Social Media & Text Analysis

lecture 9 - Twitter NLP Pipeline Tokenization, Normalization, POS/NE Tagging

CSE 5539-0010 Ohio State University

Instructor: Wei Xu

Website: <u>socialmedia-class.org</u>

Bad Language?

BADLAMGUAGEI

...on the INTERNET!!

Boom! Ya ur website suxx bro

...dats why pluto is pluto it can neva be a star

Jacob EISENSTEIN **GEORGIA** Institute of **TECH**nology

michelle obama great. job. and. whit all my. respect she. look. great. congrats. to. her.

What can we do about it? Why don't they just write NORMALLY?? Can our software ever ADAPT??? I now h v an iphone

How does language go bad?

Illiteracy? No. (Tagliamonte and Denis 2008; Drouin and Davis 2009)

rob delaney @robdelaney

1 Jun

Great. Now a bunch of iliterate teens claim to be "powning" me with their insults. Heads up jerks my wife & children love me & are proud of

Expand Reply Classic RT Retweet * Favorite *** More

Length limits? (probably not)

Hardware input constraints? (Gouws et al 2011)

Social variables

- Non-standard language does identity work, signaling authenticity, solidarity, etc.
- Social variation is usually inhibited in written language, but social media is less regulated than other written genres.

NLP Pipeline

Tokenization

- breaks up the string into words and punctuation
- need to handle:
 - abbreviations ("jr."), number ("5,000") ...

```
seas479:training weixu$ ./penn-treebank-tokenizer.perl
Tokenizer v3
Language: en

Ms. Hilton last year called Mr. Rothschild "the love of my life." - input
Ms. Hilton last year called Mr. Rothschild "the love of my life." - output
```

Tokenization

- for Twitter, additionally need to handle:
 - emoticons, urls, #hashtags, @mentions ...

```
>>> import twokenize
>>> input = "Clowns are pretty gross tho 0.o (I'm afraid of clow
ns :p) ask.fm/a/cc301167"
>>> twokenize.tokenizeRawTweetText(input)
['Clowns', 'are', 'pretty', 'gross', 'tho', '0.o', '(', "I'm", 'coutput)
afraid', 'of', 'clowns', ':p', ')', 'ask.fm/a/cc301167']
```

Tool: twokenize.py

Tool: twokenize.py

```
Twokenize -- a tokenizer designed for Twitter text in English and some other European languages.
     This tokenizer code has gone through a long history:
 4
 5
     (1) Brendan O'Connor wrote original version in Python, http://github.com/brendano/tweetmotif
 6
            TweetMotif: Exploratory Search and Topic Summarization for Twitter.
            Brendan O'Connor, Michel Krieger, and David Ahn.
            ICWSM-2010 (demo track), http://brenocon.com/oconnor_krieger_ahn.icwsm2010.tweetmotif.pdf
 9
     (2a) Kevin Gimpel and Daniel Mills modified it for POS tagging for the CMU ARK Twitter POS Tagger
10
     (2b) Jason Baldridge and David Snyder ported it to Scala
11
     (3) Brendan bugfixed the Scala port and merged with POS-specific changes
12
         for the CMU ARK Twitter POS Tagger
13
     (4) Tobi Owoputi ported it back to Java and added many improvements (2012-06)
14
15
```

Current home is http://github.com/brendano/ark-tweet-nlp and http://www.ark.cs.cmu.edu/TweetNLP

16

Tokenization

- main techniques:
 - hand-crafted rules as regular expressions

- a pattern matching language
- invented by American Mathematician Stephen Kleene in the 1950s
- used for search, find, replace, validation ... (very frequently used when dealing with strings)
- supported by most programming languages
- easy to learn, but hard to master

```
147 Hashtag = "#[a-zA-Z0-9_]+"
```

- [] indicates a set of characters:
 - [amk] will match 'a', 'm', or 'k'
 - [a-z] will match any lowercase letter ('abcdefghijklmnopqrstuvwxyz')
 - [a-zA-Z0-9_] will match any letter or digit or '_'
- + matches 1 or more repetitions of preceding RE

```
147 Hashtag = "#[a-zA-Z0-9_]+"
```

