健康人:

技术报告

到 : 致相关人员

Kang SungYoulDanny)(美国XDCR CD-TRE TDS MPE),雷金纳德Rumwell(SHS美国XDCR DC-TRE),Kim, GiSeok(美国XDCR CD-TRE TDS MPE)

发件人: 朴素云 (美国XDCR CD-TRE TDS MPE)

日期: 2021年3月15日

标题: 与Perform的材料兼容性测试。

执行摘要:

本报告旨在鉴定4V1c、5C1, 10L4, 14L5, 18L6, 4Z1c、8C3HD和14L5SP的材料兼容性10MC3、EC9-4、V 5Ms和Z6Ms换能器,带Perform。所有换能器都经过测试除10L4、4Z1c和Z6Ms外,确定与该消毒剂相容。这三个换能器与这种消毒剂不兼容。此报告将作为更新兼容的理由变送器消毒剂兼容性矩阵中的消毒剂(P/N11335653)。

Scope :

试验方案: 传感器消毒剂鉴定程序 (P/N 5931980)

5.2.1液体延长暴露方案(将换能器在30摄氏度下浸泡168小时)

e合格/不合格标准: 传感器消毒剂鉴定过程 (P/N 5931980)

消毒剂

测试中使用的是粉末型,消毒粉末用水稀释至所需浓缩使用。致电舒尔克的制造商证实/再处理水平取决于使用溶液的浓度。请参阅附件1。

材料相容性试验在2%的溶液中进行。Perform被分类为本报告中的HLD。请参阅下面的详细成分信息。

使用Perform的解决方案	再处理级别
0. 5%	LLD
1.	LLD
2.	HLD

Ingredient information

消毒剂	重新处理 数量	活性成分	CASNo	浓度
表演	HLD	二(过氧一硫酸盐)五钾 双(硫酸盐)	70693-62-8	45%
衣澳	l neb	阴离子表面活性剂	-	5-15%
		Non-ionic surfactants	-	5.

测试的传感器和结果

传感器	TOTAL MARKET	P/N	S/N	传感器家族	测试结果	
4V1c MP2		07695724	20160450	A2	通过	
5C1 TC-ZIF		11268278	20220296	A3	通过	
10L4英里456		10787114	20210535	A4	失败	
14L5英里456		11254090	21010221	A5	通过	
18L6MP456		10787113	21080257	A6	通过	
4Z1c MP2		10789391	20130044	A7	失败	

Healthineers

8c3高清MP2	10135943	21070497	A9	通过
14L5SP MP2	10041226	21080039	S1	通过
10MC3DL260和TC-ZIF	11268679	20060694	E1	通过
EC9-4 DL260&TC-ZIF	10789383	20220122	E2	通过
V5M	11013704	21060007	T3	通过
76Me	10426112	92524016	Т5	牛阪

 Z6Ms
 10436113
 83534016
 T5
 失败

 这些换能器是每个换能器系列组的代表。因此,小组成员可以被代表的结果所覆盖。下表显示了作为后处理变送器系列分类的变送器系列(P/N 11508294)

传感器	P/N	家庭
4V1c MP2 (代表)	07695724	
BV3MP1.5	10789382	A2
3V3 MP456	11014578	
5C1MP456 (代表)	11291794	
4V1 MP456	11014576	
CH5-2DL260	08648086/10789386	
CH5-2 TC-ZIF	10136141	
5C1 TC-ZIF	11268278	
7C2 TC-ZIF	11268277	
16L4 TC-ZIF	11284846	
8V4 TC-ZIF	11284847	40
5P1 TC-ZIF	11014154	A3
P8-4 DL260和TC-ZIF	10030615/10789389 &11014543	
P4-2DL260和TC-ZIF	08648045/10789385&10136143	
13L4 TC-ZIF	11361589	
DAXMP456	10787116	
5V1 MP456	11291796	
VF16-5DL260	10785041	
VF16-5 TC-ZIF	11014552	
10L4 MP456 (代表)	10787114	
VF10-5DL260&TC-ZIF	08648110/10789387&10136142	
11L4 DL260和TC-ZIF	11361584&11284844	A4
9L4 MP2	10035946/10789393	
14L5 MP456 (代表)	11254090	
10V4 MP1&TC-ZIF&MP456	08266709&11319697&11014579	
4P1 MP2	10041224/10789398	A5
VF13-5 TC-ZIF	10789372	
14L5 MP2. 0	10041221/10789396	
18L6 MP456 (代表)	10787113	_
VF12-4 DL260	10136922	
12L4 MP2	10786035	
6小时/分钟2	10135941	A6
12L3 TC-ZIF	11268279	
	10041227/10789400	
1816小时MP2 9C3 MP456		
9C3 MP456 4Z1c MP2(代表)	10787112	A7
8C3HD MP2 (代表)	10033682/10789391	A7
8C3nD MP2 (代表) 1816小时MP2	10135943	A9
	10041227/10789400	N9
6小时/分钟2	10135941	
14L5SP MP2 (代表)	10041226	S1
VF13-5 SP DL 360	08266907	

