

On the structure and syntactic complexity of generalized definite languages

Szabolcs Iván and Judit Nagy-György

University of Szeged, Hungary

Abstract. We give a forbidden pattern characterization for the class of generalized definite languages, show that the corresponding problem is **NL**-complete and can be solved in quadratic time. We also show that their syntactic complexity coincides with that of the definite languages and give an upper bound of $n!$ for this measure.

1 Introduction

- A language is generalized definite if membership can be decided for a word by looking at its prefix and suffix of a given constant length. Generalized definite languages and automata were introduced by Ginzburg [6] in 1966 and further studied in e.g. [4,5,13,15]. This language class is strictly contained within the class of star-free languages, lying on the first level of the dot-depth hierarchy [1]. This class possess a characterization in terms of its syntactic semigroup [12]: a regular language is generalized definite if and only if its syntactic semigroup is locally trivial if and only if it satisfies a certain identity $x^\omega y x^\omega = x^\omega$. This characterization is hardly efficient by itself when the language is given by its minimal automaton, since the syntactic semigroup can be much larger than the automaton (a construction for a definite language with state complexity – that is, the number of states of its minimal automaton – n and syntactic complexity – that is, the size of the transition semigroup of its minimal automaton – $\lfloor e(n-1)! \rfloor$ is explicit in [2]). However, as stated in [14], Sec. 5.4, it is usually not necessary to compute the (ordered) syntactic semigroup but most of the time one can develop a more efficient algorithm by analyzing the minimal automaton. As an example for this line of research, recently, the authors of [9] gave a nice characterization of minimal automata of piecewise testable languages, yielding a quadratic-time decision algorithm, matching an alternative (but of course equivalent) earlier (also quadratic) characterization of [17] which improved the $\mathcal{O}(n^5)$ bound of [16].
- In this paper we give a forbidden pattern characterization for generalized definite languages in terms of the minimal automaton, and analyze the complexity of the decision problem whether a given automaton recognizes a generalized definite language, yielding an **NL**-completeness result (with respect to logspace reductions) as well as a deterministic decision procedure running in $\mathcal{O}(n^2)$ time (on a RAM machine).

¹ There is an ongoing line of research for syntactic complexity of regular languages.
² In general, a regular language with state complexity n can have a syntactic
³ complexity of n^n , already in the case when there are only three input letters.
⁴ There are at least two possible modifications of the problem: one option is to
⁵ consider the case when the input alphabet is binary (e.g. as done in [7,10]). The
⁶ second option is to study a strict subclass of regular languages. In this case, the
⁷ syntactic complexity of a class \mathcal{C} of languages is a function $n \mapsto f(n)$, with $f(n)$
⁸ being the maximal syntactic complexity a member of \mathcal{C} can have whose state
⁹ complexity is (at most) n . The syntactic complexity of several language classes,
¹⁰ e.g. (co)finite, reverse definite, bifix-, factor- and subword-free languages etc.
¹¹ is precisely determined in [11]. However, the exact syntactic complexity of the
¹² (generalized) definite languages and that of the star-free languages (as well as
¹³ the locally testable or the locally threshold testable languages) is not known yet.
¹⁴ We also address this problem and show that the syntactic complexity of gener-
¹⁵ alized definite languages coincides with that of definite languages, and show an
¹⁶ upper bound $n!$ for this measure. Since the lower bound is $\Omega((n - 1)!)$, this is
¹⁷ asymptotically optimal up to a logarithmic factor.

18 2 Notation

¹⁹ We assume the reader is familiar with the standard notions of automata and
²⁰ language theory, but still we give a summary for the notation.
²¹ When $n \geq 0$ is an integer, $[n]$ stands for the set $\{1, \dots, n\}$. An *alphabet* is a
²² nonempty finite set Σ . The set of *words* over Σ is denoted Σ^* , while Σ^+ stands
²³ for the set of *nonempty words*. The *empty word* is denoted ε . A *language* over
²⁴ Σ is an arbitrary set $L \subseteq \Sigma^*$ of Σ -words.
²⁵ A (finite) *automaton* (over Σ) is a system $\mathbb{A} = (Q, \Sigma, \delta, q_0, F)$ where Q is the
²⁶ finite set of states, $q_0 \in Q$ is the start state, $F \subseteq Q$ is the set of final (or accepting)
²⁷ states, and $\delta : Q \times \Sigma \rightarrow Q$ is the transition function. The transition function δ
²⁸ extends in a unique way to a right action of the monoid Σ^* on Q , also denoted δ
²⁹ for ease of notation. When δ is understood, we write $q \cdot u$, or simply qu for $\delta(q, u)$.
³⁰ Moreover, when $C \subseteq Q$ is a subset of states and $u \in \Sigma^*$ is a word, let Cu stand
³¹ for the set $\{pu : p \in C\}$ and when L is a language, $CL = \{pu : p \in C, u \in L\}$.
³² The *language recognized by \mathbb{A}* is $L(\mathbb{A}) = \{x \in \Sigma^* : q_0x \in F\}$. A language is
³³ *regular* if it can be recognized by some finite automaton.
³⁴ The state $q \in Q$ is *reachable* from a state $p \in Q$ in \mathbb{A} , denoted $p \preceq_{\mathbb{A}} q$, or just
³⁵ $p \preceq q$ if there is no danger of confusion, if $pu = q$ for some $u \in \Sigma^*$. An automaton
³⁶ is *connected* if its states are all reachable from its start state.
³⁷ Two states p and q of \mathbb{A} are *distinguishable* if there exists a word $u \in \Sigma^*$ such
³⁸ that exactly one of pu and qu belongs to F . In this case we say that u *separates*
³⁹ p and q . A connected automaton is called *reduced* if each pair of distinct states
⁴⁰ is distinguishable.

¹ It is known that for each regular language L there exists a reduced automaton
² \mathbb{A}_L , unique up to isomorphism, recognizing L . \mathbb{A}_L can be computed from any
³ automaton recognizing L by an efficient algorithm called minimization and is
⁴ called the *minimal automaton* of L .

