INTERMEDIATE FINANCIAL MANAGEMENT

(Brigham & Daves, 11th edition)

ANSWERS TO SELECTED END-OF-CHAPTER QUESTIONS

4-8 With your financial calculator, enter the following to find YTM:

```
N = 10 \times 2 = 20; PV = -1100; PMT = 0.08/2 \times 1,000 = 40; FV = 1000; I/YR = ? YTM = 3.31\% \times 2 = 6.62\%.
```

With your financial calculator, enter the following to find YTC:

 $N = 5 \times 2 = 10$; PV = -1100; $PMT = 0.08/2 \times 1,000 = 40$; FV = 1050; I/YR = ? $YTC = 3.24\% \times 2 = 6.49\%$.

- 4-9 a. 1. 5%: Bond L: Input N = 15, I/YR = 5, PMT = 100, FV = 1000, PV = ?, PV = -\$1,518.98. Bond S: Change N = 1, PV = ? PV = -\$1,047.62.
 - 2. 8%: Bond L: From Bond S inputs, change N = 15 and I/YR = 8, PV = ?, PV = -\$1,171.19. Bond S: Change N = 1, PV = ? PV = -\$1,018.52.
 - 3. 12%: Bond L: From Bond S inputs, change N = 15 and I/YR = 12, PV = ? PV = -\$863.78. Bond S: Change N = 1, PV = ? PV = -\$982.14.
 - b. (Following is the answer given by the solution manual. Use your own words to explain the idea.)

Think about a bond that matures in one month. Its present value is influenced primarily by the maturity value, which will be received in only one month. Even if interest rates double, the price of the bond will still be close to \$1,000. A one-year bond's value would fluctuate more than the one-month bond's value because of the difference in the timing of receipts. However, its value would still be fairly close to \$1,000 even if interest rates doubled. A long-term bond paying semiannual coupons, on the other hand, will be dominated by distant receipts, receipts which are multiplied by $1/(1 + r_d/2)^t$, and if r_d increases, these multipliers will decrease significantly. Another way to view this problem is from an opportunity point of view. A one-month bond can be reinvested at the new rate very quickly, and hence the opportunity to invest at this new rate is not lost; however, the long-term bond locks in subnormal returns for a long period of time.

- 4-10 a. 1. Input N = 5, PV = -829, PMT = 90, FV = 1000, I/YR = ? I/YR = 13.98%.
 - 2. Change PV = -1104. I/YR = ? I/YR = 6.50%.
 - b. Yes. At a price of \$829, the yield to maturity, 13.98 percent, is greater than your required rate of return of 12 percent. If your required rate of return were 12 percent, you should be willing to buy the bond at any price below \$891.86. (N = 5, I/YR = 12, PMT = 90, FV = 1000, PV = ? PV = -891.86)
- 4-11 N = 7; PV = -1000; PMT = 140; FV = 1090; I/YR = ? Solve for I/YR = 14.82%.
- 4-12 a. Using a financial calculator, input the following: N = 20, PV = -1100, PMT = 60, FV = 1000, and solve for I/YR = 5.1849%.

However, this is a periodic rate. The nominal annual rate = $5.1849\%(2) = 10.3699\% \approx 10.37\%$.

- b. The current yield = 120/1,100 = 10.91%.
- YTM = Current Yield + Capital Gains (Loss) Yield
 10.37% = 10.91% + Capital Loss Yield
 -0.54% = Capital Loss Yield.
- d. Using a financial calculator, input the following: N = 8, PV = -1100, PMT = 60, FV = 1060, and solve for I/YR = 5.0748%.

However, this is a periodic rate. The nominal annual rate = $5.0748\%(2) = 10.1495\% \approx 10.15\%$.

4-16 (You should be able to rank the interest-rate sensitivity of these bonds without doing any calculation.)

