Simplex Fase I

OBS: Diversos exercícios dessa lista podem ter suas soluções verificadas usando o software GUSEK

- 1. Sabe-se que o **método Simplex** é composto por duas fases. Ambas utilizam o algoritmo Simplex. Com base nisso, responda o que se pede:
 - (a) O que é a Fase I do método Simplex? Quando ela é utilizada? **RESPOSTA:**

A fase I do método Simplex consiste no procedimento de encontrar uma solução básica factível inicial para o problema. Ela é usada quando as variáveis de folga não formam uma base factível por si só, ou seja, se existirem restrições de igualdade ou desigualdade do tipo \geq .

(b) Dê um exemplo em duas variáveis em que a Fase I precisaria ser aplicada e um em que não seria necessário (crie as inequações e desenhe a região factível).

RESPOSTA:

O modelo abaixo precisa que a Fase I seja aplicada, sua região factível é mostrada no gráfico da Figura 1.

max
$$z = x_1 + x_2$$

s.a: $x_1 + x_2 \ge 10$
 $x_1, x_2 \ge 0$

Figura 1: Região factível modelo com Fase I

Já o modelo abaixo não precisa que a Fase I seja aplicada, sua região factível é mostrada no gráfico da Figura 2.

max
$$z = x_1 + x_2$$

s.a: $x_1 + x_2 \le 10$
 $x_1, x_2 \ge 0$

Figura 2: Região factível modelo sem Fase I

2. Resolva os modelos de PL a seguir. Para cada um mostre o caminho Simplex.

(a)

min
$$z = 3x_1 + 2x_2$$

s.a: $x_1 + x_2 \ge 10$
 $x_1 + x_2 \ge 15$
 $x_1, x_2 \ge 0$

RESPOSTA:

Colocando o modelo na forma padrão:

$$\min z = 3x_1 + 2x_2$$
 s.a: $x_1 + x_2 - x_3 = 10$
$$x_1 + x_2 - x_4 = 15$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Adicionando as variáveis artificiais $\bar{x_5}$ e $\bar{x_6}$, e substituindo a função objetivo original pela função artificial min w = $\bar{x_5} + \bar{x_6}$:

$$\min \ w = \bar{x_5} + \bar{x_6}$$
 s.a: $x_1 + x_2 - x_3 + \bar{x_5} = 10$
$$x_1 + x_2 - x_4 + \bar{x_6} = 15$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Colocando no formato tabular, temos: (a Tabela 1 não está no formato canônico em relação às variáveis $\bar{x_5}, \bar{x_6}$, de forma que executamos as operações $L_1 \leftarrow L_1 - L_2$ e $L_1 \leftarrow L_1 - L_3$, gerando a Tabela 2:

 $\bar{x_6}$

0

1

-w

-25

10

15

 $\bar{x_5}$

0

0

	x_1	x_2	x_3	x_4	$\bar{x_5}$	$\bar{x_6}$	-w
	0	0	0	0	1	1	0
??	1	1	-1	0	1	0	10
??	1	1	0	-1	0	1	15

x_6 1 1 0

 x_1

-2

 x_2

-2

Tabela 1: Ex. 2a Tabela inicial (não básica)

	x_1	x_2	x_3	x_4	$\bar{x_5}$	$\bar{x_6}$	-W
	0	0	-1	1	2	0	-5
x_1	1	1	-1	0	1	0	10
$\bar{x_6}$	0	0	1	-1	-1	1	5

Tabela 2: Ex. 2a Tabela canônica

 x_4

1

-1

 x_3

1

	x_1	x_2	x_3	x_4	$\bar{x_5}$	$\bar{x_6}$	-w
	0	0	0	0	1	1	0
x_1	1	1	0	-1	0	1	15
x_3	0	0	1	-1	-1	1	5

Tabela 3: Ex. 2a iteração 1

Tabela 4: Ex. 2a iteração 2 (ótimo artificial)

Como não temos variáveis artificiais na base e a função objetivo artificial é w = 0, encontramos uma solução básica factível. Removemos as colunas referentes às variáveis artificias e inserimos novamente a função objetivo original z. Com a nova função a Tabela deixa de ser canônica em relação às variáveis básica $(x_1 \ ex_3)$. Portanto realizamos a operação $L_1 \leftarrow L_1 - 3L_2$, gerando a Tabela 6.

