ICI517 Programación Paralela

Escuela de Ingeniería Civil Informática, Universidad de Valparaíso 2022, Semestre 1

En el gráfico adjunto, se muestra el speedup dos códigos paralelo, que procesan una imagen a través de dos algoritmos.

	Tiempo de ejecución					
LP	Algoritmo A	Algoritmo B				
1	1000	1000				
2	550	600				
4	300	350				
8	180	230				
16	100	150				
32	70	130				
64	50	100				
128	40	90				
256	30	80				
512	25	75				

 a) Determine qué tipo de escalabilidad se puede determinar en base a los datos entregados.

El tamaño del problema se mantiene para cada uno de los algoritmos y se aumenta la cantidad de LP. Con esto, se puede determinar escalabilidad fuerte.

b) Determine la eficiencia de ambos algoritmos

		Algoritmo A		Algoritmo B				
LP	Tiempo de ejecución	SpeedUP	Eficiencia	Tiempo de ejecución	SpeedUP	Eficiencia		
1	1000			1000				
2	550	1.8	0.90	600	1.67	0.84		
4	300	3.3	0.83	350	2.86	0.72		
8	180	5.6	0.70	230	4.38	0.55		
16	100	10.0	0.63	150	6.67	0.42		
32	70	14.3	0.45	130	7.69	0.24		
64	50	20.0	0.31	100	10.00	0.16		
128	40	25.0	0.20	90	11.11	0.09		
256	30	33.3	0.13	80	12.50	0.05		
512	25	40.0	0.08	75	13.33	0.03		

c) Determine hasta qué cantidad de LP conviene utilizar cada algoritmo
Una convención es que los algoritmos tengan una eficiencia paralela superior al 50%.
Si esta es la condición, el algoritmo A conviene paralelizarlo hasta 16 LP y el algoritmo B, hasta 8 LP.

Comentado [GA1]: Se debe especificar el tipo de escalabilidad y su justificación (8pts)

Comentado [GA2]: 4pts por cada columna de eficiencia correcta

Comentado [GA3]: Se debe especificar la condición **(4pts)** y la respuesta por cada algoritmo **(4pts)**

Puntaje	Nota								
0.0	1.0	5.0	2.0	10.0	3.1	15.0	4.2	20.0	5.8
0.5	1.1	5.5	2.1	10.5	3.2	15.5	4.3	20.5	5.9
1.0	1.2	6.0	2.3	11.0	3.3	16.0	4.5	21.0	6.1
1.5	1.3	6.5	2.4	11.5	3.4	16.5	4.7	21.5	6.2
2.0	1.4	7.0	2.5	12.0	3.5	17.0	4.8	22.0	6.4
2.5	1.5	7.5	2.6	12.5	3.6	17.5	5.0	22.5	6.5
3.0	1.6	8.0	2.7	13.0	3.7	18.0	5.1	23.0	6.7
3.5	1.7	8.5	2.8	13.5	3.8	18.5	5.3	23.5	6.8
4.0	1.8	9.0	2.9	14.0	3.9	19.0	5.4	24.0	7.0
4.5	19	9.5	3.0	14.5	4.0	19.5	5.6		