

Probability and Statistics (Monsoon 2022)

Lecture-24

1 Statistical Inference Interval Estimation and Confidence Level Hypothesis Testing for the Mean P-Values

Table of Contents

 Statistical Inference Interval Estimation and Confidence Level Hypothesis Testing for the Mean P-Values

Table of Contents

1 Statistical Inference
Interval Estimation and Confidence Level
Hypothesis Testing for the Mean
P-Values

Trade-off between α and β ullet Since α and β indicate error probabilities, we would ideally like both of them to be small.

- Since α and β indicate error probabilities, we would ideally like both of them to be small.
- ullet There is in fact a trade-off between α and β .

- Since α and β indicate error probabilities, we would ideally like both of them to be small.
- There is in fact a trade-off between α and β .
 - if we want to decrease the probability of type I error (α) , then the probability of type II error (β) increases, and vise versa.

- Since α and β indicate error probabilities, we would ideally like both of them to be small.
- There is in fact a trade-off between α and β .
 - if we want to decrease the probability of type I error (α) , then the probability of type II error (β) increases, and vise versa.
- When we look at our analysis in previous Example, we found

$$\alpha = 1 - \Phi(3c),$$

 $\beta = \Phi(3(c-1)).$

- Since α and β indicate error probabilities, we would ideally like both of them to be small.
- There is in fact a trade-off between α and β .
 - if we want to decrease the probability of type I error (α) , then the probability of type II error (β) increases, and vise versa.
- When we look at our analysis in previous Example, we found

$$\alpha = 1 - \Phi(3c),$$

 $\beta = \Phi(3(c-1)).$

 \bullet Since Φ is an increasing function, we have

- Since α and β indicate error probabilities, we would ideally like both of them to be small.
- There is in fact a trade-off between α and β .
 - if we want to decrease the probability of type I error (α) , then the probability of type II error (β) increases, and vise versa.
- When we look at our analysis in previous Example, we found

$$\alpha = 1 - \Phi(3c),$$

$$\beta = \Phi(3(c-1)).$$

- ullet Since Φ is an increasing function, we have
 - 1 If we make c larger, α becomes smaller, and β becomes larger.

- Since α and β indicate error probabilities, we would ideally like both of them to be small.
- There is in fact a trade-off between α and β .
 - if we want to decrease the probability of type I error (α) , then the probability of type II error (β) increases, and vise versa.
- When we look at our analysis in previous Example, we found

$$\alpha = 1 - \Phi(3c),$$

$$\beta = \Phi(3(c-1)).$$

- ullet Since Φ is an increasing function, we have
 - 1 If we make c larger, α becomes smaller, and β becomes larger.
 - 2 On the other hand, if we make c smaller, α becomes larger, and β becomes smaller.

- Since α and β indicate error probabilities, we would ideally like both of them to be small.
- There is in fact a trade-off between α and β .
 - if we want to decrease the probability of type I error (α) , then the probability of type II error (β) increases, and vise versa.
- When we look at our analysis in previous Example, we found

$$\alpha = 1 - \Phi(3c),$$

$$\beta = \Phi(3(c-1)).$$

- \bullet Since Φ is an increasing function, we have
 - 1 If we make c larger, α becomes smaller, and β becomes larger.
 - 2 On the other hand, if we make c smaller, α becomes larger, and β becomes smaller.

Table of Contents

 Statistical Inference Interval Estimation and Confidence Level Hypothesis Testing for the Mean P-Values

Hypothesis Testing for Mean

Definition (Two sided hypothesis test)

- Consider a random sample X_1, X_2, \dots, X_n from a distribution.
- ullet Our goal is to make inference about the mean of the distribution μ .
- Two sided hypothesis test: Decide between the following hypotheses:
 - $H_0: \mu = \mu_0$
 - $H_1: \mu \neq \mu_0$

Here, null hypothesis is simple hypothesis, alternate hypothesis is two-sided ($\mu < \mu_0, \mu > \mu_0$)

Definition (Two sided hypothesis test)

