Lecture 11: Attention and Transformers

Today's Agenda:

Attention with RNNs

- In Computer Vision
- In NLP

- General Attention Layer

- Self-attention
- Positional encoding
- Masked attention
- Multi-head attention
- Transformers

Today's Agenda:

- Attention with RNNs
 - In Computer Vision
 - In NLP
- General Attention Layer
 - Self-attention
 - Positional encoding
 - Masked attention
 - Multi-head attention
- Transformers

Input: Image I

Output: Sequence $y = y_1, y_2, ..., y_T$

Extract spatial features from a pretrained CNN

HxWxD

Input: Image I

Output: Sequence $y = y_1, y_2, ..., y_T$

Encoder: $h_0 = f_w(z)$

where **z** is spatial CNN features

fw(.) is an MLP

Input: Image I

Output: Sequence $y = y_1, y_2, ..., y_T$

Decoder: $y_t = g_v(y_{t-1}, h_{t-1}, c)$ where context vector c is often $c = h_0$

Xu et al, "Show, Attend and Tell: Neural Image Caption Generation with Visual Attention", ICML 2015

[START]

Input: Image I

Output: Sequence $y = y_1, y_2, ..., y_T$

Decoder: $y_t = g_v(y_{t-1}, h_{t-1}, c)$ where context vector c is often $c = h_0$

Input: Image I

Output: Sequence $y = y_1, y_2, ..., y_T$

Decoder: $y_t = g_V(y_{t-1}, h_{t-1}, c)$ where context vector c is often $c = h_0$

Input: Image I

Output: Sequence $y = y_1, y_2, ..., y_T$

Decoder: $y_t = g_v(y_{t-1}, h_{t-1}, c)$

where context vector c is often $c = h_0$

MLP

 h_0

Problem: Input is "bottlenecked" through c

Model needs to encode everything it wants to say within c

This is a problem if we want to generate really long descriptions? 100s of words long

Extract spatial features from a pretrained CNN

Features: H x W x D

 y_0

person

h₁

person

wearing

 y_2

h₂

y₁

wearing

 y_2

hat

 y_3

ing hat

[END]

h_₄

 y_3

Attention idea: New context vector at every time step.

Each context vector will attend to different image regions

gif source

Attention Saccades in humans

Compute context vector:

$$c_t = \sum_{i,j} a_{t,i,j} z_{t,i,j}$$

Each timestep of decoder uses a different context vector that looks at different parts of the input image

Each timestep of decoder uses a different context vector that looks at different parts of the input image

Each timestep of decoder uses a different context vector that looks at different parts of the input image

Each timestep of decoder uses a different context vector that looks at different parts of the input image

Image Captioning with Attention

Xu et al, "Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention", ICML 2015
Figure copyright Kelvin Xu, Jimmy Lei Ba, Jamie Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Benchio, 2015. Reproduced with permission.

Image Captioning with Attention

A woman is throwing a frisbee in a park.

A dog is standing on a hardwood floor.

A <u>stop</u> sign is on a road with a mountain in the background.

A little <u>girl</u> sitting on a bed with a teddy bear.

A group of <u>people</u> sitting on a boat in the water.

A giraffe standing in a forest with trees in the background.

Xu et al, "Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention", ICML 2015
Figure copyright Kelvin Xu, Jimmy Lei Ba, Jamie Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Benchio, 2015. Reproduced with permission.

Attention can detect Gender Bias

Wrong

Baseline: A **man** sitting at a desk with a laptop computer.

Right for the Right Reasons

Our Model: A **woman** sitting in front of a laptop computer.

Right for the Wrong Reasons

Baseline: A **man** holding a tennis racquet on a tennis court.

Right for the Right Reasons

Our Model:
A *man* holding a tennis racquet on a tennis court.

Similar tasks in NLP - Language translation example

Input: Sequence $\mathbf{x} = \mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_T$ **Output:** Sequence $\mathbf{y} = \mathbf{y}_1, \mathbf{y}_2, ..., \mathbf{y}_T$

Similar tasks in NLP - Language translation example

Input: Sequence $\mathbf{x} = \mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_T$ **Output:** Sequence $\mathbf{y} = \mathbf{y}_1, \mathbf{y}_2, ..., \mathbf{y}_T$

Encoder: $h_0 = f_w(z)$ where $z_t = RNN(x_t, u_{t-1})$ $f_{\mathbf{w}}(.)$ is MLP u is the hidden RNN state Z_0 X_{\cap} personne portant un chapeau

