Федеральное государственное автономное образовательное учреждение высшего образования «Национальный Исследовательский Университет ИТМО»

# **VİTMO**

# ЛАБОРАТОРНАЯ РАБОТА №3 ПРЕДМЕТ «ЭЛЕКТРОННЫЕ УСТРОЙСТВА СИСТЕМ УПРАВЛЕНИЯ» ТЕМА «ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ В ОСНОВНЫХ СХЕМАХ ВКЛЮЧЕНИЯ»

Вариант №11

Преподаватель: Жданов В. А.

Выполнил: Румянцев А. А.

Факультет: СУиР Группа: R3341

Поток: ЭлУСУ R22 бак 1.2

# Содержание

| 1 | Цел                                              | ь работы                                                       | 2 |  |  |  |  |
|---|--------------------------------------------------|----------------------------------------------------------------|---|--|--|--|--|
| 2 | Исх                                              | Исходные данные                                                |   |  |  |  |  |
| 3 | Исс                                              | ледование дифференциального усилителя                          | 2 |  |  |  |  |
|   | 3.1<br>3.2                                       | Схема дифференциального усилителя                              | 2 |  |  |  |  |
|   |                                                  | ной полярности                                                 | 2 |  |  |  |  |
|   | 3.3                                              | Влияние синфазной помехи на работу ДУ                          | 3 |  |  |  |  |
|   | 3.4                                              | Влияние противофазной помехи на работу ДУ                      | 3 |  |  |  |  |
| 4 | οУ                                               | ОУ в режиме суммирования постоянных сигналов                   |   |  |  |  |  |
|   | 4.1                                              | Схема инвертирующего сумматора на ОУ                           | 4 |  |  |  |  |
|   | 4.2                                              | Измерение выходного напряжения при входных напряжениях различ- |   |  |  |  |  |
|   |                                                  | ной полярности                                                 | 5 |  |  |  |  |
| 5 | Неинвертирующий сумматор для двух сигналов на ОУ |                                                                |   |  |  |  |  |
|   | 5.1                                              | Схема неинвертирующего сумматора на ОУ                         | 5 |  |  |  |  |
|   | 5.2                                              | Измерение выходного напряжения при входных напряжениях различ- |   |  |  |  |  |
|   |                                                  | ной полярности                                                 | 5 |  |  |  |  |
| 6 | Инт                                              | гегратор на ОУ                                                 | 6 |  |  |  |  |
|   | 6.1                                              | Схема идеального интегратора на ОУ                             | 6 |  |  |  |  |
|   | 6.2                                              | 1 1                                                            | 6 |  |  |  |  |
|   | 6.3                                              | Частотная характеристика интегратора                           | 7 |  |  |  |  |

# Цель работы

Цель работы – изучение характеристик операционного усилителя (ОУ) в различных режимах работы, исследование ОУ в различных схемах включения.

# Исходные данные

Обозначения:  $K_u$  – коэффициент усиления,  $K_1$  и  $K_2$  весовые коэффициенты для неинвертирующего сумматора,  $f_{i,d}$  – рабочая частота схемы интегратора, дифференциатора

| ОУ     | $K_u$ | $K_1$ | $K_2$ | $f_{i,d}$ , к $\Gamma$ ц |
|--------|-------|-------|-------|--------------------------|
| LT1037 | 8     | 1.5   | 3.5   | 1                        |

# Исследование дифференциального усилителя

## Схема дифференциального усилителя

Соберем схему усилителя с дифференциальным входом на ОУ для заданного значения коэффициента усиления  $K_u$  в таблице 1. В качестве резистора обратной связи используем резистор номиналом 10 кОм. Запитываем ОУ на 15В. Посчитаем параметры схемы: R4=R2=10кОм, R1=R3, тогда

$$K_u = \frac{R_2}{R_1} = \frac{R_4}{R_3}, \ 8 = \frac{10000}{R_1} \Rightarrow R_1 = R_3 = \frac{10000}{8} = 1250 \text{ Om}$$



