Longest Common String

- we have 2 sequences $X:(x_1,x_2,\ldots,x_m)$ and $Y:(y_1,y_2,\ldots,y_n)$
- we wish to find the longest common subsequence of X, Y
 - \circ a subsequence of a sequence X is any sequence that can be obtained by deleting zero or more elements from X without changing the order of the remaining elements
- ullet consider each subsequence of X corresponding to a subset of the indices $(1,2,\ldots,m)$
 - \circ to make a subsequence of X, you can think of it as having the option to include x or not
 - \circ this (binary choice) yields 2^m possible subsequences
- let $Z:(z_1,z_2,\ldots,z_k)$ be any LCS of X,Y
 - 1. if $x_m=y_n$ then $z_k=x_m=y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}
 - 2. if $x_m
 eq y_n$ then $z_k
 eq x_m$ implies Z is an LCS of X_{m-1} and Y
 - 3. also, if $x_m
 eq y_n$ then $z_k
 eq y_n$ implies Z is an LCS of X and Y_{n-1}

Recursive Design

- ullet the conclusion we get from the 3 points above is that to find the LCS of X,Y
 - $\circ \;\;$ if $x_n=y_m$ then we'll find the LCS of X_{m-1},Y_{n-1} and then append the value to it
 - o otherwise we need to solve 2 subproblems
 - find the LCS of X_{m-1} , Y and the LCS of X, Y_{n-1} and then take the longer of these two as the LCS of X, Y
 - this is from the *implications* of the points 2 and 3 from above

Code

```
LCS-LENGTH(X,Y)
 1 m = X.length
2 n = Y.length
3 let b[1..m, 1..n] and c[0..m, 0..n] be new tables
4 for i = 1 to m
        c[i, 0] = 0
 6 for j = 0 to n
7
         c[0,j] = 0
8 for i = 1 to m
9
         for j = 1 to n
10
              if x_i == y_i
                  c[i, j] = c[i-1, j-1] + 1
11
                  b[i,j] = "\"
12
13
             elseif c[i - 1, j] \ge c[i, j - 1]
                  c[i, j] = c[i - 1, j]
b[i, j] = "\uparrow"
14
15
              else c[i, j] = c[i, j - 1]
16
                  b[i,j] = "\leftarrow"
17
18 return c and b
```

- this code uses a bottom up approach to DP
- initialize 2 tables b, c of size $m \times n$
 - i.e. c(i, j) will hold the LCS for X_i and Y_j
- we initialize the first row and column of c with 0 as the LCS of any empty string with any other string will be length 0

- ullet because of the bottom up structure, instead of starting from the last indices of both X,Y, we start from the first
 - \circ the first conditional $x_i=y_i$ indicates a symbol \nwarrow meaning we have a match so "cut both"
 - \circ the second \uparrow indicates cut x
 - \circ the third \leftarrow indicates cut y