

NASA/TM-2004-213248

Comparison of Satellite Observations of Aerosol Optical Depth to Surface Monitor Fine Particle Concentration

*Mary M. Kleb, Jassim A. Al-Saadi, Doreen O. Neil, Robert B. Pierce, Margaret R. Pippin, and
Marilee M. Roell
Langley Research Center, Hampton, Virginia*

*Chieko Kittaka
Science Applications International Corporation, Hampton, Virginia*

*James J. Szykman
United States Environmental Protection Agency, Research Triangle Park, North Carolina*

The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the lead center for NASA's scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA's institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counterpart of peer-reviewed formal professional papers, but having less stringent limitations on manuscript length and extent of graphic presentations.
- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.
- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.
- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or co-sponsored by NASA.
- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.
- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services that complement the STI Program Office's diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results ... even providing videos.

For more information about the NASA STI Program Office, see the following:

- Access the NASA STI Program Home Page at <http://www.sti.nasa.gov>
- E-mail your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA STI Help Desk at (301) 621-0134
- Phone the NASA STI Help Desk at (301) 621-0390
- Write to:
NASA STI Help Desk
NASA Center for AeroSpace Information
7121 Standard Drive
Hanover, MD 21076-1320

NASA/TM-2004-213248

Comparison of Satellite Observations of Aerosol Optical Depth to Surface Monitor Fine Particle Concentration

*Mary M. Kleb, Jassim A. Al-Saadi, Doreen O. Neil, Robert B. Pierce, Margaret R. Pippin, and
Marilee M. Roell
Langley Research Center, Hampton, Virginia*

*Chieko Kittaka
Science Applications International Corporation, Hampton, Virginia*

*James J. Szykman
United States Environmental Protection Agency, Research Triangle Park, North Carolina*

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

July 2004

Available from:

NASA Center for AeroSpace Information (CASI)
7121 Standard Drive
Hanover, MD 21076-1320
(301) 621-0390

National Technical Information Service (NTIS)
5285 Port Royal Road
Springfield, VA 22161-2171
(703) 605-6000

Table of Contents

1.0 Executive Summary.....	3
2.0 Introduction.....	5
2.1 Criteria pollutant and scientific rationale.....	5
2.2 Ground based measurement characteristics.....	7
2.3 Satellite based measurement characteristics.....	7
2.3.1 MODIS.....	7
2.3.2 GOES WF_ABBA.....	8
2.3.3 Eta/EDAS.....	8
2.4 Objective of comparison.....	8
3.0 Site-by-Site Satellite/In-Situ Comparison.....	9
3.1 Background on time period.....	9
3.2 Coincident requirements.....	11
3.3 Time series analysis.....	11
3.4 Site-by-site correlation analysis.....	12
4.0 National Satellite and In-Situ Comparisons.....	15
4.1 Maps of 40 km binned mean MODIS AOD statistics.....	15
4.2 Site-by-site mean statistics.....	18
4.3 Regional spatial statistics.....	21
5.0 Conclusion.....	23
6.0 References.....	25
Appendix A - Daily Satellite and EPA In-Situ Fusion National Maps.....	A-1
Appendix B - Site-by-Site Satellite and EPA In-Situ Time Series.....	B-1
Region 1.....	B-17
Region 2.....	B-29
Region 3.....	B-41
Region 4.....	B-49
Region 5.....	B-73
Region 6.....	B-99
Region 7.....	B-127
Region 8.....	B-135
Region 9.....	B-141
Region 10.....	B-159
Canada.....	B-179
Appendix C - Regional Mean Satellite and In-Situ Comparisons.....	C-1
Appendix D - Acronyms.....	D-1

1.0 Executive Summary

A goal of the National Aeronautics and Space Administration (NASA) Earth Science Enterprise (ESE) Earth Science Applications Program is to infuse NASA remote sensing data sources into existing partner agency decision support tools in order to enhance the performance of these tools. Through IDEA (Infusing satellite Data into Environmental Applications) NASA, in partnership with the U.S. Environmental Protection Agency (EPA), has performed this data enhancement on a project, in which NASA data was utilized to improve particle pollution forecasts. Researchers from NASA Langley Research Center and the EPA used data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor and combined it with EPA ground network data to create a NASA data enhanced Forecast Tool. This tool is used to assist forecasters with providing the forecasts of particle pollution, or particulate matter less than 2.5 microns in diameter ($PM_{2.5}$), for the EPA's Air Quality Index (AQI). The goal of this project is to use existing data sets and models developed for tropospheric chemistry research to aid the EPA and state and local agencies in making decisions concerning air quality to protect public health.

2.0 Introduction

The Earth System responds to both naturally occurring and human-induced change. The National Aeronautics and Space Administration (NASA) Earth Science Enterprise (ESE) seeks to understand the response of the Earth System via long-term observations from ground networks, sub-orbital platforms, and space-based assets. The role of the Earth Science Applications (ESA) Program within the ESE is to incorporate these observations into decision support tools employed by partners and to assess the performance of these measurements in decision support tools. The approach is to enable the incorporation of Earth Science mission outputs (i.e., models and remote sensing data products) to serve as inputs to decision support systems. Ultimately, the desired outcome is an enhanced decision support tool that results in significant socio-economic benefits.

One application into which NASA observations have already been incorporated is Air Quality Management. During the fall of 2003, NASA, through the Infusing satellite Data into Environmental Applications (IDEA) project, provided a prototype, near real-time data-fusion product to the Environmental Protection Agency (EPA) with the goal of improving the accuracy of EPA's next-day Air Quality Index (AQI) forecasts, (Kittaka, 2004; Szykman, 2004; and Al-Saadi, 2004).

2.1 Criteria pollutant and scientific rationale

Under the Clean Air Act of 1990 (<http://www.epa.gov/oar/caa/contents.html>), the EPA is required to set standards for concentrations of air quality pollutants, ensure these standards are met through monitoring, and establish a consistent means of reporting air quality to the public, which, currently, is the Air Quality Index (AQI). The EPA is currently setting air quality standards relating to the concentrations levels of six main air pollutants: ozone, particulate matter, carbon monoxide, nitrogen dioxide, sulfur dioxide and lead. The EPA is also responsible for forecasting concentration levels of two of these pollutants: ozone and particulate matter (PM). These forecasts are used to alert the public about potentially harmful ozone and PM levels. Particle pollution or particulate matter is the general term used to describe a mixture of solid particles and liquid droplets in the air. Particles are classified as coarse (i.e., dirt or dust) or fine (i.e., the by-products of fuel combustion). PM can be emitted directly into the atmosphere (i.e., wind blown dust or dirt from unpaved roads) or formed in the atmosphere through chemical reactions (i.e., sulfates and nitrates formed from emissions from power plants and vehicle exhaust.) Many voluntary programs exist between the EPA, state agencies and industry, which enable "Action Days" once pollution levels exceed a certain threshold. In addition to notifying the public to limit exposure, voluntary emission reductions are suggested for industry and for private citizens.

In October of 2003, the EPA began providing AQI forecasts for particulate matter less than 2.5 μm in diameter, or PM_{2.5}. Particulates in this size range are called respirable aerosols and are easily entrapped by the lungs. Pollutants and diseases carried by respirable aerosols are a significant health threat. According to the World Research Institute, an environmental research and policy organization, "the health effects of

particulates are strongly linked to particle size. Small particles, such as those from fossil fuel combustion, are likely to be the most dangerous, because they can be inhaled deeply into the lungs, settling in areas where the body's natural clearance mechanisms can't remove them" (WRI, 1999). The EPA notes that the chief causes for concern are that increases in PM levels are linked to:

1. Increased hospital admissions and emergency room visits for people with heart and lung disease
2. Increased absences from work and school
3. Reduced visibility due to haze
4. Altered nutrient balance in the soil and in bodies of water where PM settles
5. Stained and/or eroded buildings, historical monuments, etc. which are costly to repair

Index Values	Category	Cautionary Statements	PM_{2.5} (ug/m³)	PM₁₀ (ug/m³)
0-50	Good	None	0-15.4	0-54
51-100	Moderate	Unusually sensitive people should consider reducing prolonged or heavy exertion	15.5-40.4	55-154
101-150	Unhealthy for Sensitive Groups	Sensitive groups should reduce prolonged or heavy exertion	40.5-65.4	155-254
151-200	Unhealthy	Sensitive groups should avoid prolonged or heavy exertion; everyone else should reduce prolonged or heavy exertion	65.5-150.4	255-354
201-300	Very Unhealthy	Sensitive groups should avoid all physical activity outdoors; everyone else should avoid prolonged or heavy exertion	150.5-250.4	355-424

Table 1. EPA Air Quality Index for Particle Pollution.

In early 2003, the EPA received a Congressional mandate to revise the standards that govern PM_{2.5}. The standards being revised included peak concentration values per hour, peak concentration values over a 24-hour period for several different land cover types, and compliance penalty thresholds relating to litigation and public health. Technical definitions of legal requirements were revised and preparations for monitoring intercontinental transport were made. The timing of this mandate, along with the development by the EPA of standard methods for forecasting PM_{2.5} and the availability of a mature satellite aerosol product at relatively high spatial resolution, made PM_{2.5} forecasting an ideal candidate for incorporation of NASA satellite data.

The EPA has a ground network of monitoring stations around the country that are currently being used to monitor concentration levels of PM_{2.5} and as input to forecasts of PM_{2.5}. However, the EPA recognizes that the utility of this network may be improved with the addition of satellite imagery, which can provide information about the air in regions not covered by these monitoring stations. The addition of NASA data could also assist in identifying areas that are generating particle pollution and areas that are receiving pollution due to transport between regions. Aerosol products from existing NASA satellite systems were identified as potential data sets that could add value to the forecast.

