Федеральное агентство по образованию МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ

(Национальный исследовательский университет)

Кафедра 106

КУРСОВАЯ РАБОТА

по дисциплине «Динамика полета»

Выполнил Москвитин Андрей Студент гр. М1О-403Б-18

Подпись:

Москва

РЕФЕРАТ

Курсовая работа по дисциплине «Динамика полета» 23 с., 0 рис., 0 источн., 12 табл. РАСЧЕТ ЛЁТНО-ТЕХНИЧЕСКИХ ХАРАКТЕРИСТИК.

Объектами исследования является расчет лётно-технических, взлётно-посадочных характеристик, траектории полета, диаграммы транспортных возможностей, характеристик продольной и статической устойчивости и управляемости самолета ИЛ-76

Цель работы – закрепление и систематизация знаний по динамике полета, а также овладение навыками инженерной работы в части расчета летных и пилотажных характеристик самолета.

содержание

1.	Ис	кодные данные	4
2.	Pac	счет лётно – технических характеристик самолета	5
3.	Pac	счет траектории полета	17
	3.1.	Расчет характеристик набора высоты	17
	3.2.	Расчет характеристик крейсерского полета	18
	3.3.	Расчет характеристик участка снижения	18
	3.4.	Расчет диаграммы транспортных возможностей	19
	3.5.	Расчет взлетно-посадочных характеристик самолета	19
	3.6.	Расчет характеристик маневренности самолета	21
	3.7.	Расчет характеристик продольной статической устойчивости и управляемости	22

1. Исходные данные

Таблица 1.1 — Исходные данные для самолета ИЛ-76

Ограничение режима полета	$M \le 0.8; V_i \le 650 \frac{\text{km}}{\text{q}}$
m_0 , тонн	140
$ar{m}_{ ext{ iny ILH}}$	0.26
$ar{m}_{\scriptscriptstyle m T}$	0.39
$ar{m}_{ ext{ch}}$	0.46
$ar{P}_0$	0.315
$Ce_0, rac{\kappa r}{\pi^{ m ah*y}}$	0.54
$rac{n_{ m дB}}{n_{ m PeB}}$	4/2
$P_s, \frac{\mathrm{Aah}}{\mathrm{M}^2}$	535
b_a , м	140
$ar{L}_{ ext{ro}}$	3.90

2. Расчет лётно - технических характеристик самолета

Определим следующие характеристики самолета:

- 1. Зависимости от числа M (скорости) и H (высоты) полета результаты сведем в таблицы 2.1-2.7:
 - располагаемой и потребной для горизонтального установившегося полета тяги силовой установки,
 - энергетической скороподъемности,
 - часового расхода топлива,
 - километрового расхода топлива.

2. Зависимости от высоты:

- максимальной энергетической скороподъемности,
- минимального часового расхода топлива,
- минимального километрового расхода топлива,
- минимального и максимального числа M (скорости) полета (с учетом ограничений по безопасности полета),
- \bullet числа M (скорости) полета, соответствующего минимальной потребной тяги,
- ullet числа M (скорости) полета, соответствующего максимальной энергетической скороподъемности,
- скорости полета, соответствующей минимальному часовому расходу топлива,
- скорости полета, соответствующему минимальному километровому расходу топлива

3. Статический и практический потолки самолета.

Соотношения для расчета: Узловые точки по числу Маха:

$$M = [0.20.30.40.50.60.70.80.90.95]$$

$$V = Ma_H, (2.1)$$

где a_H — скорость звука на высоте H.

$$q = \frac{\rho_H V^2}{2},\tag{2.2}$$

где ρ_H — плотность воздуха на высоте H.

$$C_{y_n} = \frac{\bar{m}p_s 10}{q},\tag{2.3}$$

где $\bar{m} = 0.95$ — относительная масса самолета, p_s — удельная нагрузка на крыло.

$$C_{x_n}(C_y, M) = C_{x_m}(M) + A(M) \left[C_{y_n} - C_{y_m}(M) \right]^2$$
(2.4)

где C_{y_m} — коэффициент подъемной силы при $C_x = C_{x_m}$, C_{x_m} — минимальный коэффициент лобового сопротивления, A — коэффициент отвала поляры.

$$K_n = \frac{C_{y_n}}{C_{x_n}} \tag{2.5}$$

$$P_n = \frac{\bar{m}m_0g}{K_n} \tag{2.6}$$

$$P_p(M,H) = \bar{P}_0 m_0 g \tilde{P}(H,M) \tag{2.7}$$

$$n_x = \Delta \bar{P} = \frac{(P_p - P_n)}{\bar{m}m_0 q} \tag{2.8}$$

$$V_u^* = \Delta \bar{P}V \tag{2.9}$$

$$\bar{R} = \frac{P_n}{P_n} \tag{2.10}$$

$$q_{\mathbf{q}} = Ce(M, H, \bar{R})P_n = Ce_0\tilde{C}e(H, M)\hat{C}e_{\mathbf{pp}}(R)P_n$$
(2.11)

$$q_{\text{\tiny KM}} = \frac{q_{\text{\tiny q}}}{3.6V},$$
 (2.12)

где $q_{\scriptscriptstyle \rm H}$ — часовой расход топлива, $q_{\scriptscriptstyle \rm KM}$ — километровый расход топлива.

