Standard enthalpy of formation (ΔH_f°): Also called the standard heat of formation of a substance

Standard heat of formation: The amount of heat absorbed or released when one mole of the substance is formed at 25°C and 100kPa (SATP) from its elements in their standard states

ΔH_f° units are always in kJ/mol

Standard heat of formation: The amount of heat absorbed or released when one mole of the substance is formed at 25°C and 100kPa (SATP) from its **elements** in their standard states

Example: What equation represents the formation of nitric acid?

What are these elements in their standard (most common) states?

$$1/_{2}$$
 H_{2(g)} + $1/_{2}$ N_{2(g)} + $3/2$ O_{2(g)} \rightarrow HNO_{3(I)}

The ΔH_f° for elements in their standard states are zero

	Thern	nodynami	c Prope	rties (at stan	dard state	es)	
	ΔH _f °	in kJ/mol	ΔG ₁ ° i	n kJ/mol	S° in J/mol·	<	
		concentr	ation of aqu	ueous solutions is	1 <i>M</i>	T Marie	4.1
ubstance	ΔH _f °	ΔG _f °	S°	Substance	ΔH_{f}°	ΔG_f°	S°
g	0	0	42.7	H ₃ PO ₃	-972	_	_
gCl	-127	-110	96.1	H ₃ PO ₄	-1280	-1120	110
gCN	-146	-164	83.7	H ₂ S	-20.1	-33.0	206
J	0	0	28.3	H ₂ SO ₃ (aq)	-614	-538	232
1203	-1670	-1580	51.0	H ₂ SO ₄ (aq)	-908	-742	17.2
aCl ₂ (aq)	-873	-823	121	HgCl ₂	-230	-177	_
aSO ₄	-1470	-1350	132	Hg ₂ Cl ₂	-265	-211	196
е	0	0	9.54	Hg ₂ SO ₄	-742	-624	201
le ₃ N ₂	-568	-512		l ₂	0	0	117
1	0	0	56.9	K	0	0	63.6
iCl ₃	-379	-319	190	KBr	-392	-379	96.4
1 ₂ S ₃	-183	-164	146	KMnO ₄	-813	-714	172
r ₂	0	0	152	кон	-426	_	
H ₄	-74.8	-50.8	186	LiBr	-350	_	-
H ₄	+52.3	+68.1	219	LiOH	-487	-444	50.2
2H6	-84.7	-32.9	229	Mn	0	0	32.0
4H ₁₀	-125	-15.7	310	MnCl ₂ (aq)	-555	-491	38.9
0	-111	-137	198	Mn(NO ₃) ₂ (aq)	-636	-451	218
002	-393.5	-394.4	214	MnO ₂	-521	-466	53.1
S ₂	+87.9	+63.6	151	MnS	-214		_
a	0	0	41.6	N ₂	0	0	192
Ca(OH) ₂	-987	-897	_	NH ₃	-46.2	-16.6	193
12	0	0	223	NH ₄ Br	-270	-175	113
COCO ₃	-723	-650		NO	+90.4	_	211
000	-239	-213	43.9	NO ₂	+33.8	+51.8	240
Cr ₂ O ₃	-1130	-1050	81.2	Na	0	0	51.0
SCI(aq)	-415	-371	188	NaBr	-360	_	_
S ₂ SO ₄ (aq)	-1400	-1310	283	NaCl	-411	-384	72.4
cul	-67.8	-69.5	96.7	NaNO ₃ (aq)	-447	_	
uS	-53.1	-53.7	66.5	NaOH	-427	_	_
Su ₂ S	-79.5	-86.2	121	Na ₂ S(aq)	-437		_
CuSO ₄	-770	-662	113	Na ₂ SO ₄	-1380	-1270	149
2	0	0	203	02	0	0	205
eCl ₃	-405	_	-	P4O6	-1640		100
eO	-267	_	_	P ₄ O ₁₀	-2980	-2700	229
e ₂ O ₃	-822	-741	90.0	PbBr ₂	-277	-260	162
1	+218	_	115	PbCl ₂	-359	-314	136
2	0	0	131	S	0	0	31.9
iBr	-36.2	-53.2	198	SO ₂	-297	-300	249
ICI	-92.3	-95.3	187	SO ₃	-438	-368	95.6
ICI(aq)	-167	-131	56.5	SrO	-590	-560	54.4
ICN(aq)	+151	+172	94.1	Ti	0	0	30.3
IF	-269	-271	174	TiO ₂		-853	50.2
11	+25.9	+1.30	206	TII	-50.2	-83.3	236
1 ₂ O(I)	-286	-237	70.0	UCI4	-1050	-962	198
I ₂ O(g)	-242	-229	189	UCI ₅	-1100	-993	259
1 ₂ O ₂	_	-118	110	Zn	0	0	41.6
I ₃ PO ₂	-609		_	ZnCl ₂ (aq)	-487	-410	3.72
	97-31500			ZnSO ₄ (aq)	-1063	-892	-92.0