	x_1	x_2	x_3	x_4	-z
	3	2	0	0	0
x_1	1	1	0	-1	15
x_3	0	0	1	-1	5

	x_1	x_2	x_3	x_4	-Z
	0	-1	0	3	-45
x_1	1	1	0	-1	15
x_3	0	0	1	-1	5

Tabela 5: Ex. 2a Tabela não canônica

Tabela 6: Ex. 2a Tabela na forma canônica

	x_1	x_2	x_3	x_4	-z
	1	0	0	2	-30
x_2	1	1	0	-1	15
x_3	0	0	1	-1	5

Tabela 7: Ex. 2a iteração 1 (ótimo)

Solução ótima com valores $x_B^T = (x_2, x_3) = (15, 5)$ e $x_N^T = (x_1, x_4) = (0, 0)$ e função objetivo com custo 30. O caminho Simplex é mostrado na Figura 3, iniciando no ponto A e passando ao ponto B (ótimo). Note que uma das restrições é irrelevante para o problema, ou seja, poderia ser removida e região factível permanece a mesma.

Figura 3: Caminho Simplex

(b)

$$\max z = 2x_1 + 3x_2$$
s.a: $x_1 + x_2 = 3$

$$x_1 + 2x_2 \le 4$$

$$x_1, x_2 \ge 0$$

RESPOSTA:

Colocando o modelo na forma padrão:

$$\min z = -2x_1 - 3x_2$$
s.a: $x_1 + x_2 = 3$

$$x_1 + 2x_2 + x_3 = 4$$

$$x_1, x_2 \ge 0$$

Adicionando as variáveis artificiais $\bar{x_4}$ e $\bar{x_5}$, e substituindo a função objetivo original pela função artificial min w = $\bar{x_4} + \bar{x_5}$:

$$\min w = \bar{x_4} + \bar{x_4}$$

$$x_1 + x_2 + \bar{x_4} = 3$$

$$x_1 + 2x_2 + x_3 + \bar{x_5} = 4$$

$$x_1, x_2 \ge 0$$

Colocando no formato tabular, temos: (a Tabela 8 não está no formato canônico em relação às variáveis $\bar{x_4}, \bar{x_5}$, de forma que executamos as operações $L_1 \leftarrow L_1 - L_2$ e $L_1 \leftarrow L_1 - L_3$, gerando a Tabela 9 :

Com o fim da Fase I, removemos as colunas referentes às variáveis artificiais e reinserimos a função objetivo original min $z=-2x_1-3x_2$ (Tabela 12). Com essa inserção o sistema

	x_1	x_2	x_3	$\bar{x_4}$	$\bar{x_5}$	-w
	0	0	0	1	1	0
??	1	1	0	1	0	3
??	1	2	1	0	1	4

	x_1	x_2	x_3	$\bar{x_4}$	$\bar{x_5}$	$-\mathbf{W}$
	-2	-3	-1	0	0	-7
$\bar{x_4}$	1	1	0	1	0	3
$\bar{x_5}$	1	2	1	0	1	4

Tabela 8: Ex. 2b Tabela inicial (não canônica)

Tabela 9: Ex. 2b Tabela canônica

	x_1	x_2	x_3	$\bar{x_4}$	$\bar{x_5}$	-w
	-1/2	0	1/2	0	3/2	-1
$\bar{x_4}$	1/2	0	-1/2	1	-1/2	1
x_2	1/2	1	1/2	0	1/2	2

	x_1	x_2	x_3	$\bar{x_4}$	$\bar{x_5}$	-w
	0	0	0	1	1	0
x_1	1	0	-1	2	-1	2
x_2	0	1	1	-1	1	1

Tabela 10: Ex. 2b iteração 1

Tabela 11: Ex. 2b iteração 2 (ótimo artificial)

deixa de estar na forma canônica em relação às variáveis básicas, de forma que devemos executar as operações $L_0 \leftarrow L_0 + 2L_1$ e $L_0 \leftarrow L_0 + 3L_2$ (Tabela 13) Temos que ao

	x_1	x_2	x_3	-z
	-2	-3	0	0
x_1	1	0	-1	2
x_2	0	1	1	1

	x_1	x_2	x_3	-z
	0	0	1	7
x_1	1	0	-1	2
x_2	0	1	1	1

Tabela 12: Ex. 2b (não canônica)

Tabela 13: Ex. 2b Tabela canônica (ótimo)

deixar a Tabela canônica, nenhuma variável da função objetivo é menor do que zero $(c \geq 0)$, que é o critério de parada do algoritmo Simplex, ou seja, a solução atual é ótima com $x_B^T = (x_1, x_2) = (2, 1)$ e $x_N^T = (x_3) = (0)$, com custo z = -7. Como fizemos a transformação da função objetivo para minimização, o custo original para o problema de maximização é z = 7.

