

第4章 网络层:数据平面

第四章 网络层

本章目标:

- ❖ 理解网络层服务的原理:
 - 网络层服务模型
 - 路由转发机制
 - 路由器工作原理
 - IP编址
 - NAT
 - 因特网中的实例和实现

第四章大纲

软件学院·计算机网络

网络层: 概述

- 将报文段从发送方传输到接收方
- 在发送发将报文段封装为数据报
- 在接收方,提取报文段给传输层
- 网络层协议运行于每个主机、路由器
- 路由器会检测每个通过它的IP数据报的首部字段

网络层: 数据平面 vs 控制平面

数据平面

- 主要关注每个路由器
- 转发功能;
- 转发机制:接口到接口

控制平面

- 整个网络范围
- 主机之间的逻辑连接
- 传统 vs 趋势:
 - traditional routing algorithms:
 implemented in routers
 - software-defined networking (SDN): implemented in (remote) servers

网络层:

数据平面 vs 控制平面

基于单独的路由器的路由算法 in each and every router interact in the control plane

网络层:

数据平面 vs 控制平面

远程,集中式管理:

A distinct (typically remote) controller interacts with local

网络层的两个主要功能

- *转发:* 将进入路由器的数据分组 转发到另一个适合的出口
- 路由:确定分组从源到目的地所采用的路径
 - 路由算法
 - 路由协议

类比:

- * 转发: 通过单一立交桥的过程
- * 路由: 从源头到目的路由路径规划过程

路由与转发的相互作用

路由算法决定了通过网络的端到端路径

转发表决定了路由器上的本地转发出口

建立连接

- 对于某些其他体系结构的网络,如ATM,帧中继,X.25,建立连接 时是网络层提供的第三个重要功能
- 在数据报流动之前,源与目的端主机,以及所经由的路由器首先会建立一条虚拟连接
 - 路由器参与其中
- 网络与传输层连接服务的对比:
 - 网络层:在两个端系统之间(在虚电路网络中,所经由的路由器 也参与其中)
 - 传输层: 连接建立在两个进程之间

网络层服务模型

Q: 什么样的服务模型适合引导数据报从发送方传输到接收方?

对于单个的数据报:

- * 确保交付
- ❖ 确保交付的时延小于40ms

绝大多数网络层服务是 "尽力而为"

对于一组数据报流:

- 数据报有序的交付
- 确保传输的最小带宽
- 确保最大时延抖动,两个相继分组之间的时间间隔的变化不超过某些特定值

网络层服务模型

N	letwork tecture	Service Model	Guarantees?				Congestion	
			Bandwidth	Loss	Order	Timing		
I	nternet	best effort	none	no	no	no	no (inferred via l	oss)
	ATM	CBR	恒定速率	yes	yes	yes	no congestion	
	ATM	VBR	变化速率	yes	yes	yes	no congestion	
	ATM	ABR	可用速率	no	yes	no	yes	
	ATM	UBR	不指定速率	no	yes	no	no	

ATM: 英文全称为 "asynchronous transfer mode",

中文名为"异步传输模式"。

第四章大纲

4.1 概述
4.2 虚电路和数据报网络
4.3 路由器工作原理
4.4 IP协议

有连接、无连接服务

- * 数据报网络提供了网络层的无连接服务
- * 虚电路网络提供了网络层的有连接服务
- ❖ 类似传输层TCP/UDP的面向连接/无连接服务,但是
 - 服务: 主机到主机
 - 没有选择: 每种网络体系结构只提供其中一种连接
 - *实现:*端系统,以及位于网络核心的路由器

虚拟电路(VC):直观视图

虚拟电路(VC)

"使收发双方之间的路径表现得如同电话线路一般"

- 网络内部有较多的功能和性能指标
- 沿收发路径上的网络结点的操作比较复杂
- 在数据发送前,需要建立连接,通信结束后要断开
- 每个分组携带 VC标识 (而不是信宿主机的ID)
- 每个在收发双方路径上的路由器需要为正在传输中的连接维持"状态" 传输层的连接仅涉及到两个端系统(end system)
- · 链路, 路由器资源 (带宽, 缓存等)可被分配 给 VC; 目的: 为了达到类似电路交

