MC-4 SERVICE NOTES

SPECIFICATIONS

First Edition

CHASSIS H112 (061H112)

RAM BOARD OPH143 (149H143)

PANEL OPENABLE SCREWS SELF TAPPING 3 x 6mm BINDING B1 B7

Roland

Printed in Japan 1-2

Pot EVHLWAD25B14 (13219312)

— Switch SLE 623-18P (13139135) — Pot VR10RS20A15 (13219601) Knob K-34 1yps (M) (2247540600)

Switch SLE622:18P (13139136)

Switch SLE722-18P (13139132)

10 Key assy KEH4A006 (13129716)

Key top KT3-2 (12479704)

CLK 2

The numbers $\boxed{40}$, $\boxed{60}$ and $\boxed{70}$ above, also shown in the CPU circuit diagram, are abbreviated I/O divice numbers in hex. to be represented on address bus, that is x x 4 x, x x 6 and x $\boxed{7}$ x. If bits Oll1 (7) appear on A7-A4, IC57 selects IC29. Then bits on A1-A0 will cause one of the following in IC29 to be selected; O0-Port A, O1-Port B, 10-Port C and 11-Control Word Register. Similarly, if OlOO (4) are on A7-A4, IC57 selects IC3O, and OO on A1-A0 Counter \emptyset . Timing Signals generation, Total Time D/A , MODE LED Display, DIN CUT. $A/D\ \mbox{IN}$. Clock Out, CYCLE SW IN Key Scanning, Dot Display, Metronome, Mode sw IN, DIN IN to select I/O Devices through Port Address Decoder on CPU Board. (See I/O MAP right) IC32-IC36 ROMS IC1-IC8, IC16-IC23 FAMS IC1-IC8, IC16-IC23 FAMS measurement 40 50 60 70 I/O MAP EXT MTR-100 IC30 8253 IC29 8255 IC58 8255

A0-A7

Used IC57

IC10,

IG12 IG25

8 8 8 8 8

CPU RAM

Board Board Board

1030 40

I058 60 IC29 70

Used Devices to transfer Instructions and RAMs. and Data to/from 1/0

4MHz, sq divider square Clock signal derived from devide-by-2 er IC18

10

DATA BUS

	MREQ	
The time of the control of the contr	Indicates that the address bus holds a valid memory address for a memory read or memory write cycle.	

IORQ 찝 Indicates that the CPU wants to read data from memory or an I/O device. Indicates that lower 8 bits (1/0 bevice number) and on the address bus for an I/O read or I/O write cycle. ď

₩R Indicates that the CPU data bus holds valid data be stored in the addressed memory or $\Gamma/0$ device. t o

빔 being executed provided that CPU internal INT enable Used as Tempo Clock in PLAY mode and is socepted by the CPU after it completes the current instruction flip-flop is set on. ą

IMN Used to time the lightings of Dot Matrix Display and Shift LEDs, Key Switch Scanning, and the outputtings of CV and GATE. Accepted by the CFU unconditionally upon finishing of current instruction.

WAIT Used to keep the CPU wait for 1 clock cycle to provide enough performance time for relatively low speed ROM and RAM being accessed by the CPU.

Indicates Fetch cycle.

3

RESET Used to reset and start the CPU from a power down condition resulting from failure or initial start-up of the processor.

CIRCUIT DESCRIPTION

CPU BOARD

When CPU is initialized with power-on RESET signal, it wants to read operational program (software - instruction) stored at address (0000)16 to starts controlling the MC-4.

With 0s on the address bus (A11-A15) and MREO, ROM Address Decoder IC60 selects ROM (A) IC36 which in turn transfers data from accessed memory cells to D0-D7. CPU proceeds steps with fetched

The following is one of steps will be done.
(1) To transfer data to or from RAMs
(2) To transfer data to or from I/O ports or Programmable Timer.

