CHUONG V

ÁNH XẠ TUYẾN TÍNH

I. CÁC KHÁI NIỆM CƠ BẢN:

Trong chương này, m và n là các số nguyên ≥ 1 .

1.1/ $\underline{\text{DINH NGHIA:}}$ Cho ánh xạ $f: \mathbb{R}^n \to \mathbb{R}^m$, nghĩa là

$$\forall \alpha \equiv X = (x_1, x_2, \ldots, x_n) \in \textbf{R}^{\textbf{n}}, \exists ! \ f(\alpha) \equiv f(X) = (y_1, y_2, \ldots, y_m) \in \textbf{R}^{\textbf{m}}.$$

- a) Nếu H \subset \mathbb{R}^n thì ảnh của H qua ánh xạ f là f(H) = { f(α) | $\alpha \in$ H } \subset \mathbb{R}^m
- b) Nếu K \subset \mathbb{R}^m thì ảnh ngược của K bởi ánh xạ f là

$$f^{-1}(K) \equiv \{ \ \alpha \in \textbf{R}^n \ | \ f(\alpha) \in K \ \} \subset \textbf{R}^n.$$

- **1.2**/ **ĐỊNH NGHĨA:** Cho ánh xa $f: \mathbb{R}^n \to \mathbb{R}^m$.
 - a) f là anh xa tuy en tinh (từ \mathbf{R}^n vào \mathbf{R}^m) nếu f thỏa:

*
$$\forall \alpha \equiv X, \beta \equiv Y \in \mathbf{R}^n, f(\alpha + \beta) = f(\alpha) + f(\beta)$$
 (1).

*
$$\forall \alpha \equiv X \in \mathbf{R}^{\mathbf{n}}, \ \forall \mathbf{c} \in \mathbf{R}, \ f(\mathbf{c}.\alpha) = \mathbf{c}.f(\alpha)$$
 (2).

b) Suy ra f là ánh xạ tuyến tính nếu f thỏa

$$\forall \alpha, \beta \in \mathbb{R}^n, \forall \mathbf{c} \in \mathbb{R}, f(\mathbf{c}.\alpha + \beta) = \mathbf{c}.f(\alpha) + f(\beta)$$
 (3).

c) Ký hiệu $L(\mathbf{R}^n, \mathbf{R}^m) = \{ g : \mathbf{R}^n \to \mathbf{R}^m \mid g \text{ là ánh xạ tuyến tính } \}$. Khi m = n, ta viết gọn $L(\mathbf{R}^n, \mathbf{R}^n) = L(\mathbf{R}^n) = \{ g : \mathbf{R}^n \to \mathbf{R}^n \mid g \text{ là ánh xạ tuyến tính } \}$. Nếu $g \in L(\mathbf{R}^n)$ thì g còn được gọi là *một toán tử tuyến tính* trên \mathbf{R}^n .

Ví dụ:

- a) Ánh xạ tuyến tính $\mathbf{O}: \mathbf{R}^n \to \mathbf{R}^m$ và toán tử tuyến tính $\mathbf{O}: \mathbf{R}^n \to \mathbf{R}^n$. $\alpha \mapsto \mathbf{O}$
- b) Toán tử tuyến tính đồng nhất trên \mathbb{R}^n là $Id_{\mathbb{R}^n}: \mathbb{R}^n \to \mathbb{R}^n$.

c) $f: \mathbf{R}^4 \to \mathbf{R}^3$ có f(X) = (3x - 8y + z - 4t, -7x + 5y + 6t, 4x + y - 9z - t), $\forall X = (x, y, z, t) \in \mathbf{R}^4. \text{ Ta } có \text{ thể kiểm tra} \text{ } f \text{ thỏa} \text{ } (3) \text{ nên } f \in L(\mathbf{R}^4, \mathbf{R}^3).$ $\text{Thật vậy, } \forall X = (x, y, z, t), Y = (u, v, w, h) \in \mathbf{R}^4, \forall c \in \mathbf{R}, f(c.X + Y) =$ = f(cx + u, cy + v, cz + w, ct + h) = [3(cx + u) - 8(cy + v) + (cz + w) - 4(ct + h), -7(cx + u) + 5(cy + v) + 6(ct + h), 4(cx + u) + (cy + v) - 9(cz + w) - (ct + h)] = c(3x - 8y + z - 4t, -7x + 5y + 6t, 4x + y - 9z - t) + (3u - 8v + w - 4h, -7u + 5v + 6h, 4u + v - 9w - h) = c.f(X) + f(Y).

Ngoài ra ta có thể giải thích $f \in L(\mathbf{R}^4, \mathbf{R}^3)$ do các thành phần của f(X) đều là các biểu thức bậc nhất theo các biến x, y, z và t.

d) $g : \mathbf{R}^3 \to \mathbf{R}^3$ có g(X) = (-2x + 9y + 6z, 8x - 5y + z, 3x + 7y - 4z), $\forall X = (x, y, z) \in \mathbf{R}^3$. Ta có thể kiểm tra g thỏa (3) nên $g \in L(\mathbf{R}^3)$.

Thật vậy,
$$\forall X = (x, y, z)$$
, $Y = (u, v, w) \in \mathbb{R}^3$, $\forall c \in \mathbb{R}$,
$$g(c.X + Y) = g(cx + u, cy + v, cz + w) = [-2(cx + u) + 9(cy + v) + 6(cz + w), \\ 8(cx + u) - 5(cy + v) + (cz + w), 3(cx + u) + 7(cy + v) - 4(cz + w)]$$
$$= c(-2x + 9y + 6z, 8x - 5y + z, 3x + 7y - 4z) + (-2u + 9v + 6w, 8u - 5v + w, \\ 3u + 7v - 4w) = c.g(X) + g(Y).$$

Ngoài ra ta có thể giải thích $g \in L(\mathbf{R}^3)$ do các thành phần của g(X) đều là các biểu thức bậc nhất theo các biến x, y và z.

1.3/ <u>TÍNH CHẤT</u> :

Cho $f \in L(\mathbf{R}^n, \mathbf{R}^m)$. Khi đó, $\forall \alpha, \alpha_1, ..., \alpha_k \in \mathbf{R}^n$, $\forall \mathbf{c}_1, ..., \mathbf{c}_k \in \mathbf{R}$, ta có

a)
$$f(\mathbf{O}) = \mathbf{O}$$
 và $f(-\alpha) = -f(\alpha)$.

b)
$$f(\mathbf{c}_1\alpha_1 + \dots + \mathbf{c}_k\alpha_k) = \mathbf{c}_1f(\alpha_1) + \dots + \mathbf{c}_kf(\alpha_k)$$
.

