Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación

IIC2343 – Arquitectura de Computadores

Operaciones Aritméticas y Lógicas

Profesor: Hans Löbel

A fines de los 30s, las máquinas analógicas dominaban la computación

- Claude Shannon (padre de la teoría de la información) estaba convencido que esta no era la mejor solución.
- Planteo una estrategia de tres pasos para diseñar un computador más eficiente, que finalmente resultaría siendo el computador digital.
- Desarrolló estas ideas en su tesis de magister, a los 19 años.

- Un sistema numérico eficiente.
- Mecanismo para operar eficientemente sobre este sistema numérico.
- Procedimiento para transformar lo anterior en elementos físicos.

- Un sistema numérico eficiente.
- Mecanismo para operar eficientemente sobre este sistema numérico.
- Procedimiento para transformar lo anterior en elementos físicos.

- Un sistema numérico eficiente.
- Mecanismo para operar eficientemente sobre este sistema numérico.
- Procedimiento para transformar lo anterior en elementos físicos.

Lógica Booleana es la solución

- En 1937, Shannon notó la relación entre la lógica booleana y la operación de números binarios.
- La lógica booleana permite analizar y operar proposiciones que pueden tomar sólo 2 valores: verdadero (1) o falso (0).

Una fórmula de lógica booleana tiene 2 componentes principales

 Proposiciones lógicas o variables: verdadero o falso

A = la luz está prendida

B = está nublado

Conectivos lógicos

Permiten unir las variables, análogo a operadores (+,-,...).

Se definen usando tablas de verdad.

A	В	A and B
F	F	F
\mathbf{F}	V	${ m F}$
V	${ m F}$	${ m F}$
V	V	V

A	В	A or B
F	\mathbf{F}	F
\mathbf{F}	V	V
V	${ m F}$	V
V	V	V

A	not(A)
F	V
V	\mathbf{F}

Álgebra booleana permite definir sentencia lógicas complejas

- Bastan AND, OR y NOT para representar cualquier tabla de verdad de conectivos binarios.
- Para definir sentencias complejas, basta con conectar múltiples variables y operadores.
- Por ejemplo:

$$A \oplus B = (\neg A \land B) \lor (A \land \neg B)$$

Álgebra booleana permite definir sentencias lógicas complejas

• Lo mejor es que podemos representar operaciones aritméticas fácilmente

A	В	C	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$S = A \oplus B$$

$$C = A \wedge B$$

- Un sistema numérico eficiente.
- Mecanismo para operar eficientemente sobre este sistema numérico.
- Procedimiento para transformar lo anterior en elementos físicos.

Podemos implementar físicamente los componentes de la lógica booleana

- El gran aporte de Shannon, fue describir implementaciones físicas de AND, OR y NOT.
- Por cada uno de estos conectivos definió una compuerta lógica.
- Luego, implementó cada compuerta mediante relés.

Relé

Sin flujo de control => Input == 0 → Flujo por salida 0 => Output 0

Con flujo de control => Input == $1 \rightarrow$ Flujo por salida 1 => Output 1

Transistor

 $B == 0 \rightarrow Sin flujo por E$

 $B == 1 \rightarrow Flujo por E$

A	В	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

- S = A ⊕ B
- C = A ∧ B

La clave consiste en tener módulos combinables y expandibles

 Aprovechemos la versatilidad de la lógica booleana y ampliamos el sumador a 4 bits.

- ¿Sirve poner 4 half-adders en paralelo?
- Primero debemos construir un fulladder, que considere el carry de una operación anterior.

La clave consiste en tener módulos combinables y expandibles

- ¿Qué debemos hacer para diseñar un restador?
- Afortunadamente, no necesitamos mucho más.
- Aprovechando el complemento a 2, sumamos al minuendo el inverso aditivo del sustraendo y además ponemos en 1 el carry-in.

El centro de operaciones de un computador

- El objetivo de esta unidad es acercarse lo más posible a la noción de un computador, desde el punto de vista de las operaciones.
- Un computador realiza principalmente cálculos, por lo que es fundamental construir una unidad eficiente para esto.
- El centro de operaciones de un computador es la unidad aritmética lógica (ALU), por la cual pasan todos los datos.

Enfrentemos primero las operaciones aritméticas

 Nuestro primer paso será un sumador/restador de 4 bits

 ¿Podemos construir esto usando sólo los elementos vistos hasta ahora en clases?

Elementos de control son necesarios

- Para diseñar un el sumador/restador aún nos faltan algunos elementos lógicos.
- Estos tienen relación con el control y la selección de las salidas y operaciones que se realizan.
- Estos elementos se conocen como Enablers y Multiplexores o Mux.

Buses otorgan simplificación en el diseño de los componentes

 Las conexiones usadas anteriormente sólo transmitían datos, ej. sumador.

• Ahora, además de eso, necesitamos transmitir órdenes de control.

 Así, se hace la distinción entre buses de datos y buses de control.

\mathbf{E}	A0'
0	0
1	A0

S	M0
0	A0
1	В0

Cómo queda entonces el sumador/restador

Operaciones lógicas bitwise

Sólo falta definir el ¿shifting?

- Una operación muy ocupada es el shifting o desplazamiento, que consiste en mover todas las cifras a la izquierda o la derecha.
- Ej: shift_left(0101) = 1010.
- ¿Por qué es esto importante?
- En binario, desplazar a la izquierda es análogo a multiplicar por 2, mientras que desplazar a la derecha es dividir por 2.
- ¿Qué pasa acá?: shift_left(1101) = ?
- Si no queremos perder cifras, utilizamos *rotate*.
- Ej: rotate_right(0101) = 1010.

Ya tenemos todos los elementos necesarios para construir la ALU

• Con todas las operaciones anteriores definidas, tenemos suficiente para completar una ALU de K bits con 8 operaciones.

S2	S1	S0	\mathbf{M}
0	0	0	Suma
0	0	1	Resta
0	1	0	And
0	1	1	Or
1	0	0	Not
1	0	1	Xor
1	1	0	Shift left
1	1	1	Shift right

Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación

IIC2343 – Arquitectura de Computadores

Operaciones Aritméticas y Lógicas

Profesor: Hans Löbel