Лабораторная работа Минимизация функций

Цель работы

Ознакомиться с методами одномерного поиска, используемыми в методах минимизации функций.

Сравнить различные алгоритмы по эффективности на тестовых примерах.

Краткие теоретические сведения. Методы одномерного поиска

1. Общая схема методов поиска минимума на отрезке

Пусть функция f(x) унимодальна на отрезке $[a_0,b_0]$. Необходимо найти точку минимума функции на этом отрезке с заданной точностью ε . Все методы одномерного поиска базируются на последовательном уменьшении интервала, содержащего точку минимума.

Возьмем внутри отрезка $[a_0,b_0]$ две точки x_1 и x_2 : $a_0 < x_1 < x_2 < b_0$, и вычислим значения функции в этих точках. Из свойства унимодальности функции можно сделать вывод о том, что минимум расположен либо на отрезке $[a_0,x_2]$, либо на отрезке $[x_1,b_0]$. Действительно, если $f(x_1) < f(x_2)$, то минимум не может находиться на отрезке $[x_2,b_0]$, а если $f(x_1) > f(x_2)$, то минимум не может находиться на отрезке $[a_0,x_1]$. Если же $f(x_1) = f(x_2)$, то минимум находится на интервале $[x_1,x_2]$.

Алгоритм заканчивается, когда длина интервала, содержащего минимум, становится меньше ε . Различные методы одномерного поиска отличаются выбором точек x_1, x_2 . Об эффективности алгоритмов можно судить по числу вычислений функции, необходимому для достижения заданной точности.

2. Метод дихотомии (деления отрезка пополам)

Точки x_1, x_2 выбираются на расстоянии $\delta < \varepsilon/2$ от середины отрезка:

$$x_1 = (a_i + b_i)/2 - \delta,$$

 $x_2 = (a_i + b_i)/2 + \delta.$ (1)

За одну итерацию интервал неопределенности уменьшается примерно в два раза (рис. 1). За n итераций длина интервала будет примерно равна $\frac{(b_0-a_0)}{2^n}$. Для достижения точности ε потребуется $n \ge \frac{\ln \left((b_0-a_0)/\varepsilon \right)}{\ln 2}$ итераций. На каждой итерации минимизируемая функция вычисляется дважды.

Рис. 1. Метод дихотомии

2. Метод золотого сечения

Точки x_1, x_2 находятся симметрично относительно середины отрезка $[a_0,b_0]$ и делят его в пропорции золотого сечения, когда длина всего отрезка относится к длине большей его части также, как длина большей части относится к длине меньшей части:

$$\frac{b_0 - a_0}{b_0 - x_1} = \frac{b_0 - x_1}{x_1 - a_0}$$
 и
$$\frac{b_0 - a_0}{x_2 - a_0} = \frac{x_2 - a_0}{b_0 - x_2}.$$

Отсюда

$$x_{1} = a_{i} + \frac{(3 - \sqrt{5})}{2}(b_{i} - a_{i}) \approx a_{i} + 0.381966011 \times (b_{i} - a_{i}),$$

$$x_{2} = a_{i} + \frac{(\sqrt{5} - 2)}{2}(b_{i} - a_{i}) \approx a_{i} + 0.618003399 \times (b_{i} - a_{i}) =$$

$$= b_{i} - 0.381966011 \times (b_{i} - a_{i}).$$
(2)

 $\frac{3a}{2}$ одну итерацию интервал неопределенности уменьшается в $\frac{\sqrt{5}+1}{2}$ = 1.618... раз, но на следующей итерации мы будем вычислять функцию только один раз, так как по свойству золотого сечения $\frac{x_2-x_1}{b-x_1}$ = 0.381... и $\frac{b-x_2}{b-x_1}$ = 0.618.... (рис. 2). Для достижения точности ε

потребуется
$$n \ge \frac{\ln((b_0 - a_0)/\varepsilon)}{\ln \frac{\sqrt{5} - 1}{2}}$$
 итераций.

Неточное задание величины $\sqrt{5}$ на ЭВМ уже при достаточно небольшом количестве итераций может приводить к погрешностям и потере точки минимума, так как она выпадает из интервала неопределенности. Поэтому, вообще говоря, при реализации алгоритма возможность такой ситуации должна быть предусмотрена.

Рис. 2. Метод золотого сечения

3. Метод Фибоначчи

Числа Фибоначчи определяются соотношениями:

$$F_{n+2} = F_{n+1} + F_n, n = 1, 2, ..., F_1 = F_2.$$

С помощью индукции можно показать, что n-е число Фибоначчи представимо в виде (формула Бинэ):

$$F_n = \left[(1 + \sqrt{5})/2 \right]^n - \left((1 - \sqrt{5})/2 \right)^n \right] \sqrt{5}, \quad n = 1, 2, \dots$$

Из этой формулы видно, что при больших n: $F_n \approx \left((1+\sqrt{5})/2\right)^n/\sqrt{5}$, так что числа Фибоначчи с увеличением n растут очень быстро.

На начальном интервале вычисляют точки

$$x_{1} = a_{0} + \frac{F_{n}}{F_{n+2}}(b_{0} - a_{0}),$$

$$x_{2} = a_{0} + \frac{F_{n+1}}{F_{n+2}}(b_{0} - a_{0}),$$
(3)

где n выбирается исходя из точности и начальной длины интервала (см. ниже соотношение (5)).

