

Security (CS4028)

Lecture 3. Symmetric Cryptography

Chunyan Mu

chunyan.mu@abdn.ac.uk

The School of Natural and Computing Sciences

Schedule

	Week	Lecture 1	Lecture 2	Tutorial
	1	Intro to course & security	Intro to Crypto	-
\Rightarrow	2	Symmetric Crypto	Hash	Math for crypto
	3	Asymmetric Crypto-1	Asymmetric Crypto-2	Symmetric Crypto
4	4	Signatures	Zero Knowledge Proof	Asymmetric Crypto
	5	Certificates	Authentication	Signature & certificates
	6	Access Control	AC models	Authentication
	7	Information flow control	Information flow control	Access control
	8	Management	Protocols	Concepts & management
	9	Network security	Network security	Protocols and communications
	10	Advanced Topic	Advanced Topic	Network
	11	Revision		

Lecture 3: Symmetric cryptography

Last lecture

- Cryptography definitions, goals, and terminologies
- Classical ciphers
- Cryptographic modes

This lecture

After having attended this session, you will be able to :

- explain what is block ciphers
- describe Feistel structure
- understand how the DES algorithm works
- understand how the AES algorithm works

Outline

Block ciphers

Feistel Structure

DES

AES

Summary

Appendix: Galois fields (optional)

Outline

Block ciphers

Feistel Structure

DES

AES

Summary

Appendix: Galois fields (optional)

Block ciphers

What is a block cipher?

A block cipher is a symmetric-key cipher that breaks up the plaintext message into blocks of a fixed length and encrypts one block at a time.

- ▶ Break the plaintext *P* into successive blocks:
 - \triangleright P_1, P_2, \dots of size n bits each
- Encrypt each P_i with the same key K of size k bits
 - $E_K(P) = E_K(P_1)E_K(P_2)\dots$

Block ciphers

Main types of block ciphers

- substitution cipher: replace symbols (or groups of symbols) by other symbols (or groups of symbols);
- transposition cipher: permutes the symbols within the block;
- product ciphers: is a composite of substitution and transposition ciphers.

DES is a block cipher based on Feistel structure!

Outline

Block ciphers

Feistel Structure

DES

AES

Summary

Appendix: Galois fields (optional)

The Feistel structure

- Named after the IBM cryptographer Horst Feistel and first implemented in the Lucifer cipher by Horst Feistel and Don Coppersmith
- ➤ A cryptographic system based on Feistel structure uses the same basic algorithm for both encryption and decryption
- Consists of multiple rounds of processing of the plaintext, with each round consisting of a "substitution" step followed by a permutation step: combination of P and S-boxes

The Feistel structure

Each round in the Feistel structure

- Let LE_i and RE_i denote the output half-blocks at the end of the i^{th} round of processing. The letter "E" denotes encryption
- we have:
 - ightharpoonup $LE_i = RE_{i-1}$
 - $ightharpoonup RE_i = LE_{i-1} \oplus F(RE_{i-1}, K_i)$
- F is referred to as the Feistel function.
- Assuming 16 rounds of processing, the output of the last round of processing is given by:
 - $ightharpoonup LE_{16} = RE_{15}$
 - $ightharpoonup RE_{16} = LE_{15} \oplus F(RE_{15}, K_{16})$

Decryption in the Feistel structure

Decryption in the Feistel structure

- ► The decryption algorithm is exactly the same as the encryption algorithm with the only difference that the round keys are used in the reverse order.
- ► The output of each round during decryption is the input to the corresponding round during encryption.

Outline

Block ciphers

Feistel Structure

DES

AES

Summary

Appendix: Galois fields (optional

Data Encryption Standard

history

- ▶ 1973-74: NBS (National Bureau of Standards) issued a call for proposals for a standard cryptographic algorithm:
 - 1. completely specified, efficient and easy to understand;
 - 2. high level of security;
 - 3. security on the key, not on the (public) algorithm;
 - 4. adaptable, economically implementable in electronic devices;
- ▶ 1975: IBM's solution is accepted and published in Federal Register, the key size has been reduced from the original 112-bits to 56-bits
- ▶ 1976: DES was adopted
- ▶ 1981: ANSI approved DES as a private-sector standard
- ▶ 1998: The end of DES

DES: facts and remarks

Remarks

- Symmetric: encryption and decryption are using the same key.
- Despite the $2^{56} > 72,000,000,000,000,000$ possible keys, the Electronic Frontier Foundation built in 1998 a machine called DES Deep Crack that could track the DES algorithm by brute-force in an average of 4 days.
- ► The DES is said to be the most widely used encryption algorithm in the world.

