Sets, Functions, Sequences, and Sums

Theresa Migler-VonDollen

2.1 Sets

Sets

Definition

A set is an unordered collection of objects called **elements** or **members** of the set. A set is said to **contain** its elements.

- \square We write $a \in A$ to denote that a is an element of set A.
- \square We write $a \notin A$ to denote that a is not an element of A.

- □ The set of animals in a barn: {cow, horse, chicken, sheep}
- □ The set of even natural numbers less than 20: {0, 2, 4, 6, 8, 10, 12, 14, 16, 18}
- □ A mixed set: {pink, green, 5, CPE348, 3.4}

Set Builder Notation

We use **set builder notation** to characterize all elements in a set by stating the property or properties that they must have to be members.

- ☐ The set of all negative even integers can be written as:
 - $\{x|x \text{ is an even negative integer}\}$
- ☐ The set of natural numbers can be written as:

$$\mathbb{N} = \{x | x \text{ is a natural number}\} = \{0, 1, 2, 3, \dots\}$$

- □ The set of rational numbers can be written as:
 - $\mathbb{Q} = \left\{ \frac{p}{q} \middle| p \text{ is an integer and } q \text{ is a nonzero integer} \right\}$ $= \left\{ \frac{p}{q} \middle| p \in \mathbb{Z}, q \in \mathbb{Z}, \text{ and } q \neq 0 \right\}$
- \square The real interval [a, b) can be written as:

$$[a,b) = \{x | a \le x < b\}$$

Set Equality

Definition

Two sets are **equal** if and only if they have the same elements. Therefore, if A and B are sets, then A and B are equal if and only if $\forall x (x \in A \leftrightarrow x \in B)$. We write A = B if A and B are equal sets.

Examples:

Are the following sets equal?

- \square {2, 4, 6, 8} and {8, 4, 6, 2}
- \square {1, 2, 3, 4, 5} and {2, 3, 4, 5, 6}
- □ {red, blue, red, red} and {blue, red}

The Empty Set

Definition

The set with no elements is called the **empty set** (denoted \emptyset).

The Singleton Set

Definition

A set with exactly one element is called a singleton set.

- □ {4}
- □ {blue}
- \square { \emptyset }

Venn Diagrams

Sets can be represented graphically using Venn diagrams.

- In Venn diagrams there is a universal set that contains all objects under consideration.
 - \Box The universal set is represented using a rectangle, usually denoted U.
- □ Inside the universal set, sets are represented using circles.

Example:

 $U = \{ \text{The set of all natural numbers less than } 11 \}.$

 $A = \{x | x \text{ is a perfect square}\}.$

Definition

A set A is a subset of B $(A \subseteq B)$ if and only if every element of A is also an element of B.

Examples:

- \square {2,8} \subseteq {1,2,4,7,8}
- \square {red} \subseteq {blue, red, red, green}
- \square {1,2,3} \nsubseteq {1,3,5,7}

To show that $A \subseteq B$:

 \square Take an arbitrary element, x, of A and show that $x \in B$.

To show that $A \nsubseteq B$:

 \square Find a single $x \in A$ such that $x \notin B$.

Theorem

For every set S:

- **1** ∅ ⊆ *S*
- 2 *S* ⊆ *S*

Proof (on board).

Definition

Let A and B be sets. We say that A is a **proper subset** of B $(A \subset B)$ if $A \subseteq B$ and $A \neq B$.

$$\Box$$
 {1,3} \subset {1,2,3}

- \triangle *A* = {1, 2, 3, 4}
- \square $B = \{1, 2, 3, 4, 5, 6, 7\}$
- $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$
- □ Draw the Venn diagram representing this situation.

To show that two sets, A and B are equal, show $A \subseteq B$ and $B \subseteq A$. Example:

Show that the following sets are equal.

- $\Box A = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$
- \square $B = \{x | x \text{ is a subset of the set } \{a, b\}\}$

The Size of a Set

Definition

Let S be a set. If there are exactly n distinct elements in S, we say that S is **finite** with **cardinality** n. We denote the cardinality of S by |S|.

Definition

A set is said to be **infinite** if it is not finite.

- $|\{1,5,8,9\}|=4$
- \square |{red, red, blue, blue, blue}| = 2
- \square $|\mathbb{Z}| = \infty$

Power Sets

Definition

Given a set, S, the **power set** of S is the set of all subsets of the set S.

