An introduction to explainable artificial intelligence with LIME and SHAP

Aleix Nieto Juscafresa

Treball Final de Grau Universitat de Barcelona GRAU DE MATEMÀTIQUES

Dirigit per Dr. Albert Clapés i Dr. Sergio Escalera

29 de juny de 2022

Contents

- Introduction
- Machine learning
- Random forest
- Regression
- Explainable artificial intelligence
- 6 Conclusions

Today

Introduction

Confusion with Today's AI Black Box

- Why did you do that?
- Why did you not do that?
- When do you succed or fail?
- How do I correct an error?

Today

Introduction

Confusion with Today's AI Black Box

- Why did you do that?
- Why did you not do that?
- When do you succed or fail?
- How do I correct an error?

Clear & Transparent Decisions

- I understand why
- I understand why not
- I know why you suceed or fail
- understand, I trust you more

Contents

- Introduction
- Machine learning
- Random forest
- Regression
- Explainable artificial intelligence
- 6 Conclusions

Machine learning

Application of artificial intelligence dedicated to the creation of algorithms that allow systems to learn without human intervention.

SUPERVISED LEARNING

UNSUPERVISED **LEARNING**

SEMI-**SUPERVISED LEARNING**

REINFORCEMENT **LEARNING**

Terminology

Machine learning

Explainable artificial intelligence

Machine learning model learning stages

Conclusions

Machine learning model learning stages

Machine learning model learning stages

Contents

- Introduction
- Machine learning
- Random forest
- Regression
- **Explainable artificial intelligence**
- 6 Conclusions

Decision tree

Random forest

Machine learning

+(features)

Initial dataset

M bootstrap datasets randomly selected features

Deep trees fitted on each bootstrap sample and considering only selected features

Random forest (ensemble model)

$$f(x) = \underset{k \in \{1, ..., K\}}{\arg \max} \left(\sum_{m=1}^{M} \mathbb{1}_{\{g_m(x) = k\}} \right)$$

Contents

- Introduction
- Machine learning
- Random forest
- 4 Regression
- **5** Explainable artificial intelligence
- 6 Conclusions

Linear regression

$$Y = f(X) + \epsilon = \beta_0 + \sum_{j=1}^{p} \beta_j X_j + \epsilon$$

Linear regression

Introduction

$$Y = f(X) + \epsilon = \beta_0 + \sum_{j=1}^{p} \beta_j X_j + \epsilon$$

Optimisation problem

$$\underset{\beta_0,...,\beta_p}{\arg\min} \sum_{i=1}^{n} (y_i - (\beta_0 + \sum_{j=1}^{p} \beta_j x_{ij}))^2 = \underset{\beta_0,...,\beta_p}{\arg\min} \sum_{i=1}^{n} \epsilon_i^2$$

Linear regression

$$Y = f(X) + \epsilon = \beta_0 + \sum_{j=1}^p \beta_j X_j + \epsilon$$

Optimisation problem

$$\underset{\beta_0,...,\beta_p}{\operatorname{arg\,min}} \sum_{i=1}^{n} (y_i - (\beta_0 + \sum_{j=1}^{p} \beta_j x_{ij}))^2 = \underset{\beta_0,...,\beta_p}{\operatorname{arg\,min}} \sum_{i=1}^{n} \epsilon_i^2$$

$$C = \mathbb{E}[\epsilon \epsilon^T] = \sigma^2 I$$

$$C = \begin{pmatrix} \sigma^2 & 0 & \dots & 0 \\ 0 & \sigma^2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sigma^2 \end{pmatrix}$$

