# fn make\_vec

### Michael Shoemate

This proof resides in "contrib" because it has not completed the vetting process.

Proves soundness of the implementation of make\_vec in mod.rs at commit f5bb719 (outdated1).

This transformation simply wraps an input scalar in a singleton vec. The output metric then becomes an Lp distance.

## 1 Hoare Triple

#### Precondition

#### Compiler-Verified

- Generic T implements trait Number
- Generic Q implements trait Number

#### **User-Verified**

None

### Pseudocode

```
def make_vec(
      input_space: tuple[AtomDomain[T], AbsoluteDistance[Q]],
   -> Transformation[
      AtomDomain[T], VectorDomain[AtomDomain[T]], AbsoluteDistance[Q], LpDistance[P, Q]
5]:
      input_domain, input_metric = input_space
      return Transformation.new(
          input_domain,
          VectorDomain.new(input_domain).with_size(1),
          lambda arg: [arg],
10
11
          input_metric,
          LpDistance.default(),
12
          lambda d_in: d_in,
13
```

#### Postcondition

#### Theorem 1.1.

Theorem 1.2. For every setting of the input parameters (input\_space, T, Q) to make\_vec such that the given preconditions hold, make\_vec raises an error (at compile time or run time) or returns a valid transformation. A valid transformation has the following properties:

 $<sup>^{1}\</sup>mathrm{See}\ \mathrm{new}\ \mathrm{changes}\ \mathrm{with}\ \mathrm{git}\ \mathrm{diff}\ \mathrm{f5bb719..160022e}\ \mathrm{rust/src/transformations/scalar\_to\_vector/mod.rs}$ 

- 1. (Data-independent runtime errors). For every pair of members x and x' in input\_domain, invoke(x) and invoke(x') either both return the same error or neither return an error.
- 2. (Appropriate output domain). For every member x in input\_domain, function(x) is in output\_domain or raises a data-independent runtime error.
- 3. (Stability guarantee). For every pair of members x and x' in input\_domain and for every pair (d\_in,d\_out), where d\_in has the associated type for input\_metric and d\_out has the associated

output\_metric, if x, x' are d\_in-close under input\_metric, stability\_map(d\_in) does not raise an error, and stability\_map(d\_in) = d\_out, then function(x), function(x') are d\_out-close under output\_metric.

*Proof.* The function is infallible, and the output domain trivially follows, since all output vectors are lengthone. For all x in the input domain, the output of make\_vec is a vector of length 1, so the output domain is trivially valid. The function is 1-stable because:

$$= \max_{x \in \mathcal{A}} d_{Lp}(f(x), f(x')) \tag{2}$$

$$= \max_{x \sim x'} d_{Lp}(f(x), f(x'))$$

$$= \max_{x \sim x'} (\sum_{i} (x_i - x'_i)^p)^{1/p}$$
(3)

$$= \max_{x \sim x'} ((x_1 - x_1')^p)^{1/p}$$

$$= \max_{x \sim x'} |x_1 - x_1'|$$

$$= \max_{x \sim x'} d_{Abs}(x_1, x_1')$$

$$= 1 \cdot d_{in}$$
(4)
(5)
(6)

$$= \max_{x_0, x'} |x_1 - x_1'| \tag{5}$$

$$= \max_{x \sim x'} d_{Abs}(x_1, x_1') \tag{6}$$

$$= 1 \cdot \mathbf{d_in} \tag{7}$$

(8)

For every pair of elements x, x' in input\_domain and for every pair (d\_in,d\_out), where d\_in has the associated type for input\_metric and d\_out has the associated type for output\_metric, if x, x' are d\_in-close under input\_metric, stability\_map(d\_in) does not raise an exception, and  $stability_map(d_in) \le d_out$ , then function(x), function(x') are  $d_out$ -close under output\_metric.

2