

FORMATO DE SYLLABUS	Código: AA-FR-003		
Macroproceso: Direccionamiento Estratégico	Versión: 01		
Proceso: Autoevaluación v Acreditación	Fecha de Aprobación:		

FACULTAD:		Tecnológica						
PROYECTO CUR	RICULAR:		Tecnología en El	ectrónica Industrial		CÓDIGO PLAN DE ESTUDIOS:		
	I. IDENTIFICACIÓN DEL ESPACIO ACADÉMICO							
NOMBRE DEL ESPACIO ACADÉMICO: AUTOMÁTICA DSC								
Código del espacio académico:		7318	Número de créditos académicos:			2		
Distribución horas de trabajo:			HTD	2	нтс	2	НТА	2
Tipo de espacio académico:		Asignatura	х	Cátedra				
NATURALEZA DEL ESPACIO ACADÉMICO:								
Obligatorio Básico		Obligatorio Complementario			Electivo Intrínseco	х	Electivo Extrínseco	
CARÁCTER DEL ESPACIO ACADÉMICO:								
Teórico		Práctico		Teórico-Práctico	x	Otros:		Cuál:
MODALIDAD DE OFERTA DEL ESPACIO ACADÉMICO:								
Presencial	х	Presencial con incorporación de TIC		Virtual		Otros:		Cuál:
	II. SUGERENCIAS DE SABERES Y CONOCIMIENTOS PREVIOS							

27/07/2023

El estudiante debe poseer conocimientos previos en fundamentos de control automático, electrónica digital, programación estructurada y lógica de automatización. Es necesario haber cursado asignaturas como control básico, instrumentación, electrónica industrial o PLCs, y manejar plataformas como MATLAB/Simulink, LabVIEW o herramientas orientadas a redes de comunicación industrial. Se valoran conocimientos sobre estructuras de red, protocolos de comunicación y normativas aplicables a la industria de procesos.

III. JUSTIFICACIÓN DEL ESPACIO ACADÉMICO

La automatización de procesos industriales ha evolucionado de estructuras centralizadas hacia arquitecturas distribuidas, más flexibles, escalables e interoperables. En este contexto, los sistemas de control distribuido (DCS) permiten la descentralización de la lógica de control, asegurando mayor confiabilidad, redundancia y eficiencia energética. En el marco de la Industria 4.0, se requiere que los profesionales comprendan y apliquen estándares como ISA-95 e IEC 61499, para integrar software, hardware y redes industriales en soluciones orientadas a sistemas ciberfísicos seguros. Esta asignatura proporciona herramientas para modelar, implementar y validar sistemas de control distribuidos aplicados a entornos reales de automatización.

IV. OBJETIVOS DEL ESPACIO ACADÉMICO (GENERAL Y ESPECÍFICOS)

Objetivo General:

Estudiar los fundamentos, estructuras y tendencias de los sistemas de control distribuido (DCS), su modelado mediante herramientas especializadas y su integración con redes industriales para la automatización de procesos bajo estándares internacionales.

Objetivos Específicos:

Identificar las principales características, beneficios y limitaciones de los sistemas DCS.

Comparar arquitecturas como PLC, PAC, SLC, PC y DCS, y su evolución hacia estructuras híbridas.

Modelar sistemas de control distribuido mediante herramientas como IEC 61499.

Seleccionar tecnologías y redes industriales apropiadas para procesos automatizados.

Integrar conceptos de confiabilidad, redundancia y conectividad con normas de interoperabilidad y seguridad (ISA-95, ISA/IEC 62443).

V. PROPÓSITOS DE FORMACIÓN Y DE APRENDIZAJE (PFA) DEL ESPACIO ACADÉMICO

Propósitos de Formación

Formar competencias para diseñar, simular e implementar sistemas de control distribuido aplicados a procesos industriales complejos.

Capacitar al estudiante en el uso de herramientas de modelado normativo como IEC 61499 para el diseño de control descentralizado.

Integrar redes industriales seguras, redundantes y eficientes en entornos productivos digitales.

Fortalecer el pensamiento crítico y la innovación en soluciones de automatización flexibles, seguras y normadas.

Resultados de Aprendizaje

Explica el funcionamiento y arquitectura de los sistemas DCS y su aplicación en la automatización industrial.

Modela soluciones de control distribuido usando funciones de bloques normalizadas (IEC 61499).

Selecciona e implementa tecnologías apropiadas de red y dispositivos de automatización de acuerdo con estándares ISA.

Evalúa propuestas de control distribuido según criterios de eficiencia, escalabilidad y ciberseguridad.