	Price at 8%	Price at 7%	Pctge. change
10-year, 10% annual coupon	\$1,134.20	\$1,210.71	6.75%
10-year zero	463.19	508.35	9.75
5-year zero	680.58	712.99	4.76
30-year zero	99.38	131.37	32.19
\$100 perpetuity	1,250.00	1,428.57	14.29

5-2
$$D_1 = \$1.50; g = 6\%; r_s = 13\%; \hat{P}_0 = ?$$

$$\hat{P}_0 = \frac{D_1}{r_s - g} = \frac{\$1.50}{0.13 - 0.06} = \$21.43.$$

5-5
$$0$$
 1 2 3 $D_0 = 2.00$ D_1 D_2 D_3

$$r_s = r_{RF} + (r_M - r_{RF})b = 7.5\% + (4\%)1.2 = 12.3\%.$$

$$D_0 = \$2.00$$

 $D_1 = \$2.00(1.20) = \2.40
 $D_2 = \$2.00(1.20)^2 = \2.88
 $D_3 = \$2.88(1.07) = \3.08

Step 3: Calculate
$$\hat{P}_2$$
:

$$\hat{P}_2 = D_3/(r_s - g) = \$3.08/(0.123 - 0.07) = \$58.11.$$

Using a financial calculator, input the following:

$$CF_0 = 0$$
, $CF_1 = 2.40$, and $CF_2 = 60.99$ (2.88 + 58.11) and then enter I/YR = 12.3 to solve for NPV = \$50.50.

The problem asks you to determine the constant growth rate, given the following facts: $P_0 = \$80$, $D_1 = \$4$, and $r_s = 14\%$. Use the constant growth rate formula to calculate g:

$$r_s = \frac{D_1}{P_0} + g$$
 ==> $0.14 = \frac{\$4}{\$80} + g$ ==> $g = 0.09 = 9\%$.

5-11
$$r_S = 7\% + 6\% = 13\%;$$
 $g_1 = 50\%, g_2 = 25\%, g_n = 6\%.$

$$D_0 = $1.00$$

$$D_1 = 1.00x(1+50\%) = 1.50$$

$$D_2 = 1.50x(1+25\%) = 1.875$$

$$D_3 = 1.875x(1+6\%) = 1.9875$$

etc.

$$\hat{P}_2 = \frac{D_3}{r_s - g} = \frac{\$1.9875}{0.13 - 0.06} = \$28.393.$$

Financial calculator entries: CF0=0, CO1=1.50, CO2=30.268, I=13 ==> NPV= \hat{P}_0 =25.03

Calculate the dividend stream and place them on a time line. Also, calculate the horizon of the stock at the end of the supernormal growth period, and include it, along with the dividend to be paid at t = 5, as CF_5 . Then, enter the cash flows as shown on the time line into the cash flow register, enter the required rate of return as I = 15, and then find the value of the stock using the NPV calculation. Be sure to enter $CF_0 = 0$, or else your answer will be incorrect.

$$D_0 = 0$$
; $D_1 = 0$, $D_2 = 0$, $D_3 = 0.50$, $D_4 = 0.50(1.8) = 0.90$; $D_5 = 0.90(1.8) = 1.62$; $D_6 = 1.62(1.07) = \$1.7334$. $\hat{P}_0 = ?$

 $\hat{P}_5 = D_6/(r_s - g) = 1.7334/(0.16 - 0.07) = 19.26$. This is the intrinsic value of the stock at the end of Year 5.

$$CF_0 = 0; CO_1 = 0; CO_2 = 0; CO_3 = 0.50; CO_4 = 0.90; CO_5 = 20.88; I = 16. \\ ==> NPV = \hat{P}_0 = 10.76.$$

5-14 a.
$$g = \frac{\$1.1449}{\$1.07} - 1 = 7\%$$

b.
$$\frac{\$1.07}{\$21.4} = 5\%$$

c.
$$\hat{r}_s = D_1/P_0 + g = \$1.07/\$21.40 + 7\% = 5\% + 7\% = 12\%$$
.

