Low on cache?

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Outline

- Memory Hierarchy
- Direct-Mapped Cache Assignment Project Exam Help
- Types of Cache Miss

https://eduassistpro.github.io/

• A (long) detailed exa

Add WeChat edu_assist_pro

Memory Hierarchy (1/4)

- Processor
 - executes programs
 Assignment Project Exam Help
 runs on order of nan

 - needs to access cod https://eduassistpro.githuhiere are these?
- Add WeChat edu_assist_pro Disk
 - HUGE capacity (virtually limitless)
 - VERY slow: runs on order of milliseconds
 - so how do we account for this gap?

Memory Hierarchy (2/4)

- Memory (DRAM)
 - smaller than disk (not limitless capacity)
 Assignment Project Exam Help
 contains <u>subset</u> of d
 - contains <u>subset</u> of d ortions of programs that are currently being r https://eduassistpro.github.io/
 - much faster than disk memocyhat edu_assist to word processor quite as much
 - Problem: memory is still too slow (hundreds of nanoseconds)
 - Solution: add more layers (caches)

Memory Hierarchy (3/4)

Size of memory at each level

As we move to deeper levels the latency goes up and price per bit goes down.

Memory Hierarchy (4/4)

- If level is closer to Processor, it must...
 - Be smaller
 - Assignment Project Exam Help Be faster
 - Contain a subset (m https://eduassistpro.gitofulowork levels beneath it (i.e., levels farther from processor

 — Contain <u>all</u> the data in higher level

 — (i.e., levels closer to
 - processor)
- Lowest Level (usually disk) contains all available data
- Is there another level lower than disk?

Memory Hierarchy

• Purpose:

Faster access to large memory from processor

Memory Hierarchy Analogy: Library (1/2)

- You (the processor) are writing a term paper at a table in Schulich
 - Assignment Project Exam Help
- Schulich Library is e
 - essentially limitlesshttps://eduassistpro.github.io/
 - very slow to retrieve Add WeChat edu_assist_pro
- Table is memory
 - smaller capacity: means you must return book when table fills up
 - easier and faster to find a book there once you've already retrieved it

Gill COMP 273

Memory Hierarchy Analogy: Library (2/2)

- Open books on table are <u>cache</u>
 - smaller capacity: can have very few open books fit on table; again, Assignment Project Exam Help when table fills up, you must close a book
 - much, much faster t https://eduassistpro.github.io/
- Illusion created: who had bloom edu_assise_pabletop
 - Keep as many recently used books open on table as possible since likely to use again
 - Also keep as many books on table as possible, since faster than going to library

Memory Hierarchy Basis

- Disk contains everything
- When Processor needs something, bring it into to all lower levels of memory
- Cache contains copi
 https://eduassistpro.github.io/ ry that are being used
- Memory contains copies of data

 Mechat edu_assist_pro hat are being used
- Entire idea is based on Temporal Locality: if we use it now, we'll want to use it again soon (a Big Idea)

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Athlon XP-64 Core

• The greatest share of the surface (over 50 percent) is taken up by the 1 MB L2 cache.

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Cache Design

- How do we organize cache?
- Where does each memory address map to? Assignment Project Exam Help
 - Remember that cac , so multiple memory addresses map to th https://eduassistpro.github.io/
- How do we know which element edu_assistante?
- How do we quickly locate them?

Direct-Mapped Cache (1/2)

- - Therefore, we only focation in the cache to see if the data exists https://eduassistpro.github.io/
 - A block is the unit of transfer beat edu assistandomemory

Issues with Direct-Mapped

- 1 Since multiple memory addresses map to same cache index, how do we tell which one is in there?
- 2 What if we have a bissignment Project Exam Help
- Solution: divide memorhttps://eduassistpro.giehdb.io/

Direct-Mapped Cache Terminology

- All fields are read as unsigned integers.
- The *Index*: specifies the cache index (which "row" of the cache we should look in)
- The *Offset*: once we https://eduassistpro.github.io/lock, specifies which byte within the block we Wantat edu_assist_pro
- The Tag: the remaining bits after offset and index are determined; these are used to distinguish between all the memory addresses that map to the same location

 Suppose we have a direct-mapped 16KB cache with 4 word blocks.

• Determine the size

Assignment Project Exam Help
offset fields if we're using a 32-bit archit https://eduassistpro.github.io/

Add WeChat edu_assist_pro

- Offset
 - need to specify correct byte within a block Assignment Project Exam Help
 - block contains
 - 4 words = 16 https://eduassistpro.github.io/
 - need 4 bits to specify contract to Mar edu_assist_pro

Index

```
    need to specify correct row in cache
```

```
# rows/cache = # blocks/cache (th lock/row)

= bytes/cache
bytes/row

= 2<sup>14</sup> bytes/cache
2<sup>4</sup> bytes/row

= 2<sup>10</sup> rows/cache
```

need 10 bits to specify this many rows

- Tag
 - used remaining bits as tag
 Assignment Project Exam Help
 tag length = memory fset bits minus index bits
 = 32 4 https://eduassistpro.github.io/
 = 18 bits Add WeChat edu_assist_pro
 - so the tag is leftmost 18 bits of memory address

Accessing data in a direct mapped cache

Memory

• Example: 16KB, direct-mapped, 4 word blocks

• Read 4 addresignment Project Exam He

 0x00000014
 0x0000001C
 https://eduassistpro.golouboio/e

 0x00000034
 Add WeChat edu_assist_300
 g

 0x000008014
 3C
 h

Memory values on right:

 Let us only consider cache and memory levels of hierarchy

Accessing data in a direct mapped cache

4 Addresses:

```
0x0000014, 0x0000001C, 0x00000034, 0x00008014
```

• 4 Addresses divided (force payenience) into Tag, Index, https://eduassistpro.github.io/ 00001 0100 00000000 Add WeChat edu_assist_pro 00000000000000000 0000000000000000 000000011 0000000000000010 000000001 **Offset** Tag Index

Accessing data in a direct mapped cache

- Lets go through accessing some data in this cache
 - 16KB, direct-mapped, 4 word blocks
- Will see 3 types of everite nment Project Exam Help
- <u>cache miss</u>: nothing in c https://eduassistpro.gftkuto.jfg/tch from memory
- cache hit: cache block is valid and con WeChat edu_assist_pro
 word
- <u>cache miss, block replacement</u>: wrong data is in cache at appropriate block, so discard it and fetch desired data from memory

16 KB Direct Mapped Cache, 16B blocks

Read 0x0000014

0000000000000000 000000001 0100 Tag field Index field Offset **Valid** 0x4-7 $d-8\times0$ 0x0-30xc-f Index Tag Assignment Project Exam Help 234567 https://eduassistpro.github.jo Add WeChat edu assist pro ••• ••• **1022**0 10230

So we read block 1 (000000001)

			rag field		naex neia	Offset	
Index	ali X_	d Tag	0 x 0-3	0x4-7	0x8-b	0xc-f	
0	0						
1	0		Assignmer	it Project Ex	tam Help		
2	0				-		
3	0		https:/	/eduassistp	ro.aithub.io/	,	
4	0		1		3		
5			Add V	VeChat edu	assist pro		
2 3 4 5 6 7	0						
7	0						
•••				•••			
1022							
1023	0	-				_	

No valid data

So load that data into cache, setting tag, valid

Read from cache at offset, return word **b** 0000000000000000 000000001 Tag field Index field _Offset **Valid** 0x4-70x8-b0x0-30xc-f Index Tag Assignment Project Exam Help d 234567 https://eduassistpro.github.jo Add WeChat edu lassist pro ••• ••• **1022**0

10230

Read 0x000001C

0000000000000000 000000001 1100 Tag field Index field Offset

Valid 0x4-7 $d-8\times0$ 0x0-30xc-f Index Tag Assignment Project Exam Help d 234567 https://eduassistpro.github.jo Add WeChat edul assist pro ••• ••• **1022**0 10230

Data valid, tag OK, so read offset return word d

Read 0x0000034

0000000000000000 000000011 0100 Tag field Index field Offset **Valid** 0x4-7 $d-8\times0$ 0x0-30xc-f Index Tag Assignment Project Exam Help d 234567 https://eduassistpro.github.jo Add WeChat edul assist pro ••• ••• **1022**0

10230

So read block 3

No valid data

Load that cache block, return word **f** 0000000000000000 000000011 0100 Tag field Index field Offset **Valid** 0x4-70x0-30x8-b0xc-f Index Tag Assignment Project Exam Help d https://eduassistorb.gitl9ub.jo **4** 5 6 7 Add WeChat edu lassist pro ••• ••• **1022**0 **1023**0

Read 0x00008014

Valid $d-8\times0$ 0x0-30x4-70xc-f Index Tag Assignment Project Exam Help d 234567 h https://eduassistpro.gitl9ub.jo Add WeChat edul assist pro ••• ••• **1022**0 10230

Cache Block 1 Tag does not match (0 != 2)

Miss, replace block 1 with new data & tag

 00000000000000000
 0000000001
 0100

 Tag field
 Index field
 Offset

Valid Index Tag		Ы	•			
			0x0-3	0x4-7	0x8-b	0xc-f
0	0					
1	1	2	Assignmer	it Project Ex	am He lp	
2	0				•	
1 2 3 4 5 6	1	0	https:/	/eduassistn	ro.aitl <mark>9ub.io</mark> /	h
4	0		, , 30			
5	0		Add V	VeChat edu	assist pro	
6	0					
7	0					
•••				•••		
1022	20					
1023						

And return word j

Do an example yourself. What happens?

• Cache: Hit, Miss, Miss with replace? Values returned: a ,b, c, d, e, ..., k, l?

...

- Read address 0x00000030?
 0000000000000000000000000000011

Cache Valid Index Tag			0 https://eduassistpro.github.jo/ 0xc-f				
0	0		Add V	VeChat edu	assist pro		
1	1	2	İ	İ	k k		
2	0			-			
3	1	0	е	f	g	h	
4	0						
5	0						
6	0						
7	0						

Answers

MemoryAddress Value of Word

• 0x00000030 a hit 00000010 a 00000014 b 1ndex = 3, Tag matches, 00000018 c d d

0x000001c

Index = 1, Tag https://eduassistpro.gitlaub.io/ e
replace from memory.
Offset = 0xc, Adde VeChat edu_assistero g

Therefore returned 0000003c h

- Therefore, returned values are:
 - -0x00000030 = e
 - -0x000001c = d

"And in Conclusion..."

- We would like to have the capacity of disk at the speed of the processor: unfortunately this is not feasible.
- So we create a memory hierarchy: Exam Help
 - each successively hi https://eduassistpro.gotstubsed" data from next lower level
 - Add WeChat edu_assist_pro
 exploits temporal locality and spat
 - do the common case fast, worry less about the exceptions (design principle of MIPS)
- Locality of reference is a Big Idea

Review and More Information

• Sections 5.1 - 5.3 of textbook

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro