Automne 2016

Série 5

Exercice 1. Soit G un groupe fini ordre N.

1. Montrer que tout element g de G verifie

$$h^N = e_G.$$

Exercice 2. Soit $\phi: G \hookrightarrow H$ un morphisme de groupes.

1. On suppose ϕ injectif. Montrer que pour tout $g \in G$

$$\operatorname{ord}(g) = \operatorname{ord}(\phi(g)).$$

2. Etablir une relation de divisibilite entre $\operatorname{ord}(g)$ et $\operatorname{ord}(\phi(g))$ si ϕ n'est pas suppose injectif.

Exercice 3 (Le Theoreme des restes chinois). Soient m et n des entiers. Dans cet exercice on compare le groupe $\mathbb{Z}/mn\mathbb{Z}$ avec le groupe produit $\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ (equippe de la loi de groupe produit definie par

$$(a,b) \oplus' (a',b') = (a \oplus a',b \oplus b')$$

ou les deux derniers \oplus sont les lois de groupes usuelles sur $\mathbb{Z}/m\mathbb{Z}$ et $\mathbb{Z}/n\mathbb{Z}$ respectivement.

- 1. Quel est l'ordre de l'element (1,1) dans $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$?
- 2. En deduire que $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$ est isomorphe a $\mathbb{Z}/15\mathbb{Z}$.
- 3. Montrer que en revanche $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ n'est pas isomorphe a $\mathbb{Z}/4\mathbb{Z}$.
- 4. On suppose m, n generaux. Montrer que l'ordre de l'element (1, 1) dans $\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ divise le ppmc [m, n].
- 5. Montrer que si (m, n) = 1 (m et n sont premier entre eux) alors $\operatorname{ord}(1, 1) = mn$. Par exemple on pourra montrer que $k(1, 1) \neq (0, 0)$ pour tout 0 < k < mn.
- 6. En deduire que $\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ est isomorphe a $\mathbb{Z}/mn\mathbb{Z}$.

Exercice 4. Soit G un groupe fini d'ordre $p \ge 2$ un nombre premier.

- 1. Montrer que pour tout $g \in G$, $\operatorname{ord}(g) = 1$ ou $\operatorname{ord}(g) = p$.
- 2. En deduire que $G \simeq \mathbb{Z}/p\mathbb{Z}$.

Exercice 5. Soit G un groupe cyclique. On va montrer que tout sous-groupe H de G est cyclique.

- 1. Soit $\phi: G' \to G$ un morphisme de groupe et $H \subset G$ un sous-groupe. Montrer que la preimage $\phi^{-1}(H) \subset G'$ est un sous-groupe de G'.
- 2. Supposons G cyclique de generateur $g:G=g^{\mathbb{Z}}$. Soit $H\subset G$ un sous-groupe; en considerant l'application exponentielle

$$\exp_a: \mathbb{Z} \to G$$

montrer que H est cyclique (on montrera que H est engendre par un element).

Exercice 6. Soit $G = \langle g \rangle$ un groupe cyclique d'ordre $N \geqslant 1$ et de generateur g.

- 1. Soit $n \in \mathbb{Z}$ montrer que g^n est d'ordre N/(N,n) (on commencera par montrer que $\operatorname{ord}(g)|N/(N,n)$).
- 2. Montrer que les generateurs de G (les $g' \in G$ tels que $(g')^{\mathbb{Z}} = G$) sont exactement les g^n avec $0 \leq n \leq N-1$ et (n,N)=1.
- 3. Montrer que l'application

$$\{d|N\} \to (g^d)^{\mathbb{Z}}$$

est une bijection entre l'ensemble des diviseurs de N et l'ensemble des sous-groupes de G.