexanes/ EtOAc (20:1) to provide 0.38 g (89%) of **35** as a colorless oil. ¹H NMR (250 MHz) δ 7.62 (d, J=1.6 Hz, 2H), 6.64 (d, J=3.1 Hz, 2H), 6.35 (dd, J=3.1, 1.6 Hz, 2H), 4.09– 4.02 (comp, 4H), 1.53–1.46 (comp, 4H), 0.31 (s, 12H); 13 C NMR (62.5 MHz) δ 158.1, 151.9, 147.0, 121.5, 120.4, 109.4, 71.2, 17.5, -3.0; IR (neat) 2955, 1406, 1348, 1252, 1179, 1056 cm^{-1} ; mass spectrum (CI) m/z 726.8187 [C₂₂H₂₇Br₄O₄Si₂ (M+1) requires 726.8181], 667, 529 (base), 281.

5.2.10. Cycloadduct 36. A solution of *n*-BuLi (111 uL of a 1.95 M solution in hexanes, 0.22 mmol) was added dropwise to a solution of 35 (61 mg, 0.08 mmol) in Et₂O (14 mL) at room temperature. Brine (4 mL) was added, and the organic layer was separated, dried (MgSO₄), and concentrated. The residue was purified by flash chromatography eluting with hexanes/EtOAc (6:1) to afford 17 mg (50%) of cycloadduct 36 as a yellowish solid; mp 185–186 °C; ¹H NMR $(250 \text{ MHz}) \delta 7.10-7.00 \text{ (comp, 4H)}, 5.81-5.77 \text{ (comp, 2H)},$ 4.62-4.43 (comp, 2H), 3.91-3.70 (comp, 2H), 1.61-1.41 (comp, 2H), 1.17-1.07 (comp, 2H), 0.33 (s, 3H), 0.30 (s, 3H), 0.24 (s, 3H), 0.21 (s, 3H); 13 C NMR (62.5 MHz) δ 146.3, 145.1, 145.1, 144.4, 144.1, 143.2, 142.0, 141.1, 139.9, 139.2, 85.7, 85.5, 81.4, 81.2, 72.5, 71.3, 17.1, 16.9, -3.5,-4.0, -4.1, -4.1; IR (CDCl₃) 2959, 1482, 1035 cm⁻¹; mass spectrum (CI) m/z 410.1368 [C₂₂H₂₆O₄Si₂ requires 410.1370], 411 (base), 383, 355.

5.2.11. Anthracenediol (37). A solution of ZnCl₂ (2.92 mL of 1 M solution in Et₂O, 2.92 mmol) was added to a solution of **36** (571 mg, 1.39 mmol) in CH_2Cl_2 (28 mL) at -78 °C. The reaction was allowed to warm to 0 °C over 1 h, and stirring was continued for 40 min at 0 °C. The mixture was diluted with hexanes (70 mL), washed with H₂O (15 mL) and brine (15 mL), dried (MgSO₄), and concentrated. The residue was purified by flash chromatography on silica gel eluting with hexanes/EtOAc (15:1) to afford 403 mg (71%) of **37** as an orange solid; mp 170–171 °C; ¹H NMR $(300 \text{ MHz}) \delta 10.53 \text{ (s. 2H)}, 7.58 \text{ (d. } J=7.5 \text{ Hz. 2H)}, 6.84$ (d, J=7.5 Hz, 2H), 5.10-3.98 (br. 4H), 1.80-1.38 (br. 4H),0.44 (s. 12H); ¹³C NMR (62.5 MHz) δ 155.8, 152.0, 135.6, 129.5, 123.2, 117.0, 108.6, 78.3, 19.6, 3–0 (br); IR (NaCl) 3402, 2954, 2897, 1463, 1280, 1251, 1082, 1023 cm⁻¹; mass spectrum (CI) m/z 409.1284 [C₂₂H₂₅O₄Si₂ (M-1) requires 409.1291], 397 (base), 367.

5.2.12. Anthracenediol dimethyl ether (38). Sodium hydride (235 mg of a 60% suspension in mineral oil, 5.88 mmol) was added to a solution of 37 (403 mg, 0.98 mmol) and CH₃I (2.90 g, 20.4 mmol) in DMF (20 mL) at 0 °C. The reaction was allowed to warm to room temperature over 20 min and stirred for 40 min. H₂O (2 mL) and Et₂O (100 mL) were added, and the mixture was washed with brine $(4 \times 15 \text{ mL})$, dried $(MgSO_4)$, and concentrated. The residue was purified by flash chromatography on silica gel eluting with hexanes/EtOAc (15:1) to afford 400 mg (93%) of **38** as a light orange solid; mp 153-154 °C; ¹H NMR (300 MHz) δ 7.57 (d, J=7.5 Hz, 2H), 6.75 (d, J=7.5 Hz, 2H), 5.00-4.60 (br, 2H), 4.40-4.00 (br, 2H), 4.01 (s, 6H), 1.70–1.30 (br. 4H), 0.41 (s, 12H); ¹³C NMR (75 MHz) δ 157.3, 150.9, 133.7, 133.5, 127.9, 118.9, 103.9, 74.6, 56.2, 19.5, 2-(-1) (br); IR (NaCl) 2955, 2896, 1384, 1331, 1073 cm $^{-1}$; mass spectrum (CI) m/z438.1686 [C₂₄H₃₀O₄Si₂ requires 438.1683], 411 (base), 395, 382.

5.2.13. 1,5-Dimethoxyanthra-9,10-quinone (**39**). BF₃·2AcOH (17 mg, 0.09 mmol) was added to a solution of **38** (10 mg, 0.02 mmol) and ClCH₂CO₂H (8.6 mg, 0.09 mmol) in hexane (0.5 mL). The reaction was stirred for 40 min at room temperature, whereupon EtOAc (7 mL) was added. The mixture was washed with brine (3×1 mL), dried (MgSO₄), and concentrated. The residue was purified by flash chromatography on silica gel eluting with CHCl₃ to afford 3.5 mg (57%) of **39** as a yellowish solid (mp 234–235 °C; lit.³⁸ mp 234–235 °C) whose ¹H and ¹³C NMR spectral data were consistent with those reported.³⁸

5.3. Synthesis of vineomycinone B₂ methyl ester

5.3.1. 3(R),4(R)-Bisbenzyloxy-6(R)-furan-3-yl-2(R)-methyltetrahydropyran (44). A solution of 3-bromofuran (0.20 g, 1.36 mmol) in THF (9 mL) was cooled to -78 °C and n-BuLi (0.57 mL of a 2.4 M solution in hexanes, 1.36 mmol) was added dropwise. The reaction was stirred for 10 min, and a solution of lactone 40^{16c} (0.41 g, 1.25 mmol) in THF (3 mL) was added dropwise over 3 min. The reaction was stirred for an additional 30 min and then poured onto saturated NaHCO₃ (2 mL). The mixture was diluted with H₂O (20 mL) and extracted with EtOAc (30 mL). The organics were dried (MgSO₄) and

