$12n_{0436} (K12n_{0436})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -37827406u^{18} + 29757877u^{17} + \dots + 120133473b + 294183386, \ a-1, \ u^{19} + 6u^{17} + \dots + 2u+1 \rangle \\ I_2^u &= \langle -u^4 - u^3 - 2u^2 + b - 2u + 2, \ a+1, \ u^5 + u^4 + 2u^3 + 3u^2 + u+1 \rangle \\ I_3^u &= \langle b-1, \ 19u^{11} - 5u^{10} + 80u^9 - 30u^8 + 158u^7 - 42u^6 + 229u^5 - 4u^4 + 188u^3 + 17u^2 + 5a + 39u + 21, \\ u^{12} - u^{11} + 5u^{10} - 5u^9 + 12u^8 - 10u^7 + 19u^6 - 12u^5 + 18u^4 - 9u^3 + 8u^2 - 2u + 1 \rangle \\ I_4^u &= \langle b+1, \ 858366437u^{13} + 13303924407u^{12} + \dots + 198592491933a - 215876970671, \\ u^{14} - 5u^{12} + u^{11} + 20u^{10} - 3u^9 - 41u^8 + 3u^7 + 27u^6 + 15u^5 + 23u^4 - 53u^3 - 33u^2 + 71u - 27 \rangle \\ I_5^u &= \langle b-1, \ a+u, \ u^2 + u + 1 \rangle \end{split}$$

* 5 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 52 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -3.78 \times 10^7 u^{18} + 2.98 \times 10^7 u^{17} + \dots + 1.20 \times 10^8 b + 2.94 \times 10^8, \ a - 1, \ u^{19} + 6 u^{17} + \dots + 2 u + 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.314878u^{18} - 0.247707u^{17} + \cdots - 3.86583u - 2.44880 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.247707u^{18} - 0.105766u^{17} + \cdots + 4.07856u + 0.314878 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.314878u^{18} - 0.247707u^{17} + \cdots - 3.86583u - 2.44880 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.420645u^{18} - 0.371361u^{17} + \cdots - 3.86583u - 2.44880 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.420645u^{18} - 0.371361u^{17} + \cdots - 3.68529u - 2.20110 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.00612192u^{18} + 0.0147829u^{17} + \cdots + 0.322078u + 1.37136 \\ 0.297103u^{18} - 0.361177u^{17} + \cdots - 3.38666u - 1.84452 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.648921u^{18} + 0.257817u^{17} + \cdots + 6.78287u + 0.742285 \\ -0.744255u^{18} + 0.115009u^{17} + \cdots - 1.84764u + 0.485311 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.0953339u^{18} - 0.372826u^{17} + \cdots - 4.93523u - 1.22760 \\ 0.744255u^{18} - 0.115009u^{17} + \cdots + 1.84764u - 0.485311 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$\frac{42941320}{40044491}u^{18} + \frac{84579765}{40044491}u^{17} + \dots + \frac{1067191176}{40044491}u + \frac{715529589}{40044491}u^{18} + \dots + \frac{1067191176}{40044491}u + \frac{1067191176}{4004491}u + \frac{106719176}{4004491}u + \frac{106719176}{400491}u + \frac{106719176}{4004}u + \frac{106719176}{4004}u + \frac{1067$$

Crossings	u-Polynomials at each crossing
c_1,c_{10}	$u^{19} + 12u^{18} + \dots - 12u - 1$
c_2, c_4, c_5 c_9	$u^{19} + 6u^{17} + \dots + 2u - 1$
c_{3}, c_{7}	$u^{19} + 5u^{18} + \dots - 5u - 3$
c_6, c_{11}, c_{12}	$u^{19} + u^{18} + \dots + u - 3$
c ₈	$u^{19} - u^{18} + \dots - 2u - 1$

