Calculus and Linear Algebra Workshop Notes and Problems - Basics of Derivatives and Differentiation

October 3, 2015

1 Integration

Like the derivative, the definite integral is defined as a limit.

Definition 1. Let f be a function defined on the interval [a, b]. We define the definite integral of f on [a, b] as:

$$\int_{a}^{b} f(x)dx = \lim_{\max(\Delta x_k) \to 0} \sum_{k=1}^{n} f(x_k^*) \Delta x_k$$

where $a = x_1 \le x_2 \le ... \le x_n = b$ is a partition of the interval [a, b], $\Delta_k = x_{k+1} - x_k$ for k = 1, ..., n-1 and $x_k \le x_k^* \le x_{k+1}$.

Each term in the sum above is the area of a rectangle, with height $f(x_k^*)$ and width $x_{k+1} - x_k$. In the limit, we make the width of the rectangles approach zero. The quantity we calculate is the area under the curve of the function f(x) on the interval [a, b].

1.1 Computing Definite Integrals