Modern Physics Letters B Vol. 28, No. 27 (2014) 1450213 (21 pages) © World Scientific Publishing Company DOI: 10.1142/S0217984914502133

Structural determination and physical properties of 4d transitional metal diborides by first-principles calculations

Chun Ying, Erjun Zhao*, Lin Lin and Qingyu Hou

College of Science, Inner Mongolia University of Technology, Hohhot 010051, China

*ejzhao@yahoo.com

Received 30 June 2014 Revised 8 September 2014 Accepted 16 September 2014 Published 17 October 2014

The structural determination, thermodynamic, mechanical, dynamic and electronic properties of 4d transitional metal diborides MB₂ (M = Y-Ag) are systematically investigated by first-principles within the density functional theory (DFT). For each diboride, five structures are considered, i.e. AlB2-, ReB2-, OsB2-, MoB2- and WB2-type structures. The calculated lattice parameters are in good agreement with the previously theoretical and experimental studies. The formation enthalpy increases from YB₂ to AgB₂ in AlB₂-type structure (similar to MoB₂- and WB₂-type). While the formation enthalpy decreases from YB₂ to MoB₂, reached minimum value to TcB₂, and then increases gradually in ReB₂-type structure (similar to OsB₂-type), which is consistent with the results of the calculated density of states. The structural stability of these materials relates mainly on electronegative of metals, boron structure and bond characters. Among the considered structures, TcB₂-ReB₂ (TcB₂-ReB₂ represents TcB₂ in ReB₂type structure, the same hereinafter) has the largest shear modulus (248 GPa), and is the hardest compound. The number of electrons transferred from metals to boron atoms and the calculated densities of states (DOS) indicate that each diboride is a complex mixture of metallic, ionic and covalent characteristics. Trends are discussed.

Keywords: Borides; first-principles theory; crystal structure; elasticity.

PACS Number(s): 77.48.Bw, 63.20.dk, 74.62.Bf, 62.20.D

1. Introduction

More attraction of transition-metal diborides is induced from their unique properties such as high hardness, high melting point, chemical stability, good electrical—thermal conductivity and superconductivity.^{1,2} Based on their well-known properties, these materials have been widely applied for cutting and grinding tools, abrasive resistance coating and mechanical process, etc. Therefore, extensive experimental and theoretical studies on structural, elastic, dynamic and electronic properties of transition-metal diborides have been performed very important for both fundamental and technological fields.

For 5d transition-metal diborides, the well-defined transition-metal diboride ReB₂ has been synthesized successfully at ambient pressure and had an average hardness of 48 GPa under an applied load of 0.49 N.³ The structural, electronic and mechanical properties of ReB₂ have been studied systematically both from experiments and theories. ⁴⁻⁸ At the same time, investigations focused on WB₂ and OsB₂ have been performed by using first-principles calculations within both the generalized gradient approximation (GGA) and local density approximation (LDA), and the estimated hardness of WB₂ was very close to that of superhard ReB₂.8 These studies yield hints for the design of superhard and ultra-incompressible materials of transition-metal diborides. Moreover, the 4d transition metals combining with small and covalent-bond-forming boron atoms are promising to create superhard and superconductive materials because of the high valence electron densities and the strong covalent bonding in these compounds. 9 Up to date, several of 4d transitionmetal diborides MB₂ (M = Y, ¹⁰ Zr, ¹¹ Mo, ¹² Ru, ¹³ Ag ¹⁴) have been synthesized by diverse methods. For 4d transition-metal diborides, the geometrical structure is assumed to be influenced by the electron transferred from neighboring metal atoms to the boron atoms. Elements with lower (higher) electronegativity (compared to boron) would donate (attract) electrons to neighboring atoms and favor to create planar (puckered) structure. ¹⁵ This has been confirmed that boron structure in MB₂ (M = Zr, Nb and Mo) is planar and others like MB_2 (M = Tc, Mo, Ru, Rh and Pd)favor to create puckered structure with highly directional covalency zigzag topology of inter connected bonds. The structural, elastic and electronic properties of 4d transition-metal diborides MB₂ (M = Zr, Nb, Tc, Mo, Ru and Rh) have been investigated by using the first-principles calculations. 16 It was found that the ground state phases for MB₂ are hexagonal AlB₂-type (ZrB₂, NbB₂), hexagonal ReB₂type (TcB₂, RhB₂), and orthorhombic (MoB₂, RuB₂).¹⁶ The phonon dispersion and the thermodynamic properties of ZrB₂, NbB₂ and MoB₂ have been investigated by using the first-principles, and there was not very strong electron-phonon interaction in these compounds based on their calculation results.¹⁷ For ZrB₂ with AlB₂-type structure, the band structure and the density of states (DOS) have been performed by using an augmented plane wave (APW) method and the band structure of ZrB_2 was determined by the sp^2 hybridization. ^{18,19} Band structure of ZrB_2 calculated by Johnson¹⁹ was quite similar to the results obtained by Ihara¹⁸ using the Korringa-Kohn-Rostoker (KKR) method in the spherical muffin-tin approximation. After then, the electronic structures, elasticity and hardness for ZrB₂ have been investigated by using first-principles total-energy plane-wave pseudopotential and the results suggested that ZrB₂ is almost isotropy in compression and in shear.²⁰ The strong hybridization of boron 2p and metal 4d states not only created the "pseudogap", but generated inter-layer covalent bonding.²⁰ Their calculated hardness for ZrB₂ was 23.16 GPa, which was in good agreement with experimental data $(23 \pm 0.9 \text{ GPa})^{20}$ For MoB₂, the structural and mechanical properties of MoB₂ with SR_4 structure (R-3m, Z=6) have been performed at ambient pressure using the DFT within GGA, and the calculated results indicated that the strong covalent

bonding between Mo and B atoms is the driving force for the high bulk modulus (310 GPa) and shear modulus (238 GPa).²¹ Most recently, the hardness, bulk modulus and shear modulus of the synthesized MoB₂ were about 21, 296 and 196 GPa, respectively. 12 For RuB₂, the electronic and structure properties with orthorhombic (space group Pmmm, No. 59) structure have been investigated by using the LDA, the results indicated that the high bulk modulus (about 334 GPa) is the result of covalent bonding between transition metal 4d and boron 2p states.²² It was in good agreement with Wang's results using the DFT.²³ The elastic, structural and thermodynamic properties of RuB₂ with orthorhombic structure have been studied under high pressures by using the Vanderbilit-type nonlocal ultra-soft pseudopotentials (USP) with GGA.²⁴ Finally, for AgB₂, Islam et al.²⁵ has found the superconductivity at 7.4 K by using the density function perturbation theory (DFPT) within GGA. The structural and mechanical properties of AgB₂ have been investigated by using Vienna ab initio simulation package (VASP), and their calculated results suggested that AgB₂ is mechanically stable and elastically anisotropic in AlB₂-type structure, and becomes more ductile nature with the pressure increasing.²⁶

In this present study, two structures (AlB₂- and ReB₂-type) are considered, because most of the ground state structures for 5d transitional metal diborides were AlB₂- and ReB₂-types.²⁷ Moreover, WB₂-, MoB₂- and OsB₂-type structures are also considered based on the chemically related compounds. However, much less is known about the mechanical properties of 4d transition metal diborides in these structures, especially for MoB₂- and WB₂-type structures. Motivated by above mentioned, the structural stability and physical properties of 4d transition metal diborides from YB₂ to AgB₂ are systematically studied by first-principles based on the DFT. The general trends are discussed.