VI. CONTENIDOS TEMÁTICOS

Introducción a los sistemas distribuidos

Definición, características, ventajas y aplicaciones

Evolución de los sistemas de control de procesos

De PLC a PAC y DCS

Sistemas SCADA, abiertos y arquitecturas híbridas

Estructuras hardware y software

Controladores, funciones, programación orientada a objetos

Estrategias modernas de control

Redundancia y conectividad

Redundancia en microprocesadores

Fieldbus, subredes y sistemas operativos especializados

Sistemas de control distribuidos

Confiabilidad, integridad, procesamiento, almacenamiento, comunicaciones

Estándares de control distribuido

IEC 61499: funciones de bloques, modelos de dispositivos, recursos y control descentralizado

Aplicaciones de herramientas como ISaGRAF y CODESYS

VII. ESTRATEGIAS DE ENSEÑANZA QUE FAVORECEN EL APRENDIZAJE

La asignatura se desarrollará bajo una metodología basada en el aprendizaje activo y la solución de problemas reales. A través de proyectos, simulaciones, laboratorios y talleres con herramientas especializadas (MATLAB, ISaGRAF, CODESYS), el estudiante integrará teoría y práctica. Se fomentará el análisis crítico de tendencias tecnológicas y el diseño de soluciones interoperables y seguras. Algunas sesiones podrán realizarse de forma remota para el fortalecimiento del aprendizaje autónomo.

VIII. EVALUACIÓN

De acuerdo con el estatuto estudiantil vigente (Acuerdo No. 027 de 1993 expedido por el Consejo Superior Universitario y en su Artículo No. 42 y al Artículo No. 3, Literal d) el profesor al presentar el programa presenta una propuesta de evaluación como parte de su propuesta metodológica.

Para dar cumplimiento a lo dispuesto en el estatuto estudiantil, los porcentajes por corte se definen como se indica a continuación, con base en las fechas establecidos por el Consejo Académico en el respectivo calendario académico.

Primer corte (hasta la semana 8) à 35%

Segundo corte (hasta la semana 16) à 35%

Proyecto final (hasta la semana 18) à 30%

En todo caso, la evaluación será continua e integral, teniendo en cuenta los avances del estudiante en los siguientes aspectos: i) comprensión conceptual (pruebas escritas, talleres); ii) aplicación práctica (laboratorios, informes técnicos); iii) proyecto integrador final (análisis, diseño, montaje y presentación); y iv) participación y trabajo en equipo. Asimismo, se debe valorar el desarrollo de competencias comunicativas, resolución de problemas, uso de instrumentos, pensamiento lógico y creatividad. Las pruebas se concertarán con el grupo y se ajustarán a las fechas establecidas en el respectivo calendario académico.

IX. MEDIOS Y RECURSOS EDUCATIVOS

Para el adecuado desarrollo de este espacio académico, se requiere el uso de medios institucionales y recursos individuales que faciliten los procesos de enseñanza y aprendizaje, tanto en ambientes presenciales como virtuales. Las actividades teóricas se apoyarán en aulas de clase dotadas de medios audiovisuales (tablero, videobeam, sillas) y plataformas virtuales institucionales como Microsoft Teams o Google Meet. Además, será fundamental el acceso a presentaciones digitales, textos base, hojas de datos, artículos técnicos y bibliotecas digitales.

En cuanto al trabajo práctico, se utilizarán aulas de laboratorio equipadas con fuentes de voltaje DC, generadores de señales, osciloscopios, multímetros y otros instrumentos de medición. Adicionalmente se cuenta con plataformas de modelado y simulación como CODESYS, ISaGRAF, MATLAB/Simulink, así como acceso a equipos con PLCs, PACs y sistemas SCADA si están disponibles. También se utilizarán recursos digitales, normas internacionales (ISA-95, IEC 61499), bibliografía científica actualizada, y acceso a simuladores de redes industriales (MODBUS, Profibus, OPC UA, MQTT)

Como recursos propios, el estudiante debe disponer de una calculadora científica, conexión estable a internet que la universidad proporciona, un sistema para la toma de apuntes (cuaderno, tablet o computador) y acceso a los materiales de clase. Será responsabilidad del estudiante descargar los insumos digitales y contar con los elementos necesarios que serán especificados previamente en cada práctica o proyecto

X. PRÁCTICAS ACADÉMICAS - SALIDAS DE CAMPO

Se podrán realizar visitas académicas a plantas industriales, centros de automatización o empresas de integración de sistemas donde se utilicen DCS o soluciones híbridas. Estas salidas permitirán al estudiante contextualizar los conocimientos adquiridos, observar arquitecturas distribuidas en funcionamiento y validar la aplicabilidad de normas como ISA-95 e ISA/IEC 62443 en la automatización real.

XI. BIBLIOGRAFÍA

Coulouris, G., Dollimore, J., & Kindberg, T. (2001). Distributed Systems: Concepts and Design. Addison-Wesley.

Lewis, R. (2001). Modeling Control Systems Using IEC 61499. IEE.

Tanenbaum, A. (1995). Distributed Operating Systems. Prentice Hall.

Chow, R. & Johnson, T. (1997). Distributed Operating Systems and Algorithms. Addison Wesley.

ISA (2019). ISA-95 Enterprise-Control System Integration.

ISA/IEC 62443 (2020). Security for Industrial Automation and Control Systems.

XII. SEGUIMIENTO Y ACTUALIZACIÓN DEL SYLLABUS					
Fecha revisión por Consejo Curricular:					
Fecha aprobación por Consejo Curricular:	Número de acta:				