- 1. 判断下列各组对象能否组成集合, 若能组成集合, 指出是有限集还是无限集.
 - (1) 上海市控江中学 2022 年入学的全体高一年级新生;
 - (2) 中国现有各省的名称;
 - (3) 太阳、2、上海市;
 - (4) 大于 10 且小于 15 的有理数;
 - (5) 末位是 3 的自然数;
 - (6) 影响力比较大的中国数学家;
 - (7) 方程 $x^2 + x + 3 = 0$ 的所有实数解;
 - (8) 函数 $y = \frac{1}{x}$ 图像上所有的点;
 - (9) 在平面直角坐标系中, 到定点 (0,0) 的距离等于 1 的所有点;
 - (10) 不等式 3x 10 < 0 的所有正整数解;
 - (11) 所有的平面四边形.
- 2. 用 "∈" 或 " ∉" 填空:
 - $(1) -3_{--}N;$
 - $(2) \ 3.14_{\mathbf{Q}};$
 - (3) 5___**Z**;
 - (4) $\frac{1}{2}$ _N;
 - $(5) -2_{\mathbf{Q}};$

 - (6) π ___R; (7) $0.\dot{1}\dot{3}$ __Q; (8) $\frac{1}{\sqrt{2}-1} \sqrt{2}$ __Z; (9) $\frac{\pi}{2}$ _Q; (10) $\frac{1}{1 \frac{1}{1 \frac{1}{2}}}$ _N;
 - $(11) 0 \varnothing;$
 - (12) 0___**N**.
- 3. 对于一个确定的实数 x, 由 x, -x, |x|, $-\sqrt{x^2}$ 中的一个值或几个值组成的所有集合中, 元素的个数最多有多 少个?
- 4. 已知关于 x 的方程 $\sqrt{x^2+4x+a}=x+2$,若以该方程的所有解为元素组成的集合是无限集,求实数 a 满足 的条件.
- 5. 用列举法表示下列集合:
 - (1) 12 以内的素数组成的集合;
 - (2) 绝对值小于 3 的所有整数的集合;
 - (3) $\{x | \frac{6}{3-x} \in \mathbf{N}, \ x \in \mathbf{Z}\};$
 - (4) $\{y|y=x^2-1, |x| \le 2, x \in \mathbf{Z}\};$

- (5) $\{(x,y)|y=x^2-1, |x| \le 2, x \in \mathbf{Z}\};$
- (6) $\{(x,y)|x+y=5, x \in \mathbb{N}, y \in \mathbb{N}\}.$
- 6. 用描述法表示下列集合:
 - (1) 所有奇数组成的集合;
 - (2) 被 3 除余数等于 2 的正整数的集合;
 - (3) 不小于 10 的实数组成的集合;
 - (4) 绝对值大于 4 的所有整数组成的集合;
 - (5) 平面直角坐标系内 y 轴上的点的坐标组成的集合;
 - (6) 在直线 y = 2x + 1 上所有的点的坐标组成的集合.
- 7. 用区间表示下列集合:
 - (1) $\{x | -2 < x < 7\};$
 - $(2) \{x | -2 \le x \le 7\};$
 - (3) $\{x | -2 \le x < 7\};$
 - (4) 不等式 2x < 5 的解集;
 - (5) 不等式 -x < 5 的解集;
 - (6) 非负实数集.
- 8. 用适当的方法表示下列集合:
 - (1) 能被 10 整除的所有正整数组成的集合;
 - (2) 能整除 10 的所有正整数组成的集合;
 - (3) 方程 $x^2 + 2 = 0$ 的实数解组成的集合;

(4) 方程组
$$\begin{cases} 2x + y = 0, & \text{的所有解组成的集合:} \\ x - y + 3 = 0 & \end{cases}$$

- (5) 两直线 y = 2x + 1 和 y = x 2 的交点组成的集合.
- 9. 下面写法正确的有_____
 - ① $\emptyset \in \{a\}; ② (0,1) \in \{0,1\}; ③ 1 \in \{(0,1)\}; ④ (0,1) \in \{(0,1)\}; ⑤ 0 \in \{0,1\}; ⑥ 0 \notin \{0,1\}.$
- 10. 集合 $\{(x,y)|xy \ge 0, x \in \mathbb{R}, y \in \mathbb{R}\}$ 是指 ().
 - A. 第一象限内的所有点

