Lecture 4: Aerospace Vehicle Rotations and Dynamics

Dr. Jordan D. Larson

Textbook Sections 7.3, 7.7, & 8.1

Rigid body dynamics require attitude description of body relative orientation using reference frame rotations

Introduction

- Rigid body dynamics require attitude description of body relative orientation using reference frame rotations
- Course: Euler angles for rotation

Introduction

- Rigid body dynamics require attitude description of body relative orientation using reference frame rotations
- Course: Euler angles for rotation
- Euler angles defined for rotation between two reference frames with same origin

Introduction

- Rigid body dynamics require attitude description of body relative orientation using reference frame rotations
- Course: Euler angles for rotation
- Euler angles defined for rotation between two reference frames with same origin
- Flight vehicles operate in many different frames
 - Body-fixed frame describes rigid body model
 - Relate body to other frames through Euler angles and translations

Two-Dimensional Vectors

- Consider vector \vec{p} in frames F and G:
 - $\vec{p}_F = [p_{F,x} \ p_{F,y}]^T$ $\vec{p}_G = [p_{G,x} \ p_{G,y}]^T$
 - With same origin

Rotation Matrix

$$\vec{p}_{G} = \begin{bmatrix} p_{G,x} \\ p_{G,y} \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} p_{F,x} \\ p_{F,y} \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \vec{p}_{F}$$
(1)

$$\vec{p}_G = C_{G \leftarrow F}(\theta) \vec{p}_F \tag{2}$$

• $C_{G \leftarrow F}(\theta)$: **rotation matrix** from frame F to G by angle θ

Rotation Matrix

$$\vec{p}_{G} = \begin{bmatrix} p_{G,x} \\ p_{G,y} \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} p_{F,x} \\ p_{F,y} \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \vec{p}_{F}$$
(1)

$$\vec{p}_G = C_{G \leftarrow F}(\theta) \vec{p}_F \tag{2}$$

- $C_{G \leftarrow F}(\theta)$: **rotation matrix** from frame F to G by angle θ
- $C_{G \leftarrow F}$ a.k.a. two-dimensional direction cosine matrix (DCM):

$$C_{G \leftarrow F} = \begin{bmatrix} \cos \theta & \cos(90^{\circ} - \theta) \\ \cos(90^{\circ} + \theta) & \cos \theta \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix}$$
(3)

- Identities: $\sin \theta = \cos(90 \theta)$ and $-\sin \theta = \cos(90^{\circ} + \theta)$
- Each element, $C_{i,j}$, corresponds to cosine of angle between i-axis of G frame and j-axis of F frame
- Also seen by inspection of previous figure

Rotation Matrix Inverse Property

• Transform back: form inverse rotation matrix by using negative angle

$$\vec{p}_F = \begin{bmatrix} \cos(-\theta) & \sin(-\theta) \\ -\sin(-\theta) & \cos(-\theta) \end{bmatrix} \vec{p}_G = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \vec{p}_G$$
 (4)

$$\vec{p}_F = C_{F \leftarrow G}(-\theta)\vec{p}_G \tag{5}$$

Rotation Matrix Inverse Property

• Transform back: form inverse rotation matrix by using negative angle

$$\vec{p}_F = \begin{bmatrix} \cos(-\theta) & \sin(-\theta) \\ -\sin(-\theta) & \cos(-\theta) \end{bmatrix} \vec{p}_G = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \vec{p}_G \tag{4}$$

$$\vec{p}_F = C_{F \leftarrow G}(-\theta)\vec{p}_G \tag{5}$$

• By inspection:

$$\vec{p}_F = C_{G \leftarrow F}^T(\theta) \vec{p}_G \tag{6}$$

Rotation Matrix Inverse Property

• Transform back: form inverse rotation matrix by using negative angle

$$\vec{p}_F = \begin{bmatrix} \cos(-\theta) & \sin(-\theta) \\ -\sin(-\theta) & \cos(-\theta) \end{bmatrix} \vec{p}_G = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \vec{p}_G \tag{4}$$

$$\vec{p}_F = C_{F \leftarrow G}(-\theta)\vec{p}_G \tag{5}$$

• By inspection:

$$\vec{p}_F = C_{G \leftarrow F}^T(\theta) \vec{p}_G \tag{6}$$

Implies property for rotation matrices:

$$C_{G \leftarrow F}^{-1}(\theta) = C_{G \leftarrow F}^{T}(\theta) \tag{7}$$

Consider vector and rotation angle changing in time

- Consider vector and rotation angle changing in time
- Represent time derivative of vector coordinates in rotating frame G, $\frac{d}{dt} \vec{p}_G(t)$
 - A.k.a. two-dimensional velocity

- Consider vector and rotation angle changing in time
- Represent time derivative of vector coordinates in rotating frame G, $\frac{d}{dt}\vec{p}_G(t)$ • A.k.a. **two-dimensional velocity**
- In rotating frame, calculate:

$$\frac{d}{dt}\vec{p}_{G}(t) = \frac{d}{dt}\left(C_{G\leftarrow F}\vec{p}_{F}(t)\right) = \frac{d}{dt}\left(\begin{bmatrix}\cos\theta(t) & \sin\theta(t)\\ -\sin\theta(t) & \cos\theta(t)\end{bmatrix}\vec{p}_{F}(t)\right) \tag{8}$$

- Consider vector and rotation angle changing in time
- Represent time derivative of vector coordinates in rotating frame G, $\frac{d}{dt}\vec{p}_G(t)$ • A.k.a. **two-dimensional velocity**
- In rotating frame, calculate:

$$\frac{d}{dt}\vec{p}_{G}(t) = \frac{d}{dt}\left(C_{G\leftarrow F}\vec{p}_{F}(t)\right) = \frac{d}{dt}\left(\begin{bmatrix}\cos\theta(t) & \sin\theta(t)\\ -\sin\theta(t) & \cos\theta(t)\end{bmatrix}\vec{p}_{F}(t)\right) \tag{8}$$

By product rule:

$$\frac{d}{dt}\vec{p}_{G}(t) = C_{G \leftarrow F}\dot{\vec{p}}_{F}(t) + \dot{C}_{G \leftarrow F}\vec{p}_{F} = \dot{\vec{p}}_{G}(t) + \begin{bmatrix} -\sin\theta(t) & \cos\theta(t) \\ -\cos\theta(t) & -\sin\theta(t) \end{bmatrix}\dot{\theta}(t)\vec{p}_{F}(t)$$
(9)

- Consider vector and rotation angle changing in time
- Represent time derivative of vector coordinates in rotating frame G, $\frac{d}{dt} \vec{p}_G(t)$
 - A.k.a. two-dimensional velocity
- In rotating frame, calculate:

$$\frac{d}{dt}\vec{p}_{G}(t) = \frac{d}{dt}\left(C_{G\leftarrow F}\vec{p}_{F}(t)\right) = \frac{d}{dt}\left(\begin{bmatrix}\cos\theta(t) & \sin\theta(t)\\ -\sin\theta(t) & \cos\theta(t)\end{bmatrix}\vec{p}_{F}(t)\right) \tag{8}$$

• By product rule:

$$\frac{d}{dt}\vec{p}_{G}(t) = C_{G \leftarrow F}\dot{\vec{p}}_{F}(t) + \dot{C}_{G \leftarrow F}\vec{p}_{F} = \dot{\vec{p}}_{G}(t) + \begin{bmatrix} -\sin\theta(t) & \cos\theta(t) \\ -\cos\theta(t) & -\sin\theta(t) \end{bmatrix}\dot{\theta}(t)\vec{p}_{F}(t)$$
(9)

• \vec{p} : time derivative of vector elements

$$\dot{\vec{p}}_F(t) = \frac{\partial}{\partial t} \vec{p}_F(t) \tag{10}$$

Velocity in Rotating Reference Frame

Rearranging second term:

$$\frac{d}{dt}\vec{p}_{G}(t) = \dot{\vec{p}}_{G}(t) + \dot{\theta}(t) \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} \cos\theta(t) & \sin\theta(t) \\ -\sin\theta(t) & \cos\theta(t) \end{bmatrix} \vec{p}_{F}(t)$$
(11)

