none

AB

none

none

@ EPODOC / EPO

PN - JP53134804 A 19781124

PD - 1978-11-24

PR - JP19770050112 19770430

OPD - 1977-04-30

- SINTERED OBJECT WITH HIGH HARDNESS FOR TOOL MAKING AND METHOD OF ITS

MANUFACTURE

IN - HARA AKIO; YATSU SHIYUUJI

PA - SUMITOMO ELECTRIC INDUSTRIES

IC - B22F7/06; C04B35/58; C04B35/64; C04B37/00; C04B39/12

O WPI / DERWENT

TI - Sintered tool-making material - comprises ultra-hard alloy with boron nitride layer

PR - JP19770050112 19770430

PN - JP53134804 A 19781124 DW 197902 000pp

- JP57058404B B 19821209 DW 198302 000pp

PA - (SUME) SUMITOMO ELECTRIC IND CO

IC - B22F3/14 ;B22F7/06 ;C04B35/58 ;C04B37/00 ;C04B39/12

J53134804 A hard sintered layer <2 mm thick which is composed of high pressure type boron nitride
phase (esp. cubic system) and a ceramic phase in united with a parent body of ultra hard alloy so
that the contacting layer of the parent body may contain a higher amt. of Fe-group metals than its
other parts in a thickness of <0.5 mm.

- A hard sintered body for use as a tool is prepd. as follows. Raw powder of ultra-hard alloy contg. a higher amt. of metallic components than the parent body, its press-moulded layer, its half-sintered layer or its sintered layer is put at least on one side surface of the parent body made of ultra-hard alloy, and further, raw powder of sintering, i.e. mixt. of high press. phase boron nitride and ceramic material, or its pressed material is superposed on it. Then the whole materials are united into one body by hot-press sintering under ultra-high press and high temp.
- A sintered body which is suitable for use as a cutting tool is prepd. economically. The parent body and sintered body of boron nitride are firmly united.
- Nitride, carbonitride or carbide of the elements of IVa group (e.g. TiN, Ti(C.N), ZrN), is pref. used as the binder of boron nitride. Suitably, an extremely thin Co-rich layer (50 mu thick) can be made between the parent body and sintered boron nitride by laying fine powder of 20% WC-20% Co on the parent body of WC-7% Co, and it contributes to the firm union of these materials.

OPD - 1977-04-30

AN - 1979-02618B [25]

19日本国特許庁

⑩特許出願公開

公開特許公報

昭53—134804

DInt. Cl.2	識別記号	҈ 日本分類	庁内整理番号	❸公開 昭和53年(1	978)11月24日
C 04 B 39/12		20(3) A 111	7059—41		
C 04 B 35/58	103	20(3) D 61	6816—41	発明の数 2	
C 04 B 35/64		20(3) C 232	7141 - 41	審査請求 未請求	
C 04 B 37/00 //		20(3) B 63	6411-41		
B 22 F 7/06		i0 A 61	6735-42	•	(全 5 頁)

64工具用高硬度焼結体およびその製造法

願 昭52(1977) 4 月30日

彻発 明 者 矢津修示

伊丹市昆陽字宮東1番地 住友 電気工業株式会社伊丹製作所内

②特 願 昭52-50112

の出 願 人 住友電気工業株式会社

大阪市東区北浜5丁目15番地

⑫発 明 者 原昭夫

仰代 理 人 弁理士 青木秀実

伊丹市昆陽字宮東1番地 住友 電気工業株式会社伊丹製作所內

明 紐 和

1. 発明の名称

22出

工具用高硬度焼結体およびその製造法

2. 特許請求の範囲

(1) 高圧相型窒化硼素相とセラミックス相のみからなる高硬度焼結体の厚み2 型以下の層が超硬合金の母材上に接合した構造をもつ物体において、超硬合金母材の高硬度焼結体に接する 0.5 回以下の厚みの層が該超硬合金母材の他部の鉄族金属含有量よりも多いことを特徴とする工具用高硬度焼結体。

(2) 超硬合金母材の少くとも一面に金属含有量が母材より多い組成の超硬合金原料粉末またはその型押体または半焼結体または焼結体をおき、この上に高圧相型窒化砂索とセラミックよりなる高硬度焼結体組成の原料粉末もしくはその型押体をおき、その全体を超高圧、高温下にホットブレスし、焼結と同時に全体を接合することを特徴とする工具用高硬度焼結体の製造法。

3. 発明の詳細な説明

高圧相型窒化砂素、特に等軸晶型窒化砂素(以下 CBNと称す)の焼結体は、未来の工具材料として大変期待されている。現在、一部 CBN 結晶を Co 合金で結合した CBN 焼結体が切削用途に市販されているが、 矢張、 金属結合の形では余り 優れた性能を示さない。 この観点から本発明者らは セラミックス結合の CBN 焼結体を 競策研究した 動物に優れた切削性能を有する CBN 焼結体を 投案した。

