Preliminary Findings

Research Question: How does geography affect the human impact of COVID-19?

Our project consists of two parts: first, use LDA on the set of research papers to discover geographical factors of interest (for example, the impact of humidity of the transmission rate), and second, run linear regressions on said factors with outputs such as mortality rates.

Topic Discovery

We used the <u>cord19</u> library which provides easy processing capabilities for the research paper dataset from the <u>COVID-19 Open Research Dataset Challenge</u>. On the subset papers published since SARS-CoV-2 (December 2019), we ran LDA on the paper summaries (distillation of the abstracts provided by the library), and then again with the paper titles. However, we were not able to get the topics from either LDA to bring about areas of interest with regards to factors that may correlate with case numbers. We may have to scrap this half of the project unless we can find a way to make this work (even trying to filter the papers by titles that include a word like "transmission" or "humidity" still is not helpful).

```
| Ida_summaries.print_topics()
| ('respiratory', 'infection', 'infections', 'positive', 'patients', 'symptoms', 'negative', 'test']
| ('patients', 'clinical', 'cases', 'pneumonia', 'imaging', 'lung', 'ct', 'chest']
| ('days', 'number', 'confirmed', 'countries', 'cases', 'case, 'data', 'rate')
| ('study', 'infection', 'patients', 'clinical', 'treatment', 'hospital', 'medical', 'icu']
| ('infected', 'number', 'epidemic', 'countries', 'cases', 'time', 'data', 'model', 'ipatients', 'health', 'emergency', 'medical', 'care', 'management', 'healthcare', 'pandemic']
| ('human', 'host', 'receptor', 'proteins', 'genome', 'binding', 'protein', 'spike']
| ('human', 'host', 'receptor', 'proteins', 'genome', 'binding', 'protein', 'spike']
| ('social', 'distancing', 'measures', 'transmission', 'epidemic', 'control', 'model', 'spread']
| ('cell', 'cells', 'respiratory', 'infection', 'immune', 'treatment', 'severe', 'antiviral']
| ('call', 'cells', 'respiratory', 'infection', 'immune', 'treatment', 'severe', 'antiviral']
| ('air', 'use', 'maske', 'protective', 'personal', 'equipment', 'face', 'water']
| ('evidence', 'patients', 'respons', 'dt', 'la', 'en', 'daccine', 'angiotensin', 'ace2']
| ('study', 'public', 'health', 'research', 'information', 'influenza', 'data', 'pandemic']
| ('respiratory', 'response', 'et', 'la', 'en', 'des', 'les', 'le']
| ('patients', 'associated', 'severe', 'age', 'group', 'higher', '95', 'ci']
| ('individuals', 'based', 'population', 'testing', 'time', 'data', 'tests', 'asymptomatic']
| ('respiratory', 'syndrome', 'mers', 'human', 'coronaviruses', 'new', 'la', 'en')

| da_titles.print_topics()
| ('review', 'rapid', 'meta', 'analysis', '10', 'systematic', 'february', 'evidence']
| 'individuals', 'based', 'high, 'infections', 'genetic', 'like', 'chapter']
| 'epidemic', 'health', 'public', 'outbreak', 'healthcare', 'care', 'workers', 'mental']
| 'self', 'influenza', 'based', 'high, 'infections', 'genetic', 'like', 'chapter']
| 'epidemic', 'heacth', 'yuhlic', 'outbreak', 'pandemic', 'research', 'global'
```

We also created a search-like feature for the repository of research articles where we can extract key sentences from the abstracts related to sets of words. For example:

```
search_words = ['seasonal','transmission']
df1 = search(df, search_words)
df1 = sentences(df1, search_words)
df1.head()
```

	pub_date	title	author	sentence			
0 2	020-04-02	Infectious diseases in children and adolescent	Dong, Yanhui; Wang, Liping; Burgner, David P;	Many challenges remain around reducing regiona			
1 2	020-04-14	Projecting the transmission dynamics of SARS-C	Kissler, Stephen M.; Tedijanto, Christine; Gol	We used estimates of seasonality, immunity, an			
2 2	2020-02-14	A spatial model of CoVID-19 transmission in En	Leon Danon; Ellen Brooks-Pollock; Mick Bailey;	Seasonal changes in transmission rate substant			
3 2	020-02-17	Potential impact of seasonal forcing on a SARS	Richard A Neher; Robert Dyrdak; Valentin Druel	Here, we explore how seasonal variation in tra			
4 2	020-03-24	Social distancing strategies for curbing the C	Stephen M Kissler; Christine Tedijanto; Marc L	The amount of social distancing needed to curb			
<pre>search_word2 = ['temperature', 'humidity'] df2 = search(df, search_word2) df2</pre>							

