## Unit – I: Matrices

#### PART A

# **MULTIPLE CHOICE QUESTIONS**

1. The matrix of the quadratic form  $x_1^2 + 5x_2^2 + x_3^2 + 2x_1x_2 + 2x_2x_3 + 6x_3x_1$  is

 $\checkmark(a) \begin{pmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{pmatrix} (b) \begin{pmatrix} 1 & 2 & 3 \\ 1 & 5 & 2 \\ 3 & 2 & 1 \end{pmatrix} (c) \begin{pmatrix} 1 & 4 & 4 \\ 4 & 5 & 3 \\ 4 & 3 & 1 \end{pmatrix} (d) \begin{pmatrix} 1 & 4 & 3 \\ 4 & 5 & 4 \\ 3 & 4 & 1 \end{pmatrix}$ 

2. The number of positive terms in the canonical form is called

(a) Signature  $\checkmark$ (b) Index

- (c) Quadratic form
- (d) Positive definite
- 3. A homogeneous polynomial of second degree in any number of variables is

(a) Canonical form

- ✓(b) Quadratic form
  - (c) Orthogonal
- (d) Diagonal form

(d) Indefinite

4. Find the eigen values of  $A^2$  if  $A = \begin{bmatrix} 3 & 2 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{bmatrix}$ 

- (a) 6, 4, 10  $\checkmark$  (b) 9, 4, 25 (c) 9, 2, 5 (d) 3, 2, 5
- 5. Find the sum and product of the eigen values of  $A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$

 $\sqrt{(a)}$  5, 3

- (b) 3, 5
- (c) 2, 1
- (d) 0, 1
- 6. The eigen values of an orthogonal matrix have the absolute value \_\_\_\_\_

(a) 0

- $\checkmark$ (b) 1 (c) 2 (d) ±1
- 7. All the eigen values of a symmetric matrix with real elements are

(a) Distinct

- ✓(b) Real
- (c) Equal (d) Conjugate complex numbers
- 8. Find the nature of the quadratic form  $2x^2 + 3y^2 + 2z^2 + 2xy$

 $\checkmark$  (a) Positive definite

(b) Negative definite (c) Positive semi-definite

9. Write the Q.F. defined by the matrix 
$$A = \begin{pmatrix} 6 & 1 & -7 \\ 1 & 2 & 0 \\ -7 & 0 & 1 \end{pmatrix}$$

$$(a) 6x_1^2 + 2x_2^2 + x_3^2 + 2x_1x_2 - 14x_1x_3$$

$$(b) 6x_1^2 + x_2^2 + 6x_3^2 + x_1x_2 - 7x_1x_3$$

$$(c) 6x_1^2 + 2x_2^2 + x_3^2 + 2x_1x_2 + 14x_1x_3$$

$$(d) 6x_1^2 + x_2^2 + 6x_3^2 + x_1x_2 - 14x_1x_3$$

10. Find the eigen values of the matrix 
$$\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

$$\checkmark$$
 (a) 1, 3  $\checkmark$  (b) 3, 1 (c) 2, 1 (d) 1, 2

11. Find the eigen values of 
$$A^{10}$$
 if  $A = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}$ 

$$\checkmark$$
 (a) 1,3<sup>10</sup> (b) 3,1 (c) 3<sup>2</sup>,1<sup>10</sup> (d) 0,2

12. If the sum of two eigen values and trace of a 3 x 3 matrix A are equal, find the value of |A|

$$\checkmark$$
 (a) 0 (b) 1 (c) -1 (d) 2

13. Find the characteristic equation of the matrix 
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & 1 & -1 \end{bmatrix}$$

$$\checkmark$$
 (a)  $λ^3 + λ^2 - 18λ - 40$  (b)  $λ^3 - λ^2 + 18λ - 40$   
(c)  $λ^3 + λ^2 + 18λ + 40$  (d)  $λ^3 + λ^2 - 18λ + 40$ 

14. Find the nature of the quadratic form  $x_1^2 + 2x_2^2 + 3x_3^2 + 2x_1x_2 + 2x_2x_3 - 2x_3x_1$ 

15. Find the eigen values of 
$$A = \begin{bmatrix} 2 & 2 & 0 \\ 2 & 1 & 1 \\ -7 & 2 & -3 \end{bmatrix}$$

$$\checkmark$$
 (a) 1,3,-4 (b) 1,-3,-4 (c) 1,-3,4 (d) -1,3,-4

16. The matrix of the quadratic form  $x^2 + xy$  is

$$\checkmark (a) \begin{pmatrix} 1 & 1/2 \\ 1/2 & 0 \end{pmatrix}$$
  $(b) \begin{pmatrix} 1 & 2 \\ 2 & 0 \end{pmatrix}$   $(c) \begin{pmatrix} 0 & 1/2 \\ 1/2 & 1 \end{pmatrix}$   $(d) \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix}$ 

