

Convolutional Neural Networks

Session #6

A study group by dair.ai

Hello! 👋

Salim Chemlal

dair.ai

@dair_ai

Slack group

<u>GitHub</u>

Convolution Neural Networks, ConvNets, CNNs

Dog Cat

Segmentation

Neural Style Transfer

A Sample CNN

Fully-Connected Layers Constraints

Assume

1MP RGB Image

&

Model size of a single hidden MLP layer is 1000

What is size of weight matrix?

Where is Waldo?

Intuitions behind CNNs

Translation invariance:

Network should respond similarly to the same patch, regardless of where it appears.

Locality:

Network should focus on local regions

MLP Recap:

Consider an MLP with a 2D image **X** and immediate hidden representation **H** in 2D, the fully-connected layer can be expressed as:

$$\begin{split} [\mathbf{H}]_{i,j} &= [\mathbf{U}]_{i,j} + \sum_k \sum_l [\mathbf{W}]_{i,j,k,l} [\mathbf{X}]_{k,l} \\ &= [\mathbf{U}]_{i,j} + \sum_a \sum_b [\mathbf{V}]_{i,j,a,b} [\mathbf{X}]_{i+a,j+b} \end{split}$$

where $[V]_{i,j,a,b} = [W]_{i,j,i+a,j+b}$

Principle 1: Translation Invariance

$$[\mathbf{H}]_{i,j}$$
 = $[\mathbf{U}]_{i,j} + \sum_{a} \sum_{b} [\mathsf{V}]_{i,j,a,b} [\mathbf{X}]_{i+a,j+b}$

A shift in **X** should lead to a shift in **H**

V and U do not actually depend on (i, j)

$$[\mathbf{H}]_{i,j} = u + \sum_{a} \sum_{b} [\mathbf{V}]_{a,b} [\mathbf{X}]_{i+a,j+b}$$

Principle 2: Locality

$$[\mathbf{H}]_{i,j} = u + \sum_{a} \sum_{b} [\mathbf{V}]_{a,b} [\mathbf{X}]_{i+a,j+b}$$

No need to look very far away from location (*i*, *j*) to assess what is going on at [H]_{i,i}.

We set
$$[V]_{a,b} = 0$$
 for $|a|, |b| > \Delta$

$$[\mathbf{H}]_{i,j} = u + \sum_{a=-\Delta}^{\Delta} \sum_{b=-\Delta}^{\Delta} [\mathbf{V}]_{a,b} [\mathbf{X}]_{i+a,j+b}$$

2-D Cross Correlation

*

Input

Kernel

Output

0	1	2
3	4	5
6	7	8

0 1 2 3

$$0 \times 0 + 1 \times 1 + 3 \times 2 + 4 \times 3 = 19$$
,

$$1 \times 0 + 2 \times 1 + 4 \times 2 + 5 \times 3 = 25$$
,

$$3 \times 0 + 4 \times 1 + 6 \times 2 + 7 \times 3 = 37$$
,

$$4 \times 0 + 5 \times 1 + 7 \times 2 + 8 \times 3 = 43$$
.

2-D Convolution Layer

 $\mathbf{X}: n_h \times n_w$ input matrix

 $\mathbf{W}: k_h \times k_w$ kernel matrix

b: scalar bias

$$\mathbf{Y}: (n_h - k_h + 1) \times (n_w - k_w + 1)$$
 output matrix

$$\mathbf{Y} = \mathbf{X} \star \mathbf{W} + b$$

W and *b* are learnable parameters

PyTorch Code:

- Cross Correlation
- Convolution Layer
- Object Edge Detection
 - Learning a Kernel

Cross-correlation vs Convolution

- Identical operations except that the kernel is flipped in convolution.
 - 2-D Cross Correlation

$$y_{i,j} = \sum_{a=1}^{h} \sum_{b=1}^{w} w_{a,b} x_{i+a,j+b}$$

2-D Convolution

$$y_{i,j} = \sum_{a=1}^{h} \sum_{b=1}^{w} w_{-a,-b} x_{i+a,j+b}$$

If the kernel is symmetric, then they are identical.

Cross-correlation vs Convolution

Full correlation result

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 **9 8 7** 0 0 0 0 **6 5 4** 0 0 0 0 **3 2 1** 0 0 0 0 0 0 0 0 0

Full convolution result

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 0 0 0 0 4 5 6 0 0 0 0 7 8 9 0 0 0 0 0 0 0 0 0

Many machine learning libraries implement cross-correlation but call it convolution.

In Deep Learning, since Kernels are learned, it does not matter!

