Cálculo Integral: Repaso

Jonatan Ahumada Fernández

<2019-02-23 Sat>

Contents

1	Álgebra						
	1.1	Teorema del binomio	1				
	1.2	Resta al cuadrado	2				
2	Sus	titución	2				
	2.1	Guías para sustitución simple	2				
	2.2	Guías para sustitución por partes	2				
3	Trigonometría 3						
	3.1	Integrales fundamentales	3				
	3.2	Identidad fundamental (potencias impares)	3				
	3.3	Ángulo Medio (potencias pares)	3				
		3.3.1 Variación	3				
	3.4	Eliminación de raíces	3				
		3.4.1 Con ángulo medio	3				
		3.4.2 Con variación	4				
	3.5	Integrales capciosas	4				

1 Álgebra

1.1 Teorema del binomio

Para el binomio $(a+b)^n$, su expansión tiene las sigientes características

- 1. En total habrá n+1 términos
- 2. Por cada término, el poder de a decremente y el de a incrementa.

- 3. Cada término tiene la forma $(c)a^{n-k}b^k$, donde c es un entero y $k=0,1,2,\ldots n$
- 4. La siguiente fórmula se cumple para cada uno de los n
 términos de la expansión se cumple que: $\frac{coeficiente\ de\ trmino\ x\ potencia\ de\ trmino}{nmero\ trmino} = coeficiente\ del\ siguiente\ trmino$

1.2 Resta al cuadrado

El último término siempre da positivo y el del medio negativo:

$$(a-b)^2 = a^2 - 2ab + b^2$$

2 Sustitución

2.1 Guías para sustitución simple

- 1. Identifica si u y du aparecen en la misma expresión (salvo una diferencia de constantes).
- 2. Sustituye lo más complejo. Después integrar y derivar sus exponentes será más fácil.
- 3. Identifica qué identidad trigonométrica usarás.

2.2 Guías para sustitución por partes

- 1. Se usa cuando las funciones implicadas no tienen relación en términios de sus derivadas (no hay u y du)
- 2. Ten claro el acrónimo ALPES antes de seleccionar u y dv.
- 3. Como aquí toca derivar, no olvides regla de la cadena.
- 4. Aquí se tienen en cuenta las potencias al reemplazar.

+			+
1			
	derivar		
	u>	du	- 1
	integrar		- 1
	dv>	v	- 1
1			- 1

|\int[funcion]dx=u-\intdu*v|

3 Trigonometría

3.1 Integrales fundamentales

$$\int \cos(mx)dx = \frac{1}{m}\sin(mx)$$
$$\int \sin(mx)dx = -\frac{1}{m}\cos(mx)$$

3.2 Identidad fundamental (potencias impares)

$$\sin^2(x) + \cos^2(x) = 1$$

Consistirá en expresar una expresión trigonometrica impar en términos de una par. Luego, se reemplazará una función trigonometrica al cuadrado por su identidad.

Luego, de sustituir, u y du, se resolverá un binomio cuadrado.

3.3 Ángulo Medio (potencias pares)

Tener cuidado con los signos.

$$\sin^2(x) = \frac{1 - \cos(2x)}{2}$$

El coeficiente de x se duplica.

$$\cos^2(x) = \frac{1 + \cos(2x)}{2}$$

3.3.1 Variación

$$2\cos^2(x) = 1 + \cos(2x)$$

Es lo mismo, solamente pasa el dos al otro lado. Como es el proceso inverso, el coeficiente de x se divide y crece la potencia.

- 3.4 Eliminación de raíces
- 3.4.1 Con ángulo medio

$$\int \sqrt{\frac{1 - \cos(2x)}{2}} dx = \int \sqrt{\sin^2(x)} dx$$

3.4.2 Con variación

$$\int \sqrt{1 - \cos(2x)} dx = \int \sqrt{2\cos^2(x)} dx$$

3.5 Integrales capciosas

Integral	Expresión
$\int \ln(x) dx$	$\frac{1}{x}$
$\int e^{cx} dx$	$\frac{e^{cx}}{c}$
$\int \tan(x) dx$	$\sec^2(x)$
$\int \sec(x) dx$	sec(x)tan(x)