Relatório do Trabalho 2 - Inteligência Artificial

Augusto César Araújo de Oliveira - 508991 Elizadora Mendonça da Silva - 508949

Quanto à experimentação, foram utilizados arquivos de entrada com pelo menos 5 cidades até 15 cidades. Para apresentar os resultados, foi decidido dois arquivos de entrada: com 7 cidades e com 12 cidades.

Questão 1

Para uma entrada composta de 7 cidades, temos:

Entrada:

0.0 1.0 2.0 0.0 1.0 1.0 3.0 0.0 2.0 0.0 2.0 1.0 3.0 2.0

Cidade inicial 0	Cidade inicial	Cidade inicial 2	Cidade inicial	Cidade inicial 4	Cidade inicial 5	Cidade inicial 6
Melhor circuito: [0, 4, 3, 5, 1, 6, 2]	Melhor circuito: [1, 6, 2, 0, 4, 3, 5]	Melhor circuito: [2, 0, 4, 3, 5, 1, 6]	Melhor circuito: [3, 1, 0, 6, 2, 4, 5]	Melhor circuito: [4, 3, 5, 1, 6, 0, 2]	Melhor circuito: [5, 3, 1, 0, 6, 2, 4]	Melhor circuito: [6, 5, 3, 1, 0, 2, 4]
Menor custo: 14.95084461 9618655	Menor custo: 13.95084461 9618655	Menor custo: 15.18691259 7118445	Menor custo: 14.36505818 199175	Menor custo: 14.36505818 199175	Menor custo: 14.95084461 9618655	Menor custo: 15.18691259 7118445

A execução do algoritmo A* para cada cidade teve 20 interações, no arquivo "saida.txt" está mais detalhado os resultados de cada interação. Para cada interação, foi impresso a cidade visitada, o circuito atual, o custo da função g para o circuito atual com aquela cidade visitada, o custo da função h com a cidade visitada e a função f (soma dos custos das funções g e h). O número de cidades visitadas é o número de interações, porém podemos perceber que para um determinado circuito, o número de cidades é distinto, visto que quando o circuito continha apenas a cidade inicial, o número de cidades visitadas foi de (n-1), seja n o número de cidades não visitadas. Já quando o circuito continha duas cidades, o número de cidades a serem visitadas caiu para n-2. Esse raciocínio seguiu até não haver mais cidades a serem visitadas.

Para uma entrada composta por 12 cidades, temos:

Entrada:

3.0 1.2 7.2 9.0 6.5 2.3 8.8 4.6 5.2 1.8 6.0 3.7 5.0 8.6 4.3 2.0 9.2 1.7 6.1 3.5 7.7 4.0 2.9 8.4

Cidade inicial 0	Melhor circuito: [0, 4, 8, 11, 1, 7, 6, 3, 2, 10, 5, 9]	
	Menor custo: 64.46655174220167	
Cidade inicial 5	Melhor circuito: [5, 4, 1, 8, 11, 9, 0, 7, 6, 3, 2, 10]	
	Menor custo: 66.79423187477569	

Cidade inicial 2	Melhor circuito: [2, 4, 1, 8, 11, 5, 9, 0, 7, 6, 3, 10]
	Menor custo: 64.74841069847892
Cidade inicial 1	Melhor circuito: [1, 4, 8, 7, 6, 10, 2, 3, 5, 9, 0, 11]
	Menor custo: 65.41248904781723
Cidade inicial 7	Melhor circuito: [7, 2, 1, 5, 9, 0, 11, 8, 4, 6, 3, 10]
	Menor custo: 64.42765642819312
Cidade inicial 3	Melhor circuito: [3, 4, 1, 8, 11, 5, 9, 0, 7, 6, 10, 2]
	Menor custo: 65.82511818032239
Cidade inicial 9	Melhor circuito: [9, 4, 1, 8, 11, 5, 7, 6, 3, 2, 10, 0]
	Menor custo: 64.46655174220167
Cidade inicial 11	Melhor circuito: [11, 4, 8, 7, 6, 3, 2, 10, 5, 9, 0, 1]
	Menor custo: 65.41248904781723
Cidade inicial 4	Melhor circuito: [4, 1, 8, 7, 6, 10, 2, 3, 5, 9, 0, 11]
	Menor custo: 65.81654576273255
Cidade inicial 8	Melhor circuito: [8, 4, 1, 7, 6, 10, 2, 3, 5, 9, 0, 11]
	Menor custo: 64.55979634274502
Cidade inicial 10	Melhor circuito: [10, 3, 2, 6, 4, 1, 8, 11, 5, 9, 0, 7]
	Menor custo: 64.42765642819312
Cidade iniciai 10	• • • • • • • • • •

