Lecture 7: Hypothesis testing part I Statistical Methods for Data Science

Yinan Yu

Department of Computer Science and Engineering

November 25, 2021

Today

- Terminology
 - Experiment and parameter of interest
 - Null hypothesis and alternative hypothesis
 - Test statistic
 - Null distribution $f(s \mid H_0)$
 - Significance level α , power and p-value
- Example
- Summary

Learning outcome

- Be able to explain the following terminology
 - Null hypothesis H_0 and alternative hypothesis H_A
 - Test statistic s
 - Null distribution $f(s \mid H_0)$
 - ullet Significance level lpha and power
 - p-value
- Be able to design and interpret the one-sample z-test

Experiment and parameter of interest Null hypothesis and alternative hypothesi Test statistic Null distribution $f(s \mid H_0)$ Significance level α , power and ρ -value

Today

- Terminology
 - Experiment and parameter of interest
 - Null hypothesis and alternative hypothesis
 - Test statistic
 - Null distribution $f(s \mid H_0)$
 - Significance level α , power and p-value
- 2 Example
- Summary

Example

If you control the diet of your ducks, they lose 2.1 kg after one month on average

- Company A has developed a drug D to help ducks lose weight. They claim that on average the drug works better than diet control
- Company B has developed a drug E and they claim that drug E is more effective than drug D on average

You need to help your chonker ducks lose weight. Which drug do you buy? Or should you just control their diet?

- If company A tested drug D on 30 ducks and the average weight loss after one month is 2.2 kg, would you buy drug D instead of regular diet control?
- What if company A tested drug D on 30 ducks and the average weight loss after one month is 2.3 kg? Would you buy drug D instead of regular diet control in this case?
- What if company A tested drug D on 100 ducks and the average weight loss after one month is 2.3 kg?
- Now company B tested drug E on 30 ducks and the average weight loss after one month is 2.5 kg, while drug D results in 2.3 kg weight loss with the same setup, would you buy drug E instead of drug D?

How would you make your decision?

Hypothesis

- Hypothesis: a hypothesis is a proposed explanation for a phenomenon (wikipedia)
- Statistical hypothesis: a proposed distribution that explains a set of random variables
- Hypothesis testing in statistics: we want to decide if it is likely that a random variable follows the distribution proposed by the statistical hypothesis
 - The test is based on sample statistics, which are computed from data
 - \bullet Hypothesis + data \to decision on rejecting/not rejecting the hypothesis

Hypothesis testing: a list to go through

- A "boring" statement
- Experiment
- Data x, random variable X
- ullet Parameter of interest heta
- Parameter estimate $\hat{\theta}$
- Null hypothesis H_0
- Alternative hypothesis H_A
- Test statistic s
- Null distribution $f(s \mid H_0)$
- ullet Significance level α
- p-value

Terminology Example Summary Experiment and parameter of interest Null hypothesis and alternative hypothesis Test statistic Null distribution $f(s \mid H_0)$ Significance level α , power and p-value

Experiment and parameter of interest

Experiment design

- Before formulating the statistical hypothesis, we need a "boring" statement: a claim that we would like to test against, e.g. drug D is not more effective than regular diet on average; drug E works the same as drug D on average
- How do we test the "boring" statement? We design and run experiments to collect evidence (data)
- Example 1: recall if you control the diet of your ducks, they lose 2.1 kg after one month on average
 - A "boring" statement: drug D is not more effective than regular diet on average
 - Experiment (5 sec): test drug D on N chonker ducks and record the average weight loss after one month
 - Data and random variable (5 sec): data x_i weight loss after one month for $i = 1, \dots, N$; random variable X_i i.i.d.
 - Parameter of interest (5 sec): the average weight loss μ_D
 - Parameter estimate (5 sec): $\hat{\mu_D} = \bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$

Then we can use \bar{x} to approximate μ_D and check if it is greater than diet control (2.1 kg)

Experiment design (cont.)

- Example 2:
 - A "boring" statement: drug E and drug D work the same on average
 - Experiment (5 sec): test drug D on N_D chonker ducks and record the average weight loss after one month; test drug E on another N_E chonker ducks and record the average weight loss after one month
 - Data and random variable (5 sec): data x_i weight loss using drug D after one month for $i=1,\cdots,N_D$; random variable X_i i.i.d.; likewise, we have data y_j and random variable Y_j for drug E
 - Parameter of interest (5 secs): the average weight loss μ_D and μ_E for drug D and E, respectively
 - Parameter estimate (5 secs): $\hat{\mu}_D = \bar{x} = \frac{1}{N_D} \sum_{i=1}^{N_D} x_i$ and $\hat{\mu}_E = \bar{y} = \frac{1}{N_C} \sum_{i=1}^{N_E} y_i$

Then we use \bar{x} and \bar{y} to approximate μ_D and μ_E to see if they are the same

Experiment design (cont.)

