Suite et séries de fonctions Chapitre 1: Suites de fonctions

Table des matières

1. Introduction.	1
2. Convergence simple.	1
3. Convergence uniforme.	2
3.1. Propriétés de la ∥⋅∥⊥∞	3

1. Introduction.

On considère un ensemble X non vide (en général $X \subset \mathbb{R}$ ou \mathbb{C}).

Définition 1.1 (suite de fonctions): On appelle suite de fonctions $(f_n)_{n\in\mathbb{N}}$ sur X la suite définie pour tout $n\in\mathbb{N}$ par la fonction $f_n:X\to\mathbb{R};x\mapsto f_n(x)$.

Exemple:
$$X = \mathbb{R}$$

 $\forall n \in \mathbb{N}, f_n(x) = \ln(1 + nx^2).$

2. Convergence simple.

On cherche à étudier le comportement d'une suite de fonction quand n tend vers $+\infty$, il faut définir une notion de convergence. Le plus simple c'est d'utiliser la convergence des suites numériques.

Définition 2.1 (convergence simple): Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions sur X. On dit que $(f_n)_{n\in\mathbb{N}}$ converge simplement sur X, si pour tout $x\in X$, la suite numérique $(f_n(x))_{n\in\mathbb{N}}$ est convergente. Dans ce cas on note $f(x)=\lim_{n\to+\infty}f_n(x)$ la limite et on dit que $(f_n)_{n\in\mathbb{N}}$ converge simplement vers f sur X et on note $f_n\overset{\mathrm{CS}}{\longrightarrow}f$ sur X. i.e :

$$f_n \overset{\mathsf{CS}}{\longrightarrow} f \text{ sur } X \Leftrightarrow \forall x \in X, \forall \varepsilon > 0, \exists N \in \mathbb{N}, n \geq N \Rightarrow |f_n(x) - f(x)| \leq \varepsilon$$

Remarques:

- 1. Le N de la définition dépend de x et de ε .
- 2. La convergence simple est une propriété locale.

Remarque (méthode): Pour étudier la convergence simple d'une suite de fonctions $(f_n)_{n\in\mathbb{N}}$ sur X on doit :

- 1. Fixer $x \in X$.
- 2. Etudier la suite numérique $\left(f_n(x)\right)_{n\in\mathbb{N}}$.
- 3. S'il y a convergence, on construit $f: X \to \mathbb{R}$ tq $f(x) = \lim_{n \to +\infty} f_n(x)$ et on dit $f_n \stackrel{\mathsf{CS}}{\longrightarrow} f$ sur X.

Exemples:

- $\text{1. On considère } (f_n)_{n \in \mathbb{N} \backslash 0} \text{ sur } I =]0, + \infty[\text{ définie par } f_n : I \to \mathbb{R}; x \mapsto \frac{1}{x + \frac{1}{n}} \text{ Soit } x > 0 \text{ fixé, on a } f_n(x) \underset{n \to + \infty}{\longrightarrow} \frac{1}{x}. \text{ On pose } f : I \to \mathbb{R}; x \to \frac{1}{x} \text{ et on a } f_n \xrightarrow{\mathsf{CS}} f \text{ sur } X.$
- 2. Même suite mais sur $I=[0;+\infty[$. Pour x=0, $f_n(0)=n\underset{n\to+\infty}{\longrightarrow}+\infty$ donc $(f_n)_{n\in\mathbb{N}\setminus 0}$ ne converge pas simplement sur I.

3. On considère
$$(f_n)_{n\in\mathbb{N}\setminus 0}$$
 sur $I=[0,+\infty[$ où $f_n:I\to\mathbb{R};x\mapsto \left(1+\frac{x}{n}\right)^n$ * pour $x=0$ fixé, $f_n(0)=1\underset{n\to +\infty}{\longrightarrow} 1$.

$$* \text{ pour } x > 0 \text{ fix\'e}, f_{n(x)} = e^{n \ln(1 + \frac{x}{n})} = e^{n(\frac{x}{n} + o(\frac{1}{n}))} = e^{x + o(1)} \underset{n \to +\infty}{\longrightarrow} e^x$$
 On pose $f: I \to \mathbb{R}; x \to e^x$, on a $f_n \overset{\operatorname{CS}}{\longrightarrow} f \text{ sur } I.$

