At first, consider ue C2(IRd) and let x,y & IRd. The fundamental Knewer of culculus implies

$$u(x) = u(y) - \int_{0}^{1} \frac{d}{ds} \left[u(x + s(y - x)) \right] ds$$

$$= u(y) - \int_{0}^{1} \nabla u(x + s(y - x)) \cdot (y - x) ds.$$

Integration with respect to y & B_1(x) leads to

$$u(x) = \frac{1}{|B_{A}(x)|} \left[\int_{B_{A}(x)} u(y) dy - \int_{B_{A}(x)} \nabla u(x+s(y-x)) \cdot (y-x) ds dy \right]$$

For the first integral, in use Hölder's irrequality (2012) to estimate

For the second integral, we use Fubini's theorem and the transformation theorem to obtain

$$\left| \int_{0}^{\Lambda} \nabla u(x+s(y-t)) \cdot (x-y) \, ds \, dy \right|$$

$$\leq \int_{0}^{\Lambda} \int_{S_{\lambda}(u)} |\nabla u(x+s(y-x))| |x-y| \, dy \, ds$$

$$= \int_{0}^{\Lambda} \int_{S_{\lambda}(u)} |\nabla u(x+z)| \, ds \, dz \, ds$$

$$= \int_{0}^{\Lambda} \int_{S_{\lambda}(u)} |\nabla u(x+z)| \, ds \, dz \, ds$$

$$\leq \int_{0}^{\Lambda} \int_{S_{\lambda}(u)} |\nabla u(x+z)| \, ds \, ds \, ds$$

$$\leq \int_{0}^{\Lambda} \int_{S_{\lambda}(u)} |\nabla u(x+z)| \, ds \, ds \, ds$$

$$\leq \int_{0}^{\Lambda} \int_{S_{\lambda}(u)} |\nabla u(x+z)| \, ds \, ds \, ds$$

$$\leq \int_{0}^{\Lambda} \int_{S_{\lambda}(u)} |\nabla u(x+z)| \, ds \, ds \, ds$$

$$\leq \int_{0}^{\Lambda} \int_{S_{\lambda}(u)} |\nabla u(x+z)| \, ds \, ds \, ds$$

$$\leq \int_{0}^{\Lambda} \int_{S_{\lambda}(u)} |\nabla u(x+z)| \, ds \, ds \, ds$$

$$\leq \int_{0}^{\Lambda} \int_{S_{\lambda}(u)} |\nabla u(x+z)| \, ds \, ds \, ds$$

$$\leq \int_{0}^{\Lambda} \int_{S_{\lambda}(u)} |\nabla u(x+z)| \, ds \, ds \, ds$$

$$\leq \int_{0}^{\Lambda} \int_{S_{\lambda}(u)} |\nabla u(x+z)| \, ds \, ds \, ds$$

$$\leq \int_{0}^{\Lambda} \int_{S_{\lambda}(u)} |\nabla u(x+z)| \, ds \, ds \, ds$$

$$\leq \int_{0}^{\Lambda} \int_{S_{\lambda}(u)} |\nabla u(x+z)| \, ds \, ds \, ds$$

$$\leq \int_{0}^{\Lambda} \int_{S_{\lambda}(u)} |\nabla u(x+z)| \, ds \, ds \, ds$$

$$\leq \int_{0}^{\Lambda} \int_{S_{\lambda}(u)} |\nabla u(x+z)| \, ds \, ds \, ds$$

$$\leq \int_{0}^{\Lambda} \int_{S_{\lambda}(u)} |\nabla u(x+z)| \, ds \, ds \, ds$$

$$\leq \int_{0}^{\Lambda} \int_{S_{\lambda}(u)} |\nabla u(x+z)| \, ds \, ds$$

$$\leq \int_{0}^{\Lambda} \int_{S_{\lambda}(u)} |\nabla u(x+z)| \, ds \, ds$$

$$\leq \int_{0}^{\Lambda} \int_{S_{\lambda}(u)} |\nabla u(x+z)| \, ds \, ds$$

$$\leq \int_{0}^{\Lambda} \int_{S_{\lambda}(u)} |\nabla u(x+z)| \, ds \, ds$$

$$\leq \int_{0}^{\Lambda} \int_{S_{\lambda}(u)} |\nabla u(x+z)| \, ds$$

$$\leq \int_{0}^{\Lambda} \int_{S_{\lambda}(u)} |\nabla u(x+z)| \, ds$$

$$\leq \int_{0}^{\Lambda} \int_{S_{\lambda}(u)} |\nabla u(x+z)| \, ds$$

Since dep by assumption, we have -dp>-1, and the remaining integral is finite-

Combining both estimates, we arrive at lukil & C(llullered) + 11 Tullered), and thus

11 ullo = C 11 ull war (red)

for all $u \in C_1^1(\mathbb{R}^d)$.

