Fundamentos da Teoria da Computação

1º semestre de 2016 DCC/ICEx/UFMG

Professor: Newton José Vieira

Primeira Prova/Solução do professor

1. Sejam $A = \{\lambda, 0\}, B = \{0, 11\} \in C = \{00, 1\}.$

(a) Calcule AAB.

(b) Quantas palavras há na linguagem A^k , sendo $k \in \mathbb{N}$?

(c) Dê, em português, uma condição necessária e suficiente para que uma palavra pertença a $\{00\}^* \cap B^*$.

(d) Descreva $B^* \cap C^*$.

Solução:

a) $AAB = \{0, 11, 00, 011, 000, 0011\}.$

b) $A^k = \{0^0, 0^1, \dots, 0^k\} \text{ tem } k+1 \text{ palavras.}$

c) Uma palavra pertence a $\{00\}^* \cap B^*$ sse ela só tem 0s e tem número par de 0s.

d) $B^* \cap C^* = \{00, 11\}^*$.

2. Obtenha gramáticas para as linguagens:

(a) $\{0\}^*\{1\}^+$;

(b) $\{xyx^R \mid x \in \{a, b\}^* \text{ e } y \in \{cc\}^*\}.$

Solução:

(a) $P \rightarrow 0P \mid 1R$

 $R \rightarrow 1R \mid \lambda$

(b) $P \rightarrow aPa \mid bPb \mid C$

 $C \rightarrow cCc \mid \lambda$

3. Construa AFDs que reconheçam as linguagens a seguir. Apresente apenas os diagramas de estados.

(a) $\{0,11\}^*$.

(b) $\{w \in \{0,1\}^* \mid \text{ o último símbolo de } w \text{ é idêntico ao primeiro}\}.$

Solução:

(a) 0 0,1 0 0,3

(b)

- 4. Sejam $B = \{0, 11\} \in C = \{00, 1\}.$
 - (a) Construa um AFD que reconheça $\overline{C^*}$. Dica: faça antes um AFD para C^* .
 - (b) Construa um AFD que reconheça $B^* C^*$. Dica: utilize produto de autômatos.

Solução:

(b) Fazendo o produto do AFD de 3(a) com o de 4(a), obtenho:

5. Sobre AFNs:

- (a) Construa um AFN que reconheça $\{w \in \{a, b, c\}^* \mid w \text{ contém apenas um a ou apenas um b ou apenas um c}\}$. Basta o diagrama de estados.
- (b) Usando o método visto no curso, construa um AFD equivalente ao AFN:

Solução:

(b) Diagrama de estados simplificado:

6. Construa um AFN equivalente ao AFN λ a seguir usando o método visto em aula.

Solução:

