Big Data Storage in Modern Databases

Jay Urbain, PhD

Credits:

Michael Stonebraker, Ugur Çetintemel
"One Size Fits All": An Idea Whose Time Has Come and
Gone. ICDE 2005

Michael Stonebraker, Matei Zaharia, Samuel Madden

DB History

- 1970's: relational model invented
- 1984: DB2 released, RDBMS declared mainstream
- Circa 1990: RDBMS takes over
 - "One-size fits all" solution
 - I'm the guy with the hammer; everything is a nail
- 2006: ICDE paper
 - "One-size does not fit all"
 - Co-existence of several solutions
- 2013: One size fits none

Traditional RDBMS Wisdom

- Dynamic row-level locking
- Aries-style write-ahead log
- Replication (asynchronous or synchronous)
 - Update the primary first
 - Then move the log to other sites
 - And roll forward at the secondary(s)

Traditional RDBMS Wisdom

- Data is in disk block formatting, heavily encoded, either 512 or 4K bytes.
- With a main memory buffer pool of blocks (pages).
- Query plans
 - Optimize CPU, I/O
 - Fundamental operation is read a row
- Indexing via B-trees
 - Clustered or unclustered

One size DB solution does not fit all

- RDBMS's date from the 1980's
- Basically legacy systems
- Try to provide general solution to most data management problems, end up as master of none
- Suffer from "The Innovators Dilemma"
- Need to reconsider for big data, analytics, different apps

Three main DBMS markets

- One-third data warehouses OLAP
- One-third OLTP
- One-third everything else

Data warehousing

- Column stores are well along at replacing row stores for OLAP
- Why?
 - Because they are a factor of 50 100 faster

Dimensional Data Model

- Most warehouses have a central fact table
 - Who bought what item in what store at what time.
 - What patient was give what drug at what time by who.
- Surrounded by "dimension" tables
 - Store, time, product, customer, ...
- So-called "star/snowflake schema"
 - See anything written by Ralph Kimball

Warehouses/OLAP

- Typical warehouse query reads 4-5 attributes from a 100 column fact table
 - Row store reads all 100
 - Column store reads just the ones you need
- Compression is way easier and more productive in a column store
 - Each block has only one type of attribute

Column Store

- No big record headers in a column store
 - They don't compress well
- A column executor is wildly faster than a row executor
 - Because of "vector processing"
 - See pioneering paper by Martin Kersten on this topic
 - See Vectorwise DB spun off from MonetDB

Column Store Vendors

Native column store vendors

HP/Vertica, SAP/Hana, Paraccel (Amazon), SAP/Sbase/IQ

Native column store vendors open source

MonetDB, LucidDB, Lucid Impala, MySQL InfiDB, MySQL
 ICE

Native row store vendors

Microsoft, Oracle, DB2, Netezza, PostgreSQL, MySQL

In transition

Teradata, Asterdata, Greenplum (build on PostgreSQL)

Vertica

 Table is decomposed into a collection of materialized views, stored by column and sorted on all attributes left-to-right

Vertica

- A column is stored in 64K "chunklets".
- 1st attribute may be uncompressed (key) or delta encoded; remainder are compressed (delta compression, lempel-zipf, repeated values, huffman, ...)
- Chunklets are decompressed only when necessary
- Fundamental operation is "process a column"

Vertica

- To load fast, there is a main memory rowstore in front of this column store.
 - Newly loaded tuples go there
 - In bulk, groups of rows are sorted, converted to column format and compressed
 - And written to new disk segments
 - Segment merge makes these segments bigger and bigger
 - Queries go to both places

OLTP Databases – 3 basic decisions

- Main memory versus disk orientation
- Replication strategy
- Concurrency control strategy

Reality Check on OLTP Data Bases

- TP data base size grows at the rate transactions increase
- 1 Tbyte is a really big TP data base
- 1 Tbyte of main memory < \$30K (2015)
- ~ 64 GBytes per server in 16 servers
- If your data doesn't fit in main memory now, wait a couple of years and it will.....

Reality Check – Main Memory Performance

TPC-C CPU cycles

To Go Fast

- Must focus on overhead
 - Better B-trees to minimize path access length
- Must get rid of the big four pie slices
 - Anything less gives you a marginal win
 - x10 as an example improvement

Single Threading

- Toast unless you do this
 - Unless you get rid of queuing/contention
 - Or eliminate shared data structures
- H-Store (and VoltDB) statically divide shared memory among the cores
 - Would be interesting to look at more flexible schemes

Main Memory

- Toast unless you do this
- What happens if my data doesn't fit?
 - VLDB '14 paper by Debrabant et. al. "Anticaching"
 - Alternative distributed systems

To overcome the restriction that all data fit in main memory, a new technique, called anti-caching, where cold data is moved to disk in a transactionally-safe manner as the database grows in size. Because data initially resides in memory, an anti-caching architecture reverses the traditional storage hierarchy of disk-based systems. Main memory is now the primary storage device.

