Esercizi per il corso di Elettromagnetismo (CdL Fisica) AA 2018/2019 versione provvisoria

L. Rinaldi

December 18, 2018

1 Elettrostatica nel vuoto

1.1

Due piccole palline di sughero identiche di massa m hanno ugual carica q. Esse sono appese a due fili di lunghezza l, a loro volta vincolati in un medesimo punto. In condizioni di equilibrio, determinare l'angolo θ che i due fili formano con la verticale (risolvere nell'approssimazione $\theta \approx 0$)

(R:
$$\theta = \sqrt[3]{\frac{q^2}{16\pi\epsilon_0 mgl^2}}$$
).

1.2

Due particelle uguali, aventi carica $q=1~\mu\mathrm{C}$ sono poste sull'asse y di un sistema di riferimento cartesiano, a distanze $\pm L=5\mathrm{m}$ dall'origine. Una terza carica identica alle altre due, con massa $m=1\mathrm{g}$ si trova sull'asse x nel punto in cui il campo elettrostatico generato della prime due cariche è massimo. Inizialmente la terza carica è ferma, e ad un certo istante di tempo viene lasciata libera. Determinare la velocità della terza carica dopo che ha percorso una distanza tendente all'infinito. (R: $v=\sqrt{\frac{\sqrt{6}q^2}{3\pi\epsilon_0 mL}}=2.42~\mathrm{m/s}$)

1.3

Tre cariche positive puntiformi identiche $q_1 = q_2 = q_3 = 4$ mC sono disposte su un piano cartesiano ortogonale rispettivamente nei punti di coordinate (0;3m), (0;-1m) e (-1m;1m). Una quarta carica positiva $q_4=2$ mC è posta nel punto di coordinate (1m;1m). Determinare:

- a) la forza a cui è sottoposta la carica $q_4;$ (R: $\vec{F}=\frac{q_1q_4}{4\pi\epsilon_0}\frac{8\sqrt{5}+25}{100}\hat{\imath}=3.09\hat{\imath}$ J)
- b) l'energia necessaria a spostare la carica q_4 dalla posizione iniziale (1m;1m) all'origine del sistema di riferimento. (R: $L=\frac{q_1q_4}{4\pi\epsilon_0}\frac{25+15\sqrt{2}-12\sqrt{3}}{30}$)

1.4

Tre cariche puntiformi sono poste ai vertici di un triangolo equilatero di lato a=10cm. Sapendo che $q_1=-4\cdot 10^{-7}\mathrm{C}$, $q_2=+2\cdot 10^{-7}\mathrm{C}$ e $q_3=+1\cdot 10^{-7}\mathrm{C}$, determinare l'energia elettrostatica del sistema. (R: $U=-\frac{10q^2}{4\pi\epsilon_0 a}=-9\cdot 10^{-3}\mathrm{J})$

1.5

Quattro particelle con la stessa carica Q=-1nC si trovano ai vertici di un quadrato di lato l=12cm. Si calcoli:

a) il modulo dell'intensità del campo elettrico nel centro O del quadrato e nel punto medio M di ciascun lato (R: $E_O=0,\,E_M=\frac{4\sqrt{5}}{25}\frac{q}{\pi\epsilon_0 l^2}=8.93\times 10^2 {\rm V/m});$

- b) la differenza di potenziale tra i punti O e M; (R: $\Delta V = \frac{q}{\pi \epsilon_0 l} (1 + \sqrt{5}/5 \sqrt{2}) = 1.12 \text{ V})$
- c) il lavoro che si deve compiere per avvicinare le cariche e disporle ai vertici di un quadrato di lato l/2. (R: $L = \frac{q^2}{4\pi\epsilon_0} \sum_{i,j>i} \frac{1}{r_{i,i}} = 4.06 \times 10^{-7} \text{J}$)

Si consideri una carica elettrica distribuita uniformemente con densità di carica lineare $\lambda = 10^{-5}$ C/m su di un filo di lunghezza L=10 cm. Si calcoli il campo elettrico in un punto A posto a distanza h=3 cm da un'estremità del filo, perpendicolarmente ad esso. $(E_x = \frac{\lambda}{4\pi\epsilon_0 h} \frac{L}{\sqrt{h^2 + L^2}}, E_y = \frac{\lambda}{4\pi\epsilon_0 h} (\frac{h}{\sqrt{h^2 + L^2}} - 1))$

1.7

Sia data una sbarretta di lunghezza L e dimensioni trasversali trascurabili, disposta lungo il semiasse delle x positive in un sistema di riferimento avente l'origine coincidente con uno degli estremi. Sulla barretta è depositata una carica Q con densità lineare $\lambda = kx$. Determinare in funzione di Q e di L, l'espressione del potenziale generato dalla barretta nel punto P = (2L, 0, 0). $(V = \frac{Q}{2\pi\epsilon_0 L}(\ln 4 - 1))$

1.8

Una sottile barra di plastica ha una densità lineare di carica positiva λ uniforme. La barra è curvata a forma di semicerchio di raggio R. Determinare:

- a) il potenziale elettrostatico nel centro O del semicerchio $(V = \frac{\lambda}{4\epsilon_0})$;
- b) il campo elettrostatico nel punto $O~(\vec{E}=\frac{-\lambda}{2\pi\epsilon_0 R}\hat{\jmath})$

1.9

Calcolare il campo elettrostatico nei punti dell'asse x di un anello di raggio R uniformemente carico con carica Q. Descrivere il moto di una carica q (opposta a Q) e massa m che si trova inizialmente ferma in un punto dell'asse vicino al centro dell'anello. (R: $\vec{E} = \frac{Q}{4\pi\epsilon_0} \frac{x}{(x^2+R^2)^{\frac{3}{2}}} \hat{i}$, oscillatore armonico con pulsazione

$$\omega = \sqrt{\frac{qQ}{4\pi\epsilon_0 mR^3}})$$

1.10

Calcolare il campo elettrico lungo l'asse x di un disco di raggio R caricato uniformemente con densità di carica σ . (R: $\vec{E} = \frac{\sigma x}{2\epsilon_0} \left[\frac{1}{|x|} - (x^2 + R^2)^{-\frac{1}{2}} \right]$)

1.11

Sia dato un guscio sferico di raggio R e di spessore trascurabile su cui è distribuita uniformemente una carica totale Q. Calcolare il campo elettrostatico ed il potenziale in tutto lo spazio, in funzione della distanza r dal centro del sistema.

