
Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866)
217-9197 (toll free).

Reviewer: Anne Corrigan

Timestamp: [year=2008; month=10; day=31; hr=13; min=10; sec=55; ms=859;]

Validated By CRFValidator v 1.0.3

Application No: 10552786 Version No: 2.0

Input Set:

Output Set:

Started: 2008-09-29 19:39:18.196

Finished: 2008-09-29 19:39:20.020

Elapsed: 0 hr(s) 0 min(s) 1 sec(s) 824 ms

Total Warnings: 104

Total Errors: 0

No. of SeqIDs Defined: 130

Actual SeqID Count: 130

Error code		Error Description	n								
W	213	Artificial o	r	Unknown	found	in	<213>	in	SEQ	ID	(1)
W	213	Artificial o	r	Unknown	found	in	<213>	in	SEQ	ID	(2)
W	213	Artificial o	r	Unknown	found	in	<213>	in	SEQ	ID	(3)
W	213	Artificial o	r	Unknown	found	in	<213>	in	SEQ	ID	(4)
W	213	Artificial o	r	Unknown	found	in	<213>	in	SEQ	ID	(5)
W	213	Artificial o	r	Unknown	found	in	<213>	in	SEQ	ID	(6)
W	213	Artificial o	r	Unknown	found	in	<213>	in	SEQ	ID	(7)
W	213	Artificial o	r	Unknown	found	in	<213>	in	SEQ	ID	(8)
W	213	Artificial o	r	Unknown	found	in	<213>	in	SEQ	ID	(9)
W	213	Artificial o	r	Unknown	found	in	<213>	in	SEQ	ID	(10)
W	213	Artificial o	r	Unknown	found	in	<213>	in	SEQ	ID	(11)
W	213	Artificial o	r	Unknown	found	in	<213>	in	SEQ	ID	(12)
W	213	Artificial o	r	Unknown	found	in	<213>	in	SEQ	ID	(13)
W	213	Artificial o	r	Unknown	found	in	<213>	in	SEQ	ID	(14)
M	213	Artificial o	r	Unknown	found	in	<213>	in	SEQ	ID	(15)
W	213	Artificial o	r	Unknown	found	in	<213>	in	SEQ	ID	(16)
W	213	Artificial o	r	Unknown	found	in	<213>	in	SEQ	ID	(17)
W	213	Artificial o	r	Unknown	found	in	<213>	in	SEQ	ID	(18)
W	213	Artificial o	r	Unknown	found	in	<213>	in	SEQ	ID	(19)
W	213	Artificial o	r	Unknown	found	in	<213>	in	SEQ	ID	(20)

Input Set:

Output Set:

Started: 2008-09-29 19:39:18.196

Finished: 2008-09-29 19:39:20.020

Elapsed: 0 hr(s) 0 min(s) 1 sec(s) 824 ms

Total Warnings: 104

Total Errors: 0

No. of SeqIDs Defined: 130

Actual SeqID Count: 130

Error code Error Description

This error has occured more than 20 times, will not be displayed

SEQUENCE LISTING

<110>	DEPERTHES, David CLOUTIER, Sylvain	
<120>	INHIBITOR PROTEINS OF A PROTEASE AND USE THEREOF	
<130>	KZY-003US	
<140>	10552786	
<141>	2006-07-25	
	PCT/IB2004/001040	
<151>	2004-04-05	
<150>	US 60/460345	
<151>	2003-04-04	
<160>	130	
<170>	PatentIn version 3.5	
<210>	1	
<211>	1239	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	DNA Sequence ACT variants : MD 820	
<400>	1	
atgagag	ggat cccatcacca tcaccatcac tctagacacc ctaacagccc acttgacgag	60
gagaato	ctga cccaggagaa ccaagaccga gggacacacg tggacctcgg attagcctcc	120
gccaacc	gtgg acttegettt cageetgtae aageagttag teetgaagge eeetgataag	180
aatgtca	atet tetececaet gageatetee acegeettgg cetteetgte tetgggggee 2	240
cataata	acca ccctgacaga gattctcaaa ggcctcaagt tcaacctcac ggagacttct	300
gaggcaç	gaaa ttcaccagag cttccagcac ctcctgcgca ccctcaatca gtccagcgat	360
gagctgc	cage tgagtatggg aaatgecatg tttgtcaaag agcaactcag tetgetggae	420
aggttca	acgg aggatgccaa gaggctgtat ggctccgagg cctttgccac tgactttcag	480
gactcac	gctg cagctaagaa gctcatcaac gactacgtga agaatggaac tagggggaaa .	540
atcacaç	gatc tgatcaagga ccttgactcg cagacaatga tggtcctggt gaattacatc	600
ttcttta	aaag ccaaatggga gatgcccttt gacccccaag atactcatca gtcaaggttc	660
tacttga	agca agaaaaagtg ggtaatggtg cccatgatga gtttgcatca cctgactata	720

