Spectra-trait PLSR example using NEON AOP pixel spectra and field-sampled leaf nitrogen content from CONUS NEON sites

Shawn P. Serbin, Julien Lamour, & Jeremiah Anderson

Overview

This is an R Markdown Notebook to illustrate how to develop pixel-scale spectra-trait PLSR models. This example uses image data from NEON AOP and associated field measurements of leaf nitrogen content collected across a range of CONUS NEON sites. For more information refer to the dataset EcoSIS page: https://ecosis.org/package/canopy-spectra-to-map-foliar-functional-traits-over-neon-domains-in-eastern-united-states

Getting Started

Installation

```
## Skipping install of 'spectratrait' from a github remote, the SHA1 (902afb48) has not changed since 1
     Use `force = TRUE` to force installation
##
## Attaching package: 'pls'
  The following object is masked from 'package:stats':
##
       loadings
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
       filter, lag
## The following objects are masked from 'package:base':
       intersect, setdiff, setequal, union
##
## here() starts at /Users/sserbin/Data/GitHub/PLSR_for_plant_trait_prediction
##
## Attaching package: 'gridExtra'
  The following object is masked from 'package:dplyr':
##
##
##
       combine
```

Setup other functions and options

```
### Setup other functions and options
# not in
`%notin%` <- Negate(`%in%`)</pre>
# Script options
pls::pls.options(plsralg = "oscorespls")
pls::pls.options("plsralg")
## $plsralg
## [1] "oscorespls"
# Default par options
opar <- par(no.readonly = T)</pre>
# What is the target variable? What is the variable name in the input dataset?
inVar <- "Nitrogen"</pre>
# What is the source dataset from EcoSIS?
ecosis id <- "b9dbf3db-5b9c-4ab2-88c2-26c8b39d0903"
# Specify output directory, output_dir
# Options:
# tempdir - use a OS-specified temporary directory
# user defined PATH - e.g. "~/scratch/PLSR"
output_dir <- "tempdir"</pre>
```

Set working directory (scratch space)

[1] "/private/var/folders/xp/h3k9vf3n2jx181ts786_yjrn9c2gjq/T/RtmpOScMIH"

Grab data from EcoSIS

```
print(paste0("Output directory: ",getwd())) # check wd
## [1] "Output directory: /Users/sserbin/Data/GitHub/PLSR_for_plant_trait_prediction/vignettes"
dat_raw <- spectratrait::get_ecosis_data(ecosis_id = ecosis_id)</pre>
## [1] "**** Downloading Ecosis data ****"
## Downloading data...
##
## -- Column specification ------
## cols(
##
    .default = col_double(),
   Affiliation = col_character(),
##
   PI = col_character(),
##
   Plot_ID = col_character(),
   Project = col_character()
## )
## i Use `spec()` for the full column specifications.
## Download complete!
```

```
head(dat_raw)
## # A tibble: 6 x 459
     Affiliation Boron Calcium Carbon Carotenoids_area Carotenoids_mass Cellulose
                  <dbl>
                           <dbl>
                                  <dbl>
                                                   <dbl>
                                                                     <dbl>
                                                                                <dbl>
## 1 University~ 0.0420
                           24.2
                                   463.
                                                    9.19
                                                                      1.18
                                                                                221.
## 2 University~ 0.0361
                           6.90
                                   558.
                                                   10.8
                                                                      1.17
                                                                                183.
## 3 University~ 0.0407
                           16.7
                                   532.
                                                   12.2
                                                                      1.52
                                                                                133.
## 4 University~ 0.0461
                          13.9
                                   461.
                                                    9.16
                                                                      1.50
                                                                                220.
## 5 University~ 0.0401
                          13.7
                                   510.
                                                   11.0
                                                                      1.53
                                                                                101.
## 6 University~ 0.0456
                          14.5
                                   557.
                                                    8.90
                                                                      1.24
                                                                                214.
## # ... with 452 more variables: Chlorophylls_area <dbl>,
       Chlorophylls_mass <dbl>, Copper <dbl>, EWT <dbl>, Fiber <dbl>,
       Flavonoids <dbl>, LMA <dbl>, Lignin <dbl>, Magnesium <dbl>,
## #
## #
       Manganese <dbl>, NSC <dbl>, Nitrogen <dbl>, PI <chr>, Phenolics <dbl>,
       Phosphorus <dbl>, Plot ID <chr>, Potassium <dbl>, Project <chr>, SLA <dbl>,
## #
## #
       Sample_Year <dbl>, Starch <dbl>, Sugar <dbl>, Sulfur <dbl>, Water <dbl>,
       d13C <dbl>, d15N <dbl>, `384` <dbl>, `389` <dbl>, `394` <dbl>, `399` <dbl>,
## #
## #
       `404` <dbl>, `409` <dbl>, `414` <dbl>, `419` <dbl>, `424` <dbl>,
## #
       '429' <dbl>, '434' <dbl>, '439' <dbl>, '444' <dbl>, '449' <dbl>,
       `454` <dbl>, `459` <dbl>, `464` <dbl>, `469` <dbl>, `474` <dbl>,
## #
       `479` <dbl>, `484` <dbl>, `489` <dbl>, `494` <dbl>, `499` <dbl>,
## #
## #
       `504` <dbl>, `509` <dbl>, `514` <dbl>, `519` <dbl>, `524` <dbl>,
       `529` <dbl>, `534` <dbl>, `539` <dbl>, `544` <dbl>, `549` <dbl>,
## #
       `554` <dbl>, `559` <dbl>, `564` <dbl>, `569` <dbl>, `574` <dbl>,
## #
       `579` <dbl>, `584` <dbl>, `589` <dbl>, `594` <dbl>, `599` <dbl>,
## #
## #
       `604` <dbl>, `609` <dbl>, `614` <dbl>, `619` <dbl>, `624` <dbl>,
       `629` <db1>, `634` <db1>, `639` <db1>, `644` <db1>, `649` <db1>,
       `654` <dbl>, `659` <dbl>, `664` <dbl>, `669` <dbl>, `674` <dbl>,
## #
## #
       `679` <dbl>, `684` <dbl>, `689` <dbl>, `694` <dbl>, `699` <dbl>,
## #
       `704` <dbl>, `709` <dbl>, `714` <dbl>, `719` <dbl>, `724` <dbl>,
       '729' <dbl>, '734' <dbl>, '739' <dbl>, '744' <dbl>, '749' <dbl>, ...
names(dat_raw)[1:40]
    [1] "Affiliation"
                             "Boron"
                                                  "Calcium"
##
    [4] "Carbon"
                             "Carotenoids area"
                                                 "Carotenoids mass"
   [7] "Cellulose"
                             "Chlorophylls area"
                                                 "Chlorophylls mass"
## [10] "Copper"
                             "FWT"
                                                 "Fiber"
                             "LMA"
## [13] "Flavonoids"
                                                 "Lignin"
                                                 "NSC"
## [16] "Magnesium"
                             "Manganese"
## [19] "Nitrogen"
                             "PI"
                                                 "Phenolics"
## [22] "Phosphorus"
                             "Plot_ID"
                                                 "Potassium"
                                                 "Sample_Year"
## [25] "Project"
                             "SLA"
                             "Sugar"
                                                 "Sulfur"
## [28] "Starch"
## [31] "Water"
                             "d13C"
                                                 "d15N"
                             "389"
                                                 "394"
## [34] "384"
## [37] "399"
                             "404"
                                                 "409"
```

