Universidad de Guadalajara

Seminario de problemas de programación de sistemas reconfigurables

Proyecto 3

Diseñar un circuito combinacional en donde aparezca en un display la palabra Seminario y su nombre o apellido

Nombre:

Muñoz Nuñez Ian Emmanuel

Sección: D01

Código: 216464457

Maestra:

María Patricia Ventura Nuñez Ingeniería robótica

1. Objetivo

Solucionar problemas de diseño utilizando las herramientas aprendidas en programación de sistemas reconfigurables.

Utilizar hojas de datos de las familias lógicas.

Simular circuitos digitales en programas de diseño como *Proteus*[™] e implementarlos físicamente.

Diseño e implementación de una función con salidas múltiples utilizando el software *Boole de Usto*.

Ejemplo:

• Diseño de un decodificador *BCD* a nombre o código hexadecimal con salida en display.

2. Marco teórico

Cada número binario se emparejo con cada uno de los caracteres que se querían, y luego se obtuvieron las ecuaciones para cada uno de los casos.

	W	X	У	Z	a	b	С	d	е	f	g
S	0	0	0	0	1	0	1	1	0	1	1
Е	0	0	0	1	1	0	0	1	1	1	1
3	0	0	1	0	1	1	1	1	0	0	1
I	0	0	1	1	0	1	1	0	0	0	0
n	0	1	0	0	0	0	1	0	1	0	1
A	0	1	0	1	1	1	1	0	1	1	1
r	0	1	1	0	0	0	0	0	1	0	1
I	0	1	1	1	0	1	1	0	0	0	0
О	1	0	0	0	1	1	1	1	1	1	0
n	1	0	0	1	0	0	1	0	1	0	1
U	1	0	1	0	0	1	1	1	1	1	0
ñ	1	0	1	1	1	0	1	0	1	0	1
Е	1	1	0	0	1	0	0	1	1	1	1
Z	1	1	0	1	1	1	0	1	1	0	1
	1	1	1	0	X	X	X	X	X	X	X
	1	1	1	1	X	X	X	X	X	X	X

Tabla 1: Tabla de verdad de la simulación

$$a = (\overline{W}\,\overline{X}\,\overline{Z}) + (WYZ) + (X\overline{Y}\,Z) + (\overline{W}\,\overline{Y}\,Z) + (W\overline{Y}\,\overline{Z})$$

$$b = (XZ) + (W\overline{X}\,\overline{Z}) + (\overline{W}\,\overline{X}\,Y)$$

$$c = (W\overline{X}) + (YZ) + (\overline{X}\,\overline{Z}) + (\overline{W}\,X\overline{Y})$$

$$d = (\overline{X}\,\overline{Z}) + (\overline{W}\,\overline{X}\,\overline{Y}) + (WX)$$

$$e = (X\overline{Z}) + (\overline{Y}\,Z) + W$$

$$f = (\overline{W}\,\overline{Y}\,Z) + (W\overline{Z}) + (\overline{W}\,\overline{X}\,\overline{Y})$$

$$g = (\overline{W}\,\overline{Z}) + (WZ) + (\overline{W}\,\overline{Y}) + (X\overline{Y})$$

3. Circuito a implementar

En la siguiente página se muestra la simulación para el circuito.

4. Conclusión

Lo más complicado de este proyecto fue entender como iba a funcionar cada uno de los segmentos de manera independiente, y realizar una ecuación para cada uno de estos segmentos. Además, crear el circuito fue algo tardado, pues se tenía que pensar en el diseño del circuito que cada segmento iba a tener.