## Оценка параметров риска в моделях со стохастической волатильностью

### Егорова Ольга Сергеевна

Санкт-Петербургский Государственный Университет Математико-механический факультет Кафедра Статистического моделирования

Научный руководитель — к.ф.-м.н. Ю.Н. Каштанов Рецензент — к.ф.-м.н. А.А. Гормин



15 июня 2011

### Постановка задачи

Рассматривается стандартный (B,S)-рынок:

- $B_t = B_0 e^{rt}$  банковский счет,
- $S = (S_t)_{t > 0}$  акция:

Модель с локальной волатильностью

$$dS_t/S_t = rdt + \sigma(S_t)dw_t.$$

Модель со стохастической волатильностью

$$\begin{cases} dS_t/S_t = \sigma(y_t)dw_t^{(1)} + rdt, \\ dy_t = a(y_t)dw_t^{(2)} + b(y_t)dt, \end{cases}$$

Стандартный Европейский опцион, построенный на  $S_t$ .

**Цена опциона** с моментом исполнения T и ценой исполнения K:

$$C(S_0,T,K)=\mathbb{E}e^{-rT}h(S_T)$$
,  $h(S)$  – платежная функция.

**Параметры риска** — меры чувствительности цены опциона к изменению её параметра:

$$\Delta=rac{\partial C}{\partial S}$$
;  $\Gamma=rac{\partial^2 C}{\partial S^2}$ ;  $V=rac{\partial C}{\partial \sigma}$ ; и другие.

### Постановка задачи

Методы оценки цен опционов и параметров риска [Glasserman, 2003]:

• Дискретизация по времени:

$$\hat{S}_{t_{i+1}} = \hat{S}_{t_i} + a(\hat{S}_{t_i})(t_{i+1} - t_i) + b(\hat{S}_{t_i})\sqrt{t_{i+1} - t_i}z_i, \ z_i \sim N(0, 1).$$

• Разностные приближения производных:

$$C'(S) \sim \frac{\bar{C}_n(S + \Delta S) - \bar{C}_n(S - \Delta S)}{2\Delta S}$$
$$C''(S) \sim \frac{\bar{C}_n(S + \Delta S) - 2\bar{C}_n(S) + \bar{C}_n(S - \Delta S)}{\Delta S^2}$$

Альтернатива — интегральное уравнение, по методу параметрикса [Ermakov, Nekrutkin, Sipin, 1989]

### Задача:

- Вывод интегральных уравнений по методу параметрикса
- Построение несмещенной оценки с конечной дисперсией
- Программная реализация схем моделирования

### Интегральное уравнение

В модели с локальной волатильностью цена опциона является решением задачи Коши (например, [Gatheral, 2004]):

$$\mathcal{L}C(S,t) = \frac{\partial C}{\partial t} - \frac{1}{2}\sigma^2(S)S^2\frac{\partial^2 C}{\partial S^2},$$

$$C(S,t)\mid_{t=0}=h(S).$$

После замены переменных  $S=e^x$ ,  $a(x)=rac{1}{2}\sigma^2(e^x)$ ,  $f(x)=h(e^x)$ 

$$\mathcal{L}C = \frac{\partial C}{\partial t} - a(x) \left( \frac{\partial^2 C}{\partial x^2} - \frac{\partial C}{\partial x} \right).$$

$$Z_0(x, y, \tau) = \frac{1}{\sqrt{4\pi\tau a(y)}} \exp\left(-\frac{(x-y)^2}{4\tau a(y)}\right),$$

$$K(x,y,\tau) = -\frac{Z_0(x,y,\tau)}{2\tau a(y)} \left[ (a(y) - a(x)) \left( \frac{(x-y)^2}{2\tau a(y)} - 1 \right) - a(x)(x-y) \right].$$

### Интегральное уравнение

#### Утверждение 1

Пусть функция a(x) ограничена, отделена от нуля и Липшицева:

$$0 < a_m \le a(x) \le a_M < \infty, \tag{1}$$

$$|a(x) - a(y)| \le C_a|x - y|. \tag{2}$$

Тогда решение задачи выглядит следующим образом:

$$C(x,t) = \int_{\mathbb{R}} dx_0 Z_0(x,x_0,t) f(x_0) + \sum_{m=1}^{\infty} \int_{\mathbb{R} \times [0,t]} dx_1 dt_1 Z_0(x,x_1,t_1) \dots$$

$$\dots \int_{\mathbb{R} \times [t_{m-2},t]} dx_{m-1} dt_{m-1} K(x_{m-2},x_{m-1},t_{m-1}-t_{m-2}) \times$$

$$\times \int_{\mathbb{R}} dx_m K(x_{m-1},x_m,t-t_{m-1}) f(x_m).$$

## Прямая схема. Модель с локальной волатильностью

Зафиксируем x и t и определим плотности:

$$\begin{split} p_{t_1}(t_2) &= \frac{1}{2} (2(t-t_1) \min(t_2 - t_1, t - t_2))^{-1/2} \chi_{[t_1, t]}(t_2), \\ \varphi_s(y) &= \frac{1}{\sqrt{4\pi s a_M}} \exp\left(-\frac{y^2}{4s a_M}\right), \\ q_s(x_1, x_2) &= \frac{1}{2} \left(\frac{|x_1 - x_2|}{4s a_M} + \frac{|x_1 - x_2|^3}{16s^2 a_M^2}\right) \exp\left(-\frac{(x_1 - x_2)^2}{4s a_M}\right), \end{split}$$

