Sheet

Assignment 2

by: Mohamed Hatem El-Badry 900211356

```
!pip install pandas import pandas as pd !pip install numpy import numpy as np

Requirement already satisfied: pandas in /opt/python/envs/default/lib/python3.8/site-packages (1.3.5)
Requirement already satisfied: python-dateutil>-2.7.3 in /opt/python/envs/default/lib/python3.8/site-packages (from pandas) (2.8.2)
Requirement already satisfied: pytz>-2017.3 in /opt/python/envs/default/lib/python3.8/site-packages (from pandas) (2022.1)
Requirement already satisfied: numpy>=1.17.3 in /opt/python/envs/default/lib/python3.8/site-packages (from pandas) (1.21.5)
Requirement already satisfied: six>=1.5 in /opt/python/envs/default/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas
WARNING: You are using pip version 21.3.1; however, version 22.0.4 is available.
You should consider upgrading via the '/opt/python/envs/default/lib/python3.8/site-packages (1.21.5)
WARNING: You are using pip version 21.3.1; however, version 22.0.4 is available.
You should consider upgrading via the '/opt/python/envs/default/bin/python -m pip install --upgrade pip' command.
```

Part I:

```
df= pd.read_csv('results.csv' , encoding='latin-1')
df
```

	date	home_team	away_team	home_score	away_score	tournament	city	country	neutral
0	1872-11-30	Scotland	England	0	0	Friendly	Glasgow	Scotland	False
1	1873-03-08	England	Scotland	4	2	Friendly	London	England	False
2	1874-03-07	Scotland	England	2	1	Friendly	Glasgow	Scotland	False
3	1875-03-06	England	Scotland	2	2	Friendly	London	England	False
4	1876-03-04	Scotland	England	3	0	Friendly	Glasgow	Scotland	False
43183	2/1/2022	Suriname	Guyana	2	1	Friendly	Paramaribo	Suriname	False
43184	2/2/2022	Burkina Faso	Senegal	1	3	African Cup of Nations	Yaoundé	Cameroon	True
43185	2/3/2022	Cameroon	Egypt	0	0	African Cup of Nations	Yaoundé	Cameroon	False
43186	2/5/2022	Cameroon	Burkina Faso	3	3	African Cup of Nations	Yaoundé	Cameroon	False
43187	2/6/2022	Senegal	Egypt	0	0	African Cup of Nations	Yaoundé	Cameroon	True

43188 rows × 9 columns

```
x=df['home_score']-df['away_score']
```

```
conditions=[(x<0),(x>0),(x==0)]
```

```
values=['lose','win','draw']
```

```
df['result_home']=np.select(conditions,values)
```

43188

```
4/3/22, 1:05 PM
                                                      JetBrains Datalore: A powerful environment for Jupyter notebooks.
       df['result_home'].value_counts(normalize=True)
       x=df['result_home'].value_counts()
       x=np.array(x)
       x.sum()
```

```
df_noneutral=df[df['neutral']==False]
```

```
df_noneutral.shape
(32481, 10)
```

```
x=df_noneutral['result_home'].value_counts(normalize=True)
```

```
df_noneutralegy=df_noneutral[df_noneutral['country']=='Egypt'] #probability that egypt wins in it land
```

```
df_noneutralegyF=df_noneutralegy[df_noneutralegy['tournament']=='Friendly']
df_noneutralegyF #probability of Egypt Winning in their land in friendly tournament
```

	date	home_team	away_team	home_score	away_score	tournament	city	country	neutral	result_home
1463	2/19/1932	Egypt	Hungary	0	0	Friendly	Cairo	Egypt	False	draw
1895	6/19/1936	Egypt	Greece	3	1	Friendly	Cairo	Egypt	False	win
2927	12/24/1948	Egypt	Norway	1	1	Friendly	Cairo	Egypt	False	draw
3080	2/17/1950	Egypt	Greece	2	0	Friendly	Cairo	Egypt	False	win
3425	1/16/1953	Egypt	Yugoslavia	1	3	Friendly	Cairo	Egypt	False	lose
40925	6/13/2019	Egypt	Tanzania	1	0	Friendly	Alexandria	Egypt	False	win
40947	6/16/2019	Egypt	Guinea	3	1	Friendly	Alexandria	Egypt	False	win
41450	10/14/2019	Egypt	Botswana	1	0	Friendly	Cairo	Egypt	False	win
41514	11/7/2019	Egypt	Liberia	1	0	Friendly	Alexandria	Egypt	False	win
42758	9/30/2021	Egypt	Liberia	2	0	Friendly	Alexandria	Egypt	False	win

