

Mark Scheme (Results)

January 2012

International GCSE Mathematics (4PM0) Paper 01

January 2012 International GCSE Mathematics (4PM0) Paper 01 Mark Scheme

Working	Notes
$y = -\frac{6}{4}x - \frac{15}{4}$, gradient = $-\frac{3}{2}$ 0e	M1 A1
	A1
Product of gradients = $-\frac{3}{2} \times \frac{2}{3} = -1$ \Rightarrow lines perpendicular	A1
(, 2) (, 1) 2(, 1) (, 2)	4
x(x+2) - (x+1) = 2(x+1)(x+2) $x^2 + x + 1 = 2x^2 + 6x + 4$	M1
	A1
$x = \frac{-3 \pm \sqrt{23 - 20}}{2} = -3.62, -1.38$	M1 A1
2	4
(3x+1)(2x-7) < 0	M1 A1
$-\frac{1}{3} < x < 3\frac{1}{2}$	M1 A1
, , , 7	$\begin{array}{c c} 4 \\ \hline & \text{Allow all marks if } x^7 \end{array}$
$\frac{10!}{13} \left(\frac{1}{1} \right)^{7}$	included.
$7!3!^{-1}(\sqrt{3})$	M1
120 1	1122
	A1
$=120\frac{1}{1}\frac{\sqrt{3}}{1}$	M1 rationalise
27 3	
$-\frac{40}{3}\sqrt{3}$	A1
	4
(a) $\frac{dy}{dx} = x^2 e^x + 2x e^x$	M1 two terms with
$\frac{dy}{dx} = x \cdot e^{-x} + 2xe^{-x}$	one correct
	A1
dy	M1 use chain rule
(b) $\frac{dy}{dx} = 5(x^3 + 2x^2 + 3)^4 (3x^2 + 4x)$	A1 $5(x^3 + 2x^2 + 3)^4$
	A1 $(3x^2 + 4x)$
	5
	$y = \frac{-6}{4}x - \frac{15}{4}, \text{ gradient} = \frac{-3}{2}\text{ oe}$ $y = \frac{10}{15}x - \frac{9}{15}, \text{ gradient} = \frac{2}{3}\text{ oe}$ Product of gradients = $\frac{-3}{2} \times \frac{2}{3} = -1 \implies \text{lines perpendicular}$ $x(x+2) - (x+1) = 2(x+1)(x+2)$ $x^2 + x - 1 = 2x^2 + 6x + 4$ $x^2 + 5x + 5 = 0$ $x = \frac{-5 \pm \sqrt{25 - 20}}{2} = -3.62, -1.38$

7 (a)	$A(1\frac{1}{2},0), B(0,1)$	B1, B1
	(1)	P.1
(b)	$\begin{array}{ll} \text{(i)} & x = 3 \\ \text{(ii)} & x = 3 \end{array}$	B1
	(ii) $y=2$	B1
(c)	2 1 1.5 3 5	B1 two branches in correct quadrants B1 asymptotes dep on some curve B1 intercepts
(d)	$\frac{dy}{dx} = \frac{2(x-3) - (2x-3)}{(x-3)^2} = \frac{-3}{(x-3)^2}$	M1 Quotient rule A1 Result (unsimplified)
	At B, $x = 0$ so $\frac{dy}{dx} = \frac{-3}{(-3)^2} = -\frac{1}{3}$	A1
	Grad of normal = $-1/(-1/3) = 3$ Normal $y = 3x + 1$	B1ft B1ft
(e)	At D, $3x+1 = \frac{2x-3}{x-3}$	
	$ \begin{array}{c} x - 3 \\ 3x^2 - 8x - 3 = 2x - 3 \end{array} $	M1
	$3x^{2} - 6x - 3 = 2x - 3$ $3x^{2} - 10x = 0$	A1
	x(3x - 10) = 0	M1
	x = 0 or x = 10/3	:
	At <i>D</i> , $x = 3\frac{1}{3}$	A1
		16