- We make our decision by observing data; if the evidence does not support the "boring" statement, we reject the statement; otherwise, we do not reject the statement
- But we can never prove or accept the statement we can only reject
 a statement by showing counterexamples
- The logic here is: if a statement is true, then the evidence should support the statement ←⇒ if the evidence does not support the statement, the statement is considered false ←⇒ if the evidence supports the statement, the statement must be true

Terminology Example Summary Experiment and parameter of interest Null hypothesis and alternative hypothesis Test statistic Null distribution $f(s \mid H_0)$ Significance level α , power and p-value

Null hypothesis and alternative hypothesis

Hypotheses H_0 and H_A

- Statistical hypothesis: a proposed distribution a statement about the parameter of interest
- Null hypothesis H₀: the "boring" statement translated into a mathematical expression
 - Example 1: drug D is not more effective than regular diet on average

$$H_0: \mu_D = 2.1$$

Example 2: drug E and drug D work the same on average (5 sec)

$$H_0: \mu_D = \mu_E$$

- Alternative hypothesis H_A: a complementary alternative explanation to the "boring" statement
 - Example 1: drug D is more effective than regular diet on average (5 sec)

$$H_A: \mu_D > 2.1$$

• Example 2: drug E and drug D do not work the same on average (5 sec)

Hypotheses H_0 and H_A (cont.)

Questions:

- Question 1: why are H_A : $\mu_D > 2.1$ and H_0 : $\mu_D = 2.1$ complementary to each other? What about H_A : $\mu_D < 2.1$?
- Answer: an implicit assumption here is that μ_D will not be smaller than 2.1
- Question 2: can H_0 and H_A be ANYTHING I want? Like a magic mirror!? Answer: no
- Follow up question: what are the choices for H_0 and H_A ?

Choices for H_0

- In this course, we only deal with null hypotheses with an equal sign in them only one fixed choice for the distribution proposed by H_0
- Null hypothesis H_0 : two cases
 - One-sample test: to test a data distribution against a theoretical probability distribution, i.e. for a given constant c

$$H_0: \theta = c$$

For example, is a binary classifier more accurate than random? $H_0: p = 50\%$

 Two-sample test: to test a data distribution against another data distribution, i.e.

$$H_0: \theta_1 = \theta_2$$

For example, is classifier A better than classifier B? $H_0: p_A = p_B$

- We have seen one-sample test and two-sample test in the Q-Q plot lecture
- In practice, you can narrow down your choice of hypotheses by making a Q-Q plot

Experiment and parameter of interest Null hypothesis and alternative hypothesis Test statistic Null distribution $f(s \mid H_0)$ Significance level α , power and p-value

Choices for H_A

Given

$$H_0: \theta = \beta$$

where β can be either a constant (one-sample test) or a parameter from another data distribution (two-sample test)

- Alternative hypothesis H_A : H_A can be one-tailed or two-tailed
 - One-tailed:

$$H_A: \theta > \beta$$

or

$$H_A: \theta < \beta$$

Two-tailed:

$$H_A: \theta \neq \beta \iff \theta < \beta \text{ or } \theta > \beta$$

Summary: choices for H_0 and H_A

Putting everything together,

	One-sample test	Two-sample test
Two-tailed	$H_0: \theta = c, H_A: \theta \neq c$	$H_0: \theta_1 = \theta_2, H_A: \theta_1 \neq \theta_2$
One-tailed	$H_0: \theta = c, H_A: \theta > c$	$H_0: \theta_1 = \theta_2, H_A: \theta_1 > \theta_2$
	$H_0: \theta = c, H_A: \theta < c$	$H_0: \theta_1 = \theta_2, H_A: \theta_1 < \theta_2$

where θ , θ_1 , θ_2 are the parameters of interest and c is a constant

Terminology Example Summary Experiment and parameter of interest Null hypothesis and alternative hypothesi Test statistic Null distribution $f(s \mid H_0)$ Significance level α , power and p-value

