BİLGİSAYAR BİLİMLERİNE GİRİŞ I

-2-

Sayı Sistemleri

Sistem	Taban	Sembol
Decimal	10	0, 1, 9
(Onluk)		
Binary	2	0, 1
(İkilik)		
Octal	8	0, 1, 7
(Sekizlik)		
Hexadecimal	16	0, 1, 9,
(Onaltılık)		A, B, F

Sayı Sistemleri (Örnekler)

Decimal (Onluk)	Binary (İkilik)	Octal (Sekizlik)	Hexadecimal (Onaltılık)
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7

Sayı Sistemleri

Decimal (Onluk)	Binary (İkilik)	Octal (Sekizlik)	Hexadecimal (Onaltılık)
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F

Sayı Sistemleri

Decimal	Binary	Octal	Hexadecimal
(Onluk)	(İkilik)	(Sekizlik)	(Onaltılık)
16	10000	20	10
17	10001	21	11
18	10010	22	12
19	10011	23	13
20	10100	24	14
21	10101	25	15
22	10110	26	16
23	10111	27	17

Tabanlar Arası Dönüşüm

Örnek

$$25_{10} = 11001_2 = 31_8 = 19_{16}$$
Taban

İkilik → Onluk

İkilik → Onluk

- □ Teknik
 - Her bir bit kendi kuvveti ile çarpılır ve hepsi toplanır.

İkilik → Onluk

•
$$1011_2 = (?)_{10}$$

•
$$101000_2 = (?)_{10}$$

• $1011_2 = (?)_{10}$

Cevap: 11

• $101000_2 = (?)_{10}$

Cevap: 40

$$0 \times 2^{0} = 0$$

 $0 \times 2^{1} = 0$
 $0 \times 2^{2} = 0$
 $1 \times 2^{3} = 8$
 $0 \times 2^{4} = 0$
 $1 \times 2^{5} = 32$

40

Sekizlik → Onluk

Sekizlik → Onluk

- □ Teknik
 - Her bir rakam 8'in uygun kuvveti ile çarpılır ve hepsi toplanır.

Sekizlik -> Onluk

$$724_8 \Rightarrow 4 \times 8^0 = 4$$
 $2 \times 8^1 = 16$
 $7 \times 8^2 = 448$
 468_{10}

•
$$36_8 = (?)_{10}$$

•
$$564_8 = (?)_{10}$$

• $36_8 = (?)_{10}$

Cevap: 30

 $6 \times 8^{0} = 6$ $3 \times 8^{1} = 24$ 30_{10}

• $564_8 = (?)_{10}$

Cevap: 372

$$4 \times 8^{0} = 4$$
 $6 \times 8^{1} = 48$
 $5 \times 8^{2} = 320$
 372_{10}

Onaltılık > Onluk

Onaltılık > Onluk

- □ Teknik
 - Her bir rakam 16'nın uygun kuvveti ile çarpılır ve hepsi toplanır.

Onaltılık > Onluk

$$ABC_{16} =>$$
 $C \times 16^{0} = 12 \times 1 = 12$
 $B \times 16^{1} = 11 \times 16 = 176$
 $A \times 16^{2} = 10 \times 256 = 2560$

•
$$5B16_{16} = (?)_{10}$$

•
$$FA54_{16} = (?)_{10}$$

• $5B16_{16} = (?)_{10}$

Cevap: 23318

• $FA54_{16} = (?)_{10}$

Cevap: 64084

$$6 \times 16^{0} = 6 \times 1 = 6$$
 $1 \times 16^{1} = 1 \times 16 = 16$
 $8 \times 16^{2} = 11 \times 256 = 2816$
 $8 \times 16^{3} = 5 \times 4096 = 20480$

 $4 \times 16^{0} = 4 \times 1 = 4$ $5 \times 16^{1} = 5 \times 16 = 16$ $A \times 16^{2} = 10 \times 256 = 2560$ $F \times 16^{3} = 15 \times 4096 = 61440$

64084₁₀

23318₁₀

Onluk → İkilik

Onluk → İkilik

- □ Teknik
 - Verilen sayı tam sayı ise ikiye bölünerek kalanlar kayıt edilir. Bu durumda kalan kısım ya 0 ya da 1'dir.
 - Bölme işlemi bölümde 0 veya 1 görülünceye kadar devam ettirilir.

