MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Find the domain and graph the function.

1) $G(t) = \frac{1}{|t-3|}$ 1) _____

Solve the problem.

2) If
$$f(x) = \sqrt{x}$$
, $g(x) = \frac{x}{5}$, and $h(x) = 5x + 20$, find $h(g(f(x)))$.

A)
$$\sqrt{x+4}$$
 B) $\sqrt{x+4}$

B)
$$\sqrt{x+4}$$

C)
$$5\sqrt{x} + 20$$
 D) $\sqrt{x} + 20$

D)
$$\sqrt{x} + 20$$

Graph the function. Determine the symmetry, if any, of the function.

3)
$$y = -x^{4/3}$$

A) No symmetry

C) Symmetric about the y-axis

B) Symmetric about the y-axis

D) No symmetry

Find a formula for the function graphed.

4)

A)
$$f(x) = \begin{cases} \frac{1}{2}x + 1, & -8 < x \le -2 \\ 5, & -2 < x \le 3 \\ 6 - x, & 3 < x < 8 \end{cases}$$

C)
$$f(x) = \begin{cases} \frac{1}{2}x + 1, & -8 \le x \le -2\\ 5, & -2 < x < 3\\ 6 - x, & 3 \le x \le 8 \end{cases}$$

B)
$$f(x) = \begin{cases} -\frac{1}{2}x + 1, & -8 \le x \le -2\\ 5, & -2 < x \le 3\\ x - 6, & 3 < x \le 8 \end{cases}$$

B)
$$f(x) = \begin{cases} -\frac{1}{2}x + 1, & -8 \le x \le -2 \\ 5, & -2 < x \le 3 \\ x - 6, & 3 < x \le 8 \end{cases}$$

D) $f(x) = \begin{cases} \frac{1}{2}x + 1, & -8 \le x \le -2 \\ 5, & -2 < x \le 3 \\ 6 - x, & 3 < x \le 8 \end{cases}$

Solve the equation.

5)
$$\log x = -4$$

A)
$$x = \frac{1}{10,000}$$
 B) $x = -40$

B)
$$x = -40$$

C)
$$x = 40$$

D)
$$x = \frac{1}{410}$$

Express as a single logarithm and, if possible, simplify.

6)
$$\ln (32x + 16) - 2 \ln 4$$

A)
$$\ln (4x + 2)$$

C)
$$\ln (256(2x+1))$$

D)
$$ln (2x + 1)$$

Solve the equation.

7)
$$2(10 - 2x) = 16$$

A)
$$x = 5$$

B)
$$x = 3$$

C)
$$x = 8$$

3

D)
$$x = -3$$

Use the graph to evaluate the limit.

8) Find $\lim_{x\to(-1)^-} f(x)$ and $\lim_{x\to(-1)^+} f(x)$

8) _____

- A) -5; -2
- B) -7; -5
- C) -2; -7
- D) -7; -2

Give an appropriate answer.

- 9) Let $\lim_{x \to -7} f(x) = 2$ and $\lim_{x \to -7} g(x) = 3$. Find $\lim_{x \to -7} \left[\frac{8f(x) 5g(x)}{4 + g(x)} \right]$.
 - A) $\frac{1}{7}$

B) -7

- C) $\frac{31}{7}$
- D) 1

Determine the limit by sketching an appropriate graph.

10) $\lim_{x \to -7^{+}} f(x)$, where $f(x) = \begin{cases} x & -7 \le x < 0, \text{ or } 0 < x \le 3 \\ 1 & x = 0 \\ 0 & x < -7 \text{ or } x > 3 \end{cases}$ A) 7
B) -0
C) -7

10) _____

- Find the limit.
 - 11) $\lim_{x \to 5} \sqrt{x^2 + 2x + 1}$

11) _____

A) 6

B) 36

C) ±6

D) does not exist

D) Does not exist

Find the limit, if it exists.

12) $\lim_{x \to 9} \frac{|9-x|}{9-x}$

12) _____

A) -1

B) 1

C) 0

D) Does not exist

13) $\lim_{h \to 0} \frac{(x+h)^3 - x^3}{h}$

13) _____

A) 0

- B) Does not exist
- C) $3x^2 + 3xh + h^2$
- D) $3x^2$

Provide an appropriate response.

14) If $x^3 \le f(x) \le x$ for x in [-1,1], find $\lim_{x\to 0} f(x)$ if it exists.

14) _____

A) -1

B) 0

C) 1

D) does not exist

For the function f whose graph is given, determine the limit.

15) Find $\lim_{x\to\infty} f(x)$.

15) _____

- - A) does not exist
- B) 0

C) ∞

D) -2

Find the limit.

16)
$$\lim_{x \to 4^+} \frac{x^2 - 6x + 8}{x^3 - 4x}$$

16) _____

A) -∞

B) ∞

C) 0

D) Does not exist

Find all vertical asymptotes of the given function.

17)
$$f(x) = \frac{-x^2 + 16}{x^2 + 5x + 4}$$

17) _____

- A) x = -1
- B) x = -1, x = -4
- C) x = 1, x = -4
- D) x = -1, x = 4

Divide numerator and denominator by the highest power of x in the denominator to find the limit.

18)
$$\lim_{x \to \infty} \frac{5x+6}{\sqrt{6x^2+1}}$$

18) _____

A) ∞

B) 0

- C) $\frac{5}{\sqrt{6}}$
- D) $\frac{5}{6}$

Find all points where the function is discontinuous.

19)

A)
$$x = 0$$

C)
$$x = -2$$
, $x = 0$, $x = 2$

D)
$$x = -2$$
, $x = 2$

Find all horizontal asymptotes of the given function, if any.

20)
$$f(x) = \frac{4x^4 + x^2 - 2}{x - x^3}$$

A)
$$y = -1$$
, $y = 1$

C)
$$y = -4$$

B) no horizontal asymptotes

D)
$$y = 0$$

Provide an appropriate response.

21) Is f continuous at x = 0?

21) _____

22) ____

20) _____

A) Yes

B) No

Find the limit.

22)
$$\lim_{x \to \infty} \frac{9x^3 - 5x^2 + 3x}{-x^3 - 2x + 6}$$

A) $\frac{3}{2}$

B) 9

C) -9

D) ∞

Find the intervals on which the function is continuous.

23)
$$y = \frac{3}{x^2 - 25}$$

- A) discontinuous only when x = -5 or x = 5
- B) discontinuous only when x = -5
- C) discontinuous only when x = -25 or x = 25
- D) discontinuous only when x = 25

Find numbers a and b, or k, so that f is continuous at every point.

imbers a and b, or k, so that f is continuous at every point.

(4)
$$f(x) = \begin{cases} x^2, & x < -5 \\ ax + b, -5 \le x \le -2 \\ x + 6, & x > -2 \end{cases}$$
A) $a = -7$, $b = 10$

B) $a = -7$, $b = -10$

C) $a = 7$, $b = -10$

e slope of the line tangent tangent to the graph a the given point.

- D) Impossible

Find the slope of the line tangent tangent to the graph a the given point.

25)
$$y = \frac{6}{5+x}$$
, $x = 7$

- A) $m = \frac{1}{2}$ B) $m = \frac{1}{24}$ C) $m = -\frac{1}{24}$ D) $m = -\frac{1}{2}$

Find an equation for the tangent to the curve at the given point.

26)
$$f(x) = 2\sqrt{x} - x + 5$$
, (4, 5)
A) $y = -\frac{1}{2}x + 5$ B) $y = \frac{1}{2}x - 7$ C) $y = 5$ D) $y = -\frac{1}{2}x + 7$

- D) $y = -\frac{1}{2}x + 7$

Solve the problem.

- 27) Use the following information to graph the function f over the closed interval [-5, 6].
 - 27)

24) ____

- i) The graph of f is made of closed line segments joined end to end.
- ii) The graph starts at the point (-5, 1).
- iii) The derivative of f is the step function in the figure shown here.

28)

A)

B)

D)

The figure shows the graph of a function. At the given value of x, does the function appear to be differentiable, continuous but not differentiable, or neither continuous nor differentiable?

29) x = 1

- A) Differentiable
- B) Continuous but not differentiable
- C) Neither continuous nor differentiable

Find the derivative.

30)
$$y = 4x^2 + 7x + 3e^x$$

30) _____

A)
$$8x + 3e^{X}$$

B)
$$8x + 7 + 3e^{X}$$

D)
$$4x + 3e^{X}$$

Find y .

31)
$$y = (2x^3 + 4)(5x^7 - 5)$$

31) _____

A)
$$100x^9 + 140x^6 - 30x^2$$

B)
$$8x^9 + 140x^6 - 30x^2$$

C) $8x + 7 + e^{X}$

C)
$$8x^9 + 140x^6 - 30x$$

D)
$$100x^9 + 140x^6 - 30x$$

Find an equation of the tangent line at x = a.

32)
$$y = x^3 - 9x + 2$$
; $a = 3$

32) _____

A)
$$y = 20x - 52$$

B)
$$y = 18x - 52$$
 C) $y = 18x + 2$

C)
$$v = 18x + 2$$

D)
$$y = 2$$

Provide an appropriate response.