Для построение таблицы (TODO: стр 40 в курсовой)

- 1. Определим M_{\min_P} и M_{\max_P} , как точка пересечения графиков $P_n(M,H_i)$ и $P_p(M,H_i)$ рисунки @@@
- 2. Минимально допустимое число $M_{\min_{\text{доп}}}$, как точка пересечения графиков $C_{y_n}(M,H_i)$ и $C_{y_{\text{доп}}}(M)$ рисунки @@@
- 3. Максимально допустимое число M полета по условиям безопасности определяется как:

$$M_{\rm max_{\rm доп}} = \min\left\{M_{\rm пред}, M(V_{i_{\rm max}}\right\},$$
 где $M(V_{i_{\rm max}}) = \frac{V_{i_{\rm max}}\sqrt{\Delta^{-1}}}{3.6a_H},\, \sqrt{\Delta^{-1}} = \sqrt{\frac{\rho_0}{\rho_H}}$

Таблица 2.1 — Результаты расчета для высоты H=0 км

$b \qquad \Lambda$	b		\mathcal{O}_{i}	C_{y_n}	K_n	$P_n * 10^{-5}$	$P_p * 10^{-5}$	$\Delta ar{p}(n_x)$		$ar{R}_{ ext{kp}}$	$q_{ m H}$	$q_{\scriptscriptstyle m KM}$
$\frac{M}{C}$ $\frac{KM}{4}$ $\frac{H}{M^2}$ $ -$		$\frac{H}{\mathrm{M}^2}$ — —	I	1		H	H	I	C IX	1	<u>т</u>	$\frac{\mathrm{K}\Gamma}{\mathrm{K}\mathrm{M}}$
34.03 122.50 709. 7.17 2.063	709. 7.17	7.17		2.063		6.325	4.045	-0.17	-5.95	1.56	34701.	283.26
68.06 245.01 2837. 1.79 8.400	2837. 1.79	1.79		8.400		1.553	3.798	0.17	11.71	0.41	11821.	48.25
102.09 367.51 6383. 0.8 14.970	6383. 0.8	0.8		14.970		0.872	3.569	0.21	21.11	0.24	8315.	22.62
136.12 490.02 11348. 0.45 14.968	11348. 0.45	0.45		14.968		0.872	3.396	0.19	26.34	0.26	8619.	17.59
170.15 612.52 17731. 0.29 11.505	17731. 0.29	0.29		11.505		1.134	3.279	0.16	27.97	0.35	10763.	17.57
204.17 735.03 25533. 0.2 8.379	25533. 0.2	0.2		8.379		1.557	3.201	0.13	25.73	0.49	13413.	18.25
238.20 857.53 34754. 0.15 6.217	34754. 0.15	0.15		6.217		2.099	3.167	0.08	19.50	0.66	15761.	18.38
272.23 980.04 45393. 0.11 4.606	45393. 0.11	0.11		4.606		2.833	3.158	0.03	62.9	6.0	20914.	21.34
306.26 1102.54 57450. 0.09 3.018	57450. 0.09	0.09		3.018		4.323	3.193	-0.09	-26.53	1.35	34825.	31.59
323.28 1163.79 64011. 0.08 1.97	64011. 0.08	0.08		1.97		6.624	3.219	-0.26	-84.37	2.06	53864.	46.28

Таблица 2.2 — Результаты расчета для высоты H=2 км

$q_{ ext{\tiny T}}$	$\frac{\mathrm{K}\Gamma}{\mathrm{q}} \qquad \frac{\mathrm{K}\Gamma}{\mathrm{K}\mathrm{M}}$	43913. 366.82	12280. 51.29	8608. 23.97	7858. 16.41	9006. 15.05	11002. 15.32	12882. 15.37	15478. 16.16	26469. 24.57	20.00
$ar{R}_{ ext{Kp}}$	1	2.19	0.56	0.30	0.27	0.32	0.44	0.59	0.79	1.2	1 00
V_y^*	C K	-11.22	7.75	17.46	23.01	25.51	24.74	21.07	12.22	-13.04	7 1 1
$\Delta ar{p}(n_x)$	I	-0.34	0.12	0.18	0.17	0.15	0.12	0.09	0.05	-0.04	0.10
$P_p * 10^{-5}$	H	3.708	3.483	3.266	3.085	2.963	2.877	2.847	2.838	2.86	0 010
$P_n * 10^{-5}$	H	8.108	1.962	0.983	0.827	0.961	1.259	1.666	2.239	3.428	0 10
K_n	1	1.609	6.649	13.276	15.771	13.570	10.363	7.832	5.828	3.806	007
C_{y_n}	1	9.13	2.28	1.01	0.57	0.37	0.25	0.19	0.14	0.11	0.10
b	$\frac{H}{^{\mathrm{M}^2}}$	557.	2227.	5011.	8908.	13919.	20043.	27281.	35632.	45097.	E001
Λ	KM 4	119.71	239.42	359.13	478.84	598.55	718.26	837.98	957.69	1077.4	1107 05
Λ	$\frac{M}{C}$	33.25	66.51	92.66	133.01	166.26	199.52	232.77	266.02	299.28	915 00
M	I	0.10	0.20	0.30	0.40	0.5	09.0	0.7	0.80	6.0	120

Таблица 2.3 — Результаты расчета для высоты $H=4~\mathrm{km}$

7	Λ	b	C_{y_n}	K_n	$P_n * 10^{-5}$	P_p*10^{-5}	$\Delta ar{p}(n_x)$	V_y^*	$ar{R}_{ m kp}$	$q_{ m H}$	$q_{\scriptscriptstyle m KM}$
C	$\frac{\mathrm{KM}}{\mathrm{q}}$	$\frac{H}{{ m M}^2}$	I	I	H	H	I	$\frac{M}{C}$		KT 4	$\frac{\mathrm{K}\Gamma}{\mathrm{K}\mathrm{M}}$
32.46	116.85	431.	11.78	1.240	10.522	3.357	-0.55	-17.82	3.13	56927.	487.17
64.92	233.70	1726.	2.95	5.146	2.536	3.093	0.04	2.77	0.82	13116.	56.12
97.38	350.56	3883.	1.31	11.062	1.18	2.89	0.13	12.77	0.41	.0906	25.84
129.84	467.41	6903.	0.74	15.348	0.850	2.726	0.14	18.66	0.31	7540.	16.13
162.29	584.26	10786.	0.47	15.214	0.858	2.609	0.13	21.78	0.33	7797.	13.34
194.75	701.11	15532.	0.33	12.508	1.043	2.522	0.11	22.08	0.41	9043.	12.9
227.21	817.97	21141.	0.24	992.6	1.336	2.470	0.09	19.75	0.54	10455.	12.78
259.67	934.82	27612.	0.18	7.347	1.776	2.453	0.05	13.48	0.72	12129.	12.97
292.13	1051.67	34947.	0.15	4.797	2.720	2.509	-0.02	-4.72	1.08	19916.	18.94
308.36	1110.1	38938.	0.13	3.135	4.162	2.542	-0.12	-38.3	1.64	30744.	27.69

