Toric Varieties as Quotients of Affine Space

Ben Johnson Jennifer Li

Department of Mathematics University of Massachusetts Amherst, MA

Motivation

Toric Varieties

A toric variety is an irreducible variety X containing an algebraic torus $T\simeq (\mathbb{C}^*)^n$ such that

- \circledast T is a Zariski open subset of X
- \circledast Action of T on $T \longrightarrow$ action of T on X

Toric Varieties: Examples

Example. $(\mathbb{C}^*)^n$

Example. \mathbb{C}^n

Example. \mathbb{P}^n

Example. Weighted projective space

Example.
$$V = \mathbf{V}(xy - zw) \subseteq \mathbb{C}^4$$

Toric Varieties

But first, some building blocks of toric varieties...

Lattice Notation

```
N \simeq \mathbb{Z}^r: a lattice (free abelian group of finite rank) M = \operatorname{Hom}_{\mathbb{Z}}(N, \mathbb{Z}): the dual lattice of N N_{\mathbb{R}} = N \otimes_{\mathbb{Z}} \mathbb{R} and M_{\mathbb{R}} = M \otimes_{\mathbb{Z}} \mathbb{R} \langle \ , \ \rangle : M \times N \to \mathbb{Z} dual pairing
```

A rational polyhedral cone in $N_{\mathbb{R}}$ is a collection

$$\operatorname{Cone}(S) = \left\{ \sum_{u \in S} \lambda_u u \mid \lambda_u \ge 0 \right\}$$

where S is a finite subset of N.

Set $Cone(\emptyset) = \{0\}$

Notation: $\sigma = \text{Cone}(S)$ "S generates σ "

The dimension of a polyhedral cone σ is the dimension of $\mathrm{Span}(S)$ of $N_{\mathbb{R}}$.

Example. First quadrant in \mathbb{R}^2

Example.
$$\sigma = \text{Cone}(e_1, e_1 + 2e_2) \subset \mathbb{R}^2$$

Example. Upper-half plane in \mathbb{R}^2

Example. First octant in \mathbb{R}^3

Example. $\sigma = \operatorname{Cone}(e_1, e_2, e_1 + e_3, e_2 + e_3) \subset \mathbb{R}^3$

Strongly Convex Cones

A cone is strongly convex if it does not contain a straight line through the origin.

$$\sigma \ \bigcap (-\sigma) = \{0\}$$

Strongly Convex Cones

Example. The cone σ is strongly convex.

Strongly Convex Cones

Example. The cone σ is not strongly convex.

Dual Cones

Let σ be a polyhedral cone. The dual cone of σ is defined by

$$\sigma^\vee = \{ m \in M_{\mathbb{R}} \mid \langle m, u \rangle \ge 0 \; \forall \; u \in \sigma \}$$

Dual Cones

Example. The cones below are dual.

Dual Cones: Examples

Example. The cones below are dual.

Faces

A face τ of a cone σ is the intersection of σ with the orthogonal complement to some $m \in \sigma^{\vee} \cap M$,

$$\tau = \sigma \cap m^{\perp} = \{ v \in \sigma \, | \, \langle m, v \rangle = 0 \}.$$

Faces

Example. Let $\sigma = \text{Cone}(e_1 + e_2, e_2) \subset \mathbb{R}^2$

Faces

Example (cont.ed).

Semigroup

Recall: A semigroup is a set S together with a binary operation + such that

- (i) S contains an identity element 0
- (ii) operation + is associative

An affine semigroup S has the additional properties

- (iii) operation + is commutative
- (iv) S is finitely generated $A\mathbb{N} = S$, where A finite set
- (v) S may be embedded in a lattice

Semigroup

Given $\sigma \subseteq N_{\mathbb{R}}$: a rational polyhedral cone.

Then the lattice points

$$R_{\sigma} = \sigma^{\vee} \cap M \subseteq M$$

form a semigroup.

Gordan's Lemma. The semigroup R_{σ} is a finitely generated affine semigroup.

The semigroup algebra of a cone σ is the \mathbb{C} -algebra $\mathbb{C}[R_{\sigma}]$ with \mathbb{C} -vector space basis $\{v^m \mid m \in R_{\sigma}\}$ and product

$$v^{m_1} \cdot v^{m_2} = v^{m_1 + m_2}$$

Remark. There is an inclusion $\mathbb{C}[R_{\sigma}] \subset \mathbb{C}[t_1^{\pm 1}, \dots, t_r^{\pm 1}]$ by identifying v^m with Laurent monomial t^m .

Example.

Cone
$$\sigma = \{0\}$$

Dual cone $\sigma^{\vee} = \text{Cone}(\pm e_1^*, \pm e_2^*)$

Semigroup algebra for σ is $\mathbb{C}[R_{\sigma}] = \mathbb{C}[t_1^{\pm 1}, t_2^{\pm 1}].$

Example.

Cone
$$\sigma = \operatorname{Cone}(e_2, 2e_1 - e_2)$$

Dual cone $\sigma^{\vee} = \operatorname{Cone}(e_1^*, e_1^* + 2e_2^*)$

Semigroup algebra for σ is

$$\mathbb{C}[R_{\sigma}] = \mathbb{C}[t_1, t_1 t_2, t_1 t_2^2] \simeq \mathbb{C}[x, y, z] / (xz - y^2)$$

Example.

Cone
$$\sigma = \text{Cone}(e_1, e_2, e_1 + e_3, e_2 + e_3)$$

Dual cone $\sigma^{\vee} = \text{Cone}(e_1^*, e_2^*, e_3^*, e_1^* + e_2^* - e_3^*)$

Semigroup algebra for σ is

$$R_{\sigma} = \mathbb{C}[t_1, t_2, t_3, t_1 t_2 t_3^{-1}] = \mathbb{C}[x, y, z, w]/(xy - zw).$$

◆□▶ ◆□▶ ◆□▶ ◆■▶ ■ めので

Cone o

The affine toric variety X_{σ} corresponding to a strongly convex, rational polyhedral cone σ is defined as

$$X_{\sigma} = \operatorname{MaxSpec}(\mathbb{C}[R_{\sigma}]).$$

Fans

A fan in N is a nonempty finite collection Δ of strongly convex rational polyhedral cones in $N_{\mathbb{R}}$ satisfying:

- \circledast For any cone $\sigma \in \Delta$, every face of σ is contained in Δ .
- \circledast For any $\sigma, \sigma' \in \Delta$, the intersection $\sigma \cap \sigma'$ is a face of both σ and σ'

Fans

Example. These are sometimes called torn fans

Simplicial Fans

Let $\sigma \subseteq N_{\mathbb{R}}$ be a strongly convex rational polyhedral cone.

We say that σ is simplicial if its generators are linearly independent over $N_{\mathbb{R}}$.

Simplicial Fans

Example. Cone $\sigma = \text{Cone}(e_1, e_2, e_1 + e_3, e_2 + e_3) \subset \mathbb{R}^3$ is not simplicial:

It is generated by four vectors in \mathbb{R}^3 .

Simplicial Fans

Example (cont.ed). Subdivide $\sigma = \text{Cone}(e_1, e_2, e_1 + e_3, e_2 + e_3)$ into simplicial fan:

This is called the Atiyah-flop.

Now we have all the materials to build a toric variety!

Given a fan Δ in N with cones $\{\sigma_i\}$:

Now we have all the materials to build a toric variety!

Given a fan Δ in N with cones $\{\sigma_i\}$:

For all $\sigma, \sigma' \in \Delta$, glue X_{σ} and $X_{\sigma'}$ along their common open subset $X_{\sigma \cap \sigma'}$.

