Sanitizing and Minimizing Databases for Software Application Test Outsourcing

03

Boyang Li

College of William and Mary

Mark Grechanik

University of Illinois at Chicago

Denys Poshyvanyk

College of William and Mary

Motivation

Database-Centric Applications (DCA)

Motivation

- Expected outsourcing market in 2020: \$50B vs. \$30B in 2010
- State of the art: clean room testing and fake data generation

Clean Room Testing

Generate Fake Data

Original table

Age	Gender	# of Children	Nationality
51	M	1	Chinese
29	F	3	American
46	M	1	Japanese
9	F	0	American

Anonymized table (Naïve version)

Age	Gender	# of Children	Nationality
61	M	3	Chinese
8	F	2	Chinese
33	F	0	Japanese
29	M	1	American

- Type and value restriction
- Semantic connections between data
- Program behavior

```
if (nationality == "Japanese" && age > 40) {
     f(disease);
}
```

Our work

We focus on balancing the following four dimensions:

Privacy	Data minimization	
Semantic correctness	Testing coverage	

PISTIS - Protecting and mInimizing databases for Software TestIng taSks

Program analysis

Weight-based k-clustering algorithm

Compute centroid objects

Associative rule mining

PISTIS - Program analysis

Program analysis

Nationality	Age
•••	
•••	

Original table

Weight-based k-clustering algorithm

Compute centroid objects

Associative rule mining

PISTIS - Weight-based k-clustering algorithm

Program analysis

Weight-based k-clustering algorithm

K=4

	Nationality	Age
- 1		
_		
5		
>		

Compute centroid objects

Associative rule mining

K=3

	Nationality	Age
ſ		
4		
F		
4		
4		

PISTIS - Compute centroid objects

K=4

Program analysis

Weight-based k-clustering algorithm

Compute centroid objects

Associative rule mining

Nationality	Age

PISTIS - Compute centroid objects

Program analysis

Weight-based k-clustering algorithm

Compute centroid objects

Associative rule mining

Original table

•••	•••	•••	•••
•••	•••	•••	•••
•••	•••	•••	•••

"pregnant ==true -> gender == female"

PISTIS - Protecting and mInimizing databases for Software TestIng taSks

Weight-based k-clustering algorithm

Compute centroid objects

Associative rule mining

Data minimization

Privacy

Semantic correctness

PISTIS allows us to meet all four goals

An example

Original table

Age	State	Gender	Treatment	Branch
42	ОН	M	Vasectomy	B1,B4
47	ОН	F	Hysterectomy	B2,B6
51	VA	F	F Chemotherapy	
55	VA	M	Chemotherapy	B1,B3
62	ОН	M	Chemotherapy	B1,B3
67	CA	F	Hysterectomy	B2,B6
30	ОН	M	Vasectomy	B1,B4
31	CA	F	Chemotherapy	B2,B5
35	ОН	F	Hysterectomy	B2,B6

Attribute Ranking

Step 1: compute attribute weights

Original table

Age	State	Gender	Treatment

Attribute Weights

Age	5
Gender	5
Treatment	4
State	0

Data Normalization

- Step 2: translate the original data table into a normalized table
 - Numerical attributes

Age	State	Gender	Treatment
42	ОН	M	Vasectomy
47	ОН	F	Hysterectomy
51	VA	F	Chemotherapy
55	VA	M	Chemotherapy
62	ОН	M	Chemotherapy
67	CA	F	Hysterectomy
30	ОН	M	Vasectomy
31	CA	F	Chemotherapy
35	ОН	F	Hysterectomy

Data Normalization

Categorical attributes

Age	State	Gender	Treatment
42	ОН	M	Vasectomy
47	ОН	F	Hysterectomy
51	VA	F	Chemotherapy
55	VA	M	Chemotherapy
62	ОН	M	Chemotherapy
67	CA	F	Hysterectomy
30	ОН	M	Vasectomy
31	CA	F	Chemotherapy
35	ОН	F	Hysterectomy

Data Normalization

Normalized table

Age (Normalized)	ОН	VA	CA	Female	Male	Hysterectomy	Vasectomy	Chemotherapy
0.63	1	0	0	0	1	0	1	0
0.7	1	0	0	1	0	1	0	0
0.76	0	1	0	1	0	0	0	1
0.82	0	1	0	0	1	0	0	1
0.93	1	0	0	0	1	0	0	1
1	0	0	1	1	0	1	0	0
0.45	1	0	0	0	1	0	1	0
0.46	0	0	1	1	0	0	0	1
0.52	1	0	0	1	0	1	0	0