2. The Computational Details and Crystal Structures

All the calculations are performed within the CASTEP code, ²⁸ based on the density-functional theory. The generalized gradient approximation (GGA) parametrized by Perdew, Burk and Ernzerhof (PBE)²⁹ is used for the exchange-correlation potentials. The ultra-soft pseudopotentials (USP) are used to describe the interaction between the ions and the electrons.³⁰ The plane wave cut-off energy is chosen to be 450 eV. The k-point of $12 \times 12 \times 9$ for AlB₂-, $14 \times 14 \times 4$ for ReB₂-, $8 \times 13 \times 9$ for OsB₂-, $12 \times 12 \times 2$ for MoB₂- and $16 \times 16 \times 3$ for WB₂-type structures are generated using the Monkhorst–Pack scheme.¹³ The structures are relaxed with respect to both lattice parameters and atomic position. The structural relaxations are performed until the difference in the total energy and the residual forces are less than 1.0×10^{-6} eV and 1.0×10^{-3} eV/Å, respectively. The elastic stiffness constants are calculated by using stress–strain method. The bulk modulus (B), shear modulus (G) and Young's modulus (E) are calculated from Viogt–Reuss–Hill approximation.^{31–33} The formation enthalpy is calculated from $\Delta H = E$ (MB₂) – E (solid M) –2E (solid B). In addition, the strength of covalent bond within M–B bonds is

Fig. 1. (Color online) Crystal structures of MB₂ (M = Y to Ag): (a) AlB₂-type, (b) ReB₂-type, (c) MoB₂-type, (d) WB₂-type and (e) OsB₂-type structure. The large and small spheres represent 4d transition metal and boron atoms, respectively.

estimated by calculating the bond populations. The changes in atomic charge and bond populations are then calculated by projecting the plane wave states onto the localized basis set by means of Mulliken analysis.⁹

The considered crystal structures are plotted in Fig. 1. The simple planar (the form of boron layer) AlB₂-type (space group P6/mmm, No. 191), puckered (boron sheet) ReB₂-type (space group P6₃/mmc, No. 194),³⁴ puckered OsB₂-type (space group Pmmn, No. 59), planar-puckered MoB₂-type (space group R-3m, No. 166) and WB₂-type (space group P6₃/mmc, No. 194) structures are considered as initiating structures for 4d transition-metal diborides MB₂ (M = Y-Ag). In AlB₂-type structure, it contains only one formula unit with the M atom at site 1a (0,0,0), and the B atom at 2d (1/3, 2/3, 1/2). Each M atom, located at the center of the hexagonal prism, is coordinated by twelve B atoms [Fig. 1(a)]. ReB₂-type structure [Fig. 1(b)] contains two formula units with the M atom at site 2c (1/3, 2/3, 1/4), while the B atom at site 4f (1/3, 2/3, 0.548). The B atoms are seven-fold coordinated with four M and three B atoms. Each M atom is coordinated by eight B atoms and locates at the center of a trigonal bipyramid.⁴ MoB₂-type structure [Fig. 1(c)] contains six formula units with the M atom at site 6c (0,0,0.075), while two B atoms at sites 6c (0,0,0.332) and 6c (0,0,0.182), respectively. In this structure, the B layers between the M layers form two kinds of hexagonal networks: One is a planar graphic-like layer and is sandwiched between the same M layers, similar to the packing of boron in AlB₂-type structure. Another one is more densely puckered sheet sitting between different M layers, similar to that in ReB₂-type. WB₂-type structure [Fig. 1(d)] contains four formula units with the M atom at site 4f (1/3, 2/3, 0.1376), while the three B atoms at sites 2b (0, 0, 1/4), 2d (1/3, 2/3, 3/4) and 4f (1/3, 2/3, 0.9757). OsB₂-type structure [Fig. 1(e)] contains two formula units with the M atom at site 2a (0, 0, 0.1535), while the B atom at site 4f (0.805, 0, 0.1535)0.632). In this type, the M and B sheets are puckered.

Table 1. Calculated formation enthalpy per formula unit ΔH (eV), lattice parameters a, c (Å), elastic constants C_{ij} (GPa), bulk modulus B (GPa), shear modulus G (GPa), Young's modulus E (GPa), Poisson's ratio ν and Debye temperature Θ_D (K) for the diborides in a hexagonal AlB₂-type structure with space group P6/mmm.

	YB_2	${ m ZrB}_2$	NbB_2	MoB_2	TcB_2	RuB_2	RhB_2	PdB_2	AgB_2
ΔH	-1.26	-3.18	-2.32	-1.02	-0.03	0.34	0.12	0.76	1.45
a	3.329	3.166	3.100	3.091	2.959	3.017	3.084	3.026	3.011
	$3.303^{\rm a}$	3.151^{d}	$3.084^{\rm c}$	3.000^{c}	2.940^{c}				$3.070^{\rm b}$
		$3.165^{\rm e}$	3.133^{d}	$3.034^{\rm d}$					3.023^{g}
c	3.917	3.540	3.331	3.330	3.399	3.269	3.247	3.594	4.077
	$3.843^{\rm a}$	$3.420^{\rm d}$	3.319^{c}	3.321^{c}	$3.384^{\rm c}$				$3.810^{\rm b}$
		$3.547^{\rm e}$	$3.237^{\rm d}$	$3.245^{\rm d}$					4.080^{g}
C_{11}	356	569	583	617	589	423	465		99
		$569,^{c}568^{f}$		$627^{\rm c}$	$617^{\rm c}$				
C_{33}	342	445	446	462	529	433	379		193
		$449,^{c}436^{f}$		398^{c}	$550^{\rm c}$				
C_{44}	159	248	204	136	47	24	25		-15
		$262,^{c}247^{f}$		$174^{\rm c}$	72^{c}				
C_{12}	71	53	125	132	181	270	214		366
		$64,^{\rm c}\ 57^{\rm f}$		120^{c}	$178^{\rm c}$				
C_{13}	89	116	182	195	154	186	174		72
		$122,^{c} 120^{f}$		$231^{\rm c}$	$156^{\rm c}$				
B	172	239	287	304	298	284	268		
		$240,^{f} 245^{c}$		313^{c}	307^{c}				
G	145	235	200	175	114	55	66		
		$231,^{f}241^{c}$		291^{c}	159^{c}				
E	340	530	486	441	304	155	185		
		526^{f}							
B/G	1.19	1.02	1.44	1.73	2.60	5.16	4.04		
ν	0.171	0.130	0.218	0.258	0.330	0.409	0.386		0.643
		$0.135^{\rm f}$							
Θ_{D}	770	933	847	779	628	435	476		
		942^{e}							

^aRef. 10, Exp., ^bRef. 14, Exp., ^cRef. 16, GGA, ^dRef. 17, GGA, ^eRef. 20, GGA, ^fRef. 38, Exp., ^gRef. 25, GGA.

