Дисперсия абсолютно непрерывной случайной величины На этом уроке мы пройдём ещё одну важную характеристику случайной величины— <i>дисперсию</i> . Мы поймём, как она считается в случае абсолютно непрерывной случайной величины, а также разберёмся, когда она существует. И посчитаем дисперсию нескольких конкретных распределений.

Дисперсия абсолютно непрерывной случайной величины

Когда мы определяли дисперсию дискретной случайной величины, мы получили две эквивалентные формулы:

1.
$$Var(\xi) = E[(\xi - E\xi)^2]$$

2. $Var(\xi) = E[\xi^2] - (E[\xi])^2$

Эти же формулы мы будем использовать и для непрерывного случая. Нам будет удобнее использовать вторую формулу.

Можно сделать вывод, что для того, чтобы была определена дисперсия ξ , как минимум необходимо, чтобы было определено математическое ожидание ξ . Из второй формулы также можно сделать вывод, что необходимо, чтобы было определено $E[\xi^2]$. В свою очередь, если определены $E[\xi]$ и $E[\xi^2]$, то вторая формула позволяет нам записать ответ. На самом деле, если определять через первую формулу, то те же самые условия являются необходимыми и достаточными: это можно увидеть из доказательства эквивалентности формул в дискретном случае на этом шаге.

Как считать $E[\xi^2]$?

Если сходится интеграл $\int\limits_{-\infty}^{+\infty} x^2 p_\xi(x) dx$, то его значение равняется $E[\xi^2]$. Верен и более общий факт:

Утверждение. Если функция f непрерывна, и сходится интеграл $\int\limits_{-\infty}^{+\infty} f(x) \; p_{\xi}(x) dx$, то его значение равняется $E[f(\xi)]$.

Пример. Пусть случайная величина ξ имеет функцию плотности p_{ξ} . Тогда

$$E[\xi^3 - 5\xi^2 + 7] = \int_{-\infty}^{+\infty} (x^3 - 5x^2 + 7)p_{\xi}(x)dx.$$

Доказывать это утверждение мы не будем. Один из способов убедиться в его истинности — посмотреть на псевдо-мат.ожидания.

Формальное определение

После того как мы разобрались со всеми составными частями формул выше, можно сформулировать формальное определение дисперсии.

Определение. Пусть ξ — абсолютно непрерывная случайная величина с плотностью p_{ξ} . Если интегралы $\int\limits_{-\infty}^{+\infty}x\;p_{\xi}(x)dx$ и $\int\limits_{-\infty}^{+\infty}x^2\;p_{\xi}(x)dx$ сходятся, то дисперсия $Var(\xi)$ определена и равняется

$$Var(\xi):=E[\xi^2]-E[\xi]^2=\int\limits_{-\infty}^{+\infty}x^2\ p_\xi(x)dx-\left(\int\limits_{-\infty}^{+\infty}x\ p_\xi(x)dx
ight)^2.$$

Пример. Пусть ξ равномерно распределена на отрезке [3,7]. То есть $p_{\xi}(x)=\frac{1}{4}$ если $x\in[3,7]$, и $p_{\xi}(x)=0$ если $x\notin[3,7]$. Найдём $Var(\xi)$.

Решение. Мы уже узнали из этого шага, $E[\xi] = 5$. Так что осталось найти $E[\xi^2]$.

$$E[\xi^2] = \int\limits_{-\infty}^{+\infty} x^2 p_{\xi}(x) dx = \int\limits_{3}^{7} x^2 \; p_{\xi}(x) dx.$$

Здесь мы воспользовались тем, что вне отрезка [3,7] функция p_{ξ} обращается в ноль.

$$\int\limits_{2}^{7} x^{2} p_{\xi}(x) dx = \int\limits_{2}^{7} x^{2} \cdot \frac{1}{4} \ dx$$

Первообразная функции $x^2 \cdot \frac{1}{4}$ это $(\frac{x^3}{3} \cdot \frac{1}{4}),$ поэтому

$$\int_{9}^{7} x \cdot \frac{1}{4} \, dx = \left(\frac{7^3}{3} \cdot \frac{1}{4}\right) - \left(\frac{3^3}{3} \cdot \frac{1}{4}\right) = \frac{343 - 27}{3 \cdot 4} = \frac{316}{12} = 26\frac{1}{3}.$$

Значит,

$$Var(\xi) = E[\xi^2] - E[\xi]^2 = 26\frac{1}{3} - 5^2 = \frac{4}{3}.$$

Задача. Пусть ξ равномерно распределена на отрезке [2,10]. Если дисперсия ξ определена, то запишите в ответ её значение, округленное с точностью до 3 знаков после запятой. Если не определена, введите по

Введите математическую формулу

Напишите ваш ответ здесь...

Найдите дисперсию экспоненциального распределения с показателем $\lambda=2$ или убедитесь, что она не определена.

Если дисперсия ξ определена, то запишите в ответ её значение, округленное с точностью до 3 знаков после запятой. Если не определена, введите no

Введите математическую формулу

Напишите ваш ответ эдесь...

Найдите дисперсию случайной величины, имеющей распределение Парето с параметрами $x_m=\alpha=1$ или убедитесь, что она не определена.

Если дисперсия ξ определена, то запишите в ответ её значение, округленное с точностью до 3 знаков после запятой. Если не определена, введите по

Введите математическую формулу

Напишите ваш ответ эдесь...

Что мы прошли на этом уроке

• Мы узнали главный итог этого урока — с помощью плотности мы можем посчитать дисперсию случайной величины:

$$Var(\xi):=E[\xi^2]-E[\xi]^2=\int\limits_{-\infty}^{+\infty}x^2\ p_\xi(x)dx-\left(\int\limits_{-\infty}^{+\infty}x\ p_\xi(x)dx
ight)^2.$$

При условии, что все необходимые интегралы сходятся.

• Нашли дисперсию для нескольких классических распределений

Что нас ждёт на следующей неделе

Нам осталось

- познакомиться с Законом больших чисел
- изучить Центральную предельную теорему
- разобрать базовые принципы статистики