HOMEWORK 3 SOLUTIONS

1. Problem 1

From Artin, we may construct \mathbb{F}_4 as having the elements $\{0, 1, \alpha, \alpha + 1\}$ with characteristic 2 where α is a root of $x^2 + x + 1$. Now, in $\mathbb{F}_2[x]$ as per Artin,

$$x^{16} - x = x(x-1)(x^2 + x + 1)(x^4 + x^3 + x^2 + x + 1)(x^4 + x^3 + 1)(x^4 + x + 1)$$

We have $x^2 + x + 1 = (x - \alpha)(x - (\alpha + 1))$ in $\mathbb{F}_4[x]$. We now consider the degree 4 polynomials. These split completely in \mathbb{F}_{16} as they divide $x^{16} - x$. The minimal polynomial in $F_4[x]$ of any of the roots β is $(x - \beta)(x - \phi^2(\beta)) \cdots (x - \phi^{2n}(\beta))$ where ϕ is the Frobenius function and n is the minimal integer such that $\phi^{2n+2}(\beta) = \beta$. This n is equal to 1 as $\beta \in \mathbb{F}_{16}$, and so satisfies $\phi^4(\beta) = \beta^{16} = \beta$ and does not satisfy this condition for a lower n as this would imply it is an element of a subfield of \mathbb{F}_{16} . Then each degree 4 polynomial splits as $(x - \beta)(x - \phi^2(\beta)) \cdot (x - \phi(\beta))(x - \phi^3(\beta)) = (x^2 - (\beta + \beta^4) + \beta^5)(x^2 - (\beta^2 + \beta^8) + \beta^{10})$ in $F_4[x]$.

Let $\mathbb{F}_{16} = \mathbb{F}_2[\gamma]$ where γ is a root of $x^4 + x + 1$ (we may do this by a lecture result). Now γ^3 is a root of $x^4 + x^3 + x^2 + 1$ and $\gamma^3 + 1$ is a root of $x^4 + x^3 + 1$ by direct computation with the modulus. In the case of $x^4 + x + 1$, it splits into $x^2 + (\gamma + \gamma^4) + \gamma^5 = x^2 + x + (\gamma^2 + \gamma) = x^2 + x + \alpha$ and $x^2 + (\gamma^2 + \gamma^8) + \gamma^{10} = x^2 + x + (\alpha + 1)$. We note that we have set $\alpha = \gamma^2 + \gamma$, noting our choice is arbitary as both $\gamma^2 + \gamma$ and $\gamma^2 + \gamma + 1$ satisfy $x^2 + x + 1 = 0$. Proceeding in a similar manner with the other polynomials by letting β equal γ^3 and $\gamma^3 + 1$, we find

$$x^{16} - x = x(x-1)(x-\alpha)(x-(\alpha+1)) \cdot (x^2 + \alpha x + 1)(x^2 + (\alpha+1)x + 1) \cdot (x^2 + \alpha x + \alpha)(x^2 + (\alpha+1)x + (\alpha+1)) \cdot (x^2 + x + \alpha)(x^2 + x + (\alpha+1))$$

gives the complete factorisation in $\mathbb{F}_4[x]$.

1

Over \mathbb{F}_8

Consider that the degree 2 and degree 4 polynomials split completely in $\mathbb{F}_{2^{12}}$, as they split completely in $\mathbb{F}_{16} \subset \mathbb{F}_{2^{12}}$ as above. Letting a root of the degree 2 polynomial be α , it splits as $(x - \alpha)(x - \phi(\alpha))$ as the degree of the polynomial is 2 and $\phi^n(\alpha)$ for $n \in \mathbb{Z}^+$ are the conjugates of α . Over $\mathbb{F}_8 \subset \mathbb{F}_{2^{12}}$, the minimimal polynomial of α is given by $(x - \alpha)(x - \phi^3(\alpha)) \cdots (x - \phi^{3n}(\alpha))$ where n is minimal such that $\phi^{3n+3}(\alpha) = \alpha$. We must have $\phi^2(\alpha) = \alpha$ where $\phi(\alpha) \neq \alpha$ for the factorisation to hold, so $\phi^3(\alpha) = \phi(\alpha)$, $\phi^6(\alpha) = \alpha$, and the minimal polynomial over \mathbb{F}_8 is the same.

