

Variáveis Primitivas e Controle de Fluxo

Capítulo II

Algumas Informações

- ✓ Inferência de tipo
 - Em algumas linguagens não é necessário informar o tipo da variável em sua criação. Ex: Python, JavaScript e MatLab.
- ✓ Case Sensitive
 - Diferencia letras maiúsculas de minúsculas
- √ Tipagem Forte e Fraca
 - Uma linguagem se denomina de tipagem forte quando não é possível realizar operações com variáveis de tipos diferentes.
 - Tipagem Forte: Java e Python.
 - Tipagem Fraca: PHP e JavaScript.

Variáveis

No Java existem dois tipos de variáveis, as **Primitivas** e as de **Referência**

Primitivas: nome associado a um espaço de memória.

 Referência: nome associado a um ponteiro que aponta para um espaço de memória. Referenciando um objeto.

```
String palavra = "Oi"; Carro fusca;
```


Comentários

```
// Comentar é essencial!
/* Existem diversas formas de comentar um código */
/**
 * Nunca esqueça dos comentários.
 * Eles vão te ajudar muito!
 */
```


Algumas convenções Java para variáveis

✓ Uma declaração de variável por linha, seguida de comentário;

```
float nota;  // Nota do aluno
float media;  // Média das notas
```

✓ Nome de variáveis: devem começar com letras (minúsculas), \$ ou _; Se for um nome composto as primeiras letras das palavras subsequentes devem ser maiúsculas;

```
double saldoContaCorrente;
```

✓ Nome de constantes: devem ser sempre maiúsculas. Usa-se underline (_) para separar nomes compostos;

```
final int CREDITOS MATRICULA = 27;
```


Tipos Primitivos em Java

Classificação	Tipo	Tamanho	Descrição
Inteiro	byte	8 bits	Utilizado quando o consumo de memória é importante, principalmente em vetores (-127 a 127)
	short	16 bits	Utilizado quando o consumo de memória é importante, principalmente em vetores (-32.768 a 32.767)
	int	32 bits	Bastante utilizado para representar números inteiros (-2147483648 a 2147483647)
	long	64 bits	Utilizando quando o intervalo necessário excede os valores de int (-2^63 a 2^63-1)
Ponto flutuante	float	32 bits	Precisão simples com até 7 dígitos decimais (de acordo com a IEEE 754-2008)
	double	64 bits	Precisão simples com até 15 dígitos decimais (de acordo com a IEEE 754-2008)
Lógico	boolean	indefinido	Utilizado para para flag simples, true e false
Caractere	char	16 bits	Utilizada para armazenar um caractere Unicode, a partir da versão 1.5 (ou 2SE 5.0 o UTF-16 é utilizado)

-2^(numero de bits - 1) até 2^(numero de bits - 1) - 1

Classe String

String não é um tipo de variável e sim uma classe. Por isso ela é escrita com a primeira letra maiúscula. Esta classe é dotada de vários atributos e métodos que facilitam muito a nossa vida.

Manipulando métodos da classe String

Trabalhando String em Java

Exemplos de promoção e casting (ou conversion)

```
float numFloat;
double numDouble;
// Atribuindo um número de 9 dígitos para float
numFloat = 1.123456789f;
// Atribuindo um número de 9 dígitos para double
numDouble = 1.123456789;
System.out.println("Float com 9 dígitos: " + numFloat);
System.out.println("Double com 9 dígitos: " + numDouble);
// Como funciona uma promoção (de inteiro para double)
numDouble = 10:
System.out.println("Promoção de um inteiro em Java: " + numDouble);
// Como funciona um casting
// Podemos usar o underscore para deixar o código mais legível
numDouble = 10.123 45;
numFloat = (float) numDouble;
System.out.println("Casting de um número em Java" + numFloat);
```


Tabela casting

DE \ PARA	byte	short	char	int	long	float	double
byte		Implícito	char	Implícito	Implícito	Implícito	Implícito
short	byte		char	Implícito	Implícito	Implícito	Implícito
char	byte	short		Implícito	Implícito	Implícito	Implícito
int	byte	short	char		Implícito	Implícito	Implícito
long	byte	short	char	int		Implícito	Implícito
float	byte	short	char	int	long		Implícito
double	byte	short	char	int	long	float	

Conhecendo o *Printf*

Conversor	Descrição		
d	Representa decimal		
f	Representa ponto flutuante		
S	Representa uma string		
n	Quebra de linha (Recomendado pela Oracle ao invés de \n)		
06	Fixa a saída em 6 caracteres, adicionando zeros se necessário		
+	Exibe o sinal (positivo ou negativo)		
.3	Exibe 3 casas depois da vírgula		
8.3	Exibe 8 casas		

Exemplos

```
double pi = 3.141 592 653;
int decimal = 123456;
double numDouble = 12345.123456;
String texto = "Teste formatação!";
System.out.format("%d %n", decimal);
System.out.format("%f %n", pi);
System.out.format("%s %n", texto);
System.out.printf("%+d %n", decimal);
System.out.printf("%08d %n", decimal);
System.out.printf("%8.3f %n", numDouble);
```


Entrada de dados

Para entrada de dados via dispositivo padrão (terminal) utilizamos da classe Scanner

