	Teilaufgabe 2.
	Pseudocode für Ford Fullkorson algorithm:
	Eingabe: Urspringsgraph
	Ausgabe: Graph mit maximalem Fluss.
	Berechne Restgraph aus Ursprungsgraph Solange es einen Erweitenungspfad im Restgraph gibt:
	Restkapazitat = Min (Restkapazitat der Kante für jede Kante des Er Bgri
	Für jede Kante des Erweiterungspfades: Falls Mante in Ursprungsgraph:
	Fluss (kante) = Fluss (kante) + Resthapazität Sonst:
F	Fluss (umgehehrte Kante) = Fluss (umgehehrte Kante) - Rest lagpazität
	(2)= Frwaterungspfades)
	Teilanfgabe 4:
	Zeitkomplexität: O(ES), wobei E die Anzahl der Kanten im
	Graph und & der maximale Durchflussist. Dies leegt davan,
	dass der jeder augmentierende Pfad in O(E) Zeit gefunden werden kann und den Durchfluss um mindestens eine
	ganze Zahl von min. 1 erhöht wird, mit der Obergrenze
	S

