Asymmetric butterfly velocities in local time-independent Hamiltonians

Charles Stahl, $^{1,\,2}$ David A. $\mathrm{Huse},^1$ and Vedika Khemani 3

The butterfly velocity v_B is the velocity at which initially local operators spread. In many 1-D systems this velocity is independent of the direction of spreading. This need not be the case. In fact, with arbitrarily nonlocal Hamiltonians, or arbitrarily deep circuit models, the ratio of the two butterfly velocities may be made arbitrarily large. We provide a class of circuits whose limiting behavior shows this arbitrarily large ratio. We also describe a local Hamiltonian with an asymmetric v_B , presenting various methods to measure the asymmetry.

INTRODUCTION

Thermalization is important because...

Asymmetric transport is seen in "staircase" and "glider" circuits, but we wanted to show it is also possible in time-independent Hamiltonians.

FIG. 1. Empirical growth rate as a function of slope for n-stair circuits. The right/forward and left/backward butterfly velocities are the slopes of these curves at their endpoint, indicating that as the left v_B stays constant, the right v_B increases. The appendix includes an argument that the right v_B is unbounded in the large-n limit.

CIRCUIT MODELS WITH ASYMMETRIC v_B

In a 1-D circuit, how asymmetric can the spreading be?

On the edge of a 2-D system, spreading can be chiral even with a finite circuit depth [?].

To be completely chiral with only 1 dimension, the circuit will have to be of infinite depth.

Given a constraint on the depth, how asymmetric can the spreading be?

How much of the circuit model, with $\Gamma(ds/dx)$, etc. should we describe here?

For the growth rate curves of n-stair circuits for $n \leq 6$ see Fig. 1.

For small n, we can simulate the circuit directly. This is particularly easy in the large q limit, where q is the dimension of the Hilbert space at each site. Again, how in-depth should this section be?

For large n, approaching the size of the system, we

In this paper we will...

 $^{^1}Department$ of Physics, Princeton University, Princeton, NJ 08544, USA 2DAMTP

³Department of Physics, Harvard University, Cambridge, MA 02138, USA

FIG. 2. Phase transition for the model, with level repulsion parameter plotted against field strength. Note that in the thermalizing phase the ratio is 0.6 instead of 0.53 because the statistics are GUE instead of GOE. I think I remember Vedika saying this but I can't find where.

can approximate the entanglement curve as being uncorrelated. In that limit, the growth rate is $\Gamma(ds/dt) = ds/dt + 1$, so that for spreading to the left $v_B = 1$ and for spreading to the right $v_B = \infty$.

LOCAL HAMILTONIANS

Motivate triple product: Has to be asymmetric-can't have 2-site interactions. Impose SU(2) as a constraint? Then our only option is the triple product.

Alone, this model is not general. Large degeneracy at E=0. Explain the degeneracy is due to the $E\to -E$ (anti-)symmetry. Show parts of this degeneracy can be broken with various fields. A random Z field breaks all the degeneracy. This phase change can be seen in Fig. 2.

In the thermalizing, generic phase, the right weights should we define these in this section? peak as the information front passes. Because of the three-site nature of each term in the Hamiltonian, the right weight and OTOC exhibit an "odd-even" effect. It is possible to account for these by averaging judiciously, or by only looking at even (or odd) sites. At L=13, there are enough even sites that the asymmetry can be seen. For a picture of the rights weights with their successive peaks, see Fig. 3

We'll want to cite a bunch of people [18, 19, 21–24, 26–46].

ACKNOWLEDGEMENTS

We thank many people.

FIG. 3. Right weight at even sites for L=13. The peak travels ballistically. Later peaks are smaller Is this due to broadening?

