Bachelor's Thesis

Aufbau einer Schnittstelle zwischen MATLAB und einer Wetterstation über MODBUS Development of a MATLAB gateway to a hardware weather station via MODBUS

verfasst von

Andreas Henneberger

Matr.Nr. 2647351

eingereicht am

Lehrstuhl für Energiewirtschaft und Anwendungstechnik
Technische Universität München,

bei

Prof. Dr. rer. nat. Thomas Hamacher

Betreuer: Dipl.-Ing. Christian Kandler und Dipl.-Ing.
Patrick Wimmer

Zusammenfassung

Ziel dieser Arbeit ist es eine Schnittstelle zwischen MATLAB und einer Wetterstation aufzubauen, um darüber Prognosedaten für ein integriertes Energiemanagementsystem bereitzustellen. Diese Informationen sollen dazu dienen die Planungen des Managementsystems im Smart-Micro-Grid hinsichtlich Lastverläufe und Energieerzeugung zu vereinfachen bzw. zu präzisieren. Die Datenbereitstellung erfolgt über einen Langwellenempfänger, dessen Register über eine MOD-BUS Kommunikation abgerufen werden können. Die meisten gelieferten Werte weisen eine zeitliche Auflösung von 6 Stunden auf. Da das Managementsystem jedoch umso genauer arbeiten kann, je niedriger diese Auflösung ist, ist es mit Aufgabe der Schnittstelle, die Daten in kleineren Zeitintervallen zur Verfügung zu stellen. Der Datenabruf und die Verarbeitung sollen in anderen MATLAB Programmen zum Einsatz kommen. Es ist daher zweckmäßig den Kommunikationsprozess als MATLAB Funktion mit entsprechenden Übergabeparametern zu implementieren. Um die geforderten Aufgabenziele zu erreichen, wurden die Spezifikationen der Wetterstation und des MODBUS-Protokolls analysiert. Mit den aus der Analyse gewonnen Informationen und den in MATLAB zur Verfügung stehenden Methoden, wurde letztlich das Programm umgesetzt. Wie der Leser am Ende der Arbeit feststellen kann, ergibt ein Vergleich der interpolierten Daten mit genauen Wetteraufzeichnungen der LMU ein differenziertes Bild. ...

Inhaltsverzeichnis

Ι	Einleitung	4
II	Hauptteil	6
1	Das Modbus-Protokoll	7
2	Aufbau der Wetterstation	8
	2.1 Aufbau der Datenstruktur	8
	2.2 Technischer Aufbau der Station	9
	2.2.1 Senderauswahl und Stationsaufbau	9
	2.2.2 Registereinteilung und Schnittstellenparametrierung	10
3	Funktionscode Dokumentation	11
4	Datenanalyse	12
II	I Schluss	13
Aı	ppendices	15
Aı	ppendices	16
\mathbf{A}		16
	A.1 Tabelle Datenstruktur	16
	A.2 Irgendwas	16
В	Abkürzungsverzeichnis	18

Abbildungsverzeichnis

2.1	Verfuegbare Prognosedaten WS-K RTU485 WPAia[1, S. 5]	8
2.2	Standorte der Langwellensender und des Empfängers[1, S. 15]	9

Tabellenverzeichnis

2.1	Einstellungsparameter für den Kommunikationsaufbau und den Wetterbereich [1,	
	S. 16-17]	10
A.1	Detailierte Datenstruktur der Wetterstation[1, S. 17-26]	17

$\begin{array}{c} {\rm Teil~I} \\ {\rm \bf Einleitung} \end{array}$

In Zukunft wird die Mobilität durch Elektroautos mit geprägt sein. Damit Deutschland auf diesem Technologiefeld eine Spitzenposition einnehmen kann, wurde von der Bundesregierung die Nationale Plattform Elektromobilität initiiert. Ziel dieser Institution ist es Deutschland bis zum Jahr 2020 zum Leitmarkt und Leitanbieter zu entwickeln. Marktvorbereitung, Markthochlauf und der Massenmarkt sind dabei die zu durchlaufenden Phasen. In der Marktvorbereitungsphase, in der wir uns zur Zeit befinden, werden die Ergebnisse aus Forschung und Entwicklung genutzt, um in vier sogenannten Schaufenstern die Modelle und Prognosen für den Markthochlauf zu validieren bzw. bei auftretenden Abweichungen anzupassen. [2] Eines dieser Schaufenster, genannt "Elektromobilität verbindet" wird von den Bundesländern Bayern und Sachsen betreut und finanziert. Das Schaufenster ist aufgegliedert in vier Teilprojekte von denen eines sich den Energiesystemen widmet. Das Themengebiet Energiesysteme ist wiederum in 9 Aufgabengebiete unterteilt, wovon sich eines mit der Integration der Elektromobilität in die dezentrale regenerative Energieversorung beschäftigt. Ein Aufgabenschwerpunkt hierbei ist es ein integriertes Energiemanagementsystem mittels Aufbau und Betrieb eines Hardware-in-the-Loop Prüfstands zu evaluieren. Da das Energiemanagementsystem auch Vorausschautechnologien einbinden soll, ist es erforderlich Prognosedaten zu erheben.[3]

