

Block Verification

This example shows how to set up a compression test on a prestressed soil sample. Due to a simple stress state, it is possible to determine the vertical yield stress analytically. The soil sample is modeled with soil plasticity and the Mohr-Coulomb criterion.

Model Definition

In this example, we consider a block of soil of 1 m length on each side. The soil is pressed from the sides by boundary loads in the x and y directions, and from the top by a prescribed displacement.

Figure 1: Dimensions, boundary conditions, and loads for the test.

ELASTIC PROPERTIES

The soil properties are taken from standard clay.

• Young's modulus, E = 207 MPa, and Poisson's ratio v = 0.3.

SOIL PLASTICITY

- Cohesion c = 70 kPa, and angle of internal friction $\phi = 30^{\circ}$.
- Use the Mohr–Coulomb criterion, with nonassociated flow rule, and Drucker–Prager matched at compressive meridian as plastic potential.

CONSTRAINTS AND LOADS

- The test is based on uniaxial compression. Fix the normal displacement at the lower, left, and right boundaries with a roller boundary condition (these are the boundaries at x = 0, y = 0, and z = 0).
- The in situ stress is prescribed via the External Stress node, it is 300 kPa, 200 kPa, and 100 kPa in the x, y, and z directions, respectively. The in situ stress components are shown in Figure 2.
- The soil sample is subjected to a loading at the top boundary through a prescribed displacement. By means of a parametric sweep, the displacement is gradually increased up to 8 mm.

Figure 2: In situ stress applied on the surface of the block.

The cube of soil experiences a homogeneous stress state, as shown by the von Mises stress distribution in Figure 3.

Figure 3: Equivalent stress and deformation in the soil sample after applying 8 mm displacement from the top.

The stress increases with the compression of the block, as shown in Figure 4.

Figure 4: Equivalent stress with compression displacement of 0 mm, 2 mm, 6 mm, and 8 mm.

450

500

550

350

300

250

From the Mohr circle, the Mohr-Coulomb criterion can be written in terms of the biggest and smallest principal stress:

$$\frac{1}{2}(\sigma_1 - \sigma_3) + \frac{1}{2}(\sigma_1 + \sigma_3)\sin\phi - \cos\phi = 0$$

Since stress in the y direction is the largest principal stress and the stress in the z direction is the smallest principal stress at the onset of yielding, its analytical value can be obtained. Manipulation of the above formula gives

$$\sigma_{ZZ} = \frac{2c\cos\phi - \sigma_{YY}(1+\sin\phi)}{(\sin\phi - 1)} \tag{1}$$

The stresses history together with the analytical value of the stress in the z direction at the onset of yielding is shown in Figure 5. Plastic yielding is reached after a deflection of about 3.5 mm.

Figure 5: This plot shows how the soil sample behaves elastically until it reaches the yield surface at the compressive meridian.

Application Library path: Geomechanics_Module/Verification_Examples/ block_verification

Modeling Instructions

From the File menu, choose New.

NEW

In the New window, click Model Wizard.

MODEL WIZARD

I In the Model Wizard window, click **3D**.

- 2 In the Select Physics tree, select Structural Mechanics>Solid Mechanics (solid).
- 3 Click Add.
- 4 Click 🗪 Study.
- 5 In the Select Study tree, select General Studies>Stationary.
- 6 Click M Done.

GLOBAL DEFINITIONS

Parameters 1

- I In the Model Builder window, under Global Definitions click Parameters I.
- 2 In the Settings window for Parameters, locate the Parameters section.
- **3** In the table, enter the following settings:

Name	Expression	Value	Description
Disp	O [mm]	0 m	Displacement parameter
X_stress	-3e5[Pa]	-3E5 Pa	In situ stress, xx-component
Y_stress	-2e5[Pa]	-2E5 Pa	In situ stress, yy-component
Z_stress	-1e5[Pa]	-1E5 Pa	In situ stress, zz-component

In situ stresses are set with negative sign to fit the structural mechanics convention which assumes negative stresses in compression, and positive in tension.

GEOMETRY I

Block I (blk I)

- I In the Model Builder window, expand the Component I (compl)>Geometry I node.
- 2 Right-click Geometry I and choose Block.
- 3 In the Settings window for Block, click **Build All Objects**. The geometry consists of a simple unit block.

