Universidade Federal de Ouro Preto

A Camada de Enlace

Links desta videoaula - P1: youtu.be/2cZff2UajUY

P2: youtu.be/jMN6XHdK8ns

Referências:

- Redes de Computadores. A. S. Tanenbaum. Campus/Elsevier, 2003 Seções 3.1 e 3.2
- Redes de Computadores e a Internet. J. Kurose, K. Ross. Pearson, 2010 Capítulo 5

Camada de enlace

- 5.1 Introdução e serviços
- 5.2 Detecção e correção de erros
- 5.3 Protocolos de acesso múltiplo
- 5.4 Endereçamento na camada de enlace
- 5.5 Ethernet

Camada de enlace: introdução

Alguma terminologia:

- hospedeiros e roteadores são nós
- canais de comunicação que se conectam a nós adjacentes pelo caminho de comunicação são enlaces
 - enlaces com fio
 - enlaces sem fio
 - LANs
- pacote na camada-2 é um quadro, encapsula datagrama

- Um protocolo da camada de enlace é usado para transportar um datagrama por um enlace individual.
- Camada de transporte: movimentar pacotes da camada de aplicação fim a fim.
 - Desde o host origem ao destino
- Camada de enlace: movimentar datagramas da camada de rede nó a nó por um único enlace no caminho.
- Analogia: sistema de transporte

 Analogia: Agente de viagens planejando um passeio para turista de BH a Paris, passando por Frankfurt.

Agente de transporte: protocolo de roteamento.

Turista: datagrama.

Meio de transporte: protocolo da camada enlace.

Taxi, avião e trem-bala são os enlaces!

Cada um fornece o serviço básico, que é levar passageiros de uma localidade a outra adjacente.

CEA510: Prof. Marlon Paolo

enquadramento :

 encapsula datagrama no quadro, incluindo cabeçalho para transmiti-lo no enlace.

acesso ao enlace

- Define regras para acesso ao canal de meio compartilhado;
- endereços "MAC" usados nos cabeçalhos de quadro para identificar origem, destino.
 - diferente do endereço IP!

entrega confiável entre nós adjacentes

- raramente usado em enlace com pouco erro de bit (fibra, alguns pares trançados);
 - Pode ser considerado uma sobrecarga desnecessária para este tipo de enlace.
 - Muitos protocolos dessa camada n\u00e3o oferece esse servi\u00f3o.
- Por que ter confiabilidade em nível de enlace e fim a fim?
- Usado em enlaces sem fio: altas taxas de erro. Ex: Wi-Fi

controle de fluxo:

- controle entre nós de emissão e recepção adjacentes
- semelhante à camada de transporte, porém faz o controle nó a nó

detecção de erro:

- erros causados por atenuação de sinal, ruído.
- receptor detecta presença de erros:
 - Não há necessidade de repassar erros
 - descarta quadro ou corrige os erros.

correção de erro:

 receptor identifica e corrige erro(s) de bit sem lançar mão da retransmissão

Onde é implementada a camada de enlace?

- em todo e qualquer host.
- camada de enlace implementada no "adaptador" (ou placa de interface de rede, NIC)
 - placa Ethernet, placa PCMCI, placa 802.11
 - implementa camada de enlace, física
- conecta aos barramentos de sistema do hospedeiro
- combinação de hardware, software, firmware

Comunicação entre adaptadores

lado emissor:

- encapsula datagrama no quadro
- inclui bits de verificação de erro, rdt, controle de fluxo etc.

lado receptor

- procura erros, rdt, controle de fluxo etc.
- extrai datagrama, passa para camada superior no lado receptor

Comunicação entre adaptadores

Camada de enlace

- 5.1 Introdução e serviços
- 5.2 Detecção e correção de erros
- 5.3 Protocolos de acesso múltiplo
- 5.4 Endereçamento na camada de enlace
- 5.5 Ethernet

Controle de erros

Durante a transmissão de dados erros podem ocorrer:

- interferências eletromagnéticas;
- Atenuação de sinal;
- falha de sincronização entre emissor e receptor;
- Problemas em componentes de rede;
- Necessária alguma técnica para correção e detecção de erros.
 - Reduz o número de retransmissões do remetente.
 - Vantagem potencialmente importante para aplicações de tempo real.

