Artur Dandolini Pescador Caio Jordan Azevedo

Changes to vanilla GAN

- To have a functioning baseline, we make simple modifications to the GAN:
 - 4 -> 2 layers
 - Sigmoid instead of tanh (accordingly, no preprocessing of MNIST)
- Without these changes, either vanishing gradients or instability:

Original model x Small model:

Small model with tanh x Small model with sigmoid:

Also explored: W-GAN

Overview

- Uses Earth-Mover (Wassertein-1) distance for model and target distributions.
- Addresses Training instability and mode collapse in standard GANs.
- Network: Generator + Discriminator with Lipschitz constraint.

Does indeed produce high quality samples, but not so much variability:

W-GAN generations

Recall: 0.06

Overview

- Extends GANs to a larger class of f-divergence functions.
- Flexibility in choosing divergence functions based on training complexity.
- Network: Generative Model (Q) + Variational Function (T).

 Different divergences: Total Variation, Forward Kullback-Leibler, Reverse Kullback-Leibler, Pearson, Hellinger, and Jensen shannon.

GANs are special cases of a Variational Divergence Minimization framework:

- 1. For a given f-divergence, $D_f(P||Q) = \int_{\mathcal{X}} q(x) f\left(\frac{p(x)}{q(x)}\right) dx$,
- 2. One can use the convex conjugate of f, noted f*, to rewrite D_f as:

$$\sup_{T \in \mathcal{T}} \left(\mathbb{E}_{x \sim P} \left[T(x) \right] - \mathbb{E}_{x \sim Q} \left[f^*(T(x)) \right] \right)$$

3. From this formulation we can derive the objective function:

$$F(\theta, \omega) = \mathbb{E}_{x \sim P} \left[T_{\omega}(x) \right] - \mathbb{E}_{x \sim Q_{\theta}} \left[f^*(T_{\omega}(x)) \right].$$

4. We train the discriminator T_{ω} to maximize the objective and the generator Q_{θ} to minimize it.

f-divergences functions

Name	$D_f(P Q)$	Generator $f(u)$	$T^*(x)$
Total variation	$rac{1}{2}\int p(x)-q(x) \mathrm{d}x$	$\frac{1}{2} u-1 $	$\frac{1}{2} \operatorname{sign}(\frac{p(x)}{q(x)} - 1)$
Kullback-Leibler	$\int p(x) \log rac{p(x)}{q(x)} \mathrm{d}x$	$u \log u$	$1 + \log \frac{p(x)}{q(x)}$
Reverse Kullback-Leibler	$\int q(x) \log \frac{q(x)}{p(x)} dx$	$-\log u$	$-rac{q(x)}{p(x)}$
Pearson χ^2	$\int rac{(q(x)-p(x))^2}{p(x)} \mathrm{d}x$	$(u - 1)^2$	$2(\frac{p(x)}{q(x)}-1)$
Neyman χ^2	$\int \frac{(p(x)-q(x))^2}{q(x)} \mathrm{d}x$	$\frac{(1-u)^2}{u}$	$1 - \left[\frac{q(x)}{p(x)}\right]^2$
Squared Hellinger	$\int \left(\sqrt{p(x)}-\sqrt{q(x)} ight)^2\mathrm{d}x$	$\left(\sqrt{u}-1\right)^2$	$(\sqrt{\frac{p(x)}{q(x)}} - 1) \cdot \sqrt{\frac{q(x)}{p(x)}}$
Jeffrey	$\int (p(x) - q(x)) \log \left(\frac{p(x)}{q(x)} \right) dx$	$(u-1)\log u$	$1 + \log \frac{p(x)}{q(x)} - \frac{q(x)}{p(x)}$
Jensen-Shannon	$ \frac{1}{2} \int p(x) \log \frac{2p(x)}{p(x)+q(x)} + q(x) \log \frac{2q(x)}{p(x)+q(x)} dx \int p(x) \pi \log \frac{p(x)}{\pi p(x)+(1-\pi)q(x)} + (1-\pi)q(x) \log \frac{q(x)}{\pi p(x)+(1-\pi)q(x)} dx \int p(x) \log \frac{2p(x)}{p(x)+q(x)} + q(x) \log \frac{2q(x)}{p(x)+q(x)} dx - \log(4) $	$-(u+1)\log\frac{1+u}{2} + u\log u$	$\log \frac{2p(x)}{p(x)+q(x)}$ $\pi \log \frac{p(x)}{(1-\pi)q(x)+\pi p(x)}$
Jensen-Shannon-weighted	$\int p(x)\pi \log \frac{p(x)}{\pi p(x) + (1-\pi)q(x)} + (1-\pi)q(x) \log \frac{q(x)}{\pi p(x) + (1-\pi)q(x)} dx$	$\pi u \log u - (1 - \pi + \pi u) \log(1 - \pi + \pi u)$	$\pi \log \frac{p(x)}{(1-\pi)q(x)+\pi p(x)}$
GAN	$\int p(x) \log \frac{2p(x)}{p(x)+q(x)} + q(x) \log \frac{2q(x)}{p(x)+q(x)} dx - \log(4)$	$u\log u - (u+1)\log(u+1)$	$\log \frac{p(x)}{p(x)+q(x)}$
α -divergence ($\alpha \notin \{0,1\}$)	$\frac{1}{\alpha(\alpha-1)} \int \left(p(x) \left[\left(\frac{q(x)}{p(x)} \right)^{\alpha} - 1 \right] - \alpha(q(x) - p(x)) \right) dx$	$\frac{1}{\alpha(\alpha-1)}\left(u^{\alpha}-1-\alpha(u-1)\right)$	$\frac{1}{\alpha-1} \left[\left[\frac{p(x)}{q(x)} \right]^{\alpha-1} - 1 \right]$

f-GAN generations

f-GAN generations

Comparison

- Stability of Training: f-GANs can be more stable than Vanilla GANs
- Speed of Convergence

Going further: PR control

- How to control the trade-off between precision and recall?
- Vérine et al. (2023) proposes PR divergence: $f_{\lambda}(u) = \max(\lambda u, 1) \max(\lambda, 1)$

Higher λ gives more precision, less recall

References

- Sebastian Nowozin, Botond Cseke, Ryota Tomioka. "f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization." 2016. arXiv:1606.00709
- 2. Martin Arjovsky, Soumith Chintala, Léon Bottou. "Wasserstein GAN." 2017. arXiv:1701.07875
- 3. Alexandre Verine, Benjamin Negrevergne, Muni Sreenivas Pydi, and Yann Chevaleyre. "Precision-Recall Divergence Optimization for Generative Modeling with GANs and Normalizing Flows." 2023. arXiv:2305.18910