Linear Algebra

Cecilia Aguilera

Lecture Note 1: Introduction to Vector Spaces - This lecture note was taken while reading Linear Algebra by Friedberg, Insel, and Spence.

1 Vector Spaces

Definition 1. A vector space (or linear space) V over a field \mathbb{F} consists of a set with 2 operations (addition and scalar multiplication) defined so that for all $x, y \in V$, there is a unique element $(x + y) \in V$, and for all $\alpha \in \mathbb{F}$ and $x \in V$ there is a unique element $\alpha x \in V$ such that the following conditions hold:

[(VS 1)]

- (1) For all $x, y \in V$ we have x + y = y + x.
- (2) For all $x, y, z \in V$ we have (x + y) + z = x + (y + z).
- (3) There exists an element (unique) $0 \in V$ such that x + 0 = x for all $x \in V$.
- (4) For all $x \in V$ there exists an element (unique) $y \in V$ such that x + y = 0.
- (5) For all $x \in V$ we have that $1 \cdot x = x$.
- (6) For all $a, b \in \mathbb{F}$ and $x \in V$ we have (ab)x = a(bx).
- (7) For all $a \in \mathbb{F}$ and $x, y \in V$ we have a(x+y) = az + ay.
- (8) For all $a, b \in \mathbb{F}$ and $x \in V$ we have that (a + b)x = ax + bx.

The elements of \mathbb{F} are called scalars while the elements of V are are called vectors.

Definition 2. An object of the form $(a_1, a_2, ..., a_n)$ for $a_i \in \mathbb{F}$ is called an n – tuple with entries from \mathbb{F} . Two n-tuples $(a_1, a_2, ..., a_n)$ and $(b_1, b_2, ..., b_n)$ with entries from \mathbb{F} are called equal if $a_i = b_i$ for i = 1, 2, ..., n.

Example 3. The set of all *n*-tuples from a field \mathbb{F} is a vector space (over \mathbb{F} itself), which we denote by \mathbb{F}^n , under the operations of coordinatewise addition and scalar multiplication, that is, if $u = (a_1, a_2, \dots, a_n) \in \mathbb{F}^n$, $v = (b_1, b_2, \dots, b_n) \in \mathbb{F}^n$, and $c \in \mathbb{F}$, then

$$u + v = (a_1 + b_1, a_2 + b_2, \dots, a_n + b_n)$$
 and $cu = (ca_1, ca_2, \dots, ca_n)$.

For example, in \mathbb{R}^4 :

$$(3, -2, 0, 5) + (-1, 1, 4, 2) = (2, -1, 4, 7)$$
 and $-5(1, -2, 0, 3) = (-5, 10, 0, 15)$.

Notation 4. Elements from \mathbb{F}^n may be written as **column vectors**:

$$\begin{pmatrix} a_1 \\ a_2 \\ \dots \\ a_n \end{pmatrix}$$

Since \mathbb{F}^1 are all the 1-tuples we write \mathbb{F} instead of \mathbb{F}^1 .

Definition 5. An $m \times n$ matrix with entries from a field \mathbb{F} is a rectangular array of the form

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

where each entry a_{ij} is an element of \mathbb{F} . We call the elements a_{ij} where i = j the diagonal entries of the matrix.

The rows of the $m \times n$ matrix A previously sketched with entries a_{ij} , are elements of \mathbb{F}^n while the rows of A are elements of \mathbb{F}^m . We say that two matrices A and B are equal if $a_{ij} = b_{ij}$ for all $i \in [1, m]$ and $j \in [1, n]$.

Notation 6. The $m \times n$ matrix such that $a_{ij} = 0$ for all i, j is called the **zero matrix** and it is denoted by O.

Notation 7. If A is an $m \times n$ matrix, then $A_{ij} = a_{ij}$.

Example 8. The set of all $m \times n$ matrices with entries from a field \mathbb{F} is a vector space denoted by $M_{m \times n}(\mathbb{F})$ in which

$$(A+B)_{ij} = A_{ij} + B_{ij}$$
 and $(cA)_{ij} = cA_{ij}$.

Example 9. Let S be a nonempty set and \mathbb{F} a field, and let $\mathcal{F}(S,\mathbb{F})$ denote the set of all the functions from S to \mathbb{F} . Two elements f and g in $\mathcal{F}(S,\mathbb{F})$ are called equal if f(s) = g(s) for all $s \in S$. The set $\mathcal{F}(S,\mathbb{F})$ is a vector space under the operations of addition and scalar multiplication defined for $f, g \in \mathcal{F}(S,\mathbb{F})$ and $c \in \mathbb{F}$ by

$$(f+g)(s)=f(s)+g(s)$$
 and $(cf)(s)=c[f(s)]$ for all $s\in S$.

Definition 10. A polynomial with coefficients from a field \mathbb{F} is an expression of the form

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

where $n \in \mathbb{N}$ and $a_k \in \mathbb{F}$ for all $k \in [0, n]$. If f(x) = 0, that is, if $a_n = a_{n-1} = \cdots = a_0 = 0$, then f(x) is called the **zero polynomial** and it is convenient to set its degree to be -1. Note that the polynomials of degree 0 are of the form f(x) = c for some nonzero scalar c.

