05.01 확률론적 선형 회귀모형

6) 단일계수 t-검정 (single coefficient t-test)

정규화된 모수오차를 검정통계량으로 사용하면

$$\frac{\hat{w}}{se_i}$$

1. wi가 0인지 아닌지 검정 가능

$$H_0: w_i = 0 (i = 0, 1, \dots, K - 1, K$$
개의가중치)

2. wi가 40인지로 놓고도 검증 가능

*코드: print(result.t_test("X1 = 40)) *X1=40이란 건, X1가중치가 40 이라고 적는 것과 같은 의미

$$H_0: w_i = 40 (i = 0, 1, \dots, K - 1, K$$
개의가중치)

3. w1 = w2 인지도 검증 가능

*코드 : print(result.nottem.t test("C(month)[01] = C(month)]02"))

$$H_0: w_1 = w_2(i = 0, 1, \dots, K - 1, K$$
개의가중치)

7) 회귀분석 F-검정

- 단일계수 t-검정 : single coefficient t-test. 단일 계수(w_i) 에 대한 검정
- F-검정 : 모든 가중치가 다 쓸모 없다(종속변수와 feature들은 모두 상관성이 없다.) "이 모델은 쓸모 없다" 를 반론하고 싶을 때, 사용 (이 가설이 아주 낮은 p값으로 기각되어야 좋음)

보통 "어느 모델이 성능이 더 좋다"를 증명할 때, 사용하는 검정 (성능이 좋을 수록 p값 이 낮게 나올 것)

$$H_0: w_0 = w_1 = w_2 = \ldots = w_{k-1} = 0$$

- 현실적으로 이런 ${
 m H}$ 0 가설은 받아들여질 가능성은 없다.
- 모두 쓸모 없다는 가설이 reject가 되더라도 0.01 로 기각, 0.00000001로 기각 되느냐의 차이
- $_{\rm }$ 결국, 0.000001로 기각되어야, p-value가 더 작게 기각되어야 역설적으로 '모델'이 쓸모 있다 는 확률적 증명이 된다

8) statsmodel 패키지 회귀분석 결과표 해석 (05.01 14p)

05.02 회귀분석의 기하학

- 투영행렬, 햇행렬, 영향도행렬
- 잔차행렬

중요하기 때문에, 유도하는 증명 해봐야함

			ssion Resul				
				0	에서는 즉구	f .	
Dep. Variable:		value	R-square	nd:>	5.00	0	
0.930			_	_			
Model:		OLS	Adj. R-s	squared:			
0.927			-				
Method:	Te	east Squares	P otatio	stic:) 💯	12212 -	789	
277.3	Tie	sast squares	r-scatte	10.	Carrie	- 463	
		17 Jun 2019			(CITHEN HE	nec area	
Date:	Mon,	17 Jun 2019	Prob (F-	-statistic):	有22型)		
2.96e-125							
Time:		20:16:26	Log-Like	elihood:			
-535.82							
No. Observation	ns:	240	AIC:				
1096.							
Df Residuals:		228	BTC:				
1137.							
Df Model:		11					
Covariance Type		nonrobust					
	coef	std err	t	P> t	[0.025		
0.975]							
C(month)[01]	39.6950	0.518	76,691	0.000	38.675		
40.715	33.0330	0.510	701051	0.000	30.073		
C(month)[02]	39.1900	0.518	75.716	0.000	38.170		
40.210							
C(month)[03]	42.1950	0.518	81.521	0.000	41.175		
43.215							
C(month)[04]	46.2900	0.518	89.433	0.000	45,270		
47.310							
C(month)[05]	52.5600	0.518	101.547	0.000	51.540		
53.580	32.3000	0.510	101.547	0.000	31.340		
	58.0400	0.518	112,134	0.000	57.020		
C(month)[06]	58.0400	0.518	112.134	0.000	57.020		
59.060							
C(month)[07]	61.9000	0.518	119.592	0.000	60.880		
62.920							
C(month)[08]	60.5200	0.518	116.926	0.000	59.500		
61.540							
C(month)[09]	56.4800	0.518	109.120	0.000	55.460		
57.500	30.4000	0.310	107.120	0.000	33.400		
C(month)[10]	49.4950	0.518	95.625	0.000	48.475	THE YES	
50.515						011 011 0	
C(month)[11]	42.5800	0.518	82.265	0.000	41.560	7334	
43.600						(843-22 MB	
C(month)[12]	39.5300	0.518	76.373	0.000	38.510	(分裂をつ へつ	
40.550				e a considera	12	Flore od &	
	4:7	시 <u>라</u> ~ 273명	E	for Alabel 7) T	AN15,55	
				, 토계하는 N.Z.	PETOLO	、一世別な	
P. y	HE ETIEE (7)	341. 2835 271 1	Durbin-V		55	5 Led 121	
Omnibus:		PISH UH 040	DUFDIN-V	vatson:	21 21 21 212 117	dal 32	
1.529					1047 13XE	101 de	
Prob(Omnibus):	ZUME ATTE P	0.066	Jarque-E	Bera (JB):	+	29H X 比写	
5.299						- 212	
Skew:		-0.281	Prob(JB)			1871 -3×	
0.0707	레이 1992, jay	5E -01101				কানাচল হল	
Kurtosis:		3.463	Cond. No			Orans/ 2 5	
		3.403	cond. No	··		무게하. 인구?	
1.00							

05.03 레버리지와 아웃라이어

지금까지는 데이터 행렬 X 의 열단위 접근 (개별 feature에 대한 이야기(가중치))

이제부터는 데이터 행렬 X 의 행단위 접근 (개별 데이터에 대한 이야기)

_ 개별 데이터 표본 하나하나가 회귀분석 결과에 미치는 영향력 분석

: 레버리지 분석 / 아웃라이어 분석

1) 레버리지

※ 참工是!

