Logic Optimization

Virendra Singh

Professor

Computer Architecture and Dependable Systems Lab
Department of Electrical Engineering
Indian Institute of Technology Bombay

http://www.ee.iitb.ac.in/~viren/

E-mail: viren@ee.iitb.ac.in

EE-224: Digital Systems

Understanding Logic Minimization

• Logic function: $F = a\overline{b} + \overline{a}b + bd + cd$

Algebraic Logic Minimization

Reducing products:

$$F \equiv a\overline{b} + \overline{a}\overline{b} + bd + cd$$

$$\equiv \overline{b}(a + \overline{a}) + bd + cd$$

$$= \overline{b}1 + bd + cd$$

$$= \overline{b}(c + \overline{c}) + bd + cd$$

$$= bd + \overline{b}c + cd + \overline{b}\overline{c}$$

$$= bd + \overline{b}c + \overline{b}\overline{c}$$

$$= bd + \overline{b}(c + \overline{c})$$

$$= bd + \overline{b}$$

Distributivity

Complementation

Identity

Complementation

Distribitivity

Consensus theorem

Distributivity

Complement, identity

Adsorption

Minimized Circuit

• Minimized expression: $F = \overline{b} + d$

Cost,

lesformance

Standard Sum-of-Products (SOP)

- A Simplification Example:
- $F(A,B,C) = \Sigma m(1,4,5,6,7)$
- Writing the minterm expression:

$$F = A'B'C + AB'C' + AB'C + ABC' + ABC$$

• Simplifying:

Simplified F contains 3 literals compared to 15 in minterm F

AND/OR Two-level Implementation of SOP Expression

 The two implementations for F are shown below – it is quite apparent which is simpler!

Wanlass, F. M. "Low Stand-By Power Complementary Field Effect Circuitry." *U. S. Patent 3,356,858* (Filed June 18, 1963. Issued December 5, 1967).

MOSFET (Metal Oxide Semiconductor Field Effect Transistor)

Reference:

R. C. Jaeger and T. N. Blalock, *Microelectronic Circuit Design, Third Edition*, McGraw Hill.

CMOS NOT Gate (Modern Design)

Power supply

VDD = 1 volt; voltage depends on technology.

CMOS Logic Gate: NAND

2 07 Sep 2020 EE-224@IITB 10 CADSL

CMOS Logic Gate: NAND

7 Sep 2020

EE-224@IITB

CADSL

CMOS Logic Gate: NOR

Boolean Function

Truth Table		
Α	В	F
0	0	1
0	1	0
1	0	0 🗸
1	1	0

Symbol

CMOS Logic Gate: AND

Boolean Function

Truth Table		
Α	В	F
0	0	0
0	1	0
1	0	0
1	1	1

CMOS Logic Gate: OR

Boolean Function

Tru	th 1	Гаb	le

Α	В	F
0	0	0
0	1	1
1	0	1
1	1	1

CMOS Gates

Logic function	Number of transistors	
	1 or 2 inputs	N inputs DECAY
NOT	2	- て <u>1</u>
AND	6 v · /27	2N + 2 2 2 2
OR	6 122	$2N + 2 \sqrt{\frac{27}{2}}$
NAND	4 /22.	2N 27 2
NOR	4	2N 27 2

Logic Minimization

delay & M.
Total delay)

Thank You