VC 实现

一个虚电路包含:

- 1. 从源到目的端的路径
- 2. VC号,沿着该路径的每段链路的一个号码
- 3. 沿着该路径的每台路由器的转发表表项
- VC的分组在它的首部携带一个VC号,而不是目的端地址
- · 一条虚电路在每个链路上具有不同的VC号,新的VC号来自转发 表

VC 转发表

forwarding table in northwest router:

Incoming interface	Incoming VC #	Outgoing interfac	e Outgoing VC#
1	12	3	22
2	63 7	1	18 17
1	97	3	87
•••	•••	•••	•••

VC 路由器维护连接状态信息!

虚电路:信令协议

- 用来建立、维护、断开 VC
- 应用在 ATM, 帧中继, X.25 (电信级服务)
- 不应用于当今的 Internet

数据报: 直观的视图

数据报网络

- 在网络层没有连接建立过程
- 路由器: 没有端对端的连接状态,在网络层不存在"连接"的概念
- 分组使用目的主机的地址进行路由选择,因此收发双方的不同分组所经由的路径可能不同

数据报路由转发表

40 亿个 IP 地址, 因此 无需列出单个目标地址 列出地址范围(聚合表 条目)

最长前缀匹配规则

最长前缀匹配

查找给定目标地址的转发表条目时,请使用与目标地址匹配的最长地址前缀。

Destination Address Range	Link interface
11001000 00010111 00010*** *****	0
11001000 00010111 00011000 *****	1
11001000 00010111 00011*** *****	2
otherwise	3

examples:

DA: 11001000 00010111 00010110 10100001 which interface?

DA: 11001000 00010111 00011000 10101010 which interface?

数据报网络与VC网络对比

Internet (数据报网络)

- 来源于计算机之间的数据交换的需求
 - "弹性"服务,没有严格的时序要求
- 可利用各种不同类型的链路层技术
 - 具有不同的特性
 - 很难统一其服务标准
- "智能"终端系统(计算机)
 - 自适应, 性能控制, 容错
 - 网络内部架构简单,把复杂 性留给了网络边缘

ATM (VC)

- 源自于电话网络
- 人的会话交互:
 - 对实时性、可靠性有较高要求
 - 需要性能保障服务
- "dumb "设备
- telephones
 - 电话
 - 网络内部架构复杂

第四章大纲

4.1 概述
4.2 虚电路和数据报网络
4.3 路由器工作原理
4.4 IP协议

软件学院·计算机网络

路由器是什么样的?

思科 AGS - 全球第一台路由

华为网络引擎8000系列路由器

您每天看到的路由器

华为7900系列商用交换机

路由器体系结构

两个主要路由器功能:

- ❖ 运行路由算法/协议 (RIP, OSPF, BGP)
- 将数据报从入口链路转发到出口链路

输入端口功能

物理层:接收物理信号

并转换为bit

数据链路层: 如以太网

网络层: 查找, 转发,

排队

非集中式的交换: 转发表的副本已发送给每个 输入端口,因此,转发决策由输入端口在本 地完成

根据数据报的目的地址,在输入端口内存的 转发表中查找输出端口

目标:以线缆一级的速度完成输入端口处理

队列: 如果数据报到达的速率大于转发处理 的速率,则需要排队等待

4-28

交换结构

- * 将分组从输入端口转发到适合的输出端口
- 交换速率:数据包从输入传输到输出的速率
 - N 输入: 开关速率 N 倍所需线速
- * 三种类型的交换结构

经内存交换

第一代路由器:

- 传统的计算机,由CPU直接控制完成交换
- ■数据分组需要拷贝到系统的内存中
- 交换速度受限于内存带宽

经总线交换

- 分组通过共享总线直接从输入端口的内存存转发到输出端口的内存
- ❖ 总线竞争 (一次只有一个分组能够使用 总线): 路由交换速度受限于总线带宽
- ❖ 32Gbps总线, Cisco5600: 对于小型接入网和企业网其交换速度通常是足够的

