#### Ejercitación 6

1) Excel

2)



3)

Retorno promedio 0.0002467

Volatilidad: 0.011108622

Asimetría: -0.074586074

Curtosis: 5.623931334

4) No se distribuyen normalmente porque el estadístico de J-B es de 3608,19 y su valor crítico al 1% es de 9,21. Entonces rechazo la hipótesis nula (distribución normal). Además, tienen una leve asimetría negativa (normal = 0) y la curtosis es mayor a 3 (normal), por ende, es de cola izquierda pesada y son más pesadas que una normal (leptocúrtica).



En ambas colas, se diverge notablemente de una variable aleatoria normal (línea recta).

# Ejercicio 2:

a)



b)



- c) Al contrario, mostrando colas más livianas aparenta ser platicúrtica. La mixtura es con certeza leptocúrtica cuando usa normales con la misma media.
- d) Kurtosis =  $\frac{\mu_4}{(\mu_2)^2}$

Como E(x) = 0 el momento centrado es igual al momento no centrado

$$\mu_t = E(X - E(X))^t = E(X)^t = \int x^t f(x) dx =$$

$$\int_{-\infty}^{\infty} x^{t} \left(\frac{1}{2\pi}\right)^{0.5} e^{-0.5(x+1)^{2}} dx + 0.5 \int_{-\infty}^{\infty} x^{t} \left(\frac{1}{2\pi}\right)^{0.5} e^{-0.5(x-1)^{2}} dx$$

$$\mu_4 = 10$$
  $\mu_2 = 4$ 

$$K = \frac{10}{4} = 2,5$$

#### Ejercicio 3:

a)

| Regresion r1y sobre r3y        |           |  |
|--------------------------------|-----------|--|
|                                | (1)       |  |
| VARIABLES                      | r3y       |  |
|                                |           |  |
| r1y                            | 0.924***  |  |
|                                | (0.00166) |  |
| Constant                       | 0.913***  |  |
|                                | (0.0122)  |  |
| Observations                   | 13,878    |  |
| R-squared                      | 0.957     |  |
| Standard errors in parentheses |           |  |

\*\*\* p<0.01, \*\* p<0.05, \* p<0.1

b)





Los residuos presentan autocorrelación estadísticamente significativa en todos los períodos. A primera vista parecería ser un AR (1) según el autocorrelograma parcial, que también se puede ver como un MA  $(\infty)$ , como bien vemos en el autocorrelograma.

Usando el ADF, no se puede rechazar no estacionariedad de r1y ni r3y al 1% con 20 lags. Tendencias no eran significativas.

| Variable | Estadístico<br>ADF | p-valor |
|----------|--------------------|---------|
| r1y      | -2.719             | 0.0709  |
| r3y      | -2.371             | 0.1500  |

d) Al correr el ADF con primeras diferencias se rechaza la H0 y ahora si se trabaja con series estacionarias. Al mismo tiempo lo corremos en los residuos y descartamos no estacionariedad y autocorrelación

| Regresion diferencias r1y sobre r3y |            |  |
|-------------------------------------|------------|--|
|                                     | (1)        |  |
| VARIABLES                           | D.r3y      |  |
|                                     |            |  |
| D.r1y                               | 0.738***   |  |
| •                                   | (0.00369)  |  |
| Constant                            | 3.98e-05   |  |
|                                     | (0.000294) |  |
| Observations                        | 13,877     |  |
| R-squared                           | 0.743      |  |
| Standard errors in parentheses      |            |  |
| *** p<0.01, ** p<0.05, * p<0.1      |            |  |

r1y y r3y están cointegradas y la relación es positiva.

Ejercicio 4.

Sí, es estacionario porque al escribirlo con lag operators, el módulo de ambas raíces del polinomio está fuera del círculo unitario

$$(1 - 1.1L + 0.18L^{2})y_{t} = \varepsilon_{t}$$

$$1 - 1.1z + 0.18z^{2} = 0$$

$$a = 0.18 \quad b = -1.1 \quad c = 1 \quad \Rightarrow \frac{1.1 \pm \sqrt{(-1.1) - 4 \cdot (0.18) \cdot (1)}}{2 \cdot (0.18)}$$

$$z_{1} = 5 \quad z_{2} \cong 1.1$$

Ejercicio 5.



| Regresion y2 en y1                                         |                                              |  |
|------------------------------------------------------------|----------------------------------------------|--|
| VARIABLES                                                  | (1)<br>y2                                    |  |
| y1<br>Constant                                             | 1.410***<br>(15.93)<br>-17.01***<br>(-38.69) |  |
| Observations<br>R-squared                                  | 250<br>0.506                                 |  |
| t-statistics in parentheses *** p<0.01, ** p<0.05, * p<0.1 |                                              |  |

Durbin-Watson d-statistic (2, 250) = .060132

El estadístico dL es 1.664, como DW es menor, rechazo H0 y concluyo que es un AR (1) con rho positivo.



