

(1) Publication number:

0 492 721 A3

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 91203338.8

(51) Int. Cl.5: HO4N 9/31

② Date of filing: 18.12.91

Priority: 27.12.90 US 634366

43 Date of publication of application: 01.07.92 Bulletin 92/27

Designated Contracting States:
DE FR GB IT

Date of deferred publication of the search report:

17.03.93 Bulletin 93/11

Applicant: N.V. Philips' Gloeilampenfabrieken
 Groenewoudseweg 1
 NL-5621 BA Eindhoven(NL)

Inventor: Janssen, Peter c/o INT. OCTROOIBUREAU B.V. Prof. Holstlaan 6 NL-5656 AA Eindhoven(NL) Inventor: Bradley, Ralph

c/o INT. OCTROOIBUREAU B.V. Prof.

Holstlaan 6

NL-5656 AA Eindhoven(NL) Inventor: Bingham, Joseph

c/o INT. OCTROOIBUREAU B.V. Prof.

Hoistlaan 6

NL-5656 AA Eindhoven(NL)
Inventor: Guerinot, William

c/o INT. OCTROOIBUREAU B.V. Prof.

Holstlaan 6

NL-5656 AA Eindhoven(NL)

Inventor: Otto, Detlev

c/o INT. OCTROOIBUREAU B.V. Prof.

Holstlaan 6

NL-5656 AA Eindhoven(NL)

Representative: Cobben, Louis Marie Hubert et al INTERNATIONAAL OCTROOIBUREAU B.V. Prof. Holstlaan 6 NL-5656 AA Eindhoven (NL)

- (See Color display device and circuitry for addressing the light valve of said device.
- (57) A color projection video system utilizing only a single light valve. A white light source is separated into red, green and blue bands. Scanning optics cause the RGB bands to be sequentially scanned across a light valve, such as a transmission LCD panel. Prior to each color passing over a given row of panels on the light valve, that row will be addressed, by the display electronics with the appropriate color content of that portion of the image which is being displayed. The image is projected by a projection lens onto a viewing surface, such as a screen. The sequence of lightbands occurs so quickly as to give the viewer an appearance of simultaneous full color.

EUROPEAN SEARCH REPORT

Application Number

EP 91 20 3338

	Citation of document with indi	cation, where appropriate	Relevant	CLASSIFICATION OF THE	
ategory	of relevant passa		to claim	APPLICATION (Int. Cl.5)	
•	GB-A-2 172 733 (OY i * page 5, line 55 - 1	OHJA AB) line 64 *	1,2,11	H04N9/31	
A	US-A-4 197 559 (GRAMI * the whole document	ING)	1,11		
	-				
				TECHNICAL FIELDS SEARCHED (Int. Cl.5)	
				H04N	
			-		
	The present search report has bee	n drawn up for all claims Date of completion of the search	1	Boundar	
THE HAGUE		22 DECEMBER 1992		PIGNIEZ T.J.P.	
	CATEGORY OF CITED DOCUMENT	S T: theory or princ E: earlier patent d after the filing	locument, but pul	e invention blished on, or	
X : particularly relevant if taken alone Y : particularly relevant if combined with another accument of the same category		er D : document cited L : document cited	D: document cited in the application L: document cited for other reasons		
A: tec	hnological background n-written disclosure	& : member of the	same patent fam	ily, corresponding	

Europäisches Patentamt European Patent Office Office européen des brevets

(11) EP 0 492 721 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:

12.03.1997 Bulletin 1997/11

(51) Int Cl.6: H04N 9/31

(21) Application number: 91203338.8

(22) Date of filing: 18.12.1991

(54) Color display device and circuitry for addressing the light valve of said device

Farbbildanzeigevorrichtung und Schaltung zur Ansteuerung vom Lichtventil einer solcher Vorrichtung

Dispositif d'affichage couleur et circuitrie d'adressage de la valve optique dudit dispositif

(84) Designated Contracting States: **DE FR GB IT**

(30) Priority: 27.12.1990 US 634366

(43) Date of publication of application: 01.07.1992 Bulletin 1992/27

(73) Proprietor: Philips Electronics N.V. 5621 BA Eindhoven (NL)

(72) Inventors:

Janssen, Peter
 NL-5656 AA Eindhoven (NL)

• Bradley, Ralph NL-5656 AA Eindhoven (NL) Bingham, Joseph
 NL-5656 AA Eindhoven (NL)

Guerinot, William
 NL-5656 AA Eindhoven (NL)

• Otto, Detlev NL-5656 AA Eindhoven (NL)

(74) Representative: Cobben, Louis Marie Hubert et al INTERNATIONAAL OCTROOIBUREAU B.V., Prof. Hoistlaan 6 5656 AA Eindhoven (NL)

(56) References cited: **GB-A- 2 172 733**

US-A- 4 197 559

40

This invention relates to a color display device com-

1

prising light valve means. The invention also relates to a circuitry for addressing the light valve of this device.

