

CA378-AOIS for TinkerBoard Software Setup Guide

Version 1.0.1

Dated: 2019/12/05

Home Page https://www.centuryarks.com/en/products/cm

History

Date	Version	Comment
2019/10/25	v1.0.0	Initial Release
2019/12/05	V1.0.1	Update ISP file, Reverse streaming image, Update image size

Contents

- 1. Notes
- 2. Environment configuration
- 3. Driver install
- 4. Software install
- 5. Demonstration functions
 - 5.1. Focus & OIS
 - 5.2. 4K3K-resolution(12Mpixel) still image capturing
 - 5.3. Capture image
 - 5.4. Movie recording
 - 5.5. Build demo software
 - 5.6 Reverse streaming image

Appendix

- A.1. Directory structure
- A.2. Setting file

1. Notes

This document is for building kernel directly on a running TinkerBoard board and setup software.

Hardware: TinkerBoard

OS:TinkerOS Debian9 v2.0.8

CSI Hardware: CenturyArks CA378-AOIS(Sony IMX378)

For inquiries regarding this document, please email below.

ca-qa@centuryarks.com

2. Environment configuration

There are two types of environment construction procedures.

1:Procedure for using kernel, driver and software installed TinkerOS image.

2:Manual installation procedure of kernel, driver and demo software.

2.1. Procedure for using kernel, driver and software installed TinkerOS image.

OS:TinkerOS Debian9 v2.0.8(Kernel v4.4.132)

Demo soft:v1.0.1

(1-1)Please download the following image.

https://www.centuryarks.com/images/product/sensor/2019-12-05-tinkeros-v1.0.1 CA378-AOIS.zip

(1-2)Write the image file to the SD card. For windows win32diskimager, for Linux balenaEtcher.

(1-3) Start Tinker board.

ID:linaro

PASSWORD:linaro

(1-4)This image file contains the kernel, drivers, and demo software, so the steps up to Chapter 4 are not necessary.

2. Environment configuration

- 2.2. Manual installation procedure of kernel, driver and demo software.
- (2-1) Download and write TinkerOS image to SD card.

https://github.com/TinkerBoard/debian_kernel/releases/download/2.0.8/20181023-tinker-board-linaro-stretch-alip-v2.0.8.img.zip

(2-2) Start Tinker board.
ID:linaro
PASSWORD:linaro

3. Driver install

- Prerequisites
- 1. Prepare kernel source
- 2. Build and install new Linux kernel

Step 1. Prepare kernel source

Download the attached file to home directory on Tinker board and run the following command.

https://github.com/centuryarks/CA378-

AOIS/releases/download/TINKER v1.0.1 v4.4.132(Debian9 v2.0.8)/CA378 v1.0.1 TinkerOS De bian v2.0.8 src build.tar.gz

tar -zxvf CA378_v1.0.1_TinkerOS_Debian9_v2.0.8_src_build.tar.gz

cd CA378_v1.0.1_TinkerOS_Debian9_v2.0.8_src_build

./PrepareKernelSources.sh

Step 2. Build and install new Linux kernel

Build and install kernel module with the following command

./BuildKernelSources.sh

Reboot

sudo reboot

4. Software install

Please install by the following procedure.

- · Installation procedure
- 1. Download "demo_v1.0.1_tinker.tar.gz "from the following site.

 https://github.com/centuryarks/Sample/releases/download/TINKER_v1.0.1_v4.4.132(Debian9_v2.0.8)/demo_v1.0.1_tinker.tar.gz

```
# wget --no-check-certificate ¥ "https://github.com/centuryarks/Sample/releases/download/TINKER_v1.0.1_v4.4.132(Debian9_v2.0.8)/demo_v1.0.1_tinker.tar.gz"
```

2. Unzip "demo_v1.0.1_tinker.tar.gz" file.

tar -zxvf demo_v1.0.1_tinker.tar.gz

3. Execute "Install.sh" in the extracted folder.

cd demo

./Install.sh

4. A shortcut is created on the desktop.

DEMO

5. Demonstration functions

- 5.1. Focus & OIS
- 5.2. 4K3K-resolution(12Mpixel) still image capturing
- 5.3. Capture image
- 5.4. Movie recording
- 5.5. Build demo software
- 5.6 Reverse streaming image

Procedure of starting Focus & OIS:

1. Click "DEMO" on the desktop.

- 2. Please change the distance of the object, or move the camera, confirm the function.
 - * For details of functions, refer to page 12.

