1. Представьте двойной интеграл $\iint\limits_D f(x,y) dx dy$ в виде повторного интеграла

- а) с внешним интегрированием по x;
- б) с внешним интегрированием по у,

если область D ограничена указанными линиями.

1.1. $D: x + 2y = 0$, $x + 6y - 4 = 0$, $y = 0$	1.19. $D: x = -1$, $x = -2$, $y = 0$, $y = x^2$
1.2. $D: x^2 = 2y$, $5x + 2y - 6 = 0$	1.20. $D: y = 0$, $x^2 = -y$, $x = \sqrt{1 - y^2}$
1.3. $D: y = \sqrt{8 - x^2}, y = x, y = 0$	1.21.
	$D: y = 0, y = 1, y = x, x = -\sqrt{2 - y^2}$
1.4. $D: y = 0, x = 0, y = 1, y = \ln x$	1.22. $D: x = 0$, $y = 1$, $y = 4$, $y = -x$
1.5.	1.23.
$D: x^2 + y^2 = 4$, $x^2 + (y+2)^2 = 4$, $y = 0 \ (x \le 0)$	$D: x^2 + y^2 = 9$, $x^2 + (y-3)^2 = 9$, $x = 0 (x \le 0)$
1.6. $D: y = \sqrt{2 - x^2}, y = x^2$	1.24. $D: x = 0$, $x = -2$, $y = x^2 + 4$, $y = 0$
1.7. $D: y = x^2 - 2$, $y = x$	1.25. $D: x = 0$, $y = 0$, $y = 1$, $(x-3)^2 + y^2 = 1$
1.8. $D: y = 1, x = 0, y = 3, y = x$	1.26. $D: x = \sqrt{9 - y^2}, y = x, y = 0$
1.9. $D: y = x^2, y = -x^2 + 2, y = 0 \ (x \ge 0)$	1.27. $D: x + 2y - 6 = 0$, $x = y$, $y = 0$
1.10. $D: y = x, x = 0, y = \sqrt{9 - x^2}$	1.28. $D: 3x + y = 3$, $y = -x$, $y = 3$
1.11. $D: y^2 = 2 - x$, $y = x$	1.29. $D: x = 0$, $y = 1$, $y = -1$, $y = \log_{1/2}(x)$
1.12. $D: x = \sqrt{2 - y^2}, x = y^2, y = 0$	1.30. $D: y = 0, x = 0, y = 1, x = \sqrt{4 - y^2}$
1.13. $D: x = 0$, $y = \cos x$, $y = \sin x$	1.31. $D: y = 0$, $x + 2y - 12 = 0$, $y = \lg x$
1.14. $D: y = 1, x = 0, y = 3, y = -x$	1.32. $D: x^2 = 2 - y$, $x + y = 0$
1.15. $D: y = 0, y = x, y = -\sqrt{2 - x^2}$	1.33. $D: y = 3 - x^2, y = -2x$
1.16. $D: y = 0$, $x = \sqrt{y}$, $y = \sqrt{6 - x^2}$	1. 34. $D: y^2 = 2x$, $x^2 = 2y$, $x = 1$
1.17. $D: y = -x, y^2 = x + 3$	1.35. $D: y = \sqrt{4 - x^2}, y = \sqrt{3x}, x = 0$
1.18. $D: x=1, y=0, x=0, y=\sqrt{4-x^2}$	

2. Вычислите площадь плоской области D, ограниченной заданными линиями

2.1. a) $D: y^2 = 4x$, $x+y=3$, $y=0$ 6) $D:\begin{cases} x^2 + 4x + y^2 = 0, & x^2 + 6x + y^2 = 0, \\ y = 0, & y = x \end{cases}$	2.19. a) $D: y^2 = 4x$, $x = \frac{8}{y^2 + 4}$ 6) $D: \begin{cases} x^2 + 2x + y^2 = 0, & x^2 + 10x + y^2 = 0, \\ y = 0, & y = \sqrt{3} \cdot x \end{cases}$
2.2. a) $D: y = 6x^2, x + y = 2, x = 0$	2.20. a) $D: y = 4 - x^2, y = x^2 - 2x$
6) $D:\begin{cases} x^2 - 6y + y^2 = 0, & x^2 - 10y + y^2 = 0, \\ x = 0, & y = -x \end{cases}$	$x^2 - 2y + y^2 = 0, \ x^2 - 4y + y^2 = 0,$
x = 0, y = -x	6) $D: \begin{cases} x^2 - 2y + y^2 = 0, & x^2 - 4y + y^2 = 0, \\ y = -\frac{x}{\sqrt{3}}, & y = -\sqrt{3} \cdot x \end{cases}$
2.3. a) $D: y^2 = x + 2$, $x = 2$	2.21. a) $D: x = y^2 + 1$, $x + y = 3$

6) $D:\begin{cases} x^2 + 2y + y^2 = 0, & x^2 + 4y + y^2 = 0, \\ x = 0, & y = \sqrt{3} \cdot x \end{cases}$	6) $D: \begin{cases} x^2 - 2x + y^2 = 0, & x^2 - 6x + y^2 = 0, \\ y = -\frac{x}{\sqrt{3}}, & y = -\sqrt{3} \cdot x \end{cases}$
$\begin{cases} x = 0, \ y = \sqrt{3} \cdot x \end{cases}$	$y = -\frac{x}{\sqrt{3}}, y = -\sqrt{3} \cdot x$
2.4. a) $D: x = -2y^2$, $x = 1 - 3y^2$, $x = 0$, $y = 0$	2.22. a) $D: x^2 = 3y$, $y^2 = 3x$
6) $D:\begin{cases} x^2 - 4y + y^2 = 0, & x^2 - 6y + y^2 = 0, \\ x = 0, & y = -\sqrt{3} \cdot x \end{cases}$	$\begin{cases} x^2 + 2x + y^2 = 0, \ x^2 + 8x + y^2 = 0, \end{cases}$
$x = 0, y = -\sqrt{3} \cdot x$	6) $D: \begin{cases} x^2 + 2x + y^2 = 0, & x^2 + 8x + y^2 = 0, \\ y = \frac{x}{\sqrt{3}}, & y = \sqrt{3} \cdot x \end{cases}$
2.5. a) $D: x = \sqrt{49 - y^2}$, $x = 7 - \sqrt{49 - y^2}$	2.23. a) $D: x = \cos y$, $x = y + 1$, $x = 0$
6) $D:\begin{cases} x^2 + 2y + y^2 = 0, & x^2 + 6y + y^2 = 0, \\ x = 0, & y = -x/\sqrt{3} \end{cases}$	6) $D:\begin{cases} x^2 - 2x + y^2 = 0, & x^2 - 4x + y^2 = 0, \\ y = 0, & y = -x/\sqrt{3} \end{cases}$
2.6. a) $D: y = x^2 + 1$, $x + y = 3$	2.24. a) $D: x = 4 - y^2$, $x - y + 2 = 0$
6) $D:\begin{cases} x^2 - 2y + y^2 = 0, & x^2 - 10y + y^2 = 0, \\ y = -\sqrt{3} \cdot x, & y = -x/\sqrt{3} \end{cases}$	6) $D:\begin{cases} x^2 + 2x + y^2 = 0, & x^2 + 6x + y^2 = 0, \\ y = 0, & y = x/\sqrt{3} \end{cases}$
2.7. a) $D: y^2 = 4x$, $x + y = 3$, $y = 0$	2.25. a) $D: x = y^2$, $x = \sqrt{2 - y^2}$
6) $D:\begin{cases} x^2 + 4y + y^2 = 0, & x^2 + 10y + y^2 = 0, \\ y = -\sqrt{3} \cdot x, & y = -x/\sqrt{3} \end{cases}$	6) $D:\begin{cases} x^2 - 2x + y^2 = 0, & x^2 - 6x + y^2 = 0, \\ y = 0, & y = -x \end{cases}$
2.8. a) $D: y = \cos x, y = x+1, y = 0$	3 3
	2.26. a) $D: \frac{x^2}{4} + \frac{y^2}{1} = 1$, $y = \frac{x}{2}$, $y = 0$
6) $D:\begin{cases} x^2 - 2y + y^2 = 0, & x^2 - 4y + y^2 = 0, \\ x = 0, & y = -x \end{cases}$	6) $D:\begin{cases} x^2 + 2x + y^2 = 0, & x^2 + 4x + y^2 = 0, \\ y = 0, & y = \sqrt{3} \cdot x \end{cases}$
2.9. a) $D: x = \sqrt{4 - y^2}, y = \sqrt{3x}, x = 0$	2.27. a) $D: y = -\sqrt{64 - x^2}, y = \sqrt{64 - x^2 - 8}$
6) $D:\begin{cases} x^2 + 6y + y^2 = 0, & x^2 + 8y + y^2 = 0, \\ x = 0, & y = x \end{cases}$	6) $D:\begin{cases} x^2 - 4x + y^2 = 0, & x^2 - 8x + y^2 = 0, \\ y = 0, & y = -\sqrt{3} \cdot x \end{cases}$
2.10. a) $D: y = x^2 + 2$, $x = y$, $x = 2$, $x = 0$	2.28. a) $D: y = x^2, y = \frac{3}{4}x^2 + 1$
6) $D:\begin{cases} x^2 - 4y + y^2 = 0, & x^2 - 12y + y^2 = 0, \\ x = 0, & y = -x \end{cases}$	
(x = 0, y = -x)	6) $D:\begin{cases} x^2 + 4x + y^2 = 0, & x^2 + 8x + y^2 = 0, \\ y = -x/\sqrt{3}, & y = -\sqrt{3} \cdot x \end{cases}$
2.11. a) $D: y = 4x^2, 9y = x^2, y = 2$	2.29. a) $D: x = y^2, y^2 = 4 - x$
6) $D:\begin{cases} x^2 - 4y + y^2 = 0, & x^2 - 8y + y^2 = 0, \\ x = 0, & y = \sqrt{3} \cdot x \end{cases}$	6) $D:\begin{cases} x^2 - 4x + y^2 = 0, & x^2 - 6x + y^2 = 0, \\ y = -x/\sqrt{3}, & y = -\sqrt{3} \cdot x \end{cases}$
2.12. a) $D: y = \sqrt{49 - x^2}, y = 7 - \sqrt{49 - x^2}$	2.30. a) $D: xy = 1$, $x^2 = y$, $y = 2$ $\begin{cases} x^2 + 6x + y^2 = 0, & x^2 + 10x + y^2 = 0 \end{cases}$
6) $D:\begin{cases} x^2 - 2y + y^2 = 0, & x^2 - 10y + y^2 = 0, \\ x = 0, & y = -x/\sqrt{3} \end{cases}$	6) $D:$ $\begin{cases} x^2 + 6x + y^2 = 0, & x^2 + 10x + y^2 = 0, \\ y = x/\sqrt{3}, & y = \sqrt{3} \cdot x \end{cases}$
2.13. a) $D: x = y^2, x = \frac{3}{4}y^2 + 1, y = 0$	2.31. a) $D: y = \frac{8}{x^2 + 4}, x^2 = 4y$
6) $D:\begin{cases} x^2 + 4y + y^2 = 0, & x^2 + 8y + y^2 = 0, \\ x = 0, & y = x/\sqrt{3} \end{cases}$	6) $D:\begin{cases} x^2 - 4x + y^2 = 0, & x^2 - 8x + y^2 = 0, \\ y = x/\sqrt{3}, & y = 0 \end{cases}$
	<u> </u>
2.14. a) $D: y = \sqrt{2 - x^2}, y = x^2$	2.32. a) $D: x = \sqrt{27 - y^2}, x = 3\sqrt{3} - \sqrt{27 - y^2}$

6) $D:\begin{cases} x^2 - 6y + y^2 = 0, & x^2 - 8y + y^2 = 0, \\ y = -\sqrt{3} \cdot x, & y = -x/\sqrt{3} \end{cases}$	6) $D:\begin{cases} x^2 - 2x + y^2 = 0, & x^2 - 4x + y^2 = 0, \\ y = -x, & y = 0 \end{cases}$
2.15. a) $D: x = -\sqrt{49 - y^2}, x = \sqrt{49 - y^2} - 7$	2.33. a) $D: y = x^2 + 4x$, $y = x + 4$
6) $D:\begin{cases} x^2 + 8y + y^2 = 0, & x^2 + 10y + y^2 = 0, \\ y = -\sqrt{3} \cdot x, & y = -x/\sqrt{3} \end{cases}$	6) $D:\begin{cases} x^2 + 4x + y^2 = 0, & x^2 + 8x + y^2 = 0, \\ y = -x, & y = 0 \end{cases}$
2.16. a) $D: 2y = \sqrt{x}, x + y = 5, x = 0$	2.34. a) $D: y = 2^x$, $y = 2x - x^2$, $x = 2$, $x = 0$
6) $D:\begin{cases} x^2 - 10y + y^2 = 0, & x^2 - 12y + y^2 = 0, \\ y = -\sqrt{3} \cdot x, & y = -x \end{cases}$	6) $D:\begin{cases} x^2 - 2x + y^2 = 0, & x^2 - 12x + y^2 = 0, \\ y = -x, & y = -x/\sqrt{3} \end{cases}$
2.17. a) $D: x = -\sqrt{27 - y^2}, x = \sqrt{27 - y^2} - 3\sqrt{3}$	2.35. a) $D: y^2 = 4x$, $x + y = 3$, $y = 0$
6) $D:\begin{cases} x^2 + 2y + y^2 = 0, & x^2 + 12y + y^2 = 0, \\ y = x/\sqrt{3}, & y = x \end{cases}$	6) $D:\begin{cases} x^2 + 8x + y^2 = 0, & x^2 + 12x + y^2 = 0, \\ y = -x, & y = -\sqrt{3} \cdot x \end{cases}$
2.18. a) $D: y = -2x^2 + 2$, $y = -6$	2.36. a) $D: y^2 = 4 - x$, $y = x + 2$, $y = 2$, $y = -2$
6) $D:\begin{cases} x^2 - 4y + y^2 = 0, & x^2 - 12y + y^2 = 0, \\ y = -\sqrt{3} \cdot x, & y = -x/\sqrt{3} \end{cases}$	6) $D:\begin{cases} x^2 - 4x + y^2 = 0, & x^2 - 12x + y^2 = 0, \\ y = -x/\sqrt{3}, & y = -\sqrt{3} \cdot x \end{cases}$

3. Вычислите массу неоднородной пластины D, ограниченной заданными линиями, если поверхностная плотность в каждой её точке $\mu = \mu(x, y)$ 3.1. $D: y^2 = x$, x = 3, $\mu(x, y) = x$ 3.19. $D: y = x^2$, y = 4, $\mu(x, y) = 2x + 5y + 10$

3.1. $D: y^2 = x$, $x = 3$, $\mu(x, y) = x$	3.19. $D: y = x^2, y = 4, \mu(x, y) = 2x + 5y + 10$
3.2.	3.20.
$x^2 + y^2 = 4$, $x^2 + y^2 = 100$, $x = 0$, $y = 0$,	$x^2 + y^2 = 1$, $x^2 + y^2 = 49$, $x = 0$, $y = 0$,
$D: \begin{cases} x^2 + y^2 = 4, & x^2 + y^2 = 100, & x = 0, y = 0, \\ (x \le 0, y \le 0), & \mu(x, y) = -\frac{7y + x}{x^2 + y^2} \end{cases}$	$D: \begin{cases} x^2 + y^2 = 1, & x^2 + y^2 = 49, & x = 0, y = 0, \\ (x \ge 0, y \ge 0), & \mu(x, y) = \frac{5x + 2y}{x^2 + y^2} \end{cases}$
3.3. $D: y = 0, x = 0, 2x + 3y = 6, \mu(x, y) = y^2/2$	3.21. $D: y = 0, x = 0, x + y = 1, \mu(x, y) = x^2$
3.4.	3.22.
$x^2 + y^2 = 1$, $x^2 + y^2 = 49$, $x = 0$, $y = 0$,	$x^2 + y^2 = 9$, $x^2 + y^2 = 36$, $x = 0$, $y = 0$,
$D: \begin{cases} x^2 + y^2 = 1, & x^2 + y^2 = 49, & x = 0, y = 0, \\ (x \ge 0, y \ge 0), & \mu(x, y) = \frac{5x + 2y}{x^2 + y^2} \end{cases}$	$D: \begin{cases} x^2 + y^2 = 9, & x^2 + y^2 = 36, & x = 0, y = 0, \\ (x \le 0, y \ge 0), & \mu(x, y) = \frac{3y - 4x}{x^2 + y^2} \end{cases}$
3.5. $D: y = 0, x = 0, y = 4, x = \sqrt{25 - y^2},$	3.23. $D: y = \pi/2, y = \pi, x = 1, x = 2,$ $\mu(x, y) = y \sin(xy)$
$\mu(x,y) = x$	$\mu(x, y) = y \sin(xy)$
3.6. $D: x^2 + y^2 = 1$, $\mu(x, y) = 2 - x - y$	3.24. $D: y = 0, x = 0, x + y = 2, \mu(x, y) = x^2 + y^2$
3.7. $D: x^2 + y^2 = 4y$, $\mu(x, y) = 4 - y$	3.25. $D: y = 0, x = 0, x + y = 1, \mu(x, y) = 2x^2 + y^2$
3.8. $D: x = y$, $y = -x$, $y = 1$, $\mu(x, y) = \sqrt{1 - y}$	3.26. $D: y \le 0, x \ge 0, x^2 + y^2 = 4, \ \mu(x, y) = 4 - x^2$
3.9. $D: y = 2x, x = 0, x + y = 2, \mu(x, y) = 2 - x - y$	3.27. $D: y = x^2, y = 2, \mu(x, y) = 2 - y$
3.10. $D: x = 1, x = y^2, \mu(x, y) = 4 - x - y$	3.28. $D: y = 0, x = 0, x + y = 1, \mu(x, y) = x^2 + y^2$
3.11. $D: y = 0, x^2 = 1 - y, \mu(x, y) = 3 - x - y$	3.29. $D: y = x^2 + 1, x + y = 3, \mu(x, y) = 4x + 5y + 2$
3.12. $D: y = x^2, x = y^2, \mu(x, y) = 3x + 2y + 6$	3.30. $D: y = x^2 + 1, x + y = 1, \mu(x, y) = 2x + 5y + 8$
3.13. $D: x^2 + y^2 = 4x$, $\mu(x, y) = 4 - x$	3.31. $D: y = 1, x = 0, x = y, \mu(x, y) = x^2 + 2y^2$
3.14. $D: y = 0, y = 2x, x + y = 6, \mu(x, y) = x^2$	3.32. $D: y = 0, x = 0, x + y = 1, \mu(x, y) = x^2 + y^2$

3.15. $D: y^2 = 1 - x$, $x = 0$, $\mu(x, y) = 2 - x - y$	3.33. $D: y = x$, $y = x^2$, $\mu(x, y) = 2x + 3y$
3.16. $D: y = \sqrt{x}, x = y, \mu(x, y) = 2 - x - y$	3.34. $D: x = 0, x + 2y + 2 = 0, x + y = 1, \mu(x, y) = x^2$
D: y = 0, x = 1, x = y,	
$\mu(x,y) = x^2 + 2y^2 + 10$	
D: y = 0, x = 0, x + 2y = 1,	
$\mu(x,y) = 2 - x^2 - y^2$	

4. Вычислите объём тела V, ограниченного поверхностями

4.19. $y = x^2$, $y + z = 2$, $y = 0$, $z = 0$, $x = 0$
4.20. $x = \sqrt{z}$, $x = 1/z$, $z = 16$, $y = 4x^2 + z^2$, $y = 0$
4.21. $y = 3\sqrt{x}$, $y = 3x$, $x + y + z = 10$, $z = 0$
4.22. $x = 10 + z^2 + 2y^2$, $z = y$, $z = 1$, $y = 0$, $x = 0$
4.23. $z = x^2$, $x + y = 6$, $y = 2x$, $y = 0$, $z = 0$
4.24. $z = 10 + x^2 + 2y^2$, $x = y$, $x = 1$, $y = 0$, $z = 0$
4.25. $y = 3\sqrt{z}$, $y = 3/z$, $x = 3 + y^2 + 2z^2$, $x = 0$, $z = 5$
4.26. $z = 4 - x^2$, $x + y^2 = 4$, $x = 0$, $z = 0$
4.27. $z = 2x^2 + y^2$, $x + y = 4$, $x = 0$, $y = 0$, $z = 0$
4.28. $y = 1 - x^2$, $x + y + z = 3$, $x = 0$, $y = 0$, $z = 0$
4.29. $y = \sqrt{x}$, $y = x$, $x + y + z = 2$, $z = 0$
4.30. $z = x$, $y = 4$, $x = \sqrt{25 - y^2}$, $x = 0$, $z = 0$
4.31. $z = 2x^2 + y^2$, $y = x$, $y = 3x$, $x = 2$, $z = 0$, $(z \ge 0)$
4.32. $z = 2x^2 + 3y^2$, $y = x^2$, $y = x$, $z = 0$, $(z \ge 0)$
4.33. $z = x^2$, $x - 2y + 2 = 0$, $x + y - 7 = 0$, $x = 0$, $z = 0$
4.34. $z = 2 - x^2 - y^2$, $x + 2y = 1$, $x = 0$, $y = 0$, $z = 0$
4.35. $z = x^2 + y^2$, $x + y = 1$, $x = 0$, $y = 0$, $z = 0$

5. Вычислите объём тела V,

а) ограниченного поверхностями, используя переход к цилиндрическим координатам;

	$16 \le x^2 + y^2 + z^2 \le 121$.
	6) $\begin{cases} 16 \le x^2 + y^2 + z^2 \le 121, \\ 0 \le y \le \sqrt{3} \cdot x \end{cases}$
5.3. a) $\begin{cases} x^2 + y^2 = 1, & x^2 + y^2 = z, x = 0, y = 0, \\ z = 0 & (x \ge 0, y \ge 0) \end{cases}$	5.21. a) $\begin{cases} 36(x^2 + y^2) = z^2, x^2 + y^2 = 9, \\ x = 0, z = 0, (x \le 0, z \le 0) \end{cases}$
	$16 \le x^2 + y^2 + z^2 \le 64,$
$\begin{cases} 4 \le x^2 + y^2 + z^2 \le 64, \\ -\sqrt{\frac{x^2 + y^2}{3}} \le z \end{cases}$	$\left\{ -\sqrt{\frac{x^2 + y^2}{63}} \le z \le \sqrt{\frac{x^2 + y^2}{3}} \right\}$
5.4. a) $\begin{cases} x^2 + y^2 = z^2 / 49, & x^2 + y^2 = z / 7, \\ x = 0, & y = 0, & (x \ge 0, y \ge 0) \end{cases}$	5.22. a) $\begin{cases} x^2 + y^2 + z^2 = 16, x^2 + y^2 = 4, \\ (x^2 + y^2 \le 4) \end{cases}$
$\begin{cases} 1 \le x^2 + y^2 + z^2 \le 36, \\ x \le y \le \sqrt{3} \cdot x \end{cases}$	6) $\begin{cases} 49 \le x^2 + y^2 + z^2 \le 100, \\ y \ge 0, y \ge \sqrt{3} \cdot x \end{cases}$
5.5. a) $\begin{cases} x^2 + y^2 + z^2 = 4, & x^2 + y^2 = 4z^2, \\ x = 0, & y = 0, & (x \ge 0, y \ge 0, z \ge 0) \end{cases}$	5.23. a) $\begin{cases} x^2 + y^2 = 4, & x^2 + y^2 = 8z, x = 0, y = 0, \\ z = 0 & (x \le 0, y \ge 0) \end{cases}$
$1 \le x^2 + y^2 + z^2 \le 49,$	$25 \le x^2 + y^2 + z^2 \le 100,$
$\begin{cases} -\sqrt{\frac{x^2+y^2}{3}} \le z \le 0 \end{cases}$	$\begin{cases} -3\sqrt{x^2 + y^2} \le z \le -\sqrt{\frac{x^2 + y^2}{99}} \end{cases}$
5.6. a) $\begin{cases} 16(x^2 + y^2) = z^2, x^2 + y^2 = 1, x = 0, y = 0, \\ z = 0, (x \ge 0, y \ge 0, z \ge 0) \end{cases}$	5.24. a) $\begin{cases} x^2 + y^2 = 4z^2 / 25, & x^2 + y^2 = 2z / 5, \\ x = 0, & y = 0, & (x \ge 0, & y \le 0) \end{cases}$
$\begin{cases} 4 \le x^2 + y^2 + z^2 \le 81, \\ -x \le y \le -\sqrt{3} \cdot x \end{cases}$	6) $\begin{cases} 16 \le x^2 + y^2 + z^2 \le 121, \\ \sqrt{3} \cdot x \le y \le 0 \end{cases}$
5.7. a) $x^2 + y^2 + z^2 = 16$, $x^2 + y^2 = 4$, $(x^2 + y^2 \le 4)$	$\int x^2 + y^2 + z^2 = 4, \ x^2 + y^2 = 3z^2,$
$\begin{cases} 4 \le x^2 + y^2 + z^2 \le 64, \\ 0 \le z \le \sqrt{\frac{x^2 + y^2}{15}} \end{cases}$	$\begin{cases} x = 0, \ y = 0, \ (x \ge 0, \ y \le 0, \ z \ge 0) \\ 16 \le x^2 + y^2 + z^2 \le 81, \end{cases}$
$0 \le z \le \sqrt{\frac{x^2 + y^2}{15}}$	$\begin{cases} -\sqrt{\frac{x^2 + y^2}{63}} \le z \end{cases}$
5.8. a) $\begin{cases} x^2 + y^2 = 4, & x^2 + y^2 = 4z, x = 0, y = 0, \\ z = 0 & (x \ge 0, y \ge 0) \end{cases}$	5.26. a) $\begin{cases} 25(x^2 + y^2) = z^2, x^2 + y^2 = 4, y = 0, \\ x = 0, z = 0, (x \le 0, z \le 0, y \ge 0) \end{cases}$
$\begin{cases} 1 \le x^2 + y^2 + z^2 \le 36, \\ \sqrt{3} \cdot x \le y \le -\sqrt{3} \cdot x \end{cases}$	
$\sqrt{3} \cdot x \le y \le -\sqrt{3} \cdot x$	$\begin{cases} 49 \le x^2 + y^2 + z^2 \le 100, \\ y \le \sqrt{3} \cdot x, y \le \frac{x}{\sqrt{3}} \end{cases}$
5.9. a) $\begin{cases} x^2 + y^2 = z^2 / 81, & x^2 + y^2 = z / 9, \\ x = 0, & y = 0, & (x \ge 0, y \ge 0) \end{cases}$	5.27. a) $\begin{cases} x^2 + y^2 + z^2 = 9, \ x^2 + y^2 = 4, \ y = 0, \\ (x^2 + y^2 \le 4, \ y \le 0) \end{cases}$
6) $\begin{cases} 1 \le x^2 + y^2 + z^2 \le 49, \\ z \le 3\sqrt{x^2 + y^2} \end{cases}$	· ·
$z \le 3\sqrt{x^2 + y^2}$	6) $\begin{cases} 25 \le x^2 + y^2 + z^2 \le 100, \\ 0 \le z \le \sqrt{\frac{x^2 + y^2}{99}} \end{cases}$
5.10. a) $\begin{cases} x^2 + y^2 + z^2 = 64, & x^2 + y^2 = 8z^2, \\ x = 0, & y = 0, & (x \ge 0, y \ge 0, z \ge 0) \end{cases}$	5.28. a) $\begin{cases} x^2 + y^2 = 1, & x^2 + y^2 = 6z, x = 0, y = 0, \\ z = 0 & (x \ge 0, y \le 0) \end{cases}$

$\int_{S_1} 16 \le x^2 + y^2 + z^2 \le 121,$
$\begin{cases} -\sqrt{3} \cdot x \le y \le -\frac{x}{\sqrt{3}} \end{cases}$
5.29. a) $\begin{cases} x^2 + y^2 = z^2 / 25, & x^2 + y^2 = z / 5, \\ x = 0, & y = 0, & (x \le 0, y \le 0) \end{cases}$
$\begin{cases} 16 \le x^2 + y^2 + z^2 \le 81, \\ \hline 2 & 2 \end{cases}$
$ \sqrt{\frac{x^2 + y^2}{63}} \le z \le \sqrt{\frac{x^2 + y^2}{3}} $
5.30. a) $\begin{cases} x^2 + y^2 + z^2 = 4, & x^2 + y^2 = 8z^2, \\ x = 0, & y = 0, & (x \le 0, y \ge 0, z \ge 0) \end{cases}$
$\begin{cases} 49 \le x^2 + y^2 + z^2 \le 100, \\ y \le 0, y \le -\frac{x}{\sqrt{3}} \end{cases}$
$y \le 0, y \le -\frac{1}{\sqrt{3}}$
5.31. a) $\begin{cases} 4(x^2 + y^2) = z^2, x^2 + y^2 = 25, \\ y = 0, z = 0, (y \ge 0, z \ge 0) \end{cases}$
$\begin{cases} 25 \le x + y + z \le 100, \\ \sqrt{2} + 2 = 2 \end{cases}$
$\begin{cases} \sqrt{\frac{x^2 + y^2}{99}} \le z \le 3\sqrt{x^2 + y^2} \end{cases}$
5.32. a) $\begin{cases} x^2 + y^2 + z^2 = 8, \ x^2 + y^2 = 4, \ y = 0, \\ (x^2 + y^2 \le 4, \ y \ge 0) \end{cases}$
`
6) $\begin{cases} 16 \le x^2 + y^2 + z^2 \le 121, \\ -\sqrt{3} \cdot x \ge y \ge -\frac{x}{\sqrt{3}} \end{cases}$
*
5.33. a) $\begin{cases} x^2 + y^2 = 5, & x^2 + y^2 = 2z, x = 0, y = 0, \\ z = 0 & (x \le 0, y \ge 0) \end{cases}$
$\begin{cases} 16 \le x^2 + y^2 + z^2 \le 64, \\ 0 \le z \le \sqrt{\frac{x^2 + y^2}{3}} \end{cases}$
5.34. a) $\begin{cases} x^2 + y^2 = z^2 / 64, & x^2 + y^2 = z / 8, \\ x = 0, & y = 0, & (x \ge 0, y \le 0) \end{cases}$
`
$\begin{cases} 49 \le x^2 + y^2 + z^2 \le 100, \\ -x \le y \le \sqrt{3} \cdot x \end{cases}$
$(-x \ge y \ge \sqrt{3}, x)$
5.35. a) $\begin{cases} x^2 + y^2 + z^2 = 49, & x^2 + y^2 = 6z^2, \\ x = 0, & y = 0, & (x \le 0, y \ge 0, z \le 0) \end{cases}$
$\begin{cases} 25 \le x^2 + y^2 + z^2 \le 100, \\ \sqrt{\frac{x^2 + y^2}{99}} \le z \end{cases}$
$\sqrt{\frac{x + y}{99}} \le z$

5.18. a)
$$\begin{cases} x^2 + y^2 = 1, & x^2 + y^2 = 2z, x = 0, y = 0, \\ z = 0 & (x \ge 0, y \ge 0) \end{cases}$$

$$\begin{cases} 4 \le x^2 + y^2 + z^2 \le 81, \\ \frac{x}{\sqrt{3}} \le y \le \sqrt{3} \cdot x \end{cases}$$

$$5.36. a)$$

$$\begin{cases} 16 \le x^2 + y^2 + z^2 \le 121, \\ 0 \le y \le -\frac{x}{\sqrt{3}} \end{cases}$$

6. Вычислите массу неоднородного тела V, ограниченного поверхностями, если плотность в каждой её точке $\mu = \mu(x, y, z)$

