SCHEMAT OCENIANIA ARKUSZA EGZAMINACYJNEGO I

Nr zadania	Nr czynno- ści	Etapy rozwiązania zadania	Liczba punktów
1	1.1	Obliczenie prawdopodobieństwa wylosowania białej kuli spośród 4 kul białych i 5 czarnych: $p_1 = \frac{4}{9}$	1 p
	1.2	Obliczenie prawdopodobieństwa wylosowania białej kuli spośród 3 kul białych i 4 czarnych: $p_2 = \frac{3}{7}$	1 p
	1.3	Porównanie obliczonych wyników i sformułowanie odpowiedzi: $p_1 \rangle p_2$	1 p
2	2.1	Zapisanie nierówności: $\frac{n+2}{3n+1} \rangle \frac{1}{2}$	1 p
	2.2	Przekształcenie nierówności do postaci liniowej lub iloczynowej: $n \langle 3 \text{ lub } 2(3-n)(3n+1) \rangle 0$	1 p
	2.3	Rozwiązanie nierówności w zbiorze liczb naturalnych: $n = 1$ lub $n = 2$	1 p
	2.4	Sformułowanie odpowiedzi: $a_1 = \frac{3}{4}$, $a_2 = \frac{4}{7}$	1 p
3	3.1	Wykorzystanie podzielności wielomianu przez dwumian $x + 2$ np. $W(-2) = 0$ lub podzielenie wielomianu $W(x)$ przez dwumian $x + 2$	1 p
	3.2	Wyznaczenie $k: k=3$	1 p
	3.3	Rozłożenie wielomianu na czynniki: $W(x) = (x-1)(x+2)^2$	1 p
	3.4	Podanie pierwiastków wielomianu: $x_1 = x_2 = -2, x_3 = 1$	1 p
4	4.1	Wprowadzenie oznaczeń wskazujących, że liczby tworzą ciąg geometryczny, np. x – liczba płyt ustawionych na górnej półce, gdzie $x\langle 24 \ i \ x \in N_+$ 24– liczba płyt ustawionych na środkowej półce, $24 \cdot \frac{24}{x}$ – liczba płyt ustawionych na dolnej półce	1 p
	4.2	Wykorzystanie sumy trzech wyrazów ciągu geometrycznego i ułożenie równania z niewiadomą x : $x + 24 + \frac{576}{x} = 76 \qquad (*)$	1 p
	4.3	Przekształcenie równania (*) do postaci (**): $x^2 - 52x + 576 = 0$ (**)	1 p
	4.4	Rozwiązanie równania (**): $x_1 = 16$, $x_2 = 36$	1 p
	4.5	Zapisanie odpowiedzi zgodnie z warunkami zadania. Na górnej półce jest 16 płyt, zaś na dolnej półce jest ich 36.	1 p

