學號:Bo4701232 系級:工管三 姓名:陳柔安

請實做以下兩種不同 feature 的模型,回答第(1)~(3)題:

- (1) 抽全部 9 小時內的污染源 feature 的一次項(加 bias)
- (2) 抽全部 9 小時內 pm2.5 的一次項當作 feature(加 bias)

備註:

- a. NR 請皆設為 o,其他的數值不要做任何更動
- b. 所有 advanced 的 gradient descent 技術(如: adam, adagrad 等) 都是可以用的 1. (2%)記錄誤差值 (RMSE)(根據 kaggle public+private 分數),討論兩種 feature 的影

	only PM2.5	all feature
Testing RMSE	6.5962445333	6.49556276496

用所有的污染源作為 feature 的誤差值較單純只用 PM2.5 的誤差值低,兩者大約差 0.1,可以從中推測預測 PM2.5 時與前 9 小時的 PM2.5 值十分有關聯,但若同時也抽取 其他的 feature 來輔助,能夠有更好的預測結果。

2. (1%)將 feature 從抽前 9 小時改成抽前 5 小時,討論其變化

	only PM2.5	all feature
Testing RMSE (9hr)	6.5962445333	6.49556276496
Testing RMSE (5hr)	6.74452277777	6.60684664643

只抽取前五小時的預測結果較抽取前九小時的預測結果差,無論是第一或第二個 model,但雖然少了將近一半的 feature 仍能預估出誤差值相近的結果,顯示其實主要 影響這個 model 的是前五小時的數據,再往前推四小時可能相關性沒那麼大,只是做 些微的調整。

3. (1%)Regularization on all the weight with λ =0.1、0.01、0.001、0.0001,並作圖 only PM2.5

	λ=0	λ=0.0001	λ=0.001	λ=0.01	λ=0.1
Training	6.123021522	6.123021529	6.123021593	6.123022233	6.123028634
	1	2	21	3	01
Testing	6.596244533	6.596244532	6.596244528	6.596244482	6.596244027
	3	79	24	65	17

all feature

	λ=0	λ=0.0001	λ=0.001	λ=0.01	λ=0.1
Training	5.722486734	5.710309483	5.726375006	5.724325164	5.722584137
	45	49	44	96	69
Testing	6.495562764	6.468259109	6.538133614	6.583917774	6.520540127
	96	85	48	88	77

4. (1%)在線性回歸問題中,假設有 N 筆訓練資料,每筆訓練資料的特徵 (feature) 為一向量 x^n ,其標註(label)為一存量 y^n ,模型參數為一向量 w (此處忽略偏權值 b),則線性回歸的損失函數(loss function)為 $\sum_{i=1}^{n} (\square^{n} - \square^{n} \cdot \square)^{2}$ 。若將所有訓練資料的特徵值以矩陣 $X = [x^1 \ x^2 \ ... \ x^N]^T$ 表示,所有訓練資料的標註以向量 $y = [y^1 \ y^2 \ ... \ y^N]^T$ 表示,請問如何以 X 和 y 表示可以最小化損失函數的向量 w ?請寫下算式並選出正確答案。

(其中 X^TX 為 invertible)

(a)
$$(X^TX)X^Ty$$

(b)
$$(X^{T}X)^{-0}X^{T}y$$

(c)
$$(X^{T}X)^{-1}X^{T}y$$

(d)
$$(X^{T}X)^{-2}X^{T}y$$

L=
$$\|y - Xw\|^2 = (y - Xw)^T (y - Xw,)$$

drifferentiate loss function to find minimum

L= $y^Ty - y^TXw - w^TX^Ty + w^TX^TXw$

= $y^Ty - 2w^TX^Ty + w^TX^TXw$
 $\frac{\partial L}{\partial w} = -2X^Ty + 2X^TXw = 0$
 $w = (X^TX)^{-1}X^Ty$