更健康的人。

10MC3 (代表)	11284842&11268679	E1
EC9-4 (代表)	8648029/10789383&10136144	E2
V5M(代表) 5VT TC-ZIF	11013704 11370949	Т3
Z6Ms (代表)	10436113	T5

测试结果总结

XDCR 名称	XDCR S/N	部分		浸泡前	浸泡后	差异 (之前之后)	后果
45 10	5/11	抗申	包强度	0.207毫安	0. 177毫安	-	通过
		泄漏:	试验	12. 794uA	11. 510uA		通过
			Sens. std 在4.0MHz	0.42分贝	0. 43dB	0.01分贝	通过
4V1c	20160450	探查	Sens. std 3. 0兆赫	0.29分贝	0.3分贝	0.01分贝	通过
4710	20160450	要素 测验	Sens. std 1.5兆赫	0.45分贝	0.48分贝	0.03分贝	通过
			TOF	7.65纳秒	5. 2纳秒	2.45纳秒	通过
			死去的 要素	0	0	0	通过
		外观检查		无缺陷	无缺陷	-	通过

XDCR 名称	XDCR S/N	部分		浸泡前	浸泡后	差异 (之前之后)	后果
			电强度 试验	0. 242毫安 15. 395 uA	0. 216毫安 14. 060 uA	-	通过
			Sens. std 在4.0MHz	0.81分贝	0.75分贝	0.06分贝	通过
		探查	Sens. std 3.0兆赫	0.55分贝	0. 49分贝	0.06分贝	通过
5C1	20220296	要素 迎验	Sens. std 1.8MHz	0.41分贝	0.32分贝	0.09分贝	通过
001	20220200		TOF	6.4纳秒	4.8纳秒	1.6纳秒	通过
			死去的 要素	0	1.	1.	通过
		外观检查	Ē	无缺陷	无缺陷	-	通过
		最终决定			个死元素。但人们认为死毒剂引起的。因为没有氨 堕落		

XDCR 名称	XDCR S/N	部。	分	浸泡前	浸泡后	差异 (之前之后)	后果
		抗申	1强度	0.250毫安	0.213毫安		通过
		泄漏	试验	14.855 uA	13. 928 uA		通过
			Sens. std at 6.0MHz	0.53分贝	0.66分贝	0.13分贝	通过
		探查	Sens. std 在8.0MHz	0.63分贝	0.63分贝	0dB	通过
10L4	20210535	探查 要素 測验	Sens.std 在4.OMHz	0.37分贝	0. 43dB	0.06分贝	通过
			TOF	3.75纳秒	5.31纳秒	1.56纳秒	通过
			死去的 要素	0	0	0	通过
		外观检查		无缺陷	镜片上的气泡 表面	-	失败
		最终	央定		失败		

XDCR 名称	XDCR S/N	部分		浸泡前	浸泡后	差异 (之前之后)	后果
		抗日	包强度	0.152毫安	0.175毫安		通过
			试验	10. 272 uA	10. 885uA		通过
			Sens. std _8.5兆赫	0.44分贝	1.1分贝	0.66分贝	通过
		探查	Sens. std 频率为10.5MHz	0.54分贝	1.15分贝	0.61分贝	通过
14L5	21010221	21 要素 测验	Sens. std 在6.0MHz	0.49分贝	0.55分贝	0.06分贝	通过
			TOF	2.88納秒	5.63纳米	2.75纳秒	通过
			死去的 要素	0	0	0	通过
		外观检查		无缺陷	无缺陷	-	通过

XDCR 名称	XDCR S/N	部	分	浸泡前	浸泡后	差异 (之前之后)	后果			
		抗日	电强度	0.213毫安	0.248毫安		通过			
		泄漏	试验	13. 114 uA	15. 001 uA		通过			
			Sens. std 10.0兆赫	0.64分贝	0.64分贝	0分贝	通过			
18L6	21000257	257 探查 要素 测验	Sens. std 120MHz	0.63分贝	0.66分贝	0.03分贝	通过			
1000	18L6 21080257		Sens. std 在8. OMHz	0.59分贝	0.66分贝	0.07分贝	通过			
						TOF	3.31纳秒	6.79纳秒	3.48纳秒	通过
			死去的 要素	1.	1.	0	通过			
		外观检查		无缺陷	无缺陷	-	通过			

