On traces of functions in $W^{2,p}(\Omega)$ for Lipschitz domains in \mathbb{R}^3

Annalisa BUFFA a, Giuseppe GEYMONAT b

^a Dipartimento di Matematica, Universitá degli studi di Pavia, Via Ferrata 1, 27100 Pavia, Italie

(Reçu et accepté le 19 janvier 2001)

Abstract.

We consider the problem of the characterization of the range of the trace operator (γ, γ_1) : $W^{2,p}(\Omega) \to \mathcal{R}, p \in]1, \infty[$, defined by the mapping $u \mapsto (u_{|\Gamma}, \partial_{\mathbf{n}} u)$, when Ω is a Lipschitz bounded subset of \mathbb{R}^3 . \mathbb{R} turns out to be a subspace of $W^{1,p}(\Gamma) \times L^p(\Gamma)$. To this aim we need to prove a suitable Hodge decomposition for vector fields belonging to $\mathbf{L}^p(\mathbf{curl}, \Omega)$, and also to study some properties of the tangential gradient ∇_{Γ} on a Lipschitz orientable manifold. @ 2001 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

Traces de $W^{2,p}(\Omega)$ dans de domains lipschitziens en \mathbb{R}^3

Résumé.

On caractérise l'image \Re de l'application $u\mapsto (\gamma(u)=u_{|\Gamma},\gamma_1(u)=\partial_{\mathbf{n}}u)$ de $W^{2,p}(\Omega)$ dans $W^{1,p}(\Gamma)\times L^p(\Gamma)$, $p\in]1,\infty[$, quand Ω est ouvert borné lipschitzien de \mathbb{R}^3 . Pour cela on montre une decomposition de Hodge pour les champs vectoriels de $\mathbf{L}^p(\mathbf{curl},\Omega)$ et on étudie quelque proprietés du gradient tangentiel ∇_Γ sur la surface lipschitzienne. © 2001 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

Version française abrégée

(Les numéros d'équations renvoient à la version anglaise.)

Soit Ω un ouvert borné de \mathbb{R}^N de frontière Γ lipschitzienne et soit \mathbf{n} la normale extérieure. L'application $u \mapsto (\gamma(u) = u_{|\Gamma}, \gamma_1(u) = \partial_{\mathbf{n}} u)$ est linéare et continue de $W^{2,p}(\Omega)$ dans $W^{1,p}(\Gamma) \times L^p(\Gamma)$ et son image \mathbb{R} est dense dans cet espace [8]. Quand N=2 et p=2, Geymonat et Krasucki [6] ont caracterisé \mathbb{R} à l'aide de la fonction d'Airy; la même technique a été utilisée par Duràn et Muschietti [5] dans le cas N=2 et $p\in]1,\infty[$.

Cette caractérisation peut se reformuler de la façon équivalente suivante :

$$\mathcal{R} = \{(g_0, g_1) \in \mathcal{W}^{1,p}(\Gamma) \times \mathcal{L}^p(\Gamma) : (\partial_t g_0)\mathbf{t} + g_1 \,\mathbf{n} \in (\mathcal{W}^{1-1/p,p}(\Gamma))^2\},\$$

où ∂_t désigne la dérivée tangentielle et \mathbf{t} le vecteur tangent.

Note présentée par Philippe G. CIARLET.

b LMGC, C.C. 048, Université de Montpellier-II, place Eugène-Bataillon, 34095 Montpellier cedex 5, France E-mail: annalisa@dragon.ian.pv.cnr.it; geymonat@lmgc.univ-montp2.fr

Dans cette Note nous montrons (théorème 5) qu'une caractérisation analogue est valable pour N=3:

$$\mathcal{R} = \{(g_0, g_1) \in \mathcal{W}^{1,p}(\Gamma) \times \mathcal{L}^p(\Gamma) : \nabla_{\Gamma} g_0 + g_1 \, \mathbf{n} \in \left(\mathcal{W}^{1-1/p,p}(\Gamma)\right)^3 \},\,$$

où ∇_{Γ} est le gradient tangentiel défini localement par (1). Dans le cas d'un polyèdre, la condition $\nabla_{\Gamma} g_0 + g_1 \mathbf{n} \in \left(\mathbf{W}^{1-1/p,p}(\Gamma) \right)^3$ traduit les conditions de compatibilité aux arêtes et aux sommets [7,2].

