

19 BUNDESREPUBLIK

Offenlegungsschrift

6) Int. Cl.6: B 60 K 28/10 B 60 T 8/00

DE 195 36 620 A 1

DEUTSCHES PATENTAMT

2 Aktenzeichen:

195 36 620.4

2 Anmeldetag:

30. 9.95

43 Offenlegungstag:

3. 4. 97

7) Anmelder:

Bayerische Motoren Werke AG, 80809 München, DE

② Erfinder:

Sagan, Erich, Dr., 85716 Unterschleißheim, DE; Poguntke, Oliver, 81827 München, DE; Herb, Eugen, 80798 München, DE

Für die Beurteilung der Patentfähigkeit in Betracht zu ziehende Druckschriften:

DE 44 19 650 A1
DE 43 21 571 A1
DE 42 43 717 A1
DE 41 40 239 A1
DE 41 24 974 A1
DE 41 21 954 A1
EP 03 92 165 A1

(5) Verfahren zur Verbesserung der Querstabilität bei Kraftfahrzeugen

Bei einem Verfahren zur Verbesserung der Querstabilität bei Kraftfahrzeugen werden fahrzeugverzögernde Maßnahmen ergriffen, wenn die Amplitude einer querdynamischen, innerhalb eines vorgegebenen Frequenzbandes schwingenden Fahrzeuggröße einen vorgegebenen Grenzwert überschreitet. Die Erfindung bezieht sich auf ein Verfahren zur Verbesserung der Querstabilität bei Kraftfahrzeugen.

Beispielsweise aus der EP 0 392 165 B1 ist ein Verfahren zur Verbesserung der Querstabilität bei Kraftfahrzeugen bekannt, das insbesondere während einer Kurvenfahrt zur Wirkung kommt. Zur Verhinderung querdynamisch kritischer Fahrzustände werden in Abhängigkeit vom Lenkwinkel, von der Fahrzeuggeschwindigkeit und von querdynamischen Fahrzeuggrößen, wie der Gierwinkelgeschwindigkeit und der Querbeschleunigung des Fahrzeuges, Steuersignale für fahrzeugstabilisierende Bremsmoment- und/oder Antriebsmoment- eingriffe abgegeben.

Bei dem aus der EP 0 392 165 B1 bekannten Verfahren wird jedoch nicht näher auf die Steuersignale für einen Bremsmoment- und/oder Antriebsmomenteneingriff eingegangen. Darüber hinaus unterscheidet das aus der EP 0 392 165 B1 bekannte Verfahren bei der Regelung querdynamischer Zustandsgrößen zur Einhaltung eines stabilen Fahrzustandes nicht zwischen einem Fahrzeug mit oder ohne Anhänger. Die Fahreigenschaften eines Fahrzeuges mit Anhänger unterscheiden sich jedoch von den Fahreigenschaften eines Fahrzeuges ohne Anhänger in dem Maße, daß eine Regelung nach dem aus der EP 0 392 165 B1 bekannten Verfahren nicht für beide Fahreigenschaften optimal ausgelegt werden kann

Es ist Aufgabe der Erfindung, ein Verfahren eingangs 30 genannter Art derart zu verbessern, daß die Querstabilität eines Kraftfahrzeuges auch im Anhängerbetrieb erhöht wird.

Diese Aufgabe wird durch die kennzeichnenden Merkmale des Patentanspruchs 1 gelöst.

Erfindungsgemäß werden, insbesondere durch Bremsmoment- und/oder Antriebsmomenteneingriffe, fahrzeugverzögernde Maßnahmen ergriffen, wenn die Amplitude einer querdynamischen, innerhalb eines vorgegebenen Frequenzbandes schwingenden Fahrzeuggröße einen vorgegebenen Grenzwert überschreitet.

Dieser Erfindung liegt die Erkenntnis zugrunde, daß querdynamische Fahrzeuggrößen, wie die Querbeschleunigung und die Gierwinkelgeschwindigkeit, ein typisches Schwingungsverhalten aufweisen, wenn sich 45 das Fahrzeug mit Anhänger seiner Stabilitätsgrenze nähert. Vor Erreichen der Stabilitätsgrenze schwingen die querdynamischen Fahrzeuggrößen, wie insbesondere die Querbeschleunigung und die Gierwinkelgeschwindigkeit, mit einer Frequenz innerhalb eines Frequenz- 50 bandes von ca. 0,5 bis 1,1 Hz bei etwa gleichbleibender Amplitude um die Nullage. Bei stärker werdender Instabilität steigen die Amplituden dieser querdynamischen Fahrzeuggrößen an. Ein vorgegebener Grenzwert für eine querdynamische Fahrzeuggröße, die innerhalb des 55 sich als typisch erwiesenen, vorgegebenen Frequenzbandes schwingt, wird in etwa entsprechend einer Stabilitätsgrenze definiert. Hierbei wird davon ausgegangen, daß der Lenkraddrehwinkel näherungsweise konstant gehalten wird. Bei überschrittener Stabilitätsgrenze 60 werden Maßnahmen zur Fahrzeugverzögerung, wie z. B. die Reduzierung des Drosselklappenöffnungswinkels zur Antriebsmomentenreduzierung und/oder die Einspeisung von Bremsdruck an den Kraftfahrzeugrädern zur Bremsmomenterhöhung, ergriffen. Durch die- 65 ses erfindungsgemäße Verfahren werden speziell bei Fahrzeugen im Anhängerbetrieb automatisch querdynamisch kritische Fahrsituationen vermieden, ohne an

