Christopher Siu

Weighted Activity Selection

Consider the following problem:

- \square An **activity** is a triple $a_i = (s_i, f_i, w_i)$ of a start time s_i , a finish time f_i , and a weight w_i , taking place during the time $[s_i, f_i)$.
- □ Given a set of activities, find a maximum weight subset of non-conflicting activities.

Example

Given $\{(2,4,1),(0,3,3),(0,1,1),(4,7,4),(6,8,5),(8,9,2)\}$:

...the maximum weight subset is $\{(0,3,3), (6,8,5), (8,9,2)\}.$

Weighted Activity Selection

```
NAÏVEWEIGHTEDSELECTION (S = (a_0, a_1, \dots, a_{n-1}))
Input: A finite, non-empty sequence S of n weighted activities,
    where a_i = (s_i, f_i, w_i), sorted in increasing order by finish time
Output: The max weight of a subset of non-conflicting activities
 1: if n=1 then
        return w_0
 3: else
        let a_i be the last activity such that f_i \leq s_{n-1}
 4:
        let x be NaïveWeightedSelection ((a_0, a_1, \ldots, a_i))
 5:
        let y be NaïveWeightedSelection((a_0, a_1, \ldots, a_{n-2}))
 6:
        return \max\{x+w_{n-1},y\}, where x=0 if a_i does not exist
 7:
```

Weighted Activity Selection

Example

The complexity of NAÏVEWEIGHTEDSELECTION is given by:

$$T(n) = a \cdot T(m) + O(g(n))$$
$$= 2 \cdot T(n-1) + O(\log n)$$
$$\approx O(2^n \log n)$$

□ NAÏVEWEIGHTEDSELECTION recomputes many subsolutions multiple times.

Definition

Memoization optimizes a function by caching its return values.

Memoization

```
MEMOWEIGHTEDSELECTION (S = (a_0, a_1, \dots, a_{n-1}))
```

Input: A finite, non-empty sequence S of n weighted activities, where $a_i = (s_i, f_i, w_i)$, sorted in increasing order by finish time Output: The max weight of a subset of non-conflicting activities 1: **if** T(n) is defined **then** return T(n)3: if n=1 then **let** T(n) be w_0 5: else **let** a_i be the last activity such that $f_i \leq s_{n-1}$ 6: let x be MemoWeightedSelection((a_0, a_1, \ldots, a_i)) 7: let y be MemoWeightedSelection($(a_0, a_1, \ldots, a_{n-2})$) 8: let T(n) be $\max\{x+w_{n-1},y\}$, x=0 if a_i does not exist 9: 10: return T(n)

Definition

A dynamic programming algorithm is one that:

- Solves subproblems, starting with the smallest.
- 2 Caches subsolutions in a table.
- Uses cached subsolutions to construct larger solutions.
- □ Like a divide and conquer approach, dynamic programming identifies and solves subproblems.
- □ Unlike a divide and conquer approach, dynamic programming efficiently solves interdependent subproblems.

A dynamic programming algorithm populates a table and is characterized by four components:

□ **Definition:** A precise, English description of each cell's

contents in the table

□ Base Cases: Rules for populating one or more initial cells in

the table

□ **Formula:** Rules for populating general cells in the table

using the contents of previous cells

□ **Solution:** Rules for finding the solution to the problem

within the table

WEIGHTEDSELECTION $(S = (a_0, a_1, \dots, a_{n-1}))$

Input: A finite, non-empty sequence S of n weighted activities, where $a_i = (s_i, f_i, w_i)$, sorted in increasing order by finish time **Output:** The max weight of a subset of non-conflicting activities

- Definition: Let T(i) be the maximum weight of non-conflicting activities, drawing from activities (a_0, a_1, \ldots, a_i) .
- Base Cases: $T(0) = w_0$
- Formula: $T(i) = \max\{T(j) + w_i, T(i-1)\}$, where a_j is the last activity such that $f_j \leq s_i$ and T(j) = 0 if a_j does not exist
- Solution: T(n-1)

Example

Given $\{(2,4,1),(0,3,3),(0,1,1),(4,7,4),(6,8,5),(8,9,2)\}$:

- \square Sorting S has complexity $O(n \log n)$.
- \square The table T has (n) cells.
- \square Populating a single cell has complexity $O(\log n)$.

