

Sistemas Operacionais

Escalonador de Tarefas

Apresentações Adaptadas do Material do Prof. Marcelo Paravisi

O que é Escalonador de Tarefas?

É um do Sistema operacional que gerencia as tarefas, quem pode ser executado, ordem de prioridade, etc.

Este componente é quem decide a ordem de execução das tarefas prontas.

O que é Escalonador de Tarefas?

- O Gerenciamento é baseado em algoritmos.
- O algoritmo utilizado no escalonador define o comportamento do sistema operacional, permitindo obter sistemas que tratem de forma mais eficiente e rápida as tarefas a executar:
 - aplicações interativas,
 - processamento de grandes volumes de dados,
 - programas de cálculo numérico,
 - etc.

O que é Escalonador de Tarefas?

Ou seja, é o procedimento de escolha do processo a ser executado.

Partes responsáveis:

- Escalonador
- Algoritmo

Tipos de Tarefas (Temporal)

Tarefas de tempo real:

 Exigem previsibilidade em seus tempos de resposta aos eventos externos, pois geralmente estão associadas ao controle de sistemas críticos.

Tarefas interativas:

 São tarefas que recebem eventos externos (do usuário ou através da rede) e devem respondê-los rapidamente, embora sem os requisitos de previsibilidade das tarefas de tempo real.

Tarefas em lote (batch):

 Normalmente executam sem intervenção do usuário, como procedimentos de backup, varreduras de antivírus, cálculos numéricos longos, tratamentos de grandes massas de dados em lote, renderização de animações, etc.

Tipos de Tarefas (Uso Processador)

Tarefas orientadas a processamento (CPU-bound tasks):

- São tarefas que usam intensivamente o processador na maior parte de sua existência. Essas tarefas ficam boa parte de suas existências no estado Pronto.
- Exemplos: A conversão de arquivos de vídeo e outros processamentos longos.

Tarefas orientadas a entrada/saída (IO-bound tasks):

- São tarefas que dependem muito mais dos dispositivos de entrada/saída que do processador. Essas tarefas ficam boa parte de suas existências no estado <u>Suspenso</u>, aguardando respostas às suas solicitações de leitura e/ou escrita de dados nos dispositivos de entrada/saída.
- Exemplos desta classe de tarefas incluem editores, compiladores e servidores de rede.

Escalonamento Preemptivo X Cooperativo

Sistemas Preemptivos:

 nestes sistemas uma tarefa pode perder o processador caso termine seu quantum de tempo, caso execute uma chamada de sistema ou caso ocorra uma interrupção que acorde uma tarefa mais prioritária

Sistemas Cooperativos:

 A tarefa em execução permanece no processador tanto quanto possível, só liberando o mesmo caso termine de executar, solicite uma operação de entrada/saída ou libere explicitamente o processador, voltando à fila de tarefas prontas.

Escalonamento Preemptivo X Cooperativo

- Nos sistemas preemtivos, a cada interrupção, exceção ou chamada de sistema, o escalonador reavalia todas as tarefas da fila de prontas e decide se mantém ou substitui a tarefa atualmente em execução.
- Atualmente a maioria dos sistemas operacionais de uso geral é preemptiva.
- Sistemas mais antigos, como o Windows 3.*, PalmOS 3 e MacOS 8 e 9 operavam de forma cooperativa.

- Tempo de execução (ou de vida) (turnaround time, tt)
- Tempo de espera (waiting time, tw)
- Tempo de resposta (response time, tr)
- Justiça
- Eficiência

• Tempo de execução (ou de vida) (turnaround time, tt):

- diz respeito ao tempo total da execução de uma tarefa, ou seja, o tempo decorrido entre a criação da tarefa e seu encerramento, computando todos os tempos de processamento e de espera.
- Não deve ser confundido com o tempo de processamento (tp),
 que é o tempo total de uso de processador demandado pela tarefa.

Tempo de espera (waiting time, tw):

- é o tempo total perdido pela tarefa na fila de tarefas prontas, aguardando o processador.
- Deve-se observar que esse tempo não inclui os tempos de espera em operações de entrada/saída (que são inerentes à aplicação e aos dispositivos).

Tempo de resposta (response time, tr):

- é o tempo decorrido entre a chegada de um evento ao sistema e o resultado imediato de seu processamento.
 - Por exemplo, em um editor de textos seria o tempo decorrido entre apertar uma tecla e o caractere correspondente aparecer na tela.

