Marriage and Divorce under Labor Market Uncertainty

Christian Holzner¹ and Bastian Schulz²

¹Hochschule München, CESifo ²Aarhus University, the Dale T. Mortensen Centre, CESifo

Motivation

- Gender differences in labor market outcomes are related to choices made in the marriage market and at the household level.
- Two dimensions:
 - 1. Marriage Market: Who do I marry? Who do I divorce? → Marital sorting.
 - 2. Household: How do we organize our time to maximize utility flows?
 - \rightarrow Labor supply, household specialization.

Motivation

- Gender differences in labor market outcomes are related to choices made in the marriage market and at the household level.
- Two dimensions:
 - 1. Marriage Market: Who do I marry? Who do I divorce? → Marital sorting.
 - 2. Household: How do we organize our time to maximize utility flows?
 - → Labor supply, household specialization.
- There is a two-way interaction (or simultaneity) between the two types of decisions:
 - My labor market outcomes affect, who I can marry.
 - Being married, and to whom, affects my labor market outcomes.
 - Changing labor market outcomes affect marital stability.

Motivation

- Gender differences in labor market outcomes are related to choices made in the marriage market and at the household level.
- Two dimensions:
 - 1. Marriage Market: Who do I marry? Who do I divorce? → Marital sorting.
 - Household: How do we organize our time to maximize utility flows?
 - → Labor supply, household specialization.
- There is a two-way interaction (or simultaneity) between the two types of decisions:
 - My labor market outcomes affect, who I can marry.
 - Being married, and to whom, affects my labor market outcomes.
 - Changing labor market outcomes affect marital stability.
- Suppose gender equality in labor market outcomes was a political goal.
- Understanding this interaction would be absolutely critical to achieving this goal.

- We study this two-way interaction in a novel structural model.
- Core: TU, random search, ex-ante heterogeneity (Shimer & Smith, 2000).
- Match-specific "love shocks" (Jacquemet & Robin, 2012; Goussé et al.; 2017).

- We study this two-way interaction in a novel structural model.
- Core: TU, random search, ex-ante heterogeneity (Shimer & Smith, 2000).
- Match-specific "love shocks" (Jacquemet & Robin, 2012; Goussé et al.; 2017).
- We add "labor market uncertainty":
 - Employed workers lose their job at an exogenous rate.
 - Endogenous search intensity depends on marital surplus (via reservation wage).

- We study this two-way interaction in a novel structural model.
- Core: TU, random search, ex-ante heterogeneity (Shimer & Smith, 2000).
- Match-specific "love shocks" (Jacquemet & Robin, 2012; Goussé et al.; 2017).
- We add "labor market uncertainty":
 - Employed workers lose their job at an exogenous rate.
 - Endogenous search intensity depends on marital surplus (via reservation wage).
- Marital surplus depends on "love shocks" × "public good":
 - Domestic work hours are chosen endogenously (trade-off with leisure), employment status acts as constraint.
 - Household specialization

- We study this two-way interaction in a novel structural model.
- Core: TU, random search, ex-ante heterogeneity (Shimer & Smith, 2000).
- Match-specific "love shocks" (Jacquemet & Robin, 2012; Goussé et al.; 2017).
- We add "labor market uncertainty":
 - Employed workers lose their job at an exogenous rate.
 - Endogenous search intensity depends on marital surplus (via reservation wage).
- Marital surplus depends on "love shocks" × "public good":
 - Domestic work hours are chosen endogenously (trade-off with leisure), employment status acts as constraint.
 - Household specialization
- This mechanism affects marital stability, and marital sorting.