 強度、 熱伝導性に 秀でていることから 最も好ましいと 結論された。

との結論は、現在市販されている前述の Co合金結合の切削工具用 CBN 焼結体の構造と同じである。

との対策として薄い金属箔をホットプレス時母材とCBN焼結体間に狭んで結合強度を向上する

- 3 -

成することが出来る。

英型下のないは、 大型によるの場合にないには、 大型によるの場合にない。 大型にないないでは、 大型にないないでは、 大型にないないでは、 大型にないないでは、 大型にないないでは、 大型にないないでは、 大型にないないでは、 ののはないでは、 のののはないでは、 でいるのは、 で

本発明による焼結体の構造は第2図の如くなる。 1はCBNをセラミックで結合した高硬度焼結体の厚さ2m以下の層であり、2が0.5m以下の超 姫台金層で、鉄族金属合有量が3の母材超硬合金 よりも多いものである。

ことが考えられている。本発明者らも最初とれを 試み充分な接着強度を得た。ところがこの構造の 工具を実用に供したところ、この中間層から剝離 してしまうことを知つた。これはCBN焼結体の 工具寿命は驚くべきほど長いため、又先に掛る応 力のくり返し数も大変多い。この時軟い中間層は 疲労限象を生じ、遂に破壊してしまり為と判明し た。疲労現象は降伏限を越えた応力がかかつた時 著しく進行するから、当然この対策として各機成 要素の降伏強度をあげるということが考えられる。 本発明者はこの手段として接合面に近いところの みの超硬合金の金属含有量を増やすという極めて 簡単な着想をもつた。この金属含有量の多い層の 厚みが 0.5 = 以下、好ましくは 0.2 = 以下ならば 前述の熱応力の問題もより厚みの厚い母材の貢献 度が大きいため無視出来る。

この方法としてホットプレス時、例えば WC-7 を Co 組成の母材上にWC-2 0 を Co 組成のWCと Co の 微細混合粉末を少量おけば極めて薄い、例えば 5 0 ミクロン厚みの Co 最の多い部分を形

- 4 -

超硬合金として以上WC-Co組成を例示したがこれにTiC.TaCが含まれていても良く、またCoでなくNi などの鉄属金属を用いてもその効果を失くするものではなく、場合によつては好ましいこともある。さらにTiC基の超硬合金を用いても良い。この場合、剛性、熱伝導性がWC 基に比べかなり落ちるが、それでも調などより好ましい。

以下、実施例を述べる。

実施例1

平均粒度 7 μの CBN 粉末と平均粒度 1 μの TiN 0.92 粉末とを体積で各々 6 0 € . 4 0 € の割合に配合し乳鉢で充分混合した。 この混合粉末に配合し乳鉢で充分混合した。 Co 組成の超に WC-7 € Co 組成の超でを 2 € Mで WC-7 € Co 組成のした。 また WC-2 0 € Co の組成の混合粉末を ルセに混破 で WC-2 0 € Co の組成の混合粉末を ルセに混破 で スを容積で 1 0 € 容解せしめた トルを 記起を し、 ペースト状とした。 この は で なる 型 押体を CBN と TiN か ら なる型 押体を CBN と TiN か ら なる D を CBN と TiN か CBN と TiN

特開昭53-134804(3)

超硬合金製円板の塗布面に接するよう配置して、 これをステンレス製の容器中に拆入した。との容 器を真空炉中で 10 ° ⋅ = Hg の真空度で 1100 ℃ に2η分間加熱して脱ガスした。とれをガードル 型超高圧装置に装入した。圧力媒体としてはパ イロフェライトを、ヒーターとしては黒鉛の円筒 を用いた。尚、黒鉛ヒーターと試料の間は NaCe を充てんした。先ず圧力を55Kbにあげ、のちに 温度を1300 ℃に上げ、30分間保持したのち温 **废を下げ、圧力を徐々にむろした。得られた焼結** 体は CBNを含有する硬質焼結体の厚みが約1 == でWC-20 € Co の居が 0.1 = の厚さで存在し更 にWC-15 Co の厚み 8 = の届からをつており、こ れ等は相互に強固に接合していた。比較の為に WC-7 # Co 超硬合金円板にWC-20 # Co の粉 末を塗布せず、直接CBNとTiNの混合粉末から、 なる型押体を配置して同一条件で焼結体を作成し た。この場合も硬質焼結体層と超硬合金は接合し ていた。・