- B. 第三象限内的所有点
- C. 第一象限和第三象限内的所有点
- D. 不在第二象限、第四象限内的所有点
- 11. 若集合 $M = \{0, 2, 3, 7\}, P = \{x | x = ab, a, b \in M, a \neq b\}$. 用列举法写出集合 P.
- 12. 已知集合 $A = 2, a^2, a,$ 且 $1 \in A,$ 求实数 a 的值.
- 13. 设集合 $M = \{a | a = x^2 y^2, x, y \in \mathbf{Z}\}$, 下列数中不属于 M 的为 ().
 - A. 3

B. 6

C. 9

D. 12

- 14. 已知集合 $A = \{x | x = a + \sqrt{2}b, \ a, b \in \mathbf{Z}\},$ 若 $x_1, x_2 \in A$, 证明: $x_1x_2 \in A$.
- 15. 已知集合 $A = \{x | (k+1)x^2 + x k = 0\}$ 中只有一个元素, 求实数 k 的值.
- 16. 用符号 "⊂"、"="或"⊃"填空:
 - $(1) \{a\}$ ____ $\{a,b,c\}$;
 - $(2) \{a, b, c\} _{a,c};$
 - $(3) \ \{1,2\}___\{x|x^2-3x+2=0\};$
 - (4) $A = \{x|x^2 2x + 1 = 0\}$ _____B = $\{x|x^2 + 2x 3 = 0\}$;
 - (5) $A = \{1, 2\}$ _____B = $\{x | x \neq 2 \text{ nir } 0 \}$;
 - (6) $A = \{(x,y)|xy > 0\}$ _____B = $\{(x,y)|x > 0, y > 0\}.$
- 17. 集合 {1,2,3} 的子集共有______ 个.

- 20. 下列写法正确的有_____.
 - $\textcircled{1} \varnothing \subset \{0\}; \textcircled{2} \varnothing = \varnothing; \textcircled{3} \varnothing \in \{0\}; \textcircled{4} 0 \in \varnothing.$
- 21. 下列各选项中, M 与 P 表示同一个集合的有_____.

①
$$M = \{(1, -3)\}, P = \{(-3, 1)\};$$
 ② $M = \{1, -3\}, P = \{-3, 1\};$ ③ $M = \emptyset, P = \{\emptyset\};$ ④ $M = \{y|y = x^2 + 1, x \in \mathbf{R}\}, P = \{(x, y)|y = x^2 + 1, x \in \mathbf{R}\};$ ⑤ $M = \{y|y = x^2 + 1, x \in \mathbf{R}\}, P = \{t|t = y^2 + 1, y \in \mathbf{R}\};$ ⑥ $M = \{y|y = x^2 + 1, x \in \mathbf{R}\}, P = \{x|y = \sqrt{x - 1}, x \in \mathbf{R}\}.$

- 22. 下列说法正确的有_____.
 - ① $\dot{\mathbf{A}} = A \perp A \subseteq B$, $\mathbf{M} = A \subseteq B$; ② $\dot{\mathbf{A}} = A \subseteq B \perp A \subseteq C$, $\mathbf{M} = A \subseteq C$; ③ $\dot{\mathbf{A}} = A \subseteq B \perp B \subseteq C$, $\mathbf{M} = A \subseteq C$.
- 23. 设常数 $x, y \in \mathbb{R}$, 已知集合 $A = \{x, y\}, B = \{2x, x^2\}, 且 A = B$, 求集合 A.
- 24. 证明: 集合 $A = \{1, 2, 3\}$ 是集合 $B = \{0, 1, 2, 3, 4, 5, 6\}$ 的子集.
- 25. 判断集合 $A = \{n | n = 2k 1, k \in \mathbf{Z}\}, B = \{n | n = 2m + 1, m \in \mathbf{Z}\}$ 的关系, 并说明理由.
- 26. 证明集合 $A = \{n | n = 2k 1, k \in \mathbb{N}\}$ 不是集合 $B = \{n | n = 2m + 1, m \in \mathbb{N}\}$ 的子集, 且集合 A 真包含集合 B.
- 27. 已知集 $B = \{0, 2, 4\}, C = \{0, 2, 6\},$ 若集合 A 满足 $A \subseteq B, A \subseteq C,$ 写出所有满足条件的集合 A.
- 28. 已知集合 $A = \{1\}, B = \{x | x \subseteq A\},$ 用列举法表示集合 B. 并指出 A 与 B 的关系.
- 29. 若集合 $A = \{2, a, a + 3\}, B = \{2, 3, 5, 8\},$ 且 $B \supset A$, 则 a 的值为_____.

