Эксперименты

Лекция 6

Необходимость экспериментов

- Если X разработал программу P для решения задачи T, каким образом можно убедить других, что P действительно решает T?
- Иногда можно математически доказать, что P корректная программа
- Однако во многих случаях это сделать слишком трудно или невозможно

Необходимость экспериментов

- Другая задача: доказать утверждение, что метод P превосходит метод Q
- Формально это сделать часто невозможно
 - Даже при анализе временной сложности в случае совпадения теоретических оценок
- Как правило, пользователям необходимо знать скорость работы в типичных случаях, а не в худшем случае
 - Формальные оценки часто делаются для худшего случая
- \rightarrow необходимо экспериментальное исследование

Тестирование vs. оценка

- Тестирование (testing) проверка соответствия программы спецификации
 - проверка корректности программы
- Программа должна выдавать результат для любого входного значения
- Результат должен соответствовать спецификации
- Невозможно проверить все возможные входные значения и пути выполнения программы
- Тестирование может доказать, что ошибки есть, но не может доказать, что ошибок нет

Тестирование vs. оценка

- Оценка (evaluation):
 - P это более качественное решение, чем Q
 - Программа P сортирует числа быстрее, чем программа Q
 - Р выдает результаты хорошего качества
 - Программа составления расписания доставки товаров создает расписание с минимально возможным временем доставки
 - Для типичных пользователей предпочтительнее использовать P , чем Q
 - Пользователи предпочитают браузер Chrome браузеру Edge

Тестирование vs. оценка

- Отличается от тестирования: качество vs. корректность
- Способы оценки:
 - провести множество запусков обеих программ сортировки на разных вариантах тестовых данных
 - сравнить результат работы программы составления расписания с известным наилучшим расписанием
 - провести опрос пользователей по предпочтениям относительно браузеров

Ключевые вопросы

- *Цель*: что исследование должно продемонстрировать?
- *Воспроизводимость* (reproducibility) исследование можно повторить с получением тех же результатов?
- Данные: насколько адекватен выбор данных?
- *Анализ результатов*: объективно ли приведены и проанализированы результаты?
- *Масштабирование*: будет ли похожее поведение в случае использования более масштабных данных?

Цель

- Экспериментальное исследование должно предоставить доказательства, поддерживающие *гипотезу*
- Примеры:
 - данный алгоритм является эффективным
 - результаты выполнения алгоритма являются хорошим решением
 - данный алгоритм лучше альтернативных
- Гипотезу необходимо четко сформулировать!

Данные

- Варианты:
 - случайно сгенерированные данные
 - предположение: типичные данные = случайно сгенерированные данные
 - стандартные наборы данных (benchmarks)
 - UCI Machine Learning Repository (ссылка)
 - SuperGLUE Benchmark (ссылка)
 - Russian SuperGLUE (ссылка)
- Необходимо подробное описание данных

- Необходимо определить, что значит «метод P **лучше** метода Q»
 - \rightarrow критерии качества

- Ассигасу (Правильность доля правильных ответов модели среди всех предсказаний):
- Например, для задач **классификации**: $Accuracy = \frac{TP + TN}{TP + FP + FN + TN}$

		Оценка классификатора	
		a(x) = +1 (Positive)	a(x) = -1 (Negative)
Истинные ответы	<i>y</i> = +1	TP (True Positive)	FN (False Negative)
	y = -1	FP (False Positive)	TN (True Negative)

 Precision (Точность - доля истинно положительных ответов среди всех положительных ответов модели):

$$P = \frac{TP}{TP + FP}$$

• Recall (Полнота - доля истинно положительных ответов среди всех правильных ответов):

$$R = \frac{TP}{TP + FN}$$

• F1-measure (F1-score, F1-мера - гармоническое среднее между точностью и полнотой):

$$F1 = \frac{2PR}{P + R}$$

• для задач регрессии:

- Mean Squared Error (MSE) среднее значение квадрата разности между предсказанными и правильными значениями.
- Root Mean Squared Error (RMSE) квадратный корень из среднего значения квадратов разности между предсказанными и правильными значениями.
- Mean Absolute Error (MAE) среднее значение абсолютной разности между предсказанными и правильными значениями.
- **R2-коэффициент детерминации** мера, которая показывает, насколько хорошо модель подходит для данных. R2-коэффициент может принимать значения от 0 до 1, где 1 означает идеальное соответствие.

• для задач **кластеризации**:

• Silhouette score (Коэффициент силуэта) — мера, которая показывает, насколько точно каждый объект соответствует своему кластеру и насколько он отличается от других кластеров. Значение коэффициента силуэта может варьироваться от -1 до 1, где 1 означает, что объекты внутри кластера находятся ближе друг к другу, чем к объектам других кластеров.

Анализ результатов

- Результаты поддерживают или опровергают гипотезу?
- «Да»:
 - чем это подтверждается?
 - как наиболее убедительно представить результаты?
 - достаточно ли проведено экспериментов?
- «Нет»:
 - результаты подтверждают альтернативную гипотезу?

Представление результатов

- Таблица
- График

- Столбчатая диаграмма (гистограмма)
- Круговая диаграмма
- Диаграмма рассеяния

Представление результатов

- Параметры распределения:
 - среднее *μ*
 - медиана
 - мода
 - дисперсия σ^2
 - среднеквадратическое (стандартное) отклонение σ
 - минимум/максимум

Нормальное распределение

Эксперименты и обсуждение

План раздела «Эксперименты»:

- Описание данных
 - источники
 - описательные статистики
 - предобработка
- Методология проведения эксперимента
 - методы для сравнения (baselines)
 - критерии качества
- Реализация (инструменты)
 - параметры моделей/инструментов
- Результаты
 - таблицы и/или графики
 - выделение лучших
 - проверка статистической значимости
- Анализ результатов
 - часто объединяется с обсуждением результатов
 - анализ ошибок (примеры)
 - ablation study

Примеры

- Krishna et al. Reformulating Unsupervised Style Transfer as Paraphrase Generation (2020)
- Luong et al. Effective Approaches to Attention-based Neural Machine Translation (2015)
- Pennington et al. GloVe: Global Vectors for Word Representation (2014)
- Peyrard. A Simple Theoretical Model of Importance for Summarization (2019)
- Xu et al. Vocabulary Learning via Optimal Transport for Neural Machine Translation (2021)
- Logunov et al. Safety and efficacy of an rAd26 and rAd5 (2021)

Домашнее задание

- Продумать и описать дизайн экспериментов:
 - Данные
 - источники
 - описательные статистики
 - предобработка
 - Методология
 - методы для сравнения (baselines)
 - критерии качества
 - Инструменты
 - Представление результатов
 - Анализ результатов