3. Results and Discussion

3.1. AlB_2 -type structure

From Table 1, it is clear that ZrB₂–AlB₂ (ZrB₂–AlB₂ represents ZrB₂ in AlB₂-type structure, the same hereinafter) has the smallest formation enthalpy (-3.18 eV), following NbB₂–AlB₂ to about -2.32 eV. The calculated formation enthalpies for MB₂ from YB₂ to TcB₂ are negative, indicating that these diborides might be synthesized easily by experiments. This is confirmed by the synthesis of YB₂, ¹⁰ ZrB₂, ¹¹ NbB₂ (Ref. 35) and MoB₂ (Ref. 36) in AlB₂-type structure. However, TcB₂–AlB₂ is not reported by experiment, which might be due to that TcB₂–AlB₂ (-0.03 eV) is thermodynamically unstable with respect to TcB₂–ReB₂ (-1.45 eV). Moreover,

the calculated phonon dispersion curves indicate that MoB₂-ReB₂ is dynamically stable, while MoB₂-AlB₂ is dynamically unstable due to the imaginary phonon frequency (see details in Fig. A.1 in Supplementary Materials). Others from RuB₂ to AgB₂ have positive formation enthalpies, implying that these compounds may be synthesized under extreme conditions, such as high temperature and/or high pressure. For YB₂, the lattice parameters 3.329 Å and 3.917 Å match the experimental values 3.303 Å and 3.843 Å, 10 deviating by about 0.8% for a-axis and 2.0% for c-axis. The calculated lattice parameters of ZrB_2 (a = 3.166 Å and c = 3.540 Å) are quite close to the values of previous studies (a = 3.151 Å and c = 3.420 Å in Ref. 17, and a = 3.165 Å and c = 3.547 Å in Ref. 20). For NbB₂, the lattice parameters 3.100 Å and 3.331 Å are in good agreement with the other calculated results by using GGA-PBE method. 16,17 For MoB₂, the lattice parameters 3.091 Å and 3.330 Å are consistent with the previously values (3.000 Å and 3.321 Å in Ref. 16) and (3.034 Å and 3.245 Å in Ref. 17). Our calculated values are in good agreement with experimental¹⁶ and previously theoretical¹⁴ studies for TcB₂ and AgB₂. They match each other within 1.8% for a-axis and 2.5% for c-axis.

The elastic stability is a necessary condition for a crystal to exist. From the mechanical stable criteria,³⁷ all the diborides with AlB₂-type except AgB₂, are elastically stable at ambient pressure (Table 1). AgB₂ is elastically unstable due to negative C_{44} value (-15 GPa). From Table 1, it is interesting to note that MoB₂ has the highest C_{11} value of 617 GPa, which deviates by around 1.6% from the previously theoretical value 627 GPa.¹⁶ Our calculated C_{33} value (462 GPa) of MoB₂ is in agreement with previously theoretical data (398 GPa).¹⁶ For TcB₂, the calculated C_{11} and C_{33} values are 589 GPa and 529 GPa, which is slightly smaller than the previously theoretical values 617 GPa and 550 GPa,¹⁶ deviating by 4.8% and 4.0%, respectively.

The Young's modulus and Poisson's ratio are two important factors, which are necessary to develop the technological and engineering applications of a material. It is obvious to see that ZrB_2 -Al B_2 has the highest Young's modulus of 530 GPa, which is in excellent agreement with experimental data (526 GPa).³⁸ It is well known that higher Debye temperature corresponds to higher hardness. For instance, diamond has the highest Debye temperature of 2230 K, and it is the hardest material up to date. ZrB_2 -Al B_2 has the highest Debye temperature (933 K) and is the hardest materials among the 4d transitional metal diborides with Al B_2 -type structure. In addition, from Table 1, the calculated B/G ratios for MB₂ (M = Y, Zr, Nb and Mo) indicate that they are brittle in nature because their values are less than 1.75, which is the critical value to separate ductility and brittleness.³⁹

3.2. ReB_2 -type structure

From Table 2, the calculated formation enthalpies for the diborides from ZrB_2 to RhB_2 in ReB_2 -type structure are negative. Also, the calculated formation enthalpies gradually decrease from YB_2 (0.86 eV) to TcB_2 (-1.45 eV) in the ReB_2 -type

Table 2. Calculated formation enthalpy per formula unit ΔH (eV), lattice parameters a, c (Å), elastic constants C_{ij} (GPa), bulk modulus B (GPa), shear modulus G (GPa), Young's modulus E (GPa), Poisson's ratio ν and Debye temperature Θ_D (K) for the diborides in a hexagonal ReB₂-type structure with space group P6₃/mmc.

	YB_2	ZrB_2	NbB_2	MoB_2	TcB_2	RuB_2	RhB_2	PdB_2	AgB_2
ΔH	0.86	-0.55	-0.83	-1.16	-1.45	-0.94	-0.42	0.52	1.16
a	3.197	3.077	2.994	2.920	2.893	2.913	2.994	2.960	2.989
				2.906^{a}	$2.878^{\rm a}$	2.895^{a}	2.963^{a}		
c	9.542	8.539	8.058	7.739	7.444	7.271	7.259	7.664	8.688
				7.700^{a}	7.470^{a}	7.242^{a}	7.156^{a}		
C_{11}	226	147	322	495	581	493	369	261	
				531^{a}	608^{a}	$467^{\rm a}$	361^{a}		
C_{33}	455	460	630	848	960	807	642	419	
				876^{a}	947^{a}	813^{a}	718^{a}		
C_{44}	12	63	129	246	251	206	127	38	
				247^{a}	256^{a}	209^{a}	137^{a}		
C_{12}	144	244	212	190	185	220	199	228	
				178^{a}	136^{a}	178^{a}	231^{a}		
C_{13}	90	70	91	86	108	166	177	95	
				88 ^a	111 ^a	161^{a}	$205^{\rm a}$		
B	169	167	226	281	320	317	270	92	
				294^{a}	320^{a}	305^{a}	302^{a}		
G	37		105	217	248	185	117	22	
				240^{a}	270^{a}	196^{a}	121^{a}		
E	103		273	517	591	465	307	61	
B/G	4.57		2.15	1.30	1.29	1.71	2.31	4.22	
ν	0.398		0.299	0.194	0.193	0.256	0.311	0.390	
Θ_{D}	406		633	873	916	787	634	273	

