AF01169

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions of claims in the application:

Listing of Claims:

1. (Currently Amended) An [A] architecture that facilitates a reference voltage in a multi-bit memory, comprising:

a multi-bit memory core including a plurality of data cells for storing data;

first and second reference arrays of a plurality of multi-bit reference cells, the first and second reference arrays fabricated on the memory core; and

- a first bit value of a first reference cell of the first reference array averaged with a second bit value of a second reference cell of the second reference array to arrive at the reference voltage.
- 2. (Original) The architecture of claim 1, the core further comprising a sector of multi-bit data cells organized in rows and columns with associated wordlines (WLn) attached to the multi-bit data cells in a row and with associated bitlines (BLn) attached to the multi-bit data cells in a column, the first and second reference cells forming a multi-bit reference pair that is programmed and erased with the multi-bit data cells during programming and erase cycles.
- 3. (Original) The architecture of claim 2, the multi-bit reference pair is associated with a word in a wordline (WL0), the multi-bit reference pair utilized during reading of bits of the word.
- 4. (Original) The architecture of claim 2, the multi-bit reference pair is associated with multi-bit data cells in a wordline (WL0), the multi-bit reference pair utilized during reading of bits in the wordline (WL0).
- 5. (Original) The architecture of claim 2, further comprising a phurality of the multi-bit reference pairs associated with and attached to a corresponding wordline (WL0), the associated multi-bit reference pair utilized during reading of bits in the corresponding wordline (WL0).

AF01169

- 6. (Original) The architecture of claim 2, the multi-bit reference pair is associated with multi-bit data cells in the sector, the multi-bit reference pair utilized during reading of bits in the sector
- 7. (Original) The architecture of claim 1, the memory core including a plurality of data sectors that are accessible by the first and second reference arrays, the first and second reference arrays located centrally of the plurality of data sectors.
- 8. (Original) An integrated circuit comprising the memory of claim 1.
- 9. (Original) A computer comprising the memory of claim 1.
- 10. (Original) An electronic device comprising the memory of claim 1.
- 11. (Original) The architecture of claim 1, the first and second reference arrays including corresponding reference cells that are interweaved among the data cells.
- 12. (Original) The architecture of claim 1, the memory core further comprising a plurality of data sectors, such that each data sector is associated with at least one of the first reference array and the second reference array of multi-bit reference cells.
- 13. (Currently Amended) An [A]architecture that facilitates a reference voltage in a multi-bit memory, comprising:
- a multi-bit memory core for storing data, the memory core including two groups of data sectors;

first and second reference arrays of a plurality of multi-bit reference cells, the first and second reference arrays fabricated on the memory core interstitial to the groups of data sectors; and

a first bit value of a first reference cell of the first reference array and a second bit value of a second reference cell of the second reference array forming a reference pair whose respective bit values are averaged to arrive at the reference voltage.

- 14. (Original) The architecture of claim 13, the groups of data sectors read in an interleaved manner with a selected reference pair.
- 15. (Original) The architecture of claim 13, the first and second reference arrays precharged before being averaged.
- 16. (Original) The architecture of claim 13, further comprising a redundancy array located at least one of proximate and adjacent to the groups of data sectors.
- 17. (Original) A method for providing a reference voltage in a multi-bit memory, comprising: receiving a multi-bit memory core for storing data;

providing first and second reference arrays of a plurality of multi-bit reference cells, the first and second reference arrays fabricated on the memory core; and

averaging a first bit value of a first reference cell of the first reference array with a second bit value of a second reference cell of the second reference array to arrive at the reference voltage.

- 18. (Original) The method of claim 17, the core further comprising a sector of multi-bit data cells organized in rows and columns with associated wordlines (WLn) attached to the multi-bit data cells in a row and with associated bitlines (BLn) attached to the multi-bit data cells in a column, the first and second reference cells forming a multi-bit reference pair that is programmed and erased with the multi-bit data cells during programming and erase cycles.
- 19. (Original) The method of claim 18, the multi-bit reference pair is associated with a word in a wordline (WLO), the multi-bit reference pair utilized during reading of bits in the word.
- 20. (Original) The method of claim 18, the multi-bit reference pair is associated with multi-bit data cells in a wordline (WL0), the multi-bit reference pair utilized during reading of bits in the wordline (WL0).

AF01169

- 21. (Original) The method of claim 18, further comprising a plurality of the multi-bit reference pairs associated with and attached to a corresponding wordline (WLO), the associated multi-bit reference pair utilized during reading of bits in the corresponding wordline (WLO).
- 22. (Original) The method of claim 18, the multi-bit reference pair is associated with multi-bit data cells in the sector, the multi-bit reference pair utilized during reading of bits in the sector.
- 23. (Original) The method of claim 17, the memory core including a plurality of data sectors that are accessible by the first and second reference arrays, the first and second reference arrays located centrally of the plurality of data sectors.
- 24. (Original) A system for providing a reference voltage in a multi-bit memory, comprising: means for providing a multi-bit memory core for storing data;

means for providing first and second reference arrays of a plurality of multi-bit reference cells, the first and second reference arrays fabricated on the memory core; and

means for averaging a first bit value of a first reference cell of the first reference array with a second bit value of a second reference cell of the second reference array to arrive at the reference voltage.

- 25. (Currently Amended) The architecture system of claim 24, the first and second reference arrays including corresponding reference cells that are interweaved among the data cells.
- 26. (Currently Amended) The architecture system of claim 24, the memory core further comprising a plurality of data sectors, such that each data sector is associated with at least one of the first reference array and the second reference array of multi-bit reference cells.
- 27. (Currently Amended) The architecture system of claim 24, further comprising a redundancy array located at least one of proximate and adjacent to the groups of data sectors.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.