

Docker para Robótica

Practica 3 y 4 de Teleoperación

Edison Velasco Sánchez edison.velasco@ua.es

Profesorado: Dr. Santiago T. Puentes

Asignatura: Teleoperación

Objetivos:

- Introducción de uso de la Docker para la práctica 3 y 4 de Teleoperación
- Facilitar al alumnado un entorno para el desarrollo de las practicas 3 y 4 de Teleoperación.
- Que el alumnado tenga instalado Docker en sus ordenadores.

¿Qué es Docker?

Docker: Plataforma de contenedores para aplicaciones.

Ejecuta aplicaciones en entornos aislados.

Portabilidad

Ejecuta en diferentes sistemas operativos.

Reproducibilidad

Garantiza un entorno consistente.

Máquina Virtual vs Docker

Beneficios de Docker para ROS

Simplifica el desarrollo y la implementación de robots.

Entorno Consistente

Desarrollos reproducibles.

Gestión de Dependencias

Administración de paquetes de software.

Escalabilidad

Aumento de recursos según sea necesario.

Creando un contenedor Docker

Utilizar Dockerfile para configurar un entorno ROS.

Instalar Docker

Descarga e instalación de Docker.

Escribir Dockerfile

Especificar las instrucciones de construcción.

Construir la Imagen

Crear la imagen del contenedor.

Ejecutar el Contenedor

Lanzar el contenedor.

1

Instalar Docker

Descarga e instalación de Docker.

Install using the apt repository

Before you install Docker Engine for the first time on a new host machine, you need to set up the Docker repository. Afterward, you can install and update Docker from the repository.

1. Set up Docker's apt repository.

```
# Add Docker's official GPG key:
sudo apt-get update
sudo apt-get install ca-certificates curl
sudo install -m 0755 -d /etc/apt/keyrings
sudo curl -fsSL https://download.docker.com/linux/ubuntu/gpg -o /etc/apt/keyrings/doc
sudo chmod a+r /etc/apt/keyrings/docker.asc

# Add the repository to Apt sources:
echo \
   "deb [arch=$(dpkg --print-architecture) signed-by=/etc/apt/keyrings/docker.asc] htt
$(. /etc/os-release && echo "$VERSION_CODENAME") stable" | \
   sudo tee /etc/apt/sources.list.d/docker.list > /dev/null
sudo apt-get update
```

2. Install the Docker packages.

Latest Specific version

To install the latest version, run:

```
$ sudo apt-get install docker-ce docker-ce-cli containerd.io docker-buildx-p
```

3. Verify that the Docker Engine installation is successful by running the hello-world image.

```
$ sudo docker run hello-world
```

Estos pasos lo harán cada alumno en su ordenador para tener Docker instalado. (Seguir los 3 pasos de la página).

Nota: Los alumnos únicamente tienen Docker, aún no se les ha entregado la imagen que tiene el contenedor para la práctica. Esto se verá el día de introducción a la práctica.

https://docs.docker.com/engine/install/ubuntu/

Escribir Dockerfile

Especificar las instrucciones de construcción.

Docker file

Construir la Imagen

Crear la imagen del contenedor.

Docker file

Docker Image

Ejecutar el Contenedor

Lanzar el contenedor.

Docker file Docker Image Docker Container

Docker file Docker Image Docker Container


```
The second secon
```

```
sus-pc2:~/docker_ws/kinova-phanthom_docker$ sudo docker build -t kinova-phanthom
 udo] contraseña para epvs:
  Building 1.4s (58/58) FINISHED
                                                                                                             docker:default
 > => transferring dockerfile: 4.58kB
 > [ 1/53] FROM docker.io/osrf/ros:noetic-desktop-focal@sha256:3a0e6e9f937b9a734732f653271952772e7945f5f3cf9ad01b50043 0.0s
 CACHED [ 2/53] RUN apt-get update && apt-get install -y --no-install-recommends ros-noetic-desktop-full=1.5.0-1 0.0s
           3/53] RUN apt-get update && apt-get install -y libgl1-mesa-glx libgl1-mesa-dri libglu1-mesa 0.0s
           8/53] RUN mkdir config && echo "kinova-phanthom ALL=(ALL) NOPASSWD: ALL" > config/99 aptget
 > CACHED [10/53] RUN chmod 0440 /etc/sudoers.d/99_aptget && chown root:root /etc/sudoers.d/99_aptget
 > CACHED [22/53] RUN apt install -y libxml2-dev libraw1394-dev libncurses5-dev qtcreator swig sox espeak cmake-curses 0.0s ... /hone/spys/;/spyclasco/
 > CACHED [23/53] RUN apt-get install -y freeglut3-dev libncurses5-dev zlib1g-dev
  CACHED [26/53] RUN apt-get update && apt-get install -y python3 python3-pip
 > CACHED [29/53] RUN conan profile new default --detect > /dev/null
 ⇒ CACHED [38/53] RUN cd /home/kinova-phanthom/catkin ws/phanthom/src && git clone https://github.com/EPVelasco/crtk p 0.0s
  CACHED [40/53] RUN cd /home/kinova-phanthom/catkin_ws/phanthom/src && git clone https://github.com/EPVelasco/sawSen 0.0s
 > CACHED [43/53] RUN echo "TERM=xterm-256color" >> ~/.bashrc
 > CACHED [49/53] RUN echo "## ROS" >> ~/.bashrc
:pvs@asus-pc2:~/docker_ws/kinova-phanthom_docker$
```

```
ws/kinova-phanthon_dockers sudo docker run \
---shn-size=ig \
---srvileged \
---srvileged \
---srvileged \
---st \
---
```

```
Integration would entire (Incom. A. 2007)

The control of the cont
```

```
DOCKERFILE
 epvs@asus-pc2:~/docker_ws/kinova-phanthom_docker$ sudo docker run \
 > --shm-size=1g \
 > --privileged \
 > --ulimit memlock=-1 \
 > --ulimit stack=67108864 \
 > -- FM \
 > -it
 > --net=host \
 > -e DISPLAY=:1 \
 > --user=root \
 > -v /tmp/.X11-unix:/tmp/.X11-unix:rw \
 > --device=/dev/ttyACM0:/dev/ttyACM0 \
 > --name kinova-phanthom_container \
 > --gpus all \
 > --cpuset-cpus=0-10 \
 > -v /home/epvs/:/epvelasco \
 > kinova-phanthom
 root@asus-pc2:~/catkin_ws/phanthom$
```


Touch