WEIGHTED SELECTION has complexity $O(n \log n)$.

- \square Note that Weighted Selection has *space* complexity O(n).
- ☐ Given its definition, base cases, formula, and solution, the pseudocode for a dynamic programming algorithm is trivial.

String Problems

Alphabets and Strings

Definition

An alphabet is a finite set of symbols.

Definition

A **string** is a finite sequence of symbols from an alphabet.

- ☐ The **empty string** is the string containing no symbols.
- □ By convention, parentheses and commas are omitted.

Example

Given the alphabet $\Sigma = \{a, b, c\}$:

- □ acbabcac is a string over this alphabet.
- \square ακβαβκακ is *not* a string over this alphabet.

Longest Common Substrings

Consider the following problem:

☐ Given two strings, find their longest common substring.

Definition

A string x is a **substring** of a string y if and only if there exist strings u and v such that y = uxv.

Example

Given x = caccba and y = acbabcac:

$$\operatorname{caccba} = u\operatorname{cba} v, \quad u = \operatorname{cac}, \quad v = \emptyset$$
 $\operatorname{acbabcac} = u\operatorname{cba} v, \quad u = \operatorname{a}, \quad v = \operatorname{bcac}$

...one of their longest common substrings is cba.

Longest Common Substrings

LONGESTSUBSTRING $(x = x_0x_1 \dots x_{n-1}, y = y_0y_1 \dots y_{m-1})$

Input: A string x of length n and a string y of length m **Output:** The length of their longest common substring

- Definition: Let T(i,j) be the length of the longest common substring ending with x_i and y_j .
- Base Cases: T(i, -1) = 0, T(-1, j) = 0
- Formula: $T(i,j) = \begin{cases} T(i-1,j-1) + 1 & \text{if } x_i = y_j \\ 0 & \text{if } x_i \neq y_j \end{cases}$
- Solution: $\max\{T\}$

Longest Common Substrings

Example

Given x = caccba and y = acbabcac:

T		a	С	b	a	b	С	a	С
	0	0	0	0	0	0	0	0	0
С	0	0	1	0	0	0	1	0	1
a	0	1	0	0	1	0	0	2	0
С	0	0	2	0	0	0	1	0	3
С	0	0	1	0	0	0	1	0	1
b	0	0	0	2	0	1	0	0 0 2 0 0 0	0
a	0	1	0	0	3	0	0	1	0

- \Box The table T has $(n+1)\times(m+1)$ cells.
- \square Populating a single cell has complexity O(1).

Longest Substring has complexity O(nm).

Longest Common Subsequences

Consider the following problem:

☐ Given two strings, find their longest common subsequence.

Definition

A string x is a **subsequence** of a string y if and only if there exist strings u_i such that $y = u_1 x_1 u_2 \dots u_k x_k u_{k+1}$.

Example

Given x = caccba and y = acbabcac:

$$caccba = cacc...$$

$$acbabcac = ...c..a...c...c$$

...one of their longest common subsequences is cacc.

Longest Common Subsequences

LONGESTSUBSEQUENCE $(x = x_0x_1 \dots x_{n-1}, y = y_0y_1 \dots y_{m-1})$

Input: A string x of length n and a string y of length m **Output:** The length of their longest common subsequence

- Definition: Let T(i,j) be the length of the longest common subsequence drawing from $x_0x_1 \ldots x_i$ and $y_0y_1 \ldots y_j$.
- Base Cases: T(i, -1) = 0, T(-1, j) = 0

• Formula:
$$T(i,j) = \begin{cases} T(i-1,j-1) + 1 & \text{if } x_i = y_j \\ \max\{T(i-1,j), T(i,j-1)\} & \text{if } x_i \neq y_j \end{cases}$$

• *Solution*: T(n-1, m-1)

Longest Common Subsequences

Example

Given x = caccba and y = acbabcac:

T		a	С	b	a	b	С	a	С
	0	0	0	0	0	0	0	0	0
С	0	0	1	1	0 1 2 2 2 3 4	1	1	1	1
a	0	1	1	1	2	2	2	2	2
С	0	1	2	2	2	2	3	3	3
С	0	1	2	2	2	2	3	3	4
b	0	1	2	3	3	3	3	3	4
a	0	1	2	3	4	4	4	4	4

- \Box The table T has $(n+1)\times(m+1)$ cells.
- \square Populating a single cell has complexity O(1).

