Species Delimitation Using Machine Learning

Philip Lin and Bing Li

University of Wisconsin Madison
Department of Biostatistics and Medical Informatics

April 25, 2024

Why It's Interesting

- **The Problem:** Traditional species delimitation relies heavily on morphological traits.
- Importance for Science and Conservation

Introduction to Species Delimitation Challenges

- Research Question: Can machine learning algorithms such as XGBoost and MLP improve the accuracy and reliability of species delimitation within the Bromeliaceae family?
- Significance of Machine Learning: Machine learning offers innovative tools to address these limitations, potentially revolutionizing species identification and classification.

Existing Methods for Species Delimitation

- Traditional Morphology-Based Methods: Historically, species were identified and delimited based primarily on physical traits. However, these methods can be subjective and overlook genetic diversity.
- Molecular Genomics Approaches: Recent years have seen the development of models such as the multispecies coalescent model using genomics data.

Limitations of Current Methods

- Computational Demands: Advanced statistical models, while powerful, often demand substantial computational resources and expert knowledge, limiting their accessibility and scalability.
- Need for Refined Data: Many methods require high-quality, comprehensive genetic data, which is not always available, especially for non-model organisms.

Why Machine Learning?

- Overcoming Limitations: Machine learning algorithms, such as XGBoost and MLP, can handle large datasets with complex patterns, potentially providing more accurate species delimitation with less human bias.
- **Innovative Potential:** These methods have rarely been applied to non-model organism species delimitation.
- Expected Benefits: Improved accuracy and reliability in species identification, efficient processing of large genomic datasets, and enhanced capability to uncover hidden genetic relationships.

Data Overview

- Organisms Studied: Bromeliaceae family, including eight species across five genera, crucial for their ecological and commercial value (e.g., pineapple).
- Data Source: Genomic data obtained via low-coverage genome skimming provided by Novogene Inc.
- Data Structure: Genetic data stored in Variant Call Format (VCF), which includes SNP variants detailed in GT:PL format.
- GT:PL Format Explained:
 - **GT** (**Genotype**): Indicates the genetic constitution at specific loci.
 - **PL** (**Phred-scaled Likelihoods**): Provides a quantitative measure of the accuracy of the genotype call.

Sample Sizes and Data Processing

- Sample Sizes: Analysis includes 210,859 SNP records across the eight species, providing a comprehensive genetic overview.
- Data Processing:
 - **Preprocessing:** Raw sequencing reads were trimmed using tools like fastp for quality control, removing adapters and low-quality reads.
 - Alignment and Variant Calling: Reads were aligned to the reference genome of Ananas comosus using Bowtie2, with variants called using BCFtools.
 - Quality Checks: Data quality validated through BUSCO for capturing universal single-copy orthologs and BLAST+ for further verification of single-copy orthologs.
- Dataframe Structure: The final processed dataset is structured into a dataframe with dimensions (210,859 rows × 33 features), facilitating data manipulation and analysis.

Machine Learning Models for Species Delimitation

- Choice of Algorithms: Focused on XGBoost and Multi-Layer
 Perceptron (MLP) for their robustness in handling complex datasets.
- **XGBoost:** An ensemble learning method that uses gradient boosting frameworks, known for its high performance on structured data.
- MLP: A type of neural network suitable for capturing nonlinear relationships in data through multiple layers of neurons.

Data Preparation and Model Configuration

- Data Transformation: SNP data was transformed into a matrix format suitable for analysis with both XGBoost and MLP.
- Feature Selection: Important genetic markers were identified using statistical techniques to enhance model performance and relevance.
- Model Parameters:
 - XGBoost: Configured with parameters optimized for depth, learning rate, and number of trees to manage overfitting and ensure robust generalization.
 - MLP: The architecture was carefully tuned, including the number of hidden layers and neurons, to balance between complexity and computational efficiency.
- Validation Technique: Employed the hold-out method, reserving 20% of the data for testing to assess the model's performance on unseen data.