- J. M. Deutsch, "Quantum statistical mechanics in a closed system," Phys. Rev. A 43, 2046-2049 (1991).
- [2] Mark Srednicki, "Chaos and quantum thermalization," Phys. Rev. E 50, 888–901 (1994).
- [3] Marcos Rigol, Vanja Dunjko, and Maxim Olshanii, "Thermalization and its mechanism for generic isolated quantum systems," Nature 452, 854–858 (2008).
- [4] Immanuel Bloch, Jean Dalibard, and Wilhelm Zwerger, "Many-body physics with ultracold gases," Rev. Mod. Phys. 80, 885–964 (2008).
- [5] Jae-yoon Choi, Sebastian Hild, Johannes Zeiher, Peter Schauß, Antonio Rubio-Abadal, Tarik Yefsah, Vedika Khemani, David A. Huse, Immanuel Bloch, and Christian Gross, "Exploring the many-body localization transition in two dimensions," Science 352, 1547–1552 (2016).
- [6] J. Smith, A. Lee, P. Richerme, B. Neyenhuis, P. W. Hess, P. Hauke, M. Heyl, D. A. Huse, and C. Monroe, "Many-body localization in a quantum simulator with programmable random disorder," ArXiv e-prints (2015), arXiv:1508.07026 [quant-ph].
- [7] A. M. Kaufman, M. E. Tai, A. Lukin, M. Rispoli, R. Schittko, P. M. Preiss, and M. Greiner, "Quantum thermalization through entanglement in an isolated many-body system," Science 353, 794–800 (2016), arXiv:1603.04409 [quant-ph].
- [8] P. W. Anderson, "Absence of diffusion in certain random lattices," Phys. Rev. 109, 1492–1505 (1958).
- [9] D. M. Basko, I. L. Aleiner, and B. L. Altshuler, "Metalinsulator transition in a weakly interacting many-electron system with localized single-particle states," Annals of Physics 321, 1126–1205 (2006).
- [10] Arijeet Pal and David A. Huse, "Many-body localization phase transition," Phys. Rev. B 82, 174411 (2010).
- [11] Vadim Oganesyan and David A. Huse, "Localization of interacting fermions at high temperature," Phys. Rev. B 75, 155111 (2007).
- [12] M. Žnidarič, T. Prosen, and P. Prelovšek, "Many-body localization in the Heisenberg XXZ magnet in a random

- field," Phys. Rev. B 77, 064426 (2008), arXiv:0706.2539 [quant-ph].
- [13] John Z. Imbrie, "On many-body localization for quantum spin chains," Journal of Statistical Physics 163, 998–1048 (2016).
- [14] J. Maldacena, "The Large-N Limit of Superconformal Field Theories and Supergravity," International Journal of Theoretical Physics 38, 1113–1133 (1999).
- [15] E. Witten, "Anti-de Sitter space and holography," Advances in Theoretical and Mathematical Physics 2, 253-291 (1998), hep-th/9802150.
- [16] P. Hayden and J. Preskill, "Black holes as mirrors: quantum information in random subsystems," Journal of High Energy Physics 9, 120 (2007), arXiv:0708.4025 [hep-th].
- [17] Y. Sekino and L. Susskind, "Fast scramblers," Journal of High Energy Physics 10, 065 (2008), arXiv:0808.2096 [hep-th].
- [18] P. Hosur, X.-L. Qi, D. A. Roberts, and B. Yoshida, "Chaos in quantum channels," Journal of High Energy Physics 2, 4 (2016), arXiv:1511.04021 [hep-th].
- [19] S. H. Shenker and D. Stanford, "Black holes and the butterfly effect," Journal of High Energy Physics 3, 67 (2014), arXiv:1306.0622 [hep-th].
- [20] N. Lashkari, D. Stanford, M. Hastings, T. Osborne, and P. Hayden, "Towards the fast scrambling conjecture," Journal of High Energy Physics 4, 22 (2013), arXiv:1111.6580 [hep-th].
- [21] D. A. Roberts, D. Stanford, and L. Susskind, "Localized shocks," Journal of High Energy Physics 3, 51 (2015), arXiv:1409.8180 [hep-th].
- [22] J. S. Cotler, G. Gur-Ari, M. Hanada, J. Polchinski, P. Saad, S. H. Shenker, D. Stanford, A. Streicher, and M. Tezuka, "Black holes and random matrices," Journal of High Energy Physics 5, 118 (2017), arXiv:1611.04650
- [23] Daniel A. Roberts and Douglas Stanford, "Diagnosing chaos using four-point functions in two-dimensional conformal field theory," Phys. Rev. Lett. 115, 131603 (2015).
- [24] A Kitaev, "A simple model of quantum holography," Talks at KITP, April 7, 2015 and May 27, 2015. http://online.kitp.ucsb.edu/online/entangled15/kitaev/,http://d3] A. Nahum, S. Vijay, and J. Haah, "Operator Spreading //online.kitp.ucsb.edu/online/entangled15/kitaev2/.
- [25] S. Sachdev and J. Ye, "Gapless spin-fluid ground state in a random quantum Heisenberg magnet," Physical Review Letters **70**, 3339–3342 (1993), cond-mat/9212030.
- [26] Elliott H. Lieb and Derek W. Robinson, "The finite group velocity of quantum spin systems," Communications in Mathematical Physics 28, 251–257.
- [27] A. I. Larkin and Y. N. Ovchinnikov, "Quasiclassical Method in the Theory of Superconductivity," Soviet Journal of Experimental and Theoretical Physics 28, 1200 (1969).
- [28] J. Maldacena, S. H. Shenker, and D. Stanford, "A bound on chaos," Journal of High Energy Physics 8, 106 (2016), arXiv:1503.01409 [hep-th].
- [29] Y. Gu, X.-L. Qi, and D. Stanford, "Local criticality, diffusion and chaos in generalized Sachdev-Ye-Kitaev models," Journal of High Energy Physics 5, 125 (2017), arXiv:1609.07832 [hep-th].
- [30] Y. Gu and X.-L. Qi, "Fractional statistics and the butterfly effect," Journal of High Energy Physics 8, 129 (2016), arXiv:1602.06543 [hep-th].
- [31] D. Stanford, "Many-body chaos at weak coupling," Journal of High Energy Physics 10, 9 (2016),