The power set of S is denoted by $\mathcal{P}(S)$

Examples:

- $\mathcal{P}(\{2,4,6\}) = \{\emptyset,\{2\},\{4\},\{6\},\{2,4\},\{2,6\},\{4,6\},\{2,4,6\}\} \}$
- $\square \mathcal{P}(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}\$
- $\square \mathcal{P}(\emptyset) = \{\emptyset\}$

Can you come up with a conjecture about the cardinality of a power set of a set with n elements?

Cartesian Product

Definition

The **ordered n-tuple** $(a_1, a_2, \dots a_n)$ is the ordered collection that has a_1 as its first element, a_2 as its second element,..., and a_n as its *n*th element.

- \Box (5, 2, 9)
 - Note $(5,2,9) \neq (2,5,9)$
- □ (3, 4)
 - 2-tuples are called ordered pairs.

Cartesian Product

Definition

Let A and B be sets. The Cartesian product of A and B, denoted $A \times B$, is the set of all ordered pairs (a, b), where $a \in A$ and $b \in B$.

$$A \times B = \{(a, b) | a \in A \land b \in B\}$$

- \square Let $A = \{1, 2, 3\}$ and $B = \{\text{red, blue}\}$
- \square What is $A \times B$?
- \square What is $B \times A$

Cartesian Product

Definition

The Cartesian product of the sets $A_1, A_2, ... A_n$, denoted by $A_1 \times A_2 \times \cdots \times A_n$, is the set of ordered *n*-tuples $(a_1, a_2, ... a_n)$, where $a_i \in A_i$ for i = 1, 2, ... n.

$$A_1 \times A_2 \times \cdots A_n = \{(a_1, a_2, \dots a_n) | a_i \in A_i \text{ for } i = 1, 2, \dots n\}$$

Example:

Find $A \times B \times C$ where:

- $\Box A = \{1, 2, 3\}$
- $\Box B = \{2, 4\}$
- \Box $C = \{SLO, SF\}$

Truth Sets

Definition

Given a predicate P, and a domain D, we define the **truth set** of P to be the set of elements $x \in D$ for which P(x) is true.

Examples:

What are the truth sets for the following predicates if the domain is the set of integers?

- □ P(x) is "|x| < 3"
- Q(x) is "-|x| > 0"

2.2 Set Operations

Definition

Let A and B be sets. The **union** of the sets A and B (denoted by $A \cup B$) is the set that contains those elements that are either in A, or in B, or in both.

$$A \cup B = \{x | x \in A \lor x \in B\}$$

- $\square \{2,4,6,8\} \cup \{1,4,9\} = \{1,2,4,6,8,9\}$
- \square $\{1,2,3\} \cup \{\text{water, tea, coffee}\} = \{1,2,3, \text{ water, tea, coffee}\}$

Definition

Let A and B be sets. The **intersection** of the sets A and B (denoted by $A \cap B$) is the set that contains those elements that are both in A and B.

$$A \cap B = \{x | x \in A \land x \in B\}$$

- \square {2, 4, 6, 8} \cap {1, 4, 9} = {4}
- \square $\{1,2,3\} \cap \{\text{water, tea, coffee}\} = \emptyset$
 - Two sets are called **disjoint** if their intersection is the empty set.

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Definition

Let A and B be sets. The **difference** of the sets A and B (denoted by A - B or $A \setminus B$) is the set that contains those elements that are in A and not in B.

$$A - B = \{x | x \in A \land x \notin B\}$$

- \square {2, 4, 6, 8} {1, 4, 9} = {2, 6, 8}
- \square {1,2,3} {water, tea, coffee} = {1,2,3}

Definition

Let U be the universal set. The **complement** of the set A with respect to U (denoted by \overline{A}) is the set U - A.

$$\overline{A} = \{x \in U | x \notin A\}$$

- □ Suppose $A = \{2, 4, 6, 8\}$ and $U = \{x | x \text{ is a natural number less than or equal to } 10\}.$ □ $\overline{A} = \{0, 1, 3, 5, 7, 9, 10\}$
- □ Suppose $A = \{ \text{water, tea, coffee} \}$ and $U = \{ \text{lemonade, water, tea, coffee, soda} \}$.
 - \blacksquare $\overline{A} = \{ \text{lemonade, soda} \}$

Venn Diagrams

Draw the Venn diagrams for:

- $\Box A \cup B$
- \Box $A \cap B$
- $\Box A B$
- $\Box \overline{A}$

Theorem

$$A - B = A \cap \overline{B}$$

Proof on board.