Concurrency Control

- MVCC (Multi-Version Concurrency Control) popular (Oracle, MySQL InnoDB Engine, NuoDB, Hekaton)
 - Each user sees a snapshot of the data at a particular point in time
- Time stamp order popular (H-Store/VoltDB)
 - Non-locking concurrency control (e.g., Lamport timestamp)
- Lightweight combinations of time stamp order and dynamic locking (Calvin, Dora)
 - Dynamically determine the most cost effective level of granularity for locking row, rows, table, etc., based on query.
 - Normal dynamic locking is too slow

Logging

- Command logging much faster than data logging
 - ICDE '14 paper by Malvaiya
 - 1.5x higher throughput
- HA (high availability) is now a requirement
 - Failover to a replica; rarely recover from a log

The Old Way vs The New Big Data Way

- Main memory not disk
- Anti-caching not caching
- Command logging not data logging
- Failover not recovery from a log
- MVCC or timestamp order, not dynamic locking
- Single threaded not multi-threaded

Everything Else

- NoSQL
- Array stores
- GraphDBMSs
- Hadoop

NoSQL ~ 75 or so Vendors

Give up SQL

- Completely misguided notion
- SQL mathematically precise relational language
- SQL does not map well to OO NoSQL i.e., object level
- Nobody codes in assembler any more!!!
- Never bet against the compiler!!

NoSQL ~ 75 or so Vendors

Give up ACID

- If you are guaranteed that you won't need it (now or in the future) then you are ok
- Otherwise, you're in trouble

NoSQL ~ 75 or so Vendors

Schema later

- Most support semi-structured data adding a new "column" is trivial
- Don't have to think about your data upfront
 - Good or bad depending on your point of view!

NoSQL - Summary

Moving quickly toward SQL

- Cassandra and MongoDB are moving towards SQL!
- SparkSQL, Impalla, Hive

Moving toward ACID

 Even Jeff Dean (Google) now admits ACID is a good idea!

NoSQL

- Used to mean "No SQL"!
- Then meant "Not only SQL"!
- Moving toward "Not yet SQL" (i.e. convergence)!

NoSQL – Summary

- Systems are fine for "low end" applications
 - E.g webby things!
 - E.g. protection/ authentication data bases
 - Etc.

Array DBMSs and Complex Analytics

- Machine learning
- Data clustering
- Predictive models
- Recommendation engines
- Regressions
- Estimators

i.e. "Data Mining"

Complex Analytics

- By and large, they are defined on arrays
- As collections of linear algebra operations
- They are not in SQL!
- And often
 - Are defined on large amounts of data
 - And/or in high dimension

Complex Analytics on Array Data - Basic Example

- Consider the closing price on all trading days for the last 20 years for two stocks A and B
- What is the covariance between the two timeseries?

(1/N) * sum (A_i - mean(A)) * (B_i - mean (B))

Complex Analytics on Array Data - Basic Example

Do this for all pairs of 15000 stocks

Stock	t ₁	t ₂	t ₃	t ₄	t ₅	t ₆	t ₇	••••	t ₄₀₀₀
S ₁									
S ₂									
•••									
S ₁₅₀₀₀									

... or 100,000 * n 000's of recommendations

Array Answer

• Ignoring the (1/N) and subtracting off the means

Stock * Stock^T

System Requirements

- Complex analytics
 - Covariance is just the start Defined on arrays
- Data management
 - Leave out outliers
 - E.g., Just on securities with market cap > \$10B
- Need scalability to many cores, many nodes and out-of-memory data (no additional memory available)

Array DBMSs -- Summary

- Array SQL
 - For joins filters,...
- Built in functions
 - For SVD, Co-variance, ANOVA...
- User-defined extensions
 - If you don't see what you need
- Likely to get tractions
 - When the world moves to complex analytics
- Does not look at all like the traditional wisdom
- Array DBMSs -- e.g. SciDB

Graph DBMSs

- Focus on things like Facebook/twitter graphs
 - GraphLab
- OLTP focus
 - Neo4J
- Analytics focus (shortest path, minimum cut set, ...)
- Can you beat RDBMS simulations?
 - Array simulations
 - Jury is still out

What is Hadoop?

- File system HDFS + MapReduce + extensions
- Open source version of Google's GFS + Map-Reduce
- MapReduce
 - Map (basically filter, transform) Reduce (basically rollup)
- Very good for "embarrassingly parallel" operations
 - E.g. document indexing, document search, word count

The Hadoop Stack

- Hive (or Pig) at the top
 - Think SQL
- Hadoop (Map-Reduce) in the middle
- HDFS (a file system) at the bottom
- Runs across any number of nodes
 - Very scalable!

Possible Uses for Hadoop Stack

- Embarrassingly parallel computations
 - Good indexing, document search
- SQL aggregates (e.g. warehouse-style queries)
 - Factor of 100 worse than a warehouse DBMS
- Complex analytics
 - Factor of 100 worse than an array DBMS
- Scientific (e.g. computational fluid
- dynamics)
 - Factor of 100 worse than MPI-based systems

Hadoop Usage at Facebook

- 95+% Hive or Cassandra
 - Hadoop layer is a disaster

Most Likely Future

- Cloudera, Hortonworks, and Facebook are ALL doing the same thing
 - Defining and building an execution engine that processes Hive without using Hadoop layer
- Effectively moving to compete in the warehouse market
 - All warehouse vendors have Hive-like interfaces
- There is a relatively small market for embarrassingly parallel Hadoop framework
- There is a much bigger market for a Hive-SQL framework
 - Execution engines will look like data warehouse products
- HDFS may or may not survive
 - It is also horribly inefficient
- Spark
 - Distributed memory

Futures...

- Warehouses will be a column store market
- OLTP will be a main memory market
- Array DBMSs and Graph DBMS may get traction
 - Should understand what they are good for

NoSQL

- Popular for low-end applications
- Especially document management, web stuff and places where you want schema-later
- ACID-less