Složitost implementací abstraktních datových typů KIV/ADT – 4. přednáška

Miloslav Konopík, Libor Váša

7. března 2024

Obsah

- Dynamické pole
- 2 Amortizovaná složitost
- Implementace polem
- Spojový seznam
- Srovnání implementací
- 6 Simulace systémů hromadné obsluhy
- ...aneb malý výlet do KIV/IDT.

Dynamické pole

Pole

Pole je uspořádaná, měnitelná kolekce prvků s duplicitami s pevnou délkou.

- Nízkoúrovňová datová struktura.
- V Pythonu neexistuje přímo, ale je na pozadí struktry list.
- Přístup na index $\Theta(1)$.
 - Lineární vztah mezi indexem a adresou v paměti.

index	1	2	3	4	5	6	7	8
pole	9	1	17	9	12	13	9	3
paměť	0x404	0x408	0x40c	0x410	0x414	0x418	0x41c	0x420

Konopík, Váša: Složitost ADT

- Při změně velikost pole může být nutné alokovat novou paměť a data kopírovat.
- Operační systém může podporovat změnu velikosti i bez nutnosti kopírování dat.
- Jaká je optimální strategie na zvětšování pole?

- Při změně velikost pole může být nutné alokovat novou paměť a data kopírovat.
- Operační systém může podporovat změnu velikosti i bez nutnosti kopírování dat.
- Jaká je optimální strategie na zvětšování pole?
- Z [PPA] zvětšujeme o násobek 2x. Proč? Dále...

index	1	2	3	4				
pole	9	1	17	9				
paměť	0x404	0x408	0x40c	0x410	•			
index	1	2	3	4	5	6	7	8
pole	9	1	17	9	12			
paměť	0x404	0x408	0x40c	0x410	0x414	0x418	0x41c	0x420

Konopík, Váša: Složitost ADT

- Při změně velikost pole může být nutné alokovat novou paměť a data kopírovat.
- Operační systém může podporovat změnu velikosti i bez nutnosti kopírování dat.
- Jaká je optimální strategie na zvětšování pole?
- Z [PPA] zvětšujeme o násobek 2x. Proč? Dále...

index	1	2	3	4	5	6	7	8
pole	9	1	17	9	12	13	9	3
paměť	0x404	0x408	0x40c	0x410	0x414	0x418	0x41c	0x420

- Při změně velikost pole může být nutné alokovat novou paměť a data kopírovat.
- Operační systém může podporovat změnu velikosti i bez nutnosti kopírování dat.
- Jaká je optimální strategie na zvětšování pole?
- Z [PPA] zvětšujeme o násobek 2x. Proč? Dále...

Konopík, Váša: Složitost ADT

Amortizovaná složitost

Amortizovaná složitost

Amortizovaná složitost:

- Amortizovaná analýza: metoda pro analýzu výkonu algoritmu průměrovaného přes více operací [4]
- Motivace: vyhnout se pesimismu nejhoršího případu a sledovat průběh časové funkce T(n) pro všechny hodnoty n.
- Idea: rozložit náklady na drahé operace přes několik levnějších operací
- Techniky [2] : agregovaná analýza [5], účetní metoda [1], metoda výpočtu potenciálu [3]

- třída složitosti v průměrném případě
- zkoumáme přidání n prvků, pro jednoduchost začneme s polem délky 1
- kolikrát se pole zvětšuje?
 - záleží na n
 - n <= 1:

- třída složitosti v průměrném případě
- zkoumáme přidání n prvků, pro jednoduchost začneme s polem délky 1
- kolikrát se pole zvětšuje?
 - záleží na n
 - $n <= 1: 0 \times$

- třída složitosti v průměrném případě
- zkoumáme přidání n prvků, pro jednoduchost začneme s polem délky 1
- kolikrát se pole zvětšuje?
 - záleží na n
 - $n <= 1: 0 \times$
 - n <= 2:

- třída složitosti v průměrném případě
- zkoumáme přidání n prvků, pro jednoduchost začneme s polem délky 1
- kolikrát se pole zvětšuje?
 - záleží na n
 - $n <= 1:0 \times$
 - $n <= 2:1 \times$

- třída složitosti v průměrném případě
- zkoumáme přidání n prvků, pro jednoduchost začneme s polem délky 1
- kolikrát se pole zvětšuje?
 - záleží na n
 - $n <= 1: 0 \times$
 - $n <= 2:1 \times$
 - n <= 4:

- třída složitosti v průměrném případě
- zkoumáme přidání n prvků, pro jednoduchost začneme s polem délky 1
- kolikrát se pole zvětšuje?
 - záleží na n
 - $n <= 1:0 \times$
 - $n <= 2:1 \times$
 - $n <= 4:2 \times$

- třída složitosti v průměrném případě
- zkoumáme přidání n prvků, pro jednoduchost začneme s polem délky 1
- kolikrát se pole zvětšuje?
 - záleží na n
 - $n <= 1:0 \times$
 - $n <= 2:1 \times$
 - $n <= 4:2 \times$
 - $n <= 8:3 \times$

- třída složitosti v průměrném případě
- zkoumáme přidání n prvků, pro jednoduchost začneme s polem délky 1
- kolikrát se pole zvětšuje?
 - záleží na n
 - $n <= 1:0 \times$
 - $n <= 2:1 \times$
 - $n <= 4:2 \times$
 - $n <= 8:3 \times$
 - $n <= 2^k : k \times$

- třída složitosti v průměrném případě
- zkoumáme přidání n prvků, pro jednoduchost začneme s polem délky 1
- kolikrát se pole zvětšuje?
 - záleží na n
 - $n <= 1:0 \times$
 - $n <= 2: 1 \times$
 - $n <= 4:2 \times$
 - $n <= 8:3 \times$
 - $n <= 2^k : k \times$
- počet zvětšování: $k = \lceil log_2(n) \rceil$

- třída složitosti v průměrném případě
- zkoumáme přidání n prvků, pro jednoduchost začneme s polem délky 1
- kolikrát se pole zvětšuje?
 - záleží na n
 - $n <= 1:0 \times$
 - $n <= 2: 1 \times$
 - $n <= 4:2 \times$
 - $n <= 8:3 \times$
 - $n <= 2^k : k \times$
- počet zvětšování: $k = \lceil log_2(n) \rceil$
- počet kopírovaných prvků pro i-té zvětšení: $2^{(i-1)}$

Konopík, Váša: Složitost ADT

- třída složitosti v průměrném případě
- zkoumáme přidání n prvků, pro jednoduchost začneme s polem délky 1
- kolikrát se pole zvětšuje?
 - záleží na n
 - $n \le 1:0 \times$
 - $n <= 2: 1 \times$
 - $n <= 4:2 \times$
 - $n <= 8:3 \times$
 - $n <= 2^k : k \times$
- počet zvětšování: $k = \lceil log_2(n) \rceil$
- počet kopírovaných prvků pro i-té zvětšení: $2^{(i-1)}$
- ullet celkový počet operací při zvětšování: $\sum_{i=1}^{\lceil log_2(n) \rceil} 2^{(i-1)}$

Data:

Data:

Data:

Data:

Data:

Data:

Data:

Data:

Data:

Data:

Data:

Data:

Celkový počet operací při zvětšení

počet prvků <i>n</i>	počet zvětšení	počet kopírovaných prvků o
n <= 1	0×	0
n <= 2	1×	1

Celkový počet operací při zvětšení

počet prvků <i>n</i>	počet zvětšení	počet kopírovaných prvků o
n <= 1	0×	0
n <= 2	$1 \times$	1
n <= 4	2×	1 + 2 = 3

