

Consider the function $\varphi(x): \mathbb{R} \to \mathbb{R}$.

 $f \to \min_{x,y,z}$

Consider the function $\varphi(x): \mathbb{R} \to \mathbb{R}$. The whole idea came from building a linear approximation at the point x_k and find its root, which will be the new iteration point:

Consider the function $\varphi(x): \mathbb{R} \to \mathbb{R}$. The whole idea came from building a linear approximation at the point x_k and find its root, which will be the new iteration point:

$$\varphi'(x_k) = \frac{\varphi(x_k)}{x_{k+1} - x_k}$$

Consider the function $\varphi(x): \mathbb{R} \to \mathbb{R}$. The whole idea came from building a linear approximation at the point x_k and find its root, which will be the new iteration point:

$$\varphi'(x_k) = \frac{\varphi(x_k)}{x_{k+1} - x_k}$$

We get an iterative scheme:

Consider the function $\varphi(x): \mathbb{R} \to \mathbb{R}$. The whole idea came from building a linear approximation at the point x_k and find its root, which will be the new iteration point:

$$\varphi'(x_k) = \frac{\varphi(x_k)}{x_{k+1} - x_k}$$

We get an iterative scheme:

$$x_{k+1} = x_k - \frac{\varphi(x_k)}{\varphi'(x_k)}.$$

Consider the function $\varphi(x): \mathbb{R} \to \mathbb{R}$.

The whole idea came from building a linear approximation at the point x_k and find its root, which will be the new iteration point:

$$\varphi'(x_k) = \frac{\varphi(x_k)}{x_{k+1} - x_k}$$

We get an iterative scheme:

$$x_{k+1} = x_k - \frac{\varphi(x_k)}{\varphi'(x_k)}.$$

Which will become a Newton optimization method in case $f'(x) = \varphi(x)^a$:

Consider the function $\varphi(x): \mathbb{R} \to \mathbb{R}$.

The whole idea came from building a linear approximation at the point x_k and find its root, which will be the new iteration point:

$$\varphi'(x_k) = \frac{\varphi(x_k)}{x_{k+1} - x_k}$$

We get an iterative scheme:

$$x_{k+1} = x_k - \frac{\varphi(x_k)}{\varphi'(x_k)}.$$

Which will become a Newton optimization method in case $f'(x) = \varphi(x)^{a}$:

$$x_{k+1} = x_k - \left[\nabla^2 f(x_k)\right]^{-1} \nabla f(x_k)$$

 $^{^{\}rm a}{\rm Literally}$ we aim to solve the problem of finding stationary points $\nabla f(x)=0$

Let us now have the function f(x) and a certain point x_k . Let us consider the quadratic approximation of this function near x_k :

Let us now have the function f(x) and a certain point x_k . Let us consider the quadratic approximation of this function near x_k :

$$f_{x_k}^{II}(x) = f(x_k) + \langle \nabla f(x_k), x - x_k \rangle + \frac{1}{2} \langle \nabla^2 f(x_k)(x - x_k), x - x_k \rangle.$$

Let us now have the function f(x) and a certain point x_k . Let us consider the quadratic approximation of this function near x_k :

$$f_{x_k}^{II}(x) = f(x_k) + \langle \nabla f(x_k), x - x_k \rangle + \frac{1}{2} \langle \nabla^2 f(x_k)(x - x_k), x - x_k \rangle.$$

The idea of the method is to find the point x_{k+1} , that minimizes the function $f_{x_k}^{II}(x)$, i.e. $\nabla f_{x_k}^{II}(x_{k+1}) = 0$.

 $f \to \min_{x,y,z}$ Newton method

Let us now have the function f(x) and a certain point x_k . Let us consider the quadratic approximation of this function near x_k :

$$f_{x_k}^{II}(x) = f(x_k) + \langle \nabla f(x_k), x - x_k \rangle + \frac{1}{2} \langle \nabla^2 f(x_k)(x - x_k), x - x_k \rangle.$$

The idea of the method is to find the point x_{k+1} , that minimizes the function $f_{x_k}^{II}(x)$, i.e. $\nabla f_{x_k}^{II}(x_{k+1}) = 0$.

$$\nabla f_{x_k}^{II}(x_{k+1}) = \nabla f(x_k) + \nabla^2 f(x_k)(x_{k+1} - x_k) = 0$$

Let us now have the function f(x) and a certain point x_k . Let us consider the quadratic approximation of this function near x_k :

$$f_{x_k}^{II}(x) = f(x_k) + \langle \nabla f(x_k), x - x_k \rangle + \frac{1}{2} \langle \nabla^2 f(x_k)(x - x_k), x - x_k \rangle.$$

The idea of the method is to find the point x_{k+1} , that minimizes the function $f_{x_k}^{II}(x)$, i.e. $\nabla f_{x_k}^{II}(x_{k+1}) = 0$.

$$\nabla f_{x_k}^{II}(x_{k+1}) = \nabla f(x_k) + \nabla^2 f(x_k)(x_{k+1} - x_k) = 0$$
$$\nabla^2 f(x_k)(x_{k+1} - x_k) = -\nabla f(x_k)$$

 $f \to \min_{x,y,z}$ Newton method

Let us now have the function f(x) and a certain point x_k . Let us consider the quadratic approximation of this function near x_k :

$$f_{x_k}^{II}(x) = f(x_k) + \langle \nabla f(x_k), x - x_k \rangle + \frac{1}{2} \langle \nabla^2 f(x_k)(x - x_k), x - x_k \rangle.$$

The idea of the method is to find the point x_{k+1} , that minimizes the function $f_{x_k}^{II}(x)$, i.e. $\nabla f_{x_k}^{II}(x_{k+1}) = 0$.

$$\nabla f_{x_k}^{II}(x_{k+1}) = \nabla f(x_k) + \nabla^2 f(x_k)(x_{k+1} - x_k) = 0$$

$$\nabla^2 f(x_k)(x_{k+1} - x_k) = -\nabla f(x_k)$$

$$\left[\nabla^2 f(x_k)\right]^{-1} \nabla^2 f(x_k)(x_{k+1} - x_k) = -\left[\nabla^2 f(x_k)\right]^{-1} \nabla f(x_k)$$

 $f \to \min_{x,y,z}$

Mouston mothod

Let us now have the function f(x) and a certain point x_k . Let us consider the quadratic approximation of this function near x_k :

$$f_{x_k}^{II}(x) = f(x_k) + \langle \nabla f(x_k), x - x_k \rangle + \frac{1}{2} \langle \nabla^2 f(x_k)(x - x_k), x - x_k \rangle.$$

The idea of the method is to find the point x_{k+1} , that minimizes the function $f_{x_k}^{II}(x)$, i.e. $\nabla f_{x_k}^{II}(x_{k+1}) = 0$.