7-12 a. NOPAT = EBIT(1 - Tax rate)
=
$$$1,260(0.6)$$

= $$756$.

b.		2012	2011
	Cash	\$550	\$500
	+ Accounts receivable	2,750	2,500
	+ Inventories	1,650	1,500
	Operating current assets	\$4,950	\$4,500
	Accounts payable	\$1,100	\$1,000
	+ Accruals	<u>550</u>	<u>500</u>
	Operating current liabilities	\$1,650	\$1,500
	Operating current assets	\$4,950	\$4,500
	- Operating current liabilities	1,650	1,500
	Net operating working capital (NOWC)	\$3,300	\$3,000
c.		2012	2011
	Net operating working capital (NOWC)	\$3,300	\$3,000
	+ Net plant and equipment	3,850	3,500
	Total net operating capital	\$7,150	\$6,500

Note that the financial statements used in this homework question are simplified for instructional purposes. There are other items that may appear on the statements and considered operating CA, operating CL, or operating LT assets. Use your judgment in the quizzes and the final exam.

- d. FCF = NOPAT Net investment in operating capital = \$756 - (\$7,150 - \$6,500) = \$756 - \$650 = \$106
- e. ROIC = NOPAT / Total net operating capital = \$756 / \$7,150 = 10.57%

f.	FCF 2012	\$106	Uses of FCF	2012
	Pay interest (after-tax):	-72	After-tax interest payment =	\$72
	Pay down debt:	-0	Reduction (increase) in debt =	-\$284
	Pay dividends:	-220	Payment of dividends =	\$220
	Repurchase stock:	-88	Repurchase (Issue) stock =	\$88
	Shortfall =	-\$274	Purchase (Sale) of short-term investments =	<u>\$10</u>
	Raise fund through debt:	+284	Total uses of $FCF =$	\$106
	Raise fund through stock:	+0		
	Surplus cash =	\$ 10		
	Credit short-term investment:	-10		
	Balance =	\$ 0		

The table on the left shows how the answer on the right is derived. If you know what you are doing, you can skip the first step.

Financial ratios in the DuPont tree

The "crown"part

Return on common equity (ROE) =NetIncome/CommonEquity
Return on total assets (ROA) =NetIncome/TotalAssets

Profit margin on sales (NPM) =NetIncome/Sales
Total assets turnover (TAT) =Sales/TotalAssets
Debt ratio =TotalDebt/TotalAssets

Equity multiplier =TotalAssets/CommonEquity

Operating or cost efficiency

Profit margin on sales (NPM) =NetIncome/Sales
Common-sized COGS =COGS/Sales

Common-sized operating expsense =TotalOperatingExpense/Sales

Asset utilization

Total assets turnover (TAT) =Sales/TotalAssets

Cash cycle =InventoryPeriod+DSO-AccountsPayablePeriod

Inventory turnover = COGS/Inventories
Inventory period = 365/InventoryTurnover
Inventory period (alternative formula) = Inventories/(COGS/365)
Accounts receivable turnover = Sales/AccountsReceivable

Days sales outstanding (DSO) =365/AccountsReceivableTurnover
DSO (alternative formula) =AccountsReceivable/(Sales/365)

Fixed assets turnover (FAT) =Sales/TotalNetFixedAssets

FAT (alternative formula) =Sales/(TotalAssets-CurrentAssets)

Use of financial leverage

Debt ratio =TotalDebt/TotalAssets

Equity multiplier =TotalAssets/CommonEquity

indicators of short-term solvency

Current ratio =CurrentAssets/CurrentLiabilities

Quick ratio (acid-test ratio) =(CurrentAssets-Inventories)/CurrentLiabilities

6

Times-interest-earned (TIE) =EBIT/Interest
Operating profit margin (OPM) =EBIT/Sales

indicators of long-term prospect

Price/earnings ratio (P/E) =MVPS/EPS
Market-to-Book Ratio (M/B ratio) =MVPS/BVPS

9S-1 The question and solution will be posted online as an Excel file. Wait for instruction in class.