На k -м шаге метода будет получена тройка чисел a_k, b_k, x_k , локализирующая минимум f(x), такая, что

$$\Delta_k = b_k - a_k = (b_0 - a_0) \frac{F_{n-k+3}}{F_{n+2}}, 1 \le k \le n, a_1 = a_0, b_1 = b_0,$$

а точка $\overline{x_k}$, $a_k < \overline{x_k} < b_k$, с вычисленным значением

$$f(\overline{x_k}) = \min_{1 \le i \le k} f(x_i),$$

совпадает с одной из точек

$$x_{1} = a_{k} + \frac{F_{n-k+1}}{F_{n-k+3}}(b_{k} - a_{k}) = a_{k} + \frac{F_{n-k+1}}{F_{n+2}}(b_{0} - a_{0}),$$

$$x_{2} = a_{k} + \frac{F_{n-k+2}}{F_{n-k+3}}(b_{k} - a_{k}) = a_{k} + \frac{F_{n-k+2}}{F_{n+2}}(b_{0} - a_{0}),$$

$$(4)$$

расположенных на отрезке $[a_k,b_k]$ симметрично относительно его середины (рис. 3). При k=n процесс заканчивается. В этом случае длина отрезка

$$\Delta_n = b_n - a_n = (b_0 - a_0) / F_{n+2}$$

а точки

$$x_1 = a_n + \frac{F_1}{F_{n+2}}(b_0 - a_0),$$

$$x_2 = a_n + \frac{F_2}{F_{n+2}}(b_0 - a_0)$$

совпадают и делят отрезок пополам.

Рис. 3. Метод Фибоначчи

Следовательно

$$\frac{b_n - a_n}{2} = \frac{b_0 - a_0}{F_{n+2}} < \varepsilon.$$

Отсюда можно выбрать n из условия

$$\frac{b_0 - a_0}{\varepsilon} < F_{n+2} \,. \tag{5}$$

С ростом n, из-за того, что F_n / F_{n+2} — бесконечная десятичная дробь, происходит искажение метода. Поэтому на очередном шаге в качестве новой точки берут из (4) наиболее удалённую от $\overline{x_{k-1}}$ на предыдущем шаге.

4. Поиск интервала, содержащего минимум функции

В рассмотренных методах требуется знать начальный отрезок, содержащий точку минимума. Поиск отрезка на прямой заключатся в том, что возрастающие по величине шаги осуществляются до тех пор, пока не будет пройдена точка минимума функции, т.е. убывание функции сменится на возрастание.

Например, интервал может быть выделен с помощью следующего алгоритма. На первом шаге выбираем начальную точку x_0 и определяем направление убывания функции.

Шаг 1. Если $f(x_0)>f(x_0+\delta)$, то полагаем: $k=1,\ x_1=x_0+\delta$, $h=\delta$. Иначе, если $f(x_0)>f(x_0-\delta)$, то $x_1=x_0-\delta$, $h=-\delta$.

Шаг 2. Удваиваем h и вычисляем $x_{k+1} = x_k + h$.

Шаг 3. Если $f(x_k) > f(x_{k+1})$, то полагаем k = k+1 и переходим к шагу 2. Иначе — поиск прекращаем, т.к. отрезок $\left[x_{k-1}, x_{k+1}\right]$ содержит точку минимума.

Порядок выполнения работы

- 1. Реализовать методы дихотомии, золотого сечения и Фибоначчи, исследовать их сходимость и провести сравнение по числу вычислений функции для достижения заданной точности. Построить график зависимости количества вычислений минимизируемой функции от логарифма задаваемой точности є.
- 2. Реализовать алгоритм поиска интервала, содержащего минимум функции.

Варианты заданий

Найти минимум и максимум унимодальной на отрезке [a, b] функции f(x) с точностью ε

<u>№</u> 6арианта	f(x)	a	Ь	№ 6арианта	f(x)	a	b
1	$x^2 + 2e^x$	-2	2	16	$3\cos^2 x - \sqrt{x}$	0	3
2	$e^x \sin x$	0	4	17	$4\sqrt{x} - tgx$	0	1.5
3	$2x + e^{4-x}$	1	7	18	$\sin^3 x + \cos^2 x$	0	1.5
4	$e^x - 2\sin x$	0	2	19	$x^2 \cos x$	0	2
5	$x^{2}-2^{x}$	0	2	20	$4^{x} - 8x$	0	2
6	$2^x - \ln x$	0.1	3	21	$x^5 - 5^x$	0.5	1.5
7	$x^3 - e^x$	0	3	22	$\ln(x) - 5\sin(x)$	1	2
8	$\sin x - 2\cos x$	1	4	23	$x^3 - e^x$	-1	0
9	$x^2 - 2\sin x$	0	3	24	$\sin x + e^{-x^2}$	-1	2
10	$e^x \cos x$	0	1.5	25	$\sin^2 x - \sqrt{x}$	0	1
11	$-3x + e^{x-1}$	0	4	26	$2^x \cos x$	-2	2
12	$x^3 - 3^x$	2	3.5	27	$e^{x-4}-4x$	3	8
13	$e^x - \ln x$	0.1	2	28	$ln(x) - 4^x$	0.1	1
14	$3\cos x - \sin x$	0	5	29	$2\sin x - 3\cos x$	-1	1
15	$x^4 - e^x$	0	2	30	$x^6 - e^x$	0	1

Содержание отчета

Отчет должен содержать: титульный лист; цель работы; задание; таблицы с результатами исследований по каждому методу, где должны быть отражены границы и длины интервалов на каждой итерации, соотношение длины интервала на k-1 итерации к длине интервала на k итерации; график зависимости количества вычислений целевой функции от логарифма задаваемой точности ϵ ; выводы по всем пунктам задания.

Контрольные вопросы

- 1. Метод дихотомии.
- 2. Метод золотого сечения.
- 3. Метод Фибоначчи.
- 4. Метод квадратичной интерполяции (метод парабол)
- 5. Алгоритм поиска интервала, содержащего минимум функции.