30.	设常数 $a\in\mathbf{R}$. 若集合 $A=(-\infty,5)$ 与 $B=(-\infty,a]$ 满足 $A\subseteq B,$ 则 a 的取值范围是
	证明: 1° 当 a 时, 任取 $x \in A$, 则, 所以 $x \in B$, 即 $A \subseteq B$.
	2° 当 a , 时,取 $x_1 =$,则,所以 $x_1 \in A$ 且 $x_1 \notin B$.
	由 1°、2° 可得结论.
31.	设常数 $p \in \mathbf{R}$, 已知 $A = \{x x < -1$ 或 $x > 2\}$, $B = \{x 4x + p = 0\}$, 若 $B \subset A$, 则 p 的取值范围是
32.	已知集合 $A = \{1\}$, 集合 $B = \{x x^2 - 2x + a = 0\}$, 且 $A \subset B$, 求实数 a 的取值范围.
33.	已知集合 $S=\{1,2\},$ 集合 $T=\{x ax^2-3x+2=0\},$ 且 $S=T,$ 求实数 a 的取值范围.
34.	已知集合 $S=\{1,2\},$ 集合 $T=\{x ax^2-3x+2=0\},$ 且 $S\supseteq T,$ 求实数 a 的取值范围.
35.	证明: 集合 $A = \{x x = 6n - 1, n \in \mathbf{Z}\}$ 是 $B = \{x x = 3n + 2, n \in \mathbf{Z}\}$ 的真子集.
36.	设常数 $a \in \mathbb{R}$,已知集合 $\{A = x x^2 - 1 = 0\}$,集合 $\{B = x (x - 1)(x - a) = 0\}$. (1) 若 $B \subset A$,求 a 值的集
	合;
	(2) 若 B 不是 A 的子集, 求 a 值的集合.
37.	已知集合 $A = \{x 0 < x < a\}, B = \{x 1 < x < 2\},$ 若 $B \subseteq A$, 则实数 a 的取值范围为
38.	已知集合 $A = [-2, 5], B = [m + 1, 2m - 1],$ 满足 $B \subseteq A$, 则实数 m 的取值范围为
39.	已知非空集合 P 满足: ① $P\subseteq\{1,2,3,4,5\}$; ② 若 $a\in P$, 则 $6-a\in P$, 符合上述要求的集合 P 的个数
	<u>是</u>
40.	已知集合 $A=\{1,1+d,1+3d\},$ 集合 $B=\{1,q,q^2\},$ 其中 d 、 $q\in \mathbf{R},$ 且 $d\neq 0$. 若 $A=B,$ 求 q 的值.
41.	已知 $A = \{x x = a + \sqrt{2}b, \ a, b \in \mathbf{N}\}$, 若集合 $B = \{x x = \sqrt{2}x_1, \ x_1 \in A\}$, 证明 $B \subset A$.
42.	已知 $A = \{1, 2, 3, 4\}, B = \{3, 4, 5, 6\}, 求$:
	$(1) A \cap B = \underline{\hspace{1cm}};$
	$(2) A \cup B = \underline{\hspace{1cm}};$
	$(3) A \cap \varnothing = \underline{\hspace{1cm}};$
	$(4) A \cup \varnothing = \underline{\hspace{1cm}}.$
43.	已知任一集合 A, 则
	$(1) A \cap A = \underline{\hspace{1cm}};$
	$(2) A \cap \varnothing = \underline{\hspace{1cm}};$
	$(3) A \cup A = \underline{\hspace{1cm}};$
	$(4) A \cup \varnothing = \underline{\hspace{1cm}}.$
44.	已知 $A = \{x x^2 - 4 = 0\}, B = \{x x^2 + 2x - 8 = 0\}, 则 A \cap B =, A \cup B =$
45.	已知 $A = \{y y = x^2 - 4, \ x \in \mathbf{R}\}, B = \{y y = x^2 + 2x - 8, \ x \in \mathbf{R}\}, $ 则 $A \cap B = __ A \cup B = __\$

