數位系統實驗

Thu 9:00 am - 12:00 am

陳培殷

國立成功大學 資訊工程系

Schedule(乙)

- 9/10 Lab 01 (Logic Gate on Chip)
- 9/17 Lab 02 (Logic Gate on Chip)
- 9/24 Lab 03 (Logic Gate on Chip)
- 10/01 Suspension(中秋)
- 10/7 Mid Exam (Lab 01 ~ Lab 02)
- 9 Lab + 1 Mid Exam (Hardware Description Language, HDL)
- 12/31 Final Project preparation)
- 01/07 Final Project Presentation

LAB - 01

陳培殷

國立成功大學 資訊工程系

Outline

- Video preview for 數位系統簡介+邏輯閘
- Representations for a circuit
- 邏輯閘(logic gate), 晶片(chip)
- 麵包板(Breadboard) for function verification
- Lab

Three representations for a circuit

1. Boolean Algebra

$$F_1 = x + y'z$$

3. Circuit Diagram

2. Truth Table 真值表

n input variables \rightarrow 2ⁿ combinations

Inputs

у	Ζ	y'	y'z	<i>F</i> ₁
0	0	1	0	0
0	1	1	1	1
1	0	0	0	0
1	1	0	0	0
0	0	1	0	1
0	1	1	1	1
1	0	0	0	1
1	1	0	0	1
	0 1 1 0	0 0 0 1 1 0 1 1 0 0 0 1 1 0	0 0 1 0 1 1 1 0 0 1 1 0 0 0 1 0 1 1 1 0 0	0 0 1 0 0 1 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 1 1 1 1 0 0 0

AND gate

Connection Diagram

Function Table

Y = AB

In	outs	Output
Juo A	В	Y
4	T	L
L	Н	L
HULL	L	L
Hook	H	Н

H = HIGH Logic Level L = LOW Logic Level

Boolean Algebra

F=xv

OR gate

Connection Diagram

Function Table

Y = A + B

Inputs		Output
A	В	Y
OO L	T	L
L C	Н	Н
100H	L	Н
H.	Н	Н

H = HIGH Logic Level L = LOW Logic Level

Boolean Algebra F

NOT gate

Connection Diagram

Function Table

 $Y = \overline{A}$

Input	Output
A	Y
1001-1	Н М
HCO.	CW L W

H = HIGH Logic Level L = LOW Logic Level

Boolean Algebra

F=x'

NAND gate

Not - AND

Connection Diagram

Function Table

 $Y = \overline{AB}$

Inputs		Output
A	В	Y
1001	T	Н
L	ОМН	Н
10H 7.	L	Н
H	Н	L

H = HIGH Logic Level

L = LOW Logic Level

Boolean Algebra

F=(xy)'

74LS00 (1/3)

NAND gate

Connection Diagram

Function Table

Inputs		Output
A	В	Υ
1001	TW	Н
L	Н	Н
10H 7.	- 3/1/1	н

Y = AB

H = HIGH Logic Level L = LOW Logic Level

Vcc (5V)

74LS00 (2/3)

74LS00 (3/3)

- 1. Multiple chips (gates) are used to realize a specific circuit
- 2. A dedicated chip (ASIC, application specific integrated circuit)

Introduction of Solderless Breadboard

- Solderless Bredboard is a convenient kit for lay outing circuits without any soldering work. It is very useful for circuit test and modification during practical training.
- Components in lab can be reused with breadboard.
- Normally, component's pins are inserted into holes on breadboard. Every five holes are connected together by a brass stripe under plastic cover. One of holes is connected to component's pin and the other holes are for circuit connection with jumpers.

Various Breadboards

Different types of Breadboards

The Solderless Breadboard in CSIE NCKU

Top view of the breadboard

Top View of the Solderless Breadboard

: connected : disconected

Example: Connection with 74LS00 Chip(1/7)

Board

power supply

Chip(NAND)

output

TTL mode

input

Example: Connection with 74LS00 Chip(2/7)

Board : wire connection

Example: Connection with 74LS00 Chip(3/7)

Power supply

VCC

GND

Example: Connection with 74LS00 Chip(4/7)

Signal input

Example: Connection with 74LS00 Chip(5/7)

Signal output

Example: Connection with 74LS00 Chip(6/7)

- Input 11
- Output 0

74LS00 truth table

Input		Output
A	В	Y
0	0	1
1	0	1
0	1	1
1	1	0

Example: Connection with 74LS00 Chip(7/7)

- Input 00
- Output 1

74LS00 truth table

Input		Output
A	В	Y
0	0	1
1	0	1
0	1	1
1	1	0

Equipment

Names	Amount
Solerless Breadboard	×1
74LS00	×1
74LS04	×1
74LS08	×1
74LS32	×1

Lab notice

Input

Output

Lab I

Please (a) draw the truth table of the following circuit and (b) implement the circuit on the breadboard.

Lab II(additional)

 Please draw their Truth Tables and implement the circuits with breadboard.

$$F_1(A, B) = (A + B)'(A' + B')$$

$$F_2(A, B) = A' + AB'$$