

SOLUTION OF EXERCISESHEET 7

Exercise 7-1

This modified encryption does not achieve CPA-security. H(m) is only collision-resistant and doesn't have to hide the message m. If H(m) leaks the message m and this is concatenated with Enc(k,m) the resulting scheme Enc'(k,m) can't be CPA-secure.

Exercise 7-2

(a) not secure:

The adversary \mathcal{A} makes two queries to the oracle: $m^1 = m_1 || m_2 \Rightarrow t^1 = t_1^1 || t_2^1 = F(K, m_1) || F(K, F(K, m_2))$ $m^2 = F(K, m_1) || m_2 \Rightarrow t^2 = t_1^2 || t_2^2 = F(K, F(K, m_1)) || F(K, F(K, m_2))$ Then he knows the tag for the message $m^* = m_1 || m_1$ which is $t^* = F(K, m_1) || F(K, F(K, m_1)) = t_1^1 || t_1^2$. Because $m^* \neq m^1$ and $m^* \neq m^2$, (m^*, t^*) is a valid attack.

(b) not secure:

The adversary $\mathcal A$ makes one query to the oracle: $m^1=m_1||m_2\Rightarrow t^1=F(K,m_1)\oplus F(K,m_2)$ Then he knows the tag for the message $m^*=m_2||m_1$ which is $t^*=F(K,m_2)\oplus F(K,m_1)=F(K,m_1)\oplus F(K,m_2)=t^1$. Because $m^*\neq m^1$, (m^*,t^*) is a valid attack.

(c) not secure:

The adversary $\mathcal A$ makes one query to the oracle: $m^1=m_1||m_2\Rightarrow t^1=(r\oplus (F(K,m_1)\oplus F(K,m_2)),r)$ Then he knows the tag for the message $m^*=m_2||m_1$ which is $t^*=(r\oplus (F(K,m_2)\oplus F(K,m_1)),r)=(r\oplus (F(K,m_1)\oplus F(K,m_2)),r)=t^1$. Because $m^*\neq m^1$, (m^*,t^*) is a valid attack.

SOLUTION OF EXERCISESHEET 7

Exercise 7-3

(a) The adversary $\mathcal A$ can choose the message $\mathsf m^*$ of length $\ell(\lambda) \cdot \lambda$. We set $\ell(\lambda) = \mathsf I$ $\mathsf m^* = \mathsf m_1^* \mid\mid ... \mid\mid \mathsf m_l^*$. We set $\mathsf m_i^* = \mathsf 0^\lambda$. We query $\mathsf m^*$ to our $\mathsf{Mac}_k(\cdot)$ oracle and recieve the tag $\mathsf t^{*'} = (\mathsf{IV}^*, \, \mathsf t^*)$. $\mathsf{IV}^* \in \{0,1\}^\lambda$ is a randomly generated vector

$$c_1^* = \mathsf{F}_k(\mathsf{IV}^* \oplus \mathsf{m}_1^*) = \mathsf{F}_k(\mathsf{IV}^* \oplus \mathsf{0}^{\lambda}) = \mathsf{F}_k(\mathsf{IV}^*)$$

$$c_2^* = \mathsf{F}_k(\mathsf{c}_1^* \oplus \mathsf{m}_2^*) = \mathsf{F}_k(\mathsf{F}_k(\mathsf{IV}^*) \oplus \mathsf{0}^{\lambda}) = \mathsf{F}_k(\mathsf{F}_k(\mathsf{IV}^*))$$
...
$$c_1^* = \mathsf{F}_k(\mathsf{V}^*) = \mathsf{V}_k(\mathsf{V}^*) = \mathsf{V}_k(\mathsf{V}^*)$$

$$\mathsf{c}_l^* = \mathsf{F}_k(\text{ ... } \mathsf{F}_k(\mathsf{IV}^*)\text{ ...}) = \mathsf{t}^*$$

To break the security of the MAC the adversary ${\cal A}$ can construct the following forgery:

$$m = 0^{\lambda - 1} 1 || m_2^* \rangle || ... || m_I^* \rangle$$
 with $IV = IV^* \oplus 0^{\lambda - 1} 1$

meaning we flip the last bit of the first block of our message as well as the last bit of our IV*. This causes that $IV^* \oplus m_1^* = IV \oplus m_1$ and therefore

$$\mathsf{c}_1^* = \mathsf{F}_k(\mathsf{IV}^* \oplus \mathsf{m}_1^*) = \mathsf{F}_k(\mathsf{IV} \oplus \mathsf{m}_1) = \mathsf{c}_1 \text{ as well as all other } \mathsf{c}_i^* = \mathsf{c}_i \text{ of the chain for i } \ell \text{ } \{2,\mathsf{I}\}.$$

We can conclude that $t^* = t$ but $m^* \neq m$ and therefore m was not queried to Mac_k before

 \Rightarrow The adversary $\mathcal A$ can now create the valid forgery $t^{`}=(\mathsf{IV},\,t)$ and can break the unforgability of the Mac.

SOLUTION OF EXERCISESHEET 7

(b) The adversary $\mathcal A$ can choose the messages m of length $\ell(\lambda) \cdot \lambda$. We set $\ell(\lambda) = I$. We choose $\mathsf{m}^1 = \mathsf{m}^1_1 \mid\mid \ldots \mid\mid \mathsf{m}^1_l$ and $\mathsf{m}^2 = \mathsf{m}^2_1 \mid\mid \ldots \mid\mid \mathsf{m}^2_l$ with $\mathsf{m}^1_i = \mathsf{m}^2_i = 0^\lambda$ for $2 \leq i \leq I$.

$$\mathsf{c}_1^i = \mathsf{F}_k(\mathsf{IV} \oplus \mathsf{m}_1^i)$$
 with $\mathsf{IV}^* \in \{\mathsf{0,1}\}^\lambda$ as a fixed vector $\mathsf{c}_2^i = \mathsf{F}_k(\mathsf{c}_1^i \oplus \mathsf{m}_2^i)$

To break the security of the MAC the adversary $\mathcal A$ can construct the following forgery: $\mathsf m^* = \mathsf m_1^2 \mid\mid \mathsf m_2^* \mid\mid \mathsf m_3^1 \mid\mid \ldots \mid\mid \mathsf m_l^1$

with $m_2^*=c_1^1\oplus m_2^1\oplus c_1^2$ which generates a vector that satisfies the following equation: $\Rightarrow c_1^1\oplus m_2^1=c_1^2\oplus m_2^*$

This helps us construct m* such that $c_2^1 = F_k(c_1^1 \oplus m_2^1) = F_k(c_1^2 \oplus m_2^*) = c_2^*$ and $c_i^1 = c_i^*$ for $i \in \{3,I\}$.

Therefore the adversary \mathcal{A} can create the valid forgery $\mathbf{t}=(\mathbf{c}_1^2,\,\mathbf{c}_2^1,\,\ldots\,,\,\mathbf{c}_l^1)$ for \mathbf{m}^* which has not been queried before and can break the unforgability of the Mac.

Introduction to Modern Cryptography Theresa, Celine, Prisca, Saibaba

December 6, 2022

SOLUTION OF EXERCISESHEET 7

Exercise 7-4