data-cleaning

December 7, 2024

1 Importing the required modules

2 Reading the data

```
[2]: flight_df = pd.read_csv("DelayData.csv")
```

3 Initial Data Exploration

```
[3]: flight_df.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 1201664 entries, 0 to 1201663
    Data columns (total 61 columns):
         Column
                                 Non-Null Count
                                                   Dtype
         _____
                                 -----
     0
         depdelay
                                 1201664 non-null int64
     1
         arrdelay
                                 1198458 non-null float64
     2
         scheduleddepartdatetime 1201664 non-null object
                                 1201664 non-null object
         origin
```

4	dest	1201664	non-null	object
5	uniquecarrier		non-null	object
6	marketshareorigin		non-null	float64
7	marketsharedest		non-null	float64
8	hhiorigin		non-null	float64
9	hhidest		non-null	float64
10	nonhubairportorigin		non-null	int64
11	smallhubairportorigin		non-null	int64
12	mediumhubairportorigin		non-null	int64
13	largehubairportorigin		non-null	int64
14	nonhubairportdest		non-null	int64
15	smallhubairportdest		non-null	int64
16	mediumhubairportdest		non-null	int64
17	-		non-null	int64
	largehubairportdest		non-null	int64
18	nonhubairlineorigin			
19	smallhubairlineorigin		non-null	int64
20	mediumhubairlineorigin		non-null	int64
21	largehubairlineorigin		non-null	int64
22	nonhubairlinedest		non-null	int64
23	smallhubairlinedest		non-null	int64
24	mediumhubairlinedest		non-null	int64
25	largehubairlinedest		non-null	int64
26	year		non-null	int64
27	month		non-null	int64
28	dayofmonth		non-null	int64
29	dayofweek		non-null	int64
30	scheduledhour	1201664	non-null	int64
31	originairportid		non-null	int64
32	destairportid	1201664	non-null	int64
33	tailnum	1201664	non-null	object
34	capacity	1201664	non-null	int64
35	loadfactor	1201664	non-null	float64
36	numflights	1201664	non-null	float64
37	origincityname	1201664	non-null	object
38	originstate	1201664	non-null	object
39	distance	1201664	non-null	int64
40	monopolyroute	1201664	non-null	int64
41	temperature	1201204	non-null	float64
42	temp_ninfty_n10	1201664	non-null	int64
43	temp_n10_0	1201664	non-null	int64
44	temp_0_10	1201664	non-null	int64
45	temp_10_20	1201664	non-null	int64
46	temp_20_30	1201664	non-null	int64
47	temp_30_40	1201664	non-null	int64
48	temp_40_infty	1201664	non-null	int64
49	windspeed	1201204	non-null	float64
50	windspeedsquare	1201204	non-null	float64
51	windgustdummy	1201664	non-null	int64
	- •			

```
52
   windgustspeed
                              1201204 non-null
                                                float64
53
   raindummy
                              1201664 non-null
                                                 int64
54
   raintracedummy
                              1201664 non-null
                                                int64
55
   snowdummy
                              1201664 non-null
                                                 int64
                              1201664 non-null
   snowtracedummy
56
                                                int64
    originmetropop
                              1201664 non-null
                                                int64
57
    originmetrogdppercapita
                              1201664 non-null
                                                float64
   destmetropop
                              1201664 non-null
59
                                                 int64
   destmetrogdppercapita
                              1201664 non-null
                                                float64
```

dtypes: float64(13), int64(41), object(7)

memory usage: 559.2+ MB

- The dataset has 1201664 rows and 61 columns.
- The dataset is partially pre-processed. Few of the categorical variables are already one-hot encoded.
- However, the many of categorical variables that are already encoded are ordinal in nature and one-hot encoding is not appropriate for it.
- It also appears that the windspeed column is transformed into windspeedsquare. It must checked which one is better and only one of them must be retained.
- The first five rows of the dataset are shown below.