- arXiv:1512.07687 [hep-th].
- [32] A. A. Patel, D. Chowdhury, S. Sachdev, and B. Swingle, "Quantum Butterfly Effect in Weakly Interacting Diffusive Metals," Physical Review X 7, 031047 (2017), arXiv:1703.07353 [cond-mat.str-el].
- [33] D. Chowdhury and B. Swingle, "Onset of many-body chaos in the O (N) model," Phys. Rev. D 96, 065005 (2017), arXiv:1703.02545 [cond-mat.str-el].
- [34] E. B. Rozenbaum, S. Ganeshan, and V. Galitski, "Lyapunov Exponent and Out-of-Time-Ordered Correlator's Growth Rate in a Chaotic System," Physical Review Letters 118, 086801 (2017), arXiv:1609.01707 [cond-mat.dis-
- [35] B. Dóra and R. Moessner, "Out-of-Time-Ordered Density Correlators in Luttinger Liquids," Physical Review Letters 119, 026802 (2017), arXiv:1612.00614 [cond-
- [36] D. J. Luitz and Y. Bar Lev, "Information propagation in isolated quantum systems," Phys. Rev. B 96, 020406 (2017), arXiv:1702.03929 [cond-mat.dis-nn].
- [37] I. Kukuljan, S. Grozdanov, and T. Prosen, "Weak quantum chaos," Phys. Rev. B 96, 060301 (2017), arXiv:1701.09147 [cond-mat.stat-mech].
- [38] I. L. Aleiner, L. Faoro, and L. B. Ioffe, "Microscopic model of quantum butterfly effect: Out-of-time-order correlators and traveling combustion waves," Annals of Physics **375**, 378–406 (2016), arXiv:1609.01251 [condmat.stat-mech].
- [39] C.-J. Lin and O. I. Motrunich, "Out-of-time-ordered correlators in quantum Ising chain," ArXiv e-prints (2018), arXiv:1801.01636 [cond-mat.stat-mech].
- [40] X. Chen, T. Zhou, D. A. Huse, and E. Fradkin, "Out-oftime-order correlations in many-body localized and thermal phases," Annalen der Physik **529**, 1600332 (2017).
- [41] A. Chan, A. De Luca, and J. T. Chalker, "Solution of a minimal model for many-body quantum chaos," ArXiv e-prints (2017), arXiv:1712.06836 [cond-mat.stat-mech].
- [42] W. Brown and O. Fawzi, "Scrambling speed of random quantum circuits," ArXiv e-prints arXiv:1210.6644 [quant-ph].
- in Random Unitary Circuits," ArXiv e-prints (2017), arXiv:1705.08975 [cond-mat.str-el].
- [44] C.W. von Keyserlingk, T. Rakovszky, F. Pollmann, and S. Sondhi, "Operator hydrodynamics, OTOCs, and entanglement growth in systems without conservation laws," ArXiv e-prints (2017), arXiv:1705.08910 [condmat.str-el].
- [45] T. Rakovszky, F. Pollmann, and C. W. von Keyserlingk, "Diffusive hydrodynamics of out-of-time-ordered correlators with charge conservation," ArXiv e-prints (2017), $arXiv: 1710.09827 \ [cond-mat.stat-mech].\\$
- [46] V. Khemani, A. Vishwanath, and D. A. Huse, "Operator spreading and the emergence of dissipation in unitary dynamics with conservation laws," ArXiv e-prints (2017), arXiv:1710.09835 [cond-mat.stat-mech].
- [47] Jens H. Bardarson, Frank Pollmann, and Joel E. Moore. "Unbounded growth of entanglement in models of manybody localization," Phys. Rev. Lett. 109, 017202 (2012).
- [48] Andrew C. Potter, Romain Vasseur, and S. A. Parameswaran, "Universal properties of many-body delocalization transitions," Phys. Rev. X 5, 031033 (2015).
- Ronen Vosk, David A. Huse, and Ehud Altman, "Theory of the many-body localization transition in one-

