Electronic Circuits for Mechatronics (ELCT 609)

Spring 2021

Lecture 3: BJT Physical Structure & I-V
Characteristics

Course Instructor: Dr. Eman Azab

Introduction

- Why we call it Transistor?
 - The name came as an abbreviation of the device job!

Transfer-Resistor

Bipolar Junction Transistor (BJT)

Physical Structure

BJT Physical Structure

- Two back to back PN Junctions
- NPN or PNP Transistor
- Three terminal device, for NPN: Base (P-Type), Emitter and Collector (N-Type)
 - Base-Emitter Junction (BE-J)
 - Base-Collector Junction (BC-J)
 - Emitter doping is higher than Collector doping

 \mathbf{P} + $\mathbf{P}++$ n p-type n-type p-type O Collector Emitter Emitter Base Collector region Base Emitter-Base Collector-Base Junction Junction

NPN BJT Transistor

PNP BJT Transistor

BJT Modes of Operation

Electrical Equations of BJT: I-V Characteristics

BJT Circuit Symbol and Structure

1. NPN Transistor in Cutoff Mode

- Base-Emitter Junction is Reverse biased
- Base-Collector Junction is Reverse biased

$$I_C = I_B = I_E = 0$$

2. NPN Transistor in Forward Active Mode

- BE-J is Forward biased & BC-J is reverse biased
- Electrons pass across Base to the collector due to the Base small area (Electrons from the Emitter are collected at the Collector side)

NPN BJT I-V characteristics

2. NPN Transistor in Forward Active Mode (Cont.)

- BE-J is Forward biased & BC-J is reverse biased
- Electrons pass across Base to the collector due to the Base small area (Electrons from the Emitter are collected at the Collector side)

$$I_C = \beta_F I_B$$

$$I_{C} = I_{s} \exp\left(\frac{V_{BE}}{V_{T}}\right)$$

NPN Transistor in Saturation Mode

- Both junctions are Forward biased
- The total current is the BE-J diffusion current opposite to BC-J diffusion current

BJT could be used as a closed switch in Saturation

$$V_{BE} \cong 0.7V$$
 $V_{CE} \cong 0.2V$

$$V_{CE} \cong 0.2V$$

$$V_{BC} \cong 0.5V$$

$$I_{\rm C} < \beta_{\rm F} I_{\rm B}$$

4. NPN Transistor in Reverse Active mode

- BC-J is Forward biased
- BE-J Junction is reverse biased
- Emitter and collector reverse their roles

$$I_E = \beta_R I_B$$

$$\beta_R << \beta_F$$

NPN BJT Modes of Operation

Mode	BEJ	BCJ	Equations	Conditi on
Cutoff	Reverse	Reverse	$I_C = I_E = I_B = 0$	$V_{BE} < 0.7$ $V_{BC} < 0.5$
Active (Forward)	Forward Bound Bound	Reverse	$V_{BE} \cong 0.7$ $I_{E} = I_{C} + I_{B}$ $I_{C} = I_{S}e^{\frac{V_{BE}}{V_{T}}}$ $I_{C} = \beta_{F}I_{B} = \alpha_{F}I_{E}$ $\alpha_{F} = \frac{\beta_{F}}{1 + \beta_{F}}$	$V_{BC} < 0.5$ Or $V_{CE} > 0.2$
Saturation	JE JE	Forward	$V_{BE} \cong 0.7$ $V_{BC} \cong 0.5$ $V_{CE} \cong 0.2$ $I_E = I_C + I_B$	$I_C < \beta_F I_B$
Reverse Active	Reverse Booling Istory	Forward	$V_{BC} = 0.5$ $I_C = I_E + I_B$ $I_E = \beta_R I_B = \alpha_R I_C$ $\alpha_R = \frac{\beta_R}{1 + \beta_R}$	$V_{BE} < 0.7$

I_C versus V_{BE} and V_{CE}

$$I_{C} = I_{s} \exp\left(\frac{V_{BE}}{V_{T}}\right)$$

For Active ONLY

I_C versus V_{CE}

The Early effect

NPN BJT I-V Characteristics

I_C versus V_{CE} (The Early effect)

$$i_{C} = I_{S} \exp(\frac{V_{BE}}{V_{T}}) \left(1 + \frac{v_{CE}}{V_{A}}\right)$$

$$r_o = \left(\frac{\partial i_C}{\partial v_{CE}}\right)^{-1} = \frac{V_A}{I_C}$$

BJT Large Signal Model in Active Mode

Ex. Find Ic, if Q is active
Assume, Bf, VA, VT is given
Solve using large signal model? > IKR

IKR

BJT PNP Transistor

- PNP is the NPN Complementary structure
- Two back to back PN Junctions
- Three terminal device: Base (Ntype), Emitter and Collector (P-type)
- Emitter-Base Junction
- Collector-Base Junction
- Emitter doping is higher than Collector doping
- Same modes of operation as NPN Transistor

PNP BJT Transistor

BJT PNP Physical Structure

BJT PNP Transistor in Forward Active Mode

Forward Active Mode

BJT PNP Modes of Operation

Mode	EB-J	CB-J	Equations	Condition
Cutoff	Reverse	Reverse	$I_C = I_E = I_B = 0$	$V_{EB} < 0.7$ $V_{CB} < 0.5$
Active (Forward)	Forward	Reverse	$V_{EB} \cong 0.7$ $I_E = I_C + I_B$ $I_C = \beta_F I_B = \alpha_F I_E$ $\alpha_F = \frac{\beta_F}{1 + \beta_F}$	$V_{CB} < 0.5$ Or $V_{EC} > 0.2$
Saturation	Forward	Forward	$V_{EB} \cong 0.7$ $V_{CB} \cong 0.5$ $V_{EC} \cong 0.2$ $I_E = I_C + I_B$	$I_C < \beta_F I_B$
Reverse Active	Reverse Book line of the line	Forward	$V_{CB} = 0.5$ $I_C = I_E + I_B$ $I_E = \beta_R I_B = \alpha_R I_C$ $\alpha_R = \frac{\beta_R}{1 + \beta_R}$	$V_{EB} < 0.7$

Course Instructor: Dr. Eman Azab
Contact: eman.azab@guc.edu.eg

Calculating DC operating point

Solved Exercise

Solved Example

- Find the DC Operating point of the Transistor?
 - Given: $V_{BF}=0.7V$, $\beta_F=10$

(Ans.: $I_B=0.023$ mA, $I_C=0.23$ mA, $I_E=0.253$ mA, $V_{CE}=9.54$ V, Active)

DC Analysis of BJT Solution Steps:

- 1. Identify the BJT Type
- Place the terminals name on the circuit
- 3. Write a KVL in the INPUT Loop
 - Input loop for BJT is any loop containing V_{BE} OR V_{EB}
- 4. Assume the BJT mode (most of the time active)
- 5. Calculate the currents and voltages
- 6. Write KVL in the OUTPUT loop
 - Output loop for BJT is any loop containing V_{CE} OR V_{EC}
- 7. Verify your assumption!

- Find the DC Operating point of the Transistor?
 - Given: V_{EB} =0.7V , β =10

