Differential Geometry

Revision Guide

Dr. Silvio Fanzon

27 Nov 2024

Table of contents

Revision Guide			
		mmended revision strategy	3
	Chec	klist	3
1	Curves		
	1.1	Curvature	5
	1.2	Frenet frame and torsion	8
	1.3	Frenet-Serret equations	10
2	Торс	ology	12
3	Surf	aces	13
	3.1	Preliminaries	13
	3.2	Regular surfaces	15
	3.3	Reparametrizations	16
	3.4	Functions between surfaces	17
	3.5	Tangent plane	18
	3.6	Unit normal and orientability	19
	3.7	Differential of smooth functions	20
	3.8	Level surfaces	22
	3.9	Ruled surfaces	23
	3.10	Surfaces of Revolution	24
	3.11	First fundamental form	24
	3.12	Length of curves	27
	3.13	Isometries	28
	3.14	Angles between curves	30
	3.15	Conformal maps	30
	3.16	Conformal parametrizations	32
Li	icense		33
	Reus	e	33
	Citat	ion	22

Revision Guide

Revision Guide document for the module **Differential Geometry 661955** 2024/25 at the University of Hull. If you have any question or find any typo, please email me at

S.Fanzon@hull.ac.uk

Full lenght Lecture Notes of the module available at

silviofanzon.com/2024-Differential-Geometry-Notes

Recommended revision strategy

Make sure you are very comfortable with:

- 1. The Definitions, Theorems, Proofs, and Examples contained in this Revision Guide
- 2. The Homework questions
- 3. The 2022/23 and 2023/24 Exam Papers questions.
- 4. The Checklist below

Checklist

You should be comfortable with the following topics/taks:

You should be comfortable with the following topics/tasks:

Curves

- Regularity of curves
- Length, arc-length, and arc-length reparametrization
- Calculating the curvature and torsion of unit speed curves from the definitions
- Calculating the curvature and torsion of (possibly not unit speed) curves from the formulae
- Calculating the Frenet frame of a unit-speed curve
- Applying the Fundamental Theorem of Space Curves to determine if two curves coincide, up to a ridig motion
- Proving that a curve is contained in a plane, and computing the equation of such plane
- Proving that a curve is part of a circle

Topology: To be completed

Surfaces:

- Regularity of surface charts
- Computing reparametrizations
- Computing a basis and the equation of the tangent plane
- Calculating the standard unit normal of a surface chart
- Calculating the differential of a smooth function between surfaces
- Proving that a given level surface is regular, and computing its tangent plane
- Proving that a given surface is ruled
- Calculating the first fundamental form of a surface chart
- Proving that a given map is a local isometry / conformal
- Prove that a given parametrization is conformal
- Calculating length and angles of curves on surfaces
- Calculating the second fundamental form of a surface chart
- Calculating the matrix of the Weingarten map, the principal curvatures, and principal directions of a surface chart
- Calculating Gaussian and mean curvature of a surface chart
- Calculating normal and geodesic curvature of a curve on a surface
- Classifying points of a surface as elliptic, parabolic, hyperbolic, planar

1 Curves

Definition 1.1: Length

The **length** of the curve $\gamma : (a, b) \to \mathbb{R}^3$ is

$$L(\mathbf{\gamma}) = \int_a^b \|\dot{\mathbf{\gamma}}(u)\| \ du.$$

Example 1.2: Length of Circle

Question. Compute the length of the circle of radius R

$$\gamma(t) = (x_0 + R\cos(t), y_0 + R\sin(t), 0).$$

Solution. We compute

$$\dot{\mathbf{y}}(t) = (-R\sin(t), R\cos(t), 0)$$

$$\|\dot{\mathbf{y}}(t)\| = \sqrt{\dot{\gamma}_1^2(t) + \dot{\gamma}_2^2(t)} = R$$

$$L(\mathbf{y}) = \int_0^{2\pi} \|\dot{\mathbf{y}}(t)\| dt = \int_0^{2\pi} R dt = 2\pi R.$$

Example 1.3: Length of Helix

Question. Compute the length of the Helix

$$\mathbf{\gamma}(t) = (R\cos(t), R\sin(t), Ht), \quad t \in (0, 2\pi).$$

Solution. We compute

$$\dot{\mathbf{y}}(t) = (-R\sin(t), R\cos(t), H)$$

$$\|\dot{\mathbf{y}}(t)\| = \sqrt{R^2 + H^2}$$

$$L(\mathbf{y}) = \int_0^{2\pi} \|\dot{\mathbf{y}}(u)\| \ du = 2\pi \sqrt{R^2 + H^2}$$

Definition 1.4: Arc-Length

The **arc-length** along $\gamma:(a,b)\to\mathbb{R}^3$ from t_0 to t is

$$s: (a,b) \to \mathbb{R}, \quad s(t) = \int_{t_0}^t \|\dot{\boldsymbol{y}}(u)\| du.$$

Example 1.5: Arc-length of Logarithmic Spiral

Question. Compute the arc-length of

$$\gamma(t) = (e^{kt}\cos(t), e^{kt}\sin(t), 0), \quad t \in (0, 2\pi).$$

Solution. The arc-length starting from t_0 is

$$\dot{\mathbf{\gamma}}(t) = e^{kt}(k\cos(t) - \sin(t), k\sin(t) + \cos(t), 0)$$

$$\|\dot{\mathbf{y}}(t)\|^2 = (k^2 + 1)e^{2kt}$$

$$s(t) = \int_{t_0}^{t} \|\dot{\boldsymbol{\gamma}}(\tau)\| \ d\tau = \frac{\sqrt{k^2 + 1}}{k} (e^{kt} - e^{kt_0}).$$

Definition 1.6: Unit-speed curve

A curve $\gamma:(a,b)\to\mathbb{R}^3$ is **unit-speed** if

$$\|\dot{\mathbf{y}}(t)\| = 1$$
, $\forall t \in (a, b)$.

Theorem 1.7

Let $\gamma:(a,b)\to\mathbb{R}^n$ be a unit-speed curve. Then

$$\dot{\mathbf{y}} \cdot \ddot{\mathbf{y}} = 0$$
, $\forall t \in (a, b)$.

Proof

Since γ is unit-speed, we have $\dot{\gamma} \cdot \dot{\gamma} = 1$. Differentiating both sides, we get the thesis:

$$0 = \frac{d}{dt}(\dot{\mathbf{y}} \cdot \dot{\mathbf{y}}) = \ddot{\mathbf{y}} \cdot \dot{\mathbf{y}} + \dot{\mathbf{y}} \cdot \ddot{\mathbf{y}} = 2\dot{\mathbf{y}} \cdot \ddot{\mathbf{y}}.$$

Definition 1.8: Reparametrization

Let $\gamma: (a,b) \to \mathbb{R}^3$. A **reparametrization** of γ is a curve $\tilde{\gamma}: (\tilde{a}, \tilde{b}) \to \mathbb{R}^3$ such that

$$\tilde{\mathbf{\gamma}}(t) = \mathbf{\gamma}(\phi(t)), \quad \forall t \in (\tilde{a}, \tilde{b}),$$

for $\phi: (\tilde{a}, \tilde{b}) \to (a, b)$ diffeomorphism.

Definition 1.9: Unit-speed reparametrization

Let $\gamma: (a,b) \to \mathbb{R}^3$. A unit-speed reparametrization of γ is a reparametrization $\tilde{\gamma}: (\tilde{a}, \tilde{b}) \to \mathbb{R}^3$ which is unit-speed, that is,

$$\|\dot{\tilde{\boldsymbol{\gamma}}}(t)\| = 1$$
, $\forall t \in (\tilde{a}, \tilde{b})$.

Definition 1.10: Regular curve

A curve $\gamma:(a,b)\to\mathbb{R}^3$ is **regular** if

$$\|\dot{\mathbf{y}}(t)\| \neq 0$$
, $\forall t \in (a,b)$

Theorem 1.11: Existence of unit-speed reparametrization

Let γ be a curve. They are equivalent:

- 1. γ is regular,
- 2. γ admits unit-speed reparametrization.

Theorem 1.12: Arc-length and unit-speed reparametrization

Let $\mathbf{\gamma}: (a,b) \to \mathbb{R}^3$ be a regular curve. Let $\tilde{\mathbf{\gamma}}: (\tilde{a},\tilde{b}) \to \mathbb{R}^3$ be a reparametrization of $\mathbf{\gamma}$, that is,

$$\mathbf{\gamma}(t) = \tilde{\mathbf{\gamma}}(\phi(t)), \quad \forall t \in (a, b)$$

for some diffeomorphism $\phi:(a,b)\to(\tilde{a},\tilde{b})$. We have

1. If $\tilde{\mathbf{y}}$ is unit-speed, there exists $c \in \mathbb{R}$ such that

$$\phi(t) = \pm s(t) + c, \quad \forall t \in (a, b). \tag{1.1}$$

2. If ϕ is given by (1.1), then $\tilde{\gamma}$ is unit-speed.

Definition 1.13: Arc-length reparametrization

Let γ be regular. The **arc-length reparametrization** of γ is the curve

$$\tilde{\mathbf{v}} = \mathbf{v} \circ s^{-1}$$

with s^{-1} inverse of the arc-length function of γ .

Example 1.14: Arc-length reparametrization of Circle

Question. The circle of radius R > 0 is

$$\gamma(t) = (x_0 + R\cos(t), y_0 + \sin(t), 0).$$

Reparametrize γ by arc-length.

Solution. The arc-length of γ starting from $t_0 = 0$ is

$$s(t) = \int_0^t \|\dot{\boldsymbol{\gamma}}(u)\| \ du = Rt$$

The inverse is t(s) = s/R. The arc-length reparametrization of γ is

$$\tilde{\mathbf{\gamma}}(s) = \mathbf{\gamma}(t(s)) = \left(x_0 + R\cos\left(\frac{s}{R}\right), y_0 + \sin\left(\frac{s}{R}\right), 0\right).$$

Example 1.15

Question. Consider the curve

$$\gamma(t) = (5\cos(t), 5\sin(t), 12t).$$

- 1. Prove that γ is regular.
- 2. Reparametrize γ by arc-length.

Solution.

1. γ is regular because

$$\dot{\mathbf{y}}(t) = (-5\sin(t), 5\cos(t), 12)$$

 $\|\dot{\mathbf{y}}(t)\| = 13 \neq 0$

2. The arc-length of γ starting from $t_0 = 0$ is

$$s(t) = \int_0^t \|\dot{\boldsymbol{\gamma}}(u)\| \ du = 13t \ .$$

The inverse is t(s) = s/13. The arc-length reparametrization of γ is

$$\tilde{\mathbf{\gamma}}(s) = \mathbf{\gamma}(t(s)) = \left(5\cos\left(\frac{s}{13}\right), 5\sin\left(\frac{s}{13}\right), \frac{12}{13}s\right).$$

1.1 Curvature

Definition 1.16: Curvature of unit-speed curve

The **curvature** of a unit-speed curve γ is

$$\kappa(t) = \|\ddot{\mathbf{y}}(t)\|.$$

Example 1.17: Curvature of the Circle

Question. Compute the curvature of the circle of radius R > 0

$$\gamma(t) = \left(x_0 + R\cos\left(\frac{t}{R}\right), y_0 + \sin\left(\frac{t}{R}\right), 0\right).$$

Solution. First, check that γ is unit-speed:

$$\dot{\mathbf{y}}(t) = \left(-\sin\left(\frac{t}{R}\right), \cos\left(\frac{t}{R}\right), 0\right)$$
$$\|\dot{\mathbf{y}}(t)\| = 1$$

Now, compute second derivative and curvature

$$\ddot{\mathbf{y}}(t) = \left(-\frac{1}{R}\cos\left(\frac{t}{R}\right), -\frac{1}{R}\sin\left(\frac{t}{R}\right), 0\right)$$
$$\kappa(t) = \|\ddot{\mathbf{y}}(t)\| = \frac{1}{R}$$

Definition 1.18: Curvature of regular curve

Let $\gamma:(a,b)\to\mathbb{R}^3$ be a regular curve and $\tilde{\gamma}$ be a unit-speed reparametrization of γ , with

$$\mathbf{\gamma} = \tilde{\mathbf{\gamma}} \circ \phi, \quad \phi : (a, b) \to (\tilde{a}, \tilde{b}).$$

Let $\tilde{\kappa}: (\tilde{a}, \tilde{b}) \to \mathbb{R}$ be the curvature of $\tilde{\gamma}$. The **curvature** of γ is

$$\kappa(t) = \tilde{\kappa}(\phi(t))$$
.

Remark 1.19: Computing curvature of regular γ

- 1. Compute the arc-length s(t) of γ and its inverse t(s).
- 2. Compute the arc-length reparametrization

$$\tilde{\mathbf{y}}(s) = \mathbf{y}(t(s))$$
.

3. Compute the curvature of $\tilde{\mathbf{y}}$

$$\tilde{\kappa}(s) = \|\ddot{\tilde{\boldsymbol{\gamma}}}(s)\|$$
.

4. The curvature of γ is

$$\kappa(t) = \tilde{\kappa}(s(t))$$
.

Definition 1.20: Hyperbolic functions

The **hyperbolic functions** are defined by:

$$\cosh(t) = \frac{e^t + e^{-t}}{2}, \quad \sinh(t) = \frac{e^t - e^{-t}}{2}$$
$$\tanh(t) = \frac{\sinh(t)}{\cosh(t)}, \quad \coth(t) = \frac{\cosh(t)}{\sinh(t)}$$
$$\operatorname{sech}(t) = \frac{1}{\cosh(t)}, \quad \operatorname{csch}(t) = \frac{1}{\sinh(t)}$$

Key identities involving hyperbolic functions:

$$\cosh^{2}(t) - \sinh^{2}(t) = 1, \quad \operatorname{sech}^{2}(t) - \tanh^{2}(t) = 1$$

$$\frac{d}{dt} \left[\sinh(t) \right] = \cosh(t), \quad \frac{d}{dt} \left[\cosh(t) \right] = \sinh(t)$$

$$\frac{d}{dt} \left[\tanh(t) \right] = 1 - \tanh^{2}(t) = -\operatorname{csch}^{2}(t)$$

Example 1.21: Curvature of the Catenary

Question. Consider the Catenary curve

$$\mathbf{y}(t) = (t, \cosh(t)), \quad t \in \mathbb{R}.$$

1. Prove that γ is regular.

- 2. Compute the arc-length reparametrization of γ .
- 3. Compute the curvature of $\tilde{\gamma}$.
- 4. Compute the curvature of γ .

Solution.

1. γ is regular because

$$\dot{\mathbf{y}}(t) = (1, \sinh(t))$$
$$\|\dot{\mathbf{y}}\| = \sqrt{1 + \sinh^2(t)} = \cosh(t) \ge 1$$

2. The arc-length of γ starting at $t_0 = 0$ is

$$s(t) = \int_0^t \|\dot{\mathbf{y}}(u)\| \ du = \int_0^t \cosh(u) \ du = \sinh(t)$$

where we used that sinh(0) = 0. Moreover,

$$s = \sinh(t)$$
 \iff $s = \frac{e^t - e^{-t}}{2}$ \iff $e^{2t} - 2se^t - 1 = 0$

Substitute $y = e^t$ to obtain

$$e^{2t} - 2se^t - 1 = 0 \qquad \Longleftrightarrow \qquad y^2 - 2sy - 1 = 0$$

$$\iff \qquad y_+ = s \pm \sqrt{1 + s^2}.$$

Notice that

$$y_{+} = s + \sqrt{1 + s^{2}} \ge s + \sqrt{s^{2}} = s + |s| \ge 0$$

by definition of absolute value. As we were looking for y in the form $y = e^t$, we only consider the positive solution y_+ . Then,

$$e^{t} = y_{+} = s + \sqrt{1 + s^{2}}$$

 $t(s) = \log(s + \sqrt{1 + s^{2}})$

The arc-length reparametrization of γ is

$$\tilde{\boldsymbol{\gamma}}(s) = \boldsymbol{\gamma}(t(s)) = \left(\log\left(s + \sqrt{1+s^2}\right), \sqrt{1+s^2}\right)$$

3. Compute the curvature of $\tilde{\gamma}$

$$\dot{\tilde{\mathbf{y}}}(s) = \left(\frac{1}{\sqrt{1+s^2}}, \frac{s}{\sqrt{1+s^2}}\right)$$

$$\ddot{\tilde{\mathbf{y}}}(s) = \left(-\frac{s}{(1+s^2)^{3/2}}, \frac{1}{(1+s^2)^{3/2}}\right)$$

$$\|\ddot{\tilde{\mathbf{y}}}(s)\|^2 = \frac{1}{(1+s^2)^2}$$

$$\tilde{\kappa}(s) = \|\ddot{\tilde{\mathbf{y}}}(s)\| = \frac{1}{1+s^2}$$

4. Recalling that $s(t) = \sinh(t)$, the curvature of γ is

$$\kappa(t) = \tilde{\kappa}(s(t)) = \frac{1}{1 + \sinh^2(t)} = \frac{1}{\cosh^2(t)}.$$

Definition 1.22: Vector product

The **vector product** of two vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$ is

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix} \mathbf{e}_1 - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix} \mathbf{e}_2 + \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \mathbf{e}_3$$
(1.2)

with \mathbf{e}_1 , \mathbf{e}_2 , \mathbf{e}_3 vectors of the standard basis of \mathbb{R}^3 . Formula (1.2) is usually denoted by

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_2 \\ v_1 & v_2 & v_3 \end{vmatrix}.$$

Theorem 1.23: Geometric Properties of vector product

Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$ be linearly independent. Then

- $\mathbf{u} \times \mathbf{v}$ is orthogonal to the plane spanned by \mathbf{u}, \mathbf{v}
- $\|\mathbf{u} \times \mathbf{v}\|$ equals the area of the parallelogram with sides \mathbf{u}, \mathbf{v}
- The following triple is a positive (right-handed) basis of \mathbb{R}^3

$$(\mathbf{u}, \mathbf{v}, \mathbf{u} \times \mathbf{v})$$
.

