Project I: SEMMA with Regularized Logistic Regression

Appiah Prince* University of Texas at El Paso (UTEP)

September 06, 2022

Contents

	ng in the data							
Exp	Exploratory Data Analysis(EDA)							
2.1	Frequency Distribution of the target variable class	5						
2.2	Missing Values	Ę						
Var	riable Screening	6						
3.1	Chisq test and Wilcoxon test	7						
3.2	Non Significant Variables	8						
3.3	Correlation plot among the variables	Ć						
0.4	Removing non significant variables	Ć						
3.4	Removing non significant variables	ì						
	a Partition	10						
Dat								
Dat	a Partition	10						
Dat Log	a Partition sistic Regression Modeling	10						
Dat Log 5.1	ca Partition cistic Regression Modeling Selecting the best tuning parameter	10 10 11						
Log 5.1 5.2 5.3	ca Partition cistic Regression Modeling Selecting the best tuning parameter	10 10 11 11						
Log 5.1 5.2 5.3	ca Partition Sistic Regression Modeling Selecting the best tuning parameter	10 10 11 11 12						
	2.1 2.2 Var 3.1 3.2 3.3	2.1 Frequency Distribution of the target variable class						

^{*}pappiah@miners.utep.edu

1 Bring in the data

```
diabetes <- read.csv("diabetes_data_upload.csv")
dim(diabetes)</pre>
```

[1] 520 17

names(diabetes)

```
[1] "Age"
                             "Gender"
                                                   "Polyuria"
## [4] "Polydipsia"
                             "sudden.weight.loss" "weakness"
  [7] "Polyphagia"
                             "Genital.thrush"
                                                   "visual.blurring"
                                                   "delayed.healing"
## [10] "Itching"
                             "Irritability"
## [13] "partial.paresis"
                             "muscle.stiffness"
                                                   "Alopecia"
## [16] "Obesity"
                             "class"
```

head(diabetes)

##		Age	Gender	Polyuri	ia F	Polydipsia	sudden.	weig	ght.loss	weakness	Polyphagia
##	1	40	Male	1	Ιo	Yes			No	Yes	No
##	2	58	Male	1	lο	No			No	Yes	No
##	3	41	Male	Υe	es	No			No	Yes	Yes
##	4	45	Male	1	Ιo	No			Yes	Yes	Yes
##	5	60	Male	Υe	es	Yes			Yes	Yes	Yes
##	6	55	Male	Υe	es	Yes			No	Yes	Yes
##		Gen	ital.thi	rush vis	sua]	l.blurring	Itching	Iri	ritabilit	y delayed	d.healing
##	1			No		No	Yes		N	Io	Yes
##	2			No		Yes	No		N	Io	No
##	3			No		No	Yes		N	Io	Yes
##	4			Yes		No	Yes		N	Io	Yes
##	5			No		Yes	Yes		Υe	es	Yes
##	6			No		Yes	Yes		N	Io	Yes
##		part	tial.pai	cesis mu	isc]	le.stiffnes	ss Alope	cia	Obesity	class	
##	1			No		Ye	es	Yes	Yes	Positive	
##	2			Yes		1	۱o	Yes	No	Positive	
##	3			No		Ye	es	Yes	No	Positive	
##	4			No		1	٧o	No	No	Positive	
##	5			Yes		Ye	es	Yes	Yes	Positive	
##	6			No		Υe	es	Yes	Yes	Positive	

REMARKS

• There are **520** observations and **17** variables.

2 Exploratory Data Analysis(EDA)

```
str(diabetes) # checking for variable types
```

```
## 'data.frame':
                  520 obs. of 17 variables:
## $ Age
                      : int 40 58 41 45 60 55 57 66 67 70 ...
## $ Gender
                      : chr "Male" "Male" "Male" ...
## $ Polyuria
                      : chr
                           "No" "No" "Yes" "No" ...
## $ Polydipsia
                            "Yes" "No" "No" "No" ...
                      : chr
## $ sudden.weight.loss: chr
                            "No" "No" "Yes" ...
## $ weakness
                            "Yes" "Yes" "Yes" "Yes" ...
                     : chr
                            "No" "No" "Yes" "Yes" ...
## $ Polyphagia
                    : chr
## $ Genital.thrush : chr
                            "No" "No" "Yes" ...
## $ visual.blurring : chr
                            "No" "Yes" "No" "No" ...
## $ Itching
                     : chr
                            "Yes" "No" "Yes" "Yes" ...
## $ Irritability : chr
                            "No" "No" "No" "No" ...
## $ delayed.healing : chr
                            "Yes" "No" "Yes" "Yes" ...
## $ partial.paresis : chr
                            "No" "Yes" "No" "No" ...
## $ muscle.stiffness : chr
                            "Yes" "No" "Yes" "No" ...
## $ Alopecia
                            "Yes" "Yes" "Yes" "No" ...
               : chr
## $ Obesity
                            "Yes" "No" "No" "No" ...
                    : chr
## $ class
                    : chr "Positive" "Positive" "Positive" "Positive" ...
```

