convex skeleton: generalization of network spanning tree

Lovro Šubelj University of Ljubljana

University of Ljubljana
Faculty of Computer and Information Science
Ljubljana, Slovenia

LaRichNet '18

convex subgraphs of networks

convex/non-convex real functions, sets in \mathbb{R}^2 & subgraphs

 $\mathsf{disconnected} \supseteq \mathsf{connected} \supseteq \mathsf{induced} \supseteq \mathsf{isometric} \supseteq \mathsf{convex} \ \mathsf{subgraphs}$

convex hull $\mathcal{H}(S)$ is smallest convex subgraph including S

subset *S* is convex if it induces convex **subgraph**

expansion of convex subgraphs

grow subgraph S by one node & expand S to convex hull $\mathcal{H}(S)$

- $S = \{\text{random node } i\}$
- until *S* contains *n* nodes:
 - 1. select $i \notin S$ by random edge
 - 2. expand $S = \mathcal{H}(S \cup \{i\})$

S quantifies (locally) **tree-like/clique-like** structure of networks

examples of convex expansion

s(t)= average fraction of nodes in S after t expansion steps $s(t)\approx (t+1)/n$ in convex & $s(t)\gg (t+1)/n$ in non-convex networks

s(t) quantifies (locally) **tree-like/clique-like** structure of networks

measure of network convexity

$$Xs = s - \sum_{t=1}^{sn-1} \max(s\Delta s(t) - 1/n, 0)$$
 $s = \text{fraction of nodes in LCC}$

Xs highlights tree-like/clique-like networks & synthetic graphs

	п	$\langle k \rangle$	Xs		п	$\langle k \rangle$	Xs
Jazz musicians	198	27.70	0.12		2500	10.00	0.00
Network scientists	379	4.82	0.85	Random graphs	1000	10.00	0.01
Computer scientists	239	4.75	0.64		225	10.00	0.03
Plasmodium falciparum	1158	4.15	0.43	Triangular lattice	225	5.48	0.23
Saccharomyces cerevisiae	1458	2.67	0.68	Rectangular lattice	225	3.73	0.13
Caenorhabditis elegans	3747	4.14	0.56	Core-periphery graph	3747	4.48	0.39
AS (January 1, 1998)	3213	3.50	0.66		2500	5.97	1.00
AS (January 1, 1999)	531	4.58	0.49	Trees of cliques	1000	5.97	1.00
AS (January 1, 2000)	3570	3.94	0.59		225	6.01	1.00
Little Rock Lake	183	26.60	0.02				
Florida Bay (wet)	128	32.42	0.03				
Florida Bay (dry)	128	32.91	0.03				

Xs measures **global** & **regional** convexity in (disconnected) networks

convex skeletons of networks

convex skeleton = largest high-Xs subnetwork (every S convex) spanning tree & convex skeleton of network scientists coauthorships

convex skeleton is tree of cliques extracted by edge removal

statistics of convex skeletons

$$\langle C \rangle = \frac{1}{n} \sum_{i} \frac{2t_{i}}{k_{i}(k_{i}-1)} \qquad \langle \sigma \rangle = \frac{2}{n(n-1)} \sum_{i < j} \sigma_{ij} \qquad Xs = \dots$$

statistics of convex skeletons & spanning trees of networks

	clustering $\langle C \rangle$			geodesics $\langle \sigma \rangle$			convexity Xs		
	N	CS	ST	N	CS	ST	N	CS	ST
Jazz musicians	0.62	0.81	0.00	9.71	1.97	1.00	0.12	0.84	1.00
Network scientists	0.74	0.75	0.00	2.66	1.47	1.00	0.85	0.95	1.00
Computer scientists	0.48	0.54	0.00	4.08	1.42	1.00	0.64	0.95	1.00
Plasmodium falciparum	0.02	0.07	0.00	3.71	1.77	1.00	0.43	0.95	1.00
Saccharomyces cerevisiae	0.07	0.10	0.00	2.58	1.19	1.00	0.68	0.88	1.00
Caenorhabditis elegans	0.06	0.12	0.00	6.79	3.03	1.00	0.56	0.85	1.00
AS (January 1, 1998)	0.18	0.21	0.00	3.87	2.32	1.00	0.66	0.91	1.00
AS (January 1, 1999)	0.18	0.27	0.00	3.54	2.05	1.00	0.49	0.95	1.00
AS (January 1, 2000)	0.20	0.25	0.00	4.81	3.07	1.00	0.59	0.90	1.00
Little Rock Lake	0.32	0.69	0.00	22.13	4.32	1.00	0.02	0.82	1.00
Florida Bay (wet)	0.33	0.79	0.00	9.17	1.37	1.00	0.03	0.92	1.00
Florida Bay (dry)	0.33	0.82	0.00	9.37	1.65	1.00	0.03	0.93	1.00

convex skeleton is generalization of spanning tree retaining clustering

distributions of convex skeletons

node distributions of convex skeletons & spanning trees of networks

convex skeletons retain node distributions in contrast to spanning trees

position in convex skeletons

node position in convex skeletons & spanning trees of networks

convex skeletons retain node position in contrast to spanning trees

robustness of convex skeletons

MDS maps of convex skeletons, spanning trees & random graphs

networks allow robust extraction of convex skeletons & spanning trees

convex skeleton of coauthorships

convex skeleton \sim network abstraction technique convex skeleton of Slovenian computer scientists coauthorships

computer theory (\spadesuit) , information systems (\blacksquare) , intelligent systems (\blacktriangle) , programming technologies (\lozenge) & other (\bullet)

network backbones of coauthorships

convex skeleton ≫ high-betweenness & high-salience skeletons

properties of backbones of Slovenian computer scientists coauthorships

convex skeletons strengthen properties in contrast to other backbones

convex skeletons of networks

 ${\bf convex~skeleton} \gg {\bf network~backbones}$ analysis, modeling, sampling, abstraction, visualization etc.

network convexity:

arXiv:1608.03402v3

convex skeletons:

arXiv:1709.00255v3

Lovro Šubelj

University of Ljubljana lovro.subelj@fri.uni-lj.si http://lovro.lpt.fri.uni-lj.si