[4]: flight_df.head() [4]: depdelay arrdelay scheduleddepartdatetime origin dest uniquecarrier 0 -4.0 08-Jan-2004 15:25:00 ELP 0 SAT 1 -4 11.0 22-Jan-2004 14:40:00 ATL MSY DL2 3 12.0 29-Jan-2004 12:25:00 DFW **JFK** DL3 -3 24.0 14-Jan-2004 15:55:00 SEA **EWR** CO 4 0 -8.0 14-Jan-2004 18:40:00 SLC RNO 00

	marketshareorigin	marketsharedest	hhiorigin	hhidest	•••	\
0	0.618467	0.407567	0.417090	0.226878	•••	
1	0.500757	0.096321	0.319589	0.196657	•••	
2	0.060898	0.131962	0.296126	0.214357	•••	
3	0.040522	0.347744	0.234712	0.249377	•••	
4	0.506899	0.176493	0.341763	0.277364		

	windgustdummy	windgustspeed	raindummy	raintracedummy	${\tt snowdummy}$	\
0	0	0.0	0	0	0	
1	0	0.0	0	0	0	
2	0	0.0	0	0	0	
3	0	0.0	1	0	0	
4	0	0.0	0	0	0	

	${ t snowtracedummy}$	originmetropop	${\tt originmetrogdppercapita}$	${\tt destmetropop}$	\
0	0	702433	27314.633	1843927	
1	0	4802300	49081.773	1314721	
2	0	5689982	50588.563	18747431	

```
3
                 0
                            3163703
                                                     57755.547
                                                                      18747431
4
                 0
                            1030597
                                                     45043.602
                                                                        385049
   destmetrogdppercapita
0
                35005.234
                48848.234
1
2
                57295.402
3
                57295.402
```

[5 rows x 61 columns]

49079.727

4

4 Data Cleaning

4.1 Handling null values

```
[6]: display_cols_wt_na(flight_df)
```

```
      arrdelay
      0.266797

      temperature
      0.038280

      windspeed
      0.038280

      windspeedsquare
      0.038280

      windgustspeed
      0.038280
```

dtype: float64

- The arrdelay has 0.26% null values. It is also the target column and hence the **rows** with null value for arrdelay must be dropped.
- After dropping those rows we will check if the other columns yet have null values.

```
[7]: flight_df = flight_df[flight_df['arrdelay'].notna()] display_cols_wt_na(flight_df)
```

```
      temperature
      0.038383

      windspeed
      0.038383

      windspeedsquare
      0.038383

      windgustspeed
      0.038383
```

dtype: float64

- All the columns have 0.03% null values and hence can be imputed.
- Now, we will impute the missing values in the temperature, windspeed, windspeedsquare, and windgustspeed with the mean of the columns.
- np.nanmean() is used to compute mean of columns with null values.

```
[8]: to_impute_cols = ["temperature", "windspeed", "windspeedsquare", "
"windgustspeed"]
```

```
for col in to_impute_cols:
    col_mean = np.nanmean(flight_df[col])
    flight_df[col] = flight_df[col].fillna(col_mean)
```

```
[9]: display_cols_wt_na(flight_df)
```

Series([], dtype: float64)

All null values are handled.

4.2 Dropping the columns

- There are few redundant columns and they need dropped.
- The scheduleddepartdatetime column stores the timestamp for each flight. However, the dataset also has all the individual components in separate columns and hence this column is dropped.
- The originairportid and destairportid columns have same information as the origin and dest columns. Hence, they are dropped.
- The originstate and origincityname columns have same information as origin column. While, this data is unknown for dest. Hence, those two columns are dropped.

Note: the time-series nature of data is not considered for the modelling.

[11]: flight_df.info()

<class 'pandas.core.frame.DataFrame'>
Index: 1198458 entries, 0 to 1201663
Data columns (total 56 columns):

	•	•	
#	Column	Non-Null Count	Dtype
0	depdelay	1198458 non-null	int64
1	arrdelay	1198458 non-null	float64
2	origin	1198458 non-null	object
3	dest	1198458 non-null	object
4	uniquecarrier	1198458 non-null	object
5	marketshareorigin	1198458 non-null	float64
6	marketsharedest	1198458 non-null	float64
7	hhiorigin	1198458 non-null	float64
8	hhidest	1198458 non-null	float64
9	nonhubairportorigin	1198458 non-null	int64

