Semesterendprüfung NMIT1 HS 2014/15 (a) Studiengang Informatik / 16. Januar 2015

Dozent: R. Knaack

Name	•	
Vorname	•	
Klasse	•	IT13a_ZH

Aufgabe	1	2	3	4	5	6	Total
Maximale Punktzahl	10	10	10	10	10	10	60
Erreichte Punktzahl							

• Dauer: 120 Minuten

• Hilfsmittel: Gemäss Kursvereinbarung.

- Lösungsweg: Der Lösungsweg muss vollständig (d.h. inklusive relevanter Zwischenschritte) angegeben und nachvollziehbar sein.
- Bewertung: Es hat insgesamt 6 Aufgaben. Jede Aufgabe wird mit 10 Punkten gleich bewertet.

Aufgabe 1:

- a) Gegeben seien zwei verschiedene Rechenmaschinen. Die erste davon arbeite mit einer 46stelligen Binärarithmetik und die zweite einer 14-stelligen Dezimalarithmetik. Welche Maschine rechnet genauer? (*Mit* Begründung!)
- b) Stellen Sie die Zahl $x=\sqrt{3}$ korrekt gerundet als Maschinenzahl \tilde{x} in einer Fliesskomma-Arithmetik mit 5 Binärstellen dar, und geben Sie den relativen Fehler von \tilde{x} im Dezimalformat an.

Aufgabe 2:

Gegeben ist die Funktion

$$f:(0,\infty)\longrightarrow \mathbb{R};\ x\mapsto y=f(x)=x^2\cdot e^{-x}.$$

Das Argument x sei mit einem betragsmässigen relativen Fehler von bis zu 5% behaftet. Bestimmen Sie mit Hilfe der Kondition alle x, für welche unter dieser Voraussetzung der Betrag des relativen Fehlers des Funktionswertes y = f(x) ebenfalls höchstens 5% wird.

Aufgabe 3:

Gegeben ist ein lineares Gleichungssystem Ax = b mit

$$A = \begin{pmatrix} 10^{-5} & 10^{-5} \\ 2 & 3 \end{pmatrix}, \quad b = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
 und der exakten Lösung $x_e = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$.

- a) Bestimmen Sie die Kondition cond(A) der Matrix A in der 1-Norm.
- b) Gegeben ist nun die fehlerbehaftete rechte Seite $\tilde{b} = \begin{pmatrix} 10^{-5} \\ 1 \end{pmatrix}$. Berechnen Sie die entsprechende Lösung \tilde{x} .
- c) Bestimmen Sie für die Lösung aus b) den relativen Fehler $\frac{\|\tilde{x}-x\|_1}{\|x\|_1}$, und vergleichen Sie diesen mit der Abschätzung aufgrund der Kondition. Was stellen Sie fest?

Aufgabe 4:

Die Gleichung $2x=2^x$ hat eine Lösung im Intervall $I=[0.5,\,1.5]$ für die zugehörige Fixpunktiteration

$$x_{k+1} = \frac{1}{2} \cdot 2^{x_k}, \qquad x_0 = 1.5.$$

- a) Überprüfen Sie mit Hilfe des Fixpunktsatzes von Banach und mit obigem Intervall, dass die angegebene Fixpunktiteration tatsächlich konvergiert.
- b) Bestimmen Sie mit Hilfe der a priori Fehlerabschätzung, wieviele Schritte es höchstens braucht, um einen absoluten Fehler von maximal 10⁻⁸ garantieren zu können.

Aufgabe 5:

Gegeben ist das lineare Gleichungssystem Ax = b mit

$$A = \begin{pmatrix} 30 & 10 & 5 \\ 10 & a & 20 \\ 5 & 20 & 50 \end{pmatrix} \quad \text{und} \quad b = \begin{pmatrix} 5a \\ a \\ 5a \end{pmatrix}.$$

Dabei ist $a \in \mathbb{N}$ ein ganzzahliger Parameter.

- a) Welche Bedingung muss a erfüllen, damit A diagonal dominant ist und also das Jacobi-Verfahren konvergiert?
- b) Berechnen Sie den ersten Iterationsschrit des Jacobi-Verfahrens für den Startvektor $x^{(0)} = (a, 0, a)^T$.
- c) Bestimmen Sie für $a \ge 60$ mittels der a priori Abschätzung und bezüglich der ∞ -Norm die Anzahl Iterationsschritte n = n(a) als Funktion von a, um eine vorgegebene Fehlerschranke ε zu erreichen.

Aufgabe 6:

Die folgende Abbildung zeigt den gemessenen Verlauf einer Bakterienpopulation q(t) (Einheit: Mio. Bakterien) als Funktion der Zeit t (Einheit: Stunden):

Es wird vermutet, dass sich q(t) darstellen lässt als Funktion mit den drei (vorerst unbekannten) Parametern $a, b, c \in \mathbb{R}$ gemäss

$$g(t) = a + b \cdot e^{c \cdot t}.$$

- a) Bestimmen Sie eine Näherung für die drei Parameter $a, b, c \in \mathbb{R}$, indem Sie 3 Messpunkte $(t_i, q(t_i))$ (für i = 1, 2, 3) aus der Abbildung herauslesen, das zugehörige Gleichungssystem aufstellen und für das Newton-Verfahren für Gleichungssysteme die erste Iteration angeben (inkl. Jacobi-Matrix und $\delta^{(0)}$). Verwenden Sie als Startvektor $(1,2,3)^T$.
- b) Bestimmen Sie mit Ihrer Näherung aus a) den Zeitpunkt t, an dem die Population auf 1600 [Mio. Bakterien] angewachsen ist. Verwenden Sie dafür das Newton-Verfahren mit einem sinnvollen Startwert t_0 und einer Genauigkeit von $|t_n - t_{n-1}| < 10^{-4}$. Geben Sie die verwendete Iterationsgleichung explizit an.

Falls Sie Aufgabe a) nicht lösen konnten, so verwenden Sie $g(t) = 5 + 3 \cdot e^{4t}$.