经互联网络交换

- * 克服了总线带宽的限制
- ❖ 早期发展的Banyan网络(ATM中─种交 换串联网络),纵横式交换网络,以及其 他一些互联网络,是在多处理器计算机体 系结构中将处理器之间互联起来
- ❖ 高级设计:将数据报分割为固定长度的单元,每个单元通过交换结构完成交换
- ❖ Cisco12000:通过互联网络其交换带宽 达到60Gbps

输出端口

- ❖ 缓存区: 当交换结构速率较快时,就需要缓存,否则,在遇到拥塞时,会导致分组丢失
- * 分组调度: 先来先服务 (FCFS) 规则,加权公平排队规则 (WFQ),遵循 "网络中立"原则,为服务质量保障 (QoS) 起到关键作用 优先级调度 谁获得最佳性能,网络中立性

数据报(数据包)可能会因拥塞、缺少缓冲区而丢失

输入端口排队

- 当交换结构的处理速度小于输入端口数据流入速度时,在输入端口 就会出现排队等待
 - 当输入端口缓存溢出时,就会出现丢包!
- 队首阻塞:处在队首的分组阻碍了队列其他分组的转发

output port contention:
only one red datagram can be
transferred.
lower red packet is blocked

one packet time later: green packet experiences HOL blocking

输出端口排队

- 当交换速率大于输出端口链路速率时就需要缓存
- 当输出端口缓存溢出时,就会出现丢包

需要多大的缓存?

- RFC 3439规则:缓存大小=平均RTT*链路容量C(这个结果 是基于相对较少量的TCP数据流的排队动态分析得到的)
- 目前推荐的规则: 当有大量的TCP流 (N) 流过一条链路时, 缓存大小= $\frac{RTT \cdot C}{\sqrt{N}}$

第四章 大纲

IP数据报格式

软件学院·计算机网络

IP 分段、重组

- 网络链路最大传输单元MTU—链路 层帧能承载的最大数据量
 - 不同链路类型,最大传输单元也不同,以太网: 1500字节
- 将较大的IP数据报分片
 - 一个数据报分片为多个较小的数据报据报
 - 在最终的目的端重组分片
 - IP首部的标识、标志、片偏移用 于分片排序、重组

IP 分段、重组

例:

- 4000字节数据报
- MTU = 1500 bytes

一*个大数据报变成几个较小的数据报*

第四章 大纲

IP编址: IP 地址

- IP地址: 32位,用于唯一标识主
 - 机,路由器接口
- 接口: 主机/路由器与物理链路
 - 之间的连接
 - 路由器通常有多个接口
 - 主机一般有一个或连个接口

(有线以太网,无线局域网

802.11)

223

223.1.1.1

223.1.1.3

223.1.1.2

1

1

1

IP编址: IP地址

问:接口实际上是如何连接的?

答:我们将在第五章中了解这一223.1.1.2

点。

A: 通过以太网交换机连接的

有线以太网接口

目前: 不需要担心一个接口如

何连接到另一个接口(没有中

间路由器)

IP 编址: 分类式

Class	Leading bits	Size of <i>network</i> <i>number</i> bit field	Size of <i>rest</i> bit field	Number of networks	Addresses per network	IP address range	Private Address
Class A	0	8	24	128 (2 ⁷ -2)	16,777,216 (2 ²⁴ -2)		
Class B	10	16	16	16,384 (2 ¹⁴ -1)	65,536 (2 ¹⁶ -		172.16.0.0 - 172.31.255.255
Class C	110	24	8	2,097,152 (2 ²¹ -1)	256 (2 ⁸ -2)	存在一些特殊	朱
Class D (multicast)	1110	not defined	not defined	not defined	not defined	的IP地址	not defined
Class E (reserved)	1111	not defined	not defined	not defined	not defined		

IP寻址: 子网划分

■ IP地址:

- •子网部分 高阶位
- •主机部分 低阶位
- 什么是子网?
 - IP地址子网部分相同的设备接口
 - 不通过路由器可直接物理 互联

network consisting of 3 subnets

- 将接口与其主机或路由器分离,每个隔离的网络称为一个子网
- * 子网掩码
 - 表达

IP地址。: 223.1.3.27

子网掩码: 255.255.255.0

斜杠表示法: 223.1.3.27/24

网络 ID 的计算

2.

