Part of Pager #9

UNITED STATES DISTRICT COURT DELAWARE DISTRICT OF DELAWARE

MICRON TECHNOLOGY, INC.,)
Plaintiff,	\
V.	Civil Action No. 00-792-RRM
RAMBUS INC.,)
Defendant.	
RAMBUS INC.,	
Counterclaim-Plaintiff,	,
v.	
MICRON TECHNOLOGY, INC.,	
Counterclaim-Defendant.	

PLAINTIFF MICRON TECHNOLOGY, INC.'S IDENTIFICATION OF PRIOR ART PURSUANT TO 35 U.S.C. § 282

Frederick L. Cottrell, III (I.D. 2555) RICHARDS, LAYTON & FINGER One Rodney Square, P.O. Box 551 Wilmington, DE 19899 (302) 658-6541 Attorneys for Plaintiff Micron Technology, Inc.

Of Counsel:
BARTLIT BECK HERMAN
PALENCHAR & SCOTT
Fred H. Bartlit, Jr.
1899 Wynkoop Street, 8th Floor
Denver, CO 80202
(303) 592-3100

WEIL, GOTSHAL & MANGES LLP Matthew D. Powers Jared Bobrow Silicon Valley Office 201 Redwood Shores Parkway Redwood Shores, CA 94065-1175 (650) 802-3000 Plaintiff Micron Technology, Inc. ("Micron Technology") hereby submits this identification of prior art pursuant to 35 U.S.C. § 282. Micron Technology reserves the right to supplement this statement as appropriate under the circumstances.

- 1. References Cited on the Face of the Patents-In-Suit (U.S. Patent Nos. 5,915,105, 5,953,263, 5,954,804, 5,995,443, 6,032,214, 6,032,215, 6,034,918, and 6,038,195)
- U.S. Patent No. 3,633,166, issued to Picard, on 01/04/72 (MR0009806-9815)
- U.S. Patent No. 3,691,534, issued to Varadi et al., on 09/12/70 (MR0009816-9830)
- U.S. Patent No. 3,740,723, issued to Beausoleil et al., on 06/19/73 (MR0009841-9859)
- U.S. Patent No. 3,758,761, issued to Henrion, on 09/11/73 (MR0009867-9909)
- U.S. Patent No. 3,771,145, issued to Wiener, on 11/06/73 (MR0009910-9924)
- U.S. Patent No. 3,821,715, issued to Hoff, Jr. et al., on 06/28/74 (MR0009957-9967 and MR0080789-80799)
- U.S. Patent No. 3,882,470, issued to Hunter, on 05/06/75 (MR0009968-9993)
- U.S. Patent No. 3,924,241, issued to Kronies, on 12/02/75 (MR0009994-10006)
- U.S. Patent No. 3,969,706, issued to Proebsting et al., on 07/13/76 (MR0010007-10030)
- U.S. Patent No. 3,972,028, issued to Weber et al., on 07/27/76 (MR0010031-10045)
- U.S. Patent No. 3,975,714, issued to Weber et al., on 08/17/76 (MR0010046-10061)
- U.S. Patent No. 3,983,537, issued to Parsons et al., on 09/28/76 (MR0010062-10069)
- U.S. Patent No. 4,007,452, issued to Hoff, Jr., on 02/08/77 (MR0010070-10079)
- U.S. Patent No. 4,038,648, issued to Chesley, on 07/26/77 (MR0010080-10089)
- U.S. Patent No. 4,092,665, issued to Saran, on 05/30/78 (MR0010090-10100)
- U.S. Patent No. 4,099,231, issued to Kotok et al., on 07/04/78 (MR0010101-10117)
- U.S. Patent No. 4,183,095, issued to Ward, on 01/08/80 (MR0010118-10132)
- U.S. Patent No. 4,191,996, issued to Chesley, on 03/04/80 (MR0010250-10255)
- U.S. Patent No. 4,205,373, issued to Shah et al., on 05/27/80 (MR0010256-10267)
- U.S. Patent No. 4,234,934, issued to Thorsrud, on 11/18/80 (MR0010287-10299)

- U.S. Patent No. 4,247,817, issued to Heller, on 01/27/81 (MR0010300-10305)
- U.S. Patent No. 4,249,247, issued to Patel, on 02/03/81 (MR0010306-10321)
- U.S. Patent No. 4,263,650, issued to Bennett et al., on 04/21/81 (MR0010327-10358)
- U.S. Patent No. 4,286,321, issued to Baker et al., on 08/25/81 (MR0010359-10377)
- U.S. Patent No. 4,306,298, issued to McElroy, on 12/15/81 (MR0010378-10383)
- U.S. Patent No. 4,315,308, issued to Jackson, on 02/09/82 (MR0010384-10397 and MR0054718-54731)
- U.S. Patent No. 4,333,142, issued to Chesley, on 06/01/82 (MR0010398-10402)
- U.S. Patent No. 4,354,258, issued to Sato, on 10/12/82 (MR0010413-10429)
- U.S. Patent No. 4,355,376, issued to Gould, on 10/19/82 (MR0010430-10437)
- U.S. Patent No. 4,360,870, issued to McVey, on 11/23/82 (MR0010438-10445)
- U.S. Patent No. 4,373,183, issued to Means et al., on 02/08/83 (MR0010446-10461)
- U.S. Patent No. 4,375,665, issued to Schmidt, on 03/01/83 (MR0010462-10466)
- U.S. Patent No. 4,385,350, issued to Hansen et al., on 05/24/83 (MR0010467-10481)
- U.S. Patent No. 4,443,864, issued to McElroy, on 04/17/84 (MR0010500-10505)
- U.S. Patent No. 4,445,204, issued to Nishiguchi, on 04/24/84 (MR0010506-10515 and MR0054031-54040)
- U.S. Patent No. 4,449,207, issued to Kung et al., on 05/15/84 (MR0010516-10529)
- U.S. Patent No. 4,458,357, issued to Weymouth et al., on 07/03/84 (MR0010530-10542)
- U.S. Patent No. 4,468,738, issued to Hansen et al., on 08/28/84 (MR0010543-10556)
- U.S. Patent No. 4,470,114, issued to Gerhold, on 09/04/84 (MR0010557-10567)
- U.S. Patent No. 4,480,307, issued to Budde et al., on 10/30/84 (MR0010568-10582)
- U.S. Patent No. 4,481,625, issued to Roberts et al., on 11/06/84 (MR0010583-10620)
- U.S. Patent No. 4,481,647, issued to Gombert et al., on 11/06/84 (MR0010621-10628)
- U.S. Patent No. 4,488,218, issued to Grimes, on 12/11/84 (MR0010629-10642)
- U.S. Patent No. 4,493,021, issued to Agrawal et al., on 01/08/85 (MR0010643-10658)
- U.S. Patent No. 4,494,186, issued to Goss et al., on 01/15/85 (MR0010707-10729)