Velocity in Rotating Reference Frame

Rearranging second term:

$$\frac{d}{dt}\vec{p}_{G}(t) = \dot{\vec{p}}_{G}(t) + \dot{\theta}(t) \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} \cos\theta(t) & \sin\theta(t) \\ -\sin\theta(t) & \cos\theta(t) \end{bmatrix} \vec{p}_{F}(t)$$
(11)

• Defining $\omega(t) = \dot{\theta}(t)$: **2D angular velocity** & definition of rotation matrix:

$$\frac{d}{dt}\vec{p}_{G}(t) = \vec{v}_{G} = \dot{\vec{p}}_{G}(t) + \begin{bmatrix} 0 & \omega(t) \\ -\omega(t) & 0 \end{bmatrix} C_{G \leftarrow F}\vec{p}_{F}(t) = \dot{\vec{p}}_{G}(t) + \begin{bmatrix} 0 & \omega(t) \\ -\omega(t) & 0 \end{bmatrix} \vec{p}_{G}(t) \quad (12)$$

$$\frac{d}{dt}\vec{p}_{G}(t) = \frac{\dot{\vec{p}}_{G}(t)}{\vec{p}_{G}(t)} + \dot{\theta}(t) \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} \cos\theta(t) & \sin\theta(t) \\ -\sin\theta(t) & \cos\theta(t) \end{bmatrix} \vec{p}_{F}(t) \tag{11}$$

• Defining $\omega(t) = \dot{\theta}(t)$: **2D angular velocity** & definition of rotation matrix:

$$\frac{d}{dt}\vec{p}_{G}(t) = \vec{v}_{G} = \dot{\vec{p}}_{G}(t) + \begin{bmatrix} 0 & \omega(t) \\ -\omega(t) & 0 \end{bmatrix} C_{G \leftarrow F}\vec{p}_{F}(t) = \dot{\vec{p}}_{G}(t) + \begin{bmatrix} 0 & \omega(t) \\ -\omega(t) & 0 \end{bmatrix} \vec{p}_{G}(t) \quad (12)$$

2D angular velocity tensor:

Rearranging second term:

$$[\omega(t)]_{\times} = \begin{bmatrix} 0 & \omega(t) \\ -\omega(t) & 0 \end{bmatrix} \tag{13}$$

$$\dot{C}_{G \leftarrow F} = [\omega(t)]_{\times} C_{G \leftarrow F} \tag{14}$$

Second Time Derivative of Rotation Matrix

Define derivative of linear velocity:

$$\frac{d}{dt}\vec{v}_G(t) = \vec{a}_G(t) = \dot{\vec{v}}_G(t) + \begin{bmatrix} 0 & \omega(t) \\ -\omega(t) & 0 \end{bmatrix} \vec{v}_G(t)$$
 (15)

- $\vec{a}_G(t)$: 2D linear acceleration
- I.e. $\frac{d^2}{dt^2} \vec{p}_G(t)$

Second Time Derivative of Rotation Matrix

Define derivative of linear velocity:

$$\frac{d}{dt}\vec{V}_G(t) = \vec{a}_G(t) = \dot{\vec{V}}_G(t) + \begin{bmatrix} 0 & \omega(t) \\ -\omega(t) & 0 \end{bmatrix} \vec{V}_G(t)$$
 (15)

- $\vec{a}_G(t)$: 2D linear acceleration
- I.e. $\frac{d^2}{dt^2} \vec{p}_G(t)$
- Second time derivative in rotating frame *G*, product rule for both terms:

$$\frac{d^2}{dt^2}\vec{p}_G(t) = \frac{d}{dt}\vec{v}_G(t) = \vec{a}_G(t)$$
 (16)

$$\frac{d^2}{dt^2} \vec{p}_G(t) = \frac{d}{dt} \left(\dot{\vec{p}}_G(t) \right) + \frac{d}{dt} \left(\begin{bmatrix} 0 & \omega(t) \\ -\omega(t) & 0 \end{bmatrix} \vec{p}_G(t) \right)$$
(17)

Second Time Derivative of Rotation Matrix (continued)

$$\frac{d^{2}}{dt^{2}}\vec{p}_{G}(t) = \ddot{\vec{p}}_{G}(t) + \begin{bmatrix} 0 & \omega(t) \\ -\omega(t) & 0 \end{bmatrix} \dot{\vec{p}}_{G}(t) + \begin{bmatrix} 0 & \dot{\omega}(t) \\ -\dot{\omega}(t) & 0 \end{bmatrix} \vec{p}_{G}(t) + \begin{bmatrix} 0 & \omega(t) \\ -\omega(t) & 0 \end{bmatrix} \frac{d}{dt}\vec{p}_{G}(t)$$
(18)

Second Time Derivative of Rotation Matrix (continued)

$$\frac{d^{2}}{dt^{2}}\vec{p}_{G}(t) = \ddot{\vec{p}}_{G}(t) + \begin{bmatrix} 0 & \omega(t) \\ -\omega(t) & 0 \end{bmatrix} \dot{\vec{p}}_{G}(t) + \begin{bmatrix} 0 & \dot{\omega}(t) \\ -\dot{\omega}(t) & 0 \end{bmatrix} \vec{p}_{G}(t) + \begin{bmatrix} 0 & \omega(t) \\ -\omega(t) & 0 \end{bmatrix} \frac{d}{dt}\vec{p}_{G}(t)$$
(18)

• By previous formula for $\frac{d}{dt} \vec{p}_G(t)$ & substitution $\alpha = \dot{\omega}$: **two-dimensional angular acceleration**

$$\frac{d^{2}}{dt^{2}}\vec{p}_{G}(t) = \ddot{\vec{p}}_{G}(t) + 2\begin{bmatrix} 0 & \omega(t) \\ -\omega(t) & 0 \end{bmatrix} \dot{\vec{p}}_{G}(t) + \begin{bmatrix} 0 & \alpha(t) \\ -\alpha(t) & 0 \end{bmatrix} \vec{p}_{G}(t) + \begin{bmatrix} 0 & \omega(t) \\ -\omega(t) & 0 \end{bmatrix} \vec{p}_{G}(t) + \begin{bmatrix} 0 & \omega(t) \\ -\omega(t) & 0 \end{bmatrix} \vec{p}_{G}(t)$$
(19)

Coriolis acceleration:

$$2\begin{bmatrix} 0 & \omega(t) \\ -\omega(t) & 0 \end{bmatrix} \dot{\vec{p}}_G(t) \tag{20}$$

Coriolis acceleration:

$$2\begin{bmatrix} 0 & \omega(t) \\ -\omega(t) & 0 \end{bmatrix} \dot{\vec{p}}_G(t) \tag{20}$$

Euler acceleration:

$$\begin{bmatrix} 0 & \alpha(t) \\ -\alpha(t) & 0 \end{bmatrix} \vec{p}_G(t) \tag{21}$$

• Coriolis acceleration:

$$2\begin{bmatrix} 0 & \omega(t) \\ -\omega(t) & 0 \end{bmatrix} \dot{\vec{p}}_{G}(t) \tag{20}$$

• Euler acceleration:

$$\begin{bmatrix} 0 & \alpha(t) \\ -\alpha(t) & 0 \end{bmatrix} \vec{p}_G(t) \tag{21}$$

Centrifugal acceleration

$$\begin{bmatrix} 0 & \omega(t) \\ -\omega(t) & 0 \end{bmatrix} \begin{bmatrix} 0 & \omega(t) \\ -\omega(t) & 0 \end{bmatrix} \vec{p}_{G}(t)$$
 (22)

Coriolis acceleration:

$$2\begin{bmatrix} 0 & \omega(t) \\ -\omega(t) & 0 \end{bmatrix} \dot{\vec{p}}_{G}(t) \tag{20}$$

Euler acceleration:

$$\begin{bmatrix} 0 & \alpha(t) \\ -\alpha(t) & 0 \end{bmatrix} \vec{p}_G(t) \tag{21}$$

Centrifugal acceleration

$$\begin{bmatrix} 0 & \omega(t) \\ -\omega(t) & 0 \end{bmatrix} \begin{bmatrix} 0 & \omega(t) \\ -\omega(t) & 0 \end{bmatrix} \vec{p}_G(t)$$
 (22)

Collectively: fictitious accelerations which produce fictitious forces

• Four different methods for specifying rotation between two different reference frames

