3.9 Support Vector Machine

3.9.1 Intro

#DEF Support vector machines (SVMs) deal with the shortcomings of neural networks.

The origins of classification SVMs date back to the early days of linear programming.

3.9.2 The Linear Separable Case #Linear Separable Case

SVMs aim at maximizing this margin in order to pull both classes as far apart as possible.

- #SupportVector Support Vector: Training points that lie on hyperplane H1 or hyperplane H2 in the figure.
- **©** #DEF #Hyperplane Classification Hyperplane: In figure, H0.

==> New observations are checked whether they are situated above H0 in which case the prediction is +1 or below (prediction -1).

To do this we need to minimize the following linear programming problem:

$$min: rac{1}{2} \cdot \sum_{i=1}^{N} w_i^2 \ subject \ to: \ y_k(w^Tx_k+b) \geq 1$$
 , $k=1,\ldots$, n

This is a convex optimization problem with no local minima and only one global minimum.

3.9.3 The Linear Nonseparable Case #LinearNonSeparableCase

We have **overlapping class distributions** ==> the SVM classifier can be extended with error terms.

We now have to minimize the following linear programming problem:

$$min:rac{1}{2}\cdot\sum_{i=1}^{N}w_i^2+C\cdot\sum \ subject\ to:\ y_k(w^Tx_k+b)\geq 1-e_k$$
 , $k=1$, ... , n $e_k\geq 0$

where:

- e_k : error variables that allow misclassifications;
- *C*: hyperparameter in the objective function that balances the importance of maximizing the margin versus minimizing the error on the data.

Key concept:

• A high value of C implies a higher risk of overfitting.

3.9.4 The Nonlinear SVM Classifier #Nonlinear SVM Classifier

Nonlinear SVM classifier will map the input data to a higher dimensional feature space using some mapping $\varphi(x)$.

3.9.5 Tuning of the Hyperparameters #HyperparameterTuning

Five steps:

- 1. Partition the data into 40% training, 30% validation and 30% test data;
- 2. Build a SVM classifier for each parameter combination from the set;
- 3. Choose the combination with the best validation set performance;
- 4. Build a SVM classifier with the optimal parameter combination on *combined training + validation dataset*;
- 5. Calculate the performance of the estimated classifier on the test set.

3.9.6 SVMs for Regression #SVMRegression

SVMs can also be used for regression applications with a continuous target.

This is done by finding a function f(x), as flat as possible, which has at most ε deviation from the actual targets. The loss function:

- Tolerates errors less than ε .
- Penalizes errors higher than ε .

3.9.7 Transparency #SVMTransparency

A black-box approach can be complex in settings where interpretability is important.

SVMs have a universal approximation property:

- They do not require tuning of the number of hidden neurons
- Are characterized by convex optimization.

Variable selection can be performed using the backward variable selection procedure:

- Advantage:
 - Reduces the number of variables;
- Disadvantage:
 - Does not provide any additional insight into the workings of the SVM.

3.9.7.1 Rule-Based Approach #RuleBasedApproach

In order to better understand the inner workings of the SVM, a rule-based approach can be utilized (decompositional. We have that:

1. The SVM can be represented as a neural network:

- 2. The hidden layer uses kernel activation functions:
 - ==> The number of hidden neurons now corresponds to the number of support vectors and follows automatically from the optimization.
- 3. The output layer uses a linear activation function.

3.9.7.2 Pedagogical Approach #PedagogicalApproach

To understand the inner workings of the SVM, a pedagogical approach can be also used. It can be easily combined with SVMs since it considers the underlying model as a black box.

It works like this:

- 1. SVM is first used to construct a data set with SVM predictions for each of the observations;
- 2. This data set is then given to a decision tree algorithm to build a decision tree;
- 3. Additional training set observations can be generated to facilitate the tree construction process.

3.9.7.3 Two-Stage Models #TwoStageModels

Two-stage Models can be used to provide more comprehensibility.

A simple model (e.g., linear or logistic regression) is estimated first, followed by an SVM to correct the errors of the latter.

Next chapter: Ensemble Methods