# Lab 11/12 Presentation ECEN 3730

Connor Sorrell

## <u>Introduction</u>

In this lab, we measure the resistance of 4 traces of different widths, and then attempt to blow one up.

- We first apply the concept of sheet resistance in order to estimate the resistance of the traces using the 'square' method
- We then use the 2 wire method using the DMM
- We then perform a 2 wire null-method, where we compare to a reference resistance (similar to zeroing a scale)
- We then sweep a constant current through the traces, and observe the voltage drop on the DMM to find the resistance using the 4 wire method



# For 1oz copper, $R = 0.5 \text{m}\Omega/\text{square}$

| Line Width | # Of Squares     | R (Estimate)                        | 2 Wire        | 2 Wire (null) | 4 wire        |
|------------|------------------|-------------------------------------|---------------|---------------|---------------|
| 6 mil      | 1000 / 6 = 166.7 | <b>166.7</b> * <b>0.5</b> mΩ = 83mΩ | <b>150</b> mΩ | <b>70</b> mΩ  | 83 mΩ         |
| 10 mil     | 1000 / 10 = 100  | <b>100 * 0.5</b> mΩ = 50mΩ          | <b>115</b> mΩ | <b>35</b> mΩ  | <b>47</b> mΩ  |
| 20 mil     | 1000 / 10 = 50   | <b>50</b> * <b>0.5</b> mΩ = 25mΩ    | <b>91</b> mΩ  | <b>11</b> mΩ  | <b>23</b> mΩ  |
| 100 mil    | 1000 / 100 = 10  | <b>10 * 0.5</b> mΩ = 5mΩ            | <b>75</b> mΩ  | 4 mΩ          | <b>6.5</b> mΩ |

| 4 Wire<br>Measurement: | Current supplied (A)<br>(CC Mode) | DMM Reading (mV) | Resistance (m $\Omega$ ) |
|------------------------|-----------------------------------|------------------|--------------------------|
| 6 mil                  | 1A                                | 83 mV            | <b>83</b> mΩ             |
| 10 mil                 | 1A                                | 47 mV            | <b>47</b> mΩ             |
| 20 mil                 | 1A                                | 23 mV            | <b>23</b> mΩ             |
| 100 mil                | 1A                                | 6.5 mV           | <b>6.5</b> mΩ            |



# Blowing up Trace

To blow up the 6 mil trace, I first started with the Saturn PCB Tool, which calculated that for a 120°C (216°F) increase in temperature, I would need to source 1.8 A through the trace.

- Knowing this, I started with 2 A. After around 30 seconds, I could begin to feel the trace get hot.
- I then ramped the current to 3 A, and felt the temperature rise even further.
- At 4 A, the trace took roughly 10 seconds to begin burning and eventually blow entirely.
- As the trace heated up, the voltage increased due to thermal loss (increase in resistance)

I then repeated this method for the 100 mil trace, testing up to 10 A, the limitation of the power supply. In this case, the trace never blew up.



### Conclusion

- Trace resistance is easy to estimate using just geometry and known sheet resistance.
- Two wire measurements are fast but include loop resistances, which affects the accuracy for small resistance values
- Four wire measurements are essential for accurate readings of small resistances because they remove the influence of loop and contact resistance
- Using a constant current source simplifies resistance calculations and allows easy validation of theoretical predictions.
  - Using the 4 wire method on the DMM even further drastically simplifies the measurement

6 mil trace took roughly ~4 A to blow, where as 10 A could not blow up the 100 mil trace.