EC : ELECTRONICS AND COMMUNICATION ENGINEERING

EE25BTECH11041 - Naman Kumar

General Aptitude (GA)

	o chief un l'aptitude	(311)			
1.	. "By giving him the last of the cake, you will ensure lasting in our house The words that best fill the blanks in the above sentence are				
	(a) peas, piece		(c) peace, piece		
	(b) piece, peace		(d) peace, peas		
					(GATE EC 2018)
2.	"Even though there is a words that best fill the b		, tourism has remai	ned a/an	area." The
	(a) improvement, neglected		(c) fame, glum		
	(b) rejection, approved	I	(d) interest, disintered	ested	
					(GATE EC 2018)
3.	If the number 715423 is divisible by 3 (denotesthemissing digitinthethous and ths place), then the smallest whole number in the place of is				
	(a) 0	(b) 2	(c) 5	(d) 6	
					(GATE EC 2018)
4.	What is the value of $1 + \frac{1}{4} + \frac{1}{16} + \frac{1}{64} + \frac{1}{256} + \dots$?				
	(a) 2	(b) $\frac{7}{4}$	(c) $\frac{3}{2}$	(d) $\frac{4}{3}$	
					(GATE EC 2018)
5.	A 1.5 m tall person is standing at a distance of 3 m from a lamp post. The light from the lamp at the top of the post casts her shadow. The length of the shadow is twice her height. What is the height of the lamp post in meters?				
	(a) 1.5	(b) 3	(c) 4.5	(d) 6	
					(GATE EC 2018)
6.	Leila aspires to buy a car worth Rs. 10,00,000 after 5 years. What is the minimum amount in Rupees that she should deposit now in a bank which offers 10% annual rate of interest, if the interest was compounded annually?				
	(a) 5,00,000		(c) 6,66,667		
	(b) 6,21,000		(d) 7,50,000		
					(GATE EC 2018)

1

of alloys A and B are melted to make an alloy C. The ratio of gold to copper in alloy C is

7. Two alloys A and B contain gold and copper in the ratios of 2:3 and 3:7 by mass, respectively. Equal masses

	(a) 5:10	(b) 7:13	(c) 6:11	(d) 9:13			
				(GA	ΓΕ EC 2018)		
8.	temper has alway stadia with die-ha difficult to conver has been replaced that the team has	The Cricket Board has long recognized John's potential as a leader of the team. However, his on-field temper has always been a matter of concern for them since his junior days. While this aggression has filled stadia with die-hard fans, it has taken a toll on his own batting. Until recently, it appeared that he found it difficult to convert his aggression into big scores. Over the past three seasons though, that picture of John has been replaced by a cerebral, calculative and successful batsman-captain. After many years, it appears that the team has finally found a complete captain. Which of the following statements can be logically inferred from the above paragraph?					
	(i) Even as a ju	nior cricketer, John was cons	sidered a good captain.				
	(ii) Finding a co	omplete captain is a challenge	e.				
	(iii) Fans and the	e Cricket Board have differin	g views on what they w	ant in a captain.			

(a) (i), (ii) and (iii) only

(b) (iii) and (iv) only

(c) (ii) and (iv) only

(d) (i), (ii), (iii) and (iv)

(GATE EC 2018)

- 9. A cab was involved in a hit and run accident at night. You are given the following data about the cabs in the city and the accident.
 - (i) 85% of cabs in the city are green and the remaining cabs are blue.
 - (ii) A witness identified the cab involved in the accident as blue.

(iv) Over the past three seasons John has accumulated big scores.

(iii) It is known that a witness can correctly identify the cab colour only 80% of the time.

Which of the following options is closest to the probability that the accident was caused by a blue cab?

(a) 12%

(b) 15%

(c) 41%

(d) 80%

(GATE EC 2018)

- 10. A coastal region with unparalleled beauty is home to many species of animals. It is dotted with coral reefs and unspoilt white sandy beaches. It has remained inaccessible to tourists due to poor connectivity and lack of accommodation. A company has spotted the opportunity and is planning to develop a luxury resort with helicopter service to the nearest major city airport. Environmentalists are upset that this would lead to the region becoming crowded and polluted like any other major beach resorts. Which one of the following statements can be logically inferred from the information given in the above paragraph?
 - (a) The culture and tradition of the local people will be influenced by the tourists.
 - (b) The region will become crowded and polluted due to tourism.
 - (c) The coral reefs are on the decline and could soon vanish.
 - (d) Helicopter connectivity would lead to an increase in tourists coming to the region.

