

Why Deep Learning rocks

A deep philosophical note

Maxim Borisyak

Yandex Machine Intelligence and Research National Research University Higher School of Economics

No free lunch

IQ test: try to learn yourself!

First question from MENSA website:

Following the pattern shown in the number sequence below, what is the missing number?

1, 8, 27, ?, 125, 216

Possible answers:

- > 36
- > 45
- > 46
- > 64
- > 99

IQ test: try to learn yourself!

First question from MENSA website:

Following the pattern shown in the number sequence below, what is the missing number?

$$X_{\text{test}} = (4,)$$

IQ test: try to learn yourself!

My solution:

$$y = \frac{1}{12}(91x^5 - 1519x^4 + 9449x^3 - 26705x^2 + 33588x - 14940)$$

> fits perfectly!

My answer:

> 99

Terminology

Machine Learning is about learning algorithms A that:

- \rightarrow defined on sample set \mathcal{X} (e.g. \mathbb{R}^n) and targets \mathcal{Y} (e.g. $\{0,1\}$);
- \rightarrow take a problem (dataset) $D=(X,y)\subseteq \mathcal{X}\times \mathcal{Y}$;
- \rightarrow learn relation between \mathcal{X} and \mathcal{Y} ;
- > and return prediction function:

$$\begin{array}{rcl}
A(D) & = & f \\
f : \mathcal{X} & \to & \mathcal{Y}
\end{array}$$

By this definition, e.g. XGBoost is a **family** of algorithms.

No free lunch theorem

No free lunch theorem states that **on average by all datasets** all learning algorithms are equally bad at learning.

Examples:

> crazy algorithm:

$$f(x) = \left\lfloor \left(\left\lceil \sum_{i} x_i + \theta \right\rceil \mod 17 + 1027 \right)^{\pi} \right\rfloor \mod 2$$

 any configuration of SVM perform equally well on average.

No free lunch theorem, stat. edition

No free lunch theorem

Possible learning algorithm behaviours in **problem space**:

- > + better than the average;
- > - worse than the average.

Are Machine Learning algorithms useless?

Are Machine Learning algorithms useless?

No.

Are Machine Learning algorithms useless?

- > No Free Lunch theorem applies to:
 - > one learning algorithm;
 - > against all possible problems.
- > in real world we have:
 - > data scientist with prior knowledge of the world;
 - > problem description;
 - > data description;
 - > a set of standard algorithms.

Corollary

A good machine learning family of algorithms/framework:

- > has clear relation between hyperparameters and set of problems each algorithm covers;
- > i.e. a data scientist can easily map their prior knowledge on hyperparameters.

A great machine learning family/frameworks:

- > covers a wide range of problems;
- > but each algorithm covers a small set of problems;
- > i.e. a lot of sensitive and well-defined hyperparameters.

Traditional Machine Learning (simplified)

- > analyse the problem and make assumptions;
- > pick an algorithm from a toolkit (e.g. logistic regression);
- > provide assumptions suitable for the algorithm (feature engineering).

Discussion

- > this approach works well for traditional datasets with a small number of features:
- > e.g. Titanic dataset:

passenger class	name	gender	age	fare	
-----------------	------	--------	-----	------	--

Essentially, performance of the algorithm depends on:

- > knowledge of the domain;
- > feature engineering skills;
- > understanding of assumptions behind standard algorithms.

Kitten

Let's try to detect kittens!

Kitten seen by a machine

```
28
             32 29 ..., 58 36 35 34
    25
         30
             31 36 ..., 65 38
                                 42
Γ 26
     29
                                      41
                                         421
             30 40 ..., 84 58
Γ 27
     28
         31
                                  51
                                      52
                                         447
     26
         27 29 43 ..., 90 70
                                  60
                                      57
                                         431
Γ 20
    26 28 28 31 ..., 83 73 62
                                      52
                                         451
. . . .
[173 187 180 183 184 ..., 170 227 244 219 199]
[193 199 194 188 185 ..., 181 197 201 209 187]
[175 177 156 166 171 ..., 226 215 194 185 182]
[161 159 160 187 178 ..., 216 193 220 211 200]
[178 180 177 185 164 ..., 190 184 212 216 189]]
```

Solution?

- > edge detection;
- > image segmentation;
- > eyes, ears, nose models;
- fit nose, ears, eyes;
- > average color of segments;
- > standard deviation of color segments;
- > goodness of fit for segments;
- > kitten's face model;
- > logistic regression.

* not an practical solution

Solution?

Solution?

Perhaps, more <u>Machine</u> Learning and less Human Engineering?

Let's learn features!

Kitten

Traditional approach:

- > edge detection;
- > image segmentation;
- > fit nose, ears, eyes;
- average, standard deviation of segment color;
- > fluffiness model;
- > kitten's face model;
- > logistic regression.

Deep Learning:

- > non-linear transformation;
- > another non-linear transformation;
- > non-linear transformation, again;
- > non-linear transformation, and again;
- > non-linear transformation (why not?);
- > logistic regression.

- > is not a superior algorithm;
- > is not even a single algorithm;
- > is a framework;
- > allows to express our assumptions in much more general way.

Why DL rocks

- > can crack much harder problems;
 - > it is easier to formulate models for features than features itself;
- > easy to construct networks:
 - > merge together;
 - > bring new objectives;
 - > inject something inside network;
 - > build networks inside networks;
 - > any differentiable magic is allowed*.

^{*} Non-differentiable also, but with a special care.

