LONGITUDINAL PARAMETERS INITIALIZATION

Hidden Area --> Import of Excel INPUT Data

Hidden Area --> Preliminary Mapping of imported Data

Hidden Area --> Import and preliminary mapping of OTHER Excel Data

Other input parameters to be defined here

$$\alpha_{dot} \coloneqq 0.375 \cdot \frac{\textit{rad}}{\textit{s}} = 21.4859 \ \frac{\textit{deg}}{\textit{s}}$$

$$q \coloneqq 0.0445 \cdot \frac{\textit{rad}}{\textit{s}} = 2.5497 \cdot \frac{\textit{deg}}{\textit{s}}$$

$$\alpha_{dot_bar} \coloneqq \frac{\alpha_{dot} \cdot MAC_W}{2 \cdot V_1} = 0.003277$$

$$q_{bar} = \frac{q \cdot MAC_W}{2 \cdot V_1} = 0.000389$$

$$\alpha_{dot_bar}\!=\!0.187735~\textbf{deg}$$

$$q_{bar} = 0.022278$$
 deg

LONGITUDINAL PARAMETERS

Input parameters

 $mass = (4.5 \cdot 10^4) \, kg$

 $C_{D0} = 0.027$

 $\xi_{CG}\!=\!0.275$

$$\Delta X_W_{LE}_Nose = 11.1252 \ \emph{m}$$

 $\Delta X_HT_{LE}_Nose = 27.8587$ m

$$N_{eng_1}\!=\!2$$

 $\Delta X_CG_eng_1 = -5.3523 \ m$

 $Y_{eng_1} = 2.7767 \ m$

 ΔZ _eng₁_CG = -1.1278 m

$$N_{eng_2}\!=\!0$$

 $\Delta X _CG_eng_2 = 0 \ m$

 $Y_{eng_2} = 0$ **m**

 $\Delta Z_{eng_2}CG = 0$ **m**

$$D_{eng} = 1.207 \ m$$

 $\varepsilon_{\alpha_{eng}} = 0.22$

 $C_{N\alpha'_eng}\!=\!0.137$

Imported parameters

 $M_1 = 0.696$

 $V_1 = 208.41 \frac{m}{s}$

 $p_{dyn} = \left(8.9612 \cdot 10^{3}\right)$ *Pa*

 $d_B = 2.79 \ m$

 $C_{M0_B}\!=\!-0.1009$

 $\xi_{ac_WB}\!=\!0.107$

 $X_{MAC_LE_H} = 1.66 \ \boldsymbol{m}$

 $MAC_{H} = 2.433 \ m$

 $\xi_{ac_H}\!=\!0.264$

 $C_{L\alpha_H} = 0.0809 \; deg^{-1}$

 $\tau_e\!=\!0.5$

 $i_H = -1.9996 \; deg$

 $\alpha_{0L_H} = 0$ deg

 $S_H = 25.47 \; m^2$

 $\eta_H = 0.95$

 $C_{h_\alpha_e} = -0.0001 \; deg^{-1}$

 $C_{h_\delta_e} = -0.0002 \; deg^{-1}$

 $C_{M_ac_H}\!=\!-0.07$

 $MAC_W = 3.642 \ m$

 $X_{MAC_LE_W} = 2.861 \ \boldsymbol{m}$

 $b_W = 27.249 \ m$

 $C_{L\alpha_W} = 0.1087 \; deg^{-1}$

 $i_W = 1.9996 \; deg$

 $\alpha_{0L\ W} = -1.9079\ deg$

 $C_{M_ac_W}\!=\!-0.057$

 $\varepsilon_{0_W}\!=\!0.6417~\pmb{deg}$

 $\varepsilon_{\alpha W} = 0.164$

 $\Lambda_{W_c4_eqv} = 28.0176$ deg

 $\xi_{ac_W}\!=\!16.7877~\pmb{deg}$

 $S_W = 87.62 \ m^2$

 $AR_W = 8.474$

 $e_W\!=\!0.918$

FUNDAMENTAL COEFFICIENTS AND DISTANCES

Aircraft Lift, Drag, Pitch moment coefficients

