Preferential Bayesian Optimization with Hallucination Believer

Shion Takeno¹, Masahiro Nomura ², and Masayuki Karasuyama¹ ¹Nagoya Institute of Technology, ²CyberAgent, inc.

1. Overview

• Black-box utility function optimization via dueling feedback: $\operatorname{argmax} f(\boldsymbol{x}), \text{ via } \left\{\boldsymbol{x}^{(1)} \succ \boldsymbol{x}^{(2)}\right\} \Leftrightarrow \left\{f(\boldsymbol{x}^{(1)}) > f(\boldsymbol{x}^{(2)})\right\}$

Applications

- 1. Recommendation system (x is a recommended item)
- 2. A/B test (x is a design of webpage)

Difficulty: Exact posterior is computationally intractable skew Gaussian process (skew GP).

Contributions

- 1. We propose easy-to-use preferential Bayesian optimization (BO) method called Hallucination Believer (HB).
 - Conditioning of hallucination avoids a direct use of skew GP.
- 2. Both complexities of HB are low
 - ▶ Sample complexity: The number of queries should be small
 - Computational complexity: User wait time should be small
- 3. Arbitrary acquisition function (AF) for BO can be integrated $\stackrel{\smile}{\smile}$.

2. Skew Gaussian process (skew GP)

1. True posterior is a skew GP [Benavoli et al., 2021a,b]:

MCMC-based approximation is time-consuming.

2. Gaussian approximation of skew GP [Chu and Ghahramani, 2005a,b]:

In right figures, Gauss. approx. shows poor accuracy ★ $\Pr(f(\boldsymbol{x}_2) < f(\boldsymbol{x}_1)) > 0$, which is almost zero in true posterior.

3. Key Insight of Hallucination Believer

- Training duels can be rewritten as $oldsymbol{v}_t < oldsymbol{0}$:
 - $m{v}_t = ig(f(m{x}_{i,l}) f(m{x}_{i,w}) + 2\epsilon_iig)_i \in \mathbb{R}^t$, where ϵ_i is noise
 - $oldsymbol{x}_{i,l}$ and $oldsymbol{x}_{i,w}$ are loser and winner at i-th iteration.

Proposition

Exact posterior distribution additionally conditioned by $oldsymbol{v}_t$ is $p(f \mid \boldsymbol{v}_t < \boldsymbol{0}, \boldsymbol{v}_t) = p(f \mid \boldsymbol{v}_t)$, which is a GP.

- ullet Conditioning on $oldsymbol{v}_t = oldsymbol{c}$ by a constant $oldsymbol{c}$ ignores skewness.
- We condition on hallucination $\tilde{\boldsymbol{v}}_t \sim p(\boldsymbol{v}_t \mid \boldsymbol{v}_t < \boldsymbol{0})$:

HB chooses GP randomly based on $p(v_t \mid v_t < 0)$

- Computationally efficient since only one sample $\tilde{m{v}}_t$ is used
- Skewness is reflected via exact posterior $p(\boldsymbol{v}_t \mid \boldsymbol{v}_t < \boldsymbol{0})$

4. Algorithm of Hallucination Believer

- 1: **for** t = 1, ... **do**
- $oldsymbol{x}_t^{(1)} \leftarrow oldsymbol{x}_{t-1,w}$, i.e., winner in past duels
- Generate $\tilde{\boldsymbol{v}}_{t-1}, \tilde{y}_{t}^{(1)}$ from $p(\boldsymbol{v}_{t-1}, y_{t}^{(1)} \mid \boldsymbol{v}_{t-1} < \boldsymbol{0})$
- $|m{x}_t^{(2)} \leftarrow \operatorname{argmax}_{m{x} \in \mathcal{X}} lpha(m{x}) \text{ based on the GP } f \mid \tilde{m{v}}_{t-1}, \tilde{y}_t^{(1)}|$
- Get $m{x}_{t,w}$ and $m{x}_{t,l}$ by duel between $m{x}_t^{(1)}$ and $m{x}_t^{(2)}$.
- 6: end for
- $p(\boldsymbol{v}_{t-1} \mid \boldsymbol{v}_{t-1} < \boldsymbol{0})$ is truncated multivariate normal, whose sampling is efficient by Gibbs sampling [Li and Ghosh, 2015]
- ullet Conditioning $y_t^{(1)}\coloneqq f(m{x}_t^{(1)})+\epsilon$ aims penalization around $m{x}_t^{(1)}$
 - $m y_t^{(1)}$ can be sampled from normal dist. $p(y_t^{(1)} \mid m v_{t-1} = \tilde{m v}_{t-1})$

• Since $f \mid \tilde{\boldsymbol{v}}_{t-1}, \tilde{y}_t^{(1)}$ is GP, any AF α can be integrated.

5. Experiments

• We report average and standard error of regret:

 $r_t = f_* - f(\hat{\boldsymbol{x}}_t),$ where $\hat{\boldsymbol{x}}_t$ is a recommendation point.

• HB with El (blue) and UCB (red) were superior.

(b) Iteration