Model assumptions

- Linearity
- Normality
- Independence

- Absence of multicollinearity
- Fixed features
- Homoscedasticity

Weighted linear regression

$$Y = f(X) + \epsilon^* = \beta_0 + \sum_{j=1}^p X_j \beta_j + \epsilon^*$$

Weighted linear regression

$$Y = f(X) + \epsilon^* = \beta_0 + \sum_{j=1}^p X_j \beta_j + \epsilon^*$$

Optimisation problem

$$\underset{\beta_0,...,\beta_p}{\operatorname{arg\,min}} \sum_{i=1}^n w_i (y_i - (\beta_0 + \sum_{j=1}^p \beta_j x_{ij}))^2 = \underset{\beta_0,...,\beta_p}{\operatorname{arg\,min}} \sum_{i=1}^n \epsilon_i^{*2}$$

Weighted linear regression

$$Y = f(X) + \epsilon^* = \beta_0 + \sum_{j=1}^p X_j \beta_j + \epsilon^*$$

Optimisation problem

$$\underset{\beta_0,...,\beta_p}{\operatorname{arg\,min}} \sum_{i=1}^n w_i (y_i - (\beta_0 + \sum_{j=1}^p \beta_j x_{ij}))^2 = \underset{\beta_0,...,\beta_p}{\operatorname{arg\,min}} \sum_{i=1}^n \epsilon_i^{*2}$$

$$C = \begin{pmatrix} \sigma_1^2 & 0 & \dots & 0 \\ 0 & \sigma_2^2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sigma_n^2 \end{pmatrix}$$

$$W = \begin{pmatrix} w_1 & 0 & \dots & 0 \\ 0 & w_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & w_n \end{pmatrix}$$

$$w_i = \frac{1}{\sigma_i^2}$$

Violation of homoscedasticity

Weighted linear regression uses different weights for each observation based on their variance. A small error variance observation has a large weight since it includes more information than a large error variance observation, which has a small weight.

L1 and L2 regularisation

$$RSS(\beta) = \sum_{i=1}^{n} (y_i - (\beta_0 + \sum_{j=1}^{p} \beta_j x_{ij}))^2$$

Introduction

Lasso regression (L1 regularisation)

$$\hat{\beta}_{lasso} = \underset{(\beta_0, \dots, \beta_p) \in \mathbb{R}^n}{\arg \min} \left\{ \operatorname{RSS}(\beta) + \underbrace{\lambda \sum_{j=1}^p |\beta_j|}_{\text{Penalty term}} \right\}$$

It tends far more to drive small weights to 0.

Ridge regression (L2 regularisation)

$$\hat{\beta}_{ridge} = \underset{(\beta_0, \dots, \beta_p)}{\operatorname{arg\,min}} \left\{ \operatorname{RSS}(\beta) + \underbrace{\lambda \sum_{j=1}^{p} \beta_j^2}_{\text{Penalty term}} \right\}$$

It pushes down big weights than tiny ones.

Contents

- Introduction
- Machine learning
- Random forest
- 4 Regression
- **5** Explainable artificial intelligence
- 6 Conclusions

Explainable artificial intelligence

Set of techniques that either produce more understandable models keeping high levels of performance or provide external tools to better understand the models that are inherently not interpretable.

XAI taxonomy

LIME

Introduction

Local

Interpretable

Model-agnostic

Explanations

"Why Should I Trust You?" Explaining the Predictions of Any Classifier

Marco Tulio Ribeiro University of Washington Seattle, WA 98105, USA marcotcr@cs.uw.edu

Sameer Singh University of Washington Seattle, WA 98105, USA sameer@cs.uw.edu

Carlos Guestrin University of Washington Seattle, WA 98105, USA guestrin@cs.uw.edu

Despite widespread adoption, machine learning models remain mostly black boxes. Understanding the reasons behind predictions is however, quite important in assessing trust, which is fundamental if one plans to take action based on a which is tuniqualicular it one plans to take action based on a prediction, or when choosing whether to deploy a new model. Such understanding also provides insights into the model, which can be used to transform an untrustworthy model or

prediction into a trustworthy one.