concentrated to a colorless oil. The oil was dissolved in EtOH (5 mL) and one drop of HCl in EtOH (prepared from 0.4 mL of AcCl and 5 mL of EtOH) was added. The mixture was stirred for 10 min and then poured onto saturated NaHCO₃ (20 mL) layered with EtOAc (20 mL). The organic layer was separated, dried (MgSO₄), and concentrated to an oil, which solidified upon standing to a colorless solid. The solid was dissolved in EtOH (13 mL) and heated to 50 °C. Bromocresol green (1 mg) was added followed by NaCNBH₃ (0.71 g, 11.3 mmol). A solution of HCl in EtOH (prepared from 0.4 mL of AcCl and 5 mL of EtOH) was added dropwise until no acetal remained (~2 mL) as determined by TLC (10% EtOAc/hexanes). The solution was cooled and poured onto saturated NaHCO3 (20 mL) and water (20 mL) and extracted with EtOAc (30 mL). The organics were dried (MgSO₄), concentrated, and the resulting residue was purified by flash chromatography on silica gel eluting with hexanes/EtOAc (9:1) to afford 0.39 g (82%) of glycosyl furan 44 as a colorless oil that was identical in all respects to that reported.³⁹ ¹H NMR (250 MHz) δ 7.41–7.25 (comp, 12H), 6.42 (dd, J=1.6, 0.7 Hz, 1H), $5.00 \text{ (d, } J=10.8 \text{ Hz, } 1\text{H), } 4.74 \text{ (d, } J=11.6 \text{ Hz, } 1\text{H), } 4.70 \text{ (d, } J=11.6 \text{ Hz, } 1\text{H}), } 4.70 \text{ (d, } J=11.6 \text{ Hz, } 1\text{H), } 4.70 \text{ (d, } J$ J=10.8 Hz, 1H), 4.66 (d, J=11.6 Hz, 1H), 4.38 (dd, J=11.7, 2.0 Hz, 1H), 3.74 (ddd, J=11.4, 8.7, 5.0 Hz, 1H), 3.49 (dq, J=9.3, 6.2 Hz, 1H), 3.20 (dd, J=9.3, 8.7 Hz,1H), 2.37 (ddd, J=12.8, 5.0, 2.0 Hz, 1H), 1.78 (ddd, J=12.8, 11.7, 11.4 Hz, 1H), 1.36 (d, J=6.2 Hz, 3H); ¹³C NMR (75 MHz) δ 143.1, 139.2, 138.5, 128.4, 128.4, 128.4, 128.0, 127.7, 127.6, 127.6, 126.1, 108.8, 84.0, 80.6, 75.6, 75.3, 71.5, 70.0, 37.6, 18.5; IR (neat) 3063, 2973, 2922, 2863, 1952, 1875, 1810, 1604, 1498, 1454, 1364, 1300, 1208, 1162, 1113, 1027, 996 cm⁻¹; mass spectrum (CI) m/z 379.1916 [C₂₄H₂₇O₄ (M+1) requires 379.1909].

5.3.2. (2R,4R,5R,6R)-[3-(4,5-Bisbenzyloxy-6-methyltetrahydropyran-2-yl)furan-2-yl]dimethylvinylsilane (45). A solution of furan 44 (0.17 g, 0.45 mmol) in THF (2.0 mL) was added to a solution of LDA (0.67 mmol) in THF (3.0 mL) at -78 °C and stirred for 3.5 h. Freshly distilled chlorodimethylvinylsilane (81 mg, 0.67 mmol) was added dropwise, and the mixture was stirred at -78 °C for 5 min. Saturated NaHCO₃ (2 mL) was added, and the mixture was extracted with EtOAc (3×5 mL). The combined extracts were dried (MgSO₄) and concentrated, and the residue was purified by flash chromatography on silica gel eluting with hexanes/EtOAc (9:1) to afford 146 mg (70%) of furan 45 as a colorless oil and 50 mg (29%) of recovered **44**. ¹H NMR (500 MHz) δ 7.53 (d, J=1.7 Hz, 1H), 7.35–7.27 (comp, 10H), 6.39 (d, J=1.7 Hz, 1H), 6.24 (dd, J=20.4, 14.6 Hz, 1H), 6.01 (dd, J=14.6, 3.6 Hz, 1H), 5.75 (dd, J=20.4, 3.6 Hz, 1H), 4.97 (d, J=10.9 Hz, 1H), 4.69 (d, J=11.6 Hz, 1H), 4.67 (d, J=10.9 Hz, 1H), 4.62 (d, J=11.6 Hz, 1H), 4.43 (dd, J=11.7, 1.9 Hz, 1H), 3.68 (ddd, J=11.3, 8.6, 5.0 Hz, 1H), 3.42 (dq, J=9.2, 6.2 Hz, 1H), 3.17 (t, J=8.9 Hz, 1H), 2.23 (ddd, J=12.9, 5.0, 2.0 Hz, 1H), 1.77 (ddd, J=12.8, 11.6, 11.6 Hz, 1H), 1.32 (d, J=6.2 Hz, 3H), 0.34 (s, 3H), 0.33 (s, 3H); ¹³C NMR (125.5 MHz) δ 154.4, 146.5, 138.6, 138.5, 136.4, 133.1, 128.4, 128.4, 128.0, 127.7, 127.7, 127.6, 108.6, 84.0, 80.9, 75.7, 75.3, 71.5, 70.4, 38.1, 18.6, -2.9, -2.9; IR (NaCl) 2924, 2861, 1498, 1454, 1366, 1114, 1080 cm^{-1} ; mass spectrum (CI) m/z 463.2297 $[C_{28}H_{35}O_4Si (M+1)$ requires 463.2304] (base).

5.3.3. $(2R,4R,5R,6R)-2-\{[3-(4,5-Bisbenzyloxy-6-methyl$ tetrahydropyran-2-yl)-furan-2-yl]-dimethylsilanyl}etha**nol** (46). 9-BBN (47 mg, 0.39 mmol) was added to a solution of vinylsilane 45 (90 mg, 0.19 mmol) in THF (1.0 mL), and the mixture was stirred at room temperature for 2 h. The reaction was cooled to 0 °C, and 3 N NaOH (0.40 mL) and 30% H₂O₂ (0.20 mL) were added sequentially. The mixture was stirred vigorously for 15 min and then extracted with Et₂O $(2\times 2 \text{ mL})$. The combined extracts were dried (MgSO₄) and concentrated. The residue was purified by flash chromatography on silica gel eluting with hexanes/ EtOAc (7:3) to afford 88 mg (94%) of alcohol 46 as a colorless oil. ¹H NMR (250 MHz) δ 7.56 (d. J=1.6 Hz, 1H), 7.40– 7.26 (comp, 10H), 6.40 (d, J=1.6 Hz, 1H), 5.01 (d, J=10.8 Hz, 1H), 4.76-4.64 (comp. 3H), 4.46 (dd, J=11.6, 1.8 Hz, 1H), 3.81–3.68 (comp, 3H), 3.53–3.44 (comp, 1H), 3.21 (t, J=8.9 Hz, 1H), 2.31 (ddd, J=12.9, 5.0, 1.9 Hz, 1H), 1.83 (q, J=11.6 Hz, 1H), 1.58 (br, 1H), 1.37 (d, $J=6.1 \text{ Hz}, 3\text{H}, 1.30-1.14 \text{ (comp, 2H)}, 0.32 \text{ (s, 6H)}; ^{13}\text{C}$ NMR (62.5 MHz) δ 155.1, 146.4, 138.5, 138.4, 136.1, 128.4, 128.3, 127.9, 127.7, 127.6, 108.6, 83.9, 80.7, 75.8, 75.3, 71.5, 70.5, 59.6, 37.9, 20.8, 18.5, -2.5, -2.5; IR (CDCl₃) 3619, 2930, 2879, 1364, 1253, 1075 cm⁻¹; mass spectrum (CI) m/z 481.2390 [C₂₈H₃₇O₅Si (M+1) requires 481.2410], 435 (base), 379.