2.2 Ground based measurement characteristics

The EPA ground network consists of in-situ PM_{2.5} monitoring stations located throughout the country, with higher concentrations of monitors in more densely populated regions. These monitors are operated by the State and Local Air Monitoring Stations (SLAMS) and National Ambient Monitoring Stations (NAMS) networks. In addition to Federal Reference Monitors (FRM), which acquire measurements of PM_{2.5} over 24-hour sample periods, the ground network consists of several hundred continuous PM_{2.5} Federal Equivalent Monitors (FEM) that report PM_{2.5} concentration data hourly to the EPA's AIRNow Data Management Center. The continuous FRMs utilize several methods that measure the different properties of suspended particles, including mass and mass equivalent, and visible light scattering. The Tapered Element Oscillating Microbalance (TEOM) instrument measures particle mass as determined by its inertia, with a detection limit of ~5µg/m³ for a 5 minute average. The Beta Attenuation Monitor (BAM) measures particle mass by its electron attenuation properties, with a detection limit of ~5µg/m³ for a one hour average. The nephelometer measures light scattered from particles and gases and provides a direct estimate of the aerosol light-scattering coefficient with a detection limit of ~Mm⁻¹ for a ten minute average. Further details can be obtained from Watson et al, (1998).

2.3 Satellite based measurement characteristics

2.3.1 MODIS

The Moderate Resolution Imaging Spectroradiometer, MODIS, aboard the Terra satellite has a 10:30am equatorial overpass time along a sun-synchronous near-polar orbit. MODIS has a viewing swath width of 2,330 km and provides global coverage every one to two days. For additional information regarding MODIS, refer to <http://modis.gsfc.nasa.gov>.

The MODIS data products utilized in this study are the aerosol optical depth (AOD) and the cloud optical thickness (COT). Aerosol optical depth retrieved at .55µm, which is one of the parameters included in the aerosol data product, MOD04_L2, has a resolution of 10x10 km² at nadir (Kaufman et al, 1998). This aerosol product provides a measure of extinction (how much light is unable to pass through a column of atmosphere as a result

of aerosols, or particles, in the air) and therefore can be used to estimate the amount of aerosols in the atmosphere. Cloud optical thickness included in the cloud product, MOD06_L2, has a resolution of 1x1 km² at nadir. The COT provides cloud locations as well as cloud radiative properties. In this study, the COT was degraded to 5x5 km² for visualization.

2.3.2 GOES WF_ABBA

The Geostationary Operational Environmental Satellites (GOES) satellites are part of the NOAA operational weather satellite system. They are in geosynchronous orbits allowing them to maintain fixed positions relative to the Earth. Additional GOES information can be obtained from

http://orbit-net.nesdis.noaa.gov/arad/fpdt/goescat_v4/html/GOES_I_1_overview.html.

Wildfire locations are determined from the Wildfire Automated Biomass Burning Algorithm (WF_ABBA). The WF_ABBA data is courtesy of NOAA/NESDIS (National Environmental Satellite, Data and Information Services) and the University of Wisconsin Cooperative Institute for Meteorological Satellite Studies (CIMSS). The GOES WF_ABBA is an automated algorithm which uses visible and infrared wavelengths to locate fire pixels and characterize sub-pixel burning. General information for WF_ABBA is located at <http://cimss.ssec.wisc.edu/goes/burn/abba.html>. Detailed information on the GOES fire algorithm and recent improvements can be found in Prins and Menzel, (1994) and Prins et al., (1998; 2001a; 2001b).

2.3.3 Eta/EDAS

The Eta Regional Forecast model and associated Eta Data Assimilation System (EDAS) is part of the operational forecasting system within the National Weather Service's National Centers for Environmental Prediction (NCEP). Details of the NCEP forecasting and data assimilation system can be found at <http://wwwt.emc.ncep.noaa.gov/modelinfo/>. Eta forecasted winds are used to provide trajectory-based 48-hour forecasts of the movement of regions of high MODIS AOD to the EPA PM_{2.5} AQI forecasters. The Eta forecast winds are provided in GRIB format and are obtained at <ftp://tgftp.nws.noaa.gov>. The NOAA Air Resource Laboratory (ARL) provides an archive of the NCEP EDAS analyses. For this study, the u- and v-components of the wind at the 850 mb pressure level were used to provide a meteorological context for the MODIS and PM_{2.5} observations in the IDEA data fusion product (see Figure 2). Additional ARL EDAS archival information is available at <http://www.arl.noaa.gov/ss/transport/edas.html>.

2.4 Objective of comparison

The objective of the comparison is to determine the appropriateness and benefit of additional forecasting tools derived from combining MODIS fine aerosol data and modeling code developed for tropospheric chemistry research at NASA Langley. The forecasting tools are provided to Air Quality Index forecasters through the EPA to potentially improve the forecasting of fine aerosol pollution outbreaks.

3.0 Site-by-Site Satellite/In-Situ Comparison

3.1 Background on time period

The time period chosen for the comparison is September 2003. Evaluation is needed for a PM_{2.5} pollution event and September marks the peak in the forest fire burning season. Figure 1 shows a map of fire locations during September 2003. The pink and purple diamonds indicate a 24-hour accumulation of fire locations as detected by the GOES 12 Wildfire Automated Biomass Burning Algorithm (WF_ABBA). Pink indicates the presence of a fire whereas purple indicates high probability of a fire location. For additional information about GOES WF-ABBA refer to <http://cimss.ssec.wisc.edu/goes/burn/abba.html>.

Figure 1. GOES 12 Wildfire Automated Biomass Burning Algorithm (WF_ABBA) fire locations for September 2003.

During September there were frequent small fires associated with agricultural burning in the lower Mississippi River valley and Alabama. In early September 2003 forest fires in the Northwestern United States and British Columbia produced emissions that led to a large enhancement in tropospheric aerosol loading. The initial aerosol loading from these Northwestern wild fires in the troposphere was captured by MODIS. This enabled the IDEA team to produce forecasting tools during a pollution outbreak and evaluate their effectiveness and impact on air quality forecasting in the Midwest and Eastern United States.

Figure 2. Satellite/in-situ fusion map for 1 September 2003.

Figure 2 is an example of one forecast tool produced by the IDEA team. It depicts a composite integrating data from several sources on September 1, 2003 (indicated at top of figure). Daily maps of this fusion product from September 1 through September 30, 2003 are provided in Appendix A. Aerosol optical depth (AOD) from the MODIS instrument aboard the Terra satellite is shown on the rainbow color scale with values greater than 1.0 shown in dark red. MODIS cloud optical thickness (COT) is shown on the gray scale. MODIS AOD is not derived for cloud filled pixels, therefore the cloud fields derived from MODIS are plotted to help define synoptic weather features important to the movement of aerosols. The location of each continuous $\text{PM}_{2.5}$ monitor from the SLAMS and NAMS is represented by a colored circle. The color of the circle indicates an hourly averaged $\text{PM}_{2.5}$ concentration at 20Z with a color scale shown in the vertical color bar. The US EPA Air Quality Index (AQI) rating (“Good”, “Moderate”, etc.) associated with $\text{PM}_{2.5}$ concentrations is shown with the vertical color bar. The pink and purple diamonds indicate fire locations as described for Figure 1. The 850 mb wind field vectors at 20Z from the Eta Data Assimilation System (EDAS) are plotted as arrows to show wind direction and speed. Winds at this level illustrate the flow in the lower troposphere.

Often this can be used to qualitatively show areas of convergence and divergence, and is one indicator of vertical air motion. An example wind vector is given in the legend. However, the magnitude and direction of this vector is only valid at the location given due to the map projection (Lambert's conformal conic projection) used to display the data. This data fusion visualizes the relationship between the MODIS AOD and COT, hourly PM_{2.5} mass concentration and the air quality index, providing a pseudo-synoptic view of aerosol events across North America.

3.2 Coincidence requirements

For the correlation analysis presented in section 3.3, the data pairs of satellite AOD and ground based PM_{2.5} must be co-located in space and time. For every ground station, the 10x10 km² MODIS AOD observations that include the longitude and latitude of the site are accumulated. The hourly surface PM_{2.5} data are then linearly interpolated to the time of each MODIS observation. Only surface observations within plus or minus one hour are considered for possible temporal coincidences.

3.3 Time series analysis

In figure 3, an example of the MODIS AOD and surface PM_{2.5} time series for the month of September 2003 is presented. The September 2003 time series plots for every ground station are provided in Appendix B. The station name, Metropolitan Statistical Area (MSA), and station ID are reported in the figure. If the site is in a rural area, the site name is listed as "Not in an MSA".

Figure 3 shows the surface PM_{2.5} data for both 1-hour (solid line) and 24-hour (dashed line) averages reported at an hourly frequency. The left vertical axis is mass concentration of PM_{2.5} and the right vertical axis is MODIS AOD. Coincident values are represented by symbols:

- - MODIS AOD
- * - hourly PM_{2.5} mass concentration
- Δ - 24 hour average PM_{2.5} mass concentration.

Correlations are reported are for both 1-hour and 24-hour average surface PM_{2.5} data. The correlations are derived from coincident MODIS AOD and PM_{2.5} data pairs as described above. N_{poss}, is the total number of MODIS viewing opportunities over the site and N_{MODIS} corresponds to the number of passes that optical depth values could be determined (cloud-free passes, etc...). The number of coincident data pairs used to determine the correlation is reported as N_{corr}. Figure 3 provides critical information needed to determine if the MODIS AOD is indicative of PM_{2.5} concentrations at or near the surface. The vertical distance between coincident MODIS and PM_{2.5} points (as plotted) reflects the AOD/PM_{2.5} ratio. This ratio is another factor to be considered in determining if the aerosol is well mixed and at or near the surface or if the aerosol is aloft. If the distance is relatively small then the ratio is close to 1.6/100., and an inference can be made that the aerosols may be near the surface.

