Predictive Modeling Homework

Churn Prediction Merve Pakcan

Introduction

Customer churn prediction is a crucial challenge in many industries, particularly in telecommunications, finance, and e-commerce, where retaining existing customers is more cost-effective than acquiring new ones. This project focuses on building a predictive model to determine whether a customer will discontinue using a company's services based on their past interactions and usage patterns.

Using the **Customer Churn Prediction** dataset from **Kaggle**, the goal is to uncover key drivers behind customer attrition and develop a robust classification model using **SAS**. The dataset comprises **7043 customer records with 21 features**, offering insights into customer behavior, demographics, and service engagement.

By identifying customers at high risk of churn, businesses can implement targeted retention strategies, enhance customer satisfaction, and ultimately reduce churn rates. This project illustrates a practical and real-world application of machine learning in customer analytics, leveraging data-driven decisions to improve business outcomes.

Description of Variables

The dataset includes the following 21 variables:

Variable	Description	Туре
customerID	Unique identifier for each customer	Character
gender	Customer's gender (Male, Female)	Character
SeniorCitizen	Indicates if customer is a senior citizen (0 = No, 1 = Yes)	Numeric
Partner	Whether the customer has a partner (Yes/No)	Character
Dependents	Whether the customer has dependents (Yes/No)	Character
tenure	Number of months with the company	Numeric
PhoneService	Whether the customer has phone service	Character

MultipleLines	Whether the customer has multiple phone lines	Character
InternetService	Type of internet service (DSL, Fiber optic, or No)	Character
OnlineSecurity	Subscribed to online security service	Character
OnlineBackup	Subscribed to online backup service	Character
DeviceProtection	Customer has device protection	Character
TechSupport	Customer has technical support	Character
StreamingTV	Customer uses streaming TV services	Character
StreamingMovies	Customer uses streaming movie services	Character
Contract	Type of contract (Month-to-month, One year, Two year)	Character
PaperlessBilling	Uses paperless billing	Character
PaymentMethod	Payment method (credit card, bank transfer)	Character
MonthlyCharges	Monthly charges billed	Numeric
TotalCharges	Total charges accumulated	Numeric
Churn	Target: Churned (Yes/No)	Character

▲ Measure

- ★ tenure

The variables I selected for initial frequency analysis MonthlyCharges, Contract, PaymentMethod, and Churn are considered among the most important in predicting customer churn. MonthlyCharges directly reflects the financial burden on the customer and may influence satisfaction or cancellation decisions. The Contract type is highly indicative of customer commitment; for instance, month-to-month contracts typically imply higher churn risk. PaymentMethod can also reveal patterns in churn behavior, such as customers using electronic checks potentially being more likely to churn. Finally, Churn is the target variable, and analyzing its distribution is essential to understand class balance and overall problem structure. These variables together provide strong early insights into customer behavior and retention risk.

General Report

In this project, I grouped the numeric variable MonthlyCharges into three meaningful categories Low, Medium, and High by first keeping it as a measure and then using the New data item *Custom Category* feature in SAS Visual Analytics. This method is more appropriate for continuous variables with a wide range of values, as it allows for flexible and precise range definitions. In contrast, the professor demonstrated a similar grouping process for the Age variable, which was already categorical or had a limited set of integer values. While manually assigning groups to such a variable is practical, doing the same for MonthlyCharges which contains many decimal values would be inefficient and error-prone. Therefore, maintaining MonthlyCharges as numeric and creating range-based categories ensures both analytical accuracy and modeling compatibility.

Automated Prediction

In this prediction scenario, the model forecasted that the customer would churn ("Yes"). The decision was based on key input factors: the customer had a very short tenure (1 month), did not subscribe to online security services, was on a month-to-month contract, and had relatively high monthly charges. These characteristics align with typical churn-prone profiles, validating the model's logic and interpretability.

In this scenario, the model predicted that the customer would not churn ("No"). This decision was influenced by several strong retention indicators: the customer has a two-year contract, subscribes to online security services, and has been with the company for 22 months. Although the monthly charge is relatively high (100), the presence of long tenure and engagement with additional services likely outweighs the price factor, leading to a low churn risk.

Logistic Regression

Decision Tree

Forest

Neural Network

Model Comparison

Pipeline For Logistic Regression

Logistic Regression Results

Model Comparison Results

