Resposta espectral de circuitos RC, RL, RLC

Gustavo de Noraes Furtado (150653) Guilherme Hasse Urel (157946) João Pedro de Amorim (176131) Rodrigo Seiji Piubeli Hirao (186837)

5 de Setembro de 2017

Resumo

Através do seguinte experimento evolvendo circuitos RC E RLC, foram observados filtros de circuitos elétricos tipo passa-baixa e tipo passa-banda, respectivamente. E com a análise dos dados, obtidos com o auxílio do osciloscópio, pode-se gerar os Diagramas de Bode, relacionando a transmitância e a fase do circuito em função da frequência.

1 Introdução

Muitos dispositivos atuais fazem o uso de circuitos elétricos formados por elementos simples como resistores, indutores e capacitores. Tais elementos possibilitam a determinação de grandezas físicas básicas como a carga elétrica e suas derivadas: corrente elétrica e derivada da corrente elétrica. Devido às características dos elementos constituintes e seu arranjo, tais circuitos apresentam comportamentos de grande interesse, devido às inúmeras aplicações tecnológicas possíveis. Ao analisarmos circuitos RLC (formados por resistores, indutores e capacitores) excitados por uma fonte de corrente alternada, podemos observar a grande dependência que o sinal de saída tem com relação a frequência de excitação. Por essa característica específica tais circuitos são empregados comumente como filtros de frequência, barrando ou não determinados sinais de acordo com a frequência dos mesmos. Visando explorar o funcionamento desses filtros, suas peculiaridades e também o aprofundamento nos conceitos que regem tais fenômenos, alguns problemas foram propostos para solução através do emprego de tais circuitos. A familiarização com os circuitos de corrente alternada de uma forma geral e alguns conceitos empregados para a sua análise também se deram através da solução desses casos. A análise de resposta em frequência apresenta-se então como uma poderosa ferramenta nesse contexto, para a caracterização dos parâmetros de interesse desses sistemas.

2 Materiais e métodos

Neste experimento, para a montagem dos filtros do tipo passa-baixa (a partir de um circuito RC) e passa-banda (a partir de um circuito RLC), utilizamos:

2.1 Componentes do circuito passa-baixa e equipamentos:

• Capacitor – Valor nominal: $0.22 \mu F$

• Osciloscópio

• Gerador de Ondas

• Cabo BNC-banana

2.2 Componentes do circuito passa-banda e equipamentos:

• Indutor – Valor nominal: 48,6 mH

• Capacitor – Valor nominal: 0,44 μF

Osciloscópio

- Gerador de Ondas
- Cabo BNC-banana

Figura 1: Circuito RC para o filtro passa-baixa

Figura 2: Circuito RLC para o filtro passa-banda

2.3 Cálculo

2.3.1 Circuito RC (Passa-Baixa)

Para o cálculo de T_{dB} foi usado a equação:

$$H(\omega) = \frac{V_2}{V_1} = \frac{\frac{1}{j\omega C}}{R + \frac{1}{j\omega C}} = \frac{1}{1 + j\omega RC}$$

$$T_{dB} = 20log|H(\omega)| = 20log(\frac{V_2}{V_1}) = 20log(\frac{1}{\sqrt{1 - (\omega RC)^2}}) = -10log(1 - (\omega RC)^2)$$

E para o cálculo da fase (Θ) foi usado a equação:

$$\Theta = -arg(H(\omega)) = -arctg(\omega RC) = -arctg(j(1-\frac{V_1}{V_2}))$$

Com suas respectivas propagações de erros

$$\begin{split} \sigma_{T_{dB}} &= \pm \sqrt{(-\frac{V_2}{V_1^2})^2 \sigma_{V_1}^2 + (\frac{1}{V_1})^2 \sigma_{V_2}^2} \\ \\ \sigma_{\Theta} &= \pm \sqrt{(\frac{V_2}{2V_2V_1 - V_1})^2 \sigma_{V_1}^2 + (\frac{1}{V_2 - 2V_1})^2 \sigma_{V_2}^2} \end{split}$$

