Bioinformatics CS300

Genome Sequencing and Assembly
Chapter 8

Spring 2021
Oliver BONHAM-CARTER

What is a Genome?

- An organism's complete set of DNA, including all of its genes, regulatory regions, non-coding regions, etc.
- An organism's complete set of genetic instructions

What Is In a Genome?

	Organism	Number of genes in the genome
	Myscoplasma genitalium	517
	Saccharomyces cerevisiae	6,275
	Arabidopsis thaliana	~ 20,000
	Caenorhabditis elegans	19,099
S	Haemophilus influenzae	1,743
	Drosophila melanogaster	13,601
-	Neisseria meningitdis	2,158
	Homo sapiens	20,000- 25,000

Genome Projects

•Goals:

- Determine complete genome sequence of an organism
- Annotate (exhibit) protein-coding genes and other important genomeencoded features

Genome Projects

- Projects:
 - Over 15,000 genome projects in progress or completed

https://www.ncbi.nlm.nih.gov/genome/browse/

Genome Projects

Contrast genetic material of populations to determine ancestry

https://en.wikipedia.org/wiki/1000_Genomes_Project#Human_genetic_variation

Genome Projects: Data

 Annotations: gene locations for protein products in sequences.

Genome Assembly Annotation

Type	Name	RefSeq	INSDC	Size (Mb)	GC%	Protein	tRNA	Other RNA	Gene	Pseudogene
	master WGS	NZ_BBIY00000000.1	BBIY00000000.1	0.74	27.6	901	27	-	928	-

Genome Region

https://www.ncbi.nlm.nih.gov/genome/browse/

Genome Projects: Data

Proteinmetadata

Genetic Variation

- Having diverse genetic information helps to spot genetic conditions in organisms
- Find Genetic drift: a random fluctuation in the population frequency of a trait
 - Occurring in descendant generations from a particular organism
 - Are evolutionary pressures causing a change in a species? Can we compare species from two different environments to learn about this drift?

• Genetic drift may have unusual consequences. Why are these even genes *out-there?*

Hapsburg jaw

Ellis-Van Creveld syndrome, a sixth finger

How do we get data to learn about drift??

Genome Sequencing:

ALLEGHENY COLLEGE

Getting genetic data (for analysis)

- Bases are recorded as little peaks
- Reads = Small segments of DNA from sequencer machine
- Contigs = Segments of partially combined reads

Genome Sequencing

- The technology works by "exploding" DNA into smaller, manageable pieces
- It recombines pieces (*Reads*) into bigger pieces (*Contigs*)
- And then bigger chunks are combined like a jigsaw puzzle

- Imagine that
 Dickens has
 "accidentally"
 shredded his first
 printing of a <u>Tale of</u>
 <u>Two Cities</u>
- What can be done to re-create the manuscript?

- Dickens accidentally shreds first printing of Tale of Two Cities
 - first printing = 5 copies

It was the best perform is design fit invast he worst of isdom, it was the viocetor of thouses the viocetor of the viocetor of

It was the besign of wis does to hit in sits with a worst of is does, it was the besign of sincitative still age...

It was the besigner of wisdomest what since a sitting so voor struit dom, it was then be struit or struit and since and the struit of the stru

It was the best performent in the properties of the control of the

It was the besigner for wis closest in fiving ets, viate was the besigner of sidnamar, sit out at an the adjustance of the content of the con

Oh no! How do we order these fragments back in to a book!

