Supervised Machine Learning: Regression and Classification

Rakshith Vaishnavi Dogra

Machine Learning

A field of study that allows computers to learn without being programmed explicitly

ML Algorithms

- 1. Supervised Learning Algorithms
- 2. Unsupervised Learning Algorithms
- 3. Recommendation Settings Algorithms
- 4. Reinforcement Learning Algorithms

Supervised Learning Algorithms

 $X \rightarrow Y$

Learns from Being given the Right Value of Y

- Regression Predicting a number from infinitely many possible outcomes
- Classification Predicting Category

Unsupervised Learning Algorithms

Algorithm has to find structures in data

- Clustering
- Dimensionality Reduction
- Anomaly Detection

Linear Regression Model

Terminology

x = inputy = output m = number of Training examples (x, y) = Simple Training Data $(x^{(i)}, y^{(i)}) = i^{th}$ training Example $\hat{y} = \text{estimate of } y$

 $f_{w,b}(x) = wx + b$

w → weight

b → Bias

Squared Error Cost Function

$$J(w, b) = \frac{1}{2m} \sum_{i=1}^{m} (\hat{y}(i) - y(i))^{2}$$

J (w, b) =
$$\frac{1}{2m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y(i))^2$$

Gradient Descent for Linear Regression

For a Given J(w, b), what is the $Min_{w,b} J(w, b)$

Gradient Descent Algorithm

$$W = W - \alpha \frac{\partial}{\partial W} J (W, b)$$

Where α is Learning Rate

$$b = b - \alpha \frac{\partial}{\partial w} J(w, b)$$

$$\frac{\partial}{\partial w} J (w, b) = \frac{1}{m} \sum_{i=1}^{m-1} (f_{w,b} (x^{(i)}) - y^{(i)}) x^{(i)}$$

$$\frac{\partial}{\partial b} J(w, b) = \frac{1}{m} \sum_{i=a}^{m-1} (f_{w,b}(x^{(i)}) - y^{(i)})$$

Batch Gradient Descent - Each step of Gradient Descent Uses all the Training Example

Multiple Regression

 $x_i = j^{th}$ feature

n = Number of Features

 $\dot{x}^{(i)}$ = Features of i^{th} training Example

$$x^{(i)}_{j}$$
 = Value of Feature j in i^{th} training Example

$$f_{w,b}^{\rightarrow}(X) = w_1 x_1 + w_2 x_2 + w_3 x_3 + \dots + w_n x_n$$

$$\overrightarrow{W} = [W_1, W_2, W_3, W_4, \ldots, W_n]$$
 (Row Vector)

$$\vec{X} = [x_1, x_2, x_3, \dots, x_n]$$
 (Row Vector)

$$\mathbf{f}_{\vec{\mathbf{w}},\mathbf{b}}(\vec{\mathbf{x}}) = \vec{\mathbf{w}} \cdot \vec{\mathbf{x}} + \mathbf{b}$$
 (Multiple Linear Regression)

Polynomial Regression

$$f_{\dot{w},b}(x) = w_1 x_1 + w_2 x_2 + b$$

Classification

- Logistic Regression Model
- Overfitting Regularization

Logistic Regression

$$f_{\overrightarrow{w}, b} = \overrightarrow{w} \cdot \overrightarrow{x} + b$$

$$g(z) = \frac{1}{1+g^{-z}}$$

$$f_{\overrightarrow{w},b} = g (\overrightarrow{w}, \overrightarrow{x} + b)$$

$$f_{\vec{w},b}(\vec{x}) = \frac{1}{1 + e^{-(\vec{w} \cdot \vec{x} + b)}}$$

Cost Function for Logistic Regression

Logistic Loss Function

$$J\left(\vec{w}, b\right) = \frac{1}{m} \sum_{i=0}^{m-1} L\left(f_{\vec{w},b}\left(\vec{x}^{(i)}\right), y^{(i)}\right)$$

Simplified Cost Function

$$L\left(f_{\vec{w},b}\left(\overrightarrow{x}^{(i)},\,y^{(i)}\right)\right) = -y^{(i)}\,\log\left(f_{\vec{w},b}\left(\overrightarrow{x}^{(i)}\right)\right) - (1-y)\,\log\left(1-f_{\vec{w},b}\left(\overrightarrow{x}^{(i)}\right)\right)$$

Overfitting and Underfitting

Overfitting = High Variance Under-fitting = High Bias

- Collect More Data
- Reduce Parameters using Regularization
- Select features

Cost Function with Regularization

$$J\left(\bar{\vec{w}}, b\right) = \frac{1}{2m} \sum_{i=1}^{m} \left(f_{\vec{w}, b}\left(\vec{\vec{x}}^{(x)}\right) - y^{(i)}\right)^{2} + \frac{\lambda}{2m} \sum_{i=1}^{n} w_{j}^{2} \text{ (Regularization Term)}$$

Gradient Descent with Regularized Linear Regression

$$w = \frac{1}{m} \sum_{i=1}^{m} \left(f_{w,b} \left(\vec{x}^{(i)} \right) - y^{(i)} \right) x_{j}^{(i)} + \frac{\lambda}{m} w_{j}$$

$$W_{j} = W_{j} - \alpha \left\{ \frac{1}{m} \sum_{i=1}^{m} \left[\left(f_{\vec{w}_{j}b} \left(\vec{x}^{(i)} \right) - y^{(i)} \right) x_{j}^{(i)} \right] + \frac{\lambda}{m} W_{j} \right\}$$

$$b = b - \alpha \left[\frac{1}{m} \sum_{i=1}^{m} \left(f_{\vec{w},b} \left(\vec{x}^{(i)} \right) - y^{(i)} \right) \right]$$

$$\frac{\partial}{\partial w_{j}} J \left(\overrightarrow{w}, b \right) = \frac{1}{m} \sum_{i=1}^{m} \left[f_{\overrightarrow{w}, b} \left(\overrightarrow{x}^{(i)} - y^{(i)} \right) x_{j}^{(i)} \right] + \frac{\lambda}{m} w_{j}$$

Regularized Linear Regression

$$J\left(\vec{w}, b\right) = \frac{-1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log \left(f_{\vec{w}, b} \left(\vec{x}^{(i)} \right) \right) + \left(1 - y^{(i)} \right) \log \left(1 - f_{\vec{w}, b} \left(\vec{x}^{(i)} \right) \right) \right] + \frac{\lambda}{m} \sum_{j=1}^{n} w_{j}^{2}$$

$$w_{j} = \frac{1}{m} \sum_{i=1}^{m} \left[\left(f_{\vec{w},b} \left(\overrightarrow{x}^{(i)} \right) - y^{(i)} \right) x_{j}^{(i)} \right] + \frac{\lambda}{m} w_{j}$$