Catégories Dérivées en Cohomologie ℓ -adique

par

Jean-Pierre JOUANOLOU

N° d'enregistrement au C.N.R.S A.0.3374

THÈSE DE DOCTORAT D'ÉTAT ès SCIENCES MATHÉMATIQUES présentée

A LA FACULTÉ DES SCIENCES DE PARIS

par

M. JOUANOLOU Jean-Pierre

pour obtenir le grade Docteur ès-Sciences

Sujet de thèse : Catégories Dérivées en Cohomologie ℓ -adique

soutenue le : 3 Juillet 1969 devant la Commission d'examen

MM. SAMUEL Président GROTHENDIECK

VERDIER

Examinateurs

DIXMIER

PREFACE

Description

TABLE DE MATIÈRES

I. Catégorie des faisceaux sur un idéotope	6
1. Généralités	6
2. Cas où l'objet final de X est quasicompact	9
3. A-faisceaux de type constant, strict ou J-adique	17
4. Opérations externes	25
5. Produit tensoriel	33
6. Foncteurs associés aux homomorphismes	33
7. Catégories dérivées	34
8. Changement d'anneau	34
II. Conditions de finitude	35
1. Catégorie des A-faisceaux constructibles	35
2. Conditions de finitude dans les catégories dérivées	68
III. Applications aux schémas	93
1. Opérations externes	93
2. Dualité	103
3. Formalisme des fonctions L	113

§ I. — CATÉGORIES DES FAISCEAUX SUR UN IDÉOTOPE

1. Généralités.

Définition 1.1. — On appelle idéotope un triple (X,A,J) formé d'un topos X, d'un anneau commutatif unifière A et d'un idéal propre J de A.

On suppose donné dans la suite du paragraphe un idéotope (X,A,J). On note $A-\operatorname{Mod}_X$ la catégorie des faisceaux de A_X -Modules et

$$\underline{\operatorname{Hom}}(\mathbf{N}^{\circ}, A - \operatorname{Mod}_{X})$$

la catégorie abélienne des systèmes projectifs indexés par ${\bf N}$ de A_X -Modules.

Définition 1.2. — On appelle (A,J)-faisceau sur X, ou s'il n'y a pas de confusion possible A-faisceau sur X, un système projectif

$$F = (\mathbf{F}_n, u_{m,n})_{(m,n) \in \mathbf{N} \times \mathbf{N}, m \ge n}$$

de A_X-Modules, vérifiant

$$J^{n+1}F_n = 0$$

pour tout entier $n \geq 0$. On note $\mathcal{E}(X,J)$ la sous-catégorie, abélienne, pleine de $\underline{\mathrm{Hom}}(\mathbf{N}^{\circ},A-\mathrm{Mod}_X)$ engendrée par les A-faisceaux.

Pour des raisons qui apparaîtront par la suite, la catégorie $\mathcal{E}(X,J)$ ne mérite pas le nom de catégorie des A-faisceaux sur X; c'est seulement une catégorie quotient de la précédente que nous baptiserons ainsi. Aussi, pour éviter le risque de

confusion, nous arrivera-t-il, étant donnés deux A-faisceaux E et F, de noter

$$\text{Hom}_{a}(E,F)$$

(a pour anodin) l'ensemble des $\mathcal{E}(X,J)$ -morphismes de E dans F.

Notons pour tout objet T de X par T, ou même T s'il n'y a pas de confusion possible, le topos X/T. Le foncteur restriction pour les faisceaux de A-Modules induit de façon évidente un foncteur restriction

$$\mathcal{E}(X,J) \longrightarrow \mathcal{E}(T,J)$$
$$E \mapsto E|T.$$

Proposition-définition 1.4. — Soit $E = (E_n)_{n \in \mathbb{N}}$ un A-faisceau sur X:

1) On dit que E est essentiellement nul s'il est nul en tant que pro-objet, ce qui revient à dire que pour tout entier $n \ge 0$, il existe un entier $p \ge 0$ tel que le morphisme de transition

$$E_{n+p} \longrightarrow E_n$$

soit nul.

- 2) On dit que E est négligeable s'il vérifie l'une des reltions équivalentes suivantes:
 - (i) Il existe un recouvrement $(T_i \longrightarrow e_X)_{i \in I}$ de l'objet final e_X de X tel que les A-faisceaux $E \mid T_i$ soient essentiellement nuls.
 - (ii) Idem, mais en supposant de plus que les T_i sont des ouverts de X.

Preuve: Pour voir l'équivalence de (i) et (ii), il suffit d'observer que pour tout $i \in I$, le faisceau image U_i de T_i par le morphisme canonique $T_i \longrightarrow e_X$ est tel que le morphisme restriction

$$\mathbf{U}_i \longrightarrow \mathbf{T}_i$$

soit fidèle.

Il est clair que lorsque l'objet final de X est quasicompact (SGA4 VI 1.1), il revient au même pour un A-faisceau de dire qu'il est essentiellement nul ou qu'il est négligeable. Il est par ailleurs immédiat que la sous-catégorie pleine

(1.4.1)
$$N(X,J)$$
 ou plus simplement N_X)

de $\mathcal{E}(X,J)$ engendré par les A-faisceaux négligeables est épaisse dans $\mathcal{E}(X,J)$.

Définition 1.5. — Soit (X,A,J) un idéotope. On appelle catégorie des (A,J)faisceaux (ou A-faisceaux s'il n'y a pas de confusion possible) sur X et on note

$$(A, J) - \operatorname{fsc}(X)$$
 (ou plus simplement $A - \operatorname{fsc}(X)$)

la catégorie abélienne quotient (thèse Gabriel III.1)

$$\mathcal{E}(X,J)/N_X$$
.

1.6. Soit T un objet de X. Il est clair que le foncteur restriction (1.3) est exact et envoie N_X dans N_T , d'où par passage au quotient un foncteur exact, appelé encore restriction,

$$(1.6.1) r_{TX}: A - \operatorname{fsc}(X) \longrightarrow A - \operatorname{fsc}(T).$$

Soient maintenant T et T' deux objets de X et $f: T \longrightarrow T'$ un morphisme. Se plaçant dans le topos T', on déduit de (1.6.1) un foncteur exact

$$(1.6.2) f^*: A - fsc(T') \longrightarrow A - fsc(T),$$

vérifiant les propriétés de transitivité habituelles.

Ces remarques étant faites, nous utiliserons dans la suite sans plus d'explications le langage local pour les A-faisceaux.

Proposition 1.7. — Les propriétés suivantes sont de nature locale pour la topologie de X.

- (i) La propriété pour un A-faisceau d'être nul, i.e. isomorphe au système projectif nul.
- (ii) La propriété pour une suite

$$E' \xrightarrow{u} E \xrightarrow{v} E''$$

de Afaisceaux d'être exacte.

- (iii) La propriété pour un morphisme $u: E \longrightarrow F$ de A-faisceaux d'être un monomorphisme (resp. un épimorphisme, resp. un isomorphisme).
- (iv) La propriété pour deux morphismes $u, v : E \rightrightarrows F$ d'être égaux.

Preuve: L'assertion (i) est immédiate. On en déduit (ii) en l'appliquant successivement à $\text{Im}(v \circ u)$ et à Ker(v)/Im(u). L'assertion (iii) est un cas particulier de (ii). Enfin (iv) s'obtient en appliquant (i) à Im(v-u).

Corollaire 1.7.1. — Soient T et T' deux objets de X et $f: T \longrightarrow T'$ un épimorphisme. Le foncteur

$$f^*: A - \operatorname{fsc}(T') \longrightarrow A - \operatorname{fsc}(T)$$

est fidèle.

Preuve: Appliquer 1.7 (i) au topos T'.

Corollaire 1.7.1. — Soient E et F deux A-faisceaux sur X. Lorsque T parcourt les objets de X, le préfaisceau

$$T \mapsto \operatorname{Hom}(E|T, F|T)$$

est séparé.

Preuve: Simple traduction de 1.7 (iv).

Remarque 1.7.3. En général, le préfaisceau précédent n'est pas un faisceau. Nous verrons toutefois qu'il en est ainsi lorsque le topos X est noethérien (SGA4 VI 2.11), ou lorsque E est de type J-adique.

2. Cas où l'objet final de X est quasicompact.

On se propose maintenant de donner un certain nombre de catégories équivalentes à $A-\operatorname{fsc}(X)$, lorsque l'objet final de X est quasicompact. Nous aurons besoin cela d'un certain nombre de lemmes techniques, dont la plupart n'utilisent pas cette hypothèse.

2.1. Soit (X,A,J) un idéotope. Étant donnés un objet M de $\underline{\operatorname{Hom}}(N^{\circ},A-\operatorname{Mod}_X)$, et une application croissante $\gamma \geq \operatorname{id}: \mathbf{N} \longrightarrow \mathbf{N}$, on définit un nouveau

système projectif $c_{\gamma}(M)$ en posant

$$c_{\gamma}(M)_n = M_{\gamma(n)} \quad (n \ge 0),$$

avec les morphismes de transition évidents. De plu, si γ et δ sont deux applications de ce type, avec $\delta \geq \gamma$, on a un morphisme évident de systèmes projectifs

$$c_{\delta}(M) \longrightarrow c_{\gamma}(M).$$

Ceci permet de définir une nouvelle catégorie, notée

$$\underline{\mathrm{Hom}}_{1}(\mathbf{N}^{\circ}, A - \mathrm{Mod}_{X})$$
, comme suit.

- (i) Ses objets sont ceux de $\underline{\text{Hom}}(N^{\circ}, A \text{Mod}_X)$.
- (ii) Si M et M' sont deux objets de $\underline{\mathrm{Hom}}(N^{\circ}, A \mathrm{Mod}_X)$, l'ensemble des morphismes de M dans M' est

$$\operatorname{Hom}_1(M,M') = \varinjlim_{\gamma} \operatorname{Hom}(c_{\gamma}(M),M'),$$

avec la loi de composition évidente.

Il est clair qu'un morphisme de $\underline{\operatorname{Hom}}(N^{\circ}, A - \operatorname{Mod}_{X})$ définit un morphisme de $\underline{\operatorname{Hom}}_{1}(\mathbf{N}^{\circ}, A - \operatorname{Mod}_{X})$, d'où un foncteur "projection"

$$q: \underline{\operatorname{Hom}}(N^{\circ}, A - \operatorname{Mod}_{X}) \longrightarrow \underline{\operatorname{Hom}}_{1}(N^{\circ}, A - \operatorname{Mod}_{X}),$$

qui est une bijection sur les objets.

2.2. Soient maintenant M un objet de $\mathscr{E}(X,J)$ et $\gamma \geq \operatorname{id}: \mathbb{N} \longrightarrow \mathbb{N}$ une application croissante. On définit un nouvel objet $\chi_{\gamma}(M)$ de $\mathscr{E}(X,J)$, fonctoriel en M, par

$$(\chi_{\gamma}(M))_n = M_{\gamma(n)}/J^{n+1}M_{\gamma(n)} \quad (n \ge 0),$$

avec les morphismes de transition évidents. De plus, si δ est une application e même type, avec $\delta \geq \gamma$, on a un morphisme canonique

$$\chi_{\mathcal{S}}(M) \longrightarrow \chi_{\gamma}(M).$$

Ceci permet de définir une nouvelle catégorie $\mathscr{E}_1(X,J)$ comme suit.

- (i) Ses objets sont ceux de $\mathscr{E}(X,J)$.
- (ii) Si M et N sont deux objets de $\mathscr{E}(X,J)$, l'ensemble des $\mathscr{E}_1(X,J)$ -morphismes de M dans N est

$$\operatorname{Hom}_{1}(M,N) = \varinjlim_{\gamma} \operatorname{Hom}(\chi_{\gamma}(M),N),$$

avec la loi de composition évidente.

De même que précédemment, on a un foncteur projection

$$q: \mathcal{E}(X,J) \longrightarrow \mathcal{E}_1(X,J).$$

Il est clair que la catégorie $\mathscr{E}_1(X,J)$ s'identifie à la sous-catégorie pleine de $\operatorname{\underline{Hom}}_1(\mathbf{N}^\circ,A-\operatorname{Mod}_X)$ engendrée pas les A-faisceaux, et que le diagramme

$$\underbrace{\operatorname{Hom}(\mathbf{N}^{\circ}, A - \operatorname{Mod}_{X}) \xrightarrow{q} \underbrace{\operatorname{Hom}_{1}(\mathbf{N}^{\circ}, A - \operatorname{Mod}_{X})}}_{q}$$

$$\underbrace{\mathcal{E}(X, J) \xrightarrow{q}}_{q} \underbrace{\mathcal{E}_{1}(X, J)}$$

dans lequel les flèches verticales sont les inclusions canoniques, est commutatif.

Enfin, on vérifie, comme dans (SGA5 V 2.4.1), que la famille des flèches canoniques du type $\chi_{\gamma}(M) \longrightarrow M$ permet un calcul de fractions à droite, ce qui permet d'identifier $\mathcal{E}_1(X,J)$ à la catégorie obtenue à partir de $\mathcal{E}(X,J)$ en inversant ces flèches.

Lemme 2.3. — La catégorie $\underline{\mathrm{Hom}}_1(\mathbf{N}^{\circ}, A - \mathrm{Mod}_X)$ (resp. $\mathscr{E}_1(X, J)$) est abélienne et le foncteur q est exact.

Preuve: Montrons tout d'abord l'assertion non respée. Il est évident que la catégorie $\underline{\operatorname{Hom}}_1(\mathbf{N}^\circ, A - \operatorname{Mod}_X)$ est additive et que le foncteur q ren inversibles toutes les flèches canoniques de la forme $c_\gamma(M) \longrightarrow M$. Si $u: P \longrightarrow Q$ est un élément de $\operatorname{Hom}_1(P,Q)$, alors u est la classe d'une flèche $f: c_\gamma(P) \longrightarrow Q$ et, en notant $c: c_\gamma(P) \longrightarrow P$ la flèche canonique, on a donc $u = q(f) \circ q(c)^{-1}$; par suite, toute flèche de $\underline{\operatorname{Hom}}_1(\mathbf{N}^\circ, A - \operatorname{Mod}_X)$ est isomorphe à l'image par q d'une flèche

de $\underline{\operatorname{Hom}}(\mathbf{N}^{\circ}, A - \operatorname{Mod}_{X})$. Il en résulte que pour voir que $\underline{\operatorname{Hom}}_{1}(\mathbf{N}^{\circ}, A - \operatorname{Mod}_{X})$ est abélienne, il suffit de montrer que le foncteur q est exact. Soient donc P et

$$0 \longrightarrow M' \longrightarrow M \longrightarrow M'' \longrightarrow 0$$

respectivement un objet et une suite exacte de $\underline{\text{Hom}}(\mathbf{N}^{\circ}, A - \text{Mod}_X)$.

Comme les foncteurs c_{γ} sont exacts et les limites inductives filtrantes de groupes abéliens sont exactes, les suites évidentes

$$0 \longrightarrow \varinjlim_{\gamma} \operatorname{Hom}(c_{\gamma}(P), M') \longrightarrow \varinjlim_{\gamma} (c_{\gamma}(P), M) \longrightarrow \varinjlim_{\gamma} \operatorname{Hom}(c_{\gamma}(P), M'')$$

et

$$0 \longrightarrow \varinjlim_{\gamma} \operatorname{Hom}(c_{\gamma}(M''), P) \longrightarrow \varinjlim_{\gamma} \operatorname{Hom}(c_{\gamma}(M), P) \longrightarrow \varinjlim_{\gamma} \operatorname{Hom}(c_{\gamma}(M'), P)$$

sont exactes, d'où l'assertion. L'assertion respée se voit de façon analogue; en fait, on montre en même temps que le foncteur d'inclusion

$$E_1(X,J) \longrightarrow \operatorname{Hom}_1(\mathbf{N}^\circ, A - \operatorname{Mod}_X)$$

est exact

2.4. Soient P et Q deux objets de $\underline{\mathrm{Hom}}(\mathbf{N}^{\circ}, A - \mathrm{Mod}_{X}), \gamma \geq \mathrm{id}$ une application croissante de \mathbf{N} dans \mathbf{N} et $f: c_{\gamma}(P) \longrightarrow Q$ un morphisme de systèmes projectifs. Désignant pour tout $n \in \mathbf{N}$ par ξ_{n} la classe de f_{n} dans $\underline{\lim}_{m} \mathrm{Hom}(P_{m}, Q_{n})$, il est clair que l'ensemble des ξ_{n} $(n \in \mathbf{N})$ définit un élément de

$$\lim_{\leftarrow} \lim_{m} \operatorname{Hom}(P_m, Q_n),$$

qui ne dépend que de la classe de f dans $\operatorname{Hom}_1(P,Q)$. On définit ainsi un foncteur

$$\rho: \underline{\mathrm{Hom}}_{1}(\mathbf{N}^{\circ}, A - \mathrm{Mod}_{X}) \longrightarrow \mathrm{Pro}(A - \mathrm{Mod}_{X}),$$

d'où un foncteur

$$\delta: \mathcal{E}_1(X,J) \longrightarrow \operatorname{Pro}(A - \operatorname{Mod}_X),$$

obtenu par restriction de ρ à $\mathcal{E}_1(X,J)$.

Lemme 2.5. — Les foncteurs ρ et δ ci-dessus sont des injections sur les objets et sont pleinement fidèles.

Preuve: Il suffit de le voir pour ρ . Dans ce cas, la seule assertion non tautologique est que ρ est pleinement fidèle. Soient donc P et Q deux objets de $\underline{\text{Hom}}(\mathbf{N}^{\circ}, A - \text{Mod}_X)$, et montrons que l'application canonique

$$\underset{\gamma}{\varinjlim} \operatorname{Hom}(c_{\gamma}(P), Q) \longrightarrow \underset{n}{\varinjlim} \underset{m}{\varinjlim} \operatorname{Hom}(P_{m}, Q_{n})$$

est bijective.

Elle est injective. Soient γ et γ' deux applications croissantes \geq id de $\mathbf N$ dans $\mathbf N$, et

$$f: c_{\gamma}(P) \longrightarrow Q$$
 et $f': c_{\gamma'}(P) \longrightarrow Q$

deux morphismes ayant même image dans $\operatorname{ProHom}(P,Q)$. Par hypothèse, pour tout entier $n \geq 0$, les morphismes f_n et f'_n définissent le même élément de $\varprojlim_m \operatorname{Hom}(P_m,Q_n)$, donc il existe un entier $\varphi(n) \geq \max(\gamma(n),\gamma'(n))$ tel que les composés

$$\begin{cases} P_{\varphi(n)} \xrightarrow{\operatorname{can}} P_{\gamma(n)} \xrightarrow{f_n} Q_n \\ P_{\varphi(n)} \xrightarrow{\operatorname{can}} P_{\gamma'(n)} \xrightarrow{f'_n} Q_n \end{cases}$$

soient égaux. Il est alors immédiat que l'application $\gamma'':\mathbf{N}\longrightarrow\mathbf{N}$ définie par

$$\gamma''(n) = \max_{n' < n} \delta(n')$$

est croissante supérieure à l'identité, et que pour tout $n \ge 0$ les composés

$$P_{\gamma''(n)} \xrightarrow{\operatorname{can}} P_{\gamma(n)} \xrightarrow{f_n} Q_n$$

et

$$P_{\gamma''(n)} \xrightarrow{\operatorname{can}} P_{\gamma'(n)} \xrightarrow{f_n'} Q_n$$

sont égaux.

Elle est surjective. Soient donnés

a) Une application $\theta: \mathbb{N} \longrightarrow \mathbb{N}$.

b) Une application $\lambda: \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N}$ vérifiant

$$\lambda(j,k) \ge \max(\theta(j),\theta(k))$$

pour tout couple (j,k).

c) Pour tout entier *j* , un morphisme

$$\xi_j: P_{\theta(j)} \longrightarrow Q_j$$

tel que, dès que $k \ge j$, le diagramme évident

soit commutatif.

Il s'agit de trouver une application croissante $\gamma \geq \operatorname{id} \operatorname{de} \mathbf{N}$ dans \mathbf{N} et un morphisme $f: c_{\gamma}(P) \longrightarrow Q$ tel que pour tout $j \in \mathbf{N}$, les morphismes f_j et ξ_j aient même classe dans

$$\varprojlim_{i} \operatorname{Hom}(P_{i}, Q_{j}).$$

On vérifie aisément que le couple (γ, f) défini par

$$\begin{cases} \gamma(j) = \sup_{k,l \le j} \lambda(k,l) \\ f_j P_{\gamma(j)} \xrightarrow{\operatorname{can}} P_{\theta(j)} \xrightarrow{\xi_{\gamma}} Q_{\gamma} \end{cases}$$

répond à la question.

2.6. Supposons maintenant que l'objet final de X soit quasicompact. Il est clair que le foncteur $q: \mathcal{E}(X,J) \longrightarrow \mathcal{E}_1(X,J)$ envoie sur O les A-faisceaux essentiellement nuls, ou, ce qui renvient au même négligeables. D'après la propriété

universelle des catégories abéliennes quotients (Thèse Gabriel III 1 Cor.2), il admet donc une factorisation unique

$$\mathcal{E}(X,J) \xrightarrow{q} \mathcal{E}_1(X,J)$$

$$A - \operatorname{fsc}(X)$$

avec \overline{q} un foncteur exact et π_X le foncteur canonique de passage au quotient.

Lemme 2.7. — Le foncteur \overline{q} ci-dessus est un isomorphisme de catégories.

Preuve: Tenant compte de l'interprétation de $\mathscr{E}_1(X,J)$ comme catégorie de fractions (2.2), il s'agit de voir que si C est une catégorie abélienne et

$$F: \mathscr{E}(X, J) \longrightarrow C$$

un foncteur exact, les assertions suivantes sont équivalentes :

- (i) F annulle tout A-faisceau essentiellement nul.
- (ii) F rend inversible toute flèche canonique $\chi_{\gamma}(M) \longrightarrow M$.

Si M est un A-faisceau essentiellement nul, il existe une application croissante $\gamma \ge$ id : $\mathbb{N} \longrightarrow \mathbb{N}$ telle que la flèche canonique $\chi_{\gamma}(M) \longrightarrow M$ soit nulle, d'où (ii) \Rightarrow (i). Prouvons (i) \Rightarrow (ii).

Si P et Q sont définis par l'exactitude de la suite $0 \longrightarrow P \longrightarrow \chi_{\gamma}(M) \xrightarrow{\operatorname{can}} M \longrightarrow Q \longrightarrow 0$, il est immédiat que les morphismes canoniques $\chi_{\gamma}(P) \longrightarrow P$ et $\chi_{\gamma}(Q) \longrightarrow Q$ sont nuls, d'où aussitôt l'assertion.

Remarque 2.7.1. Plus généralement, l'argument précédent montre, sans hypothèse sur X, qe $\mathscr{E}_1(X,J)$ est la catégorie abélienne quotient de $\mathscr{E}(X,J)$ par la sous-catégorie, abélienne engendrée par les A-faisceaux essentiellement nuls. On en déduit grâce à la description des morphismes d'une catégorie abélienne quotient, que tout morphisme (resp. isomorphisme) de A – fsc(X) est localement l'image d'un morphisme de $\mathscr{E}(X,J)$.

Proposition 2.8. — Soit (X,A,J) un idéotope. On suppose que l'objet final de X est quasicompact. Alors le foncteur canonique

$$\sigma \circ \overline{q} : A - \operatorname{fsc}(X) \longrightarrow \operatorname{Pro}(A - \operatorname{Mod}_X)$$

induit un isomorphisme de $A-\operatorname{fsc}(X)$ sur la sous-catégorie pleine de $\operatorname{Pro}(A-\operatorname{Mod}_X)$ engendrée par les A-faisceaux.

Preuve: Résulte immédiatement de (2.5) et (2.7).

Remarque 2.8.1. La proposition précédente s'applique notamment lorsque *X* est le topos ponctuel.

2.8.2. La preuve qu'on a donnée de (2.8) n'utilise pas le fait que la catégorie des pro-objets d'une catégorie abélienne, et il ne semble pas que l'utilisation de ce fait apporte des simplifications notables.

Soit X un topos localement noethérien (SGA4 VI 2.11).

On rappelle que la sous-catégorie pleine de X engendrée par les objets noethériens est stable par produits fibrés finis et que munissant C de la structure de site induite par la topologie de X, le foncteur canonique

$$X \longrightarrow \tilde{C}$$

est une équivalence de catégories.

Lemme 2.9. — Soient (X,A,J) un idéotope, avec X un topos localement noethérien, et E et F deux A-faisceaux sur X. La restriction au site des objets noethériens de X du préfaisceau

$$T \longrightarrow \operatorname{Hom}(E|T, F|T)$$

est un faisceau.

Preuve: On est ramené à voir que si T est un objet noethérien de X et $(Y_i \longrightarrow T)_{i \in I}$ est un recouvrement *fini* de T par des objets noethériens, alors la suite canonique

$$0 \longrightarrow \varinjlim_{\gamma} \operatorname{Hom}_{a}(\chi_{\gamma}(E)|T,F|T) \longrightarrow \prod \varinjlim_{\gamma} \operatorname{Hom}_{a}(\chi_{\gamma}(E)|T,F|T),$$

$$\prod_{i} \varinjlim_{\gamma} \operatorname{Hom}_{a}(\chi_{\gamma}(E)|T_{i} \times_{T} T_{j}, F|T_{i} \times_{T} T_{j})$$

est exacte (2.7). Comme les produits finis sont des sommes directes et les limites inductives filtrantes de groupes abéliens sont exactes, l'assertion résulte de

l'exactitude des suites canoniques

$$0 \longrightarrow \operatorname{Hom}_{a}(\chi_{\gamma}(E)|T,F|T) \longrightarrow \prod_{i} \operatorname{Hom}_{a}(\chi_{\gamma}(E)|T_{i},F(T_{i})) \longrightarrow$$

$$\longrightarrow \prod_{i,j} \operatorname{Hom}_{a}(\chi_{\gamma}(E)|T_{i} \times_{T} T_{j},F|T_{i} \times_{T} T_{j}).$$

3. A-faisceaux de type constant, strict ou J-adique.

Soit (X,A,J) un idéotope.

Proposition 3.1. — Étant donné un A-faisceau F sur X, les assertions suivantes sont équivalentes :

- (i) F est isomorphe (dans A fsc(X)) à un A-faisceau qui est un système projectif strict.
- (ii) F est localement isomorphe à un A-faisceau qui est un système projectif strict.
- (iii) F vérifie localement la condition de Mittag-Leffler (ML) (EGA0_{III} 13.1.2).

Preuve: Il est clair que (i) \Rightarrow (ii). On voit que (ii) \Rightarrow (iii) en paraphrasant la preuve de (SGA5 V 2.5.1). Si maintenant (iii) est vérifiée, on peut parler localement du système projectif des images universelles de F et ces divers systèmes projectifs d'images universelles se recollent pour donner un A-faisceau qui est un sous-système projectif strict F' de F. Alors, paraphrasant toujours (SGA5 V 2.5.1), on voit que l'inclusion de F' dans F est localement un isomorphisme, et on conclut par (1.7 (iii)).

Définition 3.2. — Un A-faisceau F qui vérifie les conditions équivalentes de (3.1) est appelé de type strict.

Si F est de type strict, nous avons vu dans l'courant de la démonstration que pour tout entier $n \ge 0$, le système projectif

$$(\operatorname{Im}(F_m \longrightarrow F_n))_{m \ge n}$$

admet localement, donc aussi globalement, une limite projective F_n' qui s'identifie à un sous-faisceau de F_n , et nous avons ainsi défini un sous-A-faisceau F' de F.

Définition 3.3. — Si F est un A-faisceau de type strict, le A-faisceau F' défini cidessus est appelé A-faisceau strict associé à F.

Rappelons enfin que nous avons vu que l'inclusion canonique $F' \hookrightarrow F$ est un isomorphisme.

Proposition 3.4. — Soit $0 \longrightarrow E' \longrightarrow E \longrightarrow E'' \longrightarrow 0$ une suite exacte de $A-\operatorname{fsc}(X)$. Alors:

- (i) Si E est de type strict, E" est de type strict.
- (ii) Si E' et E" sont de type strict, il en est de même de E.

Preuve: On peut supposer que la suite exacte considérée est l'image d'une suite exacte de $\mathcal{E}(X,J)$ et alors l'énoncé résulte de l'application locale de (EGA 0_{III} 13.2.1).

3.5. Convenant de noter

$$J-\mathrm{Mod}(X)$$

la sous-catégorie, *exacte* (i.e. stable par noyaux, conoyaux et extensions), et même épaisse, pleine de $A-\operatorname{Mod}_X$ engendrée par les $A-\operatorname{Modules}$ localement annulés par une puissance de J, associons à tout objet M de $J-\operatorname{Mod}_X$ le A-faisceau localement essentiellement constant

$$\overline{M} = \mathcal{E}_X(M) = (M/J^{n+1}M)_{n \in \mathbb{N}}.$$

On définit ainsi de façon claire un foncteur additif

$$J - \operatorname{Mod}(X) \longrightarrow \mathcal{E}(X, J),$$

d'où, en composant avec a projection canonique, un foncteur additif

$$(3.5.1) \mathscr{E}_X: J - \operatorname{Mod}(X) \longrightarrow A - \operatorname{fsc}(X).$$

Proposition 3.6. —

1) Le foncteur (3.5.1) ci-dessus est exact et pleinement fidèle. Son image essentielle

est une sous-catégorie abélienne exacte de $A-\operatorname{fsc}(X)$.

- 2) Les assertions suivantes pour un A-faisceau F sur X sont équivalentes :
 - (i) F appartient à l'image essentielle de (3.5.1).
 - (ii) F est isomorphe à un A-faisceau localement essentiellement constant.
 - (iii) F est localement isomorphe à un A-faisceau essentiellement constant.

Un A-faisceau vérifiant ces conditions équivalentes est dit de type constant. Un A-faisceau de type constant est de type strict. La propriété pour un A-faisceau d'être de type constant est de nature locale.

Preuve: 1) Soit $0 \longrightarrow M \stackrel{\iota}{\longrightarrow} N \stackrel{v}{\longrightarrow} P \longrightarrow 0$ une suite exacte de $J - \operatorname{Mod}_X$, d'où une suite

$$0 \longrightarrow \overline{M} \stackrel{\overline{u}}{\longrightarrow} \overline{N} \stackrel{\overline{v}}{\longrightarrow} \overline{P} \longrightarrow 0$$

de $\mathscr{E}(X,J)$. Comme les systèmes projectifs $\overline{M},\overline{N},\overline{P}$ sont localement essentiellement constants, on voit que, localement, pour n assez grand,

$$(\operatorname{Ker} \overline{u})_n = (\operatorname{Coker} \overline{v})_n = (\operatorname{Ker} \overline{v}/\operatorname{Im} \overline{u})_n = 0,$$

donc les systèmes projectifs $\operatorname{Ker}(\overline{u})$, $\operatorname{Coker}(\overline{v})$, $\operatorname{Ker}(\overline{v})/\operatorname{Im}\overline{u}$ sont négligeables, d'où l'exactitude de (3.5.1). Montrons qu'il est fidèle. Soit $u:M\longrightarrow N$ un morphisme de $J-\operatorname{Mod}_X$ tel que \overline{u} définisse le morphisme nul de $A-\operatorname{fsc}(X)$ et montrons que u=0. Dans $\mathscr{E}(X,J)$, le A-faisceau $\operatorname{Im}(\overline{u})$ est négligeable ; l'assertion à prouver étant locale, on peut supposer qu'il est essentiellement nul et que M et N sont annulés par une puissance de J. Alors, comme $\operatorname{Im}(\overline{u})$ est contenu dans le système projectif essentiellement constant \overline{N} , on a évidemment $(\operatorname{Im}(\overline{u}))_n=0$ pour n assez grand. Mais, toujours pour n assez grand, on a $(\overline{u})_n=0$, d'où l'assertion.

Soit maintenant $\lambda : \overline{M} \longrightarrow \overline{N}$ un morphisme de A-faisceaux et montrons qu'il existe un morphisme $u : M \longrightarrow N$ tel que $\lambda = \overline{u}$ dans $A - \mathrm{fsc}(X)$. Comme on sait déjà que (3.5.1) est fidèle, il résulte de (1.7.2) que cette assertion est de nature

locale. Par définition (Thèse Gabriel III 1), le morphisme λ est la classe d'un triple (α, β, v) de $\mathscr{E}(X, J)$ -morphismes (cf. diagramme)

avec α un monomorphisme, β un épimorphisme et $\operatorname{Coker}(\alpha)$ et $\operatorname{Ker}(\alpha)$ négligeables. D'après le caractère local de l'assertion à démontrer, on peut supposer qu'ils sont essentiellement nuls, et que M et N sont annulés par une puissance de J. Comme précédemment, on a alors $(\operatorname{Ker}\beta)_n=0$ pour n assez grand ; de plus, comme \overline{M} est strict, α est un isomorphisme. On vérifie aussitôt que pour n assez grand, le morphisme

$$(\beta \circ v \circ \alpha^{-1})_n(\overline{M})_n = M \longrightarrow N = (\overline{N})_n$$

ne dépend pas de n. Désignant par u la valeur commune, on voit alors sans peine que $A = \overline{u}$. La peine fidélité de (3.5.1) montre que la catégorie TC(X,J) est stable par noyaux et conoyaux dans A - fsc(X). Nous verrons la stabilité par extensions après avoir prouvé la deuxième partie.