5.3.4. (2S)-4-(4-Methoxy-phenoxy)-2-methyl-butane-1,2**diol (49).** A solution of 1-(4-methoxyphenoxy)-3-methyl-3-butene **48**³² (3 g, 15.6 mmol) in *tert*-BuOH (77 mL) was added to a solution of DHQ₂PHAL (120 mg, 0.16 mmol), $K_2OsO_2(OH)_4$ (11 mg, 0.03 mmol), $K_3Fe(CN)_6$ (15.4 g, 46.8 mmol), and K_2CO_3 (6.47 g, 46.8 mmol) in H_2O (77 mL) at 0 °C. The mixture was stirred for 24 h at 0 °C, and Na₂SO₃ (2 g, 15.9 mmol) was added. The mixture was stirred for 20 min, and brine (40 mL) was added. The mixture was extracted with EtOAc/hexanes (2:1, 4×150 mL). The combined organic layers were dried (Na₂SO₄), and concentrated under reduced pressure. The residue was purified by chromatography on silica gel eluting with EtOAc to afford 3.35 g (95%) of diol 49 as a white solid (mp 57- $58 \,^{\circ}\text{C}$; lit.³² mp $57-58 \,^{\circ}\text{C}$) of 96% ee (determined by HPLC) whose ¹H and ¹³C NMR spectral data were consistent with those reported.³²

5.3.5. (2S)-Toluene-4-sulfonic acid 2-hydroxy-4-(4-methoxyphenoxy)-2-methylbutyl ester (50). A solution of p-toluenesulfonyl chloride (1.65 g, 8.65 mmol) in CH₂Cl₂ (6 mL) was added to a solution of diol 49^{32} (1.63 g, 7.3 mmol), triethylamine (1.50 mL, 10.76 mmol), and 4,4-dimethylaminopyridine (10 mg, 0.08 mmol) in CH₂Cl₂ (30 mL) at room temperature. The solution was stirred for 48 h and then washed with saturated aqueous NaHCO₃ (20 mL). The organic layer was separated, dried (MgSO₄), and concentrated. The residue was purified by flash chromatography on silica gel eluting with hexanes/EtOAc (7:3) to afford 2.46 g (90%) of tosylate **50** as a colorless oil. ¹H NMR (250 MHz) δ 7.78 (d, J=8.3 Hz, 2H), 7.34 (d, J= 8.3 Hz, 2H), 6.83–6.74 (comp, 4H), 4.04 (t, J=5.9 Hz, 2H), 3.96 (d, *J*=9.6 Hz, 1H), 3.88 (d, *J*=9.6 Hz, 1H), 3.77 (s, 3H), 2.89 (s, 1H), 2.44 (s, 3H), 1.99 (td, *J*=5.8, 2.0 Hz, 2H), 1.25 (s, 3H); ¹³C NMR (62.5 MHz) δ 154.2, 152.2, 145.0, 132.5, 129.9, 128.0, 115.4, 114.6, 75.5, 71.0, 64.9, 55.7, 36.9, 24.5, 21.6; IR (CDCl₃) 3525, 2935, 1506,

 1227 cm^{-1} ; mass spectrum (CI) m/z 380.1305 [C₁₉H₂₄O₆S requires 380.1294], 380, 209, 191 (base).

5.3.6. (2S)-1-Furan-3-vl-4-(4-methoxyphenoxy)-2-methylbutan-2-ol (51). Method A. A solution of n-BuLi (0.87 mL of a 2.5 M solution in hexanes, 2.18 mmol) was added dropwise to a solution of tosylate 50 (0.83 g, 2.18 mmol) in THF (16 mL) at -78 °C. The reaction mixture was stirred for 10 min, and a solution of 3-lithiofuran (5.45 mmol) in THF (12 mL) at -78 °C was transferred to the mixture via cannula. BF₃·Et₂O (0.60 mL, 4.74 mmol) was then added. and the reaction was stirred for 1 h. The reaction was quenched by addition of saturated NaHCO₃ (5 mL) and extracted with EtOAc (20 mL). The organic layer was washed with brine (2×15 mL), dried (MgSO₄), and concentrated. The residue was purified by flash chromatography on silica gel eluting with hexanes/EtOAc (3:1) to afford 0.50 g (84%) of furan **51** as a pale yellow oil. ¹H NMR (250 MHz) δ 7.38 (t, J=1.5 Hz, 1H), 7.31 (s, 1H), 6.90-6.80 (comp, 4H), 6.36(s, 1H), 4.15 (t, J=6.3 Hz, 2H), 3.77 (s, 3H), 2.70 (d, J=14.3 Hz, 1H), 2.63 (d, J=14.3 Hz, 1H), 2.37 (br, 1H), 2.07-1.86 (comp, 2H), 1.26 (s, 3H); ¹³C NMR (62.5 MHz) δ 154.0, 152.7, 142.7, 140.8, 120.1, 115.4, 114.7, 112.6, 71.7, 65.5, 55.7, 39.7, 38.0, 26.7; IR (CDCl₃) 3550, 2935, 1508, 1227 cm⁻¹; mass spectrum (CI) m/z 276.1368 [C₁₆H₂₀O₄ requires 276.1362], 276, 177 (base). Method B. Potassium carbonate (0.58 g, 4.20 mmol) was added to a solution of tosylate 50 (0.20 g, 0.53 mmol) in MeOH (10 mL) at room temperature. The reaction was stirred for 45 min and then poured onto Et₂O (80 mL) and water (20 mL). The organic layer was separated and washed with brine (20 mL), dried (MgSO₄), and concentrated. The residue was purified by flash chromatography on silica gel eluting with hexanes/ EtOAc (4:1) to afford 97 mg (89%) of epoxide 52 as a colorless solid; mp 51–53 °C; 1 H NMR (250 MHz) δ 6.82 (s, 4H), 4.07-3.93 (comp, 2H), 3.76 (s, 3H), 2.73 (d, J=4.9 Hz, 1H), 2.63 (d, J=4.9 Hz, 1H), 2.14–1.93 (comp, 2H), 1.40 (s, 3H); 13 C NMR (62.5 MHz) δ 153.9, 152.7, 115.4, 114.6, 64.8, 55.7, 55.2, 53.9, 36.1, 21.6; IR (CDCl₃) 2957, 1508, 1230, 1039 cm^{-1} ; mass spectrum (CI) m/z 208.1095 $[C_{12}H_{16}O_3 \text{ requires } 208.1099], 191 \text{ (base)}. A solution of$ 3-bromofuran (0.21 g, 1.43 mmol) in THF (4 mL) was cooled to -78 °C, and *n*-BuLi (0.68 mL of a 2.1 M solution, 1.43 mmol) was added dropwise. The solution was stirred for 15 min, and then a solution of epoxide 52 (0.10 g, 0.48 mmol) in THF (1.0 mL) was added dropwise. The solution was stirred for 5 min and BF₃·Et₂O (0.11 g, 0.76 mmol) was added. The solution was stirred for 1.5 h, whereupon saturated aqueous NaHCO₃ (2 mL) was added. The mixture was extracted with Et₂O (2×5 mL), and the combined organic layers were dried (MgSO₄) and concentrated. The residue was purified by flash chromatography on silica gel eluting with hexanes/EtOAc (3:1) to afford 116 mg (88%) of **51**.

5.3.7. 3-[2-Benzyloxy-4-(4-methoxyphenoxy)-2(S)-methylbutyl]furan (56). A solution of furan 51 (0.29 g, 1.05 mmol) in DMF (3 mL) was added dropwise to a suspension of KH (0.24 g of a 35% suspension, 2.09 mmol) in DMF (5 mL) at 0 °C. The mixture was stirred for 10 min, and benzyl bromide (0.27 g, 1.58 mmol) was added. After 45 min, saturated aqueous NaHCO₃ (15 mL) was added, and the mixture was extracted with Et₂O (2×20 mL). The combined organic layers were washed with brine (15 mL),

dried (MgSO₄), and concentrated under reduced pressure. The residue was purified by chromatography on silica gel eluting with hexanes/EtOAc (9:1) to afford 0.39 g (100%) of benzyl ether **56** as a pale yellow oil. ¹H NMR (500 MHz) δ 7.35–7.24 (comp, 7H), 6.84–6.78 (comp, 4H), 6.33 (dd, J=2.0, 1.0 Hz, 1H), 4.52 (s, 2H), 4.13–4.05 (m, 2H), 3.75 (s, 3H), 2.76 (s, 2H), 2.14–2.02 (m, 2H), 1.31 (s, 3H); ¹³C NMR (100 MHz) δ 153.8, 153.1, 142.4, 140.8, 139.2, 128.4, 127.2, 127.2, 120.3, 115.4, 114.7, 112.6, 76.4, 64.6, 63.6, 55.8, 37.2, 34.5, 23.5; IR (CDCl₃) 2935, 1508, 1230 cm⁻¹; mass spectrum (CI) m/z 366.1827 [C₂₃H₂₆O₄ requires 366.1831], 366, 259, 177 (base).

