### Multiple Discrete Variables (Overview)

Probability and Statistics for Data Science

Carlos Fernandez-Granda





These slides are based on the book Probability and Statistics for Data Science by Carlos Fernandez-Granda, available for purchase here. A free preprint, videos, code, slides and solutions to exercises are available at https://www.ps4ds.net

### Key questions

How to jointly model multiple uncertain quantities

How to estimate causal relationships from data

How to fight the curse of dimensionality



How to jointly model multiple uncertain quantities

Represent them as random variables in the same probability space

### Rolling a die twice

Probability space representing two rolls of a six-sided die

Outcomes:

$$\omega := \begin{bmatrix} \omega_1 \\ \omega_2 \end{bmatrix} \qquad \omega_1, \omega_2 \in \{1, 2, 3, 4, 5, 6\}$$

#### Random variables

Define random variables to represent first roll, second roll and sum of rolls

$$ilde{a}(\omega) := \omega_1 \ ilde{b}(\omega) := \omega_2 \ ilde{c}(\omega) := \omega_1 + \omega_2$$

The outcome fixes the values of all random variables simultaneously

If 
$$\omega = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$
  $\tilde{a}(\omega) = 3$   $\tilde{b}(\omega) = 1$   $\tilde{c}(\omega) = 4$ 

## Sample space

Ω

$$A_1:=\{ ilde{a}=a_1\}$$
  $A_2:=\{ ilde{a}=a_2\}$   $\Omega$ 

$$B_1:=\left\{ ilde{b}=b_1
ight\}$$
  $B_2:=\left\{ ilde{b}=b_2
ight\}$ 

$$A_1 \cap B_1$$
  $A_2 \cap B_1$   $A_1 \cap B_2$   $A_2 \cap B_2$ 



Ω

## Sample space

Ω



$$B_1:=\left\{ ilde{b}=b_1
ight\}$$
  $B_2:=\left\{ ilde{b}=b_2
ight\}$ 

Ω

$$A_1 \cap B_1 \qquad A_2 \cap B_1$$

$$A_1 \cap B_2 \qquad A_2 \cap B_2$$



## Joint probability mass function

The joint pmf of  $\tilde{a}:\Omega\to A$  and  $\tilde{b}:\Omega\to B$  is defined as

$$p_{\tilde{a},\tilde{b}}(a,b) := P(\tilde{a} = a, \tilde{b} = b)$$

# Joint pmf



#### Random vector

Each entry  $\tilde{x}[i]$  is a random variable in the same probability space

$$ilde{x} := egin{bmatrix} ilde{x}[1] \ ilde{x}[2] \ hdots \ ilde{x}[d] \end{bmatrix}$$

## Joint probability mass function

The joint pmf of a discrete random vector  $\tilde{x}$  is

$$p_{\tilde{x}}(x) := P(\tilde{x}[1] = x[1], \tilde{x}[2] = x[2], \dots, \tilde{x}[d] = x[d])$$

## Computing probabilities



$$P(\{\tilde{a}<2,\tilde{b}>1\})=p_{\tilde{a},\tilde{b}}(1,2)+p_{\tilde{a},\tilde{b}}(1,3)=0.5$$

### Properties of joint pmfs?

Joint pmfs are nonnegative (they are probabilities)

$$\sum_{a\in A}\sum_{b\in B}p_{\tilde{a},\tilde{b}}\left(a,b\right)=\mathrm{P}\left(\left\{\tilde{a}\in A\right\}\cap\left\{\tilde{b}\in B\right\}\right)=1$$

$$\sum_{x[1]\in R_1} \sum_{x[2]\in R_2} \cdots \sum_{x[d]\in R_d} p_{\tilde{x}}(x) = 1$$

Any function with these properties is a valid joint pmf

# Estimating a joint pmf from data

If data equal

$$\begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

How would you estimate  $p_{\tilde{a},\tilde{b}}([\frac{1}{2}])$ ?

## Empirical joint pmf

Data:  $X := \{x_1, x_2, \dots, x_n\}$ 

The empirical joint pmf is

$$p_X(v) := \frac{\sum_{i=1}^n 1_{x_i=v}}{n},$$

where  $1_{x_i=v}$  equals one if  $x_i=v$  and zero otherwise

### Precipitation in Oregon



Goal: Model precipitation in Coos Bay, Corvallis, John Day

## Precipitation in Oregon



## Empirical joint pmf (%)





In a model with many variables, how do we characterize behavior of individual variables?

# $p_{\tilde{a}}$ ?



# Marginal pmf



# Marginal pmf



## Coos Bay?



## Marginal pmf



### What if we know that $\tilde{a} = 3$ ?



### What if we know that $\tilde{a} = 3$ ?



# Is this a valid pmf?



$$p_{\tilde{b}\,|\,\tilde{a}}(b\,|\,a)=rac{p_{\tilde{a},\tilde{b}}(a,b)}{p_{\tilde{a}}(a)}$$



### Chain rule for discrete random variables

$$p_{\tilde{a},\tilde{b}}(a,b) = p_{\tilde{a}}(a) p_{\tilde{b}\mid\tilde{a}}(b\mid a)$$
$$= p_{\tilde{b}}(b) p_{\tilde{a}\mid\tilde{b}}(a\mid b)$$

### Chain rule for discrete random vectors

$$p_{\tilde{x}}(x) = p_{\tilde{x}[1]}(x[1]) \prod_{i=1}^{n} p_{\tilde{x}[i] \mid \tilde{x}[1], \dots, \tilde{x}[i-1]}(x[i] \mid x[1], \dots, x[i-1])$$

Any order works!

