

Supervised learning vs. unsupervised learning

- ➤ Supervised learning: discover patterns in the data that relate data attributes with a target (class) attribute.
 - ▶ These patterns are then utilized to predict the values of the target attribute in future data instances.
- ▶ Unsupervised learning: The data have no target attribute.
 - ▶ We want to explore the data to find some intrinsic structures in them.

Clustering

- ► Clustering is a technique for finding similarity groups in data, called clusters. i.e.,
 - ▶ it groups data instances that are similar to (near) each other in one cluster and data instances that are very different (far away) from each other into different clusters.
- ▶ Clustering is often called an **unsupervised learning** task as no class values denoting an *a priori* grouping of the data instances are given, which is the case in supervised learning.
- ▶ Due to historical reasons, clustering is often considered synonymous with unsupervised learning.
 - ▶ In fact, association rule mining is also unsupervised
- ▶ This chapter focuses on clustering.

An illustration

► The data set has three natural groups of data points, i.e., 3 natural clusters.

What is clustering for?

- ► Let us see some real-life examples
- ► Example 1: groups people of similar sizes together to make "small", "medium" and "large" T-Shirts
 - ▶ Tailor-made for each person: too expensive
 - ► One-size-fits-all: does not fit all.
- ▶ Example 2: In marketing, segment customers according to their similarities
 - ► To do targeted marketing.

5

What is clustering for? (cont...)

- ► Example 3: Given a collection of text documents, we want to organize them according to their content similarities,
 - ► To produce a topic hierarchy
- ▶ In fact, clustering is one of the most utilized data mining techniques.
 - ▶ It has a long history, and used in almost every field, e.g., medicine, psychology, botany, sociology, biology, archeology, marketing, insurance, libraries, etc.
 - $\blacktriangleright \ \ \text{In recent years, due to the rapid increase of online documents, text clustering becomes important.}$

Aspects of clustering

- ► A clustering algorithm
 - ► Partitional clustering
 - ► Hierarchical clustering
 - **...**
- ► A distance (similarity, or dissimilarity) function
- ► Clustering quality
 - ► Inter-clusters distance ⇒ maximized
 - ► Intra-clusters distance ⇒ minimized
- ► The quality of a clustering result depends on the algorithm, the distance function, and the application.

K-means clustering

- ► K-means is a partitional clustering algorithm
- ▶ Let the set of data points (or instances) *D* be

$$\{\mathbf{x}_{1},\mathbf{x}_{2},...,\mathbf{x}_{n}\},\$$

where $\mathbf{x}_{i} = (\mathbf{x}_{i1}, \mathbf{x}_{i2}, ..., \mathbf{x}_{id})$ is a vector in a real-valued space $X \subseteq R^r$, and r is the number of attributes (dimensions) in the data.

- \blacktriangleright The k-means algorithm partitions the given data into k clusters.
 - ► Each cluster has a cluster **center**, called **centroid**.
 - ▶ *k* is specified by the user

K-means algorithm

- ▶ Given *k*, the *k-means* algorithm works as follows:
 - 1) Randomly choose *k* data points (seeds) to be the initial centroids, cluster centers
 - 2) Assign each data point to the closest centroid
 - 3) Re-compute the $\underline{\text{centroids}}$ using the current cluster memberships.
 - 4) If a convergence criterion is not met, go to 2).

K-means algorithm - (cont ...)

Algorithm k-means(k, D)

- 1 Choose k data points as the initial centroids (cluster centers)
- 2 repeat
- 3 for each data point $\mathbf{x} \in D$ do
- 4 compute the distance from x to each centroid;
- 5 assign x to the closest centroid // a centroid represents a cluster
- 6 endfor
- 7 re-compute the centroids using the current cluster memberships
- 8 until the stopping criterion is met

Stopping/convergence criterion

- 1. no (or minimum) re-assignments of data points to different clusters,
- 2. no (or minimum) change of centroids, or
- 3. minimum decrease in the sum of squared error (SSE),
 - Arr C_i is the jth cluster, \mathbf{m}_j is the centroid of cluster C_j (the mean vector of all the data points in C_j), and $dist(\mathbf{x}, \mathbf{m}_j)$ is the distance between data point \mathbf{x} and centroid \mathbf{m}_j .

$$SSE = \sum_{j=1}^{k} \sum_{\mathbf{x} \in C_j} dist(\mathbf{x}, \mathbf{m}_j)^2$$
 (1)

11

An example

(A). Random selection of k centers

Iteration 1: (B). Cluster assignment

(C). Re-compute centroids

12

An example (cont ...)