	REFR			[2]	Fig. 1
f d		ل (
	40-416	# E	14 17 18 18 18 18 18 18 18 18 18 18 18 18 18	D0-D7	

ADDRESS MAP	ROM A IC36	ROM AREA	ROM E IC32	BLANK	IC1-IC8 (CPU BOARD)	RAM AREA	IC1-IC8 (RAM BOARD)	IC16-IC23 (RAM BOARD)	
•	0000		27FF		4000		8000	0000	FFFF

D/A CONVERTER

shifted by the transistors (TR5-TR11), pass through the CMOS INVERTERS (IC27, IC28), and undergo addition by the weighing The resolution of the D/A converter is 1/12V, which corresponds to a The digital outputs from the PORT A of INTERFACE (IC29) are levelresistors to become an analog voltage, Since the MC-4 has eight CVs, eight data are sampled in the time sharing system by the 4051 DMPX (IC46), held by the 081 (IC47-IC54) and output to the output jacks. half-tone step voltage.

The VR2, equivalent to the width control of a synthesizer, should be adjusted so that the output changes in 1/12V step. The VR4 is used for The resistance error at the most significant bit, which affects the output error most significantly, is corrected by adjusting the VR3. The VR2, equivalent to the width control of a synthesize

For the GATEs (GT1-GT4) and MPXs (MPX1-MPX4), digital data are sampled by IC43 in the time sharing system (see Fig. 4). offset adjustment of IC25.

CMT BLOCK

and TAPE SYNC GLOCK. The selection of CMT mode (CMT DATA) and TAPE SYNC LOCK. The selection of CMT mode (CMT DATA) The output seaton delivers an approximately 2.1KHz signal when the DIGITAL DATA is H and an approximately 1.3KHz signal when the data is L (see Fig. 5). This block is composed of the input/output circuits for CMT DATA

Memory Write Cycle

F

F

A 0-A 15

Eight 16K x 1 bit RAMs are connected in parallel to form a 16K x 8 bit locations within M5K4116 are multiplexed onto 7 address inputs (A0-A6) of RAMs. First, lower order 7 bits are fed to RAMs through RAM Address Multiplexers (IC9 and IC11) and latched into the RAMs' on-chip address latches by RAS. Second, higher order 7 bits are fed to

RAM block. The 14 address bits required to decode 1 of the 16,384 cell

The CPU places RAM address onto Address bus, then outputs necessary

(1) Accessing to RAMs IC1-IC8

signals as shown in Fig. 2.

MILEQ

Ð N.

Memory Read Cycle ä

For frequency modulation, IC42 is wired as a function generator whose frequency shifts to the other as R121 is connected to disconnected from charging/discharging time constant by FET SW (TR15).

Fig. 2

卣

the RAMs when SEL pins of IC9 and IC11 go low by the delayed D4-D7 MREC coming through pin 8 of IC12. These 7 bits are latched into <u>wair</u> RAMs chips with GAS fed via RAM Address Decoders (IC10 and IC12),

and an access to RAMs completes. Data are stored into selected cells by a combination of WRITE and $\overline{CAS_s}$ or retrieved from the memories in a read cycle in which \overline{CAS} is active low.

The CPU places port address (lower order 8 bits, AO-A7) onto the address but, then output DIRG, qut, as shown in Fig. 3. As previously explained in CPU terminal functions "AADDRESS BUE", Port Address Decoder (ICB7) selects the device which in turn reads or

(2) Accessing to Timer IC30 or I/O Ports IC29 and IC58

The zener diodes (D11, D12) are used to prevent the output of the comparator OP amp (operating on +12V and -15V) from Decoming form to 50%. At the input section, a signal from the CMT/SYNC IN passes through a passive band-pass filter and is amplified by the OP amp by IC22 and is separated into a signal for control and a signal for demodulation. The signal for demodulation is demodulated by the PLL (IC19) and the comparator (IC20) and is read via the BZB5 INTERFACE (ICS9). (IC23). The signal further passes through a diode limitter, is amplified unbalanced and to keep the duty ratio of the oscillation square wave-

The signal for control passes through a rectification circuit and is applied to the transistor switches (TR2, TR3) to set TP3 in active state. While the CMT or SYNC signal is not inputted, TF3 is fixed at L level.) [See Fig. 6.)

