Imię i nazwisko:				
Logika e	dla informatyków			
Egzamin połówkowy (część licencjacka)				
	2 grudnia 2009			
12	a grudina 200 <i>9</i>			
równoważne oraz w φ występuje mniej spój W prostokąt poniżej wpisz formułę w dy	ała φ jest uproszczeniem formuły ψ jeśli obie formuły są ników logicznych niż w ψ . sjunkcyjnej postaci normalnej będącą uproszczeniem for- $(0,0)$ lub słowo "NIE", jeśli taka formuła nie istnieje.			
	iżej wpisz formułę z trzema zmiennymi wolnymi $x,y,z,$ ralnych) mówi, że z jest najmniejszą wspólną wielokrot-			
	zbiory A, B i $C,$ że $A \cup B \cup C \neq \emptyset$ oraz $A \setminus (B \div C) =$ j wpisz przykład takich trzech zbiorów. W przeciwnym			

Zadanie 4 (1 punkt). Dla $s \in \mathbb{R}$ niech $A_s = \{x \in \mathbb{R} \mid s \leq x\}$. W prostokąt poniżej wpisz wyliczoną wartość zbioru $\bigcap_{t \in [0,t]} \bigcup_{t \in [0,t]} A_t$, tzn. wpisz wyrażenie oznaczające ten sam zbiór i nie zawierające żadnego
z symboli $\cap, \cup, \exists, \forall, s, t$.
Zadanie 5 (1 punkt). W prostokąt poniżej wpisz liczbę różnych relacji równoważności na zbiorze $\{a, b, c\}$.
Zadanie 6 (1 punkt). Rozważmy relacje $R = \{\langle m, n \rangle \in \mathbb{N} \times \mathbb{N} \mid n = m+2 \}$ i $S = \{\langle m, n \rangle \in \mathbb{N} \times \mathbb{N} \mid \exists k \in \mathbb{N} \mid n = k \cdot m \}$. W prostokąt poniżej wpisz taką formułę φ , że $SR = \{\langle m, n \rangle \in \mathbb{N} \times \mathbb{N} \mid \varphi \}$.
Zadanie 7 (1 punkt). Jeśli istnieje bijekcja $f: \mathcal{P}([0,1]) \times [2,3] \to [0,1] \times \mathcal{P}([2,3])$, to w prostokąt poniżej wpisz dowolną taką bijekcję. W przeciwnym wypadku wpisz słowo "NIE".
Zadanie 8 (1 punkt). Jeśli dla dowolnej funkcji różnowartościowej $f:A\to B$ i dla dowolnych zbiorów $X,Y\subseteq A$ zachodzi równość $f(X\setminus Y)=f(X)\setminus f(Y)$, to w prostokąt poniżej wpisz słowo "TAK". W przeciwnym przypadku wpisz odpowiedni kontrprzykład.

Imię i nazwisko:	
Oddane zadania:	

Logika dla informatyków

Egzamin połówkowy (część zasadnicza)

12 grudnia 2009

Każde z poniższych zadań będzie oceniane w skali od -2 do podanej przy zadaniu liczby punktów. Osoba, która nie rozpoczęła rozwiązywać zadania otrzymuje za to zadanie 0 punktów.

Zadanie 9 (12 punktów). Mówimy, że formuła φ rachunku zdań należy do 3-CNF, jeżeli ma ona postać

$$\bigwedge_{i=1}^{n} \left(l_{i1} \vee l_{i2} \vee l_{i3} \right),\,$$

gdzie l_{ij} , dla $i=1,\ldots,n$ i j=1,2,3, są literałami, czyli zmiennymi zdaniowymi lub zanegowanymi zmiennymi zdaniowymi. Symbolem 3-CNF(V) oznaczamy zbiór formuł należących do 3-CNF, w których występują jedynie zmienne ze zbioru V.

Przez QBF oznaczamy rozszerzenie zbioru formuł rachunku zdań zadane regułami (i) każda formuła rachunku zdań należy do QBF, oraz (ii) jeżeli φ należy do QBF i p jest zmienną zdaniową to $\exists p \varphi$ należy do QBF.

