Libro página 186

Fundamentos de Comunicación serial

Teresa Orvañanos Guerrero

Serial RS232 DB9 Male to Female Cable

The length: 1.5m/4.92ft ,3m/9.84ft , 5m/16.4ft (optional)

RS232 Pin Out

Pin#	Signal						
1	DCD						
2	RX						
3	TX						
4	DTR						
5	GND						
6	DSR						
7	RTS						
8	CTS						
9	RI						

Frame Formats

A serial frame is defined to be one character of data bits with synchronization bits (start and stop bits), and optionally a parity bit for error checking. The USART accepts all 30 combinations of the following as valid frame formats:

- 1 start bit
- 6, 6, 7, 8, or 9 data bits
- no, even or odd parity bit
- ¶ or 2 stop bits

Datasheet página 140 / Libro página 187

USART (Universal Synchronous and <u>Asynchronous</u> serial receiver and transmitter)

Teresa Orvañanos Guerrero

En Atmegu16A el USART puede trabajar en diferentes modos

- Normal asíncrono Asíncrono de doble velocidad
- Síncrono ma estro ? síncrono Síncrono escluvo

dsiherona

En UCSRC en el bit UMSEL - 0 = asiherona 1= síhordha

) DR

Buffer de transmision y de recepción

UDR= (1<<1) | (143)

RXCIE 1- Int. cuando reciba un dato
0- No int

TXCIE 1- Int. cuando terminó la trans. 4

UPRIE- 1-Int. cuando listo para trans. <

RXEN- 0- Deshabilita Recepción 1- Habilitar Recepción

TX EN - O - Deshabilita Transmision

1 - Habilitar transm...

Table 67. UCSZ Bi	t: Settings						
UCSZ2	UCSZ1	UCSZ0	Character Size				
0	0	0	5-bit				
0	0	1	6-bit				
0	1	0	7-bit				
0	1	1	8-bit				
1	0	0	Reserved				
1	0	1	Reserved				
1	1	0	Reserved				
1	1	1	9-bit				

Transmitir 9 bits Ob 1 0101 0101,

(5) UCSRB = n bit 0

UDR

(2) UDR = Ob 01010101;

 $O = \frac{1}{1} \left(\frac{1}{2} + \frac{1}{2} +$

dato = 06 10000 0000

r bit 1 de UCSRB

UPR

10101 0101

Recibi Ob 1,01010101

Paridad 19cal g' en el otro dispositivo (comp)

Table 67. UCSZ B	s Settings		
UCSZ2	UCSZ1	UCSZ0	Character Size
0	0	0	5-bit
0	0	1	6-bit
0	1	0	7-bit
0	1	1	8-bit
1	0	0	Reserved
1	0	1	Reserved
1	1	0	Reserved
1	1	1	9-bit

UBRR

16 bits → UBRRH : UBERL # para velocidad de transmisión

Table 69. Examples of UBRR Settings for Commonly Used Oscillator Frequencies												
	f _{osc} = 1.0000 MHz				f _{osc} = 1.8432 MHz				$f_{osc} = 2.0000 \text{ MHz}$			
Baud Rate (bps)	U2X = 0		U2X = 1		U2X = 0		U2X = 1		U2X = 0		U2X = 1	
	UBRR	Error	UBRR	Error	UBRR	Error	UBRR	Error	UBRR	Error	UBRR	Error
2400	25	0.2%	51	0.2%	47	0.0%	95	0.0%	51	0.2%	103	0.2%
4800	12	0.2%	25	0.2%	23	0.0%	47	0.0%	25	0.2%	51	0.2%
9600	6	-7.0%	12	0.2%	11	0.0%	23	0.0%	12	0.2%	25	0.2%
14.4k	3	8.5%	8	-3.5%	7	0.0%	15	0.0%	8	-3.5%	16	2.1%
19.2k	2	8.5%	6	-7.0%	5	0.0%	11	0.0%	6	-7.0%	12	0.2%
28.8k	1	8.5%	3	8.5%	3	0.0%	7	0.0%	3	8.5%	8	-3.5%
38.4k	1	-18.6%	2	8.5%	2	0.0%	5	0.0%	2	8.5%	6	-7.0%
57.6k	0	8.5%	1	8.5%	1	0.0%	3	0.0%	1	8.5%	3	8.5%
76.8k	-	_	1	-18.6%	1	-25.0%	2	0.0%	1	-18.6%	2	8.5%
115.2k	_	_	0	8.5%	0	0.0%	1	0.0%	0	8.5%	1	8.5%
230.4k	-	_	_	_	_	_	0	0.0%	_	_	_	_
250k	-	_	_	_	_	_	_	_	_	_	0	0.0%
Max (1)	62.5 kbps		125	kbps	115.2 kbps		230.4 kbps		125 kbps		250 kbps	