Celkový počet operací při zvětšení

počet prvků <i>n</i>	počet zvětšení	počet kopírovaných prvků o
n <= 1	0×	0
n <= 2	1×	1
n <= 4	2×	1 + 2 = 3
n <= 8	3×	1 + 2 + 4 = 7

počet prvků <i>n</i>	počet zvětšení	počet kopírovaných prvků c	
n <= 1	$0 \times$	0	
n <= 2	$1 \times$	1	
n <= 4	2×	1 + 2 = 3	
<i>n</i> <= 8	3×	1 + 2 + 4 = 7	
n <= 16	4×	1+2+4+8=15	

počet prvků <i>n</i>	počet zvětšení	počet kopírovaných prvků c	
n <= 1	0×	0	
n <= 2	$1 \times$	1	
n <= 4	2×	1 + 2 = 3	
<i>n</i> <= 8	3×	1 + 2 + 4 = 7	
n <= 16	4×	1+2+4+8=15	
$n <= 2^k$	k×	$2^{k} - 1$	

počet prvků <i>n</i>	počet zvětšení	počet kopírovaných prvků o		
n <= 1	$0 \times$	0		
n <= 2	$1 \times$	1		
n <= 4	2×	1 + 2 = 3		
<i>n</i> <= 8	3×	1 + 2 + 4 = 7		
n <= 16	4×	1+2+4+8=15		
$n <= 2^k$	k×	$2^{k} - 1$		

Nejhorší případ: hned po zvětšení pole:

$$n = 2^k + 1, o = 2^{k+1} - 1$$

počet prvků <i>n</i>	počet zvětšení	počet kopírovaných prvků o	
n <= 1	$0 \times$	0	
n <= 2	$1 \times$	1	
n <= 4	2×	1 + 2 = 3	
<i>n</i> <= 8	3×	1 + 2 + 4 = 7	
n <= 16	4×	1+2+4+8=15	
$n <= 2^k$	k×	$2^{k} - 1$	

Nejhorší případ: hned po zvětšení pole:

$$n = 2^k + 1, o = 2^{k+1} - 1$$

 $o = 2(2^k) - 1$

počet prvků <i>n</i>	počet zvětšení	počet kopírovaných prvků o	
n <= 1	$0 \times$	0	
n <= 2	$1 \times$	1	
n <= 4	2×	1 + 2 = 3	
<i>n</i> <= 8	3×	1 + 2 + 4 = 7	
n <= 16	4×	1+2+4+8=15	
$n <= 2^k$	k×	$2^{k} - 1$	

Nejhorší případ: hned po zvětšení pole:

$$n = 2^k + 1, o = 2^{k+1} - 1$$

 $o = 2(2^k) - 1 = 2(2^k + 1) - 3$

počet prvků <i>n</i>	počet zvětšení	počet kopírovaných prvků o		
n <= 1	0×	0		
n <= 2	$1 \times$	1		
n <= 4	2×	1 + 2 = 3		
n <= 8	3×	1 + 2 + 4 = 7		
n <= 16	4×	1+2+4+8=15		
$n <= 2^k$	k×	$2^{k} - 1$		

Nejhorší případ: hned po zvětšení pole:

$$n = 2^k + 1, o = 2^{k+1} - 1$$

$$o = 2(2^k) - 1 = 2(2^k + 1) - 3 = 2n - 3 \in \Theta(n)$$

počet prvků <i>n</i>	počet zvětšení	počet kopírovaných prvků o	
n <= 1	0×	0	
n <= 2	1×	1	
n <= 4	2×	1 + 2 = 3	
<i>n</i> <= 8	3×	1 + 2 + 4 = 7	
n <= 16	4×	1+2+4+8=15	
$n <= 2^k$	k×	$2^{k} - 1$	

Nejhorší případ: hned po zvětšení pole:

$$n = 2^{k} + 1, o = 2^{k+1} - 1$$

$$o = 2(2^{k}) - 1 = 2(2^{k} + 1) - 3 = 2n - 3 \in \Theta(n)$$

Závěr

- ullet složitost operace "přidání n prvků" je $\mathcal{O}(n)$
- ullet amortizovaná složitost operace "přidání jednoho prvku" je $\Theta(1)$