1022 Part JULY - JULY Fig. 6 TP3

Cycle Well. Fig. 3

CONTROL BOARD

DOT DISPLAY, SHIFT LEDS, KEY SWITCHES

These circuits are configured in separate matrices in a conventional fashion but one dimension of these share the same output pins of an address decoder IC1.

The address decoders (IC1 and IC2 in combination) places an L at output pins in sequence in symathy with NM1 clock brought into the pin of CPU as shown in Fig. 7. The following description will explicate Dot Display only since Shift LEDs and KEY- scanning are self explanative.

DOT DISPLAY

Character signal consisting of 5 x 7 dots from the Dot Matrix Decoder IC9 is applied to fluorescent lamp indicator 16-MD-02Z in which the same dots in the individual digits are connected in parallel and led out as a common terminal, and the digit electrodes have individual leads (G1-G15) for external connection.

Although the same dot signals are fed to all digits simaltenously, only one digit whose grid is now H is allowed to illuminate — called dynamic lighting. But for human eyes those flickers are not perceptible.

Since filament laid across the tube serves as a common cathode for all digits, DC heating will cause brightness imbalance among digits due to potential variations between electrodes and the chathode.

σ

METRONOME

Output from oscillator IC7 is shaped into metronome-lick sound with percussive envelope developed in Tr35, C5 and R116 circuit.

TEMPO CLOCK GENERATOR

When nothing is connected to the TEMPO CV jack, a constant DC voltage of approximately 4.17V is applied to pin 5 of IC6 when the TEMPO control is set at the center. The voltage is applied to the VCO through IC6 and IC5, and the VCO oscillates at approximately 100KHz. Since the VCO's oscillation frequency changes linearly to the input voltage, when the input voltage is doubled, the oscillation frequency is also doubled. When the linearity is improper (especially at the high frequency range), the slew rate of IC3 is slow or TR31 is defective in most cases.

When an external CV is applied to the TEMPO CV IN jack, the TEMPO CLOCK is subjected to frequency modulation.

MC-4

Dot display output	0	Dar	ss	Dot display output	0	D23	57
bot display output	0	27C	75	not display surput	0	D22	54
		ÑΛ	ÇŞ	Dot display/print output	0	D21	53.
Display/print select input		CE2	25		0	D ³²	22
Judul sldsna qido	ι	ce,	15		0	ν'α	7.7
н	I	٠,	os.	4	0	εtα	50
	1	a.v	67	Dot display sutput	0	p ¹³	61
41	I	ς¥	87	Dot display/print output	0	D ¹¹	st
redut toales red	I	ЭĀ	Lħ			ис	Ľ٢
		ИС	99			ЭМ	91
	I	sV	42	Dot display/print output	0	Det	ςτ
	ı	.Α	77		0	D ²³ G	77
	I	∈ ¢A	£γ	и .	0	Dea	ετ
	I	ςΨ	77		0	D ² F	15
	r	τ¥	17	Dot display output	0	D22	ττ
Dot select input	1	ΦV	07	Dot dieplay/print output	0	De1	10
Dot display output	0	p"?	6E	Dot display output	0	De s	6
		СИD	38			еир	8
	0	p**	25			αα _Δ	L
	0	D**	9€		0	£9a	9
Doe grabjek omphar	1	D*S	58		0	D*r	S
oor display/print		D*1	34	Dot display output	0	D ^{t 2}	7
at .	0	D35	33			ЭМ	ε
и	0	÷€Œ	Zε			ис	z
				Λ	1	1	i .