Procedure of finishing Focus & OIS:

1. Click the [x]

The following section describes each function of Focus & OIS.

Function	Description	
LSC	Check to enable shading correction. X Theoretical values have been set.	
Exposure/Gain	Exposure: Set the exposure time.(1-65515) Gain: Set the gain parameter.(100-2200) Apply: Apply the settings.	
Focus Mode	Direct: Directly specify the focus position. Infinity: Set the focus position to infinity. Macro: Set the focus position to the short distance. Focus Position: Focus position. Apply: Apply the settings. Auto Focus ON: Enable auto focus. Auto Focus OFF: Disable auto focus. * Current debug control is for demo.	
OIS Mode	OFF: Disable OIS. It corresponds to each OIS mode. Zero Shutter Exposure / Shake eval. Movie High SR Movie View Finder Apply: Apply the settings.	
Still Capture	12M Normal: Capture 12Mpixel normal still image.	

To change the streaming size, change the parameters of the following files. ~/demo/script/preview.sh

Setting	Parameter
4032x3040	Width=4032, Height=3040, fps=15
3840x2160	Width=3840, Height=2160, fps=20
1920x1080	Width=1920, Height=1080, fps=80
1024x768	Width=1024, Height=768, fps=210

5.2. 12Mpixel still image capturing

Procedure of capturing 12Mpixel still image:

- 1. Adjust the focus.

 (It is useful to turn on Auto Focus and turn Auto Focus OFF when focus is on)
- 2. Click the [12M Normal] button

5.2. 12Mpixel still image capturing

- 3. Images can be captured in RAW and DNG format.
- 4. Set the camera profile for color management to No profile.

5.3. Capture image

To capture an image by specifying the image size, change the Still script and press the app's capture button, or execute the capture command.

