Traffic Simulation in NYC

Team Violet Noise Ameya, Emma, Helene, Kristin

Big Data Application Development CSCI GA 2437

Motivation and Concept

Goals

- 1. Combine several main components of Apache Spark
 - Data processing
 - Machine learning
 - o Graph algorithms
- 2. Try different types of algorithms to see how they handle graph features, and graph based noise

Concept

- 1. Simulate data for traffic in NYC
- 2. Assume that we collect the data through some IoT framework we only have GPS type signals and general metadata about the graph
- 3. Attempt to solve for shortest path recommendation and vehicle identification

Pipeline

Feature Engineering Model Training Vehicle Classification

Vehicle Classification Pipeline

Data Generation

Noise Generation

Feature Engineering Model Training

Edge Weight Regression Pipeline

Edge Weight Forecast

Shortest Paths

Data Generation

Data Generation

- 1. Created a graph to mimic midtown manhattan
 - Nodes are intersections
 - Edges are streets
 - "Source" and "Sink" nodes along the edge allow traffic flow
 - Edges have varying sizes, 2-4 lanes
- Calculated all reasonable paths for every pair of nodes
- 3. Assign cars to these paths at regular intervals
- 4. Create instructions in XML for sumo to implement our traffic scenario
- 5. Extract trace data for all vehicles from sumo ~550 GB for 70 days

1.5 G	4.4 G	/user/jl11257/big_data_project/traces/demo
54.9 G	164.8 G	/user/jl11257/big_data_project/traces/noised
61.4 G	184.2 G	/user/jl11257/big_data_project/traces/processed
550.3 G	1.6 T	/user/jl11257/big_data_project/traces/raw

Features Embedded in Data Generation

1. Created time series for car arrival rates for each "source"

Different vehicles have different sizes and speed properties

3. Buses travel on a separate schedule, with specific routes and timed stops

```
The state of the s
```

```
cars = int(np.random.poisson(rate))
spread_cars = [min(i,2) for i in np.histogram(list(range(cars)),bins=900,density=False)[0]]
timestamps = [i + minute*60 + start_tm_seconds for i in range(900)]
cars_per_sec = [i for i in zip(timestamps, spread_cars) if i[1] > 0]

vvType accel="1.0" decel="3.5" id="Bus" length="15.0" maxSpeed="8.0" sigma="0.5" >
vvType accel="2.7" decel="4.6" id="Car1" length="4.0" maxSpeed="11.2" sigma="0.5" >
vvType accel="2.4" decel="4.5" id="Car2" length="5.0" maxSpeed="11.2" sigma="0.5" >
vvType accel="1.9" decel="4.3" id="Car3" length="7.0" maxSpeed="11.2" sigma="0.5" >
vvType accel="1.9" decel="4.3" id="Car3" length="7.0" maxSpeed="11.2" sigma="0.5" >
```

Adding Noise

1. Random traffic jams

- o 1-4 per day
- 3-9 min per jam

2. Making data more realistic

(~messy IOT device data)

- 5% data loss from faulty GPS signals
- Cartesian coordinates »
 GPS coordinates
- Dropped speed feature from raw data

Vehicle Classification

Vehicle Classification Pipeline

Feature Engineering

Visualization

Exploratory Modeling Final Model Training Vehicle Classification

Feature Visualizations

MaxSpeed, AverageSpeed, and TurnsCount features of Car(blue) and Bus(orange) comparison

Feature Visualizations

StartNode, StopNode, Hour, Minute features of Car(blue) and Bus(orange) comparison

Exploratory Model Results - Without Noise

Model	auPR(Down Sampled Data)	auPR(Raw Test Data)
Linear SVM	0.010614	0.001081
Linear Regression	0.999609	0.998593
Random Forest Classifier	1.0	1.0

- Random Forest Classifier Model works best in these 3 models.
- We will focus on seeing how Random Forest Classifier Model reacts to noise in our data in the next stage.
- We also add cross validation to do parameter tuning and avoid overfitting.

Feature Importances Visualization

- MaxSpeed, AverageSpeed and TurnsCount were relevant features
- StartNode, StopNode, Hour and Minute were not that relevant features
- Relevant features were chosen for later model training

Cross Validation Results With Noise

Model	auPR(Down Sampled Data)	auPR(Raw Test Data)	Features Included
	0.991220	0.919165	3 features (MaxSpeed, AverageSpeed and TurnsCount)
Random Forest Classifier combined with Cross Validator	0.021272	0.002245	5 features (adding startNode and stopNode features)
	0.992295	0.923198	4 features (adding hour feature)

Summary of Findings

Adding startNode and stopNode features:

- The result gets worse.
- So not adding these two features to model training.

