EXERCICE 1.★★

Pour tout $A \subset \mathbb{R}$ non vide et tout $x \in \mathbb{R}$, on pose

$$d(x, A) = \inf \{ |x - \alpha| \mid \alpha \in A \}.$$

(expression qui se lit: « distance de $x \ a \ A$ »)

- 1. Donner une interprétation géométrique de d(x, A) sur la droite réelle.
- **2.** Examiner les cas où A = [0, 1] et x = 1, 2, 1/2 ou -3.
- **3.** On revient au cas général. Justifier l'existence de d(x, A).
- 4. La borne inférieure d(x, A) est-elle un plus petit élément? Illustrer par divers exemples.
- **5.** Caculer $d(x, \mathbb{R} \setminus \mathbb{Q})$ pour tout $x \in \mathbb{R}$. Même question avec $d(x, \mathbb{Q})$.
- **6.** Soit $(x,y) \in \mathbb{R}^2$. Montrer que

$$|d(x,A) - d(y,A)| \leq |x - y|.$$

EXERCICE 2.★★

Soit $n \in \mathbb{N}^*$. Etablir que

$$\forall x \in \mathbb{R}, \quad \sum_{k=0}^{n-1} \left[x + \frac{k}{n} \right] = \lfloor nx \rfloor.$$

EXERCICE 3.★

On se propose de calculer la partie entière du réel

$$\alpha = \sum_{k=1}^{10000} \frac{1}{\sqrt{k}}.$$

1. Établir que :

$$\forall n \in \mathbb{N}^*, \quad \frac{1}{\sqrt{n+1}} < 2(\sqrt{n+1} - \sqrt{n}) < \frac{1}{\sqrt{n}}.$$

2. En déduire $|\alpha|$.

EXERCICE 4.★

Prouver que $\forall x \in \mathbb{R}$ et $\forall n \in \mathbb{N}^*$,

$$\left| \frac{\lfloor nx \rfloor}{n} \right| = \lfloor x \rfloor.$$

EXERCICE 5.★★

Prouver que $\forall x \in \mathbb{R}$,

$$\left\lfloor \frac{x+1}{2} \right\rfloor + \left\lfloor \frac{x}{2} \right\rfloor = \lfloor x \rfloor.$$

EXERCICE 6.★

On définit la partie fractionnaire d'un nombre réel x par

$$\{x\} = x - \lfloor x \rfloor$$
.

- 1. Calculer {54, 465} et {-36, 456}.
- **2.** Soit $x \in \mathbb{R}$. Comparer $\{x\}$ et $\{-x\}$.
- 3. Prouver que la fonction définie sur \mathbb{R} par

$$x \longmapsto \{x\}$$

est périodique et tracer son graphe.

EXERCICE 7.★

Déterminer l'ensemble des valeurs prises par l'expression

$$|x + y| - |x| - |y|$$

lorsque x et y décrivent \mathbb{R} .

EXERCICE 8.**

Un classique.

1. Soit $m \in \mathbb{N}$. Déterminer les entiers naturels k tels que

$$\left\lfloor \sqrt{k} \right\rfloor = m.$$

2. Soit $n \ge 0$. Calculer en fonction de n,

$$u_n = \sum_{k=0}^{n^2 + 2n} \left\lfloor \sqrt{k} \right\rfloor.$$

Exercice 9.★

Résoudre sur \mathbb{R} les équations

1.
$$[2x-1] = [x+1];$$
 2. $[x+3] = [x-1].$

2.
$$[x+3] = [x-1].$$

EXERCICE 10.

Tracer le graphe de la fonction f définie sur \mathbb{R} par

$$x \mapsto \left| \left| \frac{3}{2} - x \right| \right|.$$

EXERCICE 11.★

Etablir que $\forall x \in \mathbb{R}$ et $\forall n \in \mathbb{N}^*$:

$$0 \leqslant |nx| - n|x| \leqslant n - 1.$$

EXERCICE 12.

Soit f une application *croissante* de [0,1] dans [0,1]. On souhaite montrer que f admet un point fixe, c'est-à-dire que'il existe $l \in [0,1]$ tel que f(l) = l.

- 1. On pose $A = \{x \in [0, 1] \mid f(x) \ge x\}$. Montrer que A est non vide et majorée.
- **2.** On note alors $c = \sup A$. Montrer que $c \in [0, 1]$.
- **3.** Montrer que $c \leq f(c)$.
- **4.** Montrer que $f(c) \in A$. Conclure.

EXERCICE 13.

Pour $n \in \mathbb{N}^*$, on note s_n la somme des chiffres de l'écriture décimale de n.

