A CIRCUNFERENCIA

CONTENIDO

Ecuación común de la circunferencia 1.

Ejemplos

- 2. Ecuación general de la circunferencia
 - 2.1 Análisis de la ecuación
- 3. **Ejercicios**

Estudiaremos cuatro curvas que por su importancia y aplicaciones en algunas ramas de la ciencia, es necesario considerarlas. Cada una de estas curvas se describirá como un lugar geométrico y se demostrará que cada una de ellas es la gráfica de una ecuación cuadrática en x o y, que se puede representar como caso especial de la ecuación general siguiente:

$$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$$

En la cual los coeficientes A, B y C no son todos cero.

Estas cuatro curvas son: la circunferencia, la parábola, la elipse y la hipérbola, llamadas CÓNICAS debido a que se pueden describir como las curvas que se generan al intersectarse un plano con un cono circular.

De las cuatro curvas cónicas, la *circunferencia* es la más simple y geométricamente se describe como la intersección de un cono recto circular y un plano paralelo a la base del cono, como se muestra en la Figura 1.

DEFINICIÓN. La circunferencia es el lugar geométrico de todos los puntos de un plano que participan de propiedad equidistar de un punto fijo llamado centro.

1. ECUACIÓN COMÚN DE LA CIRCUNFERENCIA.

Para deducir la ecuación de esta curva, cuyas características geométricas son bien conocidas, supondremos que el centro es el punto C(h, k) y que el radio es una constante a, como se muestra en la Figura 2.

Sea M(x, y) un punto cualquiera de la *circunferencia* con *centro* en C(h, k) y *radio* igual a **a**. Por definición, el *radio* es una constante, por lo que la condición de movimiento de M es:

$$\overline{MC} = CONSTANTE = a$$
 (1)

Aplicando la fórmula de la *distancia* entre dos puntos, tenemos:

$$\overline{MC} = \sqrt{(x-h)^2 + (y-k)^2}$$

Figura 2

Sustituimos en (1):

$$\sqrt{(x-h)^2+(y-k)^2} = a$$

Elevando al cuadrado ambos miembros de la igualdad, nos queda:

$$(x-h)^2 + (y-k)^2 = a^2$$
....(I)

Esta es la ecuación común de la *circunferencia*, correspondiente a una ecuación cartesiana, cuyos parámetros, además del radio a, son la abscisa h y la ordenada k del *centro*, cuyas coordenadas deben tomarse siempre con signo contrario al que tenga en la ecuación.

EJEMPLOS

1. En el caso de la circunferencia $(x-3)^2+(y+2)^2=36$, tendremos:

h = 3, k = -2 y que $a^2 = 36$. Por tanto: a = 6

Es decir:

Centro: C(3,-2); Radio: a = 6

2. Encontrar la ecuación de la circunferencia con centro en (5,2) y radio igual a 4.

De acuerdo con los datos tenemos: h = 5, k = 2 y a = 4.

Sustituyendo en la ecuación (I) estos valores, se tiene:

$$(x-5)^2+(y-2)^2=16$$

3. Encontrar la ecuación de la circunferencia con centro en (-3,4) y radio igual a 5.

SOLUCIÓN

De acuerdo al enunciado se tiene:

$$h = -3$$
; $k = 4$ y $a = 5$. Por tanto: $a^2 = 25$

Según la ecuación (I), sustituyendo estos valores tenemos:

$$(x+3)^2 + (y-4)^2 = 25$$

Es perfectamente claro que cuando una *circunferencia* tiene su centro en el origen, **h = 0** y **k= 0**, la ecuación simplemente es:

$$x^{2} + y^{2} = a^{2}$$

La posición y tamaño de la *circunferencia* depende de las tres constantes arbitrarias h, k y a.

2. ECUACIÓN GENERAL DE LA CIRCUNFERENCIA.

En muchos problemas se presenta desarrollada la ecuación de la *circunferencia*, en cuyo caso interesa saber conocerla y poder determinar su *centro* y su *radio*. Por lo pronto vamos a desarrollar la ecuación común (I) y establecer ciertas conclusiones.

$$x^{2}-2hx+h^{2}+v^{2}-2ky+k^{2}-a^{2}=0$$

Esta ecuación no se altera si ambos miembros se multiplican por la constante A.

$$A_{x}^{2}-2Ahx+A_{h}^{2}+A_{y}^{2}-2Aky+A_{k}^{2}-A_{a}^{2}=0$$

Dado que: -2Ah, -2Ak y $(Ah^2 + Ak^2 - Aa^2)$ son constantes, podemos escribir la ecuación como:

$$A x^2 + A y^2 + D x + E y + F = 0$$
(II)

En donde:

Entonces conociendo los valores de **D**, **E**, y **F**, se pueden encontrar las coordenadas del **centro** y la longitud del **radio** de una **circunferencia**.