Projection television (PTV) and video color display systems, especially rear projection display systems, are a popular way to produce large screen displays, i.e. picture diagonal of 40 inches or greater, as the projection method provides displays which are lighter, cheaper, and in may cases, superior in brightness and contrast, than non-projection based displays. Direct view cathode ray tube (CRT) based systems still dominate non-projection display technology, especially for, 9 inch to 30 inch color displays. In unit and dollar volume, the major market for all such displays is the consumer market. Size, cost, brightness, contrast and to a lesser extent, resolution are important characteristics of consumer designs. Because large direct view CRT based displays are heavier, bulkier, and more expensive, projection consumer displays dominate in sizes over forty inches.

Consumer projection technology has been dominated by a system employing three small monochrome type CRTs, one each for the red, green and blue portions of the image, and three projection lenses. These systems employ complex electronic circuits to distort the rasters of the images on at least two of the CRTs so that the composite projection image is converged. Effecting the proper adjustment of the electronics to obtain the converged image is a time consuming, tedious process. Further maintaining the quality of the convergence in the system after it has been set up at the factory remains an issue.

CRT based projection systems require a stable, source of high voltage, with the attendant requirement of giving careful attention to avoiding excess X-ray generation. The CRTs and projection lenses are not inexpensive components, so the requirement of using three of each add substantially to the cost of the systems. In three CRT-three lens PTV systems, there is also a tendency for the image to change color depending on the horizontal viewing angle -- a phenomenon called "color shift". Color shift can be partially controlled by using special projection screen designs. These designs require meeting difficult production tolerances for screen registration and thickness. If not for the requirement of controlling color shift, it would be much easier to design and produce projection screens to provide optimal distribution of light.

With a view toward the advantages of projection systems over direct view, but also some disadvantages, which were just detailed, engineers have been seeking alternative means of designing projection display systems. Accordingly, patents have issued and products have been produced employing three, matrix addressed, small light valve panels, most commonly TFT (thin film transistors) array LCD panels, instead of CRTs. These systems require only a single projection lens, if

the light from three LCD panels are combined via the use of dichroic filters, a.k.a. dichroic mirrors. Convergence of the images is obtained by precision adjustment of the alignment of two of the panels. Initial interest in such displays has been their compactness when employed for front projection, and excellent contrast. These LCD panels are costly components, and consequently these LCD projectors cost more than CRT based projectors.

Also known are "single panel" designs which employ special light valve panels in which separate subpixels are used to modulate respective primary colors. Such color panel technologies have three limitations: firstly, the requirement for sub-pixels limits the effective image resolution. Secondly, white light falls on each of the sub-pixels, but only the color of the light for which the sub-pixel is designed is usable -- the remainder is wasted. Thus a two-thirds loss of efficiency results. A further loss in efficiency is caused by the reduced effective aperture of the panel for a given polychrome resolution capability -- because of the presence of the subpixels with attendant masks and traces. Thirdly, state of the art panel resolution is lower, or the panel cost is higher, because of using sub-pixels.

Another "single panel" design employs a standard light valve and a special light source which pulses primary color beams sequentially (see for example GB-A-2 172 733).

It is the object of the present invention to provide a single panel color display device which does not have the above limitations.

The present invention proposes a colour display device comprising an illumination system for providing unmodulated light and light valve means for modulating said light impinging thereon with information of the image to be displayed, characterized in that the illumination system which provides simultaneously light beams of different colours and having a band-shaped crosssection, in that the light valve means is constituted by a single light valve having a multiplicity of pixels, each of said pixels modulating light impinging thereon in accordance with an input image signal and in that said illumination system comprises a mechano-optical system for moving said band-shaped beams of different colours across the surface of said light valve so that beam portions of all different colours are simultaneously present on said light valve and electronic light valve driving circuit for addressing each band-shaped light valve portion illuminated by a colour beam so that said portion provides image information of the colour of said colour beam and modulates said colour beam with said information.

In the present invention, light from an intense white light source, for example an arc lamp, is collected, and separated using dichroic filters into primary colors -- red, green and blue. The color separated light is caused to be formed into three sources, arrayed adjacently, such that each source appears to be narrow in the "vertical"

35

50

direction and wider in the "horizontal" direction. Scanning optics are employed to cause three bands of light, one of each of the colors, to be positioned onto the rear of a transmissive light valve panel. This panel may be a twisted nematic LCD panel with TFT addressing or other types of light valves. The scanning optics cause the bands of illumination to move across the LCD panel. As a band passes over the "top" of the active area of the panel a band of light of that color again appears at the "bottom" of the panel. Accordingly, there is a continuous sweep of three colors across the panel.