Konopík, Váša: Složitost ADT Amortizovaná složitost KIV/ADT 9/42

Celkové počty operací při přidávání

Amortizovaný počet operací při přidávání

KIV/ADT

Amortizovaná složitost

Důležitá poznámka

- tato analýza platí tehdy, když při zvětšování alokujeme dvojnásobné pole
- platila by i při použití jiného násobku (1.5x namísto 2x)

Amortizovaná složitost

Důležitá poznámka

- tato analýza platí tehdy, když při zvětšování alokujeme dvojnásobné pole
- platila by i při použití jiného násobku (1.5x namísto 2x)
- přizvětšování o konstantu analýza neplatí!
 - přidání n prvků je v takovém případě $\Theta(n^2)$,
 - přidání jednoho prvku je pak v průměru $\Theta(n)$,
 - pro zvětšování o jeden prvek je to zjevné,
 - zvětšování o větší počty (o 1000...) nepomůže!

Konopík, Váša: Složitost ADT Amortizovaná složitost KIV/ADT 12/42

Implementace polem

Seznam implementovaný polem

Seznam je uspořádaná, měnitelná kolekce prvků s duplicitami.

Podporované operace:

- umožňuje vložení prvku na jakoukoli pozici,
- umožňuje vybrání / odebrání prvku z jakékoli pozice,
- procházení seznamu.

KIV/ADT

Seznam – vložení a odebrání prvku na pozici

Kroky vložení do seznamu l o velikost n na pozici k:

- Kontrola velikosti pole: pokud $n+1>2^k$ $(k=\lceil log_2(n)\rceil)$, zvětšíme.
- ② Posun všech prvků: I[i+1] = I[i] pro $i = n-2 \dots k$.
- Přepsání prvku na pozici k.

Seznam – vložení a odebrání prvku na pozici

Kroky vložení do seznamu l o velikost n na pozici k:

- Kontrola velikosti pole: pokud $n+1>2^k$ $(k=\lceil log_2(n)\rceil)$, zvětšíme.
- ② Posun všech prvků: I[i+1] = I[i] pro $i = n-2 \dots k$.
- Přepsání prvku na pozici k.

Kroky odebrání prvku ze seznamu / o velikost n z pozice k:

- Posun všech prvků: I[i] = I[i+1] pro $i = k \dots n-2$.
- **②** Kontrola velikosti pole: pokud $n-1 < 2^{k-1}$, zmenšíme.

KIV/ADT

Seznam – vložení a odebrání prvku na pozici

Kroky vložení do seznamu l o velikost n na pozici k:

- Kontrola velikosti pole: pokud $n+1>2^k$ $(k=\lceil log_2(n)\rceil)$, zvětšíme.
- ② Posun všech prvků: I[i+1] = I[i] pro i = n-2...k.
- Přepsání prvku na pozici k.

Kroky odebrání prvku ze seznamu / o velikost n z pozice k:

- Posun všech prvků: I[i] = I[i+1] pro $i = k \dots n-2$.
- **②** Kontrola velikosti pole: pokud $n-1 < 2^{k-1}$, zmenšíme.

Asymptotická složitost

Složitost vložení prvku na pozici: $\Theta(n)$

4 D > 4 A > 4 B > 4 B > B 9 Q Q

16/42

Zásobník implementovaný polem

Uspořádaná, měnitelná kolekce prvků s duplicitami.

Podporované operace:

- přidej prvek na konec,
- vyber prvek na konci,
- odeber prvek z konce.

Zásobník implementovaný polem

Uspořádaná, měnitelná kolekce prvků s duplicitami.

Podporované operace:

- přidej prvek na konec,
- vyber prvek na konci,
- odeber prvek z konce.