^aRef. 16, GGA.

structure. While the formation enthalpies for YB₂ and AgB₂ are positive, implying that their synthesis might be more difficult, e.g. extreme temperature and/or extreme pressure. Therefore, up to date, only TcB₂ has been synthesized among the 4d transition-metal diborides in ReB₂-type structure. ⁴⁰ For MoB₂, the calculated lattice parameters 2.920 Å and 7.739 Å are consistent with the previous theoretical values (2.906 Å and 7.700 Å). ¹⁶ For TcB₂, the calculated lattice parameters 2.893 Å and 7.444 Å deviate by around 0.5% for a-axis and 0.3% for c-axis compared with the previously theoretical data 2.878 Å and 7.470 Å. An excellent agreement between our calculation and previous study¹⁶ for the lattice parameters is also obtained for RuB₂ and RhB₂. As shown in Table 2, we find high incompressibility along the c-axis, as demonstrated by the large C_{33} values. Among all the diborides in the considered structures, TcB_2 has the highest C_{33} value of 960 GPa, which is consistent with the previously theoretical value 947 GPa, ¹⁶ matching within 1.4%. For MoB_2 , it has the second large C_{33} value of 848 GPa, followed by 807 GPa for RuB₂. This is in general agreement with previous studies.¹⁶ Well known to us, the elastic moduli are the most important factors for identifying the hardness of solids. It has been suggested that a linear correlation might exist between the shear modulus and Vickers hardness. ⁴¹ The calculated shear moduli are 217 GPa for MoB_2 , 248 GPa for RoB_2 and 185 GPa for RoB_2 in RoB_2 -type structure, which might have high hardness. So, according to the Chen's model, ⁴² the estimated Vickers hardness are 32.2 GPa for MoB_2 , 13.0 GPa for RoB_2 , and 35.1 GPa for RoB_2 , which is in agreement with the previously theoretical values (43.3 GPa in RoB_2 , 16 and 37.0 GPa in RoB_2 . In addition, these compounds are brittle in nature associated with small B/G values (Table 2), which are less than 1.75.

3.3. OsB_2 -type structure

Each diborides in both ReB₂- and OsB₂-type structures exhibits similar formation enthalpies (Tables 2 and 3). Only TcB₂-OsB₂ has higher formation enthalpy (-1.29 eV) than that (-1.45 eV) of TcB₂-ReB₂. The calculated lattice parameters 4.641 Å, 2.911 Å and 4.225 Å of MoB₂-OsB₂ are quite close to previously theoretical values of 4.616 Å, 2.897 Å and 4.210 Å, deviating by around 0.5% in a-axis, 0.5% in b-axis, and 0.3% in c-axis. ¹⁶ For RuB₂-OsB₂, the calculated lattice parameters (a = 4.647 Å, b = 2.869 Å and c = 4.046 Å) are in excellent agreement with theoretical (a=4.647 Å, b=2.869 Å, c=4.046 Å in Ref. 24) and experimental values (a=4.645 Å, b=2.865 Å and c=4.045 Å in Ref. 43). An agreement between our calculation and previous studies for the lattice parameters is also obtained for MoB₂ and RhB₂ with OsB₂-type structure (Table 3). Among the diborides in OsB_2 -type structure, TcB_2 has the highest C_{33} value of 816 GPa, which is consistent with the previously theoretical value 833 GPa, matching within 2.1%. For MoB₂, it has the second large C_{33} value of 800 GPa, followed by 699 GPa for RuB₂ (Table 3). This is in agreement with previous studies. 16,24 The calculated shear moduli are 222 GPa for MoB₂, 232 GPa for TcB₂ and 183 GPa for RuB₂ with OsB₂-type structure, which are in agreement with the previously theoretical studies 16,24 with a maximum deviation of $\sim 5.2\%$ (Table 3). In addition, MB₂ (M = Mo, Tc and Ru) are brittle associated with small B/G values less than 1.75, while MB_2 (M = Rh, Pd and Ag) are ductile in nature (Table 3).

3.4. MoB_2 - and WB_2 -type structures

Each diboride with MoB_2 - and WB_2 -type structures has similar behave (Tables 4 and 5). It is interesting to note that MoB_2 is more favored to crystallize in these two structures, because they have the same formation enthalpy ($-1.47 \, \mathrm{eV}$), which is the smallest value among the considered structures [Fig. 2(d)]. This is also confirmed by that only MoB_2 has been synthesized in MoB_2 -type structure among the 4d transition-metal diborides. $^{44} \, MoB_2$ - MoB_2 has high C_{33} value (624 GPa), which is close to that of 674 GPa for MoB_2 - WB_2 (Tables 4 and 5). MoB_2 - MoB_2 also has high shear modulus of 216 GPa (of 223 GPa in MoB_2 - WB_2), which is in agreement with experimental value of 190 GPa. $^{12} \, According$ to our calculated results, NbB_2 - MoB_2 also exhibits relatively high C_{33} value of 596 GPa (of 609 GPa for NbB_2 -

Table 3. Calculated formation enthalpy per formula unit ΔH (eV), lattice parameters a,b,c (Å), elastic constants C_{ij} (GPa), bulk modulus B (GPa), shear modulus G (GPa), Young's modulus E (GPa), Poisson's ratio ν and Debye temperature Θ_D (K) for the diborides in a hexagonal OsB₂-type structure with space group Pmmn.

