A Robust Interference Model for Wireless Ad-Hoc Networks

Pascal von Rickenbach

Stefan Schmid Roger Wattenhofer Aaron Zollinger

- What is Topology Control?
- Context related work
- A robust interference model
- Interference in known topologies
- The highway model
 - Exponential node chain
 - General highway
- Conclusions

Topology Control

- Drop long-range neighbors: Reduces interference and energy!
- But still stay connected

Topology Control as a Trade-Off

- What is Topology Control?
- Context related work
- A robust interference model
- Interference in known topologies
- The highway model
 - Exponential node chain
 - General highway
- Conclusions

Reducing Interference by Graph Sparseness or Bounded Degree

- Constructions from computational geometry
 - Delaunay Triangulation [Hu 1993]
 - Minimum Spanning Tree [Ramanathan & Rosales-Hain INFOCOM 2000]
 - Gabriel Graph [Rodoplu & Meng J.Sel.Ar.Com 1999]

- Cone-Based Topology Control
 - [Wattenhofer et al. INFOCOM 2000]
 - [Li et al. PODC 2001, Jia et al. SPAA 2003]
 - [Wang & Li DIALM-POMC 2003]

local, planar, distance and energy spanner, constant node degree

-ат. INFOCOM 2002]

Interference is considered only implicitly!

Explicit Interference Definitions

- Diversity as an interference measure [Meyer auf der Heide et al. SPAA 2002]
 - Interference between edges, time-step routing model, congestion
 - Trade-offs: congestion, power consumption, dilation
 - Interference model based on network traffic
- Link-based interference model [Burkhart et al. MobiHoc 2004]
 - "How many nodes are affected by communication over a given link?"
 - Minimize the maximum interference & preserve connectivity
 - Graph sparseness or low node degree ⇒ low interference

Explicit Interference Definitions

- Diversity as an interference measure [Meyer auf der Heide et al. SPAA 2002]
 - Interference between edges, time-step routing model, congestion
 - Trade-offs: congestion, power communition, dilation
 - Interference model based on network

Sender-centric perspective

- Link-based interference model [Burkhart et al. MIODIHIOC ZUU4]
 - "How many nodes are affected by communication over a given link?"
 - Minimize the maximum interference & preserve connectivity
 - Graph sparseness or low node degree ⇒ low interférence

- What is Topology Control?
- Context related work
- A robust interference model
- Interference in known topologies
- The highway model
 - Exponential node chain
 - General highway
- Conclusions

Towards a Robust Interference Model

- Interference model
 - Node u disturbs all nodes closer than its farthest neighbor
 - Interference of node u =
 #nodes whose distance to u is at most the distance to their farthest neighbors
 - Interference occurs at the receiver
 - Susceptible to drastic changes
- Problem statement
 - We want to minimize maximum interference
 - At the same time the topology must be connected

Interference 2

- What is Topology Control?
- Context related work
- A robust interference model
- Interference in known topologies
- The highway model
 - Exponential node chain
 - General highway
- Conclusions

Let's Study the Following Topology!

...from a worst-case perspective

Topology Control Algorithms Produce...

 All known topology control algorithms (with symmetric edges) include the nearest neighbor forest as a subgraph and produce something like this:

But Interference...

Interference does not need to be high...

This topology has interference O(1)!!

- What is Topology Control?
- Context related work
- A robust interference model
- Interference in known topologies
- The highway model
 - Exponential node chain
 - General highway
- Conclusions

The Highway – a High Interference Topology?

 Already 1-dimensional node distributions seem to yield inherently high interference... [Meyer auf der Heide et al. SPAA 2002]

...but the exponential node chain can be connected in a better way

The Highway – a High Interference Topology?

 Already 1-dimensional node distributions seem to yield inherently high interference... [Meyer auf der Heide et al. SPAA 2002]

...but the exponential node chain can be connected in a better way

The Highway – a High Interference Topology?

 Already 1-dimensional node distributions seem to yield inherently high interference... [Meyer auf der Heide et al. SPAA 2002]

...but the exponential node chain can be connected in a better way

Can We Do Any Better?

- Observations
 - Interference > #hubs 1
 - Interference ≥ maximum degree

- Assumption
 - Optimum-interference topology yields interference $<\sqrt{n}$

$$\Rightarrow \text{\#hubs} \leq \sqrt{n} \\ \Rightarrow \text{max degree} < \sqrt{n} \\ \\ \text{Resulting topology is not connected}$$

 \sqrt{n} is a lower bound for the interference in the exponential node chain!

The General Highway Model

 Δ = maximum node degree in the UDG

- Arbitrary distributed nodes in one dimension
- Are there instances where a minimum-interference topology exceeds interference $\Omega(\sqrt{\Delta})$?

- Algorithm \mathcal{A}
 - Partition the highway into segments of unit length 1
 - Every √△-th node in a segment becomes a hub
 - Connect hubs linearly
 - Connect all other nodes to their nearest hub
 - Connect adjacent segments

hub = node with more than one neighbor

On the Highway...

- Observations
 - #hubs in a segment is in $O(\sqrt{\Delta})$
 - Regular nodes only interfere with nodes in the same interval
 - The interference range of a node is limited to adjacent segments
 - The resulting topology yields interference $O(\sqrt{\Delta})$
 - \longrightarrow Algorithm \mathcal{A} is designed for the worst-case!

Approximation Algorithm

- Idea
 - Only apply Algorithm A to high interference instances...
 - ...else connect nodes linearly
- Algorithm
 - Connect nodes linearly
 - If interference $> \sqrt{\Delta} \Rightarrow$ apply Algorithm A
 - The resulting topology approximates the optimal interference up to a factor in $O(\sqrt[4]{\Delta})$
- Proof
 - Lower bound also applies to general highway

Conclusions

- Definition of an explicit interference model
 - Receiver-centric
 - Robust with respect to addition/removal of individual nodes
- All currently known topology control algorithms fail to confine interference at a low level
- Focusing on networks in one dimension
 - $-\sqrt[4]{\Delta}$ -approximation of the optimal connectivity-preserving topology
- Future work
 - Adaptation of our approach to higher dimensions

