Лекции курса «Алгебра», лекторы И.В. Аржанцев и Р.С. Авдеев

 Φ КН НИУ ВШЭ, 1-й курс ОП ПМИ, 4-й модуль, 2014/2015 учебный год

Лекция 5

Действие группы на множестве. Орбиты и стабилизаторы. Транзитивные и свободные действия. Три действия группы на себе. Теорема Кэли. Классы сопряжённости.

Пусть G — произвольная группа и X — некоторое множество.

Определение 1. Действием группы G на множестве X называется отображение $G \times X \to X$, $(g, x) \mapsto gx$, удовлетворяющее следующим условиям:

- 1) ex = x для любого $x \in X$ (e нейтральный элемент группы G);
- 2) g(hx)=(gh)x для всех $g,h\in G$ и $x\in X.$

Если задано действие группы G на множестве X, то каждый элемент $g \in G$ определяет биекцию $a_g \colon X \to X$ по правилу $a_g(x) = gx$ (обратным отображением для a_g будет $a_{g^{-1}}$). Обозначим через S(X) группу всех биекций (перестановок) множества X с операцией композиции. Тогда отображение $a \colon G \to S(X), g \mapsto a_g$, является гомоморфизмом групп. Действительно, для произвольных элементов $g, h \in G$ и $x \in X$ имеем

$$a_{qh}(x) = (gh)x = g(hx) = ga_h(x) = a_q(a_h(x)) = (a_qa_h)(x).$$

Можно показать, что задание действия группы G на множестве X равносильно заданию соответствующего гомоморфизма $a\colon G\to S(X)$.

Пример 1. Симметрическая группа S_n естественно действует на множестве $X = \{1, 2, ..., n\}$ по формуле $\sigma x = \sigma(x)$ ($\sigma \in S_n, x \in X$). Условие 1) здесь выполнено по определению тождественной подстановки, условие 2) выполнено по определению композиции подстановок.

Пусть задано действие группы G на множестве X.

Определение 2. *Орбитой* точки $x \in X$ называется подмножество

$$Gx = \{x' \in X \mid x' = gx$$
 для некоторого $g \in G\} = \{gx \mid g \in G\}.$

Замечание 1. Для точек $x, x' \in X$ отношение «x' лежит в орбите Gx» является отношением эквивалентности:

- (1) (рефлексивность) $x \in Gx$ для всех $x \in X$: это верно, так как $x = ex \in Gx$ для всех $x \in X$;
- (2) (симметричность) если $x' \in Gx$, то $x \in Gx'$: это верно, так как из условия x' = gx следует $x = ex = (g^{-1}g)x = g^{-1}(gx) = g^{-1}x' \in Gx'$;
- (3) (транзитивность) если $x' \in Gx$ и $x'' \in Gx'$, то $x'' \in Gx$: это верно, так как из условий x' = gx и x'' = hx' следует $x'' = hx' = h(gx) = (hg)x \in Gx$.

Отсюда вытекает, что множество X разбивается в объединение попарно непересекающихся орбит действия группы G.

Определение 3. Стабилизатором (стационарной подгруппой) точки $x \in X$ называется подгруппа $\mathrm{St}(x) := \{g \in G \mid gx = x\}.$

Упражиение 1. Проверьте, что множество St(x) действительно является подгруппой в G.

Пример 2. Рассмотрим действие группы $S^1 = \{z \in \mathbb{C} \mid |z| = 1\}$ (см. пример 3 из лекции 2) на множестве \mathbb{C} , заданное формулой $(z,w) \mapsto zw$, где $z \in S^1$, $w \in \mathbb{C}$, а zw — обычное произведение комплексных чисел. Для этого действия орбитами будут множества вида |z| = c, где $c \in \mathbb{R}_{\geq 0}$, — это всевозможные окружности с центром в нуле, а также отдельная орбита, состоящая из нуля. Имеем

$$\operatorname{St}(z) = egin{cases} \{1\}, & \operatorname{если} z \neq 0; \\ S^1, & \operatorname{если} z = 0. \end{cases}$$

