The Finite Lattice Representation Problem

William J. DeMeo

University of Hawai'i

KMS-AMS Joint Meeting December 18, 2009

Theorem (Grätzer-Schmidt, 1963)

Every algebraic lattice is isomorphic to the congruence lattice of an algebra.

Theorem (Grätzer-Schmidt, 1963)

Every algebraic lattice is isomorphic to the congruence lattice of an algebra.

In particular, this shows there is no lattice-theoretic condition stronger than algebraicity satisfied by all congruence lattices.

Theorem (Grätzer-Schmidt, 1963)

Every algebraic lattice is isomorphic to the congruence lattice of an algebra.

In particular, this shows there is no lattice-theoretic condition stronger than algebraicity satisfied by all congruence lattices.

What if the lattice is finite?

Theorem (Grätzer-Schmidt, 1963)

Every algebraic lattice is isomorphic to the congruence lattice of an algebra.

In particular, this shows there is no lattice-theoretic condition stronger than algebraicity satisfied by all congruence lattices.

What if the lattice is finite?

<u>Problem</u>: Given a finite lattice L, does there exist a *finite* algebra A such that $ConA \cong L$?

Theorem (Grätzer-Schmidt, 1963)

Every algebraic lattice is isomorphic to the congruence lattice of an algebra.

In particular, this shows there is no lattice-theoretic condition stronger than algebraicity satisfied by all congruence lattices.

What if the lattice is finite?

Problem: Given a finite lattice L, does there exist a finite

algebra **A** such that **ConA** \cong **L**?

status: open

age: 45+ years

Definition (algebra)

An algebra **A** is an ordered pair $\mathbf{A} = \langle A, F \rangle$ where A is a nonempty set, called the *universe* of **A** F is a family of finitary operations acting on **A**

Definition (algebra)

An algebra **A** is an ordered pair $\mathbf{A} = \langle A, F \rangle$ where A is a nonempty set, called the *universe* of \mathbf{A} F is a family of finitary operations acting on \mathbf{A} An algebra $\langle A, F \rangle$ is finite if |A| is finite.

Definition (algebra)

An algebra **A** is an ordered pair $\mathbf{A} = \langle A, F \rangle$ where A is a nonempty set, called the *universe* of **A** F is a family of finitary operations acting on **A** An algebra $\langle A, F \rangle$ is finite if |A| is finite.

Examples: semigroups, groups, rings, modules, lattices,
 *-algebras (with a vector space reduct, ring reduct, and unary *)

Definition (algebra)

An algebra **A** is an ordered pair $\mathbf{A} = \langle A, F \rangle$ where A is a nonempty set, called the *universe* of **A** F is a family of finitary operations acting on **A** An algebra $\langle A, F \rangle$ is finite if |A| is finite.

- Examples: semigroups, groups, rings, modules, lattices,
 *-algebras (with a vector space reduct, ring reduct, and unary *)
- A variety ${\mathcal K}$ of algebras is a class of (similar) algebras defined by equations. They are closed under homomorphic images, subalgebras and direct products, and in fact

$$V(\mathfrak{K}) = HSP(\mathfrak{K})$$

is the variety generated by a class $\mathcal K$ of algebras.

Examples

• A group is an algebra $\mathbf{G} = \langle G, \cdot, ^{-1}, 1 \rangle$ with binary, unary, and nullary operations satisfying, $\forall x, y, z \in G$,

```
G1: x \cdot (y \cdot z) \approx (x \cdot y) \cdot z
```

G2:
$$x \cdot 1 \approx 1 \cdot x \approx x$$

G3:
$$x \cdot x^{-1} \approx x^{-1} \cdot x \approx 1$$

Examples

• A group is an algebra $\mathbf{G} = \langle G, \cdot, ^{-1}, 1 \rangle$ with binary, unary, and nullary operations satisfying, $\forall x, y, z \in G$,

```
G1: x \cdot (y \cdot z) \approx (x \cdot y) \cdot z
G2: x \cdot 1 \approx 1 \cdot x \approx x
G3: x \cdot x^{-1} \approx x^{-1} \cdot x \approx 1
```

• A lattice is an algebra $\mathbf{L} = \langle L, \wedge, \vee \rangle$ with universe L, a partially ordered set, and binary operations:

```
x \wedge y = \text{g.l.b.}(x, y) the "meet" of x and y
 x \vee y = \text{l.u.b.}(x, y) the "join" of x and y
```