- dimensional systems," Phys. Rev. X 5, 031032 (2015).
- [50] A. Nahum, J. Ruhman, and D. A. Huse, "Dynamics of entanglement and transport in 1D systems with quenched randomness," ArXiv e-prints (2017), arXiv:1705.10364 [cond-mat.dis-nn].
- [51] We note that the usual definition of the classical Lyapunov exponent involves averaging the logarithm of the factor by which perturbations grow over initial states and perturbations. This is subtly different from the classical analog of the quantum OTOC where the commutator/Poisson bracket is averaged before taking the logarithm. It is worth exploring in future studies whether or not this difference in definitions has any qualitative consequences [34].
- [52] Robert J. Deissler, "One-dimensional strings, random fluctuations, and complex chaotic structures," Physics Letters A 100, 451 – 454 (1984).
- [53] Kunihiko Kaneko, "Lyapunov analysis and information flow in coupled map lattices," Physica D: Nonlinear Phenomena 23, 436 447 (1986).
- [54] Robert J. Deissler and Kunihiko Kaneko, "Velocity-dependent lyapunov exponents as a measure of chaos for open-flow systems," Physics Letters A 119, 397 402 (1987).
- [55] P. Calabrese and J. Cardy, "Entanglement entropy and conformal field theory," Journal of Physics A Mathematical General 42, 504005 (2009), arXiv:0905.4013 [condmat.stat-mech].
- [56] Tomaž Prosen and Iztok Pižorn, "Operator space entanglement entropy in a transverse ising chain," Physical Review A **76**, 032316 (2007).
- [57] Iztok Pizorn and Tomaz Prosen, "Operator space entanglement entropy in xy spin chains," arXiv preprint arXiv:0903.2432 (2009).
- [58] J Dubail, "Entanglement scaling of operators: a conformal field theory approach, with a glimpse of simulability of long-time dynamics in 1+ 1d," Journal of Physics A: Mathematical and Theoretical 50, 234001 (2017).
- [59] C. Jonay, D.A. Huse, and A. Nahum, Coarse-grained dynamics of operator and state entanglement 1803.00089.
- [60] B. Nachtergaele, Y. Ogata, and R. Sims, "Propagation of Correlations in Quantum Lattice Systems," Journal of Statistical Physics 124, 1–13 (2006), math-ph/0603064.
- [61] B. Nachtergaele and R. Sims, "Lieb-Robinson Bounds and the Exponential Clustering Theorem," Communications in Mathematical Physics 265, 119–130 (2006), math-ph/0506030.
- [62] M. B. Hastings and T. Koma, "Spectral Gap and Exponential Decay of Correlations," Communications in Mathematical Physics 265, 781–804 (2006), mathph/0507008.
- [63] Daniel A. Roberts and Brian Swingle, "Lieb-robinson bound and the butterfly effect in quantum field theories," Phys. Rev. Lett. 117, 091602 (2016).
- [64] Here $\tilde{v}_B(\hat{\mathbf{n}})$, with a tilde, denotes the normal propagation speed of a straight front whose normal is parallel to $\hat{\mathbf{n}}$. In Ref. [43] this was denoted $v_B(\hat{\mathbf{n}})$, but here we use $v_B(\hat{\mathbf{n}})$ to denote the speed at which an initially local operator spreads away from the origin in the direction $\hat{\mathbf{n}}$. These differ because in the absence of rotational symmetry the operator's front is not in general perpendicular to the radial vector, but they are related by a geometrical construction known from classical droplet growth [43, 83, 84].