Test statistic

Test statistic

- Test statistic s, random variable S: the statistic used for testing the hypothesis
 - s is the observation
 - Given a set of parameters of interest and a set of estimates, s is typically a standardized statistic computed from the estimates
 - Purpose: to compare s with a standard distribution, e.g. the standard Gaussian distribution $\mathcal{N}(0,1)$, to see if it is likely that the standard distribution is the underlying distribution of S, i.e. if the null hypothesis is plausible
- What is needed for computing the test statistic?
 - Assumptions on random variables X_i
 - We only need the null hypothesis H_0 (not H_A) to choose the test statistic

Note: in this course, we only deal with null hypothesis where we are able to express the PDF/PMF $f(s \mid H_0)$, i.e. H_0 with an equal sign in them

Test statistic (cont.)

Example 1. one-sample test

- Data: x_1, \dots, x_N
- Random variable: X_1, \dots, X_N i.i.d. Gaussian with known σ
- Parameter of interest: μ_D
- Parameter estimate: x̄
- Null hypothesis: $H_0: \mu_D = 2.1$
- Test statistic: standardized \bar{x} assuming the null hypothesis
 - Recall: what is standardization?
 - Random variable X: $Y = \frac{X \mu_X}{\sigma_X}$
 - Data: x: $y = \frac{x \mu_X}{\sigma_X}$
 - Recall: what are we trying to do? Decide how likely data follows the distribution described by the null hypothesis?
 - What is the distribution described by the null hypothesis?
 - ullet Gaussian distribution with standard deviation σ and mean $\mu_D=2.1$
 - Assuming the null hypothesis: data are assumed to be generated from the distribution described by the null hypothesis - $X_i \sim \mathcal{N}(\mu_D, \sigma^2)$

Standardize \bar{x} (15 sec)

$$z = \frac{\bar{x} - 2.1}{\sigma / \sqrt{N}}$$

Test statistic (cont.)

Example 2. two-sample test

- Data: x_1, \dots, x_{N_D} and y_1, \dots, y_{N_E}
- Random variable: X_1, \dots, X_{N_D} i.i.d. Gaussian with known σ_D ; Y_1, \dots, Y_{N_E} i.i.d. Gaussian with known σ_E ; X_i and Y_j independent
- Parameter of interest: μ_D , μ_E
- Parameter estimate: \bar{x} , \bar{y}
- Null hypothesis: $H_0: \mu_D = \mu_E \iff H_0: \mu_D \mu_E = 0$
- Test statistic: standardized $\bar{x} \bar{y}$ assuming the null hypothesis

$$z = \frac{\bar{x} - \bar{y}}{\sqrt{\sigma_D^2/N_D + \sigma_E^2/N_E}} \text{ (explained later)}$$

Terminology Example Summary Experiment and parameter of interest Null hypothesis and alternative hypothesis Test statistic

Null distribution $f(s \mid H_0)$ Significance level α , power and p-value

Null distribution $f(s \mid H_0)$

Null distribution

- Null distribution $f(s \mid H_0)$: the distribution of the test statistic given the null hypothesis
- Example:
 - Data: x_1, \dots, x_N
 - Random variable: X_1, \dots, X_N i.i.d. Gaussian with known σ
 - Parameter of interest: μ
 - Parameter estimate: \bar{x}
 - Null hypothesis: $H_0: \mu = \mu_0$
 - Test statistic:

$$z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{N}}$$

• Null distribution: standard Gaussian distribution

Terminology Example Summary Experiment and parameter of interest Null hypothesis and alternative hypothesi Test statistic Null distribution $f(s \mid H_0)$ Significance level α , power and p-value

Significance level α , power and p-value

Significance level

Given a null hypothesis $H_0: \mu=2.1$ and the null distribution $f(s\mid H_0)$, we decide if we reject the hypothesis or not by observing data

- ullet Run some experiments and collect data x_1, \cdots, x_N
- Estimate the parameter of interest $\hat{\theta}$, e.g. $\hat{\mu} = \bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$
- \bullet Standardize $\hat{\theta}$ assuming \textit{H}_{0} to compute the test statistic, e.g.

$$z = \frac{\bar{x} - 2.1}{\sigma / \sqrt{N}} = 4.0$$

• Does this evidence support the hypothesis H_0 ? Probably not since it's so far away from the center?

Significance level (cont.)

• What about this observation?

