Álgebra Linear I

Exercícios Programados 7 – EP7

Resolução

1. Considere os subespaços U = [(1, 0, 0)] e V = [(1, 0, 1), (1, 1, 0)] de \Re^3 . Determine $U \cap V$ e U + V. Verifique se a soma é direta.

Solução.

 $(x, y, z) \in U$, (x, y, z) = a(1, 0, 0). Daí, a = x, y = z = 0 e $H = \{(x, 0, 0) / x \in \Re \}$. $(x, y, z) \in V$, (x, y, z) = a(1, 0, 1) + b(1, 1, 0). Daí, a + b = x, b = y e a = z e $V = \{(y + z, y, z) / y, z \in \Re \}$.

Então, $U \cap V = \{(x, y, z) \in \Re^3 / (x, y, z) \in U \text{ e } (x, y, z) \in V\} = \{(x, y, z) \in \Re^3 / y = z = 0 \text{ e } x = 0 + 0 = 0\} = \{(0, 0, 0)\}.$

 $U + V = \Re^3$, pois todo vetor (a, b, c) em \Re^3 pode ser escrito na forma (a, b, c)= (a-(b + c), 0, 0) + (b + c, b, c)}, ou podemos observar que dim U + V = 1 + 2 - 0 = 3.

O \Re^3 é soma direta de seus subespaços U e V, pois U + V = \Re^3 e U \cap V = {(0, 0, 0)}.

2. Sejam

 $W_1 = \{(x, y, z, t) \ / \ x + y = 0 \ e \ z - t = 0\} \ e \ W_2 = \{(x, y, z, t) \ / \ x - y - z + t = 0\}$ subespaces de \Re^4 .

- a) Determine $W_1 \cap W_2$
- b) Exiba uma base para $W_1 \cap W_2$.
- c) Determine $W_1 + W_2$
- d) Exiba uma base para $W_1 + W_2$
- e) $W_1 + W_2$ é soma direta? Justifique.

Solução.

(a) $W_1 = \{(x, -x, y, y)/x, y \in \Re \} e W_2 = \{(x, y, z, y + z - x) / x, y, z \in \Re \}.$

 $W_1 \cap W_2 = \{(0, 0, x, x) / x \in \Re \}.$

- (b) Como (0, 0, x, x) = x(0, 0, 1, 1), o conjunto $\{(0, 0, 1, 1)\}$ é uma base para $W_1 \cap W_2$.
- © Como dim $W_1 + W_2 = 2 + 3 1 = 4$, $W_1 + W_2 = 4$, logo uma base é por exemplo a canônica do \Re^4 , $\{(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1)\}$.
- (d) \Re^4 embora seja a soma de W_1 e W_2 , ele não é soma direta deles, pois a interseção de W_1 e W_2 não é o conjunto formado pelo 0=(0,0,0,0).
- 3. Considerando o espaço euclidiano \Re^3 e os pares de vetores u=(2, 1, -5) e v=(5, 0, 2). Calcule:
 - a) O produto interno de u e v (Notação: <u, v>)
 - b) A norma de u (Notação: || u ||)
 - c) A norma de v
 - d) O ângulo entre u e v.

Solução:

a)
$$\langle (2,-1,-5), (5,0,2) \rangle = 2.5 + (-1).0 + (-5).2 = 0.$$

b)
$$||(2,1,-5)|| = \sqrt{2^2 + 1^2 + (-5)^2} = \sqrt{4 + 1 + 25} = \sqrt{30}$$

c)
$$||(5,0,2)|| = \sqrt{5^2 + 0^2 + 2^2} = \sqrt{25 + 4} = \sqrt{29}$$

d) Como o produto interno destes vetores é zero eles são ortogonais, o ângulo entre eles é 90°. Ou, se θ é o ângulo entre u e v, verificamos que $\theta = 90^{\circ}$

pela igualdade
$$\cos \theta = \frac{\langle u, v \rangle}{\|u\| \|v\|} = \frac{0}{\sqrt{30}\sqrt{29}} = 0.$$

4. Considere o seguinte produto interno em P_2 : $p.q = a_2b_2 + a_1b_1 + a_0b_0$, sendo $p = a_2x^2 + a_1x + a_0$ e $p = b_2x^2 + b_1x + b_0$. Dados os vetores $p_1 = x^2 - 2x + 3$, $p_2 = 3x - 4$ e $p_3 = 1 - x^2$, Calcule:

1.
$$p_1.p_2$$

2.
$$|p_1| e |p_3|$$

3.
$$|p_1 + p_2|$$

4.
$$\frac{p_2}{|p_2|}$$

5. Cosseno do ângulo entre p₂ e p₃

Solução.

(a)
$$p_1.p_2 = -18$$

(b)
$$|\mathbf{p}_1| = \sqrt{\mathbf{p}_1 \mathbf{p}_1} = \sqrt{14} \ e \ |\mathbf{p}_3| = \sqrt{\mathbf{p}_3 \mathbf{p}_3} = \sqrt{2}$$

(c)
$$|\mathbf{p}_1 + \mathbf{p}_2| = \sqrt{3}$$

(d)
$$\frac{p_2}{|p_2|} = \frac{3x - 4}{\sqrt{25}} = \frac{3}{5}x - \frac{4}{5}$$

(e)
$$\cos \theta = \frac{-4}{5\sqrt{2}} = \frac{-2\sqrt{2}}{5}$$

5. Considere V o espaço vetorial das matrizes quadradas de ordem 2:

$$V = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix}; a,b,c,d \in \mathfrak{R} \right\}. \text{ Sejam } S_1 \text{ e } S_2 \text{ subespaços de } V\text{:}$$

$$\begin{split} \textbf{S}_1 = & \left\{ \begin{bmatrix} \textbf{a} & \textbf{b} \\ \textbf{0} & \textbf{0} \end{bmatrix}; \textbf{a}, \textbf{b} \in \mathfrak{R} \right\}, \textbf{S}_2 = & \left\{ \begin{bmatrix} \textbf{a} & \textbf{0} \\ \textbf{c} & \textbf{0} \end{bmatrix}; \textbf{a}, \textbf{c} \in \mathfrak{R} \right\}. \text{ Determine a soma e a interseção dos subespaços } S_1 \text{ e } S_2. \end{split}$$

Solução

$$\mathbf{S}_1 + \mathbf{S}_2 = \left\{ \begin{bmatrix} \mathbf{a} & \mathbf{b} \\ \mathbf{c} & 0 \end{bmatrix}; \mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathfrak{R} \right\} \ \mathbf{e} \ \mathbf{S}_1 \ \mathbf{I} \ \mathbf{S}_2 = \left\{ \begin{bmatrix} \mathbf{a} & 0 \\ 0 & 0 \end{bmatrix}; \mathbf{a} \in \mathfrak{R} \right\}$$