Figure 3. Time-series and correlations between MODIS AOD and hourly 1-hour/24-hour average ground PM_{2.5} mass concentrations for site 170434002 in Naperville, IL during September 2003.

The vertical axes of the time-series plots are scaled as shown in the figure above for most of the sites listed in Appendix B. However, clipping of the hourly PM_{2.5} mass concentration reading can occur when the reading exceeds the value of 100. Where appropriate, to show MODIS AOD values that exceed 1.6 or 24-hour average PM_{2.5} mass concentration values that exceed 100, the vertical axes are proportionally expanded and labeled “***EXPANDED RANGE***”.

3.4 Site-by-site correlation analysis

Figure 4 summarizes the MODIS AOD and 1-hour PM_{2.5} correlations derived from the September time series for each ground station across the United States and parts of Canada (see Appendix B). The size of the point plotted indicates the number of coincidences between MODIS AOD and hourly PM_{2.5} concentrations during this period. The significance of the correlation generally increases with increasing number of coincidences. The color indicates the value of the correlation coefficient. This correlation summary provides a site specific and geographical perspective on how well the MODIS AOD observations depict the variability in surface PM_{2.5} measurements. During this month, higher correlations are generally found in the eastern half of the US and in parts of the Pacific Northwest.

Figure 4. National summary plot of correlations between MODIS AOD and hourly PM_{2.5}.

Figure 5. Histogram of the site-by-site correlations between coincident MODIS AOD and AIRNow PM_{2.5} measurements during September, 2003.

Figure 5 shows the histogram of the site-by-site correlations during September, 2003. The histogram includes correlations for a total of 309 AIRNow sites. The distribution of correlations peaks at 0.8 with 51% of the AIRNow sites having correlations greater than 0.5 (orange to red in Figure 4) and 11% of the AIRNow sites having negative correlations (blue in Figure 4) during September, 2003.

4.0 National Satellite and In-Situ Comparisons

4.1 Maps of 40 km binned mean MODIS AOD statistics

Figure 6 shows a map of the mean MODIS AOD for September, 2003. To construct this map, all of MODIS AOD granules (10 km x 10 km spatial resolution) obtained for September 2003 are mapped onto the Eta 40 km Lambert Conformal grids (185 x 129 points). The mean, the standard deviation and the counts of MODIS AOD at each grid point are derived from the regridded MODIS AOD. The areas in black are where no MODIS AOD is retrieved over a 40 km x 40 km grid for the entire month due to either high surface reflectance or cloudiness.

Figure 6. Map of the mean 40 km binned MODIS AOD for September, 2003.

The September 2003 mean MODIS AOD is strongly influenced by the smoke plume from the fires in the Northwestern US. These fires led to very high aerosol loading along the Montana/North Dakota/Canada border during early September resulting in mean AOD values over 0.4 in this region. The local plume from the Northwestern US fires is evident along the Washington/Oregon border and extending into Eastern Washington State. Long-range transport of this smoke plume contributed to the high mean AOD in the Great Lakes region during September 2003. These regions influenced by wildfire-enhanced aerosol correspond to areas where high correlations exist between MODIS AOD and surface PM_{2.5} (Figure 4). Aerosol loading is generally high over Alabama and Mississippi. Agricultural burning in the lower Mississippi River valley and Alabama (see

Figure 1) contributed to this regional aerosol burning. High aerosol loading along the Gulf coast may be influenced by local sea breeze circulations transporting sea salt aerosols inland. Aerosol loading is generally low in the central plains region. High surface reflectance in the Southwestern US and Mexico results in false MODIS AOD retrievals over the desert Southwest.

Figure 7. Map of the standard deviation of the 40 km binned MODIS AOD for September, 2003.

Figure 7 shows a map of the standard deviation of the 40 km binned MODIS AOD for September, 2003. The standard deviation is dominated by the influence of fires in the Northwestern US. The standard deviation of the MODIS AOD in regions influenced by smoke transport from these fires is as large as the mean AOD (Figure 6) due to the relatively short (~ 10 days) duration of this event. The standard deviation of the 40 km binned MODIS AOD is significantly lower than the mean 40 km binned AOD over the desert Southwest, indicating that high surface reflectivity introduces systematic, not random biases in the MODIS AOD retrievals over desert regions. Localized regions of high standard deviation in California, Nevada, Arizona, and Mexico reflect real variations in AOD associated with major urban areas.

Figure 8. Map of the number of MODIS AOD retrievals within each 40 km bin for September, 2003.

Figure 8 shows the number of MODIS AOD retrievals used to obtain the 40 km binned statistics. In the desert Southwest, low counts occur in regions with high mean AOD that are caused by high surface reflectivity (Western Nevada, Southern California, Salt Lake City, northeastern Arizona, southeastern New Mexico and west Texas). Counts are lower over the Gulf of Mexico and Atlantic Ocean due to sun glint interference in the AOD retrievals. Counts are lower over the Pacific due to missing MODIS AOD granules and persistent low-level cloudiness.

4.2 Site-by-site mean statistics

The amount of information that MODIS AOD can contribute to characterization of the mean spatial distribution of aerosols at the AIRNow sites is quantified by comparing the site-by-site mean and standard deviations of the AIRNow PM_{2.5} and MODIS AOD. Figures 9a and 9b show the site-by-site distribution of mean AIRNow PM_{2.5} and mean MODIS AOD for September 2003. The September 2003 weighted national mean is 11.75 $\mu\text{g}/\text{m}^3$ and 0.28 for AIRNow PM_{2.5} and MODIS AOD, respectively. Both mean distributions show elevated (above their respective weighted national mean) aerosols in the Central and South Eastern US, Los Angeles and Salt Lake City with generally low aerosols (below their respective weighted national mean) in the Northeastern US and Western Washington. MODIS shows relatively high mean AOD for the AIRNow sites in Eastern Washington while the mean surface PM_{2.5} measurements remain low in spite of the large aerosol loading associated with the fires in the Northwest. This difference can be understood since aerosol loading in this region was likely transported above the boundary layer and therefore not sampled by the AIRNow surface sites. Similar influences of lofted aerosol loading are evident in Eastern Michigan and the Minneapolis-St. Paul metropolitan area where MODIS measured relatively high mean AOD but the mean AIRNow PM_{2.5} measurements are generally low.

Figures 10a and 10b show site-by-site distribution of the standard deviation of the coincident AIRNow PM_{2.5} and MODIS AOD measurements for September 2003. The September 2003 weighted national average standard deviation is 6.6 $\mu\text{g}/\text{m}^3$ and 0.16 for AIRNow PM_{2.5} and MODIS AOD, respectively. Both PM_{2.5} and AOD show relatively high (above the weighted national average) standard deviations throughout the central and south central US, consistent with the standard deviation of the 40 km binned MODIS AOD (Figure 7). The PM_{2.5} measurements show very high ($>25\mu\text{g}/\text{m}^3$) standard deviations for an individual AIRNow site in Los Angeles that is not present in the AOD measurements. The standard deviation at this highly urbanized site reflects very localized variability and is significantly larger than the mean PM_{2.5} at this site during September 2003. The MODIS AOD shows relatively high standard deviations at sites in Eastern Washington, Chicago, and Alabama. These high standard deviations most likely reflect variability associated with lofted aerosol loading since they are not as pronounced in the surface PM_{2.5} standard deviations.

Figure 9. Site-by-site distribution of mean AIRNow PM_{2.5} (9a) and MODIS AOD (9b) for September 2003.

Figure 10. Site-by-site distribution of AIRNow PM_{2.5} (10a) and MODIS AOD (10b) standard deviations for September 2003.

4.3 Regional spatial statistics

The comparison of maps of AIRNow PM_{2.5} and MODIS AOD site-by-site mean and standard deviation statistics shows that MODIS AOD can provide useful qualitative information about the spatial distribution of mean surface PM_{2.5} during September 2003. However, there is significant site-to-site variation in the agreement between the mean PM_{2.5} and AOD measurements. To quantify the spatial information content in the mean MODIS AOD we consider the correlations between site-by-site means and standard deviations within each of the EPA regions. Figure 11 shows a map of the EPA regions. Only continental US regions were considered in this analysis.

Figure 11. Map of EPA Regions 1-10.

Figure 12 is an example of the spatial correlations between means and standard deviations of MODIS AOD and PM_{2.5} measurements for each AIRNow site within EPA regions 4 and 5 during September 2003. These regions have been combined so that the spatial information content of the MODIS AOD within the high aerosol loading over the Central and South-Central US can be quantified. (Appendix C summarizes the spatial correlations between AOD and PM_{2.5} means and standard deviations for each individual EPA region.) The spatial correlation between the mean AOD and PM_{2.5} within EPA region 4 and 5 is low (~0.25). The spatial correlation between the AOD and PM_{2.5} standard deviations within EPA region 4 and 5 is somewhat higher (~0.4). In general, the spatial correlations within EPA regions are significantly lower than the site-by-site

temporal correlations shown in Figure 4. For example, the EPA region 4 and 5 weighted average of the site-by-site temporal correlations shown in Figure 4 is 0.59 during September 2003, which is over twice as high as the mean spatial correlation.