(ảnh của một tổ hợp tuyến tính bằng tổ hợp tuyến tính của các ảnh tương ứng).

$$\underline{Vi du:} \text{ Cho } f \in L (\mathbf{R}^3, \mathbf{R}^2) \text{ và } \alpha_1, \alpha_2, \alpha_3 \in \mathbf{R}^3 \text{ thỏa } f(\alpha_1) = (-1, 3), f(\alpha_2) = (2, -5) \text{ và } f(\alpha_3) = (4, 4). \text{ Khi đó } f(0, 0, 0) = (0, 0), f(-\alpha_1) = -f(\alpha_1) = (1, -3) \text{ và}$$

$$f(3\alpha_1 - 4\alpha_2 + 2\alpha_3) = 3f(\alpha_1) - 4f(\alpha_2) + 2f(\alpha_3) = 3(-1, 3) - 4(2, -5) + 2(4, 4) = (-3, 37).$$

1.4/ NHẬN DIỆN ÁNH XẠ VÀ TOÁN TỬ TUYẾN TÍNH:

Cho ánh xạ $f: \mathbb{R}^n \to \mathbb{R}^m$.

Nếu có
$$\mathbf{A} \in M_{n \times m}(\mathbf{R})$$
 thỏa $f(X) = X.\mathbf{A}, \ \forall X \in \mathbf{R}^n$ thì $f \in L(\mathbf{R}^n, \mathbf{R}^m)$. Thật vậy, $\forall X, Y \in \mathbf{R}^n, \ \forall c \in \mathbf{R}, \ f(c.X + Y) = (c.X + Y).\mathbf{A} = c.(X.\mathbf{A}) + Y.\mathbf{A} = c.f(X) + f(Y)$, nghĩa là f thỏa (3) của (1.2).

<u>Ví dụ:</u> Xét lại các ánh xạ $f: \mathbb{R}^4 \to \mathbb{R}^3$ và $g: \mathbb{R}^3 \to \mathbb{R}^3$ trong Ví dụ của (1.2):

$$f(X) = (3x - 8y + z - 4t, -7x + 5y + 6t, 4x + y - 9z - t), \forall X = (x, y, z, t) \in \mathbb{R}^4$$

và
$$g(X) = (-2x + 9y + 6z, 8x - 5y + z, 3x + 7y - 4z), \forall X = (x, y, z) \in \mathbb{R}^3$$
.

Đặt
$$A = \begin{pmatrix} 3 & -7 & 4 \\ -8 & 5 & 1 \\ 1 & 0 & -9 \\ -4 & 6 & -1 \end{pmatrix} \in M_{4 \times 3}(\mathbf{R}) \text{ và } B = \begin{pmatrix} -2 & 8 & 3 \\ 9 & -5 & 7 \\ 6 & 1 & -4 \end{pmatrix} \in M_3(\mathbf{R}). \text{ Ta có}$$

$$f(X) = (x \ y \ z \ t) \begin{pmatrix} 3 & -7 & 4 \\ -8 & 5 & 1 \\ 1 & 0 & -9 \\ -4 & 6 & -1 \end{pmatrix} = X.A, \ \forall X = (x, y, z, t) \in \mathbf{R}^4 \ \text{nên } f \in L(\mathbf{R}^4, \mathbf{R}^3)$$

và
$$g(X) = (x \ y \ z) \begin{pmatrix} -2 & 8 & 3 \\ 9 & -5 & 7 \\ 6 & 1 & -4 \end{pmatrix} = X.B, \ \forall X = (x, y, z) \in \mathbf{R}^3 \text{ nên } g \in L(\mathbf{R}^3).$$

1.5/ $\underline{M\hat{E}NH \hat{D}\hat{E}}$: Cho $f \in L(\mathbf{R}^n, \mathbf{R}^m)$

- a) Nếu $H \le \mathbf{R}^n$ thì $f(H) \le \mathbf{R}^m$.
- b) Nếu $(H \le \mathbb{R}^n \text{ và } H \text{ có } co \text{ sở } A) \text{ thì } [f(H) \le \mathbb{R}^m \text{ và } f(H) \text{ có } t\hat{a}p \text{ sinh } f(A)].$
- c) Nếu $K \le \mathbf{R}^{\mathbf{m}}$ thì $f^{-1}(K) \le \mathbf{R}^{\mathbf{n}}$.

1.6/ KHÔNG GIAN ẢNH CỦA ÁNH XẠ TUYẾN TÍNH:

Cho $f \in L(\mathbf{R}^n, \mathbf{R}^m)$ và $H \leq \mathbf{R}^n$.

- a) Nếu $H = \{ \mathbf{O} \}$ thì $f(H) = f(\{ \mathbf{O} \}) = \{ \mathbf{O} \}$: trường hợp tầm thường.
- b) Nếu $H = \mathbf{R}^{\mathbf{n}}$, ta có $f(H) = f(\mathbf{R}^{\mathbf{n}}) = \{ f(\alpha) \mid \alpha \in \mathbf{R}^{\mathbf{n}} \} \le \mathbf{R}^{\mathbf{m}}$.

 Ta đặt $f(\mathbf{R}^{\mathbf{n}}) = \operatorname{Im}(f)$ và gọi $\operatorname{Im}(f)$ là *không gian ảnh* của f.
- c) Tìm $m \hat{\rho} t$ $c \sigma s \mathring{\sigma}$ cho Im(f): Chọn $c \sigma s \mathring{\sigma}$ A $t \mathring{u} y \mathring{y}$ của $\mathbf{R}^{\mathbf{n}}$ (ta thường chọn A là $c \sigma s \mathring{\sigma}$ chính $t \mathring{a} c$ \mathbf{B}_{o}) thì $< f(\mathbf{A}) > = Im(f)$. Từ đó ta có thể tìm được $m \hat{\rho} t$ $c \sigma s \mathring{\sigma}$ cho Im(f) từ $t \mathring{a} p s inh f(\mathbf{A})$ [dùng (5.7) của CHƯƠNG IV].

