Singularity on Hoffman2: Using containers on HPC resources

Charles Peterson

Office of Advance Research Computing

UCLA

April 29, 2021

Singularity

- I have uploaded the slides and examples from this talk on our gitlab page
 - https://gitlab.idre.ucla.edu/cpeterson/singularity_ws

Feel free to clone this repo to follow along

git clone https://gitlab.idre.ucla.edu/cpeterson/singularity_ws.git

What is Singularity?

 Singularity is a Free and Open-Source software that can run Operating System (OS) Virtualization also know as containerization.

- First created in 2015 by researchers at Lawrence Berkeley National Lab
- Singularity was developed to run "containers" with scientific computing software on High-Performance Computing resources.

What is Virtualization?

Bare-metal setup

- Typical setup in which your software applications run directly on the OS from the physical hardware
- Many users in HPC center run compute nodes in this fashion

What is Virtualization? Virtual Machine setup

 Apps running inside VM are running on completely different (virtual) resources

Hardware (CPU, Memory, Hard Drive)

Bare-Metal Virtual Machine (type 2)

5

What is Virtualization? Container setup

 Apps running inside a container are running using same kernel and physical resources as the host OS

Bare-Metal

Containers

Containers

Bring your own OS

• Portable

Reproducibility

 Design your own environment

Containers on HPC: Problems installing apps

- HPC resources (like Hoffman2) are SHARED resources
 - Every researcher has their own apps that can cause conflicting dependences and versions
- Typical users cannot change system directories (i.e. /usr/local) or install apps in these default locations
 - No 'sudo' or admin access for users
 - Limited yum/apt-get
- Sys Admin can spend a lot of time installing apps/libraries in custom locations and create many different environments so everyone can use the HPC resources
 - Setting up environments with many dependences in custom location can be difficult to manage

Containers on HPC

- With Containers, users can create a 'virtual' OS and install their app easily in system default PATH/LIB locations.
 - Along with any dependencies
- Then port them to Hoffman2 or any other HPC system to run without needing to ask a sys admin help
- The container is an isolated OS
 - Great you need different system libraries then the host OS on Hoffman2 compute nodes to run your apps
 - Too old or need specific version
 - OS specific requirements
 - Great if you need to run different packages that may conflict with each other if everything were to be installed in HOME
 - Easily share among people

Many Containerize software

Docker

- Maybe the most popular container engine
- DockerHub: repository of containers
- Will not be likely that Docker will be installed on HPC systems
- Users can be root
- MPI not well supported

Singularity

- Most common amongst HPC resources
- Designed and developed by HPC people

Benefits of Singularity

- Increase availability at HPC centers
 - UCLA, SDCS, ORNL, MSU, OSU, TACC, PSC, etc.
- Singularity cannot have escalation outside container
- Singularity is a process owned by the user and has permissions similar to the user running the app
- Supports Infiniband, GPUs, different filesystems, MPI
- Can run Docker containers

https://sylabs.io/singularity/

Singularity Workflow

Create

- Build a container by installing Singularity on your local computer (where you have root/sudo access) and build your software app
- Use a pre-built container (i.e. DockerHub)

Transfer

Bring your container to Hoffman2

• Run

 Perform Singularity commands to run your container either by Interactive (qrsh) or Batch (qsub) use

Singularity on Hoffman2

- Hoffman2 has an unprivileged, non-setuid build of Singularity (version 3.7)
 - Cannot perform privileged commands (i.e. sudo)
 - Only sandbox directories containers can run
 - SIF container cannot run (conversion possible)
 - --userns option will be needed (create new user namespace in your container)
- Accessible to the CentOS 7 compute nodes
 - Add –I rh7 to your qrsh/qsub job script

qrsh -l rh7,h_data=20G,h_rt=2:00:00

Singularity: Common Usage Running on Hoffman2

• On Hoffman2, first load the module

module load singularity/3.7

- Then run the command, Singularity, which has the following available subcommands
 - Build a Singularity image/container
 singularity build [options]
 - Run a command within a container

```
singularity exec [options]
```

Run an interactive session within your container

```
singularity shell [options]
```

Running Singularity on Hoffman2 Example 1: TensorFlow

Look at EX1 in the git repo

 Example of TensorFlow deep learning model with training MNIST dataset

• This example uses containers pre-built on Hoffman2

Is \$H2_CONTAINER_LOC cat \$H2_CONTAINER_LOC/README

Using Interactive and Batch jobs

Running Singularity on Hoffman2 Example 2: TensorFlow (v1)

Look at EX2 in the git repo

 This example uses a Random Forest model with MINST dataset using TensorFlow v1

This example downloads pre-built container from dockerhub

Creating your containers: Installing Singularity

- What if you want to create your own containers to run on Hoffman2
 - You cannot modify containers from Singularity on Hoffman2
- First, you will need a Linux computer that you have admin/sudo access
 - To transfer and run container across multiple systems, you would want to use 'similar' OS kernels
- Building containers with MacOS or WSL may not work on HPC systems using Linux
 - Best to use a Linux VM on local Mac/Windows systems.
 - Example: VirtualBox