через которые выразим начальную и переходные плотности:

$$\pi(x_1, t_1) = p_0(t_1)\varphi(x_1, t_1), \tag{3}$$

$$p(x_1, t_1; x_2, t_2) = p_{t_1}(t_2)q_{t_2-t_1}(x_1, x_2).$$
(4)

## Прямая схема. Модель с локальной волатильностью

Представим оценку в следующем виде:

$$\hat{C}(x,t) = \frac{Z_0(x,x_0,t)f(x_0)}{\varphi(x-x_0,t)} + \sum_{m=1}^M \frac{Z_0(x,x_1,t_1)K(x_1,x_2,t_2-t_1)}{\pi(x-x_1,t_1)p(x_1,t_1;x_2,t_2)} \dots \frac{K(x_{m-2},x_{m-1},t_{m-1}-t_{m-2})K(x_{m-1},x_m,t-t_{m-1})f(x_m)}{p(x_{m-2},t_{m-2};x_{m-1},t_{m-1})q_{t-t_{m-1}}(x_{m-1},x_m)}.$$
 (5)

### Теорема 1

Пусть функция a(x) модели с локальной волатильностью ограничена и Липшицева. Тогда для начальной плотности (3) и переходной плотности (4) оценка вида (5) имеет конечную дисперсию.

## Обратная схема. Модель с локальной волатильностью

Определим плотности:

$$\begin{split} p_{t_1}(t_2) &= \frac{1}{2} (2t_1 \min(t_2, t_1 - t_2))^{-1/2} \chi_{[0, t_1]}(t_2), \\ q_s(x_1, x_2) &= \frac{1}{2} \left( \frac{|x_1 - x_2|}{4sa(x_1)} + \frac{|x_1 - x_2|^3}{16s^2a^2(x_1)} \right) \exp\left( -\frac{(x_1 - x_2)^2}{4sa(x_1)} \right). \end{split}$$

Начальная плотность при фиксированных x и t :

$$\pi(x_0) = \varphi_t(x - x_0). \tag{6}$$

Переходная плотность:

$$p(x_1, t_1; x_2, t_2) = p_{t_1}(t_2)q_{t_1-t_2}(x_1, x_2),$$
(7)

## Обратная схема. Модель с локальной волатильностью

Представим оценку в следующем виде:

$$\check{C}(x,t) = \sum_{m=0}^{M} \frac{Z_0(x,x_m,t-t_m)K(x_m,x_{m-1},t_{m-1}-t_m)}{p(x_{m-1},t_{m-1};x_m,t_m)} \dots \frac{K(x_1,x_0,t_1)f(x_0)}{p(x_0,t;x_1,t_1)\pi(x_0)}.$$
(8)

#### Теорема 2

Пусть выполнены условия Теоремы 1.

Тогда для начальной плотности (6) и переходных плотностей (7) оценка вида (8) имеет конечную дисперсию.

## Сопряженное уравнение. Модель с локальной волатильностью

Переходная плотность  $P(t,S_0,S)$  процесса  $S_t$  удовлетворяет прямому уравнению Коломогорова [Дынкин, Марковские процессы]:

$$\mathcal{L}^* P = \frac{\partial P}{\partial t} - \frac{\partial}{\partial S} \left( \frac{1}{2} \sigma^2(S) S^2 P \right) = 0$$

Тогда для процесса  $x_t = \log S_t$  переходная плотность p(t,x,y) удовлетворяет следующему уравнению

$$\mathcal{L}^* p = \frac{\partial p}{\partial t} - a(x) \frac{\partial^2 p}{\partial x^2} + a_1^*(x) \frac{\partial p}{\partial x} + a_0^*(x) p.$$

В модели с локальными волатильностями ( $a(x) = \frac{1}{2}\sigma^2(e^x)$ ):

$$a_1^*(x) = -2a'(x)\sqrt{2a(x)} - a(x),$$

$$a_0^*(x) = -a'^2(x) - e^x\sqrt{2a(x)}a''(x).$$

$$0 < c_1 \le a'(x) \le C_1, \ 0 < c_2 \le e^xa''(x) \le C_2.$$
(9)