33) The curves $y = ax^2 + b$ and $y = 2x^2 + cx$ have a common tangent line at the point (-1, 0). Find a, b, 33) _____

A)
$$a = 1$$
, $b = -1$, $c = 2$

B)
$$a - 2$$
, $b = 1$, $c = -1$

C)
$$a = -1$$
, $b = 1$, $c = -2$

D)
$$a = 1$$
, $b = 0$, $c = 2$

Find the second derivative.

34)
$$y = 4x^3 - 7x^2 + 3$$

34) _____

B)
$$24x - 14$$

Suppose u and v are differentiable functions of x. Use the given values of the functions and their derivatives to find the value of the indicated derivative.

35)
$$u(2) = 8$$
, $u'(2) = 3$, $v(2) = -3$, $v'(2) = -4$.

$$\frac{d}{dx}$$
 (uv) at $x = 2$

Find the derivative of the function.

36)
$$y = \frac{x^2 + 2x - 2}{x^2 - 2x + 2}$$

36) _____

A)
$$y' = \frac{4x^2 + 8x}{(x^2 - 2x + 2)^2}$$

B)
$$y' = \frac{-4x^2 - 8x}{(x^2 - 2x + 2)^2}$$

C)
$$y' = \frac{4x^2 - 8x}{(x^2 - 2x + 2)^2}$$

D)
$$y' = \frac{-4x^2 + 8x}{(x^2 - 2x + 2)^2}$$

Find the derivative.

37)
$$s = \frac{3e^t}{2e^t + 1}$$

37) _____

A)
$$\frac{3e^{t}}{(2e^{t}+1)^{3}}$$

B)
$$\frac{e^t}{(2e^t + 1)^2}$$

C)
$$\frac{3e^{t}}{(2e^{t}+1)}$$

A)
$$\frac{3e^{t}}{(2e^{t}+1)^{3}}$$
 B) $\frac{e^{t}}{(2e^{t}+1)^{2}}$ C) $\frac{3e^{t}}{(2e^{t}+1)}$ D) $\frac{3e^{t}}{(2e^{t}+1)^{2}}$

Solve the problem.

38) The size of a population of lions after t months is $P = 100 (1 + 0.2t + 0.02t^2)$. Find the growth rate when P = 2500.

38)

A) 10,020 lions/month

B) 140 lions/month

C) 160 lions/month

D) 180 lions/month

Find the limit.

39)
$$\lim_{x \to -\pi/2} 4 \cos \left[\sin x + \pi \cot \left(\frac{\pi}{4 \csc x} \right) + 1 \right]$$

39) ____

C) 1

D) 0

Find the derivative.

40) $s = \sin t - e^{-t}$

40) _____

A)
$$\frac{ds}{dt} = \cos t + e^{-t}$$

B)
$$\frac{ds}{dt} = -\cos t - e^{-t}$$

C)
$$\frac{ds}{dt} = -\cos t + e^{-t}$$

D)
$$\frac{ds}{dt} = \cos t - e^{-t}$$

The equation gives the position s = f(t) of a body moving on a coordinate line (s in meters, t in seconds).

41)
$$s = 10 \sin t - \cos t$$
 41)

Find the body's acceleration at time $t = \pi/4$ sec.

A)
$$-\frac{11\sqrt{2}}{2}$$
 m/sec²

B)
$$\frac{9\sqrt{2}}{2}$$
 m/sec²

C)
$$\frac{11\sqrt{2}}{2}$$
 m/sec²

D)
$$-\frac{9\sqrt{2}}{2}$$
 m/sec²

Solve the problem.

42) At time
$$t \ge 0$$
, the velocity of a body moving along the s-axis is $v = t^2 - 10t + 9$. When is the body moving backward?

A)
$$t > 9$$

B)
$$0 \le t < 1$$

C)
$$1 < t < 9$$

D)
$$0 \le t < 9$$

Find the derivative of the function.

43)
$$h(x) = \left(\frac{\cos x}{1 + \sin x}\right)^{6}$$
A)
$$-6\left(\frac{\sin x}{\cos x}\right)^{5}$$
B)
$$\left(-\frac{4 \sin x}{\cos x}\right)\left(\frac{\cos x}{1 + \sin x}\right)^{5}$$
C)
$$6\left(\frac{\cos x}{1 + \sin x}\right)^{5}$$
D)
$$\frac{-6 \cos^{5} x}{(1 + \sin x)^{6}}$$

Find dy/dt.