- To be able to answer the question, you need to decide where you draw the line define a rejection region by choosing a significance level
- Significance level α : red area under the curve

In these three images, $\alpha = 0.05$

More conservative \Rightarrow less probable to reject H_0 , which indicates a smaller rejection region Two-tailed H_A is more conservative

Experiment and parameter of interest Null hypothesis and alternative hypothesi Test statistic Null distribution $f(s \mid H_0)$ Significance level α , power and p-value

Significance level (cont.)

What is needed for choosing a meaningful α ?

- Null distribution
- H_A one-tailed or two-tailed

Interpretation of lpha

• $\alpha = P(reject \ H_0 \mid H_0 \ is \ true)$ - the probability of making such a mistake

- The rejection region indicates that H_0 is **unlikely**, but the probability is not zero
- It is possible that H_0 is true, but our observation happens to fall in the rejection region
- If H_0 is true and our observation falls in the rejection region, we will **mistakenly** reject H_0
- ullet The probability of making this type of mistakes is lpha
- Similar to the confidence interval, $1-\alpha$ is called the confidence level "with 95% confidence, rejecting H_0 is the right thing to do"
- Define the significance level before you run the experiments so that you can't cheat!

Significance level and power

• Contingency table:

	$y = H_A$	$y = H_0$
$\hat{y} = \text{reject } H_0$	TP	FP (Type I error)
$\hat{y} = \text{do not reject } H_0$	FN (Type II error)	TN

• Significance level α : incorrectly rejecting H_0

$$\alpha = P(\mathsf{type}\;\mathsf{I}\;\mathsf{error})$$

• Power: correctly rejecting H_0

power =
$$P(\text{reject } H_0 \mid H_A) = 1 - P(\text{type II error})$$

• What is needed for computing the power? $f(s \mid H_0)$, $f(s \mid H_A)$

Experiment and parameter of interest Null hypothesis and alternative hypothesi Test statistic Null distribution $f(s\mid H_0)$ Significance level α , power and p-value

p-value

- p-value:
 - One-tailed:
 - Right tail: $p = P(S \ge s \mid H_0)$
 - Left tail: $p = P(S \le s \mid H_0)$
 - Two-tailed: $p = 2 \min (P(S \le s \mid H_0), P(S \ge s \mid H_0))$ Note: for example, if $f(s \mid H_0)$ is symmetric around zero and s < 0,

$$p = 2P(S \le s \mid H_0)$$

- What is needed for computing the p-value? (10 sec)
 - Null distribution
 - \bullet Alternative hypothesis H_A to know one-tailed or two-tailed
 - Observation test statistic computed from data

Summary: steps for hypothesis testing

- Step 1 Make a "boring" statement
- Step 2 Design an experiment
- Step 3 Describe the **data** generated from the experiment and the corresponding random variables
- Step 4 Describe the parameter of interest and their estimates
- Step 5 Translate the "boring" statement into a statistical hypothesis and call it the null hypothesis H_0
- Step 6 Find the expression for the **test statistic** *s*
- Step 7 Find the expression for the null distribution
- Step 8 Define an alternative hypothesis H_A : one-tailed or two-tailed
- Step 9 Choose a significance level α (the tail), which defines the rejection region
- Step 10 Collect data
- Step 11 Compute the test statistic from data
- Step 12 Compute the *p*-value
- Step 13 If p-value< α , i.e. the test statistic falls in the rejection region of the null distribution, then we reject the hypothesis H_0 ; otherwise, we fail to reject H_0 .

Today

- Terminology
- 2 Example
- Summary

Example

Recall example: if you control the diet of your ducks, they lose 2.1 kg after one month on average. Company A has developed a drug D to help ducks lose weight. They claim that on average the drug works better than diet control. Here is the set up for the experiment.

- Step 1 Make a "boring" statement (5 secs): drug D works the same as diet
- Step 2 Design an experiment (choose N = 30) (10 secs): let 30 chonker ducks take drug D and measure their weight loss after one month
- Step 3 Describe the data and random variables with assumptions about their distributions (5 secs): weight loss x_1, \dots, x_{30} ; X_1, \dots, X_{30} i.i.d. Gaussian random variables let's make an additional assumption to simplify the problem the standard deviation of X_i $\sigma = 0.6$ is known
- Step 4 Describe the parameter of interest and their estimates (10 secs): the mean value μ_D and $\hat{\mu}_D = \bar{x}$
- Step 5 Translate the "boring" statement into a statistical hypothesis and call it the **null hypothesis** H_0 (10 secs): $H_0: \mu_D=2.1$
- Step 6 Find the expression for the **test statistic** *s* (60 secs):