# Сопряженное уравнение. Модель с локальной волатильностью

Цена опциона может быть выражена следующим образом:

$$C(x,t) = \int_{\mathbb{R}} p(t,x,y)f(y)dy =$$

$$= \int_{\mathbb{R}} Z_0^*(x_0,x,t)f(x_0)dx_0 + \sum_{m=1}^{\infty} \int_{\mathbb{R}\times[0,t]} K^*(x_0,x,t-t_0)dx_0dt_0 \dots$$

$$\dots \int_{\mathbb{R}\times[0,t_{m-2}]} K^*(x_{m-1},x_{m-2},t_{m-2}-t_{m-1})dx_{m-1}dt_{m-1} \times$$

$$\times \int_{\mathbb{R}} Z_0^*(x_m,x_{m-1},t_{m-1})f(x_m)dx_m.$$

Определим плотности:

$$p_{t_1}(t_2) = \frac{1}{2} (2t_1 \min(t_2, t_1 - t_2))^{-1/2} \chi_{[0, t_1]}(t_2),$$

$$\varphi_s(x, y) = \frac{1}{\sqrt{4\pi s a(x)}} \exp\left(-\frac{(x - y)^2}{4s a(x)}\right),$$

$$q_s(x_1, x_2) = \frac{1}{2} \left(\frac{|x_1 - x_2|}{4s a(x_1)} + \frac{|x_1 - x_2|^3}{16s^2 a^2(x_1)}\right) \exp\left(-\frac{(x_1 - x_2)^2}{4s a(x_1)}\right).$$

## Сопряженное уравнение. Модель с локальной волатильностью

Переходная плотность :

$$p(x_1, x_2; t_1, t_2) = p_{t_1}(t_2)q_{t_1 - t_2}(x_1, x_2).$$
(10)

Начальная плотность:

$$\pi_K(x_0, t_0) = p(x, x_0; t, t_0), \tag{11}$$

Оценка:

$$\check{C}(x,t) = \sum_{m=0}^{M} \frac{K^*(x_0, x, t - t_0)}{\pi_K(x_0, t_0)} \dots \frac{K^*(x_{m-1}, x_{m-2}, t_{m-2} - t_{m-1})}{p(x_{m-2}, t_{m-2}; x_{m-1}, t_{m-1})} \frac{Z_0^*(x_m, x_{m-1}, t_{m-1}) f(x_m)}{\varphi_{t_{m-1}}(x_{m-1}, x_m)}.$$
(12)

#### Теорема 3

Пусть для функции a(x) выполнены условия Теоремы 1, а также (9). Тогда для начальной плотности (11) и переходной плотности (10) оценка вида (12) имеет конечную дисперсию.

$$\sigma(S) = \gamma (1 - \delta \arctan(\beta S^2 / S_0^2)),$$
  
 $\gamma = \delta = 0.6, \beta = 1.5, S_0 = 100$ 

### Таблица: Оценки цены опциона

| K   | Прямая | Обратная | Сопряженная | Дискретная | "По поглощению" |
|-----|--------|----------|-------------|------------|-----------------|
| 90  | 5.76   | 5.78     | 5.80        | 5.74       | 6.11            |
| 92  | 6.46   | 6.47     | 6.49        | 6.43       | 6.82            |
| 94  | 7.2    | 7.22     | 7.23        | 7.19       | 7.58            |
| 96  | 8.02   | 8.03     | 8.04        | 8.00       | 8.41            |
| 98  | 8.89   | 8.90     | 8.91        | 8.88       | 9.31            |
| 100 | 9.79   | 9.80     | 9.73        | 9.80       | 9.53            |
| 102 | 8.79   | 8.78     | 8.74        | 8.80       | 8.55            |
| 104 | 7.86   | 7.83     | 7.79        | 7.87       | 7.64            |
| 106 | 6.99   | 6.96     | 6.93        | 7.00       | 6.79            |
| 108 | 6.19   | 6.16     | 6.14        | 6.2        | 5.99            |











$$\sigma(S_T) = \gamma (1 - \delta \arctan(\beta S^2 / S_0^2)),$$
  
 $\gamma = \delta = 0.6, \beta = 1.5, S_0 = 100$ 

#### Таблица: Оценки $\Delta$

| K  | Прямая | Обратная | Сопряженная | Дискретная |
|----|--------|----------|-------------|------------|
| 80 | -0.226 | -0.227   | -0.227      | -0.229     |
| 82 | -0.251 | -0.252   | -0.253      | -0.254     |
| 84 | -0.277 | -0.278   | -0.278      | -0.280     |
| 86 | -0.304 | -0.305   | -0.305      | -0.306     |
| 88 | -0.333 | -0.334   | -0.334      | -0.335     |
| 90 | -0.362 | -0.363   | -0.363      | -0.365     |
| 92 | -0.393 | -0.394   | -0.394      | -0.396     |

$$\sigma(S) = \gamma(1 - \delta \arctan(\beta S^2/S_0^2)),$$
  
 $\gamma = \delta = 0.6, \beta = 1.5, S_0 = 100$ 



### Результаты

- Построены несмещенные оценки для цены опциона и параметров риска
- Доказана конечность их дисперсий
- Проведено практическое моделирование в трех схемах