<u>Ví dụ:</u> $f: \mathbb{R}^4 \to \mathbb{R}^3$ có f(X) = (x + 2y + 4z - 7t, -3x - 2y + 5t, 2x + y - z - 2t), $\forall X = (x, y, z, t) \in \mathbb{R}^4$. Ta kiểm tra dễ dàng $f \in L(\mathbb{R}^4, \mathbb{R}^3)$.

$$\text{Dăt } A = B_0 = \{ \epsilon_1 = (1, 0, 0, 0), \epsilon_2 = (0, 1, 0, 0), \epsilon_3 = (0, 0, 1, 0), \epsilon_4 = (0, 0, 0, 1) \}$$

là $\cos s \circ chinh t \acute{a} c$ của \mathbb{R}^4 thì $< f(A) > = Im(f) = f(\mathbb{R}^4)$. Ta có

$$f(A) = \{ f(\epsilon_1) = (1,-3, 2), f(\epsilon_2) = (2,-2, 1), f(\epsilon_3) = (4, 0,-1), f(\epsilon_4) = (-7, 5,-2) \}.$$

Khi đó
$$\begin{pmatrix} f(\varepsilon_1) \\ f(\varepsilon_2) \\ f(\varepsilon_3) \\ f(\varepsilon_4) \end{pmatrix} = \begin{pmatrix} 1 & -3 & 2 \\ 2 & -2 & 1 \\ 4 & 0 & -1 \\ -7 & 5 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1^* & -3 & 2 \\ 0 & 4 & -3 \\ 0 & 4 & -3 \\ 0 & -16 & 12 \end{pmatrix} \rightarrow \begin{pmatrix} 1^* & -3 & 2 \\ 0 & 4^* & -3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} \gamma_1 \\ \gamma_2 \\ 0 \\ 0 \end{pmatrix}.$$
 Suy ra

Im(f) có cơ sở $C = \{ \gamma_1 = (1, -3, 2), \gamma_2 = (0, 4, -3) \}$ và dimIm(f) = |C| = 2.

 $C_1 \equiv \gamma_1 \text{ và } C_2 \equiv \gamma_2$

1.7/ KHÔNG GIAN NHÂN CỦA ÁNH XẠ TUYẾN TÍNH:

Cho $f \in L(\mathbf{R}^n, \mathbf{R}^m)$ và xét trường hợp đặc biệt $K = \{ \mathbf{O} \} \leq \mathbf{R}^m$.

a) Nếu $K = \mathbf{R}^m$ thì $f^{-1}(K) = f^{-1}(\mathbf{R}^m) = \mathbf{R}^n$: trường hợp tầm thường.

b) Nếu $K = \{ \mathbf{O} \}$, ta có $f^{-1}(K) = f^{-1}(\mathbf{O}) = \{ \alpha \in \mathbf{R}^n \mid f(\alpha) = \mathbf{O} \} \le \mathbf{R}^n$.

Ta đặt $f^{-1}(\mathbf{O}) = \text{Ker}(f)$ và gọi Ker(f) là không gian nhân của f.

c) Tìm $m \hat{\rho} t$ co so cho Ker(f): Ta thấy Ker(f) chính là $kh \hat{\rho} ng$ gian nghiệm của $h \hat{\rho} phương$ trình $tuy \hat{e} n$ tinh thuần nhất $f(\alpha) = \mathbf{0}$ với ẩn $\alpha \in \mathbf{R}^n$. Từ đó ta có thể tìm được $m \hat{\rho} t$ co so cho Ker(f) [dùng (5.8) của CHƯƠNG IV].

Ví dụ: Xét lại ánh xạ tuyến tính f trong Ví dụ (1.6):

$$f(X) = (x + 2y + 4z - 7t, -3x - 2y + 5t, 2x + y - z - 2t), \forall X = (x, y, z, t) \in \mathbf{R}^4.$$

$$Ker(f) = \{ \alpha = (x, y, z, t) \in \mathbf{R}^4 \mid f(\alpha) = \mathbf{O} \}$$

$$= \{ \alpha = (x, y, z, t) \in \mathbf{R}^4 \mid (x + 2y + 4z - 7t, -3x - 2y + 5t, 2x + y - z - 2t) = \mathbf{O} \}$$

$$= \{ \alpha = (x, y, z, t) \in \mathbf{R}^4 \mid (x + 2y + 4z - 7t = -3x - 2y + 5t = 2x + y - z - 2t = \mathbf{O} \}.$$

Ma trận hóa hệ phương trình tuyến tính trên:

$$\begin{pmatrix} x & y & z & t \\ 1 & 2 & 4 & -7 & 0 \\ -3 & -2 & 0 & 5 & 0 \\ 2 & 1 & -1 & -2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1^* & 2 & 4 & -7 & 0 \\ 0 & 4 & 12 & -16 & 0 \\ 0 & -3 & -9 & 12 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1^* & 0 & -2 & 1 & 0 \\ 0 & 1^* & 3 & -4 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

Hệ có vô số nghiệm với 2 ẩn tự do : z, $t \in \mathbf{R}$, x = 2z - t, y = 4t - 3z.

$$D_1 \equiv \delta_1 \ va \ D_2 \equiv \delta_2$$

Ker(f) = {
$$\alpha$$
 = (2z - t, 4t - 3z, z, t) = z(2, -3, 1, 0) + t(-1, 4, 0, 1) | z, t ∈ **R**}.
Như vậy Ker(f) = < D > với D = { δ ₁ = (2,-3,1,0), δ ₂ = (-1,4,0,1)} độc lập tuyến tính. Do đó Ker(f) có một cơ sở là D = { δ ₁, δ ₂} và dimKer(f) = |D| = 2.

1.8/ $\underline{M}\underline{\hat{E}}\underline{N}\underline{H}\underline{D}\underline{\hat{E}}\underline{:}$ Cho $f \in L(\mathbf{R}^n, \mathbf{R}^m)$. Khi đó

$$\dim \operatorname{Ker}(f) + \dim \operatorname{Im}(f) = \dim \mathbf{R}^{\mathbf{n}} = \mathbf{n}.$$

dimKer(f) được gọi là số khuyết của f và dimIm(f) được gọi là hạng của f.

Ví dụ: Xét lại ánh xạ tuyến tính f trong Ví dụ (1.6) và (1.7).

Ta có $\dim \text{Ker}(f) + \dim \text{Im}(f) = 2 + 2 = 4 = \dim \mathbb{R}^4$.

