CSC343 Prep 9

Junming Zhang

July 2019

- 1. Suppose we have a relation on attributes A, B, C, D, E, and F, and these functional dependencies hold: $S = \{B \to DE, BF \to C, CF \to B, DF \to AE\}$.
 - (a) Compute B^+ .

$$B^+ = BDE$$

(b) Compute CF^+ .

$$CF^+ = CFBDEA$$

(c) Compute DF^+ .

$$DF^+ = DFAE$$

(d) Compute BC^+ .

$$BC^+ = BCDE$$

(e) Compute ABC^+ .

$$ABC^+ = ABCDE$$

- 2. Again, suppose we have a relation on attributes A, B, C, D, E, and F, and these functional dependencies hold: $S = \{B \to DE, BF \to C, CF \to B, DF \to AE\}$. Write "yes" or "no" for each, and show your rough work.
 - (a) Does it follow from S that $B \to A$? No, because B^+ does not include A from Q1 part (a).
 - (b) Does it follow from S that $CF \to E$? Yes, because CF^+ includes E from Q1 part (b).
 - (c) Does it follow from S that $DF \to B$? No, because DF+ does not include B from Q1 part (c).
 - (d) Does it follow from S that $BD \to C$? The closure of BD can be derived from the functional dependencies given, which is

$$BD^+ = BDE$$
.

No, C can not be derived from BD^+ since BD^+ does not include C.

(e) Does it follow from S that $BFC \to A$?

The closure of BFC can be derived from the functional dependencies given, which is

$$BFC^+ = BDEFCA$$
.

Yes, A can be derived from BFC^+ since BFC^+ includes A.

3. Suppose we have a relation with attributes ABCDE and these functional dependencies: $S = \{A \to D, B \to A, C \to A, D \to CE.\}$ Project the functional dependencies onto the attribute set ABD.

By the algorithm introduced in the lecture, compute A^+, B^+, D^+ at first, which is,

$$A^{+} = ADCE$$
$$B^{+} = BADCE$$
$$D^{+} = DCEA$$

Therefore, the aimed dependencies are computed,

$$A \to D$$

$$B \to AD$$

$$D \to A$$

Finally, the projection is solved as,

$$\{A \to D, B \to AD, D \to A\}.$$

4. Consider relation R(A, B, C, D, E, F) with functional dependencies:

$$S = \{CD \rightarrow A, B \rightarrow EF, A \rightarrow BC, F \rightarrow D\}$$

Create an instance of R that satisfies its FDs and has redundant data. Identify redundancy by circling a single value in the table that could be erased and yet we would know what its value must be. Thought exercise: what does it have to do with the FDs?

A	В	C	D	E	F
1	2	3	4	5	6
1	2	3	4	5	6