Teil II Hauptteil

Das Modbus-Protokoll

Aufbau der Wetterstation

2.1 Aufbau der Datenstruktur

An dieser Stelle der Bachelorarbeit sollen die grundlegenden Eigenschaften der verwendeten Wetterstation dargestellt werden. Eine gute Kenntnis der Datenstruktur sowie der Datenbereitstellung sind eine zwingende Voraussetzung für den späteren Aufbau der MATLAB Funktion. Der Hersteller bietet für die Hardware eine Reihe von Lizenzmodellen an, die den Empfang der Datenmenge bestimmt. Das in dieser Arbeit zum Einsatz kommende Modell nennt sich "WS-K RTU485 WPAia T" und beinhaltet das Prognosepaket "Premium All inclusive advanced", welches es ermöglicht, das komplette Spektrum an Prognosedaten abzurufen[1, S. 2]. Welche Wetterinformationen genau zur Verfügung stehen, kann der unten aufgeführten Grafik entnommen werden. Für welche Bereiche diese metereologischen Daten zutreffen muss in der Wetterregion

Abbildung 2.1: Verfuegbare Prognosedaten WS-K RTU485 WPAia[1, S. 5]

spezifiziert werden. Hier besteht die Möglichkeit für über 1000 Städte in fast ganz Europa die Wetterprognosen abzufragen[1, S. 27-38]. Wie schon in der Einleitung erwähnt, wäre eine niedrige zeitliche Auflösung der Daten wünschenswert, damit das Energiemanagementsystem ohne große Verwerfungen planen kann. Jedoch liegen die meisten Daten in einer Auflösung von 6 Stunden vor, d.h. für ein Intervall von morgens, mittags, nachmittags und abends. Lediglich die mittlere Lufttemperatur wird in einer 1 stündigen Auflösung bereitgestellt. Dieser Umstand wird später im Programmablauf gesondert berücksichtigt. Ein Update der Daten erfolgt ebenfalls alle 6 Stunden. Neben der Auflösung unterscheidet sich auch der Prognosehorizont innerhalb der zugänglichen Daten. Die Spanne reicht von einem bis zu drei Folgetagen. Für den aktuellen Tag, liegen für alle Bereiche Daten vor. Welche metereologische Ausprägung welche Eigenschaften besitzt, kann in der Tabelle?? im Anhang nachvollzogen werden.

2.2 Technischer Aufbau der Station

2.2.1 Senderauswahl und Stationsaufbau

Die eingesetzte Wetterstation erhält ihre Daten via Langwelle von drei auswählbaren Sendern:

- Sender Mainflingen DCF 49
- Sender Burg DCF 39
- Sender Lakihegy HGA 22 (Ungarn)

Abbildung 2.2: Standorte der Langwellensender und des Empfängers[1, S. 15]

Die Wetterstation soll in München aufgebaut werden. Um einen guten Empfang gewährleisten zu können, muss sie entsprechend ausgerichtet werden. Der Hersteller gibt hierzu Kriterien vor, die beachtet werden sollten[1, S. 13 u. 15]:

- senkrechter Aufbau des Gehäuses mit nach unten austretendem Kabelstrang
- für einen Innenaufbau in der Nähe zum Fenster

