Точные оценки вероятности переобучения для симметричных семейств алгоритмов и рандомизированных методов обучения

Фрей Александр Ильич

Московский физико-технический институт (Государственный университет) Факультет Управления и Прикладной Математики Кафедра «Интеллектуальные Системы» (ВЦ РАН)

Научный руководитель: д.ф.-м.н. Воронцов Константин Вячеславович

16 июня 2010

Проблема переобучения

- ullet Строки таблицы $\{x_1 \ldots x_\ell, x_{\ell+1}, x_L\}$ объекты полной выборки
- ullet Столбцы $\{a_1 \ \dots \ a_D\}$ векторы ошибок алгоритмов

	a_1	<i>a</i> ₂	 a_d	 a_D
<i>x</i> ₁	0	1	 0	 1
	1	1	 0	 0
x_ℓ	0	0	 0	 0
$x_{\ell+1}$	1	1	 1	 1
	1	0	 1	 0
ΧL	0	0	 1	 0

- Метод обучения минимизация эмпирического риска
- Цель: получить точные, вычислительно-эффективные оценки вероятности переобучения.

Методы вывода формул для вероятности переобучения

- 🚺 Метод производящих и запрещающих объектов
 - Монотонная цепочка и сетка
- Блочная оценка
 - Пара алгоритмов
- Рекуррентное вычисление вероятности переобучения по заданной матрице ошибок
 - Теоретический инструмент для доказательства универсальных оценок
- lacktriangle Гипотеза t-слоев и метод eta-многочленов
 - Точные оценки для унимодальных цепочек
 - Приближенные оценки для унимодальных сеток

Методы вывода формул для вероятности переобучения

- Метод производящих и запрещающих объектов
 - Монотонная цепочка и сетка
- Блочная оценка
 - Пара алгоритмов
- Рекуррентное вычисление вероятности переобучения по заданной матрице ошибок
 - Теоретический инструмент для доказательства универсальных оценок
- lacktriangle Гипотеза t-слоев и метод eta-многочленов
 - Точные оценки для унимодальных цепочек
 - Приближенные оценки для унимодальных сеток
- 🧿 Метод разбиения множества алгоритмов на орбиты
 - Пучок монотонных цепочек
 - Полный слой, полный куб алгоритмов
 - Шар алгоритмов
 - Точные оценки для монотонных и унимодальных сеток

Рандомизированный метод обучения

- ullet Генеральная выборка $\mathbb{X}=(x_i)_{i=1}^L$
- ullet Алгоритм бинарный вектор $a\equiv (a(x_i))_{i=1}^L$ длины L
- ullet Конечное множество алгоритмов $A=\{a_1,\ldots,a_D\}$
- Метод обучения:

$$\mu: 2^{\mathbb{A}} \times [\mathbb{X}]^{\ell} \to A$$
 — детерминированный; $\mu: 2^{\mathbb{A}} \times [\mathbb{X}]^{\ell} \to \{f: A \to [0,1]\}$ — рандомизированный;

ullet Bклад алгоритма $a\in A$ в вероятность переобучения:

$$Q_{\mu}(arepsilon, \mathsf{a}, \mathsf{A}) = rac{1}{C_L^{\ell}} \sum_{X \in [\mathbb{X}]^{\ell}} \mu(\mathsf{A}, \mathsf{X}, \mathsf{a}) ig[\delta(\mathsf{a}, \mathsf{X}) \geq arepsilon ig].$$

ullet Вероятность переобучения: $Q_{\mu}(arepsilon,A)=\sum\limits_{oldsymbol{a}\in A}Q_{\mu}(arepsilon,oldsymbol{a},A).$

Орбита алгоритмов

Граф смежности множества алгоритмов:

- Вершины соответствуют алгоритмам
- Peбpo a₁ → a₂:
 - соединяет алгоритмы, различающиеся на одном объекте
 - идет в направлении возрастания числа ошибок

Теорема о равном вкладе алгоритмов одной орбиты

- Группа перестановок объектов выборки S_L действует на множестве всех алгоритмов перестановками координат.
- Группой симметрий $\mathrm{Sym}(A)\subset S_L$ множества алгоритмов назовем стационарную подгруппу S_L :

$$Sym(A) = \{ \pi \in S_L \colon \pi(A) = A \}.$$

• Пусть $\pi \in \mathrm{Sym}(A)$, $a \in A$ — алгоритм множества A. Тогда a и πa дают **равный вклад** в вероятность переобучения.

Теорема

Вероятность переобучения метода μ записывается в виде:

$$Q_{\mu}(\varepsilon, A) = \frac{1}{C_{L}^{\ell}} \sum_{\omega \in \Omega(A)} |\omega| \sum_{X \in [\mathbb{X}]^{\ell}} \mu(A, X, a) \left[\delta(a_{\omega}, X) \ge \varepsilon \right]. \tag{1}$$

Модельные семейства алгоритмов

Yнимодальная сетка размерности h является реалистичной моделью связного параметрического семейства алгоритмов.

$\mathsf{Teopema}$ (Связка из p монотонных цепочек)

$$Q_{\mu}(\varepsilon,A) = \sum_{h=0}^{D} \sum_{S=h}^{pD} \sum_{F=0}^{p} \frac{|\omega_{h}| R_{D,p}^{h}(S,F)}{1+S} \frac{C_{L'}^{\ell'}}{C_{L}^{\ell}} H_{L'}^{\ell',m}(s(\varepsilon)),$$

где L'=L-S-F, $\ell'=\ell-F$, $s(\varepsilon)=\left\lfloor \frac{\ell}{L}(m+h-\varepsilon k)\right\rfloor$; $|\omega_h|=1$ при h=0 и $|\omega_h|=p$ при $h\geq 1$; $H_{L'}^{\ell',m}(s)-\phi$ ункция гипергеометрического распределения; $R_{D,p}^h(S,F)$ — число способов представить S в виде суммы p неотрицательных слагаемых $S=t_1+\ldots+t_p$, каждое из которых не превосходит D, некоторые F слагаемых строго меньше D, а $t_1>h$.

• Множество орбит как монотонных, так и унимодальных сеток, индексированно диаграммами Юнга $Y_*^{h,D}$.

T еорема $(\mathit{Q}_{\mu}(arepsilon, A)$ для h -мерной монотонной сетки)

$$Q_{\mu}(arepsilon,\mathcal{A}) = \sum_{\lambda \in Y^{h,D}_*} \sum_{\substack{ec{t} \geq \lambda, \ \|ec{t}\| \leq D}} rac{|S_h \lambda|}{\prod_j (t_j+1)} rac{C^{\ell'}_{L'}}{C^{\ell}_L} H^{\ell',m}_{L'}(s_0),$$

Теорема $(Q_{\mu}(arepsilon,A)$ для \emph{h} -мерной унимодальной сетки)

$$Q_{\mu}(\varepsilon,A) = \sum_{\lambda \in Y_*^{h,D}} \sum_{\substack{\vec{t} \geq \lambda, \\ \|\vec{t}\| \leq D}} \sum_{\substack{\vec{t'} \geq 0, \\ \|\vec{t'}\| \leq D}} \frac{|S_h \lambda| \cdot 2^{|\lambda > 0|}}{\prod_j (t_j + t_j' + 1)} \frac{C_{L'}^{\ell'}}{C_L^{\ell}} H_{L'}^{\ell',m}(s_0),$$

Сравнение сеток и связки монотонных цепочек

Рис.: Сравнение при разных ε . D=5, m=5, L=50, $\ell=30$.

Рис.: Сравнение при разных D, в размерностях H=1(2), H=2(4) и H=4(6). $\varepsilon=0.04$, m=5, L=50, $\ell=30$.

Теорема (Полный слой A_m алгоритмов с m ошибками)

$$Q_{\mu}(\varepsilon,A) = [\varepsilon k \leq m \leq L - \varepsilon \ell].$$

Teopema (Полный куб алгоритмов $A = \{0,1\}^L$)

$$Q_{\mu}(\varepsilon,A) = \frac{1}{2^k} \sum_{m=\lceil \varepsilon k \rceil}^k C_k^m.$$

Теорема (Сечение $B_r(a_0) \cap A_m$ шара центральным слоем)

$$Q_{\mu}(\varepsilon,A) = H_L^{\ell,m}(s_d(\varepsilon) + \lfloor r/2 \rfloor),$$

где
$$s_d(\varepsilon) = \frac{\ell}{L}(m - \varepsilon k)$$
,

 $H_L^{\ell,m}(s)-\phi$ ункция гипергеометрического распределения.

Теорема (Шар алгоритмов)

Пусть $A=B_r(a_0)$ — шар алгоритмов, $m=n(a_0,\mathbb{X})$, $r\leq \min(m,L-m)$. Тогда вероятность переобучения рандомизированного метода минимизации эмпирического риска записывается в виде

$$Q_{\mu}(\varepsilon,A) = \sum_{i=0}^{r} h_{L}^{\ell,m}(i) \frac{\sum\limits_{p=0}^{r-i} \sum\limits_{q=q_{0}}^{r-i-p} C_{m-i}^{p} C_{k-(m-i)}^{q}}{\sum\limits_{p=0}^{r-i} C_{k}^{p}} + \sum_{i=r+1}^{\lfloor s_{d}'(\varepsilon) \rfloor} h_{L}^{\ell,m}(i),$$

где
$$q_0=\max(\lceil \varepsilon k+i+p-m \rceil,0)$$
, $s_d'(\varepsilon)=rac{\ell}{L}(m-\varepsilon k)+rac{rk}{L}$, $h_L^{\ell,m}(i)=rac{C_m^\ell C_{L-m}^{\ell-i}}{C_i^\ell}.$

Результаты, выносимые на защиту

- Предложен рандомизированный метод минимизации эмпирического риска;
- Разработан новый теоретико-групповой метод вывода оценок для вероятности переобучения;
- Получены точные оценки вероятности переобучения для:
 - Пучка монотонных цепочек;
 - Полного слоя, полного куба алгоритмов;
 - Монотонных и унимодальных сеток;
- Экспериментально показано, что в широком диапазоне параметров вероятность переобучения связки монотонных цепочек не превосходит вероятности переобучения многомерных монотонных и унимодальных сеток.