Assignment no 4

```
In [ ]: AIM:To learn about
             1. Linear Regression : Univariate and Multivariate
             2. Least Square Method for Linear Regression
             3. Measuring Performance of Linear Regression
             4. Example of Linear Regression
             5. Training data set and Testing data set:
In [68]: import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
 In [2]: x=np.array([95,85,80,70,60])
         y=np.array([85,95,70,65,70])
 In [4]: model= np.polyfit(x, y, 1)
         model
 Out[4]: array([ 0.64383562, 26.78082192])
 In [5]: predict = np.poly1d(model)
         predict(65)
 Out[5]: 68.63013698630135
 In [6]: y_pred= predict(x)
         y_pred
 Out[6]: array([87.94520548, 81.50684932, 78.28767123, 71.84931507, 65.4109589])
 In [7]: from sklearn.metrics import r2_score
         r2_score(y, y_pred)
 Out[7]: 0.4803218090889323
In [16]: y_{line} = model[1] + model[0]* x
         plt.plot(x, y_line, c = 'r')
         plt.scatter(x, y_pred)
         plt.scatter(x,y,c='r')
```

Out[16]: <matplotlib.collections.PathCollection at 0x27ac8e811f0>

In [13]: from sklearn.datasets import fetch_openml
housing = fetch_openml(name="house_prices", as_frame=True)

In [14]: data=pd.DataFrame(housing.data)

In [15]: data.columns = housing.feature_names
 data.head()

Out[15]:		Id	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandCon
	0	1	60	RL	65.0	8450	Pave	NaN	Reg	
	1	2	20	RL	80.0	9600	Pave	NaN	Reg	
	2	3	60	RL	68.0	11250	Pave	NaN	IR1	
	3	4	70	RL	60.0	9550	Pave	NaN	IR1	
	4	5	60	RL	84.0	14260	Pave	NaN	IR1	

5 rows × 80 columns

In [1]: from sklearn.datasets import fetch_openml

In [1]: from sklearn.datasets import fetch_openm1
 from sklearn.datasets import fetch_california_housing
 housing = fetch_california_housing()
 housing

```
Out[1]: {'data': array([[
                                            41.
                              8.3252
                                                            6.98412698, ...,
                                                                                 2.555555
         6,
                                , -122.23
                     37.88
                                               1,
                     8.3014
                                    21.
                                                     6.23813708, ...,
                                                                         2.10984183,
                     37.86
                                  -122.22
                                               ],
                     7.2574
                                    52.
                                                     8.28813559, ...,
                                                                         2.80225989,
                     37.85
                                , -122.24
                                               ],
                    1.7
                                    17.
                                                     5.20554273, ...,
                  Γ
                                                                         2.3256351,
                     39.43
                                , -121.22
                                               ],
                      1.8672
                                    18.
                                                     5.32951289, ...,
                                                                         2.12320917,
                     39.43
                                  -121.32
                                               ],
                      2.3886
                                    16.
                                                     5.25471698, ...,
                                                                         2.61698113,
                     39.37
                                 -121.24
                                               ]]),
           'target': array([4.526, 3.585, 3.521, ..., 0.923, 0.847, 0.894]),
           'frame': None,
           'target_names': ['MedHouseVal'],
           'feature_names': ['MedInc',
            'HouseAge',
            'AveRooms',
            'AveBedrms',
            'Population',
            'AveOccup',
            'Latitude'
            'Longitude'],
           'DESCR': '.. _california_housing_dataset:\n\nCalifornia Housing dataset\n-----
          -----\n\n**Data Set Characteristics:**\n\n:Number of Instances:
         20640\n\n:Number of Attributes: 8 numeric, predictive attributes and the target
         \n\n:Attribute Information:\n

    MedInc

                                                           median income in block group\n
                        median house age in block group\n

    AveRooms

          - HouseAge
                                                                           average nu mber
         of rooms per household\n - AveBedrms average number of bedrooms per household\n
         - Population
                          block group population\n
                                                       - AveOccup
                                                                        aver age number of
         household members\n
                                 - Latitude
                                                 block group latitude\n
                          block group longitude\n\n:Missing Attribute Values: None\n\nThi
         s dataset was obtained from the StatLib repository.\nhttps://www.dcc.fc.up.pt/~
         ltorgo/Regression/cal housing.html\n\nThe target variable is the median house v
         alue for California districts,\nexpressed in hundreds of thousands of dollars
         ($100,000).\n\nThis dataset was derived from the 1990 U.S. census, using one ro
         w per census\nblock group. A block group is the smallest geographical unit for
         which the U.S.\nCensus Bureau publishes sample data (a block group typically ha
         s a population\nof 600 to 3,000 people).\nA household is a group of people re
         siding within a home. Since the average\nnumber of rooms and bedrooms in this d
         ataset are provided per household, these\ncolumns may take surprisingly large v
         alues for block groups with few households\nand many empty houses, such as vaca
         tion resorts.\n\nIt can be downloaded/loaded using the\n:func:`sklearn.dataset
         s.fetch_california_housing` function.\n\n.. rubric:: References\n\n- Pace, R. K
         elley and Ronald Barry, Sparse Spatial Autoregressions,\n Statistics and Proba
         bility Letters, 33 (1997) 291-297\n'}
In [13]:
         import pandas as pd
```

```
df=pd*DataFrame(housing.data,columns=housing.feature_names)
df
```