	YB_2	ZrB_2	NbB_2	MoB_2	TcB_2	RuB_2	RhB_2	PdB_2	AgB_2
ΔH	0.96	-0.40	-0.85	-1.18	-1.29	-0.97	-0.36	0.53	1.49
a	5.395	5.052	4.831	4.641	4.597	4.647	4.639	4.928	5.587
				$4.616^{\rm a}$	$4.572^{\rm a}$	4.625, a 4.647, b 4.645c	4.612^{a}		
b	3.107	3.075	2.997	2.911	2.883	2.869	2.995	2.799	2.730
				2.897^{a}	2.869^{a}	2.874, ^a 2.869, ^b 2.865 ^c	$2.944^{\rm a}$		
c	5.075	4.606	4.376	4.225	4.102	4.046	4.082	4.191	4.439
				4.210^{a}	$4.080^{\rm a}$	4.031, a 4.046, b 4.045c	4.029^{a}		
C_{11}	219	251	464	471	535	535	372	342	342
				472^{a}	$534^{\rm a}$	544, ^a 525 ^b	404 ^a		
C_{22}	126	257	374	506	550	462	287	288	281
				513^{a}	540^{a}	485, ^a 455 ^b	336^{a}		
C_{33}	253	361	571	800	816	699	535	438	293
				818 ^a	833 ^a	718, ^a 698 ^b	608 ^a		
C_{44}	-12	-114	-41	179	188	122	82	44	1.5
				162^{a}	193^{a}	113, ^a 122 ^b	87 ^a		
C_{55}	35	85	201	294	267	225	119	23	27
				303^{a}	305^{a}	227, ^a 216 ^b	116 ^a		
C_{66}	81	35	170	225	219	183	111	123	114
				242^{a}	228^{a}	184, ^a 178 ^b	118 ^a		
C_{12}	100	93	161	192	154	180	239	171	110
				211 ^a	186^{a}	177, ^a 171 ^b	237^{a}		
C_{13}	53	79	108	140	129	151	182	148	60
				143^{a}	145^{a}	153, ^a 146 ^b	183 ^a		
C_{23}	38	100	87	64	75	108	137	117	23
				60^{a}	90^{a}	119, ^a 117 ^b	129^{a}		
B	104	155	234	282	288	283	250	213	142
				292^{a}	$305^{\rm a}$	294, ^a 280 ^b	$272,^{\rm a} 334^{\rm b}$		
G				222	232	183	95	66	41
				234^{a}	244^{a}	191, ^a 180 ^b	117^{a}		
E				549	549	452	252	180	114
B/G				1.27	1.24	1.55	2.63	3.22	3.64
ν				0.189	0.182	0.234	0.331	0.359	0.366
Θ_{D}				771	775	682	498	409	335

^aRef. 16, GGA, ^bRef. 24, GGA, ^cRef. 43, Exp.

 WB_2), high shear modulus of 211 GPa (of 219 GPa for NbB_2 – WB_2) and high Debye temperature of 1108 K (of 923 K for NbB_2 – WB_2).

The values of estimated Vickers hardness are 33.6 GPa, 30.0 GPa and 31.4 GPa for MoB₂ with OsB₂-, MoB₂- and WB₂-type, respectively, and 35.5 GPa for TcB₂ with OsB₂-type. This implies that MoB₂ (ReB₂-, OsB₂-, MoB₂- and WB₂-type), TcB₂ (ReB₂- and OsB₂-type), ZrB₂ (AlB₂-type), NbB₂ (AlB₂-, MoB₂- and WB₂-type) are the candidates of potential ultra-incompressible and superhard materials.

C. Ying et al.

Table 4. Calculated formation enthalpy per formula unit ΔH (eV), lattice parameters a, c (Å), elastic constants C_{ij} (GPa), bulk modulus B (GPa), shear modulus G (GPa), Young's modulus E (GPa), Poisson's ratio ν and Debye temperature Θ_D (K) for the diborides in a hexagonal MoB₂-type structure with space group R-3m.

	YB_2	ZrB_2	NbB_2	MoB_2	TcB_2	RuB_2	RhB_2	PdB_2	AgB_2
ΔH	0.29	-1.85	-2.09	-1.47	-0.96	-0.20	-0.19	0.38	1.52
a	3.273	3.154	3.059	3.011	2.973	2.943	2.988	3.006	3.003
				3.015, ^a 3.016 ^b					
c	26.066	23.294	21.968	20.948	20.734	21.334	21.936	21.989	25.217
				20.971, ^a 20.995 ^b					
C_{11}		354	513	550	523	392	305	364	
C_{33}		447	596	624	572	346	304	306	
C_{44}		89	226	230	174	-89	-13	23	
C_{12}		108	110	126	139	225	227	133	
C_{13}		102	130	180	208	207	142	125	
C_{14}		-11	31	17	9	4	15	16	
C_{15}		0	0	0	0	0	0	0	
B		196	262	298	301	266	214	200	
				$295^{\rm b}$					
G			211	216	178			57	
				$190^{\rm b}$					
E			500	522	446			158	
B/G			1.24	1.38	1.69			3.51	
ν			0.181	0.208	0.253			0.367	
Θ_{D}			1108	1092	982			556	

 $^{{}^{\}rm a}{\rm Ref.}$ 43, Exp., ${}^{\rm b}{\rm Ref.}$ 12, Exp.

Table 5. Calculated formation enthalpy per formula unit ΔH (eV), lattice parameters a, c (Å), elastic constants C_{ij} (GPa), bulk modulus B (GPa), shear modulus G (GPa), Young's modulus E (GPa), Poisson's ratio ν and Debye temperature $\Theta_{\rm D}$ (K) for the diborides in a hexagonal WB₂-type structure with space group P6₃/mmc.

	YB_2	ZrB_2	NbB_2	MoB_2	TcB_2	RuB_2	RhB ₂	PdB_2	AgB_2
ΔH	-0.292	-1.83	-2.08	-1.47	-0.91	-0.16	-0.17	0.40	1.53
a	3.273	3.149	3.053	3.014	2.973	2.955	2.980	3.005	3.005
c	17.379	15.567	14.662	13.945	13.838	14.146	14.742	14.696	16.790
C_{11}		388	526	571	544		260	324	
C_{33}		472	609	674	570		315	334	
C_{44}		98	233	221	151		-13	11	
C_{12}		89	117	132	146		285	173	
C_{13}		94	127	160	183		130	148	
B		199	266	301	297		212	213	
G		130	219	223	175			39	
E		320	516	536	439			108	
B/G		1.53	1.21	1.35	1.70			5.46	
ν		0.232	0.176	0.202	0.254			0.415	
Θ_{D}		783	923	969	851			398	

Table 6. The calculated universal anisotropic factor A^U , shear anisotropic factors A_1 , A_2 , A_3 , percentage anisotropy in compressibility A_B (%) and shear A_G (%) for MoB₂ and TcB₂ with considered structures.

	A^U	A_1	A_2	A_3	A_B	A_G				
	MoB ₂ with different structures									
AlB ₂ -type	0.394	0.786		0.559	0.003	0.037				
ReB_2 -type	0.541	0.839		1.614	0.011	0.049				
OsB_2 -type	0.491	0.722	0.998	1.517	0.101	0.044				
MoB_2 -type	0.058	1.130		1.000	0.005	0.004				
$\mathrm{WB}_2\text{-type}$	0.020	0.955		1.006	0.004	0.001				
		TcB_2	with diffe	rent struct	ures					
AlB ₂ -type	3.047	0.233		0.231	0.002	0.233				
ReB_2 -type	0.329	0.758		1.269	0.013	0.029				
OsB_2 -type	0.250	0.688	0.878	1.127	0.010	0.022				
MoB_2 -type	0.052	1.025		1.000	0.005	0.004				
WB ₂ -type	0.084	0.807		0.758	0.001	0.008				

While RuB₂ (ReB₂- and OsB₂-type) might be just a hard material, because they have lower shear moduli than the compounds mentioned above (Tables 1–5). All the elastically stable 4d transition-metal diborides in the considered structures are likely to resist more volume change than shape change, because the calculated values of B/G are larger than one (Tables 1–5).

