CONCOURS D'ADMISSION 2006

PREMIÈRE COMPOSITION DE MATHÉMATIQUES

(Durée : 4 heures)

L'utilisation des calculatrices n'est pas autorisée pour cette épreuve.

Étude des solutions d'une équation fonctionnelle

Ce problème a pour but l'étude des solutions de l'équation

$$f'(x) = f(\gamma x) \tag{C_{\gamma}}$$

où l'inconnue f est une fonction réelle dérivable d'une variable réelle et où γ est un nombre réel fixé non nul. On considérera aussi le système

$$f'(x) = f(\gamma x)$$
 , $f(0) = \alpha$ $(C_{\gamma,\alpha})$

où α est un nombre réel fixé.

Première partie

Dans cette première partie, la variable x varie dans **R** et on suppose $|\gamma| \leq 1$.

- 1. Résoudre le système $(C_{\gamma,\alpha})$ dans le cas où $\gamma=1$.
- **2.** Même question dans le cas où $\gamma = -1$.
- **3.a)** Vérifier que la série entière $\alpha \sum_{n=0}^{+\infty} \gamma^{n(n-1)/2} \frac{x^n}{n!}$ est absolument convergente pour tout réel x et que sa somme est solution du système $(C_{\gamma,\alpha})$.
 - **3.b)** En serait-il de même si l'on supposait $|\gamma| > 1$?
- 4. Étant donné un nombre réel A>0, on désigne par E_A l'espace vectoriel des fonctions réelles continues sur l'intervalle [-A,A] et on le munit de la norme $\| \ \|$ définie par $\|g\|=\sup_{|x|\leqslant A}|g(x)|$. On note T_A l'application de E_A dans lui-même définie par

$$(T_A g)(x) = \alpha + \int_0^x g(\gamma t) dt$$
.

4.a) Vérifier que l'application T_A est continue.

- **4.b)**Vérifier qu'une fonction dérivable f sur \mathbf{R} est solution de $(C_{\gamma,\alpha})$ si et seulement si, pour tout A > 0, la restriction de f à [-A, A] est un point fixe de T_A .
 - **4.c)** Vérifier que, pour tout entier n > 0, tout réel A > 0, tout $x \in [-A, A]$ et tous $g, h \in E_A$,

$$|(T_A^n g)(x) - (T_A^n h)(x)| \le |\gamma|^{n(n-1)/2} \frac{|x|^n}{n!} ||g - h||.$$

4.d) Déterminer un entier n(A) > 0 tel que l'on ait, pour tous $g, h \in E_A$,

$$||T_A^{n(A)}g - T_A^{n(A)}h|| \le k||g - h||$$

avec une constante k < 1.

- **4.e)** Démontrer l'unicité de la solution du système $(C_{\gamma,\alpha})$.
- **5.** On pose, pour tout x réel,

$$f_{\gamma}(x) = \sum_{n=0}^{+\infty} \gamma^{n(n-1)/2} \frac{x^n}{n!}$$
.

- **5.a)** Déterminer la limite de $f_{\gamma}(x)$ lorsque γ tend vers 0.
- **5.b)** Montrer que la fonction $(\gamma, x) \mapsto F(\gamma, x) = f_{\gamma}(x)$, définie maintenant sur l'ensemble $[-1, 1] \times \mathbf{R}$, est de classe \mathcal{C}^{∞} .
- **5.c)** On suppose ici $\gamma \ge 0$ et on s'intéresse à la fonction f_{γ} restreinte à l'intervalle $[-1, +\infty[$. Déterminer son signe, son sens de variation et sa limite lorsque $x \to +\infty$.