Pour démontrer le théorème 5, on introduit l'opérateur de projection $\pi_{\tau}^{\Gamma}: \mathbf{L}^p(\Gamma) \to \mathbf{L}_t^p(\Gamma) = \{\mathbf{u} \in \mathbf{L}^p(\Gamma) : \mathbf{u} \cdot \mathbf{n} = 0\}$ défini par $\mathbf{u} \mapsto \mathbf{n} \wedge (\mathbf{u} \wedge \mathbf{n})$ et l'opérateur de trace tangentiel π_{τ} défini pour \mathbf{u} régulière dans Ω par $\pi_{\tau}(\mathbf{u}) = \mathbf{n} \wedge (\mathbf{u}_{|\Gamma} \wedge \mathbf{n})$ dont on prolonge la définition à

$$\mathbf{u} \in \mathbf{L}^p(\mathbf{curl},\Omega) = \big\{\mathbf{u} \in \mathbf{L}^p(\Gamma); \ \mathbf{curl} \ \mathbf{u} \in \mathbf{L}^p(\Gamma)\big\}.$$

La démonstration du théorème utilise une décomposition de type Hodge pour les éléments de $\mathbf{L}_0^p(\mathbf{curl},\Omega) = \{\mathbf{u} \in \mathbf{L}^p(\Gamma); \mathbf{curl} \mathbf{u} \in \mathbf{L}^p(\Gamma), \pi_{\tau}(\mathbf{u}) = 0\}$ (lemme 6) et un résultat de relèvement pour $f \in \mathbf{W}^{1,p}(\Gamma)$ tel que $\nabla_{\Gamma} f \in V_{\pi}^p := \pi_{\tau}^{\Gamma} \{\mathbf{W}^{1-1/p,p}(\Gamma)\}$ (lemme 7).

Nous conjecturons que la caractérisation de \Re obtenue est valable pour tout N.

1. Preliminaries

In [6], by means of the construction of a suitable Airy function, the range of the operator (γ, γ_1) : $\mathrm{H}^2(\Omega) \to \mathrm{H}^1(\Gamma) \times \mathrm{L}^2(\Gamma)$ is characterized when $\Omega \subset \mathbb{R}^2$ is a Lipschitz domain (Γ its boundary). The same technique and result is generalized in [5] for the Sobolev spaces $\mathrm{W}^{2,p}(\Omega), \ p \in]1, \infty[$. Here we tackled the same problem in the three dimensional case (i.e., for the spaces $\mathrm{W}^{2,p}(\Omega), \ \Omega \subset \mathbb{R}^3, \ p \in]1, \infty[$) and a different technique must be used. Related results for polyhedral domains can be found in [7] and [2].

Let Ω be a Lipschitz bounded subset of \mathbb{R}^3 , we denote by Γ its boundary; Γ is orientable and the unit normal vector outward to Ω is denoted by \mathbf{n} . Following [8], \mathbf{n} is defined almost everywhere and $\mathbf{n} \in \mathrm{L}^\infty(\Gamma)$. On Ω , standard Sobolev spaces $\mathrm{W}^{s,p}(\Omega)$ and $\mathrm{W}^{s,p}_0(\Omega)$, $p \in]1, +\infty[$, s>0, are defined. We denote by $\|\cdot\|_{s,p,\Omega}$ the associated natural norm. Concerning the definition of Sobolev spaces on the boundary Γ , we follow Nečas [8]. Let Δ_r be the closed 2D unit square $\Delta = \{0 \leq x_{r1}, x_{r2} \leq 1\}$ associated to a system of coordinates (x_{r1}, x_{r2}, x_{r3}) . There exist M open, regular and connected subsets of Γ , say $\{\gamma_r\}_r$ such that $\bigcup_r \overline{\gamma_r} = \Gamma$, and M Lipschitz functions $a_r : \Delta_r \to \mathbb{R}$ such that $\overline{\gamma_r} = \{\mathbf{x} = (x_{r1}, x_{r2}, a_r(x_{r1}, x_{r2})), (x_{r1}, x_{r2}) \in \Delta_r\}$. Finally, we denote by $A_r : \mathbb{R}^2 \to \mathbb{R}^3$ the application $(x_{r1}, x_{r2}) \mapsto (x_{r1}, x_{r2}, a_r(x_{r1}, x_{r2}))$.

