Design Review

Current Starved VCO for PLL

Sebastián Castro 08-12-2023

Especificaciones

- Bias Stage
- Ring Oscilator
- Buffer
- Current Source

- Bias Stage
- Ring Oscilator
- Buffer
- Current Source

- Bias Stage
- Ring Oscilator
- Buffer
- Current Source

- Bias Stage
- Ring Oscilator
- Buffer
- Current Source

- Señal periódica para la temporización en circuitos digitales.
- Bloque fundamental en PLL.
- 2 tipos de VCO: Source Coupled y Current Starved.
- Ventajas: Menos ruido y menos consumo.

Chandra Shekhar* and S. Oureshi[†] Department of Electrical Engineering, Indian Institute of Technology, Kanpur, India 208016 Email: *gchandra@iitk.ac.in, †qureshi@iitk.ac.in

*presentar circuito a diseñar, con esquemático

*indicar referencias, fuentes de información relevante, ejemplos

*también hay espacio para una breve motivación/aplicación objetivo

Métrica	Valor [unidad]
Vdd	1.8[V]
Fosc	150 MHz
Rango frecuencia	+- 100MHz
Consumo	<130uW
Ruido de fase	-

ID = corriente bias

N= número inversores en cascada

*ecuaciones de diseño más importantes

Métrica	Valor [unidad]
Vdd	1.8[V]
Fosc	50 MHz
Rango frecuencia	200MHz

Especificaciones

*indicar condiciones de operación, como voltage de alimentación, frecuencia de operación...

*explicar objetivos, evidenciando compromisos entre las métricas relevantes

*pare esto es importante tener una idea de cuáles son las figuras de mérito: ¿qué gráfico o valor muestra el desempeño deseado del circuito?

Caracterización

*si es relevante, puede ser necesario analizar el comportamiento de un dispositivo individual, como la resistencia de conducción de un transistor

Vctrl Range: 0.46V - 1.8V

Frec. Range: 14.11MHz-279Mhz

Vctrl = 0.787V

f = 150.43MHz

Vout_max = 1.8V

Vctrl = 0.56[V] y 1.035[V]

 $\Delta f = 200.75 \text{ MHz}$

Linear Range: 50.43MHz - 251.18

MHz

Vctrl = 0.4V

*el truco es mostrar que se consigue el comportamiento objetivo, con la menor cantidad de gráficos posibles

*usar gráficos con el zoom adecuado, con explicación de los ejes y señales representadas

CSVCO

Ring Oscillator N=5

Bias Stage

Buffer

Trabajos Futuros

- Simulación y métricas por módulo
- Calcular pérdidas y ruido de fase
- Post-layout
- Ver trade-offs

Ring Oscilator

*mostrar layout de las distintas jerarquías del proyecto

*indicar decisiones de diseño

Topmodule

*comparar resultados pre-layout (sin parásitos) y post-layout (con parásitos)

*indicar si estos resultados llevan modificaciones del circuito o layout