Znaczenie formuł QBF jest zadane takimi samymi regułami jak znaczenie formuł rachunku zdań oraz dodatkową regułą

$$\hat{\sigma}(\exists p\varphi) \ = \ \begin{cases} \mathsf{T}, & \mathrm{gdy} \ \hat{\sigma}(\varphi[p/\top]) = \mathsf{T} \ \mathrm{lub} \ \hat{\sigma}(\varphi[p/\bot]) = \mathsf{T}, \\ \mathsf{F}, & \mathrm{w} \ \mathrm{przeciwnym} \ \mathrm{przypadku}. \end{cases}$$

(a) Udowodnij, że istnieje taka formuła φ należąca do 3-CNF, że formuła $p_1 \lor p_2 \lor p_3 \lor p_4 \lor p_5$ jest równoważna formule $\exists x_1 \exists x_2 \varphi$.

Wskazówka: Rozważ formułę $(x \leftrightarrow (p_1 \lor p_2)) \land (x \lor p_3 \lor p_4 \lor p_5)$.

(b) Udowodnij, że formuła $p_1 \vee p_2 \vee p_3 \vee p_4 \vee p_5$ nie jest równoważna żadnej formule ze zbioru 3-CNF($\{p_1,p_2,p_3,p_4,p_5\}$).

Zadanie 10 (10 punktów). Niech R i S będą dowolnymi relacjami równoważności na zbiorze A. Udowodnij, że $R \cup S$ jest relacją równoważności wtedy i tylko wtedy, gdy dla wszystkich $a \in A$ zachodzi alternatywa $[a]_R \subseteq [a]_S$ lub $[a]_S \subseteq [a]_R$.

Zadanie 11 (10 punktów). Mówimy, że rodzina zbiorów $\{X_i \mid i \in \mathbb{N}\}$ jest wstępująca (odpowiednio zstępująca) jeśli dla wszystkich $i \in \mathbb{N}$ zachodzi $X_i \subseteq X_{i+1}$ (odpowiednio $X_i \supseteq X_{i+1}$). Rozważmy dwa stwierdzenia poniżej.

Stwierdzenie 1 Niech $\{A_i \mid i \in \mathbb{N}\}$ będzie taką wstępującą rodziną zbiorów, że $A_0 \subseteq \mathbb{N}$ oraz dla wszystkich $i \in \mathbb{N}$ zbiory A_i oraz A_{i+1} są równoliczne. Wtedy A_0 jest równoliczne $z \bigcup_{i \in \mathbb{N}} A_i$.

Stwierdzenie 2 Niech $\{B_i \mid i \in \mathbb{N}\}$ będzie taką zstępującą rodziną zbiorów, że $B_0 \subseteq \mathbb{N}$ oraz dla wszystkich $i \in \mathbb{N}$ zbiory B_i oraz B_{i+1} są równoliczne. Wtedy B_0 jest równoliczne $z \cap_{i \in \mathbb{N}} B_i$.

Sprawdź, które z powyższych dwóch stwierdzeń są prawdziwe. Jeśli któreś z tych stwierdzeń jest prawdziwe, to udowodnij je. Jeśli któreś jest fałszywe, to podaj odpowiedni kontrprzykład.

Student name:	
ı · · · ·	
Logic for	Computer Science
Midterm	exam (bachelor part)
Dec	cember 12, 2009
equivalent and φ contains less logical connection In the box below write a formula in disju	φ is a simplification of a formula ψ if both formulas are ectives then ψ . Incrive normal form that is a simplification of the formula or the word "NO" if such a formula does not exist.
, – ,	e a formula with three free variables x, y, z , that (intersesses that z is the least common multiple of x and y .
Task 3 (1 point) If there exist sets A	B and C, such that $A \cup B \cup C \neq \emptyset$ and $A \setminus (B - C) =$
	write an example of such three sets. Otherwise write the

