# Traffic flow

Linear cascades Linear systems Delay differential equations Laplace transform

# Problem formulation

Want to model

- ▶ N cars
- on a straight road
- no overtaking
- > adjustment of speed on driver in front

### Traffic flow - ODE model

Linear systems of ODE - Brief theory

Linear systems - Our case

Traffic flow - DDE model

The Laplace transform

aplace transform of our DDE traffic flow model

# Hypotheses

- N cars in total
- ► Road is the x-axis.
- x<sub>n</sub>(t) position of the nth car at time t.
- $\triangleright$   $v_n(t) \stackrel{\triangle}{=} x'_n(t)$  velocity of the *n*th car at time *t*.



▶ All cars start with the same initial speed  $v_0$  before time t = 0.

p. 3

Traffic flow - ODE model p. 2 Traffic flow - ODE model

# Moving frame coordinates

To make computations easier, express velocity of cars in a reference frame moving at speed  $u_0$ .

Remark that here, speed=velocity, since movement is 1-dimensional.

Let

$$\mu_{n}(t) = \nu_{n}(t) - \mu_{0}$$

Then  $u_n(t)=0$  for  $t\leq 0$ , and  $u_n$  is the speed of the nth car in the moving frame coordinates.

### Modeling driver behavior

Assume that

- Driver adjusts his/her speed according to relative speed between his/her car and the car in front.
- This adjustment is a linear term, equal to λ for all drivers.
- First car: evolution of speed remains to be determined.
- Second car:

$$u_2'=\lambda(u_1-u_2).$$

Third car:

$$\mathit{u}_3' = \lambda(\mathit{u}_2 - \mathit{u}_3)$$

Thus, for n = 1,..., N − 1,

$$u'_{n+1} = \lambda(u_n - u_{n+1}).$$
 (1)

p. 5

p. 7

Traffic flow - ODE model

Traffic flow - ODE model

This can be solved using linear cascades: if  $u_1(t)$  is known, then

$$u_2' = \lambda(u_1(t) - u_2)$$

is a linear first-order nonhomogeneous equation. Solution (integrating factors, or variation of constants) is

$$u_2(t) = \lambda e^{-\lambda t} \int_0^t u_1(s) e^{\lambda s} ds$$

Then use this function  $u_2(t)$  in  $u'_3$  to get  $u_3(t)$ ,

$$u_3(t) = \lambda e^{-\lambda t} \int_0^t u_2(s) e^{\lambda s} ds$$

Thus

$$\begin{split} u_3(t) &= \lambda e^{-\lambda t} \int_0^t u_2(s) e^{\lambda s} ds \\ &= \lambda e^{-\lambda t} \int_0^t \left( \lambda e^{-\lambda s} \int_s^s u_1(q) e^{\lambda q} dq \right) ds \\ &= \lambda^3 e^{-\lambda t} \int_0^t e^{-\lambda s} \int_0^s u_1(q) e^{\lambda q} dq ds \end{split}$$

Continue the process to get the solution.

# Example

Suppose driver of car 1 follows this function

$$u_1(t) = \alpha \sin(\omega t)$$

that is,  $\omega$ -periodic, 0 at t=0 (we want all cars to start with speed relative to the moving reference equal to 0), and with amplitude  $\alpha$ .

Then

$$\begin{split} u_2(t) &= \lambda \alpha e^{-\lambda t} \int_0^t \sin(\omega s) e^{\lambda s} ds \\ &= \lambda \alpha e^{-\lambda t} \left( \frac{\omega - \omega e^{\lambda t} \cos(\omega t) + \lambda e^{\lambda t} \sin(\omega t)}{\lambda^2 + \omega^2} \right) \\ &= \frac{\lambda \alpha}{\lambda^2 + \omega^2} \left( \omega e^{-\lambda t} + \lambda \sin(\omega t) - \omega \cos(\omega t) \right). \end{split}$$

When  $t\to\infty,$  first term goes to 0, we are left with a  $\omega\text{-periodic term.}$ 