Таблица 2.4 — Результаты расчета для высоты H=6 км

$q_{\scriptscriptstyle m KM}$	$\frac{\mathrm{KT}}{\mathrm{KM}}$	4. 648.99	3. 81.16	26.25	16.37	12.45	11.37	11.09	5. 11.09	5. 14.85	1 22.15
$q_{\scriptscriptstyle m H}$	KI 4	73934.	18493.	8970.	7460.	7090.	7770.	8845.	10105.	15225.	93971
$ar{R}_{ ext{kp}}$	I	4.99	1.29	0.61	0.41	0.37	0.41	0.50	0.65	0.97	1 45
V_y^*	C	-26.76	-3.67	6.97	13.43	17.41	19.12	18.67	15.09	1.64	-23.58
$\Delta ar{p}(n_x)$	I	-0.85	90.0-	0.07	0.11	0.11	0.10	0.08	90.0	0.01	8U U-
$P_p * 10^{-5}$	H	2.769	2.574	2.444	2.336	2.263	2.224	2.206	2.215	2.263	9 999
$P_n * 10^{-5}$	H	13.803	3.332	1.487	0.952	0.827	0.91	1.106	1.437	2.188	3 393
K_n	I	0.945	3.916	8.777	13.705	15.771	14.338	11.792	9.077	5.964	3 996
C_{y_n}	I	15.38	3.84	1.71	96.0	0.62	0.43	0.31	0.24	0.19	0.17
b	$\frac{H}{{ m M}^2}$	330.	1322.	2974.	5287.	8262.	11897.	16193.	21150.	26768.	20824
Λ	KM 4	113.92	227.84	341.77	455.69	569.61	683.53	797.45	911.38	1025.3	300 63 1089 96
Λ	$\frac{M}{C}$	31.65	63.29	94.94	126.58	158.22	189.87	221.51	253.16	284.80	
M	I	0.10	0.20	0.30	0.40	0.5	09.0	0.7	0.80	0.0	0.05

Таблица 2.5 — Результаты расчета для высоты $H=8~\mathrm{km}$

Λ Λ	Λ		b	C_{y_n}	K_n	$P_n * 10^{-5}$	$P_p * 10^{-5}$	$\Delta ar{p}(n_x)$	V_y^*	$ar{R}_{ ext{kp}}$	$q_{^{ m H}}$	$q_{\scriptscriptstyle m KM}$
$rac{M}{C}$ $rac{KM}{T}$ $rac{H}{M^2}$ —		$\frac{H}{^{\mathrm{M}^2}}$	I		I	H	H	I	C IK	I	KI 4	$\frac{\mathrm{K}\Gamma}{\mathrm{K}\mathrm{M}}$
0.10 30.81 110.92 250. 20.36	250.		20.36	•	0.711	18.343	2.358	-1.23	-37.75	7.78	97560.	879.56
61.62 221.84 999. 5.09	.666		5.09		2.934	4.447	2.206	-0.17	-10.58	2.03	24373.	109.87
92.43 332.76 2247. 2.26	2247.		2.26		802.9	1.945	2.077	0.01	0.93	0.94	10501.	31.56
0.40 123.24 443.68 3995. 1.27	443.68 3995.		1.27		11.314	1.153	1.990	90.0	7.90	0.58	7288.	16.43
154.06 554.6 6242. 0.81	554.6 6242.		0.81		14.831	0.88	1.96	0.08	12.75	0.45	6736.	12.15
184.87 665.52 8988. 0.57	665.52 8988.		0.57		15.138	0.862	1.947	0.08	15.37	0.44	6934.	10.42
215.68 776.44 12234. 0.42	776.44 12234.		0.42		13.386	0.975	1.973	0.08	16.5	0.49	7662.	9.87
246.49 887.36 15979. 0.32	887.36 15979.		0.32		10.722	1.217	2.020	90.0	15.18	09.0	8729.	9.84
277.3 998.28 20223. 0.25	998.28 20223.		0.25		7.183	1.816	2.072	0.03	5.44	0.88	11788.	11.81
0.95 292.70 1053.74 22533. 0.23	22533.		0.23		4.811	2.712	2.103	-0.05	-13.68	1.29	19081.	18.11

Таблица 2.6 — Результаты расчета для высоты $H=10~\mathrm{km}$

$q_{ m \scriptscriptstyle KM}$	$\frac{\mathrm{K}\Gamma}{\mathrm{K}\mathrm{M}}$	922. 1214.14	30. 151.76	94. 45.11	5. 19.28	1. 11.37	8. 9.41	4. 8.55	3. 8.45	13. 10.73	91. 15.71
$q_{ m q}$	KT 4	130922.	32730.	14594.	8315.	6131.	6088.	6454.	7286.	10413.	16091.
$ar{R}_{ m Kp}$	I	13.95	3.60	1.64	96.0	29.0	0.59	09.0	0.69	0.92	1.28
V_y^*	⊠ C	-52.73	-20.01	-7.02	0.52	5.84	8.80	10.03	9.39	2.82	-10.96
$\Delta ar{p}(n_x)$	I	-1.76	-0.33	-0.08	0.00	0.04	0.05	0.05	0.04	0.01	-0.04
$P_p * 10^{-5}$	H	1.774	1.674	1.601	1.544	1.542	1.549	1.570	1.627	1.739	1.815
$P_n * 10^{-5}$	H	24.742	6.031	2.619	1.488	1.033	0.91	0.946	1.115	1.603	2.317
K_n	I	0.527	2.163	4.981	8.77	12.626	14.344	13.786	11.697	8.141	5.630
C_{y_n}	I	27.37	6.84	3.04	1.71	1.09	0.76	0.56	0.43	0.34	0.30
b	$\frac{H}{{\rm M}^2}$	186.	743.	1671.	2971.	4643.	.9899	9100.	11886.	15043.	16761.
Λ	$\frac{KM}{4}$	107.83	215.66	323.49	431.32	539.15	646.98	754.82	862.65	970.48	1024.39
Λ	C I⊠	29.92	59.91	89.86	119.81	149.76	179.72	209.67	239.62	269.58	284.55
M	I	0.10	0.20	0.30	0.40	0.5	09.0	0.7	0.80	6.0	0.95

