Statistical Inference I - Expectations and Transformations

September 17, 2020

Definition

Statistics

 (Ω, \mathscr{F}, P)

collect data, representing by a sequence of R.V.s X_1, X_2, \cdots, X_n

Define if $\mathbf{X} = (X_1, \dots, X_n)'$ R.V.'s

A function $T(\boldsymbol{X})$ is called a Statistic if we can compute $T(\boldsymbol{X})$ without knowing value of parameters

Example

Statistics

 $T_1(\boldsymbol{X}) = \bar{X} = \frac{1}{n} \sum_{i=1}^n X_i = \text{sample mean}$

 $T_2(\boldsymbol{X}) = \frac{1}{n-1} \sum_{i=1}^n |X_i - \bar{X}| = \text{mean absolute deviation}$

 $T_3(\boldsymbol{X}) = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2 = \text{sample variance}$

 $T_4(\mathbf{X}) = \text{sample skewness}$

Definition

Expected value

 $X \sim \text{R.V. in } (\Omega, \mathscr{F}, P)$

 $E(X) = \int_{\Omega} X(\omega) dP(\omega)$

If X has $CDF\ F(x) \Rightarrow E(X) = \int_{\mathbb{R}} X dF(x)$

If X is discrete \int becomes \sum