46.	已知 $A = \{(x,y) y = x^2 - 4, x \in \mathbf{R}\}, B = (x,y) y = x^2 + x - 6, x \in \mathbf{R}, 则 A \cap B =$
47.	已知 $A = \{x $ 存在 $y \in \mathbf{R}$, 使得 $y = x + 1\}$, $B = \{x $ 存在 $y \in \mathbf{R}$, 使得 $y = x\}$, 则 $A \cap B = $
48.	已知 $A = \{x x \leq 6\}, \ B = \{x x < 1\}, \ C = \{x x > 5\}, 则 A \cap B =, B \cap C =, A \cap (B \cap C) =, (A \cap B) \cap C =, (A \cap B) \cap (A \cap C) =$
49.	用 " \subset "、" \subseteq " 或 " $=$ " 填空: $A \cap B \underline{\hspace{1cm}} A, A \cap B \underline{\hspace{1cm}} B \cap A, \varnothing \underline{\hspace{1cm}} B \cap A.$
50.	已知集合 $A = \{x x \le 1\}$, 集合 $B = \{x x \ge a\}$, 且 $A \cup B = \mathbf{R}$, 则 a 的取值范围为
51.	设常数 $a \in \mathbf{R}$. 已知集合 $A = \{x x^2 - 3x + 2 = 0, \ x \in \mathbf{R}\}$, 集合 $B = \{x 2x^2 - x + 2a = 0, \ x \in \mathbf{R}\}$. (1) 若 $A \cup B = B$, 求 a 的值的集合: (2) 若 $A \cap B = B$, 求 a 的值的集合.
52.	已知集合 $A=(-\infty,-1)\cup(6,+\infty)$, 集合 $B=(5-a,5+a)$. 若 $11\in B,$ 则 $A\cup B=$
53.	已知集合 $P = \{x -2 \le x \le 5\}, \ Q = \{x x > k+1 \ \text{且} \ x < 2k-1\}, 若 \ P \cap Q = \varnothing, 求实数 \ k$ 的取值范围.
54.	已知集合 $A=(x,y) x+y=0$, 集合 $B=\{(x,y) y=x-2\}$, 集合 $C=\{(x,y) y=x+b\}$. 若 $(A\cup C)\cap (B\cup C)=C$, 求实数 b .
55.	设常数 $m \in \mathbf{R}$. 若集合 $A = \{1, 2, 3\}$, 集合 $B = \{m^2, 3\}$, 且 $A \cup B = \{1, 2, 3, m\}$, 则 m 的值是
56.	设常数 $a\in\mathbf{R}$. 已知集合 $A=\{x x\leq 1\},$ 集合 $B=\{x x>a\},$ 且 $A\cap B=\varnothing,$ 则 a 的取值范围为
57.	设全集 $U = \{x x$ 是小于9的正整数 $\}, A = \{1,2,3\}, B = \{3,4,5,6\}, 则 \overline{A} =; \overline{B} =; \overline{A \cup B} =; \overline{A \cup B} =$
58.	已知 $A = \{x x < 2\}$. ① 若 $U = \mathbf{R}$,则 $\overline{A} =$; ② 若 $U = \{x x \ge 0\}$,则 $\overline{A} =$; ③ 若 $U = \mathbf{N}$,则 $\overline{A} =$.
59.	已知全集 $U=\mathbf{R},\ A=\{x -1< x<2\},\ 则\ \overline{A}=\;\ \overline{\overline{A}}=\;\ \overline{A}\cap U=\;$
60.	已知集合 $U=\{x x\geq 2\},$ 集合 $A=\{y 3\leq y<4\},$ 集合 $B=\{z 2\leq z<5\},$ 则 $\overline{A}\cap B=$

- 61. 设全集 $U=\mathbf{N},\,A=\{x|x$ 为正奇数 $\},\,B=\{x|x$ 是5的倍数 $\},\,$ 则 $B\cap\overline{A}=$ _______.
- 62. 设常数 $a,b \in \mathbb{R}$, 已知全集 $U = \{2,4,b\}, B = \{a+1,2\}.$ 若 $\overline{B} = \{7\}, 则 \ a = _____.$

- 63. 设常数 $a \in \mathbb{R}$, 已知全集 $U = \mathbb{R}$, 集合 $A = \{x | -2 < x < 2\}$, 集合 $B = \{x | x > a\}$. 若 $A \cap \overline{B} = A$, 则 a 的取 值范围为______.
- 64. 设常数 $a \in \mathbb{R}$, 全集 $U = \mathbb{R}$. 集合 $A = \{x | x < 2\}$, $B = \{x | x > a\}$. 若 $\overline{A} \subseteq B$, 则 a 的取值范围为______.
- 65. 用集合 A、B 的运算式表示图中的阴影部分:

66. 设全集为 U, 且 $M \subseteq N$, 则_____(填入所有正确选项的序号).