(GATE EC 2018)

Electronics and Communication Engineering (EC)

1. Two identical nMOS transistors M_1 and M_2 are connected as shown below. The circuit is used as an amplifier with the input connected between G and S terminals and the output taken between D and S terminals. V_{bias} and V_D are so adjusted that both transistors are in saturation. The transconductance of this combination is defined as $g_m = \frac{\partial i_D}{\partial v_{GS}}$ where i_D is the current flowing into the drain of M_2 . Let g_{m1}, g_{m2} be the transconductances and r_{o1}, r_{o2} be the output resistances of transistors M_1 and M_2 , respectively.

Which of the following statements about estimates for g_m and r_o is correct?

- (a) $g_m \approx g_{m1} \cdot g_{m2} \cdot r_{o2}$ and $r_o \approx r_{o1} + r_{o2}$.
- (b) $g_m \approx g_{m1} + g_{m2}$ and $r_o \approx r_{o1} + r_{o2}$.
- (c) $g_m \approx g_{m1}$ and $r_o \approx r_{o1} \cdot g_{m2} \cdot r_{o2}$.
- (d) $g_m \approx g_{m1}$ and $r_o \approx r_{o2}$.

(GATE EC 2018)

2. In the circuit shown below, the op-amp is ideal and Zener voltage of the diode is 2.5 volts. At the input, unit step voltage is applied, i.e. $v_{IN}(t) = u(t)$ volts. Also, at t = 0, the voltage across each of the capacitors is zero.

The time t, in milliseconds, at which the output voltage v_{OUT} crosses -10 V is

- (a) 2.5
- (b) 5

- (c) 7.5
- (d) 10

(GATE EC 2018)

3. A good transimpedance amplifier has

(b) high input i	mpedance and high outpu	t impedance.		
(c) high input i	mpedance and low output	impedance.		
(d) low input in	npedance and low output	impedance.		
			(GATE	EC 2018)
-	u and the output be y of following systems is not	-	parameters are real constants	. Identify
(a) $\frac{d^2y}{dt^2} + a_1 \frac{dy}{dt}$	$+ a_2 y = b_2 \frac{d^2 u}{dt^2} + b_1 \frac{du}{dt} + b_0$	<i>u</i> (with initial rest conditi	ons)	
(b) $y(t) = \int_0^t e^{at}$				
(c) $y = au + b$,				
(d) $y = au$				
			(GATE	EC 2018)
5 The Nyanist stab	ility criterion and the Roy	th criterion both are nowe	erful analysis tools for detern	nining the
	ack controllers. Identify w	_	-	mining the
(a) Both the cri	iteria provide information	relative to the stable gain	range of the system.	
	l shape of the Nyquist phase systems.	lot is readily obtained f	rom the Bode magnitude pl	lot for all
	criterion is not applicable uist criterion.	in the condition of transp	port lag, which can be readil	y handled
(d) The closed-plot.	loop frequency response f	or a unity feedback system	m cannot be obtained from th	ie Nyquist
			(GATE	EC 2018)
	$s^3 + a_2 s^2 + a_1 s + a_0$ with umber of real roots of $p(s)$		known that its derivative p'	(s) has no
(a) 0	(b) 1	(c) 2	(d) 3	
			(GATE	EC 2018)
7 In a n-n junction	diode at equilibrium, which	ch one of the following st		2010)
	-	_		
	d electron diffusion curren	-		
	ad electron drift current co	•	direction.	
	age, holes and electrons dr	* *		
(d) On an avera	age, electrons drift and diff	ruse in the same direction	•	
			(GATE	EC 2018)
8. The logic function	on $f(X, Y)$ realized by the	given circuit is		

(a) low input impedance and high output impedance.

