A Book of Abstract Algebra (2nd Edition)

	Chapter 28, Problem 1EE	Bookmark	Show all steps: ON					
Problem								
	Let U and V be finite-dimensional vector spaces over a field F , and let $h:U\to V$ be a linear transformation. Prove part: The kernel of h is a subspace of U . (It is called the <i>null space</i> of h .)							
Step-by-step solution								
	Step 1 of 4							
	It is already known that <i>U</i> is a vector space and so it satisfies all conditions for vector space. Comment							
-	Step 2 of 4							
	Given subset of U is set of all elements of U which maps to zero-vector of V .							
	Comment							
-	Step 3 of 4							

Or given subset is

$$\{\mathbf{k} \in U \mid h(\mathbf{k}) = \mathbf{0}_{v}\}$$

Comment

Step 4 of 4

A 2 step check is needed to determine if given subset is a subspace. First determine if any linear combination of functions in subset is closed under given operation. Second, determine if 0 satisfies given conditions.

STEP 1: For any 2 elements a and b in U,

$$h(\mathbf{a}) = \mathbf{0}_{v}$$

$$h(\mathbf{b}) = \mathbf{0}_{v}$$

Combining above 2 equations, s(1) + t(2) gives

$$s \cdot h(\mathbf{a}) + t \cdot h(\mathbf{b}) = \mathbf{0}_{v}$$

As functions or linear transformations are vector space in themselves, any constant multiple of function is also a function. Also sum of 2 functions is also a function. Thus,

$$s \cdot h(\mathbf{a}) + t \cdot h(\mathbf{b}) = \mathbf{0}_{v}$$

$$\Rightarrow h(s\mathbf{a}) + h(t\mathbf{b}) = \mathbf{0}_{v}$$

$$\Rightarrow h(s\mathbf{a}+t\mathbf{b})=\mathbf{0}_{v}$$

Thus linear combination of 2 elements in subset lies in subset.

STEP 2: Check if **0** vector satisfies given condition,

$$h(\mathbf{0}_{y}) = \mathbf{0}_{y}$$
 {As h is a linear transformation}

Hence given set or kernel represents a subspace

Comment