Similar tasks in NLP - Language translation example

Input: Sequence $\mathbf{x} = \mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_T$ **Output:** Sequence $\mathbf{y} = \mathbf{y}_1, \mathbf{y}_2, ..., \mathbf{y}_T$ **Decoder**: $y_t = g_v(y_{t-1}, h_{t-1}, c)$ where context vector c is often $c = h_0$

Compute alignments scores (scalars):

$$e_{t,i} = f_{att} \left(h_{t-1}, z_i \right)$$

f_{att}(.) is an MLP

Bahdanau et al, "Neural machine translation by jointly learning to align and translate", ICLR 2015

Compute alignments scores (scalars):

$$e_{t,i} = f_{att}(h_{t-1}, z_i)$$

f_{att}(.) is an MLP

Normalize to get attention weights:

$$a_{t,:} = softmax(e_{t,:})$$

0 < a_{t, i, j} < 1, attention values sum to 1

Bahdanau et al, "Neural machine translation by jointly learning to align and translate", ICLR 2015

Compute alignments scores (scalars):

$$e_{t,i} = f_{att}(h_{t-1}, z_i)$$

f_{att}(.) is an MLP

Normalize to get attention weights:

$$a_{t,:} = softmax(e_{t,:})$$

 $0 < a_{t, i, j} < 1$, attention values sum to 1

Compute context vector:

$$c_t = \sum_i a_{t,i} z_{t,i}$$

Bahdanau et al, "Neural machine translaAon by jointly learning to align and translate", ICLR 2015

Similar visualization of attention weights

English to French translation example:

Input: "The agreement on the European Economic Area was signed in August 1992."

Output: "L'accord sur la zone économique européenne a été signé en août 1992."

Without any attention supervision, model learns different word orderings for different languages

Bahdanau et al, "Neural machine translation by jointly learning to align and translate", ICLR 2015

Today's Agenda:

- Attention with RNNs
 - In Computer Vision
 - In NLP
- General Attention Layer
 - Self-attention
 - Positional encoding
 - Masked attention
 - Multi-head attention
- Transformers

Inputs:

Features: **z** (shape: H x W x D) Query: **h** (shape: D)

Fei-Fei Li, Ranjay Krishna, Danfei Xu

h

Lecture 11 - 38

May 06, 2021

Inputs: Features: **z** (shape: H x W x D)

Query: **h** (shape: D)

Outputs:

context vector: **c** (shape: D)

Operations:

Alignment: $e_{i,j} = f_{att}(h, z_{i,j})$ Attention: $\mathbf{a} = \text{softmax}(\mathbf{e})$ Output: $\mathbf{c} = \sum_{i,j} a_{i,j} z_{i,j}$

Inputs:

Features: **z** (shape: H x W x D)

Query: h (shape: D)

Outputs:

context vector: **c** (shape: D)

Operations:

Alignment: $e_i = f_{att}(h, x_i)$ Attention: $\mathbf{a} = \text{softmax}(\mathbf{e})$ Output: $\mathbf{c} = \sum_i a_i x_i$

Inputs:

Input vectors: **x** (shape: N x D)
Query: **h** (shape: D)

Attention operation is **permutation invariant.**

- Doesn't care about ordering of the features
- Stretch H x W = N into N vectors

Outputs:

context vector: **c** (shape: D)

Operations:

Alignment: $\mathbf{e}_i = \mathbf{h} \cdot \mathbf{x}_i$ Attention: $\mathbf{a} = \text{softmax}(\mathbf{e})$ Output: $\mathbf{c} = \sum_i \mathbf{a}_i \mathbf{x}_i$

Change f_{att}(.) to a simple dot product

 only works well with key & value transformation trick (will mention in a few slides)

Inputs:

Input vectors: **x** (shape: N x D)

Query: **h** (shape: D)

Outputs:

context vector: **c** (shape: D)

Operations:

Alignment: $e_i = h \cdot x_i / \sqrt{D}$ Attention: $\mathbf{a} = \text{softmax}(\mathbf{e})$ Output: $\mathbf{c} = \sum_i a_i x_i$

Inputs:

Input vectors: **x** (shape: N x D)

Query: h (shape: D)

Change f_{att}(.) to a scaled simple dot product

- Larger dimensions means more terms in the dot product sum.
- So, the variance of the logits is higher.
 Large magnitude vectors will produce much higher logits.
- So, the post-softmax distribution has lower-entropy, assuming logits are IID.
- Ultimately, these large magnitude vectors will cause softmax to peak and assign very little weight to all others
- Divide by √D to reduce effect of large magnitude vectors

