

HiSpark-Trace

硬件工具本体软件编译构建指导

文档版本 01

发布日期 2024-06-19

版权所有 © 海思技术有限公司2024。保留一切权利。

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

商标声明

HISILICON、海思和其他海思商标均为海思技术有限公司的商标。 本文档提及的其他所有商标或注册商标,由各自的所有人拥有。

注意

您购买的产品、服务或特性等应受海思公司商业合同和条款的约束,本文档中描述的全部或部分产品、服务或特性可能不在您的购买或使用范围之内。除非合同另有约定,海思公司对本文档内容不做任何明示或默示的声明或保证。

由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用指导,本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

海思技术有限公司

地址: 上海市青浦区虹桥港路2号101室 邮编: 201721

网址: https://www.hisilicon.com/cn/

客户服务邮箱: support@hisilicon.com

前言

概述

本文档主要描述HiSpark-trace硬件工具自身本体的软件版本的编译和构建方法。

产品版本

本文档使用的相关组件及版本如下。

产品名称	产品版本
编译工具链	gcc-arm-none-eabi-10.3-2021.07
DAPLink开源包	V0257
STM32MP151芯片驱动包	STM32CubeMP1-1.4.0
HiSPark-Trace SDK包	V1.0.0.0

读者对象

本文档(本指南)主要适用于以下工程师:

- 技术支持工程师
- 软件开发工程师

符号约定

在本文中可能出现下列标志,它们所代表的含义如下。

符号	说明
▲ 危险	表示如不避免则将会导致死亡或严重伤害的具有高等级风险的 危害。

符号	说明
<u> </u>	表示如不避免则可能导致死亡或严重伤害的具有中等级风险的 危害。
<u></u> 注意	表示如不避免则可能导致轻微或中度伤害的具有低等级风险的 危害。
须知	用于传递设备或环境安全警示信息。如不避免则可能会导致设备损坏、数据丢失、设备性能降低或其它不可预知的结果。 "须知"不涉及人身伤害。
□ 说明	对正文中重点信息的补充说明。 "说明"不是安全警示信息,不涉及人身、设备及环境伤害信 息。

修订记录

修订日期	版本	修订说明
2023-11-03	00B01	第1次临时版本发布。
2024-06-19	01	第1次正式版本发布。

目录

前	'言	i
	一 概述	
	2.2 编译工具链安装与配置	2
	2.2.1 Windows	3
	2.2.2 Linux X86_64	3
3	版本编译	4
	3.1 获取 SDK 工程代码	4
	3.2 获取依赖的开源包	4
	3.3 版本构建编译	4

插图目录

图 2	2-1 编译工具链	2
图 3	3-1 HiSpark-Trace 源码目录	4
	3-2 开源代码包	
图 3	3-3 执行编译构建脚本	5
图 3	3-4 执行编译构建脚本后的目录	6
	3-5 编译构建输出结果文件目录	

■ 概述

本文档主要描述HiSpark-Trace硬件工具自身本体的软件版本的编译和构建方法。

2 编译环境搭建

须知

编译构建需要依赖make工具和python工具,请确保机器上已安装。

2.1 编译工具链获取

进入ARM官网工具链下载页面https://developer.arm.com/downloads/-/gnu-rm,根据不同的平台选择对应的工具链安装包进行下载(版本必须为:gcc-arm-none-eabi-10.3-2021.07)。

图 2-1 编译工具链

gcc-arm-none-eabi-10.3-2021.07-win32.zip

Windows 32-bit ZIP package

MD5: fca12668002f8c52cfa174400fd2d03e

gcc-arm-none-eabi-10.3-2021.07-x86_64-linux.tar.bz2

Linux x86 64 Tarball

MD5: b56ae639d9183c340f065ae114a30202

2.2 编译工具链安装与配置

2.2.1 Windows

步骤1 解压下载好的编译工具链压缩包"gcc-arm-none-eabi-10.3-2021.07-win32.zip"。

步骤2 新建环境变量 "TOOLCHAIN_DIR"值配置为工具链的根目录。注意目录分隔符。例如: "D:/tools/gcc-arm-none-eabi-10.3-2021.07-win32"。

步骤3 把工具链bin文件夹路径加入Path环境变量,值为%TOOLCHAIN_DIR%\bin。

----结束

2.2.2 Linux X86 64

步骤1 解压下载好的编译工具链压缩包 "gcc-arm-none-eabi-10.3-2021.07-x86_64-linux.tar.bz2"。

步骤2 新增环境变量"TOOLCHAIN_DIR"工具链目录,值配置为工具链根目录,例如: export TOOLCHAIN_DIR=~/tools/qcc-arm-none-eabi-10.3-2021.07。

步骤3 把工具链bin文件夹路径加入PATH环境变量; export PATH=\$TOOLCHAIN_DIR/bin:\$PATH。

----结束

3 版本编译

3.1 获取 SDK 工程代码

步骤1 从开源网站上下载SDK包源码。SDK包源码链接: https://gitee.com/Solarec----结束

3.2 获取依赖的开源包

步骤1 获取DapLink开源包"DAPLink-0257.tar.gz",开源包下载链接: https://github.com/ ARMmbed/DAPLink/tree/v0257

步骤2 获取STM32MP153驱动包"STM32CubeMP1-1.4.0.tar.gz",驱动包下载链接: https://github.com/STMicroelectronics/STM32CubeMP1/releases/tag/1.4.0

----结束

3.3 版本构建编译

步骤1 解压SDK包,进入HiSpark-Trace源码目录,HiSpark-Trace源码目录如图3-1所示。

图 3-1 HiSpark-Trace 源码目录

步骤2 把下载好的DAPLink开源包和STM32MP153驱动包的压缩包拷贝到open_source目录 下,如下<mark>图3-2</mark>所示。

图 3-2 开源代码包

步骤3 HiSpark-Trace源码的根目录下执行编译构建脚本"build.sh"。

须知

linux环境下可以直接执行build.sh脚本。windows环境下需要依赖shell执行工具命令窗 口执行build.sh脚本。

HiSpark-Trace编译构建依赖SDK "SDK\middleware\hisilicon \libboundscheck_v1.1.16"目录下的安全函数库,请确保该目录下安全函数源码存 在。如果需要修改安全函数库存放路径,请修改build.sh脚本中 "SECURE_CODE_SRC"变量指向新路径。

编译脚本的传参和对应的动作如下:

: same of build.sh ca7

build.sh prepare : create the directory of build and tar build.sh clean : remove the output and intermediate files build.sh boot : build boot

build.sh boot clean: remove output and intermediate file of boot

build.sh ca7 : build daplink code in Cortex-A

build.sh ca7 clean : remove output and intermediate file of Cortex-A

: build daplink code in Cortex-M

build.sh boot clean: remove output and intermediate file of Cortex-M

build.sh mkimages : create images : build and create images build.sh all

build.sh rebuild : clean all and rebuild and create images

build.sh build : build and create images build.sh -h|--help : print help message

例如编译构建和打包所有版本升级文件,如下图3-3所示。

图 3-3 执行编译构建脚本

/HiSparkTrace\$./build.sh all

执行构建编译动作后根目录下会多出两个目录"build"和"images",如下图3-4所 示。

图 3-4 执行编译构建脚本后的目录

图 3-5 编译构建输出结果文件目录

----结束