A execução do algoritmo A* para cada cidade teve 65 interações, no arquivo "saida2.txt" está mais detalhado os resultados de cada interação. Para cada interação, foi impresso a cidade visitada, o circuito atual, o custo da função g para o circuito atual com aquela cidade visitada, o custo da função h com a cidade visitada e a função f (soma dos custos das funções g e h).

De modo geral, com base nos resultados obtidos nas diversas interações, a escolha da cidade inicial influencia sim na execução do algoritmo quando olha-se para o valor do custo final, visto que o circuito de menor custo na entrada de 7 cidades foi o que iniciou com a cidade 1, já os outros valores foram semelhantes, ficando entre 14 e 15. Na entrada com 12 cidades, as cidades iniciais foram escolhidas arbitrariamente e os circuitos com o menor custo foram os que iniciaram com a cidade 1 e 11, visto que eles possuem o mesmo custo final. Já os demais, tiveram valores próximos do menor custo, com pouca diferença.

Observação: O algoritmo de Kruskal foi usado aqui sem a variação usada na questão 2.

Questão 2

Analisamos os resultados obtidos usando as duas variações do algoritmo de Kruskal para uma entrada com 7 cidades (no arquivo "entrada.txt"), temos:

Cidade inicial	Variação 1	Variação 2
0	Melhor Circuito: [0, 4, 3, 5, 1, 6, 2] Melhor custo:14.950844619618655	Melhor Circuito: [0, 2, 4, 3, 5, 1, 6] Melhor custo:12.950844619618655
1	Melhor Circuito: [1, 6, 2, 0, 4, 3, 5] Melhor custo:13.950844619618655	Melhor Circuito: [1, 2, 0, 4, 3, 5, 6] Melhor custo:12.950844619618655
2	Melhor Circuito: [2, 0, 4, 3, 5, 1, 6] Melhor custo:15.186912597118445	Melhor Circuito: [2, 0, 4, 3, 5, 1, 6] Melhor custo:12.950844619618655
3	Melhor Circuito: [3, 1, 0, 6, 2, 4, 5] Melhor custo:14.36505818199175	Melhor Circuito: [3, 5, 6, 1, 0, 2, 4] Melhor custo:12.950844619618655
4	Melhor Circuito: [4, 3, 5, 1, 6, 0, 2] Melhor custo:14.36505818199175	Melhor Circuito: [4, 2, 0, 3, 5, 1, 6] Melhor custo:12.950844619618655
5	Melhor Circuito: [5, 3, 1, 0, 6, 2, 4] Melhor custo:14.950844619618655	Melhor Circuito: [5, 3, 6, 1, 0, 2, 4] Melhor custo:12.950844619618655
6	Melhor Circuito: [6, 5, 3, 1, 0, 2, 4] Melhor custo:15.186912597118445	Melhor Circuito: [6, 5, 2, 0, 3, 1, 4] Melhor custo:12.950844619618655

Além de outras entradas, o resultado obtido foi que a variação 2 tende a ter um mesmo custo para todos os circuitos, diferente da variação 1. Com isso, a variação 2 torna-se menos eficiente que a variação 1, visto que não informando a cidade de partida percebe-se que há omissão de informações suficientes para resultar em um circuito que não é o de menor custo. Ao analisar os dados da variação 2, percebe-se que todos estão com o mesmo custo, apesar das sequências diferentes. Porém, ao compará-los com os dados da variação 1, nota-se que na realidade o melhor circuito, isto é, o de menor custo é o circuito que começa com a cidade 1.

Observação: Os dados detalhados de cada variação estão nos arquivos "variacao.txt" e "variacao2.txt", em que o primeiro contém os resultados do algoritmo contendo a cidade de partida na estimativa, já o arquivo "variacao2.txt" contém os resultados obtidos sem inserir a cidade de partida na estimativa.