Computabilità 7 settembre 2021

Esercizio 1

Siano $A, B \subseteq \mathbb{N}$. Definire la nozione di riducibilità $A \leq_m B$. Si dimostri che $A \subseteq \mathbb{N}$ è r.e. se e solo se $A \leq_m K$.

Soluzione: Siano $A, B \subseteq \mathbb{N}$. Si scrive $A \leq_m B$ se esiste $f : \mathbb{N} \to \mathbb{N}$ calcolabile totale tale che per ogni $x \in \mathbb{N}$, $x \in A$ sse $f(x) \in B$.

L'insieme K è noto essere r.e. Quindi se $A \leq_m K$, per riduzione anche A è r.e. Esplicitamente, si può scrivere la funzione caratteristica di A come $sc_A = sc_K \circ f$. Quindi risulta calcolabile per composizione.

Viceversa, se A r.e., per definizione la funzione semi-caratteristica sc_A è calcolabile. Si consideri dunque la funzione $g: \mathbb{N}^2 \to \mathbb{N}$ definita da $g(x,y) = sc_A(x)$. Questa è chiaramente calcolabile e quindi per il teorema smn, esiste $s: \mathbb{N} \to \mathbb{N}$ tale che per ogni $x, y \in \mathbb{N}$

$$\varphi_{s(x)}(y) = g(x,y) = sc_A(x)$$

È facile vedere che s è funzione di riduzione per $A \leq_m K$. Infatti,

- se $x \in A$ allora $\varphi_{s(x)}(y) = g(x,y) = sc_A(x) = 1$ per ogni $y \in \mathbb{N}$. Quindi certamente $s(x) \in W_{s(x)} = \mathbb{N}$. Pertanto $s(x) \in K$.
- se $x \notin A$ allora $\varphi_{s(x)}(y) = g(x,y) = sc_A(x) = \uparrow$ per ogni $y \in \mathbb{N}$. Quindi certamente $s(x) \notin W_{s(x)} = \emptyset$. Pertanto $s(x) \notin K$.

Esercizio 2

Studiare la ricorsività dell'insieme $A=\{x\in\mathbb{N}:x+1\in E_x\}$, ovvero dire se A e \bar{A} sono ricorsivi/ricorsivamente enumerabili.

Soluzione: L'insieme A non è ricorsivo dato che $K \leq_m A$. Per mostrarlo si può considerare la funzione g(x,y) = y se $x \in K$ e indefinita altrimenti, ovvero $g(x,y) = y * sc_K(x)$. Questa è chiaramente calcolabile e quindi per il teorema smn, esiste $s : \mathbb{N} \to \mathbb{N}$ tale che per ogni $x, y \in \mathbb{N}$

$$\varphi_{s(x)}(y) = g(x,y)$$

È facile vedere che s è funzione di riduzione per $K \leq_m A$. Infatti,

• se $x \in K$ allora $\varphi_{s(x)}(y) = g(x,y) = y$ per ogni $y \in \mathbb{N}$. Quindi certamente $s(x) + 1 \in E_{s(x)} = \mathbb{N}$. Pertanto $s(x) \in A$.

• se $x \notin K$ allora $\varphi_{s(x)}(y) = g(x,y) \uparrow$ per ogni $y \in \mathbb{N}$. Quindi certamente $s(x) + 1 \notin E_{s(x)} = \emptyset$. Pertanto $s(x) \notin A$.

L'insieme A è r.e., infatti

$$sc_A(x) = \mathbf{1}(\mu w.S(x, (w)_1, x + 1, (w)_2))$$

quindi \bar{A} non r.e.

Esercizio 3

Studiare la ricorsività dell'insieme $B = \{x \in \mathbb{N} : W_x \cup E_x = \mathbb{N}\}$, ovvero dire se $B \in \overline{B}$ sono ricorsivi/ricorsivamente enumerabili.

Soluzione: Si osserva che B è saturato, dato che $B = \{x \in \mathbb{N} \mid \varphi_x \in \mathcal{B}\}$, dove $\mathcal{B} = \{f \mid dom(f) \cup cod(f) = \mathbb{N}\}$.

Quindi per Rice-Shapiro si conclude

- B non r.e.. Infatti $id \in \mathcal{B}$, visto che $dom(id) \cup cod(id) = \mathbb{N} \cup \mathbb{N} = \mathbb{N}$. Inoltre, nessuna funzione finita $\theta \subseteq id$ può appartenere a \mathcal{B} , dato che $dom(\theta) \cup cod(\theta)$, unione di insiemi finiti, è finito e quindi certamente diverso da \mathbb{N} , qualunque sia θ . Pertanto, per Rice-Shapiro si conclude che B non è r.e.
- \bar{B} non r.e., dato che, come visto sopra, $id \notin \bar{\mathcal{B}}$, ma $\emptyset \in \bar{\mathcal{B}}$ e $\emptyset \subseteq id$ è una parte finita di id. Pertanto, per Rice-Shapiro si conclude che \bar{B} non è r.e.