A second aspect of the present invention relates to the circuitry for addressing the light valve of the new color display device. This circuitry is characterized by means for providing separate video signals corresponding to each of the first, second and third colors; delay means for delaying said separate video signals for varying amounts of time; serializing means for providing a single serial stream of signals corresponding to said first, second and third colors in sequential order; means for applying said serialized stream to the column drivers for said light valve; and means for activating said row drivers, said row drivers being activated in non-sequential order to correspond with the color bands being applied to the row.

Prior to each color passing over a given row of pixels on the panel, that row will have been addressed with the appropriate information for that color. This means that each row of the panel will be addressed three times for each video field which is to be displayed. This can be accomplished by either using extra addressing lines to the panel array, and writing the horizontal rows in parallel, or by writing three separated rows sequentially, but at three times the field rate. The information being written to the separated rows must be appropriate for the color content of that portion of the image which is being displayed.

Light from the LCD panel is projected by a color corrected projection lens. Alternatively the invention could be used in a direct view mode. Conventional projection screens are useable with the invention. In the case or rear projection systems, screen designs which do not correct for "color shift" are now useable.

The simultaneous use of a large portion of the available red, green and blue light through a single light valve panel is an important feature of the present invention. This means that projection video systems based on the present invention have optical efficiencies at least comparable to that of three panel systems employing the same panel technology. Using only a single panel eliminates the need to mechanically converge the image, and further reduces system cost. Additionally, beam combining dichroic filters are not needed which leads to further cost savings.

These and other features in accordance with the invention are illustrated specifically in embodiments of the invention now to be described, by way of example, with reference to the accompanying diagrammatic drawings,

in which

Figure 1 is a side view of the optical system of the single panel color projection display constructed in accordance with the present invention;

Figure 2 is a side perspective view of the color separation and scanning mechanism of the present invention;

Figure 3 is a diagram of the drivers of the light valve; and

Figure 4 is a diagram of the processing of the video signals for driving the light valve.

Figure 1 is a generalized overview of the optical system of an embodiment of the single panel color projection video display which includes a light box 10, a system of dichroic mirrors 12 for splitting the light into bands of red, green and blue, a rotating prism 14 for scanning the RGB bands, relay lenses 16, 18 a light valve 20 upon which is impressed the video signals and a projection lens 22. Light box 10 includes a lamp 24 of any suitable high intensity type such as a xenon arc lamp and on elipsoidal reflector 25. The lamp output is directed to a "cold" mirror 26 which serves to reflect light in the visible spectrum while passing infra red light. Mirror 26 reflects the light from lamp 24 at a 90° angle and directs it to a series of optical lenses (not shown) which serve to modify the beam of light so that it is in the form of a generally uniform rectangular beam which exits light box 10 through an opening 28. Light box 10 may also include elements for absorbing ultraviolet radiation and cooling lamp 24. Lamp 24 has preferably a short arc length which facilitates its imaging and thus increases the brightness.

As is shown in detail in Figure 2 the beam of light 30 emerging from opening 28 of light box 10 is directed to dichroic mirror system 12. Dichroic mirror system 12 serves to split beam 30 into separate beams of red, green and blue. Dichroic mirror system 12 includes centrally disposed crossed dichroic mirrors 32, 34, which pass only the green light component of beam 30 and reflect red upwardly and blue downwardly to mirrors 36, 38. An upper mirror 36 (which may also be dichroic) is constructed and arranged to reflect the red component of the light impinging thereon and the lower mirror 38 reflects only the blue component of the light impinging thereon. Accordingly, the system of mirrors 32, 34, 36 and 38 serves to split beam 30 into its red, green and blue components which are arranged in the form of a vertical array. A vertical aperture plate 40 includes 3 vertically disposed rectangular apertures 42, 44, 46 which also serve to rectangularize the three RGB light beams exiting the apertures with the red beam on top, the green beam in the middle and the blue beam on the bottom.

After leaving aperture plate 40 the red, green and blue beams impinge upon an optical scanning mechanism in the form of a rotating prism assembly 14. Prism assembly 14 includes a prism member 50 which has for

example four equal flat sides (i.e. its cross section is square) and is rotated about its central longitudinal axis by a motor (not shown) which is driven in synchronicity with the video signals to light valve 20. The action of rotating prism member 50 is to cause the red, green and blue band of colors to be scanned downwardly (or upwardly) in a sequential manner by refraction. The sequentially scanned RGB bands are directed toward light valve 20 by relay lenses 16, 18. Lenses 16 and 18 constitute an anamorphic imaging system (of a 4 x 1 ratio) which images the light from apertures 42, 44, 46 onto light valve 20. As such, the rectangular active surface of light valve 20, which is a transmission LCD, receives sequential scanning of red, green and blue rectangular color bands. LCD panel 52 modulates the light impinging thereon in accordance with the desired input video information for the colors impinging on its various portions thereon. Thereafter, the video modulated sequential bands of light are projected upon a suitable viewing surface, such as a projection screen, by means of projection lens assembly 22.

