Étude d'un Système Numérique et d'Information Option A (IR) - Session 2019 Correction tv (version 0.9)

Système de localisation d'avions au sol par flammes connectées

Partie A. Analyse des exigences du système

Q1. Diagramme

Q2. Contrainte : structure de l'avion non modifiable

Partie B. Optimisation de la flamme

Q3.

Trame: \$GPGGA,235942.800,,,,,0,00,,,M,,M,,*7B

Champ Position Fix Indicator : **0** → **Fix not available 6** virgules

Trame : 38 caractères + <CR> + <LF> = 40 caractères Format : 1 bit START + 8 bits DATA + 1 STOP = 10 bits

Total = $40 \times 10 = 400$ bits

Temps transmission = $400 / 9600 = 0,041666667 \text{ s} \rightarrow 41,67 \text{ ms}$

Q5. Trame MTK: **\$PMTK314,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0***XX**<**CR>**<**LF>

Partie C. Amélioration du système

Q6.

Remarque : certains mettraient une association avec l'avion ! Pour moi, l'avion ne devrait pas apparaître à la base sur ce diagramme (il ne tire aucun bénéfice observable de ce système et il est cité dans les cas d'utilisation !).

```
HYT221
Q7.
class Capteur_T_HR
{
    private:
        I2C *liaisoni2c;
        unsigned char adresse;
        double temperature;
        double humiditeRelative;
    public:
        Capteur_T_HR(I2C *i2c);
        Capteur_T_HR(I2C *i2c, unsigned char adresse);
        double getTemperature();
        double getHumiditeRelative();
        bool acquerirDonnees();
};
Q8.
Capteur_T_HR(I2C *i2c) : liaisoni2c(i2c), adresse(0x28)
{
ž
// ou :
Capteur_T_HR(I2C *i2c)
{
    liaisoni2c = i2c;
    adresse = 0x28;
}
Capteur_T_HR(I2C *i2c, unsigned char adresse) : liaisoni2c(i2c),
adresse(adresse)
{
}
```

Capteur_T_HR(I2C *i2c, unsigned char adresse)

liaisoni2c = i2c;

this->adresse = adresse;

{

}

Q9. Décodage:

1	2	3	4	5	6	7	8	9	10	11	12
00	25	2A	26	21	FF	FB	59	4A	10	1F	FF

→ Terminal Aeropuerto de Sevilla, Calle Aeropuerto Viejo, 41019 Séville, Espagne!

Q10. L'informaticien n'a pas de règle! TODO: Trouver une règle!

```
10.3 \text{ cm x } 250 \text{ m} = 2.575 \text{ km}
```

Q11. À 5 Km près, l'erreur est acceptable

Q12. Sérieusement!

Q13. Partie entière Sigfox : 48° + partie décimale GPS ,000018 = 48,000018 ce qui donne un écart de 1° par rapport à la position réelle de 49° soit une centaine de kilomètres.

Q14.

```
double Position::recomposerCoordonnee(double coordonneeSigFox, double
coordonneeGPS)
{
    unsigned long partieDecSigFox;
    partieDecSigFox = extrairePartieDecimale(coordonneeSigFox);
    unsigned long partieDecSigGPS;
    partieDecSigGPS = extrairePartieDecimale(coordonneeGPS);
    long difference = partieDecSigFox - partieDecGPS;
    int partieEntiere = static_cast<int>(coordonneeSigFox);
    if(abs(difference) > (OFFSET/2))
       if(((coordonneeSigFox > 0.) && (partieDecSigFox < (OFFSET/2))) ||
           ((coordonneeSigFox <= 0.) && (partieDecSigFox > (OFFSET/2))))
       {
           --partieEntiere;
       }
       else
       {
           ++partieEntiere;
    return partieEntiere;
}
```

Partie D. Évolution de la base de données du cloud Airbus

Q15. Clé primaire : id et Autre champ : sigfoxID

Q16. **avionId** clé étrangère de la table FlammeConnectee qui correspond à la clé primaire id de la table Avion

Q17. SQL:

SELECT id FROM FlammeConnectee WHERE sigfoxID = '1D188E';

Q18.

INSERT INTO DonneesFlamme (latitude, longitude, date, batterie, flammeid) VALUES ('43.631310', '1.370395', '3.2', '2018/03/20 00:30:00', '2');

Q19. FlammeConnectee ???

ALTER TABLE DonneesFlamme

ADD complet boolean default false, //ou bool, binary(1) ou tinyint(1) ???

ADD temperature float,

ADD humiditeRelative float

Partie E. Circulation de l'information depuis le cloud Airbus

Q20.

Adresse multicast: **ff1e**::e100:0025

Unicast	Multicast	Permanente	Temporaire	Portée limitée	Porté globale
	X ff00::/8		X FLGS = 0001 T=1		X SCOP=E

Q21. Adresse multicast (Id de groupe de diffusion 32 bits) : **ff1e**:: $e100:0025 \rightarrow 225.0.0.37$

Q22.

Serveur « filtrage » → Serveur « gestion des emplacements »

	Trame sur DMZ	Trame sur « backbone »	Trame sur « services internes aéroport »
MAC Source	74-D4-35-BE-95-75	D4-BE-D9-BE-96- <u>E3</u>	00-01-C9-AA-10- <u>1D</u>
MAC Destination	D4-BE-D9-BE-96- <u>E2</u>	00-01-C9-AA-10- <u>1F</u>	74-D4-35-BE-97-8C
IP Source	10.31.48.20	10.31.48.20	10.31.48.20
IP Destination	10.31.16.50	10.31.16.50	10.31.16.50

Q23. Même chemin : FORWARD eth2 → eth1

ip6tables -A FORWARD -i eth2 -o eth1 -d ff10::/12 -j ACCEPT

Q24. eth2 (INTERNET) \rightarrow eth1 (DMZ)

Q25. 10.31.48.0/20

30 compagnies \rightarrow **5 bits** (2⁵ = 32 sous-réseaux)

Masque sous-réseaux = 20 + 5 = /25 (255.255.255.128)

host-id = 32 - 25 = 7 bits $(2^7 - 2 = 126 \text{ hôtes max})$

	Adresse sous- réseau	Masque CIDR	Broadcast	Plage	Nb max hôtes
Premier	10.31.48.0	/25	10.31.48.127	10.31.48.1 à 10.31.48.126	$2^7 - 2 = 126$
Deuxième	10.31.48.128	/25	10.31.48.255	10.31.48.129 à 10.31.48.254	$2^7 - 2 = 126$

Le troisième en 10.31.49.0, puis 10.31.49.128, ...

Q26.

	Valeur
Adresse IP source	10.31.16.5
Adresse IP destination	10.31.16.101
Date	2018/03/04 03:45:00
Latitude	43.631201
Longitude	1.371171

Q27. Src Port : 8080 → Serveur Web

Partie F. Analyse de l'application de filtrage sur le serveur de l'aéroport

Q28. Classe RecepteurMcast et Méthode traitementSurReception()

Remarque : il aurait été bien d'indiquer sur le diagramme les classes actives et leurs stéréotypes (<<thread>>).

Q29.

36: pthread_mutex_lock(&semMessage); // tente de verrouiller le mutex afin d'accéder à la ressource critique (buffer)

40 : pthread_mutex_unlock(&semMessage) ; // déverrouille le mutex afin de libérer l'accès à la ressource critique (buffer)