Comparison of S1 protein conditions

Hefin Rhys

14 November, 2020

Purpose

This is an R Markdown document detailing my analysis of Peter's ELISA data. The purpose of the experiment is to determine whether different reactivity is observed between five different SARS-Cov2 S1 spike protein conditions. 90 samples (with varying degrees of reactivity) were each tested across the five conditions, and the data therefore represent repeated measurements made on each sample.

Loading packages

I start by loading the required R packages for the analysis.

```
library(tidyverse)# data wrangling and plottinglibrary(rethinking)# Bayesian modellinglibrary(tidybayes)# tools for tidying model drawslibrary(tidybayes.rethinking)# tools for tidying model drawslibrary(modelr)# for data_grid() function
```

Reading data

Next, I read in the data that is in tidy format as a .csv file, and store it as the object elisa.

```
elisa <- read_csv("../data/ELISA_data.csv")
```

I inspect its structure by printing the first 10 rows of data. There are four columns: a character vector Protein that indicates the experimental condition, a double precision numeric vector OD that indicates the optical density of the reading (the dependent variable), a double precision numeric vector SCO that will not be used in this analysis, and a character vector Sample, which indicates which sample the reading was taken from.

elisa

```
## # A tibble: 450 x 4
##
      Protein
                 OD
                        SCO Sample
##
              <dbl>
                     <dbl> <chr>
      <chr>
    1 S1
##
               0.97
                     5.94
                            CovIC106
##
    2 S1
               0.83 5.08
                           CovIC111
##
    3 S1
               2.69 16.4
                            CovIC113
   4 S1
               0.65
                     3.98
                           CovIC105
   5 S1
               0.3
                           CovIC108
##
                     1.81
```

```
##
   6 S1
              0.33 2.03 CovIC112
##
   7 S1
              0.11 0.656 CovIC114
   8 S1
##
              0.05 0.292 CovIC107
##
  9 S1
              0.05 0.307 CovIC110
## 10 S1
              0.39
                    2.40 CovIC100
## # ... with 440 more rows
```

Plotting the empirical data

I next plot the data to visualize the relationships between the Protein, Sample, and OD variables. So that the levels of the Protein variable are plotted in order, I first convert this variable into a factor and specify the order of its levels.

```
elisa$Protein <- factor(
  elisa$Protein,
  levels = c("S1", "AT-S1", "AT-S1+BLV", "MUTANT", "MUTANT+BLV")
)</pre>
```

Now that Protein is a factor, its levels will be plotted in the desired order. There are a few observations to make about this data:

- the dependent variable is strictly positive and is clearly bounded at zero, but does not have an obvious upper bound
- the marginal distribution of the dependent variable is clearly not normally-distributed, but is considerably positively skewed
- OD values between conditions are highly correlated within samples, and ignoring the repeated observations will likely underestimate parameter estimates

```
ggplot(elisa, aes(x = Protein, y = OD, group = Sample)) +
geom_line(alpha = 0.3) +
geom_point(alpha = 0.3) +
theme_bw()
```


Modeling the data

model_data <- elisa %>%

To model the relationships in the data, I start by numerically-encoding the categorical variables, and removing the SCO variable. This is just how the ulam() function I use to fit the models, expects categorical variables.

\$\$\mu_\textrm{intercept} \sim \textrm{Normal}(1, 0.2),\$\$

\$\$\textrm{scale}_\textrm{intercept} \sim \textrm{Exponential}(5)\$\$