СЕТЬ В UNIX

Кулябов Д.С.

Российский университет дружбы народов

Содержание

Введение в сети

Протоколы

Сетевой интерфейс в UNIX

Конфигурация ІР-сетей

Службы Internet

Межсетевой экран

Резюме

Дополнительные материалы

Вопросы для самоконтроля

Введение в сети

- Сети стали неотъемлемой составляющей современных вычислительных систем.
- Операционная система UNIX почти с самого рождения интегрировала в себя технологии организации локальных сетей, на её основе затем была построена сеть Internet, распространившаяся ныне по всему миру.
- Сеть объединяет разное оборудование, различные операционные системы и программы их успешное взаимодействие было бы невозможно без принятия общепринятых правил, стандартов.
- В области компьютерных сетей существует множество международных и промышленных стандартов, среди которых следует особенно выделить международный стандарт OSI и набор стандартов IETF (Internet Engineering Task Force).

Протоколы

Семиуровневая модель OSI

Семиуровневая модель OSI

Уровни ISO OSI

Протоколы

Протоколы Internet: TCP/IP

Протоколы Internet: TCP/IP

Соответствие стека TCP/IP модели OSI

OSI	TCP/IP				
7. Прикладной уровень	WWW, SMTP, POP, SSH,				
6. Уровень представления					
5. Сеансовый уровень					
4. Транспортный уровень	TCP, UDP				
3. Сетевой уровень	IP				
2. Канальный уровень	Ethernet, FDDI, PPP,				
1. Физический уровень	UTP, радиоканалы				

СЕТЕВОЙ ИНТЕРФЕЙС В UNIX

Сетевой интерфейс в UNIX I

Сетевой интерфейс — это абстракция, связывающая канальный и сетевой (протокол TCP/IP) уровни сети в UNIX.

Сетевой интерфейс в UNIX II

Интерфейс характеризуется следующими параметрами:

- уникальное имя, состоящее из типа устройства и номера (0 или больше для однотипных устройств).
- набор параметров, большая часть которых относятся к сетевому уровню (IP-адрес, маска сети и т. п.).
- аппаратный адрес (в случае Ethernet аппаратный адрес называется МАС-адрес и состоит из шести байтов, которые принято записывать в шестнадцатеричной системе счисления и разделять двоеточиями).

Сетевой интерфейс в UNIX III

- Основной утилитой для просмотра и управления параметрами сетевых интерфейсов в UNIX служит ifconfig.
- В настоящее время в ряде систем наряду с ней используется более современная утилита **ip**.

Просмотр параметров сетевых интерфейсов (ifconfig)

```
desktop ~ # ifconfig eth0
eth0
        Link encap:Ethernet HWaddr 00:0D:60:8D:42:AA
         inet addr:192 168 1 5 Bcast:192 168 1 255 Mask:255 255 255 0
         HP BROADCAST RUNNING MULTICAST MILL 1500 Metric 1
         RX packets:6160 errors:0 dropped:0 overruns:0 frame:0
         TX packets:5327 errors:0 dropped:0 overruns:0 carrier:0
         collisions:1006 txqueuelen:1000
         RX bytes:3500059 (3.3 Mb) TX bytes:2901625 (2.7 Mb)
         Base address:0x8000 Memory:c0220000-c0240000
desktop ~ # ifconfig lo
lo
         Link encap:Local Loopback
         inet addr:127.0.0.1 Mask:255.0.0.0
         HP LOOPBACK PUNNING MIH-16436 Metric-1
         RX packets:188 errors:0 dropped:0 overruns:0 frame:0
         TX packets:188 errors:0 dropped:0 overruns:0 carrier:0
         collisions:0 txqueuelen:0
         RX bytes:14636 (14.2 Kb) TX bytes:14636 (14.2 Kb)
```

Конфигурация IP-сетей

Конфигурация ІР-сетей

СЕТЕВОЙ АДРЕС

СЕТЕВОЙ АДРЕС І

- В IP-сетях каждому сетевому интерфейсу присваивается некоторый единственный на всю глобальную сеть адрес, который не зависит от среды передачи данных и всегда имеет один и тот же формат.
- Формат адреса зависит от версии протокола.
- В четвёртой версии протокола IP адрес состоит из четырёх байт, записываемых традиционно в десятичной системе счисления и разделяемых точкой.
- В шестой версии протокола IP адрес состоит уже из 16 байт и обычно записывается в шестнадцатиричной системе счисления.
- IP-адрес сетевого интерфейса eth0 из приведённого выше примера 192.168.1.5.