との2種類の焼結体をダイヤモンド切断刃を用

- 7 ·

るWC-10% Coの超硬合金円板を作成した。
WC-25% Co 半焼結体を 0.3 mm の厚さに切断成型したものを準備し、 CBN を含む混合粉末の型押体と母材の間に位置せしめ、 実施例 1 と同様にして焼結した。 得られた焼結体を切断すると、母材WC-10% Co合金の上に 0.2 mmのWC-25% Coの層を有し、これに密接して接合した CBNとTi(C,N) の硬質焼結体層から成る符合体であつた。

実施例3

平均粒度 1 μの CBN 粉末と平均粒度 1 μの ZrN 0.89 粉末を体積で各々 5 0 多・5 0 多の割合に配合した。 Mo 製容器中に WC-12 ま Coの外径 1 0 = 、厚さ 3 = の円板を置き、再びその上に WC-2 0 ま Coの外径 1 0 = 、厚さ 0.5 = の円板を置いて、 CBNと ZrN の混合粉末を充てんした。 これを実施例 1 と同様にして 5 5 Kb・1350 でで 3 0 分間保持して焼結した。 焼結体の断面を観察 十ると厚さ 0.5 = の WC-2 0 ま Coの磨をはさみ、 CBNと ZrN からなる硬質焼結体及びこれの反対 側に WC-1 2 ま Coの超硬合金母材が密接に接合し

いて切断し、CIS 規格 SNGN 433 Mの12.7 m角で厚さ 4.7 6 mの超硬チンの一隅にロウ付した工具を作成し、正面フライス盤を用いて切削試験を行なつた。被削材は 80 m 巾、長さ300 m の下C25 相当の鋳飲を用い、長手方向に切削した。切削速度は 500 m/m 、切込み 1 m 、 で で が で が で が で が で が で で で の の の 条件で 水 を 性 切削油 を 使 用 した。本発明による WC-7 を Co 合金 母材と CBN 含有硬質層との間に 母材よりも Co 優の多い WC-20を Co の 原み 0.1 m の 層を 有するチップは 500パスの切削が可能で、 正常な 摩耗で 寿命に 後した。 これに対して CBN 含有硬質層を 直接 WC-7 を Coの母材上に接合したチップは 200 パスで 切削時 万 先となる CBN 含有硬質層が 母材超硬合金の界面よりはく難してしまつた。

実施例2

平均粒度 4 μの CBN 粉末と平均粒度 1 μの Ti (Co.5.No.4) 0.80 粉末を各々体積で 7 0 %・3 0 % の割台に配台した。以下実施例 1 に述べた方法に 従つてこの混合粉末の型押体を作成し、母材とな

- 8 -

ていた。

4. 図面の簡単を説明

第1図は、本発明の内容を説明する為の図表で各温度におけるCBN及びWC-5 % Co ・WC-1 5 % Co 金属 Co の熱膨張係数を示す。

第2図は、本発明の焼結体の構造を示す。
1はCBN とセラミックからなる硬質焼結体層であり、2を介して超硬合金母材3が接合している。
2は母材3よりも鉄族金属含有量が多い超硬合金中間層である。

代理人 弁理士 育木 秀 実

手 続 補 正 書

昭和58年1月26日

特許庁長官熊谷等二 殿

1. 事件の表示 特 昭和 52 年 実用新案登録 願 第50112号

- 発明考案の名称
 工具用高硬度焼結体およびその製造法
- 3. 補正をする者事件との関係 特許出願人住所 大阪市東区北浜5丁目15番地名 称(213) 住友電気工業株式会社代表者 社長亀井正夫
- 4. 代 理 人 住 所 大阪市此花区島屋 1 丁目 1 番 8 号 住 友 質 気 工 業 株 式 会 社 内 (電話大阪 461—1,0,3 1) 氏 名 (7085) 弁 理 士 音 / 木 / 秀
- 5. 補正命令の日付 昭和 年 月 日 自 発 補 正

6.補正の対象

明細書中発明の詳細な説明の欄

7.補正の内容

(1)明細番第3頁第6行目から第7行目

「Ti, (C, N)」を「Ti (C, N)」に訂正する。
(2)同第6頁第7行目の次に以下の文を挿入する。
「以上は高圧相型窒化硼素焼結体の中で CBN
を含むものについて述べたが、ウルツ鉱型窒

化硼素を含む焼結体についても全く同様のこ とが言える。1

(3)同第10頁第1行目の次に以下の文を挿入する。

「実施例 4

実施例3で用いた CBN 粉末の代りに粒度5 4以下の衝撃波法で合成したウルツ鉱型窒化硼素粉末を用い、他は実施例3と同様にして焼結体を得た。焼結体の断面を観察すると厚さ0.5 mmのWC-20%Co の層をはさみ、ウルツ鉱型BNと ZrN からなる硬質焼結体及びこれの反対側にWC-12%Co の超硬合金