Cask 4 (1 point). For $s \in \mathbb{R}$ let $A_s = \{x \in \mathbb{R} \mid s \leq x\}$. In the box below write the value of the set
$\bigcap_{t>s} \bigcup_{t>s} A_t$, that is, write an expression that denotes the same set and contains no symbols $\cap, \cup, \exists, \forall, s, t$.
Task 5 (1 point). In the box below write the number of different equivalence relations on the set $[a,b,c]$.
ask 6 (1 point). Consider relations $R = \{\langle m, n \rangle \in \mathbb{N} \times \mathbb{N} \mid n = m+2 \}$ and $S = \{\langle m, n \rangle \in \mathbb{N} \times \mathbb{N} \mid n = m+2 \}$
$x \in \mathbb{N} \ n = k \cdot m$. In the box below write a formula φ such that $SR = \{\langle m, n \rangle \in \mathbb{N} \times \mathbb{N} \mid \varphi\}$.
ask 7 (1 point). If there exists a bijection $f : \mathcal{P}([0,1]) \times [2,3] \to [0,1] \times \mathcal{P}([2,3])$, then in the box elow write an example of such a bijection. Otherwise write the word "NO".
ask 8 (1 point). If the equality $f(X \setminus Y) = f(X) \setminus f(Y)$ holds for all injections $f: A \to B$ and
l sets $X, Y \subseteq A$, then in the box below write the word "YES". Otherwise write a corresponding
unter-example.

Logic for Computer Science

Midterm exam (main part)

December 12, 2009

Task 9 (12 points). We say that a propositional formula φ is in 3-CNF form if is of the form

$$\bigwedge_{i=1}^{n} \left(l_{i1} \vee l_{i2} \vee l_{i3} \right),\,$$

where l_{ij} , for i = 1, ..., n and j = 1, 2, 3, are literals.¹ By 3 - CNF(V) we denote the set of all formulas in 3-CNF form built from variables in the set V, logical connectives and brackets.

Let QBF be a generalization of the set propositional formulas given by the rules (i) all propositional formulas are in the set QBF, and (ii) if φ is in QBF and p is a propositional variable then $\exists p \varphi$ is in QBF.

The meaning of QBF formulas is defined with the same rules as in the case of propositional formulas with one additional rule

$$\hat{\sigma}(\exists p\varphi) = \begin{cases} \mathsf{T}, & \text{if } \hat{\sigma}(\varphi[p/\top]) = \mathsf{T} \text{ or } \hat{\sigma}(\varphi[p/\bot]) = \mathsf{T}, \\ \mathsf{F}, & \text{otherwise.} \end{cases}$$

(a) Prove that there exists a formula φ in 3-CNF, such that the formula $p_1 \vee p_2 \vee p_3 \vee p_4 \vee p_5$ is equivalent to the formula $\exists x_1 \exists x_2 \varphi$.

Hint: Consider the formula $(x \leftrightarrow (p_1 \lor p_2)) \land (x \lor p_3 \lor p_4 \lor p_5)$.

(b) Prove that the formula $p_1 \vee p_2 \vee p_3 \vee p_4 \vee p_5$ is not equivalent to any formula in the set $3\text{-CNF}(\{p_1,p_2,p_3,p_4,p_5\})$.

Task 10 (10 points). Let R and S be arbitrary equivalence relations on a set A. Prove that $R \cup S$ is an equivalence relations if and only if for all $a \in A$ either $[a]_R \subseteq [a]_S$ or $[a]_S \subseteq [a]_R$.

Task 11 (10 points). We say that a family of sets $\{X_i \mid i \in \mathbb{N}\}$ is ascending (respectively, it is descending) if for all $i \in \mathbb{N}$ we have $X_i \subseteq X_{i+1}$ (respectively, $X_i \supseteq X_{i+1}$) Consider two statements below.

Statement 1 Let $\{A_i \mid i \in \mathbb{N}\}$ be an ascending family of sets such that $A_0 \subseteq \mathbb{N}$ and for all $i \in \mathbb{N}$ there exists an injection from A_{i+1} to A_i . Then there exists an injection from $\bigcup_{i \in \mathbb{N}} A_i$ to A_0 .

Statement 2 Let $\{B_i \mid i \in \mathbb{N}\}$ be a descending family of sets such that $B_0 \subseteq \mathbb{N}$ and for all $i \in \mathbb{N}$ there exists an injection from B_i to B_{i+1} . Then there exists an injection from B_0 to $\bigcap_{i \in \mathbb{N}} B_i$.

Check, which of these statements are true. If some of these statements are true then prove them. If some of them are false then give corresponding counter-examples.

¹Recall that a literal is a propositional variable or negated propositional variables. So, in other words, a formula in 3-CNF form is a conjunction of clauses with exactly three literals per clause.