Prime Numbers

Contents

① Divisibility

Prime Numbers

Divisibility

Definitions > preamble (Sets the context of defin)

Syn: It is divisible by d.

Definition 1 (Divisibility)

Let d and x be integers. To say that d divides x means that there exists an integer k such that x = kd. $(\exists k \in \mathbb{Z})(1 = kd)$

- Every integer divides 0. (0 = 0) d, for any $d \in \mathbb{Z}$
- 0 is the only integer that 0 divides. (If x is an integer and 0 divides x, then $\overline{x} = k \cdot 0$ for some integer k, and $\overline{k} \cdot 0 = 0$, so x = 0.)
- Let x be an integer. Then x is even iff 2 divides x.

1=6 is divisible by 1, 2, 3, 6 -1, -2, -3, -6

· Take x=0. Then $0 = 4e \cdot 0 = 0$

. Uniqueness?

4/12

Remarks

- Alternate expression for "d divides x": "x is divisible by d"
- "d divides x" is a sentence while "d divided into x" (x/d, for $d \neq 0$) is a number.

 or "A divided by d"
- **Notation.** $d \mid x$ for "d divides x." and $d \nmid x$ for "d does not divide x."
- Let m and n be integers, with $n \neq 0$. To say that the fraction m/n is in lowest terms means that for each natural number d, if d divides m and d divides n, then d = 1.

$$(\forall d \in \mathbb{N}) \left[(d|m) \wedge (d|n) \Rightarrow d=1 \right]$$

Examples

Example 2 (Divisibility with Natural Numbers)

Let $d, x \in \mathbb{N}$. Suppose d divides x. Then d < x.

Proof. Since d divides x, we can pick an integer k such that x = kd. Since k is an integer, either $k \geq 1$ or $k \leq \mathcal{X}$, But it is not the case that $k \leq 0$, because if $k \le 0$, then $x = kd \le 0$, which contradicts the fact that $x \ge 1$. Hence $k \ge 1$. Therefore kd > d. In other words, x > d.

Example
$$(d, \chi \in \chi)$$
 $d[\chi]$ Example $(d, \chi \in \mathbb{N})$
 $f(\chi) = -6$.
 $f(\chi) = -6$.
 $f(\chi) = 6$.

Example
$$(d, \chi \in \mathbb{N})$$
 $d[\chi \in \mathcal{L}]$

$$\begin{cases} \chi = 6 \\ d = 1, 2, 3, 6 \end{cases}$$

$$d \leq \chi$$

 $M \leq b$

k.d >, 1.d

Examples (cont')

Example 3

Let $a,b,c\in\mathbb{Z}$. If a divides b and a divides c, then a divides b+c and a divides b-c.

Proof Suppose a b and a c.

Since a b, we can find an integer k such that
$$b=ka$$
.

Since a c, we can find an integer L such that $c=la$.

Then
$$b+c=ka+la=(k+l)a.$$
But then $k+l$ is an integer, so a $b+c$.

Examples (cont')

Example 4

Let $a, b, c \in \mathbb{Z}$. If a divides b and b divides a, then b = a or b = -a.

Heat
$$b = ka$$

$$a = lb$$

$$\Rightarrow plug in 2nd line into 1st line
$$b = k(lb)$$$$

Prime Numbers

Definitions

Definition 5 (Prime Numbers)

To say that x is a prime number means that $x \in \mathbb{N}$ and $x \neq 1$ and for each $a \in \mathbb{N}$, for each $b \in \mathbb{N}$, if x = ab, then a = 1 or b = 1.

Exercise. Write the sentence " $x \in \mathbb{N}$ and $x \neq 1$ and for each $a \in \mathbb{N}$, for each $b \in \mathbb{N}$, if x = ab, then a = 1 or b = 1." using symbols.

Exercise: Write down what it means to say that (HW) "I is not prime"

Prime Numbers as Building Blocks

Fact (Prime Factorization)

Each natural number, except 1, is prime or is a product of two or more primes.

- Proof of this fact requires complete induction.
- From this fact, it follows that for each $n \in \mathbb{N}$, if $n \neq 1$, then there exists a prime number p such that p divides n.

How Many Primes?

Theorem 6 (Euclid, circa 300 B.C.)

There are infinitely many prime numbers.

Proof (Contradiction) Suppose there are finitely many prime number

Let
$$\chi = \beta_1 \beta_2 \cdots \beta_m + 1$$
.

prod. of all primes

Proof: Suppose otherwise, that is, one of pi, --, Pm divides to.

Call it pi. But then pi divides to = pi -- pm.

Then p_i divides $\lambda - (\lambda - 1) = 1$, which is impossible. This is a contradiction.