```
In [1]: include("/home/nicole/Jupyter/SSBRJ/src/SSBR.jl")
        using SSBR
In [2]:
        function getPos(ped,IDs)
            posAi = Array(Int64, size(IDs, 1))
            for (i,id) = enumerate(IDs[:,1])
                 posAi[i] = ped.idMap[id].seqID
            end
            return posAi
        end
Out[2]: getPos (generic function with 1 method)
In [3]: | ; cd Data/0.5a0/M/5
        /home/nicole/Jupyter/JG3/Data/0.5a0/M/5
In [4]:
        ;ls
        Correlation.G5.M.C*.txt
        G0.Genotype.ID
        G0.ID
        G0.noGenotype.ID
        G1.Genotype.ID
        G1.ID
        G1.noGenotype.ID
        G2.Genotype.ID
        G2.ID
        G2.noGenotype.ID
        G3.Genotype.ID
        G3.ID
        G3.noGenotype.ID
        G4.Genotype.ID
        G4.ID
        G4.noGenotype.ID
        G5.Genotype.ID
        G5.ID
        G5.noGenotype.ID
        MarNF.txt
        MarNFCenter.txt
        PedAll.txt
        Phe.txt
        PheAll.txt
        Regression.G5.M.C*.txt
        all.ID
        alphaEstimatesLeggaraC
        epsiEstimatesLeggaraC
        genotype.ID
        noGenotype.ID
        sim.bv
        sim.phenotype
In [5]: |;awk '{print $1}' PedAll.txt | sort -b > all.ID
```

```
;awk '{print $1}' MarNFCenter.txt | sort -b > genotype.ID
         ;join -v1 all.ID genotype.ID > noGenotype.ID
 In [8]:
         ;awk '{print $1,$2}' Phe.txt > sim.phenotype
         ;awk '{print $1,$3}' PheAll.txt > sim.bv
         ; awk 'NR >=1 && NR <=8000 {print $1}' PedAll.txt | sort -b > G0.ID
In [11]:
         ; awk 'NR >=8001 && NR <=16000 {print $1}' PedAll.txt | sort -b > G1.ID
         ; awk 'NR >=16001 && NR <=24000 {print $1}' PedAll.txt | sort -b > G2.ID
In [12]:
In [13]:
         ; awk 'NR >=24001 && NR <=32000 {print $1}' PedAll.txt | sort -b > G3.ID
         ; awk 'NR >=32001 && NR <=40000 {print $1}' PedAll.txt | sort -b > G4.ID
         ; awk 'NR >=40001 && NR <=48000 {print $1}' PedAll.txt | sort -b > G5.ID
In [16]:
         ; join G0.ID genotype.ID > G0.Genotype.ID
         ; join G1.ID genotype.ID > G1.Genotype.ID
In [17]:
In [18]:
         ; join G2.ID genotype.ID > G2.Genotype.ID
In [19]:
         ;join G3.ID genotype.ID > G3.Genotype.ID
In [20]:
         ; join G4.ID genotype.ID > G4.Genotype.ID
In [21]:
         ; join G5.ID genotype.ID > G5.Genotype.ID
In [22]:
         ;join -v1 G0.ID genotype.ID > G0.noGenotype.ID
In [23]:
         ;join -v1 G1.ID genotype.ID > G1.noGenotype.ID
In [24]:
         ;join -v1 G2.ID genotype.ID > G2.noGenotype.ID
         ;join -v1 G3.ID genotype.ID > G3.noGenotype.ID
In [25]:
In [26]:
         ;join -v1 G4.ID genotype.ID > G4.noGenotype.ID
In [27]: |;join -v1 G5.ID genotype.ID > G5.noGenotype.ID
```

```
In [28]:
         ;wc G0.Genotype.ID;wc G1.Genotype.ID;wc G2.Genotype.ID;wc G3.Genotype.ID;wc (
               200 1200 GO.Genotype.ID
          200 200 1200 G1.Genotype.ID
          200 200 1200 G2.Genotype.ID
          200 200 1200 G3.Genotype.ID
          200 200 1200 G4.Genotype.ID
          8000 8000 48000 G5.Genotype.ID
In [29]:
         ;wc G0.noGenotype.ID;wc G1.noGenotype.ID;wc G2.noGenotype.ID;wc G3.noGenotype
                7800 46800 G0.noGenotype.ID
          7800
                7800 46800 Gl.noGenotype.ID
          7800
                7800 46800 G2.noGenotype.ID
          7800 7800 46800 G3.noGenotype.ID
          7800 7800 46800 G4.noGenotype.ID
         0 0 0 G5.noGenotype.ID
         ped,A Mats,numSSBayes = calc Ai("PedAll.txt", "genotype.ID", calculateInbreedia
In [30]:
         nothing
         df
                = read_genotypes("MarNFCenter.txt", numSSBayes) # genotype file - cen
         M Mats = make MMats(df,A Mats,ped);
                                                                 # M file centered alre
         y_Vecs = make_yVecs("sim.phenotype",ped,numSSBayes)
         J_Vecs = make_JVecs(numSSBayes,A_Mats)
         Z_Mats = make_ZMats(ped,y_Vecs,numSSBayes)
                                                                                  # wit
         X Mats, W Mats = make XWMats(J Vecs, Z Mats, M Mats, numSSBayes)
         nothing
         vRes
                = 0.767
In [31]:
                = 0.767
         vG
         nIter = 50000
         @time aHat1,alphaHat,betaHat,epsiHat =
         ssGibbs(M Mats,y Vecs,J Vecs,Z Mats,X Mats,W Mats,A Mats, numSSBayes,vRes,vG
         nothing
         This is iteration 5000
         This is iteration 10000
