Fragenblatt für 2. Test NAWI/ 3 EL

(multiple choice, Nr. 320)

- 1. Aldehyde sind
 - a) Oxidationsprodukte von sekundären Alkoholen
 - b) Stickstoffverbindungen
 - c) Kohlenstoffverbindungen
 - d) Reduktionsprodukte von Carbonsäuren
- 2. Aldehyde haben als funktionelle Gruppe
 - a) -COOH
 - b) -CHO
 - c) -C-OH
 - d) -CO-
- 3. Alkaloide sind in wässriger Lösung
 - a) alkalisch
 - b) neutral
 - c) Schiff'sche Säuren
 - d) sauer
- 4. Amine haben als funktionelle Gruppe
 - a) -NH₄
 - b) -NH₃
 - c) -NH₂
 - d) -NH
- 5. Amide liegen vor, wenn
 - a) die Hydroxygruppe (-OH) einer Carbonsäure (-COOH) durch eine Aminogruppe ersetzt wird.
 - b) die Aminogruppe eines Proteins durch eine Hydroxygruppe (-OH) ersetzt wird.
 - c) von Aminen Stickstoff (N) gegen Deuterium (D) ausgetauscht wird.
 - d) der Sauerstoff einer Carboxylgruppe (=O) durch zwei Aminogruppen ersetzt wird.
- 6. Amide sind entstehen durch eine Verbindung von
 - a) einem Amin und einer Nitrogruppe
 - b) einer organischen Säure und einem Amin
 - c) einem Alkaloid mit einem Alkohol
 - d) einem Amin und einem Aldehyd
- 7. Aminosäuren sind die Baustoffe von
 - a) Fetten
 - b) Proteinen
 - c) Eiweiß
 - d) Kohlehydraten
- 8. Eine Aminosäure besitzt immer mindestens
 - a) eine -COOH Gruppe
 - b) eine -CHO Gruppe
 - c) eine -NH₂ Gruppe
 - d) ein N-Atom
- 9. Zu den essentiellen Aminosäuren gehören
 - a) Lysin
 - b) Tryptophan
 - c) Aminin
 - d) Glycin
- 10. Jägertee ("Jagatee") benötigt als Inhaltsstoff unbedingt
 - a) einen Ausschank in Österreich
 - b) Obstbrand
 - c) Wein
 - d) Gewürze

	off wird aus folgenden Rohstoffen synthetisiert
,	Kohlendioxid und Wasser
,	Kohlensäure und Ammoniak Harnsäure und Kohlendioxid
	Ammoniak und Wasser
,	
	ierende Stoffe haben eine Verbrennungsgeschwindigkeit bis 300 m/s
,	von 300 - 3.000 m/s
,	über 3.000 m/s
d)	die geringer ist als die von detonierenden Stoffen
13. Explodierende Stoffe haben eine Verbrennungsgeschwindigkeit	
	bis 300 m/s
,	von 300 - 3.000 m/s über 3.000 m/s
,	die geringer ist als die von detonierenden Stoffen
14. Das fun	ktionale C-Atom in Methan hat die Oxidationszahl
a)	-IV
,	-III
,	+
a)	+IV
	ktionale C-Atom in Ethan hat die Oxidationszahl
	-III
/	-II
,	-IV -V
,	
	ktionale C-Atom in Ethanol hat die Oxidationszahl
,	+I -II
c)	
	+II
17. Das funktionale C-Atom in Ethanal hat die Oxidationszahl	
a)	+I
b)	-II
c)	-I
d)	+II
18. Das funktionale C-Atom in Ethansäure hat die Oxidationszahl	
a)	+
,	+∏ +ĭ
c) d)	+I +IV
,	
	ktionale C-Atom in Methanal hat die Oxidationszahl
a) b)	-II +I
,	-I
d)	
,	
20. Einen B	Bioreaktor zur Herstellung von Essig benötigt man beim Submersverfahren
	Immersverfahren
,	Orleansverfahren
,	Marseilleverfahren