IN THE CLAIMS

Please cancel claims 1 through 15, and add claims 16 through 46, as set forth below.

1-15. (canceled)

- 16. (new) A substrate material for an optical component for X-rays of wavelength λ_R , comprising:
 - a glass phase made of amorphous material having a positive coefficient of thermal expansion; and
 - a crystal phase including microcrystallites having a negative coefficient of thermal expansion and a mean size of less than about $4 \lambda_R$,
 - wherein said substrate material has a stoichiometric ratio of said crystal phase to said glass phase such that a coefficient of thermal expansion of said substrate material is less than about 5 x 10^{-6} K⁻¹ in a temperature range of about 20°C to 100°C, and wherein said substrate material, following a surface treatment, has a high spatial frequency roughness (HSFR) of less than about $\lambda_R/30$ rms.
- 17. (new) The substrate material of claim 16, wherein said coefficient of thermal expansion of said substrate material is less than about $1 \times 10^{-6} \,\mathrm{K}^{-1}$ in said temperature range.
- 18. (new) The substrate material of claim 16, wherein said mean size is less than about 2 λ_R .
 - 19. (new) The substrate material of claim 16, wherein said mean size is less than about λ_R .
- 20. (new) The substrate material of claim 16, wherein said mean size is less than about $2\lambda_R/3$.

- 21. (new) The substrate material of claim 16, wherein said mean size is less than about $\lambda_R/2$.
- 22. (new) The substrate material of claim 16, wherein said HSFR is less than about $\lambda_R/50$ rms.
- 23. (new) The substrate material of claim 16, wherein said HSFR is less than about $\lambda_R/100$ rms.
- 24. (new) The substrate material of claim 16, wherein said wavelength λ_R is in a range of about 10 nm to 30 nm.
- 25. (new) The substrate material of claim 16, wherein said surface treatment includes superpolishing a surface of said substrate material, and thereafter, beam processing said surface.
- 26. (new) The substrate material of claim 16, wherein said substrate material has a low spatial frequency roughness in a range of about $\lambda_R/50$ to $\lambda_R/100$ rms.
- 27. (new) The substrate material of claim 16, wherein said substrate material has a middle spatial frequency roughness (MSFR) in a range of about $\lambda_R/50$ to $\lambda_R/100$ rms.
- 28. (new) The substrate material of claim 27, wherein said MSFR is achieved by beam processing a surface of said substrate material.
- 29. (new) The substrate material of claim 16, wherein said optical component is a reticle mask.

- 30. (new) The substrate material of claim 16, wherein said optical component is a normal-incidence mirror providing reflectivity of greater than about 70% to said X-rays at non-grazing incidence.
- 31. (new) The substrate material of claim 30, wherein said normal-incident mirror has an aspherical shape.
- 32. (new) The substrate material of claim 16, further comprising a layered pair of materials thereon selected from the group consisting of Mo/Si, Mo/Bi, and MoRu/Be.
- 33. (new) The substrate material of claim 32, comprising about 40 to 200 layers of said layered pairs of material.
- 34. (new) A substrate material for an optical component for X-rays of wavelength 10 nm \leq $\lambda_R \leq 30$ nm comprising:
 - a glass phase made of amorphous material having a positive coefficient of thermal expansion; and
 - a crystal phase including microcrystallites having a negative coefficient of thermal expansion and a mean size of less than about 38 nm,
 - wherein said substrate material has a stoichiometric ratio of said crystal phase to said glass phase such that a coefficient of thermal expansion of said substrate material is less than about $5 \times 10^{-6} \, \text{K}^{-1}$ in a temperature range of about 20°C to 100°C , and
 - wherein said substrate material, following a surface treatment, has a high spatial frequency roughness (HSFR) of less than about $\lambda_R/30$ rms.
- 35. (new) The substrate material of claim 34, wherein said mean size is less than about 20 nm.