The scan linearity of the optical system can be improved to a significant degree by making the surfaces of the revolving prism cylindrically concave as shown in the dotted surface 62 in Figure 2. The preferred radius of curvature is on the order of 10 inches when the length between adjacent optical facets of the prism is 2.4 inches. For maximum projector performance the use of concave faces is preferred. Negative cylindrical faces can be achieved by direct fabrication (grinding), or by cementing plano-concave cylindrical lenses onto the four faces of a conventional prism. The refractive index of such facing lenses need not be unusually high, but the refractive index of the bulk of the prism should be high (N > 1.6). If the refractive index is too low, then rays that otherwise would pass into one facet would exit through an adjacent facet. If this occurs, the phenomenon of total internal reflection (TIR) happens, and the final direction of the existing ray will not be in the proper direction for the light to be useful.

In the electronics for the device, separate red (R), green (G) and blue (B) signals are derived from the appropriate input source (broadcast, cable, direct) as is well known to those skilled in the art. However, in order to drive light valve 20 in accordance with the sequential color bands certain video signal processing is necessary. The parallel RGB signals must be serialized to a serial stream with, for example, the green signal delayed one third of a video field behind the red signal and the blue signal delayed one third of a video field behind the green signal. Thereafter, this serial stream must be processed to conform to the column driver and geometrical arrangement of light valve 20. For example if there are four column drivers there must be four parallel video signals. This signal processing utilizes the drivers of the light valve in a different manner than usually utilized for driving LCD displays. However, the same number and type of drivers are used so that the topology of the light

valve need not be radically changed from that used with conventional video displays.

Figure 3 is a generalized representation of the row and column drivers on a thin film transistor (TFT) LCD array which may be used in accordance with the invention. As is known in this art in such displays the rows are addressed sequentially with all of the TFTs in one row being turned on simultaneously through a common gate line by one of the row drivers R1, R2, R3. The individual pixels in a row are driven by a series of column drivers which may be arranged as illustrated in Figure 3. The LCD array is layed out such that drivers 1 and 3 are connected to the pixels in odd-numbered columns while drivers 2 and 4 are connected to the pixels in even-numbered columns. The column drivers, which are basically memory devices, sample the incoming video signal and store the sampled value in the respective memory cell.

In standard monochrome operation the column drivers would be loaded in a sequential fashion: during the first half of the video line driver 1 receives all odd pixel values while driver 2 receives all even pixel values. Drivers 3 and 4 store the respective values during the second half of the line. After the video line has been completely written, the outputs of the driver are enabled while at the same time the according row is activated, resulting in a "dump" of the video information onto a specific pixel row on the panel. The whole LCD array is "reprogrammed" in this fashion once per video frame in the sequence video line 1, 2, 3, 4, ..., 478, 479, 480.

In the presented invention a different sequence is required with which the LCD array has to be programmed. The three color bands red, green, and blue are scanning vertically over the panel. During one video frame each row is illuminated by, in this realization, first passing red, then a green and finally a blue lightband. The programming of a particular row has to be performed in a way that e.g. the green values are loaded before the green lightband reaches this row but after the red band has passed by. Since all three color bands are illuminating the panel at any one time three rows have to be programmed during the time of one regular video line. Since the column driver arrangement does not allow independent programming of more than one row at a time this operation has to be performed sequentially.

In case of equally spaced color bands which scan in a strictly linear fashion with no overscan present and 450 rows (video lines) per frame the programming of the LCD panel would be performed in the following sequence (R = red, G = green, B = blue, (xx) = row number):

R(1), G(151), B(301), R(2), G(152), B(302), R(3) ...R(150), G(300), B(450), R(151), G(301), B(1) ...

The programming would track the color bands as they move over the panel. The numbers also indicate that the red video information lags 150 lines or 1/3 of a frame behind green which in turn lags 1/3 of a frame behind blue.

In case the rotation of the prism 14 causes non-linear scanning of the color bands, and/or overscan is introduced the timing of the two video signals and sequence will be modified to accommodate the changing scan speed and spatial separation of the color bands. This can be achieved by e.g. varying the system clock for each color according to the respective position on the panel (for the present row-driver arrangement), introducing a varying "blanking" time for the video or changing the line sequence to account for the non-linear behaviour (which will require random access programming of the LCD panel rows).

Figure 4 illustrates the signal processing for the RGB signals in a diagrammatic manner. Each of the signals is input to A/D converters 62, 64 and 66 so that signal processing takes place in digital form. Thereafter the R signal is input to a first delay line 68 which will delay the red signal for a time τ_1 . The G signal is input to a delay line 70 which will delay it for a time τ_2 and the blue signal is input to a delay line 72 to delay it a time τ_3 . The times τ_1 , τ_2 and τ_3 are selected according to the position and scan speed of the respective color band on the panel. Unless the scanning operation is performed completely linearly these delay times will vary during the course of one video frame, both absolutely and relative to each other.