10	smallhubairportorigin	1198458 non-null	int64
11	mediumhubairportorigin	1198458 non-null	int64
12	largehubairportorigin	1198458 non-null	int64
13	nonhubairportdest	1198458 non-null	int64
14	smallhubairportdest	1198458 non-null	int64
15	mediumhubairportdest	1198458 non-null	int64
16	largehubairportdest	1198458 non-null	int64
17	nonhubairlineorigin	1198458 non-null	int64
18	smallhubairlineorigin	1198458 non-null	int64
19	mediumhubairlineorigin	1198458 non-null	int64
20	largehubairlineorigin	1198458 non-null	int64
21	nonhubairlinedest	1198458 non-null	int64
22	smallhubairlinedest	1198458 non-null	int64
23	mediumhubairlinedest	1198458 non-null	int64
24	largehubairlinedest	1198458 non-null	int64
25	year	1198458 non-null	int64
26	month	1198458 non-null	int64
27	dayofmonth	1198458 non-null	int64
28	dayofweek	1198458 non-null	int64
29	scheduledhour	1198458 non-null	int64
30	tailnum	1198458 non-null	object
31	capacity	1198458 non-null	int64
32	loadfactor	1198458 non-null	float64
33	numflights	1198458 non-null	float64
34	distance	1198458 non-null	int64
35	monopolyroute	1198458 non-null	int64
36	temperature	1198458 non-null	float64
37	temp_ninfty_n10	1198458 non-null	int64
38	temp_n10_0	1198458 non-null	int64
39	temp_0_10	1198458 non-null	int64
40	temp_10_20	1198458 non-null	int64
41	temp_20_30	1198458 non-null	int64
42	temp_30_40	1198458 non-null	int64
43	temp_40_infty	1198458 non-null	int64
44	windspeed	1198458 non-null	float64
45	windspeedsquare	1198458 non-null	float64
46	windgustdummy	1198458 non-null	int64
47	windgustspeed	1198458 non-null	float64
48	raindummy	1198458 non-null	int64
49	raintracedummy	1198458 non-null	int64
50	snowdummy	1198458 non-null	int64
51	snowtracedummy	1198458 non-null	int64
52	originmetropop	1198458 non-null	int64
53	originmetrogdppercapita	1198458 non-null	float64
54	destmetropop	1198458 non-null	int64
55	destmetrogdppercapita	1198458 non-null	float64
dtyp	es: float64(13), int64(39)), object(4)	
memo	ry usage: 521.2+ MB		

5 Rectifying incorrectly encoded ordinal categorical variables

As deduced from the initial analysis, there are few columns that are already one-hot encoded in the dataset. However, some of these categorical variables (described below) are ordinal and one-hot encoding is not appropriate for them.

• The columns of the form temp_<lower-limit>_<upper-limit> denote the range in which temperature falls in. These columns hold 1 if the temperature falls in that range and 0 otherwise. However, the ranges have an order associated with them as follows:

```
-\infty to -10 < -10 to 0 < 0 to 10 < 10 to 20 < 20 to 30 < 30 to 40 < 40 to \infty
```

Hence, a single column temp_range is created and contains the categories. All the columns already present as a part of one-hot encoding are dropped.

• The columns of the form <size of hub>airportorigin and <size of hub>airportdest denote whether the origin and destination airports are hubs for some airline and if its a hub what is its size. These columns hold 1 if the origin or dest is a <size of hub> hub for some airline and 0 otherwise.

```
nonhub < small < medium < large
```

Hence, a two columns hubairportorigin and hubairportdest are created and contains the categories. All the columns already present as a part of one-hot encoding are dropped.

• The columns of the form <size of hub>airlineorigin and <size of hub>airlinedest denote whether the origin and destination airports are hubs for the airline and if its a hub what is its size. These columns hold 1 if the origin or dest is a <size of hub> hub for uniquecarrier and 0 otherwise.

```
nonhub < small < medium < large
```

Hence, a two columns hubairlineorigin and hubairlinedest are created and contains the categories. All the columns already present as a part of one-hot encoding are dropped.

```
[12]: # extracting all dummy features from the respective categories.
    cols = list(flight_df.columns)
    temperature_range = cols[37:44]
    airport_connectivity_origin = cols[9:13]
    airport_connectivity_dest = cols[13:17]
    airline_connectivity_origin = cols[17:21]
    airline_connectivity_dest = cols[21:25]
```