CN3 SOUP		TART	CDALS: CDALS: CONTRD	<u> </u>
		ЭМ	09	or display output
		ИС	65	
Dot display/print dutput	0	tra	85	trput
u	o	£r.Œ	L S	
44	0	14 _C	99	

. !	MI JYYY TWO E
1	4 CMT/SYNC OUT
	3 PEDAL STOP
	S THCK (DIN) G ND
	T REDAL START
	CN 7 ↔ JACK

GN⊅ · A	01	MI · NO · OJH3L	
GND. A	88	GNP - A	35
1-+	98	GND V	58
Z- Þ	10	GNP A-	ε£
1-6	ZE	A. GND	18
2-E	30	D.GND	bZ
1-2	82	D CND	75
2-2	92	D CND	52
1-1	155	OND . G	23
Z-1 V2	22	anb a	Z
[TAD	50	NS/ -	61
1 XdW	8/	∧ <i>⊊1-</i>	41
SATAP	9/	V214	5/
ZXAW	17	\Z/+	51
E 3TAP	7/	TUNE	11
EXAM	01	742	16
₽ 3TA2	8	SYNC. CK-OVI	
₩ XdW	9	SYNC.CK.IN	
GNP A	Þ	WI STAP-TXE	ε
AND. A	Z	M. VO.TXS	11
CNI	4	→ 9NO	
ACK BOARD	r	GRAOS UT:)

WIRING DATA TABLE

τεα 82

ЭК

.oN nig

0 Dzs 12

0 0 30

53 ЭN

92

PØ	77	60	Em
BJ&AZIQ·MAR	45	510 - MOR	17.00
MRG	00	GЯ	1
IORG	88	M.B	45
DE TROY OL	98	EHW+ &	95
19239	₩.	ExT · INT	SE
D. GND	35	OND - G	Œ
V2+	0E	v2 +	2
v 2 +	82	v2 + -	2
+15 ^	92	112V	9
+12V	54	+124	8
V2-	22	VZ-	12
GN9 · G	30	GNP-G	5/
QN5-Q	8/	D-GND	14
S14	91	OA	9
PIA	10		18
EIA	12	SA	
SIA	Of.	εA	[6]
11∀	8	₽A	[4]
0/V	9	. SV	[5]
P.A	D	94	ŢΕ
8A	2	P.A	11
RAM BOARD	<	EN DOURD	0
V.O. OFMET			100
GND . A	84		12.00
TEMP0 · CK			20
EDIT	17		2.0
YAJ9	2+		12
		001	

	24	V-3	PU	126
	20	85		40
	10	94	90	5#
	ØŒ	77	40	E
	BJ&AZIG · MAA	45	\$10 - MOR	little:
	MRQ	00	ФЯ	B. R. Q. Q.
	IORG	86	W.R	45
	DE TROY OL	98	EHW+ &	150
	RESET	₩.	ExT · INT	Œ
	OND . G	35	OND - G	Œ
و	V2+	9€		12
	V 2 +	82	v2+ -	N M K Km
	+15^	98	+12v	2
	+15A	54	+12 V	8
	λς-	22	VZ-	12
	GN5 · G	æ	D.GND	15/
	QN5-G	8/	D-GND	9 0 0
	SIV	91	OA	191
	₽1∀	101		18
	EIA	121	SA	III
	SIA	Ot.	εA	16
	11∀	8	₽A	12
	0/V	9	SV	5
	PA	D	94	18
	8A	2		11
	CNS KWW BOWKD	<	CNI CNI	0

38 MODE 40 CMT 42 PLAY

^5+ CONTROL BOARD

F150¢8

Surface mounted at foil side)

SIT DOT MATRIX DECODER

III-2048 (Top View)