- Four different methods for specifying rotation between two different reference frames
- Euler's rotation theorem: any rotating frame possesses instantaneous axis of rotation
 - Also direction of **3D angular velocity vector**, $\vec{\omega}(t)$
 - Magnitude of 3D angular velocity consistent with 2D case

- Four different methods for specifying rotation between two different reference frames
- Euler's rotation theorem: any rotating frame possesses instantaneous axis of rotation
 - Also direction of **3D angular velocity vector**, $\vec{\omega}(t)$
 - Magnitude of 3D angular velocity consistent with 2D case
- 1 Axis-angle representation:
 - Instantaneous axis of rotation, a.k.a. **Euler axis**: $\vec{e} = [\cos(e_x) \cos(e_y) \cos(e_z)]^T$, of unit length

Rotation angle: θ about axis

- 2D rotation angle: θ , Euler axis always normal to 2D plane, i.e. hypothetical "z-axis"
- 3D Euler axis arbitrary

- Four different methods for specifying rotation between two different reference frames
- Euler's rotation theorem: any rotating frame possesses instantaneous axis of rotation
 - Also direction of **3D angular velocity vector**, $\vec{\omega}(t)$
 - Magnitude of 3D angular velocity consistent with 2D case
- 1 Axis-angle representation:
 - Instantaneous axis of rotation, a.k.a. **Euler axis**: $\vec{e} = [\cos(e_x) \cos(e_y) \cos(e_z)]^T$, of unit length

Rotation angle: θ about axis

- 2D rotation angle: θ , Euler axis always normal to 2D plane, i.e. hypothetical "z-axis"
- 3D Euler axis arbitrary
- Passive rotation vector between frames: Euler vector, $\vec{\theta} = \theta \vec{e}$, a.k.a. passive rotation vector, orientation vector, or attitude vector
 - 3D angular velocity: $\vec{\omega}(t) = \dot{\vec{\theta}}(t) = \omega \vec{e}$
 - 3D angular acceleration: $\vec{\alpha}(t) = \dot{\vec{\omega}}(t) = \ddot{\vec{\theta}}(t) = \alpha \vec{e}$
 - Magnitude of 3D angular velocity and acceleration consistent with 2D case

Direction Cosine Matrix

2 Extension from 2D rotation matrix: **direction cosine matrix (DCM)**, $C_{G\leftarrow F}$

$$\vec{\mathbf{v}}_{G} = C_{G \leftarrow F} \vec{\mathbf{v}}_{F} \tag{23}$$

Direction Cosine Matrix

2 Extension from 2D rotation matrix: **direction cosine matrix (DCM)**, $C_{G\leftarrow F}$

$$\vec{v}_G = C_{G \leftarrow F} \vec{v}_F \tag{23}$$

$$C_{G \leftarrow F} = \begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix}$$
 (24)

Direction Cosine Matrix

2 Extension from 2D rotation matrix: **direction cosine matrix (DCM)**, $C_{G\leftarrow F}$

$$\vec{\mathbf{v}}_G = C_{G \leftarrow F} \vec{\mathbf{v}}_F \tag{23}$$

$$C_{G \leftarrow F} = \begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix}$$
 (24)

- Each row corresponds to unit vector for *x*-, *y*-, and *z*-axis for *G* expressed in *F* frame coordinates
- Each column corresponds to unit vector for x-, y-, and z-axis for F expressed in G frame coordinates
- Each element, C_{i,j}, corresponds to cosine of angle between i-axis of G frame and j-axis
 of F frame

Basic Rotation Matrices and Euler Angles

3 3 basic rotation matrices

Basic Rotation Matrices and Euler Angles

3 3 basic rotation matrices

(1)

$$C_1(\theta_X) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_X & \sin \theta_X \\ 0 & -\sin \theta_X & \cos \theta_X \end{bmatrix}$$
 (25)

(2)

$$C_2(\theta_y) = \begin{bmatrix} \cos \theta_y & 0 & -\sin \theta_y \\ 0 & 1 & 0 \\ \sin \theta_y & 0 & \cos \theta_y \end{bmatrix}$$
 (26)

Basic Rotation Matrices and Euler Angles (continued)

(3)

$$C_3(\theta_z) = \begin{bmatrix} \cos \theta_z & \sin \theta_z & 0 \\ -\sin \theta_z & \cos \theta_z & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 (27)

• I.e. rotations about each primary coordinate axis

Basic Rotation Matrices and Euler Angles (continued)

(3)

$$C_3(\theta_z) = \begin{bmatrix} \cos \theta_z & \sin \theta_z & 0 \\ -\sin \theta_z & \cos \theta_z & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 (27)

- I.e. rotations about each primary coordinate axis
- Euler proved every possible rotation in 3D, i.e., rotation angle and axis, representable by three sequential rotations
 - Three sequential angles for these basic rotation matrices: Euler angles

Basic Rotation Matrices and Euler Angles (continued)

(3)

$$C_3(\theta_z) = \begin{bmatrix} \cos \theta_z & \sin \theta_z & 0 \\ -\sin \theta_z & \cos \theta_z & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 (27)

- I.e. rotations about each primary coordinate axis
- Euler proved every possible rotation in 3D, i.e., rotation angle and axis, representable by three sequential rotations
 - Three sequential angles for these basic rotation matrices: Euler angles
- In FDC, typically Euler angles for 3 2 1 rotation sequence:

$$\vec{V}_G = C_1(\theta_x)C_2(\theta_y)C_3(\theta_z)\vec{V}_F \tag{28}$$

- G rotating w.r.t. F and θ_x , θ_y , θ_z : 3 2 1 Euler angles
- In FDC, occasionally Euler angles for 3-1-3 rotation sequence, e.g., orbital elements and nutation analysis

Euler Symmetric Parameters

- 4 Mathematically efficient representation: Euler symmetric parameters
 - A.k.a. passive rotation quaternion
 - Can be defined several different ways
 - 2 different conventions common for FDC: JPL and Hamilton

Euler Symmetric Parameters

- 4 Mathematically efficient representation: Euler symmetric parameters
 - A.k.a. passive rotation quaternion
 - Can be defined several different ways
 - 2 different conventions common for FDC: JPL and Hamilton
- Hamilton convention:

$$\vec{q} = \begin{bmatrix} q_w \\ q_x \\ q_y \\ q_z \end{bmatrix} = \begin{bmatrix} \cos(\theta/2) \\ \sin(\theta/2)\cos(\theta_x) \\ \sin(\theta/2)\cos(\theta_y) \\ \sin(\theta/2)\cos(\theta_z) \end{bmatrix}$$
(29)

Euler Symmetric Parameters

- 4 Mathematically efficient representation: **Euler symmetric parameters**
 - A.k.a. passive rotation quaternion
 - Can be defined several different ways
 - 2 different conventions common for FDC: JPL and Hamilton
- Hamilton convention:

$$\vec{q} = \begin{bmatrix} q_w \\ q_x \\ q_y \\ q_z \end{bmatrix} = \begin{bmatrix} \cos(\theta/2) \\ \sin(\theta/2)\cos(\theta_x) \\ \sin(\theta/2)\cos(\theta_y) \\ \sin(\theta/2)\cos(\theta_z) \end{bmatrix}$$
(29)

• Note: \vec{q} unit quaternion

$$\|\vec{q}\|_2 = \sqrt{q_w^2 + q_x^2 + q_y^2 + q_z^2} = 1$$
 (30)

Euler Symmetric Parameters to Axis-Angle Conversion

$$\theta = 2 \arccos \vec{q}_{W}$$
 (31)

$$\vec{e} = \frac{\tilde{\vec{q}}}{\|\tilde{\vec{q}}\|_2} \tag{32}$$

Where

$$\tilde{\vec{q}} = \begin{bmatrix} q_x \\ q_y \\ q_z \end{bmatrix}$$
(33)

- Bank angle, μ
- Flight path angle, γ
- Heading angle, σ

- Bank angle, μ
- Flight path angle, γ
- Heading angle, σ
- Vector from navigation frame coordinates, \vec{v}_N , \rightarrow wind frame coordinates, \vec{v}_W :

$$\vec{\mathbf{v}}_{W} = C_{1}(\mu)C_{2}(\gamma)C_{3}(\sigma)\vec{\mathbf{v}}_{N} \tag{34}$$

