

Randomness in Computing

LECTURE 9

Last time

- Variance, covariance
- Chebyshev's inequality
- Variance of Binomial and Geometric RVs
- Today
- Median of a RV
- Computing the median of an array

Median of a random variable

• A value m is the median of a random variable X if $Pr[X \le m] \le 1/2$ and $Pr[X \ge m] \le 1/2$.

- Example 1: X is uniform over $x_1, ..., x_{2k+1}$, where $x_1 < \dots < x_{2k+1}$. What is the median?
- Example 2: X is uniform over $x_1, ..., x_{2k}$, where $x_1 < \cdots < x_{2k}$. Find all medians.

Median and mean: another view

- Theorem. For a random variable X with a finite expectation μ and a finite median m,
- 1. the expectation μ is the value of c that minimizes the expression $E[(X-c)^2];$
- 2. the median m is a value of c that minimizes the expression E[|X-c|].

Median and mean are close

• Theorem. For a random variable X with expectation μ , median m, and standard deviation σ , $|\mu - m| \leq \sigma$.

Chebyshev's Inequality

• Theorem. For a random variable X and a > 0,

$$\Pr[|X - E[X]| \ge a] \le \frac{\operatorname{Var}[X]}{a^2}.$$

• Alternatively: Then, for all t > 1,

$$\Pr[|X - E[X]| \ge t \cdot \sigma[X]] \le \frac{1}{t^2}.$$

• Example 1: $X \sim Bin(n, 1/2)$.

Bound
$$\Pr\left[X > \frac{3n}{4}\right]$$
 using Markov and Chebyshev.

• Example 2: Coupon Collector Problem.

Bound $Pr[X > 2nH_n]$ using Markov and Chebyshev.