Xinhao Li

North Carolina State University, Raleigh, NC

Phone: +1-919-607-1990

Email: xli74@ncsu.edu

Website: https://xinhaoli74.github.io

Summary

3rd year Ph.D. student in Chemistry. Experienced in applying machine learning techniques and cheminformatics for solving chemistry problems, e.g. molecular activity/propriety prediction. Well-versed in programming languages including **Python** and **R**. Proficient skills in chemical data mining, curation, analysis, visualization, and modeling.

Research Interests by Keyworks

- Cheminformatics
- Computational Toxicology
- Machine Learning/Deep learning
- Big Data Mining, Analysis, Visulzation
- QSAR modeling
- Computer-Aided Drug Design
- Virtual Screening
- Software Development

Research

Graduate Research Assistant

Advisor: Denis Fourches

Fourches Lab, NCSU Aug 2017 - Current

- Development of Novel Quantitative Structure-Property/Activity Relationship (QSPR/QSAR)
 Modeling Methodologies:
 - MolPMoFiT: An inductive transfer learning method for QSRR/QSAR modeling. MolPMoFiT pre-trained a universal molecular structure prediction model using one million bioactive molecules from ChEMBL and then fine-tuned it for various QSPR/QSAR tasks.
 - **Hierarchical QSAR**: An effective ensemble modeling method that Integrating binary/multi classification and regression models for predicting acute oral systemic toxicity.
- Software Development:
 - CryptoChem: A novel cryptographic and data storage method based on cheminformatics, machine learning, and big chemical data. Two independent software were developed: MOLWRITE and MOLREAD. MOLWRITE encrypts the text/image data into chemical message and MOLREAD decrypts the encoded chemical message back to text/image.

Education

PhD in Chemistry	North Carolina State University	Raleigh, NC	2017 – Current
MS in Chemistry	Beijing University of Chemical Technology	Beijing, China	2013 –2016
BS in Chemistry	Beijing University of Chemical Technology	Beijing, China	2009 –2013

Skills

- Language: English & Mandarin (native)
- Programming Language: Python & R
- Cheminformatics Toolkits: KNIME, RDKit, Schrodinger
- Machine Learning Toolkits: Pytorch, Keras, Scikit-Learn, Jyperter Notebook

Courses

• deeplearning.ai: Deep Learning Specialization

Publications

- 1. **Xinhao Li** and Denis Fourches. (2019): Inductive Transfer Learning for Molecular Activity Prediction: Next-Gen QSAR Models with MolPMoFiT. *ChemRxiv*.
- 2. **Xinhao Li**, Nicole Kleinstreuer and Denis Fourches. (2019): Hierarchical H-QSAR Modeling Approach for Integrating Binary/Multi Classification and Regression Models of Acute Oral Systemic Toxicity. *Chemical Research in Toxicology*. (Under Revision)
- 3. **Xinhao Li** and Jiaxi Xu. (2017): Effects of the Microwave Power on the Microwave-assisted Esterification. *Current Microwave Chemistry*. 158-162.
- 4. **Xinhao Li** and Jiaxi Xu. (2017): Identification of Microwave Selective Heating Effort in an Intermolecular Reaction with Hammett Linear Relationship as a Molecular Level Probe. *Current Microwave Chemistry*. 339-346.
- 5. **Xinhao Li** and Jiaxi Xu. (2016): Determination on temperature gradient of different polar reactants in reaction mixture under microwave irradiation with molecular probe. *Tetrahedron. 35*, 5515-5520.
- 6. Shanyan Mo, **Xinhao Li** and Jiaxi Xu. (2014): In Situ-Generated Iodonium Ylides as Safe Carbene Precursors for the Chemoselective Intramolecular Buchner Reaction. *J. Org. Chem.* 19, 9186-9195.

Presentations

- 1. NC State Chemistry Recruitment Weekend (March 2019, Raleigh, NC)
 - **Xinhao Li,** Denis Fourches. Hierarchical H-QSAR Modeling Method that Integrates Binary/Multi Classification and Regression Models for Predicting Acute Oral Systemic Toxicity. (**Poster**)
- 2. American Chemical Society Conference (April 2019, Orlando, FL)
 Xinhao Li, Denis Fourches. Hierarchical H-QSAR Modeling Method that Integrates Binary/Multi
 Classification and Regression Models for Predicting Acute Oral Systemic Toxicity. (Poster)
- 3. "Innovations in Agriculture" Scientific Poster Session at BASF (May 2019, RTP, NC)
 Xinhao Li, Denis Fourches. Hierarchical H-QSAR Modeling Method that Integrates Binary/Multi
 Classification and Regression Models for Predicting Acute Oral Systemic Toxicity. (Poster)
- 4. NCSU/BASF Poster Session (Aug 2019, Raleigh, NC)
 Xinhao Li, Denis Fourches. Transfer Learning for Molecular Property/Activity Prediction. (Poster)
- 5. Triangle Machine Learning Day (Sep 2019, Durham, NC)
 Xinhao Li, Denis Fourches. Transfer Learning for Molecular Property/Activity Prediction.
 (Presentation & Poster)

Awards

1. CINF Scholarship for Scientific Excellence awarded by ACS CINF (2019 Spring)