全球定位系統概論 作業 2

系所:土木系 學號:109612054 姓名:吳巽言

◎廣播星曆: https://cddis.nasa.gov/archive/gnss/data/daily/◎精密星曆: https://cddis.nasa.gov/archive/gnss/products/

◎題目1:

請同學至網站上下載 2022 年 02 月 05 日的廣播星曆與精密星曆,並整理下列表格。(10 分)

(提示:以2022年02月05日為例,廣播星曆 brdc***.22n、精密星曆 igs****.sp3)

日期	2022年02月05日(六)	提示↓
GPS Week	2195	從 1980.01.06(日)開始起算第 1 週
GPS day	36	該年度的第幾天

檔案名稱格式	廣播星曆	精密星曆
檔案名稱_壓縮檔	brdc0360.22n.gz	igs21956.sp3.Z
檔案名稱_解壓縮	brdc0360.22n	igs21956.sp3

◎題目 2

下載廣播星曆後,裡面會記載時間參數、克卜勒參數(Kepler)、擾動力參數 (perturbations),如下表所示,其中克卜勒的六參數決定衛星在軌道上的位置,請在下表填入各參數符號其含義為何。(10分)

時間參數							
toe	衛星星曆之參考時刻						
toc	衛星時鐘之參考時刻						
a_0, a_1, a_2	衛星時鐘之改正參數						
IODE	星曆表之數據齡期						
	克卜勒元	素 (6 個)					
√a	橢圓軌道長半徑開根號	油宁城回取此五上 。					
e	橢圓軌道離心率	决定橢圓形狀和大小					
i_0	toe 時刻的軌道面傾角	決定衛星軌道平面與地球體之間相					
Ω_0	toe 時刻的昇交點赤徑	對位置					
ω	近地點角	決定橢圓在軌道平面之方向					
M_0	toe 時刻的平進點角	決定衛星在軌道上之瞬時位置					
	擾動力參婁	数 (9 個)					
Δn	到 toe 時刻平運動量之差						
Ω_1	昇交點赤經之時間變化率						
iı	軌道面傾角之時間變化率						
Cuc,Cus	餘弦、正弦球諧函數對緯度	變角之改正項					

C_{rc} , C_{rs}	餘弦、正弦球諧函數對軌道半徑之改正項
C_{ic} , C_{is}	餘弦、正弦球諧函數對軌道傾角之改正項

◎題目3

請同學整理廣播星曆衛星編號 1 號於 2022 年 02 月 05 日 00 時 00 分 00 秒的參數放於下表,整理時最多取自小數點以下第 4 位。(20 分)(可參考 P4~6 填答)

PRN	Date/time of clock toc	a ₀ (μsec)	a ₁ (μsec/day)	a ₂ (μsec/day ²)		
1	22-2-5-0-0-0.0	4.3958E-04	-9.5497E-12	0.0000		
	Age of ephemeris (sec)	Crs (m)	Δn (rad/sec)	M ₀ (rads)		
	64.0000	75.0937	4.0662E-09	0.6297		
	C _{uc} (rads)	E	E C _{us} (rads)			
	4.1090E-06	1.1341E-02	5.1537E+03			
	toe (secs in GPS wk)	C _{ic} (rads)	C _{is} (rads)			
	5.1840E+05	-1.2852E-07	1.3225E-07			
	i ₀ (rads)	C _{rc} (rads)	Ω_1 (rads/sec)			
	0.9866	2.4694E+02	-8.0882E-09			
	i ₁ (rad/sec)	GPS week number				
	1.6894E-10	1.0000	0.0000			

◎題目 4

請同學計算廣播星曆與精密星曆的衛星編號 1 號 2022 年 02 月 05 日 00 時 15 分 00 秒的時刻,轉換為地球地固坐標系之 X、Y、Z 坐標。

(45分,其中書寫計算過程占20分)