2.1.- ANÁLISIS DE LA ECUACIÓN.

Las observaciones que podemos hacer son las siguientes:

GEOMETRÍA ANALÍTICA

Primera. Una ecuación con dos variables de segundo grado representa una circunferencia si los coeficientes de x5 y y5 son iguales y del mismo signo.

Segunda. Si la ecuación contiene términos de primer grado, el *centro* está fuera del *origen*. Si la ecuación carece de uno de los términos de primer grado, el *centro* está sobre el eje del sistema de nombre distinto al término faltante.

Tercera. Si la ecuación no tiene término independiente, la **circunferencia** pasa por el **origen**.

Cuarta. Observamos que el termino rectángulo Bxy no existe, por lo que establecemos que B=0.

Por lo que se refiere a determinar el *centro* y el *radio* a partir de la ecuación desarrollada, lo lograremos si la llevamos a la forma común en la que intervienen binomios al cuadrado y a la que se llega completando trinomios cuadrados perfectos en x y y, como se muestra en los ejercicios siguientes:

3. EJERCICIOS

1. Encontrar el centro y el radio de la circunferencia cuya ecuación es: $9 x^2 + 9 y^2 - 12 x + 36 y - 104 = 0$. Trazar la circunferencia.

SOLUCIÓN

Completando trinomios cuadrados perfectos en x y y, se tiene:

$$9\left(x^2 - \frac{4}{3}x + \frac{4}{9} - \frac{4}{9}\right) + 9\left(y^2 + 4y + 4 - 4\right) - 104 = 0$$

Considerando los *binomios cuadrados perfectos* y simplificando:

9
$$(x-\frac{2}{3})^2+9 (y+2)^2-4-36-104=0$$

Llevando a la forma común (I), se tiene:

$$9\left(x-\frac{2}{3}\right)^{2}+9(y+2)^{2}=144$$

$$9\left[(x-\frac{2}{3})^{2}+(y+2)^{2}\right]=144$$

$$(x-\frac{2}{3})^{2}+(y+2)^{2}=\frac{144}{9}$$

$$(x-\frac{2}{3})^{2}+(y+2)^{2}=16$$

Figura 3

Comparando con la ecuación (I), se tiene que: $\frac{h=2/3}{k=-2}$ y $\frac{a=4}{k=-2}$. Por tanto, el **centro** C y el **radio** a están dados por:

$$C\left(\frac{2}{3},-2\right), a=4$$

La *Figura 3* muestra gráficamente los resultados obtenidos.

2. Encontrar el centro y el radio de la circunferencia dada por la ecuación: $4x^2 + 4y^2 + 4x + 4y - 2 = 0$.

SOLUCIÓN

Procediendo en la misma forma que en el ejemplo anterior, tenemos:

$$2x^{2}+2y^{2}+2x+2y-1=0$$

$$2(x^{2}+x+\frac{1}{4}-\frac{1}{4})+2(y^{2}+y+\frac{1}{4}-\frac{1}{4})-1=0$$

$$2\left(x+\frac{1}{2}\right)^{2}+2\left(y+\frac{1}{2}\right)^{2}=2$$

$$2\left[\left(x+\frac{1}{2}\right)^{2}+\left(y+\frac{1}{2}\right)^{2}\right]=2$$

$$\left(x+\frac{1}{2}\right)^{2}+\left(y+\frac{1}{2}\right)^{2}=1$$

De la última expresión, se determina que el *centro* y el *radio* de la *circunferencia* son respectivamente:

$$C\left(-\frac{1}{2},-\frac{1}{2}\right)$$
; a=1

3. Encontrar el centro y el radio de la circunferencia representada por la ecuación: $x^2 + y^2 - 16x + 2y + 65 = 0$.

SOLUCIÓN

Procediendo como en los ejemplos previos:

$$(x^2-16x+64-64)+(y^2+2y+1-1)+65=0$$

 $(x-8)^2+(y+1)^2=0$

Por tanto, el *centro* y el *radio* son:

$$C(8,-1)$$
; $a=0$

Como el *radio* es cero, la *circunferencia* se reduce a un *punto* que es el mismo *centro*.