- U.S. Patent No. 4,500,905, issued to Shibata, on 02/19/85 (MR0010730-10740)
- U.S. Patent No. 4,513,370, issued to Ziv et al., on 04/23/85 (MR0010758-10766)
- U.S. Patent No. 4,513,374, issued to Hooks, Jr. on 04/23/85 (MR0010767-10833)
- U.S. Patent No. 4,519,034, issued to Smith et al., on 05/21/85 (MR0010834-10868)
- U.S. Patent No. 4,566,098, issued to Gammage et al., on 01/21/86 (MR0010888-10896)
- U.S. Patent No. 4,570,220, issued to Tetrick et al., on 02/11/86 (MR0010897-10931)
- U.S. Patent No. 4,571,672, issued to Hatada et al., on 02/18/86 (MR0010932-10945)
- U.S. Patent No. 4,586,167, issued to Fujishima et al., on 04/29/86 (MR0010957-10972)
- U.S. Patent No. 4,595,923, issued to McFarland Jr., on 06/17/86 (MR0010973-11006)
- U.S. Patent No. 4,608,700, issued to Kirtley, Jr. et al., on 08/26/86 (MR0011007-11022)
- U.S. Patent No. 4,630,193, issued to Kris, on 12/16/86 (MR0011023-11037)
- U.S. Patent No. 4,635,192, issued to Ceccon et al., on 01/06/87 (MR0011038-11065)
- U.S. Patent No. 4,635,196, issued to Nakamura et al., on 01/06/87 (MR0011066-11073)
- U.S. Patent No. 4,646,270, issued to Voss, on 02/24/87 (MR0011081-11086)
- U.S. Patent No. 4,649,511, issued to Gdula, on 03/10/87 (MR0011087-11099)
- U.S. Patent No. 4,649,516, issued to Chung et al., on 03/10/87 (MR0011100-11115)
- U.S. Patent No. 4,654,655, issued to Kowalski, on 03/31/87 (MR0011116-11130)
- U.S. Patent No. 4,656,605, issued to Clayton, on 04/07/87 (MR0011131-11135)
- U.S. Patent No. 4,660,141, issued to Ceccon et al., on 04/21/87 (MR0011150-11187)
- U.S. Patent No. 4,675,813, issued to Locke, on 06/23/87 (MR0011188-11191)
- U.S. Patent No. 4,675,850, issued to Kumanoya et al., on 06/23/87 (MR0011192-11205)
- U.S. Patent No. 4,680,738, issued to Tam, on 07/14/87 (MR0011206-11213 and MR0055062-55069)
- U.S. Patent No. 4,683,555, issued to Pinkham, on 07/28/87 (MR0011222-11245)
- U.S. Patent No. 4,706,166, issued to Go, on 11/10/87 (MR0011246-11254)
- U.S. Patent No. 4,719,602, issued to Haq et al., on 01/12/88 (MR0011255-11269)
- U.S. Patent No. 4,719,627, issued to Peterson et al., on 01/12/88 (MR0011270-11281)

- U.S. Patent N . 4,727,455, issued to Neidig et al., on 02/23/88 (MR0011282-11289)
- U.S. Patent No. 4,727,475, issued to Kiremidjian, on 02/23/88 (MR0011290-11307)
- U.S. Patent No. 4,734,880, issued to Collins, on 03/29/88 (MR0011308-11319)
- U.S. Patent No. 4,740,923, issued to Kaneko et al., on 04/26/88 (MR0011320-11332)
- U.S. Patent No. 4,745,548, issued to Blahut, on 05/17/88 (MR0011333-11340)
- U.S. Patent No. 4,757,473, issued to Kurihara et al., on 07/12/88 (MR0011383-11395)
- U.S. Patent No. 4,761,799, issued to Arragon, on 08/02/88 (MR0011415-11420)
- U.S. Patent No. 4,764,846, issued to Go, on 08/16/88 (MR0011421-11432)
- U.S. Patent No. 4,766,536, issued to Wilson, Jr. et al., on 08/23/88 (MR0011433-11459)
- U.S. Patent No. 4,770,640, issued to Walter, on 09/13/88 (MR0011460-11469)
- U.S. Patent No. 4,775,931, issued to Dickie et al., on 10/04/88 (MR0011479-11486)
- U.S. Patent No. 4,779,089, issued to Theus, on 10/18/88 (MR0011487-11497)
- U.S. Patent No. 4,785,394, issued to Fischer, on 11/15/88 (MR0011498-11540 and MR0054658-54700)
- U.S. Patent No. 4,785,396, issued to Murphy et al., on 11/15/88 (MR0011541-11577)
- U.S. Patent No. 4,788,667, issued to Nakano et al., on 11/29/88 (MR0011578-11596)
- U.S. Patent No. 4,792,926, issued to Roberts, on 12/20/88 (MR0011597-11616)
- U.S. Patent No. 4,799,199, issued to Scales, III et al., on 01/17/89 (MR0011617-11621)
- U.S. Patent No. 4,803,621, issued to Kelly, on 02/07/89 (MR0011649-11658)
- U.S. Patent No. 4,807,189, issued to Pinkham et al., on 02/21/89 (MR0011659-11678)
- U.S. Patent No. 4,811,202, issued to Schabowski, on 03/07/89 (MR0011679-11692)
- U.S. Patent No. 4,818,985, issued to Ikeda, on 04/04/89 (MR0011693-11708)
- U.S. Patent No. 4,821,226, issued to Christopher et al., on 04/11/89 (MR0011722-11735)
- U.S. Patent No. 4,825,416, issued to Tam et al., on 04/25/89 (MR0011736-11753)
- U.S. Patent No. 4,831,338, issued to Yamaguchi, on 05/16/89 (MR0011754-11759)
- U.S. Patent No. 4,837,682, issued to Culler, on 06/06/89 (MR0011768-11780)
- U.S. Patent No. 4,845,664, issued to Aichelmann, Jr. et al., on 07/04/89 (MR0011781-11792)

