Домашнее задание 5 (тервер)

Андрей Зотов

Октябрь 2023

Задача 1

Ответ: $\frac{0.6}{\sqrt{0.56}} \approx 0.80$.

Решение.

По определению $\rho_{X,Y} = \frac{\mathbf{Cov}(X,Y)}{\sigma_X \sigma_Y} = \frac{\mathbb{E}(XY) - \mathbb{E} X \mathbb{E} Y}{\sigma_X \sigma_Y}$. Поэтому требуется знать распределения величин X,Y и XY. Эти распределения имеют вид:

7	<u> </u>	0	1	Y	0	1	XY	0	1
I)	0.6	0.4	P	0.7	0.3	P	0.7	0.3

Отсюда $\mathbb{E} X = 0.4$, $\mathbb{E} Y = 0.3$, $\mathbb{E}(XY) = 0.3$, $\mathbb{E} X^2 = 0.4$, $\mathbb{E} Y^2 = 0.3$ и поэтому:

$$Var(X) = \mathbb{E} X^2 - (\mathbb{E} X)^2 = 0.4 - 0.4^2 = 0.24;$$

$$\mathbf{Var}(Y) = \mathbb{E} Y^2 - (\mathbb{E} Y)^2 = 0.3 - 0.3^2 = 0.21;$$

$$\sigma_X = \sqrt{0.24}, \ \sigma_Y = \sqrt{0.21}.$$

Таким образом:

$$\rho_{X,Y} = \frac{\mathbb{E}(XY) - \mathbb{E}X\mathbb{E}Y}{\sigma_X \sigma_Y} = \frac{0.3 - 0.4 \cdot 0.3}{\sqrt{0.24}\sqrt{0.21}} = \frac{0.18}{\sqrt{0.24}\sqrt{0.21}} = \frac{0.6}{\sqrt{0.56}} \approx 0.80.$$

Задача 2

Ответ: a) $\frac{1}{3}$; б) $\frac{1}{\sqrt{5}} \approx 0.45$.

а) Т.к. $Y \sim U(-1,1)$, то $\mathbb{E} Y = 0$, $\mathbf{Var}(Y) = \frac{2^2}{12} = \frac{1}{3}$ и т.к. X и Y независимы, то $\mathbb{E}(XY) = \mathbb{E} X \mathbb{E} Y = 0$, поэтому

$$\mathbf{Cov}(Z,Y) = \mathbb{E}(ZY) - \mathbb{E}\,Z\,\mathbb{E}\,Y = \mathbb{E}(2XY + Y^2) = \mathbb{E}\,Y^2 = \mathbf{Var}(Y) + (\mathbb{E}\,Y)^2 = \frac{1}{3} + 0 = \frac{1}{3}.$$

б) По определению $\rho_{Z,Y} = \frac{\mathbf{Cov}(Z,Y)}{\sigma_Z\sigma_Y}$. Ранее мы нашли, что $\mathbf{Cov}(Z,Y) = \frac{1}{3}$. Также понятно, что $\sigma_Y = \sqrt{\mathbf{Var}(Y)} = \frac{1}{\sqrt{3}}$. Учитывая, что X и Y независимы, а также, что $\mathbf{Var}(X) = \mathbf{Var}(Y) = \frac{1}{3} \left(X \sim U(-1,1) \right)$ получаем, что $\mathbf{Var}(Z) = \mathbf{Var}(2X + Y) = 4\mathbf{\,Var}(X) + \mathbf{Var}(Y) = \frac{4}{3} + \frac{1}{3} = \frac{5}{3}$, т.е. $\sigma_Z = \sqrt{\frac{5}{3}}$. Поэтому:

$$\rho_{Z,Y} = \frac{\mathbf{Cov}(Z,Y)}{\sigma_Z \sigma_Y} = \frac{\frac{1}{3}}{\sqrt{\frac{5}{3}} \cdot \frac{1}{\sqrt{3}}} = \frac{1}{\sqrt{5}} \approx 0.45.$$

Задача 3

Ответ: a) $\mathbb{E}(X|Y=1)=1$, $\mathbb{E}(X|Y=3)=2$; б) 0.6; в) $\frac{1}{2}+\frac{Y}{2}$.

Решение.

а) Заметим, что P(Y = 1) = 0.6, поэтому

$$\mathbb{E}(X|Y=1) = \sum_{x \in \{0,2,3\}} x \cdot P(X=x|Y=1) = \sum_{x \in \{0,2,3\}} x \cdot \frac{P(X=x,Y=1)}{P(Y=1)} = \frac{1}{2} \sum_{x \in \{0,2,3\}} x \cdot \frac{P(X=x,Y=1)}{P(Y=1)} = \frac{1}{2} \sum_{x \in \{0,2,3\}} x \cdot \frac{P(X=x,Y=1)}{P(X=x,Y=1)} = \frac{1}{2} \sum_{x \in \{0,2,3\}} x \cdot \frac{P(X=x,Y=1)}{P(X=x,Y=1)}$$

$$= \frac{1}{P(Y=1)} \cdot (2 \cdot P(X=2, Y=1) + 3 \cdot P(X=3, Y=1)) = \frac{3 \cdot 0.2}{0.6} = 1.$$