- [65] A. Das, S. Chakrabarty, A. Dhar, A. Kundu, R. Moessner, S. Sankar Ray, and S. Bhattacharjee, "Lightcone spreading of perturbations and the butterfly effect in a classical spin chain," ArXiv e-prints (2017), arXiv:1711.07505 [cond-mat.stat-mech].
- [66] R Livi, A Politi, and S Ruffo, "Scaling-law for the maximal lyapunov exponent," Journal of Physics A: Mathematical and General 25, 4813 (1992).
- [67] Kunihiko Kaneko, "Propagation of disturbance, comoving lyapunov exponent and path summation," Physics Letters A 170, 210–216 (1992).
- [68] Arkady S Pikovsky and Jürgen Kurths, "Roughening interfaces in the dynamics of perturbations of spatiotemporal chaos," Physical Review E 49, 898 (1994).
- [69] The expression on the left-hand side of (??) becomes a "partition function" for two paths. The local weights $\partial u(\mathbf{y}_{i+1}, i+1)/\partial u(\mathbf{y}_i, i)$ depend not only on \mathbf{y}_{i+1} and \mathbf{y}_i but also on the configuration $u(\mathbf{y}_i, i)$. The chaotic time-dependence of $u(\mathbf{y}_i, i)$ means that the configurational average has a similar effect to averaging over weakly correlated randomness in the weights. Since we are averaging the "partition function", rather than its logarithm, this is an annealed average, and $-\lambda(\mathbf{v})t$ is an annealed "free energy" for the pair of paths. The quenched free energy, in which we take the logarithm before averaging, would give the more conventional definition of the Lyapunov exponent [66–68].
- [70] Adam Nahum, Jonathan Ruhman, Sagar Vijay, and Jeongwan Haah, "Quantum entanglement growth under random unitary dynamics," Physical Review X 7, 031016 (2017).
- [71] Inside the light cone there is a large deviation form governing convergence to the saturation value: $C_{1d}^{\rm rc}(x,t) \sim 1 \exp\left(-\frac{(v-v_B)^2}{2D}t\right)$. The exponent here is the continuation of $\lambda(v)$ outside the front. However, in the higher dimensional examples, the large deviation form inside the front scales with a distinct power of t, t^d in d spatial dimensions [74]. In the presence of additional conserved densities (like energy or charge), the late time saturation of the OTOC is a power-law in time instead of exponential [45, 46].
- [72] In random circuits related random walk pictures underlie the calculation of both the OTOC and the second Renyi entropy [43, 44]. In these random systems this yields a relation between $\lambda(v)$ and the "entanglement line tension" defined in [59], specifically the line tension $\mathcal{E}_2(v)$ for the second Renyi entropy. This motivates the conjecture, for non-random systems, that $\lambda(v)|_{\text{cont}} = -s_{\text{eq}}(\mathcal{E}_2(v) - v)$, where s_{eq} is the thermal entropy density. The left hand side denotes the analytic continuation of $\lambda(v)$ from $v > v_B$ to values $v < v_B$. In random circuits we must distinguish different kinds of averages. The line tension extracted from a calculation of $\overline{e^{-S_2}}$ determines $\lambda(v)$ for the average OTOC $\overline{C(x,t)}$ by the above formula. It is natural to expect that the line tension determined by the more natural direct average $\overline{S_2}$ determines $\lambda(v)$ for the typical value of the OTOC, $\exp \overline{\ln C(x,t)}$. The average and typical values of the OTOC are parametrically close in the region close to the front, but they may differ significantly in the far-front regime where both are exponentially small.
- [73] In some circuit models in d > 1 (which do not have continuous spatial rotation symmetry) some sections of the

