

Ria Ji

What is Shap(SHapley Additive exPlannations)?

Feature input

Interpretable Soft Sensors using Extremely Randomized Trees and SHAP

SHAP

The impacts of this project is the ability to provide insights into the relationship between the input features and the target variable. This information can help in understanding the underlying process and can be used for further improvements. The model can also be used for monitoring and control purposes, for example, detecting anomalies or predicting outcomes in real-time.

data pre-process

model selection

	RMSE	R^2
ET Regressor	3.8562	0.7932
Random Forest	4.0111	0.7771
Gradient Boosting Regressor	4.0301	0.7746
Huber Regressor	4.358	0.7367
Ridge Regression	4.4054	0.7311
Linear Regression	4.4067	0.7308
Neural networks (3 dense layers)	4.8609	0.6845
Lasso Regression	5.1631	0.6329
Elastic Net	5.3317	0.6093
Decision Tree Regressor	5.4937	0.5756

case study on real industrial process data using shap algorithm visualization-

Feature interactions

Heatmap

feature improtance

single prediction