Examples

• A group is an algebra $\mathbf{G} = \langle G, \cdot, ^{-1}, 1 \rangle$ with binary, unary, and nullary operations satisfying, $\forall x, y, z \in G$,

```
G1: x \cdot (y \cdot z) \approx (x \cdot y) \cdot z
G2: x \cdot 1 \approx 1 \cdot x \approx x
G3: x \cdot x^{-1} \approx x^{-1} \cdot x \approx 1
```

• A lattice is an algebra $\mathbf{L} = \langle L, \wedge, \vee \rangle$ with universe L, a partially ordered set, and binary operations:

$$x \wedge y = \text{g.l.b.}(x, y)$$
 the "meet" of x and y
 $x \vee y = \text{l.u.b.}(x, y)$ the "join" of x and y

- Examples of lattices:
 - subsets of a set
 - closed subsets of a topology
 - subgroups of a group, normal subgroups of a group
 - ideals of a ring
 - submodules of a module
 - invariant subspaces of an operator or operator algebra

A lattice is distributive if

$$X \wedge (y \vee z) = (X \wedge y) \vee (X \wedge z)$$

A lattice is distributive if

$$X \wedge (y \vee z) = (X \wedge y) \vee (X \wedge z)$$

It is modular if

$$X \wedge (y \vee (x \wedge z)) = (x \wedge y) \vee (x \wedge z)$$

A lattice is distributive if

$$X \wedge (y \vee z) = (X \wedge y) \vee (X \wedge z)$$

It is modular if

$$X \wedge (y \vee (X \wedge Z)) = (X \wedge y) \vee (X \wedge Z)$$

Equivalently,

$$z \leq x \quad \Rightarrow \quad x \wedge (y \vee z) = (x \wedge y) \vee z$$

A lattice is distributive if

$$X \wedge (y \vee z) = (X \wedge y) \vee (X \wedge z)$$

It is modular if

$$X \wedge (y \vee (X \wedge Z)) = (X \wedge y) \vee (X \wedge Z)$$

Equivalently,

$$z \leq x \quad \Rightarrow \quad x \wedge (y \vee z) = (x \wedge y) \vee z$$

• M₃ is modular but not distributive.

A lattice is distributive if

$$X \wedge (y \vee z) = (X \wedge y) \vee (X \wedge z)$$

It is modular if

$$X \wedge (y \vee (X \wedge Z)) = (X \wedge y) \vee (X \wedge Z)$$

Equivalently,

$$z \leq x \quad \Rightarrow \quad x \wedge (y \vee z) = (x \wedge y) \vee z$$

- M₃ is modular but not distributive.
- N₅ is not even modular.

Мз:

• Let **X** be a normed linear space and let CSub[**X**] denote the set of closed linear manifolds (subspaces).

- Let X be a normed linear space and let CSub[X] denote the set of closed linear manifolds (subspaces).
- Define meet to be set intersection and join to be the norm-closure of the span:

$$V_1 \wedge V_2 = V_1 \cap V_2, \qquad V_1 \vee V_2 = \overline{V_1 + V_2}$$

- Let X be a normed linear space and let CSub[X] denote the set of closed linear manifolds (subspaces).
- Define meet to be set intersection and join to be the norm-closure of the span:

$$V_1 \wedge V_2 = V_1 \cap V_2, \qquad V_1 \vee V_2 = \overline{V_1 + V_2}$$

• Then $\mathbf{CSub}[\mathbf{X}] = \langle \mathbf{CSub}[\mathbf{X}], \wedge, \vee \rangle$ is a lattice.

- Let X be a normed linear space and let CSub[X] denote the set of closed linear manifolds (subspaces).
- Define meet to be set intersection and join to be the norm-closure of the span:

$$V_1 \wedge V_2 = V_1 \cap V_2, \qquad V_1 \vee V_2 = \overline{V_1 + V_2}$$

- Then $CSub[X] = \langle CSub[X], \wedge, \vee \rangle$ is a lattice.
- It is modular if and only if X is finite dimensional.
- It is distributive if and only if X has dimension 0 or 1.
 (See e.g. Halmos, "A Hilbert Space Problem Book," Springer, 1984.)

Example: Sub[G]

The lattice of subgroups of a group G

$$\textbf{Sub}[\textbf{G}] = \langle \textbf{Sub}[\textbf{G}], \subseteq \rangle = \langle \textbf{Sub}[\textbf{G}], \wedge, \vee \rangle$$

has universe Sub[G], the set of subgroups of G.

Example: Sub[G]

The lattice of subgroups of a group G

$$\textbf{Sub}[\textbf{G}] = \langle \textbf{Sub}[\textbf{G}], \subseteq \rangle = \langle \textbf{Sub}[\textbf{G}], \wedge, \vee \rangle$$

has universe Sub[G], the set of subgroups of G.