For any of the degree 4 polynomials, we again set a root as α and note that the polynomial must split as $(x-\alpha)(x-\phi(\alpha))(x-\phi^2(\alpha))(x-\phi^3(\alpha))$. The minimal polynomial of α over \mathbb{F}_8 is $(x-\alpha)(x-\phi^3(\alpha))\cdots(x-\phi^{3n}(\alpha))$ where n is minimal such that $\phi^{3n+3}(\alpha)=\alpha$ as before. Then noting $\phi^4(\alpha)=\alpha$ (and this is minimal), we have $\phi^6(\alpha)=\phi^2(\alpha), \phi^9(\alpha)=\phi(\alpha), \phi^{12}(\alpha)=\alpha$. Then the minimal polynomial is the same over \mathbb{F}_8 . Thus

$$x^{16} - x = x(x-1)(x^2 + x + 1)(x^4 + x^3 + x^2 + x + 1)(x^4 + x^3 + 1)(x^4 + x + 1)$$

gives the complete factorisation in $\mathbb{F}_8[x]$

2. Problem 2

Let $R \subset S$ be an inclusion of rings. Suppose we have an isomorphism

$$S \cong R[x_1, \dots, x_n]/I$$
,

where x_1, \ldots, x_n are variables and $I \subset R[x_1, \ldots, x_n]$ is an ideal. Such an isomorphism is called a *presentation* of S over R.

Let A be another ring and suppose a ring homomorphism $i: R \to A$ is given. A presentation of S over R gives us all the ways of extending i to a ring homomorphism $S \to A$. This is because a ring homomorphism $R[x_1, \ldots, x_n] \to A$ extending i is determined uniquely by the images of x_1, \ldots, x_n and such a homomorphism is well-defined modulo I if and only if it sends I to 0.

2. a

Find a presentation for $\mathbb{Q}[\sqrt[3]{2}]$ over \mathbb{Q} . Use it to determine all homomorphisms

$$\mathbb{Q}[\sqrt[3]{2}] \to \mathbb{C}.$$

What are the images of these homomorphisms?

Answer

Firstly note in assignment 1 it was shown $x^3 - 2$ is the minimal rational polynomial with $\sqrt[3]{2}$ as a root. Hence it follows from proposition 15.2.6 that

$$\mathbb{Q}[\sqrt[3]{2}] \cong \mathbb{Q}[x]/(x^3 - 2)$$

which indicates $\mathbb{Q}[x]/(x^3-2)$ is the presentation of $\mathbb{Q}[\sqrt[3]{2}]$ over \mathbb{Q} . As the only homomorphism from \mathbb{Q} to \mathbb{C} is the identity homomorphism it follows that for a homomorphism $f: \mathbb{Q}[x]/(x^3-2) \to \mathbb{C}$ to exist it must satisfy $f(x)^3-2=0$. This leads to three possible homomorphisms each defined by how they uniquely act on x

$$f_1: \mathbb{Q}[x]/(x^3-2) \to \mathbb{C}$$
 where $f_1(x) = \sqrt[3]{2}$ with image $\mathbb{Q}[\sqrt[3]{2}]$

$$f_2: \mathbb{Q}[x]/(x^3-2) \to \mathbb{C}$$
 where $f_2(x) = \zeta_3 \sqrt[3]{2}$ with image $\mathbb{Q}[\zeta_3 \sqrt[3]{2}]$

$$f_3: \mathbb{Q}[x]/(x^3-2) \to \mathbb{C}$$
 where $f_3(x) = \zeta_3^2 \sqrt[3]{2}$ with image $\mathbb{Q}[\zeta_3^2 \sqrt[3]{2}]$

It is not necessary to know that $\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}\$ is a basis. You only require the weaker and immediate condition that the set spans, so that

 $\dim_{\mathbf{Q}} \mathbf{Q}[\sqrt{2}, \sqrt{3}] \leq 4.$

2. b

Do the same for $\mathbb{Q}[\sqrt{2}, \sqrt{3}]$ over \mathbb{Q} .