ein das erfindungsgemäße Verfahren ausführendes elektronisches Steuergerät die Information übermitteln zu müssen, ob ein Anhänger vorhanden ist oder nicht.

Eine vorteilhafte Ausgestaltung der Erfindung ist der Gegenstand des Patentanspruchs 2.

Erfindungsgemäß werden fahrzeugverzögernde Maßnahmen ergriffen, wenn die Amplitude einer querdynamischen, innerhalb des vorgegebenen Frequenzbandes schwingenden Fahrzeuggröße innerhalb einer vorgegebenen Zeit den vorgegebenen Grenzwert mehrmals überschreitet. Die Anzahl der vorgegebenen Grenzwertüberschreitungen einer Amplitude sowie die vorgegebene Zeit hierfür werden entsprechend dem vorgegebenen Frequenzband abgestimmt. Wird beispielsweise der Betrag der Amplitude, d. h. sowohl die Amplitude der negativen als auch die Amplitude der positiven Schwingung mit dem vorgegebenen Grenzwert verglichen, muß die vorgegebene Zeit für ein zweimaliges Überschreiten des Grenzwertes mindestens halb so groß wie die Periodendauer der höchsten Frequenz des vorgegebenen Frequenzbandes sein. Sollen die Amplituden von zwei Fahrzeuggrößen, wie z. B. der Gierwinkelgeschwindigkeit und der Querbeschleunigung, beachtet werden, muß die vorgegebene Zeit zusätzlich um die Phasenverschiebung der beiden schwingenden Fahrzeuggrößen erweitert werden. Diese erfindungsgemäße Ausgestaltung verhindert, daß fahrzeugverzögernde Maßnahmen bereits ergriffen werden, wenn nur eine kurzzeitige Schwingbewegung des Fahrzeuges im Anhängerbetrieb vorliegt. Hierdurch wird die Regelhäufigkeit im Zusammenhang mit den fahrzeugverzögernden Maßnahmen nur auf wirklich auftretende Instabilitäten begrenzt.

Eine weitere vorteilhafte Ausgestaltung der Erfin-35 dung ist der Gegenstand des Patentanspruchs 3.

Erfindungsgemäß werden fahrzeugverzögernde Maßnahmen erst dann ergriffen, wenn eine Zunahme der Amplitude zumindest einer querdynamischen schwingenden Fahrzeuggröße über der Zeit festgestellt wird. Auch diese Maßnahme führt zu einer Reduzierung der Regelhäufigkeit bezogen auf die fahrzeugverzögernden Maßnahmen.

Eine weitere vorteilhafte Ausgestaltung der Erfindung ist der Gegenstand des Patentanspruchs 4.

Erfindungsgemäß werden die fahrzeugverzögernden Maßnahmen nur dann ergriffen, wenn eine Lenkbewegungsgröße, wie beispielsweise der Lenkraddrehwinkel, eine vorgegebene Schwelle, z. B. einen vorgebenen Lenkraddrehwinkeländerungsgrad, nicht überschreitet. Diese erfindungsgemäße Ausgestaltung verhindert einen fahrzeugverzögernden Eingriff, wenn durch den Fahrer bewußt ein Fahrzeug- bzw. Anhängerschwingen, wie z. B. beim slalomartigen Ausweichen von Hindernissen, provoziert wird.

In der Zeichnung ist ein Ausführungsbeispiel der Erfindung dargestellt. Es zeigt:

Fig. 1 Mögliche Ein- und Ausgangssignale einer das erfindungsgemäße Verfahren durchführenden Fahrdynamik-Steuereinheit,

Fig. 2 Typische Schwingverhalten der querdynamischen Fahrzeuggrößen Gierwinkelgeschwindigkeit und Querbeschleunigung

Fig. 3 Einen möglichen Verlauf des Lenkraddrehwinkels über der Zeit und

Fig. 4 Einen möglichen Logikablaufplan nach dem erfindungsgemäßen Verfahren.

