Département de physique

Travaux dirigés d'électricité 2

Réalisé par : Pr. Z. YAMKANE

Rappels mathématiques

Un nombre complexe écrit dans sa forme cartésienne a pour expression :

$$z = a + jb \tag{4}$$

Avec a la partie réelle et b la partie imaginaire, et j le nombre complexe vérifiant $j^2 = -1$.

- Le module de z noté |z| a pour expression : $|z| = \sqrt{a^2 + b^2}$.
- Son argument θ est défini par : $\cos \theta = \frac{a}{|z|}$ et $\sin \theta = \frac{b}{|z|}$
- Un nombre complexe écrit sous sa forme polaire a pour expression :

$$z = r(\cos\theta + j\sin\theta) = re^{j\theta} \tag{5}$$

avec $r = |z| = \sqrt{a^2 + b^2}$ son module et θ son argument.

Exercice 1:

A partir des relevés de ${\bf v}({\bf t})$ et ${\bf i}({\bf t})$ ci-dessous, déterminer la valeur de \overline{Z} à la fréquence considérée

On considère que:

$$v(t) = V_0 \sin(\omega t + \varphi) \rightarrow \overline{v} = V_0 e^{j\omega t} e^{j\varphi}$$

$$i(t) = I_0 \sin(\omega t)$$
 $\rightarrow \bar{i} = i_0 e^{j\omega t}$

Alors:
$$\overline{Z} = \frac{\overline{v}}{\overline{i}} = \frac{V_0 e^{j\omega t} e^{j\varphi}}{i_0 e^{j\omega t}} = \frac{V_0}{I_0} e^{j\varphi}$$

Or:
$$\overline{Z} = Ze^{j\alpha}$$

Donc :
$$Z = \frac{V_0}{I_0}$$
 et $\alpha = \varphi$

A partir des relevés $V_0 = 5V$ et $I_0 = 2A$

Par conséquent :
$$Z = \frac{V_0}{I_0} = 2,5 \Omega$$

$$|\varphi| = \frac{2\pi\tau}{T}$$
 Or $\tau = \frac{T}{4}$ donc $|\varphi| = \frac{\pi}{2}$

A partir des relevés v(t) est en avance de phase par rapport à i(t) alors $\varphi > 0$ donc $\varphi = \frac{\pi}{2}$

Finalement:

$$\overline{Z} = 2,5e^{j\frac{\pi}{2}} = 2,5j$$

Exercice 2:

Le réseau électrique représenté cicontre est alimenté par un générateur sinusoïdal, de valeur efficace 110 V et de fréquence 50 Hz.

- Déterminer l'expression littérale de l'impédance complexe totale du circuit
- Calculer la valeur efficace du courant et le déphasage entre i et u

Sachant que:

$$R_1 = 0.5 \text{ K}\Omega_{\odot}, R_2 = 1 \text{ K}\Omega, \frac{1}{C\omega} = 1 \text{ K}\Omega \text{ (C} = 3,18 \,\mu\text{F)}$$

et $L\omega = 2 \text{ K}\Omega \text{ (L} = 6,36 \text{ H)}$

1- Déterminer l'expression littérale de l'impédance complexe totale du circuit

L'impédance complexe \overline{Z} est définie par: $\overline{Z} = \frac{\overline{U}}{\overline{I}}$

 \overline{Z} contient deux informations

$$|\overline{Z}| = \frac{U_0}{I_0} = \frac{U_{eff}}{I_{eff}} = Z$$

$$Arg(\overline{Z}) = arg(\overline{U}) - arg(\overline{I})$$

$$\operatorname{Arg}(\overline{Z}) = +\varphi \operatorname{si} \operatorname{on} \operatorname{choisit} \overline{i} = I_0 e^{j\omega t} \operatorname{et} \overline{u} = U_0 e^{j(\omega t + \varphi)}$$

$$\operatorname{Arg}(\overline{Z}) = -\varphi \operatorname{si} \operatorname{on} \operatorname{choisit} \overline{i} = I_0 e^{j(\omega t + \varphi)} \operatorname{et} \overline{u} = U_0 e^{j\omega t}$$