145 rows × 10 columns

```
x=df_noneutralegyF['result_home'].value_counts(normalize=True)
х
```

```
import statsmodels.api as sm
\textbf{from} \ \texttt{statsmodels.stats.proportion} \ \underline{\textbf{import}} \ proportion\_\texttt{confint}
```

```
x=df_noneutralegyF['result_home'].value_counts()
x=np.array(x)
N=x.sum()
CI_egy=proportion_confint(count=x[0], nobs=N, alpha=(1-.95))
CI_egy
(0.47077769679111225, 0.6326705790709567)
df_noneutralgre=df_noneutral[df_noneutral['country']=='Greece']
df_noneutralgreF=df_noneutralgre[df_noneutralgre['tournament']=='Friendly']
df_noneutralgreF.shape
(126, 10)
df_noneutralgreF['result_home'].value_counts(normalize=True)
x=df_noneutralgreF['result_home'].value_counts()
x=np.array(x)
N=x.sum()
CI_gre=proportion_confint(count=x[0], nobs=N, alpha=(1-.95))
CI_gre
(0.3114005769651982, 0.4822502166855954)
df_noneutralwal=df_noneutral[df_noneutral['country']=='Wales']
df_noneutralwalF=df_noneutralwal[df_noneutralwal['tournament']=='Friendly']
df_noneutralwalF['result_home'].value_counts(normalize=True)
x=df_noneutralwalF['result_home'].value_counts()
x=np.array(x)
N=x.sum()
CI_wal=proportion_confint(count=x[0], nobs=N, alpha=(1-.95))
CI_wal
(0.2541364398001451, 0.478257926397038)
df_noneutralscot=df_noneutral[df_noneutral['country']=='Scotland']
df_noneutralscotF=df_noneutralscot[df_noneutralscot['tournament']=='Friendly']
df_noneutralscotF['result_home'].value_counts(normalize=True)
```

```
x=df_noneutralscotF['result_home'].value_counts()
x=np.array(x)
N=x.sum()
CI_scot=proportion_confint(count=x[0], nobs=N, alpha=(1-.95))
CI_scot
(0.4048157345543417, 0.5951842654456583)
```

```
import matplotlib.pyplot as plt
```

```
ci_friendly = {}
ci_friendly['country'] = ['Egypt','Greece','Wales', 'Scotland']
ci_friendly['lb'] = [CI_egy[0],CI_gre[0],CI_wal[0], CI_scot[0]]
ci_friendly['ub'] = [CI_egy[1],CI_gre[1],CI_wal[1], CI_scot[1]]
df_ci = pd.DataFrame(ci_friendly)
df_ci
```

	country	lb	ub
0	Egypt	0.470778	0.632671
1	Greece	0.311401	0.482250
2	Wales	0.254136	0.478258
3	Scotland	0.404816	0.595184
	1	0 Egypt 1 Greece 2 Wales	1 Greece 0.311401

```
for lb,ub,y in zip(df_ci['lb'],df_ci['ub'],range(len(df_ci))):
    plt.plot((lb,ub),(y,y),'ro-')
plt.yticks(range(len(df_ci)),list(df_ci['country'])) #a graph for the confidence interval of 4 different countries' winning chance in joint for the confidence interval of 4 different countries' winning chance in joint for the confidence interval of 4 different countries' winning chance in joint for the confidence interval of 4 different countries' winning chance in joint for the confidence interval of 4 different countries' winning chance in joint for the confidence interval of 4 different countries' winning chance in joint for the confidence interval of 4 different countries' winning chance in joint for the confidence interval of 4 different countries' winning chance in joint for the confidence interval of 4 different countries' winning chance in joint for the confidence interval of 4 different countries' winning chance in joint for the confidence interval of 4 different countries' winning chance in joint for the confidence interval of 4 different countries' winning chance in joint for the confidence interval of 4 different countries' winning chance in joint for the confidence interval of 4 different countries' winning chance in joint for the confidence interval of 4 different countries' winning chance in joint for the confidence interval of 4 different countries' winning chance in joint for the confidence interval of 4 different countries' winning chance in joint for the confidence interval of 4 different countries' winning chance in joint for the confidence in joint fo
```


this can make us determine that Egypt has the higher chance of winning a friendly tournament done on their homeland among the 4 countries

```
x=df['home_score']-df['away_score']
conditions=[(x<0),(x>0), (x==0)]
values=['win','lose','draw']
df['result_away']=np.select(conditions,values)
df
```

