

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12/GRAAD 12

MATHEMATICS P1/WISKUNDE V1

MARCH 2017

MEMORANDUM

MARKS: 150 *PUNTE: 150*

This memorandum consists of 18 pages. *Hierdie memorandum bestaan uit* 18 *bladsye*.

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- Consistent Accuracy applies in all aspects of the marking memorandum.

LET WEL:

- Indien 'n kandidaat 'n vraag TWEE keer beantwoord, merk slegs die EERSTE poging.
- Volgehoue akkuraatheid is DEURGAANS op ALLE aspekte van die memorandum van toepassing.

1.1.1	(x-3)(x+1) = 0 x = 3 or x = -1	✓ answer ✓ answer	(2)
			` '
1.1.2	$\sqrt{x^3} = 512$	$\sqrt{x^{\frac{3}{2}}}$	
	$x^{\frac{3}{2}} = 512$	V A	
	$\left(x^{\frac{3}{2}}\right)^{\frac{2}{3}} = \left(8^{3}\right)^{\frac{2}{3}}$	$\checkmark x^{\frac{3}{2}}$ $\checkmark (8^3)^{\frac{2}{3}}$	
	x = 64	✓ answer	
	OR		(3)
	$\sqrt{x^3} = 512$	✓ squaring both	
	$x^3 = 262144$	sides	
	$x^3 = 2^{18}$	$\checkmark x^3 = 2^{18}$	
	$x = 2^6$		
	x = 64	✓ answer	(3)
1.1.3	x(x-4) < 0		` '
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	$0 < x < 4$ OR/OF $x \in (0; 4)$	✓ critical values ✓ inequality or	
		interval	(2)

_		1	
1.2.1	$x^2 - 5x + 2 = 0$	✓ subst correct	
	$x = \frac{5 \pm \sqrt{(-5)^2 - 4(1)(2)}}{2(1)}$	formula	
	$x = \frac{5 \pm \sqrt{17}}{2}$		
	$x = \frac{1}{2}$ x = 0.44 or $x = 4.56$	✓ answer	
		✓ answer	(3)
	OR		
	$x^2 - 5x + 2 = 0$		
	$x^2 - 5x = -2$		
	$x^{2} - 5x + \left(-\frac{5}{2}\right)^{2} = -2 + \left(-\frac{5}{4}\right)^{2}$	$\checkmark \left(x - \frac{5}{2}\right)^2 = \frac{17}{4}$	
	$\left(x - \frac{5}{2}\right)^2 = \frac{17}{4}$		
	$x = \frac{5 + \sqrt{17}}{2}$ or $x = \frac{5 - \sqrt{17}}{2}$	✓ answer	
	x = 0.44 or $x = 4.56$	✓ answer	(3)
1.2.2	$f(x) = x^2 - 5x + 2$		
	$x^2 - 5x + 2 = c$		
	$x^2 - 5x + 2 - c = 0$	✓ standard form	
	$b^2 - 4ac < 0$	$\checkmark b^2 - 4ac < 0$	
	$(-5)^2 - 4(1)(2-c) < 0$	✓ substitution	
	25 - 8 + 4c < 0		
	4c < -17		
	$c < -\frac{17}{4}$	✓ answer	(4)
1.3	x = 2y + 2		
	$x^2 - 2xy + 3y^2 = 4$	✓ substitution	
	$(2y+2)^2 - 2y(2y+2) + 3y^2 = 4$	✓ simplification	
	$4y^2 + 8y + 4 - 4y^2 - 4y + 3y^2 = 4$	✓ standard form	
	$3y^2 + 4y = 0$ y(3y+4)=0	✓ factors	
	y(3y+4)=0 $y = 0$ or $y = -\frac{4}{3}$	$\checkmark y = 0; y = -\frac{4}{3}$	
	$x = 2 \qquad \qquad x = -\frac{2}{3}$	\checkmark x-values (ca on both x-values)	
		((6)