$$\nabla f_{x_k}^{II}(x_{k+1}) = \nabla f(x_k) + \nabla^2 f(x_k)(x_{k+1} - x_k) = 0$$

$$\nabla^2 f(x_k)(x_{k+1} - x_k) = -\nabla f(x_k)$$

$$\left[\nabla^2 f(x_k)\right]^{-1} \nabla^2 f(x_k)(x_{k+1} - x_k) = -\left[\nabla^2 f(x_k)\right]^{-1} \nabla f(x_k)$$

$$x_{k+1} = x_k - \left[\nabla^2 f(x_k)\right]^{-1} \nabla f(x_k).$$

Let us now have the function f(x) and a certain point x_k . Let us consider the quadratic approximation of this function near x_k :

$$f_{x_k}^{II}(x) = f(x_k) + \langle \nabla f(x_k), x - x_k \rangle + \frac{1}{2} \langle \nabla^2 f(x_k)(x - x_k), x - x_k \rangle.$$

The idea of the method is to find the point x_{k+1} , that minimizes the function $f_{x_k}^{II}(x)$, i.e. $\nabla f_{x_k}^{II}(x_{k+1}) = 0$.

$$\nabla f_{x_k}^{II}(x_{k+1}) = \nabla f(x_k) + \nabla^2 f(x_k)(x_{k+1} - x_k) = 0$$

$$\nabla^2 f(x_k)(x_{k+1} - x_k) = -\nabla f(x_k)$$

$$\left[\nabla^2 f(x_k)\right]^{-1} \nabla^2 f(x_k)(x_{k+1} - x_k) = -\left[\nabla^2 f(x_k)\right]^{-1} \nabla f(x_k)$$

$$x_{k+1} = x_k - \left[\nabla^2 f(x_k)\right]^{-1} \nabla f(x_k).$$

Let us now have the function f(x) and a certain point x_k . Let us consider the quadratic approximation of this function near x_k :

$$f_{x_k}^{II}(x) = f(x_k) + \langle \nabla f(x_k), x - x_k \rangle + \frac{1}{2} \langle \nabla^2 f(x_k)(x - x_k), x - x_k \rangle.$$

 $\nabla f_{x_k}^{II}(x_{k+1}) = \nabla f(x_k) + \nabla^2 f(x_k)(x_{k+1} - x_k) = 0$

The idea of the method is to find the point x_{k+1} , that minimizes the function $f_{x_k}^{II}(x)$, i.e. $\nabla f_{x_k}^{II}(x_{k+1}) = 0$.

$$\nabla^{2} f(x_{k})(x_{k+1} - x_{k}) = -\nabla f(x_{k})$$

$$\left[\nabla^{2} f(x_{k})\right]^{-1} \nabla^{2} f(x_{k})(x_{k+1} - x_{k}) = -\left[\nabla^{2} f(x_{k})\right]^{-1} \nabla f(x_{k})$$

$$x_{k+1} = x_{k} - \left[\nabla^{2} f(x_{k})\right]^{-1} \nabla f(x_{k}).$$

Let us immediately note the limitations related to the necessity of the Hessian's non-degeneracy (for the method to exist), as well as its positive definiteness (for the convergence guarantee).

i Theorem

Let f(x) be a strongly convex twice continuously differentiable function at \mathbb{R}^n , for the second derivative of which inequalities are executed: $\mu I_n \preceq \nabla^2 f(x) \preceq L I_n$. Then Newton's method with a constant step locally converges to solving the problem with superlinear speed. If, in addition, Hessian is M-Lipschitz continuous, then this method converges locally to x^* at a quadratic rate.

i Theorem

Let f(x) be a strongly convex twice continuously differentiable function at \mathbb{R}^n , for the second derivative of which inequalities are executed: $\mu I_n \preceq \nabla^2 f(x) \preceq L I_n$. Then Newton's method with a constant step locally converges to solving the problem with superlinear speed. If, in addition, Hessian is M-Lipschitz continuous, then this method converges locally to x^* at a quadratic rate.

Proof

i Theorem

Let f(x) be a strongly convex twice continuously differentiable function at \mathbb{R}^n , for the second derivative of which inequalities are executed: $\mu I_n \preceq \nabla^2 f(x) \preceq L I_n$. Then Newton's method with a constant step locally converges to solving the problem with superlinear speed. If, in addition, Hessian is M-Lipschitz continuous, then this method converges locally to x^* at a quadratic rate.

Proof

1. We will use Newton-Leibniz formula

$$\nabla f(x_k) - \nabla f(x^*) = \int_0^1 \nabla^2 f(x^* + \tau(x_k - x^*))(x_k - x^*) d\tau$$

i Theorem

Let f(x) be a strongly convex twice continuously differentiable function at \mathbb{R}^n , for the second derivative of which inequalities are executed: $\mu I_n \preceq \nabla^2 f(x) \preceq L I_n$. Then Newton's method with a constant step locally converges to solving the problem with superlinear speed. If, in addition, Hessian is M-Lipschitz continuous, then this method converges locally to x^* at a quadratic rate.

Proof

1. We will use Newton-Leibniz formula

$$abla f(x_k) -
abla f(x^*) = \int_0^1
abla^2 f(x^* + au(x_k - x^*))(x_k - x^*) d au$$

2. Then we track the distance to the solution

i Theorem

Let f(x) be a strongly convex twice continuously differentiable function at \mathbb{R}^n , for the second derivative of which inequalities are executed: $\mu I_n \preceq \nabla^2 f(x) \preceq L I_n$. Then Newton's method with a constant step locally converges to solving the problem with superlinear speed. If, in addition, Hessian is M-Lipschitz continuous, then this method converges locally to x^* at a quadratic rate.

Proof

1. We will use Newton-Leibniz formula

$$\nabla f(x_k) - \nabla f(x^*) = \int_0^1 \nabla^2 f(x^* + \tau(x_k - x^*))(x_k - x^*) d\tau$$

2. Then we track the distance to the solution

$$x_{k+1} - x^* = x_k - \left[\nabla^2 f(x_k)\right]^{-1} \nabla f(x_k) - x^* = x_k - x^* - \left[\nabla^2 f(x_k)\right]^{-1} \nabla f(x_k) = x_k - x_k$$

i Theorem

Let f(x) be a strongly convex twice continuously differentiable function at \mathbb{R}^n , for the second derivative of which inequalities are executed: $\mu I_n \preceq \nabla^2 f(x) \preceq L I_n$. Then Newton's method with a constant step locally converges to solving the problem with superlinear speed. If, in addition, Hessian is M-Lipschitz continuous, then this method converges locally to x^* at a quadratic rate.

