TECNOLOGÍA DE COMPUTADORES. CURSO 2021/22. PRÁCTICA Nº 5: DISEÑO DE SECUENCIALES.

Días 29 y 30 de noviembre y 1 y 2 de diciembre.

Dado el diagrama de estados de la Figura adjunta

Diseñar el circuito secuencial correspondiente usando un biestable T para el bit más significativo (T_2) , un biestable D para el bit intermedio (D_1) , y un biestable JK para el bit menos significativo (J_0K_0) . Implementar las funciones de excitación de los biestables de la siguiente forma: T_2 con puertas lógicas, D_1 a criterio del alumno y J_0K_0 DEC 4x16 con salidas activas a nivel alto. La salida S debe implementarse con un MUX 4x1. Construir el circuito con Logisim y simularlo.

NOTA 1: La codificación de estados será la dada en la Tabla adjunta:

	Q_2	Q_1	\mathbf{Q}_{0}
\mathbf{q}_0	0	0	0
q_1	0	0	1
q_2	0	1	0
q_3	0	1	1
q ₀ q ₁ q ₂ q ₃ q ₄ q ₅	1	0	0
q 5	1	0	1

NOTA 2: Colocar tres LEDs de color naranja, dibujados horizontalmente, correspondientes a las salidas de los tres biestables, en el orden $Q_2Q_1Q_0$, para visualizar fácilmente el estado del circuito y un LED de color verde para visualizar la salida S. Utilizar un display para ver el número correspondiente (usar $Hex\ Digit\ Display$).

TECNOLOGÍA DE COMPUTADORES. CURSO 2021/22. PRÁCTICA Nº 5: DISEÑO DE SECUENCIALES.

Días 29 y 30 de noviembre y 1 y 2 de diciembre.

RELLENA LA SIGUIENTE TABLA:

E	$Q_2(t)$	Q ₁ (t)	$Q_0(t)$	$Q_2(t+1)$	$Q_1(t+1)$	$Q_0(t+1)$	T_2	\mathbf{D}_1	J_0	K ₀	S
0	0	0	0	1	0	1	1	0	1	X	1
0	0	0	1	0	0	0	0	0	X	1	1
0	0	1	0	0	0	1	0	0	1	X	0
0	0	1	1	1	0	0	1	0	X	1	0
0	1	0	0	0	1	0	1	1	0	X	0
0	1	0	1	0	1	1	1	1	X	0	0
0	1	1	0	X	X	X	X	X	X	X	X
0	1	1	1	X	X	X	X	X	X	X	X
1	0	0	0	0	0	1	0	0	1	X	0
1	0	0	1	1	0	0	1	0	X	1	1
1	0	1	0	0	0	0	0	0	0	X	1
1	0	1	1	1	0	1	1	0	X	0	1
1	1	0	0	0	1	1	1	1	1	X	1
1	1	0	1	0	1	0	1	1	X	1	0
1	1	1	0	X	X	X	X	X	X	X	X
1	1	1	1	X	X	X	X	X	X	X	X

$$S(0,0) = Q'_1$$

$$S(0,1) = 0$$

$$S(1,0) = Q_1 + Q_0$$

$$S(1,1) = Q_0$$

$$J_0 = \sum m(0,2,8,12)$$
 $D_1 = Q_2$

$$K_0 = \sum m(1,3,9,13)$$
 $T_2 = Q_2 + E' \cdot Q'_1 \cdot Q'_0 + E \cdot Q_0 + Q_1 \cdot Q_0$

Comprobar que desde q₀ con entrada 0 la secuencia de estados es:

$$q_0 \rightarrow q_5 \rightarrow q_3 \rightarrow q_4 \rightarrow q_2 \rightarrow q_1 \rightarrow q_0$$

y que desde q₀ con entrada 1 la secuencia de estados es:

$$q_0 \rightarrow q_1 \rightarrow q_4 \rightarrow q_3 \rightarrow q_5 \rightarrow q_2 \rightarrow q_0$$

TECNOLOGÍA DE COMPUTADORES. CURSO 2021/22. PRÁCTICA Nº 5: DISEÑO DE SECUENCIALES.

Días 29 y 30 de noviembre y 1 y 2 de diciembre.

COMPROBACIÓN DE LAS SALIDAS EN FUNCIÓN DE LAS ENTRADAS Y EL ESTADO

TECNOLOGÍA DE COMPUTADORES. CURSO 2021/22. PRÁCTICA Nº 5: DISEÑO DE SECUENCIALES.

Días 29 y 30 de noviembre y 1 y 2 de diciembre.

EVOLUCIÓN DE ESTADOS CON E=0

EVOLUCIÓN DE ESTADOS CON E=1

