MCL738 – Dynamics of Multibody Systems Lab Assignment – 7

RK4 Problem and Euler Method Problem

Ashwathram S 2022VSN9012

Qn 1) Euler Method Problem

	Classmate Date will has Pege 05
10/4/25	MBD Lab- 7
	+
	1 M. At = h = 0.1
	D(s) = ?
	V9 0(5) = ?
	2 (s) = ?
	$\theta(o) = 3^{\circ}$
	0(0) = 0°/60
	No. 2 1
	Now Equations of motion will be
	Euler's egn abt pt o,
	Sign of the appropriate to
	Since O is a pt on the body which is
	fixed to the ground, we can directly apply culer's ego abt is
	apply culer's egn abt that pt considering
	the MOI of the body abt that pt considering Hel axis theorem m To = I axis + md²
	m
	To = I md2
	hue d = d (COM at geometric center)
	Trace = mol2
	$\frac{1}{12} = \frac{m(2d)^2}{12} + \frac{4md^2}{3}$
	2 12 3
	$J_0 = md^2 + md^2 = 1 + 12$
	$ \frac{1}{3} = \frac{md^2 + md^2 = \frac{4}{3}md^2} $ Since it is
	Jaz (which which was eystem (130)
	J33 (which is Io in this case)

MATLAB Code:

```
%Constants
m = 1; %Kg
1 = 2;
ratio = 0.5;
d = ratio*l;
g = 9.8;
h = 0.01; %Time step
%Iteration - 1 without Linearization
syms theta omega;
init_t = 0;
final_t = 5;
time = init_t:h:final_t;
q_{init} = [60*pi/180;0];
q_iters = zeros([2 size(time,2)]);
q_iters(:,1) = q_init;
F = [omega; (-3/4)*g*sin(theta)/d];
```



```
%Iteration-2 after linearizing
syms theta omega;
init_t = 0;
final_t = 5;
time = init_t:h:final_t;
q_{init} = [60*pi/180;0];
q_iters = zeros([2 size(time,2)]);
q_iters(:,1) = q_init;
F = [omega; (-3/4)*g*(theta)/d];
i = 1;
digits(10);
for t = init_t:h:final_t-h
    q_iters(:,i+1) = q_iters(:,i) +
(h*vpa(subs(F,[theta,omega],transpose(q_iters(:,i)))));
    i = i+1;
end
```

plot(time,q_iters(1,:))

Date
Fage T9
Assignment:
Using RK4 method Evaluate the Soln of
12
$\frac{d^2y}{dy} - y(1-y)dy + y = 0$
alte alt
where y(0) = 1
up to $t=5$ with step size of 0.1
this t-3 will step size of 0.1
Ans:- h = 0.1, tend = Ssecs y(0) = 1; y(0) = 1
taking (1) $\dot{y} = d\dot{y}$ $\dot{y} = d\dot{y}$
$\frac{dv}{dt} = y(1-y)\dot{v} - y \cdot Y(t) = \begin{bmatrix} y \\ v \end{bmatrix}$
TO I I I
y y y y y y y y
:. Y(t) = F(Yt) = V7
MC No VI
y (1-4) o - y
$K_i = hF(y^i, t^i)$
$K_2 = hF(t+b, y+k)$
F3 = hF(t+b, 4+2)
$K_{1} = hF(y^{i}, t^{i})$ $K_{2} = hF(t^{i}+h, y^{i}+k_{1})$ $K_{3} = hF(t^{i}+h^{2}, y^{i}+k_{2})$ $K_{4} = hF(t^{i}+h^{2}, y^{i}+k_{3})^{2}$
K= 1 (K, +)K, + 2 K, K)
K= 1 (K1+2K2 + 2K3 + K4)
Y i+1 = Y i + K ; ti+1 = ti+h
LTh

MATLAB Code:

```
syms y v;
F = [v;(y*(1-y)*v)-y];
Y = [y;v];
h = 0.1;
init_t = 0;
final_t = 5;
time = init_t:h:final_t;
q_init = [1;1];
q_iters = zeros([2 size(time,2)]);
q_iters(:,1) = q_init;
i = 1;
K1 = zeros(2,1);
K2 = zeros(2,1);
K3 = zeros(2,1);
K4 = zeros(2,1);
K = zeros(2,1);
y_{iter} = zeros(2,1);
digits(10);
for t = init_t:h:final_t-h
    y_iter = (double(subs(Y,[y,v],transpose(q_iters(:,i)))));
    K1 = h*((double(subs(F,[y,v],transpose(y_iter)))));
    K2 = h*((double(subs(F,[y,v],transpose(y_iter + (K1/2))))));
    K3 = h*((double(subs(F,[y,v],transpose(y_iter + (K2/2))))));
    K4 = h*((double(subs(F,[y,v],transpose(y_iter + (K3))))));
    K = (K1 + (2*K2) + (2*K3) + (K4))/6;
    q_iters(:,i+1) = q_iters(:,i) + K;
    i = i+1;
end
plot((time),q_iters(1,:));
```


plot((time),q_iters(2,:));