- 36. (new) The substrate material of claim 34, wherein said mean size is less than about 10 nm.
 - 37. (new) An optical component for X-rays of wavelength λ_R , comprising: a substrate material that includes:
 - a glass phase made of amorphous material having a positive coefficient of thermal expansion; and
 - a crystal phase including microcrystallites having a negative coefficient of thermal expansion and a mean size of less than about $4 \lambda_R$,
 - wherein said substrate material has a stoichiometric ratio of said crystal phase to said glass phase such that a coefficient of thermal expansion of said substrate material is less than about 5 x 10⁻⁶ K⁻¹ in a temperature range of about 20°C to 100°C, and
 - wherein said substrate material, following a surface treatment, has a high spatial frequency roughness (HSFR) of less than about $\lambda_R/30$ rms.
- 38. (new) The optical component of claim 37, wherein said optical component is a mirror selected from the group consisting of a normal-incidence mirror and a grazing-incidence mirror.
- 39. (new) The optical component of claim 37, wherein said optical component is a reticle mask.
- 40. (new) A method for producing a substrate material for an optical component for X-rays of wavelength λ_R , comprising:
 - superpolishing a surface of said substrate material until achieving a high spatial frequency roughness (HSFR) of less than about $\lambda_R/30$ rms; and

beam processing said surface until achieving a low spatial frequency roughness in a range of about $\lambda_R/50$ to $\lambda_R/100$ rms and a middle spatial frequency roughness (MSFR) in a range of about $\lambda_R/50$ to $\lambda_R/100$ rms,

wherein said HSFR is maintained at less than about $\lambda_R/30$ rms after said beam processing.

- 41. (new) The method of claim 40, wherein said superpolishing is performed until said HSFR is less than about $\lambda_R/50$ rms.
- 42. (new) The method of claim 40, wherein said superpolishing is performed until said HSFR is less than about $\lambda_R/100$ rms.
 - 43. (new) An EUV projection system, comprising:
 - an illumination system for illuminating a mask; and
 - a projection lens system for projecting an image of said mask,
 - wherein at least one of said illumination system or said projection lens system includes an optical component for X-rays of wavelength λ_R having a substrate material that includes (a) a glass phase made of amorphous material having a positive coefficient of thermal expansion, and (b) a crystal phase including microcrystallites having a negative coefficient of thermal expansion and a mean size of less than about $4 \lambda_R$,
 - wherein said substrate material has a stoichiometric ratio of said crystal phase to said glass phase such that a coefficient of thermal expansion of said substrate material is less than about $5 \times 10^{-6} \, \text{K}^{-1}$ in a temperature range of about 20°C to 100°C , and
 - wherein said substrate material, following a surface treatment, has a high spatial frequency roughness (HSFR) of less than about $\lambda_R/30$ rms.
 - 44. (new) A system comprising a substrate material that includes:
 - a glass phase made of amorphous material having a positive coefficient of thermal expansion; and

- a crystal phase including microcrystallites having a negative coefficient of thermal expansion and a mean size of less than about $4 \lambda_R$,
- wherein said substrate material has a stoichiometric ratio of said crystal phase to said glass phase such that a coefficient of thermal expansion of said substrate material is less than about 5 x 10⁻⁶ K⁻¹ in a temperature range of about 20°C to 100°C,
- wherein said substrate material, following a surface treatment, has a high spatial frequency roughness (HSFR) of less than about $\lambda_R/30$ rms, and
- wherein said system is selected from the group consisting of an X-ray microscopy system, an X-ray astronomy system, and X-ray spectroscopy system.
- 45. (new) A substrate material for an optical component for X-rays of wavelength 10 nm \leq $\lambda_R \leq 30$ nm, comprising:
 - an amorphous material having a positive coefficient of thermal expansion; and crystallites having a negative coefficient of thermal expansion and being a mean size of less than about 38 nm,
 - wherein the substrate material has a coefficient of thermal expansion of less than about 5 x 10^{-6} K⁻¹ in a temperature range of about 20°C to 100°C, and
 - wherein the substrate material has a high spatial frequency roughness (HSFR) of less than about $\lambda_R/30$ rms.
- 46. (new) The substrate material of claim 45, wherein the substrate material has a middle spatial frequency roughness (MSFR) in a range of about $\lambda_R/50$ to $\lambda_R/100$ rms, and a low spatial frequency roughness in a range of about $\lambda_R/50$ to $\lambda_R/100$ rms.