WSC Sports - NLP Team - Home Assignment Omer Nagar, 302824875

Task

Given:

- (Transcription, binary-label) pairs dataset
- List of params

Build a System that takes as an input a transcript and returns an action (in case an action exists and is valid).

EDA:

Goals:

The purpose of this section is to conduct Exploratory Data Analysis (EDA) to assess:

- **Data Quality**: Look for missing values, duplicate records, and data entry errors. Assess class distribution for imbalance.
- **Data Sufficiency**: Ensure the dataset has enough variety and volume to train a model effectively.
- **Model Complexity Considerations**: Analyze the complexity and patterns in the data to estimate the model size and architecture that might be required.

I performed the following analysis:

- 1. Number of valid/invalid instances.
- 2. Label Distribution.
- 3. Distribution of the transcription length.
- 4. Word frequency and statistics.
- 5. Parameters frequency.
- 6. Parameter and label mutual distribution.

Results:

1. Number of valid/invalid instances.

The data contains several instance with multiple or no parameters in the transcription. Overall, there are:

Valid instances: 927 Invalid instances 191

2. Label Distribution

The data is unbalanced and there are significantly more positive instances.

Overall:

Positive: 754 Negative: 173

3. Distribution of the transcription length.

Most of the transcriptions are short.

Length mean: 17.64 Length Std: 10.514

4. Word frequency and statistics.

The dataset exhibits a limited variety of words, with many words lacking sufficient representation

Unique words: 1713

Words frequency mean: 3.7 Words frequency median: 1 Words frequency Std: 10.2

5. Parameters frequency.

The Parameters distribution has a tail of values that are underrepresented. There are even two parameters ("reverse dunk", "pump fake") that does not appear at all.

6. Parameter and label mutual distribution.

several parameters have even higher label imbalance. Moreover, there are missing labels for some of the parameters.

conclusions:

- **Limited data:** data contains under 1K examples and many of the words are underrepresented. I would consider using external basketball related text data to pretrain a model.
- **Label distribution:** there is a need to address the unbalanced labels via sampling/weighted loss.
- **Missing parameters:** some parameters have extremely low appearance, and some does not appear at all. One way to handle it may be to use gen AI to create synthetic training examples.
- Model size: the data contains 1K training instances, where the mean length is ~17. The
 task is to predict a binary label which is not to complex. Therefore, when choosing a
 model, it should be relatively small one and regularization should be applied during
 training phase to prevent overfitting.

Methods

Train-Test Split

Due to the significant imbalance in the dataset regarding action-phrases, it's crucial to ensure that every phrase is represented in the test set. To achieve this, I grouped the data based on the <action-phrase, label> pairings and then split each subgroup appropriately. For those instances where a group contains only a single example, I allocated it directly to the test set.

Baseline Model Architecture

According to the above EDA, I experimented with the following architecture:

1. BERT backbone (freeze-weights)

Pretrained BERT model (bert-base-uncased): 12-layer, 768-hidden, 12-heads, 110M parameters.

MLP

2 layers of fully connected with Relu activation, followed by sigmoid

- a. Liner 768-> 256
- b. Relu
- c. Liner 256-> 1
- d. Sigmoid

The baseline does not attend the unbalanced labels and action-phrases.

Training

For the training I used BCE loss, Adam optimizer with learning rate of 2e-5 and weight decay of 1e-2. I used 32 batch size and did a short training of 20 epochs.

Improvements

I think there are several improvements that can be applied in order to cope with the small dataset and the imbalance in action-phrases and labels:

1. Label weights. (Implemented)

Give weights according to 0/1 distribution.

2. Smart Sampling

Sample batches according to <action-phrase, label> distribution

3. Fine-Tune BERT

Leverage additional, unlabeled basketball-related data, ideally from game commentaries, to refine the backbone model. This fine-tuning process aims to enhance the quality of the embeddings.

4. Use [Mask] token. (Implemented)

Hide the action-phrase from the model and replace it with a [MASK] token. This way, the model will have to rely on the surrounding text. This may help in two ways: it can mitigate the action-phrase imbalance if several phrases can replace the [MASK]. Secondly, the model will rely more on the context, which may provide valuable information about the label (whether it took place on the court or not).

Results

	Train-AUC	Train-Recall	Train- Precision	Val-AUC	Val-Recall	Val-Precision
Baseline	0.7683	0.8844	0.8754	0.7034	0.7048	0.8540
Weighted loss	0.8097	0.7857	0.9277	0.6844	0.6205	0.8512
[Mask]	0.7229	0.9065	0.8752	0.6628	0.7108	0.8676
Weighted loss & [Mask]	0.8348	0.7993	0.9325	0.7052	0.7993	0.8923

Git

htps://github.com/nagar-omer/wsc-interview