Introduction to Quantum Computing

Fall 2024

Class Information

• Instructor: Hyosang Kang

• Email: hyosang@dgist.ac.kr

• Office: E7-G11

• Office Hours: make an appointment via email

• Class Time: Wed/Fri 13:00-14:30

• Class Room: E7-223

Grading

1. In-class participation: 30%

- There will be indivisual and group activities in class.
- Participation in these activities will be graded.

2. Project: 40%

- There are two projects in this course.
- Each project is worth 20%.
 - Project 1: Quantum Simulator
 - Based on what we cover in the first quarter of the class, we will construct a quantum simulator of our own.
 - There are no restrictions on the programming language or the platform.
 - The project will be done in groups.
 - There are Quantum Simulators such as Qiskit that you can refer to. (But you should not copy or reverse-engineer the code.)

- Project 2: Quantum Algorithm
 - Based on we cover in the second and third quarter of the class, you should device a quantum algorithm of your own.
 - The algorithm does not have to be new or original. It is ok to investigate and implement an existing algorithm.
 - You can use your abstract idea on Quanum Computing to develop the algorithm.
 - You can discover a real-life problem or a business item that could be solved by a quantum algorithm.

3. Report: 30%

- Each projects should be accompanied by a report.
- The report should follow the formal paper format, including an abstract, introduction, methodology, results, and conclusion.
- A template will be provided, but you can use your own format too.

Grade Scale

• The letter grade will be assigned based on the following scale:

Grade	Score								
A+	90-100	B+	65-74	C+	40-49	D+	15-24		
A0	80-89	ВО	55-64	CO	30-39	D0	5-14		
A-	75-79	B-	50-54	C-	25-29	D-	1-4	F	0

- If you do not submit a project or a report, you will receive an F.
- Any act of plagiarism will result in an F.

Weekly Schedule

- **Week 1**: 1. Qubits
 - Day 1: 0. Orientation. 1-1. Vector Spaces
 - **Day 2**: 1-2. Qubits
- Week 2: 2. Quantum Gates
 - o Day 1: 2-1. Matrices and multi-qubit systems
 - **Day 2**: 2-2. Operators and Quantum Gates
- Week 3: 3. Quantum Entanglement
 - **Day 1**: 3-1. Born's Rule
 - Day 2: 3-2. Quantum Entanglement and EPR Paradox

- Week 4: 4. Quantum Circuits
 - Day 1: Korea's Thanksgiving Day
 - Day 2: 4.1. Components of Quantum Circuits
- Week 5:
 - Day 1: 4.2. Computing Quantum Circuits
 - Day 2: TBA
- Week 6: 5. Early Quantum Algorithms
 - Day 1: 5.1. Deutsch-Jozsa Algorithm
 - Day 2: 5.2. Bernstein-Vazirani Algorithm, Simon Algorithm
- Week 7: 6. Quantum Fourier Transform
 - Day 1: 6.1. Discrete Fourier Transform
 - Day 2: 6.2. Quantum Fourier Transform
- Week 8: Presentation Week

- Week 9: Addendum
 - Day 1: Hangul Day
 - Day 2: BB84 Protocol
- Week 10: 7. Basic Number Theory
 - Day 1: 7.1. Continued fraction
 - Day 2: 7.2. Fermat's Little Theorem and
- Week 11: 8. Shor's Algorithm
 - Day 1: 8.1. Shor's Algorithm
 - Day 2: 8.2. Implementation of Shor's Algorithm
- Week 12: 9. Grover's Algorithm
 - Day 1: 9.1. Rotation and Projection Operators
 - Day 2: 9.2. Ideal Working of Grover's Algorithm

- Week 13: 10. Quantum Annealer
 - Day 1: 10.1. Quantum Annealer and QUBO
 - Day 2: 10.2. Max-Cut Problem, Graph Coloring Problems
- Week 14: 11. Quantum Error Correction
 - Day 1: 11.1. Quantum Decoherence and Syndrome Measurement
 - Day 2: 11.2. Quantum Error Correction Code
- Week 15: 12. Surface Code
 - Day 1: 12.1. Layout of Surface Code
 - Day 2: 12.2. Error Correction of Surface Code
- Week 16: Presentation Week