Parameterized Algorithm 7.2, 7.3 tree-width と重み付き最大独立点集合

北海道大学 情報知識ネットワーク研究室 M1 大泉翼

木幅とは

· 木幅(tree-width):

無向グラフに対して定義される不変量の一つ

- 大雑把にいうと, グラフの**木っぽさ**を表す指標
- 木幅が小さいほどグラフは木っぽい

木:tw = 1

サイクル:tw = 2

外平面グラフ: tw ≤ 2

平面グラフ: $tw = O(\sqrt{n})$

擬似木: tw = 2

カクタス木: tw ≤ 2

グリッド: $\mathsf{tw} = \sqrt{n}$

完全グラフ:tw = n - 1

木に対する動的計画法

- 一般グラフでは NP 困難な問題例:
 - 最大独立点集合問題(maximum independent set problem)
 - 最小点被覆問題(minimum vertex cover problem)
 - ・など
- ・ グラフが木のとき、 動的計画法を用いることで多項式時間で解けることが多い
- グラフが木っぽいとき、つまり木幅が定数で抑えられるとき、 上記と同様に<u>多項式時間で解くことができる</u>

本スライドでは、<u>重み付き最大独立点集合</u>を紹介

本スライドで扱う問題

重み付き最大独立点集合問題

(Maximum Independent Set Problem)

入力:無向グラフ G = (V, E) と頂点の重み関数 $w: V \to \mathbb{R}$

出力:**独立点集合**のうち,重み和が最大のもの

独立点集合:

V の部分集合のうち、どの 2 頂点も辺で結ばれていないようなもの

重み和の最大値:19

グラフが木のとき

• 重み付き最大独立点集合問題は、入力グラフが木のとき、 根付き木をボトムアップに DP することで、O(n) 時間で解ける

 T_v : v を根とする寝付き木

DP テーブルの定義:

 $A[v] := T_v$ のに対する解

 $B[v] := T_v/\{v\}$ に対する解

<u>DP 遷移式</u>:

 $B[v] = \sum_{c \in child(v)} A[c]$

$$A[v] = \max \left\{ B[v], w(v) + \sum_{c \in child(v)} B[c] \right\}$$

定義の気持ち:

頂点 ν を含むか 含まないかで 場合分け

木分解の定義

G = (V, E) の木分解(tree-decomposition)とは、

木 T と<u>バッグ</u> $X_t \subseteq V(G)$ からなる集合の組 $\left(T, \left\{X_t\right\}_{t \in V(T)}\right)$

であり、以下の性質を満たすものである.

- $(\mathbf{T1}) \quad \bigcup_{t \in V(T)} X_t = V(G)$
- (**T3**) 全ての頂点 $v \in V(G)$ に対して, $v \in P(G)$ を含むバッグに対応するノードの集合は T で連結

木分解の例(1/2)

$$(\mathbf{T1}) \quad \bigcup_{t \in V(T)} X_t = V(G)$$

- (**T1**) $X_t = V(G)$ (**T2**) 全ての辺 $uv \in E(G)$ に対して, ノード $t \in V(T)$ が存在して $u, v \in X_t$
- (**T3**) 全ての頂点 $v \in V(G)$ に対して, v を含むバッグに対応するノードの集合は T で連結

木分解
$$\mathcal{T} = \left(T, \left\{X_t\right\}_{t \in V(T)}\right)$$

$$X_1$$
 abd X_3 X_4 X_5 X_4 X_5 X_2 bce X_3 X_4 X_6 X_6

木分解の例 (2/2)

$$(\mathbf{T1}) \quad \bigcup_{t \in V(T)} X_t = V(G)$$

- (**T1**) $\bigcup X_t = V(G)$ (**T2**) 全ての辺 $uv \in E(G)$ に対して、 ノード $t \in V(T)$ が存在して $u, v \in X_t$
- (**T3**) 全ての頂点 $v \in V(G)$ に対して, v を含むバッグに対応するノードの集合は T で連結