638

189

239 SE 239 SE 239 SE 289 SE 289 SE 289 SE 289 SE

7.A9 2.89 2.89 2.89 4.85

	SW23 CYCLE & ON	69	31075	.8.
	SW22 HODE ON	gE	HODE	P)
	- 36	42	THIHZ	
Ţ	THINS CWS			Series Charles
_	1210 T 87	05	TENIO CV	#.07
100 1112	▼ No	91	нэ офнаі	califix
		SI El	649	
		51 LL L L S E - + 27	TVA NI	2 4
		£ + + + + + + + + + + + + + + + + + + +	TAN TAN TAN TAN TAN TAN TAN TAN TAN TAN	5.3
12	J	017	THO	1423
301 301	, 401# T			t.J

METRONOME

DECO INTAM

S x 7 DC

FI 5048

SURPACE MOU

^5I-AZ1+

Describtion

w

17H

^s+ **√**

30 ₽€ 98

76

anb-a	16
154	8
V \$ +	14
-22^	19
^2Z-	15
anp.∀	Þ
GNP . A	ε
V S (+	2
415V	TI
17445 C/	ゎ
BAARD POWER	ndo

4	1	100		~ ~
7	-	32		16
		90	^5+	IE IZ
		82	RSØ	LZ
2		92	158	52
		12	822	⊊ Ζ
1		22	257	12
		OS	ØC	61
_		8/	10	21
		9/	24	51
		11	£4 .	13
		15	10	177
		0/	50	6
		8	90	L
		9	La	5
		+	KEVD	3
	QND	Z	ETCK	1
		-	CNI	
	TUG TUG	-{(AM BOARE	/a)

	START/STOP	9
VI NIG	TWOO	ç
	CK	セ
	START/STOP	٤
no NIC .	TWOD	Z
	CK	ι
NIA	<→ ⊅ N⊃	
1110	GAROS US	Ю

	POTS/TARTS 3
vi Niaz	D CONT
	t CK
	TOTE TARTE E
ONIC .	Z CONT
	1 CK
NIC	<→ ⊅ N⊃
	CPU BOARD
_	Alvin a loil
-	10 D . CND
i	4117 4 10

I NIQ	CONT START/STOP	2
MILL	CK	7
	(40T2/TAATS	5
ONIC	TWOD	Z
	CK	ι
NIA	<→ <i>⊅N</i> ⊃	
	GAROS US	Э

Na	CONT START/STOP	5
1	CK	7
	CTART/STOP)	ε
NIC .	CONT	Z
	СК	ι
NIC	CN4 ↔	

o INI

NIE.

JAN.13,1902

₹ ₹

NP NP G11 NP NP G10 NP NF

NP G9 NP NP

Z 2

NP G7

목 목

목 품

4 8

G 2

Z 85

81 80 79 78 G6 1-3 2-3 3-3

04

43 70

5.3

03 7

73 72 71

70 89 G2 4-4

2 8

9 9

목 물

200

37 8 T630mA®

PSH67

ECGU2A473M

73./5A ®

PSH66

022H44D

7500mA® T500mAS

220V, 240V

=

100x 117x

C3

12 C2 1000/ 35

- E

25 - 500 | 15135 | 25 - 200

GND

82 82

\$ 6 6 H

¥15Kd) - 200

(19) + 12V

20

TR1 250571

12

ADJUSTMENT

CPU BOARD

- 1 -15V
- 1-1 Connect digital voltmeter (DVM) across TP5 and TP2 (GND).
- 1-2 Adjust VR1 for -15.000±3mV.

4 TP2 (H)(E)(E)(H) <u>2</u> ₽ • ◎ ெ F • ⊖

2 D/A OFFSET

Set controls: 2-1

CPU BOARD

TOTAL TUNE - center

- OFF CYCLE

- INI -SYNC
- Write CV1 and CV2 data O (0V) for CH1 to CH4, following the flow chart shown right. 2-3 2-5

TB 720 30

POWER ON.

2-4

- Flip MODE switch for PLAY mode. 2-5
- --- Push ENTER. -----5-6
 - 2-7 Adjust VR4 for 0.000V. (0.000 to 0.099V)

Keep the CV data for the next adjustment.