The spaces $W^{s,p}(\Gamma)$, s = [0,1], are Banach spaces endowed with the following norms:

$$||u||_{s,p,\Gamma}^2 = \sum_{r=1}^M ||u \circ A_r||_{s,p,\Delta_r}^2.$$

Different maps give rise to equivalent norms. The parameterizations A_r induce, in a natural way, two tangent vectors on γ_r , namely $\mathbf{e}_1=(1,0,\partial_1a_r(1,0))$, $\mathbf{e}_2=(0,1,\partial_2a_r(0,1))$ which are not orthogonal, but are independent. We set $g_{ik}=\mathbf{e}_i\cdot\mathbf{e}_k$ for i,k=1,2, and $G=\{g_{ik}\}$ the corresponding invertible matrix. We set $G^{-1}=\{g^{ik}\}$ and $g=\det\{G\}$. As in the case of the regular domains, the dual base of tangential vectors reads $\mathbf{e}^i=\sum_{k=1}^2g^{ik}\mathbf{e}_k$.

We use the boldface to denote the spaces of vector valued functions $\mathbf{v}:\Omega\to\mathbb{R}^3$, e.g., $\mathbf{W}^{s,p}(\Omega)=\left(\mathbf{W}^{s,p}(\Omega)\right)^3$. Moreover, we set:

$$\mathbf{L}^p(\mathbf{curl},\Omega) := \big\{ \mathbf{u} \in \mathbf{L}^p(\Omega) : \mathbf{curl}\, \mathbf{u} \in \mathbf{L}^p(\Omega) \big\};$$

$$\mathbf{L}_t^p(\Gamma) := \big\{ \mathbf{u} \in \mathbf{L}^p(\Gamma) : \mathbf{u} \cdot \mathbf{n} = 0 \big\}.$$

We denote by γ the standard trace operator both for scalar and vector functions, $\gamma: W^{1,p}(\Omega) \to W^{1-1/p,p}(\Gamma)$ and $\gamma: W^{1,p}(\Omega) \to W^{1-1/p,p}(\Gamma)$.

DEFINITION 1. – We define the operators $\pi_{\tau}: \mathbf{W}^{1,p}(\Omega) \to \mathbf{L}_t^p(\Gamma)$ and $\pi_{\tau}^{\Gamma}: \mathbf{L}^p(\Gamma) \to \mathbf{L}_t^p(\Gamma)$ as $\mathbf{v} \mapsto \mathbf{n} \wedge (\mathbf{v}_{|\Gamma} \wedge \mathbf{n}), \mathbf{v} \in \mathbf{W}^{1,p}(\Omega)$, and $\mathbf{u} \mapsto \mathbf{n} \wedge (\mathbf{u} \wedge \mathbf{n}), \mathbf{u} \in \mathbf{L}^p(\Gamma)$, respectively.

These operators are linear and continuous, and it holds $\pi_{\tau}(\mathbf{u}) = (\pi_{\tau}^{\Gamma} \circ \gamma)(\mathbf{u})$ for any $\mathbf{u} \in \mathbf{W}^{1,p}(\Omega)$. Moreover, since $\mathbf{L}_t^p(\Gamma) \subseteq \mathbf{L}^p(\Gamma)$, the operator π_{τ}^{Γ} is also surjective.

Differential operators can be defined over the boundary Γ .

DEFINITION 2. – We define $\nabla_{\Gamma}: W^{1,p}(\Gamma) \to \mathbf{L}_t^p(\Gamma)$ for any $\varphi \in W^{1,p}(\Gamma)$:

$$(\nabla_{\Gamma}\varphi)_{|\gamma_r} = \partial_1(\varphi \circ A_r)\mathbf{e}^1 + \partial_2(\varphi \circ A_r)\mathbf{e}^2, \quad \forall r = 1, \dots, M.$$
 (1)

The invariance of $W^{1,p}(\Gamma)$ with respect to the choice of the local parameterization ensures that the definition (1) is independent of the choice of $\{A_r\}_r$ (see [8]).