- (a) NOR
- (b) AND
- (c) NAND
- (d) XOR

(GATE EC 2018)

9. A function F(A, B, C) defined by three Boolean variables A, B and C when expressed as sum of products is given by

$$F = \overline{A} \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot B \cdot \overline{C} + A \cdot \overline{B} \cdot \overline{C}$$

where, \overline{A} , \overline{B} , and \overline{C} are the complements of the respective variables. The product of sums (*POS*) form of the function F is

(a)
$$F = (A + B + C) \cdot \left(A + \overline{B} + C\right) \cdot \left(\overline{A} + B + C\right)$$

(b)
$$F = (\overline{A} + \overline{B} + \overline{C}) \cdot (\overline{A} + B + \overline{C}) \cdot (A + \overline{B} + \overline{C})$$

(c)
$$F = (A + B + \overline{C}) \cdot (A + \overline{B} + \overline{C}) \cdot (\overline{A} + B + \overline{C}) \cdot (\overline{A} + \overline{B} + C) \cdot (\overline{A} + \overline{B} + \overline{C})$$

$$\text{(d)} \ \ F = \left(\overline{A} + \overline{B} + C\right) \cdot \left(\overline{A} + B + C\right) \cdot \left(A + \overline{B} + C\right) \cdot \left(A + B + \overline{C}\right) \cdot \left(A + B + C\right)$$

(GATE EC 2018)

10. The points P, Q, and R shown on the Smith chart (*normalizedimpedancechart*) in the following figure represent:

(a) P: Open Circuit, Q: Short Circuit, R: Matched Load

	(c) P: Short Circ	uit, Q: Matched Load, R: O	Open Circuit	
	(d) P: Short Circ	uit, Q: Open Circuit, R: M	atched Load	
				(GATE EC 2018)
11.	Let M be a real 4 >	< 4 matrix. Consider the fo	llowing statements:	
		early independent eigenve	_	
		stinct eigenvalues.		
		ingular (<i>invertible</i>). the following is TRUE?		
	(a) S1 implies S2	2	(c) S2 implies S1	
	(b) S1 implies S3	3	(d) S3 implies S2	
				(GATE EC 2018)
12.	Let $f(x, y) = \frac{ax^2 + b}{xy}$ a and b is	$\frac{2y^2}{y^2}$, where a and b are const	ants. If at $x = 1$ and $y = 2$.	$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y}$, then the relation between
	(a) $a = \frac{b}{4}$	(b) $a = \frac{b}{2}$	(c) $a = 2b$	(d) $a = 4b$
				(GATE EC 2018)
13.	. A discrete-time all-pass system has two of its poles at $0.25\angle0^{\circ}$ and $2\angle30^{\circ}$. Which one of the following statements about the system is TRUE?			
	(a) It has two mo	ore poles at 0.5∠30° and 4∠	0°.	
	(b) It is stable or	nly when the impulse respo	nse is two-sided.	
	(c) It has constan	nt phase response over all f	requencies.	
	(d) It has constan	nt group delay over all freq	uencies.	
				(GATE EC 2018)
14.	Let $x(t)$ be a period by a_k , that is	dic function with period T	= 10. The Fourier series co	pefficients for this series are denoted
		x(t)	$a_k = \sum_{k=-\infty}^{\infty} a_k e^{ik\frac{2\pi}{T}t}.$	
				with period $T' = 40$. Let b_k be the
	Fourier series coef	ficients when period is take	en as T' . If $\sum_{k=-\infty}^{\infty} a_k = 10$	6, then $\sum_{k=-\infty}^{\infty} b_k $ is equal to
	(a) 256	(b) 64	(c) 16	(d) 4
				(GATE EC 2018)
15.	Consider the follow	wing amplitude modulated	signal:	
		$s(t) = \cos(2000\pi)$	$t) + 4\cos(2400\pi t) + \cos(2400\pi t) + \cos(24000\pi t) + \cos(24000\pi t) + \cos(24000000000000000000000000000000000000$	$2800\pi t$).
	,	- '	of the power of the messag	ge signal to the power of the carrier
	signal is	·		(GARE EG 2010)
				(GATE EC 2018)

