Aufgabe 1 (Skalarprodukt). Zu den Vektoren $x = (4, -1, 0)^T$ und $y = (2, 0, 3)^T$ berechne man $\langle x + \alpha y, \beta x + y \rangle$ für

(1)
$$\alpha = 2, \beta = -1$$

(2)
$$\alpha = -3, \beta = 2$$

 $Aufgabe\ 2$ (Skalarprodukt). In einem Monat verkauft ein Unternehmen von 4 Artikeln die Mengen x_1, x_2, x_3, x_4 zu den Preisen $p_1,\ p_2,\ p_3,\ p_4$. Der Erlös E soll mindestens E^* betragen. Schreiben Sie diese Bedingung mit Hilfe des Skalarproduktes.

 $Aufgabe\ 3$ (Winkel). Ein Dreieck im Raum besitze die Eckpunkte A(1,1,1), B(2,5,0) und C(0,3,7). Bestimmen Sie die Winkel des Dreiecks.

Aufgabe 4 (Matrizenmultiplikation). Berechnen Sie

$$\begin{pmatrix} 1 & 7 & -9 \\ -4 & 8 & 1 \end{pmatrix} \cdot \begin{pmatrix} 3 & 2 \\ -4 & 7 \\ 0 & 3 \end{pmatrix} \qquad \begin{pmatrix} 41 & -2 & 0 \\ 2 & -7 & 9 \end{pmatrix} \cdot \begin{pmatrix} 4 & 7 \\ 3 & 8 \end{pmatrix} \qquad \begin{pmatrix} 4 & 3 & 2 \\ 7 & -5 & 1 \\ 4 & 8 & 7 \end{pmatrix} \cdot \begin{pmatrix} 3 & 2 & 6 \\ 3 & -4 & -9 \\ 7 & 0 & 3 \end{pmatrix}$$

Aufgabe 5 (Matrizenmultiplikation). Gegeben sind die Matrizen $A = \begin{pmatrix} 2 & 3 \\ 1 & -1 \\ 4 & 0 \end{pmatrix}$ und $B = \begin{pmatrix} 0 & 5 \\ 2 & 1 \\ -2 & 1 \end{pmatrix}$. Berech-

nen Sie
$$A \cdot B$$
, $A \cdot B^T$, $A^T \cdot A$, $(A \cdot B^T)^T$, $B \cdot A^T$

Aufgabe 6 (Lineare Produktionsmodelle). Ein technologischer Prozess gliedert sich in Bearbeitungsstufen. In der ersten Stufe werden aus vier Typen von Einzelteilen E_1 , E_2 , E_3 , E_4 Halbfabrikate H_1 , H_2 , H_3 , aus diesen Baugruppen B_1 , B_2 , B_3 und B_4 und daraus schließlich Finalprodukte F_1 , F_2 , F_3 hergestellt. Eine bestimmte Anzahl von Halbfabrikaten H_i geht außerdem direkt in die Finalprodukte ein. Die folgenden Tabellen geben an, welche Erzeugnismengen der unteren Stufen in jeweils eine Einheit der höheren Stufe direkt eingehen:

	je Einheit				je Einheit					je Einheit				je Einheit			
M_1	H_1	H_2	H_3	M	је D	D	D	D		M	je E	EIIIII		M_4	F_1	F_2	F_3
$\overline{E_1}$	1	2	1	$\frac{M_2}{T}$	<i>D</i> ₁	$\frac{B_2}{}$	$\frac{B_3}{2}$	$\frac{B_4}{C}$		$\frac{M_3}{II}$	10	$\frac{\Gamma_2}{\Omega}$	$\frac{F_3}{}$	$\overline{B_1}$	0	2	3
E_2	0	2	0	H_1	9	1	<i>Z</i>	0		H_1	10	0	0	B_2	1	0	1
E_3	1	0	2	H_2	1	0	4	2		H_2	0	20	0	B_3	1	2	0
E_4	0	3	3	H_3	1	U	2	1		H_3	U	U	8	B_4	0	1	0

- Welche Mengen an Einzelteilen sind nötig, um insgesamt 10 F_1 , 10 F_2 und 20 F_3 herzustellen?
- Alternative Fragestellung: Welche Mengen an Einzelteilen $E = (E_1, E_2, E_3, E_4)^T$ sind nötig, um insgesamt 10 F_1 , 10 F_2 und 20 F_3 herzustellen?
 - **A** $(80, 20, 30, 20)^T$
 - **B** $(1580, 680, 1210, 1950)^T$
 - **C** $(80, 30, 30, 10)^T$
 - **D** $(1580, 620, 1110, 1950)^T$
 - **E** $(80, 680, 1210, 20)^T$

Hinweis: Es ist jeweils genau eine Kreuz richtig. Dies gilt auch für nachfolgende Aufgaben dieses Typs.

Aufgabe 7 (Lineare Produktionsmodelle, Selbststudium). Gegeben sei ein zweistufiger Produktionsprozess, der durch die Produktionsmatrizen P_1 und P_2 beschrieben werden kann. Dabei entstehen aus den Rohstoffen R_1, R_2 zunächst die Zwischenprodukte Z_1, Z_2, Z_3 und schließlich die Endprodukte E_1, E_2 .

$$P_1 = \begin{pmatrix} 3 & 1 & 2 \\ 2 & 3 & 4 \end{pmatrix}$$
 , $P_2 = \begin{pmatrix} 3 & 1 \\ 0 & 3 \\ 1 & 2 \end{pmatrix}$

Die Rohstoffpreise betragen $q_1 = 2$, $q_2 = 4$ und die Endproduktpreise $p_1 = 70$, $p_2 = 95$.

- (i) Bestimmen Sie die Matrix der Gesamtverarbeitung.
- (ii) Welche Rohstoffkosten entstehen je Einheit des Endproduktes?
- (iii) Welche Rohstoffmengen werden für 10 Einheiten des ersten und 5 Einheiten des zweiten Endproduktes benötigt?
- (iv) Welcher Erlös wird für die unter (iii) angegebenen Endproduktmengen erzielt?