Crossings	Riley Polynomials at each crossing
c_1,c_{10}	$y^{19} + 32y^{18} + \dots + 116y - 1$
c_2, c_4, c_5 c_9	$y^{19} + 12y^{18} + \dots - 12y - 1$
c_3, c_7	$y^{19} - 3y^{18} + \dots + 103y - 9$
c_6, c_{11}, c_{12}	$y^{19} - 17y^{18} + \dots + 73y - 9$
<i>c</i> ₈	$y^{19} + 11y^{18} + \dots + 44y - 1$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.581330 + 0.811360I		
a = 1.00000	1.93762 + 6.06371I	8.03507 - 11.60220I
b = 1.79148 + 0.06667I		
u = 0.581330 - 0.811360I		
a = 1.00000	1.93762 - 6.06371I	8.03507 + 11.60220I
b = 1.79148 - 0.06667I		
u = -0.052078 + 1.011790I		
a = 1.00000	-5.84256 - 3.61662I	-2.20671 + 4.58081I
b = -0.842437 + 0.221761I		
u = -0.052078 - 1.011790I		
a = 1.00000	-5.84256 + 3.61662I	-2.20671 - 4.58081I
b = -0.842437 - 0.221761I		
u = -0.565597 + 0.850482I		
a = 1.00000	1.71886 - 3.11685I	6.74582 + 2.04810I
b = 1.102220 - 0.467413I		
u = -0.565597 - 0.850482I		
a = 1.00000	1.71886 + 3.11685I	6.74582 - 2.04810I
b = 1.102220 + 0.467413I		
u = -0.435881 + 0.933169I		
a = 1.00000	1.42719 - 4.85166I	4.33736 + 8.70146I
b = 0.557982 + 0.070489I		
u = -0.435881 - 0.933169I		
a = 1.00000	1.42719 + 4.85166I	4.33736 - 8.70146I
b = 0.557982 - 0.070489I		
u = 0.372674 + 0.734435I		
a = 1.00000	2.83649 + 2.15459I	8.45889 - 1.98320I
b = 0.950589 - 1.042440I		
u = 0.372674 - 0.734435I		
a = 1.00000	2.83649 - 2.15459I	8.45889 + 1.98320I
b = 0.950589 + 1.042440I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.23610 + 1.41105I		
a = 1.00000	-8.40212 + 4.72676I	11.67641 + 3.78763I
b = 3.07117 + 0.59581I		
u = 0.23610 - 1.41105I		
a = 1.00000	-8.40212 - 4.72676I	11.67641 - 3.78763I
b = 3.07117 - 0.59581I		
u = 0.010555 + 0.413321I		
a = 1.00000	-2.02437 - 2.68122I	11.08292 + 6.93097I
b = -1.95315 - 0.78032I		
u = 0.010555 - 0.413321I		
a = 1.00000	-2.02437 + 2.68122I	11.08292 - 6.93097I
b = -1.95315 + 0.78032I		
u = -0.374990		
a = 1.00000	0.679468	14.8670
b = 0.313865		
u = 1.15639 + 1.32365I		
a = 1.00000	12.4777 + 13.4078I	7.73596 - 5.99135I
b = 2.04850 + 0.73446I		
u = 1.15639 - 1.32365I		
a = 1.00000	12.4777 - 13.4078I	7.73596 + 5.99135I
b = 2.04850 - 0.73446I		
u = -1.11599 + 1.40313I		
a = 1.00000	11.98080 - 5.53483I	7.70079 + 2.32699I
b = 2.11672 - 0.67442I		
u = -1.11599 - 1.40313I		
a = 1.00000	11.98080 + 5.53483I	7.70079 - 2.32699I
b = 2.11672 + 0.67442I		

II. $I_2^u = \langle -u^4 - u^3 - 2u^2 + b - 2u + 2, \ a + 1, \ u^5 + u^4 + 2u^3 + 3u^2 + u + 1 \rangle$

(i) Arc colorings

a) Arc colorings
$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1 \\ u^{4} + u^{3} + 2u^{2} + 2u - 2 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u \\ -u^{2} - 2u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u \\ u^{4} + u^{3} + u^{2} + 2u - 2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{2} - 1 \\ -u^{2} + u - 2 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u^{4} + u^{2} + u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ -u - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $5u^4 + 6u^3 + 10u^2 + 5u 2$