плотность в каждой ее точке $\mu = \mu(x, y, z)$	
$V: z = \sqrt{36 - x^2 - y^2}, \ 9z = x^2 + y^2,$ $6.1. \ \mu(x,y) = \frac{4(x^2 + y^2)}{3}$	$V: z = \sqrt{25 - x^2 - y^2}, z = \sqrt{(x^2 + y^2)/99},$ 6.19. $\mu(x,y) = \frac{15(x^2 + y^2)}{7}$
6.2. $V: z = 9\sqrt{x^2 + y^2}, z = 22 - x^2 - y^2,$ $\mu(x,y) = 9 z $	6.20. $V: z = \sqrt{100 - x^2 - y^2}, z = 6, x^2 + y^2 = 51,$ $(x^2 + y^2 \le 51), \mu(x,y) = 4 x $
$V: z = \sqrt{16 - x^2 - y^2}, \ z = \sqrt{(x^2 + y^2)/15},$ $6.3. \ \mu(x,y) = \frac{4(x^2 + y^2)}{3}$	6.21. $V: z = \sqrt{16 - x^2 - y^2}, 6z = x^2 + y^2,$ $\mu(x,y) = 7(x^2 + y^2)$
6.4. $V: z = \sqrt{36 - x^2 - y^2}, z = 2, x^2 + y^2 = 27,$ $(x^2 + y^2 \le 27), \mu(x,y) = 6z$	6.22. $V: z = \frac{21}{2} \sqrt{x^2 + y^2}, \ z = \frac{23}{2} - x^2 - y^2,$ $\mu(x,y) = 3 z $
$V: z = \sqrt{4/9 - x^2 - y^2}, z = x^2 + y^2,$ $6.5. \mu(x,y) = \frac{5(x^2 + y^2)}{2}$	6.23. $V: z = \sqrt{9 - x^2 - y^2}, \ z = \sqrt{(x^2 + y^2)/80},$ $\mu(x,y) = 7(x^2 + y^2)$
6.6. $V: z = 12\sqrt{x^2 + y^2}, z = 28 - x^2 - y^2,$ $\mu(x,y) = 3 x $	6.24. $V: z = \sqrt{81 - x^2 - y^2}, z = 5, x^2 + y^2 = 45,$ $(x^2 + y^2 \le 45), \mu(x,y) = 3 y $
$V: z = \sqrt{9 - x^2 - y^2}, \ z = \sqrt{(x^2 + y^2)/8},$ $6.7. \ \mu(x,y) = \frac{5(x^2 + y^2)}{2}$	$V: z = \sqrt{1 - x^2 - y^2}, \ 3z/2 = x^2 + y^2,$ $6.25. \frac{7(x^2 + y^2)}{5}$ $6.26. V: z = 6\sqrt{x^2 + y^2}, \ z = 16 - x^2 - y^2,$
6.8. $V: z = \sqrt{25 - x^2 - y^2}, z = 1, x^2 + y^2 = 21,$ $(x^2 + y^2 \le 21), \mu(x,y) = 6 z $	$\mu(x,y)=132$
$V: z = \sqrt{64 - x^2 - y^2}, \ 12z = x^2 + y^2,$ $6.9. \mu(x,y) = \frac{3(x^2 + y^2)}{4}$ $6.10. V: z = \frac{9}{2}\sqrt{x^2 + y^2}, \ z = \frac{11}{2} - x^2 - y^2,$	$V: z = \sqrt{36 - x^2 - y^2}, z = \sqrt{(x^2 + y^2)/63},$ $6.27. \mu(x,y) = \frac{7(x^2 + y^2)}{5}$
6.10. $V: z = \frac{9}{2}\sqrt{x^2 + y^2}, z = \frac{11}{2} - x^2 - y^2,$ $\mu(x,y) = 7 y $	6.28. $V: z = \sqrt{64 - x^2 - y^2}, z = 4, x^2 + y^2 = 39,$ $(x^2 + y^2 \le 39), \mu(x,y) = 2 x $
$V: z = \sqrt{49 - x^2 - y^2}, z = \sqrt{(x^2 + y^2)/48},$ $6.11. \mu(x,y) = \frac{3(x^2 + y^2)}{4}$	6.29. $V: z = \sqrt{144 - x^2 - y^2}, \ 18z = x^2 + y^2,$ $\mu(x,y) = 2(x^2 + y^2)$

6.12. $V: z = \sqrt{49 - x^2 - y^2}, z = 3, x^2 + y^2 = 33,$ $(x^2 + y^2 \le 33), \mu(x,y) = 5z$	6.30. $V: z = \frac{3}{2}\sqrt{x^2 + y^2}, \ z = \frac{5}{2} - x^2 - y^2,$ $\mu(x,y)=13 z $
6.13. $V: z = \sqrt{9 - x^2 - y^2}, \ 9z/2 = x^2 + y^2,$ $\mu(x,y) = 15(x^2 + y^2)$	6.31. $V: z = \sqrt{9 - x^2 - y^2}, z = \sqrt{(x^2 + y^2)/35},$ $\mu(x,y) = 2(x^2 + y^2)$
6.14. $V: z = \frac{15}{2} \sqrt{x^2 + y^2}, z = \frac{17}{2} - x^2 - y^2,$ $\mu(x,y)=10 z $	6.32. $V: z = \sqrt{121 - x^2 - y^2}, z = 6, x^2 + y^2 = 21,$ $(x^2 + y^2 \le 21), \mu(x,y) = x $
6.15. $V: z = \sqrt{4 - x^2 - y^2}, \ z = \sqrt{(x^2 + y^2)/255},$ $\mu(x,y) = 15(x^2 + y^2)$	$V: z = \sqrt{9 - x^2 - y^2}, \ 8z = x^2 + y^2,$ $6.33. \mu(x,y) = \frac{2(x^2 + y^2)}{9}$
6.16. $V: z = \sqrt{64 - x^2 - y^2}, z = 1, x^2 + y^2 = 60,$ $(x^2 + y^2 \le 60), \mu(x,y) = 12z$	$\mu(x,y) = \frac{1}{9}$ 6.34. $V: z = 18\sqrt{x^2 + y^2}, z = 63 - x^2 - y^2,$ $\mu(x,y) = y $
6.17. $V: z = \sqrt{\frac{16}{9} - x^2 - y^2}, \ 2z = x^2 + y^2,$ $\mu(x,y) = \frac{15(x^2 + y^2)}{7}$	$V: z = \sqrt{49 - x^2 - y^2}, z = \sqrt{(x^2 + y^2)/195},$ $6.35. \mu(x,y) = \frac{2(x^2 + y^2)}{9}$
$\mu(x,y) = \frac{7}{7}$ 6.18. $V: z = 3\sqrt{x^2 + y^2}, z = 10 - x^2 - y^2,$ $\mu(x,y) = 6 y $	

- 7. a) Найдите градиенты скалярных полей u(x, y, z), v(x, y, z) и угол между ними в точке M;
- б) Выясните, является ли векторное поле \vec{a} потенциальным, соленоидальным,

7.1. a)
$$v = \frac{x^3}{2} + 6y^3 + 3\sqrt{6}z^3$$
, $u = \frac{yz^2}{x^2}$, $M\left(\sqrt{2}; \frac{1}{\sqrt{2}}; \frac{1}{\sqrt{3}}\right)$
6) $\vec{a}(M) = 2x\vec{i} + 3y\vec{j} + 2z\vec{k}$

6)
$$\vec{a}(M) = 2x\vec{i} + 3y\vec{j} + 2z\vec{k}$$

7.2. a) $v = \frac{4\sqrt{6}}{x} - \frac{\sqrt{6}}{9y} + \frac{3}{z}$, $u = x^2yz^3$, $M\left(2; \frac{1}{3}; \sqrt{\frac{3}{2}}\right)$

6)
$$\vec{a}(M) = (yz - 2x)\vec{i} + (xz + yz)\vec{j} + xy\vec{k}$$

7.3. a)
$$v = 9\sqrt{2}x^3 - \frac{y^3}{2\sqrt{2}} - \frac{4z^3}{\sqrt{3}}, \quad u = \frac{z^3}{xy^2}, \quad M\left(\frac{1}{3}; 2; \sqrt{\frac{3}{2}}\right)$$

б)
$$\vec{a}(M) = z \vec{i} + x \vec{j} + y \vec{k}$$

7.4. a)
$$v = \frac{3}{x} + \frac{4}{v} - \frac{1}{\sqrt{6}z}$$
, $u = \frac{z}{x^3 y^2}$, $M\left(1; 2; \frac{1}{\sqrt{6}}\right)$

6)
$$\vec{a}(M) = x^2 y \vec{i} - 2xy^2 \vec{j} + 2xyz \vec{k}$$

6)
$$\vec{a}(M) = x^2 y \vec{i} - 2xy^2 \vec{j} + 2xyz \vec{k}$$

7.5. a) $v = \frac{x^3}{2} + 6y^3 + 3\sqrt{6}z^3$, $u = \frac{x^2}{yz^2}$, $M\left(\sqrt{2}; \frac{1}{\sqrt{2}}; \frac{1}{\sqrt{3}}\right)$

б)
$$\vec{a}(M) = x^2 \vec{i} + y^2 \vec{j} + z^2 \vec{k}$$

7.6. a)
$$v = 3\sqrt{2}x^2 - \frac{y^2}{\sqrt{2}} - 3\sqrt{2}z^2$$
, $u = \frac{z^2}{xy^2}$, $M\left(\frac{1}{3}; 2; \sqrt{\frac{2}{3}}\right)$

6)
$$\vec{a}(M) = (2x - yz)\vec{i} + (xz - 2y)\vec{j} + 2xyz\vec{k}$$

7.7. a)
$$v = 6\sqrt{6}x^3 - 6\sqrt{6}y^3 + 2z^3$$
, $u = \frac{xz^2}{y}$, $M\left(\frac{1}{\sqrt{6}}; \frac{1}{\sqrt{6}}; 1\right)$

6)
$$\vec{a}(M) = 5\vec{i} + 6\vec{j} + 8\vec{k}$$

7.8. a)
$$v = \frac{\sqrt{6}}{2x} - \frac{\sqrt{6}}{2y} + \frac{2}{3z}$$
, $u = \frac{yz^2}{x}z^3$, $M\left(\frac{1}{\sqrt{2}}; \frac{1}{\sqrt{2}}; \frac{1}{\sqrt{3}}\right)$

6)
$$\vec{a}(M) = 6xy \vec{i} + (3x^2 - 2y) \vec{j} + z \vec{k}$$

7.9. a)
$$v = 3\sqrt{2}x^2 - \frac{y^2}{\sqrt{2}} - 3\sqrt{2}z^2$$
, $u = \frac{xy^2}{z^2}$, $M\left(\frac{1}{3}; 2; \sqrt{\frac{3}{2}}\right)$

б)
$$\vec{a}(M) = yz \vec{i} + xz \vec{j} + yx \vec{k}$$

7.10. a)
$$v = \frac{3}{x} + \frac{4}{y} - \frac{1}{\sqrt{6}z}$$
, $u = \frac{x^3 y^2}{z}$, $M\left(1; 2; \frac{1}{\sqrt{6}}\right)$

6)
$$\vec{a}(M) = (x^2 - z^2)\vec{i} - 3xy\vec{j} + (y^2 + z^2)\vec{k}$$

7.11. a)
$$v = -\frac{4\sqrt{2}}{x} + \frac{\sqrt{2}}{9y} + \frac{1}{\sqrt{3}z}$$
, $u = \frac{1}{x^2yz}$, $M\left(2; \frac{1}{3}; \frac{1}{\sqrt{6}}\right)$

б)
$$\vec{a}(M) = x \vec{i} + 2z \vec{j} + 2y \vec{k}$$

7.12. a)
$$v = \frac{6}{x} + \frac{2}{y} - \frac{3\sqrt{3}}{2\sqrt{2}z}$$
, $u = \frac{x^2}{y^2 z^3}$, $M\left(\sqrt{2}; \sqrt{2}; \frac{\sqrt{3}}{2}\right)$

6)
$$\vec{a}(M) = 3x^2 \vec{i} + 4(x-y)\vec{j} + (x-z)\vec{k}$$

7.13. a)
$$v = x^2 + 9y^2 + 6z^2$$
, $u = xyz$, $M\left(1; \frac{1}{3}; \frac{1}{\sqrt{6}}\right)$

6)
$$\vec{a}(M) = 5 \vec{i} - 8z \vec{j} + 8y \vec{k}$$

7.14. a)
$$v = \frac{2}{x} + \frac{3}{2y} - \frac{\sqrt{6}}{4z}$$
, $u = \frac{y^3}{x^2 z}$, $M\left(\sqrt{\frac{2}{3}}; \sqrt{\frac{3}{2}}; \frac{1}{2}\right)$