### Corvallis = 0, John Day = 0?



## Conditional pmfs











### Precipitation in Kingston and Hilo



Goal: Model precipitation in Kingston and Hilo

### Marginal and conditional pmfs



#### Intuition

Two random variables  $\tilde{a}$  and  $\tilde{b}$  are independent if our uncertainty about  $\tilde{a}$  does not change when information about  $\tilde{b}$  is revealed

#### Independence

 $\tilde{a}$  and  $\tilde{b}$  are independent if for any a and b

$$p_{\tilde{a} \mid \tilde{b}}(a \mid b) = P(\tilde{a} = a \mid \tilde{b} = b) = P(\tilde{a} = a) = p_{\tilde{a}}(a)$$

Equivalently,

$$p_{\tilde{a},\tilde{b}}(a,b)=p_{\tilde{a}}(a)p_{\tilde{b}}(b)$$

### Independence

The d entries  $\tilde{x}[1], \, \tilde{x}[2], \, \ldots, \, \tilde{x}[d]$  in a discrete random vector  $\tilde{x}$  are mutually independent if and only if

$$p_{\tilde{x}}(x) = \prod_{i=1}^{d} p_{\tilde{x}[i]}(x[i])$$

for all possible values of the entries

## Coos Bay and John Day



## Coos Bay given Corvallis and John Day



## Coos Bay given Corvallis and John Day



## Precipitation in Oregon



#### Conditional independence

Two random variables  $\tilde{a}$  and  $\tilde{b}$  are conditionally independent given  $\tilde{c}$  if our uncertainty about  $\tilde{a}$  does not change when  $\tilde{b}$  is revealed, as long as the value of  $\tilde{c}$  is known

### Conditional independence

 $\tilde{a}$  and  $\tilde{b}$  are conditionally independent given  $\tilde{c}$  if

$$p_{\tilde{a},\tilde{b}\,|\,\tilde{c}}\left(a,b\,|\,c\right) = p_{\tilde{a}\,|\,\tilde{c}}\left(a\,|\,c\right)p_{\tilde{b}\,|\,\tilde{c}}\left(b\,|\,c\right) \quad \text{ for all } a,b,c$$

Question 2

How to estimate causal relationships from data

Using conditional probabilities, but being very careful

#### Data

NBA games from the 2014/2015 season

3-point shot percentage

Stephen Curry: 41.7%

Courtney Lee: 43.9%

Was Lee the better shooter?

### A closer look at the data

|                                | Stephen Curry          | Courtney Lee          |
|--------------------------------|------------------------|-----------------------|
| Short threes ( $\leq$ 24 feet) | 45/90 = <b>50.0%</b>   | 56/116 = 48.3%        |
| Long threes (> 24 feet)        | 145/366 = <b>39.6%</b> | 19/55 = 34.5%         |
| Total                          | 190/456 = 41.7%        | 75/171 = <b>43.9%</b> |

Simpson's paradox

# Causal inference perspective

3-point shot  $\tilde{y}$ : If shot goes in  $\tilde{y}=1$ , if not  $\tilde{y}=0$ 

Treatment  $\tilde{t}$ : Player who shoots

From observed data

$$P\left(\tilde{y}=1 \mid \tilde{t}=\mathsf{Curry}\right) = 0.417$$

$$P(\tilde{y} = 1 | \tilde{t} = Lee) = 0.439$$

#### Potential outcomes

 $\widetilde{po}_{Curry}$ : Outcome if Curry shoots

 $\widetilde{\mathsf{po}}_{\mathsf{Curry}} = 1$  shot made,  $\widetilde{\mathsf{po}}_{\mathsf{Curry}} = 0$  shot missed

po<sub>Lee</sub>: Outcome if Lee shoots

 $\widetilde{po}_{Lee}1=1$  shot made,  $\widetilde{po}_{Lee}=0$  shot missed

What we actually observe:

$$ilde{y} := egin{cases} \widetilde{\mathsf{po}}_{\mathsf{Curry}} & \mathsf{if} & ilde{t} = \mathsf{Curry} \\ \\ \widetilde{\mathsf{po}}_{\mathsf{Lee}} & \mathsf{if} & ilde{t} = \mathsf{Lee} \end{cases}$$

Was Lee the better shooter?

$$P\left(\widetilde{\mathsf{po}}_{\mathsf{Lee}} = 1\right) > P\left(\widetilde{\mathsf{po}}_{\mathsf{Curry}} = 1\right)$$
?

Challenge: We cannot observe them simultaneously!

