

Mark Scheme (Results)

Summer 2021

Pearson Edexcel International Advanced Level In Chemistry (WCH16)

Paper 01: Practical Skills in Chemistry II

Question Number	Answer	Additional guidance	Mark
1(a)(i)	• $VO_3^- + 2H^+ \rightarrow VO_2^+ + H_2O$	Allow multiples	1
		Ignore state symbols even if incorrect	
		Do not award uncancelled SO ₄ ²⁻ ions	

Question Number	Answer	Additional guidance	Mark
1(a)(ii)	• yellow	Ignore pale/light/dark/bright Do not award any other colour	1

Question Number	Answer	Additional guidance	Mark
1(a)(iii)	An explanation that makes reference to the following points:		2
	correct colours of the oxidation states of vanadium (1)	+5 (oxidation state of vanadium) is yellow and +4 is blue and +3 is green and +2 is violet Allow starting colour/answer to (a)(ii) for yellow Allow just all oxidation states/species have the correct colours	
	correct explanation for first / initial green (1)	Initial green is due to mixture of VO_2^+ and VO^{2+} (rather than V^{3+})	
		Accept initial green is due to mixture of +5 and +4 oxidation states / mixture of yellow and blue	
		Allow vanadium cannot be oxidised from +3 to +4 in these conditions_/_by zinc	

Question Number	Answer	Additional guidance	Mark
1(a)(iv)	An explanation which makes reference to the following:		2
	• oxidation of vanadium (from +2 to +3) by oxygen/ O_2 (1)	Allow air for oxygen Allow aerial oxidation Do not award +2 to +4/+5	
	 oxygen/O₂ isn't a strong enough oxidising agent to oxidise vanadium(III) (under these conditions) (1) 	Standalone mark Allow oxygen/O ₂ cannot oxidise +3 Allow oxidation to +4/+5 has a high activation energy Allow oxidation to +4/+5 is too slow Allow any indication that no further oxidation (of +3) occurs eg V ³⁺ ions are harder to oxidise Ignore just no further reaction occurs Ignore just V ³⁺ is stable	

Question Number	Answer	Additional guidance	Mark
1(b)(i)	Any two from:	Ignore missing square brackets Do not award any complexes containing NH ₃ /NH ₄ ⁺	2
	• [CuCl ₄] ²⁻ (1)	Accept [CuCl ₃] ⁻ / [Cu(H ₂ O) ₃ Cl ₃] ⁻ Do not award [CuCl ₂] ⁻	
	• $[Cu(H_2O)_6]^{2+}$ (1)	Allow [Cu(H ₂ O) ₄] ²⁺	
	• [Cu(H ₂ O) ₅ Cl] ⁺ (1)	Comment allow correct names: tetrachlorocuprate(II) hexaaquacopper(II) pentaaquachlorocopper(II)	

Question Number	Answer	Additional guidance	Mark
1(b)(ii)	• turns (from blue-green to) green	Accept turns green then yellow Accept turns yellow	1
		Allow turns green-yellow or any combination	

Question Number	Answer	Additional guidance	Mark
1(b)(iii)	A description which includes:		1
	(pale) blue precipitate (of copper((II)) hydroxide)	Allow solid/ppt/ppte for precipitate	
		Ignore gas evolved Ignore deep blue solution	
		Do not award effervescence Do not award incorrect name/formula of precipitate	

Question Number	Answer	Additional guidance	Mark
1(b)(iv)	An answer which makes reference to the following points:		2
	• (gas evolved is) ammonia (1)	Accept NH ₃ Allow just NH ₄ ⁺ + OH ⁻ \rightarrow NH ₃ + H ₂ O	
	(test for ammonia) turns (damp red) litmus paper blue OR	Allow turns universal indicator paper blue	
	produces white smoke with HCl (1)	Do not award white/misty fumes Ignore $NH_3(g) + HCl(g) \rightarrow NH_4Cl(s)$	

