Signal Denoising and Regression Models

Goran Banjac

Large-Scale Convex Optimization ETH Zurich

May 12, 2020

- ullet in signal denoising or reconstruction, we have a noisy signal y
- assume that measurement comes from process with slow changes
- ullet approximate with signal x that captures process behavior
- therefore, we want neighboring time-steps to be close to each other
- we have two competing objectives smooth
 - $-x\approx y$
 - $-\ x$ should vary slowly

• introduce difference operator D

$$D = \begin{bmatrix} 1 & -1 \\ & \ddots & \ddots \\ & & 1 & -1 \end{bmatrix} \implies Dx = \begin{bmatrix} x_1 - x_2 \\ \vdots \\ x_{n-1} - x_n \end{bmatrix}$$

- we want Dx small and $x \approx y$
- we can model this as an optimization problem

$$\begin{array}{ll} \text{minimize} & \frac{1}{2}\|x-y\|_2^2 + \lambda \|Dx\|_2^2 & \text{smaller than zero(look at Hessian)... For L1 norm, no} \\ \end{array}$$

it is convex, sometimes it is still convex when lambda is smaller than zero(look at Hessian)... For L1 norm, no closed form.

where y contains measurements and $\lambda>0$ trades off objectives

• example: $y \in \mathbb{R}^{300}$ constructed by random walk in \mathbb{R}

if we have some prior knowledge that signal comes from piece-wise source.

- what if we want instead a piece-wise constant approximation?
- then we want Dx to be sparse
- minimizing cardinality of Dx is a nonconvex problem
- $||Dx||_1$ is usually a good convex approximation

actually for sparsity, we want 0-norm (which is the cardinality, but it's difficult to solve. so we use one-norm)

- maybe we want a piece-wise affine approximation instead
- introduce the second-order discrete difference

$$D_2 = \begin{bmatrix} 1 & -2 & 1 & & \\ & \ddots & \ddots & \ddots & \\ & & 1 & -2 & 1 \end{bmatrix}$$

- D_2x is zero on any line
- we can model piece-wise affine approximation as

minimize
$$\frac{1}{2} ||x - y||_2^2 + \lambda ||D_2 x||_1$$

- we might want a smooth second derivative
- we can model this as

minimize
$$\frac{1}{2} \|x - y\|_2^2 + \lambda \|D_2 x\|_2^2$$

- we can also reconstruct images (2D signals)
- example: 512×512 grayscale image ($n \approx 300$ k variables)

reconstruct by minimizing the total variation of X:

$$\operatorname{tv}(X) = \sum_{i=1}^{m-1} \sum_{j=1}^{n-1} \left\| \begin{bmatrix} X_{i+1,j} - X_{i,j} \\ X_{i,j+1} - X_{i,j} \end{bmatrix} \right\|_{2}$$

known pixels are set to correct value

example: text over image

example: text over image

• example: 90% of pixels in image lost

• example: 90% of pixels in image lost

• example: 70% of pixels in image lost

• example: 70% of pixels in image lost

• example: 50% of pixels in image lost

• example: 50% of pixels in image lost

• example: 30% of pixels in image lost

• example: 30% of pixels in image lost

• comparison to ground truth

Modeling idea

- if you want something to be small, use $\|\cdot\|_2^2$
- ullet if you want something to be sparse, use $\|\cdot\|_1$
- if you want to really enforce something, use constraints

Learning from data

- we have data from which we want to draw conclusions
- the data are represented as points x_i in a Euclidean space
- we let $X = [x_1, \dots, x_n]$ be the data matrix
- every row in X is called an example
- every column in X is called a feature
- in supervised learning we also have response variables y_i , which can be real-valued (regression) or integer-valued (classification)
- **objective:** create model of unknown function $x\mapsto y(x)$ (x data vector and y response variable)

think classification as a span filter

Linear model

- we start with a linear model for the mapping $x \mapsto y(x)$
- we have
 - data $X = [x_1, \ldots, x_n]$
 - real-valued responses $y=(y_1,\ldots,y_m)$ $(y_i\in\mathbb{R})$
- create estimator \hat{y} with

$$\hat{y}(x) = b + s^T x$$

objective: minimize prediction error on data

minimize
$$\sum_{i=1}^{m} (\hat{y}(x_i) - y_i)^2$$

• letting $\theta = (s, b)$, the problem becomes

minimize
$$\sum_{i=1}^{m} (s^T x_i + b - y_i)^2 = \|\Phi \theta - y\|_2^2$$

least squares problem

- find affine function parameters that fit data
- ullet data points (x,y) marked with st

- find affine function parameters that fit data
- ullet data points (x,y) marked with st

- find affine function parameters that fit data
- ullet data points (x,y) marked with st

- find affine function parameters that fit data
- data points (x,y) marked with \ast , outliers with \ast

- find affine function parameters that fit data
- data points (x,y) marked with \ast , outliers with \ast

Huber fitting

- least squares is sensitive to outliers in problem data
- Huber fitting or robust least squares uses the Huber penalty function $\phi_{\mathsf{hub}} \colon \mathbb{R} \to \mathbb{R}$ defined as

$$\phi_{\mathsf{hub}}(u) = \begin{cases} u^2 & |u| \le M\\ 2Mu - M^2 & |u| > M \end{cases}$$

the fitting problem can be written as

$$\mathsf{minimize} \quad \sum_{i=1}^m \phi_{\mathsf{hub}} \left(\hat{y}(x_i) - y_i \right)$$

• the problem can be reformulated as a quadratic program

thus can be solved efficiently.