This paper: Empirics

- We take this model to German data:
 - Event studies provide evidence of the two-way interaction and support our modeling choices.
 - Structural estimation (work in progress)
 - No heterogeneity
 - One-dimensional heterogeneity (age or education)
 - Two-dimensional heterogeneity (age and education)
 - Counterfactuals (input welcome)

Literature

- Unemployment, especially male unemployment, is associated with an increase in the divorce rate (e.g. Jensen and Smith, 1990; Hansen, 2005; Amato and Beattie, 2011).
- Marriage/divorce rates negatively correlated with unemployment over the business cycle (e.g. Schaller, 2013; González-Val and Marcén, 2017a/b).
- Does female labor market participation decrease or increase marital stability? (Newman and Olivetti, 2017 vs. Folke and Rickne, 2020).
- Marriage market matching models (with and without frictions, TU/NTU): Becker (1973/74), Burdett & Coles (1997), Shimer & Smith (2000), Jacquemet & Robin (2012), Choo & Siow (2006), Choo (2015), Chiappori et al. (2015).
- Most closely related: Goussé et al. (2017).
- Also related: models of joint search: Guler et al. (2012), Pilossoph & Wee (2021).

Outline

- 1 Data & Empirics
- 2 Model
- 3 Estimation
- 4 Counterfactuals (not today)

Data & Empirics

Data

- German data for the years 1983–2019.
- We combine data from two big surveys:
 - (1) GSOEP, since 1983
 - (2) IAB-PASS, since 2007.
- Key advantage: detailed information on domestic work hours and labor supply.

Event Study: Marriage Rate around EU Transition

• Relative to matched control group: no EU Transition, matched in t-3.

Event Study: Marriage Rate around UE Transition

• Relative to matched control group: no UE Transition, matched in t-3.

Event Study: Employment Rate around Marriage

Event Study: Employment Rate around Divorce

Event Study: Life Satisfaction around Divorce

Household specialization - Time Inputs

Labor market work hours per day

	sin	gle	married				
	U		l		EU		
male female	0.57	9.68	0.25	0.66	10.23	10.32	
female	0.67	8.50	0.21	8.02	0.67	7.64	

Household specialization - Time Inputs

Labor market work hours per day

	single		married				
					EU		
male	0.57	9.68	0.25	0.66	10.23	10.32	
male female	0.67	8.50	0.21	8.02	0.67	7.64	

• Domestic work hours per day (childcare, errands, repairs, routine chores):

	single		married				
	U	Е	UU	UE	EU	EE	
male female	3.21	2.62	4.99	5.42	3.08	3.13	
female	6.00	3.97	7.39	4.57	9.89	5.90	

Event Study: Work Hours around Marriage

Event Study: Domestic Hours around Marriage

Event Study: Work Hours around Divorce

Event Study: Domestic Hours around Divorce

Model

The Basics

- Marriage Market: Transferable utility, random search, and ex-ante heterogeneity (following Becker, 1973/74; Shimer & Smith, 2000; Goussé et al., 2017).
- Labor Market: Endogenous labor search decisions on and off the job (as in Burdett & Mortensen, 1998, but no firms). Exogenous separations.

The Basics

- Marriage Market: Transferable utility, random search, and ex-ante heterogeneity (following Becker, 1973/74; Shimer & Smith, 2000; Goussé et al., 2017).
- Labor Market: Endogenous labor search decisions on and off the job (as in Burdett & Mortensen, 1998, but no firms). Exogenous separations.
- Utility flow depends on their own income, leisure and household production.
 For married couples the household public good depends on:
 - time input into domestic work
 - match-specific "love" shock

Functional Forms

• We assume quasi-linear preferences in consumption c_f , leisure e_f and a household public good y.

$$\begin{split} u\left(c_f,e_f,y\right) &= c_f + \zeta_x e_f + y \\ \text{with } y &= \begin{cases} \left(X_j^l\right)^{1-\alpha_x} \left(h_f\right)^{\alpha_x} & \text{if single female} \\ \left(zX_{ij}^{-ll}\right)^{(1-\gamma_y-\gamma_x)} \left(h_m\right)^{\gamma_y} \left(h_f\right)^{\gamma_x} & \text{if married.} \end{cases} \\ c_f &= I_j^l + t \text{ and } c_m = I_i^{-l} - t \\ \overline{h} &= l_j^l + h_f + e_f \text{ and } \overline{h} = l_i^l + h_m + e_m \end{split}$$

