

Parul University

Faculty of Engineering & Technology

Department of Applied Sciences and Humanities

1st Year B.Tech Programme (All Branches)

Mathematics – 1 (303191101)

Unit – 6 Multivariable Calculus

Tutorial-3

Use the Chain Rule to find
$$\frac{dw}{dt}$$
 for $w = xe^{\frac{y}{z}}$, $x = t^2$, $y = 1 - t$, $z = 1 + 2t$

Use the Chain Rule to find
$$\frac{\partial z}{\partial s}$$
 and $\frac{\partial z}{\partial t}$, $z = e^r \cos \theta$, $r = st$, $\theta = \sqrt{s^2 + t^2}$

3 Find
$$\frac{dy}{dx}$$
 for 1) $x^2 - y^2 + \sin xy = 0$, 2) $x^3 + y^3 = 7xy$.

Find
$$\frac{dw}{dt}$$
 if $w = xy + z$, $x = \cos t$, $y = \sin t$, $z = t$.

5 Use the chain Rule to find the indicated partial derivatives.

a.
$$z = x^2 + xy^3$$
, $x = uv^2 + w^3$, $y = u + ve^w$; $\frac{\partial z}{\partial u}$, $\frac{\partial z}{\partial v}$, $\frac{\partial z}{\partial w}$ when $u = 2, v = 1, w = 0$

b.
$$R = \ln(u^2 + v^2 + w^2)$$
, $u = x + 2y$, $v = 2x - y$, $w = 2xy$; $\frac{\partial R}{\partial x}$, $\frac{\partial R}{\partial y}$, when $x = y = 1$

Find
$$\frac{\partial w}{\partial r}$$
 and $\frac{\partial w}{\partial s}$ in terms of r and s if $w = (x + 2y + z^2), x = \frac{r}{s}, y = r^2 + \ln s, z = 2r$.

Find
$$\frac{\partial z}{\partial u}$$
 when $u = 0, v = 1$ if $z = \sin xy + x \sin y$, $x = u^2 + v^2$, $y = uv$.

8 If
$$z = f(x, y)$$
 where $x = e^{u} + e^{-v}$, $y = e^{-u} - e^{v}$, prove that $\frac{\partial z}{\partial u} - \frac{\partial z}{\partial v} = x \frac{\partial z}{\partial x} - y \frac{\partial z}{\partial v}$

9 a) Find the *Jacobian* $\frac{\partial(u,v)}{\partial(x,y)}$ for the following functions:

(i)
$$u = x^2 - y^2$$
, $v = 2xy$

(ii)
$$u = \frac{x^2 + y^2}{1 - xy}$$
, $v = tan^{-1}x + tan^{-1}y$

b) For the transformations
$$x = e^v secu$$
, $y = e^v tanu$, prove that $\frac{\partial(x,y)\partial(u,v)}{\partial(u,v)\partial(x,y)} = 1$

- a) Find the equation of the tangent plane and normal line to the surface $2xz^2 3xy 4x = 7$ at (1, -1, 2).
 - b) Find the equation of the normal line of the sphere $x^2 + y^2 + z^2 = 6$ at the point (a, b, c). Show that the normal line passes through the origin.
- a) Find the stationary value of $x^3 + y^3 3axy$, a > 0.
 - b) Examine the function $x^3y^2(12 3x 4y)$ for extreme values.
- a) Find the minimum values of xyz, subject to the condition 2x + 2y + 2z = 36
 - b) Find the minimum values of $x^2 + y^2$, subject to the condition ax + by = c