Agenda

PROBLEM DOMAIN - NUMBER THEORY

- PROPERTIES OF GROUPS
- PROPERTIES OF Z*_N:

EULER'S THEOREM AND FERMAT'S THEOREM

Sub-Groups: Lagrange's Theorem

- Lagrange's Theorem:
 - For any finite group (G, .) and any subgroup H of G :
 - |H|||G|
- Proof:
 - Define R_H on G:
 - $x R_H y$ iff there exists $h \in H$ such that x = y.h
 - Claim 1: R_H is an <u>equivalence relation</u>.
 - Claim 2: H is one of the equivalence classes of R_H
 - Claim 3: If H_a and H_b are two equivalences classes of R_H
 - then $f(x) = b \cdot a^{-1} \cdot x$ is bijective.
 - Conclusion from Claims 2 and 3:
 - All equivalence classes of R_H are of the same size |H|
 - and so |H|||G|

Groups: Order of an element

- For any group (G,.) and for any x in G, define x^k as follows:
 - $x^{\circ} = 1$ (where 1 is the identity element),
 - $x^{k} = x \cdot x^{k-1} \text{ for } k > 0$
- For any x in G, define the *order* of x as follows:
 - ord(x) = the smallest k > 0 such that $x^k = 1$ where 1 is the identity element
- Proof of existence of a finite order for any finite group:
 - For any x in G, consider x^1 , x^2 , ..., x^n where n = |G|
 - If one of them is not 1, are they all distinct?
 - No, by pigeonhole principle and by closure property.
 - i.e. there exist i and j such that i != j and $x^i == x^j$
 - i.e. $x^{i-j} = x^0 = 1$

Properties of Groups

Order Lemma:

- For any finite group (G, .), and any x in G, ord(x) divides |G|.
- Proof:
 - The elements x^1 , x^2 , ..., x^k , where k is **ord(x)**, form a subgroup of G.
 - Therefore by Lagrange's Theorem, k divides |G|.

Corollary (to Order Lemma):

 $|x|^{|G|} = 1$ (the identity element of G)

Properties of Z*_n: Euler's Theorem

Euler's Theorem:

- □ For all n and for x in Z_n^* , $x^{\phi(n)} = 1 \pmod{n}$
- Proof:
 - $|Z*_n| = \phi(n)$
 - Then by the corollary to the Order Lemma (see previous slide),
 - $x^{\phi(n)} = 1 \pmod{n}$

Fermat's Theorem

Fermat's Theorem:

- □ For all primes p and for x in $Z*_n$, $x^{p-1} = 1$ (mod p).
- Proof:
 - For prime p, $\phi(p) = p-1$.
 - Then by Euler's Theorem $x^{p-1} = 1 \pmod{p}$