NEWTON - PAPHSON

TAYLOR SERIES

$$0 = f_1(x_1, \dots, x_N)$$

$$f_1(x_1, \dots, x_N) = f_1(x_1^*, \dots, x_N^*)$$

$$+ (x_1 - x_1^*) \frac{\partial f_1}{\partial x_1} |_{\overrightarrow{x}^*}$$

$$+ (x_2 - x_2^*) \frac{\partial f_1}{\partial x_2} |_{\overrightarrow{x}^*}$$

$$\int_{1}^{1} (x_{1} \cdots x_{N}) = \int_{1}^{1} (x_{1}^{*} \cdots x_{N}^{*}) + \sum_{i=1}^{N} (x_{i} - x_{i}^{*}) \frac{\partial f_{i}}{\partial x_{i}} \Big|_{x_{N}} +$$

$$\int_{1}^{N} \frac{\partial f_{i}}{\partial x_{i}} (x_{0} - x_{0}^{*}) + \sum_{i=1}^{N} (x_{i} - x_{i}^{*}) \frac{\partial f_{i}}{\partial x_{i}} \Big|_{x_{N}} +$$

$$\int_{1}^{N} \int_{1}^{N} \frac{\partial f_{i}}{\partial x_{i}} (x_{0} - x_{0}^{*}) + \sum_{i=1}^{N} (x_{0} - x_{0}^{*}) \frac{\partial f_{i}}{\partial x_{0}} \Big|_{x_{N}} +$$

$$\int_{1}^{N} \int_{1}^{N} \frac{\partial f_{i}}{\partial x_{i}} (x_{0} - x_{0}^{*}) + \sum_{i=1}^{N} (x_{0} - x_{0}^{*}) \frac{\partial f_{i}}{\partial x_{0}} \Big|_{x_{N}} +$$

$$\int_{1}^{N} \int_{1}^{N} \int_{1}^{N} \frac{\partial f_{i}}{\partial x_{0}} (x_{0} - x_{0}^{*}) + \sum_{i=1}^{N} \int_{1}^{N} \frac{\partial f_{i}}{\partial x_{0}} \Big|_{x_{N}} +$$

$$\int_{1}^{N} \int_{1}^{N} \int_{1}^{N} \frac{\partial f_{i}}{\partial x_{0}} (x_{0} - x_{0}^{*}) + \sum_{i=1}^{N} \int_{1}^{N} \frac{\partial f_{i}}{\partial x_{0}} \Big|_{x_{N}} +$$

$$\int_{1}^{N} \int_{1}^{N} \int_{1}^{N} \frac{\partial f_{i}}{\partial x_{0}} (x_{0} - x_{0}^{*}) + \sum_{i=1}^{N} \int_{1}^{N} \frac{\partial f_{i}}{\partial x_{0}} \Big|_{x_{N}} +$$

$$\int_{1}^{N} \int_{1}^{N} \int_{1}^{N} \frac{\partial f_{i}}{\partial x_{0}} (x_{0} - x_{0}^{*}) + \sum_{i=1}^{N} \int_{1}^{N} \frac{\partial f_{i}}{\partial x_{0}} \Big|_{x_{N}} +$$

$$\int_{1}^{N} \int_{1}^{N} \int_{1}^{N} \frac{\partial f_{i}}{\partial x_{0}} (x_{0} - x_{0}^{*}) + \sum_{i=1}^{N} \int_{1}^{N} \frac{\partial f_{i}}{\partial x_{0}} \Big|_{x_{N}} +$$

$$\int_{1}^{N} \int_{1}^{N} \int_{1}^{N} \frac{\partial f_{i}}{\partial x_{0}} (x_{0} - x_{0}^{*}) + \sum_{i=1}^{N} \int_{1}^{N} \frac{\partial f_{i}}{\partial x_{0}} \Big|_{x_{N}} +$$

$$\int_{1}^{N} \int_{1}^{N} \int_{1}^{N} \frac{\partial f_{i}}{\partial x_{0}} (x_{0} - x_{0}^{*}) + \sum_{i=1}^{N} \int_{1}^{N} \frac{\partial f_{i}}{\partial x_{0}} \Big|_{x_{N}} +$$

$$\int_{1}^{N} \int_{1}^{N} \int_{1}^{N} \int_{1}^{N} \frac{\partial f_{i}}{\partial x_{0}} (x_{0} - x_{0}^{*}) + \sum_{i=1}^{N} \int_{1}^{N} \frac{\partial f_{i}}{\partial x_{0}} \Big|_{x_{N}} +$$

$$\int_{1}^{N} \int_{1}^{N} \int_{1}^{N} \frac{\partial f_{i}}{\partial x_{0}} (x_{0} - x_{0}^{*}) + \sum_{i=1}^{N} \int_{1}^{N} \frac{\partial f_{i}}{\partial x_{0}} \Big|_{x_{N}} +$$

$$\int_{1}^{N} \int_{1}^{N} \int_{1}^{N} \frac{\partial f_{i}}{\partial x_{0}} (x_{0} - x_{0}^{*}) + \sum_{i=1}^{N} \int_{1}^{N} \frac{\partial f_{i}}{\partial x_{0}} \Big|_{x_{N}} +$$

$$\int_{1}^{N} \int_{1}^{N} \int_{1}^{N} \frac{\partial f_{i}}{\partial x_{0}} (x_{0} - x_{0}^{*}) + \sum_{i=1}^{N} \int_{1}^{N} \frac{\partial f_{i}}{\partial x_{0}} \Big|_{x_{N}} +$$

$$\int_{1}^{N} \int_{1}^{N} \int_{1}^{N} \int_{1}^{N} \int_{1}^{N} \frac{\partial f_{i}}{$$

$$\frac{1}{J}(\vec{x}) = \frac{1}{J}(\vec{x}^*) + \frac{1}{J} \cdot (\vec{x} - \vec{x}^*)$$
Where $\vec{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$

$$\frac{1}{J} = \frac{J}{J} = \frac{J}{J} \cdot \vec{x}^*$$

$$bx = \frac{-f(x_0)}{f'(x_0)}$$

$$\vec{S}(\vec{x}^{*}) = \vec{J} \cdot \vec{D} \vec{x}$$

$$\vec{b} = \vec{A} \cdot \vec{x}$$

- O INMAL QUESS \vec{X}^* O CALCULATE $\vec{f}(\vec{X}^*)$ AND $\vec{J}|_{\vec{X}^*}$ O Solve $\vec{J} \Delta \vec{x} = \vec{f}$ For $\Delta \vec{x}$ O $\vec{X}' = \vec{X}^* \vec{\Delta} \vec{x}$

EXTREMUM OF FUNCTION

(OPTIMIZATION)

IF \vec{x} SATISFIES $\vec{f}(\vec{x}) = 0$ \vec{x} IS AN EXTREMUMOF $\vec{g}(\vec{x})$ IF $\vec{y} = \vec{g}(\vec{x})$

(1) Gross GUESS REQUIRED