1. The Poisson problem

The Poisson equation is written as

$$\Delta \phi = \nabla \cdot \nabla \phi = -f,$$

where ϕ and f are two scalar functions. We can write it in a mixed formulation if we introduce $\mathbf{u} = \nabla \phi$:

$$\mathbf{u} = \nabla \phi ,$$

$$\nabla \cdot \mathbf{u} = -f .$$
(1)

An engineering problem is usually given as: In a given domain Ω , f is known all over the Ω , ϕ is known on the boundary $\partial\Omega$, find ϕ and \boldsymbol{u} that solve the problem (1).

To solve such a problem, we first weaken it by saying that: If ϕ and u that solve

$$\int_{\Omega} \mathbf{v}^{\mathsf{T}} \cdot \mathbf{u} - \int_{\Omega} \mathbf{v}^{\mathsf{T}} \cdot \nabla \phi = 0,$$

$$\int_{\Omega} (\nabla \cdot \mathbf{u}) g = -\int_{\Omega} f g,$$
(2)

for all \boldsymbol{v} and \boldsymbol{g} , ϕ and \boldsymbol{u} solve the problem (1). If we perform integration by parts to the term $\int_{\Omega} \boldsymbol{v}^{\mathsf{T}} \cdot \nabla \phi$, we eventually get a problem given by: Find ϕ and \boldsymbol{u} , such that

$$\int_{\Omega} \boldsymbol{v}^{\mathsf{T}} \cdot \boldsymbol{u} + \int_{\Omega} (\nabla \cdot \boldsymbol{v}) \, \phi = \int_{\partial \Omega} \phi \, \boldsymbol{v} \cdot \boldsymbol{n} ,
\int_{\Omega} (\nabla \cdot \boldsymbol{u}) \, g = -\int_{\Omega} f g ,$$
(3)

for all v and g. The next question is how to discretize this problem. We will restrict ourselves to \mathbb{R} at this moment.

2. 1D

We consider the domain $\Omega = x \in [-1, 1]$, and

$$f = \alpha^2 \pi^2 \sin(\alpha \pi x),$$

where $\alpha \in \{1, 2, 3, 4, \dots\}$ is a given factor (choose a value as you wish, start with a low one, like $\alpha = 1$). The boundary condition for ϕ is given as $\phi(-1) = \phi(1) = 0$.

In \mathbb{R} , a vector, for example \boldsymbol{u} , is of no difference with a scalar, like ϕ . So we write (3) as

$$\int_{\Omega} vu + \int_{\Omega} (\nabla \cdot v) \phi = 0,$$

$$\int_{\Omega} (\nabla \cdot v) g = -\int_{\Omega} fg.$$
(4)

We let ϕ be discretized as

$$\phi^h = \sum_{i=1}^N \phi_i e_i(x). \tag{5}$$

Let u be discretized as

$$u^{h} = \sum_{i=0}^{N} u_{i} h_{i}(x). \tag{6}$$

If we choose the test functions g to be $e_i(x)$, $i = 1, 2, \dots, N$, and choose the test functions v to be $h_i(x)$, $i = 0, 1, 2, \dots, N$. we can get the following discrete system:

$$\left\{ \begin{matrix} \mathbb{M}^u & (\mathbb{M}^{\phi} \mathbb{E})^{\mathsf{T}} \\ \mathbb{M}^{\phi} \mathbb{E} & \end{matrix} \right\} \left\{ \begin{matrix} \vec{u} \\ \vec{\phi} \end{matrix} \right\} = \left\{ \begin{matrix} 0 \\ -\vec{f} \end{matrix} \right\},$$
(7)

where $\vec{u} = \{u_0, u_1, \dots, u_N\}^\mathsf{T}$ and $\vec{\phi} = \{\phi_1, \phi_2, \dots, \phi_N\}^\mathsf{T}$ are the vectors of the expansion coefficients (degrees of freedom), and

$$\vec{f_i} = \int_{-1}^{1} f e_i(x) \, \mathrm{d}x,$$

and

$$\mathbb{M}_{i,j}^u = \int_{-1}^1 h_i(x) h_j(x) \, \mathrm{d}x$$

is the mass matrix of shape (N+1, N+1) regarding basis functions h, and

$$\mathbb{M}_{i,j}^{\phi} = \int_{-1}^{1} e_i(x) e_j(x) \, \mathrm{d}x$$

is the mass matrix of shape (N, N) regarding basis functions e, and

$$\mathbb{E} = \begin{cases} -1 & 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & -1 & 1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 & \cdots & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & -1 & 1 \end{cases}$$

is the incidence matrix of shape (N, N+1) which basically does the derivative.

If we solve the system (7), for example, using 'numpy.linalg.solve', we can obtain \vec{u} and $\vec{\phi}$. Therefore we can get the solutions ϕ^h and u^h , see (5) and (6).

Now, you can play around, by changing N and α , to see how the solutions look like.