Functional Forms

• We assume quasi-linear preferences in consumption c_f , leisure e_f and a household public good y.

$$u\left(c_f,e_f,y\right)=c_f+\zeta_xe_f+y$$
 with $y=\begin{cases} \left(X_j^l\right)^{1-\alpha_x}\left(h_f\right)^{\alpha_x} & \text{if single female}\\ \left(zX_{ij}^{-ll}\right)^{(1-\gamma_y-\gamma_x)}\left(h_m\right)^{\gamma_y}\left(h_f\right)^{\gamma_x} & \text{if married.} \end{cases}$ (1)
$$c_f=I_j^l+t \text{ and } c_m=I_i^{-l}-t$$

$$\overline{h}=l_j^l+h_f+e_f \text{ and } \overline{h}=l_i^l+h_m+e_m$$

- Linearity in consumption implies that income changes affects the couples' joint utility in the same way as single utilities.
 - ⇒ Marital surplus is independent of spouses' current income.

• Singles search for partners in the marriage market. The Value of Singlehood

- Singles search for partners in the marriage market. The Value of Singlehood
- Potential couples draw match-specific ("love") shock upon meeting.

- Singles search for partners in the marriage market. The Value of Singlehood
- Potential couples draw match-specific ("love") shock upon meeting.
- Couples bargain over transfers, hours, and search intensities, value functions depend on shock and labor market statuses.

- Singles search for partners in the marriage market. The Value of Singlehood
- Potential couples draw match-specific ("love") shock upon meeting.
- Couples bargain over transfers, hours, and search intensities, value functions depend on shock and labor market statuses.
- While married, couples renegotiate when match-specific shock hits or in case of EU/UE-transitions. The Value of Marriage

- Singles search for partners in the marriage market. The Value of Singlehood
- Potential couples draw match-specific ("love") shock upon meeting.
- Couples bargain over transfers, hours, and search intensities, value functions depend on shock and labor market statuses.
- While married, couples renegotiate when match-specific shock hits or in case of EU/UE-transitions. The Value of Marriage
- Specifically, taking up a job implies less hours for home production and leisure.

- Singles search for partners in the marriage market. The Value of Singlehood
- Potential couples draw match-specific ("love") shock upon meeting.
- Couples bargain over transfers, hours, and search intensities, value functions depend on shock and labor market statuses.
- While married, couples renegotiate when match-specific shock hits or in case of EU/UE-transitions. The Value of Marriage
- Specifically, taking up a job implies less hours for home production and leisure.
- Surplus is invariant to EE transitions (linear utility assumption).

- Singles search for partners in the marriage market. The Value of Singlehood
- Potential couples draw match-specific ("love") shock upon meeting.
- Couples bargain over transfers, hours, and search intensities, value functions depend on shock and labor market statuses.
- While married, couples renegotiate when match-specific shock hits or in case of EU/UE-transitions. The Value of Marriage
- Specifically, taking up a job implies less hours for home production and leisure.
- Surplus is invariant to EE transitions (linear utility assumption).
- No commitment, efficient divorce in case of negative surplus.

Endogenous Search Intensity and Reservation Wages

Endogenous search intensity and reservation wages depend on

- employed married/single: current wage.
- unemployed single: UI, home production, marriage market option value.
- unemployed married:
 - UI,
 - labor market status and type of spouse,
 - match-specific shock,
 - household public good.

Reservation Wages: Singles

• While employed, the reservation wage is equal to the current wage irrespective of marital status, i.e., $R_j^{l,-l}\left(z,I_i^{-l},w_j\right)=R\left(w_j\right)=w_j$.