Proof

1. We will use Newton-Leibniz formula

$$\nabla f(x_k) - \nabla f(x^*) = \int_0^1 \nabla^2 f(x^* + \tau(x_k - x^*))(x_k - x^*) d\tau$$

2. Then we track the distance to the solution

$$x_{k+1} - x^* = x_k - \left[\nabla^2 f(x_k)\right]^{-1} \nabla f(x_k) - x^* = x_k - x^* - \left[\nabla^2 f(x_k)\right]^{-1} \nabla f(x_k) =$$
$$= x_k - x^* - \left[\nabla^2 f(x_k)\right]^{-1} \int_0^1 \nabla^2 f(x^* + \tau(x_k - x^*))(x_k - x^*) d\tau$$

⊕ O Ø

3.

$$= \left(I - \left[\nabla^2 f(x_k)\right]^{-1} \int_0^1 \nabla^2 f(x^* + \tau(x_k - x^*)) d\tau\right) (x_k - x^*) =$$

3.

$$= \left(I - \left[\nabla^2 f(x_k)\right]^{-1} \int_0^1 \nabla^2 f(x^* + \tau(x_k - x^*)) d\tau\right) (x_k - x^*) =$$

$$= \left[\nabla^2 f(x_k)\right]^{-1} \left(\nabla^2 f(x_k) - \int_0^1 \nabla^2 f(x^* + \tau(x_k - x^*)) d\tau\right) (x_k - x^*) =$$

 $\sum_{x,y,z}$ Newton method

3.

$$= \left(I - \left[\nabla^2 f(x_k)\right]^{-1} \int_0^1 \nabla^2 f(x^* + \tau(x_k - x^*)) d\tau\right) (x_k - x^*) =$$

$$= \left[\nabla^2 f(x_k)\right]^{-1} \left(\nabla^2 f(x_k) - \int_0^1 \nabla^2 f(x^* + \tau(x_k - x^*)) d\tau\right) (x_k - x^*) =$$

$$= \left[\nabla^2 f(x_k)\right]^{-1} \left(\int_0^1 \left(\nabla^2 f(x_k) - \nabla^2 f(x^* + \tau(x_k - x^*)) d\tau\right)\right) (x_k - x^*) =$$

3.

$$= \left(I - \left[\nabla^2 f(x_k)\right]^{-1} \int_0^1 \nabla^2 f(x^* + \tau(x_k - x^*)) d\tau\right) (x_k - x^*) =$$

$$= \left[\nabla^2 f(x_k)\right]^{-1} \left(\nabla^2 f(x_k) - \int_0^1 \nabla^2 f(x^* + \tau(x_k - x^*)) d\tau\right) (x_k - x^*) =$$

$$= \left[\nabla^2 f(x_k)\right]^{-1} \left(\int_0^1 \left(\nabla^2 f(x_k) - \nabla^2 f(x^* + \tau(x_k - x^*)) d\tau\right)\right) (x_k - x^*) =$$

$$= \left[\nabla^2 f(x_k)\right]^{-1} G_k(x_k - x^*)$$

3.

$$= \left(I - \left[\nabla^2 f(x_k)\right]^{-1} \int_0^1 \nabla^2 f(x^* + \tau(x_k - x^*)) d\tau\right) (x_k - x^*) =$$

$$= \left[\nabla^2 f(x_k)\right]^{-1} \left(\nabla^2 f(x_k) - \int_0^1 \nabla^2 f(x^* + \tau(x_k - x^*)) d\tau\right) (x_k - x^*) =$$

$$= \left[\nabla^2 f(x_k)\right]^{-1} \left(\int_0^1 \left(\nabla^2 f(x_k) - \nabla^2 f(x^* + \tau(x_k - x^*)) d\tau\right)\right) (x_k - x^*) =$$

$$= \left[\nabla^2 f(x_k)\right]^{-1} G_k(x_k - x^*)$$

4. We have introduced:

$$G_k = \int_{-1}^{1} \left(\nabla^2 f(x_k) - \nabla^2 f(x^* + \tau(x_k - x^*)) d\tau \right).$$

 $f \to \min_{x,y,z}$ Newton method

5. Let's try to estimate the size of G_k :

where
$$r_k = ||x_k - x^*||$$
.

 $J \to \min_{x,y,z}$ Newton m

5. Let's try to estimate the size of G_k :

$$||G_k|| = \left\| \int_0^1 \left(\nabla^2 f(x_k) - \nabla^2 f(x^* + \tau(x_k - x^*)) d\tau \right) \right\| \le$$

where $r_k = ||x_k - x^*||$.

5. Let's try to estimate the size of G_k :

$$\|G_k\| = \left\| \int_0^1 \left(\nabla^2 f(x_k) - \nabla^2 f(x^* + \tau(x_k - x^*)) d\tau \right) \right\| \le$$

$$\le \int_0^1 \left\| \nabla^2 f(x_k) - \nabla^2 f(x^* + \tau(x_k - x^*)) \right\| d\tau \le \qquad \text{(Hessian's Lipschitz continuity)}$$

where $r_k = ||x_k - x^*||$.

5. Let's try to estimate the size of G_k :

$$\begin{split} \|G_k\| &= \left\| \int_0^1 \left(\nabla^2 f(x_k) - \nabla^2 f(x^* + \tau(x_k - x^*)) d\tau \right) \right\| \leq \\ &\leq \int_0^1 \left\| \nabla^2 f(x_k) - \nabla^2 f(x^* + \tau(x_k - x^*)) \right\| d\tau \leq \qquad \text{(Hessian's Lipschitz continuity)} \\ &\leq \int_0^1 M \|x_k - x^* - \tau(x_k - x^*)\| d\tau = \int_0^1 M \|x_k - x^*\| (1 - \tau) d\tau = \frac{r_k}{2} M, \end{split}$$

where $r_k = ||x_k - x^*||$.

5. Let's try to estimate the size of G_k :

$$\begin{split} \|G_k\| &= \left\| \int_0^1 \left(\nabla^2 f(x_k) - \nabla^2 f(x^* + \tau(x_k - x^*)) d\tau \right) \right\| \leq \\ &\leq \int_0^1 \left\| \nabla^2 f(x_k) - \nabla^2 f(x^* + \tau(x_k - x^*)) \right\| d\tau \leq \qquad \text{(Hessian's Lipschitz continuity)} \\ &\leq \int_0^1 M \|x_k - x^* - \tau(x_k - x^*)\| d\tau = \int_0^1 M \|x_k - x^*\| (1 - \tau) d\tau = \frac{r_k}{2} M, \end{split}$$

where $r_k = ||x_k - x^*||$.