1.12

Sia data una sfera di raggio R in cui è distribuita uniformemente una carica totale Q. Calcolare il campo elettrostatico ed il potenziale in tutto lo spazio, in funzione della distanza r dal centro della sfera.

1.13

Sia data una sfera di raggio R nel cui volume presente una carica distribuita con densità di volume $\rho(r) = kr$, con k costante. Calcolare:

a) la carica totale Q della sfera (R: $Q = \pi k R^4$);

- b) il campo elettrostatico in tutto lo spazio, in funzione della distanza r dal centro della sfera (R: $\vec{E}(r < R) = \frac{kr^2}{4\varepsilon_0}\hat{r}$, $\vec{E}(r > R) = \frac{kR^4}{4\varepsilon_0r^2}\hat{r}$);
- c) il potenziale elettrostatico in un generico punto interno della sfera a distanza r dal centro (R: $V(r) = \frac{k}{12\epsilon_0}(4R^3 r^3)$).

Sia data un cilindro di raggio R e altezza indefinita in cui è distribuita uniformemente una carica con densità volumetrica di carica ρ . Calcolare:

- a) il campo elettrostatico in tutto lo spazio, in funzione della distanza r dall'asse del cilindro;
- b) il potenziale elettrostatico in tutto lo spazio, imponendo che il potenziale sia nullo sulla superficie del cilindro.

1.15

Si consideri un volume sferico di raggio R in cui è presente una carica Q distribuita con densità $\rho(r)$ dipendente dalla distanza radiale r dal centro della sfera. Sapendo che il campo elettrico all'interno della sfera ha modulo costante ed è diretto radialmente, determinare l'espressione della densità di carica $\rho(r)$. (R: $\rho = \frac{Q}{2\pi R^2 r}$)

1.16

Calcolare l'energia elettrostatica di una sfera di raggio R in cui è distribuita uniformemente una carica con densità ρ costante. (R: $\frac{4\pi\rho^2R^5}{15\varepsilon_0}$)

1.17

In una certa regione di spazio sono presenti i due campi vettoriali $\vec{E}_1 = K_1 x \hat{\imath} + K_2 y^2 \hat{\jmath} + K_1 z \hat{k}$ e $\vec{E}_2 = K_2 x y \hat{\imath} + K_2 x^2 \hat{\jmath}$. Determinare

- a) il gradiente della grandezza $\vec{E}_1 \cdot \vec{E}_2$ (R: $(2K_1K_2 + 2K_1^2)xy\hat{\imath} + (K1K2x^2 + 1K_2^2X^2y)\hat{\jmath});$
- b) quale dei due campi pu essere considerato elettrostatico (R: \vec{E}_1);

1.18

Si consideri il campo $\vec{F}(x,y,z) = -2x\hat{\imath} - z^2\hat{\jmath} - ayz\hat{k}$. Determinare:

- a) per quali valori di a il campo risulta conservativo (R: a=2);
- b) il potenziale φ generato dal campo \vec{F} (R: $\varphi = x^2 + yz^2$);
- c) la densità di carica ρ che genera il campo \vec{F} (R: $\rho = -2\epsilon_0(y+1))$

1.19

Si consideri il campo $\vec{F}(x,y,z)=2x\hat{\imath}-z\hat{\jmath}-ay\hat{k}$. Determinare:

- a) per quali valori di a il campo risulta conservativo (R: a=1);
- b) il potenziale φ generato dal campo \vec{F} (R: $\varphi=yz-x^2);$
- c) la densità di carica ρ che genera il campo \vec{F} (R: $\rho=-2\epsilon_0)$

Sia dato il campo $\vec{E}(x, y, z) = \alpha(4x\hat{\imath} + z\hat{\jmath} + y\hat{k}).$

- a) Verificare che \vec{E} è conservativo; (R: verificare che $\vec{\nabla} \times \vec{E} = 0$)
- b) calcolare il flusso di \vec{E} attraverso un cubo di spigolo L con un vertice nell'origine del sistema di riferimento e tre spigoli posizionati sui tre semiassi positivi; (R: $\Phi = 4\alpha L^3$)
- c) calcolare la carica totale contenuta nel cubo, utilizzando il teorema di Gauss sia in forma integrale che differenziale (R: $Q = 4\alpha\varepsilon_0 L^3$)

2 Elettrostatica dei conduttori, condensatori

2.1

Una sfera conduttrice di raggio r_1 =5 cm porta una carica Q_1 =+10⁻⁶C. Un guscio sferico di materiale conduttore, concentrico alla prima sfera, di raggio interno r_2 =10cm e raggio esterno r_3 =12cm è caricato con una carica Q_2 =10 Q_1 . Nell'ipotesi che il sistema sia nel vuoto, calcolare:

- a) la densità di carica superficiale σ_2 sulla superficie interna del guscio sferico (R: $\sigma_2 \frac{-Q_1}{4\pi r_2^2} = -8 \cdot 10^{-6}$ C/m);
- b) la differenza di potenziale tra i due conduttori. (R: $\Delta V = \frac{Q}{4\pi\varepsilon_0} \frac{r_2 r_1}{r_1 r_2} = 15 \text{kV}$)

2.2

Si consideri un sistema formato da un volume sferico di raggio a in cui è contenuta una carica +Q distribuita uniformemente nel volume, e da un sottile guscio di materiale conduttore di raggio b (b > a), concentrico al volume sferico, sul quale è depositata una carica -Q. Determinare:

- a) l'espressione del campo elettrostatico in tutto lo spazio in funzione della distanza r dal centro del sistema, disegnando un grafico qualitativo dell'andamento del campo; (R: $\vec{E}(r < a)$, $\vec{E}(a < r < b)$ vedi es 1.12, $\vec{E}(r > b) = 0$)
- b) l'espressione del potenziale sulla superficie del volume sferico (in r=a, considerando nullo il potenziale all'infinito). (R: $V(a)=\frac{Q}{4\pi\varepsilon_0}(\frac{1}{a}-\frac{1}{b})$)

2.3

Due sfere conduttrici di raggi R_1 =2 m e R_2 =3 m , caricate inizialmente ciascuna con carica Q=1 mC, vengono collegate da un filo conduttore sottile. Nel caso in cui le sfere siano poste a distanza tale da poter trascurare effetti di induzione elettrostatica, come si ridistribuisce la carica?(R: $Q_1 = \frac{2QR_1}{R_1 + R_2}$ =0.8 mC, $Q_2 = \frac{2QR_2}{R_1 + R_2}$ =1.2 mC)

2.4

Calcolare la capacità di un condensatore sferico.