Remarks

• Age is numeric variable while the remaining 16 variables are character variables.

```
# INSPECT THE DISTINCT VALUES OF EACH X

cols <- 1:NCOL(diabetes)
for (j in cols){
    x <- diabetes[,j]
    print(names(diabetes)[j])
    print(sort(unique(x, incomparables=TRUE)))
    print(table(x, useNA="ifany"))
}</pre>
```

```
## [1] "Age"

## [1] 16 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

## [26] 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 72 79 85

## [51] 90

## x
```

```
## 16 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
## 1 2 1 6 9 1 25 3 5 4 6 30 8 7 20 16 24 4 9 25 7 18 8 21 28
## 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 72 79 85 90
## 18 5 4 20 16 22 8 15 18 4 15 8 7 3 5 6 9 8 10 5 5 9 1 2 2
## [1] "Gender"
## [1] "Female" "Male"
## x
## Female
          Male
##
     192
            328
## [1] "Polyuria"
## [1] "No" "Yes"
## x
## No Yes
## 262 258
## [1] "Polydipsia"
## [1] "No" "Yes"
## x
## No Yes
## 287 233
## [1] "sudden.weight.loss"
## [1] "No" "Yes"
## x
## No Yes
## 303 217
## [1] "weakness"
## [1] "No" "Yes"
## x
## No Yes
## 215 305
## [1] "Polyphagia"
## [1] "No" "Yes"
## x
## No Yes
## 283 237
## [1] "Genital.thrush"
## [1] "No" "Yes"
## x
## No Yes
## 404 116
## [1] "visual.blurring"
## [1] "No" "Yes"
## x
## No Yes
## 287 233
## [1] "Itching"
```

```
## [1] "No" "Yes"
## x
## No Yes
## 267 253
## [1] "Irritability"
## [1] "No" "Yes"
## x
## No Yes
## 394 126
## [1] "delayed.healing"
## [1] "No" "Yes"
## x
## No Yes
## 281 239
## [1] "partial.paresis"
## [1] "No" "Yes"
## x
## No Yes
## 296 224
## [1] "muscle.stiffness"
## [1] "No" "Yes"
## x
## No Yes
## 325 195
## [1] "Alopecia"
## [1] "No" "Yes"
## x
## No Yes
## 341 179
## [1] "Obesity"
## [1] "No" "Yes"
## x
## No Yes
## 432 88
## [1] "class"
## [1] "Negative" "Positive"
## x
## Negative Positive
##
        200
                 320
```

2.1 Frequency Distribution of the target variable class

```
t <- table(diabetes$class, useNA="ifany")
freq_dist <- as.data.frame(t)
colnames(freq_dist) <- c("class", "frequency")
freq_dist

## class frequency</pre>
```

1 Negative

2 Positive

200

320

• There are **320** patients that their diabetes diagnosis is positive while **200** patients are diagnose negative. So, there is an unequal distribution of the results of the diagnosis. Hence, we have a slightly unbalanced classification problem.

2.2 Missing Values

```
library(questionr)
freq.na(diabetes)
```

##		missing	%
##	Age	0	0
##	Gender	0	0
##	Polyuria	0	0
##	Polydipsia	0	0
##	${\tt sudden.weight.loss}$	0	0
##	weakness	0	0
##	Polyphagia	0	0
##	Genital.thrush	0	0
##	visual.blurring	0	0
##	Itching	0	0
##	Irritability	0	0
##	delayed.healing	0	0
##	partial.paresis	0	0
##	muscle.stiffness	0	0
##	Alopecia	0	0
##	Obesity	0	0
##	class	0	0

There are no missing values in the dataset.

```
# Assigning 0 for Negative class and 1 for Positive class
diabetes$class <- ifelse(diabetes$class=="Negative", 0,1)</pre>
```