Installing Singularity

Installing dependencies

```
sudo apt-get update && sudo apt-get install -y \
build-essential \
uuid-dev \
libgpgme-dev \
squashfs-tools \
libseccomp-dev \
wget \
pkg-config \
git \
cryptsetup-bin
```

Installing Go

```
export VERSION=1.14.12 OS=linux ARCH=amd64 && \
wget https://dl.google.com/go/go$VERSION.$OS-$ARCH.tar.gz && \
sudo tar -C /usr/local -xzvf go$VERSION.$OS-$ARCH.tar.gz && \
rm go$VERSION.$OS-$ARCH.tar.gz
export PATH=/usr/local/go/bin:$PATH
```

Installing Singularity

Downloading Singularity

```
export VERSION=3.7.0 && # adjust this as necessary \
   wget
https://github.com/hpcng/singularity/releases/download
/v${VERSION}/singularity-${VERSION}.tar.gz && \
   tar -xzf singularity-${VERSION}.tar.gz && \
   cd singularity
```

Installing Singularity

```
./mconfig && \
    make -C ./builddir && \
    sudo make -C ./builddir install
```

Building a container: Singularity Definition file

Recipe file to build a container

- naked-singularity
 - repository of many definition files
 - https://github.com/mkandes/naked-singularity

sudo singularity build ubuntu-18.04.sif Singularity.ubuntu-18.04

- A Singularity container is created (ubuntu-18.04.sif)
- Create an interactive shell within container

sudo singularity shell ubuntu-18.04.sif

Building a container Modifying an existing container

- You can download and create existing container
 - Perfect if you want to add more packages/libraries
 - Can ONLY do this on computer you have sudo/root access
- DockerHub https://hub.docker.com
 - great repo to search for containers

sudo singularity build --sandbox ubuntu docker://ubuntu:18.04

Go inside container and install apps!

sudo singularity shell --writable ubuntu

Building a container Example 3: PySCF

- Look at EX3 in the git repo
- PySCF is a chemistry python package
 - https://pyscf.org/
- First, install Singularity on your local machine
- Then download ubuntu container from dockerhub

```
sudo singularity build --sandbox ubuntu/ docker://ubuntu:20.04
```

Then get inside container

```
sudo singularity shell --writable ubuntu/
```

Install pyscf python package

```
apt update
apt install python3-dev python3-pip
pip3 install pyscf
```

Building a container Example 3: PySCF

convert sandbox to SIF

sudo singularity build pyscf.sif ubuntu/

Transfer SIF to Hoffman2

scp pyscf.sif dtn.hoffman2.idre.ucla.edu:

Create job script (pyscf.job) and submit job

qsub pyscf.job

Using Singularity on GPU Example 4: PyTorch

- Singularity can be ran on GPU nodes
- No need to install drivers or libraries, or load anything (expect Singularity) in your env

-l gpu,exclusive,gpu,RTX2080Ti

Check out EX4

qsub pytorch-gpu.job

singularity exec --nv --userns \$H2_CONTAINER_LOC/pytorch-21.04-py3.sif / python3 pytorch-gpu.py > pytorch-gpu.out

- Look at the singularity exec line
 - added --nv option to enable Nvidia support
 - allows to bind mount the GPU drive

Things to consider Size of container

- Try to keep size of container small and minimal
 - Only install the things necessary for the app to run
- Large containers will need more RAM to run (increasing h_data)
- Since Singularity on Hoffman2 can only run sandbox containers, Singularity will convert any SIF file before running.
 - Increasing size of container will increase the time of conversion.
 - For large containers, build a sandbox container in order to save time starting Singularity.

singularity build ubuntu-SB/ ubuntu.sif

Other places for Singularity information

- Singularity User Guide
 - https://sylabs.io/guides/3.7/user-guide/
- Intro workshop from SDSC
 - https://www.sdsc.edu/event_items/2019.02_cometweb.html
- Container Repos
 - DockerHub
 - https://hub.docker.com/
 - SingularityHub
 - https://singularityhub.github.io/
 - Singularity Container Services
 - https://cloud.sylabs.io/home
 - Nvidia NGC
 - https://ngc.nvidia.com/catalog/containers

Thank you!

Questions?

Charles Peterson

cpeterson@oarc.ucla.edu

GitLab rep of this workshop

https://gitlab.idre.ucla.edu/cpeterson/singularity_ws

Hoffman2 Online Doc on Singularity

https://www.hoffman2.idre.ucla.edu/Using-H2/Software/Software.html#containers

Hoffman2 Online Support

https://support.idre.ucla.edu/helpdesk/Tickets/New