2.5

Calcolare la capacità di un condensatore cilindrico.

2.6

Dato il circuito rappresentato in figura 1 ($\Delta V_{AB}=300V,~C_1=3\mu F,~C_2=2\mu F,~C_3=4\mu F$), determinare la carica e la differenza di potenziale di ciascun condensatore. (R: $Q_1=0.6mC,Q_2=0.2mC,Q_3=0.4mC,\Delta V_1=200V,\Delta V_2=\Delta V_3=100V$)

Figure 1:

Dato il circuito rappresentato in figura 2 ($\Delta V_{AB}=12V,\,C_1=C_2=2\mu F,\,C_3=5\mu F$), determinare:

- a) la carica e la differenza di potenziale ai capi di ogni condensatore del circuito (R: $Q_1=12\mu C, Q_2=Q_3=60\mu C, \Delta V_1=\Delta V_2=6V, \Delta V_3=12V);$
- b) l'energia accumulata su ciascun condensatore (R: $U_1 = U_2 = 36\mu J, U_3 = 360\mu J$).

Figure 2:

2.8

Siano dati due condensatori rispettivamente di capacità C_1 = 3 mF e C_2 =4 mF disposti come in figura 3. Inizialmente le armature del condensatore 1 sono poste ad una d.d.p. ΔV_1 = 100 V, il condensatore 2 è scarico e l'interruttore S aperto. Una volta collegati tramite la chiusura di S, i due condensatori arrivano dopo un transitorio ad una fase di equilibrio. Calcolare:

- a) l'energia immagazzinata nel sistema prima della chiusura dell'interruttore S (R: $U = U_1 = 15J$);
- b) l'energia immagazzinata nel sistema dopo la chiusura dell'interruttore S (R: $U = \frac{c_1^2 \Delta V_1^2}{2(c_1 + c_2)} = 6.43J$);
- c) dimostrare che la situazione di equilibrio corrisponde ad un minimo di energia elettrostatica del sistema (S: scrivere U in funzione del potenziale sul condensatore V_1 , e poi $\frac{dU(V_1)}{dV_1} = 0$).

2.9

Un condensatore a facce piane parallele poste ad una distanza D è inizialmente caricato in modo da possedere una energia elettrostatica pari a $U_{in}=10^{-4}$ J. Supponendo di mantenere isolato il condensatore si allontanino la due armature di una quantità $\delta x=D/2$. Calcolare il lavoro fatto dalle forze del campo elettrico.(R: $L=-\frac{1}{2}U_{in}$)

Figure 3:

Una lastra a forma di parallelepipedo di spessore b e area S viene inserita parallelamente all'interno di un condensatore piano ideale avente le armature di area S distanti tra di loro a > b. Determinare la variazione di energia elettrostatica nei due casi in cui il processo avviene rispettivamente a carica e a differenza di potenziale costante. (R: le energie finali dipenderanno dalla capacità finale $c_F = \frac{\varepsilon_0 S}{a-b}$, a seconda se sia costante la carica ovvero la d.d.p.)

2.11

Un condensatore piano ideale formato da due armature quadrate di lato L disposte parallelamente a distanza d. Il condensatore è isolato e su di esso è depositata una carica Q. Inizialmente tra le armature c'è il vuoto. Successivamente si introduce nel condensatore, parallelamente alle facce del condensatore, una lastra metallica quadrata di spessore d/2 e lato L/2. Determinare il lavoro fatto per introdurre interamente la lastra all'interno del condensatore. (R: $L = -\frac{DQ^2}{10\varepsilon_0 L^2}$)

2.12

Tre condensatori di capacità C_1 =0.5 μ F, C_2 =0.8 μ F, C_3 =0.1 μ F, sono collegati in serie (vedi figura 4). I punti A e B sono collegati inizialmente ad un generatore di tensione V_0 =100 V.

- a) calcolare la carica elettrica su ciascun condensatore. Successivamente i condensatori vengono staccati dal generatore e il punto B viene collegato ad un punto tra i condensatori C_1 e C_2 .
- b) determinare la variazione di energia nelleffettuare il nuovo collegamento.

Figure 4:

3 Elettrostatica dei dielettrici

3.1

Una carica positiva puntiforme $Q = 3 \cdot 10^{-10}$ C è posta al centro di una sfera di raggio R = 10 cm, costituita da materiale dielettrico lineare, omogeneo e isotropo di costante dielettrica relativa $\kappa = 4$. All'esterno c'è il vuoto. Calcolare:

- a) il valore del campo elettrico in due punti A e B distanti dalla carica a=R/2 e b=2R, rispettivamente (R: $E_A=\frac{Q}{4\pi\varepsilon_0\kappa a^2},E_B=\frac{Q}{4\pi\varepsilon_0b^2}$);
- b) la densità superficiale delle cariche di polarizzazione σ_P sulla superficie della sfera (R: $\sigma_P = \frac{\kappa 1}{\kappa} \frac{Q}{4\pi \varepsilon_0 R^2}$);
- c) la densità di volume delle cariche di polarizzazione ρ_P all'interno della sfera di materiale dielettrico (in punti diversi dal centro). (R: $\rho_P = 0$)

3.2

Si consideri un condensatore ottenuto interponendo un foglio di carta dello spessore di 4×10^{-5} m tra due fogli di alluminio. La carta ha una costante dielettrica relativa κ =2.8 e conduce l'elettricità se si trova in un campo elettrico superiore a 5×10^7 V/m (il massimo valore del campo elettrico sopportabile dal mezzo, senza che se ne modifichino le proprietà dielettriche, definisce la rigidità elettrica). Determinare:

- a) l'area dei fogli affinché il condensatore abbia capacità $C=0.3\mu F;~({\rm R}:S=\frac{Cd}{\varepsilon_0\kappa})$
- b) il massimo potenziale che può essere applicato per avere il campo elettrico pari a metà del valore della rigidità elettrica. (R: $\Delta V = E_{max}d/2$)

3.3

Si consideri un condensatore piano con due lastre inserite parallelamente alle armature, con costanti dielettriche relative κ_1 =4 (vetro) e κ_2 =8 (porcellana), rigidità elettriche $E_{R1}=4\times10^7$ V/m e $E_{R2}=\times10^7$ V/m e spessori x_1 =4mm e x_2 =8mm. Si determini la massima tensione applicabile ai capi del condensatore. (R: $\Delta V_{max}=120KV$)

