# UniLabTool Protocol v0.1



• Resets StatusByte to default value 0x00









# Oscilloscope



{BIT,MEM,FS,CH, {TCH,TL,TE,TM}}

"12, 1K, 5M, TFFF, 1, 0.0, R, A"

|  | PRM | RANGE    | DESCRIPTION                                    |
|--|-----|----------|------------------------------------------------|
|  | BIT | 12 / 8   | Each channel's sample bitness                  |
|  | MEM | 0 - 32K  | Each channel 's memory depth                   |
|  | FS  | 0 - 5M   | Sampling frequency in Hz                       |
|  | CH  | 4x T / F | Enabled channels (True / False)                |
|  | TCH | 1 - 4    | Trigger source channel number                  |
|  | TL  | 0 - 100% | Trigger level (percentage)                     |
|  | TE  | R/F      | Trigger edge: <b>R</b> ising / <b>F</b> alling |
|  | TM  | A/N/S    | Trig. mode: Auto / Normal / Single             |

• Oscilloscope settings - all

# :SCOPe:SET:BIT {}

{12 | 8}

"12"

• Scope settings - sample bitness

# :SCOPe:SET:MEM {}

{<1;32K>}

"1K"

• Scope settings - memory depth

## :SCOPe:SET:FS {}

{<1;5M>}

"5M"

Scope settings - sampling frequency

## :SCOPe:SET:CH {}

**BBBB}**; (B ⊂ {T | F})

"TTFF"

• Enabled/disabled 4 channels settings

# :SCOPe:GET:ALL?

{BIT,MEM,FS,CH, {TCH,TL,TE,TM}}

"12, 1K, 5M, TFFF, 1, 0.0, R, A"

• Reads all settings (viz. :SET:ALL)

#### :SCOPe:READ:ALL?

#DN{CH1-B0 ..}{CH2-B0 ..}}

"#104 <0x01><0x02> <0x01><0x02>"

- Reads all channels (GPIB binary syntax)
- Either 8-bit or 16-bit, first channel first
- Reenables DMA

# :SCOPe:SET:TRIG {}

● {<1;4>,<0;100>,{R|F},{A|N|S}}

"1, 0.0, R, A"

• Oscilloscope settings - trigger

## :SCOPe:READ:CHn?

"#102 <0x01><0x02>"

- Reads 1 channel (GPIB binary syntax)
- Either 8-bit or 16-bit raw ADC data
- · Reenables DMA

#### :SCOPe:RST

- Resets scope buffers
- Reenables DMA

# **Logic Analyzer**

## :LA:SET:ALL {}

{MEM,CH, {TCH,TE,TM}}

"1K, TFFF, 1, R, A"

| PRM | RANGE    | DESCRIPTION                                    |
|-----|----------|------------------------------------------------|
| MEM | 0 - 32K  | Each channel's memory depth                    |
| СН  | 4x T / F | Enabled channels (True / False)                |
| TCH | 1 - 4    | Trigger source channel number                  |
| TE  | R/F      | Trigger edge: <b>R</b> ising / <b>F</b> alling |
| TM  | A/N/S    | Trig. mode: Auto / Normal / Single             |

• Logic analyzer settings - all

# :LA:SET:MEM {}

{<1;32K>}

"1K"

• LA settings - memory depth

## :LA:SET:CH {}

 $\{BBBB\}; (B \subset \{T \mid F\})$ 

"TTFF"

• LA settings - trigger

# :LA:SET:TRIG {}

{<1;4>,{R|F},{A|N|S}}

"1, R, A"

• Enabled/disabled 4 channels settings

### :LA:RST

- Resets scope buffers
- Enables DMA

#### :LA:SET?

{MEM,CH, {TCH,TE,TM}}

"1K, TFFF, 1, R, A"

• Reads all settings (viz. :SET:ALL)

#### :LA:READ:ALL?

#DN{CH1-B0 ..}{CH2-B0 ..}}

"#104 <0x01><0x02> <0x01><0x02>"

- Reads all channels (GPIB binary syntax)
- Bits packed into bytes, first chann first
- Reenables DMA

#### :LA:READ:CHn?

{#DN B0 B1 ..}; (n ⊂ <1;4>)

"#102 <0x01><0x02>"