	date	home_team	away_team	home_score	away_score	tournament	city	country	neutral	result_home	result_away
0	1872-11-30	Scotland	England	0	0	Friendly	Glasgow	Scotland	False	draw	draw
1	1873-03-08	England	Scotland	4	2	Friendly	London	England	False	win	lose
2	1874-03-07	Scotland	England	2	1	Friendly	Glasgow	Scotland	False	win	lose
3	1875-03-06	England	Scotland	2	2	Friendly	London	England	False	draw	draw
4	1876-03-04	Scotland	England	3	0	Friendly	Glasgow	Scotland	False	win	lose
43183	2/1/2022	Suriname	Guyana	2	1	Friendly	Paramaribo	Suriname	False	win	lose
43184	2/2/2022	Burkina Faso	Senegal	1	3	African Cup of Nations	Yaoundé	Cameroon	True	lose	win
43185	2/3/2022	Cameroon	Egypt	0	0	African Cup of Nations	Yaoundé	Cameroon	False	draw	draw
43186	2/5/2022	Cameroon	Burkina Faso	3	3	African Cup of Nations	Yaoundé	Cameroon	False	draw	draw
43187	2/6/2022	Senegal	Egypt	0	0	African Cup of Nations	Yaoundé	Cameroon	True	draw	draw

```
43188 rows × 11 columns
df_noneutral=df[df['neutral']==False]
df_noneutralegy=df_noneutral[df_noneutral['away_team']=='Egypt']
df_noneutralegyF=df_noneutralegy[df_noneutralegy['tournament']=='Friendly']
x=df_noneutralegyF['result_away'].value_counts()
x=np.array(x)
N=x.sum()
CI_egy=proportion_confint(count=x[1], nobs=N, alpha=(1-.95))
CI_egy
(0.24715478691048412, 0.43284521308951596)
df_noneutralgre=df_noneutral[df_noneutral['away_team']=='Greece']
df_noneutralgreF=df_noneutralgre[df_noneutralgre['tournament']=='Friendly']
x=df_noneutralgreF['result_away'].value_counts()
x=np.array(x)
N=x.sum()
CI_gre=proportion_confint(count=x[1], nobs=N, alpha=(1-.95))
CI_gre
(0.22828832246685596, 0.39779863405488325)
df_noneutralwal=df_noneutral[df_noneutral['away_team']=='Wales']
df_noneutralwalF=df_noneutralwal[df_noneutralwal['tournament']=='Friendly']
x=df_noneutralwalF['result_away'].value_counts()
x=np.array(x)
N=x.sum()
CI_wal=proportion_confint(count=x[1], nobs=N, alpha=(1-.95))
(0.18082080408154663, 0.37339606338833287)
df_noneutralscot=df_noneutral[df_noneutral['away_team']=='Scotland']
df_noneutralscotF=df_noneutralscot[df_noneutralscot['tournament']=='Friendly']
x=df_noneutralscotF['result_away'].value_counts()
x=np.array(x)
N=x.sum()
CI_scot=proportion_confint(count=x[1], nobs=N, alpha=(1-.95))
```

(0.2936725636434827, 0.466658014868914)

```
ci_friendlyL = {}
ci_friendlyL['country'] = ['Egypt','Greece','Wales', 'Scotland']
ci_friendlyL['tb'] = [CI_egy[0],CI_gre[0],CI_wal[0], CI_scot[0]]
ci_friendlyL['ub'] = [CI_egy[1],CI_gre[1],CI_wal[1], CI_scot[1]]
df_ci = pd.DataFrame(ci_friendlyL)
df_ci
```

	country	lb	ub
0	Egypt	0.247155	0.432845
1	Greece	0.228288	0.397799
2	Wales	0.180821	0.373396
3	Scotland	0.293673	0.466658

```
for lb,ub,y in zip(df_ci['lb'],df_ci['ub'],range(len(df_ci))):
    plt.plot((lb,ub),(y,y),'ro-')
plt.yticks(range(len(df_ci)),list(df_ci['country']))
([<matplotlib.axis.YTick at 0x7f8f56a6d7c0>,
  <matplotlib.axis.YTick at 0x7f8f56a6d040>,
  <matplotlib.axis.YTick at 0x7f8f593a0460>,
  <matplotlib.axis.YTick at 0x7f8f56d109a0>],
 [Text(0, 0, 'Egypt'),
 Text(0, 1, 'Greece'),
Text(0, 2, 'Wales'),
  Text(0, 3, 'Scotland')])
 Scotland
  Greece
   Eaypt
                                  0.35
                                                 0.45
           0.20
                   0.25
                          0.30
                                          0.40
```