 $\textcircled{1} \ M \cup N = N; \ \textcircled{2} \ M \cup N = M; \ \textcircled{3} \ \overline{N} \subseteq \overline{M} \ \textcircled{4} \ \overline{M} \subseteq \overline{N}; \ \textcircled{5} \ \overline{M} \cup \overline{N} = U; \ \textcircled{6} \ M \cap \overline{N} = \varnothing; \ \textcircled{7} \ \overline{M} \cap N = \varnothing.$

67. 已知全集 $U=A\cup B=\{x|0\leq x\leq 10,\ x\in {\bf N}\},\ A\cap \overline{B}=\{1,3,5,7\}.$ 则集合 $B=___$.

68. 若全集 $U = \{(x,y)|x \in \mathbf{R}, \ y \in \mathbf{R}\},$ 集合 $A = \{(x,y)|\frac{y}{x} = 1\},$ 集合 $B = \{(x,y)|y \neq x\},$ 则 $\overline{A \cup B} = \underline{\hspace{1cm}}$.

69. 如图, 已知集合 U 为全集, 分别用集合 A 、B 、C 的运算式表示下列图中的阴影部分.

- 70. 判断下列语句是否为命题, 并在相应的横线上填入"是"或"否".
 - (1) 正方形和四边形;_____;
 - (2) 正方形是四边形吗?_____;
 - (3) $\pi > 3;$ _____;
 - (4) 正方形好美!_____;
 - (5) 2x > 4;_____;
 - (6) 968 能被 11 整除;_____.

71.	判断下列命题的真假, 并在相应的括号内填入"真"或"假".
	$(1) \ 2\sqrt{3} > 3\sqrt{2} \ \mathbf{g} \ 1 \le 1;;$
	(2) $2\sqrt{3} > 3\sqrt{2} \text{ H. } 1 \le 1;$;
	(3) 如果 a、b 都是奇数, 那么 ab 也是奇数;;
	(4) {1} 是 {0,1,2} 的真子集;;
	(5) 1 是 {0,1,2} 的真子集;;
	(6) 若 $x < -2$ 或 $x > 2$, 则 $x^2 > 1$;;
	(7) 如果 a < 2, 那么 a < 2;;
	(8) 对任意实数 $a, b,$ 方程 $(a+1)x + b = 0$ 的解为 $x = -\frac{b}{a+1};$;
	(9) 若命题 α 、 β 、 γ 满足 $\alpha \Rightarrow \beta$, $\beta \Rightarrow \gamma$, $\gamma \Rightarrow \alpha$, 则 $\alpha \Leftrightarrow \gamma$;
	(10) 若关于 x 的方程 $ax^2 + bx + c = 0 (a \neq 0)$ 的两实数根之积是正数, 则 $ac > 0$;;
	(11) 若某个整数不是偶数, 则这个数不能被 4 整除;;
	(12) 合数一定是偶数;;
	(13) 所有的偶数都是素数或合数;;
	(14) 所有的偶数都是素数或所有的偶数都是合数;;
	(15) 如果 $A \subset B$, $B \supset C$, 那么 $A = C$;;
	(16) 空集是任何集合的真子集;;
	(17) 若 $x \in \mathbf{R}$, 则方程 $x^2 - x + 1 = 0$ 不成立;;
	(18) $\not = A \cap B \neq \emptyset, B \subset C, \ \not \cup A \cap C \neq \emptyset; $;
	(19) 存在一个三角形, 它的任意两边的平方和小于第三边的平方;;
	(20) 对于任意一个三角形, 存在一组两边的平方和不等于第三边的平方;
72.	在下列各题中, 用符号 "⇒"" \Leftarrow "" \Leftrightarrow " 把 α 和 β 联系起来:
	$(1) \alpha: a = 0, \beta: ab = 0; \alpha \underline{\hspace{1cm}} \beta;$
	(2) $\alpha : x^2 = 4, \ \beta : x = 2; \ \alpha _ \beta;$
	(3) α : 实数 x 适合 $x^2 - 5x + 6 = 0$, β : $x = 2$; $\alpha_{}\beta$;
	(4) $\alpha: \sqrt{x^2} = x, \beta: x > 0; \alpha \beta;$
	(5) α : 实数 x 适合 $\frac{x-3}{x+1} = -1$, β : $x = 1$; α β ;
	(6) $\alpha:k$ 除以 4 余 1 , $\beta:k$ 除以 2 余 1 ; $\alpha_{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline$
	$(7)\alpha: \{2\} \subset B \subseteq \{2,3,5\}, \ \beta: B = \{2,5\}; \ \alpha_{___}\beta.$
73.	已知命题 "非空集合 M 的元素都是集合 P 的元素 " 是假命题, 给出下列命题: ① M 中的元素都不是 P 的
	元素; ② M 中有不属于 P 的元素; ③ M 中有 P 的元素; ④ M 中的元素不都是 P 的元素. 其中真命题
	有
74.	已知 $\alpha:2\leq x<4,\ \beta:3m-1\leq x\leq -m,$ 且 $\alpha\Rightarrow\beta,$ 求实数 m 的取值范围.

