

Quiz Date: Friday, 11 January, 2019

Textbook Reading: Section 1.1 (Calc review) and other texts for calculus and linear algebra.

See the Pre-requisites link on the Canvas FAQ for the topics list from calculus and linear algebra.

1) Linear Algebra: Definitions

Define the following:

- a linearly independent set of vectors
- a vector basis for \mathbb{R}^3
- the dimension of a vector space
- rank of a matrix

2) Linear Algebra: Gaussian Elimination

Gaussian elimination, or row reduction, is a systematic way to solve a set of linear equations (Lay, s1.1 & 1.2). Solve the following 3×3 linear system

3) Linear Algebra: Eigenvalues & Eigenvectors

Find the eigenvalues $\{\lambda_1, \lambda_2, \lambda_3\}$ and corresponding eigenvectors $\{\vec{w_1}, \vec{w_2}, \vec{w_3}\}$ for the matrix

$$\mathbf{A} = \left[\begin{array}{rrr} 4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{array} \right] .$$

Give the linear system that determines the linear combination

$$a_1\vec{w}_1 + a_2\vec{w}_2 + a_3\vec{w}_3 = \begin{pmatrix} 3\\0\\3 \end{pmatrix}$$
,

without solving for the a_i coefficients, how can you determine whether this system is solvable?

4) Linear Algebra: Gram-Schmidt Procedure

Look up the Gram-Schmidt procedure for producing an orthogonal basis. Apply it to the vector subspace spanned by the vectors

$$\left\{ \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\1\\1 \end{pmatrix} \right\} \ .$$

5) Calculus: 1D Taylor Series

Derive the first three terms of the Taylor series for

$$f(x) = \ln x = c_0 + c_1(x-2) + c_2(x-2)^2 + R(x)$$

about the value x=2, where R(x) is the remainder term (Stewart, s11.10). Give the Taylor inequality for the remainder size |R(x)| on the interval $1 \le x \le 3$.

6) Calculus: 2D Linear Approximation Derive the best linear approximation (Stewart, s14.4), or linearization, of the function $z(x,y) = xe^{-xy}$ valid near the point (x,y,z) = (2,0,2).

DJM 1