2.3.2 Circuito RLC (Passa-Banda)

Para o cálculo de T_{dB} foi usado a equação:

$$H(\omega) = \frac{V_2}{V_1} = \frac{j\omega RC}{1 + \omega^2 LC - j\omega RC} = \frac{1}{1 - j\frac{1 - \omega^2 LC}{\omega RC}}$$

$$T_{dB} = 20log|H(\omega)| = 20log(\frac{1}{\sqrt{1 - (\frac{1 - \omega^2 LC}{\omega RC})^2}})$$

E para o cálculo da fase (Θ) foi usado a equação:

$$\Theta = -arctg(\frac{1-\omega^2 LC}{\omega RC})$$

Com suas respectivas propagações de erros

$$\sigma_{T_{dB}} = \pm \sqrt{(-\frac{V_2}{V_1^2})^2 \sigma_{V_1}^2 + (\frac{1}{V_1})^2 \sigma_{V_2}^2}$$

$$\sigma_{\Theta} = \pm \sqrt{(\frac{V_2}{2V_2V_1 - V_1})^2 \sigma_{V_1}^2 + (\frac{1}{V_2 - 2V_1})^2 \sigma_{V_2}^2}$$

3 Resultados

f[Hz]	$V_1[V]$	$\sigma_{V_1}[V]$	$V_2[V]$	$\sigma_{V_2}[V]$	T[dB]	$\sigma_T[dB]$	Θ	σ_Θ
100	1	$5 \cdot 10^{-2}$	1	$5 \cdot 10^{-2}$	-0.1	0.6	-8.28	$7.07 \cdot 10^{-2}$
168.6	1.01	$5 \cdot 10^{-2}$	0.97	$5 \cdot 10^{-2}$	-0.4	0.6	-14.32	$6.98 \cdot 10^{-2}$
284.27	1	$5 \cdot 10^{-2}$	0.91	$4 \cdot 10^{-2}$	-0.8	0.6	-23.32	$6.65 \cdot 10^{-2}$
479.28	0.99	$5 \cdot 10^{-2}$	0.81	$4 \cdot 10^{-2}$	-1.7	0.6	-35.55	$7.43 \cdot 10^{-2}$
808.08	0.97	$5 \cdot 10^{-2}$	0.62	$3 \cdot 10^{-2}$	-3.9	0.6	-49.47	0.14
1,362.44	0.96	$5 \cdot 10^{-2}$	0.43	$2 \cdot 10^{-2}$	-7	0.6	-63.27	0.16
$2,\!297.11$	0.98	$5 \cdot 10^{-2}$	0.27	$1 \cdot 10^{-2}$	-11.1	0.6	-73.72	$3.05 \cdot 10^{-2}$
3,872.98	0.98	$5 \cdot 10^{-2}$	0.17	$9 \cdot 10^{-3}$	-15.4	0.6	-79.41	$1.36 \cdot 10^{-2}$
$6,\!529.94$	0.97	$5 \cdot 10^{-2}$	0.1	$6 \cdot 10^{-3}$	-19.7	0.6	-83.66	$7.29 \cdot 10^{-3}$
11,009.64	0.98	$5 \cdot 10^{-2}$	$6 \cdot 10^{-2}$	$4 \cdot 10^{-3}$	-24.2	0.7	-84.85	$4.07 \cdot 10^{-3}$
$18,\!562.51$	0.98	$5 \cdot 10^{-2}$	$3.6 \cdot 10^{-2}$	$3 \cdot 10^{-3}$	-28.7	0.8	-87.8	$2.52\cdot10^{-3}$
$31,\!296.82$	0.98	$5 \cdot 10^{-2}$	$2.2 \cdot 10^{-2}$	$2 \cdot 10^{-3}$	-33.1	0.9	-88.31	$1.56 \cdot 10^{-3}$
52,767.19	0.98	$5 \cdot 10^{-2}$	$1.3 \cdot 10^{-2}$	$2 \cdot 10^{-3}$	-37	1	-88.67	$1.23 \cdot 10^{-3}$
88,966.72	0.99	$5\cdot 10^{-2}$	$8 \cdot 10^{-3}$	$1\cdot 10^{-3}$	-42	2	-88.4	$6.52\cdot10^{-4}$
$1.5\cdot 10^5$	0.98	$5\cdot 10^{-2}$	$5\cdot 10^{-3}$	$1\cdot 10^{-3}$	-46	2	-86.38	$5.73\cdot 10^{-4}$

