Automaten und Formale Sprachen SoSe 2017 in Trier

Henning Fernau

Universität Trier fernau@uni-trier.de

24. Mai 2017

Automaten und Formale Sprachen Gesamtübersicht

- Organisatorisches
- Einführung
- Endliche Automaten und reguläre Sprachen
- Kontextfreie Grammatiken und kontextfreie Sprachen
- Chomsky-Hierarchie

Endliche Automaten und reguläre Sprachen

- 1. Deterministische endliche Automaten
- 2. Nichtdeterministische endliche Automaten
- 3. Reguläre Ausdrücke
- 4. Nichtreguläre Sprachen
- 5. Algorithmen mit / für endliche Automaten

Wann ist nun ein DEA A nicht minimal?

- Wenn es nicht-erreichbare Zustände gibt, d.h. es gibt q mit (q₀, y) ⊢_A* (q, λ) für kein Wort y ∈ Σ*.
 - Im Folgenden: A hat nur erreichbare Zustände! (s.u.)
- Wenn es Zustände $q \neq q'$ gibt mit

$$\forall w \exists p, p' \in Q : |\{p, p'\} \cap F| \neq 1 \Longrightarrow ((q, w) \vdash_A^* (p, \lambda) \iff (q', w) \vdash_A^* (p', \lambda))$$

d.h. q und q' sind nicht *trennbar*, sondern *äquivalent*.

Es bezeichne [q] die Menge aller Zustände, die zu q äquivalent sind. Lemma: "Nicht-Trennbarkeit" ist tatsächlich eine Äquivalenzrelation auf Q. Beachte: Bislang Äquivalenzrelationen auf Σ^* , jetzt auf der Zustandsmenge Q!

Eigenschaften äquivalenter Zustände

1. Sind q und q' äquivalent, dann auch $\delta(q, a)$ und $\delta(q', a)$.

Betrachte $w \in \Sigma^*$ sowie $(\delta(q, a), w) \vdash_A^* (p, \lambda)$ und $(\delta(q', a), w) \vdash_A^* (p', \lambda)$.

Also gilt: $(q, aw) \vdash_A^* (p, \lambda)$ und $(q', aw) \vdash_A^* (p', \lambda)$,

wobei $|\{p, p'\} \cap F| \neq 1$, denn q und q' sind nicht trennbar.

2. Sind q und q' äquivalent, dann gilt $q \in F \iff q' \in F$.

Zur Konstruktion des Minimalautomaten I

Definiere zu $A = (Q, \Sigma, \delta, q_0, F)$ neuen Automaten $A_{[]} = (Q_{[]}, \Sigma, \delta_{[]}, [q_0], F_{[]})$ mit

- Anfangszustand [q₀]
- Endzuständen $F_{[\,]} := \{[q] \mid q \in F\}$
- Übergangsfunktion $\delta_{[]}([q], \alpha) := [\delta(q, \alpha)]$

Mit A hat auch $A_{[]}$ hat keine nicht-erreichbaren Zustände.

Betrachte $f: Q \to Q_{[]}$ mit f(q) := [q]. Aus den aufgeführten Eigenschaften folgt:

Satz: f ist Automatenmorphismus; und damit gilt $L(A) = L(A_{[]})$.

Warum genau?

Zur Konstruktion des Minimalautomaten II

Satz: $A_{[]}$ isomorph zum Minimalautomaten von A, also zu $A_{min}(L(A))$.

Beweis: Vergleiche $\equiv_{A_{\square}}$ und $x \equiv_{L} y$ für L := L(A):

- $\equiv_{A_{\square}}$ ist Verfeinerung von \equiv_{L} , da $L = L(A_{\square})$.
- Sei $x \equiv_L y$. Für alle $w \in \Sigma^*$ ist $xw \in L \iff yw \in L$. In A gibt es Zustände q_x mit $(q_0, x) \vdash_A^* (q_x, \lambda)$ und q_y mit $(q_0, y) \vdash_A^* (q_y, \lambda)$ sowie Zustände q_x^w und q_y^w mit $(q_x, w) \vdash_A^* (q_x^w, \lambda)$ und $(q_y, w) \vdash_A^* (q_y^w, \lambda)$. Da L = L(A), gilt: $q_x^w \in F_{[]}$ gdw. $q_y^w \in F_{[]}$. Daher ist: $[q_x] = [q_y]$.

$$([\mathfrak{q}_0],\mathfrak{x})\vdash_{A_{[]}}^*([\mathfrak{q}_\mathfrak{x}],\mathfrak{\lambda})\quad \wedge\quad ([\mathfrak{q}_0],\mathfrak{y})\vdash_{A_{[]}}^*([\mathfrak{q}_\mathfrak{x}],\mathfrak{\lambda}).$$

$$\sim x \equiv_{A_{[]}} y$$
.

