Logika és számításelmélet

I. rész Logika Negyedik előadás

Tartalom

Az elsőrendű logika szemantikája

Formulák és formulahalmazok szemantikus tulajdonsága

Elsőrendű logikai nyelv interpretációja

Egy elsőrendű logikai nyelv $\mathcal{L}[V_{\nu}]$ interpretációja egy, az \mathcal{L} nyelvvel azonos szignatúrájú $\langle U, R, M, K \rangle$ matematikai struktúra.

Másik megfogalmazás: egy, a szignatúrának megfelelő U halmaz megadása, ezen a $Pr,\ Fn,\ Cnst$ szimbólumhalmazok szignatúrájával megegyező $R,\ M,\ K$ reláció-, művelet- és konstanshalmaz definiálása.

Az $\mathcal I$ interpretáció működése: $\mathcal I=\langle \mathcal I_{Srt}, \mathcal I_{Pr}, \mathcal I_{Fn}, \mathcal I_{Cnst} \rangle$ függvénynégyes, ahol:

- $\mathcal{I}_{Srt} \colon \pi \mapsto \mathcal{U}_{\pi}$, ahol ha Srt egyelemű, akkor az interpretáció U univerzuma egyfajtájú elemekből áll
- az $\mathcal{I}_{Pr} \colon P \mapsto P^{\mathcal{I}}$, ahol $P^{\mathcal{I}}$ a struktúra R halmaza
- az $\mathcal{I}_{Fn} \colon f \mapsto f^{\mathcal{I}}$, ahol $f^{\mathcal{I}}$ a struktúra M halmaza
- az $\mathcal{I}_{Cnst} \colon c \mapsto c^{\mathcal{I}}$, ahol $c^{\mathcal{I}}$ a struktúra K halmaza

Változókiértékelés

Változókiértékelés

Egy $\kappa\colon V\to\mathcal{U}$ leképezés, ahol V a nyelv változóinak halmaza, U pedig az interpretáció univerzuma.

 $|x|^{\mathcal{I},\kappa}$ az U univerzumbeli $\kappa(x)$ elem.

Formula jelentése – informális definíció

Legyen egy formula valamely $\mathcal{L}(P_1,P_2,\ldots,P_n;f_1,f_2,\ldots,f_k)$ formalizált nyelven, ahol $(r_1,r_2,\ldots,r_n;s_1,s_2,\ldots,s_k)$ az \mathcal{L} nyelv, típusa/szignatúrája (ν_1,ν_2,ν_3) .

- 1.lépés Választunk egy $S=U(R_1,R_2,\ldots,R_n;o_1,o_2,\ldots,o_k)$ matematikai struktúrát, amelynek a típusa/szignatúrája $(r_1,r_2,\ldots,r_n;s_1,s_2,\ldots,s_k)/(\nu_1,\nu_2,\nu_3)$ megegyezik a nyelvével és a logikán kívüli szimbólumokat a megfelelő relációknak illetve műveleteknek feleltetjük meg: $P_i=P_i^{\mathcal{I}},\ f_k=f_k^{\mathcal{I}}$ (ha az interpretáló struktúrának nincs leíró nyelve, vagy nem akarjuk azt használni. Ha felhasználjuk az interpretáló struktúra leíró nyelvét, akkor $P_i^{\mathcal{I}}=R_i$ neve és $f_k^{\mathcal{I}}=o_k$ neve. Ez a nyelv szimbólumainak interpretációja, ahol R_i és o_k jelentése egyértelmű).
- 2.lépés A nem kötött individuumváltozók kiértékelése ($|x|^{\mathcal{I},\kappa}$) és a kifejezések helyettesítési értékeinek kiszámítása.