Theorem 1.24

For all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^3$ it holds:

$$(\mathbf{u} \times \mathbf{v}) \times \mathbf{w} = (\mathbf{u} \cdot \mathbf{w})\mathbf{v} - (\mathbf{v} \cdot \mathbf{w})\mathbf{u}$$

Theorem 1.25

Suppose $\gamma, \eta : (a, b) \to \mathbb{R}^3$ are parametrized curves. Then, the curve $\gamma \times \eta$ is smooth, and

$$\frac{d}{dt}(\boldsymbol{\gamma} \times \boldsymbol{\eta}) = \dot{\boldsymbol{\gamma}} \times \boldsymbol{\eta} + \boldsymbol{\gamma} \times \dot{\boldsymbol{\eta}}.$$

Theorem 1.26: Curvature formula

Let $\mathbf{\gamma}: (a, b) \to \mathbb{R}^3$ be a regular curve. The curvature of $\mathbf{\gamma}$ is

$$\kappa(t) = \frac{\|\dot{\boldsymbol{\gamma}}(t) \times \ddot{\boldsymbol{\gamma}}(t)\|}{\|\dot{\boldsymbol{\gamma}}(t)\|^3}.$$

Example 1.27: Curvature of the Helix

Question. Consider the Helix of radius R > 0 and rise H,

$$\gamma(t) = (R\cos(t), R\sin(t), Ht).$$

- 1. Prove that γ is regular.
- 2. Compute the curvature of γ .

Solution.

1. γ is regular because

$$\dot{\mathbf{y}}(t) = (-R\sin(t), R\cos(t), H)$$
$$\|\dot{\mathbf{y}}(t)\| = \sqrt{R^2 + H^2} \ge R > 0$$

2. Compute the curvature using the formula:

$$\ddot{\mathbf{y}}(t) = (-R\cos(t), -R\sin(t), 0)$$

$$\dot{\mathbf{y}} \times \ddot{\mathbf{y}} = (RH\sin(t), -RH\cos(t), R^2)$$

$$\|\dot{\mathbf{y}} \times \ddot{\mathbf{y}}\| = R\sqrt{R^2 + H^2}$$

$$\kappa(t) = \frac{\|\dot{\mathbf{y}}(t) \times \ddot{\mathbf{y}}(t)\|}{\|\dot{\mathbf{y}}(t)\|^3} = \frac{R}{R^2 + H^2}$$

Example 1.28

Question. Define the curve

$$\boldsymbol{\gamma}(t) = \left(\frac{8}{5}\cos(t), 1 - 2\sin(t), \frac{6}{5}\cos(t)\right).$$

- 1. Prove that γ is regular.
- 2. Compute the curvature of γ .

Solution.

1. γ is regular because

$$\dot{\mathbf{y}}(t) = \left(-\frac{8}{5}\sin(t), -2\cos(t), -\frac{6}{5}\sin(t)\right)$$
$$\|\dot{\mathbf{y}}(t)\| = 2 \neq 0$$

2. Compute the curvature using the formula:

$$\begin{split} \ddot{\pmb{\gamma}}(t) &= \left(-\frac{8}{5} \cos(t), 2 \sin(t), -\frac{6}{5} \cos(t) \right) \\ \dot{\pmb{\gamma}}(t) \times \ddot{\pmb{\gamma}}(t) &= \left(-\frac{12}{5}, 0, \frac{16}{5} \right) \\ \| \dot{\pmb{\gamma}}(t) \times \ddot{\pmb{\gamma}}(t) \| &= 4 \\ \kappa(t) &= \frac{1}{2} \,. \end{split}$$

Example 1.29: Different curves, same curvature

Question Let γ be a circle

$$\gamma(t) = (2\cos(t), 2\sin(t), 0),$$

and η be a helix of radius S > 0 and rise H > 0

$$\eta(t) = (S\cos(t), S\sin(t), Ht).$$

Find *S* and *H* such that γ and η have the same curvature. **Solution.** Curvatures of γ and η were already computed:

$$\kappa^{\gamma}=rac{1}{2}\,,\quad \kappa^{\eta}=rac{S}{S^2+H^2}\,.$$

Imposing that $\kappa^{\gamma} = \kappa^{\eta}$, we get

$$\frac{1}{2} = \frac{S}{S^2 + H^2} \quad \Longrightarrow \quad H^2 = 2S - S^2.$$

Choosing S = 1 and H = 1 yields $\kappa^{\gamma} = \kappa^{\eta}$.

1.2 Frenet frame and torsion

Definition 1.30: Frenet frame of unit-speed curve

Let $\gamma:(a,b)\to\mathbb{R}^3$ be a unit-speed curve with $\kappa\neq 0$.

1. The **tangent vector** to γ is

$$\mathbf{t}(t) = \dot{\mathbf{y}}(t).$$

2. The **principal normal vector** to γ is

$$\mathbf{n}(t) = \frac{1}{\kappa(t)} \ddot{\mathbf{y}}(t).$$

3. The **binormal vector** to γ is

$$\mathbf{b}(t) = \dot{\mathbf{y}}(t) \times \mathbf{n}(t).$$

4. The **Frenet frame** of γ is the triple

$$\{t, n, b\}.$$

Theorem 1.31

Let $\mathbf{\gamma}:\,(a,b)\to\mathbb{R}^3$ be a unit-speed curve with $\kappa\neq 0$. The Frenet frame

$$\{\mathbf{t}(t), \mathbf{n}(t), \mathbf{b}(t)\}$$

is a positive orthonomal basis of \mathbb{R}^3 for each $t \in (a, b)$.

Definition 1.32: Torsion of unit-speed curve with $\kappa \neq 0$

Let $\gamma : (a, b) \to \mathbb{R}^3$ be a unit-speed curve with $\kappa \neq 0$. The **torsion** of γ is the unique scalar $\tau(t)$ such that

$$\dot{\mathbf{b}}(t) = -\tau(t)\mathbf{n}(t).$$

In particular,

$$\tau(t) = -\dot{\mathbf{b}}(t) \cdot \mathbf{n}(t).$$

Definition 1.33: Torsion of regular curve with $\kappa \neq 0$

Let $\gamma: (a, b) \to \mathbb{R}^3$ be a regular curve with $\kappa \neq 0$. Let $\tilde{\gamma}$ be a unit-speed reparametrization of γ with

$$\mathbf{\gamma} = \tilde{\mathbf{\gamma}} \circ \phi, \quad \phi : (a, b) \to (\tilde{a}, \tilde{b}).$$

Let $\tilde{\tau}: (\tilde{a}, \tilde{b}) \to \mathbb{R}$ be the torsion of $\tilde{\gamma}$. The **torsion** of γ is

$$\tau(t) = \tilde{\tau}(\phi(t)).$$

Example 1.34: Frenet frame of Helix

Question. Consider the Helix of radius R > 0 and rise H

$$\gamma(t) = (R\cos(t), R\sin(t), tH), \quad t \in \mathbb{R}.$$

- 1. Compute the arc-length reparametrization $\tilde{\gamma}$ of γ .
- 2. Compute Frenet frame, curvature and torsion of $\tilde{\gamma}$.
- 3. Compute curvature and torsion γ .

Solution.

1. The arc-length of γ starting at $t_0 = 0$ is

$$\dot{\mathbf{y}}(t) = (-R\sin(t), R\cos(t), H)$$
$$\|\dot{\mathbf{y}}\| = \rho, \qquad \rho := \sqrt{R^2 + H^2}$$
$$s(t) = \int_0^t \|\dot{\mathbf{y}}(u)\| \ du = \rho t \ ,$$

which is invertible, with inverse

$$t(s) = \frac{s}{\rho}.$$

The arc-length reparametrization $\tilde{\mathbf{y}}$ of \mathbf{y} is

$$\tilde{\mathbf{\gamma}}(s) = \mathbf{\gamma}(t(s)) = \left(R\cos\left(\frac{s}{\rho}\right), R\sin\left(\frac{s}{\rho}\right), \frac{Hs}{\rho}\right).$$

2. Compute the tangent vector to $\tilde{\boldsymbol{\gamma}}$ and its derivative

$$\tilde{\mathbf{t}}(s) = \dot{\tilde{\mathbf{y}}} = \frac{1}{\rho} \left(-R \sin\left(\frac{s}{\rho}\right), R \cos\left(\frac{s}{\rho}\right), H \right)$$

$$\dot{\tilde{\mathbf{t}}}(s) = \frac{R}{\rho^2} \left(-\cos\left(\frac{s}{\rho}\right), -\sin\left(\frac{s}{\rho}\right), 0 \right)$$

The curvature of $\tilde{\gamma}$ is

$$\tilde{\kappa}(s) = \|\ddot{\tilde{\mathbf{y}}}(s)\| = \|\dot{\tilde{\mathbf{t}}}(s)\| = \frac{R}{R^2 + H^2}.$$

The principal normal vector and binormal are

$$\widetilde{\mathbf{n}}(s) = \frac{\widetilde{\mathbf{t}}}{\widetilde{\kappa}} = \left(-\cos\left(\frac{s}{\rho}\right), -\sin\left(\frac{s}{\rho}\right), 0\right)$$

$$\widetilde{\mathbf{b}}(s) = \widetilde{\mathbf{t}} \times \widetilde{\mathbf{n}} = \frac{1}{\rho} \left(H\sin\left(\frac{s}{\rho}\right), -H\cos\left(\frac{s}{\rho}\right), R\right).$$

We are left to compute the torsion of $\tilde{\gamma}$:

$$\dot{\tilde{\mathbf{b}}}(s) = \frac{H}{\rho^2} \left(\cos \left(\frac{s}{\rho} \right), \sin \left(\frac{s}{\rho} \right), 0 \right)$$

$$\dot{\tilde{\mathbf{b}}}(s) \cdot \tilde{\mathbf{n}}(s) = -\frac{H}{\rho^2}$$

$$\tilde{\tau}(s) = -\dot{\tilde{\mathbf{b}}}(s) \cdot \tilde{\mathbf{n}}(s) = \frac{H}{\rho^2} = \frac{H}{R^2 + H^2}$$

3. The curvature and torsion of γ are

$$\kappa(t) = \tilde{\kappa}(s(t)) = \frac{R}{R^2 + H^2}$$
$$\tau(t) = \tilde{\tau}(s(t)) = \frac{H}{R^2 + H^2}$$

Theorem 1.35: Torsion formula

Let $\gamma:(a,b)\to\mathbb{R}^3$ be a regular curve with $\kappa\neq 0$. The torsion of γ is

$$\tau(t) = \frac{(\dot{\mathbf{y}}(t) \times \ddot{\mathbf{y}}(t)) \cdot \ddot{\mathbf{y}}(t)}{\|\dot{\mathbf{y}}(t) \times \ddot{\mathbf{y}}(t)\|^2}.$$

Example 1.36: Torsion of Helix with formula

Question. Consider the Helix of radius R > 0 and rise H > 0

$$\gamma(t) = (R\cos(t), R\sin(t), Ht), \quad t \in \mathbb{R}.$$

- 1. Prove that γ is regular with non-vanishing curvature
- 2. Compute the torsion of γ .

Solution.

1. γ is regular with non-vanishing curvature, since

$$\|\dot{\mathbf{y}}(t)\| = \sqrt{R^2 + H^2} \ge R > 0,$$

$$\kappa = \frac{R}{R^2 + H^2} > 0.$$

2. We compute the torsion using the formula:

$$\dot{\mathbf{y}}(t) = (-R\sin(t), R\cos(t), H)$$

$$\ddot{\mathbf{y}}(t) = (-R\cos(t), -R\sin(t), 0)$$

$$\ddot{\mathbf{y}}(t) = (R\sin(t), -R\cos(t), 0)$$

$$\dot{\mathbf{y}} \times \ddot{\mathbf{y}} = (RH\sin(t), -RH\cos(t), R^2)$$

$$\|\dot{\mathbf{y}} \times \ddot{\mathbf{y}}\| = R\sqrt{R^2 + H^2}$$

$$(\dot{\mathbf{y}} \times \ddot{\mathbf{y}}) \cdot \ddot{\mathbf{y}} = R^2H$$

$$\tau(t) = \frac{(\dot{\mathbf{y}} \times \ddot{\mathbf{y}}) \cdot \ddot{\mathbf{y}}}{\|\dot{\mathbf{y}} \times \ddot{\mathbf{y}}\|^2} = \frac{H}{R^2 + H^2}$$

Example 1.37

Question. Compute the torsion of the curve

$$\boldsymbol{\gamma}(t) = \left(\frac{8}{5}\cos(t), 1 - 2\sin(t), \frac{6}{5}\cos(t)\right).$$

Solution. Resuming calculations from Example 1.28,

$$\ddot{\mathbf{y}}(t) = \left(\frac{8}{5}\sin(t), 2\cos(t), \frac{6}{5}\sin(t)\right)$$
$$(\dot{\mathbf{y}}(t) \times \ddot{\mathbf{y}}(t)) \cdot \ddot{\mathbf{y}}(t) = \frac{96}{25}\sin(t) - \frac{96}{25}\sin(t) = 0$$
$$\tau(t) = \frac{(\dot{\mathbf{y}} \times \ddot{\mathbf{y}}) \cdot \ddot{\mathbf{y}}}{\|\dot{\mathbf{y}} \times \ddot{\mathbf{y}}\|^2} = 0$$

Theorem 1.38: General Frenet frame formulas

The Frenet frame of a regular curve γ is

$$\mathbf{t} = \frac{\dot{\mathbf{y}}}{\|\dot{\mathbf{y}}\|}, \qquad \mathbf{b} = \frac{\dot{\mathbf{y}} \times \ddot{\mathbf{y}}}{\|\dot{\mathbf{y}} \times \ddot{\mathbf{y}}\|},$$
$$\mathbf{n} = \mathbf{b} \times \mathbf{t} = \frac{(\dot{\mathbf{y}} \times \ddot{\mathbf{y}}) \times \dot{\mathbf{y}}}{\|\dot{\mathbf{y}} \times \ddot{\mathbf{y}}\| \|\dot{\mathbf{y}}\|}.$$

Example 1.39: Twisted cubic

Question. Let $\mathbf{y}: \mathbb{R} \to \mathbb{R}^3$ be the *twisted cubic*

$$\mathbf{\gamma}(t) = (t, t^2, t^3).$$

- 1. Is γ regular/unit-speed? Justify your answer.
- 2. Compute the curvature and torsion of γ .
- 3. Compute the Frenet frame of γ .

Solution.

1. γ is regular, but not-unit speed, because

$$\dot{\mathbf{y}}(t) = (1, 2t, 3t^2)$$
$$\|\dot{\mathbf{y}}(t)\| = \sqrt{1 + 4t^2 + 9t^4} \ge 1$$
$$\|\dot{\mathbf{y}}(1)\| = \sqrt{14} \ne 1$$

2. Compute curvature and torsion using the formulas:

$$\ddot{\mathbf{y}}(t) = (0, 2, 6t)$$

$$\ddot{\mathbf{y}}(t) = (0, 0, 6)$$

$$\dot{\mathbf{y}}(t) \times \ddot{\mathbf{y}}(t) = (6t^2, -6t, 2)$$

$$\|\dot{\mathbf{y}}(t) \times \ddot{\mathbf{y}}(t)\| = 2\sqrt{1 + 9t^2 + 9t^4}$$

$$(\dot{\mathbf{y}} \times \ddot{\mathbf{y}}) \cdot \ddot{\mathbf{y}} = 12$$

$$\kappa(t) = \frac{\|\dot{\mathbf{y}} \times \ddot{\mathbf{y}}\|}{\|\dot{\mathbf{y}}\|^3} = \frac{2\sqrt{1 + 9t^2 + 9t^4}}{(1 + 4t^2 + 9t^4)^{3/2}}$$

$$\tau(t) = \frac{(\dot{\mathbf{y}} \times \ddot{\mathbf{y}}) \cdot \ddot{\mathbf{y}}}{\|\dot{\mathbf{y}} \times \ddot{\mathbf{y}}\|^2} = \frac{3}{1 + 9t^2 + 9t^4}.$$

3. By the Frenet frame formulas and the above calculations,

$$\mathbf{t} = \frac{\dot{\mathbf{y}}}{\|\dot{\mathbf{y}}\|} = \frac{1}{\sqrt{1 + 4t^2 + 9t^4}} (1, 2t, 3t^2)$$

$$\mathbf{b} = \frac{\dot{\mathbf{y}} \times \ddot{\mathbf{y}}}{\|\dot{\mathbf{y}} \times \ddot{\mathbf{y}}\|} = \frac{1}{\sqrt{1 + 9t^2 + 9t^4}} (3t^2, -3t, 1)$$

$$\mathbf{n} = \mathbf{b} \times \mathbf{t} = \frac{(-9t^3 - 2t, 1 - 9t^4, 6t^3 + 3t)}{\sqrt{1 + 9t^2 + 9t^4}} \sqrt{1 + 4t^2 + 9t^4}$$

1.3 Frenet-Serret equations

Theorem 1.40: Frenet frame is right-handed

Let γ : $(a,b) \to \mathbb{R}^3$ be a unit-speed curve with $\kappa \neq 0$. Then

$$\mathbf{b} = \mathbf{t} \times \mathbf{n}$$
, $\mathbf{n} = \mathbf{b} \times \mathbf{t}$, $\mathbf{t} = \mathbf{n} \times \mathbf{b}$.

Theorem 1.41: Frenet-Serret equations

Let $\gamma:(a,b)\to\mathbb{R}^3$ be unit-speed with $\kappa\neq 0$. The Frenet frame of γ solves the **Frenet-Serret** equations

$$\dot{\mathbf{t}} = \kappa \mathbf{n}$$
, $\dot{\mathbf{n}} = -\kappa \mathbf{t} + \tau \mathbf{b}$, $\dot{\mathbf{b}} = -\tau \mathbf{n}$.

