Q1. The ratio of two quantities is dimensionless but not unitless. Which of the following is a valid example?
A. Angle in radians B. Relative density C. Temperature ratio in kelvin D. Refractive index
Answer: C Explanation: The ratio of two temperatures in kelvin is dimensionless because the units cancel, but it is not unitless since kelvin is a base unit.
Q2. The SI unit of the coefficient of viscosity (written as "eta") is:
A. Pa·s B. N·s/m C. kg·m ⁻¹ ·s ⁻² D. dyne·s/cm ²
Answer: A Explanation: Viscosity $\eta = (Force / Area) \times (dx / dv)$ = $(N / m^2) \times s = Pa \cdot s$
Q3. Which of the following pairs has the same dimensions but different SI units?
A. Work and torque B. Pressure and energy C. Power and energy D. Impulse and force
Answer: A Explanation: Work and torque both have the same dimensions: $[M\ L^2\ T^{-2}]$
Work has SI unit: joule (J = N·m)

NEET CHAPTERS PRO Page 1

Torque also has unit $N \cdot m$, but represents rotational effect and is a vector So, dimensions are same, but physical meaning and usage are different.

Q4. Which of the following physical quantities has an SI unit that is not derived, i.e., it is a base unit?
A. Luminous intensity
B. Electric potential
C. Heat
D. Velocity
Answer: A
Explanation:
Luminous intensity is a base physical quantity. Its SI unit is candela (cd), which is a base unit.
Q5. The SI unit of solid angle is:
A. Radian
B. Steradian
C. Degree
D. Dioptre
Answer: B
Explanation:
Solid angle is measured in steradians (sr), the SI unit for 3D angular measure.
Q6. A student writes the unit of Planck's constant as "erg·s". What is the equivalent SI unit?
A. J·s
B. N·s
C. kg·m²/s
D. W·s
Answer: A
Explanation:
1 erg = 10^{-7} joule
So, $erg \cdot s = 10^{-7} J \cdot s$
Hence, the correct SI unit of Planck's constant is joule-second (J·s)
Q7. The dimensional formula of pressure is:

A.
$$[M L^{-1} T^{-2}]$$

C.
$$[M L^2 T^{-2}]$$

D.
$$[M L^{-2} T^{-2}]$$

Answer: D

Explanation:

Pressure = Force / Area

= (Mass × Acceleration) / Area

$$= [M L T^{-2}] / [L^2] = [M L^{-1} T^{-2}]$$

Q8. Which of the following is dimensionally consistent?

A.
$$v^2 = u^2 + 2as$$

B.
$$v = u + at^2$$

C.
$$v^2 = u^2 + 2a$$

$$D. s = ut + at$$

Answer: A

Explanation:

Check each term's dimensions:

$$v^2 = [L^2 T^{-2}]$$

$$u^2 = [L^2 T^{-2}]$$

$$2as = [L T^{-2}] \times [L] = [L^2 T^{-2}]$$

All terms have same dimensions.

Q9. The dimensional formula of surface tension is:

Answer: C

Explanation:

Surface tension = Force / Length

 $= [M L T^{-2}] / [L] = [M L^{0} T^{-2}]$

Q10. Which of the following physical quantities has the same dimensional formula as energy?

- A. Force
- B. Torque
- C. Pressure
- D. Power

Answer: B

Explanation:

Energy = $[M L^2 T^{-2}]$

Torque = Force × Distance = $[M L T^{-2}] \times [L] = [M L^2 T^{-2}]$

Q11. Which quantity has the same dimensions as impulse?

- A. Force
- B. Energy
- C. Momentum
- D. Pressure

Answer: C

Explanation:

Impulse = Force \times Time = [M L T⁻²] \times [T] = [M L T⁻¹]

Momentum = Mass × Velocity = $[M] \times [L T^{-1}] = [M L T^{-1}]$

Q12. Which of the following equations is dimensionally incorrect?

- A. T = $2\pi \sqrt{L/g}$
- B. $E = mc^2$
- C. $F = ma^2$
- D. v = u + at

Answer: C

Explanation:

 $F = ma^2 \Rightarrow Dimensions = M \times (L T^{-2})^2 = [M L^2 T^{-4}]$

But Force = $[M L T^{-2}]$, so mismatch \rightarrow Incorrect.