$$C_L \coloneqq \frac{mass \cdot \mathbf{g}}{p_{dyn} \cdot S_W} = 0.562$$

$$C_L\!=\!0.562$$

$$C_M\!\coloneqq\!0$$

$$C_M = 0$$

$$C_D \coloneqq C_{D0} + \frac{{C_L}^2}{\pi \cdot A R_W \cdot e_W} = 0.0399$$

$$C_D = 0.0399$$

$$L \coloneqq p_{dyn} \cdot C_L \cdot S_W = \left(4.413 \cdot 10^5\right) N$$

$$L = (4.5 \cdot 10^4) \ kgf$$

$$D \coloneqq p_{dyn} \cdot C_D \cdot S_W = \left(3.1349 \cdot 10^4\right) N$$

$$D = (3.1967 \cdot 10^3) \, kgf$$

Center of gravity, aerodynamic centers and volume ratios

$$x_{CG} \coloneqq \xi_{CG} \cdot MAC_W = 1.0016 \ \boldsymbol{m}$$

$$x_{CG} = 1.0016 \ m$$

$$\Delta X_CG_Nose \coloneqq x_{CG} + X_{MAC_LE_W} + \Delta X_W_{LE}_Nose = 14.9878 \ \textit{m}$$

$$\Delta X_CG_Nose = 14.9878 \ \textit{m}$$

$$\Delta \xi_HT_{ac_W}_{MAC_LE} \coloneqq \frac{\left(\Delta X_HT_{LE_Nose} - \Delta X_W_{LE_Nose}\right) - X_{MAC_LE_W} + X_{MAC_LE_H} + \xi_{ac_H} \cdot MAC_H}{MAC_W} = 4.4412$$

$$\Delta \xi HT_{ac}W_{MAC\ LE} = 4.4412$$

$$\Delta X_HT_{ac}_CG \coloneqq \left(\Delta X_HT_{LE}_Nose - \Delta X_W_{LE}_Nose\right) - X_{MAC}_LE_W + X_{MAC}_LE_H + \xi_{ac}_H \cdot MAC_H - x_{CG} = 15.1733 \; \textbf{m}$$

$$\Delta X_HT_{ac}CG = 15.1733 \ m$$

$$VolumeRatio_{H} \coloneqq \frac{S_{H} \boldsymbol{\cdot} \Delta X_HT_{ac}_CG}{S_{W} \boldsymbol{\cdot} MAC_{W}} = 1.2111$$

$$VolumeRatio_{H} = 1.2111$$

STICK FIXED AERODYNAMIC COEFFICIENTS

Wing-Body-HTail Lift coefficient curve slopes and basic values

$$K_{WB} \coloneqq 1 + 0.025 \cdot \left(\frac{d_B}{b_W}\right) - 0.25 \cdot \left(\frac{d_B}{b_W}\right)^2 = 0.9999$$

$$K_{WB} = 0.9999$$

$$C_{L\alpha_WB}\!\coloneqq\!K_{WB}\!\cdot\!C_{L\alpha_W}\!=\!6.2266$$

$$C_{L\alpha \ WB} = 0.1087 \ deg^{-1}$$

$$C_{L\alpha} \coloneqq C_{L\alpha_WB} + \eta_H \boldsymbol{\cdot} \frac{S_H}{S_W} \boldsymbol{\cdot} C_{L\alpha_H} \boldsymbol{\cdot} \left(1 - \varepsilon_{\alpha_W}\right) = 7.2964$$

$$C_{Llpha}$$
 = 0.1273 $oldsymbol{deg}^{-1}$

$$C_{LiH} \coloneqq \eta_H \boldsymbol{\cdot} \frac{S_H}{S_W} \boldsymbol{\cdot} C_{L\alpha_H} = 1.2797$$

$$C_{LiH} = 0.02233 \; deg^{-1}$$

$$C_{L\delta e} \coloneqq \eta_H \boldsymbol{\cdot} \frac{S_H}{S_W} \boldsymbol{\cdot} C_{L\alpha_H} \boldsymbol{\cdot} \boldsymbol{\tau}_e = 0.6398$$