1 2 PUNG

3 CV OFFSET

This adjustment follows the preceding.

- Insert plug with DVM
- Adjust related VR for into a CV jack. 3-2
- 0.000V (0 to +0.2mV).

Repeat the step for the

3-2

remainder.

Ä 12 13 CVl GH-CV2

4 D/A, WIDTH

- Enter the CV data 0-120 in 12 increments. Hereafter, pushing FWD button will change below. Note that the data displayed on indicator lamp preceds actual data by display by 12 at every step as shown data (and CH-1 CV1 at the jack) and CV1 (To be ±1mV) volt Connect DVM to CH-1 CV1 jack. 9.000 7,000 10.000 1.000 2.000 3.000 4.000 5.000 000.9 8.000 000.0 Turn power off then on. Actual data 108 120 24 36 48 60 72 84 84 one step. Data displayed 12 36 60 17 84 96 108 120 24 4-1 4-3 4-2 4-4 TB 120 30 TS -LUB T
 - 10.000 Adjust VR2 to the table above.

Use VR3 to compensate for higher CV only (data 72 and above).

4-5

5 CMT FREQ

- 5-1 Flip MODE for PLAY. 5-2 With frequency counter adjust VR6 for 1.3kHz±5%. connected to TP-4
 - 5-3 Verfy that frequency changes to 2.1kHz ±5% when mode is set to CMT.

6 PLL FREQ

1 CMT CV REF CAUTION

adjusting at component side. If trimmer wiper is frozen, try

PAINT LOCKED !

1-1 et controls: TOTAL TUNE - center TEMPO - center

Connect CH-4 CV2 and TEMPO CV IN jacks with a cord.

1-3 Input data as shown right.

1-4 cord at TEMPO CV While plugging out and in the "time" being VR4 so that IN jack, adjust

displayed remains (view from foil side CONTROL BOARD VK1 • 0 VK3 • VK4

MODE for PLAY 101 1 -™ 4.?

2 CMT FREQ, LINEAR, OFFSET

unchanged.

Observe steps 1-1 and 1-2 above.

- 2-2 Enter data as illustrated at right.
- 2-3 Connect frequency counter to collector of TR28.
- 2-4 Adjust VRs respectively for the To change data push FWD . First, coarsely adjust VR3 for 100kHz, then the remainder. frequency in the table below.

2-5 Repeat adjustment until correct frequencies are obtained.