Register- adresse	Bezug	Zugriff	Datentyp	Bereich	Bemerkung
110	Senderstation	Lesen/Schreiben	unsigned	0,1,2	0 = DCF 49 1 = HGA 22 2 = DCF 39
111	Empfangsqualität	Lesen	unsigned	09	9 ist höchste Qualität
112	Stadt ID	Lesen/Schreiben	unsigned	01022	
100	Sekunde (Funkuhr)	Lesen	unsigned		UTC
101	Minute (Funkuhr)	Lesen	unsigned		UTC
102	Stunde (Funkuhr)	Lesen	unsigned		UTC
103	Tag (Funkuhr)	Lesen	unsigned		UTC
104	Monat (Funkuhr)	Lesen	unsigned		UTC
105	Jahr (Funkuhr)	Lesen	unsigned		UTC

Tabelle 2.1: Einstellungsparameter für den Kommunikationsaufbau und den Wetterbereich [1, S. 16-17]

- Mindestabstand von 30 cm zu Metallkonstruktionen oder -flächen
- ausreichende Entfernung zu Geräten die elektromagnetisch abstrahlen
- keine direkte Sonnenbestrahlung für das Einbinden der lokalen Temperatur
- ausreichender Bodenabstand, um Einschneien zu vermeiden
- Ausrichtung zum geografisch günstigsten Sender

Unter Berücksichtigung dieser Empfehlungen wurde die Station in Fensternähe in nordwestlicher Richtung aufgebaut und die Sendestation Mainflingen vorgegeben.

2.2.2 Registereinteilung und Schnittstellenparametrierung

Wie im vorigen Kapitel bereits erläutert, können über das MODBUS Protokoll vier Arten von Registern angesprochen werden. In der Wetterstation sind zwei Register für die Kommunikation vorgesehen. Im Holdingregister können Einstellungsparameter gesetzt und gelesen werden. Eine Übersicht gibt die oben aufgeführte Tabelle 2.1. Außerdem sind sämtliche metereologischen Daten in diesem Register abgelegt. Eine Auflistung der den Prognosebereichen zugeordneten Registeradressen gibt die im Anhang befindliche Tabelle??. Es ist dabei zu beachten, dass die Adressen gegenüber den in der Spezifikation des Herstellers Angegebenen, bereits auf die Struktur des Holdingregisters angepasst wurden. D.h. da das Holdingregister mit einer 0 beginnt, wurde von jeder Adresse eine Position abgezogen. Neben dem Holdingregister gibt es noch das Coilregister, in welchem die Zustände für den externen Temperatursensor und die FSK Qualität vorgehalten werden. Die Adressen hierfür sind 1 bzw. 2 und die zugelassenen Werte 1 und 0 geben jeweils den Zustand an. 1 bedeutet der Sensor sowie die FSK Qualität sind in Ordnung.

Funktionscode Dokumentation

Datenanalyse

Teil III

Schluss

Rechtserklärung

Hiermit erkläre ich,

Name: Henneberger

Vorname: Andreas Helmut

Mat.Nr.: 2647351

dass ich die beiliegende Bachelor's Thesis zum Thema:

Aufbau einer Schnittstelle zwischen Matlab und einer Wetterstation über

MODBUS

selbständig verfasst, keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe, sowie alle wörtlichen und sinngemäß übernommenen Stellen in der Arbeit gekennzeichnet und

die entsprechenden Quellen angegeben habe.

Vom Lehrstuhl und seinen Mitarbeitern zur Verfügung gestellte Hilfsmittel, wie Modelle oder Programme, sind ebenfalls angegeben. Diese Hilfsmittel sind Eigentum des Lehrstuhls bzw. des

jeweiligen Mitarbeiters. Ich werde sie nicht über die vorliegende Arbeit hinaus weiter verwenden

oder an Dritte weitergeben.

Einer weiteren Nutzung dieser Arbeit und deren Ergebnisse (auch Programme und Methoden)

zu Zwecken der Forschung und Lehre, stimme ich zu.

Ich habe diese Arbeit noch nicht zum Erwerb eines anderen Leistungsnachweises eingereicht.