Konstruktion des Minimalautomaten III

Gegeben sei DEA $A = (Q, \Sigma, \delta, q_0, F)$.

Schritt (a): Bestimme die Menge der von q_0 **e**rreichbaren Zustände E! Bezeichne E_i die Menge der in $\leq i$ Schritten erreichbaren Zustände.

- Setze $E_0 := \{q_0\}.$
- Wiederhole

$$E_{i+1}:=E_i\cup\{\delta(q,\alpha)\mid q\in E_i,\alpha\in\Sigma\}$$
 bis erstmals $E_i=E_{i+1}$ gilt.

- Dann ist $E = E_i$.
- Entferne die Zustände $Q \setminus E$ aus dem Automaten.

Alternative Darstellung

Hinweis: reflexiv-transitive Hülle der 1-Schritt-Erreichbarkeitsrelation

Genauer: Definiere zu DEA $A=(Q,\Sigma,\delta,q_0,F)$ die *1-Schritt-Zustandserreich-barkeitsrelation* $R_A=\{(p,q)\in Q\times Q\mid \exists \alpha\in\Sigma: \delta(p,\alpha)=q\}$. Ist R_A^* die reflexiv-transitive Hülle von R_A , so ist

$$\{q \in Q \mid (q_0, q) \in R_A^*\}$$

die Menge der von q₀ erreichbaren Zustände.

Frage: Welches Verfahren ist besser ?!

Konstruktion des Minimalautomaten IV

Schritt (b): Bestimme die Äquivalenzrelation \equiv_A im nach (a) verkleinerten Automaten wie folgt mit folgenden *Markierungsalgorithmus*:

- Verwende eine Tabelle aller ungeordneten Zustandspaare $\{q, q'\}$ mit $q \neq q'$.
- Markiere alle Paare $\{q, q'\}$ als nicht-äquivalent, bei denen $|\{q, q'\} \cap F| = 1$.
- Wiederhole, solange noch Änderungen in der Tabelle entstehen:

```
Für jedes nicht-markierte Paar \{q, q'\} und jedes a \in \Sigma
Teste, ob \{\delta(q, a), \delta(q', a)\} bereits markiert ist.
Wenn ja \sim markiere \{q, q'\}.
```

Alle am Ende nicht-markierten Paare sind äquivalent!

Gesamtaufwand (mit geeigneten Datenstrukturen und $k = |\Sigma|$ und n = |Q|, ohne Beweis):

$$O(k \cdot n^2)$$

Ein Beispiel:

In VL 3 haben wir zu $L = \{a, aa, ab, abb\}$ den *Präfixbaumakzeptor* konstruiert:

δ	a	b	Runde	neue markierte Paare
$\rightarrow Q_0$	Q ₁	Ø	0	$M_0 = \{\{Q_i, \emptyset\}, \{Q_i, Q_0\} \mid i = 1, 2, 3, 4\}$
$Q_1 \rightarrow$	Q_2	Q_3	1	$\{\{Q_1,Q_2\}\}\ denn\ \{\delta(Q_1,\alpha),\delta(Q_2,\alpha)\}\in M_0$
$Q_2 \rightarrow$	\emptyset	\emptyset	1	$\{\{Q_1, Q_3\}, \{Q_1, Q_4\}, \{Q_2, Q_3\}, \{Q_3, Q_4\}, \{Q_0, \emptyset\}\}$
$Q_3 \rightarrow $	Ø	Q_4	2	
$Q_4 \rightarrow$	Ø	\emptyset	übriggebliebene unmarkierte Paare	
Ø	Ø	Ø		$\{\{Q_2, Q_4\}\}$

Der Minimalautomat für $L = \{a, aa, ab, abb\}$ ist daher:

δ	a	b
$\rightarrow Q_0$	Q ₁	Ø
$Q_1 \rightarrow$	Q_2	Q_3
$Q_2 \rightarrow$	Ø	Ø
$Q_3 \rightarrow$	$\mid \emptyset$	Q_2
\emptyset	$\mid \emptyset$	Ø

Andere Sprechweise: *Verschmelzung* der Zustände Q₂ und Q₄.

Beobachte: Verschmelzung definiert (hier) Automatenmorphismus.

Warum?

