		History		
Type	Author	Citation	Literature Cutoff Date	
Full Evaluation	Balraj Singh	NDS 141, 327 (2017)	22-Mar-2017	

 $Q(\beta^{-})=-1970 \text{ SY}; S(n)=6384 \text{ 7}; S(p)=5891 \text{ } 12; Q(\alpha)=7027 \text{ 5}$ 2017Wa10

Estimated uncertainty=120 for $Q(\beta^-)$ (2017Wa10).

S(2n)=11559 7, S(2p)=10433 12 (2017Wa10).

1955Ch30 produced and identified ²⁵⁶Fm in neutron irradiation of ²⁵⁵Es, and β⁻ decay of ²⁵⁶Es at Berkeley. Measured half-life from decay curve for spontaneous fission. Later studies: of ²⁵⁶Fm decay: 1958Ph40, 1965Si14, 1968Ho13, 1972Fl04, 1981Lo15. Theoretical calculations: consult the Nuclear Science References (NSR) database for about 200 theory references. 2014Sh07, 2013Af01, 2013Pr08, 2012Jo05: nuclear structure theory references.

²⁵⁶Fm Levels

Assignments to band members are from depopulation patterns, and energy fit to rotational bands.

Cross Reference (XREF) Flags

- **A** 256 Es β^{-} decay (25.4 min)
- **B** 256 Es β^{-} decay (7.6 h)
- C 256 Md ε decay (77.7 min)

				ind a doody (7777 mm)
E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
0.0#	0+	157.1 min <i>13</i>	ВС	%α=8.1 3; %SF=91.9 3 $T_{1/2}$: weighted average of 150 min 4 (1981Lo15), 157.6 min 13 (1972Fl04), 157 min 2 (1968Ho13), 162 min 6 (1965Si14), 160 min 10 (1958Ph40). Other: ≈3-4 h (1955Ch30). Branching: $\alpha/(\alpha+SF)=0.081$ 3 was determined by 1968Ho13 from α and SF counts.
				Other measurement: $SF/\alpha=35$ 10 (1965Si14).
				Emission of α rays, tritons and protons in the SF of ²⁵⁶ Fm was studied by 1985Wi10.
48.12 [#] <i>16</i>	2+‡		ВС	
159.60 [#] 20	4+ ‡		BC	
332.2 [#] 3	6+‡		В	
563.3 [#] 3	8+‡		В	
682.21 [@] 14	(2+)		ВС	J^{π} : relative photon intensities of transitions to 0^+ and 2^+ states of g.s. band suggest $J^{\pi}=2^+$.
725.43 [@] 19	(3^{+})		ВС	
783.20 [@] 22	(4^{+})		В	
853.4 [@] 5	(5^{+})		В	
881.59& <i>19</i>	(2-)		В	J^{π} : γ transitions to the (2 ⁺),(3 ⁺) states of K=2 γ -vibrational band, and γ to only 2 ⁺ of the K=0 g.s. band; no γ rays to 0 ⁺ ,4 ⁺ of the K=0 g.s. band.
922.03 <mark>&</mark> 23	(3^{-})		В	
938.8 [@] 16	(6^{+})		В	
978.1 <mark>&</mark> 5	(4^{-})		В	
1039.0 [@] 4	(7^{+})		В	
1045.1 <mark>&</mark> 5	(5^{-})		В	
1099.73 ^a 18	(3+)		В	J^{π} : γ transitions to 2^+ , (2^-) and 4^+ state rule out J<2, 2^- , J>3 for 1099.7 level; 218.1 γ to (2^-) might be E1, as deduced from intensity balance at the 882.8 level in 7.6-h 256 Es β^- decay. The probable J^{π} values, then, are 2^+ and 3^+ . From the

Adopted Levels, Gammas (continued)

²⁵⁶Fm Levels (continued)