DEFINITIONS

Integration I (intoþl)

- I In the Definitions toolbar, click Nonlocal Couplings and choose Integration.
- 2 In the Settings window for Integration, locate the Source Selection section.
- 3 From the Geometric entity level list, choose Boundary.
- 4 Select Boundary 4 only.

Variables 1

- I In the Model Builder window, right-click Definitions and choose Variables.
- 2 In the Settings window for Variables, locate the Variables section.
- **3** In the table, enter the following settings:

Name	Expression	Unit	Description
Forcez	<pre>intop1(solid.sz)/ intop1(1)-Z_stress</pre>	N/m²	Axial force
szz_th	<pre>(2*solid.cohesion* cos(solid.internalphi) - Y_stress*(1+ sin(solid.internalphi)))/ (sin(solid.internalphi) - 1)</pre>		Theoretical yield stress

SOLID MECHANICS (SOLID)

Linear Elastic Material I

In the Model Builder window, under Component I (compl)>Solid Mechanics (solid) click Linear Elastic Material I.

Soil Plasticity I

- I In the Physics toolbar, click 💂 Attributes and choose Soil Plasticity.
- 2 In the Settings window for Soil Plasticity, locate the Soil Plasticity section.
- 3 From the Material model list, choose Mohr-Coulomb.

The Mohr-Coulomb criterion is used to define yield surface. Use the nonassociated Drucker-Prager plastic potential matched to the Mohr-Coulomb model at the compressive meridian.

Linear Elastic Material I

In the Model Builder window, click Linear Elastic Material 1.

External Stress 1

- I In the Physics toolbar, click 🖳 Attributes and choose External Stress. Choose the **In situ** option in order to apply the in situ stresses.
- 2 In the Settings window for External Stress, locate the External Stress section.
- **3** From the **Stress input** list, choose **In situ stress**.
- 4 From the list, choose Symmetric.

5 In the σ_{ins} table, enter the following settings:

X_stress	0	0
0	Y_stress	0
0	0	Z_stress

Roller I

- I In the Physics toolbar, click **Boundaries** and choose Roller.
- 2 Select Boundaries 1–3 only.

Prescribed Displacement I

- I In the Physics toolbar, click **Boundaries** and choose **Prescribed Displacement**.
- 2 Select Boundary 4 only.
- 3 In the Settings window for Prescribed Displacement, locate the Prescribed Displacement section.
- 4 From the Displacement in z direction list, choose Prescribed.
- **5** In the u_{0z} text field, type -Disp.

MATERIALS

Material I (mat I)

- I In the Model Builder window, under Component I (compl) right-click Materials and choose Blank Material.
- 2 In the Settings window for Material, locate the Material Contents section.
- **3** In the table, enter the following settings:

Property	Variable	Value	Unit	Property group
Young's modulus	E	207e6	Pa	Young'smodulus and Poisson's ratio
Poisson's ratio	nu	0.3	I	Young'smodulus and Poisson's ratio
Density	rho	2000	kg/m³	Basic
Cohesion	cohesion	70e3	Pa	Mohr-Coulomb
Angle of internal friction	internalphi	30[deg]	rad	Mohr-Coulomb

MESH I

Mapped I

- I In the Mesh toolbar, click \times More Generators and choose Mapped.
- 2 Select Boundary 4 only.

Swebt I

In the Mesh toolbar, click A Swept.

Size

- I In the Model Builder window, click Size.
- 2 In the Settings window for Size, locate the Element Size section.
- 3 From the Predefined list, choose Extra coarse.
- 4 Click Build All.

STUDY I

Step 1: Stationary

Set up an auxiliary continuation sweep for the Disp parameter.

- I In the Model Builder window, under Study I click Step I: Stationary.
- 2 In the Settings window for Stationary, click to expand the Study Extensions section.
- 3 Select the Auxiliary sweep check box.
- 4 Click + Add.
- 5 In the table, enter the following settings:

Parameter name	Parameter value list	Parameter unit
Disp (Displacement parameter)	8*range(0,0.05,1)	mm

6 In the Home toolbar, click **Compute**.

RESULTS

Volume I

- I In the Model Builder window, expand the Stress (solid) node, then click Volume I.
- 2 In the Settings window for Volume, locate the Expression section.
- 3 From the Unit list, choose kPa.
- 4 In the Stress (solid) toolbar, click Plot.