Adding Hour feature:

- The result improves a bit.
- So final model trained with four features: MaxSpeed, AverageSpeed, TurnsCount, Hour.

Sample Prediction Output from Test Data

There were 1474 buses and 655148 cars in the data set provided.

The model predicted 1595 buses and 655027 cars.

Area under precision-recall curve = 0.923198

Because we used auPR metric to train and the data is unbalanced, we will have slightly more false positives but with a better recall on the buses.

Edge Weight Forecasting

Shortest Path Pipeline

Feature Engineering

Visualization

Exploratory Model Training

Edge Weight Forecasting Shortest Path Calculation

Feature Engineering

Obtained edge weight features using Spark SOL

- Customized measure of edge weight (for shortest path algorithm)
 - ➤ density: _numOf Vehicles · vehicleSize totalEdgeArea
- Edge Features
 - density at time t: d_t

 - > change of density: $\Delta d_{t-1,t}$, $\Delta d_{t-2,t}$, $\Delta d_{t-3,t}$ > Time of the day as cyclical variable, formula we adapt $f(t) = \sin\left(\frac{minuteOf\ Day \cdot 2\pi}{24 \cdot 60}\right)$
- Graph Features
 - is edge two way & is edge in bus route
 - One hot encoding these two features

Custom train / test splits to handle time series data and data leakage

Feature Visualizations

Before Noise (1 week)

After Noise (1 week)

Feature Visualizations

Distributions of the Independent Variable

Poisson Distribution

Exploratory Modeling Result

In sample data R square, use **fold zero** to calculate out sample data R square

Without Noise

R Square	Fold 0	Fold 1	Fold 2	Fold 3	Fold 4
Linear Regression	0.88 (0.87)	0.88	0.87	0.87	0.87
Generalized Linear	0.88 (0.87)	0.88	0.87	0.87	0.87
Random Forest	0.82 (0.82)	0.81	0.81	0.82	0.81
Gradient Boosted Tree	0.88 (0.87)	0.87	0.88	0.88	0.87

With Noise & Filtering Outlier

R Square	Fold 0	Fold 1	Fold 2	Fold 3	Fold 4
Linear Regression	0.15 (0.12)	0.61	0.25	0.36	0.38
Generalized Linear	-1.7 (-4.5)	0.12	-634	-15	-2.6
Random Forest	0.78 (0.78)	0.79	0.80	0.80	0.79
Gradient Boosted Tree	0.84 (0.83)	0.85	0.86	0.86	0.85

With Noise

R Square	Fold 0	Fold 1	Fold 2	Fold 3	Fold 4
Linear Regression	0.68 (0.83)	0.88	0.80	0.85	0.87
Generalized Linear	-117 (-77)	-23	-8	-76	-162
Random Forest	0.11 (0.06)	0.09	0.13	0.11	0.10
Gradient Boosted Tree	0.71 (0.55)	0.68	0.61	0.62	0.63

With Noise & Add Extra Features

R Square	Fold 0	Fold 1	Fold 2	Fold 3	Fold 4
Linear Regression	0.68 (0.83)	0.88	0.80	0.85	0.87
Generalized Linear	-119 (-79)	-32	-5	-80	-163
Random Forest	0.11 (0.07)	0.10	0.13	0.12	0.11
Gradient Boosted Tree	0.59 (0.44)	0.54	0.75	0.55	0.58

Shortest Path Algorithm

Model Final Output (linear regression)

