日期 科目 班级 姓名 学号

2023年4月2日 微分几何 强基数学002 吴天阳 2204210460

第四次作业

题目 1. 3.4 练习 1 证明**定义 3.7** 中 Jacobi 矩阵可逆这个条件不依赖于仿射坐标系的选取,也就是说如果 $\varphi_U \circ \varphi_A^{-1}$ 在 $\varphi_A(U)$ 上逐点可逆,那么在另一个仿射坐标系 A' 中, $\varphi_U \circ \varphi_{A'}^{-1}$ 在 $\varphi_{A'}(U)$ 上也逐点可逆.

证明. 设 $(\varphi_U \circ \varphi_A^{-1})' = J$ 可逆,由于 $\mathcal{A}, \mathcal{A}'$ 均为仿射坐标系,则存在正交阵 T 和常向量 $\mathbf{a} \in \mathbb{R}^n$ 使得 $\varphi_A \circ \varphi_{A'}^{-1}(\mathbf{x}) = T\mathbf{x} + \mathbf{a}$,于是 $\forall \mathbf{x} \in \varphi_{A'}(U)$ 有

$$\varphi_{U} \circ \varphi_{\mathcal{A}'}^{-1}(\boldsymbol{x}) = (\varphi_{U} \circ \varphi_{\mathcal{A}}^{-1})(\varphi_{\mathcal{A}} \circ \varphi_{\mathcal{A}'}^{-1})(\boldsymbol{x})$$

$$\Rightarrow (\varphi_{U} \circ \varphi_{\mathcal{A}'}^{-1})'(\boldsymbol{x}) = ((\varphi_{\mathcal{A}} \circ \varphi_{\mathcal{A}'}^{-1})')^{T}[(\varphi_{U} \circ \varphi_{\mathcal{A}}^{-1})'(\varphi_{\mathcal{A}} \circ \varphi_{\mathcal{A}'}^{-1})](\boldsymbol{x})$$

$$\xrightarrow{T^{-1} = T^{T}} T^{-1}J(T\boldsymbol{x} + \boldsymbol{a})$$

令 $F(\boldsymbol{x}) = T^{-1}(J^{-1}T\boldsymbol{x} - \boldsymbol{a}) = T^{-1}J^{-1}T\boldsymbol{x} - T^{-1}\boldsymbol{a}$,于是 $F[(\varphi_U \circ \varphi_{\mathcal{A}'}^{-1})'(\boldsymbol{x})] = I$,则 $\varphi_U \circ \varphi_{\mathcal{A}'}^{-1}$ 的 Jacobi 矩阵在 \boldsymbol{x} 处可逆,逆变换为 F,由 \boldsymbol{x} 的任意性可知 $\varphi_U \circ \varphi_{\mathcal{A}'}^{-1}$ 在 $\varphi_{\mathcal{A}'}(U)$ 上逐点可逆.

题目 2. 3.4 练习 4. 证明**命题 3.2**:设 U 为 \mathscr{A}^n 中的开区域,带有广义坐标系 $\{U, \varphi_U\}$,则:

- (1) U 中的开子集在 φ_U 下的像是 \mathbb{R}^n 中的开子集. 反之, \mathbb{R}^n 中的开子集在 φ_U 下的原像是 U 中的开子集.
 - (2) 设 f 为 U 上定义的标量场,则 f 连续等价于 $f \circ \varphi_U^{-1}$ 是 $\varphi_U(U)$ 上的连续函数.

证明. (1)由于

$$\varphi_U \circ \varphi_{\mathcal{A}}^{-1} : \mathbb{R}^n \to \mathbb{R}^n$$

 $\mathbf{x} = (x^1, \dots, x^n) \mapsto (y^1(\mathbf{x}), \dots, y^n(\mathbf{x}))$

于是 $\varphi_U \circ \varphi_A^{-1}$ 对应的 Jacobi 矩阵为 $J = (\varphi_U \circ \varphi_A^{-1})' = [\partial_j y^i(x^1, \dots, x^n)]_{ij}$,下证多元函数可微可推出连续: $\forall \varphi_A(\boldsymbol{x}) \in U, \ \boldsymbol{h} \in \mathbb{R}^n$,由 J 的连续性和多元函数微分的定义可知:

$$|\varphi_U \circ \varphi_{\mathcal{A}}^{-1}(\boldsymbol{x} + \boldsymbol{h}) - \varphi_U \circ \varphi_{\mathcal{A}}^{-1}(\boldsymbol{x})| = \left| |\boldsymbol{h}| \frac{\varphi_U \circ \varphi_{\mathcal{A}}^{-1}(\boldsymbol{x} + \boldsymbol{h}) - \varphi_U \circ \varphi_{\mathcal{A}}^{-1}(\boldsymbol{x}) - J\boldsymbol{h}}{|\boldsymbol{h}|} + J\boldsymbol{h} \right| \to 0, \ (\boldsymbol{h} \to 0)$$

由 x 的任意性可知 $\varphi_U \circ \varphi_A^{-1}$ 在 U 上连续.

由于 $\varphi_U \circ \varphi_A^{-1}$ 的 Jacobi 矩阵可逆,等价于,逆映射 $\varphi_A \circ \varphi_U^{-1}$ 的 Jacobi 矩阵可逆,所以 $\varphi_A \circ \varphi_U^{-1}$ 连续可微. 设 V 为 U 中的开集,由于 $\varphi_U(V) = (\varphi_A \circ \varphi_U^{-1})^{-1}(\varphi_A(V))$,且 φ_A 是同胚映射,则 $\varphi_A(V)$ 是开集, $(\varphi_A \circ \varphi_U^{-1})^{-1}$ 将开集映射为开集,所以 $\varphi(V)$ 是开集,于是 φ_U^{-1} 连续.

由于 φ_U^{-1} 连续,又由广义坐标系性质可知 φ_U 可逆,于是 φ_U 连续,所以 φ_U^{-1} 将开集映射为开集. 综上, φ_U 是同胚映射.

(2) 设 W 为 $\varphi_U(U)$ 上的开子集.

"⇒"由于 $(f \circ \varphi_U^{-1})^{-1}(W) = \varphi_U(f^{-1}(W))$,由于 f 连续,则 $f^{-1}(W)$ 为开集,又由于 φ_U 为同胚映射,所以 $\varphi_U(f^{-1}(W))$ 为开集,所以 $f \circ \varphi_U^{-1}$ 连续.

" \Leftarrow " 由于 $\varphi_U^{-1}((f \circ \varphi_U^{-1})^{-1}W) = f^{-1}(W)$,由于 φ_U 为同胚映射, $(f \circ \varphi_U^{-1})^{-1}(W)$ 为开集,所以 $f^{-1}(W)$ 为开集,故 f 连续.

下证明,上述命题中与 φ_U 的选取无关,任取广义坐标系 $\{U, \varphi'_U\}$,假设 $f \circ \varphi_U$ 连续,于是 $(f \circ \varphi_U^{-1})^{-1}(W)$ 为开集,由于

$$(f \circ \varphi_{U'}^{-1})^{-1}(W) = (f \circ \varphi_{U}^{-1} \circ \varphi_{U} \circ \varphi_{U'}^{-1})^{-1}(W) = (\varphi_{U} \circ \varphi_{U'}^{-1})^{-1}(f \circ \varphi_{U}^{-1})^{-1}(W)$$

由于 $(\varphi_U \circ \varphi_{U'}^{-1})$ 是同胚映射,所以 $(f \circ \varphi_{U'}^{-1})^{-1}(W)$ 为开集,故 $f \circ \varphi_{U'}^{-1}$ 连续.