For subgroups H, K ∈ Sub[G],
 meet is set intersection:

$$H \wedge K = H \cap K$$

join is the subgroup generated by set union:

$$H \lor K = \bigcap \{J \in \mathsf{Sub}[\mathbf{G}] \mid H \cup K \subseteq J\}$$

Example: Hasse diagram of $Sub[D_4]$

The lattice of subgroups of the dihedral group D_4 , represented as groups of rotations and reflections of a plane figure.

Lattice-theoretic information (about $\mathbf{Sub}[\mathbf{G}]$) can be used to obtain group-theoretic information (about \mathbf{G}).

Lattice-theoretic information (about **Sub**[**G**]) can be used to obtain group-theoretic information (about **G**).

Examples:

• G is locally cyclic if and only if Sub[G] is distributive.

Øystein Ore, "Structures and group theory," Duke Math. J. (1937)

Lattice-theoretic information (about **Sub**[**G**]) can be used to obtain group-theoretic information (about **G**).

Examples:

- G is locally cyclic if and only if Sub[G] is distributive.
 Øystein Ore, "Structures and group theory," Duke Math. J. (1937)
- Similar lattice-theoretic characterizations exist for solvable and perfect groups.
 - Michio Suzuki, "On the lattice of subgroups of finite groups," *Trans. AMS* (1951)
 - , "Structure of a group and the structure of its lattice of subgroups," *Springer* (1956)

Example: equivalence relations

• The set of equivalence relations on a set is a 0-1 lattice:

$$\mathbf{Eq}(A) = \langle \mathsf{Eq}(A), \subseteq \rangle = \langle \mathsf{Eq}(A), \wedge, \vee \rangle$$

Example: equivalence relations

• The set of equivalence relations on a set is a 0-1 lattice:

$$\mathbf{Eq}(A) = \langle \mathsf{Eq}(A), \subseteq \rangle = \langle \mathsf{Eq}(A), \wedge, \vee \rangle$$

 Eq(A) ⊂ P(A × A) and meet is set intersection, while join is the equivalence generated by set union:

$$\alpha \land \beta = \alpha \cap \beta$$
$$\alpha \lor \beta = \bigcap \{ \theta \in \mathsf{Eq}(A) \mid \alpha \le \theta, \ \beta \le \theta \}$$

Example: equivalence relations

• The set of equivalence relations on a set is a 0-1 lattice:

$$\mathsf{Eq}(A) = \langle \mathsf{Eq}(A), \subseteq \rangle = \langle \mathsf{Eq}(A), \wedge, \vee \rangle$$

 Eq(A) ⊂ P(A × A) and meet is set intersection, while join is the equivalence generated by set union:

$$\alpha \wedge \beta = \alpha \cap \beta$$

$$\alpha \vee \beta = \bigcap \{ \theta \in \mathsf{Eq}(\mathsf{A}) \mid \alpha \leq \theta, \, \beta \leq \theta \}$$

• The greatest equivalence is the all relation:

$$\nabla = \mathbf{A} \times \mathbf{A}$$

• The least equivalence is the diagonal relation:

$$\Delta = \{(x, y) \in A \times A \mid x = y\}$$

Example: Eq(4)

The lattice of equivalence relations on the set of four elements.

• If $f: A \rightarrow B$ is a mapping of one set to another, the relation θ on A,

$$x \theta y \Leftrightarrow f(x) = f(y)$$

is an equivalence relation.

• If $f: A \rightarrow B$ is a mapping of one set to another, the relation θ on A,

$$x \theta y \Leftrightarrow f(x) = f(y)$$

is an equivalence relation.

• If **A** and **B** are algebras and $f \in \text{Hom}(\mathbf{A}, \mathbf{B})$ an algebra hom,

$$\theta = \ker f = \{(x, y) \in A^2 \mid f(x) = f(y)\}$$

• If $f: A \rightarrow B$ is a mapping of one set to another, the relation θ on A,

$$x \theta y \Leftrightarrow f(x) = f(y)$$

is an equivalence relation.

• If **A** and **B** are algebras and $f \in \text{Hom}(\mathbf{A}, \mathbf{B})$ an algebra hom,

$$\theta = \ker f = \{(x, y) \in A^2 \mid f(x) = f(y)\}$$

is called a congruence relation on A.

• A relation on $\mathbf{A} = \langle A, F \rangle$ is a congruence relation iff it is an equivalence relation which is a subalgebra of \mathbf{A}^2 .

