Lecture 21, Oct. 19

- **21.1 Definition.** A **total order** on a set S is a binary relation \leq on S such that
 - 1. Totality: for all $a, b \in S$, either $a \le b$ or $b \le a$
 - 2. Antisymmetry: for all $a, b \in S$, if $a \le b$ and $b \le a$, then a = b
 - 3. Transitivity; for all $a, b, c \in S$, if $a \le b$ and $b \le c$ then $a \le c$
- **21.2 Example.** The usual order \leq is a total order on each of the sets: \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , and indeed on any subset of \mathbb{R} .
- \subseteq is a partial order on P(S). If we define $a \le b$ for $a, b \in \mathbb{N}$ to mean $a \mid b$ then \le is a partial order on \mathbb{N}
- **21.3 Definition.** Given a total order \leq on S, for $a, b \in S$, we define a < b to mean $(a \leq b \text{ and } a \neq b)$, $a \geq b$ to mean $b \leq a$, a > b to mean b < a.
- Remark. We could also define a total order on S to be a binary relation < such that
 - 1. for all $a, b \in S$ exactly one of the following holds:

$$a < b, a = b, b < a$$

- 2. for all $a, b, c \in S$ if a < b and b < c then a < c.
- **21.4 Definition.** A **ordered field** is a field F with a total order < such that
 - 1. < is compatible with +: for all $a, b, c \in F$

$$a < b \rightarrow a + c < b + c$$

2. < is compatible with \times : for all $a, b \in F$,

$$0 < a \land 0 < b \rightarrow 0 < ab$$

- **21.5 Example.** \mathbb{Q} and \mathbb{R} are ordered fields. Also $\mathbb{Q}[\sqrt{2}]$ is an ordered field.
- **21.6 Theorem. Properties of Ordered Fields** Let F be an ordered fields, and let $a, b, c \in F$.
 - 1. If a > 0 then -a < 0 and if a < 0 then -a > 0
 - 2. If a > 0 and b < c then ab < ac
 - 3. If a < 0 and b < c then ab < ac
 - 4. If $a \neq 0$ then $a^2 > 0$. In particular, 1 > 0
 - 5. if 0 < a < b, then 0 < 1/b < 1/a

Proof.

1. Suppose a > 0, then

$$0 < a$$

 $0 + (-a) < a + (-a)$ since $<$ is compatible with $+$
 $-a < 0$.

Suppose a < 0, then...

2. Suppose a > 0 and b < c, then

$$b < c$$

$$b + (-b) < c + (-b) \text{ since } < \text{ is compatible with } +$$

$$0 < c - b$$

$$0 < a(c - b) \text{ since } < \text{ is compatible with } \times$$

$$0 < ac - ab$$

$$0 + ab < (ac - ab) + ab \text{ since } < \text{ is compatible with } +$$

$$0 + ab < ac + (-ab + ab)$$

$$0 + ab < ac + (ab - ab)$$

$$0 + ab < ac + 0$$

$$ab < ac$$

21.7 Example. When p is a prime numer we shall see that \mathbb{Z}_p is a field. It is not possible to define an order which makes \mathbb{Z}_p into an ordered field.

Proof. If < was such an order then we would have

$$1 > 0$$

$$-1 < 0$$

$$-1 = p - 1 = 1 + 1 + \dots + 1 > 0$$

By contradiction, such order does not exist.

Similarly, it is not possible to define an order < on $\mathbb C$ which makes $\mathbb C$ into an ordered field.

$$1 > 0$$

 $-1 < 0$
 $-1 = i^2 > 0$ by Property 21.6.4

21.8 Definition. Let F be an ordered field. For $a \in F$ we define the **absolute value** of a to be

$$|a| = \begin{cases} a & \text{if } a \ge 0\\ -a & \text{if } a \le 0 \end{cases}$$

21.9 Theorem. Properties of Absolute Value Let F be an ordered field. Let $a, b \in F$. Then

1. Positive Definiteness

$$|a| \ge 0 \land (|a| = 0 \leftrightarrow a = 0)$$

2. Symmetry

$$|a - b| = |b - a|$$

3. Multiplicative

$$|ab| = |a||b|$$

4. Triangle Inequality

$$||a| - |b|| \le |a - b| \le |a| + |b|$$

5. Approximation: for $b \ge 0$ and $x \in F$

$$|x - a| < b \leftrightarrow a - b < x < a + b$$

Order Properties in \mathbb{Z} , \mathbb{Q} , \mathbb{R}

21.10 Theorem. In \mathbb{Z} ,

1. for all $n \in \mathbb{Z}$

$$n \in \mathbb{N} \leftrightarrow n \ge 0$$

2. Discreteness: for all n, $kin\mathbb{Z}$,

$$n \le k \leftrightarrow n < k + 1$$

- 3. Well Ordering Property: for every non-empty subset $S \subseteq \mathbb{Z}$, if S is bounded above in \mathbb{Z} , then S has a maximum element.
- 4. Well Ordering Property: for every non-empty subset $S \subseteq \mathbb{Z}$, if S is bounded below in \mathbb{Z} , then S has a minimum element.

Remark. Well-Ordering is related to Induction.