Deuxième partie

Notations. Étant donné une suite de nombres réels u_n , où n parcourt l'ensemble \mathbf{Z} , on dira que la série $\sum_{n \in \mathbf{Z}} u_n$ est absolument convergente si les deux séries $\sum_{n \geqslant 0} u_n$ et $\sum_{n > 0} u_{-n}$ le sont ; dans ce cas on posera

$$\sum_{n \in \mathbf{Z}} u_n = \sum_{n \geqslant 0} u_n + \sum_{n > 0} u_{-n} .$$

Dans cette partie, on suppose $\gamma > 1$ et on s'intéresse au système $(C_{\gamma,\alpha})$ où x parcourt l'intervalle $]-\infty,0]$.

- **6.** Étant donné un nombre réel c_0 , trouver des nombres réels c_n , $n \in \mathbf{Z}$, possédant les propriétés suivantes :
 - (i) $\sum_{n\geqslant 0} |c_n|\gamma^n < +\infty$, $\sum_{n\geqslant 0} |c_{-n}|\gamma^n < +\infty$,
 - (ii) la série $\sum_{n \in \mathbb{Z}} c_n e^{\gamma^n x}$ est absolument convergente pour tout $x \in]-\infty,0]$, et sa somme $\varphi(x)$ est solution de (C_{γ}) .
 - **N.B.** On ne demande pas de prouver l'unicité des c_n .

- 7. Déduire de la question 6 une solution de $(C_{\gamma,\alpha})$ sur l'intervalle $]-\infty,0]$.
- **8.** Que se passe-t-il si l'on suppose $x \in [0, +\infty[$ au lieu de $x \in]-\infty, 0]$, et si l'on remplace la série $\sum_{n \in \mathbf{Z}} c_n \, e^{\gamma^n x}$ par la série $\sum_{n \in \mathbf{Z}} c_n \, e^{-\gamma^n x}$, mais en conservant les conditions (i)?

Troisième partie

Dans cette partie, on suppose $\gamma > 1$ et on note G_{γ} l'espace vectoriel des solutions de (C_{γ}) définies sur l'intervalle $]0, +\infty[$. Pour tout $p \in \mathbf{Z}$, on pose $I_{(p)} = [\gamma^p, \gamma^{p+1}]$.

9. Vérifier que, si $f \in G_{\gamma}$, on a

$$f^{(n)}(x) = \gamma^{kn-k(k+1)/2} f^{(n-k)}(\gamma^k x)$$

pour tous entiers k et n tels que $0 \le k \le n$ et tout $x \in]0, +\infty[$.

Pour toute fonction f définie sur $]0,+\infty[$, on note $f_{(p)}$ la restriction de f à $I_{(p)}$.

- **10.** Vérifier que l'application $\Psi: G_{\gamma} \to \mathcal{C}^{\infty}(I_{(0)})$ définie par $\Psi(f) = f_{(0)}$ est injective.
- 11. Étant donné un élément g de $\mathcal{C}^{\infty}(I_{(0)})$, donner une condition nécessaire et suffisante, portant sur les dérivées de g aux points 1 et γ , pour que g appartienne au sous-espace image de Ψ .
- 12. On se donne un élément f de G_{γ} et on fait l'hypothèse que $f(\gamma^{-p})$ est nul pour tout entier $p \ge 0$. On se propose de démontrer que f est nulle.
 - **12.a)** Vérifier que, pour tout p > 0, on a

$$f_{(-p)}^{(p)}(x) = \gamma^{p(p-1)/2} f_{(0)}(\gamma^p x)$$
 , $x \in I_{(-p)}$

et

$$f_{(-p)}^{(k)}(\gamma^{-p}) = 0 \quad , \quad \text{pour tout } k$$

12.b) Déterminer pour tout p > 0 un nombre réel q_p tel que l'on ait, pour tout $x \in I_{(-p)}$:

$$f_{(-p)}(x) = q_p \int_{\gamma^{-p}}^x (x-t)^{p-1} f_{(0)}(\gamma^p t) dt$$
.

[On pourra utiliser la formule de Taylor.]

- **12.c)** Montrer que l'on a $\int_1^{\gamma} (\gamma t)^{p-1} f_{(0)}(t) dt = 0$ pour tout p > 0.
- 12.d) Conclure.

* *