Course: SCOR

No: UDPS 2013 Numerical Methods .

Test:

Test:

(a) (a) Sulve the following linear system using LU factorization Method:

$$-4x + 2y - 4z = 0$$

$$6x + 3y + 2z = 5$$

$$2x + y - z = 1$$

$$\begin{bmatrix} -4 & 2 & -4 \\ 6 & 3 & 2 \\ 2 & 1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ -5 \end{bmatrix} \Rightarrow A_{\frac{1}{2}} = \frac{1}{2}$$

$$A = \begin{bmatrix} -4 & 2 & -4 \\ 6 & 3 & 2 \\ 2 & 1 & -1 \end{bmatrix} \begin{bmatrix} -4 & 2 & -4 \\ 6 & 3 & 2 \\ 2 & 1 & -1 \end{bmatrix} \begin{bmatrix} -4 & 2 & -4 \\ 6 & 3 & 2 \\ 2 & 1 & -1 \end{bmatrix} \begin{bmatrix} -4 & 2 & -4 \\ 0 & 6 & -4 \\ 0 & 0 & -\frac{4}{3} \end{bmatrix}$$

$$\begin{bmatrix} -4 & 2 & -4 \\ 0 & 6 & -4 \\ 0 & 0 & -\frac{4}{3} \end{bmatrix} \begin{bmatrix} -4 & 2 & -4 \\ 0 & 6 & -4 \\ 0 & 0 & -\frac{4}{3} \end{bmatrix} \begin{bmatrix} -4 & 2 & -4 \\ 0 & 6 & -4 \\ 0 & 0 & -\frac{4}{3} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -\frac{1}{3} & 1 & 0 \\ 0 & 0 & -\frac{4}{3} & 1 \end{bmatrix}$$
For $A_{\frac{1}{2}} = \frac{1}{3} = \frac{1}{3$

Then
$$y = 0 \times 2$$

$$\begin{bmatrix}
0 \\
-5 \\
-5
\end{bmatrix} = \begin{bmatrix}
0 \\
0 \\
-5
\end{bmatrix} = \begin{bmatrix}
0 \\
0 \\
0 \\
0
\end{bmatrix} = -4 \times + 2(-1.4) - 4(-1.6)$$

$$\Rightarrow x = 0.65$$

x = 0.65 , y=-1.9, z=-1.6

Name: Ngu Yi Hui

(b) Find the estimate	d solutions for the following linear system by using Gauss	Elimination
Method with so	led partial pivoting. All computations are to be carried out	using for
digit rounding a	withmetic.	
-x +10y	-2z = 7	
- 2y	+10 = 6 0 X 4-4 A-4 A-4 A-4	
10x -4	2A = 9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
	he accuracy of the estimated solutions obtained.	
-1.000	10.00 -2.000 X 7.000 A	
	-2.000 10.00 y = 6.000 => Ax = b	
	-1.000 0.000] 2	
	-1,000 10.00 -2.000 7.000	
= [d16] =	D.000 -2.000 10.00 6.000	-
	10.00 -1.000 0.000 9.000	
	es elimination with scaled partial pivoting,	
	, s ₂ =10.00 , s ₃ =10.00	
and 10,	$\frac{1}{1000} = 0.1000 , \frac{1011}{52} = \frac{0.000}{10.00} = 0.000 , \frac{1011}{52} = \frac{10.00}{10.00} = 1.000$	0
	row I and row 3,	
imeranage	10 = 2	
[AIb] =	K3 (0.1000)	
[Mo]-		
	1 7	
	10.00 -1.000 0.000 9.000	
2	0.000 -2,000 10.00 6.000	
2.00	0.000 9.900 -2.000 7.900	
Since 10.0	0 = 0.2000 and 9.900 = 0.9900, interchange row 2 and row	o 3.
	10.00 -1.000 0.000 9.000 R ₃ (0.2020)	-
[Alb] =	0.000 4.400 -2.000 1.400	
L	0.000 -2.000 10.00 6.000	
	10.00 -1.000 0.000 9.000	
3	0.000 9.900 -2.000 7.900	
L	0.000 0.000 9.596 7.596	
: 7.596	= 9.596 z => Z= 0.7916	
7.900	= 9.900 y - 2.000 (0.7916) => y= 0.9579	
9.000	= 10.00 x - 1.000 (0.9579) => x = 0.9958	
: x = 0.99	58, y=0.9579, z=0.7916 *	
	accuracy of the estimated solutions, relative error is used:	
Actual x = 47	3 , Actual y = 91 , Actual z = 376	
	of x = 1.057 × 1075 - = = = = = = = = = = = = = = = = = =	
	of y= 5.495 × 10-6 (3.1-) 4-40 = 2-	
Relative Em	of 2 z = 2.660 ×10-5 (61-) 4- (81-) 5+ ×4- = 0	
	of the estimated solutions are high since all the relative	

Q1. (c) Estimate the solutions for the following linear system by implementing four iterations using method with w=1.1.

