9. A coin is placed 18.0 cm from the axis of a rotating turntable of variable speed. When the speed of the turntable is slowly increased, the coin remains fixed on the turntable until a rate of 58 rpm (rotations-per-minute) is reached, at which point the coin slides off. What is the coefficient of static friction between the coin and the turntable?

2. A jet plane traveling 1800 km/h (500 m/s) pulls out of a dive by moving in a circle arc of radius 3.00 km. What is the plane's acceleration in g's? (One "g" is 9.8 m/s², the acceleration we normally experience at the surface of home-sweet-home – earth).

12. What minimum speed must a roller coaster travel at when upside down at the top of a loop-de-loop on the track if the passengers are not to fall out? Assume a radius of curvature of 8.0 m. (And yes, assume these passengers not only have learned their physics but are entrusting their lives to it!! They are NOT wearing any seatbelts!)

$$mg = mv$$

$$v = \sqrt{r \cdot q} = \sqrt{8 \cdot 9.8} \cong 9 \, \text{m/s}$$

- 15. A projected space station consists of a circular tube having a diameter of 1.6 km which is set rotating about its center (like a tubular bicycle tire, or a giant hollow donut).
 - a) On which part of the inside of the tube (the side closest to or furthest from the center) will people be able to walk?
 - b) What must be the rotation speed (in revolutions per day) if an effect equal to gravity at the surface of the earth (1 g) is to be felt? (Hint: When you are just standing on the ground here on earth, what is the size of the force that pushes up on you from the ground?)

Uniform Circular Motion

- Speed is constant
- The centripetal acceleration is the only acceleration
- a_c is directed radially inward

Now for the case when circular motion is uniformly accelerated:

- Speed is changing
- There are two separate lineal accelerations

CENTRIPETAL ACCELERATION(ac)

- Directed inward
- $a_c = v^2/r$
- Responsible for changing the direction

TANGENTIAL ACCELERATION(at)

- Directed in the direction of instantaneous travel
- a_t = <
- Responsible for increasing / decreasing the angular velocity

Linear Quantities vs. Angular Quantities

Linear Displacement (meters)	Angular Displacement (radians)
×	•
Linear Velocity (m/sec)	Angular Velocity (radians/sec)
V	ω
Linear Acceleration (m/s²)	Angular Acceleration (radians/s²)
a	~
When linear acceleration is constant: $X = X_0 + V_0 + \frac{1}{2}at^2$ $V = V_0 + at$ $v = v_0^2 + 2a(x-x_0)$	When angular acceleration is constant: $ \Theta = \Theta_0 + \omega_0 t + 2 \propto t^2 $ $ \omega = \omega_0 + \infty t $ $ \omega^2 = \omega_0^2 + 2 \times (\Theta - \Theta_0) $

Relating Linear Quantities to Angular Quantities

If an object is rotating for a given amount of time ($_{\diamond}$ +), an angular displacement ($_{\diamond}$ +) and linear dislacement ($_{\diamond}$ 5) are realized.

$$\Delta\Theta = \frac{\Delta S}{r}$$

$$\frac{\Delta\Theta}{\Delta t} = \frac{\Delta S}{\Delta t(r)}$$
 (DIVIDE BOTH SIDES BY Δt)

$$w = \frac{v}{r}$$
 $w = w \cdot r$

If an object is also experiencing an angular acceleration (speeding up or slowing down) over some time period ($_{0}+$), there will be changes in the angular speed ($_{0}\omega$) and the linear speed ($_{0}\nu$).

$$\Delta W = \frac{\Delta V}{r}$$

$$\Delta W = \frac{\Delta V}{\Delta t(r)}$$
(Dividing Both Sides By Δt)
$$\Delta V = \frac{\partial V}{r}$$

$$\Delta V = \frac{\partial V}{\partial t}$$
(Wr)

EXAMPLE 1: A typical compact disc records data starting at a radius of 25.0 mm and ending at a radius of 58.0 mm from its center. All disc players read information from the disc at a rate of 4500 mm/min.

- a) What is t he initial angular velocity (in RPM) of the disc when it starts reading data?
- b) What is the angular velocity (in RPM) of the disc when it finishes reading data at the outside radius?
- c) If the CD plays continuously from the beginning to end, what is the angular acceleration (in rot/min²) assuming a play time of 75.0 minutes?
- d) What are a_t and a_c (in m/s²) at a point when the data is being read at a radius of 50.0 mm?

EXAMPLE 1: A typical compact disc records data starting at a radius of 25.0 mm and ending at a radius of 58.0 mm from its center. All disc players read information from the disc at a rate of 4500 mm/min.

