Phase estimation procedure

Best approximations

Suppose $y/2^m$ is the best approximation to θ :

$$\left|\theta - \frac{y}{2^m}\right|_1 \le 2^{-(m+1)}$$

Then the probability to measure \boldsymbol{y} will relatively high:

$$p_y \ge \frac{4}{\pi^2} \approx 0.405$$

Worse approximations

Suppose there's a better approximation to θ between $y/2^m$ and θ :

$$\left|\theta - \frac{y}{2^m}\right|_1 \ge 2^{-m}$$

Then the probability to measure \boldsymbol{y} will be relatively low:

$$p_y \leq \frac{1}{4}$$

