

Image Processing & Vision

Lecture 09: Object Detection

Hak Gu Kim

hakgukim@cau.ac.kr

Immersive Reality & Intelligent Systems Lab (IRIS LAB)

Graduate School of Advanced Imaging Science, Multimedia & Film (GSAIM)

Chung-Ang University (CAU)

Topics

Object Detection

^{*}Note: Many of these slides in this course were adapted from Convolutional Neural Networks for Visual Recognition (Stanford Univ.) and Deep Learning for Computer Vision (Univ. of Michigan)

Object Detection

- We assumed the image contained a single, central object, and so on
- The task of object detection is to detect and localize all instances of a target object class in an image
- Localization typically means putting a tight bounding box around the object

An example on KITTI dataset benchmark

- Slide a fixed-sized detection window across the image and evaluate the classifier on each window
- We have to search over **scale** as well
- We may also have to search to search over aspect ratios

Is there a car?

An example on KITTI dataset benchmark

- Slide a fixed-sized detection window across the image and evaluate the classifier on each window
- We have to search over **scale** as well
- We may also have to search to search over aspect ratios

Is there a car?

An example on KITTI dataset benchmark

- Slide a fixed-sized detection window across the image and evaluate the classifier on each window
- We have to search over **scale** as well
- We may also have to search to search over aspect ratios

An example on KITTI dataset benchmark

- Slide a fixed-sized detection window across the image and evaluate the classifier on each window
- We have to search over **scale** as well
- We may also have to search to search over aspect ratios

An example on KITTI dataset benchmark

Face Detection: Viola-Jones

- The Viola-Jones face detector is a classic sliding window detector that learns both efficient features and a classifier
- (1) Haar Feature Selection
- 2 Creating an Integral Image
- 3 Adaboost Training
- 4 Cascading Classifiers

Face Detection: Viola-Jones — 1 Haar Feature

- A rectangular feature is computed by summing up pixel values within rectangular regions and then differencing those region sums
- All human faces share similar properties. These regularities may be matched using Haar features
- The eye region is darker than the upper-cheeks
- The nose bridge region is brighter than the eyes

applied onto a face

Haar Feature that looks similar to the eye

region which is darker than the upper cheeks is

P. Viola and M. Jones, Rapid Object Detection using A Boosted Cascade of Simple Features, **CVPR 2001**

Face Detection: Viola-Jones – ② Integral Image

- Given an integral image, the sum within a rectangular region can be computed with just 3 additions/subtractions
- Does not depend on the size of the region

15+16+14+28 +27+11 = **111**

31	33	37	70	75	111
43	71	84	127	161	222
		135			
		197			
110	186	263	371	450	555
111	222	333	444	555	666

450-254-186 +101 = **111**

Original image

Integral image

. Viola and M. Jones, Rapid Object Detection using A Boosted Cascade of Simple Features, **CVPR 200**:

Face Detection: Viola-Jones — 3 AdaBoost

- Object detection framework employs AdaBoost to both select the best features and to train classifiers that use them
- AdaBoost: It constructs a strong classifier as a linear combination of weighted simple weak classifiers

Training dataset

 $(x_3,0)$ $(x_4,0)$ $(x_5,0)$

 (x_N, y_N)

Faces Non-faces

Face Detection: Viola-Jones — 3 AdaBoost

- Object detection framework employs AdaBoost to both select the best features and to train classifiers that use them
- AdaBoost: It constructs a strong classifier as a linear combination of weighted simple weak classifiers

Weak classifier:
$$h_j = \begin{cases} 1, & if \ f_j(x) > \theta_j \\ 0, & otherwise \end{cases}$$

P. Viola and M. Jones, Rapid Object Detection using A Boosted Cascade of Simple Features, CVPR 2001

Face Detection: Viola-Jones – 4 Cascading Classifiers

Observations:

- On average only 0.01% of all sub-windows are positive (faces)
- Equal computation time is spent on all sub-window
- Shouldn't we spend most time only on potentially positive sub-windows?