- will match strings that:
 - start with a '#'
 - follow with one or more letters/digits/'_'

```
147 Hashtag = "#[a-zA-Z0-9_]+"
```

```
>>> import re
>>> Hashtag = "#[a-zA-Z0-9_]+"
>>> hashtagpattern = re.compile(Hashtag)
>>> hashtagpattern.findall("So that's what #StarWars")
['#StarWars']
```

```
133 Hearts = "(?:<+/?3+)+"
```

- will match strings that:
 - start with one or more '<'
 - then maybe a '/'
 - then one or more '3'
 - and maybe repetitions of the above

```
133 Hearts = "(?:<+/?3+)+"
```

- '+' matches 1 or more repetitions of the preceding RE
 - '<+' matches '<', '<<', '<<' ...
 - '3+' matches '3', '33', '333' ...
- '?' matches 0 or 1 repetitions of the preceding RE
 - '/?' matches '/' or nothing (so handles '</3')
- (?: ...) is a non-capturing version of (...)
- (...) matches whatever RE is inside the parentheses

```
133 Hearts = "(?:<+/?3+)+"
```

```
>>> import re
>>> Hearts = "(?:<+/?3+)+"
>>> heartspattern = re.compile(Hearts)
>>> heartspattern.findall("I <3 u <3<333333")
['<3', '<3<333333']
>>> heartspattern.findall("sooo sad </3")
['</3']</pre>
```

• learn more (https://docs.python.org/2/library/re.html)

7.2. re — Regular expression operations

Table Of Contents

- 7.2.1. Regular Expression Syntax
- 7.2.2. Module Contents
- 7.2.3. Regular Expression Objects
- 7.2.4. Match Objects
- 7.2.5. Examples
 - 7.2.5.1. Checking For a Pair
 - 7.2.5.2. Simulating scanf()
 - 7.2.5.3. search()
 vs. match()
 - 7.2.5.4. Making a Phonebook
 - 7.2.5.5. Text Munging
 - 7.2.5.6. Finding all Adverbs
 - 7.2.5.7. Finding all Adverbs and their Positions
 - 7.2.5.8. Raw String Notation

7.2. re — Regular expression operations

This module provides regular expression matching operations similar to those found in Perl. Both patterns and strings to be searched can be Unicode strings as well as 8-bit strings.

previous I next I modules I index

Regular expressions use the backslash character ('\') to indicate special forms or to allow special characters to be used without invoking their special meaning. This collides with Python's usage of the same character for the same purpose in string literals; for example, to match a literal backslash, one might have to write '\\\\' as the pattern string, because the regular expression must be \\\, and each backslash must be expressed as \\\ inside a regular Python string literal.

The solution is to use Python's raw string notation for regular expression patterns; backslashes are not handled in any special way in a string literal prefixed with 'r'. So r"\n" is a two-character string containing '\' and 'n', while "\n" is a one-character string containing a newline. Usually patterns will be expressed in Python code using this raw string notation.

It is important to note that most regular expression operations are available as module-level functions and Regexobject methods. The functions are shortcuts that don't require you to compile a regex object first, but miss some fine-tuning parameters.

7.2.1. Regular Expression Syntax

Tokenization

- for Twitter, additionally need to handle:
 - emoticons, urls, #hashtags, @mentions ...

```
>>> import twokenize
>>> input = "Clowns are pretty gross tho 0.o (I'm afraid of clow
ns :p) ask.fm/a/cc301167"
>>> twokenize.tokenizeRawTweetText(input)
['Clowns', 'are', 'pretty', 'gross', 'tho', '0.o', '(', "I'm", 'coutput)
afraid', 'of', 'clowns', ':p', ')', 'ask.fm/a/cc301167']
```

Emoticons

Figure 3: Usage of emoticons with and without nose by age group, aggregated over all countries

Emoticons

With respect to gender, we find that women tend to use the noseless variant significantly more than men, except for France, where the difference between genders is not statistically significant at the chosen level.

country	$oxed{AG}$ Spearman $ ho$	GENDER significant	
Denmark	0.89	significant yes	yes
France	0.63	yes	no
Germany	0.83	\mathbf{yes}	yes
$\mathbf{U}\mathbf{K}$	0.83	\mathbf{yes}	yes
$\overline{\mathrm{US}}$	0.82	yes	yes

Tokenization

language dependent

下雨天留客天留我不留

T雨、天留客。天留、我不留!