Still script

~/demo/script/stillCapture12M_Normal.sh

```
#!/bin/sh
cd /home/linaro/demo
#W=1024
#media-ctl -d /dev/media0 --set-v4l2 '"imx378 2-001a":0[fmt:SBGGR10/1024x768]
#media-ctl -d /dev/media0 --set-v4l2 '"rkispl-isp-subdev":0[fmt:SBGGR10/1024x768]' #sink
#media-ctl -d /dev/media0 --set-v4l2 '"rkisp1-isp-subdev":0[fmt:SBGGR10/1024x768]' --set-
#media-ctl -d /dev/media0 --set-v4l2 '"rkisp1-isp-subdev":2[fmt:SBGGR10/1024x768]' #sourc
#media-ctl -d /dev/media0 --set-v4l2 '"rkispl-isp-subdev":2[fmt:SBGGR10/1024x768]
#W=1920
#H=1080
#media-ctl -d /dev/media0 --set-v4l2 '"imx378 2-001a":0[fmt:SBGGR10/1920x1080]
#media-ctl -d /dev/media0 --set-v4l2 '"rkispl-isp-subdev":0[fmt:SBGGR10/1920x1080]' #sink
#media-ctl -d /dev/media0 --set-v4l2 '"rkispl-isp-subdev":0[fmt:SBGGR10/1920x1080]'
#media-ctl -d /dev/media0 --set-v4l2 '"rkisp1-isp-subdev":2[fmt:SBGGR10/1920x1080]' #sour
#media-ctl -d /dev/media0 --set-v4l2 '"rkispl-isp-subdev":2[fmt:SBGGR10/1920x1080]'
#W=3840
#H=2160
#media-ctl -d /dev/media0 --set-v4l2 '"imx378 2-00la":0[fmt:SBGGR10/3840x2160]
#media-ctl -d /dev/media0 --set-v4l2 '"rkisp1-isp-subdev":0[fmt:SBGGR10/3840x2160]' #sink
#media-ctl -d /dev/media0 --set-v4l2 '"rkisp1-isp-subdev":0[fmt:SBGGR10/3840x2160]' --set
#media-ctl -d /dev/media0 --set-v4l2 '"rkisp1-isp-subdev":2[fmt:SBGGR10/3840x2160]' #sour
#media-ctl -d /dev/media0 --set-v4l2 '"rkispl-isp-subdev":2[fmt:SBGGR10/3840x2160]'
H=3040
media-ctl -d /dev/media0 --set-v4l2 '"imx378 2-001a":0[fmt:SBGGR10 1X10/4032x3040]'
media-ctl -d /dev/media0 --set-v4l2 '"rkisp1-isp-subdev":0[fmt:SBGGR10_1X10/4032x3040]'
media-ctl -d /dev/media0 --set-v4l2 '"rkisp1-isp-subdev":0[fmt:SBGGR10_1X10/4032x3040]
media-ctl -d /dev/media0 --set-v4l2 '"rkisp1-isp-subdev":2[fmt:SBGGR10_1X10/4032x3040]'
media-ctl -d /dev/media0 --set-v4l2 '"rkisp1-isp-subdev":2[fmt:SBGGR10_1X10/4032x3040]
filename=still_{W}x_{H}_normal
v4l2-ctl -d /dev/videol --set-ctrl exposure=${2} --set-ctrl gain=${3} --set-selection=tar
/bin/raw2dng -i $filename.raw -o $filename.dng -w ${W} -h ${H} -bit 10 -gain 1.0 1.0 1.0
ufraw $filename.dng
```

Capture command

5.4. Movie recording

Secure recording memory area

cd ~/demo/script/ # ./ramdisk.sh

Movie recording(mp4)

cd ~/demo/script/

./mp4_recording.sh /mnt/ram/test 1920 1080 10 40

Argument	Description
arg1	Movie file name
arg2	Width
arg3	Height
arg4	Fps
arg5	Capture frame num

Movie viewer(mp4)

cd ~/demo/script/

mplayer -fps 10 /mnt/ram/test.mp4

5.5. Build demo software

Procedure of build software

- # cd ~/demo/src/
- # ./MakeDomo.sh
- # mv GUI/DemoGUI /home/linaro/demo/bin
- XII an error occurs with qmake, install it with the following command.
- # sudo apt install qt4-default

5.6 Reverse streaming image

To reverse the image when streaming, follow the steps below.

- 1. Edit demo script file.
 - Edit as shown in the red part below.(~/demo/script/test_camera_1920.sh)

```
#!/bin/sh
export DISPLAY=:0.0
media-ctl --set-v4l2 "imx378 2-001a":0[fmt:SRGGB10_1X10/1920x1080]'
media-ctl --set-v4l2 "imx378 2-001a":0[fmt:SRGGB10_1X10/1920x1080]'
media-ctl -d /dev/media0 --set-v4l2 "rkisp1-isp-subdev":0[fmt:SRGGB10_1X10/1920x1080]' #sink
media-ctl -d /dev/media0 --set-v4l2 "rkisp1-isp-subdev":0[fmt:SRGGB10_1X10/1920x1080]' --set-v4l2 "rkisp1-isp-subdev":0[crop:(0,0)/1920x1080]'
media-ctl -d /dev/media0 --set-v4l2 "rkisp1-isp-subdev":2[fmt:YUYV8_2X8/1920x1080]' #source
media-ctl -d /dev/media0 --set-v4l2 "rkisp1-isp-subdev":2[fmt:YUYV8_2X8/1920x1080]' +-set-v4l2 "rkisp1-isp-subdev":2[crop:(0,0)/1920x1080]'
v4l2-ctl --set-ctrl=vertical_flip=0 -set-ctrl=horizontal_flip=0
gst-launch-1.0 rkcamsrc device=/dev/video1 io-mode=4 isp-mode=2A tuning-xml-path=./script/IMX378_1022.xml ! videoconvert ! video/x-raw,format=NV12,width=1280,height=720 ! rkximagesink
```

