

Цель работы

Построить модель, способную рассчитывать данные по выбросам СО2

- Стремительное изменение климата;
- Повышение уровня выбросов газов в 7 раз;

- Повышение средней температуры поверхности планеты на 1.3 градуса
- Увеличение количества катастроф в 4 раза;

Источники

Максимальная модель – лесной массив, с максимальным запасом лесных горючих материалов.

Задачи и план работы

Задачи работы

- 1.Подготовить Датасет, подходящий для классификации "сгоревший" и "обычный" земной покров (лес).
- 2.Построить и обучить сверточную нейронную сеть классифицировать изображения.
- 3.Посчитать метрики и сделать выводы.

План проведения исследования

- 1.Поиск и отбор фотографий со спутника
- 2. Работа с изображениями.
- 3.Создание директорий, оценка сбалансированности классов.
- 4. Создание Датасетов для нейронной сети
- 5.Построение архитектуры нейронной сети.Обучение модели.
- 6. Анализ проделанной работы

Визуализация изображений

тренировочные

тестовые

Визуализация работы

Rescale

data_augmentation

Модели нейронных сетей

Без аугментации

С аугментацией

Выводы по моделям:

Модель с аугментацией данных показала гораздо большую устойчивость к переобучению на имеющихся данных при заданных настройках гиперпараметров. При этом предсказание на небольшой тестовой выборке у обеих моделей сравнимо по качеству, обе модели ошиблись один раз из 9.

Максимальное значение ассuracy у обеих моделей также совпало - 0.82, однако у первой модели это значение было достигнуто на 17-й итерации, после чего началось переобучение, вторая модель достигла этого значения на 26-й итерации.

Все это говорит о том, что аугментация на 30 итерациях не добавила модели ассuracy, при этом без аугментации на текущих данных того же результата можно было достичь при значительно меньшем количестве итераций.

Визуализация свертки изображений