Amony 109 100 4x, + x2 - 11x, = 5 0, 100 0000

2x, + 2x, + 5x, = 1

All computational results are to be rounded up to four decimal places.

4.0000 1.0000 -1.0000 X 5.0000 -1.0000 3.0000 1.0000 x₂ = -4.0000 => Ax = b 2.0000 2.0000 5.0000 ×1 1.0000

x,(k) = 1.1000 [+ (-x,(k-1) +x,(k-1) + 5.0000)] - 0.1000 x,(k-1) x3(k) = 1.1000 [3 (x,(k) - x3(k-1) - 4.0000)] - 0,1000 x3(k-1)

x, (w = 1.1000 [+ (-2x, 0 - 2x, (4) + 1.0000)] - 0.1000 x, (k-1) , k = 1,2,3, ...

	k	×, (A)	X ₂ (k)	X ₃ (k)
4	0	00 (2	1 0 suits	0
-	s. A	1,3750	-0.9625	0.0385
c	12	1.5128	-0.8298	-0.0844
	3	1.4287	-0.8289	-0.0355
	4	1.4503	-0.8390	-0.0454

∴ x, 1.4503 , x, 2-0.8390 , x, 2-0.0454

polynomial as Hans (x) = more day soints as laimonning

LAGRANGE POLYNOMIAL	HERMITE POLYNOMIAL	yef(x) over an interval. CUBIC SPLINE POLYNOMIAL
It passes through all the data	It passes through all the data points available over an	Market and the Control of the Contro
	interval.	
All the data points are not	All the data points are not	All the data points are requi
required to be sorted out	required to be sorted out	to be sorted out with respec
with respect to coordinate x.	with respect to coordinate x.	to coordinate x.
 - 0,1000 ×2 (M-1) 2, 3, .	First derivative of Hermite	It involves the piecewise-
_	Polynomial is the same as the	The state of the s
	the data points given.	used for each successive pai
	1. 81288 -0, 62485 -0,08444	of nodes.
	Galeso de - 10 828 de - 10 828 de -	6
	It has least estimation error	Its estimation error can be
-0. 04s2}	polynomial as	more data points on the
	H'2n+1 (x;) = f'(x;),	part of the curve y=f(x)
	j=0,1,2,,n.	when it is changing rapidly

Q2.	(b) The	table	below	shows	a sample of	5	nodes / points	on the	curve y= f(x).
	×		DOSES	×	f(x)	30	select subseque	n ban u	ster notices
				0.2	0.059673			*	
				a.4	0.356087				
				0.6	1.195242			DE .0	
				0.8	3. 169941		Paare.o	0.35	
	from th		-	1.0	7. 389056		law follows had	Hermite	(1) Comback the

(i) Construct fourth Lagrange Polynomial from data points given above. $P_{4}(x) = \frac{(x-x_{1})(x-x_{2})(x-x_{3})(x-x_{4})}{(x_{0}-x_{1})(x_{0}-x_{2})(x_{0}-x_{4})} f(x_{0}) + \frac{(x-x_{0})(x-x_{2})(x-x_{3})(x-x_{4})}{(x_{1}-x_{0})(x_{1}-x_{3})(x_{1}-x_{4})} f(x_{1}) + \frac{(x-x_{0})(x-x_{1})(x-x_{3})(x_{1}-x_{4})}{(x_{1}-x_{0})(x_{1}-x_{3})(x_{1}-x_{3})} f(x_{1}) + \frac{(x-x_{0})(x-x_{1})(x-x_{3})(x_{1}-x_{3})}{(x_{2}-x_{0})(x_{3}-x_{1})(x_{2}-x_{3})(x_{3}-x_{4})} f(x_{2}) + \frac{(x-x_{0})(x-x_{1})(x-x_{3})(x-x_{3})}{(x_{4}-x_{0})(x_{4}-x_{3})(x_{4}-x_{3})} f(x_{6})$ $= \frac{(x-0.4)(x-0.6)(x-0.8)(x-1.0)}{(-0.2)(-0.4)(-0.6)(x-0.8)} (0.059673) + \frac{(x-0.2)(x-0.6)(x-0.8)(x-1.0)}{(-0.2)(-0.4)(-0.6)} (0.356087) + \frac{(x-0.2)(x-0.4)(x-0.6)(x-0.8)}{(-0.2)(x-0.4)(x-0.6)(x-0.8)} (0.4)(0.2)$ $= \frac{(x-0.2)(x-0.4)(x-0.6)(x-0.8)(x-1.0)}{(-0.2)(-0.2)(-0.2)(x-0.4)(x-0.6)(x-0.8)} (0.356087) + \frac{(x-0.2)(x-0.4)(x-0.6)(x-0.8)}{(-0.2)(x-0.4)(x-0.6)(x-0.8)} (0.356087) + \frac{(x-0.2)(x-0.4)(x-0.6)(x-0.8)}{(-0.2)(x-0.4)(x-0.6)(x-0.8)}$

