September 17, 2015 FIT 2015

統計的パターンマイニング Significant Pattern Mining

大阪大学 産業科学研究所 さきがけ研究者 杉山 麿人 Mahito Sugiyama

Outline

- (Discriminative) Pattern mining
- Statistical hypothesis testing of patterns
- Multiple hypothesis testing in pattern mining
- Testable patterns
- Permutation testing in pattern mining
- Conclusion

Outline

- (Discriminative) Pattern mining
- Statistical hypothesis testing of patterns
- Multiple hypothesis testing in pattern mining
- Testable patterns
- Permutation testing in pattern mining
- Conclusion

Itemset Mining

Find interesting combinatorial patterns from massive data

Itemset Mining

Find interesting combinatorial patterns from massive data

Subgraph Mining

Find interesting combinatorial patterns from massive data

Subgraph Mining

Find interesting combinatorial patterns from massive data

Apriori on Itemset Lattice

Transaction database

- ID 1: •
- ID 2: •
- ID 3: •
- ID 4: • •
- ID 5: •
- ID 6:
- ID 7: •
- ID 8: • •

Apriori on Itemset Lattice

Transaction database

Itemset lattice

Apriori principle:

Support is monotonically decreasing

Apriori on Itemset Lattice

Transaction database

Itemset lattice

Apriori principle:

Support is monotonically decreasing

Discriminative Itemset Mining

Database

- Find discriminative patterns from supervised data
 - e.g. Genome-wide association studies in Bioinformatics

Positive Negative

Discriminative Itemset Mining

Database

- Find discriminative patterns from supervised data
 - e.g. Genome-wide association studies in Bioinformatics

Discriminative Itemset

Support: (4, 2)

Support: (3, 1)

Discriminative Subgraph Mining

- Find discriminative patterns from supervised data
 - e.g. Drug discovery

Discriminative Subgraph Mining

- Find discriminative patterns from supervised data
 - e.g. Drug discovery

Agenda

- In discriminative pattern mining:
- 1. How to measure the discriminability of patterns?
- 2. How to enumerate all discriminative patterns?

Agenda

- In discriminative pattern mining:
- 1. How to measure the discriminability of patterns?
- 2. How to enumerate all discriminative patterns?
 - Answer to 1:
 - Compute the p-value via statistical hypothesis testing
 - Discriminative pattern ←⇒ (Statistically) Significant pattern
 - Answer to 2:
 - Integrate evaluation of discriminability and enumeration of patterns

Outline

- (Discriminative) Pattern mining
- Statistical hypothesis testing of patterns
- Multiple hypothesis testing in pattern mining
- Testable patterns
- Permutation testing in pattern mining
- Conclusion

Computing p-value of Pattern

• Given positive and negative sets of transactions \mathcal{X} , \mathcal{X}'

$$-|\mathcal{X}|=n, |\mathcal{X}'|=n' (n \leq n')$$

 The p-value of each pattern H is determined by the Fisher's exact test

$$- x = |\{X \in \mathcal{X} \mid H \subseteq X\}|$$

	Occ.	Non-occ.	Total			
\mathscr{X} (Pos.) X	n – x	n			
\mathcal{X}' (Neg	.) X'	n'-x'	n'			
Total	$X + X'$ $= \sigma$	(n-x) + $(n'-x')$	n + n'			
Support						

Fisher's Exact Test

• The probability q(x) of obtaining x and x' is given by the hypergeometric distribution:

$$q(x) = \binom{n}{x} \binom{n'}{x'} / \binom{n+n'}{x+x'}$$

Occ. N	lon-occ.	Total	q(X)			
\mathcal{X} (Pos.) X	n – x	n	oility			
\mathcal{X}' (Neg.) x'	n'-x'	n'	Probability	<i>p</i> -value		
Total $x + x' = \sigma + \sigma$	(n-x)	n + n'	Pro		-	
Su	ıpport	 = max	-0 + x{0 <i>. x</i>	X _{min} - x' - n'}	X	$= \min\{x + x', n\}$
				,		11/40

0.3

Hypothesis Test for Each Pattern

Null hypothesis: The occurrence of the pattern is

independent from classes

Alternative hypothesis: The occurrence of the pattern is

associated with classes

Hypothesis Test for Each Pattern

Outline

- (Discriminative) Pattern mining
- Statistical hypothesis testing of patterns
- Multiple hypothesis testing in pattern mining
- Testable patterns
- Permutation testing in pattern mining
- Conclusion

Multiple Testing Correction

- In each test, [probability of having a false positive] $\leq \alpha$
- If we repeat m tests, am patterns can be false positives
 - Too many if m is large!
 - Example in itemset mining:
 - For 100000 items, #patterns = 2¹⁰⁰⁰⁰⁰
 - Set significance level $\alpha = 0.01$
 - Number of false positives: $0.01 \cdot 2^{100000} = 10^{30101}$

