空间向量与立体几何章末检测卷(一)

说明: 1. 本试题共 4 页,满分 150 分,考试时间 120 分钟。

- 2. 答题前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名、试室号、座位号填写在答 题卷上。
- 3. 答题必须使用黑色字迹的钢笔或签字笔作答, 答案必须写在答题卷上各题目指定区域内 的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和 涂改液。不按以上要求作答的答案无效。
- 4. 考生必须保持答题卷整洁,考试结束后,将答题卷交回,试卷自己保存。

第1卷(选择题 共60分)

- 一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有 一项符合题目要求.)
- 1. 已知空间向量 $\vec{a} = (1,2,3)$, $\vec{b} = (m,-1,n)$,若 \vec{a} // \vec{b} ,则m+n= ()
- A. -2
- B. -1 C. 1
- D. 2
- 2. 如图, 设 $\overrightarrow{OA} = \overrightarrow{a}.\overrightarrow{OB} = \overrightarrow{b}.\overrightarrow{OC} = \overrightarrow{c}$, $\overrightarrow{A}\overrightarrow{AN} = \overrightarrow{NB}.\overrightarrow{BM} = 2\overrightarrow{MC}$, 则 $\overrightarrow{MN} = ($

A.
$$\frac{1}{2}\vec{a} + \frac{1}{6}\vec{b} - \frac{2}{3}\vec{b}$$

A.
$$\frac{1}{2}\vec{a} + \frac{1}{6}\vec{b} - \frac{2}{3}\vec{c}$$
 B. $-\frac{1}{2}\vec{a} - \frac{1}{6}\vec{b} + \frac{2}{3}\vec{c}$ C. $\frac{1}{2}a - \frac{1}{6}b - \frac{1}{3}c$

C.
$$\frac{1}{2} \frac{r}{a} - \frac{1}{6} \frac{r}{b} - \frac{1}{3} \frac{r}{c}$$

D.
$$\frac{1}{2}\vec{a} + \frac{1}{6}\vec{b} + \frac{1}{3}\vec{c}$$

- 3. 己知向量 $\vec{a} = (1, 1, 2k), \vec{b} = (-1, 0, -1), \vec{c} = (0, 2, 1),$ 且向量 $\vec{a} 2\vec{b}$ 与 \vec{c} 互相垂直,则k的值是()
- A. 1
- B. -2
- C. -4
- 4. 如图,平行六面体 $ABCD A_iB_iC_iD_i$ 的底面 ABCD 是边长为 1 的正方形,且 $\angle A_1AD = \angle A_1AB = 60^{\circ}$, $AA_1 = 2$, 则线段 AC_1 的长为 ()
- A. $\sqrt{6}$ B. $\sqrt{10}$ C. $\sqrt{11}$ D. $2\sqrt{3}$

- 5. 四面体 ABCD 中,AB = AC = AD = 2, $\angle BAD = 90^{\circ}$. $\overrightarrow{AB} \cdot \overrightarrow{CD} = -2$,则

- A. 30°
- B. 45° C. 60° D. 90°

6. 如图,四棱锥 $P-ABCD$ 中,底面 $ABCD$ 为矩形且 PA 上平面 $ABCD$,连接 AC 与 BD ,下面各组向量中,数量积不一定为零的是(
	B. \overrightarrow{PB} 与 \overrightarrow{DA}		D. $\overrightarrow{PA} = \overrightarrow{CD}$
7. 已知 $\vec{a} = (1,0,1), \vec{b} = (x,1,2), $			
A. 60°	B. 120°	C. 30°	D. 150°
8. 在平行六面体 $ABCD - A_1B_1C_1D_1$ 中, $AB = 2$, $AD = 2$, $AA_1 = 4$,			
$\angle BAD = \angle BAA_1 = \angle DAA_1 = 60^\circ$,则 $BC_1 与 CA_1$ 所成角的正弦值为(
A. $\frac{\sqrt{21}}{42}$	B. $\frac{\sqrt{3}}{42}$	C. $\frac{\sqrt{21}}{14}$	D. $\frac{5\sqrt{7}}{14}$
二、多项选择题(本题共 4 小题,每小题 5 分,共 20 分. 在每小题给出的四个选项中,有多项符合题目要求。全部选对的得 5 分,部分选对的得 2 分,有选错的得 0 分)			
9. 己知 $\vec{a} = (1,0,1)$, $\vec{b} = (-1,2,-3)$, $\vec{c} = (2,-4,6)$, 则下列结论正确的是(
A. $\vec{a} \perp \vec{b}$		B. $\vec{b} \parallel \vec{c}$	
C. $\langle \stackrel{\rightarrow}{a}, \stackrel{\rightarrow}{c} \rangle$ 为钝角		D. \overrightarrow{c} 在 \overrightarrow{a} 方向上的投	比影向量为(4,0,4)
10. 关于空间向量,以下说法正确的是()			
A. 空间中的三个向量, 若有两个向量共线, 则这三个向量一定共面			
B. 若对空间中任意一点 O , 有 $\overrightarrow{OP} = \frac{1}{6}\overrightarrow{OA} + \frac{1}{3}\overrightarrow{OB} + \frac{1}{2}\overrightarrow{OC}$,则 P , A , B , C 四点共面			
C. 已知向量 $\{\vec{a},\vec{b},\vec{c}\}$ 是空间的一个基底,若 $\vec{m}=\vec{a}+\vec{c}$,则 $\{\vec{a},\vec{b},\vec{m}\}$ 也是空间的一个基底			
D. 若 $\vec{a} \cdot \vec{b} < 0$,则 $\langle \vec{a}, \vec{b} \rangle$ 是钝角			
11. 已知斜三棱柱 $ABC - A_1B_1C_1$ 中,底面 $VABC$ 是直角三角形,且 $AB \perp AC$, $AB = 3$, $AC = 4$,			
$AA_1 = 2$, $\angle A_1AB = \angle A_1AC = 60^\circ$, [1] (
A. $ \overrightarrow{AC} = \sqrt{7}$ B. $ \overrightarrow{B_1C} = 3\sqrt{3}$ C. $\overrightarrow{AC} \cdot \overrightarrow{B_1C} = -9$ D. 异面直线 $AC_1 = B_1C$ 所成			
角的余弦值为 $\frac{\sqrt{21}}{14}$			
12 左长宝体 <i>1RCD</i>	-ARCD + AR - A	ID -1 44 -2 = 1-1-1	5 n 左休母母伴 RD 上