10.207111								assi	и							
Out[13]:		Me	dlnc	House A	\ge	AveRoo	oms	AveBed	rms	Populat	ion	AveOc	cup	Latitud	l ek	L
		0 8.	3252	•	41.0	6.984	1127	1.023	3810	3	22.0	2.555	556	37.	88	
		1 8.	3014	:	21.0	6.238	3137	0.97	1880	24	01.0	2.109	842	37.	86	
		2 7.	2574		52.0	8.288	3136	1.073	3446	4	96.0	2.802	260	37.	85	
		3 5.	6431	!	52.0	5.817	352	1.073	3059	5	58.0	2.547	945	37.	85	
		4 3.	8462		52.0	6.281	853	1.08	1081	5	65.0	2.181	467	37.	85	
		•••			•••		•••									
	206	35 1.	5603	:	25.0	5.045	455	1.133	3333	8	45.0	2.560	606	39.	48	
	206	36 2.	5568		18.0	6.114	1035	1.315	5789	3	56.0	3.122	807	39.	49	
	206	537 1.	7000		17.0	5.205	5543	1.120	0092	10	07.0	2.325	635	39.	43	
	206	538 1.	8672		18.0	5.329	9513	1.17	1920	7	41.0	2.123	209	39.	43	
	206	539 2.	3886		16.0	5.254	1717	1.162	2264	13	87.0	2.616	981	39.	37	
	2064	10 rows	× 8 co	olumns												
	С														С	
In [15]:	df.l	nead()														
Out[15]:		MedInc	Ho	useAge	Ave	Rooms	Ave	Bedrms	Pop	oulation	Ave	Occup	Latit	ude	Longi	it
	0	8.3252		41.0	6.	984127		1.023810		322.0	2.5	55556	37	7.88	-1	2
	1	8.3014		21.0	6.	238137	(0.971880		2401.0	2.1	109842	37	7.86	-1	2
	2	7.2574		52.0	8.	288136		1.073446		496.0	2.8	302260	37	7.85	-1	2
	3	5.6431		52.0	5.	817352	•	1.073059		558.0	2.5	547945	37	7.85	-1	2
	4	3.8462		52.0	6.	281853		1.081081		565.0	2.1	181467	37	7.85	-1	2
	С														С	

In [19]: df['PRICE'] = housing.target df

Out[19]:		MedInc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	L
	0	8.3252	41.0	6.984127	1.023810	322.0	2.555556	37.88	
	1	8.3014	21.0	6.238137	0.971880	2401.0	2.109842	37.86	
	2	7.2574	52.0	8.288136	1.073446	496.0	2.802260	37.85	
	3	5.6431	52.0	5.817352	1.073059	558.0	2.547945	37.85	
	4	3.8462	52.0	6.281853	1.081081	565.0	2.181467	37.85	
	20635	1.5603	25.0	5.045455	1.133333	845.0	2.560606	39.48	
	20636	2.5568	18.0	6.114035	1.315789	356.0	3.122807	39.49	
	20637	1.7000	17.0	5.205543	1.120092	1007.0	2.325635	39.43	
	20638	1.8672	18.0	5.329513	1.171920	741.0	2.123209	39.43	
	20639	2.3886	16.0	5.254717	1.162264	1387.0	2.616981	39.37	

