N87-16411

SURFACE PROPERTY MODIFICATION OF SEMICONDUCTORS BY FLUID ABSORPTION

UNIVERSITY OF ILLINOIS AT CHICAGO

S. Danyluk

Objectives

. Lubricated Cutting (wafering) laboratory simulation mechanism model

. Residual Stresses in Sheet
Develop Interferometry Technique
Apply to EFG and WEB

Lubricated Cutting in Simulated Laboratory Experiments

Surface Morphology

Hardness

Load, Temperature, Fluids

Wear rate

Depth of Damage

Mechanism

Model

Silicon Wafer

cracks (propagate on clavage planes)

damage zone

plasticity(?)

due to high compressive stresses

at crack tips

. Simulate Damage

dicing (OD sawing)
indentation (Vickers dia)

Identify critical parameters

Load fluid temperature

OD Sawing (Dicing)

Examples of Cracks at the Bottom of Grooves

ORIGINAL PAGE 17 OF POOR QUALITY

Summary of High-Speed, Elevated Cutting

Deformation Mode

Cracks at Bottom of groove
Plasticity

Fluids, Temperature--- influence surface morphology

Figure 36. Damage size(2D) vs. indentation temperature for p-type and n-type Cz silicon. The indentation load was 0.49N. The n-type silicon had resisistivites of 0.016, 0.959, 2.5, and 3.347 2cm.

Indentation Model

at low P, space charge fields influence damage

$$x_{n} = \frac{N_{s}}{N_{D}} \left[\frac{e^{\left(\frac{u}{e} - E_{ss}\right)}}{\frac{1}{1 + e^{\left(\frac{u}{e} - E_{ss}\right)}}}{\frac{1}{kT}} - 1 \right]$$

 $^{\circ}N_S$ - \underline{finite} number of surface states $^{\circ}N_S$, E_{SS} not known but extracted from expt. $^{\circ}$ Me, electrochemical potential

 $2D = f(N_{\vec{D}}, N_{s}, E_{ss}, T)$

Space Charge Length as a Function of Temperature

Space Charge Length as a Function of Temperature

Summary of Indentation Model

2D and x_n exhibit maximum at 150C

$$N_s = 10^{16} - 10^{18}/m^2$$

Doping level influences 2D

Predict T_1N_D variation with 2D

Summary of Silicon Results

- . Wear rate
 - . Ethanol highest
 - . air lowest
- . Damage

.temp

cracks, damage decreases at T 250°C

- . bulk doping
- . fluid

Conclusions

Mechanisms of Wear

- . Wear rate and damage includes: cracks and plasticity
- Laboratory simulation tests provide guidance in modifying industrial practices.
- . Wear rate may be optimized and damage may be minimized

Load (below 0.98N (100fg)
Fluid (alcohol-based vs. water-based fluids)
Temp (200-300°C)

- Model allows parameters to be identified and range to be extrapolated.
- . Unresolved problems: Impact, fatigue

Residual Stresses

- . Interferometry is a promising NDT technique for sheet geometries
 - Edges compressive Center - tensile
- . EFG v_{growth} = 2 cm/min σ_{RS} = ±20MPa

WEB - v growth = cm/min - oRS = ±1 MPa

. Unresolved problems: anisotropy of E, ν dendrite geometry