Create full plsr dataset

[40] "414"

```
# identify the trait data and other metadata
sample_info <- dat_raw[,names(dat_raw) %notin% seq(300,2600,1)]</pre>
head(sample info)
## # A tibble: 6 x 33
    Affiliation Boron Calcium Carbon Carotenoids_area Carotenoids_mass Cellulose
##
     <chr>
                  <dbl>
                         <dbl> <dbl>
                                                   <dbl>
                                                                     <dbl>
                                                                               <dbl>
## 1 University~ 0.0420
                          24.2
                                  463.
                                                    9.19
                                                                      1.18
                                                                                221.
## 2 University~ 0.0361
                          6.90 558.
                                                   10.8
                                                                      1.17
                                                                                183.
## 3 University~ 0.0407
                         16.7
                                  532.
                                                   12.2
                                                                      1.52
                                                                                133.
## 4 University~ 0.0461
                         13.9
                                  461.
                                                    9.16
                                                                      1.50
                                                                                220.
## 5 University~ 0.0401
                         13.7
                                  510.
                                                   11.0
                                                                      1.53
                                                                                101.
## 6 University~ 0.0456
                         14.5
                                   557.
                                                    8.90
                                                                      1.24
                                                                                214.
## # ... with 26 more variables: Chlorophylls_area <dbl>, Chlorophylls_mass <dbl>,
       Copper <dbl>, EWT <dbl>, Fiber <dbl>, Flavonoids <dbl>, LMA <dbl>,
      Lignin <dbl>, Magnesium <dbl>, Manganese <dbl>, NSC <dbl>, Nitrogen <dbl>,
      PI <chr>, Phenolics <dbl>, Phosphorus <dbl>, Plot_ID <chr>,
       Potassium <dbl>, Project <chr>, SLA <dbl>, Sample_Year <dbl>, Starch <dbl>,
       Sugar <dbl>, Sulfur <dbl>, Water <dbl>, d13C <dbl>, d15N <dbl>
# spectra matrix
Spectra <- as.matrix(dat_raw[,names(dat_raw) %notin% names(sample_info)])</pre>
# set the desired spectra wavelength range to include
Start.wave <- 500
End.wave <- 2400
wv <- seq(Start.wave, End.wave, 1)</pre>
final_spec <- Spectra[,round(as.numeric(colnames(Spectra))) %in% wv]</pre>
colnames(final_spec) <- c(paste0("Wave_",colnames(final_spec)))</pre>
## Drop bad spectra data - for canopy-scale reflectance, often the "water band" wavelengths
## are too noisy to use for trait estimation. Its possible to remove these wavelengths
## prior to model fitting. Its best to first identify which wavelengths to drop
## before attempting PLSR, as these ranges may need to be considered on a case-by-case
## basis or generalized for multiple datasets
dropwaves <- c(1350:1440, 1826:1946)
final_spec <- final_spec[,colnames(final_spec) %notin% paste0("Wave_",dropwaves)]</pre>
wv <- as.numeric(gsub(pattern = "Wave_",replacement = "", x = colnames(final_spec)))</pre>
## Drop bad spectra data - for canopy-scale reflectance, often the "water band" wavelengths
## are too noisy to use for trait estimation. Its possible to remove these wavelengths
## prior to model fitting. Its best to first identify which wavelengths to drop
## before attempting PLSR, as these ranges may need to be considered on a case-by-case
## basis or generalized for multiple datasets
dropwaves \leftarrow c(1350:1440, 1826:1946)
final_spec <- final_spec[,colnames(final_spec) %notin% paste0("Wave_",dropwaves)]</pre>
wv <- as.numeric(gsub(pattern = "Wave_",replacement = "", x = colnames(final_spec)))</pre>
# assemble example dataset
sample_info2 <- sample_info %>%
  select(Plot_ID,Sample_Year,SLA,Nitrogen)
site_plot <- data.frame(matrix(unlist(strsplit(sample_info2$Plot_ID, "_")),</pre>
                                ncol=2, byrow=TRUE))
colnames(site_plot) <- c("Plot_Num", "SampleID")</pre>
```

```
sample_info3 <- data.frame(site_plot,sample_info2)

plsr_data <- data.frame(sample_info3,final_spec*0.01)
rm(sample_info,sample_info2,sample_info3,Spectra, site_plot)</pre>
```

Example data cleaning.