Definition 1.42: Rigid motion

A **rigid motion** of \mathbb{R}^3 is a map $M: \mathbb{R}^3 \to \mathbb{R}^3$ of the form

$$M(\mathbf{v}) = R\mathbf{v} + \mathbf{p}, \qquad \mathbf{v} \in \mathbb{R}^3,$$

where $\mathbf{p} \in \mathbb{R}^3$, and $R \in \mathbb{R}^{3 \times 3}$ rotation matrix,

$$R \in SO(3) := \{ R \in \mathbb{R}^{3 \times 3} : R^T R = I, \det(R) = 1 \}.$$

Theorem 1.43: Fundamental Theorem of Space Curves

Let $\kappa, \tau : (a, b) \to \mathbb{R}$ be smooth, with $\kappa > 0$. Then:

- 1. There exists a unit-speed curve $\gamma:(a,b)\to\mathbb{R}^3$ with curvature $\kappa(t)$ and torsion $\tau(t)$.
- 2. Suppose that $\tilde{\pmb{\gamma}}:(a,b)\to\mathbb{R}^3$ is a unit-speed curve whose curvature $\tilde{\kappa}$ and torsion $\tilde{\tau}$ satisfy

$$\tilde{\kappa}(t) = \kappa(t), \quad \tilde{\tau}(t) = \tau(t), \quad \forall t \in (a, b).$$

There exists a rigid motion $M: \mathbb{R}^3 \to \mathbb{R}^3$ such that

$$\tilde{\mathbf{\gamma}}(t) = M(\mathbf{\gamma}(t)), \quad \forall t \in (a, b).$$

Example 1.44: Application of FTSC

Question. Consider the curve

$$\gamma(t) = \left(\sqrt{3}t - \sin(t), \sqrt{3}\sin(t) + t, 2\cos(t)\right).$$

- 1. Calculate the curvature and torsion of γ .
- 2. The helix of radius *R* and rise *H* is parametrized by

$$\eta(t) = (R\cos(t), R\sin(t), Ht).$$

Recall that η has curvature and torsion

$$\kappa^{\eta} = \frac{R}{R^2 + H^2}, \qquad \tau^{\eta} = \frac{H}{R^2 + H^2}.$$

Prove that there exist a rigid motion $M: \mathbb{R}^3 \to \mathbb{R}^3$ such that

$$\mathbf{\gamma}(t) = M(\mathbf{\eta}(t)), \quad \forall t \in \mathbb{R}.$$
(1.3)

Solution.

1. Compute curvature and torsion with the formulas

$$\dot{\mathbf{y}}(t) = \left(\sqrt{3} - \cos(t), \sqrt{3}\cos(t) + 1, -2\sin(t)\right)$$

$$\ddot{\mathbf{y}}(t) = \left(\sin(t), -\sqrt{3}\sin(t), -2\cos(t)\right)$$

$$\ddot{\mathbf{y}}(t) = \left(\cos(t), -\sqrt{3}\cos(t), 2\sin(t)\right)$$

$$\dot{\mathbf{y}}(t) \times \ddot{\mathbf{y}}(t) = \left(-2\left(\sqrt{3} + \cos(t)\right), 2\left(\sqrt{3}\cos(t) - 1\right), -4\sin(t)\right)$$

$$\|\dot{\mathbf{y}}(t) \times \ddot{\mathbf{y}}(t)\|^2 = 32$$

$$\|\dot{\mathbf{y}}(t)\|^2 = 8$$

$$(\dot{\mathbf{y}}(t) \times \ddot{\mathbf{y}}(t)) \cdot \ddot{\mathbf{y}}(t) = -8$$

$$\kappa(t) = \frac{\|\dot{\mathbf{y}} \times \ddot{\mathbf{y}}\|}{\|\dot{\mathbf{y}}\|^3} = \frac{\sqrt{32}}{8^{\frac{3}{2}}} = \frac{1}{4}$$

$$\tau(t) = \frac{(\dot{\mathbf{y}} \times \ddot{\mathbf{y}}) \cdot \ddot{\mathbf{y}}}{\|\dot{\mathbf{y}} \times \ddot{\mathbf{y}}\|^2} = \frac{-8}{32} = -\frac{1}{4}.$$

2. Equating $\kappa = \kappa^{\eta}$ and $\tau = \tau^{\eta}$, we obtain

$$\frac{R}{R^2 + H^2} = \frac{1}{4}, \qquad \frac{H}{R^2 + H^2} = -\frac{1}{4}$$

Rearranging both equalities we get

$$R^2 + H^2 = 4R$$
, $R^2 + H^2 = -4H$,

from which we find the relation R = -H. Substituting into $R^2 + H^2 = -4H$, we get

$$H = -2$$
, $R = -H = 2$.

For these values of R and H we have $\kappa = \kappa^{\eta}$ and $\tau = \tau^{\eta}$. By the FTSC, there exists a rigid motion $M: \mathbb{R}^3 \to \mathbb{R}^3$ satisfying (1.3).

Theorem 1.45: Curves contained in a plane

For $\gamma:(a,b)\to\mathbb{R}^3$ regular with $\kappa\neq 0$, they are equivalent

1. The torsion of γ satisfies

$$\tau(t) = 0$$
, $\forall t \in (a, b)$.

2. The image of γ is contained in a plane: There exists a vector $\mathbf{P} \in \mathbb{R}^3$ and a scalar $d \in \mathbb{R}$ such that

$$\mathbf{\gamma}(t) \cdot \mathbf{P} = d$$
, $\forall t \in (a, b)$.

Theorem 1.46: Curves contained in a plane

Let $\gamma: (a,b) \to \mathbb{R}^3$ be regular, with $\kappa \neq 0$ and $\tau = 0$. Then, the binormal **b** is a constant vector, and γ is contained in the plane of equation

$$(\mathbf{x} - \mathbf{\gamma}(t_0)) \cdot \mathbf{b} = 0.$$

Example 1.47

Question. Consider the curve

$$\gamma(t) = (t, 2t, t^4), \quad t > 0.$$

- 1. Prove that γ is regular.
- 2. Compute the curvature and torsion of γ .
- 3. Prove that γ is contained in a plane. Compute the equation of such plane.

Solution.

- 1. γ is regular because $\dot{\gamma}(t) = (1, 2, 4t^3) \neq \mathbf{0}$.
- 2. Compute curvature and torsion with the formulas

$$\begin{aligned} \|\dot{\mathbf{y}}(t)\| &= \sqrt{5 + 16t^4} \\ \ddot{\mathbf{y}}(t) &= 12 (0, 0, t^2) \\ \ddot{\mathbf{y}}(t) &= 24 (0, 0, t) \\ \dot{\mathbf{y}}(t) \times \ddot{\mathbf{y}}(t) &= 12 (2t^2, -t^2, 0) \\ \|\dot{\mathbf{y}}(t) \times \ddot{\mathbf{y}}(t)\| &= 12\sqrt{5} t^2 \\ (\dot{\mathbf{y}}(t) \times \ddot{\mathbf{y}}(t)) \cdot \ddot{\mathbf{y}}(t) &= 0 \\ \kappa(t) &= \frac{\dot{\mathbf{y}} \times \ddot{\mathbf{y}}}{\|\dot{\mathbf{y}}\|^3} &= \frac{12\sqrt{5} t^2}{\sqrt{5 + 16t^4}} \\ \tau(t) &= \frac{(\dot{\mathbf{y}} \times \ddot{\mathbf{y}}) \cdot \ddot{\mathbf{y}}}{\|\dot{\mathbf{y}} \times \ddot{\mathbf{y}}\|} &= 0 \end{aligned}$$

3. γ lies in a plane because $\tau = 0$. The binormal is

$$\mathbf{b} = \frac{\dot{\mathbf{y}} \times \ddot{\mathbf{y}}}{\|\dot{\mathbf{y}} \times \ddot{\mathbf{y}}\|} = \frac{1}{\sqrt{5}} (2, -1, 0).$$

At $t_0 = 0$ we have $\gamma(0) = 0$. The equation of the plane containing γ is then

$$\frac{2}{\sqrt{5}}x - \frac{1}{\sqrt{5}}y = 0 \quad \Longrightarrow \quad 2x - y = 0.$$

Theorem 1.48: Curves contained in a circle

Let $\mathbf{\gamma}: (a,b) \to \mathbb{R}^3$ be a unit-speed curve. They are equivalent:

- 1. γ is contained in a circle of radius R > 0.
- 2. There exists R > 0 such that

$$\kappa(t) = \frac{1}{R}, \quad \tau(t) = 0, \quad \forall t \in (a, b).$$

Example 1.49

Question. Consider the curve

$$\boldsymbol{\gamma}(t) = \left(\frac{4}{5}\cos(t), 1 - \sin(t), -\frac{3}{5}\cos(t)\right).$$

- 1. Prove that γ is unit-speed.
- 2. Compute Frenet frame, curvature and torsion of γ .
- 3. Prove that γ is part of a circle.

Solution.

11

1. γ is unit-speed because

$$\dot{\mathbf{y}}(t) = \left(-\frac{4}{5}\sin(t), -\cos(t), \frac{3}{5}\sin(t)\right)$$
$$\|\dot{\mathbf{y}}(t)\|^2 = \frac{16}{25}\sin^2(t) + \cos^2(t) + \frac{9}{25}\sin^2(t) = 1$$

2. As γ is unit-speed, the tangent vector is $\mathbf{t}(t) = \dot{\gamma}(t)$. The curvature, normal, binormal and torsion are

$$\dot{\mathbf{t}}(t) = \left(-\frac{4}{5}\cos(t), \sin(t), \frac{3}{5}\cos(t)\right)$$

$$\kappa(t) = \|\dot{\mathbf{t}}(t)\| = \frac{16}{25}\cos^2(t) + \sin^2(t) + \frac{9}{25}\cos^2(t) = 1$$

$$\mathbf{n}(t) = \frac{1}{\kappa(t)}\ddot{\mathbf{y}}(t) = \left(-\frac{4}{5}\cos(t), \sin(t), \frac{3}{5}\cos(t)\right)$$

$$\mathbf{b}(t) = \dot{\mathbf{y}}(t) \times \mathbf{n}(t) = \left(-\frac{3}{5}, 0, -\frac{4}{5}\right)$$

$$\dot{\mathbf{b}} = \mathbf{0}$$

$$\tau = -\dot{\mathbf{b}} \cdot \mathbf{n} = 0$$

3. The curvature of γ is constant and the torsion is zero. Therefore γ is contained in a circle of radius

$$R = \frac{1}{\kappa} = 1.$$

2 Topology

3 Surfaces

3.1 Preliminaries

Definition 3.1: Topology of \mathbb{R}^n

The Euclidean norm on \mathbb{R}^n is denoted by

$$\|\mathbf{x}\| := \sqrt{\sum_{i=1}^{n} x_i^2}, \quad \mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n.$$

The Euclidean norm induces the distance

$$d(\mathbf{x}, \mathbf{y}) := \|\mathbf{x} - \mathbf{y}\| = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}.$$

In particular, we have:

- 1. The pair (\mathbb{R}^n, d) is a metric space.
- 2. The topology induced by the metric d is called the Euclidean topology, denoted by \mathcal{T} .
- 3. A set $U \subseteq \mathbb{R}^n$ is **open** if for all $\mathbf{x} \in U$ there exists $\varepsilon > 0$ such that $B_{\varepsilon}(\mathbf{x}) \subseteq U$, where

$$B_{\varepsilon}(\mathbf{x}) := \{ \mathbf{y} \in \mathbb{R}^n : \|\mathbf{x} - \mathbf{y}\| < \varepsilon \}$$

is the open ball of radius $\varepsilon > 0$ and centered at **x**. In this case we write $U \in \mathcal{T}$, with \mathcal{T} the Euclidean topology in \mathbb{R}^n .

4. A set $V \subseteq \mathbb{R}^n$ is **closed** if $V^c := \mathbb{R}^n \setminus U$ is open.

Definition 3.2: Subspace Topology

Given a subset $A \subseteq \mathbb{R}^n$ the **subspace topology** on A is the family of sets

$$\mathcal{T}_A := \{ U \subseteq A : \exists W \in \mathcal{T} \text{ s.t. } U = A \cap W \}.$$

If $U \in \mathcal{T}_A$, we say that U is open in A.

Definition 3.3: Continuous Function

Let $f: U \subseteq \mathbb{R}^n \to \mathbb{R}^m$ with U open. We say that f is **continuous** at $\mathbf{x} \in U$ if $\forall \varepsilon > 0$, $\exists \delta > 0$ such that

$$\|\mathbf{x} - \mathbf{y}\| < \delta \implies \|f(\mathbf{x}) - f(\mathbf{y})\| < \varepsilon.$$

f is continuous in U if it is continuous for all $\mathbf{x} \in U$.

Theorem 3.4: Continuity: Topological definition

Let $f: U \subseteq \mathbb{R}^n \to V \subseteq \mathbb{R}^m$, with U, V open. We have that f is continuous if and only if $f^{-1}(A)$ is open in U, for all A open in V.

Definition 3.5: Homeomorphism

Let $f: U \subseteq \mathbb{R}^n \to V \subseteq \mathbb{R}^m$ with U, V open. We say that f is a **homeomorphism** if:

- 1. *f* is continuous;
- 2. There exists continuous inverse $f^{-1}: V \to U$.

Definition 3.6: Differentiable Function

Let $f: U \subseteq \mathbb{R}^n \to \mathbb{R}^m$ with U open. We say that f is **differentiable** at $\mathbf{x} \in U$ if there exists a linear map $d_{\mathbf{x}} f: \mathbb{R}^n \to \mathbb{R}^m$ such that

$$d_{\mathbf{x}}f(\mathbf{h}) = \lim_{\varepsilon \to 0} \frac{f(\mathbf{x} + \varepsilon \mathbf{h}) - f(\mathbf{x})}{\varepsilon},$$

for all $\mathbf{h} \in \mathbb{R}^n$, where the limit is taken in \mathbb{R}^m . The linear map $d_{\mathbf{x}}f$ is called the **differential** of f at \mathbf{x} .

Definition 3.7: Partial Derivative

Let $f: U \subseteq \mathbb{R}^n \to \mathbb{R}^m$, U open, f differentiable. The **partial derivative** of f at $\mathbf{x} \in U$ in direction \mathbf{e}_i is given by

$$\frac{\partial f}{\partial x_i}(\mathbf{x}) := d_{\mathbf{x}} f(\mathbf{e}_i) = \lim_{\varepsilon \to 0} \frac{f(\mathbf{x} + \varepsilon \mathbf{e}_i) - f(\mathbf{x})}{\varepsilon}.$$

Definition 3.8: Jacobian Matrix

Let $f: U \subset \mathbb{R}^n \to \mathbb{R}^m$ be differentiable. The **Jacobian** of f at \mathbf{x} is the $m \times n$ matrix of partial derivatives:

$$Jf(\mathbf{x}) := \left(\frac{\partial f_i}{\partial x_j}(\mathbf{x})\right)_{i,j} \in \mathbb{R}^{m \times n}.$$

If m = n then $Jf \in \mathbb{R}^{n \times n}$ is a square matrix and we can compute its determinant, denoted by

$$\det(Jf)$$
.

Proposition 3.9: Matrix representation of $d_{\mathbf{x}}f$

Let $f:U\subseteq\mathbb{R}^n\to\mathbb{R}^m$ be differentiable. The matrix of the linear map $d_{\mathbf{x}}f:\mathbb{R}^n\to\mathbb{R}^m$ with respect to the standard basis is given by the Jacobian matrix $Jf(\mathbf{x})$.

Definition 3.10: Smooth Function

Let $f: U \subseteq \mathbb{R}^n \to \mathbb{R}^m$ with U open. We say that f is smooth if the derivatives

$$\frac{\partial^{|\alpha|} f}{d\mathbf{x}^{\alpha}} := \frac{\partial^{\alpha_1}}{\partial x_1^{\alpha_1}} \cdots \frac{\partial^{\alpha_n}}{\partial x_n^{\alpha_n}} f$$

exist for each multi-index $\alpha \in \mathbb{N}^n$. Note that in this case all the derivatives of f are automatically continuous.

Notation 3.11: Gradient and partial derivatives

Let $f:U\subseteq \mathbb{R}^n\to \mathbb{R}$ be smooth. We denote the partial derivatives by

$$\partial_{x_i} f = f_{x_i} = \frac{\partial f}{\partial x_i}$$

$$\partial_{x_i x_j} f = f_{x_i x_j} = \frac{\partial^2 f}{\partial x_i \partial x_j}$$

$$\partial_{x_i x_j x_k} f = f_{x_i x_j x_k} = \frac{\partial^3 f}{\partial x_i \partial x_j \partial x_k}$$

For $f:\,U\subseteq\mathbb{R}^n\to\mathbb{R}$ smooth we denote the **gradient** by

$$\nabla f(\mathbf{x}) = \left(f_{x_1}(\mathbf{x}), \dots, f_{x_n}(\mathbf{x}) \right).$$

Note that $\nabla f(\mathbf{x})$ coincides with $J f(\mathbf{x})$.

Definition 3.12: Diffeomorphism

Let $f: U \to V$, with $U, V \subseteq \mathbb{R}^n$ open. We say that f is a **diffeomorphism** between U and V if:

- 1. f is smooth,
- 2. There exists the inverse $f^{-1}: V \to U$,
- 3. f^{-1} is smooth.

Definition 3.13: Local diffeomorphism

A function $f: \mathbb{R}^n \to \mathbb{R}^n$ is a **local diffeomorphism** at $\mathbf{x}_0 \in \mathbb{R}^n$ if:

- 1. There exists an open set $U \subseteq \mathbb{R}^n$ such that $\mathbf{x}_0 \in U$,
- 2. There exists an open set $V \subseteq \mathbb{R}^n$ such that $f(\mathbf{x}_0) \in V$,
- 3. $f: U \to V$ is a diffeomorphism.

Theorem 3.14

If $f: U \to V$ is a diffeomorphism, then f is a local diffeomorphism at each $\mathbf{x}_0 \in U$.

Theorem 3.15

Let $f: U \to \mathbb{R}^n$ with $U \subseteq \mathbb{R}^n$ open. Suppose f is a local diffeomorphism at $\mathbf{x}_0 \in U$. Then

$$\det J f(\mathbf{x}_0) \neq 0$$
.