4. Encontrar el centro y el radio de la circunferencia representada por la ecuación: $36 x^2 + 36 y^2 + 24 x + 72 y + 41 = 0$.

SOLUCIÓN

Procediendo como en los casos previos:

$$36(x^{2} + \frac{2}{3}x + \frac{1}{9} - \frac{1}{9}) + 36(y^{2} + 2y + 1 - 1) + 41 = 0$$

$$36(x + \frac{1}{3})^{2} + 36(y + 1)^{2} = -1$$

$$(x + \frac{1}{3})^{2} + (y + 1)^{2} = -\frac{1}{36}$$

De la expresión anterior, encontramos que el *centro* y el *radio* son:

$$C(-\frac{1}{3},-1)$$
; $a=\sqrt{-\frac{1}{36}}=\frac{1}{6}j$

En este caso, se trata de una circunferencia de radio imaginario.

5. Determinar la ecuación de una circunferencia que pasa por el punto P(1,0), sabiendo que es concéntrica a la representada por la ecuación: $x^2 + y^2 - 2x - 8y + 13 = 0$.

SOLUCIÓN

La ecuación debe tener la forma dada por la fórmula (I), debiendo ser las coordenadas h y k del *centro* las mismas que la de la *circunferencia* dada y las calculamos llevando a la forma común la ecuación de la *circunferencia* conocida.

Completando los *trinomios cuadrados perfectos* y reduciendo, tenemos:

$$(x^2-2x+1-1)+(y^2-8y+16-16)+13=0$$

 $(x-1)^2+(y-4)^2=4$

De la expresión anterior encontramos que el centro es $\frac{C(1,4)}{C}$, es decir $\frac{h=1}{L}$ y $\frac{K=4}{L}$. Como $\frac{a^2=4}{L}$, entonces $\frac{a=2}{L}$.

El **radio a** de la **circunferencia** buscada se calcula como la **distancia** del punto **P** al **centro C**.

$$\mathbf{a} = \overline{PC} = \sqrt{(1-1)^2 + (0-4)^2} = \mathbf{4}$$

Por tanto, a²=16. Sustituyendo este valor y los de h y k en la fórmula (I), encontramos la ecuación de la *circunferencia* pedida:

$$(x-1)^2 + (y-4)^2 = 16$$

6. El *diámetro* de una *circunferencia* es el segmento de recta definido por los puntos: A(-8,-2) y B(4,6). Obtener la ecuación de dicha *circunferencia*.

SOLUCIÓN

La forma de la ecuación es la de la fórmula (I). El *centro* es el punto medio del *diámetro*, cuyas coordenadas se obtienen aplicando las fórmulas para el punto medio de un segmento, en este caso \overline{AB} :

$$\mathbf{h} = \frac{X_A + X_B}{2} = \frac{-8 + 4}{2} = -2$$

$$\mathbf{k} = \frac{y_A + y_B}{2} = \frac{-2 + 6}{2} = 2$$

Por tanto, el centro es **C(-2,2)**. El **radio** es la **distancia** del **centro C** a cualquiera de los extremos del **diámetro**, es decir:

$$a = \overline{CB} = \sqrt{(-2-4)^2 + (2-6)^2} = \sqrt{36+16} = \sqrt{52}$$

La ecuación de la circunferencia pedida es:

$$(x+2)^2 + (y-2)^2 = 52$$

7. Determinar los puntos donde la circunferencia cuya ecuación es $x^2 + y^2 + 2x - 4y + 1 = 0$ corta a los ejes de coordenadas.

SOLUCIÓN

Para encontrar los puntos de *intersección* con el eje de las x, hacemos y = 0 y sustituimos en la ecuación dada:

$$x^2 + 2x + 1 = 0$$

Resolviendo para x:

$$x = \frac{-2 \pm \sqrt{4-4}}{2} = -1$$

Es decir, que la *circunferencia* es *tangente* al eje de las x en el punto I(-1,0).

