USAC. Universidad de San Carlos de Guatemala **ECFM.** Escuela de Ciencias Físicas y Matemáticas

AL. Álgebra Lineal

#9

CONJUNTOS ORTOGONALES

P12-10 v24.1 d2.5

Reproducir y utilizar sólo con el permiso del profesor

diagramación: José Carlos Bonilla

PROBLEMA I

Sea $\{\phi_{n(x)}\}\$ un conjunto ortogonal de funciones en el intervalo [a,b]. Muestre que

$$\|\phi_{m(x)}+\phi_{n(x)}\|^2=\|\phi_{m(x)}\|^2+\|\phi_{n(x)}\|^2, \qquad m\neq n.$$

PROBLEMA II

Encuentre el valor de a tal que las funciones f(t) = t y $g(t) = t - at^2$ son ortogonales en el intervalo $t \in (0, 1)$. Determine las constantes reales c_1 y c_2 tales que $f(t)/c_1$ y $g(t)/c_2$ son ambas normalizadas.

PROBLEMA III

Sean

$$x_o(t) = \frac{x(t) - x(-t)}{2}, \qquad x_e(t) = \frac{x(t) + x(-t)}{2}.$$

Muestre que $x_o(t)$ y $x_e(t)$ son ortogonales sobre el intervalo $t \in (-T, T)$ para cualquier T.

PROBLEMA IV

Un conjunto de funciones $\phi_k(t)$, donde k es cualquier número entero, se denomina conjunto ortonormal si $\phi_k(t)$ y $\phi_m(t)$ son ortogonales para $k \neq m$ y todas las funciones en $\{\psi_k(t)\}$ están normalizadas. Considere

$$\phi_k(t) = \frac{e^{jk\omega_0 t}}{\sqrt{T}}, \text{ con } \omega_0 = 2\pi/T \text{ y } t \in (0, T).$$

Verifique si el conjunto $\phi_k(t)$ es ortogonal. Determine la constante C tal que $\phi_k(t)/C$ es ortonormal.