

Figure 3.1. Flowchart showing how linear regression, additive modelling, generalised linear modelling (using the Poisson distribution and log-link function) and generalised additive modelling (using the Poisson distribution) are related to each other. In linear regression, violation of homogeneity means that the GLM with a Poisson distribution may be used. Normality but non-linear relationships (as detected for example by a graph of the residuals versus each explanatory variable) means that additive modelling can be applied. Non-linear relationships and violation of the normality assumption means a GAM with a Poisson distribution. The graph will change if another link function or distribution is used.



Figure 3.2. Overview of multivariate analysis methods discussed in this book. We assume that the data matrix consists of species measured at sites. If this is not the case (e.g., the data contain chemical variables), it becomes more tempting to apply principal component analysis, correspondence analysis, redundancy analysis or canonical correspondence analysis. If the species data matrix contains many zeros and double zeros, this needs to be taken into account, by choosing an appropriate association matrix and using principal co-ordinate analysis (PCoA), non-metric multidimensional scaling (NMDS), the Mantel test or ANOSIM.



Figure 3.3. Decision tree to choose between linear regression models and additive models, and in case of temporal dependence GLS or time series methods can be applied. If there is spatial dependence in the additive or linear regression models, then SAR, SMA, LM(ce), AM(ce) or kriging techniques should be applied.