

CD4514BMS, CD4515BMS

CMOS 4-BitLatch/4-to-16 Line Decoders

FN3195 Rev 1.00 July 14, 2006

Features

- · High-Voltage Types (20-Volt Rating)
- · CD4514BMS Output "High" on Select
- · CD4515BMS Output "Low" on Select
- · Strobed Input Latch
- Inhibit Control
- 100% Tested for Quiescent Current at 20V
- Maximum Input Current of 1μA at 18V Over Full Package Temperature Range; 100nA at 18V and 25°C
- Noise Margin (Full Package-Temperature Range):
 - 1V at VDD = 5V
 - 2V at VDD = 10V
 - 2.5V at VDD = 15V
- 5V, 10V, and 15V Parametric Ratings
- Standardized, Symmetrical Output Characteristics
- Meets all Requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

Applications

- Digital Multiplexing
- · Address Decoding
- Hexadecimal/BCD Decoding
- · Program-counter Decoding
- Control Decoder

Description

CD4514BMS and CD4515BMS consist of a 4-bit strobed latch and a 4-to-16-line decoder. The latches hold the last input data presented prior to the strobe transition from 1 to 0. Inhibit control allows all outputs to be placed at 0(CD4514BMS) or 1(CD4515BMS) regardless of the state of the data or strobe inputs.

The decode truth table indicates all combinations of data inputs and appropriate selected outputs.

These devices are similar to industry types MC14514 and MC14515.

The CD4514BMS and CD4515BMS are supplied in these 24 lead outline packages:

Braze Seal DIP H4V
Frit Seal DIP H1Z
Ceramic Flatpack H4P

Pinout

CD4514BMS, CD4515BMS TOP VIEW

Functional Diagram

Absolute Maximum Ratings

DC Supply Voltage Range, (VDD)....-0.5V to +20V (Voltage Referenced to VSS Terminals) Input Voltage Range, All Inputs -0.5V to VDD +0.5V Operating Temperature Range -55°C to +125°C Package Types D, F, K, H Storage Temperature Range (TSTG) -65°C to +150°C Lead Temperature (During Soldering) +265°C At Distance $1/16 \pm 1/32$ Inch (1.59mm \pm 0.79mm) from case for 10s Maximum

Reliability Information

		_
Thermal Resistance	θ_{ja}	θ_{ic}
Ceramic DIP and FRIT Package	80°C/W	θ _{jc} 20°C/W
Flatpack Package	70°C/W	20°C/W
Maximum Package Power Dissipation (PD)) at +125°C	
For $T_A = -55^{\circ}C$ to $+100^{\circ}C$ (Package Type	oe D, F, K).	500mW
For $T_A = +100^{\circ}$ C to $+125^{\circ}$ C (Package T	ype D, F, K) Derate
Line	earity at 12	mW/°C to 200mW
Device Dissipation per Output Transistor.		100mW
For T _A = Full Package Temperature Rar	nge (All Pac	kage Types)
Junction Temperature		+175°C