Outputs:

context vectors: **y** (shape: D)

Operations:

Alignment: $e_{i,j} = q_j \cdot x_i / \sqrt{D}$ Attention: a = softmax(e)Output: $y_i = \sum_i a_{i,j} x_i$

Multiple query vectors

 each query creates a new output context vector

Inputs:

Input vectors: **x** (shape: N x D) Queries: **q** (shape: M x D)

Multiple query vectors

Outputs:

context vectors: **y** (shape: D)

Operations:

Alignment: $e_{i,j} = q_j \cdot x_i / \sqrt{D}$ Attention: $\mathbf{a} = \text{softmax}(\mathbf{e})$

Output: $y_i = \sum_i a_{i,i} x_i$

Notice that the input vectors are used for both the alignment as well as the attention calculations.

 We can add more expressivity to the layer by adding a different FC layer before each of the two steps.

Inputs:

Input vectors: **x** (shape: N x D)

Queries: q (shape: M x D)

Operations:

Key vectors: $\mathbf{k} = \mathbf{x} \mathbf{W}_{\mathbf{k}}$ Value vectors: $\mathbf{v} = \mathbf{x} \mathbf{W}_{\mathbf{v}}$ Notice that the input vectors are used for both the alignment as well as the attention calculations.

 We can add more expressivity to the layer by adding a different FC layer before each of the two steps.

Inputs:

Input vectors: \mathbf{x} (shape: N x D) Queries: \mathbf{q} (shape: M x $\mathbf{D}_{\mathbf{k}}$)

Outputs:

context vectors: **y** (shape: D_v)

Operations:

Key vectors: $\mathbf{k} = \mathbf{x} \mathbf{W}_{\mathbf{k}}$ Value vectors: $\mathbf{v} = \mathbf{x} \mathbf{W}_{\mathbf{k}}$ Alignment: $\mathbf{e}_{i,j} = \mathbf{q}_{j} \cdot \mathbf{k}_{i} / \sqrt{D}$ Attention: $\mathbf{a} = \text{softmax}(\mathbf{e})$ Output: $\mathbf{y}_{i} = \sum_{i} \mathbf{a}_{i,i} \mathbf{v}_{i}$ The input and output dimensions can now change depending on the key and value FC layers

Notice that the input vectors are used for both the alignment as well as the attention calculations.

 We can add more expressivity to the layer by adding a different FC layer before each of the two steps.

Inputs:

Input vectors: \mathbf{x} (shape: N x D) Queries: \mathbf{q} (shape: M x D_k)

Outputs:

context vectors: \mathbf{y} (shape: $\mathbf{D}_{\mathbf{v}}$)

Operations:

Key vectors: $\mathbf{k} = \mathbf{x} \mathbf{W}_{\mathbf{k}}$ Value vectors: $\mathbf{v} = \mathbf{x} \mathbf{W}_{\mathbf{k}}$ Alignment: $\mathbf{e}_{i,j} = \mathbf{q}_{j} \cdot \mathbf{k}_{i} / \sqrt{D}$ Attention: $\mathbf{a} = \text{softmax}(\mathbf{e})$ Output: $\mathbf{y}_{i} = \sum_{i} \mathbf{a}_{i,i} \mathbf{v}_{i}$ Recall that the query vector was a function of the input vectors

Encoder: $h_0 = f_w(z)$

where **z** is spatial CNN features

f_w(.) is an MLP

Inputs:

Input vectors: \mathbf{x} (shape: N x D) Queries: \mathbf{q} (shape: M x \mathbf{D}_k)

Self attention layer

Input vectors $x_1 \\ x_2 \\ x_1 \\ x_2$

Operations:

Key vectors: $\mathbf{k} = \mathbf{x} \mathbf{W}_{\mathbf{k}}$ Value vectors: $\mathbf{v} = \mathbf{x} \mathbf{W}_{\mathbf{v}}$

Query vectors: $\mathbf{q} = \mathbf{x}\mathbf{W}_{\mathbf{q}}$ Alignment: $\mathbf{e}_{\mathbf{i},\mathbf{j}} = \mathbf{q}_{\mathbf{i}} \cdot \mathbf{k}_{\mathbf{i}} / \sqrt{D}$

Attention: **a** = softmax(**e**)

Output: $y_j = \sum_i a_{i,j} v_i$

We can calculate the query vectors from the input vectors, therefore, defining a "self-attention" layer.

Instead, query vectors are calculated using a FC layer.