Iteration 2: (D). Cluster assignment

Iteration 3: (F). Cluster assignment

(E). Re-compute centroids

(G). Re-compute centroids

13

An example distance function

The k-means algorithm can be used for any application data set where the **mean** can be defined and computed. In the **Euclidean space**, the mean of a cluster is computed with:

$$\mathbf{m}_{f} = \frac{1}{|C_{f}|} \sum_{\mathbf{x}_{i} \in C_{f}} \mathbf{x}_{i} \tag{2}$$

where $|C_j|$ is the number of data points in cluster C_j . The distance from one data point \mathbf{x}_i to a mean (centroid) \mathbf{m}_i is computed with

$$dist(\mathbf{x}_{i}, \mathbf{m}_{j}) = ||\mathbf{x}_{i} - \mathbf{m}_{j}||$$

$$= \sqrt{(x_{i1} - m_{j1})^{2} + (x_{i2} - m_{j2})^{2} + ... + (x_{ir} - m_{jr})^{2}}$$
(3)

14

A disk version of k-means

- ▶ K-means can be implemented with data on disk
 - ▶ In each iteration, it scans the data once.
 - ▶ as the centroids can be computed incrementally
- ▶ It can be used to cluster large datasets that do not fit in main memory
- ▶ We need to control the number of iterations
 - ▶ In practice, a limited is set (< 50).
- Not the best method. There are other scale-up algorithms, e.g., BIRCH.

A disk version of k-means (cont ...)

```
Algorithm disk-k-means(k, D)
      Choose k data points as the initial centriods \mathbf{m}_i, j = 1, ..., k;
2
      repeat
3
          initialize \mathbf{s}_i = \mathbf{0}, j = 1, \dots, k;
                                                           // 0 is a vector with all 0's
4
          initialize n_i = 0, j = 1, ..., k;
                                                           // n_i is the number points in cluster j
5
          for each data point x \in D do
6
                j = \arg \min dist(\mathbf{x}, \mathbf{m}_i);
               assign x to the cluster j;
               \mathbf{s}_{i} = \mathbf{s}_{i} + \mathbf{x};
               n_i = n_j + 1;
10
          endfor
11
          \mathbf{m}_i = \mathbf{s}_i / n_i, i = 1, \dots, k;
12 until the stopping criterion is met
```

Strengths of k-means

- ▶ Strengths:
 - ▶ Simple: easy to understand and to implement
 - ► Efficient: Time complexity: *O*(*tkn*), where *n* is the number of data points, *k* is the number of clusters, and *t* is the number of iterations.
- ► K-means is the most popular clustering algorithm.

Weaknesses of k-means

- ▶ The algorithm is only applicable if the mean is defined.
 - ▶ For categorical data, *k*-mode the centroid is represented by most frequent values.
- ▶ The user needs to specify *k*.
- ► The algorithm is sensitive to **outliers**
 - ▶ Outliers are data points that are very far away from other data points.
 - ▶ Outliers could be errors in the data recording or some special data points with very different values.

Weaknesses of k-means: Problems with outliers

- ▶ One method is to remove some data points in the clustering process that are much further away from the centroids than other data points.
 - ▶ To be safe, we may want to monitor these possible outliers over a few iterations and then decide to remove them.
- ▶ Another method is to perform random sampling. Since in sampling we only choose a small subset of the data points, the chance of selecting an outlier is very small.
 - Assign the rest of the data points to the clusters by distance or similarity comparison, or classification

Weaknesses of k-means (cont ...)

▶ The algorithm is sensitive to initial seeds.

(A). Random selection of seeds (centroids)

(B). Iteration 1

(C). Iteration 2

Weaknesses of k-means (cont ...)

▶ If we use different seeds: good results

There are some methods to help choose good seeds

(A). Random selection of k seeds (centroids)

(B). Iteration 1

(C). Iteration 2

Weaknesses of k-means (cont ...)

► The *k*-means algorithm is not suitable for discovering clusters that are not hyper-ellipsoids (or hyper-spheres).

(A): Two natural clusters

(B): k-means clusters

K-means summary

- ▶ Despite weaknesses, *k*-means is still the most popular algorithm due to its simplicity, efficiency and
 - ▶ other clustering algorithms have their own lists of weaknesses.
- ▶ No clear evidence that any other clustering algorithm performs better in general
 - ▶ although they may be more suitable for some specific types of data or applications.
- ► Comparing different clustering algorithms is a difficult task. No one knows the correct clusters!