3.4

Lo spazio fra le armature di un condensatore piano isolato è completamente riempito con due lastre dielettriche di costanti dielettriche κ_1 =3 e κ_2 =4, poste trasversalmente alle armature, coprendo rispettivamente 1/3 e 2/3 della superficie delle armature. Sia Q la carica del condensatore, d la distanza tra le armature di area S. Determinare:

- a) il campo elettrico nel condensatore; (R: $\vec{E} = \frac{3}{11} \frac{Q}{\varepsilon_0 S})$
- b) la capacità del condensatore (R: $\frac{11}{3} \frac{\varepsilon_0 S}{d}$);
- c) le cariche di polarizzazione (R: $\sigma_{P1}=-\frac{6Q}{11S}, \sigma_{P2}=-\frac{9Q}{11S}, \sigma_{sup-separazione}=0, \rho_P=0$).

3.5

Un condensatore piano (avente armature di superficie S, distanziate d) è completamene riempito con un materiale dielettrico non omogeneo, la cui costante dielettrica κ varia linearmente lungo lo spessore del condensatore secondo la legge $\kappa(x) = ax + b$ (con a e b costanti). Il condensatore ha una carica +Q depositata sull'armatura in x = 0, mentre l'altra, in x = d, è collegata a terra. Determinare :

- a) la differenza di potenziale tra le armature; (R: $\Delta V = \frac{Q}{\varepsilon_0 aS} \ln(1 + \frac{ad}{b})$)
- b) la capacità del condensatore; (R: $C = \frac{\varepsilon_0 aS}{\ln(1 + \frac{ad}{2})}$)
- c) le densità di carica di polarizzazione di superficie e di volume. (R: $\sigma_P(x=0)=(\frac{1}{b}-1)\frac{Q}{S},\ \sigma_P(x=d)=(1-\frac{1}{ad+b})\frac{Q}{S},\ \rho_P=-\frac{a}{(ax+b)^2}\frac{Q}{S})$

Un condensatore piano ha le armature quadrate di lato $l=40\mathrm{cm}$ poste a distanza $d=1\mathrm{cm}$. Tra le armature e parallelamente ad esse si trova una lastra di mica, avente $\kappa=6.5$, di spessore $d_1=4\mathrm{mm}$. Il condensatore viene caricato con una differenza di potenziale $\Delta V=300~\mathrm{V}$ e successivamente viene isolato.

- a) Calcolare la capacià del condensatore; (R: $C=\frac{\varepsilon_0 S}{(d-d_1+d_1/\kappa)}=0.21 \text{nF}$)
- b) Determinare il lavoro che si deve compiere per estrarre completamente il dielettrico. (R: $L = \Delta U = 4.9 \cdot 10^{-6} J$)

4 Correnti elettriche

4.1

Un conduttore cilindrico cavo di lunghezza $d=2\mathrm{cm}$ ha raggi $a=2\mathrm{mm}$ e $b=5\mathrm{mm}$; esso è costituito da una sostanza con resistività $\rho=2\Omega\mathrm{m}$. Una f.e.m. $\mathcal{E}=20$ V può essere applicata al conduttore in modo che la corrente fluisca parallelamente all'asse del cilindro oppure radialmente dalla superficie interna a quella esterna. Calcolare nei due casi l'intensità di corrente i che percorre il conduttore, la potenza dissipata e la densità di corrente sulle superfici terminali. (R: le quantit da calcolare dipendono dalla resistenz, che nei due casi vale $R_1=\rho\frac{d}{\pi(b^2-a^2)},\,R_2=\frac{\rho}{2\pi d}\ln\frac{b}{a}$)

4.2

Un resistore di forma cilindrica di sezione A è composto da una parte di lunghezza l_1 fatta di materiale di resistività $\rho_1 = \rho$ e da un'altra parte di lunghezza l_2 fatta di materiale di resistività $\rho_2 = 3\rho$. Il resistore è attraversato da una corrente I uniformemente sulla sezione A. Determinare:

- a) l'intensità dei campi elettrici E_1 e E_2 nelle due parti del resistore; $(E_1=\rho\frac{I}{A},\,E_2=3\rho\frac{I}{A})$
- b) la differenza di potenziale ai capi del resistore; $(\Delta V = \frac{\rho I}{A}(l_1 + 3l_2))$
- c) il valore della carica elettrica presente sulla superficie di separazione tra i due materiali che formano il resistore. $(\sigma = \frac{2\varepsilon_0 \rho I}{A})$

4.3

Nel circuito in figura 5, calcolare l'intensità di corrente i e il potenziale nei quattro vertici. ($R=50\Omega, \mathcal{E}_1=50$ V, $r_1=20\Omega, \mathcal{E}_2=100$ V, $r_2=30\Omega$)

(R: i=0.5A antiorario, $V_A = V_D = 0, V_B = 60V, V_C = 85V$)

Figure 5:

4.4

Nel circuito rappresentato in figura 6, determinare l'intensità di corrente che circola in cascuno dei resistori. (V_1 =12V, V_2 =8V, $R_1=R_2=4\Omega$, $R_3=2\Omega$) ($i_1=-1.25\mathrm{A}$, i_2 =-1,75A, i_3 =+0.5A)

Figure 6:

Nel circuito in figura 7, la pila ha una f.e.m. f=60 V e resistenza interna trascurabile. Le resistenze hanno i valori indicati in figura, dove $R=10\Omega$; i condensatori hanno capacitaà $C_1=1\mu {\rm F}$ e $C_3=3\mu {\rm F}$. Determinare l'energia U_2 immagazzinata in C_2 . $(U_2=44.6\mu {\rm J})$

Figure 7:

4.6

Si consideri il circuito mostrato in figura 8 composto da due condensatori di capacitaà $C_1=1\mu {\rm F}$ e $C_2=2\mu {\rm F}$, da quattro resistenze $R_1=R_4=10\Omega, R_2=R_3=20\Omega$ e da un generatore di resistenza interna $r=10\Omega$ che fornisce una forza elettromotrice $\mathcal{E}=100{\rm V}$. Determinare in regime stazionario:

- a) la corrente elettrica che circola nelle 4 resistenze; $(i = \frac{\mathcal{E}}{r+R_3})$
- b) il valore del potenziale ai due capi di C_1 ; $(\Delta V = iR_3)$
- c) lenergia totale immagazzinata nel sistema. $(U = \frac{1}{2}C_1\Delta V^2)$
- d) la potenza dissipata nel sistema. ($P = \frac{\mathcal{E}^2}{r + R_3})$

4.7

Si consideri il circuito rappresentato in figura 9 (f=10V, R_1 = 5 Ω , R_2 = 15 Ω , C_1 = 2mF, C_2 = 3mF, C_3 = 6mF). Determinare:

- a) la potenza dissipata nella resistenza R_1 in condizioni stazionarie; $(P = \frac{R_2 f^2}{(R_1 + R_2)^2})$
- b) se dal circuito viene staccato il generatore, dopo quanto tempo l'energia immagazzinata nel circuito si dimezza? $(t_{1/2} = \frac{R_1C_T}{2} \ln 2 \text{ con } C_T = \frac{C_1(C_2+C_3)}{C_1+C_2+C_3})$

Figure 8:

Figure 9:

Si consideri il circuito in figura 10 ($C_1=2$ nF, $C_2=4$ nF, $C_3=C_4=1$ nF, $R=2M\Omega$, $\mathcal{E}=10$ V). Inizialmente gli interruttori T_1 e T_2 sono aperti.

- a) Ad un certo punto l'interruttore T_1 viene chiuso. Calcolare il valore finale della carica sul condensatore C_3 e la differenza di potenziale ΔV_3 ai suoi capi. (R: $Q_3=5.71nC,\,\Delta V_3=5.71V$)
- b) Successivamente viene aperto T_1 e viene chiuso T_2 . Calcolare il valore finale della carica su C_3 e C_4 e le differenze di potenziale ΔV_3 e ΔV_4 ai loro capi. (R: $Q_3' = Q_4' = 2.85nC$, $\Delta V_3' = \Delta V_4' = 2.85V$)
- c) con riferimento al punto b), calcolare la legge con cui varia nel tempo la carica sul condensatore C_4 , assumendo come t=0 l'istante in cui viene chiuso T_2 .(R: $q(t)=\frac{Q_3}{2}(1-e^{-\frac{2t}{RC_3}})$)

Figure 10:

5 Moto di cariche in campi elettrici e magnetici, effetto Hall

5.1

Un elettrone avente velocità iniziale \vec{v}_0 attraversa un condensatore piano ideale di lunghezza L, in cui presente un campo elettrico di modulo E, rivolto verso il basso. Inizialmente la direzione del moto dell'elettrone è parallela alle facce del condensatore. Determinare l'angolo di deflessione dell'elettrone all'uscita del condensatore. ($\theta = \arctan \frac{eEL}{mv_0^2}$)

5.2

Un elettrone ($m_e = 9.1 \cdot 10^{-31} \text{kg}$, $q_e = 1.6 \cdot 10^{-19} \text{C}$), accelerato da una differenza di potenziale $\Delta V = 100 \text{ V}$, viene a trovarsi in una regione di spazio in cui c'è un campo magnetico uniforme di modulo $B = 10^{-4} \text{T}$. Il vettore velocità dell'elettrone forma un angolo $\alpha = \pi/3$ con la direzione di \vec{B} . L'elettrone inizierà a percorrere una traiettoria elicoidale cilindrica. Determinare:

- a) il periodo di rotazione; $(T = \frac{2\pi m}{qB})$
- b) il passo p (distanza tra due convoluzioni dell'elica); $(p = vT \cos \alpha, v = \sqrt{\frac{2q\Delta V}{m}})$
- c) il raggio dell'elica cilindrica. $(r=\frac{mv\sin\alpha}{qB})$

5.3

In uno spettrometro di massa (vedi figura 11), un fascio di ioni viene prima fatto passare attraverso un selettore di velocità, costituito da un condensatore piano che genera un campo elettrico \vec{E} uniforme nella direzione \hat{x} , immerso in un campo magnetico uniforme \vec{B} ortogonale a \hat{x} .

- a) Se una carica q viene lanciata in direzione \hat{y} in corrispondenza di un foro su una lamina che blocca le cariche, quale deve essere la sua velocità v affinché riesca a passare? $(v = \frac{E}{B})$
- b) Determinare a quale distanza l dal foro impattano gli ioni che passano attraverso i foro, attraversando la regione in cui è presente un campo magnetico $\vec{B'}$ ortogonale alla direzione di moto. $(l=2\frac{mv}{qB})$

Figure 11:

5.4

Una striscia conduttrice di rame di sezione rettangolare ab, con $a=1 \mathrm{mm}$ e $b=3 \mathrm{mm}$ è disposta prependicolarmente ad un campo di induzione magnetica di modulo $B=2 \mathrm{T}$. La striscia percorsa da una corrente $i=50 \mathrm{A}$. Sapendo che nel rame la densità degli elettroni liberi è $n=8.5 \times 10^{23}$ elettroni/m³, si calcoli la differenza di potenziale sui lati opposti della striscia. $(V_H=\frac{Bi}{a_s na})$

6 Magnetostatica nel vuoto

6.1

Calcolare il campo magnetico al centro di una spira quadrata di lato L percorsa da una corrente i. ($\vec{B} = \frac{2\sqrt{2}\mu_0 i}{\pi L}\hat{k}$, ortogonale al piano della spira, segue regola mano destra)

6.2

Due fili rettillinei percorsi entrambi da correnti di stessa intensità $i_1=i_2=i$, sono disposti paralleli all'asse y di un sistema di riferimento cartesiano e intersecano l'asse x a distanze $\pm a$ dall'origine. Studiare il campo magnetico lungo gli assi cartesiani nei due casi in cui le correnti siano concordi e discordi. $(\vec{B}(x) = -\frac{\mu_0 i}{\pi} \frac{x}{x^2 - a^2} \hat{k}, \vec{B}(y) = 0, \vec{B}(z) = \frac{\mu_0 i}{\pi} \frac{z}{z^2 + a^2} \hat{i})$

6.3

Un nastro di lunghezza infinita, spessore trascurabile e larghezza a è percorso da una corrente superficiale uniforme i. Determinare il valore del campo magnetico \vec{B} in un punto a distanza l dal bordo, giacente sullo stesso piano del nastro. (R: $B = \frac{\mu_0 i}{2\pi a} \ln\left(\frac{l+a}{a}\right)$)

