FLOYD-WARSHALL ALGORITAMA OBLIKOVANJE I ANALIZA ALGORITAMA

Martin Vlahović

Matematički odsjek Prirodoslovno-matematički fakultet Sveučilište u Zagrebu

30. PROSINCA 2021.

OPIS PROBLEMA

- Zadan je težinski graf G=(V,E) s vrhovima V. Enumerirajmo vrhove grafa: $V=\{v_1,v_2,\ldots,v_{|V|}\}.$
- Zadane su težine $w(u,v) \ge 0$ za svaki par bridova $u,v \in V$. Ako vrhovi u i v nisu povezani u grafu, koristimo $w(u,v) = +\infty$.
- Želimo odrediti **najkraću duljinu puta između svih parova vrhova u grafu**, gdje duljinu puta od vrha u od v preko $v_{i_1}, \ldots, v_{i_n} \in V$:

$$u \to v_{i_1} \to v_{i_2} \cdots \to v_{i_n} \to v,$$

definiramo kao sumu težina pripadnih bridova:

$$w(u, v_{i_1}) + w(v_{i_1}, v_{i_2}) + \cdots + w(v_{i_n}, v).$$

■ Pretpostavljamo da graf *G* nema **negativnih ciklusa**, inače problem nema dobro definirano rješenje.

■ Pretpostavimo da poznajemo najkraće duljine puteva za sve parove vrhova $u,v\in V$, ali uz ograničenje da se u putevima smiju korisiti samo vrhovi $v_1,v_2,\ldots,v_k\in V$, gdje je k<|V| neki fiksni broj. Označimo duljine tih puteva s $d_k(u,v)$.

■ Pitamo se, možemo li poznavanjem $d_k(u,v)$, pronaći $d_{k+1}(u,v)$, za sve parove $u,v\in V$, tj. možemo li pronaći duljine najkraćih puteva za sve parove vrhova $u,v\in V$, gdje u putevima koristimo vrhove v_1,v_2,\ldots,v_{k+1} ?

Ako riješimo taj problem, onda jednostavnim iteriranjem postupka od k=1 do k=|V| dolazimo do rješenja problema: poznavanje $d_{|V|}(u,v)$, za sve parove $u,v\in V$.

- Pretpostavimo da poznajemo $d_k(u,v)$, za sve parove $u,v\in V$ i k<|V|. Uzmimo i fiksirajmo proizvoljni par vrhova $u,v\in V$. Žeimo izračunati $d_{k+1}(u,v)$.
- Ako put najkraće duljine od u do v koristeći vrhove v_1, \ldots, v_{k+1} ne prolazi kroz vrh v_{k+1} , tada je očito: $d_{k+1}(u,v) = d_k(u,v)$.
- U protivnom, najkraći put od u do v prolazi kroz međuvrh v_{k+1} . Najkraći put u svojim vrhovima **samo jednom** posjećuje vrh v_{k+1} , jer bismo u protivnom imali negativan ciklus!
- Tada je očito najkraći put od u do v koji koristi vrhove v_1, \ldots, v_{k+1} , i samo jednom prolazi kroz vrh v_{k+1} konkatenacija nakraćeg puta od u do v_{k+1} koji koristi vrhove v_1, \ldots, v_k i najkraćeg puta od v_{k+1} do v, koji koristi vrhove v_1, \ldots, v_k .
- Uzimajući oba slučaja u obzir, dobivamo:

$$d_{k+1}(u,v) = \min \left\{ d_k(u,v), d_k(u,v_{k+1}) + d_k(v_{k+1},v) \right\}.$$

FLOYD-WARSHALL PSEUDOKOD

Algorithm 1 Floyd-Warshall algorithm

procedure FLOYDWARSHALL

Input: Graf s vrhovima $V=\{v_1,\ldots,v_{|V|}\}$ i bridovima s težinama $w:V\times V\to\mathbb{R}$, bez negativnih ciklusa.