	NSC/NSS – Memorandum		
$x = y = x^{2}$ x^{2} x^{2} x^{3} $x = x^{2}$	NSC/NSS – Memorandum OR / OF $= 2y + 2$ $= \frac{1}{2}x - 1$ $^{2} - 2xy + 3y^{2} = 4$ $^{2} - 2x\left(\frac{1}{2}x - 1\right) + 3\left(\frac{1}{2}x - 1\right)^{2} = 4$ $^{2} - x^{2} + 2x + 3\left(\frac{1}{4}x^{2} - x + 1\right) = 4$ $x + \frac{3}{4}x^{2} - 3x + 3 = 4$ $x^{2} - 4x - 4 = 0$ $3x + 2)(x - 2) = 0$ $= 2 \text{or} x = -\frac{2}{3}$ $= 0 \qquad y = -\frac{4}{3}$	✓ substitution ✓ simplification ✓ standard form ✓ factors ✓ $x = 2$; $x = -\frac{2}{3}$ ✓ y -values (ca on both y -values)	
Fo min Vii wa Mi	$= \frac{6}{x^2 + 2}$ or S to be a maximum the denominator needs to be at a inimum. ir S om 'n maksimum waarde te hê, moet die deler 'n minimum aarde h Iinimum of $x^2 + 2$ is 2 Maximum of $S = \frac{6}{x^2 + 2}$ $= \frac{6}{2}$ $= 3$	$\checkmark \text{ Minimum of } x^2 + 2 \text{ is } 2$ $\checkmark 3 \tag{2}$	
		[22]	

2.1	For geometric:	
2.1	$-\frac{1}{4}; b; -1; \dots$ $\frac{b}{-\frac{1}{4}} = -\frac{1}{b}$	$\checkmark \frac{b}{-\frac{1}{4}} = -\frac{1}{b}$
	$b^2 = \frac{1}{4}$ $b = \pm \frac{1}{2}$	$\checkmark b = \frac{1}{2}$ $\checkmark b = -\frac{1}{2}$ (2)
	OR	(3)
	$b = \pm \sqrt{\left(-\frac{1}{4}\right)\left(-1\right)}$	$\checkmark b = \pm \sqrt{\left(-\frac{1}{4}\right)\left(-1\right)}$ $\checkmark b = \frac{1}{2}$ $\checkmark b = -\frac{1}{2}$
	$b = \pm \frac{1}{2}$	$\checkmark b = \frac{1}{2}$
		$\checkmark b = -\frac{1}{2} \tag{3}$
2.2	1.1. 1.	. ,
	$\left -\frac{1}{4}; \frac{1}{2}; -1; \dots \right $	$\checkmark r = -2$
	$r = -2 T_{19} = ar^{18}$	V 7 = - Z
	$T_{19} = ar^{18}$ $= \left(-\frac{1}{4}\right)(-2)^{18}$	✓ subst. into correct formula
	$= \left(-\frac{2^{18}}{2^2}\right) \\ = -2^{16}$	✓-65536/-2 ¹⁶
	= -65536 OR / OF	(3)
	$T_{19} = ar^{18}$	
	$= \left(-\frac{1}{4}\right)(-2)^{18}$ $= \left(-2^{-2}\right)\left(2^{18}\right)$	$\checkmark r = -2$ ✓ subst. into correct formula
	$= -2^{16}$ = -65536	$\checkmark -65536 / -2^{16} \tag{3}$

2.3	The series is: $-\frac{1}{4}$; $\frac{1}{2}$; -1; 2; -4; 8;		
	The new positive term series: $\frac{1}{2}$; 2; 8; 32; 128;	$\checkmark a = \frac{1}{2}$ $\checkmark r = 4$	
	$a = \frac{1}{2} \qquad r = 4$	$\checkmark r = 4$	
	$a = \frac{1}{2} \qquad r = 4$ $\sum_{n=1}^{20} \left(\frac{1}{2}\right) (4)^{n-1}$	$\checkmark \sum_{n=1}^{20}$ or $\sum_{p=0}^{19}$	
	OR/OF	✓ correct formula	(4)
	$\sum_{p=0}^{19} \left(\frac{1}{2}\right) (4)^p$ etc.		
2.4	No, the series is not convergent / Nee, die reeks konvergeer	√no	
	<i>nie</i> $r = 4$ and for convergence $-1 < r < 1$		
	r = 4 en vir konvergering $-1 < r < 1$	✓reason	
			(2)
			[12]