- Bank angle, μ
- Flight path angle, γ
- Heading angle, σ
- Vector from navigation frame coordinates, \vec{v}_N , \rightarrow wind frame coordinates, \vec{v}_W :

$$\vec{\mathbf{v}}_{W} = \mathbf{C}_{1}(\mu)\mathbf{C}_{2}(\gamma)\mathbf{C}_{3}(\sigma)\vec{\mathbf{v}}_{N} \tag{34}$$

$$\vec{v}_W = C_{W \leftarrow N} \vec{v}_N \tag{35}$$

$$C_{W \leftarrow N} = \begin{bmatrix} \cos \gamma \cos \sigma & \cos \gamma \sin \sigma & -\sin \gamma \\ \sin \mu \sin \gamma \cos \sigma - \cos \mu \sin \sigma & \sin \mu \sin \gamma \sin \sigma + \cos \mu \cos \sigma & \sin \mu \cos \gamma \\ \cos \mu \sin \gamma \cos \sigma + \sin \mu \sin \sigma & \cos \mu \sin \gamma \sin \sigma - \sin \mu \cos \sigma & \cos \mu \cos \gamma \end{bmatrix}$$
(36)

- Bank angle, μ
- Flight path angle, γ
- Heading angle, σ
- Vector from navigation frame coordinates, \vec{v}_N , \rightarrow wind frame coordinates, \vec{v}_W :

$$\vec{\mathbf{v}}_{W} = C_{1}(\mu)C_{2}(\gamma)C_{3}(\sigma)\vec{\mathbf{v}}_{N}$$
(34)

$$\vec{V}_W = C_{W \leftarrow N} \vec{V}_N \tag{35}$$

$$C_{W \leftarrow N} = \begin{bmatrix} \cos \gamma \cos \sigma & \cos \gamma \sin \sigma & -\sin \gamma \\ \sin \mu \sin \gamma \cos \sigma - \cos \mu \sin \sigma & \sin \mu \sin \gamma \sin \sigma + \cos \mu \cos \sigma & \sin \mu \cos \gamma \\ \cos \mu \sin \gamma \cos \sigma + \sin \mu \sin \sigma & \cos \mu \sin \gamma \sin \sigma - \sin \mu \cos \sigma & \cos \mu \cos \gamma \end{bmatrix}$$
(36)

• σ arbitrarily set as subsequent σ rotations performed before other Euler angles, typically referenced to north

- Roll angle, ϕ
- Pitch angle, θ
- Yaw angle, ψ

- Roll angle, ϕ
- Pitch angle, θ
- Yaw angle, ψ
- Vector from navigation frame coordinates, \vec{v}_N , \rightarrow body frame coordinates, \vec{v}_B :

$$\vec{\mathbf{v}}_B = C_1(\phi)C_2(\theta)C_3(\psi)\vec{\mathbf{v}}_N \tag{37}$$

- Roll angle, φ
- Pitch angle, θ
- Yaw angle, ψ
- Vector from navigation frame coordinates, \vec{v}_N , \rightarrow body frame coordinates, \vec{v}_B :

$$\vec{\mathbf{V}}_B = C_1(\phi)C_2(\theta)C_3(\psi)\vec{\mathbf{V}}_N \tag{37}$$

$$\vec{\mathbf{v}}_B = C_{B \leftarrow N} \vec{\mathbf{v}}_N \tag{38}$$

$$C_{B\leftarrow N} = \begin{bmatrix} \cos\theta\cos\psi & \cos\theta\sin\psi & -\sin\theta\\ \sin\phi\sin\theta\cos\psi - \cos\phi\sin\psi & \sin\phi\sin\theta\sin\psi + \cos\phi\cos\psi & \sin\phi\cos\theta\\ \cos\phi\sin\theta\cos\psi + \sin\phi\sin\psi & \cos\phi\sin\theta\sin\psi - \sin\phi\cos\psi & \cos\phi\cos\theta \end{bmatrix}$$
(39)

- Roll angle, φ
- Pitch angle, θ
- Yaw angle, ψ
- Vector from navigation frame coordinates, \vec{v}_N , \rightarrow body frame coordinates, \vec{v}_B :

$$\vec{\mathbf{v}}_B = C_1(\phi)C_2(\theta)C_3(\psi)\vec{\mathbf{v}}_N \tag{37}$$

$$\vec{\mathbf{v}}_B = \mathbf{C}_{B \leftarrow N} \vec{\mathbf{v}}_N \tag{38}$$

$$C_{B\leftarrow N} = \begin{bmatrix} \cos\theta\cos\psi & \cos\theta\sin\psi & -\sin\theta\\ \sin\phi\sin\theta\cos\psi - \cos\phi\sin\psi & \sin\phi\sin\theta\sin\psi + \cos\phi\cos\psi & \sin\phi\cos\theta\\ \cos\phi\sin\theta\cos\psi + \sin\phi\sin\psi & \cos\phi\sin\theta\sin\psi - \sin\phi\cos\psi & \cos\phi\cos\theta \end{bmatrix}$$
(39)

Note: Euler angles represent orientation or attitude of aircraft

- Roll angle, ϕ
- Pitch angle, θ
- Yaw angle, ψ
- Vector from navigation frame coordinates, \vec{V}_N , \rightarrow body frame coordinates, \vec{V}_B :

$$\vec{\mathbf{V}}_B = C_1(\phi)C_2(\theta)C_3(\psi)\vec{\mathbf{V}}_N \tag{37}$$

$$\vec{v}_B = C_{B \leftarrow N} \vec{v}_N$$

$$C_{B\leftarrow N} = \begin{bmatrix} \cos\theta\cos\psi & \cos\theta\sin\psi & -\sin\theta\\ \sin\phi\sin\theta\cos\psi - \cos\phi\sin\psi & \sin\phi\sin\theta\sin\psi + \cos\phi\cos\psi & \sin\phi\cos\theta\\ \cos\phi\sin\theta\cos\psi + \sin\phi\sin\psi & \cos\phi\sin\theta\sin\psi - \sin\phi\cos\psi & \cos\phi\cos\theta \end{bmatrix}$$
(39)

- Note: Euler angles represent orientation or attitude of aircraft
- ψ arbitrarily set as subsequent ψ rotations performed before other angles

(38)

Wind-to-Body 3-2-1 Euler Angles

- $\bullet \ \ \text{Angle of attack}, \ \alpha$
- Sideslip angle, β

Wind-to-Body 3-2-1 Euler Angles

- Angle of attack, α
- Sideslip angle, β
- Vector from wind frame coordinates, \vec{v}_W , \rightarrow body frame coordinates, \vec{v}_B :

$$\vec{\mathbf{v}}_B = \mathbf{C}_2(\alpha)\mathbf{C}_3(-\beta)\vec{\mathbf{v}}_W \tag{40}$$

Wind-to-Body 3-2-1 Euler Angles

- Angle of attack, α
- Sideslip angle, β
- Vector from wind frame coordinates, \vec{v}_W , \rightarrow body frame coordinates, \vec{v}_B :

$$\vec{\mathbf{v}}_B = \mathbf{C}_2(\alpha)\mathbf{C}_3(-\beta)\vec{\mathbf{v}}_W \tag{40}$$

$$\vec{\mathbf{v}}_B = \mathbf{C}_{B \leftarrow W} \vec{\mathbf{v}}_W \tag{41}$$

$$C_{B\leftarrow W} = \begin{bmatrix} \cos\alpha\cos\beta & -\cos\alpha\sin\beta & -\sin\alpha\\ \sin\beta & \cos\beta & 0\\ \sin\alpha\cos\beta & -\sin\alpha\sin\beta & \cos\alpha \end{bmatrix}$$
(42)

Airspeed Vector Rotation

• Representation of airspeed vector \vec{v}_{∞} with magnitude v_{∞} in body frame:

$$\vec{\mathbf{V}}_{\infty,B} = [\mathbf{u} \ \mathbf{v} \ \mathbf{w}]^T \tag{43}$$

• From previous equations:

$$\begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} \cos \alpha \cos \beta & -\cos \alpha \sin \beta & -\sin \alpha \\ \sin \beta & \cos \beta & 0 \\ \sin \alpha \cos \beta & -\sin \alpha \sin \beta & \cos \alpha \end{bmatrix} \begin{bmatrix} v_{\infty} \\ 0 \\ 0 \end{bmatrix}$$
(44)

