Доказательство. Воспользуемся формулой Тейлора. Пусть есть функция двух переменных $f(x,y)=f(x_0,y_0)+\frac{df(x_0,y_0)}{1!}+\frac{d^2f(x_0,y_0)}{2!}+o((\Delta\rho)^2)$, где $\Delta\rho=\sqrt{(\Delta x)^2+(\Delta y)^2}$. Так как в точке (x_0,y_0) производная обращается в ноль $df(x_0,y_0)=0$, то приращение функции $\Delta f=f(x,y)-f(x_0,y_0)$ есть второй дифференциал, деленный на 2!: $\Delta f=\frac{1}{2!}\binom{\partial^2f(x_0,y_0)}{\partial x^2}(\Delta x)^2+2\frac{\partial^2f(x_0,y_0)}{\partial x\partial y}\Delta x\Delta y+\frac{\partial^2f(x_0,y_0)}{\partial y^2}(\Delta y)^2)+o((\Delta\rho)^2)$. Перепишем в виде $\Delta f=\frac{1}{2}(A(\Delta x)^2+2B\Delta x\Delta y+C(\Delta y)^2+2o((\Delta\rho)^2))$. Теперь перейдем к полярным координатам $\begin{cases} \Delta x=\Delta \rho*\cos\varphi\\ \Delta y=\Delta \rho*\sin\varphi\end{cases}$ и выражение $\frac{2o((\Delta\rho)^2)}{(\Delta q)^2}$ заменим на $\varepsilon(\Delta\rho)$, которое будет малой величиной, так как $\lim_{\Delta q\to 0}\frac{2o((\Delta\rho)^2)}{(\Delta q)^2}=0$. Тогда наше выражение примет вид $\Delta f=\frac{1}{2}(\Delta\rho)^2(A\cos^2\varphi+2B\cos\varphi\sin\varphi+C\sin\varphi-2B\cos\varphi\sin\varphi+C\sin\varphi-2B\cos\varphi\cos\varphi)$. Теперь выражение в скобках домножим и разделим на ΔA , а также в числителе прибавим и вычтем ΔA 0 выражение полного квадрата: ΔA 1 вычем и вычтем ΔA 2 гакже в числителе прибавим и вычтем ΔA 3 выделения полного квадрата: ΔA 4 в ΔA 5 гакже в числителе прибавим и ΔA 6 гакже в числителе прибавим и вычтем ΔA 6 гакже в числителе прибавим и вычтем ΔA 7 гакже в числителе прибавим и вычтем ΔA 8 гакже в числителе прибавим и вычтем ΔA 9 гакже в числителе прибавим и вычтем ΔA 9 гакже в числителе прибавим и вычтем ΔA 6 гакже в числителе прибавим и вычтем ΔA 7 гакже в числителе прибавим и вычтем ΔA 8 гакже в числителе прибавим и вычтем ΔA 8 гакже в числителе прибавим и вычтем ΔA 9 гакже в числителе прибавим и ΔA 9

- 1. $\overrightarrow{AC} B^2 > 0$ и A > 0. В этом случае весь числитель нашего выражение будет положителен. (В некоторой окрестности точки (x_0, y_0) будет выполняться неравенство $(A\cos\varphi + B\sin\varphi)^2 + (AC B^2)\sin^2\varphi > |\varepsilon_1(\Delta\rho)|$, так как последнее является бесконечно малой величиной). Знаменатель также положителен. Отсюда следует, что $\Delta f > 0$, а значит, точка (x_0, y_0) является точкой минимума.
- $2.\,AC-B^2>0$ и A<0. Числитель так же положителен, но вот знаменатель отрицателен. (В некоторой окрестности точки (x_0,y_0) будет выполняться неравенство $(A\cos\varphi+B\sin\varphi)^2+(AC-B^2)\sin^2\varphi>|\varepsilon_1(\Delta\rho)|$, так как последнее является бесконечно малой величиной). Отсюда следует, что $\Delta f<0$, а значит, точка (x_0,y_0) является точкой максимума.
- $3.\,AC-B^2<0$ и A>0. Если мы возьмем $\sin \varphi=0$, т.е. $\varphi=0$ (приравняем к нулю второе слагаемое числителя), то, рассуждая аналогично предыдущим пунктам, получим что $\Delta f>0$ в некоторой окрестности точки (x_0,y_0) . А если теперь мы приравняем к нулю первое слагаемое числителя, $\tan \varphi=-\frac{A}{B}$, то $\Delta f<0$. Как видим, у нас есть направление угла, по которому функция возрастает, и направление угла, по которому функция убывает. Следовательно, экстремума нет, точка (x_0,y_0) является седловой точкой.
- 4. $AC-B^2=0$. Тогда для $an \varphi=-\frac{A}{B}$ (первое слагаемое обращается в ноль) выражение примет вид $\Delta f=\frac{1}{2}(\Delta \rho)^2 \varepsilon(\Delta \rho)$. В этом случае все будет определяться знаком $\varepsilon(\Delta \rho)$, а для выяснения этого требуется дополнительно исследование.

<u>Замечание.</u> Теорему можно обобщить на n переменных. Знак приращения определяется прежде всего вторым дифференциалом, а все частные производные содержатся в матрице Гессе, именуемой квадратичной формой. Если она определена и положительна, тогда максимум, отрицательная — минимум, если ноль, то нет экстремума, а если положительна и отрицательна по различным направлениям, то это седловая точка и требуется дополнительно исследование.