A região factível é o segmento de reta mostrado na Figura 4, e a solução factível inicial já é a ótima no caminho Simplex, dada pelo ponto $(x_1, x_2) = (2, 1)$ (D na Figura).

$$\max z = 6x_1 - x_2$$
s.a: $4x_1 + x_2 \le 21$

$$2x_1 + 3x_2 \ge 13$$

$$x_1 - x_2 = -1$$

$$x_1, x_2 \ge 0$$

RESPOSTA:

(c)

Figura 4: Caminho Simplex

Colocando o modelo na forma padrão:

$$\min z = -6x_1 + x_2$$

$$4x_1 + x_2 + x_3 = 21$$

$$2x_1 + 3x_2 - x_4 = 13$$

$$-x_1 + x_2 = 1$$

$$x_1, x_2 \ge 0$$

Adicionando as variáveis artificiais $\bar{x_5}, \bar{x_6}$ e $\bar{x_7}$, e substituindo a função objetivo original pela função artificial min $w = \bar{x_5} + \bar{x_6} + \bar{x_7}$:

$$\min w = \bar{x_5} + \bar{x_6} + \bar{x_7}$$

$$4x_1 + x_2 + x_3 + \bar{x_5} = 21$$

$$2x_1 + 3x_2 - x_4 + \bar{x_6} = 13$$

$$-x_1 + x_2 \qquad \bar{x_7} = 1$$

$$x_1, x_2 \ge 0$$

Colocando no formato tabular, temos: (a Tabela 14 não está no formato canônico em relação às variáveis $\bar{x_5}, \bar{x_6}, \bar{x_7}$ de forma que executamos as operações $L_1 \leftarrow L_1 - L_2$, $L_1 \leftarrow L_1 - L_3$, e $L_1 \leftarrow L_1 - L_4$ gerando a Tabela 15:

Solução ótima artificial, agora removemos as colunas referentes às variáveis artificiais e reinserimos a função objetivo original min z=-6x1+x2 (Tabela 19). Como essa Tabela não está na forma canônica em relação às variáveis básicas x_1,x_2,x_3 , realizamos as seguintes operações: $L_1 \leftarrow L_1 + 6L_2$ e $L_1 \leftarrow L_1 - L_2$ (Tabela 20). Solução ótima com $x_B^T = (x_1,x_2,x_4) = (4,5,10)$ e $x_N^T = x_3 = 0$ e z = -19, como

Solução ótima com $x_B^T = (x_1, x_2, x_4) = (4, 5, 10)$ e $x_N^T = x_3 = 0$ e z = -19, como transformamos o problema de max para min, o valor original de z é 19. O caminho Simplex é mostrado na Figura

-5 5 1

	x_1	x_2	x_3	x_4	$\bar{x_5}$	$\bar{x_6}$	$\bar{x_7}$	-w
	0	0	0	0	1	1	1	0
??	4	1	1	0	1	0	0	21
??	2	3	0	-1	0	1	0	13
??	-1	1	0	0	0	0	1	1

	x_1	x_2	x_3	x_4	$\bar{x_5}$	$\bar{x_6}$	$\bar{x_7}$	-W
	-5	-5	-1	1	0	0	0	-35
$\bar{x_5}$	4	1	1	0	1	0	0	21
		3						
$\bar{x_7}$	-1	1	0	0	0	0	1	1

Tabela 14: Ex. 2c Tabela inicial (não canônica)

Tabela 15: Ex. 2c Tabela canônica

	x_1	x_2	x_3	x_4	$\bar{x_5}$	$\bar{x_6}$	$\bar{x_7}$	-W		x_1	x_2	x_3	x_4	$\bar{x_5}$	$\bar{x_6}$	\bar{x}
	0	-15/4	1/4	1	5/4	0	0	-35/4		0	0	-1/2	-1/2	1/2	3/2	0
x_1	1	1/4	1/4	0	1/4	0	0	21/4	x_1	1	0	3/10	1/10	3/10	-1/10	0
$\bar{x_6}$	0	5/2	-1/2	-1	-1/2	1	0	5/2	x_2	0	1	-1/5	-2/5	-1/5	2/5	0
$\bar{x_7}$	0	5/4	1/4	0	1/4	0	1	25/4	$\bar{x_7}$	0	0	1/2	1/2	1/2	-1/2	1
									_							