	title	abstract	publish_time	authors	journal
32033	Correlation between weather and Covid- 19 pande	abstract this study aims to analyze the correl	2020-04-04	Tosepu, Ramadhan; Gunawan, Joko; Effendy, Devi	Science of The Total Environment
32039	Investigation of effective climatology paramet	abstract sars cov-2 (covid-19) coronavirus cas	2020-04-17	Ahmadi, Mohsen; Sharifi, Abbas; Dorosti, Shadi	Science of The Total Environment
32043	COVID-19 transmission in Mainland China is ass	abstract covid-19 has become a pandemic. the i	2020-04-19	Qi, Hongchao; Xiao, Shuang; Shi, Runye; Ward,	Science of The Total Environment
32044	Impact of weather on COVID-19 pandemic in Turkey	abstract the coronavirus pandemic, which has n	2020-04-20	Şahin, Mehmet	Science of The Total Environment
32061	Effects of temperature and humidity on the dai	abstract the coronavirus disease 2019 (covid-1	2020-04-28	Wu, Yu; Jing, Wenzhan; Liu, Jue; Ma, Qiuyue; Y	Science of The Total Environment
35899	The role of absolute humidity on transmission	a novel coronavirus (covid-19) was identified	2020-02-17	Wei Luo; Maimuna S Majumder; Dianbo Liu; Canel	unable to retrieve data
35908	Analysis of meteorological conditions and pred	objective: to investigate the meteorological c	2020-02-18	Jin Bu; Dong-Dong Peng; Hui Xiao; Qian Yue; Ya	unable to retrieve data
36220	Role of temperature and humidity in the modula	covid-19 is having a great impact on public he	2020-03-08	Barbara Oliveiros; Liliana Caramelo; Nuno C Fe	unable to retrieve data
36391	Effects of temperature variation and humidity	object meteorological parameters are the impor	2020-03-18	Yueling Ma; Yadong Zhao; Jiangtao Liu; Xiaotao	unable to retrieve data
36416	Roles of meteorological conditions in COVID-19	the novel coronavirus (sars-cov-2/2019-ncov)	2020-03-20	Biqing Chen; Hao Liang; Xiaomin Yuan; Yingying	unable to retrieve data
36503	Role of meteorological temperature and relativ	identified in december 2019, the 2019-ncov eme	2020-03-23	Jose Alvarez-Ramirez; MONICA MERAZ	unable to retrieve data
36567	The impact of temperature and absolute humidit	objective to investigate the impact of tempera	2020-03-24	Peng Shi; Yinqiao Dong; Huanchang Yan; Xiaoyan	unable to retrieve data
36605	Climate affects global patterns of COVID-19 ea	environmental factors, including seasonal clim	2020-03-27	Gentile Francesco Ficetola; Diego Rubolini	unable to retrieve data
36741	Causal empirical estimates suggest COVID-19 tr	nearly every country is now combating the 2019	2020-03-30	Tamma Carleton; Kyle C. Meng	unable to retrieve data
36795	Temperature, humidity, and wind speed are asso	in absence of empirical research data, there h	2020-03-30	Nazrul Islam; Sharmin Shabnam; A Mesut Erzurum	unable to retrieve data

We would like to figure out a way to integrate LDA into this project.

Regression

We performed linear regressions of several geographical factors -- latitude, average temperature, and average heat index -- on mortality rates on the county-level in the US.

Filtering out counties with less than 5000 cases, we get the following results:

Filtering out counties with less than 5000 cases, we get the following results:

While not entirely conclusive, the positive R^2 values for the graphs of death rate against latitude and average temperature imply that there is slight positive correlation between the two variables respectively. In particular, the R^2 value for death rate vs average temperature for counties with more than 5000 cases was 14%, which was a surprisingly high correlation. Additionally, all the p-values for all but the graph of death rate against average max heat index for counties with more than 5000 cases are smaller than 0.05, which indicates statistically significant results.

We plan to extend these regressions with more geographical factors, including population density, average humidity and average pollution levels, on incident and mortality rates on the county-level. We may also go further by combining two or more factors to perform regressions on incident and mortality rates.