In this work, we propose LIME, a novel explanation techin this work, we propose LLML, a mover expanation tech-nique that explains the predictions of any classifier in an inunque una expuants the predictions of day classifier in all the terpretable and faithful manner, by learning an interpretable model locally around the prediction. We also propose a method to explain models by presenting representative individual predictions and their explanations in a non-redundant way, framing the task as a submodular optimization probway, training the task as a submodular optimization pub-lem. We demonstrate the flexibility of these methods by explaining different models for text (e.g. random forests) and image classification (e.g. neural networks). We show the utility of explanations via novel experiments, both simulated and with human subjects, on various scenarios that require and with numan subjects, on various scenarios that require trust: deciding if one should trust a prediction, choosing between models, improving an untrustworthy classifier, and

how much the human understands a model's behaviour, as

opposed to seeing it as a black box. Determining trust in individual predictions is an important problem when the model is used for decision making. When using machine learning for medical diagnosis [6] or terrorism detection, for example, predictions cannot be acted upon on blind faith, as the consequences may be catastrophic.

Apart from trusting individual predictions, there is also a Apart from trusting murvidual predictions, taker is disso a need to evaluate the model as a whole before deploying it "in the wild". To make this decision, users need to be confident the wild 1 to make this decision, users need to be confident that the model will perform well on real-world data, according to the metrics of interest. Currently, models are evaluated using accuracy metrics on an available validation dataset. using accuracy metrics on an avanable valuation standard. However, real-world data is often significantly different, and flowever, real-worst que is once againments smeeting and further, the evaluation metric may not be indicative of the product's goal. Inspecting individual predictions and their explanations is a worthwhile solution, in addition to such metrics. In this case, it is important to aid users by suggesting which instances to inspect, especially for large datasets.

In this paper, we propose providing explanations for indiin this paper, we propose providing explanations for indi-vidual predictions as a solution to the "trusting a prediction" viousi predictions as a solution to the "tribung a prediction problem, and selecting multiple such predictions (and explaproblem, and selecting muniple such predictions (and captarnations) as a solution to the "trusting the model" problem.

$$\xi(x) = \underset{g \in G}{\operatorname{arg\,min}} \mathcal{L}(f, g, \pi_x) + \Omega(g)$$

$$\xi(x) = \underset{g \in G}{\operatorname{arg\,min}} \mathcal{L}(f, g, \pi_x) + \Omega(g)$$

Introduction

 $x \in \mathbb{R}^{\frac{\mathbf{d}}{}}$ number of features

Age = 56

Gender = F

BMI = 30

Stroke = yes

LIME optimisation problem

Machine learning

Complex non-linear model

LIME step by step

Machine learning

LIME step by step

LIME step by step

explanation

Perturbed data points, weighted according to the distance to our predicted instance

LIME step by step

Introduction

Complex non-linear model

Perturbed data points, weighted according to the distance to our predicted instance

Predicted instance from which we want to get an explanation

$$\pi_x(z) = exp(-D(x,z)^2/\sigma^2)$$

$$\uparrow \qquad \qquad \uparrow$$
Some distance function D Kernel width

Simple linear model $g(z) = w_g \cdot z$

Random forest

LIME step by step

Complex non-linear model

Perturbed data points, weighted according to the distance to our predicted instance

Predicted instance from which we want to get an explanation

$$\pi_x(z) = exp(-D(x,z)^2/\sigma^2)$$

Some distance function D Kernel width

Predicted instance relevant feature values contribution

Loss terms

Introduction

$$\xi(x) = \underset{g \in G}{\operatorname{argmin}} \mathcal{L}(f, g, \pi_x) + \Omega(g)$$

Train a weighted, interpretable model on the dataset with the perturbed instances

(1)
$$\mathcal{L}(f,g,\pi_x) = \sum_{z\in\mathcal{Z}} \pi_x(z) \left(f(z) - g(z)\right)^2$$
Complex model prediction Simple model prediction

Loss terms

Introduction

$$\xi(x) = \underset{g \in G}{\operatorname{argmin}} \mathcal{L}(f, g, \pi_x) + \Omega(g)$$

Train a weighted, interpretable model on the dataset with the perturbed instances

(1)
$$\mathcal{L}(f,g,\pi_x) = \sum_{z \in \mathcal{Z}} \pi_x(z) \left(f(z) - g(z)\right)^2$$
Complex model prediction Simple model prediction

(2)
$$\Omega(g)$$
 ?