\mathbb{A}_L

⁵ The classes of the equivalence relation $p \sim q \Leftrightarrow p \preceq q$ and $q \preceq p$ are called
⁶ *components* of \mathbb{A} . A component C is *trivial* if $C = \{p\}$ for some state p such that
⁷ $pa \neq p$ for any $a \in \Sigma$, and is a *sink* if $C\Sigma \subseteq C$. It is clear that each automaton
⁸ has at least one sink and sinks are never trivial. The *component graph* $\Gamma(\mathbb{A})$ of
⁹ \mathbb{A} is an edge-labelled directed graph (V, E, ℓ) along with a mapping $c : Q \rightarrow V$
¹⁰ where V is the set of the \sim -classes of \mathbb{A} , the mapping c associates to each state
¹¹ q its class $q/\sim = \{p : p \sim q\}$ and for two classes p/\sim and q/\sim there exists
¹² an edge from p/\sim to q/\sim labelled by $a \in \Sigma$ if and only if $p'a = q'$ for some
¹³ $p' \sim p, q' \sim q$. It is known that the component graph can be constructed from \mathbb{A}
¹⁴ in linear time. Note that the mapping c is redundant but it gives a possibility for
¹⁵ determining whether $p \sim q$ holds in constant time on a RAM machine, provided
¹⁶ $Q = [n]$ for some $n > 0$ and c is stored as an array.

(trivial) components
and sinks

¹⁷ When A and B are sets, then A^B denotes the set of all functions $f : B \rightarrow A$.
¹⁸ When $f : B \rightarrow A$ and $C \subseteq B$, then $f|_C : C \rightarrow A$ denotes the restriction of
¹⁹ f to C . When A_1, \dots, A_n are disjoint sets, A is a set and for each $i \in [n]$,
²⁰ $f_i : A_i \rightarrow A$ is a function, then the *source tupling* of f_1, \dots, f_n is the function
²¹ $[f_1, \dots, f_n] : (\bigcup_{i \in [n]} A_i) \rightarrow A$ with $[f_1, \dots, f_n](a) = f_i(a)$ for the unique i with

$[f_1, \dots, f_n]$: source
tupling

²² $a \in A_i$. Members of Q^Q are called *transformations* of Q , forming a semigroup
²³ with composition $(fg)(q) = g(f(q))$ as product. When $\mathbb{A} = (Q, \Sigma, \delta, q_0, F)$ is
²⁴ an automaton, its *transformation semigroup* $\mathcal{T}(\mathbb{A})$ consists of the set of trans-
²⁵ formations of Q induced by nonempty words, i.e. $\mathcal{T}(\mathbb{A}) = \{u^\mathbb{A} : u \in \Sigma^+\}$
²⁶ where $u^\mathbb{A} : Q \rightarrow Q$ is the transformation defined as $q \mapsto qu$. A transforma-
²⁷ tion $f : Q \rightarrow Q$ is called *permutational* if there exists a set $D \subseteq Q$ with $|D| > 1$
²⁸ on which f induces a permutation, otherwise it's non-permutational. Observe
²⁹ that a non-permutational transformation f is idempotent (i.e. $ff = f$) if and
³⁰ only if it is a constant function. Alternatively, a transformation $f : Q \rightarrow Q$ is
³¹ non-permutational for a finite Q if and only if $f^{|Q|}$ is constant. Another class
³² of functions used in the paper is that of the *elevating* functions: for the integers
³³ $0 < k \leq n$, a function $f : [k] \rightarrow [n]$ is elevating if $i < f(i)$ for each $i \in [k]$.

non-permutational
transformation

elevating function

³⁴ 3 Patterns for subclasses of the star-free languages

³⁵ A language L is

- ³⁶ – *cofinite* if its complement is finite;
- ³⁷ – *definite* if there exists a constant $k \geq 0$ such that for any $x \in \Sigma^*$, $y \in \Sigma^k$
³⁸ we have $xy \in L \Leftrightarrow y \in L$;
- ³⁹ – *reverse definite* if there exists a constant $k \geq 0$ such that for any $x \in \Sigma^k$,
⁴⁰ $y \in \Sigma^*$ we have $xy \in L \Leftrightarrow x \in L$;

¹ – *generalized definite* if there exists a constant $k \geq 0$ such that for any $x_1, x_2 \in$
² Σ^k and $y \in \Sigma^*$ we have $x_1 y x_2 \in L \Leftrightarrow x_1 x_2 \in L$.

³ These are all subclasses of the star-free languages, i.e. can be built from the
⁴ singletons with repeated use of the concatenation, finite union and complemen-
⁵ tation operations. It is known that the following decision problem is complete
⁶ for **PSPACE**: given a regular language L with its minimal automaton, is L
⁷ star-free? In contrast, the question for these subclasses above are all tractable.

⁸ Minimal automata of the finite, cofinite, definite and reverse definite languages
⁹ possess a characterization in terms of *forbidden patterns*. In our setting, a pattern
¹⁰ is an edge-labelled, directed graph $P = (V, E, \ell)$, where V is the set of vertices,
¹¹ $E \subseteq V^2$ is the set of edges, and $\ell : E \rightarrow \mathcal{X}$ is a labelling function which
¹² assigns to each edge a variable. An automaton $\mathbb{A} = (Q, \Sigma, \delta, q_0, F)$ *admits a*
¹³ *pattern* $P = (V, E, \ell)$ if there exists an *injective* mapping $f : V \rightarrow Q$ and a map
¹⁴ $h : \mathcal{X} \rightarrow \Sigma^+$ such that for each $(u, v) \in E$ labelled x we have $f(u) \cdot h(x) = f(v)$.
¹⁵ Otherwise \mathbb{A} *avoids* P .

admitting/avoiding
a pattern

¹⁶ As an example, consider the pattern P_f on Figure 1.

Fig. 1: Patterns for (co)finiteness, definiteness and reverse definiteness languages.

¹⁷ An automaton admits P_f iff there exist *different* states $p, q \in Q$ and (not neces-
¹⁸ sarily different) words $x, y \in \Sigma^+$ such that $px = p$ and $qy = q$. It is easy to see
¹⁹ that an automaton \mathbb{A} avoids P_f iff it has a unique sink which is a set consisting
²⁰ of a single state p , and all the other components are trivial; if p is a rejecting
²¹ state, then $L(\mathbb{A})$ is finite, otherwise it is cofinite. The condition is also necessary
²² in the following sense: a language is finite or cofinite if and only if its minimal
²³ automaton avoids P_f .

