Lecture Notes 2: Random Variables

Professor: Zhihua Zhang

1 Random Variables

Definition 1.1. A random variable X is a measure map $X: \Omega \to \mathbb{R}$ that assigns a real number $X(\omega)$ to each and come as "measurable" means that for every X, $\{\omega: X(\omega) \leq x\} \in \mathcal{A}$.

Example 1.1. Flip a coin ten times. Let $X(\omega)$ be a number of heads in the sequence ω .

Example 1.2. Let $\Omega = \{(x,y)|x^2 + y^2 \leq 1\}$. Consider drawing a point at random from Ω .

Definition 1.2. Let $A \subset \mathbb{R}$, $X^{-1} = \{\omega \in \Omega; X(\omega) \in A\} \in \mathcal{A}$. $P(X \in A) \triangleq P(X^{-1}(A)) = P(\{\omega \in \Omega | X(\omega) \in A\})$. $P(X = x) = P(X^{-1}(x)) = P(\{\omega \in \Omega | X(\omega) = x\})$

Example 1.3. Flip a coin twice and let X be the number of heads.

ω	$P(\{\omega\})$	$X(\omega)$
TT	1/4	0
TH	1/4	1
HT	1/4	1
HH	1/4	2
X	P(X)	
0	1/4	
1	,	

$\begin{array}{c|cc} 0 & 1/4 \\ 1 & 1/2 \\ 2 & 1/4 \end{array}$

1.1 Distribution Function

Cumulative distribution function (or distribution function). CDF is the function $F_X : \mathbb{R} \to [0,1]$.

$$F_X(x) = P(X \le x).$$

Example 1.4. From example 1.3, we can get

$$F_X(x) = \begin{cases} 0 & x < 0 \\ 1/4 & 0 \le x < 1 \\ 3/4 & 1 \le x < 2 \\ 1 & x \ge 2 \end{cases}$$

Theorem 1.1. Let X have CDF F, Y have CDF G. If F(x) = G(x) for all x, then $P(X \in A) = P(Y \in A)$ for all measurable A.

Theorem 1.2. A function F mapping $\mathbb{R} \to [0,1]$ is a CDF for probability iff

1. F is non-deceasing, $x_1 < x_2 \implies F(x_1) \le F(x_2)$.

- 2. F is normalized, i.e. $\lim_{x \to -\infty} F(x) = 0$, $\lim_{x \to +\infty} = 1$.
- 3. F is right-continuous. $F(x) = F(x^+)$, where $F(x^+) = \lim_{y \to x, y > x} F(y)$.

Now we will get the proof of right-continuous.

Proof: Let
$$F(x_1) = P(X \le x_1)$$
, $F(x_2) = P(X \le x_2)$.

Let
$$X \in \mathbb{R}$$
, $y_1 > y_2 > \cdots$, and $\lim_{n \to +\infty} y_n = x$.

Let
$$A_i = (-\infty, y_i]$$
 and $A = (-\infty, x]$.

Note that
$$A = \bigcap_{i=1}^{\infty} A_i$$
 and $A_1 \supset A_2 \supset \cdots$

$$\lim_{i\to\infty} P(A_i) = P(\cap_{i=1}^{\infty} A_i)$$

$$\lim_{i \to \infty} P(A_i) = P(\bigcap_{i=1}^{\infty} A_i).$$

$$F(x) = P(A) = P(\bigcap_{i=1}^{\infty} A_i) = \lim_{i \to \infty} P(A_i) = \lim_{i \to \infty} F(y_i) = F(x^+).$$