Drowsiness Detection

Shawn Seo DSI 725

Introduction

National Highway Traffic Safety Administration (NHTSA) estimates:

about 91,000 police-reported crashes involve drowsy drivers

50,000 people injured and 800 deaths in 2017

Most Common Factors of Drowsy Driving

- 1. Occur most frequently between midnight and 6 am or in late afternoon
- Often involves a single driver running off the road at high speed with no evidence of braking
- Frequently occur on rural roads/highways

The NHTSA estimates that going over 20 hours of sleep may be equivalent of having a BAC of 0.08, the US legal limit.

Problem Statement

How could I reduce the number of collisions caused by driving while drowsy?

Can we accurately be able to assess the drowsiness of the driver?

Data Collection

- University of Texas at Arlington
- 60 participants
 - o 51 men, 9 women
 - Different Ethnicities
 - Varying age groups
- Self-recorded in 3 drowsiness states
 - Alert
 - Low-vigilant (dropped)
 - Drowsy
- 10 minutes long

Recommended Set up

Data Preparation

- Save 1 frame per second for each video
 - Reduced the total frames from ~20,000 to ~600
 - Keeps context of whole video
- Data was split into 5 folds
 - 4 folds used to train.
 - 5th fold used for testing
- Of the three states of drowsiness, low-vigilant was dropped for binary classification
 - States were self-reported
 - Very ambiguous

First Sequential Model

- Conv2D layer
 - o 16 filters (3x3)
- MaxPool2D
 - o (2x2)
- Flatten
- Dense

First Sequential Model

Train Loss: 0.0147

Train Accuracy: 99.88%

Validation Loss: 4.4248

Validation Accuracy: 62%

Second Sequential Model

- 3 Conv2D layers
 - o 32 filters each (3x3)
- MaxPooling2D
 - o (2x2)
- 2 additional Conv2D layers
 - o 32 filters (3x3)
- Flatten
- Dense
 - Dropout to avoid overfitting

Second Sequential Model

Train Loss: 0.0096

Train Accuracy: 99.79%

Validation Loss: 7.9892

Validation Accuracy: 60.01%

Transfer Learning (EfficientNet)

Train Loss: 0.0281

Train Accuracy: 99.83%

Validation loss: 1.03

Validation Accuracy: 57%

Conclusion

The first sequential model performed the best with an accuracy rate of 62%.

Overall trend of overfitting - may be due to needless noise

Recommendations

Due to nature of project, no recommendations can be drawn from the models

The NHTSA offers these tips to help drive alert:

- 1. Get adequate sleep on a daily basis
- 2. Avoid alcohol
- 3. Check prescription medication labels for potential drowsiness side-effects
- 4. Avoid driving during peak sleepiness periods
 - a. Midnight 6am

Limitations

- Number of Frames
 - a. Dropped 29/30 frames per second huge data loss
- 2. Lack of Computing Power
 - a. Each model took quite a long time to run, limiting the number of runs possible
- 3. Unimportant elements in each frame
 - a. Background, shirt color, etc.

Problem Statement

How could I reduce the number of collisions caused by driving while drowsy?

Can we accurately be able to assess the drowsiness of the driver?

What's next?

- Face, eye capturing for better accuracy
 - Re-train models using eye tracker to reduce noise
- Live evaluation of subject
 - Determination of drowsiness/sleeping

Live Evaluation