$$C_{L\delta e}\!=\!0.01117~oldsymbol{deg}^{-1}$$

$$C_{L0_WB}\!\coloneqq\!C_{L\alpha_WB}\!\cdot\!i_W\!=\!0.2173$$

$$C_{L0\ WB} = 0.2173$$

$$C_{L0} \coloneqq C_{L0_WB} - \eta_H \boldsymbol{\cdot} \frac{S_H}{S_W} \boldsymbol{\cdot} C_{L\alpha_H} \boldsymbol{\cdot} \boldsymbol{\varepsilon}_{0_W} = 0.203$$

$$C_{L0} = 0.203$$

$$C_{D\alpha} \coloneqq \frac{2 \cdot C_L \cdot C_{L\alpha}}{\pi \cdot AR_W \cdot e_W} = 0.3356$$

$$C_{D\alpha} = 0.0059 \; deg^{-1}$$

Wing-Body-HTail Pitch momentum coefficient curve slopes and basic values

$$C_{M\alpha} \coloneqq C_{L\alpha_WB} \bullet \left(\xi_{CG} - \xi_{ac_WB} \right) - \eta_H \bullet C_{L\alpha_H} \bullet VolumeRatio_H \bullet \left(1 - \varepsilon_{\alpha_W} \right) = -3.411$$

$$C_{M\alpha} = -0.05953 \; deg^{-1}$$

$$C_{MiH} \coloneqq -\eta_H \boldsymbol{\cdot} C_{L\alpha_H} \boldsymbol{\cdot} VolumeRatio_H \!=\! -5.3314$$

$$C_{MiH} = -0.09305 \; deg^{-1}$$

$$C_{M\delta e} \coloneqq -\eta_{H} \boldsymbol{\cdot} C_{L\alpha_H} \boldsymbol{\cdot} VolumeRatio_{H} \boldsymbol{\cdot} \boldsymbol{\tau}_{e} = -2.6657$$

$$C_{M\delta e} = -0.04653 \text{ deg}^{-1}$$

$$C_{M0_WB} := C_{M_ac_W} + C_{M0_B} + C_{L0_WB} \cdot \langle \xi_{CG} - \xi_{ac_WB} \rangle = -0.1214$$

$$C_{M0_WB} = -0.1214$$

$$C_{M0} \coloneqq C_{M0_WB} + \eta_H \cdot \frac{S_H}{S_W} \cdot \frac{MAC_H}{MAC_W} \cdot C_{M_ac_H} + \eta_H \cdot C_{L\alpha_H} \cdot VolumeRatio_H \cdot \varepsilon_{0_W} = -0.0746$$

$$C_{M0} = -0.0746$$

Unsteady flight coefficients

$$C_{L\alpha_dot} \coloneqq 2 \cdot C_{L\alpha_H} \cdot \eta_H \cdot VolumeRatio_H \; \varepsilon_{\alpha_W} = 1.7487$$

$$C_{L\alpha_dot} = 0.0305 \; deg^{-1}$$

$$C_{M\alpha\ dot} := -C_{L\alpha\ dot} \cdot (\Delta \xi HT_{ac}W_{MAC\ LE} - \xi_{CG}) = -7.2855$$

$$C_{M\alpha\ dot} = -0.1272\ deg^{-1}$$

$$C_{Lq_part1} \coloneqq \left(\frac{AR_W + 2\,\cos\left\langle A_{W_c4_eqv}\right\rangle}{AR_W \cdot \left(\sqrt{1 - {M_1}^2 \cdot \left\langle\cos\left\langle A_{W_c4_eqv}\right\rangle\right)^2}\right) + 2\cdot\cos\left\langle A_{W_c4_eqv}\right\rangle}\right) \cdot \left(\frac{1}{2} + 2\cdot \left|\xi_{ac_W} - \xi_{CG}\right|\right) \cdot C_{L\alpha_W} = 4.0439$$