Reservation Wages: Singles

- While employed, the reservation wage is equal to the current wage irrespective of marital status, i.e., $R_{j}^{l,-l}\left(z,I_{i}^{-l},w_{j}\right)=R\left(w_{j}\right)=w_{j}$.
- ullet The reservation wage of an unemployed single (defined by $V_{j}^{e}\left(R_{j}^{u}
 ight)=V_{j}^{u}\left(b_{j}
 ight)$), is

$$R_{j}^{u} = b_{j} - \zeta_{x} \left(l_{j}^{u} - l_{j}^{e} \right) + \xi_{y} \left(X_{j}^{u} - X_{j}^{e} \right) + \beta_{x} \sum_{i} \sum_{-l} \left(\lambda^{-lu} \overline{S}_{z_{ij}^{-lu}}^{-lu} - \lambda^{-le} \overline{S}_{z_{ij}^{-le}}^{-le} \right) s_{i}^{-l}.$$

where
$$ar{S}^{-ll}_{z^{-ll}_{ij}} \equiv \int_{z^{-l}_{ij}}^{\infty} S^{-ll}_{ij}(z) dG(z)$$
.

Reservation Wages: Married

- Unemployed married female j with a partner of type i and emp. status -l.
- Definition:

$$R_{j,i}^{u,-l}(z) = R_j^u + r \left(S_{ij}^{-lu}(z) - \max \left[0, S_{ij}^{-le}(z) \right] \right)$$

 A married individual faces on top of a single individual additional gains or losses associated with the effect of a changed labor market status on marital surplus.

Reservation Wages: Married

- Unemployed married female j with a partner of type i and emp. status -l.
- Definition:

$$R_{j,i}^{u,-l}(z) = R_j^u + r \left(S_{ij}^{-lu}(z) - \max \left[0, S_{ij}^{-le}(z) \right] \right)$$

- A married individual faces on top of a single individual additional gains or losses associated with the effect of a changed labor market status on marital surplus.
- If after the shock the new z is high enough (above z_{ij}^{-le}) the individual will stay married and the marital surplus of a female of type j changes from $S_{ij}^{-lu}(z)$ to $S_{ij}^{-le}(z)$.
- If after the shock the new z is too small (below z_{ij}^{-le}) the labor market transition will lead to a divorce and hence to a loss of the marital surplus, i.e., $S_{ij}^{-le}(z)=0$.

Reservation Wages: Married

- Note two things:
 - 1 The couple is currently married, so $S_{ij}^{-lu}(z) > 0$. Thus, reservation wage of unemployed married is (weakly) higher compared to unemployed single.
 - 2 But, the lower the love shock z, the lower is current marital surplus. Thus, the reservation wage is lower and search intensity higher ...
- Through this mechanism, a negative love shock will...
 - decrease the reservation wage (due to lower marital surplus) and
 - increase the labor market search intensity of the unemployed spouse.
 - make a transition into employment more likely.
 - make a divorce more likely.

Search Equilibrium

- The equilibrium is characterized by:
 - a set of surplus functions $S_{ij}^{ll}(z)$,
 - search intensities for unemployed married and single individuals.

$$\{\widehat{\sigma}_{i}^{u,l}\left(z\right),\widehat{\sigma}_{j}^{u,-l}\left(z\right)\}\text{ and }\left\{\widehat{\sigma}_{i}^{u},\widehat{\sigma}_{j}^{u}\right\},$$

- love shock threshold values z_{ij}^{ll} ,
- the distributions of married couples m_{ij}^{ll} for each type ij and labor market status ll,
- and single distributions s_i^l, s_i^l.
- Solution algorithm: alternating fixed-point iterations, three model blocks. (Solution Algorithm
- We estimate four versions of the model: no heterogeneity, education heterogeneity, age heterogeneity, both (two-dimensional heterogeneity).

Estimation

Estimation with GMM

We target:

- yearly transition probabilities between: Example
 - married/single
 - employment/unemployment
 - EE-transition if employed
- · domestic work hours of unemployed singles and couples, where both are unemployed.
- median wages for males and females.

We have more moments than parameters.