Para determinar los puntos de *intersección* con el eje de las y, hacemos x = 0 y sustituimos en la ecuación dada:

$$y^2 - 4y + 1 = 0$$

Resolviendo para y:

$$y = \frac{4 \pm \sqrt{4^2 - 4(1)(1)}}{2} = \frac{4 \pm \sqrt{16 - 4}}{2} = \frac{4 \pm \sqrt{12}}{2} = 2 \pm \sqrt{3} = 2 \pm 1.732$$

GEOMETRÍA ANALÍTICA

Los valores de y que satisfacen la expresión anterior son:

$$y_1 = 2 + 1.732 = 3.732$$

 $y_2 = 2 - 1.732 = 0.268$

Por tanto, los puntos de intersección con el eje de las y son:

$$P_1(0,3.732)$$
 y $P_2(0,0.268)$

8. Encontrar los puntos de *intersección* de las *circunferencias* representadas por las ecuaciones:

$$x^{2} + y^{2} - 2x + 4y = 0$$
 (1)
 $x^{2} + y^{2} + 2x + 6y = 0$ (2)

SOLUCIÓN

Para encontrar los puntos de *intersección*, se resuelve el sistema de ecuaciones (1) y (2), para lo cual restamos la ecuación (1) de la ecuación (2):

$$4x + 2y = 0$$

Despejando a y:

$$y = -2x$$
 (3)

Sustituyendo (3) en (1), reduciendo términos y factorizado:

$$x^2 + 4x^2 - 2x - 8x = 0$$

$$5 x^2 - 10 x = 0$$

$$5 \times (x - 2) = 0$$

$$x(x-2)=0$$

Resolviendo para x:

$$x_1 = 0$$

$$x_2 = 2$$

Sustituyendo en (3):

$$y_1 = 0$$

$$y_2 = -4$$

Por tanto, los puntos de *intersección* son:

$$Q_1(0,0)$$
 y $Q_2(2,-4)$

9. La ecuación de una *circunferencia* es: $x^2 + y^2 + Dx + Ey + F = 0$. Determinar la ecuación para el caso particular en que la *circunferencia* pasa por los puntos P(-4,0), Q(0,2) y R(-2,-2).

SOLUCIÓN

La condición para que los puntos dados pertenezcan a la *circunferencia* es que verifiquen la ecuación dada. Sustituyendo las coordenadas de los puntos conocidos en la ecuación:

Para el punto
$$P: 16-4D+F=0$$
 (1)
Para el punto $Q: 4+2E+F=0$ (2)
Para el punto $R: 4+4-2D-2E+F=8-2D-2E+F=0$ (3)

Obteniendo un sistema de ecuaciones, que resolvemos restando (1) de (2):

$$-12 + 2E + 4D = 0$$

Dividiendo entre 2:

$$-6 + E + 2D = 0$$

Despejando a E:

$$E = -2D + 6$$
 (4)

De la ecuación (1), despejamos a F:

Sustituimos las ecuaciones (4) y (5) en (3):

$$8-2D-2(-2D+6)+4D-16=0$$

Desarrollando:

$$8 - 2D + 4D - 12 + 4D - 16 = 0$$

Reduciendo términos semejantes:

$$6D - 20 = 0$$

Despejando a D:

$$D = \frac{20}{6} = \frac{10}{3}$$

Sustituyendo D en (4):

$$E = -2 \left(\frac{10}{3} \right) + 6 = -\frac{20}{3} + \frac{18}{3} = -\frac{2}{3}$$

Sustituyendo D en (5):

$$\mathbf{F} = 4 \left(\frac{10}{3} \right) - 16 = \frac{40}{3} - \frac{48}{3} = -\frac{8}{3}$$

Sustituyendo los valores obtenidos en la ecuación inicial:

$$x^2 + y^2 + \frac{10}{3}x - \frac{2}{3}y - \frac{8}{3} = 0$$

Finalmente, multiplicando por 3:

$$3 x^2 + 3 y^2 + 10 x - 2 y - 8 = 0$$

Que es la ecuación pedida.