- operator's front can be "glued" to the strict lightcone defined by the discrete time circuit [43]. This is a peculiar case where $v_B(\hat{\mathbf{n}}) = v_{\text{LC}}(\hat{\mathbf{n}})$ for some directions $\hat{\mathbf{n}}$ in space, so that no nontrivial $\lambda(\mathbf{v})$ can be defined for these directions of \mathbf{v} .
- [74] P. Le Doussal, S. N. Majumdar, and G. Schehr, "Large deviations for the height in 1D Kardar-Parisi-Zhang growth at late times," EPL (Europhysics Letters) 113, 60004 (2016), arXiv:1601.05957 [cond-mat.stat-mech].
- [75] C. Monthus and T. Garel, "Probing the tails of the ground-state energy distribution for the directed polymer in a random medium of dimension d=1,2,3 via a Monte Carlo procedure in the disorder," Phys. Rev. E 74, 051109 (2006), cond-mat/0607411.
- [76] I. V. Kolokolov and S. E. Korshunov, "Universal and nonuniversal tails of distribution functions in the directed polymer and Kardar-Parisi-Zhang problems," Phys. Rev. B 78, 024206 (2008), arXiv:0805.0402 [cond-mat.dis-nn].
- [77] Andrea Pagnani and Giorgio Parisi, "Numerical estimate of the kardar-parisi-zhang universality class in (2+1) dimensions," Phys. Rev. E 92, 010101 (2015).

- [78] T. Halpin-Healy and K. A. Takeuchi, "A KPZ Cocktail-Shaken, not Stirred..." Journal of Statistical Physics 160, 794–814 (2015), arXiv:1505.01910 [cond-mat.stat-mech].
- [79] Cheng-Ju Lin, Olexei Motrunich, private communication.
- [80] Abhishek Dhar, unpublished.
- [81] S. Xu and B. Swingle, "Accessing scrambling using matrix product operators," ArXiv e-prints (2018), arXiv:1802.00801 [quant-ph].
- [82] Let the probability distribution for weak-link "waiting times" be $P(\tau) \sim \tau^{-a-2}$. At weak disorder (1 < a) the broadening of the operator's front [50] is diffusive, as in the clean system. At intermediate disorder (0 < a < 1) the front broadens more strongly, giving $\lambda(v) \sim -(v-v_B)^{(a+1)/a}$. For strong disorder (-1 < a < 0) the butterfly speed vanishes: in this regime $\lambda(v) \sim -|v|^{1-|a|}$. In the disordered system the definition of $\lambda(v)$ depends on whether we consider e.g. the mean or the typical value of the OTOC, but this should not change these exponents.
- [83] D E Wolf, "Wulff construction and anisotropic surface properties of two-dimensional eden clusters," Journal of Physics A: Mathematical and General 20, 1251 (1987).
- [84] J Krug, H Spohn, and C Godrèche, "in 'solids far from equilibrium'," Solids far from equilibrium (1991).