It appears that temp_range has some null values and these can be derived by categorizing the temperature value for the particular row.

```
[15]: def categorise_temp(temp):
    if temp <= -10:
        return "ninfty_n10"
    elif temp > -10 and temp <= 0:
        return "n10_0"
    elif temp > 0 and temp <= 10:
        return "0_10"
    elif temp > 10 and temp <= 20:
        return "10_20"
    elif temp > 20 and temp <= 30:
        return "20_30"
    elif temp > 30 and temp <= 40:
        return "30_40"
    else:
        return "40_infty"</pre>
```

```
[17]: flight_df.info()
```

<class 'pandas.core.frame.DataFrame'>
Index: 1198458 entries, 0 to 1201663

Data	columns (total 38 column	s):	
#	Column	Non-Null Count	Dtype
0	depdelay	1198458 non-null	int64
1	arrdelay	1198458 non-null	float64
2	origin	1198458 non-null	object
3	dest	1198458 non-null	object
4	uniquecarrier	1198458 non-null	object
5	marketshareorigin	1198458 non-null	float64
6	marketsharedest	1198458 non-null	float64
7	hhiorigin	1198458 non-null	float64
8	hhidest	1198458 non-null	float64
9	year	1198458 non-null	int64
10	month	1198458 non-null	int64
11	dayofmonth	1198458 non-null	int64
12	dayofweek	1198458 non-null	int64
13	scheduledhour	1198458 non-null	int64
14	tailnum	1198458 non-null	object
15	capacity	1198458 non-null	int64
16	loadfactor	1198458 non-null	float64
17	numflights	1198458 non-null	float64
18	distance	1198458 non-null	int64
19	monopolyroute	1198458 non-null	int64
20	temperature	1198458 non-null	float64
21	windspeed	1198458 non-null	float64
22	windspeedsquare	1198458 non-null	float64
23	windgustdummy	1198458 non-null	int64
24	windgustspeed	1198458 non-null	float64
25	raindummy	1198458 non-null	int64
26	raintracedummy	1198458 non-null	int64
27	snowdummy	1198458 non-null	int64
28	${ t snowtracedummy}$	1198458 non-null	int64
29	originmetropop	1198458 non-null	int64
30	originmetrogdppercapita	1198458 non-null	float64
31	destmetropop	1198458 non-null	int64
32	destmetrogdppercapita	1198458 non-null	float64
33	temp_range	1198458 non-null	object
34	hubairportorigin	1198458 non-null	object
35	hubairportdest	1198458 non-null	object
36	hubairlineorigin	1198458 non-null	object
37	hubairlinedest	1198458 non-null	object
dtype	es: float64(13), int64(16), object(9)	
memoi	ry usage: 356.6+ MB		

6 Binning the delays into categories

 $\bullet\,$ The arrival and departure delay are binned into 5 categories.

• The arrival delay is the target variable and will be predicted using classification algorithms.

7 Splitting the data into train-test

8 Encoding the categorical variables

```
cat_vars = ord_cat_features + hc_cat_features
```

8.1 Ordinal variable encoding

```
[25]: categories = [
          ['ninfty_n10', 'n10_0', '0_10', '10_20', '20_30', '30_40', '40_infty'],
          ['nonhub', 'smallhub', 'mediumhub', 'largehub'],
          ['nonhub', 'smallhub', 'mediumhub', 'largehub'],
          ['nonhub', 'smallhub', 'mediumhub', 'largehub'],
          ['nonhub', 'smallhub', 'mediumhub', 'largehub'],
          ['0-10', '10-20', '20-40', '40-60', '>60']
      ]
      oe = OrdinalEncoder(categories = categories).

¬fit(flight_X_train[ord_cat_features])
      flight_X_train[ord_cat_features] = oe.
       stransform(flight_X_train[ord_cat_features])
      flight_X_train[ord_cat_features] = flight_X_train[ord_cat_features].
       →astype("int64")
      flight_X test[ord_cat_features] = oe.transform(flight_X test[ord_cat_features])
      flight_X_test[ord_cat_features] = flight_X_test[ord_cat_features].
       ⇔astype("int64")
```

8.2 High Cardinality variable encoding

- The high cardinality variables in this context include origin, dest, tailnum, and uniquecarrier.
- It is so possible that an origin airport appears in the test data but does not appear in the train dataset.
- Therefore, all the categories must be passed as input to the TargetEncoder() to learn that these values are not in the train dataset.

