Void Reduction in Self-Healing Swarms (Using proximity detection)

Neil Eliot¹, David Kendall¹, Alun Moon¹, Michael Brockway¹, Martyn Amos¹

> ¹Department of Computer and Information Sciences University of Northumbria

> > ALife, 2019

Video

Figure: Simulator

https://www.youtube.com/watch?v=iyMSpj10elk

Introduction

- 1 How did we do that?
- 2 Set the Ground Rules!
 - Swarm Rules
- 3 Communications and/or Sensing
 - Communications
 - Sensing
- 4 Void Reduction
 - Model
 - Local Effect
 - Global Effect
 - Simulated Results

Swarm Rules

- Swarms consist of many agents (mobile robots or drones) that interact according to a simple set of rules.
- We consider swarms of agents that:
 - are capable of detecting their neighbours (proximity detection).
 - do not require any another form of communication.
- Swarms can be made fault tolerant (resilient to agent loss).

Why no communications?

- Communication propagation protocol demands computing overhead.
 - $n_1 \rightarrow n_3$
 - \bullet $n_1 \rightarrow n_2$
 - $n_3 \rightarrow n_2$ (decision!)
- Message propagation takes time which limits swarm size.

Figure: Swarm Communications

Proximity Sensing

- No communication is necessary apart from proximity detection.
- Arbitrary sized swarms are possible.
- Agent attributes include various ranges as shown in figure.

Figure: Ranges: S_b = sensing, O_b = obstacles avoidance, R_b = repulsion, C_b = cohesion.

Agent Movement

 Movement of agent b is computed as the weighted sum of 4 vectors, as shown in equation 1

$$v(b) = k_c v_c(b) + k_r v_r(b) + k_d v_d(b) + k_o v_o(b)$$
 (1)

- $v_c(b)$: cohesion term ensures agents remain part of the swarm.
- $v_r(b)$: repulsion term ensures agents do not collide.
- $v_d(b)$: destination vector for goal based swarms.
- $v_o(b)$: obstacle avoidance vector.
- Numerical weights k_c , k_r , k_d , k_o to allow tuning of relative effects.

The Swarm

Figure: Stable Structures

Figure: The Swarm - (Simulator)

Perimeter Detection

NOTE

Perimeter detection is used as part of the *void reduction* process. This will be discussed later.

- Perimeter detection allows for directional coordination with reduced resource usage.
 - 'Internal' agents don't need to use their GPS.
- Reduces computational overhead in agents.

Model

What is a Perimeter?

Figure: Internal (red) and external (green) perimeters

Perimeter Detection (Concave)

Figure: Concave gap (Void Reduction)

Perimeter Detection (Convex)

Figure: Convex gap

Void Reduction Movement

Figure: Concave detection

As part of the perimeter detection a pair $G_b = \{n_1, n_2\}$ of agents is generated. These are the first two agents identified as creating a 'gap' in agent b's neighbours. Equation 2 calculates the centroid of the identified 'gap'.

$$D_{pos}(b) = \frac{1}{2}(n_1 + n_2) \qquad (2)$$

 $(n_1, n_2 \text{ label agents and also denote their position vectors.})$

Agent movement

Figure: Initial positions

Figure: Agent movement

Global Effect

Agent movement

Figure: Initial positions

Figure: Agent movement

Scenario

Figure: Oil Slick Encapsulation

Summary

- Void reduction has a local effect creating a global emergent behaviour that improves the shape and structure of a swarm.
- Void reduction removes anomalies on internal and external perimeters.
- Void reduction can be applied to both static swarms and directional swarms.

Thank You

THANK YOU! QUESTIONS?

Agent Movement

Here are the equations defining the movement vectors for cohesion and repulsion.

b, b' denote agents and also (inside the \sum s), their position vectors. \mathcal{R}_b is the set of agents within agent b's repulsion range; \mathcal{C}_b is the set of agents within its cohesion range.

$$v_r(b) = \frac{1}{|\mathcal{R}_b|} \left(\sum_{b' \in \mathcal{R}_b} \left(1 - \frac{|b'|}{R_b} \right) b' \right)$$
(3)

$$v_c(b) = \frac{-1}{|\mathcal{C}_b|} \left(\sum_{b' \in \mathcal{C}_b} b' \right) \tag{4}$$

Agent Movement

$$v_d(b) = d (5)$$

d is a constant vector which points to a destination.

$$v_o(b) = O_b \left(\sum_{o \in \mathcal{O}_b} \hat{o} \right)^{\wedge} \tag{6}$$

 O_b is b's detection detection range; O_b is the set of obstacles within this range.

o denotes an obstacle and (within the \sum) its position vector. The caret $\hat{}$ denotes normalisation of a vector to unit length.