

Introduction

Sequential Circuit

Dr. Yash Agrawal @ DA-IICT Gandhinagar

...

Applications of Flip-flop

- Memory design and data storage
- Logic control devices
- Shift registers
- Frequency division
- Counters

Introduction

Counters

Counters

What is Counter...?

Dr. Yash Agrawal @ DA-IICT Gandhinagar

Asynchronous Counter

- Also called Ripple Counter/Serial Counter.
- Clock to all modules/flip-flops doesn't change at same time.
- The invalid states are by-passed by providing a suitable feedback.
- In ripple counter, in general terms, LSB is the Q output of FF to which external clock is applied.

Counters

Types of Counters

- Asynchronous (Ripple)
- Synchronous

Dr. Yash Agrawal @ DA-IICT Gandhinagar

Asynchronous Counter

2-bit Asynchronous (Ripple) Counter

Up-Counter

Count Value: 0 to $(2^N - 1)$

where N is the number of flip-flops

Number of States (n) = 2^{N}

Mod n counter

Dr. Yash Agrawal @ DA-IICT Gandhinagar

7

Dr. Yash Agrawal @ DA-IICT Gandhinagar

6

2-bit Asynchronous (Ripple) Counter

Down-Counter (Design 1)

MSB

Count Value: $(2^N - 1)$ to 0

where N is the number of flip-flops

Number of States (n) = 2^{N}

Mod n counter

Dr. Yash Agrawal @ DA-IICT Gandhinagar

Asynchronous Counter

2-bit Asynchronous (Ripple) Counter

Down-Counter (Design 2)

MSB

Count Value: $(2^N - 1)$ to 0

where N is the number of flip-flops

Number of States (n) = 2^{N}

Mod n counter

Dr. Yash Agrawal @ DA-IICT Gandhinagar

Asynchronous Counter

2-bit Asynchronous (Ripple) Down-Counter

Dr. Yash Agrawal @ DA-IICT Gandhinagar

Numerical

3-bit Asynchronous Counter

Determine Count Sequence

Determine Mod counter number

Asynchronous Counters

Dr. Yash Agrawal @ DA-IICT Gandhinagar

•

MSB

Numerical

 $(Q_B Q_A)$

3-bit Asynchronous Counter

Clk count number	$Q_{\rm C}$	Q_B	Q _A
1	0	0	0
2	0	0	1
3	0	1	0
4	0	1	1
5	1	0	0
	1	0	1

Design Parameters

Output frequency = (Clock frequency)/ Mod number

Total delay = (Number of flip-flops) x (Delay of each flip-flop)

Maximum frequency = 1/ Total delay

Count Sequence: 000, 001, 010, 011, 100

Determine Mod counter number: 5 (Mod 5 Counter)

Synchronous Counter

- Also sometimes referred to as Parallel Counter.
- Simultaneously clock given to all modules.
- The invalid states are taken as don't care condition.
- It attributes higher speed than Asynchronous counter.

Dr. Yash Agrawal @ DA-IICT Gandhinagar

17

Synchronous Counter

2-bit Synchronous Counter

Count Value: 0 to $(2^N - 1)$

where N is the number of flip-flops

Number of States (n) = 2^N

Mod n counter

Dr. Yash Agrawal @ DA-IICT Gandhinagar

Synchronous Counte

Synchronous Counter

Maximum Mod number = N

where N is the number of flip-flops

Dr. Yash Agrawal @ DA-IICT Gandhinagar

Synchronous Counter

Ring Counter

Initially input to the flip-flop is given asynchronously using preset/reset or from external supply.

Clk count number	Q_{D}	Q_B	Q_{c}	Q _A	
1	0	0	0	1	× \
2	0	0	1	0	
3	0	1	0	0	
4	1	0	0	0	1

Count Sequence: 0001, 0010, 0100, 1000

Determine Mod counter number: 4 (Mod 4 Counter)

Dr. Yash Agrawal @ DA-IICT Gandhinagar

21

Synchronous Counter

Johnson Counter

Clk count number	Q_{D}	Q_B	$\mathbf{Q}_{\mathbf{C}}$	Q_{A}
1	0	0	0	0
2	0	0	0	1
3	0	0	1	1
4	0	1	1	1
5	1	1	1	1
6	1	1	1	0
7	1	1	0	0
8	1	0	0	0

Count Sequence: 0000, 0001, 0011, 0111, 1111, 1110, 1100, 1000

Determine Mod counter number: 8 (Mod 8 Counter)

Synchronous Counter

Johnson Counter or Twisted Ring Counter

Maximum Mod number = 2N

where N is the number of flip-flops

Dr. Yash Agrawal @ DA-IICT Gandhinagar

2

Synchronous Counter

Pseudo-Random Binary Sequence (PRBS) Generator or Linear Feedback Shift Key

Maximum Mod number = $2^{N} - 1$ where N is the number of flip-flops

Assignment-9

- 1. Implement 4-bit Asynchronous Up-Counter.
- 2. Implement 4-bit Synchronous Down-Counter.

Dr. Yash Agrawal @ DA-HCT Gandhinagar

25