Таблица 2.7 — Результаты расчета для высоты $H=12~\mathrm{km}$

Таблица 2.8 — Результаты расчета для высоты $H=12.40~\mathrm{km}$

$q_{\scriptscriptstyle m KM}$	$\frac{\mathrm{K}\Gamma}{\mathrm{K}\mathrm{M}}$	1771.82	222.99	28.99	28.50	15.44	10.79	9.03	90.6	11.13	14.53
$q_{^{ m H}}$	4 K	188212.	47374.	21150.	12111.	8201.	.22	6714.	7698.	10637.	14663.
$ar{R}_{ m Kp}$	I	29.73	7.85	3.58	2.03	1.34	1.06	86.0	1.01	1.25	1.64
V_y^*	C M	-78.94	-34.98	-18.82	-9.84	-3.97	-0.87	0.35	-0.23	-6.47	-17.9
$\Delta ar{p}(n_x)$	I	-2.68	-0.59	-0.21	-0.08	-0.03	-0.00	0.00	-0.00	-0.02	-0.06
$P_p * 10^{-5}$	H	1.215	1.128	1.076	1.052	1.045	1.059	1.094	1.156	1.25	1.302
$P_n * 10^{-5}$	H	36.121	8.862	3.851	2.14	1.396	1.123	1.072	1.169	1.567	2.135
K_n	1	0.361	1.472	3.388	860.9	9.349	11.619	12.175	11.164	8.324	6.111
C_{y_n}	I	39.83	96.6	4.43	2.49	1.59	1.11	0.81	0.62	0.49	0.44
b	$\frac{H}{{ m M}^2}$	128.	510.	1148.	2042.	3190.	4594.	6253.	8167.	10336.	11516.
Λ	$\frac{KM}{4}$	106.23	212.45	318.68	424.90	531.13	637.35	743.58	849.80	956.03	1009.14
7	C M	29.51	59.01	88.52	118.03	147.53	177.04	206.55	236.06	265.56	280.32
M	I	0.10	0.20	0.30	0.40	0.5	09.0	0.7	0.80	6.0	0.95

4. Располагаемые значение минимального и максимального числа M определяются как:

$$M_{\min} = \max \left\{ M_{\min_{\text{gon}}}, M_{\min_{P}} \right\},$$

$$M_{\text{max}} = \min \left\{ M_{\text{max}_{\text{доп}}}, M_{\text{max}_P}, M_{\text{пред}} \right\},$$

5. Число M_1 полета, соответствующее минимальной потребной тяге определяется как:

$$M_1 = M(P_{n_{\min}}) = \arg\min_{M} \Delta P_n(M)$$

 Число М₂ полета, соответствующее максимальной энергетической скороподъёмности определяется как:

$$M_2 = M(V_{y_{max}}^*) = \arg\max_{M} V_y^*(M, H_i)$$

7. Минимальные значения часового $q_{\mathbf{q}_{min}}$ и километрового $q_{\mathbf{k}\mathbf{m}_{min}}$ расхода топлива, и соответствующие им скорости полета определены на графике 2.4.1-7 и 2.5.1-7 или как:

$$q_{\mathbf{q}_{min}} = \min_{V} q_{\mathbf{q}}(V, H_i), \ V_3 = V(q_{\mathbf{q}_{min}}) = \arg\min_{V} q_{\mathbf{q}}(V, H_i)$$

$$q_{\text{km}_{min}} = \min_{V} q_{\text{km}}(V, H_i), \ V_4 = V(q_{\text{km}_{min}}) = \arg\min_{V} q_{\text{km}}(V, H_i)$$

Таблица 2.9 — Результаты для построение графика высот и скоростей

$M[V]$ $M[V]$ $M[V]$ $M_1[V]$ $M_2[V_2]$ V_3 V_4 V_4 V_{4min} V_{4mi	0.74 [786.0] 203.6 221.3 0.75 6711.91 8.73
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.74 [786.0] 203.6 221.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.74 [786.0] 203.6
$egin{array}{c} 2 \\ e \\$	
[2] [600.0] [622.0] [654.0] [718.0] [799.0] [798.0]	
$M_2[V_2]$ (V_{ymax}^*) $-[\frac{KM}{4}]$ $-[\frac{KM}{4}]$ $0.49[60$ $0.52[65]$ $0.56[65]$ $0.63[71]$ $0.72[75]$ $0.74[75]$	
$M_1[V_1]$ $(P_n min)$ $-\left[\frac{\text{KM}}{4}\right]$ $0.35\left[429.0\right]$ $0.39\left[467.0\right]$ $0.44\left[514.0\right]$ $0.5\left[570.0\right]$ $0.5\left[621.0\right]$ $0.60\left[658.0\right]$	0.7 [744.0]
$M[V]$ $M[V]$ \min \max_{\max} $-\left[\frac{K\Delta M}{4}\right]$ $-\left[\frac{K\Delta M}{4}\right]$ 0.252 [309.0] 0.612 [750.0] 0.285 [341.0] 0.675 [808.0] 0.324 [378.0] 0.748 [874.0] 0.371 [423.0] 0.8 [911.0] 0.429 [476.0] 0.8 [887.0] 0.503 [542.0] 0.8 [850.0]	0.664 [706.0] 0.791 [840.0]
$M[V] \qquad M[V] \\ \min_{\min} \qquad \max_{\max} \\ -\left[\frac{KM}{4}\right] \qquad -\left[\frac{KM}{4}\right] \\ 0.252 [309.0] \qquad 0.612 [750.0.285 [341.0] \qquad 0.675 [808.0.324 [378.0] \qquad 0.748 [874.0.371 [423.0] \qquad 0.8 [911.0] \\ 0.429 [476.0] \qquad 0.8 [887.0] \\ 0.503 [542.0] \qquad 0.8 [863.0] \\ 0.602 [640.0] \qquad 0.8 [850.0] \\ 0.602 [640.0] \qquad 0.8 [640.0] \\ 0.602 [640.$	0.664 [706.0]
V_{gmax}^* $M[V]$ $M[V]$ $\frac{M}{c}$ $-\left[\frac{KM}{4}\right]$ $-\left[\frac{KM}{4}\right]$ 27.99 $0.252 \left[309.0\right]$ $0.612 \left[750.0\right]$ 25.59 $0.285 \left[341.0\right]$ $0.675 \left[808.0\right]$ 22.33 $0.324 \left[378.0\right]$ $0.748 \left[874.0\right]$ 19.22 $0.371 \left[423.0\right]$ $0.8 \left[911.0\right]$ 16.56 $0.429 \left[476.0\right]$ $0.8 \left[887.0\right]$ 10.22 $0.503 \left[542.0\right]$ $0.8 \left[850.0\right]$ 2.21 $0.602 \left[640.0\right]$ $0.8 \left[850.0\right]$	0.8[850.0]
$V_{ymax}^* \qquad M[V] \\ \frac{M}{c} \qquad -\left[\frac{\kappa M}{4}\right] \\ 27.99 \qquad 0.252 [309.0] \\ 25.59 \qquad 0.285 [341.0] \\ 22.33 \qquad 0.324 [378.0] \\ 19.22 \qquad 0.371 [423.0] \\ 16.56 \qquad 0.429 [476.0] \\ 10.22 \qquad 0.503 [542.0] \\ 2.21 \qquad 0.602 [640.0]$	0.625 [664.0]
	0.5
H KM 0.0 2.0 4.0 6.0 8.0 10.0	12.4

