Grafos Direcionados

Definição (Grau de Entrada)

O grau de entrada $d^-(v)$ de um vértice v é o número de arcos que tem v como cabeça.

Definição (Grau de Saída)

O grau de saída $d^+(v)$ de um vértice v é o número de arcos que tem v como cauda.

Grafos Direcionados

Para grafos não direcionados mostramos que a soma dos graus dos vértice é igual ao dobro do número de arestas. No caso dos grafos direcionados vale a seguinte relação

$$\sum_{v \in V(G)} d^+(v) = \sum_{v \in V(G)} d^-(v) = |E(G)|$$

Definição (Passeio Direcionado)

Um passeio (walk) em um grafo G é uma sequência não nula $W = v_0 e_1 v_1 e_2 \dots e_k v_k$, tal que para $i = 1, \dots, k$, v_{i-1} é a cauda de e_i e v_i é a cabeça de e_i . O inteiro k é o comprimento do passeio W.

Definição (Trajeto Direcionado)

Um passeio direcionado, onde não há repetição de arestas.

Definição (Caminho Direcionado)

Um passeio direcionado, onde não há repetição de vértices

Definição (Alcançabilidade)

Um nó u é alcançável a partir de v se e somente se existe um caminho direcionado que começa em v e termina em u.

Figure : f é alcançável a partir de b, mas b não é alcançável a partir de f

Definição (Grafo Fortemente Conexo)

Um grafo direcionado D = (V, E), é fortemente conexo se e somente se para todo para $u, v \in V$, u é alcançável a partir de v e vice-versa.

Definimos um conjunto de vértices S de um digrafo G = (V, E) como fortemente conexo se S tem apenas um vértice ou se existe caminho entre u e v, e v e u, para todo par de vértices u, $v \in S$.

A partir de então, definimos o conceito de componentes fortemente conexas.

Definição (Componentes Fortemente Conexas)

Seja V' um subconjunto dos vértices de um grafo G. Dizemos que V' é uma componente fortemente conexa de G se e somente se

- (i) o conjunto V' é fortemente conexo
- (ii) $\forall S$ tal que $V' \subset S \subseteq V$, S não é um conjunto fortemente conexo.

Uma classe de grafos direcionados particularmente importante é a classe dos grafos direcionados acíclicos.

Um grafo direcionado acíclico (DAG) é um grafo que não contém ciclos.

Os DAG's permitem modelar algumas situações de interesse como relações de precedência entre tarefas de um projeto. Considere que cada nó da Figura corresponde a uma tarefa e que um arco indica que uma tarefa tem que ser realizada antes da outra.

De acordo com o grafo a tarefa c tem que ser realizada antes da tarefa a e a tarefa a antes da tarefa e.

Em situações como a descrita podemos ter que encontrar uma ordem para realizar as tarefas do projeto. Em nosso exemplo uma ordem possível seria c-a-b-e-d-f. Outra ordem seria c-a-e-b-d-f.

Essas ordens são chamadas de ordenações topológicas para o grafo.

Formalmente, uma ordenação topológica para um grafo direcionado G = (V, E) é uma função que associa cada vértice v do grafo a um número inteiro f(v) no conjunto $\{1, \ldots, n\}$ e que satisfaz as seguintes condições:

- (i) $f(u) \neq f(v)$ para $u \neq v$
- (ii) Se $(u, v) \in E$ então f(u) < f(v)

A condição (i) garante que vértices diferentes recebem valores diferentes. A condição (ii) garante que se existe uma aresta ligando u a v então u recebe valor menor que v.

Para o grafo da Figura, a função f(c)=1, f(a)=2, f(b)=3, f(e)=4, f(d)=5, f(f)=6 é uma ordenação topológica.

Por outro lado, o grafo G = (V, E) com $V = \{a, b, c, d\}$ e $E = \{(a, b), (b, c), (c, a), (c, d)\}$ não admite uma ordenação topológica. Essa situação motiva a seguinte pergunta:

Quais grafos direcionados admitem uma ordem topológica?

Quais grafos direcionados admitem uma ordem topológica?

Vamos mostrar que somente os DAG's admitem uma ordenação topológica. O seguinte lema é útil para chegar esta conclusão.

Lema

Em um DAG existe um vértice com grau de entrada 0.

Prova. Podem existir vários caminhos em um DAG. Dentre todos estes caminho, seja $P = v_1 \dots v_k$ um caminho no DAG tal que nenhum outro é mais longo que ele. Vamos mostrar que v_1 , o primeiro vértice deste caminho, tem grau de entrada 0.

Seja v um vértice qualquer do grafo. Devemos mostrar que v não aponta para v_1 . Para isso, dividimos a argumentação em dois casos:

Caso 1.) v não está em P. Então v não aponta para v_1 , caso contrário o caminho $v\to P$ seria mais longo que P, o que não é possível.

Caso 2). $v \in P$. Então, v não pode apontar para v_1 , caso contrário teríamos um ciclo no grafo.

Theorem

Um grafo direcionado admite uma ordenação topológica se e somente se ele é acíclico

Prova. Primeiro vamos mostrar que se um grafo G tem um ciclo então ele não admite uma ordem topológica.

Vamos assumir que G tem simultaneamente um ciclo C e uma ordenação topológica f e, concluir então, que tal hipótese leva a uma contradição.

Seja v o vértice com menor valor de f no ciclo. Além disso, seja u o predecessor de v no ciclo. Temos que $(u,v) \in E$ e f(u) > f(v), o que contradiz o fato de f ser uma ordenação topológica.

Por outro lado, podemos mostrar que se G não tem ciclos então G admite uma ordem topológica. A prova utiliza indução no número de vértices.

Base. G tem apenas um vértice v. Neste caso f(v) = 1 é uma ordenação topológica para G.

Passo Indutivo. Se todo grafo acíclico G com k vértices admite uma ordenação topológica então todo DAG com k+1 vértices admite uma ordenação topológica.

Prova do Passo. Seja G um grafo com k+1 vértices e seja v um vértice com grau de entrada 0 cuja existência é garantida pelo lema anterior. Note que o grafo G-v é acíclico e tem k vértices. Logo, por hipótese, G-v admite uma ordem topológica, que vamos chamar de f'. Portanto, a função f definida como f(u)=1+f'(u) para todo $u\in V-v$ e f(v)=1 é uma ordem topológica para G

A partir da prova do teorema anterior podemos extrair um algoritmo recursivo para obter uma uma ordenação topológica para um DAG G. O procedimento utiliza um vetor global f com n posições que será preenchido com os valores da ordenação topológica. Este vetor pode ser iniciado com valores 0.

```
Procedimento OrdemTopologica(G)
Se G tem apenas um vértice v
   f(v) = 1
Senão
   Seja v um vértice de grau de entrada 0 em G
   OrdemTopologica (G - v)
   Para todo vértice u de G-v
     f(u) \leftarrow f(u) + 1
   Fim Para
   f(v) \leftarrow 1
Fim Se
```