6)
$$\vec{a}(M) = (y-z)\vec{i} + 3xzy \vec{j} + (z-x)\vec{k}$$

7.15. a)
$$v = \sqrt{2}x^2 - \frac{3y^2}{\sqrt{2}} - 6\sqrt{2}z^2$$
, $u = xy^2z$, $M\left(1; \frac{2}{3}; \frac{1}{\sqrt{6}}\right)$

6)
$$\vec{a}(M) = z^3 y^3 \vec{i} + x^3 \vec{j} + xy \vec{k}$$

7.16. a)
$$v = -\frac{\sqrt{6}}{2x} + \frac{\sqrt{6}}{2y} - \frac{2}{3z}$$
, $u = \frac{x}{yx^2}$, $M\left(\frac{1}{\sqrt{2}}; \frac{1}{\sqrt{2}}; \frac{1}{\sqrt{3}}\right)$

6)
$$\vec{a}(M) = (2x - 3y)\vec{i} + 2xy\vec{j} - z^2\vec{k}$$

6)
$$\vec{a}(M) = (2x - 3y)\vec{i} + 2xy\vec{j} - z^2\vec{k}$$

7.17. a) $v = \frac{6}{x} + \frac{2}{y} - \frac{3\sqrt{3}}{2\sqrt{2}z}$, $u = \frac{y^2z^3}{x^2}$, $M\left(\sqrt{2}; \sqrt{2}; \frac{\sqrt{3}}{2}\right)$

6)
$$\vec{a}(M) = x^2 \vec{i} + 4y \vec{j} + 2y^2 \vec{k}$$

7.18. a)
$$v = \frac{1}{\sqrt{2}x} - \frac{2\sqrt{2}}{y} - \frac{3\sqrt{3}}{2z}$$
, $u = \frac{y^2 z^3}{x}$, $M\left(\frac{1}{\sqrt{2}}; \sqrt{2}; \frac{\sqrt{3}}{2}\right)$

6)
$$\vec{a}(M) = 2x \, \vec{i} - 3y \, \vec{j} + z \, \vec{k}$$

7.19. a)
$$v = 6\sqrt{6}x^3 - 6\sqrt{6}y^3 + 2z^3$$
, $u = \frac{y}{xz^2}$, $M\left(\frac{1}{\sqrt{6}}; \frac{1}{\sqrt{6}}; 1\right)$

6)
$$\vec{a}(M) = 10z \, \vec{i} + 16 \, \vec{j} + 10x \, \vec{k}$$

7.20. a)
$$v = x^2 - y^2 - 3z^2$$
, $u = \frac{yz^2}{x}$, $M\left(\frac{1}{\sqrt{2}}; \frac{1}{\sqrt{2}}; \frac{1}{\sqrt{3}}\right)$

6)
$$\vec{a}(M) = (x+y)\vec{i} - 2xz \vec{j} - 3(z+y)\vec{k}$$

7.21. a)
$$v = \frac{3x^2}{\sqrt{2}} - \frac{y^2}{\sqrt{2}} + \sqrt{2}z^2$$
, $u = \frac{z^2}{x^2y^2}$, $M\left(\frac{2}{3}; 2; \sqrt{\frac{2}{3}}\right)$

б)
$$\vec{a}(M) = 5yz^5 \vec{i} + 6z^6 x \vec{j} + 7y^7 x^7 \vec{k}$$

7.22. a)
$$v = \frac{x^3}{\sqrt{2}} - \frac{y^3}{\sqrt{2}} - \frac{8z^3}{\sqrt{3}}, \quad u = \frac{x^2}{y^2 z^3}, \quad M\left(\sqrt{2}; \sqrt{2}; \frac{\sqrt{3}}{2}\right)$$

6)
$$\vec{a}(M) = yz \, \dot{i} + (x - y) \, \vec{j} + z^2 \, \vec{k}$$

7.23. a)
$$v = \frac{3}{2}x^2 + 3y^2 - 2z^2$$
, $u = x^2yz^3$, $M\left(2; \frac{1}{3}; \sqrt{\frac{3}{2}}\right)$

6)
$$\vec{a}(M) = 5x \vec{i} + 5y \vec{j} + 8z \vec{k}$$

7.24. a)
$$v = 9\sqrt{2}x^3 - \frac{y^3}{2\sqrt{2}} - \frac{4z^3}{\sqrt{3}}, \quad u = \frac{xy^2}{z^3}, \quad M\left(\frac{1}{3}; 2; \sqrt{\frac{3}{2}}\right)$$

6)
$$\vec{a}(M) = (5x^2 - 5z^2)\vec{i} - 15xy\vec{j} + (5y^2 + 5z^2)\vec{k}$$

7.25. a)
$$v = \sqrt{2}x^2 - \frac{3y^2}{\sqrt{2}} - 6\sqrt{2}z^2$$
, $u = \frac{1}{xy^2z}$, $M\left(1; \frac{2}{3}; \frac{1}{\sqrt{6}}\right)$

6)
$$\vec{a}(M) = 8yz \, \vec{i} + 8xz \, \vec{j} + 8xy \, \vec{k}$$

7.26. a)
$$v = x^2 + 9y^2 + 6z^2$$
, $u = \frac{1}{xyz}$, $M\left(1; \frac{1}{3}; \frac{1}{\sqrt{6}}\right)$

6)
$$\vec{a}(M) = xy(3x - 4y)\vec{i} + 3x^2(x - 4y)\vec{j} + 3z^2\vec{k}$$

6)
$$\vec{a}(M) = xy(3x - 4y)\vec{i} + 3x^2(x - 4y)\vec{j} + 3z^2\vec{k}$$

7.27. a) $v = \frac{1}{\sqrt{2}x} - \frac{2\sqrt{2}}{y} - \frac{3\sqrt{3}}{2z}, \quad u = \frac{x}{y^2z^3}, \quad M\left(\frac{1}{\sqrt{2}}; \sqrt{2}; \frac{\sqrt{3}}{2}\right)$

6)
$$\vec{a}(M) = 8y \vec{i} + 8x \vec{j} + 8y \vec{k}$$

7.28. a)
$$v = -\frac{4\sqrt{2}}{x} + \frac{\sqrt{2}}{9y} + \frac{1}{\sqrt{3}x}$$
, $u = x^2yz$, $M\left(2; \frac{1}{3}; \frac{1}{\sqrt{6}}\right)$

6)
$$\vec{a}(M) = 3x^2 y \, \vec{i} - 2xy^2 \, \vec{j} + 2xyz \, \vec{k}$$

6)
$$\vec{a}(M) = 3x^2 y \, \vec{i} - 2xy^2 \, \vec{j} + 2xyz \, \vec{k}$$

7.29. a) $v = \frac{x^3}{\sqrt{2}} - \frac{y^3}{\sqrt{2}} - \frac{8z^3}{\sqrt{3}}, \quad u = \frac{y^2 z^3}{x^2}, \quad M\left(\sqrt{2}; \sqrt{2}; \frac{\sqrt{3}}{2}\right)$

6)
$$\vec{a}(M) = \sqrt{z} \vec{i} + y^3 \vec{j} + \frac{1}{2\sqrt{z}} \vec{k}$$

7.30. a)
$$v = -\frac{3x^3}{\sqrt{2}} + \frac{2\sqrt{2}y^3}{3} + 8\sqrt{3}z^3$$
, $u = \frac{x^2z}{y^3}$, $M\left(\sqrt{\frac{2}{3}}; \sqrt{\frac{3}{2}}; \frac{1}{2}\right)$

6)
$$\vec{a}(M) = (6x - 9y)\vec{i} + 6xy\vec{j} - 3z^2\vec{k}$$

7.31. a)
$$v = x^2 - y^2 - 3z^2$$
, $u = \frac{x}{yz^2}$, $M\left(\frac{1}{\sqrt{2}}; \frac{1}{\sqrt{2}}; \frac{1}{\sqrt{3}}\right)$

6)
$$\vec{a}(M) = -5yz \, \vec{i} - 5xz \, \vec{j} - 5xy \, \vec{k}$$

7.32. a)
$$v = \sqrt{3}x^4 + \frac{y^2}{\sqrt{3}} - 2\sqrt{3}z^3$$
, $u = \frac{1}{x^2 vz^3}$, $M\left(1; -\frac{2}{3}; \frac{1}{\sqrt{6}}\right)$

6)
$$\vec{a}(M) = (y+x)\vec{i} + (z-y)\vec{j} + 2(x+z)\vec{k}$$

7.33. a)
$$v = \frac{x}{\sqrt{2}} - \frac{2y}{\sqrt{2}} + \frac{\sqrt{3}z^3}{2}, \quad u = \frac{x^3z^2}{z}, \quad M\left(\sqrt{2}; \frac{1}{\sqrt{2}}; \sqrt{2}\right)$$

6)
$$\vec{a}(M) = 3(x-z)\vec{i} + (x^2 - y^2)\vec{j} + 3z\vec{k}$$

8. Найдите работу силы при перемещении вдоль а) линии L от точки A к точке B;

б) контура Γ

8.1. a)
$$\overline{F} = (x^2 + 3y^2)\overline{i} + (2x^2 - y^2)\overline{j}$$
, $L: y = \begin{cases} x, & 0 \le x \le 1, \\ 2 - x, & 1 < x \le 2, \end{cases}$ $M(2;0), N(0;0)$

6)
$$\overline{F} = -x^2 v^3 \, \overline{i} + \overline{j} + z \, \overline{k}$$
, $\Gamma : x = 4 \cos t$, $v = 4 \sin t$, $z = 3$

6)
$$\overline{F} = -x^2 y^3 \ \overline{i} + \overline{j} + z \ \overline{k}$$
, $\Gamma : x = 4\cos t$, $y = 4\sin t$, $z = 3$
8.2. a) $\overline{F} = 4y \ \overline{i} - 5x \ \overline{j}$, $L : x^2 + y^2 = 8$, $(y \le 0)$ $M(\sqrt{2};0)$, $N(-\sqrt{2};0)$

6)
$$\overline{F} = x^2 \, \overline{i} + y \, \overline{j} - z \, \overline{k}$$
, $\Gamma : x = \cos t, y = \frac{\sqrt{2}}{2} \sin t, z = \frac{\sqrt{2}}{2} \cos t$

8.3. a)
$$\overline{F} = -y \,\overline{i} + 6x^2 \,\overline{j}$$
, $L = MN$, $M(-2;1)$, $N(3;-2)$

6)
$$\overline{F} = 2y \,\overline{i} - 3x \,\overline{j} + x \,\overline{k}$$
, $\Gamma: x = 2\cos t, y = 2\sin t, z = 2 - 2\cos t - 2\sin t$

8.4. a)
$$\overline{F} = (x - y)\overline{i} + (2x + y)\overline{j}$$
, $L: y = 2\sqrt{x}$ $M(0;0), N(1;2)$

6)
$$\overline{F} = y \overline{i} - x \overline{j} + z \overline{k}$$
, $\Gamma: x = \cos t$, $y = \sin t$, $z = 2$

6)
$$\overline{F} = y \, \overline{i} - x \, \overline{j} + z \, \overline{k}$$
, $\Gamma : x = \cos t$, $y = \sin t$, $z = 2$
8.5. a) $\overline{F} = xy \, \overline{i} + 7y \, \overline{j}$, $L : x^2 + y^2 = 16$, $(x \ge 0)$ $M(0;-4)$, $N(0;4)$

