CLASSIFICATION METHODS

Nearest-Neighbor classifiers

instance-based learning

eager learners

Lazy learners

- (1) constructing a classification model from data
- (2) applying the model to test examples

uses specific training instances to make predictions without having to maintain an abstraction (or model) derived from data

Set of Stored Cases

Atr1	 AtrN	Class
		A
		В
		В
		С
		A
		С
		В

Nearest-Neighbor classifiers

Rote-learner

- Memorizes entire training data and performs classification only if attributes of record match one of the training examples exactly
- problem

Nearest neighbor

❖ Uses k "closest" points (nearest neighbors) for performing classification

Nearest Neighbor Classifiers

□ Basic idea:

□ If it walks like a duck, quacks like a duck, then it's probably a duck

Nearest-Neighbor Classifiers

- Requires three things
 - The set of stored records
 - Distance Metric to compute distance between records
 - The value of k, the number of nearest neighbors to retrieve
- To classify an unknown record:
 - Compute distance to other training records
 - Identify k nearest neighbors
 - Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

Algorithm 5.2 The k-nearest neighbor classification algorithm.

- Let k be the number of nearest neighbors and D be the set of training examples.
- 2: for each test example z = (x', y') do
- 3: Compute $d(\mathbf{x}', \mathbf{x})$, the distance between z and every example, $(\mathbf{x}, y) \in D$.
- Select D_z ⊆ D, the set of k closest training examples to z.
- 5: $y' = \operatorname{argmax} \sum_{(\mathbf{x}_i, y_i) \in D_z} I(v = y_i)$
- 6: end for

Majority Voting:
$$y' = \underset{v}{\operatorname{argmax}} \sum_{(\mathbf{x}_i, y_i) \in D_z} I(v = y_i)$$

Definition of Nearest Neighbor

K-nearest neighbors of a record x are data points that have the k smallest distance to x

Nearest-Neighbor Classifiers

Choosing the value of k:

- If k is too small, sensitive to noise points
- If k is too large, neighborhood may include points from other classes

Nearest-Neighbor Classifiers

Distance-Weighted Voting:
$$y' = \underset{v}{\operatorname{argmax}} \sum_{(\mathbf{x}_i, y_i) \in D_z} w_i \times I(v = y_i)$$

$$w_i = 1/d(\mathbf{x}', \mathbf{x}_i)^2$$

- ✓ Lazy learners
- ✓ Nearest-neighbor classifiers can produce arbitrarily shaped decision boundaries
- √ appropriate proximity measure
- √ data preprocessing steps

Bayesian Classifiers

Bayes Classifier

- A probabilistic framework for solving classification problems
- Conditional Probability:

$$P(C \mid A) = \frac{P(A,C)}{P(A)}$$

$$P(A \mid C) = \frac{P(A,C)}{P(C)}$$

Bayes theorem:
$$P(C \mid A) = \frac{P(A \mid C)P(C)}{P(A)}$$

Example of Bayes Theorem

□ Given:

- A doctor knows that meningitis causes stiff neck 50% of the time
- \square Prior probability of any patient having meningitis is 1/50,000
- \square Prior probability of any patient having stiff neck is 1/20
- If a patient has stiff neck, what's the probability he/she has meningitis?

$$P(M \mid S) = \frac{P(S \mid M)P(M)}{P(S)} = \frac{0.5 \times 1/50000}{1/20} = 0.0002$$

Bayesian Classifiers

- Consider each attribute and class label as random variables
- \square Given a record with attributes $(x_1, x_2, ..., x_n)$
 - Goal is to predict class Y
 - Specifically, we want to find the value of Y that maximizes $P(Y \mid x_1, x_2,...,x_n)$
- □ Can we estimate $P(Y | x_1, x_2,...,x_n)$ directly from data?

Bayesian Classifiers

- Approach:
 - compute the posterior probability $P(Y \mid x_1, x_2, ..., x_n)$ for all values of Y using the Bayes theorem

$$P(Y \mid x_1 x_2 \dots x_n) = \frac{P(x_1 x_2 \dots x_n \mid Y) P(Y)}{P(x_1 x_2 \dots x_n)}$$

Choose value of Y that maximizes

$$P(Y \mid x_1, x_2, ..., x_n)$$

- Equivalent to choosing value of Y that maximizes $P(x_1, x_2, ..., x_n \mid Y) P(Y)$
- □ How to estimate $P(x_1, x_2, ..., x_n \mid Y)$?