Two polynomial $f(x) = \sum_{i=0}^{n} a_i x^i$ and $g(x) = \sum_{i=0}^{m} b_i x^i$ are called *equal* if m = n and $a_i = b_i$ for all $i \in [0, n]$.

Notation 11. When \mathbb{F} is a field containing infinite number of elements, we usually regard a polynimial with coefficients from \mathbb{F} as a function from \mathbb{F} to \mathbb{F} .

Definition 12. Under the operations of addition and scalar multiplication, the set of all polynimials with coefficients from \mathbb{F} is a vector space which we denote by $P(\mathbb{F})$.

Example 13. Let \mathbb{F} be a field. A sequence in \mathbb{F} is a function σ from the positive integers into \mathbb{F} . We denote $\sigma(n) = a_n$ for all $n \in \mathbb{N}$ as $\{a_n\}$. Let V be the set consisting of all the sequences $\{a_n\}$ in \mathbb{F} that have only finite number of nonzero terms a_n . If $\{a_n\}, \{b_n\} \in V$, and $t \in \mathbb{F}$ define

$${a_n} + {b_n} = {a_n + b_n}$$
 and $t{a_n} = {ta_n}$.

Then, V is a vector space under these operations.

Example 14. Let $S = \{(a_1, a_2) \mid a_1, a_2 \in \mathbb{R}\}$. For $(a_1, a_2), (b_1, b_2) \in S$ and $c \in \mathbb{R}$ define

$$(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2 - b_2)$$
 and $c(a_1, a_2) = (ca_1, ca_2)$.

As $(a_1 + b_1, a_2 - b_2)$ may be different from $(b_1 + a_1, b_2 - a_2)$ we have that the addition is not commutative, and so S is not a vector space.

Proposition 15 (Cancelative Law for Vector Addition). If x, y and z are elements of the vector space V such that x + z = y + z, then x = y.

Proof. Take $v \in V$ such that z + v = 0. Then write

$$x = x + 0 = x + (z + v) = (x + z) + v = (y + z) + v = y + (z + v) = y + 0 = y.$$

Corollary. The vector 0 is unique.

Corollary. The vector y such that x + y = 0 where $x \in V$, is unique.

Definition 16. The vector 0 is called the **zero vector** and the vector y such that x + y = 0 is called the **additive inverse** of x and it is denoted by -x.

Proposition 17. Let V be a vector space. Then the following statement hold:

- (1) 0x = 0 for all $x \in V$.
- (2) (-a)x = -(ax) = a(-x) for all $a \in \mathbb{F}$ and $x \in V$.
- (3) a0 = 0 for all $a \in \mathbb{F}$.

Proof. (1) Write

$$0x + 0x = (0 + 0)x = 0x = 0x + 0..$$

Then 0x = 0.

(2) Note that -(ax) is the unique element of V such that ax + [-(ax)] = 0. In addition, ax + (-a)x = (a-a)x = 0x = 0, and so -(ax) = (-a)x. In particular, (-1)x = -x, and it follows that

$$a(-x) = a[(-1)x] = [a(-1)]x = (-a)x = -(ax).$$

(i)

Therefore, a(-x) = -(ax).

Definition 18. The zero vector space is the vector space $V = \{0\}$ over \mathbb{F} consisting of the single vector 0 and defined by 0 + 0 = 0 and c0 = 0 for all $c \in \mathbb{F}$.

Example 19. Let V be the set of all differentible real-valued functions defined on the real line. Then V is a vector space. To prove this note first, that every differentiable function is continious, and second, that if $f, g \in V$, then f(x)+g(x)=h(x) where h is also differentiable, and so $h \in V$. In addition, take $k \in \mathbb{R}$, and so $kf(x) \in V$ as it is as well differentiable. This can be written as

$$\frac{d}{dx}f(x) + \frac{d}{dx}g(x) = \frac{d}{dx}(f(x) + g(x)), \text{ and } a\left(\frac{d}{dx}f(x)\right) = \frac{d}{dx}af(x).$$

Example 20. Both the set of real-valued functions and the set of continuous real-valued functions are vector spaces over \mathbb{R} . In addition, the set of all even real-valued functions is also a vector space over \mathbb{R} .

Example 21. Let V be the set of all the sequences $\{a_n\}$ of real numbers. For $\{a_n\}$ and $\{b_n\}$ in V, and for all $t \in \mathbb{R}$, define

$${a_n} + {b_n} = {a_n + b_n}$$
 and $t{a_n} = {ta_n}$.

Then, V is a vector space over \mathbb{R} .

Example 22. Let V and W be vector spaces over a field \mathbb{F} , and let

$$Z = \{(v, w) \mid v \in V \text{ and } w \in W\}.$$

Then Z is a vecot space over \mathbb{F} under the following operations:

$$(v_1, w_1) + (v_2, w_2) = (v_1 + v_2, w_1 + w_2)$$
 and $c(v_1, w_1) = (cv_1, cw_1)$.