ESP32-C3开发之旅 基础篇6 ESP32-C3 SPI通信

岔路ko 已于 2022-04-01 12:32:11 修改 于 2022-03-31 23:27:43 首次发布

一、SPI 控制器 (SPI)

串行外设接口 (SPI) 是一种同步串行接口,可用于与外围设备进行通信。 ESP32-C3 芯片集成了三个 SPI 控制器:

- 1. SPI0
- 2. SPI1
- 3. 通用SPI2 即 GP-SPI2 SPI0 和 SPI1 控制器主要供内部使用。

二、特性

- 4. 支持主机模式和从机模式
- 5. 支持半双工通信和全双工通信

全双工: 主机与从机之间的发送线和接收线各自独立, 发送数据和接收数据同时进行。

半双工: 主机和从机只能有一方先发送数据, 另一方接收数据。发送数据和接收数据不能同时进行

6. 支持 CPU 控制的传输模式以及 DMA 控制的传输模式

CPU 控制:由CPU 控制与 SPI 设备之间的数据传输。

DMA 控制:由DMA引擎控制,DMA 与SPI设备之间的数据传输。

7. 支持多种数据模式

1-bit SPI 模式:一个时钟周期传输一位数据。

2-bit Dual SPI 模式:一个时钟周期传输两个数据位。 4-bit Quad SPI 模式:一个时钟周期传输四个数据位。

QPI 模式: 一个时钟周期可传输四位命令、或四位地址、或四位数据。

8. 时钟频率可配置

在主机模式下: 时钟频率可达 80 MHz 在从机模式下: 时钟频率可达 60 MHz

9. 数据长度可配置

在主机和从机 CPU 控制的传输模式下:数据长度为 1 ~ 64 B 在主机 DMA 控制的单次传输模式下:数据长度为 1 ~ 32 KB 在主机 DMA 控制的分段配置传输模式下:数据长度字节数无限制 在从机 DMA 控制的单次或连续传输模式下:数据长度字节数无限制

- 10. 四种 SPI 时钟模式:模式 0~模式 3
- 11. 在主机模式下, 提供六条 CS 线: CS0 ~ CS5
- 12. 支持访问 SPI 接口的传感器、显示屏控制器、flash 或 RAM 芯片

GP -SPI2 通过以下方式与 SPI 设备进行数据交换:

在 CPU 控制的传输模式下: CPU <-> GP-SPI2 <-> SPI 设备在 DMA 控制的传输模式下: GDMA <-> GP-SPI2 <-> SPI 设备

GP-SPI2 输入输出信号的前缀为 "FSPI"。FSPI 总线信号可通过 GPIO 交换矩阵或 IO MUX 与 GPIO 管脚相连。

如下图可看出:

GPIO2:FSPIQ

GPIO4:FSPIHD GPIO5:FSPIWP GPIO6:FSPICLK GPIO7:FSPICD GPIO10:FSPICS0

表 25-4. FSPI 总线信号功能描述

FSPI 总线信号	功能
FSPID	MOSI/SIOOa: 串行输入输出数据,比特 0
FSPIQ	MISO/SIO1: 串行输入输出数据,比特 1
FSPIWP	SIO2: 串行输入输出数据, 比特 2
FSPIHD	SIO3: 串行输入输出数据,比特3
FSPICLK	主从机模式,输入输出时钟
FSPICS0	主从机模式,输入输出片选信号
FSPICS1 ~ 5	主机模式,输出片选信号GSDN @岔路ko

表 25-3. FSPI 总线信号映射关系

标准 SF	扩展 SPI 协议	
全双工	半双工	FSPI 总线
SPI 信号	SPI 信号	信号
MOSI	MOSI	FSPID
MISO	(MISO)	FSPIQ
CS	CS	FSPICS0 ~ 5
CLK	CLK	FSPICLK
_	_	FSPIWP
_	_	cSSPIHD cSbko