DES: facts and remarks

3-stage/18-step algorithm

- 1. Initial permutation;
- 2. 16 operations (rounds): DES uses the Feistel cipher structure with 16 rounds of processing;
- 3. Final permutation;

Sizes

Plaintext blocks 64 bits Ciphertext blocks 64 bits Key 56 bits

DES: the three stages

DES: Stage 1 (rearranging the bit order)

The Initial Permutation (IP)

58	50	42	34	26	18	10	2	60	52	44	36	28	20	12	4
62	54	46	38	30	22	14	6	64	56	48	40	32	24	16	8
57	49	41	33	25	17	9	1	59	51	43	35	27	19	11	3
	F 2	45		20	21		5	63	55	47	39	21	22	15	

new
$$b_1 \leftarrow \text{old } b_{58}$$
 new $b_2 \leftarrow \text{old } b_{50}$
new $b_3 \leftarrow \text{old } b_{42}$ new $b_4 \leftarrow \text{old } b_{34}$

- ▶ We split the permutated block into two halves:
 - ► L₀ : left-most 32 bits
 - ightharpoonup and R_0 : right-most 32 bits
- Remark: if the block is shorter than 64 bits, it should be padded with zeros.

Subkeys generation

Process

Subkeys generation

Process

- ▶ **Input:** The original 64-bit key *k*: the key is usually stored as a 64-bit number originally
- ► Algorithm:
 - 1. k' = PC1(k) (56-bit intermediate key);
 - 2. $A_0 = b_{57} b_{49} \dots b_{36}$ (first half, 28 bits);
 - 3. $B_0 = b_{63} b_{55} \dots b_4$ (last half, 28 bits);
 - 4. 16 generation stages:
 - $A_j = LS_j(A_{j-1})$
 - $\triangleright B_j = LS_j(B_{j-1})$
 - $k_i = PC2(A_iB_i)$

where LS_j : Cyclic shift to the left (left-rotations) by 1 if $j \in \{1,2,9,16\}$ and 2 otherwise

▶ Output: A set of 16 keys k_i

Keys generator: Permutation Choice PC1

PC1

- ► Permutation + Compression
- ▶ Permutation Choice 1: $64 \rightarrow 56$

57	49	41	33	25	17	9	1	58	50	42	34	26	18
10	2	59	51	43	35	27	19	11	3	60	52	44	36
63	55	47	39	31	23	15	7	62	54	46	38	30	22
14	6	61	53	45	37	29	21	13	5	28	20	12	4

new
$$b_1 \leftarrow \text{old } b_{57}$$
 new $b_2 \leftarrow \text{old } b_{49}$
new $b_3 \leftarrow \text{old } b_{41}$ new $b_4 \leftarrow \text{old } b_{33}$

▶ Note that there is no 8, 16, 24, 32, 40, 48, 56 and 64 . . .

Keys generator: Permutation Choice PC2

PC2

- Permutation + Compression
- ▶ Permutation Choice 2: $56 \rightarrow 48$

14	17	11	24	1	5	3	28	15	6	21	10
23	19	12	4	26	8	16	7	27	20	13	2
41	52	31	37	47	55	30	40	51	45	33	48

new
$$b_1 \leftarrow \text{old } b_{14}$$
 new $b_2 \leftarrow \text{old } b_{17}$
new $b_3 \leftarrow \text{old } b_{11}$ new $b_4 \leftarrow \text{old } b_{24}$

Note that there is no 9, 18, 22, 25, 35, 38, 43, 54

DES: stage 2 (the 16 rounds)

The 16 rounds (Feistel structure)

 L_iR_i is computed as follows:

- $\blacktriangleright L_i = R_{i-1};$
- $\triangleright R_i = L_{i-1} \oplus f(R_{i-1}, k_i)$

where \oplus denotes the XOR logical function, f is the specific inner function of *DES*, and k_1, k_2, \ldots, k_{16} are the subkeys the key generator produced.