Theorem 3.16: Inverse Function Theorem

Let $f: U \to \mathbb{R}^n$ with $U \subseteq \mathbb{R}^n$ open, f smooth. Assume

$$\det Jf(\mathbf{x}_0) \neq 0,$$

for some $\mathbf{x}_0 \in U$. Then:

- 1. There exists an open set $U_0 \subseteq U$ such that $\mathbf{x}_0 \in U_0$,
- 2. There exists an open set V such that $f(\mathbf{x}_0) \in V$,
- 3. $f: U_0 \to V$ is a diffeomorphism.

Example 3.17

Question. Consider the function $f: \mathbb{R}^2 \to \mathbb{R}^2$

$$f(x, y) = (e^x \cos(y), e^x \sin(y)).$$

- 1. Prove that *f* is a local diffeomorphism at each point.
- 2. Prove that f is not a diffeomorphism.

Solution.

1. We compute

$$Jf(x,y) = e^{x} \begin{pmatrix} \cos(y) & \sin(y) \\ -\sin(y) & \cos(y) \end{pmatrix}$$
$$\det Jf(x,y) = e^{2x} \neq 0$$

By the Inverse Function Theorem, f is a local diffeomorphism at each point $(x, y) \in \mathbb{R}^2$.

2. *f* is not injective, since

$$f(x, y) = f(x, y + 2n\pi), \quad \forall (x, y) \in \mathbb{R}^2, n \in \mathbb{N}.$$

Therefore f is not invertible from \mathbb{R}^2 into \mathbb{R}^2 . This implies f cannot be a diffeomorphism of \mathbb{R}^2 into \mathbb{R}^2 .

3.2 Regular surfaces

Definition 3.18: Surface

Let $\mathcal{S} \subseteq \mathbb{R}^3$ be a connected set. We say that \mathcal{S} is a **surface** if for every point $\mathbf{p} \in \mathcal{S}$ there exist

- 1. An open set $U \subseteq \mathbb{R}^2$,
- 2. A smooth map $\sigma: U \to \sigma(U) \subseteq \mathcal{S}$ such that
 - $\mathbf{p} \in \boldsymbol{\sigma}(U)$,
 - $\sigma(U)$ is open in \mathcal{S}
 - σ is a homeomorphism between U and $\sigma(U)$

The homeomorphism σ is called a **surface chart** at **p**.

Definition 3.19: Atlas of a surface

Let S be a surface. Assume given a collection of charts

$$\mathscr{A} = \{ \boldsymbol{\sigma}_i \}_{i \in I}, \qquad \boldsymbol{\sigma}_i : U_i \to \boldsymbol{\sigma}(U_i) \subseteq \mathscr{S}.$$

The family \mathscr{A} is an **atlas** of \mathscr{S} if

$$\mathcal{S} = \bigcup_{i \in I} \boldsymbol{\sigma}_i(U_i) \,.$$

Definition 3.20: Regular Chart

Let $U \subseteq \mathbb{R}^2$ be open. A map

$$\sigma = \sigma(u, v) : U \to \mathbb{R}^3$$

is called a **regular chart** if the partial derivatives

$$\sigma_u(u,v) = \frac{d\sigma}{du}(u,v), \quad \sigma_v(u,v) = \frac{d\sigma}{dv}(u,v)$$

are linearly independent vectors of \mathbb{R}^3 for all $(u, v) \in U$.

Definition 3.21: Regular surface

Let \mathcal{S} be a surface. We say that:

- \mathscr{A} is a **regular atlas** if any σ in \mathscr{A} is regular.
- S is a **regular surface** if it admits a regular atlas.

Theorem 3.22

Let $\sigma: U \to \mathbb{R}^3$ with $U \subseteq \mathbb{R}^2$ open. They are equivalent

- 1. σ is a regular chart.
- 2. $d_{\mathbf{x}}\boldsymbol{\sigma}: \mathbb{R}^2 \to \mathbb{R}^3$ is injective for all $\mathbf{x} \in U$.
- 3. The Jacobian matrix $J\boldsymbol{\sigma}$ has rank 2 for all $(u, v) \in U$.
- 4. $\sigma_u \times \sigma_v \neq 0$ for all $(u, v) \in U$.

Example 3.23: 2D Plane in \mathbb{R}^3

Question. Let $\mathbf{a}, \mathbf{p}, \mathbf{q} \in \mathbb{R}^3$, with \mathbf{p} and \mathbf{q} orthonormal. The plane

$$\boldsymbol{\pi} = \{ \mathbf{a} + u\mathbf{p} + v\mathbf{q} : u, v \in \mathbb{R} \}$$

is a surface with atlas $\mathcal{A} = \{\sigma\}$, where

$$\sigma: \mathbb{R}^2 \to \pi, \quad \sigma(u, v) := \mathbf{a} + u\mathbf{p} + v\mathbf{q}.$$

Prove that π is a regular surface.

Solution. We have $\sigma_u = \mathbf{p}, \sigma_v = \mathbf{q}$. Since \mathbf{p} and \mathbf{q} are orthonormal, we conclude that σ_{ν} and σ_{ν} are linearly independent and σ is regular. π is a regular surface because σ is a regular chart.

Example 3.24: Unit cylinder

Question. Consider the infinite unit cylinder

$$\mathcal{S} = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1\}.$$

S is a surface with atlas $\mathcal{A} = \{ \boldsymbol{\sigma}_1, \boldsymbol{\sigma}_2 \}$, where

$$\sigma: \mathbb{R}^2 \to \mathbb{R}^3, \qquad \sigma(u, v) = (\cos(u), \sin(u), v),$$

$$\sigma_1 := \sigma|_{U_1}$$
, $\sigma_2 := \sigma|_{U_2}$

$$\begin{split} \boldsymbol{\sigma}_1 &:= \boldsymbol{\sigma}|_{U_1}\,, & \qquad \boldsymbol{\sigma}_2 &:= \boldsymbol{\sigma}|_{U_2}\,, \\ U_1 &:= \left(0, \frac{3\pi}{2}\right) \times \mathbb{R}\,, & \qquad U_2 &:= \left(\pi, \frac{5\pi}{2}\right) \times \mathbb{R}\,. \end{split}$$

Prove that S is a regular surface.

Solution. The map σ is regular because

$$\sigma_u = (-\sin(u), \cos(u), 0)$$

$$\sigma_{y} = (0, 0, 1)$$

$$\sigma_u \times \sigma_v = (\cos(u), \sin(u), 0)$$

$$\|\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v}\| = 1 \neq 0$$
.

Therefore σ_1 and σ_2 are regular charts, being restrictions of σ . Thus, $\mathscr A$ is a regular atlas, making $\mathscr S$ a regular surface.

Example 3.25: Graph of a function

Question. Let $U \subseteq \mathbb{R}^2$ be open and $f: U \to \mathbb{R}$ be smooth. The graph of f is the set

$$\Gamma_f := \{(u,v,f(u,v)) : \ (u,v) \in U\}\,.$$

 Γ_f is surface with at las given by $\mathcal{A} = \{ \pmb{\sigma} \}$, where

$$\boldsymbol{\sigma}:\,U\to\Gamma_f\,,\quad \boldsymbol{\sigma}(u,v):=(u,v,f(u,v))\,.$$

Prove that Γ_f is a regular surface.

Solution. The Jacobian matrix of σ is

$$J\boldsymbol{\sigma}(u,v) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ f_u & f_v \end{pmatrix}.$$

The first minor of $J\sigma$ is the identity matrix, which has determinant 1, and is hence invertible. Therefore $J\sigma$ has rank 2, showing that σ_u and σ_v are linearly independent. Hence σ is regular. This implies $\mathscr A$ is a regular atlas, and $\mathscr S$ is a regular surface.

Definition 3.26: Spherical coordinates

A point $\mathbf{p} = (x, y, z) \neq \mathbf{0}$ is represented in **spherical co-ordinates** by

$$x = \rho \cos(\theta) \cos(\varphi)$$
$$y = \rho \sin(\theta) \cos(\varphi)$$
$$z = \rho \sin(\varphi)$$

where

$$\rho := \sqrt{x^2 + y^2 + z^2} \,, \quad \theta \in [-\pi, \pi] \,, \quad \varphi \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \,.$$

Example 3.27: Unit sphere in spherical coordinates

Question. Consider the unit sphere in \mathbb{R}^3

$$\mathbb{S}^2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}.$$

Define the set

$$U = \left\{ (\theta, \varphi) \in \mathbb{R}^2 \ : \ \theta \in (-\pi, \pi), \, \varphi \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \right\} \, ,$$

and the chart $\sigma: U \to \mathbb{R}^3$ by

$$\boldsymbol{\sigma}(\theta, \varphi) := (\cos(\theta)\cos(\varphi), \sin(\theta)\cos(\varphi), \sin(\varphi)).$$

Prove that σ is regular.

Solution. We compute

$$\sigma_{\theta} = (-\sin(\theta)\cos(\varphi),\cos(\theta)\cos(\varphi),0)$$

$$\sigma_{\varphi} = (-\cos(\theta)\sin(\varphi), -\sin(\theta)\sin(\varphi), \cos(\varphi)).$$

Since $(\theta, \varphi) \in U$, we have $\varphi \in (-\pi/2, \pi/2)$. Therefore, the last component $\cos(\varphi)$ of σ_{φ} is non-zero. As the last component of σ_{θ} is 0, we conclude that σ_{θ} and σ_{φ} are linearly independent for all $(\theta, \varphi) \in U$. Therefore σ is regular. Alternatively, compute

$$\boldsymbol{\sigma}_{\theta} \times \boldsymbol{\sigma}_{\varphi} = (\cos(\theta)\cos^{2}(\varphi), \sin(\theta)\cos^{2}(\varphi), \cos(\varphi)\sin(\varphi))$$
$$\|\boldsymbol{\sigma}_{\theta} \times \boldsymbol{\sigma}_{\varphi}\| = |\cos(\varphi)| = \cos(\varphi) \neq 0,$$

since $\varphi \in (-\pi/2, \pi/2)$, showing that σ is regular.

Example 3.28

Question. Prove that the following chart is not regular

$$\boldsymbol{\sigma}(u,v)=(u,v^2,v^3).$$

Solution. We have

$$\sigma_u = (1, 0, 0)$$
 $\sigma_v = (0, 2v, 3v^2)$
 $\sigma_v(u, 0) = (0, 0, 0)$,

showing that σ_u and σ_v are linearly dependent along the line

$$L = \{(u, 0) : u \in \mathbb{R}\}.$$

Hence σ is not a regular chart.

3.3 Reparametrizations

Definition 3.29: Reparametrization

Suppose that $U, \widetilde{U} \subseteq \mathbb{R}^2$ are open sets and

$$\sigma: U \to \mathbb{R}^3, \quad \tilde{\sigma}: \widetilde{U} \to \mathbb{R}^3,$$

are surface charts. We say that $\tilde{\sigma}$ is a **reparametrization** of σ if there exists a diffeomorphism $\Phi: \widetilde{U} \to U$ such that

$$\tilde{\boldsymbol{\sigma}} = \boldsymbol{\sigma} \circ \Phi.$$

We call Φ a **reparametrization map**.

Theorem 3.30

Let $U,\widetilde{U}\subseteq\mathbb{R}^2$ be open and $\boldsymbol{\sigma}\colon U\to\mathbb{R}^3$ be regular. Suppose given a diffeomorphism $\Phi\colon\widetilde{U}\to U$. The reparametrization

$$\tilde{\boldsymbol{\sigma}}: \widetilde{U} \to \mathbb{R}^3, \qquad \tilde{\boldsymbol{\sigma}} = \boldsymbol{\sigma} \circ \Phi$$

is a regular chart, and it holds

$$\tilde{\boldsymbol{\sigma}}_{\tilde{u}} \times \tilde{\boldsymbol{\sigma}}_{\tilde{v}} = \det J\Phi \left(\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v}\right)$$
.

Definition 3.31: Transition map

Let S be a regular surface and

$$\sigma: U \to \mathcal{S}, \quad \widetilde{\sigma}: \widetilde{U} \to \mathcal{S}$$

be regular charts. Suppose the images of σ and $\tilde{\sigma}$ overlap, that is,

$$I := \boldsymbol{\sigma}(U) \cap \widetilde{\boldsymbol{\sigma}}(\widetilde{U}) \neq \emptyset.$$

The set I is open in \mathcal{S} , being intersection of open sets. Define the sets

$$V := \boldsymbol{\sigma}^{-1}(I) \subseteq U, \quad \widetilde{V} := \widetilde{\boldsymbol{\sigma}}^{-1}(I) \subseteq \widetilde{U}.$$

Note that V and \widetilde{V} are open, by continuity of σ and $\widetilde{\sigma}$. Since σ and $\widetilde{\sigma}$ are homeomorphisms, by construction

$$\sigma(V) = \tilde{\sigma}(\widetilde{V}) = I$$
.

Therefore, they are well defined the restrictions

$$\sigma|_V: V \to I, \quad \tilde{\sigma}|_{\widetilde{V}}: \widetilde{V} \to I.$$

The maps $\sigma|_V$ and $\tilde{\sigma}|_{\widetilde{V}}$ are homeomorphisms, being restrictions of homeomorphisms. The composition homeomorphism

$$\Phi: \ \widetilde{V} \to V \,, \quad \Phi:= \boldsymbol{\sigma}^{-1} \circ \widetilde{\boldsymbol{\sigma}}$$

is called a **transition map** from σ to $\tilde{\sigma}$.

Let S_1 and S_2 be regular surfaces and $f: S_1 \to S_2$ a map.

1. f is smooth at $\mathbf{p} \in \mathcal{S}_1$, if \exists charts $\boldsymbol{\sigma}_i : U_i \to \mathcal{S}_i$ for i = 1, 2 such that

$$\mathbf{p} \in \sigma_1(U_1), \quad f(\mathbf{p}) \in \sigma_2(U_2)$$

and

$$(\boldsymbol{\sigma}_2^{-1} \circ f \circ \boldsymbol{\sigma}_1) : U_1 \to U_2$$

is smooth.

2. f is *smooth*, if it is smooth for each $\mathbf{p} \in \mathcal{S}_1$.

Theorem 3.35

If $f: \mathcal{S}_1 \to \mathcal{S}_2$ and $g: \mathcal{S}_2 \to \mathcal{S}_3$ are smooth maps between surfaces, then the composition

$$(g \circ f) : \mathcal{S}_1 \to \mathcal{S}_3$$

is smooth.

Theorem 3.32

Let $\mathcal S$ be a regular surface. The transition maps between regular charts are diffeomorphisms.

Theorem 3.33

Let S be a regular surface and

$$\sigma: U \to \mathcal{S}, \quad \tilde{\sigma}: \widetilde{U} \to \mathcal{S}$$

be regular charts. Suppose the images of σ and $\tilde{\sigma}$ overlap, that is,

$$I := \boldsymbol{\sigma}(U) \cap \tilde{\boldsymbol{\sigma}}(\widetilde{U}) \neq \emptyset$$
.

Define the open sets

$$V := \boldsymbol{\sigma}^{-1}(I) \subseteq U, \quad \widetilde{V} := \widetilde{\boldsymbol{\sigma}}^{-1}(I) \subseteq \widetilde{U},$$

and the transition map

$$\Phi: \widetilde{V} \to V$$
, $\Phi:= \boldsymbol{\sigma}^{-1} \circ \tilde{\boldsymbol{\sigma}}$.

Then σ and $\tilde{\sigma}$ are reparametrization of each other, with reparametrization map given by Φ , that is,

$$\tilde{\boldsymbol{\sigma}} = \boldsymbol{\sigma} \circ \Phi$$
, $\boldsymbol{\sigma} = \tilde{\boldsymbol{\sigma}} \circ \Phi^{-1}$.

Theorem 3.36

Let $\mathcal S$ be a regular surface, and $\pmb \sigma:U\to\mathcal S$ a regular chart. The inverse

$$\sigma^{-1}: \sigma(U) \to U \subseteq \mathbb{R}^2$$
,

is a differentiable function.

Theorem 3.37

Let S_1 and S_2 be regular surfaces. Make the following assumptions:

1. $V \subseteq \mathbb{R}^3$ is an open set such that

$$\mathcal{S}_1 \subseteq V$$
,

2. $f: V \to \mathbb{R}^3$ is a differentiable function such that

$$f(\mathcal{S}_1) \subseteq \mathcal{S}_2$$
.

Then the restriction

$$f|_{\mathcal{S}_1}:\,\mathcal{S}_1\to\mathcal{S}_2$$

is a differentiable map between surfaces.

Definition 3.38: Diffeomorphism of surfaces

Let S_1 and S_2 be regular surfaces.

- 1. A map $f: \mathcal{S}_1 \to \mathcal{S}_2$ is a **diffeomorphism**, if f is smooth and admits smooth inverse.
- 2. We say that S_1 and S_2 are **diffeomorphic**, if there exists $f: S_1 \to S_2$ diffeomorphism.

Theorem 3.39

Let $\mathcal S$ and $\widetilde{\mathcal S}$ be regular surfaces, $f:\mathcal S\to\widetilde{\mathcal S}$ diffeomorphism. If $\pmb\sigma:U\to\mathcal S$ is a regular chart for $\mathcal S$ at $\pmb p$, then

$$\tilde{\boldsymbol{\sigma}}: U \to \widetilde{\mathcal{S}}, \qquad \tilde{\boldsymbol{\sigma}}:= f \circ \boldsymbol{\sigma},$$

is a regular chart for $\widetilde{\mathcal{S}}$ at $f(\mathbf{p})$.

Definition 3.40: Local diffeomorphism

Let S_1 and S_2 be regular surfaces, and

$$f: \mathcal{S}_1 \to \mathcal{S}_2$$
,

be a differentiable map.

- 1. f is a **local diffeomorphism** at $\mathbf{p} \in \mathcal{S}_1$ if:
 - There exists An open set $V \subseteq S_1$ with $\mathbf{p} \in V$;
 - $f(V) \subseteq S_2$ is open;
 - $f: V \to f(V)$ is a diffeomorphism between surfaces.
- 2. f is a **local diffeomorphism** in S_1 , if it is a local diffeomorphism at each $\mathbf{p} \in S_1$.
- 3. S_1 is **locally diffeomorphic** to S_2 , if for each $\mathbf{p} \in S_1$ there exists f local diffeomorphism at \mathbf{p} .