Figure 12. Spatial correlations between means and standard deviations of MODIS AOD and PM_{2.5} measurements for each AIRNow site within EPA regions 4 and 5.

5.0 Conclusion

This technical evaluation of the relationship between AIRNow surface PM_{2.5} and satellite-observed AOD for a pilot study period of September 2003 indicates that MODIS AOD provides a daily, national perspective on atmospheric column aerosol loading which complements the AIRNow network by filling in gaps in the surface PM_{2.5} network.

In addition, changes from day to day in the national perspective (MODIS AOD) provide insight into transport of aerosol, both laterally across the continent, and vertical ascent or descent. Good quantitative correlations with MODIS AOD and AIRNow surface PM_{2.5} are found when the aerosol is mostly in the boundary layer. Poorer quantitative results occur when the aerosol is lofted. Consequently, we have recommended that the MODIS Science Team devise a parameter to indicate the approximate vertical location of the aerosol (likelihood that the aerosol is near the surface or lofted) based on the meteorology and physics of the retrieval.

Generally high agreement between MODIS AOD and AIRNow PM_{2.5} is found for the hourly data. However, MODIS AOD provides only qualitative information about the mean spatial distribution of surface PM_{2.5} during September 2003. The discrepancy between the generally high temporal correlations and generally low mean spatial correlations arises because the spatial statistics are influenced by site-to-site variations in the aerosol composition and the altitude of the aerosol loading, both of which lead to different mean AOD/ PM_{2.5} ratios. When these different mean PM_{2.5} /AOD ratios are combined into regional spatial correlations, the overall correlation decreases. In contrast, site-by-site background aerosol composition appears to be relatively constant during September 2003, so that significant events like the long-range transport of the smoke from the Northwestern wild fires result in episodic increases in both surface PM_{2.5} and AOD which are strongly correlated in time, even though individual sites have a different background relationship between AOD and PM_{2.5}.

Acknowledgements

This work was sponsored by NASA's Earth Science Enterprise (www.earth.nasa.gov) through the National Applications Program. MODIS aerosol optical depth data were provided by Allen Chu (MODIS Science Team), and delivered through the MODIS "bent pipe" data service sponsored by Mitch Goldberg (NOAA NESDIS). WF_ABBA data were supplied by Elaine Prins (NOAA). Chet Wayland (US EPA) made the AIRNow surface PM_{2.5} available for the project. The authors gratefully acknowledge these collaborators.

6.0 References

Al-Saadi, J., J. Szykman, B. Pierce, C. Kittaka, D. Neil, A. Chu, L. Remer, L. Gumley, E. Prins, L. Weinstock, C. MacDonald, R. Wayland, F. Dimmick, and J. Fishman, Improving national air quality forecasts with satellite aerosol observations, *Bulletin of the American Meteorological Society*, submitted, 2004.

Kaufman, Y. J. and C. O. Justice, Algorithm technical background document, MODIS Fire Products, Version 2.2, EOS ID#2741, 10 November 1998.

Kittaka, C., J. Szykman, B. Pierce, J. Al-Saadi, D. Neil, A. Chu, L. Remer, E. Prins, and J. Holdzkom, Utilizing MODIS satellite observations to monitor and analyze fine particulate matter, PM2.5, transport event, 84th American Meteorological Society Meeting, Seattle, WA, January 2004.

Prins, E., J. Schmetz, L. Flynn, D. Hillger, and J. Feltz, Overview of current and future diurnal active fire monitoring using a suite of international geostationary satellites. *Global and Regional Wildfire Monitoring: Current Status and Future Plans*, SPB Academic Publishing, The Hague, Netherlands, 145-170, 2001a.

Prins, E., J. Feltz, and C. Schmidt, An overview of active fire detection and monitoring using meteorological satellites. *Proc. 11th Conference on Satellite Meteorology and Oceanography*, Madison, WI, Amer. Meteor. Soc., 1-8, 2001b.

Prins, E. M., J. M. Feltz, W. P. Menzel, and D. E. Ward, An overview of GOES-8 diurnal fire and smoke results for SCAR-B and the 1995 fire season in South America. *J. Geo. Res.*, 103, 31,821-31,836, 1998.

Prins, E. M., and W. P. Menzel, Trends in South American biomass burning detected with the GOES visible infrared spin scan radiometer atmospheric from 1983 to 1991. *J. Geo. Res.*, 99, 16,719-16735, 1994.

Szykman, J., J. White, C. Kittaka, A. Chu, L. Remer, L. Gumley, and E. Prins, Utilizing MODIS satellite observations in near-real-time to improve AIRNow next day forecast of fine particulate matter, PM2.5, 84th American Meteorological Society Meeting, Seattle, WA, January 2004.

Watson, J. G., J. C. Chow, H. Moosmuller, M. Green, N. Frank, and M. Pitchford, Guidance for using continuous monitors in PM_{2.5} monitoring networks, EPA-454/R-98-012, May 1998.

World Resources Institute (WRI), *Health Effects of Air Pollution*, <http://www.wri.org/wr-98-99/airpoll.htm> (accessed 5 November 2003), 1999.

EDAS
<http://www.arl.noaa.gov/ss/transport/edas.html>

<http://wwwt.emc.ncep.noaa.gov/modelinfo/>
<ftp://tgftp.nws.noaa.gov>

EPA Clean Air Act
<http://www.epa.gov/oar/caa/contents.html>

GOES
http://orbit-net.nesdis.noaa.gov/arad/fpdt/goescat_v4/html/GOES_I_1_overview.html

MODIS
<http://modis.gsfc.nasa.gov>

WF_ABBA
<http://cimss.ssec.wisc.edu/goes/burn/abba.html>

Appendix A

Daily Satellite and EPA In-Situ Fusion National Maps

Appendix B

Site-by-Site Satellite and EPA In-Situ Time Series

Appendix B contains Table B1, Table B2, and the site-by-site satellite and in-situ time series plots for all of the ground stations used in this analysis. Table B1 lists pertinent information (EPA region, station ID, state, longitude, latitude, MSA number, MSA description, station name and monitor method) for the ground station sites in the United States organized by EPA region. In the case where the monitor method is left blank, that information was unavailable to the authors at the time of this printing. For the sites in Canada, only the station ID, province, longitude, latitude, and station name were available. The time series plots are listed in the same order as the Tables B1 and B2.

Table B1. United States EPA Ground Station Sites

Region	Station ID	State	Lon	Lat	MSA #	MSA description	Station Name	Monitor Method
1	090031018	CT	-72.67	41.76	3280	HARTFORD, CT	Hartford	BAM
1	090091123	CT	-72.92	41.31	1160	BRIDGEPORT, CT	New Haven	BAM
1	090092123	CT	-73.04	41.55	1160	BRIDGEPORT, CT	Waterbury	BAM
1	230010011	ME	-70.21	44.09	4240	LEWISTON-AUBURN, ME	Lewiston County Kitchen	TEOM Gravimetric 50 deg
1	230050027	ME	-70.27	43.66	0	NOT IN AN MSA	Portland Impact	TEOM Gravimetric 50 deg
1	230190002	ME	-68.77	44.80	730	BANGOR, ME	KPSTEOM	TEOM Gravimetric 50 deg
1	250130016	MA	-72.59	42.11	8000	SPRINGFIELD, MA	Springfield	BAM
1	250250042	MA	-71.08	42.33	1120	BOSTON, MA-NH	Boston-Roxbury	BAM
1	250250043	MA	-71.05	42.36	1120	BOSTON, MA-NH	Boston-North End	BAM
1	250270020	MA	-71.80	42.27	0	NOT IN AN MSA	Worcester	BAM
1	330090008	NH	-72.01	44.08	0	NOT IN AN MSA	Haverhill	TEOM Gravimetric 30 deg
1	330110020	NH	-71.46	43.00	5350	NASHUA, NH	Manchester	TEOM Gravimetric 30 deg
1	330115001	NH	-71.88	42.86	5350	NASHUA, NH	MILLER	TEOM Gravimetric 30 deg
1	440070022	RI	-71.42	41.81	6480	PROVIDENCE-FALL RIVER-	Providence	TEOM Gravimetric 30 deg
1	440071010	RI	-71.36	41.84	6480	WARWICK, RI-MA	WARWICK, RI-MA	TEOM Gravimetric 50 deg
1	500030004	VT	-73.25	42.90	0	NOT IN AN MSA	BENINGTN	FDMS-Grav
1	500070012	VT	-73.22	44.48	1305	BURLINGTON, VT	BRLNGTN2	FDMS-Grav
1	500210002	VT	-72.98	43.61	0	NOT IN AN MSA	RUTLAND	FDMS-Grav
2	340030004	NJ	-73.97	40.85	875	BERGEN-PASSaic, NJ	Fort Lee	TEOM Gravimetric 50 deg
2	340070003	NJ	-75.10	39.92	6160	PHILADELPHIA, PA-NJ	Camden	TEOM Gravimetric 50 deg
2	340230006	NJ	-74.42	40.47	5015	MIDDLESEX-SOMERSET-	New Brunswick	TEOM Gravimetric 50 deg
2	340390004	NJ	-74.21	40.64	5640	HUNTERDON, NJ	Elizabeth Trailer	TEOM Gravimetric 50 deg
2	360010005	NY	-73.75	42.64	160	ALBANY-SCHENECTADY-	ALBNY	TEOM Gravimetric 50 deg
2	360050113	NY	-74.79	41.48	5600	NEW YORK, NY	PS154	TEOM Gravimetric 50 deg
2	360290005	NY	-78.81	42.88	1280	BUFFALO-NIAGARA FALLS, NY	Buffalo	TEOM Gravimetric 50 deg
2	360310003	NY	-73.90	44.36	0	NOT IN AN MSA	Whiteface	TEOM Gravimetric 50 deg
2	360470118	NY	-73.93	40.69	5600	NEW YORK, NY	Brooklyn	TEOM Gravimetric 50 deg
2	360556001	NY	-77.57	43.16	6840	ROCHESTER, NY	Rochester	TEOM Gravimetric 50 deg

