B. 芽芽的跳棋

Description

芽芽喜歡玩跳棋,除了跟朋友一起下跳棋之外,芽芽還喜歡研究各式各樣和跳棋有關的問題。他喜歡研究的其中一類問題是在一個有N個格子排成一直線的棋盤上玩跳棋,這N個格子從左至右編號為 $1,2,\ldots,N$,雖然棋盤只有一直線的跳棋聽起來不太好玩,但芽芽經常可以在這樣的棋盤上發現有趣的性質。

他今天好奇的問題是這樣的:他已經在棋盤上放了一些棋子,在遊戲的每一回合,他可以 挑選一個棋子移動,假設他挑中的棋子位在格子 x,那麼他可以選擇以下其中一種方式移動這 個棋子:

- 走到旁邊:把棋子移動到其中一個相鄰的空格,也就是說,如果格子 x-1 或 x+1 是空的,那就可以把選中的棋子移動到其中一個空的格子。
- 跳過棋子:如果 x 的相鄰格子上也有棋子,但是再過去一格格子是空的,就可以把位在 x 的棋子移動到對面那個空格,這個動作可以在這一回合中做任意多次,但是只能移動回 合一開始選中的棋子,且不能回到這一回合中曾經到過的格子,包含一開始所在的格子 x 也不行。舉例來說,如果 x+1 有一個棋子、x+2 是空的,那麼就可以把選中的棋子移動到 x+2。

芽芽想要知道的是,在目前的棋盤中,每一個棋子最多可以在一回合中移動幾次。如果芽芽使用「走到旁邊」的話,那移動次數就是 1、如果使用「跳過棋子」,那進行跳躍動作的次數就是移動次數,而如果一個棋子沒辦法被移動,它的最多移動次數是 0。

舉例來說,當 N=6、棋盤上有 3 個棋子,分別位於 2,3,5 時,每個棋子最多移動次數的 移動方法是:

- 位於 2 的棋子:使用「跳過棋子」 $2 \rightarrow 4 \rightarrow 6$,移動 2 次。
- 位於 5 的棋子:使用「走到旁邊」移動到 4 或 6,都是移動 1 次。

芽芽發現這個問題如果是在一個二維棋盤上就會非常困難,但在一直線的棋盤上就會很簡單,於是他決定考考你這個問題。

Input

第一行有一個整數 N,代表芽芽的棋盤有幾個格子。

第二行有 N 個整數 a_1, a_2, \ldots, a_N ,每一個數都是 0 或 1,其中 $a_i = 0$ 代表格子 i 上沒有棋子, $a_i = 1$ 則代表格子 i 上有棋子。

- $1 < N < 10^6$
- $a_i \in \{0, 1\}$

Output

輸出 N 個整數 b_1,b_2,\ldots,b_N 於一行,以空白隔開。其中 b_i 為位於 i 的棋子在一回合中最多可以移動幾次,如果格子 i 沒有棋子,輸出 $b_i=-1$ 。

Sample 1

Input	Output
6	-1 2 1 -1 1 -1
0 1 1 0 1 0	

Sample 2

Input	Output
10	-1 -1 1 1 0 1 1 -1 -1 -1
0 0 1 1 1 1 1 0 0 0	

Sample 3

out
1 -1

配分

在一個子任務的「測試資料範圍」的敘述中,如果存在沒有提到範圍的變數,則此變數的範圍為 Input 所描述的範圍。

子任務編號	子任務配分	測試資料範圍
1	0%	範例測試資料
2	10%	最多只有 3 個棋子
3	40%	$N \le 10^3$
4	50%	無特別限制