3.5 Tangent plane

Definition 3.41: Tangent vectors and tangent plane

Let S be a surface and $\mathbf{p} \in S$.

1. We say that $\mathbf{v} \in \mathbb{R}^3$ is a **tangent vector** to \mathcal{S} at \mathbf{p} , if there exists a smooth curve

$$\gamma: (-\varepsilon, \varepsilon) \to \mathbb{R}^3$$
,

such that

$$\gamma(-\varepsilon,\varepsilon) \subseteq \mathcal{S}$$
, $\gamma(0) = \mathbf{p}$, $\mathbf{v} = \dot{\gamma}(0)$,

where $\varepsilon > 0$.

2. The **tangent plane** of S at **p** is the set

$$T_{\mathbf{p}}\mathcal{S} := \{ \mathbf{v} \in \mathbb{R}^3 : \mathbf{v} \text{ tangent vector of } \mathcal{S} \text{ at } \mathbf{p} \}.$$

Theorem 3.42: Curves with values on surfaces

Let \mathcal{S} be a regular surface, $\mathbf{p} \in \mathcal{S}$, and $\boldsymbol{\sigma} : U \to \mathcal{S}$ be a chart at \mathbf{p} . Denote

$$(u_0, v_0) = \boldsymbol{\sigma}^{-1}(\mathbf{p}).$$

Suppose $\mathbf{\gamma}: (-\varepsilon, \varepsilon) \to \mathbb{R}^3$ is a smooth curve such that

$$\gamma(t) \in \mathcal{S}$$
, $\forall t \in (-\varepsilon, \varepsilon)$.

Then, there exist smooth functions

$$u, v: (\varepsilon_0, \varepsilon_0) \to \mathbb{R}, \quad u(0) = u_0, \quad v(0) = v_0,$$

such that

$$\gamma(t) = \sigma(u(t), v(t)), \quad \forall t \in (-\varepsilon, \varepsilon).$$

Theorem 3.43: Characterization of Tangent Plane

Let $\mathcal S$ be a regular surface and $\mathbf p \in \mathcal S$. Let $\boldsymbol \sigma: U \to \mathcal S$ be a chart at $\mathbf p$. Denote

$$(u_0, v_0) = \boldsymbol{\sigma}^{-1}(\mathbf{p}).$$

The tangent plane satisfies

$$T_{\mathbf{p}}\mathcal{S} = \operatorname{span}\{\boldsymbol{\sigma}_{u}, \boldsymbol{\sigma}_{v}\} := \{\lambda \boldsymbol{\sigma}_{u} + \mu \boldsymbol{\sigma}_{v} : \lambda, \mu \in \mathbb{R}\},$$

where σ_u and σ_v are evaluated at (u_0, v_0) .

Theorem 3.44: Equation of tangent plane

Let $\mathcal S$ be a regular surface and $\mathbf p \in \mathcal S$. Let $\boldsymbol \sigma: U \to \mathcal S$ be a regular chart at $\mathbf p$. Set

$$(u_0, v_0) := \boldsymbol{\sigma}^{-1}(\mathbf{p}), \quad \mathbf{n} := \boldsymbol{\sigma}_u(u_0, v_0) \times \boldsymbol{\sigma}_v(u_0, v_0).$$

They hold:

18

1. The equation of the tangent plane $T_{\mathbf{p}}\mathcal{S}$ is given by

$$\mathbf{x} \cdot \mathbf{n} = 0$$
, $\forall \mathbf{x} \in \mathbb{R}^3$.

2. The equation of the affine tangent plane $\mathbf{p} + T_{\mathbf{p}} \mathcal{S}$ is given by

$$(\mathbf{x} - \mathbf{p}) \cdot \mathbf{n} = 0, \quad \forall \, \mathbf{x} \in \mathbb{R}^3.$$

Example 3.45

Question. Consider the surface $\mathcal S$ defined by the chart

$$\boldsymbol{\sigma}(u,v) := \left(\sqrt{1-v}\cos(u), \sqrt{1-v}\sin(u), v\right),\,$$

for $u \in (0, 2\pi), v < 1$.

- 1. Prove that σ parametrizes a paraboloid.
- 2. Prove that σ is regular.
- 3. Compute the vector $\mathbf{n} = \boldsymbol{\sigma}_u \times \boldsymbol{\sigma}_v$
- 4. Consider the point

$$\mathbf{p} = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0\right).$$

Give a basis for $T_{\mathbf{p}}\mathcal{S}$ at the point

5. Compute the cartesian equation of $T_{\mathbf{p}}\mathcal{S}$. Give your answer in the form

$$ax + by + cz = d$$
,

for suitable $a, b, c, d \in \mathbb{R}$.

Solution.

1. Denote the coordinates of σ by

$$\sigma(u, v) = (x, y, z)$$
.

We have

$$x^{2} + y^{2} = \left(\sqrt{1 - v}\cos(u)\right)^{2} + \left(\sqrt{1 - v}\cos(u)\right)^{2}$$
$$= 1 - v$$
$$= 1 - z,$$

showing that σ parametrizes the paraboloid

$$z = -x^2 - v^2 + 1$$
.

2. Proof that σ is regular:

$$\sigma_u = \left(-\sqrt{1-\nu}\sin(u), \sqrt{1-\nu}\cos(u), 0\right)$$

$$\sigma_v = \left(-\frac{1}{2}(1-\nu)^{-1/2}\cos(u), -\frac{1}{2}(1-\nu)^{-1/2}\sin(u), 1\right)$$

The last component of σ_u is 0, and the last component of σ_v is 1, thus σ_u and σ_v are linearly independent. Hence σ is regular.

3. We compute:

$$\mathbf{n} = \boldsymbol{\sigma}_u \times \boldsymbol{\sigma}_v$$

$$= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -\sqrt{1-\nu}\sin(u) & \sqrt{1-\nu}\cos(u) & 0 \\ -\frac{1}{2}(1-\nu)^{-1/2}\cos(u) & -\frac{1}{2}(1-\nu)^{-1/2}\sin(u) & 1 \end{vmatrix}$$
$$= \left(\sqrt{1-\nu}\cos(u), \sqrt{1-\nu}\sin(u), \frac{1}{2}\right)$$

4. Notice that

$$\sigma\left(\frac{\pi}{4},0\right)=\mathbf{p}$$
.

A basis for $T_{\mathbf{p}}\mathcal{S}$ is given by the vectors

$$\boldsymbol{\sigma}_{u}\left(\frac{\pi}{4},0\right)=\left(-\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2},0\right)$$
,

$$\sigma_{\mathcal{V}}\left(\frac{\pi}{4},0\right) = \left(-\frac{\sqrt{2}}{4},-\frac{\sqrt{2}}{4},1\right).$$

5. Using the calculation for **n** in Point 3, we find

$$\mathbf{n}\left(\frac{\pi}{4},0\right) = \left(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2},-\frac{1}{2}\right).$$

The equation for $T_{\mathbf{p}}\mathcal{S}$ is therefore

$$\mathbf{x} \cdot \mathbf{n} = 0$$
, $\forall \mathbf{x} \in \mathbb{R}^3$.

The above reads

$$\frac{\sqrt{2}}{2}x + \frac{\sqrt{2}}{2}y - \frac{1}{2}z = 0,$$

which implies

$$\sqrt{2}x + \sqrt{2}y - z = 0,$$

3.6 Unit normal and orientability

Definition 3.46: Standard unit normal of a chart

Let \mathcal{S} be a regular surface and $\sigma: U \to \mathbb{R}^3$ a regular chart. The **standard unit normal** of σ is the smooth function

$$\mathbf{N}_{\sigma}: U \to \mathbb{R}^3, \quad \mathbf{N}_{\sigma} = \frac{\boldsymbol{\sigma}_u \times \boldsymbol{\sigma}_v}{\|\boldsymbol{\sigma}_u \times \boldsymbol{\sigma}_v\|}.$$

Example 3.47: Standard unit normal of the plane

Let $\mathbf{a},\mathbf{p},\mathbf{q}\in\mathbb{R}^3$, with \mathbf{p} and \mathbf{q} linearly independent. Consider the plane charted by

$$\sigma(u, v) := \mathbf{a} + \mathbf{p}u + \mathbf{q}v, \quad \forall (u, v) \in \mathbb{R}^2.$$

Compute the standard unit normal to σ . *Solution.* We have

$$\sigma_u = \mathbf{p}, \quad \sigma_v = \mathbf{q},$$

and therefore

$$\mathbf{N}_{\boldsymbol{\sigma}} = \frac{\mathbf{p} \times \mathbf{q}}{\|\mathbf{p} \times \mathbf{q}\|}.$$

Definition 3.48: Unit normal of a surface

Let \mathcal{S} be a regular surface. A **standard unit normal** to \mathcal{S} is a smooth function $\mathbf{N}: \mathcal{S} \to \mathbb{R}^3$ such that

$$\mathbf{N}(\mathbf{p}) \perp T_{\mathbf{p}} \mathcal{S}, \quad \|\mathbf{N}(\mathbf{p})\| = 1, \quad \forall \, \mathbf{p} \in \mathcal{S}.$$

Definition 3.49: Orientable surface

Let $\mathcal S$ be a regular surface. We say that $\mathcal S$ is **orientable** if there exists a standard unit normal $\mathbf N: \mathcal S \to \mathbb R^3$ and an atlas $\mathscr A$ such that

$$\mathbf{N} \circ \boldsymbol{\sigma} = \mathbf{N}_{\boldsymbol{\sigma}}, \quad \forall \boldsymbol{\sigma} \in \mathcal{A}.$$

Example 3.50

Question. Let \mathcal{S} be the surface described by the chart

$$\sigma(u,v) = (e^u, u + v, v), \quad u, v \in \mathbb{R}.$$

- 1. Prove that σ is regular.
- 2. Compute the standard unit normal to σ .

Solution.

1. Compute the following quantities:

$$\boldsymbol{\sigma}_{u} = (e^{u}, 1, 0)$$

$$\boldsymbol{\sigma}_{v} = (0, 1, 1)$$

$$\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ e^{u} & 1 & 0 \\ 0 & 1 & 1 \end{vmatrix}$$

$$= (1, -e^{u}, e^{u})$$

Since

$$\|\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v}\| = \sqrt{1 + 2e^{2u}} \ge 1$$
,

we see that $\sigma_u \times \sigma_v \neq \mathbf{0}$, showing that σ is regular.

2. The standard unit normal to σ is

$$\mathbf{N} = \frac{\boldsymbol{\sigma}_u \times \boldsymbol{\sigma}_v}{\|\boldsymbol{\sigma}_u \times \boldsymbol{\sigma}_v\|} = \frac{1}{\sqrt{1 + 2e^{2u}}} (1, -e^u, e^u) .$$

3.7 Differential of smooth functions

Definition 3.51: Differential of smooth function

Let $\mathcal S$ and $\widetilde{\mathcal S}$ be regular surfaces and $f:\ \mathcal S\to\widetilde{\mathcal S}$ a smooth

map. The differential $d_{\mathbf{p}}f$ of f at \mathbf{p} is defined as the map

$$d_{\mathbf{p}}f: T_{\mathbf{p}}\mathcal{S} \to T_{f(\mathbf{p})}\widetilde{\mathcal{S}}, \quad d_{\mathbf{p}}f(\mathbf{v}) := (f \circ \boldsymbol{\gamma})'(0),$$

where $\gamma: (-\varepsilon, \varepsilon) \to \mathcal{S}$ is any smooth curve such that

$$\gamma(0) = \mathbf{p}, \qquad \dot{\gamma}(0) = \mathbf{v}.$$

Example 3.52: Computing $d_{\mathbf{p}}f$ using the definition

Question. Consider the portion of the plane $\{z = 0\}$,

$$\mathcal{S} = \left\{ (x, y, 0) \in \mathbb{R}^3 : x \in (0, 2\pi), y \in \mathbb{R} \right\},\$$

and the unit cylinder

$$\widetilde{S} = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1\}.$$

Define the map

$$f: S \to \widetilde{\mathcal{S}}, \quad f(x, y, 0) := (\cos x, \sin x, y).$$

- 1. Compute $T_{\mathbf{p}}\mathcal{S}$.
- 2. Prove that the differential $d_{\mathbf{p}}f$ at

$$\mathbf{p} = (u_0, v_0, 0), \quad \mathbf{v} = (\lambda, \mu, 0),$$

is given by

$$d_{\mathbf{p}}f(\mathbf{v}) = (-\lambda \sin(u_0), \lambda \cos(u_0), \mu).$$

Solution.

1. A chart for S is given by

$$\boldsymbol{\sigma}(u,v)=(u,v,0).$$

Therefore

$$\sigma_u = (1, 0, 0), \qquad \sigma_v = (0, 1, 0),$$

from which

$$T_{\mathbf{p}}\mathcal{S} = \operatorname{span}\{\boldsymbol{\sigma}_{u}, \boldsymbol{\sigma}_{v}\}$$

$$= \operatorname{span}\{(1, 0, 0), (0, 1, 0)\}$$

$$= \{(\lambda, \mu, 0) : \lambda, \mu \in \mathbb{R}\}.$$

2. From the answer to Point 1, we see that

$$\mathbf{v}=(\lambda,\mu,0)\in T_{\mathbf{p}}\mathcal{S}\;.$$

Define the curve $\gamma: (-\varepsilon, \varepsilon) \to \mathcal{S}$ by setting

$$\gamma(t) := \sigma(u_0 + t\lambda, v_0 + t\mu) = (u_0 + t\lambda, v_0 + t\mu, 0).$$

Clearly,

$$\mathbf{\gamma}(0) = \mathbf{p}$$
, $\dot{\mathbf{\gamma}}(0) = \mathbf{v} = (\lambda, \mu, 0)$.

We have

$$(f \circ \boldsymbol{\gamma})(t) = f(u_0 + t\lambda, v_0 + t\mu, 0)$$

$$= (\cos(u_0 + t\lambda), \sin(u_0 + t\lambda), v_0 + t\mu),$$

$$(f \circ \boldsymbol{\gamma})'(t) = (-\lambda \sin(u_0 + t\lambda), \lambda \cos(u_0 + t\lambda), \mu).$$

Therefore, the differential is given by

$$d_{\mathbf{p}}f(\mathbf{v}) = (f \circ \boldsymbol{\gamma})'(0) = (-\lambda \sin(u_0), \lambda \cos(u_0), \mu).$$

Theorem 3.53

Let $\mathcal S$ and $\widetilde{\mathcal S}$ be regular surfaces and $f:\mathcal S\to\widetilde{\mathcal S}$ a smooth map. Denote the differential of f by

$$d_{\mathbf{p}}f: T_{\mathbf{p}}\mathcal{S} \to T_{f(\mathbf{p})}\widetilde{\mathcal{S}}.$$

We have:

- 1. $d_{\mathbf{p}}f(\mathbf{v})$ depends only on f, \mathbf{p} , \mathbf{v} (and not on $\boldsymbol{\gamma}$).
- 2. $d_{\mathbf{p}}f$ is linear, that is,

$$d_{\mathbf{p}}f(\lambda \mathbf{v} + \mu \mathbf{w}) = \lambda d_{\mathbf{p}}f(\mathbf{v}) + \mu d_{\mathbf{p}}f(\mathbf{w}),$$

for all $\mathbf{v}, \mathbf{w} \in T_{\mathbf{p}} \mathcal{S}$ and $\lambda, \mu \in \mathbb{R}$.

3. Let

$$\sigma: U \to \mathcal{S}, \quad \tilde{\sigma}: \widetilde{U} \to \widetilde{\mathcal{S}},$$

be regular charts at ${\bf p}$ and $f({\bf p})$, respectively. Denote by

$$(u, v) \mapsto (\alpha(u, v), \beta(u, v))$$

the components of the smooth map

$$\Psi:=\tilde{\pmb\sigma}^{-1}\circ f\circ \pmb\sigma:\, U\to \widetilde{U}\,.$$

In particular it holds

$$\tilde{\boldsymbol{\sigma}}(\alpha(u,v),\beta(u,v)) = f(\boldsymbol{\sigma}(u,v)), \quad \forall (u,v) \in U.$$

The matrix of the linear map $d_{\mathbf{p}}f$ with respect to the basis

$$\{\boldsymbol{\sigma}_{u}, \boldsymbol{\sigma}_{v}\}$$
 on $T_{\mathbf{p}}\mathcal{S}$, $\{\tilde{\boldsymbol{\sigma}}_{\tilde{u}}, \tilde{\boldsymbol{\sigma}}_{\tilde{v}}\}$ on $T_{f(\mathbf{p})}\widetilde{\mathcal{S}}$,

is given by the Jacobian of the map Ψ , that is,

$$d_{\mathbf{p}}f = J\Psi = \begin{pmatrix} \alpha_u & \alpha_v \\ \beta_u & \beta_v \end{pmatrix}.$$

Example 3.54: Computing the matrix of $d_{\mathbf{p}}f$

Question. Consider the unit cylinder, charted by

$$\sigma(u, v) = (\cos u, \sin u, v), \quad (u, v) \in U := (0, 2\pi) \times \mathbb{R}.$$

Consider the plane $\widetilde{\mathcal{S}}$ charted by

$$\widetilde{\boldsymbol{\sigma}}(u,v) = (u,v,0), \quad (u,v) \in \widetilde{U} = \mathbb{R}^2.$$

Define the map

$$f: \mathcal{S} \to \widetilde{\mathcal{S}}, \quad f(x, y, z) = (y, xz, 0).$$

Compute the matrix of $d_{\mathbf{p}}f$ with respect to these charts. **Solution.** We need to compute the map

$$\Psi: U \to \widetilde{U}, \quad \Psi:= \widetilde{\boldsymbol{\sigma}}^{-1} \circ f \circ \boldsymbol{\sigma}.$$

Clearly, we have

$$\tilde{\boldsymbol{\sigma}}^{-1}(u,v,0) = (u,v).$$

Therefore

$$\Psi(u, v) = \tilde{\boldsymbol{\sigma}}^{-1} (f(\boldsymbol{\sigma}(u, v)))$$

$$= \tilde{\boldsymbol{\sigma}}^{-1} (f(\cos u, \sin u, v))$$

$$= \tilde{\boldsymbol{\sigma}}^{-1} (\sin(u), \cos(u)v, 0)$$

$$= (\sin(u), \cos(u)v) .$$

The components of Ψ are

$$\alpha(u, v) = \sin(u), \qquad \beta(u, v) = \cos(u)v.$$

Therefore

$$\alpha_u = \cos(u),$$
 $\alpha_v = 0$
 $\beta_u = -\sin(u)v,$ $\beta_v = \cos(u)$

The matrix of $d_{\mathbf{p}}f$ is hence

$$d_{\mathbf{p}}f = J\Psi = \begin{pmatrix} \cos(u) & 0 \\ -\sin(u)v & \cos(u) \end{pmatrix}.$$

Theorem 3.55

Let S_1 and S_2 be regular surfaces. Suppose that

$$f: \mathcal{S}_1 \to \mathcal{S}_2$$

is smooth, and let $\mathbf{p} \in \mathcal{S}_1$. They are equivalent:

- 1. f is a local diffeomorphism at \mathbf{p} .
- 2. The differential $d_{\mathbf{p}}f: T_{\mathbf{p}}\mathcal{S}_1 \to T_{f(\mathbf{p})}\mathcal{S}_2$ is invertible at \mathbf{p} .

