

Energy Conversion I

alexis.martin@ensea.fr Desk D216

Layout

- Non isolated choppers
- Switch mode power supplies
- Power components
 - Passive components
 - Coil
 - Transformer
 - Capacitor
 - Active components
 - Diodes
 - Transistors

Passive components Coil Transformer

Capacitor

Active

$$\int \mathbf{H.dl} = \mathbf{N.I}$$
 circuit

$$\mathbf{H} = \frac{\mathbf{B}}{\mu}$$

$$N.I = \left[\int\limits_{circuit} \frac{dl}{\mu.S}\right]. \varphi = R. \varphi$$

 φ = B.S: elementary flux (real flux)

$$\Phi = N.\phi = L.I$$
: "total flux" (sawn by the electrical circuit)

$$L_1 = \frac{N^2}{R} = N^2 \cdot A_L$$

Passive components Coil Transformer Capacitor

Active components

Hysteresis

Ideal Characteristic

Passive components Coil Transformer

Capacitor

Active components

Stored energy – Air-gap

Magnetic energy density stored

$$\omega_{mag} = \frac{B^2}{2 \cdot \mu_0 \cdot \mu_r}$$

$$B = 0.4 T$$

$$\omega_{\text{mag}} = 32 \text{ J/m}^3$$

$$\mu = \mu_0 \cdot \mu_r = 2.5 \ 10^{-3} \ H.m^{-1}$$

Air-gap:
$$\mu 0 = 4\pi . 10^{-7} H.m-1$$
 $\omega_{\text{mag}} = 65 \text{ kJ/m}^3$

$$\omega_{\text{mag}} = 65 \text{ kJ/m}^3$$

Store energy in the air-gap

Passive components Coil Transformer Capacitor

Active components

Magnetic circuit example

ETD series

Passive components Coil **Transformer** Capacitor Active components Beyond Engineering

With air-gap

Passive components Coil **Transformer** Capacitor Active components

For a Forward: closed core

Transformer Capacitor

Active components

Magnetic pot core

RM- 8- bis RM-14-Kernstze fr nichtlineare Drosselspulen

RM series

Transformer

Capacitor

Active components

Torus

Transformer

Capacitor

Active components

Magnetic circuits parameters

Inductance factor: $\mathbf{A_L}$ = Inductance obtained with ONE loop

Passive components Coil **Transformer** Capacitor **Active** components

Critical constraints

Induction in the material: $B < B_{sat}$ 0,2 to 0,5 T for classical materials

Current density in the coil: $\delta < \delta_{max}$ $5 A/mm^2$ for copper

Sizing: product A_e . S_b

Coil **Transformer** Capacitor

Active components

Transformer

Primary: N_1 turns

Secondary: N₂ turns

Magnetizing current i_{10} : Hopkinson's law

$$\Phi = L_1 \cdot i_{10}$$
 $L_1 = \frac{N_1^2}{R}$ $i_1 + m \cdot i_2 = i_{10}$ $v_1 = L_1 \cdot \frac{di_{10}}{dt_1}$

$$i_1 + m.i_2 = i_{10}$$

 $R.\varphi = N_1.i_{10}$

$$v_1 = L_1 \cdot \frac{di_{10}}{dt}$$

Transformer Capacitor

Coil

Active components

 L_1 : Magnetizing inductance (at primary side)

 R_f : ferromagnetic losses

r: Joule loss (or ohmic loss)

 λ : leakage inductance

Transformer

Capacitor

Active

Skin effect

$$\mathbf{j}(\mathbf{r}) = \mathbf{j} \cdot \mathbf{J}_0 \left(\mathbf{e}^{i\pi \frac{\mathbf{r}}{\delta}} \right).$$

$$\delta = \frac{1}{\sqrt{\pi \cdot \sigma \cdot \mu \cdot f}}$$

- δ : skin depth thickness
- σ : conductivity
- μ : permeability
- f : frequency

Transformer

Capacitor

Active

Skin effect

Copper at 25°C

> 50 Hz : δ = 9,4 mm

 $> 100 \text{ kHz} : \delta = 0.21 \text{ mm}$

=> Multi strand wire, Litz wire

Transformer

Capacitor

Active components

$$k_{\rm B} = 0.7$$

Passive components Coil Transformer

Capacitor

Active

Capacitors

Losses in the capacitor

$$P=r.I_{eff}^2$$

Rated voltage: U_{eff}

r: ESR (Equivalent Series Resistor)

Multiple technologies: depends on the frequency

Coil Transformer Capacitor

Active components

- Electrolytic
 - High voltage
 - Polarized -> DC voltage
 - Lifetime depends on temperature