2) Il est clair que (i) \Rightarrow (ii) \Rightarrow (iii). Montrons que (iii) \Rightarrow (i). Faisons d'abord quelques préliminaires. Étant donné un A-faisceau F on définit un nouveau A-faisceau \overline{F} par

$$(\overline{F})_n = (\varprojlim_m (F_m))/J^{n+1}(\varprojlim_m (F_m)),$$

avec les morphismes de transition évidents. De plus, on a, de façon évident un $\mathcal{E}(X,J)$ -morphisme fonctoriel en F

$$u_F: \overline{F} \longrightarrow F.$$

On vérifie sans peine que si $\alpha: F \longrightarrow G$ est un $\mathscr{E}(X,J)$ -morphisme dont le noyau et le conoyau sont négligeables, alors le morphisme correspondant $\overline{\alpha}: \overline{F} \longrightarrow \overline{G}$ est un isomorphisme. Ceci permet de définir un $A-\operatorname{fsc}(X)$ -morphisme, fonctoriel en F lorsque ce dernier parcourt $A-\operatorname{fsc}(X)$,

$$(3.6.1) u_F: \overline{F} \longrightarrow F.$$

Supposons maintenant que F soit localement dans l'image essentielle de (3.5.1) et montrons qu'il y est globalement. Étant donnés un objet T de X, un objet M de $J-\operatorname{Mod}_T$ et un $A-\operatorname{fsc}(T)$ -isomorphisme

$$F|T \xrightarrow{\sim} \mathscr{E}_T(M),$$

on voit sans peine que

$$(\varprojlim_{m} F_{m})|T \simeq M,$$

et F par $\overline{F}'' \times_{F''} F$, on peut de plus supposer que F'' est aussi essentiellement constant. Dans ce cas, F l'est également, d'où l'assertion.

Corollaire 3.7. — La sous-catégorie pleine $TC(X,J)^+$ de A—fsc(X) engendrée par les A-faisceaux isomorphes à un A-faisceau de la forme $\mathscr{E}_X(M)$, avec un A_X -Module annulé par une puissance de J, est exacte.

Preuve : Les objets de $TC(X,J)^+$ sont ceux de TC(X,J) qui sont annulés par une puissance de l'idéal J.

3.8. Soit $J - \operatorname{ad}(X)$ la sous-catégorie pleine de $\mathscr{E}(X,J)$ engendrée par les systèmes projectifs J-adiques (SGA5 V 3.1.1) de A_X -Modules. Le foncteur canonique

$$(3.8.1) \qquad \mathscr{E}(X,F) \longrightarrow A - \mathrm{fsc}(X)$$

induit un foncteur

$$(3.8.2) J - ad(X) \longrightarrow A - fsc(X)$$

et nous noterons

$$TJ - ad(X)$$

l'image essentielle de (3.8.1), i.e. la sous-catégorie pleine de $A-\operatorname{fsc}(X)$ engendrée par les A-faisceaux qui sont isomorphes à un A-faisceau J-adique. Un tel A-faisceau sera dit de type J-adique.

Proposition 3.9. — Soient E et F deux A-faisceaux sur X.

(a) Si E est J-adique, l'application canonique

$$\varphi_X : \operatorname{Hom}_a(E, F) \longrightarrow \operatorname{Hom}(E, F)$$

est une bijection.

(b) Si E est de type J-adique, le préfaisceau

$$T \mapsto \operatorname{Hom}(E|T,F|T)$$

sur X est un faisceau.

Preuve: Il suffit de montrer a), l'assertion b) en étant conséquence immédiate. Si u et $v:E \Rightarrow F$ sont deux morphismes de systèmes projectifs vérifiant $\varphi_X(u) = \varphi_X(v)$, alors l'exactitude de (3.8.1) montre que $\operatorname{Im}(v-u)$ est négligeable, donc nul puisque E est strict, d'où u=v. Soit maintenant $a:E \longrightarrow F$ un morphisme de A—fsc(X) et montrons qu'il est dans l'image de φ_X . Il résulte de (2.7.1) que localement a est l'image d'un élément de $\varinjlim_{\gamma} \operatorname{Hom}(\chi_{\gamma}(E),F)$, donc provient d'un morphisme $u:E \longrightarrow F$ de $\mathscr{E}(X,J)$, puisque les morphismes canoniques $\chi_{\gamma}(E) \longrightarrow E$ sont des isomorphismes. Dans le cas général, on obtient ainsi un recouvrement ($T_i \longrightarrow e_X$) de l'objet final e_X de X et des morphismes de systèmes projectifs

$$v_i: E|T_i \longrightarrow F|T_i$$

vérifiant $\varphi_{T_i}(v_i) = a|T_i$. D'après l'injectivité es applications $\varphi_{T_i \times T_j}$, les morphismes v_i se recollent en un morphisme v de $\mathscr{E}(X,J)$ vérifiant $\varphi_X(v) = a$ localement, donc aussi globalement (1.7.2).

Corollaire **3.9.1**. — *Le foncteur*

$$J - \operatorname{adn}(X) \longrightarrow TJ - \operatorname{ad}(X)$$

induit par (3.8.1) est une équivalence de catégories.

Corollaire **3.9.2**. — La catégorie fibrée

$$S \mapsto TJ - ad(S)$$

au-dessus de X est un champ, autrement dit on a les propriétés suivantes.

(i) Si F et G sont deux A-faisceaux de type J-adique, le préfaisceau

$$T \mapsto \operatorname{Hom}(F|T,G|T)$$

sur X est un faisceau.

(ii) Soit $(U_i \longrightarrow e_X)_{i \in I}$ un recouvrement de l'objet final e_X de X. Pour tout couple (i,j) d'éléments de I (resp. tout triple (i,j,k)), on pose

$$U_{ij} = U_i \times U_k$$
 (resp. $U_{ijk} = U_i \times U_j \times U_k$).

Supposons donné pour tout $i \in I$ un A-faisceau de type J-adique F_i sur U_i et pour tout couple (i,j) d'éléments de I un isomorphisme

$$\theta_{ji}: F_i|U_{ij} \xrightarrow{\sim} F_j|U_{ij}$$

 $de A - fsc(U_{ij})$. On suppose que

a) Si
$$i \in I$$
, alors $\theta_{ii} = id$.

b)
$$Si(i,j,k) \in I^3$$
, $\theta_{ki} = \theta_{kj} \circ \theta_{ji}$ sur U_{ijk} .

Alors il existe un A-faisceau de type J-adique F sur X et pour tout $i \in I$ un isomorphisme

$$\theta_i: F_i \xrightarrow{\sim} F|U_i \quad de \quad A - fsc(U_i)$$

tels que pour tout couple (i,j) d'éléments de I on ait

$$\theta_i \circ \theta_i = \theta_i \quad sur \quad U_{ij}.$$

Preuve : Résulte immédiatement de l'assertion analogue, évidente, pour la catégorie fibrée $T \mapsto J - \operatorname{ad}(T)$ sur X.

Corollaire **3.9.3**. — La propriété pour un A-faisceau d'être de type J-adique est de nature locale.

Preuve: Soit F un A-faisceau localement de type J-adique, et $(U_i \longrightarrow e_X)_{i \in I}$ un recouvrement de l'objet final e_X de X tel que les A-faisceaux $F_i = F | U_i$ soient de type J-adique. D'après (3.9.2 (ii)), on peut "recoller" les F_i suivant un A-faisceau de type J-adique F'. Par ailleurs la proposition (3.9 b)) permet de recoller les morphismes identiques des F_i en un morphisme $F' \longrightarrow F$, qui est un isomorphisme localement, donc aussi globalement (1.7. (iii)).

Proposition 3.10. — Soit F un A-faisceau sur X. Les assertions suivantes sont équivalentes :

- (i) F est de type J-adique.
- (ii) F est de type strict (3.2) et, notant F' le A-faisceau strict associé à F (3.3), il existe localement une application croissante $\gamma \geq \operatorname{id}: \mathbf{N} \longrightarrow \mathbf{N}$ telle que $\chi_{\gamma}(F')$ soit J-adique.

De plus ces conditions impliquent la condition (iii) ci-dessous et lui sont équivalentes lorsque l'objet final e_X de X admet un recouvrement par les objets quasicompacts.

(iii) Pour tout entier $r \ge 0$, le A-faisceau

$$\tau_r(F) = (F_n \bigotimes_A (A/J^{r+1}))_{n \in \mathbb{N}}$$

est de type constant (3.6).

Preuve: Si F est de type J-adique, il existe un recouvrement $(U_i \longrightarrow e_X)_{i \in I}$ de l'objet final de X tel que pour tout $i \in I$ $F|U_i$ soit isomorphe au sens de $\mathcal{E}_1(U_i,J)$ (2.2) à un A-faisceau J-adique, et la réciproque est également vraie d'après (3.9.3).

L'équivalence de (i) et (ii) se voit alors en paraphrasant la preuve de (SGA5 V 3.2.3). Montrons que (i) \Rightarrow (iii). Il résultera de (5.1) (le lecteur vérifiera que (3.10) n'est pas utilisé dans la preuve de (5.1)) que si P et Q sont deux A-faisceaux isomorphes, alors les A-faisceaux $\tau_r(P)$ et $\tau_r(Q)$ sont isomorphes. Par suite on peut supposer que F est J-adique, et alors l'assertion est évidente. Pour voir que (iii) \Rightarrow (i) sous l'hypothèse supplémentaire de l'énoncé, on peut grâce à (3.9.3) supposer que e_X est quasicompact. Alors pour tout $r \geq 0$, $\tau_r(F)$ vérifie la condition de Mittagg-Leffler, d'où résulte aussitôt qu'il en est de même pour F. On peut donc supposer F strict. Alors pour tout $r \geq 0$, $\tau_r(F)$ est de type J-adique, donc essentiellement constant par (i) \Rightarrow (ii). Choisissant alors une application $\gamma \geq$ id : $\mathbf{N} \longrightarrow \mathbf{N}$ telle que pour tout $r \geq 0$ le système projectif $\tau_r(F)$ soit constant à partir du rang $\gamma(r)$, il est immédiat que le A-faisceau $\chi_\gamma(F)$ est J-adique, et donc que F vérifie (ii).

Corollaire 3.11. — Soit X un topos dont l'objet final est quasicompact. Les assertions suivantes pour un A-faisceau F sur X sont équivalentes :

(i) F est de type J-adique.

(ii) F vérifie la condition de Mittag-Leffler et, désignant par F' le A-faisceau strict associé, il existe une application $\gamma \geq \operatorname{id}$ de $\mathbb N$ dans $\mathbb N$ telle $\chi_{\gamma}(F')$ soit J-adique.

Signalons enfin l'énoncé suivant, dont la preuve se ramène localement à une paraphrase de celle de (SGA5 V 3.2.4) :

Proposition 3.12. — Soit

$$0 \longrightarrow F' \longrightarrow F \longrightarrow F'' \longrightarrow 0$$

une suite exacte de A-faisceaux. Alors

- (i) Si F' et F sont respectivement de type strict et de type J-adique, alors F'' est de type J-adique.
- (ii) Si F et F'' sont respectivement de type strict et de type J-adique, alors F' est de type strict.

Remarque 3.13. Bien entendu, comme dans le contexte de (SGA5 V et VI) ce sont là les seules stabilités des notions précédentes. Pour en avoir d'autres, il faudra introduire des conditions de finitude (cf. II).

4. Opérations externes.

On suppose donné dans ce paragraphe un anneau commutatif unifère A et un idéal propre J de A.

4.1. Soient X et Y deux topos et $f: X \longrightarrow Y$ un morphisme de topos. Ayant choisi un foncteur image réciproque

$$f^*: A - \text{Mod}_Y \longrightarrow A - \text{Mod}_X$$
,

on définit un foncteur exact, noté de même,

$$f^*: \mathcal{E}(Y,J) \longrightarrow \mathcal{E}(X,J)$$

en posant pour tout A-faisceau $F = (F_n)_{n \in \mathbb{N}}$ sur Y

$$f^*(F) = (f^*(F_n))_{n \in \mathbb{N}}$$

et pour tout $\mathcal{E}(Y,J)$ -morphisme $u = (u_n)_{n \in mathbfN}$,

$$f^*(u) = (f^*(u_n))_{n \in \mathbb{N}}.$$

Ce foncteur est exact et transforme évidemment A-faisceau négligeable en A-faisceau négligeable. On en déduit par passage au quotient un foncteur exact, appelé foncteur *image réciproque par f*,

$$(4.1.1) f^*: A - fsc(Y) \longrightarrow A - fsc(X).$$

Il est clair que deux foncteurs images réciproques de $A-\operatorname{Mod}_Y$ dans $A-\operatorname{Mod}_X$, étant isomorphes, définissent des foncteurs isomorphes de $A-\operatorname{fsc}(Y)$ dans $A-\operatorname{fsc}(X)$; par suite, on pourra parler, sans plus d'ambiguïté que dans le cas des faisceaux de $A-\operatorname{Modules}$, "du" foncteur image réciproque.

Exemple 4.1.2. Le foncteur restriction (1.6.2) associé à un morphisme $f: T \longrightarrow T'$ d'objets d'un topos X n'est autre que le foncteur image réciproque associé au morphisme de topos

$$X/T \longrightarrow X/T'$$

correspondant.

4.1.3. Si maintenant $f: X \longrightarrow Y$ et $g: Y \longrightarrow Z$ sont deux morphismes de topos, on définit sans peine, argument par argument, un isomorphisme de foncteurs

$$(g \circ f)^* \simeq f^* \circ g^*,$$

vérifiant la condition de cocycles habituelle.

4.1.4. Notant "pt" le topos ponctuel, i.e. la catégorie des ensembles munie de la topologie canonique, on rappelle (2.8.1) que la catégorie $A-\operatorname{fsc}(\operatorname{pt})$ s'identifie à la sous-catégorie pleine de $\operatorname{Pro}(A-\operatorname{mod})$ engendrée par les systèmes projectifs $M=(M_n)_{n\in\mathbb{N}}$ de A-modules vérifiant $J^{n+1}M_n=0$ pour tout $n\geq 0$. Si maintenant X est un topos et

$$p: X \longrightarrow pt$$

le morphisme de topos canonique, le foncteur p^* associe à tout système projectif M comme ci-dessus un A-faisceau sur X, qui sera noté de même s'il n'y a pas de confusion possible.

Supposons maintenant que A soit *noethérien*. Il résulte du lemme d'Artin-Rees (EGA 0, 7.3.2.1). que le foncteur

$$(4.1.4.1) M \mapsto (M/J^{n+1}M)_{n \in \mathbb{N}}$$

de la catégorie A — modn des A-modules de type fini dans A — fsc(pt) est exact et fidèle, et même pleinement fidèle lorsque A est complet pour la topologie J-adique (EGA O_I 7.8.2). Composant avec le foncteur p^* , on en déduit un foncteur exact et fidèle

$$(4.1.4.2) A - modn \longrightarrow A - fsc(pt),$$

qui est de même pleinement fidèle lorsque A est complet pour la topologie J-adique. Dans la suite, on identifiera si aucune confusion n'en résulte un A-module de type fini et le système projectif n'en résulte un A-module de type fini et le système projectif associé au moyen du foncteur (4.1.4.2).

4.1.5. Soit *X* un topos. Tout foncteur point

$$i: pt \longrightarrow X$$

de X définit un foncteur exact

$$i^*: A - \operatorname{fsc}(X) \longrightarrow A - \operatorname{fsc}(\operatorname{pt}) \hookrightarrow \operatorname{Pro}(A - \operatorname{mod}),$$

qu'on appellera foncteur fibre associé à i. On prendra garde que si X admet une famille conservative $(i_r)_{r\in R}$ de foncteurs points, alors la famille de foncteurs exacts

$$i_r^*: A - \mathrm{fsc}(X) \longrightarrow A - \mathrm{fsc}(\mathrm{pt})$$

n'est pas en général conservative. Soient en effet X un espace topologique quasicompact et $(x_r)_{r\in \mathbb{N}}$ une infinité dénombrable de points fermés de X, et notons $i_r: x_r \longrightarrow X$ les inclusions canoniques. On peut choisir une infinité dénombrable $(P_r)_{r\in \mathbb{N}}$ de A-faisceaux essentiellement nuls sur le topos ponctuel, telle qu'il n'existe aucune application croissante $\gamma \geq \operatorname{id}: \mathbb{N} \longrightarrow \mathbb{N}$ pour laquelle les morphismes canoniques $\chi_{\gamma}(P_r) \longrightarrow P_r$ soient simultanément nuls. Alors le système projectif de A_X -Modules

$$P = \bigoplus_{r \in \mathbf{N}} (i_r)_*(P_r)$$

n'est pas essentiellement nul et définit pourtant un A-faisceau qui est envoyé sur le A-faisceau nul par tous les foncteurs fibres associés aux points de X. Nous verrons cependant plus loin que ce genre d'inconvénient ne se produit plus lorsqu'on fait des hypothèse de finitude convenables sur les A-faisceaux envisagés.

4.2. Soient X et Y deux topos et $f: X \longrightarrow Y$ un morphisme. Avec les abus de langage usuels, on définit pour tout entier p un foncteur additif

$$R^p f_* : \mathcal{E}(X,J) \longrightarrow \mathcal{E}(Y,J)$$

par la formule

$$R^{p} f_{*}((F_{n})_{n \in \mathbb{Z}}) = (R^{p} f_{*}(F_{n}))_{n \in \mathbb{N}}.$$

Mieux, la collection des foncteurs $(R^p f_*)_{p \in \mathbb{Z}}$ est munie de façon évidente d'une structure de foncteur cohomologique de $\mathscr{E}(X,J)$ dans $\mathscr{E}(Y,J)$.

Lemme **4.2.1**. — On suppose f quasicompact (SGA4 VI 3.1). Soit $u: F \longrightarrow G$ un morphisme de $\mathcal{E}(X,J)$ dont le noyau et le conoyau sont négligeables. Alors pour tout entier $p \in \mathbb{Z}$, le morphisme

$$R^p f_*(u): R^p f_*(F) \longrightarrow R^p f_*(G)$$

est à noyau et conoyau négligeables.

Preuve: Comme f est quasicompact, on voit en se ramenant au cas où l'objet final de X est quasicompact que pour tout $q \in \mathbf{Z}$ le foncteur $\mathbf{R}^q f_*$ transforme A-faisceaux négligeable. Le lemme s'en déduit en utilisant la structure de foncteur cohomologique sur $(\mathbf{R}^p f_*)_{p \in \mathbf{N}}$.

D'après les propriétés générales des catégories abéliennes quotients, la catégorie $A-\mathrm{fsc}(X)$ est obtenue à partir de $\mathscr{E}(X,J)$ en inversant les flèches dont le noyau et le conoyau sont négligeables. Il résulte de (4.2.1) que lorsque f est quasicompact le foncteur cohomologique $(\mathrm{R}^p f_*)_{p\in \mathbf{Z}}$ définit par passage au quotient un foncteur cohomologique noté de même

$$(4.2.2) (Rp f*)p∈Z: A - fsc(X) \longrightarrow A - fsc(Y).$$

Bien entendu, $R^i f_* = 0$ pour i < 0, et en particulier le foncteur *image directe* $f_* = R^0 f_*$ est exact à gauche.

Définition **4.2.3**. — Soit X un topos. On dit qu'un A-faisceau $F = (F_n)_{n \in \mathbb{N}}$ est flasque si chacun des F_n est un A-Module (ou, ce qui revient au même, un faisceau abélien) flasque.

Proposition 4.2.4. —

- (i) Soit X un topos. Tout A-faisceau sur X se plonge dans un A-faisceau flasque.
- (ii) Soient X et Y deux topos et $f: X \longrightarrow Y$ un morphisme quasicompact. Pour tout A-faisceau flasque F sur X, le A-faisceau $f_*(F)$ est flasque et on a

$$R^p f_*(F) = 0 \quad (p \ge 1), \ dans A - fsc(Y).$$

En particulier, pour tout entier $p \ge 1$, le foncteur \mathbb{R}^p f_* est effaçable.

Preuve : Lorsque *X* admet suffisamment de points, le caractère fonctoriel de la "résolution de Godement" (SGA4 XII 3.4) permet de la prolonger aux systèmes projectifs, ce qui montre (i) dans ce cas.

Dans le cas général, on laisse au lecteur le soin de faire la construction pas à pas. D'ailleurs, nous verrons plus loin (6.6.3) que la catégorie $\mathcal{E}(X,J)$ possède suffisamment d'injectifs et que ceux-ci sont flasques, ce qui prouvera également le résultat annoncé. Quant à l'assertion (ii), elle est immédiate.

4.3. Soient X et Y deux topos et $f: X \longrightarrow Y$ un morphisme quasicompact. Soient F un A-faisceau sur Y et G un A-faisceau sur X.

On définit de façon évidente, composant par composant, des "morphismes d'adjonction"

$$(4.3.1) a_F: F \longrightarrow f_* f^*(F)$$

$$(4.3.2) b_G: f^*f_*(G) \longrightarrow G$$

fonctoriels en *F* et *G* respectivement. On en déduit des applications fonctorielles (Sém. CARTAN 11 Exp. 7 par 3)

$$(4.3.3) \varphi: \operatorname{Hom}(f^*F, G) \longrightarrow \operatorname{Hom}(F, f_*(G))$$

$$(4.3.4) \qquad \qquad \psi : \operatorname{Hom}(F, f_*(G)) \longrightarrow \operatorname{Hom}(f^*F, G).$$

Proposition 4.3.5. — Les applications φ et ψ précédentes sont des bijections inverses l'une de l'autre. En particulier, le foncteur

$$f^*: A - \operatorname{fsc}(Y) \longrightarrow A - \operatorname{fsc}(X)$$

est adjoint à gauche du foncteur

$$f_*: A - \operatorname{fsc}(X) \longrightarrow A - \operatorname{fsc}(Y).$$

Preuve : Il suffit (cf. loc. cit.) de montrer que les composés

$$f_*(G) \xrightarrow{af_*(F)} f_*f^*f_*(G) \xrightarrow{f_*(b_F)} f_*(G)$$

et

$$f^*(F) \xrightarrow{f^*(a_F)} f^*f_*f^*(F) \xrightarrow{b_{f^*(F)}} f^*(F)$$

sont respectivement l'identité de $f_*(G)$ et celle de $f^*(F)$. Or cela est vrai au stade des composants, d'où l'assertion.

4.4. Soit *X* un topos dont l'*objet final est quasicompact*, de sorte que (SGA4 VI 3.2), le morphisme canonique

$$p: X \longrightarrow pt$$

est quasicompact. On définit de façon évidente un foncteur cohomologique

$$(\overline{H}^{i}(X,.))_{i\in\mathbb{Z}}: \mathscr{E}(X,J) \longrightarrow \mathscr{E}(\mathrm{pt},J) \quad (\longrightarrow \mathrm{Pro}(A-\mathrm{mod})),$$

en posant pour tout A-faisceau $F = (F_n)_{n \in \mathbb{N}}$

$$\overline{H}^{i}(X,F) = (\overline{H}^{i}(X,F_{n}))_{n \in \mathbb{N}}$$

avec les morphismes de transition évidents.

Le même raisonnement qu'en (4.2) montre qu'il définit par passage au quotient un nouveau foncteur cohomologique, noté sans inconvénient de la même manière,

$$(4.4.2) (\overline{H}^{i}(X,.))_{i \in \mathbb{Z}} : A - \operatorname{fsc}(X) \longrightarrow A - \operatorname{fsc}(\operatorname{pt}) \hookrightarrow \operatorname{Pro}(A - \operatorname{mod}).$$

Comme précédemment, $\overline{H}^i = 0$ pour i < 0, et on pose $\overline{H}^0(X,.) = \overline{\Gamma}(X,.)$.

Identifiant de la façon habituelle les foncteurs Γ et p_* pour les A_X -Modules, on obtient une identification canonique entre les foncteurs $\overline{H}^i(X,.)$ et $R^i p_*(.)$, de sorte que les énoncés précédents peuvent être considérés comme une redite de (4.2).

4.4.3. Soient X et Y deux topos dont l'objet final est quasicompact et $f: X \longrightarrow Y$ un morphisme. Si F est un A-faisceau sur Y, l'image réciproque en cohomologie définit de façon évidete un morphisme de foncteurs cohomologiques

$$f^*: \overline{H}^p(Y,F) \longrightarrow \overline{H}^p(X,f^*(F))$$

avec les propriétés habituelles (isomorphisme canonique pour le composé, avec condition de cocycles).

4.5. Soient X un topos et $f: T \longrightarrow T'$ un morphisme quasicompact (SGA4 VI 1.7) de X. Le foncteur exact (SGA4 III 6.8)

$$f_!: A - \operatorname{Mod}_T \longrightarrow A - \operatorname{Mod}_{T'}$$

définit de façon claire un foncteur exact

$$(4.5.1) f_! : \mathcal{E}(T,J) \longrightarrow \mathcal{E}(T',J)$$

en posant pour tout A-faisceau $F = (F_n)_{n \in \mathbb{N}}$ sur T

(4.5.2)
$$f_!(F) = (f_!(F_n))_{n \in \mathbb{N}}.$$

Comme f est quasicompact, le foncteu (4.5.1) transforme A-faisceau négligeable en A-faisceau négligeable, et définit par suite par passage au quotient un foncteur exact, noté de même,

$$(4.5.3) f_!: A - fsc(T) \longrightarrow A - fsc(T').$$

4.5.4. Si $g: T' \longrightarrow T''$ est un autre morphisme quasicompact de X, on définit, composant par composant sur les systèmes projectifs, un isomorphisme

$$(gf)_! \xrightarrow{\sim} g_! f_!$$

vérifiant la condition de cocycles habituelle.

Proposition 4.5.5. — Soient X un topos et $f: T \longrightarrow T'$ un morphisme quasicompact de X. Le foncteur

$$f_1: A - \operatorname{fsc}(T) \longrightarrow A - \operatorname{fsc}(T')$$

est adjoint à gauche du foncteur

$$f^*: A - \operatorname{fsc}(T') \longrightarrow A - \operatorname{fsc}(T).$$

Preuve : On se ramène comme dans la preuve de (4.3.5) à l'assertion analogue pour les A-Modules.

4.6. Soient X un topos, U un ouvert de X et Y le fermé complémentaire de U (SGA4 IV 3.3). On note

$$j: Y \longrightarrow X$$

le morphisme de topos canonique, et on rappelle que j est quasicompact. Sur le modèle de (4.2), le foncteur cohomologique ()

$$(\mathbf{R}^p j^!)_{p \in \mathbf{Z}} : A - \mathbf{Mod}_X \longrightarrow A - \mathbf{Mod}_Y$$

permet de définir un foncteur cohomologique, noté de même,

$$(4.6.1) (Rp j!)_{p \in \mathbb{Z}} : A - fsc(X) \longrightarrow A - fsc(Y).$$

On a $R^i j! = 0$ pour i < 0, et on pose $j! = R^0 j!$. Le foncteur j! est exact à guache.

4.6.2. Si $k: Z \longrightarrow Y$ est une autre immersion fermée de topos, on a un isomorphisme canonique

$$(jk)! \xrightarrow{\sim} (k!)(j!),$$

vérifiant la condition de cocycles habituelle.

Proposition **4.6.3**. — Le foncteur

$$j_*: A - \operatorname{fsc}(Y) \longrightarrow A - \operatorname{fsc}(X)$$

est adjoint à guache du foncteur

$$j!: A - \operatorname{fsc}(X) \longrightarrow A - \operatorname{fsc}(Y)$$
.

Preuve: Analogue à celle de (4.3.5), compte tenu de (SGA4 IV 3.6).

Proposition **4.6.4**. — On suppose que le morphisme canonique $i: U \longrightarrow X$ est quasicompact. Alors on a pour tout A-faisceau F sur X des suites exactes de $\mathcal{E}(X,J)$, donc aussi de A — fsc(X), fonctorielles en F,

(i)
$$0 \longrightarrow i_1 i^*(F) \longrightarrow F \longrightarrow j_* j^*(F) \longrightarrow 0$$

$$(ii) \qquad 0 \longrightarrow j_* j^!(F) \longrightarrow F \longrightarrow i_* i^*(F),$$

dans lesquelles les flèches non évidentes désignent les morphismes d'adjonction.

Preuve : Résulte aussitôt de (SGA4 IV 3.7) appliqué aux composants de *F* .

4.6.5. Signalons enfin que toutes les opérations que nous venons de définir transforment évidemment A-faisceau de type constant en A-faisceau de type constant, et que les foncteurs image réciproque et prolongement par zéro (4.5.3), étant exacts, transforment A-faisceau de type J-adique en A-faisceau de type J-adique. Nous verrons dans le chapitre II, moyennant des conditions de finitude convenables, d'autres propriétés de stabilité pour ces notions.

5. Produit tensoriel.

6. Foncteurs associés aux homomorphismes.

6.1. Soient $E = (E_n)_{n \in \mathbb{N}}$ et $F = (F_n)_{n \in \mathbb{N}}$ deux A-faisceaux sur un topos X. Pour tout entier $i \in \mathbb{Z}$, on définit comme suit un nouveau A-faisceau, noté

$$\mathscr{E}\operatorname{xt}_{A}^{i}(E,F),$$

la mention de l'anneau A pouvant être éventuellement supprimée s'il n'y a pas de confusion possible. Soient $m' \ge m \ge n$ trois entiers ≥ 0 .

- 7. Catégories dérivées.
- 8. Changement d'anneau.

§ II. — CONDITIONS DE FINITUDE

Dans tout ce chapitre, on fixe un anneau commutatif unifère *noethérien A* et un idéal *J* de *A*. Sauf mention expresse du contraire, tous les topos considérés seront supposés *localement noethériens* (SGA 4 VI 2.11.).

1. Catégorie des A-faisceaux constructibles.

Soit X un topos localement noethérien.

Définition 1.1. — On dit qu'un A-faisceau $F = (F_n)_{n \in \mathbb{N}}$ est J-adique constructible s'il est J-adique (I 3.8.) et si pour tout $n \in \mathbb{N}$, le A_n -Module F_n est constructible. On dit que F est un A-faisceau constructible s'il est isomorphe dans A-fsc(X) à un A-faisceau J-adique constructible. On appelle catégorie des A-faisceaux constructibles et on note

$$A - fscn(X)$$
 ("n" pour "noethérien")

la sous-catégorie pleine de A — fsc(X) engendrée par les A-faisceaux constructibles.

Proposition 1.2. — Soit $F = (F_n)_{n \in \mathbb{N}}$ un A-faisceau sur X. Les assertions suivantes sont équivalentes.

- (i) F est un A-faisceau constructible.
- (ii) F est de type strict (I 3.2.) et, notant F' le A-faisceau strict associé à F (I 3.3.), il existe localement une application croissante $\gamma \geq \operatorname{id}$ telle que $\chi_{\gamma}(F')$ (I 2.2) soit J-adique constructible.

(iii) Pour tout entier $r \ge 0$, le A-faisceau $F \otimes_A A_r$ est de type constant (I 3.6.) associé à un A_r -Module constructible.

Preuve: Si F vérifie (i), il résulte de (I 3.9.3. (i) \Rightarrow (ii)) qu'il existe localement une telle application γ , avec $\chi_{\gamma}(F')J$ -adique. Mais $\chi_{\gamma}(F') \simeq F$, donc $\chi_{\gamma}(F')$ est isomorphe à un A-faisceau J-adique constructible, d'où (ii) grâce à (I 3.9.1). L'assertion (ii) \Rightarrow (iii) résulte aussitôt de ce que $F \otimes_A A_r \simeq \chi_{\gamma}(F') \otimes_A A_r$. Pour voir que (iii) \Rightarrow (i), on peut supposer que l'objet final de X est quasicompact, et alors cela se voit comme l'assertion analogue de (I 3.9.3.).

Corollaire 1.3. — Si $F = (F_n)_{n \in \mathbb{N}}$ est un A-faisceau strict et constructible, alors pour tout $n \in \mathbb{N}$, le A_n -Module F_n est constructible.

Preuve: D'après (1.2.(i)), il existe localement une application croissante $\gamma \ge$ id telle que $\chi_{\gamma}(F)$ soit J-adique constructible, donc à composants constructibles. L'assertion résulte alors de ce que le morphisme canonique de $\mathscr{E}(X,J):\chi_{\gamma}(F)\longrightarrow F$ est un épimorphisme.

Corollaire **1.4**. — Pour qu'un A-faisceau annulé par une puissance de l'idéal J soit constructible, il faut et il suffit qu'il soit de type constant associé à un A-Module constructible.

Proposition 1.5. —

(i) La propriété pour un A-faisceau d'être constructible est stable par restriction à un objet du topos, de nature locale, et la catégorie fibrée

$$T \mapsto A - \operatorname{fscn}(T)$$

où T parcourt les objets de X, est un champ.