XDCR 名称	XDCR S/N	部	分	浸泡前	浸泡后	差异 (之前之后)	后果
		抗日	电强度	0.363毫安	0.385毫安		通过
		泄漏	试验	24. 854uA	26. 332 uA		失败
			Sens.std 在1.2MHz	0.19代/伏	0.22伏/伏	1. 2773381597dB	通过
4710		探查 要素	Sens. std 3. 0兆赫	0.15代/代	0.17伏/伏	1. 087153246dB	通过
4Z1c	20130044	044 要素 測验	TOF	9. 7纳秒	9.5納秒	0.2 ns	通过
			死去的 要素	20	20	0	通过
		外观检查		无缺陷	无缺陷		通过
		最终决定		失败, 4Z1c未 试验前的泄漏;	能通过泄漏测试,但该样 式验。所以我们必须用状	品已经有了很高的 态良好的样品重新;	结果 则试

XDCR 名称	XDCR S/N	部	分	浸泡前 _	浸泡后	差异 (之前之后)	后果
			已强度 上 M	0.253毫安	0.313毫安	-	通过
l .		泄漏:	武翌	15. 898uA	18. 920 uA	-	通过
			Sens. std 在6.0MHz	0.58分贝	0.59分贝	0.01分贝	通过
ocomp	201020402	探查	Sens. std 3.5兆赫	0.41分贝	0.44分贝	0.03分贝	通过
8C3HD	21070497	探查 要素 測验	Sens. std 8.0兆赫	0.59分贝	0.6分贝	0.01分贝	通过
		,,,_	TOF	4.55 ns	3.97纳秒	0.58纳秒	通过
			死去的 要素	0	0	0	通过
				无缺陷	无缺陷		通过

西门子 Healthineers ::••

XDCR 名称	XDCR S/N	部		浸泡前	浸泡后	差异 (之前之后)	后果
		抗申	1强度 试验	0.142毫安	0. 172mA	-	通过
		泄漏:	试验	8.759 uA	9. 874uA		通过
			Sens. std 8.5兆赫	0.45分贝	0.59分贝	0.14分贝	通过
14L5SP	0.000000	探查 要素 測验	Sens. std 频率为10.5MHz	0.56分贝	0.73分贝	0.17分贝	通过
141.55	21080039		Sens. std 在6.0MHz	0.46分贝	0.51分贝	0.05分贝	通过
			TOF	7.01纳秒	3.77纳秒	3. 24纳秒	通过
			死去的 要素	0	0	0	通过
		外观检查	£	无缺陷	无缺陷		通过

XDCR 名称	XDCR S/N	部	分	浸泡前	浸泡后	差异 (之前之后)	后果
		抗日	包强度	0.227毫安	0.208毫安		通过
		泄漏	试验	14. 126 uA	13. 775uA		通过
			Sens. std 6.5兆赫	0.4分贝	0.59分贝	0.19分贝	通过
10000	10MC3 20060694 探查 要素 测验	0694 探查 要素 测验	Sens. std 5. 0兆赫	0.4分贝	0.7分贝	0.3分贝	通过
100003			Sens. std 8. 0兆赫	0.68分贝	1.34分贝	0.66分贝	通过
			TOF	6.4纳秒	8.77纳秒	2.37纳秒	通过
			死去的 要素	0	0	0	通过
		外观检查		无缺陷	无缺陷	-	通过

XDCR 名称	XDCR S/N	亦	分	浸泡前	浸泡后	差异 (之前之后)	后果
			电强度	0.233毫安	0.222毫安	-	通过
		泄漏	试验	14. 420 uA	14. 013uA		通过
			Sens. std _6. 5兆赫	0.73分贝	0.49分贝	0.24分贝	通过
EC9-4	9-4 20220122 探3		Sens. std 在4.OMHz	0.66分贝	0.54分贝	0.12分贝	通过
103 4	20220122	要素 測验	Sens. std 在8. OMHz	0.9分贝	0.59分贝	0. 31dB	通过
			TOF	5.87纳秒	5. 43纳秒	0.44纳秒	通过
			死去的 要素	0	0	0	通过
		一外观检查	<u> </u>	无缺陷	无缺陷		通过