²⁴ As other examples, consider the patterns P_d and P_r on Figure 1.

²⁵ It is easy to see that if $\mathbb{A} = (Q, \Sigma, \delta, q_0, F)$ is the minimal automaton of a
²⁶ reverse definite language, then it avoids P_r : if there are states $p \neq q \in Q$ and
²⁷ words $x, y \in \Sigma^+$ with $px = p$ and $py = q$, then $L = L(\mathbb{A})$ is not reverse definite.
²⁸ Indeed, suppose L is a k -reverse definite language and let u be a word with
²⁹ $q_0 u = p$. Since $p \neq q$ and \mathbb{A} is minimal, there is a word w distinguishing p and
³⁰ q . Thus, $ux^k w$ and $ux^k yw$ are two words with the same prefix of length k , and
³¹ exactly one of them is in L , a contradiction.

- ¹ Also, if $L = L(\mathbb{A})$ is a k -definite language with \mathbb{A} being its minimal automaton,
² then \mathbb{A} avoids P_d : if there are states $p \neq q \in Q$ and a word x with $px = p$, $qx = q$,
³ then let $u, v, w \in \Sigma^*$ be words such that $q_0u = p$, $q_0v = q$ and w separates p
⁴ and q . Then $ux^k w$ and $vx^k w$ have the same suffix of length k , with exactly one
⁵ of them being a member of L , a contradiction.
- ⁶ It can be seen (see e.g. [2]) that avoiding these patterns are also sufficient: a
⁷ regular language is definite (reverse definite, resp.) if and only if its minimal
⁸ automaton avoids P_d (P_r , resp.). Note that avoiding P_d is equivalent to state
⁹ that each nonempty word induces a transformation with at most one fixed point,
¹⁰ which is further equivalent to state that each nonempty word induces a non-
¹¹ permutational transformation. See [2]¹.)
- ¹² Consequently, all the following questions are in the complexity class **NL**: given a
¹³ language L by its minimal automaton, is L (co)finite / definite / reverse definite?

¹⁴ 4 Results

¹⁵ In this section we give a new characterization of the minimal automata of gen-
¹⁶ eralized definite languages, leading to an **NL**-completeness result of the cor-
¹⁷ responding decision problem, as well as a low-degree polynomial deterministic
¹⁸ algorithm, and show that the syntactic complexity of generalized definite lan-
¹⁹ guages is the same as that of the definite languages. We also give an upper bound
²⁰ $n!$ for the syntactic complexity of (generalized) definite languages.

²¹ 4.1 Forbidden pattern characterization

²² We need the following well-known lemma:

²³ **Lemma 1.** *For any nonempty finite set C there exists a constant $m = m(|C|)$
²⁴ depending only on the size of C such that in any product $f = f_1 f_2 \dots f_m$ with
²⁵ $f_i \in C^C$ for each $i \in [m]$, an idempotent factor appears, i.e. $f_j \dots f_k$ is an
²⁶ idempotent transformation of C for some $1 \leq j \leq k \leq m$.*

²⁷ Note to the reviewers: we were unable to locate the first appearance with proof
²⁸ of Lemma 1, thus we decided to include its proof in the Appendix.

²⁹ We are ready to show that a regular language is generalized definite if and only
³⁰ if its minimal automaton avoids the pattern P_g , depicted on Figure 2.

³¹ **Theorem 1.** *The following are equivalent for a reduced automaton \mathbb{A} :*

³² *i) \mathbb{A} avoids P_g .*

¹ Since – up to our knowledge – [2] has not been published yet in a peer-reviewed journal or conference proceedings, we include a proof of this fact. Nevertheless, we do not claim this result to be ours, by any means.

Fig. 2: Forbidden pattern P_g for the generalized definite languages.

- i) Each nontrivial component of \mathbb{A} is a sink, and for each nonempty word u and sink C of \mathbb{A} , the transformation $u|_C : C \rightarrow C$ is non-permutational.*
- ii) \mathbb{A} recognizes a generalized definite language.*

Proof. Let $\mathbb{A} = (Q, \Sigma, \delta, q_0, F)$ be a reduced automaton.

i)→ii). Suppose \mathbb{A} avoids P_g . Suppose that $u|_C$ is permutational for some sink C and word $u \in \Sigma^+$. Then there exists a set $D \subseteq C$ with $|D| > 1$ such that u induces a permutation on D . Then, $x = u^{|D|!}$ is the identity on D . Choosing arbitrary distinct states $p, q \in D$ and a word y with $py = q$ (such y exists since p and q are in the same component of \mathbb{A}), we get that \mathbb{A} admits P_g by the (p, q, x, y) defined above, a contradiction. Hence, $u|_C$ is non-permutational for each sink C and word $u \in \Sigma^+$.

Now assume there exists a nontrivial component C which is not a sink. Then, $pu = p$ for some $p \in C$ and word $u \in \Sigma^+$. Since C is not a sink, there exists a sink $C' \neq C$ reachable from p (i.e. all of its members are reachable from p). Since u induces a non-permutational transformation on C' , $x = u^{|C'|}$ induces a constant function on C' . Let q be the unique state in the image of $x|_{C'}$. Since C' is reachable from p , there exists some nonempty word y such that $py = q$. Hence, $px = p$, $qx = q$, $py = q$ and \mathbb{A} admits P_g , a contradiction.

ii)→iii). Suppose the condition of ii) holds. We show that $L(\mathbb{A})$ is generalized definite. Let $n = m(|Q|)$ be the value defined in Lemma 1. Let $x = x_1yx_2$ with $x_1, x_2 \in \Sigma^n$, $y \in \Sigma^*$. It suffices to show that $q_0x_1yx_2 = q_0x_1x_2$. Since $|x_1| \geq |Q|$, some state p is visited at least twice on the path determined by x_1 . Hence p belongs to a nontrivial component C of \mathbb{A} , which has to be a sink by the assumption of ii). Thus, $q_0x_1 \in C$ and $q_0x_1y \in C$ as well. By Lemma 1, x_2 can be written as $x_2 = x_{2,1}x_{2,2}x_{2,3}$ with $x_{2,2}$ inducing an idempotent function on C . Since the function induced by $x_{2,2}$ is also non-permutational on C , it is a constant function on C , hence x_2 induces a constant function as well. Thus $px_2 = pyx_2$ and hence $q_0x_1yx_2 = q_0x_1x_2$.