Tabela 16: Ex. 2c Tabela iteração 1

Tabela 17: Ex. 2c Tabela iteração 2

	x_1	x_2	x_3	x_4	$\bar{x_5}$	$\bar{x_6}$	$\bar{x_7}$	-W
	0	0	0	0	1	1	1	0
x_1	1	0	0	-1/5	0	1/5	-3/5	2
				-1/5				
x_3	0	0	1	1	1	-1	2	10

Tabela 18: Ex. 2c Tabela iteração 3 (ótimo)

	x_1	x_2	x_3	x_4	-z
	-6	1	0	0	0
x_1	1	0	0	-1/5	2
x_2	0	1	0	-1/5	3
x_3	0	0	1	1	10

	x_1	x_2	x_3	x_4	-z
	0	0	0	-1	9
x_1	1	0	0	-1/5	2
x_2	0	1	0	-1/5	3
x_3	0	0	1	1	10

Tabela 19: Ex. 2c Tabela não canônica com z

Tabela 20: Ex. 2c Tabela canônica com z

	x_1	x_2	x_3	x_4	-z
	0	0	1	0	19
x_1	1	0	1/5	0	4
x_2	0	1	1/5	0	5
x_4	0	0	1	1	10

Tabela 21: Ex. 2c iteração 1 (ótimo)

A região factível é o segmento de reta mostrado na Figura 4, e a solução factível inicial já é a ótima no caminho Simplex, dada pelo ponto $(x_1, x_2) = (4, 5)$ (B na Figura). Note que a Figura 5 apresenta a região vermelha somente para visualização, a região factível é somente o segmento de reta em azul.

Figura 5: Caminho Simplex ex. 2c

3. (ENADE 2018) Uma pequena empresa fabrica apenas os produtos X e Y, em uma única máquina, que funciona durante 300 horas por semana. O gerente decidiu rever seu mix de produção (quantidade fabricada de cada produto) porque tinha a sensação de estar fazendo algo errado e achava que poderia, de alguma maneira, aumentar seu lucro. Para isso, pediu ajuda a um engenheiro de produção, que fez diversas entrevistas e resumiu os dados adicionais, relevantes para o problema, na Tabela 3.

Produto	X	$\overline{\mathbf{Y}}$
Tempo de produção (hora/unidade)	1	4
Demanda mínima (unidades/semana)	50	50
Margem de contribuição para o lucro (R\$)	80	40

Tabela 22: Resumo informações

O gerente explicou ao engenheiro que havia adotado o mix de produção atual porque acreditava ser mais interessante fabricar e vender o máximo possível do produto de maior margem de contribuição para o lucro e usar o resto da capacidade para produzir e vender o máximo possível do outro produto de menor margem de contribuição. Crie o modelo de PL para otimizar a produção, encontre a solução ótima usando o método Simplex e determine graficamente o caminho Simplex (considere que todo o excesso produzido além da demanda semanal é vendido).

RESPOSTA:

Temos os seguinte modelo para o problema:

Sejam as variáveis: $\begin{cases} x_1 : \text{Quantidade produzida do produto X} \\ x_2 : \text{Quantidade produzida do produto Y} \end{cases}$

$$\max z = 80x_1 + 40x_2$$

$$x_1 + 4x_2 \le 300$$

$$x_1 \ge 50$$

$$x_2 \ge 50$$

$$x_1, x_2 \ge 0$$

Colocando na forma padrão:

$$\min z = -80x_1 - 40x_2$$

$$x_1 + 4x_2 + x_3 = 300$$

$$x_1 - x_4 = 50$$

$$x_2 - x_5 = 50$$

$$x_1, x_2 \ge 0$$

Adicionando as variáveis artificiais $\bar{x_6}$, $\bar{x_7}$ e $\bar{x_8}$, e substituindo a função objetivo original pela função artificial min $w = \bar{x_6} + \bar{x_7} + \bar{x_8}$:

$$\begin{array}{cccc} & \min \ w = \bar{x_6} + \bar{x_7} + \bar{x_8} \\ x_1 + 4x_2 + x_3 & + \bar{x_6} & = 300 \\ x_1 & -x_4 & + \bar{x_7} & = 50 \\ x_2 & -x_5 & + \bar{x_8} = 50 \\ & x_1, x_2 \ge 0 \end{array}$$

