Analytical Geometry and Linear Algebra I, Class #10

Innopolis University, October 2022

- 1. Determine types of curves given by the following equations¹. For each of the curves, find its canonical coordinate system (i.e. indicate the coordinates of origin and new basis vectors in the initial coordinate system) and its canonical equation.
 - (a) $9x^2 16y^2 6x + 8y 144 = 0$;
 - (b) $9x^2 + 4y^2 + 6x 4y 2 = 0$;
 - (c) $12x^2 12x 32y 29 = 0$;
 - (d) xy + 2x + y = 0;
 - (e) $5x^2 + 12xy + 10y^2 6x + 4y 1 = 0$;
 - (f) $8x^2 + 34xy + 8y^2 + 18x 18y 17 = 0$;
 - (g) $25x^2 30xy + 9y^2 + 68x + 19 = 0$;
 - (h) $x^2 + 2xy + y^2 5x 5y + 4 = 0$.
- 2. Prove that a curve given by $34x^2 + 24xy + 41y^2 44x + 58y + 1 = 0$ is an ellipse. Find the major and minor axes of this ellipse, its eccentricity, coordinates of its center and foci. Find the equations of axes and directrices of this ellipse.
- 3. Prove that a curve given by $7x^2 + 48xy 7y^2 62x 34y + 98 = 0$ is a hyperbola. Find the eccentricity of this hyperbola, coordinates of its center and foci. Find the equations of axes, asymptotes and directrices of this hyperbola.
- 4. Prove that a curve given by $x^2 + 2xy + y^2 + x = 0$ is a parabola. Find the coordinates of its vertex and focus. Find the equations of axis and directrix of this parabola.
- 5. Find the equations of lines tangent to curve $6xy + 8y^2 12x 26y + 11 = 0$ that are
 - (a) parallel to line 6x + 17y 4 = 0;
 - (b) perpendicular to line 41x 24y + 3 = 0;
 - (c) parallel to line y = 2.
- 6. Find the equations of lines tangent to curve $5x^2 + 6xy + 5y^2 16x 16y 16 = 0$ that pass through
 - (a) point (3; 3);
 - (b) point $(0; -\frac{4}{5});$
 - (c) point (0; 1).

¹In all problems in this section the coordinate system is considered to be Cartesian.