

Cryptographie Moderne et Appliquée

Dr Salim Benayoune

Plan du cours

- Introduction
- Cryptographie symétrique
 - Cryptographie par flot continu
 - O Cryptographie par **bloc**
 - DES, 3-DES, AES
 - Modes opératoires
- Cryptographie asymétrique
 - **O** RSA
 - O Diffie Hellman
 - Signature numérique
- □ Fonctions de hachage
- Méthodes d'authentification
- Exemples : TLS, PKI, SSH, WPA, Bitcoin

INTRODUCTION

La cryptographie est partout

Communication sécurisée :

Trafic web: HTTPS, SSH, IPsec

trafic sans fil: 802.11i WPA2, 4G/5G, Bluetooth

Chiffrement des fichiers sur le disque: EFS, TrueCrypt, bitlocker

Cryptomonnaie

Authentification de l'utilisateur

... et bien plus encore

Cas d'usage

Clé à usage unique : (clé à usage unique)

La clé n'est utilisée que pour chiffrer un seul message

email

Clé multi-usage: (clé à usage multiple)

Clé utilisée pour chiffrer plusieurs messages

• fichiers cryptés: même clé utilisée pour chiffrer de nombreux fichiers

Autres Usages

☐ Signatures numériques

☐ Communication anonyme

- Monnaie numérique anonyme
 - OPuis-je dépenser de l'argent sans que personne ne sache qui je suis?
 - O Comment éviter les doubles dépenses ?
- ☐ Election privée
- □ Enchère

Autres Usages

Une science rigoureuse

Les trois étapes de la cryptographie :

☐ Spécifier avec précision le **modèle de menace**

☐ Proposer une **construction**

☐ Prouvez que briser la construction résoudra un problème difficile sousjacent

Choses à retenir

- ☐ La cryptographie, **c'est** :
 - Un outil formidable
 - La base de nombreux mécanismes de sécurité
- ☐ La cryptographie **n'est pas** :
 - La solution à tous les problèmes de sécurité
 - Fiable à moins d'être implémentée et utilisée correctement
 - Quelque chose que vous devriez essayer d'inventer vous-même
 - de nombreux exemples de conceptions ad hoc cassées

Chiffre de césar

□ Par **substitution**

plain: meet me after the toga party cipher: PHHW PH DIWHU WKH WRJD SDUWB

										k		
0	1	2	3	4	5	6	7	8	9	10	11	12
n	0	р	q	r	S	t	u	V	W	Х	У	Z
										23		

$$C = E(k,p) = (p+k) \mod 26$$

$$p = D(k, C) = (C - k) \mod 26$$

Cryptanalyse et attaque par force brute

☐ Cryptanalyse:

 Repose sur la nature de l'algorithme et peut-être sur une certaine connaissance des caractéristiques générales du texte en clair ou même sur des exemples de paires texte clair-texte chiffré.

☐ Brute force :

OL'attaquant essaye toutes les clés possibles jusqu'à ce qu'une traduction intelligible en texte clair soit obtenue. **En moyenne**, la moitié de toutes les clés possibles doivent être essayées pour réussir.

Analyse du chiffre de César

- ☐ Trois caractéristiques importantes de ce problème nous ont permis d'utiliser la force brute :
- 1. Les algorithmes de chiffrement et de déchiffrement sont connus.
- 2. Il n'y a que **25** clés à essayer.
- 3. La langue du texte brute **est connue** et facilement reconnaissable.

```
PHHW PH DIWHU WKH WRJD SDUWB
KEY

1 oggv og chvgt vjg vqic rctva
2 nffu nf bgufs uif uphb qbsuz
3 meet me after the toga party
4 ldds ld zesdq sgd snfz ozqsx
5 kccr kc ydrcp rfc rmey nyprw
6 jbbq jb xcqbo qeb qldx mxoqv
.....
```

Chiffrement mono-alphabétique

- □ Une **permutation** d'un ensemble fini d'éléments **S** est une suite ordonnée de tous les éléments de **S**, chaque élément apparaissant exactement une fois.
- ☐ Exemple:

$$S = \{a, b, c\}: P = \{abc, acb, bac, bca, cab, cba\}$$

$$|S| = n \Rightarrow |P| = n!$$

Plaintext alphabet ABCDEFGHIJKLMNOPQRSTUVWXYZ Ciphertext alphabet GOYDSIPELUAVCRJWXZNHBQFTMK