(ii) Notant J - adn(X) la sous-catégorie pleine de $\mathbf{E}(X,J)$ engendrée par les A-faisceaux J-adiques constructibles, le foncteur canonique

$$J - \operatorname{adn}(X) \longrightarrow A - \operatorname{fscn}(X)$$

induit par (I 3.8.2) est une équivalence de catégories.

(iii) La catégorie A - fscn(X) est une sous-catégorie exacte (i.e. stable par noyaux, conoyaux et extensions) de A - fsc(X). De plus, lorsque X est noethérien, les objets de A - fscn(X) noethériens (dans A - fscn(X)).

Preuve: L'assertion (ii) est conséquence immédiate de (I 3.9.1.). Montrons (i). Le caractère local résulte par exemple de (1.2. (i) \Leftrightarrow (ii)) et du caractère local de la propriété pour un A-faisceau d'être de type strict. Quant à la propriété de champ, elle provient de (ii) et de la propriété analogue, évidente, pour la catégorie fibrée $T \mapsto J - \text{adn}(T)$. Montrons (iii). Pour voir la stabilité par noyaux et conoyaux, on se ramène grâce à (ii) au cas d'un morphisme $u: E \longrightarrow F$ de $\mathscr{E}(X,J)$, avec E et E des E-faisceaux E-faiscea

Lemme 1.6. — Pour tout A-faisceau constructible E et tout entier $n \ge 0$, le A-faisceau $\operatorname{Tor}_1^A(A_n,E)$ est de type constant, associé a un A_n -Module constructible.

Il suffit de voir (1.4) qu'il est constructible. Or, notant $u: J^{n+1} \longrightarrow A$ le morphisme de A-faisceaux canonique, on a un isomorphisme

$$\mathscr{T}$$
or _{ℓ} ^A $(A_n, E) \simeq \operatorname{Ker}(u \otimes_A \operatorname{id}_E),$

d'où le lemme, car $J^{n+1} \otimes_A E$ est constructible, comme on voit aisément en se ramenant au cas où E est J-adique constructible.

Montrons comment le lemme entraîne la stabilité par extensions. Soit donc

$$0 \longrightarrow E \longrightarrow F \longrightarrow G \longrightarrow 0$$

une suite exacte de $A-\mathrm{fsc}(X)$, avec E et G constructibles, et montrons que F l'est également. Pour cela, il suffit (1.2) de voir que pour tout entier $r \geq 0$, le A-faisceau $F \otimes_A A_r$ est de type constant associé à un A_r -Module constructible. Or on a une suite exacte

$$\mathscr{T}$$
or $_{\ell}^{A}(A_{r},G)\longrightarrow A_{r}\otimes_{A}E\longrightarrow A_{r}\otimes_{A}F\longrightarrow A_{r}\otimes_{A}G\longrightarrow 0$,

dan laquelle tous les termes, excepté éventuellement $A_r \otimes_A F$, sont de type constant et constructibles. Compte tenu du fait qu'un A_r -Module qui est extension de A_r -Modules constructibles est lui-même constructible, l'assertion résulte alors de (I

3.6). Il nous reste enfin à voir que la catégorie A - fscn(X) est noethérien lorsque X est noethérien. Il suffit de le voir pour la catégorie équivalente J - adn(X), ce qui n'est autre que (SGA V 5.2.3.).

Corollaire 1.6. — Notant J - Modn(X) la sous-catégorie abélienne épaisse de $A - \text{Mod}_X$ engendrée par les A - Modules constructibles et localement annulés par une puissance de J, le foncteur

$$J - \text{Modn}(X) \longrightarrow A - \text{fsc}(X)$$

induit par (I 3.5.1.) définit une équivalence avec la sous-catégorie abélienne épaisse de $A-\operatorname{fsc}(X)$ engendrée par les A-faisceaux de type constant et constructibles.

On aura remarqué que dans l'énoncé (1.5), on a pris soin de préciser que les A-faisceaux constructibles sont noethériens dans A — fscn(X). On pourrait croire qu'ils le sont aussi dans A — fsc(X).

Nous allons voir plus loin qu'il n'en est rien, mais donnons tout d'abord un cas où cette assertion est vraie.

Proposition 1.7. — On suppose que l'idéal J est maximal. Alors les assertions suivantes sont équivalentes pour un objet F de A—fsc(pt).

- (i) F est constructible.
- (ii) F est noethérien.

Preuve: Montrons d'abord que (ii) \Rightarrow (i). Comme la catégorie A — fscn(pt) est noethérienne (1.5.(iii)), il suffit de montrer que tout sous-A-faisceau E de F est constructible. On se ramène immédiatement pour le voir au cas où F est J-adique constructible et E est un sous-système projectif de E. Mais alors les composants de F, donc aussi ceux de E, sont des A—modules artiniens, de sorte que E vérifie la condition de Mittag-Leffler. Dans ces conditions, l'assertion résulte du lemme suivant, valable sans hypothèses spéciale sur le topos X et le couple (A,J), autre que celles de l'introduction.

Lemme 1.8. — Soit $u: E \longrightarrow F$ un monomorphisme de A-faisceaux. On suppose que F est constructible et que E est de type strict. Alors E est constructible.

On se ramène pour le voir au cas où u est un monomorphisme de $\mathcal{E}(X,J)$ et F est J-adique constructible, puis, quitte à remplacer E par le A-faisceau strict associé, [?] strict. Alors le A-faisceau $G = \operatorname{Coker}(u)$ est J-adique (cf. le preuve de SGA5 V 3.2.4. (i)), et constructible, car ses composants sont des quotients des composants de F. Mais alors E, noyau du morphisme canonique $F \longrightarrow G$, est constructible par (1.5.(iii)).

Montrons maintenant l'assertion (i) \Rightarrow (ii) de la proposition.

Lemme 1.9. — Un objet noethérien F de A — fsc(X) est de type strict (i.e. vérifie la condition de Mittag-Leffler).

Il est clair qu'il suffit de montrer la même assertion pour les A-faisceaux $F \otimes_A A_r$, qui sont également noethériens, de sorte que l'on est ramené au cas où F est annulé par une puissance de J. Puis, utilisant la filtration (finie) de F définie par les puissances de l'idéal J, on se ramène au cas où F est annulé par J, et enfin au cas où F est un système projectif de (A/J)-espaces vectoriels. Soit $n_o \geq 0$ un entier, et montrons que la suite décroissante

$$\operatorname{Im}(F_n \longrightarrow F_{n_{\circ}})_{n \geq n_{\circ}}$$

de (A/J)-espaces vectoriels est stationnaire. Posant

$$K_n = \begin{cases} 0 & (n < n_{\circ}) \\ \operatorname{Im}(F_n \longrightarrow F_{n_{\circ}}) & (n \ge n_{\circ}), \end{cases}$$

on définit, avec les morphismes de transition évidents, un A-faisceau quotient de F, donc noethérien. On est finalement ramené à voir qu'un A-faisceau noethérien $(V_p)_{p\in \mathbb{N}}$, dont les composants sont des (A/J)-espaces vectoriels et les morphismes de transition sont des monomorphismes, est essentiellement constant. Raisonnons par l'absurde, et supposons qu'il existe une infinité (dénombrable) de V_p distincts. Quitte à renuméroter, on peut supposer que $V_i \neq V_j$ si $i \neq j$. Désignons alors, pour tout $i \geq 0$, par X_i un supplémentaire de V_{i+1} dans V_i , et choisissons un élément non nul e_i de x_i . On définit un sous-A-faisceau W de $V = (V_p)_{p \in \mathbb{N}}$ en posant

$$W_p = \bigoplus_{i=p}^{\infty} k e_i \quad (k = A/J),$$

avec les morphismes de transitions évidents. Nous allons voir que le A-faisceau ainsi défini n'est pas noethérien, ce qui donnera la contradiction annoncée. Pour tout entier $p \ge 0$, notons M_p le sous-espace vectoriel de W_0 ayant pour base les éléments

$$e_{2^n-r}$$
 $(n, r \ge 0, 0 \le r \le p).$

Il est immédiat que pour tout couple (p,q) d'entiers positifs distincts, on a $M_p \cap W_i \neq M_q \cap W_i$ pour tout entier $i \geq 0$. Considérant alors pour tout entier $p \geq 0$ le système projectif, noté $(M_p \cap W)$ défini par

$$(M_{_{\mathcal{D}}}\cap W)_{n}=M_{_{\mathcal{D}}}\cap W_{n}\quad (n\geq 0)$$

avec les morphismes de transition évidents, on aune suite croissante

$$(M_{\circ} \cap W) \subset (M_1 \cap W) \subset \cdots \subset (M_{p} \cap W) \subset \cdots$$

de sous-A-faisceaux de W. Le lemme suivant entraîne qu'elle n'est pas stationnaire.

Lemme 1.10. — Soit $V=(V_n)_{n\in\mathbb{N}}$ un système projectif d'objets d'une catégorie abélienne C, dont les morphismes de transition sont des monomorphismes. Pour tout sous-objet X de V_0 , on pose

$$(X \cap V) = (X \cap V_n)_{n \in \mathbb{N}}$$

Si L et M sont deux sous-objets de $V_{\mathbb{Q}'}$ avec $L \subset M$, les assertions suivantes sont équivalentes.

- (i) $(M \cap W)/(L \cap W)$ est essentiellement nul.
- (ii) Il existe un entier $p \ge 0$ tel que $M \cap V_p = L \cap V_p$.

Lorsque (i) et (ii) sont satisfaites, on a $M \cap V_p = L \cap V_p$ pour q assez grand.

Il est clair que (ii) \Rightarrow (i). Inversement, si (i) est vérifiée, il existe un entier $p \ge 0$ tel que le morphisme canonique

$$(M \cap V_{p})/(L \cap V_{p}) \longrightarrow M/L$$

soit nul. Autrement dit , $M \cap V_p \subset L$, d'où $M \cap_p \subset L \cap V_p$. L'inclusion en sens opposée étant évidente, l'assertion en résulte.

Achevons la preuve de l'assertion (ii) \Rightarrow (i) de (1.7). Il s'agit de voir (1.2) que pour tout entier $r \geq 0$, le A-faisceau $F \otimes_A A_r$ est de type constant associé à un A_r -Module constructible, ce qui permet de se ramener au cas où F est annulé par une puissance de F. Utilisant la filtration de F définie par les puissances de F, on peut même supposer que F est annulé par F. Finalement, utilisant (1.9), on a à montrer que si un système projectif strict de F0,0 espaces vectoriels est noethérien en tant que F1,0 espace vectoriel de dimension finie. Cela se voit immédiatement par l'absurde, et est laissé en exercice au lecteur.

J'ignore s'il est toujours vrai qu'un A-faisceau noethérien est constructible. Par contre, la proposition suivante, intéressante en soi, montre qu'en général un A-faisceau constructible n'est pas noethérien.

Proposition 1.11. — On suppose que X soit le topos étale d'un schéma de Jacobson noté de même. Soit F un A-faisceau sur X. Les assertions suivantes sont équivalentes:

- (i) F est noethérien et constructible.
- (ii) Il existe un nombre fin de points fermés $(x_i, ..., x_d)$ de X et pour tout $i \in [1, d]$ un A-faisceau F_i noethérien et constructible sur le topos ponctuel tels que, notant $j_{x_i}: x_i \longrightarrow x$ les immersions canoniques, on ait

$$F \simeq \bigoplus_{1 \le i \le d} (j_{x_i})_*(F_i).$$

Preuve: Pour voir que (ii) \Rightarrow (i), il suffit de voir que les A-faisceaux $(j_{x_i})_*(F_i)$ sont constructibles et noethériens. Le caractère constructible se voit en se ramenant au cas où F_i est J-adique constructible, en utilisant l'exactitude du foncteur $(j_{x_i})_*$.

Le caractère noethérien résulte immédiatement de l'adjonction naturelle entre les foncteurs $(j_{x_i})^*$ et $(j_{x_i})_*$. Montrons que (i) \Rightarrow (ii). On peut supposer que $F=(F_n)_{n\in\mathbb{N}}$ est J-adique constructible, et nous allons alors voir qu'il n'existe qu'un nombre fini (x_1,\ldots,x_d) de points fermés de X tels que $(F_0)_{x_i}\neq 0$. Notons pour tout point fermé x de X par $j_x:X\longrightarrow X$ l'immersion fermée canonique. Pour

tout famille finie $Y = (x_1, x_m)$ de points fermés de X, l'inclusion $Y \longrightarrow X$ définit un épimorphisme canonique

$$f_0 \longrightarrow \bigoplus_{1 \le i \le m} (j_{x_i})_* (j_{x_i})^* (F_0).$$

Supposons alors qu'il existe une infinité dénombrable $(x_i)_{i\in\mathbb{N}}$ de points fermés de X, avec $F_{x_i}\neq 0$. Définissant un A-faisceau G par

$$G_n = \bigoplus_{0 \le p \le n} (j_{x_p})_* (j_{x_p})^* (F_0),$$

avec les morphismes de transition évidents (identité sur les termes communs et 0 ailleurs), on a un épimorphisme

$$\overline{F_0} \longrightarrow G \longrightarrow 0$$

du A-faisceau constant \overline{F}_0 défini par F_0 sur G. Il s'ensuit que G est un quotient de F, donc est noethérien. On obtient une contradiction en définissant une suite croissante non stationnaire $(F^qG)_{q\in \mathbb{N}}$ de sous-A-faisceaux de G. Pour cela, on pose

$$(F^qG)_n = \begin{cases} G_n & (n \leq p) \\ \bigoplus_{0 \leq i \leq q} (j_{x_i})_* (j_{x_i})^* (F_0) & (n > q), \end{cases}$$

avec les morphismes de transition évidents. Ceci dit, soient donc $(x_1, ..., x_d)$ les seuls points fermés du support de F_0 , et U l'ouvert complémentaire de leur réunion. Nous allons voir que F|U=0. Il en résultera, d'après la suite exacte (I 4.6.4.(i)), que

$$F \simeq \bigoplus_{1 \le i \le d} (j_{x_i})_* (j_{x_i})^* (F),$$

de sorte qu'il suffira de prouver que pour tout $i \in (1,d)$ le A-faisceau $(j_{x_i})^*(F)$ est constructible et noethérien. Qu'il soit constructible est évident; comme F est noethérien, son facteur direct $(j_{x_i})_*(j_{x_i})^*(F)$ l'est également, de sorte que le caractère noethérien de $(j_{x_i})^*(F)$ se voit en utilisant l'adjonction naturelle entre $(j_{x_i})_*$ et $(j_{x_i})^*$. Montrons donc que F|U=0. Comme $F/JF\simeq\overline{F}_0$, il suffit, d'après le lemme de Nakayama (I 5.12.) de voir que $F_0|U=0$.

En effet, comme X est un schéma de Jacobson, il existerait sinon (SGA4 VIII 3.13.) un point fermé x de X contenu dans U tel que $(j_x)^*(F_0) \neq 0$.

1.12. Notant \hat{A} le complété de A pour la topologie J-adique, on définit un foncteur exact et pleinement fidèle (EGA 0_I 7.8.2)

$$(1.12.1) \qquad \hat{A} - \text{modn} \longrightarrow A - \text{fsc(pt)}$$

en associant à tout \hat{A} -module de type fini M le système projectif

$$(M/J^{n+1}M)_{n\in\mathbb{N}}$$
.

Ce foncteur se factorise de manière évidente en un foncteur

$$(1.12.2) \qquad \hat{A} - \text{modn} \longrightarrow A - \text{fscn}(\text{pt}).$$

Il résulte aisément de (EGA 0₁ 7.2.9. et 7.8.2.) que ce fincteur est une *équivalence de catégories*, un foncteur quasi-inverse étant d'ailleurs fourni par la limite projective.

Si maintenant $a: \longrightarrow X$ est un point du topos X, il est clair que le foncteur fibre défini par a

$$A - \operatorname{fsc}(X) \longrightarrow A - \operatorname{fsc}(\operatorname{pt})$$

envoie A—fscn(X) dans A—fscn(pt), d'où grâce à l'équivalence (1.12.2) un foncteur exact, appelé encore foncteur fibre associé à a,

(1.12.3)
$$\varepsilon_a: A - \operatorname{fscn}(X) \longrightarrow \hat{A} - \operatorname{modn},$$

qui est obtenu de façon précise en composant le foncteur fibre ordinaire et le foncteur limite projective $A - fscn(pt) \longrightarrow \hat{A} - modn$.

Rappelons enfin (SGA4 VI) qu'un topos localement noethérien à suffisament de points.

Proposition 1.12.4. — La collection des foncteurs fibres

$$\varepsilon_a$$
; $A - \text{fscn}(X) \longrightarrow \hat{A} - \text{modn}$,

où a parcourt les points du topos X, est conservative. En particulier, pour qu'une suite de A-faisceaux constructiles

$$(S) F' \xrightarrow{u} F \xrightarrow{v} F''$$

soit exacte, il faut et il suffit que les suites correspondantes

$$(S_a) \qquad \qquad \varepsilon_a(F') \xrightarrow{\varepsilon_a(u)} \varepsilon_a(F) \xrightarrow{\varepsilon_a(v)} \varepsilon_a(F'')$$

soient exactes.

Preuve: On est ramené à voir l'assertion analogue pour les foncteurs fibres évidents $J - adn(X) \longrightarrow J - adn(pt)$, qui se voit composant par composant à partir de la conservativité des foncteurs fibres pour les A-Modules.

1.13. Soit $f: X \longrightarrow Y$ un morphisme de topos localement noethériens. Comme l'image réciproque d'un A-Module constructible est un A-Module constructible, le foncteur image réciproque

$$f^*: \mathcal{E}(Y,J) \longrightarrow \mathcal{E}(X,J)$$

envoie évidemment J - adn(Y) dans J - adn(X). On en déduit aussitôt que le foncteur image réciproque (I 4.1.1.) envoie A - fscn(Y) dans A - fscn(X). D'où un diagramme commutatif

$$\begin{array}{ccc}
J - \operatorname{adn}(Y) & \xrightarrow{\varphi_Y} & A - \operatorname{fscn}(Y) \\
& & \downarrow^{f^*} & & \downarrow^{f^*} \\
J - \operatorname{adn}(X) & \xrightarrow{\varphi_X} & A - \operatorname{fscn}(X)
\end{array}$$

dans lequel φ_X et φ_Y désignent les équivalences canoniques.

Si $i: T \longrightarrow T'$ est un morphisme quasi-compact entre objets d'un topos localement noethérien X, on voit de même que le foncteur $i_!$ induit un foncteur exact

$$(1.13.1) i_1: A - fscn(T) \longrightarrow A - fscn(T').$$

Enfin, étant donné un ouvert U d'un topos localement noethérien et Y le topos (également localement noethérien)fermé complémentaire de U, si on note $j:Y\longrightarrow X$ le morphisme de topos canonique, le foncteur exact j_* induit un foncteur exact

$$(1.13.2) j_*: A - fscn(Y) \longrightarrow A - fscn(X).$$

Définition 1.14. — On dit qu'un A-faisceau J-adique constructible (1.1) sur X. $F = (F_n)_{n \in \mathbb{N}}$ est constant tordu (resp. par abus de langage, localement libre), si pour tout entier $n \geq 0$, le A_n -Module F_n est localement constant (resp. localement libre). On dit qu'un A-faisceau sur X est constant tordu constructible (resp. localement libre constructible) s'il est isomorphe dans $A - \operatorname{fsc}(X)$ à un A-faisceau J-adique constructible constant tordu (resp. localement libre). On note

$$A - \operatorname{fsct}(X)$$

la sous-catégorie pleine de A — fscn(X), donc aussi de A — fsc(X), engendrée par les A-faisceaux constant tordus constructibles.

Nous allons maintenant énoncer pour les A-faisceaux constants tordus constructibles (resp. localement libres constructibles) un certain nombre de résultats analogues à des assertions déjà données pour les A-faisceaux constructibles. Nous ne donnerons pratiquement pas de démonstrations, et signalerons surtout les points possibles de divergence.

Proposition 1.15. — Soit F un A-faisceau sur X. Les assertions suivantes sont équivalentes.

- (i) F est un A-faisceau constant tordu constructible (resp. localement libre constructible).
- (ii) F est de type strict et, notant F' le A-faisceau strict associé à F, il existe localement une application croissante $\gamma \geq \operatorname{id}: \mathbf{N} \longrightarrow \mathbf{N}$ telle que $\chi_{\gamma}(F')$ soit F-adique constructible constant tordu (resp. localement libre).
- (iii) Pour tout entier $r \geq 0$, le A-faisceau $F \otimes_A A_r$ est de type fini constant associé à un A_r -Module localement constant constructible (resp. localement libre constructible).

Corollaire 1.16. — Soit $F = (F_n)_{n \in \mathbb{N}}$ un A-faisceau de type J-adique (par exemple, constructible). On suppose que pour tout $n \in \mathbb{N}$, le A_n -Module F_n est localement constant constructible. Alors, F est constant tordu constructible.

Preuve: Comme la catégorie des A-Modules localement constants constructibles est stable par images dans A — Mod_X , on peut, quitte à remplacer F par le système projectif strict associé, supposer que F est strict. Par hypothèse, il existe alors (I 3.11) localement une application croissante $\gamma \geq \operatorname{id}: \mathbf{N} \longrightarrow \mathbf{N}$ telle que $\chi_{\gamma}(F)$ soit J-adique. Mais l'hypothèse sur F entraîne que les composants de $\chi_{\gamma}(F)$ sont localement constants constructibles, d'où l'assertion.

Proposition 1.17. —

(i) La propriété pour un A-faisceau d'être constant tordu constructible (resp. localement libre constructible) est stable par restriction à un objet du topos et de nature locale. La catégorie fibrée

$$T \mapsto A - \operatorname{fsct}(T)$$
,

où T parcourt les objets de X, est un champ.

(ii) Notant $J - \operatorname{adt}(X)$ la sous-catégorie pleine de $\mathcal{E}(X,J)$ engendrée par les Afaisceaux J-adiques constants tordus constructibles, le foncteur canonique

$$J - \operatorname{adt}(X) \longrightarrow A - \operatorname{fsct}(X)$$

induit par (I 3.8.2) est une équivalence de catégories.

(iii) La catégories A—fsct(X) est une sous-catégories exacte de A—fsc(X). De plus, lorsque X n'a qu'un nombre fini de composantes connexes (par exemple, est noethérien), les objets de A—fsc(X) sont noethériens (dans A—fsct(X)).

Preuve: Seule l'assertion (iii) mérite quelque attention. Pour la stabilité par noyaux et conoyaux, on se ramène au cas d'un morphisme $u: E \longrightarrow F$ de $\mathscr{E}(X,J)$. Les systèmes projectifs $\mathrm{Ker}(u)$ et $\mathrm{Coker}(u)$ ont des composants localement constants constructibles, et sont constructibles (1.5.(iii)), de sorte que l'assertion résulte de (1.16). La stabilité se voit comme l'assertion analogue de (1.5), en utilisant le fait (cf.1.6.) que pour tout A-faisceau constant tordu constructible E et tout entier $n \ge 0$, le A-faisceau $\operatorname{Tor}_1^A(A_n, E)$ est de type constant, associé à un A_n -Module localement constant constructible. D'après (1.6), il suffit pour cela de voir qu'il est

constant tordu, ce qui, vu que ses composants sont localement constants, résulte une nouvelle fois de (1.16). Pour la dernière assertion, rappelons (SGA4 VI) que les composantes connexes d'un topos localement noethérien sont, par définition, les ouverts connexes maximaux du topos. On peut supposer que X est connexe. Soit donc $(E^n)_{n\in\mathbb{N}}$ une suite croissante de sous-A-faisceaux constants tordus constructibles d'un A-faisceau constant tordu constructible E, et montrons qu'elle est stationnaire. Supposons X non vide, et choisissons un ouvert noethérien non vide U de X. Par (1.5.(iii)), la suite des $E^n|U$ est stationnaire; il existe donc un entier q tel que $E^p|U=E^q|U$ pour $p\geq q$, ou encore $(E^p/E^q)|U=0$. On est donc ramené à voir que si un A-faisceau J-adique constant tordu constructible est nul au-dessus d'un ouvert non vide d'un topos localement noethérien connexe, il est nul. Cela résulte immédiatement de l'assertion analogue pour les A-Modules, appliqués à ses composants.

Corollaire 1.18. — Notant J - Modt(X) la sous-catégorie abélienne épaisse de $A-\text{Mod}_X$ engendrée par les A-Modules localement constants constructibles et annulés par une puissance de J, le foncteur

$$J - \text{Modt}(X) \longrightarrow A - \text{fsc}(X)$$

induit par (I 3.5.1.) définit une équivalence avec la sous-catégorie abélienne épaisse de $A-\operatorname{fsc}(X)$ engendrée par les A-faisceaux de type constant et constants tordus constructibles.

Proposition 1.19. —

- (i) Soit $0 \longrightarrow L' \xrightarrow{u} L \xrightarrow{v} L'' \longrightarrow 0$ une suite exacte de $\mathcal{E}(X,J)$. Si L et L'' (resp. L' et L'') sont J-adiques localement constructibles, il en est de même de L' (resp. L).
- (ii) Soit $0 \longrightarrow L' \stackrel{u}{\longrightarrow} L \stackrel{v}{\longrightarrow} L'' \longrightarrow 0$ une suite exacte de $A \mathrm{fsc}(X)$. Si L et L'' (resp. L' et L'') sont des A-faisceaux localement libres constructibles, il en est de même de L' (resp. L).

Preuve: Montrons (i). Comme il est clair que les composants de L' (resp. L) sont localement libres constructibles, on a seulement à voir que L' (resp. L) est

J-adique. Dans le cas respé, cela résulte de (SGA5 V 3.1.3.(iii)). Dans le cas non respé, on a pour tout entier $n \ge 0$ un diagramme commutatif exact

$$L'_{n+1}/J^{n+1}L'_{n+1} \xrightarrow{\overline{u}_{n+1}} L_{n+1}/J^{n+1}L_{n+1} \xrightarrow{\overline{v}_{n+1}} L''_{n+1}/J^{n+1}L''_{n+1} \longrightarrow 0$$

$$\downarrow^{\lambda} \qquad \qquad \downarrow^{\lambda\mu} \qquad \qquad \downarrow^{\nu} \qquad \qquad \downarrow^{\nu}$$

$$0 \longrightarrow L'_{n} \xrightarrow{u_{n}} L_{n} \longrightarrow L_{n} \xrightarrow{v_{n}} L''_{n} \longrightarrow 0,$$

dans lequel les flèches verticales sont déduites de façon évidente des morphismes de transition. Comme L''_{n+1} est un A_{n+1} -Module localement libre, \overline{u}_{n+1} est un monomorphisme, donc λ est un isomorphismes d'où l'assertion. Montrons maintenant (ii), et tout d'abord l'assertion non respés. On peut supposer (1.17.(ii)) que L et L'' sont J-adiques localement libres constructibles et que v est l'image d'un morphisme de $\mathcal{E}(X,J)$; alors l'assertion résulte de (i) non respée. Prouvons maintenant l'assertion respée. Comme elle est de nature locale (1.17.(i)), on peut supposer X noethérien, et bien sûr L'' J-adique localement libre constructible. Alors il existe une application croissante $\gamma \geq \operatorname{id}: \mathbf{N} \longrightarrow \mathbf{N}$ telle que v e¿soit l'image d'un morphisme

$$\chi_{\nu}(L) \longrightarrow L''$$

de $\mathscr{E}(X,J)$, qui, comme v est un épimorphisme et L'' est strict, est un épimorphisme. On est ainsi ramené au cas où X est noethérien, la suite exacte en question est l'image d'une suite exacte de $\mathscr{E}(X,J)$, et L'' est J-adique localement libre constructible. Comme L' et L'' vérifient la condition de Mittag-Leffler, il en est de même de L (EGA 0_III 13.2.1.); quitte à remplacer L par le système projectif strict associé, on peut donc supposer L strict. Alors (SGA5 V 3.1.3.) L' est strict. Par suite, il existe une application croissante $\gamma \geq \mathrm{id} : \mathbf{N} \longrightarrow \mathbf{N}$ telle que $\chi_{\gamma}(L')$ soit J-adique localement libre constructible. Comme les composants de L'' sont localement libres, la suite

$$0 \longrightarrow \chi_{\gamma}(L') \xrightarrow{\chi_{\gamma}(u)} \chi_{\gamma}(L) \xrightarrow{\chi_{\gamma}(v)} \chi_{\gamma}(L'') \longrightarrow 0$$

est exacte. On peut donc supposer que L' et L'' sont tous les deux J-adiques localement libres constructibles, et alors l'assertion résulte de (i) respé.

1.20. Nous allons maintenant expliciter la structure de la catégorie A—fsc(X), lorsque le topos X est connexe. Rappelons tout d'abord quelques faits concernant

le pro-groupe fondamental d'un topos. Étant donné un pro-groupe strict

$$G = (G_i)_{i \in I},$$

on définit comme suit un topos, noté

$$\mathbf{B}_{G}$$

et appelé topos classifiant de G. Un objet de B_G , appelé encore G-ensemble, est un ensemble M muni d'une application

$$p: M \longrightarrow \varinjlim_{i} \operatorname{Hom}(G_{i}, M)$$

$$m \mapsto (g_{i} \mapsto g_{i} m \quad \text{pour } i \text{ "assez grand"})$$

telle que l'on ait

$$g_i(g_i'm) = (g_i g_i')m$$
 pour *i* "assez grand".

Autrement dit, M admet une filtration par des G_i -ensembles $(i \in I)$, avec compatibilité des diverses opérations. Un morphisme de G-ensembles $M \longrightarrow N$ est une application $u: M \longrightarrow N$ qui rend le diagramme

$$M \xrightarrow{p} \underline{\lim}_{i} \operatorname{Hom}(G_{i}, M)$$

$$\downarrow \underline{\lim}_{i} \operatorname{Hom}(\operatorname{id}, u)$$

$$N \xrightarrow{p} \underline{\lim}_{i} \operatorname{Hom}(G_{i}, N)$$

commutatif.

De la même manière, étant donné un anneau B, on définit la notion de (B,G)module, en exigeant que l'application structurale

$$p: M \longrightarrow \varinjlim_{i} \operatorname{Hom}(G_{i}, M)$$

soit *B*-linéaire, lorsque l'on munit le second membre de la structure de *B*-Module déduite de façon évidente de celle de M. Autrement dit, un (B, G)-Module n'est autre qu'un B-Module sur le topos B_G .

Le topos B_G est localement noethérien (cf SGA4 VI 1.33.) et n'admet (à isomorphisme près) qu'un seul point, à savoir le foncteur qui associe à tout G-ensemble M l'ensemble sous-jacent.

Étant données maintenant un topos connexe X (non nécessairement localement noethérien) et un point

$$a: pt \longrightarrow X$$

on définit, à isomorphisme près dans la catégorie des pro-groupes, un pro-groupe strict

$$\pi_1(X,a)$$
,

appelé pro-groupe fondamental de X en a, et une équivalence de catégories

$$(1.20.1) \operatorname{Elc}(X) \xrightarrow{\approx} B_{\pi_1(X,a)}$$

de la catégorie des faisceaux d'ensembles localement constants sur X, avec le topos classifiant de $\pi_1(X,a)$. De plus, notant c le point canonique du topos classifiant du pro-groupe fondamental, le diagramme

$$Elc(X) \xrightarrow{(1.20.1)} B_{\pi_1(X,a)}$$

$$Ens$$

est commutatif (à isomorphisme près).

Étant donné un anneau commutatif unifère B, le foncteur (1.20.1) définit une équivalence

$$(1.20.2) B - Mod(C(X) \xrightarrow{\approx} B - Mod(B_{\pi_1(X,a)}),$$

où B-Modlc(X) désigne la catégorie des B-Modules localement constants sur X.

i $f: X \longrightarrow Y$ est un morphisme de topos, le morphisme composé $b = f \circ a$ est un point de Y, et on définit fonctoriellement en les données, un morphisme de pro-groupes

$$\pi_1(f): \pi_1(X,a) \longrightarrow \pi_1(Y,b)$$

tel que le foncteur image réciproque

$$f^* : \operatorname{Elc}(Y) \longrightarrow \operatorname{Elc}(X)$$

corresponde dans les équivalences (1.20.1) à la restriction du pro-groupe structural.

Soit X un topos localement noethérien connexe, et choisissons un point a: pt $\longrightarrow X$ de X. Par simple extension aux systèmes projectifs, le foncteur (1.20.2) définit une équivalence

$$(1.20.3) J - \operatorname{adt}(X) \xrightarrow{\approx} J - \operatorname{adt}(B_{\pi_1(X,a)}) = J - \operatorname{adn}(B_{\pi_1(X,a)}).$$

Proposition 1.20.4. —

(i) soient X un topos localement noethérien connexe et a un point de X. On a une équivalence canonique, définie à isomorphisme près,

$$A - \operatorname{fsct}(X) \xrightarrow{\omega_X} A - \operatorname{fsct}(B_{\pi_1(X,a)}) = A - \operatorname{fscn}(B_{\pi_1(X,a)}).$$

Le foncteur fibre défini par a (1.12.3)

$$E_a: A - \operatorname{fsct}(X) \longrightarrow \hat{A} - \operatorname{modn}$$

est conservatif.