Formális definíció: termek szematikája

Termek szemantikája

- $oldsymbol{1}$ ha c konstansszimbólum, $|c|^{\mathcal{I},\kappa}$ az U-beli $c^{\mathcal{I}}$ elem
- 2 ha x individuumváltozó, $|x|^{\mathcal{I},\kappa}$ a $\kappa(x)\in U$ elem (ahol κ egy változókiértékelés)
- $(f(t_1, t_2, \dots, t_n))^{\mathcal{I}, \kappa} = f^{\mathcal{I}}((|t_1|^{\mathcal{I}, \kappa}, |t_2|^{\mathcal{I}, \kappa}, \dots, |t_n|^{\mathcal{I}, \kappa}))$

Formális definíció: formulák szemantikája

Formulák szemantikája

- $\begin{array}{l} \bullet \ |P(t_1,t_2,\ldots,t_n)|^{\mathcal{I},\kappa}=i, \ \mathsf{ha} \ (|t_1|^{\mathcal{I},\kappa},|t_2|^{\mathcal{I},\kappa},\ldots,|t_n|^{\mathcal{I},\kappa}) \in P^{\mathcal{I}}, \\ \mathsf{ahol} \ \mathsf{a} \ P^{\mathcal{I}} \ \mathsf{jel\"{o}l\ddot{i}} \ \mathsf{a} \ P^{\mathcal{I}} \ \mathsf{rel\acute{a}ci\acute{o}} \ \mathsf{igazhalmaz\acute{a}t}. \end{array}$
- **3** $|\forall xA|^{\mathcal{I},\kappa} = i, ha|A|^{\mathcal{I},\kappa^*} = i \kappa \text{ minden } \kappa^* x \text{ variánsára}$ $|\exists xA|^{\mathcal{I},\kappa} = i, ha|A|^{\mathcal{I},\kappa^*} = i \kappa \text{ legalább egy } \kappa^* x \text{ variánsára}$

A továbbiakban egyfajtájú struktúrákkal és egyfajtájú \mathcal{L} nyelvvel (Srt egyelemű halmaz) foglalkozunk az elsőrendű logika tárgyalása során.

Formulakifejtés – példa

$\forall x P(x,y)$ formula kifejtése

 $U = \{a,b,c\}$, formulakifejtés $\kappa(y) = a,b,c$ -re:

- $\kappa(y) = a$ $|\forall x P(x,y)|^{\mathcal{I},\kappa} = |\forall x P(x,a)|^{\mathcal{I}} = P^{\mathcal{I}}(a,a) \wedge P^{\mathcal{I}}(b,a) \wedge P^{\mathcal{I}}(c,a)$
- $\kappa(y) = b$ $|\forall x P(x,y)|^{\mathcal{I},\kappa} = |\forall x P(x,b)|^{\mathcal{I}} = P^{\mathcal{I}}(a,b) \wedge P^{\mathcal{I}}(b,b) \wedge P^{\mathcal{I}}(c,b)$
- $\kappa(y) = c$ $|\forall x P(x,y)|^{\mathcal{I},\kappa} = |\forall x P(x,c)|^{\mathcal{I}} = P^{\mathcal{I}}(a,c) \wedge P^{\mathcal{I}}(b,c) \wedge P^{\mathcal{I}}(c,c)$

Formulakifejtés – példa

```
\forall x \exists y (P(x,y) \supset R(x,y)) formula kifejtése
U = \{a, b, c\}
|\forall x \exists y (P(x,y) \supset R(x,y))|^{\mathcal{I}}
|\exists y (P(a,y) \supset R(a,y))|^{\mathcal{I}} \wedge
|\exists y (P(b,y) \supset R(b,y))|^{\mathcal{I}} \wedge
|\exists y (P(c,y) \supset R(c,y))|^{\mathcal{I}}
((P^{\mathcal{I}}(a,a)\supset R^{\mathcal{I}}(a,a))\vee(P^{\mathcal{I}}(a,b)\supset R^{\mathcal{I}}(a,b))\vee(P^{\mathcal{I}}(a,c)\supset R^{\mathcal{I}}(a,c)))\wedge
(P^{\mathcal{I}}(b,a)\supset R^{\mathcal{I}}(b,a))\vee (P^{\mathcal{I}}(b,b)\supset R^{\mathcal{I}}(b,b))\vee (P^{\mathcal{I}}(b,c)\supset R^{\mathcal{I}}(b,c))
((P^{\mathcal{I}}(c,a)\supset R^{\mathcal{I}}(c,a))\vee (P^{\mathcal{I}}(c,b)\supset R^{\mathcal{I}}(c,b))\vee (P^{\mathcal{I}}(c,c)\supset R^{\mathcal{I}}(c,c)))\wedge
```

Komplett példa I.