Target Moments and Fit

Table: Initial state: single female

Moment	Mean	Estimation	Percentage Deviation
T_sju_sje_none_1	0.239	0.218	-2.10%
T_sju_mju_none_1	0.022	0.050	2.80%
T_sju_mje_none_1	0.010	0.016	0.60%
T_sje_sje_f_none_1	0.094	0.145	5.10%
T_sje_sju_none_1	0.060	0.009	-5.10%
T_sje_mje_none_1	0.036	0.048	1.20%
T_sje_mje_f_none_1	0.004	0.009	0.50%
T_sje_mju_none_1	0.003	0.001	-0.20%

Table: Initial state: single male

Moment	Mean	Estimation	Percentage Deviation
T_siu_sie_none_1	0.301	0.205	-9.60%
T_siu_miu_none_1	0.010	0.053	4.30%
T_siu_mie_none_1	0.009	0.019	1.00%
T_sie_sie_m_none_1	0.096	0.180	8.40%
T_sie_siu_none_1	0.053	0.008	-4.50%
T_sie_mie_none_1	0.039	0.046	0.70%
T_sie_mie_m_none_1	0.005	0.011	0.60%
T_sie_miu_none_1	0.001	0.001	0.00%

Table: Initial state: married, UU

Moment	Mean	Estimation	Percentage Deviation	
T_miuju_miuje_none_1_1	0.045	0.104	5.90%	
T_miuju_mieju_none_1_1	0.118	0.113	-0.50%	
T_miuju_mieje_none_1_1	0.107	0.038	-6.90%	
T_miuju_siu_sju_none_1_1	0.084	0.038	-4.60%	
T_miuju_siu_sje_none_1_1	0.007	0.007	0.00%	
T_miuju_sie_sju_none_1_1	0.003	0.007	0.40%	
T_miuju_sie_sje_none_1_1	0.008	-0.012	-2.00%	

Table: Initial state: married, UE

Moment	Mean	Estimation	Percentage Deviation
T_miuje_miuje_f_none_1_1	0.021	0.119	9.80%
T_miuje_miuju_none_1_1	0.082	0.008	-7.40%
T_miuje_mieje_none_1_1	0.171	0.142	-2.90%
T_miuje_mieje_f_none_1_1	0.008	0.026	1.80%
T_miuje_mieju_none_1_1	0.031	0.001	-3.00%
T_miuje_siu_sje_none_1_1	0.062	0.026	-3.60%
T_miuje_siu_sje_f_none_1_1	0.001	0.005	0.40%
T_miuje_siu_sju_none_1_1	0.010	0.002	-0.80%
T_miuje_sie_sje_none_1_1	0.018	0.030	1.20%
T_miuje_sie_sje_f_none_1_1	0.002	0.006	0.40%
T_miuje_sie_sju_none_1_1	0.001	-0.007	-0.80%

Table: Initial state: married, EU

Moment	Mean	Estimation	Percentage Deviation
T_mieju_mieju_m_none_1_1	0.027	0.150	12.30%
T_mieju_miuju_none_1_1	0.033	0.007	-2.60%
T_mieju_mieje_none_1_1	0.142	0.127	-1.50%
T_mieju_mieje_m_none_1_1	0.006	0.030	2.40%
T_mieju_miuje_none_1_1	0.004	0.001	-0.30%
T_mieju_sie_sju_none_1_1	0.046	0.029	-1.70%
T_mieju_sie_sju_m_none_1_1	0.004	0.007	0.30%
T_mieju_siu_sju_none_1_1	0.003	0.001	-0.20%
T_mieju_sie_sje_none_1_1	0.021	0.021	0.00%
T_mieju_sie_sje_m_none_1_1	0.001	0.005	0.40%
T_mieju_siu_sje_none_1_1	0.000	-0.003	-0.30%