Глава 3. Обыкновенные дифференциальные уравнения

§1. Понятие дифференциального уравнения

П.1. Основные определения

Уравнение вида $F(x,y,y',...,y^{(n)})=0$ называется дифференциальным. Причем порядок старшей производной этого уравнения будет называться порядком этого уравнения. Пример: $(y'')^3+y'x+yx^2=0$ – дифференциальное уравнение второго порядка.

Частным решением дифференциального уравнения называется любая функция y(x), подстановка которой обращает выражение $F\big(x,y,y',...,y^{(n)}\big)=0$ в верное тождество. Пример: y''+y=0. $y=\sin x$, $y=c_1\sin x$, $y=c_1\cos x$, $y=c_1\sin x$ + $c_2\cos x$ – частные решения этого уравнения. Таких решений может быть несколько.

Общим решением дифференциального уравнения $F\left(x,y,y',...,y^{(n)}\right)=0$ называется такое $y=\varphi(c_1,c_2,...,c_n,x)$, если оно является частным решением уравнения при всех допустимых значениях констант $c_1,c_2,...,c_n$, а также если для любого частного решения существуют такие константы $c_1=c_{10},c_2=c_{20},...,c_n=c_{n0}$, что $\varphi(x)=\varphi(c_{10},c_{20},...,c_{n0},x)$, то есть если всегда можно подобрать константы для получения решения.

П.2. Уравнения первого порядка, разрешенные относительно производной

Уравнение вида $y^{(n)} = f(x, y, y', ..., y^{(n-1)})$ называется разрешенным относительно старшей производной. Пример: y' = f(x, y). К такому виду дифференциальное уравнение можно привести не всегда.

Геометрический смысл: если функция задана в подобном виде, то в каждой точке некоторой области, на которой определена эта функция, мы можем вычислить ее производную, то есть тангенс угла наклона касательной. Если есть частное решение $y=\varphi(x)$, то его график называется интегральной кривой. Пусть f(x,y) определена в некоторой области $D\in R^2$. Она задает значение в каждой точке. Тогда в каждой точке области будет задан вектор, касательный к интегральной кривой. Тогда, построив эти вектора, можно будет нарисовать интегральную кривую. f(x,y) задает в D касательные векторы к интегральным кривым. Линии уровня вида f(x,y)=c называются изоклинами. Пример: $y'=-\frac{x}{y}$. $-\frac{x}{y}=c$ — изоклины. $y=-\frac{1}{c}x$. Пусть $-\frac{1}{c}=k$. Тогда y=kx, то есть линии уровня представляют собой прямые. Если k=1, то y=x,y'=-1. Если k=-1, то y=-x,y'=1. Если k=0, то $y=0,y'=\infty$. Если соединить все по-

лучившиеся касательные к интегральным кривым, то получатся окружности. Интегральные кривые представляют собой множество окружностей.

Задача Коши: пусть есть уравнение y'=f(x,y) и точка (x_0,y_0) , принадлежащая D, а также значение функции в точке x_0 : $y(x_0)=y_0$. Последнее условие называется начальным условием. Задача состоит в следующем: требуется найти решение $y=\varphi(x)$ дифференциального уравнения y'=f(x,y), которое удовлетворяло

бы начальному условию (поиск такой интегральной кривой, которая бы проходила через точку (x_0, y_0)).

Оказывается, если функция f(x,y) непрерывна в D и частная производная $\frac{\partial f}{\partial y}$ непрерывна в D, то для любой точки (x_0,y_0) существует единственная функция $y=\varphi(x)$, являющаяся решением y'=f(x,y), которая удовлетворяет начальному условию, т.е. решает задачу Коши, и для которой в некоторой окрестности точки x_0 значения $(x,\varphi(x))$ лежат в области D. (При выполнении условий через некоторую точку области D проходит единственная интегральная кривая, которая хотя бы в окрестности этой точки будет лежать в области D).

§2. Уравнения первого порядка

П.1. Уравнения с разделяющимися переменными

Так как $y'=\frac{dy}{dx}$, то dy=f(x,y)dx. Пусть есть функция f(x,y). Ее можно расписать как $f_1(x)f_2(y)$. Уравнение вида $dy=f_1(x)f_2(y)dx$ называется уравнением с разделяющимися переменными (их можно разделить), а уравнение вида $\frac{dy}{f_2(y)}=f_1(x)dx$ называется уравнением с разделенными переменными $(dG(y)=dF(x)\to G(y)=F(x)+c)$, где F и G — первообразные от $f_1(x)$ и $\frac{1}{f_2(y)}$. Получится, что можно проинтегрировать: $\int \frac{dy}{f_2(y)}=\int f_1(x)dx$. Почти все решения дифференциальных уравнений сводятся к подобному разделению.

В частности, $M_1(x)M_2(y)dy=N_1(x)N_2(y)dx$ – обычный вид уравнения с разделяющимися переменными. Можно привести к уравнению с разделенными: $\frac{M_2}{N_2}(y)dy=\frac{N_1}{M_1}(x)dx$.

П.2. Линейные дифференциальные уравнения первого порядка

Уравнение вида y'+p(x)y=q(x) называется линейным дифференциальным уравнением. Если q(x)=0, то уравнение будет однородным. Если $q(x)\neq 0$, то будет неоднородным. Оказывается, что однородное линейное дифференциальное уравнение y'+p(x)y=0 является уравнением с разделяющимися переменными: разделим и проинтегрируем $\frac{dy}{y}=-p(x)dx$, $\ln |y|=-\int p(x)dx+c_1;y=e^{c_1}e^{-\int p(x)dx}=ce^{-\int p(x)dx}$. Последнее является общим решением линейного дифференциального уравнения.