- 17. Two eigen values of the matrix  $A = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{pmatrix}$  are 1 and 2. Find the third eigen value.
- $\checkmark$  (a) 3 (b) b (c) 2 (d) 1
- 18. Two of the eigen values of 3 x 3 matrix A are 2, 1 and |A| = 12. Find the third eigen value
  - $\checkmark$ (a) 6 (b) 3 (c) 2 (d) 1
- 19. If A is an orthogonal matrix then
- 20. Two eigen values of  $A = \begin{bmatrix} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -5 & -2 \end{bmatrix}$  are equal and they are double the third. Find them.
  - $\checkmark$  (a) 1, 2, 2 (b) 2, 1, 1 (c) 2, 0, 1 (d) 1, 2, 3
- 21. Find the inverse of the eigen values of the matrix if  $A = \begin{bmatrix} 1 & -2 \\ -5 & 4 \end{bmatrix}$ 
  - $\checkmark$  (a) -1,1/6 (b) 1,1/6 (c) 1,-1/6 (d) -1,-1/6
- 22. Find rank and index of the QF whose canonical form is  $3y_2^2 3y_3^2$ 
  - $\checkmark$  (a) 2, 1 (b) 1, 2 (c) 0, 1 (d) 0, 2
- 23. Find signature of the QF whose canonical form is  $2y_1^2 y_2^2 y_3^2$ ,
  - (a) 1  $\checkmark$  (b) -1 (c) 0 (d) 6
- 24. The eigen vectors corresponding to the distinct eigen values of a real symmetric matrix are
  - (a) imaginary (b) non-orthogonal (c) real √(d) orthogonal
- 25. Find the characteristic equation of the matrix  $A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$ 
  - (a)  $\lambda^2 3\lambda 2 = 0$   $\checkmark$  (b)  $\lambda^2 + 3\lambda + 2 = 0$  (c)  $\lambda^2 3\lambda + 3 = 0$  (d)  $\lambda^2 6\lambda + 3 = 0$

| 1. If $Z = x^2$ | $+y^2+3xy$ then | what is $\frac{\partial z}{\partial x}$ ? |
|-----------------|-----------------|-------------------------------------------|
|-----------------|-----------------|-------------------------------------------|

(i) 2y+3x (ii) 3y

(iii) 2x+3y

(iv) 2x

2.  $u=\sin^{-1}\left(\frac{x^2+y^2}{x-y}\right)$  is homogeneous function of degree

(i) 2

(ii) 3

(iii) 1

(iv) 4

3.If  $u=ax^2+2hxy+by^2$  then using Euler's theorem find  $x\frac{\partial u}{\partial x}+y\frac{\partial u}{\partial y}=?$ 

(i) u

(ii) 2u

(iii) 3u

(iv) n(n-1)

4. If  $f(x, y) = e^{xy}$  then what is  $f_{yyy}(1, 1)$ ?

(i)-e

(ii) -

(iii)e

 $(iv)^{-\frac{1}{2}}$ 

5. if  $z = \log (x^2 + xy + y^2)$  then what is  $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = ?$ 

(i) 1

(ii)  $\frac{2x+y}{x^2+xy+y^2}$  (iii) 2

 $(iv)\frac{x+2y}{x^2+xy+y^2}$ 

6.If f(x,y) is an implicit function then  $\frac{dy}{dx} = ?$ 

(i)  $-\frac{(\partial f/\partial x)}{(\partial f/\partial y)}$  (ii)  $\frac{(\partial f/\partial x)}{(\partial f/\partial y)}$  (iii)  $\frac{(\partial f/\partial y)}{(\partial f/\partial x)}$  (iv)  $-\frac{(\partial f/\partial y)}{(\partial f/\partial x)}$ 

