Exercice 1 - Troisième année - *

- 1. $\mathcal{L}^p(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu_d)$ est l'espace des suites (u_n) telles que $\sum_{n\geq 1} |u_n|^p < +\infty$. Si p < q, et $(u_n) \in \ell^p$, alors $|u_n| \leq 1$ pour n assez grand et on a $|u_n|^q = |u_n|^p |u_n|^{q-p} \leq |u_n|^p$, et donc la série $\sum_n |u_n|^q$ est elle aussi convergente. D'autre part, on a $u_n = \frac{1}{n^\alpha} \in \ell^p \iff p\alpha > 1$. Si on choisit donc α tel que $q\alpha > 1$ et $p\alpha \leq 1$, alors $(u_n) \in \ell^q \setminus \ell^p$.
- 2. On va utiliser l'inégalité de Hölder. Prenons $f \in \mathcal{L}^p(\Omega)$. On a :

$$\int_{\Omega} |f|^p d\mu = \int_{\Omega} |f|^q 1 d\mu.$$

Soit r tel que rp=q, ie $r=q/p\in [1,+\infty[,$ d'exposant conjugué r'. L'inégalité de Hölder donne

$$\int_{\Omega} |f|^p d\mu \leq \left(\int_{\Omega} |f|^q d\mu \right)^{1/r} \left(\int_{\Omega} 1^{r'} d\mu \right)^{1/r'}$$

$$\leq \mu(\Omega)^{1/r'} ||f||_q^{1/r}.$$

D'autre part, la fonction $f(x) = 1/x^{\alpha}$ est dans $L^{p}([0,1])$ si et seulement si $p\alpha < 1$. Prenant α tel que $p\alpha < 1$ et $q\alpha > 1$ on voit que l'inclusion est stricte dans ce cas.

- 3. Supposons par exemple $p \neq q$. Il suffit de prendre les fonctions f définies par $f(x) = 1/x^{\alpha}$ si $x \in]0,1[$, f=0 ailleurs, et $g(x)=1/x^{\alpha}$ pour x dans $[1,+\infty[$, g=0 ailleurs. En raisonnant comme ci-dessus, on prouve que pour $p\alpha < 1$ et $q\alpha > 1$, on a $f \in \mathcal{L}^p$ mais pas dans \mathcal{L}^q . Le contraire se produit avec g (pour les mêmes valeurs de α).
- 4. La fonction $f(x) = 1/\ln(x)$ est dans tous les espaces $L^p([0,1])$, car $|f|^p \le 1/\sqrt{x}$ pour x assez petit. Elle n'est pas bornée donc pas dans $L^{\infty}([0,1])$.

Exercice 2 - Troisième année - *

- 1. On distingue deux cas : si $|f(x)| \le 1$, alors on a $|f(x)|^p \le |f(x)|^\alpha$. Si $|f(x)| \ge 1$, alors $|f(x)|^p \le |f(x)|^\beta$. Dans tous les cas, l'inégalité demandée est satisfaite et ainsi, si $f \in L^\alpha(\mathbb{R}) \cap L^\beta(\mathbb{R})$ on obtient $f \in L^p(\mathbb{R})$. $\{p \in [1, +\infty[\} = I \text{ est donc un intervalle, car pour tout } \alpha < \beta \in I$, le segment $[\alpha, \beta]$ est inclus dans I.
- 2. Il s'agit simplement d'une application du théorème de continuité sous le signe intégrale, car, en posant $F(p,x) = |f(x)|^p$, alors :
 - $-x \mapsto |f(x)|^p$ est mesurable pour tout p.
 - $-p\mapsto |f(x)|^p$ est continue pour tout x.
 - $-|F(p,x)| \le |f(x)|^{\alpha} + |f(x)|^{\beta}$, fonction intégrable qui ne dépend pas de p. Donc $p \mapsto \int_{\mathbb{R}} |f(x)|^p dx$ est continue.

Exercice 3 - Troisième année - **

1. Il suffit simplement d'utiliser l'inégalité de Cauchy-Schwarz :

$$|F(x)|^2 \le \int_{[0,x]} |f|^2 d\lambda \int_{[0,x]} 1^2 d\lambda = x \int_{[0,x]} |f|^2 d\lambda.$$

Cela donne le résultat, puisque quand $x \to 0$, $\int_{[0,x]} |f|^2 d\lambda$ tend vers 0.

2. C'est un peu plus dur, puisque si on applique de but en blanc l'inégalité de Cauchy-Schwarz sur [0,x[, on obtient simplement que $\frac{|G(x)|}{\sqrt{x}} \leq M$ pour une certaine constante M. En fait, on va appliquer l'inégalité sur un intervalle [a,x]. Pour cela, fixons $\varepsilon>0$ et remarquons que

$$\begin{aligned} |G(x)| & \leq & \int_0^a |g| d\lambda + \int_a^x |g| d\lambda \\ & \leq & \int_0^a |g| d\lambda + \sqrt{x - a} \left(\int_a^x |g|^2 d\lambda \right), \end{aligned}$$

où la dernière inégalité vient de l'inégalité de Cauchy-Schwartz sur [a, x]. On en déduit

$$\frac{|G(x)|}{\sqrt{x}} \le \frac{C}{\sqrt{x}} + \frac{\sqrt{x-a}}{x} \left(\int_{[a,x]} |g|^2 d\lambda \right)^{1/2}.$$

En choisissant a>0 de sorte que $\int_a^{+\infty} |g|^2 d\lambda < \varepsilon$, on voit que pour x assez grand, on a

$$\frac{|G(x)|}{\sqrt{x}} \le \varepsilon,$$

ce qui est l'inégalité désirée.

