EX_2

EX₂

EX 2.1

EX 2.2

EX 2.3

EX 2.4

EX 2.5

EX 2.6

EX 2.7

EX 2.8

Notation: the ground is always the first link in DOF questions

EX 2.1

an ordinary question on DOF of cam

Notation: the touch of the cam and the follower is a two freedom joint

$$L=3$$
, $J_1=2$ and $J_2=1$

$$DOF = 3(L-1) - 2J_1 - J_2 = 1$$

EX 2.2

an ordinary question on DOF of crank-slider

Notation: the touch between the slider block and the ground is a one freedom joint, and the slider block is also a link

$$L=4$$
, $J_1=4$ and $J_2=0$

$$DOF = 3(L-1) - 2J_1 - J_2 = 1$$

EX 2.3

an ordinary question on DOF of multiple joint and the sliding joint

$$L=8$$
, $J_1=10$ and $J_2=0$

$$DOF = 3(L-1) - 2J_1 - J_2 = 1$$

EX 2.4

an ordinary question on DOF of multiple joint and the joint on cam

$$L=6$$
, $J_1=7$ and $J_2=1$

$$DOF = 3(L-1) - 2J_1 - J_2 = 0$$

it's really hard to form a general model from the particular existences

EX 2.5

tricky problem in the homework 1

Link:

- 1. Ground
- 2. Follower Arm
- 3. Roller Follower
- 4. **Cam**
- 5. Piston
- 6. Air Cylinder
- 7. Connecting Rod
- 8. Bell Crank
- 9. **Short Slider** (lies in the end of the bell crank)
- 10. Tooling (sliding on the ground)

Full Joint:

- 1. joint of L_1 and L_2
- 2. joint of \mathcal{L}_2 and \mathcal{L}_3
- 3. joint of \mathcal{L}_4 and \mathcal{L}_1
- 4. joint of $L_{\rm 3}$ and $L_{\rm 4}$ (the rotation is the pure rotation)
- 5. joint of L_2 and L_5
- 6. joint of $L_{\rm 5}$ and $L_{\rm 6}$ (sliding joint)
- 7. joint of L_6 and L_1

- 8. joint of L_2 and L_7
- 9. joint of L_7 and L_8
- 10. joint of L_8 and L_1
- 11. joint of L_8 and L_9 (sliding joint)
- 12. joint of $L_{\rm 9}$ and $L_{\rm 10}$
- 13. joint of L_{10} and L_{1}

Notation: if the rotation between the cam and other links is the pure rotation, then the joint between them is the full joint

Half Joint

None

$$DOF = 3(L-1) - 2J_1 - J_2 = 1$$

EX 2.6

tricky problem in homework

Link

- 1. Ground
- 2. Cam
- 3. Tappet
- 4. Push Rod
- 5. Rocker
- 6. Valve

Full Joint

- 1. joint of \mathcal{L}_1 and \mathcal{L}_2
- 2. joint of L_3 and L_1 (sliding joint)
- 3. joint of L_3 and L_4
- 4. joint of L_4 and L_5
- 5. joint of L_5 and L_1
- 6. joint of \mathcal{L}_6 and \mathcal{L}_1 (sliding joint)

Half Joint

- 1. joint of L_2 and L_3
- 2. joint of $L_{\rm 5}$ and $L_{\rm 6}$

$$DOF = 3(L-1) - 2J_1 - J_2 = 1$$

EX 2.7

the hard question in homework

Link

- 1. Ground
- 2. Cams (cams fixed in the same position)
- 3. Roller Follower 1
- 4. Roller Follower 2
- 5. Rocker Arm 1
- 6. Rocker Arm 2
- 7. Valve 1
- 8. Valve 2

Full Joint

- 1. joint of L_1 and L_2
- 2. joint of \mathcal{L}_2 and \mathcal{L}_3
- 3. joint of L_2 and L_4

- 4. joint of L_3 and L_5
- 5. joint of \mathcal{L}_4 and \mathcal{L}_6
- 6. joint of L_{5} and L_{1}
- 7. joint of L_6 and L_1
- 8. joint of L_7 and L_1 (sliding joint)
- 9. joint of L_8 and L_1 (sliding joint)

Half Joint

- 1. joint of L_5 and L_7
- 2. joint of L_6 and L_8

$$DOF = 3(L-1) - 2J_1 - J_2 = 1$$

EX 2.8

a tricky question in the homework

Notation: It can be simplified as the rotation of cam and the Up and down reciprocating movement of connecting rod with the attached roller follower

Link

- 1. Ground
- 2. Cam
- 3. Roller Follower
- 4. Connecting Bar

Full Joint

- 1. joint of L_1 and L_2
- 2. joint of L_2 and L_3
- 3. joint of L_{3} and L_{4}
- 4. joint of L_4 and L_1

Half Joint

None

$$DOF = 3(L-1) - 2J_1 - J_2 = 1$$