20640 rows × 9 columns

```
In [21]: df.isnull().sum()
Out[21]: MedInc
                         0
          HouseAge
                         0
          AveRooms
                         0
          AveBedrms
                         0
          Population
                         0
          Ave0ccup
                         0
          Latitude
                         0
          Longitude
          PRICE
                         0
          dtype: int64
In [23]: x = df.drop(['PRICE'], axis = 1)
          y = df['PRICE']
In [25]:
```

Out[25]:		MedInc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude L
	0	8.3252	41.0	6.984127	1.023810	322.0	2.555556	37.88
	1	8.3014	21.0	6.238137	0.971880	2401.0	2.109842	37.86
	2	7.2574	52.0	8.288136	1.073446	496.0	2.802260	37.85
	3	5.6431	52.0	5.817352	1.073059	558.0	2.547945	37.85
	4	3.8462	52.0	6.281853	1.081081	565.0	2.181467	37.85
	•••							
	20635	1.5603	25.0	5.045455	1.133333	845.0	2.560606	39.48
	20636	2.5568	18.0	6.114035	1.315789	356.0	3.122807	39.49
	20637	1.7000	17.0	5.205543	1.120092	1007.0	2.325635	39.43
	20638	1.8672	18.0	5.329513	1.171920	741.0	2.123209	39.43
	20639	2.3886	16.0	5.254717	1.162264	1387.0	2.616981	39.37

20640 rows × 8 columns

	C		C
In [27]:	у		
Out[27]:	20638 20639	4.526 3.585 3.521 3.413 3.422 0.781 0.771 0.923 0.847 0.894 RICE, Length: 20640, dtype: float64	
In [31]:		<pre>learn.model_selection import train_test_split xtest, ytrain, ytest = train_test_split(x, y, test_size =0.2,random_st</pre>	cat
In [33]:	xtrain		

