

INDIAN INSTITUTE OF TECHNOLOGY TIRUPATI भारतीय प्रौद्योगिकी संस्थान तिरुपति

EE 5024: Machine Learning For Image Processing (Jan-Jun 2020) Programming Assignment 2

Bayesian Classification

1. Go through the datasets uploaded in the moodle and complete the following table:

Sl.No.	Name of Dataset	1	2	3	4	5
1	Feature vector dimension					
2	No. of classes					
3	Prior prob. for each class					
4	Mean vector dim.					
5	Covariance matrix dim.					

Table 1

- 2. Select any one dataset. Then for each class select one feature and plot 1D histogram i.e. $p(x_k/\omega_i)$ for at least 3 classes, where x_k is the k^{th} feature of datset and ω_i represents the i^{th} class. Now apply bayesian classification using the above likelihoods, you can experiment with different values of k. Repeat the same by selecting 2 features for at least 3 classes and plot 2D histogram (you can use inbuilt command for this).
- 3. You need to perform bayesian classification for the dataset (que3.xlxs) uploaded in the moodle. Before starting, divide the data of each class into 70% data as training and 30% for testing. Text file has 1500 data points in which first 500 data points belong to ω_1 , next 500 to ω_2 and last 500 to ω_3 . Perform Bayesian classification for following cases:
 - i Same covariance matrix for all the classes. (Hint: Calculate Σ by considering all data points)
 - ii Different covariance matrices. (Hint: Calculate Σ_1 , Σ_2 and Σ_3 separately for each class.
 - iii Diagonal covariance matrices. (Hint: Make $\sigma_{12} = \sigma_{21} = 0$ in covariance matrices generated in (ii))

NOTE:

You have to plot Eigen vectors for the covariance matrix and the contours of equal probability on the feature space. You may use inbuilt functions like eig , quiver and contour . For building 2D gaussian model you can code yourself or

else you can use inbuilt function in matlab (mvnpdf). Sample plots for (ii) and (iii) are shown below.

Figure 1

Figure 2