3.1.1	24	✓ 24 (1)
3.1.2		
	$\begin{bmatrix} 6 & & & 6 & & & 9 & & & 15 \\ & & & & & & & & & & \end{bmatrix}$	
	$\frac{1}{0}$ $\frac{1}{3}$ $\frac{1}{6}$	
	3 3	3
	2a = 3 $3a + b = 0$ $a + b + c = 6$	$\checkmark a = \frac{3}{2}$
	$a = \frac{3}{2} \qquad b = -\frac{9}{2} \qquad c = 9$	$\checkmark a = \frac{3}{2}$ $\checkmark b = -\frac{9}{2}$ $\checkmark c = 9$ $\checkmark T_n = \frac{3}{2}n^2 - \frac{9}{2}n + 9$
	T 3 2 9 10	✓ c = 9
	$T_n = \frac{3}{2}n^2 - \frac{9}{2}n + 9$	$\sqrt{T} = \frac{3}{n^2} - \frac{9}{n+9}$
	OR/OF	
		(4)
	$T_n = T_1 + (n-1)d_1 + \frac{(n-1)(n-2)d_2}{2}$	√formula
		✓substitution
	$= 6 + (n-1)(0) + \frac{(n-1)(n-2)(3)}{2}$	
	$(n^2-3n+2(3))$	✓simplifying
	$= 6 + \frac{n^2 - 3n + 2}{1} \left(\frac{3}{2}\right)$	
	$=6+\frac{3}{2}n^2-\frac{9}{2}n+3$	3 2 9
		$\checkmark T_n = \frac{3}{2}n^2 - \frac{9}{2}n + 9$
	$= \frac{3}{2}n^2 - \frac{9}{2}n + 9$	(4)
3.1.3	$\frac{3}{2}n^2 - \frac{9}{2}n + 9 = 3249$	
	$\begin{bmatrix} -n &n+9-3249 \\ 2 & 2 \end{bmatrix}$	✓ equating general
	$3n^2 - 9n + 18 = 6498$	term to 3249
	$3n^2 - 9n - 6480 = 0$	
	$n^2 - 3n - 2160 = 0$	✓ standard form
	(n+45)(n-48) = 0	✓ factors
	$n \neq -45$ or $n = 48$	$\checkmark n \neq -45 \text{ or } n = 48$ (4)
3.2	$-1; 2\sin 3x; 5; \dots$	
	$2\sin 3x + 1 = 5 - 2\sin 3x$	$\checkmark 2\sin 3x + 1 = 5 - 2\sin 3x$
	$4\sin 3x = 4$	$\checkmark \sin 3x = 1$
	$\sin 3x = 1$	$\sqrt{3}x = 90^{\circ}$
	$3x = 90^{\circ}$	$4 3x = 90^{\circ}$ $4 x = 30^{\circ}$
	$x = 30^{\circ}$	(4)
		[13]