3. Расчет траектории полета

3.1. Расчет характеристик набора высоты

Начальные условия:

$$H_0 = 0; M_0 = 1.2 M_{min_{\pi o \pi}}, V_0 = 1.2 V_{min_{\pi o \pi}}$$

Конечные условия:

$$(H_{\kappa}, M_{\kappa}) = \arg\min_{H,M} q_{\kappa_{\mathrm{M}}}(M, H)$$

Конечная высота принимается равная $H_{\rm k}=11$, км Соотношения для расчета :

$$\frac{dV}{dH} = \frac{V^{i+1} - V^i}{H^{i+1} - H^i} \tag{3.1}$$

$$\kappa = \frac{1}{1 + \frac{V}{g} \frac{dV}{dH}} \tag{3.2}$$

$$\theta_{\text{Haf}} = n_x \kappa 57.3 \tag{3.3}$$

$$V_{y_{\text{Haf}}} = V_{y_{max}}^* \kappa \tag{3.4}$$

$$H_{s}^{i} = H^{i} + \frac{(V^{i})^{2}}{2q} \tag{3.5}$$

$$\Delta H_{9} = H_{9}(V_{\text{Ha6}}^{i+1}, H^{i+1}) - H_{9}(V_{\text{Ha6}}^{i}, H^{i})$$
(3.6)

$$\left(\frac{1}{n_x}\right)_{\text{cp}} = 0.5 \left[\frac{1}{n_x(H_s^i)} + \frac{1}{n_x(H_s^{i+1})}\right]$$
 (3.7)

$$\left(\frac{1}{V_y^*}\right)_{\text{cd}} = 0.5 \left[\frac{1}{V_y^*(H_{\text{g}}^i)} + \frac{1}{V_y^*(H_{\text{g}}^{i+1})}\right] \tag{3.8}$$

$$\left(\frac{CeP}{V_y^*}\right)_{cp} = 0.5 \left[\frac{CeP}{V_y^*(H_9^i)} + \frac{CeP}{V_y^*(H_9^{i+1})}\right]$$
(3.9)

$$L_{\text{\tiny HA6}} = \sum \left(\frac{1}{n_x}\right)_{\text{\tiny CD}} \frac{\Delta H_{\text{\tiny 9}}}{1000} \tag{3.10}$$

$$t_{\text{\tiny Ha6}} = \sum \left(\frac{1}{V_y^*}\right)_{\text{cp}} \frac{\Delta H_{\text{\tiny 9}}}{60} \tag{3.11}$$

$$m_{T_{\text{Ha6}}} = \sum \left(\frac{CeP}{V_y^*}\right)_{\text{ev}} \frac{\Delta H_9}{3600} \tag{3.12}$$

Таблица 3.1 — Результаты расчета набора высоты

$\frac{\Delta H_{\rm 3}}{1000n_x}$	14.42	9.	07	2	\Box	
1		14	19.	25.	29.5	0.0
$n_{x_{ m cp}}$	0.173	0.134	0.108	0.084	0.055	inf
$\Delta H_{ m e}$	2983.0	2160.0	2342.0	2483.0	2203.0	0.0
H_9	541.0	3524.0	5684.0	8026.0	10508.0	12711.0
$V_{y_{ m Ha6}}$	20.5	23.7	19.2	15.6	15.1	10.2
θ	8.7	7.9	6.1	4.5	3.9	2.5
V_y^*	28.0	25.6	22.3	19.2	16.6	10.2
n_x	0.207	0.148	0.123	0.096	0.075	0.044
$\frac{\Delta V}{\Delta H}$	0.035	0.004	0.009	0.011	0.004	0.0
$V_{\scriptscriptstyle m KM}$						
Λ	103.1	172.9	181.8	199.4	221.8	230.6
$M_{ m Ha6}$				0.63	0.72	0.77
$H_{ m y3en}$						

Таблица 3.2- (Продолжение) Результаты расчета набора высоты

P	$\frac{CeP}{V_y^*}$	$\left(\frac{CeP}{V_y^*}\right)_{\rm cp}$	$\frac{\Delta H_{\rm 9}}{3600} \Big(\frac{CeP}{V_y^*}\Big)_{\rm Cp}$	$L_{ m {\scriptscriptstyle Ha}6}$	$V_{ m ycp}^*$	$t_{ m Ha6}$	Ce
356382.0	773.3	764.0	632.9	17.3	0.0	1.86	0.061
294096.0	754.6	749.9	449.9	16.1	0.0	1.51	0.066
255678.0	745.1	751.0	488.5	21.7	21.7 0.0	1.89	0.065
221848.0	756.8	773.7	533.5	29.5 0.1	0.1	2.33	0.066
198227.0	9.062	915.2	560.0	40.0 0.1	0.1	2.9	0.066
160978.0	1039.7	0.0	0.0	0.0	0.0	0.0	0.066