LongestSubsequence has complexity O(nm).

Levenshtein Distance

Consider the following problem:

☐ Given two strings, find their Levenshtein distance.

Definition

The **Levenshtein distance** between two strings x and y is the minimum deletions, insertions, substitutions to transform x into y.

Example

Given x = caccba and y = acbabcac:

- Insert a: a caccba.
- 4 Delete b: acbabca.
- 2 Insert b: acbaccba.
- Insert c: acbabcac.
- Substitute b: acbabcba.

...the Levenshtein distance between them is 5.

Levenshtein Distance

LEVENSHTEINDISTANCE $(x = x_0 x_1 \dots x_{n-1}, y = y_0 y_1 \dots y_{m-1})$

Input: A string x of length n and a string y of length m **Output:** The minimum number of edits to transform x into y

- Definition: Let T(i,j) be the minimum number of edits to transform $x_0x_1 \ldots x_i$ into $y_0y_1 \ldots y_j$.
- Base Cases: T(i, -1) = i + 1, T(-1, j) = j + 1

• Formula:
$$T(i,j) = \min \begin{cases} T(i-1,j)+1 \\ T(i,j-1)+1 \\ T(i-1,j-1)+\begin{cases} 0 & \text{if } x_i=y_j \\ 1 & \text{if } x_i \neq y_j \end{cases}$$

• *Solution*: T(n-1, m-1)

Levenshtein Distance

Example

Given x = caccba and y = acbabcac:

T		a	С	b	a	b	С	a	С
	0	1	2	3	4	5	6	7	8
С	1	1	1	2	3	4	5	6	7
a	2	1	2	2	2	3	4	5	6
С	3	2	1	2	3	3	3	4	5
С	4	3	2	2	3	4	3	4	4
b	5	4	3	2	3	3	4	4	5
a	6	5	4	3	4 3 2 3 3 3	3	4	4	5

- □ The table T has $(n+1) \times (m+1)$ cells.
- \square Populating a single cell has complexity O(1).

Levenshtein Distance has complexity O(nm).

Consider the following problem:

- \square An **item** is a pair $a_i = (w_i, v_i)$ of a weight w_i and a value v_i .
- \square Given a set of items and a weight capacity W, find quantities $x_i \in \{0,1\}$ such that $\sum x_i \cdot w_i \leq W$ and $\sum x_i \cdot v_i$ is maximized.

Example

Given $S = \left\{ \left(3,5\right), \left(3,1\right), \left(2,4\right), \left(4,7\right) \right\}$ and W = 7:

...the maximizing quantities are 1, 0, 0, and 1.

$KNAPSACK(S = \{a_0, a_1, ..., a_{n-1}\}, W)$

Input: A finite set S of n items, where $a_i=(w_i,v_i)$, a natural W **Output:** The maximum value of a knapsack with capacity W, where items may not be repeated

- Definition: Let T(i,j) be the maximum value of a knapsack with capacity j drawing from $\{a_0, a_1, \dots a_i\}$.
- Base Cases: T(i,0) = 0, T(-1,j) = 0

• Formula:
$$T(i,j) = \begin{cases} T(i-1,j) & \text{if } w_i > j \\ \max \begin{cases} T(i-1,j) \\ T(i-1,j-w_i) + v_i \end{cases} & \text{if } w_i \leq j \end{cases}$$

• Solution: T(n-1, W)

Example

Given
$$S = \{(3,5), (3,1), (2,4), (4,7)\}$$
 and $W = 7$:

- \square The table T has $(n+1) \times (W+1)$ cells.
- \square Populating a single cell has complexity O(1).

Knapsack has **pseudo-polynomial** complexity O(nW).

The Unbounded Knapsack Problem

Consider the following problem:

- \square An **item** is a pair $a_i = (w_i, v_i)$ of a weight w_i and a value v_i .
- □ Given a set of items and a weight capacity W, find quantities $x_i \in \mathbb{N}$ such that $\sum x_i \cdot w_i \leq W$ and $\sum x_i \cdot v_i$ is maximized.

Example

Given $S = \{(3,5), (3,1), (2,4), (4,7)\}$ and W = 7:

...the maximizing quantities are 1, 0, 2, and 0.

