#### Онлайн-курс

# ВВЕДЕНИЕ В ИСКУССТВЕННЫЕ НЕЙРОННЫЕ СЕТИ

### 2. Точки минимума функций многих переменных

Автор: Шевляков Артём Николаевич

# Функции многих переменных

Вы думали, что функции зависят только от одного аргумента?

А вот и нет!

С такими приколами тебе сюда



Самый простой пример ФМП – это величина «сумма чека в советском магазине».

S=0.2\*x+0.34\*y

где х - количество булок хлеба,

у - количество бутылок молока

Самый простой пример ФМП – это величина «сумма чека в советском магазине».

S=0.2\*x+0.34\*y-0.15\*z

где х - количество булок хлеба,

у - количество бутылок молока,

Самый простой пример ФМП – это величина «сумма чека в советском магазине».

S=0.2\*x+0.34\*y-0.15\*z

где х - количество булок хлеба,

у - количество бутылок молока,

z - число сдаваемых бутылок.

Более серьёзный пример. «Площадь прямоугольника» зависит от длин двух его сторон:

$$f(x_1, x_2) = x_1 x_2$$

#### А как можно представлять себе ФМП?

График в виде кривой не годится.

Они представляются в виде поверхностей: двумерных (их еще можно нарисовать) или многомерных.

### ФМП в нашем мозгу

Вот поверхность, задающая функцию  $f(x_1,x_2)=x_1x_2$ 

Аргументы лежат в плоскости «пола». Над каждой «половой» точкой на нужной высоте расположено значение функции.



# ФМП в нашем мозгу

Вот поверхность, задающая функцию  $f(x_1,x_2)=x_1^2+x_2^2$ 

Самая «низкая» точка этой поверхности (0,0).

А вот еще поверхность некоторой ФМП:





## Точка минимума ФМП

Точка  $(a_1,a_2)$  является точкой **локального минимума** ФМП  $f(x_1,x_2)$ , если в некоторой окрестности этой точки выполнено неравенство  $f(a_1,a_2) < f(x_1,x_2)$ 

для всех точек  $(x_1, x_2)$  из данной окрестности.

Точка  $(a_1,a_2)$  является точкой **глобального минимума** ФМП  $f(x_1,x_2)$ , если  $f(a_1,a_2) < f(x_1,x_2)$ 

для всех точек  $(x_1, x_2)$  из области определения функции  $f(x_1, x_2)$ .

### Пример минимума ФМП

Вот поверхность, задающая функцию  $f(x_1,x_2)=x_1^2+x_2^2$ 

Точка этой поверхности (0,0) является точкой локального минимума.

На самом деле точка (0,0) – это глобальный минимум функции  $f(x_1,x_2)=x_1^2+x_2^2$  .



### Точка минимума ФМП

Точка  $(a_1,...,a_n)$  является точкой **локального минимума** ФМП  $f(x_1,...,x_n)$ , если в некоторой окрестности этой точки выполнено неравенство  $f(a_1,\ldots,a_n) < f(x_1,\ldots,x_n)$  для всех точек  $(x_1,...,x_n)$  из данной окрестности.



Точка  $(a_1,...,a_n)$  является точкой глобального минимума ФМП  $f(x_1,...,x_n)$ , если  $f(a_1,\ldots,a_n) < f(x_1,\ldots,x_n)$ 

для всех точек  $(x_1,...,x_n)$  из области определения функции  $f(x_1,...,x_n)$ .

### ФМП без минимума

А вот у функции «сумма чека в советском магазине»

S=0.2\*x+0.34\*y-0.15\*z

минимума нет.

Ибо с ростом числа бутылок функция неограниченно убывает.



### Где глобальный минимум на этом фото?

Да вот же он!



А можете найти еще пару локальных минимумов на этом фото?

### Потренируемся искать минимумы

Представьте, что верхняя поверхность вашего тела (при условии, что вы лежите на спине) – это поверхность некоторой функции от двух аргументов.

