Measure Theory

Felix Chen

Contents

	0.1	Integrals in probability space	3
1	Sign	ned measure	5
	1.1	Definitions	5
	1.2	Hahn decomposition and Jordan decomposition	;
	1.3	Radon-Nikodym theorem	3
	1.4	The dual space of L_p	L
	Rem	ark $0.0.1$ — This theorem implies for any L_p function f , we can take simple functions	
	f_1, f_2	$f_1, \dots \to f$ and $ f_n \uparrow f $, so $f_n \xrightarrow{L_p} f$.	

Definition 0.0.2 (Weak convergence). Let $1 , and <math>f_1, f_2 \cdots \in L_p$. If

$$\lim_{n \to \infty} \int_X f_n g \, \mathrm{d}\mu = \int_X f g \, \mathrm{d}\mu, \quad \forall g \in L_q.$$

Then we say f_n weak convergent to f, denoted by $f_n \xrightarrow{(w)L_p} f$. When p = 1 and (X, \mathcal{F}, μ) is a σ -finite measure space, and the condition also holds, we say $\{f_n\}$ weak convergent to f in L_1 .

Corollary 0.0.3

Let $1 \le p < \infty$, then

$$f_n \xrightarrow{L_p} f \implies f_n \xrightarrow{(w)L_p} f.$$

Proof. By Holder's inequality,

$$\left| \int_X (f_n - f) g \, \mathrm{d}\mu \right| \le \|f_n - f\|_p \|g\|_q \to 0.$$

If $\sup_{t\in T} ||f_t||_p =: M < \infty$, then we say $\{f_t, t\in T\}$ is **bounded in** L_p .

Theorem 0.0.4

Let $1 , <math>\{f_n\} \subset L_p$, there exists M s.t. $\|f_n\|_p \leq M$, $\forall n$. If $f_n \to f, a.e$. or in measure, then $f \in L_p$ and $f_n \to f$ weakly.

Measure Theory CONTENTS

Proof. First $||f||_p \leq M$:

$$\int_X |f|^p d\mu \le \liminf_{n \to \infty} \int_X |f_n|^p d\mu \le M^p.$$

Next we prove the weak convergence: For all $g \in L_q$, recall the bounded convergence theorem in probability, we can view M as a bound of f_n , and $\|g\|_q$ as P.

Let $B = \{|f_n - f| \le \hat{\varepsilon}\}$, consider

$$a := \int_{B} (f_n - f)g \,\mathrm{d}\mu, \quad b := \int_{B^c} (f_n - f)g \,\mathrm{d}\mu.$$

Note that

$$|a| \le \hat{\varepsilon} \int_X |g| \,\mathrm{d}\mu.$$

But $\int_X |g| d\mu$ might be infinity, so let $A_k := \{\frac{1}{k} \le |g|^q \le k\}$, we have

$$\int_{A_k} |g| \, \mathrm{d}\mu \le k^{\frac{1}{q}} \mu(A_k) < \infty.$$

 $(\frac{1}{k}\mu(A_k) < \int_{A_k} |g|^q d\mu < \infty \text{ since } g \in L_q).$ Now we can proceed:

$$a := \int_{A \setminus B} (f_n - f) g \, \mathrm{d}\mu, \quad b := \int A_k^c \cup B^c(f_n - f) g \, \mathrm{d}\mu.$$

Now $|a| \le \hat{\varepsilon} k^{\frac{1}{q}} \mu(A_k) < \varepsilon$.

$$\left| \int_{X} (f_n - f) g \mathbf{I}_{A_k^c \cup B^c} \, d\mu \right| \le \|f_n - f\|_p \|g \mathbf{I}_{A_k^c \cup B^c}\|_q \le 2M \left(\int_{A_k^c} |g|^q \, d\mu + \int_{A_k \setminus B} |g|^q \, d\mu \right).$$

By LDC(Dominated convergence), $A_k^c \to \{g=0,\infty\}$, so $\int_{A_k^c} |g|^q d\mu < \varepsilon$.

Since $\mu(A_k) < \infty$, $f_n \to f, a.e. \implies f_n \xrightarrow{\mu} f$. By the continuity of integrals, $\mu(A_k \setminus B) \le \mu(B^c) < \delta \implies \int_{A_k \setminus B} |g|^q d\mu < \varepsilon$.

Now we can conclude: $\forall \varepsilon > 0$, first choose k large, then $\hat{\varepsilon}$ small, we get

$$\int_X (f_n - f)g \, \mathrm{d}\mu \le \varepsilon + 4M\varepsilon \implies f_n \xrightarrow{(w)L_p} f.$$

Remark 0.0.5 — The proof is a little complicated, we divide the entire integral to three part, and estimate them respectively.

When p = 1, f_n bounded in L_p cannot imply weak convergence.

Example 0.0.6

Let $X = \mathbb{N}$, $\mu(\{k\}) = 1$, $\forall k$, clearly it's σ -finite. Let $f_n(k) = \mathbf{I}_{k=n}$, then $||f_n|| = \sum_k \mu(k)|f_n(k)| = 1$, and $f_n \to 0$, a.e.. But let $g = 1 \in L_{\infty}$, $\int_X (f_n - f)g \, \mathrm{d}\mu = 1 \not\to 0$. Measure Theory CONTENTS

Proposition 0.0.7

Let $f_1, f_2, \dots \in L_1$, then:

$$||f_n|| \to ||f|| \& f_n \to f, a.e. \implies f_n \xrightarrow{L_1} f \implies f_n \xrightarrow{(w)L_1} f \implies \int_A f_n \, \mathrm{d}\mu \to \int_A f \, \mathrm{d}\mu, \forall A.$$

Proof. For the last part let $g = \mathbf{I}_A$, the rest is trivial.

§0.1 Integrals in probability space

We can also consider L_p space in probability space (Ω, \mathscr{F}, P) .

Theorem 0.1.1

Let $0 < s < t < \infty$. Then $L_t \subset L_s$. If $s \ge 1$, we have $||f||_s \le ||f||_t$, with equality f constant.

Proof. When $f \in L_t$, let $p = \frac{t}{s}$, $q = \frac{t}{t-s}$.

$$\int_{\Omega} |f|^{s} \cdot 1 \, dP \le |||f|^{s}||_{p} ||1||_{q} = (E|f|^{sp})^{\frac{1}{p}} = (E|f|^{t})^{\frac{1}{p}}.$$

So $f \in L_s \implies L_t \subset L_s$. When $s \ge 1$,

$$||f||_s^s \le (||f||_t)^{\frac{t}{p}} = ||f||_t^s \implies ||f||_s \le ||f||_t.$$

From this we know $L_{\infty} \subset L_p$, and $||f||_p \uparrow ||f||_{\infty}$.

Remark 0.1.2 — This theorem does not hold for general space. Let $X = \mathbb{N}$, $\mu(\{n\}) = 1$, $f(n) = \frac{1}{n}$, then $f \in L_2 \setminus L_1$.

The expectation Ef^k is called k-order moment of random variable f.

Definition 0.1.3 (Uniformly integrable). Let $\{f_t, t \in T\}$ be r.v.'s, if $\forall \varepsilon > 0, \exists \lambda > 0$, such that

$$E|f_t|\mathbf{I}_{\{|f_t|>\lambda\}}<\varepsilon, \quad \forall t\in T,$$

then we say $\{f_t, t \in T\}$ uniformly integrable.

If $\forall \varepsilon > 0, \exists \delta > 0 \text{ s.t } \forall A \in \mathscr{F},$

$$P(A) < \delta \implies E|f_t|\mathbf{I}_A < \varepsilon, \forall t \in T,$$

we say $\{f_t\}$ is uniformly absolutely continuous, which is abbreviated as absolutely continuous.

Theorem 0.1.4

Uniformly integrable \iff absolute continuity and bounded in L_1 .

CONTENTS Measure Theory

Proof. Firstly when $\{f_t\}$ uniformly integrable, $\forall A \in \mathcal{F}, \lambda > 0$,

$$E|f_t|\mathbf{I}_A = E|f_t|\mathbf{I}_{A\cap\{|f_t| \le \lambda\}} + E|f_t|\mathbf{I}_{A\cap\{|f_t| > \lambda\}}$$

$$\leq \lambda P(A) + E|f_t|\mathbf{I}_{\{|f_t| > \lambda\}}$$

Let A = X we know $E|f_t| \leq \lambda + \frac{\varepsilon}{2}, \forall t \in T$. Now let $\delta = \frac{\varepsilon}{2\lambda}$ we get AC property. On the other hand,

$$\lambda P(|f_t| > \lambda) \le E|f_t|\mathbf{I}_{\{|f_t| > \lambda\}} \le E|f_t| \le M, \forall t \in T.$$

So when $\lambda > \frac{M}{\delta}$, $P(|f_t| > \lambda) < \delta$, hence $E|f_t|\mathbf{I}_{\{|f_t| > \lambda\}} \le \varepsilon$, $\forall t \in T$.

Theorem 0.1.5

Let $0 , and <math>f_n \to f$ in probability. TFAE:

- (1) $\{|f_n|^p\}$ uniformly integrable; (2) $f_n \xrightarrow{L_p} f$;
- (3) $f \in L_p \text{ and } ||f_n||_p \to ||f||_p$.

Proof. (1) \Longrightarrow (2): Take subsequence $f_{n'} \to f, a.s.$,

$$E|f|^p \le \liminf_{n \to \infty} E|f_n|^p < \infty,$$

since $\{|f_n|^p\}$ is bounded in L_1 . This means $f \in L_p$.

Let $A_n = \{|f_n - f| > \varepsilon\}$, now we compute

$$E|f_n - f|^p \le \varepsilon^p + E|f_n - f|^p \mathbf{I}_{A_n} \le \varepsilon^p + C_p E|f_n|^p \mathbf{I}_{A_n} + C_p E|f|^p \mathbf{I}_{A_n}$$

Since $P(A_n) \to 0$ and $\{|f_n|^p\}$ absolutely continuous (also note $E|f|^p\mathbf{I}_{A_n} \to 0$), RHS converges to 0. Therefore $f_n \xrightarrow{L_p} f$.

As for $(3) \implies (1)$, we'll prove a lemma:

Lemma 0.1.6

If $f_n \xrightarrow{P} f$, then $\forall 0 ,$

$$|f_n|^p \mathbf{I}_{\{|f_n| \le \lambda\}} \xrightarrow{P} |f|^p \mathbf{I}_{\{|f| \le \lambda\}}, \quad \forall \lambda \in C(F_{|f|}).$$

By lemma and bounded convergence theorem, their expectation also converges. Note that $||f_n||_p \to ||f||_p$, so

$$E|f_n|^p \mathbf{I}_{\{|f_n|>\lambda\}} \to E|f|^p \mathbf{I}_{\{|f|>\lambda\}},$$

thus $\forall \varepsilon > 0, \exists \lambda_0 \in C(F_{|f|})$, s.t. $E|f|^p \mathbf{I}_{\{|f| > \lambda_0\}} < \frac{\varepsilon}{2}$, thus

$$\exists N, \quad E|f_n|^p \mathbf{I}_{\{|f_n|>\lambda_0\}} < \varepsilon, \quad \forall n > N.$$

Now we can take $\lambda > \lambda_0$ such that $\max_{n \leq N} E|f_n|^p \mathbf{I}_{\{|f_n|^p > \lambda\}} < \varepsilon$, and we're done.

Proof of the lemma. Since $|f_n| \to |f|$ in probability, WLOG $f_n, f \ge 0$. Define

$$A_n := (\{f_n \le \lambda\} \Delta \{f \le \lambda\}) \cap \{|f_n^p - f^p| > \varepsilon\}$$

$$B_n := \{ f_n, f \le \lambda, |f_n^p - f^p| > \varepsilon \}.$$

Since x^p is uniformly continuous in $[0, \lambda]$, $B_n \subset \{|f_n - f| > \kappa_{\varepsilon, \lambda}\}$, $P(B_n) \to 0$. Also $P(A_n) \to 0$ as

$$A_n \subset {\lambda - \delta < f \le \lambda + \delta} \cup {|f_n - f| > \delta},$$

and $F_{|f|}$ continuous at λ .

§1 Signed measure

§1.1 Definitions

Let (X, \mathcal{F}, μ) be a measure space, consider

$$\varphi(A) := \int_A f \, \mathrm{d}\mu, \quad \forall A \in \mathscr{F}.$$

If the integral of f exists, then φ has countable additivity. Also note $\varphi(\emptyset) = 0$, so φ looks like a measure, except it can take negative values.

In fact, denote
$$X^+ = \{f \ge 0\}, X^- = \{f < 0\}, \text{ then } \varphi(A) = \varphi(AX^+) + \varphi(AX^-).$$

Definition 1.1.1 (Signed measure). If a set function $\varphi : \mathscr{F} \to \overline{\mathbb{R}}$ which satisfies countable additivity and $\varphi(\emptyset) = 0$, then we call φ a **signed measure**.

If $|\varphi(A)| < \infty, \forall A \in \mathscr{F}$, then φ is **finite**; Similarly we define σ -finite.

Since $\int_A f d\mu$ can't reach both $\pm \infty$ (otherwise the integral doesn't exist), so

Proposition 1.1.2

Let φ be a signed measure, then:

$$\varphi(A) < \infty, \quad \forall A \in \mathscr{F}, \quad or \quad \varphi(A) > -\infty, \quad \forall A \in \mathscr{F}.$$

Proof. Assume that $\varphi(A) = \infty, \varphi(B) = -\infty$, then:

$$\varphi(A \cup B) = \varphi(A) + \varphi(A \setminus B) = +\infty,$$

and similarly $\varphi(A \cup B) = -\infty$, contradiction!

Remark 1.1.3 — From now on we may assmue $\varphi(A) > -\infty$.

Proposition 1.1.4

If $A \supseteq B$, and $|\varphi(A)| < \infty$, then $|\varphi(B)| < \infty$.

Proof. Trivial, same as above proposition.

Proposition 1.1.5

Let A_1, A_2, \ldots be pairwise disjoint sets, and $|\varphi(\sum_{n=1}^{\infty} A_n)| < \infty$, then

$$\sum_{n=1}^{\infty} |\varphi(A_n)| < \infty.$$

Proof. Let $I = \{n : \varphi(A_n) > 0\}, J = \{n : \varphi(A_n) < 0\},$

$$B = \sum_{n \in I} A_n, \quad C = \sum_{n \in J} A_n,$$

since $B, C \subset \sum_{n=1}^{\infty} A_n$, thus $\varphi(B), \varphi(C) \in \mathbb{R}$. Note that $\sum_{n \in I} |\varphi(A_n)| = |\varphi(B)|, \sum_{n \in J} \varphi(A_n) = |\varphi(C)|$, and we're done.

§1.2 Hahn decomposition and Jordan decomposition

Let's look at the indefinite integral again, notice that

$$\varphi(A) = \int_{A \cap \{f > 0\}} f \, \mathrm{d}\mu + \int_{A \cap \{f < 0\}} f \, \mathrm{d}\mu = \int_A f^+ \, \mathrm{d}\mu - \int_A f^- \, \mathrm{d}\mu.$$

It turns out that this property holds for any signed measure.

Definition 1.2.1 (Hahn decomposition). If a patition $\{X^+, X^-\}$ of X satisfies:

$$\varphi(A) \ge 0, \forall A \subset X^+, \quad \varphi(A) \le 0, \forall A \subset X^-,$$

then $\{X^+, X^-\}$ is called a **Hahn decomposition** of φ .

Definition 1.2.2 (Jordan decomposition). Let $\varphi^{\pm} = \int_A f^{\pm} d\mu$ be measures, if

$$\varphi = \varphi^+ - \varphi^-,$$

then it's called a **Jordan decomposition** of φ .

We're going to find X^+ , or equivalently, find φ^+ . Let $\varphi^*(A) := \sup \{ \varphi(B) : B \subseteq A \}$.

It's clear that φ^* is non-negative, monotone, and $\varphi^*(\emptyset) = 0$.

Consider $\mathscr{F}^- = \{A : \varphi^*(A) = 0\}$. Intuitively, this is all the subsets of X^- , unioned with "null sets" in X^+ .

Theorem 1.2.3 (Hahn decomposition)

Let X^- be a set with maximum $|\varphi|$ in \mathscr{F}^- , (since $\varphi > -\infty$, X^- must exist) and $X^+ = X \setminus X^-$ doesn't contain any set A with $\varphi(A) < 0$.

Furthermore, the Hahn decomposition is unique:

$$\varphi(A) = 0, \quad \forall A \in X_1^+ \Delta X_2^+ = X_1^- \Delta X_2^-.$$

The critical part of this theorem is:

Lemma 1.2.4

If $\varphi(A) < 0$, then we can find $A_0 \subset A$ s.t. $\varphi^*(A_0) = 0$, $\varphi(A_0) < 0$.

To prove this lemma, we need another lemma:

Lemma 1.2.5

If $\varphi(A) < \infty$, then $\forall \varepsilon > 0$, $\exists A_{\varepsilon} \subset A$ s.t.

$$\varphi(A_{\varepsilon}) \ge 0, \quad \varphi^*(A \backslash A_{\varepsilon}) \le \varepsilon.$$

Proof. Assume by contradiction that $\exists \varepsilon_0 \geq 0$ s.t. $\forall A_0 \subset A, \ \varphi(A_0) < 0$ or $\varphi^*(A \setminus A_0) > \varepsilon_0$, this means.

$$\varphi(A_0) > 0 \implies \varphi^*(A \backslash A_0) > \varepsilon_0.$$

This will clearly yield a contradiction:

Take any $\varphi(A_0) \geq 0$ (say $A_0 = \emptyset$), then exists $A_1 \subset A \setminus A_0$ s.t. $\varphi(A_1) > \varepsilon_0$, and $\varphi(A_0 \cup A_1) \geq 0$, continuing this process we can get infinitely many pairwise disjoint sets A_1, A_2, \ldots , with $\varphi(A_n) > \varepsilon_0$, so $\varphi(\sum_{i=1}^{\infty} A_i) = \infty \implies \varphi(A) = \infty$, contradiction!

Proof of Lemma 1.2.4. Applying above lemma repeatedly and take a limit:

Take $C_1 \subset A$ s.t. $\varphi(C_1) \geq 0$ and $\varphi^*(A \setminus C_1) \leq 1$. Let $A_1 = A \setminus C_1$, $\varphi(A_1) < 0$. Again take

$$C_{k+1} \subset A_k, A_{k+1} = A_k \setminus C_{k+1} \implies \varphi^*(A_{k+1}) \le \frac{1}{k+1}, \varphi(A_{k+1}) < 0.$$

Since $A_k \downarrow$, let $A_0 = \lim_{k \to \infty} A_k$, note $\varphi^*(A_k) \downarrow 0$, we must have $\varphi^*(A_0) = 0$. Also $\varphi(\sum C_k) = \sum \varphi(C_k) \geq 0$, so $\varphi(A_0) < 0$.

Proof of Theorem 1.2.3. First we prove that \mathscr{F}^- is a σ -ring: $\emptyset \in \mathscr{F}^-$, if $A_1, A_2 \in \mathscr{F}^-$,

$$0 \le \varphi^*(A_1 \backslash A_2) \le \varphi(A_1) = 0.$$

Thus $A_1 \backslash A_2 \in \mathscr{F}^-$.

If $A_1, A_2, \dots \in \mathscr{F}^-$ pairwise disjoint,

$$\varphi(B) = \sum_{n=1}^{\infty} \varphi(B \cap A_n) \le 0, \quad \forall B \subset \sum_{n=1}^{\infty} A_n.$$

Hence $\sum_{n=1}^{\infty} A_n \in \mathscr{F}^-$.

Next we'll prove Hahn decomposition exists:

Let $\alpha := \inf \{ \varphi(A) : A \in \mathscr{F}^- \}, \ \alpha \leq 0.$

Let $\{A_n\} \in \mathscr{F}^-$ s.t. $\varphi(A_n) \to \alpha$, then $X^- := \bigcup_{n=1}^{\infty} A_n \in \mathscr{F}^-$.

$$\varphi(X^{-}) = \varphi(A_n) + \varphi(X^{-} \backslash A_n) \le \varphi(A_n) + \varphi^*(X^{-} \backslash A_n) = \varphi(A_n) \to \alpha.$$

Therefore $-\infty < \varphi(X^-) = \alpha$.

Hence $\forall A, \varphi(AX^-) \leq \varphi^*(X^-) = 0$. By Lemma 1.2.4 we get $\forall A, \varphi(AX^+) \geq 0$, otherwise $\exists A_0 \subset A \text{ s.t. } \varphi^*(A_0) = 0, \varphi(A_0) < 0$. Then $\varphi(X^- \cup A_0) = \alpha + \varphi(A_0) < \alpha$, contradiction!

At last we'll prove the uniqueness:

If X_1^{\pm}, X_2^{\pm} are both Hahn decompositions, then $A \in X_1^+ \cap X_2^- + X_1^- \cap X_2^+$, it's clear $\varphi(A) = 0$.

Theorem 1.2.6 (Jordan decomposition)

The Jordan decomposition exists and is unique:

$$\varphi = \varphi^+ - \varphi^-, \quad \varphi^+ = \varphi^*, \varphi^- = (-\varphi)^*.$$

Proof. Let φ^{\pm} be measures with $\varphi^{\pm} = \pm \varphi(A \cap X^{\pm})$. It's clear that this is a Jordan decomposition. Now given any Jordan decomposition φ^{\pm} . Since

$$\forall B \subset A, \varphi(B) \le \varphi^+(B) \le \varphi^+(A),$$

so $\varphi^* \leq \varphi^+$. But $A \cap X^+ \subset A$, so $\varphi^* \geq \varphi^+$, which proves the result. Similarly $\varphi^- = (-\varphi)^*$, so it is unique.

Remark 1.2.7 — The support of φ^{\pm} are disjoint, but if $\phi \neq 0$, then the support of $\varphi^{\pm} + \phi$ intersects. φ^{\pm} are called the **upper variation** and **lower variation**, respectively, and $|\varphi| = \varphi^{+} + \varphi^{-}$ is called the **total variation**.

Lemma 1.2.8

$$|\varphi|(A) = 0 \iff \varphi(B) = 0, \forall B \subset A.$$

Proof. Just write
$$|\varphi| = \varphi^+ + \varphi^-$$
, we know $\varphi(B) = 0$.
Conversely, $\varphi(X^{\pm} \cap A) = 0 \implies |\varphi|(A) = 0$.

§1.3 Radon-Nikodym theorem

We assume the functions and sets below are all measurable. Let (X, \mathcal{F}) be a measurable space, φ a signed measure.

Definition 1.3.1 (R-N derivative). If there exists a a.e. unique function f s.t.

$$\varphi(A) = \int_A f \, \mathrm{d}\mu, \quad \forall A \in \mathscr{F},$$

we say f is the **Radon-Nikodym derivative** of φ with respect to μ , abbreviated by R-N derivative or derivative, denoted by $\frac{d\varphi}{d\mu}$.

Remark 1.3.2 — When μ is σ -finite, then f must be unique a.e..

Definition 1.3.3 (Absolute continuity). If $\forall A \in \mathscr{F}$,

$$\mu(A) = 0 \implies \varphi(A) = 0,$$

then we say φ is **absolutely continuous** with respect to μ , denoted by $\varphi \ll \mu$.

Observe that

$$\mu(A) = 0 \implies \mu(A \cap X^{\pm}) = 0 \implies \varphi^{\pm}(A) = 0,$$

so $\varphi \ll \mu \iff \varphi^{\pm} \ll \mu \iff |\varphi| \ll \mu$.

It's obvious that $\frac{d\varphi}{d\mu}$ exists only if $\varphi \ll \mu$, but it turns out that this is also the sufficient condition when μ is a σ -finite measure.

We can't prove this directly, so we'll prove some easy cases first.

Lemma 1.3.4

Let φ, μ be finite measures. Then

$$\exists f \in \mathscr{L} := \left\{ g \in L_1 : g \ge 0, \int_A g \, \mathrm{d}\mu \le \varphi(A), \forall A \right\},\,$$

such that $\int_X f d\mu = \sup \int_X g d\mu$.

Proof. This is somehow similar to find simple functions approaching non-negative measurable functions.

First let $\beta = \sup \int_X g \, \mathrm{d}\mu$, and choose g_k s.t. $\int_X g_k \, \mathrm{d}\mu \to \beta$. Let $f_n := \max_{k \le n} g_k$, and $f_n \uparrow f$. By Levi's theorem, $\int_A f \, \mathrm{d}\mu = \lim_{n \to \infty} f_n \, \mathrm{d}\mu$, so if $f_n \in \mathscr{L}$, $f \in \mathscr{L}$ as well. Let $A_k = A \cap \{f_n = g_k, f_n \ne g_j, j < k\}$ be a partition of A,

$$\int_{A} f_n d\mu = \sum_{k=1}^{n} \int_{A_k} g_k d\mu \le \sum_{k=1}^{n} \varphi(A_k) = \varphi(A).$$

Thus $f_n \in \mathcal{L}$, we have $\int_X f d\mu = \beta \ge \int_X g d\mu$, for all $g \in \mathcal{L}$.

Proposition 1.3.5

Suppose φ, μ are both finite, then $\varphi \ll \mu \implies \frac{\mathrm{d}\varphi}{\mathrm{d}\mu}$ exists.

Proof. Decompose φ to $\varphi^+ - \varphi^-$, we may assume $\varphi \geq 0$.

Starting from previous lemma, we'll prove that $\int_A f d\mu = \varphi(A)$. Let $\nu(A) = \varphi(A) - \int_A f d\mu$ be a measure.

Let ν_n be increasing signed measures.

$$\nu_n(A) := \nu(A) - \frac{1}{n}\mu(A), \quad \forall A \in \mathscr{F}.$$

Let X_n^{\pm} be the Hahn decomposition of ν_n , and

$$X^{+} = \bigcup_{n=1}^{\infty} X_{n}^{+}, \quad X^{-} = \bigcap_{n=1}^{\infty} X_{n}^{-}.$$

First since $X^- \subset X_n^-$,

$$\nu(X^-) = \nu_n(X^-) + \frac{1}{n}\mu(X^-) \le \frac{1}{n}\mu(X^-) \to 0.$$

We have $f + \frac{1}{n} \mathbf{I}_{X_{-}^{+}} \in \mathcal{L}$ since

$$\int_{A} \left(f + \frac{1}{n} \mathbf{I}_{X_{n}^{+}} \right) d\mu = \varphi(A) - \nu(A) + \frac{1}{n} \mu(X_{n}^{+} \cap A)$$

$$\leq \varphi(A) - \nu(X_{n}^{+} \cap A) + \frac{1}{n} \mu(X_{n}^{+} \cap A)$$

$$= \varphi(A) - \nu_{n}(X_{n}^{+} \cap A) \leq \varphi(A).$$

So we have
$$\int_X f \, \mathrm{d}\mu \ge \int_X (f + \frac{1}{n} \mathbf{I}_{X_n^+}) \, \mathrm{d}\mu$$
, $\mu(X_n^+) = 0 \implies \mu(X^+) = 0$.
Since $\varphi \ll \mu$, $\varphi(X^+) = 0 \implies \nu(X^+) = 0$.

Proposition 1.3.6

Let φ be a σ -fintie signed measure, μ be a finite measure, if $\varphi \ll \mu$, then $\frac{d\varphi}{d\mu}$ exists and its integral exists.

Proof. Let $X = \sum_{n=1}^{\infty} A_n$, $|\varphi(A_n)| < \infty$, then the R-N derivative f_n exists on A_n , Let $f = \sum_{n=1}^{\infty} f_n \mathbf{I}_{A_n}$, then f finite a.e.,

$$\varphi(A \cap A_n) = \int_{A \cap A_n} f_n \, \mathrm{d}\mu = \int_{A \cap A_n} f \, \mathrm{d}\mu.$$

WLOG φ^- finite, then

$$\varphi(\lbrace f < 0 \rbrace \cap A_n) = \int_{A_n} f^- \, \mathrm{d}\mu = \int_{A_n} f_n^- \, \mathrm{d}\mu \ge -\varphi^-(A_n)$$

So the integral of f exists.

Since φ is countably additive and the integral of f exists, we can add the above equality to get the desired.

Proposition 1.3.7

Let φ be an arbitary signed measure, the above conclusion also holds.

Proof. Let

$$\mathscr{G} := \left\{ \sum_{n=1}^{\infty} A_n : |\varphi(A_n)| < \infty, n = 1, 2, \dots \right\}.$$

Since $\emptyset \in \mathscr{G}$, and it's closed under set difference:

$$\sum_{n=1}^{\infty} A_n \setminus \sum_{n=1}^{\infty} B_n = \sum_{n=1}^{\infty} (A_n \setminus B)$$

by $A_n \backslash B \subset A_n$, we have $|\varphi(A_n \backslash B)| < \infty$.

Clearly it's closed under countable disjoint union, combined with difference sets we deduce it's closed under countable union, thus \mathscr{G} is a σ -ring.

Note that there exists B s.t. $\mu(B) = \gamma := \sup\{\mu(A) : A \in \mathcal{G}\}$. (Since we can take $\mu(B_n) \to \gamma, B = \bigcup_{n=1}^{\infty} B_n$.)

So φ is σ -finite on $(B, B \cap \mathscr{F})$, the R-N derivative exists.

For all $C \subset B^c$, we must have $\varphi(C) = 0$ or ∞ . TODO!!

At last we come to the full statement:

Theorem 1.3.8

Let φ be a signed measure, μ a σ -finite measure, if $\varphi \ll \mu$, then $\frac{d\varphi}{d\mu}$ exists.

Example 1.3.9

Let $X = \mathbb{R}$, $\mu(A) = \#A$, μ is not σ -finite. Let $\varphi(A) = 0$ when A countable, 1 otherwise. In this case the R-N derivative doesn't exist, otherwise

$$0 = \varphi(\{x\}) = \int_{\{x\}} f \, \mathrm{d}\mu = f(x)\mu(x) = f(x),$$

contradiction!

Remark 1.3.10 — If μ, ν are σ -finite measures, $\nu \ll \mu$, then

$$\int_{X} \mathbf{I}_{A} d\nu = \int_{X} \mathbf{I}_{A} \frac{d\nu}{d\mu} \implies \int_{X} f d\nu = \int_{X} f \frac{d\nu}{d\mu}.$$

§1.4 The dual space of L_n

Let (X, \mathcal{F}, μ) be a measure space, 1 .

Recall that $f_n \xrightarrow{(w)L_p} f$ is defined as

$$\lim_{n \to \infty} \int_X f_n g \, \mathrm{d}\mu = \int_X f g \, \mathrm{d}\mu, \quad \forall g \in L_q.$$

By Holder's inequality,

$$\left| \int_X fg \, \mathrm{d}\mu \right| \le \|g\|_q \|f\|_p, \quad \forall f \in L_p, g \in L_q.$$

Thus given any $g \in L_q$, we can induce a **funtional** on L_p , moreover it's linear and bounded.

Definition 1.4.1. We say a funtional $\Phi: L_p \to \mathbb{R}$ is bounded linear if:

$$|\Phi(f)| \le C||f||_p$$
, $\Phi(f_1 + cf_2) = \Phi(f_1) + c\Phi(f_2)$.

We can easily see that Φ is continuous:

$$||f_n - f||_p \to 0 \implies |\Phi(f_n) - \Phi(f)| \to 0.$$

Let $\|\Phi\| := \inf C = \sup_{\|f\|_p = 1} |\Phi(f)|$. For all $A \in \mathscr{F}$, $\Phi_A := \Phi(f\mathbf{I}_A)$ is also a linear and bounded functional. It's clear that $\|\Phi_A\| \le \mathbb{E}$ $\|\Phi\|$.

Let Φ_g denote the functional induced by $g \in L_q$:

$$\Phi_g: f \mapsto \int_X fg \,\mathrm{d}\mu, \quad |\Phi_g(f)| \le ||g||_q ||f||_p.$$

Moreover, take $f = |g|^{q-1}\operatorname{sgn}(g)$, we found that $\|\Phi_g\| = \|g\|_q$. We check it here:

$$\int_{X} |f|^{p} d\mu = \int_{X} |g|^{p(q-1)} d\mu = \int_{X} |g|^{q} d\mu,$$

so $f \in L_p$, $||f||_p = ||g||_q^{\frac{q}{p}} = ||g||_q^{q-1}$. Thus the equality of Holder's inequality holds. In fact L_q contains all the bounded linear functionals of L_p :

Theorem 1.4.2

The dual space of L_p is L_q , i.e. $L_p^* = L_q$.

The critical part is to use a signed measure φ to determine g:

$$\varphi(A) = \int_A g \, \mathrm{d}\mu = \int_X \mathbf{I}_A g \, \mathrm{d}\mu = \Phi(\mathbf{I}_A), \quad A \in \mathscr{F}.$$

We're faced with two main problems:

- I_A may not be in L_p .
- μ may not be σ -finite, so the derivative may not be unique.

To solve these problem, we'll start from finite measure, and proceed by finite $\rightarrow \sigma$ -finite \rightarrow arbitary.

Proposition 1.4.3

If μ is a finite measure, then $L_p^* = L_q$.

Proof. For any bounded linear functional Φ , let $\varphi(A) = \Phi(\mathbf{I}_A)$,

$$|\varphi(A)| \le C \|\mathbf{I}_A\|_p = C\mu(A)^{\frac{1}{p}},$$

so φ is finite and $\varphi \ll \mu$.

Clearly $\varphi(\emptyset) = 0$, and $\varphi(A + B) = \varphi(A) + \varphi(B)$. For countable additivity, let $A = \sum_{n=1}^{\infty} A_n$, $B_N = \sum_{n=N+1}^{\infty} A_n$, since $\mu(A)$ finite,

$$\left|\varphi(A) - \sum_{n=1}^{N} \varphi(A_n)\right| = |\varphi(B_N)| \le C\mu(B_N)^{\frac{1}{p}} \to 0.$$

By $\varphi \ll \mu$, let $g = \frac{d\varphi}{d\mu}$. We have $|g| < \infty, a.e.$ and $g \in L^1$, so

$$\Phi(\mathbf{I}_A) = \varphi(A) = \int_A g \, \mathrm{d}\mu = \int_X \mathbf{I}_A g \, \mathrm{d}\mu, \quad \forall A \in \mathscr{F}.$$

By the linearity of Φ , we know for simple functions the above equation holds.

For $f \in L_p$ non-negative, we can take simple $f_n \uparrow f$, so $\int f_n^p d\mu \uparrow \int f^p d\mu \implies f_n \xrightarrow{L_p} f$.

By the continuity of Φ , $\Phi(f_n) \to \Phi(f)$.

For the integral part, let $X^+ = \{g \geq 0\}, X^- = \{g < 0\}$. Then $f_n^{\pm} := f_n \mathbf{I}_{X^{\pm}}$ non-negative simple, and $f_n^{\pm} \xrightarrow{L_p} f^{\pm} := f \mathbf{I}_{X^{\pm}}$. Now we can use Levi's theorem to get

$$\int_X f_n^{\pm} g \, \mathrm{d}\mu \to \int_X f^{\pm} g \, \mathrm{d}\mu.$$

Note since LHS is $\Phi(f_n^{\pm})$, RHS must be $\Phi(f^{\pm}) \in \mathbb{R}$, so we can safely apply $f = f^+ + f^-$. At last f non-negative $\implies f$ measurable is easy, so we've proven

$$\Phi(f) = \int_X fg \,\mathrm{d}\mu, \quad \forall f \in L_p.$$

Next we'll prove $g \in L_q$. Let $A_n = \{|g| \leq n\}$, let $g_n := g\mathbf{I}_{A_n}$, clearly $g_n \in L_q$ as the base measure is finite.

Since $\Phi_{g_n} = \Phi_{A_n}$, so

$$||g_n||_q = ||\Phi_{A_n}|| \le ||\Phi||.$$

Now $|g_n| \uparrow |g|$, a.e., by Levi $||g_n||_q \to ||g||_q$, so $||g||_q < \infty$.

Proposition 1.4.4

When μ is σ -finite, $L_p^* = L_q$.

Proof. Let $X = \sum_{n=1}^{\infty} X_n$, $\mu(X_n) < \infty$. There exists g_n on X_n s.t. $\Phi_{X_n} = \Phi_{g_n}$. Let $g = \sum_{n=1}^{\infty} g_n \mathbf{I}_{X_n}$.

For $f \in L_p$, $\sum_{n=1}^N f \mathbf{I}_{X_n} \xrightarrow{L_p} f$, we have

$$\Phi(f) \leftarrow \Phi\left(\sum_{n=1}^{N} f \mathbf{I}_{X_n}\right) = \sum_{n=1}^{N} \Phi_{X_n}(f) = \sum_{n=1}^{N} \int_{X_n} f g \,\mathrm{d}\mu.$$

Similarly, let $A^+ = \{fg \ge 0\}, A^- = \{fg < 0\}, f^{\pm} = f\mathbf{I}_{A^{\pm}}$, we know the integral converges. $g \in L_q$ is also the same as before. TODO

$$||g||_q = \lim_{N \to \infty} \left\| \sum_{n=1}^N g_n \mathbf{I}_{X_n} \right\| \le ||\Phi_g|| = ||\Phi||.$$

Proposition 1.4.5

 μ is an arbitary measure.

Proof. If $\mu(A) < \infty$, consider $\Phi_A : f \mapsto \Phi(f\mathbf{I}_A)$, we can get g_A . If $A \subset B$, $\mu(B) < \infty$, then $g_B \mathbf{I}_A = g_A$, a.e., $\|\Phi_A\| \leq \|\Phi_B\|$. We can take $A_n \uparrow, \mu(A_n) < \infty$ s.t.

$$\sup_{n} \|\Phi_{A_n}\| = \sup\{\|\Phi_A\| : \mu(A) < \infty\}.$$

Remark 1.4.6 — Here we're using A_n to replace $X_1 + ... X_n$ in the previous proof.

Let $g_n := g_{A_n} \uparrow g$, then $g \in L_q$:

$$||g||_q^q = \int_X \lim_{n \to \infty} |g_n|^q d\mu \le \liminf_{n \to \infty} \int_X |g_n|^q d\mu \le ||\Phi||^q.$$

Let $A = \bigcup_{n=1}^{\infty} A_n$, since $g \in L_q$, by Holder and LDC,

$$\int_X fg \, \mathrm{d}\mu \leftarrow \int_X fg_n \, \mathrm{d}\mu = \Phi_{A_n}(f) = \Phi(f\mathbf{I}_{A_n}) \to \Phi(f\mathbf{I}_A).$$

The last part is to prove $\Phi(f\mathbf{I}_{A^c})=0$. Otherwise let $D_n=\{|f|>\frac{1}{n}\}\cap A^c$, then $\mu(D_n)<\infty$ since

$$\mu(D_n) \le \mu\left(|f| > \frac{1}{n}\right) \le \int_X (n|f|\mathbf{I}_{D_n})^p \,\mathrm{d}\mu < \infty.$$

By LDC, $f\mathbf{I}_{D_n} \xrightarrow{L_p} f\mathbf{I}_{A^c}$, so $\Phi(f\mathbf{I}_{D_n}) \neq 0$ for some n. But $\mu(D) < \infty$, let $B_n = A_n + D$ we'll find a contradiction on $\sup_n \|\Phi_{B_n}\| > \sup_n \|\Phi_{A_n}\|$.

When p=1, we can prove for σ -fintile measure μ that $L_1^*=L_\infty$. The method is the same as above.