# Turing ジャンプからはじめる二階算術の $\omega$ モデル論

橋本 航気

名古屋大学大学院情報学研究科

November 27, 2022

## 概要

自然数の部分集合が扱える二階算術では、「体系 hoge のモデルが存在する」という主張が書ける.

その(厳密にはもう少し手を加えた形の)主張には Turing ジャンプによる計算論的特徴づけを持つものもある.

Base  $\vdash \forall X \subseteq \mathbb{N}$ (体系 hoge の X を含むある種のモデルが存在する  $\leftrightarrow$ huga 回の X の Turing ジャンプが存在する)

以上の内容を二階算術の形式的体系やそのモデルを紹介しつつ説明する.

① Truing ジャンプの定義と性質

② 二階算術の形式的体系とωモデル,及び簡単な例

③ Turing ジャンプと coded ω-model との対応

① Truing ジャンプの定義と性質

② 二階算術の形式的体系とωモデル,及び簡単な例

③ Turing ジャンプと coded ω-model との対応

#### 定義

 $\Phi_e^A(m)$  で Turing functional を表す.

 $\Phi_e^A(m)=y$  は大雑把には、外付けハードディスク A が差し込まれたコンピューター上でプログラム e に m を入力して実行し、結果 y が出力された、というもの.



変なプログラムや入力を考えると、計算が停止しないこともある.つまり、 $\Phi_e^A(*)$ は全ての入力上で定義されるとは限らない.

## BがAから計算できる

## 定義 (Turing 還元)

 $A, B \subseteq \omega$  について,B が A に Turing 還元されるとは,

B の特性関数 =  $\Phi_e^A$ 

を満たす  $e \in \omega$  が存在することをいう.これを  $B \leq_{\mathbf{T}} A$  と書く.加えて,逆が成り立たないとき特に  $B <_{\mathbf{T}} A$  と表記する.

 $B \leq_{\mathbf{T}} A$  は、外付けハードディスク A が差し込まれた状態でなら B の特性関数を正しく計算できるプログラム e が存在する、と読める.



 $B \leq_{\mathbf{T}} \emptyset$  のとき B は計算可能集合とよばれる.

### 定義 (Turing ジャンプ in メタ)

 $A \subseteq \omega$  に対して、その Turing ジャンプ TJ(A) を以下で定める.

$$\mathrm{TJ}(A) := \{ (m, e) \in \omega \mid \exists y (\Phi_e^A(m) = y) \}$$

ここで 
$$(*,\star)$$
:  $\mathbb{N}^2 \to \mathbb{N}$  は数のペアリング  $(m,e) = (m+e)^2 + m$ 

外付けハードディスクAが差し込まれた状態でプログラムeに入力mを入れて計算させて、計算が停止する(m,e)対全体



$$\mathrm{TJ}(A) = \{ (m, e) \in \omega \mid \exists y (\Phi_e^A(x) = y) \}$$
 の性質

## 命題 (Turing ジャンプの $\Sigma_1(A)$ 完全性(の一部))

外付けの  $A \subseteq \omega$  を使うことを前提にした,具体的なプログラムの停止入力全体の集合はすべて  $\mathrm{TJ}(A)$  に Turing 還元可能. すなわち,各  $e \in \omega$  について次が成り立つ.

$$\{ m \in \omega \mid \exists y (\Phi_e^A(m) = y) \} \leq_{\mathrm{T}} \mathrm{TJ}(A)$$

### 事実

$$A \subset \omega$$
  $C \supset V \subset C$ 

$$A <_{\mathbf{T}} \mathrm{TJ}(A) <_{\mathbf{T}} \cdots <_{\mathbf{T}} \mathrm{TJ}(n,A) <_{\mathbf{T}} \mathrm{TJ}(n+1,A) <_{\mathbf{T}} \cdots$$

① Truing ジャンプの定義と性質

② 二階算術の形式的体系とωモデル,及び簡単な例

③ Turing ジャンプと coded ω-model との対応

## 定義 (L2)

二階算術の言語 L<sub>2</sub> は次.