4. Soit
$$(f_n)_{n\in\mathbb{N}}$$
 sur $I=[0,1]$ définie par $f_{n(x)}=x^n$.
* Si $x\in[0,1[$ fixé, $f_n(x)\underset{n\to+\infty}{\longrightarrow}0$

* Si
$$x = 1, f_n(1) \longrightarrow 1.$$

$$*\operatorname{Si} x = 1, f_n(1) \underset{n \to +\infty}{\longrightarrow} 1.$$
 On pose $f: I \to \mathbb{R}; x \mapsto \left\{ \begin{smallmatrix} 1 & \operatorname{si} x = 1 \\ 0 & \operatorname{sinon} \end{smallmatrix} \right.$ On a $f_n \underset{n \to +\infty}{\longrightarrow} f.$

On veut définir une convergence qui conserve la continuité à la limite. On suppose $f_n \stackrel{\mathsf{CS}}{\longrightarrow} f$ sur Iun intervalle de \mathbb{R} . On suppose $\forall n \in N, f_n \in C^{\mathrm{o}}(I,\mathbb{R})$. Soit $\alpha \in I, \varepsilon > 0$. On veut majorer |f(x) - f(x)| = 0 $f(\alpha)$ par ε . On a :

$$\begin{split} |f(x) - f(\alpha)| &= |f(x) - f_n(x) + f_n(x) + f_n(\alpha) - f_n(\alpha) - f(\alpha)| \\ &\leq |f(x) - f_n(x)| + |f_n(x) - f_n(\alpha)| + |f_n(\alpha) - f(\alpha)| \end{split}$$

 1^{er} terme: $\forall n \in \mathbb{N}, f_n$ est continue en α donc

$$\exists \eta_n \in \mathbb{R}, x \in]\alpha - \eta, \alpha + \eta[\Rightarrow |f_n(x) - f_n(\alpha)|.$$

 2^{eme} terme: Comme f_n tend vers f quand $n \to (+\infty)$,

$$\exists N_{x,\varepsilon}, n \geq N_{x,\varepsilon} \Rightarrow |f_n(x) - f(x)| \leq \frac{\varepsilon}{3}.$$

 3^{eme} terme: Comme $f_n(\alpha)$ tend vers $f(\alpha)$ quand $n \to (+\infty)$,

$$\exists \eta_n \in \mathbb{R}, x \in]\alpha - \eta, \alpha + \eta [\Rightarrow |f_n(\alpha) - f(\alpha)| \leq \frac{\varepsilon}{3}.$$

Le problème est dû au fait que on doit satisfaire les deux conditions $x \in]\alpha - \eta; \alpha + \eta[$ et $x \geq N_{x,\varepsilon}$ pour une infinité de x.

3. Convergence uniforme.

Définition 3.1 (Convergence uniforme): Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonction sur X. Soit f une fonction sur X. On dit que $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f sur X si:

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, n \geq N \Rightarrow \forall x \in X, |f_n(x) - f(x)| \leq \varepsilon.$$

On note $f_n \xrightarrow{\mathrm{CU}} f$ sur X.

Remarques:

- 1. Le N ne dépend que de ε .
- 2. La convergence uniforme est une propriété globale.

Définition 3.2: Soit $f: X \to \mathbb{R}$ une fonction. On appelle **norme sup** ou **norme infinie** sur X la valeur:

$$||f||_{+\infty,X}=\sup\{|f(x)|,x\in X\}\in\mathbb{R}_+\cup\{\pm\infty\}.$$

Exemples:

- 1. $f: \mathbb{R} \to \mathbb{R}; x \mapsto \frac{1}{1+x^2}$ On a $\forall x \in \mathbb{R}, 0 \le f(x) \le 1$ et f(0) = 1 donc $||f||_{+\infty,\mathbb{R}} = 1$.
- 2. $f: I = [0, 1] \to \mathbb{R}; x \mapsto x^2$ On a $f'(x) = 2x \ge 0$ Donc f(x) est croissante sur I et $f(x) \xrightarrow[x \to 1]{} 1$. D'où $\{f(x), x \in I\} = [0, 1]$ $\operatorname{donc} \|f\|_{+\infty,I} = 1.$
- 3. $f: \mathbb{R} \to \mathbb{R}; x \mapsto x$ $||f||_{+\infty,\mathbb{R}} = +\infty.$

3.1. Propriétés de la $\|\cdot\|_{+\infty}$

Proposition 3.1.1: Soient $f, g: X \to \mathbb{R}$ deux fonctions.

