1 Acronyms

ADMM: Alternating Directions Method of Multipliers

ISTA: Iterative Shrinkage Thresholding Algorithm

FISTA: Fast Iterative Shrinkage Tresholding Algorithm RGB image: an image with red, blue, and green channels

JPEG: the compression process developed by the Joint Photographic Experts

Group

2 Matrices

Matrices are noted as bold capital letters: $D, A, B, \Phi, S, \mathcal{B}, X, U, V$.

 $m{D}$ is the a dictionary. For most of the dissertation, $m{D}$ has circulant matrix blocks.

 ${m S}$ is a collection of signal vectors, either gathering multiple channels or multiple samples.

 \boldsymbol{X} is a collection of dictionary coefficient vectors, corresponding to multple signal vectors.

A, B, U, and V are arbitrary matrices. A and B are also used as the linear operators in the ADMM contraints.

 Φ is an arbitrary linear operator (this matrix is also listed under operators, since matrices are linear operators).

T a diagonal matrix that has diagonal elements of 1 for dictionary elements that are not constrained to be zero, and zeros for the other diagonal elements (this matrix is also listed under operators since matrices are linear operators).

W converts from RGB to YUV, downsamples the UV channels, and computes the DCT of 8×8 blocks. Naturally, this matrix also appears under operators.

B is part of the dictionary for the product dictionary model.

Q is used to represent the matrix $\rho \mathbf{I} + \hat{\mathbf{D}}^H \hat{\mathbf{D}}$

 Ξ is used to represent the matrix $\rho \mathbf{I} + \hat{\mathbf{D}}\hat{\mathbf{D}}^H$

3 Vectors

Vectors are bold and lower-case.

- x, y are the primal variables for ADMM.
- \boldsymbol{u} is the dual variable for ADMM.
- \boldsymbol{c} is the constraint vector in ADMM.
- x, z are the coefficients for dictionary model in ADMM algorithm.
- \boldsymbol{v} is another primal variable (grouped with \boldsymbol{z}) used in chapter 4.
- γ is the corresponding dual variable.
- \boldsymbol{x} and \boldsymbol{z} are also used as vectors in the FISTA algorithm.
- $m{x}$ is also used as an arbitrary vector throughout document. Context will make clear.
 - \boldsymbol{s} is the signal.

 \boldsymbol{b} is another arbitrary vector.

 \boldsymbol{u} and \boldsymbol{v} are more arbitrary vectors, usually used in pairs. The may collectively specify a rank-1 update to a matrix: $\boldsymbol{u}\boldsymbol{v}^H$.

f is a dictionary filter.

d is a column of D.

 $m{q}$ is the quality-factor dependent vector used in quantization in JPEG compression.

 ω is an eigenvector.

 \boldsymbol{R} is a rescaling matrix, used to scale a normalized dictionary back to its unnormalized form.

4 Non-Integer Scalars

Non-integer scalars are usually lower-case script letters that are not bolded. (The exception is the estimate of the Lipshitz constant used to determine step-size in ISTA and FISTA.) I say "non-integer" not imply that they cannot take on integer values, but merely to differentiate them from the scalars that are required to be nonnegative integers.

a and b are arbitrary scalars.

 ρ is a scalar for the ADMM alrogithm that specifies both the weighting of the constraints in the augmented Lagrangian and the stepsize in the dual variable update.

 α is the over-relaxation or under-relaxation factor for ADMM

 λ is the factor for L₁ penalty. λ is also used as the factor for the L₂ penalty on the image gradients for Tikhonov regularization. Context will make clear.

 $\mathbb L$ is an estimate of the Lipshitz constant, used to determine stepsize in the ISTA and FISTA algorithms.

 τ is the eigenvalue

r and ω are used to specify momentum stepsize in FISTA and a FISTA-like algorithm. Always appear with superscripts specifying iteration.

 \mathcal{L} the loss (as in the loss function)

5 Indexing Integers

n selects the sample t selects the iteration m selects the filter c selects the channel \hat{k} specifies the frequency

6 Integer Constants

M is the number of filters C is the number of channels

 \hat{K} is the number of elements in a single channel of the signal

H is a small integer that specifies the rank of the dictionary updates

L is the number of layers

7 Functions and Operations

* is used to mean circular convolution, except when discussing boundary handling, which works to make circular convolution and convolution equivalent.

 \cdot^* is the complex conjugate.

 \cdot^{H} is the Hermitian transpose of a vector or matrix

 \mathcal{L}_{ρ} is the augmented Lagrangian function

S is the shrinkage operator

 \mathcal{F} applies the Fourier tranform to each channel and/or filter

f and g are arbitrary convex functions. f may also be used to specify the objective function of a minimization problem. f and g are also used for arbitrary functions that are part of a composite function. Context should make clear.

 $q(\cdot)$ quantizes a vector.

 $\mathbb{1}_{\text{condition}}$ takes on a value of 0 when the condition is true and ∞ when the condition is false.

arg min is the argument minimum of a function

 $\nabla_a b$ is the gradient of b in respect to a.

 L_1 is the L_1 norm

 L_2 is the L_2 norm

 Φ is an arbitrary linear operator (this operator is also listed under matrices, since matrices are linear operators).

T zeros out all dictionary elements that are constrained to be zero. (This operator is also listed under matrices since matrices are linear operators.)

 \boldsymbol{W} converts from RGB to YUV, downsamples the UV channels, and computes the DCT of 8×8 blocks. (This operator also appears under matrices.)

8 Superscripts

Conventionally, superscripts are used to indicate exponents.

However, I also use superscripts for other purposes. To distinguish these superscripts from exponents, I put them in parenthesis $x^{(\cdot)}$.

Superscripts are used to indicate which signal sample (or the corresponding dictionary update).

Superscripts are also used to specify the iteration number.

Finally, superscripts are used on gradients to specify a particular gradient term.

9 Subscripts

subscript m specifies the filter. If there are multiple layers, [m] will be used instead of subscript m.

subscript n specifies the sample.

Subscript c specifies the channel. If there are multiple layers [c] will be used instead of subscript c.

subscript ℓ specifies the layer.

subscripts + and - are used to specify the eigenvalues or eigenvectors of a 2×2 matrix corresponding to the plus or minus in the quadratic formula.

The ρ in \mathcal{L}_{ρ} specifies the scalar weight of the L_2 norm related to the affine constraints, used in the augmented Lagrangian function.

Subscript \cdot_{init} is short for initial value.

Subscript \cdot_{sc} is short for "scaled", and indicates that the variable in the algorithm is a scaled form of the variable.

Subscript i is used for essentially all other indexing.