Set Identities

Examples:

Prove the following set identities:

- $\Box A \cap U = A$
- $\Box A \cap B = B \cap A$
- $\square \overline{A \cup B} = \overline{A} \cap \overline{B}$
- $\Box A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Generalized Unions and Intersections

Definition

The **union** of a collection of sets is the set that contains those elements that are members of at least one set in the collection.

We denote the union of sets $A_1, A_2, \dots A_n$ by

$$A_1 \cup A_2 \cup \cdots \cup A_n = \bigcup_{i=1}^n A_i$$

Definition

The **intersection** of a collection of sets is the set that contains those elements that are members all of the sets in the collection.

We denote the intersetion of sets $A_1, A_2, \dots A_n$ by

$$A_1 \cap A_2 \cap \cdots \cap A_n = \bigcap_{i=1}^n A_i$$

2.3 Functions

Definition

Let A and B be nonempty sets. A function f from A to B is an assignment of exactly one element of B to each element of A. We write f(a) = b if b is the unique element of B assigned by the function f to the element a of A.

If f is a function from A to B, we write $f:A\to B$.

Definition

If f is a function from A to B, we say that A is the **domain** of f and B is the **codomain** of f.

If f(a) = b, we say that b is the **image** of a and a is the **preimage** of b.

The **range** or **image** of f is the set of all images of elements of A. We say "f maps A to B".

Example:

Let f be the function that assigns the last two bits of a bit string (with length greater than or equal to two) to that string.

- \Box f(10011) = 11
- \Box f(1001) = 01

What are the domain, codomain, and range for this function?

Examples:

- □ Let $f : \mathbb{Z} \to \mathbb{Z}$ be the function that assigns the cube of an integer to that integer.
 - \Box f(2) = 8

What are the domain, codomain, and range for this function?

- \square Let $f: \mathbb{R} \to \mathbb{R}$ be the floor function.

 - f(-5.67) = -6

What are the domain, codomain, and range for this function?

Definition

A function is called **real-valued** if its codomain is the set of real numbers and is called **integer-valued** if its codomain is the set of integers.

Definition

Let f_1 and f_2 be functions from A to \mathbb{R} . Then $f_1 + f_2$ and $f_1 f_2$ are also functions from A to \mathbb{R} defined for all $x \in A$ by

- $\Box (f_1 + f_2)(x) = f_1(x) + f_2(x),$
- $\Box f_1 f_2(x) = f_1(x) f_2(x)$

Examples:

Let $f_1(x) = 2x^2$ and $f_2(x) = 4x - 17$.

Determine the following functions:

- \Box $f_1 + f_2$
- \Box $f_1 + f_1$
- \Box f_1f_2

Definition

Let f be a function from A to B and let S be a subset of A. The **image** of S under the function f is the subset of B that consists of the images of the elements of S. We denote the image of S by f(S):

$$f(S) = \{t | \exists s \in S \text{ such that } t = f(s)\}$$

Let
$$A = \{a, b, c, d, e\}$$
 and $B = \{1, 2, 3, 4\}$ with $f(a) = 2$, $f(b) = 1$, $f(c) = 4$, $f(d) = 1$, $f(e) = 1$. What is the image of the subset $S = \{b, c, d\}$?

One-to-One Functions

Definition

A function f is said to be **one-to-one**, or an **injunction** if and only if f(a) = f(b) implies that a = b for all a and b in the domain of f. A function is said to be **injective** if it is one-to-one.

- □ Is $f(x) = x^2$ one-to-one when the domain is all integers? □ What if the domain is all natural numbers?
- □ Is f(x) = x 17 one-to-one when the domain is all real numbers?

Increasing and Decreasing Functions

Definition

A function f whose domain and codomain are subsets of the set of real numbers is called **increasing** if $f(x) \le f(y)$, and **strictly increasing** if f(x) < f(y), whenever x < y and x and y are in the domain of f.

Similarly, f is called **decreasing** if $f(x) \ge f(y)$, and **strictly decreasing** if f(x) > f(y), whenever x < y and x and y are in the domain of f.

Examples?

Can you create a conjecture involving the relationship between a function being one-to-one and a function being strictly increasing or decreasing?

Onto Functions

Definition

A function $f: A \to B$ is called **onto** or a **surjection** if and only if for every element $b \in B$ there is an element $a \in A$ with f(a) = b. A function f is called **surjective** if it is onto.