- Generate Recommend Path at Week 9 Monday 1PM node o-8
- True Shortest Path
 - 9_30t08_30 8_30t08_31 8_31t08_32 8_32t08_33
 8_33t08_34 8_34t08_35 8_35t08_36 8_36t08_37
 8_37t08_38 8_38t08_39 8_39t09_39 9_39t09_38
- Predicted Shortest Path
 - 9_30t08_30 8_30t08_31 8_31t08_32 8_32t08_33
 8_33t08_34 8_34t08_35 8_35t08_36 8_36t08_37
 8_37t08_38 8_38t08_39 8_39t09_39 9_39t09_38
- Source of Error
 - Mainly come from unstable edge (plot on the right)

edge	MAE	RMSE
6_42to5_42	20.46341874	33.40086947
Park_54toPark_53	16.97218526	27.37084394
Park_49toPark_50	13.77609672	24.13617799
7_42to8_42	13.99103017	19.3966747
6_49to6_50	13.06004144	18.24747077
6_34to5_34	9.993132689	16.80321039
Park_36toPark_35	10.96373559	16.75342717
5_52to5_51	10.9948562	15.8060884
Madison_47toMadison_48	9.790172074	15.68596128
Madison_57to5_57	8.016554576	12.39315383
Park_55toPark_54	7.663552521	11.92563636
Park_38toPark_39	9.33225279	11.85758805
Park_58toPark_57	8.490048711	11.19763564
Park_46toPark_47	8.33578231	11.02605693
Park_47toPark_46	7.882120061	10.9333112
5_40to5_39	7.775983013	10.81476376
Park_42toPark_43	7.847863891	10.45676273
Park_48toPark_49	7.644048104	10.02472836
Park_44toPark_45	7.315247051	9.363016631
Park_50toPark_51	7.261492887	9.348443243
8_46to8_47	6.782689898	8.937917834
7_37to7_36	6.884931109	8.80444422
7_49to7_48	6.810883706	8.704506702
8_36to8_37	6.769252371	8.450968421
Park_52toPark_53	6.679018084	8.363973546
Park_49toPark_48	6.582704206	8.33130152
Park_50toPark_49	6.097223714	7.95653521
6_36to6_37	6.018124317	7.942292519

Conclusion & Future Steps

All models perform well on no noise data

• Big challenge to make Spark work with a time series problem

After we add noise on data, the story changes...

- Poisson works best for no noise data, not after we add noise and ruin the distribution
- Linear Regression is highly sensitive to the feature distribution and outliers in our noise
- Tree based model is robust for different distribution, but gets penalized by extra useless features
- It's nearly impossible to find a magic one-size-fits-all model

Future Steps

- Consider applying different model to different time segments or subgraphs
 - ➤ As long as we are clear about the noise source

Project Takeaways

Project Takeaways

- Container failures and data shuffle may lead to "directory already exists" error when writing data
 - Change write mode to 'append'
- 2. Parquet format is better suited for Spark code than CSV format
- 3. Caching should only be used for high iteration access
- 4. Data shuffles can make performance suffer
 - Repartition before joins to avoid shuffle
 - Use map instead of repeated joins
 - Data size should be small for broadcast
 - Runtime improved from 3 days to 10 minutes

Project Takeaways

- 5. Optimizing spark-submit parameters can improve performance
 - Speed up joins and windowing with more executors, cores per executor, and driver/executor memory

- For caching of large datasets, more driver memory is required
- 6. Window functions partitionBy and orderBy can be used to compute time-series lag features with caveats!
- 7. Cross-validation runs sequentially by default
- 8. Spark error detection does not catch everything
 - Model trained on infinity values due to floating point error without complaints from Spark
 - Spark ran GraphX code with negative cycles, repeatedly self-healing failed tasks which ultimately could have overloaded the cluster

Demo Instructions

Demo Instructions from README.md

BDAD_Violet_Noise

Team Members

- Ameya as12366
- Kristin jl11257
- Emma yl3750
- Helene hls327

Running the Demo

Data is designed to be simulated one day at a time, each output from the microsimulation is an ~8GB file. To save time, several pre-processing steps of the data pipeline have already been run so that you can test on a small set of data. Steps completed include generating a new day of data, parsing into parquet format, adding noise, and selecting a subset to test. See the following scripts for details:

runscripts/simulateForEval.sh

runscripts/prepforEval.sh

You are testing on ~2 hours of data, a Monday morning between 7 and 9 AM.

The data is stored in /user/jl11257/big_data_project/traces/demo/morningsample

Please Note: The zip file must be unpacked in the top level of your user's /home/ directory on PEEL. If it is not unpacked at the top level directory, the demo will not work.

To run the demo, simply run source runscripts/demo.sh in your home user directory.

If you wish to re-run the demo, you will want to run the following command first.

 $\verb|hdfs dfs -rm -r /user/\$(whoami)/violetnoisesummary|\\$

In the event of folder permission issues please contact hls327@nyu.edu.