Solution:

- A simple 2-feature classifier can act as
 - 1st layer of a series to filter out most negative (clearly non-face) windows
 - 2nd layer with 10 features can tackle "harder" negative-windows which survived the 1st layer, and so on...

Face Detection: Viola-Jones – 4 Cascading Classifiers

- To make detection faster, features can be reordered by increasing complexity of evaluation and the thresholds adjusted so that the early (simpler) tests have few or no false negatives
- Any window that is rejected by early tests can be discarded quickly without computing the other features

Summary

- Detection scores in the deformable part model are based on both appearance and location
- The deformable part model is trained iteratively by alternating the steps
- Assume components and part locations given; compute appearance and offset models
- Assume appearance and offset models given; compute components and part locations

Recent Object Detection

- Input: Single RGB Image
- Output: A set of detected objects

- For each object prediction:
- Category label
 - From fixed, known set of categories
- Bounding box
 - Four numbers: x, y, width, height

Detecting A Single Object

 Treat the localization as a regression problem What **Class Scores Correct Label** *Cat*: 0.9 Cat Classification *Dog*: 0.05 *Car*: 0.01 Minimize the difference **Feature Extraction**

4096-d

feature vector

Detecting A Single Object

Treat the localization as a regression problem What **Class Scores Correct Label** *Cat*: 0.9 Cat Classification Dog: 0.05 Car: 0.01 **Minimize** the difference **Feature Extraction** 4096-d Minimize feature vector Where the difference **Box Coordinates Correct Box Bbox** (x', y', w', h')Regression (x, y, w, h)

Detecting A Single Object

Detecting Multiple Objects

- Problem: Images can have more than one object
- Solution: Different numbers of outputs per image

- How many possible boxes are there in an image of size $H \times W$?
- Consider a box of size $h \times w$

- Possible x positions: W w + 1
- Possible y positions: H h + 1
- Possible positions: $(W w + 1) \times (H h + 1)$
- Total possible boxes:

$$\sum_{h=1}^{H} \sum_{w=1}^{W} (W - w + 1) \times (H - h + 1)$$

$$= \frac{H(H + 1)}{2} \frac{W(W + 1)}{2}$$

Region Proposals

- Object region proposal algorithms generate a short list of regions that have generic object-like properties
- The object detector then considers a small set of candidate regions only, instead of exhaustive sliding window search

B. Alexe et al., Measuring the Objectness of Image Windows, **IEEE TPAMI 2012**J. R. R. Uijlings et al., Selective Search for Object Recognition, **IJCV 2013**

M. M. Cheng et al., BING: Binarized Normed Gradients for Objectness Estimation at 300fps, **CVPR 2014** C. L. Zitnick and P. Dollar, Edge Boxes: Locating Object Proposals from Edges, **ECCV 2014**

Region Proposals: Multiscale Saliency

Favors regions with a unique appearance within the image

Region Proposals: Color Contrast

Favors regions with a contrasting color appearance from immediate surroundings

Successful Cases

Failure Case

Region Proposals: Edge Density

Favors regions with the density of edges near the window borders

B. Alexe et al., Measuring the Objectness of Image Windows, IEEE TPAMI 2012

Hak Gu Kim

Region Proposals: Performance Comparison

TABLE 2: For each detector [11, 18, 33] we report its performance (left column) and that of our algorithm 1 using the same window scoring function (right column). We show the average number of windows evaluated per image #win and the detection performance as the mean average precision (mAP) over all 20 classes.

	[11] OBJ- [11]		[18] OBJ- [18]		ESS-BOW[33] OBJ-BOW	
mAP	0.186	0.162	0.268	0.225	0.127	0.125
#win	79945 _	1349	18562 -	1358	183501	→ 2997

Summary: Region Proposals in Object Detection

 An object region proposal algorithm generates a short list of regions with generic object-like properties that can be evaluated by an object detector in place of an exhaustive sliding window search