$$s = z = \frac{\bar{x} - 2.1}{\sigma\sqrt{30}}$$

Step 7 Find the expression for the **null distribution** $f(s \mid H_0)$ (10 secs):

$$f(z\mid H_0) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$

Step 8 Define an alternative hypothesis H_A (10 secs):

$$H_A: \mu_D \neq 2.1 \text{ or } H_A: \mu_D > 2.1$$

One-tailed or two-tailed

- Two-tailed (5 secs): $H_A: \mu_D \neq 2.1$
- One-tailed (5 secs): $H_A: \mu_D > 2.1$
- Step 9 Choose a significance level α (the tail), which defines the rejection region (5 secs): e.g. $\alpha=0.05$
- Step 10 Collect 30 ducks in 20 secs and feed them drugs great job! Weights measured after one month x_1, \dots, x_{30}
 - Say $\frac{1}{30} \sum_{i=1}^{30} x_i = 2.2$
- Step 11 Compute the test statistic from data (5 secs):

$$z_0 = \frac{2.2 - 2.1}{0.6/\sqrt{30}} = 0.91$$

- Step 12 Compute the *p*-value (20 secs):
 - For $H_A: \mu_D > 2.1$ (one-tailed): $p = P(Z \ge z_0 \mid H_0) = 0.1807 > \alpha$
 - For $H_A: \mu_D \neq 2.1$ (two-tailed): $p = 2P(Z \geq z_0 \mid H_0) = 0.3613 > \alpha$
- Step 13 If p-value< α , i.e. the test statistic falls in the rejection region of the null distribution, then we reject the hypothesis H_0

Do not reject H_0 for both one-tailed and two-tailed H_A

What if $\bar{x} = 2.3$?

Step 11 Compute the test statistic from data (5 secs):

$$z_0 = \frac{2.3 - 2.1}{0.6/\sqrt{30}} = 1.826$$

Step 12 Compute the *p*-value (20 secs):

- For $H_A: \mu_D > 2.1$ (one-tailed): $p = P(Z \ge z_0 \mid H_0) = 0.0339 < \alpha$
- For $H_A: \mu_D \neq 2.1$ (two-tailed): $p = 2P(Z \geq z_0 \mid H_0) = 0.0679 > \alpha$

Step 13 If p-value $< \alpha$, i.e. the test statistic falls in the rejection region of the null distribution, then we reject the hypothesis H_0

Reject H_0 for one-tailed H_A ; do not reject H_0 for two-tailed H_A for the same confidence level $1 - \alpha = 5\%$

Note: the two-tailed test is more conservative - if the data passes a two-tailed test, it is more conclusive than one-tailed test for the same confidence level

What if $\bar{x} = 2.3$ with N = 100?

Step 11 Compute the test statistic from data (5 secs):

$$z_0 = \frac{2.3 - 2.1}{0.6/\sqrt{100}} = 3.33$$

Step 12 Compute the *p*-value (20 secs):

- For $H_A: \mu_D > 2.1$ (one-tailed): $p = P(Z \ge z_0 \mid H_0) = 0.0004 < \alpha$
- For $H_A: \mu_D \neq 2.1$ (two-tailed): $p = 2P(Z \geq z_0 \mid H_0) = 0.0009 < \alpha$

Step 13 If p-value $< \alpha$, i.e. the test statistic falls in the rejection region of the null distribution, then we reject the hypothesis H_0

Reject H_0 for both one-tailed and two-tailed H_A

Note:

• With more data, it becomes more certain that we should reject H_0 in favor of H_A given the observation $\bar{x} = 2.3$

This test is called one-sample z-test

Today

- 1 Terminology
- 2 Example
- Summary

Summary

So far:

- Data types and data containers
- Descriptive data analysis: descriptive statistics, visualization
- Probability distributions, events, random variables, PMF, PDF, parameters
- CDF, Q-Q plot, how to compare two distributions (data vs theoretical, data vs data)
- Modeling
- Parameter estimation: maximum likelihood estimation (MLE) and maximum a posteriori estimation (MAP)
- Classification, multinomial naive Bayes classifier, Gaussian naive Bayes classifier
- Central limit theorem, interval estimation
- Hypothesis test

Next:

More examples, test statistics; comparison of two classifiers

Before next lecture:

Steps for hypothesis testing

