

第7章 单片机I/O扩展及应用

- 7.1 I/O接口技术概述
- 7.2 MCS-51单片机I/O口的直接应用
- 7.3 单片机简单I/O口扩展
- 7.4 8255A可编程通用并行接口芯片
- 7.5 8155可编程并行接口芯片
- 7.6 单片机键盘接口技术
- 7.7 单片机LED显示器接口技术
- 7.8 MCS-51单片机打印机接口技术

7.1 I/O接口技术概述

- 一、**I/O接口电路的功能**: I/O接口电路实现CPU与外设之间的数据输入/输出,主要功能包括:速度协调、数据锁存、三态缓冲、数据转换等。
- 二、端口: I/O接口电路中能进行读/写操作的寄存器,一个接口电路有多个口。
- 三、数据总线隔离:数据总线与多个I/O设备连接, 所以需要隔离。输出接口电路要提供锁存器,输入 接口电路使用三态缓冲器。

三态缓冲器逻辑

图 7.5 三态缓冲器逻辑符号

表 7-1 三态缓冲控制逻辑

三态控制信号	工作状态	数据输入	输出端状态
1	高阻抗	0	高阻抗
		1	高阻抗
0	驱动	0	0
		1	1

础

四、I/O口编址技术

独立编址方式: I/O口与存储器分开编址;

统一编址方式: I/O口与存储器<mark>统一编址</mark>。MCS-51采用这种方式。

五、I/O口数据传送的控制方式

无条件传送方式: 不测试外设状态, 根据需要随时传送数据;

程序查询方式: 先以程序方法检测外设状态, 再进行数据传送;

中断方式: 先由外设提出中断请求, 再进行数据传送。

7.2 MCS-51单片机I/O口的直接应用

位操作:

I/O操作指令

输出数据:

MOV Px, A

MOV Px, Rn

MOV Px, @Ri

MOV Px, direct

输入数据:

MOV A, Px

MOV Rn, Px

MOV @Ri, Px

MOV direct, Px

MOV Px.y, C

CLR Px.y

SETB Px.y

CPL Px.y

JB Px.y, rel

JNB Px.y, rel

JBC Px.y, rel

I/O口其它操作指令:

ANL Px, A

ORL Px, A

XRL Px, A

CJNE A, Px, rel

机基

础

I/O口的直接使用

例:开关每扳动一次,将KO~K3的状态显示在 LEDO~LED3

图 7.3 中断方式的简单 I/O 应用电路连接

础

7.3 单片机简单输入口扩展

先介绍一个芯片

芯片244: 2个4位三态缓冲器,1A₄~1A₁、2A₄~2A₁为输入端; 1Y₄~1Y₁、单 2Y₄~2Y₁为输出端; /CE₁、/CE₂为选通信号,低电平有效。

图 7.9 74LS244 引脚排列

单输入口扩展

单

机

基

础

高阻状态

多输入口扩展

图 7.11 多输入口扩展电路

单片机艺

机基础

份經論入假回自紹

举例: 拨盘输入接口电路(4个拨盘,每个4 位BCD码,共16位输入)

MOV R4, A

单

机

爾里國國門

介绍芯片377:8D锁存器。8D~1D:数据输入端;8Q~1Q:数据输出端;CK:时钟信号,上升沿锁存;/G:使能控制。

图 7.13 74LS377 引脚图

表 7-2 74LS377 真值表

G	CK	D	Q
1	X	×	$\mathbf{Q}_{\!\scriptscriptstyle{0}}$
0	†	1	1
0	↑	0	0
×	0	×	Q_0

图 7.14 74LS377 逻辑电路

单

机

基

础

翻照到77舒展单个输出回

图 7.15 74LS377 作输出口

 /WR
 译码
 CK

 0
 0
 1

 0
 1
 0

 1
 0
 0

 1
 1
 0

输出

锁存状态

常用的可编程接口芯片

8255A: 可编程通用并行接口;

8155: 带RAM和定时器/计数器的可编程并

行接口;

机

8259: 可编程中断控制器;

8279: 可编程键盘/显示器接口;