- 数変数 x, y, n, m, a, b, ...
- 集合変数 X, Y, U, V, A, B, ...
- 定数記号 0.1
- 二変数関数記号 +...
- 二変数関係記号 <, ∈

原子論理式は  $t < s, t \in X, t = s$  の三種類(t, s は  $0, 1, +, \cdot, x, y, z, ...$  を組み合わせて得られる項).

### 定義 ( $\Delta_0^0$ 論理式)

 $L_2$  論理式  $\theta$  が  $\Delta_n^0$  であるとは,集合量化( $\forall X, \exists Y$ )を含まず,数量化  $(\forall x, \exists m)$  を含んだとしても有界量化  $(\forall n < t, \exists x < s$ など) のみである ことをいう.

例:  $\forall x < 3 \exists n \leq 2x(1+n \in Z)$ 

定義  $(\Sigma_k^0, \Pi_k^0, \Sigma_k^1, \Pi_k^1$  論理式)

 $\Delta_0^0$  をベースにして  $\Sigma_k^0$ ,  $\Pi_k^0$ ,  $\Sigma_k^1$ ,  $\Pi_k^1$  論理式が以下のように定義される.

$$\Sigma_k^0 \cdots \exists x_1 \forall x_2, ..., Qx_k \theta$$
 where  $\theta \in \Delta_0^0$   
 $\Pi_b^0 \cdots \forall x_1 \exists x_2, ..., Qx_k \theta$  where  $\theta \in \Delta_0^0$ 

 $\Pi_k^0 \cdots \forall x_1 \exists x_2, \dots, Q x_k \theta$ where  $\theta \in \Delta_0^0$ 

 $\Sigma_k^1 \cdots \exists X_1 \forall X_2, ..., QX_k \varphi$ where  $\varphi \in \Sigma_n^0$  for some  $n \in \omega$ 

 $\Pi_k^1 \cdots \forall X_1 \exists X_2, ..., QX_k \varphi$ where  $\varphi \in \Sigma_n^0$  for some  $n \in \omega$ 

 $\Delta_0^1 := \bigcup_{k \in \omega} \Sigma_k^0 = \bigcup_{k \in \omega} \Pi_k^0 \ni \varphi$  を算術的論理式とよぶ.

### 定義 ( $\omega$ モデル)

次の七つ組を $\omega$ モデルとよぶ.

$$(\omega, \mathcal{S}, +, \cdot, 0, 1, <)$$

ただしここで  $(\omega,+,\cdot,0,1,<,)$  は通常の一階算術の構造で, $\mathcal{S}\subseteq\mathcal{P}(\omega)$ ,

 $\omega$  モデルはその二階部分 S で決定されるので、以降  $\omega$  モデルをその二階部分で代表する.

#### 例

$$\mathcal{S}=\{arnothing,$$
偶数全体 $,\omega\}$  なら  $\mathcal{S}\models\exists X$   $\forall n(n\in X\leftrightarrow\underbrace{\exists k\leq n(n=2k)}_{\Delta_0^0$ 論理式  $\Sigma_1^1$ 論理式

## $\omega$ モデルの簡単に確認できる性質

### 命題

任意の $\omega$  モデルS について以下が成り立つ. S パラメータを許したすべての算術的論理式 $\theta$  について,

$$\mathcal{P}(\omega) \models \theta \Leftrightarrow \mathcal{S} \models \theta$$

### 命題

任意の $\omega$ モデルSについて以下が成り立つ.

