Глава 1 Выбор субоптимальной структуры модели

В данной главе рассматривается задача выбора структуры модели глубокого обучения. Предлагается ввести вероятностные предположения о распределениях параметров и структуры модели. Проводится градиентная оптимизация параметров и гиперпараметров модели на основе байесовского вариационного вывода. В качестве оптимизируемой функции для гиперпараметров модели предлагается обобщенная функция обоснованности. Показано, что данная функция позволяет проводить оптимизацию, соответствующую нескольким критериям выбора структуры модели: методу максимального правдоподобия, последовательному увеличению и снижению сложности модели, полному перебору структуры модели, а также получению максимума вариационной оценки обоснованности модели. Решается двухуровневая задача оптимизации: на первом уровне проводится оптимизация нижней оценки обоснованности модели по вариационным параметрам модели. На втором уровне проводится оптимизация гиперпараметров модели.

1.1. Вероятностная модель

Определим априорные распределения параметров и структуры модели следующим образом. Пусть параметры модели распределены нормально с нулевым средним:

 $\mathbf{w}_l^{j,k} \sim \mathcal{N}(\mathbf{0}, \gamma_k^{j,k} (\mathbf{A}_k^{j,k})^{-1}),$

где $(\mathbf{A}_l^{j,k})^{-1}$ — диагональная матрица. Апирорное распределение $p(\mathbf{w}|\mathbf{\Gamma},\mathbf{h})$ параметров $\mathbf{w}_l^{j,k}$ зависит не только от гиперпараметров $\mathbf{A}_k^{j,k}$, но и от структурного параметра $\gamma_l^{j,k}$.

В качестве априорного распределения для структуры Γ предлагается использовать произведение распределений Gumbel-Softmax [?]:

$$p(\mathbf{\Gamma}|\mathbf{h}, \boldsymbol{\lambda}) = \prod_{(j,k) \in E} p(\boldsymbol{\gamma}^{j,k}|\mathbf{s}, \lambda_{\mathrm{temp}}),$$

где для каждого структурного параметра γ с количеством базовых функций K вероятность $p(\gamma|\mathbf{s}, \lambda_{\text{temp}})$ определна следующим образом:

$$p(\boldsymbol{\gamma}|\mathbf{s}, \lambda_{\text{temp}}) = (K-1)! \lambda_{\text{temp}}^{K-1} \prod_{l=1}^{K} s_l \gamma_l^{-\lambda_{\text{temp}}-1} \left(\sum_{l=1}^{K} s_l \gamma_l^{-\lambda_{\text{temp}}} \right)^{-K},$$

где $\mathbf{s} \in (0,\infty)^K$ — гиперпараметр, отвечающий за смещенность плотности распределения относительно точек симплекса на K вершинах, λ_{temp} — метапараметр температуры, отвечающий за концентрацию плотности вблизи вершин симплекса или в центре симплекса.

Перечислим свойства, которыми обладает распределение Gumbel-Softmax:

1. Реализацию $\hat{\gamma}_l$, т.е. l-й компоненты случайной величины γ можно породить следующим образом:

$$\hat{\gamma}_l = \frac{\exp(\log s_l + \hat{g}_l)/\lambda_{\text{temp}}}{\sum_{l'=1}^K \exp(\log s_{l'} + \hat{g}_{l'})/\lambda_{\text{temp}}},$$

где $\hat{\mathbf{g}} \sim -\log(-\log \mathcal{U}(0,1)^K)$.

- 2. Свойство округления: $p(\gamma_{l_1} > \gamma_{l_2}, l_1 \neq l_2 | \mathbf{s}, \lambda_{\text{temp}}) = \frac{s_l}{\sum_{l'} s_{l'}}$
- 3. При устремлении температуры к нулю реализация случайной величины концентрируется на вершинах симплекса:

$$p(\lim_{\lambda_{\text{temp}} \to 0} \gamma_l = 1 | \mathbf{s}, \lambda_{\text{temp}}) = \frac{s_l}{\sum_{l'} s_{l'}}.$$

4. При устремлении температуры к бесконечности плотность распределения концентрируется в центре симплекса:

$$\lim_{\lambda_{\text{temp}}\to\infty} p(\boldsymbol{\gamma}|\mathbf{s}, \lambda_{\text{temp}}) = \begin{cases} \infty, \boldsymbol{\gamma}_l = \frac{1}{K}, l \in \{1, \dots, K\}, \\ 0, \text{ иначе.} \end{cases}$$
 (1.1)

Доказательства первых трех утверждений приведены в [?]. Докажем утверждение 4.

Доказательство. Формула плотности записывается следующим образом с точностью до множителя:

$$\frac{\lambda_{\text{temp}}^{K-1}}{\left(\sum_{l=1}^{K} s_l \gamma_l^{-\frac{-K-1}{K} \lambda_{\text{temp}}} \sum_{l'=1}^{K} [l \neq l'] s_l \gamma_l^{-\frac{1}{K} \lambda_{\text{temp}}}\right)^K}$$

Заметим, что числитель $\lambda_{\mathrm{temp}}^{K-1}$ имеет меньшую скорость сходимости, чем знаменатель. Знаменатель является суммой слагаемых вида:

$$\left(\frac{\prod_{l'\neq l} \gamma_{l'}^{\frac{1}{K}}}{\gamma_l^{\frac{K-1}{K}}}\right)^{\lambda_{\text{temp}}} \tag{1.2}$$

Пусть хотя бы для одного l: $\gamma_l \neq \frac{1}{K}$. Пусть l' соответствует индексу максимальной компоненты вектора γ . Для l=l' предел выражения (1.2) при λ_{temp} стремится к бесконечности. Для $l\neq l'$ предел выражения (1.2) при λ_{temp} стремится к нулю. Возводя сумму пределов в степень -K получаем предел плотности, равный нулю.

Пусть $\gamma = \frac{1}{K}$. Тогда выражение с точностью до множителя упрощается до λ^{K-1} . Предел данного выражения стремится к бесконечности. Таким образом, предел плотности Gumbel-Softmax равен выражению (1.1), что и требовалось доказать.

Первое свойство Gumbel-Softmax распределения позволяет использовать репараметризацию при вычислении градиента в вариационном выводе (англ. reparametrization trick). Идея репараметризации заключается в следующем. Рассмотрим для примера математическое ожидание логарифма правдоподобия выборки модели по некоторому непрерывному распределению q:

$$\mathsf{E}_q \log p(\mathbf{y}|\mathbf{w}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda}) = \int_{\mathbf{w}} \log p(\mathbf{y}|\mathbf{w}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda}) q(\mathbf{w}) d\mathbf{w}.$$

Продиффиринцируем данное выражение по параметрам $\boldsymbol{\theta}$ вариационного распределения q:

$$\nabla_{\boldsymbol{\theta}} \mathsf{E}_q \log p(\mathbf{y}|\mathbf{w}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda}) = \int_{\mathbf{w}} \nabla_{\boldsymbol{\theta}} \log p(\mathbf{y}|\mathbf{w}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda}) q(\mathbf{w}) d\mathbf{w} + \int_{\mathbf{w}} \log p(\mathbf{y}|\mathbf{w}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda}) \nabla_{\boldsymbol{\theta}} q(\mathbf{w}) d\mathbf{w}.$$