The Unbounded Knapsack Problem

UNBOUNDEDKNAPSACK $(S = \{a_0, a_1, \dots, a_{n-1}\}, W)$

Input: A finite set S of n items, where $a_i=(w_i,v_i)$, a natural W **Output:** The maximum value of a knapsack with capacity W, where items may be repeated

- Definition: Let T(i,j) be the maximum value of a knapsack with capacity j drawing from $\{a_0, a_1, \dots a_i\}$.
- Base Cases: T(i,0) = 0, T(-1,j) = 0

• Formula:
$$T(i,j) = \begin{cases} T(i-1,j) & \text{if } w_i > j \\ \max \begin{cases} T(i-1,j) \\ T(i,j-w_i) + v_i \end{cases} & \text{if } w_i \leq j \end{cases}$$

• Solution: T(n-1, W)

The Unbounded Knapsack Problem

Example

Given
$$S = \{(3,5), (3,1), (2,4), (4,7)\}$$
 and $W = 7$:

- \square The table T has $(n+1) \times (W+1)$ cells.
- \square Populating a single cell has complexity O(1).

UnboundedKnapsack has complexity O(nW).

The Traveling Salesperson Problem

The Traveling Salesperson Problem

Recall the following problem:

☐ Given a complete, weighted graph, find the Hamiltonian cycle of minimum weight.

Example

Given:

...the Hamiltonian cycle of minimum weight is $(v_0, v_1, v_2, v_4, v_3, v_0)$.

TravelingSalesperson(G = (V, E))

Input: A complete, weighted graph G

Output: The minimum weight of a Hamiltonian cycle in G

- Definition: Let $s \in V$ be any vertex and $\mathcal{P}(V \{s\})$ be the subsets of $V \{s\}$, sorted in ascending order by cardinality. Let T(i,j) be the minimum weight of a Hamiltonian path starting at s, passing through $S_i \in \mathcal{P}(V \{s\})$, and ending at $v_j \notin S_i$.
- Base Cases: $T(0,j) = w_{sj}$
- Formula: $T(i,j) = \min_{v_l \in S_i} \left\{ T(k,l) + w_{lj} \mid S_k = S_i \{v_l\} \right\}$
- Solution: $\min_{v_l \in V \{s\}} \left\{ T(k, l) + w_{ls} \mid S_k = V \{s, v_l\} \right\}$

Example (cont.)

Given $G = (\{v_0, v_1, v_2, v_3, v_4\}, E)$, let $s = v_0$:

T	v_1	v_2	v_3	v_4
$S_0 = \emptyset$	3	8	4	6
$S_1 = \{v_1\}$		7	6	10
$S_2 = \{v_2\}$	12		13	10
$S_3 = \{v_3\}$	7	9		5
$S_4 = \{v_4\}$	13	8	7	
$S_5 = \{v_1, v_2\}$			12	9
$S_6 = \{v_1, v_3\}$		11		7
$S_7 = \{v_1, v_4\}$		12	11	
:		(co	nt.)	

Example (cont.)

Given $G = (\{v_0, v_1, v_2, v_3, v_4\}, E)$, let $s = v_0$:

T	v_1	v_2	v_3	v_4
:		(co	nt.)	
$S_8 = \{v_2, v_3\}$	13			11
$S_9 = \{v_2, v_4\}$	12		11	
$S_{10} = \{v_3, v_4\}$	10	7		
$S_{11} = \{v_1, v_2, v_3\}$				13
$S_{12} = \{v_1, v_2, v_4\}$			10	
$S_{13} = \{v_1, v_3, v_4\}$		9		
$S_{14} = \{v_2, v_3, v_4\}$	11			
$S_{15} = \{v_1, v_2, v_3, v_4\}$				

Example (cont.)

Given
$$G = (\{v_0, v_1, v_2, v_3, v_4\}, E)$$
, let $s = v_0$:

T	v_1	v_2	v_3	v_4
:				
(sol'n)	14	17	14	19

- \square Generating $\mathcal{P}(V \{s\})$ in order has complexity $O(2^{|V|})$.
- \square The table T has $(2^{|V|-1}) \times (|V|-1)$ cells.
- \square Populating a single cell has complexity O(|V|).
- \square Finding the solution has complexity O(|V|).

TravelingSalesperson has complexity $O(|V|^2 \cdot 2^{|V|})$.