### Observed data

| Treatment | Observed     | Outcome if          | Outcome if             |
|-----------|--------------|---------------------|------------------------|
| ~         | outcome<br>~ | Curry               | Lee                    |
| τ         | У            | po <sub>Curry</sub> | $\widetilde{po}_{Lee}$ |
| Curry     | ©            | ©                   | ?                      |
| Curry     | $\odot$      | $\odot$             | ?                      |
| Lee       | $\odot$      | ?                   | $\odot$                |
| Lee       | <b>:</b>     | ?                   | ©                      |
| Lee       | <b>:</b>     | ?                   |                        |

? are counterfactuals

When does this hold?

$$\begin{split} P\left(\widetilde{\mathsf{po}}_{\mathsf{Curry}} = 1\right) &= ?P\left(\widetilde{y} = 1 \,|\, \widetilde{t} = \mathsf{Curry}\right) = P\left(\widetilde{\mathsf{po}}_{\mathsf{Curry}} = 1 \,|\, \widetilde{t} = \mathsf{Curry}\right) \\ \\ P\left(\widetilde{\mathsf{po}}_{\mathsf{Lee}} = 1\right) &= ?P\left(\widetilde{y} = 1 \,|\, \widetilde{t} = \mathsf{Lee}\right) = P\left(\widetilde{\mathsf{po}}_{\mathsf{Lee}} = 1 \,|\, \widetilde{t} = \mathsf{Lee}\right) \end{split}$$

True if  $\tilde{t}$  and  $\widetilde{po}_{Curry} / \widetilde{po}_{Lee}$  are independent

Are they independent?

#### Shot distance

|                                | Stephen Curry   | Courtney Lee   |
|--------------------------------|-----------------|----------------|
| Short threes ( $\leq$ 24 feet) | 45/90 = 50.0%   | 56/116 = 48.3% |
| Long threes (> 24 feet)        | 145/366 = 39.6% | 19/55 = 34.5%  |

Distance is a confounding factor

We can adjust for it (if it's the only one!)

## Toy examples have very few variables



## Curse of dimensionality

Total weather stations in dataset: 134

Entries of joint pmf:  $2^{134} \ge 10^{40}!!!$ 

Number of data: 8,760...

Dependencies explode exponentially!

Question 3

How to fight the curse of dimensionality

Make independence assumptions even if they don't hold!

#### Classification

Data:  $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ 

 $x_i$  is d-dimensional vector (e.g. picture),  $y_i$  is class (e.g. dog)

Goal: Assign class to new data

### Probabilistic modeling

Model data as random vector  $\tilde{x}$  and class as random variable  $\tilde{y}$ 

For new data vector x:

$$\hat{y} := \arg\max_{y \in \{1,2,\dots,c\}} p_{\tilde{y} \, | \, \tilde{x}}(y \, | \, x)$$

Problem:  $p_{\tilde{y}|\tilde{x}}(\cdot|x)$  is impossible to estimate for all x!

Naive Bayes: Assume conditional independence given class

#### Time series



Data:  $x_1, x_2, ..., x_n$ 

 $x_i$  is measurement at time i

## Modeling time series

Represent precipitation at each time by a random variable  $\tilde{a}_i$ 

Then estimate joint pmf of  $\tilde{a}_1, \ldots, \tilde{a}_n$  from data

Entries in joint pmf?  $2^n$  (if n = 100, more than  $10^{30}$ !)

Curse of dimensionality

## Markov property

 $\tilde{a}_1, \tilde{a}_2, \ldots, \tilde{a}_n$  satisfy the Markov property if:

 $\tilde{a}_{i+1}$  is conditionally independent of  $\tilde{a}_1,\ldots,\tilde{a}_{i-1}$  given  $\tilde{a}_i$ 

$$p_{\tilde{a}_{i+1} \mid \tilde{a}_1, \dots, \tilde{a}_i}(a_{i+1} \mid a_1, a_2, \dots, a_i) = p_{\tilde{a}_{i+1} \mid \tilde{a}_i}(a_{i+1} \mid a_i)$$

$$p_{\tilde{a}_1,\tilde{a}_2,...,\tilde{a}_n}(a_1,a_2,...,a_n) = p_{\tilde{a}_1}(a_1) p_{\tilde{a}_2 \mid \tilde{a}_1}(a_2 \mid a_1) p_{\tilde{a}_3 \mid \tilde{a}_2}(a_3 \mid a_2)...$$

## Time homogeneous finite state Markov chain

All transition probabilities are the same

$$p_{\tilde{a}_{i+1} | \tilde{a}_i}(a_{i+1} | a_i) = p_{\text{cond}}(a_{i+1} | a_i)$$
  $1 \le i \le n-1$ 

### Precipitation data



# Precipitation data

#### Marginal probabilities

| No  | 88.7 |
|-----|------|
| Yes | 11.3 |

#### 1-step conditional probabilities

#### Hour h

| <b>-</b><br>+ |     | No   | Yes  |
|---------------|-----|------|------|
| Hour h        | No  | 96.0 | 31.2 |
| 101           | Yes | 4.0  | 68.8 |



How to jointly model multiple uncertain quantities

How to estimate causal relationships from data

How to fight the curse of dimensionality