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

		CONDITIONS (NOTE 1)		GROUP A		LIM		
PARAMETER	SYMBOL			SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VDI	D or GND	1	+25°C	-	10	μΑ
				2	+125°C	-	1000	μΑ
		VDD = 18V, VIN = VDI	D or GND	3	-55°C	-	10	μΑ
Input Leakage Current	IIL	VIN = VDD or GND	VDD = 20	1	+25°C	-100	-	nA
				2	+125°C	-1000	-	nA
			VDD = 18V	3	-55°C	-100	-	nA
Input Leakage Current	IIH	VIN = VDD or GND	VDD = 20	1	+25°C	-	100	nA
				2	+125°C	-	1000	nA
			VDD = 18V	3	-55°C	-	100	nA
Output Voltage	VOL15	VDD = 15V, No Load		1, 2, 3	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOH15	VDD = 15V, No Load (Note 3)	1, 2, 3	+25°C, +125°C, -55°C	14.95	-	V
Output Current (Sink)	IOL5	VDD = 5V, $VOUT = 0.4$	4V	1	+25°C	0.53	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0	.5V	1	+25°C	1.4	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1	.5V	1	+25°C	3.5	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.6	6V	1	+25°C	-	-0.53	mA
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.5	5V	1	+25°C	-	-1.8	mA
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9	.5V	1	+25°C	-	-1.4	mA
Output Current (Source)	IOH15	VDD = 15V, VOUT = 1	3.5V	1	+25°C	-	-3.5	mA
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10	uΑ	1	+25°C	-2.8	-0.7	V
P Threshold Voltage	VPTH	VSS = 0V, IDD = 10μ A	1	1	+25°C	0.7	2.8	V
Functional	F	VDD = 2.8V, VIN = VD	D or GND	7	+25°C	VOH >	VOL <	V
		VDD = 20V, VIN = VDI	D or GND	7	+25°C	VDD/2	VDD/2	
		VDD = 18V, VIN = VDI	D or GND	8A	+125°C			
		VDD = 3V, VIN = VDD	or GND	8B	-55°C			
Input Voltage Low (Note 2)	VIL	VDD = 5V, VOH > 4.5V, VOL < 0.5V		1, 2, 3	+25°C, +125°C, -55°C	-	1.5	V
Input Voltage High (Note 2)	VIH	VDD = 5V, VOH > 4.5V, VOL < 0.5V		1, 2, 3	+25°C, +125°C, -55°C	3.5	-	V
Input Voltage Low (Note 2)	VIL	VDD = 15V, VOH > 13 VOL < 1.5V	VDD = 15V, VOH > 13.5V, VOL < 1.5V		+25°C, +125°C, -55°C	-	4	V
Input Voltage High (Note 2)	VIH	VDD = 15V, VOH > 13 VOL < 1.5V	.5V,	1, 2, 3	+25°C, +125°C, -55°C	11	-	V

NOTES: 1. All voltages referenced to device GND, 100% testing being im- 3. For accuracy, voltage is measured differentially to VDD. Limit is

2. Go/No Go test with limits applied to inputs.

^{0.050}V max.

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

		GROUP A LIMITS		IITS			
PARAMETER	SYMBOL	CONDITIONS (NOTE 1, 2)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Propagation Delay	TPHL1	VDD = 5V, VIN = VDD or GND	9	+25°C	-	970	ns
Strobe or Data	TPLH1		10, 11	+125°C, -55°C	-	1310	ns
Propagation Delay	TPHL2	VDD = 5V, VIN = VDD or GND	9	+25°C	-	500	ns
Inhibit	TPLH2		10, 11	+125°C, -55°C	-	675	ns
Transition Time	- ,		9	+25°C	-	200	ns
	TTLH		10, 11	+125°C, -55°C	-	270	ns

NOTES:

- 1. CL = 50pF, RL = 200K, Input TR, TF < 20ns.
- 2. -55°C and +125°C limits guaranteed, 100% testing being implemented.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIN	MITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 5V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	5	μΑ
				+125°C	-	150	μΑ
		VDD = 10V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	10	μΑ
				+125°C	-	300	μΑ
		VDD = 15V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	10	μА
				+125°C	-	600	μА
Output Voltage	VOL	VDD = 5V, No Load	1, 2	+25°C, +125°C, - 55°C	-	50	mV
Output Voltage	VOL	VDD = 10V, No Load	1, 2	+25°C, +125°C, - 55°C	-	50	mV
Output Voltage	VOH	VDD = 5V, No Load	1, 2	+25°C, +125°C, - 55°C	4.95	-	V
Output Voltage	VOH	VDD = 10V, No Load	1, 2	+25°C, +125°C, - 55°C	9.95	-	٧
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.4V	1, 2	+125°C	0.36	-	mA
				-55°C	0.64	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0.5V	1, 2	+125°C	0.9	-	mA
				-55°C	1.6	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1.5V	1, 2	+125°C	2.4	-	mA
				-55°C	4.2	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.6V	1, 2	+125°C	-	-0.36	mA
				-55°C	-	-0.64	mA
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.5V	1, 2	+125°C	-	-1.15	mA
				-55°C	-	-2.0	mA
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9.5V	1, 2	+125°C	-	-0.9	mA
				-55°C	-	-1.6	mA
Output Current (Source)	IOH15	VDD =15V, VOUT = 13.5V	1, 2	+125°C	-	-2.4	mA
				-55°C	-	-4.2	mA
Input Voltage Low	VIL	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, - 55°C	-	3	V