#### Где у неё локальные и глобальные минимумы?



### Главная задача!

**Нужно уметь находить у ФМП глубокие минимумы. В идеале – найти глобальный минимум.** А как это сделать? Даже если мы нашли один локальный минимум, то как мы можем быть уверены в

том, что нет минимумов глубже его?

Как по этому фото понять, что где-то существует Марианская впадина?



Онлайн-курс

# ВВЕДЕНИЕ В ИСКУССТВЕННЫЕ НЕЙРОННЫЕ СЕТИ

2. Точки минимума функций многих переменных

# Производные функций многих переменных

# производная? Ну куда же оез нее!

Пусть  $f(x_1, x_2)$  - функция от двух аргументов. Оказывается, у нее существует не одна, а целых две производных:

$$\dfrac{\partial f}{\partial x_1}$$
 частная производная по аргументу  $x_1$ ,  $\partial f$ 

частная производная по аргументу  $x_2$ 

Частная производная (ЧП) считается по обычным правилам в предположении, что все остальные аргументы функции

являются константами.

Путин поручил оценить ущерб от ЧП в Норильске до сентября

### Примеры частных производных

Пусть 
$$f(x_1,x_2)=x_1x_2$$
, тогда  $\frac{\partial f}{\partial x_1}=x_2,\; \frac{\partial f}{\partial x_2}=x_1$ 

Если 
$$f(x_1, x_2) = x_1^2 - 5x_2^2 + 2x_1x_2 + 3x_1 - x_2 + 10$$

$$\frac{\partial f}{\partial x_1} = 2x_1 + 2x_2 + 3,$$

$$\frac{\partial f}{\partial x_2} = -10x_2 + 2x_1 - 1$$

### Частные производные ФМП

Если ФМП  $f(x_1,...,x_n)$  зависит от n аргументов, то у нее будет n частных производных (ЧП)

$$\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}$$



### Свойства ЧП

Если точка  $(a_1,a_2)$  является точкой локального минимума ФМП  $f(x_1,x_2)$ , то все ЧП равны нулю в этой точке!

Для функций одного аргумента, это, конечно же, тоже выполнено.

Например, все ЧП

$$f(x_1, x_2) = x_1^2 + x_2^2$$

равны 0 в точке (0,0).



## Градиент

Вектор 
$$\nabla f = (\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2})$$
 для ФМП  $f(x_p, x_2)$  называется градиентом.

Для  $\Phi$ МП от *n* переменных и градент подлиннее:

$$\nabla f = (\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n})$$

Онлайн-курс

# ВВЕДЕНИЕ В ИСКУССТВЕННЫЕ НЕЙРОННЫЕ СЕТИ

2. Точки минимума функций многих переменных

# Градиентный спуск для функций многих переменных

### Ищем минимум по шагам

Неужели мы глупее шарика?

Мы будем снова моделировать спуск шарика. Но на этот раз движется по поверхности, а не по одномерному графику функции (как в первой главе курса).



### Достижимость глобального минимума

Глобальный минимум не обязательно будет достигнут при таком спуске.

Позиция шарика перед началом спуска существенно влияет на результат (это было справедливо и для функции одной переменной).

A B Z

# Градиентный спуск (ГС)

ГС для ФМП ничем **принципиально не отличается** от ГС для функции одного аргумента («Математика — сила!»).

Вспомним ГС для одного аргумента:

Выберем длину шага h. Пусть шарик находится в точке с координатой a. Тогда новая a точка равна:

$$a := a - f'(a) * h$$

После этого процесс повторяется, мы получаем новую позицию для шарика итд.