10-4
$$r_{ps} = \frac{\$60(0.06)}{\$70.00(1-0.05)} = \frac{\$3.60}{\$66.50} = 5.41\%.$$

10-7 30% Debt; 5% Preferred Stock; 65% Equity; $r_d = 6\%$; T = 40%; $r_{ps} = 5.8\%$; $r_s = 12\%$.

WACC =
$$(w_d)(r_d)(1 - T) + (w_{ps})(r_{ps}) + (w_{ce})(r_s)$$

WACC = 0.30(0.06)(1-0.40) + 0.05(0.058) + 0.65(0.12) = 9.17%.

10-13
$$P_0 = \$30$$
; $D_1 = \$3.00$; $g = 5\%$; $F = 10\%$; $r_s = ?$
 $r_s = [D_1/(1-F) P_0] + g = [3/(1-0.10)(30)] + 0.05 = 16.1\%$.

10-14 (There are two ways to answer this question, and their answers are slightly different. Either way will be considered correct.)

N = 20, PV =1000(1-0.02) = 980, PMT = -90(1-.4)=-54, and FV = -1000, ==> I = 5.57%, which is the after-tax component cost of debt.

Or:
$$N = 20$$
, $PV = 1000(1-0.02) = 980$, $PMT = -90$, and $FV = -1000$, $=> I = 9.22\%$. The after-tax component cost of debt = $r_d(1 - T) = 9.22\%(1-.4) = 5.53\%$.

10S-1

a. Additional common equity needed: $\frac{\$500,000}{\$750,000} \times \$60$ million = \$40 million

New issuance of common stock: \$40 million - \$16 million = \$24 million

c. Cost of preferred stock:
$$\frac{\$6}{\$80 - \$5} = 8\%$$

d. Cost of retained earnings:
$$\frac{\$1.50(1.08)}{\$28} + 0.08 \cong 13.79\%$$

Cost of new issuance of common equity = $\frac{\$1.50(1.08)}{\$28(0.93)} + 0.08 \cong 14.22\%$

e.

	amount to be raised	Weight	×	Cost	=	Product
Debt	\$60Mx(150/750) = \$12M	12/60 = 0.200		6.11%		1.22%
Preferred stock	60Mx(100/750) = 8M	8/60 = 0.133		8%		1.06%
Retained earnings	as given in question= \$16M	16/60 = 0.267		13.79%		3.68%
New issuance of common equity	as answer from a. = $$24M$	24/60 = 0.400		14.22%		5.69%
Total	\$60M			WACC	=	11.65%

11-7 a.
$$HV_3 = \frac{\$40(1.07)}{0.13 - 0.07} = \$713.33.$$

b.
$$0 & 1 & 2 & 3 \\ |WACC = 13\%| & & & \\ -20 & 30 & 40 \\ & & & + 713.33 \\ = 753.33$$

Financial calculator entries: CF0=0, CO1=-20, CO2=30, CO3=753.33, I=13 ==> NPV= V_{op}=527.89

Firm value_{t=0} = \$527.89 + \$10.0 = \$537.89.

Value of common equity = \$537.89 - \$100 = \$437.89.

Intrinsic value per share = $\frac{$437.89}{10.0}$ = \$43.79.

11-8 Total corporate value = Value of operations + Value of non-operating assets = \$756 + \$77 = \$833 million.

> Value of equity = Firm value – ST debt – LT debt – Preferred stock = \$833 - (\$151 + \$ 190) - \$76 = \$416 million.