7. If  $f(x, y) = e^x \cos y$  then what is  $f_{xy}(0,0)$ ?

(i) 1

(ii) -1

(iii) 0

(iv) 2

8. If  $f(x, y) = cosxcosy then f_{yy}(0, 0) = ?$ 

(i) 1

(ii) 0

(iii) -1

 $(iv)^{1/2}$ 

9. If f (x, y) =  $\tan^{-1} \left( \frac{y}{\chi} \right)$  then  $f_x$  (1, 1) is

| (i) $\frac{\pi}{4}$                                                                                        | (ii) ½                                                                     | (iii) - ½                                          | (iv) 0                                          |  |  |  |
|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------|--|--|--|
| 10. If rt - $s^2$ < 0 at (a, b) then the point is                                                          |                                                                            |                                                    |                                                 |  |  |  |
| (i) Maximum poi                                                                                            | (i) Maximum point (ii) minimum point (iii) saddle point (iv) none of these |                                                    |                                                 |  |  |  |
| 11. The stationar                                                                                          | $x$ y points of $x^2 + y$                                                  | $^{2} + 6x + 12$ are                               |                                                 |  |  |  |
| (i) (-3,0)                                                                                                 | (ii) (0,3)                                                                 | (iii) (0,-3)                                       | (iv) (3,0)                                      |  |  |  |
| 12. If $x=u^2-v^2$ and $y=2uv$ then $J\left(\frac{x}{u},\frac{y}{v}\right)$ is                             |                                                                            |                                                    |                                                 |  |  |  |
| (i) $u^2 + v^2$                                                                                            | (ii) $2(u^2 + v^2)$                                                        | (iii) $4(u^2 + v^2)$                               | (iv) $4v^2$                                     |  |  |  |
| 13. If $x = r\cos\theta$ and $y = r\sin\theta$ Then what is $\frac{\partial(x,y)}{\partial(r,\theta)} = ?$ |                                                                            |                                                    |                                                 |  |  |  |
| (i) <i>r</i> <sup>2</sup>                                                                                  | (ii) r                                                                     | (iii) 2r                                           | (iv) 0                                          |  |  |  |
| 14. If $v = \tan^{-1} x + \tan^{-1} y$ then $\frac{\partial v}{\partial x}$ is                             |                                                                            |                                                    |                                                 |  |  |  |
| (i) $1+y^2$                                                                                                | (ii) $\frac{1}{1+y^2}$                                                     | (iii) $\frac{1}{1+x^2}$                            | (iv) $1+x^2$                                    |  |  |  |
| 15.u and v are functionally dependent if their jacobian value is                                           |                                                                            |                                                    |                                                 |  |  |  |
| (i)zero                                                                                                    | (ii)one                                                                    | (iii)non-zero                                      | (iv)greater than zero                           |  |  |  |
| 16.if $J_1 = J\left(\frac{x,y}{u,v}\right)$ and $J_2 = J\left(\frac{u,v}{x,y}\right)$ then $J_1J_2 = ?$    |                                                                            |                                                    |                                                 |  |  |  |
| (i)0                                                                                                       | (ii)1                                                                      | (iii)-1                                            | (iv)2                                           |  |  |  |
| 17. The stationary points of $f(x,y) = \sin x + \sin (x + y)$ are                                          |                                                                            |                                                    |                                                 |  |  |  |
| $(i)\left(\frac{\pi}{2},\frac{\pi}{3}\right)$                                                              | $(ii)\left(\frac{\pi}{3},\frac{\pi}{3}\right)$                             | $(iii)\left(\frac{\pi}{3},\frac{\pi}{2}\right)$ (i | $(v) \left(\frac{\pi}{2}, \frac{\pi}{2}\right)$ |  |  |  |
| 18.The point (0,0) for $f(x, y)=x^3 + y^3 - 3axy$ is                                                       |                                                                            |                                                    |                                                 |  |  |  |

(i)a maximum point (ii) a minimum point (iii)a saddle point (iv)none of these 19.If  $f(x, y) = x^2 + y^2$  where  $x = r\cos\theta$  and  $y = r\sin\theta$  then  $\frac{\partial f}{\partial \theta}$  is

(iv) 0

20.If  $f(x, y)=x^2y+\sin y+e^x$  then  $f_x(1,\pi)$  is

 $(i)2\pi$ -e

 $(ii)2\pi$ 

(iii) $2\pi + e$ 

(iv) 0

21.  $u = \cos^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$  is homogeneous function of degree

 $(i)^{\frac{1}{2}}$ 

(ii) 1

(iii) 2

(iv) 3

22. If  $u = \tan^{-1}\left(\frac{x^2 + y^2}{x - y}\right)$  then  $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = ?$ 

(i) sinu

(ii) cosu

(iii) sin2u

(iv) tanu

23. If  $u = \frac{y^2}{x}$ ,  $v = \frac{x^2}{y}$  then  $\frac{\partial(x,y)}{\partial(u,y)} = ?$ 

(i) -3

(ii) 3

(iii)  $-\frac{1}{3}$ 

 $(iv)^{\frac{1}{2}}$ 

24. if  $x = r \cos \theta$ ,  $y = r \sin \theta$ , z = z then  $\frac{\partial(x, y, z)}{\partial(r, \theta, z)} = ?$ 