Question Number	Answer	Additional guidance	Mark
1(c)	An explanation that makes reference to the following points:		3
	• (formation of) ethanoic acid / CH₃COOH (on addition of concentrated sulfuric acid) (1)	Accept acetic acid Allow just carboxylic acid	
	• (formation of) ester / ethyl ethanoate (on addition of ethanol) (1)	Accept CH ₃ COOC ₂ H ₅ Accept ethyl acetate Allow name or formula of any ethyl ester	
	anion Y ⁻ is CH₃COO⁻/ ethanoate (1)	Accept salt is ammonium ethanoate/CH ₃ CO ₂ NH ₄ Accept ammonium acetate Allow name or formula of any carboxylate ion containing between one and four carbon atoms	

(Total for Question 1 = 15 marks)

Question Number	Answer	Additional guidance	Mark
2(a)	Any one of: • quicker		1
	 do not need the accuracy of a graduated pipette 	Allow volume is approximate/to 1SF Ignore there are not 8 cm³ pipettes Ignore water is in excess	

Question Number	Answer	Additional guidance	Mark
2(b)	dark blue	Allow deep/royal for dark	1
		Do not award 'just' blue Do not award mention of any other colour	
		Ignore any reference to the formation of a precipitate that subsequently dissolves	

Question Number	Answer	Additional guidance	Mark
2(c)			1
	• ammonia <mark>/NH₃</mark> (gas) is toxic	Accept poisonous/corrosive/irritant for toxic Ignore harmful/dangerous/health hazard	

Question Number	Answer	Additional guidance	Mark
2(d)	 the tetraamminecopper(II) sulfate-1-water/ Cu(NH₃)₄SO₄.H₂O is less soluble in (aqueous) ethanol (than water so crystallises) 	Allow product/salt/complex/crystals/ precipitate/solid/it for tetraamminecopper(II) sulfate-1-water Allow insoluble in ethanol	1

Question Number	Answer		Additional guidance	Mark
2(e)	A diagram showing:		Example of diagram:	3
			filter paper vacuum pump	
	Buchner funnel and labelled filter paper	(1)	Funnel must show perforations/holes below the filter paper Allow any properly shaped Buchner funnel Allow sintered glass funnel Do not award porous paper Do not award fluted filter paper	
	Buchner flask and (rubber) seal	(1)	Allow conical flask with side arm	
	(side arm with) vacuum pump	(1)	Allow vacuum/pump/reduced pressure/aspirator/suction Ignore just water tap Do not award pressure out/negative pressure	

Question Number	Answer	Additional guidance	Mark
2(f)(i)	to remove (soluble) impurities	Ignore to wash the crystals	1

Question Number	Ansv	ver	Additional guidance	Mark
2(f)(ii)	•	hot ethanol would dissolve the tetraamminecopper(II) sulfate-1-water/Cu(NH ₃) ₄ SO ₄ .H ₂ O OR	Allow product/salt/complex/crystals/ precipitate/solid/it for tetraamminecopper(II) sulfate-1-water	1
		so only a very small/the minimum amount of tetraamminecopper(II) sulfate-1-water/ $Cu(NH_3)_4SO_4.H_2O$ dissolves (in cold ethanol)	Allow just so it does not dissolve Allow just it is less soluble in cold ethanol Do not award insoluble in ethanol Ignore just to minimise loss of product	

Question Number	Answer	Additional guidance	Mark
2(g)(i)		Example of calculation:	3
	• M_r values of CuSO ₄ .5H ₂ O and Cu(NH ₃) ₄ SO ₄ .H ₂ O ((1) $M_r \text{ CuSO}_4.5\text{H}_2\text{O} = 249.6$ Allow 249.5	
		M_r Cu(NH ₃) ₄ SO ₄ .H ₂ O = 245.6 Allow 245.5	
	• mols of CuSO ₄ .5H ₂ O	Mols CuSO ₄ .5H ₂ O	
	and	$= 2.17 (= 0.0086939 / 8.6939 \times 10^{-3})$ 249.6	
	mols Cu(NH ₃) ₄ SO ₄ .H ₂ O	Mols Cu(NH ₃) ₄ SO ₄ .H ₂ O = 2.54 (= $0.010342 / 1.0342 \times 10^{-2}$)	
	OR	245.6	
	theoretical mass Cu(NH ₃) ₄ SO ₄ .H ₂ O (Theoretical mass $Cu(NH_3)_4SO_4.H_2O$ = 0.0086939 × 245.6 = 2.1352 (g) TE on M1	
	percentage yield to 2SF or 3SF (1) % yield = 0.010342/0.0086939 × 100 = 118.96 = 119%/120% OR % yield = 2.54/2.1352 × 100	
		= 119%/120% Allow 119.0% TE on M2	
		Correct answer with some working scores (3)	
		Just $2.54/2.17 \times 100 = 117\%/120\%$ scores (0	
		Just $2.17/2.54 \times 100 = 85.4\%/85\%$ scores (0) If no other mark awarded, M_c and mols of	<mark>)</mark>
		CuSO ₄ .5H ₂ O / Cu(NH ₃) ₄ SO ₄ .H ₂ O scores (1)	