<class 'pandas.core.frame.DataFrame'> Index: 958766 entries, 898074 to 382376

Data columns (total 37 columns):

#	Column	Non-Null Count	Dtype
0	depdelay	958766 non-null	 int64
1	origin	958766 non-null	float64
2	dest	958766 non-null	float64
3	uniquecarrier	958766 non-null	float64
4	marketshareorigin	958766 non-null	float64
5	marketsharedest	958766 non-null	float64
6	hhiorigin	958766 non-null	float64
7	hhidest	958766 non-null	float64
8	year	958766 non-null	int64
9	month	958766 non-null	int64
10	dayofmonth	958766 non-null	int64
11	dayofweek	958766 non-null	int64
12	scheduledhour	958766 non-null	int64
13	tailnum	958766 non-null	float64
14	capacity	958766 non-null	int64
15	loadfactor	958766 non-null	float64
16	numflights	958766 non-null	float64
17	distance	958766 non-null	int64
18	monopolyroute	958766 non-null	int64
19	temperature	958766 non-null	float64
20	windspeed	958766 non-null	float64
21	windspeedsquare	958766 non-null	float64
22	windgustdummy	958766 non-null	int64
23	windgustspeed	958766 non-null	float64
24	raindummy	958766 non-null	int64
25	raintracedummy	958766 non-null	int64
26	snowdummy	958766 non-null	int64
27	${ t snowtracedummy}$	958766 non-null	int64
28	originmetropop	958766 non-null	int64
29	${\tt originmetrogdppercapita}$	958766 non-null	float64
30	destmetropop	958766 non-null	int64
31	${\tt destmetrogdppercapita}$	958766 non-null	float64
32	temp_range	958766 non-null	int64
33	hubairportorigin	958766 non-null	int64
34	hubairportdest	958766 non-null	int64
35	hubairlineorigin	958766 non-null	int64
36	hubairlinedest	958766 non-null	int64
dtyp	es: float64(16), int64(21)	

memory usage: 278.0 MB

[29]: flight_X_train = flight_X_train[flight_X_train.columns]

9 Scaling the numerical variables

```
[30]: float64_vars = flight_X_train.select_dtypes(include = ["float64"])
      num_var = list(set(float64_vars).difference(hc_cat_features))
[31]: num_var
[31]: ['loadfactor',
       'windspeedsquare',
       'temperature',
       'originmetrogdppercapita',
       'destmetrogdppercapita',
       'marketsharedest',
       'windspeed',
       'marketshareorigin',
       'hhidest',
       'hhiorigin',
       'windgustspeed',
       'numflights']
[32]: sscaler = StandardScaler().fit(flight_X_train[num_var])
      scaled_train = sscaler.transform(flight_X_train[num_var])
      flight_X_train[num_var] = scaled_train
      scaled_test = sscaler.transform(flight_X_test[num_var])
      flight_X_test[num_var] = scaled_test
```

10 Correlation between the columns

```
[33]: plt.figure(figsize = (33, 25))
    sns.heatmap(flight_X_train.corr(), annot = True)
    plt.xlabel("features", fontsize = 15)
    plt.ylabel("features", fontsize = 15)
    plt.title("Correlation Matrix of all numeric features", fontsize=22)
    plt.show()
```


- The depdelay has slight positive correlation of 0.19 with scheduledhour. This makes sense because the air traffic at the scheduledhour decides whether the ATC gives permission for aircraft to depart.
- Moreover, there is very slight correlation with the columns pertaining to weather. This also makes sense since the weather (visibility) at departure decides whether the plane can take-off or not.
- There is positive correlation of 0.44 between tailnum and uniquecarrier since a particular aircraft is owned by a particular carrier. Hence, that correlation does make sense.
- All the weather columns have some relation with each other.
- The temperature and temp_range have a very high positive correlation of 0.96 and it does make sense as well. Therefore, one of the columns needs to be dropped.
- On similar lines, windspeed and windspeedsquare have very high positive correlation of 0.93 and hence one of them needs to be dropped.
- The capacity and loadfactor have a positive correlation of approximately 0.40 with the distance. This makes sense because long-haul routes generally have higher capacity and a higher payload resulting a higher loadfactor.
- Not all values in the matrix make sense. They arise as an artifact of the data but do not make sense at all.