Второе слагаемое в общем виде не имеет аналитического решения. Пусть распределение q можно представить как функцию от непараметрического распределения:

$$q(\mathbf{w}|\boldsymbol{\theta}) = g(\mathbf{w}, \varepsilon|\boldsymbol{\theta}).$$

Тогда

$$\nabla_{\boldsymbol{\theta}} \mathsf{E}_q \log p(\mathbf{y}|\mathbf{w}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda}) = \nabla_{\boldsymbol{\theta}} \mathsf{E}_{\varepsilon} \log p(\mathbf{y}|\mathbf{w}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda}) = \int_{\varepsilon} \nabla_{\boldsymbol{\theta}} \log p(\mathbf{y}|\mathbf{w}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda}) p(\varepsilon) d\varepsilon =$$

$$= \mathsf{E}_{\varepsilon} \nabla_{\boldsymbol{\theta}} \log p(\mathbf{y}|\mathbf{w}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda}).$$

Таким образом, распределение, позволяющее произвести репараметризацию, является более удобным для вычисления интегральных оценок. Кроме того, данный подход позволяет значительно повысить точность вычисления градиента от функций, зависящих от случайных величин [?].

Пример распределения Gumbel-Softmax при различных параметрах представлен на Рис. 1.1. В качестве альтернативы для априорного распределения на структуре выступает распределение Дирихле и равномерное распределение. Выбор в качестве распределения на структуре произведения Gumbel-Softmax распределения обоснован выбором этого же распределения в качестве вариационного.

Заметим, что предлагаемое априорное распределение неоднозначно: одно и то же распределение можно получить с различными значениями гиперпарамета $\mathbf{A}_k^{i,j}$ и структурного параметра $\gamma_k^{i,j}$. В качестве регуляризатора для матрицы $(\mathbf{A}_k^{i,j})^{-1}$ предлагается использовать обратное гамма-распределение:

$$(\mathbf{A}_k^{i,j})^{-1} \sim \text{inv-gamma}(\lambda_1, \lambda_2),$$

Рис. 1.1. Пример распределения Gumbel-Softmax при различных значениях параметров: а) $\lambda_{temp} \to 0$, б) $\lambda_{temp} = 1$, $\mathbf{s} = [1, 1, 1]$, в) $\lambda_{temp} = 5$, $\mathbf{s} = [1, 1, 1]$, г) $\lambda_{temp} = 5$, $\mathbf{s} = [10, 0.1, 0.1]$.

Рис. 1.2. Графики обратных гамма распределений для различных значений метапараметров.

где $\lambda_1, \lambda_2 \in \lambda$ — метапараметры оптимизации. Использование обратного гаммараспределения в качестве распределения гиперпараметров можно найти в [?, ?]. В данной работе обратное распределение выступает как регуляризатор гиперпараметров. Калибруя метапарамы λ_1, λ_2 можно получить более сильную или более слабую регуляризацию [?]. Пример распределений inv-gamma(λ_1, λ_2) для разных значений метапараметров λ_1, λ_2 изображен на Рис. 1.2.

Таким образом, предлагаемая вероятностная модель содержит следующие компоненты:

- 1. Параметры **w** модели, распределенные нормально.
- 2. Структура модели Γ распределены по распределению Gumbel-Softmax.
- 3. Гиперпараметры: $\mathbf{h} = [\operatorname{diag}(\mathbf{A}), \mathbf{s}]$, где \mathbf{A} конкатенация матриц $\mathbf{A}^{j,k}, (j,k) \in E$, \mathbf{s} конкатенация параметров Gumbel-Softmax распределений $\mathbf{s}^{j,k}, (j,k) \in E$, где E множество ребер, соответствующих графу рассматриваемого параметрического семейства.
- 4. Метапараметры: $\lambda = [\lambda_1, \lambda_2]$.

Рис. 1.3. График предлагаемой вероятностной модели в формате плоских нотаций. Переменные обозначены белыми и серыми кругами, константы обозначены обведенными черными кругами. Наблюдаемые переменные обозначены кругами.

График вероятностной модели в формате плоских нотаций представлен на Puc. 1.3.

1.2. Вариационная оценка для обоснованности вероятностной модели

В качестве критерия выбора структуры модели предлагается использовать апостериорную вероятность гиперпараметров:

$$p(\mathbf{h}|\mathbf{y}, \mathbf{X}, \boldsymbol{\lambda}) \propto p(\mathbf{y}|\mathbf{X}, \mathbf{h}, \boldsymbol{\lambda})p(\mathbf{h}|\boldsymbol{\lambda}) \to \max_{\mathbf{h} \in \mathbb{H}},$$
 (1.3)

где структура модели и параметры модели выбираются на основе полученных значений гиперпараметров:

$$\Gamma^* = rg \max_{\Gamma \in \Gamma} p(\Gamma | \mathbf{y}, \mathbf{X}, \mathbf{h}^*),$$

$$\mathbf{w}^* = \arg\max_{\mathbf{w} \in \mathbb{W}} p(\mathbf{w}|\mathbf{y}, \mathbf{X}, \mathbf{\Gamma}^*, \mathbf{h}^*),$$

где \mathbf{h}^* — решение задачи оптимизации (1.3).

Для вычисления обоснованности

$$p(\mathbf{y}|\mathbf{X}, \mathbf{h}, \boldsymbol{\lambda}) = \iint_{\mathbf{\Gamma}, \mathbf{w}} p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \mathbf{\Gamma}, \boldsymbol{\lambda}) p(\mathbf{w}|\mathbf{\Gamma}, \mathbf{h}, \boldsymbol{\lambda}) p(\mathbf{\Gamma}|\mathbf{h}, \boldsymbol{\lambda}) d\mathbf{\Gamma} d\mathbf{w}$$

из (1.3) предлагается использовать вариационную оценку обоснованности.

Теорема 1. Пусть $q(\mathbf{w}, \Gamma | \boldsymbol{\theta}) = q(\mathbf{w}, \Gamma | \boldsymbol{\theta}_{\mathbf{w}}) q_{\Gamma}(\Gamma | \boldsymbol{\theta}_{\Gamma})$ — вариационное распределение с параметрами $\boldsymbol{\theta} = [\boldsymbol{\theta}_{\mathbf{w}}, \boldsymbol{\theta}_{\Gamma}]$, аппроксимирующее апостериорное распределение структуры и параметров:

$$q(\mathbf{w}, \Gamma | \boldsymbol{\theta}) \approx p(\mathbf{w}, \Gamma | \mathbf{y}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda}),$$

$$q_{\mathbf{w}}(\mathbf{w}|\boldsymbol{\theta}_{\mathbf{w}}, \boldsymbol{\Gamma}) \approx p(\mathbf{w}|\mathbf{y}, \mathbf{X}, \boldsymbol{\Gamma}, \mathbf{h}, \boldsymbol{\lambda}),$$

 $q_{\boldsymbol{\Gamma}}(\boldsymbol{\Gamma}|\boldsymbol{\theta}_{\boldsymbol{\Gamma}}) \approx p(\boldsymbol{\Gamma}|\mathbf{y}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda}).$