(ii) Soient X et Y eux topos localement noethériens, et $f: X \longrightarrow Y$ un morphisme. Pour tout A-faisceau constant tordu constructible F sur Y, le A-faisceau $f^*(F)$ est constant tordu constructible. Supposons maintenant que X et Y soient connexes, choisissons un point A de A et posons A et A lors le diagramme

$$\begin{array}{ccc} A - \mathrm{fsct}(Y) & \xrightarrow{\omega_Y} & A - \mathrm{fsct}(B_{\pi_1(Y,b)}) \\ & & & \downarrow^{\mathrm{Res}} \\ A - \mathrm{fsct}(X) & \xrightarrow{\omega_X} & A - \mathrm{fsct}(B_{\pi_1(X,a)}) \end{array}$$

dans lequel le foncteur Res désigne la restriction du pro-groupe structural, est commutatif à isomorphisme près.

Preuve : L'équivalence ω_X se déduit de façon évidente de (1.20.3), en utilisant l'équivalence (1.17.(ii)). Comme l'"unique" foncteur fibre du topos $B_{\pi_1(X,a)}$ est conservatif (1.12.4), la conservativité annoncée en résulte aussitôt. L'assertion (ii)

est conséquence immédiate de l'assertion analogue pour les Modules localement constants, rappelée plus haut.

Corollaire 1.20.5. — Soient X un schéma localement noethérien connexe et a un point géométrique de X. Notant encore $\pi_1(X,a)$ le groupe fondamental de X en a, muni de sa topologie canonique, on a une équivalence canonique (à isomorphisme près)

$$A - \operatorname{fsct}(X) \xrightarrow{\approx} \hat{A} - \operatorname{modn}(\pi_1(X, a)),$$

où la deuxième membre désigne la catégorie des Â-Modules de type fini munis d'une opération continue de $\pi_1(X,a)$ pour la topologie J-adique. De plus, si

$$f: X \longrightarrow Y$$

est un morphisme de schémas localement noethériens connexes, alors, munissant Y du point géométrique $b = f \circ a$, le diagramme

dans lequel les flèches horizontales désignent les équivalences canoniques et Res est le foncteur restriction des scalaires déduit de $\pi_1(f)$: $\pi_1(X,a) \longrightarrow \pi_1(Y,b)$, est commutatif (à isomorphisme près).

Preuve : Seule la première assertion demande une démonstration. Pour cela, il n'y a qu'à transcrire la preuve de (SGA5 VI 1.2.5).

Dans l'énoncé suivant, nous appellerons sous-topos localement fermé d'un topos X un couple (U,Y) formé d'un ouvert U de X et du topos fermé complémentaire (relativement à U) d'un ouvert V de U. Il est clair qu'il revient au même de se donner deux ouverts emboîtés U et V de X. On définit les opérations de restriction à un sous-topos localement fermé (U,Y) comme composées des restrictions à U puis à Y. Étant donné un autre ouvert U' de X, on note

$$U'\cap (U,Y)$$

et on appelle intersection de U' avec (U,Y) le sous-topos localement fermé $(U \times U',Y')$ de U', où Y' désigne le topos fermé de $U \times U'$ complémentaire de $V \times U'$.

Étant donnés un topos X et une famille finie $(U_i, Y_i)_{1 \le i \le p}$ de sous-topos localement fermés de X, on dira que X est *réunion* des (U_i, Y_i) si, notant pour tout i par V_i l'ouvert de U_i dont Y_i est le complémentaire, on a les relations

$$X = \bigcup_{i} U_{i}$$

$$\bigcap_{i}(V_{i}) = \emptyset$$

et si pour toute partition $[1,q] = S \cup T$ de [1,q] la relation

$$\bigcap_{S}(V_{S})\cap\bigcup_{T}(U_{t})=\varnothing$$

implique soit que T est vide, soit que $U_t = \emptyset$ pou tout $t \in T$.

Proposition 1.21. — Soient X un topos localement noethérien et F un A-faisceau sur X. Les assertions suivantes sont équivalentes.

- (i) F est un A-faisceau constructible.
- (ii) Tout ouvert noethérien de X est réunion d'un nombre fini de sous-topos localement fermés $Z_i = (U_i, Y_i)$ au-dessus desquels l'image réciproque de F est un A-faisceau constant tordu constructible.
- (iii) X admet un recouvrement par des ouverts, qui sont réunions finies des sous-topos localement fermés, au-dessus desquels l'image réciproque de F est un A-faisceau constant tordu constructible.

Preuve: Il est évident que (ii) \Rightarrow (iii). Pour voir que (i) \Rightarrow (ii), on peut supposer X noethérien et F J-adique constructible, et alors (SGA5 V 5.1.6) le gradué strict $\operatorname{grs}(F)$ est un $\operatorname{gr}_J(A)$ -Module constructible. D'après la structure des Modules constructibles sur un topos noethérien (SGA4 VI), le topos X admet un recouvrement fini par des sous-topos localement fermés au-dessus desquels l'image réciproque de $\operatorname{grs}(F)$ est un $\operatorname{gr}_J(A)$ -Module localement constant constructible. Au

dessus de ces sous-topos localement fermés, les composants de $\operatorname{grs}(F)$ sont localement constants constructibles, et par suite F est J-adique constant tordu constructible. Montrons que (iii) \Rightarrow (i). Comme l'assertion est locale, on peut supposer que X est est noethérien et réunion finie de sous-topos localement fermés $Z_i = (U_i, Y_i)$ ($1 \le i \le q$) au-dessus desquels F est constant tordu constructible. En particulier, les $F|Z_i$ vérifiant la condition de Mittag-Leffler, et il résulte sas peine du lemme suivant que F la vérifie également.

Proposition 1.22. — Si un topos X est réunion d'un nombre fini de sous-topos localement fermés $Z_m = (U_m, Y_m)$ $(1 \le m \le q)$, alors, notant $j_m : Y_m \longrightarrow X$ les morphismes de topos canoniques, les foncteurs

$$(j_m)^* : A - \operatorname{Mod}_X \longrightarrow A - \operatorname{Mod}_{Y_m}$$

forment une famille conservative.

Comme ces foncteurs sont exacts, il s'agit de voir que si un A-Module M vérifie $(j_m)^*(M)=0$ pour tout m, alors M=0. Nous allons voir cette assertion par récurrence sur q, le cas où q=1 étant évident. Nous allons pour cela noter V_m l'ouvert de U_m dont Y_m est le complémentaire, et $i_m:V_m\longrightarrow U_m$, $k_m:V_m\longrightarrow X$ et $l_m:U_m\longrightarrow X$ les morphismes canoniques. L'hypothèse de récurrence appliquée au topos fermé K_m complémentaire de U_m dans X montre que pour tout m le morphisme canonique

$$(1_m)_!(M|U_m) \longrightarrow M$$

est un isomorphisme. Par ailleurs le fait que $(j_m)^*(M)=0$ implique que le morphisme canonique

$$(i_m)_!(M|V_m) \longrightarrow M|U_m$$

est également un isomorphisme. Il est donc de même du morphisme canonique $(k_m)_!(M|V_m) \longrightarrow M$, et par suite (SGA4 IV 2.6)

$$M \simeq M \otimes_A (K_m)_!(A).$$

Par récurrence, on en déduit que

$$M \xrightarrow{\sim} M \otimes_A \bigotimes_m (k_m)_!(A).$$

Mais, notant $k: \prod_m(V_m) \longrightarrow e_X$ le morphisme canonique, on a (SGA4 IV 2.13.b) de 1))

$$\bigotimes_{m} (k_m)_!(A) \xrightarrow{\sim} k_!(A),$$

d'où l'assertion, puisque par hypothèse le produit des V_m est vide.

Sachant que F vérifie la condition de Mittag-Leffler, on peut, quitte à le remplacer par le système projectif strict associé, supposer qu'il est strict. Alors (1.15.(ii)), il existe pour tout i une application croissante $\gamma_i \geq \operatorname{id} : \mathbf{N} \longrightarrow \mathbf{N}$ telle que $\chi_{\gamma}(F|Z_i)$ soit J-adique constructible. Posant $\gamma = \sup(\gamma)$, on voit que $\chi_{\gamma}(F)$ est J-adique, en utilisant (1.22), et constructible, d'où l'assertion.

Dans l'énoncé suivant, étant donné un sous-topos localement fermé (U,Y) d'un topos localement noethérien X, et $i:Y\longrightarrow X, j:Y\longrightarrow U, k:U\longrightarrow X$ les morphismes de topos canoniques, nous noterons i_1 le foncteur

$$i_1: A - \operatorname{fsc}(Y) \longrightarrow A - \operatorname{fsc}(X)$$

le morphisme composé de k_1 et j_* . On s'assure aisément qu'il ne dépend pas (à isomorphisme près) de U, ce qui permet d'ôter ce dernier des notations. Le foncteur i_1 ainsi défini est exact et transforme A-faisceau constructible en A-faisceau constructible.

Proposition 1.23. — Soient X un topos noethérien et F un A-faisceau constructible sur X. Il existe dans $\mathbf{E}(X,J)$, donc aussi dans $A-\mathrm{fsc}(X)$, une filtration finie de F dont les quotients consécutifs sont de la forme $i_!(G)$, où $i:Y\longrightarrow X$ est le morphisme structural d'un sous-topos localement fermé (U,Y) de X, et G un A-faisceau constant tordu constructible sur Y. Lorsque X est le topos étale d'un schéma noethérien, noté de même, on peut prendre pour sous-topos localement fermés de X les topos étales de schémas réduits associés à des parties localement fermées irréductibles de X.

Preuve : Par récurrence noethérienne, on est ramené à prouver l'assertion en la supposant vraie pour out sous-topos fermé de X, différent de X. L'argument de la preuve de (SGA4 IX 2.5.), de nature formelle, s'applique aux topos généraux et montre, compte tenu de (1.21), qu'il existe un ouvert non vide U de X tel que FU soit constant tordu constructible. Notons alors Y le topos fermé complémentaire

de U, et $i:U\longrightarrow X$ et $j:Y\longrightarrow X$ les morphismes de topos canoniques. On a alors (I 4.6.4.(i)) une suite exacte de $\mathbf{E}(X,J)$

$$0 \longrightarrow i_1(F|U) \longrightarrow F \longrightarrow j_*(F|Y) \longrightarrow 0.$$

L'assertion étant vraie sur Y pour F|Y, par hypothèse de récurrence, on en déduit aussitôt qu'elle est vraie pour F. Dans le cas où X est le topos étale d'un schéma, les sous-topos localement fermés de X correspondent aux schémas réduits associés à des parties localement fermées de X, et on peut dans la preuve prendre pour U un ouvert irréductible de X.

Proposition 1.24. — Soient X un topos localement noethérien, et E et F deux A-faisceaux sur X.

(i) Si E et T sont constructibles (resp. constants tordus constructibles), les A-faisceaux

$$\mathscr{T}or_p^A(E,F) \quad (p \in \mathbf{Z})$$

sont constructibles (resp. constants tordus constructibles). Si de plus l'anneau A est régulier de dimension r, on

$$\mathscr{T}$$
or $_{p}^{A}(E,F) = 0$ pour $p \ge r + 1$.

(ii) Supposons maintenant que X soit connexe, et soit a un point de X. Lorsque E et F sont constants tordus constructibles, on a, avec les notations de (1.20.4), des isomorphismes de bifoncteurs cohomologiques

$$(1.24.1) \qquad \omega_X(\mathscr{T}\mathrm{or}_p^A(E,F)) \xrightarrow{\sim} \mathscr{T}\mathrm{or}_p^A(\omega_X(E),\omega_X(F))$$

et

$$(1.24.2) \qquad \qquad \varepsilon_{a}(\mathscr{T}\mathrm{or}_{p}^{A}(E,F)) \xrightarrow{\sim} \mathrm{Tor}_{p}^{\hat{A}}(\varepsilon_{a}(E),\varepsilon_{a}(F)).$$

De plus, lorsque X est le topos étale d'un schéma localement noethérien, notant M et N les \hat{A} -Modules de type fini munis d'une opération continue de $\pi_1(X,a)$ correspondant à E et F (1.20.5), les A-faisceaux

$$\mathscr{T}or_p^A(E,F) \quad (p \in \mathbf{Z})$$

correspondant aux Â-Modules de type fini

$$\operatorname{Tor}_{p}^{\hat{A}}(M,N),$$

munis de l'opération "diagonale" de $\pi_1(X,a)$.

Preuve: Supposons tout d'abord que E et F sont constants tordus constructibles, et montrons que les A-faisceaux $\mathcal{T}\text{or}_p^A(E,F)$ le sont également. On peut pour cela supposer E et F J-adiques constants tordus constructibles. Pour tout entier p, la définition de $\mathcal{T}\text{or}_p^A(E,F)$ (I 5.1) montre que ce A-faisceau a des composants localement constants constructibles, de sorte qu'il suffit (1.16) de voir qu'il est de type J-adique. On peut supposer X connexe; soit alors a un point de X. Posant alors $M = \varepsilon_a(E)$ et $N = \varepsilon_a(F)$, foncteur fibre

$$\mathscr{E}(X,J) \longrightarrow \mathscr{E}(\mathsf{pt},J)$$

défini par a associe au A-faisceau \mathscr{T} or $_{\mathfrak{p}}^{A}(E,F)$ le système projectif

$$(\operatorname{Tor}_{p}^{A_{n}}(M/J^{n+1}M, N/J^{n+1}N))_{n\in\mathbb{N}},$$

et il suffit, vu la conservativité du foncteur libre (habituel) défini par *a* sur les *A*–Modules localement constants, de vérifier que ce dernier est de type *J*-adique. Choisissons pour cela une résolution libre de type fini

$$p \longrightarrow M$$

du \hat{A} -Module M. Convenant de poser pour tout \hat{A} -Module de type fini L

$$\mathbf{L} = (L/J^{n+1}L)_{n \in \mathbf{N}},$$

il résulte de (4.1.4) que $P \longrightarrow M$ est une résolution quasilibre de M. Par suite (I 5.11.(i)), on a dans A - fsc(pt) un isomorphisme canonique

(1.24.3)
$$\mathscr{T}or_p^A(\mathbf{M}, \mathbf{N}) \simeq H^p(\mathbf{P} \otimes_A \mathbf{N}).$$

Mais les composants du complexe $P \otimes_A N$ sont des A-faisceaux J-adiques constructibles, donc ses objets de cohomologie sont des A-faisceaux constructibles (1.5.(iii)), d'où l'assertion. Par ailleurs, le foncteur limite projective

$$A - fscn(pt) \longrightarrow \hat{A} - modn$$

est exact (1.12.2) et commute au produit tensoriel (EGA 0_{III} 7.3.4), de sorte que (1.24.2) s'obtient par passage à la limite projective à partir de (1.24.3). Lorsque X est un schéma connexe et a un point géométrique de X, ce qui précède montre en tout cas que l'application canonique

$$\operatorname{Tor}_p^A(M,N) \longrightarrow \varprojlim_n \operatorname{Tor}_p^{A_n}(M/J^{n+1}M,N/J^{n+1}N)$$

est un isomorphisme topologique. Par ailleurs, il est immédiat que, munissant le premier membre de l'opération diagonale de $\pi_1(X,a)$ et le second membre de la limite projective des opérations diagonales, c'est un morphisme de $\pi_1(X,a)$ -modules. Terminons la preuve de (ii), en exhibant l'isomorphisme (1.24.1). Il suffit pour cela de remarquer que le foncteur (1.20.2) "commute aux \mathcal{T} or_i" (SGA4 IV) ce qui permet, vu la définition (I 5.1.) de définir (1.24.1) sur les composants. Montrons maintenant (i). Si E et F sont constructibles, on sait (1.21) que X admet un recouvrement par des ouverts, qui sont réunions finies de sous-topos localement fermés $(Z_i)_{i\in I}$ au-dessus desquels E et F sont constants tordus constructibles. Mais

$$\mathscr{T}\mathrm{or}_{p}^{A}\left(E,F\right)|Z_{i}\simeq\mathscr{T}\mathrm{or}_{p}^{A}\left(E|Z_{i},F|Z_{i}\right)\quad(i\in I,p\in\mathbf{Z}),$$

et par suite, d'après (ii), les restrictions aux Z_i des A-faisceaux \mathcal{T} or $_p^A$ (E,F) sont des A-faisceaux constants tordus constructibles, ce qui entraı̂ne qu'ils sont constructibles (1.21). Montrons enfin que si A est régulier de dimension r, on a

$$\mathscr{T}\mathrm{or}_p^A(E,F) \quad (p \ge r+1) \operatorname{dans} A - \operatorname{fsc}(X).$$

On peut supposer X noethérien, et il s'agit alors de voir que les systèmes projectifs $\operatorname{\mathscr{T}or}_p^A(E,F)$ ($p \geq r+1$) sont essentiellement nuls. Grâce à (1.22), il suffit de vérifier cette assertion au-dessus des sous-topos localement fermés de X sur lesquels E et F sont constants tordus constructibles. On est ainsi ramené au cas où E et F sont constants tordus constructibles. Supposant de plus E connexe et choisissant un point E de E du fait que E est régulier de dimension E (EGA E0) 17.3.8.1).

Proposition 1.25. — Soient X un topos localement noethérien et E un A-faisceau constructible (resp. constant tordu constructible) sur X.

- (i) Les assertions suivantes sont équivalentes :
 - a) E est plat.
 - b) E est fortement plat (resp. localement libre constructible).

Si de plus J est un idéal maximal de A, elles équivalent à :

- c) E est presque plat (I 5.14).
- (ii) Si E est J-adique, les assertions suivantes sont équivalentes :
 - *a)* E est plat.
 - b) Pour tout entier $n \ge 0$, le $n^{\grave{e}me}$ composant E_n de E est un A_n -Module plat (resp. localement libre constructible).
- (iii) Si A est un anneau local régulier de dimension r et J est son idéal maximal, alors

$$\mathscr{T}$$
or_p^A $(E,F) = 0 \quad (p \ge r+1)$

pour tout A-faisceau F. Si de plus F est presque plat,

$$\mathscr{T}$$
or $_p^A(E,F) = 0 \quad (p \ge 1).$

Preuve: Montrons (ii). L'assertion b) \Rightarrow a) a déjà été vue (I 5.6.); l'assertion a) \Rightarrow b) s'obtient en écrivant que pour toute suite exacte 0 $\longrightarrow M' \longrightarrow M \longrightarrow M'' \longrightarrow 0$ de A_n -Modules, la suite correspondante

$$0 \longrightarrow M' \otimes_A E \longrightarrow M \otimes_A E \longrightarrow M'' \otimes_A E \longrightarrow 0$$

est exacte. On déduit aussitôt de (ii) l'équivalence des assertions a) et b) de (i), de sorte qu'il suffit de voir que c) \Rightarrow a). Autrement dit, nous avons à montrer que pour tout A-faisceau F, les systèmes projectifs \mathcal{T} or $_p^A(E,F)$ ($p \geq 1$) sont essentiellement nuls, lorsqu'on se restreint à des ouverts noethériens. Grâce à (1.22) et (1.21), on peut supposer X noethérien connexe et E constant tordu constructible. Par ailleurs, la catégorie $A - \operatorname{fsc}(X)$ ne changeant pas lorsque A est remplacé par

 A_J , on peut supposer que A est local noethérien. Choisissant alors un point a de X, le \hat{A} -module M correspondant à E dans l'équivalence ε_a (1.20.4) vérifie (1.24.2)

$$\mathscr{T}$$
or₁^Â $(A/J, M) = 0$,

donc est libre (Bourbaki.Alg.Comm. II 3 Cor.2), et par suite E est localement libre constructible, d'où l'assertion. Montrons (iii). Comme tout A-faisceau admet (I 5.16) une résolution de longueur r par des A-faisceaux presque plats, on peut supposer que F est presque plat. Comme précédemment, on se ramène au cas où A est local noethérien, X noethérien connexe et E constant tordu constructible. Ayant choisi un point E de E0. Nous allons voir que

$$\mathscr{T}$$
or_p^A $(E,F) = 0 \quad (p \ge 1)$

par récurrence croissante sur la dimension de M. Lorsque $\dim(M) = 0$, M est annulé par une puissance de J, et l'assertion résulte de (I 5.13). Supposons maintenant l'assertion vraie pour $\dim(M) = d \ge 0$ et montrons qu'elle est vraie pour $\dim(M) = d + 1$. Le sous- \hat{A} -module M' de M formé des éléments annulés par une puissance de l'idéal J correspond au plus grand sous-A-faisceau constant tordu constructible E' de E annulé par une puissance de J. Posons E'' = E/E' et M'' = M/M'. Le \hat{A} -module M'' correspond à E'', et on a une suite exacte

$$\mathscr{T}$$
or_i^A $(E',F) \longrightarrow \mathscr{T}$ or_i^A $(E,F) \longrightarrow \mathscr{T}$ or_i^A $(E'',F) \quad (i \ge 1),$

qui montre, compte tenu de ce que E' est annulé par une puissance de J, qu'il suffit de prouver l'assertion pour E''. Mais $\operatorname{prof}(M'') > 0$ et par suite il existe un élément u de J tel que la multiplication par u soit un monomorphisme de E''. On en déduit pour tout $i \geq 1$ une suite exacte

$$\mathscr{T}$$
or_i^A $(E'',F) \xrightarrow{u} \mathscr{T}$ or_i^A $(E'',F) \longrightarrow \mathscr{T}$ or_i^A $(E''/uE'',F)$.

Mais le Â-module correspondant à E''/uE'', à savoir M''/uM'', est de dimension d (EGA 0_{IV} 16.3.4), donc

$$\mathscr{T}$$
or_i^A $(E''/uE'',F) = 0 \quad (i \ge 1)$

par hypothèse de récurrence, et par suite

$$\mathscr{T}$$
or_i^A $(E'',F) = u \mathscr{T}$ or_i^A (E'',F) ,

ce qui permet de conclure par le lemme de Nakayama (I 5.12).

Proposition 1.26. — Soient X un topos localement noethérien, et E et F deux A-faisceaux sur X.

(i) Si E et F sont constant tordus constructibles, les A-faisceaux

$$\operatorname{\mathcal{E}xt}_{A}^{p}(E,F) \quad (p \in \mathbf{Z})$$

sont constant tordus constructibles. Lorsque X est connexe, le choix d'un point a de X définit, avec les notations de (1.20.4), des isomorphismes de bifoncteurs cohomologiques

$$(1.26.1) \omega_X \operatorname{\mathcal{E}xt}_A^p(E,F) \xrightarrow{\sim} \operatorname{\mathcal{E}xt}_A^p(\omega_X E, \omega_X F).$$

$$(1.26.2) \varepsilon_{a} \operatorname{Ext}_{A}^{p}(E,F) \xrightarrow{\sim} \operatorname{Ext}_{A}^{p}(\varepsilon_{a}E,\varepsilon_{a}F).$$

De plus, lorsque X est le topos étale d'un schéma localement noethérien, notant M et N les \hat{A} -modules de type fini munis d'une opération continue de $\pi_1(X,a)$ correspondant à E et F (1.20.5), les A-faisceaux

$$\mathscr{E}\operatorname{xt}_{A}^{p}(E,F) \quad (p \in \mathbf{Z})$$

correspondent aux Â-modules de type fini

$$\operatorname{Ext}_{\hat{A}}^{p}(M,N),$$

munis de l'opération "diagonale" de $\pi_1(X,a)$.

- (ii) Si E est constant tordu constructible et F constructible, les A-faisceaux Ext_A^p (E,F) sont constructibles.
- (iii) On suppose que l'anneau A est local régulier de dimension r et que J est son idéal maximal. Alors, si E est constant tordu constructible, on a

$$\operatorname{\mathcal{E}xt}_A^p(E,F) = 0 \quad (p \ge r+1).$$

(iv) Supposons que pour toute A-algèbre de type fini B annulée par une puissance de J, et toute couple (M,N) de B-Modules constructibles, les B-Modules

$$\operatorname{\mathcal{E}xt}_{R}^{p}(M,N) \quad (p \in \mathbf{Z})$$

soient constructibles. Alors, lorsque E et F sont constructibles, les A-faisceaux $\operatorname{\mathcal{E}xt}_A^p(E,F)$ sont constructibles.

Preuve: Montrons (i). Comme le A-faisceau $\mathcal{E}\operatorname{xt}_A^p(E,F)$ a des composants localement constants constructibles, il suffit pour voir qu'il est constant tordu constructible, de montrer qu'il est de type J-adique (1.16). On peut supposer X connexe; soit alors a un point de X. Posant $M = \varepsilon_a(E)$ et $N = \varepsilon_a(F)$, le foncteur fibre

$$\mathscr{E}(X,J) \longrightarrow \mathsf{pt}, \mathscr{J}$$

défini par a associe au A-faisceau $\mathcal{E}xt_A^p(E,F)$ le système projectif

$$(\varprojlim_{m>n} \operatorname{Ext}_{A_m}^p(M/J^{m+1}M, N/J^{n+1}N))_{n\in\mathbb{N}},$$

et il suffit, vu la conservativité du foncteur fibre (habituel) défini par a sur les A–Modules localement constants, de vérifier que ce dernier est de type J-adique. Avec les notations de l preuve de (1.24.(i)), on a dans A–fsc(pt) un isomorphisme canonique

(1.26.3)
$$\mathscr{E}xt_{A}^{p}(\mathbf{M},\mathbf{N}) \simeq H^{p} \mathscr{H}om_{A}^{\bullet}(\mathbf{P},\mathbf{N}),$$

défini grâce à (I 7.3.11). Mais (SGA5 VI 1.3.3) les composants de \mathcal{H} om^{\bullet}_A (**P**, **N**) sont *J*-adiques constructibles, d'où aussitôt l'assertion.

Les assertions restantes de la partie (i) se montrent à partir de là en calquant la preuve des assertions analogues de (1.24). Montrons (ii). D'après (1.21), on peut supposer que F est également constant tordu constructible, et alors (ii) résulte de (i). Pour voir (iii), on peut supposer que X est connexe. Choisissant alors un point A de A, nous allons raisonner par récurrence croissante sur la dimension du A-module de type fini A associé à A. Si A0, le A1-faisceau A1 est défini par un A2-Module localement constant constructible annulé par une puissance de

J, que, quitte à localiser, on peut même supposer constant. Alors, toute résolution de longueur r du A-faisceau E. On conclut dans ce cas grâce à (I 7.3.11). Supposons maintenant l'assertion vraie lorsque $\dim(M) = d \ge 0$ et montrons qu'elle est vraie pour $\dim(M) = d + 1$. Le sous- \hat{A} -module M' de M formé des éléments annulés par une puissance de l'idéal J correspond au plus grand sous-A-faisceau constant tordu constructible E' de E annulé par une puissance de I. Posons E' = E/E' et I' = M/M'. Le I' = M/M'. Le I' = M/M' correspond à I'' = M/M' et on a une suite exacte

$$\mathscr{E}\mathrm{xt}_{A}^{p}\left(E^{\prime\prime},F\right){\longrightarrow}\mathscr{E}\mathrm{xt}_{A}^{p}\left(E,F\right){\longrightarrow}\mathscr{E}\mathrm{xt}_{A}^{p}\left(E^{\prime},F\right)\quad(p\in\mathbf{Z}),$$

qui montre, compte tenu de ce que E' est annulé par une puissance de J, qu'il suffit de prouver l'assertion pour E''. Mais $\operatorname{prof}(M'') > 0$, de sorte qu'il existe un élément u de J tel que la multiplication par u définisse un monomorphisme de E''. On en déduit pour tout $p \in \mathbf{Z}$ une suite exacte

$$\operatorname{\mathscr{E}xt}_{A}^{p}(E'',F) \xrightarrow{xu} \operatorname{\mathscr{E}xt}_{A}^{p}(E'',F) \xrightarrow{\gamma} \operatorname{\mathscr{E}xt}_{A}^{p+1}(E''/uE'',F).$$

L'hypothèse de récurrence implique alors que

$$\operatorname{\mathscr{E}xt}_{A}^{p}(E'',F) = u \operatorname{\mathscr{E}xt}_{A}^{p}(E'',F) \quad (p \ge r+1),$$

et on conclut par le lemme de Nakayama (I 5.12). Pour prouver (iv), nous allons tout d'abord supposer que E est plat et J-adique, donc que pour tout entier $n \geq 0$, le $n^{\text{ème}}$ composant E_n de E est un A_n -Module constructible et plat (1.25). Dans ce cas, nous allons utiliser la notation suivante. Soit M un A_p -Module. Il résulte de (I 6.5.2) que pour tout entier $q \geq p$, le morphisme canonique

$$\mathscr{E}\mathrm{xt}_{A_{p}}^{i}\left(E_{q},M\right)\longleftarrow \qquad \mathscr{E}\mathrm{xt}_{A_{p}}^{i}\left(E_{p},M\right) \qquad \qquad (i\geq 0)$$

est un isomorphisme. Posant pour tout entier $i \ge 0$

$$T^{i}(M) = \varprojlim_{q \geq p} \mathscr{E}xt_{A_{q}}^{i}(E_{q}, M),$$

il est clair qu'on obtient un foncteur cohomologique de la catégorie des A-Modules annulés par une puissance de J dans elle-même. De plus, les hypothèses faites assurent que lorsque M est constructible, les A-Modules $T^i(M)$ sont constructibles.

Rappelons enfin qu'avec ces notations, le A-faisceau $\mathcal{E}xt_A^i(E,F)$ est identique au système projectif

$$(T^i(F_n))_{n\in\mathbb{N}}.$$

Pour voir [?] F est J-adique. Alors, compte tenu de lemme d'Artin-Rees (SGA5 V 4.2.6) et du lemme de Shih (SGA5 V A3.2), il suffit de montrer que pour tout entier $m \ge 0$, le $\operatorname{gr}_I(A)$ -Module

$$T^m(\operatorname{grs}(F)) \simeq \operatorname{\mathcal{E}xt}_{A_0}^m(E_0,\operatorname{grs}(F)),$$

dans lequel $gr_J(A)$ opère par l'intermédiaire du deuxième argument, est noethérien. Mais il résulte de (I 6.5.2) que

$$\mathscr{E}\mathrm{xt}^m_{A_0}\left(E_0,\mathrm{grs}(F)\right) {\simeq} \mathscr{E}\mathrm{xt}^m_{\mathrm{gr}_I(A)}\left(E_0 \otimes_{A_0} \mathrm{gr}_I A,\mathrm{grs}(F)\right),$$

ce qui permet de conclure grâce à l'hypothèse de l'énoncé et au théorème de Hilbert (SGA5 V 5.1.4). Montrons maintenant comment on peut se ramener en général au cas où E est plat. On se ramène facilement au cas où E est noethérien, de sorte que (1.23) E admet une filtration finie dont les quotients consécutifs sont de la forme $i_!(G)$, où $i:Y\longrightarrow X$ est le morphisme structural d'un sous-topos localement fermé de E et E est un E-faisceau constant tordu constructible sur E de sorte qu'on peut supposer E de la forme E de

$$\mathbf{R} \, \mathcal{H} \mathrm{om}_{A} (i_{!}(G), F) \xrightarrow{\sim} i_{*} \mathbf{R} \, \mathcal{H} \mathrm{om}_{A} (G, \mathbf{R} \, i^{!}(F)),$$

de sorte que d'après (ii), on est ramené à voir que R $i^!(F)$ est à cohomologie formée de A-faisceaux constructibles. Mais (I 7.7.13)

$$\mathbf{R} i^!(F) \xrightarrow{\sim} i^* \mathbf{R} \mathcal{H}om_A (i_*(A), F),$$

d'où l'assertion dans ce cas, car $i_*(A)$ est un A-faisceau plat et constructible. Dans le cas où i n'est pas une immersion fermée, on l'écrit sous la forme

$$i = k \circ i$$

où j est une immersion fermée et k une immersion ouverte. On a alors

$$\mathbf{R} \mathcal{H} \text{om}_{A}(i_{!}G,F) \simeq \mathbf{R} k_{*} \mathbf{R} \mathcal{H} \text{om}_{A}(j_{*}(G),k^{*}(F)),$$

de sorte que, d'après ce qui a été vu dans le cas d'une immersion fermée, il suffit de montrer que si k est définie par l'ouvert U de X et P est un complexe borné inférieurement de A-faisceaux sur U dont les objets de cohomologie sont des A-faisceaux constructibles, les objets de la cohomologie de $\mathbf{R}\,k_*(P)$ sont également des A-faisceaux constructibles. Or, notant $t:Z\longrightarrow X$ l'immersion fermée complémentaire de k, on a un tringle exact (I 7.7.14)

qui montre qu'il suffit de voir que

$$\mathbf{R} t^! k_!(P) \simeq t^* \mathbf{R} \mathcal{H}om_A (t_*(A), k_!(P))$$

est à cohomologie constructible, ce qui nous ramène à nouveau au cas d'une immersion fermée.