Following [4], we set

$$V_{\pi}^{p} := \pi_{\tau}^{\Gamma} \left\{ \mathbf{W}^{1-1/p,p}(\Gamma) \right\}. \tag{2}$$

 V^p_{π} is a Banach space (Hilbert for p=2) endowed with its natural norm:

$$\|\lambda\|_{V^p_{\pi}} := \inf\{\|\mathbf{u}\|_{1-1/p,p,\Gamma}, \ \mathbf{u} \in \mathbf{W}^{1-1/p,p}(\Gamma), \ \pi^{\Gamma}_{\tau}(\mathbf{u}) = \lambda\}.$$

Remark that for general Lipschitz domains, no intrinsic definition (by local maps) of the space V^p_π is provided. In the case of smooth surfaces, several equivalent intrinsic definitions of V^p_π can actually be given, but unfortunately they do not coincide with (2) in the case of non-smooth boundaries. See [4] for details in the case p=2. Using the well known continuous and dense injection $\mathbf{W}^{1-1/p,p}(\Gamma) \hookrightarrow \mathbf{L}^p(\Gamma)$, we immediately deduce that $V^p_\pi \hookrightarrow \mathbf{L}^p_\tau(\Gamma)$ is a continuous and dense injection.

We need now a preliminary result concerning the tangential trace operator for vector fields belonging to $\mathbf{L}^p(\mathbf{curl}, \Omega)$.

PROPOSITION 3. – Let $p \in]1, \infty[$, and p' be its conjugate exponent (1/p + 1/p' = 1). Let γ_{τ}^{Γ} : $\mathbf{L}^p(\Gamma) \to \mathbf{L}_t^p(\Gamma)$, be the operator defined by the mapping $\mathbf{u} \mapsto \mathbf{u} \wedge \mathbf{n}$ for any $\mathbf{u} \in \mathbf{L}^p(\Gamma)$. We set $V_{\gamma}^p = \gamma_{\tau}^{\Gamma} \{\mathbf{W}^{1-1/p,p}(\Gamma)\}$. It is a Banach space endowed with its natural norm. The injection $V_{\gamma}^p \hookrightarrow \mathbf{L}_t^p(\Gamma)$ is continuous and dense. Let $(V_{\gamma}^p)'$ be the dual space of V_{γ}^p . It is a Banach space endowed with the induced norm and moreover $\mathbf{L}_t^{p'}(\Gamma) \hookrightarrow (V_{\gamma}^p)'$ is continuous and dense. We denote by $\langle \cdot, \cdot \rangle_{V_{\gamma}^p}$ the corresponding duality pairing, defined by density and by:

$$\langle \mathbf{u}, \mathbf{v} \rangle_{V^p_{\gamma}} := \int_{\Gamma} \mathbf{u} \cdot \mathbf{v}, \quad \forall \mathbf{u} \in \mathbf{L}^{p'}_t(\Gamma), \ \mathbf{v} \in \mathbf{L}^p_t(\Gamma).$$

Then the operator π_{τ} (see Definition 1) can be extended to a linear and continuous operator from $\mathbf{L}^p(\mathbf{curl},\Omega)$ to $\left(V_{\gamma}^{p'}\right)'$.

Proof. – Let $p \in]1, \infty[$, p' be the conjugate exponent and $\mathbf{v} \in \mathbf{W}^{1,p'}(\Omega)$. By definition $\gamma_{\tau}^{\Gamma}(\gamma(\mathbf{v})) \in V_{\gamma}^{p'}$, and the following integration by parts holds true [4]:

$$\int_{\Omega} (\mathbf{curl} \, \mathbf{v} \cdot \mathbf{u} - \mathbf{v} \cdot \mathbf{curl} \, \mathbf{u}) = \int_{\Gamma} \gamma_{\tau}^{\Gamma} (\gamma(\mathbf{v})) \cdot \pi_{\tau}(\mathbf{u})$$

for any $\mathbf{u} \in \mathcal{D}(\overline{\Omega})^3$. Using the definition of the duality $\langle \cdot, \cdot \rangle_{V_{\gamma}^p}$, we have also:

$$\int_{\Omega} (\mathbf{curl} \, \mathbf{v} \cdot \mathbf{u} - \mathbf{v} \cdot \mathbf{curl} \, \mathbf{u}) = \langle \pi_{\tau}(\mathbf{u}), \gamma_{\tau}^{\Gamma} (\gamma(\mathbf{v})) \rangle_{V_{\gamma}^{p'}}. \tag{3}$$

