

## 21CYB101J QP 2022 23 ODD

Chemistry (SRM Institute of Science and Technology)



Scan to open on Studocu

|                      | В.            | <b>Fech / M.Tech (Integrated) DF</b>                                                                                           | EGRE<br>irst Se | E EXAMINATION, JANUAR emester                                | Y 2023   |             |     |     |  |
|----------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------------------------------------------------|----------|-------------|-----|-----|--|
|                      |               | 21CYB1                                                                                                                         | 01.1 –          | CHEMISTRY                                                    |          |             |     |     |  |
|                      |               |                                                                                                                                |                 | m the academic year 2022-2023)                               |          |             |     |     |  |
| Note:<br>(i)<br>(ii) | over          | t - A should be answered in OMR s<br>to hall invigilator at the end of 40 <sup>th</sup><br>t - B and Part - C should be answer | minute          | vithin first 40 minutes and OMR she<br>e.<br>answer booklet. | et shoul | d be        | han | ded |  |
| Time: 3              | Time: 3 Hours |                                                                                                                                |                 |                                                              |          | Max. Marks: |     |     |  |
|                      |               |                                                                                                                                |                 |                                                              | Marks    | BL          | со  | PO  |  |
|                      |               | PART – A (20 × 1<br>Answer ALL C                                                                                               |                 |                                                              |          |             |     |     |  |
| 1                    | 774           | 1                                                                                                                              | 2               | 1                                                            | 1        |             |     |     |  |
| 1.                   |               | crystal field splitting energy ( $\Delta_0$ Geometry                                                                           | (B)             | Number of d-Electrons                                        |          |             |     |     |  |
|                      | ` /           | Coordination number                                                                                                            |                 | Oxidation state                                              |          |             |     |     |  |
|                      | (0)           | Coordination number                                                                                                            | (2)             |                                                              |          |             |     |     |  |
| 2.                   | The           | effective nuclear charge realised                                                                                              | by is           | electron of helium atom is                                   | 1        | 3           | 1   | 1   |  |
|                      |               | 1.00                                                                                                                           | (B)             | 1.20                                                         |          |             |     |     |  |
|                      |               | 1.70                                                                                                                           | (D)             | 1.65                                                         |          |             |     |     |  |
|                      |               | *                                                                                                                              |                 |                                                              | 1        | 3           | 1   | 1   |  |
| 3.                   |               | complex [Pt (NH <sub>3</sub> ) <sub>2</sub> Cl <sub>2</sub> ] exhibits                                                         | ;<br>           |                                                              | 1        | ر           | 1   |     |  |
|                      |               | Linkage isomerism                                                                                                              |                 | Coordination isomerism                                       |          |             |     |     |  |
|                      | (C)           | Geometrical isomerism                                                                                                          | (D)             | Optical isomerism                                            |          |             |     |     |  |
| 4.                   | The is        | 6 1                                                                                                                            | 3               | 1                                                            | 1        |             |     |     |  |
|                      | (A)           | 0                                                                                                                              | (B)             | 2.84                                                         |          |             |     |     |  |
|                      | (C)           | 4.90                                                                                                                           | (D)             | 5.92                                                         |          |             |     |     |  |
| 5.                   |               | a reaction that has an equilibrium owing statement must be true?                                                               | um co           | onstant of 3.2×10 <sup>-2</sup> , which of the               | e 1      | 4           | 2   | 1   |  |
|                      | (A)           | ΔH° is negative                                                                                                                |                 | $\Delta G^{\circ}$ is positive                               |          |             |     |     |  |
|                      | (C)           | ΔG° is negative                                                                                                                | (D)             | ΔS° is positive                                              |          |             |     |     |  |
|                      | _             |                                                                                                                                | 4:11            | 1 AC9                                                        | 1        | 2           | 2   | 1   |  |
| 6.                   |               | an isolated system, $\Delta U = 0$ , wha                                                                                       | t WIII          | be ΔS?                                                       |          |             |     |     |  |
|                      |               | $\Delta S > 0$                                                                                                                 | . ,             | $\Delta S < 0$                                               |          |             |     |     |  |
|                      | (C)           | $\Delta S \leq 0$                                                                                                              | (D)             | $\Delta S \ge 0$                                             |          |             |     |     |  |
| 7.                   |               | he pourbaix diagram, the form at potential of 1.86 V is                                                                        |                 | on that will predominate at pH1                              | 2 1      | 3           | 2   | 1   |  |
|                      | (A)           | _                                                                                                                              | (B)             | Fe <sup>2+</sup>                                             |          |             |     |     |  |
|                      |               | $FeO_4^{2-}$                                                                                                                   |                 | Fe(OH) <sub>3</sub>                                          |          | 72          |     |     |  |
|                      |               |                                                                                                                                |                 |                                                              | 1        | 1           | 2   | 1   |  |
| 8.                   |               | mholtz function F is given by                                                                                                  | (T)             | TI TO                                                        | _        | -           |     |     |  |
|                      | ` '           | $-\mathbf{U} + \mathbf{T}\mathbf{S}$                                                                                           |                 | -U-TS                                                        |          |             |     |     |  |
|                      | (C)           | U + TS                                                                                                                         | (D)             | U-TS                                                         |          |             |     |     |  |