CV2

¥R VR2 VR3 VR1

50 Ha

200kHz	100kHz	20kHz	Freq.
ENT	68	₽	EN D

	FLAT CABLE H131	FLAT CABLE H133	FLAT CABLE H134			IC-49-2406#2 (24P)		TCS0 250-1-1	-AU/L	FCN-724P034-AU/L 34PIN			5045-05A	5045-06A	5045-10A			LONG NUT #1	LONG NUT #3	Cover H100 (lever SW)		Holder H83 (key SW assy 4)		Control HS1														r																	
FLAT CABLE	053H131	0538132	053H134		IC SOCKET	13429511		13429608	13439178	13429179	13439176	13439177	13439121	13439122	13439126		OTHERS	2215050100	2215050300	065H090	064H055	064H083	064H092	064H111	10/11/01																														
ī	SR19R	2,2KB				5000 E		20KB			in / Indphrit - % I) X + si	42K	1001	150K	CBR25DZ (0.5% +25ppm/°C)	100K		CRB25BY (0.1% +50ppm/"C)			125K 250K	CRR25DY (0.5% +50ppm/°C)	500K	MI	ARRAY	4R7K x 4 (RGSD4 x 472K)	4R7K x 8 (RGSD8 x 472K)	22K x8 (RGSD8 x 223K)	MO-45	0.33g 3W	8212 3W		CO095.1H.22000-105	C009S-1H-240RO 240P 50V J (polystyrene)			R TRANSFORMER	S167724		POWER TRANSFORMER	1000	1170	220/2400	TER	2GB1201-11 (100/117V)	ZMB2201-13 (220/240V)			MGP1.0A PRIM. 100/117V	CEE T630mA PRIM: 220/240V	CEE T3.15A SEC. 220/240V			EAF-16R02C	
TRIMMER		13299111	13299114	13299115		13299306	13288307	13299131		RESISTOR		1376915200	1376919700	13769201DQ		1378960100	1378960200		1378950100	1378950700	13789503D0	20000000	13789113DO	13789114DO		13919108	13919109	13919110		13839143F0	13839145FU	ROTIONAND	12560152	13569153	13569152	2000	CONVERTER	12449105		POWER TR	022H044J	022H044C	UZZHO44D	NOISE FILTER	01000000	12449220		FUSE	12559133	12559532	12559518		SPEAKER	12389806	
	74LS00 QUAD 2-INPUT NAND		/4LS03 hex inverters		-	74LS74 DUAL D-FFs WITH PRESEL AND CLEAR			74LS157 QUAD 2:INPUT MULTIPLEXER 21: 004			80CP			PC311C OP AMP	2	TCAD118P QUADBUPLE 2: NPUT NAND GATE		TC4051BP	TC40708P	TC4099BP 8-BIT AUDRESSABLE LATCH TCAESBB DITAL MONOSTABLE MULTIVIBRATOR				2SD844.Y	2SD571-L	2SA682.Y	25A1175UF OF HE, FE, RE, NE, 123A1110E OF S.	2SB605-L	2SC2021-R or S	2SC1228-A		28C1816-GH	25N3UA:3n NE510 or 2N4392	100101		(laiseage (H.H.) Coc. a.c.	15R35-200	151585	152473	15252	0527.5-Y	05250 X -05250 TX .	0-92290	TLR124 (red)	TLG124A (grn)	TLY124 (yel)	USSBN:W		16MD-02Z fluorescent lamp indicator	83 H H H H H H H H H H H H H H H H H H H		VM10R.S20A15 (100KA) TEMPO	EVH-LWAD25B14 (10KB)	
	5169301HO	15169303HO	15169346BU	15 169304110	1516934780	15169311HO	1516934880	15169318HU 15169319HO	15169332HO	15169324CU	516932010	151891160A	15189117	15189118	15189111NO	15189105	15219105	15159112TO	15159113HO	15159117TO	15159120TO	0180080101	TRANSISTOR	15129816	15129606	15129600	15119402	15119123	15119601	15129121	15129708	1512913200	15129114	15139103	15139110	1000	1000	15019247	15019123	15019103	15019624	15019631	15019632	15019628	15029103	15029105	15029133	15019250	250 00	15029708	THROITING	NO FOR	13219601		
	15		Chassis H112		H38 (left)		Heat sink mad	tube)	Cover H91 (rear cover)		K24 TVPE METAL			KT3-2 blue (tandem)					(mini)		CH	270.740.000	TCH	JWi XI		TCH	SLE-622-18P (CYCLE)	SLE-623-18P (SYNC)	SLE-722-18F (MODE)	<u> </u>	act year old Coccentrate	KEH4A006 (10 KEY ASS'Y)			CPU BOARD OPH140 (pcb 052H249C)	ROL		RAM BOARD OFFILES (pds 052.0333)	CONNECTION POWED PSH66 (pcb 052H251A) 100/117V	POWER SUPPLY BOARD PSH77 (pcb 052H251A) 220/240V		UCTOR		"PC14312H 3-PIN REGULATOR		HPD780-1 8-BIT MICROPROCESSOR	(LH-0080A)	MB8116N 10,354 X 1511 0 114 115 115 115 115 115 115 115 115 115		(MB8516)		(#PD8253-5)	2		μPD8255 (M5L8255AP)
		CHASSIS	061H113	083H037	083H03B	072H074	048H025	116H005 065H082	065H091	RNOR	009043640600	0000107477	KEY TOP	1070704	12479705		JACK	13449220	1344940600		SLIDE SWITCH	13159113	POWER SWITCH	13149103		LEVER SWITCH	13139136	13139135	13139132	HOLLING CAN	NET SWILL	13129714		PCB	149H140	149H141	149H142	149H143	149H144	146H060		SEMICONDUCTOR	<u> </u>	15199116		15179111		15179306	15179805B0		1517911080	00000	15199109ND		15179128

