0106_R19_C Scheme_Extc_IV_ECC401_EMIV_QP

University of Mumbai

Examination 2021 under cluster 05 (Lead College: APSIT)

Examinations Commencing from 1st June 2021 to 10th June 2021 Program: BE Electronics and Telecommunication Engineering

Curriculum Scheme: Rev 2019 'C' Scheme

Examination: SE Semester IV

Course Code: ECC401 and Course Name: Engineering Mathematics IV

Time: 2 hour Max. Marks: 80

Your email will be recorded when you submit this form

Not singhsparsh@kccemsr.edu.in? Switch account

* Required

If x is a discrete random variable with the following probability distribution

х	1	2	3	
P(x)	a	2a	a	

Find $P(X \le 2)$.

1/4

 \bigcirc 1/2

3/4

 \bigcap 1

The following results were obtained from records of age (x) and systolic blood pressure (y) of a group of 10 men:

	x	у
mean	53	142
variance	130	165

Correlation coefficient = 0.8

Estimate the blood pressure of a man whose age is 45	Estimate th	ie blood	pressure	of a	man	whose	age	is	45	?
--	-------------	----------	----------	------	-----	-------	-----	----	----	---

134.78

- 130.56
- 129.56
- 137.56

Clear selection

If X and Y are independent random variables with means 2,3 and variance 1,2 respectively, find the mean and variance of the random variable Z = 2X - 5Y

- -11,54
- 19,54
- 19,-8
- -11, -8

Clear selection

Name *

Sparsh Singh

SEAT NO *

20211EX4071

· ·

Evaluate $\int_{c}^{\frac{ z }{z-1}} \frac{e^{z}}{z-1} dz$ where c is the circle $ z = 2$.
2 πί
2 πie^2
2 πie
O πie^2
Clear selection
Branch *
● EXTC
CONTACT NO *
9082213431
If the tangent of the angle made by the line of regression of y on x is 0.6 and $\sigma_x = \frac{1}{2}\sigma_y$. Find the correlation coefficient between x and y.
-2.5
0. 25
O - 0. 3
0.3
Clear selection

A coefficient of correlation is computed to be -0.95 means that

- The relationship between the two variables is weak
- The relationship between the two variables is strong and positive.
- The relationship between the two variables is strong but negative.
- The correlation coefficient cannot have this value.

Clear selection

A necessary condition for $I = \int_{x_1}^{x_2} f(x, y, y^{\parallel}, y^{\parallel}) dx$ to be an extremal is that

$$\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y^{||}} \right) + \frac{d^2}{dx^2} \left(\frac{\partial f}{\partial y^{||}} \right) = 0$$

$$\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y^{||}} \right) = 0$$

Option 1

Option 2

$$\frac{\partial f}{\partial y} + \frac{d}{dx} \left(\frac{\partial f}{\partial y^{||}} \right) = 0$$

 $\frac{\partial f}{\partial y} + \frac{d}{dx} \left(\frac{\partial f}{\partial y^{||}} \right) + \frac{d^2}{dx^2} \left(\frac{\partial f}{\partial y^{||}} \right) = 0$

Option 3

Option 4

Find the value of the integral $\int_0^{1+i} (x^2 - iy) dz$ along the path y = x

- (5-i)/6
- (5+i)/6
- (1+5i)/6
- (1-5i)/6

Clear selection

Find E(X) if X has the p.d.f $f(x) = \begin{cases} \frac{3}{4}(2x - x^2), 0 \le x \le 2\\ 0, otherwise \end{cases}$

- 3/2
- \bigcirc 2
- 1/2

Clear selection

Find the residue of $f(z) = \frac{z^2}{(z+2)(z-1)^2}$ at z=-2

- 1/9
- 5/9
- 0 1/3
- 4/9

The extremal of the functional $I = \int_a^b (16y^2 - y^{||^2} + x^2) dx$ is

$$y = c_1 cos 2x + c_2 sin 2x$$

$$y = c_1 e^{2x} + c_2 e^{-2x}$$

Option 1

$$y = c_1 e^{2x} + c_2 e^{-2x} + c_3 cos 2x + c_4 sin 2x$$

$$y = c_1 e^x + c_2 e^{-x} + c_3 cosx + c_4 sinx$$

Option 3

Option 4

Clear selection

If u = (3, 1, 4, -2) v = (2, 2, 0, 1) then find $\langle u, v \rangle$ and ||u||, ||v||

- -6, √(30), √10
- \bigcirc 5, $\sqrt{2}$, $\sqrt{6}$
- 5 , √30 , 3
- (6, √30,3

Write down the matrix of the quadratic form $x_1^2 + 2x_2^2 - 7x_3^2 - 4x_1x_2 + 6x_2x_3 + 8x_3x_1$

$$\begin{bmatrix} 1 & -2 & 4 \\ -2 & 2 & 3 \\ 4 & 3 & -7 \end{bmatrix}$$

 $\begin{bmatrix} 1 & -4 & 8 \\ -4 & 2 & 6 \\ 8 & 6 & -7 \end{bmatrix}$

Option 1

Option 2

Option 4

 $\begin{bmatrix} 1 & 2 & 4 \\ 2 & 2 & 3 \\ 4 & 3 & -7 \end{bmatrix}$

1 4 8 4 2 6 8 6 7

Option 3

Clear selection

Identify the type of singularity of the function $f(z) = \frac{\sinh z}{z^7}$

- \bigcirc z = 0 is a pole of order 7 for the given function
- z = 0 is a pole of order 6 for the given function
- z = 0 is an essential singularity
- \bigcirc z = 0 is a pole of order 3 for the given function

Suppose the number of accidents occurring weekly on a particular stretch of a highway follow a Poisson distribution with mean 3. Calculate the probability that there is at least one accident this week.

- 0.6 347
- 0.9502
- 0.7275
- 0.8002

Clear selection

Find the rank, signature, index of the transformed quadratic form $3y_1^2 + \frac{2}{3}y_2^2 - \frac{39}{2}y_3^2$.

- rank = 3, signature =2, index =1
- nank = 3, signature =1, index =2.
- rank = 2, signature =3, index =1.
- rank = 2, signatur e=1, index =3.

The functional $I = \int_a^b (y^2 + 12xy) dx$ has the following extremal with c_1 and c_2 as arbitrary constants.

$$c_1 x^3 + c_2 x$$

 $x^2 + c_1 x + c_2$

Option 1

Option 2

$$c_1x + c_2$$

 $x^3 + c_1 x + c_2$

Option 3

Option 4

Determine which of the following are subs $W_1=\{(a,0,b),a,b\in R\}$ $W_2=\{(a,b,1),a,b\in R\}$	paces of R ³
W_1 and W_2 are the subspaces of R^3	W_1 and W_2 are not the subspaces of R^3
Option 1	Option 2
$W_1 is \ a \ subapace \ of \ R^3$ but $\ W_2 \ is \ { m not} \ { m a} \ { m subspace} \ { m of} \ R^3$	W_1 is not a subapace of \mathbb{R}^3 but W_2 is a subspace of \mathbb{R}^3
Option 3	Option 4Clear selection
SUBJECT *	
● EM IV	

Submit

Never submit passwords through Google Forms.

This form was created inside of K.C.College of Engineering And Management Studies And Research. $\underline{\text{Report}}$ $\underline{\text{Abuse}}$

Google Forms