

Thema / Inhalt	Methode	Zeit- bedarf	Hausaufgaben
 Sie können grundlegende UNIX-Befehle erklären und deren in Sie können den Aufbau einer Entwicklungsumgebung für Pytivorstellung (Wer bin ich? Problem-Based Learning) Installieren der Entwicklungsumgebung VNC / Notepad++ / PuTTY / FTP Client Nano auf RPi, die wichtigsten Befehle 1.Progrogramm File erstellen und editieren (Console, Nano) print(), #! /usr/bin/pyhton3 LINUX Befehle: cd, ls -al, pwd, rm, mv, cp, mkdir, LINUX file-system (chmod, filepath) Execution Fehlermeldungen interpretieren können und Lösungen implementieren 	,		3
 Notepad++, Putty Programm erweitern (Print(), String-Operationen, Input()) Aufgabe 1a (Umrechner.py) Menu (f-Strings, Multiline-Strings) User-Input (Wähle:) If-then-elif-else Struktur Loop mit 0 beenden Behandlung von falsch Eingaben Formeln implementieren (Variablen, Float-Input, Math-Operationen) 	Test-Driven Approach mit Reviews und Refactoring Theoretischen Einschü- ben	130'	Umrechner.py Menu implementieren

Thema / Inhalt	Methode	Zeit- bedarf	Hausaufgaben		
 2.Abend Sie können einfache Python-Skripte schreiben, um Daten zu verarbeiten und Funktionen effizient einzusetzen (K3). Sie können API-Dokumentationen analysieren und daraus ableiten, wie externe Pakete in eigene Anwendungen integriert werden können (K4). 					
 Aufgabe 1b (Umrechner.py) halt()) implementieren import math Formeln in Funktionen implementieren Funktionen abwärtskompatible erweitern Exception Handling mit Pre-Checks und try-catch 	Test-Driven Approach mit Reviews und Refactoring Theoretischen Einschü- ben	100'			
Aufgabe 1c (Umrechner.py, xxLibrary.py)					
 Funktion in eigene Library auslagern Refactoring Umrechner.py verwendet eigene Library Weitere Functionen readInt(), readFloat() implementieren, testen, anwenden und in eigene Library übernehmen. Neuer Menu-Punkt: Quadratische Gleichung implementieren (Return container) 	Test-Driven Approach mit Reviews und Refactoring Theoretischen Einschü- ben	100'			
			Umrechner.py and My_XXX_Library.py fertigstellen		

Thema / Inhalt	Methode	Zeit- bedarf	Hausaufgaben	
3.Abend				
 Sie können verschiedenen Containers für Python kritisch verg 	leichen und Empfehlungen	ausspred	chen (K5).	
Sie können JSON- und XML-Daten verarbeiten (K3).				
Leistungskontrolle 1 (Linux Commands)	Formativer Test	15'		
Elemete in den verschiedenen Containers zugreifen (lesen), hinzufügen/ändern und löschen. Listen[], Tupels(), Dictonaries{}		60'		
Sub-Listen mit [1:-1] Ranges lesen resp verarbeiten/ändern.	Test-Driven Approach mit Reviews und Refactoring			
for – Loops				
Listen und TuplesDictonaries (keys())	Theoretischen Einschü- ben	140'		
Comprehensions mit Filter und ZIP für eigene Anwendungen einsetzen können. Umrechner Erweiterungen: Quadratische Gleichung Fakultät Primzahlen Rechner Primzahlen und Teiler Listen Filter-Berechnungen			Weitere Funktionen für umrechner.py implementieren	

