HW1

- 2. [20 points] Prove the following using the original definitions of O, Ω , θ , o, and ω .
 - (a) $3n^3 + 50n^2 + 4n 9 \in O(n^3)$
 - (b) $1000n^3 \in \Omega(n^2)$
 - (c) $10n^3 + 7n^2 \in \omega(n^2)$
 - (d) $78n^3 \in o(n^4)$
 - (e) $n^2 + 3n 10 \in \Theta(n^2)$

(b)
$$1000n^3 \in \Omega(n^2)$$

From the definition, there must exist c>0 and integer N>0, such that

$$1000n^3 >= cn^2 \text{ for all } n>=N$$

$$1000n >= c$$

Choose c=1, N=1, the definition is satisfied.

(c)
$$10n^3 + 7n^2 \in \omega(n^2)$$

From the definition, for every c>0, there exists integer N>0, such that $10n^3 + 7n^2 >= cn^2$ for all n>=N

$$10n + 7 >= c$$

$$n >= (c-7)/10$$

Choose N = max(1, (c-7)/10), the definition is satisfied.

(a)
$$3n^3 + 50n^2 + 4n - 9 \in O(n^3)$$

From the definition, there must exist c>0 and N>0, such that

$$3n^3 + 50n^2 + 4n - 9 \le cn^3$$
 for all $n \ge N$

$$3n^3 + 50n^2 + 4n - 9 \le 3n^3 + 50n^3 + 4n^3 - 9$$

 $\le 57n^3$

Choose c=57, N=1, the definition is satisfied.

(d)
$$78n^3 \in o(n^4)$$

From the definition, for every c>0, there exists N>0, such that

$$78n^3 <= cn^4 \text{ for all } n>=N$$

$$n >= 78/c$$

Choose N = 78/c, the definition is satisfied.

- 5. [20 points] Let f(n) and g(n) be asymptotically positive functions. For each of the following conjectures, either prove it is true or provide a counter example to show it is not true.
 - a. $(f(n) + g(n)) \in \Theta(\max(f(n), g(n)))$.
 - b. $f(n) \in O(g(n))$ implies $2^{f(n)} \in O(2^{g(n)})$.
 - c. $f(n) \in O(g(n))$ implies $g(n) \in \Omega(f(n))$.
 - d. $f(n) \in O(g(n))$ implies $\lg(f(n)) \in O(\lg(g(n)))$, where $\lg(g(n)) \ge 1$ and $f(n) \ge 1$ for sufficiently large n.

a.
$$(f(n) + g(n)) \in \Theta(\max(f(n), g(n)))$$
.

For big O,

Wrong:

- 1. "Assume f(n) = n, $g(n) = n^2 ...$ "
- 2. "Assume $f(n) \le g(n)$, then max(f(n), g(n)) = f(n) ..." f(x) = x + sinx, g(x) = x - sinx

 $f(n) + g(n) \le 2*max(f(n), g(n))$, satisfied.

For big Omega,

f(n) + g(n) >= max(f(n), g(n)), satisfied.

Based on the definition of theta, it is true.

b. $f(n) \in O(g(n))$ implies $2^{f(n)} \in O(2^{g(n)})$.

$$f(n) = 2n, g(n) = n, f \in O(g)$$

$$2^{f(n)} = 2^{2n} = 4^n, 2^{g(n)} = 2^n, 2^f \notin O(2^g)$$

Wrong:

1. "
$$f(n) = n, g(n) = n^2$$
"

d. $f(n) \in O(g(n))$ implies $\lg(f(n)) \in O(\lg(g(n)))$, where $\lg(g(n)) \ge 1$ and $f(n) \ge 1$ for sufficiently large n.

If $f(n) \in O(g(n))$, then there exist positive constants c and N, s.t. $f(n) \le cg(n)$ for all $n \ge N$

c2 = $\lg c+1$, $\lg f(n) \le c2* \lg g(n)$. So $\lg f(n) \in O(\lg g(n))$. True. 7 (b) What is the time complexity T(n). You may assume that n is divisible by 4.

```
for (i = 2; i <= n; i++) { \longrightarrow n-1 for (j = 0; j <= n) { \longrightarrow 5 \bigcirc cout << i << j; j = j + \lfloor n/4 \rfloor; } }
```

$$T(n) = 5x(n-1) \in O(n)$$