- U.S. Patent No. 4,858,112, issued to Puerzer et al., n 08/15/89 (MR0011808-11816)
 U.S. Patent No. 4,860,198, issued to Takenaka, on 08/22/89 (MR0011817-11833)
- U.S. Patent No. 4,862,158, issued to Keller et al., on 08/29/89 (MR0011834-11844)
- U.S. Patent No. 4,882,669, issued to Miura et al., on 11/21/89 (MR0011845-11859)
- U.S. Patent No. 4,882,712, issued to Ohno et al., on 11/21/89 (MR0011860-11873)
- U.S. Patent No. 4,891,791, issued to Iijima, on 01/02/90 (MR0011874-11881)
- U.S. Patent No. 4,916,670, issued to Suzuki et al., on 04/10/90 (MR0011895-11918)
- U.S. Patent No. 4,920,483, issued to Pogue et al., on 04/24/90 (MR0011919-12124)
- U.S. Patent No. 4,920,486, issued to Nielson, on 04/24/90 (MR0012125-12139)
- U.S. Patent No. 4,928,265, issued to Higuchi et al., on 05/22/90 (MR0012140-12158)
- U.S. Patent No. 4,933,835, issued to Sachs et al., on 06/12/90 (MR0012167-12211)
- U.S. Patent No. 4,937,733, issued to Gillett, Jr. et al., on 06/26/90 (MR0012212-12233)
- U.S. Patent No. 4,937,734, issued to Bechtolsheim, on 06/26/90 (MR0012234-12246)
- U.S. Patent No. 4,939,510, issued to Masheff et al., on 07/03/90 (MR0012247-12252)
- U.S. Patent No. 4,940,909, issued to Mulder et al., on 07/10/90 (MR00122553-12266)
- U.S. Patent No. 4,945,471, issued to Neches, on 07/31/90 (MR0012267-12322)
- U.S. Patent No. 4,945,516, issued to Kashiyama, on 07/31/90 (MR0012323-12328)
- U.S. Patent No. 4,947,484, issued to Twitty et al., on 08/07/90 (MR0012329-12377)
- U.S. Patent No. 4,951,251, issued to Yamaguchi et al., on 08/21/90 (MR012378-12397)
- U.S. Patent No. 4,953,128, issued to Kawai et al., on 08/28/90 (MR0012398-12406)
- U.S. Patent No. 4,953,130, issued to Houston, on 08/28/90 (MR0012407-12415)
- U.S. Patent No. 4,954,987, issued to Auvinen et al., on 09/04/90 (MR0012416-12424)
- U.S. Patent No. 4,954,992, issued to Kumanoya et al., on 09/04/90 (MR0012425-12452)
- U.S. Patent No. 4,965,792, issued to Yano, on 10/23/90 (MR0012471-12549)
- U.S. Patent No. 4,970,418, issued to Masterson, on 11/13/90 (MR0012550-12559)
- U.S. Patent No. 4,975,763, issued to Baudouin et al., on 12/04/90 (MR0012560-12567)
- U.S. Patent No. 4,975,872, issued to Zaiki, on 12/04/90 (MR0012568-12575)