Naïve Bayes Classifier

Naïve Bayes Classifier

- □ Assume independence among attributes A_i when class is given:
 - \square $P(x_1, x_2, ..., x_n | Y) = P(x_1 | Y_i) P(x_2 | Y_i)... P(x_n | Y_i)$
 - \square Can estimate $P(x_i | Y_i)$ for all x_i and Y_i .
 - New point is classified to Y_i if $P(Y_i)$ Π $P(x_i | Y_i)$ is maximal.

How to Estimate Probabilities from Data?

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

 \square Class: $P(Y_k) = N_k/N$

e.g.,
$$P(No) = 7/10$$
, $P(Yes) = 3/10$

□ For discrete attributes:

$$P(x_i \mid Y_k) = |x_{ik}| / N_k$$

- where |x_{ik}| is number of instances having attribute x_i and belongs to class Y_k
- Examples:

$$P(Status=Married | No) = 4/7$$

 $P(Refund=Yes | Yes)=0$

How to Estimate Probabilities from Data?

- For continuous attributes:
 - Discretize the range into bins
 - Probability density estimation:
 - Assume attribute follows a normal distribution
 - Use data to estimate parameters of distribution (e.g., mean and standard deviation)
 - Once probability distribution is known, can use it to estimate the conditional probability $P(x_i | Y)$

How to Estimate Probabilities from Data?

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Normal distribution:

$$P(x_i | Y_j) = \frac{1}{\sqrt{2\pi\sigma_{ij}^2}} e^{-\frac{(x_i - \mu_{ij})^2}{2\sigma_{ij}^2}}$$

- \square One for each (x_i, Y_i) pair
- □ For (Income, Class=No):
 - □ If Class=No
 - sample mean = 110
 - sample variance = 2975

$$P(Income = 120 \mid No) = \frac{1}{\sqrt{2\pi}(54.54)}e^{\frac{-(120-110)^2}{2(2975)}} = 0.0072$$

Bayes Error Rate

Example:

identifying alligators and crocodiles based on their lengths their prior probabilities are the same

$$P(X|\texttt{Crocodile}) = \frac{1}{\sqrt{2\pi} \cdot 2} \exp\left[-\frac{1}{2} \left(\frac{X-15}{2}\right)^2\right]$$

 $P(X|\texttt{Alligator}) = \frac{1}{\sqrt{2\pi} \cdot 2} \exp\left[-\frac{1}{2} \left(\frac{X-12}{2}\right)^2\right]$

Bayes Error Rate

Directed graphical models (Bayesian Belief network)

Introduction

- multiple correlated variables, such as words in a document,
 pixels in an image, or genes in a microarray
- compactly represent the joint distribution p(x) (probabilistic modeling)
- learn the parameters of this distribution with a reasonable amount of data (learning)
- infer one set of variables given another (inference)

Introduction

Chain rule

$$p(x_{1:V}) = p(x_1)p(x_2|x_1)p(x_3|x_2, x_1)p(x_4|x_1, x_2, x_3) \dots p(x_V|x_{1:V-1})$$

- becomes more and more complicated to represent the conditional distributions
- suppose all the variables have K states
- p(x2|x1), p(x3|x1, x2)

Conditional independence(CI)

 The key to efficiently representing large joint distributions is to make some assumptions about conditional independence

$$X \perp Y|Z \iff p(X,Y|Z) = p(X|Z)p(Y|Z)$$

$$X_{t+1} \perp \mathbf{x}_{1:t-1}|x_t$$
 Markov Assumption

$$p(x_{1:V}) = p(x_1)p(x_2|x_1)p(x_3|x_2,x_1)p(x_4|x_1,x_2,x_3)\dots p(x_V|x_{1:V-1})$$

$$p(\mathbf{x}_{1:V}) = p(x_1) \prod_{t=1}^{V} p(x_t | x_{t-1})$$

Graphical Models

- first-order Markov assumption is useful for defining distributions on 1d sequences
- A graphical model (GM) is a way to represent a joint distribution by making Cl assumptions
- nodes in the graph represent random variables
- lack of edges represents CI assumptions

Graph terminology

- **Parent** For a directed graph, the **parents** of a node is the set of all nodes that feed into it: $pa(s) \triangleq \{t : G(t,s) = 1\}.$
- Child For a directed graph, the children of a node is the set of all nodes that feed out of it: ch(s) ≜ {t : G(s,t) = 1}.
- Root For a directed graph, a root is a node with no parents.
- Path or trail A path or trail $s \rightsquigarrow t$ is a series of directed edges leading from s to t.

