

College of Engineering

Kirk Blood
Hector Ceballos
Dale Andre Descallar
Preston DeShazo
William Kolath

CS4390 and CS4391 Senior Capstone Project

TerraTek

Supervised by:

Dr. Mohammad Faridul H. Siddiqui. Ph.D.

Dr. Joshua Partheepan. ph.D.

Fall 2024 and Spring 2025

Department of Computer Science

Abstract

This project presents the development of TerraTek, an IoT-based monitoring system designed to assist a customer in tracking environmental data. The system utilizes Arduino-controlled sensor clusters to gather data on key parameters such as rainfall, water pH, water level, and so on, which are then transmitted to a centralized server. A responsive web interface allows users to visualize data trends and generate reports to aid decision-making processes. Through data analysis, the project demonstrates improved statistics by utilizing historical and real-time data. Future work will involve extending the system's capabilities by providing accessible ways to understand and interpret the collected data.

Plagiarism Declaration

With the exception of any statement to the contrary, all the material presented in this report is the result of my own efforts. In addition, no parts of this report are copied from other sources. I understand that any evidence of plagiarism and/or the use of unacknowledged third party materials will be dealt with as a serious matter.

Signed

Addiam Kolath

John Wolner

Londen

John Colath

Contents

1	Soft	tware I	Requirement Specification	1
	1.1	Introd	uction	1
		1.1.1	Purpose	1
		1.1.2	Project Scope	1
	1.2	Overal	ll Description	1
		1.2.1	Product Perspective	1
		1.2.2	Product Features	2
		1.2.3	User Classes and Characteristics	2
		1.2.4	Operating Environment	2
		1.2.5	Design and Implementation Constraints	3
		1.2.6	User Documentation	3
		1.2.7	Assumptions and Dependencies	3
	1.3	Semes	ter 1 System Features	3
	1.4	Extern	nal Interface Requirements	6
		1.4.1	User Interfaces	6
		1.4.2	Software Interfaces	6
	1.5	Other	Nonfunctional Requirements	7
		1.5.1	Performance Requirements	7
		1.5.2	Software Quality Attributes	7
	1.6	Semes	ter 2 System Features	7
	1.7	Nonfu	nctional Requirements	10
		1.7.1	Performance Requirements	10
		1.7.2	Software Quality Attributes	10

CONTENTS

2	Soft	ware I	Design	11
	2.1	Resear	ch	11
		2.1.1	Arduino Sensors	11
		2.1.2	Website Framework	13
		2.1.3	LoRaWAN	14
		2.1.4	PCB Design	17
		2.1.5	Database	17
		2.1.6	Deployment Location Mapping	19
	2.2	Semest	ter One Diagrams	21
		2.2.1	Use Case Diagram	21
		2.2.2	Flow Diagram	22
		2.2.3	ER Diagram	22
		2.2.4	Class Diagram	23
		2.2.5	Object Diagram	25
		2.2.6	Sequence Diagram	26
		2.2.7	DFD Level 0 Diagram	27
		2.2.8	DFD Level 1 Diagram	28
		2.2.9	Raspberry Pi State Machine Diagram	29
		2.2.10	Sensor Cluster State Machine Diagram	30
		2.2.11	Server State Machine Diagram	31
		2.2.12	Component Diagram	33
		2.2.13	Schematic	33
	2.3	Semest	ter Two Diagrams	34
		2.3.1	Website Use Case Diagram	34
		2.3.2	Home Page Weather Activity Diagram	35
		2.3.3	Home Page	36
		2.3.4	Home Page Water Level Flow Diagram	37
		2.3.5	Flow Chart for Tank Pages	38
		2.3.6	Freshwater Tank 1 Page	39
		2.3.7	Freshwater Tank 2 Page	40
		2.3.8	Freshwater Tank 3 Page	41
		2.3.9	Greywater Tank Page	42

CONTENTS

		2.3.10	Weather Conditions Page	43
		2.3.11	Reports Page Flow Chart	45
		2.3.12	Reports Page	46
		2.3.13	System Health Page Flow Chart	47
		2.3.14	System Health Page	48
		2.3.15	Updated Component Diagram	48
		2.3.16	Open Source Weather API Flow Diagram	49
		2.3.17	API Flow Diagram	50
		2.3.18	Schematic Version 2	51
3	Soft	tware I	mplementation and Testing	52
	3.1	Test C	ases	52
	3.2	Semest	ter 1 Test Cases:	52
		3.2.1	Test Case 1: Arduino Properly Transmits Data to LoRaWAN Gateway $$.	52
		3.2.2	Test Case 2: Raspberry Pi is Able to Request Data from LoRaWAN	
			Application Server	54
		3.2.3	Test Case 3: Raspberry Pi Properly Sends Data to Database	55
		3.2.4	Test Case 4: Arduino Handles Invalid Sensor Values from Ultrasonic Sensor	56
		3.2.5	Test Case 5: Arduino Handles Invalid Sensor Values from Temperature	
			Probe	57
		3.2.6	Test Case 6: Arduino Handles Invalid Sensor Values from Electrical Con-	
			ductivity Sensor	58
		3.2.7	Test Case 7: Arduino Handles Invalid Sensor Values from Ph Sensor $ \ldots $	59
		3.2.8	Test Case 8: Arduino Handles Invalid Sensor Values from Rainfall Sensor	60
		3.2.9	Test Case 9: Arduino Handles Invalid Sensor Values from Wind Direction	
			Sensor	61
		3.2.10	Test Case 10: Arduino Handles Invalid Sensor Values from Wind Speed	
			Sensor	62
		3.2.11	Test Case 11: Arduino Handles Invalid Sensor Values from Atmospheric	
			Humidity Sensor	63
		3.2.12	Test Case 12: Arduino Handles Invalid Sensor Values from Barometric	
			Pressure Sensor	63

CONTENTS CONTENTS

		3.2.13	Test Case 13: Data from sensor failure transmitted to Database	64
		3.2.14	Test Case 14: No data is transmitted to Database	65
		3.2.15	Test Case 15: RESTFUL API should be running constantly to show cur-	
			rent data	66
	3.3	Semest	ter 2 Test Cases:	67
		3.3.1	Test Case 1: System Health Page Displays Online/Offline Status Cor-	
			rectly:	67
		3.3.2	Test Case 2: System Health Page Displays Sensor Outages:	68
		3.3.3	Test Case 3: Multiple Widgets Overlap on Smaller Screens	70
		3.3.4	Test Case 4: Cluster Boxes Withstands Outdoor Temperature Fluctua-	
			tions	71
		3.3.5	Test Case 5: Reports Page Time Section	72
		3.3.6	Test Case 6: Reports Page Downloads Section	74
		3.3.7	Test Case 7: Reports Chart Type Section	76
		3.3.8	Test Case 8: Reports Sensor Section	77
		3.3.9	Test Case 9: API data fetching	79
		3.3.10	Test Case 10: API invalid input handling	79
		3.3.11	Test Case 11: Real-Time Sensor Display (Freshwater Tank 1)	80
		3.3.12	Test Case 12: Real-Time Sensor Display (Freshwater Tank 2 Page)	81
		3.3.13	Test Case 13: Real-Time Sensor Display (Fresh-water Tank 3 Page)	82
		3.3.14	Test Case 14: Real-Time Sensor Display (Grey-water Tank Page)	82
		3.3.15	Test Case 15: Historical Data Charts Freshwater Tank 1 and Grey-water	
			Tank pages	83
		3.3.16	Test Case 16: Historical Data Charts Freshwater Tank 2 and 3 pages $$	84
		3.3.17	Test Case 17: System Behavior with Intermittent Network Connection	84
		3.3.18	Test Case 18: Unit Conversion	85
		3.3.19	Test Case 19: Real-Time Sensor Display (Weather Page)	86
		3.3.20	Test Case 20: Weather Page weather forecast API	87
R	efere	nces		88
\mathbf{A}	Bac	klog		91
	Λ 1	Hear S	tories for Samester 1	01

CONTENTS	CONTENTS
A.2 User Stories for Semester 2	

List of Figures

1.1	Use Case Diagram for Tank Sensors	4
1.2	Use Case Diagram for Soil Sensors	5
1.3	Use Case Diagram for Website	6
2.1	ER Diagram	18
2.2	Water Tank Map	19
2.3	Use Case Diagram	21
2.4	Flow Diagram	22
2.5	ER Diagram	22
2.6	Class Diagram (Raspberry Pi WiFi)	23
2.7	Class Diagram (Raspberry Pi LoRaWAN)	24
2.8	Class Diagram (Arduino)	24
2.9	Object Diagram	25
2.10	Sequence Diagram	26
2.11	Data Flow Diagram Level 0	27
2.12	Data Flow Diagram Level 1	28
2.13	State Machine For Raspberry Pi	29
2.14	State Machine For Sensor Clusters	30
2.15	State Machine For Server	31
2.16	State Machine For Website	32
2.17	Component Diagram	33
2.18	Schematic	33
2.19	Use Case Diagram	34
2 20	Home Page Weather Activity Diagram	35

2.21	Home Page	36
2.22	Home Page Water Level Flow Diagram	37
2.23	Flow Diagram For Tank Pages	38
2.24	Freshwater Tank 1 Wireframe	39
2.25	Freshwater Tank 2 Wireframe	40
2.26	Freshwater Tank 3 Wireframe	41
2.27	Greywater Tank Wireframe	42
2.28	Weather Condition Page Wire Frame	43
2.29	Weather Condition Page Flow Chart	44
2.30	Reports Page Flow Chart	45
2.31	Reports Page	46
2.32	System Health Page Flow Chart	47
2.33	System Health Page	48
2.34	Updated Component Diagram	48
2.35	Open Source Weather API Flow Diagram	49
2.36	API Flow Diagram	50
2.37	Schematic Version 2	51

List of Tables

3.2	Test Case 1 Description	52
3.4	Arduino Properly Transmits Data to LoRaWAN Gateway	53
3.6	Test Case 2 Description	54
3.8	Raspberry Pi is Able to Request Data from LoRaWAN Application Server	54
3.9	Test Case 3 Description	55
3.11	Raspberry Pi Properly Sends Data to Database	55
3.12	Test Case 4 Description	56
3.14	Arduino Handles Invalid Sensor Values from Ultrasonic Sensor $\ \ldots \ \ldots \ \ldots$	56
3.15	Test Case 5 Description	57
3.17	Arduino Handles Invalid Sensor Values from Temperature Probe	57
3.18	Test Case 6 Description	58
3.20	EC Sensor Test Case	58
3.21	Test Case 7 Description	59
3.23	PH Sensor Test Case	59
3.24	Test Case 8 Description	60
3.26	Arduino Handles Invalid Sensor Values from Rainfall Sensor	60
3.27	Test Case 9 Description	61
3.29	Arduino Handles Invalid Sensor Values from Wind Direction Sensor	61
3.30	Test Case 10 Description	62
3.32	Arduino Handles Invalid Sensor Values from Wind Speed Sensor	62
3.33	Test Case 11 Description	63
3.35	Arduino Handles Invalid Sensor Values from Atmospheric Humidity Sensor $\ \ .$	63
3.36	Test Case 12 Description	63
3.38	Arduino Handles Invalid Sensor Values from Atmospheric Humidity Sensor	64

3.40 Test Case 13 Description
3.42 Data from sensor failure transmitted to Database 65
3.44 Test Case 14 Description
3.46 No data is transmitted to Database
3.47 Test Case 7 Description
3.49 API is/is not running constantly
3.51 Test Case 1 Description
3.53
3.55 Test Case 2 Description
3.57
3.59 Test Case 3 Description
3.61
3.63 Test Case 4 Temperature Fluctuations
3.65
3.67 Test Case 5 Description
3.69
3.71 Test Case 6 Description
3.73 75
3.75 Test Case 7 Description
3.77
3.79 Test Case 8 Description
3.81
3.83 Test Case 9 Description
3.85
3.87 Test Case 10 Description
3.89
3.91 Test Case 11 Description
3.93 82
3.95 Test Case 12 Description
3.97 82
3.99 Test Case 13 Description
3.101

LIST OF TABLES

LIST OF TABLES

3.103Test Case 14 Description
3.105
3.107Test Case 15 Description
3.109
3.111Test Case 16 Description
3.113
3.115Test Case 17 Description
3.117
3.119Test Case 18 Description
3.121Test Case 18 Steps
3.123Test Case 19 Description
3.125
3.127Test Case 20 Description
3 129

Chapter 1

Software Requirement Specification

1.1 Introduction

1.1.1 Purpose

The purpose of this document is to provide a detailed description of the TerraTek system. It will explain the intended scope, purposes and features, constraints, and interactions between its systems. This document is intended for all stakeholders and developers of the system.

1.1.2 Project Scope

The intended scope of TerraTek is to provide a web interface for the user to observe telemetry data. Implementing clusters of sensors that will collect and aggregate data to a central database which can be parsed and graphed through a web interface. This will be implemented on small scale with the ability to expand to scale. The project scope is focused on rain water harvesting (RWH) systems, although the technology is capable of expanding to other applications.

1.2 Overall Description

1.2.1 Product Perspective

TerraTek will encapsulate a property consisting of rainwater harvesting tanks, garden areas, and a playa. There are four tanks in total with three of them holding rainwater and the fourth containing gray water. Each tank will contain a cluster of sensors with an additional cluster located at the playa. The cluster in the playa will provide weather data in addition to playa

conditions. This is a small scale project to serve as a foundation for larger scale implementation.

1.2.2 Product Features

TerraTek will include the five features listed below:

Feature 1: Tank Monitoring

Feature 2: Weather Monitoring

Feature 3: Playa Monitoring

Feature 4: Remote access to data

Feature 5: Data visualizations

1.2.3 User Classes and Characteristics

There are two main classes of users for our project.

• Owner of RWH system

• Other users

The owner of the RWH is primarily focused on being able to understand the current and historical status of the RWH system. The weather conditions will be used to make informed decisions regarding garden planting and watering. They will also use the playa monitoring functionality to assess the heath of the playa ecosystem. They also must be able to make configuration changes to the TerraTek system to suit their changing needs.

Other users will be primarily focused on learning about how a RWH system works as well as seeing different weather data from the area visualized.

1.2.4 Operating Environment

The server will use Ubuntu Server Version 24.04.1 LTS, the most current version as of writing. The server will utilize MySQL for database operations. The sensors will be programmed with Arduino to communicate with a Raspberry Pi over LoRaWAN, which will aggregate and send all the data to the server.

1.2.5 Design and Implementation Constraints

A significant portion of the system will be deployed outdoors. Some portion of the system will deployed in water tanks, either submerged or directly above water. Water and weather proofing will be a significant constraint we must work around in this project. Another constraint is longevity. The system needs to be designed to operate for long periods of time without replacing hardware components or performing maintenance on the software.

1.2.6 User Documentation

We will create a user manual for the TerraTek system. There will also be a small online tutorial for users of the website, explaining what the system is monitoring and how to operate the website.

1.2.7 Assumptions and Dependencies

We are making the following assumptions:

- All sensors will be programmable on Arduino
- Each cluster contains only a singular sensor of its type

We are dependent on the following systems:

- Linux Server
- Home WiFi of the RWH owner
- Pre existing RWH system

1.3 Semester 1 System Features

Feature 1: Tank Monitoring

Each of the RWH tanks on the property needs to be monitored using various sensors. This is a very high priority feature.

- REQ-1.1: The system must monitor tank level.
- REQ-1.2: The system must monitor tank water PH.

REQ-1.3: The system must monitor tank TDC.

REQ-1.4: The system must monitor tank temperature.

Tank Sensor Cluster Gather Water pH Gather Water Level Data Transmission Transmit to Arduino Raspberry PI Gather TDS (Total Dissolved Solids) Gather Temperature

Figure 1.1: Use Case Diagram for Tank Sensors

Feature 2: Playa Monitoring

The playa will have sensors installed to monitor the health of the soil and current weather conditions. The weather monitoring functionality will allow the owner of the garden to make informed decisions regarding watering and planting. This is a high priority feature.

- REQ-2.1: The system should monitor soil moisture in multiple locations of the playa.
- REQ-2.2: The system must measure rainfall in the playa.
- REQ-2.3: The system should measure atmospheric temperature at multiple locations in the playa.
- REQ-2.4: The system should measure atmospheric pressure at multiple locations in the playa.
- REQ-2.5: The system should measure wind speed in the playa. REQ-2.6: The system should measure wind direction in the playa.

Soil Sensor Cluster

Figure 1.2: Use Case Diagram for Soil Sensors

Feature 3: Remote access to data

Users of the system must be able to access all of the gathered data from anywhere in the world. This feature enables the owner of the RWH system to see its current status even if they are not home. It also allows users interested in leaning about RWH systems to see one in action remotely. This is a very high priority feature.

REQ-3.1: The user must be able to access all current data using a web interface.

REQ-3.2: The user must be able to access historical data using a web interface.

TerraTek Website

Figure 1.3: Use Case Diagram for Website

1.4 External Interface Requirements

1.4.1 User Interfaces

Users will interface with the system using a web browser to access the website. The system will support Firefox, Safari, and Chromium based browsers.

1.4.2 Software Interfaces

There will be many software interfaces. The Sensors use many different predefined interfacing protocols such as I2C. The sensor clusters will communicate to the central hub using LoRaWAN. The central hub will then send the aggregated sensor data to the server using a standard internet protocols.

1.5 Other Nonfunctional Requirements

1.5.1 Performance Requirements

REQ-6.4: The system should be built with no dependency on subscription based or free tier cloud services.

1.5.2 Software Quality Attributes

- REQ-7.1: The website must be easy to use.
- REQ-7.2: The website must remain accessible even if portions of the sensor network fail.
- REQ-7.3: The system must be secure

1.6 Semester 2 System Features

Feature 1: Home Page

- REQ-1.1: The user must be able to select a drop-down menu to move from page to page.
- REQ-1.2: The user must be able to view the water level of the Main tanks Via a custom animation.
- REQ-1.3: The user must be able to select between three types of graph to view the water level.
- REQ-1.4: The user must be able to view current and predicted weather.
- REQ-1.5: The user must be able to view the purpose and about section for background on the project.
- REQ-1.6: The user must be able click on a help menu if they are having trouble with navigation.
- REQ-1.7: The user must be able to change the orientation of the web page and still have it look presentable.

Feature 2: Tank Pages

- REQ-2.1: The user must be able to view the freshwater tank and greywater tank pages properly
- REQ-2.2: The user must be able to view the current water level, water pH, water TDC, water temperature
- REQ-2.3: The user must be able to view the historical readings of the water level for the month
- REQ-2.4: The user should be able to seamlessly navigate to other pages using the dropdown menu options

Feature 3: Weather Pages

- REQ-3.1: The user must be able view current weather data
- REQ-3.2: The user must be able to see temperature, humidity, illuminance, dew point, wind speed, and wind direction.
- REQ-3.3: The user must be able to see separately soil moisture data for the Playa.
- REQ-3.4: The user must be able see camera shot showing playa under playa data section.
- REQ-3.5: The user must be able see current weather data from a nearby weather station.
- REQ-3.6: The user must be able see weather forecast from nearby weather station.
- REQ-3.7: The user must be able to choose between hourly or 7 day forecasting.
- REQ-3.8: The user should be able to seamlessly navigate to other pages using the dropdown menu options.

Feature 4: Reports Page

- REQ-4.1: The user must be able to select any the cluster and sensor
- REQ-4.2: The user must be able to select a custom time range
- REQ-4.3: The user must be able to select up to 3 unique sensors
- REQ-4.4: The user must be able to chose which chart type they would like to generate
- REQ-4.5: The user must be able to download the generated chart as either a PNG or a JPEG
- REQ-4.6: The use must be able to download the raw data used to generate the chart as either a csv file or a JSON file
- REQ-4.7: The user should be able to specify how frequent the data point on the chart appear
- REQ-4.8: The user should be able to specify the aggregation method used to reduce the number of data points
- REQ-4.9: The user must be able to switch between metric and imperial units.
- REQ-4.10: The user should be able to customize the colors use in the charts
- REQ-4.11: The page must include an easy to understand help page
- REQ-4.12: The user must be able to generate line charts
- REQ-4.13: The user must be able to generate scatter plots
- REQ-4.14: The user must be able to generate bar charts
- REQ-4.15: The user must be able to generate heat maps
- REQ-4.16: The user must be able to generate histogram

- REQ-4.17: The user must be able to generate box plots
- REQ-4.17: The Page must including at a glance statistics about the selected data, including min, max, and mean

Feature 5: API

- REQ-5.1: The user must be able query the database for data
- REQ-5.2: The user must be able to specify which cluster and/or sensors it will query from
- REQ-5.3: The user must be able to receive parsed or raw data from their query
- REQ-5.4: The user must be able to specify a given timeframe of weeks/days/hours
- REQ-5.5: The user must be able to specify how the data is calculated
- REQ-5.6: The user must be able to mix and match these queries to suit their needs

Feature 6: System Health Page

- REQ-6.1: The user must be able to see the health of all sensors.
- REQ-6.2: The user must be able to respond to any error sent by the receivers.
- REQ-6.3: The user must be able to get an alert if any sensor sends an error
- REQ-6.4: The user must be able to see the location of the effected sensor.
- REQ-6.5: The user must be see transmission history for each node.

Feature 7: Remote camera

Users of the system could be able to show the users live views of the tanks and surrounding property. This enables users interested in RWH systems to actually see one in action. This is a low priority feature.

- REQ-7.1: The user could be able to view live images of the tanks
- REQ-7.2: The user could be able to view live images of the property

1.7 Nonfunctional Requirements

1.7.1 Performance Requirements

REQ-8.1: The website must load the homepage in less than 2 seconds

REQ-8.2: The server must be able to handle at least 200 users accessing the website at the same time.

REQ-8.3: The system should be able to create historical reports in less than 5 seconds

REQ-8.4: The system should be built with no dependency on subscription based or free tier cloud services.

1.7.2 Software Quality Attributes

REQ-9.1: The website must be easy to use.

REQ-9.2: The website must remain accessible even if portions of the sensor network fail.

REQ-9m ,.3: The system must be secure

Chapter 2

Software Design

2.1 Research

2.1.1 Arduino Sensors

DFRobot Gravity Analog Electrical Conductivity Meter (DFR0300)

The DFRobot Gravity Analog Electrical Conductivity Meter is designed to measure water's electrical conductivity, providing insight into the dissolved salts and overall water quality. This sensor is particularly useful in applications such as hydroponics and aquarium management. Using the DFRobot Gravity library, developers can easily calibrate the sensor and collect data efficiently, enhancing the user's ability to monitor water quality in real time [19].

Weather Meter Kit (SEN-15901)

The Weather Meter Kit is a comprehensive package that includes sensors to monitor weather conditions, such as wind speed, wind direction, and rainfall. These measurements are essential for setting up weather stations, where real-time data can be analyzed to predict weather trends. Integration with this kit varies depending on the specific sensors, as they may require unique libraries or standard analog and I2C communication protocols to process data accurately [24].

ME007YS Waterproof Ultrasonic Distance Sensor (SEN0312)

The ME007YS is a robust ultrasonic sensor designed for distance measurement in outdoor and industrial environments, even underwater. This sensor operates by emitting ultrasonic waves and capturing reflections. The NewPing library simplifies handling ultrasonic pulses and interpreting distance measurements, making this sensor reliable for applications in challenging environments [2].

Weather-proof Ultrasonic Sensor (SEN0208)

Similar to the ME007YS, the SEN0208 sensor provides reliable distance measurements in out-door settings and is weatherproof. Utilizing the NewPing library, this sensor is capable of accurate data acquisition in harsh weather, making it suitable for long-term outdoor installations [25].

Waterproof DS18B20 Temperature Sensor Kit (KIT0021)

The DS18B20 is a popular waterproof temperature sensor known for its durability in harsh conditions. Using the OneWire protocol, multiple sensors can connect to a single data pin, a unique feature beneficial for applications requiring distributed temperature monitoring. The DallasTemperature library enables easy data acquisition from this sensor, allowing for seamless integration in temperature-critical monitoring setups [3].

Arduino MKR Environmental Shield (ASX00029)

The Arduino MKR Environmental Shield includes sensors for temperature, humidity, barometric pressure, and light intensity. This shield is particularly suitable for comprehensive environmental monitoring applications. The Arduino-MKRENV library simplifies data handling across multiple sensors, streamlining the process of integrating environmental metrics into projects [22].

Gravity Non-contact Liquid Level Sensor (SEN0204)

This non-contact sensor is ideal for environments where the liquid should not be touched directly, such as in sterile or hazardous conditions. The DFRobot-Sensor library offers straightforward methods for obtaining liquid level data, allowing for quick and safe implementation in sensitive monitoring applications [18].

MODBUS-RTU RS485 4-in-1 Soil Sensor (SEN0604)

This Soil Sensor Provides 4 different data outputs; Soil Moisture, Temperature, PH, and EC. This sensor is also built to last buried in the soil it is measuring, allowing it to be non-invasive and low maintenance. The ArduinoModbus Library allows for straightforward data gathering from the sensor to allow for quick setup and easy deployment. [4]

2.1.2 Website Framework

React.JS

ReactJS is a JavaScript library developed by Facebook for building user interfaces, primarily focused on component-based development, DOM(Document Object Model) manipulation, and various other functionalities [9]. It allows developers to create reusable UI components that handle the view layer of web applications efficiently. React updates and renders only the components that change, which improves performance and user experience. It also features a virtual DOM, which speeds up updates by minimizing direct manipulation of the real DOM.

NextJS

Nextjs is a React-based framework for building web applications [9]. It adds powerful features such as server-side rendering (SSR), static site generation (SSG), and dynamic routing, which enhance performance and SEO(Search Engine Optimization). With Nextjs, developers can render pages on the server before sending them to the client, making the initial load faster and more SEO-friendly. It also integrates well with APIs and data fetching techniques for modern web applications.

RESTFUL API

RESTful APIs, an acronym for Representational State Transfer, represent a design philosophy for creating lightweight, scalable, and easily maintainable web services. Emerging from Roy Fielding's 2000 dissertation [5], REST leverages standard web protocols like HTTP to create resource-based architectures.

Key characteristics of RESTful APIs include:

- Statelessness: Each client request must contain all the necessary information, ensuring the server doesn't maintain client state, which enhances scalability.
- Uniform Interface: REST enforces a consistent, intuitive interface for resources, typically represented by URLs. Common HTTP methods (GET, POST, PUT, DELETE) align with CRUD operations (Create, Read, Update, Delete).
- Resource Representation: Resources are represented in various formats like JSON, XML, or HTML, with clients capable of specifying their preferred format.
- **HATEOAS**: Hypermedia As The Engine Of Application State allows clients to dynamically discover available actions based on their current state.

REST is simpler and more suitable for web and mobile environments [13]. RESTful APIs are widely adopted in industries like social media, e-commerce, and IoT due to their scalability and compatibility with modern development paradigms.

For developers, designing a robust RESTful API involves adhering to best practices, such as versioning endpoints, providing intuitive error messages, and ensuring comprehensive documentation. Such practices maximize reusability, developer productivity, and user satisfaction, making RESTful APIs a cornerstone of modern software development

2.1.3 LoRaWAN

LoRa

LoRa, which stands for long range, is a wireless transmission protocol designed for long range, low power, applications. LoRa is capable of transmitting up to 5 kilometers in urban environments and up to 10 kilometers in rural environments with line of sight between devices [1]. The reason that LoRa is capable of transmitting such long distances is that it uses a radio modulation technology known as Chirp Spread Spectrum or (CSS) [14]. CSS works by sending series of chirps that encode data. Other radio protocols such as amplitude modulation (AM) and frequency modulation (FM) are highly susceptible to noise and obstructions and require high powered transmission devices to achieve the distances that they do. CSS, on the other hand, is very resilient to noise and obstructions, which makes it an ideal choice for urban environments [26]. The other thing that makes LoRa stand out is its incredibly low power usage. Unlike other radio protocols, it takes very little power to transmit and receive LoRa. This enables the use

of batteries and solar in remote end-nodes [20], which makes LoRa a perfect choice for rural and farming applications. This is also what makes LoRa a great choice for our project. LoRa operates on license free sub-gigahertz bands, in the United States a common frequency choice is 915 MHz [17]. This means that there fewer costs and complexity that would be associated with operating on other bands. The major drawback to LoRa is data transmission rates, you can expect to see transmission speeds ranging from 250bit/s to 11kbit/s, however, for end nodes collecting data every couple of minutes this does not pose a significant issue [10].

LoRaWAN

LoRaWAN acts as a media access control (MAC) layer for the end nodes on the LoRa network [12]. LoRaWAN is a star network topology with many end nodes connecting to a gateway. Each gateway can support hundreds of devices, depending on how often they transmit data [20]. The gateway is responsible for collecting the packets sent by the end nodes and forwarding them to a network server.

LoRaWAN network server

A network runs software that manages one or more gateways. The network server typically stores the packets it receives from the various end nodes in a database and allows users to integrate their projects with the server. This entire architecture is a star of stars model and allows one network to cover a vast area with many gateways [26]. There are two main categories of networks servers, public and private. The main difference between the two categories is the entity operating the server and how access to the network is configured [6].

Public network servers (such as The Things Network) allow any end node that has been registered with the network to connect to any gateway on the network and have their packets forwarded to the users application. Public servers typically offer a tiered subscription model, many offer a free tier with support for a limited number ov devices and features [15]. It is worth noting that any end node can connect to any gateway, however, only end nodes that have been configured with the same network server will have their packets routed correctly.[12] All communication is encrypted and only the person who registered the end node is able to read the data, even if they do not own the gateway that the end node is connected to [12].

The other type of network servers are private network servers. These servers are hosted by the network owner either locally or on a web hosting platform and allow for more secure and private handling of data [6]. For many beginners, using a public network server is very convenient, all that they need to do is configure their gateway to forward packets to a public server like The Things Network, and they are ready to start connecting their end nodes. It is even possible that someone else nearby has a gateway that can be used instead of acquiring their own gateway. Setting up a private network server is a more complex undertaking and requires setting up a server to run the software that will control the gateways [6]. For this project we will be creating our own private network server to host our application.

ChirpStack

For people wanting to configure their own private network servers, there are several open-source projects that package all the network server components into one place. One of these projects is ChirpStack [23]. ChirpStack even has a dedicated Raspberry Pi OS that is ready to be configured as a network server. ChirpStack also includes a web interface for easy configuration and end node management. Additionally, ChirpStack provides a python package that enables easy integration using the gRPC API [7]. For these reasons, we believe that ChirpStack will work well for our project.

Gateways

As mentioned above, the gateway is responsible for collecting packets from end nodes and forwarding them via the internet to the network server. This typically occurs using UDP or a similar protocol. There are many gateways available with many different applications. One interesting option that we are currently investigating for our project is creating our own gateway using a Raspberry Pi and a gateway hat. These gateway hats, such as Elecrow's LR1302 HAT, connect directly to the Raspberry Pi and allow for a lot of configuration and flexibility [27]. The same Raspberry Pi running the gateway can also run the network server, this is a very compact and elegant solution that offers a lot of flexibility. The main concern is range, this is something that we need to test to determine if it is a viable solution for our project.

End Nodes

There are numerous end nodes that work using LoRa. The one that we have chosen for our project is the Arduino MKR WAN 1310. This board comes with the advantage of having all the support, documentation, and libraries that Arduino provides for all of its products. This board provides an easy way to integrate all the required sensors and connect to a gateway using LoRa [11].

2.1.4 PCB Design

For this project we opted to use a custom PCB to allow us to simplify the final form factor of the end nodes. The PCB design software used was KiCad. KiCad is an excellent option because it is open source, relatively easy to use, and supports many different types of hardware.

[8] There are many considerations when designing a PCB such as materials, trace thickness and routing, vias, silkscreens, etc. [21]

2.1.5 Database

A database solution was required as for the implementation of the TSS would require a way to both store and organize the data collected from all sources.

\mathbf{SQL}

SQL was decided as the database solution for this specific implementation. It was chosen as all members were familiar with the language as well as being perfectly suited for processing and storing text outputs collected from sensor data. How SQL expresses data is through mathematical relations [16]. The data collected from the raspberry pi will be expressed as the following relation:

ER Diagram

Figure 2.1: ER Diagram

This will serve as our schema for the database. Boards, Sensors and Readings serving as the entities present within. The Sensors table will represent individual sensor readings and the kind of sensor that is reading the data. The Boards table will represent a Cluster of sensors as well as that Cluster's location. Finally the Readings table will take the Board ID and Sensor ID from the Boards and Sensors tables in order to express the readings from any given sensor, which Cluster that sensor belongs too, and the time that the sensor has taken that specific reading.

2.1.6 Deployment Location Mapping

Figure 2.2: Water Tank Map

Water Tanks

There are 4 water tank locations as shown above in the photo. The two southern-most are fed by the house, fresh water from the roof catching rain, and gray water from the house appliances after use. The fresh water from the house is used to feed all of the houses water use, and the gray water is used to water plants in the area surrounding the house. The 2 northern tanks are fed by either side of the garage with fresh rainwater, and this water is used mostly to water the gardens they are adjacent to.

Garden Plots

There are many garden plots that we could attempt to gather data on, but the overhead of running so many sensors may prove to be extensive. To mitigate this the project will likely only be working on a select few of the garden plots to gather data. There are 4 raised garden boxes on the northern side of the garage, these 4 are used to grow annual vegetables.

2.2 Semester One Diagrams

2.2.1 Use Case Diagram

Figure 2.3: Use Case Diagram

2.2.2 Flow Diagram

Figure 2.4: Flow Diagram

2.2.3 ER Diagram

Figure 2.5: ER Diagram

2.2.4 Class Diagram

Figure 2.6: Class Diagram (Raspberry Pi WiFi)

Figure 2.7: Class Diagram (Raspberry Pi LoRaWAN)

Figure 2.8: Class Diagram (Arduino)

2.2.5 Object Diagram

Figure 2.9: Object Diagram

2.2.6 Sequence Diagram

Figure 2.10: Sequence Diagram

2.2.7 DFD Level 0 Diagram

Figure 2.11: Data Flow Diagram Level 0

2.2.8 DFD Level 1 Diagram

Figure 2.12: Data Flow Diagram Level $1\,$

2.2.9 Raspberry Pi State Machine Diagram

Figure 2.13: State Machine For Raspberry Pi

2.2.10 Sensor Cluster State Machine Diagram

Figure 2.14: State Machine For Sensor Clusters

2.2.11 Server State Machine Diagram

Figure 2.15: State Machine For Server

Website State Machine Diagram

Figure 2.16: State Machine For Website

2.2.12 Component Diagram

Figure 2.17: Component Diagram

2.2.13 Schematic

Figure 2.18: Schematic

2.3 Semester Two Diagrams

2.3.1 Website Use Case Diagram

Figure 2.19: Use Case Diagram

2.3.2 Home Page Weather Activity Diagram

Home Page Weather Activity

Figure 2.20: Home Page Weather Activity Diagram

2.3.3 Home Page

Figure 2.21: Home Page

2.3.4 Home Page Water Level Flow Diagram

Home Page Water Level Activity Water Level API Call Try Again Is there new Does not No data? Display data Yes Current Historical Current Or Historical Display New Point Update/Display In Past Current Readings Month/3 Month In Visual Format Scatter Plot

Figure 2.22: Home Page Water Level Flow Diagram

2.3.5 Flow Chart for Tank Pages

Figure 2.23: Flow Diagram For Tank Pages

2.3.6 Freshwater Tank 1 Page

Figure 2.24: Freshwater Tank 1 Wireframe

2.3.7 Freshwater Tank 2 Page

Figure 2.25: Freshwater Tank 2 Wireframe

2.3.8 Freshwater Tank 3 Page

Figure 2.26: Freshwater Tank 3 Wireframe

2.3.9 Greywater Tank Page

Figure 2.27: Greywater Tank Wireframe

2.3.10 Weather Conditions Page

Figure 2.28: Weather Condition Page Wire Frame

Figure 2.29: Weather Condition Page Flow Chart

2.3.11 Reports Page Flow Chart

Figure 2.30: Reports Page Flow Chart

2.3.12 Reports Page

Figure 2.31: Reports Page

2.3.13 System Health Page Flow Chart

Figure 2.32: System Health Page Flow Chart

2.3.14 System Health Page

Figure 2.33: System Health Page

2.3.15 Updated Component Diagram

Figure 2.34: Updated Component Diagram

2.3.16 Open Source Weather API Flow Diagram

Open Weather API API Call Is the API No Display Error up? "No Content" Yes Display Readings From API

Figure 2.35: Open Source Weather API Flow Diagram

2.3.17 API Flow Diagram

Figure 2.36: API Flow Diagram

2.3.18 Schematic Version 2

Figure 2.37: Schematic Version 2

Chapter 3

Software Implementation and Testing

3.1 Test Cases

3.2 Semester 1 Test Cases:

3.2.1 Test Case 1: Arduino Properly Transmits Data to LoRaWAN Gateway

Purpose:					
The purpose of this test case is to ensure that th	The purpose of this test case is to ensure that the Arduino can properly transmit data over the				
LoRaWAN connection to the gateway.					
Test Run I	nformation:				
Tester Name / Date:	Prerequisites / Required Configuration:				
William Kolath 12/04/2024	In order for this test to be performed, the gate-				
way must be running. The gateway must b					
configured to receive on the US915_1 band. The					
gateway must be registered with the local Chirp					
Stack application server.					
Notes:					
Test Ca	se PASS				

Table 3.2: Test Case 1 Description

TEST SCRIPT STEPS/RESULTS					
Step	Test Step/Input	Expected Results	Actual Results	Req Vali- dated	Pass /Fail
1	Run the 'FirstConfig- uration.ino' example sketch on the Arduino	Arduino outputs device EUI to serial monitor	Arduino outputs device EUI to serial monitor	N/A	PASS
2	On the Chirp Stack web interface create a new device named "test" using the MKRWAN 1310 template.	New device named "test" has been created.	New device "test" displayed on TerraTek application page.	N/A	PASS
3	On the device configuration page enter the device EUI from step one.	The "test" device EUI matches the output on the serial monitor.	Device EUI correctly inputted.	N/A	PASS
4	On the device configuration page enter "000000000000000000000000" for the APP EUI and generate a random number for the APP KEY.	The "test" device has "000000000000000000000000000000000000	APP EUI entered and APP EUI gener- ated correctly.	N/A	PASS
5	On the serial monitor enter 1 to enter OTAA Join.	After entering 1, the Arduino will ask for the APP EUI.	Arduino requests the APP EUI.	N/A	PASS
6	On the serial monitor enter "0000000000000000000000000000000000" for the APP EUI.	After entering the APP EUI, the Arduino will ask for the APP KEY.	Arduino requests the APP KEY.	N/A	PASS
7	On the serial monitor enter the APP KEY generated in step 4.	The Arduino will join the LoRaWAN network and print "Message sent correctly!" to indicate that the device setup was successful.	After a short delay the message "Mes- sage sent correctly!" is printed to the se- rial monitor.	N/A	PASS

Table 3.4: Arduino Properly Transmits Data to LoRaWAN Gateway

3.2.2 Test Case 2: Raspberry Pi is Able to Request Data from LoRaWAN Application Server

Purpose:				
The purpose of this test is to ensure that the Ras	spberry Pi hub is able to properly request data			
from the LoRaWAN Application server.				
Test Run I	nformation:			
Tester Name / Date:	Prerequisites / Required Configuration:			
William Kolath 12/04/2024 Chirp Stack must be installed and running				
the gateway. At least one device must be con				
	nected and configures to transmit data in order			
to test data transfer.				
Notes:				
Test Ca	se PASS			

Table 3.6: Test Case 2 Description

	TEST SCRIPT STEPS/RESULTS				
Step	Test Step/Input	Expected Results	Actual Results	Req	Pass
				Vali-	/Fail
				dated	
1	In the ChipStack web	configuration successful	successful configura-	N/A	PASS
	interface configure the		tion		
	http integration to				
	send binary data to				
	http://localhost:8090				
2	Run the "ChipStack-	The most recent data	The most recent	N/A	PASS
	DataCollector.py"	sent to the LoRaWAN	data sent to the		
	python script on the	gateway will be printed	LoRaWAN gateway		
	Raspberry Pi.	to the terminal periodi-	will be printed to		
		cally.	the terminal periodi-		
			cally.		

Table 3.8: Raspberry Pi is Able to Request Data from LoRaWAN Application Server

3.2.3 Test Case 3: Raspberry Pi Properly Sends Data to Database

Purpose:				
The purpose of this test is to ensure that the Ra	spherry Pi hub is able to insert data in to the			
database.				
Test Run Information:				
Tester Name / Date:	Prerequisites / Required Configuration:			
William Kolath 12/04/2024 The server must be running and port 3306 mu				
	be forwarded. The database must be running			
and the tables must match the ER Diagram.				
Notes:				
Test Ca	se PASS			

Table 3.9: Test Case 3 Description

	TEST SCRIPT STEPS/RESULTS				
Step	Test Step/Input	Expected Results	Actual Results	Req	Pass
				Vali-	/Fail
				dated	
1	Enter the database	The "config.ini" prop-	Data entered cor-	N/A	PASS
	IP address, username,	erly reflects database	rectly in "config.ini"		
	password, and database	configuration.			
	name in the "config.ini"				
	file on the Rasspherry				
	Pi.				
2	Run the	A message will be dis-	Terminal Messages	N/A	PASS
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	nsdayet on the terminal	appear every 20		
		periodically indicating	Seconds indicating		
		that data has been in-	that data has been		
		serted in the database.	inserted in database.		
3	On MySQL workbench,	The output shows the	Readings table up-	REQ-	PASS
	run "DisplayTables.sql"	data that the raspberry	dated with new data	3.1	
		pi inserted in step 2.	from the end node		
			every 20 seconds.		

Table 3.11: Raspberry Pi Properly Sends Data to Database

3.2.4 Test Case 4: Arduino Handles Invalid Sensor Values from Ultrasonic Sensor

Purpose:				
The purpose of this test is to ensure that the Ar	duino knows how to handle the invalid results			
from the ultrasonic sensor ranges				
Test Run I	nformation:			
Tester Name / Date:	Prerequisites / Required Configuration:			
Hector Ceballos 12/05/2024	The sensor must be properly wired up to the			
ENV SHIELD which is on the MKR W				
board. The probe must be free of any obsta				
cles to get proper readings.				
Notes:				

Table 3.12: Test Case 4 Description

	TEST SCRIPT STEPS/RESULTS				
Step	Test Step/Input	Expected Results	Actual Results	Req	Pass
				Vali-	/Fail
				dated	
1	Sensor must be powered	The lights on the boards	Lights Function	REQ-	Pass
	up and running.	should be on	when power is	1.1	
			added.		
2	As sensor reads data	Values ranging from 21	Values are corrctly	REQ-	Pass
	and outputs data, check	to 600 should be out-	read.	1.1	
	if values are properly	putted			
	being read.				
3	If range reads at a con-	If true, then proceed to	Error message is	REQ-	Pass
	stant 600 or below 21,	error handling	printed and sent to	1.1	
	no matter what , there		database.		
	is an error				
4	Output error handler	Output error codes for	Error message is	REQ-	Pass
	for the ultrasonic sen-	the ultrasonic sensor	printed and sent to	1.1	
	sor.		database.		

Table 3.14: Arduino Handles Invalid Sensor Values from Ultrasonic Sensor

3.2.5 Test Case 5: Arduino Handles Invalid Sensor Values from Temperature Probe

Purpose:				
The purpose of this test is to ensure that the Ar	duino knows how to handle the invalid results			
from the temperature probe sensor				
Test Run I	nformation:			
Tester Name / Date:	Prerequisites / Required Configuration:			
Hector Ceballos 12/05/2024	pallos $12/05/2024$ The sensor must be properly wired up to the			
ENV SHIELD which is on the MKR WA				
board. The probe must be free of any obsta				
cles to get proper readings.				
Notes:				

Table 3.15: Test Case 5 Description

	TEST SCRIPT STEPS/RESULTS				
Step	Test Step/Input	Expected Results	Actual Results	Req	Pass
				Vali-	/Fail
				dated	
1	Sensor must be powered	The lights on the boards	Board powers on	YES	PASS
	up and running	should be on			
2	As sensor reads data	Values ranging from -	Values are properly	REQ	PASS
	and outputs data, check	125 to 196 should be	being read	1.4	
	if values are properly	outputted			
	being read				
3	If temperatures reading	If true, then proceed to	Read -125 and went	REQ	PASS
	-125 and 196, there is	error handling	to error handling	1.4	
	an error in reading the				
	temperature				
4	Output error handler	Output error codes for	Error is outputted	REQ	PASS
	for miscalculated tem-	the temperature probe		1.4	
	peratures				

Table 3.17: Arduino Handles Invalid Sensor Values from Temperature Probe

3.2.6 Test Case 6: Arduino Handles Invalid Sensor Values from Electrical Conductivity Sensor

Purpose:					
The purpose of this test case is to verify that t	The purpose of this test case is to verify that the Arduino can identify and handle invalid or				
extreme values from the Electrical Conductivity	Sensor				
Test Run I	nformation:				
Tester Name / Date:	Prerequisites / Required Configuration:				
rk Blood 12/05/2024 The Sensor must be properly wired up to					
ENV Shield and PCB. The PCB must have					
external EEProm chip installed. Sensor must be					
submerged in the target liquid.					
Notes:					

Table 3.18: Test Case 6 Description

	TEST SCRIPT STEPS/RESULTS				
Step	Test Step/Input	Expected Results	Actual Results	Req	Pass
				Vali-	/Fail
				dated	
1	Disconnect the Electri-	Arduino recognizes in-	Couldn't get to work	REQ-	Fail
	cal Conductivity sensor	valid data and outputs	with final board lay-	1.3	
	or send out of range	an error message on the	out.		
	data to simulate an er-	monitor			
	ror.				
2	Verify Arduino catches	The Arduino outputs a	Couldn't get to work	REQ-	Fail
	the invalid data and	invalid data error code	with final board.	1.3	
	outputs the proper error	and blocks the trans-			
	code.	mission of bad data.			
3	Reconnect the sensor	Sensor Powers on and	Couldn't get to work	REQ-	Fail
	and check calibration	either logs proper data	with final board lay-	1.3	
		or needs calibration	out.		
4	Calibrate the sensor if	Sensor transmits proper	Couldn't get to work	REQ-	Fail
	needed, using proper	data	with final board.	1.3	
	calibration solutions.				

Table 3.20: EC Sensor Test Case

3.2.7 Test Case 7: Arduino Handles Invalid Sensor Values from Ph Sensor

Purpose:					
The purpose of this test case is to verify that the Arduino can identify and handle invalid or					
extreme values from the PH Sensor					
Test Run Information:					
Tester Name / Date:	Prerequisites / Required Configuration:				
Kirk Blood 12/05/2024	The Sensor must be properly wired up to the				
	ENV Shield and PCB. The PCB must have an				
	external EEProm chip installed. Sensor must be				
	submerged in the target liquid.				
Notes:					

Table 3.21: Test Case 7 Description

TEST SCRIPT STEPS/RESULTS					
Step	Test Step/Input	Expected Results	Actual Results	Req	Pass
				Vali-	/Fail
				dated	
1	Disconnect the PH sen-	Arduino recognizes in-	Proper recognition of	REQ-	Fail
	sor or send out of range	valid data and outputs	error and prints in	1.2	
	data to simulate an er-	an error message on the	serial monitor.		
	ror.	monitor			
2	Verify Arduino catches	The Arduino outputs a	Proper Error Han-	REQ-	Fail
	the invalid data and	invalid data error code	dling and transmis-	1.2	
	outputs the proper error	and sends to database	sion of data with er-		
	code.	with error code at-	ror code.		
		tached.			
3	Reconnect the sensor	Sensor Powers on and	Calibration was	REQ-	Pass
	and check calibration	either logs proper data	saved successfully.	1.2	
		or needs calibration			
4	Calibrate the sensor if	Sensor transmits proper	Successful Calibra-	REQ-	Pass
	needed, using proper	data	tion.	1.2	
	calibration solutions.				

Table 3.23: PH Sensor Test Case

3.2.8 Test Case 8: Arduino Handles Invalid Sensor Values from Rainfall Sensor

Purpose:					
The purpose of this test case is to verify that t	The purpose of this test case is to verify that the Arduino can identify and handle invalid or				
extreme values from the rainfall sensor.					
Test Run Information:					
Tester Name / Date: Prerequisites / Required Configuration:					
Preston DeShazo 12/05/2024 The rainfall sensor must be connected to the A					
	duino, and the Arduino should be programmed				
to read values from this sensor.					
Notes:					

Table 3.24: Test Case 8 Description

	TEST SCRIPT STEPS/RESULTS				
Step	Test Step/Input	Expected Results	Actual Results	Req	Pass
				Vali-	/Fail
				dated	
1	Disconnect the rainfall	Arduino recognizes in-	Error messgae was	REQ-	Pass
	sensor or send an out-	valid data and outputs	printed out with the	7.2	
	of-range voltage to sim-	an error message on the	rainfall disconnected		
	ulate an error.	serial monitor.	after initalizing.		
2	Observe if the Arduino	Arduino sends the er-	Readings sent with	REQ-	Pass
	flags the error in the	ror, and data is sent to	error message and	7.2	
	system, showing incor-	the LoRaWAN gateway	stored correctty		
	rect data with error.	with error code.			
3	Reconnect the rainfall	Arduino resumes nor-	Functions normal	REQ-	Pass
	sensor with valid input	mal data reading and	after connection is	2.2	
	values and verify nor-	transmits correct data.	true.		
	mal operation.				

Table 3.26: Arduino Handles Invalid Sensor Values from Rainfall Sensor

3.2.9 Test Case 9: Arduino Handles Invalid Sensor Values from Wind Direction Sensor

Purpose:					
The purpose of this test case is to verify that the	The purpose of this test case is to verify that the Arduino can identify and handle invalid or				
extreme values from the Wind Direction sensor.	extreme values from the Wind Direction sensor.				
Test Run Information:					
Tester Name / Date:	Prerequisites / Required Configuration:				
Preston DeShazo 12/05/2024 The wind direction sensor must be connected					
	the Arduino, and the Arduino should be config-				
ured to read values from this sensor.					
Notes:					

Table 3.27: Test Case 9 Description

	TEST SCRIPT STEPS/RESULTS					
Step	Test Step/Input	Expected Results	Actual Results	Req	Pass	
				Vali-	/Fail	
				dated		
1	Disconnect the wind di-	Arduino detects invalid	No way of show-	REQ-	Fail	
	rection sensor or pro-	data and outputs an er-	ing if data is being	2.6		
	vide an out-of-range sig-	ror message on the se-	recorded accurately.			
	nal.	rial monitor.				
2	Observe if the Arduino	Arduino sends the er-	No way of show-	REQ-	Fail	
	flags the error in the	ror, and data is sent to	ing if data is being	2.6		
	system, showing incor-	the LoRaWAN gateway	recorded accurately.			
	rect data with error.	with error code.				
3	Reconnect the sensor	Arduino resumes nor-	Send Results nor-	REQ-	Pass	
	and provide valid data	mal data reading and	mally.	2.6		
	to check system recov-	transmits correct data.				
	ery.					

Table 3.29: Arduino Handles Invalid Sensor Values from Wind Direction Sensor

3.2.10 Test Case 10: Arduino Handles Invalid Sensor Values from Wind Speed Sensor

Purpose:			
The purpose of this test case is to verify that the	he Arduino can identify and handle invalid or		
extreme values from the Wind Speed sensor.			
Test Run Information:			
Tester Name / Date:	Prerequisites / Required Configuration:		
Preston DeShazo 12/05/2024 The wind speed sensor must be connected to			
	Arduino, and the Arduino should be set up to		
read and interpret values from this sensor.			
Notes:			

Table 3.30: Test Case 10 Description

	TEST SCRIPT STEPS/RESULTS				
Step	Test Step/Input	Expected Results	Actual Results	Req	Pass
	·			Vali-	/Fail
				dated	
1	Disconnect the wind	Arduino recognizes the	No way of show-	REQ-	Fail
	speed sensor or simu-	error and displays a	ing if data is being	2.5	
	late an error by sending	message on the serial	recorded accurately.		
	out-of-range values.	monitor.			
2	Observe if the Arduino	Arduino sends the er-	No way of show-	REQ-	Fail
	flags the error in the	ror, and data is sent to	ing if data is being	2.5	
	system, showing incor-	the LoRaWAN gateway	recorded accurately.		
	rect data with error.	with error code.			
3	Reconnect the wind	Arduino resumes cor-	Send Results nor-	REQ-	Pass
	speed sensor with valid	rect data logging and	mally.	2.5	
	data and check system	transmission with valid			
	restoration.	sensor input.			

Table 3.32: Arduino Handles Invalid Sensor Values from Wind Speed Sensor

3.2.11 Test Case 11: Arduino Handles Invalid Sensor Values from Atmospheric Humidity Sensor

Purpose:					
The purpose of this test case is to verify that the	Arduino can identify and handle invalid/valid				
values from the Humidity sensor.					
Test Run I	Test Run Information:				
Tester Name / Date:	Prerequisites / Required Configuration:				
Hector Ceballos 12/05/2024	The sensor must be properly wired up to the				
ENV SHIELD which is on the MKR V					
	board. The probe must be free of any obsta-				
cles to get proper readings.					
Notes:					

Table 3.33: Test Case 11 Description

	TEST SCRIPT STEPS/RESULTS					
Step	Test Step/Input	Expected Results	Actual Results	Req	Pass	
				Vali-	/Fail	
				dated		
1	Sensor must be powered	The lights on the boards	Sensor powered on	N/A	PASS	
	up and running	should be on				
2	As sensor reads data	Values ranging from 0	Values show data	N/A	PASS	
	and outputs data, check	to 100 should be out-	properly			
	if values are properly	putted				
	being read					
4	Output error handler	Output error codes for	Error is outputted	N/A	PASS	
	for the humidity sensor	the humidity sensor				

Table 3.35: Arduino Handles Invalid Sensor Values from Atmospheric Humidity Sensor

3.2.12 Test Case 12: Arduino Handles Invalid Sensor Values from Barometric Pressure Sensor

Purpose:				
The purpose of this test case is to verify that the	e Arduino can identify and handle invalid/valid			
values from the barometric sensor.				
Test Run I	nformation:			
Tester Name / Date:	Prerequisites / Required Configuration:			
Hector Ceballos 12/05/2024	The sensor must be properly wired up to the			
	ENV SHIELD which is on the MKR WAN			
	board. The probe must be free of any obsta-			
cles to get proper readings.				
Notes:				

Table 3.36: Test Case 12 Description

	TEST SCRIPT STEPS/RESULTS					
Step	Test Step/Input	Expected Results	Actual Results	Req	Pass	
				Vali-	/Fail	
				dated		
1	Sensor must be powered	The lights on the boards	Board powered on	REQ	PASS	
	up and running	should be on		2.4		
2	As sensor reads data	Values ranging from	Board reads values	REQ	PASS	
	and outputs data, check	0kPA - 260kPA should	properly	2.4		
	if values are properly	be outputted				
	being read					
4	Output error handler	Output error codes for	Error code is out-	REQ	PASS	
	for the humidity sensor	the humidity sensor	putted	2.4		

Table 3.38: Arduino Handles Invalid Sensor Values from Atmospheric Humidity Sensor

3.2.13 Test Case 13: Data from sensor failure transmitted to Database

Purpose:				
This test case is to verify the behavior of the d	This test case is to verify the behavior of the database if any sensor stops functioning in the			
event of a hardware failure				
Test Run Information:				
Tester Name / Date:	Prerequisites / Required Configuration:			
Dale Andre Descallar 12/04/2024	Raspberry Pi is receiving data from all sensors			
and is transmitting data to the database				
Notes:				
Partia	l FAIL			

Table 3.40: Test Case 13 Description

	TEST SCRIPT STEPS/RESULTS					
Step	Test Step/Input	Expected Results	Actual Results	Req	Pass	
		-		Vali-	/Fail	
				dated	,	
1	Disconnect Rainfall	Error Code Returned to	Error Code sent	REQ-	PASS	
	Sensor	Database	to database and a	7.2		
			value of -127 Sent to			
			Database			
2	Disconnect wind speed	Error Code Returned to	No Error Code, 0 Re-	Fail	Fail	
	Sensor	Database	turned to Readings			
3	Disconnect Wind Direc-	Error Code Returned to	No Error Code, last	Fail	Fail	
	tion Sensor	Database	known direction sent			
			to database			
5	Disconnect Shield	Error Code Returned to	Arduino stops trans-	Fail	Fail	
		Database	mitting data to			
			database			
7	Disconnect Tempera-	Error Code Returned to	No Error Code, -127	REQ-	PASS	
	ture Sensor	Database	Sent to Database	7.2		
9	Disconnect Ultrasonic	Error Code Returned to	No Error Code, 0 Re-	REQ-	PASS	
	Sensor	Database	turned to Readings	7.2		

Table 3.42: Data from sensor failure transmitted to Database

3.2.14 Test Case 14: No data is transmitted to Database

Purpose:				
This test case is to validate the behavior of the	database in the event that it stops receiving			
data from raspberry pi in the event of hardware	failure from the pi itself.			
Test Run Information:				
Tester Name / Date: Prerequisites / Required Configuration:				
Dale Andre Descallar 12/04/2024	Raspberry Pi is receiving data from all sensors			
and is transmitting data to the database				
Notes:				
Test Ca	se PASS			

Table 3.44: Test Case 14 Description

	TEST SCRIPT STEPS/RESULTS				
Step	Test Step/Input	Expected Results	Actual Results	Req	Pass
				Vali-	/Fail
				dated	
1	Power off Raspberry Pi	Database will stop stor-	Database stops re-	REQ-	pass
		ing data from that mo-	ceiving data	7.2	
		ment			
2	Wait and power on	Database will resume	Database receives	REQ-	pass
	raspberry pi	data insertion at the	data from most	7.2	
		moment the raspberry	recent reading		
		pi resumes communica-			
		tion			

Table 3.46: No data is transmitted to Database

3.2.15 Test Case 15: RESTFUL API should be running constantly to show current data

Purpose:				
The purpose of this test case is to verify that the	ne backend RESTFUL API is running and still			
able to fetch JSON data from the database.				
Test Run Information:				
Tester Name / Date: Prerequisites / Required Configuration:				
Hector Ceballos 12/05/2024 The API should be set up locally on the server				
Notes:				

Table 3.47: Test Case 7 Description

	TEST SCRIPT STEPS/RESULTS				
Step	Test Step/Input	Expected Results	Actual Results	Req	Pass
				Vali-	/Fail
				dated	
1	Search	User is greeted by Hello	User is greeted by	YES	PASS
	https://terratekrwh.com	World text	Hello World text		
2	Search	User should be shown	JSON for boards is	YES	PASS
	https://terratekrwh.com	JSON of all boards be-	shown		
	/boards-data	ing used			
3	Search	User should be shown	JSON for sensors is	YES	PASS
	https://terratekrwh.com	JSON of all sensors be-	shown		
	/sensors-data	ing used			
4	Search	User should be shown	JSON for readings is	YES	PASS
	https://terratekrwh.com	JSON data of all read-	shown		
	/readings-data	ings from sensors			
5	User will visit site later	User should be shown	JSON stops showing	NO	FAIL
	and type the same	data after any amount	less than 24 hours af-		
	URL's	of time	ter last visit		
6	Multiple users should	Site should be rendered			
	visit site	as usual			

Table 3.49: API is/is not running constantly

3.3 Semester 2 Test Cases:

3.3.1 Test Case 1: System Health Page Displays Online/Offline Status Correctly:

Purpose:				
The purpose of this test is to determine if the Sy	stem Health page properly displays the status			
of sensor clusters.				
Test Run I	nformation:			
Tester Name / Date:	Prerequisites / Required Configuration:			
William Kolath / 05/01/2025	Server is powered on and conected to the in-			
	ternet. LoRaWAN network is functioning cor-			
rectly.				
Notes:				
Test Cas	se: PASS			

Table 3.51: Test Case 1 Description

	T	EST SCRIPT STEPS/RE	SULTS		
Step	Test Step/Input	Expected Results	Actual Results	Req Vali- dated	Pass /Fail
1	Power on Arduino.	Adruino power LED turns on.	Adruino power LED turns on.	N/A	PASS
2	Wait between 5 to 10 minutes for Arduino to connect.	Adruino function LED flashes 3 times rapidly every approximetly 15 sec indicating that data is being sent.	Adruino function LED flashes 3 times rapidly every aproximetly 15 sec indicating that data is being sent.	N/A	PASS
3	Check the system health page	The appropriate cluster should have an "ON-LINE" status.	The appropriate cluster should have an "ONLINE" status.	REQ- 6.5:	PASS
4	Power off the Arduino.	Adruino power LED turns off.	Adruino power LED turns off.	N/A	PASS
5	Wait a minimum of 5 minutes for the status to update.	Nothing.	Nothing.	N/A	PASS
6	Check the system health page	The appropriate cluster should have an "OF-FLINE" status.	The appropriate cluster should have an "OFFLINE" status.	REQ- 6.5:	PASS

Table 3.53

Purpose:					
The purpose of this test is to determine if the S	The purpose of this test is to determine if the System Health page accurately displays sensor				
outages.					
Test Run I	nformation:				
Tester Name / Date:	Prerequisites / Required Configuration:				
William Kolath $/$ 05/01/2025 Server is powered on and connected to the in					
	ternet. LoRaWAN network is functioning cor-				
	rectly. At least one sensor cluster powered on				
and coneted to the network.					
Notes:					
Test Cas	se: PASS				

Table 3.55: Test Case 2 Description

	T	EST SCRIPT STEPS/RE	SULTS		
Step	Test Step/Input	Expected Results	Actual Results	Req Vali- dated	Pass /Fail
1	Check the sensor list with everything pow- ered on and functioning correctly	The sensor list should display all connected senors and indicated that they are functioning normally.	The sensor list should display all connected senors and indicated that they are functioning normally.	REQ- 6.1	PASS
2	Power off the Arduino and wait at least 5 minutes.	The Arduino powers off.	The Arduino powers off.	N/A	PASS
3	Check the sensor list.	The sensor list indicates that all of the connected sensors are offline.	The sensor list indicates that all of the connected sensors are offline.	REQ- 6.1	PASS
4	Power on the Arduino and wait at least 5 minutes.	The Arduino powers on and connects to the Lo-RaWAN network.	The Arduino powers on and connects to the LoRaWAN network.	N/A	PASS
5	Check the sensor list.	The sensor list indicates that all of the connected sensors are functioning normal.	The sensor list indicates that all of the connected sensors are functioning normal.	REQ- 6.1	PASS
6	Disconnect the temperature probe.	The Arduino transmits error codes for the disconnected sensor.	The Arduino transmits error codes for the disconnected sensor.	N/A	PASS
7	wait at least 5 minutes and check the sensor list.	The sensor list indicates that all of the connected sensors are functioning normally except for the disconnected sensor.	The sensor list indicates that all of the connected sensors are functioning normally except for the disconnected sensor.	N/A	PASS
8	Repeat steps 6 and 7 for each of the remaining sensors.	The sensor list accurately indicates that the sensors are offline as they are disconnected.	The sensor list accurately indicates that the sensors are offline as they are disconnected.	REQ- 6.1	PASS

Table 3.57

3.3.3 Test Case 3: Multiple Widgets Overlap on Smaller Screens

Purpose:					
The purpose of this test case is to determine we	ether or not the homepage correctly shows on				
mobile.					
Test Run I	Test Run Information:				
Tester Name / Date:	Prerequisites / Required Configuration:				
Preston DeShazo 4/10/2025	The web page must be correct on a pc web				
browser before testing on mobile.					
Notes:					
Test Case PASS					

Table 3.59: Test Case 3 Description

	Т	EST SCRIPT STEPS/RE	SULTS		
Step	Test Step/Input	Expected Results	Actual Results	Req Vali- dated	Pass /Fail
1	Open the Home Page on various small screen widths.	All widgets (weather, tank status, charts, dropdowns) stack vertically or collapse into an accordion/flex-column layout.	All screen sizes work correctly, Except Ipad.	REQ- 1.7	Pass
2	Observe how the layout adjusts — check for: -Weather data card(s) -Tank visual indicators or animations -Historical Graphs.	No widget overlaps another.	No Widgets overlap each other when on a smaller screen	REQ- 1.1	Pass
3	Test both portrait and landscape orientations.	Layout auto adjust for the different orienta- tion.	Both Layouts work, but the words in the weather get crammed together	REQ- 1.7	Fail
4	Interact with each UI element and scroll the full page.	Animated elements scale properly and stay centered.	All work as intended on a smaller screen	N/A	Pass
5	Rotate the mobile device mid-session and observe layout adaptation.	Correctly adjusted for the sudden change in layout orientation.	Most elements adjust correctly, the weather still shows data but gets crammed together.	REQ- 1.7	Fail

Table 3.61

3.3.4 Test Case 4: Cluster Boxes Withstands Outdoor Temperature Fluctuations

Purpose:				
The porpuse of this test case is to determine we	ther or not the Arduino and sensors can with-			
satand Temp changes.				
Test Run I	nformation:			
Tester Name / Date: Prerequisites / Required Configuration:				
Preston DeShazo 4/10/2025 The boxes must be installed at location and hav				
	a way to monitor the outside and inside temps			
	of the boxes.			
Notes:				
Test Ca	se PASS			

Table 3.63: Test Case 4 Temperature Fluctuations

	TEST SCRIPT STEPS/RESULTS				
Step	Test Step/Input	Expected Results	Actual Results	Req	Pass
				Vali-	/Fail
				dated	
1	Install the Box with all	Box is installed and	Box is installed and	N/A	Pass
	senors in the box with	working.	transmitting data.		
	Temperature probes.				
2	Power on the PCB	The PCB remains pow-	The PCB has re-	N/A	Pass
	and run the full sen-	ered and sending data.	mained powered and		
	sor polling and data		transmitting data.		
	transmission.				
3	Record sensor output	The output doesn't	The box has stayed	N/A	Pass
	and transmission in-	change for below freez-	powered during		
	tegrity. Monitor at	ing and above 90	freezing tempera-		
	different Temperature.	degrees outside.	tures and above 140		
			degrees inside the		
			box.		

Table 3.65

3.3.5 Test Case 5: Reports Page Time Section

Purpose:				
The purpose of this test is to ensure that the Reports Page Time Section functions correctly.				
Test Run I	nformation:			
Tester Name / Date: Prerequisites / Required Configuration:				
William Kolath $/ 4/10/25$ Server is powered on and connected to the				
ternet. LoRaWAN network is functioning cor				
rectly. At least one sensor cluster powered on				
and connected to the network.				
Notes:				
Test Cas	se: PASS			

Table 3.67: Test Case 5 Description

	T	EST SCRIPT STEPS/RE	SULTS		
Step	Test Step/Input	Expected Results	Actual Results	Req Vali- dated	Pass /Fail
1	Open terratekrwh.com/reports	The reports page opens with a default plot displaying hourly data	The reports page opens with a default plot displaying hourly data	N/A	PASS
2	Select time interval: Daily	The data points are displayed daily	The data points are displayed daily	REQ- 4.7	PASS
3	Select time interval: All	All data points are displayed	All data points are displayed	REQ- 4.7	PASS
4	Hover over the most recent data point.	A popup appears displaying the time and reading.	A popup appears displaying the time and reading.	N/A	PASS
5	Check if the time displayed is correctly.	Time is correct with the time being displayed in central time zone with AM/PM.	Time is correct with the time being displayed in central time zone with AM/PM.	N/A	PASS
6	Select each of the quick time selection buttons.	The chart is updated to display the past day, past week, and past month.	The chart is updated to display the past day, past week, and past month.	REQ- 4.2	PASS
7	Select custom start and end dates and times with the date selector.	The chart is updated to display the correct time range.	The chart is updated to display the correct time range.	REQ- 4.2	PASS
8	Attempt to select a end time that is earlier than the start time.	The date selector refuses to select invalid ranges.	The chart is updated to display the correct time range.	REQ- 4.2	PASS
9	Switch the units to metric	All of the units through- out the page are dis- played in the appropri- ate metric units	All of the units throughout the page are displayed in the appropriate metric units	REQ- 4.9:	PASS
10	Switch the units back to imperial	All of the units through- out the page are dis- played in the appropri- ate imperial units	All of the units throughout the page are displayed in the appropriate imperial units	REQ- 4.9:	PASS

Table 3.69

3.3.6 Test Case 6: Reports Page Downloads Section

Purpose:				
The purpose of the test is to ensure that the dov	vnload functionality of the reports page works			
as expected.				
Test Run I	nformation:			
Tester Name / Date:	Prerequisites / Required Configuration:			
William Kolath $/$ 05/01/2025 Server is powered on and connected to the				
	ternet. LoRaWAN network is functioning cor-			
	rectly. At least one sensor cluster powered on			
	and connected to the network.			
Notes:				
Test Cas	se: PASS			

Table 3.71: Test Case 6 Description

	Т	EST SCRIPT STEPS/RE	SULTS		
Step	Test Step/Input	Expected Results	Actual Results	Req Vali- dated	Pass /Fail
1	Open terratekrwh.com/reports	The reports page opens with a default plot displaying hourly data	The reports page opens with a default plot displaying hourly data	N/A	PASS
2	Click Download PNG	A PNG of the default chart is downloaded.	A PNG of the default chart is downloaded.	REQ- 4.5	PASS
3	Change download format to JPEG and click Click Download JPEG	A JPEG of the default chart is downloaded.	A JPEG of the default chart is downloaded.	REQ- 4.5	PASS
4	Change download format to CSV and click Click Download CSV	A CSV of the default chart is downloaded.	A CSV of the default chart is downloaded.	REQ- 4.6	PASS
5	Change download format to JSON and click Click Download JSON	A JSON of the default chart is downloaded.	A JSON of the default chart is downloaded.	REQ- 4.6	PASS
6	Select multiple clusters and sensors.	Multiple data plots are displayed on the chart.	Multiple data plots are displayed on the chart.	REQ- 4.3	PASS
7	Click Download PNG	A PNG of the chart is downloaded including all of the selected sensors.	A PNG of the default chart is downloaded including all of the selected sensors.	REQ- 4.5	PASS
8	Change download format to JPEG and click Click Download JPEG	A JPEG of the chart is downloaded including all of the selected sensors.	A JPEG of the default chart is downloaded including all of the selected sensors.	REQ- 4.5	PASS
9	Change download format to CSV and click Click Download CSV	A CSV of the chart is downloaded including all of the selected sensors.	A CSV of the default chart is downloaded that includes only the first sensor.	REQ- 4.6	FAIL
10	Change download format to JSON and click Click Download JSON	A JSON of the chart is downloaded including all of the selected sensors.	A JSON of the default chart is downloaded that includes only the first sensor.	REQ- 4.6	FAIL

Table 3.73

3.3.7 Test Case 7: Reports Chart Type Section

Purpose:					
The purpose of the test is to ensure that the cha	The purpose of the test is to ensure that the chart type functionality of the reports page works				
as expected.					
Test Run I	nformation:				
Tester Name / Date:	Prerequisites / Required Configuration:				
William Kolath / 05/01/2025 Server is powered on and connected to the					
	ternet. LoRaWAN network is functioning cor-				
	rectly. At least one sensor cluster powered on				
and connected to the network.					
Notes:					
Test Cas	Test Case: PASS				

Table 3.75: Test Case 7 Description

	TEST SCRIPT STEPS/RESULTS					
Step	Test Step/Input	Expected Results	Actual Results	Req	Pass	
				Vali-	/Fail	
				dated		
1	Open ter-	The reports page opens	The reports page	REQ-	PASS	
	ratekrwh.com/reports	with a default plot dis-	opens with a default	4.12		
		playing Line chart	plot displaying Line			
			chart			
2	Click Scatter Plot But-	The chart changes to	The chart changes	REQ-	PASS	
	ton	display a scatter plot.	to display a scatter	4.13		
			plot.			
3	Click Bar Chart Button	The chart changes to	The chart changes to	REQ-	PASS	
		display a bar chart.	display a bar chart.	4.14		
4	Click Heat Map Button	The chart changes to	The chart changes to	REQ-	PASS	
		display a heat map.	display a heat map.	4.15		
5	Click Histogram Button	The chart changes to	The chart changes to	REQ-	PASS	
		display a histogram.	display a histogram.	4.16		
6	Click Violin Chart But-	The chart changes to	The chart changes	REQ-	PASS	
	ton	display a violin chart.	to display a violin	4.17		
			chart.			

Table 3.77

3.3.8 Test Case 8: Reports Sensor Section

Purpose:				
The purpose of the test is to ensure that the ser	nsor selection functionality of the reports page			
works as expected.				
Test Run I	nformation:			
Tester Name / Date:	Prerequisites / Required Configuration:			
William Kolath / 05/01/2025 Server is powered on and connected to the				
	ternet. LoRaWAN network is functioning cor-			
	rectly. At least one sensor cluster powered on			
	and connected to the network.			
Notes:				
Test Cas	se: PASS			

Table 3.79: Test Case 8 Description

		EST SCRIPT STEPS/RE		Γ	ı
Step	Test Step/Input	Expected Results	Actual Results	Req Vali- dated	Pass /Fail
1	Open terratekrwh.com/reports	The reports page opens with a default plot.	The reports page opens with a default plot.	N/A	PASS
2	Click Cluster Location button for Sensor 1	A drop down of all the available locations is displayed.	A drop down of all the available locations is displayed.	N/A	PASS
3	Select a different location	The chart updates to display data from the selected location.	The chart updates to display data from the selected location.	REQ- 4.1	PASS
4	Click Sensor button for sensor 1	A drop down of all the available sensors is displayed.	A drop down of all the available sensors is displayed.	N/A	PASS
5	Select a different sensor	The chart updates to display data from the selected sensor.	The chart updates to display data from the selected sensor.	REQ- 4.1	PASS
6	Click Aggregation Type button for sensor 1	A drop down of all the available aggrega- tion types is displayed.	A drop down of all the available aggre- gation types is dis- played.	N/A	PASS
7	Select a different aggregation type	The chart updates to display data that is aggregated by the selected method.	The chart updates to display data that is aggregated by the selected method.	REQ- 4.1	PASS
8	Click Color bottom	A popup of all the available colors is displayed.	A popup of all the available colors is displayed.	N/A	PASS
9	Select a different color.	The color of the displayed chart is updated.	The color of the displayed chart is updated.	REQ- 4.1	PASS
10	Repeat steps 2 through 9 for sensor 2 and sensor 3.	Each step produces the expected result and the chart properly displays up to 3 different datasets, one for each sensor selected.	Each step produces the expected result and the chart prop- erly displays up to 3 different datasets, one for each sensor selected.	REQ- 4.3	PASS
11	Click the Reset/Clear button for each of the sensors	Sensor 1 is reset to defaults and sensors 2 and 3 are removed for the chart.	Sensor 1 is reset to defaults and sensors 2 and 3 are removed for the chart.	N/A	PASS

Table 3.81

3.3.9 Test Case 9: API data fetching

Purpose: validate the correctness of data queried				
Test Run Information:				
Tester Name / Date: Prerequisites / Required Configuration:				
Dale Andre Descallar				
Notes:				
	Test Case PA	RTIAL PASS		

Table 3.83: Test Case 9 Description

TEST SCRIPT STEPS/RESULTS					
Step	Test Step/Input	Expected Results	Actual Results	Req	Pass
				Vali-	/Fail
				dated	
1	query for data with	return data from cur-	returned the past 24	REQ	fail
	timeframe as 0	rent hour	hours	2.2	
2	query for data with	return data from hour 0	returned average	REQ	fail
	timeframe as 1	to 1	from 1st hour and	2.2	
			second hour		
3	create two functionally	return data is identical	returned data is	REQ	pass
	identical queries, re-		identical	2.2	
	turning the past 72				
	hours				

Table 3.85

3.3.10 Test Case 10: API invalid input handling

Purpose: validate wrong how the API handles invalid inputs					
Test Run I	Test Run Information:				
Tester Name / Date: Prerequisites / Required Configuration:					
Dale Andre Descallar					
Notes:					
Test Ca	se PASS				

Table 3.87: Test Case 10 Description

	TEST SCRIPT STEPS/RESULTS					
Step	Test Step/Input	Expected Results	Actual Results	Req	Pass	
				Vali-	/Fail	
				dated		
1	input query without	uses default timeframe	returned the past 24	REQ	Pass	
	start or end date	(past 24 hours)	hours	3.2		
2	input query without	return error	return error	RE1	pass	
	sensor			2.3		
3	input query without	return error	return error	RE1	pass	
	board			2.3		
4	input query without	defaults timeframe to	returned the past 24	RE1	pass	
	timeframe	24 hours	hours	2.3		
5	input query without cal-	defaults to average	returns average	RE1	pass	
	culation method			2.3		
6	input query without	defaults interval to	returns hourly re-	RE1	pass	
	time interval	hourly	sults	2.3		
7	input query without	defaults to imperial	returned imperial	RE1	pass	
	unit conversion		units	2.3		
8	input query where start	return nothing	returned nothing	RE1	pass	
	date and end date are			2.3		
	a year before data was					
	collected					
9	input query where start	return nothing	returned nothing	RE1	pass	
	and end date are a year			2.3		
	after the most recent					
	data point					

Table 3.89

3.3.11 Test Case 11: Real-Time Sensor Display (Freshwater Tank 1)

Purpose: Ensure real-time sensor data is fetched and displayed accurately for Fresh Tank 1				
Test Run I	nformation:			
Tester Name / Date:	Prerequisites / Required Configuration:			
Hector G. Ceballos All sensors must be connected and transmitting				
data via LoRaWAN. Frontend must be online.				
Notes:				
Test Ca	se FAIL			

Table 3.91: Test Case 11 Description

	TEST SCRIPT STEPS/RESULTS				
Step	Test Step/Input	Expected Results	Actual Results	Req	Pass
				Vali-	/Fail
				dated	
1	Navigate to "Freshwa-	Page displays real-time	page loads every-	REQ-	Fail
	ter Tank 1" tab	data widgets for water	thing except water	2.1	
		level, and temperature	level and pH		
2	Observe pH sensor	pH value should display	"Loading pH" re-	N/A	Fail
	value	quickly	mains indefinitely		
3	Wait for sensor refresh	All sensors update with	Water level stays at	N/A	Fail
		new data	0, pH does not show,		
			others update cor-		
			rectly		

Table 3.93

3.3.12 Test Case 12: Real-Time Sensor Display (Freshwater Tank 2 Page)

Purpose: Ensure real-time sensor data is fetched and displayed for the Freshwater tanks 2 and 3				
Test Run	Information:			
Tester Name / Date:	Prerequisites / Required Configuration:			
Hector G. Ceballos All sensors must be connected and transmittin				
data via LoRaWAN. Frontend must be online.				
Notes:				
Test (Case PASS			

Table 3.95: Test Case 12 Description

	TEST SCRIPT STEPS/RESULTS				
Step	Test Step/Input	Expected Results	Actual Results	Req	Pass
				Vali-	/Fail
				dated	
1	Navigate to "Freshwa-	Page displays real-time	page loads every-	N/A	Pass
	ter Tank 2" tab	data widgets for water	thinge		
		level, and temperature			
2	Observe the sensor val-	values should display	Values display slowly	N/A	Pass
	ues	quickly			
3	Wait for sensor refresh	All sensors update with	Everything loads	N/A	pass
		new data	with new data		

Table 3.97

3.3.13 Test Case 13: Real-Time Sensor Display (Fresh-water Tank 3 Page)

Purpose: Ensure real-time sensor data is fetched	and displayed accurately for the Freshwater Tank 3			
Test Run	Information:			
Tester Name / Date:	Prerequisites / Required Configuration:			
Hector G. Ceballos	All sensors must be connected and transmitting			
	data via LoRaWAN. Frontend must be online.			
Notes:				
Test (Case PASS			

Table 3.99: Test Case 13 Description

	TEST SCRIPT STEPS/RESULTS				
Step	Test Step/Input	Expected Results	Actual Results	Req	Pass
				Vali-	/Fail
				dated	
1	Navigate to "Freshwa-	Page displays real-time	page loads water	N/A	Pass
	ter Tank 2" tab	data widgets for water	level, and tempera-		
		level, and temperature	ture		
2	Observe the sensor val-	values should display	Values display rela-	N/A	Pass
	ues	quickly	tively quick		
3	Wait for sensor refresh	All sensors update with	Everything shows	N/A	Pass
		new data	properly		

Table 3.101

3.3.14 Test Case 14: Real-Time Sensor Display (Grey-water Tank Page)

Purpose: Ensure real-time sensor data is fetched and displayed accurately for the Greywater Tank				
Test Run	Information:			
Tester Name / Date:	Prerequisites / Required Configuration:			
Hector G. Ceballos	All sensors must be connected and transmitting			
	data via LoRaWAN. Frontend must be online.			
Notes:				
Test Case P.	ARTIAL PASS			

Table 3.103: Test Case 14 Description

	TEST SCRIPT STEPS/RESULTS				
Step	Test Step/Input	Expected Results	Actual Results	Req	Pass
				Vali-	/Fail
				dated	
1	Navigate to "Greywater	Page displays real-time	page loads every-	REQ-	Partial
	Tank" tab	data widgets for water	thing except for	2.1	Pass
		level, TDC, pH, and	рН		
		temperature			
2	Observe pH sensor	pH value should display	"Loading pH" re-	N/A	Fail
	value	quickly	mains indefinitely		
3	Wait for sensor refresh	All sensors update with	pH shows nothing,	N/A	Partial
		new data	others show properly		Pass

Table 3.105

3.3.15 Test Case 15: Historical Data Charts Freshwater Tank 1 and Greywater Tank pages

Purpose: Verify historical sensor values for graphs display time-series data correctly.				
Test Run I	nformation:			
Tester Name / Date: Prerequisites / Required Configuration:				
Hector G. Ceballos Historical sensor data is stored in backend				
database.				
Notes:				
Test Case PA	RTIAL PASS			

Table 3.107: Test Case 15 Description

	TEST SCRIPT STEPS/RESULTS				
Step	Test Step/Input	Expected Results	Actual Results	Req	Pass
				Vali-	/Fail
				dated	
1	Load Freshwater 1 Tank	Historical graphs for	page loads every-	REQ-	Partial
	and Grey-water Tank	pH, water level, water	thing except for	2.3	PASS
	pages	pH, and TDC are visi-	рН		
		ble			
2	Observe pH sensor	pH value should display	"Loading pH" re-	N/A	Fail
	value	quickly	mains indefinitely		
3	Wait for sensor refresh	All sensors update with	pH is not visible,	N/A	Partial
		new data	others update cor-		PASS
			rectly		

Table 3.109

3.3.16 Test Case 16: Historical Data Charts Freshwater Tank 2 and 3 pages

Purpose: Verify historical sensor values for graphs display time-series data correctly.				
Test Run I	nformation:			
Tester Name / Date:	Prerequisites / Required Configuration:			
Hector G. Ceballos Historical sensor data is stored in backend				
database.				
Notes:				
Test Ca	se PASS			

Table 3.111: Test Case 16 Description

	TEST SCRIPT STEPS/RESULTS				
Step	Test Step/Input	Expected Results	Actual Results	Req	Pass
				Vali-	/Fail
				dated	
1	Load Freshwater 2 Tank	Historical graphs water	page loads every-	N/A	Pass
	and Freshwater 3 Tank	level and water temper-	thing		
	pages	ature are visible			
2	Wait for sensor refresh	All sensors update with	Everything shows	N/A	Pass
		new data	properly		

Table 3.113

3.3.17 Test Case 17: System Behavior with Intermittent Network Connection

Purpose:					
To verify that sensor data is correctly buffered or recovered when the network experiences brief					
disconnections.	disconnections.				
Test Run I	nformation:				
Tester Name / Date:	Prerequisites / Required Configuration:				
Preston DeShazo 4/28/2025	Simulated network interruptions must be possi-				
ble (e.g., via firewall or router rules).					
Notes:					
Test Ca	ase Pass				

Table 3.115: Test Case 17 Description

	TEST SCRIPT STEPS/RESULTS					
Step	Test Step/Input	Expected Results	Actual Results	Req	Pass	
				Vali-	/Fail	
				dated		
1	Start sensor transmis-	Data is sent to the	The connection is	REQ-	Pass	
	sion with a stable net-	server normally	stable to start	5.1,		
	work			REQ-		
				5.4		
2	Disconnect the network	Sensor cluster attempts	The sensor cluster	REQ-	Pass	
	for 2 minutes	to reconnect	reconnects with out	6.5		
			issue			
3	Connect the network for	Data is sent to the web-	The data stream is	REQ-	Pass	
	2 minutes	site like before discon-	back to normal	5.1,		
		nection		REQ-		
				6.5		
4	Check backend	Data gap is minimal or	The Scatter plot will	REQ-	Pass	
	database or logs	clearly documented	show the disconnec-	4.2,		
			tion in the data	REQ-		
				5.6		

Table 3.117

3.3.18 Test Case 18: Unit Conversion

Purpose:				
Verify that switching between imperial and metric units correctly updates all displayed values				
across the interface.				
Test Run I	Test Run Information:			
Tester Name / Date:	Prerequisites / Required Configuration:			
Preston DeShazo / 04/24/2025	There must be data to be shown and converted			
on the website.				
Notes:				
Test C	ase Pass			

Table 3.119: Test Case 18 Description

	TEST SCRIPT STEPS/RESULTS					
Step	Test Step/Input Expected Results Actual Results F					
				Vali-	/Fail	
				dated		
1	Go to reports page	Values are shown in de-	The units are shown	REQ-	Pass	
		fault unit (e.g., metric)	in there default untis	4.9		
2	Switch unit toggle from	All values convert (e.g.,	On the reports page,	REQ-	Pass	
	metric to imperial	°C to °F, cm to inches)	the unit conversion	4.9		
			works as intended			
3	Switch back to metric	Values revert correctly	The conversion back	REQ-	Pass	
			works aswell	4.9		

Table 3.121: Test Case 18 Steps

3.3.19 Test Case 19: Real-Time Sensor Display (Weather Page)

Purpose: Ensure real-time sensor data is fetched and displayed accurately					
Test Run Information:					
Tester Name / Date: Prerequisites / Required Configuration:					
Kirk A. Blood	All sensors must be connected and transmitting				
data via LoRaWAN. Frontend must be online					
Notes:					
Test Case	Partial Pass				

Table 3.123: Test Case 19 Description

TEST SCRIPT STEPS/RESULTS					
Step	Test Step/Input	Expected Results Actual Results R		Req	Pass
	·			Vali-	/Fail
				dated	
1	Navigate to "Weather"	Page displays real-	All data Displays	U6.2	Partial
	tab	time data for Wind	properly except for		Pass
		speed, Wind direc-	rainfall		
		tion, Humidity, Pressure, T	emperature,Luminescen	ce,and	
		Rainfall, and Tempera-			
		ture			
2	Observe Wind Rose and	Wind Rose and Widgets	Wind Rose and	U6.2	Pass
	Data Widgets	should show active data	all widgets display		
		smoothly	properly and quickly		
3	Wait for sensor refresh	All sensors update with	All Sensor update	U6.2	Partial
		new data	properly, except		Pass
			rainfall		

Table 3.125

3.3.20 Test Case 20: Weather Page weather forecast API

Purpose: Ensure real-time sensor data is fetched and displayed accurately			
Test Run I	nformation:		
Tester Name / Date: Prerequisites / Required Configuration:			
Kirk A. Blood	Frontend must be online.		
Notes:			
Test C	ase Pass		

Table 3.127: Test Case 20 Description

	TEST SCRIPT STEPS/RESULTS					
Step	Test Step/Input	Expected Results	Actual Results	Req	Pass	
				Vali-	/Fail	
				dated		
1	Navigate to "Weather"	Page displays forecast	The Weather Page	U6.4	Pass	
	tab	data based on default	properly displays the			
		drop down selection	default 3 day fore-			
			cast			
2	Change Drop Down Se-	Forecast data changes	Changing the drop	U6.4	Pass	
	lection	based on selection of 3-	down option changes			
		day or hourly	the display quickly			
			and smoothly, show-			
			ing the correct data			
3	Drop Down Options	All Drop Down Options	Both drop down op-	U6.4	Pass	
	display properly	display properly	tions display prop-			
			erly when changing			
			the forecast selection			

Table 3.129

References

- [1] About Lorawan. Lora Alliance. URL: https://lora-alliance.org/about-lorawan/ (visited on 10/25/2024).
- [2] Random Nerd Tutorials Arduino. ME007YS Waterproof Ultrasonic Distance Sensor (SEN0312). 2024. URL: https://www.arduino.cc/en/Guide/ME007YS.
- [3] Arduino Chip Wired. Waterproof DS18B20 Temperature Sensor Kit (KIT0021). 2024.

 URL: https://www.arduino.cc/en/Guide/DS18B20.
- [4] DFRobot. MODBUS-RTU RS485 4-in-1 Soil Sensor (SEN0604). 2024. URL: https://wiki.dfrobot.com/RS485_Soil_Sensor_Temperature_Humidity_EC_PH_SKU_SEN0604#target_1.
- [5] Roy T Fielding, Richard N Taylor, Justin R Erenkrantz, Michael M Gorlick, Jim White-head, Rohit Khare, and Peyman Oreizy. "Reflections on the REST architectural style and" principled design of the modern web architecture" (impact paper award)". In: Proceedings of the 2017 11th joint meeting on foundations of software engineering. 2017, pp. 4–14.
- Radek Fujdiak, Konstantin Mikhaylov, Jan Pospisil, Ales Povalac, and Jiri Misurec. "Insights into the Issue of Deploying a Private LoRaWAN". In: Sensors 22.5 (Mar. 2022), pp. 2042–2042. DOI: https://doi.org/10.3390/s22052042. URL: https://www.mdpi.com/1424-8220/22/5/2042.
- [7] Python Package Index. *ChirpStack API*. 2024. URL: https://pypi.org/project/chirpstack-api/(visited on 10/25/2024).

REFERENCES

[8] Kicad.org. started in kicad — 8.0 — english — documentation — kicad₂024. 2024. URL: https://docs.kicad.org/8.0/en/getting_started_in_kicad/getting_started_in_kicad.html.

- [9] Mochammad Fariz Syah Lazuardy and Dyah Anggraini. "Modern front end web architectures with react. js and next. js". In: Research Journal of Advanced Engineering and Science 7.1 (2022), pp. 132–141.
- [10] Limitations. The Things Network. URL: https://www.thethingsnetwork.org/docs/lorawan/limitations/(visited on 10/25/2024).
- [11] LoRaWAN. Arduino. 2024. URL: https://docs.arduino.cc/arduino-cloud/hardware/lora/ (visited on 10/25/2024).
- [12] Alireza Maleki, Ha H. Nguyen, Ebrahim Bedeer, and Robert Barton. "A Tutorial on Chirp Spread Spectrum Modulation for LoRaWAN: Basics and Key Advances". In: *IEEE Open Journal of the Communications Society* 5 (2024), pp. 4578–4612. DOI: 10.1109/0JCOMS. 2024.3433502.
- [13] Sanjay Patni. Pro RESTful APIs. Springer, 2017.
- [14] Biswajit Paul. "An Overview of LoRaWAN". In: WSEAS TRANSACTIONS ON COM-MUNICATIONS 19 (Jan. 2021), pp. 231-239. DOI: https://doi.org/10.37394/23204. 2020.19.27. URL: https://wseas.com/journals/articles.php?id=1302.
- [15] Pricing Plans. The Things Network. URL: https://www.thethingsindustries.com/stack/plans/#:~:text=%24230%2Fmonth&text=Our%20powerful%20LoRaWAN%20Network%20Server, renowned%20companies%20of%20all%20sizes. (visited on 10/25/2024).
- [16] Shamkant B. Navathe Ramez Elmasri. Fundamentals of Database Systems. Pearson Education, 2015.
- [17] Regional Parameters. The Things Network. URL: https://www.thethingsnetwork.org/docs/lorawan/regional-parameters/ (visited on 10/25/2024).

REFERENCES

[18] Juan De Dios Santos. Gravity Non-contact Liquid Level Sensor (SEN0204). 2024. URL: https://www.dfrobot.com/wiki/index.php/Gravity:_Non-contact_Liquid_Level_Sensor_SKU:_SEN0204.

- [19] Juan De Dios Santos and Chip Wired. DFRobot Gravity Analog Electrical Conductivity Meter (DFR0300). 2024. URL: https://wiki.dfrobot.com/Gravity_Analog_Electrical_Conductivity_Meter_V2_SKU__DFR0300.
- [20] Semtech. LoRa® and LoRaWAN®. 2024. URL: https://www.semtech.com/uploads/technology/LoRa/lora-and-lorawan.pdf (visited on 10/25/2024).
- [21] Sparkfun.com. basics sparkfun learn₂022. 2022. URL: https://learn.sparkfun.com/tutorials/pcb-basics/all.
- [22] Adafruit Learning System. Arduino MKR Environmental Shield (ASX00029). 2024. URL: https://learn.adafruit.com/arduino-mkr-environmental-shield.
- [23] The ChirpStack project. ChirpStack. URL: https://www.chirpstack.io/docs/ (visited on 10/25/2024).
- [24] Random Nerd Tutorials. Weather Meter Kit (SEN-15901). 2024. URL: https://randomnerdtutorials.com/weather-meter-kit/.
- [25] Random Nerd Tutorials. Weather-proof Ultrasonic Sensor (SEN0208). 2024. URL: https://randomnerdtutorials.com/weather-proof-ultrasonic-sensor/.
- [26] What are LoRa and LoRaWAN? The Things Network. URL: https://www.thethingsnetwork.org/docs/lorawan/what-is-lorawan/ (visited on 10/25/2024).
- [27] Elecrow Wiki. LR1302 LoRaWAN HAT for RPI_PRD. URL: https://www.elecrow.com/wiki/lr1302-lorawan-hat-for-rpi-prd.html (visited on 10/25/2024).

Appendix A

Backlog

A.1 User Stories for Semester 1

S. No.	Epic / User Stories	Effort	Priority	Sprint	Owner
E 1	Research and Requirements	8	Very		
			High		
U1.1	Research and List Required Sensors For Data Gath-	2	5	2	Kirk
	ering				
U1.2	Research Arduino and Required Libraries	2	5	4	Preston,
					Kirk
U1.3	Research Networking and Connectivity	4	4	4	William,
					Andre
U1.4	Research Databases and Required Hardware For	5	4	3	Preston
	Server				
U1.5	Research Cameras and Raspberry PI for Image and	3	1	TDB	TDB
	Video Collection				
U1.6	Casing landscape For Final/Future Deployment	5	1	3	Kirk
U1.7	Research Server Requirements	3	4	2	Preston
U1.8	User Manual	3	4	6-7	Dale
U1.8	Research Similar Papers	3	4	6-7	Hector
E2	Hardware Functionality	8	High		

			_		_
U2.1	Arduino enclosure	3	3	6	Preston
U2.2	Arduino Power	3	3	6	Kirk
U2.3	Raspberry Pi Network Hub Enclosure and Power	2	3	TDB	TDB
U2.4	Raspberry Pi Camera Enclosure and Power	2	1	2	William
U2.5	Rain Gauge Functionality	3	4	5	Preston,
					William
U2.6	Wind Direction Functionality	3	2	5	Preston
U2.7	Wind Speed Functionality	3	2	5	Preston
U2.8	Tank Level Functionality	3	2	5	Hector,
					Andre,
					William
U2.9	Water Quality Sensors Functionality (TDS/pH)	3	4	5-6	Kirk
U2.10	MKR Shield	3	4	5	Hector
U2.11	LoRaWAN Gateway	3	4	5	William
U2.12	Raspberry Pi Camera Functionality	5	1	2	William
U2.13	PCB Design	8	1	6	William
	8	Ŭ			
E3	Server Setup	3	High		
			High	2	Preston
E3	Server Setup	3		2 2	
E3	Server Setup Gather and Assemble Server Hardware	3	3		Preston
E3 U3.1 U3.2	Server Setup Gather and Assemble Server Hardware Implement and Deploy Sever onto Network	3 3 5	3 4	2	Preston Preston
E3 U3.1 U3.2 U3.3	Server Setup Gather and Assemble Server Hardware Implement and Deploy Sever onto Network Design a simple Script for Website	3 3 5 2	3 4 2	2	Preston Preston Hector
U3.1 U3.2 U3.3 U3.4	Server Setup Gather and Assemble Server Hardware Implement and Deploy Sever onto Network Design a simple Script for Website Deploy a Simple Website For Data Visualization	3 3 5 2 5	3 4 2 2	2	Preston Preston Hector
E3 U3.1 U3.2 U3.3 U3.4 E4	Server Setup Gather and Assemble Server Hardware Implement and Deploy Sever onto Network Design a simple Script for Website Deploy a Simple Website For Data Visualization Networking	3 3 5 2 5	3 4 2 2 2 Mid	2 2 TDB	Preston Preston Hector TDB
E3 U3.1 U3.2 U3.3 U3.4 E4 U4.1	Server Setup Gather and Assemble Server Hardware Implement and Deploy Sever onto Network Design a simple Script for Website Deploy a Simple Website For Data Visualization Networking Hardware Data Transmission to Server	3 3 5 2 5 5 5	3 4 2 2 Mid 3	2 2 TDB	Preston Preston Hector TDB William
E3 U3.1 U3.2 U3.3 U3.4 E4 U4.1 U4.2	Server Setup Gather and Assemble Server Hardware Implement and Deploy Sever onto Network Design a simple Script for Website Deploy a Simple Website For Data Visualization Networking Hardware Data Transmission to Server Server to Internet Communication	3 3 5 2 5 5 3	3 4 2 2 Mid 3 2	2 2 TDB 7 6	Preston Preston Hector TDB William William
E3 U3.1 U3.2 U3.3 U3.4 E4 U4.1 U4.2	Server Setup Gather and Assemble Server Hardware Implement and Deploy Sever onto Network Design a simple Script for Website Deploy a Simple Website For Data Visualization Networking Hardware Data Transmission to Server Server to Internet Communication Data Transmission Over Distance on Different Net-	3 3 5 2 5 5 3	3 4 2 2 Mid 3 2	2 2 TDB 7 6	Preston Preston Hector TDB William William
E3 U3.1 U3.2 U3.3 U3.4 E4 U4.1 U4.2 U4.3	Server Setup Gather and Assemble Server Hardware Implement and Deploy Sever onto Network Design a simple Script for Website Deploy a Simple Website For Data Visualization Networking Hardware Data Transmission to Server Server to Internet Communication Data Transmission Over Distance on Different Networks to The Server	3 3 5 2 5 5 3 8	3 4 2 2 Mid 3 2 5	2 TDB 7 6	Preston Preston Hector TDB William William William
E3 U3.1 U3.2 U3.3 U3.4 E4 U4.1 U4.2 U4.3	Server Setup Gather and Assemble Server Hardware Implement and Deploy Sever onto Network Design a simple Script for Website Deploy a Simple Website For Data Visualization Networking Hardware Data Transmission to Server Server to Internet Communication Data Transmission Over Distance on Different Networks to The Server Peer to Peer Communication Between Sensors and	3 3 5 2 5 5 3 8	3 4 2 2 Mid 3 2 5	2 TDB 7 6	Preston Preston Hector TDB William William
E3 U3.1 U3.2 U3.3 U3.4 E4 U4.1 U4.2 U4.3	Gather and Assemble Server Hardware Implement and Deploy Sever onto Network Design a simple Script for Website Deploy a Simple Website For Data Visualization Networking Hardware Data Transmission to Server Server to Internet Communication Data Transmission Over Distance on Different Networks to The Server Peer to Peer Communication Between Sensors and Data Transmission Device	3 3 5 2 5 5 5 8 5	3 4 2 2 Mid 3 2 5	2 TDB 7 6 7	Preston Preston Hector TDB William William William

U4.6	Arduino LoRaWAN functionality and finalized code	5	8	7	Preston, William
U4.7	Raspberry Pi LoRaWAN functionality and finalized code	5	8	7	William
E5	Website Functionality	2	Very Low		
U5.1	Receive Data From Database	4	5	4	Hector
U5.2	Displaying Received Data	2	2	6	Hector
U5.2	Website wireframe	2	2	7	Hector
E6	Database Design	8	Mid		
U6.1	Plan Database Structure	5	5	2	Andre
U6.2	Design and Write Database Schema	5	5	3	Andre,
					Hector,
					William
U6.2	Error handling and final structure	5	5	7	Andre,
					William

A.2 User Stories for Semester 2

S. No.	Epic / User Stories	Effort	Priority	Sprint	Owner
E 1	Hardware Installation	8	8	0	All
U1.1	Select solar Power source	3	8	1	Preston
U1.2	Design and manufacture mounting hardware	5	8	1	William
U1.3	Finalize EC and PH sensors	8	8	1	Kirk
U1.4	Visit install site an finalize details of the installation	2	8	0	All
U1.5	Install sensor clusters at each of the required loca-	5	8	2	All
	tions				
U1.6	Install server and configure necessary networking	2	8	2	All
U1.7	Install LoRaWAN gateway	2	8	2	All

U1.8	Test server and networking	3	8	2	All
U1.9	Test each sensor cluster	5	8	2	All
U1.10	Test LoRaWAN connection	2	8	2	All
U1.11	Troubleshoot PH and EC	8	5	5	Kirk
U1.12	Troubleshoot depth sensors	8	5	5	All
U1.13	Final installation trip	5	8	6	All
E2	API Development	5	8		Andre
U2.1	API route mapping and documentation	3	8	0, 1, 2,	Andre
				3	
U2.2	Final API functional	3	8	1, 2, 3	Andre
U2.3	Error handling implementation	5	5	3	Andre
U2.4	API endpoint testing	3	5	3	Andre
E3	Homepage	3	5		Preston
U3.1	Wire frame and page prototype	5	5	1	Preston
U3.2	The homepage shows summarized data for water	8	8	2,3	Preston
	tanks and weather conditions.				
U3.3	Include a navigation menu for accessing detailed	3	8	2,3	Preston
	pages				
U3.4	Add History Of Project and Propose	5	5	3	Preston
U3.5	Properly style UI Components on website	3	3	3	Preston
E4	Reports Page	8	3		William
U4.1	Wire frame and page prototype	8	2	1	William
U4.2	Allow users to generate custom reports for historical	8	5	2	William
	sensor data				
U4.3	Allow users to select line, box, scatter, histogram,	8	5	2	William
	or heatmap to vew data				
U4.4	Allow users to select custom time range	8	5	3	William
U4.5	Generated reports can be downloaded in PNG,	3	8	1	William
	JPEG, JSON, or CSV format				
U4.6	Allow selection for multiple different sensors	3	3	2	William

U4.7	Properly style UI Components on website	3	3	2	William
U4.8	Create mobile version of the reports page	3	3	3	William
E5	Tank Pages	5	8		Hector
U5.1	Wire frame and page prototype	2	5	0	Hector
U5.2	Provide detailed telemetry data for individual water tanks	8	8	3	Hector
U5.3	Displays real-time graphs for tank levels, pH, TDS, and temperature	5	8	3	Hector
U5.4	Users can filter historical data by date range	3	3	3	Hector
U5.5	Make Graphs reflect the condition of the sensor	3	3	3	Hector
	(Red for bad, Yellow for medium, And Green For Good)				
U5.6	Add Level indicator for Tank Level	3	8	1, 2	Hector
U5.7	Properly style UI Components on website	3	3	1, 2	Hector
E6	Weather Condition Page	5	5		Kirk
U6.1	Wire frame and page prototype	3	3	1	Kirk
U6.2	Show real-time weather data and historical trends for decision-making	5	5	3	Kirk
U6.3	Add weather Extension for Future Weather Conditions	5	3	3	Preston
U6.5	Properly style UI Components on website	2	5	3	Kirk
u6.4	External Weather API	2	5	2	Preston
E7	System Health Page	5	2		William
U7.1	Wire frame and page prototype	2	3	2	William, Preston
U7.2	Show which endpoints are online	5	2	3	William
U7.3	Show transmission history for connected endpoints	8	2	2	William
U7.4	Show any sensor outages	5	2	3	William
E8	Research and publish paper	5	2		All

U8.1	Methods	3	8	5-7	William,
					Preston
U8.2	Related works	3	8	5-7	Hector
U8.3	Findings and Conclusions	3	8	5-7	Kirk,
					Andre
U8.4	Select conference/journal to publish paper	3	8	5-7	All
U8.5	Create rough draft of paper	8	8	6-7	All
U8.6	Create final draft of paper	8	8	7	All
U8.7	Submit paper	5	8	7	All
U8.8	Create user manual	5	8	8	All