3.2. Расчет характеристик крейсерского полета

Для расчета времени $T_{\rm kp}$ и дальности $L_{\rm kp}$ крейсерского полета:

$$T_{\rm Kp} = \frac{60K_{\Gamma\Pi}}{gCe} \ln \frac{1 - \bar{m}_{T_{\rm HB}6} - \bar{m}_{T_{\rm HP}}}{1 - \bar{m}_{T_{\rm KD}} - \bar{m}_{T_{\rm HP}6} - \bar{m}_{T_{\rm HP}}}$$
(3.13)

$$L_{\rm kp} = \frac{36V K_{\Gamma \rm II}}{gCe} \ln \frac{1 - \bar{m}_{T_{\rm Ha6}} - \bar{m}_{T_{\rm np}}}{1 - \bar{m}_{T_{\rm kp}} - \bar{m}_{T_{\rm na}} - \bar{m}_{T_{\rm np}}}$$
(3.14)

где $\bar{m}_{\mathrm{T_{\kappa p}}} = 1 - \bar{m}_{\mathrm{cH}} - \bar{m}_{\mathrm{цH}} - \bar{m}_{\mathrm{T_{Ha6}}} - \bar{m}_{\mathrm{T_{chf}}} - \bar{m}_{\mathrm{T_{ah3}}} - \bar{m}_{\mathrm{T_{np}}} = 0.1827$

Принимаем: $m_{\rm цн}=0,26$ – относительная масса пустого снаряженного самолета; $m_{\rm ch}=0,46$ – относительная масса целевой нагрузки; $m_{T_{\rm chl}}=0.015$ - относительная масса топлива, расходуемая при снижении и посадке;

 $ar{m}_{T_{ ext{hal}}} = 0.05$ - относительная масса топлива, расходуемая при наборе; высоты $m_{T_{ ext{ah3}}} = 0.05$ - аэронавигационный запас топлива; $m_{T_{ ext{np}}} = 0.01$ - запас топлива для ма-

неврирования по аэродрому, опробования двигателей, взлета; $K_{\Gamma\Pi}=13.51~V=206\,{\rm \frac{M}{c^2}}$ $Ce=0.0617\,{\rm \frac{Kr}{H*q}}$ – удельный расход топлива на высоте крейсерского полета

Высота в конце крейсерского полета $H_{\kappa\kappa p}$ определяется как:

$$\rho_{H \, \text{\tiny KP}} = \frac{2\bar{m}_{\text{\tiny K \, KP}} P s 10}{C_{y_{\Gamma\Pi}} V_{\text{\tiny K}}^2} \tag{3.15}$$

где $\bar{m}_{\text{к кр}} = 1 - \bar{m}_{T_{\text{наб}}} - \bar{m}_{T_{\text{пр}}} - \bar{m}_{T_{\text{кр}}}$

3.3. Расчет характеристик участка снижения

Расчет аналогичен расчету участка набора высоты раздел 3.1. Только в качестве программы снижения принимается зависимость $M_{\rm ch}(H)$, соответствующая минимуму потребной тяги.

Начальные условия:

Скорость соответствует минимуму потребной тяги. Определяется по графику $M(P_{n \text{ min}}) = f(H)$ (Рисунок 2.2).

$$M_0 = 0.6; H_0 = 10 \,\mathrm{km}$$

Конечные условия:

Скорость в конце снижения соответствует наивыгоднейшей скорости при $H=0.~M_{\kappa}=0.30;$ $H_{\kappa}=0$ Результаты расчетов приведены на таблице №3.3.2, по этим данным построили

3.4. Расчет диаграммы транспортных возможностей

Определим зависимость целевой нагрузки от дальности полета самолета $m_{\text{цн}}(L)$ (Рисунок 3.4.1) Расчет ведется для трех режимов:

- 1. Полет с максимальной коммерческой нагрузкой,
- 2. Полет с максимальным запасом топлива,
- 3. Полет без коммерческой нагрузки ($m_{\text{цн}}=0$) с максимальным запасом топлива.

Режим 1.

Для данного режима определили в разделах 3.1, 3.2,3.3

$$m_{\mathrm{LH}} = \frac{m_{\mathrm{LH}}}{m_0}$$

Режим 2.

$$L = L_{\text{\tiny Ha6}} + L_{\text{\tiny Kp}} + L_{\text{\tiny CH}}$$

Для упрощения для дальности полета и расход топлива при наборе и снижении, для всех режимов соответствует первому режиму.

$$\bar{m}_{\text{взл}} = 1$$

$$\bar{m}_{T_{\text{кр}}} = \bar{m}_{T_{max}} - \bar{m}_{T_{\text{на6}}} - \bar{m}_{T_{\text{сн}}} - \bar{m}_{T_{\text{анз}}} - \bar{m}_{T_{\text{пр}}}$$

$$\bar{m}_{T_{max}} = 0.5258$$

$$L_{\text{кр}} = \frac{36VK}{gCe} \ln \frac{\bar{m}_{\text{взл}} - \bar{m}_{T_{\text{на6}}} - \bar{m}_{T_{\text{пр}}}}{\bar{m}_{\text{взл}} - \bar{m}_{T_{\text{кр}}} - \bar{m}_{T_{\text{на6}}} - \bar{m}_{T_{\text{пр}}}}$$

$$\bar{m}_{\text{цн}} = 1 - \bar{m}_{\text{пуст}} - \bar{m}_{T_{max}}$$

$$\bar{m}_{\text{пуст}} = \frac{88500}{m_0}$$

Режим 3.

$$\bar{m}_{\scriptscriptstyle \mathrm{B3J}} = \bar{m}_{\scriptscriptstyle \mathrm{HYCT}} + \bar{m}_{T_{max}}$$

3.5. Расчет взлетно-посадочных характеристик самолета

Для расчета: скорости отрыва при взлете $V_{\rm orp}$, длины разбега $L_{\rm p}$, взлетной дистанции $L_{\rm вд}$, скорости касания ВПП при посадке $V_{\rm kac}$, длины пробега $L_{\rm пp}$, посадочной дистанции $L_{\rm пл}$.