Тогда справедлива следующая оценка:

$$\log p(\mathbf{y}|\mathbf{X}, \mathbf{h}, \boldsymbol{\lambda}) \ge \tag{1.4}$$

$$\mathsf{E}_{\mathbf{\Gamma} \sim q_{\mathbf{\Gamma}}} \mathsf{E}_{\mathbf{w} \sim q_{\mathbf{w}}} log p(\mathbf{y} | \mathbf{w}, \mathbf{\Gamma}, \mathbf{X}) - D_{\mathrm{KL}} \left(q_{\mathbf{\Gamma}} (\mathbf{\Gamma} | \boldsymbol{\theta}_{\mathbf{\Gamma}}) | p(\mathbf{\Gamma} | \mathbf{h}, \boldsymbol{\lambda}) \right) - D_{\mathrm{KL}} \left(q_{\mathbf{w}} (\mathbf{w} | \boldsymbol{\theta}_{\mathbf{w}}, \mathbf{\Gamma}) | p(\mathbf{w} | \mathbf{\Gamma}, \mathbf{h}) \right),$$

где $D_{\mathrm{KL}}\left(q_{\mathbf{w}}(\mathbf{w}|\boldsymbol{\theta}_{\mathbf{w}},\boldsymbol{\Gamma})|p(\mathbf{w}|\boldsymbol{\Gamma},\mathbf{h})\right)$ вычисляется по формуле условной дивергенции [?]:

$$D_{\mathrm{KL}}\left(q_{\mathbf{w}}(\mathbf{w}|\boldsymbol{\theta}_{\mathbf{w}},\boldsymbol{\Gamma})|p(\mathbf{w}|\boldsymbol{\Gamma},\mathbf{h})\right) = \mathsf{E}_{\boldsymbol{\Gamma} \sim q_{\boldsymbol{\Gamma}}} \mathsf{E}_{\mathbf{w} \sim q_{\mathbf{w}}} \log\left(\frac{q(\mathbf{w}|\boldsymbol{\Gamma})}{p(\mathbf{w}|\mathbf{h},\boldsymbol{\Gamma})}\right).$$

Доказательство. Используя неравенство Йенсена получим

$$\log p(\mathbf{y}|\mathbf{X},\mathbf{h},\boldsymbol{\lambda}) \geq$$

$$\mathsf{E}_{q} \mathsf{log} p(\mathbf{y}|\mathbf{w}, \mathbf{\Gamma}, \mathbf{X}) - D_{\mathsf{KL}}(q(\mathbf{w}, \mathbf{\Gamma}|\boldsymbol{\theta})|p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{h}, \boldsymbol{\lambda})).$$

Декомпозируем распределение q по свойству условной дивергенции:

$$D_{\mathrm{KL}}(q(\mathbf{w}, \mathbf{\Gamma}|\boldsymbol{\theta})|p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{h})) = D_{\mathrm{KL}}(q_{\mathbf{\Gamma}}(\mathbf{\Gamma}|\boldsymbol{\theta}_{\mathbf{\Gamma}})|p(\mathbf{\Gamma}|\mathbf{h}, \boldsymbol{\lambda})) + D_{\mathrm{KL}}(q_{\mathbf{w}}(\mathbf{w}|\boldsymbol{\theta}_{\mathbf{w}}, \mathbf{\Gamma})|p(\mathbf{w}|\mathbf{\Gamma}, \mathbf{h}, \boldsymbol{\lambda}))$$

В качестве вариационного распределения $q_{\mathbf{w}}$ предлагается использовать нормальное распределение, не зависящее от структуры модели Γ :

$$q_{\mathbf{w}} = \mathcal{N}(\boldsymbol{\mu}_a, \mathbf{A}_a),$$

где \mathbf{A}_q — диагональная матрица с диагональю $\boldsymbol{\alpha}_q$.

В качестве вариационного распределения q_{Γ} предлагается использовать произведение распределений Gumbel-Softmax. Конкатенацию параметров концентрации распределений обозначим \mathbf{s}_q . Его температуру обозначим θ_{temp} .

Вариационными параметрами распределения q являются параметры распределений $q_{\mathbf{w}}, q_{\mathbf{\Gamma}}$:

$$oldsymbol{ heta} = [oldsymbol{\mu}, oldsymbol{lpha}_q, \mathbf{s}_q, heta_{ ext{temp}}].$$

График вероятностной вариационной модели в формате плоских нотаций представлен на Рис. 1.4.

Для анализа сложности полученной модели введем понятие *параметриче-ской сложности*.

6

Рис. 1.4. График предлагаемой вероятностной вариационной модели в формате плоских нотаций. Переменные обозначены белыми и серыми кругами, константы обозначены обведенными черными кругами. Вариационное распределение обозначено черным кругом. Наблюдаемые переменные обозначены серыми кругами.

Определение 1. Параметрической сложностью $C_p(\theta)$ модели с вариационными параметрами θ на компакте $U_{\mathbf{h}} \subset \mathbb{H}$ назовем минимальную дивергенцию между вариационным и априорным распределением:

$$C_p(\boldsymbol{\theta}|U_{\mathbf{h}}) = \min_{\mathbf{h} \in U_{\mathbf{h}}} D_{\mathrm{KL}}(q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})|p(\mathbf{w}, \boldsymbol{\Gamma}|\mathbf{h})).$$

Параметрическая сложность модели соответствует ожидаемой длине описания параметров модели при условии заданного параметрического априорного распределения [?].

Одним из критериев удаления неинформативных параметров в вероятностных моделях является отношение вариационной плотности параметров в моде распределения к вариационной плотности параметра в нуле [?]:

$$\frac{q_{\mathbf{w}}(w = \mu | \boldsymbol{\theta}_{\mathbf{w}})}{q(w = 0 | \boldsymbol{\theta}_{\mathbf{w}})} = \exp\left(-\frac{2\alpha_q^2}{\mu^2}\right),$$

где $q_{\mathbf{w}}(w|\boldsymbol{\theta}_{\mathbf{w}}) \sim \mathcal{N}(\mu_q, \alpha_q)$.

Обобщим понятие относительной вариационной плотности на случай произвольных распределений.

Определение 2. Относительной вариационной плотностью параметра $w \in \mathbf{w}$ при условии структуры Γ и гиперпараметров \mathbf{h} назовем отношение вариационной плотности в моде вариационного распределения параметра к вариационной плотности в моде априорного распределению параметра:

$$\rho(w|\Gamma, \boldsymbol{\theta}_{\mathbf{w}}, \mathbf{h}, \boldsymbol{\lambda}) = \frac{q(\text{mode } q(w|\Gamma, \boldsymbol{\theta}_{\mathbf{w}}) | \Gamma, \boldsymbol{\theta}_{\mathbf{w}})}{q(\text{mode } p(w|\Gamma, \mathbf{h}, \boldsymbol{\lambda}) | \Gamma, \boldsymbol{\theta}_{\mathbf{w}})},$$

$$\boldsymbol{\rho}(\mathbf{w}|\boldsymbol{\Gamma},\boldsymbol{\theta}_{\mathbf{w}},\mathbf{h},\boldsymbol{\lambda}) = \prod_{w \in \mathbf{w}} \rho(w|\boldsymbol{\Gamma},\boldsymbol{\theta}_{\mathbf{w}},\mathbf{h},\boldsymbol{\lambda}).$$

Сформулируем и докажеми теорему о связи относительной плотности и параметрической сложности модели:

Теорема 2. Пусть

- 1. заданы компактные множества $U_{\mathbf{h}} \subset \mathbb{H}, U_{\boldsymbol{\theta}} \subset \mathbb{O};$
- 2. мода априорного распределения $p(\mathbf{w}, \mathbf{\Gamma} | \mathbf{h}, \boldsymbol{\lambda})$ не зависит от гиперпараметров \mathbf{h} на $U_{\mathbf{h}}$:

$$p(\mathbf{w}, \Gamma | \mathbf{h}_1, \lambda) = p(\mathbf{w}, \Gamma | \mathbf{h}_2, \lambda) = p(\mathbf{w}, \Gamma, \lambda) \forall \mathbf{h}_1, \mathbf{h}_2 \in U_{\mathbf{h}}.$$

- 3. вариационное распределение $q_{\mathbf{w}}$ и априорное распределение $p(\mathbf{w}, \Gamma | \mathbf{h}))$ являются абсолютно непрерывными и унимодальными на $U_{\mathbf{h}} \subset \mathbb{H}, U_{\boldsymbol{\theta}}$.
- 4. мода и матожидание вариационного распределение q и априорного распределение $p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{h}))$ распределения совпадают.
- 5. задана бесконечная последовательность векторов вариационных параметров $\theta_1, \theta_2, \ldots$, такая что $\lim_{i \to \infty} C_p(\theta_i | U_h) = 0, \theta_i \in U_{\theta}$.
- 6. \mathbf{h}_{i} .

 ${\bf h}_i$. Тогда следующее выражение стремится к единице:

$$\mathsf{E}_q \boldsymbol{\rho}(\mathbf{w}|\boldsymbol{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}}, \mathbf{h}, \boldsymbol{\lambda})^{-1} \to 1.$$

Доказательство. Воспользуемся неравенством Пинскера:

$$||F_q(\boldsymbol{\theta}) - F_p(\mathbf{h})||_{\text{TV}} \le \sqrt{2D_{\text{KL}}(q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})|p(\mathbf{w}, \boldsymbol{\Gamma}|\mathbf{h}))},$$

где $|\cdot|_{\mathrm{TV}}$ — расстояние по вариации, F_q, F_p — функции распределения $q(\mathbf{w}, \mathbf{\Gamma} | \boldsymbol{\theta})$ и $p(\mathbf{w}, \mathbf{\Gamma} | \mathbf{h}, \boldsymbol{\lambda})$. Отсюда $\lim_{i \to \infty} ||F_q(\boldsymbol{\theta}) - F_p(\mathbf{h})||_{\mathrm{TV}} = 0$. Из сходимости по вариации следует слабая сходимость распределений.

Рассмотрим разность мод:

$$\begin{aligned} \mathsf{E}_{q_{\boldsymbol{\Gamma}}} \mathrm{mode} \ q_{\mathbf{w}}(\mathbf{w}|\boldsymbol{\theta}_{\mathbf{w}},\boldsymbol{\Gamma}) - \mathsf{E}_{p(\boldsymbol{\Gamma}|\mathbf{h},\boldsymbol{\lambda})} \mathrm{mode} \ p(\mathbf{w}|\boldsymbol{\Gamma},\mathbf{h}) = \\ &= \mathsf{E}_{q}\mathbf{w} - \mathsf{E}_{p(\mathbf{w},\boldsymbol{\Gamma}|\mathbf{h})}\mathbf{w}. \end{aligned}$$

Т.к. вторые моменты величины **w** конечны для вариационного и априорного распределения, то функции $\mathsf{E}_{q(\mathbf{w}|\boldsymbol{\theta}_{\mathbf{w}},\boldsymbol{\Gamma})}\mathbf{w}, \mathsf{E}_{p(\mathbf{w},\boldsymbol{\Gamma}|\mathbf{h})}$ абсолютно интегрируемы, что в сочетании со слабой сходимостью позволяет записать:

$$\lim_{i\to\infty} \left(\mathsf{E}_q \mathbf{w} - \mathsf{E}_{p(\mathbf{w},\mathbf{\Gamma}|\mathbf{h})} \mathbf{w} \right) = 0.$$

Таким образом в пределе моды вариационного распределения $q(\mathbf{w}, \mathbf{\Gamma}|\boldsymbol{\theta})$ и априорного распределения $p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{h})$ совпадают. Т.к. наибольшее значение распределения q сосредоточено в моде распределения q, то $\boldsymbol{\rho}(\mathbf{w}|\mathbf{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}}, \mathbf{h}, \boldsymbol{\lambda})^{-1}$ ограничена сверху единицей. Рассмотрим матожидание функции, обратной к отношению вариационных плотностей:

$$\mathsf{E}_q \boldsymbol{\rho}(\mathbf{w}|\mathbf{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}}, \mathbf{h}, \boldsymbol{\lambda})^{-1}$$

Т.к. функция ограничена, то предел можно внести под знак интеграла:

$$egin{aligned} &\lim_{i o \infty} \mathsf{E}_q oldsymbol{
ho}(\mathbf{w} | oldsymbol{\Gamma}, oldsymbol{ heta_w}, \mathbf{h}, oldsymbol{\lambda})^{-1} = \ &= \mathsf{E}_q \lim_{i o \infty} oldsymbol{
ho}(\mathbf{w} | oldsymbol{\Gamma}, oldsymbol{ heta_w}, \mathbf{h}, oldsymbol{\lambda})^{-1} = 1. \end{aligned}$$

Теорема утверждает, что при устремлении параметрической сложности модели к нулю, параметры модели станоятся неинформативными и подлежащими удалению в среднем по всем возможным значениям структуры Γ модели. Заметим, что теорема применима для случая, когда последовательность вариационных распределений q не имеет предела. Так, в случае, если структура Γ определена однозначно, последовательность q_i может являться последовательностью нормальных расп распределений, чье матожидание стремится к нулю. Априорным распределением $p(\mathbf{w}, \Gamma | \mathbf{h}) = p(\mathbf{w} | \mathbf{h})$ при этом может являться семейство нормальных распределений с нулевым средним.

1.3. Обобщающая задача

Рассмотрим основные критерии выбора вероятностных моделей.

1. Критерий максимального правдоподобия:

$$\log p(\mathbf{y}|\mathbf{X}, \mathbf{w}) \to \max_{\mathbf{w} \in \mathbb{W}}.$$

Метод заключается в максимизации правдоподобия обучающей выборки и подвержен переобучению. Для использования данного метода в качестве задачи выбора модели предлагается следующее обобщение:

$$L = \mathsf{E}_q \log \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}). \tag{1.5}$$

Данное обобщение эквивалентно методу правдоподобия при выборе в качестве q эмпирического распределения парамтетров и структуры. Метод не предполагает оптимизации гиперпараметров. Для формального соответствия данной задачи задаче выбора положим L=Q.

2. Метод максимальной апостериорной вероятности.

$$\log p(\mathbf{y}, \mathbf{w} | \mathbf{X}, \mathbf{h}) \to \max_{\mathbf{w} \in \mathbb{W}}.$$

Аналогично предыдущему методу сформулируем вариационное обобщение данной задачи:

$$L = Q = \mathsf{E}_q \log \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}) + \log p(\mathbf{w}|\boldsymbol{\lambda}) + \log p(\boldsymbol{\gamma}|\mathbf{X}, \mathbf{w}). \tag{1.6}$$

В рамках данной задачи оптимизации параметры априорных распределений \mathbf{A}, \mathbf{s} выступают в качестве метапараметров и не подлежат оптимизации.

