Элементная база наноэлектроники

Лекция 2

Создание полезного устройства «для жизни»

Оптоэлектроника

Датчики

Дискретные компоненты

Интегральные схемы (ИС)

Оптоэлектроника

ПЗС и КМОП датчики изображения

Датчики

Лазерные передатчики и звукосниматели

Дискретные

Светодиоды и светодиодные индикаторы

компоненты

ИК устройства

Интегральные

Цифровые дисплеи

схемы (ИС)

Идр

Оптоэлектроника

Температуры

Датчики

Давления

Дискретные

Поворота и ускорения

компоненты

Магнитного поля

Интегральные

Гироскопы

схемы (ИС)

И др.

Оптоэлектроника

Датчики

Дискретные

компоненты

Интегральные

схемы (ИС)

Силовые модули и транзисторы

Переключающие транзисторы

Диоды, выпрямители, тиристоры

СВЧ транзисторы

Оптоэлектроника Микропроцессоры

Датчики Микроконтроллеры

Дискретные Цифровые сигнальные процессоры

Компоненты

Аналоговые схемы Интегральные

Логические схемы

схемы (ИС)

Системы на кристалле

Принцип работы полевого транзистора

МОП-транзисторы с индуцированным каналом

Устройство МДП-транзистора с индуцированным каналом N-типа

Принцип работы полевого транзистора

В данном типе транзисторов токопроводящий канал не создается, а образуется (индуцируется) за счет притока электронов из p- и n-областей истока и стока в приповерхностный слой, т.е. образуется токопроводящий n-канал, который соединяет области стока и истока. Этот процесс возможен при Uзи > 0. Чем выше Uзи, тем выше проводимость канала. Транзистор с индуцированным каналом работает в режиме обогащения.

Вольт-амперные характеристики

Стоковые характеристики

Стоко-затворная характеристика

Вольт-амперные характеристики

Стоковые характеристики

Стоко-затворная характеристика

р-канальный с индуцированным каналом

Классификация транзисторов

Классификация транзисторов

Принцип действия полевых транзисторов основан на использовании носителей заряда только одного знака (электронов или дырок) – униполярные транзисторы.

Полевые транзисторы (FET) управляются электрическим полем (напряжением). В основе управления током полевых транзисторов лежит изменение сопротивления канала, через который протекает этот ток под действием электрического поля.

Классификация основных типов транзисторов и обозначение на схеме

УГО МДП (МОП)- транзисторов

В общем случае МДП-транзисторы имеют дополнительный электрод (подложка), соединенный с подложкой исходного полупроводника и выполняет вспомогательную функцию.

Полевые транзисторы с изолированным затвором (MOSFET)

МДП (МОП) — структура: Металл — Диэлектрик (Окисел) — Полупроводник. Полупроводник — кремний. Диэлектрик — оксид кремния SiO₂.

Благодаря диэлектрику МДП-транзисторы обладают высоким входным сопротивлением

$$r_{\rm BX} = 10^{12} \div 10^{14} {\rm OM}.$$

Принцип действия МДП-транзисторов основан на изменении проводимости приповерхностного слоя полупроводника на границе с диэлектриком под действием электрического поля. Этот приповерхностный слой полупроводника является токопроводящим каналом.

МДП-транзисторы выполняют 2 видов:

- со встроенным каналом;
- с индуцированным каналом.

Достоинства полевых транзисторов

- 1. Высокое входное сопротивление.
- 2. Малый уровень собственных шумов и помех (нет рекомбинационного шума).
- 3. Высокая устойчивость к температурным и радиационным воздействиям.
- 4. Допускается высокая плотность расположения элементов при изготовлении интегральных схем.

$$t_p = \frac{t_{pLH} + t_{pHL}}{2}$$

Транзистор как ключ

- Мы можем рассматривать МОП транзисторы как электрически управляемые переключатели
- Напряжение на затворе контролирует путь от

Напряжение питания

- GND = 0 V
- B 1980, $V_{DD} = 5V$
- V_{DD} в современных процессах уменьшается
 - Высокое V_{DD} может повредить транзисторам
 - Низкое V_{DD} сохраняет энергию
- $V_{DD} = 3.3, 2.5, 1.8, 1.5, 1.2, 1.0, ...$

Структура и характеристика КМДП транзисторов

КМДП транзисторы, т. е. комплементарные транзисторы, объединяют в своей структуре два транзистора с различным типом канала и выполненных в едином технологическом цикле.

НЕ 2И-НЕ 2ИЛИ-НЕ

Работа в ключевом режиме

В ключевом режиме работы полевого транзистора основной целью является его переключение между состояниями с наибольшим и наименьшим сопротивлением за минимально возможное время. Как и биполярные транзисторы, MOSFET содержат в себе три паразитные емкости, включенные между выводами прибора. Возможности быстрого переключения полевого транзистора зависят от того, как быстро эти емкости могут перезаряжаться.

Динамические характеристики МДП-транзистора

Главным фактором, ограничивающим быстродействие МДП - транзисторов, обычно являются паразитные ёмкости. Причем сюда входят как паразитные емкости самого прибора, так и емкости систем коммутации. На определенном периоде развития транзисторов преобладали паразитные емкости прибора.

технологии самосовмещенного поликремниевого затвора

Однако, для транзисторов с изолированным затвором характерно влияние перезарядки распределенной емкости между затвором и каналом. Постоянная времени перезарядки этой емкости будет ограничивать частотные свойства транзистора. Предельная частота определяется выражением:

$$f_{max} = \frac{1}{2\pi\tau} = \frac{1}{2\pi C_{3K} r_{K}}$$

где $C_{3\kappa}$ — распределённая ёмкость затвора относительно канала, r_{κ} — сопротивление канала.

Для расчета распределенной емкости затвора используется модель плоского конденсатора и соответствующая формула для расчета емкости. Сопротивление канала – является функцией его длины. Таким образом, рабочая частота транзистора определяется площадью затвора и длиной канала транзистора.