• If $f: A \rightarrow B$ is a mapping of one set to another, the relation θ on A,

$$x \theta y \Leftrightarrow f(x) = f(y)$$

is an equivalence relation.

• If **A** and **B** are algebras and $f \in \text{Hom}(\mathbf{A}, \mathbf{B})$ an algebra hom,

$$\theta = \ker f = \{(x, y) \in A^2 \mid f(x) = f(y)\}$$

- A relation on $\mathbf{A} = \langle A, F \rangle$ is a congruence relation iff it is an equivalence relation which is a subalgebra of \mathbf{A}^2 .
- The set Con(A) of congruences of A is a sublattice of Eq(A),

$$\textbf{ConA} = \langle \textbf{Con(A)}, \wedge, \vee \rangle$$

• If $f: A \rightarrow B$ is a mapping of one set to another, the relation θ on A,

$$x \theta y \Leftrightarrow f(x) = f(y)$$

is an equivalence relation.

• If **A** and **B** are algebras and $f \in \text{Hom}(\mathbf{A}, \mathbf{B})$ an algebra hom,

$$\theta = \ker f = \{(x, y) \in A^2 \mid f(x) = f(y)\}$$

is called a congruence relation on A.

- A relation on $\mathbf{A} = \langle A, F \rangle$ is a congruence relation iff it is an equivalence relation which is a subalgebra of \mathbf{A}^2 .
- The set Con(A) of congruences of A is a sublattice of Eq(A),

$$ConA = \langle Con(A), \wedge, \vee \rangle$$

For groups this is the same as the lattice of normal subgroups.

• If $f: A \rightarrow B$ is a mapping of one set to another, the relation θ on A,

$$x \theta y \Leftrightarrow f(x) = f(y)$$

is an equivalence relation.

• If **A** and **B** are algebras and $f \in \text{Hom}(\mathbf{A}, \mathbf{B})$ an algebra hom,

$$\theta = \ker f = \{(x, y) \in A^2 \mid f(x) = f(y)\}$$

- A relation on $\mathbf{A} = \langle A, F \rangle$ is a congruence relation iff it is an equivalence relation which is a subalgebra of \mathbf{A}^2 .
- The set Con(A) of congruences of A is a sublattice of Eq(A),

ConA =
$$\langle Con(A), \wedge, \vee \rangle$$

- For groups this is the same as the lattice of normal subgroups.
- For rings this is the same as the lattice of ideals.

• If $f: A \rightarrow B$ is a mapping of one set to another, the relation θ on A,

$$x \theta y \Leftrightarrow f(x) = f(y)$$

is an equivalence relation.

• If **A** and **B** are algebras and $f \in \text{Hom}(\mathbf{A}, \mathbf{B})$ an algebra hom,

$$\theta = \ker f = \{(x, y) \in A^2 \mid f(x) = f(y)\}$$

- A relation on $\mathbf{A} = \langle A, F \rangle$ is a congruence relation iff it is an equivalence relation which is a subalgebra of \mathbf{A}^2 .
- The set Con(A) of congruences of A is a sublattice of Eq(A),

ConA =
$$\langle Con(A), \wedge, \vee \rangle$$

- For groups this is the same as the lattice of normal subgroups.
- For rings this is the same as the lattice of ideals.
- For most classical algebras, ConA is modular.

• If $f: A \rightarrow B$ is a mapping of one set to another, the relation θ on A,

$$x \theta y \Leftrightarrow f(x) = f(y)$$

is an equivalence relation.

• If **A** and **B** are algebras and $f \in \text{Hom}(\mathbf{A}, \mathbf{B})$ an algebra hom,

$$\theta = \ker f = \{(x, y) \in A^2 \mid f(x) = f(y)\}$$

- A relation on $\mathbf{A} = \langle A, F \rangle$ is a congruence relation iff it is an equivalence relation which is a subalgebra of \mathbf{A}^2 .
- The set Con(A) of congruences of **A** is a sublattice of Eq(A),

$$ConA = \langle Con(A), \wedge, \vee \rangle$$

- For groups this is the same as the lattice of normal subgroups.
- For rings this is the same as the lattice of ideals.
- For most classical algebras, ConA is modular.
- For lattices, and the algebras of logic, **ConA** is distributive.

The finite lattice representation problem

Definition (representable lattice)

Call a finite lattice representable if it is (isomorphic to) the congruence lattice of a finite algebra.

The finite lattice representation problem

Definition (representable lattice)

Call a finite lattice representable if it is (isomorphic to) the congruence lattice of a finite algebra.

