Towards a Formal Theory of Renaming for OCaml

Reuben Rowe joint work-in-progress with Simon Thompson and Hugo Férée University of Birmingham Theory Seminar Friday 19th October 2018

· Renaming (e.g. functions) in (real-world) OCaml is hard!

- · Renaming (e.g. functions) in (real-world) OCaml is hard!
 - · usual engineering problems
 - · multi-file programs
 - preprocessors
 - · build systems ...

- Renaming (e.g. functions) in (real-world) OCaml is hard!
 - · usual engineering problems
 - · multi-file programs
 - preprocessors
 - · build systems ...
 - · but also due to powerful module system
 - functors
 - module types
 - · aliases and constraints .

- · Renaming (e.g. functions) in (real-world) OCaml is hard!
 - · usual engineering problems
 - · multi-file programs
 - preprocessors
 - build systems ...
 - · but also due to powerful module system
 - functors
 - · module types
 - aliases and constraints
- Need a formal mechanism for reasoning about renaming
 - Abstract denotational semantics

```
module A = struct
 let foo = 1
 let bar = 2
end
module B = struct
  include A
 let bar = 3
end
module C = (A : sig val foo : int end)
print_int (A.foo + B.foo + C.foo) ;;
print int (A.bar + B.bar) ;;
```

```
module A = struct
 let foo = 1
 let bar = 2
end
module B = struct
  include A
 let bar = 3
end
module C = (A : sig val foo : int end)
print_int (A.foo + B.foo + C.foo) ;;
print int (A.bar + B.bar) ;;
```

```
module A = struct
 let foo = 1
 let bar = 2
end
module B = struct
  include A
 let bar = 3
end
module C = (A : sig val foo : int end)
print_int (A.foo + B.foo + C.foo) ;;
print_int (A. bar + B.bar) ;;
```

```
module A = struct
 let foo = 1
 let bar = 2
end
module B = struct
  include A
 let bar = 3
end
module C = (A : sig val foo : int end)
print_int (A.foo + B.foo + C.foo) ;;
print int (A.bar + B.bar) ;;
```

```
module A = struct
 let foo = 1
 let bar = 2
end
module B = struct
  include A
 let bar = 3
end
module C = (A : sig val foo : int end)
print_int (A. foo + B.foo + C.foo) ;;
print int (A.bar + B.bar) ;;
```

```
module A = struct
 let foo = 1
 let bar = 2
end
module B = struct
                            reference to
  include A ←
                           parent module
 let bar = 3
end
module C = (A : sig val foo : int end)
print_int (A. foo + B.foo + C.foo) ;;
print int (A.bar + B.bar) ;;
```

```
module A = struct
 let foo = 1
 let bar = 2
end
module B = struct
                            reference to
  include A ←
                           parent module
 let bar = 3
end
module C = (A : sig val foo : int end)
print_int (A. foo + B. foo + C.foo) ;;
print int (A.bar + B.bar) ;;
```

```
module A = struct
  let foo = 1
  let bar = 2
end
module B = struct
                            reference to
  include A ←
                           parent module
  let bar = 3
end
module C = (A : sig val foo : int end)
print_int (A. foo + B. foo + C.foo) ;;
print int (A.bar + B.bar) ;;
```

```
module A = struct
  let foo = 1
  let bar = 2
end
module B = struct
                            reference to
  include A ←
                           parent module
  let bar = 3
end
module C = (A : sig val foo : int end)
print_int (A. foo + B. foo + C. foo ) ;;
print_int (A.bar + B.bar) ;;
```

```
module A = struct
 let foo = 1
 let bar = 2
end
module B = struct
  include A
 let foo = foo
 let bar = 3
end
module C = (A : sig val foo : int end)
print_int (A. foo + B. foo + C. foo ) ;;
print_int (A.bar + B.bar) ;;
```

```
module A = struct
 let foo = 1
 let bar = 2
end
module B = struct
 include A
 let foo = foo
 let bar = 3
end
module C = (struct include A
   let foo = foo
  end : sig val foo : int end)
print int (A. foo + B.foo + C.foo) ;;
print_int (A.bar + B.bar) ;;
```

```
module type Magma = sig
  type t
  val op : t -> t -> t
  val equal : t -> t -> bool
  val choose : unit -> t
end
module M1 : Magma =
                              module M2 : Magma =
struct
                              struct
 type t = int
                                type t = float
 let op x y = ...
                                let op x y = ...
  let equal x y = ...
                                let equal x y = ...
 let choose () = ...
                                let choose () = ...
end
                              end ;:
let x = M1.choose () in M1.equal (M1.op x x) x ;;
let y = M2.choose () in M2.equal (M2.op x x) x ;;
```

```
module type Magma = sig
  type t
  val op : t -> t -> t
  val equal : t -> t -> bool
  val choose : unit -> t
end
module M1 : Magma =
                              module M2 : Magma =
struct
                              struct
  type t = int
                                type t = float
  let op x y = ...
                                let op x y = ...
  let equal x v = ...
                                let equal x y = ...
 let choose () = ...
                                let choose () = ...
end
                              end ;;
let x = M1.choose () in M1.equal (M1.op x x) x ;;
let y = M2.choose () in M2.equal (M2.op x x) x ;;
```

```
module type Magma = sig
  type t
  val op : t -> t -> t
  val equal : t -> t -> bool
  val choose : unit -> t
end
module M1 : Magma =
                              module M2 : Magma =
struct
                              struct
 type t = int
                                type t = float
 let op x y = ...