Common ways to represent clusters

- ▶ Use the centroid of each cluster to represent the cluster.
 - ▶ compute the radius and
 - > standard deviation of the cluster to determine its spread in each dimension
 - ▶ The centroid representation alone works well if the clusters are of the hyper-spherical shape.
 - ▶ If clusters are elongated or are of other shapes, centroids are not sufficient

Use frequent values to represent cluster

- ▶ This method is mainly for clustering of categorical data (e.g., *k*-modes clustering).
- ▶ Main method used in text clustering, where a small set of frequent words in each cluster is selected to represent the cluster.

Clusters of arbitrary shapes

- ► Hyper-elliptical and hyperspherical clusters are usually easy to represent, using their centroid together with spreads.
- ► Irregular shape clusters are hard to represent.

Hierarchical Clustering

► Produce a nested sequence of clusters, a tree, also called Dendrogram.

Types of hierarchical clustering

- ► Agglomerative (bottom up) clustering: It builds the dendrogram (tree) from the bottom level, and
 - ▶ merges the most similar (or nearest) pair of clusters
 - ▶ stops when all the data points are merged into a single cluster (i.e., the root cluster).
- ▶ Divisive (top down) clustering: It starts with all data points in one cluster, the root.
 - ► Splits the root into a set of child clusters. Each child cluster is recursively divided further
 - ▶ stops when only singleton clusters of individual data points remain, i.e., each cluster with only a single point

21

Agglomerative clustering

It is more popular then divisive methods.

- ▶ At the beginning, each data point forms a cluster (also called a node).
- ▶ Merge nodes/clusters that have the least distance.
- Go on merging
- ► Eventually all nodes belong to one cluster

Agglomerative clustering algorithm

Algorithm Agglomerative(D)

- 1 Make each data point in the data set D a cluster,
- Compute all pair-wise distances of x₁, x₂, ..., x_n ∈ D;
- 2 repeat
- 3 find two clusters that are nearest to each other;
- 4 merge the two clusters form a new cluster c;
- 5 compute the distance from c to all other clusters;
- 12 until there is only one cluster left

An example: working of the algorithm

Measuring the distance of two clusters

- ▶ A few ways to measure distances of two clusters.
- ▶ Results in different variations of the algorithm.
 - ► Single link
 - ► Complete link
 - ► Average link
 - ▶ Centroids
 - **.**..

The complexity

- ightharpoonup All the algorithms are at least $O(n^2)$. n is the number of data points.
- ▶ Single link can be done in O(n²).
- ightharpoonup Complete and average links can be done in O(n²logn).
- ▶ Due the complexity, hard to use for large data sets.
 - ▶ Sampling
 - ► Scale-up methods (e.g., BIRCH).

Distance functions

- ▶ Key to clustering. "similarity" and "dissimilarity" can also commonly used terms.
- ▶ There are numerous distance functions for
 - ▶ Different types of data
 - ▶ Numeric data
 - ▶ Nominal data
 - ▶ Different specific applications

Distance functions for numeric attributes

- ▶ Most commonly used functions are
 - ► Euclidean distance and
 - ► Manhattan (city block) distance
- ▶ We denote distance with: $dist(\mathbf{x}_i, \mathbf{x}_j)$, where \mathbf{x}_i and \mathbf{x}_j are data points (vectors)
- ▶ They are special cases of Minkowski distance. h is positive integer.

$$dist(\mathbf{x}_{i}, \mathbf{x}_{j}) = ((x_{i1} - x_{j1})^{h} + (x_{i2} - x_{j2})^{h} + \dots + (x_{ir} - x_{jr})^{h})^{\frac{1}{h}}$$

Euclidean distance and Manhattan distance

$$dist(\mathbf{x}_{i}, \mathbf{x}_{j}) = \sqrt{(x_{i1} - x_{j1})^{2} + (x_{i2} - x_{j2})^{2} + \dots + (x_{ir} - x_{jr})^{2}}$$

▶ If h = 1, it is the Manhattan distance

$$dist(\mathbf{x}_i, \mathbf{x}_j) = |x_{i1} - x_{j1}| + |x_{i2} - x_{j2}| + ... + |x_{ir} - x_{jr}|$$