	衛星編號 1 號的坐標
	時刻為 2022 年 02 月 05 日 00 時 15 分 00 秒
精密星曆	請注意填寫答案的單位要求為公里 km,請輸入至小數點第6位
X	14581.408067
Y	-1494.739422
Z	21889.107258
廣播星曆	請注意填寫答案的單位要求為公里 km,求至小數點第 6 位
X	14581.390124
Y	-1494.736434
Z	21889.081474

提示與書寫方式:

本題廣播星曆計算較難,請參考 P4~6 的計算過程(以 2015 年為例,有兩種方法,擇一即可#用方法二!!!),並試著撰寫程式語言或使用 Excel 軟體。

- 廣播星曆計算之時間是以秒為單位,但起始值是以該週日起算。例如本作業要同學計算之時間為2022年02月05日00時15分00秒,0205是星期6, 為該週第7天,因此t=(24*60*60)*6+0*60*60+15*60+0=519300秒。
- 2. 計算過程如何書寫:可使用截圖、程式碼附上,需說明計算步驟與使用方 法,步驟占 10 分。

要先自行上 CDDIS 網站下載當天廣播星曆並將檔案放到欲存放的資料夾位置。 執行時須輸入如圖中之資訊,因此也可以用來計算不同天的衛星一號的 0 時 15 分 0 秒時坐標。執行完成後在資料夾中會多一個 output.txt 檔,打開會看到答 案。

使用方法二、PYTHON:以下為程式碼,也有另外附上程式檔

```
← → C 🐞 github.com/Dulcinea-WHY/Global-Positioning-System/blob/Dulcinea-WHY-patch-1/HW2/BroadcastEphemeris.py
        4 ### 圖形化介面
        6 try:
               import Tkinter as tkinter
      9 import tkinter as tkinter
10 ##建立主視窗
          win = tkinter.Tk()
          win.minsize(width=600, height=60)
       16 ##定義按鍵函式
               Time = str(entry1.get())
              weekday = int(entry2.get())
path = str(entry3.get())
               IGS = str(entry4.get())
              ###從CDDIS下載廣播星曆壓縮檔並處理
              import requests
def time(Time):
    date = Time.split(" ")
##判斷閏年(1:閏年)
                 if int(date[0]) % 4 == 0:
                   leap = 1
if int(date[0]) % 100 == 0:
                        if int(date[0]) % 400 == 0: leap = 1
else: leap = 0
```

```
34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63
                            ma計算GPSday

month = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31,

month_leap = [31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
                            GPSday = 0
##平年
                           ##平年

if leap == 0:

    for i in range(int(date[1])-1):

        GPSday += month[i]

    GPSday += int(date[2])

##國年
                          import os
path = path.replace("\\","/")
os.chdir(path)
s=檔名
                    file = "brdc" + time(Time) + "0.22n.gz"
                    ##解壓縮gz檔
                   import gzip
def un_gz(file_name):
                   f_name = file_name.replace("gz", "")
g_file = gzip.GzipFile(file_name)
open(f_name, "ubr").write(g_file.read())
g_file.close()
un_gz(path + "/" + file)
  68
  69
70
71
72
73
74
75
76
77
78
80
81
82
83
84
                    file = file[0:-3]
if not os.path.exists(file + ".csv"):
    os.rename(file, file + ".csv")
                   ##讀取CSV檔
                   import pandas as pd
file = "brdc" + time(Time) + "0.22n.csv"
df = pd.read_csv(file, delimiter="\t")
                   88
89
90
91
92
93
                     ##資料對應參數
                   r=0
#DateTime =
#a0 =
#a1 =
                                                        str(dl[0][19*0:19*1])
float(dl[r][19*1:19*2])
float(dl[r][19*2:19*3])
                     #a2 =
                                                         float(dl[r][19*3:19*4])
                    r=1
                     #AgeOfEphemeris = float(dl[r][19*0:19*1])
#Crs = float(dl[r][19*1:19*2])
delta_n = float(dl[r][19*2:19*3])
                    delta_n =
                                                      float(dl[r][19*3:19*4])
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
                   Cuc =
e =
Cus =
                                                      float(dl[r][19*0:19*1])
                                                      float(dl[r][19*1:19*2])
float(dl[r][19*2:19*3])
float(dl[r][19*3:19*4])
                    sqrt_a =
                   r=3
toe =
Cic =
                                                      float(dl[r][19*0:19*1])
float(dl[r][19*1:19*2])
float(dl[r][19*2:19*3])
                   BigOmega0 =
Cis =
r=4
                   i0 =
Crc =
omega =
                                                      float(dl[r][19*0:19*1])
                                                      float(dl[r][19*1:19*2])
float(dl[r][19*2:19*3])
float(dl[r][19*3:19*4])
                   BigOmega1 = r=5
                                                      float(dl[r][19*0:19*1])
118
119
                   ### Step1:已知WGS84之機球參數
