Optimistic Constraint Propagation

- Value function learning
 - Based on UCB
 - For deterministic MDPs
- Statistically plausible set = possible set
- Data from each state transition supplies two constraints

Optimistic Constraint Propagation

Context

- Deterministic episodic MDP
- Coherent reinforcement learning
- Rewards in [0,1]

• Bellman's equation

$$Q_t^*(x_t, a_t) = R_t(x_t, a_t) + \sup_{a \in \mathcal{A}} Q_{t+1}^*(x_{t+1}, a)$$

Algorithm

- Begin with set of possible value functions \mathcal{Q}_0
- Act according to optimistic values
- After each episode, further constrain \mathcal{Q}_ℓ

$$Q_{t}^{*}(x_{t}, a_{t}) \leq \sup_{Q' \in \mathcal{Q}_{\ell}} \left(R_{t}(x_{t}, a_{t}) + \sup_{a \in \mathcal{A}} Q'_{t+1}(x_{t+1}, a) \right)$$
$$Q_{t}^{*}(x_{t}, a_{t}) \geq \inf_{Q' \in \mathcal{Q}_{\ell}} \left(R_{t}(x_{t}, a_{t}) + \sup_{a \in \mathcal{A}} Q'_{t+1}(x_{t+1}, a) \right)$$

- Regret bound $\operatorname{Regret}(L) \leq H \dim_E(\mathcal{Q}_0)$
 - Depends on eluder dimension

Linear Combination of Features

• Features $\theta_k : \mathcal{S} \times \mathcal{A} \mapsto \Re$ $k = 1, \dots, K$

Set of possible functions

$$Q_0 = \left\{ \sum_{k=1}^K \theta_k \phi_k : \theta \in \Re^K \right\}^H$$

Eluder dimension

$$\dim_E(\mathcal{Q}_0) \le KH$$

Regret bound

$$Regret(L) \le KH^2$$

Beyond OCP

- Shortcomings of OCP
 - Does not accommodate agnostic learning
 - Slight misspecification can make regret explode
 - Does not accommodate stochastic MDPs

- Will develop TS-based approach
 - Accommodates stochastic MDPs
 - Seems to work in agnostic setting