It is well known that the elastic anisotropy is still important to understand the microcracks in solid state materials. A number of metrics, including the universal anisotropic index, percent anisotropy and shear anisotropic factors are listed in Table 6 for MoB₂ and TcB₂, which are studied due to their high elastic moduli and thermodynamic stability (seen in Tables 1–5). The universal anisotropic index A^U and percent anisotropies (A_B and A_G) have been defined in previous studies. According to the formulas of shear anisotropy factors A_1 ($A_1 = A_2$) and A_3 , there is nearly the same anisotropy in MoB₂- and WB₂-type structure, which might be due to their similar layer structures (Fig. 1). Moreover, there is less anisotropy in MoB₂- and WB₂-type structures than those in ReB₂-, OsB₂- and AlB₂-type ones. This indicates that the orderly stacking of the metal layers, boron planar layers and boron puckered sheets makes the structure tend to isotropy. From Table 6, it is interesting to note that it is almost isotropy in compressibility and in shear for MoB₂- and WB₂-type structures.

3.5. Trends of bonding properties

From Fig. 2(a), it is clear that the cell volume of ReB_2 -type MB_2 decreases from YB_2 and reaches minimum at RuB_2 , and then increases. This trend is similar to those of other structures. While the mass density increases gradually from YB_2 and reaches maximum at RuB_2 , and then decreases [Fig. 2(b)].

Fig. 2. (Color online) The calculated (a) volume V (ų), (b) mass density ρ (g/cm³), (c) bulk modulus B (GPa) and (d) formation enthalpy ΔH (eV) for all the considered MB₂ (M = Y to Ag).

The formation enthalpies for the considered structures are shown in Fig. 2(d). The general trend of formation enthalpy increases from YB₂ to AgB₂ (one exception for ZrB₂) in AlB₂-type structure. Similar trend is also observed in 4d transitional metal mononitrides.² However, the different trend of formation enthalpy is observed in ReB₂-type structure. The formation enthalpy decreases from YB₂ to TcB₂, and then increases gradually from TcB₂ to AgB₂ (the same trend is also found in OsB₂type structure), which can be explained by the calculated densities of states (DOS), seen the later section in detail. Moreover, the formation enthalpies of diborides with MoB₂- and WB₂-type are located in the middle of those with AlB₂- and of ReB₂type structures [Fig. 2(d)]. From Fig. 3, it is clear that there is a wide and deep valley, called as "pseudogap", which separates the bonding and antibonding states. For YB₂, the Fermi level is located at the left of the valley, indicating that not all the bonding states are occupied. From YB₂ to TcB₂, the bonding state is gradually occupied with the increase of valence electrons, which is in good agreement with the least formation enthalpy of TcB₂. For RuB₂, it can be seen from Fig. 3(f) that the valence electrons begin to occupy the antibonding states, which makes ReB₂type RuB₂ energetically unfavorable. The DOS for the other compounds are given in the Supplementary Materials (Fig. A.2). Due to the finite DOS at the Fermi energy level, all the considered structures in the 4d transitional metal diborides are metallic.

At zero temperature, a stable crystalline structure requires all phonon frequencies to be positive. Therefore, the phonon dispersion curves are calculated for the

Fig. 3. The calculated partial and total densities of states for MB_2 (M = Y-Ru) in ReB_2 -type structure. The vertical dotted line at zero indicates the Fermi energy level.

most stable MB_2 (M=Y to Ag) among the considered structures at ambient pressure and shown in Fig. 4. It is clearly seen that no imaginary phonon frequency is detected in the whole Brillouin zone for MB_2 (M=Y to Pd), implying their dynamical stability. While AgB_2 – ReB_2 is dynamically unstable, due to the imaginary frequencies in the Brillouin zone. Due to RhB_2 , PdB_2 and AgB_2 without any experiments, we should investigate their dynamic properties. For example, RhB_2 in all the considered structures, except the most stable RhB_2 – ReB_2 , have imaginary frequencies and thus are dynamically unstable, seen in Fig. A.3 in Supplementary Materials.

An obtained deeper knowledge concerning the underlying causes to the formation of planar or puckered MB₂ structure is, hence, important for future designing and development of new ultra-incompressible and superhard materials. The number of electrons transferred from the transition-metal atoms to neighboring boron

Fig. 4. The calculated phonon dispersions for MB₂ (M = Y to Ag) in the most stable structures.

atoms is listed in Table 7. From boron structure point of view, MoB₂- and WB₂type are the mix phases among AlB₂- and ReB₂-type structures. Therefore, the discussions followed are focused more on the AlB₂- and ReB₂-type structures. The electron transfers from metal to boron atoms, as discussed above, implying an ionic contribution to the M-B bonding. The number of electron transferred from metal to boron atoms decreases from Y to Ag, with the one exception for Rh. This similar behavior concerning the electron transferred from metal to boron atoms is also found in Ref. 9. When combining Table 7 with Fig. 2(d), there is a close correlation in the observed results. When more than (or equal to) one electrons is transferred to B atom for the compounds localized on the left of Mo in the AlB₂-type structure, the planar B structure is found to be the energetically preferred. This is confirmed by the synthesis of YB₂, ¹⁰ ZrB₂ (Ref. 11) and NbB₂ (Ref. 35) in AlB₂-type structure. While less than one electron is transferred to boron atom, the puckered B structure is favored. This is confirmed by the calculated formation enthalpy for MB_2 (M = Mo-Ag) and the synthesis of TcB_2 .⁴¹ The results mentioned above are in agreement with those from the viewpoint of the electro-negativities of metal and boron atoms. For MoB₂, there is no obvious preference since there is a very small total energy difference (0.14 eV) between the planar AlB₂-type and puckered ReB₂type structures. It is verified by that MoB₂ with MoB₂- or WB₂-type structures

Table 7. Changes in atomic charge as the results of electron transfer from one metal atom to two neighboring boron atoms.

