Remote Robot Controller using TCP/IP connection.

ERTS Embedded Systems lab project IIT Bombay, 2012

Group 3

- Saif Hasan (09005003)
- Chinmay Chauhan (09005010)
- Sagar Chordia (09005013)
- Hemant Gangolia (09005015)

Problem Statement

- This Project aims at controlling robot remotely through TCP/IP connection from any place in the world.
- Assistance of Video feed is provided from robot to control it at user side.

Introduction

- "Burglary Detection Robot"
 - Robot is put on surveillance with its camera on.
 - Whenever it detects motion it sends SMS to owner.
 - Owner then can watch video remotely coming from camera of robot.
 - User can also move robot remotely, he can turn on buzzer on robot remotely and this is constantly aided by video feed.

Requirements-General

- Robot having following functionalities:
 - Processor to manage various tasks.
 - Capable of moving in all directions
 - Wi-Fi module to establish TCP/IP connection
 - Camera to provide Video feed
 - Buzzer to signal alarm
- Android Phone/Any smart device to control robot remotely.
 - Wi-Fi module to establish TCP/IP link.

Requirements -Specific

Robot :

- FireBird V
 - Supports motions, buzzer functionality and asynchronous communication using Atmega2560 (slave controller) attached on robot.
- Android phone mounted on FireBird V.
 - Camera on mobile phone is used for video feed.
 - Wi-Fi module in mobile is used to establish TCP/IP connection
 - Processor on mobile (master controller) is used to manage all tasks

Remote Smart Device:

Android phone to control this robot remotely.

Specifications -

- One Android Mobile phone
 - Wi-Fi, camera and Bluetooth
- One Android Mobile phone
 - Wi-Fi module
- Android phone
 - OS > 2.3.4 preferable on both
- Firebird V robot
- IOIO board/ Bluetooth module for communication between android and Atmega2560

State Diagram

Modules

Android Application

Remote Controller

On Board Controller

Robot Assembly

Modules

Three Modules of Processing:

- ATMega2560 Application:
 - managing robot movement
 - Bluetooth receiver
- On Board Android application
 - Managing Video transmission
 - Wi-Fi connection with remote android
 - Bluetooth communication with atmega2560
- Remote Android application
 - Manages Video reception
 - Dashboard to move robot

Innovations

- Established mechanism to have Wi-Fi communication between robot and remote device.
- Developed code for Video transmission and reception over Wi-Fi.
- Used IOIO board as means of communication between android and Bluetooth.

Project Plan

- Parallel work was started in all three major modules.
- Critical tasks and TimeLine
 - Getting Wi-Fi connection to work (Completed before 21 March)
 - Getting Video to work (30 March)
 - Getting IOIO/Bluetooth communication to work (4 April)
- Work Division
 - Saif: Onboard Android application
 - Sagar, Saif Remote android application
 - Sagar, Saif TxtWeb Application
 - Hemant, Chinmay FireBirdV robot coding
 - Sagar, Hemant, Chinmay IOIO communication/Bluetooth communication
 - All: Final Testing, Documentation, Reports, Presentation

Tasks

Challenges Faced

- Shorting of IOIO board while testing.
- Reading raw video and audio data from Mobile Hardware
- Converting the raw data into a proper image(audio) format in order to display(play) on computer

Response

- Finally used Bluetooth instead of IOIO.
- Use of core android libraries to extract raw data
- Use of external library which can convert the raw image data provided by hardware into a readable format

Tasks

Challenge

 Building multi tasking application on android which can simultaneously interact with robot as well as with user application along with audio and video streaming.

Response

 Thread based programming. Separate Threads for Video transmission, Wi-Fi Connection, Bluetooth communication

Testing

- Test Criteria
 - Layered Code structure
 - Each layer was tested independently using Android USB Debugging mode.
 - Proper communication between various layers.
 - Packets received over Wi-Fi are in order of their transmission.
 - Tested on three different platforms.
 - HTC Incredible S (Android 2.3.5)
 - Samsung Galaxy Y (Android 2.3.6)
 - Sony Xperia Neo V (Android 2.3.4)

Testing

Test Description

- Android application development was done in Eclipse using Android SDK
- Some things were tested on emulator, plug-in for eclipse.
- Android Logcat was used extensively to view debugging messages.
- Step by step testing on actual hardware device.
 - Getting Bluetooth link up
 - Getting Wi-Fi Link up
 - Getting Video transmission working
 - Getting control signals transmission working.

Performance Metrics

- Quality vs. Reliability of video streaming
 - Currently we are transmitting 10 frames/sec from camera for video.
 - Each frame size ~ 10kb per frame.
 - Data Transfer 10Kb * 10 = 0.1 Mb/sec
 - Maximum frame limit depends on available bandwidth of Wi-Fi. Android literature specifies upto 60 fps.
 - Improving number of frames may increase quality but because of heavy bandwidth utilization video starts lagging.

Performance Metrics

- Ease of setup vs. cost
 - Android phone costly but easy to setup.
 - Onboard android can be replaced by Beagle board and separate modules of Wi-Fi transmitter/receiver, IP camera.
 - Reduces cost and makes on-board android phone redundant.
 - Difficult to setup and integrate these modules with FireBirdV.

Reusability

- Generic communication model
 - For transmission and reception over TCP/IP connection.. Different applications can use it.
- Generic Code
 - Some other data packets for example audio packets can be sent by using same code.
- Independent of robot.
 - Bluetooth can be replaced with IOIO board. Firebird
 / Atmega2560 can be replaced by any robot.

Applications

- Theft detection robot:
 - We have implemented prototype of this application by SMS alert facility.
- Remote Surveillance robot:
 - Monitoring foreign terrain like border surveillance.

Future Work

- Audio can be transmitted along with video for more information about robot's environment.
- Accelerometer on android can be used to control robot.
- Using more reliable communication between android and Atmega like IOIO board.

References

- http://developer.android.com/sdk/index.html
- http://developer.android.com/guide/topics/usb/ad k.html
- http://www.sparkfun.com/products/10748
- http://www.e-yantra.org/home/
- http://www.nex-robotics.com/
- Firebird V Atmega 2560 hardware and software manual.

THANK YOU

- Entire ERTS team for providing excellent opportunity and support.
- Special thanks:
 - Piyush, Akshat, Saurabh