- U.S. Patent No. 4,982,400, issued to Ebersole, on 01/01/91 (MR0012595-12612)
- U.S. Patent No. 4,998,069, issued to Nguyen et al., on 03/05/91 (MR0012622-12632)
- U.S. Patent No. 4,998,262, issued to Wiggers et al., on 03/05/91 (MR0012633-12638 and MR0055332-55337)
- U.S. Patent No. 5,012,408, issued to Conroy, on 04/30/91 (MR0012639-12649)
- U.S. Patent No. 5,016,226, issued to Hiwada et al., on 05/14/91 (MR0012650-12660)
- U.S. Patent No. 5,018,111, issued to Madland, on 05/21/91 (MR0012684-12694)
- U.S. Patent No. 5,021,772, issued to King et al., on 06/04/91 (MR0012695-12703)
- U.S. Patent No. 5,023,488, issued to Gunning, on 06/11/91 (MR0012704-12713)
- U.S. Patent No. 5,038,317, issued to Callan et al., on 08/06/91 (MR0012743-12751)
- U.S. Patent No. 5,038,320, issued to Heath et al., on 08/06/91 (MR0012752-12767)
- U.S. Patent No. 5,040,153, issued to Fung et al., on 08/13/91 (MR0012768-12774)
- U.S. Patent No. 5,051,889, issued to Fung et al., on 09/24/91 (MR0012775-12783)
- U.S. Patent No. 5,056,060, issued to Fitch et al., on 10/08/91 (MR0012806-12825)
- U.S. Patent No. 5,063,561, issued to Kimmo, on 11/05/91 (MR0012879-12890)
- U.S. Patent No. 5,077,693, issued to Hardee et al., on 12/31/91 (MR0012900-12914)
- U.S. Patent No. 5,083,260, issued to Tsuchiya, on 01/21/92 (MR0012915-12941)
- U.S. Patent No. 5,083,296, issued to Hara et al., on 01/21/92 (MR0012942-12953)
- U.S. Patent No. 5,093,807, issued to Hashimoto et al., on 03/03/92 (MR0012954-12964)
- U.S. Patent No. 5,107,465, issued to Fung et al., on 04/21/92 (MR0012965-12971)
- U.S. Patent No. 5,107,491, issued to Chew, on 04/21/92 (MR0012972-12977)
- U.S. Patent No. 5,109,498, issued to Kamiya et al., on 04/28/92 (MR0012978-12989)
- U.S. Patent No. 5,111,423, issued to Kopec, Jr. et al., on 05/05/92 (MR0012990-13011)
- U.S. Patent No. 5,111,464, issued to Farmwald et al., on 05/05/92 (MR0013012-13021)
- U.S. Patent No. 5,117,494, issued to Costes et al., on 05/26/92 (MR0013033-13046)
- U.S. Patent No. 5,121,382, issued to Yang et al., on 06/09/92 (MR0013047-13062)
- U.S. Patent No. 5,129,069, issued to Helm et al., on 07/07/92 (MR0013063-13080)

- U.S. Patent No. 5,140,688, issued to White et al., on 08/18/92 (MR0013119-13127 and MR0080450-80458)
- U.S. Patent No. 5,142,637, issued to Harlin et al., on 08/25/92 (MR0013128-13150)
- U.S. Patent No. 5,148,523, issued to Harlin et al., on 09/15/92 (MR0013151-13175)
- U.S. Patent No. 5,153,856, issued to Takahashi, on 10/06/92 (MR0013287-13296)
- U.S. Patent No. 5,175,822, issued to Dixon et al., on 12/29/92 (MR0013347-13355)
- U.S. Patent No. 5,175,831, issued to Kumar, on 12/29/92 (MR0013356-13361)
- U.S. Patent No. 5,179,670, issued to Farmwald et al., on 01/12/93 (MK0013370-13381)
- U.S. Patent No. 5,193,149, issued to Awiszio et al., on 03/09/93 (MR0013382-13403)
- U.S. Patent No. 5,193,199, issued to Dalrymple et al., on 03/09/93 (MR0013404-13418)
- U.S. Patent No. 5,206,833, issued to Lee, on 04/27/93 (MR0013478-13485)
- U.S. Patent No. 5,210,715, issued to Houston, on 05/11/93 (MR0013486-13493)
- U.S. Patent No. 5,220,673, issued to Dalrymple et al., on 06/15/93 (MR0013494-13507)
- U.S. Patent No. 5,226,009, issued to Arimoto, on 07/06/93 (MR0013508-13532)
- U.S. Patent No. 5,247,518, issued to Takiyasu et al., on 09/21/93 (MR0013533-13560)
- U.S. Patent No. 5,301,278, issued to Bowater et al., on 04/05/94 (MR0013720-13740)
- U.S. Patent No. 5,317,723, issued to Heap et al., on 05/31/94 (MR0013741-13748)
- U.S. Patent No. 5,361,277, issued to Grover, on 11/01/94 (MR0013772-13798 and MR0055494-55520)
- U.S. Patent No. 5,361,343, issued to Kosonocky et al., on 11/01/94 (MR0013799-13810)
- U.S. Patent No. 5,371,892, issued to Petersen et al., on 12/06/94 (MR0013811-13823)
- U.S. Patent No. 5,390,149, issued to Vogley et al., on 02/14/95 (MR0013831-13858)
- U.S. Patent No. 5,452,420, issued to Engdahl et al., on 09/19/95 (MR0013926-13952)
- U.S. Patent No. 5,513,327, issued to Farmwald et al., on 04/30/96 (Hudson Exh. 24)
- U.S. Patent No. 5,657,841, issued to Morvan, on 08/19/97 (MR0014021-14029)
- U.S. Patent No. 5,745,421, issued to Pham et al., on 04/28/98 (MR0014030-14041)
- U.S. Patent No. 5,787,041, issued to Hill et al., on 07/28/98 (MR0014042-14052)

- U.S. Patent No. 5,841,580, issued to Farmwald et al., on 11/24/98 (Hudson Exh. 29)
- U.S. Patent No. 5,841,707, issued to Cline et al., on 11/24/98 (MR0014053-14058)
- U.S. Patent No. 5,847,997, issued to Harada et al., on 12/08/98 (MR0014059-14068)
- U.S. Patent No. 5,847,999, issued to Kwon, on 12/08/98 (MR0014069-14080)
- Agarwal et al., "An Analytical Cache Model," ACM Transactions. on Computer Systems,
 Vol. 7, No. 2, May 1989, pp. 184-215. (MR0014130-14162)
- Agarwal et al., "Scaleable Director Schemes for Cache Consistency (An Evaluation of Directory Schemes for Cache Coherence)," 15th International Symposium on Computer Architecture, June 1988, pp. 280-289. (MR0014163-14177)
- Bazes et al., "A Programmable NMOS DRAM Controller for Microcomputer Systems with Dual-Port Memory and Error Checking and Correction," *IEEE Journal of Solid State* Circuits, Vol. 18 No. 2, April 1983, pp. 164-172. (MR0014178-14188)
- Beresford. "How to Tame High Speed Design," High-Performance Systems, September 1989, pp. 78-83. (MR0014189-14196)
- Carson, "Advanced On-Focal Plane Signal Processing for Nonplanar Infrared Mosaics," SPIE, Mosaic Focal Plane Methodologies II, Vol. 311, 1981, pp. 53-58. (MR0014202-14209)
- Chesley, "Virtual Memory Integration," Submitted to IEEETC, September 1983.
 (MR0014210-14213)
- Davidson, "Electrical Design of A High Speed Computer Package," IBM Journal of Research and Development, Vol. 26, No. 3, May, 1982, pp. 349-361. (MR0014220-14234)
- Frank, "The SBUS: Sun's High Performance System Bus for RISC Workstations," *IEEE Compcon 1990*, pp. 189-194. (MR0014235-14242)
- Frisone, "A Classification for Serial Loop Data Communications Systems," Raleigh Patent Opertions, November 2, 1972.
- Hart, "Multiple Chips Speed CPU Subsystems," High Performance Systems, September 1989, pp. 46-55. (MR0014257-14264)