(b) P: Open Circuit, Q: Matched Load, R: Short Circuit

16.	Consider a binary channel code in which each codeword has a fixed length of 5 bits. The Hamming distance between any pair of distinct codewords in this code is at least 2. The maximum number of codewords such a code can contain is		
	(GATE EC 2018)		
17.	A binary source generates symbols $X \in \{-1, 1\}$ which are transmitted over a noisy channel. The probability of transmitting $X = 1$ is 0.5. Input to the threshold detector is $R = X + N$. The probability density function $f_N(n)$ of the noise N is shown below.		
	$f_N(n)$		
	0.5		
	-2 2 n		
	If the detection threshold is zero, then the probability of error (correct to two decimal places) is (GATE EC 2018)		
10			
18.	A p-n step junction diode with a contact potential of 0.65 V has a depletion width of $1~\mu m$ at equilibrium. The forward voltage (in volts, correct to two decimal places) at which this width reduces to $0.6~\mu m$ is		
	(GATE EC 2018)		
19.	9. A traffic signal cycles from GREEN to YELLOW, YELLOW to RED and RED to GREEN. In each cycle, GREEN is turned on for 70 seconds, YELLOW is turned on for 5 seconds and the RED is turned on for 75 seconds. This traffic light has to be implemented using a finite state machine (<i>FS M</i>). The only input to this FSM is a clock of 5 second period. The minimum number of flip-flops required to implement this FSM is		
	(GATE EC 2018)		
20.	There are two photolithography systems: one with light source of wavelength $\lambda_1 = 156$ nm (<i>System1</i>) and another with light source of wavelength $\lambda_2 = 325$ nm (<i>System2</i>). Both photolithography systems are otherwise identical. If the minimum feature sizes that can be realized using System 1 and System 2 are L_{min1} and L_{min2} respectively, the ratio L_{min1}/L_{min2} (correct to two decimal places) is (GATE EC 2018)		
21.	A lossy transmission line has resistance per unit length $R=0.05~\Omega/m$. The line is distortionless and has characteristic impedance of 50 Ω . The attenuation constant (in Np/m, correct to three decimal places) of the line is		
	(GATE EC 2018)		
22.	Consider matrix $A = \begin{pmatrix} k & 2k \\ k^2 - k & k^2 \end{pmatrix}$ and vector $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$. The number of distinct real values of k for which the equation $Ax = 0$ has infinitely many solutions is		
	(GATE EC 2018)		
23.	Let X_1, X_2, X_3 and X_4 be independent normal random variables with zero mean and unit variance. The probability that X_4 is the smallest among the four is		

(GATE EC 2018)

- 24. Taylor series expansion of $f(x) = \int_0^x e^{-\left(\frac{t^2}{2}\right)} dt$ around x = 0 has the form $f(x) = a_0 + a_1x + a_2x^2 + \dots$ The coefficient a_2 (correct to two decimal places) is equal to ______.
 - (GATE EC 2018)

25. The ABCD matrix for a two-port network is defined by:

$$\begin{pmatrix} V_1 \\ I_1 \end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} V_2 \\ -I_2 \end{pmatrix}$$

The parameter B for the given two-port network (in ohms, correct to two decimal places) is ______. (GATE EC 2018)

26. The circuit shown in the figure is used to provide regulated voltage (5V) across the 1k Ω resistor. Assume that the Zener diode has a constant reverse breakdown voltage for a current range, starting from a minimum required Zener current, $I_{zmin} = 2$ mA to its maximum allowable current. The input voltage V_I may vary by 5% from its nominal value of 6 V. The resistance of the diode in the breakdown region is negligible.

The value of R and the minimum required power dissipation rating of the diode, respectively, are

(a) 186Ω and 10 mW

(c) 100Ω and 10 mW

(b) 100Ω and 40 mW

(d) 186Ω and 40 mW

(GATE EC 2018)

27. Let $c(t) = A_c \cos(2\pi f_c t)$ and $m(t) = \cos(2\pi f_m t)$. It is given that $f_c \gg 5f_m$. The signal c(t) + m(t) is applied to the input of a non-linear device, whose output $v_o(t)$ is related to the input $v_i(t)$ as $v_o(t) = av_i(t) + bv_i^2(t)$, where a and b are positive constants. The output of the non-linear device is passed through an ideal bandpass filter with center frequency f_c and bandwidth $3f_m$ to produce an amplitude modulated (AM) wave. If it is desired to have the sideband power of the AM wave to be half of the carrier power, then a/b is

(a) 0.25 (b) 0.5 (c) 1 (d) 2

(GATE EC 2018)