Table B1. Continued

Region	Station ID	State	Lon	Lat	MSA #	MSA description	Monitor Method	Station Name
2	360590005	NY	-73.59	40.74	5380	NASSAU-SUFFOLK, NY	TEOM	Gravimetric 50 deg
2	360610115	NY	-73.93	40.85	5600	NEW YORK, NY	TEOM	Gravimetric 50 deg
2	360632008	NY	-79.00	43.08	1280	BUFFALO-NIAGARA FALLS, NY	TEOM	Gravimetric 50 deg
2	360652001	NY	-75.22	43.10	8680	UTICA-ROME, NY	TEOM	Gravimetric 50 deg
2	360710002	NY	-74.01	41.50	5660	NEWBURGH, NY-PA	TEOM	Gravimetric 50 deg
2	360810124	NY	-73.82	40.74	5600	NEW YORK, NY	TEOM	Gravimetric 50 deg
2	360850114	NY	-74.16	40.63	5600	NEW YORK, NY	TEOM	Gravimetric 50 deg
2	361192004	NY	-73.76	41.05	5600	NEW YORK, NY	TEOM	Gravimetric 50 deg
3	100032004	DE	-75.56	39.74	9160	WILMINGTON-NEWARK, DE, MD	BAM	
3	110010043	DC	-77.01	38.92	8840	WASHINGTON, DC-MD-VA-WV	TEOM	Gravimetric 50 deg
3	245100040	MD	-76.60	39.30	720	BALTIMORE, MD	TEOM	Gravimetric 50 deg
3	420010001	PA	-77.31	39.92	0	NOT IN AN MSA	TEOM	Gravimetric 30 deg
3	420050001	PA	-79.57	40.81	0	NOT IN AN MSA	TEOM	Gravimetric 30 deg
3	420958000	PA	-75.24	40.69	240	ALLENTOWN-BETHLEHEM-EASTON, PA	EAS2	TEOM Gravimetric 30 deg
3	510591005	VA	-77.16	38.84	8840	WASHINGTON, DC-MD-VA-WV	Ammandale	
3	510870014	VA	-77.40	37.56	6760	RICHMOND-PETERSBURG, VA	MATH & SCIENCE CTR	
3	516500004	VA	-76.40	37.00	5720	NORFOLK-VIRGINIA BEACH-NEWPORT NEWS, VA-NC	VA SCHOOL	
4	010730023	AL	-86.82	33.55	1000	BIRMINGHAM, AL	NO. BHAM	TEOM Gravimetric 50 deg
4	010731005	AL	-87.01	33.33	1000	BIRMINGHAM, AL	MCADORY	TEOM Gravimetric 50 deg
4	010731006	AL	-87.31	33.46	1000	BIRMINGHAM, AL	PROVIDENCE	
4	010732003	AL	-86.92	33.50	1000	BIRMINGHAM, AL	WYLAN	
4	010732006	AL	-86.80	33.39	1000	BIRMINGHAM, AL	HOOVER	
4	010735002	AL	-86.67	33.70	1000	BIRMINGHAM, AL	PINSON	
4	010735003	AL	-86.56	33.48	1000	BIRMINGHAM, AL	CORNER	
4	120730012	FL	-84.35	30.44	8240	TALLAHASSEE, FL	Tallahassee Community College	
4	130210012	GA	-83.54	32.80	4680	MACON, GA	Macon	
4	130890002	GA	-84.27	33.69	520	ATLANTA, GA	South Dekalb	TEOM Gravimetric 30 deg
4	131350002	GA	-84.07	33.96	520	ATLANTA, GA	Gwinnett Tech	TEOM Gravimetric 30 deg
4	131510002	GA	-84.16	33.43	520	ATLANTA, GA	McDonough	TEOM Gravimetric 30 deg
4	132150008	GA	-84.94	32.52	1800	COLUMBUS, GA-AL	Columbus Airport	TEOM Gravimetric 30 deg

Table B1. Continued

Region	Station ID	State	Lat	MSA #	MSA description	Monitor Method	Station Name
4	132230003	GA	-85.05	33.93	520	ATLANTA, GA	TEOM Gravimetric 30 deg
4	211110027	KY	-85.58	38.14	4520	LOUISVILLE, KY-IN	Yorkville
4	211110043	KY	-85.49	38.13	4520	LOUISVILLE, KY-IN	BATES
4	211110048	KY	-85.73	38.24	4520	LOUISVILLE, KY-IN	Southwick Community Center
4	211110051	KY	-85.90	38.06	4520	LOUISVILLE, KY-IN	Barret (APDC)
4	280110001	MS	-90.73	33.76	0	NOT IN AN MSA	WATSON
4	280470008	MS	-89.05	30.39	920	BILOXI-GULFPORT-PASCAGOULA, MS	CLEVELAND
4	280490018	MS	-90.19	32.30	3560	JACKSON, MS	GPORT YC
4	370350004	NC	-81.37	35.73	3290	HICKORY-MORGANTON-LENOR, NC	JAXCOURT HICKORY
4	370670022	NC	-80.23	36.11	3120	GREENSBORO--WINSTON-SALEM--HIGH POINT, NC	HATTIEAVEN
4	370810013	NC	-79.80	36.11	3120	GREENSBORO--WINSTON-SALEM--HIGH POINT, NC	MENDNHAL
4	371190041	NC	-80.78	35.24	1520	CHARLOTTE-GASTONIA-ROCK HILL, NC-SC	GARINGER
4	371190042	NC	-80.87	35.15	1520	CHARLOTTE-GASTONIA-ROCK HILL, NC-SC	Montclaire
4	371290002	NC	-77.86	34.36	9200	WILMINGTON, NC	CASTLE H
4	371730002	NC	-83.44	35.44	0	NOT IN AN MSA	BRYSON
4	371830014	NC	-78.58	35.86	6640	RALEIGH-DURHAM-CHAPEL HILL, NC	MILBROOK
4	450070003	SC	-82.49	34.78	3160	GREENVILLE-SPARTANBURG-ANDERSON, SC	POWDERVILLE
4	450190046	SC	-79.66	32.94	1440	CHARLESTON-NORTH CHARLESTON, SC	BAM CAPE ROMAIN
4	450250001	SC	-80.20	34.62	0	NOT IN AN MSA	TEOM Gravimetric 50 deg
4	450290002	SC	-80.96	33.01	0	NOT IN AN MSA	TEOM Gravimetric 50 deg
4	450370001	SC	-81.85	33.74	600	AUGUSTA-AIKEN, GA-SC	TEOM Gravimetric 50 deg
4	450730001	SC	-83.24	34.81	0	NOT IN AN MSA	TEOM Gravimetric 50 deg
4	450770002	SC	-82.84	34.65	3160	GREENVILLE-SPARTANBURG-ANDERSON, SC	TEOM Gravimetric 50 deg

Table B1. Continued

Region	Station ID	State	Lat	Lon	MSA #	MSA description	Monitor Method	Station Name
4	470090101	TN	-83.94	35.63	3840	KNOXVILLE, TN	TEOM	Look Rock-GSMNP
4	470370023	TN	-86.74	36.18	5360	NASHVILLE, TN	TEOM	LOCKLAND
4	470931013	TN	-83.93	35.98	3840	KNOXVILLE, TN	TEOM	AIR LAB
4	471570024	TN	-90.04	35.15	4920	MEMPHIS, TN-AR-MS	TEOM	Alabama Ave
4	471570038	TN	-89.94	35.18	4920	MEMPHIS, TN-AR-MS	TEOM	Jackson
4	471650007	TN	-86.65	36.30	5360	NASHVILLE, TN	TEOM	HVILLE
5	170310001	IL	-87.73	41.67	1600	CHICAGO, IL	BAM	ALSIP
5	170310022	IL	-87.54	41.69	1600	CHICAGO, IL	BAM	CHI_WASH
5	170310057	IL	-87.72	41.91	1600	CHICAGO, IL	BAM	CHI_SP
5	170310076	IL	-87.71	41.75	1600	CHICAGO, IL	BAM	CHI_COM
5	170314007	IL	-87.86	42.06	1600	CHICAGO, IL	DESPLNS	DECATUR
5	170314101	IL	-88.11	42.05	1600	CHICAGO, IL	BAM	HOFFMAN
5	170316006	IL	-87.83	41.88	1600	CHICAGO, IL	BAM	MAYWOOD
5	170434002	IL	-88.15	41.77	1600	CHICAGO, IL	BAM	NAPERVL
5	171150013	IL	-88.93	39.87	2040	DECATUR, IL	BAM	ESTLOUIS
5	171630010	IL	-90.16	38.61	7040	ST. LOUIS, MO-IL	TEOM	FTWAYNE
5	180030004	IN	-85.10	41.09	2760	FORT WAYNE, IN	TEOM	GARYIITR
5	180890022	IN	-87.30	41.61	2960	GARY, IN	TEOM	Washington Park
5	180970078	IN	-86.11	39.81	3480	INDIANAPOLIS, IN	TEOM	SBEND
5	181411008	IN	-86.24	41.69	7800	SOUTH BEND, IN	TEOM	EVANSVIL
5	181630012	IN	-87.57	38.02	2440	EVANSVILLE-HENDERSON, IN-KY	FDMS-Grav	IN-KY
5	181670018	IN	-87.40	39.49	8320	TERRE HAUTE, IN	FDMS-Grav	TERHAUTE
5	260490021	MI	-83.67	43.03	2640	FLINT, MI	FDMS-Grav	FLINT
5	260650012	MI	-84.54	42.74	4040	LANSING-EAST LANSING, MI	FDMS-Grav	LANSING
5	260770008	MI	-85.54	42.28	3720	KALAMAZOO-BATTLE CREEK, MI	FDMS-Grav	KALAMAZO
5	260810020	MI	-85.67	42.98	3000	GRAND RAPIDS-MUSKEGON-HOLLAND, MI	FDMS-Grav	GRRAPIDS
5	261450018	MI	-83.97	43.51	6960	SAGINAW-BAY CITY-MIDLAND, MI	FDMS-Grav	Saginaw
5	261610008	MI	-83.60	42.24	440	ANN ARBOR, MI	FDMS-Grav	YPSILANT
5	261630001	MI	-83.21	42.23	2160	DETROIT, MI	FDMS-Grav	Detroit Allen Park