6.4

Calcolare il campo magnetico sull'asse di una spira circolare di raggio R percorsa da corrente i. (R: $\vec{B} = \frac{\mu_0 i r}{2(r^2 + z^2)^{\frac{3}{2}}} \hat{k}$)

6.5

Si consideri il sistema rappresentato in figura 12. Determinare il valore del campo magnetico nel centro della spira circolare in funzione delle resistenze R_1 , R_2 e della corrente i che circola sui rami esterni. $(\vec{B} = \frac{\mu_0 i}{2\pi} \frac{R_1 - R_2}{R_0 + R_1} \hat{k})$

Figure 12:

6.6

Un disco isolante di raggio R e spessore trascurabile, uniformemente carico con carica Q, ruota con velocità angolare costante ω attorno all'asse passante per il centro. Determinare:

- a) il campo magnetico \vec{B} nel centro del disco; ($\vec{B} = \frac{\mu_0 Q \omega}{2\pi R} \hat{k}$)
- b) il momento magnetico \vec{m} del disco. ($\vec{m} = \frac{Q \omega R^2}{4} \hat{k}$)

6.7

Una spira quadrata di lato L = 10 cm, percorsa da una corrente i = 1.3 A in senso antiorario, è posta in una regione di spazio dove è presente un campo magnetico uniforme avente intensità B=2.1 T. Sapendo che due lati della spira sono paralleli al campo magnetico, calcolare:

a) la forza agente sulla spira; $(\vec{F} = 0)$

b) il momento delle forze \vec{M} agente sulla spira. $(\vec{M}=iL^2B\hat{k},$ diretto come i lati ortogonali al campo magnetico)

6.8

Si consideri il circuito rappresentato in figura 13. Il tratto semicircolare del circuito è immerso in un un campo magnetico uniforme $\vec{B} = B_0 \hat{\jmath}$. Determinare la forza che agisce sul circuito. $(\vec{F} = -\frac{2\mathcal{E}B_0R}{r}\hat{k})$

Figure 13:

7 Legge di Ampère

7.1

Determinare il campo magnetico generato da un solenoide cilindrico di raggio R composto da n spire per unità di lunghezza, percorse da una corrente stazionaria i.

7.2

Determinare il campo magnetico di un solenoide toroidale di raggio maggiore R e raggio interno a, dotato di N spire percorse da una corrente i. $(B = \frac{\mu_0 Ni}{2\pi r})$

7.3

Un cavo coassiale di lunghezza indefinita formato da due conduttori, il primo cilindrico di raggio a e il secondo cilindrico cavo di raggio interno b e raggio esterno c. I due conduttori sono percorsi da correnti uniformi, di ugual modulo e verso opposto. Tra i due conduttori vi è il vuoto. Determinare il campo induzione magnetica in tutto lo spazio. $(B(r < a) = \frac{\mu_0 i}{2\pi a^2} r, B(a < r < b) = \frac{\mu_0 i}{2\pi r}, B(b < r < c) = \frac{\mu_0 i}{2\pi r} \frac{(c^2 - r^2)}{(c^2 - b^2)}, B(r > c) = 0)$

7.4

Determinare il campo magnetico in tutto lo spazio generato da un cilindro indefinito di raggio R percorso da una densità di corrente dipendente dalla distanza radiale dall'asse $\vec{\jmath}(r) = kr\hat{n}$ con k costante, diretta parallelamente all'asse del cilindro. $(B(r < R) = \frac{\mu_0 k}{3} r^3, B(r > R) = \frac{\mu_0 k R^3}{3r})$

7.5

Sia dato un circuito composto da un generatore di f.e.m. V collegato in serie ad una resistenza R ed a un condensatore di capacità C. Inizialmente il circuito è aperto ed il condensatore e scarico. Alla chiusura del circuito, determinare la corrente di spostamento all'interno del condensatore, in funzione del tempo. $(I_S = \frac{V}{R}e^{-\frac{t}{RC}})$

Su un condensatore piano, con armature circolari di raggio R=40cm e distanti tra loro h=1cm, viene applicata una d.d.p. variabile secondo la legge $V(t) = V_0 \sin(2\pi\nu t)$, con V_0 =50v e ν =6MHz, t espresso in secondi. Trascurando gli effetti di bordo, calcolare:

- a) il valore massimo del campo elettrico nel condensatore; $(E_{max} = V_0/h)$
- b) il valore massimo della corrente di spostamento; $(I_{s,max} = \varepsilon_0 \pi^2 R^2 \nu V_0/h)$
- c) il valore massimo del campo magnetico indotto all'interno del condensatore alla distanza r=10 cm dall'asse centrale del condensatore. $(B_{max} = \mu_0 \varepsilon_0 r \pi \nu V_0/h)$

8 Induzione magnetica e legge di Faraday-Neumann-Lenz

8.1

Un circuito rigido è costituito da un filo conduttore, di resistenza $R = 5\Omega$, rivestito di materiale isolante piegato a forma di "8" su un piano (vedi fig. 14). L'area S della superficie piana delimitata dal filo è uguale alla somma dell'area della prima ansa $S_1=20 \,\mathrm{cm}^2$ e di quella della seconda $S_2=12 \,\mathrm{cm}^2$. Il circuito è immerso in un campo magnetico uniforme, diretto perpendicolarmente al piano della spira, con verso entrante nel piano e variabile nel tempo secondo la legge B=kt, con $k=0.04 \,\mathrm{T/s}$. Calcolare la corrente indotta nel circuito, indicando il verso di percorrenza. $(i=\frac{k}{R}(S_2-S_1),$ verso orario in $S_1)$

Figure 14:

8.2

Un solenoide cilindrico di raggio $r_0=3$ cm e lunghezza d=100cm è costituito da N=50000 spire percorse da una corrente variabile nel tempo secondo la legge $i(t)=i_0e^{-t/\tau}$, con $i_0=50$ A e $\tau=5$ s. Si consideri una spira circolare di raggio r e resistenza $R=0.5\Omega$, con piano perpendicolare all'asse del solenoide e centro su tale asse. Nell'approssimazione di solenoide indefinito e trascurando gli effeti di autoinduzione della spira, determinare la corrente i' indotta nella spira al tempo t=1s per due valori del raggio della spira r=1cm e r=5cm. $(i'(r< r_0)=\frac{\mu_0N\pi r_0i_0e^{-t/\tau}}{dR\tau}),\ i'(r> r_0)=\frac{\mu_0N\pi r_0i_0e^{-t/\tau}}{dR\tau}))$

