Problematização

Dado uma bolsa de ações (**PETR3**, **VALE3**, **EMBR3**), encontrar a carteira ótima nos quesitos retornorisco. Observe:

Ações	Carteira 1	Carteira 2	Carteira 3	Carteira N
PETR3 (a)	32%	41%	100%	
VALE3 (b)	51%	2%	0%	J
EMBR3 (c)	17%	57%	0% = 8	SSUN
Retorno	14%	10%	4%	
Risco	6%	8%	1%	
Retorno Risco	2.33	1.25	4	•••

Segue o roteiro de cálculo para obtenção da carteira ótima utilizando o modelo base de Markowitz:

O cálculo do retorno e risco se dão na forma que segue:

Cogito ergo sum do retorno:

$$[retorno]_{1x1} = \begin{bmatrix} a & b & c \end{bmatrix}_{1x3} \begin{bmatrix} \bar{A} \\ \bar{B} \\ \bar{C} \end{bmatrix}_{3x1}$$

Cogito ergo sum do risco:

$$[risco]_{1x1} = \begin{bmatrix} a & b & c \end{bmatrix}_{1x3} * \begin{bmatrix} \begin{matrix} COV_{AA} & COV_{AB} & COV_{AC} \\ COV_{BA} & COV_{BB} & COV_{BC} \\ COV_{CA} & COV_{CB} & COV_{CC} \end{bmatrix}_{3x3} * \begin{bmatrix} a \\ b \\ c \end{bmatrix}_{3x1}$$

Legenda:

a: Percentual da ação A na carteira final

b: **Percentual** da ação B na carteira final

c: Percentual da ação C na carteira final

Ā: **Média** dos retornos percentuais periódicos da ação A

 $ar{B}$: **M**é $oldsymbol{dia}$ dos retornos percentuais periódicos da ação B

 \bar{C} : **Média** dos retornos percentuais periódicos da ação C

 $COV_{XX} = Covari$ ância das variações percentuais periódicas das ações Xe X

 $COV_{XY} = Covari$ ância das variações percentuais periódicas das ações X e Y

Cogito ergo sum da **fun**çã**o objetivo**_{MÁX}:

$$FO = \frac{retorno}{risco}$$

FO depende do retorno e do risco

Para os dados de cotações diárias:

Ticker	EMBR3.SA	PETR3.SA	VALE3.SA
Date			
2023-01-02	14.300000	19.387793	80.48217°
2023-01-03	14.570000	19.113680	80.3
2023-01-04	14.970000	19.432241	80.4
2023-01-05	14.800000	20.061954	81.832550
2023-01-06	14.550000	19.936012	83.128906
2024-05-02	32.720001	42.670025	63.919998
2024-05-03	34.250000	42.009998	63.990002
2024-05-06	34.349998	42.220001	64.180000
2024-05-07	33.660000	43.240002	64.580002
2024-05-08	33.580002	43.700001	63.990002

yfinance

cotacoes =

Obtém-se as variações diárias:

Ticker	EMBR3.SA	PETR3.SA	VALE3.SA
Date			
2023-01-03	0.018881	-0.014138	-0.001790
2023-01-04	0.027454	0.016667	0.001793
2023-01-05	-0.011356	0.032406	0.01677
2023-01-06	-0.016892	-0.006278	2.0 42
2023-01-09	0.017869	0.006689	5
2024-05-02	-0.018890	0.003841	0.009954
2024-05-03	0.046760	-0.015468	0.001095
2024-05-06	0.002920	0.004999	0.002969
2024-05-07	-0.020087	0.024159	0.006232
2024-05-08	-0.002377	0.010638	-0.009136

cotacoes. pct_change()

variacoes =

Obtém-se as **médias** das variações diárias:

	PETR3	VALE3	EMBR3	
	0.26%	-0.05%	0.27%	4
vetor				•

E a matriz de **covariâncias**:

matriz covariâncias	PETR3	VALE3	EMBR3
PETR3	0.000406	0.000084	-0.000024
VALE3	0.000084	0.000258	0.000041
EMBR3	-0.000024	0.000041	0.000429

matriz

Para a carteira um:

PETR3	VALE3	EMBR3
0%	0%	100%

Retorno um:

$$retorno = [0\% \ 0\% \ 100\%]_{1x3} * \begin{bmatrix} 0.26\% \\ -0.05\% \\ 0.27\% \end{bmatrix}_{3x1} = 0.27\%$$

