离散数学 II Discrete Mathematics II

封筠

fengjun@stdu.edu.cn

20-11

课程回顾

阿贝尔群和循环群:阿贝尔群的定义、循环群、生成元、元素的阶

5-7 陪集和拉格朗日定理

●学习本节要熟悉如下术语(4个):

积、逆、左陪集、代表元素

●要求:

掌握拉格朗日定理和2个推论

一、陪集

1、定义5-7.1 设<G,*>为群,A,B $\in \wp$ (G),且 $A\neq \varnothing$,B $\neq \varnothing$,记 $AB=\{a*b \mid a\in A,b\in B\}$ 和 $A^{-1}=\{a^{-1} \mid a\in A\}$ 分别称为A,B的积和逆。

再看5-4节P191例题1(验证<R, ★>是群)

*	0°	60°	120°	180°	240°	300°
0°	0°	60°	120°	180°	240°	300°
60°	60°	120°	180°	240°	300°	0°
120°	120°	180°	240°	300°	0°	60°
180°	180°	240°	300°	0°	60°	120°
240°	240°	300°	0°	60°	120°	180°
300°	300°	0°	60°	120°	180°	240°

$$A=\{0^{\circ},60^{\circ}\}$$

$$B=\{120^{\circ},240^{\circ}\}$$

求AB以及B-1

2、定义5-7.2 设<H, *>为<G, *>的子群, 那么对任一 $a \in G$,则集合 $\{a\}H$ (或H $\{a\}$)称 为由a所确定的H在G中的左陪集(left coset) (或右陪集 Right coset),简称为H关于a的左陪 集(右陪集),记为aH(或Ha)。元素a称为 陪集aH (或Ha)的代表元素。

为确定起见,下面只对左陪集进行讨论。

再看5-4节P191例题1(验证<R, ★>是群)

*	0°	60°	120°	180°	240°	300°
0°	0°	60°	120°	180°	240°	300°
60°	60°	120°	180°	240°	300°	0°
120°	120°	180°	240°	300°	$\boldsymbol{0}^{\boldsymbol{\circ}}$	60°
180°	180°	240°	300°	0°	60°	120°
240°	240°	300°	$0\degree$	60°	120°	180°
300°	300°	0°	60°	120°	180°	240°

<{0°,180°}, ★>是<R, ★>的子群,

求{0°,180°}关于60°的左陪集

例1设G=R×R,R为实数集,G上的一个二元运算+ 定义为

$$+=$$

显然, $, $+>$ 是一个具有幺元 <0 , $0>$ 的阿贝尔群。$

设 H={<x,y>|y=2x} 容易验证<H, +>是<G, +>的子群。

对于 $\langle x_0, y_0 \rangle \in G$,H关于 $\langle x_0, y_0 \rangle$ 的左陪集为 $\langle x_0, y_0 \rangle H$ 。

这个例子的几何意义为:

G是笛卡尔平面,H是通过原点的直线y=2x,陪集 $< x_0, y_0 > H$ 是通过点 $< x_0, y_0 > L$ 平行于H的直线。如下

图所示。

9

练习: 211页 (1)

练习211页(1)

设 $G = \{ \varphi \mid \varphi : x \to ax + b, 其 中 a, b \in R \perp a \neq 0, x \in R \}$

- 二元运算o是映射的复合。
- a)证明<G,o>是一个群。
- b)若S和T分别是由G中a=1和b=0的所有映射构成的集合,证明<S,o>和<T,o>都是子群。
- c)写出S和T在G中所有的左陪集。

证明: a)

1.对于任意的
$$\varphi_1$$
, $\varphi_2 \in G$, 设 $\varphi_1(x) = a_1 x + b_1$, $a_1 \neq 0$, $\varphi_2(x) = a_2 x + b_2$, $a_2 \neq 0$

$$\varphi_1 \circ \varphi_2(x) = \varphi_1(\varphi_2(x)) = \varphi_1(a_2x + b_2) = a_1(a_2x + b_2) + b_1$$

= $(a_1a_2)x + a_1b_2 + b_1$

因为 $a_1a_2 \in R$, $a_1b_2 + b_1 \in R$ 且 $a_1a_2 \neq 0$, 所以 $\varphi_1 \circ \varphi_2 \in G$ 满足封闭性。

$$2.$$
对于任意的 $\varphi_1, \varphi_2, \varphi_3 \in G$,有 $(\varphi_1 \circ \varphi_2) \circ \varphi_3(x) = (\varphi_1 \circ \varphi_2)(\varphi_3(x)) = \varphi_1(\varphi_2(\varphi_3(x)))$

而
$$\varphi_1 \circ (\varphi_2 \circ \varphi_3)(x) = \varphi_1(\varphi_2 \varphi_3(x)) = \varphi_1(\varphi_2(\varphi_3(x)))$$

所以 $(\varphi_1 \circ \varphi_2) \circ \varphi_3 = \varphi_1 \circ (\varphi_2 \circ \varphi_3)$ 满足结合性。