Exemple 1.27. Les hypothèses de (iv) sont notamment réalisées (SGA5 I Appendice 6) lorsque X est le topos étale d'un schéma localement noethérien, lorsqu'on dispose de la résolution des singularités et de la pureté au sens fort (SGA5 I Appendice 4.4). C'est le cas notamment lorsque X est de dimension ≤ 1 , ou lorsque X est excellent de caractéristique nulle, ou localement de type fini sur un corps et de dimension ≤ 2 .

Nous allons maintenant nous intéresser à quelques propriétés particulières aux anneaux de valuation discrète.

Proposition 1.28. — On suppose que A est un anneau de valuation discrète et que J est son idéal maximal. Étant donné un A-faisceau constructible F sur X, les assertions suivantes sont équivalentes:

- (i) F est plat.
- (ii) F est sas torsion, i.e. pour tout élément a de A, l'homothétie

$$a_{F}: F \longrightarrow F$$

est un monomorphisme.

(iii) Étant donnée une uniformisante locale u de A, l'endomorphisme u_F est un monomorphisme.

Preuve : L'équivalence de (ii) et (iii) est évidente, et il est immédiat que (i) ⇒ (iii). Montrons que (iii) ⇒ (i). D'après (1.25.(i)), il suffit de voir que

$$\mathcal{T}or_i^A(A/uA,E) = 0,$$

ce qui se voit sans peine sur la suite exacte des \mathscr{T} or $_i^A(.,E)$ associée à la suite exacte $0 \longrightarrow A \stackrel{u}{\longrightarrow} A \longrightarrow A/uA \longrightarrow 0$.

Proposition 1.29. — On suppose que A est de valuation discrète, que J est son idéal maximal, et que X est le topos étale d'un schéma noethérien (resp. localement noethérien). Alors, pour tout A-faisceau constructible (resp. constant tordu constructible) F sur X, il existe une suite exacte

$$0 \longrightarrow L' \longrightarrow L \longrightarrow F \longrightarrow 0$$

deA—fscn(X), avec L et L' deux A-faisceaux constructibles et plats (resp. localement libres constructibles).

Preuve: Il résulte de (1.28) que tout sous-A-faisceau constructible d'un A-faisceau constructible et plat est plat. Utilisant (1.5.(iii)), (resp. 1.17.(iii)), on voit donc qu'il nous suffit de prouver l'existence d'un épimorphisme $L \longrightarrow F \longrightarrow 0$, avec L constructible et plat (resp. localement libre constructible).

a) Supposons tout d'abord que F soit associé à un A_d -Module localement constant constructible (d entier ≥ 0) et montrons l'assertion respée dans ce cas. Quitte à décomposer X en ses composantes connexes (ouvertes), on peut le supposer connexe. Alors, choisissant un point a de X, le A-faisceau F correspond à une représentation continue de $\pi_1(X,a)$ dans un A_d -module de type fini S. Le groupe $\pi_1(X,a)$ opérant par un quotient fini G sur S, il existe un épimorphisme de (G,A_d) -modules

$$T \longrightarrow S \longrightarrow 0$$
,

avec T un $\hat{A}(G)$ -module libre de type fini, qui peut être aussi considéré comme un $(\pi_1(X,a),\hat{A})$ -module continu. L'assertion en résulte grâce à

(1.20.5), puisque le A-faisceau constant tordu correspondant à T est localement libre. On remarquera que dans cette partie on n'a pas utilisé que A est de valuation discrète.

b) Montrons maintenant l'assertion dans le cas où F est associé à un A_d -Module constructible. D'après (SGA4 IX 2.14.(ii)), il existe une famille finie

$$(p_i:X_i\longrightarrow X)_{i\in I}$$

de morphismes finis, pou tout i un A_d -Module constant C_i sur X_i , et un monomorphisme

$$F \xrightarrow{\lambda} \prod_i (p_i)_*(C_i).$$

Or, d'après a), il existe des épimorphismes de A-faisceaux $P_i \longrightarrow C_i \longrightarrow 0$, avec P_i constructible et plat, d'où un épimorphisme

$$\prod_{i} (p_i)_*(P_i) \xrightarrow{\mu} \prod_{i} (p_i)_*(C_i) \longrightarrow 0,$$

dont la source est un A-faisceau constructible et sans torsion, donc plat. Considérons alors un diagramme cartésien

$$P \xrightarrow{\alpha} \prod_{i} (p_{i})_{*}(P_{i})$$

$$\beta \downarrow \qquad \qquad \downarrow^{\mu}$$

$$F \xrightarrow{\lambda} \prod_{i} (p_{i})_{*}(C_{i}).$$

Des arguments catégoriques généraux montrent que α est un monomorphisme et β un épimorphisme; de plus, P est constructible, et plat puisque α est un monomorphisme. On remarquera qu'on a seulement utilisé que X est localement noethérien, et que l'argument montre plus généralement que, sans hypothèse sur A, F est quotient d'un A-faisceau constructible et sans torsion.

c) Passons au cas général. La catégorie $A - \mathrm{fscn}(X)$ (resp. $-\mathrm{fsct}(X)$) est noethérien (1.5.(iii) resp. 1.17.(iii)); par suite, u désignant une uniformisante locale de A, la famille de sous-A-faisceaux constructibles (resp. constants tordus constructibles)

$$u^{n^{F=\operatorname{Ker}(F \xrightarrow{u^n} F)}}$$

admet un plus grand élément, soit u^{d^F} , dans A - fsc(X). Le A-faisceau $M = u^d F$ est sans torsion et $F/u^d F$ est isomorphe au A-faisceau associé à un $(A/u^d A)$ -Module constructible (resp. localement constant constructible). D'après b) (resp a)), il existe un épimorphisme

$$\gamma: P \longrightarrow F/u^d F$$
,

avec F un A-faisceau constructible et plat (resp. localement libre constructible). Désignant par L le produit fibré de P et F au-dessus de F/u^dF , le diagramme commutatif exact évident

montre que δ est un épimorphisme et que L, extension de deux A-faisceaux constructibles et plats (resp. localement libres constructibles) est lui-même plat (resp. localement libre constructible).

2. Conditions de finitude dans les catégories dérivées.

Soit X un topos localement noethérien.

Définition 2.1. — On dit qu'un complexe E de A-faisceaux sur X est à cohomologie constructible (resp. constante tordue constructible) si tous ses objets de cohomologie sont des A-faisceaux constructibles (resp. constants tordus constructibles).

La sous-catégorie $A-\mathrm{fscn}(X)$ étant exacte dans $A-\mathrm{fsc}(X)$ (1.5.(iii)), les sous-catégories plaines

$$K_c^*(X,A)$$
 et $D_c^*(X,A)$ $(*=\emptyset,+-\text{ ou }b)$

de $K^*(X,A)$ et $D^*(X,A)$ respectivement engendrées par les complexes à cohomologie constructible sont des sus-catégories triangulées; de plus, $D_c^*(X,A)$ s'obtient par inversion des quasi-isomorphismes à partir de $K_c^*(X,A)$. De même, on définit des catégories triangulées

$$K_t^*(X,A)$$
 et $D_t^*(X,A)$ $(*=\emptyset,+-$ ou $b)$

à partir des complexes à cohomologie constants tordue constructible et $D_t^*(X,A)$ s'obtient à partir de $K_t^*(X,A)$ en inversant les quasi-isomorphismes.

Définition 2.2. — On dit qu'un complexe E de A-faisceaux sur X est pseudocohérent s'il est à cohomologie localement bornée supérieurement et constante tordu constructible. On dit qu'il est parfait si de plus il est localement de tor-dimension finie.

Comme A—fsct(X) est une sous-catégorie exacte de A—fsc(X), il est clair que les sous-catégories pleines

$$K_{coh}(X,A)$$
 et $K_{parf}(X,A)$

de K(X,A) engendrées respectivement par les complexes pseudocohérents et parfaits sont des sous-catégories triangulées vérifiant les inclusions

$$K_{\text{parf}}(X,A) \subset K_{\text{coh}}(X,A) \subset K_t(X,A)$$
.

On définit de même des catégories triangulées

$$D_{coh}(X,A)$$
 et $D_{parf}(X,A)$

vérifiant les inclusions

$$\mathbf{D}_{\mathrm{parf}}(X,A) \subset \mathbf{D}_{\mathrm{coh}}(X,A) \subset \mathbf{D}_{t}(X,A).$$

De plus la catégorie $D_{parf}(X,A)$ (resp. $D_{coh}(X,A)$) est obtenue à partir de $K_{parf}(X,A)$ (resp. $K_{coh}(X,A)$) par inversion des quasi-isomorphismes. Enfin, on utilisera également les notations

$$D_{parf}^b(X,A) = (D_t^b(X,A))_{torf}$$

$$D_{coh}^{b}(X,A) = (D_{t}^{b}(X,A)).$$

Avant de poursuivre, nous allons expliciter certaines de ces notions dan le cas où X est le topos ponctuel. Dans ce cas, le foncteur additif

$$M \mapsto (M/J^{n+1}M)_{n \in \mathbb{N}}$$

de la catégorie des \hat{A} -modules de type fini dans A-fsc(pt) est exact et permet donc de définir par prolongement aux complexes un foncteur exact

(2.3.1)
$$D^b(\hat{A} - \text{modn}) \longrightarrow D^b_c(\text{pt}, A).$$

De plus, comme tout complexe parfait de \hat{A} -modules est équivalent à un complexe borné de \hat{A} -modules projectifs de type fini, le foncteur (2.3.1) induit un foncteur exact

$$(2.3.2) D_{parf}(\hat{A} - modn) \longrightarrow D_{parf}(pt, A).$$

Proposition 2.3. — Les foncteurs

(2.3.1)
$$D^b(\hat{A} - \text{modn}) \longrightarrow D^b_c(\text{pt}, A)$$

(2.3.1)
$$D_{parf}(\hat{A} - modn) \longrightarrow D_{parf}(pt, A)$$

ci-dessus sont des équivalences de catégories.

Preuve: Comme le foncteur (2.3.1) commute évidemment au produit tensoriel et est conservatif, il est clair qu'un complexe dont l'image par (2.3.1) est de tor-dimension finie est lui-même de tor-dimension finie. Il nous suffit donc de montrer que (2.3.1) est une équivalence. Notons pour cela U la sous-catégorie pleine de $K_c^b(pt,A)$ engendrée par les complexes bornés à cohomologie constructible et dont les composants sont essentiellement stricts, i.e. vérifiant la condition de Mittag-Leffler. Comme la catégorie \hat{A} — modn s'identifie à une sous-catégorie pleine de A — fsc(pt), il est clair qu'on a une suite de foncteurs d'"inclusion"

$$K^b(\hat{A} - modn) \xrightarrow{p} U \xrightarrow{q} K^b_c(pt, A).$$

Nous allons voir successivement que lorsqu'on inverse les quasi-isomorphismes, les foncteurs p et q deviennent des équivalences. Pour le voir pour p, il suffit (CD I 4.2.(b)) de montrer qu'étant donné un objet E de U, il existe un quasi-isomorphisme

$$M \longrightarrow E$$

avec M un objet de $K^b(\hat{A}-\text{modn})$. Appliquant (EGA 0_{III} 11.9.1), on est ramené à montrer qu'étant donnés un objet F de A-fsc(pt) vérifiant la condition de Mittag-Leffler et un épimorphisme de A-faisceaux

$$F \xrightarrow{u} P \longrightarrow 0$$
,

avec P un \hat{A} -module de type fini, il existe un \hat{A} -module de type fini Q et un morphisme $v:Q\longrightarrow F$ tels que le composé uv soit un épimorphisme. Quitte à remplacer $F=(F_n)_{n\in\mathbb{N}}$ par le système projectif strict associé, on peut supposer qu'il est strict. Alors, les morphismes de \hat{A} -modules canoniques

$$\lim(F) \longrightarrow F_n \quad (n \in \mathbf{N})$$

sont des épimorphismes. Choisissons alors un sous-Â-module de type fini Q de $\varprojlim(F)$ tel que la projection $Q \longrightarrow F_0$ soit un épimorphisme. Alors le morphisme composé $Q \longrightarrow P$ induit un épimorphisme $Q/JQ \longrightarrow P/JP$, donc est un épimorphisme d'après le lemme de Nakayama. Montrons maintenant que le foncteur q induit une équivalence après inversion des quasi-isomorphismes. Étant donné un objet K de $K_c^b(\operatorname{pt},A)$, on sait (I 6.6.3) qu'il existe un quasi-isomorphisme

où L est un complexe borné inférieurement et dont les composants sont directement stricts, donc vérifient la condition de Mittag-Leffler. Nous allons voir que, quitte à tronquer L, on peut le remplacer par un complexe borné et dont les composants vérifient la condition de Mittag-Leffler, ce qui achèvera la démonstration d'après (CD I 4.2. (c) et (d)). Si p est un entier tel que $K^q = 0$ ($q \ge p$), le morphisme w_p se factorise $\operatorname{Ker}(d_L^p)$, et, quitte à tronquer L au degré p, il nous suffit de voir que $\operatorname{Ker}(d_L^p)$ vérifie la condition de Mittag-Leffler, ce qui est immédiat puisqu'il est isomorphe dans $A-\operatorname{fsc}(\operatorname{pt})$ au système projectif $\operatorname{Im}(L^{p-1})$, lui-même quotient du système projectif strict L^{p-1} .

Proposition 2.4. — Le bifoncteur dérivé du produit tensoriel induit des bifoncteurs

(i)
$$\mathrm{D}^-_{\lambda}(X,A) \times \mathrm{D}^-_{\lambda}(X,A) \longrightarrow \mathrm{D}^-_{\lambda}(X,A) \quad (\lambda = c, \infty, t).$$

(ii)
$$D_{\lambda}^{b}(X,A)_{torf} \times D_{\lambda}^{+}(X,A) \longrightarrow D_{\lambda}^{+}(X,A) \quad (\lambda = c, \infty, t).$$

(iii)
$$D_{coh}(X,A) \times D_{coh}(X,A) \longrightarrow D_{coh}(X,A)$$
.

(iv)
$$D_{parf}(X,A) \times D_{parf}(X,A) \longrightarrow D_{parf}(X,A)$$
.

Si de plus l'anneau A est local régulier d'idéal maximal J, le bifoncteur (I 7.2.4) induit des bifoncteurs

(v)
$$D_{\lambda}^*(X,A) \times D_{\lambda}^*(X,A) \longrightarrow D_{\lambda}^*(X,A)$$
, avec $* = b$ ou $+$, et $\lambda = c$ ou t .

Preuve: Notons respectivement E et F les complexes à droite et à gauche dans le premier membre. Pour (i), (iii) et (v), on se ramène au moyen du "way-out functor lemma" (H I 7.1) au cas où E et sont réduits au degré 0, et alors on conclut par (1.24.(i)). Pour (ii), on se ramène par qay-out functor lemma au cas où F est borné et alors, compte tenu de ce que E est detor-dimension finie, l'assertion est conséquence de (i). Enfin, la partie (iv) résulte de (iii) et du fait que le produit tensoriel dérivé de deux complexes de tor-dimension finie est lui-même de tor-dimension finie.

Proposition 2.5. — Le bifoncteur $\mathbf{R} \mathcal{H}om_A$ induit des bifoncteurs

(i)
$$(D_t^-(X,A))^{\bullet} \times D_{\lambda}^+(X,A) \longrightarrow D_{\lambda}^+(X,A)$$
 $(\lambda = c \text{ ou } t)$.

Lorsque A est local régulier d'idéal maximal J, il induit des bifoncteurs exacts

(ii)
$$(D_t^b(X,A))^{\bullet} \times D_1^b(X,A) \longrightarrow D_1^b(X,A)$$
 $(\lambda = \emptyset, c \text{ ou } t).$

Enfin, supposons que pour toute A-algèbre de type fini B annulée par une puissance de J, et tout couple (M,N) de B-Modules constructibles, les B-Modules $\operatorname{Ext}_B^p(M,N)$ $(p \in \mathbf{N})$ soient constructibles. Alors, le bifoncteur $\mathbf{R} \operatorname{\mathcal{H}om}_A$ induit un bifoncteur

(iii)
$$(D_c^-(X,A))^{\bullet} \times D_c^+(X,A) \longrightarrow D_c^+(X,A)$$
.

Preuve: Soient $E \in D^-(X,A)$ et $F \in D^+(X,A)$. Pour voir (i), on se ramène par le way-out functor lemma au cas où E et F sont réduits au degré 0, et alors l'assertion résulte de (1.26. (i) et (ii)). L'assertion (ii) se déduit sans peine de (i) et (1.26.(iii)). Enfin, l'assertion (iii) se voit de même que (i), en utilisant cette fois (1.26.(iv)).

Proposition 2.6. — Soient $K \in D_c^-(X,A)$, $L \in D^-(X,A)$ et $M \in D^+(X,A)$. Alors, le morphisme de Cartan

$$(I7.6.2) \mathbf{R} \mathcal{H}om_{A} (K \underline{\otimes}_{A} L, M) \longrightarrow \mathbf{R} \mathcal{H}om_{A} (K, \mathbf{R} \mathcal{H}om_{A} (L, M))$$

est un isomorphisme. Si de plus X est noethérien, les morphismes

$$(I7.6.3) \mathbf{R} \overline{\operatorname{Hom}}_{A}(K \underline{\otimes}_{A} L, M) \longrightarrow \mathbf{R} \overline{\operatorname{Hom}}_{A}(K, \mathbf{R} \mathcal{H} \operatorname{om}_{A} (L, M))$$

(17.6.4)
$$\mathbf{R}\operatorname{Hom}_{A}(K\otimes_{A}L,M) \longrightarrow \mathbf{R}\operatorname{Hom}_{A}(K,\mathbf{R} \mathcal{H} \operatorname{om}_{A}(L,M))$$

$$(I7.6.5) \qquad \operatorname{Hom}_{A}(K \underline{\otimes}_{A} L, M) \longrightarrow \operatorname{Hom}_{A}(K, \mathbf{R} \mathcal{H} \operatorname{om}_{A} (L, M))$$

sont aussi des isomorphismes.

Preuve: La définition des trois derniers morphismes à partir du premier au moyen de (I 7.4.18) montre qu'il suffit de voir que (I 7.6.2) est un isomorphisme. On peut pour cela supposer L quasilibre et M flasque. Ceci dit, les foncteurs exacts

$$\mathbf{R} \, \mathcal{H} \mathrm{om}_{A} (K \underline{\otimes}_{A} L, .)$$
 et $\mathbf{R} \, \mathcal{H} \mathrm{om}_{A} (K, \mathbf{R} \, \mathcal{H} \mathrm{om}_{A} (L, .))$

de $D^+(X,A)$ dans $D^+(X,A)$ possèdent la propriété de "décalage à droite" ([H] I 7), ce qui permet de se ramener au cas où M est de plus réduit au degré 0. Dans ce cas, fixant K et M, les foncteurs exacts

$$\mathbf{R} \, \mathcal{H} \mathrm{om}_{A} \, (K \underline{\otimes}_{A}, M) \quad \text{et} \quad \mathbf{R} \, \mathcal{H} \mathrm{om}_{A} \, (K, \mathbf{R} \, \mathcal{H} \mathrm{om}_{A} \, (), M)$$

possèdent également la propriété de dácalage à droite, ce qui permet de se ramener au cas où de plus L est réduit au degré 0. Enfin, un dernier argument de décalage permet de supposer que K est réduit au degré 0 et que K^0 est un A-faisceau constructible. Pour montrer l'assertion dans ce dernier cas, on peut, quitte à localiser, supposer K noethérien. Alors, il est immédiat que K est quasi-isomorphe à un complexe quasilibre borné supérieurement, tel que pour tout $n \in \mathbb{Z}$, le K-faisceau K ait ses composants constructibles. Finalement, on peut supposer K et K réduits au degré 0, quasilibres, que K0 a des composants constructibles et que K1 est flasque. Alors, il résulte de (I 6.3.8) que le morphisme de complexes (I 7.6.1) est un isomorphisme, d'où l'assertion.

Proposition 2.7. — Soient $E \in \mathcal{D}^-_{parf}(X,A)$, $F \in \mathcal{D}^+(X,A)$ et $G \in \mathcal{D}(X,A)$. Le morphisme

$$(I7.6.9.2) m: \mathbf{R} \mathcal{H}om_{A}(E, F) \underline{\otimes}_{A} G \longrightarrow \mathbf{R} \mathcal{H}om_{A}(E, F \underline{\otimes}_{A} G)$$

est un isomorphisme dans chacun des cas suivants:

(i) L'anneau A est local régulier d'idéal maximal J, et $G \in D^+(X,A)$.

(ii)
$$F \in \mathcal{D}_{c}^{b}(X,A)$$
 et $G \in \mathcal{D}_{c}^{-}(X,A)_{\text{torf}}$

Preuve: Plaçons-nous d'abord dans le cas (i). Par dévissage, on se ramène au cas où F et G sont bornés. Alors les deux membres sont à cohomologie bornée supérieurement (2.5.(ii)). Notant alors $u:A\longrightarrow A/J$ le morphisme d'anneaux canonique, il nous suffit (I 8.2.2) de montrer que $Lu^*(m)$ est un isomorphisme. Utilisant (I 8.1.11.(ii) et (iv)), on voit qu'on peut remplacer A par A/J. En effet, le complexe $Lu^*(E)$ est de tor-dimension finie (I 8.1.11.(i)) et il est immédiat que sa cohomologie est constante tordue constructible (nous reviendrons d'ailleurs plus loin sur ce point). Ceci dit, on peut supposer X quasicompact; alors, l'équivalence (I 8.2.6) permet de se ramener à l'assertion analogue dans la catégorie des (A/J)-Modules (SGA6 I 7.6). Dans l'hypothèse (ii), la cohomologie des deux membres est constructible, ce qui (1.12.4) de vérifier l'assertion sur les fibres. Utilisant (I 6.4.2), on est ainsi ramené au cas où X est le topos ponctuel. Mais alors, grâce à (2.3), c'est une conséquence immédiate de l'assertion analogue pour les \hat{A} -modules de type fini.

Pour énoncer le corollaire suivant, on posera pour tout E appartenant à $D^-_{\rm parf}(X,A)$

$$\check{E} = \mathbf{R} \, \mathcal{H} \text{om}_{A} (E, A).$$

Il est clair que lorsque A est local régulier d'idéal maximal J, on a

$$E \in \mathcal{D}^+_{parf}(X, A),$$

mais j'ignore si c'est vrai sans hypothèse sur l'anneau A.

Corollaire **2.8**. — Soient $E \in \mathcal{D}^-_{parf}(X,A)$ et $F \in \mathcal{D}^+(X,A)$. Le morphisme canonique

est un isomorphisme lorsque A est local régulier d'idéal maximal J, ou lorsque $F \in D^b_c(X,A)_{torf}$. C'est le cas en particulier lorsque $E \in D^-_{parf}(X,A)$ et $F \in D^b_{parf}(X,A)$, de sorte que le complexe

$$\mathbf{R} \mathcal{H} om_A (E, F)$$

est parfait lorsque de plus A est local régulier d'idéal maximal J.

2.9. Supposons maintenant pour simplifier que A est local régulier d'idéal maximal J. Soient $E, E' \in D^-(X, A)$ et $F, F' \in D^+(X, A)$. On suppose que $E \in D^-_c(X, A)$. Nous allons définir un morphisme fonctoriel

$$(2.9.1) \quad \mathbf{R} \, \mathcal{H}om_{A}(E,F) \underline{\otimes}_{A} \, \mathbf{R} \, \mathcal{H}om_{a}(E',F') \longrightarrow \mathbf{R} \, \mathcal{H}om_{A}(E\underline{\otimes}_{A}E',F\underline{\otimes}_{A}F').$$

Considérons pour cela le diagramme

La flèche (1) n'est autre que (I 7.6.9.2), qui existe puisque $\mathbf{R} \, \mathcal{H}\mathrm{om}_a \, (E',F') \in \mathrm{D}^+(X,A)$. La flèche (2) est obtenue en appliquant le foncteur $\mathbf{R} \, \mathcal{H}\mathrm{om}_a \, (E,.)$ à la flèche (I 7.6.2), pour E', F' et F. Enfin, la flèche (3) est le morphisme de Cartan (I 7.6.2). Comme $E \in \mathrm{D}^-_c(X,A)$, cette dernière est un isomorphisme (2.6), ce qui permet de définir (2.9.1) comme l'unique flèche (en pointillé) rendant le diagramme ci-dessus commutatif.

Si maintenant on a aussi $E' \in \mathcal{D}_c^-(X,A)$, on définit, en échangeant les rôles de E et E', et F et F' respectivement, un autre flèche et on vérifie qu'elle coïncide avec le première.

Proposition 2.9.2. — On suppose que l'anneau A est local régulier d'idéal maximal J. Soient $E, E' \in \mathcal{D}^-_{parf}(X,A)$ et $F, F' \in \mathcal{D}^+(X,A)$. Alors, le morphisme canonique

(2.9.1)
$$\mathbf{R} \, \mathcal{H} \, \mathrm{om}_{a} \, (E, F) \underline{\otimes}_{A} \, \mathbf{R} \, \mathcal{H} \, \mathrm{om}_{a} \, (E', F') \longrightarrow \mathbf{R} \, \mathcal{H} \, \mathrm{om}_{A} \, (E \underline{\otimes}_{A} E', F \underline{\otimes}_{A} F')$$
 est un isomorphisme.

Preuve: D'après (2.7), les flèches (1) et (2) du diagramme ci-dessus [?]

2.10. Supposons maintenant le topos X noethérien, et que l'anneau A est local régulier d'idéal maximal J. Étant donné $E \in \mathcal{D}^b_{parf}(X,A)$, le complexe E appartient aussi à $\mathcal{D}^b_{parf}(X,A)$, et le morphisme de Cartan (I 7.6.5)

$$\operatorname{Hom}_{A}(\check{E} \otimes_{A} E, A) \longrightarrow \operatorname{hom}_{A}(\check{E}, \check{E})$$

est une bijection. En particulier, l'identité de \check{E} correspond à un morphisme

$$(2.10.1) E \underline{\otimes}_{A} \check{E} \longrightarrow A.$$

Proposition 2.10.2. — Soit $F \in D^+(X,A)$. Il existe un morphisme fonctoriel en F

$$E \underline{\otimes}_A \mathbf{R} \, \mathcal{H} \mathrm{om}_A (E, F) \longrightarrow F,$$

qui "coîncide" avec (2.10.1) lorsque F = A.

Preuve : En tensorisant par l'identité de *E* l'isomorphisme (2.8) on obtient un isomorphisme

$$a: E \underline{\otimes}_A \check{E} \underline{\otimes}_A F \xrightarrow{\sim} E \underline{\otimes}_A \mathbf{R} \, \mathscr{H} om_A (E, F).$$

Par ailleurs, on définit, en tensorisant par l'identité de F le morphisme (2.10.1), un morphisme

$$b: E \underline{\otimes}_{A} \check{E} \underline{\otimes}_{A} F \longrightarrow F.$$

Le morphisme annoncé est le composé $b \circ a^{-1}$.

Lorsque $F \in \mathcal{D}^b_c(X,A)$, il en est de même de $\mathbf{R} \, \mathscr{H}\mathrm{om}_A\,(E,F)$, et le morphisme de Cartan

$$\operatorname{Hom}_{A} \mathbf{R} \operatorname{\mathscr{H}om}_{A}(E,F) \underline{\otimes}_{A} E,F) \longrightarrow \operatorname{Hom}_{A}(\mathbf{R} \operatorname{\mathscr{H}om}_{A}(E,F),\mathbf{R} \operatorname{\mathscr{H}om}_{A}(E,F))$$

est une bijection. On laisse alors au lecteur le soin de vérifier que le morphisme (2.10.2) correspond à l'identité de $\mathbf{R} \mathcal{H} om_A(E,F)$ dans cette bijection.

Proposition 2.10.3. — Soit $E \in D^b_{parf}(X,A)$. Pour tout $F \in D^+(X,A)$, il existe un morphisme canonique

$$E \longrightarrow \mathbf{R} \mathcal{H}om_A (\mathbf{R} \mathcal{H}om_A (E, F), F).$$

Preuve: On prend l'image de (2.10.2) par le morphisme de Cartan

$$\operatorname{Hom}_{A}(E \otimes \mathbf{R} \mathcal{H} \operatorname{om}_{A}(E,F),F) \longrightarrow \operatorname{Hom}_{A}(E,\mathbf{R} \mathcal{H} \operatorname{om}_{A}(E,F),F).$$

En particulier, pour F = A, on déduit de (2.10.3) un morphisme

$$(2.10.4) E \longrightarrow (E)^{\vee}.$$

Proposition 2.10.5. — Soit $E \in D^b_{parf}(X, A)$. Le morphisme

$$E \longrightarrow (\check{E})^{\mathsf{v}}$$

ci-dessus est un isomorphisme.

Preuve: Comme les deux membres sont à cohomologie constructible, on est ramené à vérifier l'assertion sur les fibres (1.12.4).

Grâce à (I 6.4.2), on peut alors supposer que X est le topos ponctuel. Enfin, la proposition (2.3) montre que dans ce cas, l'assertion (2.10.5) est conséquence de l'assertion analogue pour les complexes parfaits de \hat{A} -modules (SGA 6 I 7.2).

2.11. Trace et cup-produit.

On suppose que A est local régulier et que J est son idéal maximal. Étant donné $E \in \mathcal{D}_{\text{parf}}(X,A)$, nous allons définir un morphisme trace

$$\operatorname{tr}: \operatorname{Hom}_{A}(E, E) \longrightarrow \Gamma(X, A),$$

satisfaisant au formalisme développé dans (SGA6 I 8), à l'exception de l'additivité qui est d'ailleurs énoncée de façon erronée dans (loc.cit.).

Supposons tout d'abord que X soit noethérien. Alors il existe une flèche naturelle

(2.11.1)
$$\mathbf{R} \,\mathcal{H}\mathrm{om}_{A}(E,E) \longrightarrow A,$$

composée de l'isomorphisme inverse de (2.8) \mathbf{R} \mathscr{H} om_A $(E,E) \xrightarrow{\sim} \check{E} \underline{\otimes}_A E$ et du morphisme (2.10.1). Appliquant à (2.11.1) le foncteur $H^{\circ}(X,.)$, on obtient, compte tenu de l'isomorphisme de Cartan, une application A-linéaire

 $\operatorname{Hom}_A(E,E) \longrightarrow \Gamma(X,A)$, qui est le morphisme trace annoncé lorsque X est noethérien. Dans le cas général, comme le préfaisceau

$$U \mapsto H^0(U,A)$$

est un faisceau (I 3.9), les morphismes traces précédemment définis sur les ouverts noethériens de X se recollent pour fournir le morphisme trace annoncé. Il est immédiat de vérifier que, sur les fibres, il induit, compte tenu de l'équivalence (2.3.2), le morphisme trace défini dans (SGA6 I 8).

Plus généralement, étant donnés E et $F \in D_{parf}(X,A)$, un accouplement

$$(,): \operatorname{Hom}_A(E,F) \otimes_{\operatorname{H}^0(X,A)} \operatorname{Hom}_A(F,E) \longrightarrow \operatorname{H}^0(X,A).$$

que nous appellerons cup-produit. Pour cela, on se ramène comme précédemment à le définir lorsque X est noethérien et les complexes E et F sont bornés. Dans ce cas, on dispose d'un homomorphisme canonique

(2.11.2)
$$\mathbf{R} \, \mathcal{H}om_{A}(E,F) \underline{\otimes}_{A} \, \mathbf{R} \, \mathcal{H}om_{A}(F,E) \longrightarrow A,,,$$

que l'on construit comme suit. D'après (2.8), il s'agit de définir un accouplement

$$\check{E} \underline{\otimes}_{A} F \underline{\otimes}_{A} \check{F} \underline{\otimes}_{A} E \longrightarrow A.$$

On prend le produit tensoriel des accouplements (2.10.1) associés à *E* et *F* respectivement. Montrons maintenant comment déduire le cup-produit de (2.11.2). D'après l'isomorphisme de Cartan (2.6), il s'agit, étant donnés deux morphismes

$$u: A \longrightarrow \mathbf{R} \mathcal{H}om_A(E, F)$$

et

$$v: A \longrightarrow \mathbf{R} \mathscr{H}om_A(F, E),$$

d'en définir un de A dans A. On prend le morphisme composé de (2.11.1) et de $u \underline{\otimes}_A v$.

Proposition 2.11.3. — Soient E et $F \in D_{part}(X, A)$.

(i) Étant donnés deux morphismes $u: E \longrightarrow F$ et $v: F \longrightarrow E$, on a

$$(u,v)=(v,u)=\operatorname{tr}(v\circ u)=\operatorname{tr}(u\circ v).$$

(ii) Étant donnés un morphisme $u: E \longrightarrow E$ et un isomorphisme $s: E \longrightarrow F$, on

$$\operatorname{tr}(s \circ u \circ s^{-1}) = \operatorname{tr}(u).$$

(iii) Étant donnés deux morphismes $u: E \longrightarrow E$ et $v: F \longrightarrow F$, on a :

$$\operatorname{tr}(u \otimes v) = \operatorname{tr}(u)\operatorname{tr}(v)$$
.