Figura 3: Tabela do circuito passa baixa

f[Hz]	$V_1[V]$	$\sigma_{V_1}[V]$	$V_2[V]$	$\sigma_{V_2}[V]$	T[dB]	$\sigma_T[dB]$	Θ	σ_{Θ}
16.84	1.02^{-1}	$5 \cdot 10^{-2}$	$2.8 \cdot 10^{-2}$	$2 \cdot 10^{-3}$	-31.2	0.8	90.85	$8.75 \cdot 10^{-3}$
28.36	1.02	$5 \cdot 10^{-2}$	$4.5 \cdot 10^{-2}$	$3 \cdot 10^{-3}$	-27.2	0.7	90.41	$1.15 \cdot 10^{-2}$
47.77	1.01	$5 \cdot 10^{-2}$	$7.7 \cdot 10^{-2}$	$5 \cdot 10^{-3}$	-22.4	0.7	86.39	$1.64 \cdot 10^{-2}$
80.44	1.01	$5 \cdot 10^{-2}$	0.12	$7 \cdot 10^{-3}$	-18.3	0.6	83.41	$2.33 \cdot 10^{-2}$
135.47	1.01	$5 \cdot 10^{-2}$	0.2	$1 \cdot 10^{-2}$	-13.9	0.6	78.29	$3.73 \cdot 10^{-2}$
228.15	1	$5 \cdot 10^{-2}$	0.33	$2 \cdot 10^{-2}$	-9.5	0.6	69.96	$8.53 \cdot 10^{-2}$
384.23	0.99	$5 \cdot 10^{-2}$	0.52	$3 \cdot 10^{-2}$	-5.7	0.6	57	0.91
647.08	0.98	$5 \cdot 10^{-2}$	0.73	$3 \cdot 10^{-2}$	-2.6	0.6	38.94	$9.79 \cdot 10^{-2}$
1,089.76	0.97	$5 \cdot 10^{-2}$	0.89	$4 \cdot 10^{-2}$	-0.8	0.6	14.53	$7.31 \cdot 10^{-2}$
$1,\!835.27$	0.98	$5 \cdot 10^{-2}$	0.92	$4 \cdot 10^{-2}$	-0.5	0.6	-10.08	$6.98 \cdot 10^{-2}$
3,090.79	0.99	$5 \cdot 10^{-2}$	0.78	$4 \cdot 10^{-2}$	-2.1	0.6	-32.93	$8.63 \cdot 10^{-2}$
$5,\!205.23$	1.01	$5 \cdot 10^{-2}$	0.56	$3 \cdot 10^{-2}$	-5.1	0.6	-54	0.31
8,766.17	1.02	$5 \cdot 10^{-2}$	0.36	$2 \cdot 10^{-2}$	-9	0.6	-68.09	0.11
14,763.18	1.02	$5 \cdot 10^{-2}$	0.22	$1 \cdot 10^{-2}$	-13.4	0.6	-77.44	$4.14 \cdot 10^{-2}$
$24,\!862.8$	1.02	$5 \cdot 10^{-2}$	0.13	$7 \cdot 10^{-3}$	-18.3	0.6	-83.38	$2.34 \cdot 10^{-2}$
41,871.64	1.03	$5 \cdot 10^{-2}$	$6.4 \cdot 10^{-2}$	$4\cdot 10^{-3}$	-24.2	0.7	-86.16	$1.42 \cdot 10^{-2}$

Figura 4: Tabela do circuito passa banda

3.1 Diagramas de Bode

Para cada filtro, por meio do script em Python disponibilizado em laboratório, foi possível obter os gráficos da Transmitância (medida em decibéis) e da resposta em fase do circuito (medida em graus) (Diagrama de Bode). Para ambos os gráficos, coletamos 15 pontos.