Create cal/val datasets

```
## Make a stratified random sampling in the strata USDA_Species_Code and Domain
method <- "base" #base/dplyr
\# base R - a bit slow
# dplyr - much faster
split_data <- spectratrait::create_data_split(dataset=plsr_data, approach=method, split_seed=2356326,
                                              prop=0.8, group_variables="Plot_Num")
## D02
        Cal: 80.4597701149425%
## D03
        Cal: 80.327868852459%
## D05
        Cal: 80%
        Cal: 79.7297297297%
## D06
## D07
        Cal: 79.2452830188679%
        Cal: 79.8165137614679%
## D08
## D09
        Cal: 79.6296296296%
names(split_data)
## [1] "cal data" "val data"
cal.plsr.data <- split data$cal data
head(cal.plsr.data)[1:8]
    Plot_Num SampleID Plot_ID Sample_Year
                                                 SLA Nitrogen Wave_504 Wave_509
## 2
         D02
                 0002 D02_0002
                                       2017 10.77861 27.70598 1.2909576 1.4075910
## 3
         D02
                 0003 D02_0003
                                       2017 12.46154 34.63999 1.2976806 1.4257559
## 5
         D02
                 0005 D02 0005
                                       2017 17.27620 26.64623 1.7735714 1.9423405
## 6
         D02
                  0006 D02_0006
                                       2017 12.92806 20.69437 1.7786337 1.9621929
## 7
         D02
                 0007 D02_0007
                                       2017 10.21521 28.87526 1.7981043 1.9359032
```

```
## 8
          D02
                   0008 D02 0008
                                         2017 20.87397 33.63137 0.8780127 0.9454703
val.plsr.data <- split_data$val_data</pre>
head(val.plsr.data)[1:8]
##
      Plot_Num SampleID Plot_ID Sample_Year
                                                     SLA Nitrogen Wave_504 Wave_509
## 1
           D02
                    0001 D02_0001
                                          2017 13.66366 31.18030 1.467240 1.654816
## 4
           D02
                    0004 D02_0004
                                          2017 16.63205 34.54034 1.551933 1.764580
           D02
                    0016 D02_0016
                                          2017 14.44765 22.87740 2.198174 2.403996
## 16
## 18
           D02
                    0019 D02 0019
                                          2017 14.47103 17.73126 1.961911 2.175771
## 19
           D02
                    0020 D02 0020
                                          2017 18.98522 21.32929 1.546430 1.873175
## 20
           D02
                    0021 D02_0021
                                          2017 12.12731 29.50256 1.936263 2.065204
rm(split_data)
# Datasets:
print(paste("Cal observations: ",dim(cal.plsr.data)[1],sep=""))
## [1] "Cal observations: 517"
print(paste("Val observations: ",dim(val.plsr.data)[1],sep=""))
## [1] "Val observations: 130"
cal_hist_plot <- qplot(cal.plsr.data[,paste0(inVar)],geom="histogram",</pre>
                        main = paste0("Cal. Histogram for ",inVar),
                        xlab = paste0(inVar),ylab = "Count",fill=I("grey50"),col=I("black"),
                        alpha=I(.7))
val_hist_plot <- qplot(val.plsr.data[,paste0(inVar)],geom="histogram",</pre>
                        main = paste0("Val. Histogram for ",inVar),
                        xlab = paste0(inVar),ylab = "Count",fill=I("grey50"),col=I("black"),
                        alpha=I(.7)
histograms <- grid.arrange(cal_hist_plot, val_hist_plot, ncol=2)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
   Cal. Histogram for Nitrogen
                                                    Val. Histogram for Nitrogen
 50 -
                                                  10.0 -
 40
                                                5.0 -
 20 -
 10-
                                    40
                                                         10
                 20
                                                                    20
                                                                              30
                       Nitrogen
                                                                       Nitrogen
```

Create calibration and validation PLSR datasets

```
cal_spec <- as.matrix(cal.plsr.data[, which(names(cal.plsr.data) %in% pasteO("Wave_",wv))])</pre>
cal.plsr.data <- data.frame(cal.plsr.data[, which(names(cal.plsr.data) %notin% paste0("Wave_",wv))],</pre>
                             Spectra=I(cal_spec))
head(cal.plsr.data)[1:5]
##
     Plot_Num SampleID Plot_ID Sample_Year
## 2
          D02
                  0002 D02 0002
                                        2017 10.77861
                  0003 D02_0003
## 3
          D02
                                        2017 12.46154
## 5
          D02
                  0005 D02_0005
                                        2017 17.27620
## 6
          D02
                  0006 D02_0006
                                        2017 12.92806
## 7
          D02
                  0007 D02_0007
                                        2017 10.21521
## 8
          D02
                  0008 D02 0008
                                        2017 20.87397
val spec <- as.matrix(val.plsr.data[, which(names(val.plsr.data) %in% paste0("Wave ",wv))])</pre>
val.plsr.data <- data.frame(val.plsr.data[, which(names(val.plsr.data) %notin% paste0("Wave_",wv))],</pre>
                             Spectra=I(val_spec))
head(val.plsr.data)[1:5]
##
      Plot_Num SampleID Plot_ID Sample_Year
                                                    SLA
                   0001 D02_0001
## 1
           D02
                                          2017 13.66366
## 4
           D02
                   0004 D02_0004
                                         2017 16.63205
                   0016 D02_0016
## 16
           D02
                                         2017 14.44765
                   0019 D02_0019
## 18
           D02
                                         2017 14.47103
## 19
           D02
                   0020 D02_0020
                                         2017 18.98522
## 20
           D02
                   0021 D02_0021
                                         2017 12.12731
```

plot cal and val spectra

```
par(mfrow=c(1,2)) # B, L, T, R
spectratrait::f.plot.spec(Z=cal.plsr.data$Spectra,wv=wv,plot_label="Calibration")
spectratrait::f.plot.spec(Z=val.plsr.data$Spectra,wv=wv,plot_label="Validation")
```

Calibration Validation 100 100 Mean Reflectance Mean Reflectance Min/Max Min/Max 95% CI 95% CI 8 8 Reflectance (%) Reflectance (%) 9 9 4 4 20 20 1000 500 1500 2000 500 1000 1500 2000 Wavelength (nm) Wavelength (nm) dev.copy(png,file.path(outdir,paste0(inVar,'_Cal_Val_Spectra.png')), height=2500, width=4900, res=340) ## quartz_off_screen dev.off(); ## pdf par(mfrow=c(1,1))

