Longitudinal Synapse Detection *in Vivo*

Josh K, Drishti M, Sharmini P, Ananya S

AMPA Receptors - What are they?

- Postsynaptic glutamate receptors
- Mediate the majority of fast excitatory synaptic transmission

Cranial Window

In vivo expression of pH-sensitive AMPARs

Motor reaching increases density of spine surface AMPARs

Longitudinal imaging of SEP-GluA1 K1 mouse

Dimensions, Parameters, Pipeline

- Synapse Detection
 - Voxel Intensity
 - o 2D Puncta
 - o 3D Puncta
 - Min/Max spine size
- Image Registration
- Synapse Identification

- ❖ Single voxel dimensions: 0.09 x 0.09 x 1µm
- Total 3D image dimensions: 1024 x 1024 x 50 voxels
- Diameter of a spine: 1 μm

Manual Annotations

Validation

Validation

From Last Week

- Create a new team, populate presentation Josh
- Join a new team, Visit Huganir Lab Drishti
- Join a new team, Start learning Python Ananya
- Join a new team, Visit Huganir Lab, Obtain Huganir data - Sharmini

For Next Week

- Make a table summarizing all existing data and data modalities - Josh
- Run existing code on Huganir data Sharmini
- Create a central web presence for team, using github pages - Drishti
- Keep learning python Ananya

Sprint 3 Goals

- Get Huganir data into Boss
- Annotate remaining sections of Huganir data
- Compare performance of algorithm on regions of synapses within an image (compute quantitative and qualitative metrics)