3. Перебор структуры:

$$L = Q = \mathsf{E}_q \log p(\mathbf{y}, \mathbf{w} | \mathbf{X}) [q_{\Gamma} = p'] \tag{1.7}$$

где p' — некоторое распределение на структуре, выступающее в качестве метапараметра.

4. Критерий Акаике:

$$Q = \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}) - |\mathbf{W}|.$$

Заметим, что в условия выбора модели на параметрическом множестве моделей данный критерий не имеет смысла, т.к. количество параметров для каждой модели одинаково. Предлагается следующая переформулировка:

$$L = Q = \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}) - \tag{1.8}$$

$$-|\{w: D_{\mathrm{KL}}(\theta, \mathbf{h}) < \lambda, \mathbf{h} = \underset{\mathbf{h}' \in U_{\mathbf{h}}}{\operatorname{arg \, min}} D_{\mathrm{KL}}(q(\mathbf{w}, \mathbf{\Gamma})|p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{h}', \boldsymbol{\lambda})\}|,$$

где λ — метапараметр алгоритма, $U_{\mathbf{h}} \subset \mathbb{H}$ — область определения задачи по гиперпараметрам.

5. Информационный критерий Шварца:

$$\log p(\mathbf{y}|\mathbf{X},\mathbf{w}) - 0.5\log(m)|\mathbf{W}|.$$

Переформулируем данный критерий аналогично критерию AIC:

$$L = Q = BIC_{\lambda} = \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}) - \tag{1.9}$$

$$\log(m)|\{w: D_{\mathrm{KL}}(\theta, \mathbf{h}) < \lambda, \mathbf{h} = \operatorname*{arg\,min}_{\mathbf{h}' \in U_{\mathbf{h}}} D_{\mathrm{KL}}(q(\mathbf{w}, \mathbf{\Gamma})|p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{h}', \boldsymbol{\lambda}))\}|.$$

6. Метод вариационной оценки обоснованности.

$$L = Q = \mathsf{E}_q \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}) - D_{\mathsf{KL}}(q|p). \tag{1.10}$$

7. Hold-out кросс-валидация.

$$L = \mathsf{E}_q \log p(\mathbf{y}, \mathbf{w} | \mathbf{X}, \mathbf{h}), \tag{1.11}$$

$$Q = \mathsf{E}_q \mathsf{log} p(\mathbf{y}|\mathbf{X}, \mathbf{w}).$$

Каждый из рассмотренных критерии удовлетворяет хотя бы одному из перечисленных свойтсв:

- 1. Модель, оптимизируемая согласно критерию, доставляет максимум правдоподобия выборки;
- 2. Модель, оптимизируемая согласно критерию, доставляет максимум оценки обоснованности;

- 3. Для моделей, доставляющих сопоставимые значения правдоподобия выборки, выбирается модель с меньшим количеством информативных параметров.
- 4. Критерий позволяет производить перебор структур для отбора наилучших модели.

Формализуем рассмотренные критерии. Оптимизационную задачу, которая удовлетворяет всем перечисленным свойствам, будет называть обобщающей.

Определение 3. Двухуровневую задачу оптимизации будем называть *обобщающей* на области $U \subset \Theta \times \mathbb{H} \times \Lambda$, если она удовлетворяет следующим свойствам:

- 1. Для каждого значения гиперпараметров \mathbf{h} оптимальное решение нижней задачи оптимизации $\boldsymbol{\theta}^*$ определено однозначно.
- 2. Свойство максимизации правдоподобия выборки: существует $\lambda \in U_{\lambda}$ и $K_1 \in \mathbb{R}_+$, такие что для любых векторов гиперпараметров, удовлетворяющих неравенству $\mathbf{h}_1, \mathbf{h}_2 \in U_h, Q(\mathbf{h}_1) Q(\mathbf{h}_2) > K_1$, выполняется неравенство $\mathsf{E}_q \log p(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta}_1, \lambda_{\mathrm{temp}}, \mathbf{f}) > \log \mathsf{E}_q \ p(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta}_2, \lambda_{\mathrm{temp}}, \mathbf{f})$.
- 3. Свойство минимизации параметрической сложности: существует $\lambda \in U_{\lambda}$ и $K_2 \in \mathbb{R}_+$, такие что для любых векторов гиперпараметров $\mathbf{h}_1, \mathbf{h}_2 \in U_h$, удовлетворяющих неравенству $Q(\mathbf{h}_1) Q(\mathbf{h}_2) > K_2$ и при этом имеющие равенство ожидаемых правдоподобий выборок $\mathsf{E}_q \log p(\mathbf{y}|\boldsymbol{\theta}_1, \lambda_{\mathrm{temp}}, \mathbf{f}) = \log \mathsf{E}_q \ p(\mathbf{y}|\boldsymbol{\theta}_2, \lambda_{\mathrm{temp}}, \mathbf{f})$, параметрическая сложность первой модели меньше, чем второй: $C_p(\boldsymbol{\theta}^*(\mathbf{h}_1)|U_\mathbf{h}) < C_p(\boldsymbol{\theta}^*(\mathbf{h}_2|U_\mathbf{h})$.
- 4. Свойства приближения оценки обоснованности: существует значение гиперпараметров λ , такое что оптимизация задачи эквивалента оптимизации вариационной оценки обоснованности модели: $\arg\max_{\mathbf{h}\in U_h}Q(\arg\max_{\boldsymbol{\theta}}\in U_{\boldsymbol{\theta}}L)\approx \arg\max_{\mathbf{h}\in U_h}\arg\max_{\boldsymbol{\theta}}\mathsf{E}_qp(\mathbf{y}|\mathbf{w},\mathbf{X})-D_{KL}(q(\mathbf{w},\boldsymbol{\Gamma}|\boldsymbol{\theta})|p(\mathbf{w},\boldsymbol{\Gamma}|\mathbf{h},\boldsymbol{\lambda})).$
- 5. Свйоство перебора структур: существует константа K_3 , такая что для любых двух векторов $\mathbf{h}_1, \mathbf{h}_2$ и соответствующих векторов $\boldsymbol{\theta}_1^*, \boldsymbol{\theta}_2^*$: $D_{\mathrm{KL}}(q_{\Gamma_2}, q_{\Gamma_1}) > K_3, D_{\mathrm{KL}}(q_{\Gamma_1}, q_{\Gamma_2}) > K_3$ существуют значения гиперпараметров $\boldsymbol{\lambda}_1, \boldsymbol{\lambda}_2$, такие что $Q(\mathbf{h}_1, \lambda_1) > Q(\mathbf{h}_2, \lambda_1), Q(\mathbf{h}_1, \lambda_1) < Q(\mathbf{h}_2, \lambda_2)$.
- 6. Свойство нерперывности: $\mathbf{h}^*, \boldsymbol{\theta}^*$ непрерывны по метапараметрам.

Первое свойство говорит о том, что решение первого и второго уровня должны быть согласованы и определены однозначно. Свойства 2-4 определяют возможные критерии оптимизации, которые должны приближаться обобщающей задачей. Свойство 5 говорит о возможности перехода между различными структурами модели. Отметим, что данное условие крайне важно в условиях оптимизации моделей глубокого обучения, которые отличаются многоэкстремальностью. Последнее свойство говорит о том, что обобщающая задача должна позволять производить переход между различными критериями выбора параметров и структуры модели непрерывно.