Diferentes técnicas atualmente disponíveis:

- Estratégias mais sofisticadas têm maior probabilidade de detectar erros, mas...
 - ficam sujeitas a sobrecarga maior.

Detecção de erros

EDC = Bits de detecção e correção de erros (redundância)

D = Dados protegidos por verificação de erro (pode incluir cabeçalho)

Detecção de erro não é 100% confiável!

- protocolo pode perder alguns erros, mas raramente
- maior campo EDC gera melhor detecção e correção

Verificação de paridade

- Maneira mais simples de detectar erros: utilizar um bit de paridade
- Incluir um bit adicional aos dados
- Paridade impar e paridade par

•PROBLEMA:

- Erros frequentemente se aglomeram em rajadas
- •Se muitos bits forem transmitidos e ocorrer muitos erros?
- Essa técnica só detecta um número *ímpar* de erros.

Paridade Bidimensional

- Suponha que tenha ocorrido erro em 1 bit.
- Agora receptor pode detectar erros e corrigir alguns!!
- Não é 100% eficiente para correção de erros.
- Pode detectar (mas não corrigir) qualquer combinação de 2 erros no pacote.

Nenhum erro					Erro de bit único corrigível							
1	0	1	0	1	1	1	0	1	0	1	1	
1	1	1	1	0	0	4	0	1	1	0	0	Erro de paridade
0	1	1	1	0	1	0	1	1	1	0	1	
0	0	1	0	1	0	0	0	1	0	1	0	
						-	rro					

Soma de verificação da Internet (análise)

Objetivo: detectar "erros" (p. e., bits invertidos) no pacote transmitido (nota: usada somente na camada de transporte)

Emissor:

- trata conteúdo do segmento como sequência de inteiros de 16 bits
- soma de verificação: adição (soma no complemento de 1) do conteúdo do segmento
- emissor colocar valor da soma de verificação no campo de soma de verificação UDP

Receptor:

- calcula soma de verificação do segmento recebido
- verifica se soma de verificação calculada é igual ao valor do campo de soma de verificação:
 - NÃO erro detectado
 - SIM nenhum erro detectado. *Mas pode haver erros, apesar disso?*

CRC (Cyclic Redundancy Check)

- CRC é um código detector de erros que gera um valor expresso em poucos bits para detectar erros de transmissão.
- •O CRC é calculado e anexado aos dados transmitidos e depois verificado para confirmar se não ocorreram alterações.
 - Simples de implementar em hardware;
 - Eficiente em detectar erros causados por ruídos;
 - Simples de ser analisado matematicamente.
- O CRC é um tipo de função de hash.
 - Mudança em apenas um bit provoca uma mudança no CRC.
 - Mesmo mudanças pequenas nos dados levam a CRCs bem diferentes.
 - É muito raro que a introdução de erros nos dados não seja detectado pelo CRC (principalmente o CRC32)

Código polinomial ou CRC

- Os códigos polinomiais tratam uma cadeia de bits como polinômios de coeficientes 0 e 1.
- K bits = polinômio $x^{k-1} + x^{k-2} + \dots x^0$

1 1 0 0 0 1 é representado por $x^5 + x^4 + x^0$

- Aritmética polinomial em módulo 2 (soma e subtração = XOR)
- Transmissor e receptor devem concordar em relação ao polinômio gerador G(x).
- Mecanismo detecta até r-1 erros!

CRC (Cyclic Redundancy Check)

Verificação de Redundância Cíclica

- seja bits de dados, D, como um número binário
- escolha padrão de bits r + 1 (gerador), G
- objetivo: escolher r bits de CRC, R, tal que
 - <D,R> exatamente divisível por G (módulo 2)
 - receptor sabe G, divide <D,R> por G. Se resto diferente de zero: erro detectado!
 - pode detectar todos os erros em rajada menores que r + 1 bits
- muito usada na prática (Ethernet, IEEE 802.11, ATM)

Exemplo de CRC

Queremos:

 $D \cdot 2^r XOR R = nG$

de modo equivalente:

 $D \cdot 2^r = nG XOR R$

de modo equivalente:

se dividirmos D · 2^r por G, queremos resto R

Solução: (D + R) / G.

Se resto ≠ 0 → ocorreu erro Senão, dados aceitos como corretos

Exemplo de CRC


```
Quadro: 1 1 0 1 0 1 1 1 1 1
```

Gerador: 1 0 0 1 1

Quadro transmitido: 1 1 0 1 0 1 1 menos o resto

Exemplo de cálculo de CRC.