The signals then pass to a switch 74 which selects each of the outputs of the delay circuits 68, 70, 72 sequentially so that the output of switch 74 is a serial stream with, for example, the pixels of the video lines in the aforementioned sequence. Thereafter as described below the signals are input to switching mechanism for applying the serialized delayed stream the light valve.

The effective threefold increase of the field rate exceeds the speed capabilities of present column drivers. Additional demultiplexing and buffering is used to program the column drivers with four independent and parallel signals, each of which exhibits a data rate of only one quarter of the total rate.

The video stream passes to a switch 76 to separate the video stream into first and second streams 78, 80. Switch 76 is operated at a speed so as to divide the video stream into halves corresponding to the first and second half of each line. Thereafter the output of switch 76 is connected by a line 78 to a switch 82 which is operated at a speed so as to separate the odd and even pixels. The odd pixels are directed to a buffer memory 84 which will hold in this example 120 pixels (one quarter of one line), thereafter the output of buffer memory 84 is output to a D/A converter 86 whose output is in turn directed to column driver 1 as shown in Figure 3. The even pixel stream is directed to a buffer memory 88 and D/A converter 90 and thereafter to column driver 2 of Figure 3. The second halves of the video lines carried by line 80 are similarly processed by odd/even switch 92 with the odd pixels directed to buffer 94 and D/A converter 96 to column driver 3. Even pixels are directed through buffer 98 and D/A converter 100 to column driver 4.

It should be kept in mind that the many other components may be substituted for the above described optical system. Other arrangements of the components which provide sequential red, green and blue bands across the surface of a light valve may be utilized in conjunction with the present invention. For example, rather than a single source of white light, three sources of appropriately colored red, green and blue light may be utilized in conjunction with a scanning mechanism. Similarly, dichroic mirror system 12 and rotating prism 50 could be replaced by, for example, a rotating wheel of colored filters or a rotating drum of colored filters. Dichroic mirror system 12 could be replaced by a refractory prism and rotating prism 50 could be replaced by a multiple sided polygonal mirror system. The scan direction need not be vertical but could also be horizontal or diagonal (with suitable light valve signal processing).

It is also noted that this invention is utilizable with any type of known electronic light valves such as transmission or reflection LCDs, ferroelectric devices, deformable mirrors and the like. Additionally, the light path could be straight as illustrated or folded in a more compact arrangement. The light valve could also be utilized in a direct view system. In certain applications a two color band rather than three band system could be used. A special requirement of the light valve is that it have sufficient switching speed to be switched at more than three times the standard speed for monochrome LCD panels as each pixel of the LCD is at various points in time a red, a green and a blue pixel. Techniques to speed the response time on a LCD include: heating the panel, low viscosity liquid crystal material, high contrast material and/or making the liquid crystal layer thinner. Any combination of these techniques may be used.

Claims

40

A colour display device comprising an illumination system (10, 12, 14, 16, 18, 24, 25, 26, 28) for providing unmodulated light and light valve means (20) for modulating said light impinging thereon with information of the image to be displayed, characterized in that the illumination system (10, 12, 14, 16, 18, 24, 25, 26, 28) provides simultaneously light beams of different colours and having a bandshaped cross-section, in that the light valve means is constituted by a single light valve (20) having a multiplicity of pixels, each of said pixels modulating light impinging thereon in accordance with an input image signal and in that said illumination system comprises a mechano-optical system (14) for moving said band-shaped beams of different colours across the surface of said light valve (20) so that beam portions of all different colours are simultaneously present on said light valve and an electronic light valve driving circuit (60) for addressing each band-shaped light valve portion illuminated by a col-

20

25

40

50

our beam so that said portion provides image information of the colour of said colour beam and modulates said colour beam with said information.

- 2. The device as claimed in Claim 1, characterized in that the illumination system (10, 12, 14, 16, 18, 24, 25, 26, 28) comprises a source of white light (24, 25), a color-selective sub-system for splitting said white light into a first, second and third color bands and means for moving said bands sequentially across said light valve (20).
- 3. The device as claimed in Claim 2, characterized in that said color-selective sub-system comprises a system of dichroic mirrors (12).
- 4. The device as claimed in Claim 2 or 3, characterized in that said means for moving said first, second and third color bands of light comprise rotating prism means (14).
- 5. The device as claimed in Claim 4, characterized in that said prism means (14) comprise a four sided transmission prism (50).
- The device as claimed in Claim 5, characterized in that the sides of said transmission prism (50) are cylindrically concave.
- 7. The device as claimed in Claim 1, 2, 3, 4, 5 or 6, characterized in that said light valve (20) comprises a transmission liquid crystal display device (52).
- 8. The device as claimed in Claim 1, 2, 3, 4, 5, 6 or 7, characterized in that said first, second and third bands of light comprise red, green and blue.
- The device as claimed in Claim 1, 2, 3, 4, 5, 6, 7 or 8, characterized in that said bands are moved across the surface of said light valve (20) by scrolling.
- The device as claimed in Claim 9, characterized in that said scrolling takes place in a vertical direction.
- 11. The device as claimed in any one of claims 1 to 10 characterised in that said driving circuit comprises means for providing separate video signals corresponding to each of the first, second and third colors; delay means (68, 70, 72) for delaying said separate video signals for varying amounts of time; serializing means (74) for providing a single serial stream of signals corresponding to said first, second and third colors in sequential order; means (76, 82, 92, 84, 88, 94, 98) for applying said serialized stream to the column drivers (1, 2, 3, 4) for said light valve; and means for activating the row drivers (R₁, R₂, R₃), said row drivers being activated in non-se-

