Решить дифференциальное уравнение.

1.
$$(1 - y^2)dx = (y + x^2y)dy$$
.

3.
$$y' - 3^{x+y} = 0$$
.

5.
$$y' \sin x - y \ln y = 0$$
.

7.
$$y' \cos x \ln y - y = 0$$
.

9.
$$xydx + (1 + x + y + xy)dy = 0$$
.

11.
$$xy' + 2y = x^3$$
.

13.
$$y' + xy = x$$
.

15.
$$(1-x)(y'+y) = e^{-x}$$
.

17.
$$y' - y \operatorname{tg} x = \frac{1}{\cos x}$$
.

19.
$$y' + 2xy = xe^{-x^2}$$
.

2.
$$y'\cos^2 x - \sin^2 x = 0$$
.

4.
$$tg x dy - (1 + y) dx = 0$$
.

6.
$$(1+y^2)y'-y=0$$
.

8.
$$y'(1-x^2) = xy + xy^2$$
.

10.
$$y + xy' + (1 + y')xy = 0$$
.

12.
$$xy' - y = 3x^2$$
.

14.
$$y' - y \cot x = \sin x$$
.

16.
$$xy' + y = e^x$$
.

18.
$$xy' - y = x^2 \cos x$$
.

20.
$$y' - \frac{2y}{x+1} = (x+1)^3$$
.

21 — 30. Найти частное решение дифференциального уравнения.

21.
$$y'' - y' \operatorname{ctg} x = \sin 2x$$
,

22.
$$(x^2-4)y''=2xy'$$
.

23.
$$2xy'' = y' - \frac{1}{y'}$$
,

24.
$$(1+x^2)y''+1+(y')^2=0$$
,

25
$$xy'' = y'(\ln y' - \ln x)$$
,

26.
$$xy'' + y' = \ln x + 1$$
,

27.
$$y''x + y' - (y')^2 = 0$$
,

28.
$$y'' \cos x - y' \sin x = \cos 2x$$
,

29.
$$2y'' + x(y')^3 = 0$$
,

30.
$$2xy'y'' = 1 + (y')^2$$
,

$$y(\frac{\pi}{2}) = \frac{\pi}{2}$$
, $y'(\frac{\pi}{2}) = 1$.

$$y(1) = 10,$$
 $y'(1) = 9.$

$$y(1) = -\frac{2}{9}$$
, $y'(1) = 2$.

$$y(0) = 4$$
, $y'(0) = 1$.

$$y(1) = \frac{1}{4}e^3$$
, $y'(1) = e^3$.

$$y(e) = 1,$$
 $y'(e) = 1 + \frac{1}{e}.$

$$y(2) = 4 \ln 3$$
, $y'(2) = \frac{2}{3}$.

$$y(0) = -1$$
, $y'(0) = 1$.

$$y(0) = 0$$
, $y'(0) = \sqrt{2}$.

$$y(1) = \frac{4+\sqrt{3}}{2}$$
, $y'(1) = \sqrt{3}$.

31 — 40. Найти общее решение дифференциального уравнения.

31.
$$4y'' - 12y' + 9y = f(x)$$
.

a)
$$f(x) = (2x-9)e^x$$
, $6) f(x) = e^{\frac{3}{2}x}$.

32.
$$y'' - 4y' + 3y = f(x)$$
.

a)
$$f(x) = (1-2x)e^{2x}$$
, δ) $f(x) = (4x+6)e^{3x}$.

33.
$$9y'' + 12y' + 4y = f(x)$$
.

a)
$$f(x) = e^{2x}(4x-1)$$
, δ) $f(x) = 36e^{-\frac{2}{3}x}$.

34.
$$y'' - 2y' - 3y = f(x)$$
.

a)
$$f(x) = e^x (2 + 20x - 12x^2)$$
, $6) f(x) = 20e^{3x}$.

35.
$$y'' - 2y' + y = f(x)$$
.

a)
$$f(x) = x^2 - 11x + 18$$
, 6) $f(x) = 6xe^x$.

36.
$$4y'' + 4y' + y = f(x)$$
.

a)
$$f(x) = (2x^2 - 50)e^{-x}$$
, 6) $f(x) = e^{-\frac{x}{2}}$.

37.
$$y'' + 3y' + 2y = f(x)$$
.

a)
$$f(x) = 2x^2 - 1$$
, δ) $f(x) = (2x + 3)e^{-x}$.

$$6) f(x) = (2x+3)e^{-x}$$

38.
$$y'' + 6y' + 9y = f(x)$$
.

$$\delta f(x) = e^{-3x}$$

39.
$$y'' - 5y' + 6y = f(x)$$
.

a)
$$f(x) = e^x (2x^2 - 6x)$$

$$(6) f(x) = 2e^{2x}.$$

40.
$$4y'' - 4y' + y = f(x)$$
.

a)
$$f(x) = e^x(x^2 - 20)$$
, δ) $f(x) = 2e^{\frac{x}{2}}$.

41-50. Вычислить двойной интеграл.

41.
$$\iint_{(D)} y^2 \cos \frac{xy}{2} dx dy; D: x = 0; y = \sqrt{\frac{\pi}{2}}; y = \frac{x}{2}.$$

42.
$$\iint_{(D)} y \cos xy dx dy; D: y = \frac{\pi}{2}; y = \pi; x = 1; x = 2.$$

43.
$$\iint_{(D)} y^2 e^{-\frac{xy}{4}} dx dy; D: x = 0; y = 2; y = x.$$

44.
$$\iint_{(D)} y \sin 2xy dx dy; D: y = \frac{\pi}{2}; y = \frac{3\pi}{2}; x = \frac{1}{2}; x = 2.$$

45.
$$\iint_{(D)} 6ye^{\frac{xy}{3}} dxdy; D: y = \ln 2; y = \ln 3; x = 3; x = 6.$$

46.
$$\iint_{(D)} y \sin 2xy dx dy; D: y = \frac{\pi}{2}; y = \frac{3\pi}{2}; x = \frac{1}{2}; x = 2.$$

47.
$$\iint_{(D)} e^{\frac{x}{2y}} dx dy; D: x = y^2; x = 0; y = 2.$$

48.
$$\iint_{(D)} y^2 \sin \frac{xy}{2} dxdy$$
; $D: x = 0$; $y = \sqrt{\pi}$; $y = \frac{x}{2}$

48.
$$\iint_{(D)} y^2 \sin \frac{xy}{2} dx dy; D: x = 0; y = \sqrt{\pi}; y = \frac{x}{2}.$$
49.
$$\iint_{(D)} \sqrt{xy - x^2} dx dy; D: y = x; y = 10x; x = 1.$$

50.
$$\iint_{(D)} y \cos xy dx dy; D: y = \pi; y = 3\pi; x = \frac{1}{2}; x = 1.$$