JWillis D209 Data Mining PA1

January 8, 2023

0.1 D209 - Data Mining I - PA1

0.1.1 Import Libraries

```
[1]: import pandas as pd
  import numpy as np
  import matplotlib.pyplot as plt
  import seaborn as sns
  %matplotlib inline
  from pandas import DataFrame
  import sklearn.neighbors
  from sklearn.neighbors import KNeighborsClassifier
  from sklearn import preprocessing
  from sklearn.metrics import mean_absolute_error
  from sklearn.model_selection import train_test_split
```

0.1.2 Load Data From medical clean.csv

```
[2]: # load data file
df = pd.read_csv('medical_clean.csv')
# quick test the data is present and see the shape
df.head()
```

```
[2]:
       CaseOrder Customer id
                                                       Interaction \
                     C412403 8cd49b13-f45a-4b47-a2bd-173ffa932c2f
    0
    1
               2
                     Z919181 d2450b70-0337-4406-bdbb-bc1037f1734c
                     F995323 a2057123-abf5-4a2c-abad-8ffe33512562
    3
                     A879973 1dec528d-eb34-4079-adce-0d7a40e82205
               5
                     C544523 5885f56b-d6da-43a3-8760-83583af94266
                                    UID
                                                 City State
                                                                   County
                                                                             Zip \
    0 3a83ddb66e2ae73798bdf1d705dc0932
                                                  Eva
                                                                   Morgan 35621
                                                         AL
    1 176354c5eef714957d486009feabf195
                                                         FL
                                                                  Jackson 32446
                                             Marianna
    2 e19a0fa00aeda885b8a436757e889bc9
                                          Sioux Falls
                                                         SD
                                                                Minnehaha 57110
    3 cd17d7b6d152cb6f23957346d11c3f07 New Richland
                                                         MN
                                                                   Waseca 56072
    4 d2f0425877b10ed6bb381f3e2579424a
                                           West Point
                                                         VA
                                                             King William 23181
```

Lat Lng ... TotalCharge Additional_charges Item1 Item2 Item3 \

```
0 34.34960 -86.72508 ... 3726.702860
                                            17939.403420
                                                                          2
                                                             3
                                                                   3
1 30.84513 -85.22907
                       ... 4193.190458
                                            17612.998120
                                                             3
                                                                   4
                                                                          3
                                                             2
2 43.54321 -96.63772 ...
                          2434.234222
                                                                   4
                                                                          4
                                            17505.192460
3 43.89744 -93.51479
                       ... 2127.830423
                                                             3
                                                                   5
                                                                          5
                                            12993.437350
4 37.59894 -76.88958 ... 2113.073274
                                             3716.525786
                                                             2
                                                                   1
                                                                          3
```

	Item4	Item5	Item6	Item7	Item8
0	2	4	3	3	4
1	4	4	4	3	3
2	4	3	4	3	3
3	3	4	5	5	5
4	3	5	3	4	3

[5 rows x 50 columns]

[3]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 50 columns):

#	Column	Non-Null Count	Dtype
0	CaseOrder	10000 non-null	int64
1	Customer_id	10000 non-null	object
2	Interaction	10000 non-null	•
3	UID	10000 non-null	object
4	City	10000 non-null	object
5	State	10000 non-null	object
6	County	10000 non-null	object
7	Zip	10000 non-null	int64
8	Lat	10000 non-null	float64
9	Lng	10000 non-null	float64
10	Population	10000 non-null	int64
11	Area	10000 non-null	object
12	TimeZone	10000 non-null	object
13	Job	10000 non-null	object
14	Children	10000 non-null	int64
15	Age	10000 non-null	int64
16	Income	10000 non-null	float64
17	Marital	10000 non-null	object
18	Gender	10000 non-null	object
19	ReAdmis	10000 non-null	object
20	VitD_levels	10000 non-null	float64
21	Doc_visits	10000 non-null	int64
22	Full_meals_eaten	10000 non-null	int64
23	vitD_supp	10000 non-null	int64
24	Soft_drink	10000 non-null	object

```
25 Initial_admin
                        10000 non-null object
 26
    HighBlood
                        10000 non-null object
 27
    Stroke
                        10000 non-null
                                        object
 28
    Complication_risk
                        10000 non-null
                                        object
    Overweight
                        10000 non-null object
 29
 30
    Arthritis
                        10000 non-null object
 31
    Diabetes
                        10000 non-null object
                        10000 non-null object
 32 Hyperlipidemia
 33 BackPain
                        10000 non-null object
                        10000 non-null object
 34
    Anxiety
    Allergic_rhinitis
                        10000 non-null
 35
                                        object
    Reflux_esophagitis
 36
                        10000 non-null object
 37
    Asthma
                        10000 non-null object
 38
    Services
                        10000 non-null
                                        object
 39
                        10000 non-null float64
    Initial_days
    TotalCharge
                        10000 non-null float64
 41
    Additional_charges
                        10000 non-null float64
 42
    Item1
                        10000 non-null int64
 43
    Item2
                        10000 non-null int64
 44 Item3
                        10000 non-null int64
    Item4
                        10000 non-null int64
 45
 46 Item5
                        10000 non-null int64
                        10000 non-null int64
 47
    Item6
 48 Item7
                        10000 non-null int64
 49 Item8
                        10000 non-null int64
dtypes: float64(7), int64(16), object(27)
```

Look for Missing Values

memory usage: 3.8+ MB

```
[4]: # Mapping to view missing data...none present.
sns.heatmap(df.isnull(), yticklabels=False, cbar=False, cmap='viridis');
```


[5]: df.describe()

[5]:		CaseOrder	Zip	Lat	Lng	Population	\
	count	10000.00000	10000.000000	10000.000000	10000.000000	10000.000000	
	mean	5000.50000	50159.323900	38.751099	-91.243080	9965.253800	
	std	2886.89568	27469.588208	5.403085	15.205998	14824.758614	
	min	1.00000	610.000000	17.967190	-174.209700	0.000000	
	25%	2500.75000	27592.000000	35.255120	-97.352982	694.750000	
	50%	5000.50000	50207.000000	39.419355	-88.397230	2769.000000	
	75%	7500.25000	72411.750000	42.044175	-80.438050	13945.000000	
	max	10000.00000	99929.000000	70.560990	-65.290170	122814.000000	
		Children	Age	Income	e VitD_levels	B Doc_visits	\
	count	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	
	mean	2.097200	53.511700	40490.495160	17.964262	5.012200	
	std	2.163659	20.638538	28521.153293	3 2.017231	1.045734	

min 25% 50% 75% max	0.000000 0.000000 1.000000 3.000000 10.000000	36.000000 19 53.000000 33 71.000000 54	154.080000 598.775000 768.420000 296.402500 249.100000	9.806483 16.626439 17.951122 19.347963 26.394449	1.000000 4.000000 5.000000 6.000000 9.000000
count mean std min 25% 50% 75% max	TotalCharge 10000.000000 5312.172769 2180.393838 1938.312067 3179.374015 5213.952000 7459.699750 9180.728000	Additional_cha 10000.00 12934.52 6542.60 3125.70 7986.48 11573.97 15626.49 30566.07	0000 10000 8587 3 1544 1 3000 1 7755 3 7735 4	.518800 3. .031966 1. .000000 1. .000000 3. .000000 3.	Item2 \ .000000 .506700 .034825 .000000 .000000 .000000
count mean std min 25% 50% 75% max	Item3 10000.000000 10 3.511100 1.032755 1.000000 3.000000 4.000000 4.000000 8.000000	Item4 0000.000000 100 3.515100 1.036282 1.000000 3.000000 4.000000 4.000000 7.000000	Item5 00.000000 3.496900 1.030192 1.000000 3.000000 3.000000 4.000000 7.000000	Item6 10000.000000 1 3.522500 1.032376 1.000000 3.000000 4.000000 4.000000 7.000000	Item7 \ 10000.000000 3.494000 1.021405 1.000000 3.000000 4.000000 7.000000
count mean std min 25% 50% 75% max	Item8 10000.000000 3.509700 1.042312 1.000000 3.000000 4.000000 7.000000				

[8 rows x 23 columns]

0.1.3 Describe and Explore Numeric Fields:

[6]:	df.des	cribe(include	= [np.number])				
[6]:		CaseOrder	Zip	Lat	Lng	Population	\	
	count	10000.00000	10000.000000	10000.000000	10000.000000	10000.000000		
	mean	5000.50000	50159.323900	38.751099	-91.243080	9965.253800		
	std	2886.89568	27469.588208	5.403085	15.205998	14824.758614		
	min	1.00000	610.000000	17.967190	-174.209700	0.000000		

25% 50% 75% max	2500.75000 5000.50000 7500.25000 10000.00000	27592.000000 50207.000000 72411.750000 99929.000000	35.255120 39.419355 42.044175 70.560990	-97.352982 -88.397230 -80.438050 -65.290170	694.750000 2769.000000 13945.000000 122814.000000	
count mean std min 25% 50% 75% max	Children 10000.000000 2.097200 2.163659 0.000000 0.000000 1.000000 3.000000 10.000000	10000.000000 53.511700 20.638538 18.000000 36.000000 53.000000	Income 10000.000000 40490.495160 28521.153293 154.080000 19598.775000 33768.420000 54296.402500 207249.100000	VitD_levels 10000.000000 17.964262 2.017231 9.806483 16.626439 17.951122 19.347963 26.394449	10000.000000 5.012200 1.045734 1.000000 4.000000 5.000000 6.000000	\
count mean std min 25% 50% 75% max	TotalCha: 10000.0000 5312.172 2180.393 1938.312 3179.374 5213.952 7459.699 9180.728	000 1000 769 1293 838 654 067 312 015 798 000 1157 750 1562	0.000000 10000 4.528587 3 2.601544 5.703000 6.487755 3 977735 4	3.518800 1.031966 1.000000 3.000000 4.000000	Item2 \ 0.000000 3.506700 1.034825 1.000000 3.000000 4.000000 7.000000	
count mean std min 25% 50% 75% max	Item3 10000.000000 3.511100 1.032755 1.000000 3.000000 4.000000 4.000000 8.000000	10000.000000 3.515100 1.036282 1.000000 3.000000 4.000000 7.000000	Item5 10000.000000 3.496900 1.030192 1.000000 3.000000 4.000000 7.000000	Item6 10000.000000 3.522500 1.032376 1.000000 3.000000 4.000000 7.000000	Item7 10000.000000 3.494000 1.021405 1.000000 3.000000 4.000000 7.000000	
count mean std min 25% 50% 75% max	Item8 10000.000000 3.509700 1.042312 1.000000 3.000000 4.000000 7.000000					

[8 rows x 23 columns]

```
[7]: df_num = df.select_dtypes(include='number')
     df_num.head()
[7]:
        CaseOrder
                                                               Children
                       Zip
                                  Lat
                                                  Population
                                                                           Age
                                                                                   Income
                                             Lng
     0
                     35621
                            34.34960 -86.72508
                                                         2951
                                                                       1
                                                                            53
                                                                                86575.93
                    32446
                                                                        3
     1
                            30.84513 -85.22907
                                                        11303
                                                                            51
                                                                                46805.99
     2
                 3
                    57110
                            43.54321 -96.63772
                                                        17125
                                                                       3
                                                                            53
                                                                                14370.14
     3
                 4
                    56072
                            43.89744 -93.51479
                                                         2162
                                                                       0
                                                                            78
                                                                                39741.49
                 5
                            37.59894 -76.88958
                                                         5287
                                                                                  1209.56
                    23181
                                                                        1
                                                                            22
        VitD levels Doc visits
                                                      Additional charges
                                                                                   \
                                       TotalCharge
                                                                            Item1
           19.141466
     0
                                 6
                                       3726.702860
                                                            17939.403420
                                                                                3
                                       4193.190458
                                                                                3
     1
           18.940352
                                 4
                                                            17612.998120
                                                                                2
     2
           18.057507
                                 4
                                       2434.234222
                                                            17505.192460
                                    •••
     3
           16.576858
                                 4
                                       2127.830423
                                                            12993.437350
                                                                                3
     4
           17.439069
                                 5
                                       2113.073274
                                                             3716.525786
                                                                                2
                                                       Item8
        Item2
                Item3
                               Item5
                                       Item6
                                               Item7
                        Item4
             3
                     2
                            2
                                    4
                                            3
                                                    3
                                                           4
     0
                                                           3
     1
             4
                     3
                            4
                                    4
                                            4
                                                    3
     2
             4
                     4
                            4
                                    3
                                            4
                                                    3
                                                           3
                     5
                            3
                                            5
                                                    5
                                                           5
     3
             5
                                    4
                                    5
     4
             1
                     3
                            3
                                            3
                                                           3
     [5 rows x 23 columns]
```

0.1.4 Describe and Explore Categorical Fields:

```
[8]: df.describe(exclude = [np.number])
[8]:
            Customer_id
                                                     Interaction \
     count
                   10000
                                                            10000
                   10000
                                                            10000
     unique
     top
                 C412403
                          8cd49b13-f45a-4b47-a2bd-173ffa932c2f
                       1
     freq
                                                                1
                                             UID
                                                     City
                                                           State
                                                                       County
                                                                                Area
                                                            10000
                                                                               10000
     count
                                          10000
                                                    10000
                                                                        10000
     unique
                                          10000
                                                     6072
                                                               52
                                                                         1607
                                                                                   3
                                                                               Rural
             3a83ddb66e2ae73798bdf1d705dc0932
                                                               TX
                                                                   Jefferson
     top
                                                  Houston
                                               1
                                                       36
                                                              553
                                                                          118
                                                                                3369
     freq
                      TimeZone
                                                                          Marital
                                                                    Job
                         10000
                                                                  10000
                                                                            10000
     count
     unique
                             26
                                                                    639
                                                                                5
     top
             America/New_York
                                Outdoor activities/education manager
                                                                          Widowed
     freq
                          3889
                                                                     29
                                                                             2045
```

```
10000
                            10000
     count
                                      10000
                                                      10000
                                                               10000
                                                                        10000
                                                                    2
                      2
                                                          2
     unique
                    Yes
                               No
                                         No
                                                         No
                                                                  No
     top
                                                                           No
                  7094
     freq
                             6426
                                       7262
                                                       6628
                                                                5886
                                                                         6785
            Allergic_rhinitis Reflux_esophagitis Asthma
                                                              Services
                                             10000
                         10000
                                                     10000
                                                                 10000
     count
     unique
                             2
                                                 2
                                                                      4
                                                            Blood Work
                                                No
                                                        No
     top
                            No
                          6059
                                              5865
                                                      7107
                                                                  5265
     freq
     [4 rows x 27 columns]
[9]: df_cat = df.select_dtypes(exclude='number')
     df_cat.head()
       Customer id
                                               Interaction \
[9]:
           C412403
                     8cd49b13-f45a-4b47-a2bd-173ffa932c2f
     1
           Z919181
                     d2450b70-0337-4406-bdbb-bc1037f1734c
     2
           F995323
                     a2057123-abf5-4a2c-abad-8ffe33512562
     3
           A879973 1dec528d-eb34-4079-adce-0d7a40e82205
                     5885f56b-d6da-43a3-8760-83583af94266
           C544523
                                       UID
                                                     City State
                                                                        County \
        3a83ddb66e2ae73798bdf1d705dc0932
                                                      Eva
                                                             AL
                                                                        Morgan
       176354c5eef714957d486009feabf195
                                                Marianna
                                                             FL
                                                                       Jackson
        e19a0fa00aeda885b8a436757e889bc9
                                             Sioux Falls
                                                             SD
                                                                    Minnehaha
     3 cd17d7b6d152cb6f23957346d11c3f07
                                            New Richland
                                                             MN
                                                                        Waseca
     4 d2f0425877b10ed6bb381f3e2579424a
                                              West Point
                                                             VA
                                                                 King William
                           TimeZone
                                                                           Marital \
                                                                     Job
            Area
     0
        Suburban
                    America/Chicago
                                     Psychologist, sport and exercise
                                                                          Divorced
           Urban
                    America/Chicago
                                          Community development worker
     1
                                                                           Married
        Suburban
                    America/Chicago
                                               Chief Executive Officer
                                                                           Widowed
     3
        Suburban
                    America/Chicago
                                                   Early years teacher
                                                                           Married
           Rural
                  America/New_York
                                           Health promotion specialist
                                                                           Widowed
        ... Overweight Arthritis Diabetes Hyperlipidemia BackPain Anxiety
     0
                  No
                            Yes
                                      Yes
                                                       No
                                                               Yes
                                                                        Yes
     1
                  Yes
                                       No
                                                       No
                                                                No
                                                                         No
        •••
                             No
     2
                                      Yes
                  Yes
                             No
                                                       No
                                                                No
                                                                         No
     3
                  No
                            Yes
                                       No
                                                       No
                                                                No
                                                                         No
                  No
                             No
                                       No
                                                      Yes
                                                                No
                                                                         No
```

Overweight Arthritis Diabetes Hyperlipidemia BackPain Anxiety

Services

Allergic_rhinitis Reflux_esophagitis Asthma

```
0
                Yes
                                    No
                                           Yes
                                                Blood Work
1
                 No
                                    Yes
                                            No
                                               Intravenous
2
                 No
                                            No
                                                 Blood Work
                                    No
3
                                                 Blood Work
                 No
                                    Yes
                                           Yes
                                                    CT Scan
                Yes
                                    No
                                            No
```

[5 rows x 27 columns]

```
[10]: df[['ReAdmis']].describe()
    df
```

[10]:		CaseOr	der Cust	omer id						Intera	ction	\	
	0		1	C412403	8cd4	9b13	3-f45	a-4b47-	a2bd-	-173ffa9	32c2f		
	1		2	Z919181	d245	0b70	0-033	7-4406-	bdbb-	-bc1037f	1734c		
	2		3	F995323	a205	7123	3-abf	5-4a2c-	abad-	-8ffe335	12562		
	3		4	A879973	1dec	5280	d-eb3	4-4079-	adce-	-0d7a40e	82205		
	4		5	C544523	5885	f561	o-d6d	a-43a3-	8760-	-83583af	94266		
	•••			•••						•••			
	9995	9	996	B863060	a25b	594	1-032	8-486f-	a9b9-	-0567eb0	f9723		
	9996	9	997	P712040	7071	1574	1-f7b	1-4a17-	b15f-	-48c5456	4b70f		
	9997	9	998	R778890	1d79	569	1-8e0	f-4180-	a207-	-d67ee45	27d26		
	9998	9	999	E344109	f5a6	8e69	9-2a6	0-409b-	a92f-	-ac0847b	27db0		
	9999	10	000	I569847	bc48	2c02	2-f8c	9-4423-	99de-	-3db5e62	a18d5		
						U.	ΙD	(City	State		County	\
	0	3a83dd	b66e2ae7	3798bdf1	ld705d	c093	32		Eva	AL		Morgan	
	1	176354	c5eef714	1957d4860	009fea	bf19	95	Mari	anna	FL	-	ackson	
	2	e19a0f	a00aeda8	885b8a436	3757e8	89b	c9	Sioux F	alls	SD	Mir	nehaha	
	3	cd17d7	b6d152ct	6f239573	346d11	c3f(07 N	ew Rich	land	MN		Waseca	
	4	d2f042	5877b10e	ed6bb381f	3e257	9424	1 a	West P	oint	VA	King W	/illiam	
	•••								•••		•••		
	9995	39184d	c28cc038	8871912cc	c4500	049	e5	Nor	lina	NC		Warren	
	9996	3cd124	ccd43147	'404292e8	383bf9	ec5	5c	Mi	lmay	NJ	At	lantic	
	9997	41b770	aeee97a5	b9e7f69c	:906a8	1190	17	South	side	TN	Mont	gomery	
	9998	2bb491	ef5b1beb	1fed758c	c6885	c16	7a	Q-	uinn	SD	Penr	ington	
	9999	95663a	20233800	00abdf7e0)9311c	2a8a	a1	Coraop	olis	PA	All	egheny	
		Zip	La	ıt	Lng	•••	Tota	lCharge	Add	$itional_{oldsymbol{-}}$	_		\
	0	35621	34.3496	60 -86.7	72508	•••	3726	.702860		17939	.40342	20 3	
	1	32446	30.8451	.3 -85.2	22907	•••	4193	.190458		17612	.99812	20 3	
	2	57110	43.5432	21 -96.6	3772	•••	2434	.234222		17505	.19246	30 2	
	3	56072	43.8974	4 -93.5	1479	•••	2127	.830423		12993	.43735	3 3	
	4	23181	37.5989	94 -76.8	88958	•••	2113	.073274		3716	.52578	36 2	
	•••	•••					•••						
	9995	27563	36.4288			•••		.942000			.64200		
	9996	8340	39.4360	9 -74.8	37302	•••	7741	.690000			.15000		
	9997	37171	36.3665	55 -87.2	29988	•••	8276	.481000		15281	.21000	00 3	

```
9999 15108 40.49998 -80.19959 ...
                                            7887.553000
                                                                11643.190000
                                                                                  4
           Item2 Item3
                                 Item5 Item6 Item7 Item8
                         Item4
      0
               3
                       2
                              2
                                     4
                                            3
               4
                       3
                              4
                                     4
                                            4
                                                  3
                                                        3
      1
      2
               4
                       4
                              4
                                     3
                                            4
                                                  3
                                                        3
      3
               5
                       5
                              3
                                     4
                                            5
                                                        5
                                                  5
      4
               1
                       3
                              3
                                            3
                                                  4
                                                        3
                                     5
                •••
      9995
               2
                       2
                              3
                                            3
                                     4
      9996
               3
                       4
                              2
                                     5
                                            3
                                                        4
                                            2
      9997
               3
                       3
                              4
                                     4
                                                  3
                                                        2
      9998
               5
                       3
                              4
                                     4
                                            3
                                                  4
                                                        3
      9999
               3
                       3
                              2
                                     3
                                            6
                                                  4
                                                        3
      [10000 rows x 50 columns]
[11]: df['ReAdmis_Yes'] = df['ReAdmis']
      df['ReAdmis_Yes'] = df['ReAdmis_Yes'].eq('Yes').astype(int)
      df['ReAdmis_Yes']
[11]: 0
              0
              0
      1
      2
              0
      3
              0
      4
              0
      9995
              0
      9996
              1
      9997
              1
      9998
              1
      9999
              1
      Name: ReAdmis_Yes, Length: 10000, dtype: int64
[12]: df.columns
[12]: Index(['CaseOrder', 'Customer_id', 'Interaction', 'UID', 'City', 'State',
             'County', 'Zip', 'Lat', 'Lng', 'Population', 'Area', 'TimeZone', 'Job',
             'Children', 'Age', 'Income', 'Marital', 'Gender', 'ReAdmis',
             'VitD_levels', 'Doc_visits', 'Full_meals_eaten', 'vitD_supp',
             'Soft drink', 'Initial admin', 'HighBlood', 'Stroke',
             'Complication_risk', 'Overweight', 'Arthritis', 'Diabetes',
             'Hyperlipidemia', 'BackPain', 'Anxiety', 'Allergic_rhinitis',
             'Reflux_esophagitis', 'Asthma', 'Services', 'Initial_days',
             'TotalCharge', 'Additional_charges', 'Item1', 'Item2', 'Item3', 'Item4',
             'Item5', 'Item6', 'Item7', 'Item8', 'ReAdmis_Yes'],
```

7781.678000

9998 57775 44.10354 -102.01590 ... 7644.483000

```
dtype='object')
[13]: df_num.columns
[13]: Index(['CaseOrder', 'Zip', 'Lat', 'Lng', 'Population', 'Children', 'Age',
             'Income', 'VitD_levels', 'Doc_visits', 'Full_meals_eaten', 'vitD_supp',
             'Initial_days', 'TotalCharge', 'Additional_charges', 'Item1', 'Item2',
             'Item3', 'Item4', 'Item5', 'Item6', 'Item7', 'Item8'],
            dtype='object')
[14]: df['Gender'].value counts()
[14]: Female
                   5018
     Male
                   4768
     Nonbinary
                    214
     Name: Gender, dtype: int64
[15]: df['Initial_admin'].value_counts()
[15]: Emergency Admission
                               5060
     Elective Admission
                               2504
      Observation Admission
                               2436
     Name: Initial_admin, dtype: int64
     0.2 Part 1: Research Question:
     0.2.1 [A1] Question: "From information about previous patients who were readmit-
           ted, can we predict which patients are likely to be readmitted in the future?"
     0.2.2 Prune Data
[16]: df.columns
[16]: Index(['CaseOrder', 'Customer_id', 'Interaction', 'UID', 'City', 'State',
             'County', 'Zip', 'Lat', 'Lng', 'Population', 'Area', 'TimeZone', 'Job',
             'Children', 'Age', 'Income', 'Marital', 'Gender', 'ReAdmis',
             'VitD_levels', 'Doc_visits', 'Full_meals_eaten', 'vitD_supp',
             'Soft_drink', 'Initial_admin', 'HighBlood', 'Stroke',
             'Complication_risk', 'Overweight', 'Arthritis', 'Diabetes',
             'Hyperlipidemia', 'BackPain', 'Anxiety', 'Allergic_rhinitis',
             'Reflux_esophagitis', 'Asthma', 'Services', 'Initial_days',
```

'Item5', 'Item6', 'Item7', 'Item8', 'ReAdmis_Yes'],

dtype='object')

'TotalCharge', 'Additional_charges', 'Item1', 'Item2', 'Item3', 'Item4',

```
[17]: # Start pruning non-relavent series
     pruned_df = df.drop(['CaseOrder', 'Customer_id', 'Interaction', 'UID', 'City',

       'County', 'Zip', 'Lat', 'Lng', 'Population', 'Area',

¬'TimeZone', 'Job', \
                           'Children', 'Income', 'Marital', 'VitD_levels',
       'Soft drink', 'Item1', 'Item2', 'Item3', 'Item4', 'Item5',
       pruned_df.head()
「17]:
             Gender ReAdmis Doc_visits vitD_supp
                                                          Initial admin HighBlood \
        Age
         53
               Male
                         No
                                      6
                                                    Emergency Admission
                                                                              Yes
             Female
                                      4
                                                    Emergency Admission
     1
         51
                         No
                                                 1
                                                                              Yes
     2
         53
            Female
                         No
                                      4
                                                 0
                                                     Elective Admission
                                                                              Yes
     3
         78
               Male
                                      4
                                                 0
                                                     Elective Admission
                         No
                                                                              No
     4
         22 Female
                                      5
                                                 2
                                                     Elective Admission
                         No
                                                                              No
       Stroke Complication_risk Overweight ... BackPain Anxiety Allergic_rhinitis
     0
           No
                         Medium
                                        No
                                           •••
                                                   Yes
                                                           Yes
                                                                             Yes
     1
           No
                           High
                                       Yes
                                                    No
                                                            No
                                                                              No
     2
           No
                         Medium
                                                    No
                                                            No
                                                                             No
                                       Yes ...
     3
          Yes
                         Medium
                                                    No
                                                            No
                                                                             No
                                        No
     4
                            Low
                                                                             Yes
           No
                                        No
                                                    No
                                                            No
       Reflux_esophagitis Asthma
                                     Services Initial_days
                                                            TotalCharge \
                                   Blood Work
                                                 10.585770
                                                            3726.702860
     0
                       No
                             Yes
     1
                      Yes
                              Nο
                                  Intravenous
                                                 15.129562 4193.190458
     2
                                   Blood Work
                                                            2434.234222
                       No
                              No
                                                  4.772177
     3
                      Yes
                             Yes
                                   Blood Work
                                                  1.714879
                                                            2127.830423
     4
                                      CT Scan
                       No
                              No
                                                  1.254807
                                                            2113.073274
       Additional_charges
                           ReAdmis_Yes
     0
             17939.403420
                                     0
             17612.998120
                                     0
     1
     2
             17505.192460
                                     0
     3
             12993.437350
                                     0
              3716.525786
                                     0
      [5 rows x 23 columns]
[18]: pruned_df.columns
[18]: Index(['Age', 'Gender', 'ReAdmis', 'Doc_visits', 'vitD_supp', 'Initial_admin',
             'HighBlood', 'Stroke', 'Complication_risk', 'Overweight', 'Arthritis',
             'Diabetes', 'Hyperlipidemia', 'BackPain', 'Anxiety',
             'Allergic_rhinitis', 'Reflux_esophagitis', 'Asthma', 'Services',
```

```
'Initial_days', 'TotalCharge', 'Additional_charges', 'ReAdmis_Yes'], dtype='object')
```

/var/folders/45/_087y05165x0c7wb_dw4k6nh0000gn/T/ipykernel_60369/2260330480.py:4 : FutureWarning: In a future version of pandas all arguments of DataFrame.drop except for the argument 'labels' will be keyword-only.


```
[20]: # https://realpython.com/knn-python/
# Correlations with target?
correlation_matrix = pruned_df.corr()
```

```
print(correlation_matrix["ReAdmis_Yes"] > 0.5)
                            False
     Age
     Doc_visits
                            False
     vitD_supp
                            False
     Initial_days
                             True
     TotalCharge
                             True
     Additional_charges
                            False
     ReAdmis_Yes
                             True
     Name: ReAdmis_Yes, dtype: bool
     /var/folders/45/_087y05165x0c7wb_dw4k6nh0000gn/T/ipykernel_60369/2874329755.py:3
     : FutureWarning: The default value of numeric only in DataFrame.corr is
     deprecated. In a future version, it will default to False. Select only valid
     columns or specify the value of numeric_only to silence this warning.
       correlation_matrix = pruned_df.corr()
     [D1] Construct an initial multiple regression model from all predictors that were
     identified in [C2]
[21]: pruned_df = pruned_df[['Initial_days', 'TotalCharge', 'ReAdmis_Yes']]
[22]: pruned_df.shape
[22]: (10000, 3)
[23]: # Trying to make sense of numerical values, discover possible correlations
      # Ref1: https://www.geeksforgeeks.org/
       \Rightarrowhow-to-create-a-seaborn-correlation-heatmap-in-python/
      # Ref2: https://medium.com/@szabo.bibor/
       \Rightarrow how-to-create-a-seaborn-correlation-heatmap-in-python-834c0686b88e
      sns.set(rc = {'figure.figsize':(15,8)})
      sns.heatmap(pruned_df.corr(), annot=True);
```


0.3 KNN

0.3.1 Define Distances on the Vectors of Independent Vars

```
[24]: # Independed Var
# pruned_df = pruned_df[['Initial_days', 'TotalCharge', 'ReAdmis_Yes']]
X = pruned_df.drop('ReAdmis_Yes', axis=1)
X = X.values

# Dependent Var
y = pruned_df['ReAdmis_Yes']
y = y.values
```

0.4 Confusion Matrix

0.4.1 Supervised Learning: To Predict Target Variable (ReAdmi_Yes) Given Predictor Vars

Classification: Target Variable is Catagorical

Features -> Predictor Vars -> Independent Vars

```
Target Vars -> Dependent Vars -> Response Vars
```

```
[25]: from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report
```

Test set predictions:

[0 1 0 ... 0 1 0]

```
[26]: #accuracy of Model knn.score(X_test, y_test)
```

[26]: 0.976666666666667

[27]: print(classification_report(y_test, y_pred))

	precision	recall	f1-score	support
0	0.98	0.98	0.98	1899
1	0.97	0.97	0.97	1101
accuracy			0.98	3000
macro avg	0.98	0.97	0.97	3000
weighted avg	0.98	0.98	0.98	3000

0.5 Preprocessing - Scaling

```
k-NN score for test set: 0.980333 k-NN score for training set: 0.986143  \qquad \qquad \text{precision} \qquad \text{recall} \quad \text{f1-score} \qquad \text{support}
```

```
0
                               0.98
                    0.98
                                          0.98
                                                     1899
           1
                    0.97
                               0.97
                                          0.97
                                                     1101
                                          0.98
                                                     3000
    accuracy
                    0.98
                               0.98
                                          0.98
                                                     3000
   macro avg
weighted avg
                    0.98
                               0.98
                                          0.98
                                                     3000
```

```
[29]: print('k-NN score for test set: %f' % knn_model_2.score(Xs_test, y_test))
print('k-NN score for training set: %f' % knn_model_2.score(Xs_train, y_train))
y_true, y_pred = y_test, knn_model_2.predict(Xs_test)
print(confusion_matrix(y_test, y_pred))
```

```
k-NN score for test set: 0.980333
k-NN score for training set: 0.986143
[[1870 29]
  [ 30 1071]]
```

0.6 Logistic Regression, Probability Thresholds and ROC Curve

```
[30]: from sklearn.metrics import roc_curve
    y_pred_prob = knn.predict_proba(Xs_test)[:,1]
    fpr, tpr, thresholds = roc_curve(y_test, y_pred_prob)
    plt.plot([0, 1], [0, 1], 'k--')
    plt.plot(fpr, tpr, label='KNN Regression')
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
    plt.title('KNN ROC / AUC Curve')
    plt.show();
```



```
[31]: knn.predict_proba(Xs_test)[:,1]
[31]: array([0., 1., 0., ..., 0., 0., 0.])
[32]: from sklearn.metrics import roc auc score
      y_pred_prob = knn.predict_proba(Xs_test)[:,1]
      roc_auc_score(y_test, y_pred_prob)
[32]: 0.9913121730018046
[33]: from sklearn.model_selection import cross_val_score
      cv_scores = cross_val_score(knn, X, y, cv=5,
                                      scoring='roc auc')
      print(cv_scores)
     [0.99454297 0.99455041 0.99318801 0.99310461 0.82710784]
[34]: # Optimal KNN
      from sklearn.model_selection import GridSearchCV
      param_grid = {'n_neighbors': np.arange(1, 100)}
      knn = KNeighborsClassifier()
      knn_cv = GridSearchCV(knn, param_grid, cv=5)
      knn_cv.fit(X, y)
      knn_cv.best_params_
[34]: {'n_neighbors': 2}
[35]: knn_cv.best_score_
[35]: 0.9273999999999999
     0.7 Prediction for Classification
[36]: from sklearn.ensemble import RandomForestClassifier
      rfc = RandomForestClassifier(random state=73)
      rfc.fit(Xs_train, y_train)
      rfc.predict(Xs_test)
[36]: array([0, 1, 0, ..., 0, 0, 0])
[37]: pd.Series(rfc.predict(Xs_test)).value_counts()
[37]: 0
           1907
           1093
```

```
dtype: int64
[38]:
      rfc.predict_proba(Xs_test)
[38]: array([[1., 0.],
             [0., 1.],
             [1., 0.],
             [1., 0.],
             [1., 0.],
             [1., 0.]])
[39]: rfc = RandomForestClassifier(random_state=73)
      rfc.get_params()
[39]: {'bootstrap': True,
       'ccp_alpha': 0.0,
       'class_weight': None,
       'criterion': 'gini',
       'max_depth': None,
       'max_features': 'sqrt',
       'max_leaf_nodes': None,
       'max_samples': None,
       'min_impurity_decrease': 0.0,
       'min_samples_leaf': 1,
       'min samples split': 2,
       'min_weight_fraction_leaf': 0.0,
       'n_estimators': 100,
       'n_jobs': None,
       'oob_score': False,
       'random_state': 73,
       'verbose': 0,
       'warm_start': False}
[40]: rfc.fit(Xs_train, y_train)
      rfc.score(Xs_test, y_test)
[40]: 0.98
[41]: # Using scikit-learn to Inspect Model Fit
      from sklearn.metrics import mean_squared_error
      from math import sqrt
      from sklearn.metrics import mean_absolute_error
      train_preds = knn_model_2.predict(Xs_train)
      mse = mean_squared_error(y_train, train_preds)
      print("MSE: ", mse)
```

```
test_preds = knn_model_2.predict(Xs_test)
mae = mean_absolute_error(y_test, test_preds)
print("MAE: ", mae)
```

MSE: 0.013857142857142858 MAE: 0.019666666666666666

```
[42]: test_preds = knn_model_2.predict(Xs_test)
mse = mean_squared_error(y_test, test_preds)
mse
#rmse = sqrt(mse)
#rmse
```

[42]: 0.0196666666666666


```
[45]: # Mean Absolute Error (MAE)
from sklearn.metrics import mean_absolute_error
mean_absolute_error(y_test, y_pred)
```

[45]: 0.01966666666666666

```
[46]: # Mean Squared Error (MSE)
from sklearn.metrics import mean_squared_error
mean_squared_error(y_test, y_pred)
```

[46]: 0.0196666666666666

[47]: from sklearn.metrics import accuracy_score, precision_score, recall_score accuracy_score(y_test, y_pred)

```
[47]: 0.9803333333333333
[48]: precision_score(y_test, y_pred)
[48]: 0.9736363636363636
[49]: recall_score(y_test, y_pred)
[49]: 0.9727520435967303
[50]: pruned_df
[50]:
            Initial_days TotalCharge ReAdmis_Yes
               10.585770 3726.702860
               15.129562 4193.190458
                                                 0
      1
      2
                4.772177 2434.234222
                                                 0
      3
                1.714879 2127.830423
                                                 0
      4
                1.254807 2113.073274
                                                 0
      9995
               51.561220 6850.942000
                                                 0
      9996
               68.668240 7741.690000
                                                 1
      9997
               70.154180 8276.481000
                                                 1
      9998
               63.356900 7644.483000
                                                 1
      9999
               70.850590 7887.553000
                                                 1
      [10000 rows x 3 columns]
     0.7.1 Export Data
[51]: [['Initial_days', 'TotalCharge', 'ReAdmis_Yes']]
[51]: [['Initial_days', 'TotalCharge', 'ReAdmis_Yes']]
[52]: X train.shape
[52]: (7000, 2)
[53]: # Export Training Data
      X_train_data = pd.DataFrame(X_train, columns = ['Initial_days', 'TotalCharge'])
      y_train_data = pd.DataFrame(y_train, columns = ['ReAdmis_Yes'])
[54]: # Export Testing Data
      X_test_data = pd.DataFrame(X_test, columns = ['Initial_days', 'TotalCharge'])
      y_test_data = pd.DataFrame(y_test, columns = ['ReAdmis_Yes'])
[55]: pruned_df.to_csv('final_cleaned_dataset.csv', index=False)
      X_train_data.to_csv('X_train_data.csv', index=False)
```

```
X_test_data.to_csv('X_test_data.csv', index=False)
      y_train_data.to_csv('y_train_data.csv', index=False)
      y_test_data.to_csv('y_test_data.csv', index=False)
[56]: pruned_df.describe()
[56]:
             Initial_days
                            TotalCharge
                                           ReAdmis_Yes
      count 10000.000000
                           10000.000000
                                         10000.000000
     mean
                34.455299
                            5312.172769
                                              0.366900
      std
                26.309341
                            2180.393838
                                              0.481983
                            1938.312067
     min
                                              0.000000
                 1.001981
      25%
                 7.896215
                            3179.374015
                                              0.000000
      50%
                35.836244
                            5213.952000
                                              0.000000
      75%
                61.161020
                            7459.699750
                                              1.000000
                71.981490
                            9180.728000
                                              1.000000
      max
     pruned_df.nunique()
[57]: Initial_days
                      9997
      TotalCharge
                      9997
      ReAdmis_Yes
                         2
      dtype: int64
[58]: pruned_df['ReAdmis_Yes'].value_counts()
[58]: 0
           6331
           3669
      1
      Name: ReAdmis_Yes, dtype: int64
```