3.设 $\varphi_{a}(x) = x$,对于任意的 $\varphi \in G$,设 $\varphi(x) = ax + b$,则: $\varphi_e \circ \varphi(x) = \varphi_e(ax + b) = ax + b, \varphi \circ \varphi_e(x) = \varphi(x) = ax + b,$ 所以 φ_{α} o $\varphi = \varphi$ o φ_{α} ; 所以 $\varphi_{\alpha} = x$ 是幺元。 4.对于任意的 φ ∈ G,设 φ (x) = ax + b, $a \neq 0$, 于是存在 $\varphi^{-1} \in G$, $\notin \varphi^{-1}(x) = \frac{1}{-}x - \frac{b}{-}$. $\varphi \circ \varphi^{-1}(x) = \varphi(\varphi^{-1}(x)) = \varphi(\frac{1}{2}x - \frac{b}{2}) = a(\frac{1}{2}x - \frac{b}{2}) + b = x.$

$$\phi^{-1} \circ \varphi(x) = \varphi^{-1}(ax + b) = \frac{1}{a}(ax + b) - \frac{b}{a} = x$$
 所以 $\varphi^{-1} \circ \varphi = \varphi \circ \varphi^{-1} = \varphi_e$, 逆元存在。

综上可知 < G,o> 是一个群。

$$b$$
).对于任意的 φ_1 , $\varphi_2 \in S$, $\varphi_1(x) = x + b_1$, $\varphi_2(x) = x + b_2$, 有 $\varphi_2^{-1}(x) = x - b_2$,

$$\varphi_1 \circ \varphi_2^{-1}(\mathbf{x}) = \varphi_1(\varphi_2^{-1}(\mathbf{x})) = \mathbf{x} - \mathbf{b}_2 + \mathbf{b}_1 = \mathbf{x} + (\mathbf{b}_1 - \mathbf{b}_2) \in \mathbf{S}$$

$$\exists \exists \varphi_1 \circ \varphi_2^{-1} \in \mathbf{S}$$

因此, < S, o> 是 < G, o> 的子群。

对于任意的
$$\varphi_1$$
, $\varphi_2 \in T$, 设 $\varphi_1(x) = a_1 x$, $\varphi_2(x) = a_2 x$,

$$a_1 \neq 0, a_2 \neq 0, \overline{\uparrow} \varphi_2^{-1}(x) = \frac{1}{a_2} x$$

$$\varphi_1 \circ \varphi_2^{-1}(x) = \varphi_1(\varphi_2^{-1}(x)) = \varphi_1(\frac{1}{a_2}x) = a_1(\frac{1}{a_2}x) = \frac{a_1}{a_2}x, \frac{a_1}{a_2} \neq 0$$

所以 $\varphi_1 \circ \varphi_2^{-1} \in T$,因此< T,o>也是< G,o>的子群。

c).

S的左陪集应为 $\varphi \circ S, \varphi \in G$,

对于任意的 $\varphi \in G$, 设 $\varphi(x) = ax + b, a \neq 0$,那么

$$\varphi \circ S = \{ \varphi \circ \varphi' | \varphi' \in S \} = \{ \varphi \circ \varphi' | \varphi' : x \longrightarrow x + b', b' \in R, x \in R \}$$

$$= \{ \widetilde{\varphi} \mid \widetilde{\varphi} : x \to a(x+b') + b = ax + (ab'+b), b' \in R, x \in R \}$$

$$= \{ \widetilde{\varphi} \mid \widetilde{\varphi} : x \rightarrow ax + c, c \in R, x \in R \}$$

故,S 在G中的所有左陪集为 $\widetilde{\varphi} \mid \widetilde{\varphi} : x \to ax + c, c \in R, x \in R$ } $a \in R$.

T的 左陪集应为 $\varphi \circ T$, $\varphi \in G$.

对于任意的
$$\varphi \in G$$
, 设 $\varphi(x) = ax + b, a \neq 0$,那么

$$\varphi \circ T = \{ \varphi \circ \varphi' | \varphi' \in T \} = \{ \varphi \circ \varphi' | \varphi' : x \rightarrow a' \ x, a' \in R, x \in R \}$$

$$= \{ \widetilde{\varphi} \mid \widetilde{\varphi} : x \to a(a'x) + b, a' \in R, x \in R \}$$

$$= \{ \widetilde{\varphi} \mid \widetilde{\varphi} : x \rightarrow cx + b, c \in R, x \in R \}$$

故,T 在G中的所有左陪集为 $\widetilde{\varphi} \mid \widetilde{\varphi} : x \to cx + b, c \in R, x \in R$ } $b \in R$.