8253: 可编程通用定时器

7.4 8255A可编程通用并行接口芯片

8255A的逻辑结构和信号引脚

图 7.16 8255A 引脚图

图 7.17 8255A 的逻辑结构

8255A的逻辑结构和信号引脚

A口 **PA7~PA0**:数据输入/输出口。

B口 PB7~PB0: 数据输入/输出口。

C口 PC7~PC4:数据输入/输出口或控制口(A口控制)。

C口 PC3~PC0:数据输入/输出口或控制口(B口控制)。

/CS: 片选信号。

/RD: 读信号(CPU读取8255A的数据)。

/WR:写信号(CPU把数据或控制字写到8255A中)。

A1、A0:端口选择信号,应与P0.0和P0.1相连。

RESET: 复位信号,复位后,控制寄存器清除,各端口置为

输入方式。

8255A的控制表及地址

表 7-3 8255A 读/写控制表

<u>CS</u>	A_1	A_0	RD	WR	所选端口	操作
0	0	0	0	1	Αp	读端口A
0	0	1	0	1	Вп	读端口B
0	1	0	0	1	Cn	读端口C
0	0	0	1	0	Αυ	写端口 A
0	0	1	1	0	Вр	写端口 B
0	1	0	1	0	Сп	写端口 C
0	1	1	1	0	控制寄存器	写控制字
1	Χ	X	X	Х	/	数据总线缓冲器输出高阻抗

8255A工作方式及数据I/0操作

三种工作方式:

方式0: 基本输入/输出方式。A口、B口作为8位I/O口; C口高、C口低作为4位I/O口。

方式1: 选通输入/输出方式。A口、B口作为8位选通I/O口; C口相关口线用作数据传送的联络信号。

方式2: 双向数据传送方式。A口可作为I/O双向传送口(这时B口工作于方式0, C口相关口线作为控制信号)。

C口的联络信号

表 7-4 C 口联络信号定义

C口位线	方	式 1	方式2		
一	輸入	輸出	輸入	輸出	
PC ₇		OBFA		OBFA	
PC ₆		ACKA		ACKA	
PC ₅	IBFA		IBFA		
PC ₄	STBA		STBA		
PC ₃	INTRA	INTRA	INTRA	INTRA	
PC_2	STBB	ACKB			
PC_1	IBFB	OBFB			
PC ₀	INTRB	INTRB			

单片

机基

选通方式下数据的输入过程

外设准备好数据→发出/STB信号→数据进入 缓冲器→IBF信号有效(单片机可查询)→产 生INTR信号(可使单片机中断)→单片机读 入数据→IBF变低。

有关控制信号:

/STB: 选通信号,低电平有效,外设送给8255A,将输入数据装入8255A锁存器。

IBF: 输入缓冲器满,高电平有效,8255A输出给单片机的状态信号,表明数据已装入锁存器。

INTR: 中断请求信号,高电平有效,8255A输出给单片机,请求中断。

单

机

基 础

础

选通方式下数据的输出过程

数据输出过程:外设接收完一组数据→发回/ACK信号→/OBF变高(供单片机查询)→INTR有效(可使单片机中断)→单片机输出下一个数据到8255A缓冲器→/OBF有效→外设取走数据。

有关控制信号:

/ACK:外设响应信号,低电平有效,外设发给8255A,表明数据取走。

/OBF: 输出缓冲器满,低电平有效,8255A输出的状态信号,表明单片机已将数据装入锁存器。

INTR: 中断请求信号,高电平有效,8255A输出给单片机,请求中断。

图 7.18 8255A 工作方式控制字格式

单片机基

基础

C口的位置位/复位

位置"l"/置"0"标志 0=有效

图 7.19 8255A 位置位/复位控制字格式

8255A的初始化例子

A口:方式0输入;B口:方式1输出,C口高:输出;C口低:输入。则控制字为10010101,即95H。

MOV RO, #03H; 设控制寄存器地址为0003H

MOV A, #95H

MOVX @RO, A

4

7.5 8155可编程并行接口芯片

8155的管脚

AD7~AD0: 地址/数据复合线

ALE: 地址锁存信号(锁存地址信号、/CE信

号、IO/M信号等)

/RD: 读选通信号

/WR: 写选通信号

/CE: 片选信号

IO/M: I/O与RAM选择信号

RESET: 复位信号

4

8155的工作方式

A口(PA)工作方式: 2种,输入方式,输出方式

B口(PB)工作方式: 2种,输入方式,输出方式

C口(PC)工作方式: 4种,输入方式,输出方式,PA控制端口方式,PA、PB口控制方式

础

4

C口联络信号

表 7-5 PC 口线联络信号定义

方式口位	作PA控制端口	作PA和PB控制端口
PC ₀	INTRA	INTRA
PC ₁	ABF	ABF
PC₂	ASTB	ASTB
PC ₃	輸出	INTRB
PC ₄	輸出	BBF
PC ₅	輸出	BSTB

