Let E be a set and $(A_i)_{i \in I}$. Proove that:

$$E \setminus (\bigcap_{i \in I} A_i) = \bigcup_{i \in I} (E \setminus A_i)$$
$$E \setminus (\bigcup_{i \in I} A_i) = \bigcap_{i \in I} (E \setminus A_i)$$

Let
$$x \in E \setminus (\bigcap_{i \in I} A_i)$$

 $\iff x \in E \text{ and } (x \notin A_{i_1} \text{ or } x \notin A_{i_2} \text{ or ... or } x \notin A_{i_n}) \text{ for } n = |\{A_i, \forall i \in I\}|$
 $\iff (x \notin E \text{ and } x \notin A_{i_1}) \text{ or } (x \notin E \text{ and } x \notin A_{i_2}) \text{ or ... or } (x \notin E \text{ and } x \notin A_{i_n})$
 $\iff x \in \bigcup_{i \in I} (E \setminus A_i)$
 $\iff E \setminus (\bigcap_{i \in I} A_i) = \bigcup_{i \in I} (E \setminus A_i)$
Let $x \in E \setminus (\bigcup_{i \in I} A_i)$
 $\iff x \in E \text{ and } (x \notin A_{i_1} \text{ and } x \notin A_{i_2} \text{ and ... and } x \notin A_{i_n}) \text{ for } n = |\{A_i, \forall i \in I\}|$
 $\iff x \in \bigcap_{i \in I} (E \setminus A_i)$
 $\iff E \setminus (\bigcup_{i \in I} A_i) = \bigcap_{i \in I} (E \setminus A_i)$