CSAW 2022
EMBEDDED SECURITY CHALLENGE
(DEFENSE TRACK)

papernOught, IIT Roorkee

CHALLENGE OVERVIEW

- Out of the 7 challenges we attempted, we solved 4
 - 7r0j4n_1
 - dumps7er_d1ve
 - poison_mushroom
 - leaky_b0ttle
- We present our understanding of the problems as:
 - Problem statement
 - Model weakness
 - Our approach

7 R O J 4 N _ 1

- *Problem Statement*: Zeroing out minimum number of neural network weights to cause maximum drop in model performance and hence its defence
- *Model Weakness*: Over dependence on particular weights
- Our Approaches:
 - Additional Dropout layers
 - Increased Dropout probability
 - L2 norm on layer weights + Gradient Clipping by norm: Best Results

DUMPS7ER_D1VE

- Problem Statement: To prove if a model has been extracted/stolen into another model by inserting triggers
- Model Weakness: Over-parameterization of neural networks
- Our Approach:
 - To generate a unique trigger/watermark for the original model
 - Create adversarial samples and overfit these to the model
 - Adversarial samples are from near the decision boundary

POISON_MUSHROOM

- Problem Statement: To detect poisonous samples which affect model performance in feature classification
- Model Weakness: Cannot differentiate between out-of-distribution samples
- Our Approach:
 - First attack the model by generating samples of a class from the distribution of the other class
 - Detect such samples by calculating the distance of a sample from its true distribution

LEAKY_BOTTLE

- *Problem Statement*: To prevent the inference of membership status of a test datapoint
- Model Weakness: Over-fitting of the model around trained examples
- Our Approach:
 - Increase the temperature of the last softmax layer
 - Additional dropout layers
 - L2-norm regularisation on layer weights

LIVE CHALLENGE

- Problem Statement: Black-box adversarial example generation
- Model Weakness: Sensitivity of model to high-frequency noise present in the training data
- Our Approach:
 - Popular adversarial attacks use weight and gradient information, but we have black-box access
 - Using SimBA, we try to perturb the image in random directions and claim that model's confidence must reduce in one of the direction
 - Use logits as a proxy to gradient change

ACKNOWLEDGEMENTS

- To the organizers: For amazing problem statements covering various domains in AlSecurity
- To our advisor: For providing the necessary computational resources

THANK YOU