iii)→i). Suppose $L(\mathbb{A})$ is k -generalized definite for some $k > 0$ and that \mathbb{A} admits P_g , i.e. $px = p$, $qx = q$ and $py = q$ for some distinct states p, q and nonempty words x, y . Since \mathbb{A} is reduced, $p = q_0u$ for some $u \in \Sigma^*$, and there exists a word w distinguishing p and q . Considering the words ux^kx^kw and ux^kyx^kw we get that they have the same prefix and suffix of length k , but exactly one of them is a member of $L(\mathbb{A})$, a contradiction. \square

¹ **4.2 Complexity issues**

² Using the characterization given in Theorem 1, we study the complexity of the
³ following decision problem GENDEF: given a finite automaton \mathbb{A} , is $L(\mathbb{A})$ a gen-
⁴ eralized definite language?

⁵ **Theorem 2.** *Problem GENDEF is **NL**-complete.*

⁶ *Proof.* First we show that GENDEF belongs to **NL**. By [3], minimizing a DFA
⁷ can be done in nondeterministic logspace. Thus we can assume that the input
⁸ is already minimized, since the class of (nondeterministic) logspace computable
⁹ functions is closed under composition.

¹⁰ Consider the following algorithm:

- ¹¹ 1. Guess two different states p and q .
- ¹² 2. Let $s := p$.
- ¹³ 3. Guess a letter $a \in \Sigma$. Let $s := sa$.
- ¹⁴ 4. If $s = q$, proceed to Step 5. Otherwise go back to Step 3.
- ¹⁵ 5. Let $p' := p$ and $q' := q$.
- ¹⁶ 6. Guess a letter $a \in \Sigma$. Let $p' := p'a$ and $q' := q'a$.
- ¹⁷ 7. If $p = p'$ and $q = q'$, accept the input. Otherwise go back to Step 6.

¹⁸ The above algorithm checks whether \mathbb{A} admits P_g : first it guesses $p \neq q$, then
¹⁹ in Steps 2–4 it checks whether q is accessible from p , and if so, then in Steps
²⁰ 5–7 it checks whether there exists a word $x \in \Sigma^+$ with $px = p$ and $qx = q$.
²¹ Thus it decides² the complement of GENDEF, in nondeterministic logspace; since
²² **NL** = co**NL**, we get that GENDEF \in **NL** as well.

²³ For **NL**-completeness we recall from [8] that the reachability problem for DAGs
²⁴ (DAG-REACH) is complete for **NL**: given a directed acyclic graph $G = (V, E)$
²⁵ on $V = [n]$ with $(i, j) \in E$ only if $i < j$, is n accessible from 1? We give a
²⁶ logspace reduction from DAG-REACH to GENDEF as follows. Let $G = ([n], E)$
²⁷ be an instance of DAG-REACH. For a vertex $i \in [n]$, let $N(i) = \{j : (i, j) \in E\}$
²⁸ stand for the set of its neighbours and let $d(i) = |N(i)| < n$ denote the outdegree
²⁹ of i . When $j \in [d(i)]$, then the j th neighbour of i , denoted $n(i, j)$ is simply the
³⁰ j th element of $N(i)$ (with respect to the usual ordering of integers of course).
³¹ Note that for any $i \in [n]$ and $j \in [d(i)]$ both $d(i)$ and the $n(i, j)$ (if exists) can
³² be computed in logspace.

³³ We define the automaton $\mathbb{A} = ([n + 1], [n], \delta, 1, \{n + 1\})$ where

$$\delta(i, j) = \begin{cases} n + 1 & \text{if } (i = n + 1) \text{ or } (j = n) \text{ or } (i < n \text{ and } d(i) < j); \\ 1 & \text{if } i = n \text{ and } j < n; \\ n(i, j) & \text{otherwise.} \end{cases}$$

² Note that in this form, the algorithm can enter an infinite loop which fits into the definition of nondeterministic logspace. Introducing a counter and allowing at most n steps in the first cycle and at most n^2 in the second we get a nondeterministic algorithm using logspace and polytime, as usual.

- ¹ Note that \mathbb{A} is indeed an automaton, i.e. $\delta(i, j)$ is well-defined for each i, j .
- ² We claim that \mathbb{A} admits P_g if and only if n is reachable from 1 in G . Observe
³ that the underlying graph of \mathbb{A} is G , with a new edge $(n, 1)$ and with a new
⁴ vertex $n + 1$, which is a neighbour of each vertex. Hence, $\{n + 1\}$ is a sink of \mathbb{A}
⁵ which is reachable from all other states. Thus \mathbb{A} admits P_g if and only if there
⁶ exists a nontrivial component of \mathbb{A} which is different from $\{n + 1\}$. Since in G
⁷ there are no cycles, such component exists if and only if the addition of the edge
⁸ $(n, 1)$ introduces a cycle, which happens exactly in the case when n is reachable
⁹ from 1. Note that it is exactly the case when $1x = 1$ for some word $x \in \Sigma^+$.
- ¹⁰ What remains is to show that the *reduced* form \mathbb{B} of \mathbb{A} admits P_g if and only
¹¹ if \mathbb{A} does. First, both 1 and $n + 1$ are in the connected part \mathbb{A}' of \mathbb{A} , and are
¹² distinguishable by the empty word (since $n + 1$ is final and 1 is not). Thus, if \mathbb{A}
¹³ admits P_g with $1x = 1$ and $(n+1)x = n+1$ for some $x \in \Sigma^+$, then \mathbb{B} admits P_g
¹⁴ with $h(1)x = h(1)$ and $h(n+1)x = h(n+1)$ (with h being the homomorphism
¹⁵ from the connected part of \mathbb{A} onto its reduced form). For the other direction,
¹⁶ assume $h(p)x_0 = h(p)$ for some state $p \neq n + 1$ (note that since $n + 1$ is the
¹⁷ only final state, $p \neq n + 1$ if and only if $h(p) \neq h(n + 1)$). Let us define the
¹⁸ sequence p_0, p_1, \dots of states of \mathbb{A} as $p_0 = p$, $p_{t+1} = p_tx_0$. Then, for each $i \geq 0$,
¹⁹ $h(p_i) = h(p)$, thus $p_i \in [n]$. Thus, there exist indices $0 \leq i < j$ with $p_i = p_j$,
²⁰ yielding $p_ix_0^{j-i} = p_i$, thus \mathbb{A} admits P_g with $p = p_i$, $q = n + 1$, $x = x_0^{j-i}$ and
²¹ $y = n$.
- ²² Hence, the above construction is indeed a logspace reduction from DAG-REACH
²³ to the complement of GENDEF, showing **NL**-hardness of the latter; applying
²⁴ **NL** = co**NL** again, we get **NL**-hardness of GENDEF itself. \square