☐ Si la ligne Cipher peut prendre n'importe quelle permutation, il y aura 26! Permutations:

$$26! \approx 4.03 \cdot 10^{26} \approx 2^{88}$$

Chiffrement Monoalphabétique

□ Cryptanalyse fréquentielle

Exemple

UKBYBIPOUZBCUFEEBORUKBYBHOBBRFESPVKBWFOFERVNBCVBZPRUBOFERVNBCVBPCYYFVUFOFEIKNWFRFIKJNUPWRFIPOUNVNIPU BRNCUKBEFWWFDNCHXCYBOHOPYXPUBNCUBOYNRVNIWNCPOJIOFHOPZRVFZIXUBORJRUBZRBCHNCBBONCHRJZSFWNVRJRUBZRPCY ZPUKBZPUNVPWPCYVFZIXUPUNFCPWRVNBCVBRPYYNUNFCPWWJUKBYBIPOUZBCUIPOUNVNIPUBRNCHOPYXPUBNCUBOYNRVNIWNC POJIOFHOPZRNCRVNBCUNENVVFZIXUNCHPCYVFZIXUPUNFCPWZPUKBZPUNVR

В	36	→ E
N	34	
U	33	→ T
Р	32	→ A
С	26	

NC	11	→ IN
PU	10	→ AT
UB	10	
UN	9	

digrams

□ Solution au problème :

- Chiffrer plusieurs lettres à la fois
- Utiliser plusieurs alphabets

Chiffres de substitution polygrammiques

□ Dans les systèmes polygrammiques, un groupe de **n** lettres est chiffré par un groupe de **m** symboles.

□ Les lettres ne sont donc pas chiffrées séparément, mais par groupes. On parle parfois de chiffrement par blocs.

Chiffres de substitution polygrammiques

□ Playfair

Règle 1

Règle 2

Règle 3

- Règle 1 : Si les deux lettres sont sur les coins d'un rectangle, alors les lettres chiffrées sont sur les deux autres coins.
- Règle 2 : Si deux lettres sont sur la même ligne, on prend les deux lettres qui les suivent immédiatement à leur droite
- Règle 3 : Si deux lettres sont sur la même colonne, on prend les deux lettres qui les suivent immédiatement en dessous
- Règle 4: Si le bigramme est composé d'une lettre répétée, on insère une nulle (usuellement le X) entre les deux pour éliminer ce doublon.

Chiffrement polyalphabétique

☐ Utiliser plusieurs alphabets :

Plaintext alphabet

ABCDEFGHIJKLMNOPQRSTUVWXYZ Ciphertext alphabet one TMKGOYDSIPELUAVCRJWXZNHBQF Ciphertext alphabet two DCBAHGFEMLKJIZYXWVUTSRQPON

• Question: chiffrer le mot « tester »

Chiffrement polyalphabétique

☐ Chiffrement de Vigenère

```
k = \begin{bmatrix} \mathbf{C} & \mathbf{R} & \mathbf{Y} & \mathbf{P} & \mathbf{T} & \mathbf{O} & \mathbf{C} & \mathbf{R} & \mathbf{Y} & \mathbf{P} & \mathbf{T} & \mathbf{O} & \mathbf{C} & \mathbf{R} & \mathbf{Y} & \mathbf{P} & \mathbf{T} \\ \mathbf{m} & = & \mathbf{W} & \mathbf{H} & \mathbf{A} & \mathbf{T} & \mathbf{A} & \mathbf{N} & \mathbf{I} & \mathbf{C} & \mathbf{E} & \mathbf{D} & \mathbf{A} & \mathbf{Y} & \mathbf{T} & \mathbf{O} & \mathbf{D} & \mathbf{A} & \mathbf{Y} \\ \mathbf{c} & = & \mathbf{Z} & \mathbf{Z} & \mathbf{Z} & \mathbf{J} & \mathbf{U} & \mathbf{C} & \mathbf{L} & \mathbf{U} & \mathbf{D} & \mathbf{T} & \mathbf{U} & \mathbf{N} & \mathbf{W} & \mathbf{G} & \mathbf{C} & \mathbf{Q} & \mathbf{S} \\ \end{bmatrix}
```

☐ Comment décrypter ?