Пример 3. Рассмотрим действие группы $\mathrm{SL}_n(\mathbb{R}), n \geqslant 2$ на множестве \mathbb{R}^n , заданное формулой $(A,v) \mapsto A \cdot v$, где в правой части вектор v рассматривается как столбец своих координат. Оказывается, что для этого действия имеется всего две орбиты $\{0\}$ и $\mathbb{R}^n \setminus \{0\}$. Чтобы показать, что $\mathbb{R}^n \setminus \{0\}$ действительно является одной орбитой, достаточно проверить, что всякий ненулевой вектор можно получить, подействовав на элемент e_1 (первый базисный вектор) подходящей матрицей из группы $\mathrm{SL}_n(\mathbb{R})$. Пусть $v \in \mathbb{R}^n$ — произвольный вектор с координатами (x_1,\ldots,x_n) . Покажем, что существует матрица $A \in \mathrm{SL}_n(\mathbb{R})$, для которой $Ae_1 = v$ или, эквивалентно,

(1)
$$A \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}.$$

Из уравнения (1) следует, что в первом столбце матрицы A должны стоять в точности числа x_1, \ldots, x_n . Как мы знаем из линейной алгебры, вектор v можно дополнить до базиса v, v_2, \ldots, v_n пространства \mathbb{R}^n . Пусть A' — квадратная матрица порядка n, в которой по столбцам записаны координаты векторов v, v_2, \ldots, v_n . Эта матрица невырожденна и удовлетворяет условию $A'e_1 = v$ (а также $A'e_i = v_i$ для всех $i = 2, \ldots, n$). Однако её определитель может быть отличен от 1. Поделив все элементы последнего столбца матрицы A' на $\det A'$, мы получим искомую матрицу A с определителем 1. Итак, мы показали, что $\mathbb{R}^n \setminus \{0\}$ — одна орбита для нашего действия. Легко видеть, что стабилизатор точки e_1 при этом бу-

дет состоять из всех матриц в $\mathrm{SL}_n(\mathbb{R})$, у которых первый столбец равен $\begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$. (У любой другой точки

стабилизатор будет другим!)

Лемма 1. Пусть конечная группа G действует на множестве X. Тогда для всякого элемента $x \in X$ справедливо равенство

$$|Gx| = |G|/|\operatorname{St}(x)|.$$

B частности, число элементов в (любой) орбите делит порядок группы G.

Доказательство. Рассмотрим множество G/St(x) левых смежных классов группы G по подгруппе St(x) и определим отображение $\psi \colon G/St(x) \to Gx$ по формуле $gSt(x) \mapsto gx$. Это определение корректно, поскольку для любого другого представителя g' левого смежного класса gSt(x) имеем g' = gh, где $h \in St(x)$, и тогда g'x = (gh)x = g(hx) = gx. Сюръективность отображения ψ следует из определения орбиты Gx. Проверим инъективность. Предположим, что $g_1St(x) = g_2St(x)$ для некоторых $g_1, g_2 \in G$. Тогда $g_1x = g_2x$. Подействовав на левую и правую части элементом g_2^{-1} , получим $(g_2^{-1}g_1)x = x$, откуда $g_2^{-1}g_1 \in St(x)$. Последнее и означает, что $g_1St(x) = g_2St(x)$. Итак, мы показали, что отобржание ψ является биекцией. Значит, |Gx| = |G/St(x)| = [G : St(x)] и требуемое равенство вытекает из теоремы Лагранжа (см. лекцию 1).

Пусть снова группа G действует на множестве X.

Определение 4. Действие G на X называется mpaнзumuвным, если для любых $x, x' \in X$ найдётся такой элемент $g \in G$, что x' = gx. (Иными словами, все точки множества X образуют одну орбиту.)

Определение 5. Действие G на X называется csobodhыm, если для любой точки $x \in X$ условие gx = x влечёт g = e. (Иными словами, $\mathrm{St}(x) = \{e\}$ для всех $x \in X$.)

Определение 6. Действие G на X называется эффективным, если условие gx=x для всех $x\in X$ влечёт g=e. (Иными словами, $\bigcap_{x\in X}\mathrm{St}(x)=\{e\}$.)

Замечание 2. Из определений следует, что всякое свободное действие эффективно. Обратное утверждение неверно, как показывает пример 1 при $n \geqslant 3$, см. ниже.