Traffic flow - ODE model

Traffic flow - ODE mode

Linear systems of ODE - Brief theory

Linear systems – Our case

Traffic flow - DDF mode

The Laplace transform

Laplace transform of our DDE traffic flow mode

Continuing the process,

$$u_3(t) = \frac{\lambda^2 \alpha}{\lambda^2 + \omega^2} e^{-\lambda t} \times \\ \int_0^t \left( \omega e^{-\lambda s} + \lambda \sin(\omega s) - \omega \cos(\omega s) \right) e^{\lambda s} ds$$

that is,

$$\begin{split} u_3(t) &= \frac{\lambda^2 \alpha}{\lambda^2 + \omega^2} e^{-\lambda t} \left( \omega t + \int_0^t \left( \lambda \sin(\omega s) - \omega \cos(\omega s) \right) e^{\lambda s} ds \right) \\ &= \frac{\lambda^2 \alpha}{\lambda^2 + \omega^2} \left( \omega t + \frac{2\lambda \omega}{\lambda^2 + \omega^2} \right) e^{-\lambda t} \\ &- \frac{\lambda^2 \alpha}{\left( \lambda^2 + \omega^2 \right)^2} \left( 2\lambda \omega \cos(\omega t) - \lambda^2 \sin(\omega t) + \omega^2 \sin(\omega t) \right) \end{split}$$

Once again, the terms in  $e^{-\lambda t}$  vanishes for large t, and we are left with 3  $\omega$ -periodic terms.

Traffic flow - ODE model

# Linear ODEs

### Definition (Linear ODE)

A linear ODE is a differential equation taking the form

$$\frac{d}{dt}x = A(t)x + B(t), \tag{LNH}$$

where  $A(t)\in\mathcal{M}_n(\mathbb{R})$  with continuous entries,  $B(t)\in\mathbb{R}^n$  with real valued, continuous coefficients, and  $x\in\mathbb{R}^n$ . The associated IVP takes the form

$$\frac{d}{dt}x = A(t)x + B(t)$$

$$x(t_0) = x_0.$$
(2)

n 9

# Types of systems

- $\triangleright x' = A(t)x + B(t)$  is linear nonautonomous (A(t)) depends on t) nonhomogeneous (also called affine system).
- $\triangleright x' = A(t)x$  is linear nonautonomous homogeneous.
- x' = Ax + B, that is,  $A(t) \equiv A$  and  $B(t) \equiv B$ , is linear autonomous nonhomogeneous (or affine autonomous).
- x' = Ax is linear autonomous homogeneous.
- ▶ If A(t + T) = A(t) for some T > 0 and all t, then linear periodic.

Linear systems of ODF - Brief theory

# Autonomous linear systems

Consider the autonomous affine system

$$\frac{d}{dt}x = Ax + B, (A)$$

and the associated homogeneous autonomous system

$$\frac{d}{dx}x = Ax. \tag{L}$$

Existence and uniqueness of solutions

Theorem (Existence and Uniqueness)

Solutions to (2) exist and are unique on the whole interval over which A and B are continuous.

In particular, if A, B are constant, then solutions exist on  $\mathbb{R}$ .

p. 12 Linear systems of ODE - Brief theory

# Exponential of a matrix

Definition (Matrix exponential)

Let  $A \in \mathcal{M}_n(\mathbb{K})$  with  $\mathbb{K} = \mathbb{R}$  or  $\mathbb{C}$ . The exponential of A, denoted  $e^{At}$ , is a matrix in  $\mathcal{M}_n(\mathbb{K})$ , defined by

$$e^{At} = \mathbb{I} + \sum_{k=1}^{\infty} \frac{t^k}{k!} A^k,$$

where  $\mathbb{I}$  is the identity matrix in  $\mathcal{M}_n(\mathbb{K})$ .

Linear systems of ODE - Brief theory

# Properties of the matrix exponential

• 
$$e^{At_1}e^{At_2} = e^{A(t_1+t_2)}$$
 for all  $t_1, t_2 \in \mathbb{R}$ , 1

$$ightharpoonup Ae^{At}=e^{At}A$$
 for all  $t\in\mathbb{R}$ .

$$(e^{At})^{-1} = e^{-At} \text{ for all } t \in \mathbb{R}.$$

▶ The unique solution  $\phi$  of (L) with  $\phi(t_0) = x_0$  is given by

$$\phi(t)=e^{A(t-t_0)}x_0.$$

Linear systems of ODE – Brief theory

We have thus transformed IVP (L\_IVP) into

$$\frac{d}{dt}y = P^{-1}APy$$

$$y(t_0) = P^{-1}x_0$$
(L\_IVP\_y)

From the earlier result, we then know that the solution of  $(L_IVP_-y)$  is given by

$$\psi(t) = e^{P^{-1}AP(t-t_0)}P^{-1}x_0,$$

and since x = Py, the solution to (L\_IVP) is given by

$$\phi(t) = Pe^{P^{-1}AP(t-t_0)}P^{-1}x_0$$

So everything depends on  $P^{-1}AP$ .

