Automates et jonglerie musicale

Josué Moreau

16 avril 2021

Théorème 1. Soit A un automate de jonglage à b balles et de hauteur maximale h. Soit une séquence s de longueur au moins h-1. Alors, soit s apparaît une unique fois dans A, soit s n'apparaît pas dans A.

Démonstration. Soit \mathcal{A} un automate de jonglage à b balles et de hauteur maximale h. Soit une séquence s de longueur au moins h-1.

- Si s n'apparaît pas dans \mathcal{A} , alors on a bien le résultat voulu.
- Si s apparaît dans A. Nécessairement s se joue avec exactement b balles.
 - 1. Si s est de longueur au moins h. Posons, pour tout $0 \le i < |s| + h$:

$$s_i^t = \left\{ \begin{array}{ll} 0 & \text{s'il existe } t \leq j < i \text{ tel que } j + s_j = i \\ s_i & \text{sinon} \end{array} \right.$$

et

$$b_i^t = \begin{cases} 0 & \text{si } s_i^t = 0\\ 1 & \text{sinon} \end{cases}$$

On peut alors définir $e_t = b_t^t b_{t+1}^t \dots b_{t+h-1}^t$. On a bien $e_t \xrightarrow{s_t} e_{t+1}$ dans \mathcal{A} car:

- Si $s_t = 0$, alors $s_{t+s_t}^t = s_t^t = s_t = 0$. De plus, $s_{t+h}^t = 0$ car une balle atterrit nécessairement au temps t + h, sinon on introduirait une nouvelle balle, ce qui engendrerait une séquence à plus de b balles, non représentable dans l'automate \mathcal{A} . Donc e_{t+1} est égal à e_t auquel on a ajouté un 0 à droite et enlevé b_t^t . Ainsi, la transition $e_t \xrightarrow{s_t} e_{t+1}$ est bien dans \mathcal{A} .
- Si $s_t > 0$.
 - $s_{t+s_t}^t = 0$ donc $b_{t+s_t}^t = 0$ donc, si $s_t < h$, $e_t[s_t] = 0$.
 - $s_{t+s_t}^{t+1} = s_{t+s_t} \neq 0$ car sinon $s_{t+s_t} = 0$ et alors s ne serait pas une séquence de jonglage (la balle lancée en t sur une hauteur s_t ne serait pas relancée en $t+s_t$). Donc, $b_{t+s_t}^{t+1} = 1$ donc $e_{t+1}[s_t-1] = 1$. Ainsi, on a bien $e_t \xrightarrow{s_t} e_{t+1}$.

Il n'existe pas d'autre suite d'état dans l'automate \mathcal{A} qui représente la même séquence. En effet, dans le cas contraire, il existerait un état e'_t pour un certain t tel que $e'_t \neq e_t$. Donc, il existerait $0 \leq i < h$ tel que $e'_t[i] = 1$ et $e_t[i] = 0$. Donc il existerait $t \leq j < t+i$ tel que $j+s_j=t+i$ et $e'_t[i]=1$. On aurait alors un conflit car une balle va atterrir au temps t+i alors qu'une autre balle va être lancée au temps t+j pour atterrir aussi au temps t+i. Ainsi, $e_0, ..., e_|s|$ est unique.

- 2. Si s est de longueur h-1. Alors,
 - Si elle se joue à b balles. Alors, il suffit, pour tout $0 \le i < h$, de mettre un 0 en position h i 1 de l'état e_i . La même séquence avec des nombres différents de 0 à ces emplacement n'est pas dans \mathcal{A} car elle nécessiterait b + 1 balles ou comporterait des conflits.

— Si elle se joue à b-1 balles, alors on fait la même chose qu'au point précédent avec uniquement des 1. La même séquence avec des nombres différents de 1 à ces emplacements n'est pas dans $\mathcal A$ car elle nécessiterait alors b-1 balles ou comporterait des conflits.

Ainsi, soit une séquence s de longueur au moins h-1, s apparaît une unique fois dans \mathcal{A} ou n'apparaît pas dans \mathcal{A} .