잔차행렬과 투영행렬

벡터 a에서 다른 벡터 b를 변형하는 과정은 변형행렬(transforma matrix) T를 곱하는 연산으로 나타낼 수 있다.

종속값 벡터 y를 잔차 벡터 e로 변형하는 변환 행렬 M를 정의하자. 이 행렬을 **잔차행렬(residual matrix)**이라고 한다. e=My

종속값 벡터 y를 예측값 벡터 \hat{y} 로 변형하는 변환 행렬 H를 정의하자.. 이 행렬을 **투영행렬(projection matrix)**이라고 한다.

$$\hat{y} = Hy$$

잔차행렬은 다음과 같이 구한다.

$$e = y - \hat{y}$$

= y - Xw
= y - X(X^TX)⁻¹X^Ty
= (I - X(X^TX)⁻¹X^T)y
= My

투영행렬은 다음과 같이 구한다.

$$\hat{y} = y - e$$

$$= y - My$$

$$= (I - M)y$$

$$= X(X^TX)^{-1}X^Ty$$

$$= Hy$$

따라서 M, H는 각각 다음과 같다.

$$H = X(X^T X)^{-1} X^T$$

$$M = I - X(X^T X)^{-1} X^T$$

투영 행렬은 y로부터 $^{\Lambda}$ 기호가 붙은 \hat{y} 를 계산한다고 해서 햇(hat) 행렬 또는 영향도 행렬(influence matrix)이라고 부르기도 한다. 영향도 행렬이라는 명칭의 의미는 아웃라이어 분석에서 다시 다룬다. $\stackrel{Q}{\hookrightarrow} = \stackrel{H}{\mid} \bigvee$

레버리지 : 실제 종속변수 값 y 가 \hat{y} 에 미치는 영향

레버리지 : 영향도 행렬(H)의 대각성분 h_{ii}

$$\hat{y} = Hy$$

레버리지의 성질

 $1. 0 \le h_{ii} \le$

2.

$$\operatorname{tr}(H) = \sum_{i}^{N} h_{ii} = K$$

[시사점]

1. 현실적으론 각각의 레버리지값(H의 대각성분)은 대부분 매우 작게 나오기 마련

why? 현실에선

데이터의 갯수(대각성분의 갯수) N >> 모수의 갯수(가중치, 열의 갯수) <math>K

작은 수 K를 N 으로 쪼개서 가져가면, 각 대각성분은 그만큼 작아질 수 밖에!

2. 레버리지의 평균값

$$h_{ii} pprox rac{K}{N}$$

보통, 이 평균값의 2~4배 보다 레버리지 값이 크면, 레버리지가 크다고 이야기 함

2) statsmodels를 이용한 레버리지 계산

(hii)

코드 (4page, 5page)

[시사점]

- 1. 무리지어 있지 않은 애들이 레버리지가 큼
- 2. 큰 레버리지 특징: 그 지역에서 대표성 큰 애들 (혼자 그 구간을 담당하는 데이터)

레버리지의 영향 크기: 해당 데이터의 잔차 크기에 달려있음 (6,7 page)

[시사점]

1. 데이터 제거 시 주의사항

1) '레버리지', '잔차' 모두 큰 데이터를 빼면, 모델(회귀선) 자체가 흔들릴 수 있는 영향력을 갖기 때문에, 주의해야함 그런데 '잔차'는 우리가 아는 그 잔차가 아닌, '표준화된 잔차'를 봐야 한다!

4) 아웃라이어

아웃라이어: '표준화된 잔차'가 큰 데이터

 $y - \hat{y} = e(잔차)$

표준화된 잔차: 잔차를 표준화한 것

4-1) 표준화 잔차

- 데이터 각각의 개별적인 영향들을 제거해, 모든 데이터의 잔차를 표준화된 상태에서 비교할 수 있게 함

(개별적인 영향 : 개별 데이터의 레버리지 값)

개별 데이터의 잔차 ==>> 표준편차가 레버리지에 따라 달라짐 (9page)

- 원래 목적대로, 실 데이터 모델 간의 차이를 보려면, 이 개별적인 요인들을 다 제거해준 값으로 비교해줘야 공정한 비교!
 - 레버리지가 큰 데이터는 잔차크기가 상대적으로 작게 나옴. 모델과 차이가 큼에도 불구하고

4-2) So, 어떤 데이터를 제거해야 하는 가?

- 표준화된 잔차로 본 아웃라이어를 제거
 - *대개는, 표준화 잔차가 2~4보다 크면 아웃라이어로 봄
 - *엄밀하게는, Cook's Distance -> Fox' outlier recommendation을 기준으로 판단
- 대신, 레버리지가 큰 데이터는 일단 다시 한 번 살펴봐야 함(모델, 회귀선에 주는 영향이 크기 때문)

5) statsmodels 를 이용한 '표준화 잔차' 계산

5-1) Cook's Distance

$$D_i = \frac{r_i^2}{\text{RSS}} \left[\frac{h_{ii}}{(1 - h_{ii})^2} \right] \qquad r_i = \frac{e_i}{s\sqrt{1 - h_{ii}}}$$

= 21/1921/X 夏号电光之.

아웃라이어 판단 기준

Fox' Outlier Recommendation 은 Cook's Distance가 다음과 같은 기준값보다 클 때 아웃라이어로 판단하자는 것이다. $D_i > \frac{4}{N-K-1}$ (하셔서 기술의 기술)

5-2) 레버리지가 큰 아웃라이어 시각화

- plot_leverage_resid2

- influence plot

5-3) Cook's distance - Fox에 의한 아웃라이어 판단

- 제거 대상 (잔차 or 레버리지가 기준 이상으로 큰 데이터)

