Концентрированный ликбез по терверу

Конечное множество Ω является конечным вероятностным пространством, если для любого его подмножества $A \subset \Omega$ задана его вероятность P(A) и выполняются следующие условия:

- $P(\emptyset) = 0, P(\Omega) = 1.$
- Для любого $A \subset \Omega$ верно $P(A) \geqslant 0$.
- Для любых $A, B \subset \Omega$ верно $P(A \cup B) = P(A) + P(B) P(A \cap B)$.

Элементы $\omega \in \Omega$ принято называть элементарными исходами, а подмножества $\Omega - co-$ бытиями. События A и B называются независимыми, если $P(A \cap B) = P(A) \cdot P(B)$.

Cлучайной величиной (на вероятностном пространстве Ω) называется произвольная функция X из Ω в вещественные числа. Mатематическим ожиданием (оно же матожидание) случайной величины X называется число

$$\mathbb{E}(X) = \sum_{\omega \in \Omega} X(\omega) P(\omega).$$

Задача 1. Для произвольных величин X и Y докажите что $\mathbb{E}(X+Y) = \mathbb{E}(X) + \mathbb{E}(Y)$.

Задача 2. Докажите что тогда формулу для ее матожидания можно переписать так:

$$\mathbb{E}(X) = \sum_{x \in X(\Omega)} x \cdot P(X = x)$$

Задача 3 (неравенство Маркова). Пусть X - неотрицательная случайная величина (т. е. $P(X\geqslant 0)=1$). Докажите что для любого положительного a верно что $P(X\geqslant a)\leqslant \frac{\mathbb{E}(X)}{a}$.

Задача 4. В некоторой лотерее билет стоит 100 рублей и 40% средств идут на выплату призов. Докажите что вероятность выиграть 5000 рублей меньше 1%.

Определение 1. Случайные величины X и Y называются **независимыми**, если любые двух a и b события вида X = a и Y = b независимы.

Задача 5. Пусть A и B – произвольные множества. Докажите, что если случайные величины X и Y независимы то события $X \in A$ и $Y \in B$ независимы.

Задача 6. Приведите пример двух независимых и двух зависимых случайных величин.

Задача 7. Пусть величины X и Y независимы, докажите что $\mathbb{E}(X \cdot Y) = \mathbb{E}(X) \cdot \mathbb{E}(Y)$.

Задача 8. Приведите контрпример к утверждению предыдущей задачи для зависимых случайных величин.

Определение 2. $\mathcal{A}ucnepcue\ddot{u}$ случайной величины X называется число

$$\mathbb{D}(X) = \mathbb{E}\left((X - \mathbb{E}(X))^2\right)$$

Задача 9. Дисперсия величины X равна d, чему тогда равна дисперсия

- **a)** величины X + ?
- **б)** величины $a \cdot X$?

Задача 10. Пусть величины X и Y независимы, докажите что $\mathbb{D}(X+Y) = \mathbb{D}(X) + \mathbb{D}(Y)$.

Задача 11 (неравенство Чебышева). Докажите что $\mathrm{P}(|X - \mathbb{E}(X)| \geqslant a) \leqslant \frac{\mathbb{D}(X)}{a^2}$.

Задача 12. Пусть X_1, \ldots, X_n – независимые случайные величины с дисперсией d. Найдите дисперсию величины $S_n = \frac{X_1 + \ldots + X_n}{n}$

Задача 13 (Слабый закон больших чисел). Пусть X_1, \ldots, X_n – независимые случайные величины с неизвестным вам матожиданием m. Известно, что дисперсия каждой из них не превосходит d. Вам дали задание оценить m с точностью $\varepsilon > 0$ и дали право ошибаться с вероятностью $\delta > 0$. Какое нужно взять n, чтобы оценка $S_n = \frac{X_1 + \ldots + X_n}{n}$ подходила?