Out[33]:		MedInc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	L
	12069	4.2386	6.0	7.723077	1.169231	228.0	3.507692	33.83	
	15925	4.3898	52.0	5.326622	1.100671	1485.0	3.322148	37.73	
	11162	3.9333	26.0	4.668478	1.046196	1022.0	2.777174	33.83	
	4904	1.4653	38.0	3.383495	1.009709	749.0	3.635922	34.01	
	4683	3.1765	52.0	4.119792	1.043403	1135.0	1.970486	34.08	
	•••								
	13123	4.4125	20.0	6.000000	1.045662	712.0	3.251142	38.27	
	19648	2.9135	27.0	5.349282	0.933014	647.0	3.095694	37.48	
	9845	3.1977	31.0	3.641221	0.941476	704.0	1.791349	36.58	
	10799	5.6315	34.0	4.540598	1.064103	1052.0	2.247863	33.62	
	2732	1.3882	15.0	3.929530	1.100671	1024.0	3.436242	32.80	
	16512 rd	ows × 8 co	olumns						
	С							(\Box
In [35]:	xtest								
Out[35]:		MedInc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	L
Out[35]:	14740	MedInc 4.1518	HouseAge 22.0	AveRooms 5.663073	AveBedrms 1.075472	Population 1551.0	AveOccup 4.180593	Latitude 32.58	L
Out[35]:	14740 10101					-			L
Out[35]:		4.1518	22.0	5.663073	1.075472	1551.0	4.180593	32.58	L
Out[35]:	10101	4.1518 5.7796	22.0	5.663073 6.107226	1.075472 0.927739	1551.0 1296.0	4.180593 3.020979	32.58 33.92	L
Out[35]:	10101 20566	4.1518 5.7796 4.3487	22.0 32.0 29.0	5.663073 6.107226 5.930712	1.075472 0.927739 1.026217	1551.0 1296.0 1554.0	4.180593 3.020979 2.910112	32.58 33.92 38.65	L
Out[35]:	10101 20566 2670	4.1518 5.7796 4.3487 2.4511	22.0 32.0 29.0 37.0	5.663073 6.107226 5.930712 4.992958	1.075472 0.927739 1.026217 1.316901	1551.0 1296.0 1554.0 390.0	4.180593 3.020979 2.910112 2.746479	32.58 33.92 38.65 33.20	L
Out[35]:	10101 20566 2670 15709	4.1518 5.7796 4.3487 2.4511 5.0049	22.0 32.0 29.0 37.0 25.0	5.663073 6.107226 5.930712 4.992958 4.319261	1.075472 0.927739 1.026217 1.316901 1.039578	1551.0 1296.0 1554.0 390.0 649.0	4.180593 3.020979 2.910112 2.746479 1.712401	32.58 33.92 38.65 33.20 37.79	L
Out[35]:	10101 20566 2670 15709	4.1518 5.7796 4.3487 2.4511 5.0049	22.0 32.0 29.0 37.0 25.0	5.663073 6.107226 5.930712 4.992958 4.319261 	1.075472 0.927739 1.026217 1.316901 1.039578	1551.0 1296.0 1554.0 390.0 649.0	4.180593 3.020979 2.910112 2.746479 1.712401	32.58 33.92 38.65 33.20 37.79	L
Out[35]:	10101 20566 2670 15709 6655	4.1518 5.7796 4.3487 2.4511 5.0049 2.4817	22.0 32.0 29.0 37.0 25.0 	5.663073 6.107226 5.930712 4.992958 4.319261 3.875723	1.075472 0.927739 1.026217 1.316901 1.039578 1.034682	1551.0 1296.0 1554.0 390.0 649.0 2050.0	4.180593 3.020979 2.910112 2.746479 1.712401 2.962428	32.58 33.92 38.65 33.20 37.79 	L
Out[35]:	10101 20566 2670 15709 6655 3505	4.1518 5.7796 4.3487 2.4511 5.0049 2.4817 4.3839	22.0 32.0 29.0 37.0 25.0 33.0 36.0	5.663073 6.107226 5.930712 4.992958 4.319261 3.875723 5.283636	1.075472 0.927739 1.026217 1.316901 1.039578 1.034682 0.981818	1551.0 1296.0 1554.0 390.0 649.0 2050.0	4.180593 3.020979 2.910112 2.746479 1.712401 2.962428 2.938182	32.58 33.92 38.65 33.20 37.79 34.16 34.25	
Out[35]:	10101 20566 2670 15709 6655 3505 1919	4.1518 5.7796 4.3487 2.4511 5.0049 2.4817 4.3839 3.2027	22.0 32.0 29.0 37.0 25.0 33.0 36.0 11.0	5.663073 6.107226 5.930712 4.992958 4.319261 3.875723 5.283636 5.276074	1.075472 0.927739 1.026217 1.316901 1.039578 1.034682 0.981818 1.058282	1551.0 1296.0 1554.0 390.0 649.0 2050.0 808.0 850.0	4.180593 3.020979 2.910112 2.746479 1.712401 2.962428 2.938182 2.607362	32.58 33.92 38.65 33.20 37.79 34.16 34.25 38.86	L
Out[35]:	10101 20566 2670 15709 6655 3505 1919 1450 4148	4.1518 5.7796 4.3487 2.4511 5.0049 2.4817 4.3839 3.2027 6.1436	22.0 32.0 29.0 37.0 25.0 33.0 36.0 11.0 18.0 52.0	5.663073 6.107226 5.930712 4.992958 4.319261 3.875723 5.283636 5.276074 7.323529	1.075472 0.927739 1.026217 1.316901 1.039578 1.034682 0.981818 1.058282 1.050802	1551.0 1296.0 1554.0 390.0 649.0 2050.0 808.0 850.0	4.180593 3.020979 2.910112 2.746479 1.712401 2.962428 2.938182 2.607362 2.866310	32.58 33.92 38.65 33.20 37.79 34.16 34.25 38.86 37.96	L
Out[35]:	10101 20566 2670 15709 6655 3505 1919 1450 4148	4.1518 5.7796 4.3487 2.4511 5.0049 2.4817 4.3839 3.2027 6.1436 3.3326	22.0 32.0 29.0 37.0 25.0 33.0 36.0 11.0 18.0 52.0	5.663073 6.107226 5.930712 4.992958 4.319261 3.875723 5.283636 5.276074 7.323529	1.075472 0.927739 1.026217 1.316901 1.039578 1.034682 0.981818 1.058282 1.050802	1551.0 1296.0 1554.0 390.0 649.0 2050.0 808.0 850.0	4.180593 3.020979 2.910112 2.746479 1.712401 2.962428 2.938182 2.607362 2.866310	32.58 33.92 38.65 33.20 37.79 34.16 34.25 38.86 37.96 34.12	L

```
Out[37]: 12069
                   5.00001
          15925
                   2.70000
          11162
                   1.96100
          4904
                   1.18800
          4683
                   2.25000
          13123
                   1.44600
          19648
                   1.59400
          9845
                   2.89300
          10799
                   4.84600
          2732
                   0.69400
          Name: PRICE, Length: 16512, dtype: float64
In [39]: ytest
Out[39]:
          14740
                   1.369
          10101
                   2.413
          20566
                   2.007
          2670
                   0.725
          15709
                   4.600
                   . . .
          6655
                   1.695
          3505
                   2.046
          1919
                   1.286
                   2.595
          1450
          4148
                   1.676
          Name: PRICE, Length: 4128, dtype: float64
In [41]:
         import sklearn
          from sklearn.linear_model import LinearRegression
          lm = LinearRegression()
          model=lm.fit(xtrain, ytrain)
In [50]:
         ytrain_pred = lm.predict(xtrain)
          ytest_pred = lm.predict(xtest)
In [52]:
         ytrain_pred
Out[52]: array([1.7259112 , 2.88543882, 2.20064594, ..., 2.50890725, 3.0945134 ,
                 0.47233661])
In [54]:
         ytest pred
          array([2.28110738, 2.79009128, 1.90332794, ..., 0.8418697, 2.7984953,
Out[54]:
                 2.21779325])
In [56]:
         df=pd.DataFrame(ytrain_pred,ytrain)
          df
```

```
Out[56]: 0
```