Answer

It is important to note that $\sqrt{2} + \sqrt{3}$ is a primitive element of $\mathbb{Q}[\sqrt{2}, \sqrt{3}]$. Trivially $\sqrt{2} + \sqrt{3} \in \mathbb{Q}[\sqrt{2}, \sqrt{3}]$ which indicates $\mathbb{Q}[\sqrt{2} + \sqrt{3}] \subset \mathbb{Q}[\sqrt{2}, \sqrt{3}]$. Now consider that Example 15.4.4 indicates the set $1, \sqrt{2}, \sqrt{3}, \sqrt{6}$ forms a basis for the vector space $\mathbb{Q}[\sqrt{2}, \sqrt{3}]$ over \mathbb{Q} , hence $\mathbb{Q}[\sqrt{2}, \sqrt{3}]$ is a degree 4 extension of \mathbb{Q} . Examples 15.4.1 and 15.4.4 also provide that $\sqrt{2} + \sqrt{3}$ is a root of the irreducible polynomial $x^4 - 10x^2 + 1$ hence it follows that $\mathbb{Q}[\sqrt{2} + \sqrt{3}]$ is a degree 4 extension sion of \mathbb{Q} . Two degree four extensions of \mathbb{Q} cannot be subfields of one another hence it follows that $\mathbb{Q}[\sqrt{2}+\sqrt{3}] \subset \mathbb{Q}[\sqrt{2},\sqrt{3}]$ implies $\mathbb{Q}[\sqrt{2}+\sqrt{3}] = \mathbb{Q}[\sqrt{2},\sqrt{3}]$.

As $\mathbb{Q}[\sqrt{2}, \sqrt{3}] = \mathbb{Q}[\sqrt{2} + \sqrt{3}]$ it is equivalent to find a presentation of $\mathbb{Q}[\sqrt{2} + \sqrt{3}]$ over \mathbb{Q} . Note as stated earlier $x^4 - 10x^2 + 1$ is an irreducible polynomial over \mathbb{Q} with $\sqrt{2} + \sqrt{3}$ as a root of the polynomial. Therefore by proposition 15.2.6

$$\mathbb{Q}[\sqrt{2} + \sqrt{3}]\mathbb{Q}[x]/(x^4 - 10x^2 + 1)$$

which indicates $\mathbb{Q}[x]/(x^4-10x^2+1)$ is the presentation of $\mathbb{Q}[\sqrt{2}+\sqrt{3}]$ over \mathbb{Q} . As the only homomorphism from \mathbb{Q} to \mathbb{C} is the identity homomorphism it follows that for a homomorphism $f: \mathbb{Q}[x]/(x^4-10x^2+1) \to \mathbb{C}$ to exist it must satisfy $f(x)^4 - 10f(x)^2 + 1 = 0$. This leads to four possible homomorphisms each defined by how they uniquely act on x. Note example 15.4.3 of the textbook gives all of the roots of the polynomial $x^4 - 10x^2 + 1$ hence the homomorphisms are given by

Here one observes that

$$4 = \dim_{\mathbf{Q}} \mathbf{Q}[\sqrt{2} + \sqrt{3}]$$

$$\leq \dim_{\mathbf{Q}} \mathbf{Q}[\sqrt{2}, \sqrt{3}] \leq 4.$$

 $\begin{array}{c} f_1:\mathbb{Q}[x]/(x^4-10x^2+1)\to\mathbb{C} \text{ where } f_1(x)=\sqrt{2}+\sqrt{3}\\ \text{ with image } \mathbb{Q}[\sqrt{2}+\sqrt{3}] \end{array}$

$$f_2: \mathbb{Q}[x]/(x^4 - 10x^2 + 1) \to \mathbb{C}$$
 where $f_2(x) = -\sqrt{2} - \sqrt{3}$ with image $\mathbb{Q}[\sqrt{2} + \sqrt{3}]$

$$\begin{split} f_2: \mathbb{Q}[x]/(x^4 - 10x^2 + 1) &\to \mathbb{C} \text{ where } f_2(x) = -\sqrt{2} - \sqrt{3} \\ \text{with image } \mathbb{Q}[\sqrt{2} + \sqrt{3}] \end{split}$$

$$f_3: \mathbb{Q}[x]/(x^4 - 10x^2 + 1) \to \mathbb{C} \text{ where } f_3(x) = \sqrt{2} - \sqrt{3} \\ \text{with image } \mathbb{Q}[\sqrt{2} - \sqrt{3}] \end{split}$$

$$\leq \dim_{\mathbf{Q}} \mathbf{Q}[\sqrt{2}, \sqrt{3}] \leq 4.$$
 $f_4: \mathbb{Q}[x]/(x^4 - 10x^2 + 1) \to \mathbb{C} \text{ where } f_3(x) = -\sqrt{2} + \sqrt{3} \text{ with image } \mathbb{Q}[\sqrt{2} - \sqrt{3}]$