Question Number	Answer	Additional guidance	Mark
2(g)(ii)	An answer which makes reference to the following point:		1
	damp crystals	Allow wet/not properly dried/some ethanol/water remains	
		Allow product etc for crystals	
		Ignore just impurities	
		Do not award it is a hydrated salt/has water of crystallisation	

(Total for Question 2 = 13 marks)

Question Number	Answer	Additional guidance	Mark
3(a)(i)	• (Compound) E	Accept correct structure:	1

Question Number	Answer	Additional guidance	Mark
3(a)(ii)	• (Compound) B	Accept correct structure:	1

Question Number	Answer	Additional guidance	Mark
3(a)(iii)	• (Compound) F	Accept correct structure:	1

Question Number	Answer	Additional guidance	Mark
3(a)(iv)	• (Compound) D	Accept correct structure:	1

Question Number	Answer	Additional guidance	Mark
3(b)(i)	An answer that makes reference to the following points: • chemical test (1)	Result dependent on suitable test If two or more tests given, all results must be correct to score (2)	2
	• result of the selected test with A and B (1)	Examples of correct answers:	
	Chemical test	Result with A and B	
	(heat with) sodium dichromate((VI))/Na ₂ Cr ₂ O ₇ and sulfuric acid/H ₂ SO ₄ Allow just acidified dichromate / H ⁺ and Cr ₂ O ₇ ²⁻	(solution changes from orange to) green/blue with B (and no change with A)	
		OR	
	metal carbonate/metal hydrogencarbonate by name or formula	effervescence/fizzing/bubbles with A (and no change with B)	
		OR	
	magnesium/Mg	effervescence/fizzing/bubbles with A (and no change with B)	
		OR	
	ethanol/C ₂ H ₅ OH and a strong acid (by name or formula) and warm Allow just H ⁺ for strong acid	fruity smell with A (and no change with B)	
		OR	
	ethanoic acid/CH ₃ COOH and a strong acid (by name or formula) and warm Allow just H ⁺ for strong acid	fruity smell with B (and no change with A)	
		Do not award sodium Do not award PCl₅ Do not award iodoform test Do not award Brady's reagent/2,4-DNP(H)	1

Question Number	Answer	Additional guidance	Mark
3(b)(ii)	An answer that makes reference to the following points:	Result dependent on test	2
	• suitable test (1)	(Warm with) iodine/ I_2 and (aqueous) sodium hydroxide/NaOH/alkali Allow iodoform test Accept potassium iodide/KI and sodium chlorate((I))/NaClO	
	result of the selected test with C and D (1)	(Pale) yellow precipitate with C (and no change with D) Allow antiseptic smell with C (and no change with D)	
		If no other mark awarded, Brady's reagent/2,4-DNP(H) and measure melting temperature of (purified orange) solid and compare with data book scores (1)	

Question Number	Answer	Additional guidance	Mark
3(c)(i)	(the expansion of trapped) air		1

Question Number	Answer	Additional guidance	Mark
3(c)(ii)	 heat is distributed more uniformly/evenly (by convection) 	Allow the temperature is more even/uniform Allow the temperature measurement is more accurate Allow the temperature rises more gradually Ignore references to evaporation	1

Question Number	Answer	Additional guidance	Mark
3(c)(iii)	 the boiling temperature of compound A is higher than 100°C/water 	Allow the boiling temperature of mineral oil is higher than water Allow mineral oil boils above 180°C Allow mineral oil boils at a higher temperature than compound A Allow water boils below 120°C	1
		Ignore just water boils at 100°C Ignore references to evaporation	

