The Claims

What is claimed is:

5

10

15

1. A process for making a compound of formula

$$R^3$$
 R^4
 R^3
 R^4
 R^2
 R^3
 R^4
 R^2
 R^3
 R^4
 R^2

wherein m is 0, 1 or 2;

 R^1 represents a formyl group, a -COCOOH group or a group of formula –(CO)_n-R-T, in which n is 0 or 1, R is a C_6H_4 group, C_{1-5} alkanediyl or alkenediyl group and T is OH, COOH or a hydrogen atom;

R² represents a C₁₋₆ alkyl or alkenyl group;

at least one R^3 represents a hydrogen atom and the other R^3 represent each a hydrogen atom or a C_{1-5} alkyl, alkenyl or alkoxy group; and

R4 represents a hydrogen atom, a phenyl group or a R2 group;

comprising the cyclization, at a temperature above 10° C, of the corresponding compound of formula

$$R^3$$
 R^3
 R^4
 R^4
 R^3
 R^2
 R^5
(II)

20

wherein each R^5 , taken separately, represents a formyl group or a $-(CO)_n$ -R-H group, or the R^5 , taken together, represent a $-(CO)_n$ -R- $(CO)_n$ - group or a -COCO- group; the wavy line indicates that the configuration of the carbon-carbon double bond is E or Z or a mixture thereof; and

- m, n, R, R², R³ and R⁴ have the meaning as indicated above; in the presence of a catalyst selected from the group consisting of strong mineral protic acids, sulphonic acids, acidic zeolites and Lewis acids.
 - 2. A process according to claim 1, wherein m is 0 or 1.

5

10

15

20

3. A process according to claim 1, wherein the compounds of formula (I) are of formula

$$R^3$$
 R^2
 R^3
 R^3
 R^3
 R^3

and are obtained by cyclization of the corresponding compounds of formula

$$R^3$$
 R^3
 R^2
 O
 R^5
(II)

wherein R¹, R², R³ and R⁵ have the same meaning as in claim 1.

- 4. A process according to claim 1, wherein the catalyst is selected from the group consisting of H_2SO_4 , p-toluenesulphonic acid, NaHSO₄, KHSO₄, H₃PO₄, HCl, HNO₃, and BF₃ and its adducts with C_{2-6} ethers or with C_{2-6} carboxylic acids, poly(styrene sulphonic acid) based resins, K-10 Clay, SnX₄, FeX₃ and ZnX₂, X representing a halogen atom, a C_{1-6} carboxylate, or a C_{1-7} sulphonate.
- 5. A process according to claim 4, wherein the catalyst is H_3PO_4 , FeX_3 or ZnX_2 , X having the same meaning as in claim 4.

6. A process according to claim 1, characterized in that it further comprises the step of generating *in situ* the compound of formula (II) starting from the corresponding enal of formula

$$R^3$$
 R^4
 R^3
 R^4
 R^3
 R^4
(III)

wherein R², R³, R⁴ and R⁵ have the same meaning as indicated in claim 1.

- 7. A process according to claim 6, wherein the compound of formula (II) is an acetal or an acylal.
 - 8. A compound of formula

$$R^3$$
 R^2
 R^3
 R^3
 R^2
 R^2
 R^3

wherein one R^3 is a hydrogen atom and the other R^3 is a C_{1-5} alkyl group, which n is 0 or 1, R is a C_6H_4 group, C_{1-5} alkanediyl or alkenediyl group and T is OH, COOH or a hydrogen atom; and

R² represents a C₁₋₆ alkyl or alkenyl group.

9. A compound according to claim 8, wherein the compound is the 2-methyl, the 2,5-dimethyl or the 2,6-dimethyl derivative of compound of formula I.

25

20

15