• From previous equations:

$$\begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} \cos \alpha \cos \beta & -\cos \alpha \sin \beta & -\sin \alpha \\ \sin \beta & \cos \beta & 0 \\ \sin \alpha \cos \beta & -\sin \alpha \sin \beta & \cos \alpha \end{bmatrix} \begin{bmatrix} v_{\infty} \\ 0 \\ 0 \end{bmatrix}$$
(44)

$$\begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} v_{\infty} \cos \alpha \cos \beta \\ v_{\infty} \sin \beta \\ v_{\infty} \sin \alpha \cos \beta \end{bmatrix}$$
(45)

• Dividing first row by third row:

$$\frac{u}{w} = \frac{v_{\infty} \cos \alpha \cos \beta}{v_{\infty} \sin \alpha \cos \beta} \tag{46}$$

• Dividing first row by third row:

$$\frac{u}{w} = \frac{v_{\infty} \cos \alpha \cos \beta}{v_{\infty} \sin \alpha \cos \beta} \tag{46}$$

$$\frac{u}{w} = \frac{\cos \alpha}{\sin \alpha} \tag{47}$$

• Dividing first row by third row:

$$\frac{u}{w} = \frac{v_{\infty} \cos \alpha \cos \beta}{v_{\infty} \sin \alpha \cos \beta} \tag{46}$$

$$\frac{u}{w} = \frac{\cos \alpha}{\sin \alpha} \tag{47}$$

$$\frac{u}{w} = \frac{1}{\tan \alpha} \tag{48}$$

• Relationship between angle of attack and components of airspeed vector:

$$\alpha = \tan^{-1} \frac{w}{u} \tag{49}$$

• Relationship between angle of attack and components of airspeed vector:

$$\alpha = \tan^{-1} \frac{w}{u} \tag{49}$$

Isolating second row:

$$v = v_{\infty} \sin \beta \tag{50}$$

• Relationship between angle of attack and components of airspeed vector:

$$\alpha = \tan^{-1} \frac{W}{U} \tag{49}$$

• Isolating second row:

$$v = v_{\infty} \sin \beta \tag{50}$$

• Provides relationship between sideslip angle and components of airspeed vector:

$$\beta = \sin^{-1} \frac{v}{v_{\infty}} \tag{51}$$

Point-Mass Gravity Modeling

• Fundamentally, aerospace vehicles always encounter gravitational forces

Point-Mass Gravity Modeling

- Fundamentally, aerospace vehicles always encounter gravitational forces
- Newtonian mechanics, **Newton's law of gravitation: gravitational force**, F_g , a.k.a. **weight**, W, function of distance r between centers of mass for vehicle m and celestial body M

$$F_g = W = \frac{GMm}{r^2} = \frac{\mu m}{r^2} \tag{52}$$

- G: gravitational constant, i.e. $6.674 \times 10^{-11} \text{ m}^3\text{kg}^{-1}\text{s}^{-2}$
- $\mu = GM$: standard gravitational parameter of celestial body

Point-Mass Gravity Modeling

- Fundamentally, aerospace vehicles always encounter gravitational forces
- Newtonian mechanics, **Newton's law of gravitation: gravitational force**, F_g , a.k.a. **weight**, W, function of distance r between centers of mass for vehicle m and celestial body M

$$F_g = W = \frac{GMm}{r^2} = \frac{\mu m}{r^2} \tag{52}$$

- G: gravitational constant, i.e. $6.674 \times 10^{-11} \text{ m}^3\text{kg}^{-1}\text{s}^{-2}$
- $\mu = \textit{GM}$: standard gravitational parameter of celestial body
- Celestial bodies' gravity field contains variation
 - Course: assumes gravitational field gradient does not produce any significant moments on aerospace vehicle
 - Often not neglected for spacecraft in low orbits

Gravity Modeling (continued)

• For aerospace vehicles "near" Earth: model gravitational force as

$$F_g = mg (53)$$

• g: Earth's gravitational acceleration

Gravity Modeling (continued)

For aerospace vehicles "near" Earth: model gravitational force as

$$F_g = mg (53)$$

- g: Earth's gravitational acceleration
- g generally varies as function of latitude, altitude, and local topography and geology

Gravity Modeling (continued)

• For aerospace vehicles "near" Earth: model gravitational force as

$$F_g = mg (53)$$

- g: Earth's gravitational acceleration
- g generally varies as function of latitude, altitude, and local topography and geology
- Module: spherical-Earth gravity model for g as function of altitude, h

$$g(h) = g_0 \left(\frac{R_E}{R_E + h}\right)^2 \tag{54}$$

- R_E : Earth's mean radius, 6.3710088 \times 10⁶ m
- g₀: standard gravitational acceleration, 9.80665 m/s²
- Higher fidelity modeling of gravitational force discussed in later modules

Propulsion Modeling

 To overcome gravity and obtain sustained flight, aerospace vehicles must have propulsion systems to produce propulsive forces and moments

Propulsion Modeling

- To overcome gravity and obtain sustained flight, aerospace vehicles must have propulsion systems to produce propulsive forces and moments
- These systems typically use either rotating propellers, rotors, and/or reaction engines, e.g., jet, rocket, or ion, affixed to vehicle's structure

- To overcome gravity and obtain sustained flight, aerospace vehicles must have propulsion systems to produce propulsive forces and moments
- These systems typically use either rotating propellers, rotors, and/or reaction engines, e.g., jet, rocket, or ion, affixed to vehicle's structure
- Typically defines **propulsive force** vector, \vec{F}_p , & **propulsive moment** vector, \vec{M}_p , in body frame as function of **thrust** vectors, \vec{T}

- To overcome gravity and obtain sustained flight, aerospace vehicles must have propulsion systems to produce propulsive forces and moments
- These systems typically use either rotating propellers, rotors, and/or reaction engines, e.g., jet, rocket, or ion, affixed to vehicle's structure
- Typically defines **propulsive force** vector, \vec{F}_p , & **propulsive moment** vector, \vec{M}_p , in body frame as function of **thrust** vectors, \vec{T}
- Propulsion system primarily used to translate entire vehicle
 - Some propulsion systems used to steer aerospace vehicles: thrust vectoring

- To overcome gravity and obtain sustained flight, aerospace vehicles must have propulsion systems to produce propulsive forces and moments
- These systems typically use either rotating propellers, rotors, and/or reaction engines, e.g., jet, rocket, or ion, affixed to vehicle's structure
- Typically defines **propulsive force** vector, \vec{F}_p , & **propulsive moment** vector, \vec{M}_p , in body frame as function of **thrust** vectors, \vec{T}
- Propulsion system primarily used to translate entire vehicle
 - Some propulsion systems used to steer aerospace vehicles: thrust vectoring
- Course: no propulsion system modeling in detail, assume some dynamical system model
 - May be dependent on the flight conditions, e.g. airspeed, air density
 - · Approximated by first- or second-order dynamics, similar to other actuators

- To overcome gravity and obtain sustained flight, aerospace vehicles must have propulsion systems to produce propulsive forces and moments
- These systems typically use either rotating propellers, rotors, and/or reaction engines, e.g., jet, rocket, or ion, affixed to vehicle's structure
- Typically defines **propulsive force** vector, \vec{F}_p , & **propulsive moment** vector, \vec{M}_p , in body frame as function of **thrust** vectors, \vec{T}
- Propulsion system primarily used to translate entire vehicle
 - Some propulsion systems used to steer aerospace vehicles: thrust vectoring
- Course: no propulsion system modeling in detail, assume some dynamical system model
 - May be dependent on the flight conditions, e.g. airspeed, air density
 - · Approximated by first- or second-order dynamics, similar to other actuators
- Rotating propellers/rotors create changing mass distribution due to rotation
 - Accommodated in rigid aerospace vehicle equations of motion in later modules

Aerodynamics

- Aerodynamic forces and moments due to air pressure distribution around aerospace vehicle
 - Aerodynamic force vector, \vec{F}_a , resist/assist translation through air mass
 - Aerodynamic moment vector, \overrightarrow{M}_a , cause aircraft to rotate due to varying pressure distribution over airborne body