В примерах 1–3 все действия эффективны. В примере 1 действие транзитивно, свободно при $n \leq 2$ и не свободно при $n \geq 3$. В примере 2 действие не транзитивно и не свободно; но если его ограничить на подмножество $\mathbb{C}\setminus\{0\}$ (то есть выбросить из \mathbb{C} точку 0), то оно станет свободным. В примере 3 действие не транзитивно и не свободно; но если его ограничить на подмножество $\mathbb{R}^n\setminus\{0\}$, то оно станет транзитивным.

Замечание 3. Действие G на X эффективно тогда и только тогда, когда определяемый им гомоморфизм $a\colon G\to S(X)$ инъективен.

 $^{^1}$ Это множество может не быть факторгруппой, так как подгруппа $\mathrm{St}(x)$ не обязана быть нормальной в G.

Определение 7. $\mathit{Ядром}\ \mathit{неэффективности}\ \mathit{действия}\ \mathit{группы}\ \mathit{G}\ \mathit{на}\ \mathit{множестве}\ \mathit{X}\ \mathit{называется}\ \mathit{подгруппа}\ \mathit{K} = \{g \in \mathit{G} \mid gx = x\ \mathit{для}\ \mathit{всеx}\ x \in \mathit{X}\}.$

Легко проверить, что $K={\rm Ker}\,a$, где $a\colon G\to S(X)$ — определяемый действием гомоморфизм. Отсюда следует, что K — нормальная подгруппа в G. Рассмотрим факторгруппу G/K и определим её действие на множестве X по формуле (gK)x=gx. Поскольку kx=x для всех $k\in K$ и $x\in X$, действие определено корректно.

Лемма 2. Определённое выше действие группы G/K на множестве X является эффективным.

Доказательство. Пусть элемент $g \in G$ таков, что (gK)x = x для всех $x \in X$. Тогда gx = x для всех $x \in X$, откуда $g \in K$ и gK = K.

Пусть G — произвольная группа. Рассмотрим три действия G на самой себе, т. е. положим X=G:

- 1) действие *умножениями слева*: $(g,h) \mapsto gh$;
- 2) действие *умножениями справа*: $(g,h) \mapsto hg^{-1}$;
- 3) действие $conpяжениями: (g,h) \mapsto ghg^{-1}.$

Непосредственно проверяется, что первые два действия свободны и транзитивны. Орбиты третьего действия называются *классами сопряжённости* группы G. Например, $\{e\}$ — класс сопряжённости в любой группе. В частности, для нетривиальных групп действие сопряжениями не является транзитивным.

Определение 8. Два действия группы G на множествах X и Y называются $usomop \phi humu$, если существует такая биекция $\varphi \colon X \to Y$, что

$$\varphi(gx) = g\varphi(x)$$
 для любых $g \in G, x \in X$.

Предложение 1. Всякое свободное транзитивное действие группы G на множестве X изоморфно действию группы G на себе левыми сдвигами.

Доказательство. Зафиксируем произвольный элемент $x \in X$. Покажем, что отображение $\varphi \colon G \to X$, заданное формулой $\varphi(h) = hx$, является искомой биекцией. Сюръективность (соответственно инъективность) отображения φ следует из транзитивности (соответственно свободности) действия G на X. Условие (2) следует из цепочки равенств $\varphi(gh) = (gh)x = g(hx) = g(\varphi(h))$.

Следствие 1. Действия группы G на себе правыми и левыми сдвигами изоморфны.

Теорема Кэли. Всякая конечная группа G порядка n изоморфна подгруппе симметрической группы S_n .

Доказательство. Рассмотрим действие группы G на себе левыми сдвигами. Как мы знаем, это действие свободно, поэтому соответствующий гомоморфизм $a\colon G\to S(G)\simeq S_n$ инъективен, т. е. Ker $a=\{e\}$. Учитывая, что $G/\{e\}\cong G$, по теореме о гомоморфизме получаем $G\cong \mathrm{Im}\, a$.

Список литературы

- [1] Э.Б. Винберг. Курс алгебры. М.: Факториал Пресс, 2002 (глава 10, $\S\,3)$
- [2] А.И. Кострикин. Введение в алгебру. Основные структуры алгебры. М.: Наука. Физматлит, 2000 (глава 1, § 3)
- [3] Сборник задач по алгебре под редакцией А.И. Кострикина. Новое издание. М.: МЦНМО, 2009 (глава 13, § 57)