EI Considerations

Gabe Schoenbach and Amy Becker MGGG Redistricting Lab | Nov. 2020

What % of Black voters chose Candidate A? (e.g. for VRA)

For each precinct we have:

	Candidate A	Candidate B	Totals
BCVAP ?		?	2000
non-BCVAP ?		?	3000
Totals	1000	800	

(Look for patterns across all the precincts)

- "EI" is not a single well-defined technique! Lots of flavors:
 - o King's EI, Rosen, Greiner-Quinn, ...
 - Underlying distributions (truncated bivariate normal, univariate gamma, multinomial dirichlet)
 - How to address turnout issues (e.g. Double equation vs Single equation, 'abstain' columns, etc)
 - O Different implementations (e.g. eiPack, pyEI)
 - Lots of parameter knobs to adjust (tuning, mcmc specs, etc)
 - o 2x2 vs RxC tables
 - Counts vs Proportions (each have issues); CVAP/VAP/voter file/exit polls
- EI techniques are not always reliable
 - o depend on underlying assumptions that do not hold well in many scenarios
- Most practitioners likely treat EI as a "black box" without needing to understand inner-workings
- Reasonable and innocuous-seeming choices can have significant impacts!

precinct p _i	Candidate 1	Candidate 2	Neither
BCVAP			
HCVAP			
WCVAP			
OCVAP			

Use 4 demographic groups

precinct p _i	Candidate 1	Candidate 2	Neither
BCVAP			
HCVAP			
WCVAP			
OCVAP			

precinct p _i	Candidate 1	Candidate 2	Neither
BCVAP			
HCVAP			
WCVAP			
OCVAP			

Use 4 demographic groups	Aggregate precincts statewide	Immediately infer turnout
--------------------------	-------------------------------	---------------------------

precinct p _i	Candidate 1	Candidate 2	Neither
BCVAP			
HCVAP			
WCVAP			
OCVAP			

Toggles

Use 4 demographic groups	Aggregate precincts statewide	Immediately infer turnout
Combine White + Other	Aggregate precincts countywide	Make a turnout phase

Chen's EI Method

precinct p _i	Any candidate	Neither	precinct p _i	Candidate 1	Candidate 2
BCVAP			BCVAP		
HCVAP			HCVAP		
WOCVAP			WOCVAP		
	Phase 1			Phase 2	
Turnout		C	Candidate Preferenc	e	

Toggles

Use 4 demographic groups	Aggregate precincts statewide	Immediately infer turnout
Combine White + Other	Aggregate precincts countywide	Make a turnout phase

Data

Texas
9083 precincts
~8-14 hours/election

Broward Co., FL 576 precincts ~15 min/election

Results: Consolidating Demographic Groups

- Election: PRES12 General
- Aggregate precinct results to Texas state house districts
- Consolidating tends to slightly underestimate
 WCVAP support for Obama, relative to not consolidating

Use 4 demographic groups

Combine White + Other

Results: Statewide vs. County-by-County

- Election: PRES12 General
- Aggregate precinct results to Texas state house districts
- byCounty tends to
 overestimate WCVAP
 support for Obama, relative
 to statewide run
- Underestimates for BCVAP, HCVAP, OCVAP

Aggregate precincts statewide

Run El county-by-county

Results: Statewide vs. County-by-County

• Which HDs are most affected by this toggle?

1 Phase vs 2 Phase: Texas Results

One Phase: Estimate candidate support and turnout in single run, using 'abstain'/'neither' column (i.e. Rx(C+1))

Two Phase: First estimate turnout-by-race (Rx2), then feed output into second run to estimate candidate support (RxC)

1 Phase vs 2 Phase: Texas Results

1 Phase vs 2 Phase: Broward 2016 Presidential Results

Turnout

X avgs: 0.577, 0.515, 0.871, 0.726; Y avgs: 0.565, 0.499, 0.813, 0.748; Pearson r: 0.974, 0.973, 0.9, 0.969

	BCVAP	HCVAP	OCVAP	WCVAP
One Phase	57%	52%	87%	73%
Two Phase	57%	50%	81%	75%

Support Clinton

X avgs: 0.968, 0.841, 0.722, 0.479; Y avgs: 0.831, 0.678, 0.793, 0.583; Pearson r: 0.306, 0.353, 0.146, 0.449

	BCVAP	HCVAP	OCVAP	WCVAP
One Phase	97%	84%	72%	48%
Two Phase	83%	68%	79%	58%

1 Phase vs 2 Phase: Replicability

	Pearson r
BCVAP	.995
HCVAP	.997
OCVAP	.964
WCVAP	.998

X avgs: 0.565, 0.499, 0.813, 0.748; Y avgs: 0.562, 0.502, 0.819, 0.747; Pearson r: 0.993, 0.992, 0.918, 0.996

	Pearson r
BCVAP	.993
HCVAP	.992
OCVAP	.918
WCVAP	.996

Support Clinton X avgs: 0.968, 0.841, 0.722, 0.479; Y avgs: 0.967, 0.82, 0.767, 0.482; Pearson r: 0.894, 0.946, 0.876, 0.994 BCVAP HCVAP OCVAP Pearson r WCVAP .894 **BCVAP ~** 0.6 Run ed **HCVAP** .946 **OCVAP** .876 **WCVAP** .994 0.2 Clinton **BCVAP HCVAP OCVAP WCVAP** 0.0 Support 0.0 0.2 Run 1 83% 68% 79% 58% X avgs: 0.831, 0.676, 0 84% Run 2 69% 78% 58%

	Pearson r
BCVAP	.270
HCVAP	.268
OCVAP	.255
WCVAP	.555

Next Steps

- Understand replicability issue with Two Phase
- Use FL voter file to see how ground-truth turnout-by-race compares to EI estimates
- Repeat analysis for other elections (including primaries)
- Try replicating using PyEI