COMP 2021

Unix and Script Programming

Course Information

Course Information

- Lecture
 - ▶ Tue I I:00-I2:50, G009A, CYT Building
- Instructor
 - Dr. Cindy Ll, lixin@cse.ust.hk, Room 3535 (Lift 25/26)
- Course website
 - http://course.cse.ust.hk/comp2021/
- Labs
 - ▶ Lab 1:Thur 09:00 10:50, Room 4214 (Lift 19),
- TAs
 - Mr. Chang Zhang Yu

Course Objectives

Have a general appreciation of the Unix operating system and its environment

- Get familiar with shell basics, file structure, everyday commands
- Be able to write simple shell programs for text/data manipulation and process control
- Understand regular expressions and use them in Unix utilities and file manipulation

Script Programming Skills

Understand the basics of script programming languages such as PHP and JavaScript, including variable and array, control flow, I/O, and functions

Web Programming Skills

- Have a working knowledge of the common HTML commands and CSS
- Understand how to build web programs using CGI programming in languages such as PHP and JavaScript

Reference & Grading Scheme

- Lab attendance (5%)
- Homework assignment (20%)
- Project and presentation (35%)
- Final exam (40%)

Comp2021 Project & Presentation

- Propose, implement, and document your own custom application.
- Choose your own topic that includes Unix, Shell scripting, or PHP/JavaScript
- Work in groups of normally 2 people.
- Presentations will be in the last few lectures of the semester.
- The tentative format for the project is the following:
 - ▶ 10-minute presentation (like short conference presentation)
 - 5-minutes for Q&A (while the next group sets up)
- Upload final submission to CASS last Day of Spring term
 - a softcopy of your PowerPoint slides
 - a softcopy of a short paper (4 pages) summarizing your project
 - source code

Introduction to Unix

*nix Systems

What is UNIX?

UNIXWhere there is a shell there is a way

- ▶ UNIX is an Operating System (OS).
- An operating system is a control program that helps the user communicate with the computer hardware.
- One of the first widely-used operating systems
- Basis for many modern OSes
- Helped set the standard for multi-tasking, multi-user, interactive systems
- Strictly a teaching tool (in its original form)

Unix Features

- UNIX is an operating system for experts, used on high-end workstations, database servers, and web servers.
- UNIX provides some powerful features:
 - security private and shared files
 - multi-user support
 - data sent to display, files, or printers in same way
 - interprocess communication
- Microsoft keeps trying to upgrade Windows to replace UNIX as the "OS for experts".

Short History of Unix

- 60s The ambitious project MULTICS (Multiplexed Information and Computing System) fails, but a number of seminal ideas (like pipes and shells) are proposed
- 69 Ken Thompson, Dennis Ritchie (et al.) at Bell Labs start working on a file system UNICS, which is later changed to UNIX.
 - UNIX was "small, simple and clean", and distributed freely to many universities, where it becomes popular
- 73 Thompson and Ritchie rewrote UNIX in C
 - Greatly facilitate its further development and porting to other hardware
- 81 Berkley UNIX 4.1 BSD (Berkeley Software Distribution): vi, C shell, virtual memory
- > 91 Linux, GNU, and others: similar to UNIX, but their source code rewritten, very popular and widespread, free
- Currently, The Open Group is responsible for developing UNIX

UNIX Versions

- There are two main types of UNIX:
 - BSD (Berkeley Software Distribution)
 - System V (developed at AT&T)
- Our book covers UNIX System V
- There are many different versions of **UNIX** for different hardware:
 - Sun Microsystem's Solaris
 - Mac OS/X
 - Hewlett-Packard's HP-UX
 - IBM's AIX
 - SGI's IRIX
- Free Unix and Unix-like Operating system
 - **GNU** project
 - Linux
 - Pieced together by a Finnish guy named Linus Torvalds
 - Redhat, Fedora, Debian, Ubuntu, etc.

Who Uses UNIX?

Big companies. They especially use UNIX servers, preferring its stability. They can afford to hire employees with UNIX experience.