II. MA TRẬN BIỂU DIỄN ÁNH XẠ TUYẾN TÍNH:

2.1/ $\underline{\textbf{DINH NGHĨA:}}$ Cho $f \in L(\mathbf{R^n}, \mathbf{R^m})$ với $\mathbf{R^n}$ và $\mathbf{R^m}$ lần lượt có *các cơ sở* là

$$A = \{ \; \alpha_1 \equiv A_1, \, \alpha_2 \equiv A_2, \, ..., \, \alpha_n \equiv A_n \} \ \ \, \text{và} \ \ \, \overset{}{B} = \{ \; \beta_1 \, , \, \beta_2 \, , \, ..., \, \beta_m \}.$$

$$a) \ \text{D} \left[\ f \ \right]_{A,\,B} = (\ [\ f \left(\alpha_1\right) \]_B \ [\ f \left(\alpha_2\right) \]_B \ \dots \ [\ f \left(\alpha_n\right) \]_B) \in M_{m \times n}(\boldsymbol{R}).$$

Ta nói $[f]_{A,B}$ là ma trận biểu diễn của ánh xạ tuyến tính f theo cặp cơ sở A (của $\mathbf{R}^{\mathbf{n}}$) và \mathbf{B} (của $\mathbf{R}^{\mathbf{m}}$).

Như vậy khi biết f thì ta viết được ma trận biểu diễn

$$[f]_{A,B} = ([f(\alpha_1)]_B [f(\alpha_2)]_B ... [f(\alpha_n)]_B)$$
 (1).

- b) $\forall \alpha \in \mathbf{R}^{\mathbf{n}}$, ta có $[f(\alpha)]_{\mathbf{B}} = [f]_{\mathbf{A}, \mathbf{B}} [\alpha]_{\mathbf{A}}$ (2).

 Như vậy khi biết $[f]_{\mathbf{A}, \mathbf{B}}$ thì ta *xác định được biểu thức* của f theo (2).

 (từ $[f(\alpha)]_{\mathbf{B}}$ ta sẽ *tính được ngay* $f(\alpha)$, $\forall \alpha \in \mathbf{R}^{\mathbf{n}}$).
- c) Nếu A và B lần lượt là *các cơ sở chính tắc* của \mathbf{R}^n và \mathbf{R}^m thì $[f]_{A,B}$ được gọi là *ma trận chính tắc* của f. Biểu thức của f và *ma trận chính tắc* của f có thể *suy ra lẫn nhau một cách dễ dàng*.

Ví dụ:

a) $f \in L(\mathbf{R}^3, \mathbf{R}^2)$ với $f(u, v, w) = (-3u + 4v - w, 2u + v + 3w), \forall (u, v, w) \in \mathbf{R}^3$. Cho $A = \{ \epsilon_1, \epsilon_2, \epsilon_3 \}$ và B lần lượt là *các cơ sở chính tắc* của \mathbf{R}^3 và \mathbf{R}^2 . Ta có $f(\epsilon_1) = f(1, 0, 0) = (-3, 2), f(\epsilon_2) = f(0, 1, 0) = (4, 1)$ và $f(\epsilon_3) = f(0, 0, 1) = (-1, 3)$ nên có ngay *ma trận chính tắc* $[f]_{A,B} = ([f(\epsilon_1)]_B [f(\epsilon_2)]_B [f(\epsilon_3)]_B) = \begin{pmatrix} -3 & 4 & -1 \\ 2 & 1 & 3 \end{pmatrix} \in M_{2 \times 3}(\mathbf{R}).$

b) Xét
$$g \in L(\mathbf{R}^2, \mathbf{R}^3)$$
 có ma trận chính tắc $[g]_{\mathbf{B}, A} = \begin{pmatrix} -5 & 2 \\ 7 & -1 \\ 4 & 9 \end{pmatrix} \in M_{3 \times 2}(\mathbf{R}).$

với $\frac{B}{A}$ và $\frac{A}{A}$ lần lượt là các cơ sở chính tắc của $\frac{A}{A}$ và $\frac{A}{A}$.

$$\forall \alpha = (x, y) \in \mathbf{R}^2, [g(\alpha)]_A = [g]_{B, A} [\alpha]_B = \begin{pmatrix} -5 & 2 \\ 7 & -1 \\ 4 & 9 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2y - 5x \\ 7x - y \\ 4x + 9y \end{pmatrix}.$$

Từ đó *suy ra* $\forall \alpha = (x, y) \in \mathbf{R}^2$, $g(\alpha) = g(x, y) = (-5x + 2y, 7x - y, 4x + 9y)$.

2.2/ **<u>DINH NGHĨA</u>**: Cho $f \in L(\mathbb{R}^n)$.

 $\mathbf{R}^{\mathbf{n}}$ có một cơ sở là $\mathbf{A} = \{ \alpha_1, \alpha_2, ..., \alpha_n \}.$

a) Đặt $[f]_A = [f]_{A, A} = ([f(\alpha_1)]_A [f(\alpha_2)]_A ... [f(\alpha_n)]_A) \in M_n(\mathbf{R}).$ Ta nói $[f]_A$ là *ma trận biểu diễn* của *toán tử tuyến tính f* theo *cơ sở* A.

Như vậy khi biết f thì ta viết được ma trận biểu diễn

$$[f]_A = ([f(\alpha_1)]_A [f(\alpha_2)]_A \dots [f(\alpha_n)]_A) (1).$$

- b) ∀α ∈ Rⁿ, ta có [f(α)]_A = [f]_A [α]_A (2).
 Như vậy khi biết [f]_A thì ta xác định được biểu thức của f theo (2).
 (từ [f(α)]_A ta tính được ngay f(α), ∀α ∈ Rⁿ).
- c) Nếu A là cơ sở chính tắc của $\mathbf{R}^{\mathbf{n}}$ thì $[f]_{A}$ được gọi là ma trận chính tắc của f. Biểu thức của f và ma trận chính tắc của f có thể suy ra lẫn nhau một cách dễ dàng.