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

					LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Input Voltage High	VIH	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, - 55°C	+7	-	V
Propagation Delay	TPHL1	VDD = 10V	1, 2, 3	+25°C	1	370	ns
Strobe or Datat	TPLH1	VDD = 15V	1, 2, 3	+25°C	1	270	ns
Propagation Delay	TPHL2	VDD = 10V	1, 2, 3	+25°C	-	220	ns
Inhibit	TPLH2	VDD = 15V	1, 2, 3	+25°C	-	170	ns
Transition Time	TTHL	VDD = 10V	1, 2, 3	+25°C	-	100	ns
	TTLH	VDD = 15V	1, 2, 3	+25°C	-	80	ns
Minimum Data Setup Time	TS	VDD = 5V	1, 2, 3	+25°C	-	150	ns
		VDD = 10V	1, 2, 3	+25°C	-	70	ns
		VDD = 15V	1, 2, 3	+25°C	-	40	ns
Minimum Strobe Pulse	TW	VDD = 5V	1, 2, 3	+25°C	-	250	ns
Width		VDD = 10V	1, 2, 3	+25°C	-	100	ns
		VDD = 15V	1, 2, 3	+25°C	-	75	ns
Input Capacitance	CIN	Any Input	1, 2	+25°C	-	7.5	pF

NOTES:

- 1. All voltages referenced to device GND.
- 2. The parameters listed on Table 3 are controlled via design or process and are not directly tested. These parameters are characterized on initial design release and upon design changes which would affect these characteristics.
- 3. CL = 50pF, RL = 200K, Input TR, TF < 20ns.

TABLE 4. POST IRRADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIN		
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VDD or GND	1, 4	+25°C	-	25	μΑ
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10μA	1, 4	+25°C	-2.8	-0.2	V
N Threshold Voltage Delta	ΔVTN	VDD = 10V, ISS = -10μA	1, 4	+25°C	-	±1	V
P Threshold Voltage	VTP	VSS = 0V, IDD = 10μA	1, 4	+25°C	0.2	2.8	V
P Threshold Voltage Delta	ΔVΤΡ	VSS = 0V, IDD = 10μA	1, 4	+25°C	-	±1	V
Functional	F	VDD = 18V, VIN = VDD or GND	1	+25°C	VOH >	VOL <	V
VDD = 3V, VIN = VD		VDD = 3V, VIN = VDD or GND			VDD/2	VDD/2	
Propagation Delay Time	TPHL TPLH	VDD = 5V	1, 2, 3, 4	+25°C	-	1.35 x +25°C Limit	ns

NOTES: 1. All voltages referenced to device GND.

3. See Table 2 for +25°C limit.

2. CL = 50pF, RL = 200K, Input TR, TF < 20ns.

4. Read and Record

TABLE 5. BURN-IN AND LIFE TEST DELTA PARAMETERS +25°C

PARAMETER	SYMBOL	DELTA LIMIT
Supply Current - MSI-2	IDD	\pm 1.0 μ A
Output Current (Sink)	IOL5	± 20% x Pre-Test Reading
Output Current (Source)	IOH5A	± 20% x Pre-Test Reading

TABLE 6. APPLICABLE SUBGROUPS

CONFORMANCE GROUP		MIL-STD-883 METHOD	GROUP A SUBGROUPS	READ AND RECORD	
Initial Test (Pre	Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A	
Interim Test 1 (F	Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A	
Interim Test 2 (F	Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A	
PDA (Note 1)		100% 5004	1, 7, 9, Deltas		
Interim Test 3 (Post Burn-In)		100% 5004	1, 7, 9	IDD, IOL5, IOH5A	
PDA (Note 1)		100% 5004	1, 7, 9, Deltas		
Final Test		100% 5004	2, 3, 8A, 8B, 10, 11		
Group A		Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11		
Group B	Subgroup B-5	Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11, Deltas	Subgroups 1, 2, 3, 9, 10, 11	
Subgroup B-6		Sample 5005	1, 7, 9		
Group D		Sample 5005	1, 2, 3, 8A, 8B, 9	Subgroups 1, 2 3	

NOTE: 1.5% Parameteric, 3% Functional; Cumulative for Static 1 and 2.

