Some Generalised Reductions of Ordered Binary Decision Diagramm (GroBdd)

Joan Thibault

Boolean Functions

Why ?

- Computer Aided Design (e.g. digital circuit synthesis)
- Knowledge Representation (e.g. Artificial Intelligence)
- Combinatorial Problems (e.g. N-Queens problem)

What ?

- Compact representation
- Operations (e.g. composing, concatening, evaluation)
- Operators (e.g. AND, XOR, ITE, NOT)
- Reductions (e.g. quantification, partial evaluation, SAT)

GroBdd

Boolean Functions

- Various representations
 - Truth Table
 - Conjonctive / Disjonctive Normal Form
 - And Inverter Graph
 - Binary Decision Diagramm
 - Reduced Ordered BDD
 - Zero supressed BDD
 - Xor based BDD

Section 1 What is a ROBDD?

Grey square = False

For aesthetic reasons, we do not merge terminals

For aesthetic reasons, we do not merge terminals

Red arrow = if False Green arrow = if True Grey square = False White square = True

(Bryant) Step 2: we specify the depth of each node

Red arrow = if False Green arrow = if True Grey square = False White square = True

(Bryant) Step 3: we remove useless decisions

Red arrow = if False Green arrow = if True Grey square = False White square = True

(Complemented Edges) Step 1: we replace the False node by a complemented edge to True

Augmenting edges with complementation can be performed in linear time in #node

State Of The Art since 2000s

= Complemented edge Red arrow = if False Green arrow = if True Grey square = False White square = True

Reduced Ordered BDD

- =) :
 - SAT: constant time
 - Any/Max/Min SAT : linear time (#variable)
 - #SAT : linear time (#node)
 - NOT : constant time
- =(:
 - AND, XOR : quadratic time/space (#node)
 - #node is order dependent

GroBdd 24

#node is order dependent

Objectives

- Reduce #node
- Reduce #node's dependency to variables' order
 - Increase memoization impact

Section 2 Compressing a ROBDD into a GroBdd

(Model 1) Step 1: for terminal leading edges, we unary represent the number of useless decisions

= Complemented edge Red arrow = if False Green arrow = if True Grey square = False White square = True

(Model 1) Step 1: for terminal leading edges, we unary represent the number of useless decisions

(Model 1) Step 3: we forget every node's depth

= Complemented edge Red arrow = if False Green arrow = if True Grey square = False White square = True

(Model 1) Step 3: we forget every node's depth

= Complemented edge Red arrow = if False Green arrow = if True Grey square = False White square = True

we merge isomorphic sub-graphs

we merge isomorphic sub-graphs

Section 3 Compiling a formula into a GroBdd

$$f(x_0^3) = x_1 \oplus x_2 \oplus (\neg x_0 \land x_3)$$

$$f(x_0^3) = x_1 \oplus x_2 \oplus (\neg x_0 \land x_3)$$

Step 1: we build the identity function

$$f(x_0^3) = x_1 \oplus x_2 \oplus (\neg x_0 \land x_3)$$

Step 2: we build one projection per variable

$$f(x_0^3) = x_1 \oplus x_2 \oplus (\neg x_0 \land x_3)$$

Step 3: we build the formula

$$f(x_0^3) = x_1 \oplus x_2 \oplus (\neg x_0 \land x_3)$$

Step 4: we factorize useless variables

$$f(x_0^3) = x_1 \oplus x_2 \oplus (\neg x_0 \land x_3)$$

Step 5: we compute operator nodes

$$f(x_0^3) = x_1 \oplus x_2 \oplus (\neg x_0 \land x_3)$$

Step 5: we compute operator nodes

$$f(x_0^3) = x_1 \oplus x_2 \oplus (\neg x_0 \land x_3)$$

Step 5: we compute operator nodes

$$f(x_0^3) = x_1 \oplus x_2 \oplus (\neg x_0 \land x_3)$$

 $\neg f \oplus \neg g = f \oplus g$

= Complemented edge
Red arrow = if False
Green arrow = if True
Grey square = False
White square = True

Step 5: we compute operator nodes

$$f(x_0^3) = x_1 \oplus x_2 \oplus (\neg x_0 \land x_3)$$

Step 5: we compute operator nodes

$$f(x_0^3) = x_1 \oplus x_2 \oplus (\neg x_0 \land x_3)$$

Step 5: we compute operator nodes

$$f(x_0^3) = x_1 \oplus x_2 \oplus (\neg x_0 \land x_3)$$

Step 5: we compute operator nodes

Section 4 Generalization & Results

Some Generalised Reductions

Results

Gain (log10) of #node

benchmarks

Conclusion

- Software implemented in OCaml:
 - https://github.com/JoanThibault/DAGaml/tree/grobdd-dev
 - ~ 10 000 lines of OCaml
- Fewer nodes

- CP:-0.35 d(-55%)

NNI : -0.51 d (-69%)

- CPX: -0.13 d (-26%)

- Future Work
 - Quantify the dependency between variables' order and #node
 - Solve & Implement CPA-X and NNI-X versions
- TO DO
 - Parallelism & hardware acceleration
 - Quantification Operators
 - Variable Reordering