                                let op x y = ...
  let equal x v = ...
                                let equal x y = ...
 let choose () = ...
                                let choose () = ...
end
                              end ;:
let x = M1.choose () in M1.equal (M1. op x x) x ;;
let y = M2.choose () in M2.equal (M2.op x x) x ;;
```

```
module type Magma = sig
                                             dependencies
  type t
                                            induced by using
  val op : t -> t -> t
                                              interfaces
  val equal : t -> t -> bool
  val choose : unit -> t
end
module M1 : Magma =
                               module M2 : Magma =
struct
                               struct
  type t = int
                                 type t = float
  let op x y = ...
                                 let op x y = ...
  let equal x y = ...
                                let equal x y = ...
 let choose () = ...
                                let choose () = ...
end
                               end ;;
let x = M1.choose () in M1.equal (M1. op x x) x ;;
let y = M2.choose () in M2.equal (M2.op x x) x ;;
```

```
module type Magma = sig
                                            dependencies
  type t
                                           induced by using
  val op : t -> t -> t
                                              interfaces
  val equal : t -> t -> bool
  val choose : unit -> t
end
module M1 : Magma =
                              module M2 : Magma =
struct
                              struct
  type t = int
                                type t = float
  let op x y = ...
                                let op x y = ...
  let equal x y = ...
                                let equal x y = ...
 let choose () = ...
                               let choose () = ...
end
                              end ;;
let x = M1.choose () in M1.equal (M1. op x x) x ;;
let y = M2.choose () in M2.equal (M2.op x x) x ;;
```

```
module Pair
  (X : sig type t val to_string : t -> string end)
  (Y : sig type t val to_string : t -> string end) =
struct
  type t = X.t * Y.t
  let to_string (x, y) =
     X.to_string x ^ " " ^ Y.to_string y
end
```

```
module Pair
 (X : sig type t val to string : t -> string end)
 (Y : sig type t val to string : t -> string end) =
struct
 type t = X.t * Y.t
 let to string (x, y) =
   X.to string x ^ " " ^ Y.to_string y
end
module Int = struct
 type t = int let to string i = int to string i
end
module String = struct
 type t = string let to string s = s
end
module P = Pair(Int)(Pair(String)(Int)) ;;
print endline (P.to string (0, ("!=", 1)));;
```

```
module Pair
 (X : sig type t val to string : t -> string end)
 (Y : sig type t val to string : t -> string end) =
struct
 type t = X.t * Y.t
 let to string (x, y) =
   X.to string x ^ " " ^ Y.to_string y
end
module Int = struct
 type t = int let to string i = int to string i
end
module String = struct
 type t = string let to string s = s
end
module P = Pair(Int)(Pair(String)(Int)) ;;
print_endline (P. to_string (0, ("!=", 1))) ;;
```

```
module Pair
 (X : sig type t val to string : t -> string end)
 (Y : sig type t val to string : t -> string end) =
struct
 type t = X.t * Y.t
 let to_string (x, y) =
   X.to string x ^ " " ^ Y.to string y
end
module Int = struct
 type t = int let to string i = int to string i
end
module String = struct
 type t = string let to string s = s
end
module P = Pair(Int)(Pair(String)(Int)) ;;
print_endline (P. to_string (0, ("!=", 1))) ;;
```

```
module Pair
 (X : sig type t val to string : t -> string end)
 (Y : sig type t val to string : t -> string end) =
struct
 type t = X.t * Y.t
 let to_string (x, y) =
   X.to_string x ^ " " ^ Y. to_string v
end
module Int = struct
 type t = int let to_string i = int_to string i
end
module String = struct
 type t = string let to_string s = s
end
module P = Pair(Int)(Pair(String)(Int)) ;;
print_endline (P. to_string (0, ("!=", 1))) ;;
```

```
module Pair
 (X : sig type t val to string : t -> string end)
 (Y : sig type t val to string : t -> string end) =
struct
 type t = X.t * Y.t
 let to_string (x, y) =
   X.to_string x ^ " " ^ Y. to_string v
end
module Int = struct
 type t = int let to_string i = int_to_string i
end
module String = struct
 type t = string let to_string s = s
end
module P = Pair(Int)(Pair(String)(Int)) ;;
print_endline (P. to_string (0, ("!=", 1))) ;;
```

```
module Pair
 (X : sig type t val to string : t -> string end)
  (Y : sig type t val to string : t -> string end) =
struct
 type t = X.t * Y.t
 let to_string (x, y) =
   X. to string x ^ " " ^ Y. to string v
end
module Int = struct
 type t = int let to string i = int to string i
end
module String = struct
 type t = string let to string s = s
end
module P = Pair(Int)(Pair(String)(Int)) ;;
print endline (P. to string (0, ("!=", 1))) ;;
```

```
module Pair
 (X : sig type t val to string : t -> string end)
  (Y : sig type t val to string : t -> string end) =
struct
 type t = X.t * Y.t
 let to_string (x, y) =
   X. to string x ^ " " ^ Y. to string v
end
module Int = struct
 type t = int let to string i = int to string i
end
module String = struct
 type t = string let to_string s = s
end
module P = Pair(Int)(Pair(String)(Int)) ;;
print endline (P. to string (0, ("!=", 1))) ;;
```