S パラメータを許したすべての  $L_2$  論理式  $\varphi(n)$  について,

$$\mathcal{S} \models \varphi(0) \land \forall n(\varphi(n) \to \varphi(n+1)) \to \forall n\varphi(n)$$

#### 証明.

メタ(集合論)において $\{n \in \omega \mid \mathcal{S} \models \varphi(n)\}$ という集合を作り、メタにおける帰納法で示せる。

## 二階算術の形式的体系

### 定義

- 二階算術の形式的体系 ACA<sub>0</sub> は次の公理からなる.
  - 和, 積, 0, 1, 大小などに関する基本的な公理 (PA-)

  - ③  $\exists X \forall n (n \in X \leftrightarrow \varphi(n))$  (ここで $\varphi$  は 算術的論理式 )

 $\exists x_1 \forall x_2,....,Q x_k \Delta_0^0$ の形

最後は公理図式で、算術的内包公理図式とよばれる.

この  $ACA_0$  よりも弱い体系に  $RCA_0$  がある.  $RCA_0$  は二階算術上の逆数 学で土台となる体系で、計算可能集合全体が最小の  $\omega$  モデルになる.

## Turing ジャンプの二階算術上での形式化

### 定義

 $\Phi(e,n,X)$  を  $\mathrm{RCA}_0$  上の  $\Sigma^0_1$  普遍論理式の一つとする. つまり,  $\Phi(e,n,X)$  はそれ自身  $\Sigma^0_1$  であり,任意の  $\Sigma^0_1$  論理式  $\varphi(x,n,X)$  について以下をみたす.

$$RCA_0 \vdash \forall x \exists e \forall X \forall n (\varphi(x, n, X) \leftrightarrow \Phi(e, n, X))$$

 $\Phi(e,n,X)$  は e をいろいろ動かすことですべての  $\Sigma_1^0$  論理式を表せる.

## 定義 (Turing ジャンプ in RCA<sub>0</sub>)

 $A \subseteq \mathbb{N}$  に対して、A の Turing ジャンプはそれが存在するとき以下とする.

$$TJ(A) := \{ (m, e) \mid \Phi(e, m, A) \}$$

#### 事実

 $RCA_0$  上で次の二つは同値.

- 算術的内包公理図式。
- $\forall X \exists TJ(X)$

$${}^s\exists X \forall n (n\in X\leftrightarrow \varphi(n))$$
 (ここで $\varphi$  は 算術的論理式  $\exists x_1 \forall x_2,...,Qx_k\Delta_0^0$ の形

 $ACA_0$  の最小の  $\omega$  モデルは次で与えられる.

ARITH := 
$$\{A \subseteq \omega \mid A$$
 は算術的論理式で定義可能  $\}$   
=  $\{A \subseteq \omega \mid A \leq_{\mathrm{T}} \mathrm{TJ}(n,\emptyset) \text{ for some } n \in \omega \}$ 

cf. Post の定理

## ACA<sub>0</sub>の素朴な強化先

### 定義

 $\Delta_1^1 ext{-}\mathrm{CA}_0 := \mathrm{ACA}_0 + \Delta_1^1$ 論理式の内包公理図式

 $ACA_0^+ := ACA_0 + \forall X \exists TJ(\omega, X)$ 

### 定理 ([1]Theorem VIII.4.5)

 $\Delta_1^1$ -CA<sub>0</sub> は HYP = {  $X \subseteq \omega \mid X$  は超算術的 } を最小の  $\omega$  モデルにもつ.

## 命題

 $ACA_0^+$  には  $\omega$  回ジャンプに閉じる最小の  $\omega$  モデルが存在する.

### 事実

 $ACA_0^+$  と  $\Delta_1^1$ - $CA_0$  は比較不能. (cf. [1]TheoremIX.4.4)

## 以上まとめ



Truing ジャンプの定義と性質

② 二階算術の形式的体系とωモデル,及び簡単な例

③ Turing ジャンプと coded ω-model との対応

# 二階算術における集合族のコード化

形式的体系内部における自然数全体の集合(n=n に内包公理を適用して得られる)は N で表し、メタにおける自然数全体の集合  $\omega$  と区別する.数のペアリング  $(i,n)=(i+n)^2+i$  によって N × N  $\subseteq$  N とみなす.以上のもとで  $W\subseteq$  N は集合族  $\langle (W)_n|n\in\mathbb{N}\rangle$  のコードとみなすことができる、