Não se esqueça do import!

```
import java.util.Scanner;
```

```
Scanner teclado = new Scanner (System.in);
System.out.print("Entre com o byte desejado: ");
byte b = teclado.nextByte();
System.out.print("Entre com o shot desejado: ");
short s = teclado.nextShort();
System.out.print("Entre com o int desejado: ");
int i = teclado.nextInt();
System.out.print("Entre com o long desejado: ");
long l = teclado.nextLong();
System.out.print("Entre com o float desejado: ");
float f = teclado.nextFloat();
System.out.print("Entre com o double desejado: ");
double d = teclado.nextDouble();
System.out.print("Entre com a String desejada: ");
String texto = teclado.nextLine();
```


Entrada de dados

Para ler variáveis do tipo char, nós utilizamos uma String auxiliar e pegamos apenas sua primeira letra e convertemos em char através do método charAt.

```
Scanner teclado = new Scanner(System.in);
String leitura;
char letra;
leitura = teclado.nextLine();
letra = leitura.charAt(0);
```

O número indicado no método indica em qual posição vamos pegar a letra, neste caso a primeira letra na posição 0

Controle de Fluxo

```
if (num1 == num2)
                                                             Operador
                                                                              Descrição
    System.out.println("Os numeros sao iquais");
                                                                           Igual à
if ( num1 != num2 )
    System.out.println("Os numeros sao diferentes");
                                                                           Diferente de
                                                                 !=
if (num1 > num2)
                                                                           Maior que
                                                                 >
    System.out.println("num1 é maior que num2");
                                                                           Maior ou igual à
if ( num1 < num2 )</pre>
                                                                >=
    System.out.println("num2 é maior que num1");
                                                                           Menor que
                                                                 <
if (num1 >= num2)
                                                                           Menor ou igual à
                                                                <=
    System.out.println("num1 é maior ou iqual à num2");_
```

Operador	Descrição
&&	E
	OU

```
if ( (media >= 60) && (freq > 0.75) ) {
    System.out.println("Aluno Aprovado!");
} else if ( (media < 30) || (freq < 0.75) ) {
    System.out.println("Aluno Reprovado!");
} else {
    System.out.println(" NP3 !");
}</pre>
```


Operador Ternário

Muito útil quando se deseja atribuir um valor a uma variável dependendo de uma condição

```
// a e b são int e maior é uma String
if ( a > b ) {
    maior = "A é maior que B";
} else {
    maior = "B é maior ou igual a A";
}

// Operador ternário
maior = ( a > b )? "A é maior que B": "B é maior ou igual a A";
```


Estruturas de repetição

While

Operador	Descrição
++	Incremento
+=	Incremento
	Decremento
-=	Decremento

Estruturas de repetição

For

Estruturas de repetição

Switch-Case

```
Scanner teclado = new Scanner(System.in);
// Pega o valor digitado e salva na variável
String aux = teclado.nextLine();
// Armazena somente a primeira letra da variável aux
char conceito = aux.charAt(0);
switch (conceito) {
    case 'A':
        System.out.println("Média boa!");
       break:
    case 'B':
        System.out.println("Média Razoável");
       break:
    case 'C':
        System.out.println("Média ruim!");
    default:
        System.out.println("Média inválida");
```

Caso nenhuma das opções seja a correta o bloco default é executado

Operadores

Aplicável somente em inteiros

Mateiral de Apoio

Variáveis Primitivas e Controle de Fluxo - Caelum

Exercícios

- 1. De acordo com a opção do usuário imprima a tabela verdade do operador desejado. (E ou OU).
- 2. Leia 4 valores inteiros A, B, C e D. A seguir, se B for maior do que C e se D for maior do que A, e a soma de C com D for maior que a soma de A e B e se C e D, ambos, forem positivos e se a variável A for par escrever a mensagem "Valores aceitos", senão escrever "Valores nao aceitos". (fonte: **URI 1035**)
- 3. Crie um programa que calcule o IMC (Índice de Massa Corporal) e mostre o grau de obesidade de acordo com o resultado. Fórmula do imc = (peso / altura²). Dica: pesquise sobre a *Tabela IMC* para saber os graus de obesidade.
- 4. Faça uma calculadora que dado 2 números informados pelo usuário realize as seguintes operações (de acordo com a opção do usuário): soma, subtração, multiplicação, divisão e exponencial.

Exercícios

- Faça um programa que permita ao usuário entrar com as notas de NP1 e NP2. Após ler estas notas, mostre a média final em um número inteiro.
- 6. Dentro de uma determinada empresa, alguns funcionários tem seus salários baseados no Salário Mínimo e outros funcionários ganham por hora. Dado que o Salário Mínimo atual é de R\$ 998,00 e o preço da hora de trabalho é de R\$ 9,30, calcule o salário mensal dos seguintes funcionários:
 - Gerente: 3 salários mínimos.
 - Engenheiro: 7 salários mínimos.
 - Serviços terceirizados : 8h/dia
- 7. Dado um valor em R\$, calcule quantas viagens de ônibus são possíveis. Suponha que o preço seja R\$ 2,75 cada passagem.

Obrigado!