Cool Edge Detection Demo

https://setosa.io/ev/image-kernels/

Multiple Input Channels

Note: Kernel must have same number of channels as input to perform cross-correlation

Multiple Output Channels

Note: We typically increase channel dimension as we go higher up in the network

Multiple Output Channels: 1x1 Convolutional Layer

Used to adjust number of channels between network layers and to control model complexity.

PyTorch Code:

- Multiple Input Channels
- Multiple Output Channels
- 1×1 Convolutional Layer

Recap & More

Fully-Connected Layer

32x32x3 image -> stretch to 3072 x 1

3x32x32 image

3x5x5 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

3x32x32 image

Stacking Convolutions

N x 3 x 32 x 32

N x 10 x 26 x 26

N x 6 x 28 x 28

Stacking Convolutions

Expected Output size?

1x1 CONV with 32 filters

(each filter has size 1x1x64, and performs a 64dimensional dot product)

Spatial Dimensions

- Padding and Stride
- Pooling

Padding

Given a 32 x 32 input image, apply convolutional layer with 5x5 kernel

Output with 7 layers is 4 x 4

Shape decreases faster with large kernels

from
$$n_h \times n_w$$
 to $(n_h - k_h + 1) \times (n_w - k_w + 1)$

Padding

Add zeros around the input

Padding

• Padding p_h rows and p_w columns, output shape will be

$$(n_h - k_h + p_h + 1) \times (n_w - k_w + p_w + 1)$$

- A common choice is $p_h = k_h 1$ and $p_w = k_w 1$
 - Odd k_h : pad $p_h/2$ on both sides
 - Even k_h : pad $\lceil p_h/2 \rceil$ on top, $\lfloor p_h/2 \rfloor$ on bottom

Stride

Dictates the slide of the convolution window.

Strides of 3 and 2 for height and width

Stride

• Given stride s_h for the height and stride s_w for the width, the output shape is

$$\lfloor (n_h - k_h + p_h + s_h)/s_h \rfloor \times \lfloor (n_w - k_w + p_w + s_w)/s_w \rfloor$$

• With $p_h = k_h - 1$ and $p_w = k_w - 1$

$$\lfloor (n_h + s_h - 1)/s_h \rfloor \times \lfloor (n_w + s_w - 1)/s_w \rfloor$$

If input height/width are divisible by strides

$$(n_h/s_h) \times (n_w/s_w)$$

Pooling:

PyTorch Code:

- Padding
 - Stride
- Pooling

Convolutional Summary

Input: C_{in} x H x W **Hyperparameters**:

- Kernel size: K_H x K_W
- Number filters: C_{out}
- Padding: P
- Stride: S

Weight matrix: C_{out} x C_{in} x K_H x K_W

giving C_{out} filters of size C_{in} x K_H x K_W

Bias vector: C_{out}

Output size: C_{out} x H' x W' where:

- H' = (H K + 2P) / S + 1
- W' = (W K + 2P) / S + 1

Common settings:

 $K_H = K_W$ (Small square filters)

P = (K - 1) / 2 ("Same" padding)

 C_{in} , C_{out} = 32, 64, 128, 256 (powers of 2)

K = 3, P = 1, S = 1 (3x3 conv)

K = 5, P = 2, S = 1 (5x5 conv)

K = 1, P = 0, S = 1 (1x1 conv)

K = 3, P = 1, S = 2 (Downsample by 2)

LeNet Architecture

One of the first successful applications of CNN developed by Yann LeCun in the 1990's.

LeNet Architecture

```
torch.Size([1, 1, 28, 28])
Reshape output shape:
                             torch.Size([1, 6, 28, 28])
Conv2d output shape:
Sigmoid output shape:
                             torch.Size([1, 6, 28, 28])
AvgPool2d output shape:
                             torch.Size([1, 6, 14, 14])
Conv2d output shape:
                             torch.Size([1, 16, 10, 10])
Sigmoid output shape:
                             torch.Size([1, 16, 10, 10])
AvgPool2d output shape:
                             torch.Size([1, 16, 5, 5])
Flatten output shape:
                             torch.Size([1, 400])
                             torch.Size([1, 120])
Linear output shape:
Sigmoid output shape:
                             torch.Size([1, 120])
Linear output shape:
                             torch.Size([1, 84])
Sigmoid output shape:
                             torch.Size([1, 84])
                             torch.Size([1, 10])
Linear output shape:
```


PyTorch Code:

LeNet Architecture
 on Fashion-MNIST

Questions / Discussion

References:

- Material is from the book <u>Dive into Deep Learning</u>
- Some visualizations are from:
 - https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598 FA2020 lecture07.pdf
 - https://github.com/vdumoulin/conv arithmetic