縦棒が  $(W)_0, (W)_1, (W)_2, (W)_3, ..., (W)_n, ...$ 

定義 (coded  $\omega$ -model)

以下は  $\mathrm{RCA}_0$  内部で定義される. 集合  $W\subseteq\mathbb{N}$  に対し、それがコードしている集合族  $\langle (W)_n|n\in\mathbb{N} \rangle$  を二階部分にして得られる  $\mathrm{L}_2$  構造

$$(\mathbb{N}, \langle (W)_n | n \in \mathbb{N} \rangle, +, 0, 1, <)$$

を coded ω-model とよぶ.

 $\operatorname{coded} \omega$ -model において充足の概念 ( $\models$ ) がきちんと定まるか否かは、そのコード ( $\subseteq \mathbb{N}$ ) の存在とは別問題.

 $ACA_0$  なら充足がきちんと定まるか否かの問題は"おおよそ"無視できる. すなわち,

### 命題 ([1] Lemma VII.2.2 の一般化)

すべての"メタ" $\mathbf{L}_2$  論理式 $\varphi$  について次が  $\mathbf{ACA}_0$  で証明できる.

任意の coded  $\omega$ -model M に対し、 $\varphi$  に M のパラメータを任意に代入した結果の  $\varphi^M$  について次が成り立つ.

$$M \models \varphi^M \text{ or } M \not\models \varphi^M$$

## $coded \omega$ -model の簡単に確認できる性質.

#### 命題

すべての算術的論理式 $\theta$ について次が $ACA_0$ で証明できる.

任意の coded  $\omega$ -model M に対し、 $\theta$  に M のパラメータを任意に代入した結果の  $\theta^M$  について次が成り立つ.

$$\theta^M \leftrightarrow M \models \theta^M$$

### 命題 (ACA<sub>0</sub> proves)

すべてのメタ  $L_2$  論理式  $\varphi(n)$  について次が  $ACA_0$  で証明できる. 任意の coded  $\omega$ -model M に対し, $\varphi(n)$  の n 以外の箇所に M のパラメー

タを任意に代入した結果の $\varphi^M(n)$ について次が成り立つ.

$$M \models \varphi^M(0) \land \forall n(\varphi^M(n) \to \varphi^M(n+1)) \to \forall n\varphi^M(n)$$

#### 証明.

算術的内包公理で $\{n \in \mathbb{N} \mid M \models \varphi^M(n)\}$ を作ればよい.

## Turing ジャンプと coded ω-model との対応

### 定理

ACA<sub>0</sub>で以下の同値が成り立つ.

$$\forall X((\exists \text{coded }\omega\text{-model }Ms.t.X\in M\models \text{ACA}_0)\leftrightarrow \exists \text{TJ}(\omega,X))$$

$$\forall X((\exists \text{coded }\omega\text{-model }Ms.t.X\in M\models \text{ACA}_0^+)\leftrightarrow \exists \text{TJ}(\omega^2,X))$$

$$\forall X((\exists \text{coded }\omega\text{-model }Ms.t.X\in M\models\Delta_1^1\text{-CA}_0) \leftrightarrow \forall \alpha<\omega_1^X\exists \mathrm{TJ}(\alpha,X))$$

#### 証明.

上二つは比較的容易に示せる. 三段目は  $(\leftarrow)$  が [1]Lemma VIII.4.19 そのものであり, $(\rightarrow)$  は [7]Lemma 7.5 の証明から分かる.  $\Box$ 

三段目の $\Delta_1^1$ -CA<sub>0</sub>は weak $\Sigma_1^1$ -AC<sub>0</sub>や $\Sigma_1^1$ -AC<sub>0</sub>、 $\Sigma_1^1$ -DC<sub>0</sub>に変えてもよい.

