PARL: Let Strangers Speak Out What You Like

Libing Wu, Cong Quan, Chenliang Li, Donghong Ji

Presenters: August Soderberg and Matt Sehgal

Overview:

Problem Definition Challenge Analysis Philosophy Solution **Experiments Our Improvements:**

- Philosophy
- Solution

Problem Definition

Problem Definition

Relevant recommendations

Data sparsity problem

Review, rating, interaction-based

Challenge Analysis

Challenge Analysis

Review-based

No reviews

Short reviews

Neighborhood-based method (CF)

Ratings by same user on other items

Apply to reviews

Neural network

Extract informative features

Users' auxiliary review document

Features - user-item pairs

Combined with different neural models

Rating prediction

Extract informative features

Review-based neighborhood model

DeepCoNN

Auxiliary Review Document

Algorithm 2: Pick_Auxiliary_Review

- 1: **Input:** item i, rating r
- 2: Output: picked review
- 3: $set = qet_users(i, r)$ # get users who give rate r to i
- 4: u = random(set) # randomly select one like-minded user
- 5: return $review_{u,i}$

Latent vectors t_u and t_aux

Item latent vector t_i

Factorization Machine

Experiments - MSE

Method	Beer	Office Products	Digital Music	Video Games	Tools Improvement
PMF	1.636 [†]	1.091 [†]	1.211 [†]	1.669 [†]	1.564 [†]
SVD++	0.726^{\dagger}	0.771 [†]	0.950^{\dagger}	1.183 [†]	1.066^{\dagger}
CDL	0.678^{\dagger}	0.754^{\dagger}	0.882^{\dagger}	1.179 [†]	1.033 [†]
RBLT	0.576 [†]	0.757 [†]	0.872^{\dagger}	1.147 [†]	0.983 [†]
CMLE	0.607^{\dagger}	0.761 [†]	0.883^{\dagger}	1.254^{\dagger}	1.023 [†]
ConvMF	0.853 [†]	0.960 [†]	1.084^{\dagger}	1.449 [†]	1.240^{\dagger}
DeepCoNN	0.617^{\dagger}	0.860^{\dagger}	1.060^{\dagger}	1.238 [†]	1.063 [†]
DeepCoNN-Aux	0.615 [†]	0.860^{\dagger}	1.059 [†]	1.236 [†]	1.058 [†]
TransNets	0.586^{\dagger}	0.760^{\dagger}	0.910^{\dagger}	1.196 [†]	1.008^{\dagger}
D-attn	0.616 [†]	0.824^{\dagger}	0.914^{\dagger}	1.142^{\dagger}	1.046†
PARL	0.561	0.731	0.849	1.117	0.955

Our Philosophy

Our Philosophy

"Like-minded" users are not truly "like-minded"

User sentiments are better reflected by truly similar users

Supplying reviews from similar users will improve quality of auxiliary reviews

PARL design:

- plug-and-play architecture
- plugged into DeepCoNN in paper

Challenges:

- data preprocessing methods are vague
- no processed data provided
- only PARL architecture provided

Our solution experiment:

- Create dataset using methods in paper
- Evaluate our PARL against PARL with DeepCoNN

Dataset:

Amazon Digital Music Dataset (5-Core)

All users and items have 5 reviews each

Pre-processing methods from paper

Modified PARL:

Rank users by similarity

Get auxiliary review from most similar user

Algorithm 2: Pick_Auxiliary_Review

- 1: Input: item i, rating r
- 2: Output: picked review
- 3: $set = qet_users(i, r) # get users who give rate r to i$
- 4: u = random(set) # randomly select one like-minded user
- 5: return reviewu, i

```
# get all users ranked by similarity to user u
set = get_similar_users(u)
# select most similar user who gives rate r to i
u = get_aux_user(set, i, r)
```

Algorithm 2: Pick_Auxiliary_Review (modified)

- 1: Input: item i, rating r
- 2: Output: picked review
- 3: set = get similar users(u) # get all users ranked by similarity to user u
- 4: $u = get_aux_user(set, i, r) # select most similar user who gives rate r to i$
- 5: return review, i

get_similar_users(u):

Cosine similarity

get_aux_user(set, i, r):

Most similar user with rating **r** for **i**

Our Comments

Pros:

Performs well

Integrates with other models

Our Comments

Cons:

Datasets contain reviews for each rating

Only considers users with single same rating