Chiffrement de Vigenère

☐ Utilisation non pas d'un, mais de 26 alphabets décalés pour chiffrer un message

Clair	c	h	i	f	f	r	e	d	e	V	i	g	e	n	e	r	e
Clef	В	A	С	Н	Е	L	I	Е	R	В	A	С	Н	Е	L	Ι	Е
Décalage	1	0	2	7	4	11	8	4	17	1	0	2	7	4	11	8	4
Chiffré	D	Н	K	M	J	C	M	Н	V	W	I	I	L	R	P	Z	Ι

Fréquences

Machines à Rotors

Enigma (3-5 rotors)

ABCDEFGHIJKLMNOPQRSTUVWXYZ
EKMFLGDQVZNTOWYHXUSPAIBRCJ
AJDKSIRUXBLHWTMCQGZNPYFVOE
BDFHJLCPRTXVZNYEIWGAKMUSQO
ESOVPZJAYQUIRHXLNFTGKDCMWB
VZBRGITYUPSDNHLXAWMJQOFECK

Principe d'Auguste Kerckhoffs (1883)

☐ La difficulté du déchiffrement ne doit pas dépendre du secret des algorithmes mais du secret des clés

- ☐ Autrement dit, il faut supposer l'algorithme complètement connue de l'attaquant, seule la clé utilisée reste secrète
 - OLes algorithmes secrets ne le restent souvent pas très longtemps (exemple: RC4), et on leur découvre alors souvent des faiblesses structurelles
 - Il vaut mieux entreprendre cette analyse avant!

Le masque jetable (One Time Pad)

☐ Tous les crypto-systèmes **sauf un** sont vulnérables si l'attaquant dispose de suffisamment de ressources de calcul

- ☐ Un seul algorithme offre **une sécurité inconditionnelle** : le masque à usage unique ('one-time pad') ou chiffre de Vernam
 - Inventé en 1917 par Robert Vernam chez AT&T
 - O Joseph Mauborgne a l'idée de la clé à usage unique en 1920
 - O Claude Shannon a démontré en 1949 que cet algorithme est incassable

Le masque jetable (One Time Pad)

- ☐ On utilise une liste **très longue et aléatoire** de caractères comme clé de chiffrement.
- ☐ Chaque caractère est utilisé **une seule fois** pour chiffrer exactement un caractère du texte à transmettre.
- ☐ Le destinataire dispose **de la même liste** de caractères pour déchiffrer le cryptogramme transmis.
- ☐ Immédiatement après son utilisation, chaque extrémité **détruit** irrémédiablement la portion de la liste utilisée.

Le masque jetable (One Time Pad)

Pour un message chiffré C, quelque soit le message en clair M, il existe une clé K telle que M \oplus K = C. Alors, on ne peut rien savoir sur le contenu du texte en clair.

☐ Les ordinateurs du futur (quantique ou non) ne pourront jamais casser cet algorithme.

Limitations du masque jetable

- □ La clé (masque) doit être aussi longue que tous les messages à chiffrer réunis!
- ☐ Le masque doit être **réellement aléatoire** : fabriqué par lancement d'un dé à 26 faces
- ☐ Le masque doit être **transmis de façon sécurisée** entre les deux protagonistes
 - Espion partant en mission, valise diplomatique...
- □ Algorithme utilisé pour les canaux de communication ultraconfidentiels à faible débit : espions russes, « téléphone rouge » (télex) entre Moscou et Washington...

Conclusion

- ☐ Les mots de passe et les clés de chiffrement sont les seules données numériques qui s'usent au fur et à mesure qu'on les utilise :
 - Oune répétition minimale des clés utilisées procure une plus grande résistance à la cryptanalyse
 - OLE volume de trafic chiffré avec un même jeu de clés conditionne le niveau de sécurité atteint : plus on réutilise une clé, plus le cryptanalyste a des chances de repérer un motif ou des répétitions qu'il pourra exploiter
 - OPlus on dispose d'information sur l'émetteur, plus on peut déterminer facilement le contenu d'un message
 - OMême s'il est théoriquement sûr, la sécurité d'un cryptosystème peut être anéantie par le non-respect de ses consignes d'utilisation : la discipline des utilisateurs est primordiale.