8	(a)	$k = \alpha / \beta \times \beta / \alpha = 1$	B1
	(b)	$\alpha \beta = 15$ and $\alpha + \beta = -m$	M1 A1
		$-\dot{h} = \alpha/\beta + \beta/\alpha$	M1
		$=\frac{\alpha^2+\beta^2}{\alpha\beta}$	
		$-{\alpha\beta}$	M1
		$=\frac{\left(\alpha+\beta\right)^2-2\alpha\beta}{\beta\alpha}$	M1
		$-{\beta\alpha}$	
		$\Rightarrow h = \frac{30 - m^2}{15}$	A1 oe
		$\Rightarrow n = \frac{15}{15}$	
		0 15 (0 1) 15	M1
	(c)	$\alpha \beta = 15 \implies \alpha(2 \alpha + 1) = 15$ $2 \alpha^2 + \alpha - 15 = 0$	1411
		$(2\alpha - 5)(\alpha + 3) = 0$	M1
		$\alpha = 2 \frac{1}{2}$ or $\alpha = -3$	A1
	(1)		M1
	(d)	$\beta = 2 \times 2\frac{1}{2} + 1 = 6 \text{ or } \beta = 2 \times -3 + 1 = -5$ $m = -(\alpha + \beta) = -(2\frac{1}{2} + 6) \text{ or } -(-3 - 5)$	M1
		$m = -8 \frac{1}{2}$ or 8	A1
0	() DI	$p^2 = r^2 + r^2 = r^2 + r^2 = r^2 + r^2 = r^2 + r^2 = r^2 $	13
9		$D^2 = 5^2 + 6^2 = 61$, $BC^2 = 8^2 + 6^2 = 100$, $CD^2 = 8^2 + 5^2 = 89$ $61 + 89 - 2\sqrt{61}\sqrt{89}\cos BDC$	M1 A2, 1, 0 M1
		$DC = 25/\sqrt{(61 \times 89)}$	A1
		= 0.3393	
	$\angle BDC = 70.2^{\circ}$ (b) Area $BDC = \frac{1}{2} \sqrt{61} \sqrt{89} \sin 70.2^{\circ}$		A1
			M1 A1ft
		$= 34.7 \text{ cm}^2 \text{ (3sf)}$	A1 allow 34.6
			D1
	(c) Are	$ea DAC = \frac{1}{2} \times 5 \times 8 = 20$	B1
	(d) 20	$= \frac{1}{2} \times \sqrt{89} \times AE \implies AE = \frac{40}{\sqrt{89}}$	M1 A1
	(e) Angle is $\angle BEA$		M1 identify angle
	tan <i>BE</i>	$EA = 6/AE = 6\sqrt{89/40}$ = 1.415	M1 A1ft
	$ \Rightarrow /l$	$= 1.415$ $BEA = 54.8^{\circ}$	A1
			16

10	(a)	(i) $\overrightarrow{BC} = -\frac{1}{2}\mathbf{c} - \mathbf{a} + \mathbf{c} = \frac{1}{2}\mathbf{c} - \mathbf{a}$	M1 A1
		(ii) $\overrightarrow{PQ} = \frac{3}{4} \mathbf{a} + \frac{1}{2} \mathbf{c} + \frac{1}{3} (\frac{1}{2} \mathbf{c} - \mathbf{a}) = \frac{5}{12} \mathbf{a} + \frac{2}{3} \mathbf{c}.$	M1 $\sqrt[3]{4} \mathbf{a} + \sqrt[1]{2} \mathbf{c} + \dots$ M1 $\sqrt[1]{3}(\sqrt[1]{2} \mathbf{c} - \mathbf{a})$
	(b)	(i) $\overrightarrow{AT} = -\frac{3}{4} \mathbf{a} + \lambda \left(\frac{5}{12} \mathbf{a} + \frac{2}{3} \mathbf{c}\right)$	A1 B1ft
		$(ii) \overrightarrow{AT} = \mu (\mathbf{c} - \mathbf{a})$	B1
	(c)	$-\frac{3}{4} \mathbf{a} + \lambda (\frac{5}{12} \mathbf{a} + \frac{2}{3} \mathbf{c}) = \mu (\mathbf{c} - \mathbf{a})$ $\Rightarrow -\frac{3}{4} + \frac{5}{12} \lambda = -\mu \text{ and } \frac{2}{3} \lambda = \mu$ $\Rightarrow \frac{5}{12} \lambda = \frac{3}{4} - \frac{2}{3} \lambda$	M1 M1 A1ft M1
		$\Rightarrow 5 \lambda = 9 - 8 \lambda$ $\Rightarrow \lambda = \frac{9}{13}$ $\Rightarrow PT : TQ = 9 : 4$	A1 A1ft
			13
11	(a)	$V = \pi \int_0^h x^2 dy = \pi \int_0^h (10y - y^2) dy$	M1 use of $\int \pi x^2 dy$
		$= \pi \left[5y^2 - \frac{1}{3}y^3 \right]_0^h$ = $\pi \left[5h^2 - \frac{1}{3}h^3 \right]$	M1 A1 integration
		$= \pi [5n - \frac{1}{3}n]$ $= 1/3 \pi h^2 (15 - h)$	M1 use of correct limits A1 cso
	(b)	$V = \pi (5h^2 - \frac{1}{3}h^3) \implies \frac{\mathrm{d}V}{\mathrm{d}h} = \pi (10h - h^2)$	B1 oe
	(c)	$\frac{\mathrm{d}V}{\mathrm{d}t} = \pi (10h - h^2) \frac{\mathrm{d}h}{\mathrm{d}t}$	M1 chain rule
		When $h=1.5$, $6 = \pi(15 - 2.25)^{dh}/_{dt}$ $\Rightarrow^{dh}/_{dt} = 6/(12.75\pi) = 0.150 \text{ cm/s (3sf)}$	M1 A1 substitution A1 cao
	(d)	$W = \pi x^2 = \pi (10y - y^2)$ When depth is h , $W = \pi (10h - h^2)$	B1
		$\frac{dV}{dt} = \pi (10h - h^2) \frac{dh}{dt} = W \frac{dh}{dt}$ Since $\frac{dV}{dt} = 6$, $\frac{dh}{dt} = 6/W$ so $k = 6$	M1 A1
			13