(ii) Estimate f(0.5) using the interpolated polynomial in (b)(i). $f(0.5) \approx P_4(0.5)$

(2E.0 - Q) (CE.0 - N) (OE 0 - N) 000 CE. DPZ + (ZE.D+N). (OE.0 - N) 0000T-DE

- = 1.5540(0,1)(-0.1)(-0.3)(-0.5) 37.0924(0.3)(-0.1)(-0.3)(-0.5) + 186.7566(0.3)(0.1)(-0.3)(-0.5) - 330.2022(0.3)(0.1)(-0.1)(-0.5) + 192.4233(0.3)(0.1)(-0.1)(-0.3)
 - = 0.6829

Q2. (c) The following table indicates a sample of experimental data between pressure x and reaction rate y and respective rates of change of y with respect to x.

×		ч	4'
ľ	0.30	0.40496	1.75482
1	0.32	0.44068	1.81781
1	0.35	0.49667	1.91574

(i) Construct the Hermite polynomial using the divided - difference table from the sample data given in the table above.

(ii) Use the polynomial in (i) above to estimate y when x = 0.31.

All comp	rtations are	performed	up to the	re decimal	places.	
(i) (N-N) (i	f(x)	1st Divided	2nd Divided	3rd Divided	4th Divided	5th Divideol
(1) (100 × (10)	- (X)	Difference	Difference	Difference	Difference	Difference
0.30	0.40496	1.75482	(0.1-	e) (8.5-E) (a	(x-0.4)(x-0	
0.30	0.40496	1.78600	1.55900	1.57500	.a-)(r.o-)	
0.32	0.44068	1.81781	1.54050	0.53660	-20,76800	\$96.32000
0.32	0.44068	1.86633	1.61733	0.48400	9.04800	210.52000
0.35	0.49667	1.91574	1.64700		0 - x) 8623.1	
0.35	0.44667	EOK-018- (0.	-x)(B.0-x)(2.0-x)(x.0-	196. 1866 (N	

 $H_{5}(x) = 0.40496 + 1.75482(x-0.30) + 1.55900(x-0.30)^{2} + 1.57500(x-0.30)^{2}(x-0.32) - 20.76800(x-0.30)^{2}(x-0.32)^{2} + 596.32000(x-0.30)^{2}(x-0.32)^{2}(x-0.35)$

(11) f(0.31) & Hx (0.31)

= 0.40496 + 1.75482 (0.01) + 1.55900 (0.0001) + 1.57500 (0.0001)(-0.01) 20.76800 (0.0001) (0.0001) + 596.32000 (0.0001) (0.0001) (-0.04)
= 0.42266

eigenvalue of motrix A =				7.0		
		3.556 -1.77				
	[0	-1.778 3.55			7 -	7
Iteration 1: y, = Ax. =	100000	49 X, = 1.	778 4, = 1.	778 1.778	2 1	
5.5	0			0	0	
	1.778			1.772	3] [1]
Heration 2: y2 = Ax, =	3.556	~ X₂ = 3.5	56 42 = 3.55	6 3.556	=[1]	
	-3.55%			-3.556	-1	
	3.556			3.556	1	
Heration 3: 43 = Ax3 = [5.334	~> ×3 = 17.11;	- 44 = - T			
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-7.112			-7.112	-1	
	5.334				0.75	
,	Av					
: Dominant Eigenvalue =	λ ≈ - ×	×.				
	.,,	-3	En.	75 7		
	[4.44	5 -6.223 4.4	45] -	75		
	T 0.75	-1 0.7	7 50.7	5 7		
			1 L 0.7	5		
	= 12.89	05/2.125				
	= 6.06					

(b) Comment on the advantages and disadvar	stages of using Power Method with scaling
over QR algorithm in estimating eigenvalues	
POWER METHOD WITH SCALING	QR ALGORITHM
Only approximate the dominant eigenvalue of	Can approximate all the eigenvalues for
matrix A.	matrix A.
Only applicable if matrix A has dominant	Applicable when matrix A do not have
eigenvalue.	dominant eigenvalue.
Applicable when matrix A is not in	Not applicable when matrix A is not in
tridiagonal form.	tridiagonal form.