Activité : Si on utilise la masse c'est pénible

On s'intéresse à l'équation de réaction d'une synthèse de l'eau :

$$2H_2 + O_2 \longrightarrow 2H_2O$$

Résolution en totale autonomie :

Quelle est la masse de dioxygène et de dihydrogène qu'il faut utiliser pour produire 100g d'eau sans qu'il ne reste aucun réactifs à la fin de la réaction ?

Résolution guidée

- 1) Calculer la masse de chacune des 3 molécules concernées (H_2, O_2, H_2O)
- 2) Déterminer le nombre N_{H_2O} de molécules d'eau dans 100g d'eau
- 3) A partir de l'équation de la réaction, déterminer le nombre N_{H_2} de molécules de dihydrogène et le nombre N_{O_2} de molécules de dioxygène nécessaires pour former N_{H_2O} molécules d'eau.
- 4) En déduire la masse de dioxygène et de dihydrogène à utiliser pour former 100g d'eau.
- 5) Vérifier votre résultat en utilisant le principe de conservation de la masse.

Données

Masse de l'atome d'hydrogène : $m_H = 1.7 \times 10^{-27} \ kg$ Masse de l'atome d'hydrogène : $m_O = 2.7 \times 10^{-26} \ kg$

Documents

Comment trouver la masse d'une molécule a partir de sa formule brute?

Il suffit de faire la somme de la masse de chaque atome

Ex: $m_{NH_3} = m_N + 3 \times m_H$

Application numérique : $m_{NH_3} = 2.34 \times 10^{-26} + 3 \times 1.7 \times 10^{-27} = 2.85 \times 10^{-26}~kg$

La masse de la molécule d'ammoniac (m_{NH_3}) est égale à la masse de l'atome d'azote (m_N) plus 3 fois la masse de l'atome d'hydrogène (m_H)

Comment trouver le nombre d'entités chimiques dans une certaine masse d'échantillon ?

Il suffit de diviser la masse totale de l'échantillon par la masse d'une seule entité

Ex: Si on a une masse totale $m_{tot}=300g$ d'ammoniac alors on note N_{NH_3} le nombre de molécules d'ammoniac dans cet échantillon et on le calcul de la manière suivante :

$$N_{NH_3} = \frac{m_{tot}}{m_{NH_3}} = \frac{0,300}{2,85 \times 10^{-26}} \approx 1,05 \times 10^{25}$$

Comment exploiter une équation de réaction?

Par exemple prenons l'équation de réaction de la synthèse de l'ammoniac :

$$N_2 + 3H_2 \longrightarrow 2NH_3$$

Cela signifie que pour former 2 molécules de NH_3 il faut nécessairement 1 molécule de N_2 et 3 molécules de H_2

Le principe de conservation de la masse

Il stipule que dans une réaction chimique ordinaire, la masse totale des réactifs est égale à la masse totale des produits. Autrement dit, la masse n'est ni créée ni détruite au cours d'une réaction chimique.