 $C_{Lq_part2} \coloneqq 2 \boldsymbol{\cdot} C_{L\alpha_H} \boldsymbol{\cdot} \eta_H \boldsymbol{\cdot} VolumeRatio_H = 10.6629$

$$C_{Lq} \coloneqq C_{Lq \ part1} + C_{Lq \ part2} = 14.7068$$

$$C_{Ia} = 0.2567 \text{ deg}^{-1}$$

$K_q = 0.8255$

$$C_{Mq_part1} \coloneqq \left[\frac{\left(\frac{AR_W^{-3} \cdot \left(\tan \left\langle \Lambda_{W_c4_eqv} \right\rangle \right)^2}{AR_W + 6 \cdot \cos \left(\Lambda_{W_c4_eqv} \right)} \right) + \frac{3}{\sqrt{1 - {M_1}^2 \cdot \left(\cos \left(\Lambda_{W_c4_eqv} \right) \right)^2}} \right]} \\ \cdot \left(-K_q \cdot C_{L\alpha_W} \cdot \cos \left(\Lambda_{W_c4_eqv} \right) \right) = -0.0833 \; \textit{deg}^{-1} \\ \left(\frac{AR_W^{-3} \cdot \left(\tan \left(\Lambda_{W_c4_eqv} \right) \right)^2}{AR_W + 6 \cdot \cos \left(\Lambda_{W_c4_eqv} \right)} \right) + 3 \\ \cdot \left(-K_q \cdot C_{L\alpha_W} \cdot \cos \left(\Lambda_{W_c4_eqv} \right) \right) = -0.0833 \; \textit{deg}^{-1} \\ \cdot \left(-K_q \cdot C_{L\alpha_W} \cdot \cos \left(\Lambda_{W_c4_eqv} \right) \right) = -0.0833 \; \textit{deg}^{-1} \\ \cdot \left(-K_q \cdot C_{L\alpha_W} \cdot \cos \left(\Lambda_{W_c4_eqv} \right) \right) = -0.0833 \; \textit{deg}^{-1} \\ \cdot \left(-K_q \cdot C_{L\alpha_W} \cdot \cos \left(\Lambda_{W_c4_eqv} \right) \right) = -0.0833 \; \textit{deg}^{-1} \\ \cdot \left(-K_q \cdot C_{L\alpha_W} \cdot \cos \left(\Lambda_{W_c4_eqv} \right) \right) = -0.0833 \; \textit{deg}^{-1} \\ \cdot \left(-K_q \cdot C_{L\alpha_W} \cdot \cos \left(\Lambda_{W_c4_eqv} \right) \right) = -0.0833 \; \textit{deg}^{-1} \\ \cdot \left(-K_q \cdot C_{L\alpha_W} \cdot \cos \left(\Lambda_{W_c4_eqv} \right) \right) = -0.0833 \; \textit{deg}^{-1} \\ \cdot \left(-K_q \cdot C_{L\alpha_W} \cdot \cos \left(\Lambda_{W_c4_eqv} \right) \right) = -0.0833 \; \textit{deg}^{-1} \\ \cdot \left(-K_q \cdot C_{L\alpha_W} \cdot \cos \left(\Lambda_{W_c4_eqv} \right) \right) = -0.0833 \; \textit{deg}^{-1} \\ \cdot \left(-K_q \cdot C_{L\alpha_W} \cdot \cos \left(\Lambda_{W_c4_eqv} \right) \right) = -0.0833 \; \textit{deg}^{-1} \\ \cdot \left(-K_q \cdot C_{L\alpha_W} \cdot \cos \left(\Lambda_{W_c4_eqv} \right) \right) = -0.0833 \; \textit{deg}^{-1} \\ \cdot \left(-K_q \cdot C_{L\alpha_W} \cdot \cos \left(\Lambda_{W_c4_eqv} \right) \right) = -0.0833 \; \textit{deg}^{-1} \\ \cdot \left(-K_q \cdot C_{L\alpha_W} \cdot \cos \left(\Lambda_{W_c4_eqv} \right) \right) = -0.0833 \; \textit{deg}^{-1} \\ \cdot \left(-K_q \cdot C_{L\alpha_W} \cdot \cos \left(\Lambda_{W_c4_eqv} \right) \right) = -0.0833 \; \textit{deg}^{-1} \\ \cdot \left(-K_q \cdot C_{L\alpha_W} \cdot \cos \left(\Lambda_{W_c4_eqv} \right) \right) = -0.0833 \; \textit{deg}^{-1} \\ \cdot \left(-K_q \cdot C_{L\alpha_W} \cdot \cos \left(\Lambda_{W_c4_eqv} \right) \right) = -0.0833 \; \textit{deg}^{-1} \\ \cdot \left(-K_q \cdot C_{L\alpha_W} \cdot \cos \left(\Lambda_{W_c4_eqv} \right) \right) = -0.0833 \; \textit{deg}^{-1} \\ \cdot \left(-K_q \cdot C_{L\alpha_W} \cdot \cos \left(\Lambda_{W_c4_eqv} \right) \right) = -0.0833 \; \textit{deg}^{-1} \\ \cdot \left(-K_q \cdot C_{L\alpha_W} \cdot \cos \left(\Lambda_{W_c4_eqv} \right) \right) = -0.0833 \; \textit{deg}^{-1} \\ \cdot \left(-K_q \cdot C_{L\alpha_W} \cdot \cos \left(\Lambda_{W_c4_eqv} \right) \right) = -0.0833 \; \textit{deg}^{-1} \\ \cdot \left(-K_q \cdot C_{L\alpha_W} \cdot \cos \left(\Lambda_{W_c4_eqv} \right) \right) = -0.0833 \; \textit{deg}^{-1} \\ \cdot \left(-K_q \cdot C_{L\alpha_W} \cdot \cos \left(\Lambda_{W_c4_eqv} \right) \right) = -0.0833 \; \textit{deg}^{-1} \\ \cdot \left(-K_q \cdot C_{L\alpha_W} \cdot \cos \left(\Lambda_{W_c4_eqv} \right) \right) = -0.0833 \; \textit{deg}^{-1} \\ \cdot \left(-K_q \cdot C_{L\alpha_W} \cdot \cos \left(\Lambda_{W_c4_eqv}$$