         This is iteration 15000
         This is iteration 20000
         This is iteration 25000
         This is iteration 30000
         This is iteration 35000
         This is iteration 40000
         This is iteration 45000
         This is iteration 50000
         2535.213246 seconds (23.03 G allocations: 723.668 GB, 7.44% gc time)
In [32]: betaHat
Out[32]: 2-element Array{Float64,1}:
           3,43479
          -2.67482
```

```
alphaHat
In [33]:
Out[33]: 150-element Array{Float64,1}:
           -0.0670442
          -0.183395
           -0.0578063
            0.057511
            0.153222
            0.121525
            0.139385
            0.122225
           -0.0583564
            0.0188472
          -0.0281085
            0.0227289
           -0.00856577
            0.055154
            0.0648709
           0.00225055
           -0.0177858
           -0.0644045
            0.0540863
          -0.0321498
           0.0665301
            0.0240894
           -0.0464052
           -0.0422445
            0.0293529
```

```
In [35]: epsiHat
Out[35]: 45924-element Array{Float64,1}:
          -0.145134
          -0.499765
          -0.387368
          -1.3007
           0.336351
           0.238593
          -0.0231051
          -0.426796
          -0.531569
           0.0995075
          -0.093116
           0.00651589
          -0.397527
           0.329753
          -0.239296
           0.539612
          -0.400973
           0.377586
          -0.400166
           0.635372
          -0.125791
           0.474664
          -0.541005
          -0.365831
          -0.278522
In [36]: writedlm("epsiEstimatesLeggaraJC",epsiHat)
In [37]: using DataFrames
In [38]: df = readtable("sim.bv", eltypes =[UTF8String, Float64], separator = ' ',head
         a = Array(Float64, numSSBayes.num ped)
         for (i,ID) in enumerate(df[:,1])
             j = ped.idMap[ID].seqID
             a[j] = df[i,2]
         end
In [39]: IDs = readtable("all.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor1 = cor(a[posAi],aHat1[posAi])[1,1]
         reg1 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - all.ID : correlation = %6.3f\n", cor1 ) # with 
         @printf("SSBRJC from Gibbs - all.ID : regression of TBV on GEBV = %6.3f\n",
         JCAll = cor1
         SSBRJC from Gibbs - all.ID : correlation = 0.902
         SSBRJC from Gibbs - all.ID : regression of TBV on GEBV = 0.983
Out[39]: 0.9023980193767859
```

```
In [40]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[40]: 1.5107050715998667
In [41]: IDs = readtable("genotype.ID", eltypes =[UTF8String], separator = ' ',header:
         posAi = getPos(ped,IDs)
         cor2 = cor(a[posAi],aHat1[posAi])[1,1]
         reg2 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - genotype.ID : correlation = %6.3f\n", cor2 ) # |
         @printf("SSBRJC from Gibbs - genotype.ID : regression of TBV on GEBV = %6.3:
         JCAll = cor2
         SSBRJC from Gibbs - genotype.ID : correlation = 0.887
         SSBRJC from Gibbs - genotype.ID : regression of TBV on GEBV = 1.001
Out[41]: 0.8869288086686071
In [42]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[42]: 2.6748191383676154
In [43]: IDs = readtable("noGenotype.ID", eltypes =[UTF8String], separator = ' ',heade
         posAi = getPos(ped,IDs)
         cor3 = cor(a[posAi],aHat1[posAi])[1,1]
         req3 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - noGenotype.ID : correlation = %6.3f\n", cor3 );
         @printf("SSBRJC from Gibbs - noGenotype.ID : regression of TBV on GEBV = %6
         JCAll = cor3
         SSBRJC from Gibbs - noGenotype.ID : correlation = 0.867
         SSBRJC from Gibbs - noGenotype.ID : regression of TBV on GEBV = 0.962
Out[43]: 0.8672410287426816
In [44]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[44]: 1.242063363884232
In [45]: IDs = readtable("G0.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor4 = cor(a[posAi],aHat1[posAi])[1,1]
         reg4 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.ID : correlation = %6.3f\n", cor4 ) # with ep
         @printf("SSBRJC from Gibbs - G0.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor4
         SSBRJC from Gibbs - G0.ID : correlation = 0.714
         SSBRJC from Gibbs - G0.ID: regression of TBV on GEBV = 0.891
Out[45]: 0.7136707626076714
```

```
In [46]: GEBV = aHat1[posAi]
         G1GEBV=mean(GEBV)
Out[46]: 0.1224620807845831