Déterminons donc \overline{Z}

$$\overline{Z} = \overline{Z}_{R1} + \overline{Z}_L + \overline{Z}_{R2/C}$$

$$\frac{1}{\overline{Z}_{R2/C}} = \frac{1}{\overline{Z}_{R2}} + \frac{1}{\overline{Z}_C} = \frac{\overline{Z}_C + \overline{Z}_{R2}}{\overline{Z}_{R2} \times \overline{Z}_C}$$

$$\overline{Z}_{R2/C} = \frac{\overline{Z}_{R2} \times \overline{Z}_C}{\overline{Z}_C + \overline{Z}_{R2}}$$

$$\overline{Z}_{R2} = R_2$$
 , $\overline{Z}_C = \frac{1}{jC\omega}$

$$\overline{Z}_{R2/C} = \frac{\frac{1}{jC\omega} \times R_2}{\frac{1}{iC\omega} + R_2} \qquad \overline{Z}_{R2/C} = \frac{R_2}{1 + jC\omega R_2}$$

$$\overline{Z}_{R2/C} = \frac{R_2}{1 + jC\omega R_2}$$

$$\overline{Z} = R_1 + jL\omega + \frac{R_2}{1 + jC\omega R_2} = R_1 + jL\omega + \frac{R_2(1 - jC\omega R_2)}{(1 + jC\omega R_2).(1 - jC\omega R_2)}$$

$$\overline{Z} = R_1 + jL\omega + \frac{(R_2 - jC\omega R_2^2)}{(1^2 - (jC\omega R_2)^2)} = R_1 + jL\omega + \frac{R_2}{1 + (C\omega R_2)^2} - \frac{jC\omega R_2^2}{1 + (C\omega R_2)^2}$$

$$\overline{Z} = \left[R_1 + \frac{R_2}{1 + (C\omega R_2)^2} \right] + j \left[L\omega - \frac{C\omega R_2^2}{1 + (C\omega R_2)^2} \right]$$

A.N en k Ω

$$\overline{Z} = \left[0.5 + \frac{1}{2}\right] + j\left[2 - \frac{1}{1+1}\right] = 1 + \frac{3}{2}j$$

2- Calculer la valeur efficace du courant et le déphasage entre i et u

> la valeur efficace du courant

$$|\overline{Z}| = Z = \frac{U_0}{I_0} = \frac{U_{eff}}{I_{eff}} \text{ donc } I_{eff} = \frac{U_{eff}}{Z}$$

Or:

$$Z = \sqrt{1 + \left(\frac{3}{2}\right)^2} = \frac{\sqrt{13}}{2} \,\mathrm{k}\Omega = \frac{\sqrt{13}}{2} \times 10^3 \,\Omega$$

Alors:

$$I_{eff} = \frac{110}{\frac{\sqrt{13} \times 10^3}{2}} = 0,061A = 61mA$$

➤ le déphasage entre i et u

$$tan\varphi = \frac{\frac{3}{2}}{1}$$

$$\varphi = \arctan^{-1}\left(\frac{3}{2}\right) = 0,98 \text{ rad}$$

Exercice 3:

La tension e(t) fournie par le générateur du circuit ci-contre est de la forme e(t) = $E_0 \sin(\omega t)$. Le courant principal est de la forme i(t) = $I_0 \sin(\omega t + \varphi_{i/e})$.

On cherche à déterminer la puissance active consommée aux bornes du générateur.

Déterminer l'expression littérale de l'impédance complexe totale du circuit.

En déduire les expressions de I_0 et $\varphi_{i/e}$.

 Calculer la valeur numérique de la puissance active consommée aux bornes du générateur.