# Градиентный спуск (ГС)

А теперь я просто заменю числа на векторы в формуле для ГС:

$$a := a - f'(a) * h$$

Будет так:

$$\bar{a} := \bar{a} - h\nabla f(\bar{a})$$



### Градиентный спуск для ФМП

Выберем длину шага h (например, h=0.01). Пусть шарик находится в точке с координатой  $(a_1, a_2)$  . Тогда новые координаты равны:

$$(a_1, a_2) := (a_1, a_2) - h(\frac{\partial f}{\partial x_1}(a_1, a_2), \frac{\partial f}{\partial x_2}(a_1, a_2))$$

$$a_1 := a_1 - h \cdot \frac{\partial f}{\partial x_1}(a_1, a_2)$$

$$a_2 := a_2 - h \cdot \frac{\partial f}{\partial x_2}(a_1, a_2)$$

После этого процесс повторяется, мы получаем новую позицию для шарика и т.д.

# Градиентный спуск (ГС)

Если  $\bar{a}_n$  – позиция нашего шарика на n-м шаге, то новая позиция равна:

$$\bar{a}_{n+1} = \bar{a}_n - h\nabla f(\bar{a}_n)$$



Стандартное значение шага h=0.01

## Пример ГС

Проведем несколько итераций ГС для ФМП  $f(x_1,x_2)=x_1^2+x_2^2$ 

Пусть h=0.1 и начальная позиция равна  $\bar{a}_0 = (1,2)$ 

Мы знаем, что (0,0) - точка минимума,

посмотрим, как ГС её найдёт.

Градиент:  $\nabla f = (2x_1, 2x_2)$ 



### Шаг 1

Значение градиента в точке  $\bar{a}_0 = (1,2)$  равно

$$\nabla f(\bar{a}_0) = (2 \cdot 1, 2 \cdot 2) = (2, 4)$$

Новая позиция шарика:

$$\bar{a}_1 = \bar{a}_0 - h \cdot \nabla f(\bar{a}_0) = (1,2) - 0.1 \cdot (2,4) = (0.8,1.6)$$

А ГС умный! Он понял, что по второму аргументу мы дальше от точки минимума, и поэтому нужно сдвинуться дальше, чем по первому аргументу.

### Шаг 2

Значение градиента в точке  $\bar{a}_1 = (0.8, 1.6)$  равно

$$\nabla f(\bar{a}_1) = (2 \cdot 0.8, 2 \cdot 1.6) = (1.6, 3.2)$$

Новая позиция шарика:

$$\bar{a}_2 = \bar{a}_1 - h \cdot \nabla f(\bar{a}_1) =$$
  
=  $(0.8, 1.6) - 0.1 \cdot (1.6, 3.2) = (0.64, 1.28)$ 

Мы ещё ближе к точке минимума!

И так далее...

## Геометрический смысл градиента

Градиент (как вектор) показывает направление наибольшего возрастания функции.

А мы специально идем в противоположном направлении, чтобы спуститься как можно глубже (из-за этого в формуле ГС стоит знак «минус»).





Онлайн-курс

# ВВЕДЕНИЕ В ИСКУССТВЕННЫЕ НЕЙРОННЫЕ СЕТИ

2. Точки минимума функций многих переменных

# Модификации градиентного спуска

#### Вернемся к поиску глубоких минимумов

Как понять, что где-то есть впадины поглубже?

Совет из фантастики: нужен улавливатель гравитационных волн!

То есть во время ГС нужно не просто катиться под уклон, а смотреть по сторонам и можно анализировать уже пройденный путь.



#### 1. Модификации с шагом *h*

Постановка задачи: вам побыстрее хочется провалиться в канализационный колодец, расположенный в 10 метрах от вас. Согласитесь, что разумнее сначала сделать несколько длинных шагов, а потом корректировать движение с помощью более мелких шагов.

**Идея**: на первых итерациях градиентного спуска шаг *h* может быть большим, а потом нужно его плавно уменьшать.

По каким формулам уменьшают длину шага *h*?