this is the probability of losing of 4 different countries in a friendly tournament, playing as the away team. This shows that scotland has the higher probability of losing in a friendly tournament away from their home

```
y=list(df['tournament'].value_counts().index)
['Friendly',
'FIFA World Cup qualification',
'UEFA Euro qualification',
 'African Cup of Nations qualification',
 'FIFA World Cup',
'Copa AmÃ@rica',
'African Cup of Nations',
 'AFC Asian Cup qualification',
'CECAFA Cup',
'CFU Caribbean Cup qualification',
 'Merdeka Tournament',
 'British Championship',
'Gulf Cup',
'AFC Asian Cup',
 'Gold Cup',
 'Island Games',
'UEFA Euro',
'COSAFA Cup',
 'UEFA Nations League',
 'AFF Championship',
```

```
'Nordic Championship',
'African Nations Championship',
'CFU Caribbean Cup',
'AmÃ\xadlcar Cabral Cup',
"King's Cup",
'South Pacific Games',
'UNCAF Cup',
'Korea Cup',
'SAFF Cup',
'Arab Cup',
'Confederations Cup',
'International Cup',
'CCCF Championship',
'EAFF Championship',
'CONCACAF Nations League',
'Windward Islands Tournament',
'CONIFA World Football Cup',
'Oceania Nations Cup',
'AFC Challenge Cup',
'WAFF Championship',
'Baltic Cup',
'AFC Challenge Cup qualification',
'Nehru Cup',
'Balkan Cup',
'Indonesia Tournament',
'Oceania Nations Cup qualification',
'Cyprus International Tournament',
'Kirin Cup',
'CONCACAF Nations League qualification',
'Gold Cup qualification',
'UDEAC Cup',
'African Nations Championship qualification',
'Vietnam Independence Cup',
'Palestine Cup',
'Viva World Cup',
'West African Cup',
'Malta International Tournament',
'Pacific Games',
'CONIFA European Football Cup',
'CONCACAF Championship',
'Pan American Championship',
'Brazil Independence Cup',
'USA Cup',
'United Arab Emirates Friendship Tournament',
'Copa Chevallier Boutell',
'Dynasty Cup',
'Copa Lipton',
'COSAFA Cup qualification',
'Copa Newton',
'Lunar New Year Cup',
'Merlion Cup',
'Arab Cup qualification',
'Copa Paz del Chaco',
'Copa Roca',
"Prime Minister's Cup",
'CONCACAF Championship qualification',
'ABCS Tournament',
'Inter Games Football Tournament',
'Copa del PacÃ\xadfico',
'Copa Rio Branco',
'Simba Tournament',
'Copa Carlos Dittborn',
'Copa Juan Pinto Durán',
'Copa Oswaldo Cruz',
'ELF Cup',
'UNIFFAC Cup',
'Millennium Cup',
'Copa Premio Honor Uruguayo',
'Dunhill Cup',
'GaNEFo',
'Nile Basin Tournament',
'Intercontinental Cup',
'Copa Artigas',
'Jordan International Tournament',
'King Hassan II Tournament',
'Copa Premio Honor Argentino',
'SKN Football Festival',
'Rous Cup',
'Atlantic Cup',
'FIFI Wild Cup',
```

```
"Copa Bernardo O'Higgins",
 'Tournoi de France',
 'Bolivarian Games',
'Beijing International Friendship Tournament',
'VFF Cup'
'Mahinda Rajapaksa Cup',
'Mundialito',
'NAFU Championship',
 'Nations Cup',
 'Copa Ramón Castilla',
'Copa FÃ@lix Bogado',
'World Unity Cup',
 'Guangzhou International Friendship Tournament',
 'Afro-Asian Games',
'Dragon Cup',
 'Matthews Cup',
 'Dakar Tournament',
'OSN Cup',
'Great Wall Cup',
 'Three Nations Cup',
 'Copa América qualification',
'AFF Championship qualification',
'Atlantic Heritage Cup',
 'Cup of Ancient Civilizations',
 'FIFA 75th Anniversary Cup',
'TIFOCO Tournament']
df_noneutralegy=df_noneutral[df_noneutral['away_team']=='Egypt']
df_noneutralegyF=df_noneutralegy[df_noneutralegy['tournament']=='Friendly']
x=df_noneutralegyF['result_away'].value_counts()
x=np.array(x)
N=x.sum()
CI_egyF=proportion_confint(count=x[0], nobs=N, alpha=(1-.95))
CI_egyF
(0.28486600512143223, 0.4751339948785678)
df_noneutralegy=df_noneutral[df_noneutral['away_team']=='Egypt']
df_noneutralegyF=df_noneutralegy[df_noneutralegy['tournament']=='FIFA World Cup qualification']
x=df_noneutralegyF['result_away'].value_counts()
x=np.array(x)
N=x.sum()
CI_egyFIFA=proportion_confint(count=x[0], nobs=N, alpha=(1-.95))
CI_egyFIFA
(0.24249192186541954, 0.5302353508618531)
df_noneutralegy=df_noneutral[df_noneutral['away_team']=='Egypt']
df_noneutralegyF=df_noneutralegy[df_noneutralegy['tournament']=='African Cup of Nations qualification']
x=df_noneutralegyF['result_away'].value_counts()
x=np.array(x)
N=x.sum()
CI_egyAFRI=proportion_confint(count=x[0], nobs=N, alpha=(1-.95))
(0.3149304774470007, 0.6324379436056309)
ci_tour = {}
ci_tour['tournament'] = ['Friendly','FIFA World Cup qualification','African Cup of Nations qualification']
ci_tour['lb'] = [CI_egyF[0],CI_egyFIFA[0],CI_egyAFRI[0]]
ci_tour['ub'] = [CI_egyF[1],CI_egyFIFA[1],CI_egyAFRI[1]]
df_ci= pd.DataFrame(ci_tour)
df_ci
```

	tournament	lb	ub
0	Friendly	0.284866	0.475134
1	FIFA World Cup qualification	0.242492	0.530235
2	African Cup of Nations qualification	0.314930	0.632438

the graph above shows the confidence interval of Egypt winning in 3 different tournaments as the away team