Ví dụ:

- a) $f(u, v, w) = (2u v, -u + 3v + w, u + 2v w), \forall (u, v, w) \in \mathbf{R}^3 \text{ và } f \in L(\mathbf{R}^3).$ $A = \{ \epsilon_1, \epsilon_2, \epsilon_3 \} \text{ là } \cos s \circ \text{chính tắc} \text{ của } \mathbf{R}^3. \text{ Ta có } f(\epsilon_1) = f(1,0,0) = (2,-1,1),$ $f(\epsilon_2) = f(0,1,0) = (-1, 3, 2) \text{ và } f(\epsilon_3) = f(0, 0,1) = (0, 1, -1) \text{ nên có ngay } ma$ $trận \text{ chính tắc } [f]_A = ([f(\epsilon_1)]_A [f(\epsilon_2)]_A [f(\epsilon_3)]_A) = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 3 & 1 \\ 1 & 2 & -1 \end{pmatrix} \in M_3(\mathbf{R})$
- b) Xét $g \in L(\mathbf{R}^2)$ có ma trận chính tắc $[g]_B = \begin{pmatrix} 7 & -4 \\ -2 & 9 \end{pmatrix} \in M_2(\mathbf{R})$ [B] là cơ sở chính tắc của \mathbf{R}^2].

$$\forall \alpha = (x, y) \in \mathbf{R}^2, [g(\alpha)]_B = [g]_B [\alpha]_B = \begin{pmatrix} 7 & -4 \\ -2 & 9 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 7x - 4y \\ -2x + 9y \end{pmatrix}.$$

$$\text{Tùr d\'o } suy \ ra \ ngay \ \forall \alpha = (x, y) \in \mathbf{R}^2, g(\alpha) = g(x, y) = (7x - 4y, -2x + 9y).$$

2.3/ CÔNG THỰC THAY ĐỔI CƠ SỞ TRONG MA TRẬN BIỂU DIỄN:

Cho $f \in L(\mathbf{R}^n, \mathbf{R}^m)$.

 $\mathbf{R}^{\mathbf{n}}$ có các cơ sở lần lượt là \mathbf{A} ($\mathbf{c}\tilde{\mathbf{u}}$) và \mathbf{C} ($\mathbf{m}\acute{\mathbf{o}i}$) với $\mathbf{S} = (\mathbf{A} \rightarrow \mathbf{C}) \in \mathbf{M}_{\mathbf{n}}(\mathbf{R})$.

 $\mathbf{R}^{\mathbf{m}}$ có các cơ sở lần lượt là \mathbf{B} ($\mathbf{c\tilde{u}}$) và \mathbf{D} ($\mathbf{m}\acute{o}i$) với $\mathbf{T} = (\mathbf{B} \rightarrow \mathbf{D}) \in \mathbf{M}_{\mathbf{m}}(\mathbf{R})$.

a) Ta có công thức [f]_{C,D} = T^{-1} .[f]_{A,B}.S (mới tính theo $c\tilde{u}$) [1]

và do đó $[f]_{A,B} = T.[f]_{C,D.S}^{-1} (c\tilde{u} \text{ tính theo } m\acute{o}i).$ [2]

b) Suy ra các trường hợp **mới** tính theo cũ:

$$[f]_{C, B} = [f]_{A, B}.S[lúc này T = (B \rightarrow B) = I_m và T^{-1} = I_m].$$

$$[f]_{A,D} = T^{-1}.[f]_{A,B}[lúc này S = (A \rightarrow A) = I_n].$$

$$[\ f\]_{C,\,D}\ =\ [\ f\]_{A,\,D}\ .S\ [\ l\text{\'uc}\ n\text{\`ay}\ T\ =\ (\ D\ \to\ D\)\ =\ I_m\ v\text{\'a}\ T^{\,-\,1}\ =\ I_m\].$$

$$[f]_{C,D} = T^{-1}.[f]_{C,B}[lúc này S = (C \rightarrow C) = I_n].$$

c) Suy ra $[f]_{A,B} = [f]_{C,B}.S^{-1}$, $[f]_{A,B} = T.[f]_{A,D}$ ($c\tilde{u}$ tính theo $m\acute{o}i$).

$$[f]_{A,D} = [f]_{C,D}.S^{-1}$$
 và $[f]_{C,B} = T.[f]_{C,D}$ ($c\tilde{u}$ tính theo $m\acute{o}i$).

d) Tính $[f]_{C,B}$ và $[f]_{A,D}$ theo lẫn nhau (không có sự phân định $c\tilde{u}$ và $m\acute{o}i$) bằng cách dựa vào $[f]_{A,B}$ hay $[f]_{C,D}$ như sau:

$$[f]_{C,B} = [f]_{A,B.S} = T.[f]_{A,D.S} \quad hay \quad [f]_{C,B} = T.[f]_{C,D} = T.[f]_{A,D.S}$$
$$[f]_{A,D} = T^{-1}.[f]_{A,B} = T^{-1}.[f]_{C,B.S}^{-1} \quad hay \quad [f]_{A,D} = [f]_{C,D.S}^{-1} = T^{-1}.[f]_{C,B.S}^{-1}$$

Ghi chú:

- a) Nếu A và B lần lượt là *các cơ sở chính tắc* của **R**ⁿ và **R**^m thì dễ dàng *có*được ngay S và T.
- b) Nhận xét từ các công thức ở các phần a), b) và c):
 - * Ma trận ứng với cặp cơ sở của không gian phía trước luôn luôn ở phía sau của vế phải.
 - * Ma trận ứng với cặp cơ sở của không gian phía sau luôn luôn ở phía trước của vế phải.
 - * Trường hợp **mới** tính theo **cũ**, nghịch đảo (-1) chỉ xuất hiện ở ma trận đổi cơ sở đứng phía trước của vế phải.
 - * Trường hợp **cũ** tính theo **mới**, nghịch đảo (-1) chỉ xuất hiện ở ma trận đổi cơ sở đứng phía sau của vế phải.
- c) Nhận xét từ các công thức ở các phần a), b) và c):
 - * Khi có sự thay đổi cặp cơ sở của không gian phía trước lẫn cặp cơ sở của không gian phía sau thì ở vế phải, các ma trận đổi cơ sở xuất hiện ở cả hai phía.
 - * Khi chỉ có sự thay đổi cặp cơ sở của không gian phía trước thì ở vế phải, ma trận đổi cơ sở xuất hiện ở phía sau.
 - * Khi chỉ có sự thay đổi cặp cơ sở của không gian phía sau thì ở vế phải, ma trận đổi cơ sở xuất hiện ở phía trước.

Ví dụ:

a)
$$f \in L(\mathbf{R}^3, \mathbf{R}^2)$$
 có $f(u, v, w) = (-3u + 4v - w, 2u + v + 3w), \forall (u, v, w) \in \mathbf{R}^3$.