► Weighted Euclidean distance

$$dist(\mathbf{x}_{i}, \mathbf{x}_{j}) = \sqrt{w_{1}(x_{i1} - x_{j1})^{2} + w_{2}(x_{i2} - x_{j2})^{2} + \dots + w_{r}(x_{ir} - x_{jr})^{2}}$$

Squared distance and Chebychev distance

► Squared Euclidean distance: to place progressively greater weight on data points that are further apart.

$$dist(\mathbf{x}_i, \mathbf{x}_j) = (x_{i1} - x_{j1})^2 + (x_{i2} - x_{j2})^2 + \dots + (x_{ir} - x_{jr})^2$$

▶ Chebychev distance: one wants to define two data points as "different" if they are different on any one of the attributes.

$$dist(\mathbf{x}_i, \mathbf{x}_j) = \max(|x_{i1} - x_{j1}|, |x_{i2} - x_{j2}|, ..., |x_{ir} - x_{jr}|)$$

Distance functions for binary and nominal attributes

- ▶ Binary attribute: has two values or states but no ordering relationships, e.g.,
 - ► Gender: male and female.
- ▶ We use a confusion matrix to introduce the distance functions/measures.
- Let the *i*th and *j*th data points be x_i and x_i (vectors)

Distance function for text documents

- ► A text document consists of a sequence of sentences and each sentence consists of a sequence of words.
- ➤ To simplify: a document is usually considered a "bag" of words in document clustering.
 - ▶ Sequence and position of words are ignored.
- ▶ A document is represented with a vector just like a normal data point.
- ▶ It is common to use similarity to compare two documents rather than distance.
 - ▶ The most commonly used similarity function is the **cosine similarity**. We will study this later.

Data standardization

- ▶ In the Euclidean space, standardization of attributes is recommended so that all attributes can have equal impact on the computation of distances.
- ► Consider the following pair of data points
 - ▶ **x**; (0.1, 20) and **x**; (0.9, 720).

$$dist(\mathbf{x}_i, \mathbf{x}_j) = \sqrt{(0.9 - 0.1)^2 + (720 - 20)^2} = 700.000457,$$

- ▶ The distance is almost completely dominated by (720-20) = 700.
- ► Standardize attributes: to force the attributes to have a common value range

Interval-scaled attributes

- ▶ Their values are real numbers following a linear scale.
 - ▶ The difference in Age between 10 and 20 is the same as that between 40 and 50.
 - ▶ The key idea is that intervals keep the same importance through out the scale
- ► Two main approaches to standardize interval scaled attributes, range and z-score. fis an attribute

$$range(x_{if}) = \frac{x_{if} - \min(f)}{\max(f) - \min(f)},$$

Ratio-scaled attributes

- ▶ Numeric attributes, but unlike interval-scaled attributes, their scales are exponential,
- ► For example, the total amount of microorganisms that evolve in a time *t* is approximately given by

 Ae^{Bt} ,

- ▶ where *A* and *B* are some positive constants.
- ▶ Do log transform:
 - ▶ Then treat it as an interval-scaled attribuete

$$\log(x_{if})$$

Nominal attributes

- ▶ Sometime, we need to transform nominal attributes to numeric attributes.
- ▶ Transform nominal attributes to binary attributes.
 - ightharpoonup The number of values of a nominal attribute is ν .
 - ▶ Create vbinary attributes to represent them.
 - ▶ If a data instance for the nominal attribute takes a particular value, the value of its binary attribute is set to 1, otherwise it is set to 0.
- ▶ The resulting binary attributes can be used as numeric attributes, with two values, 0 and 1.

Nominal attributes: an example

- Nominal attribute *fruit*: has three values,
 - ► Apple, Orange, and Pear
- ▶ We create three binary attributes called, Apple, Orange, and Pear in the new data.
- ▶ If a particular data instance in the original data has Apple as the value for *fruit*,
 - ▶ then in the transformed data, we set the value of the attribute Apple to 1, and
 - ▶ the values of attributes Orange and Pear to 0

Ordinal attributes

- ► Ordinal attribute: an ordinal attribute is like a nominal attribute, but its values have a numerical ordering. E.g.,
 - ▶ Age attribute with values: Young, MiddleAge and Old. They are ordered.
 - ▶ Common approach to standardization: treat is as an interval-scaled attribute.