- a) What is t he initial angular velocity (in RPM) of the disc when it starts reading data?
- b) What is the angular velocity (in RPM) of the disc when it finishes reading data at the outside radius?
- c) If the CD plays continuously from the beginning to end, what is the angular acceleration (in rot/min²) assuming a play time of 75.0 minutes?
- d) What are a_t and a_c (in m/s²) at a point when the data is being read at a radius of 50.0 mm?

a)
$$\omega_0 = \frac{1}{25} = \frac{4500 \, \text{m/m/N}}{25 \, \text{m/m}} = 180 \, \frac{\text{rad}}{\text{m/N}} \Rightarrow 28.65 \, \text{RPM}$$

b)
$$w = \frac{1}{7} = \frac{4500 \, \text{m/min}}{58 \, \text{m/m}} = 77.6 \, \frac{\text{red}}{\text{min}} \Rightarrow 12.35 \, \text{RPM}$$

C)
$$\Theta_0 = 0$$
 $\Theta = ?$
 $W = W_0 + \alpha t$
 $W_0 = 180 \frac{rad}{min}$
 $W = 77.6 \frac{rad}{min}$
 $W = -1.37 \frac{rad}{min}$
 $W = -1.37 \frac{rad}{min}$

$$a_{c} = \frac{\sqrt{2}}{r} = \frac{(4500 \text{ m/m})^{2}}{50 \text{ m/m}} = 405,000 \text{ m/m/m}^{2}$$

$$= 1125 \text{ m/s}^{2} \text{ (INWARD)}$$

$$A_{t} = \propto r = (-1.37 \frac{\text{cad}}{\text{min}^{2}})(50 \text{ mm})$$

$$= -68.5 \frac{\text{mm}}{\text{min}^{2}}$$

$$= -1.9 \times 10^{-5} \frac{\text{m}}{\text{s}^{2}}$$

EXAMPLE 2: Nannosquilla decemspinosa is a small, legless crustacean living on the west coast of Panama. When stranded on the beach by high tide, it moves back to the water by doing sommersaults. If nannosquilla has a body length of 3.0 cm, takes this body length and curls it up as a wheel (having this circumference), rotates as a wheel at 70.0 RPM, and if it must travel 4.0 meters to return to the water, how long does it take it to get back into the water?

EXAMPLE 2: Nannosquilla decemspinosa is a small, legless crustacean living on the west coast of Panama. When stranded on the beach by high tide, it moves back to the water by doing sommersaults. If nannosquilla has a body length of 3.0 cm, takes this body length and curls it up as a wheel (having this circumference), rotates as a wheel at 70.0 RPM, and if it must travel 4.0 meters to return to the water, how long does it take it to get back into the water?

$$2\pi r = 3.0 \text{ cm}$$

$$r = .4775 \text{ cm}$$

$$r = .004775 \text{ m}$$

$$\Theta = 0$$

$$\Theta = 837.758 \text{ rad}$$

$$W_0 = 70 \frac{\text{rot}}{\text{min}} \left(\frac{2\pi \text{ rad}}{1 \text{ rot}} \right) \left(\frac{1 \text{ min}}{\text{Go sec}} \right) = 7.33 \text{ rad/sec}$$

$$W = 7.33 \text{ rad/sec}$$

$$W = 0$$

EXAMPLE 3: A wheel with a diameter of 19.0 centimeters starts from rest and reaches a speed of 40.0 RPM after rotating through 46 radians.

- a) Determine the wheel's constant angular acceleration.
- b) How long did the above process take?

EXAMPLE 3: A wheel with a diameter of 19.0 centimeters starts from rest and reaches a speed of 40.0 RPM after rotating through 46 radians.

- a) Determine the wheel's constant angular acceleration.
- b) How long did the above process take?

a)
$$\Theta_0 = 0$$

$$\Theta = 46 \text{ rad}$$

$$W_0 = 0$$

$$W = 40 \text{ min} \left(\frac{1 \text{ min}}{60 \text{ sec}}\right) \left(\frac{2\pi}{1 \text{ Rot}}\right) = 4.189 \text{ rad/sec}$$

$$\alpha = ?$$

$$t = ?$$

$$W^2 = W_0^2 + 2\alpha(\Theta - \Theta_0)$$

$$4.189^2 = 0^2 + 2\alpha(46 - 0)$$

$$\alpha = .191 \text{ rad/sec}^2$$

b)
$$\phi = \phi_0 + \omega_0 t + \frac{1}{2} \propto t^2$$

 $46 = 0 + 0 + \frac{1}{2}(.191)t^2$
 $t = 21.95 \text{ SEC}$