Cho
$$A = \{ \, \epsilon_1, \, \epsilon_2, \, \epsilon_3 \, \}$$
 và B lần lượt là *các cơ sở chính tắc* của \mathbf{R}^3 và \mathbf{R}^2 . Ta có *ma trận chính tắc* $[f]_{A,\,B} = ([f(\epsilon_1)]_B [f(\epsilon_2)]_B [f(\epsilon_3)]_B) = \begin{pmatrix} -3 & 4 & -1 \\ 2 & 1 & 3 \end{pmatrix}$.

Cho *các cơ sở* của \mathbb{R}^3 và \mathbb{R}^2 lần lượt là

$$C = \{ \gamma_1 = (1,2,4), \gamma_2 = (5,1,2), \gamma_3 = (3,-1,1) \} \text{ và } D = \{ \delta_1 = (7,-2), \delta_2 = (4,-1) \}$$

Ta có S = (A
$$\rightarrow$$
 C) = $\begin{pmatrix} 1 & 5 & 3 \\ 2 & 1 & -1 \\ 4 & 2 & 1 \end{pmatrix}$ và T = (B \rightarrow D) = $\begin{pmatrix} 7 & 4 \\ -2 & -1 \end{pmatrix}$ có T⁻¹ = $\begin{pmatrix} -1 & -4 \\ 2 & 7 \end{pmatrix}$

Từ đó [f]_{C, D} =
$$T^{-1}$$
[f]_{A, B}S = $\begin{pmatrix} -65 & -55 & -18 \\ 114 & 93 & 28 \end{pmatrix}$,

$$[f]_{C, B} = [f]_{A, B} S = \begin{pmatrix} 1 & -13 & -14 \\ 16 & 17 & 8 \end{pmatrix} v \grave{a} [f]_{A, D} = T^{-1} [f]_{A, B} = \begin{pmatrix} -5 & -8 & -11 \\ 8 & 15 & 19 \end{pmatrix}.$$

b) Xét
$$h \in L(\mathbf{R}^2, \mathbf{R}^3)$$
 có $[h]_{D,C} = \begin{pmatrix} 3 & 2 \\ -4 & -1 \\ 1 & 1 \end{pmatrix}$ với A, B, C, D, S và T được hiểu

như trên. Ta có *ma trận chính tắc* [h]_{B, A} = S[h]_{D, C} T⁻¹ =
$$\begin{pmatrix} 14 & 56 \\ 3 & 10 \\ 9 & 29 \end{pmatrix}$$
.

Suy ra
$$\forall \alpha = (x, y) \in \mathbb{R}^2$$
, $h(\alpha) = h(x, y) = (14x + 56y, 3x + 10y, 9x + 29y)$.

Hơn nữa [h]_{B, C} = [h]_{D, C} T⁻¹ =
$$\begin{pmatrix} 1 & 2 \\ 2 & 9 \\ 1 & 3 \end{pmatrix}$$
 và [h]_{D, A} = S[h]_{D, C} = $\begin{pmatrix} -14 & 0 \\ 1 & 2 \\ 5 & 7 \end{pmatrix}$.

2.4/ TRƯỜNG HỢP ĐẶC BIỆT: Cho $f \in L(\mathbf{R}^n)$, n = m, $A \equiv B$, $\mathbf{C} \equiv \mathbf{D}$ và $S \equiv T$.

 \mathbf{R}^{n} có các cơ sở lần lượt là \mathbf{A} ($\mathbf{c}\tilde{\mathbf{u}}$) và \mathbf{C} ($\mathbf{m}\acute{\mathbf{o}i}$) với $\mathbf{S} = (\mathbf{A} \rightarrow \mathbf{C}) \in \mathbf{M}_{n}(\mathbf{R})$.

a) Ta có *công thức*
$$[f]_C = S^{-1}$$
. $[f]_A$. $S(m\acute{o}i$ tính theo $c\~{u}$) và do đó $[f]_A = S$. $[f]_C$. $S^{-1}(c\~{u}$ tính theo $m\acute{o}i$).

b) Suy ra $c\acute{a}c$ trường hợp **mới** tính theo $c\~a$:

$$[f]_{C,A} = [f]_{A,S}, [f]_{A,C} = S^{-1}.[f]_{A}, [f]_{C} = [f]_{A,C}.S, [f]_{C} = S^{-1}.[f]_{C,A}$$

c) Suy ra các trường hợp cũ tính theo mới:

$$[f]_A = [f]_{C, A} \cdot S^{-1}, [f]_A = S.[f]_{A, C}, [f]_{A, C} = [f]_{C} \cdot S^{-1} \text{ và } [f]_{C, A} = S.[f]_{C}$$

Ghi chú: Nếu A là cơ sở chính tắc của Rⁿ thì dễ dàng có được ngay S.

Ví dụ:

a) Xét $f \in L(\mathbf{R}^3)$ với

$$f(u, v, w) = (2u - v, -u + 3v + w, u + 2v - w), \forall (u, v, w) \in \mathbb{R}^3.$$

Cho A = { ε_1 , ε_2 , ε_3 } là $\cos s \sin c \sinh t \sin c \cos R^3$.

Ta có ma trận chính tắc [f]_A = ([f(
$$\epsilon_1$$
)]_A [f(ϵ_2)]_A [f(ϵ_3)]_A) =
$$\begin{pmatrix} 2 & -1 & 0 \\ -1 & 3 & 1 \\ 1 & 2 & -1 \end{pmatrix}$$

Cho $C = \{ \gamma_1 = (1, -2, 2), \gamma_2 = (2, 0, 1), \gamma_3 = (2, -3, 3) \}$ là một cơ sở của \mathbb{R}^3

với
$$S = (A \rightarrow C) = \begin{pmatrix} 1 & 2 & 2 \\ -2 & 0 & -3 \\ 2 & 1 & 3 \end{pmatrix}$$
 và $S^{-1} = \begin{pmatrix} -3 & 4 & 6 \\ 0 & 1 & 1 \\ 2 & -3 & -4 \end{pmatrix}$ qua *các phép biến đổi*