- 1. S'il existe $M \in \mathbb{R}_+$ tel que $\forall x \in X, |f(x)| \leq M$ alors $||f||_{+\infty,X} \leq M$.
- 2. $\forall \alpha \in \mathbb{R}, \|\alpha f\|_{+\infty,X} = |\alpha| \|f\|_{+\infty,X}.$
- 3. $||f+g||_{+\infty,X} \le ||f||_{+\infty,X} + ||g||_{+\infty,X}$.
- 4. $||fg||_{+\infty,X} \le ||f||_{+\infty,X} ||g||_{+\infty,X}$.

Démonstration:

- 1. exercice
- 2. exercice
- 3. $|f+g| \leq |f| + |g| \leq \|f\|_{+\infty,X} + |g| \leq \|f\|_{+\infty,X} + \|g\|_{+\infty,X}$ d'où d'après 1),

$$||f + g||_{+\infty,X} \le ||f||_{+\infty,X} + ||g||_{+\infty,X}.$$

Proposition 3.1.2 (Convergence uniforme avec la norme infinie): Soient $(f_n)_{n\in\mathbb{N}\setminus 0}$ une suite de fonctions sur X et f une fonction sur X. Alors

$$f_n \xrightarrow{\mathrm{CU}} f \Leftrightarrow \|f_n - f\|_{+\infty, X} \xrightarrow[n \to +\infty]{} 0.$$

Démonstration:

 $\Rightarrow \operatorname{Si} f_n \xrightarrow{\operatorname{CU}} f \operatorname{sur} X, \forall \varepsilon > 0, \exists N \in \mathbb{N} \operatorname{tq} n \geq N \Rightarrow \forall x \in X, |f_n - f| \leq \varepsilon \operatorname{donc} \left\| f_n - f \right\|_{+\infty, X} \leq \varepsilon.$ $\begin{array}{l} \text{D'où } \|f_n - f\|_{+\infty, X} \underset{n \to +\infty}{\longrightarrow} 0. \\ \Leftarrow \text{Si } \|f_n - f\|_{+\infty, X} \underset{n \to +\infty}{\longrightarrow} 0 \text{ Alors} \end{array}$

 $\forall \varepsilon > 0, \exists N_\varepsilon \in \mathbb{N}, n \geq N \Rightarrow \forall x \in X, |f_n(x) - f(x)| \leq \|f_n(x) - f(x)\|_{_{+\infty}} \leq \varepsilon.$

Donc $f_n \stackrel{\mathrm{CU}}{\longrightarrow} f \operatorname{sur} X$.

Théorème 3.1.1: Soit $(f_n)_{n\in\mathbb{N}\setminus 0}$ une suite de fonctions et soit f une fonction sur X. On a

$$f_n \xrightarrow{\mathrm{CU}} f \text{ sur } X \Rightarrow f_n \xrightarrow{\mathrm{CS}} f \text{ sur } X.$$

Démonstration: Immédiat. Remarque (Méthode): Plan pour étudier la convergence uniforme d'une suite de fonctions $(f_n)_{n\in\mathbb{N}\setminus 0}$

- 1. Etudier la convergence simple.
- 2. S'il y a convergence simple, on définit la fonction $f: X \to \mathbb{R}; x \mapsto f_n(x)$ quand $n \to +\infty$.
- 3. Etudier la convergence uniforme: s'il y a convergence uniforme, cela ne peut être que vers f!
- 4. Pour montrer la **convergence uniforme** : on majore $\|f_n f\|_{+\infty,X}$ par une suite numérique (sans x) qui tend vers 0 quand $n \to +\infty$.

Pour montrer la **non-convergence uniforme** : on minore $||f_n - f||_{+\infty}$ par une suite numérique positive (sans x) qui ne tend pas vers 0 quand $n \to +\infty$.

On pourra étudier la suite: $g_n = f_n - f$.

