(1) Consideran todas as combineros proseíveis de corte de cada uma das peras de 40 e 20 unidades de largura e calcular os despedícios em cada um dos casas.

Perdan = 4 x 30000 + 9 x 10000

NOTA: As hipódeses pre conduzem a perdas maises que a langura do menor pedido deven ser eliminadas proque vás conduzem à solução osptima

Xij- Anantidede de volo i cortada de acordo com o corte tipo j.

Tipos de corte - Nobo de 18

Perdan = Ø

Person = 3

Tipos de corte - Robo de 20 20 5 5 5 Perdan = \$ X24 Perdan = 3 222 Perden = 1 X23 + Perdan = 1 5

45

Sefam as tariaveir S1, S2, S3, o comprimento extre, apris o corte, de volos de 5,7,9 produzidos que devido à escolhe de um determinado tipo de corte por implicon um excedente um releção à encomende.

Nestricon,

O comprimento de voto de largura i, praguer pue sep o tipo de certe en continação adoptodos, dere ser ignal ao valor de encomendo.

Largenera 5 -
$$2x_{14} + 4x_{24} + 2x_{22} + 2x_{23} + x_{24} - S_1 = 1000$$

Largenera 7 - $x_{12} + x_{22} + 2x_{24} + x_{25}$ - $S_2 = 36000$
Largenera 9 - $x_{13} + x_{23} + x_{25} + 2x_{26}$ - $S_3 = 20000$

função objectivo

(morante o tipo de corte adoptado (com respectivos despendícios) a os excedentes de voto de cade um dos tipos, i remos ter as perden a minimizar:

min
$$3x_{12} + x_{13} + 3x_{22} + x_{23} + x_{24} + 4x_{25} + 2x_{26} + 5S_1 + 7S_2 + 9S_3$$

	211	212	213	\varkappa_{2} ,	70 ₂₂	\varkappa_{z_3}	224	2 ₂₅	226	S1	S ₂	S_3	
!	2	0	Ö	4	2	2	1	0	0	-1	0	0	10000
	0	1	0	0	1	0	2	1	Ô	0	- 1	0	30000
	0	0		0	0	1	0		2	0	0 .	-1	20000
	0	3	1	0	3	1	1	4	2	5	7	9	0

Quadro inivid

	211	2012	2213	221	222	Ж ₂₃	Z ₂₄	æ ₂₅	Xze	= 54	Sz	S ₃	
224	2	0	0	4	2	2	1	0	0	-1	٥	0	10000
×25	-4	4	0	-8	-3	_4	0	1	0	2	- 1	0	10000
226	2	-1/2	1/2	Lt	3/2	5/2	0	O	1	-1	1/2	-1/2	10000
(************************************	10	0	0	20	10	10	0/	0	0	0	10	10	60000

Anaha firel

Policie o optime - Verificação de resultados											
	Quant	5	1 7	9	Trim boses						
254	90000	10000	20000	Ø	10000						
225	10000	Ø	10000	10000	40000						
2-26	5000	ø	Ø	10000	1000						
Amenggymeder (sy danski cleaklanie i Cyb	2	10000	30000	20000	60000						

Mota: Existen outras soluções abtenutivas con a nume prantidade de desperticios.