Some Observations

· Basic renamings rely on binding resolution information

 Program structure induces dependencies between basic renamings

 Disparate parts of a program can together make up a single logical meta-level entity

A Formal Theory of Renaming: Roadmap

- 1. Programs as ASTs and renamings as operations on them
 - · AST 'locations' allow name-independent representations
- 2. Define a semantic structure that separately captures:
 - Binding resolution information
 - Meta-level program relationships relevant to renaming
 - Information about concrete names
- 3. Map programs onto these semantic structures
 - · formal properties at the 'right level of abstraction'
 - methods for constructing/checking renamings

Viewing Programs Abstractly

AST
$$\sigma$$
 : $\mathcal{L}oc \rightarrow \mathcal{S}yn$

 $\ell \in \mathcal{L}oc$ is a declaration when it is a value identifier $(\sigma(\ell) \in \mathcal{V})$ and there is ℓ' such that

Non-declaration value identifiers are called references

Renamings as Operations on ASTs

A renaming $\sigma \twoheadrightarrow \sigma'$ is a pair of ASTs σ and σ' such that

- 1. $dom(\sigma) = dom(\sigma')$
- 2. $\sigma(\ell) \in \mathcal{V} \Leftrightarrow \sigma'(\ell) \in \mathcal{V}$
- 3. $\sigma(\ell) \not\in \mathcal{V} \Rightarrow \sigma(\ell) = \sigma(\ell')$

We define the footprint of a renaming $\sigma \twoheadrightarrow \sigma'$

$$\mathsf{foot}(\sigma,\sigma') = \{\ell \mid \ell \in \mathsf{dom}(\sigma) \land \sigma(\ell) \neq \sigma'(\ell)\}$$

We define the dependencies of a renaming $\sigma \twoheadrightarrow \sigma'$

$$\mathsf{deps}(\sigma, \sigma') = \{\ell \mid \ell \in \mathsf{foot}(\sigma, \sigma') \text{ and } \ell \text{ a declaration of } \sigma\}$$

Two Important Questions

1. When is a renaming $\sigma \rightarrow \sigma'$ valid?

- 2. For a given AST σ and $\ell \in \text{decl}(\sigma)$, find σ' such that
 - $\sigma \twoheadrightarrow \sigma'$ is valid
 - foot (σ,σ') is minimal and contains ℓ

An Abstract Semantic Structure

$$\Sigma = (\rightarrowtail, \mathbb{E}, \rho)$$

Our semantic entities consist of

- A binding resolution function \rightarrow : $\mathcal{L}oc \rightarrow \mathcal{L}oc$
- A value extension relation \mathbb{E} : $\mathcal{L}oc \times \mathcal{L}oc$
- A syntactic reification function $\rho: \mathcal{L}oc \longrightarrow \mathcal{I}$ mapping locations to identifiers