# Computing the matrix exponential

Let P be a nonsingular matrix in  $\mathcal{M}_n(\mathbb{R})$ . We transform the IVP

$$\frac{d}{dt}x = Ax$$

$$x(t_0) = x_0$$
(L\_IVP)

using the transformation x = Py or  $y = P^{-1}x$ .

The dynamics of y is

$$y' = (P^{-1}x)'$$

$$= P^{-1}x'$$

$$= P^{-1}Ax$$

$$= P^{-1}APy$$

The initial condition is  $y_0 = P^{-1}x_0$ .

# p. 16 Linear systems of ODE - Brief theory Diagonalizable case

Assume P nonsingular in  $\mathcal{M}_n(\mathbb{R})$  such that

$$P^{-1}AP = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots \\ 0 & \lambda_n \end{pmatrix}$$

with all eigenvalues  $\lambda_1, \dots, \lambda_n$  different.

p. 19

We have

$$e^{P^{-1}AP} = \mathbb{I} + \sum_{k=1}^{\infty} \frac{t^k}{k!} \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}^k$$

For a (block) diagonal matrix M of the form

$$M = \begin{pmatrix} m_{11} & & 0 \\ & \ddots & \\ 0 & & m_{nn} \end{pmatrix}$$

there holds

$$M^k = \begin{pmatrix} m_{11}^k & 0 \\ & \ddots & \\ 0 & & m_{nn}^k \end{pmatrix}$$

Linear systems of ODE - Brief theory

Therefore.

$$e^{P^{-1}AP} = \mathbb{I} + \sum_{k=1}^{\infty} \frac{t^k}{k!} \begin{pmatrix} \lambda_1^k & 0 \\ 0 & \ddots \\ 0 & \lambda_n^k \end{pmatrix}$$
$$= \begin{pmatrix} \sum_{k=0}^{\infty} \frac{t^k}{k!} \lambda_1^k & 0 \\ 0 & \ddots & \\ 0 & \sum_{k=0}^{\infty} \frac{t^k}{k!} \lambda_n^k \end{pmatrix}$$
$$= \begin{pmatrix} e^{\lambda_1 t} & 0 \\ & \ddots & \\ 0 & & e^{\lambda_n t} \end{pmatrix}$$

Linear systems of ODE - Brief theory

And so the solution to (L\_IVP) is given by

$$\phi(t) = P \begin{pmatrix} e^{\lambda_1 t} & 0 \\ & \ddots & \\ 0 & & e^{\lambda_n t} \end{pmatrix} P^{-1} x_0.$$

# Nondiagonalizable case

The Jordan canonical form is

$$P^{-1}AP = \begin{pmatrix} J_0 & & 0 \\ & \ddots & \\ 0 & & J_s \end{pmatrix}$$

so we use the same property as before (but with block matrices now), and

$$e^{P^{-1}APt} = \begin{pmatrix} e^{J_0t} & 0 \\ & \ddots & \\ 0 & & e^{J_st} \end{pmatrix}$$

The first block in the Jordan canonical form takes the form

$$J_0 = \begin{pmatrix} \lambda_0 & & 0 \\ & \ddots & \\ 0 & & \lambda_k \end{pmatrix}$$

and thus, as before,

$$e^{J_0t} = \begin{pmatrix} e^{\lambda_0 t} & 0 \\ & \ddots & \\ 0 & e^{\lambda_k t} \end{pmatrix}$$

Linear systems of ODE - Brief theory

p. 24 Linear systems of ODE - Brief theory

Other blocks J: are written as

$$I_i = \lambda_{k+1} \mathbb{I} + N_i$$

with I the  $n_i \times n_i$  identity and  $N_i$  the  $n_i \times n_i$  nilpotent matrix

$$N_i = \begin{pmatrix} 0 & 1 & 0 & & 0 \\ & & \ddots & & \\ & & & & 1 \\ 0 & & & & 0 \end{pmatrix}$$

