Lecture 27

Mon: Warm Up 11

Tues: Discussion /quit

Supp 65

Chilo CG 8,13

Chilo Prob 35,49,54

Energy conservation

We saw that

If the only forces acting on a system that do non-zero work are gravity and spring forces, then the total mechanical energy

Emech = K+ Ugrav + Uspring

stays constant as the system evolves

Here the various energies are:

Kinetic energy $K = \frac{1}{z} m v^2$

Gravitational Potential Energy

Ug = Mgy

Elastic Potential Energy

Uspring = $\frac{1}{2} k(\Delta s)^2$

Demo: PhET Springs + masses

- Set friction = 0

- Set time -> slowest

- Observe energy bar graphs

What if there are other forces beside the sping forces and gravity that do non-zero work? Can we modify the energy so that it effectively accounts for the work done by these forces? The hope would be to find a polotial energy. Uother force so that a redefined mechanical energy. Enech = K+ Ugrav + Uspring + Uother remains constant. Can this be accomplished?

Conservative and non-conservative forces.

Consider the gravitational force acting on an object. We showed that the work done by the gravitational force is

initial final

Quiz1

90%-0

and since the gravitational potential energy only depends on the state of the object (i.e. its votical position) the work done by gravity only depends on the initial + final state of the object. It does not depend on the path (or the history) of the system between these states.

Similarly for a spring force the work done is

Wapping =
$$-\frac{1}{2}k(\Delta sf)^2 + \frac{1}{2}k(\Delta si)^2 = -\left[\frac{1}{2}k(\Delta sf)^2 - \frac{1}{2}k(\Delta si)^2\right]$$

= $-\left[\text{Usping } f - \text{Usping } i\right]$

So we have

(Wgrau = - DUg

and this again only depends on the initial + final states of the system.

This motivates the definition

A conservative force is a force for which there exists a potential energy Uforce such that the wark clone by the force is

Wforce = - DU force

Clearly both gravity and spring forces are conservative. A non-conservative force is one for which no such potential energy can be found. We can see that

A force is conservative >> the work done by the force

does not depend on the trajectory

followed by the object. It only

depends on the initial + final locations

(or system states)

Quiz 2 70%-1 95% 1/80% - 90%

We can see that not every force is conservative. So we cannot always extend the definition of mechanical energy to all forces.

Mechanical energy in general.

Suppose that various consevative and non-conservative act on an object. The work kinetic energy theorem is still time:

NK = Wn+ -

Funs 2

Funs 2

Then

DK = Woons 1 + Woons + + - + Wnon-cons 1 + -

But for each conservative force there is a potential energy Woons i = - Allcons 1.

Thus

DK = - DUcons 1 - DUcons z + - + Wnon-cons1 +

= D DK + D Kions 1 + D Kions 2 + ... = When-cons 1 + ...

Defining

The total energy of the system:

Emech = K + Ucons 1 + Ucons 2 + ...

Gives

where

Whice work done by all non-conservative forces

Example: A 0.20 kg block can slide up + down a vertical tube with rough sides. The block is held at rest against a spring (constant 200 N/m) compressing it by 0.10m. It is released and as it moves up friction exerts a 1.80N force on the block. Determine the speed of the block as it leaves the spring (spring is relaxed).

Answer: In general

Emech = K + Ugrav + Uspring

with

Who = W friction

Thus

initial (release)

(release)

yi= OM

Vi= am/s

DSi= O.lom

final (leaves block

yf= 0.10m

Vf = ??

DSF = OM

 $\frac{1}{2}$ mUf² + mgyf = $\frac{1}{2}$ k(Δsi)² + Wfriction

Now Whichian =
$$f_{\text{finithan}} \Delta \Gamma \cos 180^{\circ}$$

= $1.80 \,\text{N} \times 0.10 \,\text{m} \cos 180^{\circ}$
= $-0.18 \,\text{J}$

 $= 0 \quad \frac{1}{2} \text{ mUf}^2 + \text{mgyf} = \frac{1}{2} \text{k}(\Delta s_i)^2 - 0.18J$

 $= 0 O.10 \text{ kg V}^2 + O.196 \text{ J} = O.82 \text{ J}$

=0 0.10kg v+2 = 0.623 =D Vf =

 $f = \sqrt{\frac{0.623}{0.10k}}$

J org =0 Vf

Vf = 2.5m/s

A Dr A fricha