Onluk → İkilik

$$125_{10} = ?_{2}$$
 $2 \mid 125$
 $2 \mid 62 \mid 1$
 $2 \mid 31 \mid 0$
 $2 \mid 15 \mid 1$
 $2 \mid 7 \mid 1$
 $2 \mid 3 \mid 1$
 $2 \mid 1 \mid 1$
 $0 \mid 1$

 $125_{10} = 1111101_2$

•
$$27_{10} = (?)_2$$

•
$$173_{10} = (?)_2$$

•
$$27_{10} = (?)_2$$

Cevap: 11011

•
$$173_{10} = (?)_2$$

Cevap: 10101101

Sekizlik → İkilik

Sekizlik → İkilik

□ Teknik

Sekizlik sistemde yazılmış bir sayının ikilik sisteme dönüştürülmesi için bu sayının rakamların 3 bitlik karşılıklarının yan yana yazılması yeterlidir.

Sekizlik → İkilik

$$705_8 = ?_2$$

$$705_8 = 111000101_2$$

•
$$247_8 = (?)_2$$

•
$$3567_8 = (?)_2$$

• $247_8 = (?)_2$

Cevap:010100111

• $3567_8 = (?)_2$

Cevap: 011101110111

Onaltılık → İkilik

Onaltılık → İkilik

- □ Teknik
 - Sayının rakamlarının 4 bitlik ikilik karşılıklarının yan yana yazılması yeterlidir.

Onaltılık → İkilik

 $10AF_{16} = ?_2$

$$10AF_{16} = 0001000010101111_2$$

•
$$1A6_{16} = (?)_2$$

•
$$AE1_{16} = (?)_2$$

• $1A6_{16} = (?)_2$

Cevap: 000110100110

• $AE1_{16} = (?)_2$

Cevap: 101011100001

Onluk → Sekizlik

Onluk → Sekizlik

- □ Teknik
 - 8 ile bölünüz
 - Elde edilen kalanları yazınız

Onluk → Sekizlik

$$1234_{10} = ?_8$$

•
$$891_{10} = (?)_{8}$$

•
$$1792_{10} = (?)_{8}$$

•
$$891_{10} = (?)_{8}$$

Cevap: 1573

•
$$1792_{10} = (?)_{8}$$

Cevap: 3400

Onluk > Onaltılık

Onluk → Onaltılık

- □ Teknik
 - 16 ile bölünüz
 - Elde edilen kalanları yazınız

Onluk > Onaltılık

$$1234_{10} = ?_{16}$$

•
$$1128_{10} = (?)_{16}$$

•
$$317547_{10} = (?)_{16}$$

•
$$1128_{10} = (?)_{16}$$

Cevap: 468

•
$$317547_{10} = (?)_{16}$$

Cevap: 4D86B

İkilik -> Sekizlik

İkilik → Sekizlik

□ Teknik

- Sağdan başlayarak üçer bit olarak gruplanır.
- Her üç bitin sekizlik sistemdeki karşılıkları yan yana yazılır.

 $1011010111_2 = ?_8$

 $1011010111_2 = 1327_8$

• $110001100_2 = (?)_8$

•
$$1010101_2 = (?)_8$$

• $110001100_2 = (?)_8$

Cevap: 614

• $1010101_2 = (?)_8$

Cevap: 125

İkilik -> Onaltılık

Onluk Sekizlik

İkilik Onaltılık

İkilik > Onaltılık

- □ Teknik
 - İkilik sistemde yazılmış herhangi bir sayının onaltılık sistemdeki sayıya dönüştürülmesi için, sağdan itibaren 4'er bit olarak ayrılır. Bunlar onaltılık sistemin her bir rakamının ikili kodlanmış şeklidir.
 - Yan yana yazılarak Onaltılık sistemdeki sayı elde edilir.

 $1010111011_2 = ?_{16}$

 $1010111011_2 = 2BB_{16}$

• $01001110_2 = (?)_{16}$

• $010010100000001_2 = (?)_{16}$

• $01001110_2 = (?)_{16}$

Cevap: 4E

• $010010100000001_2 = (?)_{16}$

Cevap: 4A01

- □ Teknik
 - □ İkilik taban kullanınız.

$$1076_8 = ?_{16}$$

$$1076_8 = 23E_{16}$$

•
$$1002_8 = (?)_{16}$$

•
$$2524_8 = (?)_{16}$$

•
$$1002_8 = (?)_{16}$$

Cevap: 202

•
$$2524_8 = (?)_{16}$$

Cevap:554

Onaltılık -> Sekizlik

Onaltılık -> Sekizlik

- □ Teknik
 - □ İkilik tabanı kullanınız.

