CSC 339 – Theory of Computation Fall 2023

10. Turing Machines

Outline

- Turing machines
- Formal definitions for Turing machines
- Computing functions with Turing machines
- Combining Turing machines

The Tape No boundaries: infinite length Read-Write head The head moves Left or Right

The head at each transition (time step):

- 1. Reads a symbol
- 2. Writes a symbol
- 3. Moves Left or Right

Head starts at the leftmost position of the input string

Determinism

Turing Machines are deterministic

Allowed

Not Allowed

No epsilon transitions allowed

Halting

The machine **halts** in a state if there is no transition to follow

Accepting States

- •Accepting states have no outgoing transitions
- •The machine halts and accepts

Acceptance

Accept Input String

If machine halts in an accept state

Reject Input String

If machine halts in a non-accept state or If machine enters an *infinite loop*

Observation:

In order to accept an input string, it is not necessary to scan all the symbols in the string.

Turing Machine Example

Input alphabet: $\Sigma = \{a, b\}$

Accepts the language: a*

A simpler machine for the same language but for input alphabet $\Sigma = \{a\}$

Accepts the language: a^*

Halt & Accept

Not necessary to scan the input

Infinite Loop Example

Turing machine:

Because of the infinite loop:

- •The accepting state cannot be reached
- •The machine never halts
- •The input string is rejected

Another Turing Machine Example

Turing machine for the language $\{a^nb^n \mid n \ge 1\}$

Basic Idea:

Match a's with b's:

Repeat:

replace leftmost a with x
find leftmost b and replace it with y
Until there are no more a's or b's
If there is a remaining a or b reject

Another Turing Machine Example

Turing machine for the language $\{a^nb^n \mid n \ge 1\}$

Observation:

If we modify the machine for the language $\{a^nb^n\}$

we can easily construct a machine for the language $\{a^nb^nc^n\}$

Formal Definitions for Turing Machines

Transition Function

$$\delta(q_1, a) = (q_2, b, R)$$

Transition Function

$$\delta(q_1,c) = (q_2,d,L)$$

Configuration

Instantaneous description: $ca q_1 ba$

A Move: $q_2 xayb \succ x q_0 ayb$

(yields in one mode)

$$q_2 xayb \succ x q_0 ayb \succ xx q_1 yb \succ xxy q_1 b$$

Equivalent notation: $q_2 xayb \succ xxy q_1 b$

The Accepted Language

For any Turing Machine M

$$L(M) = \{w: q_0 \ w \succ x_1 \ q_f \ x_2\}$$
Initial state

Accept state

Accept state

If a language L is accepted by a Turing machine M then we say that L is:

Turing Recognizable

Other names used:

- •Turing Acceptable
- •Recursively Enumerable

Computing Functions with Turing Machines

A function f(w) has:

Domain: D

Result Region: S

A function may have many parameters:

Example: f(x, y) = x + y

Integer Domain

Decimal: 5

Binary: 101

Unary: 11111

We prefer unary representation: easier to manipulate with Turing machines

Definition:

A function f is computable if there is a Turing Machine M such that:

Initial configuration

Final configuration

For all $w \in D$ Domain

In other words:

A function f is computable if there is a Turing Machine M such that:

$$q_0 \ w \ \succeq \ q_f \ f(w)$$
Initial Final
Configuration Configuration

For all $w \in D$ Domain

Example

The function f(x, y) = x + y is computable

x, y are integers

Turing Machine:

Input string: x0y unary

Output string: xy0 unary

Turing machine for function f(x, y) = x + y

Another Example

The function f(x) = 2x is computable x is an integer

Turing Machine:

Input string: *x* unary

Output string: xx unary

Turing Machine Pseudocode for f(x) = 2x

- Replace every 1 with \$
- Repeat:
 - •Find the rightmost \$, replace it with 1
 - •Go to the right end, insert 1

Until no more \$ remain

Another Example

The function
$$f(x, y) = \begin{cases} 1 & \text{if } x > y \\ 0 & \text{if } x \le y \end{cases}$$
 is computable

Input: x0y

Output: 1 or 0

Turing Machine Pseudocode:

•Repeat

Match a 1 from x with a 1 from y

Until all of x or y is matched

•If a 1 from x is not matched erase tape, write 1 (x > y)

else

erase tape, write 0 $(x \le y)$

Combining Turing Machines

