Supporting Material: Dynamics of Plasma Atomic Layer Etching: Molecular Dynamics Simulations and Optical Emission Spectroscopy

Joseph R. Vella,¹ Qinzhen Hao,² Vincent M. Donnelly,² and David B. Graves^{1,3}

- 1. Princeton Plasma Physics Laboratory, Princeton, NJ 08540
- 2. William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204
- 3. Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08540

Email: jvella@pppl.gov

SI. Surface Fluxes and Impact Fluences Calculations

1. Cl_2 molecules at 300K. Wall collision flux (gas kinetic theory) = ½ n_{Cl2} v_{mean} n_i = P_i /kT ideal gas law; P_i = partial pressure species i v_{mean} (m/s; gas kinetic theory) = $(8 \text{ kT/p m}_i)^{0.5}$; m_i = molecular mass (kg); kT (J) m_{Cl2} = $(70.1 \text{ g/mole})(1 \text{ mole/6.02 x } 10^{23} \text{ molecules})$ = $11.6 \text{ x } 10^{-23} \text{ g}$ = $11.6 \text{ x } 10^{-26} \text{ Kg}$ k = $1.38 \text{ x } 10^{-23} \text{ J/K}$ kT = $4.14 \text{ x } 10^{-21} \text{ J}$ v_{mean} = $[(8 \text{ x } 4.14 \text{ x } 10^{-21} \text{ J})/(3.14159 \text{ x } 11.6 \text{ x } 10^{-26} \text{ Kg})]^{0.5}$ = 301 m/s = $3 \text{ x } 10^4 \text{ cm/s}$ At T = 300K, 20 mTorr pressure total; if Cl_2 is 20/100 or 1/5 of total pressure (1 Pa/7.5mT) x 20 mT x 1/9 = 0.53 Pa Ideal gas law: n_{Cl2} = P_{Cl2}/kT = $0.53 \text{ Pa}/(4.14 \text{ x } 10^{-21} \text{ J})$ = $1.3 \text{ x } 10^{20} \text{ m}^{-3}$ = $1.3 \text{ x } 10^{14} \text{ cm}^{-3}$ Cl₂ flux = ½ n_{Cl2} n_{Cl2}

Average surface impact times for surface area of $10^3 \text{ A}^2 = 10^{-13} \text{ cm}^2$

Cl₂ molecules:

$$t_{C12} \sim 1/(area \ x \ flux) = 1/[10^{-13} \ cm^2 \ x \ 5.3 \ x \ 10^{17} \ cm^{-2} \ s^{-1}] = \textbf{0.02 ms} = \textbf{20 ms}$$

 Ar^{+}

$$t_{Ar^+} \sim 1/(area \ x \ flux) = 1/[10^{-13} \ cm^2 \ x \ 3.7 \ x \ 10^{16} \ cm^{-2} \ s^{-1}] = \textit{0.27 ms} = \textit{270 ms}$$

SII. Cl Surface Coverage of MD Simulations Using Additional Exposure

Figure S1 gives the Cl uptake as a function of cycle number for a simulation using a longer Cl_2 exposure period relative than those mentioned in the main text. Note that the Cl uptake saturates around a value of 1×10^{15} Cl/cm², similar to what was seen in the main text. Therefore, a larger Cl₂ fluence would not change the results of the MD simulations.

Figure S1: Cl uptake as a function of cycle number for a MD simulation using a longer Cl₂ exposure period when compared to those mentioned in the main text. The Cl₂ fluence for this simulation is 1.88×10¹⁷ Cl₂ molecules/cm² or roughly 188 ML of Cl₂ molecules. The Ar⁺ ion energy is 80 eV. Note we only show Cl uptake after the simulation has reached cyclic steady state.