### Least squares estimation of regression lines

Brian Caffo, Jeff Leek and Roger Peng

May 19, 2016

# General least squares for linear equations

Consider again the parent and child height data from Galton

```
## Loading required package: MASS
## Loading required package: HistData
## Loading required package: Hmisc
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
## Loading required package: ggplot2
##
## Attaching package: 'Hmisc'
```

## The following objects are masked from package:base ? ? ?

## Fitting the best line

- Let  $Y_i$  be the  $i^{th}$  child's height and  $X_i$  be the  $i^{th}$  (average over the pair of) parents' heights.
- Consider finding the best line
- ightharpoonup Child's Height  $= \beta_0 + Parent's Height <math>\beta_1$
- Use least squares

$$\sum_{i=1}^{n} \{Y_i - (\beta_0 + \beta_1 X_i)\}^2$$

#### Results

▶ The least squares model fit to the line  $Y = \beta_0 + \beta_1 X$  through the data pairs  $(X_i, Y_i)$  with  $Y_i$  as the outcome obtains the line  $Y = \hat{\beta}_0 + \hat{\beta}_1 X$  where

$$\hat{\beta}_1 = Cor(Y, X) \frac{Sd(Y)}{Sd(X)}$$
  $\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$ 

- $\hat{\beta}_1$  has the units of Y/X,  $\hat{\beta}_0$  has the units of Y.
- ▶ The line passes through the point  $(\bar{X}, \bar{Y})$
- ▶ The slope of the regression line with X as the outcome and Y as the predictor is Cor(Y,X)Sd(X)/Sd(Y).
- ▶ The slope is the same one you would get if you centered the data,  $(X_i \bar{X}, Y_i \bar{Y})$ , and did regression through the origin.
- ▶ If you normalized the data,  $\{\frac{X_i \bar{X}}{Sd(X)}, \frac{Y_i \bar{Y}}{Sd(Y)}\}$ , the slope is Cor(Y, X).



#### Double check our calculations using R

```
y <- galton$child
x <- galton$parent
beta1 <- cor(y, x) * sd(y) / sd(x)
beta0 <- mean(y) - beta1 * mean(x)
rbind(c(beta0, beta1), coef(lm(y ~ x)))</pre>
```

```
## (Intercept) x
## [1,] 23.94153 0.6462906
## [2,] 23.94153 0.6462906
```

### Reversing the outcome/predictor relationship

```
beta1 <- cor(y, x) * sd(x) / sd(y)
beta0 <- mean(x) - beta1 * mean(y)
rbind(c(beta0, beta1), coef(lm(x ~ y)))</pre>
```

```
## (Intercept) y
## [1,] 46.13535 0.3256475
## [2,] 46.13535 0.3256475
```

Regression through the origin yields an equivalent slope if you center the data first

```
yc <- y - mean(y)
xc <- x - mean(x)
beta1 <- sum(yc * xc) / sum(xc ^ 2)
c(beta1, coef(lm(y ~ x))[2])</pre>
```

```
## x
## 0.6462906 0.6462906
```

Normalizing variables results in the slope being the correlation

```
yn <- (y - mean(y))/sd(y)
xn <- (x - mean(x))/sd(x)
c(cor(y, x), cor(yn, xn), coef(lm(yn ~ xn))[2])</pre>
```

```
## xn
## 0.4587624 0.4587624 0.4587624
```