Interpreting Programs: Example Revisited

```
module A_1 = struct
   let foo_2 = 1
   let bar3 = 2
end
module B_4 = struct
   include A
   let bar_5 = 3
end
module C_6 = (A : sig val foo_7 : int end)
print int<sub>8</sub> (A.foo<sub>9</sub> + B.foo<sub>10</sub> + C.foo<sub>11</sub>);;
print_int<sub>12</sub> (A.bar<sub>13</sub> + B.bar<sub>14</sub>);;
\rightarrow = \{9 \mapsto 2, 10 \mapsto 2, 11 \mapsto 2, 13 \mapsto 3, 14 \mapsto 5, 8 \mapsto \bot, 12 \mapsto \bot, \} \mathbb{E} = \{(2,7)\}
  \rho = \{1 \mapsto A, 2 \mapsto foo, 3 \mapsto bar, 4 \mapsto B, 5 \mapsto bar, 6 \mapsto C, 7 \mapsto foo, \}
          8 \mapsto \text{print int}, 9 \mapsto \text{foo}, 10 \mapsto \text{foo}, 11 \mapsto \text{foo}, 12 \mapsto \text{print int},
          13 \mapsto bar, 14 \mapsto bar
```

```
module A_1 = struct
   let f_{00_2} = 1
   let bar_3 = 2
end
module B_4 = struct
   include A
   let bar_5 = 3
end
module C_6 = (A : sig val foo_7 : int end)
print_int<sub>8</sub> (A. foo_9 + B. foo_{10} + C. foo_{11});;
print_int<sub>12</sub> (A.bar<sub>13</sub> + B.bar<sub>14</sub>);;
\Rightarrow = \{9 \mapsto 2, 10 \mapsto 2, 11 \mapsto 2, 13 \mapsto 3, 14 \mapsto 5, 8 \mapsto \bot, 12 \mapsto \bot, \} \quad \mathbb{E} = \{(2,7)\}
  \rho = \{1 \mapsto A, 2 \mapsto foo, 3 \mapsto bar, 4 \mapsto B, 5 \mapsto bar, 6 \mapsto C, 7 \mapsto foo, \}
          8 \mapsto \text{print int}, 9 \mapsto \text{foo}, 10 \mapsto \text{foo}, 11 \mapsto \text{foo}, 12 \mapsto \text{print int},
         13 \mapsto bar, 14 \mapsto bar
```

```
module A_1 = struct
   let foo_2 = 1
   let bar_3 = 2
end
module B_4 = struct
   include A
   let bar_5 = 3
end
module C_6 = (A : sig val foo_7 : int end)
print int<sub>8</sub> (A.foo<sub>9</sub> + B.foo<sub>10</sub> + C.foo<sub>11</sub>);;
print_int<sub>12</sub> (A. bar<sub>13</sub> + B.bar<sub>14</sub>);;
\rightarrow = \{9 \mapsto 2, 10 \mapsto 2, 11 \mapsto 2, 13 \mapsto 3, 14 \mapsto 5, 8 \mapsto \bot, 12 \mapsto \bot, \} \quad \mathbb{E} = \{(2,7)\}
  \rho = \{1 \mapsto A, 2 \mapsto foo, 3 \mapsto bar, 4 \mapsto B, 5 \mapsto bar, 6 \mapsto C, 7 \mapsto foo, \}
          8 \mapsto \text{print int}, 9 \mapsto \text{foo}, 10 \mapsto \text{foo}, 11 \mapsto \text{foo}, 12 \mapsto \text{print int},
          13 \mapsto bar, 14 \mapsto bar
```

```
module A_1 = struct
   let foo_2 = 1
   let bar_3 = 2
end
module B_4 = struct
   include A
   let bar_5 = 3
end
module C_6 = (A : sig val foo_7 : int end)
print int<sub>8</sub> (A.foo<sub>9</sub> + B.foo<sub>10</sub> + C.foo<sub>11</sub>);;
print_int<sub>12</sub> (A.bar<sub>13</sub> + B.bar<sub>14</sub>);;
\rightarrow = \{9 \mapsto 2, 10 \mapsto 2, 11 \mapsto 2, 13 \mapsto 3, 14 \mapsto 5, 8 \mapsto \bot, 12 \mapsto \bot, \} \quad \mathbb{E} = \{(2,7)\}
  \rho = \{1 \mapsto A, 2 \mapsto foo, 3 \mapsto bar, 4 \mapsto B, 5 \mapsto bar, 6 \mapsto C, 7 \mapsto foo, \}
          8 \mapsto \text{print int}, 9 \mapsto \text{foo}, 10 \mapsto \text{foo}, 11 \mapsto \text{foo}, 12 \mapsto \text{print int},
          13 \mapsto bar, 14 \mapsto bar
```

```
module A_1 = struct
   let foo_2 = 1
   let bar3 = 2
end
module B_4 = struct
    include A
   let bar_5 = 3
end
module C_6 = (A : sig val foo_7 : int end)
 print int<sub>o</sub> (A.foo<sub>9</sub> + B.foo<sub>10</sub> + C.foo<sub>11</sub>) ;;
 \frac{\mathsf{print}_{12}}{\mathsf{int}_{12}} (A.bar<sub>13</sub> + B.bar<sub>14</sub>) ;;
\rightarrow = \{9 \mapsto 2, 10 \mapsto 2, 11 \mapsto 2, 13 \mapsto 3, 14 \mapsto 5, 8 \mapsto \bot, 12 \mapsto \bot, \} \quad \mathbb{E} = \{(2,7)\}
  \rho = \{1 \mapsto A, 2 \mapsto foo, 3 \mapsto bar, 4 \mapsto B, 5 \mapsto bar, 6 \mapsto C, 7 \mapsto foo, \}
          8 \mapsto \text{print int}, 9 \mapsto \text{foo}, 10 \mapsto \text{foo}, 11 \mapsto \text{foo}, 12 \mapsto \text{print int},
          13 \mapsto bar, 14 \mapsto bar
```

```
module A_1 = struct
   let foo_2 = 1
   let bar_3 = 2
end
module B_4 = struct
   include A
   let bar_5 = 3
end
module C_6 = (A : sig val foo_7 : int end)
print int<sub>8</sub> (A.foo<sub>9</sub> + B.foo<sub>10</sub> + C.foo<sub>11</sub>);;
print_int<sub>12</sub> (A.bar<sub>13</sub> + B.bar<sub>14</sub>);;
\rightarrow = \{9 \mapsto 2, 10 \mapsto 2, 11 \mapsto 2, 13 \mapsto 3, 14 \mapsto 5, 8 \mapsto \bot, 12 \mapsto \bot, \} \quad \mathbb{E} = \{(2,7)\}
  \rho = \{1 \mapsto A, 2 \mapsto foo, 3 \mapsto bar, 4 \mapsto B, 5 \mapsto bar, 6 \mapsto C, 7 \mapsto foo, \}
          8 \mapsto \text{print int}, 9 \mapsto \text{foo}, 10 \mapsto \text{foo}, 11 \mapsto \text{foo}, 12 \mapsto \text{print int},
          13 \mapsto bar, 14 \mapsto bar
```

```
F(X) = \wp_{fin}(X + (\mathcal{L}oc \times X)) + ((\mathcal{L}oc \times X) \times X)
                 Structure/Signature + functor (type)
functor
  (X<sub>1</sub> : sig type t val to_string<sub>2</sub> : t -> string end) ->
     functor
        (Y<sub>3</sub> : sig type t val to_string<sub>4</sub> : t -> string end) ->
           struct
           type t = X.t * Y.t
           module Left_5 = X
           module Right<sub>6</sub> = Y
           let to string<sub>7</sub> (x, y) = ...
        end 1
               = ((1, \{2\}), ((3, \{4\}), \{7, (5, \{2\}), (6, \{4\})\}))
```

```
F(X) = \wp_{fin}(X + (\mathcal{L}oc \times X)) + ((\mathcal{L}oc \times X) \times X)
Structure/Signature + functor (type)
```

```
F(X) = \wp_{fin}(X + (\mathcal{L}oc \times X)) + ((\mathcal{L}oc \times X) \times X)
                 Structure/Signature + functor (type)
functor
  (X<sub>1</sub> : sig type t val to_string<sub>2</sub> : t -> string end) ->
     functor
 \longrightarrow (Y<sub>3</sub> : sig type t val to_string<sub>4</sub> : t -> string end) ->
           struct
           type t = X.t * Y.t
           module Left_5 = X
           module Right<sub>6</sub> = Y
           let to string<sub>7</sub> (x, y) = ...
        end 1
              =((1,\{2\}),((3,\{4\}),\{7,(5,\{2\}),(6,\{4\})\}))
```