$$1F0C_{16} = ?_{8}$$

$$1F0C_{16} = 17414_{8}$$

•
$$B78_{16} = (?)_{8}$$

•
$$B78_{16} = (?)_{8}$$

Cevap: 5570

Cevap: 135311

Decimal	Binary	Octal	Hexa- decimal
33			
	1110101		
		703	
			1AF

Decimal	Binary	Octal	Hexa- decimal
33	100001	41	21
117	1110101	165	75
451	111000011	703	1C3
431	110101111	657	1AF

Negatif Sayıların Temsili

Negatif Sayıların Temsili

- □ Peki ya negatif sayılar? Biz sadece '-' işaretini kullanarak ve çıkarma işlemi yaparak bu işin içinden çıkabiliyoruz.
- □ Bilgisayarlarda ise bu iş biraz daha karmaşıktır. Negatif, yani işaretli tamsayıları temsil etmek için iki temel yöntem vardır:
 - Bire Tümleme (One's complement)
 - İkiye Tümleme (Two's complement)
 - Bu yöntemlerden daha kullanışlı olanı ve modern bilgisayarların mimarisinde yer alanı ikiye tümleme yöntemidir.

Bire Tümleme

Bire Tümleme

■ Bire tümleme yönteminde negatif tamsayılar hesaplanırken yalnızca pozitif sayının tümleyeni alınır. Yani 1 ise 0, 0 ise 1 yazılır.

$$0110 = 6$$
 $1001 = -6$

- □ Çıkarma işlemi yapılırken sayının negatif temsili bulunur ve toplama işlemi yapılır.
- Taşan bit varsa sonuca eklenir.

$$5 - 3 = 2$$

 $0101 + 1100 = 10001$
 $0001 + 1 = 0010 = 2$

Onluk
0
+1
+2
+3
+4
+5
+6
+7
-7
-6
-5
-4
-3
-2
-1
0

İkiye Tümleme

İkiye Tümleme

• İkiye tümleme yönteminde negatif tamsayılar hesaplanırken önce pozitif sayının tümleyeni alınır, sonra sayıya 1 eklenir.

$$0110 = 6$$
 $1010 = -6$

- Çıkarma işlemi yapılırken sayının negatif temsili bulunur ve toplama işlemi yapılır.
- Taşan bit dikkate alınmaz.

$$5 - 3 = 2$$

 $0101 + 1101 = 10010$
 $0010 = 2$
Bire tümleme
 $5 - 3 = 2$
 $0101 + 1100 = 10001$
 $0001 + 1 = 0010 = 2$

İkilik	Onluk
0000	0
0001	+1
0010	+2
0011	+3
0100	+4
0101	+5
0110	+6
0111	+7
1000	-8
1001	-7
1010	-6
1011	-5
1100	-4
1101	-3
1110	-2
1111	-1

 \square 2 – 5 = ? (4-bit signed representation)

1'e tümleme

1. $0010_2 = 2$ $1010_2 = -5$

- $2. \quad 0010_2 + 1010_2 \\
 = 1100_2$
- 3. Taşan bit yok. $1100_2 = -3$

2'e tümleme

- 1. $0010_2 = 2$ $1011_2 = -5$
- $2. \quad 0010_2 + 1011_2 \\
 = 1101_2$
- 3. Taşan bit yok. $1101_2 = -3$

 \Box 7 – 3 = ? (4-bit signed representation)

 \Box 7 – 3 = ? (4-bit signed representation)

1'e tümleme

1.
$$0111_2 = 7$$

 $1100_2 = -3$

$$2. \quad 0111_2 + 1100_2 \\ = 10011_2$$

3.
$$0011_2 + 1_2$$

= $0100_2 = 4$

2'e tümleme

1.
$$0111_2 = 7$$

 $1101_2 = -3$

$$2. \quad 0111_2 + 1101_2 \\
= 10100_2$$

3. Taşan bit dikkate alınmaz $0100_2 = 4$

□ Aşağıda verilen işlemleri hem 1'e tümleme hem de 2'ye tümleme kullanarak 5 bitlik işaretli tamsayılarla gerçekleştirin.

1.
$$10 + 2 = ?$$

$$3 - 7 = ?$$

3.
$$15 - 1 = ?$$

□ Aşağıda verilen işlemleri hem 1'e tümleme hem de 2'ye tümleme kullanarak 5 bitlik işaretli tamsayılarla gerçekleştirin.

	<u>1'e tümleme</u>	2'ye tümleme
1. 10 + 2 = ?	01100 ₂	01100 ₂
2. $3-7=?$	11011 ₂	11100 ₂
3. $15 - 1 = ?$	01110_{2}	01110_{2}

Sorular???

