CH 6- Greatest Common Divisor

Luke Lu • 2025-10-26

Theorem BBD

№ Info – Bound By Divisibility

 $\forall a, b \in \mathbb{Z}, \text{if } b \mid a \text{ and } a \neq 0, \text{then } b \leq |a|$

Division Algorithm

 $\forall a \in \mathbb{Z}, b \text{ in positive integers}, \exists a \text{ unique integers } q \text{ and } r \text{ s.t. } a = qb + r \text{ where } 0 \le r < b$

Greatest Common Divisor

Let a and b be integer. An integer c is called a **common divisor** of a and b if $c \mid a$ and $c \mid b$

If a and b are not both zero, an integer d > 0 is the **greatest common divisor** of a and be written $d = \gcd(a, b)$, when

- 1. d is a common divisor of a and b
- 2. \forall integers c, if c is a common divisor of a and b, then $c \leq d$

If a and b are both zero, we define gcd(a, b) = gcd(0, 0) = 0

lacktriang Warning — Let $a \in \mathbb{Z}$ then

- 1. gcd(a, a) = |a|
- 2. gcd(0, a) = |a|

Example:

Let $a, b \in \mathbb{Z}$, prove that gcd(3a + b, a) = gcd(a, b)

Proof

Let $a, b \in \mathbb{Z}$, let $c = \gcd(3a + b, a)$ and $d = \gcd(a, b)$.

1. Suppose a, b are not both 0:

Note that 3a + b and a are not both 0 as well.

Then $c \mid (3a+b), c \mid a$ and $\forall k \in \mathbb{Z}$ if k is a common divisor of 3a+b and a, then $k \leq c, c > 0$

Similarly, $d \mid a, d \mid b$, and $\forall l \in \mathbb{Z}$ if l is a common divisor of a and b then $l \leq d, d > 0$

Notice that since $d \mid a$ and $d \mid b$, by DIC, $d \mid (3a + b)$.

This tells us that d is a common divisor of 3a + b and a. By definition, $d \le c$.

Since $c \mid (3a+b)$ and $c \mid a$, then by DIC, $c \mid ((3a+b)+(-3a))=c \mid b$.

Thus c is a common divisor of a and b. By definition, $c \leq d$

Since $c \le d$ and $d \le c \Longrightarrow c = d \Longrightarrow \gcd(3a + b, a) = \gcd(a, b)$

2. Suppose a = b = 0 then gcd(3a + b, a) = gcd(a, b) = gcd(0, 0) = 0

ightharpoonup Info — GCD with Remainders

 $\forall a, b, q, r \in \mathbb{Z}$, if a = qb + r then $\gcd(a, b) = \gcd(b, r)$

Euclidean algorithm example:

1. Compute gcd(1239, 735)

$$1239 = 1 \cdot 735 + 504$$

GCDWR says gcd(1239, 735) = gcd(735, 504)

$$735 = 1 \cdot 504 + 231$$

 $\gcd(735, 504) = \gcd(504, 231)$

$$504 = 2 \cdot 231 + 42$$

 $\gcd(504,231) = \gcd(231,42)$

$$231 = 5 \cdot 42 + 21$$

 $\gcd(231, 42) = \gcd(42, 21)$

$$42 = 2 \cdot 21 + 0$$

 $\gcd(42,21) = \gcd(21,0)$

$$\div \gcd(1239,735)=21$$

2. Find $x, y \in \mathbb{Z}$ s.t. 1239x + 735y = 21

We work backwards from the previous example

$$21 = 5 \cdot 42 + 21$$

$$21 = 231 - 5 \cdot (504 - 2 \cdot 231)$$

$$= 11(231) - 5 \cdot 504$$

$$= 11 \cdot 735 - 16 \cdot 504$$

$$= 11 \cdot 735 - 16(1239 - 735)$$

$$= -16 \cdot 1239 + 27 \cdot 735$$

$$\therefore -16 \cdot 1239 + 27 \cdot 735 = 21$$

№ Info — GCD Characterization Theorem

 $\forall a, b \in \mathbb{Z}$ and non negative integer d, if

- 1. d is a common divisor of a and b
- 2. there exist integers s and t s.t. as + bt = d

Then $d = \gcd(a, b)$

Example:

Let $n \in \mathbb{Z}$. Prove that gcd(n, n + 1) = 1

Option 1: Use the definition of GCD

Option 2: Use GCD Characterization Theorem

Let a = n, b = n + 1, d = 1.