 $\lambda_{k+i}\mathbb{I}$  and  $N_i$  commute, and thus

$$e^{J_i t} = e^{\lambda_{k+i} t} e^{N_i t}$$

Since  $N_i$  is nilpotent,  $N_i^k = 0$  for all  $k \ge n_i$ , and the series  $e^{N_i t}$ terminates, and

$$e^{J_i t} = e^{\lambda_{k+i} t} \begin{pmatrix} 1 & t & \cdots & \frac{t^{n_i-1}}{(n_i-1)!} \\ 0 & 1 & \cdots & \frac{t^{n_i-1}}{(n_i-2)!} \\ 0 & & 1 \end{pmatrix}$$

n 25

#### Theorem

For all  $(t_0, x_0) \in \mathbb{R} \times \mathbb{R}^n$ , there is a unique solution x(t) to (L\_IVP) defined for all  $t \in \mathbb{R}$ . Each coordinate function of x(t) is a linear combination of functions of the form

$$t^k e^{\alpha t} \cos(\beta t)$$
 and  $t^k e^{\alpha t} \sin(\beta t)$ 

where  $\alpha + i\beta$  is an eigenvalue of A and k is less than the algebraic multiplicity of the eigenvalue.

Linear systems of ODE - Brief theory

# Nilpotent matrix

# Definition (Nilpotent matrix)

Let  $A \in \mathcal{M}_n(\mathbb{R})$ . A is nilpotent (of order k) if  $A^j \neq 0$  for  $i = 1, \dots, k - 1$ , and  $A^k = 0$ .

# Generalized eigenvectors

# Definition (Generalized eigenvectors)

Let  $A \in \mathcal{M}_r(\mathbb{R})$ . Suppose  $\lambda$  is an eigenvalue of A with multiplicity  $m \le n$ . Then, for k = 1, ..., m, any nonzero solution v of

$$(A-\lambda\mathbb{I})^k v=0$$

is called a generalized eigenvector of A.

#### p. 28 Linear systems of ODE - Brief theory

# Jordan normal form

# Theorem (Jordan normal form)

Let  $A \in \mathcal{M}_n(\mathbb{R})$  have eigenvalues  $\lambda_1, \dots, \lambda_n$ , repeated according to their multiplicities.

► Then there exists a basis of generalized eigenvectors for R<sup>n</sup>.

▶ And if {v<sub>1</sub>,..., v<sub>n</sub>} is any basis of generalized eigenvectors for  $\mathbb{R}^n$ , then the matrix  $P = [v_1 \cdots v_n]$  is invertible, and A can be written as

$$A = S + N$$
,

where

$$P^{-1}SP = diag(\lambda_j),$$

the matrix N = A - S is nilpotent of order  $k \le n$ , and S and N commute, i.e. SN = NS.

#### Theorem

Under conditions of the Jordan normal form Theorem, the linear system x' = Ax with initial condition  $x(0) = x_0$ , has solution

$$x(t) = P \operatorname{diag}\left(e^{\lambda_j t}\right) P^{-1}\left(\mathbb{I} + Nt + \cdots + \frac{t^k}{k!}N^k\right) x_0.$$

The result is particularly easy to apply in the following case.

Theorem (Case of an eigenvalue of multiplicity n)

Suppose that  $\lambda$  is an eigenvalue of multiplicity n of  $A \in \mathcal{M}_n(\mathbb{R})$ . Then  $S = \text{diag}(\lambda)$ , and the solution of x' = Ax with initial value  $x_0$  is given by

$$x(t) = e^{\lambda t} \left( \mathbb{I} + Nt + \cdots \frac{t^k}{k!} N^k \right) x_0.$$

In the simplified case, we do not need the matrix P (the basis of generalized eigenvectors).