Рис. 1: Дифференциальный усилитель

# Измерение выходного напряжения при входных напряжениях различной полярности

Подаем на V1 отрицательный постоянный ток, на V2 положительный. Измеряем Vout. Считаем  $U_{\text{вых. теор.}}=R_2/R_1\left(U_2-U_1\right)$ 

| $U_1$ , B                   | -0.1 | -0.3 | -0.5 | -1  | -1.5  | -0.9   |
|-----------------------------|------|------|------|-----|-------|--------|
| $U_2$ , B                   | 0.1  | 0.2  | 1    | 0.1 | 0.2   | 0.9    |
| $U_{\text{вых. эксп.}}$ , В | 1.6  | 4    | 12   | 8.8 | 13.59 | 13.771 |
| $U_{\text{вых. теор.}}$ , В | 1.6  | 4    | 12   | 8.8 | 13.6  | 14.4   |

Почти все результаты совпадают. Видим, что при приближении разницы входных напряжений к значению тока, питающего ОУ, деленного на коэффициент усиления  $(U_{1,2\,\mathrm{крит}} = 15/8 = 1.875\;\mathrm{B})$ , экспериментальные выходные напряжения отличаются от теоретически рассчитаных. У ОУ LT1037 есть ограничения на рабочий диапазон входов, он не Rail-to-Rail типа (не может выдать напряжение, равное его питанию).

## Влияние синфазной помехи на работу ДУ

Подадим одновременно на инвертирующий и неинвертирующий входы ОУ гармонический сигнал SINE(0.1 0.1 1k). Схема приведена на рис. 2. Результат приведен на рис. 3



Рис. 2: Дифференциальный усилитель при имитации воздействия синфазной помехи



Рис. 3: Выходное напряжение при синфазной помехе

Видим, что синфазная помеха почти полностью подавлена, но есть очень маленький остаточный шум. Среднее значение  $U_{\text{вых. эксп.}}$  по графику соответствует 1.6 В, что совпадает с результатом вычисления  $U_{\text{вых. теор.}} = 8 \cdot (0.1 - (-0.1)) = 1.6$  В без учета гармонического шума (так как он подавится ДУ). В случае идеального ДУ на выходе было бы ровно 1.6 В без помех.

## Влияние противофазной помехи на работу ДУ

Для имитации противофазной помехи подадим гармонический сигнал SINE(0.1 0.1 1k) на один из входов ОУ. Оставим подачу постоянного тока в 0.1 В на оба входа. Схема представлена на рис. 4. Результат представлен на рис. 5



Рис. 4: Дифференциальный усилитель при имитации воздействия противофазной помехи



Рис. 5: Выходное напряжение при противофазной помехе

ОУ усилил разницу между  $U_1, U_2$ . Синусоида сместилась вверх и увеличила амплитуду. Среднее значение выходного напряжения составляет 1.5111 В. Это близко к значению  $U_{\text{вых. теор.}} = 1.6$  В, вычисленному в пункте с синфазной помехой.

# ОУ в режиме суммирования постоянных сигналов

## Схема инвертирующего сумматора на ОУ

Соберем схему инвертирующего сумматора на ОУ AD549



Рис. 6: Инвертирующий сумматор на ОУ

# Измерение выходного напряжения при входных напряжениях различной полярности

Подаем на V1 отрицательный постоянный ток, на V2 положительный. Измеряем Vout. Считаем  $U_{\text{вых. теор.}} = -\left(\left(R_2/R_1\right)U_1 + \left(R_2/R_3\right)U_2\right), \; R_2/R_1 = R_2/R_3 = 8$ 

| $U_1$ , B                   | -0.1                    | -0.3    | -0.5    | -1     | -1.5   | -1.25  |
|-----------------------------|-------------------------|---------|---------|--------|--------|--------|
| $U_2$ , B                   | 0.1                     | 0.2     | 1       | 0.1    | 1      | 0.05   |
| <i>U</i> вых. эксп., В      | $-6.1023 \cdot 10^{-6}$ | 0.79998 | -3.9999 | 7.1999 | 3.9999 | 8.2148 |
| $U_{\text{вых. теор.}}$ , В | 0                       | 0.8     | -4      | 7.2    | 4      | 9.6    |

Как видим экспериментальные и теоретические значения почти совпали. При приближении разности  $U_1, U_2$  к  $U_{1,2\,\mathrm{крит.}} = 10/8 = 1.25$  экспериментальные значения начинают отставать аналогично заданию с ДУ.