By density of $\mathcal{D}(\overline{\Omega})^3$ in $\mathbf{L}^p(\mathbf{curl},\Omega)$, the formula (3) holds true for any $\mathbf{u} \in \mathbf{L}^p(\mathbf{curl},\Omega)$. The statement is then straightforward. \square

This allows us to define the space

$$\mathbf{L}_0^p(\mathbf{curl},\Omega) := \big\{ \mathbf{u} \in \mathbf{L}^p(\mathbf{curl},\Omega) : \pi_\tau(\mathbf{u}) = 0 \big\}.$$

Finally, the following proposition is a consequence of Proposition 3:

PROPOSITION 4. – Let $\phi \in W^{2,p}(\Omega)$, then $\pi_{\tau}(\nabla \phi) \in V_{\pi}^p$ depends only on the trace of ϕ on Γ and it holds:

$$\pi_{\tau}(\nabla \phi) = \nabla_{\Gamma}(\phi_{|\Gamma}) \quad a.e. \text{ on } \Gamma. \tag{4}$$

Moreover ∇_{Γ} can be extended from $W^{1-1/p,p}(\Gamma)$ to $(V_{\gamma}^{p'})'$ as a linear and continuous operator still denoted as ∇_{Γ} .

Proof. – We start proving (4). It is enough to prove that the quantity $\pi_{\tau}(\gamma(\nabla \phi))$ does depend only on the trace of ϕ on the boundary Γ . Then, let $\xi \in W^{2,p}(\Omega) \cap W_0^{1,p}(\Omega)$, we have to prove that $\pi_{\tau}(\nabla \xi) = 0$ almost everywhere on Γ . Using (3) and the standard integration by parts formula, we have:

$$\int_{\Gamma} \pi_{\tau}(\nabla \xi) \cdot \gamma_{\tau}^{\Gamma} (\gamma(\mathbf{v})) = \int_{\Omega} \mathbf{curl} \, \mathbf{v} \cdot \nabla \xi = \int_{\Gamma} \mathbf{curl} \, \mathbf{v} \cdot \mathbf{n} \, \xi, \quad \forall \mathbf{v} \in \mathcal{D}(\overline{\Omega})^{3}.$$

The identity (4) follows from the definition of π_{τ} and ∇_{Γ} .

Let now $\phi \in W^{1,p}(\Omega)$, we have that $\nabla \phi \in L^p(\mathbf{curl},\Omega)$ and, using Proposition 3 we deduce that $\pi_{\tau}(\nabla \phi) \in (V_{\gamma}^{p'})'$. By density of $W^{2,p}(\Omega)$ in $W^{1,p}(\Omega)$, the gradient operator can be extended using (4). \square

Remark 1. – Equality (4) is then, by definition of ∇_{Γ} , valid for any $\phi \in \mathrm{W}^{1,p}(\Omega)$ and from (3) it holds $V^p_{\pi} \subseteq \left(V^{p'}_{\gamma}\right)'$.

2. Trace theorem for $\mathbf{W}^{2,p}(\Omega)$

THEOREM 5. – Let (γ, γ_1) : $W^{2,p}(\Omega) \to W^{1,p}(\Gamma) \times L^p(\Gamma)$ be the standard trace operator

$$u \mapsto (\gamma(u) = u_{|\Gamma}, \gamma_1(u) = \partial_{\mathbf{n}} u),$$

where $\partial_{\mathbf{n}}u=(\nabla u)_{|\Gamma}\cdot\mathbf{n}$. The range of (γ,γ_1) is characterized as follows:

$$\mathcal{R} = \big\{ (g_0, g_1) \in \mathrm{W}^{1,p}(\Gamma) \times \mathrm{L}^p(\Gamma) \text{ such that } \nabla_{\Gamma} g_0 + g_1 \, \mathbf{n} \in \mathbf{W}^{1-1/p,p}(\Gamma) \big\}.$$

The proof of this theorem requires few lemmas.