- Consider a random sample X_1, X_2, \dots, X_n from a distribution.
- ullet Our goal is to make inference about the mean of the distribution $\mu.$
- Two sided hypothesis test: Decide between the following hypotheses:
 - $H_0: \mu = \mu_0$
 - $H_1: \mu \neq \mu_0$

Here, null hypothesis is simple hypothesis, alternate hypothesis is two-sided ($\mu < \mu_0, \mu > \mu_0$)

Definition (One-Sided Hypothesis)

• The second and the third cases are one-sided tests. More specifically

$$H_0: \mu \leq \mu_0, \quad H_1: \mu > \mu_0.$$

- Here, both H_0 and H_1 are one-sided, so we call this test a one-sided test.
- The third case is similar

$$H_0: \mu \geq \mu_0, \quad H_1: \mu < \mu_0.$$

Statistics and Test Statistics • In all cases, we use sample mean as statistics.

Statistics and Test Statistics

• In all cases, we use sample mean as statistics.

$$\overline{X} = \frac{X_1 + X_2 + \dots + X_n}{n}$$

Statistics and Test Statistics

• In all cases, we use sample mean as statistics.

$$\overline{X} = \frac{X_1 + X_2 + \dots + X_n}{n}$$

• Furthermore, if we know the variance $Var(X_i) = \sigma^2$, define test statistics

$$W(X_1, X_2, \cdots, X_n) = \frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}}.$$

Statistics and Test Statistics

• In all cases, we use sample mean as statistics.

$$\overline{X} = \frac{X_1 + X_2 + \dots + X_n}{n}$$

• Furthermore, if we know the variance $Var(X_i) = \sigma^2$, define test statistics

$$W(X_1, X_2, \cdots, X_n) = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}.$$

• If we don't know the variance, then use sample variance

$$W(X_1, X_2, \cdots, X_n) = \frac{\overline{X} - \mu_0}{S/\sqrt{n}},$$

where S is sample standard deviation

$$S = \sqrt{\frac{1}{n-1}\sum_{k=1}^{n}(X_k - \overline{X})^2} = \sqrt{\frac{1}{n-1}\left(\sum_{k=1}^{n}X_k^2 - n\overline{X}^2\right)}.$$

(1)

• Given a random sample X_1, X_2, \ldots, X_n from a distribution. Let $\mu = E[X_i]$. Our goal is to decide between

$$H_0: \mu = \mu_0, \quad H_1: \mu \neq \mu_0.$$

• Given a random sample X_1, X_2, \ldots, X_n from a distribution. Let $\mu = E[X_i]$. Our goal is to decide between

$$H_0: \mu = \mu_0, \quad H_1: \mu \neq \mu_0.$$

• If H_0 is true, we expect \overline{X} to be close to μ_0 , and so we expect $W(X_1, X_2, \dots, X_n)$ to be close to 0.

• Given a random sample X_1, X_2, \ldots, X_n from a distribution. Let $\mu = E[X_i]$. Our goal is to decide between

$$H_0: \mu = \mu_0, \quad H_1: \mu \neq \mu_0.$$

- If H_0 is true, we expect \overline{X} to be close to μ_0 , and so we expect $W(X_1, X_2, \dots, X_n)$ to be close to 0.
- Therefore, we can suggest the following test. Choose a threshold, and call it c.

• Given a random sample X_1, X_2, \ldots, X_n from a distribution. Let $\mu = E[X_i]$. Our goal is to decide between

$$H_0: \mu = \mu_0, \quad H_1: \mu \neq \mu_0.$$

- If H_0 is true, we expect \overline{X} to be close to μ_0 , and so we expect $W(X_1, X_2, \dots, X_n)$ to be close to 0.
- Therefore, we can suggest the following test. Choose a threshold, and call it c.
- If $|W| \le c$, accept H_0 , and if |W| > c, accept H_1 . How do we choose c? If α is the required significance level, we must have

$$\begin{split} P(\text{type I error}) &= P(\text{Reject } H_0 \mid H_0) \\ &= P(|W| > c \mid H_0) \leq \alpha. \end{split}$$

• Given a random sample X_1, X_2, \dots, X_n from a distribution. Let $\mu = E[X_i]$. Our goal is to decide between

$$H_0: \mu = \mu_0, \quad H_1: \mu \neq \mu_0.$$

- If H_0 is true, we expect \overline{X} to be close to μ_0 , and so we expect $W(X_1, X_2, \dots, X_n)$ to be close to 0.
- Therefore, we can suggest the following test. Choose a threshold, and call it c.
- If $|W| \le c$, accept H_0 , and if |W| > c, accept H_1 . How do we choose c? If α is the required significance level, we must have

$$P(\text{type I error}) = P(\text{Reject } H_0 \mid H_0)$$

= $P(|W| > c \mid H_0) \le \alpha$.

• Thus, we can choose c such that $P(|W| > c|H_0) = \alpha$.

Example (level α hypothesis test for mean)

Let X_1, X_2, \dots, X_n be a random sample from a $N(\mu, \sigma^2)$ distribution, where μ is unknown but σ is known. Design a level α test to choose between

$$H_0 = \mu = \mu_0, \quad H_1 : \mu \neq \mu_0.$$

https://www.probabilitycourse.com/chapter8/8_4_3_hypothesis_testing_for_mean.php

• From previous example, the acceptance region for H_0 is

$$\left|\frac{\overline{X}-\mu_0}{\sigma/\sqrt{n}}\right|\leq z_{\frac{\alpha}{2}}.$$

• From previous example, the acceptance region for H_0 is

$$\left|\frac{\overline{X}-\mu_0}{\sigma/\sqrt{n}}\right|\leq z_{\frac{\alpha}{2}}.$$

• Rewriting the above equation as

$$\mu_0 \in \left[\overline{X} - z_{\frac{lpha}{2}} rac{\sigma}{\sqrt{n}}, \overline{X} + z_{\frac{lpha}{2}} rac{\sigma}{\sqrt{n}}
ight].$$

 \bullet From previous example, the acceptance region for H_0 is

$$\left|\frac{\overline{X}-\mu_0}{\sigma/\sqrt{n}}\right|\leq z_{\frac{\alpha}{2}}.$$

Rewriting the above equation as

$$\mu_0 \in \left[\overline{X} - z_{\frac{lpha}{2}} rac{\sigma}{\sqrt{n}}, \overline{X} + z_{\frac{lpha}{2}} rac{\sigma}{\sqrt{n}}
ight].$$

• Recall that It is the $(1-\alpha)100\%$ confidence interval for μ_0 .

• From previous example, the acceptance region for H_0 is

$$\left|\frac{\overline{X}-\mu_0}{\sigma/\sqrt{n}}\right|\leq z_{\frac{\alpha}{2}}.$$

Rewriting the above equation as

$$\mu_0 \in \left[\overline{X} - z_{\frac{lpha}{2}} \frac{\sigma}{\sqrt{n}}, \overline{X} + z_{\frac{lpha}{2}} \frac{\sigma}{\sqrt{n}}\right].$$

- Recall that It is the $(1-\alpha)100\%$ confidence interval for μ_0 .
- Relationship between confidence interval problems and hypothesis testing problems.

Example

For the above example, find β , the probability of type II error, as a function of μ .

https://www.probabilitycourse.com/chapter8/8_4_3_hypothesis_testing_for_mean.php

Example

For the above example, find β , the probability of type II error, as a function of μ .

https://www.probabilitycourse.com/chapter8/8_4_3_hypothesis_testing_for_mean.php

Example

Let X_1, X_2, \ldots, X_n be a random sample from a $N(\mu, \sigma^2)$ distribution, where μ and σ are unknown. Design a level α test to choose between

$$H_0: \mu = \mu_0 \quad H_1: \mu \neq \mu_0.$$

https://www.probabilitycourse.com/chapter8/8_4_3_hypothesis_testing_for_mean.php#example8_24

