MATHUS Jan 27 Lecture 4 one remark about last honework: we need m*(any box) = volume of a box we know m'(closed box) = volume m* (open box) = where If we have any "half open half closed" box, B. B. CBCB, thou NO (B) = M*(B°) = M*(B) < M*(B) = M(B) (: vol(B) = vol(B), so M*(B) = W(B) = W(CB) = II (bi-ai) lemma 7.4.7: If A,B are measurable, ACB, then BIA is measurable, and m*(B(A)= m*(B)-m*(A). Prof: BIA - BNAC " A is measurable >> ". At is measurable. " B and A' are measurable, .. BnA are measurable) W.T.S. M*(B) = M*(A) + M*(B √) this fillows from measurability of A applied to test set B. : m*(B) = m*(B) + m*(B) 16)7 Lemma 7.4.8 (Countable additivity). Let 1535, be a countable collection of disjoint measurable sets. L.T.S. E= [Ej Ts measurable m*(E) = E m*(Ei) Proof: To prove measurability, we want to show, If ACR", m+(A) = m+(A) = M*(A) (E) · Define Fr = 1 5 . We know FN is measurable (finite union of meas. set) m*(.FN)= [m*(E7) If we replace E by Tw, : E) FN, E'C FN. :. m+ (ANE) 7 m+(ANFN) (need fixing) mx (Anti) smx (Anti) To prove (x), we need " &" and " ?" My Draw a Chief of Super add ting and toward at the Man of Man for m* (ANE) & E m* (ANE) by countable sub-additively

topology on IR": can be generated by balls (using Enclider wetic on IR") 2,5 137 can be generated by open box. I'mf: Consider the cut of "rational buxes". A box filaribi) is rational if and, ..., and of of the collection of vational busco 3 C Q2 75 countable ('.' Q is constable, finite product of countable set is constable). and subset of countable set 75 countable · Suffree to show that, every open set in IR" is a union of rational bases, i.e. it is is open, XEU, we want to find a rational open by B, s.t. XEB(X,r) CU ut 9°be a rational number, s.t. 52n <12 (3) 5 (5) claim: 7 rational bux B, ST. XEB CB(xN) Keep: Open sets in IR" are measurable. Proof: open boxes are measurable · a open sets is a countable union of open boxes Alternative definition of measurable set Def 2: A subset ECIR" is measurable. If \$ 670, there exist an open cet u.s.t. u: m*(U/E) < E. In discussion: prove that all the properties of measurable sets can be seviral using left.