Technische Universität Berlin

Fakultät II – Institut für Mathematik Ferus/Grigorieff/Penn-Karras/Renesse WS 06/07 02. April 2007

April – Klausur (Verständnisteil) Analysis II für Ingenieure

Name:	Vorname:					
MatrNr.:	Studi	engang	;:			
Neben einem handbeschriebenen A4 zugelassen.	Blatt r	nit No	tizen s	ind ke	ine Hil	fsmittel
Die Lösungen sind in Reinschrift au geschriebene Klausuren können nicht				geben.	Mit	Bleistift
Dieser Teil der Klausur umfasst die Ver Rechenaufwand mit den Kenntnissen a wenn nichts anderes gesagt ist, immer	aus der	Vorles	ung lös	sbar se	in. Gel	_
Die Bearbeitungszeit beträgt eine Stu	ınde.					
Die Gesamtklausur ist mit 40 von 80 beiden Teile der Klausur mindestens 1				,	•	
Korrektur						
	1	2	3	4	5	Σ

1. Aufgabe 8 Punkte

Welche der folgenden Aussagen sind wahr, welche sind falsch? Notieren Sie Ihre Lösungen **ohne** Begründung auf einem separaten Blatt. Für eine richtige Antwort bekommen Sie einen Punkt, für eine falsche verlieren Sie einen Punkt. Die minimale Punktzahl dieser Aufgabe beträgt 0.

- a) Jede Menge A, deren Randpunkte zu A gehören, ist kompakt.
- b) Die Funktionalmatrix einer differenzierbaren Abbildungen $\vec{v}: \mathbb{R}^4 \to \mathbb{R}^3$ ist eine (3×4) -Matrix.
- c) Für Vektorfelder gilt: totale Differenzierbarkeit ist äquivalent zur Stetigkeit.
- d) Die Stammfunktion eines Potentialfeldes kann mit Hilfe von Kurvenintegralen berechnet werden.
- e) Falls $\iint_D F(x,y) dxdy = 1$ gilt, so muss auch für alle $(x,y) \in D$ gelten, das F(x,y) positiv ist.
- f) Die Menge $\{(x,y)^T: x^2+y^2=1\}$ im \mathbb{R}^2 ist eine Fläche.
- g) Ein Skalarfeld f ist genau dann stetig in \vec{x} , wenn gilt: Für alle Folgen \vec{x}_n mit $\vec{x}_n \to \vec{x}$ gilt: $f(\vec{x}_n) \to f(\vec{x})$.
- h) Existieren alle partiellen Ableitungen einer Abbildung $\vec{f}: \mathbb{R}^n \to \mathbb{R}^m$ und sind stetig, so ist \vec{f} differenzierbar.

2. Aufgabe 8 Punkte

Gegeben sei das Skalarfeld

$$f: \mathbb{R}^2 \to \mathbb{R}, \ \begin{pmatrix} x \\ y \end{pmatrix} \mapsto 2x^2 \sqrt{y}.$$

Geben Sie die Funktionalmatrix an und finden Sie eine Richtung, in die f an der Stelle (1,1) die Steigung 0 hat. Geben Sie den Richtungsvektor auf die Länge 1 normiert an.

3. Aufgabe 8 Punkte

Sei \vec{f} : $[0,1] \times [0,2\pi] \to \mathbb{R}^3$ gegeben durch

$$\vec{f}(r,\phi) = \left(\begin{array}{c} r\cos\phi \\ r\sin\phi \\ 1-r \end{array} \right).$$

Skizzieren Sie die geometrischen Objekte die entstehen, wenn

- a) r fest und ϕ variabel,
- b) ϕ fest und r variabel,
- c) r und ϕ variabel sind.

Geben Sie eine weitere Parametrisierung der Kurve aus b) an.

4. Aufgabe 8 Punkte

Gegeben sei die kompakte Menge

$$E = \left\{ \left(\begin{array}{c} x \\ y \end{array} \right) : 2x^2 + 2xy + y^2 = 1 \right\}.$$

Leiten Sie ein Gleichungssystem her, welches jeder Punkt $\begin{pmatrix} x \\ y \end{pmatrix} \in E$ lösen muss, der den minimalen Abstand aller Punkte aus E zum Ursprung hat. Warum muss das Gleichungssystem eine Lösung haben?

5. Aufgabe 8 Punkte

Geben Sie (möglichst einfache) Beispiele für

- a) eine kompakte Menge im \mathbb{R}^3 ,
- b) eine konvergente Folge im \mathbb{R}^2 ,
- c) ein Skalarfeld $v: \mathbb{R}^3 \to \mathbb{R}$ das außer in $\vec{0}$ überall differenzierbar ist,
- d) eine Abbildung \vec{f} , deren Ableitung durch

$$\vec{f'}(x,y) = \begin{pmatrix} x & \sin(y) \\ y+1 & x \\ -\cos(x)y & -\sin(x) \end{pmatrix}$$

gegeben ist,

- e) ein Vektorfeld $\vec{v}: \mathbb{R}^3 \to \mathbb{R}^3$ und ein Vektorpotential \vec{F} von $\vec{v},$
- f) eine skalare Funktion $f:S\to\mathbb{R},\ S$ die Oberfläche eines Würfels mit Kantenlängen 1 im $\mathbb{R}^3,$ mit

$$\iint_{S} f dO = 1$$

- g) die Parametrisierung einer geschlossenen Kurve (kein Kreis),
- h) die Parametrisierung einer Fläche in \mathbb{R}^3 (keine Kugel)

an. Begründungen für die Richtigkeit Ihrer Beispiele sind nicht nötig. Für jedes richtige Beispiel bekommen Sie einen Punkt.