$$F(X) = \wp_{fin}(X + (\mathcal{L}oc \times X)) + ((\mathcal{L}oc \times X) \times X)$$

$$Structure/Signature + functor (type)$$
[functor
$$(X_1 : sig type t val to_string_2 : t -> string end) -> functor$$

$$(Y_3 : sig type t val to_string_4 : t -> string end) -> struct$$

$$type t = X.t * Y.t$$

$$module \ Left_5 = X$$

$$module \ Right_6 = Y$$

$$\longrightarrow let to_string_7 (x, y) = ...$$

$$end \]$$

$$= ((1, \{2\}), ((3, \{4\}), \{7, (5, \{2\}), (6, \{4\})\}))$$

```
F(X) = \wp_{fin}(X + (\mathcal{L}oc \times X)) + ((\mathcal{L}oc \times X) \times X)
                  Structure/Signature + functor (type)
functor
  (X<sub>1</sub> : sig type t val to_string<sub>2</sub> : t -> string end) ->
     functor
        (Y<sub>3</sub> : sig type t val to_string<sub>4</sub> : t -> string end) ->
           struct
           type t = X.t * Y.t
     \longrightarrow module Left<sub>5</sub> = X
           module Right<sub>6</sub> = Y
           let to string<sub>7</sub> (x, y) = ...
         end 1
              = ((1, \{2\}), ((3, \{4\}), \{7, \{(5, \{2\}), (6, \{4\})\}))
```

```
F(X) = \wp_{fin}(X + (\mathcal{L}oc \times X)) + ((\mathcal{L}oc \times X) \times X)
                  Structure/Signature + functor (type)
functor
  (X<sub>1</sub> : sig type t val to_string<sub>2</sub> : t -> string end) ->
     functor
        (Y<sub>3</sub> : sig type t val to_string<sub>4</sub> : t -> string end) ->
           struct
           type t = X.t * Y.t
           module Left_5 = X
     \longrightarrow module Right<sub>6</sub> = Y
           let to string<sub>7</sub> (x, y) = ...
        end 1
               = ((1, \{2\}), ((3, \{4\}), \{7, (5, \{2\}), (6, \{4\})\}))
```

Operations on Module Representations

Semantic operations model effects of syntactic constructs e.g. join \otimes_{ρ} produces a value extension:

$$\begin{aligned} (V_{1}, M_{1}) \otimes_{\rho} (V_{2}, M_{2}) &= \\ \{(\ell_{1}, \ell_{2}) \mid \ell_{1} \in V_{1} \wedge \ell_{2} \in V_{2} \wedge \rho(\ell_{1}) = \rho(\ell_{2})\} \cup \\ & \bigcup \{\Delta_{1} \otimes_{\rho} \Delta_{2} \mid M_{1}(\ell_{1}) = \Delta_{1} \wedge M_{2}(\ell_{2}) = \Delta_{2} \wedge \rho(\ell_{1}) = \rho(\ell_{2})\} \end{aligned}$$

$$((\ell_1,\Delta_1),\Delta_1')\otimes_\rho((\ell_2,\Delta_2),\Delta_2')=(\Delta_1\otimes_\rho\Delta_2)\cup(\Delta_1'\otimes_\rho\Delta_2')$$