Unpunctuated Chinese sentence

It is raining, the god would like the guest to stay. Although the god wants you to stay, I do not!

下雨天、留客天。留我不? 留! The rainy day, the staying day. Would you like me to stay? Sure!

我喜欢新西兰花 Unsegmented Chinese sentence

我 喜欢 新西兰 花 I like New Zealand flowers

我 喜欢 新 西兰花 I like fresh broccoli

Source: http://what-when-how.com

NLP Pipeline

NLP Pipeline

Stemming

- reduce inflected words to their word stem, base or root form (not necessarily the morphological root)
- studied since the 1960s

```
>>> from nltk.stem.porter import PorterStemmer
>>> stemmer = PorterStemmer()
>>> stemmer.stem('automate')
'autom'
>>> stemmer.stem('automates')
'autom'
>>> stemmer.stem('automation')
'autom'
```

Stemming

- different steamers: Porter, Snowball, Lancaster ...
- WordNet's built-in lemmatized (dictionary-based)

```
>>> from nltk.stem import WordNetLemmatizer
>>> wordnet_lemmatizer = WordNetLemmatizer()
>>> wordnet_lemmatizer.lemmatize('leaves', pos='n')
'leaf'
>>> wordnet_lemmatizer.lemmatize('leaves', pos='v')
'leave'
```

Stemming

language dependent

Wei Xu o socialmedia-class.org

Text Normalization

convert non-standard words to standard

Source: Tim Baldwin, Marie de Marneffe, Han Bo, Young-Bum Kim, Alan Ritter, Wei Xu Shared Tasks of the 2015 Workshop on Noisy User-generated Text: Twitter Lexical Normalization and Named Entity Recognition

Text Normalization

types of non-standard words in 449 English tweets:

Category	Ratio	Example
letter&numer	2.36%	b4 → before
letter	72.44%	shuld → should
number substitution	2.76%	4 → for
slang	12.20	lol → laugh out loud
other	10.24%	sucha → such a

most non-standard words are morphophonemic "errors"

A Normalization Lexicon

automatically derived from Twitter data + dictionary

```
41169
         costumess costumes
         nywhere anywhere
41170
         sandwhich sandwich
41171
         aleksander alexander
41172
                 jun
         juns
41173
         showi showing
41174
         washing washing
41175
         jscript script
41176
         fundin funding
41177
         itxted fitted
41178
         cheeeap cheap
41179
         fawesome
41180
                     awesome
         untalented talented
41181
41182
```

<u>Performance</u>

Precision = 0.847

Recall = 0.630

F1-Score = 0.723

Phrase-level Normalization

 word-level normalization is insufficient for many cases:

in-vocabulary words

Category	Example	
1-to-many	everytime → every time	
incorrect IVs	can't want for → can't wait for	
grammar	I'm going a movie → I'm going to a movie	
ambiguities	4 → 4 / 4th / for / four	

NLP Pipeline (summary so far)

NLP Pipeline (next)

