情報学基礎

2章 コンピュータにおける情報の表現

担当:管理工学科

篠沢 佳久

本日の内容

- コンピュータにおける情報の表現(2章)
 - 2進数(2.1節)
 - 16進数(2.2節)
 - 整数の内部表現(2.3節)
 - 符号なし整数(2.4節)
 - 実数(2.5節)
 - 文字(2.6節)
 - 音声や音楽(2.7節)
 - 情報量について(コラム)

2進数(2.1節)

まず算数の世界で考えます

整数の10進数と2進数①

• 10進数整数

0, 1, 2, 3, 4, •••, 9, 10, 11, •••, 99, 100, •••

• 2進数整数

0, 1, 10, 11, 100, 101, 110, 111, 1000, • • •

整数の10進数と2進数②

• 10進数整数

• 2進数整数

```
-100, -11, -10, -1, 0, 1, 10, 11, 100, •••
```

2進数から10進数への変換①

• 2進数

$$b_{n-1} \quad b_{n-2} \quad b_{n-3} \quad \cdots \quad b_2 \quad b_1 \quad b_0$$

$$b_i = \{0, 1\}$$

10進数に変換

$$a = b_{n-1} \cdot 2^{n-1} + b_{n-2} \cdot 2^{n-2} + \dots + b_1 \cdot 2^1 + b_0 \cdot 2^0$$

2進数から10進数への変換②

・10進数への変換例

10進数に変換

$$1 \cdot 2^{7} + 0 \cdot 2^{6} + 1 \cdot 2^{5} + 1 \cdot 2^{4} + 0 \cdot 2^{3} + 1 \cdot 2^{2} + 1 \cdot 2^{1} + 1 \cdot 2^{0}$$

$$= 128 + 32 + 16 + 4 + 2 + 1$$

$$= 183$$

(問)10進数に変換しなさい

1	1	0	1	1	0	1	0

10進数から2進数への変換①

(問) 3213を2進数に変換しなさい

2進数小数(10進数小数への変換)

• 2進数小数

$$0.k_1$$
 k_2 k_3 … k_n $k_i = \{0,1\}$ 10進数に変換
$$a = k_1 \cdot 2^{-1} + k_2 \cdot 2^{-2} + k_3 \cdot 2^{-3} \cdots + k_n \cdot 2^{-n}$$

(例)

$$0.1011 (2) = 1 \times 0.5 + 0 \times 0.25 + 1 \times 0.125 + 1 \times 0.0625$$

= 0.6875 (10)

10進数小数から2進数小数への変換

(問) 0.1 ₍₁₀₎ を2進数へ変換しなさい

```
\times 2 = 0.2
0.1
0.2
       \times 2 = 0.4
                                この部分を
       \times 2 = 0.8
0.4
                                繰り返す
       \times 2 = 1.6
0.8
0.6
      \times 2 = 1.2
0.2
       \times 2 = 0.4
```

すなわち 0.1(10) は 0.00011(2) という無限小数になる

(問) 0.3 (10) を2進数へ変換しなさい

実数の10進・2進変換

・ 整数部と小数部に分けて変換する

16進数(2.2節)

• 2進数を8進数や16進数で表現すると省スペースに

なる

10進数	2進数	8進数	16進数
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	а
11	1011	13	b
12	1100	14	С
13	1101	15	d
14	1110	16	е
15	1111	17	f

16進数の例

- 31(10) = 11111(2) = 1f(16)
- 100(10) = 1100100(2) = 64(16)
- 0.6875(10) = 0.1011(2) = 0.d(16)
- 10.5(10) = 1010.1(2) = a.8(16)

$$0.1(2) \rightarrow 0.1000$$
 (2)

整数の内部表現(2.3節)

ここまでは算数の世界でした

では、コンピュータ内部ではどう表現しているでしょうか?

整数のコンピュータ内部での表現

- 一定のビット幅を使って表現
- 例として「整数を4ビットで表す」ことを考える (10進数) (2進数) (コンピュータ内部)

0	0	0000
1	1	0001
2	10	0010
3	11	0011
4	100	0100
5	101	0101
6	110	0110
7	111	0111

OTTT

正の整数 の場合

- (前ページでわかるように)正数は素直に変換できる
- ・ 負数は2の補数表示で表す

```
(10進数) (2進数) (コンピュータ内部)
      -1
                 1111
  -1
  -2 -10
                 1110
  -3 -11
                 1101
    -100
                 1100
                     2の補数表示
  —4
  -5 -101
                 1011
  -6 -110
                 1010
  -7 -111
                 1001
    -1000
                 1000
  -8
```

2の補数表示①

- 正の整数と0(ゼロ)は最左ビットが0で、算数の世界と同様
- 負の整数は最左ビット(most significant bit; MSB)を1
- ある負数(-n)の2の補数表示を求めるには、 nのビット表現の0と1を反転させて1を加える (例) -6の2の補数表示は 0110 → 1001 → 1010
 - 6 (ビット反転) (+1) -6

2の補数表示②

- 2の補数表示を使うと負数であっても足し算で 計算できる
 - -6+6=1010+0110=0000 (繰上りは無視)
 - -2+(-4)=1110+1100=1010
- 一定のビット幅しか使っていないので、表せる 数の上限と下限があることに注意!
 - (例)4ビットだと -8~+7(-2³~2³-1)の 間の16種類のみ
 - (問1)4ビットでー6+(ー6)はどうなるか?
 - (問2)32ビットで表せる上限と下限は?