München,
......
Andreas Henneberger

14

Appendices

Anhang A

- A.1 Tabelle Datenstruktur
- A.2 Irgendwas

Prognosebereich Prognosedetail	Prognosedetail	Einheit	Einheit Wertebereich	Aufloesung	Prognoseintervall	Aufloesung Prognoseintervall zeitliche Aufloesung Registeradresse Info	Registeradresse	Info
Temperatur	Min. Lufttemperatur	၁့	< -60 bis > 65	1	3 Tage	6h	420 - 435	Mittlerer Wert 2m über Erdboden
Temperatur	Max. Lufttemperatur	၁့	< -60 bis > 65	1	3 Tage	6h	400 - 415	Mittlerer Wert 2m über Erdboden
Temperatur	Mittlere Lufttemperatur	ွ	< -60 bis > 65	1	3 Tage	1h	260 - 000	Mittlerer Wert 2m über Erdboden
Temperatur	Lokale Lufttemperatur	၁့	< -60 bis > 65	1	Aktuell	1s	260	Standortabhängig
Niederschlag	Menge	$1/\mathrm{m}^2$	09-0	dynamisch	3 Tage	6h	140 - 155	Mittlerer Wert
Niederschlag	Wahrscheinlichkeit	8	0 - 100	10	3 Tage	6h	160 - 175	
Solarprognose	Sonnenscheindauer	h	9 - 0	1	1 Tag	6h	180 - 187	Mittlerer Wert
Solarprognose	Solare Einstrahlung	$ m W/m^2$	0 - 1200 / > 1200	25	1 Tag	6h	190 - 197	Mittlerer Wert Globalstrahlung
Luftdruck	Min. Lufttemperatur	$^{ m hPa}$	< 938 - > 1063	1	1 Tag	6h	240 - 247	Mittlerer Wert bezogen auf NN
Windprognose	Stärke	Bft	0 - 12	1	3 Tage	6h	200 - 215	Mittlerer Wert 10m über Erdboden
Windprognose	Richtung		1 - 8	1	3 Tage	6h	220 - 235	MN/W/S/S/OS/O/ON/N
Markantes Wetter	Böen		0,1,2,3	1	3 Tage	6h	310 - 325	$0 = \text{keine B\"{o}en}, 1 = 45 \text{km/h}, 2 = 72 \text{km/h}, 3 = 99 \text{km/h}$
Markantes Wetter	Bodennebel		0,1	1	3 Tage	6h	250 - 265	0 = Wahrscheinlichkeit <= 50%, 1 = > 50%
Markantes Wetter	Gefrierender Regen		0,1	1	3 Tage	6h	270 - 285	0 = Wahrscheinlichkeit <= 50%, 1 = > 50%
Markantes Wetter	Hitze	ွ	0,1,2,3,4	1	3 Tage	6h	350 - 365	$0 = \langle 27^{\circ}C, 1 = 27-31^{\circ}C, 2 = 32-40^{\circ}C, 3 = 41-53^{\circ}C, 4 = >54^{\circ}C$
Markantes Wetter	Kälte	၁့	0,1,2,3,4	1	3 Tage	6h	370 - 385	0 = keine Info, 1 = $<-15^{\circ}$ C, 2 = $<-20^{\circ}$ C, 3 = $<-25^{\circ}$ C, 4 = $<-30^{\circ}$ C
Markantes Wetter	Bodenfrost		0,1	1	3 Tage	6h	290 - 305	0 = Wahrscheinlichkeit <= 50%, 1 = > 50%
Markantes Wetter	Niederschlag		0,1,2,3	1	3 Tage	6h	330 - 345	0 = keine Info, 1 = 10 mm, 2 = 50 mm, 3 = keine Info
Signifikantes Wetter			1 - 15	1	3 Tage	6h	120 - 135	

Tabelle A.1: Detailierte Datenstruktur der Wetterstation[1, S. 17-26]

Anhang B

Abkürzungsverzeichnis

NN Normal Null Meeresspiegel
hPa Hektopascal
Bft Beaufort
mm Millimeter
km Kilometer
h Stunde
C Celsius
N Nord
NO Nordost
O Osten
SO Suedost
S Sueden
SW Suedwest
W Westen

 \mathbf{NW} Nordwest

Literaturverzeichnis

- [1] HKW-Elektronik GmbH. Wetterprognose-Station Kompakt WS-K xx Modbus. HKW-Elektronik GmbH, Industriestraße 12, D-99846 Seebach/Thur, stand 23.11.2012 edition, November 2012.
- [2] Nationale Plattform Elektromobilität (NPE). Fortschrittsbericht der Nationalen Plattform Elektromobilität, page 3. Number 3. Gemeinsame Geschäftsstelle Elektromobilität der Bundesregierung (GGEMO), Scharnhorststraße 34–37, 10115 Berlin, 2012.
- [3] Bayern Innovativ Gesellschaft für Innovation und Wissenstransfer mbH. http://www.elektromobilitaet-verbindet.de/, 1 2014.