DES: the f function

DES: the f function

The S_1 substitution example: 4×6 -bit S-Box

- ▶ The 8 S-boxes of size $4 \times 6 : B_i \rightarrow C_i$.
- ▶ Substitution: B_j is a 6-bit block $\rightarrow C_j$ is a 4-bit block
 - Given a 6-bit input, the 4-bit output is found by selecting the row using the outer two bits, and the column using the inner four bits.
 - ▶ <u>e.g.</u> $B_1 = 101010$, row = $b_1b_6 = (10)_2 = 2$; column = $b_2b_3b_4b_5 = (0101)_2 = 5 \Leftrightarrow C_1 = 6 = (0110)_2$

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	14	4	13	1	2	15	11	8	3	10	6	12	9	0	7	5
1	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
2	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
3	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13

DES: stage 3

Final Permutation = IP^{-1} (64 bits)

40	8	48	16	56	24	64	32	39	7	47	15	55	23	63	31
38	6	46	14	54	22	62	30	37	5	45	13	53	21	61	29
36	4	44	12	52	20	60	28	35	3	43	11	51	19	59	27
34	2	42	10	50	18	58	26	33	1	41	9	49	17	57	25

new
$$b_1 \leftarrow \text{old } b_{40}$$
 new $b_2 \leftarrow \text{old } b_8$
new $b_3 \leftarrow \text{old } b_{48}$ new $b_4 \leftarrow \text{old } b_{16}$

DES: weaknesses

Weaknesses

- Symmetric: the algorithm is symmetric:
 - the same initial key and the same algorithm will decrypt the ciphertext into the original plaintext.
- ▶ Public algorithms and functions:
 - the algorithm and the permutations, functions, ... are well known.
 - security depends on the length of the key.
- ▶ Initial and final permutations: useless

Variant: 3DES

3DES (Triple Data Encryption System)

- uses a series of DES encryptions/decryptions:
 - there exist multiple variant.
- ▶ the official accepted variant is DES-EDE, that is, GIVEN 3 keys k_1 , k_2 and k_3 , compute:
 - ightharpoonup Ciphertext = $E_{k_3}(D_{k_2}(E_{k1}(Plaintext)))$
- Note that $k_1 = k_2 = k_3$ make Triple DES compatible with DES.
- ▶ It requires three times the computation of normal DES:
 - stronger than DES
- ► Key size: 168 bits.

Outline

Block ciphers

Feistel Structure

DES

AES

Summary

Appendix: Galois fields (optional

Advanced Encryption Standard

AES origin

- clearly a replacement for DES was needed
 - ► Key size is too small
 - The variants are just patches
- can use Triple DES: but slow, has small blocks
- ▶ US NIST issued call for ciphers in 1997
- 15 candidates accepted in Jun, 1998
- ▶ 5 were shortlisted in Aug, 1999

Advanced Encryption Standard

AES origin: Competition Requirements

- private key symmetric block cipher
- ▶ 128-bit data, 128/192/256-bit keys
- stronger and faster than Triple-DES
- provide full specification and design details
- both C and Java implementations

AES: the shortlist

The shortlist

MARS IBM

RC6 RSA Kabiratirues

Rijndael Joan Daemen (Proton World International)

and Vincent Rijment (Katholieke Univ. Leuven)

Serpent Ross Anderson (University of Cambridge),

Eli Biham (Technion),

and Lars Knudsen (University of California San Diego)

Twofish Bruce Schneier, John Kelsey,

and Niels Ferguson (Counterpane, Inc.),

Doug Whiting (Hi/fn, Inc.),

David Wagner (University of California Berkeley),

and Chris Hall (Princeton University)

AES: the shortlist

The shortlist

MARS IBM

RC6 RSA Kabiratirues

Rijndael Joan Daemen (Proton World International)

and Vincent Rijment (Katholieke Univ. Leuven)

Serpent Ross Anderson (University of Cambridge),

Eli Biham (Technion),

and Lars Knudsen (University of California San Diego)

Twofish Bruce Schneier, John Kelsey,

and Niels Ferguson (Counterpane, Inc.),

Doug Whiting (Hi/fn, Inc.),

David Wagner (University of California Berkeley),

and Chris Hall (Princeton University)

The winner is ...