• \mathcal{L} nyelv:

$$\mathcal{L} = (=, P_1, P_2; a, b, f_1, f_2)$$
 szignatúra: $(2, 2, 2; 0, 0, 2, 2)$

• A struktúra leíró nyelve:

$$S = \mathbb{N}(=,<,>;0,1,+,*)$$
 szigantúra: $(2,2,2;0,0,2,2)$

$\mathcal{I}_{Pr}:P o P^{\mathcal{I}}$	=	P_1	P_2
	=	<	>

$\mathcal{I}_{Fn}:f o f^{\mathcal{I}}$	a	b	f_1	f_2
	0	1	+	*

 \mathcal{I}_{Cnst} : nincs konstans, csak két db 0 változós függvény

Példa II.

Az $t = f_1(x, f_2(x, y))$ term jelentésének megállapítása:

$$|t|^{\mathcal{I},\kappa} = |f_1(x, f_2(x, y))|^{\mathcal{I},\kappa} = |f_1|^{\mathcal{I}}(|x|^{\mathcal{I},\kappa}, |f_2(x, y)|^{\mathcal{I},\kappa}) = +(x, *(x, y)) = x + x * y$$

$$x + x * y$$

	x	y	x + x * y
κ_1	1	1	2
κ_2	2	3	8
κ_3	0	4	0

Példa III.

A $P_1(t, f_1(y, f_2(x, y)))$ formula jelentésének megállapítása:

$$\begin{aligned} |P_{1}(t, f_{1}(y, f_{2}(x, y)))|^{\mathcal{I},\kappa} &= \\ |P_{1}|^{\mathcal{I}}(|t|^{\mathcal{I},\kappa}, |f_{1}|^{\mathcal{I}}(|y|^{\mathcal{I},\kappa}, |f_{2}|^{\mathcal{I}}(|x|^{\mathcal{I},\kappa}, |y|^{\mathcal{I},\kappa}))) &= \\ &< (+(x, *(x, y)), +(y, *(x, y))) &= \\ &< (x + x * y, y + x * y) &= \\ &(x + x * y) < (y + x * y) \end{aligned}$$

Egy kvantormentes formula kiértékelése: a formula minden alap előfordulását generáljuk és így minden állítás előáll \mathcal{I} -ben.

Х	y	(x+x*y) < (y+x*y)
1	1	(1+1*1) < (1+1*1) = h
2	3	(2+2*3) < (3+2*3) = i

Példa IV.

Egzisztenciális formula jelentésének megállapítása:

$$|\exists x P_1(a,f_1(x,x))|^{\mathcal{I},\kappa}=i, \text{ ha } |P_1(a,f_1(x,x))|^{\mathcal{I},\kappa^*}=i \\ \kappa \text{ legalább egy } \kappa^* \text{ variánsára}.$$

Azaz ebben az interpretációban, ha 0<(x+x)=i legalább egy $u\in N$ esetén.

Nézzük meg a formula értéktábláját:

x	0 < (x+x)
0	h
1	i

Mivel az x = 1-re a formula törzse i, ezért a $\exists x (0 < (x + x))$ formula is i.

Példa V.

Univerzális formula jelentésének megállapítása:

$$|\forall x P_1(a, f_1(b, x))|^{\mathcal{I}, \kappa} = i$$
, ha $|P_1(a, f_1(b, x))|^{\mathcal{I}, \kappa^*} = i$ κ minden κ^* x variánsára.