Table B1. Continued

Region	Station ID	State	Lat	MSA #	MSA description	Station Name	Monitor Method
5	270031002	MN	-93.21	45.14	5120	MINNEAPOLIS-ST. PAUL, MN-WI	ANOKA CNTY AIRPORT BAM
5	270370470	MN	-93.24	44.74	5120	MINNEAPOLIS-ST. PAUL, MN-WI	Westview Elementary BAM
5	270530963	MN	-93.26	44.95	5120	MINNEAPOLIS-ST. PAUL, MN-WI	Philips Andersen BAM
5	271095008	MN	-92.45	43.99	6820	ROCHESTER, MN	Rochester Franklin BAM
5	271230871	MN	-93.04	44.96	5120	MINNEAPOLIS-ST. PAUL, MN-WI	Harding High School BAM
5	271377551	MN	-92.13	46.77	2240	DULUTH-SUPERIOR, MN-WI	DULUTH LINCOLN PARK BAM
5	271453052	MN	-94.13	45.55	6980	ST. CLOUD, MN	St. Cloud TaJah BAM
5	271713201	MN	-93.67	45.21	5120	MINNEAPOLIS-ST. PAUL, MN-WI	St. Michael BAM
5	390350060	OH	-81.68	41.49	1680	CLEVELAND-LORAIN-ELYRIA, OH	TEOM Gravimetric 50 deg G.T.Craig
5	390490028	OH	-82.96	39.91	1840	COLUMBUS, OH	TEOM Gravimetric 50 deg KOEBEL
5	390490029	OH	-82.82	40.09	1840	COLUMBUS, OH	TEOM Gravimetric 50 deg NEW_ALBNY
5	390610040	OH	-84.51	39.13	1640	CINCINNATI, OH-KY-IN	TEOM Gravimetric 50 deg TAFT
5	390950024	OH	-83.55	41.64	8400	TOLEDO, OH	TEOM Gravimetric 50 deg ERIE
5	390990014	OH	-80.66	41.10	9320	YOUNGSTOWN-WARREN, OH	TEOM Gravimetric 50 deg Head Start
5	391130031	OH	-84.14	39.76	2000	DAYTON-SPRINGFIELD, OH	TEOM Gravimetric 50 deg W. Wright
5	391130032	OH	-84.19	39.72	2000	DAYTON-SPRINGFIELD, OH	TEOM Gravimetric 50 deg Library
5	391510020	OH	-81.37	40.80	1320	CANTON-MASSILLON, OH	TEOM Gravimetric 50 deg CANTON
5	391530017	OH	-81.33	41.18	80	AKRON, OH	TEOM Gravimetric 50 deg EAST HS
5	550270007	WI	-88.53	43.44	0	NOT IN AN MSA	MAYVILLE
5	550590019	WI	-87.81	42.50	3800	KENOSHA, WI	CHIWAUKEE
5	550790026	WI	-87.91	43.06	5080	MILWAUKEE-WAUKESHA, WI	SER DNR MILW
5	551330027	WI	-88.21	43.02	5080	MILWAUKEE-WAUKESHA, WI	CLEVELAND-WAUK
6	220150008	LA	-93.75	32.54	7680	SHREVEPORT-BOSSIER CITY, LA	Shreveport Airport
6	220190008	LA	-93.29	30.26	3960	LAKE CHARLES, LA	TEOM Gravimetric 50 deg Westlake
6	220330013	LA	-91.06	30.70	760	BATON ROUGE, LA	PRIDE
6	220511001	LA	-90.27	30.04	5560	NEW ORLEANS, LA	Kenner

Table B1. Continued

Region	Station ID	State	Lat	Lon	MSA #	MSA description	Monitor Method	Station Name
6	220630002	LA	-90.81	30.32	760	BATON ROUGE, LA	TEOM	Gravimetric 50 deg
6	220710012	LA	-90.10	29.99	5560	NEW ORLEANS, LA	TEOM	Gravimetric 50 deg
6	350130016	NM	-106.60	32.00	4100	LAS CRUCES, NM	TEOM	Gravimetric 50 deg
6	350130017	NM	-106.56	31.80	4100	LAS CRUCES, NM	TEOM	Gravimetric 50 deg
6	350130021	NM	-106.58	31.80	4100	LAS CRUCES, NM	TEOM	Gravimetric 50 deg
6	350490020	NM	-105.96	35.67	7490	SANTA FE, NM	TEOM	Gravimetric 50 deg
6	400270049	OK	-97.49	35.32	5880	OKLAHOMA CITY, OK	TEOM	Gravimetric 50 deg
6	400310647	OK	-98.37	34.65	4200	LAWTON, OK	TEOM	Gravimetric 50 deg
6	401431127	OK	-95.98	36.21	8560	TULSA, OK	TEOM	Gravimetric 50 deg
6	480290053	TX	-98.31	29.59	7240	SAN ANTONIO, TX	TEOM	Gravimetric 50 deg
6	480290055	TX	-98.43	29.41	7240	SAN ANTONIO, TX	TEOM	Gravimetric 50 deg
6	480290059	TX	-98.31	29.28	7240	SAN ANTONIO, TX	TEOM	Gravimetric 50 deg
6	481130069	TX	-96.86	32.82	1920	DALLAS, TX	TEOM	Gravimetric 50 deg
6	481133003	TX	-96.55	32.77	1920	DALLAS, TX	TEOM	Gravimetric 50 deg
6	481210034	TX	-97.19	33.19	1920	DALLAS, TX	TEOM	Gravimetric 50 deg
6	481350003	TX	-102.34	31.84	5800	ODESSA-MIDLAND, TX	C56/C157/C163	
6	481351014	TX	-102.34	31.87	5800	ODESSA-MIDLAND, TX	Odessa Hays C47/C122 [N]	TEOM Gravimetric 50 deg
6	481390015	TX	-97.02	32.44	1920	DALLAS, TX	Odessa Gonzales C1014	TEOM Gravimetric 50 deg
							Midlothian Tower	TEOM Gravimetric 50 deg
							C94/C158/C160	
6	481390017	TX	-97.04	32.47	1920	DALLAS, TX	Midlothian Wyatt Road C302	TEOM Gravimetric 50 deg
6	481410037	TX	-106.50	31.77	2320	EL PASO, TX	El Paso UTEP C12/C125/C151	TEOM Gravimetric 50 deg
6	481410053	TX	-106.50	31.76	2320	EL PASO, TX	El Paso Sun Metro C40/C116	TEOM Gravimetric 50 deg
6	481670014	TX	-94.86	29.26	2920	GALVESTON-TEXAS CITY, TX	Galveston Airport C34/C109/C152	TEOM Gravimetric 50 deg
6	482010024	TX	-95.33	29.90	3360	HOUSTON, TX	Houston Aldine C8/C108/C150	TEOM Gravimetric 50 deg
							[Q]	
6	482010026	TX	-95.13	29.80	3360	HOUSTON, TX	Channelview C15/C115	TEOM Gravimetric 50 deg
6	482011034	TX	-95.22	29.77	3360	HOUSTON, TX	Houston East C1	TEOM Gravimetric 50 deg
6	482011035	TX	-95.26	29.73	3360	HOUSTON, TX	Clinton C403/C113/C304	TEOM Gravimetric 50 deg
6	482011039	TX	-95.13	29.67	3360	HOUSTON, TX	Houston Deer Park 2 C35/C139	TEOM Gravimetric 50 deg
							[H]	
6	482011042	TX	-95.19	30.06	3360	HOUSTON, TX	Kingwood C309	TEOM Gravimetric 50 deg