Eine Fahrdynamik-Steuereinheit 1 erhält als Eingangssignale den Lenkraddrehwinkel δ_H , die Fahrzeug-

Querschleunigung Y, die Fahrzeug-Gierwinkelgeschwindigkeit Y sowie optional ein beliebiges Sensorsignal, das der Fahrdynamik-Steuereinheit 1 mitteilt, ob ein Anhänger vorhanden ist oder nicht (Anhänger ja/ nein). Das erfindungsgemäße Verfahren in Abhängigkeit von den Eingangssignalen findet innerhalb der elektronischen Fahrdynamik-Steuereinheit 1 statt. Liegen die Bedingungen vor, nach denen fahrzeugverzögernde Maßnahmen ergriffen werden sollen, werden die fahrzeugverzögernden Maßnahmen über die Ausgangssi- 10 gnale der Fahrdynamik-Steuereinheit 1 vorgenommen. Beispielsweise sind die Ausgangssignale Befehle zur Reduzierung des Drosselklappenöffnungswinkels DK, und/oder Befehle zur Erhöhung des Bremsdruckes in den Bremsvorrichtungen BV der Vorderräder und in 15 den Bremsvorrichtungen BH der Hinterräder.

In Fig. 2 sind die zeitlichen Verläufe der Querbeschleunigung Y und der Gierwinkelgeschwindigkeit Y über der Zeit bei überschrittener Stabilitätsgrenze dargestellt. Fahrzeugverzögernde Maßnahmen werden ergriffen, wenn entweder der Betrag der Amplitude der Gierwinkelgeschwindigkeit Y den Grenzwert Gy oder die Amplitude Y der Querbeschleunigung Y den Grenzwert Gy überschreitet. Alternativ kann auch das Überschreiten beider Grenzwerte Gy und Gy als Voraussetzung für fahrzeugverzögernde Maßnahmen vorgegeben werden.

Vorzugsweise werden fahrzeugverzögernde Maßnahmen erst dann ergriffen, wenn innerhalb einer vorgegebenen Zeit T' mehrere aufeinanderfolgende Ampli- 30 tuden einer querdynamischen Fahrzeuggröße den ihr zugeordneten vorgegebenen Grenzwert überschreiten. Hierbei können entweder lediglich die Amplituden der positiven Schwingungen oder aber auch die Beträge aller Amplituden, also sowohl der negativen als auch der 35 positiven Schwingungen, ausgewertet werden. Im dargestellten Beispiel nach Fig. 2 entspricht die vorgegebene Zeit T' mindestens der halben Periodendauer T/2 einer Schwingung der Querbeschleunigung Y. Die vorgegebene Zeit T' = T/2 beginnt im dargestellten Bei- 40 spiel bei dem Minimum einer Schwingung und endet im darauffolgenden Maximum der Schwingung. Liegen innerhalb dieser vorgegebenen Zeit T' die aufeinanderfolgenden Amplituden Y_n und Y_{n+1} oberhalb des Grenzwertes Go, können bereits fahrzeugverzögernde Maßnahmen eingeleitet werden. Alternativ kann jedoch die vorgegebene Zeit T' um die Zeitdauer Tw der Phasenverschiebung zwischen den Schwingungen der Querbe-schleunigung Ÿ und der Gierwinkelgeschwindigkeit Ψ erweitert werden. Innerhalb dieser erweiterten vorge- 50 gebenen Zeit T' = T/2 + Tw wird zusätzlich überprüft ob auch die Amplituden n und n+1 der Gierwinkelgeschwindigkeit Y den vorgegebenen Grenzwert Gu überschreiten. Selbstverständlich kann die vorgegebene Zeit T' für die Auswertung einer Vielzahl von aufeinan- 55 derfolgenden Amplituden auch über die Zeitdauer T/2 bzw. $T/2 + T_{\psi}$ verlängert werden.

Alternativ oder zusätzlich zur Auswertung der Amplituden bezüglich der Überschreitung der Grenzwerte G γ und G ψ können auch die Amplitudenverhältnisse 60 der aufeinanderfolgenden Amplituden einer querdynamischen schwingenden Fahrzeuggröße dahingehend überprüft werden, ob eine Zunahme der Amplituden über der Zeit t feststellbar ist. Somit werden fahrzeugverzögernde Maßnahmen dann ergriffen, wenn das Amplitudenverhältnis $|\hat{\mathbf{Y}}_{n+1}|/|\hat{\mathbf{Y}}_n$ der Querbeschleunigung $\hat{\mathbf{Y}}$ und/oder das Amplitudenverhältnis $|\mathbf{n}_{n+1}|/|\mathbf{n}_n|$ der Gierwinkelgeschwindigkeit $\hat{\mathbf{Y}}$ eine vorgegebene

Schwelle S überschreiten.

