System Verification

Tasks:

Note: all tasks execution time is calculated from the actual implemented tasks using GPIOs and the logic analyzer.

Task Name	Periodicity / Deadline (MS)	Execution Time (MS)
Button_1_Monitor	50	0.008
Button_2_Monitor	50	0.008
Periodic Transmitter	100	0.0096
UART Receiver	20	0.017
Load 1 Simulation	10	5
Load 2 Simulation	100	12

Methods of Verification:

- 1- Using Analytical Method:
- 1.1- System Hyper period:
 - ♣ It's the Least Common Multiple of all task's periods
 - **♣** H = LCM (50, 50, 100, 20, 10, 100) = 100
- 1.2- CPU Load
 - \rightarrow U = (E1 + E2 + E3 + E4 + E5 + E6) / H
 - > where E is the Execution time and H is the Hyper period.
 - U = (0.008*2 + 0.008*2 + 0.0096 + 0.017*5 + 5*10 + 12) / 100 = 0.621 (62.1%)
- 1.3- System stimulability check using URM and Time Demand Analysis Techniques:
 - $\sum_{i=1}^{n} \frac{c_i}{p_i} \le n(2^{\frac{1}{n}} 1)$
 - $L.H.S = \sum_{i=1}^{n} \frac{c_i}{p_i} = \frac{0.008}{50} + \frac{0.008}{50} + \frac{0.0096}{100} + \frac{0.017}{20} + \frac{5}{10} + \frac{12}{100} = 0.621$
 - $ightharpoonup R.H.S = n\left(2^{\frac{1}{n}} 1\right) = 0.753$
 - $ightharpoonup L.H.S \le R.H.S$, so, the system is schedulable.

2- Time Demand Analysis:

a- Sort the tasks making the highest priority at the first:

Task Name	Periodicity / Deadline (MS)	Execution Time (MS)
1- Load 1 Simulation	10	5
2- UART Receiver	20	0.017
3- Button_1_Monitor	50	0.008
4- Button_2_Monitor	50	0.008
5- Periodic Transmitter	100	0.0096
6- Load 2 Simulation	100	12

b- Choose the critical instant 0 then:

$$\begin{split} w_1(10) &= 5 + 0 = 5 < deadline & w_2(20) = 0.017 + 5 * \frac{20}{10} = 5.017 < deadline \\ w_3(50) &= 0.008 + 0.017 * \frac{50}{20} + 5 * \frac{50}{10} = 25.059 < deadline \\ w_4(50) &= 0.008 + 0.008 * \frac{50}{50} + 0.017 * \frac{50}{20} + 5 * \frac{50}{10} = 25.067 < deadline \\ w_5(100) &= 0.0096 + 0.008 * \frac{100}{50} + 0.008 * \frac{100}{50} + 0.017 * \frac{100}{20} + 5 * \frac{100}{10} = 50.1266 < deadline \\ w_6(100) &= 12 + 0.0096 * \frac{100}{100} + 0.008 * \frac{100}{50} + 0.008 * \frac{100}{50} + 0.017 * \frac{100}{20} + 5 * \frac{100}{10} = 62.1266 < deadline \end{split}$$

As all Tasks are less Than the deadline. So, the system is schedulable.

2- Using SIMSO offline simulator:

Used Scheduler: Fixed priority rate monotonic.

Tasks Simulated:

ene	eral Sch	neduler Prod	cessors Tasks					
id	Name	Task type	Abort on miss	Act. Date (ms)	Period (ms)	List of Act. dates (ms)	Deadline (ms)	WCET (ms)
1	TASK T1	Periodic 🔻	□ No	0	50	-	50	0.008
2	TASK T2	Periodic 🔻	□ No	0	50	-	50	0.008
3	TASK T3	Periodic 🔻	□ No	0	100	-	100	0.0096
4	TASK T4	Periodic 🔻	□ No	0	20	-	20	0.017
5	TASK T5	Periodic •	□ No	0	10	-	10	5
6	TASK T6	Periodic ▼	□ No	0	100	-	100	12

For The CPU load the is the same as the analytical mode

	Total load	Payload	System load
CPU 1	0.6213	0.6213	0.0000
Average	0.6213	0.6213	0.0000

Gantt chart over the Hyper period:

3- Using Keil Simulator at Runtime:

1- Calculate the CPU usage time using timer 1 and trace macros

Note:

- 1- The CPU load is the same as the calculated analytically and the obtained using SIMSO offline simulator.
- 2- None of The Tasks Miss the Deadline.
- 2. Using trace macros and GPIOs, plot the execution of all tasks, tick, and the idle task on the logic analyzer:

Note:

- > The above chart was using the implemented EDF scheduler. As you can see tasks with closer deadline preempts other tasks.
- The IDLE task never interfered with my other main tasks so my modification in the IDLE task function to make sure it never preempts my main tasks is successful. As I made sure It always offsets the maximum main tasks deadline by a user defined amount So, it never executes unless there are no more tasks in the ready queue.