CSCI 22062

Introduction to Cyber Security

Intrusion Detection/Prevention Systems

Dr. Dhammika Weerasinghe

hesiri@kln.ac.lk

Department of Computer Systems Engineering Faculty of Computing & Technology University of Kelaniya

Objectives and Deliverable

- Understand the concept of IDS/IPS and the two major categorizations: by features/models, and by location. Understand the pros and cons of each approach
- Be able to write a snort rule when given the signature and other configuration info
- Understand the difference between exploits and vulnerabilities

Definitions

Intrusion

- A set of actions aimed to compromise the security goals, namely
 - Integrity, confidentiality, or availability, of a computing and networking resource

Intrusion detection

- The process of identifying and responding to intrusion activities
- Intrusion prevention
 - Extension of ID with exercises of access control to protect computers from exploitation

Elements of Intrusion Detection

- Primary assumptions:
 - System activities are observable
 - Normal and intrusive activities have distinct evidence
- Components of intrusion detection systems:
 - From an algorithmic perspective:
 - · Features capture intrusion evidences
 - Models piece evidences together
 - From a system architecture perspective:
 - Various components: audit data processor, knowledge base, decision engine, alarm generation and responses

Components of Intrusion Detection System

Intrusion Detection Approaches

- Modeling
 - Features: evidences extracted from audit data
 - Analysis approach: piecing the evidences together
 - Misuse detection (a.k.a. signature-based)
 - Anomaly detection (a.k.a. statistical-based)
- Deployment: Network-based or Host-based
 - Network based: monitor network traffic
 - Host based: monitor computer processes

Misuse Detection

Example: *if* (traffic contains "x90+de[^\r\n]{30}") *then* "attack detected" Advantage: Mostly accurate. But problems?

Can't detect new attacks

detects deviations. Thus can detect potential new attacks. Any problem?

Relatively high false positive rates

- · Anomalies can just be new normal activities.
- Anomalies caused by other element faults
 - E.g., router failure or misconfiguration, P2P misconfig
- · Which method will detect DDoS SYN flooding?

Host-Based IDSs

- Use OS auditing and monitoring/analysis mechanisms to find malware
 - Can execute full static and dynamic analysis of a program
 - Monitor shell commands and system calls executed by user applications and system programs
 - Has the most comprehensive program info for detection, thus accurate
- · Problems:
 - User dependent: install/update IDS on all user machines!
 - If attacker takes over machine, can tamper with IDS binaries and modify audit logs
 - Only local view of the attack

Network Based IDSs

- Network IDSs
 Deploying sensors at strategic locations
 - For example, Packet sniffing via tcpdump at routers
- Inspecting network traffic
 - Watch for violations of protocols and unusual connection patterns

. 1 1 . 1 1 .

- Look into the packet payload for malicious code
- Limitations
 - Cannot execute the payload or do any code analysis!
 - Even DPI gives limited application-level semantic information
 - Record and process huge amount of traffic
 - May be easily defeated by encryption, but can be mitigated with encryption only at the gateway/proxy

Host-based vs. Network-based IDS

 Give an attack that can only be detected by host-based IDS but not network-based IDS

 Can you give an example only be detected by network-based IDS but not host-based IDS?

Key Metrics of IDS/IPS

- · Algorithm
 - Alarm: A; Intrusion: I
 - Detection (true alarm) rate: P(A|I)
 - False negative rate $P(\neg A|I)$
 - False alarm (aka, false positive) rate: $P(A|\neg I)$
 - True negative rate $P(\neg A | \neg I)$
- Architecture
 - Throughput of NIDS, targeting 10s of Gbps
 - E.g., 32 nsec for 40 byte TCP SYN packet
 - Resilient to attacks

Architecture of Network IDS

Firewall/Net IPS VS Net IDS

- · Firewall/IPS
 - Active filtering
 - Fail-close
- Network IDS
 - Passive monitoring
 - Fail-open

Problems with Current IDSs

- Inaccuracy for exploit based signatures
- Cannot recognize unknown anomalies/intrusions
- Cannot provide quality info for forensics or situational-aware analysis
 - Hard to differentiate malicious events with unintentional anomalies
 - Anomalies can be caused by network element faults, e.g., router misconfiguration, link failures, etc., or application (such as P2P) misconfiguration
 - Cannot tell the situational-aware info: attack scope/target/strategy, attacker (botnet) size, etc.