Lecture 5: Tue Sep 1, 2020

Reminder:

- HW1 solutions posted
- HW2 due Thursday.

Lecture

- LTI systems
- impulse response
- convolution integral

Reminder: Reading Assignment

Cor	itinu(ous-Time Signals and LTI Systems	24	5
9-1	Contin	uous-Time Signals	2	46
	9-1.1	Two-Sided Infinite-Length Signals		46
	9-1.2	One-Sided Signals		
	9-1.3	Finite-Length Signals		
9-2	The Unit Impulse			
	9-2.1	Sampling Property of the Impulse	2	50
	9-2.2	Mathematical Rigor	2	52
	9-2.3	Engineering Reality	2	52
	9-2.4	Derivative of the Unit Step	2	52
9-3	Continuous-Time Systems		2	54
	9-3.1	Some Basic Continuous-Time Systems	2	54
	9-3.2	Continuous-Time Outputs	2	55
	9-3.3	Analogous Discrete-Time Systems	2	55
9-4	Linear	Time-Invariant Systems	2	55
	9-4.1	Time-Invariance	2:	56
	9-4.2	Linearity	2	56
	9-4.3	The Convolution Integral	2:	57
	9-4.4	Properties of Convolution	2	59
9-5	Impulse Responses of Basic LTI Systems		20	60
	9-5.1	Integrator	20	60
	9-5.2	Differentiator	20	61
	9-5.3	Ideal Delay	20	61
9-6	Convol	lution of Impulses	20	61
9-7	Evalua	ting Convolution Integrals	2	63
	9-7.1	Delayed Unit-Step Input	2	63
	9-7.2	Evaluation of Discrete Convolution	20	67
	9-7.3	Square-Pulse Input	2	68
	9-7.4	Very Narrow Square Pulse Input	2	69
	9-7.5	Discussion of Convolution Examples		
9-8	Properties of LTI Systems			
	9-8.1	Cascade and Parallel Combinations	2	70
	9-8.2	Differentiation and Integration of Convolution	2	72
	9-8.3	Stability and Causality		
9-9	Using	Convolution to Remove Multipath Distortion		
9-10	Summa	ary	2	78
9-11	Problei	ms	2	79

$$x(t) \approx \Delta x(0)g(t) + \dots$$

$$x(t) \approx \Delta x(0)g(t) + \Delta x(\Delta)g(t-\Delta) + \dots$$

$$x(t) \approx \Delta x(0)g(t) + \Delta x(\Delta)g(t-\Delta) + \Delta x(2\Delta)g(t-2\Delta) + \dots$$

$$x(t) \approx \Delta x(0)g(t) + \Delta x(\Delta)g(t-\Delta) + \Delta x(2\Delta)g(t-2\Delta) + \dots$$
$$\approx \sum_{k} x(k\Delta)g(t-k\Delta)\Delta$$

$$x(t) \approx \Delta x(0)g(t) + \Delta x(\Delta)g(t-\Delta) + \Delta x(2\Delta)g(t-2\Delta) + \dots$$

$$\approx \sum_{k} x(k\Delta)\delta(t-k\Delta)\Delta$$

$$\Rightarrow x(t) = \int_{-\infty}^{\infty} x(\tau)\delta(t-\tau)d\tau$$

Impulse Response

Let h(t) denote response of system to $\delta(t)$

Incredibly important for LTI systems. Why?

$$ext{TI} \implies ext{response to} \qquad \delta(t- au) \qquad ext{is} \qquad h(t- au),$$
 $ext{L} \implies ext{response to} \qquad x(au)\delta(t- au) \qquad ext{is} \qquad x(au)h(t- au).$

 $L \Rightarrow$ response to integral (limiting case of a sum):

$$x(t) = \int_{-\infty}^{\infty} x(\tau) \delta(t - \tau) d\tau$$

is
$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$$
 $= x(t)*h(t)$ CONVOLUTION

Why Impulse Response is Important

An LTI system is *completely* characterized by h(t).

Response to *any* input can be found by convolving it with h(t):

Convolution Properties

- commutative: x(t) * h(t) = h(t) * x(t) (change of variables $t' = t \tau$) \Rightarrow doesn't matter which is input, which is impulse response!
- <u>associative</u> (x(t) * h(t)) * z(t) = x(t) * (h(t) * z(t))
- <u>shift property:</u> $x(t) * h(t t_0) = x(t t_0) * h(t)$
- Derivative: $\frac{d}{dt}(x(t) * h(t)) = (\frac{d}{dt}x(t)) * h(t) = x(t) * \frac{d}{dt}h(t)$
- Convolving with an impulse:

$$\triangleright \quad x(t) * \delta(t) = x(t)$$

$$\Rightarrow x(t) * \delta(t-t_0) = x(t-t_0)$$

Example: Convolving w Impulses

$$y(t) = ?$$

$$0 \quad 1 \quad 2 \quad 3 \quad 4$$

Example: Convolving w Impulses

Pop Quiz: The Integrator

- (a): Find its *impulse* response
- (b): Find its *step* response

Pop Quiz: The Integrator

- (a): Impulse response is h(t) = u(t) = step.
- (b): Convolve step input with h(t) to get step response:

$$s(t) = u(t) * u(t)$$

$$= \int_{-\infty}^{\infty} u(\tau)u(t-\tau)d\tau$$

$$= \int_{0}^{\infty} 1u(t-\tau)d\tau$$

$$= \int_{0}^{t} 1d\tau = tu(t) = \text{ramp.}$$

Integrator

Example: Find Output

Graphical Convolution

$$y(t) = \int_{-\infty}^{\infty} h(\tau) x(t-\tau) d\tau$$

Final Answer

$$y(t) = (1 - e^{-t})u(t) - (1 - e^{-(t-4)})u(t-4)$$

cconvdemo

