

Machining

Drilling Countersinking Tapping Turning Milling

HARDOX wear plate and WELDOX extra-high strength structural plate are steel grades that can be machined with high speed steel (HSS) or cemented carbide (CC) tools. This brochure includes our suggestions for cutting data (feeds and speeds) and the selection of tools. Other factors that should be taken into account in machining operations are also discussed. The proposals have been drawn up following our own tests on tools of various makes and in consultation with leading tool manufacturers.

TYPICAL PROPERTIES OF WELDOX AND HARDOX

	WELDOX 700	WELDOX 900/960	WELDOX 1030	WELDOX 1100	HARDOX HiTuf	HARDOX 400	HARDOX 450	HARDOX 500
Tensile strength, R _m [N/mm²]	~860	~1040	~1300	~1350	~940	~1250	~1400	~1550
Hardness [HBW]	~260	~320	~410	~430	~350	~400	~450	~500

Drilling

Either high speed steel or cemented carbide drills can be used for drilling. The machine available and its stability determine the type of drill that should be employed. But whatever the machine type, it is vital to minimize vibrations

Radial or column drilling machines

Recommendations for reducing vibrations and increasing the useful life of the drill:

- Minimize the distance from the drill to the column.
- Avoid wooden spacer blocks.
- Clamp the workpiece securely, and drill as close as possible to the spacer blocks.
- Minimize the distance between the drill tip and arm by using a short spindle and short drill.
- Just before the drill breaks through, disengage the feed for about a second. Play and elasticity in the machine could otherwise snap the drill tip. Re-engage the drill feedwhen the play/elasticity have ceased.
- Provide an abundant supply of coolant.

	WELDOX 700	WELDOX 900/960	WELDOX 1030	WELDOX 1100	HARDOX HiTuf	HARDOX 400	HARDOX 450	HARDOX 500		
v _c [m/min]	~18	~15	~9	~7	~12	~9	~7	~5		
D [mm]	Feed rate, f [mm/rev] / Speed, n [rpm]									
5	0,10/1150	0,10/950	0,05/570	0,05/445	0,07/760	0,05/570	0,05/445	0,05/320		
10	0,10/575	0,10/475	0,10/290	0,09/220	0,10/380	0,10/290	0,09/220	0,08/130		
15	0,16/400	0,16/325	0,16/190	0,15/150	0,16/250	0,16/190	0,15/150	0,13/85		
20	0,23/300	0,23/235	0,23/150	0,20/110	0,23/190	0,23/150	0,20/110	0,18/65		
25	0,30/240	0,30/195	0,30/110	0,25/90	0,30/150	0,30/110	0,25/90	0,22/50		
30	0,35/200	0,35/165	0,35/90	0,30/75	0,35/130	0,35/90	0,30/75	0,25/45		

Solid cemented carbide drill

- Diameters from approx. 3 mm
- Close tolerances (high precision)
- Can be reground
- Sensitive to vibrations

More stable machine tools, such as boring mills and bedtype milling machines

For improved productivity, the benefits of cemented carbide drills should be put to use in modern and stable machines.

The choice is available between three main types of drills with cemented carbide cutting edges. The choice of drill type is dependent on the stability of the machine, the clamping of the workpiece, the hole diameter and the required tolerance. Always use the shortest possible drill.

Coolant

- Use the type of coolant intended for drilling.
- Rule of thumb for drilling with internal coolant passages : Coolant flow [l/min] ≈ Drill diameter [mm]

Brazed cemented carbide drill

- Diameters from approx. 10 mm
- Close tolerances (high precision)
- Can be reground
- Less sensitive to vibrations than solid carbide.

Indexable insert drill

- Diameters from approx. 12 mm
- Offers high productivity
- Wider tolerance than the others (lower precision)
- Good economy

		WELDOX 700	WELDOX 900/960	WELDOX 1030	WELDOX 1100	HARDOX HiTuf	HARDOX 400	HARDOX 450	HARDOX 500
			Cutti	ng speed, vc [m/min] and Fe	ed rate, f [mm.	/rev]		
Solid cemented carbide	V _c	50-70	40-50	35-45	30-40	40-50	35-45	30-40	25-35
Carbide	f	0,10-0,18	0,10-0,18	0,10-0,15	0,10-0,15	0,10-0,15	0,10-0,15	0,10-0,15	0,08-0,12
Brazed cemented	V _c	40-60	40-50	35-45	30-40	40-50	35-45	30-40	20-30
carbide	f	0,12-0,18	0,12-0,18	0,10-0,15	0,10-0,15	0,10-0,15	0,10-0,15	0,10-0,15	0,08-0,12
Indexable	V _c	100-120	70-90	60-80	50-70	70-90	60-80	50-70	40-60
inserts	f	0,10-0,18	0,10-0,18	0,06-0,14	0,06-0,14	0,06-0,15	0,06-0,14	0,06-0,14	0,06-0,12

Cutting data for drilling in HARDOX 550 and 600 are available in TechSupport no 40 and 23. For more info please contact your Technical Manager.

