Association Rules Apriori Algorithm

- Machine Learning Overview
- Sales Transaction and Association Rules
- Aprori Algorithm
- Example

Machine Learning

- Common ground of presented methods
 - Statistical Learning Methods (frequency/similarity based)
- Distinction
 - Data are represented in a vector space or symbolically
 - Supervised learning or unsupervised
 - Scalable, works with very large data or not

Extracting Rules from Examples

- Apriori Algorithm
- FP-Growth
 - Large quantities of stored data (symbolic)
 - Large means often extremely large, and it is important that the algorithm gets scalable
 - Unsupervised learning

Cluster Analysis

- K-Means
- EM (Expectation Maximization) COBWEB Clustering
 - Assesment
- KNN (k Nearest Neighbor)
 - Data are represented in a vector space
 - Unsupervised learning

Uncertain knowledge

- Naive Bayes
- Belief Networks (Bayesian Networks)
 - Main tool is the probability theory, which assigns to each item numerical degree of belief between 0 and 1
 - Learning from Observation (symbolic data)
 - Unsupervised Learning

Decision Trees

- ID3
- C4.5 cart
 - Learning from Observation (symbolic data)
 - Unsupervised Learning

Supervised Classifiers - artificial Neural Networks

- Feed forward Networks
 - with one layer: Perceptron
 - With several layers: Backpropagation Algorithm
- RBF Networks
- Support Vector Machines
 - Data are represented in a vector space
 - Supervised learning

Prediction

- Linear Regression
- Logistic Regression

Sales Transaction Table

- We would like to perform a basket analysis of the set of products in a single transaction
- Discovering for example, that a customer who buys shoes is likely to buy socks

 $Shoes \Rightarrow Socks$

TX#	CUST#	TIMESTAMP	PRODUCT
TX1	C1	d1	Shoes
	C1	d1	Socks
TX1	C1	d1	Tie
TX2	C2	d2	Shoes
TX2	C2	d2	Socks
TX2	C2	d2	Tie
TX2	C2		Belt
TX2	C2	d2	Shirt
TX3	C3	d2	Shoes
TX3	C3	d2	Tie
TX4	C2		Shoes
TX4	C2		Socks
TX4	C2	d3	Belt
	TX1 TX1 TX1 TX2 TX2 TX2 TX2 TX2 TX3 TX3 TX4 TX4	TX1 C1 TX1 C1 TX1 C1 TX1 C1 TX2 C2 TX2 C2 TX2 C2 TX2 C2 TX3 C3 TX3 C3 TX4 C2 TX4 C2 TX4 C2	TX1 C1 d1 TX1 C1 d1 TX1 C1 d1 TX2 C2 d2 TX3 C3 d2 TX3 C3 d2 TX4 C2 d3 TX4 C2 d3 TX4 C2 d3

Transactional Database

- The set of all sales transactions is called the population
 - We represent the transactions in one record per transaction
 - The transaction are represented by a data tuple

TX1	Shoes,Socks,Tie
TX2	Shoes, Socks, Tie, Belt, Shirt
TX3	Shoes,Tie
TX4	Shoes,Socks,Belt

$$Socks \Rightarrow Tie$$

- Sock is the rule antecedent
- Tie is the rule consequent

Support and Confidence

- Any given association rule has a support level and a confidence level
- Support it the percentage of the population which satisfies the rule
- If the percentage of the population in which the antendent is satisfied is *s*, then the **confidence** is that percentage in which the consequent is also satisfied

Transactional Database

 $Socks \Rightarrow Tie$

■ Support is 50% (2/4)

■ Confidence is 66.67% (2/3)

TX1	Shoes, Socks, Tie
TX2	Shoes, Socks, Tie , Belt, Shirt
TX3	Shoes,Tie
TX4	Shoes, Socks, Belt

Apriori Algorithm

- Mining for associations among items in a large database of sales transaction is an important database mining function
- For example, the information that a customer who purchases a keyboard also tends to buy a mouse at the same time is represented in association rule below:
- Keyboard ⇒Mouse
- [support = 6%, confidence = 70%]

Association Rules

- Based on the types of values, the association rules can be classified into two categories:
 Boolean Association Rules and Quantitative Association Rules
- Boolean Association Rule:

Quantitative Association Rule:

$$(Age = 26 ...30) \Rightarrow (Cars = 1, 2)$$

[support 3%, confidence = 36%]

Minimum Support threshold

The support of an association pattern is the percentage of task-relevant data transactions for which the pattern is true

$$A \Rightarrow B$$

$$support(A \Rightarrow B) = P(A \cup B)$$

$$\text{support}(A \Rightarrow B) = \frac{\#_tuples_containing_both_A_and_B}{total_\#_of_tuples}$$

Minimum Confidence Threshold

 Confidence is defined as the measure of certainty or trustworthiness associated with each discovered pattern

$$A \Rightarrow B$$

$$confidence(A \Rightarrow B) = P(B \mid A)$$

• The probability of B given that all we know is A

$$confidence(A \Rightarrow B) = \frac{\#_tuples_containing_both_A_and_B}{\#_tuples_containing_A}$$