3 Variable Screening

```
# Two sample t-test
cond.1 <- diabetes$class == 1</pre>
cond.2 <- as.vector(which(sapply(diabetes[,-c(17)], is.numeric), arr.ind = T))</pre>
print("Test of Normality of the numerical variables for patients diagnosed
      diabetes postive")
## [1] "Test of Normality of the numerical variables for patients diagnosed \n
shapiro.test(diabetes[cond.1, cond.2])
##
## Shapiro-Wilk normality test
## data: diabetes[cond.1, cond.2]
## W = 0.9804, p-value = 0.0002325
print("Test of Normality of the numerical variables for patients diagnosed
      diabetes Negative")
## [1] "Test of Normality of the numerical variables for patients diagnosed \n
shapiro.test(diabetes[!cond.1, cond.2])
##
## Shapiro-Wilk normality test
## data: diabetes[!cond.1, cond.2]
## W = 0.96687, p-value = 0.0001182
```

diab

diab

Remarks

• For the numerical variables, we first use Shapiro-Wilk test to check the assumption of normality so as to know whether to use parametric or nonparametric approach for the two sample t-test. We see from the output of the Shapiro-Wilk normality test that the assumption of normality is violated since the p-values are less than 0.05 in each group. Thus, we use the Wilcoxon rank-sum test.

3.1 Chisq test and Wilcoxon test

```
suppressPackageStartupMessages(library(car))
vars.nominal <- c("Gender", "Polyuria", "Polydipsia", "sudden.weight.loss",</pre>
                    "weakness", "Polyphagia", "Genital.thrush", "visual.blurring",
                    "Itching", "Irritability", "delayed.healing", "partial.paresis",
                    "muscle.stiffness", "Alopecia", "Obesity")
cols.x <- 1:(NCOL(diabetes)-1)</pre>
xnames <- names(diabetes)[cols.x]</pre>
y <- diabetes$class
OUT <- NULL
for (j in 1:length(cols.x)){
  x <- diabetes[, cols.x[j]]</pre>
  xname <- xnames[j]</pre>
  if (is.element(xname, vars.nominal)){
    tbl <- table(x, y)
    pvalue <- chisq.test(tbl)$p.value</pre>
  } else {
    # WILCOXON TEST
    pvalue <- wilcox.test(x~y, alternative="two.sided")$p.value</pre>
  }
  OUT <- rbind(OUT, cbind(xname=xname, pvalue=pvalue))</pre>
}
OUT <- as.data.frame(OUT, stringsAsFactors =F)</pre>
colnames(OUT) <- c("name", "pvalue")</pre>
OUT
```

```
##
                    name
                                        pvalue
## 1
                             0.01240447825802
                     Age
## 2
                  Gender 3.28970373055333e-24
## 3
                Polyuria 1.74091178034421e-51
## 4
              Polydipsia 6.18700964088628e-49
      sudden.weight.loss 5.96916626254991e-23
## 5
## 6
                weakness 4.86984344658554e-08
## 7
              Polyphagia 1.16515843464091e-14
          Genital.thrush
## 8
                           0.0160979029919381
## 9
         visual.blurring 1.70150367532412e-08
```

```
## 10
                 Itching
                            0.829748395948501
            Irritability 1.77148314939594e-11
## 11
## 12
         delayed.healing
                            0.326659937714402
         partial.paresis 1.56528907105633e-22
## 13
        muscle.stiffness 0.00693909569792398
## 14
## 15
                Alopecia 1.90927949636339e-09
## 16
                            0.127107993198967
                 Obesity
```

• The predictors variables **itching**, **delayed.healing** and **obesity** have relatively higher p-values as compared to the other predictor variables.

3.2 Non Significant Variables

Remarks

• The predictor variables **Itching** and **delayed.healing** are unimportant predictors given the liberal threshold significance level of **0.25**. Therefore, we remove the predictor variables **Itching** and **delayed.healing** from the data.

3.3 Correlation plot among the variables

```
library(GoodmanKruskal)
data <- GKtauDataframe(diabetes)
plot(data, corColors = "magenta")</pre>
```


• We observe that there is no high correlation among the variables that is no high multicollinearity.

3.4 Removing non significant variables

```
diabetes <- diabetes[, -c(10, 12)]
names(diabetes)</pre>
```

```
##
    [1] "Age"
                              "Gender"
                                                    "Polyuria"
    [4] "Polydipsia"
                              "sudden.weight.loss" "weakness"
##
    [7] "Polyphagia"
                              "Genital.thrush"
                                                    "visual.blurring"
## [10] "Irritability"
                              "partial.paresis"
                                                    "muscle.stiffness"
                              "Obesity"
## [13] "Alopecia"
                                                    "class"
```

4 Data Partition

```
set.seed(123)
n <- NROW(diabetes)
ratio <- 2/3
id.training <- sample(1:n, size=n*ratio, replace=FALSE)
D1 <- diabetes[id.training,] # training data
D2 <- diabetes[-id.training,] # test data
dim(D1)

## [1] 346  15

dim(D2)</pre>
## [1] 174  15
```

- The training data has 346 observations and 15 variables
- The test data has 174 observations and 15 variables

5 Logistic Regression Modeling

• The graph shows that 12 variables must be selected as important predictor variables.