Graph terminology

- **Ancestors** For a directed graph, the **ancestors** are the parents, grand-parents, etc of a node. That is, the ancestors of t is the set of nodes that connect to t via a trail: $\operatorname{anc}(t) \triangleq \{s : s \leadsto t\}$.
- **Descendants** For a directed graph, the **descendants** are the children, grand-children, etc of a node. That is, the descendants of s is the set of nodes that can be reached via trails from s: $desc(s) \triangleq \{t : s \leadsto t\}$.
- Cycle or loop For any graph, we define a cycle or loop to be a series of nodes such that
 we can get back to where we started by following edges

Graph terminology

• DAG A directed acyclic graph or DAG is a directed graph with no directed cycles.

• **Topological ordering** For a DAG, a **topological ordering** or **total ordering** is a numbering of the nodes such that parents have lower numbers than their children.

Directed graphical models

- A directed graphical model or DGM is a GM whose graph is a DAG
- Bayesian Network, Causal Network
- topological ordering
- ordered Markov property

Directed graphical models

$$p(\mathbf{x}_{1:5}) = p(x_1)p(x_2|x_1)p(x_3|x_1, \mathbf{x_2})p(x_4|\mathbf{x_1}, x_2, x_3)p(x_5|\mathbf{x_1}, \mathbf{x_2}, x_3, \mathbf{x_4})$$
$$= p(x_1)p(x_2|x_1)p(x_3|x_1)p(x_4|x_2, x_3)p(x_5|x_3)$$

$$p(\mathbf{x}_{1:V}|G) = \prod_{t=1}^{V} p(x_t|\mathbf{x}_{pa(t)})$$

Example: Naive Bayes classifiers

features are conditionally independent given the class label

$$p(y, \mathbf{x}) = p(y) \prod_{j=1}^{D} p(x_j | y)$$

Example: Markov Chain

first-order Markov chain

second order Markov chain

$$p(\mathbf{x}_{1:T}) = p(x_1, x_2)p(x_3|x_1, x_2)p(x_4|x_2, x_3) \dots = p(x_1, x_2) \prod_{t=3}^{T} p(x_t|x_{t-1}, x_{t-2})$$

Example: HMM

- * hidden variables often represent quantities of interest
- estimate the hidden state given the data
- another form of probabilistic inference

Inference

- √ graphical models: compact way to define joint probability distributions
- ✓ The main use for such a joint distribution is to perform **probabilistic inference**

task of estimating unknown quantities from known quantities

set of correlated random variables with joint distribution

$$p(\mathbf{x}_{1:V}|\boldsymbol{\theta})$$

visible variables and hidden variables

Inference

$$p(\mathbf{x}_h|\mathbf{x}_v, \boldsymbol{\theta}) = \frac{p(\mathbf{x}_h, \mathbf{x}_v|\boldsymbol{\theta})}{p(\mathbf{x}_v|\boldsymbol{\theta})} = \frac{p(\mathbf{x}_h, \mathbf{x}_v|\boldsymbol{\theta})}{\sum_{\mathbf{x}_h'} p(\mathbf{x}_h', \mathbf{x}_v|\boldsymbol{\theta})}$$

In Classification: class label:Y

Model Paramters

Example of Inferencing Using

Case 1: No Prior Information

Without any prior information, we can determine whether the person is likely to have heart disease

Example of Inferencing Using

$$\begin{split} P(\mathrm{HD} = \mathrm{Yes}) &= \sum_{\alpha} \sum_{\beta} P(\mathrm{HD} = \mathrm{Yes} | E = \alpha, D = \beta) P(E = \alpha, D = \beta) \\ &= \sum_{\alpha} \sum_{\beta} P(\mathrm{HD} = \mathrm{Yes} | E = \alpha, D = \beta) P(E = \alpha) P(D = \beta) \\ &= 0.25 \times 0.7 \times 0.25 + 0.45 \times 0.7 \times 0.75 + 0.55 \times 0.3 \times 0.25 \\ &+ 0.75 \times 0.3 \times 0.75 \\ &= 0.49. \end{split}$$