### 1. Модификации с шагом *h*

Первая формула: 
$$h_{n+1} := h_0 \cdot (1 - \frac{n}{T})$$

**Смысл:** Перед началом ГС у нас шаг  $h_0$ . После каждой итерации шаг равномерно уменьшается.

**Сюрприз:** после T итераций (T - константа, задаваемая перед  $\Gamma$ С) шаг станет равным 0.  $\Gamma$ С останавливается.

В общем, у вас есть (Т+1) шагов, чтобы найти хороший минимум.

### Модификации с шагом *h*

Первая формула:  $h_{n+1} := h_0 \cdot (1 - \frac{n}{T})$ 

**Например:** если  $h_0$ =0.1, T=5, то получим такую последовательность шагов

h: 0.1 0.08 0.06 0.04 0.02 0

То есть на 1й итерации ГС будем использовать шаг 0.1, на 2й - 0.08 и т.д.

#### Пример

**Дано:**  $f(x_1,x_2)=x_1^2+x_2^2$   $a_0=(1,2)$   $h_0=0.1$  T=10. Градиент равен  $(2x_1,2x_2)$ 

#### Сначала считаем последовательность шагов:

0.1 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0

#### Сделаем два шага ГС.

$$a_1 = (1,2) - 0.1*(2,4) = (0.8,1.6)$$

$$a_2 = (0.8, 1.6) - 0.09 \times (1.6, 3.2) = (0.656, 1.312)$$

и т.д.

### 1. Модификации с шагом *h*

Вторая формула:  $h_{n+1} := h_0 \cdot e^{-\frac{n}{T}}$ 

**Смысл:** Перед началом ГС у нас шаг  $h_0$ . После каждой итерации шаг **плавно** уменьшается. Константа T (задаваемая перед ГС) определяет скорость уменьшения длины шага h. Чем больше T, тем медленнее убывает h.

**Например:** если  $h_0$ =0.1, T=1, то получим такую последовательность шагов

h: 0.1 0.037 0.014 0.005 0.002 0.0007

А дальше всё аналогично предыдущему алгоритму.

#### 2. Метод Momentum

**Идея**: до сего момента шарик (который катится по поверхности) был без каких-либо физических характеристик. Так давайте припишем ему некоторую массу и после каждого шага будем вычислять физическую скорость шарика.

**Зачем**: шарик с большой массой и скоростью будет легко миновать неглубокие минимумы и по инерции пролетать плато.

Осталось лишь выразить всю эту физику с помощью формулы.

#### 2. Метод Momentum

Пусть  $\gamma \in [0,1]$  , тогда вычисление новой позиции шарика при ГС происходит по формуле:

$$\bar{a}_{n+1} := \gamma \bar{a}_n - h \nabla f(\bar{a}_n)$$

**Смысл**  $\gamma$ : это как бы масса (инерция) шарика. Этот параметр определяет, насколько сильно новое направление движения зависит от пройденного пути.

Если  $\gamma=1$  , то мы имеем классический ГС.

#### 2. Метод Momentum

**Сравним работу классического ГС и метода Momentum.** Ранее мы показали, что классический ГС для  $f(x_1,x_2)=x_1^2+x_2^2$ , h=0.1 приводит к такому «путешествию» шарика (градиент функции равен  $\nabla f=(2x_1,2x_2)$ ):

(1 2) (0.8 1.6) (0.64 1.28)

#### Пусть ү=2 (шарик потяжелел). Тогда:

$$a_1$$
=2\*(1, 2)-0.1(2, 4)=(0.9, 1.8)

$$a_2$$
=2\*(0.9, 1.8)-0.1(1.8, 3.6)=(0.81, 1.62)

$$a_2$$
=2\*(0.81, 1.62)-0.1(1.62, 3.24)=(0.729, 1.458)

Действительно, шарик медленнее разгоняется.



