MLE and Binary Choice

L(
$$D \mid T_1, ..., T_k$$
) = $A(D \mid T_1) \cdot ... \cdot A(D \mid T_k)$
log L($B \mid T_1, ..., T_k$) = $E \mid D \mid A(D \mid T_i)$

$$L(p|h,m) = \frac{n!}{m!(n-m)!}p^{m}(1-p)^{n-k}$$

$$\log L(p|n,n) = \log \frac{n!}{m!(h-m)!} + n \log p$$

$$+(n-m) \log (1-p)$$

$$\frac{dl(p|n,m)}{dp} = 0 + \frac{m}{p} + \frac{n-m}{|-p|} = 0$$

$$m(1-p) = (h-m)p$$

$$\frac{d^2 l}{dp^2} = -\frac{h}{p^2} - \frac{n-m}{(1-p)^2} < j$$

$$= > \frac{h}{p} = \frac{h}{n} - \frac{h}{n} = \frac{h}{n}$$

$$P(y=1) = f(z;) = \frac{1}{1+e^{-z}};$$

$$\int_{S_1} g = -g$$

$$\int_{S_2} g = 0.5$$
Intervetation: $\chi = 15$

a)
$$P(y_{i=1}) = \frac{1}{1 + e^{-(-9 + 0.5 \cdot (5))}} = 6.18$$

b)
$$\frac{d p(y_{i=1})}{dx} = \frac{e^{-(\beta_{i} + \beta_{i} \cdot x)}}{(1+e^{-(\beta_{i} + \beta_{i} \cdot x)})^{2}} \cdot \beta_{2}$$

$$\frac{d p(y_{i}=1)}{dx} = \frac{e^{-(-5+0.5\cdot15)}}{(1+e^{-(-9+0.5\cdot17)})^{2} \cdot 0.5} = \frac{e^{-(-5+0.5\cdot17)}}{(1+e^{-(-9+0.5\cdot17)})^{2} \cdot 0.5} = \frac{e^{-(-5+0.5\cdot17)}}{(1+e^{-(-9+0.5\cdot17)})^{2} \cdot 0.5} = \frac{e^{-(-5+0.5\cdot17)}}{(1+e^{-(-9+0.5\cdot17)})^{2} \cdot 0.5} = \frac{e^{-(-5+0.5\cdot15)}}{(1+e^{-(-9+0.5\cdot17)})^{2} \cdot 0.5} = \frac{e^{-(-5+0.5\cdot17)}}{(1+e^{-(-9+0.5\cdot17)})^{2} \cdot 0.5} = \frac{e^{-(-5+0.5\cdot17)}}{(1+e^{-(-9+0.5\cdot17)})^{2} \cdot 0.5} = \frac{e^{-(-5+0.5\cdot15)}}{(1+e^{-(-9+0.5\cdot17)})^{2} \cdot 0.5} = \frac{e^{-(-5+0.5\cdot17)}}{(1+e^{-(-9+0.5\cdot17)})^{2} \cdot 0.5} = \frac{e^{-(-9+0.5\cdot17)}}{(1+e^{-(-9+0.5\cdot17)})^{2} \cdot 0.5} = \frac{e^{-(-9+0.5\cdot17)}}{(1+e$$

$$\frac{1}{\sqrt{1 + e^2}} = \frac{1}{\sqrt{1 +$$

$$LR = -2(ehlp - ehlup) \sim \chi_q^2$$

$$q - # lestinions$$

ú)	Pseudo R2 (McFadden R2)
	Psendo R2 = 1 - la L
	C likelihood
	for nould
	that only
	wateins coastant
в,	fraction of correctly predicted
	outcomes
೬)	correlation between entermes and
	predicted probab, litries

		Model 1	Mull 2	Models
	Χ	_	0,49	0, 49
	gendn	_	_	0,15
	black	_		- 6,52
	Constart	- 0,32	- I, OZ	— 0, g
	ly L	-68	-62	-61
	Iscado P2	Ø	0,09	91
a) b)			= 40g	
- ,	<u>2 (</u>	-68+61) 5>. xorit-	= 14 ~ X	3

c) Le =
$$-2(-62+61)-2 \sim \chi_2^2$$
 $\lambda = 5$? χ wit = 5,05

 $= 2$ lb is not rejected

a) $\chi = 1,4$
 $\chi = 1,4$

$$\frac{\partial \mathcal{V}(\mathcal{Y}_{i}=1)}{\partial x_{j}} = \frac{\mathcal{V}'(\mathcal{Z}_{i}) \cdot \beta_{j}}{\mathcal{J}_{i}} = \frac{\mathcal{V}'(\mathcal{Z}_{i}) \cdot \beta_$$