Теорема 3. Рассмотренные задачи (1.5),(1.6),(1.7),(1.8),(1.9),(1.10),(1.11) не являются обобщающими.

Теорема 4. Пусть задано непустое множество непрерывных по параметрам распределний на структуре \mathbf{P} . Пусть функции потерь и валидации L,Q являются непрерывно-дифференцируемыми на компакте $U \subset \mathbb{O} \times \mathbb{H} \times \mathbb{A}$, где параметры распределений $\mathbf{P} \in \mathbb{A}$. Тогда следующая задача является обобщающей на U.

$$\mathbf{h}^* = \underset{\mathbf{h}}{\operatorname{arg \, max}} Q = \tag{Q^*}$$

$$= \lambda_{\text{likelihood}}^{\text{Q}} \mathsf{E}_{q^*} \log \, p(\mathbf{y} | \mathbf{X}, \mathbf{w}, \mathbf{\Gamma}, \mathbf{h}, \lambda_{\text{temp}}, \mathbf{f}) -$$

$$- \lambda_{\text{Q}}^{\text{prior}} \mathsf{D}_{KL} (q^*(\mathbf{w}, \mathbf{\Gamma}) || p(\mathbf{w}, \mathbf{\Gamma} | \mathbf{h}, \lambda_{\text{temp}}, \mathbf{f})) -$$

$$- \sum_{p' \in \mathbf{P}, \lambda \in \boldsymbol{\lambda}_{\text{Q}}^{\text{struct}}} \lambda \mathsf{D}_{KL} (\mathbf{\Gamma} | p') + \log p(\mathbf{h} | \mathbf{f}),$$

где

$$q^* = \underset{q}{\operatorname{arg max}} L = \mathsf{E}_q \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \mathbf{\Gamma}, \mathbf{h}, \lambda_{\text{temp}}, \mathbf{f})$$

$$-\lambda_{\text{L}}^{\text{prior}} D_{KL}(q^*(\mathbf{w}, \mathbf{\Gamma}) || p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{h}, \lambda_{\text{temp}}, \mathbf{f})).$$

$$(L^*)$$

Доказательство. Для доказательста теоремы требуется доказать критерии 1-6 из определения обобщающей задачи. Критерий 1 следует из условий задачи.

Докажем критерий 2. Пусть $\lambda_{\mathbf{Q}}^{\mathrm{prior}} = 0$, $\lambda_{\mathbf{Q}}^{\mathrm{struct}} = \mathbf{0}$. Зафиксируем некоторое значение метапараметров λ_1, λ_2 . Т.к. $U_{\mathbf{h}}$ — компакт, возьмем в качестве константы K_1 разницу между максимальным и минимальным значением $p(\mathbf{h}|\mathbf{f})$:

$$K = \max_{\mathbf{h}} \log p(\mathbf{h}|\mathbf{f}) - \min_{\mathbf{h}} \log p(\mathbf{h}|\mathbf{f}).$$

Тогда $Q(\mathbf{h}_1) - Q(\mathbf{h}_2) = \mathsf{E}_q \log p(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta}_1 \lambda_{\mathrm{temp}}, \mathbf{f}) - \mathsf{E}_q \log p(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta}_2, \lambda_{\mathrm{temp}}, \mathbf{f}) + \log p(\mathbf{h}_2|\mathbf{f}) - \log p(\mathbf{h}_1|\mathbf{f}) > K_1$. Отсюда следует $\mathsf{E}_q \log p(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta}_1 \lambda_{\mathrm{temp}}, \mathbf{f}) > \mathsf{E}_q \log p(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta}_2 \lambda_{\mathrm{temp}}, \mathbf{f})$.

Докажем критерий 3. Пусть $\lambda_{\mathrm{Q}}^{\mathrm{likelihood}} = 0$, $\lambda_{\mathrm{Q}}^{\mathrm{struct}} = \mathbf{0}$. Зафиксируем некоторое значение метапараметров λ_{1}, λ_{2} . Т.к. $U_{\mathbf{h}}$ — компакт, возьмем в качестве константы K_{1} разницу между максимальным и минимальным значением $p(\mathbf{h}|\mathbf{f})$: TODO

Докажем критерий 4. Пусть $\lambda_{\mathrm{Q}}^{\mathrm{likelihood}} = \lambda_{\mathrm{Q}}^{\mathrm{prior}} = \lambda_{\mathrm{L}}^{\mathrm{prior}} = 1, \boldsymbol{\lambda}_{\mathrm{Q}}^{\mathrm{struct}} = \boldsymbol{0}$. Тогда оптимизационную задачу можно записать как: TODO, что и требовалось доказать.

Докажем критерий 5. Пусть P состоит из распределения того же семейства, что и априорное семейство на структуре. Возьмем в качестве параметров этого распределения параметры распределения $p(\Gamma|\mathbf{h}, \lambda_{\text{temp}})$. Тогда при $\lambda_{comb} > 0$ значение $Q(\mathbf{h}_1)$ увеличится, при $\lambda_{comb} > 0$ значение $Q(\mathbf{h}_1)$ уменьшится. ТОВО: вопрос как подбирать λ , чтобы она была в компакте.

Метапараметрами данной задачи являются коэффициенты λ_Q^{prior} , λ_L^{prior} , отвечающие за регуляризацию верхней и нижней задачи оптимизации, коэффициент $\lambda_{likelihood}^Q$ за максимизацию правдоподобия, а также параметры распрделений \mathbf{P} и вектор коэффициентов перед ними $\mathbf{\lambda}_Q^{struct}$.

В предельном случае, когда температура λ_{temp} близка к нулю, а множество \mathbf{P} состоит из распределений, близких к дискретным соответствующим всем возможным структурам, калибровка $\lambda_{\mathbf{Q}}^{\text{struct}}$ порождает последовательность задач оптимизаций, схожую с перебором структур. Для примера рассмотрим вырожденный случай поведения функции Q, когда $\lambda_{\text{likelihood}}^{Q} = \lambda_{\mathbf{Q}}^{\text{prior}} = 0$. Пусть в Пусть модель использует один структурный параметр, в качестве априорного распределения на структуре задано распределение Gumbel-Softmax с $\lambda_{\text{temp}} = 0.1$. Пусть в качестве множества распределений \mathbf{P} используется два распределения Gumbel-Softmax, сконцентрированных близко к вершинам симплекса:

$$\mathbf{P} = [\text{Gumbel-Softmax}([0.8, 0.1, 0.1]^{T}, 0.1), \text{Gumbel-Softmax}([0.1, 0.8, 0.1]^{T}, 0.1)].$$

Из определения распределения Gumbel-Softmax следует, что достаточно рассмотреть только значения параметра **s** находящиеся внутри симплекса. На рис. ?? изображены значения функции Q в зависимости от мета-параметров и значения гиперпараметра **s** распределения на структуре. Видно, что калибруя коэффициенты метапараметров получается последовательность оптимизаций, схожая с полным перебором структуры.