The \leq \$1m question

Is every finite lattice representable?

The finite lattice representation problem

Definition (representable lattice)

Call a finite lattice representable if it is (isomorphic to) the congruence lattice of a finite algebra.

The \leq \$1m question

Is every finite lattice representable?

Equivalently, given a finite lattice L, does there exist a finite algebra A such that $ConA \cong L$?

An equivalent problem in group theory

Theorem (Pálfy and Pudlák, AU 11, 1980)

The following statements are equivalent:

- (i) Any finite lattice is isomorphic to the congruence lattice of a finite algebra.
- (ii) Any finite lattice is isomorphic to an interval in the subgroup lattice of a finite group.

An equivalent problem in group theory

Theorem (Pálfy and Pudlák, AU 11, 1980)

The following statements are equivalent:

- (i) Any finite lattice is isomorphic to the congruence lattice of a finite algebra.
- (ii) Any finite lattice is isomorphic to an interval in the subgroup lattice of a finite group.

A quote from MathSciNet reviews

"In AU 11, Pálfy and Pudlák proved that...a finite lattice is representable if and only if it occurs as an interval in the subgroup lattice of a finite group."

An equivalent problem in group theory

Theorem (Pálfy and Pudlák, AU 11, 1980)

The following statements are equivalent:

- (i) Any finite lattice is isomorphic to the congruence lattice of a finite algebra.
- (ii) Any finite lattice is isomorphic to an interval in the subgroup lattice of a finite group.

A quote from MathSciNet reviews

"In AU 11, Pálfy and Pudlák proved that...a finite lattice is representable if and only if it occurs as an interval in the subgroup lattice of a finite group."

False!

Theorem (Pudlák and Tůma, AU 10, 1980)

A finite lattice can be embedded in Eq(X), for some finite X.

Theorem (Pudlák and Tůma, AU 10, 1980)

A finite lattice can be embedded in Eq(X), for some finite X.

• That is, if **L** is any finite lattice, there exists a finite set *X* with

$$L\cong L'\leq Eq(X)$$

Theorem (Pudlák and Tůma, AU 10, 1980)

A finite lattice can be embedded in Eq(X), for some finite X.

That is, if L is any finite lattice, there exists a finite set X with

$$L\cong L'\leq Eq(X)$$

• Assume **L** is itself *concretely represented* as $L \leq Eq(X)$

Theorem (Pudlák and Tůma, AU 10, 1980)

A finite lattice can be embedded in Eq(X), for some finite X.

• That is, if **L** is any finite lattice, there exists a finite set *X* with

$$L\cong L'\leq Eq(X)$$

- Assume **L** is itself *concretely represented* as $L \leq Eq(X)$
- Define a relation R on $X^X \times Eq(X)$ as follows:

$$hR\theta \Leftrightarrow h(x)\theta h(y)$$
 whenever $x\theta y$

Theorem (Pudlák and Tůma, AU 10, 1980)

A finite lattice can be embedded in Eq(X), for some finite X.

That is, if L is any finite lattice, there exists a finite set X with

$$L\cong L'\leq Eq(X)$$

- Assume L is itself concretely represented as $L \leq Eq(X)$
- Define a relation R on $X^X \times Eq(X)$ as follows:

$$hR\theta \Leftrightarrow h(x)\theta h(y)$$
 whenever $x\theta y$

• If $hR\theta$ we say "h respects θ " or " θ admits h"

• Let $\mathcal{E} = \mathscr{P}(\text{Eq}(X))$ and $\mathcal{H} = \mathscr{P}(X^X)$ be po'd by set inclusion.

- Let $\mathcal{E} = \mathscr{P}(\text{Eq}(X))$ and $\mathcal{H} = \mathscr{P}(X^X)$ be po'd by set inclusion.
- Define maps $\lambda: \mathcal{E} \to \mathcal{H}$ and $\rho: \mathcal{H} \to \mathcal{E}$ by

$$\lambda(E) = \{ h \in X^X \mid h R \theta \text{ for all } \theta \in E \} \quad (E \in \mathcal{E})$$

$$\rho(H) = \{ \theta \in \text{Eq}(X) \mid hR\theta \text{ for all } h \in H \} \quad (H \in \mathcal{H})$$

- Let $\mathcal{E} = \mathscr{P}(\text{Eq}(X))$ and $\mathcal{H} = \mathscr{P}(X^X)$ be po'd by set inclusion.
- Define maps $\lambda: \mathcal{E} \to \mathcal{H}$ and $\rho: \mathcal{H} \to \mathcal{E}$ by

$$\lambda(E) = \{ h \in X^X \mid h R \theta \text{ for all } \theta \in E \} \quad (E \in \mathcal{E})$$

$$\rho(H) = \{ \theta \in \text{Eq}(X) \mid hR\theta \text{ for all } h \in H \} \quad (H \in \mathcal{H})$$