Linear systems of ODE - Brief theory

Traffic flow - ODE mode

Linear systems of ODE - Brief theory

Linear systems - Our case

Traffic flow – DDE mode

The Laplace transforn

Laplace transform of our DDE traffic flow mode

# A variation of constants formula

Theorem (Variation of constants formula)

Consider the IVP

$$x' = Ax + B(t) \tag{3a}$$

n 33

$$x(t_0) = x_0, \tag{3b}$$

where  $B:\mathbb{R}\to\mathbb{R}^n$  a smooth function on  $\mathbb{R}$ , and let  $e^{A(t-t_0)}$  be matrix exponential associated to the homogeneous system x'=Ax. Then the solution  $\phi$  of (3) is given by

$$\phi(t) = e^{A(t-t_0)}x_0 + \int_{t_0}^t e^{A(t-s)}B(s)ds. \tag{4}$$

32 Linear systems of ODE - Brief theory

# Computation in our case

Consider the case of 3 cars. Let

$$X = \begin{pmatrix} u_2 \\ u_3 \end{pmatrix}$$

Then the system can be written as

$$X' = \begin{pmatrix} -\lambda & 0 \\ \lambda & -\lambda \end{pmatrix} U + \begin{pmatrix} \lambda u_1(t) \\ 0 \end{pmatrix}$$

which we write for short as X' = AX + B(t).

Linear systems - Our case p.

The matrix A has the eigenvalue  $-\lambda$  with multiplicity 2. Its Jordan form is obtained by using the maple function JordanForm:

giving

$$J = \begin{pmatrix} -\lambda & 1 \\ 0 & -\lambda \end{pmatrix}$$

To get the matrix of change of basis,

giving

$$P = \begin{pmatrix} 0 & 1 \\ \lambda & 0 \end{pmatrix}$$

which is such that  $P^{-1}AP = I$ 

Linear systems - Our case

Clearly,  $N^2 = 0$ , so, by the theorem in the simplified case.

$$x(t) = e^{-\lambda t} (I + Nt) x_0$$

But we know that solutions are unique, and that the solution to the differential equation is given by  $x(t) = e^{At}x_0$ . This means that

$$\begin{split} e^{At} &= e^{-\lambda t} \begin{pmatrix} \mathbb{I} + Nt \end{pmatrix} \\ &= e^{-\lambda t} \begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ \lambda t & 0 \end{pmatrix} \end{pmatrix} \\ &= e^{-\lambda t} \begin{pmatrix} 1 & 0 \\ \lambda t & 1 \end{pmatrix} \\ &= \begin{pmatrix} e^{-\lambda t} & 0 \\ \lambda t e^{-\lambda t} & e^{-\lambda t} \end{pmatrix} \end{split}$$

Because  $-\lambda$  is an eigenvalue with multiplicity 2 (same as the size of the matrix), we can use the simplified theorem, and only need N.

We have

$$\begin{split} N &= A - S \\ &= \begin{pmatrix} -\lambda & 0 \\ \lambda & -\lambda \end{pmatrix} - \begin{pmatrix} -\lambda & 0 \\ 0 & -\lambda \end{pmatrix} \\ &= \begin{pmatrix} 0 & 0 \\ \lambda & 0 \end{pmatrix} \end{split}$$

Linear systems - Our case

n 37

Now notice that the solution to

$$X' = AX$$

is trivially established here, since

$$X(0) = \begin{pmatrix} u_2(0) \\ u_3(0) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix},$$

and thus

$$X(t) = e^{At}0 = 0.$$

eAt does however play a role in the solution (fortunately), since it is involved in the variation of constants formula:

$$X(t) = e^{At}X_0 + \int^t e^{A(t-s)}B(s)ds$$

Thus we need to compute  $e^{A(t-s)}B(s)$ , and then the integral

$$\begin{split} e^{A(t-s)}\mathcal{B}(s) &= \begin{pmatrix} e^{-\lambda(t-s)} & 0 \\ \lambda(t-s)e^{-\lambda(t-s)} & e^{-\lambda(t-s)} \end{pmatrix} \begin{pmatrix} \lambda u_1(s) \\ 0 \end{pmatrix} \\ &= \begin{pmatrix} \lambda e^{-\lambda(t-s)} u_1(s) \\ \lambda^2 e^{-\lambda(t-s)} (t-s) u_1(s) \end{pmatrix} \end{split}$$