- High frequency

- Films
 - Self-healing

 AI_2O_3

Electrolytic

Active components

Active components Diodes Bipolar transistor MOS transistor IGBT transistor

Active components

Diode

$$i = I_S \left(e^{\frac{q.v_{AK}}{k.T}} - 1 \right)$$

Active components Diodes

Bipolar transistor

MOS transistor

IGBT transistor

Diode: static characteristic

 I_0 : Average forward current, or I_F , I_{AV}

I_{FM}: Peak forward current

 I_{FSM} : Peak forward surge current

I_{RRM}: Reverse repetitive current

 V_0 : Forward voltage or V_{FM}

 V_{BR} : Breakdown reverse voltage

 V_{RRM} : Peak repetitive reverse voltage

Active components Diodes Bipolar transistor MOS transistor IGBT transistor

ENSEA Beyond Engineering

Diode: simplified static characteristics

$$V_{AK} = r_{on} \cdot i + V_0$$

Linearized characteristic 3 segments

Conduction loss calculation

$$P_c = r_{on} I_{eff}^2 + V_0 I_{av}$$

Active components Diodes Bipolar transistor MOS transistor IGBT transistor

Diode on commutation mode: equivalent scheme

Active components Diodes Bipolar transistor MOS transistor IGBT transistor

ENSEA Beyond Engineering

Conduction switch

Active
components
Diodes
Bipolar transistor
MOS transistor
IGBT transistor

« Ideal » turn off diode with voltage source

Active
components
Diodes
Bipolar transistor
MOS transistor
IGBT transistor

Diode: « real » turn off

Active components Diodes Bipolar transistor **MOS** transistor **IGBT** transistor

$$P_b = f.E_1. Q_R$$

Active components Diodes Bipolar transistor MOS transistor IGBT transistor

$$\theta_{\rm j} < \theta_{
m jmax}$$

 $Rth_{c/a}$ calculation

Active components Diodes Bipolar transistor MOS transistor IGBT transistor

Specific diode

- Low threshold diode: Schottky diode
- High voltage diode
- Power Zener diodes (« Transient-voltage-suppression diode »)
- Fast diodes (low Q_R)
- Light-emitting diodes (high threshold)

Active components Diodes Bipolar transistor MOS transistor IGBT transistor

- (1) $T_{amb} = 125 \, ^{\circ}C$.
- (2) $T_{amb} = 100 \, ^{\circ}C$.
- (3) $T_{amb} = 75 \, ^{\circ}C$.
- (4) $T_{amb} = 25 \, ^{\circ}C$.

Fig.2 Forward current as a function of forward voltage; typical values.

Active components

Diodes

Bipolar transistor

MOS transistor

IGBT transistor

Bipolar power transistor

Base-emitter junction forward biased

Base-collector junction reverse biased

$$i_{C} = \alpha . i_{E} ; i_{B} = (1 - \alpha) . i_{E}$$

$$\beta = \frac{\alpha}{1 - \alpha}$$

$$i_C = \beta . i_B$$

$$i_C = \beta . i_B$$

Active components

Diodes **Bipolar transistor**

MOS transistor

IGBT transistor

Transistor characteristic

 I_c = average current

I_{cm}: maximum forward current

Vce_{sat}: saturation voltage

Conduction loss $P_c = Vce_{sat}I_c.\alpha$

Active components Diodes

Bipolar transistor

MOS transistor

IGBT transistor

ENSEA Beyond Engineering

Transistor safety area

Active components Diodes

Bipolar transistor

MOS transistor

IGBT transistor

Transistor switching

Active components

Diodes

Bipolar transistor

MOS transistor

IGBT transistor

Switching cycle

$$P_f = \frac{1}{2}$$
 . EI . $(t_{fv} + t_{ri})$. f
 $P_b = \frac{1}{2}$. EI . $(t_{fi} + t_{rv})$. f

Active components

Diodes

Bipolar transistor

MOS transistor

IGBT transistor

Control circuit: driver

Active components Diodes

Bipolar transistor

MOS transistor

IGBT transistor

Active components Diodes Bipolar transistor MOS transistor IGBT transistor

Power MOS

Active components Diodes

Bipolar transistor

MOS transistor

IGBT transistor

MOSFET characteristics

Active components Diodes Bipolar transistor MOS transistor IGBT transistor

MOS safety area

Active components Diodes

Bipolar transistor

MOS transistor

IGBT transistor

Free-wheeling diode

Active components Diodes Bipolar transistor MOS transistor IGBT transistor

Bipolar-MOS comparison

Criteria	Bipolar		MOSFET
Voltage withstand	1000 V	>	500 V
Switched current	few 100 A	>	few 10 A
Control speed	few kHz	<	few MHz
Ease of control	Current	<	Voltage
Safety circuit	Snubber	<	Zener
Conduction loss	few W	<	r _{DSon}
Switching loss (at fixed frequency)	few 10 W	>	few W