Part-of-Speech (POS) Tagging

	1		
Cant	MD		
wait	VB		
for	IN		
the	DT		
ravens	NNP		
game	NN		
tomorrow	NN		
go	VB		
ray	NNP		
rice	NNP		
!!!!!!!			

Penn Treebank POS Tags

1. CC	Coordinating conjunction	25. TO	to
2. CD		26. UH	Interjection
3. DT	Determiner	27. VB	Verb, base form
4. EX	Existential there	28. VBD	Verb, past tense
5. FW	Foreign word	29. VBG	Verb, gerund/present
6. IN	Preposition/subordinating		participle
	conjunction	30. VBN	Verb, past participle
7. JJ	Adjective	31. VBP	Verb, non-3rd ps. sing. present
8. JJR	Adjective, comparative	32. VBZ	Verb, 3rd ps. sing. present
9. JJS	Adjective, superlative	33. WDT	wh-determiner
10. LS	List item marker	34. WP	<i>wh-</i> pronoun
11. MD	Modal	35. WP\$	Possessive wh-pronoun
12. NN	Noun, singular or mass	36. WRB	wh-adverb
13. NN	S Noun, plural	37. #	Pound sign
14. NN	P Proper noun, singular	38. \$	Dollar sign
15. NN	PS Proper noun, plural	39	Sentence-final punctuation
16. PD	Γ Predeterminer	40. ,	Comma
17. POS	S Possessive ending	41. :	Colon, semi-colon
18. PRI	Personal pronoun	42. (Left bracket character
19. PP\$	Possessive pronoun	43.)	Right bracket character
20. RB	Adverb	44. "	Straight double quote
21. RBF	R Adverb, comparative	45 . '	Left open single quote
22. RBS	Adverb, superlative	4 6. "	Left open double quote
23. RP	Particle	47. <i>'</i>	Right close single quote
24. SYN	 M Symbol (mathematical or scientific) 	48. "	Right close double quote

Part-of-Speech (POS) Tagging

- Words often have more than one POS:
 - The back door = JJ
 - On my <u>back</u> = NN
 - Win the voters back = RB
 - Promised to back the bill = VB

 POS tagging problem is to determine the POS tag for a particular instance of a word.

Source: adapted from Chris Manning

Twitter-specific Tags

- #hashtag
- @metion
- url
- email address
- emoticon
- discourse marker
- symbols
- . . .

Retweet construction:

(RT)@user1(:) I never bought candy bars from
tose kids on my doorstep so I guess they're
all in gangs now .

Twitter discourse marker

RT @user2: LMBO! This man filed an EMERGENCY Motion for Continuance on account of the Rangers game tonight: (() Wow lmao

Source: Gimpel et al.

Notable Twitter POS Taggers

- Gimpel et al., 2011
- Ritter et al., 2011

- Derczynski et al, 2013
- Owoputi et al. 2013

Chunking

Cant	VP
wait	V I
for	PP
the	
ravens	NP
game	
tomorrow	NP
go	VP
ray	NP
rice	INF
!!!!!!!	

Chunking

- recovering phrases constructed by the part-of-speech tags
- a.k.a shallow (partial) parsing:
 - full parsing is expensive, and is not very robust
 - partial parsing can be much faster, more robust, yet sufficient for many applications
 - useful as input (features) for named entity recognition or full parser

Named Entity Recognition(NER)

Cant	
wait	
for	
the	
ravens	ORG
game	
tomorrow	
go	
ray	PER
rice	ren
!!!!!!!!	•

ORG: organization

PER: person

LOC: location

NER: Basic Classes

	<u> </u>
Cant	
wait	
for	
the	
ravens	ORG
game	
tomorrow	
go	
ray	PER
rice	FEN
!!!!!!!	•

ORG: organization

PER: person

LOC: location

NER: Rich Classes

NER: Genre Differences

	News	Tweets
PER	Politicians, business leaders, journalists, celebrities	Sportsmen, actors, TV personalities, celebrities, names of friends
LOC	Countries, cities, rivers, and other places related to current affairs	Restaurants, bars, local landmarks/areas, cities, rarely countries
ORG	Public and private companies, government organisations	Bands, internet companies, sports clubs

Notable Twitter NE Research

- Liu et al., 2011
- Ritter et al., 2011

- Owoputi et al. 2013
- Plank et al, 2014
- Cherry & Guo, 2015

System	P	R	F_1
COTRAIN-NER (10 types)	0.55	0.33	0.41
T-NER(10 types)	0.65	0.42	0.51
COTRAIN-NER (PLO)	0.57	0.42	0.49
T-NER(PLO)	0.73	0.49	0.59
Stanford NER (PLO)	0.30	0.27	0.29

Table 12: Performance at predicting both segmentation and classification. Systems labeled with PLO are evaluated on the 3 MUC types *PERSON*, *LOCATION*, *ORGA-NIZATION*.