(i)2r

 $(ii)r^2$ 

 $(iii)^{\frac{1}{r}}$ 

(iv)r

25.If  $u=x^2-2y$  and v=x+y then  $\frac{\partial(u,v)}{\partial(x,v)}=?$ 

(i)2x

(ii) 2x+2 (iii) 2y-2

(iv) 2x - y

#### **ANSWERS**

- 1.(iii) 2x+3y
- 2. (iii) 1
- 3. (ii) 2u
- 4.(iii)e
- 5. (iii) 2
- $6.i) \frac{(\partial f/\partial x)}{(\partial f/\partial y)}$
- 7. (iii) 0
- 8. (iii) 1
- 9. (ii) ½
- 10. (iii) saddle point
- 11. (i) (-3,0)
- 12. (iii)  $4(u^2 + v^2)$
- 13. (ii) r
- 14. (iii)  $\frac{1}{1+x^2}$
- 15. (i)zero
- 16. (ii)1
- 17. (ii)  $\left(\frac{\pi}{3}, \frac{\pi}{3}\right)$
- 18. (iii) a saddle point
- 19. (iv) 0
- 20. (iii)  $2\pi + e$
- 21. (i)  $\frac{1}{2}$
- 22. (iii) sin2u
- 23. (iii)  $-\frac{1}{3}$
- 24. (iv)r
- 25. (ii) 2x+2

# SRM UNIVERSITY



#### MA1001- CALCULUS AND SOLID GEOMETRY

# Unit-III Ordinary Differential Equations Multiple Choice Questions

| 1. | Which of the following is the general solution to $\frac{d^2y}{dx^2}$ | $\frac{y}{2} + 3\frac{dy}{dx} - 10y = 0$ |                         |
|----|-----------------------------------------------------------------------|------------------------------------------|-------------------------|
|    | (a) $y = Ae^{2x} + Be^{-5x}$ (b) $y = Ae^{-2x} + Be^{5x}$ (c) $y$     | $y = Ae^{-2x} + Be^{-5x}$ (d)            | $y = Ae^{2x} + Be^{5x}$ |

2. Solution of  $(D^2 + 4)y = 0$  is (a)  $y = A\cos 2x + B\sin 2x$  (b)  $y = Ae^{2x} + Be^{-2x}$  (c)  $y = A\cos \sqrt{2}x + B\sin \sqrt{2}x$ 

(d)  $y = (Ax + B)e^{2x}$ 

3. The P.I of  $(D^2 + 4)y = \sin 2x$  is (a)  $\frac{-x}{4}\cos 2x$  (b)  $\frac{x}{4}\cos 2x$  (c)  $\frac{x}{2}\cos 2x$  (d)  $\frac{-x}{2}\cos 2x$ 

4. The equation  $(a_0x^2D^2 + a_1xD + a_2)y = Q(x)$  is called, where  $a_0, a_1, a_2 \in C$ 

(a) Cauchy's equation (b) Legendre's equation (c) Taylor's equation (d) Clairaut's equation

5. Use the transformation  $z=\log x$  , convert the D.E  $x^2y^{''}-xy^{'}+y=x^2$  to an equation with constant coefficients

(a)  $(\theta^2 - 2\theta + 1)y = e^{2z}$  (b)  $(\theta^2 - 2\theta + 1)y = e^z$  (c)  $(\theta^2 + 2\theta + 1)y = e^{2z}$  (d)  $(\theta^2 + 2\theta + 1)y = e^z$ 

6. The solution of  $(D^2 + 2D + 1)y = 7$  is

(a)  $y = (Ax + B)e^{-x} + 7$  (b)  $y = (Ax + B)e^{-x} - 7$  (c)  $y = (Ax + B)e^{x} + 7$  (d)  $y = (Ax + B)e^{x} - 7$ 

7. The P.I of  $(D-1)^2 y = e^x \sin x$  is

(a)  $-e^x \cos x$  (b)  $e^x \cos x$  (c)  $e^x \sin x$  (d)  $-e^x \sin x$ 

8. The P.I of  $(D-1)^2y = x$  is

(a) 2-x (b) x+2 (c)  $x^2$  (d)  $-x^2$ 

9. If  $1 \pm 2i$  are the roots of A.E of a differential equation f(D)y = 0 then the general solution is

(a)  $e^{-2x} (A\cos x - B\sin x)$  (b)  $Ae^x + Be^{-2x}$  (c)  $e^x (A\cos 2x + B\sin 2x)$  (d)  $Ae^t + Be^{2x}$ 

10. Convert the equation  $(5+2x)^2y'' - 6(5+2x)y' + 8y = 0$  to an equation with constant coefficient by using the transformation  $z = \log(5+2x)$ 

(a)  $(\theta^2 + 4\theta + 2)y = 0$  (b)  $(\theta^2 - 4\theta + 2)y = 0$  (c)  $(\theta^2 + 4\theta + 4)y = 0$  (d)  $(\theta^2 + 4\theta - 2)y = 0$ 