- Hawley, "Superfast Bus Supports Sophisticated Transactions," High Performance Systems,
 September 1989, pp. 90-94. (MR0014265-14271)
- Horowitz et al., "MIPS-X: A 20-MIPS Peak, 32-Bit Microprocessor with On-Chip Cache,"
 IEEE Journal of Solid State Circuits, Vol. SC-22 No. 5, October 1987, pp. 790-799.
 (MR0014272-14280)
- International Search Report, dated July 8, 1991 for PCT Patent Application No.
 PCT/US91/02590, filed April 16, 1991. (MR0014281-14282)
- Jeremiah et al., "Synchronous Packet Switching Memory and I/O Channel," IBM Technical Disclosure Bulletin, Vol. 24, No. 10, March 1982, pp. 4986-4987. (MR0014283-14286)
- Johnson et al., "A Variable Delay Line PLL for CPU-Coprocessor Synchronization," IEEE
 Journal of Solid-State Circuits, Vol. 23, No. 5, October 1988, pp. 1218-1223. (MR001428714293)
- Jones, "Synchronous Static Ram," Electronics and Wireless World, Vol. 93, No. 1622,
 December 1987, pp. 1243-1244. (MR0014294-14297)
- Kalter et al., "A 50-ns 16Mb DRAM with a 10-ns Data Rate and On-Chip ECC," IEEE
 Journal of Solid State Circuits, Vol. 25 No. 5, October 1990, pp. 1118-1128. (MR001429814308)
- Khan, "What's the Best Way to Minimize Memory Traffic," High Performance Systems, September 1989, pp. 59-67. (MR0014309-14319)
- Kimoto et al., "A 1.4ns/64kb RAM with 85ps/3680 Logic Gate Array," IEEE Custom Integrated Circuits Conference, May 1989, pp. 15.8.1-15.8.4. (MR0014320-14325)
- Kwon et al., "Memory Chip Organizations for Improved Reliability in Virtual Memories,"
 IBM Technical Disclosure Bulletin, Vol. 25, No. 6, November 1982, pp. 2952-2957.

 (MR0014326-14333)
- Margulis, "Single Chip RISC CPU Eases System Design," High Performance Systems,
 September 1989, pp. 34-36, 40-41, 44. (MR0014334-14341)

- Matick, "Comparis n of Memory Chip Organizations vs. Reliability in Virtual Memories,"
 FTCS 12th Annual International Symposium: Fault-Tolerant Computing, IEEE Computer
 Society Fault-Tolerant Technical Committee, June 22, 1982, pp. 223-227. (MR0014342-14348)
- Metzeger. "A 16K CMOS PROM with Polysilicon Fusible Links," IEEE Journal of Solid
 State Circuits, Vol. 18, No. 5, October 1983, pp. 562-567. (MR0014349-14356)
- Miller et. al., "High Frequency System Operation Using Synchronous SRAMS," Midcon/87 Conference Record, Chicago, IL, USA; September 15-17, 1987, pp. 430-432. (MR0014357-14362)
- Morgan, "The CVAX CMCTL-A CMOS Memory Controller Chip," Digital Technical Journal, No. 7, August 1988, pp. 139-143.
- Nogami et al., "A 9-ns HIT-Delay 32-kbyte Cache Macro for High-Speed RISC," IEEE
 Journal of Solid State Circuits, Vol. 25 No. 1, February 1990, pp. 100-108. (MR001436314373)
- Numata et al., "New Nibbled-Page Architecture for High Density DRAM's," *IEEE Journal of Solid State Circuits*, Vol. 24 No. 4, August 1989, pp. 900-904. (MR0014374-14380)
- Ohta et al., "A 1-Mbit DRAM with 33-MHz Serial I/O Ports," IEEE Journal of Solid State
 Circuits, Vol. 21 No. 5, October 1986, pp. 649-654. (MR0014381-14386)
- Pease et al., "Physical Limits to the Useful Packaging Density of Electronic Systems,"
 Standard Center for Integrated Systems, Stanford University, September 1988. (MR0014387)
- Peterson. "System-Level Concerns Set Performance Gains," High Performance Systems,
 September 1989, pp. 71-77. (MR0014388-14396)
- Poon et al., "A CMOS DRAM-Controller Chip Implementation," IEEE Journal of Solid State
 Circuits, Vol. 22 No. 3, June 1987, pp. 491-494. (MR0014397-14402)
- Schumacher et al., "CMOS Subnanosecond True-ECL Output Buffer," *IEEE Journal of Solid-State Circuits*, Vol. 25, No. 1, February 1990, pp. 150-154. (MR0014410-14416)

- Schmidt, "A Memory C ntrol Chip for Formatting Data into Blocks Suitable for Video Applications," *IEEE Transactions on Circuits and Systems*, Vol. 36, No. 10, October 1989, pp. 1275-1280. (MR0014403-14409)
- Towler et al., "A 128k 6.5ns Access/ 5ns Cycle CMOS ECL Static RAM," 1989 IEEE

 Journal International Solid State Circuits Conference, February 1989, pp. 30-32.