Exercice 4 - Translation - Troisième année - **

Comme suggéré, supposons d'abord que f est une fonction continue à support compact, et on suppose donc que son support est inclus dans un segment [-A,A]. D'après le théorème de Heine, f est en fait uniformément continue, et donc, $\forall \varepsilon > 0$, $\exists \eta > 0$ tel que $|x-y| < \eta \implies |f(x) - f(y)| < \varepsilon$. Or, si $|a| < \eta$ et $x \in \mathbb{R}$, $|(x-a) - x| < \eta$. En outre, f(x) et f(x-a) sont tous les deux nuls si x et x-a sont tous les deux hors de [-A,A]. En particulier, si on suppose |a| < 1, |f(x) - f(x-a)| = 0 si $x \notin [-A-1,A+1]$.

$$\|\tau_a(f) - f\|_p^p = \int_{\mathbb{R}} |f(x - a) - f(x)|^p dx$$

$$= \int_{-A-1}^{A+1} |f(x - a) - f(x)|^p dx$$

$$= \int_{-A-1}^{A+1} \varepsilon^p dx$$

$$= (2A + 1)\varepsilon^p.$$

Ceci prouve bien le résultat si f est continue à support compact. Prenons maintenant f quelconque dans $L^p(\mathbb{R})$ et fixons $\varepsilon > 0$. Par densité des fonctions continues à support compact dans $L^p(\mathbb{R})$, il existe $g \in C_c(\mathbb{R})$ tel que $||f - g||_p < \varepsilon$. Par changement de variables, on a aussi $||\tau_a(f) - \tau_a(g)||_p = ||f - g||_p < \varepsilon$. Maintenant, d'après le premier point, il existe $\eta > 0$ tel que si $|a| < \eta$, alors $||\tau_a(g) - g||_p < \varepsilon$. On conclut en écrivant :

$$||f - \tau_a(f)||_p \le ||f - g||_p + ||g - \tau_a(g)||_p + ||\tau_a(g) - \tau_a(f)||_p < 3\varepsilon.$$

Exercice 5 - Produit de convolution - Troisième année - ***

1. Il s'agit simplement d'une application de l'inégalité de Hölder : si on pose, pour $x \in \mathbb{R}$ fixé, h(y) = f(x - y), alors $h \in L^p(\mathbb{R})$ avec $||h||_p = ||f||_p$. On en déduit que $hg \in L^1(\mathbb{R})$ et l'estimation :

 $|f \star g(x)| \le \int_{\mathbb{R}} |h(y)g(y)| dy \le ||h||_p ||g||_q = ||f||_p ||g||_q.$

2. Nous allons appliquer le théorème de Fubini. Montrons en effet que $(x,y) \mapsto f(x-y)g(y)$ est dans $L^1(\mathbb{R}^2)$. On a en effet, d'après le théorème de Fubini-Tonelli,

$$\int_{\mathbb{R}^2} |f(x-y)g(y)| dy = \int_{\mathbb{R}} |g(y)| \left(\int_{\mathbb{R}} |f(x-y)| dx \right) dy$$
$$= \int_{\mathbb{R}} |g(y)| ||f||_1 dy \text{ changement de variables}$$
$$= ||f||_1 ||g||_1.$$

D'après le théorème de Fubini, on en déduit que, pour presque tout $x \in \mathbb{R}$, $f \star g(x) = \int_{\mathbb{R}} f(x-y)g(y)dy$ est défini, que cette fonction est intégrale et satisfait $||f \star g||_1 \le ||f||_1 ||g||_1$.

3. Ecrivons ce qui est indiqué, et remarquons que, pour tout x, la fonction $y \mapsto |f(x-y)|^{1/q}$ est dans $L^q(\mathbb{R})$. D'autre part, d'après la question précédente, pour presque tout $x \in \mathbb{R}$, la fonction $y \mapsto (|f(x-y)|^{1/p}|g(y)|)^p$ est intégrable sur \mathbb{R} , ie $y \mapsto |f(x-y)|^{1/p}|g(y)|$ est dans $L^p(\mathbb{R})$. D'après l'inégalité de Hölder, on obtient, pour presque tout x de \mathbb{R} , que la fonction $y \mapsto |f(x-y)||g(y)|$ est intégrable, et que

$$\int_{\mathbb{R}} |f(x-y)| |g(y)| dy \le \left(\int_{\mathbb{R}} |f(x-y)| |g(y)|^p dy \right)^{1/p} ||f||_1^{1/q}.$$

En passant à la puissance p, ceci devient :

$$|f \star g(x)|^p \le (|f| \star |g|^p)(x)||f||_1.$$

On applique maintenant le résultat de la question précédente à $|f| \star |g|^p$, et on obtient $f \star g \in L^p$ avec l'estimation

$$||f \star g||_p^p \le ||f||_1 ||g||_p^p ||f||_1^{p/q} = ||f||_1^p ||g||_p^p$$

Exercice 6 - Dualité - Troisième année - *

- 1. Il s'agit simplement d'une reformulation de l'inégalité de Hölder.
- 2. Calculons d'abord $||f||_p$:

$$||f||_p^p = \int_{\mathbb{R}} |g(x)|^{p+pq-2p} dx = ||g||_q^q.$$

D'autre part,

$$T(f) = \int_{\mathbb{R}} |g|^q = ||g||_q^q.$$

On en déduit

$$||T|| \ge \frac{|Tf|}{||f||_p} = ||g||_q^{q-q/p} = ||g||_q.$$

Si vous trouvez une erreur, une faute de frappe, etc... dans ces exercices, merci de la signaler à geolabo@bibmath.net Venez poursuivre le dialogue sur notre forum :

http://www.bibmath.net/forums