

Vadhiraj K P P

Department of Electrical & Electronics Engineering



# Lecture 1 - Network Terminology & Basic Concepts

Vadhiraj K P P

Department of Electrical & Electronics Engineering



### **Network Terminology**

#### **Electrical Network:**

An interconnection of electrical elements.

#### **Electrical Circuit:**

An electrical network with at least one source and a sink and having a closed path for current flow.



#### **Network Terminology**

#### **Active Element:**

An element which supplies or delivers energy in an electrical network.

Eg: Voltage Sources & Current Sources

#### **Passive Element:**

An element which absorbs or stores energy in an electrical network.

Eg: Resistors, Inductors & Capacitors

## PES UNIVERSITY

#### **Electric Current**

An electric current is defined as the rate of flow of charges across the cross section of a conductor.

It is given by, 
$$I = \frac{Q}{t}$$
 (or)  $i = \frac{dq}{dt}$ 

It is measured in Amperes (A) & 1 Ampere = 1 Coulomb/sec





#### **Potential Difference**

The energy required to move unit positive charge from one terminal to another is defined as the potential difference between the terminals.

It is given by, 
$$V = \frac{W}{Q}$$

It is measured in Volts (V) & 1 Volt = 1 Joule/Coulomb





### **Double Subscript Notation for Voltage**





#### **Electric Power**

The rate of absorption or delivery of Electrical energy is called Electrical Power.

It is given by,  $P = V^*I$ 

It is measured in Watts (W) & 1 Watt = (1 Volt)\*(1 Ampere)





# PES UNIVERSITY

#### **Ohm's Law**

At a constant temperature, the potential difference across the terminals of a conductor is directly proportional to the current flowing through it.

i.e., 
$$V \propto I$$
  
 $V = R*I$ 

Here, R is the electrical resistance of the conductor. It is measured in Ohms ( $\Omega$ ) and 1 Ohm = 1 Volt/Ampere





#### **Ohm's Law**

Resistance of a conductor is the opposition offered to the flow of current through it.

It depends on the resistivity of the material & its dimensions.

i.e., 
$$R = \frac{\rho l}{A}$$

Where, p is the resistivity measured in Ohm-m

Conductance, 
$$G = \frac{1}{R}$$

It is measured in Siemens (S)



#### **Active and Passive Sign Conventions**

### **Active sign convention:**

Applicable to active elements
It says "current leaves positive terminal in an active element".

#### **Passive Sign Convention:**

Applicable to passive elements
It says "current enters positive terminal in a passive element".





#### **Text Book & References**

#### **Text Book:**

"Electrical and Electronic Technology" E. Hughes (Revised by J. Hiley, K. Brown & I.M Smith), 11<sup>th</sup> Edition, Pearson Education, 2012.

#### **Reference Books:**

- 1. "Basic Electrical Engineering", K Uma Rao, Pearson Education, 2011.
- 2. "Basic Electrical Engineering Revised Edition", D. C. Kulshreshta, Tata- McGraw-Hill, 2012.
- 3. "Engineering Circuit Analysis", William Hayt Jr., Jack E. Kemmerly & Steven M. Durbin, 8<sup>th</sup> Edition, McGraw-Hill, 2012.



## **THANK YOU**

Vadhiraj K P P

Department of Electrical & Electronics Engineering

vadhirajkpp@pes.edu