and thus

$$\begin{split} \int_0^t e^{A(t-s)}B(s)ds &= \int_0^t \left(\begin{array}{c} \lambda e^{-\lambda(t-s)}u_1(s) \\ \lambda^2 e^{-\lambda(t-s)}(t-s)u_1(s) \end{array}\right)ds \\ &= \left(\begin{array}{c} \int_0^t \lambda e^{-\lambda(t-s)}u_1(s)ds \\ \int_0^t \lambda^2 e^{-\lambda(t-s)}(t-s)u_1(s)ds \end{array}\right) \\ &= \left(\begin{array}{c} \lambda e^{-\lambda t}\int_0^t e^{\lambda s}u_1(s)ds \\ \lambda^2 e^{-\lambda t}\int_0^t e^{\lambda s}(t-s)u_1(s)ds \end{array}\right) \\ &= \left(\begin{array}{c} \lambda e^{-\lambda t}\int_0^t e^{\lambda s}u_1(s)ds \\ \lambda^2 e^{-\lambda t}\int_0^t e^{\lambda s}u_1(s)ds \end{array}\right) \\ &= \left(\begin{array}{c} \lambda e^{-\lambda t}\int_0^t e^{\lambda s}u_1(s)ds \\ \lambda^2 e^{-\lambda t}\left(t\int_0^t e^{\lambda s}u_1(s)ds - \int_0^t s e^{\lambda s}u_1(s)ds \right) \end{array}\right) \end{split}$$

Linear systems - Our case

Let

$$\Psi(t) = \int_0^t e^{\lambda s} u_1(s) ds$$

and

$$\Phi(t) = \int_{-t}^{t} se^{\lambda s} u_1(s) ds$$

These can be computed when we choose a function  $u_1(t)$ . Then, finally, we have

$$X(t) = \int_0^t e^{A(t-s)} B(s) ds$$
$$= \begin{pmatrix} \lambda e^{-\lambda t} \Psi(t) \\ \lambda^2 e^{-\lambda t} (t \Psi(t) - \Phi(t)) \end{pmatrix}$$

Linear systems - Our case

Case of the  $\alpha \sin(\omega t)$  driver

We set

$$u_1(t) = \alpha \sin(\omega t).$$

Then

$$\Psi(t) = \frac{\alpha(\omega - \omega e^{\lambda t}\cos(\omega t) + \lambda e^{\lambda t}\sin(\omega t))}{\lambda^2 + \omega^2}$$

and

$$\Phi(t) = \frac{\alpha(\lambda^3 t + \lambda t \omega^2 - \lambda^2 + \omega^2) \sin(\omega t) e^{\lambda t}}{(\lambda^2 + \omega^2)^2} - \frac{\alpha \omega \cos(\omega t) (t\lambda^2 + t\omega^2 - 2\lambda) e^{\lambda t} + 2\alpha \lambda \omega}{(\lambda^2 + \omega^2)^2}$$

Linear systems - Our case





 $\lambda = 0$  Linear systems – Our case



 $\lambda = 0.4$  Linear systems – Our case



 $\lambda = 0.8$  Linear systems – Our case

 $\lambda = 5$ p. 46 Linear systems – Our case

Traffic flow - ODE model

Linear systems of ODE - Brief theory

Linear systems - Our case

Traffic flow - DDE model

The Laplace transform

Laplace transform of our DDE traffic flow mode

# A delayed model of traffic flow

We consider the same setting as previously, except that now, for t>0,

$$u'_{n+1}(t) = \lambda(u_n(t-\tau) - u_{n+1}(t-\tau)),$$
 (5)

for  $n=1,\ldots,N-1$ . Here,  $\tau\geq 0$  is called the *time delay* (or *time lag*), or for short, *delay* (or *lag*).

If  $\tau = 0$ , we are back to the previous model.

# A delay differential equations model

- In the previous model, reaction time is instantaneous.
- In practice, this is known to be incorrect: reflexes and psychology play a role.
- It takes at least a few instants to acknowledge a change of speed in the car in front.
- If the change of speed is not threatening, then you may not want to react right away.
- When you press the accelerator or the brake, there is a delay between the action and the reaction...

Traffic flow - DDE model

р. ч

### Initial data

For a delay equation such as (5), the initial conditions become *initial data*. This initial data must be specified on an interval of length  $\tau$ , left of zero.

This is easy to see by looking at the terms:  $u(t-\tau)$  involves, at time t, the state of u at time  $t-\tau$ . So if  $t<\tau$ , we need to know what happened for  $t\in [-\tau,0]$ .

So, normally, we specify initial data as

$$u_n(t)=\phi(t) \text{ for } t\in [-\tau,0],$$

where  $\phi$  is some function, that we assume to be continuous. We assume  $u_1(t)$  is known.

