

**RECEIVED
CENTRAL FAX CENTER**

APR 16 2007

CLAIM AMENDMENTS

Please amend claims 21-41 as follows:

1. (Previously Cancelled)
2. (Previously Cancelled)
3. (Previously Cancelled)
4. (Previously Cancelled)
5. (Previously Cancelled)
6. (Previously Cancelled)
7. (Previously Cancelled)
8. (Previously Cancelled)
9. (Previously Cancelled)
10. (Previously Cancelled)
11. (Previously Cancelled)
12. (Previously Cancelled)
13. (Previously Cancelled)
14. (Previously Cancelled)
15. (Previously Cancelled)
16. (Previously Cancelled)
17. (Previously Cancelled)
18. (Previously Cancelled)
19. (Previously Cancelled)
20. (Previously Cancelled)
21. (Currently Amended) An electromechanical A liquid state machine utilizing nanotechnology neural network system, comprising:

at least one pre-synaptic electrode and at least one post-synaptic electrode having a connection gap therebetween:

a physical neural network comprising a liquid dielectric solution comprising a mixture composed of a plurality of nanoconductors and a liquid dielectric solvent, wherein said plurality of nanoconductors are located in and free to move about within said liquid dielectric solution, said liquid dielectric solution disposed in said a connection gap between said at least one pre-synaptic electrode and said at least one post-synaptic electrode; and

a mechanism for applying an electric field across said connection gap, said mechanism electrically connected to said at least one pre-synaptic electrode and said at least one post-synaptic electrode, whereby said electric field induces a dipole in each nanoconductor among said plurality of nanoconductors only when said plurality of nanoconductors is located within said liquid dielectric solution, thereby aligning said plurality of nanoconductors within said liquid dielectric solution and attracting said plurality of nanoconductors to said connection gap formed between at least one pre-synaptic electrode and at least one post-synaptic electrode, wherein nanoconductors among said plurality of nanoconductors in order to provide align to form neural network nanoconnections of a connection network between said at least one pre-synaptic electrode and said at least one post-synaptic electrode electrodes within said liquid dielectric solution when said plurality of nanoconductors suspended in said liquid dielectric solution within said connection gap is subject to a dielectrophoretic force when exposed to an electric field, such that said neural network nanoconnections are strengthened or weakened according to an application of said electric field, a frequency of said electric field, or a combination thereof to provide said neural network nanoconnections; and a liquid state machine formed from and associated with said physical neural network including said neural network nanoconnections, wherein, said connection network, said liquid dielectric solution,

said plurality of nanoconductors, said at least one pre-synaptic electrode and said at least one post-synaptic electrodes electromechanically operable in combination with one another to comprise said electromechanical-based liquid state machine, which stores via patterns of neural activations of said neural network nanoconnections physical neural network, a recent past history of said electromechanical-based liquid state machine.

22. (Currently Amended) The liquid state machine system of claim 21 wherein the more nanoconductors among said plurality of nanoconductors that align as said electric field is applied across said connection gap, the stronger said neural network nanoconnections become and wherein neural network nanoconnections among said neural network connections that are not utilized dissolve back into said liquid dielectric solution.

23. (Currently Amended) The liquid state machine system of claim 21 further comprising:

at least one state-extracting neural circuit for extracting at least one state of said liquid state machine from said liquid state machine; and

wherein said neural network connections of said liquid state machine are randomly connected to one another random.

24. (Currently Amended) The liquid state machine system of claim 23 wherein said at least one state-extracting neural circuit comprises a perceptron, wherein said perceptron adjusts a synaptic weight of said perceptron in order to produce a desired output.

25. (Currently Amended) The liquid state machine system of claim 24 wherein said perceptron comprises a read-out neuron that generates a linear mapping between

at least one neural circuit within said liquid state machine and an output of said read-out neuron.

26. (Currently Amended) The liquid state machine system of claim 21 wherein said at least one pre-synaptic electrode is located perpendicular to said at least one post-synaptic electrode and said electric field is located and applied perpendicular to said connection gap.

27. (Currently Amended) The liquid state machine system of claim 26 wherein said at least one pre-synaptic electrode and said at least one post-synaptic electrode are located adjacent one another in a near-crossing configuration.

28. (Currently Amended) The liquid state machine system of claim 21 further comprising a supervised learning mechanism associated with said liquid state machine, whereby connections strengths of said neural network nanoconnections within said connection gap are determined by pre-synaptic and post-synaptic activity respectively associated with said at least one ~~least one~~ pre-synaptic electrode and said at least one post-synaptic electrode associated with said connection gap.

29. (Currently Amended) The liquid state machine system of claim 28 wherein said liquid state machine comprises a supervised learning mechanism.

30. (Currently Amended) The liquid state machine system of claim 29 wherein said supervised learning mechanism comprises at least one perceptron.

31. (Currently Amended) The liquid state machine system of claim 22 ~~21~~ further comprising a ~~wherein said~~ physical neural network comprising further comprises at

least one connection network associated with at least one neuron-like node wherein said at least one connection network comprises a plurality of said neural network nanoconnections, including a plurality of interconnected nanoconductors, wherein each nanoconductor of said plurality of interconnected nanoconductors is strengthened or weakened according to said application of said electric field, said frequency, or a combination thereof.