Список литературы:



## 3. Adagrad (адаптивный градиент)

**Проблема** («градиентный коммунизм»):, по всем координатам градиент умножается на один и тот же коэффициент *h*.

$$(a_1, a_2) := (a_1, a_2) - h(\frac{\partial f}{\partial x_1}(a_1, a_2), \frac{\partial f}{\partial x_2}(a_1, a_2))$$

Это не всегда оправдано, поскольку по одной координате можно сдвигаться более длинными шагами, а по другим координатам – нужны более мелкие шаги.

**Идея**: а давайте градиент умножать на разные числа, в зависимости от направления.

Мы накапливаем информацию о градиентах со всех предыдущих позициях шарика  $\bar{G}_{n+1} = \bar{G}_n + (\nabla f(\bar{a}_n))^2$ 

(здесь покоординатное возведение в квадрат).

Короче говоря, 
$$\bar{G}_{n+1} := (\nabla f(\bar{a}_0))^2 + (\nabla f(\bar{a}_1))^2 + \ldots + (\nabla f(\bar{a}_n))^2$$

– это сумма квадратов градиентов с прошлых итераций.

Новая позиция шарика: 
$$\bar{a}_{n+1} = \bar{a}_n - \frac{h}{\sqrt{\bar{G}_{n+1} + \epsilon}} \nabla f(\bar{a}_n)$$

(здесь градиент покоординатно делится на вектор  $\sqrt{ar{G}_{n+1} + \epsilon}$  )

Здесь  $\varepsilon > 0$  – маленькое число, нужное для избежания деления на 0.

Сравним работу классического ГС и Adagrad. Ранее мы показали, что классический ГС для  $f(x_1,x_2)=x_1^2+x_2^2$  , h=0.1 приводит к такому «путешествию» шарика (градиент функции равен  $\nabla f = (2x_1,2x_2)$ ):

Пусть  $\varepsilon=0$  (мы пофигистически полагаем, что деления на 0 в нашей формуле не произойдет).

Шаг прежний h=0.1 Найдем траекторию ГС.

**Шаг 1:** берем точку  $a_0$ =(1,2):

$$\nabla f(\bar{a}_0) = (2,4) \ \bar{G}_1 = (4,16)$$

$$\bar{a}_1 := (1,2) - \frac{0.1}{\sqrt{(4,16)}} \cdot (2,4) = (0.9,1.9)$$

**Шаг 2:** берем точку  $a_1 = (0.9, 1.9)$ :

$$\nabla f(\bar{a}_1) = (1.8, 3.8),$$

$$\bar{G}_1 = (4, 16) + (3.24, 14.44) = (7.24, 30.44),$$

$$\bar{a}_2 := (0.9, 1.9) - \frac{0.1}{\sqrt{(7.24, 30.44)}} \cdot (1.8, 3.8) =$$

$$= (0.9, 1.9) - \frac{0.1 \cdot (1.8, 3.8)}{(2.69, 5.52)} =$$

(0.9, 1.9) - 0.1(0.67, 0.69) = (0.833, 1.831)



Недостаток Adagrad: градиенты за все прошлые шаги вносят одинаковый вклад в сумму  $\bar{G}_n$  .

Но это не всегда логично. Градиенты с далёких шагов могут быть нерелевантны в текущей точке.

Вы же не используете свой давний опыт альпинизма при перемещении по городской улице!

Второй недостаток: выражение  $\bar{G}_n$  неограниченно растёт, слишком быстро уменьшая шаг.