11S-1 a. FCF₂₀₁₃=\$34.96M

b. $HV_{2017} = $918.45M$

c. $V_{op} = $665.62M$

d. $V_{\text{firm}} = $715.52M$

e. V per share= \$46.98

NOPAT = EBIT(1 - Tax rate)

= \$108.6M (0.6)

=\$65.16M.

 $NOWC_{12}$ = Operating CA – operating CL

= (\$5.3M + \$53M + \$106M) - (\$9.6M + \$27.5M)

=\$127.2M.

 $NOWC_{13} = (\$5.6M + \$56.2M + \$112.4M) - (\$11.2M + \$28.1M)$

=\$134.9M.

Operating capital₁₂ = $\frac{\text{Net operating}}{\text{LT assets}} + \frac{\text{Net operating}}{\text{working capital}}$

= \$375M + \$127.2M

=\$502.2M.

Operating capital₁₃ = \$397.5M + \$134.9M

=\$532.4M.

FCF = NOPAT - Net investment in operating capital

= \$65.16M - (\$532.4M - \$502.2M)

= \$34.96M.

$$HV_{2017} = \frac{\$56.32M (1.06)}{0.125 - 0.06} = \$918.45M$$

Financial calculator entries:

 $CF0=0, CO1=34.96, CO2=39.87, CO3=45.62, CO4=48.18, CO5=974.77, I=12.5 \Longrightarrow NPV=V_{op}=665.62$

Firm value₂₀₁₂ = \$665.62M + \$49.9M = \$715.52M.

Value of common equity = \$715.52M - \$69.9M - \$140.8M - \$35M = \$469.82M.

Intrinsic value per share = $\frac{\$469.82M}{10.0M}$ = \$46.982.

12S-1 a.

	Payback Period											
Project X					Project Y							
		Cumulative	# of			Cumulative	# of					
Year	CF	CF	Years	Year	CF	CF	Years					
0	(\$5,000)	(\$5,000)		0	(\$5,000)	(\$5,000)						
1	\$1,000	-5000+1000=-4000	1	1	\$4,500	-5000+4500=-500	1					
2	\$1,500	-400+1500=-2500	1	2	\$1,500	500/1500=	0.3333					
3	\$2,000	-2500+2000=-500	1	3	\$1,000							
4	\$4,000	500/4000=	0.1250	4	\$500							
		$PP_X =$	3.1250			$PP_{Y} =$	1.3333					

	Discounted Payback Period												
Project X					Project Y								
			Cumulative	# of				Cumulative	# of				
Year	CF	DCF	DCF	Years	Year	CF	DCF	DCF	Years				
0	(\$5,000)		(\$5,000)		0	(\$5,000)		(51,000)					
1	\$1,000	1000/1.12=893	-5000+893=-4107	1	1	\$4,500	4500/1.12=4018	-5000+4018=-982	1				
2	\$1,500	$1500/1.12^2 = 1196$	-4107+1196=-2911	1	2	\$1,500	$1500/1.12^2 = 1196$	982/1196=	0.82				
3	\$2,000	$2000/1.12^3 = 1424$	-2911+1424=-1488	1	3	\$1,000	$1000/1.12^3 = 712$						
4	\$4,000	4000/1.12 ⁴ =2542	1488/2542=	0.59	4	\$500	$500/1.12^4 = 318$						
			$DPP_X =$	3.59				$DPP_Y =$	1.82				

X: I=12, CF0= -5000, CO1=1000, CO2=1500, CO3=2000, CO4=4000

Y: I=12, CF0= -5000, CO1=4500, CO2=1500, CO3=1000, CO4=500

NPV(I,CF0,{CO1,CO2,CO3,CO4}); IRR(CF0,{CO1,CO2,CO3,CO4})