Here, we assume, for n = 1, ..., N,

$$u_n(t) = 0,$$
  $t \leq (n-1)\tau$ 

Traffic flow - DDE model

### Important remark

Although (5) looks very similar to (1), you must keep in mind that it is in fact much more complicated.

- ▶ A solution to (1) is a continuous function from R to R (or to  $\mathbb{R}^n$  if we consider the system).
- A solution to (5) is a continuous function in the space of continuous functions.
- ▶ The space  $\mathbb{R}^n$  has dimension n. The space of continuous functions has dimension  $\infty$ .

We can use the Laplace transform to get some understanding of the nature of the solutions

Traffic flow - DDF model

# The Laplace transform

# Definition (Laplace transform)

Let f(t) be a function defined for  $t \ge 0$ . The Laplace transform of f is the function F(s) defined by

$$F(s) = \mathcal{L}{f(t)} = \int_{0}^{\infty} e^{-st} f(t) dt.$$

The Laplace transform is a linear operator:

$$\mathcal{L}\{af(t)+bg(t)\}=a\mathcal{L}\{f(t)\}+b\mathcal{L}\{g(t)\}.$$

### The Laplace transform

# Rules of transformation

| t-domain                                                                                             | s-domain                                                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| af(t) + bg(t)                                                                                        | aF(s) + bG(s)                                                                                                                                                                                                         |
| tf(t)                                                                                                | -F'(s)                                                                                                                                                                                                                |
| $t^n f(t)$                                                                                           | $(-1)^n F^{(n)}(s)$                                                                                                                                                                                                   |
| f'                                                                                                   | sF(s) - f(0)                                                                                                                                                                                                          |
| f"                                                                                                   | $s^2F(s) - sf(0) - f'(0)$                                                                                                                                                                                             |
| $f^{(n)}$                                                                                            | $s^n F(s) - s^{n-1} f(0) - \cdots - f^{(n-1)}(0)$                                                                                                                                                                     |
| $\frac{f(t)}{t}$                                                                                     | $\int_{s}^{\infty} F(u)du$                                                                                                                                                                                            |
| $\int_{0}^{t} f(u)du = u(t) * f(t)$                                                                  | $\frac{1}{s}F(s)$                                                                                                                                                                                                     |
| f(at)                                                                                                | $\frac{1}{12}F\left(\frac{s}{2}\right)$                                                                                                                                                                               |
| $e^{at}f(t)$                                                                                         | F(s - a)                                                                                                                                                                                                              |
| f(t-a)u(t-a)                                                                                         | $e^{-as}F(s)$                                                                                                                                                                                                         |
| f(t) * g(t)                                                                                          | F(s)G(s)                                                                                                                                                                                                              |
| $f''$ $f'''$ $f(a)$ $\frac{f(t)}{\int_0^1 f(u)du} = u(t) * f(t)$ $f(at)$ $e^{at}f(t)$ $f(t-a)u(t-a)$ | $ \begin{array}{l} sF(s) - f(0) \\ s^2F(s) - sf(0) - f'(0) \\ s^nF(s) - s^{n-1}f(0) - \cdots - f^{(n-1)}(0) \\ \int_s^{\infty} F(u) du \\ \frac{1}{3}F(s) \\ \frac{1}{3}F(s) \\ F(s - a) \\ e^{-as}F(s) \end{array} $ |

Here  $f^{(n)}$  represents the nth derivative, not the nth iterate. \* is the convolution product.

In the table on the following slide.

δ(t) is the Dirac delta,

$$\delta(t) = \begin{cases} \infty & \text{if } t = 0 \\ 0 & \text{if } t \neq 0. \end{cases}$$

H(t) is the Heaviside function,

$$H(t) = \begin{cases} 0 & \text{if } t < 0 \\ 1 & \text{if } t > 0 \end{cases}$$

Note that  $H(t) = \int_{-\infty}^{t} \delta(s) ds$ .

The Lanlace transform

# Inverse Laplace transform

# Definition

Given a function F(s), if there exists f(t), continuous on  $[0,\infty)$  and such that

$$\mathcal{L}\{f\} = F$$
.

then f(t) is the *inverse Laplace transform* of F(s), and is denoted  $f = \mathcal{L}^{-1}\{F\}$ .

