Lógica de Programação

Profa Fabrícia Noronha

O que é Lógica?

"Estudo das leis do raciocínio." (Dicionário Luft)

"Conjunto de regras e princípios que orientam, implícita ou explicitamente, o desenvolvimento de uma argumentação ou de um raciocínio, a resolução de problemas, ..." (Dicionário Aurélio)

Lógica

Faz parte do dia a dia!

Sequência de passos lógicos é =

ALGORITMO

Algoritmo

Caminho para a solução de um problema

Em geral, os caminhos que levam a uma solução são muitos.

Algoritmo Natural

Conjunto de passos ordenados utilizados no dia-a-dia para realizar alguma ação, como por exemplo: uma receita de bolo, um saque em um caixa eletrônico, trocar o pneu de um carro e etc.

Exemplo: Receita de Bolo

Entrada: ingredientes(farinha de trigo, ovos, açúcar, ...)

Processamento: Modo de preparo

- Untar a forma.
- 2. Misturar os ingredientes
- 3. Mexer a massa
- 4. Colocar a massa na forma untada
- 5. Levar a forma ao forno
- 6. Esperar até o bolo assar
- 7. Tirar o bolo do forno

Saída: bolo pronto.

Algoritmo Computacional

Conjunto de passos, sequência lógica de ações, organizados sintaticamente para a solução de um problema através dos computadores.

Entrada

Processamento

Saída

Formas de Representação do Algoritmo

PASSOS

Passo I: Solicitar ao usuário que informe um valor

Passo 2: Armazenar o valor informado

Passo 3: Solicitar ao usuário que informe outro valor

Paso 4: Armazenar o valor informado

Passo 5: Efetuar a soma dos valores informados e

armazenar

Passo 6: Mostrar o resultado da soma

10 Mandamentos da Lógica de Programação (Adaptado do material da prof Tanisi)

- 1) Assistir as aulas.
- 2) Copiar a resolução dos algoritmos.
- 3) Entregar a resolução dos algoritmos solicitados.
- 4) Desenvolver muitos, mas muitos algoritmos.
- 5) Não deixar para estudar um dia antes da prova.
- 6) Não desanimar se não conseguir resolver os primeiros algoritmos.
- 7) Prestar atenção na correção dos algoritmos. Entender a solução quando o professor explica já é meio caminho andado.
- 8) Fazer teste de mesa.
- 9) Codificar os algoritmos resolvidos em aula utilizando uma linguagem de programação.
- 10) Só se aprende algoritmos desenvolvendo algoritmos.

Operadores Aritméticos

Operação	Operador
Subtração	-
Adição	+
Multiplicação	*
Divisão	1
Potenciação	Λ,**

Operadores Especiais

DIV – operador de divisão inteira

MOD – operador de resto da divisão inteira

13 Div 2 = 6

13 Mod 2 = 1

Algumas Funções Pré-definidas

Função	Descrição
ABS(x)	Valor absoluto de x
SQR (x)	Eleva x ao quadrado
SQRT (x)	Raiz quadrada de x
FRAC (x)	Parte fracionária de x
INT (x)	Parte inteira de x
ROUND (x)	Valor de x arredondado
LOG (x)	Logaritmo de x

Linearização de Expressões ou Fórmulas

Para a execução de cálculos matemáticos em algoritmos todas as expressões aritméticas devem ser linearizadas, ou seja, colocadas em linhas, devendo também ser feito o mapeamento dos operadores da aritmética tradicional para os do Português Estruturado.

Aritmética Tradicional	Forma Computacional
x= { <u>43</u> .[55: (30+2)]}	x←(43/2*(55/(30+2)))
area = <u>b.h</u> 2	area ←(b*h)/2

Estrutura do Algoritmo

Cabeçalho (palavra "Algoritmo" seguida de um nome que dê uma idéia do objetivo do algoritmo)

EX:Algoritmo Calcula_media

- □Área de Declaração (variáveis e constantes que serão utilizadas)
- Corpo do Algoritmo (delimitado pelas palavras 'início' e 'fim')

 EX: inicio

<comando...>

fim

Variáveis

Características:

□ **nome** (identificador - diferencia uma variável de outra)

Devem seguir as seguintes regras:

- □ Iniciar por letra(a...z, A...Z) ou underscore
- Depois podem ser seguidos por letras ou números
- □ Não pode ser palavra reservada nem caracter especial
- □ Não existe distinção para maiúsculas e minúsculas(NOME = nome)
- □ Nomes de variáveis devem ter no máximo 127 caracteres

Exemplo de identificadores não válidos: Calcula media, 5total, perc%

- Conteúdo (dado guardado na variável)
- □ tipo de dado (tipo de informação que poderá ser armazenada na variável)

Tipo de Dado

Numérico

Inteiro (positivos ou negativos, sem ponto decimal) Ex: idade:inteiro

Real (positivos ou negativos, com ponto decimal) Ex: salário:real

- ☐ Caracter (sempre entre aspas simples)
- ☐ letras, números, símbolos especiais
- números quando declarados caracter, tornan-se representativos

Ex: cpf :caracter

nome: caracter

- Lógico ou Boolean
- verdadeiro ou Falso

Ex: fechado: lógico

Declaração de Variáveis

- □ Começa com a palavra 'Variáveis' e logo após todas as variáveis utilizadas no algoritmo devem ser declaradas
- Deve ter um nome significativo
- ☐ É necessário definir o tipo (inteiro, real, caracter, ...)

Sintaxe: Variaveis

identificador: tipo de dado

Ex: variaveis

valor2: inteiro

□ Variáveis do mesmo tipo podem ser declaradas uma ao lado da outra, separadas por vírgulas.

Ex: media, raio, salario: real

Declaração de Constantes

 Uma constante é um valor que não pode ser alterado ao longo da execução do algoritmo, ou seja, permanece com seus valores inalterados.

Sintaxe: constantes

identificadores = valor

Exemplo: constantes

pi = 3.14

juros = 0.3

Comando de Atribuição

Usado para atribuir valor a uma variável

Sintaxe:

variavel ← valor ou expressão

 O valor atribuído a uma variável deve ser sempre do mesmo tipo definido para a variável

EX: media
$$\leftarrow$$
 (prova1 + prova2)/2 nome \leftarrow 'Maria' $a \leftarrow 25$

Comandos – Entrada e Saída de Dados

• **Escrever**: imprime informações na tela

Ex: escrever('Informe um valor') escrever('Valor:', valor)

OBS: Usa-se "9" (vírgula) para concatenar o valor de uma variável com um texto explicativo.

• Ler: lê informações do teclado e armazena em uma variável.

Ex: ler(nome)

Comentários

□ São textos escritos dentro do algoritmo para explicar aspectos relativos ao mesmo.

Estes comentários são de extrema importância especialmente em códigos mais complexos e devem acrescentar uma informação, não apenas frasear as instruções.

Comentando:

total ← valorunitario * quantidade; (*calcula o total à pagar*)

Fraseando:

total ← valorunitario* quantidade; {atribui à total o valor unitário vezes a quantidade}

Teste de Mesa

□É a execução do algoritmo passo-a-passo como se ele fosse executado pelo computador mostrando a evolução do conteúdo das variáveis.

Exemplo

Algoritmo que leia as duas notas de um aluno e calcule a média.

```
Algoritmo calcula_media
Variáveis
    nota1, nota2, media: real
Inicio
    escrever('Informe nota1') {aparece na tela Informe nota1}
    ler(nota1) {armazena a nota digitada na variável nota1}
    escrever('Informe nota2') {aparece na tela Informe nota2}
    ler(nota2) {armazena a nota digitada na variável nota2}
    media \leftarrow (nota1+ nota2)/2 {calcula a média}
    escrever ('Média:', media) {aparece na tela Média: e o valor atribuído a
                                                             variável média}
```

fim

Teste de Mesa

nota1	nota2	media
8	6	7

Identação

Recuo estabelecido nas estruturas de controle

Estético???

Fundamental para a legibilidade do programa.

Contribui para o desenvolvimento e entendimento

Exemplo

```
Algoritmo calcula_media
Variáveis
     nota1, nota2, media: real
 Inicio
       escrever('Informe nota1')
       ler(nota1)
       escrever('Informe nota2')
       ler(nota2)
      media ←(nota1+ nota2)/2
escrever('Média:', media)
```

fim