Part II:

df= pc	d.read_csv	('cov	/id_data.c	esv' , encoding=	'latin-1')						
11											
	date	iso3c	country	income	region	continent	dcases	ddeaths	population	weekdays	month
0	2020-02-24	AFG	Afghanistan	Low income	South Asia	Asia	5	0	38041754	Mon	Feb
_	2020 02 25	450	461 1.		C .1 A .				20044754	-	

	date	iso3c	country	income	region	continent	dcases	ddeaths	population	weekdays	month
0	2020-02-24	AFG	Afghanistan	Low income	South Asia	Asia	5	0	38041754	Mon	Feb
1	2020-02-25	AFG	Afghanistan	Low income	South Asia	Asia	0	0	38041754	Tue	Feb
2	2020-02-26	AFG	Afghanistan	Low income	South Asia	Asia	0	0	38041754	Wed	Feb
3	2020-02-27	AFG	Afghanistan	Low income	South Asia	Asia	0	0	38041754	Thu	Feb
4	2020-02-28	AFG	Afghanistan	Low income	South Asia	Asia	0	0	38041754	Fri	Feb
122838	2021-12-27	ZWE	Zimbabwe	Lower middle income	Sub-Saharan Africa	Africa	1098	17	14645468	Mon	Dec
122839	2021-12-28	ZWE	Zimbabwe	Lower middle income	Sub-Saharan Africa	Africa	2099	32	14645468	Tue	Dec
122840	2021-12-29	ZWE	Zimbabwe	Lower middle income	Sub-Saharan Africa	Africa	0	0	14645468	Wed	Dec
122841	2021-12-30	ZWE	Zimbabwe	Lower middle income	Sub-Saharan Africa	Africa	4180	57	14645468	Thu	Dec
122842	2021-12-31	ZWE	Zimbabwe	Lower middle income	Sub-Saharan Africa	Africa	1530	7	14645468	Fri	Dec

122843 rows \times 11 columns

```
from pandas.api.types import CategoricalDtype
cats=['Fri', 'Sat' , 'Sun', 'Mon', 'Tue' , 'Wed', 'Thu']
cat_type= CategoricalDtype(categories=cats, ordered=True)
df['weekdays']=df['weekdays'].astype(cat_type)
```

```
dfegy=df[df['country']=='Egypt']
```

```
stats=dfegy.groupby("weekdays").agg({"dcases": [np.mean, np.std, np.size]})
```

stats

	dcases		
	mean	std	size
weekdays			
Fri	567.161616	428.533849	99
Sat	558.806122	421.803605	98
Sun	545.520408	422.358748	98
Mon	561.846939	442.137949	98
Tue	566.153061	419.125460	98
Wed	561.479592	406.337812	98
Thu	567.683673	410.020004	98

650.3101288341297]

```
ci95_h = []
ci95_l = []
```

```
import scipy.stats
```

```
stats.index

CategoricalIndex(['Fri', 'Sat', 'Sun', 'Mon', 'Tue', 'Wed', 'Thu'], categories=['Fri', 'Sat', 'Sun', 'Mon', 'Tue', 'Wed', 'Thu'], or
```

```
for i in stats.index:
   m, s, n = stats.loc[i]
   x=scipy.stats.t.interval(.95, n-1, m,s/np.sqrt(n-1))
   ci95_h.append(x[1])
   ci95_l.append(x[0])
```

```
ci95_h

[653.0661477518557,
643.8071867945697,
630.633343760431,
650.9457415593621,
650.614430845941,
643.3640186561778,
```

```
ci95_l
[481.2570845713766,
473.80505810338957,
```

```
460.4074725660996,
472.74813599165833,
481.6916916030385,
479.5951650172916,
485.0572181046457]
```

```
stats['ci95_hi'] = ci95_h
stats['ci95_lo'] = ci95_l
print(stats)
```

```
dcases
                                                   ci95_hi
                                                                  ci95_lo
                                   std size
                   mean
weekdays
Fri
            567.161616 428.533849 99 653.066148 481.257085
Sat
            558.806122 421.803605 98 643.807187 473.805058
            545.520408 422.358748 98 630.633344 460.407473
561.846939 442.137949 98 650.945742 472.748136
Sun
Mon
            566.153061 419.125460 98 650.614431 481.691692
Tue
            561.479592 406.337812 98 643.364019 479.595165
567.683673 410.020004 98 650.310129 485.057218
Wed
```

```
df_ci= pd.DataFrame(stats)
df_ci['weekdays']=df_ci.index
```

df_ci

	dcases			ci95_hi	ci95_lo	weekdays
	mean	std	size			
weekdays						
Fri	567.161616	428.533849	99	653.066148	481.257085	Fri
Sat	558.806122	421.803605	98	643.807187	473.805058	Sat
Sun	545.520408	422.358748	98	630.633344	460.407473	Sun
Mon	561.846939	442.137949	98	650.945742	472.748136	Mon
Tue	566.153061	419.125460	98	650.614431	481.691692	Tue
Wed	561.479592	406.337812	98	643.364019	479.595165	Wed
Thu	567.683673	410.020004	98	650.310129	485.057218	Thu

```
for lb,ub,y in zip(df_ci['ci95_lo'],df_ci['ci95_hi'],range(len(df_ci))):
   plt.plot((lb,ub),(y,y),'ro-')
plt.yticks(range(len(df_ci)),list(df_ci['weekdays']))
plt.xlim([400, 700])
```