Preuve: Il est clair que (i) \Rightarrow (ii). Par passage aux fibres, et compte tenu de l'équivalence (2.3.2), les assertions (i) et (iii) résultent des assertions analogues pour les complexes parfaits de \hat{A} -modules (SGA6 I 8.3 et 8.7).

2.12. Nous allons maintenant expliciter pour la commodité des références un certain nombre de compatibilités de la notion de constructibilité avec les opérations externes, qui sont pour la plupart évidentes et ont déjà été utilisées librement dans les numéros précédents.

Proposition 2.12.1. — Soit $f: X \longrightarrow Y$ un morphisme de topos localement noethériens.

- (i) Le foncteur f* transforme A-faisceau constructible (resp. constant tordu constructible) en A-faisceau constant tordu constructible.
- (ii) Le foncteur $f^* : D(Y,A) \longrightarrow D(X,A)$ induit des foncteurs

$$\mathrm{D}^*_{\boldsymbol{\lambda}}(T,A) \longrightarrow \mathrm{D}^*_{\boldsymbol{\lambda}}(T',A) \quad (*=\varnothing,+,-,b \ ou = c,t).$$

(A rég., J id. max.) $D_{parf}(Y,A) \longrightarrow D_{parf}(X,A)$.

$$D_{coh}(Y,A) \longrightarrow D_{coh}(X,A).$$

(iii) Étant données $E \in \mathcal{D}_t^-(Y,A)$ et $F \in \mathcal{D}^+(Y,A)$, le morphisme canonique (I 7.7.2.(ii))

$$f^* \mathbf{R} \, \mathcal{H}om_A(E,F) \longrightarrow \mathbf{R} \, \mathcal{H}om_A(f^*E,f^*F)$$

est un isomorphisme.

Preuve: Dans le cas constant tordu constructible, l'assertion (i) a été déjà vue (1.20.4). Dans le cas constructible, on se ramène au cas où F est J-adique constructible, où c'est immédiat. L'assertion (ii) résulte immédiatement de (i); pour la perfection, on suppose A régulier d'idéal maximal J, car je ne sais pas en général si l'image réciproque d'un A-faisceau plat est un A-faisceau plat. Enfin, (iii) résulte de (I 6.4.2).

Proposition 2.12.2. — Soient X un topos localement noethérien, T et T' deux objets de X, et $f: T \longrightarrow T'$ un morphisme quasicompact.

(i) Le foncteur (I 7.7.9) $\mathbf{R} f_! : D(T,A) \longrightarrow D(T',A)$ induit des foncteurs $D^*(T,A) \longrightarrow D^*(T',A) \quad (*=\emptyset,-,+ou\ b).$

(ii) Si f est une immersion ouverte, le foncteur f* induit un foncteur

$$f^*: D_{parf}(T', A) \longrightarrow D_{parf}(T, A).$$

Preuve: Comme le foncteur $f_!$ est exact et transforme A-Module constructible en A-Module constructible (SGA4), il transforme A-faisceau J-adique constructible en A-faisceau J-adique constructible, d'où aussitôt (i). L'assertion (ii) provient de ce que l'on sait dans ce cas (I 5.18.5 (ii)) que le foncteur f^* transforme A-faisceau plat en A-faisceau plat.

Proposition 2.12.3. — Soient X un topos, U un ouvert de X et $j: Y \longrightarrow X$ l'immersion fermée complémentaire.

(i) Le foncteur $\mathbf{R} j_* : D(Y,A) \longrightarrow D(X,A)$ induit des foncteurs $D_c^*(Y,A) \longrightarrow D_c^*(X,A) \quad (*=\emptyset,-,+ \ ou \ b).$

(ii) Le foncteur j* induit un foncteur

$$j^*: D_{parf}(X, A) \longrightarrow D_{parf}(Y, A).$$

(iii) On suppose que pour toute A-algèbre de type fini B annulée par une puissance de J, et tout couple (M,N) de B-Modules constructibles les B-Modules $\operatorname{Ext}_R^p(M,N)$

 $(p \in \mathbb{N})$ soient constructibles. Alors le foncteur \mathbb{R} $j^!$ (I 7.7.11) induit un foncteur exact

$$\mathbf{R} j^! : \mathcal{D}_c^+(X, A) \longrightarrow \mathcal{D}_c^*(Y, A).$$

Preuve: Les assertions (i) et (ii) se voient comme les assertions analogues de (2.12.2), en utilisant (I 5.19.1 (ii)) pour la deuxième.Quant à (iii), elle résulte, compte tenu de l'isomorphisme (I 7.7.13) de (2.5 (iii)).

2.13. Changement d'anneau. Soient X un topos localement noethérien, A et B deux anneaux commutatifs unifères noethériens, J et K deux idéaux de A et B respectivement et $u:A\longrightarrow B$ un morphisme d'anneaux unifères, tel que $u(J)\subset K$. On utilise par ailleurs librement les notations de (I 8.1).

Proposition **2.13.1**. —

(i) Le foncteur $L u^* : D^-(X,A) \longrightarrow D^-(X,B)$ induit des foncteurs exacts

$$D_c^-(X,A) \longrightarrow D_c^-(X,B)$$

$$D_t^-(X,A) \longrightarrow D_t^-(X,B)$$

$$D^-_{parf}(X,A) \longrightarrow D^-_{parf}(X,B).$$

Si de plus A est régulier d'idéal maximal J, il induit des foncteurs

$$D_c^*(X,A) \longrightarrow D_c^*(X,B)$$
 $(*=\emptyset,+ou\ b)$

$$D_t^*(X,A) \longrightarrow D_t^*(X,B)$$
 $(*=\emptyset,+ou\ b)$

$$\mathrm{D}^*_{\mathrm{parf}}(X,A) \longrightarrow \mathrm{D}^*_{\mathrm{parf}}(X,B) \qquad (*=\varnothing,+\ ou\ b).$$

(ii) Si B est une A-algèbre finie, le foncteur $u_*: D(X,B) \longrightarrow D(X,A)$ induit des

foncteurs exacts

$$D_c(X,B) \longrightarrow D_c(X,A)$$

$$D_t(X,B) \longrightarrow D_t(X,A).$$

Preuve: Montrons (i). L'assertion concernant les complexes parfaits découle de celle concernant les complexes à cohomologie constante tordue constructible et de (I 8.1.11 (i)). Montrons par exemple que si $E \in D_c(X,A)$, alors $Lu^*(E) \in D_c(X,B)$. Dans chacun des cas envisagés, on est ramené grâce à ([H], I 7.3) au cas où E est réduit au degré 0, associé à un A-faisceau constructible noté de même. Il s'agit alors de voir que pour tout $p \in \mathbb{N}$, le B-faisceau

$$\mathscr{T}$$
or $_p^A(B,E) = (\mathscr{T}$ or $_p^{A_n}(B_n,E_n))_{n \in \mathbb{N}} = (F_n)_{n \in \mathbb{N}}$

est constructible. Pour tout $n \in \mathbb{N}$, le calcul de F_n au moyen d'une résolution plate et constructible de E_n montre que c'est un B_n -Module constructible. Il nous suffit donc de voir que $\operatorname{\mathscr{T}or}_p^A(B,E)$ est de type J-adique. Pour cela, on se ramène grâce à (1.21) et (1.22) au cas où E est J-adique constant tordu constructible. Supposons alors X connexe, et choisissons un point A de A; comme le foncteur fibre défini par A est conservatif pour les B-Modules localement constants, on est ramené à voir l'assertion pour la fibre de $\operatorname{\mathscr{T}or}_p^A(B,E)$. On peut donc supposer que A est le topos ponctuel. Utilisant alors une résolution libre d type fini du A-module de type fini associé à E (1.20.5), on se ramène au cas où E est localement libre constructible et E-adique, et alors l'assertion est immédiate, car

$$\mathscr{T}or_p^A(B,E) = 0 \quad (p \ge 1) \quad \text{et} \quad B \otimes_A E \simeq B^r,$$

pour un $r \in \mathbb{N}$. Montrons (ii), dans le cas constructible par exemple. Si E est un B-faisceau J-adique constructible, ses composants sont des A-Modules constructibles (B est une A-algèbre finie), donc il est aussi constructible en tant que A-faisceau ; d'où l'assertion.

Dans la suite de numéro, nous noterons pour tout entier $n \ge 0$

$$u_n: A \longrightarrow (A/J^{n+1})$$

le morphisme d'anneaux canonique. On définit un bifoncteur cohomologique

$$(\widehat{\operatorname{Ext}}^i(.,.))_{i\in\mathscr{Z}}: {\operatorname{D}}^-(X,A)\times {\operatorname{D}}^-(X,A)\longrightarrow \mathscr{E}(\operatorname{pt},J),$$

en posant pour tout couple (E,F) d'objets de $D^-(X,A)$ et tout $i \in \mathbb{Z}$

$$\widehat{\operatorname{Ext}}^{i}(E,F) = (\operatorname{Ext}_{A_{n}}^{i}(\operatorname{L} u_{n}^{*}(E),\operatorname{L} u_{n}^{*}(F)))_{n \in \mathbb{N}}$$

Lorsque A est régulier, d'idéal maximal J, le bifoncteur cohomologique précédent se prolonge en un bifoncteur cohomologique

$$D(X,A) \times D(X,A) \longrightarrow \mathcal{E}(pt,J),$$

de manière évidente.

Théorème **2.13.2**. — On suppose A régulier d'idéal maximal J, que le topos X est noethérien de dimension topologique stricte finie, et qu'il vérifie de plus les deux propriétés suivantes.

- (i) Pour toute A-algèbre de type fini B annulée par une puissance de J, et tout couple (M,N) de B-Modules constructibles, les B-Modules $\operatorname{Ext}_B^p(M,N)$ $(p \in \mathbb{N})$ sont constructibles.
- (ii) Pour tout A-algèbre de type fini B annulées par une puissance de J et tout B-Modules constructible M, les B-modules

$$H^p(X,M) \quad (p \in \mathbb{N})$$

sont de type fini.

Alors, étant données $E \in \mathcal{D}^-_c(X,A)$ et $F \in \mathcal{D}^+_c(X,A)$, les systèmes projectifs

$$\widehat{\operatorname{Ext}}_{A}^{i}(E,F) \quad (i \in \mathbf{Z})$$

sont des A-faisceaux constructibles sur le topos ponctuel, et les applications canoniques évidentes

$$\operatorname{Ext}_{A}^{i}(E,F) \longrightarrow \varprojlim_{n} \operatorname{Ext}_{A_{n}}^{i}(\operatorname{L} u_{n}^{*}(E),\operatorname{L} u_{n}^{*}(F))$$

sont des bijections. En particulier, les Â-modules

$$\operatorname{Ext}_{A}^{i}(E,F)$$

sont de type fini.

Preuve: Les isomorphisme de Cartan (2.6)

$$\mathrm{H}^{i}(X,\mathbf{R}\,\mathscr{H}\mathrm{om}_{A_{n}}(\mathbf{L}\,u_{n}^{*}(E),\mathbf{L}\,u_{n}^{*}(F))) \xrightarrow{\sim} \mathrm{Ext}_{A_{n}}^{i}(\mathbf{L}\,u_{n}^{*}(E),\mathbf{L}\,u_{n}^{*}(F))$$

et l'isomorphisme (I 8.1.11 (iv))

$$\operatorname{L} u_n^* \operatorname{R} \operatorname{\mathcal{H}om}_A(E,F) \xrightarrow{\sim} \operatorname{R} \operatorname{\mathcal{H}om}_{A_n}(\operatorname{L} u_n^*(E),\operatorname{L} u_n^*(F)))$$

montrent que

$$\widehat{\operatorname{Ext}}_{A}^{i}(E,F) \simeq \widehat{\operatorname{Ext}}_{A}^{i}(A,\mathbf{R} \, \mathcal{H} \operatorname{om}_{A}(E,F)).$$

Or le complexe $\mathbb{R} \mathcal{H}$ om_A (E,F) est à cohomologie constructible (2.5 (iii)) donc, pour voir que $\widehat{\operatorname{Ext}}_A^i(E,F)$ est un A-faisceau constructible, on peut supposer que E=A. Dans ce cas, la suite spectrale canonique

$$E_2^{p,q} = \widehat{\operatorname{Ext}}_A^p(A, \operatorname{H}^q(F)) \Rightarrow \widehat{\operatorname{Ext}}_A^{p+q}(E, F),$$

construite de façon habituelle au moyen des couples exacts, permet de se ramener de plus au cas où F est réduit au degré 0 et défini par un A-faisceau constructible noté de même. Posant pour simplifier pour tout entier i et tout A-faisceau M,

$$\hat{H}^{i}(M) = \widehat{\operatorname{Ext}}_{A}^{i}(A, M),$$

on doit alors prouver le lemme suivant.

Lemme 2.13.3. — Pour tout A-faisceau constructible M sur X, les A-faisceaux $\hat{H}^i(M)$ sont constructibles.

Avant de le faire, dégageons le résultat préliminaire suivant.

Lemme 2.13.4. — Désignant par d la dimension topologique stricte de X, on a pour tout A-faisceau N sur X

$$\hat{\mathbf{H}}^i(N) = 0 \quad (i \ge d+1).$$

En effet, étant donné un entier $p \ge 0$, le complexe $\operatorname{L} u_p^*(N)$ a sa cohomologie concentré en degrés ≤ 0 . Comme $\operatorname{H}^i(X,G) = 0$ $(i \ge d+1)$ pour tout A_p -faisceau G, on a une suite spectrale birégulière

$$H^{i}(X, Lu_{p}^{j}(N)) \Rightarrow \hat{H}^{i+j}(N)_{p}$$

qui permet aussitôt de conclure.

Montrons maintenant (2.13.3). Nous allons le voir par récurrence croissante sur l'entier

$$\dim_A(M) = \dim_A(A/\operatorname{ann}(M)),$$

appelé dimension de M. si $\dim_A(M) = 0$, le A-faisceau M est annulé par une puissance de J, donc il existe un entier $n \geq 0$ tel que M soit défini par un A_n -Module constructible. Soit alors P une résolution à guache de M par des A_n -Modules de la forme $i_!(A_n)$, où $i:T \longrightarrow e_X$ désigne l'unique morphisme d'un objet noethérien de X dans l'objet final. Grâce à (2.13.4), on a une suite spectrale birégulière

$$E_1^{p,q} = \widehat{\operatorname{Ext}}_A^q(A, p^p) \Rightarrow \widehat{\operatorname{Ext}}_A^{p+q}(A, M),$$

qui permet de se ramener au cas où M est de la forme $i_!(A_n)$. Dans ce cas, soit L une résolution à gauche de A_n par des \hat{A} -modules libres de type fini. A nouveau, la suite spectrale

$$E_1^{p,q} = \hat{H}^q(i_1(L^p)) \Rightarrow \hat{H}^{p+q}(i_1(A_n)),$$

permet de supposer que M est de la forme $i_!(L^p)$ pour un entier p, donc est constructible et plat. Il est alors clair que pour tout i

$$\hat{H}^i(M) = (H^i(X, M_n))_{n \in \mathbb{N}}.$$

Dans ce cas, l'hypothèse (ii) de l'énoncé permet de conclure grâce au lemme de SHIH (SGA5 V 5.3.1). Soit maintenant r un entier ≥ 0 , et supposons l'assertion vraie pour tous les A-faisceau constructibles de dimension ≤ 0 . Nous allons voir qu'elle est vraie pour tout A-faisceau constructible M de dimension r+1. Comme r+1>0, il existe un élément a de J qui n'appartient à aucun idéal premier minimal dans Ass(A/ann(M)); on a alors (EGA 0_{IV} 16.3.4)

$$\dim_A(A/(\operatorname{ann}(M) + aA)) = r.$$

Comme *M* est noethérien dans la catégorie des *A*-faisceaux constructibles, la suite croissante des sous-*A*-faisceaux

$$Ker(a^q: M \longrightarrow M)$$

de M est stationnaire. Quitte à remplacer a par une puissance de a, on peut donc supposer que l'homothétie

$$a: M/\operatorname{Ker}(a) \longrightarrow M/\operatorname{Ker}(a)$$

est un monomorphisme. La suite exacte

$$0 \longrightarrow \operatorname{Ker}(a) \longrightarrow M \longrightarrow M/\operatorname{Ker}(a) \longrightarrow 0$$

donne lui à une suite exacte illimitée

$$\dots \hat{H}^{i-1}(M/\operatorname{Ker}(a)) \longrightarrow \hat{H}^{i}(\operatorname{Ker}(a)) \longrightarrow \hat{H}^{i}(M/\operatorname{Ker}(a)) \longrightarrow \hat{H}^{i+1}(\operatorname{Ker}(a)) \dots$$

Mais $\operatorname{Ker}(a)$ est de dimension $\leq r$ par construction de a. Utilisant l'hypothèse de récurrence et le caractère exact de la sous-catégorie des A-faisceaux constructibles, on peut donc remplacer M par $M/\operatorname{Ker}(a)$ donc supposer que la multiplication par a définit un monomorphisme sur M. Nous allons alors montrer que $\hat{H}^i(M)$ est constructible par récurrence décroissante sur l'entier i, compte tenu de (2.13.4). D'après (loc.cit.), l'assertion est évidente pour $i \leq d+1$. Supposons donné un entier p tel qu'elle soit vraie pour $i \leq p+1$, et montrons qu'elle est vraie pour p. Pour tout entier q, on a une suite exacte

$$0 \longrightarrow M \xrightarrow{a^q} M \longrightarrow M/a^q M \longrightarrow 0,$$

d'où une suite exacte illimitée

$$\dots \longrightarrow \hat{H}^p(M) \xrightarrow{a^q} \hat{H}^p(M) \longrightarrow \hat{H}^p(M/a^qM) \longrightarrow \hat{H}^{p+1}(M) \longrightarrow \hat{H}^{p+1}(M) \dots$$

Comme $\dim_A(M/a^qM) \le r$, l'hypothèse de récurrence sur la dimension et celle sur l'exposant entraînent que pour tout entier q > 0, le A-faisceau

$$\hat{H}^p(M)/a^q \hat{H}^p(M)$$

est constructible. Mais par ailleurs, on a une suite exacte

$$J^q \hat{H}^p(M)/a^q \hat{H}^p(M) \longrightarrow \hat{H}^p(M)/a^q \hat{H}^p(M) \longrightarrow \hat{H}^p(M)/J^q \hat{H}^p(M) \longrightarrow 0$$

d'où résulte, comme le terme de gauche vérifie la condition de Mittag-Leffler (c'est un quotient de $J^q \otimes_A (\hat{H}^p(M)/a^q \hat{H}^p(M))$) et celui du milieu est constructible, que pour tout entier q > 0, le A-faisceau

$$\hat{\mathbf{H}}^p(M)/J^q\hat{\mathbf{H}}^p(M)$$

est constructible (cf. la preuve de SGA5 V 3.2.4 (i)). L'assertion résulte alors de (1.2 (iii)) et (1.6).

Ceci dit, posant pour tout $i \in \mathbb{Z}$

$$\operatorname{ext}_{A}^{i}(E,F) = \varprojlim_{p} \operatorname{Ext}_{A}^{i}(\mathbf{L} \, u_{p}^{*}(E), \mathbf{L} \, u_{p}^{*}(F)),$$

on obtient, grâce à (EGA 0_{III} 13.2.2), un bifoncteur cohomologique

$$D_c^-(X,A) \times D_c^+(X,A) \longrightarrow \hat{A} - \text{modn},$$

et il reste à voir que le morphisme canonique de bifoncteurs cohomologiques

$$\operatorname{Ext}_A^i(E,F) \longrightarrow \operatorname{ext}_A^i(E,F)$$

est un isomorphisme. On se ramène comme précédemment au cas où E=A. On dispose alors, par la voie des couples exacts, de deux suites spectrales

$$\mathbf{E}'$$
 ${}'E_2^{p,q} = \operatorname{Ext}_A^p(A, \mathbf{H}^q(F)) \Rightarrow \operatorname{Ext}_A^p(A, F)$

$$\mathbf{E}''$$
 $''E_2^{p,q} = \operatorname{ext}_A^p(A, \mathbf{H}^q(F)) \Rightarrow \operatorname{ext}_A^p(A, F)$

et d'un morphisme naturel $E' \longrightarrow E''$. Ces deux suites spectrales sont birégulières; pour la première, c'est évident (son support est dans un cadran supérieur droit), et pour la seconde cela résulte du lemme ci-dessous.

Lemme 2.13.5. — Soit M un A-faisceau sur X. On a

$$\operatorname{ext}_{A}^{i}(A, M) = 0$$
 pour $i < -2 \operatorname{dim}(A)$.

En effet, pour tout entier m, le complexe L $u_m^*(M)$ est acyclique en dimensions $< -2 \dim(A)$, puisque la catégorie des A-faisceaux est de tor-dimension $\leq 2 \dim(A)$ (I 5.16).

La comparaison des deux suites spectrales précédentes permet alors de se ramener au cas où F est réduit au degré 0 et défini par un A-faisceau constructible noté de même. Nous allons alors encore une fois raisonner sur la dimension de F. Lorsque $\dim_A(F) = 0$, l'assertion résulte, au moyen des dévissages utilisés pour prouver la constructibilité des $H^i(F)$, du lemme suivant, appliqué à un A-faisceau constructible et plat de la forme $i_!(A)$, où $i: T \longrightarrow e_X$ est l'unique morphisme d'un objet noethérien de X dans l'objet final.

Lemme **2.13.6**. — Étant donné un A-faisceau constructible M sur X, l'application canonique

$$H^{i}(X,M) \longrightarrow \varprojlim \overline{H}^{i}(X,M) \quad (i \in \mathbf{Z})$$

est une bijection.

En effet, le système projectif $\overline{H}^{i-1}(X,M)$ vérifie la condition de Mittag-Leffler, d'après l'hypothèse (ii) et le lemme de SHIH. Le lemme résulte donc de (I 7.4.16).

Soit maintenant r un entier ≥ 0 , et supposons l'assertion vraie pour tous les A-faisceaux constructibles de dimension $\leq r$. Nous allons voir qu'elle est vraie pour tout A-faisceau constructible F de dimension r+1. On choisit un élément a comme plus haut. Utilisant le lemme des f0, on se ramène à vérifier l'assertion lorsque de plus la multiplication par f0 définit un monomorphisme de f1. Nous allons alors montrer l'assertion par récurrence décroissante sur l'entier f1, en commençant par voir qu'elle est vraie pour les grandes valeurs de f2. Pour f3 de f4 de f5, il résulte de (I 7.4.16) que

$$H^i(X,F) = 0$$
,

et nous allons prouver que $h^i(X,F) = \text{ext}_A^i(A,F)$ est également nul.

Pour cela, la suite exacte

$$(2.13.7) 0 \longrightarrow F \xrightarrow{a} F \longrightarrow F/aF \longrightarrow 0$$

fournit une suite exacte

$$h^i(X,F) \xrightarrow{a} h^i(X,F) \longrightarrow h^i(X,F/aF).$$

L'hypothèse de récurrence sur la dimension montre que

$$h^{i}(X, F/aF) = H^{i}(X, F/aF) = 0,$$

la dernière égalité provenant d'une nouvelle application de (I 7.4.16). Par suite $h^i(X,F)=ah^i(X,F)$, d'où $h^i(X,F)=0$ par le lemme de Nakayama. supposons maintenant donné un entier p tel que le morphisme canonique

$$H^i(X,F) \longrightarrow h^i(X,F)$$

soit un isomorphisme pour $i \ge p+1$, et montrons que c'est un isomorphisme pour i=p. La suite exacte (2.13.7) fournit un diagramme commutatif exact

dans lequel les flèches verticales sont les flèches canoniques. Par hypothèse de récurrence sur la dimension (resp. sur l'entier i), la flèche u (resp. v) est un isomorphisme : par suite, la flèche canonique

$$H^p(X,F)/aH^p(X,F) \longrightarrow h^p(X,F)/ah^p(X,F)$$

est un isomorphisme de \hat{A} -modules. On sait que $h^p(X,F)$ est un \hat{A} -module de type fini, et il résulte du théorème de SHIH (SGA5 V A 3.2) et de (2.13.6) que $H^p(X,F)$ est également un \hat{A} -module de type fini. On conclut alors par le lemme de Nakayama.

Remarques 2.13.7.

- (i) upposons par exemple que X soit le topos étale d'un schéma de type fini sur un corps séparablement clos ou fini. Il est alors conjecturé que les conditions
 (i) et (ii) de (2.13.2) sont réalisées dans chacun des cas suivants :
 - a) Les A_n sont des groupes abéliens de torsion, et X est propre sur K.
 - b) Les A_n sont des groupes abéliens de torsion première à la caractéristique de k.

Elles sont en tout cas démontrées lorsque de plus le corps k est de caractéristique 0, ou bien $\dim(X) \leq 2$.

(ii) Lorsque A est un anneau de valuation discrète et X le topos étale d'un schéma noethérien, on peut préciser (2.13.2) en montrant que les systèmes projectifs

$$\widehat{\operatorname{Ext}}_{A}^{i}(E,F)$$

vérifiant la condition de Mittag-Leffler-Artin-Rees (SGA5 V 2.2.1).

En effet, reprenant le dévissage utilisé dans la preuve de (2.13.2), on se ramène à le voir pou E = A, et F le complexe de degré 0 associé à un A-faisceau constructible noté de même. Alors, utilisant (1.29), on se ramène au cas où F est constructible et plat, ce qui permet alors de conclure directement grâce au lemme de SHIH (SGA5 V 3.1 et A 3.2) et à l'hypothèse (ii).

- (iii) L'hypothèse (i) de (2.13.2) sert uniquement pour montrer que \mathbf{R} \mathscr{H} om_A (E,F) [à cohomologie ?] constructible. Elle est donc en particulier inutile lorsque $E \in \mathcal{D}_t^-(X,A)$, vu (2.5.(i)).
- **2.13.8**. Sans hypothèse particulière sur X ou A, il résulte de (2.13.1) que

$$D_c^-(X,A) \hookrightarrow D_0^-(X,A)$$
 (I 8.2.7).

On en déduit pour tout entier $n \ge 0$ un foncteur exact (8.2.9)

$$L\alpha_n^*: D_c^b(X, A)_{torf} \longrightarrow D_c^b(A_n - Mod_X)_{torf}$$

lorsque X est noethérien.

Si maintenant A est régulier et local d'idéal maximal J, on a même une inclusion

$$D_c(X,A) \hookrightarrow D_0(X,A),$$

qui permet, lorsque de plus X est noethérien, de définir pour tout entier $n \ge 0$ un foncteur exact (8.2.9.bis)

$$L \alpha_n^* : D_c^+(X, A) \longrightarrow D_c^+(A_n - Mod_X).$$

Proposition 2.13.9. — Sous les hypothèses de (2.13.2), les applications canoniques

$$\operatorname{Ext}_{A}^{i}(E,F) \longrightarrow \varprojlim_{n} \operatorname{Ext}_{A_{n}}^{i}((\mathbf{L}\alpha_{n}^{*}(E)),\mathbf{L}\alpha_{n}^{*}(F))$$

sont des isomorphismes de Â-modules.

Preuve: Par définition des foncteurs L α_n^* , on a

$$\operatorname{Ext}_{A_n}^i(\operatorname{L}\alpha_n^*(E),\operatorname{L}\alpha_n^*(F))^* = \operatorname{Ext}_{A_n}^i(\operatorname{L}u_n^*(E),\operatorname{L}u_n^*(F)).$$

Remarques 2.13.10. La proposition (2.13.9) ramène en pratique l'étude ces complexes de A-faisceaux à cohomologie constructible à celle des complexes de A_n -Modules constructibles ($n \ge 0$), et sera de ce fait un instrument privilégié pour obtenir, à partir d'énoncés sur les A_n -Modules, les énoncés correspondants pour les A-faisceaux.

La proposition suivante généralise la dernière assertion de (2.13.2).

Proposition 2.14. — Soit X un topos noethérien. On suppose que

- (i) Pour tout A-algèbre de type fini B annulés par une puissance de J, et tout couple (M,N) de B-Modules constructibles, les B-Modules $\operatorname{Ext}_B^p(M,N)$ soient constructibles.
- (ii) Pour tout A-algèbre de type fini B annulée par une puissance de J et tout B-Module constructible M, les B-modules

$$H^p(X,M) \quad (p \in \mathbb{N})$$

sont de type fini.

Alors, étant donnés $B \in \mathcal{D}^-_c(X,A)$ et $F \in \mathcal{D}^+_c(X,A)$, ls systèmes projectifs

$$\overline{\operatorname{Ext}}_{A}^{i}(E,F) \quad (i \in \mathbf{Z})$$

(I 6.2.1) son des A-faisceaux constructibles sur le topos ponctuel et les applications canoniques (I 7.4.16)

$$\operatorname{Ext}_{A}^{i}(E,F) \longrightarrow \varprojlim \overline{\operatorname{Ext}}_{A}^{i}(E,F)$$

sont des bijections. En particulier, les \hat{A} -modules $\operatorname{Ext}_A^i(E,F)$ sont de type fini.

Preuve: Montrons que les A-faisceaux $\overline{\operatorname{Ext}}_A^i(E,F)$ sont constructibles, les autres assertions en découlant sans peine grâce à la suite exacte (I 7.4.16). On a l'isomorphisme de Cartan (2.6)

$$R \overline{Hom}_A(E,F) \simeq R \overline{Hom}_A(A, \mathbf{R} \mathcal{H}om_A(E,F))$$

qui permet, puisque $\mathbf{R} \mathcal{H} \text{om}_A(E, F)$ est à cohomologie constructible (2.5.(iii)), de se ramener au cas où E = A. Alors la suite spectrale birégulière canonique

$$E_2^{p,q} = \overline{H}^p(X, H^q(F)) \Rightarrow \overline{H}^{p+q}(X, F)$$

montre qu'il suffit de voir l'assertion dans le cas où F est le complexe de degré 0 associé à un A-faisceau constructible noté de même.

Alors l'hypothèse (ii) et le lemme de SHIH (SGA5 V 3.1) permet de conclure.

Remarques 2.15. Comme pour (2.13.2), l'hypothèse (i) a servi uniquement pour assurer que le complexe $\mathbf{R} \, \mathcal{H}\mathrm{om}_A \, (E,F)$ est à cohomologie constructible. Elle est donc inutile en particulier dans la cas où $E \in \mathrm{D}^-_t(X,A)$.

§ III. — APPLICATIONS AUX SCHÉMAS

Le texte qui suit ayant un caractère essentiellement provisoire (cf. l'appendice basé sur une construction de *Deligne*), nous ferons toutes les hypothèses simplificatrices qui nous paraîtront nécessaires pour la clarté de l'exposé.

Soit ℓ un nombre premier. On fixe comme précédemment un anneau noethérien A et un idéal propre J de A. On suppose de plus que A est une \mathbf{Z}_{ℓ} -algèbre et que J contient ℓA . Pour simplifier (cf. supra), tous les schémas considérés sont noethériens.

1. Opérations externes.

1.1. Soient X et Y deux schémas noethériens, et $f: X \longrightarrow Y$ un morphisme séparé de type fini. On définit comme suit un foncteur exact

(1.1.1)
$$\mathbf{R} f_! : \mathrm{D}(X, A) \longrightarrow \mathrm{D}(Y, A),$$

appelé image directe à supports propres. D'après Nagata et Mumford il existe une factorisation

$$X \xrightarrow{i} Z$$

$$f \downarrow \chi \qquad g$$

$$Y \qquad ,$$

où i est une immersion ouverte et q un morphisme propre. On pose alors

$$\mathbf{R} f_! = \mathbf{R} q_* \circ \mathbf{R} i_!.$$

On vérifie, grâce à la technique de factorisation de *Lichtenbaum* (SGA4 XVIII), que le résultat ne dépend pas, à isomorphisme près, de la factorisation choisie.

La même technique de factorisation montre que si $g: Y \longrightarrow Z$ est un autre morphisme séparé de type fini, on a un isomorphisme

(1.1.2)
$$\mathbf{R}(g \circ f)_{!} \xrightarrow{\sim} \mathbf{R} g_{!} \circ \mathbf{R} f_{!},$$

avec la condition de cocycles habituelle pour un triple de morphismes.

Définition 1.1.3. — Si E est un A-faisceau sur X (resp. un objet de D(X,A)), on pose pour tout $p \in \mathbb{Z}$

$$R^p f_!(E) = H^p(\mathbf{R} f_!(E)).$$

On obtient ainsi un foncteur cohomologique qui n'est pas en général (sauf bien sûr si le morphisme f est propre) le foncteur cohomologique dérivé de $R^{\circ} f_{1}$.

1.1.4. Il est clair que si $F = (F_n)_{n \in \mathbb{N}}$ est un A-faisceau, on a pour tout $p \in \mathbb{Z}$

$$R^{p} f_{!}(F) = (R^{p} f_{!}(F_{n}))_{n \in \mathbb{N}}.$$

Proposition 1.1.5. — Soit

$$X' \xrightarrow{g'} X$$

$$f' \downarrow \qquad \qquad \downarrow f$$

$$Y' \xrightarrow{g} Y$$

un carré cartésien de schéma noethériens.