- 1. Montrer que $s_n \leq 9(\log_{10} n + 1)$.
- **2.** Montrer que la suite $\left(\frac{s_{n+1}}{s_n}\right)$ est bornée. Quelles sont les bornes supérieure et inférieure de l'ensemble des valeurs de cette suite? Sont-elles atteintes?

EXERCICE 14.

Soient A et B deux ensembles non vides et f une application bornée de $A \times B$ dans \mathbb{R} . Comparer $\sup_{x \in A} (\inf_{y \in B} f(x, y))$ et $\inf_{y \in B} (\sup_{x \in A} f(x, y))$.

EXERCICE 15.

Soit f une application bornée de \mathbb{R} dans \mathbb{R} . Pour $x \in \mathbb{R}$, on pose

$$g(x) = \inf_{y \geqslant x} f(y)$$
 et $h(x) = \sup_{y \geqslant x} f(y)$

Déterminer le sens de variation de g et h.

Exercice 16.★

Soient A et B deux parties non vides et bornées de \mathbb{R} . Montrer que $A\cup B$ est non vide et bornée et que

$$\sup(A \cup B) = \max \big[\sup(A), \sup(B) \big]$$

et

$$\inf(A \cup B) = \min [\inf(A), \inf(B)].$$

EXERCICE 17.★

Etudier l'existence puis déterminer le cas échéant les bornes supérieure et inférieure des ensembles suivants,

1.
$$A = \left\{ 2 - \frac{1}{n}, n \in \mathbb{N}^* \right\};$$

2.
$$\mathcal{B} = \left\{ 1 - \frac{1}{n} - \frac{1}{m}, n, m \in \mathbb{Z}^* \right\};$$

3.
$$C = \left\{ 1 - \frac{1}{n-m}, n \neq m \in \mathbb{Z} \right\};$$

4.
$$\mathcal{D} = \left\{ \frac{pq}{p^2 + q^2}, (p,q) \in \mathbb{N}^* \times \mathbb{N}^* \right\};$$

5.
$$\mathcal{E} = \left\{ \frac{2^n}{2^m + 3^{n+m}}, (n, m) \in \mathbb{N} \right\};$$

6.
$$\mathcal{F} = \left\{ \frac{n+2}{n+1} + \frac{q-1}{q+1}, (n,q) \in \mathbb{N}^2 \right\};$$

7.
$$G = \left\{ \frac{mn}{m^2 + n^2 + mn}, m, n \in \mathbb{N}^* \right\}.$$

EXERCICE 18.

Prouver l'existence puis calculer les bornes supérieures et inférieures de l'ensemble

$$A = \{(-1)^n/n \mid n \ge 1\}.$$

Exercice 19.*

Soient A et B des parties non vides de \mathbb{R} . On définit

$$A + B = \{a + b \mid a \in A, b \in B\}.$$

Montrer que si A et B sont bornées, alors A+B l'est aussi et que

$$\inf(A + B) = \inf(A) + \inf(B)$$

et

$$\sup(A + B) = \sup(A) + \sup(B)$$
.

EXERCICE 20.

Montrer que $A = {\sqrt{m} - \sqrt{n}, (m, n) \in \mathbb{N}^2}$ est dense dans \mathbb{R} .

EXERCICE 21.

Etablir que $E = \{r^3 \mid r \in \mathbb{Q}\}$ est dense dans \mathbb{R} .

EXERCICE 22.

Soit n un entier supérieur ou égal à 2. On définit une fonction g par $g(x)=e^{-x}\sum_{k=0}^n\frac{x^k}{k!}$ pour $x\in[0,1]$. On définit également une fonction h par $h(x)=x^n$

- $g(x) + e^{-x} \frac{x^n}{n!}.$
 - 1. Montrer que g est strictement décroissante sur [0, 1].
 - 2. En déduire que $\sum_{k=0}^{n} \frac{1}{k!} < e$.
 - 3. Montrer que h est strictement croissante sur [0, 1].
 - 4. En déduire que $e < \left(\sum_{k=0}^n \frac{1}{k!}\right) + \frac{1}{n!}$.
 - 5. On suppose que e est rationnel. Il existe donc deux entiers naturels p,q tels que $e=\frac{p}{q}$. Montrer par l'absurde que q>n.
 - 6. Conclure.

EXERCICE 23.