Nézzük meg a formula értéktábláját:

x	0 < (1+x)
0	i
1	i

Mivel minden egészre a formula törzse i, ezért a $\forall x (0 < (1+x))$ formula értéke i.

A formula értéktáblája

- Egy 1. rendű formula prímformulái az atomi formulák (ezek paraméteres állítások az interpretációkban) és a kvantált formulák (ezek állítások, ha zártak).
- Egy 1. rendű formula prímkomponensei a formula azon prímformulái, amelyekből a formula logikai összekötőjelek segítségével épül fel.

Az **igazságtáblában** (ítéletlogika) az első sorba az állításváltozók (ezek a formula prímkomponensei) és a formula kerülnek. A változók alá igazságértékeiket (interpretáció) írjuk. A formula alatt a megfelelő helyettesítési értékek találhatók.

Egy 1. rendű formula **értéktáblájában** az első sorba a formula szabad változói, a prímkomponensek és a formula kerülnek. (Mivel a prímformulák több esetben paraméteres állítások, ezért az interpretációban az individuumváltozók kiértékelése után válnak állításokká.) Az individuumváltozók alá a lehetséges változókiértékelések, a prímformulák alá a megfelelő helyettesítési értékek kerülnek. A formula alatt a formulának a prímformulák értékei alapján kiszámított helyettesítési értékei találhatók.

A formula: $F = \exists x P(x) \supset \exists y Q(w,y) \lor P(v) \supset \forall z Q(w,z)$

A formula: $F = \exists x P(x) \supset \exists y Q(w,y) \lor P(v) \supset \forall z Q(w,z)$

 \bullet A prímkomponensek: $\exists x P(x)$, $\exists y Q(w,y)$, P(v), $\forall z Q(w,z)$

A formula: $F = \exists x P(x) \supset \exists y Q(w,y) \lor P(v) \supset \forall z Q(w,z)$

- A prímkomponensek: $\exists x P(x)$, $\exists y Q(w,y)$, P(v), $\forall z Q(w,z)$
- A szabad individuumváltozók: v,w

A formula: $F = \exists x P(x) \supset \exists y Q(w,y) \lor P(v) \supset \forall z Q(w,z)$

- A prímkomponensek: $\exists x P(x)$, $\exists y Q(w,y)$, P(v), $\forall z Q(w,z)$
- A szabad individuumváltozók: v,w
- Legyen az interpretáló struktúra:

$$U = \{1, 2, 3\}, |P|^{\mathcal{I}} = \{1, 3\}, |Q|^{\mathcal{I}} = \{(1, 2), (1, 3), (2, 1), (2, 2), (2, 3)\}$$

A formula:
$$F = \exists x P(x) \supset \exists y Q(w,y) \lor P(v) \supset \forall z Q(w,z)$$

- A prímkomponensek: $\exists x P(x)$, $\exists y Q(w,y)$, P(v), $\forall z Q(w,z)$
- A szabad individuumváltozók: v,w
- Legyen az interpretáló struktúra: $U = \{1,2,3\}, \ |P|^{\mathcal{I}} = \{1,3\}, \\ |Q|^{\mathcal{I}} = \{(1,2),(1,3),(2,1),(2,2),(2,3)\}$
- Ekkor $|\exists x P(x)|^{\mathcal{I}} = i$, a többiek paraméteres állítások.

A formula: $F = \exists x P(x) \supset \exists y Q(w,y) \lor P(v) \supset \forall z Q(w,z)$

- A prímkomponensek: $\exists x P(x), \exists y Q(w,y), P(v), \forall z Q(w,z)$
- A szabad individuumváltozók: v,w
- Legyen az interpretáló struktúra:

$$U = \{1, 2, 3\}, |P|^{\mathcal{I}} = \{1, 3\}, |Q|^{\mathcal{I}} = \{(1, 2), (1, 3), (2, 1), (2, 2), (2, 3)\}$$

• Ekkor $|\exists x P(x)|^{\mathcal{I}} = i$, a többiek paraméteres állítások.