木分解
$$\mathcal{T} = \left(T, \left\{X_t\right\}_{t \in V(T)}\right)$$

木分解ではない例 (1/2)

$$(\mathbf{T1}) \quad \bigcup_{t \in V(T)} X_t = V(G)$$

(**T1**) $X_t = V(G)$ (**T2**) 全ての辺 $uv \in E(G)$ に対して,

ノード $t \in V(T)$ が存在して $u, v \in X_t$

(**T3**) 全ての頂点 $v \in V(G)$ に対して, v を含むバッグに対応するノードの集合は T で連結

木分解
$$\mathcal{T} = \left(T, \left\{X_t\right\}_{t \in V(T)}\right)$$

木分解ではない例 (1/2)

$$(\mathbf{T1}) \quad \bigcup_{t \in V(T)} X_t = V(G)$$

(**T1**) $X_t = V(G)$ (**T2**) 全ての辺 $uv \in E(G)$ に対して,

ノード $t \in V(T)$ が存在して $u, v \in X_t$

(**T3**) 全ての頂点 $v \in V(G)$ に対して, v を含むバッグに対応するノードの集合は T で連結

木分解
$$\mathcal{T} = \left(T, \left\{X_t\right\}_{t \in V(T)}\right)$$

木分解ではない例 (2/2)

$$(\mathbf{T1}) \quad \bigcup_{t \in V(T)} X_t = V(G)$$

- (**T1**) $X_t = V(G)$ (**T2**) 全ての辺 $uv \in E(G)$ に対して, ノード $t \in V(T)$ が存在して $u, v \in X_t$
- (**T3**) 全ての頂点 $v \in V(G)$ に対して, v を含むバッグに対応するノードの集合は T で連結

木分解
$$\mathcal{T} = \left(T, \left\{X_{t}\right\}_{t \in V(T)}\right)$$

$$X_{1} \left(\text{adf}\right)$$

$$X_{2} \left(\text{abc}\right) \xrightarrow{X_{3}} \left(\text{bdeg}\right) \xrightarrow{X_{5}} \left(\text{fgh}\right)$$

$$X_{4} \left(\text{ceh}\right)$$

木分解ではない例 (2/2)

$$(\mathbf{T1}) \quad \bigcup_{t \in V(T)} X_t = V(G)$$

(**T1**) $\bigcup X_t = V(G)$ (**T2**) 全ての辺 $uv \in E(G)$ に対して、

ノード $t \in V(T)$ が存在して $u, v \in X_t$

(**T3**) 全ての頂点 $v \in V(G)$ に対して, v を含むバッグに対応するノードの集合は T で連結

入力グラフ G = (V, E)

木分解 $\mathcal{T} = \left(T, \left\{X_t\right\}_{t \in V(T)}\right)$

(T3) に違反

木幅の定義

木分解 \mathcal{T} の幅(width)とは、

最大のバッグサイズから、1引いたもの

グラフ G の木幅(tree-width)とは、

全ての木分解を考えたときの最小の幅

木分解
$$\mathcal{T} = \left(T, \left\{X_t\right\}_{t \in V(T)}\right)$$

木幅とは(再掲)

· 木幅(tree-width):

無向グラフに対して定義される不変量の一つ

- 大雑把にいうと, グラフの**木っぽさ**を表す指標
- 木幅が小さいほどグラフは木っぽい

木:tw = 1

サイクル:tw = 2

外平面グラフ: tw ≤ 2

平面グラフ: $tw = O(\sqrt{n})$

擬似木: tw = 2

カクタス木: tw ≤ 2

グリッド: $tw = \sqrt{n}$

完全グラフ:tw = n - 1

様々なグラフの木幅(1/2)

木: tw = 1

様々なグラフの木幅 (2/2)

