

Plano de Ensino

- Apresentação. Revisão de Funções.
- Expressões Regulares.
- Gramática Regular.
- Autômatos Finitos Determinísticos.
- Conversão entre GR e AFD.
- Minimização de Autômatos.
- Autômatos Finitos Não-Determinísticos.
- Conversão de Autômatos AFD para AFND.
- Autômatos com Pilha.
- Máquinas de Turing.

Livro-Texto

- Bibliografia Básica:
 - » MENEZES, Paulo Fernando Blauth. Linguagens Formais e Autômatos. 5ª ed. Porto Alegre: Bookman, 2008.
- Bibliografia Complementar:
 - » LEWIS, Ricki. Elementos da Teoria da Computação.
 2ª ed. Porto Alegre: Bookman, 2004.
 - » HOPCROFT, John E; ULLMAN, Jeffrey D; MOTWANI, Rajeev, SOUZA. Introdução a Teoria dos Autômatos, Linguagens e Computação. 1ª ed. São Paulo: CAMPUS, 2003.

2	Introdução -	A Ifahata
۷.	murouucao –	· Allabelo

 Alfabeto (∑) → é um conjunto não vazio e finito de símbolos. Sendo assim, um conjunto também é considerado um alfabeto. Letras e dígitos são exemplos de símbolos usados frequentemente.

$$\Sigma$$
={a, e, i, o, u}
 Σ ={a, b, c, d, e, ..., z}
 Σ ={0, 1}

2. Introdução - Palavra

- Palavra, cadeia de caracteres ou sentença → é uma seqüência finita de símbolos (do alfabeto) justapostos. Uma palavra sem símbolo ($\varepsilon \rightarrow vazia$).
- Seja $\Sigma = \{a, e, i, o, u\}$
 - » Palavra vazia (ϵ) \rightarrow palavra sem símbolos \rightarrow $\sum = \{\epsilon\}$
 - » Conjunto de todas as palavras possíveis → $\sum^* = \{\epsilon, \, \text{a, ae, aei, aaeea, aeiou, aaeiouu, } \ldots \}$
 - » Conjunto de todas as palavras possíveis excetuando-se a palavra vazia →
 - $\Sigma^+ = \{a, ae, aei, aaeea, aeiou, aaeiouu, ...\}$ ou $\Sigma^+ = \Sigma^* \{\epsilon\}$

2. Introdução - Palavra

- Tamanho de uma palavra → o tamanho ou comprimento de uma palavra w, representado por |w| é o número de símbolos que compõem a palavra.
- Seja ∑ = {a, e, i, o, u}
 - » Se w=aei então |w| = 3
 - » Se w=aeiouuae então |w| = 8
 - » Se $w=\varepsilon$ então |w|=0 (sentença vazia)

2. Introdução - Palavra

- Prefixo, Sufixo e Subpalavra → é qualquer seqüência de símbolos inicial (prefixo) ou final (sufixo) da palavra.
 Qualquer prefixo ou sufixo de uma palavra é uma subpalavra.
- Seja uma palavra w = abcb em ∑={a, b, c}
 - » Prefixos: ϵ , a, ab, abc, abcb.
 - » Sufixos: ε, b, cb, bcb, abcb.

2. Introdução – Linguagem

- Uma linguagem formal é um conjunto de palavras sobre um alfabeto.
- Sendo ∑={a, b, c}:
 - » O conjunto vazio e o conjunto formado pela palavra vazia são linguagens sobre Σ ({ } \neq {\$\varepsilon})
 - » O conjunto de palíndromos (mesma leitura de ambos os lados) sobre Σ é um exemplo de linguagem infinita (Σ = { ϵ , a, b, aa, bb, aaa, bbb, aba, bab, aaaa, ...}).

2. Introdução - Linguagem

- Concatenação → é uma justaposição dos símbolos que representam as palavras componentes.
 - » Associatividade: v(wt) = (vw)t
 - » Elemento neutro: $\varepsilon w = w = w \varepsilon$
- Seja o alfabeto ∑={a, b, c} e as palavras v = baaaa e w = bb.
 - » vw = baaaabb
 - » $v\varepsilon = v = baaaa$

2. Introdução - Linguagem

- Concatenação sucessiva → é uma justaposição com os símbolos da própria palavra de forma sucessiva; é representada na forma de expoente, ou seja, wⁿ, onde w é a palavra e n o número de concatenações consecutivas.
 - $w^0 = \epsilon$
 - $w^n = ww^{n-1}$, para n>0
- Seja w uma palavra. Então:
 - » w1 = w
 - » w³ = www
 - » w⁵ = wwwww
 - » wn = www...w (n vezes)

2. Introdução - Formalismo

- Frase em Português: "É *nóis*".
- Frase em Inglês: "They needs to do this".
- Placa:

■ Sintaxe em linguagem C: valor := valor + 1;

2. Introdução – Formalismo Regulares Regulares

2. Expressões Regulares

- Toda linguagem regular pode ser descrita por uma expressão simples, denominada Expressão Regular (ER).
- Trata-se de um formalismo gerador, pois expressa como construir (gerar) as palavras da linguagem.
- Uma ER é definida recursivamente a partir de conjuntos (linguagens) básicas e operação de concatenação e união.

2. Expressões Regulares

- Dado um alfabeto ∑:
- » Os símbolos do alfabeto são expressões regulares, incluindo-se o vazio ou ε.
 - » Se R_1 e R_2 são ER, então ($R_1 \cup R_2$) é uma ER.
 - » (R₁ | R₂) representa a união de linguagens.
 - Se R₁ e R₂ são ER, então (R₁R₂) é uma ER.
 R₁R₂ representa concatenação de linguagens
 - » R₁R₂ representa concatenação de linguage
 » Se R₁ é uma ER, então (R₁)* é uma ER;
 - » (R₁)* representa a linguagem formada pela concatenação de zero ou mais palavras de R₁
 - » Se R₁ é uma ER, então (R₁)⁺ é uma ER;
 - » (R₁)* representa a linguagem formada pela concatenação de um ou mais palavras de R₁
 - » Obs: R₁+ = R₁R₁*

2. Expressões Regulares

■ Dado um alfabeto ∑ = {a, b}; e as expressões regulares a seguir, teremos a linguagem gerada, conforme tabela:

ER	Linguagem Gerada
а	{a}
ab	{ab}
(a b)	{a, b}
ba*	{b, ba, baa, baaa, baaaa,}
(a)*	{ε, a, aa, aaa,}
(a b)*	{ε, a, b, aa, ab, bb, abaa,}
(a (a b))*	{ε, aa, ab, aaaa, abaa, aaab,}
(a (a b)+)	{aa, ab, aaa, aba, aab,}
((a b)+ (a b))*	$\{\epsilon$, a, b, ab, aa, bb, aaa, aba, abb, $\}$