(400.0, 700.0)


```
fatality= df['ddeaths']/df['dcases']
df['fatality'] = fatality
df['fatality'] = df['fatality'].fillna(0)
df
```

	date	iso3c	country	income	region	continent	dcases	ddeaths	population	weekdays	month	fatality
0	2020-02-24	AFG	Afghanistan	Low income	South Asia	Asia	5	0	38041754	Mon	Feb	0.000000
1	2020-02-25	AFG	Afghanistan	Low income	South Asia	Asia	0	0	38041754	Tue	Feb	0.000000
2	2020-02-26	AFG	Afghanistan	Low income	South Asia	Asia	0	0	38041754	Wed	Feb	0.000000
3	2020-02-27	AFG	Afghanistan	Low income	South Asia	Asia	0	0	38041754	Thu	Feb	0.000000
4	2020-02-28	AFG	Afghanistan	Low income	South Asia	Asia	0	0	38041754	Fri	Feb	0.000000
122838	2021-12-27	ZWE	Zimbabwe	Lower middle income	Sub-Saharan Africa	Africa	1098	17	14645468	Mon	Dec	0.015483
122839	2021-12-28	ZWE	Zimbabwe	Lower middle income	Sub-Saharan Africa	Africa	2099	32	14645468	Tue	Dec	0.015245
122840	2021-12-29	ZWE	Zimbabwe	Lower middle income	Sub-Saharan Africa	Africa	0	0	14645468	Wed	Dec	0.000000
122841	2021-12-30	ZWE	Zimbabwe	Lower middle income	Sub-Saharan Africa	Africa	4180	57	14645468	Thu	Dec	0.013636
122842	2021-12-31	ZWE	Zimbabwe	Lower middle income	Sub-Saharan Africa	Africa	1530	7	14645468	Fri	Dec	0.004575

122843 rows × 12 columns

```
mask = (df['date'] > '2019-12-31') & (df['date'] <= '2020-12-31')
df2020=df.loc[mask]
df2020</pre>
```

	date	iso3c	country	income	region	continent	dcases	ddeaths	population	weekdays	month	fatality
0	2020-02-24	AFG	Afghanistan	Low income	South Asia	Asia	5	0	38041754	Mon	Feb	0.000000
1	2020-02-25	AFG	Afghanistan	Low income	South Asia	Asia	0	0	38041754	Tue	Feb	0.000000
2	2020-02-26	AFG	Afghanistan	Low income	South Asia	Asia	0	0	38041754	Wed	Feb	0.000000
3	2020-02-27	AFG	Afghanistan	Low income	South Asia	Asia	0	0	38041754	Thu	Feb	0.000000
4	2020-02-28	AFG	Afghanistan	Low income	South Asia	Asia	0	0	38041754	Fri	Feb	0.000000
122473	2020-12-27	ZWE	Zimbabwe	Lower middle income	Sub-Saharan Africa	Africa	114	8	14645468	Sun	Dec	0.070175
122474	2020-12-28	ZWE	Zimbabwe	Lower middle income	Sub-Saharan Africa	Africa	71	5	14645468	Mon	Dec	0.070423
122475	2020-12-29	ZWE	Zimbabwe	Lower middle income	Sub-Saharan Africa	Africa	177	5	14645468	Tue	Dec	0.028249
122476	2020-12-30	ZWE	Zimbabwe	Lower middle income	Sub-Saharan Africa	Africa	300	1	14645468	Wed	Dec	0.003333
122477	2020-12-31	ZWE	Zimbabwe	Lower middle income	Sub-Saharan Africa	Africa	242	3	14645468	Thu	Dec	0.012397

54958 rows × 12 columns

```
mask = (df['date'] > '2020-12-31') & (df['date'] <= '2021-12-31')
df2021=df.loc[mask]
df2021
```

