Consideriamo l'equazione del moto:

$$\ddot{\alpha} = -\gamma \dot{\alpha} - \omega^2 \sin(\alpha) + f_0 \cos(\overline{\omega}t)$$

con parametri

$$f_0 \in [0.90, 1.50], \ \omega = 1, \ \gamma = 0.5, \ \overline{\omega} = 2/3.$$

Le seguenti traiettorie sono state ottenute integrando l'equazione con il metodo di Runge-Kutta del IV ordine, con $\Delta t = 0.001$ e con dati iniziali $\alpha(0) = \pi/2$, $\dot{\alpha}(0) = 0$. L'angolo α non è stato ricondotto all'intervallo $[-\pi, \pi]$.

Per fare in modo di campionare con accuratezza la sezione di Poincaré (e quindi anche il diagramma di biforcazione e i bacini di attrazione), occorre ricordarsi che per contare fino a 10 non si può contare di tre in tre. Detto in altro modo, per ottenere un valore delle variabili dinamiche al tempo $t=\tau$ a partire dal tempo t=0, o per fare in modo di registrare lo stato $(\alpha,\dot{\alpha})$ del sistema ad intervalli di τ qualunque, bisogna scegliere un passo di integrazione che sia un sottomultiplo intero di τ . Ciò garantisce che, a parte errori dovuti alla precisione finita del calcolo in virgola mobile, ogni n passi di integrazione copriamo esattamente un intervallo di tempo pari a τ . Questo va considerato con particolare attenzione quando si usano metodi di ordine elevato, il che di solito comporta l'adozione di passi di integrazione più grandi, e quindi sono soggetti a discrepanze maggiori laddove il passo di integrazione non sia un sottomultiplo intero dell'intervallo considerato.

Il seguente grafico riporta le sezioni di Poincaré ottenute a intervalli di $T=2\pi/\overline{\omega}$ (periodo della forzante), per alcuni valori di f_0 e con condizioni iniziali $\alpha(0)=\pi/2$, $\dot{\alpha}(0)=0$. Per ottenere questo grafico bisogna ridurre gli angoli all'intervallo $[-\pi,\pi]$; per ogni f_0 la sezione consiste di circa 30000 punti. Runge-Kutta IV ordine con passo d'integrazione $\Delta t = \overline{T}/1000$.

Sezione di Poincaré alla frequenza della forzante 2.5 $f_0 = 1.50$ $f_0 = 1.47$ $\tilde{f_0} = 1.15$ 2 $\tilde{f_0} = 1.07$ f₀=0.90 1.5 dα/dt 0.5 0 -0.5 -2 2 3 -3 -1 0

Si noti che per il moto con $f_0 = 0.90$ la sezione insiste in un solo punto; infatti il moto asintotico è periodico di periodo \overline{T} . Per $f_0 = 1.07$ si ottiene un raddoppio del periodo, e la sezione mostra due punti. Un ulteriore raddoppio c'è a $f_0 = 1.47$.

α

Si può apprezzare la relazione tra la sezione di Poincaré e le orbite nello spazio delle fasi nella figura seguente. Sono evidenti le orbite nello spazio delle fasi, e i casi di moto periodico $f_0 = \{1.07, 1.47\}$. Per ogni f_0 un sottoinsieme della sezione di Poincaré viene riportata sotto forma di punti rossi.

Al variare delle condizioni iniziali $(\alpha(0), \dot{\alpha}(0)) \in [-\pi, \pi] \times [-\pi, \pi]$ possiamo controllare quale sia il segno di $\dot{\alpha}(t^*)$ ad un dato istante t^* , e marcare diversamente nel piano $(\alpha(0), \dot{\alpha}(0))$ le condizioni iniziali a seconda di tale segno.

Mostriamo dunque i bacini di attrazione ottenuti per le velocità positive/negative per $f_0 = 1.07, 1.15, \ t^* = 100, \ \Delta t = 0.01$ e variando le condizioni iniziali a intervalli di $\Delta \alpha = \Delta \dot{\alpha} = \pi/500$ (griglia di 1001×1001 punti). t^* .

Il risultato, per ogni f_0 , dipende molto dalla scelta di t^* . Ecco cosa si ottiene con $f_0 = 1.47, 1.50$ al tempo $t^* = 93$:

Infine, si riporta di seguito il diagramma di biforcazione (ottenuto come la sezione di Poincarè di $\dot{\alpha}$ ad intervalli \overline{T} in funzione dell'ampiezza f_0 della forzante), variando $f_0 \in [0.90, 1.50]$ con un passo di $\delta f = 10^{-4}$, integrando l'equazione del moto con Runge-Kutta IV ordine, passo d'integrazione $\Delta t = \overline{T}/100$ e le seguenti condizioni iniziali: $\alpha(0) = \pi/2$, $\dot{\alpha}(0) = k\pi/10$ con $k = 0, 1, \dots, 10$. Ogni diversa condizione iniziale contribuisce con un set di punti al diagramma di biforcazione. Nel grafico, i dati corrispondenti a valori diversi della velocità iniziale sono rappresentati da punti di colore differente. Si noti la biforcazione vicino a $f_0 = 1.07$, che determina il raddoppiamento del periodo. Successive biforcazioni indicano ulteriori moltiplicazioni di periodo, fino a raggiungere il comportamento caotico. Risultano evidenti le regioni di f_0 in cui il sistema è lontano dall'essere periodico.

Per completezza, di seguito anche il diagramma di biforcazione per l'angolo α .

