Solar Power Forecasting By: Ozair Ahmed

About Project

- Help solar plants forecast output
- This will help grid operators manage supply and demand
- 2 Goals:

1

Forecast Solar Output

Two days out

Use weather forecast

2

Analyze Inverter Performance

Find inefficient inverters

About The Data

From Kaggle

Two Solar Power Plants:

- Nashik, India (1)
- Gandikota, India (2)

Includes:

- DC, AC, & Daily Yield (kW)
- Ambient & Module Temperatures

5/15/2020 - 6/17/2020 (34 days)

I. Forecasting Solar Output

Models used:

- SARIMA
- Facebook Prophet
- SARIMAX (w/ daily temp)

5 days to train model: 6/13 to 6/17

Forecasted the next 2 days: 6/18 & 6/19

SARIMA: Training

R^2 Score: 0.977Mean Absolute Error: 6148.57 RMSE: 8743.15

SARIMA: Two Day Forecast

FB Prophet: Training

R^2 Score: 0.921 Mean Absolute Error: 8480.88 RMSE: 16160.54

FB Prophet: 2 Day Forecast

SARIMAX: Using Ambient Temp

R^2 Score: 0.993RMSE (train): 7899.64 RMSE (test): 4629.70

SARIMAX: Two Day Forecast

18th June

Daily Yield: ~130,000 kW

~22,780 households (in India)

19th June

Daily Yield: ~127,000 kW

~22,283 households

II. Analyzing Inverter Performance

- -- DC to AC ratio of 9.78%
- -- Commercial industry standard is 80%

Analyzing Inverter Performance

- -- 2 inverters are underperforming
- -- Suggestion: Replace them

Contact Info

Ozair Ahmed

ozair.x.ahmed@gmail.com

https://github.com/Ozxahmed/flatiron_capstone