Обобщающая задача: переформулировка через градиент

Для вычисления приближенного значения функций Q и L предлагается использовать приближение методом Монте-Карло с порождением R реализаций величин $\mathbf{w}, \mathbf{\Gamma}$:

$$\begin{split} \mathsf{E}_{q}\mathrm{log}\; p(\mathbf{y}|\mathbf{X},\boldsymbol{\theta}_{1}\lambda_{\mathrm{temp}},\mathbf{f}) &\approx \sum_{r=1}^{R}\mathrm{log}p(\mathbf{y}|\boldsymbol{\mu} + \boldsymbol{\alpha}_{q} \circ \hat{\epsilon}_{r},\hat{\boldsymbol{\Gamma}}_{r},\mathbf{X}), \\ D_{\mathrm{KL}}\left(q_{\boldsymbol{\Gamma}}(\boldsymbol{\Gamma}|\boldsymbol{\theta}_{\boldsymbol{\Gamma}})|p(\boldsymbol{\Gamma}|\mathbf{h},\boldsymbol{\lambda})\right) &\approx \sum_{r=1}^{R}\left(\mathrm{log}q_{\boldsymbol{\Gamma}}(\hat{\boldsymbol{\Gamma}}_{r}|\boldsymbol{\theta}_{\boldsymbol{\Gamma}})) - p(\hat{\boldsymbol{\Gamma}}|\mathbf{h},\boldsymbol{\lambda})\right), \\ D_{\mathrm{KL}}\left(q_{\mathbf{w}}(\mathbf{w}|\boldsymbol{\theta}_{\mathbf{w}},\boldsymbol{\Gamma})|p(\mathbf{w}|\boldsymbol{\Gamma},\mathbf{h})\right) &= \sum_{(j,k)\in E}\sum_{l=1}^{K^{j,k}}D_{\mathrm{KL}}\left(q_{\mathbf{w}}(\mathbf{w}_{l}^{j,k}|\boldsymbol{\theta}_{\mathbf{w}},\gamma_{l}^{j,k})|p(\mathbf{w}_{l}^{j,k}|\gamma_{l}^{j,k},\mathbf{h})\right) \approx \\ &\approx -\sum_{(j,k)\in E}\sum_{l=1}^{K_{j,k}}\sum_{r=1}^{R}\frac{1}{2}\left((\hat{\gamma}_{r}^{j,k}[l]\right)^{-1}\mathrm{tr}((\mathbf{A}_{l}^{j,k})_{q}(\mathbf{A}_{l}^{j,k})^{-1}) + (\boldsymbol{\mu}_{l}^{j,k})^{\mathsf{T}}\hat{\gamma}_{r}^{j,k}[l]^{-1}(\mathbf{A}_{l}^{j,k})^{-1}\boldsymbol{\mu}_{l}^{j,k} - \\ &-|\mathbf{w}_{l}^{j,k}| + \mathrm{log}\frac{|\hat{\gamma}_{l}^{j,k}[l]_{r}\mathbf{A}_{l}^{j,k}|}{|(\mathbf{A}_{l}^{j,k})_{-l}|}\right), \end{split}$$

где R — количество реализаций случайных величин, по котором вычисляется значения вариационной оценки обоснованности, $\hat{\epsilon}_r \sim \mathcal{N}(0,1), \hat{\Gamma}_r = [\hat{\gamma}_r^{j,k}, (j,k) \in E]$ — реализация случайной величины, соответствующей структуре Γ .

Для решения двухуровневой задачи предлагается использовать градиентные методы.

Теорема 5. Пусть T — оператор градиентного спуска. Пусть Q, L — локально выпуклы и непрерывны в некоторой области $U_W \times U_\Gamma \times U_H \times U_\lambda \subset \mathbb{W} \times \mathbb{F} \times \mathbb{H} \times \mathbb{A}$, при этом $U_H \times U_\lambda$ — компакт. Тогда решение задачи градиентной оптимизации

$$\mathbf{h}^* = T^{\eta}(Q, \mathbf{h}, T^{\eta}(L, \boldsymbol{\theta}_0, \mathbf{h}))$$

стремится к локальному минимуму $\mathbf{h}^* \in U$ исходной задачи оптимизации при $\eta \to \infty$, \mathbf{h}^* является непрерывной функцией по метапараметрам модели.

1.4. Анализ обобщающей задачи

В данном разделе рассматриваются свойства предложенной задачи при различных значениях метапараметров, а также характер ассимптотического поведения задач.

Теорема 6. Пусть $\lambda_{\mathrm{prior}}^L>0, m\gg0, \frac{m}{\lambda_{\mathrm{prior}}^L}\in\mathbb{N}.$ Тогда оптимизация функции

$$L = \mathsf{E}_q \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \mathbf{\Gamma}, \mathbf{h}, \lambda_{\mathrm{temp}}, \mathbf{f}) - \lambda_{\mathrm{prior}}^L D_{KL}(q||p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{h}, \lambda_{\mathrm{temp}, \mathbf{f}})))$$

эквивалентна минимизации $\mathsf{E}_{\hat{\mathbf{X}},\hat{\mathbf{y}}\sim p(\mathbf{X},\mathbf{y})} \mathsf{D}_{KL}(q||p(\mathbf{w},\mathbf{\Gamma}|\hat{\mathbf{X}},\hat{\mathbf{y}},\mathbf{h},\lambda_{\mathrm{temp}},\mathbf{f}))$, где $\hat{\mathbf{X}},\hat{\mathbf{y}}$ — случайные подвыборки мощностью $\frac{m}{\lambda_{\mathrm{prior}}^L}$ из генеральной совопкупности.

Доказательство. Рассмотрим величину $\frac{1}{m}L$:

$$\frac{1}{m}L = \frac{1}{m}\mathsf{E}_q \mathsf{log} p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma}, \mathbf{h}, \boldsymbol{\lambda}) - \frac{\lambda_{\mathsf{prior}}^L}{m} D_{\mathsf{KL}}(q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})|p(\mathbf{w}, \boldsymbol{\Gamma}|\mathbf{h}, \boldsymbol{\lambda})).$$

По усиленному закону больших чисел:

$$\frac{1}{m}L \to_{m\to\infty}^{\text{\tiny II.H.}} \frac{1}{m} \mathsf{E}_{\mathbf{X}} \mathsf{E}_q \mathrm{log} p(\mathbf{y}|\mathbf{X}, \mathbf{w}) - \frac{\lambda_{\mathrm{prior}}^L}{m} D_{\mathrm{KL}}(q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})|p(\mathbf{w}, \boldsymbol{\Gamma}|\mathbf{h}, \boldsymbol{\lambda})).$$

Аналогично рассмотрим вариационную оценку обоснованности для произвольной выборки мощностью $m_0 = \frac{m}{\gamma}$, усредненную на мощность:

$$\frac{1}{m_0}\mathsf{E}_q\mathsf{log}p(\mathbf{y}|\mathbf{X},\mathbf{w},\boldsymbol{\Gamma},\mathbf{h},\boldsymbol{\lambda}) - \frac{1}{m_0}D_{\mathrm{KL}}(q(\mathbf{w},\boldsymbol{\Gamma}|\boldsymbol{\theta})|p(\mathbf{w},\boldsymbol{\Gamma}|\mathbf{h},\boldsymbol{\lambda})) \to_{m\to\infty}^{\text{\tiny II.H.}}$$

$$\to_{m\to\infty}^{\text{\tiny II.H.}} \frac{1}{m_0} \mathsf{E}_{\mathbf{X}} \mathsf{E}_q \mathrm{log} p(\mathbf{y}|\mathbf{X},\mathbf{w}) - \frac{1}{m_0} D_{\mathrm{KL}}(q(\mathbf{w},\boldsymbol{\Gamma}|\boldsymbol{\theta})|p(\mathbf{w},\boldsymbol{\Gamma}|\mathbf{h},\boldsymbol{\lambda})).$$

