AML 5201

Advanced Applications of Probability & Statistics

Even Sem. 2022

Problem Set-2

Consider the following data matrix:

	HR	ВР	Temp
Patient-1	76	126	38.0
Patient-1 Patient-2 Patient-3 Patient-4	72	120 118	38.0 37.5
Patient-4	78	136	37.0

1. The projection of a sample vector $x^{(i)}$ along a direction specified by a vector v is $\left(v^{\mathrm{T}}x^{(i)}\right)/\|v\|$. Calculate the projection of the samples along the direction specified by the following vectors:

$$v = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix}.$$

2. Note that the projection of a sample can also be written as $((x^{(i)})^T v)/\|v\|$. If the vector v has unit magnitude, that is, $\|v\| = 1$, then the projection is simply a dot product $(x^{(i)})^T v$. So, we assume that the vector v has unit magnitude or convert it into

a vector with unit magnitude; for example, go from
$$v = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
 to $v = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ before

calculating the projections as $(x^{(i)})^T v$. Then, we can write down the projections of the four samples in a vector form as follows:

$$\begin{bmatrix} \begin{pmatrix} x^{(1)} \end{pmatrix}^{\mathrm{T}} v \\ \begin{pmatrix} x^{(2)} \end{pmatrix}^{\mathrm{T}} v \\ \begin{pmatrix} x^{(3)} \end{pmatrix}^{\mathrm{T}} v \\ \begin{pmatrix} x^{(4)} \end{pmatrix}^{\mathrm{T}} v \end{bmatrix}.$$

The quantity above is the same as (choose one): Xv, $X^{T}v$, $v^{T}X$, $v^{T}X^{T}$.

3. Calculate the mean sample from the data matrix. That is,

$$\mu = \frac{x^{(1)} + x^{(2)} + x^{(3)} + x^{(4)}}{4}.$$

4. The mean sample μ can also be calculated as (choose one):

$$\frac{1}{n}X\mathbf{1}, \ \frac{1}{n}X^{\mathrm{T}}\mathbf{1}, \ \frac{1}{n}\mathbf{1}^{\mathrm{T}}X, \ \frac{1}{n}\mathbf{1}^{\mathrm{T}}X^{\mathrm{T}},$$

where 1 is the vector full of ones. In order to see this, note that:

$$\mu = \frac{x^{(1)} \times 1 + x^{(2)} \times 1 + x^{(3)} \times 1 + x^{(4)} \times 1}{4}$$

and relate to a dot product of two things.

- 5. Calculate the mean of the projected samples where the projection is on to the direction of the vector $v = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.
- 6. Calculate the projection of the mean sample μ on to the direction of the vector $v = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$. Compare the answer to that of the previous question. What is your conclusion?
- 7. What do we conclude from the following?

$$\frac{1}{4} \left(v^{\mathrm{T}} x^{(1)} + v^{\mathrm{T}} x^{(2)} + v^{\mathrm{T}} x^{(3)} + v^{\mathrm{T}} x^{(4)} \right) = v^{\mathrm{T}} \frac{\left(x^{(1)} + x^{(2)} + x^{(3)} + x^{(4)} \right)}{4} = v^{\mathrm{T}} \mu.$$

- 8. Calculate the variance of the projected samples where the projection is on to the direction of the vector $v = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.
- 9. What does the following quantity represent?

$$\frac{1}{n} \sum_{i=1}^{n} (v^{\mathrm{T}} x^{(i)} - v^{\mathrm{T}} \mu)^{2}.$$

10. We expand the quantity from the previous step as follows (fill in the blanks):

$$\frac{1}{n} \sum_{i=1}^{n} (v^{T} x^{(i)} - v^{T} \mu)^{2} = \frac{1}{n} \sum_{i=1}^{n} (v^{T} x^{(i)} - v^{T} \mu) \times (v^{T} x^{(i)} - v^{T} \mu)
= \frac{1}{n} \sum_{i=1}^{n} (v^{T} x^{(i)} - v^{T} \mu) \times (?^{T} v - ?^{T} v)
= \frac{1}{n} \sum_{i=1}^{n} [? (x^{(i)} - \mu) \times ((x^{(i)})^{T} - \mu^{T})?]
= v^{T} \left[\frac{1}{n} \sum_{i=1}^{n} (x^{(i)} - \mu) (? - ?)^{T} v \right]$$