- 28. Consider a white Gaussian noise process N(t) with two-sided power spectral density $S_N(f) = 0.5$ W/Hz as input to a filter with impulse response $0.5e^{-t^2/2}$ (wheretisinseconds) resulting in output Y(t). The power in Y(t) in watts is
 - (a) 0.11
- (b) 0.22
- (c) 0.33
- (d) 0.44

(GATE EC 2018)

29. The state equation and the output equation of a control system are given below:

$$\dot{x} = \begin{pmatrix} -4 & -1.5 \\ 4 & 0 \end{pmatrix} x + \begin{pmatrix} 2 \\ 0 \end{pmatrix} u.$$

$$y = (1.5 \quad 0.625) x$$

The transfer function representation of the system is

(a) $\frac{3s+5}{s^2+4s+6}$

(c) $\frac{4s+1.5}{s^2+4s+6}$

(b) $\frac{3s-1.875}{s^2+4s+6}$

(d) $\frac{6s+5}{s^2+4s+6}$

(GATE EC 2018)

- 30. Red (R), Green (G) and Blue (B) Light Emitting Diodes (LEDs) were fabricated using p-n junctions of three different inorganic semiconductors having different band-gaps. The built-in voltages of red, green and blue diodes are V_R , V_G and V_B , respectively. Assume donor and acceptor doping to be the same $(N_A$ and N_D respectively in the p and n sides of all the three diodes. Which one of the following relationships about the built-in voltages is TRUE?
 - (a) $V_R > V_G > V_B$

(c) $V_R = V_G = V_B$

(b) $V_R < V_G < V_B$

(d) $V_R > V_G < V_B$

(GATE EC 2018)

31. A four-variable Boolean function is realized using 4×1 multiplexers as shown in the figure.

The minimized expression for F(U, V, W, X) is

(a) $\left(UV + \overline{UV}\right)\overline{W}$

(c) $(U\overline{V} + \overline{U}V)\overline{W}$

(b) $(UV + \overline{UV})(\overline{WX} + \overline{W}X)$

(d) $(U\overline{V} + \overline{U}V)(\overline{WX} + \overline{W}X)$

(GATE EC 2018)

32. A 2×2 ROM array is built with the help of diodes as shown in the circuit below. Here W0 and W1 are signals that select the word lines and B0 and B1 are signals that are output of the sense amps based on the stored data corresponding to the bit lines during the read operation.

$$\begin{array}{c|c} & & & B_0 & B_1 \\ & W_0 & D_{00} D_{01} \\ W_1 & D_{10} D_{11} \end{array}$$

Bits stored in the ROM Array

During the read operation, the selected word line goes high and the other word line is in a high impedance state. As per the implementation shown in the circuit diagram above, what are the bits corresponding to D_{ij} (where i=0or1andj=0or1 stored in the ROM?

(a) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

(c) $\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$

(b) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

(d) $\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$

(GATE EC 2018)

- 33. The distance (*inmeters*) a wave has to propagate in a medium having a skin depth of 0.1 m so that the amplitude of the wave attenuates by 20 dB, is
 - (a) 0.12
- (b) 0.23
- (c) 0.46
- (d) 2.3

(GATE EC 2018)

- 34. A curve passes through the point (x = 1, y = 0) and satisfies the differential equation $\frac{dy}{dx} = \frac{x^2 + y^2}{2y} + \frac{y}{x}$. The equation that describes the curve is
 - (a) $\ln\left(1 + \frac{y^2}{x^2}\right) = x 1$
 - (b) $\frac{1}{2} \ln \left(1 + \frac{y^2}{x^2} \right) = x 1$
 - (c) $\ln\left(1+\frac{y}{x}\right) = x-1$
 - (d) $\frac{1}{2} \ln \left(1 + \frac{y}{x} \right) = x 1$

(GATE EC 2018)

35. For the circuit given in the figure, the voltage V_c (involts) across the capacitor is

(a) $1.25 \sqrt{2} \sin(5t - 0.25\pi)$

(c) $2.5\sqrt{2}\sin(5t - 0.25\pi)$

(b) $1.25 \sqrt{2} \sin(5t - 0.125\pi)$

(d) $2.5\sqrt{2}\sin(5t - 0.125\pi)$

(GATE EC 2018)

36. For the circuit given in the figure, the magnitude of the loop current (*inamperes*, *correcttothreedecimalplaces*) 0.5 second after closing the switch is

(GATE EC 2018)

37. A dc current of $26 \,\mu\text{A}$ flows through the circuit shown. The diode in the circuit is forward biased and it has an ideality factor of one. At the quiescent point, the diode has a junction capacitance of 0.5 nF. Its neutral region resistances can be neglected. Assume that the room temperature thermal equivalent voltage is $26 \, \text{mV}$.