6. So, we have:

$$r_{k+1} \le \left\| \left[\nabla^2 f(x_k) \right]^{-1} \right\| \cdot \frac{r_k}{2} M \cdot r_k$$

and we need to bound the norm of the inverse hessian

7. Because of Hessian's Lipschitz continuity and symmetry:

7. Because of Hessian's Lipschitz continuity and symmetry:

$$\nabla^2 f(x_k) - \nabla^2 f(x^*) \succeq -Mr_k I_n$$

7. Because of Hessian's Lipschitz continuity and symmetry:

$$\nabla^2 f(x_k) - \nabla^2 f(x^*) \succeq -M r_k I_n$$
$$\nabla^2 f(x_k) \succeq \nabla^2 f(x^*) - M r_k I_n$$

7. Because of Hessian's Lipschitz continuity and symmetry:

$$\nabla^2 f(x_k) - \nabla^2 f(x^*) \succeq -M r_k I_n$$
$$\nabla^2 f(x_k) \succeq \nabla^2 f(x^*) - M r_k I_n$$
$$\nabla^2 f(x_k) \succeq \mu I_n - M r_k I_n$$

7. Because of Hessian's Lipschitz continuity and symmetry:

$$\nabla^{2} f(x_{k}) - \nabla^{2} f(x^{*}) \succeq -M r_{k} I_{n}$$

$$\nabla^{2} f(x_{k}) \succeq \nabla^{2} f(x^{*}) - M r_{k} I_{n}$$

$$\nabla^{2} f(x_{k}) \succeq \mu I_{n} - M r_{k} I_{n}$$

$$\nabla^{2} f(x_{k}) \succeq (\mu - M r_{k}) I_{n}$$

7. Because of Hessian's Lipschitz continuity and symmetry:

$$\nabla^{2} f(x_{k}) - \nabla^{2} f(x^{*}) \succeq -Mr_{k}I_{n}$$

$$\nabla^{2} f(x_{k}) \succeq \nabla^{2} f(x^{*}) - Mr_{k}I_{n}$$

$$\nabla^{2} f(x_{k}) \succeq \mu I_{n} - Mr_{k}I_{n}$$

$$\nabla^{2} f(x_{k}) \succeq (\mu - Mr_{k})I_{n}$$

Convexity implies $\nabla^2 f(x_k) \succ 0$, i.e. $r_k < \frac{\mu}{M}$.

$$\left\| \left[\nabla^2 f(x_k) \right]^{-1} \right\| \le (\mu - M r_k)^{-1}$$
$$r_{k+1} \le \frac{r_k^2 M}{2(\mu - M r_k)}$$

7. Because of Hessian's Lipschitz continuity and symmetry:

$$\nabla^{2} f(x_{k}) - \nabla^{2} f(x^{*}) \succeq -M r_{k} I_{n}$$

$$\nabla^{2} f(x_{k}) \succeq \nabla^{2} f(x^{*}) - M r_{k} I_{n}$$

$$\nabla^{2} f(x_{k}) \succeq \mu I_{n} - M r_{k} I_{n}$$

$$\nabla^{2} f(x_{k}) \succeq (\mu - M r_{k}) I_{n}$$

Convexity implies $\nabla^2 f(x_k) > 0$, i.e. $r_k < \frac{\mu}{M}$.

$$\left\| \left[\nabla^2 f(x_k) \right]^{-1} \right\| \le (\mu - M r_k)^{-1}$$

$$r_{k+1} \le \frac{r_k^2 M}{2(\mu - M r_k)}$$

8. The convergence condition $r_{k+1} < r_k$ imposes additional conditions on r_k : $r_k < \frac{2\mu}{2M}$

Thus, we have an important result: Newton's method for the function with Lipschitz positive-definite Hessian converges quadratically near $(\|x_0 - x^*\| < \frac{2\mu}{2M})$ to the solution.

An important property of Newton's method is affine invariance. Given a function f and a nonsingular matrix $A \in \mathbb{R}^{n \times n}$, let x = Ay, and define g(y) = f(Ay). Note, that $\nabla g(y) = A^T \nabla f(x)$ and $\nabla^2 g(y) = \tilde{A}^T \nabla^2 f(x) A$. The Newton steps on q are expressed as:

$$y_{k+1} = y_k - \left(\nabla^2 g(y_k)\right)^{-1} \nabla g(y_k)$$

An important property of Newton's method is affine invariance. Given a function f and a nonsingular matrix $A \in \mathbb{R}^{n \times n}$, let x = Ay, and define g(y) = f(Ay). Note, that $\nabla g(y) = A^T \nabla f(x)$ and $\nabla^2 g(y) = \tilde{A}^T \nabla^2 f(x) A$. The Newton steps on q are expressed as:

$$y_{k+1} = y_k - \left(\nabla^2 g(y_k)\right)^{-1} \nabla g(y_k)$$

Expanding this, we get:

$$y_{k+1} = y_k - \left(A^T \nabla^2 f(Ay_k)A\right)^{-1} A^T \nabla f(Ay_k)$$

An important property of Newton's method is **affine invariance**. Given a function f and a nonsingular matrix $A \in \mathbb{R}^{n \times n}$, let x = Ay, and define g(y) = f(Ay). Note, that $\nabla g(y) = A^T \nabla f(x)$ and $\nabla^2 g(y) = A^T \nabla^2 f(x) A$. The Newton steps on g are expressed as:

$$y_{k+1} = y_k - \left(\nabla^2 g(y_k)\right)^{-1} \nabla g(y_k)$$

Expanding this, we get:

$$y_{k+1} = y_k - \left(A^T \nabla^2 f(Ay_k)A\right)^{-1} A^T \nabla f(Ay_k)$$

Using the property of matrix inverse $(AB)^{-1}=B^{-1}A^{-1}$, this simplifies to:

$$y_{k+1} = y_k - A^{-1} \left(\nabla^2 f(Ay_k) \right)^{-1} \nabla f(Ay_k)$$
$$Ay_{k+1} = Ay_k - \left(\nabla^2 f(Ay_k) \right)^{-1} \nabla f(Ay_k)$$

An important property of Newton's method is **affine invariance**. Given a function f and a nonsingular matrix $A \in \mathbb{R}^{n \times n}$, let x = Ay, and define g(y) = f(Ay). Note, that $\nabla g(y) = A^T \nabla f(x)$ and $\nabla^2 g(y) = A^T \nabla^2 f(x) A$. The Newton steps on g are expressed as:

$$y_{k+1} = y_k - \left(\nabla^2 g(y_k)\right)^{-1} \nabla g(y_k)$$

Expanding this, we get:

$$y_{k+1} = y_k - \left(A^T \nabla^2 f(Ay_k)A\right)^{-1} A^T \nabla f(Ay_k)$$

Using the property of matrix inverse $(AB)^{-1}=B^{-1}A^{-1}$, this simplifies to:

$$y_{k+1} = y_k - A^{-1} \left(\nabla^2 f(Ay_k) \right)^{-1} \nabla f(Ay_k)$$

$$Ay_{k+1} = Ay_k - \left(\nabla^2 f(Ay_k)\right)^{-1} \nabla f(Ay_k)$$

Thus, the update rule for x is:

$$x_{k+1} = x_k - \left(\nabla^2 f(x_k)\right)^{-1} \nabla f(x_k)$$

♥ C •

An important property of Newton's method is **affine invariance**. Given a function f and a nonsingular matrix $A \in \mathbb{R}^{n \times n}$, let x = Ay, and define g(y) = f(Ay). Note, that $\nabla g(y) = A^T \nabla f(x)$ and $\nabla^2 g(y) = A^T \nabla^2 f(x) A$. The Newton steps on g are expressed as:

$$y_{k+1} = y_k - \left(\nabla^2 g(y_k)\right)^{-1} \nabla g(y_k)$$

Expanding this, we get:

$$y_{k+1} = y_k - \left(A^T \nabla^2 f(Ay_k)A\right)^{-1} A^T \nabla f(Ay_k)$$

Using the property of matrix inverse $(AB)^{-1}=B^{-1}A^{-1}$, this simplifies to:

$$y_{k+1} = y_k - A^{-1} \left(\nabla^2 f(Ay_k) \right)^{-1} \nabla f(Ay_k)$$
$$Ay_{k+1} = Ay_k - \left(\nabla^2 f(Ay_k) \right)^{-1} \nabla f(Ay_k)$$

Thus, the update rule for x is:

$$x_{k+1} = x_k - \left(\nabla^2 f(x_k)\right)^{-1} \nabla f(x_k)$$

This shows that the progress made by Newton's method is independent of problem scaling. This property is not shared by the gradient descent method!

What's nice:

 \bullet quadratic convergence near the solution x^{\ast}

What's nice:

- ullet quadratic convergence near the solution x^{st}
- affine invariance

What's nice:

- quadratic convergence near the solution x^*
- affine invariance
- the parameters have little effect on the convergence rate

What's nice:

- quadratic convergence near the solution x^*
- affine invariance
- the parameters have little effect on the convergence rate

What's nice:

- quadratic convergence near the solution x^*
- affine invariance
- the parameters have little effect on the convergence rate

What's not nice:

• it is necessary to store the (inverse) hessian on each iteration: $\mathcal{O}(n^2)$ memory

What's nice:

- quadratic convergence near the solution x^*
- affine invariance
- the parameters have little effect on the convergence rate

What's not nice:

- it is necessary to store the (inverse) hessian on each iteration: $\mathcal{O}(n^2)$ memory
- it is necessary to solve linear systems: $\mathcal{O}(n^3)$ operations

What's nice:

- quadratic convergence near the solution x^*
- affine invariance
- the parameters have little effect on the convergence rate

What's not nice:

- ullet it is necessary to store the (inverse) hessian on each iteration: $\mathcal{O}(n^2)$ memory
- it is necessary to solve linear systems: $\mathcal{O}(n^3)$ operations
- ullet the Hessian can be degenerate at x^{st}

⇔ റ ഉ

What's nice:

- quadratic convergence near the solution x^*
- affine invariance
- the parameters have little effect on the convergence rate

What's not nice:

- it is necessary to store the (inverse) hessian on each iteration: $\mathcal{O}(n^2)$ memory
- it is necessary to solve linear systems: $\mathcal{O}(n^3)$ operations
- the Hessian can be degenerate at x^*
- the hessian may not be positively determined \to direction $-(f''(x))^{-1}f'(x)$ may not be a descending direction

େ ଚ ବ

Newton method problems

Newton

Newton method problems

Given f(x) and a point x_0 . Define $B_{\varepsilon}(x_0)=\{x\in\mathbb{R}^n:d(x,x_0)=\varepsilon^2\}$ as the set of points with distance ε to x_0 . Here we presume the existence of a distance function $d(x,x_0)$.

Given f(x) and a point x_0 . Define $B_{\varepsilon}(x_0)=\{x\in\mathbb{R}^n:d(x,x_0)=\varepsilon^2\}$ as the set of points with distance ε to x_0 . Here we presume the existence of a distance function $d(x,x_0)$.

$$x^* = \arg\min_{x \in B_{\varepsilon}(x_0)} f(x)$$

Given f(x) and a point x_0 . Define $B_{\varepsilon}(x_0)=\{x\in\mathbb{R}^n:d(x,x_0)=\varepsilon^2\}$ as the set of points with distance ε to x_0 . Here we presume the existence of a distance function $d(x,x_0)$.

$$x^* = \arg\min_{x \in B_{\varepsilon}(x_0)} f(x)$$

Then, we can define another *steepest descent* direction in terms of minimizer of function on a sphere:

Given f(x) and a point x_0 . Define $B_{\varepsilon}(x_0)=\{x\in\mathbb{R}^n:d(x,x_0)=\varepsilon^2\}$ as the set of points with distance ε to x_0 . Here we presume the existence of a distance function $d(x,x_0)$.

$$x^* = \arg\min_{x \in B_{\varepsilon}(x_0)} f(x)$$

Then, we can define another *steepest descent* direction in terms of minimizer of function on a sphere:

$$s = \lim_{\varepsilon \to 0} \frac{x^* - x_0}{\varepsilon}$$

Given f(x) and a point x_0 . Define $B_{\varepsilon}(x_0)=\{x\in\mathbb{R}^n:d(x,x_0)=\varepsilon^2\}$ as the set of points with distance ε to x_0 . Here we presume the existence of a distance function $d(x,x_0)$.

$$x^* = \arg\min_{x \in B_{\varepsilon}(x_0)} f(x)$$

Then, we can define another *steepest descent* direction in terms of minimizer of function on a sphere:

$$s = \lim_{\varepsilon \to 0} \frac{x^* - x_0}{\varepsilon}$$

Let us assume that the distance is defined locally by some metric $A\colon$

$$d(x, x_0) = (x - x_0)^{\top} A(x - x_0)$$

The idea of adaptive metrics Given f(x) and a point x_0 . Define

 $B_{\varepsilon}(x_0) = \{x \in \mathbb{R}^n : d(x, x_0) = \varepsilon^2\}$ as the set of points with distance ε to x_0 . Here we presume the existence of a distance function $d(x, x_0)$.

$$x^* = \arg\min_{x \in B_{\mathcal{E}}(x_0)} f(x)$$

Then, we can define another steepest descent direction in terms of minimizer of function on a sphere:

$$s = \lim_{\varepsilon \to 0} \frac{x^* - x_0}{\varepsilon}$$

Let us assume that the distance is defined locally by some metric A:

$$d(x, x_0) = (x - x_0)^{\top} A(x - x_0)$$

Let us also consider first order Taylor approximation of a function f(x) near the point x_0 :

$$f(x_0 + \delta x) \approx f(x_0) + \nabla f(x_0)^{\top} \delta x$$
 (1)

Now we can explicitly pose a problem of finding s, as it was stated above.