Case 2: High Blood Pressure

If the person has high blood pressure, we can make a diagnosis about heart disease

$$P(\mathtt{HD} = \mathtt{Yes} | \mathtt{BP} = \mathtt{High})$$

$$\begin{array}{ll} P({\rm BP=High}) &=& \displaystyle \sum_{\gamma} P({\rm BP=High}|{\rm HD}=\gamma) P({\rm HD}=\gamma) \\ &=& 0.85\times 0.49 + 0.2\times 0.51 = 0.5185. \end{array} \\ &=& \frac{P({\rm BP=High}|{\rm HD}={\rm Yes}) P({\rm HD}={\rm Yes})}{P({\rm BP=High})} \\ &=& \frac{0.85\times 0.49}{0.5185} = 0.8033. \end{array}$$

Case 3: High Blood Pressure, Healthy Diet, and Regular Exercise

Suppose we are told that the person exercises regularly and eats a healthy diet. How does the new information affect our diagnosis?

$$P(\mathtt{HD} = \mathtt{Yes} | \mathtt{BP} = \mathtt{High}, D = \mathtt{Healthy}, E = \mathtt{Yes})$$

$$= \quad \left[\frac{P(\mathtt{BP} = \mathtt{High} | \mathtt{HD} = \mathtt{Yes}, D = \mathtt{Healthy}, E = \mathtt{Yes})}{P(\mathtt{BP} = \mathtt{High} | D = \mathtt{Healthy}, E = \mathtt{Yes})} \right]$$

$$\times P(\mathtt{HD} = \mathtt{Yes}|D = \mathtt{Healthy}, E = \mathtt{Yes})$$

$$= \quad \frac{P(\texttt{BP} = \texttt{High}|\texttt{HD} = \texttt{Yes})P(\texttt{HD} = \texttt{Yes}|D = \texttt{Healthy}, E = \texttt{Yes})}{\sum_{\gamma} P(\texttt{BP} = \texttt{High}|\texttt{HD} = \gamma)P(\texttt{HD} = \gamma|D = \texttt{Healthy}, E = \texttt{Yes})}$$

$$= \frac{0.85 \times 0.25}{0.85 \times 0.25 + 0.2 \times 0.75}$$

$$= 0.5862,$$

Hyperplanes

A hyperplane is a set of the form

$$\{x \mid a^T x = b\},\$$

 $a \in \mathbf{R}^n$, $a \neq 0$, and $b \in \mathbf{R}$.

a is the normal vector

Geometrical interpretation

 x_0 is any point in the hyperplane

$$a^T x_0 = b$$

$$a^T x_0 = b$$
 $\{x \mid a^T (x - x_0) = 0\},\$

halfspaces

halfspace: set of the form $\{x \mid a^T x \leq b\}$ $(a \neq 0)$

Find a linear hyperplane (decision boundary) that will separate the data

One Possible Solution

Another possible solution

Other possible solutions

- □ Which one is better? B1 or B2?
- How do you define better?

- \Box Find hyperplane maximizes the margin => B1 is better than B2
- Generalization error

Linear SVM: Separable Case

A linear SVM is a classifier that searches for a hyperplane with the largest margin

$$(\mathbf{x_i}, y_i) \ (i = 1, 2, \dots, N)$$

 $(x_{i1}, x_{i2}, \dots, x_{id})^T \ y_i \in \{-1, 1\}$

decision boundary of a linear classifier

$$\mathbf{w} \cdot \mathbf{x} + b = 0,$$

w and b are parameters of the model

$$\mathbf{w} \cdot \mathbf{x}_s + b = k, \qquad k > 0.$$

$$\mathbf{w} \cdot \mathbf{x}_s + b = k', \qquad k' < 0.$$

$$y = \begin{cases} 1, & \text{if } \mathbf{w} \cdot \mathbf{z} + b > 0; \\ -1, & \text{if } \mathbf{w} \cdot \mathbf{z} + b < 0. \end{cases}$$