quential order to correspond with the color bands being applied to the row.

- 12. The device as claimed in Claim 11, characterized further by including analog-to-digital converters (68, 70, 72) disposed before said delay means (68, 70, 72) and digital-to-analog converters (86, 90, 96, 100) disposed between said circuitry and said light valve (20) so that the signal processing takes place in digitally.
- 13. The device as claimed in Claim 11 or 12, characterized in that said delay between colors comprises one-third of a frame.
- 14. The device as claimed in Claim 11, 12 or 13, characterized in that said row drivers (R1, R2, R3) are activated one-third of a frame apart so as to track the bands of light.
- 15. The device as claimed in Claim 11, 12, 13 or 14, characterized in that said light valve (20) includes four column drivers (1, 2, 3, 4) and said circuitry includes means (76, 82, 92, 84, 88, 94, 98) for selectively applying said serialized stream to said four column drivers (1, 2, 3, 4).
- 16. The device as claimed in Claim 11, 12, 13, 14 or 15, characterized in that said row drivers (R₁, R₂, R₃) comprise three row drivers.
- 17. A driving circuit for addressing a light valve, characterized by the features of claims 11-16 relating to the driving circuit.

Patentansprüche

1. Farb-Display-Vorrichtung mit einem Beleuchtungssystem (10, 12, 14, 16, 18, 24, 25, 26, 28) zum Verschaffen unmodulierten Lichtes und Lichtventilmittel (20) zum Modulieren des genannten darauf fallenden Lichtes mit Informationen zu dem wiederzugebenden Bild, dadurch gekennzeichnet, daß das Beleuchtungssystem (10, 12, 14, 16, 18, 24, 25, 26, 28) simultane Lichtbündel unterschiedlicher Farben und mit streifenförmigem Querschnitt liefert, daß das Lichtventilmittel von einem einzigen Lichtventil (20) mit einer Vielzahl Pixeln gebildet wird, wobei jedes der genannten Pixel darauf fallendes Licht entsprechend einem Eingangsbildsignal moduliert, und daß das genannte Beleuchtungssystem ein mechanooptisches System (14) umfaßt, um die genannten streifenförmigen Strahlenbundel unterschiedlicher Farben über der Oberfläche des genannten Lichtventils (20) zu bewegen, so daß Būndelteile aller verschiedenen Farben gleichzeitig auf dem genannten Lichtventil vorhanden sind, sowie

15

25

35

40

45

eine elektronische Lichtventilansteuerungsschaltung (60), um jedes von einem Farbstrahlenbündel beleuchtete, streifenförmige Lichtventilteil zu adressieren, so daß das genannte Teil Bildinformation der Farbe des genannten Farbstrahlenbündels liefert und das genannte Farbstrahlenbündel mit der genannten Information moduliert.

- Vorrichtung nach Anspruch 1, <u>dadurch gekennzeichnet</u>, daß das Beleuchtungssystem (10, 12, 14, 16, 18, 24, 25, 26, 28) eine Quelle weißen Lichtes (24, 25) umfaßt, ein farbselektives Teilsystem zum Aufspalten des genannten weißen Lichtes in einen ersten, zweiten und dritten Farbstreifen und Mittel, um die genannten Streifen sequentiell über das genannte Lichtventil (20) zu bewegen.
- Vorrichtung nach Anspruch 2, <u>dadurch gekenn-zeichnet</u>, daß das genannte farbeselektive Teilsystem ein System aus dichroitischen Spiegeln (12) umfaßt.
- Vorrichtung nach Anspruch 2 oder 3, <u>dadurch gekennzeichnet</u>, daß die genannten Mittel zum Bewegen des genannten ersten, zweiten und dritten Farbstreifens des Lichtes Drehprismamittel (14) umfassen.
- Vorrichtung nach Anspruch 4, <u>dadurch gekenn-zeichnet</u>, daß die genannten Prismamittel (14) ein vierseitiges Transmissionsprisma (50) umfassen.
- Vorrichtung nach Anspruch 5, <u>dadurch gekennzeichnet</u>, daß die Seiten des genannten Transmissionsprismas (50) zylindrisch konkav sind.
- Vorrichtung nach Anspruch 1, 2, 3, 4, 5 oder 6, dadurch gekennzeichnet, daß das genannte Lichtventil (20) eine Transmissions-Flüssigkristall-Display-Vorrichtung (52) umfaßt.
- Vorrichtung nach Anspruch 1, 2, 3, 4, 5, 6 oder 7, <u>dadurch gekennzeichnet</u>, daß der erste, der zweite und der dritte Lichtstreifen Rot, Grün und Blau umfassen.
- Vorrichtung nach Anspruch 1, 2, 3, 4, 5, 6, 7 oder 8, <u>dadurch gekennzeichnet</u>, daß die genannten Streifen durch Abrollen über die Oberfläche des genannten Lichtventil (20) bewegt werden.
- Vorrichtung nach Anspruch 9, <u>dadurch gekenn-zeichnet</u>, daß das genannte Abrollen in vertikaler Richtung erfolgt.
- Vorrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die genannte Ansteuerungsschaltung Mittel zum Verschaffen gesonder-