$$\min_{\delta x \in \mathbb{R}^{\, \bowtie}} f(x_0 + \delta x)$$

s.t.
$$\delta x^{\top} A \delta x = \varepsilon^2$$

The idea of adaptive metrics Given f(x) and a point x_0 . Define

 $B_{\varepsilon}(x_0)=\{x\in\mathbb{R}^n:d(x,x_0)=\varepsilon^2\}$ as the set of points with distance ε to x_0 . Here we presume the existence of a distance function $d(x,x_0)$.

$$x^* = \arg\min_{x \in B_{\varepsilon}(x_0)} f(x)$$

Then, we can define another *steepest descent* direction in terms of minimizer of function on a sphere:

$$s = \lim_{\varepsilon \to 0} \frac{x^* - x_0}{\varepsilon}$$

Let us assume that the distance is defined locally by some metric A:

$$d(x, x_0) = (x - x_0)^{\top} A(x - x_0)$$

Let us also consider first order Taylor approximation of a function f(x) near the point x_0 :

$$f(x_0 + \delta x) \approx f(x_0) + \nabla f(x_0)^{\top} \delta x$$
 (1)

Now we can explicitly pose a problem of finding s, as it was stated above.

$$\min_{\delta x \in \mathbb{R}^{\, \bowtie}} f(x_0 + \delta x)$$

s.t.
$$\delta x^{\top} A \delta x = \varepsilon^2$$

Using equation (1 it can be written as:

$$\min_{\delta x \in \mathbb{R}^{\mathsf{K}}} \nabla f(x_0)^{\top} \delta x$$

$$\text{s.t. } \delta \boldsymbol{x}^{\top} A \delta \boldsymbol{x} = \boldsymbol{\varepsilon}^2$$

Given f(x) and a point x_0 . Define $B_{\varepsilon}(x_0)=\{x\in\mathbb{R}^n:d(x,x_0)=\varepsilon^2\}$ as the set of points with distance ε to x_0 . Here we presume the existence of a distance function $d(x,x_0)$.

$$x^* = \arg\min_{x \in B_{\varepsilon}(x_0)} f(x)$$

Then, we can define another *steepest descent* direction in terms of minimizer of function on a sphere:

$$s = \lim_{\varepsilon \to 0} \frac{x^* - x_0}{\varepsilon}$$

Let us assume that the distance is defined locally by some metric A:

$$d(x, x_0) = (x - x_0)^{\top} A(x - x_0)$$

Let us also consider first order Taylor approximation of a function f(x) near the point x_0 :

$$f(x_0 + \delta x) \approx f(x_0) + \nabla f(x_0)^{\top} \delta x$$
 (1)

Now we can explicitly pose a problem of finding s, as it was stated above.

$$\min_{\delta x \in \mathbb{R}^{ imes}} f(x_0 + \delta x)$$

Using equation (1 it can be written as:

$$\min_{\delta x \in \mathbb{R}^{ imes}}
abla f(x_0)^{ op} \delta x$$

st $\delta x^{ op} A \delta x = \varepsilon^2$

s t $\delta x^{\top} A \delta x - \varepsilon^2$

Using Lagrange multipliers method, we can easily

conclude, that the answer is:

$$\delta x = -\frac{2\varepsilon^2}{\nabla f(x_0)^{\top} A^{-1} \nabla f(x_0)} A^{-1} \nabla f$$

The idea of adaptive metrics Given f(x) and a point x_0 . Define

 $B_{\varepsilon}(x_0) = \{x \in \mathbb{R}^n : d(x, x_0) = \varepsilon^2\}$ as the set of points with distance ε to x_0 . Here we presume the existence of a

distance function
$$d(x,x_0)$$
.
$$x^* = \arg\min_{x \in B_{\varepsilon}(x_0)} f(x)$$

Then, we can define another steepest descent direction in terms of minimizer of function on a sphere:

$$s = \lim_{\varepsilon \to 0} \frac{x^* - x_0}{\varepsilon}$$

metric A:

$$d(x, x_0) = (x - x_0)^{\top} A(x - x_0)$$

 $d(x, x_0) = (x - x_0)^{\top} A(x - x_0)$

Let us also consider first order Taylor approximation of a function
$$f(x)$$
 near the point x_0 :

 $f(x_0 + \delta x) \approx f(x_0) + \nabla f(x_0)^{\top} \delta x$

Let us assume that the distance is defined locally by some

was stated above.

 $\min_{\delta x \in \mathbb{R}^{\, \times}} f(x_0 + \delta x)$ st $\delta x^{\top} A \delta x - \varepsilon^2$

Using equation (1 it can be written as:

$$\min_{x \in \mathcal{X}} \nabla f(x_0)^{\top} \delta_x$$

 $\min_{\delta x \in \mathbb{R}^{\, \bowtie}} \nabla f(x_0)^{\top} \delta x$

Now we can explicitly pose a problem of finding s, as it

$$\text{s.t. } \delta x^{\top} A \delta x = \varepsilon^2$$

Using Lagrange multipliers method, we can easily conclude, that the answer is:

$$\delta x = -\frac{2\varepsilon^2}{\nabla f(x_0)^{\top} A^{-1} \nabla f(x_0)} A^{-1} \nabla f$$

Which means, that new direction of steepest descent is nothing else, but $A^{-1}\nabla f(x_0)$. (1) . . . Indeed, if the space is isotropic and A = I, we

immediately have gradient descent formula, while Newton

method uses local Hessian as a metric matrix. ♥ ೧ • 14

$$f o \min$$

Newton method

 $f \to \min_{x,y,z}$

Quasi-Newton methods

For the classic task of unconditional optimization $f(x) \to \min_{x \in \mathbb{R}^n}$ the general scheme of iteration method is written as:

$$x_{k+1} = x_k + \alpha_k d_k$$

For the classic task of unconditional optimization $f(x) \to \min_{x \in \mathbb{R}^n}$ the general scheme of iteration method is written as:

$$x_{k+1} = x_k + \alpha_k d_k$$

In the Newton method, the d_k direction (Newton's direction) is set by the linear system solution at each step:

$$B_k d_k = -\nabla f(x_k), \quad B_k = \nabla^2 f(x_k)$$

For the classic task of unconditional optimization $f(x) \to \min_{x \in \mathbb{R}^n}$ the general scheme of iteration method is written as:

$$x_{k+1} = x_k + \alpha_k d_k$$

In the Newton method, the d_k direction (Newton's direction) is set by the linear system solution at each step:

$$B_k d_k = -\nabla f(x_k), \quad B_k = \nabla^2 f(x_k)$$

i.e. at each iteration it is necessary to compute hessian and gradient and solve linear system.

For the classic task of unconditional optimization $f(x) \to \min_{x \in \mathbb{R}^n}$ the general scheme of iteration method is written as:

$$x_{k+1} = x_k + \alpha_k d_k$$

In the Newton method, the d_k direction (Newton's direction) is set by the linear system solution at each step:

$$B_k d_k = -\nabla f(x_k), \quad B_k = \nabla^2 f(x_k)$$

i.e. at each iteration it is necessary to compute hessian and gradient and solve linear system.