Multiple Testing Correction

- In each test, [probability of having a false positive] $\leq \alpha$
- If we repeat m tests, am patterns can be false positives
 - Too many if m is large!
 - Example in itemset mining:
 - For 100000 items, #patterns = 2¹⁰⁰⁰⁰⁰
 - Set significance level $\alpha = 0.01$
 - Number of false positives: $0.01 \cdot 2^{100000} = 10^{30101}$
- FWER (family-wise error rate): Probability of having more than one false positives among all patterns
 - One of the standard criteria in multiple testing
 - FWER = $1 (1 \alpha)^m$ if patterns are independent

Controlling the FWER

- FWER = Pr(FP > 0)
 - FP: Number of false positives
- To achieve FWER = α , change the significance level for each pattern from α to δ ($\delta \leq \alpha$)
 - δ : corrected significance level

Controlling the FWER

- FWER = Pr(FP > 0)
 - FP: Number of false positives
- To achieve FWER = α , change the significance level for each pattern from α to δ ($\delta \leq \alpha$)
 - δ : corrected significance level
- **Objective**: Optimize (maximize) δ

```
\delta^* = \underset{\delta}{\operatorname{argmax}} \operatorname{FWER}(\delta) \quad \text{s.t.} \operatorname{FWER}(\delta) \le \alpha
```

- FWER(δ): FWER at corrected significance level δ
 - Cannot be evaluated in closed form (simple but not easy!)
- Bonferroni correction is popular: $\delta_{Bon}^* = \alpha/m$

Outline

- (Discriminative) Pattern mining
- Statistical hypothesis testing of patterns
- Multiple hypothesis testing in pattern mining
- Testable patterns
- Permutation testing in pattern mining
- Conclusion

Minimum Achievable p-value $\Psi(\sigma)$

• Consider the minimum achievable p-value $\Psi(\sigma)$ of a pattern H for its support $\sigma = |\{X \in \mathcal{X} \cup \mathcal{X}' \mid H \subseteq X\}|$

$$- \Psi(\sigma) = \min\{p(x) \mid x_{\min} \le x \le x_{\max}\}\$$

$$\circ x_{\min} = \max\{o, \sigma - n'\}, x_{\max} = \min\{\sigma, n\}$$

			0.5			
Occ.	Non-occ.	Total	' q(X)			Minimum
\mathscr{X} (Pos.) x	n – x	n	oility			achievable p-value
\mathcal{X}' (Neg.) x'	n'-x'	n'	Probability			
Total $x + x' = \sigma$	(n-x) + $(n'-x')$	n + n'	P.			
	Support		U	X_{min}	X	$oldsymbol{\mathcal{X}}_{max}$
	Support	$= m^{2}$	ax{0, <i>f</i> (<i>l</i>	1) – n'}		$= \min\{f(H), n\}$
						18/40

 0.3_{7}

Computing $\Psi(\sigma)$

• Consider the minimum achievable p-value $\Psi(\sigma)$ of a pattern H for its support $\sigma = |\{X \in \mathcal{X} \cup \mathcal{X}' \mid H \subseteq X\}|$

$$\Psi(\sigma) = \binom{n}{\sigma} / \binom{n+n'}{\sigma}$$

		_					
	Occ.	Non-occ.	Total	/ q(X)			Minimum
$\mathscr X$ (Pos.)	σ	n – σ	n	oility			achievable <i>p</i> -value
\mathscr{X}' (Neg.)	0	n′	n'	Probability			
Total	σ	(n – σ) + n′	n + n'	Prc			
Most bi	iased	case $(\sigma < n)$	= m	ax{0, <i>f</i> (X _{min} H) – n'}	X	$= \min\{f(H), n\}$
							19/40

0.3

Testability

• Consider the minimum achievable p-value $\Psi(\sigma)$ of a pattern H for its support $\sigma = |\{X \in \mathcal{X} \cup \mathcal{X}' \mid H \subseteq X\}|$

$$\Psi(\sigma) = \binom{n}{\sigma} / \binom{n+n'}{\sigma}$$

- Tarone (1990) pointed out (and Terada et al. (2013) revisited):
 - For a pattern H, if $\Psi(\sigma)$ is larger than the significance threshold, this is untestable and we can ignore it
 - Significance threshold = α / [# testable patterns]

Finding Testable Patterns

State-of-the-art

How to Find Testable Patterns?

How to Find Testable Patterns?

Testable Patterns in Subgraph Mining

from [Sugiyama et al. SDM2015]

Outline

- (Discriminative) Pattern mining
- Statistical hypothesis testing of patterns
- Multiple hypothesis testing in pattern mining
- Testable patterns
- Permutation testing in pattern mining
- Conclusion

FWER Is Still Too Low!

from [Sugiyama et al. SDM2015]

Take Dependencies into Account

- Problem: Dependencies between patterns are not considered
- Solution: Permutation test
 - Repeat random permutation of class labels (10³ ~ 10⁴ times)
 - Get the null distribution of p-values
 - The optimal correction factor can be obtained

