Key Terms

- Well Ordering Axiom every nonempty subset of the set of positive integers contains smallest element
- Prime an integer is considered prime if the only divisors are ± 1 and \pm itself
- Relatively Prime two integers whose GCD is 1

Theorems

Theorem. Division Algorithm

Let a,b be integers with b > 0. Then there $\exists q \text{ and } r \in \mathbb{Z} \text{ such that } a = bq + r$. where $0 \geq r < b$

Theorem. Fundamental Theorem of Arithmetic

 $\forall n \in \mathbb{Z} \ except \ 0 \ is \ a \ product \ of \ primes$

Theorem. Let n > 1. If n has no positive prime factors less than or equal to \sqrt{n} then n is prime

Practice Problems

1. Find the quotient q and remainder r when a is divided by b w/o the usage of technology

(a)
$$a = 17 b = 4$$

(b)
$$a = -51$$
 and $b = 6$

2. Let a be any integer and let b and c be any integer divided by b, the quotient be q, and the remainder be r, so that

$$a = bq + r; 0 \ge r < b$$

- 3. Find the GCD
 - (a) (56,72)
 - (b) (143, 231)
- 4. Express the numbers as a product of primes
 - (a) 5040

- (b) 2042040
- 5. Which of the following are prime
 - a) $2^5 1$

b) 1951