INTR: 中断请求信号(输出),高有效

BF: 缓冲器满信号(输出),高有效

/STB: 选通信号(输入),数据输入时外设送来选通信号,数据输出时外设送来应答信号

8155的端口地址

表 7-6 8155 的可编程端口

AD ₇	AD_6	AD_5	AD,	AD_3	AD ₂	AD_1	AD_0	选择
X	Х	Χ	Х	Х	0	0	0	命令/状态寄存器
X	X	X	×	Х	0	0	1	PA 🗈
X	X	X	X	X	0	1	0	PB ₽
Χ	Х	×	X	Х	0	1	1	PC 🗈
X	X	Χ	Х	Х	1	0	0	定时器/计数器低 8 位
X	X	X	X	X	1	0	1	定时器/计数器高 8 位

8155与MCS-51单片机的连接

兼容信号的连接

表 7-7 8155 与 MCS-51 的兼容信号

8155	MCS-51	8155	MCS-51		
$AD_7 \sim AD_0$	P ₀ ¤	RD	RD		
ALE	ALE ALE		WR ·		
RESET	RST				

単片

机

基

8155的IO/M信号与单片机的连接

分路一

或非门产生 IO/M 信号

单片机基

础

ALE ALE PA₁~PA₀ $P_{2,1}$ **CE** P_{2.0} Ю/М $PB_7 \sim PB_0$ AD 80C51 \mathbf{P}_0 PB 8155 PC₅~PC₀ \overline{RD} RD WR WR **RST RST**

海路=

高位地址作 IO/M 信号

单片机基

础

础

8155命令/状态字

地址相同的2个寄存器,写操作为命令寄存器, 读操作为状态寄存器

图 7.24 8155 命令字格式

8155状态字格式

图 7.25 8155 状态字格式

单片机基

础

8155的定时/计数器

计数结构如下: 14位减法计数器

D_7	D_6	D_5	D ₄	D_3	D_2	D_1	D_0
M_2	M_1	T_{13}	T_{12}	T_{11}	T_{10}	T,	T ₈

输出方式

计数器高6位

D_7	D_6	D_5	D ₄	D_3	D_2	D_1	D_0
T_7	T ₆	T_5	T_4	T_3	T ₂	T_1	To

计数器低 8 位

单片机

基

础

8155定时/技术的输出方式

8155 定时器/计数器的输出方式 图 7.26

单 机

基 础

7.6 单片机键盘接口功能的实现

单片机键盘的种类:独立式、矩阵式

独立式键盘:每个按键独占一条口线,通过I/O口与单片机连接。

矩阵式键盘:按键按照行列组成矩阵。

矩阵式键盘接口的操作功能:键盘扫描、键识别、产生键码、去抖动。

测试是否有键按下

去抖动:软件延时10~20ms

图 7.32 键闭合和断开时的电压抖动

机

行列扫描

输出口使第0列输出0,输入口判断行线状态,如没有低电平则输出口使第1列输出0,输入口继续判断行线状态,如此从第0列至第7列,直至找到按键位置。

键号=行号+列号。

键释放判断:延时后再测试按键,直至释放

单

机

础

采用8155作键盘接口

图 7.35 8155 作键盘接口

础

键处理流程图

判断有无闭合键的子程序

KS1: MOV DPTR, # 0101H

MOV A, # 00H ; A 口送 00H

MOVX @DPTR, A

INC DPTR

INC DPTR ;建立C口地址

MOVX A,@DPTR ;读C口

CPL A ;A 取反,无键按下则全"0"