		Wprowadzenie oznaczeń, np.:	
	5.1	x – liczba kolejnych obniżek ceny jednej kurtki, $(60-x)$ – zysk ze sprzedaży jednej kurtki,	1 p
		(40 + x) – liczba sprzedanych kurtek	_
_		Określenie funkcji f opisującej miesięczny zysk:	
5	5.2	$f(x) = (60 - x)(40 + x) \text{ lub } f(x) = -x^2 + 20x + 2400$	1 p
	5.0	Wyznaczenie wartości argumentu x_w , dla której funk-	1
	5.3	cja przyjmuje największą wartość: $x_w = 10$	1 p
	5.4	Wyznaczenie szukanej ceny: 150 zł	1 p
		Rozwiązanie nierówności: $ x+2 \langle 3i \text{ wyznaczenie} \rangle$	
	6.1	zbioru A (w tym 1 p. za metodę oraz 1 p. za obliczenia):	2 p
		A = (-5;1)	
6		Rozwiązanie nierówności:	
		$(2x-1)^3 \le 8x^3 - 13x^2 + 6x + 3$	
	6.2	i wyznaczenie zbioru <i>B</i> : $B = \langle -2;2 \rangle$	2 p
		(w tym 1 p. za doprowadzenie nierówności do postaci	1
		$x^2 \le 4$ oraz 1 p. za rozwiązanie otrzymanej nierówności kwadratowej	
	6.3	Wyznaczenie zbioru $A \cap B$: $A \cap B = \langle -2;1 \rangle$	1 p
	6.4	Wyznaczenie zbioru $B - A$: $B - A = \langle 1; 2 \rangle$	
	0.4	· · ·	1 p
7	7.1	Naszkicowanie diagramu:	1 p
	7.2	Obliczenie średniej liczby godzin: 2,75	1 p
	7.3	Obliczenie wariancji (w tym 1 p. za metodę oraz 1 p. za obliczenia): 0,94	2 p
	7.4	Obliczenie odchylenia standardowego: 0,97	1 p
		Wykorzystanie warunku dla czworokąta opisanego	
8	8.1	na okręgu (w tym 1 p. za metodę oraz 1 p. za obliczenia):	2p
		AB + DC = 16,3 dm,	
	8.2	Obliczenie pola S_{ABCD} czworokąta: $S_{ABCD} = 48,9 \ dm^2$	1 p
	8.3	Obliczenie pola S_k koła: $S_k = 9\pi \approx 28,27 dm^2$ lub $S_k \approx 28,26 dm^2$	1 p
	8.4	Obliczenie pola S_r niewykorzystanej części materiału: $S_r \approx 20,63 dm^2$ lub $S_r \approx 20,64 dm^2$	1 p

		1	
	8.5	Obliczenie, ile procent S_{ABCD} stanowi S_r z dokładnością do 0,01: $\frac{S_r}{S_{ABCD}} \cdot 100\% \approx 42,19\%$ lub $\frac{S_r}{S_{ABCD}} \cdot 100\% \approx 42,21\%$	1 p
9	9.1	Wprowadzenie oznaczeń dla obu części spadku i zapisanie zależność między nimi: np.: x – kwota wpłacona dla ośmioletniego dziecka, y – kwota wpłacona dla dziesięcioletniego dziecka, x + y = 84100	1 p
	9.2	Za stosowanie w obliczeniach procentu składanego	1 p
	9.3	Ułożenie układu równań: $\begin{cases} x + y = 84100 \\ x \left(1 + \frac{1}{20}\right)^{13} = y \left(1 + \frac{1}{20}\right)^{11} \end{cases}$	1 p
	9.4	Przekształcenie układu równań do postaci: $\begin{cases} x + y = 84100 \\ x \left(1 + \frac{1}{20}\right)^2 = y \end{cases}$	1 p
	9.5	Rozwiązanie układu równań i sformułowanie odpowiedzi (w tym 1 p. za metodę oraz 1 p. za poprawne obliczenia): $x = 40000$ zł, $y = 44100$ zł	2 p
10	10.1	Sporządzenie rysunku wraz z oznaczeniami lub wprowadzenie dokładnie opisanych oznaczeń, np. $ WK = WL = h$, V – objętość ostrosłupa $ABCDW$, P_p - pole podstawy ostrosłupa $ABCDW$	1 p
	10.2	Zaznaczenie na rysunku właściwego przekroju i właściwego kąta	1 p
	10.3	Wykorzystanie własności, że trójkąt <i>WKL</i> jest równoramienny i wysokość <i>WO</i> jest wysokością ostrosłupa	1 p
	10.4	Obliczenie $ WO z \Delta WOL$: $ WO = h \cos \alpha$	1 p
	10.5	Obliczenie $ AB $: $ AB = 2h\sin\alpha$	1 p
	10.6	Obliczenie pola podstawy ostrosłupa: $P_p = 4h^2 \sin^2 \alpha$ Obliczenie objętości ostrosłupa: $V = \frac{4}{3}h^3 \sin^2 \alpha \cos \alpha$ lub $V = \frac{2}{3}h^3 \sin 2\alpha \sin \alpha$	2 p

Za prawidłowe rozwiązanie każdego z zadań inną metodą (zgodną z poleceniem) od przedstawionej w schemacie przyznajemy maksymalną liczbę punktów.