Crossings	u-Polynomials at each crossing
c_1	$u^5 - 3u^4 + 7u^2 - 5u + 1$
c_2, c_4	$u^5 + u^4 + 2u^3 + 3u^2 + u + 1$
c_3	$u^5 + 4u^4 + 8u^3 + 7u^2 + 2u - 1$
c_5, c_9	$u^5 - u^4 + 2u^3 - 3u^2 + u - 1$
c_6, c_{12}	$u^5 + 2u^4 + u^3 + 2u^2 + 1$
c_7	$u^5 - 4u^4 + 8u^3 - 7u^2 + 2u + 1$
c ₈	$u^5 - 3u^3 + u^2 + 3u + 1$
c_{10}	$u^5 + 3u^4 - 7u^2 - 5u - 1$
c_{11}	$u^5 - 2u^4 + u^3 - 2u^2 - 1$

Crossings	Riley Polynomials at each crossing
c_1, c_{10}	$y^5 - 9y^4 + 32y^3 - 43y^2 + 11y - 1$
c_2, c_4, c_5 c_9	$y^5 + 3y^4 - 7y^2 - 5y - 1$
c_3, c_7	$y^5 + 12y^3 - 9y^2 + 18y - 1$
c_6, c_{11}, c_{12}	$y^5 - 2y^4 - 7y^3 - 8y^2 - 4y - 1$
c ₈	$y^5 - 6y^4 + 15y^3 - 19y^2 + 7y - 1$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.23887		
a = -1.00000	5.64999	7.52320
b = -0.953942		
u = -0.082938 + 0.638199I		
a = -1.00000	-2.41512 + 2.46056I	-5.06862 + 1.07566I
b = -2.71682 + 0.90269I		
u = -0.082938 - 0.638199I		
a = -1.00000	-2.41512 - 2.46056I	-5.06862 - 1.07566I
b = -2.71682 - 0.90269I		
u = 0.202374 + 1.381280I		
a = -1.00000	-8.63454 + 4.90423I	-10.6930 - 12.7347I
b = -3.30621 - 0.67253I		
u = 0.202374 - 1.381280I		
a = -1.00000	-8.63454 - 4.90423I	-10.6930 + 12.7347I
b = -3.30621 + 0.67253I		

III.
$$I_3^u = \langle b-1, 19u^{11} - 5u^{10} + \dots + 5a + 21, u^{12} - u^{11} + \dots - 2u + 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -\frac{19}{5}u^{11} + u^{10} + \dots - \frac{39}{5}u - \frac{21}{5} \\ 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} \frac{2}{5}u^{11} + 2u^{10} + \dots - \frac{53}{5}u + \frac{33}{5} \\ \frac{14}{5}u^{11} - 3u^{10} + \dots + \frac{64}{5}u - \frac{19}{5} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -\frac{19}{5}u^{11} + u^{10} + \dots - \frac{39}{5}u - \frac{21}{5} \\ \frac{1}{5}u^{11} + u^{10} + \dots - \frac{9}{5}u + \frac{19}{5} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -\frac{3}{5}u^{11} - 2u^{9} + \dots + \frac{7}{5}u + \frac{8}{5} \\ -\frac{11}{5}u^{11} + 2u^{10} + \dots - \frac{31}{5}u - \frac{4}{5} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -\frac{3}{5}u^{11} - 2u^{9} + \dots + \frac{7}{5}u + \frac{13}{5} \\ -\frac{11}{5}u^{11} + 2u^{10} + \dots - \frac{31}{5}u + \frac{1}{5} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} \frac{16}{5}u^{11} - 3u^{10} + \dots + \frac{81}{5}u - \frac{36}{5} \\ \frac{2}{5}u^{11} + u^{10} + \dots - \frac{18}{5}u + \frac{18}{5} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} \frac{18}{5}u^{11} - 2u^{10} + \dots + \frac{63}{5}u - \frac{18}{5} \\ \frac{2}{5}u^{11} + u^{10} + \dots - \frac{18}{5}u + \frac{18}{5} \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes
$$= \frac{28}{5}u^{11} - 10u^{10} + 27u^9 - 46u^8 + \frac{331}{5}u^7 - \frac{439}{5}u^6 + \frac{513}{5}u^5 - \frac{573}{5}u^4 + \frac{416}{5}u^3 - \frac{466}{5}u^2 + \frac{153}{5}u - \frac{43}{5}u^3 + \frac{439}{5}u^3 - \frac{439}{5}u^3 \frac{4$$