- I dropped windspeedsquare since windspeed is more intuitive to understand and explain the models that will be trained later.
- The temperature column is dropped. This is because the target is a range of delay and keep the temp_range might help instead of actual value of temperature.

```
[35]: from sklearn.tree import DecisionTreeClassifier
    from sklearn.model_selection import train_test_split
    from sklearn.metrics import classification_report, accuracy_score
    import pandas as pd

# Initialize the decision tree
    clf = DecisionTreeClassifier(max_depth=5, random_state=42)
    clf.fit(flight_X_train, flight_y_train)

# Predict and Evaluate
    y_pred = clf.predict(flight_X_test)
    accuracy = accuracy_score(flight_y_test, y_pred)
    report = classification_report(flight_y_test, y_pred)

# Print the result
    print("Decision Tree results:")
    print(f"Accuracy: {accuracy}")
    print(f"Classification Report:\n{report}")
```

Decision Tree results:

Accuracy: 0.8510672029104017

Classification Report:

	precision	recall	f1-score	support
0	0.89	0.99	0.94	183773
1	0.43	0.03	0.05	18537
2	0.48	0.47	0.47	16565
3	0.49	0.43	0.46	7494
4	0.88	0.85	0.86	13323
accuracy			0.85	239692
macro avg	0.63	0.55	0.56	239692
weighted avg	0.82	0.85	0.82	239692

```
[36]: from sklearn.ensemble import HistGradientBoostingClassifier from sklearn.model_selection import GridSearchCV import time
```

```
start_time = time.time()
# hyperparameter tuning
param_grid = {
    "learning_rate": [0.01, 0.1, 0.2],
    "max_iter": [200, 400, 600, 800, 1000],
    "max_depth": [8, 16, 24]
}
# Grid search
hgbc = HistGradientBoostingClassifier(random_state=42)
grid_search = GridSearchCV(hgbc, param_grid=param_grid, cv=5,__
 ⇔scoring='accuracy', n_jobs=-1)
grid_search.fit(flight_X_train, flight_y_train)
# Print out the best hyperparameter for future training reference
print(f"Best hyperparameters from GridSearchCV:")
for param, value in grid_search.best_params_.items():
    print(f" {param}: {value}")
best_hgbc = grid_search.best_estimator_
hgbc_test_score = best_hgbc.score(flight_X_test, flight_y_test)
print(f"HistGradientBoostingClassifier test accuracy: {hgbc_test_score}")
# Predict, and Evaluate
y_pred_hgbc = best_hgbc.predict(flight_X_test)
print("HistGradientBoostingClassifier results:")
HGBC_accuracy = accuracy_score(flight_y_test, y_pred_hgbc)
print(f"HGBC Accuracy: {HGBC_accuracy}")
print("HistGradientBoostingClassifier results:")
print(classification_report(flight_y_test, y_pred_hgbc))
# time the entire experiment
end_time = time.time()
time_to_select = end_time - start_time
print("total run time: ");
print(time_to_select)
Best hyperparameters from GridSearchCV:
 learning_rate: 0.01
 max_depth: 8
 max iter: 1000
HistGradientBoostingClassifier test accuracy: 0.8519141231246766
HistGradientBoostingClassifier results:
HGBC Accuracy: 0.8519141231246766
HistGradientBoostingClassifier results:
```

	precision	recall	f1-score	support
0	0.89	0.99	0.94	183773
1	0.42	0.02	0.04	18537
2	0.48	0.47	0.48	16565
3	0.51	0.40	0.45	7494
4	0.87	0.86	0.86	13323
accuracy			0.85	239692
macro avg	0.63	0.55	0.55	239692
weighted avg	0.81	0.85	0.82	239692

total run time: 5801.750147104263

[]:	
[]:	