Az értéktábla:

/ 12 \	12 CITCITUDIU.							
v	w	$ \exists x P(x)) ^{\mathcal{I}}$	$ \exists y Q(w,y) ^{\mathcal{I}}$	$ P(v) ^{\mathcal{I}}$	$ \forall z Q(w,z) ^{\mathcal{I}}$	F		
1	1	i	$ \exists y Q(1,y) ^{\mathcal{I},\kappa} = i$	$ P(1) ^{\mathcal{I}} = i$	$ \forall z Q(1,z) ^{\mathcal{I},\kappa} = h$	h		
1	2	i	$ \exists y Q(2,y) ^{\mathcal{I},\kappa} = i$	$ P(1) ^{\mathcal{I}} = i$	$ \forall z Q(2,z) ^{\mathcal{I},\kappa} = i$	i		
1	3	i	$ \exists y Q(3,y) ^{\mathcal{I},\kappa} = h$	$ P(1) ^{\mathcal{I}} = i$	$ \forall z Q(3,z) ^{\mathcal{I},\kappa} = h$	h		
2	1	i						
2	2	i						
2	3	i						
3	1	i						
3	2	i						
3	3	i			• • •			

Tartalom

Az elsőrendű logika szemantikája

Formulák és formulahalmazok szemantikus tulajdonságai

Formulák és formulahalmazok szemantikus tulajdonságai

$\mathcal{I}, \kappa \models A$

Az $\mathcal L$ egy $\mathcal I$ interpretációja adott κ változókiértékelés mellett kielégít egy 1. rendű A formulát $(\mathcal I, \kappa \models A)$, ha a formula $|A|^{\mathcal I, \kappa}$ értéke i. Ha az A formula mondat (zárt formula) és $\mathcal I \models A$, akkor azt mondjuk, hogy az I által megadott S struktúra elégíti ki A-t, így $S \models A$. Más szóval S modellje A-nak.

$\mathcal{I} \models \mathcal{F}$

Ha $\mathcal L$ egy $\mathcal I$ interpretációjára az $\mathcal F=\{F_1,F_2,\ldots,F_n\}$ zárt formulahalmazban $|F_k|^{\mathcal I}$ értéke i, minden $1\leq k\leq n$ értékre, akkor $\mathcal I$ **kielégíti** $\mathcal F$ -et. Jelölés: $\mathcal I\models\mathcal F$.

Formulák és formulahalmazok szemantikus tulajdonságai

Kielégíthető formula

Azt mondjuk, hogy egy G formula kielégíthető ha \mathcal{L} -hez van legalább egy \mathcal{I} interpretáció és κ változókiértékelés, hogy $\mathcal{I}, \kappa \models G$.

Kielégíthető formulahalmaz

Azt mondjuk, hogy $\mathcal F$ zárt formulahalmaz kielégíthető ha $\mathcal L$ -nek legalább egy $\mathcal I$ interpretációja kielégíti, azaz $\mathcal I \models \mathcal F$.

Logikailag igaz és tautológia kérdése

Logikailag igaz

Azt mondjuk, hogy egy G formula **logikailag igaz (logikai törvény)**, ha G igaz minden lehetséges $\mathcal I$ interpretációra és minden κ változókiértékelésre. Ez azt jelenti, hogy G igaz minden lehetséges interpretáló struktúrában. Jelölés: $\models G$.

Tautológia

Azt mondjuk, hogy egy G formula **tautológia**, ha G értéktáblájában a prímkomponensekhez rendelhető összes lehetséges igazságérték hozzárendelés esetén a formula helyettesítési értéke i. Jelölés: $\models_0 G$

Példa

 $\forall x P(x) \land \forall x Q(x) \supset \forall x P(x)$ formula prímkomponens alakja $p \land q \supset p$. ami tautológia, de

 $\forall x(P(x) \land Q(x)) \supset \forall xP(x)$ prímkomponens alakja $r \supset p$ nem tautológia (viszont mindkettő logikailag igaz!)

