Assignment 2

			Set –B				
<u>S. no</u>		<u>Qu</u>	<u>estion</u>		<u>Marks</u>	<u>COs</u>	BT Level
1.	Construct a reduce	5 marks	CO4	Level 5			
	equivalent to the gi		-				
	$S \rightarrow aAa, A$			$abb \mid DD$,			
	Ε	$C \rightarrow aC$, D	$\rightarrow aDA$				
	Consider the Moore machine described by the transition table given by Table. Find Output for input string 001 and Construct the corresponding Mealy machine Present state Next state Output					CO5	Level 6
		a = 0	a = 1				
	$ ightarrow q_1$ q_2 q_3	g ₁ g ₁ g;	92 95 93	0 0 1			

Set –C												
S. no	Question						COs	BT Level				
1.	Construct a grammar in Greibach normal form equivalent to the						CO4	Level 5				
	grammar					Each						
	$S \rightarrow AA$	a. A -	$\rightarrow SS \mid b.$			_						
2.	Consider the Moore machine described by the transition table given						CO5	Level 6				
	by Table.											
	Present state Next st		tate Output									
		a = 0	a = 1									
	$\rightarrow q_1$	91	4 2	0								
	q_2 q_3	91 9:	95 93	1								
	a) Draw equiv											
	b) Construct the corresponding Mealy machine represent it by											
	transition table a											
			9									