No input query vectors anymore

Inputs:

Input vectors: **x** (shape: N x D)

Queries: **q** (shape: M x D)

Self attention layer

Self attention layer - attends over sets of inputs

Outputs:

context vectors: \mathbf{y} (shape: $\mathbf{D}_{\mathbf{v}}$)

Operations:

Key vectors: $\mathbf{k} = \mathbf{x} \mathbf{W}_{\mathbf{k}}$ Value vectors: $\mathbf{v} = \mathbf{x} \mathbf{W}_{\mathbf{v}}$ Query vectors: $\mathbf{q} = \mathbf{x} \mathbf{W}_{\mathbf{v}}$ Alignment: $\mathbf{e}_{i,j} = \mathbf{q}_{j} \cdot \mathbf{k}_{i} / \sqrt{D}$ Attention: $\mathbf{a} = \text{softmax}(\mathbf{e})$ Output: $\mathbf{y}_{i} = \sum_{i} \mathbf{a}_{i,i} \mathbf{v}_{i}$

Inputs:

Input vectors: **x** (shape: N x D)

Self attention layer - attends over sets of inputs

Permutation invariant

Problem: how can we encode ordered sequences like language or spatially ordered image features?

Concatenate special positional encoding $\mathbf{p}_{\mathbf{j}}$ to each input vector $\mathbf{x}_{\mathbf{j}}$

We use a function pos: $N \rightarrow \mathbb{R}^d$ to process the position j of the vector into a d-dimensional vector

So, $p_j = pos(j)$

Desiderata of pos(.):

- 1. It should output a **unique** encoding for each time-step (word's position in a sentence)
- Distance between any two time-steps should be consistent across sentences with different lengths.
- 3. Our model should generalize to **longer** sentences without any efforts. Its values should be bounded.
- It must be deterministic.

Concatenate special positional encoding p_i to each input vector \mathbf{x}_i

We use a function pos: $N \rightarrow \mathbb{R}^d$ to process the position j of the vector into a d-dimensional vector

Options for pos(.)

- 1. Learn a lookup table:
 - Learn parameters to use for pos(t) for t ε [0, T)
 - Lookup table contains T x d parameters.

Desiderata of pos(.):

- 1. It should output a **unique** encoding for each time-step (word's position in a sentence)
- Distance between any two time-steps should be consistent across sentences with different lengths.
- 3. Our model should generalize to **longer** sentences without any efforts. Its values should be bounded.
- 4. It must be **deterministic**.

Concatenate special positional encoding p_i to each input vector \mathbf{x}_i

We use a function *pos*: $N \rightarrow R^d$ to process the position j of the vector into a d-dimensional vector

So,
$$p_i = pos(j)$$

Options for *pos*(.)

- Learn a lookup table:
 - Learn parameters to use for *pos*(t) for t ε [0, T)
 - Lookup table contains T x d parameters.
- Design a fixed function with the desiderata

$$\mathbf{p(t)} = egin{bmatrix} \sin(\omega_1.\,t) \ \cos(\omega_1.\,t) \ & \sin(\omega_2.\,t) \ & \cos(\omega_2.\,t) \ & \vdots \ & \sin(\omega_{d/2}.\,t) \ & \cos(\omega_{d/2}.\,t) \end{bmatrix}$$

where
$$\omega_k=rac{1}{10000^{2k/c}}$$

Concatenate special positional encoding p_i to each input vector \mathbf{x}_i

We use a function *pos*: $N \rightarrow R^d$ to process the position j of the vector into a d-dimensional vector

So,
$$p_i = pos(j)$$

Options for *pos*(.)

- Learn a lookup table:
 - Learn parameters to use for pos(t) for t ε [0, T)
 - Lookup table contains T x d parameters.
- Design a fixed function with the desiderata

 $\mathbf{p(t)} = \begin{bmatrix} \sin(\omega_1.t) \\ \cos(\omega_1.t) \\ \sin(\omega_2.t) \\ \cos(\omega_2.t) \\ \vdots \\ \sin(\omega_{d/2}.t) \\ \cos(\omega_{d/2}.t) \end{bmatrix}$

Intuition:

where
$$\omega_k=rac{1}{10000^{2k/d}}$$

image source

Masked self-attention layer

Outputs:

context vectors: \mathbf{y} (shape: $\mathbf{D}_{\mathbf{v}}$)

Operations:

Key vectors: $\mathbf{k} = \mathbf{x}\mathbf{W}_{\mathbf{k}}$ Value vectors: $\mathbf{v} = \mathbf{x}\mathbf{W}_{\mathbf{k}}$ Query vectors: $\mathbf{q} = \mathbf{x}\mathbf{W}_{\mathbf{k}}$ Alignment: $\mathbf{e}_{i,j} = \mathbf{q}_j \cdot \mathbf{k}_i / \sqrt[q]{\mathbf{D}}$ Attention: $\mathbf{a} = \operatorname{softmax}(\mathbf{e})$ Output: $\mathbf{y}_i = \sum_i \mathbf{a}_{i,i} \mathbf{v}_i$

- Prevent vectors from looking at future vectors.
- Manually set alignment scores to -infinity

Inputs:

Input vectors: **x** (shape: N x D)

Multi-head self attention layer

- Multiple self-attention heads in parallel

General attention versus self-attention

Comparing RNNs to Transformers

RNNs

- (+) LSTMs work reasonably well for long sequences.
- (-) Expects an ordered sequences of inputs
- (-) Sequential computation: subsequent hidden states can only be computed after the previous ones are done.

Transformers:

- (+) Good at long sequences. Each attention calculation looks at all inputs.
- (+) Can operate over unordered sets or ordered sequences with positional encodings.
- (+) Parallel computation: All alignment and attention scores for all inputs can be done in parallel.
- (-) Requires a lot of memory: N x M alignment and attention scalers need to be calculated and stored for a single self-attention head. (but GPUs are getting bigger and better)

Today's Agenda:

- Attention with RNNs
 - In Computer Vision
 - In NLP
- General Attention Layer
 - Self-attention
 - Positional encoding
 - Masked attention
 - Multi-head attention
- Transformers

Input: Image I

pretrained CNN

Output: Sequence $\mathbf{y} = \mathbf{y}_1, \mathbf{y}_2, ..., \mathbf{y}_T$

Input: Image I

Output: Sequence $y = y_1, y_2, ..., y_T$

Encoder: $c = T_w(z)$ where z is spatial CNN features $T_w(.)$ is the transformer encoder

Input: Image I

Output: Sequence $y = y_1, y_2, ..., y_T$

Decoder: $y_t = T_D(y_{0:t-1}, c)$

where $T_{D}(.)$ is the transformer decoder

Made up of N encoder blocks.

In vaswani et al. N = 6, D_a = 512

Let's dive into one encoder block

Add positional encoding

Attention attends over all the vectors

Add positional encoding

Residual connection

Attention attends over all the vectors

Add positional encoding

LayerNorm over each vector individually

Residual connection

Attention attends over all the vectors

Add positional encoding

MLP over each vector individually

LayerNorm over each vector individually

Residual connection

Attention attends over all the vectors

Add positional encoding

Residual connection

MLP over each vector individually

LayerNorm over each vector individually

Residual connection

Attention attends over all the vectors

Add positional encoding

Transformer Encoder Block:

Inputs: Set of vectors x
Outputs: Set of vectors y

Self-attention is the only interaction between vectors.

Layer norm and MLP operate independently per vector.

Highly scalable, highly parallelizable, but high memory usage.

Made up of N decoder blocks.

In vaswani et al. N = 6, D_{q} = 512

Transformer Decoder Block:

Inputs: Set of vectors x andSet of context vectors c.Outputs: Set of vectors y.

Masked Self-attention only interacts with past inputs.

Multi-head attention block is NOT self-attention. It attends over encoder outputs.

Highly scalable, highly parallelizable, but high memory usage.

No recurrence at all

Perhaps we don't need convolutions at all?

Transformers from pixels to language

Figure 5: Performance versus cost for different architectures: Vision Transformers, ResNets, and hybrids. Vision Transformers generally outperform ResNets with the same computational budget. Hybrids improve upon pure Transformers for smaller model sizes, but the gap vanishes for larger models.

Dosovitskiy et al, "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale", ArXiv 2020 Colab link to an implementation of vision transformers

New large-scale transformer models

TEXT PROMPT

an illustration of a baby daikon radish in a tutu walking a dog

AI-GENERATED IMAGES

Edit prompt or view more images +

TEXT PROMPT

an armchair in the shape of an avocado [...]

AI-GENERATED IMAGES

Edit prompt or view more images +

<u>link</u> to more examples

Summary

- Adding **attention** to RNNs allows them to "attend" to different parts of the input at every time step
- The **general attention layer** is a new type of layer that can be used to design new neural network architectures
- Transformers are a type of layer that uses self-attention and layer norm.
 - It is highly scalable and highly parallelizable
 - Faster training, larger models, better performance across vision and language tasks
 - They are quickly replacing RNNs, LSTMs, and may even replace convolutions.