Soit α et β deux réels non nuls tels que $\frac{1}{\alpha}+\frac{1}{\beta}=1.$ On suppose $\alpha>1$ et α irrationnel . On pose

$$A = \{ |n\alpha| \mid n \in \mathbb{N}^* \} \text{ et } B = \{ |n\beta| \mid n \in \mathbb{N}^* \}$$

- 1. Montrer que $\beta > 1$ et que β est également irrationnel.
- **2.** On suppose qu'il existe un couple $(p,q) \in (\mathbb{N}^*)^2$ tel que $\lfloor p\alpha \rfloor = \lfloor q\beta \rfloor$. On pose alors $k = \lfloor p\alpha \rfloor = \lfloor q\beta \rfloor$.
 - a. Montrer que $p-\frac{1}{\alpha}<\frac{k}{\alpha}< p$ et $q-\frac{1}{\beta}<\frac{k}{\beta}< q$ et aboutir à une contradiction.
 - **b.** En déduire que $A \cap B = \emptyset$.
- 3. On suppose qu'il existe $k \in \mathbb{N}^*$ qui n'est ni dans A ni dans B.
 - **a.** Montrer que les suites $(\lfloor n\alpha \rfloor)$ et $(\lfloor n\beta \rfloor)$ tendent vers $+\infty$.
 - **b.** En déduire qu'il existe un couple $(p,q) \in \mathbb{N}^2$ tel que $\lfloor p\alpha \rfloor < k < \lfloor (p+1)\alpha \rfloor$ et $\lfloor q\beta \rfloor < k < \lfloor (q+1)\beta \rfloor$.
 - c. Montrer que $p<\frac{k}{\alpha}< p+1-\frac{1}{\alpha}$ et $q<\frac{k}{\beta}< q+1-\frac{1}{\beta}$ et aboutir à une contradiction.
 - **d.** En déduire que $A \cup B = \mathbb{N}^*$.

EXERCICE 24.

Soit $n \in \mathbb{N}$ impair tel que $n \ge 3$. On pose $\varphi = \arccos \frac{1}{\sqrt{n}}$. On souhaite montrer que $\frac{\varphi}{\pi}$ est irrationnel.

- 1. Pour $k \in \mathbb{N}$, on pose $A_k = \left(\sqrt{n}\right)^k \cos k \phi$. Montrer que pour tout $k \in \mathbb{N}^*$, $A_{k+1} + nA_{k-1} = 2A_k$.
- 2. En déduire que les A_k sont des entiers.
- 3. Montrer qu'aucun des A_k n'est divisible par n.
- 4. Conclure en raisonnant par l'absurde.

EXERCICE 25.

Prouver que le nombre $\frac{\ln(2)}{\ln(3)}$ est irrationnel.

EXERCICE 26.★

Le réel $r = \sqrt{2} + \sqrt{3}$ est-il rationnel ?

EXERCICE 27.

Que dire de x + y et xy dans les quatre cas suivants?

1.
$$x, y \in \mathbb{Q}$$
;

3.
$$x \in \mathbb{Q}, y \in \mathbb{R} \setminus \mathbb{Q}$$

2.
$$x, y \in \mathbb{R} \setminus \mathbb{Q}$$
;

3.
$$x \in \mathbb{Q}, y \in \mathbb{R} \setminus \mathbb{Q};$$

4. $y \in \mathbb{Q}, x \in \mathbb{R} \setminus \mathbb{Q}.$

EXERCICE 28.★

Montrer que si $n \in \mathbb{N}$, \sqrt{n} est rationnel si et seulement si n est un carré parfait (ie de la forme m^2 avec $m \in \mathbb{N}$).

EXERCICE 29.

Prouver l'égalité

$$\bigcup_{n \geq 1} \left[\frac{1}{n}, \frac{2}{n} \right] =]0, 1[\cup]1, 2[.$$

EXERCICE 30.

Soit φ une application de \mathbb{R} dans \mathbb{R} . Pour tous réels $\mathfrak{a},\mathfrak{b}$ on pose

$$a \leq_{\omega} b \iff \varphi(b) - \varphi(a) \geqslant |b - a|$$
.

- 1. Montrer que \leq_{φ} est une relation d'ordre sur \mathbb{R} .
- 2. Montrer que cet ordre est total si et seulement si pour tous réels a, b on a $|\varphi(b) - \varphi(a)| \ge |b - a|$.
- **3.** Quel ordre obtient on si $\varphi = Id_{\mathbb{R}}$?

EXERCICE 31.

Soit X un ensemble de cardinal supérieur à 1. On munit $\mathcal{P}(X)$ de l'ordre \subset . On note $E \subset \mathcal{P}(X)$ l'ensemble des singletons de E.

- 1. E possède-t-il un plus grand élément?
- 2. E possède-t-il une borne supérieure?

EXERCICE 32.

On définit une relation binaire sur \mathbb{N}^2 par

$$x \leq y$$
 si et seulement si $\begin{pmatrix} x_1 < y_1 \\ ou \\ x_1 = y_1 \text{ et } x_2 \leq y_2 \end{pmatrix}$

où
$$x = (x_1, x_2)$$
 et $y = (y_1, y_2)$

- 1. Prouver que \leq est une relation d'ordre sur \mathbb{N}^2 .
- **2.** L'ordre est-il total ?