- ²⁵ It is worth observing that the same construction also shows **NL**-hardness (thus
²⁶ completeness) of the problem whether the input automaton accepts a definite
²⁷ language.
- ²⁸ Thus, the complexity of the problem is characterized from the theoretic point
²⁹ of view. However, nondeterministic algorithms are not that useful in practice.
³⁰ Since **NL** \subseteq **P**, the problem is solvable in polynomial time – now we give an
³¹ efficient (quadratic) deterministic decision algorithm:

- ³² 1. Compute $\mathbb{A}' = (Q, \Sigma, \delta, q_0, F)$, the reduced form of the input automaton \mathbb{A} .
- ³³ 2. Compute $\Gamma(\mathbb{A}')$, the component graph of \mathbb{A}' .
- ³⁴ 3. If there exists a nontrivial, non-sink component, reject the input.
- ³⁵ 4. Compute $\mathbb{B} = \mathbb{A}' \times \mathbb{A}'$ and $\Gamma(\mathbb{B})$.
- ³⁶ 5. Check whether there exist a state (p, q) of \mathbb{B} in a nontrivial component (of
³⁷ \mathbb{B}) for some $p \neq q$ with p being in the same sink as q in \mathbb{A} . If so, reject the
³⁸ input; otherwise accept it.

- ³⁹ The correctness of the algorithm is straightforward by Theorem 1: after mini-
⁴⁰ mization (which takes $\mathcal{O}(n \log n)$ time) one computes the component graph of
⁴¹ the reduced automaton (taking linear time) and checks whether there exists a

1 nontrivial component which is not a sink (taking linear time again, since we
 2 already have the component graph). If so, then the answer is NO. Otherwise one
 3 has to check whether there is a (sink) component C and a word $x \in \Sigma^+$ such that
 4 $f_x|_C$ has at least two different fixed points. Now it is equivalent to ask whether
 5 there is a state (p, q) in $\mathbb{A}' \times \mathbb{A}'$ with p and q being in the same component and
 6 a word $x \in \Sigma^+$ with $(p, q)x = (p, q)$. This is further equivalent to ask whether
 7 there is a (p, q) with p, q being in the same sink such that (p, q) is in a nontrivial
 8 component of \mathbb{B} . Computing \mathbb{B} and its components takes $\mathcal{O}(n^2)$ time, and (since
 9 we still have the component graph of \mathbb{A}) checking this condition takes constant
 10 time for each state (p, q) of \mathbb{B} , the algorithm consumes a total of $\mathcal{O}(n^2)$ time.

11 Hence we have an upper bound concluding this subsection:

12 **Theorem 3.** *Problem GENDEF can be solved in $\mathcal{O}(n^2)$ deterministic time in*
 13 *the RAM model of computation.*

14 **4.3 Syntactic complexity**

15 The *syntactic complexity* of a language is the size of its syntactic semigroup, the
 16 latter being isomorphic to the transformation semigroup $\mathcal{T}(\mathbb{A})$ of the minimal
 17 automaton \mathbb{A} of the language (equipped with function composition as product).
 18 The *syntactic complexity* of a class \mathcal{C} of regular languages is a function $n \mapsto f(n)$
 19 where $f(n)$ is the maximal syntactic complexity a member of \mathcal{C} can have whose
 20 minimal automaton has at most n states.

21 In [2] it has been shown that the class of definite languages has syntactic com-
 22 plexity $\geq \lfloor e \cdot (n - 1)! \rfloor$, thus the same lower bound also applies for the larger
 23 class of generalized definite languages.

24 **Theorem 4.** *The syntactic complexity of the definite and that of the generalized*
 25 *definite languages coincide.*

26 *Proof.* It suffices to construct for an arbitrary reduced automaton $\mathbb{A} = (Q, \Sigma, \delta, q_0, F)$
 27 recognizing a generalized definite language a reduced automaton $\mathbb{B} = (Q, \Delta, \delta', q_0, F')$
 28 for some Δ recognizing a definite language such that $|\mathcal{T}(\mathbb{A})| \leq |\mathcal{T}(\mathbb{B})|$.

29 By Theorem 1, if $L(\mathbb{A})$ is generalized definite and \mathbb{A} is reduced, then Q can be
 30 partitioned as a disjoint union $Q = Q_0 \uplus Q_1 \uplus \dots \uplus Q_c$ for some $c > 0$ such that
 31 each Q_i with $i \in [c]$ is a sink of \mathbb{A} and Q_0 is the (possibly empty) set of those
 32 states that belong to a trivial component. Without loss of generality we can
 33 assume that $Q = [n]$ and $Q_0 = [k]$ for some n and k , and that for each $i \in [k]$
 34 and $a \in \Sigma$, $i < ia$. The latter condition is due to the fact that reachability
 35 restricted to the set Q_0 of states in trivial components is a partial ordering of
 36 Q_0 which can be extended to a linear ordering. Clearly, if Q_0 is nonempty, then
 37 by connectedness $q_0 = 1$ has to hold; otherwise $c = 1$ and we again may assume
 38 $q_0 = 1$. Also, $Q_i \Sigma \subseteq Q_i$ for each $i \in [c]$, and let $|Q_1| \leq |Q_2| \leq \dots \leq |Q_c|$.

39 Then, each transformation $f : Q \rightarrow Q$ can be uniquely written as the source
 40 tupling $[f_0, \dots, f_c]$ of some functions $f_i : Q_i \rightarrow Q$ with $f_i : Q_i \rightarrow Q_i$ for $0 < i \leq c$.