E(level) [†]	${ m J}^{\pi}$	$T_{1/2}$	XREF	Comments		
				branching ratios of deexciting gammas, 1989Ha10 suggested $J^{\pi}=3^{+}$ which is consistent with absence of γ to the 0^{+} g.s.		
1123.0 <mark>&</mark> 5	(6-)		В			
1150.3? [@]	(8^{+})		В			
1150.4 <mark>a</mark> 4	(4+)		В			
1213.5? <mark>&</mark> <i>11</i>	(7^{-})		В			
1251.6 ^b 4	(5 ⁺)		В	J^{π} : γ transitions to (3 ⁺) and (4 ⁺) states of K=2 band, but no γ to 2 ⁺ bandhead imply J^{π} of 5 ⁺ for the 1251.6 level.		
1326.17 18	(1^+)		C	Proposed configuration= $v7/2[613] \otimes v9/2[615]$ (2000Ah02).		
1328.3? ^b 4	(6^{+})		В	J^{π} : from probable (E1) character of the 96.8 γ from (7 ⁻) isomeric state.		
1360.4 <i>3</i>	(2^{+})		C	Proposed configuration= $v7/2[613] \otimes v9/2[615]$ (2000Ah02).		
1374.19 <i>18</i>	(1^{-})		C	Proposed configuration= $\pi 7/2[633] \otimes \pi 7/2[514]$ (2000Ah02).		
1405.27 <i>21</i>	(2^{-})		C	Proposed configuration= $\pi 7/2[633] \otimes \pi 7/2[514]$ (2000Ah02).		
1425.1 <i>3</i>	(7^{-})	70 ns 5	В	%IT=100		
				$T_{1/2}$: from 1989Ha10 by $(\beta)(231\gamma)(t)$ data. The observed β -delayed fission activities were consistent with this half-life.		
				The partial half-life for fission was deduced by 1989Ha10 as 0.8 ms +88–7 from the β -delayed-fission probability of 2×10^{-5} (measured number of delayed fissions/total number of β^- decays of 7.6-h 256 Es; two fission events were observed.).		
				J^{π} : γ transitions to 8^+ and (5^-) states, relative photon intensities of deexciting γ rays, and nonobservation of transitions to 5^+ , 4^+ states suggest $J^{\pi}=(7^-)$. 1989Ha10 pointed out that this level could be analogous to the 7^- , two-quasiparticle state predicted for 254 Fm by 1964So02: $K^{\pi}=7^-$, $\pi/2[633]\otimes\pi/2[514]$.		
1559.8 <i>4</i>	(7 ⁺ ,8 ⁺)		В	J^{π} : log ft for the β branch from 7.6-h 256 Es indicates an allowed transition, if completion of the decay scheme would not decrease β intensity considerably. If $J^{\pi}(7.6\text{-h}\ ^{256}\text{Es parent})=8^+$, then $\pi(1560\ \text{level})=+$. From γ transition to the (7^-) state, $J^{\pi}=7^+$ or 8^+ may be deduced. Because of the assumptions made, however, these suggested spins should be considered as very tentative.		

 $^{^{\}dagger}$ From least-squares fit to Ey values.

^b Band(E): $K^{\pi}=(5^+)$ band.

						γ ⁽²⁵⁶ Fm)	
$E_i(level)$	\mathtt{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f J_f^{π}	Mult.	α [#]	$I_{(\gamma+ce)}$
48.12	2+	(48.3 [‡] 3)		$0.0 0^{+}$	[E2]	832	100
159.60	4+	111.6 2	100	$48.12 \ 2^{+}$	[E2]	15.96	
332.2	6+	172.6 2	100	159.60 4+	[E2]	2.40	
563.3	8+	231.1 2	100	332.2 6 ⁺	[E2]	0.772	
682.21	(2^{+})	634.1 ^a 2	94 <mark>a</mark> 10	$48.12 \ 2^{+}$			
		682.2 2	100	$0.0 0^{+}$			
725.43	(3^{+})	565.9 <i>3</i>	23 4	159.60 4+			
		677.4 2	100 8	$48.12 \ 2^{+}$			
783.20	(4^{+})	450.8 <i>15</i>	13	$332.2 6^+$			

[‡] Strong evidence for the presence of rotational band based on g.s.

[#] Band(A): $K^{\pi} = 0^{+}$ band.

[@] Band(B): $K^{\pi} = (2^+) \gamma$ -vibrational band.

[&]amp; Band(C): K^{π} =(2⁻) octupole-vibrational band. ^a Band(D): K^{π} =(3⁺) band.

Adopted Levels, Gammas (continued)

γ (256Fm) (continued)