Aerodynamics

- Aerodynamic forces and moments due to air pressure distribution around aerospace vehicle
 - Aerodynamic force vector, \vec{F}_a , resist/assist translation through air mass
 - Aerodynamic moment vector, \overrightarrow{M}_a , cause aircraft to rotate due to varying pressure distribution over airborne body
- Aerodynamic forces and moments: primary factor in airborne vehicles and often negligible for spaceborne vehicles, except at some low planetary orbits

Aerodynamics

- Aerodynamic forces and moments due to air pressure distribution around aerospace vehicle
 - Aerodynamic force vector, \vec{F}_a , resist/assist translation through air mass
 - Aerodynamic moment vector, \vec{M}_a , cause aircraft to rotate due to varying pressure distribution over airborne body
- Aerodynamic forces and moments: primary factor in airborne vehicles and often negligible for spaceborne vehicles, except at some low planetary orbits
- Determination of models for general aircraft studied as aircraft system identification (SID)
 - Typically employs optimal parameter estimation discussed in other courses

3 Object Models for Classical Mechanics

- 1 Point-mass model defines object only by mass
 - Assumes object's motion completely characterized by motion of center of mass

3 Object Models for Classical Mechanics

- 1 Point-mass model defines object only by mass
 - Assumes object's motion completely characterized by motion of center of mass
- 2 Rigid-body model defines object by static distribution of mass in space
 - Assumes object's motion completely characterized by motion of center of mass and rotation of structure

3 Object Models for Classical Mechanics

- 1 Point-mass model defines object only by mass
 - Assumes object's motion completely characterized by motion of center of mass
- 2 Rigid-body model defines object by static distribution of mass in space
 - Assumes object's motion completely characterized by motion of center of mass and rotation of structure
- 3 **Deformable-body model** defines object by dynamic distribution of mass in space, experiences deformations caused by strain
 - Sub-type: elastic-body model assumes deformations caused by strain completely recoverable
 - Assumes that object's motion completely characterized by motion of nominal center of mass, rotation of nominal structure, and vibration of body about nominal structure
 - Vibrations: structural modes of object

Flight Dynamics Approximations

- 1 Rigid body model for aerospace vehicles
 - "Good enough" for majority of FDC analysis and design, structures designed so structural modes occur at much higher frequencies than aerodynamic or astrodynamic modes
 - Modern aircraft often incorporate flexible structures, necessitates elastic body model, i.e. aeroelastic dynamics
 - Later module: elastic aerospace vehicle model considered

Flight Dynamics Approximations

- 1 Rigid body model for aerospace vehicles
 - "Good enough" for majority of FDC analysis and design, structures designed so structural modes occur at much higher frequencies than aerodynamic or astrodynamic modes
 - Modern aircraft often incorporate flexible structures, necessitates elastic body model, i.e. aeroelastic dynamics
 - Later module: elastic aerospace vehicle model considered
- 2 Flat-Earth approximation assumes entire Earth's surface approximated by single coordinate frame
 - Considered as "average" LTP in area of operation for aircraft
 - In this case, navigation frame coordinate axes remain static, i.e. "inertial," allows easier dynamics for aircraft
 - "Down" direction aligns with gravitational force, mg

Flight Dynamics Approximations

- 1 Rigid body model for aerospace vehicles
 - "Good enough" for majority of FDC analysis and design, structures designed so structural modes occur at much higher frequencies than aerodynamic or astrodynamic modes
 - Modern aircraft often incorporate flexible structures, necessitates elastic body model, i.e. aeroelastic dynamics
 - Later module: elastic aerospace vehicle model considered
- 2 Flat-Earth approximation assumes entire Earth's surface approximated by single coordinate frame
 - Considered as "average" LTP in area of operation for aircraft
 - In this case, navigation frame coordinate axes remain static, i.e. "inertial," allows easier dynamics for aircraft
 - "Down" direction aligns with gravitational force, mg
 - Approximation typically "good enough" for FDC analysis and design
 - Although with hypersonic flying vehicle velocities and/or long distance flight analysis, flat-Earth approximation may not be suitable
 - Later module: additional effects of non-flat Earth modeling on flight dynamics

Flight Dynamics Approximations (continued)

- 3 No-wind approximation to introduce aircraft dynamics
 - Wind speeds significantly close to nominal aircraft airspeed and/or long distance flight analysis, no-wind approximation may not be suitable
 - Later module: additional effects of both steady and unsteady wind on the aircraft dynamics

Flight Dynamics Approximations (continued)

- 3 No-wind approximation to introduce aircraft dynamics
 - Wind speeds significantly close to nominal aircraft airspeed and/or long distance flight analysis, no-wind approximation may not be suitable
 - Later module: additional effects of both steady and unsteady wind on the aircraft dynamics
- 4 Constant-mass approximation assumes mass distribution of aerospace vehicle does not change
 - For non-electric powered aerospace vehicles, engine fuel consumption causes mass to change at some rate
 - Mass rate slow in case of aircraft engines and often neglected

Flight Dynamics Approximations (continued)

- 3 No-wind approximation to introduce aircraft dynamics
 - Wind speeds significantly close to nominal aircraft airspeed and/or long distance flight analysis, no-wind approximation may not be suitable
 - Later module: additional effects of both steady and unsteady wind on the aircraft dynamics
- 4 Constant-mass approximation assumes mass distribution of aerospace vehicle does not change
 - For non-electric powered aerospace vehicles, engine fuel consumption causes mass to change at some rate
 - Mass rate slow in case of aircraft engines and often neglected
 - Rocket engines: mass rate crucial in deriving appropriate EOMs
 - Later module: variable and rotating mass effects

- Point-mass dynamics represented using Newton's second law governing translation
 - Modern form: relates forces acting on point-mass to linear momentum

- Point-mass dynamics represented using Newton's second law governing translation
 - Modern form: relates forces acting on point-mass to linear momentum
- Vector-valued differential equation:

$$\sum \vec{F} = \frac{d}{dt}\vec{p} = \frac{d}{dt}(m\vec{v}) \tag{55}$$

- ∑ F: total force on rigid body
 p: linear momentum
- m: mass
- \vec{v} : velocity of point-mass

- Rigid-body dynamics represented using **Newton-Euler equations of motion (EOM)**
 - Adds Euler's equation governing rotation, relates moments acting on rigid body to angular momentum

- Rigid-body dynamics represented using Newton-Euler equations of motion (EOM)
 - Adds Euler's equation governing rotation, relates moments acting on rigid body to angular momentum
- · Vector-valued differential equations:

$$\sum \vec{F} = \frac{d}{dt} \vec{p}$$

$$\sum \vec{M} = \frac{d}{dt} \vec{H}$$
(56)

- $\sum \vec{M}$: total moment on rigid body
- \vec{H} : angular momentum

- Rigid-body dynamics represented using **Newton-Euler equations of motion (EOM)**
 - Adds Euler's equation governing rotation, relates moments acting on rigid body to angular momentum
- Vector-valued differential equations:

$$\sum \vec{F} = \frac{d}{dt} \vec{p}$$

$$\sum \vec{M} = \frac{d}{dt} \vec{H}$$
(56)

- $\sum \vec{M}$: total moment on rigid body
- \vec{H} : angular momentum
- First equation of Newton-Euler EOMs: **translation equation**, equivalent to point-mass equation
- Second equation: rotation equation

Integrated Mass Distribution

 Since rigid-body represented as continuous mass distribution: quantities computed as integrals over volume V by following equations:

$$\int_{V} \vec{f} \rho dV = \frac{d}{dt} \int_{V} \vec{v} \rho dV$$

$$\int_{V} \vec{r} \times \vec{f} \rho dV = \frac{d}{dt} \int_{V} \vec{r} \times \vec{v} \rho dV$$
(57)

- \vec{f} : forces acting on rigid body per unit mass
- $dm = \rho dV$: infinitesimal mass element of body with density ρ
- \vec{v} : velocity of mass element
- \vec{r} : position vector of mass element w.r.t. origin of inertial reference frame

Inertia Matrix

- Alternative: represent static distribution of mass through inertia matrix, a.k.a. moment of inertia tensor
 - Composed of moments of inertia and products of inertia about body-fixed frame coordinates axes x_B - y_B - z_B

$$I_{G} = \begin{bmatrix} I_{xx} & -I_{xy} & -I_{xz} \\ -I_{yx} & I_{yy} & -I_{yz} \\ -I_{zx} & -I_{zy} & I_{zz} \end{bmatrix},$$
(58)