Rijndael was selected: supports more block and key sizes.

AES: overview

Rijndael

AES: overview

Sizes

- plaintext blocks: 128 bits (16 bytes)
- supports also 192 bits (24 bytes) and 256 bits (32 bytes)
- key: 128, 192, 256 bits
- ightharpoonup number of rounds (Nr=10,12,14) depends on the size of blocks and key

AES: the algorithm

Hight-level description of the algorithm

- 1. KeyExpansion round keys are derived from the cipher key using Rijndael's key schedule
- 2. Initial Round
 - AddRoundKey each byte of the state is combined with the round key using bitwise xor

AES: the algorithm

Hight-level description of the algorithm

3. Rounds

- SubBytes a non-linear substitution step where each byte is replaced with another according to a lookup table.
- ShiftRows a transposition step where each row of the state is shifted cyclically a certain number of steps.
- MixColumns a mixing operation which operates on the columns of the state, combining the four bytes in each column.
- AddRoundKey
- 4. Final Round (no MixColumns)
 - SubBytes
 - ShiftRows
 - AddRoundKey

The state and key bytes arrays

The state arrays

size (bits)	size (bytes)	Nb of column
128	16	4
192	24	6
256	32	8

a _{0,0}	a _{0,1}	a _{0,2}	a _{0,3}	a _{0,4}	a _{0,5}	a _{0,6}	a _{0,7}
a _{1,0}	$a_{1,1}$	a _{1,2}	a _{1,3}	a _{1,4}	$a_{1,5}$	a _{1,6}	a _{1,7}
a _{2,0}	a _{2,1}	a _{2,2}	a _{2,3}	a _{2,4}	a _{2,5}	a _{2,6}	a _{2,7}
a _{3,0}	a _{3,1}	a _{3,2}	a _{3,3}	a _{3,4}	a _{3,5}	a _{3,6}	a _{3,7}

$$a_{0,0} = PT[0], \ a_{1,0} = PT[1], \ a_{2,0} = PT[2], \ a_{3,0} = PT[3],$$

 $a_{0,1} = PT[4], \ a_{1,1} = PT[5], \ a_{2,1} = PT[6], \ a_{3,1} = PT[7],$

.

The state and key bytes arrays

The key arrays

size (bits)	size (bytes)	Nk of column
128	16	4
192	24	6
256	32	8

k _{0,0}	k _{0,1}	k _{0,2}	k _{0,3}	k _{0,4}	k _{0,5}	k _{0,6}	k _{0,7}
k _{1,0}	$k_{1,1}$	k _{1,2}	k _{1,3}	k _{1,4}	k _{1,5}	k _{1,6}	k _{1,7}
k _{2,0}	k _{2,1}	k _{2,2}	k _{2,3}	k _{2,4}	k _{2,5}	k _{2,6}	k _{2,7}
k _{3,0}	k _{3,1}	k _{3,2}	k _{3,3}	k _{3,4}	k _{3,5}	k _{3,6}	k _{3,7}

The state and key bytes arrays

Associated Number of rounds (Nr)

Nr	Nb = 4	Nb = 6	Nb = 8
Nk = 4	10	12	14
Nk = 6	12	12	14
Nk = 8	14	14	14

- ▶ *Nb* for number of columns in state arrrays
 - ► AES has a fixed block size of 128 bits Nb = 4
- ▶ *Nk* for number of columns in key arrays
- ▶ Nr for number of rounds

AES KeyExpansion

KeyExpansion: generating a series of keys

- ► In AES, there are a number of rounds, each needing its own key, so the actual key is "<u>stretched out</u>" and transformed to give portions of key for each round.
- ► The key expansion routine:
 - ▶ input: key (denoted key below) of $4 \times Nk$ bytes (Nk = 4, 6, 8).
 - output: an expanded key of $Nb \times (Nr + 1)$ bytes, where Nb = 4 and Nr is the number of rounds in the algorithm
 - ightharpoonup Nr = 10 in case Nk = 4;
 - ightharpoonup Nr = 12 in case Nk = 6;
 - ightharpoonup Nr = 14 in case Nk = 8.