Reg. No.



| 9.  | The number of structural isomers fo (A) 6 (C) 4                                                     | r C <sub>6</sub> H <sub>14</sub> is<br>(B) 5<br>(D) 3                                                 | P. | 2 | 3 |   | PART – B (5 × 8 = 40 Marks) Answer ALL Questions                                                                                                                                                                                      | Marks | BL | со | PO |
|-----|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----|---|---|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|----|----|
| 10. | Reactivity order of alkyl halides in S (A) CH <sub>3</sub> ×1°>2°>3° (C) 3°>2°>1°>CH <sub>3</sub> × | S <sub>N</sub> <sup>2</sup> reaction is (B) CH <sub>3</sub> ×>2°>3°>1° (D) 3°>1°>2°>CH <sub>3</sub> × | 1  | 2 | 3 | 2 | 21. a. Find the number of unpaired electrons in strong and weak octahedral field for a Mn <sup>2+</sup> complex (d <sup>5</sup> ) based on CFT. Calculate CFSE and magnetic moment for both the situation with energy level diagrams. | 8     | 4  | î  | 1  |
| 11. | Among the following hex-2-ene read (A) HCl (C) HI                                                   | cts fastest with? (B) HF (D) HBr                                                                      | 1  | 3 | 3 | 2 | (OR) b. Demonstrate with proper examples the isomerism exhibited in transition metal complexes.                                                                                                                                       | 8     | 3  | 1  | 1  |
| 12. | sequence rules? (A) CH(OH) CH <sub>3</sub>                                                          | lowest priority according to the CIP  (B) $CH = CH_2$                                                 | 1  | 3 | 3 | 2 | 22. a. With appropriate examples, elucidate how Nernst equation can be applied in a redox reaction and in an acid-base reaction.                                                                                                      | 8     | 2  | 2  | 1  |
|     | (C) –CHO                                                                                            | (D) CH <sub>2</sub> CH <sub>3</sub>                                                                   |    |   |   |   | (OR)                                                                                                                                                                                                                                  |       |    |    |    |
| 13. | Which of the following is a thermo s                                                                | etting polymer?                                                                                       | 1  | 1 | 4 | 1 | b. Derive Gibbs-Helmholtz equation and given its applications.                                                                                                                                                                        | 8     | 1  | 2  | 1  |
|     | (A) Bakelite<br>(C) PVC                                                                             | (B) Polystyrene (D) Polyethene                                                                        |    |   |   |   | 23. a. Compare and contrast $S_N^1$ and $S_N^2$ reactions with an example for each.                                                                                                                                                   | 8     | 2  | 3  | 2  |
| 14. | Which one of the below is used as at (A) PVC (C) SBR                                                | insulator and also as a lubricant?  (B) PTFE  (D) Poly propylene                                      | 1  | 2 | 4 | 1 | <ul> <li>(OR)</li> <li>b. Sketch the potential energy diagram and explain in detail the conformational analysis of n-butane.</li> </ul>                                                                                               | 8     | 1  | 3  | 2  |
| 15. | Hemodialysis tubes are made with (A) Silicone rubber                                                | (B) Polystyrene                                                                                       | 1  | 1 | 4 | 1 | 24. a. Provide a conscise note on the synthesis and applications of Teflon and PVC.                                                                                                                                                   | 8     | 2  | 4  | 1  |
|     | (C) Polyurethane intermediate                                                                       | (D) Nylon                                                                                             |    |   |   |   | (OR)                                                                                                                                                                                                                                  |       |    |    |    |
| 16  | Which of the below polymers show l                                                                  | nigher equatellinity?                                                                                 | 1  | 2 | 4 | 1 | b. Explain in detail n and p-doping in conducting polymers.                                                                                                                                                                           | 8     | 2  | 4  | 1  |
| 10. | (A) Isotactic                                                                                       | (B) Atactic                                                                                           | 1  | 2 | 4 | 1 | 25 a Ulustrata with a proper strong strong plat for the full min                                                                                                                                                                      | 8     | 2  | 5  | 1  |
| 17  | (C) Random                                                                                          | (D) Syndiotactic                                                                                      |    |   |   |   | 25. a. Illustrate with a proper stress-strain plot for the following  (i) Elastic region  (ii) Plastic region                                                                                                                         | 0     | J  | 3  | 1  |
|     | In fibre reinforced composites which (A) Filler                                                     | constituent will fail last? (B) Matrix                                                                | 1  | 2 | 5 | 1 |                                                                                                                                                                                                                                       |       |    |    |    |
|     | (C) Both fail at same time                                                                          | (D) Need more details on composite                                                                    |    |   |   |   | b. Explain with an example ceramic matrix composite and metal matrix composite.                                                                                                                                                       | 8     | 2  | 5  | 1  |
|     | After the proportionality limit in the                                                              |                                                                                                       | 1  | 3 | 5 | 1 | composite.                                                                                                                                                                                                                            |       |    |    |    |
|     | <ul><li>(A) Lower yield point</li><li>(C) Ultimate point</li></ul>                                  | <ul><li>(B) Upper yield point</li><li>(D) Elastic point</li></ul>                                     |    |   |   |   |                                                                                                                                                                                                                                       |       |    |    |    |
|     | Minimum inter planar spacing requir                                                                 |                                                                                                       | 1  | 2 | 5 | 1 | PART – C (1 × 15 = 15 Marks) Answer ANY ONE Questions                                                                                                                                                                                 | larks | BŁ | CO | PO |
|     | <ul><li>(A) λ/4</li><li>(C) λ/2</li></ul>                                                           | <ul><li>(B) 4λ</li><li>(D) 2λ</li></ul>                                                               |    |   |   |   | 26. With an neat sketch discuss pourbaix diagram for iron.                                                                                                                                                                            | 15    | 3  | 2  | 1  |
| 20. | Determine young's modulus of a m                                                                    | aterial whose elastic stress and strain                                                               | 1  | 3 | 5 | 1 | 27.i. Explain E2 mechanism with suitable example.                                                                                                                                                                                     | 5     | 2  | 3  | 2  |
|     | are 4 N/m <sup>2</sup> and 0.15 respectively (A) 26.66 N/m <sup>2</sup> (C) 266.6 N/m <sup>2</sup>  | (B) 2.666 N/m <sup>2</sup><br>(D) 2666 N/m <sup>2</sup>                                               |    |   |   |   | <ol> <li>Discuss about the principle and instrumentation of X-ray photo electron<br/>spectroscopy.</li> </ol>                                                                                                                         | 10    | 3  | 5  | 1  |
|     |                                                                                                     | ,                                                                                                     |    |   |   |   |                                                                                                                                                                                                                                       |       |    |    |    |

Page 2 of 3

05JF21CYB101J

Page 3 of 3