By a standard density arguvent, this holds for all $u \in W^{1,p}(\mathbb{R}^d)$.

"Standard density argument"

Let u∈W1.P(R). Then thre exists a sequence (pn) c Co(tr) such that pn > u in W1.P(R). Since pn ∈ Co(tr) and pn-ym∈ Co(tr), we have seen above that

If $p_n \|_{L^{\infty}(\Omega)} \leq C \|p_n\|_{W^{1,p}(\Omega)}$, $\|p_n - p_m\|_{L^{\infty}} \leq C \|p_n - p_m\|_{W^{1,p}(\Omega)}$. By assumption, (p_n) is a (and sequence in $L^{\infty}(\Omega)$) by the second estimate. By completeness of $L^{\infty}(\Omega)$, we thus have $p_n \to v$ in $L^{\infty}(\Omega)$ for some $v \in L^{\infty}(\Omega)$. Taking a subsequence that converges a.e. in Ω , we see that u = v a.e. Now a passage to the limit in the first inequality yields $\|u\|_{L^{\infty}(\Omega)} \leq C \|u\|_{W^{1,p}(\Omega)}$.

Exercise 24

a) Let (24) c C¹(r̄) with $e_n|_{r_0} = 0$ and such that $e_n \rightarrow u$ in $W^{1}(n)$.

Let $x_0 \in \Gamma_0$ and let $j \in \Sigma 1, ..., dS$ such that $y_j(x) \neq 0$, w.l.o.g. $y_j(x) > 0$.

Since $u: \delta n \rightarrow \mathbb{R}^d$ is continuous, then exists R = 0 such that $B_{r_0}(x_0) \in U$ and $y_j(x) > 0$ for all $x \in B_{r_0}(x_0) \cap \delta \Omega = B_{r_0}(x_0) \cap \Gamma_0$.

Now let y \in \(\big(\mathred{i} \mathred{R}^d \) with y \ge 0, supp y \(\bar{B}_R(x_0) \) and y(x)=1 for x \in B_r(x_0) for some \(\ta \in (0, R) \). Then \(\phi_n(x) \psi(x) = 0 \) for all \(\ta \in \Delta \big) , so that

 $0 = \int_{\partial D} f_n \, dn = \int_{\partial D} g_n(f_n d) \, dx = \int_{\partial D} g_n(f_n d) \, dx$

Passing to the limit n-soo, we obtain

0 = \int \graphi \graphi \quad \quad

Since I vida > 0, we conclude c = 0.

b) Assume that the estimate is wrong. Then for very nEN there exists $u_n \in W^{1/p}_{p_0}(\mathfrak{N})$ such that

11 unk Lein > n II Tunk Lein).

After a renormalization, we may assume that llunliger = 1, so that

1 > n 11 \number u_n ||_{L^p(x)}

for all neW. In particular, the sequence $(u_n)_{n\in\mathbb{N}}$ is bounded in $W^{1,p}(\Omega)$. By reflectivity of $W^{1,p}(\Omega)$, then exists a madely consumpt subsequence $(u_{n_k})_{k\in\mathbb{N}}$ with weak limit $u\in W^{1,p}_p(\Omega)$. Rellich's compactness theorem yields strong convergence $u_{n_k} \to u$ in $L^p(\Omega)$. Since $\|u_n\|_{L^p(\Omega)} = 1$, we also have $\|u\|_{L^p(\Omega)} = 1$.

Moreover, from near convergence $\nabla u_{n_u} - \nabla u$ in $L^0(\Omega)$ we conclude $\|\nabla u\|_{L^0(\Omega)} \le \lim_{n \to \infty} \|\nabla u\|_{L^0(\Omega)} \le \lim_{n \to \infty} \frac{1}{n_u} = 0$, which shows $\nabla u = 0$ and there u = c a.e. for some $c \in \mathbb{R}$ by Exercise 23. As we show below, $u \in \mathbb{N}_p^{n_v}(\Omega)$ now implies c = 0, i.e., u = 0 a.e. But this contradicts $\|u\|_{L^0(\Omega)} = 1$. We true conducte the assumed inequality.