8.3

Una spira quadrata conduttrice di lato l=20 cm e resistenza $R=0.1\Omega$ si trova ad una distanza fissa a=80 cm da un filo rettilineo indefinito percorso da una corrente i. Due dei lati della spira sono paralleli al filo. Calcolare:

- a) il flusso del campo magnetico generato dal filo , supponendo che la corrente sia costante $i_0=3A$ ($\Phi=\frac{\mu_0 l i_0}{2\pi} \ln \frac{a+l}{a} = 2.68 \cdot 10^{-8} Wb$);
- b) la f.e.m. massima indotta sulla spira supponendo che la corrente sul filo vari con secondo la legge $i(t)=i_0\cos(\omega t),$ con $\omega=2$ rad/s; $(\mathcal{E}_{max}=\frac{\mu_0 l i_0 \omega}{2\pi} \ln\frac{a+l}{a}=5.36\cdot 10^{-8} \text{ V})$
- c) la massima potenza dissipata dalla spira, nel caso di corrente variabile nel tempo. $(P_{max} = \frac{\mathcal{E}_{max}^2}{R} = 2.9 \cdot 10^{-14} W)$

Una bacchetta conduttrice di lunghezza L=9.83cm e resistenza $R=415~\mathrm{m}\Omega$ viene fatta muovere con velocità costante $v=4.86~\mathrm{m/s}$ su dei binari conduttori (di resistenza trascurabile) paralleli. La bacchetta si muove in un campo magnetico generato da una corrente i=110A che scorre in un filo parallelo ai binari, a distanza a=10.2mm. Calcolare:

- a) la corrente indotta che scorre nella spira; $(i_{ind}=-\frac{\mu_0 i v}{2\pi R}\ln\left(\frac{a+L}{a}\right))$
- b) la forza che bisogna applicare esternamente alla bacchetta per tenerla in moto uniforme; $(F_{est} = \frac{\mu_0 i i_{ind}}{2\pi} \ln{\left(\frac{a+L}{a}\right)})$
- c) confrontare la potenza dissipata sulla bacchetta con la potenza fornita dalla forza esterna. ($P = Ri_{ind}^2 = Fv$)

8.5

Una spira quadrata di lato L=30 cm, resistenza $R = 2\Omega$ e massa m = 10g, si muove senza attrito su un piano orizzontale con velocità v_0 =1 m/s, perpendicolare ad un lato. Ad un certo istante t_0 la spira entra in una regione in cui presente un campo magnetico uniforme e costante di modulo B=0.5 T, diretto perpendicolaremente al piano della spira (il bordo della regione con il campo magnetico è parallelo al lato della spira che sta entrando, come mostrato in figura 15). Calcolare:

- a) la velocità della spira nell'istante t' in cui essa è entrata completamente nella regione con campo magnetico; $(v(t') = v_0 \frac{B^2 L^3}{mR})$
- b) la corrente che percorre la spira nell'istante t'; $(i(t') = -\frac{BLv(t')}{R})$
- c) la potenza dissipata all'istante t'. $(P = \frac{B^2L^2v(t')^2}{R})$

Figure 15:

8.6

Sia data una bobina avente N=20 spire a forma di triangolo equilatero di lato l=3cm e resistenza complessiva $R=2\Omega$. La bobina attraversa con velocità costante v=2cm/s uno spazio di lunghezza d=0.1m in cui è presente un campo magnetico uniforme di instensità B=1T, prependicolare al piano delle spire e verso entrante (vedi figura 16). Assumendo come istante iniziale $(t_0=0\text{s})$ l'istante in cui il vertice C del triangolo entra nel campo magnetico, calcolare il modulo ed il verso della corrente indotta agli istanti $t_1=1\text{s},$ $t_2=3\text{s}$ $t_3=5.5\text{s}.$ $(i(t_1)=\frac{2NBv^2}{\sqrt{3}R}t_1,$ $i(t_2)=0,$ $i(t_3)=\frac{2NB}{\sqrt{3}R}(vt_3-d))$

Figure 16:

Una spira quadrata di lato a=4cm, resistenza $R=0.2\Omega$, disposta con due lati verticali, è immersa in un campo magnetico uniforme e costante B=0.5 T, diretto orizzontalmente. La spira è collegata ad un generatore di f.e.m. $\mathcal{E}=0.1+0.1\sin(\omega_G t)$ V, e resistenza interna trascurabile. La spira ruota con velocità angolare costante ω attorno ad un asse verticale passante per il centro della spira. Inizialmente (t=0) il piano della bobina è ortogonale al campo magnetico. Determinare:

- a) quanto vale la f.e.m. indotta in funzione del tempo; $(\mathcal{E}_{ind} = Ba^2\omega \sin \omega t)$
- b) che valore deve avere la pulsazione del generatore ω_G affinchè la corrente che circola nella spira si mantenga costante. $(\omega_G = \omega = \frac{0.1}{Ba^2})$

8.8

Un avvolgimento di forma toroidale a sezione rettangolare è costituito da N=100 spire. I raggi interno ed esterno sono rispettivamente a=5cm e b=6cm e la larghezza del toroide è h=1cm (fig.17) Calcolare l'induttanza del toroide e l'energia magnetica in esso immagazzinata nel caso in cui nel circuito scorra una corrente i=5 A. $(L=\frac{\mu_0N^2h}{2\pi}\ln(b/a), U=\frac{\mu_0N^2h}{4\pi}i^2\ln(b/a))$

Figure 17:

8.9

Un solenoide torioidale costituito da N=1000 spire ciascuna di raggio r=1 mm. Il raggio maggiore del solenoide è R=10cm. Un filo di lunghezza indefinita è posto lungo l'asse del toroide ed è percorso verso l'alto da una corrrente variabile nel tempo $i_F=\beta t$ con $\beta=100$ A/s. Calcolare:

- a) il flusso $\Phi_T(B_F)$ del campo magnetico generato dal filo attraverso le spire del toroide; $(\Phi_T(B_F) = \frac{\mu_0 N \beta t r^2}{R})$
- b) la f.e.m indotta nel toroide; $(\mathcal{E} = -\frac{\mu_0 N \beta r^2}{R})$
- c) l'induttanza L_T del toroide. $(L_T = \frac{\mu_0 N^2 r^2}{2R})$