$$C_{Mq_part2} \coloneqq \left(\frac{AR_W \cdot \left(0.5 \cdot |\xi_{ac_W} - \xi_{CG}| + 2 \cdot |\xi_{ac_W} - \xi_{CG}|^2 \right)}{AR_W + 2 \cdot \cos \left(A_{W_c4_eqv} \right)} + \frac{1}{24} \cdot \left(\frac{AR_W}{AR_W + 6 \cdot \cos \left(A_{W_c4_eqv} \right)}^3 \right) + \frac{1}{8} \right) = 0.0114 \ \textit{deg}^{-1}$$

$$C_{Mq} \coloneqq C_{Mq_part1} \cdot C_{Mq_part2} - 2 \cdot C_{L\alpha_H} \cdot \eta_H \cdot VolumeRatio_H \cdot \left(\frac{\Delta X_HT_{ac}_CG}{MAC_W}\right) = -47.5464$$

$$C_{Mq}\!=\!-0.8298~{m deg}^{-1}$$

Neutral point and Static Stability Margin

$$\xi_{N} \coloneqq \frac{\xi_{ac_WB} + \frac{C_{L\alpha_H}}{C_{L\alpha_WB}} \cdot \eta_{H} \cdot \frac{S_{H}}{S_{W}} \cdot (1 - \varepsilon_{\alpha_W}) \cdot \Delta \xi_H T_{ac_W} MAC_LE}}{1 + \frac{C_{L\alpha_H}}{C_{L\alpha_WB}} \cdot \eta_{H} \cdot \frac{S_{H}}{S_{W}} \cdot (1 - \varepsilon_{\alpha_W})} = 0.7425$$

$$\xi_N = 0.7425$$

$$x_N := \xi_N \cdot MAC_W = 2.7041 \ m$$

$$x_N = 2.7041 \ m$$

$$\Delta X_N_Nose \coloneqq x_N + X_{MAC_LE_W} + \Delta X_W_{LE}_Nose = 16.6903~\textbf{\textit{m}}$$

$$\Delta X_N_Nose = 16.6903 \ m$$

$$SSM := \xi_{CG} - \xi_N = -0.4675$$

$$\frac{C_{M\alpha}}{C_{I\alpha}} = -0.4675$$

$$T \coloneqq D = \left(3.1349 \cdot 10^4\right) \, N$$

$$T \coloneqq T = -1.200$$

$$T_c \coloneqq \frac{T}{2 \cdot p_{dyn} \cdot D_{eng}^2} = 1.2006$$

$$N_{eng}\!:=\!N_{eng_1}\!+\!N_{eng_2}\!=\!2$$

$$S_{eng} \coloneqq \frac{\boldsymbol{\pi}}{4} \cdot D_{eng}^{2} = 1.1442 \; \boldsymbol{m}^{2}$$