0 Need to make clear that the images of $\mathbf{Q}[\sqrt{2},\sqrt{3}] \to \mathbf{C}$ are all the same field ...

3. Problem 3

Problem 3.

Let p be a prime number and let $\zeta_p = e^{\frac{2\pi i}{p}}$. Then let $F = \mathbb{Q}[\zeta_p]$. Then consider that ζ_p satisfies the polynomial $x^p - 1$. Which is reducible as

$$x^{p} - 1 = (x - 1)(x^{p-1} + \dots + x + 1)$$

Then consider $f(x) = x^{p-1} + ... + x + 1$ for p > 2 then p is odd and so there are p-1 non constant terms so consider f(x) in $\mathbb{F}_2[x]$ then since p-1 is even it holds that

$$1^{p-1} + \ldots + 1 + 1 = 1$$

and

$$0^{p-1}+\ldots+0+1=1$$

and so $f(x) = x^{p-1} + ... + x + 1$ is irreducible and $f(\zeta_p) = 0$. Then consider the substitution map

$$\mathbb{Q}[x] \to \mathbb{Q}[\zeta_p]$$

given by the substitution $x \mapsto \zeta_p$. Then the kernel of this map is the ideal $(x^{p-1} + ... + x + 1)$ and so by the first isomorphism theorem we have an isomorphism

$$\varphi: \mathbb{Q}[x]/(x^{p-1}+\ldots+x+1) \to \mathbb{Q}[\zeta_p]$$

Therefore we have a presentation of $\mathbb{Q}[\zeta_p]$. Then taking $i: \mathbb{Q} \to \mathbb{Q}[\zeta_p]$ to be the inclusion map of \mathbb{Q} in $\mathbb{Q}[\zeta_p]$. Then we can extend this to a map $\mathbb{Q}[x] \to \mathbb{Q}[\zeta_p]$ by choosing where to send x. To be well defined modulo $(x^{p-1}+\ldots+x+1)$, then it must send $(x^{p-1}+\ldots+x+1)$ to 0. Therefore x must be sent to a root of $(x^{p-1}+\ldots+x+1)$ in $\mathbb{Q}[\zeta_p]$ these are the complex p roots of unity.

$$\zeta_p, \zeta_p^2, ..., \zeta_p^{p-1}$$

Hence we have p-1 choices of isomorphisms

$$\psi_k : \mathbb{Q}[x]/(x^{p-1} + \ldots + x + 1) \to \mathbb{Q}[\zeta_p]$$

and so we have the commutative diagram

Then we have p-1 automorphisms $F \to F$.

We now seek to describe the automorphism group Aut(F). To do this consider the automorphism ϕ_i acquired from sending x to ζ_p^i and the automorphism ϕ_j acquired from sending x to ζ_p^j . Then consider the composition $\phi_i \circ \phi_j$. Then if we begin with ζ_p then this maps to ζ_p^i which then is mapped to by x^i which then maps to ζ_p^{ij} which then corresponds to the automorphism acquired by

This argument only shows that

$$x^{p-1}+\cdots+1$$

has no roots. It does not show that it is irreducible.

Irreducibility can be proved via Eisenstein (Artin Theorem 12.4.9, or Lecture March 6 notes, p. 6).

The presentation φ and the maps ψ_k to be constructed are two completely independent maps. In fact ψ_k is simply an-...