3. On pose
$$A = \{(p, p), p \in \mathbb{N}\}$$
 et

$$B = \{(2, 10^p), p \in \mathbb{N}\}.$$

Les parties A et B de (\mathbb{N}^2, \preceq) sont-elles majorées? Possèdent-elles un plus grand élément? Une borne supérieure?

EXERCICE 33.

Soit E un ensemble.

- 1. Montrer que la relation d'inclusion notée \subset est un ordre sur $\mathcal{P}(\mathsf{E})$.
- **2.** L'ordre est-il total?
- **3.** On pose pour tout $(A, B) \in \mathcal{P}(E)^2$,

$$\sup(A, B) = \sup(\{A, B\}) \text{ et } \inf(A, B) = \inf(\{A, B\}).$$

- a. Justifier ces définitions. On exprimera sup(A, B) et inf(A, B) en fonction des sous-ensembles A et B à l'aide des symboles \cup et \cap .
- **b.** Montrer plus généralement que toute partie non vide \mathcal{F} de $(\mathcal{P}(\mathsf{E}),\subset)$ admet une borne inférieure et une borne supérieure que l'on explicitera à l'aide de \mathcal{F} en utilisant les symboles \cap et \cup .

EXERCICE 34.

Soit E un ensemble muni d'une relation d'équivalence \mathbb{R} . Pour $x \in E$, on appelle classe d'équivalence de x l'ensemble $C(x) = \{y \in E \mid xRy\}$. Montrer que les classes d'équivalences forment une partition de E.

EXERCICE 35.

1. Montrer que la relation \mathcal{R} définie sur \mathbb{R} par

$$xRy \iff xe^y = ye^x$$

est une relation d'équivalence.

2. Soit $x \in \mathbb{R}$. Quel est le nombre d'éléments de la classe d'équivalence de x?

EXERCICE 36.

On définit une relation binaire $\mathcal R$ sur $\mathbb C$ par

$$zRz' \iff |z| = |z'|$$

Montrer que \mathcal{R} est une relation d'équivalence et décrire géométriquement les classes d'équivalence.

EXERCICE 37.

On définit sur \mathbb{Z} la relation \mathcal{R} par

xRy si et seulement si x + y est pair.

Montrer que \mathcal{R} est une relation d'équivalence et déterminer les classes d'équivalence.

EXERCICE 38.

On définit la relation d'équivalence ${\mathcal R}$ sur ${\mathbb R}$ par

$$xRy \iff x^2 - y^2 = x - y$$

Montrer que \mathcal{R} est une relation d'équivalence et déterminer les cardinaux des classes d'équivalence.

EXERCICE 39.

Soit E un ensemble. On rappelle que E^E est l'ensemble des applications de E dans E. Si f et g sont deux éléments de E^E , on dira que f est conjuguée à g s'il existe une bijection φ de E dans E telle que $f = \varphi^{-1} \circ g \circ \varphi$. On notera alors $f \sim g$.

- 1. a. Montrer que \sim est une relation d'équivalence sur E^E .
 - ${f b}.$ Quelle est la classe d'équivalence de ${\rm Id}_{E}$?
 - c. Quelle est la classe d'équivalence d'une application constante?
- **2.** On suppose dans cette question que $E = \mathbb{R}$.
 - **a.** Soit $a \in \mathbb{R}^*$. Les applications $f: x \mapsto x^2$ et $g: x \mapsto ax^2$ sont-elles conjuguées?
 - b. Les applications sin et cos sont-elles conjuguées?

EXERCICE 40.

Soient $\mathcal C$ et $\mathcal C'$ deux cercles du plan, de centres respectifs O, O' et de rayons respectifs R et R'. On dit que $\mathcal C$ est inférieur à $\mathcal C'$ si $OO' \leqslant R' - R$. On note alors $\mathcal C \leqslant \mathcal C'$.

Montrer qu'il s'agit d'une relation d'ordre dans l'ensemble des cercles du plan.

EXERCICE 41.

Dans \mathbb{N}^* , on considère la relation \mathcal{R} suivante :

$$\mathfrak{p}\mathcal{R}\mathfrak{q}\iff\exists\mathfrak{n}\in\mathbb{N}^*\quad\mathfrak{q}=\mathfrak{p}^\mathfrak{n}$$

- 1. Démontrer que $\mathcal R$ est une relation d'ordre. Cet ordre est-il total?
- **2.** La partie {2,3} est-elle majorée?

EXERCICE 42.

Soient E un ensemble, (F, \leq) un ensemble ordonné et $f: E \to F$ une application injective. On définit dans E la relation \mathcal{R} par $x\mathcal{R}y \iff f(x) \leq f(y)$. Montrer que \mathcal{R} est une relation d'ordre sur E.