Example

Let X_1, X_2, \ldots, X_n be a random sample from a $N(\mu, \sigma^2)$ distribution, where μ and σ are unknown. Design a level α test to choose between

$$H_0: \mu \leq \mu_0, \quad H_1: \mu > \mu_0.$$

https://www.probabilitycourse.com/chapter8/8_4_3_hypothesis_testing_for_mean.php#example8_24

• The above can be extended to any other distribution. Let

$$W(X_1, X_2, \cdots, X_n) = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}, \qquad (2)$$

• If $W \leq c$, accept H_0 , otherwise accept H_1 . To choose c

$$P(\text{type I error}) = P(\text{Reject } H_0 \mid H_0)$$

= $P(W > c \mid \mu \leq \mu_0)$
 $\leq P(W > c \mid \mu = \mu_0).$

Last inequality is because we assume worst-case scenario.

Table of Contents

Statistical Inference

Interval Estimation and Confidence Level Hypothesis Testing for the Mean

• We only reported an "accept" or a "reject" decision as the conclusion of a hypothesis test.

- We only reported an "accept" or a "reject" decision as the conclusion of a hypothesis test.
- ullet We can provide more information using what we call P-values.

- We only reported an "accept" or a "reject" decision as the conclusion of a hypothesis test.
- We can provide more information using what we call *P*-values.
- suppose we end up rejecting H_0 at at significance level $\alpha = 0.05$.

- We only reported an "accept" or a "reject" decision as the conclusion of a hypothesis test.
- We can provide more information using what we call *P*-values.
- suppose we end up rejecting H_0 at at significance level $\alpha = 0.05$.
- Then we could ask: "How about if we require significance level $\alpha = 0.01$?" Can we still reject H_0 ?

- We only reported an "accept" or a "reject" decision as the conclusion of a hypothesis test.
- We can provide more information using what we call *P*-values.
- suppose we end up rejecting H_0 at at significance level $\alpha = 0.05$.
- Then we could ask: "How about if we require significance level $\alpha = 0.01$?" Can we still reject H_0 ?

Definition (P-value)

 $P{
m -value}$ is the lowest significance level lpha that results in rejecting the null hypothesis.

• If the P-value is small, it means that the observed data is very unlikely to have occurred under H_0 , so we are more confident in rejecting the null hypothesis.

You have a coin and you would like to check whether it is fair or biased.

You have a coin and you would like to check whether it is fair or biased. More specifically, let θ be the probability of heads, $\theta = P(H)$.

You have a coin and you would like to check whether it is fair or biased. More specifically, let θ be the probability of heads, $\theta = P(H)$. Suppose that you need to choose between the following hypotheses:

You have a coin and you would like to check whether it is fair or biased. More specifically, let θ be the probability of heads, $\theta = P(H)$. Suppose that you need to choose between the following hypotheses:

- H_0 (the null hypothesis): The coin is fair, i.e., $\theta = \theta_0 = 1/2$.
- H_1 (the alternative hypothesis): The coin is not fair, i.e., $\theta > 1/2$.

You have a coin and you would like to check whether it is fair or biased. More specifically, let θ be the probability of heads, $\theta = P(H)$. Suppose that you need to choose between the following hypotheses:

- H_0 (the null hypothesis): The coin is fair, i.e., $\theta = \theta_0 = 1/2$.
- H_1 (the alternative hypothesis): The coin is not fair, i.e., $\theta > 1/2$.

We toss the coin 100 times and observe 60 heads.

You have a coin and you would like to check whether it is fair or biased. More specifically, let θ be the probability of heads, $\theta = P(H)$. Suppose that you need to choose between the following hypotheses:

- H_0 (the null hypothesis): The coin is fair, i.e., $\theta = \theta_0 = 1/2$.
- H_1 (the alternative hypothesis): The coin is not fair, i.e., $\theta > 1/2$.

We toss the coin 100 times and observe 60 heads.

1 Can we reject H_0 at significance level $\alpha = 0.05$?

You have a coin and you would like to check whether it is fair or biased. More specifically, let θ be the probability of heads, $\theta = P(H)$. Suppose that you need to choose between the following hypotheses:

- H_0 (the null hypothesis): The coin is fair, i.e., $\theta = \theta_0 = 1/2$.
- H_1 (the alternative hypothesis): The coin is not fair, i.e., $\theta > 1/2$.