	YB_2	ZrB_2	NbB_2	MoB_2	TcB_2	RuB_2	RhB_2	PdB_2	AgB_2
				F	ReB ₂ -type	;			
ΔB	-0.43	-0.42	-0.40	-0.37	-0.34	-0.33	-0.43	-0.31	-0.16
ΔM	0.87	0.83	0.80	0.73	0.68	0.65	0.86	0.62	0.32
				A	AlB ₂ -type)			
ΔB	-0.67	-0.57	-0.5	-0.47	-0.44	-0.43	-0.58	-0.22	-0.38
ΔM	1.34	1.15	1.06	0.95	0.89	0.86	1.16	0.45	0.76
				C	OsB_2 -type	;			
ΔB	-0.41	-0.42	-0.40	-0.35	-0.34	-0.32	-0.42	-0.29	-0.31
ΔM	0.81	0.85	0.81	0.71	0.67	0.63	0.84	0.57	0.63
				N	IoB ₂ -type	е			
ΔB_1	-0.63	-0.57	-0.55	-0.49	-0.46	-0.41	-0.52	-0.41	-0.41
ΔB_2	-0.45	-0.45	-0.41	-0.39	-0.34	-0.31	-0.31	-0.23	-0.32
ΔM	1.08	1.02	0.96	0.85	0.76	0.72	0.84	0.64	0.73
				V	VB ₂ -type)			
ΔB_1	-0.62	-0.58	-0.56	-0.50	-0.48	-0.44	-0.54	-0.43	-0.41
ΔB_2	-0.45	-0.45	-0.54	-0.48	-0.44	-0.40	-0.50	-0.38	-0.32
ΔB_3			-0.41	-0.36	-0.34	-0.31	-0.31	-0.23	
ΔM	1.08	1.02	0.96	0.85	0.80	0.73	0.83	0.64	0.73

have the smallest formation enthalpy of -1.47 eV (Tables 4 and 5), and their B structures consist of mix phase of planar and puckered sheets. This is confirmed by the synthesized MoB₂ in MoB₂-type structures.⁴⁴

To get more insight into the bonding mechanism of the different structures, the Mulliken population analysis and bond distances for these diborides are also shown in Fig. 5. The calculated B-B distance in the planar AlB₂-type is shorter than that in the puckered one [as shown in Fig. 5(a)], especially the TcB₂-AlB₂ has the smallest B-B distance about 1.71 Å. As can be seen further from Fig. 5(b), the B-B bond populations are all positive (bonding) and numerically rather large, and the planar AlB₂-type have higher B-B bond population values than that in ReB₂-type, exception for ZrB₂ and NbB₂ (both exhibit the same B–B bonding population values to different structure). The results mentioned above support the conclusion that the high degree of B-B covalent bonding exists in all the diborides with both ReB₂- and AlB₂-type, but which is not enough to guide in explaining the preferential structure formation. From Figs. 5(c) and 5(d), it is also clearly seen that two different bonding characteristics take place in M-B interactions for ReB₂-type structure, one is along the c-axis (denoted as M–B-I) and the other is in the chains (denoted as M–B-II). It is interesting to note that the bond populations of M-B-II (positive values) are larger than those of M-B-I (negative values) for all the diborides with ReB₂-type structure, indicating that M-B-II bonds are stronger than M–B-I bonds. This is in good agreement with the results of the electronic

Fig. 5. (Color online) The calculated (a) B–B bond distance (Å), (b) B–B population, (c) M–B bond distance (Å) and (d) M–B population.

localization function (ELF).⁸ It may be because the B atoms in the ReB₂-type structure do not have inversion symmetry sites, the hexagonal B layers necessarily become nonplanar sheets with B atoms strongly buckled toward the metal atoms that are interconnected by M–B bonds in the chains.⁸ For AlB₂-type structure, the M–B population is found to be almost zero for Rh and Ag, small and positive for MB₂ (M = Y, Zr and Nb) and negative (but also very small) for MoB₂, RuB₂ and PdB₂. The bond population analysis shown in Fig. 5(d) indicates that M–B bonds in the ReB₂-type structure are considerable stronger than those in AlB₂-type structure. It may be due to that the B atoms in the AlB₂-type structure are at sites with inversion symmetry, and the M atom has a higher coordination number (of twelve) than that (of eight) in the ReB₂-type structure. This is consistent with the calculated lower C_{33} values in AlB₂-type structure (compared with ReB₂-type one).

Finally, Poisson's ratio provides more information about the characteristics of bonding force than any of other elastic constants. The value of the Poisson's ratio indicates the degree of directionality of the covalent bonds. The value of the Poisson's ratio is small ($\nu=0.1$) for covalent materials, whereas for ionic materials a typical value of ν is about 0.25. From Tables 1–5, it is interesting to see that ${\rm ZrB_2-AlB_2}$ has lowest Poisson's ratio about 0.130 among all the diborides MB₂, which suggests that it has the strongest covalent bonding. The Poisson's ratio for both MoB₂ and TcB₂ in ReB₂-type structure is equal to 0.193 and which is the smallest value among diborides MB₂ in ReB₂-type structure, indicating that they are more directional for both MoB₂ and TcB₂ with ReB₂-type structure. It is worth

to stress that the covalent bonding is more dominant in these compounds, especially for ZrB₂–AlB₂. While the ionic contribution to the inter-atomic bonding takes more important role in other compounds with higher Poisson's ratio. We thus conclude that the chemical bonding in all the 4d transition-metal diborides is a complex mixture of metallic, ionic and covalent characteristics, and the structural stability of these materials relates mainly on the number of the electrons transferred from metal to boron atoms, boron structure and bond characters.

4. Conclusion

The structural stability, elastic, thermodynamic, dynamic and electronic properties of 4d transition-metal diborides MB₂ (M = Y to Ag) have been systematically studied by using the first principles calculations based on the DFT with GGA. The calculated formation enthalpy increases from YB₂ to AgB₂ in AlB₂-type structure (similar to MoB₂- and WB₂-type). While the formation enthalpy decreases from YB₂ to MoB₂, reaches minimum value to TcB₂, and then increases gradually in ReB₂-type structure (similar to OsB₂-type), which is consistent with the results of the calculated density of states. MoB₂ (ReB₂-, OsB₂-, MoB₂- and WB₂-type), TcB₂ (ReB₂- and OsB₂-type), ZrB₂ (AlB₂-type), NbB₂ (AlB₂-, MoB₂- and WB₂-type) are the candidates of superhard materials demonstrated by their large shear and bulk moduli, and high Debye temperatures. The calculated results indicate that the boron structure of diborides MB₂ is influenced by the electronegative of metals and the number of the electrons transferred from metal to boron atoms. Therefore, diborides MB₂ (M = Y, Zr and Nb) favor to induce planar structures, while the diborides TcB₂, RuB₂, RhB₂ and PdB₂ are prefer to puckered ones. For MoB₂, there is no obvious preference since there is a very small total energy difference (0.14 eV) between the planar AlB₂-type and puckered ReB₂-type structures. It is confirmed by that MoB₂ with MoB₂- or WB₂-type structures have the smallest formation enthalpy of -1.47 eV, and their B structures consist of mix phase of planar and puckered layers. The trend of formation enthalpy is explained by the DOS. The chemical bonding in the 4d transition-metal diborides is a complex mixture of metallic, ionic and covalent characteristics. The strong B-B covalent bonding are dominant for the diborides MB₂ in AlB₂-type structure, while the M-B (covalent and ionic) bonding is equal important as B-B bonding for the diborides MB₂ in ReB_2 -type one.