Exemples:

1. $(f_n)_{n\in\mathbb{N}\setminus 0}$ définie par $f_n:I=[1,+\infty[\to\mathbb{R};x\mapsto \frac{1}{x+\frac{1}{n}}]$. On a vu que $f_n\stackrel{\mathrm{CS}}{\longrightarrow} f$ sur I où $f:I\to\mathbb{R};x\mapsto \frac{1}{x}$. On pose:

$$g_n = f_n - f = \frac{1}{x} - \frac{1}{x + \frac{1}{x}} = \frac{\frac{1}{n}}{x(x + \frac{1}{x})} = \frac{1}{nx^2 + x}.$$

 1^{ere} méthode: Majoration de $|g_n|$ par une expression qui ne dépend pas de x et qui tend vers 0 quand

Lorsque $x \geq 1$; $nx^2 + x \geq nx^2 + 1 \geq n + 1$ Donc $\forall x \in I, 0 \leq g_n(x) \leq \frac{1}{n+1}$ Donc

$$\|f_n - f\|_{+\infty, I} \le \frac{1}{n+1} \underset{n \to +\infty}{\longrightarrow} 0$$

. D'où $f_n \stackrel{\text{CU}}{\longrightarrow} f \text{ sur } I$.

 2^e méthode: (en général plus couteuse): On étudie g_n . On a $g_n{}'(x) = -\frac{2nx+1}{(nx^2+x)^2} \leq 0$ donc g_n est

décroissante sur I et $\|f\|_{+\infty,I} = \frac{1}{n+1} \underset{n \to +\infty}{\longrightarrow} 0$. D'où $f_n \overset{\mathrm{CU}}{\longrightarrow} f$ sur I.

2. $(f_n)_{n \in \mathbb{N} \setminus 0}$ définie par $f_n : I = [0,1] \to \mathbb{R}; x \mapsto x^n$. On a vu $f_n \overset{\mathrm{CS}}{\longrightarrow} f$ sur I où $f : I \to \mathbb{R}; x \mapsto \begin{cases} 0 & \text{si } x \in [0,1[\\ 1 & \text{si } x = 1 \end{cases}$

 1^{ere} méthode: On veut minorer $|f_n(x) - f(x)|$. Pour cela, on utilise une suite de $(x_n)_{n \in \mathbb{N}}$ où $\forall n, x_n \in I, x_n = 1 - \tfrac{1}{n}. \text{ Ainsi, on a bien } |f_n(x_n) - f(x_n)| \underbrace{\longrightarrow}_{n \to +\infty} 0.$

$$|f_n(x_n) - f(x_n)| = f_n(x_n) = \left(1 - \frac{1}{n}\right)^n = e^{n\ln\left(1 - \frac{1}{n}\right)} = e^{n\left(-\frac{1}{n} + o\left(\frac{1}{n}\right)\right)} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e}$$

On a $\|f_n-f\|_{+\infty.I} \geq |f_n(x_n)-f(x_n)|$ $\nearrow f_{+\infty} 0$. d'où $(f_n)_{n\in\mathbb{N}}$ ne converge pas uniformément $\operatorname{sur} I$.

 $2^{e} \text{ m\'ethode: } g_{n}(x) = f_{n}(x) - f(x) = \begin{cases} f_{n}(x) = x^{n} \text{ si } x \neq 1 \\ 1 \text{ sinon} \end{cases} \text{donc } \left\|g_{n}\right\|_{+\infty,I} = 1 \underset{p \neq +\infty}{\longrightarrow} 0. \text{ Donc } \left(f_{n}\right)_{n \in \mathbb{N}} = 1$ ne converge pas uniformément sur I.

Théorème 3.1.2: Soit $I\subset\mathbb{R}$ un intervalle et $\left(f_{n}\right)_{n\in\mathbb{N}}$ une suite de fonctions définies sur I. Soit $f:I\to\mathbb{R}$ une fonction. Soit $x_{0}\in I$. On suppose

- 1. $\forall n \in \mathbb{N}, f_n \text{ est continue en } x_0 \text{ (} f_n \in C^{\text{o}}(I,\mathbb{R}) \text{)}.$
- $2. \ f_n \xrightarrow{\mathrm{CU}} f \ \mathrm{sur} \ I.$

Alors f est continue en x_0 .