Colocando no formato tabular, temos a Tabela 23, que não está no formato canônico em relação às variáveis $\bar{x_6}, \bar{x_7}, \bar{x_8}$ de forma que executamos as operações $L_1 \leftarrow L_1 - L_2$, $L_1 \leftarrow L_1 - L_3$, e $L_1 \leftarrow L_1 - L_4$ gerando a Tabela 24 :

	x_1	x_2	x_3	x_4	x_5	$\bar{x_6}$	$\bar{x_7}$	$\bar{x_8}$	-w
	0	0	0	0	0	1	1	1	0
??	1	4	1	0	0	1	0	0	300
??	1	0	0	-1	0	0	1	0	50
??	0	1	0	0	-1	0	0	1	50

	x_1	x_2	x_3	x_4	x_5	$\bar{x_6}$	$\bar{x_7}$	$\bar{x_8}$	-w
	-2	-5	-1	1	1	0	0	0	-400
$\bar{x_6}$	1	4	1	0	0	1	0	0	300
$\bar{x_7}$	1	0	0	-1	0	0	1	0	50
$\bar{x_8}$	0	1	0	0	-1	0	0	1	50

Tabela 23: Ex. 3 Tabela inicial (não canônica)

Tabela 24: Ex. 3 Tabela canônica

	x_1	x_2	x_3	x_4	x_5	$\bar{x_6}$	$\bar{x_7}$	$\bar{x_8}$	-w
	-2	0	-1	1	-4	0	0	5	-150
$\bar{x_6}$		0							
$\bar{x_7}$	1	0	0	-1	0	0	1	0	50
x_2	0	1	0	0	-1	0	0	1	50

	x_1	x_2	x_3	x_4	x_5	$\bar{x_6}$	$\bar{x_7}$	$\bar{x_8}$	-w
	-1	0	0	1	0	1	0	1	-50
x_5	1/4	0	1/4	0	1	1/4	0	-1	25
$\bar{x_7}$	1	0	0	-1	0	0	1	0	50
x_2	1/4	1	1/4	0	0	1/4	0	0	75

Tabela 25: Ex. 3 iteração 1

Tabela 26: Ex. 3 iteração 2

	x_1	x_2	x_3	x_4	x_5	$\bar{x_6}$	$\bar{x_7}$	$\bar{x_8}$	-w
	0	0	0	0	0	1	1	1	0
x_5	0	0	1/4	1/4	1	1/4	-1/4	-1	25/2
x_1	0	0	-1	0	0	1	0	50	
x_2	0	1	1/4	1/4	0	1/4	-1/4	0	125/2

Tabela 27: Ex. 3 iteração 3 (ótimo artificial)

Como chegamos ao ótimo artificial, podemos remover as colunas artificiais e reinserir a função objetivo original $z=-80x_1-40x_2$ (Tabela). Com essa nova inserção a tabela deixa de estar na forma canônica, realizamos as operações $L_1 \leftarrow L_1 + 80L_3$ e $L_1 \leftarrow L_1 + 40L_4$ (Tabela).

	x_1	x_2	x_3	x_4	x_5	-z
	-80	-40	0	0	0	0
x_5	0	0	1	1/4	1	25/2
x_1	1	0	0	-1	0	50
x_2	0	1	1	1/4	0	125/2

	x_1	x_2	x_3	x_4	x_5	-z
	0	0	40	-70	0	6500
x_5	0	0	1	1/4	1	25/2
x_1	1	0	0	-1	0	50
x_2	0	1	1	1/4	0	125/2

Tabela 28: Ex. 3 tabela não canônica com z

Tabela 29: Ex. 3 tabela canônica com z

	x_1	x_2	x_3	x_4	x_5	-z
	0	0	320	0	280	10000
x_4	0	0	4	1	4	50
x_1	1	0	4	0	4	100
x_2	0	1	0	0	-1	50

Tabela 30: Ex. 3 iteração 1 (ótimo)

Solução ótima com $x_B^T=(x_4,x_1,x_2)=(50,100,50)$ e $x_N^T=(x_3,x_5)=(0,0)$ e valor objetivo de z=-10000. Como transformamos o problema em minimização, o valor da função objetivo é de 10000. A Figura 6 mostra a região factível e o caminho Simplex (iniciando no ponto A e terminando em B):

Figura 6: Caminho Simplex ex. 3