Body-Fixed Frame EOMs

• If one assumes total mass *m* and inertia matrix constant over time, defines reference frame as body-fixed frame, i.e. attached to rigid structure

Body-Fixed Frame EOMs

- If one assumes total mass m and inertia matrix constant over time, defines reference frame as body-fixed frame, i.e. attached to rigid structure
- Newton-Euler EOMs written in rotating reference frame:

$$\sum \vec{F}_{B} = \frac{d}{dt}(m\vec{v}_{B}) = m\left(\dot{\vec{v}}_{B} + \omega_{B/N} \times \vec{v}_{B}\right)$$

$$\sum \vec{M}_{B} = \frac{d}{dt}\left(I_{G}\omega_{B/N}\right) = I_{G}\dot{\vec{\omega}}_{B} + \omega_{B/N} \times I_{G}\omega_{B/N}$$
(59)

- ∑ F

 _B: total force acting on center of mass G in body-fixed frame
 V

 _B: linear velocity of center of mass
- $\sum \vec{M}_B$: total moment acting about center of mass G in body-fixed frame
- $\overrightarrow{\omega}_{B/N}$: angular velocity of body-fixed frame relative to the navigation frame (assumed inertial)

- If one assumes total mass m and inertia matrix constant over time, defines reference frame as body-fixed frame, i.e. attached to rigid structure
- Newton-Euler EOMs written in rotating reference frame:

$$\sum \vec{F}_{B} = \frac{d}{dt}(m\vec{v}_{B}) = m\left(\dot{\vec{v}}_{B} + \omega_{B/N} \times \vec{v}_{B}\right)$$

$$\sum \vec{M}_{B} = \frac{d}{dt}\left(I_{G}\omega_{B/N}\right) = I_{G}\dot{\vec{\omega}}_{B} + \omega_{B/N} \times I_{G}\omega_{B/N}$$
(59)

- ∑ F

 _B: total force acting on center of mass G in body-fixed frame
 V

 _B: linear velocity of center of mass
- $\sum \vec{M}_B$: total moment acting about center of mass G in body-fixed frame
- $\overrightarrow{\omega}_{B/N}$: angular velocity of body-fixed frame relative to the navigation frame (assumed inertial)
- Additional cross product terms included due to body-fixed frame being non-inertial, i.e. coordinate axes rotating and origin accelerating 35/43

Body-Fixed Frame Representations

 For body-fixed frame linear and angular velocity components, typically use following representations

$$\vec{\mathbf{v}}_B = \begin{bmatrix} u & v & w \end{bmatrix}^T \tag{60}$$

$$\omega_{B/N} = \begin{bmatrix} p & q & r \end{bmatrix}^T \tag{61}$$

For any rigid-body in rotating reference frame, Newton-Euler EOMs:

$$\sum \vec{F}_{B} = m \begin{bmatrix} \dot{u} + qw - rv \\ \dot{v} + ru - pw \\ \dot{w} + pv - qu \end{bmatrix}$$

$$\sum \vec{M}_{B} = \begin{bmatrix} I_{xx}\dot{p} + (I_{zz} - I_{yy})qr - I_{xy}(\dot{q} - pr) - I_{xz}(\dot{r} + pq) + I_{yz}(r^{2} - q^{2}) \\ I_{yy}\dot{q} + (I_{xx} - I_{zz})pr - I_{xy}(\dot{p} + qr) + I_{xz}(p^{2} - r^{2}) - I_{yz}(\dot{r} - pq) \\ I_{zz}\dot{r} + (I_{yy} - I_{xx})pq + I_{xy}(q^{2} - p^{2}) - I_{xz}(\dot{p} - qr) - I_{yz}(\dot{q} + pr) \end{bmatrix}$$
(62)

Newton-Euler Equations of Motion

For any rigid-body in rotating reference frame, Newton-Euler EOMs:

$$\sum \vec{F}_{B} = m \begin{bmatrix} \dot{u} + qw - rv \\ \dot{v} + ru - pw \\ \dot{w} + pv - qu \end{bmatrix}$$

$$\sum \vec{M}_{B} = \begin{bmatrix} I_{xx}\dot{p} + (I_{zz} - I_{yy})qr - I_{xy}(\dot{q} - pr) - I_{xz}(\dot{r} + pq) + I_{yz}(r^{2} - q^{2}) \\ I_{yy}\dot{q} + (I_{xx} - I_{zz})pr - I_{xy}(\dot{p} + qr) + I_{xz}(p^{2} - r^{2}) - I_{yz}(\dot{r} - pq) \\ I_{zz}\dot{r} + (I_{yy} - I_{xx})pq + I_{xy}(q^{2} - p^{2}) - I_{xz}(\dot{p} - qr) - I_{yz}(\dot{q} + pr) \end{bmatrix}$$
(62)

- Represent six coupled nonlinear ODEs with 6 free variables: u, v, w, p, q, r
 - Forms six degree-of-freedom (6-DOF) equations of motion (EOM)

Flight Vehicle Equations of Motion

Assuming flat-earth model, write 6-DOF rigid aerospace vehicle equations of motion in body-fixed frame:

$$\vec{F}_{a,B} + \vec{F}_{p,B} + C_{B \leftarrow N} \vec{F}_{g,N} = m \begin{bmatrix} \dot{u} + qw - rv \\ \dot{v} + ru - pw \\ \dot{w} + pv - qu \end{bmatrix}$$

$$\vec{M}_{a,B} + \vec{M}_{p,B} = \begin{bmatrix} I_{xx} \dot{p} + (I_{zz} - I_{yy})qr - I_{xy}(\dot{q} - pr) - I_{xz}(\dot{r} + pq) + I_{yz}(r^2 - q^2) \\ I_{yy} \dot{q} + (I_{xx} - I_{zz})pr - I_{xy}(\dot{p} + qr) + I_{xz}(p^2 - r^2) - I_{yz}(\dot{r} - pq) \\ I_{zz} \dot{r} + (I_{yy} - I_{xx})pq + I_{xy}(q^2 - p^2) - I_{xz}(\dot{p} - qr) - I_{yz}(\dot{q} + pr) \end{bmatrix}$$
(63)

Rotation Matrix Representation

- $C_{B\leftarrow N}$ term depends on representation of attitude to be used, e.g. DCM, Euler angles, or Euler symmetric parameters,
 - Changes as function of angular velocity

Rotation Matrix Representation

- C_{B←N} term depends on representation of attitude to be used, e.g. DCM, Euler angles, or Euler symmetric parameters,
 - Changes as function of angular velocity
- Course: Euler angles

$$C_{B\leftarrow N}\vec{F}_{g,N} = \begin{bmatrix} \cos\theta\cos\psi & \cos\theta\sin\psi & -\sin\theta \\ \sin\phi\sin\theta\cos\psi - \cos\phi\sin\psi & \sin\phi\sin\theta\sin\psi + \cos\phi\cos\psi & \sin\phi\cos\theta \\ \cos\phi\sin\theta\cos\psi + \sin\phi\sin\psi & \cos\phi\sin\theta\sin\psi - \sin\phi\cos\psi & \cos\phi\cos\theta \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ mg \end{bmatrix}$$
(64)

Rotation Matrix Representation

• $C_{B \leftarrow N}$ term depends on representation of attitude to be used, e.g. DCM, Euler angles, or Euler symmetric parameters.