	date	iso3c	country	income	region	continent	dcases	ddeaths	population	weekdays	month	fatality
312	2021-01-01	AFG	Afghanistan	Low income	South Asia	Asia	183	12	38041754	Fri	Jan	0.065574
313	2021-01-02	AFG	Afghanistan	Low income	South Asia	Asia	73	10	38041754	Sat	Jan	0.136986
314	2021-01-03	AFG	Afghanistan	Low income	South Asia	Asia	123	10	38041754	Sun	Jan	0.081301
315	2021-01-04	AFG	Afghanistan	Low income	South Asia	Asia	200	9	38041754	Mon	Jan	0.045000
316	2021-01-05	AFG	Afghanistan	Low income	South Asia	Asia	102	7	38041754	Tue	Jan	0.068627
122838	2021-12-27	ZWE	Zimbabwe	Lower middle income	Sub-Saharan Africa	Africa	1098	17	14645468	Mon	Dec	0.015483
122839	2021-12-28	ZWE	Zimbabwe	Lower middle income	Sub-Saharan Africa	Africa	2099	32	14645468	Tue	Dec	0.015245
122840	2021-12-29	ZWE	Zimbabwe	Lower middle income	Sub-Saharan Africa	Africa	0	0	14645468	Wed	Dec	0.000000
122841	2021-12-30	ZWE	Zimbabwe	Lower middle income	Sub-Saharan Africa	Africa	4180	57	14645468	Thu	Dec	0.013636
122842	2021-12-31	ZWE	Zimbabwe	Lower middle income	Sub-Saharan Africa	Africa	1530	7	14645468	Fri	Dec	0.004575

67885 rows × 12 columns

```
df2020['dcases'].sum()
83839670
```

df2020['ddeaths'].sum()

1883714

df['region'].unique()

```
from pandas.api.types import CategoricalDtype
cats=['South Asia', 'Sub-Saharan Africa', 'Europe & Central Asia','Middle East & North Africa','Latin America & Caribbean','East Asia {
cat_type = CategoricalDtype(categories=cats, ordered=True)
df['region'] = df['region'].astype(cat_type)
```

```
stats=df2020.groupby("region").agg({"ddeaths": [np.mean, np.std, np.size]})
```

stats

	ddeaths			
	mean	std	size	
region				
East Asia & Pacific	7.110776	27.950752	6301	
Europe & Central Asia	36.913612	111.023170	15743	
Latin America & Caribbean	57.772410	181.529167	9750	
Middle East & North Africa	17.696025	47.867778	6415	
North America(region)	534.744557	759.732535	689	
South Asia	67.306966	204.340594	2541	
Sub-Saharan Africa	3.070567	20.413941	13519	

ci95_hi = [] ci95_lo = []

```
for i in stats.index:
    m, s, n = stats.loc[i]
    x=scipy.stats.t.interval(.95, n-1, m,s/np.sqrt(n-1))
    ci95_hi.append(x[1])
    ci95_lo.append(x[0])
```

```
stats['ci95_hi'] = ci95_hi
stats['ci95_lo'] = ci95_lo
print(stats)
                                                             ci95_hi \
                               ddeaths
                                 mean
                                              std
                                                    size
region
East Asia & Pacific
                             7.110776
                                        27.950752
                                                    6301
                                                            7.801103
Europe & Central Asia
                            36.913612
                                       111.023170 15743
                                                           38.648076
Latin America & Caribbean
                            57.772410
                                       181.529167
                                                    9750
                                                           61.376274
Middle East & North Africa
                            17.696025
                                        47.867778
                                                    6415
                                                           18.867704
North America(region)
                           534.744557
                                       759.732535
                                                    689 591.614040
South Asia
                            67.306966
                                       204.340594
                                                    2541
                                                           75.257437
Sub-Saharan Africa
                             3.070567
                                        20.413941 13519
                                                            3.414725
                              ci95_lo
region
East Asia & Pacific
                             6.420449
Europe & Central Asia
                            35.179149
Latin America & Caribbean
                            54.168546
Middle East & North Africa
                            16.524345
North America(region)
                           477.875074
South Asia
                            59.356494
Sub-Saharan Africa
                             2.726410
```

```
df_ci= pd.DataFrame(stats)
df_ci['region']=df_ci.index
```

600

```
for lb,ub,y in zip(df_ci['ci95_lo'],df_ci['ci95_hi'],range(len(df_ci))):
    plt.plot((lb,ub),(y,y),'ro-')
plt.yticks(range(len(df_ci)),list(df_ci['region']))
([<matplotlib.axis.YTick at 0x7f8f51076880>,
  <matplotlib.axis.YTick at 0x7f8f510213a0>,
  <matplotlib.axis.YTick at 0x7f8f5265c1f0>,
  <matplotlib.axis.YTick at 0x7f8f57f06760>,
  <matplotlib.axis.YTick at 0x7f8f57f10040>,
  <matplotlib.axis.YTick at 0x7f8f57f10640>,
  <matplotlib.axis.YTick at 0x7f8f57f10d90>],
 [Text(0, 0, 'East Asia & Pacific'),
  Text(0, 1, 'Europe & Central Asia'),
  Text(0, 2, 'Latin America & Caribbean'),
  Text(0, 3, 'Middle East & North Africa'),
  Text(0, 4, 'North America(region)'),
  Text(0, 5, 'South Asia'),
  Text(0, 6, 'Sub-Saharan Africa')])
      Sub-Saharan Africa -
           South Asia
    North America(region)
 Middle East & North Africa
 Latin America & Caribbean
    Europe & Central Asia
```