Table B1. Continued

Region	Station ID	State	Lon	Lat	MSA #	MSA description	Monitor Method	Station Name
6	482011050	TX	-95.02	29.58	3360	HOUSTON, TX	TEOM	Gravimetric 50 deg
6	482030002	TX	-94.17	32.67	4420	LONGVIEW-MARSHALL, TX	TEOM	Gravimetric 50 deg
6	482450020	TX	-94.08	30.07	840	BEAUMONT-PORT ARTHUR, TX	TEOM	Gravimetric 50 deg
6	482450021	TX	-93.91	29.92	840	BEAUMONT-PORT ARTHUR, TX	TEOM	Gravimetric 50 deg
6	482450022	TX	-94.31	29.86	840	BEAUMONT-PORT ARTHUR, TX	TEOM	Gravimetric 50 deg
6	482570005	TX	-96.32	32.56	1920	DALLAS, TX	TEOM	Gravimetric 50 deg
6	482730314	TX	-97.30	27.43	0	NOT IN AN MSA	TEOM	Gravimetric 50 deg
						CAMS314		
6	483030001	TX	-101.85	33.59	4600	LUBBOCK, TX	Lubbock C306	
6	483390078	TX	-95.42	30.35	3360	HOUSTON, TX	Contro Relocated C78	
6	483611100	TX	-93.87	30.18	840	BEAUMONT-PORT ARTHUR, TX	SETRPC Mauriceville 42 C642	
6	483750005	TX	-101.83	35.21	320	AMARILLO, TX	Amarillo C305	
6	484391006	TX	-97.34	32.76	2800	FORT WORTH-ARLINGTON, TX	Haws Athletic Center C310	
6	484393008	TX	-97.34	32.81	2800	FORT WORTH-ARLINGTON, TX	Diamond Hill Fort Worth C308	
6	484393009	TX	-97.06	32.98	2800	FORT WORTH-ARLINGTON, TX	Grapevine Fairwau C70	
6	484393011	TX	-97.09	32.66	2800	FORT WORTH-ARLINGTON, TX	Arlington Municipal Airport C61	
6	484530014	TX	-97.76	30.35	640	AUSTIN-SAN MARCOS, TX	Austin Northwest C3	
6	484530020	TX	-97.87	30.48	640	AUSTIN-SAN MARCOS, TX	Audubon C38	
7	190330018	IA	-93.20	43.17	0	NOT IN AN MSA	M. City	
7	190450019	IA	-90.21	41.82	0	NOT IN AN MSA	Clinton2	
7	191130037	IA	-91.68	42.01	1360	CEDAR RAPIDS, IA	Army Reserve Center	
7	191370002	IA	-95.04	40.97	0	NOT IN AN MSA	VIKINGLK	
7	191471002	IA	-94.69	43.12	0	NOT IN AN MSA	Emmetsburg	
7	191530030	IA	-93.64	41.60	2120	DES MOINES, IA	CARPNTER	
7	191630015	IA	-90.59	41.53	1960	DAVENPORT-MOLINE-ROCK	Dav10Vin	
						ISLAND, IA-II	Davblhwk	
7	191630019	IA	-90.62	41.52	1960	DAVENPORT-MOLINE-ROCK	FDMS-Grav	
						ISLAND, IA-II		
7	191770005	IA	-91.99	40.69	0	NOT IN AN MSA	FDMS-Grav	
7	202090021	KS	-94.64	39.12	3760	KANSAS CITY, MO-KS	WY/KC	
7	295100085	MO	-90.20	38.66	7040	ST. LOUIS, MO-IL	BLAIR STREET	
8	080010006	CO	-104.94	39.83	2080	DENVER, CO	Commerce City	
8	080310002	CO	-104.99	39.75	2080	DENVER, CO	CAMP	

Table B1. Continued

Region	Station ID	State	Lon	Lat	MSA #	MSA description	Station Name	Monitor Method
8	080310013	CO	-104.94	39.74	2080	DENVER, CO	NJH	TEOM Gravimetric 30 deg
8	081230006	CO	-104.71	40.41	3060	GREELEY, CO	Greeley	TEOM Gravimetric 30 deg
8	490050002	UT	-111.84	41.73	0	NOT IN AN MSA	Logan #4	
8	490353006	UT	-111.87	40.73	7160	SALT LAKE CITY-OGDEN, UT	Hawthorne	
8	490494001	UT	-111.71	40.34	6520	PROVO-OREM, UT	Linden-Provo	
8	490570002	UT	-111.97	41.21	7160	SALT LAKE CITY-OGDEN, UT	Ogden #2	
9	040191030	AZ	-111.00	31.88	8520	TUSCON, AZ	Green Valley	BAM
9	040191032	AZ	-110.98	32.17	8520	TUSCON, AZ	Rose Elementary	BAM
9	040191034	AZ	-111.13	32.38	8520	TUSCON, AZ	Coachline	BAM
9	040191113	AZ	-110.97	32.25	8520	TUSCON, AZ	Geronimo	BAM
9	060010007	CA	-121.78	37.69	5775	OAKLAND, CA	Livermore-Rincon	
9	060010008	CA	-122.28	37.82	5775	OAKLAND, CA	Oakland-Filbert	BAM
9	060070002	CA	-121.84	39.76	1620	CHICO-PARADISE, CA	Chico-Manzanita	BAM
9	060074001	CA	-121.76	39.31	1620	CHICO-PARADISE, CA	Gridley	BAM
9	060190008	CA	-119.77	36.78	2840	FRESNO, CA	Fresno-1st Street	BAM
9	060250005	CA	-115.48	32.68	0	NOT IN AN MSA	Calexico-Ethel Street	BAM
9	060290014	CA	-119.04	35.36	680	BAKERSFIELD, CA	Bakersfield-5558 California Ave	BAM
9	060310004	CA	-119.33	36.25	0	NOT IN AN MSA	Corcoran	
9	060371002	CA	-118.32	34.18	4480	LOS ANGELES-LONG BEACH, CA	Burbank-W. Palm Ave	
9	060590001	CA	-117.91	33.82	5945	ORANGE COUNTY, CA	Anaheim	
9	060650012	CA	-116.87	33.93	6780	RIVERSIDE-SAN BERNARDINO, CA	Banning-South Hathaway Street	
9	060658001	CA	-117.43	34.01	6780	RIVERSIDE-SAN BERNARDINO, CA	Riverside-Rubidoux	
9	060670006	CA	-121.37	38.61	6920	SACRAMENTO, CA	Sacramento-Del Paso Manor	BAM
9	060670011	CA	-121.42	38.30	6920	SACRAMENTO, CA	Elk Grove-Bruceville Road	BAM
9	060670012	CA	-121.16	38.68	6920	SACRAMENTO, CA	Folsom-Natoma Street	BAM
9	060750005	CA	-122.40	37.77	7360	SAN FRANCISCO, CA	San Francisco-Arkansas Street	
9	060773003	CA	-121.53	37.74	8120	STOCKTON-LODI, CA	Tracy-24371 Patterson Pass Road	
9	060850005	CA	-121.89	37.35	7400	SAN JOSE, CA	San Jose-Jackson St.	
9	060950004	CA	-122.24	38.10	8720	VALLEJO-FAIRFIELD-NAPA,CA	Vallejo-304 Tuolumne Street	
9	060990005	CA	-120.99	37.66	5170	MODESTO, CA	Modesto- 14th Street	BAM

Table B1. Continued

Region	Station ID	State	Lat	MSA #	MSA description	Monitor Method	Station Name
9	061072002	CA	-119.29	36.33	8780	VISALIA-TULARE, PORTERVILLE, CA	Visalia-N. Church Street
9	320030020	NV	-115.09	36.25	4120	LAS VEGAS, NV-AZ	Craig Road
9	320030073	NV	-115.33	36.17	4120	LAS VEGAS, NV-AZ	Palo Verde
9	320030298	NV	-115.06	36.05	4120	LAS VEGAS, NV-AZ	GreenValley
9	320030539	NV	-115.09	36.14	4120	LAS VEGAS, NV-AZ	East Sahara
9	320030601	NV	-114.84	35.98	4120	LAS VEGAS, NV-AZ	Boulder City
9	320032002	NV	-115.12	36.19	4120	LAS VEGAS, NV-AZ	J. D. Smith
10	160010011	ID	-116.27	43.64	1080	BOISE CITY, ID	Boise Mountain View School
10	160050015	ID	-112.46	42.88	6340	POCATELLO, ID	Pocatello G&G
10	160550006	ID	-116.76	47.68	0	NOT IN AN MSA	Coeur DAlene-Teom
10	160690012	ID	-116.97	46.40	0	NOT IN AN MSA	Lewiston
10	160830010	ID	-113.48	42.72	0	NOT IN AN MSA	Twin Falls-Teom
10	410510080	OR	-122.60	45.50	6440	PORTLAND-VANCOUVER, OR- WA	Portland-SE Lafayette
10	410510246	OR	-122.67	45.56	6440	PORTLAND-VANCOUVER, OR- WA	Portland-North Roselawn
10	530010003	WA	-118.38	47.13	0	NOT IN AN MSA	Ritzville
10	530050002	WA	-119.20	46.22	6740	RICHLAND-KENNEWICK- PASCO, WA	Kennewick
10	530090009	WA	-123.46	48.12	0	NOT IN AN MSA	Port Angeles
10	530110013	WA	-122.59	45.65	6440	PORTLAND-VANCOUVER, OR- WA	Vancouver
10	530251002	WA	-119.27	47.13	0	NOT IN AN MSA	Moses Lake
10	530272002	WA	-123.83	46.97	0	NOT IN AN MSA	Aberdeen
10	530310003	WA	-122.78	48.13	0	NOT IN AN MSA	Port Townsend
10	530330017	WA	-121.77	47.49	7600	SEATTLE-BELLEVUE- EVERETT, WA	North Bend
10	530330024	WA	-122.28	47.75	7600	SEATTLE-BELLEVUE- EVERETT, WA	Lake Forest Park
10	530330036	WA	-122.15	47.62	7600	SEATTLE-BELLEVUE- EVERETT, WA	Bellevue