• (λ, ρ) is a pair of antitone maps with

$$\rho\lambda \geq \mathrm{id}_{\mathcal{E}} \quad \text{ and } \quad \lambda\rho \geq \mathrm{id}_{\mathcal{H}}$$

- Let $\mathcal{E} = \mathscr{P}(\text{Eq}(X))$ and $\mathcal{H} = \mathscr{P}(X^X)$ be po'd by set inclusion.
- Define maps $\lambda: \mathcal{E} \to \mathcal{H}$ and $\rho: \mathcal{H} \to \mathcal{E}$ by

$$\lambda(E) = \{ h \in X^X \mid h R \theta \text{ for all } \theta \in E \} \quad (E \in \mathcal{E})$$

$$\rho(H) = \{ \theta \in Eq(X) \mid hR\theta \text{ for all } h \in H \} \quad (H \in \mathcal{H})$$

• (λ, ρ) is a pair of antitone maps with

$$\rho\lambda \geq \mathrm{id}_{\mathcal{E}}$$
 and $\lambda\rho \geq \mathrm{id}_{\mathcal{H}}$

• (λ, ρ) is a *Galois correspondence* between Eq(X) and X^X

- Let $\mathcal{E} = \mathscr{P}(\text{Eq}(X))$ and $\mathcal{H} = \mathscr{P}(X^X)$ be po'd by set inclusion.
- Define maps $\lambda: \mathcal{E} \to \mathcal{H}$ and $\rho: \mathcal{H} \to \mathcal{E}$ by

$$\lambda(E) = \{ h \in X^X \mid h R \theta \text{ for all } \theta \in E \} \quad (E \in \mathcal{E})$$

$$\rho(H) = \{ \theta \in \text{Eq}(X) \mid h R \theta \text{ for all } h \in H \} \quad (H \in \mathcal{H})$$

• (λ, ρ) is a pair of antitone maps with

$$\rho\lambda \geq \mathrm{id}_{\mathcal{E}}$$
 and $\lambda\rho \geq \mathrm{id}_{\mathcal{H}}$

- (λ, ρ) is a *Galois correspondence* between Eq(X) and X^X
- Easy consequences: $\rho\lambda$ and $\lambda\rho$ are idempotent; $\rho\lambda\rho = \rho$ and $\lambda\rho\lambda = \lambda$; $F \subseteq \rho\lambda(F)$, for any set $F \in \mathcal{E}$.

• The map $\rho\lambda$ is idempotent, extensive, and order preserving; i.e.

 $\rho\lambda$ is a *closure operator* on $\mathcal{E} = \mathscr{P}(\mathsf{Eq}(X))$

• The map $\rho\lambda$ is idempotent, extensive, and order preserving; i.e.

$$\rho\lambda$$
 is a *closure operator* on $\mathcal{E} = \mathscr{P}(\mathsf{Eq}(X))$

• Call a set $F \in \mathcal{E}$ closed provided $\rho \lambda(F) = F$.

• The map $\rho\lambda$ is idempotent, extensive, and order preserving; i.e.

$$\rho\lambda$$
 is a *closure operator* on $\mathcal{E} = \mathscr{P}(\mathsf{Eq}(X))$

- Call a set $F \in \mathcal{E}$ closed provided $\rho \lambda(F) = F$.
- To reiterate, for $F \subseteq Eq(X)$, we have

$$F \subseteq \rho \lambda(F) \subseteq Eq(X)$$

and F is closed iff $\rho\lambda(F) = F$.

We call F dense iff $\rho\lambda(F) = \text{Eq}(X)$

• The map $\rho\lambda$ is idempotent, extensive, and order preserving; i.e.

$$\rho\lambda$$
 is a *closure operator* on $\mathcal{E} = \mathscr{P}(\mathsf{Eq}(X))$

- Call a set $F \in \mathcal{E}$ closed provided $\rho \lambda(F) = F$.
- To reiterate, for $F \subseteq Eq(X)$, we have

$$F \subseteq \rho \lambda(F) \subseteq Eq(X)$$

and F is closed iff $\rho\lambda(F) = F$.

We call F dense iff $\rho\lambda(F) = \text{Eq}(X)$

• If $L \cong L' \leq Eq(X)$ and if $\rho\lambda(L') = Eq(X)$, then we say L can be densely embedded in Eq(X).