Question Number	Answer	Additional guidance	Mark
3(c)(iv)	(boiling temperature depends on atmospheric) pressure (which) is variable	Allow boiling temperature is pressure dependent Ignore references to variation in just conditions/temperature	1

Question Number	Answer	Additional guidance	Mark
3(d)(i)		If name and formula given, both must be correct	2
	• solid M (anhydrous) calcium chloride/CaCl ₂ (1)	Allow (anhydrous) calcium sulfate/ sodium sulfate/magnesium sulfate/silica gel	
		Do not award sulfuric acid/copper sulfate/ cobalt chloride/calcium oxide	
	• solid N soda lime(1)	Allow potassium hydroxide/sodium hydroxide/calcium hydroxide/calcium oxide Do not award limewater	
		Correct substances in reverse order scores (1)	

Question Number	Answer	Additional guidance	Mark
3(d)(ii)		Example of calculation:	4
	mass of hydrogen	mass H = $\frac{2}{12} \times 1.28 = 0.14222$ (g)	
	OR	OR	
	moles hydrogen (1)	moles H = $\frac{1.28}{18}$ × 2 = 0.14222 (mols)	
	mass of carbon	mass C = $\frac{12}{44}$ × 3.14 = 0.85636 (g)	
	OR	OR	
	moles carbon (dioxide) (1)	moles $C/CO_2 = 3.14 = 0.071364$ (mols)	
	mass of oxygen	mass O = 1.57-0.14222-0.85636 = 0.57142/0.57 (g)	
	OR	OR	
	<mark>% mass of oxygen</mark> (1)	% mass O = 100-9.0587-54.545	
		= 36.396/36%	
		TE on M1 and M2 provided answer is positive	
	• calculated empirical formula (1)	C : H : O	
		<u>0.85636</u> : <u>0.14222</u> : <u>0.57142</u> 12 1 16	
		0.071363 : 0.14222 : 0.035714	
		2 : 4 : 1	
		empirical formula is C ₂ H ₄ O	
		Allow use of percentage masses in ratio	
		TE on M1, M2 and M3	
		Ignore SF except 1SF in mass and moles	

Max (2) (M3 and M4) if 1.28 g and 3.14 g confused giving empirical formula CH ₁₂ O ₂
If no other marks awarded, for 1.28 g and 3.14 g confused: mass/moles H = 0.348889 AND mass C = 0.349091 OR moles C = 0.029091 scores (1)
If no other mark awarded, correct empirical formula scores (1)
Comment empirical formula is C_2H_4O can be awarded if seen in (d)(iv) provided mole ratio correctly calculated

Question Number	Answer	Additional guidance	Mark
3(d)(iii)	• $(m/z =) 88$	Accept answer clearly annotated on mass spectrum	1

Question Number	Answer	Additional guidance	Mark
3(d)(iv)	molecular formula	$(x = \frac{M_r}{M_r(C_2H_4O)} = \frac{88}{44} = 2)$	1
		molecular formula is C ₄ H ₈ O ₂	
		No TE on (d)(ii) or (d)(iii)	

Question Number	Answer	Additional guidance	Mark
3(d)(v)	An answer which makes reference to the following points:	No TE on (d)(iv)	2
	• identification of compound F (1)	Examples of justification:	
	 justification with reference to both molecular formula/M_r AND 	peak_s at $m/z = 29$ (for $C_2H_5^+$) OR	
	fragmentation pattern (1)	peak at $m/z = 59$ (for COOCH ₃ +) OR	
		no peak_s-at $m/z = 43$ (for CH_3CO^+) OR no peak at $m/z = 45$ (for $C_2H_4OH^+$)	
		AND molecular formula $C_4H_8O_2$ / $M_r = 88$	
		peak_s-at $m/z = 29$ (for $C_2H_5^+$) AND D does not have molecular formula $C_4H_8O_2$ / $M_r = 88$	
		Ignore reference to peaks at $m/z = 31/57$	
		F as has peaks at $m/z = 29$ AND $m/z = 59$ scores (2)	
		If neither M1 nor M2 awarded, any of the following scores (1) B as has molecular formula $C_4H_8O_2$ / M_r = 88 OR	
		$\frac{A}{A}$ as has $M_r = 88$ OR	
		D as has a peak s at $m/z = 29$	

(Total for Question 3 = 22 marks) Total for Paper = 50 marks