3.8 Level surfaces

Definition 3.56: Level surface

Let $V \subseteq \mathbb{R}^3$ be an open set and $f: V \to \mathbb{R}$ be smooth. The **level surface** associated with f is the set

$$\mathcal{S}_f := f^{-1}(0) = \{(x, y, z) \in V : f(x, y, z) = 0\}.$$

Theorem 3.57

Let $V\subseteq \mathbb{R}^3$ be an open set and $f:V\to \mathbb{R}$ be smooth. Consider the level surface

$$\mathcal{S}_f = \{(x,y,z) \in V \ : \ f(x,y,z) = 0\}.$$

Suppose that

$$\nabla f(x, y, z) \neq 0$$
, $\forall (x, y, z) \in V$.

Then \mathcal{S}_f is a regular surface.

Example 3.58: Circular cone

Question. Consider the circular cone

$$\mathcal{S} = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = z^2, z > 0\}.$$

Prove that \mathcal{S} is a regular surface.

Solution. Define the open set

$$V = \{(x, y, z) \in \mathbb{R}^3 : z > 0\},\$$

and the function $f: V \to \mathbb{R}$ by

$$f(x, y, z) = x^2 + y^2 - z^2$$
.

We have

$$\nabla f(x, y, z) = (2x, 2y, -2z) \neq 0$$
, $\forall (x, y, z) \in V$.

Since

$$S = S_f$$
,

we conclude that \mathcal{S} is a regular surface.

Theorem 3.59: Tangent plane of level surfaces

Let $V\subseteq \mathbb{R}^3$ be an open set and $f\colon V\to \mathbb{R}$ be smooth. Suppose that

$$\forall f(x, y, z) \neq 0, \quad \forall (x, y, z) \in V.$$

Let $\mathbf{p} \in \mathcal{S}_f$. We have

$$\nabla f(\mathbf{p}) \perp T_{\mathbf{p}} \mathcal{S}_f$$
.

In particular, they hold:

1. The cartesian equation of $T_{\mathbf{p}}\mathcal{S}_f$ is given by

$$\nabla f(\mathbf{p}) \cdot \mathbf{x} = 0$$
, $\forall \mathbf{x} \in \mathbb{R}^3$,

2. The cartesian equation for $\mathbf{p} + T_{\mathbf{p}} \mathcal{S}_f$ is given by

$$\nabla f(\mathbf{p}) \cdot (\mathbf{x} - \mathbf{p}) = 0, \quad \forall \, \mathbf{x} \in \mathbb{R}^3.$$

Example 3.60: Unit cylinder

Question. Consider the unit cylinder

$$\mathcal{S} = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1\}.$$

1. Prove that \mathcal{S} is a regular surface.

2. Let

$$\mathbf{p} = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 5\right) \in \mathcal{S}$$

Show that $T_{\mathbf{p}}\mathcal{S}$ has cartesian equation

$$x + y = 0$$
.

Solution.

1. Define the open set

$$V = \mathbb{R}^3 \setminus \{(0,0,z) : z \in \mathbb{R}\}.$$

Note that V is obtained by removing the z-axis from \mathbb{R}^3 . Also define the function $f: \mathbb{R}^3 \to \mathbb{R}$ by

$$f(x, y, z) := x^2 + y^2 - 1$$
.

We have

$$\nabla f(x, y, z) = (2x, 2y, 0) \neq 0, \quad \forall (x, y, z) \in V.$$

Since

$$S = S_f$$
,

we conclude that S is a regular surface.

2. Using the expression for ∇f found in Point 1, we get

$$\nabla f(\mathbf{p}) = \nabla f\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 5\right) = (\sqrt{2}, \sqrt{2}, 0).$$

The equation for $T_{\mathbf{p}}\mathcal{S}$ is

$$\nabla f(\mathbf{p}) \cdot \mathbf{x} = 0$$
, $\forall \mathbf{x} \in \mathbb{R}^3$.

Therefore, we find

$$\nabla f(\mathbf{p}) \cdot \mathbf{x} = 0 \iff (\sqrt{2}, \sqrt{2}, 0) \cdot (x, y, z) = 0$$

 $\iff x + y = 0.$

where

1. $\gamma: (a, b) \to \mathbb{R}^3$ is a smooth curve,

2. $\mathbf{a}:(a,b)\to\mathbb{R}^3$ is a smooth curve,

3. $\dot{\mathbf{y}}(t)$ and $\mathbf{a}(t)$ are linearly independent for all $t \in (a, b)$.

We say that:

1. **y** is the **base curve**.

2. The lines $v \mapsto v\mathbf{a}(u)$ are the **rulings**.

Theorem 3.62

A ruled surface S is regular if v is sufficiently small.

Example 3.63: Unit Cylinder is ruled surface

Question. Prove that the unit cylinder

$$\mathcal{S} = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1\}.$$

is a ruled surface.

Solution. We know that the unit cylinder is charted by

$$\sigma(u, v) = (\cos(u), \cos(u), v), \quad (u, v) \in (0, 2\pi) \times \mathbb{R}.$$

We can rewrite σ as

$$\sigma(u, v) = \gamma(u) + va(u),$$

with

$$\gamma(u) := (\cos(u), \cos(u), 0), \quad \mathbf{a} = (0, 0, 1).$$

Note that the vectors

$$\dot{\mathbf{y}} = (-\sin(u), \cos(u), 0), \quad \mathbf{a} = (0, 0, 1)$$

are orthogonal, and hence linearly independent. Therefore \mathcal{S} is a ruled surface.

Example 3.64: Möbius band

Question. The Möbius band is a ruled surface with chart

$$\sigma = \gamma(u) + v\mathbf{a}(u), \quad u \in (0, 2\pi), v \in \left(-\frac{1}{2}, \frac{1}{2}\right),$$

where

$$\gamma(u) = (\cos(u), \sin(u), 0)$$

is the unit circle, and

$$\mathbf{a} = \left(-\sin\left(\frac{u}{2}\right)\cos(u), -\sin\left(\frac{u}{2}\right)\sin(u), \cos\left(\frac{u}{2}\right)\right)$$

is a vector which does a half rotation while going around the unit circle γ . In particular

$$\boldsymbol{\sigma}(u,v) = \left(\left[1 - v \sin\left(\frac{u}{2}\right) \right] \cos(u), \left[1 - v \sin\left(\frac{u}{2}\right) \right] \sin(u), v \cos\left(\frac{u}{2}\right) \right)$$

- 1. Compute the standard unit normal to σ .
- 2. Prove that S is **non orientable**.

Solution.

1. From the formula for σ , it is easy to compute that

$$\sigma_u \times \sigma_v = \left(-\cos(u)\cos\left(\frac{u}{2}\right), -\sin(u)\cos\left(\frac{u}{2}\right), -\sin\left(\frac{u}{2}\right)\right).$$

It is also immediate to check that $\|\boldsymbol{\sigma}_u \times \boldsymbol{\sigma}_v\| = 1$, and therefore the principal unit normal of $\boldsymbol{\sigma}$ is

$$\mathbf{N}_{\boldsymbol{\sigma}} = \boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v}$$
.

2. Suppose by contradiction that \mathcal{S} is orientable. This means there exists a globally defined principal unit normal vector

$$\mathbf{N}: \mathcal{S} \to \mathbb{R}^3$$
.

By definition of principal normal, we have either

$$\mathbf{N} \circ \boldsymbol{\sigma} = \mathbf{N}_{\boldsymbol{\sigma}}$$
.

Consider the point $\mathbf{p} = (1,0,0)$ on \mathcal{S} . Notice that, by continuity, \mathbf{p} can be obtained via $\boldsymbol{\sigma}$ through the limits

$$\mathbf{p} = \lim_{u \to 0^+} \boldsymbol{\sigma}(u, 0) = \lim_{u \to 2\pi^-} \boldsymbol{\sigma}(u, 0).$$

Since **N** is continuous, the above implies

$$\mathbf{N}(\mathbf{p}) = \lim_{u \to 0^+} \mathbf{N} \circ \boldsymbol{\sigma}(u, 0) = \lim_{u \to 2\pi^-} \mathbf{N} \circ \boldsymbol{\sigma}(u, 0). \quad (3.1)$$

However, by direct calculation:

$$\lim_{u\to 0^+} \mathbf{N} \circ \boldsymbol{\sigma}(u,0) = \lim_{u\to 0^+} \mathbf{N}_{\boldsymbol{\sigma}}(u,0) = (-1,0,0)$$

$$\lim_{u\to 2\pi^{-}} \mathbf{N} \circ \boldsymbol{\sigma}(u,0) = \lim_{u\to 2\pi^{-}} \mathbf{N}_{\boldsymbol{\sigma}}(u,0) = (1,0,0)$$

This clearly contradicts (3.1). Therefore **N** cannot exist, and \mathcal{S} is not orientable.

Example 3.65

Question. Show that the surface

$$S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + 10xy + 16x^2 - z = 0\}$$

is a ruled surface.

Solution. We shall make a change of variables. Notice that we can rearrange

$$x^{2} + 10xy + 16x^{2} - z = 0$$
$$(x + 8y)(x + 2y) = z.$$

Let

$$u = x + 8y, \qquad v = x + 2y.$$

Then uv = z and

$$u - v = 6y \implies y = \frac{u - v}{6}$$

$$x = u - 8y$$

$$= u - \frac{8(u - v)}{6}$$

$$= \frac{4v - u}{3}.$$

It follows that if $(x, y, z) \in S$ then

$$(x, y, z) = \left(\frac{4v - u}{3}, \frac{u - v}{6}, uv\right)$$
$$= \left(-\frac{u}{3}, \frac{u}{6}, 0\right) + v\left(\frac{4}{3}, -\frac{1}{6}, u\right)$$
$$= \gamma(u) + v\mathbf{a}(u),$$

where we have set

$$\mathbf{\gamma}(u) = \left(-\frac{u}{3}, \frac{u}{6}, 0\right)$$
$$\mathbf{a}(u) = \left(\frac{4}{3}, -\frac{1}{6}, u\right).$$

Notice that

$$\dot{\boldsymbol{\gamma}}(u) = \left(-\frac{1}{3}, \frac{1}{6}, 0\right).$$

For $u \neq 0$, we clearly have that $\mathbf{a}(u)$ and $\dot{\boldsymbol{\gamma}}(u)$ are linearly independent (the last component of $\dot{\boldsymbol{\gamma}}(u)$ is 0). For u=0 we have

$$\dot{\gamma}(0) = \left(-\frac{1}{3}, \frac{1}{6}, 0\right), \qquad \mathbf{a}(0) = \left(\frac{4}{3}, -\frac{1}{6}, 0\right),$$

which are clearly linearly independent. Therefore, S is a ruled surface.

3.10 Surfaces of Revolution

Definition 3.66: Surface of revolution

Let $\mathbf{y}: (a,b) \to \mathbb{R}^3$ be a smooth curve in the (x,z)-plane, that is,

$$\mathbf{\gamma}(v) = (f(v), 0, g(v)).$$

Suppose that f > 0. The surface \mathcal{S} obtained by rotating γ about the z-axis is called **surface of revolution**. A chart for \mathcal{S} is given by

$$\boldsymbol{\sigma}(u,v) = (\cos(u)f(v), \sin(u)f(v), g(v)),$$

with $u \in (0, 2\pi)$ and $v \in (a, b)$.

Theorem 3.67

A surface of revolution is regular if and only if γ is regular.

Example 3.68: Catenoid

Question. The catenary function is defined by

$$f(v) = \cosh(v).$$

The Catenoid S is the surface of revolution obtained by rotating the catenary about the z-axis, that is, by rotating the curve

$$\gamma(v) = (\cosh(v), 0, v) .$$

A chart S is given by

$$\sigma(u, v) = (\cos(u)\cosh(v), \sin(u)\cosh(v), v),$$

where $u \in [0, 2\pi)$ and $v \in \mathbb{R}$. Prove that \mathcal{S} is a regular surface.

Solution. Note that f > 0 and

$$\dot{\mathbf{y}} = (\sinh(v), 0, 1), \quad \|\dot{\mathbf{y}}\|^2 = 1 + \sinh(v)^2 \ge 1.$$

Therefore γ is regular. As $\mathcal S$ is a surface of revolution, we conclude that $\mathcal S$ is regular.

3.11 First fundamental form

Definition 3.69: First fundamental form

Let \mathcal{S} be a regular surface and $\mathbf{p} \in \mathcal{S}$. The **first fundamental form** of \mathcal{S} at \mathbf{p} is the bilinear symmetric map

$$I_{\mathbf{p}}:\,T_{\mathbf{p}}\mathcal{S}\times T_{\mathbf{p}}\mathcal{S}\to\mathbb{R}\,,\quad I_{\mathbf{p}}(\mathbf{v},\mathbf{w}):=\mathbf{v}\cdot\mathbf{w}\,.$$

Definition 3.70: Coordinate functions on tangent plane

Let $\sigma: U \to \mathbb{R}^3$ be a regular chart of \mathcal{S} . For each $\mathbf{p} \in \sigma(U)$ we have

$$T_{\mathbf{p}}\mathcal{S} = \operatorname{span}\{\boldsymbol{\sigma}_{u}, \boldsymbol{\sigma}_{v}\},$$

where σ_u and σ_v are evaluated at the point $(u, v) \in U$ such that

$$\sigma(u,v)=\mathbf{p}$$
.

Therefore, for each $\mathbf{v} \in T_{\mathbf{p}} \mathcal{S}$, there exist $\lambda, \mu \in \mathbb{R}$ such that

$$\mathbf{v} = \lambda \boldsymbol{\sigma}_{u} + \mu \boldsymbol{\sigma}_{v} .$$

The **coordinate functions** on $T_{\mathbf{p}}\mathcal{S}$ are the linear maps

$$du, dv: T_{\mathbf{p}} \mathcal{S} \to \mathbb{R}, \quad du(\mathbf{v}) := \lambda, \quad dv(\mathbf{v}) := \mu.$$

Definition 3.71: First fundamental form of a chart

Let $\sigma:U\to\mathbb{R}^3$ be a regular chart of \mathcal{S} . Define the functions

$$E, F, G: U \to \mathbb{R}$$

by setting

$$E := \boldsymbol{\sigma}_u \cdot \boldsymbol{\sigma}_u$$
, $F := \boldsymbol{\sigma}_u \cdot \boldsymbol{\sigma}_v$, $G := \boldsymbol{\sigma}_v \cdot \boldsymbol{\sigma}_v$.

The **first fundamental form** of σ is the quadratic form

$$\mathcal{F}_1: T_{\mathbf{p}}\mathcal{S} \to \mathbb{R}$$

defined by

$$\mathcal{F}_1(\mathbf{v}) := E du^2(\mathbf{v}) + 2F du(\mathbf{v}) dv(\mathbf{v}) + G dv^2(\mathbf{v}),$$

for all $\mathbf{v} \in T_{\mathbf{p}} \mathcal{S}$, and $\mathbf{p} \in \boldsymbol{\sigma}(U)$, where E, F, G are evaluated at

$$(u, v) = \boldsymbol{\sigma}^{-1}(\mathbf{p})$$
.