 $=> NPV_X = 1,054.2808$

 $NPV_Y = \$1,243.1872$

 $IRR_{x}=19.67\%$

 $IRR_{y} = 29.63\%$

PI_X=(1,054.2808+5,000)/5,000=1.2109 X

 $PI_Y = (1,243.1872+5,000)/5,000=1.2486 X$

MIRR_x: N=4, I/Y=12, PV=(1054.2808+5000), PMT=0 ==>FV=-9,526.5280

N=4, PV= -5000, PMT=0, FV=9526.5280 ==>I/Y=17.49 ==> MIRR_X=17.49%

MIRR_y: N=4, I/Y=12, PV=(1243.1872+5000), PMT=0 ==>FV=-9,823.7759

N=4, PV=-5000, PMT=0, FV=9,823.7759 ==>I/Y=18.39 ==> MIRR_Y=18.39%

b.

	Project X	Project Y
PP	unclear: cutoff year not given	unclear: cutoff year not given
DPP	unclear: cutoff year not given	unclear: cutoff year not given
NPV	accept: \$1,054.2808 is greater than 0	accept: \$1,243.1872 is greater than 0
IRR	accept: 19.67% is greater than 12%	accept: 29.63% is greater than 12%
PI	accept: 1.2109 X is greater than 1 X	accept: 1.2486 X is greater than 1 X
MIRR	accept: 17.49% is greater than 12%	accept: 18.39% is greater than 12%

c.

Crossover rate:

CF0=(-5000) - (-5000)= 0 CO1=1000 - 4500= -3500 CO2=1500 - 1500= 0 CO3=2000 - 1000= 1000 CO4=4000 - 500= 3500

Use the IRR function of your calculator to get the crossover rate, 9.50%.

13-6.
a. The year 0 cashflow is \$15,500+\$1,102,500=\$1,118,000

Op. CA \$15,500

Op. CL - 0

investment in NOWC

NOWC \$15,500

(the depreciable basis)

Base price \$1,080,000

+ Shipping (freight)

+ Installation + 22,500

+ Modification

+ Operator training

the depreciable basis \$1,102,500

b. The FCFs in Year 1, Year 2, and Year 3 are \$375,612.14, \$418,521.44, and \$304,148.09 respectively.

	Year 1			Year 2			Year3
Revenues or sales		\$ 0.00	9	5	0.00	;	\$ 0.00
- Cost of goods sold							
- Operating expenses	+	380,000.00	+	380,0	00.00	+	380,000.00
- Depreciation	_	367,463.25		490,0	61.25		<u>163,280.25</u>
Operating income		12,536.75	((110,0	61.25)		216,719.75
x (1 - T)	×	0.65	×	•	0.65	X	0.65
NOPAT		8,148.89		(71,53	39.81)		140,867.84
+ Depreciation	+	367,463.25	+	490,0	61.25	+	163,280.25
Operating CF		375,612.14		418,5	21.44		304,148.09
- gross investment in NOWC	-	0.00	-		0.00	-	0.00
- gross investment in op. LT Capital		0.00	_		0.00	_	0.00
FCF		375,612.14		418,5	21.44		304,148.09

Depreciation and Salvage Book Value Calculation:

Dep. Year 1 \$1,102,500×33.33%=\$367,463.25 Dep. Year 2 1,102,500×44.45%= 490,061.25 Dep. Year 3 1,102,500 ×14.81%= 163,280.25 1,102,500 × 7.41%= 81,695.25

c. Terminal year CF = FCF3 + recovery of NOWC + recovery of Op. LT Cap. (i.e. after-tax salvage value) = \$304,148.09 + \$15,500.00 + \$421,843.34 = \$741,491.43

Resale price \$605,000.00 Resale price \$605,000.00

Book salvage value 81,695.25
 Over-depreciation 523,304.75
 x Tax rate x 0.35

Taxes owed 183,156.66 - Taxes owed - 183,156.66

After-tax salvage value \$421,843.34

d. CF0 -\$1,118,000.00 WACC 12.00% CF1 375,612.14 \$78,789.66 NPV 15.6048% CF2 418,521.44 **IRR** 2.44 years CF3 741,491.43 PP DPP 2.85 years 1.0705 times Ы 14.5715% MIRR

According to the NPV criterion, the project should be accepted because the NPV is \$78,789.66, which is greater than zero.

