Homework 1 - Topics in Topology

February 28, 2022

Please return before March 17, 2022 at 1pm.

1. Identify the closed, orientable, connected surface determined by the following Kirby diagram:

- 2. Let $H_g := \lg_g(D^2 \times S^1)$ be the handlebody of genus g, and let $\Sigma_g := \partial H_g$ the genus g surface.
 - (a) Show that the union of two solid tori glued along their common boundary $\Sigma_1 = T^2$ with the identity map yields $S^2 \times S^1$. That is, $H_1 \cup_{id} (-H_1) \cong S^2 \times S^1$.
 - (b) Draw a planar Heegaard diagram for the previous splitting.
- 3. Show that the following manifolds are diffeomorphic:
 - (a) $L(0,1) \cong S^2 \times S^1$
 - (b) $L(2,2021) \cong \mathbb{RP}^3$
 - (c) $L(1,2022) \cong S^3$
- 4. Use the isotopy extension lemma and the argument used in the lectures to show that the (oriented) diffeomorphism type of $M_f := H_g \cup_f (-H_g)$ only depends on the isotopy class of f (you are allowed to omit any consideration about the orientation).
- 5. Recall that for a topological space X with a choice of basepoint $x_0 \in X$, $\pi_n(X, x_0)$ was defined as the set of basepoint-preserving homotopy classes of basepoint-preserving maps $(S^n, s_0) \to (X, x_0)$, where $s_0 \in S^n$ is some fixed point.
 - (a) For a topological space X, show that there is a bijection between $\pi_0(X)$ and the set of path-components of X.
 - (b) Write Diffeo⁺(Σ) for the set of orientation-preserving diffeomorphisms $\Sigma \to \Sigma$ of an oriented surface Σ . It is possible to endow Diffeo⁺(Σ) with a topology (no matter how). Show that there is a bijection between $MCG(\Sigma) \cong \pi_0(\text{Diffeo}^+(\Sigma))$.
- 6. The goal of this exercise is to prove that the only 3-manifold with a genus 0 Heegaard splitting is S^3 (Theorem 1.4 in Saveliev).
 - (a) Prove the Alexander extension lemma: any homeomorphism $S^2 \to S^2$ can be extended to a homeomorphism $D^3 \to D^3$. Use the formula $F(t\mathbf{r}) = tf(\mathbf{r})$ as in the book. Why is it continuous? Why is it a homeomorphism?

- (b) Make precise the last sentence of the proof of the theorem: This homeomorphism can be extended to a homeomorphism from M onto S^3 with the help of Alexander's lemma.
- 7. The following exercise is about the notion of "glueing".
 - (a) Explain what it means to glue together two topological spaces and be very precise about it (no hand waving!)
 - (b) What are the new open sets after gluing?
 - (c) Provide a relevant example of your construction.