QUESTION/VAAAO 4			
4.1	U(1;0)	✓ (1;0)	(1)
4.2	x = 1	$\checkmark x = 1$ $\checkmark y = 1$	(2)
	y = 1		(2)
4.3	$\frac{2}{x-1}+1=0$	$\checkmark y = 0$	
	2 = -x + 1		
	x = -1	$\checkmark x = -1$	
	T(-1;0)		(2)
4.4	$f(x) = \log_5 x$		
	$h: x = \log_5 y$	\checkmark change x and y	
	$y = 5^x$	$\checkmark y = 5^x$	(2)
4.5	y = 0	✓ answer	
1.6		_	(1)
4.6	$V(\sqrt{2}+1;\sqrt{2}+1)$	$\sqrt{\sqrt{2}} + 1$ $\sqrt{\sqrt{2}} + 1$	
	V(2,41;2,41)	$\sqrt{\sqrt{2}+1}$	
		, , , , , , ,	(4)
	OR / OF		(')
	$x = \frac{2}{x-1} + 1$	$\checkmark x = \frac{2}{x-1} + 1$	
		$\frac{x-x-x-1}{x-1}$	
	$x^2 - x = 2 + x - 1$		
	$x^2 - 2x - 1 = 0$		
	$x = \frac{2 \pm \sqrt{4 - 4(1)(-1)}}{2}$	✓ subs into correct formula	
	$=\frac{2\pm\sqrt{8}}{2}$		
	$=\frac{2\pm2\sqrt{2}}{2}$	$\checkmark x = \sqrt{2} + 1$ $\checkmark y = \sqrt{2} + 1$	
	$=1\pm\sqrt{2}$	$\checkmark y = \sqrt{2+1}$	
	$V\left(1+\sqrt{2} ; 1+\sqrt{2}\right)$		(4)
	OR / OF		
	$x-1=\frac{2}{x-1}$	$\sqrt{x-1} = \frac{2}{x-1}$	
		x-1	
	$(x-1)^2 = 2$	$\checkmark x-1 = \frac{2}{x-1}$ $\checkmark (x-1)^2 = 2$	
	$x = 1 \pm \sqrt{2}$	$\checkmark x = \sqrt{2} + 1$	
	$V(1+\sqrt{2};1+\sqrt{2})$	$\checkmark y = \sqrt{2} + 1$	
	· · · · · · · · · · · /	$y = \sqrt{2+1}$	(4)
4.7	T'(3;2)	$\checkmark x = 3$	(+)
		$\checkmark y = 2$	(2)
			[14]
<u> </u>		1	r~ .1

QUESTION 5

F 1 1	G(0, 2)	(((0 - 2)	
5.1.1	C(0; -3)	✓ C(0; -3)	(1)
5.1.2	$f(x) = x^2 - 2x - 3$. /
	(x-3)(x+1)=0	✓ factors	
		$\checkmark x$ -value	
	x=-1 or $x=3$	✓ other <i>x</i> -value	
	AB = 3 - (-1) $AB = 4 units$		
		✓ answer	
			(4)
5.1.3	$x = \frac{2}{2(1)}$ or $2x - 2 = 0$ or $x = \frac{-1+3}{2}$		
	= 1	$\checkmark x = 1$	
	$y = (1)^2 - 2(1) - 3$	y <i>N</i> - 1	
	=-4		
	D(1;-4)	✓ y value	
	Δ(1,-4)		(2)
5.1.4	C(0; -3) $D(1; -4)$		
	Average gradient / Gemiddelde gradiënt		
	-4+3 $-3+4$	$\sqrt{-4+3}$ or $-3+4$	
	$=\frac{-4+3}{1-0}$ or $\frac{-3+4}{0-1}$	$\sqrt{\frac{-4+3}{1-0}}$ or $\frac{-3+4}{0-1}$	
	=-1	√ − 1	
			(2)
5.1.5	OC = OB = 3	✓ equal lengths	(2)
3.1.3	^	✓ 45°	
	OCB = 45° isosceles right angled triangle Gelykbenige reghoekige driehoek		(2)
	OR / OF		
	-		
	$\tan \beta = m_g$		
	$\tan \beta = 1$	$\checkmark \tan \beta = 1$	
	$\beta = 45^{\circ}$	✓ 45°	
		v 43	(2)
	$\hat{OBC} = 45^{\circ}$		(4)
	$\hat{OCB} = 45^{\circ}$		
5.1.6	-4 < k < -3 OR $(-4; -3)$	√ -4	
		√ -3	
		✓ notation	(2)
517	f'(x) = f''(x) > 0		(3)
3.1.7	$f'(x) \cdot f''(x) > 0$	$\checkmark 2x-2$	
	(2x-2).2 > 0 $2x-2 > 0$	√ 2 Z	
	2x-2>0		
	x > 1	✓ x > 1	(3)