Dickens accidentally shreds first printing of Tale of Two Cities

- first printing = 5 copies
- shredding was random (can cut between different words in each copy)
- always 5 words per fragment

It was the best of times, it was the worst of times, it was the

It was the best of times, it was the worst of times, it was the

It was the best of times, it was the worst of times, it was the

Dickens accidentally shreds first printing of Tale of Two Cities

- first printing = 5 copies
- shredding was random (can cut between different words in each copy)
- always 5 words per fragment

It was the best of times, it was the worst of times, it was the

It was the best of times, it was the worst of times, it was the

It was the best of times, it was the worst of times, it was the

5 copies x 138, 656 words/5 words per fragment = 138k fragments

All short fragments are mixed together

the best of times, it

the best of times, it

best of times, it was

was the best of times,

the best of times, it

best of times, it was

It was the best of

was the best of times,

the best of times, it

best of times, it was

It was the best of

was the best of times,

the best of times, it

best of times, it was

of times, it was the

of times, it was the

Tale of Two Cities Charles Dickens

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, it was the epoch of belief, it was the epoch of incredulity, it was the season of Light, it was the season of Darkness, it was the spring of hope, it was the winter of despair, we had everything before us, we had nothing before us, we were all going direct to Heaven, we were all going direct the other way - in short, the period was so far like the present period, that some of its noisiest authorities insisted on its being received, for good or for evil, in the superlative degree of comparison only.

Making sense of it all: We can already see how these words are coming together!

It was the best of

was the best of times,

the best of times, it

best of times, it was

of times, it was the

of times, it was the

The *repeats* pile up:

of each individual

fragment unknown

The actual placement

It was the best of was the best of times. the best of times, it best of times, it was of times, it was the of times, it was the times, it was the age times, it was the worst The repeats can cause ambiguity and prevent

proper assembly

It was the best of times, it was the [age/worst]

Which word to use here?!

Summarizing Genome Sequencing

Coverage and Ordering

random short sequence reads

11223322333222332222222222222233333322212222344332

AGACTTTTTTACCAA

CCATACCCGA

CCATGG

ATCGGA

GACCAGACTTTT

TTTTACCAACCTA

CCCGACATACCGA

CATGG

CGGACCAGA

ACCTAAAT ATACC

TA000AT0

AATCCATA ATACCCATG

assembly of overlapping

coverage

fragments

ATCGGACCAGACTTTTTTACCAACCTAAATCCATACCCGACATACCCATGG

assembled contig sequence

Finding the Largest Overlap

- Consider the assembly of two fragments:
 - If there is more than one overlap, choose the longest overlap
 - Assume the sequences are not identical
 - Assume neither sequence is a substring of the other
 - The longest **possible** overlap is length of the shorter sequence minus a character (to determine placement in the larger sequence)

Algorithm to Find Overlaps

- 1. Start with reads; s1 and s2
- 2. n = size of the smallest sequence 1
- Compare n suffix/prefix characters from s1 with n prefix/suffix characters s2
- 4. Count matching bases in the prospective overlap region. If the number of matches = n, then the largest overlap is found
- 5. If the number of matches < n, n = n-1
- 6. If n = 0 then no overlap, go to step 3

Assembling Contigs

Table 8.3 Overlaps for a hypothetical set of sequence reads.

Fragments	Overlaps (Length)
1. TACCTTG	2 (3), 3 (1), 4 (1), 7 (1)
2. TTGAT	1 (1), 3 (3)
3. GATATGG	4 (2), 7 (1)
4. GGAG	3 (1), 7 (1)
5. CTCTA	1 (2), 6 (3)
6. CTAGT	1 (1), 2 (1)
7. GCTCT	1 (1), 2 (1), 5 (4), 6 (2)

For each sequence, we name an overlap with another sequence by number and number of overlaps.

Seq1: TACC

Seq2:

TTGAT

With_Seq (num of overlaps)
Ex: 2 (3)

Seq 1 has three overlaps with Seq 2

Assembling a Contig: graph representation

Two Basic Techniques

(a) Overlap, Layout, Consensus assembly

(b) De Bruijn graph assembly

(i) Find overlaps

(ii) Layout reads

(iii) Build consensus

(i) Make kmers

(ii) Build graph

(iii) Walk graph and output contigs

CGATTCTAAGT

Same idea but we use *k*-mers here

We just saw this one