Implementace:

- obdobné jako Seznam,
- tím, že přidáváme / odebíráme na / z konce, nemusíme prvky posouvat,
- amortizovaná složitost: *Theta*(1).

KIV/ADT

Fronta implementovaná polem

Uspořádaná, měnitelná kolekce prvků s duplicitami. Podporované operace:

- přidání prvku na konec,
- vybrání prvku na začátku,
- odebrání prvku ze začátku.

Implementace:

- používáme cyklické pole,
- detaily na KIV/IDT,
- amortizovaná složitost: *Theta*(1).

KIV/ADT

Složitosti operací

Operace	Vysvětlení	Složitost
list[index]	Přístup k prvku na konkrétní pozici	O(1)
list.append(x)	Přidání prvku na konec seznamu	O(1)
list.pop()	Odebrání a vrácení posledního prvku seznamu	O(1)
list.pop(i)	Odebrání a vrácení prvku na i-té pozici	O(n)
list.insert(i, x)	Vložení prvku na konkrétní pozici	O(n)
del list[i]	Odebrání prvku na konkrétní pozici	O(n)
for x in list	Projití seznamu	O(n)
len(list)	Získání délky seznamu	O(1)
max(list)	Získání největšího prvku seznamu	O(n)
min(list)	Získání nejmenšího prvku seznamu	O(n)
x in list	Zkontrolování, zda je prvek v seznamu	O(n)
list1 + list2	Sloučení dvou seznamů	O(k)
list * k	Opakování seznamu k-krát	O(nk)
list.remove(x)	Odebrání prvního výskytu prvku	O(n)

Problém implementací polem

- Přidání prvku je někdy rychlé a někdy pomalé,
- občas potřebujeme záruku, že operace proběhne v nějakém "krátkém" čase,
- pole může zabírat místo v paměti, které aktuálně není potřeba.

Problém implementací polem

- Přidání prvku je někdy rychlé a někdy pomalé,
- občas potřebujeme záruku, že operace proběhne v nějakém "krátkém" čase,
- pole může zabírat místo v paměti, které aktuálně není potřeba.

Řešení

- chceme alokovat velké množství malých kousků paměti
- nemůžeme mít pro každý kousek vlastní identifikátor v programu

- chceme alokovat velké množství malých kousků paměti
- nemůžeme mít pro každý kousek vlastní identifikátor v programu

Řešení

- vyrobíme si spojovací prvek
- funguje trochu jako lego
- připojuje se na něj jeden kousek dat
- může se na něj připojit další spojovací prvek

Spojový seznam v Pythonu

Třída s dvěma atributy:

- Data.
- Odkaz na další prvek.

Spojový seznam v Pythonu – kód

```
class Node:
       def __init__(self, data):
            self.data = data # Data uzlu
            self.next = None # Ukazatel na další uzel
   # Vytvoříme několik uzlů s různými datu
_{6} node1 = Node("A")
_7 \quad node2 = Node("B")
8 \quad node1.next = node2
9 \quad node3 = Node("C")
  node2.next = node3
11 # Vypíšeme data prvních dvou uzlů
print(node1.data, node1.next.data)
```

KIV/ADT

Spojový seznam v Pythonu – Třída

```
# Definujeme třídu pro spojový seznam
   class LinkedList:
     # Konstruktor pro nastavení hlavy seznamu
     def __init__(self):
       self.head = None # Hlava seznamu
     # Vložení nového uzlu na začátek seznamu
     def insert_at_head(self, data):
       new_node = Node(data) # Vytvoříme nový uzel s daty
       new_node.next = self.head # Nastavime jeho dalši ukazatel na
       SOUCASTOU hlavu seznamu
       self.head = new_node # Nastavíme hlavu seznamu na nový uzel
10
```

Spojový seznam přidání prvku

Postup:

- Ukazatel nového prvku na následují prvek.
- Ukazatel aktuálního prvku nastavíme na nový prvek.

