The Datatypes Zoo

Gus Smith SAMPL Colloquium, 12/12/2019

By "datatypes", we mean **numerical datatypes:** how the hardware represents and operates on real numbers.

Single precision (32 bit) +

Single precision (32 bit)

value $\approx sign$

value $\approx sign * 2^{exponent}$

value $\approx sign * 2^{exponent} * 1.fraction$

Has remained an industry standard for more than thirty years!

Should be fast and power-efficient

Should be fast and power-efficient

Needs small weights and activations to maximize usage of chip area

Only needs to represent a specific range of values: Weights and activations cluster (e.g. around [-1, 1])

Should be fast and power-efficient

Needs small weights and activations to maximize usage of chip area

The Datatypes Zoo

bfloat 16

bfloat 16

bfloat 16

Just integers! We can use integer hardware!

In conclusion,

In conclusion,

• Representing real numbers in hardware is an ongoing challenge

In conclusion,

- Representing real numbers in hardware is an ongoing challenge
- There are many interesting solutions out there, beyond IEEE floats!

Thank you!