题目 3. 3.5 练习 1. 仍然考虑 \mathbb{R}^3 上的柱面坐标系,

$$x^1 = r\cos\theta$$
, $x^2 = r\sin\theta$, $x^3 = z$

其中,r > 0, $\theta \in (0, 2\pi)$, $z \in \mathbb{R}$,计算柱面坐标系的自然标架场(在 R^3 的自然坐标系 $\mathcal{A} = \{O = (0, 0, 0), \mathbf{e}_1 = (1, 0, 0), \mathbf{e}_2 = (0, 1, 0), \mathbf{e}_3 = (0, 0, 1)\}$ 上表出)

解答.由于

$$T = \begin{bmatrix} \frac{\partial x^i}{\partial r} & \frac{\partial x^i}{\partial \theta} & \frac{\partial x^i}{\partial z} \end{bmatrix}_{i=1}^3 = \begin{bmatrix} \cos \theta & -r \sin \theta & 0 \\ \sin \theta & r \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

又由自然标架 $(\sigma_1, \sigma_2, \sigma_3)$ 的定义可得

$$\begin{bmatrix} \boldsymbol{\sigma}_1 \\ \boldsymbol{\sigma}_2 \\ \boldsymbol{\sigma}_3 \end{bmatrix} = T \begin{bmatrix} \boldsymbol{e}_1 \\ \boldsymbol{e}_2 \\ \boldsymbol{e}_3 \end{bmatrix} = \begin{bmatrix} \cos \theta \boldsymbol{e}_1 - r \sin \theta \boldsymbol{e}_2 \\ \sin \theta \boldsymbol{e}_1 + r \cos \theta \boldsymbol{e}_2 \\ \boldsymbol{e}_3 \end{bmatrix} \Rightarrow \begin{cases} \boldsymbol{\sigma}_1 = (\cos \theta, -r \sin \theta, 0), \\ \boldsymbol{\sigma}_2 = (\sin \theta, r \cos \theta, 0), \\ \boldsymbol{\sigma}_3 = (0, 0, 1) \end{cases}$$

题目 4. 考虑 \mathbb{R}^3 上的球坐标系:

$$x^1 = r\cos\theta\sin\phi, \ x^2 = r\sin\theta\sin\phi, \ x^3 = r\cos\theta$$

计算该坐标系的自然标架 (在 \mathbb{R}^3 的自然坐标系 $\mathcal{A}=\{O=(0,0,0), \boldsymbol{e}_1=(1,0,0), \boldsymbol{e}_2=(0,1,0), \boldsymbol{e}_3=(0,0,1)\}$ 上表出)

解答.由于

$$T = \begin{bmatrix} \frac{\partial x^i}{\partial r} & \frac{\partial x^i}{\partial \theta} & \frac{\partial x^i}{\partial z} \end{bmatrix}_{i=1}^3 = \begin{bmatrix} -r\sin\theta\sin\phi & r\cos\theta\cos\phi & \cos\theta\sin\phi \\ r\cos\theta\sin\phi & r\sin\theta\cos\phi & \sin\theta\sin\phi \\ -r\sin\theta & 0 & \cos\theta \end{bmatrix}$$

又由自然标架 $(\sigma_1, \sigma_2, \sigma_3)$ 的定义可得

$$\begin{bmatrix} \boldsymbol{\sigma}_1 \\ \boldsymbol{\sigma}_2 \\ \boldsymbol{\sigma}_3 \end{bmatrix} = T \begin{bmatrix} \boldsymbol{e}_1 \\ \boldsymbol{e}_2 \\ \boldsymbol{e}_3 \end{bmatrix} = \begin{bmatrix} -r\sin\theta\sin\phi\boldsymbol{e}_1 + r\cos\theta\cos\phi\boldsymbol{e}_2 + \cos\theta\sin\phi\boldsymbol{e}_3 \\ r\cos\theta\sin\phi\boldsymbol{e}_1 + r\sin\theta\cos\phi\boldsymbol{e}_2 + \sin\theta\sin\phi\boldsymbol{e}_3 \\ -r\sin\theta\boldsymbol{e}_1 + \cos\theta\boldsymbol{e}_3 \end{bmatrix} \Rightarrow \begin{cases} \boldsymbol{\sigma}_1 = (-r\sin\theta\sin\phi, r\cos\theta\cos\phi, \cos\theta\sin\phi) \\ \boldsymbol{\sigma}_2 = (r\cos\theta\sin\phi, r\sin\theta\cos\phi, \sin\theta\sin\phi), \\ \boldsymbol{\sigma}_3 = (-r\sin\theta, 0, \cos\theta) \end{cases}$$