5.3.8. 3-[2-Benzyloxy-4-(4-methoxyphenoxy)-2(S)-methylbutvl]-2-bromofuran (57). A solution of furan 56 (0.68 g. 1.86 mmol) in DMF (37 mL) was cooled to 0 °C, and freshly recrystallized N-bromosuccinimide (0.33 g, 1.85 mmol) was added. The reaction was stirred for 1 h, and saturated aqueous NaHCO₃ (40 mL) was added. The mixture was extracted with EtOAc (3×100 mL), and the combined organic layers were dried (MgSO₄) and concentrated under reduced pressure. The residue was purified by chromatography on silica gel eluting with hexanes/EtOAc (9:1) to afford 0.72 g (86%) of **57** as a colorless oil. ¹H NMR (250 MHz) δ 7.38–7.23 (comp. 6H), 6.85-6.78 (comp. 4H), 6.42 (d, J=2.0 Hz, 1H), 4.52 (s, 2H), 4.09 (app t, J=6.9 Hz, 2H), 3.75 (s, 3H), 2.70 (s, 2H), 2.14–2.04 (m, 2H), 1.32 (s, 3H); ¹³C NMR $(62.5 \text{ MHz}) \delta 153.8, 153.0, 143.6, 139.1, 128.3, 127.3,$ 127.2, 121.9, 119.9, 115.4, 114.6, 114.5, 76.8, 64.5, 63.7, 55.7, 37.3, 34.9, 23.3; IR (NaCl) 2934, 1508, 1231, 1040 cm^{-1} ; mass spectrum (CI) m/z 444.0932 [C₂₃H₂₅O₄Br (M+1) requires 444.09361, 444, 177 (base).

5.3.9. $\{3-[2-Benzyloxy-4-(4-methoxyphenoxy)-2(S)$ methylbutyl]furan-2-yl}dimethylvinylsilane (58). A solution of bromofuran **57** (0.38 g, 0.84 mmol) in THF (13 mL) was cooled to -78 °C, and n-BuLi (0.43 mL of a 2.4 M solution, 1.03 mmol) was added dropwise. The solution was stirred for 25 min, and freshly distilled chlorodimethylvinylsilane (150 μL, 1.09 mmol) was added. The reaction was stirred for 25 min at -78 °C and then poured onto saturated NaHCO₃ (20 mL). The mixture was extracted with EtOAc $(2\times30 \text{ mL})$, and the combined organics were dried (MgSO₄) and concentrated under reduced pressure. The residue was purified by chromatography on silica gel eluting with hexanes/EtOAc (95:5) to furnish 0.34 g (88%) of vinylsilane **58** as a colorless oil. ¹H NMR (250 MHz) δ 7.54 (d, J=1.5 Hz, 1H), 7.38–7.23 (comp, 5H), 6.83–6.78 (comp, 4H), 6.43 (d, J=1.5 Hz, 1H), 6.28 (dd, J=20.0, 14.5 Hz, 1H), 6.03 (dd, J=14.5, 3.8 Hz, 1H), 5.77 (dd, J=20.0, 3.8 Hz, 1H), 4.51 (s, 2H), 4.08 (t, J=7.1 Hz, 2H), 3.75 (s, 3H), 2.87 (d, J=14.7 Hz, 1H), 2.78 (d, J=14.7 Hz, 1H), 2.20–1.99 (m, 2H), 1.26 (s, 3H), 0.36 (s, 6H); ¹³C NMR (62.5 MHz) δ 154.0, 153.7, 153.0, 146.4, 139.2, 137.2, 133.1, 131.8, 128.3, 127.3, 127.2, 115.3, 114.6, 112.5, 76.6, 64.6, 63.6, 55.7, 37.8, 34.7, 23.5, -2.7; IR (CDCl₃) 3051, 2959, 1508, 1230 cm⁻¹; mass spectrum (CI) m/z 450.2233 [C₂₇H₃₄O₄Si requires 450.2226], 451, 343 (base).

5.3.10. 2-({3-[2-Benzyloxy-4-(4-methoxyphenoxy)-2(*S*)-methylbutyl]furan-2-yl}dimethylsilanyl)ethanol (**59**). 9-BBN (0.36 g, 2.95 mmol) was added to a solution of

vinylsilane 58 (0.84 g, 1.86 mmol) in THF (9 mL) at room temperature. The reaction was stirred for 3 h and then cooled to 0 °C, whereupon 3 N NaOH (5 mL) and 30% H₂O₂ (5 mL) were added sequentially. The mixture was stirred for 30 min and then extracted with EtOAc (3×30 mL). The combined organic layers were washed with brine, dried (MgSO₄), and concentrated under reduced pressure. The residue was purified by chromatography on silica gel eluting with hexanes/EtOAc (7:3) to afford 0.84 g (96%) of alcohol **59** as a colorless oil. ¹H NMR (250 MHz) δ 7.49 (d, J=1.5 Hz, 1H), 7.34–7.22 (comp. 5H), 6.83–6.76 (comp. 4H), 6.39 (d, J=1.5 Hz, 1H), 4.49 (s, 2H), 4.07 (t, J=7.1 Hz, 2H), 3.72 (s, 3H), 3.69 (app t, J=8.2 Hz, 2H), 2.84 (d, J=14.6 Hz, 1H), 2.75 (d, J=14.6 Hz, 1H), 2.13–2.04 (m, 2H), 1.26 (s, 3H), 1.18–1.12 (m, 2H), 0.28 (s, 6H); ¹³C NMR (62.5 MHz) δ 154.4, 153.8, 153.0, 146.3, 139.2, 131.6, 128.3, 127.3, 127.2, 115.4, 114.6, 112.6, 64.6, 63.7, 59.7, 55.7, 37.9, 35.0, 23.6, 21.2, -2.1; IR (NaCl) 3417, 2953, 1504, 1230, 1039 cm⁻¹; mass spectrum (CI) m/z468.2339 [C₂₇H₃₆O₅Si requires 468.2332], 469, 423, 259 (base).

5.3.11. 2,3,5,6-Tetrabromo-4-(*tert*-butyl-dimethylsilanyloxy)-1-phenol (61). Imidazole (0.19 g, 2.79 mmol) and TBSCl (0.17 g, 1.13 mmol) were added to a solution of **21** (0.6 g, 1.41 mmol) in DMF (1 mL) at room temperature. After stirring for 50 min, the mixture was loaded onto column and purified by chromatography on silica gel eluting with hexanes/EtOAc (9:1) to furnish 274 mg (35%) of phenol **61** as a yellowish oil. ¹H NMR (400 MHz) δ 5.85 (s, 1H, OH), 1.02 (s, 9H), 0.32 (s, 6H); ¹³C NMR (100 MHz) δ 145.9, 145.8, 118.3, 112.4, 26.2, 19.0, -1.8; IR (CDCl₃) 3493, 2929, 2857, 1652, 1424, 1364, 1258, 1179 cm⁻¹; mass spectrum (CI) m/z 536.7726 [C₁₂H₁₇O₂Br₄Si (M+1) requires 536.7731], 483 (base), 404.