Theorem

If $L \le Eq(X)$, then L = ConA for some algebra $A = \langle X, F \rangle$ if and only if L is closed; that is, iff $\rho \lambda(L) = L$.

Theorem

If $L \le Eq(X)$, then L = ConA for some algebra $A = \langle X, F \rangle$ if and only if L is closed; that is, iff $\rho \lambda(L) = L$.

• Much research has focused on the height two lattices \mathbf{M}_n , which are perceived as crucial for the general representation problem.

Theorem

If $L \le Eq(X)$, then L = ConA for some algebra $A = \langle X, F \rangle$ if and only if L is closed; that is, iff $\rho \lambda(L) = L$.

- Much research has focused on the height two lattices \mathbf{M}_n , which are perceived as crucial for the general representation problem.
- J.B. Nation asked how "bad" can concrete representations of \mathbf{M}_3 be in terms of non-closure, and do there exist "superbad" or dense \mathbf{M}_3 's in $\mathbf{Eq}(X)$?

Theorem

If $L \le Eq(X)$, then L = ConA for some algebra $A = \langle X, F \rangle$ if and only if L is closed; that is, iff $\rho \lambda(L) = L$.

- Much research has focused on the height two lattices \mathbf{M}_n , which are perceived as crucial for the general representation problem.
- J.B. Nation asked how "bad" can concrete representations of \mathbf{M}_3 be in terms of non-closure, and do there exist "superbad" or dense \mathbf{M}_3 's in $\mathbf{Eq}(X)$?

Theorem (Snow 2009)

The lattice $\mathbf{Eq}(X)$ contains a proper dense \mathbf{M}_3 if and only if $|X| \geq 5$.

A density result

Theorem

If $L \le Eq(X)$, then L = ConA for some algebra $A = \langle X, F \rangle$ if and only if L is closed; that is, iff $\rho \lambda(L) = L$.

- Much research has focused on the height two lattices \mathbf{M}_n , which are perceived as crucial for the general representation problem.
- J.B. Nation asked how "bad" can concrete representations of \mathbf{M}_3 be in terms of non-closure, and do there exist "superbad" or dense \mathbf{M}_3 's in $\mathbf{Eq}(X)$?

Theorem (Snow 2009)

The lattice $\mathbf{Eq}(X)$ contains a proper dense \mathbf{M}_3 if and only if $|X| \geq 5$.

Idea of proof: Find an $\mathbf{L} \cong \mathbf{M}_3$ in $\mathbf{Eq}(X)$ such that every non-trivial operation in X^X violates some equivalence in the universe L of \mathbf{L} . Then $\lambda(L)$ is trivial, so the closure $\rho\lambda(L)$ is all of $\mathrm{Eq}(X)$. John Snow proved this for |X| odd.

Another density result

Snow's result can be generalized to \mathbf{M}_n as follows:

Let Eq(n) denote the set of equivalences on an n-element set.

Another density result

Snow's result can be generalized to \mathbf{M}_n as follows:

Let Eq(n) denote the set of equivalences on an n-element set.

Theorem (Snow-wjd 2009)

For $n \ge 1$, the lattice **Eq**(2n + 1) contains a dense **M**_{n+2}.

Another density result

Snow's result can be generalized to \mathbf{M}_n as follows:

Let Eq(n) denote the set of equivalences on an n-element set.

Theorem (Snow-wjd 2009)

For $n \ge 1$, the lattice **Eq**(2n + 1) contains a dense **M**_{n+2}.

So, for any $n \ge 3$, \mathbf{M}_n can be densely embedded in $\mathbf{Eq}(X)$, for some finite set X.

On the other hand, we noticed that certain lattices, like \mathbf{N}_5 , are never densely embedded.

On the other hand, we noticed that certain lattices, like N_5 , are never densely embedded.

Lemma

Suppose $\mathbf{L} = \langle L, \wedge, \vee \rangle$ is a complete 0, 1-lattice. TFAE

- (i) There is an element $\alpha \in L \setminus \{0_L\}$ such that $\bigvee \{\gamma \in L : \gamma \ngeq \alpha\} < 1_L$
- (ii) There is an element $\alpha \in L \setminus \{1_L\}$ such that $\bigwedge \{\gamma \in L\gamma \nleq \alpha\} > 0_L$.
- (iii) L is the union of a proper ideal and a proper filter.

On the other hand, we noticed that certain lattices, like \mathbf{N}_5 , are never densely embedded.