ccttacttcc gggacgagga gctgtcctgc accgtggtgg agctgaagta cacaggcaat

gccagcgcac	tcttcatcct	ccctgatcaa	gacaagatgg	aggaagtgga	agccatgctg	840
ctcccagaga	ccctgaagcg	gtggagagac	tctctggagt	tcagagagat	aggtgagctc	900
tacctgccaa	agttttccat	ctcgagggac	tataacctga	acgacatact	tctccagctg	960
ggcattgagg	aagccttcac	cagcaaggct	gacctgtcag	ggatcacagg	ggccaggaac	1020
ctagcagtct	cccaggtggt	ccataaggct	gtgcttgatg	tatttgagga	gggcacagaa	1080
gcatctgctg	ccaccgcggt	caaaatcacc	ctccgttctc	gagcagtgga	gacgcgtacc	1140
attgtgcgtt	tcaacaggcc	cttcctgatg	atcattgtcc	ctacagacac	ccagaacatc	1200
ttcttcatga	gcaaagtcac	caatcccaag	caagcctaa			1239

<210> 2

<211> 412

<212> PRT

<213> Artificial sequence

<220>

<223> Protein Sequence ACT variants : MD 820

<400> 2

Met Arg Gly Ser His His His His His Ser Arg His Pro Asn Ser 1 5 10 15

Pro Leu Asp Glu Glu Asn Leu Thr Gln Glu Asn Gln Asp Arg Gly Thr 20 25 30

His Val Asp Leu Gly Leu Ala Ser Ala Asn Val Asp Phe Ala Phe Ser 35 40 45

Leu Tyr Lys Gln Leu Val Leu Lys Ala Pro Asp Lys Asn Val Ile Phe 50 55 60

Ser Pro Leu Ser Ile Ser Thr Ala Leu Ala Phe Leu Ser Leu Gly Ala 65 70 75 80

His Asn Thr Thr Leu Thr Glu Ile Leu Lys Gly Leu Lys Phe Asn Leu 85 90 95

Thr Glu Thr Ser Glu Ala Glu Ile His Gln Ser Phe Gln His Leu Leu 100 105 110

Arg Thr Leu Asn Gln Ser Ser Asp Glu Leu Gln Leu Ser Met Gly Asn

115 120 125

Ala Met Phe Val Lys Glu Gln Leu Ser Leu Leu Asp Arg Phe Thr Glu 130 135 140 Asp Ala Lys Arg Leu Tyr Gly Ser Glu Ala Phe Ala Thr Asp Phe Gln 150 155 Asp Ser Ala Ala Lys Lys Leu Ile Asn Asp Tyr Val Lys Asn Gly 165 170 175 Thr Arg Gly Lys Ile Thr Asp Leu Ile Lys Asp Leu Asp Ser Gln Thr 185 180 Met Met Val Leu Val Asn Tyr Ile Phe Phe Lys Ala Lys Trp Glu Met 195 200 205 Pro Phe Asp Pro Gln Asp Thr His Gln Ser Arg Phe Tyr Leu Ser Lys 210 215 Lys Lys Trp Val Met Val Pro Met Met Ser Leu His His Leu Thr Ile 230 235 240 225 Pro Tyr Phe Arg Asp Glu Glu Leu Ser Cys Thr Val Val Glu Leu Lys 245 250 Tyr Thr Gly Asn Ala Ser Ala Leu Phe Ile Leu Pro Asp Gln Asp Lys 265 260 270 Met Glu Glu Val Glu Ala Met Leu Leu Pro Glu Thr Leu Lys Arg Trp 275 280 285 Arg Asp Ser Leu Glu Phe Arg Glu Ile Gly Glu Leu Tyr Leu Pro Lys 290 295 Phe Ser Ile Ser Arg Asp Tyr Asn Leu Asn Asp Ile Leu Leu Gln Leu 305 310 315 320 Gly Ile Glu Glu Ala Phe Thr Ser Lys Ala Asp Leu Ser Gly Ile Thr 330 335 325

