Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-226. Вариант 19

- 1. Пусть $z = \frac{3}{2} + \frac{3\sqrt{3}i}{2}$. Вычислить значение $\sqrt[7]{z^3}$, для которого число $\frac{\sqrt[7]{z^3}}{\frac{\sqrt{3}}{2} \frac{i}{2}}$ имеет аргумент $\frac{13\pi}{42}$.
- 2. Решить систему уравнений:

$$\begin{cases} x(-11-13i) + y(-1+7i) = 257 + 21i \\ x(3+7i) + y(-10-14i) = 62 + 12i \end{cases}$$

- 3. Найти корни многочлена $-3x^6 24x^5 + 15x^4 + 390x^3 + 138x^2 96x + 6240$ и разложить его на множители над \mathbb{R} и \mathbb{C} , если известны корни $x_1 = 1 + 2i$, $x_2 = -5 + i$, $x_3 = 4$.
- 4. Даны 3 комплексных числа: -28+26i, -3+17i, 26-23i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1 = -4$, $z_2 = -2 2\sqrt{3}i$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z-3+i| < 1\\ |arg(z+5+i)| < \frac{5\pi}{6} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (1, -1, 1), b = (0, -4, 0), c = (5, -1, 6). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(-6, -8, 12) и плоскость P: 4x + 8y + 2z + 106 = 0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(-1,-10,1), $M_1(1,1,-2)$, $M_2(23,-3,-2)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} -7x - 26y + 6z + 132 = 0 \\ -9x - 6y - 13z + 13 = 0 \end{cases} \qquad L_2: \begin{cases} 2x - 20y + 19z + 3179 = 0 \\ -6x - 12y - 19z - 363 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L₁ и L₂.