1. What is a SIM Card Swap Attack?

1. **Definition**:

 An identity theft tactic known as a SIM card swap attack involves deceiving the victim's cell provider into changing the number to an attacker-controlled SIM card, giving the attacker access over the victim's phone number.

2. Steps Involved:

Gathering Personal Information:

- **Data Breaches:** Through data breaches, attackers can gain personal information such as names, addresses, phone numbers, and other details.
- **Social media:** Attackers obtain information (birth dates, family data, etc.) from publicly accessible social media profiles.
- **Phishing:** Perpetrators deceive targets into divulging private information.

Contacting the Mobile Carrier:

- **Impersonation**:Attackers mimicking the victim make phone calls to the cell carrier.
- **Social engineering:** To persuade carrier representatives to transfer the SIM, attackers employ deception techniques.

Executing the SIM Swap:

- **SIM Card Activation:** When the attacker obtains the victim's phone number, the mobile carrier deactivates the victim's SIM card and activates a new one.
- **Takeover of the Phone Number:** All calls and texts intended for the victim are now received by the attacker.

Exploiting the SIM Swap:

- Two-Factor Authentication (2FA): To get access to private accounts, attackers spoof SMS-based 2FA codes.
- **Account Takeover:** To reset passwords and take over accounts (banking, email, social media), attackers utilize 2FA codes.

3. Consequences:

- Financial Loss: Theft of money by unauthorized access to bank accounts.
- Theft of identity: Creating new credit lines or accounts in the identity of the victim.
- Financial Loss: Unauthorized access to bank accounts, leading to financial theft.
- Reputational Damage: Disparaging false postings or messages from the victim's accounts might cause reputational harm.

4. Real-World Examples:

- Verizon SIM Swapping: Guidelines to protect against SIM swapping attacks.
 Verizon SIM Swapping
- Canadian Bankers Association: Advice on protecting bank accounts. <u>How to</u>
 Protect Your Bank Accounts from SIM Swapping Scam

- Symmetry Electronics: Differences between SIM, eSIM, and iSIM. iSIM vs. eSIM
- Halton Police: Investigation and arrests in SIM swap scams. SIM Swap Scam Investigation
- Canadian Anti-Fraud Centre: Information on SIM card swap scams. SIM Card Swap
- Global News: Case of a Toronto couple victimized by a SIM swap scam. SIM Card Swapping
- Greenberg Glusker Law Firm: Legal case of a \$75.8 million judgment in a SIM swap racketeering case. 75-Million Judgement
- EPIC.org: Legal documentation of Michael Terpin vs. AT&T Mobility, LLC.
 Michael Terpin vs. AT&T Mobility, LLC

5. Preventive Measures:

- Use app-based authenticators instead of SMS-based 2FA.
- Ensure robust security practices with mobile carriers (e.g., PINs, security questions).
- Be cautious of phishing attempts and safeguard personal information.

2. Identify how a mobile user is authenticated by the mobile system operator (you might want to use a DFD (Data Flow Diagram), UML Sequence Diagram, or a UML Activity Diagram to support your answer).

• To identify how a mobile user is authenticated by the mobile system operator, we can use a UML Sequence Diagram to illustrate the process. This will help us understand the interactions between the user, the mobile network operator, and the SIM card.

Steps in Mobile User Authentication:

1. Request Service:

 The user initiates a request for a mobile service (e.g., making a call, sending a text, accessing data services).

2. Verify Identity:

- The mobile network operator verifies the identity of the user. This could involve:
 - Password/PIN Verification: Checking a password or PIN entered by the user.
 - **Biometric Verification**: Using biometric data (fingerprint, facial recognition) to verify identity.
 - **Security Questions**: Asking pre-set security questions.

3. Identity Verification:

 If the identity verification is successful, the mobile network operator proceeds to the next step. If it fails, the user is denied service.

4. Verify SIM:

- The mobile network operator verifies the SIM card. This involves:
 - IMSI (International Mobile Subscriber Identity): Checking the IMSI number stored on the SIM card.
 - Authentication Key: Using a pre-shared key for authentication between the SIM card and the network.

5. SIM Verification:

 If the SIM card verification is successful, the network grants access to the requested service. If it fails, the user is denied service.

3. Summarize the requirements that might lead to successful attacks.

Accessibility of Personal Data:

Breach of Data: Data breaches frequently reveal personal information such names, addresses, phone numbers, and social security numbers.

Public Profiles: Details from social media profiles might give attackers further information about a victim's family history and date of birth.

• Identity Verification Processes That Are Weak:

Inadequate Security Questions:Not Enough Security Inquiries Security questions that are easily guessed or often used (e.g., mother's maiden name, first pet's name).

Over-the-Phone Verification: Dependence on susceptible to manipulation phone-based identity verification in the absence of other security measures.

Social Engineering Weaknesses:

Human error: Social engineering techniques, such invoking a sense of urgency or making emotional pleas, can be used to deceive mobile carrier staff.

Lack of Training: Employees at carrier companies receive little training on how to identify and respond to social engineering activities.

Carrier accounts do not use multi-factor authentication (MFA):

Single Point of Failure: Not using any other verification techniques than a password or PIN, such as biometrics or app-based authenticators.