TABLE 7. TOTAL DOSE IRRADIATION

	MIL-STD-883	TE	ST	READ AND	RECORD
CONFORMANCE GROUPS	METHOD	PRE-IRRAD	POST-IRRAD	PRE-IRRAD	POST-IRRAD
Group E Subgroup 2	5005	1, 7, 9	Table 4	1, 9	Table 4

TABLE 8. BURN-IN AND IRRADIATION TEST CONNECTIONS

					OSCILI	LATOR
FUNCTION	OPEN	GROUND	VDD	9V \pm -0.5V	50kHz	25kHz
Static Burn-In 1 (Note 1)	4-11, 13-20	1-3, 12, 21-23	24			
Static Burn-In 2 (Note 1)	4-11, 13-20	12	1-3, 21-24			
Dynamic Burn- In (Note 1)	-	2, 3, 12	21, 22, 24	4-11, 13-20	1	23
Irradiation (Note 2)						

NOTES:

- 1. Each pin except VDD and GND will have a series resistor of 10K \pm 5%, VDD = 18V \pm 0.5V
- 2. Each pin except VDD and GND will have a series resistor of $47K \pm 5\%$; Group E, Subgroup 2, sample size is 4 dice/wafer, 0 failures, VDD = $10V \pm 0.5V$

Logic Diagram

^{*} All inputs protected by CMOS protection network.

THESE INVENTERS USED ONLY ON CD4515BMS

FIGURE 1. LOGIC DIAGRAM

TRUTH TABLE

	DE	CODER INPUTS		JTS	SELECTED OUTPUT
INHIBIT	D	С	В	Α	CD4514BMS = LOGIC 1 (HIGH) CD4515BMS = LOGIC 0 (LOW)
0	0	0	0	0	S0
0	0	0	0	1	S1
0	0	0	1	0	S2
0	0	0	1	1	S 3
0	0	1	0	0	S4
0	0	1	0	1	S 5
0	0	1	1	0	S6
0	0	1	1	1	S 7
0	1	0	0	0	S8
0	1	0	0	1	S9
0	1	0	1	0	S10
0	1	0	1	1	S11
0	1	1	0	0	S12
0	1	1	0	1	S13
0	1	1	1	0	S14
0	1	1	1	1	S15
1	Х	Х	Х	Х	All Outputs = 0, CD4514BMS All Outputs = 1, CD4515BMS
1 = HIGH LEVE	:	0-10	OW LE	VFI	X = DON'T CARE

1 = HIGH LEVEL 0 = LOW LEVEL X = DON'T CARE

Typical Performance Characteristics

FIGURE 2. TYPICAL OUTPUT LOW (SINK) CURRENT CHARACTERISTICS

FIGURE 4. TYPICAL OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS

FIGURE 3. MINIMUM OUTPUT LOW (SINK) CURRENT CHARACTERISTICS

FIGURE 5. MINIMUM OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS

Typical Performance Characteristics (Continued)

FIGURE 6. TYPICAL STROBE OR DATA PROPAGATION DELAY TIME vs LOAD CAPACITANCE

FIGURE 8. TYPICAL LOW-TO-HIGH TRANSITION TIME vs LOAD CAPACITANCE

FIGURE 7. TYPICAL INHIBIT PROPAGATION DELAY TIME vs LOAD CAPACITANCE

FIGURE 9. TYPICAL STROBE OR DATA PROPAGATION DELAY TIME vs SUPPLY VOLTAGE

Typical Performance Characteristics (Continued)

10. TYPICAL POWER DISSIPATION vs FREQUENCY

Waveforms

FIGURE 11. WAVEFORMS FOR SETUP TIME AND STROBE PULSE WIDTH

Chip Dimensions and Pad Layouts

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3}) inch.)

METALLIZATION: Thickness: 11kÅ - 14kÅ, AL.

PASSIVATION: 10.4kÅ - 15.6kÅ, Silane

BOND PADS: 0.004 inches X 0.004 inches MIN **DIE THICKNESS:** 0.0198 inches - 0.0218 inches

© Copyright Intersil Americas LLC 1999-2006. All Rights Reserved.

All trademarks and registered trademarks are the property of their respective owners.

For additional products, see www.intersil.com/en/products.html

Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted in the quality certifications found at www.intersil.com/en/support/qualandreliability.html

Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