In [47]: IDs = readtable("G1.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor4 = cor(a[posAi],aHat1[posAi])[1,1]
         reg4 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.ID : correlation = %6.3f\n", cor4 ) # with e;
         @printf("SSBRJC from Gibbs - G1.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor4
         SSBRJC from Gibbs - G1.ID : correlation =
         SSBRJC from Gibbs - G1.ID: regression of TBV on GEBV = 0.982
Out[47]: 0.7654276405121165
In [48]: GEBV = aHat1[posAi]
         G1GEBV=mean(GEBV)
Out[48]: 0.7836787156032694
In [49]: IDs = readtable("G2.ID", eltypes =[UTF8String], separator = ' ', header=false
         posAi = getPos(ped,IDs)
         cor5 = cor(a[posAi],aHat1[posAi])[1,1]
         req5 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.ID : correlation = %6.3f\n", cor5 ) # with ep
         @printf("SSBRJC from Gibbs - G2.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor5
         SSBRJC from Gibbs - G2.ID : correlation = 0.762
         SSBRJC from Gibbs - G2.ID: regression of TBV on GEBV = 1.002
Out[49]: 0.7618719696476476
In [50]: GEBV = aHat1[posAi]
         G2GEBV=mean(GEBV)
Out[50]: 1.3407501519356069
In [51]: IDs = readtable("G3.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor6 = cor(a[posAi],aHat1[posAi])[1,1]
         reg6 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.ID : correlation = %6.3f\n", cor6 ) # with ep
         @printf("SSBRJC from Gibbs - G3.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor6
         SSBRJC from Gibbs - G3.ID : correlation = 0.758
         SSBRJC from Gibbs - G3.ID: regression of TBV on GEBV = 1.010
Out[51]: 0.7575373849727148
```

```
In [52]: | GEBV = aHat1[posAi]
         G3GEBV=mean(GEBV)
Out[52]: 1.8238547628242285
In [53]: IDs = readtable("G4.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor7 = cor(a[posAi],aHat1[posAi])[1,1]
         reg7 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.ID : correlation = %6.3f\n", cor7 ) # with e;
         @printf("SSBRJC from Gibbs - G4.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor7
         SSBRJC from Gibbs - G4.ID : correlation =
         SSBRJC from Gibbs - G4.ID : regression of TBV on GEBV = 0.980
Out[53]: 0.7466481229059476
In [54]: GEBV = aHat1[posAi]
         G4GEBV=mean(GEBV)
Out[54]: 2.275901518869805
In [55]: IDs = readtable("G5.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor8 = cor(a[posAi],aHat1[posAi])[1,1]
         reg8 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G5.ID : correlation = %6.3f\n", cor8 ) # with ep
         @printf("SSBRJC from Gibbs - G5.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor8
         SSBRJC from Gibbs - G5.ID : correlation = 0.872
         SSBRJC from Gibbs - G5.ID: regression of TBV on GEBV = 0.976
Out[55]: 0.8716727989518064
In [56]: GEBV = aHat1[posAi]
         G5GEBV=mean(GEBV)
Out[56]: 2.7175831995817057
In [57]: GEBVG5G1=G5GEBV-G1GEBV
Out[57]: 1.9339044839784363
In [58]: GEBVG1G5=[G1GEBV;G2GEBV;G3GEBV;G4GEBV;G5GEBV]
Out[58]: 5-element Array{Float64,1}:
          0.783679
          1.34075
          1.82385
          2.2759
          2.71758
```

```
In [59]: reg8 = linreg(aHat1[posAi], a[posAi])
Out[59]: 2-element Array{Float64,1}:
          3.55691
          0.976091
In [60]: VarGEBV=var(aHat1[posAi])
Out[60]: 0.39358056154993337
In [61]: VarTBV=var(a[posAi])
Out[61]: 0.49352325556280474
In [62]: Cov=cov(aHat1[posAi], a[posAi])
Out[62]: 0.38417059952491145
In [63]: b=Cov/VarGEBV
Out[63]: 0.9760913953982758
In [64]: IDs = readtable("G0.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor9 = cor(a[posAi],aHat1[posAi])[1,1]
         reg9 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.Genotype.ID : correlation = %6.3f\n", cor9 )
         @printf("SSBRJC from Gibbs - G0.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor9
         SSBRJC from Gibbs - G0.Genotype.ID : correlation = 0.864
         SSBRJC from Gibbs - G0.Genotype.ID : regression of TBV on GEBV = 0.949
Out[64]: 0.8640707869582273
In [65]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[65]: 1.4980505197344653
In [66]: IDs = readtable("G1.Genotype.ID", eltypes =[UTF8String], separator = ' ', head
         posAi = getPos(ped,IDs)
         cor9 = cor(a[posAi],aHat1[posAi])[1,1]
         reg9 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.Genotype.ID : correlation = %6.3f\n", cor9 )
         @printf("SSBRJC from Gibbs - G1.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor9
