RegressionModels.R

dieudon neouedra ogo

Thu Mar 2 13:35:06 2017

Z 1	Z2	Z3	$\mathbb{Z}4$	Z_5	Y
0.375	3.13	60.0	40	2.00	101
1.000	3.13	76.8	30	1.99	141
1.000	3.13	60.0	20	2.00	96
1.000	3.13	60.0	20	1.98	125
1.625	3.13	43.2	10	2.01	43
1.625	3.13	60.0	20	2.00	16
1.625	3.13	60.0	20	2.02	188
0.375	5.00	76.8	10	2.01	10
1.000	5.00	43.2	10	1.99	3
1.000	5.00	43.2	30	2.01	386
1.000	5.00	100.0	20	2.00	45
1.625	5.00	76.8	10	1.99	2
0.375	1.25	76.8	10	2.01	76
1.000	1.25	43.2	10	1.99	78
1.000	1.25	76.8	30	2.00	160
1.000	1.25	60.0	0	2.00	3
1.625	1.25	43.2	30	1.99	216
1.625	1.25	60.0	20	2.00	73
0.375	3.13	76.8	30	1.99	314
0.375	3.13	60.0	20	2.00	170

```
require(MASS)|| install.packages(MASS)
## Loading required package: MASS
## [1] TRUE
step <- stepAIC(fit0, direction="both")#Stepwise Selection</pre>
## Start: AIC=7.58
## log(Y) \sim Z1 + Z2 + Z3 + Z4 + Z5
##
##
         Df Sum of Sq
                        RSS
                                 AIC
## - Z3
          1
               0.4917 16.523 6.1810
## - Z1
               0.8006 16.832 6.5514
          1
## <none>
                      16.032 7.5768
## - Z5
              1.9995 18.031 7.9275
          1
## - Z2
          1
               3.9387 19.971 9.9705
## - Z4
              24.5815 40.613 24.1673
         1
##
## Step: AIC=6.18
## log(Y) ~ Z1 + Z2 + Z4 + Z5
##
         Df Sum of Sq
                        RSS
                                 AIC
## - Z1
               0.5160 17.039 4.7960
          1
## <none>
                      16.523 6.1810
## - Z5
          1
              1.9690 18.492 6.4327
## + Z3
          1
             0.4917 16.032 7.5768
## - Z2
               4.5731 21.097 9.0675
          1
## - Z4
          1
              24.3922 40.916 22.3156
##
## Step: AIC=4.8
## log(Y) ~ Z2 + Z4 + Z5
##
##
         Df Sum of Sq
                         RSS
                                 AIC
                      17.039 4.7960
## <none>
## - Z5
          1
               1.9747 19.014 4.9890
## + Z1
        1
               0.5160 16.523 6.1810
## + Z3
        1
             0.2071 16.832 6.5514
## - Z2
        1
               4.3410 21.380 7.3349
## - Z4
          1
              25.8384 42.878 21.2524
step\anova # display results
## Stepwise Model Path
## Analysis of Deviance Table
##
## Initial Model:
## log(Y) \sim Z1 + Z2 + Z3 + Z4 + Z5
##
## Final Model:
## log(Y) ~ Z2 + Z4 + Z5
##
##
##
    Step Df Deviance Resid. Df Resid. Dev
                                                AIC
## 1
                             14 16.03180 7.576834
```

15 16.52345 6.180967

2 - Z3 1 0.4916555

```
## 3 - Z1 1 0.5159839
                               16
                                    17.03943 4.795961
#plot(step$residuals)
coefficients(step) # model coefficients
## (Intercept)
                         Z2
                                     Z4
                                                 Z5
## -64.4321536 -0.3364702
                              0.1175412 33.5970841
anova(step) # anova table
## Analysis of Variance Table
##
## Response: log(Y)
##
             Df Sum Sq Mean Sq F value
                                            Pr(>F)
                4.0442 4.0442 3.7975 0.0690868 .
## Z2
  Z4
              1 24.5512 24.5512 23.0536 0.0001958 ***
                         1.9747 1.8542 0.1921612
## Z5
                 1.9747
## Residuals 16 17.0394
                         1.0650
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
layout(matrix(c(1,2,3,4),2,2)) # optional 4 graphs/page
plot(step)
                                              Standardized residuals
               Residuals vs Fitted
                                                               Scale-Location
                                                               o<sup>04</sup>
                 o^{\overline{O^4}}
Residuals
                       0
                                                          O16
                                                                         8
                                                                     8
                                                  0.8
                             O
                                                                    00
                           0
                                                                               0
            \circ
                       06
                                                                           0
                                                  0.0
          2
                             5
                                    6
                                                        2
                                                               3
                 3
                       4
                                                                     4
                                                                            5
                                                                                  6
                   Fitted values
                                                                 Fitted values
Standardized residuals
                                              Standardized residuals
                  Normal Q-Q
                                                           Residuals vs Leverage
             ^{\circ}
                                                  \alpha
                                                                            0
                                                                                o
                                                   0
    0
                                                              Cook's distance
                                                   7
                                                                                       0.5
     ņ
         -2
                -1
                        0
                                1
                                       2
                                                      0.00
                                                               0.10
                                                                        0.20
                                                                                0.30
               Theoretical Quantiles
                                                                   Leverage
#DATASET :data2
require(readr)
data2 <- read_csv("~/Downloads/data2.csv")</pre>
kable(data2)
```

```
Y
      Χ
40
     825
42
     830
49
     890
46
     895
44
     890
48
     910
46
     915
43
     960
53
     990
52 1010
54 1012
57 1030
58 1050
```

fit2=lm(Y~X,data=data2)#Linear Model Y versus X summary(fit2)

```
##
## Call:
## lm(formula = Y ~ X, data = data2)
## Residuals:
      Min
               1Q Median
                              3Q
                                     Max
## -7.0718 -0.9509 0.4363 1.3959 3.7830
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
                          9.84346 -1.677 0.122
## (Intercept) -16.50931
## X
                0.06936
                           0.01045 6.635 3.68e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.706 on 11 degrees of freedom
## Multiple R-squared: 0.8001, Adjusted R-squared: 0.7819
## F-statistic: 44.03 on 1 and 11 DF, p-value: 3.683e-05
layout(matrix(c(1,2,3,4),2,2)) # optional 4 graphs/page
plot(fit2)
```

