ALESSANDRO BACCARINI

Curriculum Vitae

CONTACT INFORMATION

	Email	abaccarini@proton.me
3	Website	abaccarini.github.io
②	Telegram	alessandro_baccarini
in	LinkedIn	alessandro-baccarini
\odot	GitHub	abaccarini

RESEARCH INTERESTS

My interests span across areas of information security, applied cryptography, and privacy-enhancing technologies. I design and implement protocols for secure multi-party computation (MPC) based on secret sharing for a variety of practical applications, such as privacy-preserving machine learning, sustainability, and outsourcing. Additionally, I research how to quantify (and subsequently, lower) information disclosure from arbitrary secure function evaluations through information-theoretic techniques.

EDUCATION

PhD, Computer Science, University at Buffalo	Aug. 2024
Advisor: Marina Blanton	
MS, Cybersecurity, Fordham University	May 2019
Advisor: Thaier Hayajneh	
BS, Physics, Fordham University	May 2017
Minor, Mathematics	

WORK EXPERIENCE

Research/Teaching Assistant, Computer Science	Jun. 2019 – July 2024
University at Buffalo	
Adjunct Assistant Professor , Physics Fordham University	Aug. 2017 – May 2019
Graduate Research Assistant , Cybersecurity Fordham University	Aug. 2017 – May 2019

PROJECTS

MPC and Privacy-Preserving Machine Learning

2020 – Present Repository

University at Buffalo

- Designed a comprehensive ring-based framework of replicated secret sharing multi-party protocols for an arbitrary number of parties in the semi-honest (passively secure), honest majority setting.
- Implemented protocol constructions in C++ and extensively benchmarked our framework, obtaining an up to 33× performance gain over existing state-of-the-art secret sharing techniques.
- Applied techniques to privacy-preserving machine learning tasks, including (quantized) neural network inference and support vector machine classification.
- Discovered an algebraic optimization for secure quantized neural network inference that significantly improved efficiency and led to an over 2× improvement over prior works.

PICCO Compiler

University at Buffalo

2022 – Present Repository

- Core developer and maintainer of *PICCO*, a source-to-source compiler used to translate general-purpose programs into their secure implementations for deployment in a distributed setting.
- Extensively optimized existing field-based protocol implementations, while simultaneously
 performing a large-scale refactor to improve future maintainability and support extensibility
 to stronger security settings.
- Integrated ring-based protocol constructions into the compiler to support general-purpose computation over integer and floating-point inputs.
- Mentored a summer REU student tasked with optimizing the compiler's networking functionalities.

Disclosure Analysis from Secure Function Evaluation University at Buffalo

2021 – Present Repository

- Designed a novel information-theoretic approach for evaluating the information disclosure about private inputs from the output of secure function evaluations.
- Comprehensively analyzed a practically significant statistical function (the average salary) through extensive theoretical and analytical analysis in a variety of computational configurations.
- Applied our framework to complex descriptive statistical functions in conjunction with datadriven techniques to estimate the information disclosure.

Implementation of the Apple PSI System

2021

University at Buffalo

Repository

• Analyzed and developed proof-of-concept Python implementation of Apple's threshold private set intersection system for oblivious detection of harmful media.

Blockchain Applications in Healthcare

2017 - 2019

Fordham University

- Led the design of one of the first frameworks that fused blockchain and healthcare into a HIPAA-compliant IoT remote patient monitoring system, based on the Ethereum protocol.
- Assisted in prototype smart contract development in Solidity to support real-time automated monitoring.

PUBLICATIONS

Thesis

[1] **A. Baccarini**. New Directions in Secure Multi-Party Computation: Techniques and Information Disclosure Analysis. 2024.

Conference Proceedings

- [2] **A. Baccarini**, M. Blanton, S. Zou. Understanding Information Disclosure from Secure Computation Output: A Study of Average Salary Computation. *ACM Conference on Data and Application Security and Privacy (CODASPY)*, pages 187–198, 2024.
- [3] **A. Baccarini**, M. Blanton, C. Yuan. Multi-Party Replicated Secret Sharing over a Ring with Applications to Privacy-Preserving Machine Learning. In *Proceedings on Privacy Enhancing Technologies (PoPETs)*, 2023(1):608-626, and in *Privacy Enhancing Technologies Symposium (PETS)*[†], 2023.
- [4] **A. Baccarini**, T. Hayajneh. Evolution of Format Preserving Encryption on IoT Devices: FF1+. In *Hawaii International Conference on System Sciences (HICSS)*, pages 1628–1637, 2019.
- [5] A. Alhayajneh, **A. Baccarini**, T. Hayajneh. Quality of Service Analysis of VoIP Services. In *IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEM-CON)*, pages 812–818 2018.

Refereed Journals

[6] **A. Baccarini**, M. Blanton, S. Zou. Understanding Information Disclosure from Secure Computation Output: A Comprehensive Study of Average Salary Computation. *ACM Transactions on Privacy and Security (TOPS)*, to appear.

[†]PETS is a conference that switched to organizing accepted papers in journal-style volumes and issues. It is currently listed as a journal in DBLP.

- [7] A. Alhayajneh, A. Baccarini, G.M. Weiss, T. Hayajneh, A. Farajidavar. Biometric Authentication and Verification for Medical Cyber Physical Systems. *Electronics*, 7(12):436, 2018.
- [8] K.N. Griggs, O. Ossipova, C.P. Kohlios, **A. Baccarini**, E.A. Howson, T. Hayajneh. Healthcare Blockchain System Using Smart Contracts for Secure Automated Remote Patient Monitoring. *Journal of Medical Systems*, 42(7):130, 2018.

PROFESSIONAL SERVICE

Conference Committees

USENIX Security Symposium, artifact evaluation committee member	2024
USENIX Security Symposium, artifact evaluation committee member	2023

Conference and Journal Refereeing

IEEE Transactions on Information Forensics and Security (TIFS)

IEEE Transactions on Dependable and Secure Computing (TDSC)

European Symposium on Research in Computer Security (ESORICS)

IEEE/ACM International Conference on Automated Software Engineering (ASE)

Multidisciplinary Digital Publishing Institute (MDPI) Entropy, Sensors, Symmetry, Information Hawaii International Conference on System Sciences (HICSS)

AWARDS AND RECOGNITION

Alan Selman Scholarship, University at Buffalo

First place \$2000 cash prize, focus in theoretical computer science

GSAS Centennial Scholarship, Fordham University

2017 – 2019

Tuition and stipend support

TECHNICAL SKILLS

Cryptographic secure multi-party computation, secret sharing, differential privacy, encryption, signatures and commitments, zero-knowledge proofs

Languages C/C++, Python, Bash, Lua, Solidity, ŁT-X

Developer Git, SVN, Neovim, VS Code, Unix

Libraries GNU MP and MPFR, OpenSSL, NumPy, Matplotlib, TensorFlow

TEACHING

At the **University at Buffalo**:

•	
CSE 116 Computer science II (Instructor)	2 semesters
CSE 4/529 Algorithms for Modern Computing Systems	3 semesters
CSE 4/531 Analysis of Algorithms	1 semester
CSE 542 Software Engineering Concepts	1 semester
At Fordham University:	

PHYS 1511/12 Physics I/II Lab (Instructor) 4 semesters