 $d \mid a$ and $d \mid b$ because d = 1 divides every integer

Let s = -1, t = 1

These will be provide the certificate of correctness to verify that d=1 is the GCD we are looking for.

$$as + bt = n(-1) + (n+1)1 = 1$$

$$\therefore$$
 by GCD CT $1 = \gcd(n, n+1)$

Option 3: Use GCDWR

$$n+1=1\cdot n+1$$

≥ Info – Bézout's Lemma

 $\forall a, b \in \mathbb{Z}, \exists s, t \in \mathbb{Z} \text{ s.t. } as + bt = d, d = \gcd(a, b)$

≥ Info — Extended Euclidean Algorithm

i	x	y	r	q
i=1	1	0	a	0
i = 2	0	1	b	0
i=3	$x_i = x_{i-2} - q_i x_{i-1}$	$y_i = y_{i-2} - q_i y_{i-1}$	$r_i = r_{i-2} - q_i r_{i-1}$	$\left\lfloor \frac{r_{i-2}}{r_{i-1}} \right\rfloor$

We stop when $r_i = 0$

Note that the last $r \neq 0$ value is the gcd(a, b)

Remember at each row we have $ax_i + by_i = r_i$

Let n=i-1, Then $\gcd(a,b)=r_n$ and $s=x_n$ and $t=y_n$ are certificate of correctness

Numerical Examples:

1. Find gcd(56,35) and solve for $s, y \in \mathbb{Z}$ for 56x + 35y = gcd(56,35)

i	x	y	r	q
i = 1	1	0	56	0
i=2	0	1	35	0
i = 3	1	-1	21	1
i=4	-1	2	14	1
i = 5	2	-3	7	1
i = 6	-5	8	0	2

So $\gcd(56,35)=7$. According to EEA, $s=x_5=2$ and $t=y_5=-3$ are certificate of correctness Check 56(2) + 35(-3) = 112 - 105 = 7 which is true

2. Find integers x, y, d s.t. $408x + 170y = d = \gcd(408, 170)$

i	x	y	r	q
i = 1	1	0	408	0
i=2	0	1	170	0
i=3	1	-2	68	2
i=4	-2	5	34	2
i = 5	5	-12	0	2

So $\gcd(408,170)=34$. According to EEA, $s=x_4=-2$ and $t=y_4=5$ are certificate of correctness

Check 408(-2) + 170(5) = 34 which is true

🔪 Info — Common Divisor Divides GCD

 $\forall a, b, c \in \mathbb{Z}$, if $c \mid a$ and $c \mid b$, then $c \mid \gcd(a, b)$

Examples:

1. Prove $\forall a, b, c \in \mathbb{Z}$, if $\gcd(ab, c) = 1$, then $\gcd(a, c) = \gcd(b, c) = 1$

Proof

Let $a, b, c \in \mathbb{Z}$. Assume that gcd(ab, c) = 1.

By BL,
$$\exists s, t \in \mathbb{Z}$$
 s.t. $ab \cdot s + c \cdot t = 1$

$$a(bs) + ct = 1$$

$$b(as) + ct = 1$$

Since $a, b, s, t \in \mathbb{Z}$, $bs \in \mathbb{Z}$ and $as \in \mathbb{Z}$, 1 can be expressed as an integer combination of a and c, as well as an integer combination of b and c.

Meanwhile, 1 is clearly a common divisor of a, c and b, c. Since $1 \mid x \forall z \in \mathbb{Z}$.

 \therefore By GCDCT, gcd(a, b) = 1 and gcd(b, c) = 1

2. Is converse of 1. true?

Prime Numbers

Tip – Two integers a, b are **comprime** if gcd(a, b) = 1

🔪 Info — Coprimeness Characterization Theorem

 $\forall a, b \in \mathbb{Z}, \gcd(a, b) = 1 \iff \exists s, t \in \mathbb{Z} \text{ s.t. } as + bt = 1$

≥ Info – Division by the GCD

 $\forall a, b \in \mathbb{Z}$, not both zero, $\gcd\left(\frac{a}{d}, \frac{b}{d}\right) = 1$ where $d = \gcd(a, b)$

≥ Info — Coprimeness and Divisibility

 $\forall a, b, c \in \mathbb{Z}$, if $c \mid ab \text{ and } \gcd(a, c) = 1$, then $c \mid b$

 \sum Info – Evey natural number n > 1 can be written as a product of primes

Proof

We will prove that the open setnence P(n): the number n can be wirtten as a product of primes is true for all naturanl numbers n > 1 by strong induction.

Base case: $n = 2 \Longrightarrow 2 = 2$, so P(2) is true.

Induction Step:

Let $k \in \mathbb{N}, k \geq 2$, assume that $P(2) \wedge P(3) \wedge ... \wedge P(k)$ is true. That is $\forall i \in 2, ..., k, i$ can be expressed as a product of primes.

Consider k + 1:

If k + 1 is prime, then k + 1 is already a product of primes, so P(k + 1) is true.