This gives the toric variety X_{Δ}

Theorem. The variety X_{Δ} associated to a fan Δ is a normal toric variety, with torus $T_N = N \otimes_{\mathbb{Z}} \mathbb{C}^*$. Every normal toric variety is X_{Δ} for some fan Δ .

X: toric variety with fan Δ in lattice N

Let

$$\Delta(1) = \{\text{one-dimensional cones in } \Delta\}$$

 $\sigma(1) = \{\text{one-dimensional faces of } \sigma\}$

For each
$$\rho \in \Delta(1)$$
, let

$$\langle \mathbf{n}_{\rho} \rangle = \rho \cap N$$

unique generator

Assume: $\operatorname{Span}_{\mathbb{R}}\{n_{\rho} \mid \rho \in \Delta(1)\} = N_{\mathbb{R}}$

We have correspondence

$$\begin{array}{c} S \\ \left(\begin{array}{c} \text{a 1-dimensional cone,} \\ \text{i.e., } f \in \Delta(I) \end{array}\right) \\ \end{array} \begin{array}{c} \left(\begin{array}{c} \text{an irreducible } T_N\text{-invariant} \\ \text{Weil divisor} \end{array}\right) \end{array}$$

 $\mathbb{Z}^{\Delta(1)}$: free abelian group of these Weil divisors.

 $\operatorname{Div}_{T_N}(X)$: the Cartier divisors

Then
$$\operatorname{Div}_{T_N}(X) \subset \mathbb{Z}^{\Delta(1)}$$
 (subgroup)

Then
$$\operatorname{Cl}(X) = \mathbb{Z}^{\Delta(1)} / \operatorname{Div}_0(X)$$
 and $\operatorname{Pic}(X) = \operatorname{Div}_{T_N}(X) / \operatorname{Div}_0(X)$.

$$\operatorname{Div}_0(X) = \{ \text{principal divisors} \}$$

43 / 55

For each $m \in M$, there is a character $\chi^m : T_N \to \mathbb{C}^*$ defined by

$$\chi^m(\sum_{\rho \in \Delta(1)} n_{\rho} \otimes \lambda_{\rho}) = \prod_{\rho \in \Delta(1)} \lambda_{\rho}^{\langle m, n_{\rho} \rangle}$$

Then

- \otimes χ^m is a rational function on X
- \otimes χ^m has the principal divisor

$$D_m = \sum_{\rho \in \Delta(1)} \langle m, n_\rho \rangle D_\rho$$

Then there is an injective map $M \to \mathbb{Z}^{\Delta(1)}$. This gives the following:

Proposition. There is a commutative diagram with exact rows:

$$0 \longrightarrow M \longrightarrow Div_{T_N}(X) \longrightarrow Pic(X) \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow M \longrightarrow \mathbb{Z}^{\Delta(1)} \longrightarrow CI(X) \longrightarrow 0$$

A divisor $D \in \mathbb{Z}^{\Delta(1)} \longrightarrow \alpha = [D] \in Cl(X)$.

The homogeneous coordinate ring of X is the polynomial ring S with variables that correspond to $\Delta(1)$:

$$S = \mathbb{C}[x_\rho \mid \rho \in \Delta(1)]$$

Remark. The homogeneous coordinate ring is a graded algebra

$$S = \bigoplus_{\alpha \in \operatorname{Cl}(X)} S_{\alpha},$$

where $S_{\alpha} = \operatorname{Span}_{\mathbb{C}} \{ x^D \in S \mid [D] = \alpha \}.$

Example. Weighted projective space $\mathbb{P}(a_0,\ldots,a_n)$

- \circledast Homogeneous coordinate ring is the polynomial ring $\mathbb{C}[x_0,\ldots,x_n]$
- \circledast Each variable x_i has weight a_i .
- ® Includes the usual projective space where all weights are 1.
- $\ \, \mbox{\ensuremath{\mathfrak{R}}}$ The grading defined above agrees with the usual grading of polynomials by degree.