Table B1. Concluded

Region	Station ID	State	Lat	MSA #	MSA description	Monitor Method
10	530330039	WA	-122.36	47.63	7600 SEATTLE-BELLEVUE-EVERETT, WA	Seattle Queen Anne Hill
10	530330057	WA	-122.34	47.56	7600 SEATTLE-BELLEVUE-EVERETT, WA	Seattle Duwamish
10	530330080	WA	-122.31	47.57	7600 SEATTLE-BELLEVUE-EVERETT, WA	Seattle Beacon Hill
10	530331011	WA	-122.32	47.53	7600 SEATTLE-BELLEVUE-EVERETT, WA	Seattle South Park
10	530332004	WA	-122.23	47.39	7600 SEATTLE-BELLEVUE-EVERETT, WA	Kent
10	530350007	WA	-122.68	47.66	1150 BREMERTON, WA	Silverdale
10	530351005	WA	-122.64	47.63	1150 BREMERTON, WA	Bremerton
10	530450004	WA	-123.11	47.19	0 NOT IN AN MSA	nephelometer
10	530530029	WA	-122.45	47.19	8200 TACOMA, WA	nephelometer
10	530530031	WA	-122.38	47.27	8200 TACOMA, WA	Tacoma South L St
10	530531018	WA	-122.30	47.14	8200 TACOMA, WA	Tacoma Port Area
10	530610005	WA	-122.32	47.81	7600 SEATTLE-BELLEVUE-EVERETT, WA	Puyallup
10	530611007	WA	-122.17	48.06	7600 SEATTLE-BELLEVUE-EVERETT, WA	Lynnwood
10	530630016	WA	-117.36	47.66	7840 SPOKANE, WA	Marysville
10	530650004	WA	-117.90	48.54	0 NOT IN AN MSA	nephelometer
10	530670013	WA	-122.82	47.03	5910 OLYMPIA, WA	Spokane Ferry St
10	530730015	WA	-122.44	48.76	8600 BELLINGHAM, WA	Colville
10	530750003	WA	-117.18	46.72	0 NOT IN AN MSA	Lacey
10	530750006	WA	-117.37	47.23	0 NOT IN AN MSA	Bellingham
						Pullman
						Rosalia

Table B2. Canada Ground Station Sites

Station ID	Province	Lon	Lat	Station Name
000040103	NB			FREDERICTON
000040203	NB	-66.01	45.31	FOREST HILLS
000040901	NB	-67.08	45.09	ST ANDREWS
000050105	QC	-73.58	45.50	Drummond
000050110	QC	-73.64	45.59	Montreal-Nord
000050126	QC	-73.93	45.43	STE-ANNE DE BELLEVU
000050128	QC	-73.75	45.47	AEROPORT DE MONTREAL
000050129	QC	-73.57	45.66	RIVIÈRE-DES-PRAIRIE
000050131	QC	-73.75	45.47	Hochelaga
000050308	QC	-71.22	46.82	DES SABLES
000050801	QC	-72.54	46.35	Ursulines
000051201	QC	-72.74	46.55	SHAWINIGAN
000052101	QC	-73.64	45.20	L'ACADIE
000052301	QC	-74.48	46.03	SAINT-FAUSTIN
000054401	QC	-74.28	45.12	ST-ANICET
000054501	QC	-73.44	45.81	LASSOMPTION
000054703	QC	-72.43	46.35	Becancour
000060104	ON	-75.68	45.43	Ottawa
000060204	ON	-83.04	42.31	Windsor Downtown
000060302	ON	-76.51	44.23	Kingston
000060424	ON	-79.39	43.66	Toronto Downtown
000060512	ON	-79.86	43.26	Hamilton Downtown
000060707	ON	-84.35	46.53	Sault Ste Marie
000061004	ON	-82.41	42.98	Sarnia
000061104	ON	-78.35	44.30	Peterborough
000061201	ON	-74.74	45.03	Cornwall
000061302	ON	-79.24	43.16	St. Catharines
000061502	ON	-80.50	43.44	Kitchener
000062001	ON	-79.45	46.32	North Bay
000062201	ON	-82.22	42.24	Merlin
000062501	ON	-81.58	44.30	Tiverton
000062601	ON	-80.27	42.85	Simcoe
000063301	ON	-78.93	45.22	Dorset
000063701	ON	-81.74	43.33	Grand Bend
000065001	ON	-79.39	44.39	Barrie
000065201	ON	-80.04	45.34	Parry Sound
000065301	ON	-81.16	42.67	Port Stanley
000065401	ON	-77.40	44.15	Belleville
000110119	BC	-122.98	49.22	Burnaby South
000111003	BC	-122.23	49.04	Abbotsford
000111101	BC	-121.94	49.16	Chilliwack
000111301	BC	-122.57	49.10	Langley

Region 1

Region 2

Region 3

Region 4

Region 5

Region 6

Region 7

Region 8

Region 9

Region 10

Canada

Appendix C

Regional Mean Satellite and In-Situ Comparisons

Correlation of AOD&PM2.5 Means

Correlation of AOD&PM2.5 Standard Dev

Correlation of AOD&PM2.5 Means

Correlation of AOD&PM2.5 Standard Dev

Correlation of AOD&PM2.5 Means

Correlation of AOD&PM2.5 Standard Dev

Correlation of AOD&PM2.5 Means

Correlation of AOD&PM2.5 Standard Dev

Correlation of AOD&PM2.5 Means

Correlation of AOD&PM2.5 Standard Dev

Correlation of AOD&PM2.5 Means

Correlation of AOD&PM2.5 Standard Dev

Correlation of AOD&PM2.5 Means

Correlation of AOD&PM2.5 Standard Dev

Correlation of AOD&PM2.5 Means

Correlation of AOD&PM2.5 Standard Dev

Correlation of AOD&PM2.5 Means

Correlation of AOD&PM2.5 Standard Dev

Appendix D

Acronyms

AOD - Aerosol Optical Depth
AQI - Air Quality Index
ARL - Air Resources Laboratory
BAM - Beta Attenuation Monitor
CIMSS - Cooperative Institute for Meteorological Satellite Studies
COT - Cloud Optical Thickness
EDAS - Eta Data Assimilation System
EPA - United States Environmental Protection Agency
ESA - Earth Science Applications
ESE - Earth Science Enterprise
FEM - Federal Equivalent Monitor
FRM - Federal Reference Monitors
GOES - Geostationary Operational Environmental Satellite
GRIB - Gridded Binary
IDEA - Infusing satellite Data into Environmental Applications
MODIS - Moderate Resolution Imaging Spectroradiometer
MSA - Metropolitan Statistical Area
NAMS - National Ambient Monitoring Stations
NASA - National Aeronautics and Space Administration
NCEP - National Centers for Environmental Prediction
NESDIS - National Environmental Satellite, Data and Information Services
NOAA - National Oceanic and Atmospheric Administration
PM - Particulate Matter
PM_{2.5} - Particulate Matter less than 2.5 µm in diameter
SLAMS - State and Local Air Monitoring Stations
TEOM - Tapered Element Oscillating Microbalance
US - United States
WF_ABBA - Wild Fire Automated Biomass Burning Algorithm
WRI - World Resources Institute

REPORT DOCUMENTATION PAGE					Form Approved OMB No. 0704-0188
<p>The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.</p> <p>PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.</p>					
1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE			3. DATES COVERED (From - To)	
01-07-2004	Technical Memorandum				
4. TITLE AND SUBTITLE			5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER		
Comparison of Satellite Observations of Aerosol Optical Depth to Surface Monitor Fine Particle Concentration			5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER		
6. AUTHOR(S)			23-613-23-01		
Kleb, Mary M.; Al-Saadi, Jassim A.; Neil, Doreen O.; Pierce, Robert B.; Pippin, Margaret R.; Roell, Marilee M.; Kittaka, Chieko; and Szykman, James J.					
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)				8. PERFORMING ORGANIZATION REPORT NUMBER	
NASA Langley Research Center Hampton, VA 23681-2199				L-19039	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)	
National Aeronautics and Space Administration Washington, DC 20546-0001				NASA	
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)	
				NASA/TM-2004-213248	
12. DISTRIBUTION/AVAILABILITY STATEMENT					
Unclassified - Unlimited Subject Category 45 Availability: NASA CASI (301) 621-0390 Distribution: Standard					
13. SUPPLEMENTARY NOTES An electronic version can be found at http://techreports.larc.nasa.gov/ltrs/ or http://ntrs.nasa.gov					
14. ABSTRACT					
<p>Under NASA's Earth Science Applications Program, the Infusing satellite Data into Environmental Applications (IDEA) project examined the relationship between satellite observations and surface monitors of air pollutants to facilitate a more capable and integrated observing network. This report provides a comparison of satellite aerosol optical depth to surface monitor fine particle concentration observations for the month of September 2003 at more than 300 individual locations in the continental US. During September 2003, IDEA provided prototype, near real-time data-fusion products to the Environmental Protection Agency (EPA) directed toward improving the accuracy of EPA's next-day Air Quality Index (AQI) forecasts. Researchers from NASA Langley Research Center and EPA used data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument combined with EPA ground network data to create a NASA-data-enhanced Forecast Tool. Air quality forecasters used this tool to prepare their forecasts of particle pollution, or particulate matter less than 2.5 microns in diameter (PM2.5), for the next-day AQI. The archived data provide a rich resource for further studies and analysis. The IDEA project uses data sets and models developed for tropospheric chemistry research to assist federal, state, and local agencies in making decisions concerning air quality management to protect public health.</p>					
15. SUBJECT TERMS Particulate matter; Air quality forecast; MODIS; AIRNow; PM2.5; Aerosol; Air pollution; Earth Science data applications; Satellite data					
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON STI Help Desk (email: help@sti.nasa.gov)
a. REPORT U	b. ABSTRACT U	c. THIS PAGE U	UU	278	19b. TELEPHONE NUMBER (Include area code) (301) 621-0390