5.3.12. 3-[2-Benzyloxy-4-(4-methoxyphenyl)-2(*S*)-methylbutyl]-2-(dimethyl-{2-[2,3,5,6-tetrabromo-4-(tert-butyldimethylsilanyloxy)phenoxy]ethyl}silanyl)furan (62). DIAD (9.1 mg, 0.05 mmol) was added to a solution of phenol 61 (24 mg, 0.04 mmol), alcohol 59 (21 mg, 0.05 mmol), and PPh₃ (11.8 mg, 0.05 mmol) in THF (0.5 mL), and the solution was stirred for 3 h at room temperature. The reaction mixture was concentrated under reduced pressure, and the residue was purified by chromatography on silica gel eluting with hexanes/EtOAc (95:5) to furnish 33 mg (75%) of 62 as a colorless oil. ¹H NMR (400 MHz) δ 7.52 (d, J=1.2 Hz, 1H), 7.35–7.24 (comp, 5H), 6.83–6.77 (comp, 4H), 6.42 (d, J=1.6 Hz, 1H), 4.52 (s, 2H), 4.10 (t, J=6.8 Hz, 2H), 4.05 (t, J=6.8 Hz, 2H), 3.75 (s, 3H), 2.88 (d, J=14.8 Hz, 1H), 2.80 (d, J=14.8 Hz, 1H), 2.19–2.03 (comp, 2H), 1.54 (app t, J=8.4 Hz, 2H), 1.30 (s, 3H), 1.04 (s, 9H), 0.36 (s, 3H), 0.36 (s, 3H), 0.35 (s, 3H), 0.34 (s, 3H); 13 C NMR (100 MHz) δ 153.8, 153.5, 152.8, 149.4, 148.6, 146.3, 139.0, 131.7, 128.2, 127.1, 127.1, 121.3, 118.4, 115.2, 114.5, 112.4, 76.5, 71.1, 64.6, 63.7, 55.8, 37.9, 35.1, 26.3, 23.8, 19.1, 18.1, -1.5, -1.6,-1.8; IR (CDCl₃) 2930, 1508, 1419, 1368, 1252, 1230, 1041 cm⁻¹; mass spectrum (CI) m/z 985.9865 [C₃₉H₅₀O₆Br₄Si₂ requires 985.9879], 597, 483, 403 (base).

5.3.13. 4-[2-({3-[2-Benzyloxy-4-(4-methoxyphenoxy)-2(S)-methylbutyl]furan-2-yl}dimethylsilanyl)ethoxy]-

2,3,5,6-tetrabromophenol (60). HF·pyridine (0.2 mL, 65– 70%) was added to a solution of silyl ether **62** (0.32 g, 0.32 mmol) in THF (4.5 mL) at 0 °C in a Teflon vial. The reaction was stirred for 1 h and then poured into a mixture of saturated NaHCO₃ (10 mL) and EtOAc (15 mL). The organic layer was separated, washed with brine (10 mL), dried (MgSO₄), and concentrated. The residue was purified by flash chromatography on silica gel eluting with hexanes/ EtOAc (4:1) to afford 0.25 g (89%) of phenol 60 as a colorless oil. ¹H NMR (400 MHz) δ 7.53 (d, J=2.0 Hz, 1H), 7.36– 7.25 (m, 5H), 6.84–6.78 (comp. 4H), 6.43 (d, J=2.0 Hz, 1H), 5.98 (s, 1H), 4.52 (s, 2H), 4.10 (t, J=7.0 Hz, 2H), 4.08–4.02 (m, 2H), 3.76 (s, 3H), 2.88 (d, J=14.4 Hz, 1H), 2.80 (d, J=14.4 Hz, 1H), 2.19–2.05 (m, 2H), 1.53–1.50 (m, 2H), 1.30 (s, 3H), 0.36 (s, 3H), 0.35 (s, 3H); ¹³C NMR (100 MHz) δ 153.9, 153.7, 153.0, 148.9, 148.0, 146.5, 112.6, 112.3, 76.5, 71.4, 64.5, 63.6, 55.7, 37.8, 35.0, 23.6, 18.0, -2.0; IR (CDCl₃) 3490, 2956, 1508, 1363, 1230, 1040 cm^{-1} ; mass spectrum (CI) m/z 871.9028 [C₃₃H₃₆O₆Br₄Si requires 871.9015], 876, 741, 483, 423 (base).

benzyloxy-4-(4-methoxyphenoxy)-2(S)-methylbutyl]furan-2-vl}dimethylsilanyl)ethoxy]-2,3,5,6-tetrabromophenoxyethyl)dimethylsilanylfuran-3-yl-2(R)-methyltetrahydropyran (63). DIAD (65 mg, 0.32 mmol) was added to a solution of phenol 60 (230 mg, 0.26 mmol), alcohol **46** (140 mg, 0.29 mmol), and PPh₃ (84 mg, 0.32 mmol) in THF (10 mL) and the reaction was stirred for 4 h at room temperature. The mixture was concentrated under reduced pressure and the residue was purified by chromatography on silica gel eluting with hexanes/EtOAc/Et₃N (93:5:2) to furnish 299 mg (85%) of aryl ether 63 as a colorless oil. ¹H NMR (400 MHz) δ 7.55 (d, J=1.6 Hz, 1H), 7.53 (d, J=1.6 Hz, 1H, 7.39-7.24 (m, 15H), 6.84-6.80 (comp,4H), 6.44 (d, *J*=2.0 Hz, 1H), 6.38 (d, *J*=2.0 Hz, 1H), 4.99 (d, J=10.8 Hz, 1H), 4.72 (d, J=11.6 Hz, 1H), 4.69 (d, J=10.8 Hz, 1H), 4.66 (d, J=11.6 Hz, 1H), 4.53 (s, 2H), 4.46 (dd, J=11.6, 2.0 Hz, 1H), 4.15-4.04 (comp, 6H), 3.76(s, 3H), 3.75–3.70 (m, 1H), 3.52–3.45 (m, 1H), 3.20 (t, J=8.8 Hz, 1H), 2.88 (d, J=14.4 Hz, 1H), 2.81 (d, J=14.4 Hz, 1H), 2.31 (ddd, J=12.8, 4.8, 1.6 Hz, 1H), 2.19-2.06 (m, 2H), 1.80 (dd, *J*=12.8, 11.6 Hz, 1H), 1.59–1.51 (m, 4H), 1.36 (d, J=6.0 Hz, 3H), 1.30 (s, 3H), 0.36 (s, 3H), 0.36 (s, 9H); 13 C NMR (100 MHz) δ 154.2, 153.9, 153.7, 153.0, 151.9, 146.5, 139.1, 138.5, 138.4, 136.6, 131.8, 128.4, 128.4, 128.3, 128.0, 127.7, 127.7, 127.6, 127.3, 121.5, 115.3, 114.6, 112.6, 108.7, 83.9, 80.8, 76.5, 75.8, 75.3, 71.5, 71.3, 71.2, 70.8, 64.5, 63.6, 55.7, 38.2, 37.8, 35.0, 23.6, 18.6, 18.0, 17.7, -2.0, -2.3; IR (CDCl₃) 3032, 2953, 2887, 1508, 1348, 1230, 1088 cm⁻¹; mass spectrum (CI) m/z 1338.1149 [C₆₁H₇₀O₁₀Br₄Si₂ requires 1338.1200], 1338, 655, 555 (base).

5.3.15. Preparation of bis-cycloadduct 64. Tetrabromide **63** (800 mg, 0.60 mmol), which had been dried in the bulb of a Kügelrohr apparatus under vacuum for 2 h at 140 °C, was dissolved in Et₂O (30 mL), and a solution of n-BuLi (7.8 mL of a 0.23 M solution, 1.84 mmol, which was prepared by diluting 0.8 mL of 2.3 M n-BuLi in hexanes with 7.0 mL Et₂O) was added dropwise over 30 min at -20 °C. Once addition was complete, the reaction was stirred for

10 min at -20 °C. The mixture was quenched with EtOH (1 mL) and then poured onto saturated NaHCO₃ (30 mL) and Et₂O (300 mL). The organic layer was separated, washed with saturated NaHCO₃ (3×30 mL), dried (Na₂SO₄), and concentrated. The residue was purified by flash chromatography on silica gel eluting with hexanes/EtOAc (1:4) to afford 517 mg (85%) of a mixture of diastereomeric cycloadducts **64** as a yellowish oil. ¹H NMR (400 MHz) of an enriched diastereomer δ 7.35–7.20 (m, 15H), 6.99 (s, 1H), 6.82-6.70 (m, 5H), 5.74-5.71 (m, 2H), 4.98 (d, J=11.0 Hz, 1H), 4.69 (d, J=11.6 Hz, 1H), 4.66 (d, J=11.0 Hz, 1H), 4.59 (d, J=11.6 Hz, 1H), 4.60–4.45 (m, 3H), 4.37 (d, J=10.8 Hz, 1H), 4.25 (d, J=10.8 Hz, 1H), 4.00-3.81 (m, 4H), 3.76 (s, 3H), 3.66-3.58 (m, 1H), 3.42-3.35 (m, 1H), 3.14 (t, J=9.0 Hz, 1H), 2.76 (d, J=18.4 Hz, 1H), 2.49 (d, J=18.6 Hz, 1H), 2.26 (dd, J=11.8, 4.2 Hz, 1H), 2.12-1.98 (m, 2H), 1.68 (dd, J=12.4, 11.6 Hz, 1H), 1.53-1.43 (m, 1H), 1.40 (s, 3H), 1.36 (d, J=6.0 Hz, 3H), 1.27– 1.17 (m, 1H), 1.12-1.03 (m, 2H), 0.36 (s, 3H), 0.33 (s, 3H), 0.16 (s, 3H), 0.06 (s, 3H); IR (NaCl) 2936, 2878, 1507, 1454, 1229, 1109, 1038 cm⁻¹; mass spectrum (CI) m/z 1019.4559 [C₆₁H₇₀O₁₀Si₂ (M+1) requires 1019.4585] (base), 992, 885, 694.