(含端点),则下列结论正确的有()

A. 顶点 B 到平面 APC 的最大距离为 $\frac{\sqrt{2}}{2}$ B. 存在点 P,使得 $BD_1 \perp$ 平面 APC

C. |AP|+|PC|的最小值 $\frac{\sqrt{30}}{3}$

D. 当P为 BD_1 中点时, $\angle APC$ 为钝角

第Ⅱ卷(非选择题 共90分)

三、填空题(本题共4小题,每小题5分,共20分)

- 13. 已知空间四边形 ABCD 的每条边和对角线的长都等于 1,点 E , F 分别是 BC , AD 的中点,则 $\overrightarrow{AE} \cdot \overrightarrow{CF}$ 的值为
- 14. 已知向量 \vec{a} , \vec{b} 满足 $\vec{a} = (1, 1, \sqrt{2})$, $|\vec{b}| = 2$,且 $|\vec{a} + \vec{b}| = \sqrt{3}|\vec{a} \vec{b}|$.则 $\vec{a} + \vec{b}$ 在 \vec{a} 上的投影向量的坐标为
- 15. 正方体 $ABCD A_1B_1C_1D_1$ 的棱长为 1,点 M在线段 CC_1 上,且 $\overrightarrow{MC_1} = 2\overrightarrow{CM}$. 点 P 在平面 $A_1B_1C_1D_1$ 上,且 AP 上平面 MBD_1 ,则线段 AP 的长为______.

四、解答题(本题共6个小题,共70分.解答应写出文字说明,证明过程或演算步骤)

17. 已知 $\vec{e_1}, \vec{e_2}, \vec{e_3}$ 是不共面的向量,且 $\vec{OP} = 2\vec{e_1} - \vec{e_2} + 3\vec{e_3}, \vec{OA} = \vec{e_1} + 2\vec{e_2} - \vec{e_3}, \vec{OB} = -3\vec{e_1} + \vec{e_2} + 2\vec{e_3}, \vec{OC} = \vec{e_1} + \vec{e_2} - \vec{e_3}.$

- (1)判断 P、A、B、C 四点是否共面;
- (2)能否用 \overrightarrow{OA} , \overrightarrow{OB} , \overrightarrow{OC} 表示 \overrightarrow{OP} ? 并说明理由.
- 18. 己知 $\vec{a} = (2, -1, 3), \vec{b} = (1, 2, 2).$
- (1)求 $(\vec{a} + \vec{b}) \cdot (2\vec{a} \vec{b})$ 的值;
- (2)当 $(k\vec{a}-\vec{b})$ 上 $(\vec{a}+k\vec{b})$ 时,求实数 k的值.
- 19. 如图,在四棱锥 P-ABCD 中,底面 ABCD 为直角梯形,其中 AD // BC . $AD \perp AB$, AD = 3 , AB = BC = 2 , $PA \perp PD$ 平面 ABCD ,且 PA = 3 ,点 PA = 3

- (1) 若 DM = 2MP, 证明: 直线 MN / / 平面 PAB:
- (2)线段PD上是否存在点M,使NM与平面PCD所成角的正弦值为 $\frac{\sqrt{6}}{18}$?若存在求出 $\frac{PM}{PD}$ 值;若不存在,说明理由

20. 己知三棱柱 $ABC - A_1B_1C_1$ 的侧棱垂直于底面, $\angle BAC = 90^\circ$, $AB = AC = AA_1 = 1$, $E \times F$ 分别是棱 $C_1C \times BC$ 的中点.

(1)求证: $B_1F \perp$ 平面 AEF;

(2)求点 A_1 到直线 B_1E 的距离.

21. 已知正方体 $ABCD-A_{l}B_{l}C_{l}D_{l}$ 中, E 为棱 CC_{l} 上的动点.

(1) 求证: *A₁E*⊥*BD*;

(2) 若平面 A_lBD 上平面 EBD, 试确定 E 点的位置.

22. 如图,在四棱锥 P-ABCD 中,平面 PAD 上平面 ABCD,点 E 为 PC 的中点, $AB/\!\!/ CD$, $CD \perp AD$,CD = 2AB = 2,PA = AD = 1, $PA \perp AD$.

(1)证明: BE 上 平面 PCD;

(2)求二面角 P-BD-E 的余弦值.