Table: Initial state: married, EE

Moment	Mean	Estimation	Percentage Deviation
T_mieje_mieje_m_none_1_1	0.021	0.152	13.10%
T_mieje_mieje_f_none_1_1	0.025	0.117	9.20%
T_mieje_mieju_none_1_1	0.083	0.007	-7.60%
T_mieje_mieju_m_none_1_1	0.004	0.002	-0.20%
T_mieje_miuje_none_1_1	0.022	0.007	-1.50%
T_mieje_miuje_f_none_1_1	0.001	0.001	0.00%
T_mieje_miuju_none_1_1	0.004	0.000	-0.40%
T_mieje_sie_sje_none_1_1	0.059	0.036	-2.30%
T_mieje_sie_sje_m_none_1_1	0.002	0.009	0.70%
T_mieje_sie_sje_f_none_1_1	0.004	0.007	0.30%
T_mieje_siu_sje_none_1_1	0.002	0.000	-0.20%
T_mieje_siu_sje_f_none_1_1	0.000	0.000	0.00%
T_mieje_sie_sju_none_1_1	0.004	0.000	-0.40%
T_mieje_sie_sju_m_none_1_1	0.000	0.000	0.00%
T_mieje_siu_sju_none_1_1	0.001	-0.000	-0.10%

Table: Hours and wages

Moment	Mean	Estimation	Percentage Deviation
hh_f_su_none_1	5.462	5.444	-0.33%
hh_m_su_none_1	3.084	3.163	2.56%
hh_muu_f_none_1_1	7.095	7.139	0.62%
hh_muu_m_none_1_1	4.648	4.664	0.34%
w_p50_f_none_1	13.224	12.918	-2.31%
w_p50_m_none_1	16.177	15.664	-3.17%

Estimated Parameter Values

Parameter	Symbol	Value
Output elasticity male hours married	γ_y	0.270608
Output elasticity female hours married	γ_x	0.351117
HH public good EE	X_{ij}^{ee}	3.774162
HH public good EU	X_{ij}^{eu}	1.879224
HH public good UE	X_{ij}^{ue}	1.477419
HH public good UU	X_{ij}^{uu}	1.023982
Wage offer dist shape female	ϑ_i	0.166149
Wage offer dist shape male	ϑ_j	0.119967

Estimated Parameters Values

Parameter	Symbol	Value
HH public good single male E	X_i^e	4.671016
HH public good single male U	X_i^u	4.751025
Output elasticity male hours single	α_y	0.852360
Leisure coefficient male	ζ_y	0.910708
HH public good single female E	X_j^e	2.314547
HH public good single female U	X_j^u	3.150551
Output elasticity female hours single	α_x	0.838973
Leisure coefficient female	ζ_x	0.767394

Estimated Parameters Values

Parameter	Symbol	Value
Quit rate female	q_{j}	0.010003
Quit rate male	q_{i}	0.010043
Love shock arrival rate	δ	0.229844
Marriage market matching efficiency	ϕ	0.309137
Male bargaining power	eta_y	0.680531
Labor market matching efficiency female	μ_j	0.479011
Labor market matching efficiency male	μ_i	0.312576
Love shock standard deviation	σ_z	1.495653

Thank you for your attention.

Christian Holzner

christian.holzner@hm.edu

Bargaining - No Commitment

- Bargaining powers are (β_i, β_j) , with $\beta_i + \beta_j = 1$.
- Search intensities and transfers are chosen such that the Nash-Product,

$$\left[V_{j,i}^{l,-l} - V_{j}^{l}\right]^{\beta_{j}} \left[V_{i,j}^{-l,l} - V_{i}^{-l}\right]^{\beta_{i}},$$

is maximized subject to participation and feasibility constraints.

Bargaining - No Commitment

- Bargaining powers are (β_i, β_j) , with $\beta_i + \beta_j = 1$.
- Search intensities and transfers are chosen such that the Nash-Product,

$$\left[V_{j,i}^{l,-l} - V_{j}^{l}\right]^{\beta_{j}} \left[V_{i,j}^{-l,l} - V_{i}^{-l}\right]^{\beta_{i}},$$

is maximized subject to participation and feasibility constraints.

• If a labor market transition or a love shock occurs, search intensities $(\sigma_{i,j}^{-l,l}(.), \sigma_{j,i}^{l,-l}(.))$ and transfers (t_i, t_j) are (re)negotiated.