Loss terms

Introduction

$$\xi(x) = \underset{g \in G}{\operatorname{argmin}} \mathcal{L}(f, g, \pi_x) + \Omega(g)$$

Train a weighted, interpretable model on the dataset with the perturbed instances

(1)
$$\mathcal{L}(f,g,\pi_x) = \sum_{z \in \mathcal{Z}} \pi_x(z) \left(f(z) - g(z)\right)^2$$
Complex model prediction Simple model prediction

(2)
$$\Omega(g)$$
 LIME uses sparse linear models (K - LASSO) $\hat{eta}_{lasso} = \operatorname*{arg\,min}_{(eta_0,...,eta_p) \in \mathbb{R}^n} \{ \operatorname{RSS}(eta) + \lambda \}$

$$\hat{eta}_{lasso} = rgmin_{(eta_0,...,eta_p) \in \mathbb{R}^n} \left\{ \;\; ext{RSS}(eta) + \underbrace{\lambda \sum_{j=1}^p |eta_j|}_{ ext{Penalty term}}
ight\}$$

- Neighbourhood
- Non-linearity
- Improbable instances
- Instability

Introduction

Random forest

Random forest

Shapley values

Introduction

Conclusions

SHappley

Additive

ex**P**lanations

Introduction

SHappley

Additive

ex**P**lanations

Additive feature attribution methods

if
$$x \approx x'$$
 then $f(x) \approx g(x')$

Additive feature attribution methods

if
$$x \approx x'$$
 then $f(x) \approx g(x')$

$$g(x') = \phi_0 + \sum_{i=1}^{p} \phi_i x_i'$$

Conclusions

Properties	

Properties

Introduction

Local accuracy

$$f(x) = g(x') = \phi_0 + \sum_{i=1}^{p} \phi_i x_i'$$

Properties

Introduction

Missingness

$$x_i' = 0 \implies \phi_i = 0$$

Properties

Introduction

Consistency

Let $f_x(z') = f(h_x(z'))$ and $z' \setminus i$ denote setting $z'_i = 0$. For any two models f and f':

$$\forall z' \in \{0,1\}^p, f_x'(z') - f_x'(z'\setminus i) \geq f_x(z') - f_x(z'\setminus i) \implies \phi_i(f',x) \geq \phi_i(f,x)$$

Attribution methos satisfying properties 1, 2, 3

$$g(x') = \phi_0 + \sum_{i=1}^p \phi_i x_i'$$

Attribution methos satisfying properties 1, 2, 3

$$g(x') = \phi_0 + \sum_{i=1}^p \phi_i x_i'$$

Attribution methos satisfying properties 1, 2, 3

$$g(x') = \phi_0 + \sum_{i=1}^p \phi_i x_i'$$

Theorem Only one possible explanation model g follows additive feature attribution methods definition and satisfies Properties 1,2, and 3:

$$\phi_i(f,x) = \sum_{z' \subseteq x'} \frac{|z'|!(p-|z'|-1)!}{p!} (f_x(z') - f_x(z'\setminus i))$$

$$\phi_i(f, x) = \sum_{z' \subseteq x'} \frac{|z'|!(M - |z'| - 1)!}{M!} \left[f_x(z') - f_x(z' \setminus i) \right]$$

Explainable artificial intelligence

$$\phi_i(f, x) = \sum_{z' \subseteq x'} \frac{|z'|!(M - |z'| - 1)!}{M!} \left[f_x(z') - f_x(z' \setminus i) \right]$$

Shapley value for feature i

Random forest

Introduction

Calculating Shapley values

Black Box model

Introduction

Shapley value for feature i

Calculating Shapley values

Explainable artificial intelligence

Calculating Shapley values

$$x = \begin{vmatrix} Age = 56 \end{vmatrix}$$
 $\begin{vmatrix} Gender = F \end{vmatrix}$ $\begin{vmatrix} BMI = 30 \end{vmatrix}$ $\begin{vmatrix} Stroke = yes \end{vmatrix}$...

