

planetmath.org

Math for the people, by the people.

Proof: The orbit of any element of a group is a subgroup

Canonical name ProofTheOrbitOfAnyElementOfAGroupIsASubgroup

Date of creation 2013-03-22 13:30:58 Last modified on 2013-03-22 13:30:58

Owner drini (3) Last modified by drini (3)

Numerical id 6

Author drini (3) Entry type Proof

Classification msc 20A05 Related topic Group Related topic Subgroup

Related topic ProofThatEveryGroupOfPrimeOrderIsCyclic

 $Related\ topic \qquad ProofOfThe Converse Of Lagranges Theorem For Cyclic Groups$

Defines orbit

Following is a proof that, if G is a group and $g \in G$, then $\langle g \rangle \leq G$. Here $\langle g \rangle$ is the orbit of g and is defined as

$$\langle g \rangle = \{ g^n : n \in \mathbb{Z} \}$$

Since $g \in \langle g \rangle$, then $\langle g \rangle$ is nonempty. Let $a, b \in \langle g \rangle$. Then there exist $x, y \in \mathbb{Z}$ such that $a = g^x$ and $b = g^y$. Since $ab^{-1} = g^x(g^y)^{-1} = g^xg^{-y} = g^{x-y} \in \langle g \rangle$, it follows that $\langle g \rangle \leq G$.