 (MR0014424-14426)
- Watanabe et al., "An Experimental 16-Mbit CMOS DRAM Chip with a 100-MHz Serial READ/WRITE Mode," *IEEE Journal of Solid State Circuits*, Vol. 24 No. 3, June 1982, pp. 763-770.
- Wendell et al., "A 3.5ns, 2Kx9 Self Timed SRAM," 1990 IEEE Symposium on VLSI Circuits,
 February 1990.
- Williams et al., "An Experimental 1-Mbit CMOS SRAM with Configurable Organization and Operation," *IEEE Journal of Solid State Circuits*, Vol. 23 No. 5, October 1988, pp. 1085-1094.
- Wong et al., "An 11-ns 8Kx18 CMOS Static RAM with 0.5-μm Devices," IEEE Journal of Solid State Circuits, Vol. 23 No. 5, October 1988, pp. 1095-1103.
- Wooley et al., "Active Substrate System Integration," Proceedings 1987 IEEE International
 Conference on Computer Design: VLSI in Computers & Processors, Rye Brook, New York
 October 5, 1987.
- Yang et al., "A 4-ns 4K x 1-bit Two-Port BiCMOS SRAM," IEEE Journal of Solid-State Circuits, Vol. 23, No. 5, October 1988, pp. 1030-1040.
- Yuen et al., "A 32K ASIC Synchronous RAM Using a Two-Transistor Basic Cell," *IEEE Journal of Solid State Circuits*, Vol. 24 No. 1, February 1989, pp. 57-61.

11. Other Patents and Printed Publications

- U.S. Patent No. 3,771,145, issued to Wiener, on 11/06/73 (MR0009910-9924)
- U.S. Patent No. 3,821,715, issued to Hoff, Jr. et al., on 06/28/74 (MR0009957-9967 and MR()08()789-80799)

- 11.S. Patent No. 3,950,735, issued to Patel, on 04/13/76
- U.S. Patent No. 4,007,452, issued to Hoff, Jr., on 02/08/77 (MR0010070-10079)
- U.S. Patent No. 4,315,308, issued to Jackson, on 02/09/82 (MR0010384-10397 and MR0054718-54731)
- U.S. Patent No. 4,330,852, issued to Redwine et al., on 05/18/82 (MR0055070-55078)
- U.S. Patent No. 4,338,569, issued to Petrich, on 07/06/82
- U.S. Patent No. 4,394,753, issued to Penzel, on 07/19/83 (MR0054509-54517)
- U.S. Patent No. 4,445,204, issued to Nishiguchi, on 04/24/84 (MR0010506-10515 and MR0054031-54040)
- U.S. Patent No. 4,481,572, issued to Ochsner, on 11/06/84 (MR0054264-54279)
- U.S. Patent No. 4,499,536, issued to Gemma et al., on 02/12/85 (MR0054010-54019 and MR0054862-54871)
- U.S. Patent No. 4,322,635, issued to Redwine, on 03/30/82
- U.S. Patent No. 4,628,489, issued to Ong, on 12/09/86
- U.S. Patent No. 4,631,659, issued to Hayn II, et al., on 12/23/86
- U.S. Patent No. 4,636,986, issued to Pinkham, on 01/13/87
- U.S. Patent No. 4,637,018, issued to Flora et al., on 01/13/87 (MR0054064-54072 and MR0054910-54918)
- U.S. Patent No. 4,680,738, issued to Tam, on 07/14/87 (MR0011206-11213 and MR0055062-55069)
- U.S. Patent No. 4,703,418, issued to James, on 10/27/87
- U.S. Patent No. 4,726,021, issued to Horiguchi et al., on 02/16/88
- U.S. Patent No. 4,754,433, issued to Chin et al., on 06/28/88 (MR0080474-80481)
- U.S. Patent No. 4,755,937, issued to Glier, on 07/05/88
- U.S. Patent No. 4,758,993, issued to Takemae, on 07/19/88 (MR0011396-11414)
- U.S. Patent No. 4,763,249, issued to Bomba et al., on 08/09/88 (MR0054216-54263 and MR()054461-54508)

- U.S. Patent No. 4,785,394, issued to Fischer, on 11/15/88 (MR0011498-11540 and MR0054658-54700)
- U.S. Patent No. 4,785,428, issued to Bajwa et al., on 11/15/88 (MR0054518-54529)
- U.S. Patent No. 4,845,664, issued to Aichelmann, Jr. et al., on 07/04/89 (MR0011781-11792)
- U.S. Patent No. 4,845,677, issued to Chappell et al., on 07/04/89 (MR0080459-80473)
- U.S. Patent No. 4,858,113, issued to Saccardi, on 08/15/89 (MR0054001-54009)
- U.S. Patent No. 4,870,562, issued to Kimoto et al., on 09/26/89
- U.S. Patent No. 4,875,192, issued to Matsumoto, on 10/17/89
- U.S. Patent No. 4,953,128, issued to Kawai et al., on 08/28/90 (MR0012398-12406)
- U.S. Patent No. 4,933,953, issued to Yagi, on 06/12/90
- U.S. Patent No. 4,998,262, issued to Wiggers et al., on 03/05/91 (MR0012633-12638 and MR0055332-55337)
- U.S. Patent No. 5,133,064, issued to Hotta et al., 07/21/92
- U.S. Patent No. 5,140,688, issued to White et al., on 08/18/92 (MR0013119-13127 and MR0080450-80458)
- U.S. Patent No. 5,276,846, issued to Aichelmann, Jr., et al., on 01/04/94
- U.S. Patent No. 5,361,277, issued to Grover, on 11/01/94 (MR0013772-13798 and MR0055494-55520)
- DE Patent No. 37 42 487, to Kawai et al., published on 07/88 (MR0054041-54050)
- European Patent Application EP 329,418, to Johnson et al., published on 08/23/89
- JP Patent Application No. 54-160587 (Kokai Sho 56-82961), to Kawamasa, published on 07/07/81 (MR0055235-55234)
- JP Patent Application No. 55-89232 (Kokai Sho 57-14922), to Taguri, published on 01/26/82 (MR0055891-55897)
- JP Patent Application No. 58-186919 (Kokai Sho 60-80193), to Hasegawa et al., published
 on 05/08/85 (MR0055903-55902)