11. The P. I of  $(D^2 + 4)y = \sinh 2x$  is

(a)  $y_p = \frac{\sinh 2x}{8}$  (b)  $y_p = \frac{\sinh 2x}{4}$  (c)  $y_p = \frac{-\sinh 2x}{8}$  (d)  $y_p = \frac{-\sinh 2x}{4}$ 

12. The P.I of  $(D^2 + 6D + 5)y = e^{-x}$  is (a)  $y_p = \frac{xe^{-x}}{4}$  (b)  $y_p = \frac{xe^{-x}}{2}$  (c)  $y_p = \frac{e^{-x}}{2}$ 13. The solution of  $(D^2 - 2aD + a^2)y = 0$  is (c)  $(Ax + B)e^{ax}$  (d)  $(Ax + B)e^{-ax}$ (a)  $Ae^{ax} + Be^{bx}$  (b)  $Ae^{ax} + Be^{-ax}$ 14. The P.I of  $(D^2 + 16)y = \cos 4x$  is (a)  $\frac{x}{2}\sin 2x$  (b)  $\frac{x\sin 4x}{8}$ (c)  $\frac{x}{2}\cos 2x$  (d)  $\frac{x\cos 4x}{8}$ 15. The C.F of  $D^2y + y = cosecx$  is (b)  $A\cos x + B\sin x$  (c)  $(Ax+B)e^{ax}$ (a)  $Ae^{ax} + Be^{bx}$ (d)  $(Ax+B)e^{-ax}$ 16. If  $y_1 = \cos ax$ ,  $y_2 = \sin ax$  then the value of  $y_1y_2' - y_2y_1'$  is (a) -a (b) 0 (c) 1 (d) a 17. Solve  $(D^2 + 1)y = 0$  given y(0) = 0, y'(0) = 1(a)  $y = \sin x$  (b)  $y = \cos x$  (c)  $y = A\cos x + B\sin x$  (d) y = 018. The P.I of  $(D-2)^2y = e^{2x}$  is (a)  $\frac{x^2}{2}e^{2x}$  (b)  $\frac{x}{4}e^{2x}$  (c)  $\frac{x^2}{2}e^{-2x}$  (d)  $\frac{x^2}{2}e^{-2x}$ 

19. The P.I of 
$$(D^2 + 4)y = \sin(2x + 5)$$
 is

(a)  $-\frac{x}{2}\sin(2x + 5)$  (b)  $\frac{x}{4}\sin(2x + 5)$  (c)  $-\frac{x}{4}\cos(2x + 5)$  (d)  $\frac{x}{2}\cos(2x + 5)$ 

20. Solve 
$$(x^2D^2 + xD + 1)y = 0$$
 is  
(a)  $Ae^{az} + Be^{bz}$  (b)  $A\cos z + B\sin z$  (c)  $(Az + B)e^{az}$  (d)  $(Az + B)e^{-az}$ 

21. The roots of the auxiliary equation  $(m^2 - 4) = 0$  are

(a) 
$$\pm 2$$
 (b)  $\pm 2i$  (c)  $\pm \sqrt{2}$  (d)  $1 \pm 2i$ 

22. The solution of  $(x^2D^2 - 7xD + 12)y = 0$  is (a)  $Ae^{-2z} + Be^{6z}$  (b)  $Ae^{2z} + Be^{-6z}$  (c)  $Ae^{2z} + Be^{6z}$  (d)  $Ae^{-2z} + Be^{-6z}$ 

23. If 
$$y_1 = \cos x, y_2 = \sin x$$
 then the value of  $y_1 y_2' - y_2 y_1'$  is (a) -1 (b) 0 (c) 1 (d)  $\frac{1}{2}$ 

24. If three roots of the auxiliary equation become equal to the real number a, then the corresponding C.F is

(a) 
$$(Ax^2 + Bx + C)e^{ax}$$
 (b)  $Ae^{ax} + Be^{ax} + Ce^{ax}$  (c)  $Ae^{ax} + (B\cos ax + C\sin ax)$  (d) a

25. The values of  $\frac{e^{ax}}{D-a}$ 

(b)  $e^{ax}$  (c)  $x^2 e^{ax}$  (d)  $\frac{x^2}{2} e^{ax}$ (a)  $xe^{ax}$ 

\*\*\*\*\*

#### **Answers:**

**3.** a **4.** a **5.** a **6.** a **7.** d **8.** b **1.** a **9.** c **10.** *b* **11.** *a* **16.** *d* **17.** *a* **18.** *a* **12.** *a* **13.** *c* **14.** b **15.** b **19.** *c* **20.** *b* **21.** *b* **24.** *a* **22.** *c* **23.** *c* **25.** *a* 