For $\omega = 2 \times 10^6$ rad/s, the amplitude of the small-signal component of diode current ($in\mu$ A, correct to one decimal place is _____.

(GATE EC 2018)

38. An op-amp based circuit is implemented as shown below.

In the above circuit, assume the op-amp to be ideal. The voltage (in volts, correct to one decimal place) at node A, connected to the negative input of the op-amp as indicated in the figure is ______.

(GATE EC 2018)

39. The input $4\operatorname{sinc}(2t)$ is fed to a Hilbert transformer to obtain y(t), as shown in the figure below:

$$4\operatorname{sinc}(2t) \longrightarrow \begin{array}{|c|c|} \text{Hilbert} \\ \text{Transform} \end{array} \longrightarrow y(t)$$

Here $\operatorname{sinc}(x) = \frac{\sin(\pi x)}{\pi x}$. The value (accurate to two decimal places) of $\int_{-\infty}^{\infty} |y(t)|^2 dt$ is _____. (GATE EC 2018)

40. A random variable X takes values -0.5 and 0.5 with probabilities $\frac{1}{4}$ and $\frac{3}{4}$, respectively. The noisy observation of X is Y = X + Z, where Z has uniform probability density over the interval (-1,1). X and Z are independent. If the MAP rule based detector outputs \hat{X} as

$$\hat{X} = \begin{cases} -0.5, & Y < \alpha \\ 0.5, & Y \ge \alpha, \end{cases}$$

then the value of α (accurate to two decimal places) is _____.

(GATE EC 2018)

41. For a unity feedback control system with the forward path transfer function $G(s) = \frac{K}{s(s+2)}$. The peak resonant magnitude M_r of the closed-loop frequency response is 2. The corresponding value of the gain K (correct to two decimal places) is ______.

(GATE EC 2018)

42. The figure below shows the Bode magnitude and phase plots of a stable transfer function $G(s) = \frac{n_0}{s^3 + d_2 s^2 + d_1 s + d_0}$.

Consider the negative unity feedback configuration with gain k in the feedforward path. The closed loop is stable for $k < k_0$. The maximum value of k_0 is ______.

(GATE EC 2018)

43. In the circuit shown below, the (W/L) value for M_2 is twice that for M_1 . The two nMOS transistors are otherwise identical. The threshold voltage V_T for both transistors is 1.0V. Note that V_{GS} for M_2 must be ζ 1.0 V.

Current through the nMOS transistors can be modeled as
$$I_{DS} = \mu C_{ox} \left(\frac{W}{L}\right) \left((V_{GS} - V_T)V_{DS} - \frac{1}{2} V_{DS}^2\right) \text{ for } V_{DS} \leq V_{GS} - V_T$$

$$I_{DS} = \mu C_{ox} \left(\frac{W}{L}\right) (V_{GS} - V_T)^2 / 2 \qquad \text{for } V_{DS} \geq V_{GS} - V_T$$

Current through the nMOS transistors can be modeled as $I_{DS} = \mu C_{ox} \left(\frac{W}{L}\right) \left((V_{GS} - V_T) V_{DS} - \frac{1}{2} V_{DS}^2\right)$ for $V_{DS} \leq V_{GS} - V_T I_{DS} = \mu C_{ox} \left(\frac{W}{L}\right) (V_{GS} - V_T)^2 / 2$ for $V_{DS} \geq V_{GS} - V_T$. The voltage (in volts, accurate to two decimal place at V_x is _______.

(GATE EC 2018)

- 44. A solar cell of area 1.0 cm², operating at 1.0 sun intensity, has a short circuit current of 20 mA, and an open circuit voltage of 0.65 V. Assuming room temperature operation and thermal equivalent voltage of 26 mV, the open circuit voltage (*involts*, *correcttotwodecimalplaces*) at 0.2 sun intensity is _____.