         SSBRJC from Gibbs - G1.Genotype.ID : correlation =
                                                              0.884
         SSBRJC from Gibbs - G1.Genotype.ID : regression of TBV on GEBV = 0.980
Out[66]: 0.8836103430730405
```

```
In [67]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[67]: 1.9776506692455167
In [68]: IDs = readtable("G2.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor10 = cor(a[posAi],aHat1[posAi])[1,1]
         reg10 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.Genotype.ID : correlation = %6.3f\n", cor10
         @printf("SSBRJC from Gibbs - G2.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor10
         SSBRJC from Gibbs - G2.Genotype.ID : correlation =
         SSBRJC from Gibbs - G2.Genotype.ID: regression of TBV on GEBV = 0.958
Out[68]: 0.8847877903242156
In [69]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[69]: 2.3325385350039425
In [70]: IDs = readtable("G3.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor11 = cor(a[posAi],aHat1[posAi])[1,1]
         reg11 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.Genotype.ID : correlation = %6.3f\n", cor11
         @printf("SSBRJC from Gibbs - G3.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor11
         SSBRJC from Gibbs - G3.Genotype.ID : correlation = 0.870
         SSBRJC from Gibbs - G3.Genotype.ID : regression of TBV on GEBV = 0.916
Out[70]: 0.8700230107882173
In [71]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[71]: 2.7447250302423534
In [72]: IDs = readtable("G4.Genotype.ID", eltypes =[UTF8String], separator = ' ', head
         posAi = getPos(ped,IDs)
         cor12 = cor(a[posAi],aHat1[posAi])[1,1]
         reg12 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.Genotype.ID : correlation = %6.3f\n", cor12
         @printf("SSBRJC from Gibbs - G4.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor12
         SSBRJC from Gibbs - G4.Genotype.ID : correlation = 0.821
         SSBRJC from Gibbs - G4.Genotype.ID : regression of TBV on GEBV = 0.871
Out[72]: 0.8212493673707503
```

```
In [73]: | GEBV = aHat1[posAi]
         mean(GEBV)
Out[73]: 3.110568489048209
In [74]: IDs = readtable("G5.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor13 = cor(a[posAi],aHat1[posAi])[1,1]
         reg13 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G5.Genotype.ID : correlation = %6.3f\n", cor13
         @printf("SSBRJC from Gibbs - G5.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor13
         SSBRJC from Gibbs - G5.Genotype.ID : correlation =
         SSBRJC from Gibbs - G5.Genotype.ID: regression of TBV on GEBV = 0.976
Out[74]: 0.8716727989518064
In [75]: | writedlm("Correlation.G5.M.JC*.txt",cor13)
In [76]: writedlm("Regression.G5.M.JC*.txt",reg13)
In [77]: TBVG5Gall = a[posAi]
         TBVG5G=mean(TBVG5Gall)
Out[77]: 6.209524375
In [78]: GEBVG5Gall = aHat1[posAi]
         GEBVG5G=mean(GEBVG5Gall)
Out[78]: 2.7175831995817057
In [79]: IDs = readtable("G0.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor14 = cor(a[posAi],aHat1[posAi])[1,1]
         reg14 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.noGenotype.ID : correlation = %6.3f\n", corl
         @printf("SSBRJC from Gibbs - G0.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor14
         SSBRJC from Gibbs - G0.noGenotype.ID : correlation = 0.698
         SSBRJC from Gibbs - G0.noGenotype.ID: regression of TBV on GEBV = 0.901
Out[79]: 0.6977506897951109
In [80]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[80]: 0.08719058234997076
```

```
In [81]: IDs = readtable("G1.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor14 = cor(a[posAi],aHat1[posAi])[1,1]
         reg14 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.noGenotype.ID : correlation = %6.3f\n", corl
         @printf("SSBRJC from Gibbs - G1.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor14
         SSBRJC from Gibbs - G1.noGenotype.ID : correlation = 0.750
         SSBRJC from Gibbs - G1.noGenotype.ID: regression of TBV on GEBV = 0.988
Out[81]: 0.7498311054172959
In [82]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[82]: 0.7530640501252632
In [83]: IDs = readtable("G2.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor15 = cor(a[posAi],aHat1[posAi])[1,1]
         reg15 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.noGenotype.ID : correlation = %6.3f\n", cor1!