Output: Duljine najkraćih puteva d(u, v) za sve parove vrhova $u, v \in V$.

$$\begin{split} \bullet & \text{Inicijaliziraj } |V| \times |V| \text{ matricu } \operatorname{d}(u,v) = w(u,v), \text{ za } u \neq v, \text{ i } \operatorname{d}(u,u) = 0. \\ & \text{for } k = 1, \ldots, |V| \text{ do} \\ & \text{for } i = 1, \ldots, |V| \text{ do} \\ & \text{for } j = 1, \ldots, |V| \text{ do} \\ & \operatorname{d}(v_i, v_j) = \min \Big\{ \operatorname{d}(v_i, v_j) \;, \; \operatorname{d}(v_i, v_k) + \operatorname{d}(v_k, v_j) \Big\} \end{split}$$

Pseudokod - jedna matrica je dovoljna

- lacktriangle Uočimo da u pseudokodu, iteraciju iz koraka k u k+1 radimo na **jednoj matrici** d.
- S obzirom na to da tokom *update-anja* matrice vrijednostima $d_{k+1}(u,v)$ istovremeno i čitamo iz nje vrijednosti $d_k(u,v)$, postavlja se pitanje, je li opravdano koristiti samo jednu matricu d?
- Ono što moramo pokazati jest da elementi u k-tom retku i k-tom stupcu: $\mathtt{d}(:,v_k)$ i $\mathtt{d}(v_k,:)$ ostaju nepromijenjeni tokom k-te iteracije vanjske petlje, jer jedino njih koristimo tokom update-anja.
- Ubacimo primjerice $u = v_{k+1}$ u osnovnu relaciju:

$$d_{k+1}(u,v) = \min \left\{ d_k(u,v), d_k(u,v_{k+1}) + d_k(v_{k+1},v) \right\},$$

tada dobivamo:

$$d_{k+1}(v_{k+1},v) = \min\{d_k(v_{k+1},v),\underbrace{d_k(v_{k+1},v_{k+1})}_0 + d_k(v_{k+1},v)\} = d_k(v_{k+1},v).$$

■ Analogno za $v = v_{k+1}$. Dakle, tokom k-te iteracije, se k-ti redak i k-ti stupac matrice d ne mijenjanju, te je stoga dovoljno korititi samo jednu matricu u pseudokodu.

k = 0			j			
		1	2	3	4	
i	1	0	_∞	-2	∞	
	2	4	0	3	∞	
	3	∞	œ	0	2	
	4	∞	-1	∞	0	

k = 0		j			
		1	2	3	4
	1	0	œ	-2	∞
i	2	4	0	3	∞
L	3	∞	_∞	0	2
	4	∞	-1	œ	0

k = 1		j			
		1	2	3	4
i	1	0	œ	-2	∞
	2	4	0	2	∞
	3	∞	oo	0	2
	4	∞	-1	œ	0

k = 1			j			
		1	2	3	4	
	1	0	œ	-2	∞	
i	2	4	0	2	∞	
L	3	∞	œ	0	2	
	4	∞	-1	∞	0	

k = 2		j				
		1	2	3	4	
i	1	0	œ	-2	∞	
	2	4	0	2	∞	
	3	_∞	œ	0	2	
	4	3	-1	1	0	

k = 2			j			
Α-	K - Z		2	3	4	
	1	0	œ	-2	∞	
i	2	4	0	2	∞	
L	3	_∞	œ	0	2	
	4	3	-1	1	0	

k = 3			j			
		1	2	3	4	
	1	0	oo	-2	0	
i	2	4	0	2	4	
L	3	∞	oo	0	2	
	4	3	-1	1	0	

<i>k</i> = 3			j			
		1	2	3	4	
1	1	0	œ	-2	0	
i	2	4	0	2	4	
L	3	∞	œ	0	2	
	4	3	-1	1	0	

k = 4		j				
		1	2	3	4	
i	1	0	-1	-2	0	
	2	4	0	2	4	
	3	5	1	0	2	
	4	3	-1	1	0	

k = 4			j			
		1	2	3	4	
	1	0	-1	-2	0	
i	2	4	0	2	4	
L	3	5	1	0	2	
	4	3	-1	1	0	

VREMENSKA I PROSTORNA SLOŽENOST

- Algoritam očito ima $\Theta(|V|^3)$ vremensku i $\Theta(|V|^2)$ prostornu složenost, neovisno o broju netrivijalnih bridova (onih za koje je $w(u,v)<+\infty$). To sugerira da je algoritam primjeren za *guste* grafove s velikim brojem netrivijalnih bridova.
- Implementacijom algoritma u C programskom jeziku i mjerenjem vremena izvršavanja na slučajno generiranim grafovima to potvrđuje i u praksi.

REFERENCE

T. H. CORMEN, C. E. LEISERSON, R. L. RIVEST, C. STEIN, INTRODUCTION TO ALGORITHMS (3RD Ed.), MIT Press and McGraw-Hill (2009)

FLOYD-WARSHALL ALGORITHM, WIKIPEDIA ČLANAK, LINK

Github repozitorij s implementacijom i testovima Floyd-Warshall algoritma, https://github.com/mavlaho/OAA