5.3.16. Anthraguinone 67. Potassium hydroxide (10 pellets) and H₂O (1 mL) were added to a solution of cycloadduct 64 (225 mg, 0.22 mmol) in DMF (10 mL), and the mixture was stirred for 24 h at room temperature. A mixture of 50% Et₂O/hexanes (300 mL) was added, and the solution was washed with brine ($5 \times 20 \text{ mL}$). The organic layer was dried (Na₂SO₄) and concentrated. The residue was dissolved in EtOH (30 mL), and concentrated hydrochloric acid (40 drops) was added. The reaction was stirred for 4 h at 65 °C and then concentrated under reduced pressure. The residue was purified by chromatography on silica gel eluting with hexanes/EtOAc (8:1) to afford 64 mg (34%) of 67 as a yellowish oil. 1 H NMR (500 MHz) δ 13.19 (s, 1H, OH), 13.11 (s, 1H, OH), 7.90 (d, J=7.9 Hz, 1H), 7.85 (d, J=7.9 Hz, 1H) 7.9 Hz, 1H), 7.74 (d, J=7.8 Hz, 1H), 7.71 (d, J=7.9 Hz, 1H), 7.36-7.24 (comp, 15H), 6.83-6.76 (comp, 4H), 4.99 (d, J=11.2 Hz, 1H), 4.86 (dd, J=11.5, 1.7 Hz, 1H), 4.72(d, J=8.0 Hz, 1H), 4.70 (d, J=8.0 Hz, 1H), 4.64 (d, J=8.0 Hz11.2 Hz, 1H), 4.55 (s, 2H), 4.17-4.08 (comp, 2H), 3.85 (ddd, J=13.5, 8.9, 4.7 Hz, 1H), 3.74 (s, 3H), 3.57 (dq,J=8.9, 6.2 Hz, 1H), 3.21 (t, J=8.9 Hz, 1H), 3.19 (d, J=13.6 Hz, 1H), 3.11 (d, J=13.6 Hz, 1H), 2.69 (ddd, J=12.8, 4.7, 1.7 Hz, 1H), 2.21–2.07 (comp, 2H), 1.48–1.39 (m, 1H), 1.39 (d, J=6.2 Hz, 3H), 1.34 (s, 3H); ¹³C NMR $(125 \text{ MHz}) \delta 188.3, 188.2, 161.5, 158.9, 153.8, 153.0,$ 139.4, 139.1, 138.6, 138.5, 138.4, 138.3, 135.5, 133.3, 131.9, 131.5, 128.4, 128.3, 128.2, 128.1, 128.0, 127.8, 127.7, 127.6, 127.5, 127.3, 127.1, 125.5. 119.4, 118.6, 115.5, 114.7, 84.0, 80.9, 77.5, 75.8, 75.3, 71.4, 71.2, 64.6, 63.8, 55.7, 37.7, 37.4, 37.3, 23.1, 18.6; IR (NaCl) 2918, 2848, 1625, 1507, 1431, 1372, 1284, 1261, 1231, 1107, 1090, 1072 cm^{-1} ; mass spectrum (CI) m/z 849.3634 $[C_{53}H_{53}O_{10} \text{ (M+1) requires } 849.3639], 742 \text{ (base)}, 726,$ 419, 293, 267.

5.3.17. Anthraquinone 68. A solution of ceric ammonium nitrate (48 mg, 0.09 mmol) in H_2O (0.1 mL) was added to a solution of **67** (25 mg, 0.03 mmol) in CH_3CN (2.9 mL)

at -15 °C, and the reaction was stirred for 20 min. Et₂O (20 mL) was added, and the solution was washed with brine (4×3 mL). The organic layer was dried (Na₂SO₄) and concentrated. The residue was purified by flash chromatography on silica gel eluting with hexanes/EtOAc (2:1) to afford 16 mg (74%) of **68** as a yellowish oil. ¹H NMR $(500 \text{ MHz}) \delta 13.22 \text{ (s, 1H, OH), } 13.09 \text{ (s, 1H, OH), } 7.91$ (d, J=7.8 Hz, 1H), 7.85 (d, J=7.8 Hz, 1H), 7.75 (d, J=7.8 Hz, 1H) 7.8 Hz, 1H), 7.63 (d, J=7.8 Hz, 1H), 7.36–7.24 (comp. 15H), 4.99 (d, J=11.3 Hz, 1H), 4.86 (dd, J=11.4, 1.9 Hz, 1H), 4.72 (d, J=7.1 Hz, 1H), 4.70 (d, J=7.1 Hz, 1H), 4.64 (d, J=11.3 Hz, 1H), 4.61 (d, J=11.1 Hz, 1H), 4.58 (d, J=11.1 Hz, 1H), 3.91-3.80 (comp., 3H), 3.57 (dq., J=9.1, 6.1 Hz, 1H), 3.21 (t, J=9.1 Hz, 1H), 3.18 (d, J=13.6 Hz, 1H), 3.12 (d, J=13.6 Hz, 1H), 2.69 (ddd, J=13.0, 5.1, 1.9 Hz, 1H), 2.62 (t, J=4.8 Hz, 1H, OH), 1.98-1.90 (m, 1H), 1.88-1.82 (m, 1H), 1.48-1.39 (m, 1H), 1.39 (s, 3H), 1.38 (d, J=6.1 Hz, 3H); ¹³C NMR (125 MHz) δ 188.2, 161.5, 158.9, 139.2, 138.6, 138.5, 138.4, 138.3, 135.1, 133.3, 131.8, 131.6, 128.5, 128.4, 128.3, 128.1, 127.7, 127.6, 127.5, 127.4, 127.3, 119.4, 118.7, 115.6, 115.5, 84.0, 80.8, 79.6, 75.8, 75.3, 71.4, 71.2, 64.1, 59.4, 40.3, 37.3, 36.9, 22.8, 18.6; IR (NaCl) 3428 (br), 2930, 2872, 1626, 1606, 1582, 1475, 1431, 1372, 1318, 1279, 1260, 1109, 1090, 1071 cm^{-1} ; mass spectrum (CI) m/z 741.3059 [C₄₆H₄₅O₉ (M-1) requires 741.3064] (base), 633.