- JP Patent Application No. S63-142445, to Taguchi et al., published on 06/14/88 (MR0054701-54717)
- JP Patent Application No. 62-71428 (Kokai Sho 63-239676), to Yamaguchi, published on 10/05/88 (MR0053856-53900 and MR0054732-54776)
- JP Patent Application No. 62-185253 (Kokai Sho 64-29951), to Kumagai et al., published on 01/31/89 (MR0054020-54030 and MR0054872-54882)
- JP Patent Application JP-A-01-284132, to Kosugi et al., published on 11/15/89 (MR0054073-54092 and MR0054919-54938)
- JP Patent Application JP-A-01-236494, to Akimoto, published on 09/21/89 (MR0054051-54063)
- PCT International Publication No. WO 91/16680, to Farmwald et al., published on 10/31/91 (MR0054322-54460)
- UK Patent Application No. GB 2,197,553, to Lofgren et al., published on 05/18/88 (MR0054883-54856)
- Anceau, "Synchronous Approach for Clocking VLSI Systems," Journal of Solid-State Circuit, Vol. SC-17, No. 1, February 1982, pp. 51-56.
- Chun et al., "A 1.2ns GaAs 4K Read Only Memory," IEEE Gallium Arsenide Integrated Circuit Symposium Technical Digest, November 1988, pp. 83-86.
- Chun et al., "A Pipelined 650MHz GaAs 8K ROM with Translation Logic," GaAs IC Symposium, 1990, pp. 139-142. (MR0014214-14219)
- "Fast Packet Bus for Microprocessor System with Caches," IBM Technical Disclosure Bulletin, January 1989, pp. 279-282.
- Gigabit Logic, 1988 GaAs IC Data Book and Designer's Guide, May 1988. (MR0081253-81459)
- Gigabit Logic, 1989 GaAs IC Data Book and Designer's Guide, August 1989. (MR0053901-54000 and MR0054777-54861)

- Graham et al. (Gigabit Logic), "Pipelined Static RAM Endows Cache Memories with 1-ns Speed," Electronic Design, December 27, 1984, pp. 157-170.
- Grover et al., "Precision Time-Transfer in Transport Networks Using Digital Crossconnect Systems," Globecom 1988.
- "ICs for Entertainment Electronics, Picture in Picture System Edition 8.89 (Siemens Picture-in-Picture System)", Siemens AG, February 1989.
- "Intel MCS-4 Micro Computer Set Datasheet," Intel Corp., January 1972. (MR0150048-150059)
- "Intel MCS-4 Micro Computer Set Users Manual," Intel Corp., January 1972. (MR0150060-150091)
- IEEE Standard for a Simple 32-Bit Backplane Bus: NuBus, ANSI/IEEE Std. 1196-1987 (MR0054530-54580)
- Jeong et al., "Design of PLL-Based Clock Generation Circuits," *IEEE Journal of Solid-State Circuits*, Vol. SC-22, No. 2, April 1987, pp. 255-261. (MR0080749-80758)
- Johnson
 - Johnson et al., "A Variable Delay Line Phase Locked Loop for CPU-Coprocessor Synchronization," 1988 IEEE International Solid-State Circuits Conference, Digest of Technical Papers, February 1988, pp. 142-143. (Hudson Exh. 55)
 - Johnson et al., "A Variable Delay Line PLL for CPU-Coprocessor Synchronization,"
 IEEE Journal of Solid-State Circuits, Vol. 23, No. 5, October 1988, pp. 1218-1223.
 (MR0014287-14293)
 - U.S. Patent No. 5,101,117, issued to Johnson et al., on 03/31/92 (MR0080759-80767)
- Kanopoulos, "A First-In, First-Out Memory for Signal Processing Applications," *IEEE Transactions on Circuits and Systems*, Vol. CAS-33, No. 5, May 1986, pp. 556-558.
- Knight et al., "Self Terminating Low Voltage Swing CMOS Output Driver," IEEE 1987

 Custom Integrated Circuits Conference, July 1987, pp. 289-292. (MR0054280-54283)

• Mattausch et al., "A Mem ry-Based High-Speed Digital Delay Line with a Large Adjustable Length," *IEEE Journal of Solid-State Circuits*, Vol. 23, No. 1, February 1988, pp. 105-110.

• MIPS

- MIPS R6000 System Bus & R6020 SBC Specification, August 22, 1989 (SGI0001598-1662)
- Thorson, "ECL Bus Controller Hits 266 Mbytes/s: MIPS R6020 Handles CPU, RAM,
 I/O Interface, Microprocessor Report, January 24, 1990 (Farmwald Exh. 1025)
- Kane et al., "MIPS RISC Architecture: MIPS RISC Processors, Reference for the R2000, R3000, R6000, and the new R4000 Reduced Instruction Set Computer Architecture."