Mixed attributes

- ▶ Our distance functions given are for data with all numeric attributes, or all nominal attributes, etc.
- ▶ Practical data has different types:
 - ▶ Any subset of the 6 types of attributes,
 - ▶ interval-scaled,
 - ► symmetric binary,
 - ▶ asymmetric binary,
 - ► ratio-scaled,
 - ▶ ordinal and
 - ▶ nominal

Convert to a single type

- ▶ One common way of dealing with mixed attributes is to
 - ▶ Decide the dominant attribute type, and
 - ► Convert the other types to this type.
- ▶ E.g, if most attributes in a data set are interval-scaled,
 - we convert ordinal attributes and ratio-scaled attributes to interval-scaled attributes.
 - $\blacktriangleright \ \ \text{It is also appropriate to treat symmetric binary attributes as interval-scaled attributes}.$

Convert to a single type (cont ...)

- ▶ It does not make much sense to convert a nominal attribute or an asymmetric binary attribute to an interval-scaled attribute,
 - ▶ but it is still frequently done in practice by assigning some numbers to them according to some hidden ordering, e.g., prices of the fruits
- ▶ Alternatively, a nominal attribute can be converted to a set of (symmetric) binary attributes, which are then treated as numeric attributes.

How to choose a clustering algorithm

- ► Clustering research has a long history. A vast collection of algorithms are available.
 - ▶ We only introduced several main algorithms.
- ► Choosing the "best" algorithm is a challenge.
 - ▶ Every algorithm has limitations and works well with certain data distributions.
 - ▶ It is very hard, if not impossible, to know what distribution the application data follow. The data may not fully follow any "ideal" structure or distribution required by the algorithms.
 - ▶ One also needs to decide how to standardize the data, to choose a suitable distance function and to select other parameter values.

Choose a clustering algorithm (cont ...)

- ▶ Due to these complexities, the common practice is to
 - ▶ run several algorithms using different distance functions and parameter settings, and
 - ▶ then carefully analyze and compare the results.
- ▶ The interpretation of the results must be based on insight into the meaning of the original data together with knowledge of the algorithms used.
- ► Clustering is highly application dependent and to certain extent subjective (personal preferences).

51

Cluster Evaluation: hard problem

- ▶ The quality of a clustering is very hard to evaluate because
 - ▶ We do not know the correct clusters
- ▶ Some methods are used:
 - ▶ User inspection
 - ▶ Study centroids, and spreads
 - ▶ Rules from a decision tree.
 - ▶ For text documents, one can read some documents in clusters.

Cluster evaluation: ground truth

- ▶ We use some labeled data (for classification)
- ► Assumption: Each class is a cluster.
- ► After clustering, a confusion matrix is constructed. From the matrix, we compute various measurements, entropy, purity, precision, recall and F-score.
 - ▶ Let the classes in the data D be $C = (c_1, c_2, ..., c_k)$. The clustering method produces k clusters, which divides D into k disjoint subsets, $D_1, D_2, ..., D_k$.

Evaluation based on internal information

- ► Intra-cluster cohesion (compactness):
 - ▶ Cohesion measures how near the data points in a cluster are to the cluster centroid.
 - ▶ Sum of squared error (SSE) is a commonly used measure.
- ▶ Inter-cluster separation (isolation):
 - ▶ Separation means that different cluster centroids should be far away from one another.
- ▶ In most applications, expert judgments are still the key.

Indirect evaluation

- ▶ In some applications, clustering is not the primary task, but used to help perform another task.
- ► We can use the performance on the primary task to compare clustering methods.
- ► For instance, in an application, the primary task is to provide recommendations on book purchasing to online shoppers.
 - ▶ If we can cluster books according to their features, we might be able to provide better recommendations.
 - ▶ We can evaluate different clustering algorithms based on how well they help with the recommendation task.
 - ▶ Here, we assume that the recommendation can be reliably evaluated.

Summary

- ► Clustering is has along history and still active
 - ▶ There are a huge number of clustering algorithms
 - ▶ More are still coming every year.
- ► We only introduced several main algorithms. There are many others, e.g.,
 - density based algorithm, sub-space clustering, scale-up methods, neural networks based methods, fuzzy clustering, co-clustering, etc.
- ► Clustering is hard to evaluate, but very useful in practice. This partially explains why there are still a large number of clustering algorithms being devised every year.
- ► Clustering is highly application dependent and to some extent subjective.

Application

- ▶ Apply a k-means on an image with python
- ▶ We will use a Jupyter Notebook