44)
$$y = \cos(\sqrt{8t+11})$$

A) $-\sin\left(\frac{4}{\sqrt{8t+11}}\right)$
B) $-\sin(\sqrt{8t+11})$
C) $-\frac{1}{2\sqrt{8t+11}}\sin(\sqrt{8t+11})$
D) $\frac{4}{\sqrt{8t+11}}\sin(\sqrt{8t+11})$

Use implicit differentiation to find dy/dx.

45)
$$e^{4x} = \sin(x + 2y)$$

A) $\frac{dy}{dx} = \frac{4e^{x}}{2\sin(x + 2y)}$
B) $\frac{dy}{dx} = \frac{8e^{x}}{\sin(x + 2y)}$
C) $\frac{dy}{dx} = -\frac{4e^{x}}{2\sin(x + 2y)}$
D) $\frac{dy}{dx} = \frac{-4e^{x}}{\sin(x + 2y)}$

At the given point, find the slope of the curve or the line that is tangent to the curve, as requested.

46)
$$x^5y^5 = 32$$
, tangent at (2, 1)
A) $y = 16x + 1$ B) $y = -\frac{1}{2}x + 2$ C) $y = 16x - 1$ D) $y = \frac{1}{2}x$

Find the derivative of y with respect to x, t, or θ , as appropriate.

47)
$$y = \ln(\cos(\ln \theta))$$

47) _____

A)
$$tan(ln \theta)$$

B)
$$-\frac{\tan(\ln \theta)}{\theta}$$

C)
$$-tan(ln \theta)$$

D)
$$\frac{\tan(\ln \theta)}{\theta}$$

Use logarithmic differentiation to find the derivative of y.

48)
$$y = \frac{x \sin x}{\sqrt{x+4}}$$

48)

A)
$$\frac{1}{2} \left(\frac{1}{x} + \frac{1}{\sin x} + \frac{1}{x+4} \right)$$

B)
$$\frac{1}{x} + \cot x - \frac{1}{2x + 8}$$

C)
$$\frac{x \sin x}{\sqrt{x+4}} \left[\ln x + \ln \sin x - \frac{1}{2} \ln(x+4) \right]$$

D)
$$\frac{x \sin x}{\sqrt{x+4}} \left(\frac{1}{x} + \cot x - \frac{1}{2x+8} \right)$$

Use logarithmic differentiation to find the derivative of y with respect to the independent variable.

49)
$$y = (\sin x)^{\cos x}$$

49) _____

A)
$$\cos x \cot x - \ln (\sin x)$$

B)
$$(\sin x)^{\cos x}(\cos x \cot x - \sin x \ln (\sin x))$$

C)
$$\cos x \cot x - \sin x \ln(\sin x)$$

D)
$$\cos x \ln (\sin x)$$

Find the derivative of y with respect to x.

50)
$$y = 2 \sin^{-1}(5x^3)$$

50)

A)
$$\frac{30x^2}{\sqrt{1-25x^6}}$$
 B) $\frac{30x^2}{\sqrt{1-25x^3}}$

B)
$$\frac{30x^2}{\sqrt{1-25x^3}}$$

C)
$$\frac{2}{\sqrt{1-25x^6}}$$
 D) $\frac{30x^2}{1-25x^6}$

D)
$$\frac{30x^2}{1 - 25x^6}$$

Solve the problem. Round your answer, if appropriate.

51) The radius of a right circular cylinder is increasing at the rate of 4 in./sec, while the height is 51) _____ decreasing at the rate of 9 in./sec. At what rate is the volume of the cylinder changing when the radius is 6 in. and the height is 12 in.?

A)
$$252\pi$$
 in.³/sec

B)
$$-36\pi$$
 in.³/sec

C)
$$-36 \text{ in.}^3/\text{sec}$$

Answer Key

Testname: 121 PRACTICE MIDTERM

- 1) A
- 2) D
- 3) B
- 4) D
- 5) A
- 6) D
- 7) B
- 8) C
- 9) A
- 10) C
- 11) A
- 12) D
- 13) D
- 14) B
- 15) C
- 16) C
- 17) A
- 18) C
- 19) A
- 20) B
- 21) A
- 22) C
- 23) A
- 24) B
- 25) C
- 26) D
- 27) A
- 28) A
- 29) C
- 30) B
- 31) A
- 32) B
- 33) A
- 34) B
- 35) C
- 36) D
- 37) D
- 38) B
- 39) A
- 40) A
- 41) D
- 42) C
- 43) D 44) D
- 45) A
- 46) B
- 47) B
- 48) D
- 49) B

Answer Key Testname: 121 PRACTICE MIDTERM

50) A 51) A