$$C_{N\alpha_{eng}} \coloneqq N_{eng} \cdot C_{N\alpha'_{eng}} \cdot \left(1 + \varepsilon_{\alpha_{eng}}\right) = 0.3343$$

$$C_{M0_eng_1} \coloneqq 2 \cdot T_c \cdot \frac{D_{eng}^{-2}}{S_W} \cdot \frac{\Delta Z_eng_1_CG}{MAC_W} \cdot \frac{N_{eng_1}}{N_{eng}} = -0.0124$$

$$C_{M\alpha_eng_1} \coloneqq C_{N\alpha_eng} \cdot \frac{S_{eng}}{S_W} \cdot \frac{\Delta X_CG_eng_1}{MAC_W} \cdot \frac{N_{eng_1}}{N_{eng}} = -0.0064$$

$$C_{M0_eng_2} \coloneqq 2 \cdot T_c \cdot \frac{D_{eng}^{2}}{S_W} \cdot \frac{\Delta Z_eng_2_CG}{MAC_W} \cdot \frac{N_{eng_2}}{N_{eng}} = 0$$

$$C_{M\alpha_{eng_2}} \!\coloneqq\! C_{N\alpha_{eng}} \!\cdot\! \frac{S_{eng}}{S_W} \!\cdot\! \frac{\Delta X_CG_{eng_2}}{MAC_W} \!\cdot\! \frac{N_{eng_2}}{N_{eng}} \!=\! 0$$

$$\Delta \xi_{N_eng_1} \coloneqq \frac{C_{M\alpha_eng_1}}{C_{L\alpha}} = -0.0009$$

$$\Delta \xi_{N_eng_2} \! \coloneqq \! \frac{C_{M\alpha_eng_2}}{C_{L\alpha}} \! = \! 0$$

$$\varDelta \xi_{N_eng} \coloneqq \varDelta \xi_{N_eng_1} + \varDelta \xi_{N_eng_2}$$

$$\xi_{N_eng} \coloneqq \xi_N + \varDelta \xi_{N_eng}$$

$$x_{N_{eng}} \coloneqq \xi_{N_{eng}} \cdot MAC_W = 2.7009~\textbf{m}$$

$$\Delta X_N_{eng}_Nose \coloneqq x_{N_eng} + X_{MAC_LE_W} + \Delta X_W_{LE}_Nose = 16.6871 \ \textit{m}$$

$$SSM_{eng}\!:=\!\xi_{CG}\!-\!\xi_{N_{eng}}\!=\!-0.4666$$

$$T = (3.1349 \cdot 10^4) N$$

$$T_c = 1.2006$$

$$N_{eng} = 2$$

$$S_{eng} = 1.1442 \; \boldsymbol{m}^2$$

$$C_{N\alpha_{eng}}\!=\!0.0058\;\boldsymbol{deg}^{-1}$$

$$C_{M0_eng_1}\!=\!-0.01236$$

$$C_{M\alpha_eng_1} = -0.00011 \ deg^{-1}$$

$$C_{M0_eng_2}\!=\!0$$

$$C_{M\alpha\ enq\ 2} = 0$$
 deg^{-1}

$$\Delta \xi_{N_eng_1} = -0.0009$$

$$\Delta \xi_{N_eng_2} = 0$$

$$\Delta \xi_{N_eng} = -0.0009$$

$$\xi_{N_eng} = 0.7416$$

$$x_{N_{eng}} = 2.7009 \ {\it m}$$

$$\Delta X_N_{enq}$$
Nose = 16.6871 m

$$SSM_{eng}\!=\!-0.4666$$

 $\alpha_{WB} = 3.1856$ deg

 $\delta_e = -2.8643 \; deg$

 $\alpha_{H} \coloneqq \alpha_{WB} \bullet \left(1 - \varepsilon_{\alpha _W}\right) + i_{H} + \tau_{e} \bullet \delta_{e} - \varepsilon_{0 _W}$

 $\alpha_H \!=\! -1.4103~\textbf{deg}$

 $C_{LWB} \coloneqq C_{L\alpha_WB} \boldsymbol{\cdot} \left(\alpha_{WB} + i_W\right)$