XDCR 名称	XDCR S/N		部分		浸泡前	浸泡后	差异(之前之后)	后果
					3.97毫安	4.96毫安		通过
			泄漏试验		247. 362uA	298. 852 uA	-	通过
			Sens	7MHz	1分贝	0.8分贝	0.2分贝	通过
V5M	01000007	探查	Stdev	在5MHz	0.97分贝	0.9分贝	0.07分贝	通过
VOM	21060007	要素	煮 at 0 deg	3.5兆赫	1.44分贝	1.2分贝	0.24分贝	通过
		測粒		TOF	3. 6 nS	3.6 nS	0.0 ns	通过
			死元:	素	0	0	0	通过
		夕 夕	观检查		无缺陷	无缺陷	-	通过

西门子 Healthineers

XDCR 名称	XDCR S/N	部	分	浸泡前	浸泡后	差异(之前之后)	后果
		抗电强度	4.49毫安	4.5毫安		通过	
		泄漏	试验 体贴	276. 431 uA	274. 966 иА		通过
			Stdevat 3MHz	0.17伏/伏	0. 18伏	0. 496471675分贝	通过
Z6Ms	83534016	探查	体贴 Stdevat 5MHz	0.15伏/伏	0.16伏/伏	0.560574472分贝	通过
ZOMS	83534016	要素測验	体贴 Stdevat 6MHz	0.11代/代	0.12伏/伏	0.755771218分贝	通过
			TOF	8.6纳秒	8.2納秒	0.4纳秒	通过
			死去的 要素	6.	40	34	失败
		一外观检查	£	无缺陷	无缺陷		通过
		 最终	央定		失败		

外观检查

XDCR	測验	透镜	鼻罩和外壳	应力消除和电缆
4V1c	之前			
	之后	San		
后,	果		无缺陷	

XDCR	測验	透镜	鼻單和外壳	应力消除和电缆
BC3HD	之前		P-	
	之后			
后身	<u> </u> R	1 3	无缺陷	SUMMER

XDCR	測验	透镜	鼻單和外壳	应力消除和电缆
14L5SP	之前		The same of the sa	
	之后			
后果			无缺陷	

XDCR	測验	透镜	鼻單和外壳	应力消除和电缆
10MC3	之前			ioMC3
	之后			tgent.
后果	ŧ.		无缺陷	

西门子 Healthineers

XDCR	測验	透镜	鼻單和外壳	应力消除和电缆
EC9-4	之前			
	之后			
后界	Ę		无缺陷	

XDCR	测验	镜头和清晰度	导管	全面的
V5M	之前			
	之后			
后身	果		无缺陷	,

更健康的人。

XDCR	測验	镜头和清晰度	导管	全面的	
Z6MS	之前				
	之后				
后果		无缺陷			

结论

因此,Perform被批准用于4V1c、5C1、14L5、18L6、8C3HD、14L5SP、EC9-4 10MC3和V5M。此外,A2、A3、A5、A6、A9、S1、E1、E2和T3换能器组中的每个换能器也可以用于该消毒湿巾。10L4、4Z1c和Z6Ms与这些消毒剂不兼容。这些结果将在传感器消毒剂兼容性矩阵(P/N 11335653)中更新。

测试程序

- 试验方案: 传感器消毒剂鉴定程序 (P/N 5931980)
 5.2.1液体延长暴露方案 (将换能器在30摄氏度下浸泡168小时)
- 2) 合格/不合格标准:传感器消毒剂鉴定过程(P/N 5931980) 为了使消毒剂有资格与特定的换能器组一起使用浸泡和循环消毒暴露:
 - 1) 不得导致测试传感器无法通过hipot或泄漏电流测试
 - 不得导致相对灵敏度标准偏差增加超过2dB(只能使用整列转换器)
 - 不得导致飞行时间(TOF)标准偏差增加超过5nS(阵列 仅限换能器)
 - 4) 根据工程判断,不得导致死亡元素数量显著增加(单一或者集体死亡原因可能由其它原因导致)
 - 5) 不得已以下形式导致与转换器性能相关性的表main机械退化、崩溃、微撕裂、拉扯、腐蚀、分离的清洗操作。

健康人:

联络。

6) 声透镜或其他材料可能会变色,因为这与换能器无关表演

由于仅对机械和CW换能器进行安全测试和目视检查,因此必须特别小心检查这些换能器是否有物理退化迹象。

如果传感器不符合上述任何标准,工程部将对其进行检查,以确定故障原因。如果故障似乎与制造缺陷或非消毒暴露引起的其他问题有关,则将对同类型的第二个换能器进行测试以确认结果。

