

Lecture 9

DHCP and Networking Summary

ELEC 3506/9506
Communication Networks

Dr Wibowo Hardjawana
School of Electrical and Information
Engineering

IP addresses: how to get one?

That's actually two questions:

- 1. Q: How does a *host* get IP address within its network (host part of address)?
- 2. Q: How does a *network* get IP address for itself (network part of address)

How does *host* get IP address?

- hard-coded by sysadmin in config file (e.g., /etc/rc.config in UNIX)
- DHCP: Dynamic Host Configuration Protocol: dynamically get address from as server
 - "plug-and-play"

DHCP: Dynamic Host Configuration Protocol

goal: host *dynamically* obtains IP address from network server when it "joins" network

- can renew its lease on address in use
- allows reuse of addresses (only hold address while connected/on)
- support for mobile users who join/leave network

DHCP overview:

- host broadcasts DHCP discover msg [optional]
- DHCP server responds with DHCP offer msg [optional]
- host requests IP address: DHCP request msg
- DHCP server sends address: DHCP ack msg

ARP ≠ DHCP

DHCP client-server scenario

DHCP client-server scenario

DHCP: more than IP addresses

DHCP can return more than just an allocated IP address on the subnet:

- address of first-hop router for the client (Gateway Router for client)
- name and IP address of DNS server
- network mask (indicating network versus host portion of address)

DHCP: example

- Connecting laptop will use DHCP to get IP address, address of firsthop router, address of DNS server.
- DHCP REQUEST message encapsulated in UDP, encapsulated in IP, encapsulated in Ethernet
- Ethernet frame broadcast (dest: FFFFFFFFFFF) on LAN, received at router running DHCP server
- Ethernet demux'ed to IP demux'ed,
 UDP demux'ed to DHCP

DHCP: example

- DHCP server formulates DHCP ACK containing client's IP address, IP address of first-hop router for client, name & IP address of DNS server
- encapsulated DHCP server reply forwarded to client, demuxing up to DHCP at client
- client now knows its IP address, name and IP address of DNS server, IP address of its first-hop router

Synthesis: a day in the life of a web request

- our journey down the protocol stack is now complete!
 - application, transport, network, link
- putting-it-all-together: synthesis!
 - *goal*: identify, review, understand protocols (at all layers) involved in seemingly simple scenario: requesting www page
 - scenario: student attaches laptop to campus network, requests/receives www.google.com

A day in the life: scenario

scenario:

- arriving mobile client attaches to network ...
- requests web page: www.google.com

A day in the life: connecting to the Internet

- connecting laptop needs to get its own IP address, addr of first-hop router, addr of DNS server: use DHCP
 - DHCP request encapsulated in UDP, encapsulated in IP, encapsulated in 802.3
 Ethernet
 - Ethernet demuxed to IP demuxed, UDP demuxed to DHCP

A day in the life: connecting to the Internet

- DHCP server formulates DHCP ACK containing client's IP address, IP address of first-hop router for client, name & IP address of DNS server
 - encapsulation at DHCP server, frame forwarded (switch learning) through LAN, demultiplexing at client
 - DHCP client receives DHCP ACK reply

Client now has IP address, knows name & addr of DNS server, IP address of its first-hop router

A day in the life... ARP (before DNS, before HTTP)

- before sending HTTP request, need IP address of www.google.com: DNS
 - DNS query created, encapsulated in UDP, encapsulated in IP, encapsulated in Eth. To send frame to router, need MAC address of router interface: ARP
- ARP query broadcast, received by router, which replies with ARP reply giving MAC address of router interface
 - client now knows MAC address of first hop router, so can now send frame containing DNS query

A day in the life... using DNS

- demuxed to DNS
- DNS replies to client with IP address of www.google.com

 IP datagram containing DNS query forwarded via LAN switch from client to 1st hop router

 IP datagram forwarded from campus network into Comcast network, routed (tables created by RIP, OSPF and/or BGP routing protocols) to DNS server

A day in the life...TCP connection carrying HTTP

- to send HTTP request, client first opens TCP socket to web server
- TCP SYN segment (step 1 in TCP 3-way handshake) interdomain routed to web server
- web server responds with TCP SYNACK (step 2 in TCP 3-way handshake)
- TCP connection established!

A day in the life... HTTP request/reply

- HTTP request sent into
 TCP socket
- IP datagram containing HTTP request routed to www.google.com
- web server responds with HTTP reply (containing web page)
- IP datagram containing HTTP reply routed back to client

Recommended Reading

 J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down Approach, 8th ed., 2022, Chapters 4 and 6