$$\llbracket\sigma\rrbracket_{\langle\Sigma,\Gamma\rangle}=(\Sigma',\Delta)$$

$$\llbracket\sigma\rrbracket_{\langle\Sigma,\Gamma\rangle}=(\Sigma',\Delta)$$

$$\begin{split} \llbracket \textbf{module} \ \ x_{\ell} \ &= \ m \ \textbf{;} \ \textbf{;} \ \sigma \rrbracket_{\langle \Sigma, \Gamma \rangle} = \\ & \text{let} \ (\Sigma', \Delta_1) = \llbracket m \rrbracket_{\langle \Sigma, \Gamma \rangle} \ \text{in let} \ (\Sigma'', \Delta_2) = \llbracket \sigma \rrbracket_{\langle \Sigma'[\ell \mapsto \mathsf{x}], \Gamma[\mathsf{x} \mapsto \Delta_1] \rangle} \ \text{in} \\ & \left(\Sigma'', (\emptyset, [\ell \mapsto \Delta_1]) + \Delta_2 \right) \end{aligned}$$

$$\llbracket \sigma \rrbracket_{\langle \Sigma, \Gamma \rangle} = (\Sigma', \Delta)$$

$$\begin{split} \llbracket \textbf{module} \ \ x_{\ell} \ &= \ m \ \textbf{;} \ \textbf{;} \ \sigma \rrbracket_{\langle \Sigma, \Gamma \rangle} = \\ & \text{let} \ (\Sigma', \Delta_1) = \llbracket m \rrbracket_{\langle \Sigma, \Gamma \rangle} \ \text{in let} \ (\Sigma'', \Delta_2) = \llbracket \sigma \rrbracket_{\langle \Sigma'[\ell \mapsto \mathsf{x}], \Gamma[\mathsf{x} \mapsto \Delta_1] \rangle} \ \text{in} \\ & \left(\Sigma'', (\emptyset, [\ell \mapsto \Delta_1]) + \Delta_2 \right) \end{aligned}$$

$$\begin{split} \llbracket \textbf{functor} & \ (x_\ell: M) \ \, -> \ \, m \rrbracket_{\langle \Sigma, \Gamma \rangle} = \\ & \ \, \text{let} \left(\Sigma', \Delta_1 \right) = \llbracket M \rrbracket_{\langle \Sigma, \Gamma \rangle} \text{ in let} \left(\Sigma'', \Delta_2 \right) = \llbracket \sigma \rrbracket_{\langle \Sigma'[\ell \mapsto \mathsf{x}], \Gamma[\mathsf{x} \mapsto \Delta_1] \rangle} \text{ in} \\ & \ \, \left(\Sigma'', \left((\ell, \Delta_1), \Delta_2 \right) \right) \end{split}$$

$$\llbracket \sigma \rrbracket_{\langle \Sigma, \Gamma \rangle} = (\Sigma', \Delta)$$

$$\begin{split} \llbracket \text{module } x_\ell &= m \text{ ; } ; \sigma \rrbracket_{\langle \Sigma, \Gamma \rangle} = \\ & \text{let } (\Sigma', \Delta_1) = \llbracket m \rrbracket_{\langle \Sigma, \Gamma \rangle} \text{ in let } (\Sigma'', \Delta_2) = \llbracket \sigma \rrbracket_{\langle \Sigma'[\ell \mapsto \mathsf{x}], \Gamma[\mathsf{x} \mapsto \Delta_1] \rangle} \text{ in } \\ & (\Sigma'', (\emptyset, [\ell \mapsto \Delta_1]) + \Delta_2) \end{split}$$

$$\begin{split} \llbracket \textbf{functor} & \ (x_\ell: M) \ \, -> \ \, m \rrbracket_{\langle \Sigma, \Gamma \rangle} = \\ & \ \, \text{let} \left(\Sigma', \Delta_1 \right) = \llbracket M \rrbracket_{\langle \Sigma, \Gamma \rangle} \text{ in let} \left(\Sigma'', \Delta_2 \right) = \llbracket \sigma \rrbracket_{\langle \Sigma'[\ell \mapsto \mathsf{x}], \Gamma[\mathsf{x} \mapsto \Delta_1] \rangle} \text{ in} \\ & \ \, \left(\Sigma'', \left((\ell, \Delta_1), \Delta_2 \right) \right) \end{split}$$

$$\llbracket m_1 \, (\, m_2 \,) \rrbracket_{\langle \Sigma, \Gamma \rangle} = \text{let} \, (\Sigma', ((\ell, \Delta_1), \Delta_2)) = \llbracket m_1 \rrbracket_{\langle \Sigma, \Gamma \rangle} \text{ in }$$

$$\text{let} \, ((\rightarrowtail, \mathbb{E}, \rho), \Delta_1') = \llbracket m_2 \rrbracket_{\langle \Sigma', \Gamma \rangle} \text{ in } ((\rightarrowtail, \mathbb{E} \cup (\Delta_1 \otimes_{\rho} \Delta_1'), \rho), \Delta_2)$$