¹ For any $[f_0, \dots, f_c] \in \mathcal{T} = \mathcal{T}(\mathbb{A})$ the following hold: $f_0(i) > i$ for each $i \in [k]$,
² and f_j is non-permutational on Q_j for each $j \in [c]$. For $k = 0, \dots, c$, let \mathcal{T}_k
³ stand for the set $\{f_k : f \in \mathcal{T}\}$ (i.e. the set of functions $f|_{Q_k}$ with $f \in \mathcal{T}$). Then,
⁴ $|\mathcal{T}| \leq \prod_{0 \leq k \leq c} |\mathcal{T}_k|$.

⁵ If $|Q_c| = 1$, then all the sinks of \mathbb{A} are singleton sets. Thus there are at most
⁶ two sinks, since if C and D are singleton sinks whose members do not differ in
⁷ their finality, then their members are not distinguishable, thus $C = D$ since \mathbb{A} is
⁸ reduced. Such automata recognize reverse definite languages, having a syntactic
⁹ semigroup of size at most $(n - 1)!$ by [2], thus in that case \mathbb{B} can be chosen to an
¹⁰ arbitrary definite automaton having n state and a syntactic semigroup of size
¹¹ at least $\lfloor e(n - 1)! \rfloor$ (by the construction in [2], such an automaton exists). Thus
¹² we may assume that $|Q_c| > 1$. (Note that in that case Q_c contains at least one
¹³ final and at least one non-final state.)

¹⁴ Let us define the sets \mathcal{T}'_k of functions $Q_i \rightarrow Q$ as \mathcal{T}'_0 is the set of all elevating
¹⁵ functions from $[k]$ to $[n]$, $\mathcal{T}'_c = \mathcal{T}_c$ and for each $0 < k < c$, $\mathcal{T}'_k = Q_c^{Q_k}$. Since
¹⁶ $\mathcal{T}_k \subseteq Q_c^{Q_k}$ and $|\mathcal{T}_k| \leq |Q_c|$ for each $k \in [c]$, we have $|\mathcal{T}_k| \leq |\mathcal{T}'_k|$ for each
¹⁷ $0 \leq k \leq c$. Thus defining $\mathcal{T}' = \{[f_0, \dots, f_c] : f_i \in \mathcal{T}'_i\}$ it holds that $|\mathcal{T}| \leq |\mathcal{T}'|$.

¹⁸ We define \mathbb{B} as $(Q, \mathcal{T}', \delta', q_0, F)$ with $\delta'(q, f) = f(q)$ for each $f \in \mathcal{T}'$. We show
¹⁹ that \mathbb{B} is a reduced automaton avoiding P_d , concluding the proof.

²⁰ First, observe that \mathbb{B} has exactly one sink, Q_c , and all the other states belong to
²¹ trivial components (since by each transition, each member of Q_0 gets elevated,
²² and each member of Q_i with $0 < i < c$ is taken into Q_c). Hence if \mathbb{B} admits
²³ P_d , then $pt = p$ and $qt = q$ for some distinct pair $p, q \in Q_c$ of states and
²⁴ $t = [t'_0, \dots, t'_c] \in \mathcal{T}'$. This is further equivalent to $pt'_c = p$ and $qt'_c = q$ for some
²⁵ $p \neq q$ in Q_c and $t'_c \in \mathcal{T}'_c$. By definition of $\mathcal{T}'_c = \mathcal{T}_c$, there exists a transformation
²⁶ of the form $t = [t_0, \dots, t_{c-1}, t'_c] \in \mathcal{T}$ induced by some word x , thus $px = p$ and
²⁷ $qx = q$ both hold in \mathbb{A} , and since p, q are in the same sink, there also exists a
²⁸ word y with $py = q$. Hence \mathbb{A} admits P_g , a contradiction.

²⁹ Second, \mathbb{B} is connected. To see this, observe that each state $p \neq 1$ is reachable
³⁰ from 1 by any transformation of the form $t = [f_p, t_1, \dots, t_c]$ where $f_p : [k] \rightarrow [n]$
³¹ is the elevating function with $1f_p = p$ and $if_p = n$ for each $i > 1$. Of course 1 is
³² also trivially reachable from itself, thus \mathbb{B} is connected.

³³ Also, whenever $p \neq q$ are different states of \mathbb{B} , then they are distinguishable
³⁴ by some word. To see this, we first show this for $p, q \in Q_c$. Indeed, since \mathbb{A} is
³⁵ reduced, some transformation $t = [t_0, \dots, t_c] \in \mathcal{T}$ separates p and q (exactly one
³⁶ of $pt = pt_c$ and $qt = qt_c$ belong to F). Since $\mathcal{T}_c = \mathcal{T}'_c$, we get that p and q are also
³⁷ distinguishable by in \mathbb{B} by any transformation of the form $t' = [t'_0, \dots, t'_{c-1}, t_c] \in$
³⁸ \mathcal{T}' . Now suppose neither p nor q belong to Q_c . Then, since $\{[t'_0, \dots, t'_{c-1}] : t'_i \in$
³⁹ $\mathcal{T}'_i\} = Q_c^{Q \setminus Q_c}$, and $|Q_c| > 1$, there exists some $t = [t'_0, \dots, t'_{c-1}]$ with $pt \neq qt$,
⁴⁰ thus any transformation of the form $[t'_0, \dots, t'_{c-1}, t_c] \in \mathcal{T}'$ maps p and q to
⁴¹ distinct elements of Q_c , which are already known to be distinguishable, thus so
⁴² are p and q . Finally, if $p \in Q_c$ and $q \notin Q_c$, then let $t_c \in \mathcal{T}_c$ be arbitrary and

¹ $t' = [t'_0, \dots, t'_{c-1}] \in Q_c^{Q \setminus Q_c}$ with $qt' \neq pt_c$. Then $[t', t_c]$ again maps p and q to distinct states of Q_c .