6.1.1	$A = 150000(1-0.2)^2$	✓ n = 2
	= R96 000	✓ 150 000 in correct formula
		✓ 96 000 (3)
6.1.2	$150000(1-0,2)^n = 49152$	$\checkmark 150000(1-0,2)^n = 49152$
	$(0.8)^n = \frac{1024}{3125}$	
	$n\log(0.8) = \log\frac{1024}{3125}$	$\checkmark n\log(0.8) = \log\frac{1024}{3125}$ $\checkmark n = 5$
	n=5	$\checkmark n = 5$
	The machine will need to be replaced at the beginning of 2020 / Masjien moet aan die begin van 2020	✓ 2020
	vervang word	(4)
	OR / OF	
	$150000(1-0.2)^n = 49152$	$\checkmark 150000(1-0,2)^n = 49152$
	$(0.8)^n = \frac{1024}{3125}$	
	3125	$ √ n = \log_{0.8} \frac{1024}{3125} $ $ √ n = 5 $
	$n = \log_{0.8} \frac{1024}{3125}$	$n = \log_{0.8} 3125$
	n = 5	$\checkmark n = 5$
	n = 3 The machine will need to be replaced at the beginning	
	of 2020 / Masjien moet aan die begin van 2020	✓ 2020
	vervang word	(4)

11 NSC/*NSS* – Memorandum

6.1.3	R280 000 – R49 152	✓ R230 848
	=R230 848	
	$230\ 848 = \frac{x \left[\left(1 + \frac{0,085}{4} \right)^{20} - 1 \right]}{\frac{0,085}{4}}$	$ √ i = \frac{0,085}{4} = 0,02125 $ and $n = 20$ $ √ \text{ subs into correct formula} $
	x = R9383,26	✓ R 9 383,26
		(4)
6.2	$P_{\nu} = \frac{x[1 - (1+i)^{-n}]}{i}$ $= \frac{9\ 000\left[1 - \left(1 + \frac{0.11}{12}\right)^{-180}\right]}{0.11}$	✓ $i = \frac{0.11}{12}$ ✓ $n = 180$ ✓ substitution correct formula
	12 = R791 837,43	✓ R791 837,43
	Lerato qualifies for a loan of R 791 000 under the given conditions / Lerato kwalifiseer vir 'n lening van R 791 000 gegewe die kondisies	✓ R791 000 (5) [16]

PENALISE ONLY ONCE for incorrect notation in this question.

7.1	$f(x+h) = (x+h)^2 - 5 = (x^2 + 2xh + h^2) - 5$	
	$= x^2 + 2xh + h^2 - 5$	
	$f(x+h) - f(x) = x^2 + 2xh + h^2 - 5 - (x^2 - 5)$	
	$=2xh+h^2$	✓simplifying
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	✓ formula
	$=\lim_{h\to 0}\frac{2xh+h^2}{h}$	✓ subst. into formula
	$=\lim_{h\to 0}\frac{h(2x+h)}{h}$	✓ factorisation
	$= \lim_{h \to 0} (2x + h)$ $= 2x$	✓ answer (5)
	OR/OF	
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	✓ formula
	$= \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 5 - (x^2 - 5)}{h}$	✓ subst. into formula
	$=\lim_{h\to 0}\frac{2xh+h^2}{h}$	✓simplifying
	$=\lim_{h\to 0}\frac{h(2x+h)}{h}$	✓ factorisation
	$=\lim_{h\to 0}(2x+h)$	✓ answer
	=2x	(5)
7.2	$g(x) = 5x^2 - \frac{2x}{x^3}$	
	$=5x^2-2x^{-2}$	$\checkmark 5x^2 - 2x^{-2}$
	$g'(x) = 10x + 4x^{-3}$	✓ 10 <i>x</i>
	$=10x+\frac{4}{x^3}$	$\checkmark 4x^{-3}$ or $\frac{4}{x^3}$
	~	(3)

7.3	$h(x) = ax^2, x > 0$	
	$h^{-1}: x = ay^2 y > 0$	
	$y = \sqrt{\frac{x}{a}}$	$\checkmark y = \sqrt{\frac{x}{a}}$
	$h^{-1}(8) = \sqrt{\frac{8}{a}}$	$\checkmark y = \sqrt{\frac{x}{a}}$ $\checkmark \sqrt{\frac{8}{a}}$ $\checkmark h'(4) = 8a$
	h'(x) = 2ax	(1/(1)
	h'(4) = 2a(4)	$\checkmark h'(4) = 8a$
	=8a	
	$\sqrt{\frac{8}{a}} = 8a$	$\checkmark \sqrt{\frac{8}{a}} = 8a$
	$64a^2 = \frac{8}{a}$	
	a 1	, , 1
	$a^3 = \frac{1}{8}$	$\checkmark a^3 = \frac{-}{8}$
	$a = \frac{1}{2}$	$\checkmark a^3 = \frac{1}{8}$ $\checkmark a = \frac{1}{2}$
		(6)
		[14]

8.1	$f^{\prime}(x) = 0$	
	$6x^2 - 10x + 4 = 0$ $3x^2 - 5x + 2 = 0$	✓ derivative
	(3x-2)(x-1)=0	✓ derivative = 0 ✓ factors
	$x = \frac{2}{3} \qquad \text{or} \qquad x = 1$	✓ x-values
	$y = 2\left(\frac{2}{3}\right)^3 - 5\left(\frac{2}{3}\right)^2 + 4\left(\frac{2}{3}\right)$ $y = 2(1)^3 - 5(1)^2 + 4(1)$	
	$y = \frac{28}{27} \qquad \text{or} y = 1$	✓ y-values
	Turning points are $\left(\frac{2}{3}; \frac{28}{27}\right)$ and $(1;1)$	
	(3 21)	(5)

 $8.2 \quad 2x^3 - 5x^2 + 4x = 0$

$$x\left(2x^2 - 5x + 4\right) = 0$$

$$x = 0$$
 or $x = \frac{5 \pm \sqrt{25 - 4(2)(4)}}{4}$
 $5 \pm \sqrt{-7}$

No real roots / Geen reële wortels

$$\checkmark x(2x^2 - 5x + 4) = 0$$

$$\checkmark x = 0$$

$$\checkmark \frac{5 \pm \sqrt{-7}}{4}$$

4 (3)

OR / OF

$$2x^3 - 5x^2 + 4x = 0$$

$$x(2x^2-5x+4)=0$$

$$x = 0$$
 or $b^2 - 4ac = 25 - 4(2)(4)$
= $-7 < 0$

No real roots / Geen reële wortels

$$\checkmark x(2x^2 - 5x + 4) = 0$$

$$\checkmark x = 0$$

$$\checkmark b^2 - 4ac < 0 \tag{3}$$

8.3 $f(x) = 2x^3 - 5x^2 + 4x$

 \checkmark (0;0)

✓ turning points

✓ shape

(3)

	8.4	$f(x) = 2x^3 - 5x^2 + 4x$
--	-----	---------------------------

$$f'(x) = 6x^2 - 10x + 4$$

$$f''(x) = 12x - 10$$
$$f''(x) > 0$$

$$12x - 10 > 0$$

$$x > \frac{5}{6}$$

✓
$$12x-10$$

$$\checkmark f''(x) > 0$$

OR

Point of inflection:
$$x =$$

$$x = -\frac{b}{3a}$$
$$x = -\frac{(-5)}{3(2)}$$

$$x = \frac{5}{6}$$

 $\checkmark x = -\frac{(-5)}{3(2)}$ $\checkmark x = \frac{5}{6}$ $\checkmark f''(x) > 0$

The function is concave up for $x > \frac{5}{6}$ since a > 0

OR

Point of inflection:
$$x = \frac{\frac{2}{3} + 1}{2}$$

$$x = \frac{5}{6}$$

The function is concave up for $x > \frac{5}{6}$ since a > 0

$$\checkmark x = \frac{\frac{2}{3} + 1}{2}$$

$$\checkmark x = \frac{5}{6}$$

$$\checkmark f''(x) > 0$$

$$x = \frac{5}{6}$$

$$\checkmark f''(x) > 0$$

(3) [14]