Use permutation to determine optimal number of components

```
if(grepl("Windows", sessionInfo()$running)){
  pls.options(parallel = NULL)
} else {
  pls.options(parallel = parallel::detectCores()-1)
method <- "pls" #pls, firstPlateau, firstMin
random_seed \leftarrow 1245565
seg <- 50
maxComps <- 16
iterations <- 80
prop <- 0.70
if (method=="pls") {
  # pls package approach - faster but estimates more components....
  nComps <- spectratrait::find_optimal_components(dataset=cal.plsr.data, method=method, maxComps=maxCom
                                                   seg=seg, random_seed=random_seed)
  print(paste0("*** Optimal number of components: ", nComps))
  nComps <- spectratrait::find_optimal_components(dataset=cal.plsr.data, method=method, maxComps=maxCom
                                                   iterations=iterations, seg=seg, prop=prop,
                                                   random_seed=random_seed)
}
```

[1] "*** Running PLS permutation test ***"

```
Abs. minimum Selection

99
009
10
15

Number of components
```

Fit final model

```
plsr.out <- plsr(as.formula(paste(inVar,"~","Spectra")),scale=FALSE,ncomp=nComps,validation="L00",
                  trace=FALSE,data=cal.plsr.data)
fit <- plsr.out$fitted.values[,1,nComps]</pre>
pls.options(parallel = NULL)
# External validation fit stats
par(mfrow=c(1,2)) # B, L, T, R
pls::RMSEP(plsr.out, newdata = val.plsr.data)
##
   (Intercept)
                     1 comps
                                   2 comps
                                                3 comps
                                                              4 comps
                                                                            5 comps
##
         6.538
                       5.984
                                     5.792
                                                  5.662
                                                                5.284
                                                                              5.235
##
       6 comps
                     7 comps
                                   8 comps
                                                9 comps
                                                             10 comps
                                                                           11 comps
##
         5.149
                       5.252
                                     5.121
                                                  4.896
                                                                4.855
                                                                              4.755
      12 comps
##
plot(pls::RMSEP(plsr.out,estimate=c("test"),newdata = val.plsr.data), main="MODEL RMSEP",
     xlab="Number of Components", ylab="Model Validation RMSEP", lty=1, col="black", cex=1.5, lwd=2)
box(1wd=2.2)
```

```
R2(plsr.out, newdata = val.plsr.data)
   (Intercept)
                       1 comps
                                      2 comps
                                                     3 comps
                                                                    4 comps
                                                                                   5 comps
##
    -0.0001616
##
                     0.1621284
                                    0.2150431
                                                   0.2498762
                                                                  0.3467097
                                                                                 0.3586424
##
        6 comps
                       7 comps
                                      8 comps
                                                     9 comps
                                                                   10 comps
                                                                                  11 comps
##
     0.3796062
                     0.3544358
                                    0.3863604
                                                   0.4391471
                                                                  0.4484252
                                                                                 0.4708911
##
       12 comps
     0.4948347
##
plot(pls::R2(plsr.out,estimate=c("test"),newdata = val.plsr.data), main="MODEL R2",
     xlab="Number of Components",ylab="Model Validation R2",lty=1,col="black",cex=1.5,lwd=2)
box(1wd=2.2)
                      MODEL RMSEP
                                                                              MODEL R2
                                                          0.5
    6.5
                                                          0.4
Model Validation RMSEP
    6.0
                                                      Model Validation R2
                                                          0.3
    5.5
                                                          0.2
                                                          0.1
    5.0
        0
               2
                     4
                            6
                                  8
                                         10
                                               12
                                                              0
                                                                    2
                                                                           4
                                                                                  6
                                                                                        8
                                                                                               10
                                                                                                     12
                    Number of Components
                                                                          Number of Components
dev.copy(png,file.path(outdir,paste0(paste0(inVar,"_Validation_RMSEP_R2_by_Component.png"))),
          height=2800, width=4800, res=340)
## quartz_off_screen
##
dev.off();
## pdf
     2
##
par(opar)
```

PLSR fit observed vs. predicted plot data

0005 D02_0005

5

D02

```
#calibration
cal.plsr.output <- data.frame(cal.plsr.data[, which(names(cal.plsr.data) %notin% "Spectra")], PLSR_Pred
                              PLSR_CV_Predicted=as.vector(plsr.out$validation$pred[,,nComps]))
cal.plsr.output <- cal.plsr.output %>%
  mutate(PLSR_CV_Residuals = PLSR_CV_Predicted-get(inVar))
head(cal.plsr.output)
##
     Plot_Num SampleID Plot_ID Sample_Year
                                                  SLA Nitrogen CalVal
## 2
          D02
                  0002 D02_0002
                                       2017 10.77861 27.70598
                                                                  Cal
## 3
          D02
                  0003 D02_0003
                                       2017 12.46154 34.63999
                                                                  Cal
```