对于有限群,有下面一个很重要的结论。

- 二、拉格朗日定理
- 1、定理5-7.1 设<H, *>为<G, *>的子群, 那么
- (a) **R**={ <**a**,**b**>|**a**∈**G**,**b**∈**G**且**a**⁻¹***b**∈**H** }是**G**中的一个等价关系。对于**a**∈**G** ,若记

$$[a]_{R} = \{x | x \in G \bot \langle a, x \rangle \in R\},$$
则
$$[a]_{R} = aH$$

(b) 设<H, *>为有限群<G, *>的子群, |G|=n, |H|=m, 那么H的阶整除G的阶, 即 m|n。

证明思路:先证(a)

对于任意 $a \in G$,必有 $a^{-1} \in G$,使得 $a^{-1}*a = e \in H$,所以 $< a,a> \in R$ 。关系R是自反的。

若<a,b>∈R。则a⁻¹*b∈H,因为H是G的子群,故 $(a^{-1}*b)^{-1}=b^{-1}*a∈H$

所以, $\langle b,a \rangle \in \mathbb{R}$ 。关系R是对称的。

若<a,b>∈R,<b,c>∈R。则a⁻¹*b∈H,b⁻¹*c∈H,所以a⁻¹*b*b⁻¹*c=a⁻¹*c∈H,<a,c>∈R,关系R是传递的。 因此,证明了关系R是等价关系。

对于 $a \in G$,有 $b \in [a]_R$ 当且仅当 $< a,b > \in R$,即当且仅当 $a^{-1}*b \in H$,而 $a^{-1}*b \in H$ 就是 $b \in aH$ 。因此 $[a]_R = aH$ 。

再证(b)

由于R是G中的一个等价关系,所以必定将G划分成不同的等价类 $[a_1]_R$, $[a_2]_R$,…, $[a_k]_R$,使得

$$\mathbf{G} = \mathbf{U}[\mathbf{a}_{\mathbf{i}}]_{\mathbf{R}} = \mathbf{U}\mathbf{a}_{\mathbf{i}}\mathbf{H}$$
 $\mathbf{i} = \mathbf{1}$

又因为H中任意两个不同的元素 $h_1,h_2,a\in G$,必有 $a*h_1\ne a*h_2$,所以 $|a_iH|=|H|=m,i=1,2,...,k$ 。因此

k k

$$n=|G|=|\bigcup a_iH|=\sum |a_iH|=mk$$

$$i=1 \qquad i=1$$

所以H阶的整除G的阶m|n。

2、推论1 任何质数阶的群不可能有非平凡子群。

这是因为,如果有非平凡子群,那么该 子群的阶必定是原来群的阶的一个因子,这 就与原来群的阶是质数相矛盾。 3、推论2 设<G,*>为n阶有限群,那么对于任意a∈G,a的阶必是n的因子且必有 $a^n=e$,这里e是群<G,*>的幺元。如果n为质数,则<G,*>必是循环群。

这是因为,由G中的任意元素a生成的循环群 $H=\{a^i|i\in I,a\in G\}$

一定是G的一个子群。如果H的阶是m,那么由定理5-5.3可知a^m=e,即a的阶等于m。由拉格朗日定理必有n=mk,k∈N,因此,a的阶m是n的因子,且有

 $a^n=a^{mk}=(a^m)^k=e^k=e$

因为质数阶群只有平凡子群,所以,质数阶群必定 是循环群。 例题1设K={e,a,b,c},在K上定义二元运算*如下表所示。证明<K,*>是一个群,但不是循

环群。

*	e	a	b	С
e	e	a	b	c
a	a	e	c	b
b	b	c	e	a
С	c	b	a	e

证明 由上表可知,运算*是封闭的和可结合的。幺元是e,每个元素的逆元是自身,所以,<K,*>是群。因为a,b,c都是二阶元,故<K,*>不是循环群。

我们称<K,*>为Klein四元群。

例题2任何一个四阶群只可能是四阶循环 群或者是Klein四元群。

证明设四阶群为<{e,a,b,c},*>。其中e是幺元。当四阶群至少含有一个四阶元素时,这个群就是循环群。

当四阶群不含有四阶元素时,则由推论 2可知,除幺元e外,a,b,c的阶一定都是2。 a*b不可能等于a,b或e,否则将导致b=e,a=e 或a=b的矛盾,所以a*b=c。同样地有b*a=c 以及a*c=c*a=b,b*c=c*b=a。因此,这个群 就是Klein四元群。

求<R,★>的子群

求<F, ★>的子群

О	\mathbf{f}^{0}	\mathbf{f}^1	f^2	f ³	
\mathbf{f}^{0}	\mathbf{f}^0	\mathbf{f}^{1}	f^2	f^3	
\mathbf{f}^1	$\mathbf{f^1}$	f^2	f^3	\mathbf{f}^{0}	
\mathbf{f}^2	\mathbf{f}^2	\mathbf{f}^3	\mathbf{f}^0	\mathbf{f}^1	
f^3	f^3	\mathbf{f}^0	$\mathbf{f^1}$	f^2	

1阶子群<
$$\{f^0\}$$
, $o>$
2阶子群< $\{f^0\}$, $f^2\}$, $o>$
4阶子群< $\{f^0\}$, f^1 , f^2 , $f^3\}$, $o>$

求<G, ★>的子群

*	α	β	γ	δ
α	α	β	γ	δ
β	β	α	δ	γ
γ	γ	δ	β	α
δ	δ	γ	α	β

The End