表 5-2. IO MUX 管脚功能

管脚编号	管脚名称	功能 0	功能1	功能 2	功能3	驱 动强度	复位	说明
4	XTAL_32K_P	GPIO0	GPIO0	-	-	2	0	R
5	XTAL_32K_N	GPIO1	GPIO1	-	-	2	0	R
6	GPIO2	GPIO2	GPIO2	FSPIQ	-	2	1	R
8	GPIO3	GPIO3	GPIO3	-	-	2	1	R
9	MTMS	MTMS	GPIO4	FSPIHD	-	2	1	R
10	MTDI	MTDI	GPIO5	FSPIWP	-	2	1	R
12	MTCK	MTCK	GPIO6	FSPICLK	-	2	1*	G
13	MTDO	MTDO	GPIO7	FSPID	-	2	1	G
14	GPIO8	GPIO8	GPIO8	-	-	2	1	-
15	GPIO9	GPIO9	GPIO9	-	-	2	3	-
16	GPIO10	GPIO10	GPIO10	FSPICS0	-	2	1	G
18	VDD_SPI	GPIO11	GPIO11	-	-	2	0	-
19	SPIHD	SPIHD	GPIO12	4	,	2	3	-
20	SPIWP	SPIWP	GPIO13	-	1	2	3	-
21	SPICS0	SPICS0	GPIO14		-	2	3	-
22	SPICLK	SPICLK	GPIO15	-) -	2	3	-
23	SPID	SPID	GPIO16	-	-	2	3	-
24	SPIQ	SPIQ	GPIO17		-	2	3	-
25	GPIO18	GPIO18	GPIO18	-	-	3	0	USB,
								G
26	GPIO19	GPIO19	GPIO19	-	•	3	0*	USB
27	U0RXD	U0RXD	GPIO20	-	-	2	3	G
28	UOTXD	U0TXD	GPIO21	-	-	2	CASDN @	②空路ko

驱动强度

[&]quot;驱动强度"一栏所示为每个管脚复位后的默认驱动强度。

2023/5/30 13:06

- 0 驱动电流 = ~5 mA
- 1 驱动电流 = ~10 mA
- 2 驱动电流 = ~20 mA
- 3 驱动电流 = ~40 mA

复位

"复位"一栏所示为每个管脚复位后的默认配置。

- •0-IE=0 (输入关闭)
- •1-IE=1 (输入使能)
- 2 IE = 1, WPD = 1 (输入使能, 下拉电阻使能)
- 3 IE = 1, WPU = 1 (输入使能, 上拉电阻使能)
- 4 OE = 1, WPU = 1 (输出使能, 上拉电阻使能)
- 0* IE = 0, WPU = 0, GPIO19 的 USB 上拉默认值为 1, 因此, 其上拉电阻使能, 具体见说明。
- 1* 如果 EFUSE_DIS_PAD_JTAG = 1,则 MTCK 管脚复位后浮空,即 IE = 1。如果EFUSE_DIS_PAD_JTAG = 0,则 MTCK 管脚连接内部上拉电阻, 即 IE = 1, WPU = 1。

说明

- R 代表位于 VDD3P3 RTC 电源域的管脚, 部分具有模拟功能, 见表 5-4。
- USB GPIO18、GPIO19 为 USB 管脚。USB 管脚的上拉控制由管脚上拉和 USB 上拉共同控制。当其中任意一个为 1 时,对应管脚上拉电阻使能。 USB 上拉值对应寄存器 USB_SERIAL_JTAG_DP_PULLUP。
- G 管脚在芯片上电过程中有毛刺

管脚	毛刺类型	典型持续时间 (ns)
MTCK	低电平毛刺	5
MTDO	低电平毛刺	5
GPIO10	低电平毛刺	5
U0RXD	低电平毛刺	5
GPIO18	上拉	50000