6)
$$\overline{F} = 3y \,\overline{i} - 5x \,\overline{j} + x \,\overline{k}$$
, $\Gamma : x = 3\cos t, y = 3\sin t, z = 3 - 3\cos t - 3\sin t$

8.6. a)
$$\overline{F} = (x^2 + 2y)\overline{i} + (y^2 + 2x)\overline{j}$$
, $L = MN$, $M(-4;0)$, $N(0;2)$

6)
$$\overline{F} = 6z \overline{i} - x \overline{j} + xy \overline{k}$$
, $\Gamma: x = 3\cos t$, $y = 3\sin t$, $z = 4$

8.7. a)
$$\overline{F} = (x+7y)\overline{i} + (y-3x)\overline{j}$$
, $L: y = \begin{cases} x, & 0 \le x \le 1, \\ 2-x, & 1 < x \le 2, \end{cases}$ $M(2;0), N(0;0)$

6)
$$\overline{F} = y \, \overline{i} - x \, \overline{j} + z^2 \, \overline{k}$$
, $\Gamma : x = \frac{\sqrt{2}}{2} \cos t$, $y = \frac{\sqrt{2}}{2} \cos t$, $z = \frac{\sqrt{2}}{2} \sin t$

8.8. a)
$$\overline{F} = (x + y\sqrt{x^2 + y^2}) \overline{i} + (y - x\sqrt{x^2 + y^2}) \overline{j}$$
, $L: x^2 + y^2 = 81$, $M(9;0), N(0;-9)$

6)
$$\overline{F} = (y-z) \overline{i} + (z-x) \overline{j} + (x-y) \overline{k}$$
, $\Gamma: x = \cos t$, $y = \sin t$, $z = 2(1-\cos t)$

```
8.9. a) \overline{F} = 3x \,\overline{i} - 2y^2 \,\overline{j}, L = MN, M(4;2), N(2;-4)
        6) \overline{F} = 2z \overline{i} - x \overline{j} + y \overline{k}, \Gamma : x = 2\cos t, y = 2\sin t, z = 1
8.10. a) \overline{F} = x \,\overline{i} + (x^2 - 4y) \,\overline{j}, L: y = 2x^2 M(0;0), N(1;2)
6) \overline{F} = x \, \overline{i} + z^2 \, \overline{j} + y \, \overline{k}, \Gamma : x = \cos t, y = 2\sin t, z = 2\cos t - 2\sin t - 1
8.11. a) \overline{F} = x^2 y \, \overline{i} - xy^2 \, \overline{j}, L : x^2 + y^2 = 1, (x \le 0, y \ge 0) M(0;1), N(-1;0)
        6) \overline{F} = z \, \overline{i} + y^2 \, \overline{j} - x \, \overline{k}, \widetilde{A} : x = \sqrt{2} \cos t, y = 2 \cos t, z = \sqrt{2} \sin t
8.12. a) \overline{F} = (2 - y) \overline{i} + y - x^2) \overline{j}, L = MN, M(-3;-1), N(3;1)
       6) \overline{F} = x \, \overline{i} - 0.5 \cdot z^2 \, \overline{j} + y \, \overline{k}, \Gamma : x = \frac{\cos t}{2}, y = \frac{\sin t}{3}, z = \cos t - \frac{\sin t}{3} - \frac{1}{4}
8.13. a) \overline{F} = (y^2 - 2x)\overline{i} + (y^2 + x^2)\overline{j}, L: y = \begin{cases} x, & 0 \le x \le 2, \\ 4 - x, & 2 < x \le 4, \end{cases} M(4;0), N(0;0)
6) \overline{F} = -z \, \overline{i} - x \, \overline{j} + xz \, \overline{k}, \Gamma : x = 5\cos t, y = 5\sin t, z = 4
8.14. a) \overline{F} = (2xy - y) \, \overline{i} + (x - y^2) \, \overline{j}, L : x^2 + y^2 = 4, (x \le 0, y \le 0) M(0;-2), N(-2;0)
6) \overline{F} = xz \, \overline{i} + x \, \overline{j} + z^2 \, \overline{k}, \Gamma : x = \cos t, y = \sin t, z = \sin t
8.15. a) \overline{F} = (x + 5y) \, \overline{i} - 7y \, \overline{j}, L = MN, M(0;-1), N(5;0)
6) \overline{F} = (y-z)\overline{i} + (z-x)\overline{j} + (x-y)\overline{k}, \Gamma: x = 4\cos t, y = 4\sin t, z = 1-\cos t
8.16. a) \overline{F} = (2y-x^2)\overline{i} + (3x-4)\overline{j}, L: y = 4x^2 M(0;0), N(1;4)
        6) \overline{F} = -x^2 y^3 \ \overline{i} + 2 \ \overline{j} + xz \ \overline{k}, \Gamma: x = \sqrt{2} \cos t, y = \sqrt{2} \sin t, z = 1
8.17. a) \overline{F} = (x^2 - y)\overline{i} + y\overline{j}, L: x^2 + y^2 = 9, (x \ge 0) M(0;3), N(0;-3)
        6) \overline{F} = xy \overline{i} + x \overline{j} + y^2 \overline{k}, \Gamma: x = \cos t, y = \sin t, z = \sin t
8.18. a) \overline{F} = y^2 / 5 \overline{i} + (4 - y^2) \overline{j}, L = MN, M(6;-1), N(0;1)
6) \overline{F} = (y-z)\overline{i} + (z-x)\overline{j} + (x-y)\overline{k}, \Gamma: x = 3\cos t, y = 3\sin t, z = 2(1-\cos t)

8.19. a) \overline{F} = (x-y)\overline{i} + (2x+y)\overline{j}, L: y = \begin{cases} 2x, & 0 \le x \le 1, \\ 3-x, & 1 < x \le 3, \end{cases} M(0;0), N(3;0)
       6) \overline{F} = 7z \,\overline{i} - x \,\overline{j} + yz \,\overline{k}, \Gamma : x = 6\cos t, y = 6\sin t, z = 1/2
8.20. a) \overline{F} = (x+y)\overline{i} + (x-2y)\overline{j}, L: x^2 + y^2/9 = 1, (x \ge 0, y \ge 0) M(1;0), N(0;3)
        6) \overline{F} = x \, \overline{i} - z^2 \, \overline{j} + 4y \, \overline{k}, \widetilde{A} : x = 2\cos t, y = 3\sin t, z = 4\cos t - 3\sin t - 3
8.21. a) \overline{F} = (5-x)\overline{i} - (3y-4)\overline{j}, L: y = -4\sqrt{x} M(0;0), N(1;-4)
       6) \overline{F} = -2z \, \overline{i} - x \, \overline{j} + x^2 \, \overline{k}, \Gamma : x = \frac{\cos t}{3}, y = \frac{\sin t}{3}, z = 8
8.22. a) \overline{F} = (y - 5x)\overline{i} + (x + 4y)\overline{j}, L = MN, M(-1;3), N(0;5)
        6) \overline{F} = x \, \overline{i} - 2z^2 \, \overline{j} + y \, \overline{k}, \Gamma : x = 3\cos t, y = 4\sin t, z = 6\cos t - 4\sin t + 1
8.23. a) \overline{F} = x \overline{i} + (x^2 - 4y) \overline{j}, L: y = -2x^2 M(0;0), N(1;-2)
        6) \overline{F} = z \overline{i} + x \overline{j} + y \overline{k}, \Gamma: x = 2\cos t, y = 2\sin t, z = 0
8.24. a) \overline{F} = (y - x\sqrt{x^2 + y^2}) \overline{i} + (x + y\sqrt{x^2 + y^2}) \overline{j}, L: x^2 + y^2 = 25, M(-5;0), N(0;5)
        6) \overline{F} = x \, \overline{i} + 5z^2 \, \overline{j} + 3y \, \overline{k}, \Gamma : x = \cos t, y = 3\sin t, z = 2\cos t - 3\sin t - 2
8.25. a) \overline{F} = -y \,\overline{i} + 2x^2 \,\overline{j}, L = MN, M(7;-5), N(6;-1)
```

6)
$$\overline{F} = x^2 y^3 \, \overline{i} + 3 \, \overline{j} + y \, \overline{k}$$
, $\Gamma : x = \cos t, y = \sin t, z = 5$

8.26. a)
$$\overline{F} = -x \, \overline{i} + (x - y) \, \overline{j}$$
, $L: y = \begin{cases} 2x, & 0 \le x \le 1, \\ 3 - x, & 1 < x \le 3, \end{cases}$ $M(0;0), N(3;0)$

6)
$$\overline{F} = 4y \, \overline{i} - 3x \, \overline{j} + x \, \overline{k}$$
, $\Gamma : x = 4\cos t, y = 4\sin t, z = 4 - 4\cos t - 4\sin t$

6)
$$\overline{F} = 4y \, \overline{i} - 3x \, \overline{j} + x \, \overline{k}$$
, $\Gamma : x = 4\cos t$, $y = 4\sin t$, $z = 4 - 4\cos t - 4\sin t$
8.27. a) $\overline{F} = (x^2 - y) \, \overline{i} + (x + 2y^2) \, \overline{j}$, $L : x^2/4 + y^2/9 = 1$, $(x \le 0)$ $M(0; -3)$, $N(0; 3)$

6)
$$\overline{F} = (y - z) \overline{i} - (x - z) \overline{j} + (x - y) \overline{k}$$
, $\Gamma : x = 2\cos t, y = 2\sin t, z = 3 - 3\cos t$

8.28. a)
$$\overline{F} = (2y + x)\overline{i} - xy^2\overline{j}$$
, $L = MN$, $M(4;-2)$, $N(0;0)$

6)
$$\overline{F} = 2y \overline{i} - z \overline{j} + x \overline{k}$$
, $\Gamma: x = \cos t$, $y = \sin t$, $z = 4 - \cos t - \sin t$

8.29. a)
$$\overline{F} = (xy - y) \overline{i} + x^2 / 2 \overline{j}$$
, $L: y = -2\sqrt{x}$ $M(0;0), N(1;-2)$

6)
$$\overline{F} = x \, \overline{i} + y^2 \, \overline{j} - z \, \overline{k}$$
, $\Gamma : x = \sqrt{2} \cos t$, $y = 2 \sin t$, $z = \sqrt{2} \cos t$

8.30. a)
$$\overline{F} = y \overline{i} + 3x \overline{j}$$
, $L: 2x^2 + y^2 = 1$, $(y \ge 0)$ $M(1/\sqrt{2}; 0)$, $N(-1/\sqrt{2}; 0)$

6)
$$\overline{F} = x \, \overline{i} - 3z^2 \, \overline{j} + y \, \overline{k}$$
, $\Gamma : x = \cos t$, $y = 4\sin t$, $z = 3 + 2\cos t - 4\sin t$

8.31. a)
$$\overline{F} = (3y - x^2) \overline{i} - 2x^2 \overline{j}$$
, $L = MN$, $M(-6;0)$, $N(0;5)$