Definition 3.73

With a little abuse of notation, we also denote by \mathcal{F}_1 the 2×2 matrix

$$\mathscr{F}_1 := \left(\begin{array}{cc} E & F \\ F & G \end{array} \right).$$

Proposition 3.74: First fundamental form and reparametrizations

Let S be a regular surface and $\sigma: U \to \mathbb{R}^3$ a regular chart. Suppose that $\tilde{\sigma}: \widetilde{U} \to \mathbb{R}^3$ is a reparametrization of σ , that is,

$$\tilde{\boldsymbol{\sigma}} = \boldsymbol{\sigma} \circ \Phi \,,$$

where $\Phi: \widetilde{U} \to U$ is a diffeomorphism. Denote the first fundamental forms of σ and $\widetilde{\sigma}$ by, respectively,

$$\mathcal{F}_1 = E du^2 + 2F du dv + G dv^2,$$

$$\widetilde{\mathcal{F}}_1 = \widetilde{E} d\tilde{u}^2 + 2\widetilde{F} d\tilde{u} d\tilde{v} + \widetilde{G} d\tilde{v}^2.$$

1. The matrices of \mathscr{F}_1 and $\widetilde{\mathscr{F}}_1$ are related by

$$\begin{pmatrix} \widetilde{E} & \widetilde{F} \\ \widetilde{F} & \widetilde{G} \end{pmatrix} = (J\Phi)^T \begin{pmatrix} E & F \\ F & G \end{pmatrix} J\Phi, \qquad (3.2)$$

where $J\Phi$ is the Jacobian of Φ

$$J\Phi = \left(\begin{array}{cc} \frac{\partial u}{\partial \tilde{u}} & \frac{\partial u}{\partial \tilde{v}} \\ \frac{\partial v}{\partial \tilde{u}} & \frac{\partial v}{\partial \tilde{v}} \end{array} \right).$$

2. The linear maps du, dv and $d\tilde{u}$, $d\tilde{v}$ are related by

$$du = \frac{\partial u}{\partial \tilde{u}} d\tilde{u} + \frac{\partial u}{\partial \tilde{v}} d\tilde{v}$$

$$dv = \frac{\partial v}{\partial \tilde{u}} d\tilde{u} + \frac{\partial v}{\partial \tilde{v}} d\tilde{v}$$
(3.3)

Theorem 3.72

Let $\sigma: U \to \mathbb{R}^3$ be a regular chart of \mathcal{S} , and $\mathbf{p} \in \sigma(U)$. Then

$$I_{\mathbf{p}}(\mathbf{v}, \mathbf{w}) = (du(\mathbf{v}), dv(\mathbf{v})) \begin{pmatrix} E & F \\ F & G \end{pmatrix} (du(\mathbf{w}), dv(\mathbf{w}))^{T},$$

for all $\mathbf{v}, \mathbf{w} \in T_{\mathbf{p}} \mathcal{S}$. In particular, \mathcal{F}_1 is the quadratic form associated to the symmetric bilinear form $I_{\mathbf{p}}$, that is,

$$\mathcal{F}_1(\mathbf{v}) = I_{\mathbf{p}}(\mathbf{v}, \mathbf{v})\,, \quad \forall\, \mathbf{v} \in T_{\mathbf{p}}\mathcal{S}\,.$$

Example 3.75: FFF of Plane

Question. Let $\mathbf{a}, \mathbf{p}, \mathbf{q} \in \mathbb{R}^3$, with \mathbf{p} and \mathbf{q} orthonormal. Consider the plane with chart

$$\sigma(u, v) = \mathbf{a} + u\mathbf{p} + v\mathbf{q}, \quad (u, v) \in \mathbb{R}^2.$$

Prove that the first fundamental form of σ is

$$\mathcal{F}_1 = du^2 + dv^2 \,.$$

Solution. We have

$$\sigma_{\nu} = \mathbf{p}, \quad \sigma_{\nu} = \mathbf{q},$$

and therefore, using that \mathbf{p} and \mathbf{q} are orthonormal,

$$E = \boldsymbol{\sigma}_{u} \cdot \boldsymbol{\sigma}_{u} = \|\mathbf{p}\|^{2} = 1$$

$$F = \boldsymbol{\sigma}_{u} \cdot \boldsymbol{\sigma}_{v} = \mathbf{p} \cdot \mathbf{q} = 0$$

$$G = \boldsymbol{\sigma}_{v} \cdot \boldsymbol{\sigma}_{v} = \|\mathbf{q}\|^{2} = 1$$

The first fundamental form of σ is, therefore

$$\mathcal{F}_1 = E du^2 + 2F du dv + G dv^2 = du^2 + dv^2.$$

Example 3.76: FFF of Plane in polar coordinates

Question. Let $\mathbf{a}, \mathbf{p}, \mathbf{q} \in \mathbb{R}^3$, with \mathbf{p}, \mathbf{q} orthonormal. In polar coordinates, the plane is charted by

$$\sigma(\rho, \theta) = \mathbf{a} + \rho \cos(\theta) \mathbf{p} + \rho \sin(\theta) \mathbf{q}, \quad \rho > 0, \ \theta \in (0, 2\pi).$$

1. By direct calculation, show that the first fundamental form of σ is

$$\mathcal{F}_1 = d\rho^2 + \rho^2 d\theta^2 \,.$$

2. The first fundamental form of the plane in cartesian coordinates is

$$\widetilde{\mathscr{F}}_1 = du^2 + dv^2$$
.

Verify that

$$\begin{pmatrix} E & F \\ F & G \end{pmatrix} = (J\Phi)^T \begin{pmatrix} \widetilde{E} & \widetilde{F} \\ \widetilde{F} & \widetilde{G} \end{pmatrix} J\Phi,$$

where Φ is the change of variables from polar to cartesian coordinates.

Solution.

1. Compute \mathcal{F}_1 directly:

$$\sigma_{\rho} = \cos(\theta)\mathbf{p} + \sin(\theta)\mathbf{q}$$

$$\sigma_{\theta} = -\rho\sin(\theta)\mathbf{p} + \rho\cos(\theta)\mathbf{q}$$

and therefore

$$E = \boldsymbol{\sigma}_{\rho} \cdot \boldsymbol{\sigma}_{\rho}$$

$$= \cos^{2}(\theta) \|\mathbf{p}\|^{2} + \sin^{2}(\theta) \|\mathbf{q}\|^{2} + 2\cos(\theta)\sin(\theta)\mathbf{p} \cdot \mathbf{q}$$

$$= 1$$

$$F = \boldsymbol{\sigma}_{\rho} \cdot \boldsymbol{\sigma}_{\theta} = 0$$

$$G = \boldsymbol{\sigma}_{\theta} \cdot \boldsymbol{\sigma}_{\theta} = r^{2}$$

Then the first fundamental form is

$$\mathcal{F}_1 = E\,d\rho^2 + 2F\,d\rho\,d\theta + G\,d\theta^2 = d\rho^2 + \rho^2 d\theta^2\,.$$

2. The change of variables from polar to cartesian coordinates is

$$\Psi(\rho, \theta) = (\rho \cos(\theta), \rho \sin(\theta)).$$

The Jacobian of Ψ is

$$J\Phi = \begin{pmatrix} \cos(\theta) & -\rho\sin(\theta) \\ \sin(\theta) & \rho\cos(\theta) \end{pmatrix}.$$

The matrix of $\widetilde{\mathscr{F}}_1$ is just the identity:

$$\left(\begin{array}{cc} \widetilde{E} & \widetilde{F} \\ \widetilde{F} & \widetilde{G} \end{array}\right) = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right).$$

Therefore, we have

$$(J\Phi)^{T} \begin{pmatrix} \widetilde{E} & \widetilde{F} \\ \widetilde{F} & \widetilde{G} \end{pmatrix} J\Phi = (J\Phi)^{T} J\Phi$$

$$= \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\rho\sin(\theta) & \rho\cos(\theta) \end{pmatrix} \begin{pmatrix} \cos(\theta) & -\rho\sin(\theta) \\ \sin(\theta) & \rho\cos(\theta) \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & \rho^{2} \end{pmatrix} = \begin{pmatrix} E & F \\ F & G \end{pmatrix}.$$

Example 3.77: FFF of Unit cylinder

Question. Consider the unit cylinder with chart

$$\boldsymbol{\sigma}(u,v) = (\cos(u),\sin(u),v), \quad (u,v) \in (0,2\pi) \times \mathbb{R}.$$

Prove that the first fundamental form of σ is

$$\mathcal{F}_1 = du^2 + dv^2.$$

Solution. We have

$$\sigma_u = (-\sin(u), \cos(u), 0), \quad \sigma_v = (0, 0, 1),$$

and therefore

$$E = \boldsymbol{\sigma}_{u} \cdot \boldsymbol{\sigma}_{u} = 1$$

$$F = \boldsymbol{\sigma}_{u} \cdot \boldsymbol{\sigma}_{v} = 0$$

$$G = \boldsymbol{\sigma}_{v} \cdot \boldsymbol{\sigma}_{v} = 1$$

Then the first fundamental form is

$$\mathcal{F}_1 = E du^2 + 2F du dv + G dv^2 = du^2 + dv^2$$
.

Example 3.78

Question. Find the first fundamental form of the surface chart

$$\boldsymbol{\sigma}(u,v) = (u-v, u+v, u^2+v^2) .$$

Solution. We compute

$$\sigma_{u} = (1, 1, 2u)$$

$$\sigma_{v} = (-1, 1, 2v)$$

$$E = \sigma_{u} \cdot \sigma_{v} = 2(1 + 2u^{2})$$

$$F = \sigma_{u} \cdot \sigma_{v} = 4uv$$

$$G = \sigma_{v} \cdot \sigma_{v} = (1 + 2v^{2})$$

so that

$$\mathcal{F}_1 = \left(\begin{array}{cc} 2\left(1 + 2u^2\right) & 4uv \\ 4uv & 2\left(1 + 2v^2\right) \end{array} \right).$$

3.12 Length of curves

Proposition 3.79

Let \mathcal{S} be a regular surface with chart $\sigma: U \to \mathbb{R}^3$. Suppose

$$\mathbf{v}: (a,b) \to \boldsymbol{\sigma}(U) \subseteq \mathcal{S}$$

is a smooth curve. Then

$$\mathbf{y}(t) = \boldsymbol{\sigma}(u(t), v(t))$$

for some smooth functions $u, v : (a, b) \to \mathbb{R}$, and

$$\int_{a}^{b} \|\dot{\mathbf{y}}(t)\| dt = \int_{a}^{b} \sqrt{E\dot{u}^{2} + 2F\dot{u}\dot{v} + G\dot{v}^{2}} dt,$$

where in the above formula:

- \dot{u} , \dot{v} are computed at t,
- E, F, G are computed at (u(t), v(t)).

Example 3.80: Curves on the Cone

Question. Consider the cone with chart

$$\sigma(u, v) = (\cos(u)v, \sin(u)v, v),$$

where $u \in (0, 2\pi)$ and v > 0. Prove the following:

1. The first fundamental form of σ is

$$\mathcal{F}_1 = 2 du^2 + u^2 dv^2.$$

2. Let $\gamma(t) := \sigma(t, t)$. The length of γ is

$$\int_{\pi/2}^{\pi} \|\dot{\boldsymbol{y}}(t)\| \ dt = \int_{\pi/2}^{\pi} \sqrt{t^2 + 2} \, dt \,.$$

Solution.

1. We have

$$\sigma_{u} = (-\sin(u)v, \cos(u)v, 0)$$

$$\sigma_{v} = (\cos(u), \sin(u), 1)$$

$$E = \sigma_{u} \cdot \sigma_{u} = v^{2}$$

$$F = \sigma_{u} \cdot \sigma_{v} = 0$$

$$G = \sigma_{v} \cdot \sigma_{v} = 2$$

The first fundamental form of σ is

$$\mathcal{F}_1 = v^2 du^2 + 2 dv^2.$$

2. By definition we have

$$\boldsymbol{\gamma}(t) = \boldsymbol{\sigma}(t,t),$$

so that

$$\gamma(t) = \sigma(u(t), v(t))$$

with

$$u(t) = t$$
, $v(t) = t$.

In particular

$$\dot{u}=1$$
. $\dot{v}=1$

and

$$E(u(t), v(t)) = E(t, t) = t^2$$

 $F(u(t), v(t)) = F(t, t) = 0$
 $G(u(t), v(t)) = G(t, t) = 2$.

Therefore,

$$\begin{split} \int_{\pi/2}^{\pi} \|\dot{\pmb{\gamma}}(t)\| \ dt &= \int_{\pi/2}^{\pi} \sqrt{E \dot{u}^2 + 2F \dot{u} \dot{v} + G \dot{v}^2} \ dt \\ &= \int_{\pi/2}^{\pi} \sqrt{t^2 + 2} \ dt \ . \end{split}$$

3.13 Isometries

Definition 3.81: Local Isometry and Isometry

Let $\mathcal S$ and $\widetilde{\mathcal S}$ be regular surfaces and

$$f: \mathcal{S} \to \widetilde{\mathcal{S}}$$

be a smooth map. Denote the differential of f by

$$d_{\mathbf{p}}f: T_{\mathbf{p}}\mathcal{S} \to T_{f(\mathbf{p})}\widetilde{\mathcal{S}}.$$

We say that:

1. f is a **local isometry**, if for all $\mathbf{p} \in \mathcal{S}$

$$\mathbf{v} \cdot \mathbf{w} = d_{\mathbf{p}} f(\mathbf{v}) \cdot d_{\mathbf{p}} f(\mathbf{w}), \quad \forall \, \mathbf{v}, \mathbf{w} \in T_{\mathbf{p}} \mathcal{S}.$$
 (3.4)

In this case, \mathcal{S} and $\widetilde{\mathcal{S}}$ are said to be **locally isometric**.

- 2. f is an **isometry** if:
 - *f* is a local isometry;
 - f is a diffeomorphism of \mathcal{S} into $\widetilde{\mathcal{S}}$.

In this case, \mathcal{S} and $\widetilde{\mathcal{S}}$ are said to be **isometric**.

Theorem 3.82

Let ${\mathcal S}$ and $\widetilde{{\mathcal S}}$ be regular surfaces and

$$f:\,\mathcal{S}\to\widetilde{\mathcal{S}}$$

a local isometry. Then f is a local diffeomorphims.

Theorem 3.83

Let $\mathscr S$ and $\widetilde{\mathscr S}$ be regular surfaces and $f:\mathscr S\to\widetilde{\mathscr S}$ be a smooth map. They are equivalent:

- 1. f is a local isometry.
- 2. Let γ be a curve in \mathcal{S} and consider the curve $\tilde{\gamma} = f \circ \gamma$ on $\tilde{\mathcal{S}}$. Then γ and $\tilde{\gamma}$ have the same length.

Theorem 3.84

Let \mathscr{S} and $\widetilde{\mathscr{S}}$ be regular surfaces and $f: \mathscr{S} \to \widetilde{\mathscr{S}}$ be a local diffeomorphism. They are equivalent:

- 1. f is a local isometry.
- 2. Let $\sigma:U\to\mathcal{S}$ be a regular chart of \mathcal{S} and consider the chart of $\widetilde{\mathcal{S}}$ given by

$$\tilde{\boldsymbol{\sigma}}: U \to \widetilde{\mathcal{S}}, \qquad \tilde{\boldsymbol{\sigma}} = f \circ \boldsymbol{\sigma}.$$

Then σ and $\tilde{\sigma}$ have the same first fundamental form, that is,

$$E = \widetilde{E}, \quad F = \widetilde{F}, \quad G = \widetilde{G}.$$

Theorem 3.85

Let ${\mathcal S}$ and $\widetilde{{\mathcal S}}$ be regular surfaces and consider charts

$$\sigma: U \to \mathcal{S}, \qquad \tilde{\sigma}: U \to \widetilde{\mathcal{S}}.$$

Assume that σ and $\tilde{\sigma}$ have the same first fundamental form:

$$E = \widetilde{E}$$
, $F = \widetilde{F}$, $G = \widetilde{G}$.

We have:

- 1. The surfaces $\sigma(U)$ and $\widetilde{\mathcal{S}}$ are locally isometric.
- 2. A local isometry is given by

$$f: \boldsymbol{\sigma}(U) \to \widetilde{\mathcal{S}}, \qquad f = \tilde{\boldsymbol{\sigma}} \circ \boldsymbol{\sigma}^{-1}.$$

Example 3.86: Plane and Cylinder are locally isometric

Question. Consider the plane

$$\mathcal{S} = \left\{ (x,y,z) \in \mathbb{R}^3 \ : \ x = 0 \right\},$$

and the unit cylinder

$$\mathcal{S} = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1\}.$$

Define the function

$$f: \mathcal{S} \to \widetilde{\mathcal{S}}, \qquad f(0, y, z) = (\cos(y), \sin(y), z).$$

- 1. Prove that f is smooth.
- 2. Prove that f is a local isometry.

Note: This shows that the Plane and the Cylinder are locally isometric.

Solution.

1. Note that $f \in \widetilde{\mathcal{S}}$ because

$$\cos(y)^2 + \sin(y)^2 = 1,$$

therefore f is well-defined. Moreover, f is the restriction to $\mathcal S$ of the function

$$g: \mathbb{R}^3 \to \mathbb{R}^3$$
, $g(x, y, z) = (\cos(y), \sin(y), z)$.

Since g is smooth, and $g(\mathcal{S}) = \widetilde{\mathcal{S}}$, by Theorem 3.37 we infer that $g|_{\mathcal{S}} = f$ is smooth between \mathcal{S} and $\widetilde{\mathcal{S}}$.

2. Define the chart of S:

$$\sigma(u,v) = (0,u,v), \quad u,v \in \mathbb{R}.$$

We already know that σ is regular, with first fundamental form coefficients given by

$$E = 1$$
, $F = 1$, $G = 1$,

and corresponding first fundamental form

$$\mathcal{F}_1 = du^2 + dv^2.$$

Define $\tilde{\boldsymbol{\sigma}} = f \circ \boldsymbol{\sigma}$. Therefore,

$$\tilde{\boldsymbol{\sigma}}(u,v) = f(0,u,v) = (\cos(u),\sin(u),v).$$

We have that

$$\tilde{\boldsymbol{\sigma}}_{u} = (-\sin(u), \cos(u), 0)$$

$$\tilde{\boldsymbol{\sigma}}_{v} = (0, 0, 1)$$

$$\tilde{E} = \tilde{\boldsymbol{\sigma}}_{u} \cdot \tilde{\boldsymbol{\sigma}}_{u} = 1$$

$$\tilde{F} = \tilde{\boldsymbol{\sigma}}_{u} \cdot \tilde{\boldsymbol{\sigma}}_{v} = 0$$

$$\tilde{G} = \tilde{\boldsymbol{\sigma}}_{v} \cdot \tilde{\boldsymbol{\sigma}}_{v} = 1$$

Therefore, the first fundamental form of $\tilde{\boldsymbol{\sigma}} = f \circ \boldsymbol{\sigma}$ is

$$\widetilde{\mathcal{F}}_1 = du^2 + dv^2$$
.

In particular, we have shown that σ and $\tilde{\sigma}$ have the same first fundamental form:

$$\mathcal{F}_1 = \widetilde{\mathcal{F}}_1$$
.

Since $\mathscr{A} = \{\sigma\}$ is an atlas for \mathscr{S} , by Theorem 3.85 we conclude that f is a local isometry of \mathscr{S} into $\widetilde{\mathscr{S}}$.

Example 3.87: Plane and Cone are locally isometric

Question. Consider the cone without tip

$$S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = z^2, z > 0\},\$$

and the plane

$$\widetilde{\mathcal{S}} = \{(x, y, z) \in \mathbb{R}^3 : z = 0\}.$$

1. Let $\sigma: U \to \mathcal{S}$ be the chart of the Cone

$$\boldsymbol{\sigma}(\rho,\theta) = (\rho\cos(\theta), \rho\sin(\theta), \rho),$$

where we define

$$U := \{ (\rho, \theta) \in \mathbb{R}^2 : \rho > 0, \theta \in (0, 2\pi) \}.$$

Compute the first fundamental form \mathcal{F}_1 of $\boldsymbol{\sigma}$.