И т.к. P(Y=3)=0.4, то аналогично получаем:

$$\mathbb{E}(X|Y=3) = \frac{2 \cdot P(X=2, Y=3) + 3 \cdot P(X=3, Y=3)}{P(Y=3)} = \frac{2 \cdot 0.4 + 3 \cdot 0}{0.4} = 2.$$

- б) Т.к. P(Y=1)=0.6, то $\mathbb{E}(X|Y)$ принимает значение $\mathbb{E}(X|Y=1)$ с вероятностью 0.6. в) Т.к. при Y=1 получаем $\frac{1}{2}+\frac{Y}{2}=1=\mathbb{E}(X|Y=1)$ и при Y=3 получаем $\frac{1}{2}+\frac{Y}{2}=2=\mathbb{E}(X|Y=3)$, то $\mathbb{E}(X|Y) = \frac{1}{2} + \frac{Y}{2}.$

Задача 4

Otbet: $\sin Y(Y^2 + 4Y + 8)$

Решение.

Учитывая независимость X, Y и то, что $\mathbb{E} X = 2$, $\mathbb{E} X^2 = \mathbf{Var}(X) + (\mathbb{E} X)^2 = 4 + 4 = 8$ (т.к. $X \sim N(2,4)$) получаем

$$\mathbb{E}((X+Y)^2 \sin Y | Y) = \sin Y \, \mathbb{E}(X^2 + 2XY + Y^2 | Y) = \sin Y (\mathbb{E}(X^2 | Y)) + 2Y \, \mathbb{E}(X | Y) + \mathbb{E}(Y^2 | Y)) =$$

$$= \sin Y (\mathbb{E}(X^2 + 2Y \, \mathbb{E}(X + Y^2)) = \sin Y (Y^2 + 4Y + 8).$$

Задача 5

Ответ: a) $\frac{1}{100}$; б) $\leq \frac{1}{99^2} \approx 0.0001$.

Решение.

а) Пусть T время обработки запроса. Тогда $\mathbb{E}\,T=1$ секунда. Т.к. величина T неотрицательна, то по неравенству Маркова для искомой вероятности получаем:

$$P(T \ge 100) \le \frac{\mathbb{E}\,T}{100} = \frac{1}{100}$$

когда распределение T имеет вид (T=0) и в 1% случаев за T=100 секунд.

б) Согласно неравенству Чебышева $P(|T - \mathbb{E}T| \ge \varepsilon) \le \frac{\mathbf{Var}(T)}{\varepsilon^2}$. Т.к. $T \ge 0$, то $|T - 1| \ge 99 \Leftrightarrow T \ge 100$, поэтому

$$P(T \ge 100) \le \frac{1}{90^2} \approx 0.0001.$$

Задача 6

Ответ: 60 минут.

Решение.

Пусть T - время решения задачи. Тогда $\mathbb{E} T=40$ и $P(T\leq 30)=\frac{1}{2}\Rightarrow P(T>30)=1-\frac{1}{2}=\frac{1}{2}.$ Также известно, что $\mathbb{E}(T|T \le 30) = 20.$

По определению $\mathbb{E}(T|T\leq 30)=\frac{\mathbb{E}(T\cdot I_{T\leq 30})}{P(T\leq 30)}$ и $\mathbb{E}(T|T>30)=\frac{\mathbb{E}(T\cdot I_{T>30})}{P(T>30)}$, где $I_{T\leq 30},I_{T>30}$ - индикаторы соответствующих событий. Поэтому:

$$\mathbb{E}(T|T \le 30)P(T \le 30) + \mathbb{E}(T|T > 30)P(T > 30) = \mathbb{E}(T \cdot I_{T < 30}) + \mathbb{E}(T \cdot I_{T > 30}) = \mathbb{E}(T \cdot I_{T < 30} + T \cdot I_{T > 30}) = \mathbb{E}(T \cdot I_{T < 30})$$

Или то же самое после подстановки числовых значений:

$$20 \cdot \frac{1}{2} + \mathbb{E}(T|T > 30) \cdot \frac{1}{2} = 40.$$

$$\updownarrow$$

$$\mathbb{E}(T|T > 30) = 60.$$

Что и требовалось найти.

Задача 7

Ответ: $50 \cdot \left(\frac{49}{50}\right)^{20} \approx 33.4.$

Решение.

Пусть событие $A_i=$ «i-й сайт не взломан». Пусть событие $H^i_j=$ «i-й сайт не был взломан j-м хакером». Тогда $A_i = \bigcap_{j=1}^{20} H_j^i$ и т.к. каждый хакер выбирает цель независимо, то при фиксированном і события H_i^j независимы в совокупности, т.е. $P(A_i) = \prod_{j=1}^{20} P(H_j^i)$. Если j-й хакер не атаковал i-й сайт, значит он атаковал любой из 50 кроме і-го, т.е. любой из 49 сайтов. А т.к. ј-й хакер атакует любой сайт равновероятно, то $P(H_j^i)=\frac{49}{50}$. Отсюда $P(A_i)=\left(\frac{49}{50}\right)^{20}$. Пусть X - число не взломанных сайтов. Тогда если I_{A_i} - индикатор события A_i , то

$$X = \sum_{i=1}^{50} I_{A_i} \Rightarrow \mathbb{E} X = \sum_{i=1}^{50} \mathbb{E} I_{A_i} = \sum_{i=1}^{50} P(A_i) = 50 \cdot \left(\frac{49}{50}\right)^{20} \approx 33.4.$$