Machine Learning

Mahbub Majumdar

BRAC University 66 Mohakhali Dhaka, Bangladesh

September 16, 2018

Table of Contents

Introduction

Machine Learning

Examples of Machine Learning Applications

Introduction

Humans generate data

- Social media
- Online shopping
- Surfing

Humans consume data

• e.g. deciding what to buy

Third parties want to analyze the data

- Make predictions
 - e.g. what they can sell

Introduction

To predict, classify behavior or data, we need algorithms

Algorithm

Set of instructions to map an input set/label set to an output set

Sometimes, algorithms don't exist

- customer behavior
- financial market prediction
- spam detection

Lack of knowledge is compensated by collecting lots of data and rules are inferred from the data.

Introduction

Key assumptions about data analysis

- ullet the future \simeq the past
- no new information

Data Mining

Application of machine learning algorithms to large data sets

Example

Using large amounts of data to construct simple models e.g. getting binary outputs during stock market prediction

Applications of Machine Learning

In credit scoring

Banks use credit history and lots of other data to predict credit worthiness using simple models

In fraud detection

Fraudulent credit card transactions are automatically identified

In manufacturing

Optimization, control, troubleshooting

In medicine

Medical diagnosis, cancer detection

Applications of Machine Learning

In telecommunications

Call patterns are analyzed for network optimization

In speech and vision recognition

- Facial recognition
 - humans recognize a few structural pieces of information
 - \circ computers record $n \times n$ pixels and extract patterns from them

Applications of Machine Learning

In cosmology

- Analyze Cosmic Microwave Background (CMB) radiation to filter different inflationary models
- Analyzing astronomical large mapping data for signatures of possible cosmic strings and cosmic superstrings
- ${}^{\circ}$ Some typical models of string compactification predict 10^{500} possible vacua
 - Machine learning is used to filter the vacua the ones which are suitable for life

Machine Learning

Machine Learning is not just a database problem

- part of Al
- intelligent "ability to adjust to a changing environment" by "learning"

If a system can adjust to new conditions

- System designer does not need to foresee every possible state/situation
- No need to analyze and program for every possible case
- "label space" can be infinite

Machine Learning

General Remarks

- Machine Learning models may be
 - predictive ⇒ forecasting
 - descriptive ⇒ gain knowledge from data
- Machine Learning uses statistics for inference from data
 - distill the data into simple models
- What is the role of Computer Science in Machine Learning?
 - need efficient algorithms to solve optimization problems
 - need to store and process huge amounts of data
 - once a model is learned, need efficient algorithmic implementation (minimize space and time complexity)

Learning Associations

In retail: Basket analysis - find association between products

- If buy X, then buy Y
- X = iPhone
- Y = lightning cable
- Target for cross-selling?

Learning Associations

Association Rule: want to find $P(Y \mid X)$

- Y = product that seller wants to sell
- X = product already sold
- Suppose, X = sit down at Sbarro for 1 slice of pizza
- Suppose, Y = pizza to take home to parents
- If $P(Y \mid X) = 0.7$, 70% of non-takeaway customers buy pizza to take home
- If we want to differentiate customers, then we want to find $P(Y \mid X, D)$
- D = feature data e.g. gender, age etc.

 $(^{12}/_{25})$

Credit Scoring

Banks want to predict risk associated with a future loan

 \Rightarrow default probability, P(Default—Credit Data)

Credit Scoring

- \Rightarrow assign a score (default probability) given information about past loan payments
- ⇒ building a credit history is important
- \Rightarrow ML fits a model to past data to calculate risk

Classification

For example, we have to classes:

- $1 o \mathsf{low} \; \mathsf{risk}$
- $2 \to \mathsf{high} \; \mathsf{risk}$

After training on data, the classification rule:

IF income $> \mathit{I}_0$ AND savings $> \mathit{S}_0$ THEN low risk, ELSE high risk

Discriminant Rule

Function that separates examples into different classes

Pattern Recognition

- Recognizing character codes from images (OCR)
 - multiples classes letters
 - recognizing handwritten letters
 - compound letters in Bangla
 - Does not have a formal description of "X" that covers all possible X
 - extract common characteristics
 - In text, redundancy exists
 - word is a sequence of characters
 - succesive characters are dependent and constrained
 - enables error correction e.g. "t?e" \rightarrow "the"
 - Learning models exist that learn sequences and model these dependencies
- Facial recognition
 - more difficult than OCR
 - three dimensional, lighting, different poses
 - veiling of certain inputs e.g. glasses, makeup, facial hair