Distinguishing Valid Renamings

We define up-to-renaming equivalences on environments and semantic structures

- $\Gamma \sim \Gamma'$ iff $\Gamma(x) = \Gamma'(x)$ and $(\exists v \ \Gamma(v) = \ell) \Leftrightarrow (\exists v \ \Gamma(v) = \ell)$
- $\begin{array}{c} \cdot \ (\rightarrowtail_1,\mathbb{E}_1,\rho_1) \sim (\rightarrowtail_2,\mathbb{E}_2,\rho_2) \ \text{iff} \ \rightarrowtail_1 = \rightarrowtail_2, \ \mathbb{E}_1 = \mathbb{E}_2, \ \text{dom}(\rho_1) = \text{dom}(\rho_2), \\ \rho_1(\ell) \in \mathcal{V} \Leftrightarrow \rho_2(\ell) \in \mathcal{V}, \ \text{and if} \ \rho_1(\ell) \not\in \mathcal{V} \ \text{then} \ \rho_1(\ell) = \rho_2(\ell) \end{array}$

A valid renaming is one that preserve the equivalence

 $\sigma \twoheadrightarrow \sigma'$ valid w.r.t. $\langle \Sigma, \Gamma \rangle$ iff $\exists \Sigma' \sim \Sigma, \Gamma' \sim \Gamma$ such that $\Sigma_1 \sim \Sigma_2$, where $[\![\sigma]\!]_{\langle \Sigma, \Gamma \rangle} = (\Sigma_1, \Delta_1)$ and $[\![\sigma']\!]_{\langle \Sigma', \Gamma' \rangle} = (\Sigma_2, \Delta_2)$

Distinguishing Valid Renamings

We define up-to-renaming equivalences on environments and semantic structures

- $\Gamma \sim \Gamma'$ iff $\Gamma(x) = \Gamma'(x)$ and $(\exists v \ \Gamma(v) = \ell) \Leftrightarrow (\exists v \ \Gamma(v) = \ell)$
- $\begin{array}{c} \cdot \ (\rightarrowtail_1,\mathbb{E}_1,\rho_1) \sim (\rightarrowtail_2,\mathbb{E}_2,\rho_2) \ \text{iff} \ \rightarrowtail_1 = \rightarrowtail_2, \ \mathbb{E}_1 = \mathbb{E}_2, \ \text{dom}(\rho_1) = \text{dom}(\rho_2), \\ \rho_1(\ell) \in \mathcal{V} \Leftrightarrow \rho_2(\ell) \in \mathcal{V}, \ \text{and if} \ \rho_1(\ell) \not\in \mathcal{V} \ \text{then} \ \rho_1(\ell) = \rho_2(\ell) \end{array}$

A valid renaming is one that preserve the equivalence

- $\sigma \twoheadrightarrow \sigma'$ valid w.r.t. $\langle \Sigma, \Gamma \rangle$ iff $\exists \Sigma' \sim \Sigma, \Gamma' \sim \Gamma$ such that $\Sigma_1 \sim \Sigma_2$, where $\llbracket \sigma \rrbracket_{\langle \Sigma, \Gamma \rangle} = (\Sigma_1, \Delta_1)$ and $\llbracket \sigma' \rrbracket_{\langle \Sigma', \Gamma' \rangle} = (\Sigma_2, \Delta_2)$
- For whole programs (interpreted w.r.t. Σ_{\perp} and Γ_{\perp}), we say $P \twoheadrightarrow P'$ valid iff $[\![P]\!] \sim [\![P']\!]$ (when $[\![P]\!]$ and $[\![P']\!]$ defined)

```
Theorem (1) P \rightarrow P is valid (when [P] defined)
```

- (2) if $P \rightarrow P'$ is valid then so is $P' \rightarrow P$
- (3) if $P \twoheadrightarrow P'$ and $P' \twoheadrightarrow P''$ are valid then so is $P \twoheadrightarrow P''$

```
Theorem (1) P 	woheadrightarrow P is valid (when \llbracket P \rrbracket defined)

(2) if P 	woheadrightarrow P' is valid then so is P' 	woheadrightarrow P

(3) if P 	woheadrightarrow P' and P' 	woheadrightarrow P'' are valid then so is P 	woheadrightarrow P''

Theorem If P 	woheadrightarrow P' is valid, with \llbracket P \rrbracket = (	woheadrightarrow \mathbb{R}, \rho), then:

(1) L = \{\ell \mid \ell \in \text{deps}(P, P') \lor \exists \ell' \in \text{deps}(P, P'). \ell \mapsto_P \ell'\} \subseteq \text{foot}(P, P')

(2) \ell \mapsto_{\perp} \bot for all \ell \in \text{foot}(P, P') \lor L
```

```
Theorem (1) P \rightarrow P is valid (when [P] defined)
```

- (2) if $P \rightarrow P'$ is valid then so is $P' \rightarrow P$
- (3) if $P \rightarrow P'$ and $P' \rightarrow P''$ are valid then so is $P \rightarrow P''$

Theorem If P woheadrightarrow P' is valid, with $[\![P]\!] = (\rightarrowtail, \mathbb{E}, \rho)$, then:

- $(1) L = \{\ell \mid \ell \in \mathsf{deps}(P, P') \lor \exists \ell' \in \mathsf{deps}(P, P'). \ell \rightarrowtail_P \ell'\} \subseteq \mathsf{foot}(P, P')$
- (2) $\ell \rightarrowtail \bot$ for all $\ell \in \text{foot}(P, P') \setminus L$