Machine learning

$$x = \begin{vmatrix} Age = 56 \end{vmatrix}$$
 $\begin{vmatrix} Gender = F \end{vmatrix}$ $\begin{vmatrix} BMI = 30 \end{vmatrix}$ $\begin{vmatrix} Stroke = yes \end{vmatrix}$...

Machine learning

Regression

$$x = \begin{vmatrix} Age = 56 \end{vmatrix} \begin{vmatrix} Gender = F \end{vmatrix} \begin{vmatrix} BMI = 30 \end{vmatrix} \begin{vmatrix} Stroke = yes \end{vmatrix} \dots$$

Machine learning

$$x = \begin{vmatrix} Age = 56 \end{vmatrix}$$
 $Gender = F$ $BMI = 30$ $Stroke = yes$...

Random forest

Calculating Shapley values

Calculating Shapley values

Random forest

Calculating Shapley values

Calculating Shapley values

Calculating Shapley values

Machine learning

Random forest

Calculating Shapley values

Calculating Shapley values

 2^n = total number of subsets of a set of size n

Random forest

Calculating Shapley values

 $2^n = total\ number\ of\ subsets\ of\ a\ set\ of\ size\ n$

4 features: 64 total coalitions to sample

Random forest

Calculating Shapley values

 $2^n = total number of subsets of a set of size n$

4 features: 64 total coalitions to sample

32 features: 17.1 billion

Shapley kernel

Shapley kernel theorem

Introduction

$$\Omega(g) = 0,$$
 $\pi_{x'}(z') = \frac{M-1}{\binom{M}{|z'|}|z'|(M-|z'|)},$
 $\mathcal{L}(f,g,\pi_{x'}) = \sum_{z'\in\mathcal{Z}} [f(h_x^{-1}(z')) - g(z')]^2 \, \pi_{x'}(z')$

$$\xi(x) = \arg\min_{g \in G} \mathcal{L}(f, g, \pi_x) + \Omega(g)$$

Kernel SHAP = LIME + SHAPLEY VALUES

Random forest

SHAP limitations

- Computational cost
- Access to data
- Feature dependencies

LIME and SHAP application

Step by step

Introduction

- Diabetes public tabular database
- Random forest fit with this database

Random forest

LIME and SHAP explanations

LIME explanation

SHAP explanation

Contents

- Introduction
- Machine learning
- Random forest
- 4 Regression
- **5** Explainable artificial intelligence
- 6 Conclusions

Conclusion: LIME vs SHAP

	LIME	SHAP
Theory driven	Fails at being consistent. 🗴	Supported by the Shapley values theory properties and consistency property. ✓
Time expensive	Time affordable. ✓	Computation of marginal contributions for all possible coalitions makes it time expensive. X
Require training data	Does not require the training set for fitting the surrogate model.	Requires the training set for generating the background set that will be used to train the surrogate model. X
What-if explanations	Can provide what-if explanations. ✓	Cannot provide what-if explanations. X
Improbable instances	Improbable instances may be generated when obtaining perturbed instances. X	When imputing omitted features, improbable instances may be generated. X
Instability	Kernel width can make it unstable. X	Its strong theoretical properties makes it stable. ✓

Explainable artificial intelligence

Random forest

Conclusion: Summary

Conclusions

- Detailed insight into the theory behind random forest
- Formalise and unify the theory behind LIME and SHAP
- Healthcare application for LIME and SHAP

Conclusions

Future work

- See how LIME explanations vary depending on the kernel width
- Expand LIME and SHAP theory and application to images
- Compare LIME and SHAP explanations