

- **1** Motivation
- 2 Algebren
  - Definition
  - Morphismen zwischen Algebren
  - Initiale Algebren
  - Lambeks Lemma
- **3** Terminale Koalgebren
- 4 Vergleich
- 5 Ausblick

#### **Motivation**

In der Mathematik und theoretischen Informatik untersucht man oft Fixpunktgleichungen:

$$x = f(x)$$

Oft ist man am kleinsten oder größten Fixpunkt interessiert:



#### **Motivation**

In der theoretischen Informatik benötigt man aber auch eine höhere Art von Fixpunkt"gleichungen":

$$X \cong F(X)$$

**Initiale Algebren** verallgemeinern kleinste Fixpunkte, **terminale Koalgebren** verallgemeinern größte Fixpunkte.

Wir klären heute folgende Frage: Was bedeutet

data Nat = Zero | Succ Nat
eigentlich wirklich?

Zunächst: "keine Bottoms, alles endlich".

#### Algebren

```
Eine Algebra für einen Funktor F: \mathcal{C} \to \mathcal{C} besteht aus
 einem Objekt A \in \mathcal{C} und
 ■ einem Morphismus \alpha : F(A) \to A in \mathcal{C}.
-- Beispielfunktor
data F a = Nil | Cons Int a
instance Functor F where
                   = Nil
     fmap f Nil
     fmap f (Cons x r) = Cons x (f r)
-- Beispielalgebra
productA :: F Int → Int
productA Nil
productA (Cons x r) = x * r
```

### Algebren sind nicht rar!

```
data F a = Nil | Cons Int a
productA :: F Int → Int
productA Nil
productA (Cons x r) = x * r
lengthA :: \mathbf{F} Int \rightarrow Int
lengthA Nil
lengthA (Cons r) = 1 + r
allNonzeroA :: F Bool \rightarrow Bool
allNonzeroA Nil = True
allNonzeroA (Cons x r) = x /= 0 \&\& r
```

#### Ein besonderes Beispiel

```
data F a = Nil | Cons Int a
prodA :: F Int \rightarrow Int
prodA Nil
prodA (Cons x r) = x * r
allNonzeroA :: F Bool \rightarrow Bool
allNonzeroA Nil = True
allNonzeroA (Cons x r) = x /= 0 \&\& r
initial A :: \mathbf{F} [Int] \rightarrow [Int]
initial \mathbf{Nil} = []
initial (Cons x r) = x : r
```

# Morphismen zwischen Algebren

Ein Morphismus zwischen F-Algebren  $\alpha: F(A) \to A$  und  $\beta: F(B) \to B$  ist ein Morphismus  $g: A \to B$  sodass das folgende Diagramm kommutiert.

$$\begin{array}{c|c}
F(A) \xrightarrow{\alpha} A \\
fmap g \downarrow & \downarrow g \\
F(B) \xrightarrow{\beta} B
\end{array}$$

data F a = Nil | Cons Int a

$$g :: Int \rightarrow Bool$$
  
 $g \times = \times /= 0$   
--  $g \cdot prodA = allNonzeroA \cdot fmap g$ 

#### **Initiale Algebren**

```
Die "besondere Beispielalgebra" hat eine universelle
Eigenschaft: Sie ist die initiale F-Algebra.
data F a = Nil \mid Cons Int a
initial A :: \mathbf{F} [Int] \rightarrow [Int]
initialA Nil
initial (Cons x r) = x : r
cata :: (\mathbf{F} \ \mathbf{a} \to \mathbf{a}) \to [\mathbf{Int}] \to \mathbf{a}
cata g [] = g Nil
cata g (x:xs) = g (Cons x (cata f xs))
-- cata g . initA = g . fmap (cata g)
product :: [Int] \rightarrow Int
```

product = cata productA

## Gibt es immer initiale Algebren?

Sei  $F: \mathcal{C} \to \mathcal{C}$  ein Funktor. Gibt es eine initiale F-Algebra?