### 定義

T は再帰的公理化可能な  $\mathbf{L}_2$  理論とする.ここで  $^\omega T$  を次のように定める.  $^\omega T:=\mathrm{ACA}_0+\forall X\exists \ \mathrm{coded}\ \omega\text{-model} Ms.t.X\in M\models T$ 

既存の事実と直前の定理から分かる含意関係.



### 定義

$$ATR_0 := ACA_0 + \forall X \forall \alpha < \omega_1^X \exists TJ(\alpha, X)$$

つまり  $ATR_0 \equiv {}^{\omega}\Delta_1^1$ - $CA_0$   $ATR_0$  の  $\omega$  モデルに関して次が知られている.

## 定理 ([1]Theorem VIII.6.12 (の系))

再帰的公理化可能で  $ATR_0$  を含意する  $L_2$  理論には最小の  $\omega$  モデルは存在しない.

最後に $^{\omega}$ ATR<sub>0</sub>について調べていく.

### 定義 ( $\omega$ モデル反映)

 $\varphi(X)$  を X のみを自由集合変数にもつ論理式とし、次の形の論理式を  $\operatorname{RFN}_{\varphi}$  とかく.

$$\forall X[\varphi(X) \to \exists \text{coded } \omega\text{-model } Ms.t.X \in M \models \text{ACA}_0 + \varphi(X)]$$

そして  $\Sigma_k^1$ -RFN<sub>0</sub> を以下とする.

 $\mathrm{ACA}_0 + \{ \mathrm{RFN}_{\varphi} \mid \varphi(X) \ \mathrm{tt} \ X \ \mathcal{O}$ みを自由集合変数にもつ $\Sigma^1_k$ 論理式  $\}$ 

### 命題

$$\Sigma_2^1$$
-RFN<sub>0</sub>  $\equiv \Sigma_1^1$ -RFN<sub>0</sub>  $\equiv ACA_0^+$ 

### 定理 ([1]Theorem VIII.5.12, Theorem VIII.4.11)

 $\Sigma_{3}^{1}$ -RFN $_{0} \equiv \Sigma_{1}^{1}$ -DC $_{0} \equiv \Pi_{1}^{1}$ -TI $_{0}$  であり、HYP を最小の $_{\omega}$  モデルにもつ.

## $\forall X \exists \text{ coded } \omega\text{-model } Ms.t.X \in M \models \text{ATR}_0$ を調べる.

### 命題

$$ATR_0 + \Pi_1^1 - TI_0 \vdash (^{\omega}ATR_0)$$

### 証明.

 $\Pi_1^1$ - $\Pi_0 \equiv \Sigma_3^1$ -RFN $_0$  と ATR $_0$  が  $\Pi_2^1$  文で有限公理化できることから分かる.



## $\forall X \exists \text{ coded } \omega\text{-model } Ms.t.X \in M \models \text{ATR}_0$ を調べる.

## 事実 ([1]Theorem VIII.5.6, $\omega$ -model Incompleteness)

T を  $ACA_0$  を含意する再帰的公理化可能な  $L_2$  理論とする.このとき,もし T の可算  $\omega$  モデルがあれば,以下の可算  $\omega$  モデルも存在する.

 $T + \neg \exists \text{ coded } \omega \text{-model of } T$ 

### 命題

 $^{\omega}$ ATR<sub>0</sub>  $\not\vdash$  ATR<sub>0</sub> +  $\Pi_1^1$ -TI<sub>0</sub>

#### 証明.

- $\omega$ ATR $_0$  には可算 $\omega$ モデルがあるので、 $\omega$ -model Incompleteness から
- ${}^{\omega}{\rm ATR}_0+\lnot\exists \ {\rm coded} \ \omega{\rm -model} \ {\rm of} \ {}^{\omega}{\rm ATR}_0$  の可算  $\omega$  モデル  ${\cal S}$  がとれる.
- $^{\omega}$ ATR $_0$  は有限個の  $\Pi_2^1$  文で公理化できることから,この  $\mathcal{S}$  が  $\Sigma_3^1$ -RFN $_0$ , すなわち  $\Pi_1^1$ -TI $_0$  の充足に失敗していることが分かる.

