Samlefil for alle data til prøveeksamen

Filen 1A/Oppgave1AFigur_A.png

Figure 1: Figur fra filen 1A/Oppgave1AFigur_A.png

$Filen~1A/Oppgave1AFigur_B.png$

Figure 2: Figur fra filen 1A/Oppgave1AFigur_B.png

$Filen~1A/Oppgave1AFigur_C.png$

Figure 3: Figur fra filen 1A/Oppgave1AFigur_C.png

$Filen~1A/Oppgave1AFigur_D.png$

Figure 4: Figur fra filen 1A/Oppgave1AFigur_D.png

$Filen~1A/Oppgave1AFigur_E.png$

Figur E -200.000 -250.000 -300.000 Radiell fart m/s -350.000 -400.000 -450.000 500 ò 1000 1500 2000 2500 3000 3500 Tidspunkt for observasjon (timer)

Figure 5: Figur fra filen 1A/Oppgave1AFigur_E.png

Filen 1B.txt

Luminositeten øker med en faktor 1.20e+09.

Filen 1C.png

Figure 6: Figur fra filen 1C.png

Filen 1E.png

Figure 7: Figur fra filen 1E.png

Filen 1G.txt

STJERNE A) det finnes karbon i et skall rundt kjernen

STJERNE B) stjernas luminositet er 10 ganger solas luminositet og den fusjonerer hydrogen til helium i kjernen

STJERNE C) stjernas luminositet er 1/10 av solas luminositet og det finnes noe helium i kjernen men ingen tyngre grunnstoffer

STJERNE D) Stjerna har en overflatetemperatur på 10000K. Luminositeten er betydelig mindre enn solas luminositet.

STJERNE E) stjernas luminositet er 3 ganger solas luminositet og den fusjonerer hydrogen til helium i kjernen

Filen 1H.png

Figure 8: Figur fra filen 1H.png

Filen 1J.txt

Kjernen i stjerne A har massetet
thet 5.174e+06 kg/m3̂ og temperatur 26 millioner K.

Kjernen i stjerne B har massetet
thet 2.903e+06 kg/m3̂ og temperatur 25 millioner K.

Kjernen i stjerne C har massetet
thet 7.716e+06 kg/m3̂ og temperatur 34 millioner K.

Kjernen i stjerne D har massetet
thet 7.401e+06 kg/m3̂ og temperatur 17 millioner K.

Kjernen i stjerne E har massetet
thet 1.968e+06 kg/m3̂ og temperatur 18 millioner K.

Filen 1K/1K.txt

Påstand 1: denne stjerna er nærmest oss

Påstand 2: denne stjerna er lengst vekk

Påstand 3: den tilsynelatende størrelseklassen (magnitude) med UV filter er betydelig større enn den tilsynelatende størrelseklassen i blått filter

Påstand 4: den tilsynelatende størrelseklassen (magnitude) med blått filter er betydelig mindre enn den tilsynelatende størrelseklassen i rødt filter

$Filen~1K/1K_Figur_A_.png$

Figure 9: Figur fra filen $1\mathrm{K}/1\mathrm{K}$ _Figur_A_.png

$Filen \ 1K/1K_Figur_B_.png$

Figure 10: Figur fra filen $1K/1K_Figur_B_pg$

$Filen \ 1K/1K_Figur_C_.png$

Figure 11: Figur fra filen $1K/1K_Figur_C_png$

$Filen~1K/1K_Figur_D_.png$

Figure 12: Figur fra filen 1K/1K-Figur-D_.png

$Filen \ 1L/1L_Figure_A.png$

Figure 13: Figur fra filen 1L/1L-Figure_A.png

$Filen \ 1L/1L_Figure_B.png$

Figure 14: Figur fra filen 1L/1L-Figure-B.png

$Filen \ 1L/1L_Figure_C.png$

Figure 15: Figur fra filen 1L/1L-Figure_C.png

$Filen \ 1L/1L_Figure_D.png$

Figure 16: Figur fra filen 1L/1L-Figure_D.png

Filen 1L/1L_Figure_E.png

Figure 17: Figur fra filen 1L/1L_Figure_E.png

Filen 1N.txt

Kjernen i stjerne A har massetet
thet $4.768\mathrm{e}+05~\mathrm{kg/m}\hat{3}$ og temperatur 29.64 millioner K.

Kjernen i stjerne B har massetet
thet 1.704e+05 kg/m3̂ og temperatur 27.88 millioner K.

Kjernen i stjerne C har massetet
thet 7.520e+04 kg/m3̂ og temperatur 33.53

millioner K.

Kjernen i stjerne D har massetet
thet 4.272e+05 kg/m3̂ og temperatur 19.66 millioner K.

Kjernen i stjerne E har massetet
thet 2.232e+05 kg/m3̂ og temperatur 21.17 millioner K.

Filen~1O/1O.png

Figure 18: Figur fra filen 10/10.png

$Filen~1O/1O_Figur_0_.png$

Figure 19: Figur fra filen 1O/1O_Figur_O_.png

$Filen\ 1O/1O_Figur_1_.png$

Figure 20: Figur fra filen $1O/1O_Figur_1..png$

$Filen~1O/1O_Figur_2_.png$

Figure 21: Figur fra filen $1O/1O_Figur_2_png$

$Filen~1O/1O_Figur_3_.png$

Figure 22: Figur fra filen $1O/1O_F$ igur_3_.png

Observasjon er gjort 125.36 dager etter første observasjon.

0.93

0.88

0.83

0.73

0.68

0.2371

0.2381

0.2391

0.2401

0.2411

0.2421

0.2421

0.2431

0.2441

Bølgelengde (nm) minus 656nm

$Filen~1O/1O_Figur_4_.png$

Figure 23: Figur fra filen $1O/1O_F$ igur_4_.png

Observasjon er gjort 167.15 dager etter første observasjon.

0.93

0.88

0.83

0.73

0.68

0.2382

0.2392

0.2402

0.2412

0.2422

0.2422

0.2432

0.2442

0.2442

0.2452

Bølgelengde (nm) minus 656nm

Filen 2A.png

Figure 24: Figur fra filen 2A.png

$Filen~2B/2B_Figur_1.png$

Figure 25: Figur fra filen 2B/2B_Figur_1.png

$Filen~2B/2B_Figur_2.png$

Figure 26: Figur fra filen 2B/2B-Figur-2.png

$Filen~2C/2C_Figur_1.png$

Figure 27: Figur fra filen $2C/2C_Figur_1.png$

Vinkelforflytning 1.49 buesekunder i løpet av et millisekund.

Filen 2C/2C_Figur_2.png

Figure 28: Figur fra filen 2C/2C_Figur_2.png

Filen 3A.txt

Din destinasjon er Oslo som ligger i en avstand av 250 km fra Kristiansand. Du og toget som går i motsatt retning kjører begge med farta 99.29730 km/t.

Filen 3E.txt

Tog1 veier 69900.00000 kg og tog2 veier 34200.00000 kg.

Filen 4A.png

Figure 29: Figur fra filen 4A.png

Filen 4C.txt

Hastigheten til Helium-partikkelen i x-retning er 460 km/s.

Filen 4E.txt

Massen til gassklumpene er 4500000.00 kg.

Hastigheten til G1 i x-retning er 37800.00 km/s.

Hastigheten til G2 i x-retning er 41400.00 km/s.

Filen 4G.txt

Massen til stjerna er 22.00 solmasser og radien er 1.84 solradier.