

Prof. Dr. M. Grohe E. Fluck, N. Runde

Exercise Sheet 4

Due date: Monday, May 15 until 13:00

- Please upload your solutions to RWTH Moodle.
- The due date is at Monday, May 15 until 13:00.
- Hand in your solutions in groups of **two to three students**. If you need to change your group, contact algds@lics.rwth-aachen.de.
- Hand in the solutions of your group as a single PDF file.
- A discussion regarding this exercise sheet will take place on Friday, May 26 14:30 in room AH II, this is one week later than usual due to the holiday.
- Note that Exercise 4 gives 0 points and will not be corrected.

Exercise 1 (Unit Balls of the Manhattan Norm)

2+1+2=5 points

The Manhattan norm (or ℓ_1 -norm) of a vector $\mathbf{x} = (x_1, \dots, x_\ell)^{\mathsf{T}} \in \mathbb{R}^\ell$ is defined as

$$\|\mathbf{x}\|_1 \coloneqq \sum_{i=1}^{\ell} |x_i|.$$

The ℓ -dimensional ℓ_1 unit ball is defined as $B_1^{\ell} := \{\mathbf{x} \in \mathbb{R}^{\ell} \mid ||\mathbf{x}||_1 \leq 1\}.$

- a) (i) Draw $B_1^2 \subseteq \mathbb{R}^2$ in the plane.
 - (ii) Describe the shape of $B_1^3 \subseteq \mathbb{R}^3$.
- **b)** Compute vol (B_1^2) and vol (B_1^3) .
- c) Prove that $\lim_{\ell\to\infty} \operatorname{vol}(B_1^{\ell}) = 0$.

Logic and Theory of Discrete Systems

Prof. Dr. M. Grohe E. Fluck, N. Runde

Exercise 2 (Hyperball and Hypercube)

2+5=7 points

Let $\ell \in \mathbb{N}_{>0}$ and let $s \in \mathbb{R}_{>0}$. We define $Q_{\ell,s}$ as the ℓ -dimensional hypercube of side length $s \in \mathbb{R}$ that is centred in the origin. That is,

$$Q_{\ell,s} = \left\{ \left(x_1, \dots, x_\ell \right)^{\intercal} \in \mathbb{R}^{\ell} \;\middle|\; |x_i| \leq \frac{s}{2} \text{ for all } i = 1, \dots, \ell \right\} = \left[-\frac{s}{2}, \frac{s}{2} \right]^{\ell}.$$

Note that $Q_{\ell,s}$ has 2^{ℓ} corners. We fill $Q_{\ell,s}$ with (Euclidean) hyperballs the following way:

- 1) We place 2^{ℓ} hyperballs of radius $\frac{s}{4}$ as close as possible to the 2^{ℓ} corners of the hypercube, so that their distance to the origin (i.e. the centre of $Q_{\ell,s}$) is maximal while still being completely contained in Q.
- 2) We place an additional single hyperball $B(Q_{\ell,s})$ in the origin (i. e. the centre of $Q_{\ell,s}$), such that its radius is maximal with the property that it intersects with none of the other hyperballs' interiors.

Solve the following tasks.

- a) Sketch the situation (that is, the hypercube and all the hyperballs) for $\ell=2$ and s=2.
- b) Let $s \in \mathbb{R}_{>0}$ be arbitrary but fixed. Find the minimal dimension $\ell \in \mathbb{N}$ for which it holds that $B(Q_{\ell,s}) \not\subseteq Q_{\ell,s}$ (that is, for which the final hyperball contains points outside of the hypercube). Prove that your answer is correct.

Prof. Dr. M. Grohe

E. Fluck, N. Runde

Exercise 3 (Power Iteration)

2+2+2+2=8 points

Power iteration works since the successive multiplication with the same matrix shifts a randomly generated vector towards the eigenvector which belongs to the eigenvalue of the largest magnitude (the dominant eigenvalue). The algorithm starts with a random vector and terminates when this vector does not change anymore.

For the computations of the power iteration, we always start with the appropriate vector \mathbf{x} consisting only of ones. For three dimensions this is $\mathbf{x} = (1, 1, 1)^T$.

Hint: You do not need to hand in any code, if used. It suffices to give the results up to 3 significant digits, for task a)-c), and 4 significant digits for task d).

- a) Compute the power iteration on M_1 and M_2 for 5 iterations.
- b) Compute three iterations of the power iteration procedure for M_3 . Will the Power Iteration converge? If not, why does Power Iteration fail on this matrix? Justify your answer.
- c) Observe that, if A is non-singular, then from $A\mathbf{x} = \lambda \mathbf{x}$ we get $A^{-1}\mathbf{x} = \frac{1}{\lambda}\mathbf{x}$. Use this to compute the eigenvalue with the smallest magnitude and corresponding eigenvector of M_1 . What is the exact result?
- d) How many iterations does the algorithm need until the eigenvector becomes stable for up to 3 significant digits for the matrices M_4 and M_5 ? Make sure to give your results with a precision of 4 significant digits and only stop when the first 3 digits (rounded correctly) become stable.

$$M_1 = \begin{pmatrix} 2 & -12 \\ 1 & -5 \end{pmatrix}; M_2 = \begin{pmatrix} 1 & 2 & 0 \\ -2 & 1 & 2 \\ 1 & 3 & 1 \end{pmatrix}; M_3 = \begin{pmatrix} 1 & 1 & 0 \\ 3 & -1 & 0 \\ 0 & 0 & -2 \end{pmatrix}; M_4 = \begin{pmatrix} 4 & 5 \\ 6 & 5 \end{pmatrix}; M_5 = \begin{pmatrix} -4 & 10 \\ 7 & 5 \end{pmatrix}$$

Prof. Dr. M. Grohe E. Fluck, N. Runde

Exercise 4 (Positive Semi-Definite Matrices)

0 points

This exercise will not be corrected and awards 0 points.

A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is called *positive semi-definite* if every eigenvalue of A is non-negative. Solve the following tasks.

a) For $c \in \mathbb{R}$, consider the matrices

$$A_c = \begin{pmatrix} 2 & 0 & c \\ 0 & 1 & 0 \\ c & 0 & 1 \end{pmatrix} \in \mathbb{R}^{3 \times 3}.$$

Determine the set $\{c \in \mathbb{R} \mid A_c \text{ is positive semi-definite}\}$. Give the answer as an interval in \mathbb{R} and prove that it is correct.

- b) Prove that the following is an equivalent definition to the one given above: A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is positive semi-definite if and only if there exists $B \in \mathbb{R}^{n \times n}$ such that $A = BB^{\mathsf{T}}$.
- c) Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix, let $\lambda_1 \neq \lambda_2$ be two distinct eigenvalues of A and let E_1 and E_2 denote the corresponding eigenspaces. Prove that E_1 and E_2 are orthogonal, that is, for all $\mathbf{v}_1 \in E_1$ and $\mathbf{v}_2 \in E_2$ it holds that $\langle \mathbf{v}_1, \mathbf{v}_2 \rangle = 0$.