11. We focus on the middle term that we derived at the end of the previous question. Fill in the blanks in the following (where we use the fact that $(a - b)^{T} = a^{T} - b^{T}$):

$$\frac{1}{n} \sum_{i=1}^{n} (x^{(i)} - \mu) (x^{(i)} - \mu)^{\mathrm{T}} = \frac{1}{n} \begin{bmatrix} ? - \mu & ? - \mu & \dots & ? - \mu \end{bmatrix} \times \begin{bmatrix} (x^{(?)} - ?)^{\mathrm{T}} \\ (x^{(?)} - ?)^{\mathrm{T}} \end{bmatrix} \\
= \frac{1}{n} \left(\begin{bmatrix} x^{(1)} & x^{(2)} & \dots & x^{(n)} \end{bmatrix} - \mu \begin{bmatrix} ? & ? & \dots & ? \end{bmatrix} \right) \begin{bmatrix} ?^{\mathrm{T}} \\ ?^{\mathrm{T}} \\ \vdots \\ ?^{\mathrm{T}} \end{bmatrix} - \begin{bmatrix} 1 \\ 1 \\ \vdots \\ ? \end{bmatrix} \overset{?}{}^{\mathrm{T}} \right) \\
= (X^{\mathrm{T}} - \mu \mathbf{1}^{\mathrm{T}}) \left(? - \mathbf{1} \mu^{\mathrm{T}} \right).$$

Now we use the following facts:

- $\mu = \frac{1}{n}X^{\mathrm{T}}\mathbf{1}$,
- I represents the identity matrix with IX = I and XI = I,
- $(ab)^{\mathrm{T}} = b^{\mathrm{T}}a^{\mathrm{T}}$,

to get

$$\frac{1}{n} \sum_{i=1}^{n} (x^{(i)} - \mu) (x^{(i)} - \mu)^{\mathrm{T}} = \frac{1}{n} \left(X^{\mathrm{T}} - \left(\frac{1}{n} X^{\mathrm{T}} \mathbf{1} \right) \mathbf{1}^{\mathrm{T}} \right) \left(X - \mathbf{1} \left(\frac{1}{n} X^{\mathrm{T}} \mathbf{1} \right)^{\mathrm{T}} \right) \\
= \frac{1}{n} \left(X^{\mathrm{T}} - \left(\frac{1}{n} X^{\mathrm{T}} \mathbf{1} \right) \mathbf{1}^{\mathrm{T}} \right) \left(X - \frac{1}{n} \mathbf{1} \underline{?}^{\mathrm{T}} X \right) \\
= \frac{1}{n} \times \underline{?} \underbrace{\left(I - \frac{1}{n} \mathbf{1} \mathbf{1}^{\mathrm{T}} \right) \left(I - \frac{1}{n} \mathbf{1} \mathbf{1}^{\mathrm{T}} \right)}_{\text{So part question}} \underline{?}.$$

12. Complete the steps below (note how the order of multiplication is maintained):

$$\left(I - \frac{1}{n} \mathbf{1} \mathbf{1}^{\mathrm{T}}\right) \left(I - \frac{1}{n} \mathbf{1} \mathbf{1}^{\mathrm{T}}\right) = I - I \times \left(\frac{1}{n} \mathbf{1} \mathbf{1}^{\mathrm{T}}\right) - \left(\frac{1}{n} \mathbf{1} \mathbf{1}^{\mathrm{T}}\right) \times I + \left(\frac{1}{n} \mathbf{1} \mathbf{1}^{\mathrm{T}}\right) \left(\frac{1}{n} \mathbf{1} \mathbf{1}^{\mathrm{T}}\right)
= I - \frac{2}{n} \mathbf{1} \mathbf{1}^{\mathrm{T}} + \frac{1}{n^{2}} \mathbf{1} \left(\underbrace{\mathbf{1}^{\mathrm{T}}}_{=?}\right) \mathbf{1}^{\mathrm{T}}
= I - \frac{1}{n} \underbrace{?} \underbrace{?}^{\mathrm{T}}.$$

13. Now use the results from (9), (10), (11) and (12) to show that the variance of the projected samples where the projection is on to the direction of a vector v is:

$$\frac{1}{n} \sum_{i=1}^{n} \left(v^{\mathrm{T}} x^{(i)} - v^{\mathrm{T}} \mu \right)^{2} = v^{\mathrm{T}} \left[\frac{1}{n} \sum_{i=1}^{n} \left(x^{(i)} - \mu \right) \times \left(x^{(i)} - \mu \right)^{\mathrm{T}} \right] v = v^{\mathrm{T}} \left(\underbrace{\frac{1}{n} X^{\mathrm{T}} ? X}_{\text{Covariance matrix}} \right) v.$$

Now principal component analysis (PCA) is about finding the vector v that maximizes the variance of the projected samples given by the last term above. We will see that the vector v will turn out be the so called eigenvector of the covariance matrix.