Final Project Proposal

March 24, 2018

Duke Community Standard

By submitting this \LaTeX document, I affirm that

- 1. I understand that each git commit I create in this repository is a submission
- 2. I affirm that each submission complies with the Duke Community Standard and the guidelines set forth for this assignment
- 3. I further acknowledge that any content not included in this commit under the version control system cannot be considered as a part of my submission.
- 4. Finally, I understand that a submission is considered submitted when it has been pushed to the server.

Contents

1	Ove	rall Idea	2
2	I/O		2
3	Proj	ject Tasks	2
	3.1	Capacitive Touch Sensor	2
	3.2	RGB LEDs	3
	3.3	Capacitive Touch Controller With Concurrent Sensing	3
	3.4	Random Number Generator	3
	3.5	Whack-A-Mole Game	4
	3.6	Music Synthesizer	4
4	Tim	eline	5

1 Overall Idea

Our goal is to implement a 9-block grid of capacitive sensor blocks that will enable the user to perform interactive tasks and games.

2 I/O

Inputs: User touch capactive controllers, push buttons

Output: RBG LEDs, sound

3 Project Tasks

3.1 Capacitive Touch Sensor

• Description: A capacitive sensor utilizes the fact that the human body is a capacitor and can sense when it is being touched. This tech is used consumer electronics and touch screens. This task involves implementing the full sensor through hardware and software.

• Difficulty: Moderate Difficulty

• Points: 20 PTS

• Input: User touch

• Output: N/A

• CPU Use: Significant

3.2 RGB LEDs

• Description: Adds controllable colored lighting to each capacitive sensor in the controller.

• Difficulty: Non-trivial

• Points: 10 PTS

• Input: N/A

• Output: PWM

• CPU Use: Moderate

3.3 Capacitive Touch Controller With Concurrent Sensing

• Description: Implement 9 separate touch pads (each with their own LED) integrate with processor commands. Possibly optimized by having 9 mini-cores that deal with the functionality of each sensor/LED.

• Difficulty: Very Difficult!

• Points: 30 PTS

• Input: Digital I/O

• Output: Digital I/O

• CPU Use: Must implement the ability for the FPGA to handle concurrent instructions.

3.4 Random Number Generator

• Description: Using something like time or a sensor value as a seed, generates a random number for use in the Whack-A-Mole game.

• Difficulty: Moderate Difficulty

• Points: 20 PTS

• Input: N/A

• Output: A random number.

• CPU Use: Must implement a new feature into the processor's datapath.

3.5 Whack-A-Mole Game

• Description: Allows the user to play a 3x3 whack-a-mole game.

• Difficulty: Very Difficult (and cool)!

• Points: 30 PTS

• Input: Capacitive touch sensors

• Output: LEDs, seven segment display

• CPU Use: Extensive

3.6 Music Synthesizer

• Description: Play tones given user input via capacitive touch sensors.

• Difficulty: Moderate Difficulty

• Points: 20 PTS

• Input: Capacitive touch sensors

• Output: audio speakers

• CPU Use: Extensive

4 Timeline

We plan to complete the capacitive touch sensor, RGB LED, and capacitive touch controller implementation within one to two weeks. The random number generator should take at most a few days. Then we plan to implement the whack-a-mole game and music synthesizer a week before the demo in order to leave time for debugging.