

IN THE CLAIMS

The status of each claim in the present application is listed below.

Claims 1-49: (Canceled).

50. (New) A process for preparing a 1,3,5-triazine carbamate of the formula (I):

wherein

Z¹ is hydrogen or a group of formula -(CO)-O-R¹,

Z² is hydrogen or a group of formula -(CO)-O-R²,

X³ is oxygen, and

R¹ is the radical of an alcohol represented by the formula R¹OH,

R² is the radical of the alcohol represented by the formula R²OH,

R³ is the radical of an alcohol represented by the formula R³OH,

from an 1,3,5-triazine carbamate of the formula (II):

wherein

Y¹ is hydrogen or a group of formula -(CO)-O-R⁴,

Y² is hydrogen or a group of formula -(CO)-O-R⁵ and,

R⁴ is the radical of the alcohol represented by the formula R⁴OH,

R^5 is the radical of the alcohol represented by the formula R^5OH ,

R^6 is the radical of the alcohol represented by the formula R^6OH ,

wherein

- (1) if Z^1 is hydrogen then Y^1 is hydrogen,
- (2) if Z^1 is a group of formula $-(CO)-O-R^1$ then Y^1 is a group of formula $-(CO)-O-R^4$,
- (3) if Z^2 is hydrogen then Y^2 is hydrogen, and
- (4) if Z^2 is a group of formula $-(CO)-O-R^2$ then Y^2 is a group of formula $-(CO)-O-R^5$,

comprising:

reacting the 1,3,5-triazine carbamate of formula (II) at a temperature of 40 to 120°C with an alcohol of the formula R^3OH and, optionally, with an alcohol of the formula R^2OH and/or R^1OH to produce the 1,3,5-triazine carbamate of the formula (I) and an alcohol of the formula R^3OH and optionally an alcohol of the formula R^4OH if Y^1 is a group of formula $-(CO)-O-R^4$ and/or an alcohol of the formula R^5OH if Y^2 is a group of formula $-(CO)-O-R^5$,

in the presence of at least one catalyst selected from the group consisting of tin compounds, cesium salts, alkali metal (hydrogen)carbonates and tertiary amines.

51. (New) The process of Claim 50, wherein Z^1 and Y^1 are hydrogen.

52. (New) The process of Claim 50, wherein Z^1 is a group of formula $-(CO)-O-R^1$ and Y^1 is a group of formula $-(CO)-O-R^4$.

53. (New) The process of Claim 50, wherein Z^2 and Y^2 are hydrogen.

54. (New) The process of Claim 50, wherein Z^2 is a group of formula $-(CO)-O-R^2$ and Y^2 is a group of formula $-(CO)-O-R^5$.

55. (New) The process of Claim 50, wherein

Y^1 is a group of formula -(CO)-O-R⁴ and

Y^2 is a group of formula -(CO)-O-R⁵.

56. (New) The process of Claim 50, wherein the lowest boiling point of the alcohols R¹OH, R²OH and R³OH is at least 20°C from the highest boiling point of the alcohols R⁴OH, R⁵OH, and R⁶OH.

57. (New) The process of Claim 50, wherein the alcohol R¹OH and the alcohols R²OH and R³OH are selected from the group consisting of n-butanol, see-butanol, iso-butanol, tert-butanol, n-pentanol, n-hexanol, n-heptanol, n-octanol, n-decanol, 2-ethylhexanol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, 1,3-propanediol monomethyl ether, lauryl alcohol (1-dodecanol), myristyl alcohol (1-tetradecanol), cetyl alcohol (1-hexadecanol), stearyl alcohol (1-octadecanol), 9-cis-octadecen-1-ol (oleyl alcohol), 9-trans-octadecen-1-ol, 9-cis-octadecene-1,12-diol (ricinoleyl alcohol), all-cis-9,12-octadecadien-1-ol (linoleyl alcohol), all-cis-9,12,15-octadecatrien-1-ol (linolenyl alcohol), 1-eicosanol (arachidyl alcohol), 9-cis-eicosen-1-ol (gadoleyl alcohol), 1-docosanol (behenyl alcohol), 1,3-cis-docosen-1-ol, 1,3-trans-docosen-1-ol (brassidyl alcohol), cyclopent-2-en-1-ol, cyclopent-3-en-1-ol, cyclohex-2-en-1-ol or allyl alcohol.