Note here that if we take a single matrix of $B_k = I_n$ as B_k at each step, we will exactly get the gradient descent method.

The general scheme of quasi-Newton methods is based on the selection of the B_k matrix so that it tends in some sense at $k \to \infty$ to the truth value of the Hessian $\nabla^2 f(x_k)$.

Let $x_0 \in \mathbb{R}^n$, $B_0 \succ 0$. For $k = 1, 2, 3, \ldots$, repeat:

1. Solve $B_k d_k = -\nabla f(x_k)$

Let $x_0 \in \mathbb{R}^n$, $B_0 \succ 0$. For $k = 1, 2, 3, \ldots$, repeat:

- 1. Solve $B_k d_k = -\nabla f(x_k)$
- 2. Update $x_{k+1} = x_k + \alpha_k d_k$

Let $x_0 \in \mathbb{R}^n$, $B_0 \succ 0$. For $k = 1, 2, 3, \ldots$, repeat:

- 1. Solve $B_k d_k = -\nabla f(x_k)$
- 2. Update $x_{k+1} = x_k + \alpha_k d_k$
- 3. Compute B_{k+1} from B_k

Let $x_0 \in \mathbb{R}^n$, $B_0 \succ 0$. For $k = 1, 2, 3, \ldots$, repeat:

- 1. Solve $B_k d_k = -\nabla f(x_k)$
- 2. Update $x_{k+1} = x_k + \alpha_k d_k$
- 3. Compute B_{k+1} from B_k

Let $x_0 \in \mathbb{R}^n$, $B_0 \succ 0$. For $k = 1, 2, 3, \ldots$, repeat:

- 1. Solve $B_k d_k = -\nabla f(x_k)$
- 2. Update $x_{k+1} = x_k + \alpha_k d_k$
- 3. Compute B_{k+1} from B_k

Different quasi-Newton methods implement Step 3 differently. As we will see, commonly we can compute $(B_{k+1})^{-1}$ from $(B_k)^{-1}$.

Let $x_0 \in \mathbb{R}^n$, $B_0 \succ 0$. For $k = 1, 2, 3, \ldots$, repeat:

- 1. Solve $B_k d_k = -\nabla f(x_k)$
- 2. Update $x_{k+1} = x_k + \alpha_k d_k$
- 3. Compute B_{k+1} from B_k

Different quasi-Newton methods implement Step 3 differently. As we will see, commonly we can compute $(B_{k+1})^{-1}$ from $(B_k)^{-1}$.

Basic Idea: As B_k already contains information about the Hessian, use a suitable matrix update to form B_{k+1} .

Let $x_0 \in \mathbb{R}^n$, $B_0 \succ 0$. For $k = 1, 2, 3, \ldots$ repeat:

- 1. Solve $B_k d_k = -\nabla f(x_k)$
- 2. Update $x_{k+1} = x_k + \alpha_k d_k$
- 3. Compute B_{k+1} from B_k

Different quasi-Newton methods implement Step 3 differently. As we will see, commonly we can compute $(B_{k+1})^{-1}$ from $(B_k)^{-1}$.

Basic Idea: As B_k already contains information about the Hessian, use a suitable matrix update to form B_{k+1} .

Reasonable Requirement for B_{k+1} (motivated by the secant method):

$$\nabla f(x_{k+1}) - \nabla f(x_k) = B_{k+1}(x_{k+1} - x_k) = B_{k+1}d_k$$
$$\Delta y_k = B_{k+1}\Delta x_k$$

Let $x_0 \in \mathbb{R}^n$, $B_0 \succ 0$. For $k = 1, 2, 3, \ldots$ repeat:

- 1. Solve $B_k d_k = -\nabla f(x_k)$
- 2. Update $x_{k+1} = x_k + \alpha_k d_k$
- 3. Compute B_{k+1} from B_k

Different quasi-Newton methods implement Step 3 differently. As we will see, commonly we can compute $(B_{k+1})^{-1}$ from $(B_k)^{-1}$.

Basic Idea: As B_k already contains information about the Hessian, use a suitable matrix update to form B_{k+1} .

Reasonable Requirement for B_{k+1} (motivated by the secant method):

$$\nabla f(x_{k+1}) - \nabla f(x_k) = B_{k+1}(x_{k+1} - x_k) = B_{k+1}d_k$$
$$\Delta y_k = B_{k+1}\Delta x_k$$

In addition to the secant equation, we want:

• B_{k+1} to be symmetric

Let $x_0 \in \mathbb{R}^n$, $B_0 \succ 0$. For $k = 1, 2, 3, \ldots$ repeat:

- 1. Solve $B_k d_k = -\nabla f(x_k)$
- 2. Update $x_{k+1} = x_k + \alpha_k d_k$
- 3. Compute B_{k+1} from B_k

Different quasi-Newton methods implement Step 3 differently. As we will see, commonly we can compute $(B_{k+1})^{-1}$ from $(B_k)^{-1}$.

Basic Idea: As B_k already contains information about the Hessian, use a suitable matrix update to form B_{k+1} .

Reasonable Requirement for B_{k+1} (motivated by the secant method):

$$\nabla f(x_{k+1}) - \nabla f(x_k) = B_{k+1}(x_{k+1} - x_k) = B_{k+1}d_k$$
$$\Delta y_k = B_{k+1}\Delta x_k$$

In addition to the secant equation, we want:

- B_{k+1} to be symmetric
- B_{k+1} to be "close" to B_k

Let $x_0 \in \mathbb{R}^n$, $B_0 \succ 0$. For $k = 1, 2, 3, \ldots$ repeat:

- 1. Solve $B_k d_k = -\nabla f(x_k)$
- 2. Update $x_{k+1} = x_k + \alpha_k d_k$
- 3. Compute B_{k+1} from B_k

Different quasi-Newton methods implement Step 3 differently. As we will see, commonly we can compute $(B_{k+1})^{-1}$ from $(B_k)^{-1}$.

Basic Idea: As B_k already contains information about the Hessian, use a suitable matrix update to form B_{k+1} .