5.3.18. Anthraquinone 69. IBX (9 mg, 0.03 mmol) was added to a solution of alcohol 68 (8.0 mg, 0.01 mmol) in EtOAc (1 mL), and the resulting suspension was heated for 3 h at 80 °C with vigorous stirring. The reaction was allowed to cool to room temperature, and Et₂O (5 mL) was added. The mixture was filtered through a pad of Celite, and the filtrate was concentrated under reduced pressure. The crude aldehyde thus obtained was dissolved in t-BuOH/H₂O (3.5:1, 2 mL), and the solution was cooled to 0 °C. NaH₂PO₄·2H₂O (28 mg, 0.18 mmol), 2-methyl-2-butene (0.16 mL, 1.51 mmol), and NaClO₂ (21 mg, 0.23 mmol) were then added, and the mixture was stirred for 90 min at room temperature. The mixture was diluted with Et₂O (20 mL) and washed with brine (3×2 mL). The organic layer was dried (Na₂SO₄) and concentrated. The residue was purified by flash chromatography on silica gel eluting with hexanes/EtOAc (1:2) to afford 5.7 mg (70%) of acid **69** as a yellowish oil. ¹H NMR (500 MHz) δ 13.24 (s, 1H, OH), 13.05 (s, 1H, OH), 9.80 (br, 1H), 7.91 (d, J=7.9 Hz, 1H), 7.85 (d, J=7.8 Hz, 1H), 7.78 (d, J=7.8 Hz, 1H), 7.63 (d, J=7.8 Hz, 1H), 7.38–7.25 (comp. 15H), 4.99 (d, J=11.0 Hz, 1H), 4.86 (dd, J=11.3, 1.3 Hz, 1H), 4.744.62 (comp, 5H), 3.85 (ddd, J=13.6, 8.8, 4.9 Hz, 1H), 3.57(dq, J=8.8, 6.1 Hz, 1H), 3.29 (d, J=13.6 Hz, 1H), 3.21 (t, J=8.8 Hz, 1H), 3.18 (d, J=13.6 Hz, 1H), 2.71 (d, J=15.3 Hz, 1H), 2.71-2.67 (comp. 1H), 2.66 (d, J=15.3 Hz, 1H), 1.49(s, 3H), 1.48–1.40 (m, 1H), 1.39 (d, J=6.1 Hz, 3H); ¹³C NMR (125 MHz) δ 188.2, 188.1, 171.1, 161.4, 159.0, 139.2, 138.7, 138.6, 138.5, 137.2, 133.6, 133.4, 132.1, 131.7, 128.7, 128.5, 128.4, 128.2, 128.1, 127.8, 127.7, 127.6, 119.6, 118.8, 115.8, 115.4, 83.9, 80.8, 78.2, 75.8, 75.3, 71.4, 71.2, 64.9, 44.1, 37.3, 36.8, 22.7, 18.6; IR (NaCl) 2919, 2860, 1702, 1619, 1431, 1366, 1320, 1290, 1255, 1114, 1091, 1073 cm $^{-1}$; mass spectrum (CI) m/z757.3013 [C₄₆H₄₅O₁₀ (M+1) requires 757.3013], 689, 621, 502 (base), 458, 355.

5.3.19. Vineomycinone B_2 methyl ester (3). BBr_3 in CH₂Cl₂ (0.2 mL of 1 M solution, 0.2 mmol) was added to a solution of acid 69 (5.5 mg, 7.27 µmol) in CH₂Cl₂ (2 mL) at $-78 \,^{\circ}\text{C}$. The mixture was stirred for 10 min at $-78 \,^{\circ}\text{C}$, and methanolic HCl $(2 \,\text{mL})$, prepared from 0.2 mL of AcCl and 5 mL MeOH) was added. The mixture was stirred for 6 h at room temperature and then concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel eluting with EtOAc to afford 2.6 mg (71%) of vineomycinone B_2 methyl ester (3) as an orange solid; mp 183–184 °C (lit. 14b,d mp 183–184 °C); $[\alpha]_{\rm D}^{24}$ +109.8 (c 0.00091, CDCl₃) (lit. 14b $[\alpha]_{\rm D}$ +109.1 (c 0.00066, CDCl₃)); ¹H NMR (500 MHz) δ 13.20 (s, 1H, OH), 13.09 (s, 1H, OH), 7.90 (d, J=7.9 Hz, 1H), 7.85 (d, J=7.9 Hz, 1H), 7.80 (d, J=7.8 Hz, 1H), 7.68 (d, J=7.9 Hz, 1H), 4.94 (dd, J=11.3, 1.8 Hz, 1H), 3.87 (s, 1H, OH), 3.86-3.81 (m, 1H), 3.70 (s, 3H), 3.52 (dq, J=9.0, 6.1 Hz, 1H), 3.21 (dt, J=9.0, 3.5 Hz, 1H), 3.09 (d, J=13.4 Hz, 1H), 3.01 (d, J=13.4 Hz, 1H), 2.57 (d, J=16.0 Hz, 1H), 2.53 (d, J=16.0 Hz, 1H), 2.52 (ddd, J=12.7, 4.8, 1.8 Hz, 1H), 2.20 (d, J=3.5 Hz, 1H, OH), 2.10 (d, J=3.7 Hz, 1H, OH), 1.51-1.42 (m, 1H), 1.41 (d, J=6.1 Hz, 3H), 1.29 (s, 3H); ¹³C NMR (125 MHz) δ 188.2, 188.2, 173.3, 161.4, 159.0, 139.6, 138.3, 134.7, 133.3, 131.9, 131.8, 119.4, 118.9, 115.6, 115.5, 78.1, 75.9, 73.1, 71.8, 71.3, 51.7, 44.4, 40.5, 39.4, 27.3, 18.1; IR (NaCl) 3400 (br), 2930, 2860, 1733, 1626, 1433, 1374, 1260, 1090, 1070, 993, 971 cm⁻¹; mass spectrum (CI) m/z 501.1757 [C₂₆H₂₉O₁₀ (M+1) requires 501.1761] (base), 326.

Acknowledgements

We thank the National Institutes of Health (GM 31077), the Robert A. Welch Foundation, Pfizer, Inc., and Merck Research Laboratories for their generous support of this research. C.-L. Chen is grateful to Bristol-Myers Squibb for a graduate fellowship. We are also grateful to Prof. Marcus A. Tius (University of Hawaii) for providing an authentic sample of vineomycinone B₂ methyl ester (3).

References and notes

- (a) Õmura, S.; Tanaka, H.; Õiwa, R.; Awaya, J.; Masuma, R.; Tanaka, K. *J. Antibiot.* 1977, 30, 908; (b) Imamura, N.; Kakinuma, K.; Ikekawa, N.; Tanaka, H.; Õmura, S. *J. Antibiot.* 1981, 34, 1517.
- Okazaki, H.; Ohta, K.; Kanamaru, T.; Ishimaru, T.; Kishi, T. J. Antibiot. 1981, 34, 1355.
- 3. Mussini, E.; Hutton, J. J., Jr.; Udenfriend, S. Science 1967, 157, 927.
- 4. Priestley, G. C. Br. J. Dermatol. 1987, 117, 67.
- 5. Iwasaki, S.; Õmura, S. Proc. Jpn. Acad., Ser. B 2004, 80, 54.
- Bindseil, K. U.; Hug, P.; Peter, H. H.; Petersen, F.; Roggo, B. E. J. Antibiot. 1995, 48, 457.
- 7. Henkel, T.; Zeeck, A. J. Antibiot. 1990, 43, 830.
- 8. Kawamura, N.; Sawa, R.; Takahashi, Y.; Sawa, T.; Kinoshita, N.; Naganawa, H.; Hamada, M.; Takeuchi, T. *J. Antibiot.* **1995**, *48*, 1521.
- Maskey, R. P.; Helmke, E.; Laatsch, H. J. Antibiot. 2003, 56, 942
- Imamura, N.; Kakinuma, K.; Ikekawa, N.; Tanaka, H.; Õmura, S. J. Antibiot. 1982, 35, 602.

