The MATLAB files:

• a8sde.m is a code to solve SDEs for a damped harmonic oscillator with added noise.

Figure 1: Solutions of the damped harmonic oscillator for different values of ϵ . The value of parameters are: $k=1, m=1, f=0.1, v(0)=0, x(0)=1, \Delta t=\frac{T}{N}=\frac{200}{2^{20}}$.

Figure 1 shows the solutions of the damped harmonic oscillator with added noise for different values of ϵ . We can see how increasing the noise can affect the solution of damped harmonic oscillator.

1. Do larger values of ϵ require adjustments to Δt ?

I didn't get this question. If you mean whether changes in Δt can affect the solution at large value of ϵ , the answer is yes.

Figure 2: Solutions of the damped harmonic oscillator for different values of Δt : (A) $\Delta t = \frac{T}{N} = \frac{200}{2^{10}}$, (B) $\Delta t = \frac{200}{2^{20}}$, (C) $\Delta t = \frac{200}{2^{25}}$. The value of parameters are: $\epsilon = 100, k = 1, m = 1, f = 0.1, v(0) = 0, x(0) = 1$.

Figure 2 shows the solutions for different values of Δt at $\epsilon = 100$. If we change the value of Δt at a fixed value of ϵ , the solutions will change.

- 2. Are there any qualitative changes in the solutions as you increase ϵ ? It is clear from figure 1 that for $\epsilon > 1$, there is no qualitative changes in the solutions. In other words, at larger values of ϵ , we won't see any changes in the solutions.
- 3. Does the average energy at long time depend on ϵ ? Figure 3 shows the average energy as a function of ϵ . The mean energy depends on the value of ϵ and will increase by increasing the ϵ value.

Figure 3: mean energy against ϵ . The value of parameters are: $k=1, m=1, f=0.1, v(0)=0, x(0)=1, \Delta t=\frac{200}{2^{20}}$.