Glycolysis Chapter 18

Stepwise degradation of glucose

Essential Features of Glycolysis

1 Glucose → 2 pyruvates

Via 10 enzyme catalysed steps

Only source of metabolic energy

Brain, kidney contracting skeletal muscle, erythrocytes, sperm cells

Pyruvate is a versatile metabolite

Depending on availability of oxygen

Phase 1: 1 Glucose 2 GAP

Glycolysis – a Snap Shot

- Reaction 1: Glucose is phosphorylated by <u>Hexokinase</u> (Glucokinase) the first priming reaction (ATP required)
- Reaction 2: Phosphoglucoisomerase catalyses the isomerisation of glucose-6-phosphate
- Reaction 3: ATP drives a second phosphorylation reaction using <u>Phosphofructokinase</u> – the second priming reaction
- Reaction 4: Cleavage using <u>Fructose Bisphosphate Aldolase</u> produces two 3-carbon intermediates
- Reaction 5: <u>Triose Phosphate Isomerase</u> completes the first phase of glycolysis
- Reaction 6: <u>Glyceraldehyde-3-Phosphate Dehydrogenase</u> produces a high energy intermediate
- Reaction 7: <u>Phosphoglycerate Kinase</u>: regenerates ATP used
- Reaction 8: <u>Phosphoglycerate Mutase</u> catalyses a <u>phosphoryl transfer</u> reaction
- Reaction 9: Enolase produces PEP via a dehydration reaction
- Reaction 10: <u>Pyruvate Kinase</u> produces pyruvate & more ATP

All the glycolytic reactions and their thermodynamics

Reaction	Enzyme	$\Delta G^{\circ}'$ (kJ/mol)	K _{eq} at 25℃	ΔG (kJ/mol)
α -D-Glucose + ATP ⁴⁻ \Longrightarrow glucose-6-phosphate ²⁻ + ADP ³⁻ + H ⁺	Hexokinase Glucokinase	-16.7	850	-33.9*
Glucose-6-phosphate ^{2−} ← fructose-6-phosphate^{2−}	Phosphoglucoisomerase	+1.67	0.51	-2.92
Fructose-6-phosphate ²⁻ + ATP ⁴⁻ \Longrightarrow fructose-1,6-bisphosphate ⁴⁻ + ADP ³⁻ + H ⁺	Phosphofructokinase	-14.2	310	-18.8
Fructose-1,6-bisphosphate ^{4−} ==== dihydroxyacetone-P ^{2−} + glyceraldehyde-3-P ^{2−}	Fructose bisphosphate aldolase	+23.9	6.43×10^{-5}	-0.23
Dihydroxyacetone-P ^{2−} ← glyceraldehyde-3-P ^{2−}	Triose phosphate isomerase	+7.56	0.0472	+2.41
Glyceraldehyde-3- $P^{2-} + P_i^{2-} + NAD^+ \Longrightarrow$ 1,3-bisphosphoglycerate ⁴⁻ + NADH + H ⁺	Glyceraldehyde-3-P dehydrogenase	+6.30	0.0786	-1.29
1,3-Bisphosphoglycerate ^{4−} + ADP ^{3−} === 3-P-glycerate ^{3−} + ATP ^{4−}	Phosphoglycerate kinase	-18.9	2060	+0.1
3-Phosphoglycerate³-	Phosphoglycerate mutase	+4.4	0.169	+0.83
2-Phosphoglycerate³- → phosphoenolpyruvate³- + H ₂ O	Enolase	+1.8	0.483	+1.1
Phosphoenolpyruvate³- + ADP³- + H+ =================================	Pyruvate kinase	-31.7	3.63×10^5	-23.0
Pyruvate [−] + NADH + H ⁺ === lactate [−] + NAD ⁺	Lactate dehydrogenase	-25.2	2.63×10^{4}	-14.8

- Phosphorylation of glucose at C6
- Thermodynamically unfavourable ?