6)
$$\overline{F} = -y \, \overline{i} - 2z \, \overline{j} + xy \, \overline{k}$$
, $\Gamma : x = \sqrt{3} \cos t$, $y = \sqrt{3} \sin t$, $z = 3$

8.32. a)
$$\overline{F} = (2x-1)\overline{i} + (2+y)\overline{j}$$
, $L: y = \begin{cases} 3x, & 0 \le x \le 1, \\ 4-x, & 1 < x \le 4, \end{cases}$ $M(0;0), N(4;0)$

6)
$$\overline{F} = y/3 \,\overline{i} - 3x \,\overline{j} + x \,\overline{k}$$
, $\Gamma: x = 2\cos t, y = 2\sin t, z = 1 - 2\cos t - 2\sin t$

8.33. a)
$$\overline{F} = (x^2 + y^2)(\overline{i} + 2\overline{j}), L: x^2/25 + y^2 = 1, (x \ge 0, y \le 0) M(5;0), N(0;-1)$$

6)
$$\overline{F} = 2x\overline{i} + 6z \overline{j} + 2y \overline{k}$$
, $\Gamma : x = \sqrt{5}\cos t$, $y = \sqrt{5}\sin t$, $z = 6$

9. Вычислите интеграл от функции комплексного переменного по данной кривой

9.1.
$$\int_{AB} \overline{z}^2 dz$$
, $AB = \{ y = x^2, z_A = 2 + 4i, z_B = 1 + i \}$

9.2.
$$\int_{AB} (z+1)e^{z}dz$$
, $AB = \{|z|=1, \text{Re } z \le 0, z_A = -i, z_B = i\}$

9.3.
$$\int_{AB} \text{Im } z^3 dz, \quad AB = \{ z_A = -3 + 5i, z_B = 2 + 2i \}$$

9.4.
$$\int_{AB} (z^2 + 7\bar{z} + 1)dz, \quad AB = \{z_A = 1 - 2i, z_B = 4 - 6i\}$$

9.5.
$$\int_{ABC} |z| dz, \quad ABC = \{z_A = -1, z_B = -1 + i, z_C = 1 + 2i\}$$

9.6.
$$\int_{AB} (12z^2 - 4z + 1)dz, \quad AB = \{ |z| = 3, z_A = -3i, z_B = 3i \}$$

9.7.
$$\int_{AB} (\overline{z}^2 + \text{Re } z) dz, \quad AB = \{ y = 2x^2, z_A = -1 + 2i, z_B = 2 + 8i \}$$

9.8.
$$\int_{ABC} z^3 e^{z^4} dz, \quad ABC = \{ z_A = i, z_B = 1, z_C = 1 + i \}$$

```
9.9. \int \operatorname{Re}^{z} dz, AB = \{ |z| = 2, \operatorname{Im} z \ge 0, z_A = 2, z_B = -2 \}
9.10. \int (z^2 + \cos z) dz, \quad ABC = \{z_A = 3, z_B = 4 + i, z_C = 3 + 2i\}
         ABC
9.11. \int_{AB} \frac{\overline{z}}{z+1} dz, \quad AB = \{ |z| = 4, \text{ Re } z \le 0, z_A = -4i, z_B = 4i \}
        \int (\cosh z + \cos iz) dz, \quad ABC = \{z_A = 2i, z_B = -2 + 3i, z_C = i\}
9.13. \int (|z|^2 \cdot \overline{z}) dz, AB = \{z_A = 3 - 7i, z_B = -3 + 2i\}
9.14. \int_{-AB} (\cosh z + z) dz, \quad AB = \{ |z + 2 - i| = 1, \operatorname{Im}(z - i) \le 0, z_A = -3 + i, z_B = 1 + i \}
9.15. \int \text{Re } z^3 dz, AB = \{z_A = -3 + i, z_B = 6 - 2i\}
9.16. \int (3z^2 + 2\bar{z})dz, AB = \{|z| = 5, \text{Re } z \le 0, z_A = 5i, z_B = -5i\}
9.17. \int (z^2 + 1)dz, ABC = \{z_A = -3 + i, z_B = 1, z_C = 2 - 3i\}
9.18. \int z \operatorname{Re} z^2 dz, AB = \{z_A = 4 + 5i, z_B = -3 + 4i\}
9.19. \int (2\overline{z} + 3z^2 + 4)dz, \quad ABC = \{|z| = 2, \text{Im}(z) \le 0, z_A = -2, z_B = 2\}
9.20. \int (\sin iz + z) dz, AB = \{ |z| = 5, z_A = -4 + 3i, z_B = 3 + 4i \}
9.21. \int e^{|z|^2} \operatorname{Im} z dz, AB = \{z_A = 1 + i, z_B = -1 + 3i\}
9.22. \int (2z+1)\overline{z}dz, AB = \{y = 3x^2 - 2, z_A = -2i, z_B = 1+i\}
9.23. \int (\cos iz + 3z^2)dz, AB = \{z_A = 2 - 4i, z_B = 3 + 5i\}
9.24. \int (2z+1)\overline{z}dz, AB = \{|z|=4, \text{Im}(z) \ge 0, z_A = 4, z_B = -4\}
9.25. [(|z| \cdot z)dz, AB = \{|z| = 7, \text{Re } z \le 0, z_A = -7i, z_B = 7i\}
9.26. \int (\sin z + z^3) dz, ABC = \{z_A = 0, z_B = 4 - i, z_C = 1 - i\}
9.27. \int z \operatorname{Im} z^2 dz, AB = \{ y = 2x^2, z_A = -2 + 8i, z_B = 1 + 2i \}
9.28. \int (\text{Re } z^2 + z) dz, AB = \{z_A = 1 + 2i, z_B = -2 + 3i\}
9.29. \int (z^9 + 1)dz, ABC = \{z_A = 5 - 2i, z_B = i, z_C = 1 + 2i\}
9.30. \int (|z| + 2i), \quad l^+ = \overline{\{z : |z| = 3\}}
```

10.1. $f(z) = \frac{z-1}{z^3 + 4z^2 - 5z}$	10.16. $f(z) = \frac{2z - 4}{z^4 - 4z^3 - 21z^2}$
$10.2. \ f(z) = \frac{8z + 4}{-9z^3 + 3z^2 + 6z}$	10.17. $f(z) = \frac{8z^2 - 28z + 50}{2z^3 - 15z^2 + 25z}$
10.3. $f(z) = \frac{2z+1}{z^4+z^3-2z^2}$	10.18. $f(z) = \frac{13z + 7}{6z^2 - z^3 + 7z}$
$10.4. \ f(z) = \frac{5z - 4}{5z^2 - 2z - 2z^3}$	10.19. $f(z) = \frac{-7z + 5}{z^3 + 6z^2 + 5z}$
10.5. $f(z) = \frac{10z^2 - 16z + 2}{3z^3 - 7z^2 + 2z}$	10.19. $f(z) = \frac{-7z + 5}{z^3 + 6z^2 + 5z}$ 10.20. $f(z) = \frac{9z^2 + 34z - 15}{z^3 + 2z^2 - 3z}$
10.6. $f(z) = \frac{17z^2 + 10z + 5}{2z^3 + z - 3z^2}$ 10.7. $f(z) = \frac{2 - 8z}{4z^2 - 3z^3 - z}$	10.21. $f(z) = \frac{12 - z}{z^3 - 7z^2 + 12z}$
10.7. $f(z) = \frac{2 - 8z}{4z^2 - 3z^3 - z}$	10.22. $f(z) = \frac{15z - 36}{9z^2 - 2z^3 - 9z}$
10.8. $f(z) = \frac{10 - 6z}{3z^2 - z^3 - 2z}$	10.23. $f(z) = \frac{28z + 48}{24z - z^3 - 2z^2}$
10.9. $f(z) = \frac{-7z^2 + 7z - 3}{7z^3 - 2z^4 - 3z^2}$	10.24. $f(z) = \frac{14z - 48}{z^3 + 6z^2 - 16z}$
10.10. $f(z) = \frac{4z^2 + 13z - 4}{-3z^3 - 5z^2 + 2z}$	10.25. $f(z) = \frac{13z - 2}{3z^3 + 5z^2 - 2z}$
10.11. $f(z) = \frac{-5z^2 + 11z - 5}{3z^2 - 2z^3 - z}$	10.26. $f(z) = \frac{85z - 36}{2z^3 + 11z^2 - 6z}$
10.12. $f(z) = \frac{-37z + 12}{-4z^3 + 13z^2 - 3z}$	10.27. $f(z) = \frac{3z-2}{3z^3-4z^3+z}$
10.13. $f(z) = \frac{2z+7}{4z^3-2z^2-2z}$	10.27. $f(z) = \frac{3z - 2}{3z^3 - 4z^3 + z}$ 10.28. $f(z) = \frac{2z^2 - 6z + 15}{3z - z^3 - 2z^2}$
10.14. $f(z) = \frac{z-1}{z^3 + 4z^2 - 5z}$	10.29. $f(z) = \frac{5-4z}{2z^3-5z^2+2z}$
10.15. $f(z) = \frac{12z - 39}{4z^3 + 26z^2 + 30z}$	$10.30. \ f(z) = \frac{z^2 - 4z + 5}{4z^3 + 21z^2 - z^4}$

11. Найдите разложение функции f(z) в ряд Лорана в окрестности точки z_0

11.1. $f(z) = z^2 \cos \frac{\pi}{z - 1}$, $z_0 = 1$	11.16. $f(z) = z \cos \frac{6z}{z - 3i}$, $z_0 = 3i$
	11.17. $f(z) = (z+1)\sin\frac{\pi(z+1)}{z}$, $z_0 = 0$
11.3. $f(z) = \sin \frac{2z}{z+i}$, $z_0 = -i$	11.18. $f(z) = z^2 \sin \frac{2z}{z+i}$, $z_0 = -i$
11.4. $f(z) = \cos \frac{2z+i}{2z-i}$, $z_0 = \frac{i}{2}$	11.19. $f(z) = e^{\frac{z^2 - 4z}{(z - 2i)^2}}, z_0 = 2i$

	,
11.5. $f(z) = z \cos \frac{z+1}{z-1}$, $z_0 = 1$	11.20. $f(z) = z^2 e^{\frac{1}{z+i}}, z_0 = -i$
11.6. $f(z) = z \cos \frac{\pi(z-2)}{z}$, $z_0 = 0$	11.21. $f(z) = \sin \frac{2z+i}{2z-i}$, $z_0 = \frac{i}{2}$
11.7. $f(z) = \sin \frac{z^2 - 8z}{(z - 4)^2}$, $z_0 = 4$	11.22. $f(z) = e^{\frac{z+5}{(z-i)^2}}, z_0 = i$
11.8. $f(z) = z^2 \cos \frac{z}{z+2}$, $z_0 = -2$	11.23. $f(z) = z^2 \cos \frac{z^2 - 2z}{(z - 1)^2}, z_0 = 1$
11.9. $f(z) = e^{\frac{z^2 - 3z}{(z+2)^2}}, z_0 = -2$	11.24. $f(z) = z \sin \frac{\pi(z-1)}{z+2}$, $z_0 = -2$
11.10. $f(z) = \cos \frac{z^2 - 8z}{(z - 4)^2}$, $z_0 = 4$	11.25. $f(z) = z^2 e^{\frac{z}{z+1}}, z_0 = -1$
11.11. $f(z) = z^2 e^{\frac{\pi}{(z-2)^2}}, z_0 = 2$	11.26. $f(z) = z^2 \cos \frac{\pi(z+1)}{z}$, $z_0 = 0$
11.12. $f(z) = z^2 \cos \frac{\pi(z+1)}{z}$, $z_0 = 0$	11.27. $f(z) = z^2 \cos \frac{z+2}{z-4i}$, $z_0 = 4i$
11.13. $f(z) = z \cos \frac{z-3}{z+3}$, $z_0 = -3$	11.28. $f(z) = (z+i)^2 e^{\frac{z}{z-3i}}, z_0 = 3i$
11.14. $f(z) = \cos \frac{z}{z+2i}$, $z_0 = -2i$	11.29. $f(z) = e^{\frac{2z^2 - z}{(z+5i)^2}}, z_0 = -5i$
11.15. $f(z) = \cos \frac{\pi z}{z+1}$, $z_0 = -1$	11.30. $f(z) = \sin \frac{i - 3z}{2z - 7i}$, $z_0 = 3.5i$