75. 已知 a 是常数, 命题 $\alpha:-1< a<3,$ $\beta:$ 关于 x 的方程 $x+a=0 (x\in \mathbf{R})$ 没有正根, 若命题 α 、 β 有且只有

一个是真命题, 求实数 a 的取值范围. 76. 下列各题中 $P \neq Q$ 的什么条件?(充分非必要、必要非充分、充要、既非充分又非必要) (1) P: x 是 2 的倍数, Q: x 是 6 的倍数;______; (2) P: x 不是 2 的倍数, Q: x 不是 6 的倍数;___ (3) *P*: $x \in A$ 或 $x \in B$, *Q*: $x \in A \cap B$;_____; (4) $P: f(x) = ax^2 + bx + c$ 的图像过原点, Q: c = 0;______. item 若 x, y, z 都是实数, 则:(填写 "充分非 必要、必要非充分、充要、既非充分又非必要"之一) (1) "xy = 0" 是 "x = 0" 的_____ 条件; (2) " $x \cdot y = y \cdot z$ " 是 "x = z" 的______条件; (3) " $\frac{x}{y} = \frac{y}{z}$ " 是 " $xz = y^2$ " 的______ 条件; (4) "|x| > |y|" 是 "x > y > 0"的_____ 条件; (5) " $x^2 > 4$ " 是 "x > 2" 的 条件; (6) "x = -3" 是 " $x^2 + x - 6 = 0$ " 的 条件; (7) "|x+y| < 2" 是 "|x| < 1 且 |y| < 1" 的_____ 条件; (8) "|x| < 3" 是 " $x^2 < 9$ " 的______ 条件; (9) " $x^2 + y^2 > 0$ " 是 " $x \neq 0$ " 的______ 条件; (10) " $\frac{x^2 + x + 1}{3x + 2}$ < 0" \(\mathbb{E}\) "3x + 2 < 0" \(\mathbb{O}\) \(\mathbb{M}\) \(\mathbb{M}\), (11) "0 < x < 3" 是 "|x - 1| < 2" 的______条件. 77. 如果 $A \to B$ 的必要条件, $C \to B$ 的充分条件, $A \to C$ 的充分条件, 那么 $B \times C$ 分别是 A 的___ 和_____条件. 78. 写出使得 "x > 3" 成立的一个充分条件: _____ 和一个必要条件: _____. 79. 一次函数 y = kx + b 的图像经过第二、三、四象限的一个充要条件是 80. 关于 x 的方程 $ax^2 = 0$ 至少有一个实数根的一个充要条件是 81. 已知 $x, y \in \mathbb{R}$, " $x^2 + y^2 > 0$ " 是 " $x \neq 0$ 或 $y \neq 0$ " 的 (). A. 充分而不必要条件 B. 必要而不充分条件 C. 充要条件 D. 既不充分又不必要条件 82. 三个数 a、b、c 不全为零的充要条件是(). A. a, b, c 都不是零 B. a, b, c 中最多一个零 C. a, b, c 中只有一个是零 D. a, b, c 中至少有一个不是零 83. 证明: $x_1 > 2$ 且 $x_2 > 2$ 是 $x_1 + x_2 > 4$ 且 $x_1 \cdot x_2 > 4$ 的充分非必要条件.