Linear SVM: Separable Case

$$b_{i1}$$
: $\mathbf{w} \cdot \mathbf{x} + b = 1$,

$$b_{i2}: \mathbf{w} \cdot \mathbf{x} + b = -1.$$

margin of the decision boundary is given by the distance between these two hyperplanes

$$d = \frac{2}{\|\mathbf{w}\|}$$

SVM

$$\mathbf{w} \cdot \mathbf{x_i} + b \ge 1 \text{ if } y_i = 1,$$

 $\mathbf{w} \cdot \mathbf{x_i} + b \le -1 \text{ if } y_i = -1$

$$y_i(\mathbf{w} \cdot \mathbf{x_i} + b) \ge 1, \quad i = 1, 2, \dots, N.$$

Definition 5.1 (Linear SVM: Separable Case). The learning task in SVM can be formalized as the following constrained optimization problem:

$$\min_{\mathbf{w}} \frac{\|\mathbf{w}\|^2}{2}$$
 subject to
$$y_i(\mathbf{w} \cdot \mathbf{x_i} + b) \ge 1, \quad i = 1, 2, \dots, N.$$

This is a constrained optimization problem

Numerical approaches to solve it (e.g., quadratic programming)

Linear SVM: Nonseparable Case

while B_2 classifies them correctly, this does not mean that B_2 is a better decision boundary than B_1

Linear SVM: Nonseparable Case

- √ learn a decision boundary that is tolerable to small training errors
- \checkmark trade-off between the width of the margin and the number of training errors
- ✓ construct a linear decision boundary even in situations where the classes are not linearly separable
- √ inequality constraints must therefore be relaxed to accommodate the nonlinearly

separable data

$$\mathbf{w} \cdot \mathbf{x_i} + b \ge 1 - \xi_i$$
 if $y_i = 1$,
 $\mathbf{w} \cdot \mathbf{x_i} + b \le -1 + \xi_i$ if $y_i = -1$,

 ξ provides an estimate of the error of the decision boundary

Linear SVM: Nonseparable Case

$$\begin{aligned} & \min_{\mathbf{w}} \frac{\|\mathbf{w}\|^2}{2} \\ & \mathbf{w} \cdot \mathbf{x_i} + b \ge 1 - \xi_i & \text{if } y_i = 1, \\ & \mathbf{w} \cdot \mathbf{x_i} + b \le -1 + \xi_i & \text{if } y_i = -1, \end{aligned}$$

problem

$$f(\mathbf{w}) = \frac{\|\mathbf{w}\|^2}{2} + C(\sum_{i=1}^{N} \xi_i)^k,$$

Cand kare user-specified parameters

Nonlinear SVM

- ✓ applying SVM to data sets that have nonlinear decision boundaries
- \checkmark transform the data **x** into a new space $\Phi(x)$ so that a linear decision boundary can be used to separate the instances in the transformed space

$$y(x_1, x_2) = \begin{cases} 1 & \text{if } \sqrt{(x_1 - 0.5)^2 + (x_2 - 0.5)^2} > 0.2, \\ -1 & \text{otherwise.} \end{cases}$$

$$x_1^2 - x_1 + x_2^2 - x_2 = -0.46$$

$$\Phi: (x_1, x_2) \longrightarrow (x_1^2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2, 1).$$

$$\mathbf{w} = (w_0, w_1, ..., w_4)$$

$$w_4 x_1^2 + w_3 x_2^2 + w_2 \sqrt{2} x_1 + w_1 \sqrt{2} x_2 + w_0 = 0.$$

Nonlinear SVM

Definition 5.2 (Nonlinear SVM). The learning task for a nonlinear SVM can be formalized as the following optimization problem:

$$\min_{\mathbf{w}} \frac{\|\mathbf{w}\|^2}{2}$$
 subject to
$$y_i(\mathbf{w}\cdot\Phi(\mathbf{x}_i)+b)\geq 1,\ i=1,2,\dots,N.$$

$$\begin{split} \Phi(\mathbf{u}) \cdot \Phi(\mathbf{v}) &= (u_1^2, u_2^2, \sqrt{2}u_1, \sqrt{2}u_2, 1) \cdot (v_1^2, v_2^2, \sqrt{2}v_1, \sqrt{2}v_2, 1) \\ &= u_1^2 v_1^2 + u_2^2 v_2^2 + 2u_1 v_1 + 2u_2 v_2 + 1 \\ &= (\mathbf{u} \cdot \mathbf{v} + 1)^2. \end{split}$$

$$K(\mathbf{u}, \mathbf{v}) = \Phi(\mathbf{u}) \cdot \Phi(\mathbf{v}) = (\mathbf{u} \cdot \mathbf{v} + 1)^2.$$