Noise and Demo Data

Traffic accidents are simulated to occur between 7 and 10 AM and 2 and 7 PM

- In our Demo data set, we have two accidents in the morning
- We've selected the hours between 7 and 9 AM which is the noisiest time of day
- Model performance in the demo data is considered to be the worst case scenario
- In addition, data is freshly simulated it has not been used in any model training

Expected Demo Output

```
************
Team Violet Noise
Team Members as12366 y13750 j111257 h1s327
Traffic Simulation
Demo Run
***************
Checking sufficient permissions...
Input data permissions are OK
Model permissions are OK
Making local hdfs directories for demo output
Running feature calculations for the vehicle classification model, please allow 1-2 mins
Vehicle feature spark log is in vehiclefeaturelog.txt
               /user/hls327/violetnoisesummary/vehiclefeatures/ SUCCESS
101.5 K 304.5 K /user/hls327/violetnoisesummary/vehiclefeatures/part-00000-cefb2c02-9ebe-447a-8e29-03e5e6f5fcde-c000.snappy.parquet
100.3 K 300.9 K /user/hls327/violetnoisesummary/vehiclefeatures/part-00001-cefb2c02-9ebe-447a-8e29-03e5e6f5fcde-c000.snappy.parquet
Running feature calculations for the edge weight regression model, please allow 1-2 mins
Edge weight feature spark log is in edgefeaturelog.txt
              /user/hls327/violetnoisesummary/edgefeatures/ SUCCESS
43.8 K 131.4 K /user/hls327/violetnoisesummary/edgefeatures/part-00000-e654a7b5-d22b-4d28-9aa4-fbac5041637b-c000.snappy.parquet
36.0 K 108.0 K /user/hls327/violetnoisesummary/edgefeatures/part-00001-e654a7b5-d22b-4d28-9aa4-fbac5041637b-c000.snappy.parquet
38.8 K 116.5 K /user/hls327/violetnoisesummary/edgefeatures/part-00002-e654a7b5-d22b-4d28-9aa4-fbac5041637b-c000.snappy.parquet
41.7 K 125.2 K /user/hls327/violetnoisesummary/edgefeatures/part-00003-e654a7b5-d22b-4d28-9aa4-fbac5041637b-c000.snappy.parguet
43.4 K 130.1 K /user/hls327/violetnoisesummary/edgefeatures/part-00004-e654a7b5-d22b-4d28-9aa4-fbac5041637b-c000.snappy.parguet
43.3 K 130.0 K /user/hls327/violetnoisesummary/edgefeatures/part-00005-e654a7b5-d22b-4d28-9aa4-fbac5041637b-c000.snappy.parguet
Running car classification predictions on sample data, please allow 1-2 mins
Car prediction spark log is in carclassifylog.txt
There were 48 buses and 12190 cars in the data set provided
The model predicted 147 buses and 12091 cars
Confusion matrix:
12088.0 102.0
3.0
        45.0
Area under precision-recall curve = 0.29667869149620957
```

Expected Demo Output

Demo is complete!

```
Running shortest path forecast on sample data, please allow 2-3 mins
Edge forecast spark log is in edgeforecast.txt
Root Mean Squared Error (RMSE) on out sample test data = 17.77699543550038
Mean squared error (MSE) on out sample test data = 316.02156671380123
Regression through the origin(R2) on out sample test data = -0.5941405438580856
Mean absolute error (MAE) on out sample test data = 9.688900768369908
True Shortest Path
9 30to8 30 8 30to7 30 7 30to6 30 6 30to5 30 5 30toMadison 30 Madison 30toPark 30 Park 30toLexington 30 Lexington 30toLexington 31 Lexington 31toL
xington 32 Lexington 32toLexington 33 Lexington 33toLexington 34 Lexington 34toLexington 35 Lexington 35toLexington 36toLexington 37toLexington 37toLexingto
Lexington 37toLexington 38 Lexington 38toLexington 39 Lexington 39toPark 39 Park 39toMadison 39 Madison 39to 39 5 39to 6 39 6 39to 7 39 7 39to 8 39
8 39to9 39 9 39to9 38
143
Predicted Shortest Path
9 30to8 30 8 30to8 31 8 31to8 32 8 32to8 33 8 33to8 34 8 34to8 35 8 35to8 36 8 36to8 37 8 37to8 38 8 38to8 39 8 39to9 39 9 39to9 38
201
```

Thank You!