In Fig. 3 ist der zeitliche Verlauf des Lenkraddrehwinkels δ_H aufgetragen. Erfindungsgemäß werden fahrzeugverzögernde Maßnahmen nur dann ergriffen, wenn die Änderung des Lenkraddrehwinkels δ_H innerhalb der vorgegebenen Zeit T' (z. B. T' = T/2 + T $_{\psi}$) d. h. der Auswertezeit für die Amplituden und/oder Amplitudenverhältnisse, einen vorgegebenen Änderungsbetrag $|\Delta\delta_H|$ nicht überschreitet. Eine derartige Auswertung der Lenkbewegungsgröße δ_H ist erforderlich, um fahrzeugverzögernde Maßnahmen zu verhindern, wenn durch die Lenkbewegungsgröße ersichtlich ist, daß der Fahrer ein Fahrzeug- bzw. Anhängerschwingen, wie z. B. beim slalomartigen Ausweichen von Hindernissen, provoziert.

In Fig. 4 ist ein möglicher Logikablaufplan nach dem erfindungsgemäßen Verfahren dargestellt. Optional kann für den Beginn des Logikablaufplanes ein Signal ausgewertet werden, das die Information enthält, ob am Fahrzeug ein Anhänger angekoppelt ist oder nicht. Diese Information ist jedoch nicht zwingend notwendig, da ein Schwingen der querdynamischen Fahrzeuggrößen mit einer Frequenz im typischen Frequenzbereich, ca. 0,5 bis 1,1 Hz, zumindest in der Nähe der Stabilitätsgrenze auf einen Anhängerbetrieb schließen läßt. Daher wird zur Erkennung des Anhängerbetriebs in einem ersten Schritt überprüft, ob innerhalb der vorgegebenen Zeit T' = T/2 die Amplituden \hat{Y}_n und \hat{Y}_{n+1} der Querbeschleunigung Y mit einem Wert oberhalb des Grenzwertes Gy aufeinanderfolgen. Alternativ oder zusätzlich kann diese Abfrage auch auf die Gierwinkelgeschwindigkeit \(\Psi \) angewendet werden.

Im zweiten Schritt wird überprüft, ob das Verhältnis einer Amplitude zur vorhergehenden Amplitude der gleichen Fahrzeuggröße, in diesem Fall sowohl für die Querbeschleunigung Y als auch für die Gierwinkelgeschwindigkeit Y, einen vorgegebenen Schwellwert S überschreitet (die Schwellwerte S für beide Fahrzeuggrößen können auch unterschiedlich sein).

Ist auch diese Bedingung erfüllt, wird in einem dritten Schritt überprüft, ob der Lenkraddrehwinkel δ_H sich innerhalb der Auswertezeit T' (= $T/2 + T_{\psi}$) nicht mehr als um den Betrag $|\Delta \delta_H|$ ändert. Ist auch diese Bedingung erfüllt, werden die fahrzeugverzögernden Maßnahmen eingeleitet.

Durch dieses erfindungsgemäße Ausführungsbeispiel werden querdynamisch kritische Fahrzustände unabhängig von der gefahrenen Geschwindigkeit vermieden.

Patentansprüche

- 1. Verfahren zur Verbesserung der Querstabilität bei Kraftfahrzeugen, dadurch gekennzeichnet, daß fahrzeugverzögernde Maßnahmen ergriffen werden, wenn die Amplitude (, Ÿ) einer querdynamischen, innerhalb eines vorgegebenen Frequenzbandes schwingenden Fahrzeuggröße (Y, Y) einen vorgegebenen Grenzwert (Gy, G?) überschreitet.
- 2. Verfahren nach Patentanspruch 1, dadurch gekennzeichnet, daß fahrzeugverzögernde Maßnahmen ergriffen werden, wenn die Amplitude (, Υ) einen vorgegebenen Grenzwert (Gψ, Gγ) innerhalb einer vorgegebenen Zeit (T') mehrmals überschreitet.
- Verfahren nach Patentanspruch 1 oder 2, dadurch gekennzeichnet, daß fahrzeugverzögernde Maßnahmen ergriffen werden, wenn die Amplitude

(n, n+1; Ŷn, Ŷn+1) über der Zeit (t) zunimmt.

4. Verfahren nach einem der Patentansprüche 1 bis
3, dadurch gekennzeichnet, daß fahrzeugverzögernde Maßnahmen ergriffen werden, solange eine Lenkbewegungsgröße (δη) nicht eine vorgegebene
5 Schwelle (Δδη) überschreitet.

Hierzu 3 Seite(n) Zeichnungen

- Leerseite -

•

Fig. 3

Fig. 1

Nummer: Int. Cl.⁸: Offenlegungstag: **DE 195 36 620 A1 B 60 K 28/10**3. April 1997

Nummer: Int. Cl.⁶: **DE 195 36 620 A1 B 60 K 28/10**3. April 1997

Fig. 4