Application numérique : $E_0 = 100 \text{ V}$; $R = 2 \text{ k}\Omega$; $1/C\omega = 2 \text{ k}\Omega$

1- Déterminer l'expression littérale de l'impédance complexe totale du circuit.

$$\frac{1}{\overline{Z}} = \frac{1}{\overline{Z}_{RC}} + \frac{1}{\overline{Z}_{RC}}$$

$$\overline{Z}_{RC} = \overline{Z}_R + \overline{Z}_C = R + \frac{1}{jC\omega} = \frac{RjC\omega + 1}{jC\omega}$$

$$\frac{1}{\overline{Z}} = \frac{jC\omega}{1 + RjC\omega} + \frac{jC\omega}{1 + RjC\omega} = \frac{2jC\omega}{1 + RjC\omega}$$

$$\overline{Z} = \frac{1 + RjC\omega}{2jC\omega} = \frac{(1 + RjC\omega)(-2jC\omega)}{(2jC\omega)(-2jC\omega)} = \frac{(-2jC\omega + 2R(C\omega)^2)}{4(C\omega)^2} = \frac{R}{2} - j\frac{1}{2C\omega}$$

$$\overline{Z} = 1 - j$$
 En k Ω

En déduire les expressions de I_0 et $\varphi_{i/e}$.

Expression de I₀

$$|\overline{Z}| = Z = \frac{U_0}{I_0} = \frac{E_0}{I_0}$$

Donc
$$I_0 = \frac{E_0}{Z}$$
 Or $Z = \sqrt{1 + (-1)^2} = \sqrt{2} \text{ k}\Omega = \sqrt{2}.10^3 \Omega$
A.N $I_0 = \frac{100}{\sqrt{2}.10^3} = 0.07A = 70mA$

\triangleright expressions de $\varphi_{i/e}$

$$\alpha = \operatorname{Arg}(\overline{Z}) = \operatorname{arg}(\overline{U}) - \operatorname{arg}(\overline{I})$$
 Or $\overline{i} = I_0 e^{j(\omega t + \varphi_{i/e})}$ et $\overline{u} = U_0 e^{j\omega t}$

Par conséquent :

$$\alpha = 0 - \varphi_{i/e} = -\varphi_{i/e}$$

$$tg\alpha = \frac{-1}{1} = -1, \alpha = \frac{-\pi}{4}$$
 Finalement: $\varphi_{i/e} = +\frac{\pi}{4}$

2- Calculer la valeur numérique de la puissance active consommée aux bornes du générateur.

Par définition:

$$P = U_{eff}I_{eff}cos\varphi = \frac{U_0}{\sqrt{2}}\frac{I_0}{\sqrt{2}}\cos\varphi_{i/e} = \frac{E_0I_0}{2}\cos\varphi_{i/e}$$

$$P = \frac{100 \times 0.07}{2} \cdot \cos \frac{\pi}{4} = \frac{7}{2} \cdot \frac{\sqrt{2}}{2} = 2.47Watt$$

Exercice 4

On considère le circuit présenté sur la figure suivante :

Avec : $R=1\Omega$; $1/C\omega=1\Omega$; $r=0.5\Omega$

- 1- Etablir l'expression de l'impédance complexe de ce circuit et l'écrire sous la forme $\overline{Z}_{AB} = a + jb$, calculer les valeurs de a et b.
- 2- Calculer le module Z_{AB} de l'impédance comple \overline{x}_{B} de ce circuit.
- 3- Calculer l'argument θ de l'impédance \overline{z}_{AB} complexe de ce circuit.
- 4- Entre les bornes A, B on applique la tension sinusoïdale $v(t) = \sqrt{5}cos\omega t$, déterminer le courant i(t), on posera $i(t) = I_m cos(\omega t + \varphi)$, φ représente le déphasage du courant par rapport à la tension. En déduire I_m et φ .

