# Nitrogen and Harvest Management for Switchgrass Quantity and Quality



Matt Ruark, Kolby Bray-Hoagland, and Mack Naber Department of Soil Science, University of Wisconsin-Madison





#### Objectives

Determine optimal nitrogen (N) fertilizer rate and harvesting timing for:

- Switchgrass yield
- Switchgrass quality for burning (e.g. low mineral concentrations)
- Energy content and energy yield

#### Conclusions

Switchgrass yield:

- Maximized with 112 kg ha<sup>-1</sup> of N
- Maximized with mid-Autumn harvest

Switchgrass quality:

- Cl<sup>-</sup> concentrations increase with an increase in N fertilizer application
- K<sup>+</sup> and Cl<sup>-</sup> concentrations decrease with progressively later harvest timings Energy:
- Application of N fertilizer increases energy content (MJ kg<sup>-1</sup>) of switchgrass
- Later harvest timings increase energy content (MJ kg<sup>-1</sup>) of switchgrass
- Energy yield trends followed dry matter yield trends
- > Trade-offs exist between switchgrass quantity and quality
- > Growers and energy producers must work together to ensure production of a viable biomass resource.

#### Experimental Design

Experiment was conducted on four grower fields in Grant County, WI (Driftless Area) characterized by high sloping lands (marginal land for production)



- Fields were in corn-soybean production prior to switchgrass establishment in 2008
- Switchgrass planted in 2008, no harvest in fall of 2008, switchgrass was mowed and biomass was left on soil surface
- Five nitrogen fertilizer rates (as ammonium nitrate); three harvest timings
- Yield collected in 1 m<sup>2</sup> area and weeds were removed
- Potassium (K+) and chloride (Cl-)
  were used as indicators of
  switchgrass quality for burning
- High mineral concentrations can clog up boilers during combustion
- Energy was determined using the Bomb Calorimeter method and data is reported as energy content and energy yield

### Switchgrass Yield, Grant County, WI





- 28% reduction in yield from fall harvest to spring harvest
- 6 Mg ha<sup>-1</sup> yields with no N inputs, 26-63% increase with N application

## K<sup>+</sup> and Cl<sup>-</sup> Concentration of Switchgrass





- K+ concentrations less affected by N fertilizer rate compared to Cl-
- Both K<sup>+</sup> and Cl<sup>-</sup> were significantly decreased during the spring harvest
- Cl<sup>-</sup> can cause corrosion on metal surfaces, but is less than the 1.0 g kg<sup>-1</sup> threshold established by Obernberger et al. (2006)

#### Switchgrass Energy Content and Energy Yield





 Energy content increases with N application and later harvest, but energy yield is driven by DM yield