Gly Ala Arg Asn Leu Ala Val Ser Gln Val Val His Lys Ala Val Leu

345

350

Asp Val Phe Glu Glu Gly Thr Glu Ala Ser Ala Ala Thr Ala Val Lys 355 360 365

Ile Thr Leu Arg Ser Arg Ala Val Glu Thr Arg Thr Ile Val Arg Phe 370 375 380

Asn Arg Pro Phe Leu Met Ile Ile Val Pro Thr Asp Thr Gln Asn Ile 385 390 395 400

Phe Phe Met Ser Lys Val Thr Asn Pro Lys Gln Ala 405 410

<210> 3

<211> 1239

<212> DNA

<213> Artificial sequence

<220>

<223> DNA Sequence ACT variant : MD 62

<400> 3

atgagaggat cccatcacca tcaccatcac tctagacacc ctaacagccc acttgacgag 60 gagaatctga cccaggagaa ccaagaccga gggacacacg tggacctcgg attagcctcc 120 gccaacgtgg acttcgcttt cagcctgtac aagcagttag tcctgaaggc ccctgataag 180 aatgtcatct tctccccact gagcatctcc accgccttgg ccttcctgtc tctgggggcc 240 300 cataatacca ccctgacaga gattctcaaa ggcctcaagt tcaacctcac ggagacttct gaggcagaaa ttcaccagag cttccagcac ctcctgcgca ccctcaatca gtccagcgat 360 gagctgcagc tgagtatggg aaatgccatg tttgtcaaag agcaactcag tctgctggac 420 aggttcacgg aggatgccaa gaggctgtat ggctccgagg cctttgccac tgactttcag 480 gactcagctg cagctaagaa gctcatcaac gactacgtga agaatggaac tagggggaaa 540 atcacagatc tgatcaagga ccttgactcg cagacaatga tggtcctggt gaattacatc 600 ttctttaaag ccaaatggga gatgcccttt gacccccaag atactcatca gtcaaggttc 660 720 tacttgagca agaaaaagtg ggtaatggtg cccatgatga gtttgcatca cctgactata ccttacttcc gggacgagga gctgtcctgc accgtggtgg agctgaagta cacaggcaat 780 gccagcgcac tcttcatcct ccctgatcaa gacaagatgg aggaagtgga agccatgctg 840 900 ctcccagaga ccctgaagcg gtggagagac tctctggagt tcagagagat aggtgagctc

ggcattgagg aagcettcac cagcaagget gacetgtcag ggatcacagg ggccaggaac 1020 ctagcagtet cccaggtggt ccataagget gtgettgatg tatttgagga gggcacagaa 1080 gcatetgetg ccacegeggt caaaatcace aggaggteta tegatgtgga gacgegtace 1140 attgtgegtt tcaacaggee etteetgatg atcattgtee ctacagacae ccagaacate 1200							
ctagcagtct cccaggtggt ccataaggct gtgcttgatg tatttgagga gggcacagaa 1080 gcatctgctg ccaccgcggt caaaatcacc aggaggtcta tcgatgtgga gacgcgtacc 1140 attgtgcgtt tcaacaggcc cttcctgatg atcattgtcc ctacagacac ccagaacatc 1200	tacctgccaa	agttttccat	ctcgagggac	tataacctga	acgacatact	tctccagctg	960
gcatctgctg ccaccgcggt caaaatcacc aggaggtcta tcgatgtgga gacgcgtacc 1140 attgtgcgtt tcaacaggcc cttcctgatg atcattgtcc ctacagacac ccagaacatc 1200	ggcattgagg	aagccttcac	cagcaaggct	gacctgtcag	ggatcacagg	ggccaggaac	1020
attgtgcgtt tcaacaggcc cttcctgatg atcattgtcc ctacagacac ccagaacatc 1200	ctagcagtct	cccaggtggt	ccataaggct	gtgcttgatg	tatttgagga	gggcacagaa	1080
	gcatctgctg	ccaccgcggt	caaaatcacc	aggaggtcta	tcgatgtgga	gacgcgtacc	1140
ttcttcatga gcaaagtcac caatcccaag caagcctaa 1239	attgtgcgtt	tcaacaggcc	cttcctgatg	atcattgtcc	ctacagacac	ccagaacatc	1200
	ttcttcatga	gcaaagtcac	caatcccaag	caagcctaa			1239
221.05 4							

