Data reduction

- Sufficient statistic
- How to find a sufficient statistic
 - (Neyman-Fisher) Factorization theorem. Theorem 6.2.6
 - Exponential family (Theorem 6.2.10)
 - Transformation
- Minimal Sufficient Statistics
 - Theorem 6.2.13
 - Exponential family
- Complete Statistics

Note: Exponential family vs Non-regular family (e.g. Uniform[$0,\theta$])

Methods for finding MLEs

- Look at a graph of the likelihood function (monotonicity).
- Calculus method: Take partial derivative of log-likelihood with respect to each parameter and solve the likelihood equations.

Note: Don't forget to check the second order condition!

• Invariance property of MLEs: MLE of a function of θ is the function applied to MLE of θ (Theorem 7.2.10)

Important Concepts in Bayes Estimation

- prior distribution of θ : $\theta \sim \pi(\theta)$. Conjugate priors: The posterior is in the same family as the prior regardless of the data observed.
- posterior distribution of θ : $\pi(\theta|\mathbf{x}) = f(\mathbf{x}|\theta)\pi(\theta)/m(\mathbf{x})$
- marginal distribution of \mathbf{x} : $m(\mathbf{x}) = \int f(\mathbf{x}|\theta)\pi(\theta)d\theta$
- posterior mean of θ : $E(\theta|\mathbf{X}) = \int \theta \pi(\theta|\mathbf{X}) d\theta$ (Bayes estimator of θ)