Lemma

Suppose $\mathbf{L} = \langle L, \wedge, \vee \rangle$ is a complete 0, 1-lattice. TFAE

- (i) There is an element $\alpha \in L \setminus \{0_L\}$ such that $\bigvee \{\gamma \in L : \gamma \ngeq \alpha\} < 1_L$
- (ii) There is an element $\alpha \in L \setminus \{1_L\}$ such that $\bigwedge \{\gamma \in L\gamma \nleq \alpha\} > 0_L$.
- (iii) **L** is the union of a proper ideal and a proper filter.

Theorem (wjd 2009)

If $L \ncong 2$ is a sublattice of Eq(X) satisfying conditions of the lemma, then $\lambda(L)$ contains a non-trivial unary function.

On the other hand, we noticed that certain lattices, like N_5 , are never densely embedded.

Lemma

Suppose $\mathbf{L} = \langle L, \wedge, \vee \rangle$ is a complete 0, 1-lattice. TFAE

- (i) There is an element $\alpha \in L \setminus \{0_L\}$ such that $\bigvee \{\gamma \in L : \gamma \ngeq \alpha\} < 1_L$
- (ii) There is an element $\alpha \in L \setminus \{1_L\}$ such that $\bigwedge \{\gamma \in L\gamma \nleq \alpha\} > 0_L$.
- (iii) L is the union of a proper ideal and a proper filter.

Theorem (wjd 2009)

If $L \ncong 2$ is a sublattice of Eq(X) satisfying conditions of the lemma, then $\lambda(L)$ contains a non-trivial unary function.

Corollary

If $L \ncong 2$ is a lattice satisfying conditions of the lemma, then L cannot be densely embedded in Eq(X).

More non-density consequences...

Corollary

If $L \ncong 2$ is a finite lattice with a prime element and X is any set, then L cannot be densely embedded in Eq(X).

Corollary

If $L \in SD_{\wedge}$ is a finite semi-distributive lattice with $L \ncong 2$, and X is any set, then L cannot be densely embedded in Eq(X).

Finally, a closure result

Theorem (Snow 2009)

Suppose $L \le Eq(X)$ is a closed sublattice and $L' \le L$ is a sublattice with universe $A \cup B$, where $A = \{x \in L \mid x \le \alpha\}$ and $B = \{x \in L \mid x \le \beta\}$ for some $\alpha, \beta \in L$. Then L' is closed.

Finally, a closure result

Theorem (Snow 2009)

Suppose $L \le Eq(X)$ is a closed sublattice and $L' \le L$ is a sublattice with universe $A \cup B$, where $A = \{x \in L \mid x \le \alpha\}$ and $B = \{x \in L \mid x \le \beta\}$ for some $\alpha, \beta \in L$. Then L' is closed.

• This is another recent result of John Snow, which he proved using *primitive positive formulas.*

Finally, a closure result

Theorem (Snow 2009)

Suppose $L \le Eq(X)$ is a closed sublattice and $L' \le L$ is a sublattice with universe $A \cup B$, where $A = \{x \in L \mid x \le \alpha\}$ and $B = \{x \in L \mid x \le \beta\}$ for some $\alpha, \beta \in L$. Then L' is closed.

- This is another recent result of John Snow, which he proved using primitive positive formulas.
- An easy consequence is that all hexagons are congruence hereditary. That is, if a hexagon is closed, so are its sublattices.

 Problem: Given a finite lattice L, does there exist a finite algebra A such that L ≅ ConA?

- Problem: Given a finite lattice L, does there exist a finite algebra A such that L ≅ ConA?
- It is generally believed the answer is no.

- <u>Problem</u>: Given a finite lattice L, does there exist a finite algebra A such that L ≅ ConA?
- It is generally believed the answer is no.
- Pálfy and Pudlák translated it into one for the group theorists, but still no answer...

- <u>Problem</u>: Given a finite lattice L, does there exist a finite algebra A such that L ≅ ConA?
- It is generally believed the answer is no.
- Pálfy and Pudlák translated it into one for the group theorists, but still no answer...
- The problem can be stated very concretely in terms of partitions of a set allowing us to analyze many concrete examples with the computer and locate specific representable lattices.

- <u>Problem</u>: Given a finite lattice L, does there exist a finite algebra A such that L ≅ ConA?
- It is generally believed the answer is no.
- Pálfy and Pudlák translated it into one for the group theorists, but still no answer...
- The problem can be stated very concretely in terms of partitions of a set allowing us to analyze many concrete examples with the computer and locate specific representable lattices.
- In recent years, the partial results have gathered significant momentum, and there is some hope that the full solution is forthcoming.

감사합니다 ॐ Thank You