- Reads 1 channel (GPIB binary syntax)
- Bits packed into bytes
- · Reenables DMA

# **Signal Generator**

### :SGEN:SET:CHn?

**FREQ, AMPL, TYPE}; (n ⊂ <1;2>)** 

"1000,50,SINE"

| PRM  | RANGE   | DESCRIPTION                        |
|------|---------|------------------------------------|
| FREQ | 1 - 1M  | Generated signal frequency in Hz   |
| AMPL | 0 - 100 | Generated signal amplitude in %    |
| TYPE |         | SINE   SAW   SQUARE   TRIA   NOISE |

• Reads signal generator settings

# :SGEN:SET:CHn {}

{ FREQ, AMPL, TYPE }

"800,40,SQUARE"

• Sets signal generator parameters

#### :SGEN:STARt

• Starts signal generator

#### :SGEN:STOP

• Stops signal generator

# **PWM Generator**

### :PWM:SET:CHn?

**FREQ, DUTY** }; (n ⊂ <1;2>)

"1100,60"

| l | PRM  | RANGE   | DESCRIPTION                   |
|---|------|---------|-------------------------------|
|   | FREQ | 1 - 1M  | Generated PWM frequency in Hz |
|   | DUTY | 0 - 100 | Generated PWM duty in %       |

• Reads PWM generator settings

# :PWM:SET:CHn {}

{ FREQ, DUTY }

"900,30"

• Sets PWM generator parameters

#### :PWM:STARt

• Starts PWM generator

#### :PWM:STOP

• Stops PWM generator

# **Overview**

```
*IDN?
                                      :SCOPe:RST
*STB?
                                                       { BIT, MEM, FS, CH, {TCH, TL, TE, TM} }
                                      :SCOPe:SET:ALL
*RST
                                      :SCOPe:SET:BIT
                                                       { 12 | 8 }
*CLS
                                      :SCOPe:SET:MEM { <1;32K> }
                                      :SCOPe:SET:FS
                                                       { <1;1M> }
                                      :SCOPe:SET:CH
                                                       { BBBB; (B ⊂ {T | F}) }
:SYSTem:MODE?
                                      :SCOPe:SET:TRIG
                                                       { <1;4>,<0;100>,{R|F},{A|N|S} }
:SYSTem:MODE { SCOPE | VM | LA }
                                      :SCOPe:GET:ALL?
:SYSTem:ERR?
                                      :SCOPe:READ:ALL?
                                      :SCOPe:READ:CHn?
:VM:READ:ALL?
                                      :LA:RST
:VM:READ:CHn?
                                                       { MEM,CH, {TCH,TE,TM} }
                                      :LA:SET:ALL
                                                       { <1;32K> }
                                      :LA:SET:MEM
                                                       { BBBB; (B ⊂ {T | F}) }
                                      :LA:SET:CH
:SGEN:SET:CHn?
                                                       { <1;4>,{R|F},{A|N|S} }
                                      :LA:SET:TRIG
:SGEN:SET:CHn { FREQ, AMPL, TYPE }
                                      :LA:SET?
:SGEN:STARt
                                      :LA:READ:ALL?
:SGEN:STOP
                                      :LA:READ:CHn?
:PWM:SET:CHn?
                                      :CNTR:READ?
:PWM:SET:CHn { FREQ, DUTY }
                                      :CNTR:STARt
:PWM:STARt
                                      :CNTR:STOP
:PWM:STOP
```

# **Examples**

```
// Identify after connect
> :IDN?
$ CTU,UniLabTool-F103C8,0.0.2,0
// Restart, set mode to Voltmeter, check Status, and read all channels
> *RST
> :SYST:MODE VM
> *STB?
$ 0x00
> :VM:READ:ALL?
$ 1,2024,0,35,654
// Try to reset Scope, check Status, failed so read error message, and reset status
> :SCOP:RST
> *STB?
$ 0x16
> :SYST:ERR?
$ -2, Invalid mode
> *CLS
// Switch mode to Scope, set up, check Status, optionally reset and read buffer of CH3
>:SYST:MODE SCOPE
> :SCOP:SET:ALL 8,2,1K,FFTF,3,50,F,S
> *STB?
$ 0x00
> :SCOP:RST
> :SCOP:READ:CH3?
$ #3002 <0x01><0x02>
```