10. Comprobar que la recta 2y+x=10 es tangente a la circunferencia $x^2+y^2-2x-4y=0$ y determinar el punto de tangencia.

SOLUCIÓN

Necesitamos hacer simultáneas las dos ecuaciones. Para esto, despejamos a x de la primera ecuación:

$$x = 10 - 2y$$
 (1)

Sustituyendo este valor en la segunda ecuación, desarrollando y simplificando, se obtiene:

$$(10-2y)^2 + y^2 - 2(10-2y) - 4y = 0$$

 $100-40y+4y^2+y^2-20+4y-4y=0$
 $5y^2-40y+80=0$
 $y^2-8y+16=0$

Resolviendo para y:

$$y = \frac{8 \pm \sqrt{64 - 64}}{2} = \frac{8}{2} = 4$$

Sustituyendo en (1):

$$x = 10 - 2(4) = 10 - 8 = 2$$

De acuerdo al resultado, queda comprobado que la recta es **tangente** a la **circunferencia**, porque sólo tienen un solo punto común **T(2,4)**, que es precisamente el de **tangencia**.

11. Probar que el punto P(4,2) pertenece a la circunferencia $x^2 + y^2 - 2x + 4y = 20$ y obtener la ecuación de la tangente a la circunferencia en ese punto.

SOLUCIÓN

Las coordenadas del punto **P** deben verificar la ecuación dada por pertenecer a la **circunferencia**. Sustituyendo las coordenadas de **P** en la ecuación dada:

$$4^{2}+2^{2}-2(4)+4(2)=16+4-8+8\equiv 20$$

Por lo que el punto **P** sí pertenece a la **circunferencia**. Para obtener la ecuación de la **tangente**, necesitamos conocer el **centro** de la **circunferencia**. Llevando la ecuación dada a su forma común, es decir, completando los **trinomios cuadrados perfectos**, tenemos:

$$(x^2-2x+1-1)+(y^2+4y+4-4)=20$$

 $(x-1)^2+(y+2)^2=25$

De la expresión anterior, encontramos que el **centro** está en $\frac{C(1,-2)}{C(1,-2)}$ y el **radio** es $\frac{C(1,-2)}{C(1,-2)}$ y el $\frac{C(1,-2)$

$$\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1} = \frac{2 + 2}{4 - 1} = \frac{\mathbf{4}}{\mathbf{3}}$$

Como la tangente es perpendicular al radio \overline{PC} , su tangente es m=- $\frac{3}{4}$.

Sustituyendo en la fórmula de una recta que pasa por un punto dado **P** y pendiente **m**, se obtiene:

$$y-2=-\frac{3}{4}(x-4)=-\frac{3}{4}x+3$$

Finalmente, despejando a y se obtiene la ecuación de la recta *tangente* a la *circunferencia* en el punto *P*:

$$y = -\frac{3}{4} x + 5$$

12. Una circunferencia es tangente al eje de las x, pasa por el punto A(1,1) y tiene su centro sobre la recta y = x - 1. Obtener la ecuación de la circunferencia.

SOLUCIÓN

La gráfica, según los datos, se muestra en la *Figura 4*.

La forma de la ecuación es igual a la expresada en la fórmula (I). Para que la *circunferencia* sea *tangente* al eje de las x se necesita que la *ordenada* del *centro* sea igual al *radio*:

Las coordenadas del punto **A** deben verificar la ecuación de la **circunferencia**, por lo que tenemos:

$$(1-h)^2 + (1-k)^2 = a^2$$
 (2)

Las coordenadas del *centro* deben satisfacer la ecuación de la *recta* dada, es decir:

Sustituyendo (1) y (3) en (2):

$$(1-h)^2 + (1-h+1)^2 = (h-1)^2 = (1-h)^2$$

Simplificando:

$$(2-h)^2=0$$

Sacando raíz cuadrada:

$$2 - h = 0$$

Por tanto:

h=2

Sustituyendo h en la ecuación (3):

$$k = 2 - 1 = 1$$

Sustituyendo k en (1):

a = 1

Sustituyendo h, k y a en la fórmula (I), se obtiene la ecuación pedida:

$$(x-2)^2 + (y-1)^2 = 1$$

Nombre de archivo: circunferencia

Directorio: C:\Geometria_analitica

Plantilla: C:\WINDOWS\Application Data\Microsoft\Plantillas\Normal.dot

Título: IV

Asunto:

Autor: Pablo Fuentes Ramos

Palabras clave: Comentarios:

Fecha de creación: 28/02/02 07:28 P.M.

Cambio número: 41

Guardado el: 29/05/02 04:53 P.M. Guardado por: Pablo Fuentes Ramos

Tiempo de edición: 1,173 minutos

Impreso el: 29/05/02 04:54 P.M.

Última impresión completa

Número de páginas: 12

Número de palabras: 1,913 (aprox.) Número de caracteres: 10,906 (aprox.)