5.1 Selecting the best tuning parameter

cvfit.lasso\$lambda.min

[1] 0.007622463

Remarks

• We used the minimum cross-validation error as a criteria for selecting best tuning parameter.

5.2 Important Predictor Variables

```
result.lasso <- cvfit.lasso$fit
beta.hat <- as.vector(result.lasso$beta[-1, cvfit.lasso$min])
cutoff <- 0
terms <- colnames(X)[abs(beta.hat) > cutoff]
terms

## [1] "Age" "GenderMale" "PolyuriaYes"
```

```
## [1] "Age" "GenderMale" "Polyurlares"

## [4] "PolydipsiaYes" "sudden.weight.lossYes" "PolyphagiaYes"

## [7] "Genital.thrushYes" "IrritabilityYes" "partial.paresisYes"

## [10] "muscle.stiffnessYes" "AlopeciaYes" "ObesityYes"
```

5.3 Final Best Model Fit

```
##
## Call:
## glm(formula = formula.lasso, family = "binomial", data = D1)
##
## Deviance Residuals:
##
       Min
                                     3Q
                  1Q
                       Median
                                             Max
## -2.63128 -0.23995
                      0.01083
                                         3.00708
                                0.07846
##
## Coefficients:
##
                       Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                        1.69441
                                   1.13030
                                            1.499 0.13385
                                   0.02727 -1.540 0.12345
## Age
                       -0.04201
## GenderMale
                       -3.63158
                                   0.66055 -5.498 3.85e-08 ***
                                   0.66914 4.943 7.70e-07 ***
## PolyuriaYes
                        3.30744
                                   0.81488 4.153 3.29e-05 ***
## PolydipsiaYes
                        3.38383
## sudden.weight.lossYes 0.89416
                                   0.56036 1.596 0.11056
## PolyphagiaYes
                        1.49313 0.64072 2.330 0.01979 *
## Genital.thrushYes
                        1.64468
                                   0.61436 2.677 0.00743 **
                                   0.71811
## IrritabilityYes
                        2.86832
                                            3.994 6.49e-05 ***
## partial.paresisYes
                                   0.58791 2.413 0.01583 *
                       1.41855
## muscle.stiffnessYes -0.50038
                                   0.64662 -0.774 0.43902
                                   0.61856 -1.647 0.09950 .
## AlopeciaYes
                       -1.01894
```

- The AIC for the final model is somehow smaller which is good
- Most of the predictor variables are statistically significant considering their p-values.

6 Model Assessment/Deployment

6.1 Applying the final logistic model to the test data D2

```
yobs <- D2$class
phat <- predict(fit.lasso, newdata=D2, type="response")
cutoff <- 0.5
yhat <- (phat <= cutoff) + 0
table(yobs, yhat)

## yhat
## yobs 0 1
## 0 7 59
## 1 98 10</pre>
```

6.2 ROC CURVE AND AUC

```
suppressPackageStartupMessages(library(verification))
a.ROC <- roc.area(obs=yobs, pred=phat)$A
print(a.ROC)</pre>
```

```
## [1] 0.9588945
```

```
suppressPackageStartupMessages(library(cvAUC))
AUC <- ci.cvAUC(predictions=phat, labels=yobs, folds=1:NROW(D2), confidence=0.95); AUC
## $cvAUC
## [1] 0.9588945
##
## $se
## [1] 0.01455277
##
## $ci
## [1] 0.9303716 0.9874174
##
## $confidence
## [1] 0.95
auc.ci <- round(AUC$ci, digits=3)</pre>
suppressPackageStartupMessages(library(verification))
mod.glm <- verify(obs=yobs, pred=phat)</pre>
## If baseline is not included, baseline values will be calculated from the sample obs
roc.plot(mod.glm, plot.thres = NULL)
text(x=0.7, y=0.2, paste("Area under ROC =", round(AUC$cvAUC, digits=3),
    "with 95% CI (", auc.ci[1], ",", auc.ci[2], ").",
   sep=" "), col="blue", cex=1.2)
```


• The area under the ROC curve is **0.959** and its confidence interval is (0.930, 0.987)