If the drill diameter is small, select a lower feed rate within the specified range.

To calculate the speed of rotation from the recommended cutting speed : Example for drill diameter D = 15 mm and cutting speed $v_c = 80$ m/min.

Formulas:

 $v_c = \begin{array}{c} \frac{\varpi \times D \times n}{1000} & v_c = \text{cutting speed [m/min]} \\ n = \frac{v_c \times 1000}{\varpi \times D} & n = \text{speed [rpm]} \\ w_f = f \times n & v_f = \text{feed rate [mm/min]} \\ f = \text{feed rate [mm/rev]} \end{array}$

Spot-facing and countersinking are best done by means of countersinking tools which have replaceable cemented carbide inserts and a rotating pilot. Use coolant.

NOTE

- 1. Reduce the cutting data by about 30% in countersinking.
- 2. Always use a revolving pilot.

	WELDOX 700	WELDOX 900/960	WELDOX 1030	WELDOX 1100	HARDOX HiTuf	HARDOX 400	HARDOX 450	HARDOX 500
v _c [m/min]	70-100 ²	40-80 ²	25-70 ²	20-50 ²	30-80 ²	25-70 ²	20-50 ²	17-50 ²
Feed rate, f [mm/rev]	0,10-0,20	0,10-0,20	0,10-0,20	0,10-0,20	0,10-0,20	0,10-0,20	0,10-0,20	0,10-0,20
D [mm]				Speed,	n [rpm]			
19	1175-1675	670-1340	420-1175	335-840	500-1340	420-1175	335-840	285-840
24	930-1325	530-1060	330-930	265-665	400-1060	330-930	265-665	225-665
34	655-935	375-750	235-655	185-470	280-750	235-655	185-470	160-470
42	530-760	300-600	190-530	150-380	230-600	190-530	150-380	130-380
57	390-560	225-440	140-390	110-280	170-440	140-390	110-280	95-280

- 1) If chipbreaking problems should arise, feed in steps of 2 mm at a time.
- 2) If the machine power is low, select a cutting speed towards the lower end of the range.

Cutting data for countersinking/counterboring in HARDOX 550 and 600 are available in TechSupport no 40 and 23. For more info please contact your Technical Manager.

HSS countersinking cutters with three cutting edges and equipped with a pilot can be used in the WELDOX steels tabulated below. An abundant flowof coolant is necessary.

		WELDOX 700	WELDOX 900/960
	v _c [m/min]	~8	~7
D [mm]	Feed rate, f [mm/rev]	Speed,	n [rpm]
15	0,05-0,20	170	150
19	0,05-0,20	130	120
24	0,07-0,30	100	90
34	0,07-0,30	70	70
42	0,07-0,30	60	50
57	0,07-0,30	40	40

Tapping

If the correct type of tap is used, holes can be tapped in all HARDOX and WELDOX steels. We recommend four-flute taps which can withstand the high torques necessary for tapping holes in hard materials. When HARDOX and WELDOX materials are tapped, thread oil or thread paste is recommended as lubricant.

In applications in which thread strength is not critical, a somewhat larger than standard hole diameter can be drilled (about 3%larger), in order to reduce the tap stresses during tapping. This will increase the useful life of the tap, above all when tapping holes in HARDOX and WELDOX 1100.

NOTE

- 1. If uncoated taps are used, the cutting data should be lowered by 30%.
- 2. If tapping is carried out in NCmachines, thread milling can be employed.

	HSS-Co (HSS-E) TiN or TiCN coated			HSS-Co (HSS-E) TiCN coated					
	WELDOX 700	WELDOX 900/960	WELDOX 1030	WELDOX 1100	HARDOX HiTuf	HARDOX 400	HARDOX 450	HARDOX 500	
v _C [m/min]	10	8	5	3	6	5	3	2,5	
Size	Speed, n [rpm]								
M10	320	255	160	95	190	160	95	80	
M12	265	210	130	80	160	130	80	65	
M16	200	160	100	60	120	100	60	50	
M20	160	125	80	45	90	80	45	40	
M24	130	105	65	40	80	65	40	30	
M30	105	85	50	32	60	50	32	25	

Cutting data for thread milling in HARDOX 550 and 600 are available in TechSupport no 40 and 23. For more info please contact your Technical Manager.