         @printf("SSBRJC from Gibbs - G2.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor15
         SSBRJC from Gibbs - G2.noGenotype.ID : correlation = 0.747
         SSBRJC from Gibbs - G2.noGenotype.ID : regression of TBV on GEBV = 1.002
Out[83]: 0.7468529677847013
In [84]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[84]: 1.3153196805748804
In [85]: IDs = readtable("G3.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor16 = cor(a[posAi],aHat1[posAi])[1,1]
         reg16 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.noGenotype.ID : correlation = %6.3f\n", cor1
         @printf("SSBRJC from Gibbs - G3.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor16
         SSBRJC from Gibbs - G3.noGenotype.ID : correlation = 0.744
         SSBRJC from Gibbs - G3.noGenotype.ID : regression of TBV on GEBV = 1.008
Out[85]: 0.7435527232682841
In [86]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[86]: 1.800242704685302
```

```
In [87]: IDs = readtable("G4.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor17 = cor(a[posAi],aHat1[posAi])[1,1]
         reg17 = linreg(aHat1[posAi], a[posAi])[2,1]
          @printf("SSBRJC from Gibbs - G4.noGenotype.ID : correlation = %6.3f\n", cor1
          @printf("SSBRJC from Gibbs - G4.noGenotype.ID : regression of TBV on GEBV = '
          JCAll = cor17
         SSBRJC from Gibbs - G4.noGenotype.ID : correlation = 0.731
         SSBRJC from Gibbs - G4.noGenotype.ID : regression of TBV on GEBV = 0.969
Out[87]: 0.7314649047325098
In [88]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[88]: 2.2544998016857436
In [89]: numSSBayes
Out[89]: SSBR.NumSSBayes(54924,45924,9000,40000,39000,1000,150)
In [90]:
         J1 = sortrows(J_Vecs.J1)
Out[90]: 45924x1 Array{Float64,2}:
          -0.989812
          -0.987653
          -0.986861
          -0.986797
          -0.98561
          -0.98559
          -0.985305
          -0.985289
          -0.984954
          -0.98495
          -0.984499
          -0.984489
          -0.984394
           7.41469e-17
           7.44469e-17
           8.57318e-17
           8.88581e-17
           8.89405e-17
           8.91914e-17
           8.93206e-17
           1.07468e-16
           1.10173e-16
           1.11047e-16
           1.1138e-16
           1.11899e-16
```

```
In [91]: J1[J1 .< 0.0,:]
Out[91]: 43918x1 Array{Float64,2}:
          -0.989812
          -0.987653
          -0.986861
          -0.986797
          -0.98561
           -0.98559
          -0.985305
          -0.985289
          -0.984954
          -0.98495
          -0.984499
          -0.984489
           -0.984394
           -1.08312e-35
           -1.08228e-35
          -1.08217e-35
          -8.72663e-36
          -7.2166e-36
          -7.2166e-36
          -7.2166e-36
          -7.2166e-36
          -7.20827e-36
          -5.41087e-36
           -2.54007e-65
           -5.32825e-67
```

```
In [92]: | J1[J1 .> 0.0,:]
Out[92]: 1311x1 Array{Float64,2}:
           1.20145e-51
           1.60056e-51
           1.60241e-51
           1.60241e-51
           2.39963e-51
           3.20106e-51
           4.79926e-51
           4.81291e-51
           1.83882e-50
           6.88311e-50
           1.14395e-49
           2.28789e-49
           2.58203e-49
           7.41469e-17
           7.44469e-17
           8.57318e-17
           8.88581e-17
           8.89405e-17
           8.91914e-17
           8.93206e-17
           1.07468e-16
           1.10173e-16
           1.11047e-16
           1.1138e-16
           1.11899e-16
```