Crossings	u-Polynomials at each crossing
c_1	$u^{12} - 9u^{11} + \dots - 12u + 1$
c_2, c_4	$u^{12} - u^{11} + \dots - 2u + 1$
c_3	$(u^6 - u^5 + u^4 + u^3 + u + 1)^2$
c_5, c_9	$u^{12} + u^{11} + \dots + 2u + 1$
c_6, c_{12}	$u^{12} - 3u^{11} + 3u^{10} + u^9 - 7u^8 + 7u^7 + 2u^6 - 7u^5 + 6u^4 - 4u^3 + 4u^2 + 1$
	$(u^6 + u^5 + u^4 - u^3 - u + 1)^2$
c ₈	$u^{12} - 4u^{11} + \dots - 4u + 1$
c_{10}	$u^{12} + 9u^{11} + \dots + 12u + 1$
c_{11}	$u^{12} + 3u^{11} + 3u^{10} - u^9 - 7u^8 - 7u^7 + 2u^6 + 7u^5 + 6u^4 + 4u^3 + 4u^2 + 1$

Crossings	Riley Polynomials at each crossing
c_1,c_{10}	$y^{12} - 3y^{11} + \dots - 16y + 1$
c_2, c_4, c_5 c_9	$y^{12} + 9y^{11} + \dots + 12y + 1$
c_3, c_7	$(y^6 + y^5 + 3y^4 + 3y^3 - y + 1)^2$
c_6, c_{11}, c_{12}	$y^{12} - 3y^{11} + \dots + 8y + 1$
<i>c</i> ₈	$y^{12} + 2y^{11} + \dots + 2y + 1$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.692350 + 0.998374I		
a = 0.563487 - 0.097097I	2.58561 - 4.66235I	13.2371 + 6.7464I
b = 1.00000		
u = -0.692350 - 0.998374I		
a = 0.563487 + 0.097097I	2.58561 + 4.66235I	13.2371 - 6.7464I
b = 1.00000		
u = -0.132362 + 1.261240I		
a = -0.394942 + 0.127357I	-4.97366 - 3.43143I	8.85710 + 2.47386I
b = 1.00000		
u = -0.132362 - 1.261240I		
a = -0.394942 - 0.127357I	-4.97366 + 3.43143I	8.85710 - 2.47386I
b = 1.00000		
u = 0.925178 + 0.902848I		
a = 0.743097 + 0.759251I	-0.90182 + 3.38184I	5.40576 - 3.42906I
b = 1.00000		
u = 0.925178 - 0.902848I		
a = 0.743097 - 0.759251I	-0.90182 - 3.38184I	5.40576 + 3.42906I
b = 1.00000		
u = 0.293191 + 0.629796I		
a = 1.72349 - 0.29698I	2.58561 + 4.66235I	13.2371 - 6.7464I
b = 1.00000		
u = 0.293191 - 0.629796I		
a = 1.72349 + 0.29698I	2.58561 - 4.66235I	13.2371 + 6.7464I
b = 1.00000		
u = -0.002009 + 1.373350I		
a = 0.658392 + 0.672704I	-0.90182 - 3.38184I	5.40576 + 3.42906I
b = 1.00000		
u = -0.002009 - 1.373350I		
a = 0.658392 - 0.672704I	-0.90182 + 3.38184I	5.40576 - 3.42906I
b = 1.00000		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.108352 + 0.514973I		
a = -2.29352 - 0.73959I	-4.97366 - 3.43143I	8.85710 + 2.47386I
b = 1.00000		
u = 0.108352 - 0.514973I		
a = -2.29352 + 0.73959I	-4.97366 + 3.43143I	8.85710 - 2.47386I
b = 1.00000		

