

Visualizing Linear Models: An R Bag of Tricks Session 1: Getting Started

Michael Friendly SCS Short Course Oct. 22, 29, Nov. 5, 2020 https://friendly.github.io/VisMLM-course/

Today's topics

- What you need for this course
- Why plot your data?
- Data plots
- Model (effect) plots
- Diagnostic plots

What you need

- R, version >= 3.6
 - Download from https://cran.r-project.org/
- RStudio IDE, highly recommended
 - https://www.rstudio.com/products/rstudio/
- R packages: see course web page
 - car

heplots

effects

candisc

Why plot your data?

Getting information from a table is like extracting sunlight from a cucumber. --- Farguhar & Farguhar, 1891

Information that is imperfectly acquired, is generally as imperfectly retained; and a man who has carefully investigated a printed table, finds, when done, that he has only a very faint and partial idea of what he has read; and that like a figure imprinted on sand, is soon totally erased and defaced.

--- William Playfair, The Commercial and Political Atlas (p. 3), 1786

Cucumbers

Table 7 Stevens et al. 2006, table 2: Determinants of authoritarian aggression

authoritarian aggressi	
	Coefficient
Variable	(Standard Error
Constant	.41 (.93)
Countries	
Argentina	1.31 (.33)**B,M
Chile	.93 (.32)**B,M
Colombia	1.31 (.33)**B,M .93 (.32)**B,M 1.46 (.32)**B,M .07 (.32)A,CH,CO
Mexico	.07 (.32)A,CH,CO
Venezuela	.96 (.37)**B,M
Threat	
Retrospective egocentric economic perceptions	.20 (.13)
Prospective egocentric economic perceptions	.22 (.12)#
Retrospective sociotropic economic perceptions	21 (.12)#
Prospective sociotropic	32 (.12)*
economic perceptions Ideological distance from president	27 (.07)**
Ideology	
Ideology	.23 (.07)**
Individual Differences	
Age	.00 (.01)
Female	03 (.21)
Education	.13 (.14)
Academic Sector	.15 (.29)
Business Sector	.31 (.25)
Government Sector	10 (.27)
R^2	.15
Adjusted R ²	.12
N	500

Results of a one model for authoritarian aggression

The information is overwhelmed by footnotes & significance **stars**

**p < .01, *p < .05, #p < .10 (twotailed)
A Coefficient is significantly different from Argentina's at $p < .05$;
^B Coefficient is significantly different from Brazil's at p < .05
^{CH} Coefficient is significantly different from Chile's at p < .05
^{CO} Coefficient is significantly different from Colombia's at p < .05;
MCoefficient is significantly different from Mexico's at p < .05
VCoefficient is significantly different from Venezuela's at

What's wrong with this picture?

5

Sunlight

Why didn't they say this in the first place?

NB: This is a presentation graph equivalent of the table

Shows coefficient with 95% CI

Run, don't walk toward the sunlight

Graphs can give enlightenment

The greatest value of a picture is when it forces us to notice what we never expected to see.

-- John W. Tukey

Effect of one rotten point on regression

Dangers of numbers-only output

Student: You said to run descriptives and compute the correlation. What next?

Consultant: Did you plot your data?

X Mean: 54.26 Y Mean: 47.83 X SD : 16.76 Y SD : 26.93 Corr. : -0.06

With exactly the same stats, the data could be *any* of these plots

See how this in done in R: https://cran.r-project.org/web/packages/datasauRus/

Sometimes, don't need numbers at all

COVID transmission risk ~ Occupancy * Ventilation * Activity * Mask? * Contact.time

A complex 5-way table, whose message is clearly shown w/o numbers

There are 1+ unusual cells here. Can you see them?

From: N.R. Jones et-al (2020). Two metres or one: what is the evidence for physical distancing in covid-19? *BMJ* 2020;370:m3223, *doi:* https://doi.org/10.1136/bmj.m3223

If you do need tables - make them pretty

Several R packages make it easier to construct informative & pretty semi-graphic tables

Presentation graph
Perhaps too cute!

Distribution of

variables shown

Flipper lengths (mm) of the famous penguins of Palmer Station, Antarctica.