Expand •

4. Problem 4

Q4 A presentation for k over F is $\frac{F(x)}{(x^p-x)} \cong F(x^p)$. Proof: Consider $\phi: FEXJ \to FEX^{\dagger}J$ which acts as the identity on F and sends X to X^{\dagger} . It is a ring homomorphism following the same reason as before. Then, $\ker(\phi) = \{f(x) \in F(x) \mid f(x^{\dagger}) = 0\}$ and $\lim_{x \to \infty} (\phi) = F(x) = f(x)$. Claim that $x^{p}-1$ is imeducible over F. It suffices to show that $deg_F k = P$. We know that $W \in Q[Sp] \in Q[Sp, 2^{\frac{1}{2}}]$, $W \in Q[2^{\frac{1}{2}}] \in Q[Sp, 2^{\frac{1}{2}}]$. $deg_{Q}(Sp) = p-1$ and deg (2) = P by Eisenstein Criteria. By multiplicative property, we have $p(p-1) \mid deg_{ij} (Q[S_p, 2^{\dagger}])$ and hence $p(p-1) \leq \frac{1}{2}$ $\deg_{\mathcal{U}} \mathbb{Q}[s_p, 2^{\frac{1}{p}}]$ since $p \mid \deg_{\mathcal{U}} \mathbb{Q}[s_p, 2^{\frac{1}{p}}], p-1 \mid \deg_{\mathcal{U}} \mathbb{Q}[s_p, 2^{\frac{1}{p}}]$, and (p, p-1) = 1As $2^{\frac{1}{p}}$ Socisfies $x^{\frac{p}{2}}$ -2 which is irreducible over Q, then $\deg_{Q(2^{\frac{1}{p}})} < p$. Then, by multiplicative property, we have $\deg_{\mathbb{R}} \mathbb{Q}[S_p, 2^{t}] \leq p(p-1)$ Su, deg (QCSp, 2t) = P(P-1) and hence deg (QCSp) (QCSp, 2t) = p. Hence, $X^{P}-1$ is irreducible over QCSpJ. Then, $ker(\phi) = (x^{p}-1)$ since $F = Q(S_{p})$ is a field and hence F(x) is a principle ideal clomain by theorem. By the first isomorphism theorem, we have FEXT/(xP-1) = FIx = K. • There are p-1 homomorphisms from F to $F \in \mathcal{F}_{2}$: Following the same construction from Q_{3} , as nots of $x^{74} + x^{94} + \dots + 1 : Sp, Sp^{1}, \dots, Sp^{84} \in F[1]$, then there are p-1 homomorphisms from $F \neq 0$ $F \in L_{2}^{\frac{1}{p}} = 2$ for all $k = 0, \dots, p-1$.

By fundamental theorem of algebra. there are p roots of $x^{p}-1$ in $0 = 2^{\frac{1}{p}}$, $2^{\frac{1}{p}} S_{p}$, $1^{\frac{1}{p}} S_{p}^{-1}$.

As $2^{\frac{1}{p}}$, $2^{\frac{1}{p}} S_{p}^{-1}$, $1^{\frac{1}{p}} S_{p}^{-1} = K$, then there are p roots of $x^{p}-2$ in $K = 2^{\frac{1}{p}}$, $2^{\frac{1}{p}} S_{p}^{-1}$, $1^{\frac{1}{p}} S_{p}^{-1}$.

So, by mapping property of polynomial ring we have p(p-1) ring homomorphisms $V_{K,k}$ from $K = F \in L^{\frac{1}{p}} = \frac{F \cap L^{\frac{1}{p}}}{(x^{\frac{1}{p}}-1)}$ to K with $1 \leq K \leq p$: $V_{1,k}(a_{p+1}x^{p+1}+a_{p+1}x^{p-1}+\cdots+a_{m}) = V_{k}(a_{p+1})(2^{\frac{1}{p}} S_{p})^{p+1} + V_{k}(a_{p-1})(2^{\frac{1}{p}} S_{p})^{p+1} + \cdots + V_{k}(a_{m})$ $V_{p,k}(a_{p+1}x^{p+1}+a_{p+1}x^{p-1}+\cdots+a_{m}) = V_{k}(a_{p+1})(2^{\frac{1}{p}} S_{p})^{p+1} + V_{k}(a_{p-1})(2^{\frac{1}{p}} S_{p})^{p+1} + \cdots + V_{k}(a_{m})$ where $a_{i} \in F$ with $a_{i} \in S_{i} = 1$ and $a_{i} \in F$ $i \in F$ defined as in $a_{i} \in S_{i}$ with $a_{i} \in S_{i} \in S_{i} = 1$.