Acknowledgment

The authors thank the National Natural Science Foundation of China for financial support (Grant Nos. 21261013 and 61366008), the Natural Science Foundation of Inner Mongolia Autonomous Region (Grant No. 2011BS0104), the Key Science Research Project of Inner Mongolia University of Technology (Grant No. ZD201117). The authors wish to express thanks to Changchun Institute of Applied Chemistry (Chinese Academy Sciences) for the computer time.

A.1. Supplementary Materials

Fig. A.1. The calculated phonon dispersions for MoB₂ in the considered structures.

Fig. A.2. Total and partial DOS for 4d transition metal diborides with AlB₂ and ReB₂ structure at GGA level. The vertical dotted line at zero indicates the Fermi energy level.

Fig. A.2 (Continued)

Fig. A.3. The calculated phonon dispersions for RhB₂ in the considered structures.

References

- 1. Q. Gu, G. Krauss and W. Steurer, Adv. Mater. 20 (2008) 3620.
- E. J. Zhao, J. P. Wang, J. Meng and Z. J. Wu, Comput. Mater. Sci. 47 (2010) 1064.
- H. Y. Chung, M. B. Weinberger, J. B. Levine, A. Kavner, J. M. Yang, S. H. Tolbert and R. B. Kaner, Science 316 (2007) 436.
- E. J. Zhao, J. P. Wang, J. Meng and Z. J. Wu, J. Comput. Chem. 31 (2010) 1904.
- E. J. Zhao, J. Meng, Y. M. Ma and Z. J. Wu, Phys. Chem. Chem. Phys. 12 (2010) 13158.
- R. F. Zhang, S. Veprek and A. S. Argon, Appl. Phys. Lett. 91 (2007) 201914.
- M. Hebbache, L. Stuparević and D. Zivković, Solid State Commun. 139 (2006) 227.
- X.-Q. Chen, C. L. Fu, M. Krčmar and G. S. Painter, Phys. Rev. Lett. 100 (2008) 196403.
- 9. A. Pallas and K. Larsson, J. Phys. Chem. B 110 (2006) 5367.
- V. V. Novikov, A. V. Matovnikov, T. A. Chukina, A. A. Sidorov and E. A. Kul'chenkov, *Phys. Solid State* 49 (2007) 2034.
- 11. S. Ran, O. van der Biest and J. Vleugels, J. Am. Ceram. Soc. 93 (2010) 1586.
- S. Yin, D. He, C. Xu, W. Wang, H. Wang, L. Li, L. Zhang, F. Liu, P. Liu, Z. Wang,
 C. Meng and W. Zhu, High Pressure Res. 33 (2013) 409.
- 13. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13 (1976) 5188.
- 14. C. Musa, R. Orru, R. Licheri and G. Cao, *Physica C* **469** (2009) 1991.
- 15. J. K. Burdett, E. Canadell and G. J. Miller, J. Am. Chem. Soc. 108 (1986) 6561.
- 16. W. Chen and J. Z. Jiang, Solid State Commun. 150 (2010) 2093.
- 17. E. Deligoz, K. Colakoglu and Y. O. Ciftci, Solid State Commun. 150 (2010) 405.
- 18. H. Ihara, M. Hirabayashi and H. Nakagawa, Phys. Rev. B 16 (1977) 726.
- D. L. Johnson, B. N. Harmon and S. H. Liu, J. Chem. Phys. 73 (1980) 1898.
- X. H. Zhang, X. G. Luo, J. C. Han, J. P. Li and W. B. Han, Comput. Mater. Sci. 44 (2008) 411.
- M. G. Zhang, H. Wang, H. B. Wang, T. Cui and Y. M. Ma, J. Phys. Chem. C 114 (2010) 6722.

- S. Chiodo, H. J. Gotsis, N. Russo and E. Sicilia, Chem. Phys. Lett. 425 (2006) 311.
- 23. J. Wang and Y. J. Wang, J. Appl. Phys. 105 (2009) 083539.
- 24. F. Peng, W. M. Peng, H. Z. Fu and X. D. Yang, *Physica B* **404** (2009) 3363.
- A. Islam, F. Parvin, F. N. Islam, M. N. Islam, A. Islam and I. Tanaka, *Physica C* 466 (2007) 76.
- 26. H. B. Ozisik, K. Colakoglu and E. Deligoz, Comput. Mater. Sci. 51 (2012) 83.
- 27. L. K. Zhao, E. J. Zhao and Z. J. Wu, Acta Phys. Sin. 62 (2013) 046201.
- M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark and M. C. Payne, J. Phys.: Condens. Matter 14 (2002) 2717.
- 29. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.
- 30. D. Vanderbilt, Phys. Rev. B 41 (1990) 7892.
- 31. W. Voigt, Lehrbuch der Kristallphysik (Teubner, Leipzig, 1928).
- 32. A. Reuss and Z. Angew, Math. Mech. 9 (1929) 49.
- 33. R. Hill, Proc. Phys. Soc. A 65 (1952) 349.
- 34. S. Laplaca and B. Post, Acta Crystallogr. 15 (1962) 97.
- 35. H. Holleck, J. Nucl. Mater. 21 (1967) 14.
- 36. E. Rudy, F. Benesovsky and L. Toth, Z. Metallkd. 54 (1963) 345.
- Z. J. Wu, E. J. Zhao, H. P. Xiang, X. F. Hao, X. J. Liu and J. Meng, *Phys. Rev. B* 76 (2007) 054115.
- N. L. Okamoto, M. Kusakari, K. Tanaka, H. Inui and S. Otani, Acta Mater. 58 (2010)
 76.
- 39. S. F. Pugh, Philos. Mag. 45 (1954) 823.
- 40. W. Trzebiatowski and J. Rudzinski, J. Alloys Less-Common Met. 6 (1964) 244.
- 41. D. M. Teter, MRS Bull. 23 (1998) 22.
- 42. X. Q. Chen, H. Y. Niu, D. Z. Li and Y. Y. Li, Intermetallics 19 (2011) 1275.
- 43. B. Aronsson, Acta Chem. Scand. 17 (1963) 2036.
- 44. I. Higashi, Y. Takahashi and S. Okada, J. Alloys Less-common Met. 123 (1986) 277.
- 45. J. Feng, B. Xiao, R. Zhou, W. Pan and D. R. Clarke, Acta Mater. 60 (2012) 3380.
- P. Ravindran, L. Fast, P. V. Korzhavyi, B. Johansson, J. Wills and O. Eriksson, J. Appl. Phys. 84 (1998) 4891.
- R. Rajeswarapalanichamy, G. S. Priyanga, A. Murugan, M. Santhosh, A. J. Cinthia,
 S. Kanagaprabha and K. Iyakutti, J. Alloys Compd. 580 (2013) 332.