# SRM UNIVERSITY



(a)  $\rho = \frac{-1}{\kappa}$ 

(a) Involute

#### MA1001- CALCULUS AND SOLID GEOMETRY

# Unit-IV Geometrical Applications of Differential Calculus

### **Multiple Choice Questions**

1. If the radius of curvature and curvature of a curve at any point are  $\rho$  and  $\kappa$  respectively, then

(c)  $\rho = -\kappa$ 

(c) Radius of curvature

(d)

Envelope

(b)  $\rho = \kappa$ 

(b) Evolute

2. The locus of center of curvature is called

| 3.  | The envelope of the family of curves $A\alpha^2 + B\alpha + C = 0$ ( $\alpha$ is parameter) is<br>(a) $B^2 + 4AC = 0$ (b) $B^2 - AC = 0$ (c) $B^2 + AC = 0$ (d) $B^2 - 4AC = 0$ |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.  | The curvature of the straight line is (a) 1 (b) 2 (c) -1 (d) 0                                                                                                                  |
| 5.  | The radius of curvature of the curve $y = 4 \sin x$ at $x = \frac{\pi}{2}$ is<br>(a) $\frac{1}{2}$ (b) $\frac{-1}{2}$ (c) $\frac{1}{4}$ (d) $\frac{-1}{4}$                      |
| 6.  | The envelope of $ty-x=at^2$ , $t$ is the parameter is<br>(a) $x^2=4ay$ (b) $y^2=4ax$ (c) $x^2+y^2=1$ (d) $x^2-y^2=1$                                                            |
| 7.  | The curvature at any point of the circle is equal to $$ of its raduis (a) Square (b) Same (c) Reciprocal (d) constant                                                           |
| 8.  | What is the radius of curvature at $(4, 3)$ on the curve $x^2 + y^2 = 25$<br>(a) 5 (b) -5 (c) 25 (d) -25                                                                        |
| 9.  | What is the curvature of a circle of radius 3 (a) 3 (b) -3 (c) $\frac{1}{3}$ (d) $\frac{-1}{3}$                                                                                 |
| 10. | Find the envelope of the curve $y = mx + \frac{a}{m}$ where $m$ is a parameter (a) $y^2 - 4ax = 0$ (b) $y^2 + 4ax = 0$ (c) $x^2 + y^2 = 1$ (d) $xy = c^2$                       |
| 11. | The radius of curvature of $y = e^x$ at $x = 0$ is (a) $2\sqrt{2}$ (b) $\frac{2}{\sqrt{2}}$ (c) $\sqrt{2}$ (d) $\frac{1}{\sqrt{2}}$                                             |
| 12. | The radius of curvature of the curve $y = log \sec x$ at any point of it is (a) $\sec x$ (b) $\tan x$ (c) $\cot x$ (d) $\csc x$                                                 |
| 13. | In an ellipse the radius of curvature at the end of which axis is equal to the semi latus rectum of the ellipse                                                                 |
| 14. | (a) Minor (b) Major (c) Vertical (d) Horizontal  The radius of curvature of the curve $x = t^2$ , $y = t$ at $t = 1$ is                                                         |
|     | (a) $5\frac{\sqrt{5}}{2}$ (b) $\frac{\sqrt{5}}{2}$ (c) $\frac{5}{2}$ (d) $\sqrt{5}$                                                                                             |

- 15. Evolute of a curve is the envelope of --- of that curve
  - (a) Tangent (b) Normal (c) Parallel (d) Locus
- 16. The evolute of the cycloid  $x = a(\theta \sin \theta)$ ,  $y = a(1 \cos \theta)$  is
  - (a) Astroid (b) Parabola (c) Cycloid (d) Circle
- 17. A curve which touches each member of a family of the curves is called --- of that family
  - (a) Evolute
- (b) Envelope
- (c) Circle of curvature
- (d) Radius of curvature
- 18. The envelope of family of lines  $y = mx + am^2$  (where m istheparameter) is
  - (a)  $x^2 + 2ay = 0$
- (b)  $x^2 + 4ay = 0$  (c)  $y^2 + 2ax = 0$
- 19. The envelope of the family of lines  $\frac{x}{t} + yt = 2c$ , t being the parameter is
  - (a)  $x^2 + y^2 = c^2$  (b)  $xy = c^2$  (c)  $x^2y^2 = c^2$  (d)  $x^2 y^2 = c^2$
- 20. The radius of curvature at any point on the curve  $r = e^{\theta}$  is
  - (a)  $\frac{\sqrt{2}}{r}$  (b)  $\frac{r}{\sqrt{2}}$  (c) r (d)  $\sqrt{2}r$
- 21. The radius of curvature in Cartesian coordinates is
- (a)  $\rho = \frac{\left(1 + y_1^2\right)^{3/2}}{y_2}$  (b)  $\rho = \frac{\left(1 y_1^2\right)^{3/2}}{y_2}$  (c)  $\rho = \frac{\left(1 + y_1^2\right)^{2/3}}{y_2}$  (d)  $\rho = \frac{\left(1 + y_2^2\right)^{3/2}}{y_2}$