<210> 4

<211> 412

<212> PRT

<213> Artificial sequence

<220>

<223> Protein Sequence ACT variant : MD 62

<400> 4

Met Arg Gly Ser His His His His His Ser Arg His Pro Asn Ser 1 5 10 5

Pro Leu Asp Glu Glu Asn Leu Thr Gln Glu Asn Gln Asp Arg Gly Thr
20 25 30

His Val Asp Leu Gly Leu Ala Ser Ala Asn Val Asp Phe Ala Phe Ser 35 40 45

Leu Tyr Lys Gln Leu Val Leu Lys Ala Pro Asp Lys Asn Val Ile Phe 50 55 60

Ser Pro Leu Ser Ile Ser Thr Ala Leu Ala Phe Leu Ser Leu Gly Ala 65 70 75 80

His Asn Thr Thr Leu Thr Glu Ile Leu Lys Gly Leu Lys Phe Asn Leu 85 90 95

Thr Glu Thr Ser Glu Ala Glu Ile His Gln Ser Phe Gln His Leu Leu 100 105 110

Arg Thr Leu Asn Gln Ser Ser Asp Glu Leu Gln Leu Ser Met Gly Asn 115 120 125

Ala Met Phe Val Lys Glu Gln Leu Ser Leu Leu Asp Arg Phe Thr Glu 130 135 140

Asp 145	Ala	Lys	Arg	Leu	Tyr 150	Gly	Ser	Glu	Ala	Phe 155	Ala	Thr	Asp	Phe	Gln 160
Asp	Ser	Ala	Ala	Ala 165	Lys	Lys	Leu	Ile	Asn 170	Asp	Tyr	Val	Lys	Asn 175	Gly
Thr	Arg	Gly	Lys 180	Ile	Thr	Asp	Leu	Ile 185	Lys	Asp	Leu	Asp	Ser 190	Gln	Thr
Met	Met	Val 195	Leu	Val	Asn	Tyr	Ile 200	Phe	Phe	Lys	Ala	Lys 205	Trp	Glu	Met
Pro	Phe 210	Asp	Pro	Gln	Asp	Thr 215	His	Gln	Ser	Arg	Phe 220	Tyr	Leu	Ser	Lys
Lys 225	Lys	Trp	Val	Met	Val 230	Pro	Met	Met	Ser	Leu 235	His	His	Leu	Thr	Ile 240
Pro	Tyr	Phe	Arg	Asp 245	Glu	Glu	Leu	Ser	Cys 250	Thr	Val	Val	Glu	Leu 255	Lys
Tyr	Thr	Gly	Asn 260	Ala	Ser	Ala	Leu	Phe 265	Ile	Leu	Pro	Asp	Gln 270	Asp	Lys
Met	Glu	Glu 275	Val	Glu	Ala	Met	Leu 280	Leu	Pro	Glu	Thr	Leu 285	Lys	Arg	Trp
Arg	Asp 290	Ser	Leu	Glu	Phe	Arg 295	Glu	Ile	Gly	Glu	Leu 300	Tyr	Leu	Pro	Lys
Phe 305	Ser	Ile	Ser	Arg	Asp 310	Tyr	Asn	Leu	Asn	Asp 315	Ile	Leu	Leu	Gln	Leu 320
Gly	Ile	Glu	Glu	Ala 325	Phe	Thr	Ser	Lys	Ala 330	Asp	Leu	Ser	Gly	Ile 335	Thr
Gly	Ala	Arg	Asn 340	Leu	Ala	Val	Ser	Gln 345	Val	Val	His	Lys	Ala 350	Val	Leu
Asp	Val	Phe	Glu	Glu	Gly	Thr	Glu	Ala	Ser	Ala	Ala	Thr	Ala	Val	Lys