## $\forall X \exists \text{ coded } \omega\text{-model } Ms.t.X \in M \models \text{ATR}_0$ を調べる.

### 命題

 $^{\omega}{
m ATR}_0$  と  $\Sigma^1_1$ -DC $_0$  は比較不能

### 証明.

 $\Sigma_1^1$ -DC $_0$  orall ( $^\omega$ ATR $_0$ ) は  $\Sigma_1^1$ -DC $_0$  orall ATR $_0$  から分かる.  $^\omega$ ATR $_0$  orall  $\Sigma_1^1$ -DC $_0$  は先と同様に  $\omega$ -model Incompleteness を用いて示せる.



 $ATR_0 + \Sigma_1^1$ -IND  $\equiv \Sigma_1^1$ -TI $_0$  は [4] の Theorem 2.5 である.その他はここまでに提示した事実や第二不完全性定理から従う.



総括

Turing ジャンプの繰り返し回数によって、いくつかの体系の coded  $\omega$ -model の存在が特徴づけられる.

 $ATR_0$  は最小の  $\omega$  モデルを持たないので扱いが難しそうだが, $ATR_0$  の coded  $\omega$ -model の存在とよい対応のある計算論的概念がないだろうか.

## 参考文献 I

全体を通して [1] の VII,VIII,IX 章の内容を参考にした。 Turing ジャンプ中心の計算可能性理論の話題に関しては以下 [2], [3] を参考にした。

 $\Sigma_1^0$  普遍論理式  $\Phi$  の構成はほとんど一階算術の話であり、厳密性を求めるなら [8] の 9 章がよいと思うが、若干の覚悟が必要なので [9] の pp160-170 で直感を得るとよいと思う.

 $ATR_0$  と超限帰納法の関係については [4] にまとまっている.

 $\Sigma^1_{3+k}$ -RFN $_0\equiv\Pi^1_{1+k}$ -TI $_0$  は [6] に証明がある.

 $\Sigma_1^{1-D}C_0$  から  $\Delta_1^{1-C}A_0$  周辺の超算術的解析の体系については [5] で概説が見られる.

今回ほとんど話さなかったが、 $ACA_0$  より弱い二階算術については最近出版された [10] が詳しい.

- [1] Stephen G. Simpson, Subsystems of Second Order Arithmetic, Perspectives in Mathematical Logic, Springer-Verlag, 1999
- [2] 篠田 寿一, 帰納的関数と述語, 河合文化教育研究所, 1997.

# 参考文献 ||

- [3] Robert I. Soare, Turing Computability: Theory and Applications, Springer, 2016.
- [4] Stephen G. Simpson,  $\Sigma_1^1$  and  $\Pi_1^1$  Transfinite Induction, Editor(s): D. Van Dalen, D. Lascar, T.J. Smiley, Studies in Logic and the Foundations of Mathematics, Elsevier, Volume 108, Pages 239-253, 1982,
- [5] Antonio Montalbán, On the  $\Pi_1^1$  -separation principle, Mathematical Logic Quarterly 54 (6) ,563-578,2008.
- [6] Gerhard Jäger, Thomas Strahm, Bar induction and  $\omega$  model reflection, Annals of Pure and Applied Logic, Volume 97, Issues 1-3,pp 221-230,1999.
- [7] Jeremy Avigad and Richard Sommer, The model-theoretic ordinal analysis of theories of predicative strength, The Journal of Symbolic Logic, 64(1):327-349,1999.

## 参考文献 III

- [8] Richard Kaye, Models of Peano Arithmetic, Oxford University Press,1991.
- [9] 田中 一之, 数学基礎論序説 数の体系への論理的アプローチ, 裳華 房,2019.
- [10] Damir D. Dzhafarov, Carl Mummert ,Reverse Mathematics:Problems, Reductions, and Proofs.Springer Cham 2022