(3)

(3)

9.	Length of one side of the square / lengte van sy van vierkant	, x
9.		$\sqrt{\frac{x}{4}}$
	$=\frac{x}{4}$	
	Length of the rectangle / lengte van die reghoek:	
	$2l + x + \frac{x}{4} = 6$	$\checkmark \frac{6 - \frac{5x}{4}}{2} \text{or} \frac{24 - 5x}{8}$
	$l = \frac{6 - \frac{5x}{4}}{2}$	$\sqrt{\frac{2}{2}}$ or $\frac{8}{8}$
	$=\frac{24-5x}{8}$	$\checkmark \left(\frac{x}{4}\right)^2$
	$A = \left(\frac{x}{4}\right)^2 + \frac{x}{4}\left(\frac{24 - 5x}{8}\right)$	$\checkmark \left(\frac{x}{4}\right)^2$ $\checkmark \frac{x}{4} \left(\frac{24 - 5x}{8}\right)$
	$=\frac{x^2}{16} + \frac{24x - 5x^2}{32}$	4 (8)
	$=\frac{24x-3x^2}{32}$	
	$A = \frac{24x - 3x^2}{32}.$	$\sqrt{dA} = 0$
	For minimum area / Vir min imum oppervlaktte $\frac{dA}{dx} = 0$	$\sqrt{\frac{dA}{dx}} = 0$ $\sqrt{\frac{24 - 6x}{32}}$
	$\frac{dA}{dx} = \frac{24 - 6x}{32}$	
	$dx \qquad 32$ $6x = 24$	$\checkmark x = 4$
	6x = 24 $x = 4$	(7)
		(7)
		[7]

10.1.1	$P(S \text{ and } T) = P(S) \times P(T)$	
	$\frac{1}{6} = \left(\frac{1}{4}\right) \times P(T)$	$\checkmark P(S \text{ and } T) = P(S) \times P(T)$
	$P(T) = \frac{2}{3}$	$\checkmark P(T) = \frac{2}{3} $ (2)
10.1.2	P(S or T) = P(S) + P(T) - P(S and T)	
	$= \left(\frac{1}{4}\right) + \left(\frac{2}{3}\right) - \frac{1}{6}$	$\checkmark \left(\frac{1}{4}\right) + \left(\frac{2}{3}\right) - \frac{1}{6}$ $\checkmark \frac{3}{4}$
	$=\frac{3}{4}$	(2)
10.2.1	5! = 120	✓ 5 ✓ 5! or 120 (2)
10.2.2	5 ⁵ = 3125	$\checkmark 5^5 \text{ or } 3125$ (1)
10.3	$n(E) = 5! \times 2! \times 2!$	√ 5!
	n(S) = 7!	✓ 2! × 2!
	$P(E) = \frac{5! \times 2! \times 2!}{7!}$	$\checkmark \frac{5! \times 2! \times 2!}{7!}$
	$=\frac{2}{21}$	$\checkmark \frac{2}{21}$
	21	(4)
		[11]

0.85 W P(F and W) = 0.595	
F $0,15$ L $P(F \text{ and } L) = 0,105$ $0,55$ W $P(\text{not } F \text{ and } W) = 0,165$ not F $0,45$ L $P(\text{not } F \text{ and } V) = 0.125$	✓ 0,3
P(not F and L) = 0133	
P(Win) = P(F and W) + P(not F and W)	✓ P(F and W) = 0.7×0.85 = 0.595
$= 0.7 \times 0.85 + 0.3 \times 0.45$	✓ P(not F and W) = 0.3×0.45
=0,595+0,165	$= 0.165$ $\checkmark 0.595 + 0.165$
= 0,76	19
= 76%	$\checkmark 0,76 / 76\% / \frac{19}{25} $ (5)
$=\frac{19}{25}$	
	[5]

TOTAL/TOTAAL: 150