Active components Diodes Bipolar transistor MOS transistor IGBT transistor

I.G.B.T.: Insulated-Gate Bipolar Transistor

Active components

Diodes

Bipolar transistor

MOS transistor

IGBT transistor

Power IGBT

Absolute Maximum Ratings					
Symbol	Conditions		Values	Unit	
IGBT			'		
V _{CES}	T _j = 25 °C		1200	V	
Ic	T _j = 175 °C	$T_c = 25 ^{\circ}\text{C}$ $T_c = 80 ^{\circ}\text{C}$	1305	Α	
		T _c = 80 °C	1003	Α	
I _{Cnom}		·	900	Α	

Active components

Diodes
Bipolar transistor
MOS transistor

IGBT transistor

I.G.B.T. half bridge

Absolute Maximum Ratings						
Symbol	Conditions		Values	Unit		
IGBT						
V _{CES}	T _j = 25 °C		1200	V		
Ic	T _j = 175 °C	T _c = 25 °C T _c = 80 °C	422	Α		
		T _c = 80 °C	324	Α		
I _{Cnom}			300	Α		
I _{CRM}	$I_{CRM} = 3xI_{Cnom}$		900	Α		

Characteristics						
Symbol	Conditions		min.	typ.	max.	Unit
t _{d(on)}	V _{CC} = 600 V	T _j = 150 °C		220		ns
t _r	I _C = 300 A V _{GE} = ±15 V	T _j = 150 °C		44		ns
E _{on}	$R_{Gon} = 1.5 \Omega$	T _j = 150 °C		27		mJ
t _{d(off)}	$R_{G \text{ off}} = 1.5 \Omega$ $di/dt_{on} = 6100 \text{ A/}\mu\text{s}$ $di/dt_{off} = 3000 \text{ A/}\mu\text{s}$	T _j = 150 °C		520		ns
t _f		T _j = 150 °C		117		ns
E _{off}		T _j = 150 °C		39		mJ
R _{th(j-c)}	per IGBT				0.11	K/W

Active components

Diodes

Bipolar transistor

MOS transistor

IGBT transistor

Modules

$1200 \text{ V} - 39 \text{ A} \text{ at } 25^{\circ}\text{C} - t_{\text{f}} < 200 \text{ns}$

 $1200 \text{ V} - 231 \text{ A} \text{ at } 25^{\circ}\text{C} - t_{\text{f}} < 500 \text{ns}$

Active components Diodes Bipolar transistor MOS transistor

IGBT transistor

IGBT equivalent scheme

Control: MOS's one

Forward voltage: bipolar

Voltage withstand: MOS

Switch off: MOS

Switch on: bipolar (dragging)

Active components

Diodes
Bipolar transistor
MOS transistor
IGBT transistor

IGBT model: commutation mode

 $V_{DS} = V_{GS}$

VDS

Active components

Diodes
Bipolar transistor
MOS transistor

IGBT transistor

Commutation on a BUCK chopper

Active components

Diodes

Bipolar transistor

MOS transistor

IGBT transistor

Commutation on a BUCK chopper: Turn on

 $[0..t_1]$: the transistor is still off state $t_1: v_{GS} = v_{GSTH}$

 $[t_1..t_2] : v_{GS}$ and i_{G} are still evolving $t_2 : i_{DRI} = 0$

[t₂..t₃]: diode reverse recovery t₃: end of recovery

 $[t_3..t_4]$: v_{DS} relaxation t_4 : end of switching i_D, v_{DS}

Active components

Diodes
Bipolar transistor
MOS transistor

IGBT transistor

Commutation on a BUCK chopper: Turn off

$$[0..t'_1]$$
: the transistor is still on state $V_{DS} = V_{DSO}$

 $[t'_1..t'_3]$: v_{DS} increases, transistor on state t'_3 : DRL forwards

[t'₃..t'₄]: i_D decreases t'₄: end of switching

Active components

Diodes
Bipolar transistor
MOS transistor

IGBT transistor

Control specificity

Active components

Diodes
Bipolar transistor
MOS transistor
IGBT transistor

Driver MC33153

