KGC: Knowledge Graph Embedding

虞扬

Github@yuto3o

Keywords: KRL, multi-relation learning and statistical relational learning;

Task

定义: 将知识图谱中实体/关系的语义嵌入到低维向量空间;

关联:通过学习的向量表达使得图谱补全中链接预测的判别过程可计算;

任务分解: Representation Space + Scoring Function + Encoding Models + Auxiliary Information;

目的:在三元组构成的图谱 $(h \in \mathbf{E}, t \in \mathbf{R}, r \in \mathbf{E})$ 中构建一个打分,使得真实存在的三元组分数比认为构造假的高

Simple Linear Model

TransE

$$\|-\|h+r-t\|$$

TransX (TranH, TranR, TransD)

$$- \|g_{r,1}(h) + r - g_{r,2}(t)\|$$

DistMult

ComplEx

$$Re(< h, r, \bar{t} >)$$

Relation

• Symmetry / Antisymetry (对称)

$$(h,r,t)\in G, (t,r,h)\in G$$

e.g. (A, get_married_with, B), (B, get_married_with, A)

• Inversion (可逆)

$$(h,r,t)\in G, (t,r^{-1},h)\in G$$

e.g. (A, is_son_of, B), (B, is_father_of, A)

• Composition (组合)

$$(h,r_1,t_1),(h_n,r_n,t) o (h,r,t)$$

e.g. (A, is_the_mother_of, B), (B, is_son_of, C) \rightarrow (A, is_the_wife_of, B)

With Score Fuction

• Symmetry / Antisymetry (对称)

$$f_r(h,t) = f_r(t,h)$$

$$f_r(h,t)
eq f_r(t,h)$$

• Inversion (可逆)

$$f_r(h,t)=f_{r^{-1}}(t,h)$$

• Composition (组合)

$$f_{r_1}(h,z) \cap f_{r_2}(z,t) => f_r(h,t)$$

Analysis-TransE

$$egin{align} f_r(h,t) &= -\|h+r-t\| \ &= -(\|h\|_2^2 + \|r\|_2^2 + \|t\|_2^2 - 2(h^Tt + r^T(t-h))) \ &= > h^Tt + r^T(t-h) \ \end{gathered}$$

- 推得: -r = r。当且仅当r=0时,满足对称关系约束,因此TransE并不能有区分地建模任-对称关系;其他关系都能够建模。
- 推得: $-r_1=r_2$ 。能够满足可逆关系
- 推得: $h + (r_1 + r_2) = t$ 。能够满足组合关系

Analysis-DistMult

$$f_r(h,t) = h^T M_r t$$

- 明显的,总存在 $h^TM_rt=t^TM_rh$ 。因此表示对称关系,无法描述非对称关系和可逆关系。
- 往往会将h,t限制为标准向量,则有 $h^TM_rt \approx 1 => h^TM_r \approx t^T$,因此有 $h^TM_{r_1} \approx z^T, z^TM_{r_2} \approx t^T => h^TM_{r_1}M_{r_2} \approx t^T$,能够描述组合关系。

Analysis

Method	Score Function	Symmetry	Anti-	Inversion	Composition
TransE	$-\left\ h+r-t ight\ $	X	O	0	0
TransX	$-\left\ g_{r,1}(h) + r - g_{r,2}(t)\right\ $	0	0	X	X
DistMult	< h,r,t>	0	X	X	0
ComplEx	$Re(< h, r, ar{t} >)$	0	O	O	X

RotatE

$$t=h\circ r, where \ |ri|=1,$$

- r 是对称关系时,当且仅当r的每一个分量 r_i 满足: $r_i=e^{0/i\pi}=\pm 1$;
- 两个关系r1和r2是逆关系时,当且仅当他们的嵌入是共轭向量: $r_2=ar{r_1}$;
- ・ 某个关系 $r_3=e^{i\theta_3}$ 是其他两个关系 $r_1=e^{i\theta_1}$ 和 $r_2=e^{i\theta_2}$ 的组合时,当且仅当 $r_3=r_1\circ r_2$ (即, $\theta_3=\theta_1+\theta_2$).

Visualization

(b) RotatE models r as rotation in complex plane.

(c) RotatE: an example of modeling symmetric relations \mathbf{r} with $r_i = -1$

Figure 1: Illustrations of TransE and RotatE with only 1 dimension of embedding.

TuckER

$$W \times_1 h \times_2 r \times_3 h$$

Figure 2: Constraints imposed on the values of core tensor $\mathcal{Z} \in \mathbb{R}^{d_e \times d_e \times d_e}$ for DistMult and $\mathcal{Z} \in \mathbb{R}^{2d_e \times 2d_e \times 2d_e}$ for ComplEx and SimplE. Elements that are set to 0 are represented in white.

NN-Based Method

ConvE

$$f(vec(f([h;r]*w))W)t$$

ConvKB

$$cat(f([h;r;t]*w))W$$

SACN

HypER

$$f(vec(h*vec^{-1}(rH))W)t$$

其中,*为卷积操作,vec(.)为reshape为向量,[;;]为向量拼接

Inference

	WN18RR				FB15k-237					
	MR	MRR	H@10	H@3	H@1	MR	MRR	H@10	H@3	H@1
TransE	3384	.226	.501			357	.294	.465		
DistMult	5110	.430	.490	.440	.390	254	.241	.419	.263	.155
ComplEx	5261	.440	.510	.460	.410	339	.247	.428	.275	.158
RotatE	_	_	_	_		185	.297	.480	.328	.205
TuckER		.470	.526	.482	.443		.358	.544	.394	.266
ConvE	4187	.430	.520	.440	.400	244	.325	.501	.356	.237
HypER	5798	.465	.522	.477	.436	250	.341	.520	.376	. 252

Others

A. '1v1' versus '1vN'

- Faster Inferene
- FROM Ranking-based loss TO Multi-Label Classification

B. Unified Strategy