Huber fitting

more robust to outliers: blue line

- find affine function parameters that fit data
- data points (x,y) marked with *, outliers with *

Nonaffine example

Nonaffine example

Nonaffine example

- a linear model may not be accurate enough to model the mapping
- try, e.g., a quadratic model

$$\hat{y}(x) = b + s^T x + \sum_{i=1}^{n} \sum_{j=1}^{i} w_{ij} x_i x_j$$

• for $x \in \mathbb{R}$, this becomes

$$\hat{y}(x) = b + sx + wx^2 = \phi(x)^T \theta$$

where
$$\phi(x) = (1, x, x^2)$$
 and $\theta = (b, s, w)$

• the LS problem can be written as

minimize
$$\|\Phi\theta - y\|_2^2$$

- lift problem to higher dimensional LS problem
- obviously, higher order models can be used as well

Generalization and overfitting

- generalization: how well does model perform on unseen data
- overfitting: model explains training data, but not unseen data
- which of the previous models would generalize best?
- how to reduce overfitting / improve generalization?

Regularization

- reducing $\|\theta\|_2$ seems to reduce overfitting
- least squares with Tikhonov regularization

$$\text{minimize} \quad \|\Phi\theta - y\|_2^2 + \lambda \|\theta\|_2^2$$

- regularization parameter $\lambda \geq 0$ controls fit vs model expressivity
- optimization problem is also known as ridge regression

- fit 8-degree polynomial with Tikhonov regularization
- λ : regularization parameter; J: LS cost; $\|\theta\|_2$: norm of weights

- fit 8-degree polynomial with Tikhonov regularization
- λ : regularization parameter; J: LS cost; $\|\theta\|_2$: norm of weights

- fit 8-degree polynomial with Tikhonov regularization
- λ : regularization parameter; J: LS cost; $\|\theta\|_2$: norm of weights

- fit 8-degree polynomial with Tikhonov regularization
- λ : regularization parameter; J: LS cost; $\|\theta\|_2$: norm of weights

- fit 8-degree polynomial with Tikhonov regularization
- λ : regularization parameter; J: LS cost; $\|\theta\|_2$: norm of weights

- fit 8-degree polynomial with Tikhonov regularization
- λ : regularization parameter; J: LS cost; $\|\theta\|_2$: norm of weights

- fit 8-degree polynomial with Tikhonov regularization
- λ : regularization parameter; J: LS cost; $\|\theta\|_2$: norm of weights

- fit 8-degree polynomial with Tikhonov regularization
- λ : regularization parameter; J: LS cost; $\|\theta\|_2$: norm of weights

- fit 8-degree polynomial with Tikhonov regularization
- λ : regularization parameter; J: LS cost; $\|\theta\|_2$: norm of weights

Selecting model parameters

- parameters in machine learning models are called hyperparameters
- ridge model has polynomial order and λ as hyperparameters
- how to select hyperparameters?

training set

- solve training problems with different hyperparameters
- validation set
 - estimate generalization performance of all trained models
 - use this to select model that seems to generalize best
- test set
 - final assessment on how chosen model generalizes to unseen data
 - not used for model selection

Feature selection

- assume that we have $X \in \mathbb{R}^{m \times n}$ with m < n (or $m \ll n$)
- we would like to select a subset of features to explain data
- easier to interpret solutions
- ullet we typically want subset to have cardinality (much) smaller than m
- ullet since cardinality function is nonconvex, we use instead the ℓ_1 norm

$$\text{minimize} \quad \|Xw - y\|_2^2 + \lambda \|w\|_1$$

- optimization problem is also known as lasso
- typically gives sparse solutions
- ullet λ decided by cross validation and desired sparsity

Lasso

• lasso problem with $X \in \mathbb{R}^{30 \times 200}$ for different λ

References

- these lecture notes are based to a large extent on the following courses developed by Pontus Giselsson at Lund:
 - Large-Scale Convex Optimization
 - Optimization for Learning
- the original slides can be downloaded from

```
https://archive.control.lth.se/ls-convex-2015/
```

http://www.control.lth.se/education/engineering-program/ frtn50-optimization-for-learning/