Pattern Recognition

- Medical diagnosis
 - need lots of test data to prevent ML algorithm from giving false positives
- Natural Language Processing (NLP)
 - acoustic data
 - temporal order, sequence of speech phonemes
 - different accents, gender, age
 pronounce same words differently
 - "best" language model
 - learning from large corpus of data
- Biometrics
 - integration of inputs from different modalities
 - For example,
 - Physiological Characteristics \rightarrow facial images, fingerprints, iris and palm scans
 - Behavioral Characteristics \rightarrow gait, keystroke, signature, voice

 $(^{16}/_{25})$

Knowledge Extraction

The discriminant, for example, teaches how to discriminate between high risk and low risk borrowers

Compression

- Learning causes compression
 - e.g. learn $y = x^2, x \ge 0$
- requires less item to store and sometimes requires less computations to process

Outlier detection/Novelty detection

Finding cases not following general rule e.g. fraud, cosmic strings

Regression

Pricing

- Let,
 - y = price of a used car
 - x = attributes of the car e.g. mileage

then,
$$y = ax + b$$

- Why linear?
 - $\Rightarrow \Delta y \propto \Delta t$
- Log linear
 - $\Rightarrow \Delta y \propto y \Delta x$

Supervised Learning

- Both regression and classification are supervised learning
 - Task is to learn mapping from input to well defined output

$$y = g(x|\theta)$$

y = model

 ${\sf g} = {\sf output} \ {\sf of} \ {\sf model/regression/classification}$

 $\theta=$ parameters that need to be optimized such that estimates are as close as possible to the correct values

Supervised Learning

Regression example

Navigation of a mobile robot, autonomous driving

- \Rightarrow output \rightarrow angle to turn steering wheel
- \Rightarrow input \rightarrow GPS, video cameras

Other examples

Expected goals, $xg = g(x_i|fitness_i)$ where i = 1,2,....n

Ranking

Output is a relative position/label instead of real numbers

 \Rightarrow recommender system for movies, classes to take, teachers to follow

Unsupervised Learning

- No supervision to tell the correct value of output
- There is only input data
- Goal
 - find regularities in the input data
 - look for pattern in the domain space

Example of Density Estimation

- Clustering, finding groups of input
- Customer relationship management
 - Customer segmentation
 - Company wants to fit a profile to customers
 - Collects customer data (demographics, past transactions)
 - Once segmentation is found, company will use different strategies to target different groups
 - Allows identification of outliers
 - niche markets
 - unreliable customers

Unsupervised Learning

Application of Clustering

- Image compression
 - shades of a small number of colors
 - Pixels are 24 bits to represent 16 million colors
 - Pixels of only 64 shades of colors require 6 bits
 - e.g. both light blue and dark blue is considered blue
 - requires less space
- Ideally, would like to identify higher level regularities
 - texture
 - repeated image patterns
- Scanned images
 - bitmapped data
 - \Rightarrow 16 x 16 bitmap of "X" = 32 bytes
 - \Rightarrow map this to ASCII code \rightarrow 1 byte

Unsupervised Learning

Bioinformatics

- DNA sequence of bases A, G, C, T
- RNA transcribed from DNA
- Proteins translated from RNA
- Protein is a sequence of amino acids
- Alignment
 - matching DNA/protein sequences
 - difficult because sequence may be very long, there are many template strings to match against, there maybe deletions, insertions and substitutions
 - Use clustering in learning motifs (sequence of amino acids)
 - motifs = like words
 - amino acids = words
 - proteins = sentences
 - read a string of protein/DNA/RNA

Reinforcement Learning

- For some systems
 - \circ output \rightarrow sequence of actions
 - single action is not important
 - o "policy" (sequence of correct actions) is important
 - no best action
 - o action is good if it is part of a good policy
 - Machine learning
 - \Rightarrow assesses the goodness of policies
 - ⇒ learns from past good action sequences to generate other good
 - Examples:
 - Game playing (Chess, Checker, GO) \rightarrow sequence of steps/moves
 - Robot walking
 - \rightarrow how to walk, run
 - → robot can move in many directions
 - \rightarrow should learn correct sequence of actions to reach goal state

Lecture 1

Reinforcement Learning

Reinforcement Learning Complex

- unreliable, incomplete sensory information
- state is partially observable
- e.g. robot may not know exact position in room
- some goals require multiple agents interacting in a sequence of actions e.g. robots playing football