Tool: twitter_nlp

Tool: twitter_nlp


```
xuwei@proteus100[twitter nlp]$ export TWITTER NLP=./
xuwei@proteus100[twitter nlp]$
xuwei@proteus100[twitter nlp]$ echo "Had a great time in New York w my
love :) ! " | python python/ner/extractEntities2.py
Had/O a/O great/O time/O in/O New/B-ENTITY York/I-ENTITY w/O my/O love/
0:)/0!/0
Average time per tweet = 3.04769945145s
xuwei@proteus100[twitter nlp]$
xuwei@proteus100[twitter nlp]$ echo "Had a great time in New York w my
love :) ! " | python python/ner/extractEntities2.py --pos --chunk
Had/O/VBD/B-VP a/O/DT/B-NP great/O/JJ/I-NP time/O/NN/I-NP in/O/IN/B-PP
New/B-ENTITY/NNP/B-NP York/I-ENTITY/NNP/I-NP w/O/IN/B-PP my/O/PRP$/B-NP
 love/O/NN/I-NP :)/O/UH/B-INTJ !/O/./I-INTJ
Average time per tweet = 5.49846148491s
xuwei@proteus100[twitter nlp]$
```

10 tag encoding

Cant	VP	
wait	۷F	
for	PP	
the		
ravens	NP	
game		
tomorrow	NP	
go	VP	
ray	NP	
rice	INF	
!!!!!!!		

10 tag encoding

Cant	VD	VP	
wait	VP	VP	
for	PP	PP	
the		NP	
ravens	NP	NP	
game		NP	
tomorrow	NP	NP	
		O	
go	VP	VP	
ray	NP	NP	
rice	IVI	NP	
!!!!!!!!		0	

10 tag encoding

	•		
Cant	VP	VP	B-VP
wait	۷P	VP	I-VP
for	PP	PP	B-PP
the		NP	B-NP
ravens	NP	NP	I-NP
game		NP	I-NP
tomorrow	NP	NP	B-NP
		Ο	Ο
go	VP	VP	B-VP
ray	ND	NP	B-VP
rice	NP	NP	I-VP
!!!!!!!		0	Ο

I: Inside

O: outside

B: Begin

BIO allows separation of adjacent chunks/entities

[Recap] Classification Method:

Supervised Machine Learning

Source: NLTK Book

Classification Method:

Supervised Machine Learning

- Naïve Bayes
- Logistic Regression
- Support Vector Machines (SVM)
- •
- Hidden Markov Model (HMM)
- Conditional Random Fields (CRF)

•

sequential models

Classification Method:

Sequential Supervised Learning

- Input:
 - rather than just individual examples $(w_1 = the, c_1 = DT)$
 - a training set consists of *m* sequences of labeled examples (X1, Y1), ..., (Xm, Ym)

 $x_1 = <the back door> and y_1 = <DT JJ NN>$

- Output:
 - a learned classifier to predict label sequences $\gamma: x \to y$

Features for Sequential Tagging

- Words:
 - current words
 - previous/next word(s) context
- Other linguistic information:
 - word substrings
 - word shapes
 - POS tags
- Contextual Labels
 - previous (and perhaps next) labels

word shapes

Varicella-zoster	Xx-xxx
mRNA	xxxx
CPA1	XXXd

Probabilistic Graphical Models

Probabilistic Graphical Models

Hidden Markov Model

$$p(\mathbf{Y},\mathbf{X}) = \prod_{n=1}^{N} p(y_n | y_{n-1}) p(\mathbf{x}_n | y_n)$$

Conditional Random Field

GENERATIVE

Probabilistic Graphical Models

Summary

Summary

(Next Class) Challenges in Twitter

2m 2ma 2mar 2mara 2maro 2marrow 2mor 2mora 2moro 2morow 2morr 2morro 2morrow 2moz 2mr 2mro 2mrrw 2mrw 2mw tmmrw tmo tmoro tmorrow tmoz tmr tmro tmrow tmrrow tmrrw tmrw tmrww tmw tomaro tomarow tomarrow tomarrow tommorow tommorow tommorow tommorow tommorow tomorow tomoro

Thank You!

Instructor: Wei Xu

www.cis.upenn.edu/~xwe/

Course Website: socialmedia-class.org