Justiça:

 este critério diz respeito à distribuição do processador entre as tarefas prontas: duas tarefas de comportamento e prioridade similares devem ter durações de execução similares.

Eficiência:

- Indica o grau de utilização do processador na execução das tarefas do usuário.
- Ela depende sobretudo da rapidez da troca de contexto e da quantidade de tarefas orientadas a entrada/saída no sistema (tarefas desse tipo geralmente abandonam o processador antes do fim do quantum, gerando assim mais trocas de contexto que as tarefas orientadas a processamento).

ALGORITMOS DE ESCALONAMENTO DE TAREFAS

INSTITUTO FEDERAL RIO GRANDE DO SUL

Algoritmos de Escalonamento

- First-Come, First Served (FCFS)
- Round-Robin (RR)
- Shortest Job First (SJF)
- Shortest Remaining Time First (SRTF)
- Escalonamento por prioridades fixas (PRIOc, PRIOp)
- Escalonamento por prioridades dinâmicas (PRIOd)

INSTITUTO FEDERAL RIO GRANDE DO SUL

First-Come, First Served (FCFS)

- Consiste em simplesmente atender as tarefas em sequência, à medida em que elas se tornam prontas
- A execução será conforme sua ordem de ingresso na fila de tarefas prontas.
- Sua principal vantagem sua simplicidade.

INSTITUTO FE

INSTITUTO FEDERAL First-Come, First Served (FCFS)

Tarefa	t_1	t_2	t_3	t_4	t_5
Ingresso	0	0	1	3	5
Duração	5	2	4	1	2
Prioridade	2	3	1	4	5

Round-Robin (RR)

- A adição da preempção por tempo ao escalonamento FCFS dá origem a outro algoritmo de escalonamento bastante popular, conhecido como escalonamento por revezamento, ou Round-Robin (Escalonamento Circular).
- Round-Robin é menos eficiente para a execução de tarefas em lote. Entretanto, por distribuir melhor o uso do processador entre as tarefas ao longo do tempo, ele proporciona tempos de resposta bem melhores às aplicações interativas.
- Outro problema deste escalonador é o aumento no número de trocas de contexto

Round-Robin (RR)

Tarefa	t_1	t_2	t_3	t_4	t_5
Ingresso	0	0	1	3	5
Duração	5	2	4	1	2
Prioridade	2	3	1	4	5

quantum tq = 2s

Shortest Job First (SJF)

- O algoritmo SJF é cooperativo.
- Consiste em atribuir o processador à menor (mais curta) tarefa da fila de tarefas prontas.
- Esse algoritmo (e sua versão preemptiva, SRTF) proporciona os menores tempos médios de espera das tarefas.
- A maior dificuldade no uso do algoritmo SJF consiste em estimar a duração de cada tarefa, antes de sua execução.
- Outro problema associado ao escalonamento SJF é a possibilidade de inanição (starvation) das tarefas mais longas. (Somente Tarefas curtas são executadas)

Shortest Job First (SJF)

Tarefa	t_1	t_2	t_3	t_4	t_5
Ingresso	0	0	1	3	5
Duração	5	2	4	1	2
Prioridade	2	3	1	4	5

Shortest Remaining Time First (SRTF)

- Menor Tempo Restante Primeiro (SRTF Short Remaining Time First)
- Compara a duração prevista de cada nova tarefa que ingressa no sistema com o tempo de processamento restante das demais tarefas presentes, inclusive aquela que está executando no momento.
- Caso a nova tarefa tenha um tempo restante menor, ela recebe o processador.

Shortest Remaining Time First (SRTF)

Tarefa	t_1	t_2	t_3	t_4	t_5
Ingresso	0	0	1	3	5
Duração	5	2	4	1	2
Prioridade	2	3	1	4	5

Escalonamento por prioridades

- No escalonamento por prioridade, a cada tarefa é associada uma prioridade, geralmente na forma de um número inteiro, que representa sua importância no sistema.
- Os valores de prioridade são então usados para definir a ordem de execução das tarefas.
- O escalonamento por prioridade pode ser cooperativo ou preemptivo.
- Para evitar a inanição das tarefas de menor prioridade, um fator interno denominado envelhecimento (aging) deve ser definido. O envelhecimento aumenta a prioridade da tarefa proporcionalmente ao tempo que ela está aguardando o processador (Prioridade Dinamica).