AES KeyExpansion

KeyExpansion: expanded key size

	Expanded Key Sizes in Words				
Nk	Nr	Exp. Key Size $(Nb(Nr+1))$			
4	10	44			
6	12	52			
8	14	60			

The AES SubBytes step

SubBytes: : S-box and byte substitution

- each byte in the array is updated using an 8-bit substitution box, the Rijndael S-box.
- ightharpoonup uses non-linear S-Box represented as a 16 imes 16 array containing a permutation of all 256 8-bit values
- each byte of state is replaced by byte indexed by row left 4-bits) and column (right 4-bits)
 - e.g., byte 57 is replaced by byte in row 5 column 7 which has value 5B.
- ► S-box constructed using defined transformation of values in GF(256), based on modular arithmetic with polynomials, can be defined algebraically, not random.

The AES SubBytes step

SubBytes: Byte Substitution

The AES SubBytes step

a single S-box: $57 \rightarrow 5B$

```
| 0 1 2 3 4 5 6 7 8 9 a b c d e f
  163 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76
  ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0
  |b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15
  | 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75
  109 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84
  153 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf
  d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8
  51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2
  cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73
  |60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db
  le0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79
  e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08
  ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a
  |70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e
  el f8 98 11 69 d9 8e 94 9b le 87 e9 ce 55 28 df
  8c al 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16
```

AES ShiftRow: Left shifts

ShiftRow: cyclic left shifts

- the ShiftRows step operates on the rows of the state;
- it cyclically shifts the bytes in each row by a certain offset.
- ▶ for AES, the first row is left unchanged.
- shifts = [0, 1, 2, 3] if key size = 128, 192
- shifts = [0, 1, 3, 4] if key size = 256

AES MixColumn: Mixing Columns

MixColumn: Mixing the content of the columns

- ▶ in the MixColumns step, the four bytes of each column of the state are combined using an invertible linear transformation.
- the MixColumns function takes four bytes as input and outputs four bytes, where each input byte affects all four output bytes.
- together with ShiftRows, MixColumns provides diffusion in the cipher.

AES MixColumn: Mixing Columns

MixColumn: Mixing the content of the columns

- carried out for each of the four columns of State.
- each column of State is replaced by a new column which is formed by multiplying that column by a certain matrix of elements of the field

AES MixColumn: Mixing Columns

MixColumn: Mixing the content of the columns

$$\begin{pmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} 2 & 3 & 1 & 1 \\ 1 & 2 & 3 & 1 \\ 1 & 1 & 2 & 3 \\ 3 & 1 & 1 & 2 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix}$$

AES AddRoundKey

AddRoundKey: xor

- ► In the AddRoundKey step, the subkey is combined with the state.
- For each round, a subkey is derived from the main key using Rijndael's key schedule; each subkey is the same size as the state.
- ► The subkey is added by combining each byte of the state with the corresponding byte of the subkey using bitwise XOR.

AES AddRoundKey

AES AddRoundKey

AddRoundKey: xor

We are considering a position-by-position $a \oplus k$, i.e.