 (Hudson Exh. 57)
- Rowen et al., "MIPS R3010 Coprocessor," *IEEE Micro*, June 1988, pp. 54-62. (Hudson Exh. 58)
- Hansen et al., "A RISC Microprocessor with Integral MMU and Cache Interface," IEEE,
 1986, pp. 145-148. (Moussouris Exh. 802)
- LSI Logic Preliminary Datasheet, "LR2000 High Performance RISC Microprocessor," September 1988. (Moussouris Exh. 805)
- LSI Logic Preliminary Datasheet, "LR2010 Floating-Point Accelerator, November 1988. (Moussouris Exh. 806)
- Motorola MC88200 Cache/Memory Management Unit User's Manual, published 1988.
 (MR0054093-54250 and MR0054939-55061)
- Ogiuc et al., "13-ns, 500-mW, 64-kbit ECL RAM Using HI-BICMOS Technology," IEEE
 Journal of Solid-State Circuits, Vol. SC-21, No. 5, October 1986, pp. 681-685.
 (MR0054284-54290)
- Ohno, "Self-Timed RAM: STRAM," Fujitsu Sci. Tech. Journal, Vol. 24, No. 4, December 1988, pp. 293-300.
- Pelgrom et al., "A 32KBIT Variable Length Shift Register for Digital Audio Application," . ESSCIRC, 1986, pp. 38-40.

- Pinkham et al., "A High Speed Dual Port M mory with Simultaneous Serial and Random Mode Access for Video Applications," *IEEE Journal of Solid-State Circuits*, Vol. SC-19, No. 6, December 1984, pp. 999-1007. (MR0080414-80424)
- Pinkham et al., "A 128Kx8 70-MHz Multiport Video RAM with Auto Register Reload and 8x4 Write Feature," *IEEE Journal of Solid State Circuits*, Vol. 23, No. 3, October 1988, pp. 1133-1139.
- Prince, High Performance Memories, 62-65 (rev. & updated ed., John Wiley & Sons, Ltd., 1999).
- Ramakrishna Rau et al., "Cydra 5 Departmental Supercomputer Design Philosophies, Decisions, and Trade-offs," Computer IEEE, January 1989, pp. 12-35.

• SCI

- Gustavson, et al., "The Scalable Coherent Interface Project (SuperBus)," SCI-22Aug88-doc1. (MR0054581-54605)
- Gustavson, "Scalable Coherent Interface," SCI-28Nov88-doc20, SLAC-Pub-4798.
 (MR0054606-54608)
- Gustavson, "Scalable Coherent Interface," Invited Paper, COMPCON Spring '89, San Francisco, CA; IEEE, February 27-March 3, 1989, pp. 536-538.
- Norsk Data Report, "A Proposal for SCI Operation by Knut Alnes," SCI-10Nov88-doc23.
 (MR0054639-54651)
- Norsk Data Report, "A Proposal for SCI Operation by Knut Alnes," SCI-6Jan89-doc 31.
 (MR0134926-134950)
- Bakka et al., "SCI: Logical Level Proposals," SCI-6Jan89-doc32. (MR0134951-134970)
- Kristiansen et al., "Scalable Coherent Interface," SCI-Feb89-doc52 to appear in Eurobus Conference Proceedings, Munich 9 and 10th of May 1989. (MR0135001-135008)
- Schanke. "Proposal for Clock Distribution in SCI," SCI-5May89-doc77. (MR0054634-54638)

- Kristiansen et al., "Scalable Coherent Interface," (SCI-Sep89-doc102) Eurobus Conference Proceedings, London, September 1989.
- Volz et al., "Position Paper on Global Clock for the Futurebus+," SCI-1989-doc89.
- James, "Scalable I/O Architecture for Buses," IEEE, 1989, pp. 539-544. (MR0054652-54657)
- "P1596: SCI, A Scalable Coherent Interface," SCI-28Nov88-doc2. (MR0054609-54633)
- Moussouris, "Life Beyond RISC: The Next 30 Years in High-Performance Computing," Computer Letter (The Advanced Systems Outlook), July 31, 1989. (Moussouris Exh. 162)
- Uvieghara et al., "An On-Chip Smart Memory for a Data-Flow CPU," IEEE Journal of Solid-State Circuits, Vol. 25, No. 1, February 1990, pp. 84-94. (MR0054897-54909)
- Watanabe, "Session XIX: High Density SRAMS," IEEE International Solid State Circuits Conference, 1987, pp. 266-267.
- Wiggers, "IEEE Standard for High-Bandwidth Memory Interface Based on SCI Signaling Technology (RamLink)," Draft 1.00, December 13, 1993.
- Wiggers, "RamLink High-Bandwidth Memory Interface Based on SCI Signaling Technology, P1596.4," Draft 0.49, June 28, 1993.

III. Prior Knowledge, Use or Sale

Prior Invention	Witnesses
SCI	David Gustavson
	1946 Fallen Leaf Lane
	Los Altos, CA 94024
	John Moussouris
	Chairman and CEO
	MicroUnity Systems Engineering, Inc.
	376 Martin Avenue
	Santa Clara, CA 95050
Intel MCS-4 Micro Computer	Marcian E. Hoff, Jr., Ph.D.
	12226 Colina Drive
and 4,007,452	Los Altos Hills, CA 94024
Intel MCS-4 Micro Computer Set, U.S. Patent Nos. 3,821,715, and 4,007,452	Santa Clara, CA 95050 Marcian E. Hoff, Jr., Ph.D. 12226 Colina Drive

Dated: September 28, 2001

JUL. Well.

Frederick L. Cottrell, Ill (I.D. 2555)
RICHARDS, LAYTON & FINGER
One Rodney Square, P.O. Box 551
Wilmington, DE 19899
(302) 658-6541
Attorneys for Plaintiff
Micron Technology, Inc.