- \square Is the function $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$ onto?
 - What about when the codomain is positive real numbers?
- \square Is the function $f: \mathbb{R} \to \mathbb{R}$, f(x) = x + 4 onto?

Bijections

Definition

A function f is a **one-to-one correspondence** or a **bijection** if it is both one-to-one and onto.

We say such a function is bijective.

Examples?

Functions

Suppose that $f: A \rightarrow B$.

- □ To show that f is injective: Show that if f(x) = f(y) for arbitrary $x, y \in A$, then x = y.
- □ To show that f is not injective: Find particular elements $x, y \in A$ such that $x \neq y$ and f(x) = f(y).
- □ To show that f is surjective: Consider an arbitrary element $y \in B$ and find an element $a \in A$ such that f(a) = y.
- □ To show that f is not surjective: Find a particular $y \in B$ such that $f(x) \neq y$ for all $x \in A$.

Inverse Functions

Definition

Let f be a bijection from the set A to the set B. The **inverse** function of f is the function that assigns to an element $b \in B$ the unique element $a \in A$ such that f(a) = b.

The inverse function of f is denoted f^{-1} .

Thus, $f^{-1}(b) = a$ when f(a) = b.

Example:

Find the inverse of the function f(x) = x + 4

Composition of Functions

Definition

Let $g:A\to B$ and $f:B\to C$ be functions. The **composition** of the functions f and g (denoted by $f\circ g$) is defined by: $(f\circ g)(a)=f(g(a))$

- □ Suppose f(x) = 2x + 4 and $g(x) = x^2$.
 - What is $f \circ g$?
 - What is $g \circ f$?

The Graph of a Function

Definition

Suppose $f: A \to B$. The **graph** of the function f is the set of ordered pairs $\{(a,b)|a\in A \text{ and } f(a)=b\}$.

- \square Display the graph of $f: \mathbb{R} \to \mathbb{R}$. Where $f(x) = x^2$.
- \square Display the graph of $f: \mathbb{Z} \to \mathbb{Z}$. Where $f(x) = x^2$.

2.4 Sequences and Summations

Sequences

Definition

A sequence is a function from a subset of the set of integers (usually either $\{0,1,2,3,\ldots\}$ or $\{1,2,3,4\ldots\}$) to a set S. We use the notation a_n to denote the image of the integer n. We call a_n a **term** of the sequence.

- \square Consider the sequence $\{a_n\}$ where $a_n=2n$.
 - List the first 7 terms of the sequence.
- □ Consider the sequence $\{a_n\}$ where $a_n = 1/2n$.
 - List the first 5 terms of the sequence.

The Geometric Progression

Definition

A geometric progression is a sequence of the form:

 a, ar, ar^2, ar^3, \dots

where the **initial term** a and the **common ratio** r are real numbers.

- □ Consider the geometric sequence $\{a_n\}$ where $a_n = -2 \cdot 2^n$.
 - ☐ List the first 4 terms of the sequence.
- □ Consider the geometric sequence $\{b_n\}$ where $b_n = 5 \cdot (1/4)^n$.
 - ☐ List the first 5 terms of the sequence.

The Arithmetic Progression

Definition

An arithmetic progression is a sequence of the form:

$$a, a + d, a + 2d, a + 3d, \dots$$

where the **initial term** a and the **common difference** d are real numbers.

- □ Consider the arithmetic sequence $\{a_n\}$ where $a_n = -2 + 2n$.
 - ☐ List the first 4 terms of the sequence.
- \square Consider the arithmetic sequence $\{b_n\}$ where $b_n = 5 + (1/3)n$.
 - ☐ List the first 5 terms of the sequence.

Recurrence Relations

So far we have only defined sequences with explicit formulas for their terms.

- □ There are many other ways to specify a sequence.
- One such way is to provide one or more initial terms together with a rule for determining subsequent terms from those that proceed them.

Definition

A **recurrence relation** for the sequence $\{a_n\}$ is an equation that expresses a_n in terms of one or more of the previous terms in the sequence $(\{a_0, a_1, a_2, \ldots, a_{n-1}\})$.

A sequence is called a **solution** of a recurrence relation if its terms satisfy the recurrence relation.

