ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Συστήματα Παράλληλης Επεξεργασίας

9ο Εξάμηνο, 2024-2025

Εργαστηριακή Αναφορά

των φοιτητών:

Λάζου Μαρία-Αργυρώ (el20129)

Σπηλιώτης Αθανάσιος (el20175)

Ομάδα:parlab09

Conway's GameofLife

Υλοποίηση

Για την παραλληλοποίηση του αλγορίθμου τροποποίησαμε τον κώδικα που δίνεται προσθέτοντας απλώς το #pragma directive στο κύριο loop για τα (i,j) του body:

```
Game_Of_Life.c
    ******* Conway's game of life *********
    Usage: ./exec ArraySize TimeSteps
    Compile with -DOUTPUT to print output in output.gif
    (You will need ImageMagick for that - Install with
    sudo apt-get install imagemagick)
    WARNING: Do not print output for large array sizes!
    or multiple time steps!
                        #include <stdio.h>
#include <stdlib.h>
   #include <sys/time.h>
  #define FINALIZE "\
convert -delay 20 `ls -1 out*.pgm | sort -V` output.gif\n\
21 rm *pgm\n\
int ** allocate array(int N);
void free_array(int ** array, int N);
void init_random(int ** array1, int ** array2, int N);
   void print_to_pgm( int ** array, int N, int t );
   int main (int argc, char * argv[]) {
30
     int N;  //array dimensions
int T;
                   //time steps
     int ** current, ** previous; //arrays - one for current timestep, one for previous timestep
int ** swap; //array pointer
     int t, i, j, nbrs; //helper variables
                     //variables for timing
37
     struct timeval ts,tf;
     /*Read input arguments*/
40
     if ( argc != 3 ) {
     fprintf(stderr, "Usage: ./exec ArraySize TimeSteps\n");
42
       exit(-1);
43
     else {
44
45
     N = atoi(argv[1]);
46
       T = atoi(argv[2]);
     /*Allocate and initialize matrices*/
     50
51
     init_random(previous, current, N); //initialize previous array with pattern
     #ifdef OUTPUT
     print_to_pgm(previous, N, 0);
     #endif
58
     /*Game of Life*/
59
60
     gettimeofday(&ts,NULL);
61
62
     for (t = 0; t < T; t++) {
         #pragma omp parallel for shared(current, previous) private (nbrs, i, j)
63
       for (i = 1; i < N-1; i++) {
64
```

```
65
          for (j = 1; j < N-1; j++) {
66
            nbrs = previous[i+1][j+1] + previous[i+1][j] + previous[i+1][j-1] \setminus
67
                   + previous[i][j-1] + previous[i][j+1] \
68
                   + previous[i-1][j-1] + previous[i-1][j] + previous[i-1][j+1];
69
            if ( nbrs == 3 || ( previous[i][j]+nbrs ==3 ) )
70
              current[i][j]=1;
              current[i][j]=0;
          }
74
75
        #ifdef OUTPUT
76
        print to pgm(current, N, t+1);
78
        #endif
79
        //Swap current array with previous array
80
        swap=current;
81
        current=previous;
82
        previous=swap;
83
84
85
      gettimeofday(&tf,NULL);
86
      time=(tf.tv_sec-ts.tv_sec)+(tf.tv_usec-ts.tv_usec)*0.000001;
87
      free array(current, N);
88
89
      free array(previous, N);
      printf("GameOfLife: Size %d Steps %d Time %lf\n", N, T, time);
90
      #ifdef OUTPUT
91
92
      system(FINALIZE);
93
      #endif
94 }
95
    int ** allocate_array(int N) {
     int ** array;
      int i,j;
98
      array = malloc(N * sizeof(int*));
99
      for (i = 0; i < N; i++)
       array[i] = malloc( N * sizeof(int));
101
102
      for (i = 0; i < N; i++)
103
       for (j = 0; j < N; j++)
104
          array[i][j] = 0;
105
      return array;
106 }
107
    void free_array(int ** array, int N) {
108
      int i;
110
      for (i = 0; i < N; i++)
        free(array[i]);
      free(array);
113 }
void init_random(int ** array1, int ** array2, int N) {
     int i,pos,x,y;
116
      for ( i = 0 ; i < (N * N)/10 ; i++ ) {
118
        pos = rand() % ((N-2)*(N-2));
119
120
        array1[pos%(N-2)+1][pos/(N-2)+1] = 1;
        array2[pos%(N-2)+1][pos/(N-2)+1] = 1;
      }
124
126
    void print_to_pgm(int ** array, int N, int t) {
     int i,j;
128
      char * s = malloc(30*sizeof(char));
      sprintf(s,"out%d.pgm",t);
      FILE * f = fopen(s,"wb");
130
      fprintf(f, "P5\n%d %d 1\n", N,N);
      for (i = 0; i < N; i++)
133
        for (j = 0; j < N; j++)
          if ( array[i][j]==1 )
134
135
            fputc(1, f);
136
          else
            fputc(0,f);
      fclose(f);
138
```

```
139 free(s);
140 }
```