Milling

SELECTION OF MILLING METHOD AND CUTTERS

To ensure rational production, milling cutters with cemented carbide inserts are recommended.

• The width of cut in face milling should be about 75-80%

- When milling surfaces which are narrower than the diameter of the milling head, the milling cutter should be located eccentrically, so that as many teeth as possible will be in engagement.
- When milling a gas-cut edge, the depth of cut should be at least 2 mm, in order to avoid the hard surface layer of the cut edge (see graph).

HARDOX 400 400 350 300 WELDOX 700 HV10 250 WELDOX 500 200 150 100

Recommended cutting width

in face milling

Distance from kerf surface [mm]

Hardness profile of gas-cut edge, cut in air

450

0

		FACE MII	LLING		END MILLING			
	Coate	ed CC	Cermet	Cermet Coated CC		сс		
Grade	P40/CS	P25/C6	P20/C6-C7	K20/C2	K10/C3- uncoated	K10/C3- coated	P10/C7- indexable insert	TiCN- coated
Conditions	unstable	average	stable	stable	stable	stable	stable	unstable
Feed rate (f _z)	0,1-0,2-0,3	0,1-0,2-0,3	0,1-0,2	0,1-0,2	0,02-0,10	0,02-0,20	0,05-0,15	0,03-0,09
Plate grade				Cutting spee	d, v _c [m/min]			
WELDOX 700	195-150-95	220-180-150	240-200	-	100	180	195-150	40
WELDOX 900/960	95-75-50	200-160-130	220-170	-	90	130	140-120	18
WELDOX 1030	-	150-120-110	150-120	-	90	100	110-90	-
WELDOX 1100	-	150-120-110	150-120	-	90	100	110-90	-
HARDOX HiTuf	-	170-150-140	170-150	-	90	100	110-90	-
HARDOX 400	-	150-120-110	150-120	-	90	100	110-90	-
HARDOX 450	-	150-120-110	150-120	-	90	100	110-90	-
HARDOX 500	-	120-110	120-100	120-100	50	80	90-70	-

At higher feed rates, lower the cutting speed.

Cutting data for face milling in HARDOX 550 and 600 are available in TechSupport no 40 and 23. For more info please contact your Technical Manager.

Formulas:

Turning

The cutting data recommendations below are applicable to tough cemented carbide grades. These are necessary for operations in which impact may occur, such as when turning plate with gas-cut edges.

Carbide grade	P25/C6	P35/C6-C7	K20/C2
Feed rate f _n [mm/rev]	0,1-0,4-0,8	0,1-0,4-0,8	0,1-0,3
	Cut	ting speed, v _c [m/	min]
WELDOX 700	285-195-145	230-150-100	-
WELDOX 900/960	130-90-70	105-65-45	-
WELDOX 1030	130-90-70	105-65-45	-
WELDOX 1100	130-90-70	105-65-45	-
HARDOX HiTuf	130-90-70	105-65-45	-
HARDOX 400	130-90-70	105-65-45	-
HARDOX 450	130-90-70	105-65-45	-
HARDOX 500	-	-	100-80

At higher feed rates, lower the cutting speed.

Formulas:

$v_c = \frac{\varpi \times D \times n}{1000}$	v _c = cutting speed [m/min]
1000	D = workpiece dia. [mm]
$n = \frac{v_c \times 1000}{\varpi \times D}$	n = speed [rpm]
<u>∞×D</u>	ω = 3.14
$v_t = f_n \times n$	$v_f = feed rate [mm/min]$
r n	$f_n = feed rate [mm/rev]$

Toolmaterials / Cemented carbide grades

This brochure has been written in cooperation with Sandvik Coromant AB, DormerTools AB and Emuge Franken AB. Granlund Tools AB has contributed pictures and cutting data for the section dealing with countersinking.

For further information, please get in touch with our Technical Customer Service Department.

The Machining brochure is included in a series of publications that offer advice and instructions for working on HARDOX and WELDOX plate. The other two brochures in the series are *Welding* and *Bending*. Place your order for them with our Market Communication Department.

