Pneumonia Detection

Steven Guo, Yucong Zhang {hg138, yz646}@duke.edu

Background & Related Work

- 1. One-stage Detection
 - a. YOLO [1]
- 2. Two-stage Detection
 - a. Region-based CNN (RCNN) [2]

Method - RetinaNet [3]

Figure 3. The one-stage **RetinaNet** network architecture uses a Feature Pyramid Network (FPN) [20] backbone on top of a feedforward ResNet architecture [16] (a) to generate a rich, multi-scale convolutional feature pyramid (b). To this backbone RetinaNet attaches two subnetworks, one for classifying anchor boxes (c) and one for regressing from anchor boxes to ground-truth object boxes (d). The network design is intentionally simple, which enables this work to focus on a novel focal loss function that eliminates the accuracy gap between our one-stage detector and state-of-the-art two-stage detectors like Faster R-CNN with FPN [20] while running at faster speeds.

Method - Backbone

- ResNet34 & ResNet50
- Pre-trained on two datasets
 - ImageNet dataset
 - RSNA kaggle dataset

Fig 1 Residual Structure [2]

$$\begin{bmatrix} 3 \times 3, 64 \\ 3 \times 3, 64 \end{bmatrix} \times 3 \begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$$

$$\begin{bmatrix} 3 \times 3, 128 \\ 3 \times 3, 128 \end{bmatrix} \times 4 \begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$$

$$\begin{bmatrix} 3 \times 3, 256 \\ 3 \times 3, 256 \end{bmatrix} \times 6 \begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$$

$$\begin{bmatrix} 3 \times 3, 512 \\ 3 \times 3, 512 \end{bmatrix} \times 3 \begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$$

Fig 2 ResNet34 and ResNet50 Architecture [2]

Method - Feature Pyramid Network [5]

Fig 3 FPN Structure [1]

Method - Classification & Regression Subnet

Classification Subnet

- a. CNN with 5 convolutional layers
- b. output channel = num_anchors * num_classes

1. Regression Subnet

- a. CNN with 5 convolutional layers
- b. output channel = num_anchors * 4

Fig 4 Subnets Structure [3]

Method - Loss functions

- 1. Binary Cross Entropy
- 2. Focal Loss
- 3. Compound Loss

$$IoU = \frac{intersection}{union} = \frac{TP}{FN + FP + TN}$$

$$\frac{area \text{ of overlapped (green) over Union over Union (green)}}{extraction over Union (green)} = \frac{TP}{FN + FP + TN}$$

$$\mathcal{L}_{\mathrm{BCE}(p,y)} = \mathrm{CE}(p_t) = -\log(p_t)$$

$$FL(p_t) = -\alpha_t (1 - p_t)^{\gamma} \log(p_t)$$

$$\mathcal{L}_{FLIOU} = \mathcal{L}_{FL} - IoU$$

Experiment Settings

- 1. train test split
- 2. image downsizing 1024 => 128
- 3. hyperparameters
 - a. epoch = 15
 - b. Ir = 0.0001
 - c. confidence score > 0.05

Metric

- 1. Average Precision (AP)
 - a. AUC of the precision and recall curve
 - b. need smoothing

1. mean AP (mAP)

Results

Table 1: The average precision (AP) of all models regarding different IoU values. The Baseline model uses the ResNet34 model as the backbone without pre-trained on any dataset, and it is trained by binary cross entropy loss.

Model	Pretrained (CT)	Pretrained (Imagenet)	Focal Loss	Compound Loss	AP@0.3	AP@0.4	AP@0.5	AP@0.6	AP@0.7	mAP
Baseline	-	-	-	-	0.3300	0.2478	0.1441	0.0699	0.0201	0.1624
ResNet34	-	-	√	-	0.3481	0.2728	0.1801	0.0803	0.0207	0.1804
	-	\checkmark	\checkmark	-	0.3651	0.2851	0.1897	0.0992	0.0266	0.1931
	-		-	\checkmark	0.4108	0.3146	0.2011	0.0945	0.0284	0.2099
	√	-		-	0.5652	0.4406	0.2981	0.1508	0.0439	0.2973
		-	-	\checkmark	0.5727	0.4662	0.3144	0.1383	0.0377	0.3058
ResNet50	-	-	√	-	0.2840	0.2274	0.1535	0.0811	0.0246	0.1542
	-	\checkmark		-	0.4079	0.3207	0.2177	0.1011	0.0289	0.2153
	-	V	-	\checkmark	0.4142	0.3374	0.2280	0.1258	0.0424	0.2296
	√	-	\checkmark	-	0.5274	0.4260	0.2883	0.1437	0.0415	0.2854
	·√	-	-	\checkmark	0.5612	0.4452	0.2861	0.1416	0.0399	0.2948

Discussions - Regarding the Confidence Level

Discussions - Regarding the Training Epochs

Q&A

Thank you!