Nonlinear SVM

The main requirement for the kernel function used in nonlinear SVM is that there must exist a corresponding transformation such that the kernel function computed for a pair of vectors is equivalent to the dot product between the vectors in the transformed space.

$$K(\mathbf{x}, \mathbf{y}) = (\mathbf{x} \cdot \mathbf{y} + 1)^{p}$$

$$K(\mathbf{x}, \mathbf{y}) = e^{-\|\mathbf{x} - \mathbf{y}\|^{2}/(2\sigma^{2})}$$

$$K(\mathbf{x}, \mathbf{y}) = \tanh(k\mathbf{x} \cdot \mathbf{y} - \delta)$$

Ensemble Methods

Ensemble Methods

- √ improving classification accuracy by aggregating the predictions of multiple classifiers
- ✓ Construct a set of base classifiers from the training data
- ✓ Predict class label of previously unseen records by aggregating predictions made by multiple classifiers

Ensemble Methods

- Suppose there are 25 base classifiers
 - \blacksquare Each classifier has error rate, $\epsilon = 0.35$
 - Assume classifiers are independent
 - Probability that the ensemble classifier makes a wrong prediction:

$$\sum_{i=13}^{25} {25 \choose i} \varepsilon^i (1-\varepsilon)^{25-i} = 0.06$$

base classifiers should be independent of each other

base classifiers should do better than a classifier that performs random guessing.

How to generate an ensemble of classifiers?

- Bagging: bootstrap aggregating
- Boosting

Bagging

- Sampling with replacement
- Build classifier on each bootstrap sample

Original Data	1	2	3	4	5	6	7	8	9	10
Bagging (Round 1)	7	8	10	8	2	5	10	10	5	9
Bagging (Round 2)	1	4	9	1	2	3	2	7	3	2
Bagging (Round 3)	1	8	5	10	5	5	9	6	3	7

Algorithm 5.6 Bagging algorithm.

- 1: Let k be the number of bootstrap samples.
- 2: for i = 1 to k do
- 3: Create a bootstrap sample of size N, D_i .
- 4: Train a base classifier C_i on the bootstrap sample D_i .
- 5: end for
- 6: $C^*(x) = \underset{i}{\operatorname{argmax}} \sum_i \delta(C_i(x) = y).$

 $\{\delta(\cdot) = 1 \text{ if its argument is true and } 0 \text{ otherwise}\}.$

Boosting

- An iterative procedure to adaptively change distribution of training data by focusing more on previously misclassified records
 - Initially, all N records are assigned equal weights
 - Unlike bagging, weights may change at the end of boosting round
- nhow the weights of the training examples are updated at the end of each boosting round
- 2. how the predictions made by each classifier are combined.

Boosting: AdaBoost

Let $\{(\mathbf{x}_i, y_i) \mid i = 1, 2, ..., N\}$ denote a set of N training examples. Unlike bagging, importance of a base classifier Ci depends on its error rate

$$\epsilon_i = \frac{1}{N} \left[\sum_{j=1}^N w_j \ I\left(C_i(\mathbf{x}_j) \neq y_j\right) \right], \qquad \alpha_i = \frac{1}{2} \ln \left(\frac{1 - \epsilon_i}{\epsilon_i}\right)$$

weight assigned to example (**x** *i*, *y i*) during the *jth* boosting round

$$w_i^{(j+1)} = \frac{w_i^{(j)}}{Z_j} \times \begin{cases} \exp^{-\alpha_j} & \text{if } C_j(\mathbf{x_i}) = y_i \\ \exp^{\alpha_j} & \text{if } C_j(\mathbf{x_i}) \neq y_i \end{cases}$$