Предполагается что:

- 1. Угол атаки при разбеге и пробеге $\alpha_{\rm p}=\alpha_{\rm n}=2^\circ$
- 2. Угол атаки при отрыве и касании ВПП $\alpha_{\rm orp} = \alpha_{\rm kac} = 6^{\circ}$
- 3. Безопасная высота пролета препятствий $H_{\mbox{\tiny BSJ}}=10.7\,\mbox{м}$ и $H_{\mbox{\tiny пос}}=15\,\mbox{м}$
- 4. Тяга двигателей $P_{\text{взл}}=(1.2...1.3)P,\ Ce_{\text{взл}}=(1.03...1.05)Ce_0$
- 5. При пробеге по ВПП используется реверс тяги.

Соотношения для расчета:

$$V_{\text{otp}} = \sqrt{\frac{20P_s(1 - 0.9\bar{P}_{\text{взл}}\sin\alpha_{\text{otp}})}{\rho_0 C_{y_{\text{otp}}}}}$$
(3.16)

$$C_p = 0.9\bar{P}_{\text{\tiny B3,I}} - f_p$$
 (3.17)

$$b_p = (C_{x_p} - f_p C_{y_p}) \frac{\rho_0}{2P_c 10}, \tag{3.18}$$

где $f_p = 0.02$

$$L_p = \frac{1}{2gb_p} \ln \frac{C_p}{C_p - b_p V_{\text{OTD}}^2}$$
 (3.19)

$$V_2 = 1.1V_{\text{opp}}$$
 (3.20)

$$\hat{V}_{\rm cp} = \sqrt{\frac{V_2^2 + V_{\rm opp}^2}{2}} \tag{3.21}$$

$$\hat{n}_{x_{\rm cp}} = \bar{P}_{\rm \tiny BSJI} - \frac{C_{x_{\rm orp}} \rho_0 \hat{V}_{\rm cp}^2}{P_{\rm \tiny c} 20} \tag{3.22}$$

$$L_{\text{\tiny BYB}} = \frac{1}{\hat{n}_{x_{\text{\tiny cp}}}} \left(\frac{V_2^2 + V_{\text{\tiny oTP}}^2}{2g} + H_{\text{\tiny B3Л}} \right) \tag{3.23}$$

$$\bar{m}_{\text{пос}} = \bar{m}_{\text{к кр}} - \bar{m}_{T_{\text{снп}}} \tag{3.24}$$

$$V_{\text{\tiny Kac}} = \sqrt{\frac{2\bar{m}_{\text{\tiny Hoc}}P_s 10}{C_{y_{\text{\tiny Kac}}}\rho_0}} \tag{3.25}$$

$$\bar{P}_{\text{peB}} = \frac{P_{\text{peB}}}{m_{\text{roc}} a} \tag{3.26}$$

$$a_n = -\bar{P}_{\text{peB}} - f_n \tag{3.27}$$

$$b_n = \frac{\rho_0}{\bar{m}_{\text{пос}} P_s 20} (C_{x_{\text{про6}}} - f_n C_{y_{\text{про6}}})$$
(3.28)

$$L_{\text{проб}} = \frac{1}{2gb_n} \ln \frac{a_n - b_n V_{\text{кас}}^2}{a_n} \tag{3.29}$$

$$C_{y_{\text{noc}}} = 0.7C_{y_{\text{kac}}}(\alpha_{\text{kac}}) \tag{3.30}$$

$$V_{\text{пл}} = \sqrt{\frac{2\bar{m}_{\text{пос}}P_{s}10}{C_{y_{\text{пос}}}\rho_{0}}}$$
 (3.31)

$$K_{\text{noc}} = \frac{C_{y_{\text{noc}}}}{C_{x_{\text{noc}}}} \tag{3.32}$$

$$L_{\text{вуп}} = K_{\text{пос}} \left(H_{\text{пос}} + \frac{V_{\text{пл}}^2 - V_{\text{кас}}^2}{2q} \right)$$
 (3.33)

$$L_{\text{пд}} = L_{\text{проб}} + L_{\text{вуп}} \tag{3.34}$$

Результаты расчетов на таблице № 3.5.1

3.6. Расчет характеристик маневренности самолета

В данном разделе определим характеристики правильного виража.

Расчеты ведутся для высоты $H = 6 \, \text{км}$.

Характеристики маневренности рассчитываются при 50%-ом выгорании топлива для массы самолета: $\bar{m}_{\rm c}=1-0.5\bar{m}_T$

Для расчета таблицы №3.6.1:

1. Максимальная допустимая нормальная перегрузка:

$$n_{y_{\text{доп}}} = \min \left\{ n_{y_{\text{s}}}, \, n_y(C_{y_{\text{доп}}}) \right\}$$

$$n_{y_{2}} = 3, n_{y}(C_{y_{\text{доп}}}) = \frac{C_{y_{\text{доп}}}}{C_{y_{\Gamma\Pi}}}, C_{y_{\Gamma\Pi}} = \frac{\bar{m}_{c}P_{s}10}{q}$$

2. Нормальная перегрузка предельного правильного виража

$$\begin{split} n_{y_{\mathtt{BHp}}} &= \min \left\{ n_{y_{\mathtt{Доп}}}, \, n_{y_{P}} \right\} \\ n_{y_{P}} &= \frac{1}{C_{y_{a}}\Gamma\Pi} \left(C_{y_{m}} + \sqrt{\frac{\bar{P}C_{y_{a}}\Gamma\Pi - C_{x_{\mathtt{M}}}}{A}} \right), \, \bar{P} = \frac{P_{p}}{mg} \end{split}$$

3. Кинематические параметры виража:

$$\omega_{ exttt{вир}} = rac{g}{V} \sqrt{n_{y\, exttt{вир}}^2 - 1}$$

$$r_{ exttt{вир}} = rac{V}{\omega_{ exttt{вир}}}$$

$$t_{ exttt{вир}} = rac{2\pi r_{ exttt{вир}}}{V}$$

4. Диапазон Маха берется: M = [0.4, 0.5, 0.6, 0.7, 0.8]

3.7. Расчет характеристик продольной статической устойчивости и управляемости

Для расчета продольной статической устойчивости и управляемости необходимо определить безразмерную площадь горизонтального оперения $\bar{S}_{\Gamma O}$ из условия устойчивости и балансировки.

