RESEARCH

The single most comprehensive and unified source of information about mathematical functions.

Indeterminate

View the online version at

functions.wolfram.com

Download the
PDF File

Notations

Traditional name

An indeterminate numerical quantity

Traditional notation

i

Mathematica StandardForm notation

Indeterminate

Primary definition

Indeterminate is a symbol that represents a numerical quantity whose magnitude cannot be determined.

```
02.10.02.0001.01 f(..., i, ...) = i
```

General characteristics

 ξ is the special symbol. It represents an unknown or not exactly determined point (potentially with magnitude infinity) of the complex plane. Often it results from a double limit where two infinitesimal parameters approch zero at different speeds (e.g. $\lim_{x\to 0,y\to 0}\frac{x}{y}$).

Limit representations

```
\zeta = \lim_{z \to \tilde{\omega}} e^{z}
```

Transformations

Related transformations

$$02.10.16.0001.01$$
 $f(..., i, ...) = i$

Complex characteristics

Real part

$$02.10.19.0001.01$$

$$Re(\zeta) = \zeta$$

Imaginary part

$$02.10.19.0002.01$$

$${\rm Im}(\zeta) = \zeta$$

Absolute value

$$02.10.19.0003.01$$
 $|\zeta| = \zeta$

Argument

$$02.10.19.0004.01$$
 $arg(\xi) == \xi$

Conjugate value

02.10.19.0005.01
$$\bar{\zeta} = \zeta$$

Differentiation

Low-order differentiation

$$\frac{\partial \iota}{\partial z} = \iota$$

Integration

Indefinite integration

$$\int i \, dz = i$$

Integral transforms

Fourier exp transforms

02.10.22.0001.01
$$\mathcal{F}_{t}[\dot{z}](z) = \dot{z}$$

Inverse Fourier exp transforms

$$02.10.22.0002.01$$

$$\mathcal{F}_{t}^{-1}[\dot{\zeta}](z) = \dot{\zeta}$$

Fourier cos transforms

02.10.22.0003.01
$$\mathcal{F}c_{t}[\dot{\iota}](z) = \dot{\iota}$$

Fourier sin transforms

02.10.22.0004.01
$$\mathcal{F}s_{t}[\c i\c](z) = \c i$$

Laplace transforms

02.10.22.0005.01
$$\mathcal{L}_{t}[\zeta](z) = \zeta$$

Inverse Laplace transforms

02.10.22.0006.01
$$\mathcal{L}_{t}^{-1}[\dot{z}](z) = \dot{z}$$

Representations through equivalent functions

```
02.10.27.0001.01
\dot{\varsigma} = \frac{0}{0}
             02.10.27.0002.01
\infty 0 = 3
             02.10.27.0003.01
\dot{\varsigma} = \frac{-}{\infty}
             02.10.27.0004.01
\infty - \infty = 3
             02.10.27.0005.01
\dot{c} = 0^0
             02.10.27.0006.01
             02.10.27.0007.01
\xi = 1^{\infty}
             02.10.27.0008.01
\tilde{\infty} = 0
             02.10.27.0009.01
       \tilde{\infty}
```

$$\dot{\boldsymbol{\iota}} = \frac{\infty}{\tilde{\omega}}$$

$$02.10.27.0010.01$$

$$\dot{\boldsymbol{\iota}} = \frac{\tilde{\omega}}{\tilde{\omega}}$$

$$02.10.27.0011.01$$

$$\dot{\boldsymbol{\iota}} = \frac{\tilde{\omega}}{\tilde{\omega}}$$

$$02.10.27.0012.01$$

$$\dot{\boldsymbol{\iota}} = \tilde{\omega} - \tilde{\omega}$$

$$02.10.27.0013.01$$

$$\dot{\boldsymbol{\iota}} = 1^{\tilde{\omega}}$$

$$02.10.27.0014.01$$

$$\dot{\boldsymbol{\iota}} = \tilde{\omega} - \omega$$

$$02.10.27.0015.01$$

$$\dot{\boldsymbol{\iota}} = \infty - \tilde{\omega}$$

History

- –L'Hospital (1696) treated the sign $\frac{0}{0}$ as an indeterminate value
- –Johann Bernoulli (1704, 1730) discussed symbol $\frac{0}{0}$
- -G.Cramer (1732) used special notation for $\frac{0}{0}$.
- –D`Alembert (1754) discussed symbol $\frac{0}{0}$.

Copyright

This document was downloaded from functions.wolfram.com, a comprehensive online compendium of formulas involving the special functions of mathematics. For a key to the notations used here, see http://functions.wolfram.com/Notations/.

Please cite this document by referring to the functions.wolfram.com page from which it was downloaded, for example:

http://functions.wolfram.com/Constants/E/

To refer to a particular formula, cite functions.wolfram.com followed by the citation number.

e.g.: http://functions.wolfram.com/01.03.03.0001.01

This document is currently in a preliminary form. If you have comments or suggestions, please email comments@functions.wolfram.com.

© 2001-2008, Wolfram Research, Inc.