ms是毫秒=0.001秒

us是微秒=0.000001秒

ns是纳秒=0.000000001秒

如下图所示,ESP32-C3做主站使用可以控制6个从站,作为从站使用只能与一个主站通讯

表 25-5. 各种 SPI 模式下使用到的信号

				主机模式						从机模式		
FSPI 总线信号		1-bit SI	기	2-bit Dual SPI	4-bit Quad SPI QPI		1-bit SPI			2-bit Dual SPI	4-bit Quad SPI	QPI
	FD ¹	3-line HD ²	4-line HD	2-bit buai ori	4-bit Quad or i	QFI	FD	3-line HD	4-line HD	2-bit buai ori	4-bit Quad or i	QFI
FSPICLK	Υ	Υ	Y	Y	Y	Υ	Υ	Υ	Y	Y	Υ	Υ
FSPICS0	Υ	Υ	Y	Y	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
FSPICS1	Υ	Υ	Y	Y	Y	Υ						
FSPICS2	Υ	Y	Y	Y	Υ	Υ						
FSPICS3	Υ	Υ	Υ	Y	Y	Υ						
FSPICS4	Υ	Y	Υ	Y	Υ	Υ						
FSPICS5	Υ	Y	Υ	Y	Y	Υ						
FSPID	Υ	Y	(Y) ³	Y ⁴	Y ⁵	Υ	Υ	Υ	(Y) ⁶	Y ⁷	λ_8	Υ
FSPIQ	Υ		(Y) ³	Y ⁴	Y ⁵	Υ	Υ		(Y) ⁶	Y ⁷	λ_8	Υ
FSPIWP					Y ⁵	Υ					λ_8	Υ
FSPIHD					Y ⁵	Y	4				λ_8	Υ
1 FD: 全双工 2 HD: 半双工 3 一次只使用两个信号中的一个 4 两个信号并行使用 5 四个信号并行使用 6 一次只使用两个信号中的一个 7 TO A C C D T T C C C C C C C C C C C C C C C												
7 两个信号并行使用 8 四个信号并行使用 CSDN @岔路k							路ko					

¹ FD: 全双工

三、配置主站模式

清零 SPI_SLAVE_REG 中 SPI_SLAVE_MODE 位可将 GP-SPI2 配置成主机模式。在这种模式下,GP-SPI2 提供时钟信号(GP-SPI2 模块时钟的分频 时钟) 和六条 CS 线 (CS0 ~ CS5)

四、应用示例

² HD: 半双工

³一次只使用两个信号中的一个

⁴两个信号并行使用

⁵四个信号并行使用

⁶一次只使用两个信号中的一个

⁷ 两个信号并行使用

⁸ 四个信号并行使用

以下示例展示了 GP-SPI2 如何在主机半双工模式下访问 flash 和外部 RAM。

图 25-8. 4-bit 模式下 GP-SPI2 与 Flash 以及外部 FAM 的连接为式

五、从机模式

GP-SPI2 可用作从机与另一 SPI 主机进行通信。用作从机时,GP-SPI2 支持特定格式的 1-bit SPI、2-bit Dual SPI、4-bit Quad SPI 和 QPI 模式。用户可置位寄存器 SPI_SLAVE_REG 中 SPI_SLAVE_MODE 位使能 GP-SPI2 从机模式。

在传输过程中,CS 信号应保持低电平,CS 信号的下降沿和上升沿代表一次传输的开始和结束。数据以字节为单位进行传输,否则多余的位将丢失。此处多余的位表示总位长对 8 取模的结果。

SPI2	FSPICLK_in/_out_mux	任意 GPIO 管脚	支持以下功能:
	FSPICS0_in/_out		• SPI、Dual SPI、Quad SPI 和 QPI 的主从机
	FSPICS1~5_out		模式
	FSPID_in/_out		• 可以连接片外 flash、RAM 和其他 SPI 设备
	FSPIQ_in/_out		SPI 传输的四种时钟模式
	FSPIWP_in/_out		• 可配置的 SPI 频率
	FSPIHD_in/_out		• 64 字节缓存或 GDMA 数据缓存

六、代码测试。

时钟信号由主机产生,从机不用配置。但主机的SPI时钟频率应该在从机允许的处理速度范围内。

```
#define SPI2 FUNC NUM 2
1
    #define SPI2 IOMUX PIN NUM MISO 2
    #define SPI2_IOMUX_PIN_NUM_HD 4
3
    #define SPI2_IOMUX_PIN_NUM_WP 5
    #define SPI2_IOMUX_PIN_NUM_CLK 6
    #define SPI2_IOMUX_PIN_NUM_MOSI 7
6
7
    #define SPI2_IOMUX_PIN_NUM_CS 10
8
9
    #define SPI_CLOCK_DIV2 0x00101001 // 8 MHz
    #define SPI_CLOCK_DIV4 0x00241001 // 4 MHz
10
                                      // 2 MHz
    #define SPI_CLOCK_DIV8 0x004c1001
11
12
    #define SPI_CLOCK_DIV16 0x009c1001 // 1 MHz
    #define SPI_CLOCK_DIV32 0x013c1001 // 500 KHz
13
    #define SPI CLOCK DIV64 0x027c1001 // 250 KHz
14
15
    #define SPI CLOCK DIV128 0x04fc1001 // 125 KHz
16
    static const int spiClk = 1000000; // 1 MHz
17
```

未完待续