Siano dati due solenoidi cilindrici aventi gli assi coincidenti. Il primo solenoide di lunghezza l è formato da N spire di area A. Esso è posto all'interno del secondo solenoide più grande, di lunghezza $l_S >> l$ e avente N_S spire di area S >> A. Calcolare il coefficiente di mutua induzione. $(M = \frac{\mu_0 A N N_s}{l_S})$

8.11

Si considerino due spire circolari concentriche sullo stesso piano di raggi r e R >> r. La spira piccola è percorsa da una corrente $i_r(t) = i_0 \sin(\omega t)$. Determinare la f.e.m. indotta sulla spira grande. $(f.e.m. = -\frac{\mu_0 \pi r^2}{2R} i_0 \omega \cos \omega t)$

8.12

Una spira rettangolare di lati a e b percorsa da corrente $i_s = i_0 \sin(\omega t)$ è posta con il lato a a distanza b da un filo rettilineo di lunghezza L >> a. Determinare la differenza di potenziale \mathcal{E}_{ind} ai capi del filo. $(\mathcal{E}_{ind} = -\frac{\mu_0 a \omega i_0}{2\pi} \ln 2 \cos \omega t)$

8.13

Si consideri il circuito mostrato in figura 18 composto da due induttanze $L_1 = L_2 = L$, da tre resistenze $R_1 = R_2 = R_3 = R$, da un generatore di resistenza interna r = R/2 che fornisce una forza elettromotrice \mathcal{E} e da un interruttore T inizialmente aperto. Determinare:

- a) la corrente elettrica che circola nelle tre resistenze in funzione del tempo; $(i(t) = \frac{\mathcal{E}}{R}(1 e^{-\frac{R}{L}t}))$ Determinare inoltre in regime stazionario:
- b) il valore del potenziale nel punto A; $(V_A = 0)$
- c) l'energia totale immagazzinata nel sistema; $(U = \frac{1}{2}L\frac{\mathcal{E}^2}{R^2})$
- d) la potenza dissipata nel sistema. $(P = \frac{\mathcal{E}^2}{R})$

Figure 18:

8.14

Si consideri il circuito mostrato in figura 19 composto da tre induttanze $L_1 = L_2 = L_3 = 2L$, da tre resistenze $R_1 = R_2 = R_3 = R$, da un generatore di resistenza interna trascurabile che fornisce una forza elettromotrice \mathcal{E} e da due condensatori di capacitaà $C_1 = C_2 = C$. Determinare in regime stazionario:

- a) la corrente elettrica che circola nelle tre resistenze; $(i = \frac{\mathcal{E}}{R_1 + R_3})$
- b) lenergia totale immagazzinata nel sistema; $(U = \frac{1}{2}L\frac{\mathcal{E}^2}{R^2} + \frac{1}{2}C\mathcal{E}^2)$
- c) la potenza dissipata nel sistema. $(P = \frac{\mathcal{E}^2}{R_1 + R_3})$

Figure 19:

9 Magnetismo nella materia

9.1

L'interno di un solenoide rettilineo percorso da una corrente i=1.5 A e costituito da n=2000 spire/m, è riempito di ossigeno liquido, avente permeabilità magnetica relativa $k_m=1.00327$. Sapendo che la densità dell'ossigeno liquido è $\rho=1.14\cdot 10^6$ g/m³, il suo peso atomico è 16 u.m.a (unità di massa atomica) e il momento magnetico di ogni atomo di ossigeno vale $m_0=13.9\cdot 10^{-24}Am^2$, calcolare la frazione di atomi di ossigeno liquido che tendono ad allinearsi con il campo del solenoide. ($F=\frac{(k_m-1)ni}{m_0}\frac{P.A.}{\rho N_{AV}}$)

9.2

Un cilindro di ferro è completamente magnetizzato nella direzione del suo asse. Sapendo che per ogni atomo di ferro contribuiscono alla magnetizzazione due elettroni, ciascuno con momento magnetico $m_e = 9.27 \cdot 10^{-24}$ Am², la densità del ferro è $\rho = 7.0 \cdot 10^6$ g/m³ e il peso atomico del ferro è 55.8 u.m.a, determinare:

- a) la magnetizzazione del cilindro $(M = 2m_e \frac{\rho N_{AV}}{P.A.(u.m.a.)});$
- b) l'induzione magnetica B residua all'interno del cilindro. $(B = \mu_0 M)$

9.3

Un solenoide ideale di lunghezza l=1m è composto da N=2000 spire di sezione circolare $S=1\text{cm}^2$. Il suo interno è riempito di un materiale avente suscettività magnetica $\chi_m=5.2\cdot 10^{-7}$. Il modulo del vettore magnetizzazione del materiale è M=0.7 A/m. Determinare:

- a) il modulo della corrente che circola nel solenoide $(i = \frac{Ml}{N\chi_m});$
- b) l'induttanza L del sistema $(L = \frac{\mu_0(1+\chi_m)N^2S}{l})).$

9.4

Si consideri un solenoide lungo costituito da n=2000 spire per metro e percorso da una corrente i=5 A.

- a) determinare i valori dei campi \vec{B} e \vec{H} interni al solenoide nel caso la regione sia occupata da aria $(k_A=1)$ oppure da ferro $(k_{Fe}=100); (B=\mu_0 ni=1.26\cdot 10^{-2}T, H=\frac{B}{\mu_0 k_A}=10^4 a/m)$
- b) si supponga che solo la parte centrale del solenoide sia occupata dal ferro. Si calcolino \vec{B} , \vec{H} e \vec{M} in due punti P_1 e P_2 sull'asse del solenoide, posti rispettivamente il primo all'interno del ferro e il secondo in aria, molto vicino alla superficie di separazione aria-ferro. $(H_1 = ni, B_1 = \mu_o k_{Fe} ni, M_1 = (k_{Fe} 1)ni, H_2 = k_{Fe} ni, B_2 = B_1, M_2 = 0)$

Un elettromagnete è costituito da un anello di ferro di lunghezza $l_2=40$ cm, a forma di toro, al quale è stata asportata una piccola regione di lunghezza $l_1=1$ cm. Attorno al toro sono avvolte N=200 spire percorse da corrente i=1A. Determinare il valore del campo magnetico H_a nell'aria, nel tratto in cui l'anello è aperto $(k_{Fe}=100)$. $(H_a=\frac{Ni}{l_1+l_2/k_{Fe}}=14286A/m)$