- Edit driver file.
 - Edit as shown in the red part below.
 - (~/CA378_v1.0.1_TinkerOS_Debian9_v2.0.8_src_build/debian_kernel_cp/drivers /media/i2c/imx378.c)

```
1450line
     fmt->format.code = MEDIA_BUS_FMT_SRGGB10_1X10;
1492line
     fmt->format.code = MEDIA_BUS_FMT_SRGGB10_1X10;
```

- 3. Build and install kernel.
 - Build and install the kernel with the following commands.

```
cd ~/CA378_v1.0.1_TinkerOS_Debian9_v2.0.8_src_build ./BuildKernelSources.sh
```

5.6 Reverse streaming image

- 4. Edit Raw2Dng file.
 - Edit as shown in the red part below.
 - (~/demo/src/tool/raw2dng.c)

201line

TIFFSetField (tif, TIFFTAG_CFAPATTERN, 4, "\u201401\u201401\u201401\u2014);

- 5. Build and update demo tool.
 - Build and update demo tool with the following commands.

cd ~/demo/src ./MakeDemo.sh

Appendix

A.1. About the directory structure

The following section describes the directory structure of the software.

```
–Install.sh
-bin
 demo.ini
 DemoGUI
 raw2dng
 raw2hdr
-script
 demo.sh
 IMX378_I030_XGA_LSC.xml
 IMX378 1205.xml
 mp4_recording.sh
 preview.sh
 ramdisk.sh
 stillCapture I 2M_Normal.sh
 test camera 1024.sh
 test_camera_1920.sh
 test_camera_3840.sh
 test_camera_4032.sh
     GUI
     af_control.c
     af control.h
     communication.h
     communication tinker.c
     debug_util.h
     demo_control.c
     demo control.h
     DemoGUI.pro
     lsc control.c
     lsc_control.h
     main.cpp
     mainwindow.cpp
     mainwindow.h
     mainwindow.ui
     Makefile
     ois_control.c
     slave_address.h
     types util.h
    -tool
     libtiff.patch
     Makefile
     raw2dng.c
     raw2hdr.c
     tools.h
    -MakeDemo.sh
```

Function	Description
bin	DemoGUI: Demonstration software Demo.ini: Demonstration software setting file
script	Script files are described. It can be customized according to specifications. demo.sh preview.sh stillCapture12M_Normal.sh
SrC	It is a set of demo software source code.
tool	Image file conversion tools are described.

A.2. About the setting file

The following section describes the "demo.ini" of the setting file.

```
# DEMO Setting
preview = /home/linaro/demo/script/preview.sh
stillCapture I 2M_Normal = /home/linaro/demo/script/stillCapture I 2M_Normal.sh
gyroGainRateX=1.00
gyroGainRateY=1.00
autoFocusGain=2.0
autoFocusConfidenceThreshold=10
autoFocusMoveLimit=100
AutoFocusAverageNum=1
Exposure=1000
Gain=200
```

Function	Description
preview	Script path for preview
stillCapture12M_Normal	Script path for capturing 12M normal still images
gyroGainRateX gyroGainRateY	It is valid only when OIS calibration result is written in EEPROM.
autoFocusGain	Adjust the autofocus gain.
autoFocusConfidenceThreshold	Specify the threshold value of the confidence level of Phase Difference.
autoFocusMoveLimit	Limit the amount of focus movement at one time.
AutoFocusAverageNum	Adjust the average amount of autofocus.
Exposure	Adjust the exposure time.
Gain	Adjust the gain.