- 22. The radius of curvature in polar coordinates is
  - (a)  $\rho = \frac{\left(r^2 + (r')^2\right)^{3/2}}{r^2 rr' + 2(r')^2}$  (b)  $\rho = \frac{\left(r^2 (r')^2\right)^{3/2}}{r^2 rr' + 2(r')^2}$  (c)  $\rho = \frac{\left(r^2 (r'')^2\right)^{3/2}}{r^2 rr'' + 2(r')^2}$  (d)  $\rho = \frac{\left(r^2 + (r')^2\right)^{3/2}}{r^2 rr'' + 2(r')^2}$

- 23. The radius of curvature in parametric coordinates is
  - (a)  $\rho = \frac{\left( (x^{'})^2 + (y^{'})^2 \right)^{3/2}}{x^{'}y^{''} y^{'}x^{''}}$  (b)  $\rho = \frac{\left( (x^{'})^2 + (y^{'})^2 \right)^{3/2}}{x^{'}y^{''} + y^{'}x^{''}}$  (c)  $\rho = \frac{\left( (x^{'})^2 (y^{'})^2 \right)^{3/2}}{x^{'}u^{''} u^{'}x^{''}}$

- (d)  $\rho = \frac{\left( (x')^2 (y')^2 \right)^{3/2}}{x'x'' + x'z''}$
- 24. The equation of circle of curvature at any point (x,y) with center of curvature  $\overline{x},\overline{y}$  and with radius of curvature  $\rho$  is
- (a)  $(x+\overline{x})^2 + (y+\overline{y})^2 = \rho^2$  (b)  $(x-\overline{x})^2 + (y-\overline{y})^2 = \rho^2$  (c)  $(x-\overline{x})^2 (y+\overline{y})^2 = \rho^2$  (d)  $(x+\overline{x})^2 + (y+\overline{y})^2 = \rho$

\*\*\*\*\*\*

**Answers:** 

**3.** d **4.** d **5.** c **6.** b **7.** c **8.** a **9.** c **10.** *b* **13.** b **14.** a **15.** b **16.** c **17.** b **18.** b **19.** *b* **20.** d **21.** a **24.** *b* 



#### SRM INSTITUTE OF SCIENCE & TECHNOLOGY FACULTY OF ENGINEERING AND TECHNOLOGY **DEPARTMENT OF MATHEMATICS**

Unit -IV Geometrical Applications of Differential Calculus

| (Beta ,Gamma Functions) |                                                                                        |                                                               |                                                                                         |                                                                                         |  |
|-------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--|
| 1.                      | Multiple Choice Questions The value of $\beta(4,4)$ is                                 |                                                               |                                                                                         |                                                                                         |  |
|                         | (a). $\frac{36}{7!}$ (b). $\frac{6!}{7!}$                                              | (c). $\frac{4!4!}{8!}$                                        | (d). $\frac{3!}{7!}$                                                                    |                                                                                         |  |
| 2.                      | The value of $\beta\left(\frac{5}{2}, \frac{3}{2}\right)$ is                           |                                                               |                                                                                         |                                                                                         |  |
| 3.                      | (a). $\frac{\pi}{8}$ (b). $\frac{\sqrt{\pi}}{8}$ $\beta(m, n)$ is equal to             | 10                                                            | (d). $\frac{\pi^2}{16}$                                                                 |                                                                                         |  |
|                         | (a). $\frac{m!n!}{(m+n)!}$ (b)                                                         |                                                               | (c). $\frac{\Gamma m \Gamma n}{\Gamma (m+n)}$                                           | (d). $\frac{\Gamma m \Gamma n}{\Gamma (m-n)}$                                           |  |
| 4.                      | The value of $\Gamma\left(\frac{1}{2}\right)$ is                                       |                                                               |                                                                                         |                                                                                         |  |
| 5.                      | (a). $\sqrt{\pi}$ (b). $\pi^2$ $\Gamma n \Gamma (1-n)$ is equal to                     |                                                               | (d). $2\pi$                                                                             |                                                                                         |  |
|                         | (a). $\int_{0}^{\infty} \frac{x^{1-n}}{1+x} dx$ (b)                                    | $\Gamma(1)\beta(n,1-n)$                                       | (c). $\Gamma(1) \beta(1-n,1-n)$                                                         | ) (d). $\Gamma(1) \beta(1-n,n)$                                                         |  |
| 6.                      | $\int_{0}^{\frac{\pi}{2}} \sin^{p} \theta \cos^{q} \theta d\theta \text{ is equ}$      |                                                               |                                                                                         |                                                                                         |  |
|                         | (a) $.\frac{1}{2}\beta\left(\frac{p+1}{2},\frac{q+1}{2}\right)$                        | (b). $\frac{1}{2}\beta\left(\frac{p-1}{2},\frac{q}{2}\right)$ | $\left(\frac{-1}{2}\right)$ (c). $\frac{1}{2}\beta\left(\frac{p}{2},\frac{q}{2}\right)$ | $\frac{d}{dt} \qquad \text{(d). } \frac{1}{2}\beta\left(\frac{1}{2},\frac{1}{2}\right)$ |  |
| 7.                      | $\int_{0}^{1} x^{4} \left[\log\left(\frac{1}{x}\right)\right]^{3} \text{ is equal to}$ |                                                               |                                                                                         |                                                                                         |  |
|                         | (a). $\frac{6}{525}$ (b). $\frac{6}{625}$                                              | <i>J</i> .                                                    | (d). $\frac{5!}{6!}$                                                                    |                                                                                         |  |
| 8.                      | The value of $\int_{0}^{\frac{\pi}{2}} \sqrt{\cot \theta}  d\theta$                    | is                                                            |                                                                                         |                                                                                         |  |
|                         | (a). $\frac{\pi}{2}$ (b). $\frac{\pi}{\sqrt{2}}$                                       | (c). $\frac{\sqrt{\pi}}{2}$                                   | (d). $\sqrt{\frac{\pi}{2}}$                                                             |                                                                                         |  |