符号なし整数①

- 負の整数を使う必要のない場合は最左ビット (MSB)を符号として使いたくない
- 4ビットで考えると、

(10進数)	(2進数)	(コンピュータ内部)
8	1000	1000
9	1001	1001
10	1010	1010
11	1011	1011
12	1100	1100
13	1101	1101
14	1110	1110
15	1111	1111

符号なし整数②

 n ビットで符号なし整数を表す場合は O ~ 2ⁿ - 1
 の範囲の整数を表すことができる

(問) 8ビットで符号なし整数を表す場合の上限と下限は?

整数の表現方法のまとめ

ビットパターン (2 進数)	16 進数	符号なし整数 (10 進数)	2の補数表示
0000	0	0	0
0001	1	1	1
0010	2	2	2
0011	3	3	3
0100	4	4	4
0101	5	5	5
0110	6	6	6
0111	7	7	7
1000	8	8	-8
1001	9	9	-7
1010	а	10	- 6
1011	b	11	- 5
1100	С	12	-4
1101	d	13	- 3
1110	е	14	-2
1111	f	15	– 1

実数(2.5節)

- 10進数の場合
 - $-M \times 10^{e}$
 - $-6.0221415 \times 10^{23}$
 - $-23.4 = 234 \times 10^{-1}$ $= 2.34 \times 10^{1}$
 - Mを仮数部, eを指数部
- ・ 2進数の場合

$$-10.01 = 1001 \times 2^{-2}$$

= 1.001 × 2¹

実数のコンピュータ内部での表現方法①

- ・ 実数を 仮数 (2進数) × 2^{指数} の形式で表す その際, 仮数を 1.・・・ の形にする
 - この作業を正規化という
 - 正規化するときに小数点を動かすことから「浮動 小数点」(floating point)と呼ばれる
- どの実数も1. の部分は共通となるので、これ以降の・・・の部分だけをコンピュータ内に収める
- ・ 仮数の符号は最左ビットで表す(1が負数)

実数のコンピュータ内部での表現方法②

- 指数も正負があるが、最小を00・0、最大を11・1 とする(げたばき表示)
 通常はこの真ん中あたりを0乗とする
 - この0乗の指数をげたと呼ぶ
- コンピュータでの内部表現

海 指数部 仮数部 符号用ビット

- (-1)^{最左ビット}×(1. +仮数部)×2^(指数部ーげた) の実数を表していることになる
- 0.0(2)は例外で内部表現はオールゼロ

実数のコンピュータ内部での表現方法③

浮動小数点数の規格(IEEE754)

単精度(32ビット):
 指数部8ビット(127のげた)と仮数部23ビット
 ⇒ 結果として有効桁が7桁ほど

倍精度(32ビット):
 指数部11ビット(1023のげた)と仮数部52ビット
 ⇒ 結果として有効析は15桁ほど

問題

• 10進数実数 -3.625 は単精度表現として コンピュータ内でどのように表わされる か?

単精度浮動小数点数

問題

10進数実数 10.75 は倍精度表現として コンピュータ内でどのように表わされる か?

倍精度浮動小数点数

丸め誤差

10進数の 0.1 は2進数で無限小数になる 仮数部は有限ビットしかない 収納できない部分は捨てる(丸める) 誤差が発生する(これを丸め誤差という)

丸め誤差の例①

(問) 10進小数 0.1 を単精度浮動小数点表示しなさい

丸め誤差の例②

$$0.1 (10) = 0.0001100110011 \cdot \cdot \cdot \cdot (2)$$

= $1.10011001 \cdot \cdot \cdot \times 2^{-4} \leftarrow (123-127)$

文字のコンピュータ内部での表現(2.6節)

- ・アルファベット文字や半角記号はASCIIコード 表に基づく
- 各文字はASCIIコードでは7ビットのビットパターンで表される
- 日本語は複数バイトで表す コード体系にはEUC、JISコード、S-JISコード、 UTFなどがあるが、近年はUTFへ統一されつ つある
 - ⇒ 今でもときとして文字化けが起こる