LEMMA 6. – *The following decomposition holds*:

$$\mathbf{L}_0^p(\mathbf{curl},\Omega) = \mathbf{W}_0^{1,p}(\Omega) + \nabla (\mathbf{W}_0^{1,p}(\Omega)),$$

where the sum in the previous decomposition is not direct.

Proof. – The proof follows the same steps as the proof of Proposition 4.1 in [3]. Let \mathfrak{O} be a regular connected and simply connected open subset of \mathbb{R}^3 such that $\overline{\Omega} \subset \mathfrak{O}$. We call $\tilde{\cdot}$ the extension by zero outside $\Omega, \tilde{\cdot} : L^p(\Omega) \to L^p(\mathfrak{O})$. Since $\mathbf{u} \in \mathbf{L}^p_0(\mathbf{curl}, \Omega)$ using (3), we easily deduce that $\tilde{\mathbf{u}} \in \mathbf{L}^p(\mathbf{curl}, \mathfrak{O})$. Using now standard Hodge decomposition in \mathfrak{O} :

$$\exists ! \Psi \in \mathbf{L}^p(\mathbf{curl}, \mathcal{O}), \ \varphi \in \mathbf{W}^{1,p}(\mathcal{O}) / \mathbb{R} \text{ such that } \tilde{\mathbf{u}} = \Psi + \nabla \varphi, \quad \operatorname{div}(\Psi) = 0, \quad \Psi \cdot \mathbf{n} = 0 \quad \text{on } \partial \mathcal{O}.$$

The set $\mbox{\ensuremath{\mathcal{O}}}$ can be chosen as regular as we want and then, by standard regularity theory, we know that $\Psi \in \mathbf{W}^{1,p}(\mbox{\ensuremath{\mathcal{O}}})$ (see [1]). Now, since $\mbox{\ensuremath{\tilde{u}}} = 0$ in $\mbox{\ensuremath{\mathcal{O}}} \smallsetminus \overline{\Omega}$, we deduce $\Psi = -\nabla \varphi$ in $\mbox{\ensuremath{\mathcal{O}}} \smallsetminus \overline{\Omega}$ and, as a consequence, $\varphi_{|\mbox{\ensuremath{\mathcal{O}}}\backslash \overline{\Omega}} \in \mathbf{W}^{2,p}(\mbox{\ensuremath{\mathcal{O}}} \smallsetminus \overline{\Omega})$. The function $\varphi_{|\mbox{\ensuremath{\mathcal{O}}\backslash \overline{\Omega}}}$ can now be extended in Ω preserving its regularity according to [8] and we denote by φ_R this extension. Then, $\mathbf{u} = (\Psi + \nabla \varphi_R) + \nabla (\varphi - \varphi_R)$ where $\Psi + \nabla \varphi_R \in \mathbf{W}^{1,p}_0(\Omega)$ and $\varphi - \varphi_R \in \mathbf{W}^{1,p}_0(\Omega)$. \square

LEMMA 7. – Let $f \in \mathbf{W}^{1,p}(\Gamma)$ such that $\nabla_{\Gamma} f \in V_{\pi}^p$. Then there exists a function $F \in \mathbf{W}^{2,p}(\Omega)$ such that $F_{|\Gamma} \equiv f$.

Proof. – Let $u \in \mathrm{W}^{1,p}(\Omega)$ be any continuous lifting of f on Ω . By Proposition 4, we have $\pi_{\tau}(\nabla u) = \nabla_{\Gamma}(u_{|\Gamma}) = \nabla_{\Gamma}f$. On the other hand, by definition of the space V^p_{π} , we know that there exists a vector $\xi \in \mathrm{W}^{1,p}(\Omega)$ such that $\pi_{\tau}(\xi) = \nabla_{\Gamma}f$. Immediately we have that $\xi - \nabla u \in \mathbf{L}^p_0(\mathbf{curl},\Omega)$. Using Lemma 6, we know that $\xi - \nabla u = \Psi - \nabla p$, with $\Psi \in \mathbf{W}^{1,p}_0(\Omega)$ and $p \in \mathrm{W}^{1,p}_0(\Omega)$. Now, let F := u - p. It verifies $F_{|\Gamma} = f$ and $F \in \mathrm{W}^{2,p}(\Omega)$. \square