Bargaining - No Commitment

- Bargaining powers are (β_i, β_j) , with $\beta_i + \beta_j = 1$.
- Search intensities and transfers are chosen such that the Nash-Product,

$$\left[V_{j,i}^{l,-l} - V_{j}^{l}\right]^{\beta_{j}} \left[V_{i,j}^{-l,l} - V_{i}^{-l}\right]^{\beta_{i}},$$

is maximized subject to participation and feasibility constraints.

- If a labor market transition or a love shock occurs, search intensities $(\sigma_{i,j}^{-l,l}(.), \sigma_{j,i}^{l,-l}(.))$ and transfers (t_i, t_j) are (re)negotiated.
- Marital Surplus is defined as the gain from marriage for both spouses:

$$S_{ij}^{-ll} \equiv \left[V_{j,i}^{l,-l} - V_j^l \right] + \left[V_{i,j}^{-l,l} - V_i^{-l} \right]$$

The present value of being single

$$rV_{j}^{l} = \underbrace{\max_{h_{f},e_{f}}u\left(c_{f},e_{f},y\right)}_{\text{Flow utility}} + \underbrace{q_{j}\left[V_{j}^{u}\left(b_{j}\right)-V_{j}^{l}\left(I_{j}^{l}\right)\right]\mathbb{1}\left[l=e\right]}_{\text{Job separation if employed}}$$

+
$$\max_{\sigma_{j}} \left[\sigma_{j} \mu_{j} \int \max \left[V_{j}^{e} \left(w_{j}^{\prime} \right) - V_{j}^{l} \left(I_{j}^{l} \right), 0 \right] dF_{j} \left(w_{j}^{\prime} \right) - c \left(\sigma_{j} \right) \right]$$

Labor market search intensity choice

$$+\sum_{i}\lambda s_{i}^{u}\int\max\left[V_{j,i}^{l,u}\left(z'\right)-V_{j}^{l},0\right]dG\left(z'\right)$$

Option value of finding a unemployed (male) partner

+
$$\sum_{i} \lambda s_{i}^{e} \iint \max \left[V_{j,i}^{l,e} \left(z', w_{i} \right) - V_{j}^{l}, 0 \right] dG \left(z' \right) dH_{i} \left(w_{i} \right)$$

Option value of finding an employed (male) partner

The present value of being married

$$rV_{j,i}^{l,-l} = \max_{h_f,e_f} u(c_f, e_f, y)$$

$$+ \max_{\sigma_f} \left[\sigma_f \mu_j \int \left[\max \left[V_j^e(w_j'), V_{j,i}^{e,-l}(w_j') \right] - V_{j,i}^{l,-l} \right] dF_j(w_j') - c(\sigma_f) \right]$$

$$+ q_j \left[\max \left[V_j^u, V_{j,i}^{u,-l} \right] - V_{j,i}^{l,-l} \right]$$

$$+ \sigma_m \mu_i \int \left[\max \left[V_j^l, V_{j,i}^{l,e} \right] - V_{j,i}^{l,-l} \right] dF_i(w_i')$$

$$+ q_i \left[\max \left[V_j^l, V_{j,i}^{l,u} \right] - V_{j,i}^{l,-l} \right]$$

$$+ \delta \int \left[\max \left[V_j^l, V_{j,i}^{l,-l}(z') \right] - V_{j,i}^{l,-l} \right] dG(z'),$$

The Surplus of Marriage

- is independent of income due to quasi-linearity of the utility function.
- is strictly increasing in z.