# Неинвертирующий сумматор для двух сигналов на ОУ

# Схема неинвертирующего сумматора на ОУ

Соберем схему неинвертирующего сумматора для двух сигналов с ОУ, обеспечивающего суммирование двух сигналов с заданными весовыми коэффициентами  $K_1, K_2$ 



Рис. 7: Неинвертирующий сумматор на ОУ

# Измерение выходного напряжения при входных напряжениях различной полярности

Подаем на V1 отрицательный постоянный ток, на V2 положительный. Измеряем Vout. Считаем  $U_{\text{вых. теор.}}=(R_4/R_1)\,U_1+(R_4/R_3)\,U_2=K_1U_1+K_2U_2,\ R_2/R_5=K_1+K_2,\ R_5=R_4=100$  кОм

| $U_1$ , B                   | -0.1 | -0.3 | -0.5 | -1    | -1.5  | -2  | -3 |
|-----------------------------|------|------|------|-------|-------|-----|----|
| $U_2$ , B                   | 0.1  | 0.2  | 1    | 0.1   | 0.2   | 3   | 5  |
| $U_{\text{вых. эксп.}}$ , В | 0.2  | 0.25 | 2.75 | -1.15 | -1.55 | 7.5 | 13 |
| $U_{\text{вых. теор.}}$ , В | 0.2  | 0.25 | 2.75 | -1.15 | -1.55 | 7.5 | 13 |

Видим, что экспериментальные и теоретические значения совпадают.

# Интегратор на ОУ

Соберем схему интегратора на ОУ. Для R1 зададим стандартное значение 100 кОм. Интегратор работает на частоте  $f_i = 1$  к $\Gamma$ ц. Пусть минимальное и максимальное значение рабочей частоты будет  $f_{min} = 0.01 f_i$ ,  $f_{max} = 100 f_i$ . Рассчитаем C1

$$C_1 = rac{1}{2\pi f_i R_1} = rac{1}{2\pi \cdot 10^3 \cdot 100 \cdot 10^3} = 1.6$$
 н $\Phi$ 

Рассчитаем R2

$$R_2 = \frac{1}{2\pi C_1 f_{min}/10} = \frac{1}{2\pi \cdot 1.6 \cdot 10^{-9}} = 99471839.4324346 \text{ Om}$$

Возьмем  $R_2$  больше полученного значения –  $R_2 = 100 \, \mathrm{MOm}$ .

Рекомендуется использовать ОУ с полосой пропускания в 10 раз большей, чем требуемая максимальная частота интегратора. Проверим:

$$f_{max, \, \text{LT1037}} = 2.5 \, \, \text{M}\Gamma$$
ц,  $f_{max} = 100 f_i = 100 \, \, \text{к}\Gamma$ ц,  $f_{max, \, \text{реком.}} = 10 f_{max} = 1 \, \, \text{M}\Gamma$ ц  $f_{max, \, \text{LT1037}} = 2.5 \, \, \text{M}\Gamma$ ц  $> f_{max, \, \text{реком.}} = 1 \, \, \text{M}\Gamma$ ц

## Схема идеального интегратора на ОУ

Построим схему идеального интегратора с учетом всех вычислений



Рис. 8: Идеальный интегратор на ОУ

#### Схема реального интегратора на ОУ

Построим схему реального интегратора с учетом всех вычислений



Рис. 9: Реальный интегратор на ОУ

## Частотная характеристика интегратора

Подадим на вход гармонический сигнал, не искажающий выходной сигнал (AC 0.1). Идеальный интегратор представлен на рис. 10, реальный на 11



Рис. 10: Частотная характеристика идеального интегратора



Рис. 11: Частотная характеристика реального интегратора

По графикам с помощью курсора определим частоту среза как отклонение на -3 дБ от начальных x дБ. Таким образом, для идеального интегратора частота среза 46.853996  $\Gamma$ ц, для реального 1.7163194  $\Gamma$ ц.