Chapter 1 – The Geometry of Euclidean Space

1.1 - Vectors in 2D and 3D Space

Parametric Equations: We have the line L and the points P, Q

 $x = x_p + (x_q - x_p)t$ $y = y_p + (y_q - y_p)t$ $z = z_p + (z_q - z_p)t$ So we have L = (x, y, z)

1.2 - Inner Product, Distance, and Length

Nothing of note - basic MATA23/MATB24 Review

1.3 – Matrices, Determinants, and Cross Products

Nothing of note - basic MATA23/MATB24 Review

1.4 - Cylindrical and Spherical Coordinates

To be determined...

1.5 - N-Dimensional Euclidean Space

Nothing of note - basic MATA23/MATB24 Review

Chapter 2 - Differentiation

2.1 - The Geometry of Real Valued Functions

Level Sets – f(x,y,z) where f is a constant value. Thus, imagine a level set as a cut of a function horizontally where for ex. $x^2+y^2=1$ We can draw **level curves** to model the appearance of a function by choosing f(x,y,z) = c for several different c values

2.2 – Limits and Continuity

We have the idea of **Open Sets** – a set where for every point x_0 in U, there exists some r > 0 that $D_r(x_0)$ is contained within U Boundary Point - A point is a boundary point of set A if every neighborhood of x contains a point IN and NOT IN A **Continuity** – We say something is continuous if limit of $(x \rightarrow x_0)$ $f(x) = f(x_0)$

2.3 – Differentiation

Partial Derivatives - Taking the derivative in respect to one of the multiple variables. In these notes, referred to as pdx

The Linear Approximation – We have the linear approximation to a plane z = ax + by + c as approximated (affine approximation):

 $z = f(x_0, y_0) + pd_x(x_0, y_0)[x - x_0] + pd_y(x_0, y_0)[y - y_0]$

This defines the equation of the **plane tangent** to the graph at the point (x_0, y_0)

Differentiability: We say that x is differentiable if pd_x and pd_y are defined, and as $(x, y) \rightarrow (x_0, y_0)$, we have f(x, y) - z (noted above) = 0 That is, the equation z is a good approximation to the function f

Matrix of Partial Derivatives:

We have an idea of a matrix of partial derivatives, $Df(x_0)$ where for every function 1... n, we have that each:

Row = f_1/x_i where x is each variable. For example, given the function (x, x^2, y)

row 1 = [1, 0]row2 = [2x, 0],row3 = [0, 1]

Column = f_i/x_1 where f_i is each function, so for (x, x^2, y)

col1 = [1, 2x, 0] col2 = [0, 0, 1]

Gradient: We have the gradient of a function f by having the vector of [pdx, pdy, pdz...] for every variable x, y, z... in f.

2.5 - Properties of the Derivative

The Chain Rule \rightarrow D(f . g) = Df(y₀)Dg(x₀). That is, we take f(g(x)) as the product of the matrix of partial derivatives of f(x) with g(x) Remember that we have to evaluate the matrices for f = f(g(x,y)) and g = g(x,y) then take their product

2.6 - Gradients and Directional Derivatives

A directional derivative is obtained by taking the dot product of Grad(f) and the vector unit vector v

The **gradient** also points to the point of fastest increase at a given point (x, y...)

The tangent of a point (x, y, z) is calculated by the dot product of Grad(f) with $(x - x_0, y - y_0, z - z_0)$ as defined above in Chapter 2.3

Chapter 3 – High-Order Derivatives: Maxima/Minima

3.1 - Iterated Partial Derivatives

We can have iterated partial derivatives, such as pd_x^2 by taking the derivative of x with respect to pd_x already, same for y, z, etc. **Equality of Mixed Partials:** The partial derivatives $f^2/d_x d_y = f^2/d_y d_x$

3.2 - Taylor's Theorem for Multiple Variables

Fuck this shit tbh

3.3 - Extrema of Real-Valued Functions

Local Minimum \rightarrow For all x in the neighborhood of x_0 , we have $f(x) >= f(x_0)$

Local Maxima \rightarrow For all x in the neighborhood of x_0 , we have $f(x) <= f(x_0)$

A critical point is defined if f is not differentiable or $Df(x_0) = 0$

Any critical point that is not a local maxima or local minima is a saddle point

First Derivative Test \rightarrow If the first derivative Df(x₀) = 0 then x₀ is a critical point

Second Derivative Test \rightarrow Use FDT above to find critical points. We then construct a hessian matrix, and using the Hessian Matrix, we find the determinant. If $\det(Hf(x_0)) < 0$ then it is a **saddle point**. If $\det(Hf(x_0)) > 0$ then it is a **relative extrema**. Otherwise, inconclusive. **Finding Relative Extrema Nature** \rightarrow We then take a look at pd_x^2 , if it is > 0 then it is a **local minimum**, otherwise, it is a **local maximum**. **Hessian Matrix** \rightarrow A matrix constructed by having a function f(x, y, z):

We then take the values of the critical points of f(x, y, z) and calculate the values of each derivative above. If $det(Hf(x_0)) = 0$ then the SDT gives us the nature of the critical point.

If the Hessian Matrix is positive definite (all eigenvalues are positive) then it is a local minima

Elsewise, if the Hessian Matrix is negative definite (

3.4 - Constrained Extrema and LaGrange Multipliers

To use LaGrange multipliers, we have to take the function f(x, y, z) and the constraint g(x, y, z) = c and produce:

F(x, y, z, L) = f(x, y, z) - L(g(x, y, z) - c)

So for example, given that we have $f(x, y) = 6x^2 + 12y^2$ and g(x, y) = x + y = 90 we can construct:

 $F(x, y, L) = 6x^2 + 12y^2 - L(x + y - 90)$

 $pd_x = 12x - L \rightarrow x = L/12$

 $pd_y = 24y - L \rightarrow y = L/24$

 $pd_L = x + y - 90 \rightarrow L/12 + L/24 - 90 = 0 \rightarrow -3L/24 = -90 \rightarrow L = 720$

We equate each of these = 0, then solve for Lambda (L) and plug back in L into x, y to find our extrema

Chapter 5 – Double and Triple Integrals

5.1 - An Introduction

The notes just tapered off here... lol.