	Problem 2-22
	when there is noise in the data Eour (g(D))
	= Exy [(g(D)(x) - y(x))2]
	where y(x) = f(x)+E. If E is N(0,0). show that bias
	variance de composition becomes
	$Ep[Four(g^{(0)})] = \sigma^2 + bias + var$
	En [Eour (g(0))]
=	ECEXED (4(x) - g(0)(x))27
	ELEX ED ((f(x) + e - g(D) (x))27
=	EFEX ED [f(x)2+ e2+ g(D) (x)2+2f(x) E-2eg(D)(x)-2f(x)g(D)(x)
	$E_{X}E_{D}$ $\left[E_{E}\left[f(X)^{2}\right]+E_{E}\left[E^{2}\right]+E_{E}\left[g^{(D)}(X)^{2}\right]\right]$
	+ 2f(x) E_{E[E]} - 2g(D)(x) E_{E[E]} - 2 E_{E[tx)g(D)(x)]]
	Eg[E] = 0 gince noise is zero mean
	Also f(X) is independent of E
Б	Ex En [f(x)2 + Var(E) - (E(E])2 + g(0)(x)2 - 2 f(x)g(0)(x)]
	$var(\varepsilon) = \varepsilon(\varepsilon^2) - (\varepsilon(\varepsilon))^2$
5	$ = x \left[E_D \left[f(X)^2 \right] + \sigma^2 + E_D \left[g^{(D)} (X)^2 \right] - 2f(X) E_D \left[g^{(D)} (X) \right] \right] $
=	$= \left[f(x)^{2} + \sigma^{2} + var(g^{(D)}(x)) + ED[g^{(D)}(x)^{2}] - 2f(x)ED[g^{(D)}(x)] \right]$
=	$E_{x}[\sigma^{2} + Var(g^{(0)}(x)) + (f(x) - E_{D}[g^{(D)}(x)])^{2}]$
£	$E_{x}[\sigma^{2}] + E_{x}[var(g^{(0)}(x))] + E_{x}[Bias^{*}]$
ı	σ2 + Ex [var(g(b)(x))] + Ex[Bias]
	52 + bias + variance