Ile Thr Arg Arg Ser Ile Asp Val Glu Thr Arg Thr Ile Val Arg Phe 370 375 380

Asn Arg Pro Phe Leu Met Ile Ile Val Pro Thr Asp Thr Gln Asn Ile 385 390 395 400

Phe Phe Met Ser Lys Val Thr Asn Pro Lys Gln Ala 405 410

<210> 5

<211> 1239

<212> DNA

<213> Artificial sequence

<220>

<223> DNA Sequence ACT variant : MD 83

<400> 5

<400> 5						
atgagaggat	cccatcacca	tcaccatcac	tctagacacc	ctaacagccc	acttgacgag	60
gagaatctga	cccaggagaa	ccaagaccga	gggacacacg	tggacctcgg	attagcctcc	120
gccaacgtgg	acttcgcttt	cagcctgtac	aagcagttag	tcctgaaggc	ccctgataag	180
aatgtcatct	tctccccact	gagcatctcc	accgccttgg	ccttcctgtc	tctgggggcc	240
cataatacca	ccctgacaga	gattctcaaa	ggcctcaagt	tcaacctcac	ggagacttct	300
gaggcagaaa	ttcaccagag	cttccagcac	ctcctgcgca	ccctcaatca	gtccagcgat	360
gagctgcagc	tgagtatggg	aaatgccatg	tttgtcaaag	agcaactcag	tctgctggac	420
aggttcacgg	aggatgccaa	gaggctgtat	ggctccgagg	cctttgccac	tgactttcag	480
gactcagctg	cagctaagaa	gctcatcaac	gactacgtga	agaatggaac	tagggggaaa	540
atcacagatc	tgatcaagga	ccttgactcg	cagacaatga	tggtcctggt	gaattacatc	600
ttctttaaag	ccaaatggga	gatgcccttt	gacccccaag	atactcatca	gtcaaggttc	660
tacttgagca	agaaaaagtg	ggtaatggtg	cccatgatga	gtttgcatca	cctgactata	720
ccttacttcc	gggacgagga	gctgtcctgc	accgtggtgg	agctgaagta	cacaggcaat	780
gccagcgcac	tcttcatcct	ccctgatcaa	gacaagatgg	aggaagtgga	agccatgctg	840
ctcccagaga	ccctgaagcg	gtggagagac	tctctggagt	tcagagagat	aggtgagctc	900
tacctgccaa	agttttccat	ctcgagggac	tataacctga	acgacatact	tctccagctg	960
ggcattgagg	aagccttcac	cagcaaggct	gacctgtcag	ggatcacagg	ggccaggaac	1020
ctagcagtct	cccaggtggt	ccataaggct	gtgcttgatg	tatttgagga	gggcacagaa	1080

gcat	ctg	ctg (ccac	cgcg	gt ca	aaaat	cago	g ggg	gagat	ctg	agtt	agto	gga (gacgo	cgtacc	1140
atto	gtgc	gtt t	caa	caggo	cc ct	tcct	gato	g ato	catt	gtcc	ctad	caga	cac o	ccaga	aacatc	1200
ttct	tcat	ga (gcaa	agtca	ac ca	aatco	ccaaç	g caa	agcct	aa						1239
<210)> (5														
<211		412														
<212	2> I	PRT														
<213	3> 7	Arti	ficia	al se	equei	nce										
<220)>															
<223	3> I	Prote	ein S	Seque	ence	ACT	vari	iant	: MI	83						
<400)> (5														
	_	G 1	_							_	_		_	_		
	Arg	GLY	Ser	His	His	Hls	His	His		Ser	Arg	His	Pro		Ser	
1				5					10					15		
Pro	Leu	Asp		Glu	Asn	Leu	Thr		Glu	Asn	Gln	Asp	_	Gly	Thr	
			20					25					30			
His	Val	Asp	Leu	Gly	Leu	Ala	Ser	Ala	Asn	Val	Asp	Phe	Ala	Phe	Ser	
		35					40					45				
T.e.11	Tvr	Lvs	Gln	Leu	Val	T.e.11	Lvs	Ala	Pro	Asp	Lvs	Asn	Val	Tle	Phe	
Lou	50	270	0111	Leu	741	55	2,0	1114	110	1156	60	11011	741		1110	
							_		_					_		
	Pro	Leu	Ser	Ile		Thr	Ala	Leu	Ala		Leu	Ser	Leu	Gly		
65					70					75					80	
His	Asn	Thr	Thr	Leu	Thr	Glu	Ile	Leu	Lys	Gly	Leu	Lys	Phe	Asn	Leu	
				85					90					95		
Thr	Glu	Thr	Ser	Glu	Ala	Glu	Ile	His	Gln	Ser	Phe	Gln	His	Leu	Leu	
			100					105					110			
_	m1	_	_	~ 1	_	~	_	~ 1	_	~ 1	_	~		~ 1		
Arg	Thr		Asn	Gln	Ser	Ser	_	GLu	Leu	GIn	Leu		Met	GLY	Asn	
		115					120					125				
Ala	Met	Phe	Val	Lys	Glu	Gln	Leu	Ser	Leu	Leu	Asp	Arg	Phe	Thr	Glu	
	130					135					140					