Stress (solid)

The default plot shows uniform stress (Figure 3). Modify it to show the von Mises stress at different stages of uniaxial compression, (Figure 4).

- I In the Model Builder window, click Stress (solid).
- 2 In the Settings window for 3D Plot Group, click to expand the Title section.
- **3** From the **Title type** list, choose **Custom**.
- 4 Find the Solution subsection. Clear the Solution check box.
- 5 Locate the Color Legend section. From the Position list, choose Bottom.
- 6 Click to expand the Plot Array section. Enable array to plot the von Mises stress at different stages of uniaxial compression.
- **7** Select the **Enable** check box.
- 8 In the Relative padding text field, type 1.

Volume 1

- I In the Model Builder window, click Volume I.
- 2 In the Settings window for Volume, locate the Data section.
- 3 From the Dataset list, choose Study I/Solution I (soll).
- 4 From the Parameter value (Disp (mm)) list, choose 0.
- 5 Click to expand the Plot Array section. Select the Manual indexing check box.

Deformation

- I In the Model Builder window, expand the Volume I node.
- 2 Right-click **Deformation** and choose **Delete**.

Volume 1

Duplicate the **Volume** node three times to plot the von Mises stress at different stages of uniaxial compression.

I In the Model Builder window, under Results>Stress (solid) right-click Volume I and choose Duplicate.

Volume 2

- I In the Model Builder window, click Volume 2.
- 2 In the Settings window for Volume, locate the Data section.
- 3 From the Parameter value (Disp (mm)) list, choose 2.
- 4 Click to expand the Inherit Style section. Click to expand the Title section. From the Title type list, choose None.

- 5 Locate the Inherit Style section. From the Plot list, choose Volume 1.
- 6 Locate the Plot Array section. In the Index text field, type 1.
- 7 Right-click **Volume 2** and choose **Duplicate**.

Volume 3

- I In the Model Builder window, click Volume 3.
- 2 In the Settings window for Volume, locate the Data section.
- 3 From the Parameter value (Disp (mm)) list, choose 6.
- **4** Locate the **Plot Array** section. In the **Index** text field, type 2.
- 5 Right-click Volume 3 and choose Duplicate.

Volume 4

- I In the Model Builder window, click Volume 4.
- 2 In the Settings window for Volume, locate the Data section.
- 3 From the Parameter value (Disp (mm)) list, choose 8.
- 4 Locate the **Plot Array** section. In the **Index** text field, type 3.
- 5 In the Stress (solid) toolbar, click Plot.

Arrow Surface 1

- I In the Model Builder window, right-click Stress (solid) and choose Arrow Surface.
- 2 In the Settings window for Arrow Surface, locate the Data section.
- 3 From the Dataset list, choose Study I/Solution I (soll).
- 4 From the Parameter value (Disp (mm)) list, choose 0.
- **5** Locate the **Expression** section. In the **X-component** text field, type **0**.
- 6 In the Y-component text field, type 0.
- 7 In the **Z-component** text field, type Forcez.
- 8 Click to expand the **Title** section. From the **Title type** list, choose **None**.
- 9 Locate the Arrow Positioning section. In the Number of arrows text field, type 40.
- 10 Locate the Coloring and Style section. From the Arrow base list, choose Head.
- II From the Color list, choose Custom.
- **12** On Windows, click the colored bar underneath, or if you are running the crossplatform desktop — the **Color** button.
- 13 Click Define custom colors.
- 14 Set the RGB values to 128, 64, and 0, respectively.

- 15 Click Add to custom colors.
- **16** Click **Show color palette only** or **OK** on the cross-platform desktop.
- 17 Click to expand the Plot Array section. Select the Manual indexing check box.

Selection 1

- I Right-click Arrow Surface I and choose Selection.
- **2** Select Boundary 4 only.

Duplicate the Arrow Surface node three times to plot the axial force at different stages of uniaxial compression.

