МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ «ЛЬВІВСЬКА ПОЛІТЕХНІКА»

Кафедра штучного інтелекту

Звіт

із лабораторної роботи №4 із дисципліни "Дискретна математика" Варіант №15

Виконав:

Студент групи КН-113

Черній Ю.М.

Викладач:

Мельникова Н.І

Завдання № 1.

Розв'язати на графах наступні задачі:

- 1. Виконати наступні операції над графами:
- 1) знайти доповнення до першого графу,
- 2) об'єднання графів,
- 3) кільцеву суму G1 та G2 (G1+G2),
- 4) розщепити вершину у другому графі,
- 5) виділити підграф A, що складається з 3-х вершин в G1 і знайти стягнення A в G1 (G1\ A),
- 6) добуток графів.

Розв'язання.

1) знайти доповнення до першого графу:

2) об'єднання графів:

3) кільцеву суму G1 та G2 (G1+G2):

4) розщепити вершину у другому графі:

5) виділити підграф A, що складається з 3-х вершин в G1 і знайти стягнення A в G1 (G1\ A),

6) добуток графів:

Завдання № 2.

Знайти таблицю суміжності та діаметр графа.

Розв'язання.

V_n	1	2	3	4	5	6	7	8	9
1	0	1	0	0	0	0	0	1	1
2	1	0	1	0	0	0	1	1	0
3	0	1	0	1	0	0	1	0	0
4	0	0	1	0	1	0	1	0	0
5	0	0	0	1	0	1	1	0	0
6	0	0	0	0	1	0	1	1	0
7	0	1	1	1	1	1	0	1	0
8	1	1	0	0	0	1	1	0	0

9	1	0	0	0	0	0	0	0	0

Діаметр графа – 4.

Завдання № 3.

Знайти двома методами (Краскала і Прима) мінімальне остове дерево графа.

Розв'язання.

1. Метод Прима:

Виберемо довільну точку 1. Найменша вага ребра, яким можна перейти з точки 1 до іншої точки є ребро (1;2) з вагою 1. Наступні ребра будуть (1;3) та (2;7). Отже ми додаємо найменше ребро в дерево, поки всі вершини не будуть у дереві.

Усі вершини пройдено. Мінімальне остове дерево знайдене.

2. Метод Краскала:

1;2	9;11	4;6	2;7	1;3	4;7	6;10	2;5	1;4	8;11	10;11	5;8	3;6	7;9	5;9	5;3	7;10	6;8
1	1	2	2	2	3	3	3	4	4	4	4	5	5	6	7	7	7

Вибираємо ребра із мінімальною вагою із таблиці.

Усі вершини пройдено. Мінімальне остове дерево знайдене.

Завдання № 4.

За алгоритмом Прима знайти мінімальне остове дерево графа. Етапи розв'язання задачі виводити на екран. Протестувати розроблену програму на наступному графі:

Код програми:

#include <iostream>
#include <fstream>

```
using namespace std;
const int gSize = 11;
int n;
ofstream fout;
int matrix[gSize][gSize];
int usedDots[gSize];
void init() {
       fout.open("matrix.txt");
       0\ 0\ 0\ 3\ 7\ 0\ 0\ 0\ 4 \ n0\ 0\ 0\ 0\ 0\ 0\ 4\ 1\ 4\ 0";
       fout.close();
       ifstream fin("matrix.txt");
       for (int i = 0; i < gSize; i++) {
              usedDots[i] = 0;
              for (int j = 0; j < gSize; j++)
                     fin >> matrix[i][j];
       fin.close();
void transform()
       for (int q = 0; q < gSize; q++)
              for (int i = 0; i < gSize; i++)
                     if (matrix[q][i] == 0)
                     {
                            matrix[q][i] = 999;
                     }
              }
       }
}
void print() {
       for (int i = 0; i < gSize; i++) {
              for (int j = 0; j < gSize; j++)
                     cout << matrix[i][j];</pre>
              cout << endl;
       }
}
void tree(int dot) {
       while (dot != -1) {
              usedDots[dot] = 1;
              int enterDot;
              int minDot = -1;
              int min = 999;
              for (int i = 0; i < gSize; i++)
                     if (usedDots[i])
                            for (int j = 0; j < gSize; j++)
                                   if (matrix[i][j] < min && !usedDots[j]) {</pre>
                                          min = matrix[i][j];
                                          minDot = j;
                                          enterDot = i;
```

```
}
               dot = minDot;
               if (dot != -1)
                      cout << "(" << enterDot+1 << ";" << dot+1 << ") ";
       }
}
int main()
       init();
       print();
       transform();
       tree(0);
       return 0;
}
Вхідні дані:
0\,1\,2\,4\,0\,0\,0\,0\,0\,0
10003020000
20007500000
40000230000
03700004600
00520007030
02030000570
0\ 0\ 0\ 0\ 4\ 7\ 0\ 0\ 0\ 0\ 4
0\,0\,0\,0\,6\,0\,5\,0\,0\,0\,1
00000370004
0\,0\,0\,0\,0\,0\,0\,4\,1\,4\,0
```

Висновок

Набув практичних вмінь та навичок з використання алгоритмів Прима і Краскала.