Titre: Enveloppe convexe du groupe orthogonal réel

Recasages: 159,181

Thème : Algèbre linéaire, calcul matriciel.

Références : Szpirglas, Algèbre L3

On fixe $n \in \mathbb{N}^*$, $C := \operatorname{Conv}(O_n(\mathbb{R}))$, et B la boule unité fermée de $\mathcal{M}_n(\mathbb{R})$ pour la norme $\|.\|_2$.

<u>Théorème</u> 1. L'enveloppe convexe de $O_n(\mathbb{R})$ est la boule unité fermée de $\mathcal{M}_n(\mathbb{R})$ pour la norme $\|.\|_2$. Autrement dit B = C.

Dans un premier temps, on rappelle que par définition, $O_n(\mathbb{R}) \subset B$, donc $C \subset B$ car B est une partie convexe. Il suffit donc de montrer l'inclusion réciproque. Par le théorème de Carathéodory, C est un compact de $\mathcal{M}_n(\mathbb{R})$ car $O_n(\mathbb{R})$ est un compact de $\mathcal{M}_n(\mathbb{R})$.

Étape 1 : Si $M \notin C$, alors il existe $\varphi \in \mathcal{M}_n(\mathbb{R})^*$ telle que

$$\sup_{O \in O_n(\mathbb{R})} \varphi(O) < \varphi(M)$$

autrement dit, pour tout $O \in {}_{n}(\mathbb{R})$, on a $\varphi(O) < \varphi(M)$ (version faible du théorème de Hahn-Banach).

En effet, si $M \notin C$, en notant P(M) le projeté orthogonal de M sur C, on a $P(M) \neq M$ et on pose

$$\varphi(A) := (M - P(M), A)$$

où (.,.) désigne le produit scalaire usuel sur $\mathcal{M}_n(\mathbb{R}) \simeq \mathbb{R}^{n^2}$. On obtient bien une forme linéaire sur $\mathcal{M}_n(\mathbb{R})$, avec

- $\varphi(O)=0$ pour $O\in C$ par définition du projeté orthogonal, donc $\varphi(O)=0$ pour $O\in O_n(\mathbb{R})\subset C$.
- $\varphi(M) = (M P(M), M) = (M P(M), M P(M)) > 0$, toujours par définition du projeté orthogonal.

On doit donc montrer: $\forall M \in B, \varphi \in \mathcal{M}_n(\mathbb{R})^*, \exists O \in O_n(\mathbb{R}) \mid \varphi(M) \leqslant \varphi(O)$

Étape 2 : Caractérisons les formes linéaires sur $\mathcal{M}_n(\mathbb{R})$: Pour $A \in \mathcal{M}_n(\mathbb{R})$, on pose

$$f_A: \mathcal{M}_n(\mathbb{R}) \longrightarrow \mathbb{R}$$

$$M \longmapsto \operatorname{tr}(MA)$$

Par linéarité de la trace et de la multiplication à droite par une matrice fixée, l'application f_A est une forme linéaire sur $\mathcal{M}_n(\mathbb{R})$. On en déduit une application

$$f: \mathcal{M}_n(\mathbb{R}) \longrightarrow \mathcal{M}_n(\mathbb{R})^*$$
 $A \longmapsto f_A$

Comme précédemment, cette application est linéaire, on montre que f est injective : soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $f_A = 0$. Pour $p, q \in [\![1, n]\!]^2$, on pose $E_{p,q} \in \mathcal{M}_n(\mathbb{R})$ la matrice ayant pour coefficients 0 partout sauf en (p, q), où elle vaut 1 (base canonique de $\mathcal{M}_n(\mathbb{R})$). On a, pour $i \in [\![1, n]\!]$

$$(E_{p,q}A)_{i,i} = \sum_{k=1}^{n} (E_{p,q})_{i,k} A_{k,i} = (E_{p,q})_{i,q} A_q, i$$

Qui vaut $A_{q,p}$ si i = p et 0 sinon, la trace de cette matrice vaut donc $A_{q,p}$, donc $f_A(E_{p,q}) = A_{q,p}$ pour tout $(p,q) \in [1,n]$ et A = 0, d'où le résultat.

On doit donc montrer: $\forall M \in B, A \in \mathcal{M}_n(\mathbb{R}), \exists O \in O_n(\mathbb{R}) \mid \operatorname{tr}(MA) \leqslant \operatorname{tr}(OA)$

Étape 3: Existence de la décomposition polaire : pour $A \in \mathcal{M}_n(\mathbb{R})$, il existe un couple $\overline{(O,S)} \in O_n(\mathbb{R}) \times \mathfrak{S}_n^+(\mathbb{R})$ tel que A = OS.

- Si $A \in Gl_n(\mathbb{R})$, alors on pose $S_2 := {}^t AA \in S_n^{++}(\mathbb{R})$, on peut considérer S telle que $S^2 = S_2$ et dont les valeurs propres sont strictement positives. On pose alors $O = AS^{-1}$, qui est bien un élément de $O_n(\mathbb{R})$.
- Dans le cas général, pour $A \in \mathcal{M}_n(\mathbb{R})$, on considère $(A_n)_{n \in \mathbb{N}} \in Gl_n(\mathbb{R})$ une suite convergeant vers A. On pose $(O_n, S_n) \in O_n(\mathbb{R}) \times S_n^{++}(\mathbb{R})$ telles que $O_n S_n = A_n$. Par compacité de $O_n(\mathbb{R})$, on peut extraire de (O_n) une sous-suite $O_{\sigma(n)}$ qui converge vers une matrice $O \in O_n(\mathbb{R})$, la suite $S_{\sigma(n)} = A_{\sigma(n)}O_{\sigma(n)}^{-1}$ est alors convergente (par continuité du produit et du passage à l'inverse), on note S sa limite, qui appartient à $S_n^+(\mathbb{R})$, on a bien A = OS comme annoncé.

Étape 4: Il ne reste plus qu'à tout rassembler: Soient $M \in B$, $A \in \mathcal{M}_n(\mathbb{R})$, A = OS sa décomposition polaire. On a

$$\operatorname{tr}(O^{-1}A) = \operatorname{tr}(S) = \sum_{i=1}^{n} \lambda_{i}$$

où les λ_i sont les valeurs propres (réelles positives) de S. On considère ensuite une base orthonormée (e_1, \dots, e_n) formée de vecteurs propres de S, on a

$$\operatorname{tr}(MA) = \sum_{i=1}^{n} (MAe_{i}, e_{i})$$

$$= \sum_{i=1}^{n} (Ae_{i}, M^{*}e_{i})$$

$$\leqslant \sum_{i=1}^{n} \|Ae_{i}\|_{2} \|M^{*}e_{i}\|_{2}$$

$$\leqslant \sum_{i=1}^{n} \|O\|_{2} \|Se_{i}\|_{2} \|M\|_{2} \|e_{i}\|_{2}$$

$$\leqslant \sum_{i=1}^{n} \|Se_{i}\| = \sum_{i=1}^{n} \lambda_{i}$$

Ce qui clos la démonstration.