ter Videosignale entsprechend jeweils der ersten, zweiten und dritten Farbe umfaßt; Verzögerungsmittel (68, 70, 72) zum Verzögern der genannten gesonderten Videosignale um veränderliche Zeitdauern; in bitserielle Reihenfolge bringende Mittel (74), um einen einzelnen, seriellen Strom von der genannten ersten, zweiten und dritten Farbe entsprechenden Signalen in sequentieller Reihenfolge zu verschaffen; Mittel (76, 82, 92, 84, 88, 94, 98), um den genannten, in bitserielle Reihenfolge gebrachten Strom den Spaltentreibern (1, 2, 3, 4) für das genannte Lichtventil zuzuführen; und Mittel zum Aktivieren der Zeilentreiber (R1, R2, R3), wobei die genannten Zeilentreiber in nicht-sequentieller Reihenfolge aktiviert werden, um den der Zeile zugeführten Farbstreifen zu entsprechen.

- 12. Vorrichtung nach Anspruch 11, weiterhin <u>gekennzeichnet durch</u> das Enthalten von vor den genannten Verzögerungsmitteln (68, 70, 72) liegenden Analog-Digital-Umsetzern (62, 64, 66) und zwischen der genannten Schaltungsgesamtheit und dem genannten Lichtventil (20) liegenden Digital-Analog-Umsetzern (86, 90, 96, 100), so daß die Signalverarbeitung digital erfolgt.
- Vorrichtung nach Anspruch 11 oder 12, <u>dadurch gekennzeichnet</u>, daß die genannte Verzögerung zwischen Farben ein Drittel eines Bildes umfaßt.
- 14. Vorrichtung nach Anspruch 11, 12 oder 13, <u>dadurch gekennzeichnet</u>, daß die genannten Zeilentreiber (R1, R2, R3) während eines Drittels eines Bildes gesondert aktiviert werden, um so den Lichtstreifen zu folgen.
- 15. Vorrichtung nach Anspruch 11, 12, 13 oder 14, dadurch gekennzeichnet, daß das genannte Lichtventil (20) vier Spaltentreiber (1, 2, 3, 4) umfaßt und die genannte Schaltungsgesamtheit Mittel (76, 82, 92, 84, 88, 94, 98) enthält, um den genannten, in bitserielle Reihenfolge gebrachten Strom den genannten vier Spaltentreibern (1, 2, 3, 4) selektiv zuzuführen.
- Vorrichtung nach Anspruch 11, 12, 13, 14 oder 15, dadurch gekennzeichnet, daß die genannten Zeilentreiber (R1, R2, R3) drei Zeilentreiber umfassen.
- 50 17. Ansteuerungsschaltung zum Adressieren eines Lichtventils, gekennzeichnet durch die mit der Ansteuerungsschaltung zusammenhängenden Merkmale der Ansprüche 11-16.

Revendications

1. Dispositif d'affichage en couleurs comprenant un

15

25

40

45

55

système d'éclairage (10, 12, 14, 16, 18, 24, 25, 26, 28) pour délivrer de la lumière non modulée et un moyen à valve de lumière (20) pour moduler ladite lumière, incidente sur le moyen, avec des informations de l'image à afficher, caractérisé en ce que ledit système d'éclairage (10, 12, 14, 16, 18, 24, 25, 26, 28) délivre simultanément des faisceaux lumineux de différentes couleurs et ayant une section transversale en forme de bande, en ce que le moyen à valve de lumière est constitué d'une seule valve de lumière (20) ayant une multiplicité de pixels, chacun desdits pixels modulant la lumière incidente selon un signal d'image d'entrée, et en ce que ledit système d'éclairage comprend un système mécano-optique (14) pour déplacer lesdits faisceaux en forme de bande de différentes couleurs en travers de la surface de ladite valve de lumière (20) de telle manière que des parties des faisceaux de toutes les couleurs différentes soient simultanément présentes sur ladite valve de lumière et un circuit électronique d'excitation (60) de la valve de lumière pour adresser chaque partie de la valve de lumière en forme de bande éclairée par un faisceau de couleur de telle manière que ladite partie fournisse des informations d'image de la couleur dudit faisceau de couleur et module ledit faisceau de couleur avec lesdites informations.