If k+1 is composite, meaning $\exists s, r \in \mathbb{N}$ with $2 \le s, r < k+1 \Longrightarrow 2 \le s, r \le k$ s.t. $k+1 = r \cdot s$.

By I.H., both s, r can be written as a product or primes. That is P(k+1) is true.

By Principle of Strong Induciton, P(n) is true $\forall n \in \mathbb{N}, n \geq 2$

잘 Info — Euclid's Lemma

 $\forall a, b \in \mathbb{Z}$, and prime numbers $p, p \mid ab \Longrightarrow p \mid a \vee p \mid b$

Generalized Euclid's Lemma

Let p be a prime number, $n\in\mathbb{N},$ and $a_1,a_2,...,a_n\in\mathbb{Z},$ $p\mid(a_1a_2...a_n)\Longrightarrow p\mid a_i$ for some i=1,2,...,n

№ Info — Unique Prime Factorization

Every natural number n>1 can be written as a product of primes factors uniquely, apart from the order of factors

Prime Factorization and GCD

🔪 Info — Divisors From Prime Factorization

Let n and c be positive integers, and let

$$n = p_1^{\alpha_1} p_2^{\alpha_2} p_3^{\alpha_3} ... p_k^{\alpha_k}$$

be a way to express n as a product of the distinct primes $p_1, p_2, ..., p_n$, where some or all of exponents may be zero. The integer c is a positive divisor of $n \iff c$ can be represented as a product

$$c=p_1^{\beta_1}p_2^{\beta_2}...p_k^{\beta_k}, \text{where } 0 \leq \beta_i \leq \alpha_i \text{ for } =1,2,...,k$$

Example:

Let $a, b \in \mathbb{Z}$. Prove that $a^2 \mid b^2 \iff a \mid b$

Let $a, b \in \mathbb{Z}$.

1. (\iff) Assume $a \mid b$. By definition, $\exists k \in \mathbb{Z}, b = ka \Longrightarrow b^2 = k^2a^2$.

$$\therefore a \mid b \Longrightarrow a^2 \mid b^2$$

- 2. (\Longrightarrow) Assume $a^2 \mid b^2$
- Case 1: If $a=0\Longrightarrow a^2=0; a^2\mid b^2\Longrightarrow 0\mid b^2.$

$$\therefore \exists l \in \mathbb{Z}, b^2 = 0 \cdot l \Longrightarrow b^2 = 0 \Longrightarrow b = 0 \Longrightarrow a \mid b$$

- Case 2: If $a \neq 0$ and b = 0 the statement $a \mid b$ becomes $a \mid 0$, which is true $\forall a \in \mathbb{Z}$. $\therefore a \mid b$
- Case 3: If $a \neq 0, b \neq 0$, then |a| > 0, |b| > 0.

 $|b|=p_1^{\beta_1}...p_k^{\beta_k} \text{ and } |a|=p_1^{\alpha_1}...p_k^{\alpha_k}, p_1,...p_k \text{ is a list of all distinct primes that are factors of } |a| \text{ and } |b|. \text{ then } b^2=p_1^{2\beta_1}...p_k^{2\beta_k}, a^2=p_1^{2\alpha_1}...p_k^{2\alpha_k}.$

Now, since $a^2 \mid b^2$, by DFPF, $0 \le 2\alpha_i \le 2\beta_i \forall = 1, ..., k$.

Dividing by $2,0 \leq \alpha_i \leq \beta_i.$ By DFPF, $a \mid b$

🚵 Info — GCD From Prime Factorization

Let $a,b\in\mathbb{N}$ and let

$$a = p_1^{\alpha_1} p_2^{\alpha_2} ... p_k^{\alpha_k}$$
 and $b = p_1^{\beta_1} p_2^{\beta_2} ... p_k^{\beta_k}$

be ways to express a and b as products of the distinct primes $p_1, p_2, ..., p_k$ where all of the exponenets may be zero. We have

$$\gcd(a,b)=p_1^{\gamma_1}p_2^{\gamma_2}...p_k^{\gamma_k}$$
 where $\gamma_i=\min\{\alpha_i,\beta_i\}$ for $i=1,2,...,k$

♀ Tip — Mumber of Factors

If $n = \prod \left(p_i^{\alpha_i}\right)$ the number of factors n has is $\prod (\alpha_i + 1)$

Example:

Find the gcd(20000, 30000)

ANS:

$$20000 = 2 \cdot 10^4 = 2^5 \cdot 5^4 = 2^5 \cdot 3^0 \cdot 5^4, 30000 = 3 \cdot 10^4 = 2^4 \cdot 3 \cdot 5^4$$

By GCDPF:
$$gcd(20000, 30000) = 2^4 \cdot 3^0 \cdot 5^4 = 10^4 = 10000$$