- (a) Vederas, J. C. Nat. Prod. Rep. 1987, 277; (b) Simpson, T. J. Chem. Soc. Rev. 1987, 16, 123.
- Sezaki, M.; Kondo, S.; Maeda, K.; Umezawa, H.; Ohno, M. Tetrahedron 1970, 26, 5171.
- For general reviews of *C*-aryl glycosides, see: (a) Jaramillo, C.; Knapp, S. *Synthesis* 1994, 1; (b) Levy, D. E.; Tang, C. *The Chemistry of C-Glycosides*; Elsevier Science: Tarrytown, NY, 1995; (c) Nicotra, F. *Top. Curr. Chem.* 1997, *187*, 55; (d) Du, Y.; Linhardt, R. J.; Vlahov, I. R. *Tetrahedron* 1998, *54*, 9913; (e) Liu, L.; McKee, M.; Postema, M. H. D. *Curr. Org. Chem.* 2001, *5*, 1133.
- For total syntheses of vineomycinone B₂ methyl ester, see: (a) Danishefsky, S. J.; Uang, B. J.; Quallich, G. J. Am. Chem. Soc. 1984, 106, 2453; (b) Danishefsky, S. J.; Uang, B. J.; Quallich, G. J. Am. Chem. Soc. 1985, 107, 1285; (c) Tius, M. A.; Gu, X.-q.; Gomez-Galeno, J. J. Am. Chem. Soc. 1990, 112, 8188; (d) Tius, M. A.; Gomez-Galeno, J.; Gu, X.-q.; Zaidi, J. H. J. Am. Chem. Soc. 1991, 113, 5775; (e) Bolitt, V.; Mioskowski, C.; Kollah, R. O.; Manna, S.; Rajapaksa, D.; Falck, J. R. J. Am. Chem. Soc. 1991, 113, 6320; (f) Matsumoto, T.; Katsuki, M.; Jona, H.; Suzuki, K. J. Am. Chem. Soc. 1991, 113, 6982.
- For related investigations of synthesis of vineomycinone B₂ methyl ester, see: (a) Cambie, R. C.; Rutledge, P. S.; Woodgate, P. D. Aust. J. Chem. 1992, 45, 483; (b) Pausler, G. M.; Rutledge, P. S. Tetrahedron Lett. 1994, 35, 3345; (c) Bercich, M. D.; Cambie, R. C.; Howe, T. A.; Rutledge, P. S.; Thomson, S. D.; Woodgate, P. D. Aust. J. Chem. 1995, 48, 531; (d) Beauregard, D. A.; Cambie, R. C.; Dansted, P. C.; Rutledge, P. S.; Woodgate, P. D. Aust. J. Chem. 1995, 48, 669.
- (a) Kaelin, D. E., Jr.; Lopez, O. D.; Martin, S. F. J. Am. Chem. Soc. 2001, 123, 6937; (b) Martin, S. F. Pure Appl. Chem. 2003, 75, 63; (c) Kaelin, D. E., Jr.; Sparks, S. M.; Plake, H. R.; Martin, S. F. J. Am. Chem. Soc. 2003, 125, 12994.
- 17. Apsel, B.; Bender, J. A.; Escobar, M.; Kaelin, D. E., Jr.; Lopez, O. D.; Martin, S. F. *Tetrahedron Lett.* **2003**, *44*, 1075.
- (a) Chen, C.-L.; Martin, S. F. Org. Lett. 2004, 6, 3581; (b)
 Chen, C.-L.; Martin, S. F. J. Org. Chem. 2006, 71, 4810.
- For a preliminary account of portions of this work, see: Chen, C.-L.; Sparks, S. M.; Martin, S. F. J. Am. Chem. Soc. 2006, 128, 13696
- For reviews of benzyne chemistry, see: (a) Hart, H. *The Chemistry of Triple-Bonded Functional Groups*, supplement C2; Patai, S., Ed.; Wiley: New York, NY, 1994; p 1017; (b) Pellissier, H.; Santelli, M. *Tetrahedron* 2003, 59, 701.
- For regioselective Diels-Alder reactions, see: (a) Matsumoto, T.; Hosoya, T.; Suzuki, K. J. Am. Chem. Soc. 1992, 114, 3568; (b) Hamura, T.; Ibusuki, Y.; Sato, K.; Matsumoto, T.; Osamura, Y.; Suzuki, K. Org. Lett. 2003, 5, 3551; For other investigations in regioselectivities, see: Kitamura, T.; Tamane, M.; Inoue, K.; Todaka, M.; Fukatsu, N.; Meng, Z.; Fujiwara, Y. J. Am. Chem. Soc. 1999, 121, 11674.
- 22. For some other examples of intramolecular Diels-Alder cylcoaddition with benzyne, see: (a) Best, W. M.; Wege, D. Tetrahedron Lett. 1981, 22, 4877; (b) Best, W. M.; Wege, D. Aust. J. Chem. 1986, 39, 647; (c) González, C.; Pérez, D.; Guitián, E.; Castedo, L. J. Org. Chem. 1995, 60, 6318; (d) Hayes, M. E.; Shinokubo, H.; Danheiser, R. L. Org. Lett. 2005, 7, 3917.
- (a) Brimble, M. A.; Duncalf, L. J.; Phythian, S. J. J. Chem. Soc., Perkin Trans. 1 1997, 1399; (b) Karichiappan, K.; Wege, D. Aust. J. Chem. 2000, 53, 743; (c) Sutherland, H. S.; Higgs,

- K. C.; Taylor, N. J.; Rodrigo, R. *Tetrahedron* **2001**, *57*, 309; (d) Lautens, M.; Fagnou, K.; Yang, D. *J. Am. Chem. Soc.* **2003**, *125*, 14884.
- (a) Hart, H.; Lai, C.-y.; Nwokogu, G.; Shamouilian, S.; Teuerstein, A.; Zlotogorski, C. *J. Am. Chem. Soc.* 1980, 102, 6649; (b) Hart, H.; Nwokogu, G. C. *Tetrahedron Lett.* 1983, 24, 5721; (c) Hart, H.; Lai, C.-y.; Nwokogu, G. C.; Shamouilian, S. *Tetrahedron* 1987, 43, 5203.
- For examples, see: (a) Giles, R. G. F.; Sargent, M. V.; Sianipar,
 H. J. Chem. Soc., Perkin Trans. 1 1991, 1571; (b) Batt, D. G.;
 Jones, D. G.; Greca, S. L. J. Org. Chem. 1991, 56, 6704.
- 26. Reddy, K. L.; Vittal, T. V. S. K. Synth. Commun. 1997, 27, 107.
- 27. Soderquist, J. A.; Brown, H. C. J. Org. Chem. 1980, 45, 3571.
- (a) Crump, S. L.; Netka, J.; Rickborn, B. J. Org. Chem. 1985,
 50, 2746; (b) Mirsadeghi, S.; Rickborn, B. J. Org. Chem.
 1986, 51, 986; (c) Netka, J.; Crump, S. L.; Rickborn, B.
 J. Org. Chem. 1986, 51, 1189.
- Procko, K. J. University of Texas at Austin, unpublished results.
- 30. Utimoto, K.; Otake, Y.; Yoshino, H.; Kuwahara, E.; Oshima, K.; Matsubara, S. Bull. Chem. Soc. Jpn. 2001, 74, 753.
- 31. Makita, N.; Hoshino, Y.; Yamamoto, H. Angew. Chem., Int. Ed. **2003**, 42, 941.

- 32. Corey, E. J.; Guzman-Perez, A.; Noe, M. C. *J. Am. Chem. Soc.* **1995**, *117*, 10805.
- For reviews of directed *ortho* metalation, see: Snieckus, V. Chem. Rev. 1990, 90, 879.
- For regioselective brominations, see: (a) Mitchell, R. H.; Lai, Y.-H.; Williams, R. V. J. Org. Chem. 1979, 44, 4733; (b) Bock, I.; Bornowski, H.; Ranft, A.; Theis, H. Tetrahedron 1990, 46, 1199.
- 35. Evidence for the intermediacy of a compound such as **66** was found in the ¹H NMR spectrum of the crude reaction mixture just following complete loss of starting **65**. The disappearance of a signal at 5.7 ppm is consistent with the loss of the bridgehead proton, and the appearance of a signal at 10.4 ppm is consistent with the presence of the phenolic O–H (e.g., see Ref. 18).
- Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 1518.
- Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.
- 38. Carreño, M. C.; Ruano, J. L. G.; Urbano, A. J. Org. Chem. 1992, 57, 6870.
- Kaelin, D. E., Jr. Ph.D. Dissertation, University of Texas, Austin, 2002.