Polinômios Geradores

- Existem alguns polinômios geradores padronizados usados no cálculo de CRC. Os mais comuns são:
- CRC-32: $CRC_{32}(x) = x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + x^0$
 - polinômio gerador acima ou 100000100110000010001110110110111 em binário.
- **CRC-16:** utiliza o polinômio gerador $CRC_{16}(x) = x^{16} + x^{15} + x^2 + x^0$ ou *1100000000000101* em notação binária.
- CRC-12 que usa o polinômio gerador $CRC_{12}(x) = x^{12} + x^3 + x^1 + x^0$ ou 100000001011 em notação binária.
- CRC-8 que usa o polinômio gerador $CRC_8(x) = x^8 + x^2 + x^1 + x^0$ ou 100000111 em notação binária.

Camada de enlace

- 5.1 Introdução e serviços
- 5.2 Detecção e correção de erros
- 5.3 Protocolos de acesso múltiplo
- 5.4 Endereçamento na camada de enlace
- 5.5 Ethernet

Enlaces e protocolos de acesso múltiplo

Dois tipos de "enlaces":

- ponto a ponto
 - PPP para acesso discado
 - enlace ponto a ponto entre comutador Ethernet e hospedeiro
- broadcast (fio ou meio compartilhado)
 - Ethernet à moda antiga
 - **HFC**
 - LAN sem fio 802.11

fio compartilhado (p. e., Ethernet cabeado)

RF compartilhada (p. e., WiFi 802.11)

(satélite)

humanos em uma festa (ar e acústica compartilhados)

Protocolos de acesso múltiplo

- único canal de broadcast compartilhado
- duas ou mais transmissões simultâneas por nós:
 - colisão se o nó recebe dois ou mais sinais ao mesmo tempo
 - Quando ocorre colisão de pacotes os quadros ficam embaralhados...

protocolo de acesso múltiplo

- Deve existir um algoritmo distribuído que determina como os nós compartilham canal,
 - ou seja, determinam quando o nó pode transmitir.

Protocolo de acesso múltiplo ideal

Características desejáveis em um protocolo de acesso múltiplo

Canal de broadcast de velocidade X bps

- 1. quando um nó quer transmitir, ele pode enviar na velocidade X.
- 2. quando M nós querem transmitir, cada um pode enviar na velocidade média de transmissão R/M
- 3. totalmente descentralizado:
 - nenhum nó especial para coordenar transmissões
 - nenhuma sincronização de clocks, intervalos
- 4. Simples → implementação barata!
- 5. Evitar ao máximo o desperdício de intervalos de tempo.

Protocolos MAC: uma taxonomia

Três classes gerais:

Particionamento de canal

- divide o canal em "pedaços menores" (intervalos de tempo, frequência, código)
- aloca pedaço ao nó para uso exclusivo

Acesso aleatório

- canal não dividido, permite colisões
- "recupera" de colisões

"Revezando"

 os nós se revezam, mas os nós com mais a enviar podem receber mais tempo

Time Division Multiple Access

TDMA: Time Division Multiple Access

- acesso ao canal em "rodadas"
- cada estação recebe intervalo de tamanho fixo (tamanho = tempo transm. pacote) a cada rodada
- intervalos n\u00e3o usados ficam ociosos
- exemplo: LAN de 6 estações, 1, 3, 4 têm pacote, intervalos 2, 5,
 6 ociosos

Frequency Division Multiple Access

FDMA: Frequency Division Multiple Access

- espectro do canal dividido em bandas de frequência
- cada estação recebe banda de frequência fixa
- tempo de transmissão não usado nas bandas de frequência fica ocioso
- exemplo: LAN de 6 estações, 1, 3, 4 têm pacote, bandas de frequência 2, 5, 6 ociosas

Protocolos de acesso aleatório

- Quando o nó tem um pacote a enviar
 - A estação que está transmitindo utiliza toda a banda.
 - sem coordenação a priori entre os nós
- dois ou mais nós transmitindo simultaneamente → "colisão",
- protocolo MAC de acesso aleatório especifica:
 - como detectar colisões
 - como recuperar-se de colisões (p. e., via retransmissões adiadas)
- Exemplos de protocolos MAC de acesso aleatório:
 - ALOHA
 - Slotted ALOHA
 - CSMA, CSMA/CD, CSMA/CA