Risco um:

$$risco = \begin{bmatrix} 0\% & 0\% & 100\% \end{bmatrix}_{1x3} * \begin{bmatrix} 0.0406\% & 0.0084\% & -0.0024\% \\ 0.084\% & 0.0258\% & 0.0041\% \\ -0.0024\% & 0.0041\% & 0.0429\% \end{bmatrix}_{3x3} * \begin{bmatrix} 0\% \\ 0\% \\ 100\% \end{bmatrix}_{3x1} = 0.0429\%$$

Função objetivo um:

$$fo = \frac{0.27\%}{0.0429\%} = 6.44$$

Para a carteira dois:

PETR3	VALE3	EMBR3
0%	25%	75%

Retorno dois:

$$retorno = \begin{bmatrix} 0\% & 25\% & 75\% \end{bmatrix}_{1x3} * \begin{bmatrix} 0.26\% \\ -0.05\% \\ 0.27\% \end{bmatrix}_{3x1} = 0.19\%$$

Risco dois:

$$risco = \begin{bmatrix} 0\% & 25\% & 75\% \end{bmatrix}_{1x3} * \begin{bmatrix} 0.0406\% & 0.0084\% & -0.0024\% \\ 0.084\% & 0.0258\% & 0.0041\% \\ -0.0024\% & 0.0041\% & 0.0429\% \end{bmatrix}_{3x3} * \begin{bmatrix} 0\% \\ 25\% \\ 75\% \end{bmatrix}_{3x1} = 0.0272\%$$

Função objetivo dois:

$$fo = \frac{0.19\%}{0.0272\%} = 7.08$$

Após a geração de todas as carteiras **possíveis**, com um **passo de 1%**, é possível plotar as carteiras de acordo com seus riscos e retornos. Observe:

Separa-se as três próximas carteiras:

	PETR3	VALE3	EMBR3
Máx Retorno	0%	0%	100%
Mín Risco	28%	41%	31%
Máx FO	48%	5%	47%

Para encontrar uma carteira ótima, tendo **muitas** ações na bolsa (PETR3, VALE3, EMBR3, ...), é necessário uma metodologia **heurística**, para **não** 'varrer' toda a **combinatória** e, mesmo assim, encontrar a carteira acossada.

Para muitas ações, a combinatória se torna inviável, logo uma tratativa heurística se torna necessária. Porém, para garantir o funcionamento da metodologia, vamos comparar os resultados obtidos pela metodologia combinatória e heurística.

Para efeitos de **validação**, vamos manter as mesmas três ações anteriores para encontrar a carteira ótima pela metodologia **Algoritmos Genéticos**.

Ações	Carteira 1	Carteira 2	Carteira 3	Carteira N	Carteira 40
PETR3 (a)	23%	11%	33%		10%
VALE3 (b)	71%	58%	21%		39%
EMBR3 (c)	6%	31%	46%	ESS	51%
Retorno	6%	14%	5%		12%
Risco	2%	10%	2%	•••	6%
Retorno Risco	3.00	1.40	2.50		2.00

Gerar **40 carteiras** (cromossomos), aleatoriamente, que serão candidatas a maximizar a relação retornorisco.

Ajustando as nomenclaturas originais para as **nomenclaturas genéticas**:

	Cromossomo 1	Cromossomo 2	Cromossomo	Cromossomo	Cromossomo 40
Gene 1	23%	11%	33%	•••	10%
Gene 2	71%	58%	21%		39%
Gene 3	6%	31%	46%		51%
Retorno	6%	14%	5%		12%
Risco	2%	10%	2%		6%
Fitness	3.00	1.40	2.50	•••	2.00

Genes: Percentual de cada ação no cromossomo

Cromossomos: Cada conjunto de genes (carteira).

Genes

Os cromossomos acima (**população inicial**) são obtidos **aleatoriamente** para compor as carteiras iniciais. A somatória dos genes de cada cromossomo deve resultar **1**.

Dos 40 cromossomos iniciais, sortear, aleatoriamente, 6 cromossomos para compor a coleção de cromossomos selecionados. Os cromossomos selecionados vão passar pelas iterações genéticas.