- Computer chip manufacturers like Motorola
 & Intel
- Software companies
- Banks
- Hong Kong Government
- Hospital Authority
- Universities
- Small companies that use Linux
 - OS free

Most Important Feature of UNIX

Most important feature of UNIX: <u>STABILITY</u>

- Many years to get the bugs out
- Important in shared environments and critical applications

Shared Environments Example: University

- Windows crashes I-2 times/month in labs
- UNIX servers crash usually only when hard disk fails
- UNIX more reliable than Windows

Critical Applications

- Bank Don't want to lose money in ATM transactions!
- Hospital Don't want to wait for reboot during operation!
- Airport Air traffic control landing planes.
- PCCW Don't want phone system going down!

UNIX Shells

- A shell is a program that allows the user to interact with the UNIX system (usually via command line):
 - Read user's input and parses it
 - Evaluates special characters
 - Setup pipes, redirections, and background processing
 - Find and setup programs for execution

Unix Shells (cont.)

Popular Shells

- sh Bourne shell (the original shell)
 - a popular shell made by Stephen Bourne
- csh C-shell (pronounced as "sea shell")
 - interactive and close to C, default shell for BSD-based systems
- tcsh Like csh with more functions (Lab2 default)
- bash "Bourne again" shell
 - default shell for the GNU OS, most Linux distributions, and OSX
- ksh Korn shell
- zsh Z-shell

Getting Started on UNIX

- ▶ The machines in CS Lab2 are named csl2wk01 through csl2wk41.
- csl2wk01 means "CSLab2, workstation#I"
- The full machine name for csl2wk01 is: csl2wk01.cse.ust.hk
- Where are my stuff?
 - Your files can be found in your home directory, usually located at /homes/username
 - ▶ Home directory can also be accessed using ~

Unix Utilities

We roll our sleeves and get our hands dirty

Unix File System

- Unlike windows, UNIX has a single global "root" directory /
 - Instead of a root directory for each disk/volume
- All files and directories are case sensitive
 - hello.txt != hEllo.tXt
- Directories are separated by / instead of \ in windows
 - UNIX: /homes/lixin/comp2021
 - Windows: D:\Documents\comp2021
- "Hidden" files begin with ".": .gimp

- Files
- Subdirectories (branches of Tree)
- Root

What's Where

Folder	Content
/dev	Hardware devices can be accessed here - usually you don't mess with this stuff.
/mnt	Frequently used to mount disk drives
/usr	Mostly user-installed programs and their related files
/etc	System-wide settings
/bin	System programs
/usr/bin	Most user programs
/usr/local/bin	A few other user programs

 Programs are usually installed in one of the "binaries" directories

UNIX File Utilities

ls list directory contents

cd change directory

pwd print working directory

cat display file

more display one screen of file

rm remove (delete) a file

rmdir remove (delete) directory

copy source file to target file

my rename or move a file

Ср

Let's Move Around and Do Stuff

Where am I now?

Print Working Directory

pwd

- Prints the full path of the current directory
- Handy on minimalist systems when you get lost

What's here?

The list command

```
ls [flags][file]
```

- Lists directory contents (including subdirectories)
- Works like the dir command from DOS
- The -1 flag lists detailed file/directory information (more later)

Relative and Absolute

How to move around?

Change directory

cd [directory name]

- Changes directory to [directory name]
- If not given a destination defaults to the user's home directory
- Takes both absolute (cd /homes/lixin/comp2021)
 and relative (cd comp2021) paths
- Absolute path
 - Location of a file or folder starting at /
- Relative path
 - Location of a file or folder beginning at the current directory
- It's all Relative... except when it's not

Relative Path Shortcuts

Shortcuts	
~	Current user's home directory
•	Current directory
• •	The parent directory of the current directory

Example	If we start in /homes/lixin/comp2021/lab
cd	/homes/lixin
cd .	/homes/lixin/comp2021/lab
Cd	/homes/lixin/comp2021

Create File or Directory

Create a new file

Using touch

```
touch [flags] <filename>
```

- Adjusts the timestamp of the specified file. With no flags uses the current date/time
- If the file does not exist, touch creates it
- File extensions (.exe, .txt) often don't matter in UNIX. touch create a blank plan-text file.
- Create a new directory

Make directory

```
mkdir [flags] <directory>
```

- Makes a new directory with the specified names
- Can use relative/absolute paths to make directories outside the current directory

Delete File or Directory

Delete file

Remove file

```
rm [flags] <file>
```

- Using wildcards (more later) you can remove multiple files
- rm * removes every files in the current directory
- rm *.jpg removes every .jpg file in the current directory
- rm -i filename **prompts before deletion**
 - By default, rm can't remove directories

