Statement 1:

Train a Deep Neural Network on the MNIST dataset using the Adam optimizer with a learning rate of 0.001, and generate a classification report and ROC AUC plot.

Statement 2

Train a DNN using the SGD optimizer with a learning rate of 0.0001 on the MNIST dataset and analyze the model's performance.

Statement 3

Train a Deep Neural Network on the MNIST dataset using RMSprop optimizer with a learning rate of 0.0001, and compare results using an accuracy table and ROC curve.

Statement 4

Use SGD optimizer with a learning rate of 0.01 to train a DNN on the Wildfire dataset, then evaluate precision, recall, and F1-score with supporting bar plots.

Statement 5

Train a DNN on the Forest Fire dataset using RMSprop optimizer with a learning rate of 0.01. Report training and validation accuracy

Statement 6

Compare DNN training using Adam and SGD optimizers (both with a learning rate of 0.001) on the Wildfire dataset

Statement 7

Image Classification on MNIST Using DNN with Learning Rate Variation

- Use the MNIST dataset and build a DNN
- Train the same model using learning rates: 0.01, 0.001
- Use SGD optimizer and track accuracy for each run
- Plot loss and accuracy for comparison

Statement 8

Evaluating DNN on CIFAR-10 Using Batch Size Variation

- Load CIFAR-10 dataset
- Use a feed-forward network with BatchNormalization
- Train with batch sizes 32 and 64, keeping other parameters constant
- Use Adam optimizer and train for 10 epochs
- Compare accuracy and plot graphs

Statement 9

Train a DNN on the UCI dataset using batch size 32 and a learning rate of 0.0001. Evaluate training time and accuracy

Statement 10

Preprocess the Alphabet CSV dataset using label encoding and standard scaling, then train a simple DNN using batch size 32 and learning rate 0.0001

Statement 11

Use a batch size of 64 and learning rate of 0.001 to train a DNN on the UCI dataset. Document training accuracy and loss.

Statement 12

Preprocess the Alphabet dataset and train a CNN with the architecture using Adam optimizer, 20 epochs, batch size 64, and learning rate 0.001.

Statement 13

Compare the performance of a CNN and a DNN on the CIFAR-10 dataset. Highlight differences in accuracy and training time.

Statement 14

Implement a Deep Neural Network (DNN) on the MNIST dataset using the Adam optimizer with a learning rate of 0.001 and plot training accuracy and loss.

Statement 15

Implement a DNN using RMSprop with learning rates 0.01 and 0.0001 on the Wildfire dataset. Compare training and validation performance.

Statement 16

Multiclass classification using Deep Neural Networks: Example: Use the OCR letter recognition dataset/Alphabet.csv

Statement 17

Implement the training of a DNN using Adam and SGD optimizers with a learning rate of 0.001 on the Wildfire dataset. Provide comparative plots.

Statement 18

Implement a DNN using batch sizes 32 and 64 with a fixed learning rate of 0.001 on the UCI dataset. Compare model loss and performance.

Statement 19

Preprocess the Alphabet dataset and train both a DNN and a CNN. Use Adam optimizer with a batch size of 64. Compare accuracy across 20 epochs.

Statement 20

Classify Apple leaf images using a CNN without data augmentation for 10 epochs.

Statement 21

Implement a CNN on Tomato dataset using batch sizes of 32 and 64 separately. Keep the learning

rate fixed at 0.0001 and compare results.

Statement 22

Implement CNNs using Adam and RMSprop optimizers with a learning rate of 0.001 on Peach images. Record validation loss and accuracy.

Statement 23

Build and train a CNN model for Apple image classification that includes Dropout layers. Train using 15 epochs and evaluate performance.

Statement 24

Split Grape image data into 70% train, 15% validation, and 15% test. Train a CNN for 10 epochs using a fixed learning rate of 0.001.

Statement 25

Use LeNet architecture to classify the Cats and Dogs dataset, and plot training loss and accuracy curves.

Statement 26

Use MobileNet architecture perform transfer learning on the Cats and Dogs dataset, and evaluate model performance using a classification report.

Statement 27

Build both CNN and DNN models for the CIFAR-10 dataset, compare their accuracy and loss

Statement 28

Implement an RNN on the GOOGL.csv dataset and compare its training time and loss curve with an LSTM model.

Statement 29

Use transfer learning with VGG16 on the Cats and Dogs dataset, freezing the first 4 layers, and train the classifier and evaluate model performance using a classification report.

Statement 30

Load and visualize sample images from the Potato dataset, train CNN for 5 epochs

Statement 31

Implement LSTM models on GOOGL.csv with learning rates 0.001 and 0.0001 for 20 and 50 epochs. Compare accuracy and convergence.

Statement 32

Implement a CNN on Tomato dataset using batch sizes of 32 and 64 separately. Keep the learning rate fixed at 0.0001 and compare results.

Statement 34

Implement CNN model on Potato leaf images using the Adam optimizer and i Use a learning rate of

0.001 evaluate model Performance

Statement 35

Build a Deep Neural Network for Fashion MNIST Classification

- Load Fashion MNIST dataset
- Preprocess the data using standardization
- Define a feed-forward neural network with 3 Dense layers
- Use RMSprop optimizer and categorical crossentropy loss
- Train the model for 15 epochs and evaluate performance
- Plot the training and validation curves