Kielégíthetetlenség

Kielégíthetetlenség

Azt mondjuk, hogy G formula illetve $\mathcal F$ formulahalmaz **kielégíthetetlen** (nem kielégíthető), ha $\mathcal L$ -hez nincs olyan $\mathcal I$ interpretáció, hogy $\mathcal I \models G$ illetve, hogy $\mathcal I \models \mathcal F$. Más szóval egy G formula kielégíthetetlen, ha minden interpretációban a G értéktáblájának minden sorában G helyettesítési értéke h(amis). Az $\mathcal F$ formulahalmaz kielégíthetetlen, ha az $\mathcal F$ közös értéktáblájában minden sorban van legalább egy eleme $\mathcal F$ -nek, amelynek a helyettesítési értéke h(amis).

A két szemantikus tulajdonság fennállásának vizsgálatához az összes inerpretáló struktúrára szükség van.

Lehetséges interpretáló struktúrák száma adott U és adott szignatúra mellett

Legyenek rendre az $\mathcal L$ nyelv szignatúrája szerint $(r_1,r_2,\ldots,r_n;s_1,s_2,\ldots,s_k)$ a predikátumszimbólumok és függvényszimbólumok aritásai. Legyen U az univerzum, ahol |U|=M.

Állapítsuk meg hány különböző $(r_1, r_2, \ldots, r_n; s_1, s_2, \ldots, s_k)$ szignatúrájú struktúra létezik U felett?

Ezekkel az aritásokkal relációkat $\prod\limits_{j=1}^n 2^{M^{r_j}}$, míg műveleteket $\prod\limits_{t=1}^k M^{M^{s_t}}$ féleképp lehet definiálni. Az összes definiálható struktúra száma a kettő szorzata: $(\prod\limits_{j=1}^n 2^{M^{r_j}})*\prod\limits_{t=1}^k M^{M^{s_t}}.$

Lehetséges interpretáló struktúrák száma

Alsó becslés esetén csak a lehetséges relációk számát állapítjuk meg. Egy n változós reláció esetén az értelmezési tartomány elemszáma $|U^n|=M^n$, a relációt megadhatjuk az U^n halmaz egy részhalmazának kijelölésével. A lehetséges n-változós relációk száma megegyezik az értelmezési tartomány hatványhalmaza (összes részalmazai halmaza) számosságával $|\mathcal{P}(U^n)|$ -el, ez ha U megszámlálhatóan végtelen, akkor kontínuum számosságú (több mint megszámlálhatóan végtelen), ami algoritmikusan nem kezelhető.

Elsőrendű szemantikus fa

Legyenek rendre az $\mathcal L$ nyelv szignatúrája szerint (r_1,r_2,\ldots,r_n) a predikátumszimbólumok aritásai.

Előállítjuk minden $j=1,\dots,n$ értékre az U^{r_j} értékeinek felhazsnálásával P_{r_j} összes alapatomját, tekintsük ezek egy rögzitett sorrendjét (bázis), a szemantikus fa szintjeihez ebben a sorrendben rendeljük hozzá az alapatomokat. Egy-egy szint minden csúcsából pontosan két él indul ki, az egyik a szinthez rendelt alapatommal (ez jelenti, hogy az alapatom igaz az élhez tartozó interpretációkban), a másik ennek negáltjával van címkézve (ez jelenti, hogy az alapatom hamis az élhez tartozó interpretációkban). A bináris fa ágai adják meg a lehetséges interpretációkat.

Példa

Adott nyelv esetén a predikátumszimbólumokra az összes interpretáció megadása szemantikus fával.

Legyen

• a formulahalmaz:

$$K = \{ \forall x P(x), \forall y \forall z (\neg Q(y, z) \lor \neg P(z)), \forall u \forall v Q(u, v) \}$$

- $U = \{a, b, c\}$
- a B bázis: P(a), Q(a,a), P(b), Q(a,b), ..., Q(c,c) alapatom sorozat

Példa

A szemantikus fa a B bázis alapján:

• • •