East Asia & Pacific

this shows that north america had the highest probability of number of deaths between the regions in 2020

```
df['income'].unique()
from pandas.api.types import CategoricalDtype
cats=['Low income', 'Lower middle income', 'Upper middle income', 'High income']
cat_type = CategoricalDtype(categories=cats, ordered=True)
df['income'] = df['income'].astype(cat_type)
stats=df2021.groupby("income").agg({"dcases": [np.mean, np.std, np.size]})
stats
ci95_hi = []
ci95_lo = []
ci95_hi = []
ci95_lo = []
for i in stats.index:
   m, s, n = stats.loc[i]
   x=scipy.stats.t.interval(.95, n-1, m,s/np.sqrt(n-1))
   ci95_hi.append(x[1])
   ci95_lo.append(x[0])
stats['ci95_hi'] = ci95_hi
stats['ci95_lo'] = ci95_lo
print(stats)
                                                           ci95_hi \
                          dcases
                                           std size
income
High income
                    4520.954339 18317.784729 20937 4769.095778
Low income
                     168.681058
                                  657.105911 10585
                                                       181.201170
Lower middle income 2550.449589 17762.604302 16653 2820.256518
Upper middle income 3368.106393 8585.182602 19710 3487.971286
                         ci95_lo
income
                     4272.812901
High income
Low income
                     156.160946
Lower middle income 2280.642659
Upper middle income 3248.241499
df_ci= pd.DataFrame(stats)
df_ci['income']=df_ci.index
for lb,ub,y in zip(df_ci['ci95_lo'],df_ci['ci95_hi'],range(len(df_ci))):
   plt.plot((lb,ub),(y,y),'ro-')
plt.yticks(range(len(df_ci)),list(df_ci['income']))
([<matplotlib.axis.YTick at 0x7f8f51022400>,
 <matplotlib.axis.YTick at 0x7f8f553d1c10>,
 <matplotlib.axis.YTick at 0x7f8f5bef0910>,
 <matplotlib.axis.YTick at 0x7f8f5101c6a0>],
[Text(0, 0, 'High income'),
 Text(0, 1, 'Low income'),
Text(0, 2, 'Lower middle income'),
 Text(0, 3, 'Upper middle income')])
```


shows that the higher the income, the higher the probability of cases in 2021

```
df['continent'].unique()
```

```
from pandas.api.types import CategoricalDtype
cats=['Asia', 'Africa', 'Europe','South America', 'North America', 'Oceania']
cat_type = CategoricalDtype(categories=cats, ordered=True)
df['continent'] = df['continent'].astype(cat_type)
```

```
stats=df.groupby("continent").agg({"ddeaths": [np.mean, np.std, np.size]})
stats
```

	ddeaths			
	mean	std	size	
continent				
Asia	40.516863	192.130158	31103.0	
Africa	6.588286	31.043424	34677.0	
Europe	52.627530	140.575791	29103.0	
South America	NaN	NaN	NaN	
North America	NaN	NaN	NaN	
Oceania	0.758323	3.094773	4746.0	

```
ci95_hi = []
ci95_lo = []
for i in stats.index:
    m, s, n = stats.loc[i]
    x=scipy.stats.t.interval(.95, n-1, m,s/np.sqrt(n-1))
    ci95_hi.append(x[1])
    ci95_lo.append(x[0])
stats['ci95_hi'] = ci95_hi
stats['ci95_lo'] = ci95_lo
print(stats)
```

	ddeaths			ci95_hi	ci95_lo
	mean	std	size		
continent					
Asia	40.516863	192.130158	31103.0	42.652200	38.381527
Africa	6.588286	31.043424	34677.0	6.915038	6.261534
Europe	52.627530	140.575791	29103.0	54.242689	51.012371
South America	NaN	NaN	NaN	NaN	NaN
North America	NaN	NaN	NaN	NaN	NaN
Oceania	0.758323	3.094773	4746.0	0.846401	0.670244

```
df_ci= pd.DataFrame(stats)
df_ci['continent']=df_ci.index
```

```
for lb,ub,y in zip(df_ci['ci95_lo'],df_ci['ci95_hi'],range(len(df_ci))):
    plt.plot((lb,ub),(y,y),'ro-')
plt.yticks(range(len(df_ci)),list(df_ci['continent']))
([<matplotlib.axis.YTick at 0x7f8f557ebe80>,
  <matplotlib.axis.YTick at 0x7f8f557eb700>,
  <matplotlib.axis.YTick at 0x7f8f557e8670>,
  <matplotlib.axis.YTick at 0x7f8f56422730>,
  <matplotlib.axis.YTick at 0x7f8f56419040>,
  <matplotlib.axis.YTick at 0x7f8f56422b20>],
 [Text(0, 0, 'Asia'),
Text(0, 1, 'Africa'),
Text(0, 2, 'Europe'),
  Text(0, 3, 'South America'),
Text(0, 4, 'North America'),
Text(0, 5, 'Oceania')])
      Oceania
 North America
 South America
       Europe
        Africa
         Asia
```

Europe had the highest probability of deaths

10

20