Для определения $\bar{S}_{\Gamma O}$ рассчитываются предельно передняя $\bar{x}_{\Pi\Pi\Pi}$ для режима посадки $(H=0,\,M=0.2)$ и предельно задняя $\bar{x}_{\Pi\Pi3}$ центровки:

$$\bar{x}_{\text{TII3}} = \frac{-m_{Z_0 \text{ BFO}} + \bar{x}_{F \text{ BFO}} C_{y \text{ BFO}} + C_{y \text{ FO}} \bar{S}_{\text{FO}} K_{\text{FO}} \bar{L}_{\text{FO}}}{C_{y \text{ BFO}}},$$

Где $C_{y\, \mathrm{BFO}} = C_{y_0\, \mathrm{BFO}} + C_{y\, \mathrm{BFO}}^{\alpha} \alpha$, $C_{y\, \mathrm{FO}} = C_{y\, \mathrm{FO}}^{\alpha_{\mathrm{FO}}} \left[\alpha (1 - \epsilon^{\alpha}) + \varphi_{\mathrm{9} \Phi} \right] < 0$, $\varphi_{\mathrm{9} \Phi} = \varphi_{\mathrm{ycr}} + n_{\mathrm{B}} \delta_{max}$, $\delta_{\mathrm{max}} = -25^{\circ}$, $\varphi_{\mathrm{vcr}} = -4^{\circ}$.

$$\bar{x}_{\text{TH3}} = \bar{x}_H + \sigma_{n \text{ min}}$$

$$\bar{x}_H = \bar{x}_F - \frac{m_z^{\bar{\omega}_z}}{\mu}, \ \mu = \frac{2P_s 10}{\rho g b_a}, \ m_z^{\bar{\omega}_z} = m_z^{\bar{\omega}_z}_{\rm BFO} + m_z^{\bar{\omega}_z}, \ m_z^{\bar{\omega}_z} = -C_{y\Gamma O}^{\alpha_{\Gamma O}} \bar{S}_{\Gamma O} \bar{L}_{\Gamma O}^2 \sqrt{K_{\Gamma O}}$$

$$\bar{x}_F = \bar{x}_{FBCO} + \Delta \bar{x}_F$$

$$\Delta \bar{x}_F \approx \frac{C_{y\Gamma O}^{\alpha_{\Gamma O}}}{C_y^{\alpha}} (1 - \varepsilon^{\alpha}) \bar{S}_{\Gamma O} \bar{L}_{\Gamma O}^2 K_{\Gamma O}, \, \sigma_{n \text{ min}} = -0.1$$

По приведенным формулам для ряда значений $\bar{S}_{\Gamma {\rm O}}=(0.01,\,0.2)$ рассчитывается таблица 3.7.1

Затем графически определяется потребная площадь ГО из условия:

$$\bar{x}_{\mathrm{T\Pi3}}(\bar{S}_{\Gamma\mathrm{O}}) - \bar{x}_{\mathrm{T\Pi\Pi}}(\bar{S}_{\Gamma\mathrm{O}}) = \Delta \bar{x}_{\flat} 1.2$$

 $\Delta \bar{x}_{\rm s} \approx 0.15$

Далее расчеты характеристик устойчивости и управляемости производятся для средней центровки:

$$\bar{x}_T = 0.5 \left[\bar{x}_{\text{TH3}} (\bar{S}_{\Gamma \text{O}}^*) + \bar{x}_{\text{THH}} (\bar{S}_{\Gamma \text{O}}^*) \right]$$

Значения величин \bar{x}_F , \bar{x}_H , $\bar{x}_{T\Pi 3}$, σ_n определяются в узловых точках по M на высоте H=0 для таблицы 3.7.

$$\sigma_n = \bar{x}_T - \bar{x}_F + \frac{m_z^{\bar{\omega}_z}}{\mu}$$

Зависимости $\varphi_{\text{бал}}(M), \varphi^n(M), n_{y_p}(M)$ для трех значений высот: $H=(0\,\mathrm{км},\,6\,\mathrm{км},\,H_{\mathrm{kp}}).$

$$m_z^{C_y} = \bar{x}_T - \bar{x}_F$$

$$\begin{split} \bar{x}_F &= \bar{x}_{F\,\mathrm{BTO}} + \Delta \bar{x}_{F\,\mathrm{TO}}, \, m_z^{\delta_\mathrm{B}} = -C_{y\,\mathrm{TO}}^{\alpha_\mathrm{TO}} \bar{S}_\mathrm{TO} \bar{L}_\mathrm{TO} K_\mathrm{TO} n_\mathrm{B}, \, C_{y\,\mathrm{TO}} = \frac{10 P_s \bar{m}}{q}, \, \bar{m} = 1 - 0.5 \bar{m}_T, \\ m_{Z_0} &= m_{Z_0\,\mathrm{BTO}} - (1 - \varepsilon^\alpha) \bar{S}_\mathrm{TO} \bar{L}_\mathrm{TO} K_\mathrm{TO} C_{y\,\mathrm{TO}}^{\alpha_\mathrm{TO}} \alpha_0 \\ \delta_{\mathrm{6aj}} &= -\frac{m_{z_0} m_z^{C_y} C_{y\,\mathrm{TII}}}{m_z^{\delta_\mathrm{B}} \left(1 + \frac{m_z^{C_y}}{\bar{L}_\mathrm{TO}}\right)} + \frac{\varphi_\mathrm{yct}}{n_\mathrm{B}} \\ \delta^n &= -57.3 \frac{C_{y\,\mathrm{TII}} \sigma_n}{m_z^{\delta_\mathrm{B}}} \\ n_{y_\mathrm{D}} &= 1 + \frac{\delta_\mathrm{max} + \varphi_\mathrm{yct} - \delta_\mathrm{6aj}}{\delta^n} \end{split}$$