2017 17.27620 26.64623

Cal

```
## 6
          D02
                  0006 D02_0006
                                        2017 12.92806 20.69437
                                                                    Cal
                                        2017 10.21521 28.87526
## 7
          D02
                  0007 D02 0007
                                                                    Cal
## 8
          D02
                  0008 D02 0008
                                        2017 20.87397 33.63137
                                                                    Cal
     PLSR_Predicted PLSR_CV_Predicted PLSR_CV_Residuals
##
## 2
           24.65561
                              24.59452
                                               -3.1114612
## 3
           27.85223
                                               -6.9996606
                              27.64033
## 5
           29.36467
                              29.54595
                                                2.8997194
           21.66448
## 6
                              21.68116
                                                0.9867955
## 7
           23.04393
                              22.78554
                                               -6.0897138
## 8
           25.56637
                              25.29798
                                               -8.3333884
cal.R2 <- round(pls::R2(plsr.out)[[1]][nComps],2)
cal.RMSEP <- round(sqrt(mean(cal.plsr.output$PLSR_CV_Residuals^2)),2)</pre>
val.plsr.output <- data.frame(val.plsr.data[, which(names(val.plsr.data) %notin% "Spectra")],</pre>
                               PLSR_Predicted=as.vector(predict(plsr.out,
                                                                 newdata = val.plsr.data,
                                                                 ncomp=nComps, type="response")[,,1]))
val.plsr.output <- val.plsr.output %>%
  mutate(PLSR_Residuals = PLSR_Predicted-get(inVar))
head(val.plsr.output)
##
      Plot_Num SampleID Plot_ID Sample_Year
                                                    SLA Nitrogen CalVal
## 1
                   0001 D02 0001
           D02
                                         2017 13.66366 31.18030
                                                                     Val
## 4
           D02
                   0004 D02_0004
                                         2017 16.63205 34.54034
                                                                     Val
## 16
           D02
                   0016 D02_0016
                                         2017 14.44765 22.87740
                                                                     Val
## 18
           D02
                   0019 D02 0019
                                         2017 14.47103 17.73126
                                                                     Val
## 19
           D02
                   0020 D02 0020
                                         2017 18.98522 21.32929
                                                                     Val
                   0021 D02_0021
                                         2017 12.12731 29.50256
## 20
           D02
                                                                     Val
      PLSR_Predicted PLSR_Residuals
##
## 1
            22.55166
                           -8.628643
## 4
            30.79494
                           -3.745399
## 16
            29.14446
                            6.267060
## 18
            23.47518
                            5.743923
## 19
            23.00736
                            1.678070
            31.93483
                            2.432274
## 20
val.R2 <- round(pls::R2(plsr.out,newdata=val.plsr.data)[[1]][nComps],2)</pre>
val.RMSEP <- round(sqrt(mean(val.plsr.output$PLSR_Residuals^2)),2)</pre>
rng_quant <- quantile(cal.plsr.output[,inVar], probs = c(0.001, 0.999))</pre>
cal_scatter_plot <- ggplot(cal.plsr.output, aes(x=PLSR_CV_Predicted, y=get(inVar))) +</pre>
  theme_bw() + geom_point() + geom_abline(intercept = 0, slope = 1, color="dark grey",
                                            linetype="dashed", size=1.5) + xlim(rng_quant[1], rng_quant[2]
  ylim(rng_quant[1], rng_quant[2]) +
  labs(x=paste0("Predicted ", paste(inVar), " (units)"),
       y=paste0("Observed ", paste(inVar), " (units)"),
       title=paste0("Calibration: ", paste0("Rsq = ", cal.R2), "; ", paste0("RMSEP = ", cal.RMSEP))) +
  theme(axis.text=element_text(size=18), legend.position="none",
        axis.title=element_text(size=20, face="bold"),
        axis.text.x = element_text(angle = 0, vjust = 0.5),
        panel.border = element_rect(linetype = "solid", fill = NA, size=1.5))
cal_resid_histogram <- ggplot(cal.plsr.output, aes(x=PLSR_CV_Residuals)) +</pre>
  geom_histogram(alpha=.5, position="identity") +
```

```
geom_vline(xintercept = 0, color="black",
             linetype="dashed", size=1) + theme_bw() +
  theme(axis.text=element_text(size=18), legend.position="none",
        axis.title=element_text(size=20, face="bold"),
        axis.text.x = element_text(angle = 0, vjust = 0.5),
        panel.border = element_rect(linetype = "solid", fill = NA, size=1.5))
rng quant <- quantile(val.plsr.output[,inVar], probs = c(0.001, 0.999))
val_scatter_plot <- ggplot(val.plsr.output, aes(x=PLSR_Predicted, y=get(inVar))) +</pre>
  theme_bw() + geom_point() + geom_abline(intercept = 0, slope = 1, color="dark grey",
                                          linetype="dashed", size=1.5) + xlim(rng_quant[1], rng_quant[2]
  ylim(rng_quant[1], rng_quant[2]) +
  labs(x=paste0("Predicted ", paste(inVar), " (units)"),
       y=paste0("Observed ", paste(inVar), " (units)"),
       title=paste0("Validation: ", paste0("Rsq = ", val.R2), "; ", paste0("RMSEP = ", val.RMSEP))) +
  theme(axis.text=element_text(size=18), legend.position="none",
        axis.title=element_text(size=20, face="bold"),
        axis.text.x = element_text(angle = 0, vjust = 0.5),
        panel.border = element_rect(linetype = "solid", fill = NA, size=1.5))
val_resid_histogram <- ggplot(val.plsr.output, aes(x=PLSR_Residuals)) +</pre>
  geom_histogram(alpha=.5, position="identity") +
  geom_vline(xintercept = 0, color="black",
             linetype="dashed", size=1) + theme_bw() +
  theme(axis.text=element_text(size=18), legend.position="none",
       axis.title=element_text(size=20, face="bold"),
        axis.text.x = element_text(angle = 0, vjust = 0.5),
        panel.border = element_rect(linetype = "solid", fill = NA, size=1.5))
# plot cal/val side-by-side
scatterplots <- grid.arrange(cal_scatter_plot, val_scatter_plot, cal_resid_histogram,</pre>
                             val_resid_histogram, nrow=2,ncol=2)
## Warning: Removed 5 rows containing missing values (geom_point).
## Warning: Removed 2 rows containing missing values (geom_point).
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```


Generate Coefficient and VIP plots

```
lines(wv, vips, lwd=3)
abline(h=0.8, lty=2, col="dark grey")
box(lwd=2.2)
      9.0
      0.4
Regression coefficients
      0.2
      0.0
      -0.2
      9.0
             500
                                         1000
                                                                      1500
                                                                                                  2000
                                                             Wavelength (nm)
      2.5
      2.0
      1.5
```

1500

Wavelength (nm)

2000

1000

```
## quartz_off_screen
## 3
dev.off();
## pdf
## 2
par(opar)
```

Bootstrap validation

0.

0.5

500