223.1.3.0/24

223.1.1.2 全23.1.1.2

CIDR: 无类别域间路由

- IP地址的子网位可以是任意长度
- 地址格式: a.b.c.d/x, x是IP地址子网位的比特位数

分层编址使得路由信息的宣告更加高效: 聚合构成超网

ISPs-R-US 有更具体的路线到组织 1

CIDR:为路由寻址转发创造了便利,但是为子网划分带来了挑战。

例:课后习题P11,考虑互联3个子网,通过一台路由器互联。所有接口前缀223.1.17/24。子网1需要60个接口,子网2需要90个,子网3,需要12个。要求子网划分方案,满足需求。 求解方法:采用二叉树法。

子网名称	所需的大小	分配的大小	地址	掩码	十进制掩码	划分范围	广播地址
В	90	126	223.1.17.0	/25	255.255.255.128	223.1.17.1 - 223.1.17.126	223.1.17.127
Α	60	62	223.1.17.128	/26	255.255.255.192	223.1.17.129 - 223.1.17.190	223.1.17.191
С	12	14	223.1.17.192	/28	255.255.255.240	223.1.17.193 - 223.1.17.206	223.1.17.207

CIDR:为路由寻址转发创造了便利,但是为子网划分带来了挑战。

例:考虑互联4个子网,通过一台路由器互联。所有接口前缀223.1.17/24。每个子网均需要16个接口。要求子网划分方案,满足需求。

子网名	所需的大小	分配的大小	地址	掩码	十进制掩码	划分范围	广播地址
Α	16	30	223.1.17.0	/27	255.255.255.224	223.1.17.1 - 223.1.17.30	223.1.17.31
В	16	30	223.1.17.32	/27	255.255.255.224	223.1.17.33 - 223.1.17.62	223.1.17.63
С	16	30	223.1.17.64	/27	255.255.255.224	223.1.17.65 - 223.1.17.94	223.1.17.95
D	16	30	223.1.17.96	/27	255.255.255.224	223.1.17.97 - 223.1.17.126	223.1.17.127

IP 编址:如何获得

Q: ISP如何获得IP地址段?

A: ICANN: 互联网分配公司

姓名和编号http://www.icann.org/

- 分配IP地址
- 管理NDS
- 分派域名,处理争端

IP地址,如何获取

Q: 如何得到IP地址的网络位

A: 从ISP的地址空间里分配

IP地址:如何获得

Q:主机如何获取IP地址?

- 由系统管理员手工设置
 - Windows: 控制面板>网络>配置>tcp/ip->属性
 - UNIX: /etc/rc.config
 - 静态IP地址: 专用服务器、专用电路计算机
- DHCP: 动态主机配置协议: 从DHCP服务器自动获取IP 地址
 - "即插即用"

DHCP:动态主机配置协议

目标: 当一台主机加入网络时,可以自动的从DHCP服务器获得IP 地址

- 在用的地址可以更新租期
- 地址复用
- 支持移动用户随时加入网络

DHCP: 不仅是IP地址除了IP地址, DHCP服务同时返回其他信息:

- 第一条路由器的地址 (网关地址)
- DNS服务器地址
- → 子网掩码 (区分地址中的网络位和主机位)

DHCP 概述

- 主机广播 "DHCP discover" 报文
- DHCP服务器响应 "DHCP offer" 报文
- 主机请求IP地址: "DHCP request"报文
- DHCP服务器发送IP地址: "DHCP ack" 报文

223.1.3.0/24

DHCP 概述

软件学院・计算机网络

DHCP server: 223.1.2.5

Time

Arriving client

Time

DHCP discover

src: 0.0.0.0, 68 dest: 255.255.255.255,67 DHCPDISCOVER yiaddr: 0.0.0.0 transaction ID: 654

DHCP request

src: 0.0.0.0, 68 dest: 255.255.255.255, 67 DHCPREQUEST yiaddrr: 223.1.2.4 transaction ID: 655 DHCP server ID: 223.1.2.5 Lifetime: 3600 secs

DHCP offer

src: 223.1.2.5, 67 dest: 255.255.255.255,68 DHCPOFFER yiaddrr: 223.1.2.4 transaction ID: 654 DHCP server ID: 223.1.2.5 Lifetime: 3600 secs