UBRR= 103;

	ODKK-											
Table 70. Examples of UBRR Settings for Commonly Used Oscillator Frequencies (Continued)												
	f _{osc} = 3.6864 MHz				$f_{\rm osc} = 4.0000 \mathrm{MHz}$				$f_{\rm osc} = 7.3728 \text{MHz}$			
Baud Rate (bps)	U2X = 0		U2X = 1		U2X = 0		U2X = 1		U2X = 0		U2X = 1	
	UBRR	Error	UBRR	Error	UBRR	Error	UBRR	Error	UBRR	Error	UBRR	Error
2400	95	0.0%	191	0.0%	103	0.2%	207	0.2%	191	0.0%	383	0.0%
4800	47	0.0%	95	0.0%	51	0.2%	103	0.2%	95	0.0%	191	0.0%
9600	23	0.0%	47	0.0%	25	0.2%	51	0.2%	47	0.0%	95	0.0%
14.4k	15	0.0%	31	0.0%	16	2.1%	34	-0.8%	31	0.0%	63	0.0%
19.2k	11	0.0%	23	0.0%	12	0.2%	25	0.2%	23	0.0%	47	0.0%
28.8k	7	0.0%	15	0.0%	8	-3.5%	16	2.1%	15	0.0%	31	0.0%
38.4k	5	0.0%	11	0.0%	6	-7.0%	12	0.2%	11	0.0%	23	0.0%
57.6k	3	0.0%	7	0.0%	3	8.5%	8	-3.5%	7	0.0%	15	0.0%
76.8k	2	0.0%	5	0.0%	2	8.5%	6	-7.0%	5	0.0%	11	0.0%
115.2k	1	0.0%	3	0.0%	1	8.5%	3	8.5%	3	0.0%	7	0.0%
230.4k	0	0.0%	1	0.0%	0	8.5%	1	8.5%	1	0.0%	3	0.0%
250k	0	-7.8%	1	-7.8%	0	0.0%	1	0.0%	1	-7.8%	3	-7.8%
0.5M	_	_	0	-7.8%	_	_	0	0.0%	0	-7.8%	1	-7.8%
1M	_	_	_	_	_	_	_	_	_	_	0	-7.8%
Max (1)	230.4 kbps 460.8 kbp		kbps	250k bps		0.5 Mbps		460.8 kbps		921.6 kbps		

UDR - dato (8 bits)

UCSRA- banderus e indicadores

UCSRB — Interrupciones? / Transm y/o Recep/#bits* / 8 vo bit.

UCSRC — Asíncrona / Paridad / #bits* / bits parada

UBRR (UBRRH: UBRRL) — Velecidad (tabla & formula)

INICIALIZAR / CONFIGURAR

```
C Code Example<sup>(1)</sup>
                FCPU
      #define FOSC 1843200// Clock Speed
     #define BAUD 9600
      #define MYUBRR FOSC/16/BAUD-1
      void main ( void ) fc→U
             USART Init ( MYUBRR );
      void USART_Init( unsigned int ubrr)
             /* Set baud rate */unhte-t
             UBRRH = (unsigned char) (ubrr>>8);
             UBRRL = (unsigned char) ubrr;
             /* Enable receiver and transmitter */
           • UCSRB = (1<<RXEN) | (1<<TXEN) | (1<< RXCIE); (Recep, trans, Int)
             /* Set frame format: 8data, 2stop bit */
           • UCSRC = (1<<URSEL) | (1<<USBS) | (3<<UCSZ0); // & 61+3
                                                           2 stop sin paridud
```

```
Void main (void)

=
USAR_Transmit (1);

=
```

```
O= FALSO
NO Φ = UERDADERO (1)
```

```
UDRE
UCSRA
      00100000
      00 × 6 00 0 6
SI UDRE= 0 : *= 06 0000000
             1 (falso)
NO UTTO
             VERDAD
SI UDRE=1 1. * = 0600100000
              (verdade10)
Listo
              FALSO
```

```
void main (void) {

=

UntB-t dato= USART_Receive();

=
}
```

Ø falso

INTERRUPGONES

```
* Inicializar Serial con EXCIE=1
       volatile uint8_t dato;
        int main(void)
           /* Replace with your application code */
            while (1)
        ISR(USART_RXC_vect)
       dato = UDR
```

```
Void USART_Flush(void)

{
UhtBt

unsigned char dummy;
while (UCSRA & (1<<RXC)) dummy = UDR;
}
```