ALOHA Puro

- Universidade do Havaí, comunicação sem fio por ondas de rádio
 - Rede Aloha começou em 1970;
 - Nó mestre em Honolulu (centro de computação)
 - escravos na outras ilhas do arquipélago
 - 2 faixas de freqüência:
 - do mestre para os escravos (apenas 1 transmissor não tem colisão)
 - dos escravos para o mestre (canal compartilhado pode ter colisão)

AlohaNet

ALOHA Puro

Usuários transmitem sempre que possuem dados

User

- Um transmissor pode detectar colisões (usando CRC)
- Retransmissão ocorre após um período de tempo aleatório
- Problema: Baixa eficiência (18% dos quadros são transmitidos corretamente no melhor caso)

	ne ev			
Α				
В				
С				
D	er er			
E				
	65 42	Time		

Quadros são transmitidos em instantes de tempo arbitrários

ALOHA Puro

Período de vulnerabilidade para o quadro sombreado

Slotted ALOHA

- Necessidade de melhorar o desempenho de um sistema ALOHA
- Estações só podem transmitir em instantes de tempo específicos
 - Necessário um relógio mestre
- Desempenho é o dobro do ALOHA puro (37%)

Slotted ALOHA

Suposições:

- quadros do mesmo tamanho
- tempo dividido em intervalos de mesmo tamanho (tempo para transmitir 1 quadro)
- nós começam a transmitir somente no início dos intervalos
- nós são sincronizados
- se 2 ou mais nós transmitem no intervalo, todos os nós detectam colisão.

Operação:

- quando nó obtém quadro novo, transmite no próximo intervalo
 - se não há colisão: nó pode enviar novo quadro no próximo intervalo;
 - se há colisão: nó retransmite quadro em cada intervalo subsequente com prob. até que haja sucesso.

Slotted ALOHA

<u>Prós</u>

- único nó ativo pode transmitir continuamente na velocidade plena do canal
- altamente descentralizado: somente intervalos nos nós precisam estar em sincronismo
- simples

Contras

- colisões, intervalos desperdiçados
- intervalos ociosos
- nós podem ser capazes de detectar colisão em menos tempo do que para transmitir pacote
- sincronismo de clock

CSMA (Carrier Sense Multiple Access)

Analogia do Aloha: uma reunião com pessoas mal-educadas e tagarelas!

Duas regras importantes em uma comunicação usadas pelo **CSMA**:

- ouça antes de falar:
 - No mundo das redes significa <u>sensoriamento de portadora</u>;
 - se perceber canal ocioso: transmite quadro inteiro
- Se alguém falar ao mesmo tempo que você, pare de falar:
 - No mundo das redes significa detecção de colisão;
 - se perceber canal ocupado, adia transmissão;
 - Não interromper a transmissão

Colisões CSMA

Se todos os nós realizarem detecção de portadora e seguirem as regras ainda poderá ocorrer colisões?

SIM:

atraso de propagação significa que dois nós podem não ouvir a transmissão um do outro.

nota:

papel da distância & atraso de propagação determinando probabilidade de colisão

Colisões CSMA

Algoritmo CSMA

CSMA/CD (Collision Detection)

analogia humana: o interlocutor educado

CSMA/CD:

- colisões detectadas dentro de pouco tempo
- transmissões colidindo abortadas, reduzindo desperdício do canal.

CSMA/CD (Collision Detection)

CSMA/CD - detecção de colisão:

- fácil em LANs com fio: mede intensidades de sinal, compara sinais transmitidos, recebidos
- difícil nas LANs sem fio: intensidade do sinal recebido abafada pela intensidade da transmissão local
- CSMA/CD: utilizado em redes Ethernet

CSMA/CD (Collision Detection)

CSMA/CD

- Se houve colisão, espera tempo aleatório entre 0 e um limite
- O limite é dobrado a cada colisão sucessiva até um número máximo de colisões estipulado.
 - A partir daí, o limite permanece inalterado por mais um certo número de tentativas máximo estipulado.
 - Se não conseguir transmitir até o número máximo de tentativas, então aborta a transmissão

No padrão IEEE 802.3:

 O limite dobra até 10 tentativas, depois permanece inalterado até no máximo 16 tentativas.

Colisões CSMA

Algoritmo CSMA/CD

Colisão em redes sem fio

- A detecção de colisões em redes wireless é bem mais complicada que nas redes cabeadas, devido à complexidade inerente do ambiente sem fio.
 - Protocolo CSMA/CD utilizado pelo 802.3, não foi adotado nas redes Wireless.
- Em um ambiente cabeado, todas estações estão fisicamente conectadas, e é possível saber se houve ou não alguma colisão na rede.
- O mesmo não ocorre nas redes sem fio.

Controle de Acesso ao Meio

•Problema da estação oculta:

- •Neste caso, C e D não estão no alcance do rádio de A.
- •Ele "escutará" o meio e concluirá erradamente que este está livre, e iniciará uma transmissão com B.

- Para permitir a construção de redes com muitos computadores, a solução adotada foi utilizar um mecanismos de prevenção de colisão:
- O CSMA/CA é um método de transmissão que possui um grau de ordenação maior que o seu antecessor (CSMA/CD).
- O CSMA/CA possui também mais parâmetros restritivos, o que contribui para a redução da ocorrência de colisões em uma rede.

- •Antes de transmitir efetivamente um pacote, a estação avisa sobre a transmissão e em quanto tempo a mesma irá realizar a tarefa.
- Dessa forma, as estações não tentarão transmitir, porque entendem que o canal está sendo usado por outra máquina.

FUNCIONAMENTO:

- •Ao invés de enviar os dados aleatoriamente, o CSMA/CA permite ao transmissor "reservar" o canal antes.
 - •Antes de enviar dados, transmissor escuta o meio (sensoriam. da portadora), buscando sinal de RF de outra estação.
- •Se o meio estiver ocupado, aguarda até nova verificação.
- •Se o meio estiver livre, envia quadro chamado *request to send* (RTS) à estação-base indicando a sua intenção de transmitir.

FUNCIONAMENTO:

- Ao receber o RTS, o AP envia em broadcast (*Clear To Send* CTS) autorizando o hots enviar dados e reservando um espaço de tempo para sua transmissão.
- Enquanto isso as outras estações aguardam para iniciar suas transmissões.

Desta forma o protocolo evita colisões de quadros de dados usando pequenos quadros de reserva de banda!

 Se o ACK é recebido, o pacote é considerado perdido e é realizada uma retransmissão deste pacote.

"Revezando" protocolos MAC

protocolos MAC de particionamento de canal:

- compartilham canal de modo eficaz e justo com alta carga
- ineficaz com baixa carga: atraso no acesso ao canal, 1/N largura de banda alocada mesmo que apenas 1 nó ativo!

Protocolos MAC de acesso aleatório

- eficaz com baixa carga: único nó pode utilizar o canal totalmente
- alta carga: sobrecarga de colisão

"revezando" protocolos

Polling (seleção)

- nó mestre "convida" nós escravos a alterarem a transmissão;
 - normalmente usado com dispositivos escravos "burros";
- Seleciona cada um dos nós para transmitir por alternância circular
 - Envia msg para nó transmissor permitindo-o transmitir a o máximo de x quadros.
- preocupações:
 - sobrecarga da seleção
 - latência
 - único ponto de falha (mestre)
- Exemplo: Bluetooth

escravos

Passagem de permissão

- Não há nós mestres.
- permissão de controle passada de um nó para o próximo sequencialmente.
 - Nó retém mensagem de permissão apenas se tiver dados para enviar.
- Passagem de permissão descentralizada e com alta eficiência.
- preocupações
 - sobrecarga da permissão
 - latência
 - único ponto de falha (permissão) derruba toda a rede
- □ Usado em protocolos FDDI (Fiber Distributed
 Data Interface) e IEEE 802.5

Resumo de protocolos MAC

- particionamento de canal, por tempo, frequência ou código
 - Time Division, Frequency Division
- acesso aleatório (dinâmico),
 - ALOHA, S-ALOHA, CSMA, CSMA/CD
 - percepção de portadora: fácil em algumas tecnologias (com fio), difícil em outras (sem fio)
 - CSMA/CD usado na Ethernet
 - CSMA/CA usado na 802.11
- Revezamento
 - passagem de permissão e passagem de permissão: Bluetooth, FDDI, Token Ring