Worksheet 1 - CPA

October 4, 2022

1 Useful definitions

1.1 Perfect Secrecy (Shannon secrecy)

Suppose the adversary knows how an encryption scheme (KeyGen, Enc, Dec) is implemented. The perfect secrecy game for the encryption scheme works as follows:

- The adversary chooses two messages $m_0 \neq m_1$. Send m_0, m_1 to the game master.
- The game master (who knows the secret key k) chooses m_0 or m_1 at random. In other words, it choose a random bit b. Then, the game master computes the challenge $c^* = \operatorname{Enc}_k(m_b)$ and sends c^* to the adversary.
- The adversary guesses if m_0 or m_1 was encrypted: it outputs a bit b' that represents its guess.
- The adversary wins if b' = b.

The encryption scheme is **perfectly secure** if the adversary wins the game with probability exactly $\frac{1}{2}$.

1.2 Chosen Plaintext Attack (CPA)

The adversary attempts to break an encryption scheme. In CPA, the adversary has a method of encrypting messages: the adversary ask for messages m to be encrypted and see the ciphertext $\mathsf{Enc}(m)^1$. Given this power, the adversary **breaks CPA security** if it can win the perfect secrecy game. However, it **cannot** choose m_0, m_1 to be any message that is already encrypted.

¹In cryptography, we say that the adversary has access to an encryption oracle

Exercise 1. Consider an encryption scheme where the first bit of a message is equal to the last bit of its ciphertext.

This encryption scheme is not perfectly secure - show an attack.

Exercise 2. Consider an encryption scheme that works as follows: The plaintext messages m have length 2n. The secret key k has length n. To encrypt, for each bit m_i , compute $m_i \oplus k_{\lfloor i/2 \rfloor}$. In other words, XOR 1st two bits of m with the 1st bit of k, the 2nd two bits of m with the 2nd bit of k, etc.

This is not a perfectly-secure encryption scheme: show an attack.

Exercise 3. The following "encryption scheme" is *not* secure. Let k be a n bit key. To encrypt an n-bit plaintext m, output ciphertext $c = k \oplus m$. We use the same key k to encrypt every n-bit plaintext message. (The symbol \oplus is the bitwise XOR; recall that $a \oplus a \oplus b = b$.)

1. Write down the decryption algorithm.

2. Present an attack that proves that this scheme is not CPA secure.