Solution Set

CIS 121—Data Structures and Algorithms—Fall 2020

Asymptotic Notation—Monday, September 14 / Tuesday, September 15

Readings

• Lecture Notes Chapter 5: Running Time and Growth Functions

Problems

Problem 0 [True or False]

- 1. A Big-O and Big-Omega bound for an algorithm correspond to worst-case and best-case runtime, respectively.
- 2. For any two functions, f and g, either $f \in O(g)$ or $g \in O(f)$.
- 3. $f(n) \in O(g(n))$ if and only if $g(n) \in \Omega(f(n))$.

Solution.

- 1. False. Big-O notation is a way to describe the limiting behavior of a function. One can provide a Big-O bound on the best, worst, and average case runtimes of an algorithm. It is not inherently tied to a particular one of these different ways to analyze an algorithm's efficiency. The same is true for Big-Omega.
- 2. **False**. Consider sin(x) and cos(x).
- 3. True. If $f(n) \in O(g(n))$, then we know there exist positive constants c and n_0 s.t. for all $n \ge n_0$

$$f(n) \le c \cdot g(n)$$

Thus, for $c'=c^{-1}$ and $n'_0=n_0$ (both of which are positive), we have for all $n\geq n'_0$

$$q(n) > c' \cdot f(n)$$

Note: The other direction can be proven in an identical manner.

Problem 1

Prove that $3n^2 + 100n = \Theta(5n^2)$

Solution

We first prove Big-O. Recall the definition of Big-O—we wish to show that there exist positive constants c and n_0 such that for all $n \ge n_0$,

$$3n^2 + 100n \le c \cdot 5n^2$$

 $3n + 100 \le 5c \cdot n$
 $100 \le (5c - 3)n$
 $100 \le (5(1) - 3)n$ (setting $c = 1$)
 $100 \le 2n$
 $50 \le n$

Since the expression holds for c = 1 and $n_0 = 50$, we have proved that $3n^2 + 100n = O(5n^2)$. Next, we prove Big-Omega. Recall the definition of Big-Omega—we wish to show that there exist positive constants c and n_0 such that for all $n \ge n_0$,

$$3n^2 + 100n \ge c \cdot 5n^2$$

 $3n^2 + 100n \ge (3/5) \cdot 5n^2$ (setting $c = 3/5$)
 $3n^2 + 100n \ge 3n^2$
 $100n \ge 0$
 $n \ge 0$

Since the expression holds for $n_0 = 1$ and c = 3/5, we have proved that $3n^2 + 100n = \Omega(5n^2)$.

Since $3n^2 + 100n = O(5n^2)$ and $3n^2 + 100n = \Omega(5n^2)$, we have proved that $3n^2 + 100n = \Theta(5n^2)$.

Problem 2

Prove using induction that $n \log n = \Omega(n)$

Solution.

We will prove that $n \log n \ge c \cdot n$, $\forall n \ge n_0$ by using induction for $n_0 = 4$ and c = 1.

Base Case: n = 4. $4 \log 4 = 8 \ge 4$, so this holds.

Induction Hypothesis: Assume that $k \log k \ge k$ for some integer $k \ge 4$.

Induction Step: We need to show that $(k+1)\log(k+1) \ge k+1$.

$$(k+1)\log(k+1) \geq (k+1)\log k \qquad \qquad \text{(since } \log x \text{ is monotonically increasing)}$$

$$= k\log k + \log k$$

$$> k\log k + 1 \qquad \qquad \text{(since } \log k \geq 2)$$

$$\geq k+1 \qquad \qquad \text{(by IH)}$$

Problem 3

Prove that $\lg(n!) = \Theta(n \lg n)$.

Solution.

We first show $\lg(n!) = O(n \lg n)$:

Picking c = 1 and $n_0 = 1$, we have

$$\lg(n!) = \sum_{i=1}^{n} \lg i \le n \lg n$$

This is clearly true for all $n \geq n_0$.

We then show that $\lg(n!) = \Omega(n \lg n)$:

To start, we find a simple lower-bound for $\lg n!$ that we can again lower-bound with some $c \cdot n \lg n$.

$$\begin{split} \lg n! &= \lg 1 + \lg 2 + \dots + \lg n \\ &\geq \lg \frac{n}{2} + \lg (\frac{n}{2} + 1) + \dots + \lg n \\ &\geq \frac{n}{2} \cdot \lg \frac{n}{2} \end{split} \qquad \text{(since } \lg x \text{ is monotonically increasing)} \end{split}$$

Choosing $c=\frac{1}{4}$ and $n_0=4$, it is clear that $\frac{n}{2} \lg \frac{n}{2} \geq \frac{n}{4} \lg n$ for all $n\geq n_0$ with some algebraic manipulation:

$$\frac{n}{2} \lg \frac{n}{2} \ge \frac{n}{4} \lg n$$
$$\frac{n}{2} \lg n - \frac{n}{2} \ge \frac{n}{4} \lg n$$
$$n \lg n \ge 2n$$
$$\lg n \ge 2$$

Therefore, $\lg(n!)$ is also $\Omega(n \lg n)$.