$$\begin{pmatrix} a_{0,0} & a_{0,1} & a_{0,2} & a_{0,3} \\ a_{1,0} & a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,0} & a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,0} & a_{3,1} & a_{3,2} & a_{3,3} \end{pmatrix} \oplus \begin{pmatrix} k_{0,0} & k_{0,1} & k_{0,2} & k_{0,3} \\ k_{1,0} & k_{1,1} & k_{1,2} & k_{1,3} \\ k_{2,0} & k_{2,1} & k_{2,2} & k_{2,3} \\ k_{3,0} & k_{3,1} & k_{3,2} & k_{3,3} \end{pmatrix}$$

$$\begin{pmatrix} a_{0,0} \oplus k_{0,0} & a_{0,1} \oplus k_{0,1} & a_{0,2} \oplus k_{0,2} & a_{0,3} \oplus k_{0,3} \\ a_{1,0} \oplus k_{1,0} & a_{1,1} \oplus k_{1,1} & a_{1,2} \oplus k_{1,2} & a_{1,3} \oplus k_{1,3} \\ a_{2,0} \oplus k_{2,0} & a_{2,1} \oplus k_{2,1} & a_{2,2} \oplus k_{2,2} & a_{2,3} \oplus k_{2,3} \\ a_{3,0} \oplus k_{3,0} & a_{3,1} \oplus k_{3,1} & a_{3,2} \oplus k_{3,2} & a_{3,3} \oplus k_{3,3} \end{pmatrix}$$

Outline

Block ciphers

Feistel Structure

DES

AES

Summary

Appendix: Galois fields (optional

Summary

This lecture

- ► Block ciphers recap
- ► Feistel Structure and DES in detail
- ► AES in detail

Next lecture

► Hash functions

Outline

Block ciphers

Feistel Structure

DES

AES

Summary

Appendix: Galois fields (optional)

Mathematics for AES: GF(28) (Galois Fields)

AES is using binary polynomials of degree at most 7

	binary polynomial of degree at most 7						
Generic	$b_7x^7 + b_6x^6$	$+ b_5 x^5 + b_4 x^4 + b_3 x^5$	$a^3 + b_2 x^2 + b_1 x + b_0$				
Example 1	x ⁶	$+ x^4 +$	$x^2 + x + 1$				
Example 2	$x^{7} +$	x ⁵ +	x + 1				

Equivalent binary, decimal and hexadecimal representations

	binary	decimal	hexa
Generic	b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0	d_1 d_2 d_3	h_1 h_2
Example 1	$0\ 1\ 0\ 1\ 0\ 1\ 1$	8 7 _d	5 7 _h
Example 2	10100011	1 6 3 _d	$A 3_h$
Example 3	[00000000, 11111111]	$[0, 255_d]$	$[0, FF_h]$

Galois Fields: additions

"Normal" polynomial addition

"Normal" polynomial addition \rightarrow binary polynomials?

- ightharpoonup even coefficients ightharpoonup 0
- ightharpoonup odd coefficients ightarrow 1

Galois Fields: additions

"Binary" polynomial additions are using bitwise xor (\oplus)

"Binary" polynomial additions are using bitwise xor (\oplus)

Binary	Decimal	Hexadecimal
01010111	87 _d	57 _h
$\oplus 10100011$	$\oplus 163_d$	$\oplus A3_h$
		
= 11110100	244_d	$F4_h$

Galois Fields: multiplications

"Normal" polynomial multiplication

$$(x^{6} + x^{4} + x^{2} + x + 1) \cdot (x^{7} + x^{5} + x + 1)$$

$$= x^{6} + x^{4} + x^{2} + x + 1$$

$$+ x^{7} + x^{5} + x^{3} + x^{2} + x$$

$$+ x^{11} + x^{9} + x^{7} + x^{6} + x^{5}$$

$$+ x^{13} + x^{11} + x^{9} + x^{7}$$

$$= x^{13} + 2x^{11} + 2x^{9} + x^{8} + 3x^{7} + 2x^{6} + 2x^{5} + x^{4} + x^{3} + 2x^{2} + 2x + 1$$

"Normal" polynomial — binary polynomial multiplication?