Για την μεταγλώτιση και εκτέλεση στον scirouter χρησιμοποίησαμε το ακόλουθα scripts :

```
#!/bin/bash

## Give the Job a descriptive name
#PBS -N make_gameoflife

## Output and error files
#PBS -o make_gameoflife.out
#PBS -e make_gameoflife.err

## How many machines should we get?
## BS -l nodes=1:ppn=1

## Start
## Run make in the src folder (modify properly)

module load openmpi/1.8.3
cd /home/parallel/parlab09/al
make
```

Αποτελέσματα Μετρήσεων:

GameOfLife: Size 4096 Steps 1000 Time 45.901567 Finished run with OMP NUM THREADS=4

Running with OMP_NUM_THREADS=6

GameOfLife: Size 64 Steps 1000 Time 0.009383 GameOfLife: Size 1024 Steps 1000 Time 1.832227 GameOfLife: Size 4096 Steps 1000 Time 43.661123 Finished run with OMP NUM THREADS=6

Running with OMP_NUM_THREADS=8

GameOfLife: Size 64 Steps 1000 Time 0.010417 GameOfLife: Size 1024 Steps 1000 Time 1.389175 GameOfLife: Size 4096 Steps 1000 Time 43.186379

Finished run with OMP_NUM_THREADS=8

Γραφική Απεικόνιση και Παρατηρήσεις

Παρατηρούμε ότι για μικρό μέγεθος grid (με συνολική απαίτηση μνήμης 4*64*64bytes = 16KB), δεν υπάρχει ομοιόμορφη κλιμάκωση της επίδοσης με αύξηση των νημάτων από 4 και πάνω. Bottleneck κόστους θα θεωρήσουμε την ανάγκη συγχρονισμού των threads και το overhead της δημιουργίας τους συγκριτικά με τον φόρτο εργασίας που τους ανατίθεται (granularity).

Για μέγεθος grid με συνολική απαίτηση μνήμης 4*1024*1024 bytes = 4MB, η επίδοση βελτίωνεται ομοιόμορφα και ανάλογα με το μέγεθος των νημάτων . Εικάζουμε, λοιπόν, πως η cache χωράει ολόκληρο το grid ώστε το κάθε νήμα δεν επιβαρύνει την μνήμη με loads των αντίστοιχων rows, ο φόρτος εργασίας είναι ισομοιρασμένος στους workers και το κόστος επικοινωνίας αμελητέο. Συνεπώς, προκύπτει perfect scaling.

Για μεγάλο grid (με συνολική απαίτηση μνήμης 4*4096*4096 bytes = 64MB), η κλιμάκωση παύει να υφίσταται για περισσότερα από 4 νήματα. Bottleneck κόστους εδώ θεωρούμε το memory bandwidth. Επειδή ολόκληρο το grid δεν χωράει στην cache, δημιουργούνται misses όταν ξεχωριστά νήματα προσπαθούν να διαβάσουν ξεχωριστές γραμμές του previous. Σε κάθε memory request αδειάζουν χρήσιμα data για άλλα νήματα, φέρνοντας τις δικές τους γραμμές και στο μεταξύ οι υπολογισμοί stall-άρουν.

Bonus

Δύο ενδιαφέρουσες ειδικές αρχικοποιήσεις του ταμπλό είναι το pulse και το gosper glider gun για τις οποίες η εξέλιξη των γενιών σε μορφή κινούμενης εικόνας φαίνεται με μορφή gif παρακάτω:

glider_gun animation

pulse animation

Πράρτημα

Για την εξαγωγή των γραφικών παραστάσεων χρησιμοποιήθηκε ο κώδικας σε Python που ακολουθεί:

```
plots.py
import numpy as np
import matplotlib.pyplot as plt
   import re
  import sys
outfile = "omp_gameoflife_all.out"
   thread_pattern = r"Running with OMP_NUM_THREADS=(\d+)"
   time pattern = r"GameOfLife: Size (\d+) Steps 1000 Time ([\d.]+)"
vith open (outfile, 'r') as fout:
       data = fout.read()
   thread vals = re.findall(thread pattern, data)
14
   time_vals = re.findall(time_pattern, data)
   #print(thread_vals, time_vals)
18
   results_mapping = {}
19
   for i in range(0, len(thread_vals)):
       omp_num_thredas = int(thread_vals[i])
24
       for j in range(0,3):
           size = int(time_vals[i*3+j][0])
25
           time = float(time_vals[i*3+j][1])
26
           ## print(f"From {i,j} extracted size: {size} with time: {time}")
           if size not in results mapping :
               results_mapping[size] = {}
           results mapping[size][omp num thredas] = time
   for idx, (size, omp times) in enumerate(results mapping.items()):
35
       print(f"Size: {size}, results: {omp_times}")
36
37
       # Create a new figure for each graph
       plt.figure(figsize=(8, 6))
38
39
       # Plot the original times
       plt.plot(omp_times.keys(), omp_times.values(), color='g', marker='o')
41
42
43
       # Plot the inverse times
       plt.plot(omp_times.keys(), [omp_times[1] / i for i in omp_times.keys()], color='lightblue',
44
   linestyle='--')
45
       # Add labels and title
       plt.title(f"Grid Size = {size}, Steps = 1000", fontstyle='oblique', size=12)
47
       plt.xlabel("OMP NUM THREADS")
48
       plt.ylabel("Time (secs)")
50
       plt.grid()
       # Show the plot
       plt.tight_layout()
54
       plt.savefig(f"grid{size}.svg", format="svg")
```