Clustering

Step 3: apply weighted k-means clustering

Attribute Weights

5
5
4
0

Clustered table, k=3

Age (Normalized)	ОН	VA	CA	Female	Male	Hysterectomy	Vasectomy	Chemotherapy
0.63	1	0	0	0	1	0	1	0
0.7	1	0	0	1	0	1	0	0
0.76	0	1	0	1	0	0	0	1
0.82	0	1	0	0	1	0	0	1
0.93	1	0	0	0	1	0	0	1
1	0	0	1	1	0	1	0	0
0.45	1	0	0	0	1	0	1	0
0.46	0	0	1	1	0	0	0	1
0.52	1	0	0	1	0	1	0	0

Computing centroid

Step 4: compute the centroid records

0.33

0

0.67

0.67

0.63	1	0	0	0	1	0	1	0	
0.7	1	0	0	1	0	1	0	0	
0.76	0	1	0	1	0	0	0	1	

0.33

0.33

0.33

0.33

Computing centroid

Step 4: compute the centroid records

0.63	1	0	0	0	1	0	1	0
0.7	1	0	0	1	0	1	0	0
0.76	0	1	0	1	0	0	0	1

0	.7	0.67	0.33	0	0.67	0.33	0.33	0.33	0.33
---	----	------	------	---	------	------	------	------	------

Centroid table

Age (Normalized)	ОН	VA	CA	Female	Male	Hysterectomy	Vasectomy	Chemotherapy
0.7	0.67	0.33	0	0.67	0.33	0.33	0.33	0.33
0.92	0.33	0.33	0.33	0.33	0.67	0	0.33	0.67
0.48	0.67	0	0.33	0.67	0.33	0.33	0.33	0.33

Anonymized table

Step 5: generate real anonymized table

Associative rule

Step 6: generate and apply associative rule

Original table

Age	State	Gender	Treatment	
42	ОН	M	Vasectomy	
47	ОН	F	Hysterectomy	
51	VA	F	Chemotherapy	
55	VA	M	Chemotherapy	
62	ОН	M	Chemotherapy	
67	CA	F	Hysterectomy	
30	ОН	M	Vasectomy	
31	CA	F	Chemotherapy	
35	ОН	F	Hysterectomy	

"Vasectomy->male"

Anonymized table

Age	State	Gender	Treatment
47	ОН	F	Vasectomy
61	VA	M	Chemotherapy
32	ОН	F	Hysterectomy

Anonymized table with correction

Age	State	Gender	Treatment
47	ОН	M	Vasectomy
61	VA	M	Chemotherapy
32	ОН	F	Hysterectomy

Branch Coverage

Original table

Age	State	Gender	Treatment	Branch
42	ОН	M	Vasectomy	B1,B4
47	ОН	F	Hysterectomy	B2,B6
51	VA	F	Chemotherapy	B2,B5
55	VA	M	Chemotherapy	B1,B3
62	ОН	M	Chemotherapy	B1,B3
67	CA	F	Hysterectomy	B2,B6
30	ОН	M	Vasectomy	B1,B4
31	CA	F	Chemotherapy	B2,B5
35	ОН	F	Hysterectomy	B2,B6

Anonymized table with correction

Age	State	Gender	Treatment	Branch	
47	ОН	M	Vasectomy	B1, B4	
61	VA	M	Chemotherapy	B1, B3	
32	ОН	F	Hysterectomy	B2, B6	

Experiment

- We evaluated PISTIS on two open-source Java applications, DurboDax and RiskIt
 - DurboDax: 27 tables and 114 attributes
 - Risklt: 14 tables and 57 attributes
 - Randomly select 4000 records
 - Branch coverage are 19.3% and 13% respectively.

Branch coverage

Branch coverage on the number of clusters for subject applications

Statement coverage

Statement coverage on the number of clusters for subject applications

Disclosure rate

To evaluate privacy level

Similarity matrix

Disclosure rate: the average of all cells in the similarity matrix

Similarity matrix

Age	State	Gender	Treatment	
42	ОН	M	Vasectomy	
47	ОН	F	Hysterectomy	
51	VA	F	Chemotherapy	
55	VA	M	Chemotherapy	
62	ОН	M	Chemotherapy	
67	CA	F	Hysterectomy	
30	ОН	M	Vasectomy	
31	CA	F	Chemotherapy	
35	ОН	F	Hysterectomy	

	Age State		Gender	Treatment		
ſ	47	ОН	M	Vasectomy		
	61	VA	M	Chemotherapy		
	32	ОН	F	Hysterectomy		

Anonymized table

$$\frac{0+1+1+1}{4} = 0.75$$

Original table

Similarity matrix

	Record 1	Record 2	Record 3	Record 4	Record 5	Record 6	Record 7	Record 8	Record 9
C1	0.75	0.25	0	0.25	0.5	0	0	0	0.25
C2	0.25	0	0.5	0.75	0.5	0	0.25	0.25	0
C3	0.25	0.75	0.25	0	0.25	0.5	0.25	0.25	0.75

Disclosure rate

 We compute the disclosure rate as the average of all cells in the similarity matrix

Disclosure rate on the number of clusters for subject applications

Summary

