

Jornadas Argentinas de Informática

SII 2012 – Simposio Argentino de Informática Industrial Facultad de Informática de la UNLP

DESARROLLO E IMPLEMENTACIÓN DE UN SISTEMA DE DETECCIÓN DE FALLAS BASADO EN EL MÉTODO DEL GOLPETEO

Pablo T. Filoni - José E. Stuardi - Juan F. Giró

Departamento de Estructuras

Facultad de Ciencias Exactas Físicas y Naturales

Universidad Nacional de Córdoba

Córdoba, 28 de Agosto 2012

MOTIVACIÓN: ESTRUCTURAS SANDWICH

DESVENTAJAS

- Costo de fabricación
- > Problemas en uniones

NECESIDAD

BAJO ESFUERZOS

POR IMPACTOS

MÉTODO NO DESTRUCTIVO DE DETECCIÓN DE FALLAS

TAP TEST manual

- → bajo costo
- → rápida implementación
- → directo en servicio

NECESIDAD

PERFECCIONAR EL MÉTODO

Objetivos generales

IMPLEMENTAR METODOLOGÍA NO DESTRUCTIVA

RÁPIDA Y ECONÓMICA

RESOLVER PROBLEMAS DE TAP TEST MANUAL

INTRODUCIR

HERRAMIENTA COMPUTACIONAL

Introducción

Introducción

METODOLOGÍA DE TRABAJO 1) Generar vibración **MARTILLO MODAL ACONDICIONAMIENTO** 2) Generar señal 3) Software ANALISIS DE RESPUESTA

Desarrollo

INVESTIGACIÓN

Análisis teórico

Estudiar

Análisis experimental

Martillo modal

+

ASD

Desarrollo: Análisis teórico

Choque de dos cuerpos visco-elásticos

Desarrollo: Análisis teórico

MASA - RESORTE - AMORTIGUADOR

Ec. movimiento

Desarrollo: Análisis teórico

SOLUCIÓN GRAL. DE EC. DE MOVIMIENTO

$$m\frac{d^2x(t)}{dt^2} + c\frac{dx(t)}{dt} + kx(t) = 0$$

TRANSFORMADA DE LAPLACE

- > Ec. Diferencial ordinaria (ODE)
- > Segundo orden
- Coeficientes constantes
- > Homogenea
- Lineal

$$x(t) = A_0 e^{-\zeta \omega_n t} \sin(\omega_d t + \varphi_d)$$

$$T_d = \frac{2\pi}{\omega_d}$$

1º ETAPA: Cadena de medición

1º Transductor

2º Acondicionamiento

3º Digitalización-

4º Registro

HP 4 canales

Transductor: MARTILLO MODAL

Comercial

Brüel & Kjaer

Endevco

National Instruments

aprox. £ 600

Experimental

DESARROLLO

Prototipo 1

Prototipo 2

2º ETAPA: probetas

Probeta 1: FALLA TIPO 1

Probeta 2: FALLA TIPO 2

2º ETAPA: imágenes de laboratorio

3º ETAPA: software

Parámetro característico 1: longitud N

Parámetro característico 2: tiempos 0-10%

Parámetro característico 3: frec. de corte

Desarrollo: programa DRDG

Desarrollo: DRDG

Conclusiones

- ➤ Se desarrolló de un sistema de calidad de materiales compuestos: hardware + software. Categoría NDT.
- Se evaluó el remplazó de Martillo Modal comercial por hardware de bajo costo
- Parámetro relevante en detección de fallas: frecuencia de corte del pulso de impacto
- ➤ Parámetro de identificación de fallas: tiempos 0 10%
- Software *DRDG*: entrega resultados instantáneos. Evita subjetividad o criterio de operador

GRACIAS POR SU ATENCIÓN...