Linnorm Package

March 5, 2016

GammaSim	This function simulates a dataset with gamma distribution based on the input dataset.

Description

This function simulates a dataset with gamma distribution based on the input dataset.

Usage

```
GammaSim(thisdata, NumRep = 3, NumDiff = 5000, NumFea = 20000,
    showinfo = FALSE, MaxLibSizelog2FC = 0.5)
```

Arguments

thisdata	Matrix:	The matrix	or	data	frame	that	contains	your	dataset.	Each	row i	s a

feature (ex. Gene) and each column is a replicate. Undefined values such as NA are not supported. It is assumed that all samples are replicates of the same

sample.

NumRep Integer: The number of replicates. This is half of the number of output samples.

Defaults to 3.

NumDiff Integer: The number of Differentially Changed Features. Defaults to 5000.

NumFea Integer: The number of Total Features. Defaults to 20000.

showinfo Logical: should we show data information on the console? Defaults to FALSE.

MaxLibSizelog2FC

Double: The maximum library size difference from the mean that is allowed, in terms of log 2 fold change. Set to 0 to prevent program from generating library

size differences. Defaults to 0.5.

Examples

```
simulateddata <- GammaSim(expMatrix)</pre>
```

2 LogNormSim

Linnorm	Linnorm Function	

Description

This function performs the Linear model and normality based normalization method (Linnorm).

Usage

```
Linnorm(datamatrix, showinfo = FALSE, method = "default",
    perturbation = 10, minZeroPortion = 2/3)
```

Arguments

datamatrix The matrix or data frame that contains your dataset. Each row is a feature (ex.

Gene) and each column is a sample. Undefined values such as NA are not sup-

ported.

method "default" or "lambda" The program will output the transformed matrix if the

method is "default". Otherwise, if the method is "lambda", the program will

output a lambda value.

perturbation Integer >= 2. This is the perturbation during the Iterated Local Search algorithm,

when we are searching for the global minimum of the "deviation parameter" measure for lambda (Please refer to the article). The range of the areas searched locally will be the exponents of this perturbation, from closest to furthest from the local minima found by using the whole range. Increasing this value will make the program much faster, but less capable of finding the global minimum.

Defaults to 10.

minZeroPortion double >=0, <= 1 Rows without at least this portion of non-zero values will not

be used in the calculation of normalizing parameter. Defaults to 2/3.

Examples

```
normalizedExp <- Linnorm(expMatrix, showinfo = "TRUE")</pre>
```

LogNormSim

This function simulates a dataset with log normal distribution based on the input dataset.

Description

This function simulates a dataset with log normal distribution based on the input dataset.

Usage

```
LogNormSim(thisdata, NumRep = 3, NumDiff = 5000, NumFea = 20000,
    showinfo = FALSE, MaxLibSizelog2FC = 0.5)
```

NBSim 3

Arguments

thisdata Matrix: The matrix or data frame that contains your dataset. Each row is a

feature (ex. Gene) and each column is a replicate. Undefined values such as NA are not supported. It is assumed that all samples are replicates of the same

sample.

NumRep Integer: The number of replicates. This is half of the number of output samples.

Defaults to 3.

NumDiff Integer: The number of Differentially Changed Features. Defaults to 5000.

NumFea Integer: The number of Total Features. Defaults to 20000.

showinfo Logical: should we show data information on the console? Defaults to FALSE.

MaxLibSizelog2FC

Double: The maximum library size difference from the mean that is allowed, in terms of log 2 fold change. Set to 0 to prevent program from generating library

size differences. Defaults to 0.5.

Examples

simulateddata <- LogNormSim(expMatrix)</pre>

NBSim This function simulates a dataset with negative binomial distribution

based on the input dataset.

Description

This function simulates a dataset with negative binomial distribution based on the input dataset.

Usage

```
NBSim(thisdata, NumRep = 3, NumDiff = 5000, NumFea = 20000,
showinfo = FALSE, MaxLibSizelog2FC = 0.5)
```

Arguments

thisdata Matrix: The matrix or data frame that contains your dataset. Each row is a

feature (ex. Gene) and each column is a replicate. Undefined values such as NA are not supported. It is assumed that all samples are replicates of the same

sample.

NumRep Integer: The number of replicates. This is half of the number of output samples.

Defaults to 3.

NumDiff Integer: The number of Differentially Changed Features. Defaults to 5000.

NumFea Integer: The number of Total Features. Defaults to 20000.

showinfo Logical: should we show data information on the console? Defaults to FALSE.

MaxLibSizelog2FC

Double: The maximum library size difference from the mean that is allowed, in terms of log 2 fold change. Set to 0 to prevent program from generating library size differences. Defaults to 0.5.

4 PoissonSim

Examples

```
simulateddata <- NBSim(expMatrix)</pre>
```

PoissonSim	This function simulates a dataset with poisson distribution based on
	the input dataset.

Description

This function simulates a dataset with poisson distribution based on the input dataset.

Usage

```
PoissonSim(thisdata, NumRep = 3, NumDiff = 5000, NumFea = 20000,
    showinfo = FALSE, MaxLibSizelog2FC = 0.5)
```

Arguments

thisdata	Matrix:	The matrix	or data	frame that	t contains	your dataset.	Each row is a
----------	---------	------------	---------	------------	------------	---------------	---------------

feature (ex. Gene) and each column is a replicate. Undefined values such as NA are not supported. It is assumed that all samples are replicates of the same

sample.

NumRep Integer: The number of replicates. This is half of the number of output samples.

Defaults to 3.

NumDiff Integer: The number of Differentially Changed Features. Defaults to 5000.

NumFea Integer: The number of Total Features. Defaults to 20000.

showinfo Logical: should we show data information on the console? Defaults to FALSE.

MaxLibSizelog2FC

Double: The maximum library size difference from the mean that is allowed, in terms of log 2 fold change. Set to 0 to prevent program from generating library size differences. Defaults to 0.5.

Examples

```
simulateddata <- PoissonSim(expMatrix)</pre>
```

Index

*Topic Binomial	Linnorm, 2
NBSim, 3	*Topic Raw
*Topic CPM	GammaSim, 1
Linnorm, 2	Linnorm, 2
*Topic Count	LogNormSim, 2
GammaSim, 1	NBSim, 3
Linnorm, 2	PoissonSim, 4
LogNormSim, 2	*Topic Simulation
NBSim, 3	GammaSim, 1
PoissonSim, 4	LogNormSim, 2
*Topic Expression	NBSim, 3
GammaSim, 1	PoissonSim, 4
Linnorm, 2	*Topic TPM
LogNormSim, 2	Linnorm, 2
NBSim, 3	*Topic distribution
PoissonSim, 4	GammaSim, 1
*Topic FPKM	LogNormSim, 2
Linnorm, 2	NBSim, 3
*Topic Gamma	PoissonSim, 4
GammaSim, 1	*Topic normalization
*Topic Linnorm	Linnorm, 2
Linnorm, 2	*Topic transformation
*Topic Log	Linnorm, 2
LogNormSim, 2	GammaSim, 1
*Topic Negative	Gaiiiia Gaiii, T
NBSim, 3	Linnorm, 2
*Topic Normal	LogNormSim, 2
LogNormSim, 2	
*Topic Parametric	NBSim, 3
Linnorm, 2	
*Topic Poisson	PoissonSim, 4
PoissonSim, 4	
*Topic RNA-seq	
GammaSim, 1	
Linnorm, 2	
LogNormSim, 2	
NBSim, 3	
PoissonSim, 4	
*Topic RPKM	