Determine the equations for the formation of:

- a) KBrO₃
- b) C₂H₅OH
- c) NaHCO₃

Don't forget that the equation must result in the formation of **one** mole of the desired compound.

Now we can assign the ΔH°_{f} of the product as the ΔH° of the whole reaction

$$2C_{(s)} + 3H_{2(g)} + 1/2O_{2(g)} \rightarrow C_2H_5OH_{(I)} \Delta H^\circ = -235.2kJ/mol$$

This additional equation may assist solving Hess' Law questions.

How are these equations and ΔH°_{f} values useful?

$$CaO_{(s)} + H_2O_{(I)} \rightarrow Ca(OH)_{2(s)}$$

By knowing the ΔH°_{f} of each of the chemicals in the above reaction, you can calculate the ΔH° of the reaction without using thermochemical equations and Hess' Law

$$\Delta H_{f}^{\circ}$$

Formation reactions and their ΔH°_{f} values may be manipulated to determine balanced equation and the ΔH° value of chemical reactions.

$$\Delta H^{\circ} = \Sigma \Delta H^{\circ}_{f(products)} - \Sigma \Delta H^{\circ}_{f(reactants)}$$

$$\Sigma$$
 = "sum of"

Don't forget that the equations should be multiplied by the appropriate factor, as necessary.

Using ΔH°_{f} values, calculate the ΔH° of combustion of one mole of ethanol to produce carbon dioxide gas and liquid water.

```
C_2H_5OH_{(I)} +3 O_{2(g)} \rightarrow 2 CO_{2(g)} +3 H_2O_{(I)} -235.2kJ/mol 0.0000kJ/mol -393.5kJ/mol -285.8kJ/mol \Delta H^\circ = \Sigma \Delta H^\circ_{f(products)} - \Sigma \Delta H^\circ_{f(reactants)} = [(2 mol x -393.5kJ/mol) + (3 mol x -285.8kJ/mol)] - [(1 mol x -235.2kJ/mol) + (3 mol x 0.0000kJ/mol)] = -1644.4kJ - (-235.2kJ)
```

Since this equation already combusts 1 mole of ethanol, then the final answer is:

Therefore the heat of combustion is -1409kJ/mol of ethanol

Using ΔH°_{f} values, calculate the ΔH° for the following reaction:

NaOH_(s) + HCl_(g)
$$\rightarrow$$
 NaCl_(s) + H₂O_(l)
-425.6kJ/mol -92.30kJ/mol -411.2kJ/mol -285.8kJ/mol
$$\Delta H^{\circ} = \Sigma \Delta H^{\circ}_{f(products)} - \Sigma \Delta H^{\circ}_{f(reactants)}$$

$$= [(1 \text{ mol } \times -411.2kJ/mol) + (1 \text{ mol } \times -285.8kJ/mol)]$$

$$- [(1 \text{ mol } \times -425.6kJ/mol) + (1 \text{ mol } \times -92.30kJ/mol)]$$

$$= -697.0kJ - (-517.9kJ)$$

$$= -179.1kJ$$

Therefore the heat of the reaction is -179.1kJ

Enthalpy of Combustion:

What is the reaction to produce $C_6H_{12}O_6$?

$$6 \text{ CO}_2 + 6 \text{ H}_2\text{O} \rightarrow 6 \text{ O}_2 + \text{C}_6\text{H}_{12}\text{O}_6$$

Where does this naturally occur? How do we measure it?

In plant chloroplasts; it is not easy to measure.

Enthalpy of Combustion:

$$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O_1$$

For complex organics, such as $C_6H_{12}O_6$, it is difficult to directly measure its formation. Instead, the compound is combusted and the products analyzed to determine ΔH°_{f} for the original compound.