Evaluation Metrics and Model Validation

 Evaluation Metrics: Focused on precision, recall, and the F1 score to measure the balance between model accuracy and its ability to generalize.

Model Testing:

- Precision: Proportion of true positives among the labels classified as positive.
- **Recall:** Ability of the model to identify all relevant instances (true positives).
- **F1 Score:** Harmonic mean of precision and recall, providing a single score that balances both the precision and the recall.
- Cross-Validation: Used to ensure that the model is not tailored to a specific subset of the data, thereby enhancing its robustness and reliability across different sets of data.

Class Prediction Error

- Each bar represents the count of misclassified instances for an actual class.
- Colors denote the predicted class mistaken for the actual class.
- Inference: The RandomForestClassifier has the most diverse color distribution among the actual classes, suggesting higher misclassification compared to the MLPClassifier. The XGBoost model displays the least color variation.

Predicted Probability Distribution

Philip Lin and Bing Li (UW Madison)

- Horizontal axis represents the predicted probability of the true class.
- Vertical axis indicates the frequency of instances in the dataset.
- Inference: XGBoost shows a higher concentration of predictions with high confidence (probabilities close to 1), suggesting it is the most confident model.

Confusion Matrix for Classifiers

- Matrices show the count of predictions for each true label vs. predicted label.
- Ideal results would show high values along the diagonal (correct classifications).
- Inference: The XGBoost classifier demonstrates a stronger diagonal, suggesting a higher overall classification accuracy.

Model Accuracy Comparison

- Each bar represents the accuracy of a model.
- Inference: The XGBoost model outperforms Random Forest and MLP in terms of accuracy, aligning with expectations from its higher confidence in predictions.

Interpretation of Results

- Insights Gained: The application of machine learning models has demonstrated a clear advantage in distinguishing between species within the Bromeliaceae family.
- Model Efficacy: XGBoost's performance indicates its capability to handle complex genetic patterns and offers a promising tool for species delimitation in taxonomy.
- Challenges Addressed: The use of machine learning algorithms has helped overcome the ambiguity often encountered in species delimitation due to overlapping genetic signatures.
- Implications for Taxonomy: These findings suggest a shift towards integrating computational methods in taxonomic practices could greatly enhance accuracy and efficiency.

Broader Implications and Future Work

- Beyond Bromeliaceae: The methodologies could be applied to other families and groups, potentially reshaping species classification across a wider biological spectrum.
- Conservation Efforts: Accurate species identification is crucial for conservation planning, and these methods could improve strategies for preserving biodiversity.
- Next Steps: Future work will focus on refining the models, incorporating larger datasets, and exploring additional machine learning techniques to further improve the accuracy and reliability of species delimitation.
- Integration with Traditional Methods: Combining machine learning with traditional taxonomic methods could yield a powerful hybrid approach, leveraging the strengths of both disciplines.

Citations

- [1] Wen, Dingqiao & Yu, Yun & Nakhleh, Luay. (2016). Bayesian Inference of Reticulate Phylogenies under the Multispecies Network Coalescent.
- PLOS Genetics. 12. e1006006. 10.1371/journal.pgen.1006006.
- [2] Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. arXiv preprint arXiv:1603.02754
- [3] Rosenblatt, F. (1962). Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms. Washington, DC: Spartan Books.
- [4] Manni, M., Berkeley, M. R., Seppey, M., & Zdobnov, E. M. (2021).
- BUSCO: Assessing genomic data quality and beyond. *Current Protocols*,
- 1, e323. doi: 10.1002/cpz1.323
- [5] Camacho, C., Coulouris, G., Avagyan, V. *et al.* (2009) BLAST+: architecture and applications. **BMC Bioinformatics 10**, 421 (2009).
- [6] Langmead B and Salzberg SL. (2012) Fast gapped-read alignment with Bowtie 2. *Nat Methods* 4;9(4):357-9. doi: 10.1038/nmeth.1923. PMID: 22388286; PMCID: PMC3322381.