

Interactive Evolution for Melody Generation

 Noemi Canovi, Roberto Mazzaro Michele Presutto, Olga Zaghen

INTRODUCTION

Interactive Evolution for Melody Generation

Aim:

Generating melodic and rhythmic lines

How:

Using evolutionary algorithms and interactive fitness

GA

- A Genetic Algorithm (GA) evolves the population of tracks
- The fitness leads the evolution process

Introduction Subjective Fitness

PRO:

- no complex metric
- the algorithm will suit the user taste

CON:

user's fatigue

Example of fitnesses chosen by the user

Introduction Main Steps

Introduction Main Steps

Melody Evolution

Rhythm Evolution

Melody Evolution: Initial Frame

First interface where the user can choose:

- number of octaves
- population size

Example of values chosen by the user

Melody Evolution: Generation

The **melodies** are

- created
- converted to listenable files (.wav)
- **presented** to the user

Melody Evolution: Evaluation

The user **listen** and **rates** the tracks

Melody Evolution: Options

Once **satisfied** with the melody, the user can choose:

- final melody
- to evolve rhythm
- the number of rhythm to evolve at each generation
- to download the final melody

Rhythm Evolution

The **same steps** are applied here for the **rhythm evolution!**

The only difference is the **options** that pop up when the user is satisfied with the track

ENCODING

A main **issue** in GA is how to **encode** problem specific **informations into genes**

- Individual encoding
- Note encoding Pitch
- Note encoding Rhythm
- Obtain Phenotype

Individual encoding

- Individual is a list of notes
- Length: 8
- Implemented in the class Notelist

Individual 1									
	Measure 1				Measure 2				
V = 6	V = 1	V = 4	V = 3	V = 2	V = 4	V = 1	V = 6		
O = 4	O = 4	O = 4	O = 4	O = 4	O = 4	O = 4	O = 4		
R = 2	R = 2	R = 4	R = 3	R = 2	R = 2	R = 3	R = 2		

Note encoding - Pitch

- Note described from value, octave and rhythm
- Implemented in the class Note

- No alterations to the note value
- Octave value from a Gaussian centered in 4
- Note value belongs to {1, ..., 7} generated with **Zipf's law**

Note encoding - Rhythm

- Rhythm is simplified as a repetition of the same note with different durations
- Available note durations: 1/4, 1/8, 1/16
- Encoded as the **power of ½**

- The value is always 2 in the melody evolution
- In the rhythm evolution generated from right side of a gaussian centered in 2

Individual and Note encoding

An individual has this form:

From Genotype to Phenotype

Phenotype:

- User have to **listen** to the generated individual
- Use Wave to append Note sounds
- Saved as indiv_n

Dataset:

- **63 audio** files (7x3x3)
- Named as genetic_melody_V_O_R
- Sampled from an electric piano
- Beat 104 bpm

```
genetic_melody_1_5_2.wav
genetic_melody_1_5_4.wav
genetic_melody_1_5_3.wav
genetic_melody_1_4_4.wav
genetic_melody_1_4_3.wav
genetic_melody_1_4_2.wav
genetic_melody_1_3_4.wav
genetic_melody_1_3_3.wav
genetic_melody_1_3_2.wav
```

All different files for C note

GENETIC ALGORITHM

1. Subjectivity of the fitness

- 2. GA: algorithmic choices
- Population and generations
- Parent selection
- Crossover
- Mutation

Subjective fitness

Centrality of the **user interaction** in the evolutionary computation

=

Fitness of a melody

rate (**from 1 to 10**) of the user

Centrality of the **user interaction** in the evolutionary computation

Influence of **human fatigue** on the parameters of the GA

Population and generations

 The number of generations and the population size are lower than classic GA settings (human fatigue)

Population and generations

 The number of generations and the population size are lower than classic GA settings (human fatigue)

- The melody population size can be set to a value from 1 to 10
- The **rhythm** population size can be set to a value from 1 to 5

Population and generations

 The number of generations and the population size are lower than classic GA settings (human fatigue)

The number of generations depends on when the user ends the algorithm

Parent selection

Roulette wheel prediction formula

Fitness-proportionate parent selection

Promote **exploitation**

$$\left(p_i = rac{f_i}{\Sigma_{j=1}^N f_j}
ight)$$

Survivor selection

- ★ Replace the old population by offspring
 - ★ Maintain some **elite** individuals

Survivor selection

- ★ Replace the old population by offspring
 - ★ Maintain some elite individuals

Their quantity depends on the population size

Mutation

Melody:

- Gaussian centered in the actual note position
- Generate a new different position
- Recover new note value and octave

Rhythm:

 New random value from the half Gaussian distribution centered in 2

Representation of melody's mutation

Crossover

Melody:

- One point crossover
- Between 2 Notelist

Rhythm:

- One point crossover
- Only rhythm values

	Individual 1								
	Measure 1				Measure 2				
V = 6	V = 1	V = 4	V = 3	V = 2	V = 4	V = 1	V = 6		
O = 4	0=4	0=4	0=4	0=4	O = 4	0=4	0=4		
R = 2	R = 2	R = 2	R = 2	R = 2	R = 2	R = 2	R = 2		
	Individual 2								
	Measure 1			Measure 2					
V = 1	V = 2	V = 3	V = 1	V = 1	V = 2	V = 3	V = 1		
O = 4	O = 4	O = 4	O = 4	O = 4	O = 4	O = 4	O = 4		
R = 2	R = 2	R = 2	R = 2	R = 2	R = 2	R = 2	R = 2		
	Generated Individual								
	Measure 1				Measure 2				
V = 1	V = 2	V = 3	V = 1	V = 1	V = 4	V = 1	V = 6		
O = 4	O = 4	O = 4	O = 4	O = 4	O = 4	O = 4	O = 4		
R = 2	R = 2	R = 2	R = 2	R = 2	R = 2	R = 2	R = 2		

Melody Crossover

Generated Individual								
Measure 1				Measure 2				
V = 6	V = 1	V = 4	V = 3	V = 2	V = 4	V = 1	V = 6	
O = 4	O = 4	O = 4	0 = 4	O = 4	O = 4	O = 4	O = 4	
R = 2	R = 2	R = 4	R = 2	R = 3	R = 2	R = 4	R = 2	

Rhythm Crossover

STATISTICS

We carried out an analysis to **evaluate** the effectiveness of our system

Methodology

 We stored the average score and maximum score in each generation, for 40 different executions

Methodology

- We stored the average score and maximum score in each generation, for 40 different executions
- We performed:
 - 1. Statistics on **number of generations**
 - 2. Analysis of the **fitness trend** by averaging results over all executions

Number of generations

The average number of iterations in evolution resulted to be

total 10-15 mins of runtime

Number of generations

The average number of iterations in evolution resulted to be

Fitness trend for melody evolution

Fitness trend for melody evolution

Tendency to a substantial **positive gain**

Statistics

Fitness trend for melody evolution

Tendency to a substantial positive gain

The algorithm well adapts to the **subjective taste** of the human user in the melody evolution!

DIFFICULTIES & IMPROVEMENTS

Difficulties

Issues we encountered and how we resolved them

Improvements

Possible future works

Difficulties

- **Relative** fitness
- Fitness bottleneck
- Implementation of the rhythm
- **Hyperparameters** difficult to set
- High influence of the first generation

Improvements

- Assumptions relaxation for note and rhythm encoding
- Adding more constraints
- Defining an objective fitness function

Melody that cannot be generated using the actual encoding

CONCLUSIONS

- ★ Nice melody can be generated:
 - with few constraints
 - in a few number of generation

★ We collected the most interesting results

Interesting creations

Example of two melodies produced by the GA.

They have been generated in the same evolutionary process and they are **objectively musically coherent**, in addition to complementing each other well!

THANKS FOR YOUR ATTENTION!

Difficulties

subjectivity and relative fitness: the fitness is different from person to person, and is biased by the overall score of the other melody in the context.

fitness bottleneck: due to the active participation of the user in the listening of each individual and the setting of a score to each melody, it is likely to get tired after some iterations.

influence of the first generation: if the first generation is good than the number of generation to obtain a satisfactory score will be low. We tried to solve this issue by using zipf's law.

Difficulties

implementation of the rhythm: implementing the rhythm structure maintaining a fixed length and duration of the melodies.

Hyperparameters difficult to sets: finding the best setting for the hyperparameters of the GA without burdening the user.

High influence of the first generation: the convergence of the GA is faster with at least a good individual in the initial populations while it stagnate without

IMPROVEMENTS

Possible improvements could be:

- Assumption relaxation for note and rhythm encoding
- Adding more constraints
- Defining an objective fitness function

CONCLUSION

we can say that the interactive evolution computation system that we implemented is capable of producing nice melodies in a restricted number of generations

Statistics

Improvements

Assumption and relaxation for rhythm encoding:

the actual encoding of the rhythm consist of splitting the same note by maintaining its total duration.

maybe a better encoding could be changing just the duration of the note and doing a control on the entire melody length

melody that can generate using actual encoding

melody that can not generate using actual encoding

Interesting creations

Example of two melodies produced by the GA.

They have been generated in the same evolutionary process and they are **objectively musically coherent**, in addition to complementing each other well!

Improvements

Rhythm encoding

repetition of the same note maintaining its total duration

changing just the duration of the note and doing a control on the entire melody length

melody that can generate using actual encoding

melody that can not generate using actual encoding

=

Fitness of a melody

rate (**from 1 to 10**) of the user

Centrality of the **user interaction** in the evolutionary computation

Influence of **human fatigue** on the parameters of the GA

Subjective fitness

Statistics

Results: fitness trend

GA: algorithmic choices

Population and generations

- The number of generations and the population size are lower than classic GA settings (human fatigue)
- The melody population size can be set to a value from 1 to 10, a priori
- The **rhythm** population size can be set to a value from 1 to 5, **a priori**
- The number of generations depends on when the user ends the algorithm, a posteriori