12. Определить тип особой точки z = 0 для данной функции f(z)

12.1. $f(z) = \frac{e^{2z} - 1 - 2z}{\sinh 6z - 6z - 36z^3}$	12.16. $f(z) = \frac{\cosh 3z - 1}{\sinh 6z - 6z - 36z^3}$
12.2. $f(z) = z^4 \cosh\left(\frac{5}{z^3}\right)$	12.17. $f(z) = \frac{e^{z^3} - 1}{\cosh 2z - 1 - 2z^2}$
12.3. $f(z) = \frac{\cos 2z - 1 + 2z^2}{e^z - 1}$	12.18. $f(z) = z^2 e^{3/z^5}$
12.4. $f(z) = \frac{\cos 3z - 1}{\sin z - z - z^3 / 6}$	12.19. $f(z) = \frac{\sinh z^3 - z^3}{e^z - 1 - z}$
12.5. $f(z) = \frac{\cosh 4z - 1 - 8z^2}{e^z - 1 - z}$	12.20. $f(z) = \frac{\cos z^2 - 1}{\sin z - z - z^3 / 6}$
12.6. $f(z) = z^2 \sin\left(\frac{2}{z^3}\right)$	12.21. $f(z) = \frac{e^{3z} - 1 - 3z}{\cos 2z - 1 + 2z^2}$
12.7. $f(z) = \frac{\sinh 3z - 3z}{\cosh z - 1 - z^3/2}$	12.22. $f(z) = z^2 \cos\left(\frac{4}{z^3}\right)$

12.8. $f(z) = \frac{e^{8z} - 1}{\sinh 4z - 4z}$	12.23. $f(z) = \frac{\sinh z^3 - z^3}{\cos z^2 - 1 + z^4 / 2}$
12.9. $f(z) = \frac{\sinh z^2 - z^2}{\cos 2z - 1 + 2z^2}$	12.24. $f(z) = \frac{\cosh 6z - 1 - 18z^2}{\sinh 6z - 6z}$
12.10. $f(z) = \frac{\cos z^2 - 1}{z^5}$	12.25. $f(z) = z^5 \sinh\left(\frac{2}{z^2}\right)$
12.11. $f(z) = \frac{\cosh 8z - 1 - 32z^2}{e^{z^2} - 1}$	12.26. $f(z) = \frac{e^{z^2} - 1 - z^2}{\sin 3z - 3z}$
12.12. $f(z) = \frac{e^{4z} - 1 - 4z}{\cos 6z - 1}$	12.27. $f(z) = z^3 \sin\left(\frac{2}{z^4}\right)$
12.13. $f(z) = z^3 \cosh\left(\frac{5}{z}\right)$	12.28. $f(z) = \frac{\cos 2z - 1 + 2z^2}{e^{z^2} - 1}$
12.14. $f(z) = \frac{\cos 9z - 1}{\sin z - z + z^3 / 6}$	12.29. $f(z) = \frac{\cos 9x - 1}{\sin z - 1 - z^3/2}$
12.15. $f(z) = \frac{\sinh(z/2) - z/2}{4z^4}$	12.30. $f(z) = \frac{3 \operatorname{sh} z^3 - 3z^3}{e^{4z} - 1 - 4z}$

13. Вычислите интеграл

13.1. $ \oint_{ z-3 =1} \frac{\sin 4z + 3}{z^2(z-\pi)} dz $	13.16. $\oint_{ z-1 =2} \frac{z(z+\pi)}{\sin 2z} dz$
$13.2. \oint\limits_{ z =1} \frac{e^{iz}+3}{\sin 3zi} dz$	13.17. $ \oint_{ z-3/2 =1} \frac{7z(z+\pi)}{\sin 3z(z-\pi)} dz $
13.3. $ \oint_{ z-1 =3/2} \frac{\ln(z+5)}{\sin z} dz $	13.18. $ \oint_{ z-\pi =1} \frac{3(z^2+\pi)^2}{i\sin z} dz $
13.4. $\oint_{ z+1 =1/2} \frac{\operatorname{tg} z + 4}{4z^2 + \pi z} dz$	$13.19. \oint_{ z-\pi =2} \frac{\cos^2 z}{2z\sin z} dz$
13.5. $ \oint_{ z+1 =2} \frac{\sin^2 z - 7}{z^2 + 2\pi z} dz $	13.20. $ \oint_{ z-1 =2} \frac{z^2 + 3}{(z^2 + 4)\sin\frac{z}{3}} dz $
13.6. $\oint_{ z =\pi/2} \frac{z^2 + z + 5}{\sin z(\pi + z)} dz$	13.21. $ \oint_{ z =2} \frac{z^2 + \sin z + 6}{z^2 + \pi z} dz $
13.7. $\oint \frac{e^z + 6}{z(z-1)} dz$	$13.22. \oint\limits_{ z =2} \frac{\sin^2 z}{3z \cos z} dz$
13.8. $ \oint_{ z-2 =3} \frac{\cos^2 + 5}{z^2 - \pi^2} dz $	13.23. $ \oint_{ z-3/2 =2} \frac{\sin 2z}{z(z-\pi)\left(z+\frac{\pi}{3}\right)} dz $

13.9. $ \oint_{ z-6 =1} \frac{\sin^3 z + 4}{z^2 - 4\pi^2} dz $	13.24. $\oint_{ z-1/2 =1} \frac{5iz(z-i)}{\sin \pi z} dz$
13.10. $ \oint_{ z+3/2 =1} \frac{\cos^2 z + 9}{2z^2 + \pi z} dz $	13.25. $\oint_{ z-3/2 =2} \frac{4z}{\sin z} dz$
13.11. $ \oint_{ z =1/4} \left(\frac{\ln(e+z)}{z \sin(z+\pi/4)} + 2z \right) dz $	13.26. $ \oint_{ z-3/2 =2} \frac{z(\sin z + 3)}{\sin z} dz $
13.12. $\oint_{ z =1} \frac{z^3 - 2i}{\sin 2z(z - \pi)} dz$	13.27. $ \oint_{ z =1} \frac{8 + \sin z}{z(z+2i)} dz $
13.13. $ \oint_{ z =1/2} \frac{z+2}{z(z^2+1)} dz $	13.28. $\oint_{ z-1-i =5/4} \frac{7}{z^2(z-1)} dz$
13.14. $ \oint_{ z-i =3/2} \frac{z-3}{z(z^2+4)} dz $	13.29. $\oint_{ z-1/4 =1/3} \frac{z(z+3)^2}{\sin 2\pi z} dz$
13.15. $ \oint_{ z-3 =1/2} \frac{e^z - 1}{\sin z} dz $	$13.30. \oint_{ z-1 =3} \frac{ze^{2z}}{\sin z} dz$

14. Вычислите интеграл, используя теорию функций комплексного переменного

14.1. $\int_{-\infty}^{+\infty} \frac{dx}{(x^2+2)(x^2+3)^2}$	$14.16. \int_{0}^{2\pi} \frac{dx}{10 - 3\sqrt{7}\sin x}$
$14.2. \int_{0}^{2\pi} \frac{dx}{\sqrt{21}\sin x + 5}$	14.17. $\int_{-\infty}^{+\infty} \frac{(x+2)dx}{(x^2+6)^3}$
14.3. $\int_{-\infty}^{+\infty} \frac{(x^2+1)dx}{(x^2+x+1)^2}$	14.17. $\int_{-\infty}^{+\infty} \frac{(x+2)dx}{(x^2+6)^3}$ 14.18. $\int_{0}^{2\pi} \frac{dx}{\sqrt{5}\sin x + 3}$
$14.4. \int_{0}^{2\pi} \frac{dx}{3\sin x + 5}$	14.19. $\int_{-\infty}^{+\infty} \frac{dx}{(x^2+4)(x^2+1)^2}$
14.5. $\int_{-\infty}^{+\infty} \frac{(x^2+4)dx}{(x^2+9)^2}$	$14.20. \int_{0}^{2\pi} \frac{dx}{\sqrt{35}\sin x - 6}$
$14.6. \int_{0}^{2\pi} \frac{dx}{4 - 2\sqrt{3}\sin x}$	$14.21. \int_{-\infty}^{+\infty} \frac{dx}{x^4 + 10x^2 + 9}$
14.7. $\int_{-\infty}^{+\infty} \frac{(x^2 - x + 2)dx}{x^4 + 10x^2 + 9}$	$14.22. \int_{0}^{2\pi} \frac{dx}{5 - 4\sin x}$
$14.8. \int_{0}^{2\pi} \frac{dx}{3\sqrt{7}\sin x + 8}$	14.23. $\int_{-\infty}^{+\infty} \frac{x^2 dx}{(x^2 + 11)^2}$
14.9. $\int_{-\infty}^{+\infty} \frac{dx}{(x^2+9)(x^2+4)^2}$	$14.24. \int_{0}^{2\pi} \frac{dx}{\sqrt{3}\sin x - 2}$

$14.10. \int_{0}^{2\pi} \frac{dx}{9 - 4\sqrt{5}\sin x}$	14.25. $\int_{-\infty}^{+\infty} \frac{dx}{\left(x^2 - 10x + 29\right)^2}$
14.11. $\int_{-\infty}^{+\infty} \frac{(x^2+1)dx}{(x^2+4x+13)^2}$	$14.26. \int_{0}^{2\pi} \frac{dx}{7 + 4\sqrt{3}\sin x}$
$14.12. \int_{0}^{2\pi} \frac{dx}{4\sin x + 5}$	14.27. $\int_{-\infty}^{+\infty} \frac{(x^2 + 5)dx}{x^4 + 5x^2 + 6}$
	$14.28. \int_{0}^{2\pi} \frac{dx}{8 - 3\sqrt{7}\sin x}$
$14.14. \int_{0}^{2\pi} \frac{dx}{9 + 4\sqrt{5}\sin x}$	14.29. $\int_{-\infty}^{+\infty} \frac{dx}{(x^2 + 10)^2 (x^2 + 2)^2}$
14.15. $\int_{-\infty}^{+\infty} \frac{x^2 dx}{(x^2 + 3)^2}$	$14.30. \int_{0}^{2\pi} \frac{dx}{2\sqrt{2}\sin x + 3}$