MTR-100 SERVICE NOTES

First Edition

SPECIFICATIONS

Accessories Dimensions Memory Capacity Connection cable x 1
Data cassette x 1 3,4 Kg 218 x 348 x 118 mm 25 W (Dom), 30 W (Exp) 250 K bytes (Each side of a tape)

LED board 149H 160 Connector board 149H145

Power supply board (100/117V) 146H068 (220/240V) 146H069

Panel H89 (072H089)

POWER SWITCH

(pcb 052H334)

149H160 LED board OPH160 (pcb 052H336)

SEMICONDUCTOR

Side panel H40 (083H040)

Side panel H39 (083H039)

Connector FNC-704Q034-AU/L (13439178)

Power switch 2Wi XII (13149103)

Cassette unit MT-2 (12439502)

TRANSISTOR

Chassis H130 (061H130)

15129114 15129825

Flat cable H135 (053H135)

15029103

15019103 15019250 15019634

PARTS LIST

061H129 061H130 CHASSIS Chassis H130 Chassis H129 (MAIN)

072H089 107H062 Cushion H62 PANEL H89 PANEL

048H026 083H039 083H040 Side panel (right) H39 Side panel (left) H40 Heat sink H26

FLAT CABLE

053H135 053H136 Flat cable H136 Flat cable H135

CASSETTE UNIT

12439502 MT-2

13149103 2W: X ||

PCB

146H069 146H068 Power supply board PSH68 100/117V Power supply board PSH69 220/240V (pcb 052H334)

149H145 Connector board (pcb 052H331)

15199101F0 µA723DC

2SC1815-GR 2SD844-0

DIODE

Chassis H129 (061H129)

TLR124 (LED)

1S2473 DS5BN-M RD3.9EB

POTENTIOMETER

TRIMMER

13299109 1KB (SR19R)

RESISTOR

13839146F0 1.0Ω (3W) 13839147F0 1.5Ω (3W) MO-48

CONNECTOR

13439178 13439123 13439180 FCN-704Q034-AU/L 34 pin 5045-07A 5273-07A

POWER TRANSFORMER

022H046D PTH-046D 022H046C 022H046J PTH-046J PTH-046C 220V, 240V 117V 3P CSA

FUSE

12559514 12559532 12559133 12559516 CEE T630mA CEE T2.0A CEE T3.15A MGP1.0A

NOISE FILTER

12449220 12449219 ZGB1201-11 (100/117V) ZMB2201-13 (220/240V)

OTHERS

2215050300 Long nut #3 (18mm) 2215050100 Long nut #1 (10mm)

PSH68(146H068) 100/117V/PSH69(146H069) 220/240V Ç2 Çir POWER SUPPLY BOARD (pcb 052H334)

OPH 160

39 40 41 42 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

Power SUPPLY

BUS 0∪7

MTR-100

FLAT H 135

MT-2

(5) (4)

10 24 SÝ ÚV

€6 €6

51

774 474

50

Di The

ADJUSTMENT

Measurements must be done without disconnecting connector housing.

- Adjust VR1 for + 5.00V.
- 2. Adjust VR2 for + 12,00V.
- 3. Confirm RESET Signal at Pin 14 upon power ON.

NOTE: MT-2 is, as a whole, named maker-only-repairable component.

Return complete MT-2 with a tag identifying the unit by using the model version and serial The Roland Company will promptly supply the replacement or repair the unit upon reception. Please do not disassemble the unit in question as this will void the service polycy. number of the MTR-100 in which it is used.