```
1 . use "/Users/imisiaiyetan/Downloads/Table11 1.dta"
   (Married women's hours of work and related data)
 2 . do "/var/folders/13/xkzn5ncx4x12s95bhv8j20qw0000gn/T//SD00327.000000"
 3 . **** Homework 8******
 5 . **** Solution to guestion b and c
 7 . ***Import data from download folder****
 8 . use "/Users/imisiaiyetan/Downloads/Table11_1.dta"
  (Married women's hours of work and related data)
10 . **** Generate the binary treatment variables*****
11 .
12 . gen treat1 = 0
13 .
14 . replace treat1 = 1 if hwage >= 5
  (552 real changes made)
16 \cdot gen treat2 = 0
17 .
18 . replace treat2 = 1 if wage \geq 7
  (51 real changes made)
20 \cdot gen treat3 = 0
21 .
22 . replace treat3 = 1 if unemployment >= 5
  (703 real changes made)
23 .
24 . ***Question b****
26 . ***Estimate the IV regression by running mrt on the binary treatment variables,
27 . ***** control variables and instrumental varibale
29 . ivregress 2sls mtr treat1 treat2 age heduc hsiblings (siblings= treat3)
   Instrumental variables (2SLS) regression
                                                          Number of obs =
                                                                           753
                                                          Wald chi2(6) = 221.26
                                                          Prob > chi2 = 0.0000
                                                          R-squared
                                                                        = .09078
                                                          Root MSE
            mtr
                       Coef.
                               Std. Err.
                                              z
                                                   P> | z |
                                                             [95% Conf. Interval]
```

User: Imisi Aiyetan

siblings	.0271812	.0607782	0.45	0.655	0919418	.1463042
treat1	0584407	.0229095	-2.55	0.011	1033425	013539
treat2	0626907	.0391681	-1.60	0.109	1394588	.0140775
age	0008333	.0007985	-1.04	0.297	0023982	.0007317
heduc	0089675	.0011935	-7.51	0.000	0113066	0066283
hsiblings	005162	.0117717	-0.44	0.661	0282341	.01791
_cons	.8027829	.199089	4.03	0.000	.4125755	1.19299

Instrumented: siblings

Instruments: treat1 treat2 age heduc hsiblings treat3

30.

31 . ****Alternative method is to use gmm approach****

32 .

33 . ivregress gmm mtr treat1 treat2 age heduc hsiblings (siblings= treat3)

Instrumental variables (GMM) regression Number of obs =

Wald chi2(6) = 226.51 Prob > chi2 = 0.0000 R-squared =

753

GMM weight matrix: Robust

R-squared = .
Root MSE = .09078

mtr	Coef.	Robust Std. Err.	Z	P> z	[95% Conf.	Interval]
siblings	.0271812	.0598936	0.45	0.650	090208	.1445704
treat1	0584407	.0228697	-2.56	0.011	1032645	013617
treat2	0626907	.039495	-1.59	0.112	1400995	.0147182
age	0008333	.0007484	-1.11	0.266	0023	.0006335
heduc	0089675	.0012995	-6.90	0.000	0115145	0064205
hsiblings	005162	.0115997	-0.45	0.656	0278971	.017573
_cons	.8027829	.1955154	4.11	0.000	.4195796	1.185986

Instrumented: siblings

Instruments: treat1 treat2 age heduc hsiblings treat3

34.

35 . *****Question c*****

36

37 . reg mtr treat1 treat2 treat3 age heduc hsiblings

Source	ss	df	MS		Number of obs		753
Model Residual	1.82334348 3.41922921	6 746	.30389057		F(6, 746) Prob > F R-squared	=	66.30 0.0000 0.3478 0.3425
Total	5.24257268	752	.00697150	6	Adj R-squared Root MSE	=	.0677
mtr	Coef.	Std.	Err.	t P> t	[95% Conf.	In	terval]
treat1 treat2	067291 0461611	.0060			0790937 0657211	-	0554882 0266012

treat3	0061028	.0101769	-0.60	0.549	0260816	.0138761
age	0011407	.000311	-3.67	0.000	0017512	0005302
heduc	0088924	.000881	-10.09	0.000	010622	0071628
hsiblings	.0000467	.0010281	0.05	0.964	0019717	.002065
_cons	.8964564	.0205165	43.69	0.000	.8561794	.9367333

- 38 . predict e_z, residuals
- 39 . mat beta = e(b)
- 40 . svmat beta, names(matcol)
- 41 .
- 42 . reg siblings treat1 treat2 treat3 age heduc hsiblings

					F(6, 746)	= 6.38
Model	196.411427	6	32.7352378		Prob > F	= 0.0000
Residual	3826.14103	746	5.12887538		R-squared	= 0.0488
					Adj R-squared	= 0.0412
Total	4022.55246	752	5.34913891		Root MSE	= 2.2647
siblings	Coef.	Std. I	Err. t	P> t	[95% Conf.	Interval]
treat1	3256005	.2011	L54 -1.62	0.106	72042	.0692189
treat2	.6081235	.33329	966 1.82	0.068	0461875	1.262434
treat3	224522	.34043	345 -0.66	0.510	8928457	.4438017
age	0113107	.0104	103 -1.09	0.277	0317334	.009112
heduc	.0027604	.02947	719 0.09	0.925	0550973	.0606181
hsiblings	.1916292	.03439	924 5.57	0.000	.1241117	.2591467
cons	3.446259	.68630	91 5.02	0.000	2.098932	4.793586

Source SS df MS Number of obs =

- 43 . predict e_y, residuals
- 44 . mat gamma = e(b)
- 45 . svmat gamma, names(matcol)
- 46.
- 47 . scalar alpha_hat1 = betatreat3/gammatreat3
- 48 . display alpha_hat1 .02718123
- 49 .
- 50 . reg treat3 treat1 treat2 age heduc hsiblings

Source	SS	df	MS	Number of obs =	753
			· · · · · · · · · · · · · · · · · · ·	F(5, 747) =	8.19
Model	2.42569724	5	.485139447	Prob > F = 0	0.000
Residual	44.2542496	747	.059242637	R-squared = 0	.0520

753

Total	46.6799469	752 .062	074397		Adj R-squared Root MSE	= 0.0456 = .2434
treat3	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
treat1 treat2 age heduc hsiblings cons	.1263408 .0103424 0004761 0001401 0032171 .8733817	.0211147 .0358189 .0011179 .0031675 .0036944	5.98 0.29 -0.43 -0.04 -0.87	0.000 0.773 0.670 0.965 0.384	.0848895 0599754 0026707 0063583 0104698 .742873	.1677921 .0806602 .0017186 .0060781 .0040357

- 51 . predict e_t, residuals
- 52 .
- 53 . * Estimate the first covariance using the second and the first residuals
- 54
- 55 . corr e_y e_z, covariance
 (obs=753)

	е_у	e_z
e_y	5.08795	
e_z	.000997	.004547

- $56 \cdot \text{scalar scov1} = r(\text{cov } 12)$
- 57.
- 58 . * Estimate the second covariance using the third and the first residuals
- 59
- 60 . corr e_t e_z, covariance
 (obs=753)

	e_t	e_z
e_t	.058849	
e z	2.4e-11	.004547

- $61 \cdot scalar scov2 = r(cov_12)$
- 62
- 63 . * Finally, divide the first covariance by the second covariance.
- 64
- 65 . scalar alpha_hat2 = scov1/scov2
- 66 . display alpha_hat2
 41319651
- 67 . end of do-file

User: Imisi Aiyetan

68 .

