Министерство образования и науки Российской Федерации Санкт-Петербургский Политехнический Университет Петра Великого

Институт компьютерных наук и технологий Кафедра «Информационная безопасность компьютерных систем»

ЛАБОРАТОРНАЯ РАБОТА № 3

«Электрические фильтры»

по дисциплине «Электроника и схемотехника»

Выполнил студент гр. 23508/4

Е.Г. Проценко

Проверил доцент

А.Ф. Супрун

Теория

Назначение фильтров

Фильтры предназначены для:

- 1. выделения необходимой полосы частот электрических сигналов в усилителях, радиоприемных и радиопередающих устройствах, системах передачи информации с частотным разделением каналов, специальной радиоизмерительной аппаратуре и т.л.:
- 2. подавление индустриальных шумов и помех;
- 3. корректирование частотных характеристик различных электронных устройств.

Основные типы фильтров

- 1. фильтры нижних частот (ФНЧ), пропускающие электрические сигналы с частотами от 0 до частоты среза f_c ;
- 2. фильтры верхних частот (ФВЧ), пропускающие электрические сигналы от частоты среза f_c до ∞ ;
- 3. резонансные фильтры, пропускающие электрические сигналы в полосе частот $^{2\Delta \! f}$ около резонансной частоты f_0 ;

Частота среза фильтра

Частотой среза фильтра называют частоту, ослабление сигнала на которой достигает -3 дБ (по логарифмической шкале), или составляет $1/\sqrt{2}$ (≈ 0.71) по линейной. Т.е амплитуда сигнала на частоте среза составляет 71% от входного значения.

Частота среза RC-фильтра расчитывается по формуле:

$$f = \frac{1}{2\pi RC},$$

где:

- f частота среза, Гц
- R сопротивление резистора, Ом
- С ёмкость конденсатора, Ф(Фарады)

Амплитудно-частотная характеристика

<u>АЧХ фильтра</u> показывает как изменяется уровень амплитуду сигнала проходящего через этот фильтр в зависимости от частоты сигнала.

Т.е., на одной частоте входящего на фильтр сигнала уровень амплитуды такой же как и на выходе, а для другой частоты, фильтр, оказывая сопротивление сигналу, ослабляет амплитуду входящего сигнала.

<u>Крутизна частотной характеристики фильтра</u> – это показатель того, на сколько резко изменяется амплитуда входного сигнала на выходе при изменении его частоты. Чем быстрее происходит спад АЧХ тем лучше.

<u>Коэффициент передачи</u> - это отношение амплитуды выходного сигнала к амплитуде входного.

Ход работы

1.1. RC-фильтр низких частот:

	Выходное	
Частота,	напряжение, мВ	
кГц	С = 10нФ	С = 20нФ
1	209,625	208,425
5	200,404	177,926
10	177,682	130,534
15	152,623	98,2
20	130,535	77,445
30	98,2	53,697
40	77,445	40,862
50	63,53	32,914
60	53,697	27,531
70	46,43	23,652
85	38,541	19,519
100	32,914	16,611

Результаты исследования простейших RCфильтров низких частот с конденсаторами емкостями 10 нФ и 20 нФ

1.2. RC-фильтр высоких частот:

	Выходное	
Частота,	напряжение, мВ	
кГц	С=10нФ	С=20нФ
1	13,171	26,191
2	26,192	51,225
3	38,918	74,182
4	51,226	94,517
6	74,184	126,904
10	112,064	165,354
15	144,748	186,994
30	187,03	204,921
50	202,011	209,459
100	209,501	211,467

Результаты исследования простейших RC-фильтров высоких частот с конденсаторами емкостями 10 нФ и 20 нФ

1.3. Построили простейший RL-фильтр низких частот:

Частота, кГц	Выходное напряжение, мВ	
	L1	L1, L2
1	211,787	210,761
5	203,846	183,822
10	183,61	138,699
15	160,201	105,889
20	138,699	84,137
30	105,89	58,716
40	84,139	44,794
70	50,848	25,989
100	36,126	18,263

Результаты исследования простейших RLфильтров низких частот с катушкой L1 и с последовательно соединенными катушками L1, L2. L1 = L2 = 9мГн

2.1. Т-образный фильтр низких частот:

Частота,	Т-образный ФНЧ
кГц	Выходное напряжение, мВ
1	70,632
5	68,826
10	63,963
20	51,445
30	40,803
40	33,085
50	27,55
60	23,48
85	16,997
100	14,497

Результаты исследования сложных Тобразных фильтров низких частот

2.2. П-образный фильтр низких частот:

Результаты исследования сложных П-образных фильтров низких частот

	П-образный ФНЧ	
	Выходное	
Частота,	напряжение,	
кГц	мВ	
1	70,672	
10	67,092	
20	58,561	
30	49,061	
40	40,547	
50	33,54	
60	27,921	
70	23,431	
85	18,295	
100	14,539	

2.3. Т-образный фильтр высоких частот:

	Т-образный	
	ФВЧ	
	Выходное	
Частота,	напряжение,	
кГц	мВ	
1	3,11	
2	10,376	
3	18,687	
4	26,467	
5	33,233	
8	47,587	
15	61,515	
30	68,087	
60	70,034	
100	70,466	

Результаты исследования сложных Т-образных фильтров высоких частот

Вывод

В ходе выполнения данной работы были изучены простейшие RC- и RL-фильтры высоких и низких частот, и сложные T- и Π - образные фильтры.

По результатам экспериментов можно сделать следующие выводы:

- 1. С увеличением емкости конденсатора в фильтрах низких и высоких частот граничная частота фильтра уменьшается, т.к. уменьшается реактивное сопротивление конденсатора;
- 2. С увеличением индуктивности катушки граничная частота уменьшается;
- 3. Т-образный фильтр низких частот дает лучшую избирательность, чем П-образный фильтр;
- 4. С увеличением сопротивлений нагрузки увеличивается и граничная частота фильтра.