O **melhor** cromossomo dos filhos/mutantes (nova geração) **substitui** o **pior** cromossomo dos cromossomos selecionados (geração anterior). assim, os cromossomos finais serão os melhores!!!

Roda do Acaso

Cromos	Gene 1	Gene 2	Gene 3	Fitness	Percentagem Relativa Fitness	Percentagem Acumulada Fitness
Cromo 1	66%	22%	12%	8.72	13%	13%
Cromo 2	64%	21%	15%	9.37	14%	27%
Cromo 3	43%	0%	57%	13.42	20%	47%
Cromo 4	33%	33%	34%	11.20	17%	64%
Cromo 5	42%	31%	17%	10.96	16%	80%
Cromo 6	53%	7%	40%	13.38	20%	100%
Crom 20%		27%	C	romo2 14% 13%	Crom 13%	o1
Cromo	479	ala 64%	L = 40% 2 = 73% Cromo5	80%	= 1009 C	6 romo6 20%

Pai: Cromo 3

Mãe: Cromo 5

Crossover

Pai
Cromos 3
42%
31%
27%

Gerar um número **aleatório** no intervalo [0, 1]: **0.12** filho_um = pai * **0.12** + mãe * (1 - **0.12**)

Gerar um número **aleatório** no intervalo [0, 1]: **0.40** filho_dois = pai * **0.40** + mãe * (1 - **0.40**)

	Cromos 3		Cromos 5		Filho 2
0.40 *	42%	+ 0.60 *	66%	0.40 *42%+ 0.60 *66%	56%
	31%		22%	= 0.40*31%+0.60*22%	26%
	27%		12%	0.40 *27%+ 0.60 *12%	18%

Mutação 1

Escolher, aleatoriamente, duas ações (genes) para trocar seus percentuais:

Escolher, aleatoriamente, duas ações (genes) para trocar seus percentuais:

Mutação 2

Escolher, aleatoriamente, **duas ações** (genes) para realizar os próximos procedimentos:

Ações sorteadas: **PETR3** e **VALE3**

	Mutante 3
PETR3	86%
VALE3	0%
EMBR3	14%

Mutação 2

Escolher duas ações (genes) para realizar os próximos procedimentos:

Ações sorteadas: VALE3 e EMBR3

	Mutante 5
PETR3	56%
VALE3	44%
EMBR3	0%

Moneta Atualização dos Cromossomos

Geração Anterior

Cromos	Gene 1	Gene 2	Gene 3	Fitness		
Cromo 1	66%	22%	12%	8.72		
Cromo 2	64%	21%	15%	9.37		
Cromo 3	43%	0%	57%	13.42		
Cromo 4	33%	33%	34%	11.20		
Cromo 5	42%	31%	17%	10.96		
Cromo 6	53%	7%	40%	13.38		
	Nova Geração					
Cromos	Gene 1	Gene 2	Gene 3	Fitness		
Filho 1	64%	23%	13%	9.07		
Filho2	57%	26%	17%	9.88		
Mutante 1	13%	23%	64%	9.46		
Mutante 2	57%	17%	26%	11.72		
Mutante 3	87%	0%	13%	8.55		
Mutante 4	0%	87%	13%	-0.59		
Mutante 5	57%	0%	43%	13.50		
Mutante 6	57%	43%	0%	5.66		

O melhor filho da nova geração:

Cromos	Gene 1	Gene 2	Gene 3	Fitness
Mutante 5	57%	0%	43%	13.50

Vai substituir o **pior** cromossomo da **geração anterior**:

Cromos	Gene 1	Gene 2	Gene 3	Fitness
Cromo 1	66%	22%	12%	8.72

Com isso, a geração anterior vai ser composta com os próximos cromossomos (**segunda iteração**):

Cromos	Gene 1	Gene 2	Gene 3	Fitness
Mutante 5	57%	0%	43%	13.50
Cromo 2	64%	21%	15%	9.37
Cromo 3	43%	0%	57%	13.42
Cromo 4	33%	33%	34%	11.20
Cromo 5	42%	31%	17%	10.96
Cromo 6	53%	7%	40%	13.38

Ao final de **N iterações**, os 6 cromossomos finais devem retornar à população inicial de 40 cromossomos. Com isso, a primeira época é encerrada. Realizar os mesmos procedimentos por **M épocas**. Observe:

Fluxograma Simplificado

Tela