① $A \cap B = \emptyset$ 的一个充要条件是 $\operatorname{card}(A \cup B) = \operatorname{card}(A) + \operatorname{card}(B)$;

84. 有限集合 S 中元素的个数记作 card(S), 设 A, B 都是有限集合, 给出下列命题:

	② $A \subseteq B$ 的一个必要不充分条件是 $\operatorname{card}(A) \leq \operatorname{card}(B)$;								
	③ A 不是 B 的子集的一个充分不必要条件是 $\operatorname{card}(A) > \operatorname{card}(B)$;								
	④ $A = B$ 的一个充要条件是 $card(A) = card(B)$.								
	其中真命题的个数是	().							
	A. 0	B. 1	C. 2		D. 3				
85.	设 α, β 是方程 x^2 —	ax + b = 0 的两个实数根.	试分析 a > 2 且 b >	> 1 是 "两个实数标	艮 α, β 均大于 1" 的什				
	么条件? 并证明你的:	结论.							
86.	设 $x,y \in \mathbf{R}$, 求证: $ x+y = x + y $ 成立的充要条件是 $xy \ge 0$.								
87.	已知下列字母均为常	实数, 写出下列陈述句的否	定形式; (1) $x > 0$; _		;				
	(2) $1 > x > 0;$;								
	(3) $x > 0$ $\coprod y \le 1;$;							
	$(4) \ x > 0 \ \mathbf{g} \ x \le -2$;;							
	$(5) x \neq y \mathbf{g} y \neq z; _$;							
	(6) a, b, c, d 中至多有	7 2 个 0;	;						
	(7) a, b, c, d 中至少有	7 2 个 1;	;						
	(8) a, b, c, d 都大于 1	;;							
	(9) a, b, c, d 不都大于	÷ 1;	_;						
	(10) a, b, c, d 都不大	于 1;	·						
88.	在横线上写出下列命	题的否定形式, 并判断命题	真假, 在相应的位置	中填入 "真" 或 "倨	₹".				
	(1) π 是无理数;	.;	;;						
	(2) 2 + 1 = 4;;		;;						
	(3) 任何实数是正数项	或负数;;		_;;					
	(4) 任何实数是正数项	或任何实数是负数;; _		;	_;				
	(5) 对一切实数 x, x ³	$+1 = 0; _{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{1}}}}}}}}$;;					
	(6) 存在实数 $x, x^3 +$	1 = 0;;		_;;					
	(7) 对于任意实数 k,	关于 x 的方程 $x^2+x+k=0$	都有实数根;;_						
	;								
	(8) 任何三角形中至多	多有一个钝角;;		;;					
	(9) 若 $a > 1$, $b > 1$, $b > 1$,	则 $ab > 1;$;		;;					
	(10) 能被 2 整除的整	E数是质数 ;;		;					

89. 写出下列命题的否定形式.

(1) 在平面上,过定点 P 有且只有一条直线垂直于给定直线 l;

- (2) 任意两个有理数之间存在一个无理数;
- (3) 存在实数 a, 使得关于 x 的不等式 $x^2 + (a-2)x + a 1 \ge 0$ 至少有一个正数解;
- (4) 存在实数 a, 使得关于 x 的不等式 $x^2 + (a-2)x + a 1 \ge 0$ 恒成立;
- (5) 存在实数 a, 使得关于 x 的不等式 $x^2 + (a-2)x + a 1 \ge 0$ 有解.
- 90. 已知甲 ⇒ 乙, 下列说法一定正确的是 ().
 - A. 甲不成立, 可推出乙成立
 - C. 乙不成立, 可推出甲成立
- 91. " $a \neq 1$ 且 $b \neq 2$ " 是 " $a + b \neq 3$ " 的 ().
 - A. 充分非必要条件
 - C. 充要条件

- B. 必要非充分条件
 - D. 既非充分又非必要条件

B. 甲不成立, 可推出乙不成立

D. 乙不成立, 可推出甲不成立

- 92. 证明: 若 x + 2y + z > 0, 则 x, y, z 中至少有一个大于 0.
- 93. 证明: 对于三个实数 a,b,c, 若 $a \neq c$, 则 $a \neq b$ 或 $b \neq c$.
- 94. " $x \neq 3$ 或 $x \neq 4$ " 是 " $x^2 7x + 12 \neq 0$ " 的 ().
 - A. 充分非必要条件
 - C. 充要条件

- B. 必要非充分条件
- D. 既非充分又非必要条件
- 95. 证明: 若 $x^2 \neq y^2$, 则 $x \neq y$ 或 $x \neq -y$.
- 96. 若 $a^3 + b^3 = 2$, 证明: $a + b \le 2$.