 (GATE EC 2018)
- 45. A junction is made between p^- Si with doping density $N_{A1} = 10^{15}$ cm⁻³ and p Si with doping density $N_{A2} = 10^{17}$ cm⁻³. Given: Boltzmann constant $k = 1.38 \times 10^{-23}$ J.K⁻¹, electronic charge $q = 1.6 \times 10^{-19}$ C. Assume 100%

At room temperature (T = 300K), the magnitude of the built-in potential (in volts, correct to two decimal places) across this junction will be ______.

(GATE EC 2018)

46. In the circuit shown below, a positive edge-triggered D Flip-Flop is used for sampling input data D_{in} using clock CK. The XOR gate outputs 3.3 volts for logic HIGH and 0 volts for logic LOW levels. The data bit and clock periods are equal and the value of $\Delta T/T_{CK} = 0.15$, where the parameters ΔT and T_{CK} are shown in the figure. Assume that the Flip-Flop and the XOR gate are ideal.

If the probability of input data bit (D_{in} transition in each clock period is 0.3, the average value (in volts, accurate to two d of the voltage at node X, is ______.

(GATE EC 2018)

47. The logic gates shown in the digital circuit below use strong pull-down nMOS transistors for LOW logic level at the outputs. When the pull-downs are off, high-value resistors set the output logic levels to HIGH (i.e. the pull-ups are weak). Note that some nodes are intentionally shorted to implement "wired logic". Such shorted nodes will be HIGH only if the outputs of all the gates whose outputs are shorted are HIGH.

The number of distinct values of $X_3X_2X_1X_0$ (out of the 16 possible values) that give Y = 1 is ______. (GATE EC 2018)

48. The cutoff frequency of TE_{01} mode of an air filled rectangular waveguide having inner dimensions a cm \times b cm (a > b) is twice that of the dominant TE_{10} mode. When the waveguide is operated at a frequency which is 25% higher than the cutoff frequency of the dominant mode, the guide wavelength is found to be 4 cm. The value of b (in cm, correct to two decimal places) is ______.

(GATE EC 2018)

49. A uniform plane wave traveling in free space and having the electric field $\vec{E} = (\sqrt{2}\hat{a}_x - \hat{a}_z)\cos[6\sqrt{3}\pi \times 10^8t - 2\pi(x + \sqrt{2}z)]$ V/m is incident on a dielectric medium (relative permittivity > 1, relative permeability = 1) as shown in the figure and there is no reflected wave.

The relative permittivity (*correcttotwodecimalplaces*) of the dielectric medium is _____. (GATE EC 2018)

50. The position of a particle y(t) is described by the differential equation: $\frac{d^2y}{dt^2} = -\frac{dy}{dt} - \frac{5y}{4}$. The initial conditions are y(0) = 1 and $\frac{dy}{dt}|_{t=0} = 0$. The position (accurate to two decimal places) of the particle at $t = \pi$ is ______.

(GATE EC 2018)

51. The contour C given below is on the complex plane z = x + jy, where $j = \sqrt{-1}$.

The value of the integral $\frac{1}{\pi j} \oint_C \frac{dz}{z^2 - 1}$ is _____.

(GATE EC 2018)

52. Let $r = x^2 + y - z$ and $z^3 - xy + yz + y^3 = 1$. Assume that x and y are independent variables. At (x, y, z) = (2, -1, 1), the value (correct to two decimal places) of $\frac{\partial r}{\partial x}$ is ______.

(GATE EC 2018)

53. Consider the network shown below with $R_1 = 1\Omega$, $R_2 = 2\Omega$ and $R_3 = 3\Omega$. The network is connected to a constant voltage source of 11V.

54. A band limited low-pass signal x(t) of bandwidth 5 kHz is sampled at a sampling rate f_s . The signal x(t) is reconstructed using the reconstruction filter H(f) whose magnitude response is shown below:

The minimum sampling rate f_s (inkHz) for perfect reconstruction of x(t) is _____.

(GATE EC 2018)

55. Let X[k] = k + 1, $0 \le k \le 7$ be 8-point DFT of a sequence x[n], where $X[k] = \sum_{n=0}^{N-1} x[n]e^{-j2\pi nk/N}$. The value (correct to two decimal places) of $\sum_{n=0}^{3} x[2n]$ is ______.

(GATE EC 2018)