IV.
$$I_4^u = \langle b+1,\ 8.58 \times 10^8 u^{13} + 1.33 \times 10^{10} u^{12} + \cdots + 1.99 \times 10^{11} a - 2.16 \times 10^{11},\ u^{14} - 5u^{12} + \cdots + 71u - 27 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.00432225u^{13} - 0.0669911u^{12} + \dots - 1.16044u + 1.08703 \\ -1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -0.230675u^{13} - 0.276112u^{12} + \dots + 9.13016u - 2.99354 \\ -0.0669911u^{13} - 0.0949882u^{12} + \dots + 2.39391u - 0.116701 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.00432225u^{13} - 0.0669911u^{12} + \dots + 1.16044u + 1.08703 \\ -0.0949882u^{13} - 0.012404u^{12} + \dots + 4.63967u - 2.80876 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.491617u^{13} - 0.549779u^{12} + \dots + 22.4159u - 11.7697 \\ -0.708236u^{13} - 0.702608u^{12} + \dots + 34.5053u - 20.2635 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.129369u^{13} - 0.179029u^{12} + \dots + 4.92648u - 1.93084 \\ -0.0162597u^{13} - 0.0388906u^{12} + \dots + 0.473434u - 0.414339 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.221319u^{13} + 0.290675u^{12} + \dots + 7.66514u + 4.74095 \\ -0.0872540u^{13} - 0.0324988u^{12} + \dots + 5.00660u - 3.42430 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -0.134065u^{13} - 0.258176u^{12} + \dots + 2.65854u - 1.31665 \\ 0.0872540u^{13} + 0.0324988u^{12} + \dots + 5.00660u + 3.42430 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$\frac{28175389}{29072243}u^{13} + \frac{25539934}{29072243}u^{12} + \dots - \frac{1509716152}{29072243}u + \frac{1122329736}{29072243}u^{13} + \frac{1122329736}{29072243}u^{13} + \dots + \frac{1122329736}{29072243}u^{13}$$

Crossings	u-Polynomials at each crossing
c_1,c_{10}	$u^{14} - 10u^{13} + \dots - 3259u + 729$
c_2, c_4, c_5 c_9	$u^{14} - 5u^{12} + \dots - 71u - 27$
c_{3}, c_{7}	$(u^7 - 2u^6 + 2u^5 + u^3 - u^2 + 1)^2$
c_6, c_{11}, c_{12}	$u^{14} - u^{13} + \dots - 1592u - 389$
c ₈	$u^{14} - 3u^{13} + \dots + 359u + 69$

