MATH3411 INFORMATION, CODES & CIPHERS

Test 2 Session 2 2015 SOLUTIONS

Version A

Multiple choice: c, c, a, d, d True/False: \mathbf{T} , \mathbf{F} , \mathbf{T} , \mathbf{T} .

1. (c): Encode the message $bba \bullet$:

	subinterval start	\mathbf{width}
begin	0	1
b	0.4	0.5
b	$0.4 + 0.4 \times 0.5 = 0.6$	$0.5 \times 0.5 = 0.25$
a	0.6	$0.4 \times 0.25 = 0.1$
•	$0.6 + 0.9 \times 0.1 = 0.69$	$0.1 \times 0.1 = 0.01$

so the message encodes as a number in the interval [0.69, 0.70).

- 2. (c): $M_H = \frac{7}{12}H(0.5) + \frac{5}{12}H(0.7) \approx 0.951$.
- 3. (a): Note that $H(\frac{5}{9}) = H(\frac{3}{9})$.
- 4. (d): $\phi(125) = \phi(5^3) = 5^3 5^2 = 100$, so by Euler's Theorem,

$$2^{2015} \equiv (2^{100})^{20} \times 2^{15} \equiv 1^{20} \times (2^7)^2 \times 2 \equiv 128^2 \times 2 \equiv 3^2 \times 2 \equiv 18 \pmod{125} \,.$$

- 5. (d) gcd(9,2) Ssignment Project Exam Help
- (i) True: a|aa|ab|aaa|aab|aaaa
 - (ii) False: The bin property is a proving the composition of the property of the composition of the composi

 - (iv) **True**: The longest two codeword lengths are 5 and 7.
- 7. (i) Here, we have that $\alpha^3 = \alpha + 1$:

$$\alpha^{1} = \alpha$$

$$\alpha^{2} = \alpha^{2}$$

$$\alpha^{3} = \alpha + 1$$

$$\alpha^{4} = \alpha^{2} + \alpha$$

$$\alpha^{5} = \alpha^{2} + \alpha + 1$$

$$\alpha^{6} = \alpha^{2} + 1$$

$$\alpha^{7} = 1$$

(ii)

$$\begin{pmatrix} \alpha^{3} & \alpha^{5} & \alpha \\ \alpha^{2} & \alpha^{3} & \alpha^{6} \end{pmatrix} \xrightarrow{R1 = \alpha^{4}R1} \begin{pmatrix} 1 & \alpha^{2} & \alpha^{5} \\ 1 & \alpha & \alpha^{4} \end{pmatrix} \xrightarrow{R2 = R2 - R1} \begin{pmatrix} 1 & \alpha^{2} & \alpha^{5} \\ 0 & \alpha^{2} + \alpha & \alpha^{4} - \alpha^{5} \end{pmatrix} = \begin{pmatrix} 1 & \alpha^{2} & \alpha^{5} \\ 0 & \alpha^{4} & 1 \end{pmatrix}$$

$$\xrightarrow{R2 = \alpha^{3}R2} \begin{pmatrix} 1 & \alpha^{2} & \alpha^{5} \\ 0 & 1 & \alpha^{3} \end{pmatrix} \xrightarrow{R1 = R1 - \alpha^{2}R2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & \alpha^{3} \end{pmatrix}$$

so x = 0 and $y = \alpha^3 = \alpha + 1$.

(iii) $\{\alpha^5, \alpha^{10} = \alpha^3, \alpha^6, \alpha^{12} = \alpha^5, \ldots\} = \{\alpha^3, \alpha^5, \alpha^6\}$, so the minimal polynomial of α^5 is

$$(x - \alpha^3)(x - \alpha^5)(x - \alpha^6) = x^3 - (\alpha^3 + \alpha^5 + \alpha^6)x^2 + (\alpha^3\alpha^5 + \alpha^3\alpha^6 + \alpha^5\alpha^6)x - \alpha^3\alpha^5\alpha^6$$

$$= x^3 + (\alpha + 1 + \alpha^2 + \alpha + 1 + \alpha^2 + 1)x^2 + (\alpha + \alpha^2 + \alpha^4)x + 1$$

$$= x^3 + x^2 + (\alpha + \alpha^2 + \alpha^2 + \alpha)x + 1$$

$$= x^3 + x^2 + 1.$$

Version B

Multiple choice: c, a, c, e, e True/False: \mathbf{T} , \mathbf{T} , \mathbf{F} , \mathbf{T} , \mathbf{T} .