3.1.1 Passa Baixa

Figura 5: Gráfico de Bode do circuito passa-baixa

3.1.2 Passa Banda

Figura 6: Gráfico de Bode do circuito passa-banda

4 Discussão

4.1 Passa-baixa RC

O filtro passa-baixa RC possui, como função de transferência (H(W)), a seguinte expressão: $H(w) = \frac{1}{1-jwRC}$. Assim, a transmitância, em dB, é dada por $T = 20\log(\frac{1}{\sqrt{(1+(wRC)^2}}))$. A fase, por sua vez, é o dada por $\theta = -arctg(wRC)$ e a frequência de corte, dada por $f_c = \frac{1}{RC}$. A partir dessas expressões, é possível significar o

que se passa no diagrama de Bode do filtro passa baixa: Para frequências maiores que a frequência de corte (w » wc), ou seja, sinais de alta frequência o capacitor apresenta baixa reatância, XC « R e seu comportamento é o de um curto-circuito. Logo, grande parte da tensão de entrada estará sobre o resistor e a tensão sobre o capacitor de saída será quase nula. Assim, o circuitocimpede a passagem de sinais de alta frequência - o que é perceptível pela atenuação crescente após a frequencia de corte ($f_c = \frac{1}{RC} = 0, 22.10^{-3}Hz$) na curva de transmitância. Por sua vez, para frequências menores que a frequência de corte, ($w << w_c$), o capacitor apresenta alta reatância, XC » R e seu comportamento é o de um circuito aberto. Desta forma, grande parte da tensão de entrada estará sobre o capacitor de saída. Logo, o circuito deixa passar sinais de baixa frequência.

4.2 Passa-banda RLC

O filtro passa-banda RLC possui, como função de transferência (H(w)), a seguinte expressão $H(w) = \frac{1}{1-(j\frac{1-w^2LC}{wRC})}$ A transmitância, em dB, é dada por $T=20\log(\frac{1}{\sqrt{1+\frac{1-w^2LC}{wRC}}})$. A fase é dada por $\theta=arctg\frac{1-w^2LC}{wRC}^2$. No circuito passa baixa, temos duas frequências de corte e uma frequência central, dadas, respectivamente, por $w_{c1}=\frac{-RC+-\sqrt{RC^2+4LC}}{2LC}w_{c2}=\frac{+RC+-\sqrt{RC^2+4LC}}{2LC}w_{central}=\sqrt{\frac{1}{LC}}$. Traduzindo esses conceitos para o diagrama de bode, temos que para frequências menores que a frequência de corte 1 ($w<< w_{c1}$): o indutor do circuito da apresenta baixa reatância indutiva e tende a comportar-se como um curto-circuito, porém, o capacitor apresenta alta reatância capacitiva e tende a comportar-se como um circuito aberto. Desta forma, grande parte da tensão de entrada estará sobre o capacitor e a tensão sobre o resistor de saída será muito baixa, ou seja, o sinal será atenuado. Assim, o circuito impede a passagem de sinais de baixa frequência.

Para frequências maiores que a frequência de corte 2 ($w >> w_{c2}$): o capacitor apresenta baixa reatância capacitiva e comporta-se como um curto-circuito, porém, o indutor apresenta alta reatância indutiva e comporta-se como um circuito aberto. Desta forma, grande parte de tensão de entrada estará sobre o indutor e a tensão sobre o resistor de saída será muito baixa, ou seja, o sinal será atenuado. Portanto, o circuito impede a passagem de sinais de alta frequência.

Para sinais de frequências intermediárias, ou seja, sinais cujas frequências estiverem numa faixa próxima à frequência central do filtro, o indutor e o capacitor juntos apresentarão baixa reatância e tenderão a comportaremse como um curto circuito. Desta forma, grande parte da tensão de entrada estará sobre o resistor de saída. Deste modo o circuito deixa passar sinais dentro de uma determinada faixa de frequência.

5 Referências

Análise de Circuitos - Teoria e Prática - Vol. 2 - Miller, Wilhelm C. / Robbins, Allan H.