Arrow Surface 1

In the Model Builder window, right-click Arrow Surface I and choose Duplicate.

Arrow Surface 2

- I In the Model Builder window, click Arrow Surface 2.
- 2 In the Settings window for Arrow Surface, locate the Data section.
- 3 From the Parameter value (Disp (mm)) list, choose 2.
- 4 Locate the Plot Array section. In the Index text field, type 1.
- 5 Locate the Coloring and Style section.
- 6 Select the Scale factor check box. In the associated text field, type 4E-7.
- 7 Click to expand the Inherit Style section. From the Plot list, choose Arrow Surface 1.
- 8 Clear the Arrow scale factor check box.
- 9 Right-click Arrow Surface 2 and choose Duplicate.

Arrow Surface 3

- I In the Model Builder window, click Arrow Surface 3.
- 2 In the Settings window for Arrow Surface, locate the Data section.
- 3 From the Parameter value (Disp (mm)) list, choose 6.
- 4 Locate the Plot Array section. In the Index text field, type 2.
- 5 Locate the Inherit Style section. From the Plot list, choose Arrow Surface 2.
- **6** Right-click **Arrow Surface 3** and choose **Duplicate**.

Arrow Surface 4

- I In the Model Builder window, click Arrow Surface 4.
- 2 In the Settings window for Arrow Surface, locate the Data section.
- 3 From the Parameter value (Disp (mm)) list, choose 8.

- 4 Locate the **Plot Array** section. In the **Index** text field, type 3.
- 5 In the Stress (solid) toolbar, click Plot.

Stress (solid)

In the Model Builder window, click Stress (solid).

Table Annotation I

- I In the Stress (solid) toolbar, click More Plots and choose Table Annotation.
- 2 In the Settings window for Table Annotation, locate the Data section.
- 3 From the Source list, choose Local table.
- **4** In the table, enter the following settings:

x-coordinate	y-coordinate	z-coordinate	Annotation
0.5	-0.1	0	<pre>\$\delta\$=0[mm]</pre>
2.5	-0.1	0	<pre>\$\delta\$=2[mm]</pre>
4.5	-0.1	0	<pre>\$\delta\$=6[mm]</pre>
6.5	-0.1	0	<pre>\$\delta\$=8[mm]</pre>

- 5 Select the LaTeX markup check box.
- 6 Locate the Coloring and Style section. Clear the Show point check box.

Stress (solid)

- I Click the **Show Grid** button in the **Graphics** toolbar.
- 2 In the Model Builder window, click Stress (solid).
- 3 In the Settings window for 3D Plot Group, locate the Plot Settings section.
- 4 From the View list, choose New view.
- 5 In the Stress (solid) toolbar, click Plot.

Add a 1D plot to show the evolution of the stress-tensor components versus the displacement at the top surface.

Stress vs. Displacement

- I In the Home toolbar, click **Add Plot Group** and choose ID Plot Group.
- 2 In the Settings window for ID Plot Group, type Stress vs. Displacement in the Label text field.
- 3 Click to expand the **Title** section. From the **Title type** list, choose **Label**.
- 4 Locate the Plot Settings section.

- 5 Select the x-axis label check box. In the associated text field, type Vertical displacement (mm).
- 6 Select the y-axis label check box. In the associated text field, type Stress (kPa).

Point Graph 1

- I Right-click Stress vs. Displacement and choose Point Graph.
- **2** Select Point 1 only.
- 3 In the Settings window for Point Graph, click Replace Expression in the upper-right corner of the y-Axis Data section. From the menu, choose Component I (compl)> Solid Mechanics>Stress>Stress tensor (spatial frame) - N/m2>solid.sGpxx - Stress tensor, xx-component.
- 4 Locate the y-Axis Data section. From the Unit list, choose kPa.
- 5 Locate the x-Axis Data section. From the Parameter list, choose Expression.
- **6** In the **Expression** text field, type **Disp**.
- 7 From the **Unit** list, choose **mm**.
- 8 Click to expand the Coloring and Style section. Click to expand the Legends section. Select the **Show legends** check box.
- 9 From the Legends list, choose Manual.
- **10** In the table, enter the following settings:

Legends \sigma_{xx}

- II In the Stress vs. Displacement toolbar, click **Plot**.
- **12** Right-click **Point Graph I** and choose **Duplicate**.

