Efficient Self-Attention Mechanisms Via Vector Quantization

George Ankeney ICME, Stanford University

Juan Muneton Gallego ICME, Stanford University ankeneyg@stanford.edu jmuneton@stanford.edu

Abstract

- Motivation: Transformers revolutionized NLP, audio, and computer vision but face quadratic time and space complexity for long-sequence tasks.
- Challenges with existing solutions:
- Sparse factorizations, LSH, and linear attention reduce complexity.
- Issues include gradient instability and degraded inference performance.

• Our contribution:

- Introduced a novel self-attention mechanism using VQ-VAEs to achieve sub-quadratic runtime.
- Compresses keys and queries in self-attention using vector quantization for efficient, stable attention over long contexts.

Performance highlights:

- Superior throughput, memory efficiency, and computational performance.
- Scalable across sequence lengths: 10^3 to 10^5 .

Methodology

Overview:

- ullet Developed a self-attention mechanism that quantizes both keys (\mathbf{K}) and queries (**Q**) using codebook representations.
- Introduced two learnable vector quantizers to map rows of Q and K to their respective quantized representations.

Figure 1. Visual representation of vector quantization

Proposed Self-Attention Mechanism:

- For queries (\mathbf{Q}) and keys (\mathbf{K}) , quantized representations $(\hat{\mathbf{Q}}, \hat{\mathbf{K}})$ enable efficient attention computation.
- Attention weights are approximated as:

$$\mathbf{W} \approx \phi_{w}(\mathsf{VQ}(\mathbf{Q}; \mathbf{C}_{\mathbf{Q}})\mathsf{VQ}(\mathbf{K}; \mathbf{C}_{\mathbf{K}})) = \phi_{w}(\widehat{\mathbf{Q}}\widehat{\mathbf{K}}^{\top}). \tag{1}$$

• Final computation leverages the associative property of matrix multiplication for sub-quadratic time complexity:

$$\mathbf{W} = \operatorname{Diag} \left(\Delta_{Q} \mathbf{M} \Delta_{K} \mathbf{1} \right)^{-1} \Delta_{Q} \mathbf{M} \Delta_{K}, \tag{2}$$

where $\mathbf{M} = \exp(\mathbf{C_Q C_K}^{\top})$ and Δ matrices select code vectors.

Results

Varying Sequence Length

- Evaluated performance of hyperattention, vanilla attention, and VQ attention as sequence input length increased.
- Setup: Batch size = 1, head size = 1, embedding dimension = 512, codebook size = 1
- Pre-computed keys, queries, values, and Δ_Q , Δ_K matrices to isolate computational cost of attention step.

Figure 2. Left figure shows the comparison of the GB/s and right figure provides TFLOPs comparison over increasing sequence lengths

Figure 3. Runtime comparison for varying sequence lengths

- VQ-non-causal models slightly outperformed VQ-causal models in throughput test.
- Both configurations significantly surpassed vanilla and hyperattention baselines.
- VQ attention consistently demonstrated superior throughput and efficiency for varying sequence lengths.

Results (Cont.)

Varying Codebook Size

• Fixed sequence length (16k) and varied codebook size from approximately 10^2 to 10^4 .

Figure 4. Runtime comparison for varying codebook sizes

 Larger codebooks improved throughput and efficiency but caused performance degradation when excessively large.

Discussion and Future Work

Key Takeaway

This study demonstrates that vector quantization of queries and keys offers a promising alternative for optimizing self-attention mechanisms. By mitigating runtime dependence on sequence length, this approach enables more efficient and scalable implementations of self-attention in large-scale models. However, careful selection of the codebook size is critical for optimizing self-attention performance.

Future Work

- Explore CUDA-enabled evaluations and utilizing tools such as Triton and Faiss to widen the scope of analysis and optimize the algorithm.
- Develop formal scaling laws to predict the feasibility of this approach for larger models.
- Examine the impact of varying quantized query and key sizes on model performance.

References

- [1] Lucas D. Lingle. Transformer-VQ: Linear-Time Transformers via Vector Quantization. Feb. 25, 2024. arXiv: 2309.16354 [cs]. URL: http://arxiv.org/abs/2309.16354 (visited on 10/05/2024).
- [2] Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural Discrete Representation Learning. May 30, 2018. arXiv: 1711.00937[cs]. URL: http://arxiv.org/abs/1711.00937 (visited on 10/05/2024).