We toss the coin 100 times and observe 60 heads.

- 1 Can we reject H_0 at significance level $\alpha = 0.05$?
- 2 Can we reject H_0 at significance level $\alpha = 0.01$?

You have a coin and you would like to check whether it is fair or biased. More specifically, let θ be the probability of heads, $\theta = P(H)$. Suppose that you need to choose between the following hypotheses:

- H_0 (the null hypothesis): The coin is fair, i.e., $\theta = \theta_0 = 1/2$.
- H_1 (the alternative hypothesis): The coin is not fair, i.e., $\theta > 1/2$.

We toss the coin 100 times and observe 60 heads.

- 1 Can we reject H_0 at significance level $\alpha = 0.05$?
- 2 Can we reject H_0 at significance level $\alpha = 0.01$?
- 3 What is the P-value?

 $https://www.probabilitycourse.com/chapter8/8_4_4_p_vals.php$

Computing *P* **values**

Definition

Consider a hypothesis test for choosing between H_0 and H_1 . Let W be the test statistic, and w_1 be the observed value of W

Computing *P* **values**

Definition

Consider a hypothesis test for choosing between H_0 and H_1 . Let W be the test statistic, and w_1 be the observed value of W

• Assume H_0 is true.

Computing *P* **values**

Definition

Consider a hypothesis test for choosing between H_0 and H_1 . Let W be the test statistic, and w_1 be the observed value of W

- Assume H_0 is true.
- The P-value is P(type I error) when the test threshold c is chosen to be $c = w_1$.
- For the above example, we can consider

$$W=\frac{X-50}{5},$$

which is approximately N(0,1) under H_0 . The observed value of W is

$$w_1 = \frac{60 - 50}{5} = 2.$$

Thus,

$$P - \text{value} = P(\text{type I error when } c = 2)$$
$$= P(W > 2) = 1 - \Phi(2) = 0.023$$

Likelihood Ratio Test for Simple Hypotheses

Let $X_1, X_2, X_3, \dots, X_n$ be a random sample from a distribution with a parameter θ . Suppose that we have observed $X_1 = x_1, X_2 = x_2, \dots, X_n = x_n$. To decide between two simple hypotheses

$$H_0: \theta = \theta_0$$

 $H_1: \theta = \theta_1$

We define

$$\lambda(x_1,x_2,\cdots,x_n)=\frac{L(x_1,x_2,\cdots,x_n;\theta_0)}{L(x_1,x_2,\cdots,x_n;\theta_1)}.$$

To perform a likelihood ratio test (LRT), we choose a constant c. We reject H_0 if $\lambda < c$ and accept it if $\lambda \geq c$. The value of c can be chosen based on the desired α .

Example

Here, we look again at the radar problem. More specifically, we observe the random variable X:

$$X = \theta + W$$
,

Example

Here, we look again at the radar problem. More specifically, we observe the random variable \boldsymbol{X} :

$$X = \theta + W$$

where $W \sim N(0, \sigma^2 = \frac{1}{9})$. We need to decide between

Example

Here, we look again at the radar problem. More specifically, we observe the random variable X:

$$X = \theta + W$$
,

where $W \sim N(0, \sigma^2 = \frac{1}{9})$. We need to decide between

$$H_0: \theta = \theta_0 = 0,$$

$$H_1: \theta = \theta_1 = 1.$$

Example

Here, we look again at the radar problem. More specifically, we observe the random variable X:

$$X = \theta + W$$
,

where $W \sim N(0, \sigma^2 = \frac{1}{9})$. We need to decide between

$$H_0: \theta = \theta_0 = 0,$$

$$H_1: \theta = \theta_1 = 1.$$

Let X = x. Design a level 0.05 test ($\alpha = 0.05$) to decide between H_0 and H_1 .

https://www.probabilitycourse.com/chapter8/8_4_5_likelihood_ratio_tests.php