相关文件

换能器清洁剂消毒剂鉴定程序, P/N 5931980 变送器消毒剂兼容性矩阵, P/N 11335653 清洁剂和消毒剂系列分类, P/N 11508294 用于后处理的传感器系列分类, P/N 11508925

附件

1) Perform的技术数据表

2020. 08. 14 MSDS性能信息. pdf AW_简介

perform.pdf

还有更多的帮助ne

2) 测试结果

CDCR名称	XDCR S/N	测验	探头声学测试	Hipot和泄漏测试
4V1c	20160450	预测试	x2ng4. impulse. ana x2ng4. impulse. eva lysis. production. pol. production. post_c	SCM-FAO-01 火车站工程师!
	20100430	测试后	x2ng4. impulse. ana x2ng4. impulse. eva lysis. development. gl. development. post	SCM-FAO-01 火车站工程师!
5C1	20220296	预测试	x2ng4. impulse. ana x2ng4. impulse. eva lysis. production. pol. production. post_c	SCM-FAO-01 火车站工程师!
	20220290	测试后	x2ng4. impulse. ana x2ng4. impulse. eva lysis. development. gl. development. post	SCM-FAO-01 火车站工程师!
10L4	20210535	预测试	x2ng5. impulse. ana x2ng5. impulse. eva lysis. development. gl. development. post	SCM-FAO-01 火车站工程师

· * e g

更健康的人。

		测试后	x2ng5.impulse.ana x2ng5.impulse.eva lysis.development.gl.development.post	SCM-FAO-01 火车站工程师!
14L5	21010221	预测试	x2ng5. impulse. ana x2ng5. impulse. eva lysis. production. pol. production. post_c	SCM-FAO-01 火车站生产
		测试后	x2ng5. impulse. ana x2ng5. impulse. eva lysis. development. gl. development. post	SCM-FAO-01 火车站工程师
18L6	21080257	预测试	x2ng5. impulse. ana x2ng5. impulse. eva lysis. production. pol. production. post_c	SCM-FAO-01 火车站生产
		测试后	x2ng5. impulse. ana x2ng5. impulse. eva lysis. development. gl. development. post	SCM-FAO-01 火车站生产
4Z1c	20130044	预测试	PE测试_4Z1c 执行Before_21	Hipot和Leakage test_4Z1c执行
		测试后	PE测试_4Z1c 在_210之后执行	SCM-FA0-01 火车站生产
8C3HD	21070497	预测试	x2ng5. impulse. ana x2ng5. impulse. eva 1ysis. production. pol. production. post_c	SCM-FAO-01 火车站生产
		测试后	x2ng5. impulse. ana x2ng5. impulse. eva lysis. development. gl. development. post	SCM-FAO-01 火车站生产
14L5SP	21080039	预测试	x2ng5. impulse. ana x2ng5. impulse. eva lysis. production. pol. production. post_c	SCM-FAO-01 火车站生产
		测试后	x2ng5. impulse. ana x2ng5. impulse. eva lysis. development. gl. development. post	SCM-FAO-01 火车站生产
10MC3	20060694	预测试	x2ng4. impulse. analysixx2ng4. impulse. eval. pr s. production. post_catoduction. post_cable. 1	SCM-FAO-01 火车站生产远的

SIEMENS ...,

健康人:

		测试后	x2ng4. impulse. analysi x2ng4. pulse. eval. d	SCM-FAO-01 火车站工程. FA
EC9-4	20220122	预测试	s. development. post_cevelopment. post_cbl x2ng4. impulse. ana x2ng4. impulse. eva lysis. production. pol. production. post_c	SCM-FAO-01 火车站工程师!
		测试后	x2ng4. impulse. ana x2ng4. impulse. eva lysis. development. gl. development. post	SCM-FAO-01 火车站工程师!
V5M	21060007	预测试	xdcrii2. impulse. an xdcrii2. impulse. eva alysis. production. pl. production. pre_ca	SCM-TEE-01 火车站生产
		测试后	xderii2 V5M 210308SN2106007	SCM-TEE-01 火车站工程师!
Z6Ms	83534016	预测试	PE測试_Z6Ms(SN 83534016). pdf	Hipot和泄漏 测试_Z6Ms (SN 865
		测试后	sc2000. trb200. mix =1. 产品. pn=10436	SCM-TEE-01 火车站生产