CS₁

Development of hybrid finite element/neural network methods to help create digital surgical twins

Authors:

Frédérique LECOURTIER

Supervisors:

Emmanuel FRANCK Michel DUPREZ Vanessa LLERAS

June 14, 2024

Introduction

Scientific context

Current Objective : Develop hybrid | finite element | / neural network | methods.

accurate

quick + parameterized

 ϕ -**FEM**: New fictitious domain finite element method.

⇒ domain given by a level-set function

Current work

Elliptic problem with Dirichlet conditions:

Find $u:\Omega \to \mathbb{R}^d (d=1,2,3)$ such that

$$\begin{cases} L(u) = -\nabla \cdot (A(x)\nabla u(x)) + c(x)u(x) = f(x) & \text{in } \Omega, \\ u(x) = g(x) & \text{on } \partial \Omega \end{cases} \tag{1}$$

with A a definite positive coercivity condition and c a scalar. We consider Δ the Laplace operator, Ω a smooth bounded open set and Γ its boundary.

Two lines of research:

- 1. How to deal with complex geometry in PINNs?
- 2. Once we have the prediction, how can we improve it (using FEM-type methods)?

How to deal with complex geometry in PINNs?

Standard PINNs

Implicit neural representation.

$$u_{\theta}(x) = u_{NN}(x)$$

with u_{NN} a neural network (e.g. a MLP).

DoFs Minimization Problem:

Considering the least-square form of (1), our discrete problem is

$$\theta_{u} = \operatorname*{argmin}_{\theta \in \mathbb{R}^{N}} \alpha J_{in}(\theta) + \beta J_{bc}(\theta) \tag{2}$$

with N the number of parameters of the NN and

$$J_{lin}(heta) = rac{1}{2} \int_{\Omega} (\mathcal{L}(u_{ heta}) - f)^2 \quad ext{ and } \quad J_{bc}(heta) = rac{1}{2} \int_{\partial \Omega} (u_{ heta} - g)^2$$

Monte-Carlo method: Discretize the cost function by random process.

Limits

Claim on PINNs: No mesh, so easy to go on complex geometry!

∧ In practice: Not so easy! We need to find how to sample in the geometry.

Solution: Approach by levelset.

Advantages:

- → Sample is easy in this case.
- → Allow to impose in hard the BC :

$$u_{\theta}(X) = \phi(X)w_{\theta}(X) + g(X)$$

Natural LevelSet:

Signed Distance Function (SDF)

Problem : SDF is a C^0 function

- \Rightarrow its derivatives explodes
- ⇒ we need a regular levelset

Learn a regular levelset

If we have a boundary domain Γ , the SDF is solution to the Eikonal equation:

$$\begin{cases} ||\nabla \phi(\mathbf{X})|| = 1, \ \mathbf{X} \in \mathcal{O} \\ \phi(\mathbf{X}) = 0, \ \mathbf{X} \in \Gamma \\ \nabla \phi(\mathbf{X}) = n, \ \mathbf{X} \in \Gamma \end{cases}$$

with $\mathcal O$ a box which contains Ω completely and n the exterior normal to Γ .

How make that? with a PINNs [2] by adding a term to regularize.

$$J_{
m reg} = \int_{\mathcal{O}} |\Delta \phi|^2$$

Poisson On Cat

- ightharpoonup Solving the Poisson problem with f=1 and homogeneous Dirichlet BC.
- ightharpoonup Looking for $u_{\theta} = \phi w_{\theta}$ with ϕ the levelset learned.

How improve PINNs prediction?

 \bigwedge Considering simple geometry (i.e analytic levelset ϕ).

Idea

1 Geometry + 1 Force

+ +

(and g)

Get PINNs prediction

Correct prediction

Correct by adding: Considering u_{NN} as the prediction of our PINNs for (1), the correction problem consists in writing the solution as

$$\tilde{u} = u_{NN} + \frac{\tilde{c}}{\ll 1}$$

and searching $ilde{\mathit{C}}:\Omega \to \mathbb{R}^d$ such that

$$\begin{cases} L(\tilde{\mathbf{C}}) = \tilde{\mathbf{f}}, & \text{ in } \Omega, \\ \tilde{\mathbf{C}} = 0, & \text{ on } \Gamma, \end{cases}$$

with
$$\tilde{f} = f - L(u_{NN})$$
. Appendix 1

Poisson on Square

Solving the Poisson problem with homogeneous Dirichlet BC.

