Inteligência Artificial para Robótica Móvel CT-213

Instituto Tecnológico de Aeronáutica

Relatório do Laboratório 4 - Otimização com Métodos

Baseados em População

Leonardo Peres Dias

1 de maio de 2025

Instituto Tecnológico de Aeronáutica (ITA)

Sumário

1	Breve explicação em alto nível da implementação			3
	1.1	Partic	le Swarm Optimization	3
2	Figuras comprovando funcionamento do código			4
	2.1	Teste	do Particle Swarm Optimization	4
2.2 Otimização do cont		Otimi	zação do controlador do robô seguidor de linha	5
		2.2.1	Histórico de otimização	5
		2.2.2	Melhor trajetória obtida durante a otimização	6
3	Disc	cussão	sobre o observado durante o processo de otimização	6

1 Breve explicação em alto nível da implementação

1.1 Particle Swarm Optimization

A implementação do algoritmo de PSO foi dividida em duas principais classes: Particle, que representa uma partícula individual do enxame, e ParticleSwarmOptimization, que gerencia o comportamento coletivo do enxame e executa o algoritmo.

Classe Particle

Cada instância da classe Particle corresponde a uma partícula que se movimenta dentro do espaço de busca definido pelos limites lower_bound e upper_bound. No momento da criação, a posição x é inicializada com valores aleatórios dentro desses limites. A velocidade v também é inicializada com valores aleatórios, porém dentro do intervalo simétrico definido pelo vetor $\Delta = u_b - l_b$.

A partícula mantém ainda duas variáveis adicionais: a melhor posição já visitada pela partícula (bi) e o valor da função objetivo nessa posição (bi_fitness). Inicialmente, bi é a posição de origem da partícula e bi_fitness é definido como $-\infty$ para garantir que qualquer valor avaliado inicialmente o substitua.

Classe ParticleSwarmOptimization

A classe ParticleSwarmOptimization gerencia a população de partículas e implementa as etapas do algoritmo PSO. Recebe como entrada os hiperparâmetros do algoritmo (inertia_weight, cognitive_parameter, social_parameter) e os limites do espaço de busca. No construtor, é feito o instanciamento de todas as partículas, e os atributos bg e bg_fitness são inicializados para armazenar, respectivamente, a melhor posição global e seu valor associado.

O método get_position_to_evaluate retorna sequencialmente a posição de cada partícula para ser avaliada externamente. Após a avaliação, o método notify_evaluation é chamado, atualizando a melhor posição pessoal da partícula e, se for o caso, também a melhor posição global do enxame.

Quando todas as partículas da geração atual tiverem sido avaliadas, o método advance_generation é executado. Ele realiza a atualização das velocidades de todas

as partículas utilizando a equação padrão do PSO:

$$v \leftarrow wv + \phi_p r_p(b_i - x) + \phi_g r_g(b_g - x)$$

onde w é o fator de inércia, ϕ_p e ϕ_g são os parâmetros cognitivo e social, e r_p e r_g são variáveis aleatórias uniformemente distribuídas em [0,1]. Após o cálculo da nova velocidade, ela é limitada ao intervalo máximo admissível (vmax), a nova posição da partícula é calculada $x_i = x_i + v_i$ e restringida aos limites do espaço de busca.

2 Figuras comprovando funcionamento do código

2.1 Teste do Particle Swarm Optimization

Figura 1: Evolução do melhor fitness global ao longo das gerações.

Figura 2: Evolução do fitness das partículas ao longo das gerações.

Figura 3: Evolução dos parâmetros.

2.2 Otimização do controlador do robô seguidor de linha

2.2.1 Histórico de otimização

Figura 4: Evolução do melhor fitness global ao longo das gerações.

Figura 5: Evolução do fitness das partículas ao longo das gerações.

Figura 6: Evolução dos parâmetros.

2.2.2 Melhor trajetória obtida durante a otimização

Figura 7: Melhor trajetória obtida durante a otimização.

3 Discussão sobre o observado durante o processo de otimização

Durante o processo de otimização, observou-se que o algoritmo PSO não convergiu totalmente para o máximo global, porém conseguiu encontrar um conjunto de parâmetros que nos fornece um bom desempenho do seguidor de linha. A partir da análise das figuras apresentadas, é possível notar que a qualidade de cada uma das partículas não se estabilizou como se observa no test_pso, mas a melhor qualidade global sim. Nesse sentido, nota-se que para o problema do seguidor de linha, quando se para o treinamento, não temos ainda todas as partículas posicionadas em um máximo global.