 $C_{LWB} = 0.5635$

 $C_{\mathit{LH}}\!\coloneqq\!C_{\mathit{L}\alpha_{\mathit{H}}}\!\cdot\!\alpha_{\mathit{H}}$

 $C_{L\!H}\!=\!-0.1141$

 $L_{WB} \coloneqq p_{dyn} \boldsymbol{\cdot} S_W \boldsymbol{\cdot} C_{LWB}$

 $L_{WB} = \left(4.4245 \cdot 10^5\right) N$

 $L_{H}\!\coloneqq\!\eta_{H}\!\boldsymbol{\cdot} p_{dyn}\!\boldsymbol{\cdot} S_{H}\!\boldsymbol{\cdot} C_{L\!H}$

 $L_H = -2.4733 \cdot 10^4 \ N$

 $\frac{L_H}{L_{WB}} \! = \! -0.0559$

STICK FREE AERODYNAMIC COEFFICIENTS

$$F\coloneqq 1-\tau_e\,\frac{C_{h_\alpha_e}}{C_{h_\delta_e}}\!=\!0.7362$$

$$F = 0.7362$$

$$C_{M0_free} \coloneqq C_{M0_WB} + \eta_H \cdot \frac{S_H}{S_W} \cdot \frac{MAC_H}{MAC_W} \cdot C_{M_ac_H} + \eta_H \cdot C_{L\alpha_H} \cdot VolumeRatio_H \cdot \varepsilon_{0_W} \cdot F = -0.0904$$

$$C_{M0_free} = -0.0904$$

$$C_{M\alpha_free} \coloneqq C_{L\alpha_WB} \cdot \left(\xi_{CG} - \xi_{ac_WB}\right) - \eta_H \cdot C_{L\alpha_H} \cdot VolumeRatio_H \cdot \left(1 - \varepsilon_{\alpha_W}\right) \cdot F = -2.2353$$

$$C_{M\alpha \ free} = -0.039 \ deg^{-1}$$

$$C_{MiH_free} \coloneqq -\eta_{H} \bullet C_{L\alpha_H} \bullet VolumeRatio_{H} \bullet F = -3.9251$$

$$C_{MiH\ free} = -0.0685\ deg^{-1}$$

$$\alpha_{free} \coloneqq -\frac{C_{M0_eng_1} + C_{M0_eng_2} + C_{M0_free} + C_{MiH_free} \cdot i_H}{C_{M\alpha_free} + C_{M\alpha_eng_1} + C_{M\alpha_eng_2}} = 0.8759 ~\textit{deg}$$

$$\alpha_{free} = 0.8759 \; deg$$

$$\alpha_{H_free} \coloneqq \alpha_{free} \cdot \left(1 - \varepsilon_{\alpha_W}\right) - \varepsilon_{0_W} + i_H = -1.9091 ~\textit{deg}$$

$$\alpha_{H_free} = -1.9091$$
 deg

$$\delta_{e_free}$$
 := $-\frac{C_{h_\alpha_e}}{C_{h_\delta_e}} \; lpha_{H_free}$ = 1.0072 $m{deg}$

$$\delta_{e_free} = 1.0072$$
 deg

$$C_{L0_free} \coloneqq C_{L0_WB} - \eta_H \boldsymbol{\cdot} \frac{S_H}{S_W} \boldsymbol{\cdot} C_{L\alpha_H} \boldsymbol{\cdot} \boldsymbol{\varepsilon}_{0_W} \boldsymbol{\cdot} F = 0.2068$$

$$C_{L0_free}\!=\!0.2068$$

$$C_{L\alpha_free} \coloneqq C_{L\alpha_WB} + \eta_H \cdot \frac{S_H}{S_W} \cdot C_{L\alpha_H} \cdot \left(1 - \varepsilon_{\alpha_W}\right) \cdot F = 7.0142$$

$$C_{L\alpha_free} = 0.1224 \; \boldsymbol{deg}^{-1}$$

$$C_{\mathit{LiH_free}} \coloneqq \eta_H \! \cdot \! C_{\mathit{L}\alpha_H} \! \cdot \! \frac{S_H}{S_W} \! \cdot \! F \! = \! 0.9421$$

$$C_{LiH_free} = 0.0164 \ deg^{-1}$$

$$C_{L_free} \coloneqq C_{L0_free} + \left(C_{L\alpha_free} + C_{N\alpha_eng} \right) \cdot \alpha_{free} + C_{LiH_free} \cdot i_H = 0.2862$$

