Divisione in Algebra Relazionale

Lorenzo Vaccarecci

23 Aprile 2024

La divisione è l'inverso del prodotto cartesiano. $R \div S$ è definita come:

$$\{t: U_R \setminus U_S | \forall s \in S \quad \exists r \in R \quad r[U_S] = s, r[U_R \setminus U_S] = t\}$$

$$U_S \subsetneq U_R \quad U_{R \setminus S} = U_S \setminus U_R$$

Esempio

A1	A2	A3					
k	a	a					
j	a	b		A2	A3		A1
j	a	a	÷		a b	=	
k	b	b		a			J
m	С	b		a			k
m	a	a					
k	a	b					

Prendiamo le colonne A2 e A3 (perchè ci sono nella tabella di destra) della tabella di sinistra e guardiamo quali righe sono uguali a quelle della tabella di destra (come se ci fosse un AND) e prendiamo le colonne non toccate dalla divisione. Nel nostro caso j ha sia le righe aa che ab, stessa cosa k (anche se non sequenziali); La m invece non sarà nel risultato perchè sì che ha aa ma non ha ab. Non ci interessa infatti l'ordine delle righe, basta che ci siano.

Detto meglio

Guardiamo le colonne "in comune" tra le due tabelle e prendiamo le righe della tabella di sinistra che hanno tutte le righe della tabella di destra. Inoltre prendiamo le colonne della tabella di sinistra che non sono state prese e che soddisfano le condizioni della tabella di destra. L'ordine delle righe non è importante.