Suma de residuos, acumula 0.



p-value para el estadístico Z(t) = 0.1250

No podemos rechazar no estacionariedad ni siquiera al 10%

```
*seteamos el directorio
    global main "C:\Users\Windows\Desktop\Facultad\Pronosticos\Ejs Pronosticos\EjPronosticos6"
3
    cd "$main"
    *----*
4
    clear
    set obs 5000
    set seed 1
8
    gen a=rnormal(1,1)
9
    gen b=rnormal(-1,1)
10
11
    gen mix = 0.5*a + 0.5*b
12
13
    twoway ///
14
    (kdensity a, lcolor(blue)) ///
    (kdensity b, lcolor(blue) ) ///
15
    (kdensity mix, lcolor(red) ) ///
16
    , legend(label(1 "a ~ N(1,1)") label(2 "b ~ N(-1,1)") label(3 "mix 0.5*a + 0.5*b")) ///
17
18
    title("Densidad Kernel de a, b y mix")
19
    gen c=rnormal(0,2)
20
21
22
    twoway ///
23
    (kdensity c, lcolor(green)) ///
24
    (kdensity mix, lcolor(red) ) ///
    , legend(label(1 "c \sim N(0,2)") label(2 "mix")) ///
25
26
    title("Densidad Kernel de c y mix")
27
28
29
    *-----*
30
31
    *importamos solo la hoja con los valores fijos
    import excel using P_Ejercitacion_6_Excel_Datos.xlsx, sheet(Ej3) firstrow clear
32
33
34
    *eliminamos
    drop Años
35
36
    drop G
37
    drop I
38
39
    *renombramos
40
    ren FECHA time
41
    ren Meses r3m
42
    ren Año r1y
43
    ren E r3y
44
    ren F r5y
45
    ren H r10y
46
47
    *seteamos la variable tiempo
48
    tsset time
49
50
    *testamos a significatividad del 1%
    set level 99
51
52
53
    *regresión
54
    reg r3y r1y
55
    outreg2 using "Reg_r1y_r3y.rtf", replace title("Regresion r1y sobre r3y")
56
57
    *guardamos residuos
58
    predict res, residual
59
60
    *autocorrelograma
61
    ac res
62
    graph export "ac_res_reg1.png", replace
63
```

```
*autocorrelograma parcial
 65
 66
     graph export "pac_res_reg1.png", replace
 67
 68
     * ADF
 69
     dfuller r1y, lags(20) trend regress
 70
     dfuller r1y, lags(20)
 71
     dfuller r3y, lags(20) trend regress
 72
     dfuller r3y, lags(20)
 73
 74
 75
     *ADF con diferencias
     dfuller D.r1y, lags(20) trend regress
 76
 77
     dfuller D.r1y, lags(20)
 78
 79
     dfuller D.r3y, lags(20) trend regress
 80
     dfuller D.r3y, lags(20)
 81
     *regresión con diferencias
 82
 83
     reg D.r3y D.r1y
     outreg2 using "Reg_diffs_r1y_r3y.rtf", replace title("Regresion diferencias r1y sobre r3y")
 84
     predict resdiff, residuals
 85
 86
     dfuller resdiff, lags(20) trend regress
 87
     dfuller resdiff, lags(20)
 88
     ac resdiff
 89
 90
     pac resdiff
 91
 92
     *-----*
 93
     clear
 94
 95
     set obs 250
 96
     set seed 1
 97
     gen u=rnormal()
     gen v=rnormal()
 98
 99
     gen y1 = sum(u)
100
     gen y2 = sum(v)
101
102
     gen time = _n
     tsset time
103
104
     *Gráfico
105
106
     tsline y1 y2
107
     graph export "y1_y2.png", replace
108
109
     *regresión
110
     reg y2 y1
111
     *reportamos valores t
112
     outreg2 using "Reg_y2_y1.rtf", replace title("Regresion y2 en y1") tstat
113
114
     *test durwin-watson
115
     estat dwatson
116
     predict restime, residual
117
118
     *suma de residuos
119
     gen sumres = sum(restime)
120
     tsline sumres /// visualizamos la suma
121
     * autocorrelogramas
122
123
     ac restime
124
     pac restime
125
126
      * elegimos cantidad optima de lags y hacemos el test de raíz unitaria
```

# Springer\_EJ6.do - Printed on 14/04/2025 1:36:01