$$(S \mid \mathbf{I_3}) = \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ -2 & 0 & -3 & 0 & 1 & 0 \\ 2 & 1 & 3 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1^* & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & -3 & -1 & -2 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1^* & 0 & 2 & 1 & -2 & -2 \\ 0 & 1^* & 0 & 0 & 1 & 1 \\ 0 & 0 & -1 & -2 & 3 & 4 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1^* & 0 & 0 & -3 & 4 & 6 \\ 0 & 1^* & 0 & 0 & 1 & 1 \\ 0 & 0 & 1^* & 2 & -3 & -4 \end{pmatrix} = (\mathbf{I_3} \mid \mathbf{S^{-1}}). \text{ Ta có } [\mathbf{f}]_{\mathbf{C}} = \mathbf{S^{-1}}. [\mathbf{f}]_{\mathbf{A}}. \mathbf{S} = \begin{pmatrix} -62 & -10 & -95 \\ -10 & 0 & -15 \\ 43 & 7 & 66 \end{pmatrix},$$

$$\rightarrow \begin{pmatrix} 1^* & 0 & 0 \\ 0 & 1^* & 0 \\ 0 & 0 & 1^* \end{pmatrix} = \begin{pmatrix} -3 & 4 & 6 \\ 0 & 1 & 1 \\ 0 & 0 & 1^* \end{pmatrix} = \begin{pmatrix} -62 & -10 & -95 \\ -10 & 0 & -15 \\ 43 & 7 & 66 \end{pmatrix}$$

$$[f]_{C, A} = [f]_{A.S} = \begin{pmatrix} 4 & 4 & 7 \\ -5 & -1 & -8 \\ -5 & 1 & -7 \end{pmatrix} \text{ và } [f]_{A, C} = S^{-1}.[f]_{A} = \begin{pmatrix} -4 & 27 & -2 \\ 0 & 5 & 0 \\ 3 & -19 & 1 \end{pmatrix}.$$

b) Xét
$$h \in L(\mathbf{R}^3)$$
 có $[h]_{\mathbf{C}} = \begin{pmatrix} 15 & 4 & 21 \\ 2 & 2 & 3 \\ -10 & -3 & -14 \end{pmatrix}$ với $\mathbf{A}, \mathbf{C}, \mathbf{S}$ và \mathbf{S}^{-1} được hiểu như

trên. Ta có ma trận chính tắc [h]_A = S.[h]_C.S⁻¹ =
$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
.

Suy ra $\forall \alpha = (x, y, z) \in \mathbf{R}^3$, $h(\alpha) = h(x, y, z) = (x + y, y + z, z)$.

$$Ta\ có\ [\ h\]_{A,\ C} = [\ h\]_{C}.S^{-1} = \begin{pmatrix} -3 & 1 & 10 \\ 0 & 1 & 2 \\ 2 & -1 & -7 \end{pmatrix} \ và\ [\ h\]_{C,\ A} = S.[\ h\]_{C} = \begin{pmatrix} -1 & 2 & -1 \\ 0 & 1 & 0 \\ 2 & 1 & 3 \end{pmatrix}.$$

III. XÁC ĐỊNH ÁNH XẠ TUYẾN TÍNH TỪ ẢNH CỦA MỘT CƠ SỞ:

3.1/ <u>MÊNH ĐĚ:</u> Giả sử \mathbf{R}^n có *một cơ sở* là $\mathbf{A} = \{ \alpha_1, \alpha_2, ..., \alpha_n \}$.

Cho f, $g \in L(\textbf{R}^n, \textbf{R}^m)$. Khi đó $f = g \iff \forall j \in \{1, 2, \dots, n\}, f(\alpha_j) = g(\alpha_j)$.

3.2/ MÊNH ĐÈ: Giả sử \mathbf{R}^n có một cơ sở là $\mathbf{A} = \{ \alpha_1 \equiv A_1, \alpha_2 \equiv A_2, ..., \alpha_n \equiv A_n \}$.

Chọn tùy ý $\beta_1 \equiv B_1, \beta_2 \equiv B_2, ..., \beta_n \equiv B_n \in \mathbf{R}^m$.

Khi đó *có duy nhất* $f \in L(\mathbf{R}^n, \mathbf{R}^m)$ thỏa $f(\alpha_j) = \beta_j, \forall j \in \{1, 2, ..., n\}.$

3.3/ XÁC ĐỊNH ÁNH XẠ TUYẾN TÍNH TỪ ẢNH CỦA MỘT CƠ SỞ:

Ta trình bày cách xác định ánh xạ tuyến tính f trong (3.2).

a) <u>Cách 1</u>: dùng tọa độ vector theo cơ sở.

$$\forall \alpha \in \mathbf{R}^{\mathbf{n}}, \text{ tìm } [\alpha]_{\mathbf{A}} = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix} \text{ dễ dược biểu diễn } \alpha = c_1 \alpha_1 + c_2 \alpha_2 + \dots + c_n \alpha_n.$$

Suy ra
$$f(\alpha) = f(c_1\alpha_1 + c_2\alpha_2 + \dots + c_n\alpha_n) = c_1f(\alpha_1) + c_2f(\alpha_2) + \dots + c_nf(\alpha_n)$$

= $c_1\beta_1 + c_2\beta_2 + \dots + c_n\beta_n$.

- b) <u>Cách 2:</u> dùng ma trận biểu diễn ánh xạ tuyến tính.
 - * Trường hợp n ≠ m:

Gọi \mathbb{C} và \mathbb{D} lần lượt là *các cơ sở chính tắc* của \mathbb{R}^n và \mathbb{R}^m với $\mathbb{S} = (\mathbb{C} \to \mathbb{A})$. Viết $[f]_{A, D} = ([f(\alpha_1)]_D [f(\alpha_2)]_D ... [f(\alpha_n)]_D) = (\beta_1^i \ \beta_2^i \ ... \ \beta_n^i)$. Ta có ma trận chính tắc $[f]_{C, D} = [f]_{A, D}$. \mathbb{S}^{-1} . Từ đó suy ra ngay $f(\alpha)$, $\forall \alpha \in \mathbb{R}^n$ * Trường hợp n = m: $f \in L(\mathbb{R}^n)$, $\mathbb{C} = D$ và $[f]_{C, D} = [f]_C$. Gọi \mathbb{C} là cơ sở chính tắc của \mathbb{R}^n với $\mathbb{S} = (\mathbb{C} \to \mathbb{A})$.

