E2 212: Homework - 4

1 Topics

• Eigenvalues and Eigenvectors

2 Problems

Notation: M_n denotes an $n \times n$ matrix over a field of complex (or real) numbers, i.e. $\mathbb{C}^{n \times n}$ (or $\mathbb{R}^{n \times n}$). Note that "triple-bar" norms $\|\cdot\|$ denote vector induced matrix norms while "double-bar" norms $\|\cdot\|$ denote vector norms (possibly, on matrices).

- 1. Show that for any square matrix **A**, the set $E_{\lambda} \triangleq \{ \mathbf{v} \in \mathbb{R}^n : \mathbf{A}\mathbf{v} = \lambda \mathbf{v} \}$ for any $\lambda \in \mathbb{R}$, is a subspace.
- 2. Let **A** and **B** be $n \times n$ matrices. Show that **AB** and **BA** have exactly the same eigenvalues.
- 3. Give a closed-form solution for \mathbf{x} in the system of equations $\mathbf{A}\mathbf{x} = \mathbf{b}$, where \mathbf{A} is full rank, square and symmetric, in terms of the eigendecomposition of \mathbf{A} .
- 4. The so-called power method for calculating the largest eigenvalue/vector pair of a square symmetric matrix \mathbf{A} is described as follows:

Initialize: set \mathbf{x}_0 to an arbitrary value. For $i = 1, 2, 3, \dots$

$$\mathbf{z} = \mathbf{A}\mathbf{x}_{i-1}$$

$$\mathbf{x}_i = \frac{\mathbf{z}}{\|\mathbf{z}\|_2}$$

As $i \to \infty$, \mathbf{x}_i converges to the maximum eigenvector.

- (a) Prove that the above algorithm converges. *Hint:* express \mathbf{x}_0 using the eigenvectors of \mathbf{A} as a basis.
- (b) Modify the algorithm to find the smallest eigenvalue/vector.
- (c) Explain what happens when the largest eigenvalue is not distinct.
- 5. Derive an analytical expression for the eigendecomposition of a square symmetric rank-one matrix.
- 6. Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of $\mathbf{A} \in \mathbb{C}^{n \times n}$. Then, prove the following:
 - (a) tr $\mathbf{A} = \sum_{i=1}^{n} \lambda_i$.
 - (b) det $(\mathbf{A}) = \prod_{i=1}^n \lambda_i$.
- 7. Let the eigenvectors and eigenvalues of the matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$ be \mathbf{v}_i and λ_i such that $\lambda_i \neq \lambda_j$ for all $j \neq i, i = 1, 2, ..., r$. Then, prove that $\mathbf{v}_1, ..., \mathbf{v}_r$ is a linearly independent set.
- 8. Let the subspace $U \subseteq \mathbb{C}^n$ be an invariant subspace under the matrix transformation $\mathbf{A} \in \mathbb{C}^{n \times n}$, i.e., $\mathbf{A}\mathbf{u} \subseteq U$ for all $\mathbf{u} \in U$. Then, prove the following
 - (a) There exists a vector $\mathbf{u} \in U$ and $\lambda \in \mathbb{C}$ such that $\mathbf{A}\mathbf{u} = \lambda \mathbf{u}$.

- (b) If $\mathbf{u}_1, \dots, \mathbf{u}_k \in U$ are eigenvectors of A corresponding to distinct eigenvalues $\lambda_1, \dots, \lambda_k$, then $\dim(U) \geqslant k$.
- (c) The subspace $U^{\perp} \triangleq \{ \mathbf{v} \in \mathbb{C}^n : \langle \mathbf{u}, \mathbf{v} \rangle = 0 \text{ for all } \mathbf{u} \in U \}$ is also an invariant subspace with respect to \mathbf{A} .
- 9. Let $\sigma(\mathbf{A})$ denote the spectrum of the matrix \mathbf{A} . Show that for a triangular matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$ with entries a_{ij} , $\sigma(\mathbf{A}) = \bigcup_{i=1}^{n} \{a_{ii}\}.$
- 10. Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ has n distinct eigenvalues in \mathbb{C} . Then, prove that there exists an invertible matrix $U \in \mathbb{C}^{n \times n}$ and a diagonal matrix D such that

$$\exp\{\mathbf{A}\} = UDU^{-1}.$$

- 11. Let $\mathbf{A} \in \mathbb{C}^{n \times n}$, $\lambda \in \mathbb{C}$. Prove that if $(\mathbf{A} \lambda I_n)^j \mathbf{u} = 0$ for some $j \ge 1$, and $\mathbf{u} \in \mathbb{C}^n$, then $(\mathbf{A} \lambda I_n)^n \mathbf{u} = 0$.
- 12. Let $\lambda_1, \ldots, \lambda_n$ (not necessarily distinct) be the eigenvalues of $\mathbf{A} \in \mathbb{C}^{n \times n}$. Then,

$$\sum_{i=1}^{n} |\lambda_i|^2 \leqslant \sum_{i,j=1}^{n} |a_{ij}|^2.$$

13. Let $\mathbf{A} \in \mathbb{C}^{n \times n}$, and $\beta \triangleq \max\{|a_{ij}| : i, j = 1, 2, \dots, n\}$. Then,

$$|\det \mathbf{A}| \leqslant \beta^n n^{n/2}.$$