СЕТЕВОЙ АДРЕС ІІ

• Второй сетевой интерфейс из примера — **lo** — заглушка (loopback), которая используется для организации сетевых взаимодействий компьютера с самим собой: любой посланный в заглушку пакет немедленно обрабатывается как принятый оттуда. Заглушке обычно назначается адрес 127.0.0.1.

Конфигурация ІР-сетей

Маршрутизация

МАРШРУТИЗАЦИЯ І

- IP-адрес включает две части: адрес подсети и адрес конкретного узла в рамках этой подсети.
- Маска подсети показывает, сколько бит в IP-адресе содержат адрес подсети (остальные это адрес узла).
- Располагая IP-адресом узла назначения и маской подсети всегда позволяет определить, относится ли узел назначения к той же подсети.
- В этом случае пакеты к ним будет доставляться напрямую через канальный уровень.
- Если IP-адрес узла-адресата не входит в локальную сеть узла-отправителя, необходимо отослать какому-то абоненту локальной сети, с тем, чтобы тот перенаправил его дальше.
- Этот абонент, маршрутизатор, подключен к нескольким сетям, и ему вменяется в обязанность пересылать пакеты между ними по определённым правилам.

Маршрутизация іі

Таблицу, управляющую маршрутизацией пакетов, можно просмотреть с помощью утилиты netstat -r или route.

Вывод таблицы маршрутизации (route)									
desktop ~ # route -n									
Kernel IP routing table									
Destination	Gateway	Genmask	Flags	Metric	Ref	Use	Iface		
192.168.1.0	0.0.0.0	255.255.255.0	U	0	0	0	eth0		
127.0.0.0	0.0.0.0	255.0.0.0	U	0	0	0	lo		
0.0.0.0	192.168.1.1	0.0.0.0	UG	0	0	0	eth0		

Конфигурация ІР-сетей

Служебный протокол ІСМР

Протокол ІСМР

Служебный протокол ICMP (Internet Control Message Protocol), предназначенный для передачи служебных сообщений:

- сообщений об ошибках соединений
- сообщений об состоянии соединений
- сообщений об изменении маршрутов
- сообщений о фрагментации пакетов

Определение маршрута следования пакета

Пример выполнения команды traceroute

```
desktop ~ # traceroute ya.ru
traceroute to ya.ru (213.180.204.8), 64 hops max, 40 byte packets
1 195.91.230.65 (195.91.230.65) 0.890 ms 1.907 ms 0.809 ms
2 cs7206.rinet.ru (195.54.192.28) 0.895 ms 0.769 ms 0.605 ms
3 ix2-m9.yandex.net (193.232.244.93) 1.855 ms 1.519 ms 2.95 ms
4 c3-vlan4.yandex.net (213.180.210.146) 3.412 ms 2.698 ms 2.654 ms
5 ya.ru (213.180.204.8) 2.336 ms 2.612 ms 3.482 ms
```

Конфигурация ІР-сетей

Информация о соединениях

Информация о соединениях і

- Основных транспортных протоколов в TCP/IP два это TCP (Transmission Control Protocol, протокол управления соединением) и UDP (User Datagram Protocol).
- TCP заботится о том, чтобы передаваемые данные дошли до адресата в целости и сохранности. Для этого предпринимаются следующие действия:
 - установление соеднинения;
 - обработка подтверждения корректной доставки;
 - отслеживание состояния абонентов.

Информация о соединениях и

Для просмотра всех существующих в настоящий момент сетевых соединений можно воспользоваться командой **netstat**.

Пример выполнения команды netstat

```
desktop ~ # netstat -an
Active Internet connections (servers and established)
Proto Recv-O Send-O Local Address
                                          Foreign Address
                                                                 State
                0 0 0 0 0 32769
                                          0 0 0 0 *
                                                                 LISTEN
tcp
             0 0.0.0.0:32770
                                          0.0.0.0:*
tcp
                                                                 LISTEN
               0 0.0.0.0:111
                                          0.0.0.0:*
                                                                 LISTEN
tcp
tcp
                0 0.0.0.0:22
                                          0.0.0.0:*
                                                                 LISTEN
                 0 192.168.11.5:34949
                                          83.149.196.70:5223
tcp
                                                                 ESTABLISHED
                0 192.168.11.5:39833
                                          213.248.55.180:5223
tcp
                                                                 ESTABLITSHED
tcp
                0 192.168.11.5:59577
                                          192.168.11.1:22
                                                                 TIME WAIT
udp
                0 0.0.0.0:32768
                                          0.0.0.0.*
udp
                0 0.0.0.0:32769
                                          0.0.0.0.*
udp
                 0 0.0.0.0:111
                                          0.0.0.0:*
```