Normalization factor

intermediate rounds produce an error rate higher than 50%, the weights wi = 1/N

AdaBoost

Algorithm 5.7 AdaBoost algorithm.

```
1: \mathbf{w} = \{w_j = 1/N \mid j = 1, 2, ..., N\}. {Initialize the weights for all N examples.}
 2: Let k be the number of boosting rounds.
 3: for i = 1 to k do
       Create training set D_i by sampling (with replacement) from D according to w.
       Train a base classifier C_i on D_i.
 5:
       Apply C_i to all examples in the original training set, D.
      \epsilon_i = \frac{1}{N} \left[ \sum_j w_j \, \delta(C_i(x_j) \neq y_j) \right] {Calculate the weighted error.}
       if \epsilon_i > 0.5 then
          \mathbf{w} = \{w_j = 1/N \mid j = 1, 2, \dots, N\}. {Reset the weights for all N examples.}
 9:
        Go back to Step 4.
10:
       end if
11:
       \alpha_i = \frac{1}{2} \ln \frac{1 - \epsilon_i}{\epsilon_i}.
12:
       Update the weight of each example according to Equation 5.69.
14: end for
15: C^*(\mathbf{x}) = \operatorname{argmax} \sum_{j=1}^T \alpha_j \delta(C_j(\mathbf{x}) = y).
```

	\boldsymbol{x}	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
Г	y	1	1	1	-1	-1	-1	-1	1	1	1

Boosting Round 1:

X	0.1	0.4	0.5	0.6	0.6	0.7	0.7	0.7	0.8	1
у	1	-1	-1	-1	-1	-1	-1	-1	1	1

Boosting Round 2:

X	0.1	0.1	0.2	0.2	0.2	0.2	0.3	0.3	0.3	0.3
у	1	1	1	1	1	1	1	1	1	1

Boosting Round 3:

X	0.2	0.2	0.4	0.4	0.4	0.4	0.5	0.6	0.6	0.7
у	1	1	-1	-1	-1	-1	-1	-1	-1	-1

Round	x=0.1	x=0.2	x=0.3	x=0.4	x=0.5	x=0.6	x=0.7	x=0.8	x=0.9	x=1.0
1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
2	0.311	0.311	0.311	0.01	0.01	0.01	0.01	0.01	0.01	0.01
3	0.029	0.029	0.029	0.228	0.228	0.228	0.228	0.009	0.009	0.009

Random Forest

- ✓ ensemble methods specifically designed for decision tree classifiers
- ✓ multiple decision trees where each tree is generated based on the values of an independent set of random vectors

Figure 5.40. Random forests.

Random Forest

- ✓ Bagging using decision trees is a special case of random forests
- \checkmark randomly select F input features to split at each node of the decision tree
- √ majority voting scheme
- ✓ To increase randomness, bagging can also be used to generate bootstrap samples for Forest-RI

Imbalance

- ✓ Data sets with imbalanced class distributions
- ✓ in credit card fraud detection, fraudulent transactions are outnumbered by legitimate transactions
- ✓ accuracy measure, used extensively for classifiers, may not be well suited for evaluating models derived from imbalanced data sets

example: 1% of the credit card transactions fraudulent, a model that predicts every transaction as legitimate accuracy 99%

it fails to detect any of the fraudulent activities.

binary classification, the rare class is often denoted as the positive class against negative class

		Predicted Class					
		+	-				
Actual	+	f_{++} (TP)	f_{+-} (FN)				
Class	_	f_{-+} (FP)	$f_{}$ (TN)				

confusion matrix

Imbalance

Precision: fraction of records that actually turns out to be positive in the group the classifier has declared as a positive class

Precision,
$$p = \frac{TP}{TP + FP}$$

Recall measures the fraction of positive examples correctly predicted by the classifier

Recall,
$$r = \frac{TP}{TP + FN}$$

maximizes both precision and recall

Imbalance

Precision and recall can be summarized into another metric known as the F1 measure

$$F_1 = \frac{2}{\frac{1}{r} + \frac{1}{p}}.$$

tends to be closer to the smaller of the two numbers a high value of F1-measure ensures that both precision and recall are reasonably high

Weighted accuracy =
$$\frac{w_1TP + w_4TN}{w_1TP + w_2FP + w_3FN + w_4TN}.$$