Point Graph 2

- I In the Model Builder window, click Point Graph 2.
- 2 In the Settings window for Point Graph, click Replace Expression in the upper-right corner of the y-Axis Data section. From the menu, choose Component I (compl)> Solid Mechanics>Stress>Stress tensor (spatial frame) - N/m2>solid.sGpyy - Stress tensor, yy-component.
- 3 In the Stress vs. Displacement toolbar, click **Plot**.
- **4** Locate the **Legends** section. In the table, enter the following settings:

Legends	
\sigma _{yy}	

Point Graph 1

In the Model Builder window, right-click Point Graph I and choose Duplicate.

Point Graph 3

- I In the Model Builder window, click Point Graph 3.
- 2 In the Settings window for Point Graph, click Replace Expression in the upper-right corner of the y-Axis Data section. From the menu, choose Component I (compl)> Solid Mechanics>Stress>Stress tensor (spatial frame) - N/m2>solid.sGpzz - Stress tensor, zz-component.
- 3 In the Stress vs. Displacement toolbar, click **Plot**.
- **4** Locate the **Legends** section. In the table, enter the following settings:

Legends \sigma_{zz}

Point Graph 1

In the Model Builder window, right-click Point Graph I and choose Duplicate.

Point Graph 4

- I In the Model Builder window, click Point Graph 4.
- 2 In the Settings window for Point Graph, locate the y-Axis Data section.
- **3** In the **Expression** text field, type szz th.
- 4 Locate the Coloring and Style section. Find the Line style subsection. From the Line list, choose Dashed.
- 5 From the Color list, choose Magenta.
- **6** Locate the **Legends** section. In the table, enter the following settings:

Legends Theoretical yield stress

Stress vs. Displacement

- I In the Model Builder window, click Stress vs. Displacement.
- 2 In the Stress vs. Displacement toolbar, click Plot.

Finally, plot the in situ stress on the boundaries to reproduce Figure 2.

In Situ Stress

- I In the Home toolbar, click **Add Plot Group** and choose **3D Plot Group**.
- 2 In the Settings window for 3D Plot Group, type In Situ Stress in the Label text field.

- 3 Locate the Title section. From the Title type list, choose Manual.
- 4 In the **Title** text area, type In situ stress (kPa).
- 5 Clear the Parameter indicator text field.

Volume 1

- I In the In Situ Stress toolbar, click Volume.
- 2 In the Settings window for Volume, locate the Expression section.
- **3** In the **Expression** text field, type 1.
- 4 Locate the Coloring and Style section. From the Coloring list, choose Uniform.
- 5 From the Color list, choose Gray.

Transparency I

- I In the In Situ Stress toolbar, click Transparency.
- 2 In the Settings window for Transparency, locate the Transparency section.
- **3** Set the **Transparency** value to **0.7**.

In Situ Stress

In the Model Builder window, under Results click In Situ Stress.

Arrow Surface 1

- I In the In Situ Stress toolbar, click Arrow Surface.
- 2 In the Settings window for Arrow Surface, locate the Expression section.
- 3 In the X-component text field, type solid.SinsXX*solid.nX+solid.SinsXY* solid.nY+solid.SinsXZ*solid.nZ.
- 4 In the Y-component text field, type solid.SinsXY*solid.nX+solid.SinsYY* solid.nY+solid.SinsYZ*solid.nZ.
- 5 In the **Z-component** text field, type solid.SinsXZ*solid.nX+solid.SinsXZ* solid.nY+solid.SinsZZ*solid.nZ.
- 6 Locate the Coloring and Style section. From the Arrow base list, choose Head.

Color Expression 1

- I In the In Situ Stress toolbar, click 👂 Color Expression.
- 2 In the Settings window for Color Expression, locate the Expression section.
- 3 From the Color data list, choose Arrow length.
- 4 From the Unit list, choose kPa.
- 5 Locate the Coloring and Style section. From the Coloring list, choose Gradient.

- **6** From the **Top color** list, choose **Red**.
- 7 In the In Situ Stress toolbar, click Plot.