$$\begin{aligned} \left[r+\delta+q_{i}+q_{j}\right]S_{ij}^{-ll}\left(z\right) &= \left(\xi_{y,x}+\xi_{x,y}\right)zX_{ij}^{-ll}-\xi_{y}X_{i}^{-l}-\xi_{x}X_{j}^{l} \\ Gains \ from \ search \ for \ i &+\sigma_{i,j}^{-l,l}c'\left(\sigma_{i,j}^{-l,l}\right)-c\left(\sigma_{i,j}^{-l,l}\right)-\sigma_{i}^{-l}c'\left(\sigma_{i}^{-l}\right)+c\left(\sigma_{i}^{-l}\right) \\ Gains \ from \ search \ for \ j &+\sigma_{j,i}^{l,-l}c'\left(\sigma_{j,i}^{l,-l}\right)-c\left(\sigma_{j,i}^{l,-l}\right)-\sigma_{j}^{l}c'\left(\sigma_{j}^{l}\right)+c\left(\sigma_{j}^{l}\right) \\ &+q_{i} \max\left[0,S_{ij}^{ul}\left(z\right)\right]+q_{j} \max\left[0,S_{ij}^{-lu}\left(z\right)\right] \\ &-\beta_{y}\sum_{j}\sum_{l}\lambda^{-ll}s_{j}^{l}\int \max\left[S_{ij}^{-ll}\left(z'\right),0\right]dG\left(z'\right) \\ &-\beta_{x}\sum_{i}\sum_{-l}\lambda^{-ll}s_{i}^{-l}\int \max\left[S_{ij}^{-ll}\left(z'\right),0\right]dG\left(z'\right) \\ &+\delta\int \max\left[S_{ij}^{-ll}\left(z'\right),0\right]dG\left(z'\right), \end{aligned}$$

Solution Method

- Linear grids with, 1×1 , 4×4 , 5×5 , 20×20 nodes.
- Three fixed point systems, alternating solution algorithm.
 - 1 Initialize the model.
 - 2 Find fixed point of first system of equations:
 - 16 integrated surplus equations.
 - 3 Find fixed point of second system of equations:
 - Compute reservation wages and search intensities.
 - Find the z_{ij}^{ll} thresholds at the point where the surplus is zero.
 - **4** z_{ij}^{ll} determine $\alpha_{ij}^{ll} \equiv \left(1 G\left(z_{ij}^{ll}\right)\right)$, which determine m_{ij}^{ll} .
 - **5** Use flow equations and exog. distributions of i, j to find s_i^l , s_i^l .
 - 6 Go back to step 2. Repeat until convergence.

Yearly transition probability - Example

$$\begin{split} \Pr\left[s_{j}^{u} \rightarrow \sum_{i} \sum_{-l} m_{ij}^{-le}\right] &= \int_{0}^{1} \lambda_{j}^{u} e^{-\lambda_{j}^{u}t} dt \int_{0}^{1} \tau_{j}^{u} e^{-\tau_{j}^{u}t} dt \\ &+ \int_{0}^{1} \tau_{j}^{u} e^{-\tau_{j}^{u}t} \left(\int_{t}^{1} \lambda_{j}^{e} e^{-\lambda_{j}^{e}x} dx - \int_{t}^{1} \lambda_{j}^{u} e^{-\lambda_{j}^{u}x} dx\right) dt \\ &+ \int_{0}^{1} \lambda_{j}^{u} e^{-\lambda_{j}^{u}t} \left(\int_{t}^{1} \widehat{\tau}_{j,i}^{u,-l} e^{-\widehat{\tau}_{j,i}^{u,-l}x} dx - \int_{t}^{1} \tau_{j}^{u} e^{-\tau_{j}^{u}x} dx\right) dt, \\ &= \frac{\tau_{j}^{u}}{\lambda_{j}^{e} + \tau_{j}^{u}} \left(1 - e^{-\left(\lambda_{j}^{e} + \tau_{j}^{u}\right)}\right) - \left(1 - e^{-\tau_{j}^{u}}\right) e^{-\lambda_{j}^{e}} \\ &+ \frac{\lambda_{j}^{u}}{\lambda_{j}^{u} + \widehat{\tau}_{j,i}^{u,-l}} \left(1 - e^{-\left(\lambda_{j}^{u} + \widehat{\tau}_{j,i}^{u,-l}\right)}\right) - \left(1 - e^{-\lambda_{j}^{u}}\right) e^{-\widehat{\tau}_{j,i}^{u,-l}}. \end{split}$$

Go back

Event Study: EE Rate around Divorce

• Relative to matched control group: no divorce, matched in t-3.