32. (Currently Amended) The liquid state machine system of claim 31 wherein:

each nanoconductor of said plurality of interconnected nanoconductors experiences an increase in alignment in accordance with an increase or a decrease in said electric field, a said frequency of said electric field, or a said combination thereof;

wherein nanoconductors of said plurality of interconnected nanoconductors that are utilized most frequently by said at least one neuron-like node become stronger with each use thereof;

and wherein nanoconductors of said plurality of interconnected nanoconductors that are utilized least frequently become increasingly weak and eventually become unaligned.

33. (Currently Amended) The liquid state machine system of claim 31 further comprising a plurality of perceptrons P_1 to P_n that are configured to permit said plurality of perceptrons P_1 to P_n to make random connections into said liquid state machine associated with said physical neural network.

34. (Currently Amended) The liquid state machine system of claim 21 further comprising:

a gate located adjacent said connection gap;
an insulator located between said gate and said connection gap;
a logic circuit located to said gate; and
wherein said at least one pre-synaptic electrode comprises a source and said at least one post-synaptic electrode comprises a drain.

35. (Currently Amended) The liquid state machine system of claim 34 wherein said plurality of nanoconductors comprises DNA insulator comprises an oxide-based insulation material.

36. (Currently Amended) The liquid state machine system of claim 22 21 wherein said plurality of nanoconductors comprises carbon nanotubes comprises semi-conducting materials.

37. (Currently Amended) The liquid state machine of claim 36 wherein said electric field comprises an AC field formed across said connection gap, thereby strengthening or weakening said neural network nanoconnections in order to accomplish a Spike-Timing Dependent-Plasticity (STDP) rule-based operation.

38. (Currently Amended) An electromechanical A liquid state machine based on nanotechnology neural network system, comprising:

a physical neural network comprising a liquid dielectric solution composed of a plurality of nanoconductors and a liquid dielectric solvent;

~~said liquid dielectric solution disposed in a connection gap formed between at least one pre-synaptic electrode and at least one post-synaptic electrode having a connection gap therebetween, wherein said liquid dielectric solution is disposed in said connection gap;~~

a mechanism for providing a dielectrophoretic force that permits, wherein nanoconductors among said plurality of nanoconductors align to form neural network nanoconnections between said pre-synaptic and post-synaptic electrodes within said liquid dielectric solution when an electric field is applied across said connection gap; thereby providing a subjecting said plurality of nanoconductors to said a dielectrophoretic force, such that said neural network nanoconnections are strengthened or weakened according to said application of said electric field, a frequency of said electric field, or a combination thereof to provide said neural network nanoconnections; a liquid state machine formed from and associated with said physical neural network including said neural network nanoconnections, wherein said liquid state machine that stores via patterns of neural activations of said physical neural network, a recent past history of said liquid state machine; and

a plurality of perceptrons in communication with said liquid state machine and said physical neural network, wherein said plurality of perceptrons extracts at least one state of said liquid state machine from said liquid state machine.

39. (Currently Amended) The liquid state machine system of claim 38 wherein said perceptron comprises a read-out neuron that provides forms a linear mapping between at least one neural circuit within said liquid state machine and an output of said read-out neuron.

40. (Currently Amended) A liquid state machine based on nanotechnology neural network system, comprising:

a physical neural network comprising a liquid dielectric solution composed of a plurality of nanoconductors and a liquid dielectric solvent, said liquid dielectric solution disposed in a connection gap formed between at least one pre-synaptic electrode and at least one post-synaptic electrode;,

a mechanism for providing a dielectrophoretic force for aligning wherein said nanoconductors align to form random neural network nanoconnections of a connection network between said pre-synaptic and post-synaptic electrodes within said liquid dielectric solution when an electric field is applied across said connection gap, such that said random neural network nanoconnections are strengthened or weakened according to said application of said electric field, a frequency of said electric or a combination thereof to provide said random neural network nanoconnections;

a gate located adjacent said connection gap in association with an insulator located between said gate and said connection gap, a logic circuit located to said gate, and wherein said at least one pre-synaptic electrode comprises a source and said at least one post-synaptic electrode comprises a drain; and

~~a liquid state machine formed from and associated with said physical neural network including said random neural network nanoconnections~~, wherein said liquid state machine stores via patterns of neural activations of said physical neural network, a recent past history of said liquid state machine.

41. (Currently Amended) The liquid state machine system of claim 40 further comprising at least one state-extracting neural circuit for extracting at least one state of said liquid state machine from said liquid state machine, said at least one state-extracting neural circuit comprising a perceptron that adjusts a synaptic weight of said perceptron in order to produce a desired output, said perceptron generating a linear mapping between at least one neural circuit within said liquid state machine and an output of said read-out neuron; and

wherein said liquid state machine comprises a collection of neurons, each neuron receiving time varying inputs from external sources as well as other neurons, wherein said neurons are randomly connected to each other via said

Best Available Copy

04/16/2007 14:47 FAX 5053141307

NHEC

013/032

neural network nanoconnections of said connection network, such that a recurrent nature of said neural network nanoconnections converts said time varying inputs into a spatio-temporal pattern of activations in said collection of networks, said spatial-temporal patterns of activations read out by a plurality of linear discriminant units.

Page 10 of 29
SERIAL NO. 10/748,546