2. Let $\tilde{\boldsymbol{\sigma}}: U \to \widetilde{\mathcal{S}}$ be the chart of the Plane

$$\tilde{\boldsymbol{\sigma}}(\rho,\theta) = (a\rho\cos(b\theta), a\rho\sin(b\theta), 0)$$

where a > 0 and $b \in (0, 1]$ are constants. Compute the first fundamental form $\widetilde{\mathcal{F}}_1$ of $\tilde{\boldsymbol{\sigma}}$.

3. Find coefficients a, b such that

$$\mathcal{F}_1 = \widetilde{\mathcal{F}}_1$$
.

4. Conclude that $\mathscr S$ and $\widetilde{\mathscr S}$ are locally isometric.

Solution.

1. We have already computed in Example 3.81, that the first fundamental form of σ is

$$\mathcal{F}_1 = 2d\rho^2 + \rho^2 d\theta^2.$$

2. First of all, note that

$$\theta \in (0, 2\pi), \quad b \in (0, 1] \implies b\theta \in (0, 2\pi),$$

showing that $\tilde{\boldsymbol{\sigma}}$ is well defined for all $(\rho, \theta) \in U$. We compute

$$\tilde{\boldsymbol{\sigma}}_{\rho} = (a\cos(b\theta), a\sin(b\theta), 0)$$

$$\tilde{\boldsymbol{\sigma}}_{\theta} = (-ab\rho\sin(b\theta), ab\rho\cos(b\theta), 0)$$

$$\tilde{E} = \tilde{\boldsymbol{\sigma}}_{\rho} \cdot \tilde{\boldsymbol{\sigma}}_{\rho} = a^{2}$$

$$\tilde{F} = \tilde{\boldsymbol{\sigma}}_{\rho} \cdot \tilde{\boldsymbol{\sigma}}_{\theta} = 0$$

$$\tilde{G} = \tilde{\boldsymbol{\sigma}}_{\theta} \cdot \tilde{\boldsymbol{\sigma}}_{\theta} = a^{2}b^{2}\rho^{2}$$

from which we conclude that the first fundamental form of $\tilde{\sigma}$ is

$$\widetilde{\mathcal{F}}_1 = a^2 d\rho^2 + a^2 b^2 \rho^2 d\rho^2 .$$

3. Equating \mathcal{F}_1 and $\widetilde{\mathcal{F}}_1$ we obtain

$$a^2 = 2$$
, $a^2b^2 = 1$ \implies $a = \sqrt{2}$, $b = \frac{1}{\sqrt{2}}$.

Note that a > 0 and 0 < b < 1, showing that a, b are admissible.

4. For $a = \sqrt{2}$ and $b = 1/\sqrt{2}$ we have that

$$\mathcal{F}_1 = \widetilde{\mathcal{F}}_1$$
.

Since σ and $\tilde{\sigma}$ are regular charts for \mathcal{S} and $\tilde{\mathcal{S}}$, respectively, from Theorem 3.84 we conclude that \mathcal{S} and $\tilde{\mathcal{S}}$ are locally isometric. Furthermore, the local isometry is given by

$$f: \mathcal{S} \to \widetilde{\mathcal{S}}, \qquad f = \tilde{\boldsymbol{\sigma}} \circ \boldsymbol{\sigma}^{-1}.$$

3.14 Angles between curves

Definition 3.88: Angle between curves

Let ${\mathcal S}$ be a regular surface. Let ${\pmb \gamma}$ and $\tilde{{\pmb \gamma}}$ be curves on ${\mathcal S}$ such that

$$\mathbf{y}(t_0) = \mathbf{p} = \tilde{\mathbf{y}}(t_0)$$
.

The angle θ between γ and $\tilde{\gamma}$ is

$$\cos(\theta) = \frac{\dot{\mathbf{\gamma}} \cdot \dot{\hat{\mathbf{\gamma}}}}{\|\dot{\mathbf{\gamma}}\| \|\dot{\hat{\mathbf{\gamma}}}\|},$$

where $\dot{\boldsymbol{\gamma}}$ and $\dot{\tilde{\boldsymbol{\gamma}}}$ are evaluated at t_0 .

Theorem 3.89

Let \mathcal{S} be a regular surface, $\boldsymbol{\sigma}$ a regular chart at \mathbf{p} , and $\boldsymbol{\gamma}$, $\tilde{\boldsymbol{\gamma}}$ smooth curves on \mathcal{S} such that

$$\mathbf{\gamma}(t_0) = \mathbf{p} = \tilde{\mathbf{\gamma}}(t_0)$$
.

There exist smooth functions $u, v, \tilde{u}, \tilde{v}$ such that

$$\mathbf{\gamma}(t) = \mathbf{\sigma}(u(t), v(t)), \quad \tilde{\mathbf{\gamma}}(t) = \mathbf{\sigma}(\tilde{u}(t), \tilde{v}(t)).$$

The angle between \mathbf{y} and $\tilde{\mathbf{y}}$ is

$$\cos(\theta) = \frac{E \dot{u} \ddot{u} + F(\dot{u} \dot{\tilde{v}} + \ddot{u} \dot{v}) + G \dot{v} \ddot{\tilde{v}}}{(E \dot{u}^2 + 2F \dot{u} \dot{v} + G \dot{v}^2)^{1/2} (E \dot{\tilde{u}}^2 + 2F \dot{\tilde{u}} \dot{\tilde{v}} + G \dot{\tilde{v}}^2)^{1/2}},$$

where $E, F, G, \widetilde{E}, \widetilde{F}, \widetilde{G}$ are evaluated at $(u(t_0), v(t_0))$ and $\dot{u}, \dot{v}, \dot{\tilde{u}}, \dot{\tilde{v}}$ are evaluated at t_0 .

Example 3.90

Question. Let *S* be a surface with surface chart

$$\sigma(u,v) = (u,v,e^{uv})$$
.

- 1. Calculate its first fundamental form.
- 2. Calculate $cos(\theta)$ where θ is the angle between the two curves

$$\gamma(t) = \sigma(u(t), v(t)), \quad u(t) = t, v(t) = t,$$

$$\tilde{\mathbf{y}}(t) = \boldsymbol{\sigma}(\tilde{u}(t), \tilde{v}(t)), \quad \tilde{u}(t) = 1, \, \tilde{v}(t) = t.$$

Solution.

1. We calculate

$$\sigma_u = (1, 0, e^{uv}v), \quad \sigma_v = (0, 1, e^{uv}u).$$

Therefore, the coefficients of the first fundamental

form are

$$E(u, v) = 1 + e^{2uv}v^2$$
$$F(u, v) = e^{2uv}uv$$

$$G(u, v) = 1 + e^{2uv}u^2$$

2. The curves γ and $\tilde{\gamma}$ intersect at

$$\boldsymbol{\gamma}(1) = \tilde{\boldsymbol{\gamma}}(1) = \boldsymbol{\sigma}(1,1).$$

We calculate

$$\dot{u}(1) = 1$$
, $\dot{v}(1) = 1$, $\dot{\tilde{u}}(1) = 0$, $\dot{\tilde{v}}(1) = 1$,

and

$$E(1,1) = 1 + e^2$$

$$F(1,1) = e^2$$

$$G(1,1) = 1 + e^2$$

Therefore

$$\begin{split} \cos\theta &= \frac{E\dot{u}\ddot{u} + F\left(\dot{u}\ddot{v} + \dot{u}\dot{v}\right) + G\dot{v}\dot{v}}{\sqrt{E\dot{u}^2 + 2F\dot{u}\dot{v} + G\dot{v}^2}\sqrt{E\dot{u}^2 + 2F\dot{u}\dot{v} + G\dot{v}^2}} \\ &= \frac{1 + 2e^2}{\sqrt{2 + 4e^2}\sqrt{1 + e^2}} = \sqrt{\frac{1 + 2e^2}{2 + 2e^2}} \,. \end{split}$$

3.15 Conformal maps

Definition 3.91: Conformal map

Let ${\mathcal S}$ and $\widetilde{{\mathcal S}}$ be regular surfaces, and

$$f: \mathcal{S} \to \widetilde{\mathcal{S}}$$

a local diffeomorphism. We say that f is a **conformal** map if for all $\mathbf{p} \in \mathcal{S}$ and $\mathbf{v}, \mathbf{w} \in T_{\mathbf{p}} \mathcal{S}$ is holds

$$\theta = \tilde{\theta}$$
.

where:

- θ is the angle between **v** and **w**,
- $\hat{\theta}$ is the angle between $d_{\mathbf{p}}f(\mathbf{v})$ and $d_{\mathbf{p}}f(\mathbf{w})$.

In this case, we say that \mathcal{S} and $\widetilde{\mathcal{S}}$ are **conformal**.

Proposition 3.92

Let f be a local isometry. Then f is a conformal map.

Theorem 3.93

Let $\mathcal S$ and $\widetilde{\mathcal S}$ be regular surfaces and $f: \mathcal S \to \widetilde{\mathcal S}$ be a local diffeomorphism. They are equivalent:

- 1. f is a conformal map.
- 2. Let $\sigma: U \to \mathcal{S}$ be a regular chart of \mathcal{S} and consider the chart of $\widetilde{\mathcal{S}}$ given by

$$\tilde{\boldsymbol{\sigma}}: U \to \widetilde{\mathcal{S}}, \qquad \tilde{\boldsymbol{\sigma}} = f \circ \boldsymbol{\sigma}.$$

Then, there exists $\lambda: U \to \mathbb{R}$ such that

$$\widetilde{\mathscr{F}}_1 = \lambda(u, v)\mathscr{F}_1, \quad \forall (u, v) \in U,$$

where \mathcal{F}_1 and $\widetilde{\mathcal{F}}_1$ are the first fundamental forms of $\boldsymbol{\sigma}$ and $\tilde{\boldsymbol{\sigma}}$, respectively.

Theorem 3.94

Let ${\mathcal S}$ and $\widetilde{{\mathcal S}}$ be regular surfaces and consider charts

$$\sigma: U \to \mathcal{S}, \qquad \tilde{\sigma}: U \to \tilde{\mathcal{S}}.$$

Assume there exists $\lambda: U \to \mathbb{R}$ such that

$$\widetilde{\mathscr{F}}_1 = \lambda(u, v) \mathscr{F}_1, \quad \forall (u, v) \in U,$$

where \mathscr{F}_1 and $\widetilde{\mathscr{F}}_1$ are the first fundamental forms of $\boldsymbol{\sigma}$ and $\tilde{\boldsymbol{\sigma}}$, respectively. We have:

- 1. The surfaces $\sigma(U)$ and $\widetilde{\mathcal{S}}$ are conformal.
- 2. A conformal map is given by

$$f: \boldsymbol{\sigma}(U) \to \widetilde{\mathcal{S}}, \qquad f = \tilde{\boldsymbol{\sigma}} \circ \boldsymbol{\sigma}^{-1}.$$

Example 3.95: Stereographic Projection

Question. Denote the unit sphere by

$$\mathbb{S}^2 = \{(x,y,z) \in \mathbb{R}^3 : \ x^2 + y^2 + z^2 = 1\},$$

and consider the surface

$$\mathcal{S} = \mathbb{S}^2 \setminus \{N\},\,$$

where the point N=(0,0,1) is the North Pole. Denote the plane $\{z=0\}$ by

$$\widetilde{\mathcal{S}} = \{(x,y,z) \in \mathbb{R}^3 \ : \ z = 0\},$$

The plane $\{z = 0\}$ slices through the equator of the sphere. Let P = (x, y, z) be any point on \mathbb{S}^2 except the north pole. The line joining the north pole to P intersects the plane $\{z = 0\}$ at the point P'. The point P' defines the *Stereographic Projection* map, which is easily computed to be:

$$f: \mathcal{S} \to \widetilde{\mathcal{S}}, \quad f(x, y, z) = \left(\frac{x}{1-z}, \frac{y}{1-z}, 0\right).$$

Prove that:

- 1. f is a conformal map.
- 2. *f* is not a local isometry.

Note: In particular, the Sphere and the Plane are conformal.

Solution. It is not difficult to prove that f is invertible, with inverse given by

$$\sigma(u,v) = \left(\frac{2u}{u^2 + v^2 + 1}, \frac{2v}{u^2 + v^2 + 1}, 1 - \frac{2}{u^2 + v^2 + 1}\right).$$

We have that σ is a regular chart for S, forming an altas of one chart. It is straightforward to compute that the coefficients of the first fundamental form of σ are

$$E = G = \lambda(u, v) := \frac{4}{(u^2 + v^2 + 1)^2}, \qquad F = 0.$$

In particulaar the first fundamental form is

$$\mathcal{F}_1 = \lambda(u, v)(du^2 + dv^2).$$

Define the chart of $\widetilde{\mathcal{S}}$:

$$\tilde{\boldsymbol{\sigma}} = f \circ \boldsymbol{\sigma}$$
.

Since σ is the inverse of f, we have that

$$\tilde{\boldsymbol{\sigma}}(u,v) = (u,v,0)$$
.

As already computed, the first fundamental form of $\tilde{\sigma}$ is

$$\widetilde{\mathcal{F}}_1 = du^2 + dv^2 \,.$$

We can now conclude:

1. We have that

31

$$\widetilde{\mathscr{F}}_1 = \frac{1}{\lambda} \mathscr{F}_1$$
.

Since $\mathcal{A} = \{ \sigma \}$ is an atlas for \mathcal{S} , by Theorem 3.93 we conclude that f is a conformal map.

2. Since λ is not always equal to 1, we have that

$$\widetilde{\mathcal{F}}_1 \neq \mathcal{F}_1$$
.

Therefore, by Theorem 3.84, we conclude that f cannot be a local isometry.

Example 3.96: Sphere and Plane are conformal

Question. Let S be the plane $\{z = 0\}$ with chart

$$\sigma(u,v) := (u,v,0), \quad u,v \in \mathbb{R}.$$

Let $\widetilde{\mathcal{S}}$ be the sphere \mathbb{S}^2 with parametrization

$$\tilde{\boldsymbol{\sigma}}(u,v) := (\cos(u)\operatorname{sech}(v),\sin(u)\operatorname{sech}(v),\tanh(v))$$
.

- 1. Compute the first fundamental forms of σ and $\tilde{\sigma}$.
- 2. Show that \mathcal{S} and $\widetilde{\mathcal{S}}$ are conformal.

Solution.

1. As already computed, the first fundamental form of σ is

$$\mathcal{F}_1 = du^2 + dv^2.$$

Using the identitities

$$\frac{d}{dv}\left(\operatorname{sech}(v)\right) = -\operatorname{sech}(v)\tanh(v),$$

$$\frac{d}{dv}\left(\tanh(v)\right) = \operatorname{sech}^{2}(v),$$

we obtain

$$\tilde{\boldsymbol{\sigma}}_{u} = (-\sin(u)\operatorname{sech}(v), \cos(u)\operatorname{sech}(v), 0)$$

$$\tilde{\boldsymbol{\sigma}}_{v} = (-\cos(v)\operatorname{sech}(v)\tanh(v), -\sin(u)\operatorname{sech}(v)\tanh(v), \operatorname{sech}^{2}(v))$$

By recalling that

$$\operatorname{sech}^2(v) + \tanh^2(v) = 1,$$

we compute

$$\widetilde{E} = \tilde{\boldsymbol{\sigma}}_{u} \cdot \tilde{\boldsymbol{\sigma}}_{u} = \operatorname{sech}^{2}(v)(\cos^{2}(u) + \sin^{2}(u)) = \operatorname{sech}^{2}(v)$$

$$\widetilde{F} = \tilde{\boldsymbol{\sigma}}_{u} \cdot \tilde{\boldsymbol{\sigma}}_{v} = 0$$

$$\widetilde{G} = \widetilde{\boldsymbol{\sigma}}_{v} \cdot \widetilde{\boldsymbol{\sigma}}_{v} = \operatorname{sech}^{2}(v)(\tanh^{2}(v) + \operatorname{sech}^{2}(v)) = \operatorname{sech}^{2}(v)$$

Hence the first fundamental form of $\widetilde{\mathcal{S}}$ is

$$\widetilde{\mathcal{F}}_1 = \operatorname{sech}^2(v) \left(du^2 + dv^2 \right).$$

2. We have computed that

$$\widetilde{\mathscr{F}}_1 = \operatorname{sech}^2(v) \left(du^2 + dv^2 \right) = \operatorname{sech}^2(v) \mathscr{F}_1.$$

Since $A = \{\sigma\}$ is an atlas for \mathcal{S} , by Theorem 3.94 we conclude that \mathcal{S} and $\widetilde{\mathcal{S}}$ are conformal.

3.16 Conformal parametrizations

Definition 3.97: Conformal parametrization

Let S be a regular surface and

$$\sigma: U \to \mathcal{S}$$

be a regular chart of \mathcal{S} . We say that σ is a **conformal parametrization** if the first fundamental form of σ satisfies

$$\mathcal{F}_1 = \lambda(u, v)(du^2 + dv^2)$$

for some function $\lambda: U \to \mathbb{R}$.

Theorem 3.98

A conformal parametrization σ preserves angles between vectors. Specifically, let $\gamma_1(t)$, $\gamma_2(t)$ be curves in \mathbb{R}^2 such that $\dot{\gamma}_1(t_0)$, $\dot{\gamma}_2(t_0)$ make angle θ . If

$$\mathbf{\gamma}_3(t) = \boldsymbol{\sigma} \left(\mathbf{\gamma}_1(t) \right), \qquad \mathbf{\gamma}_4(t) = \boldsymbol{\sigma} \left(\mathbf{\gamma}_2(t) \right),$$

then $\dot{\mathbf{y}}_3(t_0)$, $\dot{\mathbf{y}}_4(t_0)$ also make angle θ .

License

Reuse

This work is licensed under

CC-BY-NC-ND 4.0

Citation

For attribution, please cite this work as:

Fanzon, Silvio. (2024). **Revision Guide of Differential Geometry**.

https://www.silviofanzon.com/2024-Differential-Geometry-Revision/

BibTex citation: