Chapter 1: Preliminaries

1 Sets

Definition 1 (Set basics).

1.
$$A \subseteq B :\iff (\forall x \in A, x \in B)$$
.

2.
$$A = B :\iff (A \subseteq B \land B \subseteq A)$$
.

$$3. A \subset B :\iff (A \subseteq B \land B \not\subseteq A).$$

4.
$$A \cup B := \{x : x \in A \text{ or } x \in B\}.$$

5.
$$A \cap B := \{x \in A : x \in B\}.$$

6.
$$A \setminus B := \{x \in A : x \notin B\}.$$

7.
$$\bigcup_{i \in I} A_i := \{x : \exists i \in I \text{ such that } x \in A_i\}.$$

8.
$$\bigcap_{i \in I} A_i := \{x : \forall i \in I, x \in A_i\}.$$

9.
$$A \times B := \{(x, y) : x \in A, y \in B\}.$$

10.
$$\prod_{i=1}^{n} A_i := \{(x_1, x_2, \dots, x_n) : x_i \in A_i \text{ for all } i\}.$$

Theorem 1. 1. $A \subseteq B \iff A \cap B = A \iff A \cup B = B$.

2.
$$A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$$
.

3.
$$A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$$
.

4.
$$A \cup (B \cup C) = (A \cap B) \cup (A \cap C)$$
.

5.
$$A \cap (B \cap C) = (A \cup B) \cap (A \cup C)$$
.

2 Relations and Functions

Definition 2 (Relation and function). A relation R between A and B is a subset of $A \times B$. A function $f: A \to B$ is a relation between A and B such that

$$(a, b_1) \in f \text{ and } (a, b_2) \in f \implies b_1 = b_2.$$

D(f) := A (called domain of f), and R(f) := B (called range of f).

Lemma 2. Let $f: A \to B$ and $g: A \to B$. Then $f = g \iff (\forall x \in A, f(x) = g(x))$.

Definition 3 (Image and reverse image). Let $f: A \to B$ be a function.

- 1. For $X \subseteq A$, $f(X) := \{f(x) : x \in X\}$ is called the image of X under f. Equivalently, $y \in f(X) \iff (\exists x \in X, f(x) = y)$.
- 2. For $Y \subseteq B$, $f^{-1}(Y) = \{x : f(x) \in Y\}$ is called the inverse image of Y under f. Equivalently, $x \in f^{-1}(Y) \iff f(x) \in Y$.

Lemma 3. Let $f: A \to B$. Let $X_1, X_2 \subseteq A$ and $Y_1, Y_2 \subseteq B$.

- 1. $f(X_1 \cup X_2) = f(X_1) \cup f(X_2)$.
- 2. $f(X_1 \cap X_2) \subseteq f(X_1) \cap f(X_2)$.
- 3. $f^{-1}(Y_1 \cup Y_2) = f^{-1}(Y_1) \cup f^{-1}(Y_2)$.
- 4. $f^{-1}(Y_1 \cap Y_2) = f^{-1}(Y_1) \cap f^{-1}(Y_2)$.

Definition 4 (Composition). For functions $f: A \to B$ and $g: B \to C$, $g \circ f: A \to C$ is the defined as $(g \circ f)(x) = g(f(x))$.

Definition 5 (Injection and surjection). Let $f: A \to B$.

- 1. f is injective (aka one-to-one) : $\iff \forall x_1 \in A, \forall x_2 \in A, (f(x_1) = f(x_2) \implies x_1 = x_2).$
- 2. f is surjective (aka onto) : $\iff \forall y \in B, \exists x \in A, f(x) = y.$

Lemma 4 (Composition). Let $f: A \to B$ and $g: B \to C$.

- 1. If f and g are injective, then $g \circ f$ is injective.
- 2. If $g \circ f$ is injective, then f is injective.
- 3. If f and g are surjective, then $g \circ f$ is surjective.
- 4. If $g \circ f$ is surjective, then g is surjective.

Definition 6 (Identity). The identity function $id_A : A \to A$ is given by $id_A(x) = x$ for all $x \in A$.

Definition 7 (Bijection). A function $f: A \to B$ is a bijection iff (the following are equivalent):

- 1. f is injective and surjective.
- 2. $\exists g: B \to A \text{ such that } g \circ f = \mathrm{id}_A \text{ and } f \circ g = \mathrm{id}_B$. (Then g is called the inverse of f, and is denoted by f^{-1} .)

Proof sketch of equivalence. If f is injective and surjective, for each $y \in B$, there is a unique $x \in A$ such that f(x) = y. Define g(y) = x and show condition 2. To show that condition 2 implies condition 1, use Lemma 4.

Definition 8 (Restriction). Let $f: A \to B$ be a function. Let $X \subseteq A$. Then f|X is a function from X to B such that (f|X)(x) = f(x) for all $x \in X$.