Spojový seznam přidání prvku – kóď

Spojový seznam odebrání prvku

Postup:

• Předchozímu prvku nastavíme ukazatel na následující prvek po mazaném prvku.


```
# Smazání uzlu za daným uzlem v seznamu
def delete_after_node(self, node: Node) → None:
node.next = node.next.next # Nastavíme další ukazatel daného uzlu

→ na další uzel dalšího uzlu
```

Zásobník implementovaný spojovým seznamem

Uspořádaná, měnitelná kolekce prvků s duplicitami.

Podporované operace:

- přidej prvek na konec,
- vyber prvek na konci,
- odeber prvek z konce.

Zásobník implementovaný spojovým seznamem

Uspořádaná, měnitelná kolekce prvků s duplicitami.

Podporované operace:

- přidej prvek na konec,
- vyber prvek na konci,
- odeber prvek z konce.

Implementace:

- strukturu si virtuálně otočíme a konec si dáme na začátek,
- prvky přidáváme a odebíráme ze začátku (měníme ukazatel hlavy),
- hlídáme si jen konec zásobníku,
- složitost: $\Theta(1)$.

KIV/ADT

Fronta implementovaná spojovým seznamem

Uspořádaná, měnitelná kolekce prvků s duplicitami. Podporované operace:

- přidání prvku na konec,
- vybrání prvku na začátku,
- odebrání prvku ze začátku.

Fronta implementovaná spojovým seznamem

Uspořádaná, měnitelná kolekce prvků s duplicitami.

Podporované operace:

- přidání prvku na konec,
- vybrání prvku na začátku,
- odebrání prvku ze začátku.

Implementace:

- strukturu si virtuálně otočíme a konec si dáme na začátek,
- prvky přidáváme na konec a odebíráme ze začátku (měníme ukazatel hlavy),
- hlídáme si jen konec fronty,
- složitost: $\Theta(1)$.

31/42

Srovnání implementací

Srovnání implementace polem VS spojovým seznamem

Mezi použitím implementací polem a spojovým seznamem je řada nuancí, které lépe pochopíte v předmětech KIV/IDT, KIV/PC a KIV/ZEP.

Srovnání implementace polem VS spojovým seznamem

Mezi použitím implementací polem a spojovým seznamem je řada nuancí, které lépe pochopíte v předmětech KIV/IDT, KIV/PC a KIV/ZEP.

Fundamentální rozdíly:

- Implementace polem umožňují vybrání prvků na pozici s konstantní složitostí.
- Implementace spojovým seznamem umožňují vložení a odebrání prvku na aktuální pozici s konstantní složitostí.
- Spojové seznamy je možné spojit s konstantní složitostí.
- Implementace polem nezatěžuje tolik systém správy paměti.

Srovnání implementace polem VS spojovým seznamem

Mezi použitím implementací polem a spojovým seznamem je řada nuancí, které lépe pochopíte v předmětech KIV/IDT, KIV/PC a KIV/ZEP.

Fundamentální rozdíly:

- Implementace polem umožňují vybrání prvků na pozici s konstantní složitostí.
- Implementace spojovým seznamem umožňují vložení a odebrání prvku na aktuální pozici s konstantní složitostí.
- Spojové seznamy je možné spojit s konstantní složitostí.
- Implementace polem nezatěžuje tolik systém správy paměti.

Datové struktury založené na spojových seznamech mohou být velmi dynamické. Jejich aplikaci uvidíme v dalších strukturách.

◆ロト ◆部ト ◆注ト ◆注ト を めなべ

Simulace systémů hromadné obsluhy

Systém hromadné obsluhy

Definice:

- Systém hromadné obsluhy (SHO) umožňuje efektivně modelovat a analyzovat opakující se operace a události.
- Simulace SHO nabízí flexibilní nástroj pro pozorování dopadů změn parametrů na systém.
- Základem jsou fronty, aktivní prvky simulující reálné objekty a princip modelování času.

36/42

Systém hromadné obsluhy

Definice:

- Systém hromadné obsluhy (SHO) umožňuje efektivně modelovat a analyzovat opakující se operace a události.
- Simulace SHO nabízí flexibilní nástroj pro pozorování dopadů změn parametrů na systém.
- Základem jsou fronty, aktivní prvky simulující reálné objekty a princip modelování času.

Uplatnění:

- Model SHO má široké praktické využití a je snadno implementovatelný.
- Oblasti, kde je potřeba efektivně řídit tok dat, zboží, osob či jakýchkoli jiných entit
 prostřednictvím procesů či stanic, kde může docházet k jejich zpracování, skladování nebo
 přepravě.
- Příklad: logistické systémy, výrobní linky, informační technologie (správa front požadavků v síťových zařízeních), zdravotnictví (řízení front pacientů) a mnoho dalších.

Modelování Času

Posouvání času:

- Diskrétní časové kroky, ve kterých aktualizujeme stav systému.
- Funkce, metoda (tick()) nebo cyklus posouvá čas o konstantní krok.

Modelování Času

Posouvání času:

- Diskrétní časové kroky, ve kterých aktualizujeme stav systému.
- Funkce, metoda (tick()) nebo cyklus posouvá čas o konstantní krok.

Doba trvání akcí:

- Generování doby trvání a výskytu událostí na základě stanovených parametrů.
- Využíváme náhodnou proměnnou z exponenciálního, Poissonovo, normálního nebo jiného rozdělení pravděpodobnosti.

KIV/ADT

Normální rozdělení

POZOR na záporné hodnoty u normálního rozdělení!

38/42

Normální rozdělení – rozptyl

KIV/ADT

Generátor náhodných čísel

Generátor náhodných čísel: generuje posloupnost čísel statistickými testy nerozlišitelné od náhodné.

- Klíčový prvek pro simulaci náhodných procesů a událostí.
- Sekvence:
 - Absolutně náhodné: hardwarové generátory.
 - Pseudo-náhodné: softwarové generátory (používáme).
- Generují sekvence z daného rozdělení pravděpodobnosti.
- Softwarové generátory mají počáteční stav (seed).
 - Stejný seed \rightarrow stejná sekvence.
 - Nastavení náhodné inicializace (seed) např. na základě aktuálního času.

Generátor náhodných čísel – příklad

```
import random

random.seed(42)  # Nastavení počátečního stavu generátoru

random.random()  # Náhodné číslo z rovnoměrného rozdělení v rozsahu

□ [0.0, 1.0)

random.randint(1, 10)  # Náhodné celé číslo z rovnoměrného rozdělení z

□ rozsahu [1, 10]

random.gauss(0, 1)  # Náhodné číslo z normálního rozdělení s parametry
```

 \rightarrow mu=0, sigma=1

References I

- [1] GeeksforGeeks. "Accounting Method in Amortized Analysis". In: (2023). URL: https://www.geeksforgeeks.org/accounting-method-amortized-analysis/.
- [2] GeeksforGeeks. "Introduction to Amortized Analysis". In: (2023). URL: https://www.geeksforgeeks.org/introduction-to-amortized-analysis/.
- [3] GeeksforGeeks. "Potential Method in Amortized Analysis". In: (2023). URL: https://www.geeksforgeeks.org/potential-method-in-amortized-analysis/.
- [4] Robert E Tarjan. "Amortized computational complexity". In: SIAM Journal on Algebraic Discrete Methods 6.2 (1985), s. 306–318.
- [5] 42 Wolfsburg Library Wiki. Cormen et al.: Introduction to Algorithms, third edition (2009) 42 Wolfsburg Library Wiki. [Online; accessed 22-March-2023]. 2022. URL: http://library.42wolfsburg.de/index.php?title=Cormen_et_al.: _Introduction_to_Algorithms,_third_edition_(2009)&oldid=804.