Assignment -4

Q1) Given (Xn, tr), n=1,...N

8 EO(W) = 0

1 5 g (tn-ω τ φ(ηη))2

here E: = N (0, 0, 0,2)

From maximum likelihood

t: = wTM; + N(0,5,2)

= N (WTM: , 5:1)

maxlike (w/desta) = org max IT P(ti/w)

= - \(\frac{2}{5}\) gn (tn-\omega^T\phi(\pi_n)).\(\phi(\pi_n)) = 0

From $f^n = \frac{1}{2} \sum_{n=1}^{N} g_n (t_n - w^T \phi(x_n))^2$

To minimize everor, desivatine should be equal to Zeno.

=> - 2 9, 0(mn) tn + 2 9, w + 6(mn) 6(mn)=0

Egn b(xi) d(n)) w = Egn b(n) tn

(b) For data dependent moise varience, let to = wTx: + E;

 $W = \left(\frac{z}{n}, g_n \phi(x_n) \Phi(x_n)^{T}\right)^{-1} \left(\frac{z}{n}, g_n \phi(x_n) t_n\right)$

(-(ti-w7xi)2) elhood is max for \\\2110,2 arg max * N bg 1 + (-\(\frac{2}{2\llog 1}\) \(\frac{2\llog 1}{2\llog 1}\) \(\frac{2\llog 1}{2\llog 1}\) = arg max $\stackrel{\vee}{\succeq}$ $(t_i^2 - \omega^T x_i)^2$ Comparing above quith En(w) = arg min 1 = g; (ti -w 7xi)2 · · 9. = 1 : fordata depandant moise varienco $E_{D}(\omega) = \frac{1}{2} \sum_{n=2}^{\infty} (t_{i}^{n} - \omega^{T} \phi(n_{i}))^{2}$ (ii) In case of replicated data groints, Let it data point repeats 9: $E_0(\omega) = \sum_{k=1}^{N} g_i \left(\frac{1}{1} - \omega^T \chi_i \right)^2 = \frac{1}{2} \sum_{i=1}^{N} g_i \left(\frac{1}{1} - \omega^T \phi(\chi_i) \right)^2$ · we get same evous f" y where 9:>0 $E_{D(\omega)} = \frac{1}{2} \stackrel{\text{Z}}{=} g \cdot (t_i - \omega^{\intercal} \phi(x_i))^2$ replication has same as giving weights to data points

-		
	(= (tir a - 13) -)	
(2)	Bayes optimal estimate:	
-	h Boyes = alignax (heave (F)(L)(R))	
/ (:	M Bayes = Originax (MBayes (FD)(L),R)	
	180 M X xem gra = (1)	
	E P(F/hi)8(hi/D) == 0.4 +0+0+0+0 = 0.4	
	Z P(L/Hi) P(hi/D) = 0.2+0+0.1+0.2 - = 0.5 + max	
er er stadelige som	kieu = 0.5 + max	
	E P(R/hi)P(hi)D = 0+0+0+1+0+0 = 0.1	
	MI 6H	
2	En (10) = and min 1 = 91 (+; -10 736)	
	> The robot will swin Left (4)	
		0
	Map estimate	
	on with map is any max P (his/D) white with in	-6
	3	
	(10.4, 0.2, 0.1, 0.1, 0.2)	-
	= 0.4	Ę
rescall 9.	(ii) In case of replicated data position fet ? the data point	
. 0	when P(hi(D) = 0.4, P(F/hi) = 1 mit	
-1/com/A-7	(1) - 2 9: (+1-10-11) = - L & 9: (+1 - 10)	
(1000)	-> The sector will be so in [1]	
	-> The robot will be inorning forward (F)	
	i use get lans expent for	
	The map estimate and Bayes optimal estimate are not same.	
0.00	E-160) = = = = = (+! - 60 (0))	
. 9		
	englication tax same as given easily to data point	
	supplication at your as once were in accordance	

3	data ER!
b	It is parameterize a by SP, 94
	Ni classified 1 iff P< x129 > P 9
	V 2 - 2414 5 51125 5117
	Il the possible labellings of 2 points a, b are
(1	Peacq, pebcq
	p a b q
/ii)	P <a<q, b<p<q<="" th=""></a<q,>
(1)	
	<u>0</u>
	ρ
(111)	p <a<q p<q<br=""></a<q> p a 9 b
(v)	a , $p < q < b$ (v) $a < b < p < q$
	6 abp 9
	P P
-	la est tra sociate construence use care reprospert on Music Ot line
	. Jos all two points configurations we can represent on straight line and we can distinguish by hypothesis.
	and we can ownigues very regulations.
	If we consider 3 points no Q o They can't be classified
	by given hypothesis space H.
	.: VC dimension of H is 2
	v <u> </u>

$$(4) \quad \mathbf{M} = [\mathbf{M}_{1}, \mathbf{M}_{2}, \dots, \mathbf{M}_{D}]$$

$$\mathbf{M} = [\mathbf{M}_{1}, \mathbf{M}_{2}, \dots, \mathbf{M}_{D}]$$

$$\mathbf{M} = [\mathbf{M}_{1}, \mathbf{M}_{2}, \dots, \mathbf{M}_{D}]$$

$$\mathbf{M} = [\mathbf{M}_{1}, \mathbf{M}_{2}] = \omega_{0} + \frac{2}{2} \omega_{0} (\mathbf{M}_{1}, \mathbf{M}_{2}) - \frac{1}{2}]^{2}$$

$$\mathbf{Gaussian moint} = \mathbf{E}_{1} & \text{added to each } \mathbf{M}_{k}$$

$$\mathbf{M}_{1} = \mathbf{M}_{1} + \frac{2}{2} \omega_{k} (\mathbf{M}_{k} + \mathbf{E}_{k})$$

$$\mathbf{M}_{2} = \mathbf{M}_{1} + \frac{2}{2} \omega_{k} (\mathbf{M}_{1} + \mathbf{E}_{k})$$

$$\mathbf{M}_{2} = \mathbf{M}_{1} + \frac{2}{2} \omega_{k} (\mathbf{M}_{1} + \mathbf{E}_{k})$$

$$\mathbf{M}_{2} = \mathbf{M}_{1} + \frac{2}{2} \omega_{k} (\mathbf{M}_{1}, \mathbf{M}_{2}) + \frac{2}{2} \omega_{k} (\mathbf{M}_{2} + \mathbf{E}_{k})$$

$$\mathbf{M}_{1} = \mathbf{M}_{1} + \frac{2}{2} \omega_{k} (\mathbf{M}_{1}, \mathbf{M}_{2}) + \frac{2}{2} \omega_{k} (\mathbf{M}_{2} + \mathbf{E}_{k})$$

$$\mathbf{M}_{1} = \mathbf{M}_{1} + \mathbf{M}_{2} + \mathbf{M}_{2}$$