Proof of Theorem 5. – Given a function $\phi \in W^{2,p}(\Omega)$. Then, we have $(\nabla \phi)_{|\Gamma} \in \mathbf{W}^{1-1/p,p}(\Gamma)$ and thanks to Proposition 4, it also holds $\nabla_{\Gamma}(\phi_{|\Gamma}) \in V_{\pi}^{p}$. By definition of ∇_{Γ} and using (4), we have:

$$\nabla_{\Gamma}\phi_{|\Gamma} + \partial_{\mathbf{n}}\phi\mathbf{n} \equiv \gamma(\nabla\phi) \in \mathbf{W}^{1-1/p,p}(\Gamma).$$

We are now given with (g_0,g_1) belonging to $\mathcal R$ and we have to construct a function $\varphi\in W^{2,p}(\Omega)$ such that $(\gamma(\varphi),\gamma_1(\varphi))=(g_0,g_1)$. Applying the operator π_τ to the quantity $\nabla_\Gamma g_0+g_1\mathbf n$, we have that $\nabla_\Gamma g_0\in V^p_\pi$. By means of Lemma 7, we know that there exists a function $G_0\in W^{2,p}(\Omega)$ such that $G_{0|\Gamma}=g_0$.

Thanks to the first part of proof, we have now that $\nabla_{\Gamma}G_0 + \partial_{\mathbf{n}}G_0\mathbf{n} \in \mathbf{W}^{1-1/p,p}(\Gamma)$. By difference we obtain, then

$$\partial_{\mathbf{n}} G_0 \mathbf{n} - g_1 \mathbf{n} \in \mathbf{W}^{1-1/p,p}(\Gamma).$$

By standard trace theorem, there exists a function $\Psi \in \mathbf{W}^{1,p}(\Omega)$ such that $\Psi_{|\Gamma} = \partial_{\mathbf{n}} G_0 \mathbf{n} - g_1 \mathbf{n}$. Moreover, by construction $\pi_{\tau}(\Psi) = 0$ almost everywhere on Γ . By means of Lemma 6, we know that Ψ can be decomposed in the following way:

$$\Psi = \Xi + \nabla p, \quad \Xi \in \mathbf{W}^{1,p}_0(\Omega), \quad p \in \mathrm{W}^{2,p}(\Omega) \cap \mathrm{W}^{1,p}_0(\Omega).$$

Now, if we take $\varphi = G_0 - p$, it belongs to $W^{2,p}(\Omega)$ by construction and it is not hard to see that $(\gamma(\varphi), \gamma_1(\varphi)) = (g_0, g_1)$. \square

Remark 2. – We conjecture that Theorem 5 is still true in \mathbb{R}^n , for n > 3.

Acknowledgements. The authors acknowledge the Istituto di Analisi Numerica del C.N.R. (Pavia, Italy) for the kind hospitality during a part of the preparation of this work.

References

[1] Amrouche C., Bernardi C., Dauge M., Girault V., Vector potentials in three-dimensional non-smooth domains, Math. Meth. Appl. Sci. 21 (1998) 823–864.

A. Buffa, G. Geymonat

- [2] Bernardi C., Dauge M., Maday Y., Compatibilité de traces aux arêtes et coins d'un polyèdre, C. R. Acad. Sci. Paris, Série I 331 (2000) 679–684.
- [3] Bonnet-Ben Dhia A.-S., Hazard C., Lohrengel S., A singular field method for the solution of Maxwell's equations in polyhedral domains, SIAM J. Appl. Math. 59 (2000) 2028–2044.
- [4] Buffa A., Costabel M., Sheen D., On traces for H(curl, Ω) for Lipschitz domains, Tech. Rep. I.A.N.-C.N.R. n° 1082, 2000.
- [5] Duràn R.G., Muschietti M.A., On the traces of $\mathbf{W}^{2,p}(\Omega)$ for a Lipschitz domain Rev. Mat. Univ. Complut. Madrid (to appear).
- [6] Geymonat G., Krasucki F., On the existence of the Airy function in Lipschitz domains. Application to the traces of H², C. R. Acad. Sci. Paris, Série I 330 (2000) 355–360.
- [7] Grisvard P., Singularities in Boundary Value Problems, RMA, Vol. 22, Masson, Paris, 1992.
- [8] Necăs J., Les méthodes directes en théorie des équations elliptiques, Masson, Paris, 1967.