Theorem If P woheadrightarrow P' is valid, with $[\![P]\!] = (\rightarrowtail, \mathbb{E}, \rho)$, then deps(P, P') has a partitioning that is a subset of $\mathcal{L}oc_{/\mathbb{E}}$

- **Theorem** (1) $P \rightarrow P$ is valid (when [P] defined)
- (2) if $P \rightarrow P'$ is valid then so is $P' \rightarrow P$
- (3) if $P \rightarrow P'$ and $P' \rightarrow P''$ are valid then so is $P \rightarrow P''$

Theorem If P woheadrightarrow P' is valid, with $[\![P]\!] = (\rightarrowtail, \mathbb{E}, \rho)$, then:

- (1) $L = \{\ell \mid \ell \in deps(P, P') \lor \exists \ell' \in deps(P, P'). \ell \rightarrowtail_P \ell'\} \subseteq foot(P, P')$
- (2) $\ell \rightarrowtail \bot$ for all $\ell \in \text{foot}(P, P') \setminus L$

Theorem If $P \to P'$ is valid, with $[\![P]\!] = (\rightarrowtail, \mathbb{E}, \rho)$, then deps(P, P') has a partitioning that is a subset of $\mathcal{L}oc_{/\mathbb{E}}$

Corollary Let $P \twoheadrightarrow P'$ be valid, with $\llbracket P \rrbracket = (\rightarrowtail, \mathbb{E}, \rho)$ and $\ell \in \text{deps}(P, P')$, then $\text{foot}(P, P') \supseteq \{\ell' \mid \ell' \in [\ell]_{\mathbb{E}} \lor \exists \ell'' \in [\ell]_{\mathbb{E}}, \ell' \rightarrowtail_P \ell''\}$

- **Theorem** (1) $P \rightarrow P$ is valid (when [P] defined)
- (2) if $P \rightarrow P'$ is valid then so is $P' \rightarrow P$
- (3) if $P \rightarrow P'$ and $P' \rightarrow P''$ are valid then so is $P \rightarrow P''$

Theorem If P woheadrightarrow P' is valid, with $[\![P]\!] = (\rightarrowtail, \mathbb{E}, \rho)$, then:

- $(1) L = \{\ell \mid \ell \in \mathsf{deps}(P, P') \lor \exists \ell' \in \mathsf{deps}(P, P'). \ell \rightarrowtail_P \ell'\} \subseteq \mathsf{foot}(P, P')$
- (2) $\ell \rightarrow \bot$ for all $\ell \in \text{foot}(P, P') \setminus L$

Theorem If P woheadrightarrow P' is valid, with $[\![P]\!] = (\rightarrowtail, \mathbb{E}, \rho)$, then deps(P, P') has a partitioning that is a subset of $\mathcal{L}oc_{/\mathbb{E}}$

Corollary Let $P \twoheadrightarrow P'$ be valid, with $\llbracket P \rrbracket = (\rightarrowtail, \mathbb{E}, \rho)$ and $\ell \in \text{deps}(P, P')$, then foot $(P, P') \supseteq \{\ell' \mid \ell' \in [\ell]_{\mathbb{E}} \lor \exists \ell'' \in [\ell]_{\mathbb{E}} . \ell' \rightarrowtail_P \ell''\}$

Theorem Let $[\![P]\!] = (\rightarrowtail, \mathbb{E}, \rho)$, ℓ be a declaration in P and v a fresh value identifier, then $P \twoheadrightarrow P[\ell' \mapsto v \mid \ell' \in [\ell]_{\mathbb{E}} \lor \exists \ell'' \in [\ell]_{\mathbb{E}} . \ell' \rightarrowtail \ell'']$ is valid

ROTOR: A Prototype Renaming Tool

- · Developed in OCaml itself
 - · Allows reuse of the compiler infrastructure
- Approximates the approach discussed
 - · Only intra-file binding information provided by compiler
 - Inter-file binding information remains as logical paths
- Tested on 2 large codebases
 - Jane Street public libraries (~900 files, ~3000 test cases)
 - OCaml compiler (~500 files, ~2650 test cases)

Experimental Results: Jane Street Codebase

Rebuild Succeeded (37%) Avg.

	Files	Hunks	Deps	Hunks/File
Max	50	128	1127	5.7
Mean	5.0	7.5	24.0	1.3
Mode	3	3	19	1.0

Rebuild Failed (63%) Avg.

	Files	Hunks	Deps	Hunks/File
Max	66	305	3365	8
Mean	7.0	12.0	133.4	1.4
Mode	3	3	1	1.0

Experimental Results: OCaml Compiler Codebase

Rebuild Succeeded (65%) Avg.

	Files	Hunks	Deps	Hunks/File
Max	19	59	35	15.0
Mean	3.8	5.9	1.6	1.5
Mode	3	3	1	1.0

Rebuild Failed (31%) Avg.

	Files	Hunks	Deps	Hunks/File
Max	83	544	56	14.2
Mean	10.2	23.3	10.8	1.7
Mode	4	4	1	1.0

Conclusions

- We have developed a framework for formally describing and reasoning about renaming in OCaml
- Based on a compositional, denotational semantics for a core calculus
- Enables precise statements describing relevant concepts at the right abstraction level
- Implemented a prototype renaming tool based on this approach