Recurrence Relations

- Let $\{a_n\}$ be the sequence that satisfies the recurrence relation $a_n = a_{n-1} 4$ where $a_0 = 10$.
 - What are the first 4 terms of the sequence?
- □ Let $\{b_n\}$ be the sequence that satisfies the recurrence relation $b_n = b_{n-2} * 2$ where $b_0 = 10$ and $b_1 = 2$.
 - What are the first 4 terms of the sequence?
- Let $\{f_n\}$ be the sequence that satisfies the recurrence relation $f_n = f_{n-1} + f_{n-2}$ where $f_0 = 0$ and $f_1 = 1$.
 - ☐ This is called the **Fibonacci sequence**.
 - What are the first 4 terms of the sequence?
- □ Let $\{c_n\}$ be the sequence that satisfies the recurrence relation $c_n = nc_{n-1}$ where $c_1 = 1$.
 - What are the first 4 terms of the sequence?

Solving Recurrence Relations

We say that we have **solved** a recurrence relation together with its initial conditions when we find an explicit formula, called a **closed formula** for the terms of the sequence.

Example:

Solve the recurrence relation: $a_n = a_{n-1} - 4$ where $a_0 = 10$.

$$a_{n} = a_{n-1} - 4$$

$$= (a_{n-2} - 4) - 4 = a_{n-2} - 2 \times 4$$

$$= (a_{n-3} - 4) - 2 \times 4 = a_{n-3} - 3 \times 4$$

$$= \dots$$

$$= a_{0} - n \times 4$$

$$= 10 - n \times 4$$

This technique is called **iteration**.

Summations

We begin with notation for the addition of terms of a sequence.

- □ Suppose we are given a sequence $\{a_n\}$ and we wish to sum terms m through n $(a_m + a_{m+1} + \cdots + a_{n-1} + a_n)$. We could write this sum as:
 - \square $\sum_{i=m}^{n} a_i$ or
 - \square $\sum_{m\leq i\leq n}^{\infty} a_i$
- □ Here m is called the lower limit and n is called the upper limit.

Example:

Use summation notation to express the sum of the first 50 terms of the sequence $\{a_i\}$ where $a_i = 7 \times (1/j)^2$

Summations

Examples:

- \square What is the value of $\sum_{i=4}^{8} 12 \times i$?
- □ What is the value of $\sum_{i=2}^{8} 12 \times i$?
- \square What is the value of $\sum_{i=1}^{5} (-1)^{i} i^{2}$?
- □ What is the value of $\sum_{i=2}^{10} i$?

The sum of the terms of geometric progressions (geometric series) often arise in computer science:

Theorem

If a and r are real numbers $(r \neq 0)$, then

$$\sum_{j=0}^{n} ar^{j} = \begin{cases} \frac{ar^{n+1}-a}{r-1}, & \text{if } r \neq 1\\ (n+1)a & \text{if } r = 1 \end{cases}$$

Summations

For double sums, first expand the inner sum, then evaluate the outer sum:

$$\sum_{i=1}^{4} \sum_{j=1}^{3} ij = \sum_{i=1}^{4} (i + 2i + 3i)$$
$$= \sum_{i=1}^{4} 6i$$
$$= 60$$

2.5 Cardinality of Sets

Cardinality of Sets

Definition

Sets A and B have the same **cardinality** if and only if there is a bijection (a one-to-one and onto function) from A to B. When A and B have the same cardinality, we write |A| = |B|.

Definition

If there is a one-to-one function from A to B, the cardinality of A is less than or the same as the cardinality of B and we write $|A| \leq |B|$. Moreover, when $|A| \leq |B|$ and A and B have different cardinality, we say that the cardinality of A is less than the cardinality of B and we write |A| < |B|

Countable Sets

Definition

A set that is either finite or has the same cardinality as the set of positive integers is called **countable**.

- ☐ Show that the set of even positive integers is a countable set.
 - Show that there is a one-to-one, onto function from the positive integers, \mathbb{Z}^+ , to the set of even positive integers.
- □ Show that the set of all integers is a countable set.
 - Show that there is a one-to-one, onto function from the positive integers, \mathbb{Z}^+ , to the set of all integers.
- □ Show that the set of positive rational numbers is countable.
 - Show that there is a one-to-one, onto function from the positive integers, \mathbb{Z}^+ , to the set of positive rational numbers.

An Uncountable Set

Example:

Show that the set of real numbers is an uncountable set.

□ We will use the Cantor Diagonalization method.

Countability

Theorem

If A and B are countable sets, then $A \cup B$ is also countable.

Proof.

By cases (on board).

Theorem

If A and B are sets with $|A| \leq |B|$ and $|B| \leq |A|$, then |A| = |B|.

The statement of the above theorem is straightforward. The proof, however, is very difficult.