```
## [1] "*** Running permutation test. Please hang tight, this can take awhile ***" ## [1] "Options: 12 500 100 0.7"
```

- ## Running interation 1
- ## Running interation 2
- ## Running interation 3
- ## Running interation 4
- ## Running interation 5
- ## Running interation 6
- ## Running interation 7
- ## Running interation 8
- ## Running interation 9
- ## Running interation 10
- ## Running interation 11
- ## Running interation 12
- ## Running interation 13
- ## Running interation 14
- ## Running interation 15
- ## Running interation 16
- ## Running interation 17
- S .
- ## Running interation 18
- ## Running interation 19
- ## Running interation 20
- ## Running interation 21
- ## Running interation 22
- ## Running interation 23
- ## Running interation 24
- ## Running interation 25
- ## Running interation 26
- ## Running interation 27
- ## Running interation 28
- ## Running interation 29
- ## Running interation 30
- ## Running interation 31
- ## Running interation 32
- ## Running interation 33
- ## Running interation 34
- ## Running interation 35
- ## Running interation 36

- ## Running interation 37
- ## Running interation 38
- ## Running interation 39
- ## Running interation 40
- ## Running interation 41
- ## Running interation 42
- ## Running interation 43
- ## Running interation 44
- ## Running interation 45
- ## Running interation 46
- ## Running interation 47
- ## Running interation 48
- ## Running interation 49
- ## Running interation 50
- ## Running interation 51
- ## Running interation 52
- ## Running interation 53
- ## Running interation 54
- · ·
- ## Running interation 55
- ## Running interation 56
- ## Running interation 57
- ## Running interation 58
- ## Running interation 59
- ## Running interation 60
- ## Running interation 61
- ## Running interation 62
- ## Running interation 63
- ## Running interation 64
- ## Running interation 65
- ## Running interation 66
- ## Running interation 67
- ## Running interation 68
- ## Running interation 69
- ## Running interation 70
- ## Running interation 71
- ## Running interation 72

- ## Running interation 73
- ## Running interation 74
- ## Running interation 75
- ## Running interation 76
- ## Running interation 77
- ## Running interation 78
- ## Running interation 79
- ## Running interation 80
- ## Running interation 81
- ## Running interation 82
- ## Running interation 83
- ## Running interation 84
- ## Running interation 85
- ## Running interation 86
- ## Running interation 87
- ## Running interation 88
- ## Running interation 89
- ## Running interation 90
- ## Running interation 91
- ## Running interation 92
- ## Running interation 93
- ## Running interation 94
- ## Running interation 95
- ## Running interation 96
- ## Running interation 97
- ## Running interation 98
- ## Running interation 99
- ## Running interation 100
- ## Running interation 101
- ## Running interation 102
- ## Running interation 103
- ## Running interation 104
- ## Running interation 105
- ## Running interation 106
- ## Running interation 107
- ## Running interation 108

- ## Running interation 109
- ## Running interation 110
- ## Running interation 111
- ## Running interation 112
- ## Running interation 113
- ## Running interation 114
- ## Running interation 115
- ## Running interation 116
- ## Running interation 117
- ## Running interation 118
- ## Running interation 119
- ## Running interation 120
- ## Running interation 121
- ## Running interation 122
- ## Running interation 123
- ## Running interation 124
- ## Running interation 125
- ## Running interation 126
- 8
- ## Running interation 127
- ## Running interation 128
- ## Running interation 129
- ## Running interation 130
- ## Running interation 131
- ## Running interation 132
- ## Running interation 133
- ## Running interation 134
- ## Running interation 135
- ## Running interation 136
- ## Running interation 137
- ## Running interation 138
- ## Running interation 139
- ## Running interation 140
- ## Running interation 141
- ## Running interation 142
- ## Running interation 143
- ## Running interation 144

- ## Running interation 145
- ## Running interation 146
- ## Running interation 147
- ## Running interation 148
- ## Running interation 149
- ## Running interation 150
- ## Running interation 151
- ## Running interation 152
- ## Running interation 153
- ## Running interation 154
- ## Running interation 155
- ## Running interation 156
- ## Running interation 157
- ## Running interation 158
- ## Running interation 159
- ## Running interation 160
- ## Running interation 161
- ## Running interation 162
- ## Running interation 163
- ## Running interation 164
- ## Running interation 165
- ## Running interation 166
- ## Running interation 167
- ## Running interation 168
- ## Running interation 169
- ## Running interation 170
- ## Running interation 171
- ## Running interation 172
- ## Running interation 173
- ## Running interation 174
- ## Running interation 175
- ## Running interation 176
- ## Running interation 177
- ## Running interation 178
- ## Running interation 179
- ## Running interation 180

- ## Running interation 181
- ## Running interation 182
- ## Running interation 183
- ## Running interation 184
- ## Running interation 185
- ## Running interation 186
- ## Running interation 187
- ## Running interation 188
- ## Running interation 189
- ## Running interation 190
- ## Running interation 191
- ## Running interation 192
- ## Running interation 193
- ## Running interation 194
- ## Running interation 195
- ## Running interation 196
- ## Running interation 197
- ## Running interation 198
- •
- ## Running interation 199
- ## Running interation 200
- ## Running interation 201
- ## Running interation 202
- ## Running interation 203
- ## Running interation 204
- ## Running interation 205
- ## Running interation 206
- ## Running interation 207
- ## Running interation 208 $\,$
- ## Running interation 209
- ## Running interation 210
- ## Running interation 211
- ## Running interation 212
- ## Running interation 213
- ## Running interation 214
- ## Running interation 215
- ## Running interation 216

- ## Running interation 217
- ## Running interation 218
- ## Running interation 219
- ## Running interation 220
- ## Running interation 221
- ## Running interation 222
- ## Running interation 223
- ## Running interation 224
- ## Running interation 225
- ## Running interation 226
- ## Running interation 227
- ## Running interation 228
- ## Running interation 229
- ## Running interation 230
 ## Running interation 231
- ## Running interation 232
- 6
- ## Running interation 233
- ## Running interation 234