Artwork by @allison_horst

Visual table ideas: Heatmap shading

Heatmap shading: Shade the background of each cell according to some criterion

The trends in the US and Canada are made obvious

NB: Table rows are sorted by Jan. value, lending coherence

Unemployment rate in selected countries

January-August 2020, sorted by the unemployment rate in January.

country	Jan ^	Feb	Mar	Apr	May	Jun	Jul	Aug
Japan	2.4%	2.4%	2.5%	2.6%	2.9%	2.8%	2.9%	3.0%
Netherlands	3.0%	2.9%	2.9%	3.4%	3.6%	4.3%	4.5%	9% 3.0% 5% 4.6% 4% 4.4% 2% 5.0% 2% 8.4% 6.1% 0% 5.1% 6.8%
Germany	3.4%	3.6%	3.8%	4.0%	4.2%	4.3%	4.4%	4.4%
Mexico	3.6%	3.6%	3.2%	4.8%	4.3%	5.4%	5.2%	5.0%
US	3.6%	3.5%	4.4%	14.7%	13.3%	11.1%		8.4%
South Korea	4.0%	3.3%	3.8%	3.8%	4.5%	4.3%	4.2%	3.2%
Denmark	4.9%	4.9%	4.8%	4.9%	5.5%	6.0%	6.3%	6.1%
Belgium	5.1%	5.0%	5.0%	5.1%	5.0%	5.0%	5.0%	5.1%
Australia	5.3%	5.1%	5.2%	6.4%	7.1%	7.4%	7.5%	6.8%
Canada	5.5%	5.6%	7.8%	13.0%	13.7%	12.3%	10.9%	10.2%
Finland	6.8%	6.9%	7.0%	7.3%	7.5%	7.8%	8.0%	8.1%

Source: OECD • Get the data • Created with Datawrappe

13

Visual table ideas: Heatmap shading

As seen on TV ...

Covid rate ~ Age x Date x UK region

Better: incorporate geography, not just arrange regions alphabetically

bbc.co.uk/news

4

Visual table ideas: Sparklines

Sparklines: Mini graphics inserted into table cells or text

Linear models

Model:

$$\mathbf{y}_{i} = \beta_{0} + \beta_{1} \mathbf{X}_{i1} + \beta_{2} \mathbf{X}_{i2} + \dots + \beta_{p} \mathbf{X}_{ip} + \varepsilon_{i}$$

- Xs: quantitative predictors, factors, interactions, ...
- Assumptions:
 - Linearity: Predictors (possibly transformed) are linearly related to the outcome, y. [This just means linear in the parameters.]
 - Specification: No important predictors have been omitted; only important ones included. [This is often key & overlooked.]
 - The "holy trinity":
 - Independence: the errors are uncorrelated
 - Homogeneity of variance: $Var(\varepsilon_i) = \sigma^2 = constant$
 - Normality: ε, have a normal distribution

From: https://www.pluralsight.com/guides/tableau-playbook-sparklines

15

Plots for linear models

- Data plots:
 - plot response (y) vs. predictors, with smooth summaries
 - scatterplot matrix --- all pairs
- Model (effect) plots
 - plot predicted response (\hat{y}) vs. predictors, controlling for variables not shown.
- Diagnostic plots

Occupational Prestige data

- Data on prestige of 102 occupations and
 - average education (years)
 - average income (\$)
 - % women
 - type (Blue Collar, Professional, White Collar)

> head(Prestige)						
-	education	income	women	prestige	census	type
gov.administrators	13.11	12351	11.16	68.8	1113	prof
general.managers	12.26	25879	4.02	69.1	1130	prof
accountants	12.77	9271	15.70	63.4	1171	prof
purchasing.officers	11.42	8865	9.11	56.8	1175	prof
chemists	14.62	8403	11.68	73.5	2111	prof
physicists	15.64	11030	5.13	77.6	2113	prof

18

Informative scatterplots

Scatterplots are most useful when enhanced with annotations & statistical summaries

Data ellipse and regression line show the linear model, prestige ~ income

Point labels show possible outliers

Smoothed (loess) curve and CI show the trend

Boxplots show marginal distributions

Informative scatterplots

car::scatterplot() provides all these enhancements

Skewed distribution of income & nonlinear relation suggest need for a transformation

Arrow rule: move on the scale of powers in direction of the bulge

Try log(income)

Income now ~ symmetric

Relation closer to linear

Stratify by type?

```
scatterplot(prestige ~ income | type, data=Prestige,
   col = c("blue", "red", "darkgreen"),
   pch = 15:17,
   legend = list(coords="bottomright"),
   smooth=list(smoother=loessLine, var=FALSE, span=1, lwd=4))
```

Formula: $| type \rightarrow "given type"$

Different slopes: interaction of income * type

Provides another explanation of the non-linear relation

This is a new finding!

