Decision Tree

Goal is to keep branching until the impurity is low for all leaf nodes. The model works to create clustered region of low impurity regions

Entropy or Gini

Entropy is the measure of disorder(thermodynamics):

Zero entropy for constant (i.e. still) molecule and well ordered

Shannon Information Theory:

Entropy is average information content of message

Current Message
"DEFADBEFF"

Prev Message
"DEFADBEFF"

Entropy

No new information received

Machine Learning:

Entropy is zero when a set contains instances of only one class

Non-parametric - Number of parameters is not determined prior to training.

Unlike parametric linear models, decision trees are infinite

Decision trees are at risk to overfitting - restricting freedom is how decision tree models are regularized

Regression

Training samples

CART cost function used to measure

MSE depends on the distribution of samples in node

Prediction

Training

Step to each node in tree fashion:

O(log2(m))

n × m compute at each node.Each sample compares to each feature

Total: $n \times m \ O(log2(m))$

Training: Inside Node

Find optimal split pair (feature and threshold)

Create children nodes with reference to samples

•

Exercise 5

n- features in node

m- instances in node

If it takes one hour to train a Decision Tree on a training set containing 1 million instances, roughly how much time will it take to train another Decision Tree on a training set containing 10 million instances

$$n \cdot m \cdot log_2(m) = 1$$
 Calculate Z

 $n \cdot m \cdot 10 \cdot log_2(m \cdot 10) = Z$
 $\frac{n \cdot m \cdot 10 \cdot log_2(m \cdot 10)}{n \cdot m \cdot log_2(m)} = Z$
 $\frac{10 \cdot log_2(m \cdot 10)}{log_2(m)} = Z$
 $\frac{10 \cdot log(m \cdot 10)}{log(2)} \frac{log(2)}{log(m)} = Z$
 $\frac{10 \cdot log(m \cdot 10)}{log(m)} = Z$
 $\frac{10 \cdot log(m \cdot 10)}{log(m)} = Z$
 $m = 1000000$

Train Decision Tree

1000 D-Trees/
100 Sample
Predictions
Accuracy

Majority - Vote Predictions Accuracy

0.8575