The resurgence of reference quality genomes

Michael Schatz

May 22, 2015 NYU Genomics Symposium

Schatzlab Overview

Human Genetics

Role of mutations in disease

Narzisi et al. (2014) lossifov et al. (2014)

Plant Biology

Genomes & Transcriptomes

Schatz et al. (2014) Ming et al. (2013)

Algorithmics & Systems Research

Ultra-large scale biocomputing

Marcus et al. (2014) Schatz et al. (2013)

Single Cell & Single Molecule

CNVs, SVs, & Cell Phylogenetics

Garvin et al. (2014) Roberts et al. (2013)

Sequence Assembly Problem

I. Shear & Sequence DNA

2. Construct assembly graph from overlapping reads

CAACCTCGGACGGACCTCAGCGAA...

3. Simplify assembly graph

On Algorithmic Complexity of Biomolecular Sequence Assembly Problem

Narzisi, G, Mishra, B, Schatz, MC (2014) Algorithms for Computational Biology. Lecture Notes in Computer Science. Vol. 8542

Assembly Complexity

Assembly Complexity

Assembly Complexity

The advantages of SMRT sequencing

Roberts, RJ, Carneiro, MO, Schatz, MC (2013) Genome Biology. 14:405

Genomics Arsenal in the Year 2015

Long Read Sequencing: De novo assembly, SV analysis, phasing

Long Span Sequencing: Chromosome Scaffolding, SV analysis, phasing

PacBio SMRT Sequencing

Imaging of fluorescently phospholinked labeled nucleotides as they are incorporated by a polymerase anchored to a Zero-Mode Waveguide (ZMW).

Single Molecule Sequences

"Corrective Lens" for Sequencing

PacBio Assembly Algorithms

PBJelly

Gap Filling and Assembly Upgrade

English et al (2012) PLOS One. 7(11): e47768

PacBioToCA & ECTools

Hybrid/PB-only Error Correction

Koren, Schatz, et al (2012) Nature Biotechnology. 30:693–700

HGAP/MHAP & Quiver

Comp	ulver Performance parison to Referen ruber; 3.1 MB; SN	ce Genome
0 7	Initial Assembly	Quiver Consensus
QV	43.4	54.5
Accuracy	99.99540%	99.99964%
Differences	141	11

PB-only Correction & Polishing

Chin et al (2013) Nature Methods. 10:563–569

3rd Gen Long Read Sequencing

3rd Gen Long Read Sequencing

3rd Gen Long Read Sequencing

SK-BR-3

Most commonly used Her2-amplified breast cancer

(Davidson et al, 2000)

Can we resolve the complex structural variations, especially around Her2?

Ongoing collaboration between CSHL and OICR to *de novo* assemble the complete cell line genome with PacBio long reads

PacBio read length distribution

Structural variant discovery with long reads

- 1. Alignment-based split read analysis: Efficient capture of most events BWA-MEM + Lumpy
- 2. Local assembly of regions of interest: In-depth analysis with base-pair precision

 Localized HGAP + Celera Assembler + MUMmer
- **3. Whole genome assembly: In-depth analysis including** *novel sequences* DNAnexus-enabled version of Falcon

Total Assembly: 2.64Gbp Contig N50: 2.56 Mbp Max Contig: 23.5Mbp

PacBio

Confirmed both known gene fusions in this region

Confirmed both known gene fusions in this region

Joint coverage and breakpoint analysis to discover underlying events

Cancer lesion Reconstruction

By comparing the proportion of reads that are spanning or split at breakpoints we can begin to infer the history of the genetic lesions.

- 1. Healthy diploid genome
- 2. Original translocation into chromosome 8
- 3. Duplication, inversion, and inverted duplication within chromosome 8
- 4. Final duplication from within chromosome 8

Cancer lesion Reconstruction

Available today under the Toronto Agreement:

- Fastq & BAM files of aligned reads
- Interactive Coverage Analysis with BAM.IOBIO
- Whole genome assembly & alignment

Available soon

- Whole genome methylation analysis
- Full length cDNA transciptome analysis
- Comparison to single cell analysis of >100 individual cells

http://schatzlab.cshl.edu/data/skbr3/

4. Final duplication from within chromosome 8

Oxford Nanopore MinION

- Thumb drive sized sequencer powered over USB
- Capacity for 512 reads at once
- Senses DNA by measuring changes to ion flow

Nanopore Accuracy

Alignment Quality (BLASTN)

Of reads that align, average ~64% identity "2D base-calling" improves to ~70% identity

NanoCorr: Nanopore-Illumina Hybrid Error Correction

https://github.com/jgurtowski/nanocorr

- BLAST Miseq reads to all raw Oxford Nanopore reads
- 2. Select non-repetitive alignments
 - First pass scans to remove "contained" alignments
 - Second pass uses Dynamic Programming (LIS) to select set of highidentity alignments with minimal overlaps
- 3. Compute consensus of each Oxford Nanopore read
 - State machine of most commonly observed base at each position in read

Oxford Nanopore Sequencing and de novo Assembly of a Eukaryotic Genome Goodwin, S, Gurtowski, J et al. (2015) bioRxiv doi: http://dx.doi.org/10.1101/013490

NanoCorr Yeast Assembly

S288C Reference sequence

• 12.1Mbp; 16 chromo + mitochondria; N50: 924kbp

New Results

Oxford Nanopore Sequencing and de novo Assembly of a Eukaryotic Genome

Sara Goodwin , James Gurtowski , Scott Ethe-Sayers , Panchajanya Deshpande , Michael Schatz , W Richard McCombie

doi: http://dx.doi.org/10.1101/013490

Genomic Futures?

Genomic Futures?

iGenomics: Mobile Sequence Analysis

Aspyn Palatnick, Elodie Ghedin, Michael Schatz

The worlds first genomics analysis app for iOS devices

BWT + Dynamic Programming + UI

First application:

- Handheld diagnostics and therapeutic recommendations for influenza infections
- In the iOS AppStore now!

Future applications

- Pathogen detection
- Food safety
- Biomarkers
- etc..

http://schatzlab.cshl.edu/iGenomics

What should we expect from an assembly?

Acknowledgements

Schatz Lab

Rahul Amin

Eric Biggers

Han Fang

Tyler Gavin

James Gurtowski

Ke Jiang

Hayan Lee

Zak Lemmon

Shoshana Marcus

Giuseppe Narzisi

Maria Nattestad

Aspyn Palatnick

Srividya

Ramakrishnan

Fritz Sedlazeck

Rachel Sherman

Greg Vurture

Alejandro Wences

CSHL

Hannon Lab

Gingeras Lab

Jackson Lab

Hicks Lab

Iossifov Lab

Levy Lab

Lippman Lab

Lyon Lab

Martienssen Lab

McCombie Lab

Tuveson Lab

Ware Lab

Wigler Lab

SBU

Skiena Lab

Patro Lab

Cornell

Susan McCouch

Lyza Maron

Mark Wright

OICR

John McPherson

Karen Ng

Timothy Beck

Yogi Sundaravadanam

NYU

Jane Carlton

Elodie Ghedin

National Human Genome Research Institute

Thank you

http://schatzlab.cshl.edu @mike_schatz