How can we reconstruct a toric variety from its homogeneous coordinate ring?

Recall homogeneous coordinate ring definition:

$$S = \mathbb{C}[x_{\rho} \mid \rho \in \Delta(1)]$$

- ® Only takes into account the one-dimensional cones of a fan.
- Need more information on the structure of higher-dimensional cones in the fan
- Where this information is encoded: an ideal in the homogeneous coordinate ring.

The Irrelevant Ideal

For a maximal cone $\sigma \in \Delta$, let $\hat{\sigma}$ be the divisor $\sum_{\rho \notin \sigma(1)} D_{\rho}$.

We define the irrelevant ideal

$$B = (x^{\hat{\sigma}} \mid \sigma \text{ maximal cone in } \Delta).$$

The Irrelevant Ideal

Example. For Projective space \mathbb{P}^n or weighted projective space $\mathbb{P}(a_0 \dots, a_n)$, the irrelevant ideal is:

$$B=(x_1,\ldots,x_n)$$

The Irrelevant Ideal

Example. Consider fans Δ and Δ' previous example:

- \circledast Same one-dimensional cones: $e_1, e_2, e_1 + e_3, e_2 + e_3$
- ® Toric varieties have same homogeneous coordinate ring

$$S = \mathbb{C}[x_{e_1}, x_{e_2}, x_{e_1+e_3}, x_{e_2+e_3}]$$

* But their ideals are distinct:

$$B_{\Delta} = (x_{e_1+e_3}, x_{e_2}) \text{ and } B_{\Delta'} = (x_{e_2+e_3}, x_{e_1})$$

The exceptional subset of $\mathbb{C}^{\Delta(1)}$ is the zero set of the irrelevant ideal:

$$Z = \mathbf{V}(B) = \{ x \in \mathbb{C}^{\Delta(1)} \mid x^{\hat{\sigma}} = 0 \text{ for all } \sigma \in \Delta) \}$$

We can construct toric varieties as quotients of affine space.

Projective space \mathbb{P}^n

Toric Variety X_{Δ}

$$(\mathbb{C}^{n+1}\setminus\{0\}) / \mathbb{C}^*$$

$$(\mathbb{C}^{\Delta(1)}\backslash \mathbb{Z})/G$$

- \circledast Let $G = \text{Hom}_{\mathbb{Z}}(\text{Cl}(X), \mathbb{C}^*)$, a reductive group.
- \circledast Action on $\mathbb{C}^{\Delta(1)}$: Let $g \in G$ and $t = (t_{\rho}) \in \mathbb{C}^{\Delta(1)}$

$$g \cdot t = (g([D_{\rho}])t_{\rho})$$

- \circledast There is a corresponding representation of G on S where S_{α} is the α -eigenspace.
- \circledast Observe: applying functor $\mathrm{Hom}_{\mathbb{Z}}(-,\mathbb{C}^*)$ to the bottom sequence of the commutative diagram

$$0 \longrightarrow M \longrightarrow Div_{T_N}(X) \longrightarrow Pic(X) \longrightarrow O$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow M \longrightarrow \mathbb{Z}^{\Delta(1)} \longrightarrow CI(X) \longrightarrow O$$

gives short exact sequence

$$0 \to G \to (\mathbb{C}^*)^{\Delta(1)} \to T_N \to 0.$$

Theorem. Let X be a toric variety with fan Δ and let Z be the exceptional subvariety of $\mathbb{C}^{\Delta(1)}$. Then

- (i) $\mathbb{C}^{\Delta(1)} \setminus Z$ is invariant under the action of G;
- (ii) X is naturally isomorphic to the categorical quotient of $\mathbb{C}^{\Delta(1)} \setminus Z$ by G;
- (iii) X is the geometric quotient of $\mathbb{C}^{\Delta(1)}\setminus Z$ by G if and only if X is simplicial.