Escalonamento por prioridades: Cooperativo (Maior - Preferencia)

Tarefa	t_1	t_2	t_3	t_4	t_5
Ingresso	0	0	1	3	5
Duração	5	2	4	1	2
Prioridade	2	3	1	4	5

Escalonamento por prioridades: Preemptivo (Maior - Preferencia)

Tarefa	t_1	t_2	t_3	t_4	t_5
Ingresso	0	0	1	3	5
Duração	5	2	4	1	2
Prioridade	2	3	1	4	5

quantum tq = 2s

A definição da prioridade de uma tarefa é influenciada por diversos fatores, que podem ser classificados em dois grandes grupos

Windows (2000 em diante):

- Processos e threads são associados a classes de prioridade (6 classes para processos e 7 classes para threads);
- A prioridade final de uma thread depende de sua prioridade de sua própria classe de prioridade e da classe de prioridade do processo ao qual está associada, assumindo valores entre 0 e 31.
- As prioridades do processos, apresentadas aos usuários no Gerenciador de Tarefas, apresentam os seguintes valores default:
 - 24: tempo real
 - 13: alta
 - 10: acima do normal
 - 8: normal
 - 6: abaixo do normal
 - 4: baixa ou ociosa
- Além disso, geralmente a prioridade da tarefa responsável pela janela ativa recebe um incremento de prioridade: +1 ou +2, conforme a configuração do sistema (essa informação é considerada um fator interno de prioridade).

Linux (núcleo 2.4 em diante) - Considera duas escalas de prioridade separadas:

a) Tarefas de tempo real:

Usam uma escala de 1 a 99 positiva (valores maiores indicam maior prioridade).
 Somente o núcleo ou o administrador (root) podem lançar tarefas de tempo real.

b) Demais tarefas:

- Usam uma escala que vai de −20 a +19, negativa (valores maiores indicam menor prioridade).
- Esta escala, denominada nice level, é padronizada em todos os sistemas UNIXlike.
- A prioridade das tarefas de usuário pode ser ajustada através dos comandos nice e renice.


```
timoteolange@aula:~$ renice +10 976267
976267 (process ID) old priority 10, new priority 10
timoteolange@aula:~$ renice +20 976268
976268 (process ID) old priority 10, new priority 19
timoteolange@aula:~$ [
```

```
Tasks: 51, 84 thr; 3 running
                                                Load average: 1.90 1.64 1.19
                                                Uptime: 108 days(!), 04:17:09
   PID USER
                     NI VIRT
                                      SHR S CPU% MEM%
                                                       TIME+ Command
975570 timoteola 20
                      0 8452
                               4332
                                     3240 R
                                                 0.1 0:11.35 htop
                      0 18348
975303 timoteola 20
                               9468
                                     7976 S
                                                0.2 0:00.13 /lib/systemd/syst
                      0 184M
                               5492
                                                      0:00.00 (sd-pam)
975304 timoteola 20
975542 timoteola 20
                      0 32820
                               7024
                                     4772 S
                                                      0:00.35 sshd: timoteoland
                               1732
                                     1596 S 0.0 0.0 0:00.00 -sh
975543 timoteola 20
975555 timoteola 20
                      0 8292
                               4988
                                     3380 S 0.0 0.1 0:00.02 /bin/bash
975707 timoteola 20
                      0 32816
                               7048
                                     4808 S 0.0 0.2 0:00.12 sshd: timoteolan
975708 timoteola 20
                               1712
                                    1576 S 0.0
                                                      0:00.00 -sh
                                     3472 S
975717 timoteola
                         8788
                               5468
                                            0.0
                                                      0:00.10 /bin/bash
976267 timoteola 30
                      10 19140 1712
                                     1580 R 100.
                                                 0.0 1:39.72 ./minhathread
976268 timoteola 39
                     19 19140 1712
                                                      1:39.71 ./minhathread
  1149 systemd-r 20
                      0 23992 6944
                                     4732 S 0.0
                                                 0.2 5:08.58 /lib/systemd/syst
  1038 systemd-n 20
                      0 18376 5724
                                     4996 S 0.0 0.1 2:09.29 /lib/systemd/syst
2343397 syslog
                                                      3:33.50 /usr/sbin/rsyslo
2343398 syslog
                      0 219M 3132 1756 S 0.0 0.1 0:11.54 /usr/sbin/rsvslo
```


Atividades