- 2. Dispositif selon la revendication 1, caractérisé en ce que le système d'éclairage (10, 12, 14, 16, 18, 24, 25, 26, 28) comprend une source de lumière blanche (24, 25), un sous-système de sélection de couleurs pour scinder ladite lumière blanche en une première, une deuxième et une troisième bandes de couleurs et des moyens pour déplacer lesdites bandes en séquence en travers de ladite valve de lumière (20).
- Dispositif selon la revendication 2, caractérisé en ce que ledit sous-système de sélection de couleurs comprend un système de miroirs dichroïques (12).
- 4. Dispositif selon la revendication 2 ou 3, caractérisé en ce que lesdits moyens pour déplacer lesdites première, deuxième et troisième bandes de couleurs de lumière comprennent un moyen à prisme rotatif (14).
- 5. Dispositif selon la revendication 4, caractérisé en ce que ledit moyen à prisme (14) comprend un prisme de transmission à quatre facettes (50).
- Dispositif selon la revendication 5, caractérisé en ce que les facettes du prisme de transmission (50) ont une forme cylindrique concave.
- Dispositif selon la revendication 1, 2, 3, 4, 5 ou 6, caractérisé en ce que ladite valve de lumière (20)

- comprend un dispositif d'affichage à cristaux liquides de transmission (52).
- 8. Dispositif selon la revendication 1, 2, 3, 4, 5, 6 ou 7, caractérisé en ce que lesdites première, deuxième et troisième bandes de lumière comprennent des bandes rouges, vertes et bleues.
- 9. Dispositif selon la revendication 1, 2, 3, 4, 5, 6, 7 ou 8, caractérisé en ce que lesdites bandes sont déplacées en travers de la surface de ladite valve de lumière (20) par défilement.
- Dispositif selon la revendication 9, caractérisé en ce que ledit défilement a lieu dans une direction verticale.
- 11. Dispositif selon l'une quelconque des revendications 1 à 10, caractérisé en ce que ledit circuit d'excitation comprend des moyens pour délivrer des signaux vidéo séparés correspondant à chacune des première, deuxième et troisième couleurs; des moyens à retard (62, 70, 72) pour retarder lesdits signaux vidéo séparés pendant des périodes variables; des moyens de sérialisation (74) pour délivrer un flux sériel unique de signaux correspondant auxdites première, deuxième et troisième couleurs dans un ordre séquentiel; des moyens (76, 82, 92, 84, 88, 94, 98) pour appliquer ledit flux sérialisé aux dispositifs d'excitation de colonnes (1, 2, 3, 4) pour ladite valve de lumière; et des moyens pour activer lesdits dispositifs d'excitation de rangées (R1, R2, R3), lesdits dispositifs d'excitation de rangées étant activés dans un ordre non séquentiel pour correspondre aux bandes de couleurs appliquées à la rangée.
- 12. Dispositif selon la revendication 11, caractérisé en outre en ce qu'il comprend des convertisseurs analogiques/numériques (68, 70, 72) disposés avant lesdits moyens à retard (68, 70, 72) et des convertisseurs numériques/analogiques (86, 90, 96, 100) disposés entre ledit circuit et ladite valve de lumière (20) de telle sorte que le traitement des signaux ait lieu en numérique.
- 13. Dispositif selon la revendication 11 ou 12, caractérisé en ce que ledit retard entre les couleurs couvre un tiers d'une trame.
- 14. Dispositif selon la revendication 11, 12 ou 13, caractérisé en ce que lesdits dispositifs d'excitation de rangées (R1, R2, R3) sont activés à un tiers d'une trame les uns des autres de manière à suivre les bandes de lumière.
- Dispositif selon la revendication 11, 12, 13 ou 14, caractérisé en ce que ladite valve de lumière (20)

comprend quatre dispositifs d'excitation de colonnes (1, 2, 3, 4) et ledit circuit comprend des moyens (76, 82, 92, 84, 88, 94) pour appliquer de manière sélective ledit flux sérialisé auxdits quatre dispositifs d'excitation de colonnes (1, 2, 3, 4).

16. Dispositif selon la revendication 11, 12, 13, 14 ou 15, caractérisé en ce que lesdits dispositifs d'excitation de rangées (R1, R2, R3) comprennent trois dispositifs d'excitation de rangées.

17. Circuit d'excitation pour adresser une valve de lumière, caractérisé par les particularités des revendications 11 à 16 se rapportant au circuit d'excitation.

FIG.4