³ Thus \mathbb{B} is reduced, concluding the proof: \mathbb{B} is a reduced automaton recognizing a definite language and having a syntactic semigroup \mathcal{T}' with $|\mathcal{T}'| \geq |\mathcal{T}|$. \square

⁵ 4.4 Upper bound for syntactic complexity

⁶ By [2] we know a lower bound $\lfloor e(n-1)! \rfloor$ for the syntactic complexity of the
⁷ definite languages (thus, of the generalized definite ones as well). In this subsection
⁸ we give an upper bound $n!$, showing that the bound of [2] is asymptotically
⁹ optimal up to a logarithmic factor (since $n = \mathcal{O}(\log n!)$).

¹⁰ Let $\mathbb{A} = (Q, \Sigma, \delta, q_0, F)$ be a reduced automaton recognizing a definite language
¹¹ L and let $\mathcal{T} \subseteq Q^Q$ be its syntactic semigroup. Then, each member t of \mathcal{T} is non-
¹² permutational and has a unique fixed point $\text{fix}(t)$. For each $p \in Q$, let \mathcal{T}_p stand
¹³ for the subset $\{t \in \mathcal{T} : \text{fix}(t) = p\}$ of \mathcal{T} : then, \mathcal{T} is the disjoint union of the sets
¹⁴ \mathcal{T}_p . Observe that \mathcal{T}_p is a semigroup for each p , since whenever $\text{fix}(t) = \text{fix}(t') = p$,
¹⁵ then $ptt' = p$, thus p is a fixed point of tt' (and by assumption, the superset \mathcal{T}
¹⁶ of \mathcal{T}_p is a semigroup consisting only non-permutational transformations). Thus
¹⁷ $tt' \in \mathcal{T}_p$ as well.

¹⁸ **Lemma 2.** *For each $p \in Q$, $|\mathcal{T}_p| \leq (n-1)!$.*

¹⁹ *Proof.* Let $G_p = (Q, E, \ell)$ be the edge-labelled graph on the set Q of vertices in
²⁰ which (q_1, q_2) is an edge labelled by $t \in \mathcal{T}_p$ if and only if $q_1t = q_2$ and $q_1 \neq p$.
²¹ Then G_p is acyclic.

²² Indeed, suppose $q_1 \xrightarrow{t_1} q_2 \xrightarrow{t_2} \dots \xrightarrow{t_k} q_{k+1} = q_1$. Then $q_1t_1t_2\dots t_k = q_1$, thus q_1 is
²³ a fixed point of $t = t_1\dots t_k \in \mathcal{T}_p$. Since in G_p the vertex p has outdegree 0,
²⁴ $q_0 \neq p$, hence t has at least two distinct fixed points, a contradiction. Hence G_p
²⁵ is acyclic. Thus, there exists an ordering \prec on Q such that whenever $q_1t = q_2$ for
²⁶ some $q_1, q_2 \in Q$, $q_1 \neq p$ and $t \in \mathcal{T}_p$, then $q_1 \prec q_2$. Note also that p is the maximal
²⁷ element of \prec . Thus \mathcal{T}_p consists of transformations $t : Q \rightarrow Q$ with $pt = p$, and
²⁸ $q \prec qt$ for each $q \in Q - \{p\}$. There are $(n-1)!$ such transformations (the least
²⁹ element can be mapped to the other $n-1$ elements, the next to $n-2$ and so
³⁰ on), concluding the lemma. \square

³¹ **Corollary 1.** *The syntactic complexity of definite languages is at most $n!$.*

³² *Proof.* For an arbitrary automaton \mathbb{A} over n states recognizing a definite language, $\mathcal{T}(\mathbb{A}) = \bigcup_{p \in Q} \mathcal{T}_p$, hence its size is at most $n \cdot (n-1)! = n!$. \square

³⁴ 5 Conclusion, further directions

³⁵ The forbidden pattern characterization of generalized definite languages we gave
³⁶ is not surprising, based on the identities of the pseudovariety of (syntactic) semi-

- ¹ groups corresponding to this variety of languages. Still, using this characterization
² one can derive efficient algorithms for checking whether a given automaton
³ recognizes such a language. Though we could not compute an exact function for
⁴ the syntactic complexity, we still managed to show that these languages are not
⁵ “more complex” than definite languages under this metric. Also, we gave a new
⁶ upper bound for that.
- ⁷ The exact syntactic complexity of definite languages is still open, as well as
⁸ for other language classes higher in the dot-depth hierarchy – e.g. the locally
⁹ (threshold) testable and the star-free languages.

10 References

- ¹¹ 1. R. S. Cohen, J. Brzozowski. Dot-Depth of Star-Free Events. Journal of Computer
¹² and System Sciences 5(1), 1971, 1–16.
- ¹³ 2. J. Brzozowski, D. Liu. Syntactic Complexity of Finite/Cofinite, Definite, and Re-
¹⁴ verse Definite Languages. <http://arxiv.org/abs/1203.2873>
- ¹⁵ 3. S. Cho, D. T. Huynh. The parallel complexity of finite-state automata problems.
¹⁶ Inform. Comput. 97, 122, 1992.
- ¹⁷ 4. M. Čirić, B. Imreh, M. Steinby. Subdirectly irreducible definite, reverse definite
¹⁸ and generalized definite automata. Publ. Electrotechn. Fak. Ser. Mat., 10, 1999,
¹⁹ 69–79.
- ²⁰ 5. F. Gécseg, B. Imreh. On isomorphic representations of generalized definite au-
²¹ tomata. Acta Cybernetica 15, 2001, 33–44.
- ²² 6. A. Ginzburg. About some properties of definite, reverse-definite and related au-
²³ tomata. IEEE Trans. Electronic Computers EC-15, 1966, 809–810.
- ²⁴ 7. M. Holzer, B. König. On deterministic finite automata and syntactic monoid size.
²⁵ Theoretical Computer Science 327(3), 319–347, 2004.
- ²⁶ 8. Neil D. Jones, Y. Edmund Lien and William T. Laaser: New problems complete
²⁷ for nondeterministic log space. THEORY OF COMPUTING SYSTEMS Volume
²⁸ 10, Number 1 (1976), 1-17.
- ²⁹ 9. O. Klíma, L. Polák. Alternative Automata Characterization of Piecewise Testable
³⁰ Languages. Accepted to DLT 2013.
- ³¹ 10. B. Krawetz, J. Lawrence, J. Shallit. State Complexity and the Monoid of Trans-
³² formations of a Finite Set. Proc. of Implementation and Application of Automata,
³³ LNCS 3317, 2005, 213–224.
- ³⁴ 11. B. Li. Syntactic Complexities of Nine Subclasses of Regular Languages. Master’s
³⁵ Thesis.
- ³⁶ 12. D. Perrin. Sur certains semigroupes syntaxiques. Séminaires de l’IRIA, Logiques
³⁷ et Automates, Paris, 1971, 169–177.
- ³⁸ 13. T. Petkovič, M. Čirić, S. Bogdanovič. Decomposition of automata and transition
³⁹ semigroups. Acta Cybernetica 13, 1998, 385–403.
- ⁴⁰ 14. J-É. Pin. Syntactic semigroups. Chapter 10 in Handbook of Formal Languages,
⁴¹ Vol. I, G. Rozenberg et A. Salomaa (eds.), Springer Verlag, 1997, 679–746.
- ⁴² 15. M. Steinby. On definite automata and related systems. Ann. Acad. Sci. Fenn., Ser.
⁴³ A I 444, 1969.
- ⁴⁴ 16. J. Stern. Complexity of some problems from the theory of automata. Information
⁴⁵ and Control 66, 1985, 163–176.
- ⁴⁶ 17. A. N. Trahtman. Piecewise and local threshold testability of DFA. Proc. of FCT
⁴⁷ 2001, LNCS 2038 (2001), 347–358.