サイクル:tw = 2

素敵な木分解

木分解 ℱ が以下の二つの性質を満たすとき、

木分解 \mathcal{T} は素敵な木分解(nice tree-decoposition)であるという

- $X_r = \emptyset, X_l = \emptyset$ (根と葉に対応するバッグは空集合)
- ・ 葉以外の全てのノードtは、以下のいずれかのタイプに属する
 - . Introduce: 1 つの子 t' を持ち, $X_t = X_{t'} \cup \{v\}$
 - **. Forget**: 1 つの子 t' を持ち、 $X_t = X_{t'} \setminus \{v\}$
 - . <u>Join</u>: 2 つの子 t_1', t_2' を持ち, $X_t = X_{t_1'} = X_{t_2'}$

注: $\mathcal{T} = \left(T, \left\{X_t\right\}_{t \in V(T)}\right)$ の T は,根付き木とする

素敵な木分解の例

Introduce: 1 つの子 t' を持ち, $X_t = X_{t'} \cup \{v\}$

Forget: 1 つの子 t' を持ち、 $X_t = X_{t'} \setminus \{v\}$

<u>Join</u>: 2 つの子 t'_1, t'_2 を持ち、 $X_t = X_{t'_1} = X_{t'_2}$

幅wの木分解から、

幅 w の素敵な木分解を

 $O(w^2n)$ 時間で得ることができる

素敵な木分解上の動的計画法

• dp[t,S] :=各ノード t と部分集合 $S \subseteq X_t$ について,

 $I \cap X_t = S$ であるような独立点集合 $I \subseteq V_t$ の最大重み和

 V_t : t を根とする根付き木に含まれる頂点

. 求める解: $dp[r,\emptyset]$

. 初期条件: $dp[l,\emptyset] = 0$ (l は葉)

ボトムアップに (葉から順に) DP テーブルを更新していく

● :使う頂点 ○ :使わない頂点

動的計画法の更新式 (Introduce)

tが Introduce node のとき

$$dp[t,S] = \begin{cases} dp[t',S] & \text{if } v \notin S, \\ dp[t',S\setminus\{v\}] + w(v) & \text{otherwise}. \end{cases}$$

更新式の気持ち:

頂点wを加えるか、加えないかで 場合分け

動的計画法の更新式(Forget)

tが Forget node のとき

$$dp[t,S] = \max \left\{ dp[t',S], dp[t',S \cup \{w\}] \right\}$$

更新式の気持ち:

新たに頂点 w を忘れるか、

すでに忘れていたかの場合分け

動的計画法の更新式(Join)

tが Join node のとき

$$dp[t, S] = dp[t'_1, S] + dp[t'_2, S] - w(S)$$

更新式の気持ち:

重複で 2 回足している w(S) を引く

アルゴリズムの計算量

- DP テーブルのサイズは,各ノードで高々 2^{w+1} であり, テーブルの更新は O(w) でできるため, 全体で $O(2^wwn)$ となる
- ・以上より、以下の定理を得る

主定理:

入力として重み付き無向グラフ $G = (V, E), w: V \to \mathbb{R}$ と,

バッグのサイズが高々 w の木分解 $\mathcal{T} = \left(T, \left\{X_t\right\}_{t \in V(T)}\right)$ が与えられた

とき、重み付き最大独立点集合問題を $O(2^wwn)$ 時間で解く

まとめ

- ・ 入力グラフの木幅が定数で抑えられるとき, 多項式時間で動作する動的計画法が設計できることがある
- ・ 本スライドでは、重み付き最大独立点集合を紹介した
 - ・木幅をwとして, $O(2^wwn)$ 時間で解けることを示した
- ・他にも様々な問題が、 同様の動的計画法で解けることが知られている
 - 最小頂点被覆問題: $2^w \cdot k^{O(1)} \cdot n$ 時間
 - 支配集合問題: $4^w \cdot w^{O(1)} \cdot n$ 時間
 - 最大カット問題: 2^w·w^{O(1)} 時間
 - など