ELEC 311 Fall 2013

Project 2: Combinational Circuit Design

Objectives

Design a combinational logic circuit from a functional specification. Minimize a logic function using a Karnaugh map. Develop a NAND-NAND implementation of a logic function.

Specific Instructions

A 2-bit "comparator" circuit receives two 2-bit numbers $P = P_1P_0$ and $Q = Q_1Q_0$. Design a minimal sum-of-products circuit that produces an output GT = 1 iff P > Q.

- 1. Fill in the truth table to determine the input/output relationship of the circuit.
- 2. Obtain a minimized sum-of-products logic expression using a Karnaugh map.
- 3. Draw a NAND-NAND circuit diagram implementing the minimized function.
- 4. Implement the circuit in hardware, using the Xilinx design tools and the Spartan3E FPGA on the BASYS Board.
 - a. Draw the schematic using standard gates from the symbol library.
 - b. Constrain the design with the following pin assignments:

I/O Name	Location	BASYS	BASYS 2
P_1	SW3	P24	B4
P_0	SW2	P29	K3
Q_1	SW1	P36	L3
Q_0	SW0	P38	P11
GT	LD0	P15	M5

- c. Generate a programming file (.bit) for the FPGA.
- d. Download the design onto the BASYS Board.
- 5. Test the circuit on the BASYS Board using the input switches and output LED.
- 6. Demonstrate the correct operation of your circuit to your professor and obtain his initials on your cover sheet.
- 7. Write a project report containing the following:
 - a. Cover sheet with project name/number, date, and authors names.
 - b. Objective section describing what was to be accomplished.
 - c. Discussion section showing your truth table, Karnaugh map, and NAND-NAND circuit schematic.
 - d. Results and Conclusions.

ELEC 311 Fall 2013

Truth Table

mt	P Q	$P_1 P_0 Q_1 Q_0$	GT (P > Q)
0	0 0	0 0 0 0	
1	0 1	0 0 0 1	
2	0 2	0 0 1 0	
3	0 3	0 0 1 1	
4	1 0	0 1 0 0	
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			