 $\hbox{Asp Ala Lys Arg Leu Tyr Gly Ser Glu Ala Phe Ala Thr Asp Phe Gln } \\$

Asp Ser Ala Ala	a Ala Lys Lys 165	: Leu Ile As 17		Val Lys Asn Gly 175
Thr Arg Gly Ly:	_	Leu Ile Ly 185	ys Asp Leu A	Asp Ser Gln Thr 190
Met Met Val Le	ı Val Asn Tyr	Ile Phe Ph	-	Lys Trp Glu Met 205
Pro Phe Asp Pro	o Gln Asp Thr 215		er Arg Phe 1 220	Tyr Leu Ser Lys
Lys Lys Trp Va.	l Met Val Pro 230	Met Met Se	er Leu His F 235	His Leu Thr Ile 240
Pro Tyr Phe Arc	g Asp Glu Glu 245	ı Leu Ser Cy 25		Val Glu Leu Lys 255
Tyr Thr Gly Ass		Leu Phe Il 265	le Leu Pro <i>l</i>	Asp Gln Asp Lys 270
Met Glu Glu Va 275	l Glu Ala Met	Leu Leu Pr 280		Leu Lys Arg Trp 285
Arg Asp Ser Let 290	ı Glu Phe Arç 295		ly Glu Leu 3	Tyr Leu Pro Lys
Phe Ser Ile Se	r Arg Asp Tyr 310	: Asn Leu As	sn Asp Ile 1 315	Leu Leu Gln Leu 320
Gly Ile Glu Gl	ı Ala Phe Thr 325	Ser Lys Al		Ser Gly Ile Thr 335
Gly Ala Arg Ası 340		. Ser Gln Va 345	al Val His I	Lys Ala Val Leu 350
Asp Val Phe Glo	ı Glu Gly Thr	Glu Ala Se		Thr Ala Val Lys 365
Ile Arg Gly Ard	g Ser Glu Leu 375		nr Arg Thr 3	Ile Val Arg Phe

Asn Arg Pro Phe Leu Met Ile Ile Val Pro Thr Asp Thr Gln Asn Ile 385 390 395 400

Phe Phe Met Ser Lys Val Thr Asn Pro Lys Gln Ala 405 410

<210> 7

<211> 1239

<212> DNA

<213> Artificial sequence

<220>

<223> DNA Sequence ACT variant : MD 67

<400> 7

atgagaggat	cccatcacca	tcaccatcac	tctagacacc	ctaacagccc	acttgacgag	60
gagaatctga	cccaggagaa	ccaagaccga	gggacacacg	tggacctcgg	attagcctcc	120
gccaacgtgg	acttcgcttt	cagcctgtac	aagcagttag	tcctgaaggc	ccctgataag	180
aatgtcatct	tctccccact	gagcatctcc	accgccttgg	ccttcctgtc	tctgggggcc	240
cataatacca	ccctgacaga	gattctcaaa	ggcctcaagt	tcaacctcac	ggagacttct	300
gaggcagaaa	ttcaccagag	cttccagcac	ctcctgcgca	ccctcaatca	gtccagcgat	360
gagetgeage	tgagtatggg	aaatgccatg	tttgtcaaag	agcaactcag	tctgctggac	420
aggttcacgg	aggatgccaa	gaggctgtat	ggctccgagg	cctttgccac	tgactttcag	480
gactcagctg	cagctaagaa	gctcatcaac	gactacgtga	agaatggaac	tagggggaaa	540
atcacagatc	tgatcaagga	ccttgactcg	cagacaatga	tggtcctggt	gaattacatc	600
ttctttaaag	ccaaatggga	gatgcccttt	gacccccaag	atactcatca	gtcaaggttc	660
tacttgagca	agaaaaagtg	ggtaatggtg	cccatgatga	gtttgcatca	cctgactata	720
ccttacttcc	gggacgagga	gctgtcctgc	accgtggtgg	agctgaagta	cacaggcaat	780
gccagcgcac	tcttcatcct	ccctgatcaa	gacaagatgg	aggaagtgga	agccatgctg	