- ightharpoonup even coefficients $\rightarrow 0$
- ightharpoonup odd coefficients ightarrow 1

Galois Fields: multiplications

"Binary" polynomial multiplication

```
01110111 \cdot 10100011 = 011101111
01110111
01110111
01110111
01110111
011101111
x^{13} + x^{12} + x^{10} + x^{8} + x^{7} + x^{6} + x^{5} + x^{4} + x^{3} + 1
```

Is the binary polynomial of degree still at most 7?

polynomial division N/D

- ► A new resulting term *NRT* is obtainned by dividing the greatest power of *N* by the greatest power of *D*
- A new numerator NN is obtained by computing $NN = N NRT \times D$
- This procedure is repeated until the greatest power of the new numerator NN is less than the greatest power of the denominator D: GP(NN) < GP(D)
- ► The final numerator is the remainder of the polynomial division
- Obtain the desired binary polynomial by applying generalised XOR rules to the remainder:
 - ightharpoonup even coefficient ightharpoonup 0
 - ightharpoonup odd coefficient ightharpoonup 1

polynomial division N/D

```
NN <- N
while deg(NN) > deg(D) do
        NRT <- greatest power(NN)/greatest power(D)
        NN <- NN - NRT * D
done
return(NN)</pre>
```

Example: polynomial division $(x^5 + x^3 + x^2 + 1)/(x^2 + x)$

Example: polynomial division $(x^5 + x^3 + x^2 + 1)/(x^2 + x)$

$$N = x^5 + x^3 + x^2 + 1$$
, $D = x^2 + x$

$$x^5 + x^3 + x^2 + 1 = (x^2 + x) \cdot (x^3 - x^2 + 1) + x + 1$$

$$x^5 + x^3 + x^2 + 1 \equiv (x+1) \mod (x^2 + x)$$

Example: the Rijndael case - "reduced" binary polynomial multiplication

- ► $x^{13} + x^8 + x^7 + x^4 + x^3 + 1$: a binary polynomial of degree greater than 7
- instead, we consider the remainder of the division of this polynomial by a given irreducible binary polynomial of degree 8:

$$m_x = x^8 + x^4 + x^3 + x + 1 \equiv 1000110011 \equiv 283_d \equiv 133_h$$

we have:

$$x^{13} + x^8 + x^7 + x^4 + x^3 + x^2 + x + 1 \equiv x^7 + x^6 + x^3 + x^2 + x + 1 \mod m_x$$

 $try: N = x^{13} + x^{12} + x^{10} + x^8 + x^7 + x^6 + x^5 + x^4 + x^3$

"Reduced" binary polynomial multiplication by xtime

"Reduced" binary polynomial multiplication by x

$$\begin{aligned} \text{xtime}(P_x) &= P_x \cdot x \\ &= (b_7 x^8 + b_6 x^7 + b_5 x^6 + b_4 x^5 + b_3 x^4 + b_2 x^3 \\ &\quad + b_1 x^2 + b_0 x) \bmod m_x \\ &= (b_6 x^7 + b_5 x^6 + b_4 x^5 + (b_3 \oplus b_7) x^4 \\ &\quad + (b_2 \oplus b_7) x^3 + b_1 x^2 \\ &\quad + (b_0 \oplus b_7) x + b_7) \bmod m_x \end{aligned}$$

"Reduced" binary polynomial multiplication by xtime

How do I compute xtime(57)?

57 _h		5			7			
binary	0	1	0	1	0	1	1	1
orig. order	b_7	b_6	b_5	b_4	<i>b</i> ₃	b_2	b_1	b_0
new order	b_6	b_5	b_4	$b_3 \oplus b_7$	$b_2 \oplus b_7$	b_1	$b_0 \oplus b_7$	b_7
binary	1	0	1	0	1	1	1	0
xtime(57)			Α			I	5	

How do I deduce 57 · 13?

"Reduced" binary polynomial multiplication by xtime

How do I deduce $57 \cdot 13$?

```
57 \cdot 01 = 57

57 \cdot 02 = xtime(57) = AE

57 \cdot 04 = xtime(AE) = 47

57 \cdot 08 = xtime(47) = 8E

57 \cdot 10 = xtime(8E) = 07

57 \cdot 13 = 57 \cdot (10 \oplus 02 \oplus 01)

= 57 \cdot 10 \oplus 57 \cdot 02 \oplus 57 \cdot 01

= 07 \oplus AE \oplus 57

= 00000111 \oplus 10101110 \oplus 010100111

= 11111110 = FE
```