Viết $[f]_{A,C} = ([f(\alpha_1)]_C [f(\alpha_2)]_C \dots [f(\alpha_n)]_C) = (\beta_1^i \beta_2^i \dots \beta_n^i)$. Ta có ma trận chính tắc $[f]_C = [f]_{A,C} \cdot S^{-1}$. Từ đó suy ra ngay $f(\alpha)$, $\forall \alpha \in \mathbf{R}^n$

<u>Ví dụ:</u>

$$\mathbf{R}^3$$
 có cơ sở $\mathbf{A} = \{ \alpha_1 = (1, -1, 1), \alpha_2 = (1, 0, 1), \alpha_3 = (3, -1, 2) \}.$

a) Tîm
$$f \in L(\mathbf{R}^3, \mathbf{R}^4)$$
 thỏa $f(\alpha_1) = \beta_1 = (3, 0, -1, 2),$
 $f(\alpha_2) = \beta_2 = (1, -2, 4, 0)$ và $f(\alpha_3) = \beta_3 = (-4, 1, 0, 3).$

b) Tìm
$$g \in L(\mathbf{R}^3)$$
 thỏa

$$g(\alpha_1) = \gamma_1 = (-2, 1, 3), g(\alpha_2) = \gamma_2 = (-3, 2, 1) \text{ và } g(\alpha_3) = \gamma_3 = (-7, 5, 3).$$

Cách 1:
$$\forall \alpha = (x, y, z) \in \mathbf{R}^3$$
, tìm $[\alpha]_{\mathbf{A}} = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} z - x - y \\ y + 2z - x \\ x - z \end{pmatrix}$ bằng cách

giải hệ
$$c_1\alpha_1 + c_2\alpha_2 + c_3\alpha_3 = \alpha : (\alpha_1^t \alpha_2^t \alpha_3^t \mid \alpha^t) \Leftrightarrow$$

$$\Leftrightarrow \begin{pmatrix} 1 & 1 & 3 & x \\ -1 & 0 & -1 & y \\ 1 & 1 & 2 & z \end{pmatrix} \to \begin{pmatrix} 1^* & 1 & 3 & x \\ 0 & 1 & 2 & x+y \\ 0 & 1 & 1 & y+z \end{pmatrix} \to \begin{pmatrix} 1^* & 0 & 1 & -y \\ 0 & 1^* & 2 & x+y \\ 0 & 0 & -1 & z-x \end{pmatrix} \to \begin{pmatrix} 1^* & 0 & 0 & z-x-y \\ 0 & 1^* & 0 & y+2z-x \\ 0 & 0 & 1^* & x-z \end{pmatrix}$$

Từ đó
$$f(\alpha) = f(c_1\alpha_1 + c_2\alpha_2 + c_3\alpha_3) = c_1f(\alpha_1) + c_2f(\alpha_2) + c_3f(\alpha_3)$$

$$= (z - x - y)(3, 0, -1, 2) + (y + 2z - x)(1, -2, 4, 0) + (x - z)(-4, 1, 0, -3)$$

$$= (-8x - 2y + 9z, 3x - 2y - 5z, -3x + 5y + 7z, -5x - 2y + 5z).$$

và
$$g(\alpha) = g(c_1\alpha_1 + c_2\alpha_2 + c_3\alpha_3) = c_1g(\alpha_1) + c_2g(\alpha_2) + c_3g(\alpha_3)$$

$$= (z - x - y)(-2, 1, 3) + (y + 2z - x)(-3, 2, 1) + (x - z)(-7, 5, 3)$$

$$=(-2x-y-z, 2x+y, -x-2y+2z).$$

Cách 2: Gọi C và D lần lượt là các cơ sở chính tắc của R³ và R⁴ với

$$S = (C \to A) = \begin{pmatrix} 1 & 1 & 3 \\ -1 & 0 & -1 \\ 1 & 1 & 2 \end{pmatrix} \text{ và } S^{-1} = \begin{pmatrix} -1 & -1 & 1 \\ -1 & 1 & 2 \\ 1 & 0 & -1 \end{pmatrix} \text{ qua các phép biến đổi}$$

$$(S \mid \mathbf{I_3}) = \begin{pmatrix} 1 & 1 & 3 & 1 & 0 & 0 \\ -1 & 0 & -1 & 0 & 1 & 0 \\ 1 & 1 & 2 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1^* & 1 & 3 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & -1 & -1 & 0 & 1 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} \mathbf{1}^* & 0 & 2 & 1 & -1 & -1 \\ 0 & \mathbf{1}^* & 1 & 0 & 1 & 1 \\ 0 & 0 & -1 & -1 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} \mathbf{1}^* & 0 & 0 & -1 & -1 & 1 \\ 0 & \mathbf{1}^* & 0 & -1 & 1 & 2 \\ 0 & 0 & \mathbf{1}^* & 1 & 0 & -1 \end{pmatrix} = (\mathbf{I_3} \mid \mathbf{S}^{-1}).$$

Viết $[f]_{A,D} = ([f(\alpha_1)]_D [f(\alpha_2)]_D [f(\alpha_3)]_D) = ([\beta_1]_D [\beta_2]_D [\beta_3]_D)$

$$= \begin{pmatrix} 3 & 1 & -4 \\ 0 & -2 & 1 \\ -1 & 4 & 0 \\ 2 & 0 & -3 \end{pmatrix} \text{ và ta có } ma \text{ } trận \text{ } chính \text{ } tắc \text{ [f]}_{C,D} = \text{ [f]}_{A,D} \text{ .S}^{-1} = \begin{pmatrix} -8 & -2 & 9 \\ 3 & -2 & -5 \\ -3 & 5 & 7 \\ -5 & -2 & 5 \end{pmatrix}.$$

Suy ra
$$\forall \alpha = (x, y, z) \in \mathbb{R}^3$$
,

$$f(\alpha) = f(x, y, z) = (-8x - 2y + 9z, 3x - 2y - 5z, -3x + 5y + 7z, -5x - 2y + 5z)$$

Viết
$$[g]_{A,C} = ([g(\alpha_1)]_C [g(\alpha_2)]_C [g(\alpha_3)]_C) = ([\gamma_1]_C [\gamma_2]_C [\gamma_3]_C)$$

$$= \begin{pmatrix} -2 & -3 & -7 \\ 1 & 2 & 5 \\ 3 & 1 & 3 \end{pmatrix} \text{ và ta có } \text{ma trận chính tắc } [g]_C = [g]_{A, C} \cdot S^{-1} = \begin{pmatrix} -2 & -1 & -1 \\ 2 & 1 & 0 \\ -1 & -2 & 2 \end{pmatrix}.$$

Suy ra

$$\forall \alpha = (x, y, z) \in \mathbf{R}^3, g(\alpha) = g(x, y, z) = (-2x - y - z, 2x + y, -x - 2y + 2z).$$