

All-in-one RISC-V Al Compute Engine

Roger Espasa, CEO

In Order Core

000 Core

Old-Style Al Architecture

- Three Software Stacks
- DMA-intensive programming
- High Latency & Power
- SRAM/Cache/Data Replication
- Unbalanced Scaling
- Not Al Future Proof

CPUs

NPU

All-in-one: merging Core, NPU, GPU

- Single software stack
- DMA-free programming
- Zero Latency & Low Power
- Optimized/Shared Cache
- Balanced Scaling
- Al Future-Proof

All-In-One Block Diagram

Single Software stack: Matmul in 8 instructions

```
# C tile pre-loaded into v16-v31
loop: vsetvli zero, t4, e16, m2, ta, ma
     vlrs16 v8, (a0), t1
     addi a0, a0, 32
     vsetvli zero, t5, e16, m8, ta, ma
     vlrs16 v0, (a1), t2
     add a1, a1, t3
     vfmxmacc v16, v8, v0
          a1, t6, loop
     bltu
# Store C tile (v16-v31) back to memory
```


Our Customers Al Concerns

- What Software stack do I get with your IP?
- Can I run today's AI Models with your IP?
 - Transformers, specifically?
- Can I easily scale your solution?
- Can I run future Al Models with your IP?
 - I am buying IP today
 - I will be entering the market in 3+ years
 - How do I know the IP will handle the "3-years-from-now" models?

Concern #1: What Software stack do I get with the IP?

Semidynamics AI SW Stack

ONNX RT Port to RISC-V + Vector + Tensor

Semidynamics ONNX RT port

- "Execution Provider" added to ONNX RT
- Semidynamics has optimized the key ONNX operators...
 - ...to use its Tensor unit (for Matrix Multiply & Convolution)
 - ...to use its Vector unit (for Activations like Sigmoid, ...)

Concern #2: Can I run today's transformers with your IP?

Running Transformers / LLMs on All-In-One solution

Llama-2, FP16, 7B Parameter

We'll use our 1 TOPS₈ T1 Tensor Unit...

/			
T1	T2	T4	T 8
512	1024	2048	4096
No	No	64KB	128KB
1	2	4	8
0.5	1	2	4
0.5	1	2	4
0.5	1	2	4
	512 No 1 0.5 0.5	512 1024 No No 1 2 0.5 1 0.5 1	512 1024 2048 No No 64KB 1 2 4 0.5 1 2 0.5 1 2

We'll use our 128 GOPS₈ V128 Vector Unit...

Product	V128	V256	V512
FMACs	8	16	32
INT8 GOPS/GHz	128	256	512
INT16 GOPS/GHz	64	128	256
BF16 GOPS/GHz	64	128	256
FP16 GOPS/GHz	64	128	256
FP32 GOPS/GHz	32	64	128
FP64 GOPS/GHz	16	32	64

Operators	Scalar	T1	T1+V128
Matmul			
Activations			
Concat			
Sigmoid			
ScatterND			
Div			
Mul			
Slice			
Ехр			
Other			
Speedup	1X		

Operators	Scalar	T1	T1+V128
Matmul	99%		
Activations	1%		
Concat	0.11%		
Sigmoid	0.09%		
ScatterND	0.09%		
Div	0.06%		
Mul	0.03%		
Slice	0.03%		
Ехр	0.03%		
Other	0.54%		
Speedup	1X		

Operators	Scalar	T1	T1+V128
Matmul	99%	20%	
Activations	1%	80%	
Concat	0.11%	19%	
Sigmoid	0.09%	16%	
ScatterND	0.09%	15%	
Div	0.06%	9.5%	
Mul	0.03%	5.7%	
Slice	0.03%	5.0%	
Ехр	0.03%	4.4%	
Other	0.54%	5.4%	
Speedup	1X	170X	

Operators	Scalar	T1	T1+V128
Matmul	99%	20%	55%
Activations	1%	80%	45%
Concat	0.11%	19%	17%
Sigmoid	0.09%	16%	2%
ScatterND	0.09%	15%	17%
Div	0.06%	9.5%	2%
Mul	0.03%	5.7%	2.4%
Slice	0.03%	5.0%	1.3%
Ехр	0.03%	4.4%	0.5%
Other	0.54%	5.4%	2.8%
Speedup	1X	170X	470X

Concern #4: Can I easily scale your solution?

Sacling up All-in-one solution

How do you scale up further?

But... where is your ONNX RT SW running?

But... where is your ONNX RT SW running?

Concern #3: Can I run future Al models with your IP?

All-in-one is future-proof

Running Future Models

- Vector and Tensor controlled by RISC-V INSTRUCTIONS
- RISC-V core has full "if-thenelse" and "recursion" capability
 - i.e., Turing-complete
- If the model can be expressed in ONNX, we can run it!

Our Customers Al Concerns - Solved

- What Software stack do I get with the IP?
 - ONNX RT optimized for Semidynamics IP
- Can I run today's AI Models with current IP?
 - YES, with All-in-One-IP
- Can I run future Al Models with current IP?
 - YES, with All-in-One-IP

Let's build the AI future together

semi**dynamic^s**

Thank you!