Enthalpy of Combustion:

$$\Delta H^{\circ}_{c}$$

standard heat of combustion - the ΔH° for the combustion of one mole of compound

Ex.
$$CH_3OH_{(g)} + O_{2(g)} \rightarrow CO_{2(g)} + H_2O_{(l)}$$
 $\Delta H^{\circ}_{c} = -727kJ$

Calculate the ΔH°_{f} for $C_{2}H_{4}$.

$$C_2H_{4(g)} + 3 O_{2(g)} \rightarrow 2 CO_{2(g)} + 2 H_2O_{(l)} \Delta H_c^\circ = -1386 \text{ kJ}$$
x 0.000kJ -393.5kJ -285.8kJ

$$\Delta H^{\circ} = \Sigma \Delta H^{\circ}_{f(products)} - \Sigma \Delta H^{\circ}_{f(reactants)}$$

$$-1386kJ = [(2 mol x -393.5kJ/mol) + (2 mol x -285.8kJ/mol)]$$

$$- [(1 mol x x) + (3 mol x 0.000kJ/mol)]$$

$$-1386kJ = -1358.6kJ - x$$

 $x = 27.4kJ$

Therefore the heat of formation is 27.4kJ/mol

Enthalpy of Combustion:

$$C_2H_{4(g)} + 3 O_{2(g)} \rightarrow 2 CO_{2(g)} + 2 H_2O_{(l)} \Delta H_c^* = -1386 \text{ kJ}$$

Calculate the ΔH_f^* for C_2H_4 .

$$2C_{(s)} + 2H_{2(g)} \rightarrow C_2H_{4(g)} \quad \Delta H_f^{\circ} = ?$$

1 2
$$CO_{2(g)}$$
 + 2 $H_2O_{(l)} \rightarrow C_2H_{4(g)}$ + 3 $O_{2(g)}$ $\Delta H^\circ = +1386 \text{ kJ}$

$$\Delta \Pi = \pm$$

$$C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)}$$

$$\Delta H^{\circ} = -393.5 \text{ kJ}$$

$$(3)$$
 $H_{2(g)} + 1/2O_{2(g)} \rightarrow H_2O_{(l)}$

$$\Delta H^{\circ} = -285.8 \text{ kJ}$$

Enthalpy of Combustion:

$$C_2H_{4(g)} + 3 O_{2(g)} \rightarrow 2 CO_{2(g)} + 2 H_2O_{(l)} \Delta H_c^\circ = -1386 \text{ kJ}$$

Calculate the ΔH_f° for C_2H_4 .

$$2C_{(s)} + 2H_{2(g)} \rightarrow C_2H_{4(g)} \quad \Delta H_f^{\circ} = ?$$

1 2
$$CQ_{2(g)} + 2 H_2Q_{(l)} \rightarrow C_2H_{4(g)} + 3 Q_{2(g)}$$

$$\Delta H^{\circ} = +1386 \text{ kJ}$$

(2) x 2
$$2C_{(s)} + 2Q_{2(g)} \rightarrow 2CQ_{2(g)}$$

$$\Delta H^{\circ} = -787 \text{ kJ}$$

$$3 \times 2 \qquad 2H_{2(g)} + O_{2(g)} \rightarrow 2H_2O_{(1)}$$

$$\Delta H^{\circ} = -571.6 \text{ kJ}$$

$$2C_{(s)} + 2H_{2(g)} \rightarrow C_2H_{4(g)}$$

$$\Delta H_f^{\circ} = 27.4 \text{kJ}$$

Table 6.2 • Selected Standard Molar Enthalpies of Formation at 298 K

Substance	Name	Standard Molar Enthalpy of Formation (kJ/mol)		
C(graphite)	graphite	0		
C(diamond)	diamond	+1.8		
$CH_4(g)$	methane	-74.87		
$C_2H_6(g)$	ethane	-83.85		
$C_3H_8(g)$	propane	-104.7		
$C_4H_{10}(g)$	butane	-127.1		
$C_2H_4(g)$	ethene (ethylene)	+52.47		
$CH_3OH(\ell)$	methanol	-238.4		
$C_2H_5OH(\ell)$	ethanol	-277.0		
$C_{12}H_{22}O_{11}(s)$	sucrose	-2,221.2		
CO(g)	carbon monoxide	-110.53		
$CO_2(g)$	carbon dioxide	-393.51		
CaCO ₃ (s)*	calcium carbonate	-1207.6		
CaO(s)	calcium oxide	-635.0		
$H_2(g)$	hydrogen	0		
HCl(g)	hydrogen chloride	-92.31		
HCl(aq)*	hydrochloric acid (1 M)	-167.2		