Thema / Inhalt	Methode	Zeit- bedarf	Hausaufgaben	
 4.Abend Sie können die Funktionen des Moduls Sense_Hat anhand der API Dokumentation richtig anwenden (K4). 				
Linien Aufgaben lösen	SOL			
Aufgabe 2a (LED_Matrix.py) 1. setPixel(), setPixels(), clear(), sleep(), showMessage() 2. Eventhandling (Joystick) 3. IMU- und Meteo-Sensoren	Test-Driven Approach mit Reviews und Refactoring	90'		
Aufgabe 2b (xx_SenseHat_Librarie.py) 1. setPixel() mit clipping 2. drawLine(), drawRecantgle(), drawCircle() 3. Functions erweitern mit fillColor und borderColor 4. drawCompassNeedle(azimutInGrad)	Theoretischen Einschü- ben	110'	Sense_Hat Library mit setPixel(), drawLine(), drawCircle(), draw- Rectangle()	

Thema / Inhalt	Methode	Zeit- bedarf	Hausaufgaben
5.Abend		•	
Sie können die Architektur einer Python-Anwendung analysie	ren, um Verbesserungspote	nziale zu	ı erkennen (K4).
Sie können verschiedene Programmieransätze bewerten und	deren Effizienz vergleichen	(K5).	
Sie können JSON Responses von REST-Calls für eine Steue	rung auswerten. (K4).		
Leistungskontrolle 2	Formativer Test	40'	
Dictonaries / JSON-Strukturen	Test-Driven Approach mit Reviews und Refactoring Theoretischen Einschüben	160'	

Thema / Inhalt	Methode	Zeit- bedarf	Hausaufgaben
6.Abend	onena Daton / ISON, VMI	\ in ains	or Amuson dung users the cites (ICO)
 Sie können REST-Services in Python aufrufen und deren Re Sie können Filehandling-Mechanismen anwenden und bewe 	•) in eine	er Anwendung veralbeiten (K5).
Open-Weather REST Service mit eigenem Token (AppID) aus Python aufrufen (requesten) und response als JSON Struktur verarbeiten.	Test-Driven Approach mit Reviews und Refactoring	40'	
Filehandling open() for read, write and append (inkl UTF and ASCII)	Theoretischen Einschü- ben	40'	
		120'	Design und Implementation einer Wet- ter-Logger (Wetterstation), welche Me- teo-Daten von einem Ort / Lokation in ein File schreibt

7.AbendSie können die Vor- und Nachteile objektorientierter Programmier						
Sie können eine eigene Klasse designen und diese modular in ein	Sie können die Vor- und Nachteile objektorientierter Programmierung in Python bewerten (K5). Sie können die Vor- und Nachteile objektorientierter Programmierung in Python bewerten (K5).					
ckeln und testen. Anschliessend eigene Logger-Klasse in Meteo-App einsetzen.	est-Driven Approach mit eviews und Refactoring heoretischen Einschü- en	200'	Eigene einfache Loggerklasse in Wet-			

Thema / Inhalt	Methode	Zeit- bedarf	Hausaufgaben
 8.Abend Sie können ein Konzept für die Arbeitsteilung in einem Pytho Sie können die Effizienz und Sicherheit verschiedener Metho 	•	·	
Leistungsnachweis (Modullernzielkontrolle MILZ): Eine Aufgabe unter Zeitdruck gemäss Spezifikationen nach dem Test-Driven Approach implementieren.	Selbstständiges programmieren und individuellen Review durch Dozenten.	190'	

Thema / Inhalt	Methode	Zeit- bedarf	Hausaufgaben	
9.Abend				
 Sie können Bilder und PDFs entwickeln (K4). 				
Sie können unterschiedliche Automatisierungsansätze bewerten und für spezifische Szenarien adaptieren (K5).				
Fachgespräche über MLZ	Einzelgespräche gemäss Zeitplan			
Bildbearbeitung mit Python	Selbstorganisiertes Lernen (SOL)	200'		

Bemerkungen:

- Jeder Abend dauert 4 Lektionen.
- Der Unterrichtsplan kann bei Bedarf dem vorhandenen Wissen der Klasse angepasst werden.
- Die Studierenden lösen die Übungen auf ihren privaten Notebooks.
- Der Leistungsnachweis (MLZ) am 8. Abend ist in Einzelarbeit in der vorgegebenen Zeit zu erstellen