##地球引力常數(m^3/sec^2)
120
                    μ = float(39860080000000)
##地球自轉速率 (rad/sec)
omegae = float(0.00007292115147)
121
122
```

```
125
126
127
              ### Step2:計算平運動量
              a = (sqrt_a)**2
##平達動量
128
129
130
               n\theta = float((\mu/(a**3))**(0.5))
              ### Step3:計算觀測時刻與參考時刻之時間差tk
              ### 17me = Time[2:]

Time = Time.split(" ")

t = (24*60*60)*weekday + (60*60)*float(Time[3]) + (60)*float(Time[4]) + float(Time[5])
134
135
136
137
              ### Step4:計算改正後之平運動量
              n = n0 + delta_n
              ### Step5:利用克卜勒方程漸進解算偏心偏近點角E
140
141
142
143
              from cmath import pi
import math
M = M0 + n * tk
144
              ##铁代解
              for m in range(1000):
                E = E - ((E - e*(math.sin(E)) - M) / (1 - e*(math.cos(E))))
147
148
149
150
151
152
              import numpy as np

cos_fk = (math.cos(E) - e)/(1 - e*math.cos(E))

sin_fk = (1 - e**2)**(0.5) * math.sin(E) / (1 - e * math.cos(E))

fk = math.samn((sin_fk/cos_fk)) =* (180 / np.pi)
154
155
              156
157
158
159
160
161
              ###Step8:計算1k
              lk = BigOmega0 + (BigOmega1-omegae)*tk-omegae*toe
162
163
164
165
              ### Step9:計算軌道平面上之衞星坐標
              x = rk*math.cos(uk)
y = rk*math.sin(uk)
166
167
              mmm Step 10:計算WGS84坐標系之衛星坐標(X, Y, Z)
X = (x*math.cos(lk)-y*math.cos(lk)*math.sin(lk)) / 1000
Y = (x*math.sin(lk)+y*math.cos(lk)*math.cos(lk)) / 1000
168
169
170
171
172
173
174
              Z = (y*math.sin(ik)) / 1000
              ###誤差(第五題)
              ###級是 (第五題 )
##精密星層的資料
IGS = IGS.split(",")
X_IGS = float(IGS[0] )
Y_IGS = float(IGS[1] )
Z_IGS = float(IGS[2] )
178
179
180
              ##公里誤差
              error_X = X-X_IGS
error_Y = Y-Y_IGS
error_Z = Z-Z_IGS
181
182
183
              ##百分誤差
P_error_X = error_X / X_IGS *100
185
186
187
188
              P_error_Y = error_Y / Y_IGS *100
P_error_Z = error_Z / Z_IGS *100
              ##結果輸出
189
191
192
193
194
               f.write("囊播星暦之衛星編號1號於2eXs年Xs月Xs日Xs時Xs分Xs秒轉換為地球地固坐標系 \n" X(Time[0], Time[1], Time[2], Time[3], Time[4], Time[5]))
              T.wite( 関連産業と機能機能は50%2000+405700512000+005000では、

f.wite("型機能(%.6f km, %.6f km, %.6f km, %.6f km) \n" %(x, y, 2))

f.wite("関係密星膜と誘連筋(%.6f km, %.6f km, %.6f km) \n" %(error_x, error_y, error_z))

f.write("百分節整筋(%.6f %%, %.6f %%, %.6f %%) %(p_error_x, p_error_y, p_error_z))
195
198 ###輸入區
        labelo = tkinter.Label(win, text="請先自行下獻潔天之廣播風曆樓、跨其移至你故存故的資料來位置。但不須解壓塘")
labelo.place(x=20, y=20)
labeli = tkinter.Label(win, text="請翰人要求的時刻、以空格隔朝、例如作藥為2022 2 5 0 15 0.0 : ")
201
        label1.place(x=20, y=40)
entry1 = tkinter.Entry(win)
        entry1.place(x=375, y=40)
label2 = tkinter.Label(win, text="請輸入星期機・例如作業為星期六則輸入6 : ")
        label2.place(x=20, y=60)
entry2 = tkinter.Entry(win)
        entry2.place(x-265, y-60)
label3 = tkinter.Label(win, text="畝存放的資料夾位置 : ")
label3.place(x=20, y=80)
211
        entry3 = tkinter.Entry(win)
        entry3.place(x=145, y=80)
label4 = tkinter.Label(win, text="請對照當天此時刻之構密星覆輸入X Y Z 僅標,以極號「,」開隔 : ")
213

    214
    label4.place(x=20, y=100)

    215
    label5 = tkinter.Label(win, text="例如作業則為輸入 14581.408067,-1494.739422,21889.107258")

        label5. place(x=20, y=120)
entry4 = tkinter.Entry(win)
216
217
         entry4.place(x=375, y = 120)
219
220
        mmn fir filt
        btn1 = tkinter.Button(win, text="確認", command=btnPressed)
btn1.place(x = 500, y=160)
222
223
        win.mainloop()
```

◎題目 5

比較分析自己計算廣播星曆結果與精密星曆所提供 X、Y、Z 坐標兩者的差異。 (15 分)(提示:可整理成表格)

衛星編號1號

2022年02月05日00時15分00秒

坐標	廣播星曆(km)	精密星曆(km)	誤差(km)	百分比誤差(%)
X	14581.390124	14581.408067	-0.017943	-0.000123
Y	-1494.736434	-1494.739422	0.002988	-0.000200
Z	21889.081474	21889.107258	-0.025784	-0.000118

誤差大約皆1至3公尺左右,算是都蠻小的。

在迭代解E的地方會影響比較多。

◎作業參考內容

廣播星曆(Broadcast ephemeris): GPS 訊號調製導航訊息。而導航訊息包含衛星星曆參數及改正參數,可計算衛星點位瞬時坐標。當用戶接收儀接收 GPS 訊號,經過解碼以計算觀測時刻相應衛星位置,配合用戶觀測資料,便可確定接收儀位置及其載體之航行速度。

以下圖 2015 年 12 月 01 日為例,檔案記錄 24 小時衛星軌道參數與對應時間,檔案名稱第 5 至 7 碼表示對應該年第幾天,副檔名.15n 表示為導航訊息。

brdo	3350	0.15n															
1		2			N	AVIG	ATION	DATA						RINEX	VERS	ION /	TYPE
2	CCF	RINEXN	V1.	6.0	UX C	DDIS			(2-DEC	C-15 :	17:31		PGM /	RUN	BY /	DATE
3	IGS	BROA	DCAS:	T EP	HEMER	IS F	ILE							COMME	NT		
4		0.14	90D-	07 -	0.149	0D-0	7 -0.	5960D	-07 (.1192	2D-06			ION A	LPHA		
5		0.12	08D+	06 -	0.229	4D+0	6 -0.	6554D-	+05 (.8520	D+06			ION B	ETA		
6		0.27	9396	7723	85D-0	8 0.	44408	92098	50D-14	40	05504		1873	DELTA	-UTC:	AO,A	1,T,W
7		17												LEAP	SECON	DS	
8														END O	F HEA	DER	
9	1	15 12	1	0	0 0.	0 0.	56182	03431	37D-0	0.79	958078	86405	1D-12	0.00	00000	00000	D+00
10		0.19	0000	0000	00D+0	2-0.	38875	00000	00D+02	0.43	31053	66940	1D-08	0.18	61406	12091	D+01
11		-0.20	7126	1405	94D-0	5 0.	48696	07160	30D-02	0.10	00806	35547	6D-04	0.51	53659	40475	D+04
12		0.17	2800	0000	00D+0	6-0.	65192	58022	31D-0	7 0.97	736150	02519	1D+00	0.33	52761	26862	D-07
13		0.96	3106	8480	55D+0	0 0.	18546	87500	00D+03	0.49	950568	89228	4D+00	-0.78	76399	51223	D-08
14		0.17	6078	7629	59D-0	9 0.	10000	00000	00D+01	0.18	373000	00000	0D+04	0.00	00000	00000	D+00
15		0.20	0000	0000	00D+0	1 0.	00000	000000	00D+00	0.51	12227	41603	9D-08	0.19	00000	00000	D+02
16		0.16	5618	0000	00D+0	6 0.	40000	00000	00D+01	0.00	00000	00000	0D+00	0.00	00000	00000	D+00

圖1、brdc3350.15n檔案內容示意

如圖 1 所示,本檔案檔頭記錄電離層改正參數(ION ALPHA 與 ION BETA)、GPS week(1873),以及潤秒(17),而從行號 9 開始記錄各顆衛星之星曆參數,資料對應如表 1 所示,記錄時間間隔約 1 小時,由西元 2015 年 12 月 1 日 0 時 0 分 0 秒 開始(格林威治時間),記錄 24 小時。

PRN	Date/time of clock toc	a ₀ (μsec)	a ₁ (μsec/day)	a ₂ (μsec/day ²)	
1	15-12-01-00-00-00.0	5.6182E-06	7.9581E-13	0.00E+00	
	Age of ephemeris (sec)	Crs (m)	Δn (rad/sec)	M ₀ (rads)	
	19	-38.8750	4.3105E-09	1.8614	
	C _{uc} (rads)	e	C _{us} (rads)	$\sqrt{a} (\sqrt{m})$	
	-2.0713E-06	4.8696E-03	1.0081E-05	5153.6594	
	toe (secs in GPS wk)	C _{ic} (rads)	Ω_0 (rads)	C _{is} (rads)	
	172800	-6.5193E-08	-6.5193E-08 0.9736		
	i ₀ (rads)	C _{rc} (rads)	ω (rads)	Ω_1 (rads/sec)	
	0.9631	185.4688 0.4951		-7.8764E-09	
	i ₁ (rad/sec)				
	1.7608E-10	1.00E+00	1873	0.00E+00	

表 1、廣播星曆各行資料對應參數(以 PRN 1 為例)

表 1 資料所對應之參數請參考本作業的第 2 題表格所示,主要包含三大項目,(1) 參考時刻:衛星星曆及衛星時鐘之參考時刻、衛星時鐘之改正參數、星曆表之數 據齡期;(2)6 個克卜勒軌道元素;(3)9 個擾動力(perturbations)參數。以圖表示各

表 2、廣播星曆計算方法

方法一、 6 參數(克卜勒軌道元素)

方法二、 6 參數(克卜勒軌道元素)+9 參數(擾動力參數)

利用廣播星曆計算衛星在軌道上之瞬時位置,依據下列計算公式及步驟求得在t時刻某一 觀測衛星之 WGS84 坐標(X, Y, Z):

Step 1-已知 WGS84 之橢球參數

地球引力常數 μ =3.986008×10¹⁴ m³/sec²; 地球自轉速率 ω e=7.292115147×10⁻⁵ rad/sec

♦ Step 2-計算平運動量

 $n_0 = \sqrt{\mu/a^3}$ (1-13)(這裡的符號 a 是軌道長半徑)

◆ Step 3-計算觀測時刻與參考時刻之時間差 t_k=t-toe (這裡的 t 是觀測時間)

