

Contents

Foreword	vi 1
Numerical analysis of fibre bridging and fatigue crack growth in metal matrix composite materials	12
A conceptual framework for interpretation of MMC fatigue	21
An approach to fatigue life modeling in titanium-matrix composites	29
Fatigue damage in a unidirectional SiC/Al composite due to push-pull and zero-pull loading Y. Peng and T.K. Chaki (New York, USA)	38
Effects of control mode and R-ratio on the fatigue behaviour of a metal matrix composite	47
Failure mechanisms during isothermal fatigue of SiC/Ti-24A1-11Nb composites	55
Fiber volume fraction effects on fatigue crack growth in SiC/Ti-15-3 composite	68
Fractographic interpretation of failure mechanisms in titanium matrix composites W.S. Johnson, (Atlanta, USA), J.L. Miller and M. Mirdamadi (Hampton, USA)	78
An investigation of the effects of microstructure on fatigue damage in a symmetric [0/90] _{2s} silicon carbide (SCS6) fiber-reinforced titanium matrix composite	89
On the development of fatigue failure maps for titanium matrix composites	103
Constituent damage mechanisms in metal matrix composites under fatigue loading, and their effects on fatigue life Bhaskar S. Majumdar and Golam M. Newaz (OH, USA)	114
Isothermal fatigue behavior of a titanium matrix composite under a hybrid strain-controlled loading condition Brian Sanders and Shankar Mall (OH, USA)	130
Interfaces and fatigue damage in a metastable beta titanium matrix composite	140
Thermo-mechanical fatigue modeling of advanced metal matrix composites in the presence of microstructural details Todd O. Williams and Marek-Jerzy Pindera (VA, USA)	156
Characterization and modeling of stiffness reduction in SCS-6-Ti composites under low cycle fatigue loading P.C. Wang, S.M. Jeng and JM. Yang (CA, USA)	173
Thermal fatigue behavior of squeeze cast, discontinuous alumina-silicate fiber-reinforced aluminium alloy (A356) composite	181
The effect of fatigue microcracks on rapid catastrophic failure in Al-SiC composites	192