- ## Running interation 235
- ## Running interation 236
- ## Running interation 237
- ## Running interation 238
- ## Running interation 239
- ## Running interation 240
- ## Running interation 241
- ## Running interation 242
- ## Running interation 243
- ## Running interation 244
- ## Running interation 245
- ## Running interation 246
- ## Running interation 247
- ## Running interation 248
- ## Running interation 249
- ## Running interation 250
- ## Running interation 251
- ## Running interation 252

- ## Running interation 253
- ## Running interation 254
- ## Running interation 255
- ## Running interation 256
- ## Running interation 257
- ## Running interation 258
- ## Running interation 259
- ## Running interation 260
- ## Running interation 261
- ## Running interation 262
- ## Running interation 263
- ## Running interation 264
- ## Running interation 265
- ## Running interation 266
- ## Running interation 267
- ## Running interation 268
- ## Running interation 269
- ## Running interation 270
- ## Running interation 271
- ## Running interation 272
- ## Running interation 273
- ## Running interation 274
- ## Running interation 275
- ## Running interation 276
- ## Running interation 277
- ## Running interation 278
- ## Running interation 279
- ## Running interation 280
- ## Running interation 281
- ## Running interation 282
- ## Running interation 283
- ## Running interation 284
- ## Running interation 285
- ## Running interation 286
- ## Running interation 287
- ## Running interation 288

- ## Running interation 289
- ## Running interation 290
- ## Running interation 291
- ## Running interation 292
- ## Running interation 293
- ## Running interation 294
- ## Running interation 295
- ## Running interation 296
- ## Running interation 297
- ## Running interation 298
- ## Running interation 299
- ## Running interation 300
- ## Running interation 301
- "" Warming involution out
- ## Running interation 302
- ## Running interation 303
- ## Running interation 304
- ## Running interation 305
- ## Running interation 306
- ## Running interation 307
- ## Running interation 308
- ## Running interation 309
- ## Running interation 310
- ## Running interation 311
- ## Running interation 312
- ## Running interation 313
- ## Running interation 314
- ## Running interation 315
- ## Running interation 316
- ## Running interation 317
- ## Running interation 318
- ## Running interation 319
- ## Running interation 320
- ## Running interation 321
- ## Running interation 322
- ## Running interation 323
- ## Running interation 324

- ## Running interation 325
- ## Running interation 326
- ## Running interation 327
- ## Running interation 328
- ## Running interation 329
- ## Running interation 330
- ## Running interation 331
- ## Running interation 332
- ## Running interation 333
- **G**
- ## Running interation 334
- ## Running interation 335
- ## Running interation 336
- ## Running interation 337
- ## Running interation 338
- ## Running interation 339
- ## Running interation 340
- ## Running interation 341
- ## Running interation 342
- ## Running interation 343
- ## Running interation 344
- ## Running interation 345
- ## Running interation 346
- ## Running interation 347
- ## Running interation 348
- ## Running interation 349
- ## Running interation 350
- ## Running interation 351
- ## Running interation 352
- ## Running interation 353
- ## Running interation 354
- ## Running interation 355
- ## Running interation 356
- ## Running interation 357
- ## Running interation 358
- ## Running interation 359
- ## Running interation 360

- ## Running interation 361
- ## Running interation 362
- ## Running interation 363
- ## Running interation 364
- ## Running interation 365
- ## Running interation 366
- ## Running interation 367
- ## Running interation 368
- ## Running interation 369
- ## Running interation 370
- ## Running interation 371
- ## Running interation 372
- ## Running interation 373
- ## Running interation 374
- ## Running interation 375
- ## Running interation 376
- ## Running interation 377
- ## Running interation 378
- •
- ## Running interation 379
- ## Running interation 380
- ## Running interation 381
- ## Running interation 382
 ## Running interation 383
- •
- ## Running interation 384
- ## Running interation 385
- ## Running interation 386
- ## Running interation 387
- ## Running interation 388
- ## Running interation 389
- ## Running interation 390
- ## Running interation 391
- ## Running interation 392
- ## Running interation 393
- ## Running interation 394
- ## Running interation 395
- ## Running interation 396

- ## Running interation 397
- ## Running interation 398
- ## Running interation 399
- ## Running interation 400
- ## Running interation 401
- ## Running interation 402
- ## Running interation 403
- ## Running interation 404
- ## Running interation 405
- ## Running interation 406
- ## Running interation 407
- ## Running interation 408
- ## Running interation 409
- ## Running interation 410
- ## Running interation 411
- ## Running interation 412
- ## Running interation 413
- ## Running interation 414
- 8
- ## Running interation 415
- ## Running interation 416
- ## Running interation 417
- ## Running interation 418
- ## Running interation 419
- ## Running interation 420
- ## Running interation 421
- ## Running interation 422
- ## Running interation 423
- ## Running interation 424
- ## Running interation 425
- ## Running interation 426
- ## Running interation 427
- ## Running interation 428
- ## Running interation 429
- ## Running interation 430
- ## Running interation 431
- ## Running interation 432

- ## Running interation 433
- ## Running interation 434
- ## Running interation 435
- ## Running interation 436
- ## Running interation 437
- ## Running interation 438
- ## Running interation 439
- ## Running interation 440
- ## Running interation 441
- ## Running interation 442
- ## Running interation 443
- ## Running interation 444
- ## Running interation 445
- ## Running interation 446
- ## Running interation 447
- ## Running interation 448
- 6
- ## Running interation 449
- ## Running interation 450
- ## Running interation 451
- ## Running interation 452
- ## Running interation 453
- ## Running interation 454
- ## Running interation 455
- ## Running interation 456
- ## Running interation 457
- ## Running interation 458
- ## Running interation 459
- ## Running interation 460
- ## Running interation 461
- ## Running interation 462
- ## Running interation 463
- ## Running interation 464
- ## Running interation 465
- ## Running interation 466
- ## Running interation 467
- ## Running interation 468