Crossings	Riley Polynomials at each crossing
c_1,c_{10}	$y^{14} + 30y^{13} + \dots + 128753y + 531441$
c_2, c_4, c_5 c_9	$y^{14} - 10y^{13} + \dots - 3259y + 729$
c_3, c_7	$(y^7 + 6y^5 + 5y^3 - y^2 + 2y - 1)^2$
c_6, c_{11}, c_{12}	$y^{14} - 33y^{13} + \dots - 366178y + 151321$
<i>c</i> ₈	$y^{14} + 23y^{13} + \dots - 87205y + 4761$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.09942		
a = -1.35900	6.43854	20.5760
b = -1.00000		
u = -0.223848 + 1.077330I		
a = -0.411557 - 0.510160I	-2.34758 - 1.80700I	3.91671 + 3.17034I
b = -1.00000		
u = -0.223848 - 1.077330I		
a = -0.411557 + 0.510160I	-2.34758 + 1.80700I	3.91671 - 3.17034I
b = -1.00000		
u = 1.065070 + 0.315249I		
a = -0.970701 + 0.740024I	3.95079 - 2.05810I	10.60272 + 4.16307I
b = -1.00000		
u = 1.065070 - 0.315249I		
a = -0.970701 - 0.740024I	3.95079 + 2.05810I	10.60272 - 4.16307I
b = -1.00000		
u = 0.641734 + 0.329182I		
a = -0.95791 - 1.18741I	-2.34758 + 1.80700I	3.91671 - 3.17034I
b = -1.00000		
u = 0.641734 - 0.329182I		
a = -0.95791 + 1.18741I	-2.34758 - 1.80700I	3.91671 + 3.17034I
b = -1.00000		
u = -1.267160 + 0.482164I		
a = -0.651522 - 0.496695I	3.95079 - 2.05810I	10.60272 + 4.16307I
b = -1.00000		
u = -1.267160 - 0.482164I		
a = -0.651522 + 0.496695I	3.95079 + 2.05810I	10.60272 - 4.16307I
b = -1.00000		
u = -1.49411		
a = -0.735834	6.43854	20.5760
b = -1.00000		

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.46396 + 1.07750I		
a = -0.255519 - 0.994371I	13.27180 - 3.91407I	8.69280 + 2.02914I
b = -1.00000		
u = -1.46396 - 1.07750I		
a = -0.255519 + 0.994371I	13.27180 + 3.91407I	8.69280 - 2.02914I
b = -1.00000		
u = 1.44551 + 1.18040I		
a = -0.242413 + 0.943369I	13.27180 - 3.91407I	8.69280 + 2.02914I
b = -1.00000		
u = 1.44551 - 1.18040I		
a = -0.242413 - 0.943369I	13.27180 + 3.91407I	8.69280 - 2.02914I
b = -1.00000		

V.
$$I_5^u = \langle b-1, \ a+u, \ u^2+u+1 \rangle$$

(i) Arc colorings

a) Art colorings
$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ -u - 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ u + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u \\ -u - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u + 1 \\ -u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 12

Crossings	u-Polynomials at each crossing
c_1,c_5,c_9	$u^2 - u + 1$
c_2, c_4, c_8 c_{10}	$u^2 + u + 1$
c_3,c_{11}	$(u-1)^2$
c_6, c_7, c_{12}	$(u+1)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4 c_5, c_8, c_9 c_{10}	$y^2 + y + 1$
$c_3, c_6, c_7 \\ c_{11}, c_{12}$	$(y-1)^2$

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.500000 + 0.866025I		
a = 0.500000 - 0.866025I	3.28987	12.0000
b = 1.00000		
u = -0.500000 - 0.866025I		
a = 0.500000 + 0.866025I	3.28987	12.0000
b = 1.00000		