Таким образом, задачи оптимизации совпадают. Задача нахождения обоснованности эквивалентна минимизации дивергецнии:

$$D_{KL}(q||p(\mathbf{w}, \mathbf{\Gamma}|\hat{\mathbf{X}}, \hat{\mathbf{y}}, \mathbf{h}, \lambda_{\text{temp}}, \mathbf{f}).$$

Таким образом, для достаточно большого m и $\lambda_L^{\rm prior}>0, \lambda_L^{\rm prior}\neq 1$ оптимизация параметров и гиперпараметров эквивалентна нахождению оценки обоснованности для выборки другой мощности: чем выше значение $\lambda_L^{\rm prior}$, тем выше мощность выборки, для которой проводится оптимизация.

Следующие теоремы говорят о соответствии предлагаемой обобщающей задачи вероятностной модели. В частности, задача оптимизации параметров и гиперпараметров соответствует двухуровневому байесовскому выводу.

Теорема 7. Пусть задано параметрическое множество вариационных распределений: $q(\boldsymbol{\theta})$. Пусть $\lambda_{\text{likelihood}}^L = \lambda_{\text{prior}}^L = \lambda_{\text{prior}}^Q > 0$, $\boldsymbol{\lambda}_{\text{struct}}^Q = \boldsymbol{0}$. Тогда:

- 1. Задача оптимизации (Q^*) доставляет максимум апостериорной вероятности гиперпараметров с использованием вариационной оценки обоснованности:
 - $\log \hat{p}(\mathbf{y}|\mathbf{X}, \mathbf{h}, \lambda_{\text{temp}}, \mathbf{f}) + \log p(\mathbf{h}|\mathbf{f}) \to \max_{\mathbf{h}}.$
- 2. Вариационное распределение q приближает апостериорное распределение $p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{y}, \mathbf{X}, \mathbf{h}, \lambda_{\text{temp}}, \mathbf{f})$ наилучшим образом:

$$D_{\mathrm{KL}}(q||p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{y}, \mathbf{X}, \mathbf{h}, \lambda_{\mathrm{temp}}, \mathbf{f})) \to \min_{\boldsymbol{\theta}}.$$

Доказательство. ТООО

Теорема 8. Пусть также распределение q декомпозируется на два независимых распределения для параметров \mathbf{w} и структуры Γ модели \mathbf{f} . Тогда вариационные распределения $q_{\mathbf{w}}, q_{\Gamma}$ приближают апостериорные распределения $p(\Gamma|\mathbf{y}, \mathbf{X}, \mathbf{h}, \lambda_{\text{temp}}, \mathbf{f}), p(\mathbf{w}|\Gamma, \mathbf{y}, \mathbf{X}, \mathbf{h}, \lambda_{\text{temp}}, \mathbf{f})$ наилучшим образом:

$$D_{\mathrm{KL}}(q_{\Gamma}||p(\Gamma|\mathbf{y},\mathbf{X},\mathbf{h},\lambda_{\mathrm{temp}},\mathbf{f})) \to \min, \quad D_{\mathrm{KL}}(q_{\mathbf{w}}||p(\mathbf{w}|\mathbf{y},\mathbf{X},\mathbf{h},\mathbf{f})) \to \min.$$

Доказательство. ТООО

Следующие теоремы посвящены ассимптотическим свойствам представленной обобщающей задачи.

Теорема 9. Пусть $\lambda_{
m likelihood}^Q=\lambda_{
m prior}^L>0, m{\lambda}_{
m struct}^Q={m 0}.$ Тогда предел оптимизации

$$\lim_{\lambda_{\text{prior}}^{Q} \to \infty} \lim_{\eta \to \infty} T^{\eta} (Q, \mathbf{h}, T^{\eta} (L, \boldsymbol{\theta}_{0}, \mathbf{h}))$$

доставляет минимум параметрической сложности.

Доказательство. ТООО

Теорема 10. Пусть $\lambda_{\text{likelihood}}^L = 1, \lambda_{\text{struct}}^Q = \mathbf{0}$. Пусть $\mathbf{f}_1, \mathbf{f}_2$ — результаты градиентной оптимизации при разных значениях гиперпараметров $\lambda_{\text{prior}}^{Q,1}, \lambda_{\text{prior}}^{Q,2}, \lambda_{\text{prior}}^{Q,1} < \lambda_{\text{prior}}^{Q,2}$, полученных при начальном значении вариационных параметров $\boldsymbol{\theta}_0$ и гиперпараметров \mathbf{h}_0 . Пусть $\boldsymbol{\theta}_0, \mathbf{h}_0$ принадлежат области U, в которой соответствующие функции L и Q являются локально-выпуклыми. Тогда:

$$C_p(\mathbf{f}_1) - C_p(\mathbf{f}_2) \ge \lambda_{\text{prior}}^L(\lambda_{\text{prior}}^L - \lambda_{\text{prior}}^{Q,1}) \sup_{\boldsymbol{\theta}, \mathbf{h} \in U} |\nabla_{\boldsymbol{\theta}, \mathbf{h}}^2 D_{KL}(q|p) (\nabla_{\boldsymbol{\theta}}^2 L)^{-1} \nabla_{\boldsymbol{\theta}} D_{KL}(q|p))|.$$

Доказательство. ТООО

Для анализа свойств структуры модели Γ введем понятие структурной сложности.

Определение 4. Структурной сложностью C_s модели назовем энтропию структур Γ , полученных из вариационного распределения q:

$$C_s = -\mathsf{E}_q \mathsf{E}_\Gamma \mathrm{log} p_{\mathbf{\Gamma}}.$$

TODO: пояснение

Теорема 11. Пусть $\lambda_{\text{train}} > 0$, $\boldsymbol{\theta}_1, \boldsymbol{\theta}_2$ — вариационные параметры, такие что $\boldsymbol{\theta}_1$ лежит внутри произведения симплексов структуры, $\boldsymbol{\theta}_2$ — на вершинах симплексов. Тогда

 $\lim_{\lambda_{\text{temp}}\to 0} \frac{L(\boldsymbol{\theta}_2)}{L(\boldsymbol{\theta}_1)} \to 0.$

Доказательство. ТООО

Теорема 12. Пусть $\lambda_{\text{train}} > 0$, $\boldsymbol{\theta}_1, \boldsymbol{\theta}_2$ — вариационные параметры, такие что $\boldsymbol{\theta}_1$ лежит внутри произведения симплексов структуры, $\boldsymbol{\theta}_2$ — в центре симплексов. Тогда

 $\lim_{\lambda_{\text{temp}} \to \infty} \frac{L(\boldsymbol{\theta}_2)}{L(\boldsymbol{\theta}_1)} \to 0.$

Доказательство. ТООО

TODO: вывод **Эксперимент: пример 1**

Эксперимент: пример 2