Atóm

1.názor, že všetky látky sú zložené z malých nedeliteľných častíc- atómov /gr. atomos=nedeliteľný) vyslovil Leukippós a Demokritos

Predstavy o štruktúre atómu:

- Thomsonov model atómu = pudingový model atómu
- Rutherfordov planetárny model atómu atóm je zložený z malého, kladne nabitého jadra a záporne nabitých elektrónov, ktoré obiehajú po kruhových dráhach okolo atómového jadra ako planéty okolo slnka a tvoria elektrónový obal.
- Bohrov model atómu elektrón stráca alebo získava energiu po kvantách a to iba pri prechode z jednej energetickej hladiny na inú.
- Kvantovo mechanický model atómu v súčasnosti používaný
- Vychádza z poznatkov kvantovej fyziky a mechaniky
- Nevieme určiť presnú polohu e-, pretože má duálny charakter správa sa ako častica aj ako vlnenie, preto vieme vypočítať iba priestor, v ktorom sa bude e- na 99% nachádzať a nazýva sa ORBITÁL (máme 4 typy s,p,d,f s rôznym tvarom)

Atóm je zložený z 1. jadra – v ňom sú kladné častice - **protóny p+** a **neutróny n⁰** (nemajú náboj)

2. obalu – v ňom sa nachádzajú vo vrstvách 1-7 záporné častice **elektróny e-**Navonok je atóm elektroneutrálny, pretože počet p+ = e-

Subatomárna častica [upraviť upraviť kód]	Objaviteľ (rok)	Hmotnosť (kg)	Náboj (veľkosť náboja) (C)	Symbol
protón	Ernest Rutherford (1918)	1,6729×10 ⁻²⁷	kladný (1,60210 × 10 ⁻¹⁹)	p ⁺ , H ⁺
neutrón	James Chadwick (1932)	1,6749×10 ⁻²⁷	bez náboju	n –
elektrón	Joseph John Thomson (1897)	9,1091 x 10 ⁻³¹	záporný (1,60210 × 10 ⁻¹⁹)	e-

- **Protónové číslo = atómové** označenie Z, píšeme v ľavom dolnom indexe k značke prvku
- je to poradové číslo v PSP, udáva počet protónov v jadre atómu
 - Nukleónové číslo = hmotnostné označenie A
 - Udáva počet protónov a neutrónov v jadre atómu
 - Neutrónové číslo N udáva počet neutrónov

$$A = N + Z$$

• Nuklid je prvok s určitým Z aj A

IZOTOP – prvok s rovnakým protónovým číslom a rozdielnym nukleónovým

Príklad vodík – má 3 izotopy - prócium, deutérium, trícium

c) IZOBARY – majú rovnaké A , rozdielne Z – sú to rozdielne prvky 40/18~Ar~40/19~K~40/20~Ca

Elektrónový obal:

- Elektrónový obal je tvorený iba elektrónmi a preto má záporný elektrický náboj, ktorý je v atóme neutralizovaný kladným nábojom jadra atómu. Preto je atóm ako celok elektricky neutrálny.
- Polomer elektrónového obalu (a teda celého atómu) sa pohybuje okolo 10⁻¹⁰ m.
- Hmotnosť elektrónového obalu tvorí okolo 0,01 % celkovej hmotnosti atómu.
- Elektróny jako mikročastice majú dvojaký (dualistický) charakter:

za určitých experimentálnych podmienok sa správajú ako častice, inokedy ako vlnenie = **vlnovo-časticový** (vlnovo – korpuskulárny) charakter.

Nevieme s istotou povedať, kde sa elektrón v atóme nachádza v danom okamihu a akou rýchlosťou sa pohybuje, lebo jeho poloha závisí od príťažlivej sily, ktorá ho viaže k atómovému jadru a od vplyvu ďalších e-. (Heisenbergov princíp neurčitosti)

<u>Kvantové čísla</u> - charakterizujú výskyt elektrónu v atómovom obale

■ Hlavné kvantové číslo

"n" – hodnoty 1,2,3,.....7, ...∞ vyjadruje: E elektrónov udáva vrstvy atómu K, L, M, N, O, P, Q 1 2 3 4 5 6 7

■ Vedľajšie kvantové číslo

"I" - hodnoty 0, 1, 2, 3,.... (n-1) vyjadruje: tvar orbitalov E orbitalov

■ Magnetické kvantové číslo

"m" – hodnoty -l,...,0, ...+l vyjadruje orientáciu orbitalu v priestore (osi x, y, z) správanie sa e- v magnetickom poli celkový počet hodnôt m je daný vzťahom (2l + 1) a určuje počet orbitalov rovnakého druhu

Spinové kvantové číslo

"s" – hodnoty + ½, - ½ vyjadruje rotáciu elektrónu okolo vlastnej osi

Pravidlá zapĺňania orbitálov

- 1. Výstavbový princíp
 - najprv sa zapĺňajú orbitály s nižšou E až tak s vyššou podľa stúpajúcej E
- 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹0 4p⁶ 5s² 4d¹0 5p⁶ 6s² 4f¹⁴ 5d¹0 6p⁶ 7s² 5f¹⁴ 6d¹0 7p⁶ 8s²

PLATÍ: orbitál 1s má nižšiu E ako 2s

2. Hundovo pravidlo -

 Orbitály s rovnakou energiou (= degenerované) sa zapĺňajú najprv po jednom elektróne s rovnakým spinom, až potom s druhým elektrónom s opačným spinom

3. Pauliho vylučovací princíp

- v jednom orbitály môžu byť max. 2 elektróny, líšiace sa aspoň jedným kvantovým číslom, najčastejšie spinový
- s2e⁻, p6e⁻, d10e⁻,f14e⁻