Design and Analysis of Algorithms
Assignment #3

Sri Devi Mallipudi (16251191) Paagathi Thammaneni (1623069) 1) Describe an O(n) algorithm that given a set of n distinct numbers and a positive integer kx=n, determines the k to numbers is s that are closest to the median of s.

Sol: Select (A, p, a, i)

if
$$p = a$$

selvan A[p]

$$9 = postition (A, P, a, x)$$

of
$$a-p < 5$$
 setuan partition (A,p,a)

$$f8 \quad i \leftarrow p + 0 \text{ s}$$

$$SR = i + 4$$

$$if \quad SR > S$$

$$SR = S$$

med
$$S = pastitions(A, i, SR)$$

Swap $A [med S] \leftrightarrow A [p + [i-p]]$

Detuan $Select(A, p, p + [8-p]-1, p + s-p)$

postition $(A, p, 9, x)$
 $pv = A[x]$
 $swap A[x] \leftrightarrow A[g]$
 $st = p$
 $therefore A[i] < pv$
 $swap A[sI] \leftrightarrow A[iI]$
 $suap A[sI] \leftrightarrow A[sI]$

Qetuan sI

Complexsity: $O(n)$

2) Find an optimal pasenthesization of a mateix chain multiplication 18 the following mateires:

A B C D E
7×10 10×9 9×5 5×12 12×6

	Α	В	C	D	E	
A	7x10	AB 630 7×9	ABC 800 7×5	ABCD 1220 7X12	ABCD€ 1370 7×6	
В	-	B 0 10×9	BC 450 10×5	BCD 1050 10x12	1110 10×6	
С	_		C O 9×5	(D 540 9×12	630 9×6	
D	-	- '		D 0 5×12		
E	_	-,	-	_	E 0 12x6	

m(i,j)m

, K- (06)C							
-	1	1	3	3			
-	-	a	3	3			
-	· -		3				
-		_	_	4			
-		_	-	_			
-							

5[1,j]

- → To obtain the mataix A faom A, coe do not need to multiply anything.
- -> Hence, the value would be zero.
- -> Similar to the case with 13, c, b and E

⇒ A B C D €

TXID 10×9 9×5 5×12 12×6

No of multiplications for:

$$AB = 7×10×9 = 630 (k=1)$$

$$BC = 10×9×5 = 450 (k=3)$$

$$CD = 9×5×12 = 540 (k=3)$$

$$DE = 5×12×6 = 360 (k=4)$$

⇒ ABC

$$A(BC) = 0+450 + (7×10×5) = 800$$

$$(AB)C = 630 + 0 + (7×9×5) = 945$$
⇒ Since 800 is the minimum value among 800 and 945. Gove consider $A(BC) \Rightarrow k=1$

⇒ BCD

$$B(CD) = (BC)D (k=3)$$

$$B(CD) = (+540 + (10×9×10) = 1620 (BC)D = 450 + 0 + (10×9×10) = 1620 (BC)D = 450 + 0 + (10×9×10) = 1620$$

```
1050 is the minimum value among 1620 and
    Since
    1050, coe monsides
                         (BC)D \Rightarrow k=3
           CDE
                  (CD)E
        C(DE)
                   (k=4)
       (k=3)
    C(DE) = 0 + 360 + (9 \times 5 \times 6) = 630
    (CD) = 540 + 0+ (9x12x6) = 1188
-> Since, 630 is the minimum value among 630 and
   1188, we consider c(DE) => k=3
               ABCD
                            (ABC) D
      A (BCD)
               (AB)(CO)
                             (k=3)
                  (k=2)
      (K= 1)
    A (BCD) = 0+ 1050+ (7×10×12)= 1890
    (A13)(CD) = 630 + 540 + (7x9x12) = 1926
    (ABC)D = 800+0+ (7x5x12) = 1220
   Since 1220 is the minimum value among the three,
        consider (ABC) D = K=3.
                  BCDE
                               (BCD) E
                   (BC)(DE)
         B(CDE)
                                (K=4)
                    (k=3)
         (K=2)
```

B(CDE) = 0+630+ (10×9×6) = 1170

(BC)(DE) = 450+360+ (10×5×6) = 1110

(BCD)E = 1050+0+ (10×12×6) = 1770

Since 1110 is the minimum value among the those ove consider (BC)(DE) =)
$$k=3$$

AB(DE)

A(BCDE) (AB)(CDE) (ABC)(DE) (ABCD)E

($k=1$) ($k=2$) ($k=3$)

A(BCDE) = 0+1110+ (7×10×6) = 1530

(AB)(CDE) = 630+630+ (7×9×6) = 1638

(ABC)(DE) = 800+360+ (7×5×6) = 1370

(ABCD)E = 1320+0+ (7×12×6) = 1724

Since 1370 is the minimum value among all the 4.

Coe (onsider (ABC)(DE) =) $k=3$

Hence the paranthesization access as follows considering the k -table

(A)(BC) (DE)

=) (A (BC)) (DE)

3) Design an O(n2) dynamic paogramming algorithm to find a set of compatible activities such that the total amount of time the aesowace is used by these compatible activities is maximized.

•	1	a	3	4	5	6	7	8	9	10	11
S(i)	a	3	5	6	7	9	10	12	13	14	16
F(i)		5		10	8	13	16	14	14	18	20
L(i)		1	2	a	3	4	4	4	5	6	6
P(8)		ø	a	1	3	5	5	5	6	9	9

sol: (ompatibility
$$(A[n] = [], \ell, s(\ell), F(\ell), L(\ell), P(\ell))$$
)

if $\ell^2 = 1$
 $L = 1$,

 $P = \emptyset$

Setuan $A[i]$
 $\{\delta\} : \leftarrow \emptyset = 1 \text{ to } 1$

if $s[i] < F[j]$
 $L[i] = L[i]$
 $P = \emptyset$

else

 $P(\ell) = P(\ell - 1)$
 $getuan L(i), P(\ell)$

Scanned with CamScanner

else
$$L(i) = L(i) + 1$$

$$P(i) = j$$

$$Aetuan L(i), P(i)$$
end
end
$$i = n$$

$$Chile (i! = p)$$

$$add i to A(n)$$

$$l = P(i)$$

$$Setuan A;$$

$$Initial condition and sub-parablems
$$i = 1$$

$$=) L = 1, P = p$$

$$i = 0, j = 1$$

$$=) S(0) < F(1) Taue$$

$$L = 1$$

$$P = p$$

$$i = 3, j = 0$$

$$=) S(3) < F(a) False$$

$$L = 0$$$$

p=2

Complexsity

→ Since these one a nested 'for' loops, the time complexity coould be o(m²).