(i) (Théorème de changement de base propre) Si f (donc f') est séparé de type fini, on a pour tout $E \in D^+(X,A)$ un isomorphisme canonique fonctoriel

$$g^* \mathbf{R} f_!(E) \xrightarrow{\sim} \mathbf{R} f_!'(g')^*(E).$$

(ii) (Théorème de changement de base lisse) Si ℓ est premier aux caractéristiques résiduelles de Y et g est lisse, on a pour tout $E \in D^+(X,A)$ un isomorphisme canonique fonctoriel

$$g^* \mathbf{R} f_{\alpha}(E) \xrightarrow{\sim} \mathbf{R}(f')_{\alpha}(g')^*(E).$$

Preuve: Montrons (ii). Utilisant l'adjonction entre image directe et image réciproque (I 7.7.6), on construit comme dans (SGA4 XVII) (voir aussi SGA4 XII 4), un morphisme fonctoriel

$$g^* \mathbf{R} f_*(E) \longrightarrow \mathbf{R}(f')_*(g')^*(E).$$

Pour voir que c'est un isomorphisme, on se ramène par "way-out functor lemma" au cas où E est de degré 0, et il suffit alors de montrer que les morphismes

$$g^* R^i f_*(E) \longrightarrow R^i(f')_*(g')^*(E) \quad (i \in \mathbb{N})$$

correspondants de $\mathcal{E}(X,J)$ sont des isomorphismes. Cela se voit sur les composants, grâce au théorème de changement de base lisse sur les A_n -Modules (SGA4 XII 1.1). Montrons (i). On construit tout d'abord un morphisme fonctoriel

$$g^* \mathbf{R} f_!(E) \longrightarrow \mathbf{R}(f')_!(g')^*(E),$$

en paraphrasant la construction faite pour les A_n -Modules (SGA4 XVII). Pour cela, choisissant une factorisation $f=q\circ i$, avec i une immersion ouverte et q un morphisme propre, on se ramène à faire la construction lorsque f est propre, ou bien est une immersion ouverte; on vérifie ensuite de açon standard que le résultat ne dépend pas de la factorisation choisie. Lorsque f est une immersion ouverte, les morphismes analogues pour les A_n -Modules $(n \in \mathbb{N})$ définissent de façon évidente un isomorphisme $g^*f_! \xrightarrow{\sim} (f')_!(g')^*$ de foncteurs exacts

$$\mathscr{E}(X,J) \longrightarrow \mathscr{E}(Y',J),$$

d'où par passage au quotient, un isomorphisme de foncteurs exacts

$$A - \operatorname{fsc}(X) \longrightarrow A - \operatorname{fsc}(Y'),$$

qui fournit à son tour un isomorphisme de foncteurs exacts

$$D(X,A) \xrightarrow{g^* \circ f_!} D(Y',A).$$

Lorsque f est un morphisme propre, on utilise la même construction que pour (ii). Pour montrer enfin que le morphisme (1.1.6) ainsi construit est un isomorphisme,

on se ramène au cas où E est de degré 0, et alors l'assertion résulte, comme pour (ii), de l'assertion analogue pour les A_n -Modules (SGA4 XVII).

Proposition 1.1.7 (Formule de projection). — Soient $f: X \longrightarrow Y$ un morphisme séparé de type fini entre schémas noethériens, $E \in D^-(X,A)$ et $F \in D^-(X,A)$. On a un isomorphisme canonique fonctoriel

$$\mathbf{R} f_!(E \otimes f^*(F)) \stackrel{\sim}{\longleftarrow} \mathbf{R} f_!(E) \otimes F.$$

Preuve: Nous utiliserons le lemme suivant.

Lemme 1.1.8. — Si d est un entier majorant la dimension des fibres de f, on a pour tout A-faisceau M sur X

$$R^{i} f(M) = 0 \quad (i > 2d).$$

(Résulte immédiatement de l'assertion analogue pour les composants de M).

Choisissant une campactification de f, on se ramène à montrer (1.1.7) successivement lorsque f est une immersion ouverte, ou un morphisme propre. Dans le premier cas, ce n'est autre que (I 7.7.10.(iv)). Dans le second cas, on définit un morphisme

$$\mathbf{R} f_*(E) \underline{\otimes} F \longrightarrow \mathbf{R} f_*(E \underline{\otimes} f^* F)$$

sur le modèle de (J.L. Verdier: The Lefschetz fixed point formula in étale cohmology, in "Conference on local fiels held at Drieberger" preuve de 3.2), en se ramenant à F plat et E f_* -acyclique (ce qui est possible grâce à 1.1.8). Enfin, pour voir que (1.1.9) est un isomorphisme, on se ramène par les dévissages habituels au cas où E et F sont réduits au degré 0 et F plat, et alors l'assertion résulte de la formule de projection pour les A_n -Modules ($n \in \mathbb{N}$), appliquée aux composants de E et F.

Proposition 1.1.10 (Formule de Künneth). - Considérons un diagramme

cartésien de schémas noethériens

et posons $h = f \circ p = g \circ q$. Si $E \in D^-(X,A)$ et $F \in D^-(Y,A)$, on a un isomorphisme canonique fonctoriel

$$\mathbf{R} f_!(E) \underline{\otimes} \mathbf{R} g_!(F) \xrightarrow{\sim} \mathbf{R} b_!(p^* E \underline{\otimes} q^* F).$$

Preuve : Formellement la même que celle de l'assertion correspondante pour les faisceaux de A_n -Modules $(n \in \mathbb{N})$ (SGA4 XVII). De (1.1.7) appliqué à f, on déduit un isomorphisme

(1.1.10.1)
$$\mathbf{R} f_!(E) \underline{\otimes} \mathbf{R} g_!(F) \xrightarrow{\sim} \mathbf{R} f_!(E \underline{\otimes} f^* \mathbf{R} g_!(F)).$$

Le théorème de changement de base propre pour f (1.1.5.(i)) montre que

$$(1.1.10.2) f^* \mathbf{R} g_!(F) \xrightarrow{\sim} \mathbf{R} p_! q^*(F).$$

Comparant avec (1.1.10.1), on a donc

$$\mathbf{R} f_1(E) \otimes \mathbf{R} g_1(F) \xrightarrow{\sim} \mathbf{R} f_1(E \otimes \mathbf{R} p_1 q^*(F)).$$

La formule de projection (1.1.7) pour le morphism *p* montre que

$$E \otimes \mathbf{R} p_! q^*(F) \xrightarrow{\sim} \mathbf{R} p_! (p^* E \otimes q^* F),$$

ďoù

$$\mathbf{R} f(E \otimes \mathbf{R} p_1 q^*(F)) \xrightarrow{\sim} \mathbf{R} f(\mathbf{R} p_1 (p^* E \otimes q^* F)),$$

et le résultat annoncé puisque $f \circ p = h$.

Proposition 1.1.11. — Soient X et Y deux schémas noethériens, $f: X \longrightarrow Y$ un morphisme séparé de type fini, et $E \in D(X,A)$.

- (i) Si $E \in D_c(X, A)$, alors $\mathbf{R} f(E) \in D_c(Y, A)$.
- (ii) Si $E \in D^-(X,A)_{torf}$ alors $\mathbf{R} f(E) \in D^-(Y,A)_{torf}$
- (iii) Supposons que f soit propre et lisse, et que ℓ soit premier aux caractéristiques résiduelles de Y. Alors:

$$E \in \mathcal{D}_t(X,A) \longrightarrow \mathbf{R} f_!(E) \in \mathcal{D}_t(Y,A).$$

$$E \in \mathcal{D}_{parf}(X,A) \longrightarrow \mathbf{R} f_!(E) \in \mathcal{D}_{parf}(Y,A).$$

Preuve: Montrons (i). Grâce à (1.1.8), on peut supposer E de degré 0 associé à un A-faisceau J-adique constructible. Alors, l'assertion est essentiellement (SGA5 VI 2.2.2). Pour la première partie de (iii), on est ramène de même à voir que si E est un A-faisceau J-adique constant tordu constructible, les A-faisceaux R^p $f_*(E)$ ($p \in \mathbb{N}$) sont constants tordus constructibles. Cela se voit comme (SGA5 V 2.2.2), en utilisant le lemme de SHIH (SGA5 V A 3.2) et la stabilité des catégories des faisceaux abéliens localement constants constructibles par images directes supérieures (SGA4 XVI 2.2). L'assertion (ii) résulte sans peine de (1.1.7), et on en déduit aussitôt la deuxième partie de (iii) (compte tenu de la première).

1.2. Soient X et Y deux schémas noethériens de caractéristique résiduelles premières à ℓ , et $f: X \longrightarrow Y$ un morphisme quasiprojectif. On suppose que Y admet un Module inversible ample. On définit alors comme suit un foncteur exact

(1.2.1)
$$\mathbf{R} f^! : D^+(Y, A) \longrightarrow D^+(X, A).$$

D'après (EGA II 5.3.3), il existe une factorisation

avec j une immersion. On en déduit aussitôt une factorisation

où i est une immersion fermée et p un morphisme lisse équidimensionel de dimension r. Avec les notations de (SGA5 VI 1.3.4), on pose alors pour tout $F \in D^+(X,A)$

$$\mathbf{R} f^!(F) = \mathbf{R} i^!(p^*F \underline{\otimes}_{\mathbf{Z}_{\ell}} \mathbf{Z}_{\ell}(r))[2r],$$

où le foncteur $\mathbf{R}i^!$ a été défini en (I 7.7.11). Pour avoir que cette définition ne dépend pas, à isomorphisme près, des choix faits, on est ramené, grâce à la technique de factorisation de *Lichtenbaum*, à prouver le théorème de *pureté cohomologique* suivant.

Proposition 1.2.3. — Soient S, X, Y trois schémas noethériens de caractéristique résiduelles premières à ℓ , et

un S-couple lisse (SGA4 XVI 3.1) purement de codimension d. Pour tout $F \in D^+(S,A)$, on a un isomorphisme canonique fonctoriel (classe fondamentale locale)

$$\mathbf{R} \, j!(f^*F) \longleftarrow {}^{\sim} \qquad g^*(F) \underline{\otimes}_{\mathbf{Z}_{\ell}} \mathbf{Z}_{\ell}(-d)[-2d].$$

Preuve: Par (I 7.7.12), il s'agit de définir un morphisme

$$\mathbf{R} j_*(g^*F \underline{\otimes}_{\mathbf{Z}_\ell} \mathbf{Z}_\ell(-d)[-2d]) \longrightarrow f^*F,$$

soit, d'après la formule de projection (I 7.7.12 (iv)),

$$f^*F\underline{\otimes}_{\mathbf{Z}_\ell}\mathbf{R}\, j_*(\mathbf{Z}_\ell(-d)[-2d\,]) \longrightarrow f^*F.$$

On est ainsi ramené à définir (1.2.3.1) dans le cas où $A = \mathbf{Z}_{\ell} = F$. Il s'agit alors d'exhiber un morphisme

$$\mathbf{Z}_{\ell} \longrightarrow \mathbf{R} \, j^{!}(\mathbf{Z}_{\ell}(d))[2d].$$

Mais on sait, d'après l'assertion analogue (SGA4 VI 3) pour les composantes, que

$$R^{s} j!(\mathbf{Z}_{\ell}(d)) = 0$$
 pour $s < 2d$,

de sorte qu'il suffit d'exhiber un morphisme de Z_l-faisceaux

$$\mathbf{Z}_{\ell} \longrightarrow \mathbf{R}^{2d} j! (\mathbf{Z}_{\ell}(d)).$$

On prend le système projectif des morphismes classes fondamentales correspondants

$$\mathbf{Z}/\ell^{n+1}\mathbf{Z} \longrightarrow \mathbf{R}^{2d} j!(\mu_{\ell^{n+1}}^{\otimes d}).$$

Enfin, pour voir que (1.2.3.1) est un isomorphisme, on peut supposer que F est réduit au degré 0, associé à un A-faisceau noté de même. Alors, l'assertion résulte du théorème de pureté cohomologique pour les A_n -Modules $(n \in \mathbb{N})$, appliqué aux composants de F.

Notation 1.2.4. Si F est un A-faisceau sur Y (resp. un objet de $D^+(Y,A)$), on pose pour tout $p \in \mathbb{Z}$

$$R^p f^!(F) = H^p(\mathbf{R} f^! F).$$

1.2.5. Si X, Y, Z sont trois schémas noethériens admettant des Modules inversibles amples, et $f: X \longrightarrow Y$ et $g: Y \longrightarrow Z$ deux morphismes quasiprojectifs, on a un isomorphisme

$$\mathbf{R}(g \circ f)! \xrightarrow{\sim} \mathbf{R} g! \circ \mathbf{R} f!,$$

avec la condition de cocycles habituelle pour un triple de tels morphismes.

Cela se voit, comme dans le cas usuel des faisceaux abéliens de torsion, par la méthode de factorisation de Lichtenbaum.

Proposition 1.2.5 (Formule d'induction). — Sous les hypothèses préliminaires de (1.2), soient $E \in \mathcal{D}_c^-(Y,A)$ et $F \in \mathcal{D}^+(X,A)$. On a un isomorphisme canonique fonctoriel

$$\mathbf{R} f^! \mathbf{R} \mathcal{H} \mathrm{om}_A(E,F) \xrightarrow{\sim} \mathbf{R} \mathcal{H} \mathrm{om}_A(f^*E,\mathbf{R} f^!F).$$

Preuve : Si f est une immersion fermée, on a (I 7.7.13) un isomorphisme

$$\mathbf{R} f^! \mathbf{R} \mathcal{H} \mathrm{om}_{A}(E, F) \xrightarrow{\sim} f^* \mathbf{R} \mathcal{H} \mathrm{om}_{A}(f_* A, \mathbf{R} \mathcal{H} \mathrm{om}_{A}(E, F)),$$

soit, d'après l'isomorphisme de Cartan (E et f_*A sont à cohomologie constructible)

$$\mathbf{R} f^! \mathbf{R} \mathscr{H} \mathrm{om}_A(E, F) \xrightarrow{\sim} f^* \mathbf{R} \mathscr{H} \mathrm{om}_A(E, \mathbf{R} \mathscr{H} \mathrm{om}_A(f_*A, F)).$$

Utilisant à nouveau (I 7.7.3), on a

$$\mathbf{R} f^! \mathbf{R} \mathcal{H} \mathrm{om}_A(E, F) \xrightarrow{\sim} f^* \mathbf{R} \mathcal{H} \mathrm{om}_A(E, f^* \mathbf{R} f^! F),$$

d'où, d'après l'adjonction entre f^* et f_* (I 7.7.6)

$$\mathbf{R} f^! \mathbf{R} \mathcal{H} \mathrm{om}_A(E, F) \xrightarrow{\sim} f^* f_* \mathbf{R} \mathcal{H} \mathrm{om}_A(f^* E, \mathbf{R} f^! F)$$

$$\xrightarrow{\sim} \mathbf{R} \mathcal{H} om_A(f^*E, \mathbf{R} f^!F).$$

Lorsque f est lisse et équidimensionnel de dimension r, on a

$$\mathbf{R} f^! \mathbf{R} \mathscr{H} \mathrm{om}_{A}(E, F) \xrightarrow{\sim} f^* \mathbf{R} \mathscr{H} \mathrm{om}_{A}(E, F) \underline{\otimes}_{\mathbf{Z}_{\ell}} \mathbf{Z}_{\ell}(r) [2r];$$

de (I 7.7.2 (ii)), on déduit alors aussitôt un morphisme "canonique"

$$\mathbf{R} f^! \mathbf{R} \mathcal{H} om_A(E,F) \longrightarrow \mathbf{R} \mathcal{H} om_A(f^*E,\mathbf{R} f^!F).$$

Pour voir que c'est un isomorphisme, on peut supposer que E et F sont réduits au degré 0 et que $H^0(E)$ est un A-faisceau constructible. Il s'agit alors de voir que les morphismes canoniques

$$(I6.4.1.1) f^* \mathcal{E}xt_A^p(E,F) \longrightarrow \mathcal{E}xt_A^p(f^*E,f^*F)$$

sont des isomorphismes; vu leur définition, cela est conséquence immédiate de l'assertion analogue pour les A_n -Modules (SGA4 XVIII). Enfin, dans le cas général, on choisit une factorisation $f = p \circ i$ du type (1.2.2). Des deux cas précédents, on déduit des isomorphismes

$$\mathbf{R} f^{!} \mathbf{R} \mathcal{H} om_{A}(E, F) \xrightarrow{\sim} \mathbf{R} p^{i} \mathbf{R} i^{!} \mathbf{R} \mathcal{H} om_{A}(E, F) \xrightarrow{\sim} \mathbf{R} p^{!} \mathbf{R} \mathcal{H} om_{A}(i^{*}E, \mathbf{R} i^{!}F)$$

$$\xrightarrow{\sim} \mathbf{R} \mathcal{H} om_{A}(p^{*}i^{*}E, \mathbf{R} p^{!} \mathbf{R} i^{!}F) \xrightarrow{\sim} \mathbf{R} \mathcal{H} om_{A}(f^{*}E, \mathbf{R} f^{!}F).$$

On assure ensuite, comme d'habitude, que l'isomorphisme composé ne dépend pas de la factorisation choisie.

1.3. Soient $u:A \longrightarrow B$ une A-algèbre et K un idéal de B tel que $u(J) \subset K$. On utilise dans l'énoncé suivant les notations de (I 8).

Proposition 1.3.1. — Soit $f: X \longrightarrow Y$ un morphisme séparé de type fini entre schémas noethériens.

1) Soit $E \in D(X,A)$. On a un isomorphisme canonique

$$\mathbf{L} u^* \mathbf{R} f_!(E) \xrightarrow{\sim} \mathbf{R} f_! \mathbf{L} u^*(E),$$

lorsque $E \in D^-(X,A)$, ou lorsque A est local régulier et J est son idéal maximal.

2) Plaçons-nous maintenant dans le cas où Y admet un Module inversible ample. On suppose de plus que ℓ est premier aux caractéristiques résiduelles de Y, que ℓ anneau A est local régulier et que J est son idéal maximal. Alors pour tout $F \in D^+(Y,A)$, on a un morphisme canonique fonctoriel

$$\mathbf{L} u^* \mathbf{R} f!(F) \xrightarrow{\sim} \mathbf{R} f! \mathbf{L} u^*(F),$$

qui est un isomorphisme lorsque B est une A-algèbre finie et K = JB.

Preuve: Montrons 1), et définissons d'abord un morphisme

(1.3.1.1)
$$\mathbf{L} \, u^* \, \mathbf{R} \, f_!(E) \longrightarrow \mathbf{R} \, f_! \, \mathbf{R} \, u^*(E).$$

D'après (I. 8.1.6), il suffit dans chacun des cas considérés de définir un morphisme

(1.3.1.2)
$$\mathbf{R} f_!(E) \longrightarrow u_* \mathbf{R} f_! \mathbf{L} u^*(E).$$

Mais il est immédiat que $u_* \mathbf{R} f_! \simeq \mathbf{R} f_! u_*$, de sorte que l'on définit (1.3.1.2) en appliquant le foncteur $\mathbf{R} f_!$ au morphisme d'adjonction (I 8.1.7)

$$E \longrightarrow u_* \mathbf{L} u^*(E).$$

Pour voir que (1.3.1.1) est un isomorphisme, on se ramène, par le way-out functor lemme, au cas où $E \in D^-(X,A)$. Alors, grâce à la conservativité du foncteur u_* , il s'agit de montrer que le morphisme canonique

$$B \underline{\otimes}_{A} \mathbf{R} f_{!}(E) \longrightarrow \mathbf{R} f_{!}(B \underline{\otimes}_{A} E)$$

est un isomorphisme, ce qui résulte de (1.1.7). Montrons 2). Pour définir un morphisme

(1.3.1.3)
$$\mathbf{L} u^* \mathbf{R} f^!(F) \longrightarrow \mathbf{R} f^! \mathbf{L} u^*(F),$$

on se ramène encore, grâce à (I 8.1.6), à définir un morphisme

(1.3.1.4)
$$\mathbf{R} f^!(F) \longrightarrow u_* \mathbf{R} f^! \mathbf{L} u^*(F).$$

On a évidemment $u_* \mathbf{R} f^! \simeq \mathbf{R} f^! u_*$; on prend pour (1.3.1.4) l'image par $\mathbf{R} f^!$ du morphisme d'adjonction (I 8.1.7). Pour voir que (1.3.1.3) est un isomorphisme, on se ramène, après avoir choisi une "lissification" (1.2.2), à le faire successivement pour une immersion fermée et un morphisme lisse équidimensionnel. Dans le premier cas, ce n'est autre que (I 8.1.16 (iii)). Dans le second, on se ramène aussitôt à (I 8.1.16 (i)).

2. Dualité.

Dans tout ce paragraphe, tous les schémas considérés sont de caractéristique résiduelles premières à ℓ .

2.1. Soient X et Y deux schémas noethériens et $f: X \longrightarrow Y$ un morphisme quasiprojectif. On suppose que Y admet un Module inversible ample et on se propose de définir un morphisme "trace"

$$(2.1.1) \operatorname{Tr}_{f}: \mathbf{R} f_{!} \mathbf{R} f^{!} \longrightarrow \operatorname{id}$$

entre foncteurs de D(Y,A) dans D(Y,A).

Lorsque f est une immersion fermée, on dispose d'un tel morphisme, à savoir le morphisme d'adjonction déduit de (I 7.7.12 (i)).

Lorsque f est un morphisme lisse équidimensionnel de dimension r, il s'agit de définir pour tout $F \in D(Y,A)$ un morphisme fonctoriel

(2.1.2)
$$\mathbf{R} f_!(f^*F \underline{\otimes}_{\mathbf{Z}_{\ell}} \mathbf{Z}_{\ell}(r)[2r]) \longrightarrow F.$$

Comme $A \underline{\otimes}_{\mathbf{Z}_{\ell}} \mathbf{Z}_{\ell}(r)$ est localement libre constructible, on définit sur le modèle de (1.1.7), mais sans hypothèse de degré sur F, un isomorphisme de "projection"

$$\mathbf{R} f_{!}(\mathbf{Z}_{\ell}(r))[2r] \underline{\otimes}_{\mathbf{Z}_{\ell}} F \xrightarrow{\sim} \mathbf{R} f_{!}(f^{*}F \underline{\otimes}_{\mathbf{Z}_{\ell}} \mathbf{Z}_{\ell}(r))[2r],$$

ce qui ramène à faire la construction de (2.1.2) dans le cas où $A = \mathbf{Z}_{\ell} = F$. Dans ce cas, comme $R^i f_! = 0$ pour i > 2d (1.1.8), il s'agit d'exhiber un morphisme "trace"

$$R^{2r} f_!(\mathbf{Z}_{\ell}(r)) \longrightarrow \mathbf{Z}_{\ell}.$$

On prend le système projectif des morphismes traces "habituels"

$$R^{2r} f_!(\boldsymbol{\mu}_{\ell^{n+1}}^{\otimes r}) \longrightarrow \mathbf{Z}/\ell^{n+1}\mathbf{Z}.$$

Dans le cas général, on choisit pour définir (2.1.1) une factorisation $f = p \circ i$ du type (1.2.2). Désignant par

$$u: \mathbf{R} i_1 \mathbf{R} i^! \longrightarrow \mathrm{id}$$

$$v: \mathbf{R} p_1 \mathbf{R} p^! \longrightarrow \mathrm{id}$$

les morphismes traces définis par les méthodes précédentes pour i et p respectivement, on définit Tr_f par la commutativité du diagramme

$$\begin{array}{ccc}
R f_! R f^! & \xrightarrow{\sim} & R p_! R i_! R i^! R p^! \\
 & \downarrow^{R p_! (u R p^!)} \\
 & \text{id} & \longleftarrow & R p_! R p^!
\end{array}$$

On s'assure ensuite, de a façon habituelle, que le résultat ne dépend pas de la factorisation choisie.

2.2. Sous les hypothèses précédentes, on se propose maintenant de définir, pour $E \in D^-(X,A)$ et $F \in D^+(Y,A)$ un morphisme "canonique" fonctoriel

(2.2.1)
$$\mathbf{R} f_* \mathbf{R} \mathcal{H} om_A(E, \mathbf{R} f^! F) \longrightarrow \mathbf{R} \mathcal{H} om_A(\mathbf{R} f_! E, F).$$

Pour cela, nous allons d'abord définir, pour $L \in D^-(X,A)$ et $M \in D^+(X,A)$ un morphisme fonctoriel

(2.2.2)
$$\mathbf{R} f_* \mathbf{R} \mathcal{H} om_A(L, M) \longrightarrow \mathbf{R} \mathcal{H} om_A(\mathbf{R} f_! L, \mathbf{R} f_! M).$$

On prendra alors pour (2.2.1) le morphisme composé

R
$$\mathcal{H}$$
om_A($\mathbf{R}f_!E,\mathbf{R}f_!F$)

R \mathcal{H} om_A($\mathbf{R}f_!E,\mathbf{R}f_!F$)

R \mathcal{H} om_A($\mathbf{R}f_!E,\mathbf{R}f_!F$)

R \mathcal{H} om_A($\mathbf{R}f_!E,F$)

Il reste à définir (2.2.2). Lorsqu f est une immersion ouverte, le foncteur $f_!$ commute aux limites inductives filtrantes, et permet donc de définir pour tout couple (E,F) de A-faisceaux sur X un morphisme fonctoriel

$$(2.2.3) f_1 \mathcal{H} om_A(E, F) \longrightarrow \mathcal{H} om_A(f_1 E, f_1 F),$$

à partir des morphismes analogues dans la catégorie des A-Modules. Pour définir (2.2.2) dans ce cas, on peut supposer L quasilibre et M flasque, de sorte que $\mathcal{H}om_A^{\bullet}(L,M)$ est flasque. Le morphisme (2.2.3) fournit par fonctorialité un morphisme de complexes

$$(2.2.4) f_1 \mathcal{H} om_A^{\bullet}(L, M) \longrightarrow \mathcal{H} om_A^{\bullet}(f_1 L, f_1 M).$$

Choisissant une résolution quasilibre $P \longrightarrow f_!L$ et une résolution flasque $f_!M \longrightarrow Q$, on prend pour (2.2.2) le composé de (2.2.4) et du morphisme canonique

$$\mathcal{H}om_A^{\bullet}(f_!L, f_!M) \longrightarrow \mathcal{H}om_A^{\bullet}(P, Q).$$

Lorsque f est propre, il s'agit de définir un morphisme

$$\mathbf{R} f_* \mathbf{R} \mathcal{H} \mathrm{om}_A(L, M) \longrightarrow \mathbf{R} \mathcal{H} \mathrm{om}_A(\mathbf{R} f_* L, \mathbf{R} f_* M).$$

La construction que nous allons faire de (2.2.5) vaut plus généralement pour un morphisme quasicompact et quasiséparé. Cette dernière hypothèse implique que le foncteur f_* commute aux limites inductives filtrantes, et permet donc comme précédemment de définir pour tout couple (E,F) de A-faisceaux sur X un morphisme fonctoriel

$$(2.2.6) f_* \mathcal{H}om_A(E,F) \longrightarrow \mathcal{H}om_A(f_*E,f_*F),$$

à partir des morphismes analogues dans la catégorie des A-Modules. Pour définir (2.2.5), on peut supposer L quasilibre et M flasque, de sorte que $\mathcal{H}om_A^{\bullet}(L,M)$ est flasque. Le morphisme (2.2.6) fournit par fonctorialité un morphisme de complexes

$$(2.2.7) f_* \mathcal{H}om_A(L, M) \longrightarrow \mathcal{H}om_A^{\bullet}(f_*L, f_*M).$$

On prend pour (2.2.5) le composé de (2.2.7) et du morphisme

$$\mathcal{H}om_A^{\bullet}(f_*L, f_*M) \longrightarrow \mathcal{H}om_A^{\bullet}(P, f_*M)$$

déduit d'une résolution quasilibre $P \longrightarrow f_*L$ de f^*L .

Enfin, dans le cas général, on choisit une compactification $f = q \circ i$ de f, et on définit (2.2.2) de façon évidente à partir des morphismes déjà définis pour i et q respectivement. Bien, entendu, on s'assure que le résultat ne dépend pas des choix faits, et notamment de la compactification choisie.

Proposition 2.2.8. — Sous les hypothèses préliminaires de (2.1), soient $E \in D^-(X,A)$ et $F \in D^+(Y,A)$. On a des isomorphismes canoniques fonctoriels :

(i)
$$\mathbf{R} f_* \mathbf{R} \mathcal{H} om_A(E, \mathbf{R} f! F) \xrightarrow{\sim} \mathbf{R} \mathcal{H} om_A(\mathbf{R} f! E, F)$$
.

(ii)
$$\mathbf{R} \overline{\mathrm{Hom}}_{A}(E, \mathbf{R} f^{!}F) \xrightarrow{\sim} \mathbf{R} \overline{\mathrm{Hom}}_{A}(\mathbf{R} f_{!}E, F)$$
.

(iii)
$$\mathbf{R} \operatorname{Hom}_{A}(E, \mathbf{R} f^{!}F) \xrightarrow{\sim} \mathbf{R} \operatorname{Hom}_{A}(\mathbf{R} f_{!}E, F)$$
.

(iv)
$$\operatorname{Hom}_{A}(E, \mathbf{R} f! F) \xrightarrow{\sim} \operatorname{Hom}_{A}(\mathbf{R} f! E, F).$$

Preuve: Nous allons voir que (2.2.1) est un isomorphisme. Les autres assertions en résulteront en appliquant aux deux membres les foncteurs respectifs $\mathbf{R}\,\overline{\Gamma}(Y,.),\,\mathbf{R}\,\Gamma(Y,.)$ (I 7.4.10) et $\mathrm{Hom}_A(A,.)$ d'après (I 7.4.18). Pour voir que (2.2.1) est un isomorphisme, on se ramène par le way-out functor lemma au cas où E et F sont les complexes de degré 0 associés à des A-faisceaux notés de même. Les constructions aboutissant à la définition de (2.2.1) peuvent alors être faites au moyen de résolutions flasques ou quasilibres dans $\mathbf{E}(X,J)$ et $\mathbf{E}(Y,J)$. Si $E=(E_n)_{n\in\mathbb{N}}$ et $F=(F_n)_{n\in\mathbb{N}}$, l'assertion résulte alors aussitôt du fait que les morphismes de dualité

$$\mathbf{R} f_* \mathbf{R} \, \mathscr{H} \mathrm{om}_{A_m}(E_m, \mathbf{R} \, f^! F_n) \longrightarrow \mathbf{R} \, \mathscr{H} \mathrm{om}_{A_m}(\mathbf{R} \, f_! E_m, F_n) \quad (m, n \in \mathbf{N}; m \geq n)$$

sont des isomorphismes, et de ce que les foncteurs $R^i f_*$ $(i \in \mathbb{Z})$ commutent aux limites inductives filtrantes.

2.3. A partir de maintenant, on suppose, pour simplifier, que $A = \mathbf{Z}_{\ell}$ et $J = \ell \mathbf{Z}_{\ell}$. Étant donné un complexe $K \in \mathrm{D}^+(X, \mathbf{Z}_{\ell})$, on pose pour tout $F \in \mathrm{D}^-(X, \mathbf{Z}_{\ell})$

$$D_K(F) = \mathbf{R} \mathcal{H}om_{\mathbf{Z}_{\ell}}(F,K).$$

Définition 2.3.1. — Soit X un schéma noethérien. On dit qu'un complexe K de \mathbb{Z}_{ℓ} -faisceaux sur X est dualisant si pour tout $F \in \mathrm{D}^b_c(X,\mathbb{Z}_{\ell})$, on a $\mathrm{D}_K(F) \in \mathrm{D}^b_c(X,\mathbb{Z}_{\ell})$, et si le morphisme "de Cartan"

$$(2.3.2) F \longrightarrow D_{K^{\circ}} D_{K}(F)$$

que l'en en déduit est un isomorphisme.

Explicitons (2.3.2). Comme $D_K(F) \in \mathcal{D}_c^b(X, \mathbf{Z}_\ell)$, le morphisme (I 7.6.5)

$$\operatorname{Hom}_{\mathbf{Z}_{\ell}}(\mathcal{D}_{K}(F) \underline{\otimes} F, K) \longrightarrow \operatorname{Hom}_{\mathbf{Z}_{\ell}}(\mathcal{D}_{K}(F), \mathcal{D}_{K}(F))$$

est un isomorphisme (II 2.6). L'image inverse de l'identité de $\mathrm{D}_K(F)$ définit un morphisme

$$F \underline{\otimes} D_K(F) \longrightarrow K.$$

Comme $F \in \mathcal{D}_c^b(X, \mathbf{Z}_\ell)$, une nouvelle application de l'isomorphisme de Cartan permet d'en déduire le morphisme (2.3.2) annoncé.

