Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Высшая школа интеллектуальных систем и суперкомпьютерных технологий

Курсовая работа

Дисциплина: Алгоритмы и структуры данных

Тема: Решатель игры "Wordle"

Выполнил студент гр. 3530901/0000	2	Разин М. А.	
		(подпись)	
Принял старший преподаватель	(подпись)	Степанов Д. С.	
	66 22	2022 г.	

Санкт-Петербург

ЗАДАНИЕ НА ВЫПОЛНЕНИЕ КУРСОВОЙ РАБОТЫ

студенту группы 3530901/00002 Разину Макару Александровичу

- 1. *Тема проекта (работы):* Реализация игры "Wordle" и её решателя
- 2. Срок сдачи законченной работы 27.05.2022
- 3. Исходные данные к работе: IDE: Android Studio Chipmunk 2021.2.1
- 4. *Содержание пояснительной записки:* (перечень подлежащих разработке вопросов): введение, основная часть (текст программы, описание программы, теоретическая часть, испытания программы), заключение, список использованных источников

Дата получения зада	ания: « 8 » февраля	2022 г.
Руководитель	(подпись)	Степанов Д. С.
Задание принял к исполнению	(подпись)	Разин М. А
(дата)		

Исходные данные к работе

Вариант – Реализация игры "Wordle" и её решателя. Проверить корректность выполняемой работы тестами.

Первым мы ввели слово Ребус. Буква **С** есть в загаданном слове, но стоит в другом месте.

Затем ввели слово Сосна. Буква **C** и **O** есть в загаданном слове и стоят на правильных местах.

Обратите внимание, что если в введенном слове две одинаковых буквы, а в загаданном слове только одна такая буква, то выделяется только одна буква.

Если слово угадано правильно, то все буквы будут выделены!

Если буквы нет в загаданном слове, то она выделяется серым. Также важно знать, что в загаданном слове могут быть одинаковые буквы. По правилам русских кроссвордов буква Ё в словах заменена на Е!

Рис. 1. – Правила игры в "Wordle".

Текст программы

https://github.com/MonkeyProger/KtWorlde

Описание программы

В качестве реализации решателя игры "Wordle" был подготовлен алгоритм нахождения 5 лучших слов, позволяющих максимально сократить количество попыток угадать слово, на определенном шаге. Слова в этом списке упорядочены по убыванию значений информационной энтропии, которую они представляют.

Рис. 2. – Запущенная программа с полученным списком "подсказок" до момента введения слова (т. е. для всего словаря).

Рис. 3. – Получение загаданного слова с отраженными попытками/шагами его угадать.

Теоретическая часть

В теории информации энтропия — это средняя скорость генерирования значений некоторым случайным источником данных. Величина информационной энтропии, связанная с определенным значением данных, вычисляется по формуле:

$$\mathrm{E}[\mathrm{I}] = \sum_{x} p(x) \cdot \log_2\left(\frac{1}{p(x)}\right)$$
, где $p(x)$ — вероятность состояния x системы.

Когда источник данных генерирует значение, имеющее низкую вероятность (т.е. когда происходит маловероятное, неожиданное событие), с ним связана большая информация, чем с более вероятным событием. Количество информации, выражаемое событием, связанным с появлением определенного значения данных,

можно рассматривать как случайную переменную, математические ожидание которой и равно информационной энтропии. Чем ближе распределение к равномерному, тем выше энтропия.

Таким образом, информационную энтропию можно рассматривать как меру неупорядоченности или неопределенности состояния некоторой системы, описываемой данными.

Класс WordAnalyzer

Класс, в котором реализованы функции сравнения слов, их фильтрации, нахождения энтропии, составления списка 5 слов, имеющих наибольшую энтропию.

Содержит в себе значение ответа, словари (возможных для введения слов и возможных ответов), список подходящих слов на текущем шаге.

analyzeWord(word: String)

Функция сравнивает слово с ответом и составляет комбинацию, которая отражает положение и наличие букв во введенном слове по отношению к ответу.

analyzeEntropy(word: String)

Функция возвращает топ 5 слов, дающих наибольшую энтропию после введения слова.

analyzeFullEntropy()

Функция возвращает топ 5 слов, дающих наибольшую энтропию до введения слова.

getE(word: String)

Функция получает энтропию для слова по списку всех возможных слов из словаря. Для нахождения энтропии для слова необходимо проверить каждую возможную комбинацию из игры.

buildMatches(word: String, comb: IntArray)

Функция для фильтрации списка подходящих слов по конкретной комбинации к слову.

buildPos(word: String, comb: IntArray)

Функция нахождения числа подошедших слов к догадке word с комбинацией comb.

isValid(word, String, comb, IntArray, i: String)

Функция реализует сравнение текущего слова і с введенным предположенным словом word. Возвращает true, если слово подходит.

Испытания программы

Для программы написаны тесты (ExampleUnitTest, AbstractFunctionTest), проверяющие корректность выполнения функций, время их выполнения, а также тесты проходящие весь цикл угадывания слова с отражением соответствующих данных: первоначальное введенное слово, ответ, количество итераций потребовавшихся алгоритму угадать слово (дополнительно найдены средние значения итераций для определенного слова).

analyzeWordTest()

Проверка корректности вывода комбинации заданного слова при определенном ключевом слове.

validationTest()

Проверка того, подходит ли заданое слово введённому при определенной комбинации.

buildPosTimeTest(word: String)

Тест времени выполнения функции buildPos() для выбранного слова word.

getEntropyTimeTest(word: String)

Тест времени выполнения функции getE() для выбранного слова word.

analyzeFullEntrTimeTest()

Тест времени выполнения функции analyzeFullEntropy(), т.е получения списка лучших слов до момента введения первого слова.

iterationsOnGuessTest(key: String, word: String)

"олово" и к случайно выбранному слову (рис. 5).

Получения числа итераций до получения ответа key по заданному слову word.

В классе ExampleUnitTest тест iterationsOnGuessTest() применен к выбранному слову-эталону "олово" и к случайно выбранному второму слову для сравнения (рис. 4). Также получены средние значения числа итерации соответственно к слову

```
Количество итераций для ответа 'ведро' при догадке 'олово':2
Количество итераций для ответа 'ведро' при догадке 'комок':3
```

Рис. 4. – Результат выполнения iterationsOnGuessTest().

```
Количество итераций в среднем для догадки 'олово':3
Количество итераций в среднем для случайно выбранной догадки 'ройка':2
```

Puc. 5. – Результат выполнения iterationsOnGuessTest() для получения среднего числа итераций.

Заключение

В результате выполнения курсового проекта мною были изучены алгоритмы применения информационной энтропии и других статистических критериев в различных задачах анализа данных. Была разработана модель игры "Wordle" и алгоритм получения наиболее "информативных" слов-подсказок для определенного шага в игре. Проведены тесты функций и времени их выполнения. Также составлены тесты получения информации о количествах итераций, понадобившихся для победы в игре для слова-эталона и случайно выбранного слова.

Список использованных источников

- https://ru.wikipedia.org/wiki/Информационная Энтропия
 - Википедия: Информационная энтропия.
- https://wordle.belousov.one/
 - Пример игры и правила к ней.
- https://towardsdatascience.com/entropy-how-decision-trees-make-decisions-2946b9c18c8
 - Примеры использования энтропии в дереве решений.
- https://www.youtube.com/watch?v=v68zYyaEmEA
 - Solving Wordle using information theory