Weitere Fragen an vorgegebenen DEA A: (evtl. zweiter DEA A')

• Ist L(A) = ∅ ? *Leerheitsproblem*

• Ist L(A) = L(A') ? Äquivalenzproblem

• Ist $L(A) \subseteq L(A')$? Teilmengenproblem

• Ist L(A) endlich ? *Endlichkeitsproblem*

Leerheitsproblem

Wir haben schon zwei Methoden kennen gelernt, die Menge E der erreichbaren Zustände zu berechnen. Die vom Automaten beschriebene Sprache ist leer gdw. E keine Endzustände enthält.

Alternativ: Betrachte zu DEA $A = (Q, \Sigma, \delta, q_0, F)$ die erweiterte 1-Schritt-Zustandserreichbarkeitsrelation

$$R_{A,ext} = \{(p,q) \in Q \times Q \mid \exists \alpha \in \Sigma : \delta(p,\alpha) = q\} \cup F \times \{q_f\},\$$

wobei $q_f \notin Q$ und mit $Q' = Q \cup \{q_f\}$ gilt $R_{A,ext} \subset Q' \times Q'$.

$$L(A) = \emptyset$$
 gdw. $(q_0, q_f) \notin R_{A,ext}^*$.

Die Existenz einer Punkt-zu-Punkt-Verbindung kann sogar in Linearzeit O(|Q|) berechnet werden. (z.B.: Dijkstras Algorithmus)

Teilmengen- und Äquivalenzproblem

Beobachte: $L(A) \subseteq L(A')$ gdw. $L(A) \setminus L(A') = \emptyset$.

Daher:

- 1. Aus gegebenen DEAs A und A' berechne DEA A'' mit $L(A'') = L(A) \setminus L(A')$. Dies geht direkt mit *Produktautomatenkonstruktion*, wie auf Monoidebene erläutert.
- 2. Entscheide ob $L(A'') = \emptyset$ mit vorher skizziertem Verfahren.

Wegen L(A) = L(A') gdw. $L(A) \subseteq L(A')$ und $L(A') \subseteq L(A)$ folgt damit die Entscheidbarkeit des Äquivalenzproblems.

Endlichkeitsproblem zu DEA $A = (Q, \Sigma, \delta, q_0, F)$

Wie im Beweis zum Pumping-Lemma sieht man:

Ist L(A) unendlich, so gibt es einen Zustand q, einen (evtl. leeren) Weg vom Anfangszustand q_0 nach q, einen nicht-leeren Weg von q nach q und einen (evtl. leeren) Weg von q zu einem Endzustand.

Die Umkehrung gilt sogar trivialerweise!

Bezeichnet R_A die 1-Schritt-Zustandserreichbarkeitsrelation, so berechne E': die Menge der Zustände, die sowohl erreichbar als auch *co-erreichbar* sind (d.h., für alle $q \in E'$ gilt: $(q_0, q) \in R_A^*$ und $\exists q_f \in F : (q, q_f) \in R_A^*$).

Dann gilt: L(A) ist unendlich gdw. $\exists q \in E' : (q, q) \in R_A^+$.

EA zur Mustersuche (Pattern Matching)

Beispiel: Finde Vorkommen des Musters (Pattern)

$$p = ababac$$

in einem Text $t \in \{a, b, c\}^*$.

Wir haben schon früher gesehen: NEAs sind nützlich für diese Aufgabe.

In RA-artiger Notation beobachten wir:

Lemma: $t \in \Sigma^*$ enthält das Muster p gdw. $t \in \Sigma^* \{p\} \Sigma^*$.

Klar: Die Bedingung lässt sich sofort in NEA umsetzen.

Frage: Wie lassen sich hierzu DEAs nutzen?

DEA zur Mustersuche

Vorteil wäre: Linearzeitalgorithmus zur Mustersuche.

Dagegen naiv: quadratischer Algorithmus zur Mustersuche; nämlich

Problem: Zurücksetzen bei "falschem Alarm".

Ziel: Vermeide Potenzautomatenkonstruktion.

Wie geht das?

Einige Hilfsbegriffe

u heißt *Teilwort* von $x \in \Sigma^*$ gdw. $x \in \Sigma^* \{u\} \Sigma^*$.

Mustersuche ist also die Suche nach Teilwörtern.

u heißt *Präfix* oder *Anfangswort* von $x \in \Sigma^*$ gdw. $x \in \{u\}\Sigma^*$.

u heißt *Suffix* oder *Endwort* von $x \in \Sigma^*$ gdw. $x \in \Sigma^*\{u\}$.

Ein Teilwort / Präfix / Suffix $\mathfrak u$ von $\mathfrak x$ heißt *echt* gdw. $\ell(\mathfrak u) < \ell(\mathfrak x)$.

