Introduction to Machine Learning

Regularization Geometry of L2 Regularization

Learning goals

- Approximate transformation of unregularized minimizer to regularized
- Principal components of Hessian influence where parameters are decayed

Quadratic Taylor approx of the unregularized objective $\mathcal{R}_{emp}(\theta)$ around its minimizer $\hat{\theta}$:

$$ilde{\mathcal{R}}_{\mathsf{emp}}(oldsymbol{ heta}) = \mathcal{R}_{\mathsf{emp}}(\hat{ heta}) +
abla_{oldsymbol{ heta}} \mathcal{R}_{\mathsf{emp}}(\hat{ heta}) \cdot (oldsymbol{ heta} - \hat{ heta}) + rac{1}{2} (oldsymbol{ heta} - \hat{ heta})^{\mathsf{T}} oldsymbol{H}(oldsymbol{ heta} - \hat{ heta})$$

where $m{H}$ is the Hessian of $\mathcal{R}_{\sf emp}(m{ heta})$ at $\hat{ heta}$

We notice:

- First-order term is 0, because gradient must be 0 at minimizer
- H is positive semidefinite, because we are at the minimizer

$$ilde{\mathcal{R}}_{\mathsf{emp}}(heta) = \mathcal{R}_{\mathsf{emp}}(\hat{ heta}) + \; rac{1}{2}(heta - \hat{ heta})^{\mathsf{T}} extbf{ extit{H}}(heta - \hat{ heta})$$

/ 2

The minimum of $\tilde{\mathcal{R}}_{emp}(\theta)$ occurs where $\nabla_{\theta}\tilde{\mathcal{R}}_{emp}(\theta) = \mathbf{H}(\theta - \hat{\theta})$ is 0. Now we L2-regularize $\tilde{\mathcal{R}}_{emp}(\theta)$, such that

$$ilde{\mathcal{R}}_{\mathsf{reg}}(oldsymbol{ heta}) = ilde{\mathcal{R}}_{\mathsf{emp}}(oldsymbol{ heta}) + rac{\lambda}{2} \|oldsymbol{ heta}\|_2^2$$

and solve this approximation of \mathcal{R}_{reg} for the minimizer $\hat{\theta}_{\text{ridge}}$:

$$egin{aligned}
abla_{m{ heta}} & \mathcal{ ilde{R}}_{\mathsf{reg}}(m{ heta}) = 0 \ \lambda m{ heta} + m{ heta}(m{ heta} - \hat{m{ heta}}) = 0 \ (m{ heta} + \lambda m{ heta}) m{ heta} = m{ heta} \hat{m{ heta}} \ \hat{m{ heta}}_{\mathsf{ridge}} = (m{ heta} + \lambda m{ heta})^{-1} m{ heta} \hat{m{ heta}} \end{aligned}$$

We see: minimizer of *L*2-regularized version is (approximately!) transformation of minimizer of the unpenalized version.

Doesn't matter whether the model is an LM – or something else!

/ 3

- As λ approaches 0, the regularized solution $\hat{\theta}_{\text{ridge}}$ approaches $\hat{\theta}$. What happens as λ grows?
- Because \mathbf{H} is a real symmetric matrix, it can be decomposed as $\mathbf{H} = \mathbf{Q} \mathbf{\Sigma} \mathbf{Q}^{\top}$, where $\mathbf{\Sigma}$ is a diagonal matrix of eigenvalues and \mathbf{Q} is an orthonormal basis of eigenvectors.
- Rewriting the transformation formula with this:

$$egin{aligned} \hat{m{ heta}}_{\mathsf{ridge}} &= \left(m{Q} m{\Sigma} m{Q}^{ op} + \lambda m{I}
ight)^{-1} m{Q} m{\Sigma} m{Q}^{ op} \hat{m{ heta}} \ &= \left[m{Q} (m{\Sigma} + \lambda m{I}) m{Q}^{ op}
ight]^{-1} m{Q} m{\Sigma} m{Q}^{ op} \hat{m{ heta}} \ &= m{Q} (m{\Sigma} + \lambda m{I})^{-1} m{\Sigma} m{Q}^{ op} \hat{m{ heta}} \end{aligned}$$

• So: We rescale $\hat{\theta}$ along axes defined by eigenvectors of \boldsymbol{H} . The component of $\hat{\theta}$ that is associated with the j-th eigenvector of \boldsymbol{H} is rescaled by factor of $\frac{\sigma_j}{\sigma_i + \lambda}$, where σ_j is eigenvalue.

/ 4

First, $\hat{\theta}$ is rotated by \mathbf{Q}^{\top} , which we can interpret as projection of $\hat{\theta}$ on rotated coord system defined by principal directions of \mathbf{H} :

/ 5

/ **6**

j-th (new) axis is rescaled by $\frac{\sigma_j}{\sigma_i + \lambda}$ before we rotate back.

/7

- Decay: $\frac{\sigma_j}{\sigma_j + \lambda}$
- Along directions where eigenvals of *H* are relatively large, e.g., σ_j >> λ, effect of regularization is small.
- Components / directions with $\sigma_j << \lambda$ are strongly shrunken.
- So: Directions along which parameters contribute strongly to objective are preserved relatively intact.
- In other directions, small eigenvalue of Hessian means that moving in this direction will not decrease objective much.
 For such unimportant directions, corresponding components of θ are decayed away.