```
## Running interation 469
## Running interation 470
## Running interation 471
```

Running interation 472

Numming interaction 4/2

Running interation 473

Running interation 474

Running interation 475

Running interation 476

Running interation 477

Running interation 478

Running interation 479

Running interation 480

Running interation 481

Running interation 482

Running interation 483

Running interation 484

Running interation 485

Running interation 486

Running interation 487

Running interation 488

Running interation 489

Running interation 490

Running interation 491

Running interation 492

Running interation 493

Running interation 494

Running interation 495

Running interation 496

Running interation 497

Running interation 498

Running interation 499

Running interation 500

##		Plot_Num	SampleID	Plot_ID	Sample_Year	SLA	Nitrogen	${\tt CalVal}$
##	1	D02	0001	D02_0001	2017	13.66366	31.18030	Val
##	4	D02	0004	D02_0004	2017	16.63205	34.54034	Val
##	16	D02	0016	D02_0016	2017	14.44765	22.87740	Val
##	18	D02	0019	D02_0019	2017	14.47103	17.73126	Val
##	19	D02	0020	D02 0020	2017	18.98522	21.32929	Val

```
## 20
                   0021 D02_0021
           D02
                                         2017 12.12731 29.50256
                                                                   Val
                                                   UCT
##
      PLSR_Predicted PLSR_Residuals
                                         LCI
                                                            LPI
                                                                     UPT
            22.55166
                          -8.628643 21.75139 23.67919 13.44246 31.66086
## 1
## 4
            30.79494
                          -3.745399 29.24737 32.37867 21.60577 39.98412
## 16
            29.14446
                           6.267060 27.57462 30.82609 19.93270 38.35621
## 18
            23.47518
                           5.743923 21.73808 24.49326 14.31158 32.63878
## 19
            23.00736
                           1.678070 20.70321 24.57934 13.73687 32.27785
            31.93483
                           2.432274 30.75996 34.32739 22.69357 41.17610
## 20
```

Jackknife coefficient plot

Bootstrap regression coefficients


```
## quartz_off_screen
## 3
dev.off();
```

pdf ## 2

Bootstrap validation plot

```
RMSEP <- sqrt(mean(val.plsr.output$PLSR Residuals^2))</pre>
pecr RMSEP <- RMSEP/mean(val.plsr.output[,inVar])*100</pre>
r2 <- round(pls::R2(plsr.out, newdata = val.plsr.data)$val[nComps+1],2)
expr <- vector("expression", 3)</pre>
expr[[1]] \leftarrow bquote(R^2==.(r2))
expr[[2]] <- bquote(RMSEP==.(round(RMSEP,2)))</pre>
expr[[3]] <- bquote("%RMSEP"==.(round(pecr_RMSEP,2)))</pre>
rng_vals <- c(min(val.plsr.output$LPI), max(val.plsr.output$UPI))</pre>
par(mfrow=c(1,1), mar=c(4.2,5.3,1,0.4), oma=c(0, 0.1, 0, 0.2))
plotrix::plotCI(val.plsr.output$PLSR_Predicted,val.plsr.output[,inVar],
                li=val.plsr.output$LPI, ui=val.plsr.output$UPI, gap=0.009,sfrac=0.000,
                lwd=1.6, xlim=c(rng_vals[1], rng_vals[2]), ylim=c(rng_vals[1], rng_vals[2]),
                err="x", pch=21, col="black", pt.bg=scales::alpha("grey70",0.7), scol="grey80",
                cex=2, xlab=paste0("Predicted ", paste(inVar), " (units)"),
                ylab=paste0("Observed ", paste(inVar), " (units)"),
                cex.axis=1.5,cex.lab=1.8)
abline (0,1,lty=2,lw=2)
plotrix::plotCI(val.plsr.output$PLSR_Predicted,val.plsr.output[,inVar],
                li=val.plsr.output$LCI, ui=val.plsr.output$UCI, gap=0.009,sfrac=0.004,
                lwd=1.6, xlim=c(rng_vals[1], rng_vals[2]), ylim=c(rng_vals[1], rng_vals[2]),
                err="x", pch=21, col="black", pt.bg=scales::alpha("grey70",0.7), scol="black",
                cex=2, xlab=paste0("Predicted ", paste(inVar), " (units)"),
                ylab=paste0("Observed ", paste(inVar), " (units)"),
                cex.axis=1.5,cex.lab=1.8, add=T)
legend("topleft", legend=expr, bty="n", cex=1.5)
box(1wd=2.2)
```

```
R^2 = 0.49
               RMSEP = 4.65
     40
               %RMSEP = 22.1
Observed Nitrogen (units)
     10
                         10
                                          20
                                                           30
                                                                            40
                            Predicted Nitrogen (units)
dev.copy(png,file.path(outdir,paste0(inVar,"_PLSR_Validation_Scatterplot.png")),
         height=2800, width=3200, res=340)
## quartz_off_screen
dev.off();
## pdf
```

Output bootstrap results

Iteration Intercept Wave_504 Wave_509 Wave_514 Wave_519

Create core PLSR outputs

```
print(paste("Output directory: ", getwd()))
## [1] "Output directory: /Users/sserbin/Data/GitHub/PLSR_for_plant_trait_prediction/vignettes"
# Observed versus predicted
write.csv(cal.plsr.output,file=file.path(outdir,
                                          pasteO(inVar,'_Observed_PLSR_CV_Pred_',nComps,
                                                 'comp.csv')),row.names=FALSE)
# Validation data
write.csv(val.plsr.output,file=file.path(outdir,
                                          pasteO(inVar,'_Validation_PLSR_Pred_',nComps,
                                                 'comp.csv')),row.names=FALSE)
# Model coefficients
coefs <- coef(plsr.out,ncomp=nComps,intercept=TRUE)</pre>
write.csv(coefs, file=file.path(outdir, pasteO(inVar, '_PLSR_Coefficients_',
                                              nComps,'comp.csv')),
          row.names=TRUE)
# PLSR VIP
write.csv(vips,file=file.path(outdir,paste0(inVar,
                                             '_PLSR_VIPs_',nComps,
                                             'comp.csv')))
```

Confirm files were written to temp space

```
## [9] "Nitrogen_PLSR_Coefficients_12comp.csv"
## [10] "Nitrogen_PLSR_Component_Selection.png"
## [11] "Nitrogen_PLSR_Validation_Scatterplot.png"
## [12] "Nitrogen_PLSR_VIPs_12comp.csv"
## [13] "Nitrogen_Val_PLSR_Dataset.csv"
## [14] "Nitrogen_Validation_PLSR_Pred_12comp.csv"
```