1-

$$\overline{Z}_{AB} = \overline{Z}_r + \overline{Z}_{R//C}$$

$$\frac{1}{\overline{Z}_{R//C}} = \frac{1}{\overline{Z}_R} + \frac{1}{\overline{Z}_C} = \frac{\overline{Z}_R + \overline{Z}_C}{\overline{Z}_R.\overline{Z}_C}$$

$$\overline{Z}_{R//C} = \frac{\overline{Z}_R.\overline{Z}_C}{\overline{Z}_R + \overline{Z}_C}$$

$$\overline{Z}_{AB} = \overline{Z}_r + \frac{\overline{Z}_R \cdot \overline{Z}_C}{\overline{Z}_R + \overline{Z}_C}$$

$$\overline{Z}_{AB} = r + \frac{R \cdot \frac{1}{jC\omega}}{R + \frac{1}{jC\omega}} = r + \frac{R}{1 + jRC\omega}$$

$$\overline{Z}_{AB} = r + \frac{R.(1 - jRC\omega)}{(1 + jRC\omega).(1 - jRC\omega)}$$

$$\overline{Z}_{AB} = r + \frac{R.(1 - jRC\omega)}{1^2 + (RC\omega)^2}$$

$$\overline{Z}_{AB} = r + \frac{R}{1 + (RC\omega)^2} - j\frac{R^2C\omega}{1 + (RC\omega)^2}$$

$$a = r + \frac{R}{1 + (RC\omega)^2}$$

$$b = -\frac{R^2 C \omega}{1 + (RC\omega)^2}$$

$$a = r + \frac{R}{1 + (RC\omega)^2} = 1\Omega$$

$$b = -\frac{R^2 C\omega}{1 + (RC\omega)^2} = -\frac{1}{2} \Omega$$

2-

$$Z = \sqrt{a^2 + b^2} = \sqrt{1^2 + \left(\frac{-1}{2}\right)^2} = \frac{\sqrt{5}}{2} \Omega$$

3-

$$tg\theta = \frac{b}{a} = \frac{-1}{2}$$

 θ =-0,46 rad

4-

$$Z = \frac{U_m}{I_m} \to I_m = \frac{U_m}{Z} \to I_m = \frac{\sqrt{5}}{\frac{\sqrt{5}}{2}} = 2A$$

$$arg \overline{Z} = arg \overline{U} - arg \overline{I}$$

$$\theta = 0 - \varphi$$

$$\varphi = -\theta$$

 $i(t) = 2\cos(\omega t + 0.46)$

 φ =0,46 rad

Exercice 5

$$u(t) = U\sqrt{2} \sin(\omega t)$$
.

On donne:

$$U = 2$$
 volts, $L = 0.4$ mH, $C = 400$ pF, $R = 5 \Omega$.

- 1°) Calculer la pulsation propre ω_0 du circuit, sa fréquence propre f_0 et la valeur maximale du courant I_o qui parcourt le circuit à la résonance.
- 2°) Trouver les valeurs des tensions U_{oL} et U_{oC} , mesurées à la résonance, aux bornes de la self et de la capacité. En déduire le coefficient de surtension ou facteur de qualité Q du circuit.
 - 1- La pulsation propre du circuit est calculée à partir de l'expression

$$\omega_{0} = \frac{1}{\sqrt{LC}}$$
 \Rightarrow $f_{0} = \frac{\omega_{0}}{2\pi}$ $\omega_{0} = 2.5 \cdot 10^{6} \text{ rad/s}, \quad f_{0} = 400 \text{ kHz},$ $I_{0} = \frac{U}{R}$ $I_{0} = 0.4 \text{ A}$

 2°) Calcul des tensions U_{oL} et U_{oC} et du coefficient de qualité Q :

$$U_{o,L} = L\omega_o I_o$$
 soit $U_{o,L} = L\omega_o \frac{U}{R} = 400 \text{ volts}$

$$U_{oC} = 400$$
 volts.

$$Q = \frac{L\omega_0}{R} = 200$$

A la résonance la tension aux bornes de la self U_{oL} est multipliée par un facteur Q=200: il en résulte une surtension. Il en est de même de la tension aux bornes du condensateur.