 $\begin{aligned} & \psi_{p,\ell}\left(\alpha_{p+1}x^{p+1} + \alpha_{p+2}x^{p+2} + \cdots + \alpha_{\omega}\right) = \Psi_{\ell}(\alpha_{p+1})\left(2^{\frac{1}{p}}x^{p+1}\right)^{\frac{p}{p+1}} + \Psi_{\ell}(\alpha_{p+2})\left(2^{\frac{1}{p}}x^{p+1}\right)^{\frac{p}{p+2}} + \cdots + \Psi_{\ell}(\alpha_{\omega}) \end{aligned}$ where $\alpha_{i} \in F$ with $0 \le i \le p-1$ and $\Psi_{\ell} : F \longrightarrow F$ defined as in Ω_{3} with $1 \le \ell \le p-1$. $As \quad \forall k, \ell \mid_{F} = \Psi_{\ell} \quad \text{for all} \quad 1 \le k \le p \quad 1 \le \ell \le p-1 \quad \text{and} \quad \Psi_{\ell} = \overline{L}d \mid_{F} \quad \text{if}$ $\ell = 1 \quad \text{and} \quad \text{hence there are} \quad p \quad \text{homomorphisms from } k \quad \text{to } k \quad \text{restricting to the identity on } F.$

Qs

There are $\frac{p^n+1}{2}$ perfect square if p is odd, p^n perfect square if p is even.

There are $\frac{p^n-1}{\gcd(p^n-1,d)}+1$ perfect dth power.

We know that k^{\times} is a cyclic group, say $k^{\times} = \{1, g, g^{2}, ..., g^{p^{n}-2}\}$ where $g \in k^{\times}$ is a generator of k^{\times} .

Then, the number of elements in k are perfect of the power = the number of distinct elements in $\{1, g^d, (g^d)^2, ..., (g^d)^{p^{k-1}}\} \cup \{0\} = \operatorname{ord}(g^d) + 1 \text{ as } D \notin k^k$ but O is a perfect of the power in k.

Claim that $\operatorname{ord}(g^d) = \frac{\operatorname{ord}(g)}{\operatorname{gcd}(\operatorname{ord}(g), d)} = \frac{p^{n-1}}{\operatorname{gcd}(p^{n-1}, d)}$

First, we have $(g^{a})^{\frac{p^{n}-1}{9cd(p^{k}-1,a)}} = g^{p^{n}-1}(\frac{a}{9cd(p^{k}-1,a)}) = 1$ since $ard(g) = |k^{k}| = p^{n}-1$ and $gcd(p^{n}-1,a) \mid d$.

So, and $(g^d) \left| \frac{p^n-1}{\gcd(p^n-1,d)} \right| = -\frac{\operatorname{ord}(g)/\gcd(\operatorname{ord}(g),d)}{\operatorname{ord}(g^d)}$

Let $n = \overline{ord(g)}, n' = \overline{ord(g^d)}, \lambda = gcd(n,d), n_0 = \frac{n}{\lambda}$, and $d_0 = \frac{d}{\lambda}$.

Then, we have $(n_0, d_0) = 1$. •-- (E.g., by Bezout)

As $1 = \alpha^{dn'} = \alpha^{ndon'}$, then $n \mid \lambda don'$ and hence $\frac{\lambda don'}{n} = \frac{don'}{n_o} \in \mathbb{Z}$

than n, since n is already used as the exponent for the cardi-

 $n = \log_p(\operatorname{ord}(g) + 1).$

As $(n_0, d_0) = 1$, then $n_0 \mid n'$ and hence $\frac{\operatorname{ord}(g)}{\operatorname{gcd}(\operatorname{ord}(g), d)} \mid \operatorname{ord}(g^d)$

So, $\operatorname{ord}(g^d) = \frac{\operatorname{ord}(g)}{\operatorname{gcd}(\operatorname{ord}(g), d)}$ and hence there are $\frac{p^n-1}{\operatorname{gcd}(p^n-1, d)} + 1$ perfect of the power.