### Gibt es immer initiale Algebren?

Sei  $F: \mathcal{C} \to \mathcal{C}$  ein Funktor. Gibt es eine initiale F-Algebra? Antwort: Manchmal.

```
data Mu f = MkMu { outF :: f (Mu f) }
-- mit sozialer Vereinbarung
-- MkMu :: f (Mu f) \rightarrow Mu f
-- outF :: Mu f \rightarrow f (Mu f)

cata :: (Functor f)
\Rightarrow (f a \rightarrow a) \rightarrow (Mu f \rightarrow a)
cata g (MkMu r) = g (fmap (cata g r))
```

### Gibt es immer initiale Algebren?

Sei  $F: \mathcal{C} \to \mathcal{C}$  ein Funktor. Gibt es eine initiale F-Algebra? Antwort: Manchmal.

```
data Mu f = MkMu { outF :: f (Mu f) }
-- mit sozialer Vereinbarung
-- MkMu :: f (Mu f) \rightarrow Mu f
-- outF :: Mu f \rightarrow f (Mu f)

cata :: (Functor f)
\Rightarrow (f a \rightarrow a) \rightarrow (Mu f \rightarrow a)
cata g (MkMu r) = g (fmap (cata g r))
```

Initiale Algebren modellieren Datentypen, für die man Funktionen heraus durch Rekursion angeben kann.

#### **Endlichkeit**

Initiale Algebren modellieren Datentypen, für die jeder Wert "endlich" ist.

Tatsächlich kann man in vielen Kategorien die initale Algebra eines Funktors F gewinnen als

$$\mu F = \operatorname{colim}(\emptyset \to F(\emptyset) \to F(F(\emptyset)) \to \cdots).$$

#### Lambeks Lemma

Sei  $\alpha: F(A) \to A$  eine initiale Algebra. Dann ist  $\alpha$  ein Isomorphismus (besitzt einen Umkehrmorphismus).

Anschaulich: Mit  $\alpha$  konstruiert man neue Werte aus alten. Die Isomorphie bedeutet, dass jeder Wert aus anderen Werten konstruierbar ist.

### **Terminale Koalgebren**

Eine **Algebra** für einen Funktor  $F: \mathcal{C} \to \mathcal{C}$  besteht aus

- lacksquare einem Objekt  $A \in \mathcal{C}$  und
- einem Morphismus  $\alpha : F(A) \to A$  in  $\mathcal{C}$ .

Eine **Koalgebra** für einen Funktor  $F: \mathcal{C} \to \mathcal{C}$  besteht aus

- einem Objekt  $A \in \mathcal{C}$  und
- einem Morphismus  $\alpha : A \to F(A)$  in  $\mathcal{C}$ .

```
data Nu f = MkNu { outF :: f (Nu f) }

ana :: (Functor f)
\Rightarrow (a \rightarrow f \ a) \rightarrow (a \rightarrow Nu \ f)
ana g x = MkNu (fmap (ana g) (g x))
```

## Vergleich

Initiale Algebren modellieren Datentypen, für die man Funktionen heraus durch Rekursion angeben kann.

- Konstruktion von Werten mittels  $F(A) \rightarrow A$
- lacktriangle cata ::  $(\mathbf{F} \ a \ o \ a) \ o \ (\mathbf{Mu} \ \mathbf{F} \ o \ a)$
- ,endlich"

Terminale Koalgebren modellieren Datentypen, für die man Funktionen hinein durch Korekursion angeben kann.

- Beobachtung von Werten mittels  $A \rightarrow F(A)$
- ana ::  $(a \rightarrow \mathbf{F} \ a) \rightarrow (a \rightarrow \mathbf{Nu} \ \mathbf{F})$
- "endlich oder unendlich"

#### **Ausblick**

 Behandlung von Bottoms durch Wechsel der Kategorie – nicht die Kategorie der Mengen, sondern die Kategorie der Domänen (domains)

#### **Ausblick**

- Behandlung von Bottoms durch Wechsel der Kategorie nicht die Kategorie der Mengen, sondern die Kategorie der Domänen (domains)
- Haskell: boldly going where no functor has gone before.

```
data Seltsam = MkSeltsam
{ f :: Seltsam → Bool }
```