Policies and Procedures for Mobile Carriers:

Insufficient Account Protection: Weak account protection protocols, such as the lack of an in-person verification requirement for SIM swaps, result in inadequate account protection.

Weakly Enforced Security Measures: Unauthorized access could be prevented if security regulations were not strictly enforced.

• Client Ignorance and Carelessness:

Uninformed Users:Customers who are ignorant of the dangers of SIM swap attacks and how to prevent them are referred to as uninformed users.

Ignoring Security Features: When security features (passcodes, PINs, and other account verification methods) are available, users are not using them.

• Two-Factor Authentication (2FA) Weaknesses

Dependency on SMS-Based 2FA: A lot of services use SMS-based 2FA, which is vulnerable as soon as an attacker gets hold of the victim's phone number.

Inadequate Alternatives: Lack of use or accessibility to more secure 2FA techniques, such as hardware tokens or app-based authenticators, constitutes inadequate alternatives.

• Variations in Carriers' Security Procedures:

Varied Security Protocols: Different Carriers May Have Varying Levels of Security measures: Certain carriers may have more easily manipulated security measures than others.

Carrier Switching: Attackers may take advantage of policies that permit simple carrier switching without thorough verification.

4. Threat Model for SIM Card Swap Attack

1. Identify Assets

- User's Mobile Number: The primary target as it receives all calls and text messages.
- **Personal Information**: Names, addresses, social security numbers, etc., used to impersonate the victim.
- **Sensitive Accounts**: Banking, email, social media, and other accounts that use the phone number for 2FA.
- Mobile Network Operator Systems: Systems that manage customer accounts, SIM swaps, and authentication processes.

2. Identify Actors

- Attackers: Individuals or groups attempting to perform the SIM swap attack.
- Victims: Mobile users whose personal information and phone numbers are targeted.
- Mobile Network Operator Employees: Staff who handle customer service and account management.
- **Service Providers**: Banks, email services, social media platforms, etc., that use SMS-based 2FA.

3. Identify Attack Vectors

- Phishing: Obtaining personal information through fraudulent emails, messages, or websites.
- Social Engineering: Manipulating mobile carrier employees to approve unauthorized SIM swaps.
- Data Breaches: Exploiting leaked personal information from data breaches.
- Weak Security Questions: Using easily guessable answers to security questions for account recovery or SIM swap authorization.
- SIM Swap Requests: Directly contacting the mobile carrier to request a SIM swap.

4. Identify Vulnerabilities

- **Personal Information Exposure**: Availability of personal information through breaches or public profiles.
- **Inadequate Identity Verification**: Weak or easily bypassed identity verification methods used by mobile carriers.
- **Poor Employee Training**: Insufficient training for mobile carrier employees on handling social engineering and fraud attempts.
- **Weak 2FA Implementation**: Reliance on SMS-based 2FA, which is vulnerable once an attacker controls the phone number.

 Inconsistent Carrier Security Policies: Varying levels of security protocols among different carriers.

5. Threat Scenarios

Scenario 1: Attack via Phishing

- The attacker uses phishing emails to obtain the victim's personal information.
- By using this information, the attacker can request a SIM switch and pass security tests with the mobile carrier.

• Scenario 2: Social Engineering Scenario

 The attacker pretends to be the victim over the phone and uses social engineering techniques to get the carrier staff to agree to the SIM switch.

Scenario 3: Exploitation of Data Breach

 The attacker authenticates with the cell provider and swaps SIM cards using personal information that was stolen from a data breach.

Scenario 4: Abuse of Security Questions

 The attacker attempts to access the victim's account by providing a poor security question response based on information from public profiles or past breaches.

Strategies for Mitigation

- Improve Identity Verification: Use more robust identity verification techniques, like multi-factor authentication (MFA) and biometric authentication.
- Employee Education: Employees at cell carriers receive regular training on how to spot and respond to scams and social engineering tactics.
- Enhance 2FA by promoting the usage of hardware tokens or app-based authenticators in place of SMS-based 2FA.
- Enhance Security Inquiries: Employ multiple layers of verification or intricate security questions.
- Frequent Updates and Audits: To address emerging threats and weaknesses, conduct routine security audits and update policies and procedures.

Obtain Personal Information:

- **Phishing Attacks**: Tricking the victim into providing personal information through deceptive messages.
- Social Media Mining: Gathering personal information from the victim's public social media profiles.

Exploit Carrier Systems:

- Social Engineering: Manipulating carrier employees to approve unauthorized SIM swaps.
- Weak Verification: Exploiting inadequate identity verification methods used by carriers.
- **Insider Threat**: Collaborating with or compromising a carrier employee to facilitate the SIM swap.

Target 2FA Weaknesses:

- **SMS-Based 2FA**: Intercepting 2FA codes sent via SMS after gaining control of the phone number.
- Lack of MFA: Exploiting accounts that do not use multi-factor authentication.
- Alternate 2FA Use: Using other 2FA methods (e.g., email) to reset passwords and gain access to accounts.

5.Draft an attack tree for SIM CARD Swap Attack.

Here is an attack tree fro sim card swap attack.