Changes as function of angular velocity

Course: Euler angles

$$C_{B\leftarrow N}\vec{F}_{g,N} = \begin{bmatrix} \cos\theta\cos\psi & \cos\theta\sin\psi & -\sin\theta \\ \sin\phi\sin\theta\cos\psi - \cos\phi\sin\psi & \sin\phi\sin\theta\sin\psi + \cos\phi\cos\psi & \sin\phi\cos\theta \\ \cos\phi\sin\theta\cos\psi + \sin\phi\sin\psi & \cos\phi\sin\theta\sin\psi - \sin\phi\cos\psi & \cos\phi\cos\theta \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ mg \end{bmatrix}$$
(64)

$$C_{B \leftarrow N} \vec{F}_{g,N} = mg \begin{bmatrix} -\sin\theta \\ \sin\phi\cos\theta \\ \cos\phi\cos\theta \end{bmatrix}$$
(65)

Aerospace Vehicle Equations of Motion (continued)

$$\vec{F}_{a,B} + \vec{F}_{p,B} + mg \begin{bmatrix} -\sin\theta \\ \sin\phi\cos\theta \\ \cos\phi\cos\theta \end{bmatrix} = m \begin{bmatrix} \dot{u} + qw - rv \\ \dot{v} + ru - pw \\ \dot{w} + pv - qu \end{bmatrix}$$

$$\vec{M}_{a,B} + \vec{M}_{p,B} = \begin{bmatrix} I_{xx}\dot{p} + (I_{zz} - I_{yy})qr - I_{xy}(\dot{q} - pr) - I_{xz}(\dot{r} + pq) + I_{yz}(r^2 - q^2) \\ I_{yy}\dot{q} + (I_{xx} - I_{zz})pr - I_{xy}(\dot{p} + qr) + I_{xz}(p^2 - r^2) - I_{yz}(\dot{r} - pq) \\ I_{zz}\dot{r} + (I_{yy} - I_{xx})pq + I_{xy}(q^2 - p^2) - I_{xz}(\dot{p} - qr) - I_{yz}(\dot{q} + pr) \end{bmatrix}$$
(66)

Aerospace Vehicle Equations of Motion (continued)

$$\vec{F}_{a,B} + \vec{F}_{p,B} + mg \begin{bmatrix} -\sin\theta \\ \sin\phi\cos\theta \\ \cos\phi\cos\theta \end{bmatrix} = m \begin{bmatrix} \dot{u} + qw - rv \\ \dot{v} + ru - pw \\ \dot{w} + pv - qu \end{bmatrix}$$

$$\vec{M}_{a,B} + \vec{M}_{p,B} = \begin{bmatrix} I_{xx}\dot{p} + (I_{zz} - I_{yy})qr - I_{xy}(\dot{q} - pr) - I_{xz}(\dot{r} + pq) + I_{yz}(r^2 - q^2) \\ I_{yy}\dot{q} + (I_{xx} - I_{zz})pr - I_{xy}(\dot{p} + qr) + I_{xz}(p^2 - r^2) - I_{yz}(\dot{r} - pq) \\ I_{zz}\dot{r} + (I_{yy} - I_{xx})pq + I_{xy}(q^2 - p^2) - I_{xz}(\dot{p} - qr) - I_{yz}(\dot{q} + pr) \end{bmatrix}$$
(66)

- Only requires eight states to calculate derivatives at any instant: $u, v, w, p, q, r, \phi, \theta$
 - ψ : derived parameter

Euler Angle Rates

• To complete 6-DOF EOMs: relate change in Euler angles to angular velocity of body-fixed frame, $\vec{\omega} = [p \ q \ r]^T$

Euler Angle Rates

- To complete 6-DOF EOMs: relate change in Euler angles to angular velocity of body-fixed frame, $\vec{\omega} = [p \ q \ r]^T$
- Euler angle rates, $(\dot{\phi}, \dot{\theta}, \dot{\psi})$: related explicitly to angular velocity by formulas

$$\begin{bmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \end{bmatrix} = \begin{bmatrix} 1 & \sin \phi \tan \theta & \cos \phi \tan \theta \\ 0 & \cos \phi & -\sin \phi \\ 0 & \sin \phi \sec \theta & \cos \phi \sec \theta \end{bmatrix} \begin{bmatrix} p \\ q \\ r \end{bmatrix}$$
(67)

$$\begin{bmatrix} p \\ q \\ r \end{bmatrix} = \begin{bmatrix} 1 & 0 & -\sin\theta \\ 0 & \cos\phi & -\sin\phi\cos\theta \\ 0 & -\sin\phi & \cos\phi\cos\theta \end{bmatrix} \begin{bmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \end{bmatrix}$$
(68)

Euler Angle Rates

- To complete 6-DOF EOMs: relate change in Euler angles to angular velocity of body-fixed frame, $\vec{\omega} = [p \ q \ r]^T$
- Euler angle rates, $(\dot{\phi}, \dot{\theta}, \dot{\psi})$: related explicitly to angular velocity by formulas

$$\begin{bmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \end{bmatrix} = \begin{bmatrix} 1 & \sin \phi \tan \theta & \cos \phi \tan \theta \\ 0 & \cos \phi & -\sin \phi \\ 0 & \sin \phi \sec \theta & \cos \phi \sec \theta \end{bmatrix} \begin{bmatrix} p \\ q \\ r \end{bmatrix}$$
 (67)

$$\begin{bmatrix} \rho \\ q \\ r \end{bmatrix} = \begin{bmatrix} 1 & 0 & -\sin\theta \\ 0 & \cos\phi & -\sin\phi\cos\theta \\ 0 & -\sin\phi & \cos\phi\cos\theta \end{bmatrix} \begin{bmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \end{bmatrix}$$
(68)

• Equations do not use rotation transformations: $[\dot{\phi}, \dot{\theta}, \dot{\psi}]^T$ not vector in 3D space

Position in Navigation Frame

• Let $[\dot{x}_N \ \dot{y}_N \ \dot{z}_N]^T$ represent velocity in navigation frame, quantities related to previous body-fixed frame by simple rotation:

$$\begin{bmatrix} \dot{x}_{N} \\ \dot{y}_{N} \\ \dot{z}_{N} \end{bmatrix} = C_{N \leftarrow B} \begin{bmatrix} u \\ v \\ w \end{bmatrix}$$
 (69)

$$\begin{bmatrix} \dot{x}_{N} \\ \dot{y}_{N} \\ \dot{z}_{N} \end{bmatrix} = \begin{bmatrix} \cos\theta\cos\psi & \sin\phi\sin\theta\cos\psi - \cos\phi\sin\psi & \cos\phi\sin\theta\cos\psi + \sin\phi\sin\psi \\ \cos\theta\sin\psi & \sin\phi\sin\theta\sin\psi + \cos\phi\cos\psi & \cos\phi\sin\theta\sin\psi - \sin\phi\cos\psi \\ -\sin\theta & \sin\phi\cos\theta & \cos\phi\cos\theta \end{bmatrix} \begin{bmatrix} u \\ v \\ w \end{bmatrix}$$
(70)

- Aerospace vehicles operate in many different frames
 - Celestial "inertial" frame
 - Earth-centered frames
 - Reference ellipsoid
 - Local vehicle-centered frames

- Aerospace vehicles operate in many different frames
 - Celestial "inertial" frame
 - Earth-centered frames
 - Reference ellipsoid
 - Local vehicle-centered frames
- Body-fixed frame describes rigid body model
 - Relate body to other vehicle frames through Euler angles

- Aerospace vehicles operate in many different frames
 - Celestial "inertial" frame
 - Earth-centered frames
 - Reference ellipsoid
 - Local vehicle-centered frames
- Body-fixed frame describes rigid body model
 - Relate body to other vehicle frames through Euler angles
- Navigation/body-fixed/wind frame Euler angles related to each other
 - Often use small angle approximation

- Aerospace vehicles operate in many different frames
 - Celestial "inertial" frame
 - Earth-centered frames
 - Reference ellipsoid
 - Local vehicle-centered frames
- Body-fixed frame describes rigid body model
 - Relate body to other vehicle frames through Euler angles
- Navigation/body-fixed/wind frame Euler angles related to each other
 - Often use small angle approximation
- Aerospace vehicles typically modeled using point-mass, rigid-body, elastic-body dynamics
 - I.e. 3-DOF, 6-DOF, or >6-DOF EOMs

- Aerospace vehicles operate in many different frames
 - Celestial "inertial" frame
 - Earth-centered frames
 - Reference ellipsoid
 - Local vehicle-centered frames
- Body-fixed frame describes rigid body model
 - Relate body to other vehicle frames through Euler angles
- Navigation/body-fixed/wind frame Euler angles related to each other
 - Often use small angle approximation
- Aerospace vehicles typically modeled using point-mass, rigid-body, elastic-body dynamics
 - I.e. 3-DOF, 6-DOF, or >6-DOF EOMs
- Rigid body equations written in body-fixed frame so that inertia tensor remains constant
 - Requires body-fixed frame Euler angles for transformation due to gravity force