Службы Internet

Служба доменных имён

- Когда-то имена всех компьютеров в сети, соответствующие IP-адресам, хранились в файле /etc/hosts.
- DNS (Domain Name Service, служба доменных имен). Она имеет иерархическую структуру. Если за какую-то группу абонентов домена отвечают не хозяева домена, а кто-то другой, ему выделяется поддомен (или домен второго уровня), и он сам распоряжается именами вида «имя_компьютера.поддомен.домен». Таким образом, получается нечто вроде распределенной сетевой базы данных, хранящей короткие записи о соответствии доменных имен IP-адресам.
- В самом простом случае для того, чтобы сказать системе, какой сервер доменных имён использовать, необходимо изменить файл /etc/resolv.conf. В более сложных системах можно установить и настроить собственный сервер доменных имён.

Службы Internet

Удалённый терминал

Удалённый терминал і

- Telnet стандартное приложение, которое присутствует практически в каждой реализации TCP/IP.
- Оно может быть использовано для связи между узлами, работающими под управлением различных операционных систем.
- Клиент telnet взаимодействует и с пользователем, находящимся за терминалом, и с протоколами TCP/IP.
- Cepвep telnet обычно взаимодействует с так называемыми псевдотерминальными устройствами в UNIX системах.
- Программа telnet обладает значительным недостатком вся передаваемая информация (в том числе аутентификация пользователей) пересылается открытым текстом.

Удалённый терминал іі

• В настоящее время для удалённого администрирования серверов в Internet повсеместно применяется ssh.

Межсетевой экран

Межсетевой экран і

Механизм анализа сетевых и транспортных пакетов, позволяющий избавляться от нежелательной сетевой активности, манипулировать потоками данных и даже преобразовывать служебную информацию в них.

Обработка пакета в iptables Сеть Οδραδοτκα Послемаршрутная οδραδοτκα Домаршрутная транзитных пакетов (FORWARD) (POSTROUTING) обработка (PREROUTING) Οδραδοτκα исходящих пакетов Сеть (OUTPUT) Маршрутизация Οδραδοτκα входящих пакетов (INPUT) Маршрутизация Процесс Процесс

- Сеть состоит из различных аппаратно-программных узлов, для объединения которых используются стандартные протоколы. Эталонной моделью взаимодействия таких систем является семиуровневая модель OSI.
- Протокол TCP/IP частично реализует уровни OSI. Основные протоколы IP (сетевого уровня) и TCP (транспортного уровня) позволили объединить разрозненные локальные сети в глобальную сеть Internet.
- В UNIX основной сетевого взаимодействия является интерфейс, который находится между канальным и сетевым уровнем. Конфигурация TCP/IP включает в себя настройку интерфейса, маршрутизации и сервисов Internet, в первую очередь сервера доменных имен.

- Для удаленного управления компьютерами используется программа telnet и её современных защищённый аналог ssh.
- Важным элементом сетевой инфраструктуры является межсетевой экран, который позволяет ограничить сетевой трафик и изменить его свойства. На лекции был рассмотрен межсетевой экран Linux iptables.

Дополнительные материалы

ДОПОЛНИТЕЛЬНЫЕ МАТЕРИАЛЫ

- 1. Олифер В.Г., Олифер Н.А. Компьютерные сети. Принципы, технологии, протоколы. СПб.: Питер, 2002. 672 с.: ил.
- 2. Курячий Г.В., Маслинский К.А. Операционная система Linux. М.: Интуит.Ру, 2005. 392 с.: ил.

Вопросы для самоконтроля

- 1. Какие уровни входят в модель ISO OSI? Какие можно провести аналогии с реально существующими протоколами?
- 2. Что такое сетевой интерфейс в UNIX? Для чего он используется и каким образом настраивается?
- 3. Как управлять IP-маршрутизацией в UNIX?
- 4. Что такое служба доменных имён в UNIX? Как она конфигурируется?
- 5. Какие функции выполняет межсетевой экран? Каковы принципы управления межсетевым экраном iptables?