## Ricorsione



#### Numeri di Fibonacci

- Il rapporto tra le falangi del dito medio e anulare di un uomo adulto è pari al rapporto aureo  $f_n/f_{n-1}$  per  $n \rightarrow \infty$
- Il generico numbero di Fibonacci  $f_n$  è definito come  $F = \{f_0, ..., f_n\}$ :  $f_0 = 0$   $f_1 = 1$ 
  - Per n > 1,  $f_n = f_{n-1} + f_{n-2}$ :
  - $-f_2 = f_1 + f_0 = 1 + 0 = 1$
  - $-f_3 = f_2 + f_1 = 1 + 1 = 2$
  - $-f_4 = f_3 + f_2 = 2 + 1 = 3$

**—** ...

## Altri esempi...

 Quasi tutti i fiori hanno un numero di petali che corrisponde ad un numero di Fibonacci

- Gigli: 3 petali

Ranuncoli: 5 petali

**—** ...

Calendula: 13 petali

- Margherite: 34, 55, o 89 petali

 In economia, modelli basati sulle sequenze di Fibonacci sono usati per calcolare andamenti futuri di azioni e obbligazioni ("onda di Elliot")



### Come calcolarlo?

 Assai spesso, per trovare la soluzione di un problema in un caso complicato possiamo usare la soluzione dello stesso problema in un caso più semplice

```
int fibonacci(int n) {
   int ris;
   if (n == 0) ris = 0;
   else if (n == 1) ris = 1;
   else ris = fibonacci(n-1) + fibonacci(n-2);
   return ris;
}
```

#### Ricorsione

- Un sottoprogramma P può chiamarne un altro Q, il quale a sua volta ne può chiamare un terzo R, e se R chiamasse nuovamente P (ricorsione indiretta)?
- Oppure P chiamasse se stesso durante la propria esecuzione (ricorsione diretta)?
- Ricorsione non significa chiamare un sottoprogramma più volte (scontato), ma richiamarlo -da se stesso o altri sottoprogrammi- prima della terminazione della sua esecuzione
- Ha un senso tutto ciò?
  - Se sottoprogramma significa "parte di programma per risolvere un sottoproblema", richiamare P durante la sua esecuzione significa cercare di usare la soluzione del sottoproblema PR che si intende risolvere con P per risolvere PR....

## Altri esempi di definizioni ricorsive

- La lista inversa L<sup>-1</sup> di una lista di elementi L = {a<sub>1</sub>, ..., a<sub>n</sub>} è così definita:
  - Se n = 1,  $L^{-1}$  = L, altrimenti  $L^{-1}$  = { $a_n$ , ( $L_{n-1}$ )<sup>-1</sup>} dove  $L_{n-1}$  indica la lista ottenuta da L cancellando l'ultimo elemento an
  - Per esempio, la lista inversa di L =  $\{2,7,5,4\}$  è ottenibile come:

$${2,7,5,4}^{-1} = {4, {2,7,5}^{-1}} = {4,5, {2,7}^{-1}} = {4,5,7, {2}^{-1}} = {4,5,7,2}$$

- Il determinante D di una matrice quadrata A di ordine n è così definito:
  - Se n = 1, allora D(A) =  $a_{11}$ ; altrimenti D(A) =  $(-1)^{i+1}$ .  $a_{1i}$ . D(A<sub>1i</sub>), dove A<sub>1i</sub> indica la matrice ottenuta da A eliminando la prima riga e la i-esima colonna

## Ricorsione nella programmazione

- Passare da una formulazione ricorsiva del problema alla scrittura del codice semplice
- Calcolo del fattoriale (versione iterativa)

```
int fatt(int n) {
    int i, ris;
    ris = 1; i=1;
    while (i <=n) {
        ris = ris * i;
        i=i+1;
    }
    return ris;
}</pre>
```

#### Versione ricorsiva

 Se sfruttiamo la proprietà per cui n! = n (n-1)!, con 0! = 1 per convenzione

```
int FattRic(int n) {
   int ris;
   if (n == 0) ris = 1;
   else ris = n * FattRic(n-1);
   return ris;
}
```

#### Esecuzione

- Ad esempio, il fattoriale di 3:
  - 3 = 0? No: quindi occorre calcolare il fattoriale di 2, e, una volta ottenutolo, moltiplicarlo per 3
  - .2 = 0? No: quindi occorre calcolare il fattoriale di 1, e, una volta ottenutolo, moltiplicarlo per 2
  - .1 = 0? No: quindi occorre calcolare il fattoriale di 0, e, una volta ottenutolo, moltiplicarlo per 1
  - -.0 = 0? Sì: quindi il fattoriale di 0 è 1
  - Sulla base di quanto stabilito al punto 3, il fattoriale di 1 è 1 moltiplicato per il fattoriale di 0, cio  $1 \times 1 = 1$
  - Sulla base di quanto stabilito al punto 2, il fattoriale di 2 è 2 moltiplicato per il fattoriale di 1, cioè  $2 \times 1 = 2$

### Memoria

- L'introduzione della ricorsione richiede una piccola rivoluzione nel meccanismo di gestione della memoria
- Invece che assegnare un area dati a ogni sottoprogramma, se ne assegna una a ogni chiamata di sottoprogramma



# La gestione a pila o stack



Legend A rightwards arrow denotes a call A leftwards arrow denotes the return to the calling subprogram

The different activations of P2 are marked by apexes



## Dettagli su gestione stack

- Il record di attivazione:
  - Parametri attuali
  - Variabili locali
  - Indirizzo di ritorno (RetAdd)
  - (Valore precedente dello) stack pointer (SP)



## Il record di attivazione

Attuale valore dello SP Variabili locali e altro Link dinamico Indirizzo di ritorno Parametro n Parametro 2 Indirizzo di base del record Risultato/parametro 1 di attivazione corrente = precedente valore dello SP Record di attivazione precedente

### La chiamata

#### Codice del chiamante

- Riserva memoria per il risultato (se previsto)
- Assegna valore ai parametri attuali
- Assegna l'indirizzo di ritorno
- Assegna il link dinamico
- Aggiorna l'indirizzo di base del nuovo record di attivazione
- Assegna il nuovo valore allo SP
- Salta alla prima istruzione del chiamato

**Codice del chiamato** 

### Il ritorno

#### Codice del chiamato

- Riporta il valore di SP al valore precedente
- Riporta il valore dell'indirizzo di base al valore precedente
- Salta all'indirizzo di ritorno

#### Codice del chiamante

- Codice della chiamata
- [Indirizzo di ritorno]
- Recupera eventuale risultato