Reasonable Requirement for B_{k+1} (motivated by the secant method):

$$\nabla f(x_{k+1}) - \nabla f(x_k) = B_{k+1}(x_{k+1} - x_k) = B_{k+1}d_k$$
$$\Delta y_k = B_{k+1}\Delta x_k$$

In addition to the secant equation, we want:

- B_{k+1} to be symmetric
 - B_{k+1} to be "close" to B_k
 - $B_k \succ 0 \Rightarrow B_{k+1} \succ 0$

Let's try an update of the form:

$$B_{k+1} = B_k + auu^T$$

Let's try an update of the form:

$$B_{k+1} = B_k + auu^T$$

The secant equation $B_{k+1}d_k = \Delta y_k$ yields:

$$(au^T d_k)u = \Delta y_k - B_k d_k$$

Let's try an update of the form:

$$B_{k+1} = B_k + auu^T$$

The secant equation $B_{k+1}d_k = \Delta y_k$ yields:

$$(au^T d_k)u = \Delta y_k - B_k d_k$$

This only holds if u is a multiple of $\Delta y_k - B_k d_k$. Putting $u = \Delta y_k - B_k d_k$, we solve the above,

$$a = \frac{1}{(\Delta y_k - B_k d_k)^T d_k},$$

Let's try an update of the form:

$$B_{k+1} = B_k + auu^T$$

The secant equation $B_{k+1}d_k = \Delta y_k$ yields:

$$(au^T d_k)u = \Delta y_k - B_k d_k$$

This only holds if u is a multiple of $\Delta y_k - B_k d_k$. Putting $u = \Delta y_k - B_k d_k$, we solve the above,

$$a = \frac{1}{(\Delta y_k - B_k d_k)^T d_k},$$

which leads to

$$B_{k+1} = B_k + \frac{(\Delta y_k - B_k d_k)(\Delta y_k - B_k d_k)^T}{(\Delta y_k - B_k d_k)^T d_k}$$

called the symmetric rank-one (SR1) update or Broyden method.

 $f \to \min_{x,y,z}$ Quasi-Newton methods

Symmetric Rank-One Update with inverse

How can we solve

$$B_{k+1}d_{k+1} = -\nabla f(x_{k+1}),$$

in order to take the next step? In addition to propagating B_k to B_{k+1} , let's propagate inverses, i.e., $C_k = B_k^{-1}$ to $C_{k+1} = (B_{k+1})^{-1}$.

Sherman-Morrison Formula:

The Sherman-Morrison formula states:

$$(A + uv^{T})^{-1} = A^{-1} - \frac{A^{-1}uv^{T}A^{-1}}{1 + v^{T}A^{-1}u}$$

Thus, for the SR1 update, the inverse is also easily updated:

$$C_{k+1} = C_k + \frac{(d_k - C_k \Delta y_k)(d_k - C_k \Delta y_k)^T}{(d_k - C_k \Delta y_k)^T \Delta y_k}$$

In general, SR1 is simple and cheap, but it has a key shortcoming: it does not preserve positive definiteness.

Davidon-Fletcher-Powell Update

We could have pursued the same idea to update the inverse C:

$$C_{k+1} = C_k + auu^T + bvv^T.$$

Davidon-Fletcher-Powell Update

We could have pursued the same idea to update the inverse C:

$$C_{k+1} = C_k + auu^T + bvv^T.$$

Multiplying by Δy_k , using the secant equation $d_k = C_k \Delta y_k$, and solving for a, b, yields:

$$C_{k+1} = C_k - \frac{C_k \Delta y_k \Delta y_k^T C_k}{\Delta y_k^T C_k \Delta y_k} + \frac{d_k d_k^T}{\Delta y_k^T d_k}$$

Woodbury Formula Application

Woodbury then shows:

$$B_{k+1} = \left(I - \frac{\Delta y_k d_k^T}{\Delta y_L^T d_k}\right) B_k \left(I - \frac{d_k \Delta y_k^T}{\Delta y_L^T d_k}\right) + \frac{\Delta y_k \Delta y_k^T}{\Delta y_L^T d_k}$$

This is the Davidon-Fletcher-Powell (DFP) update. Also cheap: $O(n^2)$, preserves positive definiteness. Not as popular as BFGS.

 $f \to \min_{x,y,z}$ Quasi-Newton methods

Broyden-Fletcher-Goldfarb-Shanno update

Let's now try a rank-two update:

$$B_{k+1} = B_k + auu^T + bvv^T.$$

Broyden-Fletcher-Goldfarb-Shanno update

Let's now try a rank-two update:

$$B_{k+1} = B_k + auu^T + bvv^T.$$

The secant equation $\Delta y_k = B_{k+1}d_k$ yields:

$$\Delta y_k - B_k d_k = (au^T d_k)u + (bv^T d_k)v$$

Broyden-Fletcher-Goldfarb-Shanno update

Let's now try a rank-two update:

$$B_{k+1} = B_k + auu^T + bvv^T.$$

The secant equation $\Delta y_k = B_{k+1}d_k$ yields:

$$\Delta y_k - B_k d_k = (au^T d_k)u + (bv^T d_k)v$$

Putting $u = \Delta y_k$, $v = B_k d_k$, and solving for a, b we get:

$$B_{k+1} = B_k - \frac{B_k d_k d_k^T B_k}{d_k^T B_k d_k} + \frac{\Delta y_k \Delta y_k^T}{d_k^T \Delta y_k}$$

called the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update.

 $f \to \min_{x,y,z}$ Quasi-Newton methods

Broyden-Fletcher-Goldfarb-Shanno update with inverse

Woodbury Formula

The Woodbury formula, a generalization of the Sherman-Morrison formula, is given by:

$$(A + UCV)^{-1} = A^{-1} - A^{-1}U(C^{-1} + VA^{-1}U)^{-1}VA^{-1}$$

Broyden-Fletcher-Goldfarb-Shanno update with inverse

Woodbury Formula

The Woodbury formula, a generalization of the Sherman-Morrison formula, is given by:

$$(A + UCV)^{-1} = A^{-1} - A^{-1}U(C^{-1} + VA^{-1}U)^{-1}VA^{-1}$$

Applied to our case, we get a rank-two update on the inverse C:

$$C_{k+1} = C_k + \frac{(d_k - C_k \Delta y_k) d_k^T}{\Delta y_k^T d_k} + \frac{d_k (d_k - C_k \Delta y_k)^T}{\Delta y_k^T d_k} - \frac{(d_k - C_k \Delta y_k)^T \Delta y_k}{(\Delta y_k^T d_k)^2} d_k d_k^T$$

$$C_{k+1} = \left(I - \frac{d_k \Delta y_k^T}{\Delta y_k^T d_k}\right) C_k \left(I - \frac{\Delta y_k d_k^T}{\Delta y_k^T d_k}\right) + \frac{d_k d_k^T}{\Delta y_k^T d_k}$$

This formulation ensures that the BFGS update, while comprehensive, remains computationally efficient, requiring $O(n^2)$ operations. Importantly, BFGS update preserves positive definiteness. Recall this means $B_k \succ 0 \Rightarrow B_{k+1} \succ 0$. Equivalently, $C_k \succ 0 \Rightarrow C_{k+1} \succ 0$

Code

• Open In Colab

Code

- Open In Colab
- Comparison of quasi Newton methods

Code

Open In Colab

- Comparison of quasi Newton methods
- Some practical notes about Newton method