State-of-the-art

Westfall-Young Permutation

- 1. Randomly permute class labels
- 2. Compute *p*-values for all patterns using the permuted class labels
- 3. Find the minimum p-value p_{\min} among them
 - FP > o \iff $p_{\min} < \delta$
 - FP: Number of false positives
- 4. Repeat steps 1 to 3 h times and obtain $p_{\min}^1, p_{\min}^2, \dots, p_{\min}^h$
 - FWER(δ) $\approx |\{i : p_{\min}^i \le \delta\}| / h$
- 5. δ^* is the α -quantile of $p_{\min}^1, p_{\min}^2, \dots, p_{\min}^h$

Westfall-Young Permutation

Using Support for Estimating FWER

Estimating FWER

Estimating FWER

Estimator of FWER = $|\{i: p_{\min}^i \le \Psi(\sigma)\}| / h$

"Westfall-Young light"

[Llinares-López et al. KDD'15]

- Precompute h permuted labels; $\sigma \leftarrow 1$; $p_{\min}^i \leftarrow 1$
- Westfall-Young light does the following whenever a miner (like LCM) finds a new frequent pattern H:
 - for i ← 1 to h do:
 - ∘ p^i ← the p-value of H for ith permutation
 - $\circ p_{\min}^i \leftarrow \min\{p_{\min}^i, p^i\}$
 - FWER ← $|\{i: p_{\min}^i \le \Psi(\sigma)\}| / h$
 - while FWER > α do:
 - $\circ \sigma \leftarrow \sigma + 1$ // σ is the minimum support
 - ∘ FWER $\leftarrow |\{i : p_{\min}^i \le \Psi(\sigma)\}| / h$
 - Go children of H

FWER in Itemset Mining

from [Llinares-López et al. KDD2015]

FWER in Subgraph Mining

from [Llinares-López et al. KDD2015]

Outline

- (Discriminative) Pattern mining
- Statistical hypothesis testing of patterns
- Multiple hypothesis testing in pattern mining
- Testable patterns
- Permutation testing in pattern mining
- Conclusion

Conclusion

- The area of significant pattern mining is emerging
 - Find statistically significant combinatorial patterns while controlling false positive rate
- Pattern mining, a classical yet central topic in data mining, can be enriched by introducing statistical assessment
 - Can be applied in scientific fields such as biology

Appendix

Papers about Testability

- Tarone, R.E.:
 A modified Bonferroni method for discrete data Biometrics (1990)
- [LAMP] Terada, A., Okada-Hatakeyama, M., Tsuda, K., Sese, J.: Statistical significance of combinatorial regulations, *Proc. Natl. Acad. Sci. USA* (2013).
- [LAMP ver.2] Minato, S., Uno, T., Tsuda, K., Terada, A., Sese, J.: Fast Statistical Assessment for Combinatorial Hypotheses Based on Frequent Itemset Mining ECML PKDD 2014
- Sugiyama, M., Llinares-López, F., Kasenburg, N., Borgwardt, K.: Significant Subgraph Mining with Multiple Testing Correction, SIAM SDM 2015

Papers about Permutation Testing

- Westfall, P. H. and Young, S. S.
 Resampling-based multiple testing: Examples and methods for p-value adjustment
 John Wiley & Sons (1993)
- [FastWY] Terada, A. and Tsuda, K. and Sese, J.:
 Fast Westfall-Young permutation procedure for combinatorial regulation discovery, IEEE BIBM 2013
- [Westfall-Young light] Llinares-López, F., Sugiyama, M., Papaxanthos, L., Borgwardt, K.:
 Fast and Memory-Efficient Significant Pattern Mining via Permutation Testing, ACM SIGKDD 2015
- [FAIS-WY] Llinares-López, F., et al.:
 Genome-Wide Detection of Intervals of Genetic
 Heterogeneity Associated with Complex Traits, ISMB 2015

Frequent Itemset Miners

- [Apriori] Agrawal, R. and Imieliński, T. and Swami, A.: Mining association rules between sets of items in large databases, ACM SIGMOD 1993
- [FP-Growth] Han, J. and Pei, J. and Yin, Y.: Mining frequent patterns without candidate generation, ACM SIGMOD 2000
- [LCM] Uno, T. and Asai, T. and Uchida, Y. and Arimura, H.:
 An efficient algorithm for enumerating closed patterns in transaction databases,
 DS 2004
 (won FIMI'04 competition)

Frequent Subgraph Miners

- [AGM] Inokuchi, A. and Washio, T. and Motoda, H.: An Apriori-Based Algorithm for Mining Frequent Substructures from Graph Data, PKDD 2000
- [gSpan] Yan, X. and Han, J.: gSpan: Graph-based substructure pattern mining, ICDM 2002
- [GASTON] Nijssen, S. and Kok, J. N.:
 A Quickstart in Frequent Structure Mining Can Make a Difference, KDD 2004
- (comparison) Wörlein, M. and Meinl, T. and Fischer, I. and Philippsen, M.
 - A Quantitative Comparison of the Subgraph Miners MoFa, gSpan, FFSM, and Gaston, PKDD 2005
 - We used GASTON as it is the fastest