DHCP ACK

src: 223.1.2.5, 67

dest: 255.255.255.255,68 DHCPACK yiaddrr: 223.1.2.4 transaction ID: 655 DHCP server ID: 223.1.2.5 Lifetime: 3600 secs

DHCP: 示例

- 当一台笔记本接入网络时,它需要IP 地址、网关地址、DNS服务器地址: 此时可使用DHCP服务
- DHCP请求被封装在UDP协议中--》进 而封装在IP协议中--》进而封装在 802.1以太网帧中
 - 局域网,以太网帧广播地址为: FF-FF-FF-FF-FF, 运行DHCP的服务 器讲接收到该请求
- 接收到后,以太网帧会被解封得到IP 数据包,再解封得到UDP报文段,在 解封得到DHCP报文

DHCP是应用层协议

DHCP: 示例

- DHCP服务器生成"DHCP ACK"报文,包含了客户端IP地址,网关地址,DNS服务器地址
- DHCP服务器将响应报文封装为帧, 并转发给客户端,客户端接收后解析 出DHCP报文
 - 客户端获得其分配的IP地址, DNS服务器地址, 以及网关地址

DHCP:Wireshark输出 (家庭局域网)

request

Message type: **Boot Request (1)** Hardware type: Ethernet

Hardware address length: 6

Hops: 0

Transaction ID: 0x6b3a11b7

Seconds elapsed: 0

Bootp flags: 0x0000 (Unicast) Client IP address: 0.0.0.0 (0.0.0.0)

Your (client) IP address: 0.0.0.0 (0.0.0.0) Next server IP address: 0.0.0.0 (0.0.0.0) Relay agent IP address: 0.0.0.0 (0.0.0.0)

Client MAC address: Wistron 23:68:8a (00:16:d3:23:68:8a)

Server host name not given Boot file name not given

Magic cookie: (OK)

Option: (t=53,l=1) **DHCP Message Type = DHCP Request**

Option: (61) Client identifier

Length: 7; Value: 010016D323688A;

Hardware type: Ethernet

Client MAC address: Wistron 23:68:8a (00:16:d3:23:68:8a)

Option: (t=50,l=4) Requested IP Address = 192.168.1.101

Option: (t=12,l=5) Host Name = "nomad"

Option: (55) Parameter Request List

Length: 11; Value: 010F03062C2E2F1F21F92B

1 = Subnet Mask; 15 = Domain Name 3 = Router; 6 = Domain Name Server

44 = NetBIOS over TCP/IP Name Server

• • • • • •

reply

Message type: **Boot Reply (2)**

Hardware type: Ethernet Hardware address length: 6

Hops: 0

Transaction ID: 0x6b3a11b7

Seconds elapsed: 0

Bootp flags: 0x0000 (Unicast)

Client IP address: 192.168.1.101 (192.168.1.101)

Your (client) IP address: 0.0.0.0 (0.0.0.0)

Next server IP address: 192.168.1.1 (192.168.1.1)

Relay agent IP address: 0.0.0.0 (0.0.0.0)

Client MAC address: Wistron_23:68:8a (00:16:d3:23:68:8a)

Server host name not given Boot file name not given

Magic cookie: (OK)

Option: (t=53,l=1) DHCP Message Type = DHCP ACK

Option: (t=54,l=4) **Server Identifier** = 192.168.1.1

Option: (t=1,l=4) Subnet Mask = 255.255.255.0

Option: (t=3,l=4) Router = 192.168.1.1

Option: (6) Domain Name Server

Length: 12; Value: 445747E2445749F244574092;

IP Āddress: 68.87.71.226; IP Address: 68.87.73.242;

IP Address: 68.87.64.146

Option: (t=15,l=20) Domain Name = "hsd1.ma.comcast.n

所有数据报离开本地网络时均使用同一个源端的NAT IP地址:

138.76.29.7,而源端口号各不相同

本地网络内部相互传输的数据报其源 地址和目的地址直接使用10.0.0.0/24 的私有地址

目的: 对外部网络而言,本地网络只需一个IP地址就足够了:

- ISP不再需要一个地址区间:只需一个IP地址就可以满足所有的设备了
- 本地网络的内部设备的地址变更无需通告外部网络
- 变更ISP对本地网络内部设备无需做任何修改
- 本地网络内部设备没有公网IP地址,外网无法直接访问(增强了安全性)

实现: NAT路由器必须

*向外转发数据报时:*将所有向外转发的数据报的(源IP地址,端口号)替换为(NAT IP地址,新的端口号)

远端的客户端或服务器响应时将使用(NAT IP地址,新的端口号)作为目的地址

- *通过NAT转换表*,记录每个(源IP地址,源端口号)到(NAT IP地址,新的端口号)的映射关系
- *外部进入的数据报:*每一个外部进入的数据报,根据存储在NAT转换表里的映射关系将其目的地址字段从(NAT IP地址
 - ,新的端口号)替换回(源IP地址,端口号)

- 端口号为16bit (65535):
 - 在一个局域网内部可同时满足60000多个网络连接!
- NAT 备受争议:
 - 路由器必须在网络层处理地址转换
 - 违反了端到端的通信原则

NAT的使用,很可能使得应用开发人员必须将其考虑在内

- ,如P2P应用
- IPv4地址资源枯竭的终极解决方案: IPv6

NAT穿越问题

- client想要连接到地址为10.0.0.1的 服务器
 - 服务器地址10.0.0.1为局域网内 部地址, client不能直接使用该 地址作为目的地址
- *方案1:* 配置静态NAT转换信息,将
 - 一个特定的端口号映射为服务器
 - 例如 (123.76.29.7: 2500) 将 始终转发到10.0.0.1:25000

NAT穿越问题

- *方案2:* 通用即插即用(UPnP) 互联 网网关设备(IGD)协议,可以使得 通过NAT转换的主机:
 - ❖ 动态配置
 - ❖ 添加/删除端口映射 (有租约时间)
 - ❖ 例如:自动静态NAT端口映射配置

NAT穿越问题

- *方案3:* 中继 (Skype采用该方案)
 - NAT内部主机与中继设备建立连接
 - 外部主机也连接到中继设备
 - 中继通过桥接方式为连接者之间转发分组

第四章 大纲

IPv6:起因

- *最初起因*: 32bit的的IPv4地址空间很快将被全部分配
- 其他原因:
 - 首部格式可以帮助加快处理/转发的速度
 - 改变首部信息来促进QoS的发展

IPv6数据报格式:

- 首部长度固定为40byte
- 不再允许分片

IPv6数据报格式

priority: 定义数据报在流中的优先级

flow Label: 在同一流中唯一的标识数据报

next header: 标识所承载数据的上层协议

ver	pri	flow label				
payload len next hdr hop limit						
source address (128 bits)						
destination address (128 bits)						
data						

其他变化

- identifier, flags, offset.删除.由于复杂性, IPv6 中不允许片段。
- *checksum*:取消,减少了每一条的处理时间
- *options:* 不再作为独立字段包含在首部中,需要时,可在"next header"字段中标示
- *ICMPv6*: 新版本的ICMP
 - 增加了报文类型
 - 增加了组播组的管理功能

从IPv4过渡到IPv6

- 不是所有的路由器都可以同时升级来支持IPv6
 - 没有一个明确的时间节点
 - 如何处理网络中IPv4和IPv6的混用
- *隧道:*在IPv4的路由器之间将IPv6数据报作为IPv4数据报的负载

隧道

B IPv4 tunnel E F connecting IPv6 routers IPv6 IPv6 IPv6

物理视图:

IPv6的使用情况

- ❖ 谷歌: 8%的客户端通过IPv6访问服务
- ❖ NIST: 1/3的美国政府域名支持IPv6
- ❖ 还需很久很久来完善和使用
 - •20年甚至更久
 - •想想过去20年应用层的变化: WWW, Facebook
 - •这是为什么呢?

小结

本章重点:

- 1. 路由器转发原理;
- 2. 网络层提供不同的服务类型;
- 3. IP编址:分配、使用,演进 (IPV6)
- 4. NAT

作业:

- 1. R3、R10、R22、R24
- 2. P5、P11、P14、P15