题目 5. 3.6 练习 1. 证明引理 3.7

解答. 设 V 是 $A \in \mathcal{A}$ 的一个邻域, $A = \{O, e_i\}$ 是一个仿射坐标系, $A = v^i e_i$,于是

(1). 局部性,若在邻域 V 上有 $f_A = g_A$, 于是 $\nabla f_A = \nabla g_A$, 所以

$$\partial_{\boldsymbol{v}} f(A) = \frac{\partial f_{\mathcal{A}}}{\partial x^{i}} \bigg|_{\varphi_{A}} v^{i} = \nabla f_{\mathcal{A}} \cdot \boldsymbol{v} = \nabla g_{\mathcal{A}} \cdot \boldsymbol{v} = \frac{\partial g_{\mathcal{A}}}{\partial x^{i}} \bigg|_{\varphi_{A}} v^{i} = \partial_{\boldsymbol{v}} g(A)$$

(2). 线性性, 由 f_A 和 g_A 的线性性可知

$$\partial_{\mathbf{v}}(\alpha f + \beta g)(A) = \frac{\partial(\alpha f + \beta g)_{\mathcal{A}}}{\partial x^{i}} \bigg|_{\varphi_{\mathcal{A}}} v^{i} = \frac{\alpha \partial f_{\mathcal{A}} + \beta \partial g_{\mathcal{A}}}{\partial x^{i}} \bigg|_{\varphi_{\mathcal{A}}} v^{i}$$
$$= \alpha \frac{f_{\mathcal{A}}}{\partial x^{i}} \bigg|_{\varphi_{\mathcal{A}}} v^{i} + \beta \frac{g_{\mathcal{A}}}{\partial x^{i}} \bigg|_{\varphi_{\mathcal{A}}} v^{i} = \alpha \partial_{\mathbf{v}} f(A) + \beta \partial_{\mathbf{v}} g(A)$$

(3). Leibniz 公式,由 $\partial(fg)_{\mathcal{A}}=f_{\mathcal{A}}\partial g_{\mathcal{A}}+g_{\mathcal{A}}\partial f_{\mathcal{A}}$ 可知

$$\partial_{\mathbf{v}}(fg)(A) = \frac{\partial_{\mathbf{v}}(fg)_{\mathcal{A}}}{\partial x^{i}} \bigg|_{\varphi_{\mathcal{A}}} v^{i} = \frac{f_{\mathcal{A}}\partial g_{\mathcal{A}} + g_{\mathcal{A}}\partial f_{\mathcal{A}}}{\partial x^{i}} \bigg|_{\varphi_{\mathcal{A}}} v^{i} = f(A)\partial_{\mathbf{v}}g(A) + g(A)\partial_{\mathbf{v}}f(A)$$

题目 6. 3.7 练习 2. 设 $D \neq A \in \mathcal{A}^n$ 上的导算子,f 为定义在 A 的一个邻域上的可微函数,并且在 A 的某个邻域 U 上为常数.求证 Df = 0.

解答. 由导算子的 Leibniz 公式 D(fg) = f(A)Dg + g(A)Df 可知,只需令 f = g = 1,于是 $D1 = D1 + D1 \Rightarrow D1 = 0$,又由于导算子具有线性性,所以 DC = 0,由于 $f \in U$ 的邻域上是常数,不妨令 f = C,于是 Df = DC = 0.