Quine McClucskey Tabular Method

Based on complementation theorem

$$X.Y + X.\overline{Y} = X$$

X represents either a variable or a term or an expression and Y is a variable

Method

- Group and arrange the minterms in ascending order based on the number of 1's in them
- Compare every pair of minterm (minterms from consecutive groups should be compared)
 - combine a pair only if one variable differ
 - reduce comparison by grouping
 - remove redundant pair, if any
- Repeat the process for the new stage till no more stage can be created

Quine McClucskey Method - Example

Example: $F(a,b,c,d) = \sum (0,1,2,5,6,7,8,9,10,14)$

- Group 0
 - 0 0000
- Group 1
 - 1 0001
 - 2 0010
 - 8 1000
- Group 2
 - 5 0101
 - 6 0110
 - 9 1001
 - 10 1010
- Group 3
 - 7 0111
 - 14 1110

Quine McClucskey Method - Example

Prime Implicant Table:

	Stage 1
0	0000
1	0001
2	0010
8	1000
5	0101
6	0110
9	1001
10	1010
7	0111
14	1110

Stage 2								
0,1	000-							
0,2	00-0							
0,8	-000							
1,5	0-01							
1,9	-001							
2,6	0-10							
2,10	-010							
8,9	100-							
8,10	10-0							
5,7	01-1							
6,7	011-							
6,14	-110							
10.14	1-10							

Stage 3	
0,1,8,9	-00-
0,2,8,10	-0-0
0,8,1,9	-00-
0,8,2,10	-0-0
2,6,10,14	10
2,10,6,14	10

Quine McClucskey Method - Example

Prime Implicant Chart: Covering phase

Prime Implicant		0	1	2	5	6	7	8	9	10	14
0,1,8,9	b'c'	X	X					X	X		
0,2,8,10	b'd'	X		X				X		X	
2,6,10,14	cd'			X		X				X	X
1,5	a'c'd		X		X						
5,7	a'bd				X		X				
6,7	a'bc					X	X				

$$F = b'c'+cd'+a'bd$$

Cyclic dependencies

$$F(a,b,c) = \sum m(0,1,2,5,6,7)$$

			0	1	2	5	6	7
P_1	(0,1)	a'b'	х	Х				
P_2	(0,2)	a'c'	х		х			
P_3	(1,5)	b'c		Х		х		
P ₄	(2,6)	bc'			Х		Х	
P ₅	(5,7)	ac				Х		Х
P ₆	(6,7)	ab					Х	Х

$$F = a'b' + bc' + ac$$

Functions with don't cares

 $F(a, b, c, d) = \sum m(0, 1, 2, 8, 9, 20, 14) + \sum d(5, 6, 7)$

Prime Implicant		0	1	2		8	9	10	14
0,1,8,9	b'c'	X	X			X	X		
0,2,8,10	b'd'	X		X		X		X	
2,6,10,14	cd'			X				X	X
1,5	a'c'd		X						
5,7	a'bd								
6,7	a'bc								

Practice:

- 1. $f(a, b, c, d) = \Sigma m(1, 5, 7, 9, 11, 12, 14, 15)$
- 2. $f(a, b, c, d) = \sum m(0, 1, 3, 5, 6, 7, 8, 10, 14, 15)$
- 3. $f(a, b, c, d) = \sum m(1, 3, 4, 5, 6, 7, 10, 12, 13) + \sum d(2, 9, 15)$
- 4. $f(a, b, c, d) = \sum m(9, 12, 13, 15) + \sum d(1, 4, 5, 7, 8, 11, 14)$