¹ **Appendix**

² In the Appendix we give a proof of Lemma 1 and that a regular language L is
³ definite if and only if its minimal automaton avoids P_d .

⁴ We will make use of the following variant of the multicolor Ramsey theorem,
⁵ stated here only for monochromatic triangles.

⁶ **Theorem 5.** *For any number $c > 0$ of colors there exists an integer $R(c)$ such
⁷ that whenever G is an edge-colored complete graph on at least $R(c)$ vertices that
⁸ has at most c colors, then G contains a monochromatic triangle.*

⁹ The theorem holds for monochromatic arbitrary-sized induced subgraphs as well
¹⁰ but we need only the guaranteed appearance of triangles to show that in a finite
¹¹ semigroup, a long enough product always has an idempotent factor.

¹² *Proof (of Lemma 1).* Let $m = R(|C^C|)$ and let us define the following complete
¹³ graph on $[m]$ with its edges colored by elements of C^C : let the color of the edge
¹⁴ (i, j) , $i < j$, be the element $f_{i,j} = f_i f_{i+1} \dots f_{j-1} \in C^C$. Applying Theorem 5
¹⁵ we get that there exists integers $1 \leq i < j < k \leq m$ with (i, j) , (j, k) and (i, k)
¹⁶ having the same color, i.e. $f_{i,j} = f_{j,k} = f_{i,k}$, the last being the product of $f_{i,j}$
¹⁷ and $f_{j,k}$. Hence, $f_{i,j}$ is an idempotent transformation of C . \square

¹⁸ Now for the forbidden pattern characterization of definite languages:

¹⁹ **Theorem 6.** *The following are equivalent for a reduced automaton $\mathbb{A} = (Q, \Sigma, \delta, q_0, F)$:*

²⁰ *i) $L(\mathbb{A})$ is definite.*

²¹ *ii) \mathbb{A} avoids P_d .*

²² *iii) For each $u \in \Sigma^+$, $u^\mathbb{A}$ is non-permutational.*

²³ *iv) \mathbb{A} has a unique sink C , all its other components are trivial and for each
²⁴ $u \in \Sigma^+$, $u^\mathbb{A}|_C$ is non-permutational.*

²⁵ *Proof. i)→ii).* Assume $L = L(\mathbb{A})$ is k -definite for some $k > 0$, and \mathbb{A} admits P_d
²⁶ with $px = p$ and $qx = q$ for distinct states p, q and word $x \in \Sigma^+$. Since \mathbb{A} is
²⁷ reduced, $q_0 z_p = p$ and $q_0 z_q = q$ for some words z_p, z_q and p, q are distinguishable
²⁸ by some word w . Then, exactly one of the words $z_p x^k w$ and $z_q x^k w$ belongs to
²⁹ L but they share a common suffix of length k , a contradiction.

³⁰ *ii)→iii).* Assume $u^\mathbb{A}$ is permutational for some $u \in \Sigma^+$. Let $D \subseteq Q$, $|D| > 1$ be
³¹ a set on which u induces a permutation. Then $u^{|D|!}$ induces the identity on D ,
³² thus \mathbb{A} admits P_d with arbitrary $p, q \in D$ and $x = u^{|D|!}$.

³³ *iii)→iv).* Obviously \mathbb{A} has a sink C . If $u^\mathbb{A}$ is non-permutational for each $u \in \Sigma^+$,
³⁴ then $u^\mathbb{A}|_C$ is also non-permutational for each sink C . Hence, $u^{|C|}$ induces a
³⁵ constant function on C . Assume that there exists another nontrivial component
³⁶ $D \neq C$ of \mathbb{A} . Then $px_0 = p$ for some $p \in D$ and $x_0 \in \Sigma^+$. Thus, $x_0^{|C|}$ induces

¹ a permutational transformation on Q (with fixed points $p \in D$ and the unique
² element of $Cx_0^{|C|}$), a contradiction.

³ **iv)→i).** Analogously to the direction ii)→iii) of the proof of Theorem 1. Suppose
⁴ the condition of iv) holds. Let $n = \max\{m(|Q|), |Q|\}$ be the value defined
⁵ in Lemma 1. Let $x = yx_2$ with $x_2 \in \Sigma^n$, $y \in \Sigma^*$. It suffices to show that
⁶ $q_0yx_2 = q_0x_2$. Since $n \geq |Q|$, both q_0yx_2 and q_0x_2 belong to the unique sink C
⁷ of \mathbb{A} . By Lemma 1, x_2 can be written as $x_2 = x_{2,1}x_{2,2}x_{2,3}$ with $x_{2,2}$ inducing
⁸ an idempotent function on C . Since the function induced by $x_{2,2}$ is also non-
⁹ permutational on C , it is a constant function on C , hence x_2 induces a constant
¹⁰ function as well. Thus $q_0yx_2 = q_0x_2$ and $L(\mathbb{A})$ is n -definite. \square