ANL A, #0FH ; 屏蔽 A 高半字节

RET

单片机

基础

	LONE:	JB MOV	ACC. 1, LTWO A, # 08H	;ACC. 1=1,第1行无键闭合,转LTWO ;装第1行行值
	LTWO:	AJMP JB MOV	LKP ACC. 2, LTHR A, # 10H	;ACC. 2=1,第2行无闭合,转LTHR ;装第2行行值
	LTHR:	AJMP JB	LKP ACC. 3, NEXT	;ACC. 3=1,第3行无键闭合则转 NEXT
单	LKP:	MOV ADD PUSH	A, # 18H A, R ₄ ACC	;装第3行行值 ;计算键码 ;保护键码
片 机	LK3:	ACALL ACALL JNZ	DIR KS1 LK3	;延时 6 ms ;查键是否继续闭合,若闭合再延时
基,		POP RET	ACC	;若键起,则键码送 A
础	NEXT:	INC MOV	R ₄ A, R ₂ ACC, 7, KND	;扫描列号加1 :第7位为"0",已扫完最高列则转 KND
		JNB RL A MOV	R_2 , A	; 循环左移一位
	KND:	AJMP AJMP	LK4 KEY1	;进行下一列扫描 ;扫描完毕,开始新的一轮

7.7 单片机LED显示器接口技术

LED(发光二极管)显示器:

七段LED段码,外加小数点,共八段。 两种接法:共阴极,共阳极。

图 7.37 LED 显示器

半片机

十六进制数代码表

表 7-8 十六进制数字形代码表

字型	共阳极代码	共阴极代码	字型	共阳极代码	共阴极代码
0	C0H	3FH	9	90H	6FH
1	F9H	06H	A	88H	77H
2	A4H	5BH	b	83H	7CH
3	ВоН	4FH	С	C6H	39 H
4	99H	66H	d	A1H	5EH
5	92H	6DH	E	86H	79H
6	82H	7DH	F	8EH	71H
7	F8H	07H	灭	FFH	00 H
8	80H	7FH			

8155作LED显示器

单片机

基础

DIR: MOV R_0 , #79H ;建立显示缓冲区首址 MOV ;从右数第一位显示器开始 R_3 , #01H MOV A, R_3 ;位控码初值 LD0: MOV DPTR, # 0103H ;位控口地址 MOVX @DPTR, A ;输出位控码 MOV DPTR, # 0101H ;得段控口地址 显 MOV $A,@R_0$;取出显示数据 示 DIRO: ADD A, # 0DH MOVC A,@A+PC;查表取字形代码 单 DIR1: MOVX @DPTR, A ;输出段控码 ACALL DL ;延时,维持点亮 INC R_{o} ;转向下一缓冲单元 机 MOV A, R_3 设显示缓冲区 基 JB ACC. 5, LD1 ;判是否到最高位,到则返回 为**79**H~**7EH**, RL A ;不到,向显示器高位移位 础 位控口地址 MOV R_3 , A ;位控码送 R3保存 AJMP LD0 ;继续扫描 0103H,段控 LD1: RET 口地址0101H。 DSEG: DB C₀H ;字形代码表 则LED显示程 DB F9H 序如下 DB A4H

7.8 MCS-51单片机打印机接口技术

以μP系列打印机为例,其信号引脚 如下:

DB7~DB0:数据线

/STB:数据选通信号,输入给打印机,

上升沿时数据读入

BUSY: 忙信号, 高电平有效, 打印机输

出,表示打印机忙

/ACK:应答信号,打印机输出,打印机

读入数据后返回应答信号

/ERR: 出错信号,打印机输出。

机

础

打印机信号引脚排列

ERR **ACK GND GND GND GND GND** (20)**GND GND GND** BUSY (19) DB_6 DB_7 DB_5 DB_0 DB_2 DB_3 DB_4 DB_1 **STB**

使用8255作打印机接口

打印驱动程序

A口地址: 01111100=7C;

设

B口地址: 01111101=7D:

C口地址: 01111110=7E:

控制口地址: 01111111=7F

A口方式:方式O输出;B口不用; C口高输入; C口低输出; 控制字:

10001000=88H

设R1存缓冲区首址,R2存缓冲区 长度,则驱动程序为

单 机

础

DJNZ

RET

JB ACC. 7, TP1 MOV R_0 , # 7CH MOV $A,@R_1$ MOVX (a) R_0 , AINC R_1 MOV R_0 , #7FH MOV A, #00HMOVX $@R_0$, A MOV A, # 01H MOVX $@R_0$, A

 R_2 , TP

;BUSY=1,继续查询 :A 口地址 ;取缓冲区数据 ;打印数据送 8255A

;指向下一单元 ;控制口地址

;输出STB 脉冲

;数据长度减1,不为0继续