Week 2

Graph Theory 101

Previous Class Discussion:

Avatars of Graph!

3.1 Subgraph

A subgraph of a graph **G** is a graph **H** such that $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. Also $H \subseteq G$.

Figure: $H1 \subset G$, $H2 \subset G$, $H3 \subseteq G$

3.2 Independent Set and Clique

- → A set of vertices is called **independent** if no two vertices in the set are adjacent.
- → A set of vertices is called a **clique** if every two vertices in the set are adjacent.

3.3 Chromatic Number

Smallest number of colors needed to color the vertices of a Graph G(V, H) such that no two adjacent vertices have the same color. Chromatic Number= 2

Chromatic Number = 2

Chromatic Number = 4

3.4 Complement of a graph

A complement of a graph G is a graph G such that V(G) = V(G') and fills all missing edges and removes existing edges from a complete graph.

Or Draw edges between all pairs of vertices of an independent set.

3.5 Graphs Representation

3.5.1 Adjacency Matrix

An adjacency matrix of a graph G is square matrix of size $|V| \times |V|$ in which i-j th element denotes number of edges between ith and jth vertices (|V| = number of vertices). It is denoted as A(G).

A(G)

Advantage:

- → Quickly check if two nodes have a direct edge or not.
- → Best representation if graph is almost complete

Disadvantage:

→ Large memory complexity.

3.5.2 Incident Matrix

An incident matrix of a graph G is a matrix of size $|V| \times |E|$ in which i-j th element = 1 if i th vertex is an endpoint of j th edge (|V| = number of vertices, |E| = number of edges). It is denoted as M(G).

3.5.2 List

It is represented as a linked list of neighbours.

3.6 Notations

• P : Path with n vertices

• C : Cycle with n vertices

• K : Complete Graph with n vertices

K , : Bipartite graph between two independent set

• N : Null graph

• W : Wheel Graph

• Q : Hypercube Graph

3.7 Isomorphism

Two graphs G and H is isomorphic if and only if it satisfy following condition

- 1. Number of vertices in both graph are same
- 2. Number of edges in both graph are same
- 3. Their edge connectivity is retained

If G is isomorphic to H then it is denoted as $G \cong H$.

In this example $\begin{array}{l} \text{Condition 1} \rightarrow \text{SATISFIED} \\ \text{Condition 2} \rightarrow \text{SATISFIED} \\ \text{Condition 3} \rightarrow \text{SATISFIED} \\ \end{array}$

Now, How is condition 3 satisfying? To prove it we need some function f() such that,

$$f(w) \rightarrow c$$

$$f(x) \rightarrow b$$

$$f(y) \rightarrow d$$

$$f(z) \rightarrow a$$

Isomorphic graph follow following conditions:

1. Reflexive

We can use a bijection f such that $f(V1) \rightarrow V1$

2. Symmetric

Proof:

Since,
$$G1 \cong G2$$

$$\Rightarrow$$
 \exists a bijection f such that $f(V1) \rightarrow V2$
And \exists a bijection f^{-1} such that $f^{-1}(V2) \rightarrow V1$

$$\Rightarrow$$
 G2 \cong G1

3. Transitivity

If G1 \cong G2 and G2 \cong G3 then G1 \cong G3

Proof:

Since, G1 ≅ G2 and G2 ≅ G3

⇒ ∃ f, g bijection such that

 $\Longrightarrow f(V1) \to V2 \quad \& \quad g(V2) \to V3$

 \Rightarrow \exists gof a bijection such that $gof(V1) \rightarrow V3$

 \Rightarrow G1 \cong G3

3.8 Decomposition

A decomposition of a graph is a list of subgraphs such that each edge appears in exactly one subgraph in the list.

Q. Can K5 be decomposed into two C5?

Ans: YES

Q. Can K4 be decomposed into two C4s?

Ans: NO

Q. K₁,n₋₁ and K_{n-1} ,decompose K_n

Ans: YES

3.9 Path

Continues traveling a graph such that all edges are distinct called path.

3.10 Walk

A walk in a graph is a sequence of edges such that each edge (except the first one) starts with a vertex where the previous edges ended.

- The length of a walk is the number of edges in it.
- A path is a walk where all edges are distinct.

Examples:

3.11 Cycle

A cycle is a path in which the first and the last vertices are the same.

- 1. All edges are distinct.
- 2. Start and End vertex are same.

3.12 Connected Components

If there exists at least one path between 2 vertices called connected graphs otherwise called disconnected graphs.

- Maximal connected subgraphs of G is Connected Components
- Every graph with n vertices and k edges has at least n-k components.

3.13 Cut-edge or Cut-vertex

A cut-edge or cut-vertex of a graph is an edge or vertex whose deletion increases the number of components.

An edge is a cut-edge if and only if it belongs to no cycle.

3.13 Bipartition of a graph

Bipartite is a graph whose vertices can be divided into two independent sets, U and V such that every edge (u, v) either connects a vertex from U to V or a vertex from V to U means no edge that connects vertices of the same set.

• A graph is bipartite iff it has no odd cycle.

Example:

1