$$C_{L_free}\!=\!0.2862$$

$$C_{D\alpha_free} \coloneqq \frac{2 \cdot C_{L_free} \cdot C_{L\alpha_free}}{\pi \cdot AR_W \cdot e_W} = 0.1643$$

$$C_{D\alpha_free} = 0.0029 \; deg^{-1}$$

$$C_{D_free} \coloneqq C_{D0} + \frac{{C_{L_free}}^2}{\pi \cdot AR_W \cdot e_W} = 0.0304$$

$$C_{D_free} = 0.0304$$

$$\xi_{N_free} \coloneqq \frac{\xi_{ac_WB} + \frac{C_{L\alpha_H}}{C_{L\alpha_WB}} \cdot \eta_H \cdot \frac{S_H}{S_W} \cdot \left(1 - \varepsilon_{\alpha_W}\right) \cdot \Delta \xi_HT_{ac_W_{MAC_LE}} \cdot F}{1 + \frac{C_{L\alpha_H}}{C_{L\alpha_WB}} \cdot \eta_H \cdot \frac{S_H}{S_W} \cdot \left(1 - \varepsilon_{\alpha_W}\right) \cdot F} = 0.5937$$

$$x_{N_free} \coloneqq \xi_{N_free} \cdot MAC_W = 2.1622 \ \boldsymbol{m}$$

$$x_{N_free} = 2.1622$$
 m

$$\Delta X_N_{free}_Nose \coloneqq x_{N_free} + X_{MAC_LE_W} + \Delta X_W_{LE}_Nose = 16.1484 \ \textit{m}$$

$$\Delta X_N_{free}_Nose = 16.1484$$
 m

$$SSM_{free} := \xi_{CG} - \xi_{N_free} = -0.3187$$

$$SSM_{free} = -0.3187$$

WING-BODY-HTAIL PLANFORM WITH NEUTRAL POINTS

MAPPING AND OUTPUT CREATION

Includi << ../Default_Map_Longitudinal.mcdx

Excel Writing

 $n_{sheet} \coloneqq 6$

 $First_Row_{L-1} := 4$

 $Block_{L_1} \coloneqq_{\mathsf{f}} \mathsf{map_matrix_transform} \left({}_{m} Longit_Data_Map_{imported} \right)$

 $Excel_Output_{L_1} \coloneqq {}_{\mathsf{f}} \text{write_full_output} \left({}_{s}Output_Excel_File \,, Block_{L_1}, n_{sheet} \,, First_Row_{L_1} \right)$

 $First_Row_{L_2} \coloneqq First_Row_{L_1} + \operatorname{rows}\left(Block_{L_1}\right) + 2$

 $Block_{L_2} := {}_{\mathrm{f}} \mathrm{map_matrix_transform} \left({}_{m} Longit_Data_Map_{input} \right)$

 $Excel_Output_{L_2} \coloneqq_{\texttt{f}} \texttt{write_full_output} \left<_{\texttt{s}} Output_Excel_File \ , Block_{L_2}, n_{\texttt{sheet}} \ , First_Row_{L_2} \right>$

 $First_Row_{L_3} \coloneqq First_Row_{L_2} + rows \left(Block_{L_2}\right) + 2$

 $Block_{L_3} \coloneqq_{\mathit{f}} \mathsf{map_matrix_transform} \left({}_{m} Longit_Data_Map \right)$

 $Excel_Output_{L_3} \coloneqq {}_{\mathsf{f}} \text{write_full_output} \left({}_{s}Output_Excel_File \,, Block_{L_3} \,, n_{sheet} \,, First_Row_{L_3} \right)$

TeX Macro writing on .tex

 $_{v}complete_macros_{L} \coloneqq \operatorname{stack}\left(Block_{L_{1}}^{(2)}, Block_{L_{2}}^{(2)}, Block_{L_{3}}^{(2)}\right) \\ vtex_{L} \coloneqq _{f} write_matrix\left(\text{``.}\operatorname{Output}\operatorname{LONGITUDINAL_TeX_Macros.tex''}, vcomplete_macros_{L}, \text{``'}\right)$