Proposition 2.3.2 (Formules d'échange). — Soient X et Y deux schémas noethériens de caractéristique résiduelles premières à ℓ , et $f: X \longrightarrow Y$ un morphisme quasiprojectif. On suppose que Y admet un Module inversible ample. Étant donné $K_Y \in D^+(Y, \mathbf{Z}_\ell)$, on pose

$$K_X = \mathbf{R} f^!(K_Y), \quad D_X = D_{K_X}, \quad D_Y = D_{K_Y}.$$

a) Il existe, pour $F \in D^-(X, \mathbf{Z}_{\ell})$, un isomorphisme fonctoriel

(i)
$$\mathbf{R} f_* \mathbf{D}_Y(F) \xrightarrow{\sim} \mathbf{D}_Y \mathbf{R} f_!(F).$$

Si K_X et K_Y sont dualisants et $F \in \mathcal{D}^b_c(X, \mathbf{Z}_\ell)$, on a un isomorphisme fonctoriel

(ii)
$$\mathbf{R} f_! \mathcal{D}_X(F) \xrightarrow{\sim} \mathcal{D}_Y \mathbf{R} f_*(F).$$

b) Il existe, pour $D^-(Y, \mathbf{Z}_{\ell})$, un isomorphisme fonctoriel

(i)
$$\mathbf{R} f^! \mathcal{D}_Y(F) \xrightarrow{\sim} \mathcal{D}_X(f^*F).$$

Si K_X et K_Y sont dualisants et $F \in \mathcal{D}^b_c(Y, \mathbf{Z}_\ell)$, on a un isomorphisme fonctoriel

$$(ii) f^* \mathcal{D}_Y(F) \xrightarrow{\sim} \mathcal{D}_X \mathbf{R} f!(F).$$

Preuve: Formellement identique à celle de (SGA5 I 1.12), dont d'ailleurs (2.3.2) n'est qu'une paraphrase.

Proposition 2.3.3. — Soient X un schéma noethérien de caractéristiques résiduelles premières à ℓ .

- (i) Si X est régulier, de dimension finie, et satisfait aux conditions de (SGA5 I 3.4.1), le complexe \mathbf{Z}_{ℓ} est dualisant sur X.
- (ii) Si X est régulier excellent de caractéristique 0, et admet un Module inversible ample, alors pour tout morphisme quasiprojectif $f: T \longrightarrow Y$, le complexe $\mathbf{R} f^!(\mathbf{Z}_\ell)$ est dualisant sur T.
- (iii) Soient k un corps et $f: X \longrightarrow S = \operatorname{Spec}(k)$ un morphisme quasiprojectif, avec $\dim(X) \leq 2$. Alors $\mathbf{R} f^!(\mathbf{Z}_{\ell})$ est dualisant sur X.

Preuve: Montrons par exemple (ii), les autres assertions se prouvant de façon essentiellement identique, à partir des énoncés correspondants de (SGA5 I). Montrons tout d'abord que si $E \in \mathcal{D}^b_c(T, \mathbf{Z}_\ell)$, alors $\mathbf{R} \, \mathscr{H} \mathrm{om}_{\mathbf{Z}_\ell}(E, \mathbf{R} \, f^!(\mathbf{Z}_\ell)) \in \mathcal{D}^b_c(T, \mathbf{Z}_\ell)$.

Lemme **2.3.4**. —
$$Si F \in D_c^+(X, \mathbb{Z}_{\ell})$$
, alors $\mathbf{R} f^!(F) \in D_c^+(T, \mathbb{Z}_{\ell})$.

On se ramène à le voir lorsque F est un \mathbf{Z}_{ℓ} -faisceau constructible. Alors cela résulte de la façon habituelle (SGA5 VI) du lemme de Shih, et de l'énoncé analogue pour les $\mathbf{Z}/\ell^{n+1}\mathbf{Z}$ -Modules constructibles ($n \in \mathbf{N}$) et pour les $\mathbf{Z}_{\ell}[T]$ -Modules constructibles. Comme les hypothèses de (II 2.5 (iii)) sont réalisées (SGA5 I 3.3.1) il résulte du lemme que

$$\mathbf{R} \mathcal{H} \text{om}_{\mathbf{Z}_{\ell}}(E, \mathbf{R} f^{!}(\mathbf{Z}_{\ell})) \in \mathbf{D}_{c}^{+}(T, \mathbf{Z}_{\ell}).$$

Pour voir qu'il est borné, on peut supposer que E est un \mathbf{Z}_{ℓ} -faisceau constructible. Alors, on peut prendre une résolution quasilibre (resp. flasque) de E (resp. $\mathbf{R} f^!(\mathbf{Z}_{\ell})$) "canonique" dans $\mathbf{E}(T, \ell \mathbf{Z}_{\ell})$, en ce sens que c'est un système projectif de résolutions quasilibres (resp. flasques) des composants. Comme la dimension quasi-injective des $\mathbf{R} f^!(\mathbf{Z}/\ell^{n+1}\mathbf{Z})$ est indépendante de n (preuve de SGA5 I 3.4.3), l'assertion en résulte aussitôt. Il reste à voir que, posant

$$K = \mathbf{R} f^!(\mathbf{Z}_\ell)$$

le morphisme canonique $E \longrightarrow D_K \circ D_K(E)$ est un isomorphisme. Pour cela, désignant par $u_\circ : \mathbf{Z} \longrightarrow \mathbf{Z}/\ell \mathbf{Z}$ le morphisme d'anneaux canonique, il suffit (II 8.2.2) de voir que le morphisme correspondant

(2.3.5)
$$L u_{\circ}^{*}(E) \longrightarrow L u_{\circ}^{*} D_{K} \circ D_{K}(E)$$

est un isomorphisme. Posant $L = \mathbf{R} u_{\circ}^{*}(K)$, les différentes compatibilités exposées en (I 8) montrent que (2.3.5) s'identifie au morphisme canonique

$$\mathbf{L} u_{\circ}^{*}(E) \longrightarrow \mathcal{D}_{L} \circ \mathcal{D}_{L}(\mathbf{L} u_{\circ}^{*}(E)).$$

Comme $L = \mathbf{R} f^!(\mathbf{Z}/\ell \mathbf{Z})$ (1.3.1;2), et $\mathbf{L} u_o^*(E) \in \mathcal{D}_c^b(X, \mathbf{Z}/\ell \mathbf{Z})$ (II 2.13.1), l'assertion résulte alors de (SGA5 I 3.4.3). On aurait pu également utiliser (II 2.13.9), qui éclaire bien la situation.

Proposition 2.3.6. — Soient k un corps séparablement clos de caractéristique différente de ℓ , $S = \operatorname{Spec}(k)$ et $f: X \longrightarrow S$ et $g: Y \longrightarrow S$ deux S-schémas quasiprojectifs, d'où un diagramme commutatif évident

On suppose que les schémas de type fini sur S et de dimension $\leq \dim(X) + \dim(Y)$ sont fortement désingularisables (SGA 5 3.1.5) ce qui a lieu notamment su $\operatorname{car}(k) = 0$, ou si k est parfait et $\dim(X \times_S Y) \leq 2$. On pose

$$K_X = \mathbf{R} f^!(\mathbf{Z}_\ell), \quad K_Y = \mathbf{R} g^!(\mathbf{Z}_\ell), \quad K_{X \times_S Y} = \mathbf{R} h^!(\mathbf{Z}_\ell).$$

Ces complexes sont dualisants pour X, Y et $X \times_S Y$ respectivement, et on note D_X , $D_Y, D_{X \times_S Y}$ les foncteurs dualisants correspondants.

Alors

a) Il existe un isomorphisme canonique

$$p^*K_X \underline{\otimes} q^*K_Y \xrightarrow{\sim} K_{X \times_S Y}.$$

b) Pour $F \in D_c^b(X, \mathbf{Z}_\ell)$ et $G \in D_c^b(X, \mathbf{Z}_\ell)$, il existe un isomorphisme canonique fonctoriel

$$p^* \mathcal{D}_X(F) \underline{\otimes} q^* \mathcal{D}_Y(G) \xrightarrow{\sim} D_{X \times_S Y}(p^* F \underline{\otimes} q^* G).$$

Preuve: L'énoncé est une paraphrase de (SGA5 III 3.1). Le fait que K_X , K_Y et $K_{X\times_S Y}$ soient dualisants résulte, sur le modèle de la preuve de (2.3.3), de (SGA5 I App.7.5). Utilisant (II 2.13.9), et diverses compatibilités évidentes, les assertions a) et b) résultent par simple passage à la limite des assertions correspondantes (SGA5 III 3.1) pour les ($\mathbf{Z}/\ell^{n+1}\mathbf{Z}$)-Modules ($n \in \mathbf{N}$).

Avant d'énoncer la proposition suivante, précisons quelques définitions et notations de (I 8.3). Soit *X* un schéma noethérien. On définit la catégorie, notée

$$\mathbf{Q}_{\ell} - \operatorname{fsc}(X)$$

des \mathbf{Q}_{ℓ} -faisceaux sur X, au moyen de la partie multiplicative \mathbf{Z}_{ℓ} – 0 de \mathbf{Z}_{ℓ} (I 8.3). Étant donné $d \in \mathbf{Z}$ le \mathbf{Z}_{ℓ} -faisceau $\mathbf{Z}_{\ell}(d)$ définit un \mathbf{Q}_{ℓ} -faisceau, noté de préférence

$$\mathbf{Q}_{\ell}(d)$$
.

Comme on l'a indiqué dans (I 8.3), on étend sans peine aux \mathbf{Q}_{ℓ} -faisceaux le formalisme développé pour les \mathbf{Z}_{ℓ} -faisceaux. Ainsi, on dit qu'un \mathbf{Q}_{ℓ} -faisceau F est constructible (resp. constant tordu constructible) s'il est isomorphe à l'image d'un \mathbf{Z}_{ℓ} -faisceau du même type. La sous-catégorie pleine, notée \mathbf{Q}_{ℓ} – $\mathrm{fscn}(X)$ (reps. \mathbf{Q}_{ℓ} – $\mathrm{fsct}(X)$), de \mathbf{Q}_{ℓ} – $\mathrm{fsc}(X)$ engendrée par les \mathbf{Q}_{ℓ} -faisceaux constructibles (resp. constants tordus constructibles) est exacte. De même, si K est un objet de $\mathrm{D}(X,\mathbf{Q}_{\ell})$, on dit que K est à cohomologie constructible (resp. constante tordu

constructible) s'il est isomorphe dans $D(X, \mathbf{Q}_{\ell})$ à un complexe de \mathbf{Z}_{ℓ} -faisceaux constructible (resp. constant constructible). On note

$$D_c(X, \mathbf{Q}_\ell)$$
 (resp. $D_t(X, \mathbf{Q}_\ell)$)

la sous-catégorie triangulée pleine de $D(X, \mathbf{Q}_{\ell})$ définie par les complexes à cohomologie constructible (resp. constante tordue constructible).

Proposition 2.3.7 (Dualité locale). — Soient X un schéma quasiprojectif et lisse de dimension d sur un corps séparablement clos, et x un point fermé de X. Pour tout $F \in \mathcal{D}^b_c(X, \mathbf{Q}_\ell)$, on a une dualité parfaite entre espaces vectoriels de dimension finie sur \mathbf{Q}_ℓ

$$\operatorname{\mathcal{E}xt}_{\mathbf{Q}_{\ell}}^{2d-i}(F,\mathbf{Q}_{\ell}(d))_{x} \times \mathbf{H}_{x}^{i}(F) \longrightarrow \mathbf{Q}_{\ell}.$$

Preuve : On convient d'identifier, comme on l'a fait dans l'énoncé, un Q_{ℓ} -faisceau constructible ponctuel et le Q_{ℓ} -espace vectoriel de dimension finie correspondant (SGA5 VI 1.4.3). Soit

$$i: x \hookrightarrow X$$

l'immersion fermée canonique. Posons $K_X = \mathbf{Z}_{\ell}(d)[2d]$ et $K_x = \mathbf{Z}_{\ell}$; ce sont des complexes dualisants pour X et x respectivement (2.3.3) et l'on a (1.2.3)

$$\mathbf{R} i^! (K_X) \xrightarrow{\sim} K_x$$
 (canoniquement).

Notant $D_X = D_{K_X}$, $D_x = D_{K_x}$, la formule d'induction complémentaire fournit un isomorphisme (2.3.2 b) (ii))

$$i^* D_X(F) \xrightarrow{\sim} D_X \mathbf{R} i^!(F).$$

Avec des notations évidentes, on a donc

$$D_X(F)_x \xrightarrow{\sim} \mathbf{R} \, \mathscr{H}om_{\mathbf{Q}_{\ell}} \, (\mathbf{R} \, \Gamma_x(F), \mathbf{Q}_{\ell}).$$

L'assertion en résulte aussitôt, grâce au fait que Q_{ℓ} est un injectif dans la catégorie des Q_{ℓ} -espaces vectoriels.

Remarque 2.3.8. Nous avons seulement donné ici la variante la moins technique du théorème de dualité locale, et renvoyons le lecteur à (SGA5 I 4) pour des énoncés plus généraux.

2.4. Replaçons-nous sous les hypothèses préliminaires de (2.3.6). Nous allons indiquer brièvement comment les constructions de (SGA5 III 3) se transposent dans notre cadre et permettent de démontrer un théorème de *Lefschetz-Verdier*.

Proposition 2.4.1. — Soient
$$F \in D_c^b(X, \mathbf{Z}_\ell)$$
, $G \in D_c^b(Y, \mathbf{Z}_\ell)$.

a) Il existe un isomorphisme canonique fonctoriel

$$\mathbf{R} \mathscr{H} \mathrm{om}_{\mathbf{Z}_{\ell}}(p^*F, q^*G) \xrightarrow{\sim} p^* \mathrm{D}_X(F) \underline{\otimes} q^*G.$$

b) Il existe un accouplement parfait canonique

$$\mathbf{R} \mathcal{H} \mathrm{om}_{\mathbf{Z}_{\ell}}(p^*F, \mathbf{R} q^!G) \times \mathbf{R} \mathcal{H} \mathrm{om}_{\mathbf{Z}_{\ell}}(q^*G, \mathbf{R} p^!F) \longrightarrow K_{X \times_{S} Y}.$$

Preuve: Formellement identique à celle de (SGA5 III 3.2), à partir de (2.3.2) et (2.3.6). On notera que, comme tous les complexes entrant en jeu sont à cohomologie constructible, on dispose sans restriction de l'isomorphisme de Cartan (II 2.6).

Proposition 2.4.2. — Si $F \in D_c^b(X, \mathbf{Z}_\ell)$, $G \in D_c^b(Y, \mathbf{Z}_\ell)$, on a des isomorphismes canoniques

$$(i) \ \mathbf{R} \ h_* \ \mathbf{R} \ \mathscr{H} \mathrm{om}_{\mathbf{Z}_\ell}(p^*F, \mathbf{R} \ q^!G) \overset{\boldsymbol{\sim}}{\longrightarrow} \mathbf{R} \ \mathscr{H} \mathrm{om}_{\mathbf{Z}_\ell}(\mathbf{R} \ p_!(F), \mathbf{R} \ q_*(G)).$$

$$(ii) \ \operatorname{Hom}_{\mathbf{Z}_{\ell}}(p^*F,\mathbf{R}\,q^!G) \overset{\boldsymbol{\sim}}{\longrightarrow} \operatorname{Hom}_{\mathbf{Z}_{\ell}}(\mathbf{R}\,p_!(F),\mathbf{R}\,q_*(G)).$$

Preuve: La preuve de l'assertion (i) est formellement identique à celle de (SGA5 III 2.2.1). On en déduit (ii) en appliquant aux deux membres le foncteur $\operatorname{Hom}_{\mathbf{Z}_{\ell}}(\mathbf{Z}_{\ell},.)$ (I 7.4.6).

Supposons maintenant que X et Y soient *propres* sur S, et soient $F \in D^b_c(X, \mathbf{Z}_\ell)_{\mathrm{torf}}$, $G \in D^b_c(X, \mathbf{Z}_\ell)_{\mathrm{torf}}$. Les complexes $\mathbf{R} f_*(F)$ et $\mathbf{R} g_*(G)$ sont *parfaits*: en effet, (1.1.11 (i) et (ii)), ils appartiennent à $D^b_c(S, \mathbf{Z}_\ell)_{\mathrm{torf}}$ et, comme le corps k est séparablement clos, $D_c(S, \mathbf{Z}_\ell) = D_t(S, \mathbf{Z}_\ell)$.

Donnons-nous de plus deux familles φ et ψ de supports sur $X \times_S Y$. On construit alors comme suit un diagramme (2.4.3)

Compte tenu de l'isomorphisme (2.4.2 (ii)), la flèche (a) n'est autre que la restriction du support. La flèche (b) résulte sans peine de l'accouplement (2.4.1 b)). La flèche (c) est le cup-produit défini en (II 2.11). Enfin, la flèche s'obtient immédiatement à partir du morphisme trace

$$\mathbf{R} h_*(K_{X \times_{\mathfrak{C}} Y}) \longrightarrow \mathbf{Z}_{\ell}.$$

Théorème **2.4.4** (Lefschetz-Verdier). — Le diagramme (2.4.3) ci-dessus est commutatif.

Preuve: Utilisant les notations de (II 2.13.9), il suffit de voir que pour tout $n \in \mathbb{N}$, le diagramme déduit de (2.4.3) après application du foncteur $\mathbf{L}(\alpha_n)^*$ est commutatif. Comme le foncteur $\mathbf{L}(\alpha_n)^*$ commute à toutes les opérations usuelles, l'assertion résulte donc de (SGA 5 III 3.3) pour les ($\mathbf{Z}/\ell^{n+1}\mathbf{Z}$)-Modules ($n \in \mathbb{N}$).

3. Formalisme des fonctions *L*.

Soit p un nombre premier $\neq \ell$. On note f l'élément de Frobenius $u \mapsto u^p$ ($u \in \overline{F}_p$), qui est un générateur topologique du groupe de Galois $Gal(\overline{F}_p/F_p)$.

Étant donné un schéma X de type fini sur \mathbf{F}_p , on note X° l'ensemble des points fermés de X, et, pour tout $x \in X^\circ$, on désigne par d(x) le degré résiduel de x. Choisissant pour tout $x \in X^\circ$ un point géométrique \overline{x} au-dessus de x, on rappelle (SGA 5 XV 3) que la fonction L d'un \mathbf{Q}_ℓ -faisceau constructible F sur X est définie

par la formule

(3.0)
$$L_F(f) = \prod_{x \in X^{\circ}} (1/\det(1 - f_{F_{\overline{x}}}^{-d(x)} t^{d(x)})).$$

Grâce à la propriété de multiplicativité de (SGA 5 XV 3.1 a)), on peut prolonger cette définition à $D_c^b(X, \mathbf{Q}_\ell)$, en posant pour tout $E \in D_c^b(X, \mathbf{Q}_\ell)$

(3.1)
$$L_{E}(f) = \prod_{i \in \mathbb{Z}} (L_{H^{i}(E)}(t))^{(-1)^{i}}.$$

Proposition 3.2. — Soit X un schéma de type fini sur \mathbf{F}_p .

a) Pour tout triangle exact

de $D_c^b(X, \mathbf{Q}_\ell)$, on a

$$L_E(t) = L_{E'}(t)L_{E''}(t).$$

En particulier, pour tout $m \in \mathbb{Z}$, on a

$$L_{E[m]}(t) = (L_E(t))^{(-1)^m}$$
.

b) Soient Y un sous-schéma fermé de X, et U = X - Y l'ouvert complémentaire. On a

$$L_E = L_{E|U} L_{E|Y},$$

pour tout $E \in \mathcal{D}_c^b(X, \mathbf{Q}_\ell)$.

c) Soit $h: X \longrightarrow S$ un morphisme de schémas de type fini sur \mathbf{F}_p . Pour tout $E \in \mathcal{D}^b_c(X, \mathbf{Q}_\ell)$, on a

$$L_E = \prod_{s \in S^{\circ}} L_{E|X_s}.$$

Preuve : Immédiat à partir des assertions analogues pour les objets de cohomologie (SGA5 XV 3.1).

Proposition 3.3. — Soient X un schéma de type fini sur \mathbf{F}_p , $g: X \longrightarrow \mathbf{F}_p$ le morphisme structural et $E \in \mathcal{D}^b_c(X, \mathbf{Q}_\ell)$. Alors

$$L_E = L_{\mathbf{R}\,g_!(E)}.$$

En particulier, L_E est une fraction rationnelle.

Preuve: On peut supposer que E est un \mathbb{Q}_{ℓ} -faisceau constructible, et alors l'assertion n'est autre que (SGA5 XV 3.2).

Corollaire **3.4**. — Soit $h: X \longrightarrow S$ un morphisme de schémas de type fini sur \mathbf{F}_p . Pour tout $E \in \mathrm{D}^b_c(X, \mathbf{Q}_\ell)$, on a

$$L_E = L_{\mathbf{R}\,b_1(E)}$$
.

Nous allons maintenant déduire de (3.3) une équation fonctionnelle pou les fonctions L, du moins si X est projectif sur \mathbf{F}_p .

Définition 3.5. — Soient $g: X \longrightarrow \mathbf{F}_p$ un schéma de type fini sur \mathbf{F}_p , et $\overline{X} = X \times_{\mathbf{F}_p} \overline{\mathbf{F}}_p$ - Pour tout $E \in \mathrm{D}^b_c(X, \mathbf{Q}_\ell)$, on pose

$$\chi(E) = \operatorname{rang}(\mathbf{R} \operatorname{g}_! E) = \sum_{i \in \mathbf{Z}} (-1)^i [\operatorname{H}_c^i(\overline{X}, \overline{E}) : \mathbf{Q}_\ell],$$

$$\delta(E) = \det(\mathbf{R} \, g_!(E)) = \prod_{i \in \mathbf{Z}} (\det f_{\mathbf{H}_c^i(\overline{\mathbf{X}}, \overline{E})})^{(-1)^i},$$

où \overline{E} désigne l'image inverse de E au-dessus de \overline{X} .

D'après les propriétés d'additivité et de multiplicativité respectives de la trace et du déterminant dans la catégorie des \mathbf{Q}_{ℓ} -espaces vectoriels de dimension finie, il es clair que pour tout triangle exact

on a

(3.5.1)
$$\chi(E) = \chi(E') + \chi(E'').$$

(3.5.2)
$$\delta(E) = \delta(E')\delta(E'').$$

En particulier, pour tout $m \in \mathbb{Z}$ et tout $E \in \mathcal{D}_c^b(X, \mathbb{Q}_\ell)$,

$$\chi(E[m]) = (-1)^m \chi(E)$$
 et $\delta(E[m]) = (\delta(E))^{(-1)^m}$.

Proposition 3.6. — Soit $g: X \longrightarrow \mathbf{F}_p$ un schéma projectif sur \mathbf{F}_p . On pose $K_X = \mathbf{R} \, g^!(\mathbf{Q}_\ell)$, et $\mathrm{D}_X = \mathbf{R} \, \mathcal{H}\mathrm{om}_{\mathbf{Q}_\ell}(.,K_X)$. Alors, pour tout $E \in \mathrm{D}^b_c(X,\mathbf{Q}_\ell)$, on a l'identité

$$L_{D_{\chi}(E)}(t) = (-t)^{-\chi(E)} \delta(E) L_{E}(t^{-1}).$$

Preuve: Le second membre a un sens d'après (3.3). Posons S = Spec et $D_S = \mathbf{R} \mathcal{H} \text{om}_{\mathbf{Q}_\ell}(.,\mathbf{Q}_\ell)$. D'après (2.3.2 a)), on a

$$\mathbf{R} g_*(\mathbf{D}_X E) \xrightarrow{\sim} \mathbf{D}_S \mathbf{R} g_*(E),$$

donc (3.3)

$$L_{\mathbf{D}_{\mathbf{x}}}(E) = L_{\mathbf{D}_{\mathbf{x}}(\mathbf{R}\,\mathbf{g}_{*}(E))}$$
.

Comme $L_E = L_{\mathbf{R} g_*(E)}$ (3.3), l'assertion résultera du lemme suivant

Lemme 3.7. — $Si F \in D_c^b(S, \mathbf{Q}_\ell)$, on a:

$$L_{\mathrm{D}_{c}(F)}(t) = (-t)^{\chi(F)} \delta(F) L_{F}(t^{-1}).$$

D'après les propriétés d'additivité et de multiplicativité (3.5.1) et (3.5.2), on peut supposer que $F \in \mathbb{Q}_{\ell}$ — $\mathrm{fscn}(S)$. Alors F correspond (SGA5 VII 1.4.2) à un \mathbb{Q}_{ℓ} -espace vectoriel de dimension fini V muni d'une opération continue f_V du Frobenius, et le \mathbb{Q}_{ℓ} -faisceau $\mathbb{D}_S(F) = \mathscr{H}\mathrm{om}_{\mathbb{Q}_{\ell}}(F,\mathbb{Q}_{\ell})$ correspond (II 1.26) au \mathbb{Q}_{ℓ} -espace vectoriel V^{ν} muni de l'opération continue $(f_V^{\nu})^{-1}$ du Frobenius. Il suffit alors de montrer que, étant donnés un corps K, un K-espace vectoriel de dimension finie V et un automorphisme u de V, on a l'identité

(3.8)
$$1/\det(1-u^{-1}t) = (-t)^{-\dim(V)}\det(u)/\det(1-ut^{-1})$$

dans K(t). On peut pour cela supposer K algébriquement clos, donc u triangulable, puis, grâce aux propriétés de multiplicativité du déterminant, que dim(V) = 1. Alors u est l'homothétie définie par un scalaire non nul λ , et (3.8) est l'identité évidente

$$1/(1-(t/\lambda)) = (-\lambda/t)/(1-(\lambda/t)).$$

Bien entendu, la formule (3.6) ne présente d'intérêt en pratique que si l'on dispose d'une expression simple pour $D_X(E)$. Nous allons maintenant donner des cas où il en est ainsi.

Proposition 3.9. — On suppose X quasiprojectif, lisse et purement de dimension n sur \mathbf{F}_p . Posant pour tout $E \in \mathcal{D}_c^b(S, \mathbf{Q}_\ell)$

$$E^V = \mathcal{H}om_{\mathbf{Q}_{\ell}}^{\bullet}(E, \mathbf{Q}_{\ell}),$$

on a un isomorphisme

$$D_X(E) \simeq E^V(n)[2n]$$

dans chacun des cas suivants

- (i) $E \in \mathcal{D}_t^b(X, \mathbf{Q}_\ell)$
- (ii) X est une courbe, et E est un \mathbf{Q}_{ℓ} -faisceau constructible de la forme $i_*(M)$, où $i: U \hookrightarrow X$ est l'inclusion d'un ouvert dense de X et $M \in \mathbf{Q}_{\ell}$ fsct(U).

Preuve : Comme $D_X(E) = \mathbf{R} \mathcal{H}om_{\mathbf{Q}_\ell}(E, \mathbf{Q}_\ell(n))[2n]$, le cas (i) résulte du lemme suivant.

Lemme 3.9.1. — Étant donnés un schéma noethérien $X, F \in \mathbf{Q}_{\ell}$ — $\mathrm{fsct}(X)$ et $G \in \mathbf{Q}_{\ell}$ — $\mathrm{fscn}(U)$, on a:

$$\operatorname{\mathcal{E}xt}_{\mathbf{Q}_{\ell}}^{j}(F,G) = 0 \quad (j \ge 1).$$

Il s'agit de voir que si $F \in \mathbf{Z}_{\ell} - \mathrm{fsct}(X)$ et $G \in \mathbf{Z}_{\ell} - \mathrm{fscn}(X)$, les \mathbf{Z}_{ℓ} -faisceaux $\mathrm{Ext}_{\mathbf{Z}_{\ell}}^{j}(F,G)$ $(j \geq 1)$ sont annulés par une puissance de ℓ . D'après (I 6.4.2) et (II 1.2.1), on peut, quitte à se restreindre à des parties localement fermées convenables de X, supposer que $G \in \mathbf{Z}_{\ell} - \mathrm{fsct}(X)$. Alors, compte tenu de (II 1.26), l'assertion

résulte de l'assertion analogue, bien connue, pour les \mathbf{Z}_{ℓ} -Modules de type fini. Montrons (ii).

Il s'agit de voir que

$$P^{j} = \mathcal{E}\operatorname{xt}_{\mathbf{Q}_{\ell}}^{j}(E, \mathbf{Q}_{\ell}(1)) = 0 \quad (j \ge 1).$$

Comme M est constante tordu constructible, il résulte du cas (i) que $P^j|U=0$. Il nous suffit donc de voir que pour tout point fermé x de Y=X-U et tout point géométrique \overline{x} au-dessus de x, on a $P_x^j=0$. Le pendant pour les \mathbb{Q}_ℓ -faisceaux de la variante (SGA5 I 4.6.2) du théorème de dualité locale fournit un accouplement parfait

(3.9.2)
$$\mathscr{E}xt_{\mathbf{O}_{\ell}}^{j}(E, \mathbf{Q}_{\ell}(1)) \times \mathbf{H}_{\overline{x}}^{2-j}(E) \longrightarrow \mathbf{Q}_{\ell'}$$

avec (SGA5 I 4.5.1)

$$\mathbf{H}_{\overline{x}}^{2-j} = (\mathbf{H}_{x}^{2-j}(E))_{\overline{x}}.$$

Comme le morphisme d'adjonction canonique

$$E \longrightarrow i_* i^*(E)$$

est un isomorphisme, il résulte de la première suite exacte de (SGA4 V 4.5) que

$$\mathbf{H}_{x}^{0}(E) = \mathbf{H}_{x}^{1}(E) = 0,$$

d'où aussitôt le résultat annoncé.

Ceci dit, lorsque X est projectif sur \mathbf{F}_{ℓ} , la formule (3.6) prend la forme

(3.10)
$$L_{F^{\nu}}(p^{-n}t) = (-1)^{-\chi(E)} \delta(E) L_F(t^{-1}),$$

dans chacun des cas de (3.9). Compte tenu de (3.2 a)), cela résulte du lemme suivant.

Lemme 3.11. — Soient X un schéma de type fini sur \mathbf{F}_{ℓ} , et $F \in \mathrm{D}^b_c(X, \mathbf{Q}_{\ell})$. Posant $F(j) = F \otimes \mathbf{Q}_{\ell}(j)$ $(j \in \mathbf{Z})$, on a la relation

$$L_{F(j)}(t) = L_F(p^{-j}t).$$

D'après les propriétés de multiplicativité (3.2 a)), on peut pour le voir supposer que F est un \mathbf{Q}_{ℓ} -faisceau constructible; alors, comme le Frobenius opère sur $\mathbf{Q}_{\ell}(j) \simeq \mathbf{Q}_{\ell}$ (non canoniquement) par l'homothétie de rapport p^{-j} , l'assertion est immédiate sur la définition (3.0).

Supposons maintenant qu'on ait de plus un isomorphisme

$$E^{\vee} \xrightarrow{\sim} E(\rho)$$
 pour un $\rho \in \mathbb{Z}$.

Alors la formule (3.10) prend la forme

$$L_E(p^{-n-\rho}t) = (-t)^{-\chi(E)}\delta(E)L_E(t^{-1}),$$

ou encore, après avoir posé $q = n + \rho$ et fait le changement de variable $t \mapsto t^{-1}$,

(3.12)
$$L_{E}(1/qt) = (-t)^{\chi E} \delta(E) L_{E}(t).$$

Remarque 3.13. Sous les hypothèses de (3.9), l'existence d'un tel entier p est assurée dans les cas suivants

cas (i)
$$E \xrightarrow{\sim} \mathbf{Q}_{\ell}(m)$$
 pour un $m \in \mathbf{Z}$, et alors $p = -2m$.

cas (ii)
$$M \xrightarrow{\sim} \mathbf{Q}_{\ell}(m)$$
 pour un $m \in \mathbf{Z}$, et alors $p = -2m$.

(Pour ce dernier cas, il est immédiat que

$$i_*(M^{\vee}) \simeq (i_*(M))^{\vee}.$$

Explicitons enfin une relation importante entre les entiers $\chi(E)$ et $\delta(E)$.

Proposition 3.14. — Soient X un schéma projectif et lisse purement de dimension n sur \mathbf{Z}_p et $E \in \mathcal{D}^b_c(X, \mathbf{Q}_\ell)$. On suppose qu'il existe un entier m tel que

$$D_X(E) \xrightarrow{\sim} E(m),$$

et on pose $q = p^m$. Alors, on a, l'égalité

$$\delta(E)^2 = q^{\chi(E)}.$$

Preuve : La substitution $t\mapsto 1/qt$ dans (3.12) fournit l'équation fonctionnelle

(3.12 bis)
$$L_E(t) = (-1/qt)^{\chi(E)} \delta(E) L_E(1/qt).$$

Multipliant (3.12) et (3.12 bis) membre à membre, on obtient l'identité

$$L_E(t)L_E(1/qt) = q^{-\chi(E)}(\delta(E))^2 L_E(t)L_E(1/qt),$$

d'où aussitôt la relation désirée, compte tenu du fait que L_E n'est pas identiquement nulle, comme il est clair sur sa définition (3.0).