# **UNIT V**

# **Sequence and Series**

1. The series 
$$\sum_{p=1}^{\infty} \frac{1}{n^p}$$
 is convergent if

$$(a)p=2$$

2. The series 
$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$
 is divergent if

3. If 
$$\sum u_n$$
 is a series of positive term such that  $\lim_{n\to\infty} (u_n)^{\frac{1}{n}} = l$  where  $l>1$ , then the series  $\sum u_n$  is

4. If 
$$\sum u_n$$
 is a series of positive term such that  $\lim_{n\to\infty} (u_n)^{\frac{1}{n}} = I$ , then the series  $\sum u_n$  is convergent

$$(b)/=0$$

$$(d)/=1$$

5. The series 
$$\sum_{n=1}^{\infty} \frac{1}{n!}$$
 is

6. The series 
$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots to^{\infty}$$
 is

7. By D'Alambert's Ratio test 
$$\lim_{n\to\infty}(\frac{u_{n+1}}{u_n})=I$$
, the series is convergent when

$$(b)/=0$$

$$(d)/=1$$

8. By Raabe's test 
$$\lim_{n\to\infty} \left[ n(\frac{u_{n+1}}{u_n} - 1) \right] = I$$
, the series is divergent when

$$(b)/=0$$

$$(d)/=1$$

9. The series 
$$\sum_{n=1}^{\infty} \frac{2^n}{n!}$$
 is

10. A series 
$$\sum u_n$$
 is said absolutely convergent if the series

(a) 
$$\sum |u_n|$$
 is convergent (c)  $\sum u_n$  is divergent

(c) 
$$\sum u_n$$
 is convergent

(c) 
$$\sum u_n$$
 is convergent (b)  $\sum |u_n|$  is divergent

11. A series 
$$\sum u_n$$
 is saidconditionally convergent if the series

- (a)  $\sum |u_n|$  is convergent (b)  $\sum u_n$  is divergent  $\sum |u_n|$  is convergent
- (c)  $\sum u_n$  is convergent  $\& \sum |u_n|$  is divergent (d)  $\sum |u_n|$  is divergent
- 12. The series  $1 \frac{1}{2} + \frac{1}{2^2} \frac{1}{2^3} + \dots$  is
  - (a) Convergent (b) Divergent (c) Conditionally convergent (d) absolutely convergent
- 13. The series  $1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \dots$  is
  - (a) Convergent (b) Divergent (c) Conditionally convergent (d) absolutely convergent
- 14. The series  $\sum \frac{1}{n \log n}$  is
  - (a) Conditionally convergent (b) absolutely convergent (c) Convergent (d) Divergent
- 15. An absolutely convergent series is
  - (a) Conditionally convergent (b) absolutely convergent (c) Convergent (d) Divergent
- 16. The series  $\sum \frac{n^3}{3^n}$  is
  - (a) Conditionally convergent (b) absolutely convergent (c) Convergent (d) Divergent
- 17. The series  $\sum \frac{1}{(\log n)^n}$  is
  - (a) Convergent (b) Conditionally convergent (c) absolutely convergent (d) Divergent

#### **ANSWERS**

- 1. d 11. c
- 2. c 12. d
- 3. b 13. c
- 4. a 14. d
- 5. a 15. c
- 6. b 16.c
- 7. a 17.a
- 8. a
- 9. b
- 10. a