Delete directory

Remove directory

```
rmdir [flags] <directory>
```

- Removes an empty directory. Throws an error if the directory is not empty
- -r flag delete a directory and all its subdirectories
- rm -r /homes/lixin/oldstuff

Copy and move

Сору

```
cp [flags] <file> <destination>
```

- Copy a file from one location to another
- To copy multiple files you can use wildcards (such as *)
- cp -r <src> <dest> copies a complete directory
- cp *.mp3 /music/ copies all .mp3 files from the current directory to /homes/<username>/music/
- Unlike cp, the move command automatically recurses for directories

move

```
mv [flags] <source> <destination>
```

- Moves a file or directory from one place to another
- Also used for renaming, just move from <oldname> to <newname>

More about Flags/Options

- Most commands take flags (also called options).
- These usually come before any targets and begin with a -
 - ▶ One Option ls -1
 - ▶ Two Options ls -l -Q or ls -lQ

Get Help?

The manual command

man <command name>

- Brings up the manual page (manpage) for the selected command
- manpages are system-specific (unlike google results)
- Pretty comprehensive list of all possible options/parameters
- Be aware, there are subtle differences with options on different systems. Always refer to man for the most precise answer.

Class Activity

- Let's try to play with the following commands
 - who
 - whoami
 - write
- Task: find out a friend who logged on the same Unix machine and send a message to him/her
- More commands to try
 - echo
 - date

More Utilities

WC

- How many lines of code are in my program?
- ▶ How many words are in this document?
- Good for bragging rights

Word, Character, Line, and Byte count with wo

- wc −1: count the number of lines
- wc -w: count the number of words
- wc -m: count the number of characters
- wc −c: count the number of bytes

More Utilities

sort

- Sort the lines of a text file alphabetically
 - ▶ sort -ru file
 - Sorts the file in reverse order and deletes duplicate lines
 - ▶ sort -k 2 file
 - Sorts the file using the second column

uniq

- uniq file
 - Discards all but one of the successive identical lines
- ▶ uniq -c file
 - Prints the number of successive identical lines next to each line

More Utilities

- tail Display last n lines of file
 \$ tail -n file
- p grep Find a pattern in a file
 \$ grep "pattern" file

Character Manipulation

The Translate Command

```
tr [options] <char list1> [char list2]
```

- translate or delete characters
- char_lists are strings of characters
- By default, searches for characters in char_list1 and replaces them with the ones that occupy the same position in char_list2

Example

tr 'AEIOU' 'aeiou' changes all capital vowels to lower case vowels

tr a-z A-Z converts lower to upper case

tr -d t deletes t

Pipes and Redirection

On UNIX, the standard input (stdin) is the keyboard; the standard output (stdout) is the display screen. tr waits for you to type in the data from the keyboard and displays the sorted data on the screen.

keyboard

- What if we want to operate on files?
 - Piping: cat somefile | tr 'AEIOU' 'aeiou'
 - ▶ Input redirection: tr 'AEIOU' 'aeiou' < somefile

Input/Output Redirection

Using the ">" character after a command to redirect standard output:

```
$ sort names > names.sort
$ uniq names.sort
```


Input/Output Redirection

Using the "<" character after a command to redirect standard input:</p>

\$ uniq < names.sort</pre>

This is the same as:

\$ uniq names.sort

Using input and output redirection together:

Piping

 Combining simple commands together to do more powerful things. This is accomplished using the "pipe" character

Piping

```
<command 1> | <command2>
```

Passes the output from command I to input of command 2

Works for lots of programs that take input and provide output to the terminal

Pipes

The standard output of a program can be "piped" into the standard input of another

program:

\$ sort names | uniq

Pipes

Several pipes can be connected:

```
$ cat names | sort | uniq
Barak Obama
Bill Clinton
Bill Gates
George W. Bush
```

▶ Pipes and I/O redirection can be used together:

```
$ sort -r names | uniq > names.rev
$ cat names.rev
George W. Bush
Bill Gates
Bill Clinton
Barak Obama
```

Putting things together

An Example

We can put some of these together commands together now to do interesting things.

```
tr 'A-Z ' 'a-z\n' < file | sort | uniq -c | sort -rn | head -n 10
```


tee

What if you want to redirect your output to a file and still see it on the stdout?

tee Example

ls -l | tee output.txt