本次作業的觀測時刻為 2022 年 02 月 05 日 00 時 15 分 00 秒; 零考時刻為 2022 年 02 月 05 日 00 時 00 分 00 秒,時間差可寫成:

 $t=86400\times6+15\times60$; toe=86400×6; t_k=t-toe=900

♦ Step 4-計算改正後之平運動量

Step 4'-計算改正後之平運動量

 $n = n_0 + \Delta n \qquad (1-14a)$

◆ Step 5-利用克卜勒方程漸進解算偏心偏近點角 E

 $M = M_0 + n \cdot t_k \quad (1-15)$

$$E = M - e \cdot \sin E$$
 → 迭代解 $E_{n+1} = E_n - \frac{E_n - e \cdot \sin E_n - M}{1 - e \cos E_n}$ (令 $E_0 = M$) (1-16)

♦ Step 6-計算真近點角 f_{ι}

 $\cos f_k = (\cos E - e)/(1 - e \cdot \cos E)$; $\sin f_k = \sqrt{1 - e^2} \cdot \sin E/(1 - e \cdot \cos E)$ (1-17); (1-18) $f_k = \tan^{-1} \left(\sin f_k / \cos f_k \right) (依分子、分母之正負判斷象限) (1-19)$

◆ Step 7-計算緯度變角 u, 、軌道半徑

$$u_k = \omega + f_k \quad (1-20)$$

$$r_{\mu} = a \cdot (1 - e \cdot \cos E_{\mu})$$
 (1-21)

$$i_{\nu} = i_{0}$$
 (1-22)

Step 7'-計算緯度變角 u_k 、軌道半徑 r_k 、軌道傾

$$u_{\bullet} = \omega + f_{\bullet} \tag{1-20a}$$

角
$$i_k$$

$$u_k = \omega + f_k \qquad (1-20a)$$

$$+ C_{us} \cdot \sin(2(\omega + f_k)) + C_{uc} \cdot \cos(2(\omega + f_k))$$

$$r_k = a \cdot (1 - e \cdot \cos E_k) \qquad (1-21a)$$

$$+ C_{rs} \cdot \sin(2(\omega + f_k)) + C_{rc} \cdot \cos(2(\omega + f_k))$$

$$i_k = i_0 + i_1 \cdot t_k \qquad (1-22a)$$

$$+ C_{is} \cdot \sin(2(\omega + f_k)) + C_{ic} \cdot \cos(2(\omega + f_k))$$

$$r_{k} = a \cdot (1 - e \cdot \cos E_{k}) \tag{1-21a}$$

$$+C_{rs} \cdot \sin(2(\omega + f_k)) + C_{rc} \cdot \cos(2(\omega + f_k))$$

$$i_k = i_0 + i_1 \cdot t_k \tag{1-22a}$$

$$+C_{is} \cdot \sin(2(\omega + f_k)) + C_{ic} \cdot \cos(2(\omega + f_k))$$

Step 8-計算 l₁

Step 8'-計算 l,

$$l_k = \Omega_0 + (-\omega_e) \cdot t_k - \omega_e \cdot toe \quad (1-23)$$

$$\begin{split} &l_k = \Omega_0 + \left(-\omega_e\right) \cdot t_k - \omega_e \cdot toe \quad \text{(1-23)} \\ &\diamondsuit \quad \text{Step 9-計算軌道平面上之衛星坐標} \end{split}$$

 $x = r_k \cdot \cos u_k$; $y = r_k \cdot \sin u_k$ (1-24); (1-25)

♦ Step 10-計算 WGS84 坐標系之衛星坐標(X, Y, Z)

 $X = x \cdot \cos l_k - y \cdot \cos i_k \cdot \sin l_k \ ; \ Y = x \cdot \sin l_k + y \cdot \cos i_k \cdot \cos l_k \ ; \ Z = y \cdot \sin i_k \, (1\text{-}26) \ ; \ (1\text{-}27) \ ; \ (1\text{-}28)$

圖 3-7 GPS 廣播星曆的軌道參數示意圖