ASCIIコード表①

コード	文字	コード	文字	コード	文字	コード	文字
0~8	(説明略)	53	5	78	N	103	g
9	水平タブ	54	6	79	O	104	h
10	改行	55	7	80	P	105	i
11~31	(説明略)	56	8	81	Q	106	j
32	空白	57	9	82	R	107	k
33		58	:	83	S	108	1
34	#	59	;	84	T	109	m
35	#	60	<	85	U	110	n
36	\$	61	=	86	V	111	o
37	%	62	>	87	W	112	p
38	&	63	?	88	X	113	q
39	*	64	@	89	Y	114	r
40	(65	A	90	Z	115	s
41)	66	В	91]	116	t
42	*	67	C	92		117	u
43	+	68	D	93]	118	v
44	,	69	E	94	<	119	w
45		70	F	95	ı	120	x
46		71	G	96		121	y
47	1	72	H	97	a	122	z
48	0	73	Ι	98	b	123	{
49	1	74	J	99	c	124	1
50	2	75	K	100	d	125	}
51	3	76	L	101	е	126	~
52	4	77	M	102	f	127	Del

- ・憶える必要はない
- ・普段は文字として 意識しないような「ベ ル音(コードは7)」や 「改行」にもコードが 割り当てられている

ASCIIコード表②

- Aが65ということは、文字Aがコンピュータ内部で1000001というビットパターンで表現されることを示す
- 0(ゼロ)が48ということは、文字0は110000 というパターンであることを示す
- 文字0が10進数の48のパターン, 文字1が49 のパターン, というように0~9, A~Z, a~zは連続したパターンが割り当てられている

ASCIIコード表③

- (例)Keio(文字)
- (10進数)75 101 105 111
- (2進数)1001011 1100101 1101001 1101111
- (例)123(文字)
- (10進数) 49 50 51
- (2進数) 0110001 0110010 0110011

文字と整数は表現方法が異なる

- (例)123(10進数の整数)
- (2進数)1111011

パリティ(参考)

- ASCIIコードは7ビット
- データの転送時などにどこかのビットの0と1 が反転するような誤りを検出するために、 ASCIIコードに1ビット加えて、その文字データ の1の数が偶数になるようにする(これを偶数 パリティという)

たとえば、Aは1000001だが、この先頭にパリティビットを加えて0100001とする

音声や音楽(2.7節)

- 音声や音楽
 - アナログ信号

- デジタル化
 - ある時刻の信号レベルを一番近い離散値(とびと びの値)に置き換える
 - 時間間隔が短いほど、離散値の幅が細かいほど、 元の信号を正確に置き換えられる

標本化と量子化①

標本化と量子化②

- ・標本化・・・一定時間ごとの離散的な時点の 値の系列で表現すること 1秒間に何回標本化するかを標本化周波数と して表す
 - シャノン・染谷の標本化定理より、元の波の 周波数の2倍の標本化周波数で標本化すれ ば再現できることがわかっている
- ・ 量子化・・・採取した信号レベルを有限個の値 のなかの一つで対応すること 量子化ビット数で何ビットの値で表現するか を表す

CDでの音楽データ

- 標本化周波数: 44.1 kHz
- 量子化ビット数:16ビット
- 左右のチャンネルそれぞれのデータがある

- (問) コンパクト・ディスクに入っている60分の 音楽データの大きさを求めなさい
- → 次週, バイトの説明後に解説します

まとめ:数の内部表現での注意

たとえば0100100というデータが与えられたとき、それをどう解釈すべきか(2の補数表示、符号なし整数、文字コード等)はデータからはわからない

情報量(コラム)

- シャノンによる定義:
 確率pで起こる事象をメッセージで伝えた場合の情報量を log 2 (1/p) = -log 2 p とする
- ある事象の確率が p = 1/2 のとき, このメッセージの情報量は 1 となる. これを情報の単位として1ビットと呼んだ.
- 独立な2つの事象の同時確率はそれぞれの事象の確率の積である ⇒ 情報量としては和になる

問題

①「さいころを1回ふったら偶数の目がでた」というメッセージの情報量を求めよ.

②「さいころを1回ふったら2の目がでた」とい うメッセージの情報量は①の1/3か,検証し なさい。

情報エントロピー

- 同時に起こらないM個の事象が、確率p1,
 p2, . . . , pn(和は1)で出現するとき、この情報源の価値を情報量の期待値の和
 - ー ∑ (pi × log 2 pi) で表すことにする. これを情報エントロピーと いう
- 情報エントロピーは平均情報量とみなすことができ、単位はやはりビットである。

問題

英語のアルファベット26文字とスペースがすべて等確率で生じるとするときの情報エントロピーを求めなさい。

本日のまとめ

• 2章:コンピュータにおける情報の表現

・ 次週は3章を読んで来て下さい