VI. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u^{2} - u + 1)(u^{5} - 3u^{4} + \dots - 5u + 1)(u^{12} - 9u^{11} + \dots - 12u + 1)$ $\cdot (u^{14} - 10u^{13} + \dots - 3259u + 729)(u^{19} + 12u^{18} + \dots - 12u - 1)$
c_2, c_4	$(u^{2} + u + 1)(u^{5} + u^{4} + \dots + u + 1)(u^{12} - u^{11} + \dots - 2u + 1)$ $\cdot (u^{14} - 5u^{12} + \dots - 71u - 27)(u^{19} + 6u^{17} + \dots + 2u - 1)$
c_3	$(u-1)^{2}(u^{5}+4u^{4}+8u^{3}+7u^{2}+2u-1)(u^{6}-u^{5}+u^{4}+u^{3}+u+1)^{2}$ $\cdot ((u^{7}-2u^{6}+2u^{5}+u^{3}-u^{2}+1)^{2})(u^{19}+5u^{18}+\cdots-5u-3)$
c_5, c_9	$(u^{2} - u + 1)(u^{5} - u^{4} + \dots + u - 1)(u^{12} + u^{11} + \dots + 2u + 1)$ $\cdot (u^{14} - 5u^{12} + \dots - 71u - 27)(u^{19} + 6u^{17} + \dots + 2u - 1)$
c_6, c_{12}	$(u+1)^{2}(u^{5}+2u^{4}+u^{3}+2u^{2}+1)$ $\cdot (u^{12}-3u^{11}+3u^{10}+u^{9}-7u^{8}+7u^{7}+2u^{6}-7u^{5}+6u^{4}-4u^{3}+4u^{2}+1)$ $\cdot (u^{14}-u^{13}+\cdots-1592u-389)(u^{19}+u^{18}+\cdots+u-3)$
c ₇	$(u+1)^{2}(u^{5}-4u^{4}+8u^{3}-7u^{2}+2u+1)(u^{6}+u^{5}+u^{4}-u^{3}-u+1)^{2}$ $\cdot((u^{7}-2u^{6}+2u^{5}+u^{3}-u^{2}+1)^{2})(u^{19}+5u^{18}+\cdots-5u-3)$
c_8	$(u^{2} + u + 1)(u^{5} - 3u^{3} + u^{2} + 3u + 1)(u^{12} - 4u^{11} + \dots - 4u + 1)$ $\cdot (u^{14} - 3u^{13} + \dots + 359u + 69)(u^{19} - u^{18} + \dots - 2u - 1)$
c_{10}	$(u^{2} + u + 1)(u^{5} + 3u^{4} + \dots - 5u - 1)(u^{12} + 9u^{11} + \dots + 12u + 1)$ $\cdot (u^{14} - 10u^{13} + \dots - 3259u + 729)(u^{19} + 12u^{18} + \dots - 12u - 1)$
c ₁₁	$(u-1)^{2}(u^{5}-2u^{4}+u^{3}-2u^{2}-1)$ $\cdot (u^{12}+3u^{11}+3u^{10}-u^{9}-7u^{8}-7u^{7}+2u^{6}+7u^{5}+6u^{4}+4u^{3}+4u^{2}+1)$ $\cdot (u^{14}-u^{13}+\cdots-1592u-389)(u^{19}+u^{18}+\cdots+u-3)$

VII. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1,c_{10}	$(y^{2} + y + 1)(y^{5} - 9y^{4} + 32y^{3} - 43y^{2} + 11y - 1)$ $\cdot (y^{12} - 3y^{11} + \dots - 16y + 1)(y^{14} + 30y^{13} + \dots + 128753y + 531441)$ $\cdot (y^{19} + 32y^{18} + \dots + 116y - 1)$
$c_2, c_4, c_5 \ c_9$	$(y^{2} + y + 1)(y^{5} + 3y^{4} + \dots - 5y - 1)(y^{12} + 9y^{11} + \dots + 12y + 1)$ $\cdot (y^{14} - 10y^{13} + \dots - 3259y + 729)(y^{19} + 12y^{18} + \dots - 12y - 1)$
c_3, c_7	$(y-1)^{2}(y^{5}+12y^{3}-9y^{2}+18y-1)(y^{6}+y^{5}+3y^{4}+3y^{3}-y+1)^{2}$ $\cdot ((y^{7}+6y^{5}+5y^{3}-y^{2}+2y-1)^{2})(y^{19}-3y^{18}+\cdots+103y-9)$
c_6, c_{11}, c_{12}	$((y-1)^2)(y^5 - 2y^4 + \dots - 4y - 1)(y^{12} - 3y^{11} + \dots + 8y + 1)$ $\cdot (y^{14} - 33y^{13} + \dots - 366178y + 151321)(y^{19} - 17y^{18} + \dots + 73y - 9)$
c ₈	$(y^{2} + y + 1)(y^{5} - 6y^{4} + \dots + 7y - 1)(y^{12} + 2y^{11} + \dots + 2y + 1)$ $\cdot (y^{14} + 23y^{13} + \dots - 87205y + 4761)(y^{19} + 11y^{18} + \dots + 44y - 1)$