Scatterplot matrix

```
prestige vs. all predictors
diagonal: univariate distributions
• income: + skewed
• %women: bimodal

off-diagonal: relations among predictors
```

Fit a model

```
> mod1 <- lm(prestige ~ education + poly(women, 2) +</pre>
                       log(income)*type, data=Prestige)
> summary(mod1)
Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
                     -137.500
                                 23.522
                                          -5.85
(Intercept)
                                                 8.2e-08
                                                 2.0e-06 ***
education
                       2.959
                                  0.582
poly(women, 2)1
                       28.339
                                 10.190
poly(women, 2)2
                                  7.095
                                                  0.0800
                      12.566
log(income)
                      17.514
                                  2.916
                                                  4.1e-08 ***
typeprof
                       74.276
                                  30.736
                                                  0.9805
                       0.969
typewc
                                  39.495
                                           0.02
log(income):typeprof
                      -7.698
                                   3.451
                                           -2.23
                                                   0.0282
log(income):typewc
                       -0.466
                                           -0.10
                                                  0.9199
                                  4.620
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ''
Multiple R-squared: (0.879)
                            Adjusted R-squared: 0.868
F-statistic: 81.1 on 8 and 89 DF, p-value: <2e-16
```

- allow women² term
- interaction of log(income) and type

Fits very well!

Model (effect) plots

- We'd like to see plots of the predicted value (\hat{y}) of the response against predictors
 - But must control for other predictors not shown in a given plot
 - Variables not shown in a given plot are averaged over.
 - Slopes of lines reflect the partial coefficient in the model
 - Partial residuals can be shown also

For details, see vignette("predictor-effects-gallery", package="effects)

25

Model (effect) plots: education

library("effects")
mod1.e1 <- predictorEffect("education", mod1)
plot(mod1.e1)</pre>

This graph shows the partial slope for education.

For each ↑ year in education, fitted prestige ↑2.96 points, (other predictors held fixed)

Model (effect) plots

mod1.e1a <- predictorEffect("education", mod1, residuals=TRUE)
plot(mod1.e1a,
 residuals.pch=16, id=list(n=4, col="black"))</pre>

Partial residuals show the residual of prestige controlling for other predictors

Unusual points here would signal undue influence

education predictor effect plot

Model (effect) plots: women

Surprise!
Prestige of occupations ↑
with % women (controlling
for other variables

Model (effect) plots: income

```
plot(predictorEffect("income", mod1),
    lines=list(multiline=TRUE, lwd=3),
    key.args = list(x=.7, y=.35))
```

Income interacts with type in the model

The plot is curved because log(income) is in the model

Diagnostic plots

- The linear model, $y=X\beta+\epsilon$ assumes:
 - Residuals, ε_i are normally distributed, $\varepsilon_i \sim N(0,\sigma^2)$
 - (Normality not required for Xs)
 - Constant variance, $Var(\varepsilon_i) = \sigma^2$
 - Observations y_i are statistically independent
- Violations → inferences may not be valid
- A variety of plots can diagnose all these problems
- Other methods (boxCox, boxTidwell) diagnose the need for transformations of **y** or **X**s.

The "regression quartet"

In R, plotting a 1m model object → the "regression quartet" of plots

plot(mod1, lwd=2, cex.lab=1.4)

- 1 Residuals: should be flat vs. fitted values
- 2 Q-Q plot: should follow the 45° line

show influential observations

Unusual data: Leverage & Influence

- "Unusual" observations can have dramatic effects on least-squares estimates in linear models
- Three archetypal cases:
 - Typical X (low leverage), bad fit -- Not much harm
 - Unusual X (high leverage), good fit -- Not much harm
 - Unusual X (high leverage), bad fit -- BAD, BAD, BAD
- Influential observations: unusual in both X & Y
- Heuristic formula:

Influence = X leverage x Y residual

Influence plots

Influence (Cook's D) measures impact of individual obs. on coefficients, fitted values

Spread-level plots

- To diagnose non-constant variance, plot:
 - log |Std. residual| vs. log (x)
 - log (IQR) vs log (median) [for grouped data]
- If \approx linear w/ slope b, transform y \rightarrow y (1-b)

Artificial data, generated so $\sigma \sim x$

- $b \approx 1 \rightarrow power = 0$
- → analyze log(y)

Spread-level plot: baseball data

Data on salary and batter performance from 1987 season

 $\label{lem:data} $$ \data("Baseball", package="vcd") $$ bb.mod <- lm(sal87 \sim years + hits + runs + homeruns, data=Baseball) $$ spreadLevelPlot(bb.mod, pch=16, lwd=3, id=list(n=2)) $$$

Suggested power transformation: 0.2609

Summary

- Tables are for look-up; graphs can give insight
- Data plots are more effective when enhanced
 - data ellipses \rightarrow strength & precision of correlation
 - regression lines and smoothed curves
 - lacktriangledown point identification ightarrow noteworthy observations
- Effect plots show informative views of models
- Diagnostic plots can reveal influential observations and need for transformations.