- \rightarrow Domain : $\Omega = [-0.5\pi, 0.5\pi]^2$
- → Analytical levelset function :

$$\phi(x,y) = (x - 0.5\pi)(x + 0.5\pi)(y - 0.5\pi)(y + 0.5\pi)$$

→ Analytical solution :

$$u_{ex}(x,y) = \exp\left(-\frac{(x-\mu_1)^2 + (y-\mu_2)^2}{2}\right)\sin(2x)\sin(2y)$$

with $\mu_1, \mu_2 \in [-0.5, 0.5]$.

Taking $\mu_1 = 0.05$, $\mu_2 = 0.22$, the solution is given by

Theoretical results

TODO
$$\mu_1 = 0.05, \mu_2 = 0.22$$

Gains using our approach

Solution \mathbb{P}_1

Gains on PINNs				Gains on FEM					
\mathbf{N}	min	max	mean	std	min	max	mean	std	
20	15.7	48.35	33.64	5.57	134.31	377.36	269.4	43.67	
40	61.47	195.75	135.41	23.21	131.18	362.09	262.12	41.67	

Solution \mathbb{P}_2

	Gains on PINNs				Gains on FEM					
\mathbf{N}	min	max	mean	std	min	max	mean	std		
20	244.81	996.23	655.08	153.63	67.12	165.13	135.21	21.37		
40	2,056.2	8,345.4	$5,\!504.89$	$1,\!287.16$	66.52	159.73	132.05	20.38		

Solution \mathbb{P}_3

	Gains on PINNs				Gains on FEM				
\mathbf{N}	min	max	mean	std	min	max	mean	std	
20	2,804.27	11,797.23	7,607.51	1,780.7	39.72	72.99	61.85	7.05	
40	50,989.23	212,714.99	137,711.77	$32,\!125.57$	40.02	73	61.98	6.92	

Time/Precision

TODO

Conclusion

Supplementary work

TODO

Conclusion

TODO

Thank you!

Bibliography

- **[11** Alexander Belvaev, Pierre-Alain Favolle, and Alexander Pasko, Signed Lp-distance fields, Computer-Aided Design,
- ſ21 Mattéo Clémot and Julie Digne. Neural skeleton: Implicit neural representation away from the surface. Computers and Graphics.
- [3] Pierre-Alain Fayolle. Signed Distance Function Computation from an Implicit Surface.
- [4] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, Journal of Computational Physics.
- N. Sukumar and Ankit Srivastava. Exact imposition of boundary conditions with distance functions in **[51** physics-informed deep neural networks. Computer Methods in Applied Mechanics and Engineering.
- [6] Sifan Wang, Shyam Sankaran, Hanwen Wang, and Paris Perdikaris. An Expert's Guide to Training Physics-informed Neural Networks

Appendix

Appendix 1: Standard FEM

Variational Problem : Find $u \in V \mid a(u, v) = I(v), \forall v \in V$ with *V* - Hilbert space, *a* - bilinear form, *l* - linear form.

Approach Problem : Find $u_h \in V_h \mid \alpha(u_h, v_h) = I(v_h), \ \forall v_h \in V_h$ with $\bullet u_h \in V_h$ an approximate solution of u_h $\bullet V_h \subset V$, $\dim V_h = N_h < \infty$, $(\forall h > 0)$

⇒ Construct a piecewise continuous functions space

$$V_h := P_{C,h}^k = \{v_h \in C^0(\bar{\Omega}), \forall K \in \mathcal{T}_h, v_{h|K} \in \mathbb{P}_k\}$$

 $\mathcal{T}_h = \{K_1, \ldots, K_{N_e}\}$

where \mathbb{P}_k is the vector space of polynomials of total degree $\leq k$.

Finding an approximation of the PDE solution \Rightarrow solving the following linear system:

$$AU = b$$

with

$$A = (a(\varphi_i, \varphi_j))_{1 \leq i, j \leq N_h}, \quad U = (u_i)_{1 \leq i \leq N_h} \quad \text{and} \quad b = (I(\varphi_j))_{1 \leq j \leq N_h}$$

where $(\varphi_1, \ldots, \varphi_{N_h})$ is a basis of V_h .

MIM-SIS

Appendix 2 : ϕ -FEM

App1

Appendix 3: Test3

App3