Itemset

- A set of items is referred to as itemset
- An itemset containing k items is calledk-itemset
- An itemset can be seen as a conjunction of items (or a presdcate)

Frequent Itemset

- Suppose min_sup is the minimum support threshold
- An itemset satisfies minimum support if the occurrence frequency of the itemset is greater or equal to min_sup
- If an itemset satisfies minimum support, then it is a frequent itemset

Strong Rules

 Rules that satisfy both a minimum support threshold and a minimum confidence threshold are called strong

Association Rule Mining

- Find all frequent itemsets
- Generate strong association rules from the frequent itemsets
- Apriori algorithm is mining frequent itemsets for Boolean associations rules

Apriori Algorithm

- Lelel-wise search
 - k-itemsets (itensets with k items) are used to explore (k+1)- itemsets from transactional databases for Boolean association rules
 - First, the set of frequent 1-itemsets is found (denoted L₁)
 - L₁ is used to find L₂, the set of frquent 2-itemsets
 - L₂ is used to find L₃, and so on, until no frequent k-itemsets can be found
- Generate strong association rules from the frequent itemsets

- The name of the algorithm is based on the fact that the algorithm uses prior knowledge of frequent items
- Employs an iterative approach known as levelwise search, where k-items are used to explore k+1 items

Apriori Property

- Apriori property is used to reduce the search space
- Apriori property: All nonempty subset of frequent items must be also frequent
 - Anti-monotone in the sense that if a set cannot pass a test, all its supper sets will fail the same test as well

Apriori Property

- Reducing the search space to avoid finding of each L_k requires one full scan of the database (L_k set of frequent k-itemsets)
- If an itemset I does not satisfy the minimum support threshold, min_sup, the I is not frequent, P(I) < min_sup</p>
- If an item A is added to the itemset I, then the resulting itemset cannot occur more frequent than I, therfor I ∪ A is not frequent, P(I ∪ A) < min_sup</p>

Scalable Methods for Mining Frequent Patterns

- The downward closure property of frequent patterns
 - Any subset of a frequent itemset must be frequent
 - If {beer, diaper, nuts} is frequent, so is {beer, diaper}
 - i.e., every transaction having {beer, diaper, nuts} also contains {beer, diaper}
- Scalable mining methods: Three major approaches
 - Apriori (Agrawal & Srikant@VLDB'94)
 - Freq. pattern growth (FPgrowth—Han, Pei & Yin @SIGMOD'00)
 - Vertical data format approach (Charm—Zaki & Hsiao @SDM'02)

Algorithm

- Scan the (entire) transaction database to get the support S of each 1-itemset, compare S with min_sup, and get a set of frequent 1-itemsets, L₁
- Use L_{k-1} join L_{k-1} to generate a set of candidate kitemsets. Use Apriori property to prune the unfreqset k-itemset
- Scan the transaction database to get the support S of each candidate k-itemset in the final set, compare S with min_sup, and get a set of frequent k-itemsets, L_k
- 4. Is the candidate set empty, if not goto 2

- 5 For each frequent itemset *I*, generate all nonempty subsets of *I*
- For every nonempty subset s of l, output the rule $s \Rightarrow (I s)$ if its confidence $C > min_conf$
 - $I=\{A1,A2,A5\}$ $A1 \land A2 \Rightarrow A5$ $A1 \land A5 \Rightarrow A2$ $A2 \land A5 \Rightarrow A1$ $A1 \Rightarrow A2 \land A5$ $A2 \Rightarrow A1 \land A5$ $A5 \Rightarrow A1 \land A2$

Five transactions from a supermarket TID List of Items 1 Beer, Diaper, Baby Powder, Bread, Umbrella 2 Diaper, Baby Powder 3 Beer, Diaper, Milk 4 Diaper, Beer, Detergent 5 Beer, Milk, Coca-Cola (diaper=fralda)

Step 5

■ min_sup=40% min_conf=70%

Item	Support(A,B)	Suport A	Confidence
Beer, Diaper	60%	80%	75%
Beer, Milk	40%	80%	50%
Diaper,Baby Powder	40%	80%	50%
Diaper,Beer	60%	80%	75%
Milk,Beer	40%	40%	100%
Baby Powder, Diaper	40%	40%	100%

Results

 $Beer \Rightarrow Diaper$

support 60%, confidence 70%

 $Diaper \Rightarrow Beer$ ■ support 60%, confidence 70%

 $Milk \Rightarrow Beer$

■ support 40%, confidence 100%

 $Baby_Powder \Rightarrow Diaper$

support 40%, confidence 70%

Interpretation

- Some results are belivable, like Baby Powder→ Diaper
- Some rules need aditional analysis, like Milk → Beer
- Some rules are unbelivable, like Diaper → Beer
- This example could contain unreal results because of the small data

- Machine Learning Overview
- Sales Transaction and Association Rules
- Aprori Algorithm
- Example