**Идея**: а давайте запоминать **взвешенные суммы** градиентов (и их квадратов) с прошлых шагов.

#### Будем разбирать главную формулу метода Adam:

$$\bar{a}_{n+1} = \bar{a}_n - \frac{h}{\sqrt{\bar{R}_{n+1} + \epsilon}} \bar{M}_{n+1}$$

Как будет видно дальше, вектора  $M_{n+1}$  ( $R_{n+1}$ ) хранят информацию о предыдущих градиентах (квадратов градиентов).

$$\bar{M}_{n+1} = \frac{\bar{m}_{n+1}}{1 - \beta_1^{n+1}}$$

$$\bar{R}_{n+1} = \frac{\bar{r}_{n+1}}{1 - \beta_2^{n+1}}$$

где  $\beta_1, \beta_2$  – числа-константы, их смысл см. далее.

$$\bar{m}_{n+1} = \beta_1 \bar{m}_n + (1 - \beta_1) \nabla f(\bar{a}_n)$$

$$\bar{m}_0 = \bar{r}_0 = \bar{0}$$

$$\bar{r}_{n+1} = \beta_2 \bar{r}_n + (1 - \beta_2) (\nabla f(\bar{a}_n))^2$$

Т.е. вектора  $m_{n+1}$ , $r_{n+1}$  накапливают информацию о взвешенном среднем градиента (квадрата градиента) с предыдущих позиций ГС.

Числа  $eta_1, eta_2$  показывают, **насколько сильно забываются давние значения** градиента и квадрата градиента. Чем меньше  $eta_1, eta_2$ , тем быстрее старые значения забываются. Если  $eta_1, eta_2$ =0, то мы вообще не используем никакую историю.

Обычно берут:  $\beta_1$ =0.9,  $\beta_2$ =0.999.

# 4. Adam (пример спуска)

 $f(x_1,x_2)=x_1^2+x_2^2$   $\nabla f=(2x_1,2x_2)$   $\varepsilon=0$ , h=1,  $a_0=(10,20)$ , (мы пофигистически полагаем, что деления на 0 в нашей формуле не произойдет),  $\beta_1$ ,  $\beta_2=0.5$ .

$$\nabla f(a_0) = (20, 40),$$

$$(\nabla f(a_0))^2 = (400, 1600),$$

$$m_1 = 0.5 \cdot (0, 0) + (1 - 0.5) \cdot (20, 40) = (10, 20),$$

$$r_1 = 0.5 \cdot (0, 0) + (1 - 0.5) \cdot (400, 1600) = (200, 800),$$

$$M_1 = (10, 20)/(1 - 0.5^1) = (20, 40),$$

$$R_1 = (200, 800)/(1 - 0.5^1) = (400, 1600),$$

$$a_1 = (10, 20) - \frac{1 \cdot (20, 40)}{\sqrt{(400, 1600)}} = (9, 19)$$

# 4. Adam (вторая итерация)

$$f(x_1,x_2) = x_1^2 + x_2^2 \quad \nabla f = (2x_1,2x_2) , \ h=1, \ a_1=(9,19), \quad \varepsilon = 0, \ \beta_1, \ \beta_2 = 0.5.$$
 
$$\nabla f(a_1) = (18,38), \\ (\nabla f(a_1))^2 = (324,1444), \\ m_2 = 0.5(10,20) + (1-0.5)(18,38) = (14,29), \\ r_2 = 0.5(200,800) + (1-0.5)(324,1444) = (262,1122), \\ M_2 = (14,29)/(1-0.5^2) = (18.7,38.7), \\ R_2 = (262,1122)/(1-0.5^2) = (349.3,1496), \\ a_2 = (9,19) - \frac{1 \cdot (18.7,38.7)}{\sqrt{(349.3,1496)}} = (8,18)$$

Онлайн-курс

# ВВЕДЕНИЕ В ИСКУССТВЕННЫЕ НЕЙРОННЫЕ СЕТИ

2. Точки минимума функций многих переменных

# Выводы

#### Выводы

- Мы поняли, что функции могут зависеть от нескольких переменных.
- Такие функции можно дифференцировать по каждой переменной (частные производные).
- Для функций многих переменных работает алгоритм градиентного спуска.
- Мы рассмотрели разные модификации градиентного спуска.
- Апофеоз сегодняшней лекции метод Adam, который по умолчанию используется в тренировках нейронных сетей.