Ранг и дефект на линейно изображение

Люба Конова

Декември 2020

Задача 1: Нека $\phi: \mathbb{V} \longrightarrow \mathbb{W}$. Да се докаже, че $Ker\phi$ е линейно подпространство на \mathbb{V} , а $Im\phi$ е линейно подпространство на \mathbb{W}

Задача 2: Да се докаже, че следните условия са еквивалентни:

- 1) $Ker\phi = 0$
- 2) ϕ е инекция, тоест за $v_1 \neq v_2$ е изпълнено, че $\phi(v_1) \neq \phi(v_2)$

Теорема за ранга и дефекта:

Задача 3: Нека $\phi \in Hom \mathbb{V}$. Следните условия са еквивалентни:

- \bullet ϕ е обратим линеен оператор.
- $Ker\phi = 0$
- $Im\phi = \mathbb{V}$
- ullet ф преобразува кой да е базис на V също в базис.
- ullet матрицата на ϕ във всеки един базис е обратима.

Задача 4: Да се докаже, че ако $\phi:V\longrightarrow V$ е линеен оператор, то:

- (1) $Ker\phi$ съвпада с пространството от решенията на $A_{\phi}X=0$
- (2) $Im\phi$ съвпада с $l(\phi(e_1), \phi(e_2), ..., \phi(e_n)$

Сборник: 5.16, 5.17