58. (New) The process of Claim 50, wherein the alcohol R³OH is an alkoxylated monool of formula:

wherein

R⁸ is C₁ - C₁₈ alkyl,

n is a positive integer between 1 and 50 and

each X_i for i = 1 to n can be selected independently of the others from the group consisting of -CH₂-CH₂-O-, -CH₂-CH(CH₃)-O-, -CH(CH₃)-CH₂-O-, -CH₂-C(CH₃)₂-O-, -C(CH₃)₂-CH₂-O-, -CH₂-CHVin-O-, -CHVin-CH₂-O-, -CH₂-CHPh-O- and -CHPh-CH₂-O-, in which Ph is phenyl and Vin is vinyl.

59. (New) The process of Claim 50, wherein the alcohol R³OH is a monool which carries at least one polymerizable group and one hydroxyl group.

60. (New) The process according to Claim 50, wherein the alcohol R³OH is a monool is represented by the formula:

wherein

R⁹ is hydrogen or methyl,

R¹⁰ is a divalent linear or branched C₂-C₁₈ alkylene radical,

X_i is -CH₂-CH₂-O-, -CH₂-CH(CH₃)-O-, -CH(CH₃)-CH₂-O-, -CH₂-C(CH₃)₂-O-, -C(CH₃)₂-CH₂-O-, -CH₂-CHVin-O-, -CHVin-CH₂-O-, -CH₂-CHPh-O- and -CHPh-CH₂-O-, in which Ph is phenyl and Vin is vinyl, and

k is a positive integer from 1 to 20.

61. (New) The process of Claim 50, wherein the alcohol is a polyetherol or polyesterol containing at least one polymerizable group and one hydroxyl group.

62. (New) The process of Claim 50, wherein R³ is C₁ - C₁₈ alkyl, C₂ - C₁₈ alkyl, optionally interrupted by one or more oxygen and/or sulfur atoms and/or by one or more substituted or unsubstituted imino groups, or are C₂ - C₁₈ alkenyl, C₆ - C₁₂ aryl, C₅ - C₁₂ cycloalkyl or a five- or six-membered heterocycle containing oxygen, nitrogen and/or sulfur atoms, wherein said radicals are optionally substituted by aryl, alkyl, aryloxy, alkyloxy, heteroatoms and/or heterocycles, or else are radicals

-(CO)-R⁷, -(CO)-O-R⁷ or -(CO)-(NH)-R⁷,

in which

R⁷ is C₁ - C₁₈ alkyl, C₂ - C₁₈ alkyl, optionally interrupted by one or more oxygen and/or sulfur atoms and/or by one or more substituted or unsubstituted imino groups, or can be C₂ - C₁₈ alkenyl, C₆ - C₁₂ aryl, C₅ - C₁₂ cycloalkyl or a five- or six-membered heterocycle containing oxygen, nitrogen and/or sulfur atoms, said radicals optionally substituted by aryl, alkyl, aryloxy, alkyloxy, heteroatoms and/or heterocycles.

63. (New) The process of Claim 50, wherein the alcohols R³OH and optionally R⁴OH and/or R⁵OH are separated by distillation from the reaction mixture.

64. (New) The process of Claim 50, wherein the catalyst comprises a tin compound.

65. (New) The process of Claim 50, wherein the catalyst comprises a cesium salt.

66. (New) The process of Claim 50, wherein the catalyst comprises an alkali metal (hydrogen)carbonate.

67. (New) The process according to Claim 50, wherein the catalyst comprises a tertiary amine,

wherein the alcohol R^3OH is alkoxylated monool of formula:

wherein

R^8 can be $C_1 - C_{18}$ alkyl,

n is a positive integer between 1 and 50 and

each X_i for $i = 1$ to n can be selected independently of the others from the group consisting of $-CH_2-CH_2-O-$, $-CH_2-CH(CH_3)-O-$, $-CH(CH_3)-CH_2-O-$, $-CH_2-C(CH_3)_2-O-$, $-C(CH_3)_2-CH_2-O-$, $-CH_2-CHVin-O-$, $-CHVin-CH_2-O-$, $-CH_2-CHPh-O-$ and $-CHPh-CH_2-O-$,

in which Ph is phenyl and Vin is vinyl,

or wherein the alcohol is a monool and represented by the formula:

wherein

R^9 is hydrogen or methyl,

R^{10} is a divalent linear or branched C_2-C_{18} alkylene radical,

X_i is $-CH_2-CH_2-O-$, $-CH_2-CH(CH_3)-O-$, $-CH(CH_3)-CH_2-O-$, $-CH_2-C(CH_3)_2-O-$,

$-C(CH_3)_2-CH_2-O-$, $-CH_2-CHVin-O-$, $-CHVin-CH_2-O-$, $-CH_2-CHPh-O-$ and $-CHPh-CH_2-O-$,

in which Ph is phenyl and Vin is vinyl, and

k is a positive integer from 1 to 20.