$E_i(level)$	\mathtt{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}
783.20	(4^{+})	623.5 2	100	159.60 4+
853.4	(5^{+})	693.8 <i>15</i>	100	159.60 4+
881.59	(2^{-})	156 2	1.5	725.43 (3 ⁺)
		199.3 2	26	682.21 (2 ⁺) 48.12 2 ⁺
922.03	(3^{-})	833.5 2 141 2	100 4	48.12 2 ⁺ 783.20 (4 ⁺)
922.03	(3)	197.4 ^b 5	35	785.20 (4°) 725.43 (3 ⁺)
		762.7 2	100	159.60 4 ⁺
938.8	(6^+)	606.6 15	100	332.2 6+
978.1	(4^{-})	252.7 5	100	725.43 (3+)
1039.0	(7^{+})	185.7 5	22	853.4 (5 ⁺)
		706.8 2	100	332.2 6+
1045.1	(5^{-})	(67.0 [‡])		978.1 (4 ⁻)
1000.72	(2±)	192 2 178.0 [@] 2	-10	853.4 (5 ⁺)
1099.73	(3^{+})		≤19	922.03 (3-)
		218.1 2 316.4 2	100 18	881.59 (2 ⁻) 783.20 (4 ⁺)
		374.2 2	25	725.43 (3 ⁺)
		417.6 2	27	682.21 (2 ⁺)
		940.1 15	14	159.60 4+
		1051.5 2	45	48.12 2+
1123.0	(6-)	(78.0^{\ddagger})		1045.1 (5 ⁻)
1150.3?	(0±)	269.5 5 211.2 [@] b 5		853.4 (5 ⁺)
1130.3?	(8+)	586.6 ^b 15		938.8 (6 ⁺) 563.3 8 ⁺
1150.4	(4 ⁺)	(50.8^{\ddagger})		1099.73 (3 ⁺)
1213.5?	(7^{-})	(90.5^{\ddagger})		1123.0 (6 ⁻)
	(5^+)	397.2^{b} 5	02	853.4 (5 ⁺)
1251.6	(3.)	397.2° 3 468.4 5	82 100	783.20 (4 ⁺)
		526.1 5	91	725.43 (3 ⁺)
1326.17	(1^{+})	600.8 4	17 <i>3</i>	725.43 (3+)
		644.0 2	100 8	$682.21 (2^+)$
		1278.0 <i>3</i>	14 2	48.12 2+
		1326.1 & 3	33 ^{&} 3	$0.0 0^{+}$
1328.3?	(6^{+})	(76.8 [‡])		1251.6 (5+)
		178.0 [@] 2		1150.4 (4+)
1360.4	(2^{+})	634.1^{ab} 2	76 ^a 30 a	725.43 (3+)
		677.3 <i>ab</i> 2		682.21 (2+)
		1200.6 5	42 9	159.60 4+
1374.19	(1=)	1312.3 <i>3</i> 692.0 2	100 <i>9</i> 100 <i>8</i>	48.12 2 ⁺ 682.21 (2 ⁺)
13/4.19	(1^{-})	1326.1 & 3	49 & 4	682.21 (2 ⁺) 48.12 2 ⁺
		1326.1 3	52 <i>6</i>	$0.0 0^{+}$
1405.27	(2^{-})	680.0 3	70 <i>6</i>	725.43 (3 ⁺)
1703.47	(2)	723.0 2	82 9	682.21 (2 ⁺)
		1357.1 3	100 9	48.12 2+
1425.1	(7^{-})	96.8 2	13	1328.3? (6 ⁺)
		211.2 ^{@b} 5	≤4.4	1213.5? (7-)
		275.3 ^b 2	5.8	1150.3? (8+)
		302.0 5	4.2	1123.0 (6 ⁻)
		380.0 5	1.9	1045.1 (5 ⁻)

Adopted Levels, Gammas (continued)

γ (256Fm) (continued)

$$E_i(\text{level})$$
 J_i^{π}
 E_{γ}^{\dagger}
 I_{γ}^{\dagger}
 E_f
 J_f^{π}
 Mult.
 $\alpha^{\#}$

 1425.1
 (7^-)
 861.8 2
 100
 563.3 8+

 1092.9 2
 47
 332.2 6+

 1559.8
 (7^+,8^+)
 134.7 2
 100
 1425.1 (7^-)
 [E1]
 0.0735

- [†] From 7.6-h 256 Es β^- decay or 256 Md ε decay, when independent levels are populated in each. For 682 and 725 levels, populated in both the decays, unweighted averages are taken.
- [‡] Transition has not been observed; its energy is from level scheme.
- # Theoretical values from BrIcc code (2008Ki07) using "Frozen orbital" approximation.
- [@] Multiply placed.
- & Multiply placed with undivided intensity.
- ^a Multiply placed with intensity suitably divided.
- ^b Placement of transition in the level scheme is uncertain.

Level Scheme

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

---- γ Decay (Uncertain)

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

---- γ Decay (Uncertain)

 $^{256}_{100}\mathrm{Fm}_{156}$

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

- → γ Decay (Uncertain)

 $^{256}_{100}\mathrm{Fm}_{156}$

$$^{256}_{100}\mathrm{Fm}_{156}$$

0.0