According to the IRR criterion, the project should be accepted because the IRR is 15.60%, which is greater than the WACC.

We don't know if the project should be adopted or rejected based on the PP criterion because we don't know what the cutoff is.

We don't know if the project should be adopted or rejected based on the DPP criterion because we don't know what the cutoff is.

According to the PI criterion, the project should be accepted because the PI is 1.0705 times, which is greater than 1.

According to the MIRR criterion, the project should be accepted because the MIRR is 14.57%, which is greater than the WACC.

15S-1 (1) Determine the variable cost per unit at present, V:

	Sales	(\$100,000)(50) = \$5,000,000
-	Variable cost	v(50)
	Fixed cost	\$2,000,000
	EBIT	\$ 500,000

 \rightarrow v = \$50,000

(2) Construct the income statement for before and after the change:

		Before	After
	Sales	\$5,000,000	\$6,650,000
-	Variable cost	2,500,000	2,800,000
	Fixed cost	2,000,000	2,500,000
	EBIT	500,000	1,350,000
	Interest	240,000	432,000
	EBT	260,000	918,000
	Taxes	0	0
	NI	\$ 260,000	\$ 918,000

a.	Q_{BE}	2M/(100,000-50,000)=40	$2.5M/(95,000-40,000) \approx 46$
b.	DOL	5	2.85
	DFL	1.92	1.47
	DTL	9.62	4.19
	ROE	13%	25.5%

Before

c. ????

After

15S-2:

						Vfirm					NI	
wd	D/S	rd	Beta	rs	WACC	(M)	D (M)	S (M)	Р	# (M)	(M)	EPS
0.2	.25	8%	1	10%	8.96%	100	20	80	40	2	8	\$4.00
0.4	.67	9%	1.22	10.88%	8.69%	103.11	41.244	61.866	51.56	1.20	6.73	\$5.61
0.6	1.5	10%	1.65	12.6%	8.64%	103.70	62.22	41.48	51.85	0.8	5.23	\$6.54
0.8	4	11%	2.96	17.84%	8.85%	101.24	80.992	20.248	50.62	0.4	3.61	\$9.03

- b. Average sales per day = \$4,380,000/365 = \$12,000Investment in receivables = $\$12,000 \times 35 = \$420,000$.
- c. COGS= 0.80 × Sales = 0.80 × \$4,380,000 = \$3,504,000.

Inv. conversion period =
$$\frac{\text{Inv.}}{\text{COGS/365}}$$

 $50 = \frac{\text{Inv.}}{\$3,504,000/365}$
Inv. = \$480,000.

21-12 a. Inventory turnover = Sales/Inventory 9.0 = \$3,250,000/Inventory Inventory = \$361,111.

Inventory conversion period =
$$\frac{\text{Inv.}}{\text{COGS/365}}$$
$$= \frac{\$361,111}{\$1,895,000/365}$$

Inventory conversion period = 69.6 days

Average collection period = DSO = 41.0 days.

Note: Inventory was calculated in part a above.

Total assets turnover = Sales/Total assets
=
$$\$3,250,000/\$1,261,180 = 2.5770 \times$$
.

ROA = Profit margin
$$\times$$
 Total assets turnover
= $0.07 \times 2.5770 = 0.1804 = 18.04\%$.

Inventory conversion period =
$$\frac{\$270,833}{\$1,895,000/365}$$

= 52.2 days.

Cash conversion cycle = 52.2 + 41 - 45 = 48.2 days.

Note: Inventory was calculated from the inventory turnover ratio.

Total assets turnover = $$3,250,000/\$1,170,901 = 2.78 \times$.

$$ROA = $227,500/$1,170,901 = 19.43\%.$$