1. **(c)**:

code number rescaled	in interval	decoded symbol
0.35	[0, 0.4)	a
0.35/.4 = 0.875	[0.4, 0.9)	b
(0.875 - 0.4)/.5 = 0.95	[0.9, 1)	•

2. (a):
$$M_H = \frac{5}{7}H(0.8) + \frac{2}{7}H(0.5) \approx 0.801$$
.

3. **(c)**

4. (e): $\phi(125) = \phi(5^3) = 5^3 - 5^2 = 100$, so by Euler's Theorem,

$$3^{2015} \equiv (3^{100})^{20} \times 3^{15} \equiv 1^{20} \times (3^5)^3 \equiv 243^3 \equiv (-7)^3 \equiv -343 \equiv 32 \pmod{125} \,.$$

5. **(e)**

(i) **True**: a|aa|b|aaa|aab|ba

(ii) True The binary entropy is approximately 1.46 and by Shannon's Theorem, we can get arbitrarily is Signment Project Exam Help

(iii) **False**: a = 37 and b = 61, so 2a - b = 13.

(iv) True: The two shortest codeword lengths are 1 and 3. (v) True: $3^5 \equiv 15$ (mod p) and 9 (Q,1) CODET. COM

7. (i) Here, we have that $\alpha^3 = \alpha^2 + 1$:

Add WeChat α^{4} powcoder $\alpha^{4} = \alpha^{2} + \alpha + 1$ $\alpha^{5} = \alpha + 1$ $\alpha^{6} = \alpha^{2} + \alpha$

(ii)

$$\begin{pmatrix} \alpha^{2} & \alpha^{5} & \alpha^{3} \\ \alpha^{4} & \alpha^{6} & 1 \end{pmatrix} \xrightarrow{R1 = \alpha^{-2}R1} \begin{pmatrix} 1 & \alpha^{3} & \alpha \\ 1 & \alpha^{2} & \alpha^{3} \end{pmatrix} \xrightarrow{R2 = R2 - R1} \begin{pmatrix} 1 & \alpha^{3} & \alpha \\ 0 & \alpha^{2} + \alpha^{3} & \alpha^{3} + \alpha \end{pmatrix} = \begin{pmatrix} 1 & \alpha^{3} & \alpha \\ 0 & 1 & \alpha^{4} \end{pmatrix}$$

$$\xrightarrow{R1 = R1 - \alpha^{3}R2} \begin{pmatrix} 1 & 0 & \alpha + 1 \\ 0 & 1 & \alpha^{4} \end{pmatrix}$$

so $x = \alpha + 1 = \alpha^5$ and $y = \alpha^4 = \alpha^2 + \alpha + 1$.

(iii) $\{\alpha^3, \alpha^6, \alpha^{12} = \alpha^5, \alpha^{10} = \alpha^3, \ldots\} = \{\alpha^3, \alpha^5, \alpha^6\}$, so the minimal polynomial of α^3 is

$$(x - \alpha^3)(x - \alpha^5)(x - \alpha^6) = x^3 - (\alpha^3 + \alpha^5 + \alpha^6)x^2 + (\alpha^3 \alpha^5 + \alpha^3 \alpha^6 + \alpha^5 \alpha^6)x - \alpha^3 \alpha^5 \alpha^6$$

= $x^3 + (\alpha^2 + 1 + \alpha + 1 + \alpha^2 + \alpha)x^2 + (\alpha + \alpha^2 + \alpha^2 + \alpha + 1)x + 1$
= $x^3 + x + 1$.