FRST302: Forest Genetics

Lecture 1.2: DNA Structure

Lecture 1 - Recap

Mendel's laws and Classical Genetics

Mechanisms of Mendel's laws

From discrete particles to continuous variation

Chromosomes

Outline for Today

Chromosomes and Their Structure Linkage & Genetic Mapping DNA

Chromosomes

Chromsosomes are the "particles of inheritence", but what are they?

SEM of barley chromosomes in metaphase: Schroeder-Reiter and Wanne 2013 SEM for the Life Sciences

Chromosome Structure

Chromosome Structure

Centromeres play a structural in meiosis

^aModified from *Cuacos et al 2015* Front. Plant Sci.

Chromosome Types

Chromosome Numbers

The number of sets of homologous chromosome organisms possess varies widely!

Humans 23

Maize 10

Banana 11

Loblolly pine 12

There is no known correlation between organisms complexity and chromosome count

Chromosome Numbers

The number of sets of homologous chromosome organisms possess varies widely!

Humans 23

Maize 10

Banana 11

Loblolly pine 12

There is no known correlation between organisms complexity and chromosome count

Douglas-fir has 13 chromosomes, but recently underwent a chromsome fission

FIGURE 1. Ialograms of six species of the genus Pseudotsuga. Cross marks are secondary constrictions. Idiograms of P. menziesii and P. wilsoniana from Thomas and Ching (1968). Idiogram of P. macrocarpa from Christiansen (1963).

^aldiogram from Doerksen and Ching 1972 Forest Science

Chromosomes - Ploidy

Ploidy refers to the number of homologous chromosome copies an organism possesses

Differences in ploidy are extremely common in plants.

Chromosomes - Ploidy

Ploidy refers to the number of homologous chromosome copies an organism possesses

Differences in ploidy are extremely common in plants.

Pasta wheat is tetraploid (4n) and bread wheat is hexapoid (6n)!

Sex Chromosomes

In many organisms, specific chromosomes or chromosomal regions are linked to the expression of sex-specific traits.

Silene latifolia, for example, has an XY sex-chromosome system

Mendel's Laws

Refresher...

The law of segregation: each individual possesses a pair of particles for any particular trait and each parent passes one of these randomly to its offspring

Mendel's Laws

Refresher...

The law of segregation: each individual possesses a pair of particles for any particular trait and each parent passes one of these randomly to its offspring

The law of dominance: for some traits, the presence of one kind of particle masks the presence of another. Mendel referred to the **dominant** particle as masking the effects of the **recessive** particle

Mendel's Laws

Refresher...

The law of segregation: each individual possesses a pair of particles for any particular trait and each parent passes one of these randomly to its offspring

The law of dominance: for some traits, the presence of one kind of particle masks the presence of another. Mendel referred to the **dominant** particle as masking the effects of the **recessive** particle

The law of independant assortment: when two individuals differ in more than two pairs of traits (e.g. smooth v. wrinkly and green v. yellow), the inheritance of one pair of traits is independent of another

In the last lecture, we restricted ourselves to looking at the expected ratios of genotypes for a single trait in a given cross, but there's no reason we need to do that

Let's now follow the inheritence of two traits instead and stick with smooth ν . wrinkly and yellow ν . green

In the last lecture, we restricted ourselves to looking at the expected ratios of genotypes for a single trait in a given cross, but there's no reason we need to do that

Let's now follow the inheritence of two traits instead and stick with smooth ν . wrinkly and yellow ν . green

Let's cross "true breeding" peas that were smooth and yellow with peas that are wrinkly and green

Parental Generation:

X

Genotypes: YYWW x yyww

Let's cross "true breeding" peas that were smooth and yellow with peas that are wrinkly and green

If we filled out the Punnett square for this cross, what would the expected ratio of phenotypic combinations be?

		YyWw			
		YW	Yw	yW	yw
YyWw	YW				
	Yw				
	yW				
	yw				

In what proportions would we expect to see the different phenotypic combinations?

According to the Law of Independent Assortment, we would expect:

Results of a Dihybrid Cross in Sweetpeas

In the early 1900s, Bateson and Saunders conducted a series of experiments using sweet peas (*Lathyrus odoratus* - not garden peas like Mendel)

Rather than seed colour and texture, they were examining flower colour and the shape of pollen grains

They conducted a dihybrid cross and got the following results:

Phenotype	Observed
Purple, long	1528
Purple, round	106
Red, long	117
Red, round	381
Total	2132

Results of a Diybrid Cross in Sweetpeas

With 2132 plants and an expected phenotypic proportions of 9:3:3:1, we can quantify how strange the deviations from the expectations are

Phenotype	Expected	Observed	
Purple, long	1199	1528	
Purple, round	400	106	
Red, long	400	117	
Red, round	133	381	
Total	2132	2132	

Results from: Bateson, W., Saunders et al. Experimental studies in the physiology of heredity. Reports to the Evolution Committee of the Royal Society 2, 1–55, 80–99 (1905)

Results of a Diybrid Cross in Sweetpeas

With 2132 plants and an expected phenotypic proportions of 9:3:3:1, we can quantify how strange the deviations from the expectations are

Phenotype	Expected	Observed	$(ObsExp.)^2/Exp.$
Purple, long	1199	1528	90.3
Purple, round	400	106	216.1
Red, long	400	117	202.2
Red, round	133	381	462.4
Total	2132	2132	$\chi^2 = 969.0$

This χ^2 test gives a p-value < 0.0001

Results from: Bateson, W., Saunders et al. Experimental studies in the physiology of heredity. Reports to the Evolution Committee of the Royal Society 2, 1–55, 80–99 (1905)

Q: Why would we see deviations from the Law of Independent Assortment?

Q: Why would we see deviations from the Law of Independent Assortment?

A: Linkage!

Genetic Linkage

 The law of the independent assortment was derived based on genes located on different chromosomes. Alleles of these genes segregate independently during meiosis

Figure from: Brown 2002

Genetic Linkage

- The law of the independent assortment was derived based on genes located on different chromosomes. Alleles of these genes segregate independently during meiosis
- Genes located on the same chromosome may be inherited together during meiosis

Figure from: Brown 2002

Genetic Linkage

- The law of the independent assortment was derived based on genes located on different chromosomes. Alleles of these genes segregate independently during meiosis
- Genes located on the same chromosome may be inherited together during meiosis
- But this is inadequate to explain the emergence of new trait combinations in the sweet peas

Figure from: Brown 2002

Crossing Over

- In the 1910s, Thomas Hunt Morgan developed genetic experiments with the fruit fly *Drosophila melanogaster*
- Morgan and colleagues observed cases where expected ratios for linked factors broke down (just like with the sweet peas)
- They proposed a process of "crossing-over" where alleles may swap onto alternate chromosome pairs

Fig. 24.—Diagram to represent crossing over. At the level where the black and the white rod cross in A, they fuse and unite as shown in D. The details of the crossing over are shown in B and C.

Image from Morgan, T.H., Sturtevant, A.H., and Bridges, C.B. (1915). The Mechanism of Mendelian heredity.

Linkage in Sweet Peas

Phenotype	Observed
Purple, long	1528
Purple, round	106
Red, long	117
Red, round	381
Total	2132

Which of the following do you think is the closest approximation of the arrangement of genes in the sweetpea?

Crossing Over

Fig. 24.—Diagram to represent crossing over. At the level where the black and the white rod cross in A, they fuse and unite as shown in D. The details of the crossing over are shown in B and C.

Image from Morgan, T.H., Sturtevant, A.H., and Bridges, C.B. (1915). The Mechanism of Mendelian heredity.

Measuring Genetic Distance

Number of recombinant genotypes =

If we assume that the purple/red and long/round genes are on the same chromosome, we can calculate the genetic distance between them

Phenotype	Observed
Purple, long	1528
Purple, round	106
Red, long	117
Red, round	381
Total	2132

Measuring Genetic Distance

If we assume that the purple/red and long/round genes are on the same chromosome, we can calculate the genetic distance between them

${\hbox{Number of recombinant genotypes}} =$	106 + 117
Recombination fraction $= 0.105$	

We usually express these recombination units as: $100 \times RecombinationFraction = 10.5cM$

Phenotype	Observed
Purple, long	1528
Purple, round	106
Red, long	117
Red, round	381
Total	2132

Where *cM* stands for centimorgans: the expected number of recombination events observed in 100 meioses

Measuring Genetic Distance

If we assume that the purple/red and long/round genes are on the same chromosome, we can calculate the genetic distance between them

Number of recombinant genotypes = 106 + 117Recombination fraction = 0.105

We usually express these recombination units as: $100 \times RecombinationFraction = 10.5cM$

Phenotype	Observed
Purple, long	1528
Purple, round	106
Red, long	117
Red, round	381
Total	2132

Where *cM* stands for centimorgans: the expected — number of recombination events observed in 100 meioses

What is the maximum genetic distance possible between two markers?

Genetic Mapping

- The frequency of "crossed-over" trait combinations gave Morgan and colleagues the ability to identify the order of genes on the D. melanogaster chromosomes
- More amazingly, they had the insight that the relative frequency of cross-overs could be used to quantify the distance between genes along the chromosomes

Morgan 1922 23,

Douglas-fir Genetic Map

These principles are the basis of **genetic mapping**, a technique that is still widely used today

Though we now use molecular markers rather than traits

Questions?

Questions? Let's take a short break

Chromosomes

Chromsosomes are the "particles of inheritence", but what are they made of?

SEM of barley chromosomes in metaphase: Schroeder-Reiter and Wanne 2013 SEM for the Life Sciences

A Timeline of Some Discoveries

- 1865 Mendel postulates laws of inheritance
- 1869 DNA Isolated though it was unclear what its relevence was unclear
- 1882 Discovery of the fibrous network of "chromatin" (*stainable material*) and chromosomes within nuclei
- 1902-6 Sutton-Boveri chromosome theory the segregation of chromosomes during meiosis matches the segregation pattern of Mendel's laws
 - 1915 Morgan demonstrated that chromosomes carry genes, and also discovered genetic linkage^{won Nobel Prize in 1933}

A Timeline of Some Discoveries

- 1915 Morgan and Sturtevant constructed their genetic map for *D. melanogaster*
- 1932 Barbara McClintock confirms that genes are exchanged during crossing-over
- 1940s DNA is determined to be the material within chromosomes that carry heritable information
 - 1950 The composition of DNA is determined including Chargaff's rulesf

Photo 51

Photo 51

This photograph, captured by Rosalind Franklin, led directly to the discovery of the structure of $\ensuremath{\mathsf{DNA}}$

1952-1953 - The Structure of DNA is Determined

- A molecule of DNA has two strands that form a double helix shape structure, like a twisted ladder
- Each step on the "ladder" is made up of a pair of nitrogenous bases, that are designated with the letters:

A - adenine

C – cytosine

G – guanine

T - thimine

DNA Structure

Question for Next Time

Here's a comparison of a genetic map in yeast *Saccharomyces cerevisiae* with an estimate of the physical map (where the genes sit on the DNA itself)

Why would the distances on the genetic map and the physical map differ?