Example

A problem contains groups of features:

- > image;
- > sound features;

Prior knowledge:

 features from different group should not interact directly;

Example of a solution:

- > build a subnetwork upon each group of features;
- > merge them together.

feature group 1 feature group 2

Almost Free Lunch

Disclaimer

This is not a comprehensive overview of Deep Learning, just some examples.

Hacking layers

- > restrictions on weights: convolutions, weight matrix decomposition, ...;
- > activation: ReLU, ELU, SELU, ...;
- > new operations: pooling, maxout, ...;
- > specific unit behaviour: GRU, LSTM units, ...

Hacking model

Restrictions on search space:

> regularization, e.g.:

$$\mathcal{L} = \mathcal{L}_{\text{cross-entropy}} + \alpha ||W||_2^2$$

Hacking search procedure

- > SGD-like methods:
 - > adam, adadelta, adamax, rmsprop;
 - > nesterov momentum;
- > quasi-Newton methods;
- batch normalization, weight normalization;
- > weight matrix decomposition.

Data augmentation

- > symmetries: shifts, rotations, ...:
 - > searching for a network that produces the same response for shifted/rotated samples;
 - > eliminating symmetries;
- > random noise:
 - > pushing separation surface farther from samples robust output;

Hacking model

Interference with network (change of objective):

- > drop-out, drop-connect:
 - > searching for a robust network.

(a) Standard Neural Net

(b) After applying dropout.

Hacking loss

Hacking objectives:

> introducing loss for each layer:

$$\mathcal{L} = \mathcal{L}_n + \sum_{i=1}^{n-1} C_i \mathcal{L}_i$$

where:

- $\rightarrow \mathcal{L}_i$ loss on *i*-th layer.
- > Deeply Supervised Networks:
 - > searches for network that obtains good intermediate results.

Hacking initial guess

Pretraining:

- > unsupervised pretraining;
- > greedy layer-wise pretraining with e.g. AutoEncoders.

Hacking architecture: U-net

> skip connections allow to combine context with low-level representation.

Hacking architecture: ResNet

- > residual connections produce boosting-like behaviour;
- > no vanishing gradients;
- > brute-force: up to 1000+ layers.

Figure 2. Residual learning: a building block.

Hacking architecture: Cycle-GAN

- > reverse transformation;
- > symmetric discrimination.

Hacking architecture: Ladder Network

> introduces auxiliary task: denoising;

Breaking No Free Lunch

Auxilary task

 introducing additional task for a network might considerably improve generalization:

$$\mathcal{L} = \mathcal{L}_{\text{main}} + \alpha \mathcal{L}_{\text{auxilary}}$$

- e.g. along with particle identification restore momentum;
- > brings additional information.

Pretraining

- > pretraining on a similar dataset;
 - > as initial guess;
 - \rightarrow regularization relative to another model $\{W_i^0\}_{i=1}^n$:

$$\mathcal{L} = \mathcal{L}_{\text{main}} + \lambda \sum_{i=1}^{n} \|W_i - W_i^0\|_2^2$$

- > using weights from the zoo;
- > unsupervised pretraining (semi-supervised learning).

Summary

Summary

No Free Lunch theorem:

> Machine Learning is about using prior knowledge about the problem wisely.

Deep Learning:

- > a framework that covers a large range of problems;
- > allows to express prior knowledge freely;
- > makes it easier to solve hard problems.

References

No-Free-Lunch theorem:

- Schaffer, Cullen. "A conservation law for generalization performance." Proceedings of the 11th international conference on machine learning. 1994.
- > Wolpert, David H. "The supervised learning no-free-lunch theorems." Soft computing and industry. Springer London, 2002. 25-42.
- > Wolpert, David H., and William G. Macready. "No free lunch theorems for optimization." IEEE transactions on evolutionary computation 1.1 (1997): 67-82.

References: layers

- > Clevert, Djork-Arné, Thomas Unterthiner, and Sepp Hochreiter. "Fast and accurate deep network learning by exponential linear units (elus)." arXiv preprint arXiv:1511.07289 (2015).
- > Goodfellow, Ian J., et al. "Maxout networks." arXiv preprint arXiv:1302.4389 (2013).
- > Chung, Junyoung, et al. "Gated feedback recurrent neural networks." International Conference on Machine Learning. 2015.

References: regularization

- Sainath, Tara N., et al. "Low-rank matrix factorization for deep neural network training with high-dimensional output targets." Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on. IEEE, 2013.
- > Srivastava, Nitish, et al. "Dropout: a simple way to prevent neural networks from overfitting." Journal of Machine Learning Research 15.1 (2014): 1929-1958.
- > Lee, Chen-Yu, et al. "Deeply-supervised nets." Artificial Intelligence and Statistics. 2015.

References: network architectures

- > Von Eicken, Thorsten, et al. "U-Net: A user-level network interface for parallel and distributed computing." ACM SIGOPS Operating Systems Review. Vol. 29. No. 5. ACM, 1995.
- > He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
- > Zhu, Jun-Yan, et al. "Unpaired image-to-image translation using cycle-consistent adversarial networks." arXiv preprint arXiv:1703.10593 (2017).
- > Rasmus, Antti, et al. "Semi-supervised learning with ladder networks." Advances in Neural Information Processing Systems. 2015.

More resources

A lot of useful links can be found in:

- > Schmidhuber, Jürgen. "Deep learning in neural networks: An overview." Neural networks 61 (2015): 85-117.
- > Bengio, Yoshua. "Learning deep architectures for AI." Foundations and trends® in Machine Learning 2.1 (2009): 1-127.