Glucose levels low

Glucose levels high

Hexokinase/glucokinase

Glucose + ATP \rightarrow glucose-6-phosphate + ADP + H⁺ $\Delta G^{o'}$ = -16.7 kJ/mol

 Isomerisation of glucose 6 phosphate to fructose 6 phosphate

glucose-6-phosphate \rightarrow Fructose-6-phosphate $\Delta G^{o'} = 1.67 \text{ kJ/mol}$

 Fructose-6-phosphate phosphorylated at C1 to form fructose 1,6-bisphosphate

phosphofructokinase

F6P + ATP \rightarrow fructose-1,6-bisphosphate + ADP $\Delta G^{o'}$ = -14.2 kJ/mol

PFK reaction controls the rate of glycolysis

PFK reaction controls the rate of glycolysis

 Glycolysis and citric acid (TCA) cycle are coupled via PFK

of PFK

Fructose 2,6 bisphosphate

activator

of PFK

Fructose-2,6-bisphosphate

- 1. Decreases inhibitory effect of ATP
- 2. Inhibits fructose 1,6 bisphosphatase

Fructose 1,6 bisphosphate cleaved between
 C3 and C4 → 2 triose phosphates

Fructose bisphosphate aldolase

F1,6bP
$$\rightarrow$$
 DHAP + GAP
 $\Delta G^{o'} = +23.9 \text{ kJ/mol}$

Aldol cleavage, involves removal of a proton from C4-hydroxyl group in a reaction catalysed by an aspartate and a lysine residue of fructose bisphosphate aldolase

- Glyceraldehyde-3-phosphate proceeds directly to phase 2
- DHAP must first also be converted to glyceraldehyde-3-phosphate

Reaction mechanism of TIM

DHAP

Enediol intermediate

TIM with substrate analogue in active site

$$H \sim_{C} O$$
 $H \sim_{C} O$
 $H \sim_{C} OH$
 $H \sim_{C} OPO_{3}^{2-}$

Glyceraldehyde-3-P

Second Phase of Glycolysis

- Energy release 4 2 = 2 ATPs generated
- Reaction 6:

Glyceraldehyde 3 phosphate \rightarrow 1,3-bisphosphoglycerate

Glyceraldehyde 3 phosphate

Glyceraldehyde 3 phosphate

dehydrogenase

 $\Delta G = +6.3 \text{ kJ/mol}$

Glycolytic pathway breaks even:

Energy lost = Energy gained

$$C - OPO_3^{2-}$$

$$HCOH$$

$$CH_2OPO_3^{2-}$$

$$CH_2OPO_3^{2-}$$

$$CH_2OPO_3^{2-}$$

$$COO^-$$

$$HCOH$$

$$CH_2OPO_3^{2-}$$

$$Kinase$$

$$CH_2OPO_3^{2-}$$

$$Richard CH_2OPO_3^{2-}$$

$$S-Phosphoglycerate$$

$$(3-PG)$$

$$\Delta G^{\circ} = -18.9 \text{ kJ/mol}$$

Phosphoglycerate kinase/ Mg⁺⁺

1,3 BPG + ADP \rightarrow 3 phosphoglycerate + ATP $\Delta G^{o'}$ = -18.9kJ/mol

3 phosphoglycerate → 2 phosphoglycerate

Phosphoglycerate mutase

Phosphoglycerate mutase

$$\Delta G^{\circ}$$
' = +4.4 kJ/mol

2 phosphoglycerate
 phosphoenolpyruvate

Dehydration reaction

?
$$\Delta G^{\circ}' = +1.8 \text{ kJ/mol}$$

Phosphoenolpyruvate → pyruvate

Pyruvate kinase

 Transfer of a phosphoryl group from PEP to ADP to generate ATP and pyruvate

Metabolic fates of pyruvate

Alcoholic fermentation

<u>Fermentation</u>: production of energy by reaction pathways involving redox where e⁻ acceptors are <u>organic molecules</u>

Lactic acid fermentation

Regulation of Glycolysis

Regulation of Glycolysis