Ein echtes Teilwort $\mathfrak u$ von $\mathfrak x$, das sowohl Präfix als auch Suffix von $\mathfrak x$ ist, heißt Rand (der Breite $\ell(\mathfrak u)$) von $\mathfrak x$.

Beispiel: Sei x = abacab.

Die echten Präfixe von x sind λ , a, ab, aba, abac, abaca; die echten Suffixe von x sind λ , b, ab, cab, acab, bacab. Ränder von x sind ab, ab; der Rand ab hat die Breite 2.

DEA-Konstruktionsidee für Mustersuche nach Knuth/Morris/Pratt (Matjasewitsch)

Frage: Wo darf DEA nach einem Mismatch wieder "einsetzen"?

Idee: Verwende die im bisher gelesenen Präfix des Musters steckende Info!

Betrachte

Die Symbole an den Positionen $0, \ldots, 4$ haben übereingestimmt. Der Vergleich c-d an Position 5 ergibt einen Mismatch. Das Muster kann bis Position 3 weitergeschoben werden, und der Vergleich wird ab Position 5 des Textes fortgesetzt.

Wie weit dürfen wir schieben?

Die *Schiebedistanz* richtet sich nach dem breitesten Rand des übereinstimmenden Präfixes des Musters.

Im Beispiel ist das übereinstimmende Präfix abcab; es hat die Länge j = 5.

Sein breitester Rand ist ab mit der Breite b = 2.

Die Schiebedistanz beträgt j – b = 5 - 2 = 3.

Die in der *Vorlaufphase* zu gewinnende Information besteht also darin, für jedes Präfix des Musters die Länge seines breitesten Randes zu bestimmen.

Eine wichtige Beobachtung für die Vorlaufphase:

Lemma: Seien r, s Ränder eines Wortes x mit $\ell(r) < \ell(s)$. Dann ist r ein Rand von s.

Beweis: Das Bild zeigt schematisch x mit den Rändern r und s.

Als Rand von x ist r Präfix von x und damit, weil kürzer als s, auch echtes Präfix von s.

Aber r ist auch Suffix von x und damit echtes Suffix von s. Also ist r Rand von s.

Ist s der breiteste Rand von x, so ergibt sich der nächstschmälere Rand r von x als breitester Rand von s usw.

Ein weiterer wichtiger Begriff

Sei $x \in \Sigma^*$ und $\alpha \in \Sigma$. Ein Rand r von x lässt sich durch α *fortsetzen*, wenn $r\alpha$ Rand von $x\alpha$ ist.

Bild \sim Ein Rand r der Breite j von x lässt sich durch α fortsetzen, wenn $x[j] = \alpha$.

Die Vorlaufphase

In der Vorlaufphase wird ein Array b der Länge m + 1 berechnet.

Der Eintrag b[i] enthält für jedes Präfix der Länge i des Musters die *Breite seines breitesten Randes* (i = 0, ..., m).

Das Präfix λ der Länge i = 0 hat keinen Rand; daher wird b[0] = -1 gesetzt.

Sind die Werte $b[0], \ldots, b[i]$ bereits bekannt, so ergibt sich b[i+1], indem geprüft wird, ob sich ein Rand des Präfixes $p_0 \ldots p_{i-1}$ durch p_i fortsetzen lässt. Dies ist der Fall, wenn $p_{b[i]} = p_i$ ist (Bild!).

Die zu prüfenden Ränder ergeben sich nach obigem Lemma in absteigender Breite aus den Werten b[i], b[b[i]] usw.

Ein Beispiel

Beispiel: Für das Muster p = ababaa ergeben sich die Randbreiten im Array b wie folgt. Beispielsweise ist b[5] = 3, weil das Präfix ababa der Länge 5 einen Rand der Breite 3 hat.

Die Vorlaufphase: In C-Code:

```
void kmpPreprocess()
{
    int i=0, j=-1;
    b[i]=j;
    while (i<m)
    {
        while (j>=0 && p[i]!=p[j]) j=b[j];
        i++; j++;
        b[i]=j;
    }
}
```

Knuth-Morris-Pratt Such-Algorithmus

Es werden sogar <u>alle</u> Treffer gemeldet.

```
void kmpSearch()
{
    int i=0, j=0;
    while (i<n)
    {
        while (j>=0 && t[i]!=p[j]) j=b[j];
        i++; j++;
        if (j==m)
        {
            report(i-j);
            j=b[j];
        }
    }
}
```

Sehen Sie den DEA?

Ein Beispiel mit p = ababaa.