#### Theorem

The inverse Laplace transform is a linear operator. Assume that  $\mathcal{L}^{-1}\{F_1\}$  and  $\mathcal{L}^{-1}\{F_2\}$  exist, then

$$\mathcal{L}^{-1}\{aF_1+bF_2\}=a\mathcal{L}^{-1}\{F_1\}+b\mathcal{L}^{-1}\{F_2\}.$$

## Transforms of common functions

| t-domain             | s-domain             |
|----------------------|----------------------|
| $\delta(t)$          | 1                    |
| $\delta(t - \tau)$   | $e^{-\tau s}$        |
| H(t)                 | 1 5                  |
| $H(t-\tau)$          | <u>e</u> −τs         |
| $\frac{t^n}{n!}H(t)$ | 1 0+1                |
| $e^{-\alpha t}H(t)$  | $\frac{1}{s+\alpha}$ |
| $sin(\omega t)H(t)$  | σ212                 |
| ( )11()              | s Tw                 |

The Laplace transform

lace transform p. 57

# Solving differential equations using the Laplace transform

- 1. Take the Laplace transform of both sides of the equation.
- Using the initial conditions, deduce an algebraic system of equations in s-space.
- Solve the algebraic system in s-space.
- Take the inverse Laplace transform of the solution in s-space, to obtain the solution of the differential equation in t-space.

The Laplace transform p. 58 The Laplace transform p. 59 The Laplace transform

#### Traffic flow - ODF model

Linear systems of ODE - Brief theory

Linear systems - Our case

Traffic flow - DDE mode

The Laplace transform

Laplace transform of our DDE traffic flow model

Since  $u_{n+1}(t) = 0$  for  $t \le n\tau$ .

$$\int_{0}^{\infty} e^{-st} u'_{n+1}(t) dt = \left[ u_{k+1}(t) e^{-st} \right]_{k\tau}^{\infty} + s \int_{k\tau}^{\infty} e^{-st} u_{k+1}(t) dt$$
$$= s U_{k+1}(s)$$

and

$$\begin{split} \int_{0}^{\infty} e^{-st} u_{k+1}(t-\tau) dt &= \int_{(k-1)\tau}^{\infty} e^{-st} u_{k+1}(t-\tau) dt \\ &= \int_{(k-2)\tau}^{\infty} e^{-s(t+\tau)} u_{k}(\tau) d\tau \\ &= e^{-s\tau} U_{k}(s). \end{split}$$

since  $e^{-st}u_{k+1}(t)\to 0$  for the improper integral to exist. Note that we could have obtained this directly using the properties of the Laplace transform.

Let

$$U_{k+1}(s) = \mathcal{L}\{u_{k+1}(t)\} = \int_{0}^{\infty} e^{-st} u_{k+1}(t) dt.$$

Since we have assumed initial data of the form

$$u_n(t) = 0$$
 for  $t \le (n-1)\tau$ ,

we have

$$U_{k+1}(s) = \int_{t-s}^{\infty} e^{-st} u_{k+1}(t) ds.$$

Laplace transform of our DDE traffic flow model

Multiply

$$u'_{n+1}(t) = \lambda(u_n(t-\tau) - u_{n+1}(t-\tau))$$

by  $e^{-st}$ ,

$$e^{-st}u'_{n+1}(t) = \lambda e^{-st}(u_n(t-\tau) - u_{n+1}(t-\tau))$$

integrate over  $(0,\infty)$  (using the expressions found above),

$$sU_{n+1}(s) = \lambda(e^{-s\tau}U_n(s) - e^{-s\tau}U_{n+1}(s))$$

which is equivalent to

$$U_{n+1}(s) = \frac{\lambda U_n(s)}{\lambda + s e^{s\tau}}$$

Thus, when  $U_1(s)$  is known, we can deduce the values for all  $U_n$ .

n 61

### Suppose

$$u_1(t) = \alpha \sin(\omega t)$$

From the table of Laplace transforms, it follows that

$$U_1(s) = \alpha \frac{\omega}{s^2 + \omega^2}$$

Therefore,

$$U_2 = \frac{\lambda U_1(s)}{\lambda + se^{st}} = \alpha \frac{\lambda}{\lambda + se^{st}} \frac{\omega}{s^2 + \omega^2}$$

However, even though we know the solution in s-space, it is difficult to get the behavior in t-space, by hand, and maple does not help us either.

and we can continue..