Trabalho Nº 06 de TEA018 Hidrologia Ambiental

11 de setembro de 2020

Data de Entrega

25/09/2020

Grupos de graduação

Grupo 1	MARIA FERNANDA DENES, LUCAS APOENA VERCESI DO ROSARIO, INGRID LAYS GARCIA DA SILVA
Grupo 2	DORIS REGINA FALCADE PEREIRA, LEONARDO CASTRO DE MELO, ISADORA BERGAMI
Grupo 3	FELIPE BAGLIOLI, BEATRIZ SILVESTRE PUCHALSKI, DANIEL FONTES SILVA
Grupo 4	PEDRO GABRIEL GROCHOCKI GABRIEL, FABIANA SEGALLA KRASNHAK, ANDRE LUIZ DE SOUZA BONFIM, JESSICA PRIS- CILLA PEREIRA DA ROCHA

1 Questões obrigatórias

1ª Questão

Ajuste a distribuição log-Pearson III aos dados da Tabela 12.1.1 de Chow et al. (1988), utilizando o método dos momentos. Estime as vazões com tempo de retorno de 5, 50 e 10000 anos utilizando essa distribuição.

Compare com as vazões decamilenares obtidas com a Gumbel e a Exponencial. Discuta o resultado encontrado: ele é razoável?

Observação: Para resolver a questão, você vai precisar da FDA inversa da distribuição Pearson III (= Gama 3 parâmetros), que é uma função gama incompleta inversa. Ela está disponível no pacote scipy de Python, e pode ser acessada (após a instalação de scipy) com

¹ from scipy.special import gammainciny;

Se você não quiser usar Python, existem versões em C e FORTRAN que calculam a gama incompleta inversa em: https://people.sc.fsu.edu/~jburkardt/c_src/cdflib/cdflib.html.

2 Material adicional

Não se esqueça de incluir material adicional referente aos Capítulos 11 e 12 de Chow et al. (1988)!

Referências

Chow, V. T., Maidment, D. R., e Mays, L. W. (1988). *Applied Hydrology*. McGraw-Hill, New York.