PRICE 5.00001 1.725911 2.70000 2.885439 1.96100 2.200646 1.18800 1.382820 **2.25000** 2.220702 1.44600 1.765119 1.59400 1.351502 2.89300 2.508907 4.84600 3.094513 **0.69400** 0.472337

16512 rows × 1 columns

```
In [58]: df=pd.DataFrame(ytest_pred,ytest)
df
```

Out[58]: 0

 1.369
 2.281107

 2.413
 2.790091

 2.007
 1.903328

 0.725
 1.017603

 4.600
 2.948524

 ...
 ...

 1.695
 1.616753

 2.046
 2.409188

 1.286
 0.841870

 2.595
 2.798495

 1.676
 2.217793

4128 rows × 1 columns

```
In [60]: from sklearn.metrics import mean_squared_error, r2_score
   mse = mean_squared_error(ytest, ytest_pred)
   print(mse)
```

```
mse = mean_squared_error(ytrain_pred,ytrain)
print(mse)
```

0.5289841670367224

0.5234413607125449

```
In [62]: mse = mean_squared_error(ytest, ytest_pred)
    print(mse)
```

0.5289841670367224

```
In [70]: plt.scatter(ytrain ,ytrain_pred,c='blue',marker='o',label='Training data')
    plt.scatter(ytest,ytest_pred ,c='lightgreen',marker='s',label='Test data')
    plt.xlabel('True values')
    plt.ylabel('Predicted')
    plt.title("True value vs Predicted value")
    plt.legend(loc= 'upper left')
    #plt.hlines(y=0,xmin=0,xmax=50)
    plt.plot()
    plt.show()
```

True value vs Predicted value

Name: Devesh Y Mali

Roll No: 13228 Batch: B2