Q13. What is the dimensional formula of Planck's constant?

Q15. Which quantity is dimensionless?

- A. Strain
- B. Stress
- C. Energy
- D. Force

Answer: A

Explanation:

Strain = Change in length / Original length \rightarrow [L] / [L] = No units

Hence, dimensionless.

Q16. The unit of a quantity is given as joule-second. Identify the physical quantity.

- A. Planck's constant
- B. Work

NEET CHAPTERS PRO

- C. Energy
- D. Angular momentum

Answer: D

Explanation:

Angular momentum = Moment of inertia × Angular velocity

= $[M L^2] \times [T^{-1}] = [M L^2 T^{-1}] \rightarrow Joule-second$

Q17. Which of the following quantities has the dimensional formula [M° L° T°]?

- A. Relative density
- B. Density
- C. Pressure
- D. Force

Answer: A

Explanation:

Relative density = Density of substance / Density of water

→ No units → Dimensionless

Q18. Dimensional formula of gravitational constant (G) is:

- A. $[M^{-1} L^3 T^{-2}]$
- B. $[M L^3 T^{-2}]$
- C. $[M^{-2} L^3 T^{-2}]$
- D. $[M^{-1} L^2 T^2]$

Answer: A

Explanation:

$$F = G (m_1 m_2 / r^2) \Rightarrow G = F \times r^2 / m^2$$

$$= [M_1 T^{-2}] \times [1^2] / [M^2] = [M^{-1}]^3 T^{-2}$$

= $[M L T^{-2}] \times [L^2] / [M^2] = [M^{-1} L^3 T^{-2}]$

Q19. Which of the following quantities has same dimensions as work?

- A. Moment of inertia
- B. Power
- C. Torque
- D. Momentum

Answer: C Explanation: Torque = Force \times Perpendicular distance = $[M L T^{-2}] \times [L] = [M L^2 T^{-2}] \rightarrow$ Same as Work
Q20. The true value of a quantity is 9.80 m/s², and the measured value is 9.65 m/s². The absolute error is:
A. 0.05 B. 0.10 C. 0.15 D. 0.25
Answer: C Explanation: Absolute error = True - Measured = 9.80 - 9.65 = 0.15
Q21. If the absolute error in measuring length is 0.02 m and the length is 2.00 m, then the percentage error is
A. 1% B. 0.5% C. 0.02% D. 2%
Answer: B Explanation: Percentage error = $(0.02 / 2.00) \times 100 = 1\%$
Q22. Which of the following has maximum possible error when added?
A. 10.2 + 3.58 B. 100.03 + 0.004 C. 23.1 + 5.342 D. 3.2 + 1.75

Answer: A Explanation:

Final result should match the least precise decimal place (1 decimal). Max error comes from large rounding.

Q23. If two quantities A = 5.0 ± 0.1 and B = 2.0 ± 0.2 , then the error in A + B is: A. ±0.1 B. ±0.2 C. ±0.3 D. ±0.02 Answer: C **Explanation:** In addition: total error = error in A + error in B = $0.1 + 0.2 = \pm 0.3$ Q24. If A = 10 ± 0.2 and B = 5 ± 0.1 , the maximum relative error in A/B is: A. 0.02 B. 0.03 C. 0.04 D. 0.05 Answer: D **Explanation:** Relative error = $(\Delta A/A) + (\Delta B/B) = (0.2/10) + (0.1/5) = 0.02 + 0.02 = 0.04$ (or 4%) Q25. If A = 4.0 ± 0.2 and we calculate A^2 , the percentage error is: A. 5% B. 10% C. 20% D. 40% Answer: B Explanation: If $y = A^n$, % error = $n \times$ (% error in A) % error in A = $(0.2/4.0) \times 100 = 5\%$ So, % error in $A^2 = 2 \times 5 = 10\%$ Q26. The least count of a scale that reads up to 1 mm is:

Page 8

A. 0.1 mm B. 0.5 mm

NEET CHAPTERS PRO

For multiplication/division: fractional error in Z = $\Delta A/A + \Delta B/B$
Q30. If a measurement is 2.50 cm, how many significant figures does it have?
A. 1 B. 2 C. 3 D. 4
Answer: C Explanation: Trailing zero after decimal counts \rightarrow 2.50 has 3 significant figures
Q31. The quantity 0.00340 has how many significant figures?
A. 2 B. 3 C. 4 D. 5
Answer: B Explanation: Leading zeros don't count. 3, 4, and final 0 after decimal \rightarrow 3 sig figs
Q32. Which of the following is dimensionally incorrect?
A. Velocity = Distance / Time B. Work = Force × Distance C. Power = Work × Time D. Acceleration = Velocity / Time
Answer: C Explanation: Power = Work / Time, not × Time ⇒ Incorrect dimensions.
Q33. If length = 4.0 ± 0.2 m and time = 2.0 ± 0.1 s, what is the error in speed?
A. 0.1 m/s

```
B. 0.2 m/s
C. 0.3 m/s
D. 0.4 m/s
Answer: B
Explanation:
Speed = L/T
Relative error = 0.2/4.0 + 0.1/2.0 = 0.05 + 0.05 = 0.10
Speed = 2.0 \text{ m/s}
Absolute error = 10\% of 2.0 = 0.2 m/s
Q34. If density is calculated from m/V, and m has 3% error, V has 2% error, then error in density is:
A. 1%
B. 2%
C. 5%
D. 6%
Answer: C
Explanation:
% error in density = 3% + 2% = 5%
Q35. If R = A^2B / C^3, the % error in R is:
A. 2(\Delta A/A) + \Delta B/B + 3(\Delta C/C)
B. \Delta A + \Delta B - \Delta C
C. \Delta A^2 + \Delta B^2 - \Delta C^3
D. \Delta A/A + \Delta B/B - \Delta C/C
Answer: A
Explanation:
Use exponents: \% error = n(\Delta A/A) + m(\Delta B/B) + ...
So here = 2(\Delta A/A) + \Delta B/B + 3(\Delta C/C)
Q36. A value is measured as 5.60. Rounding it to 2 significant digits gives:
A. 5.5
B. 5.6
```

NEET CHAPTERS PRO Page 11

C. 6.0

Answer: B		
Explanation:		

First two digits: 5.6 → Already 2 significant figures

Q37. The mean absolute error is best described as:

- A. Minimum possible error
- B. Average of all errors
- C. Largest error

D. 5.0

D. Standard deviation

Answer: B Explanation:

Mean absolute error = average of individual absolute errors.

Q38. A physical quantity X is found using:

$$X = P^2Q / R$$
.

If % errors in P, Q and R are 2%, 1%, and 3% respectively, then % error in X is:

- A. 8%
- B. 7%
- C. 6%
- D. 5%

Answer: C Explanation:

% error in X = 2(2%) + 1% + 3% = 6%

Q39. Which type of error cannot be reduced by taking multiple measurements?

- A. Random error
- B. Instrumental error
- C. Systematic error
- D. Personal error

Answer: C

NEET CHAPTERS PRO

Page 12

Explanation: Systematic error stays constant in every trial \rightarrow not reduced by repetition.
Q40. Which device gives least count of 0.01 cm?
A. Meter scale B. Vernier caliper C. Screw gauge D. Measuring tape
Answer: B Explanation: Vernier caliper → typical least count = 0.01 cm
Q41. The resistance of a wire is measured as R = $5.00 \pm 0.05 \Omega$. The percentage error in R is:
A. 1% B. 5% C. 10% D. 0.5% Answer: A Explanation: Percentage error = (0.05 / 5.00) × 100 = 1%
Q42. The quantity Q is given by $Q = A^2 / VB$. If the percentage errors in A and B are 3% and 4% respectively, then the percentage error in Q is:
A. 4% B. 5% C. 8% D. 10% Answer: C Explanation: % error in Q = $2 \times \text{error in A} + (1/2) \times \text{error in B}$ = $2 \times 3 + 0.5 \times 4 = 6 + 2 = 8\%$

Q43. A student records the time of oscillation of a pendulum as 1.62 s using a stopwatch with least count 0.01 s. What is the relative error?

