Differential Geometry — Feedback Exercise 1

Samuel Jackson — 2520998j January 22, 2024

Question (1)

For the function to be a parameterised curve, we require that that the function is smooth and defined on an open interval. Clearly α is defined on the open interval (0,100). To determine if α is smooth, we recognise that sin, cos and polynomials are smooth functions as well as the fact that the composition of smooth functions is smooth. Given α is made up of three smooth functions, we know α is also smooth.

For α to be regular, we require that $\dot{\alpha}(s) \neq \mathbf{0}$ for all $s \in (0, 100)$. Deriving $\dot{\alpha}$, we find: $\dot{\alpha} = ((2t-1)\cos(t^2-t), (1-2t)\sin(t^2-t), 2t-1)$. Immediately, we see that for $\dot{\alpha}(\frac{1}{2}) = (0,0,0)$, so α is not regular.

Question (2)

Given the components of γ are smooth functions $\sin(s)$ and $\cos(s)$, γ is similarly a smooth function on the open interval \mathbb{R} . Furthermore, γ is regular since $\dot{\gamma}$ is solely comprised of similar $-\sin(s)$ and $\cos(s)$ functions which can not be 0 simultaneously, for $s \in \mathbb{R}$. Hence, γ is a regular parameterised curve (RPC).

For the RPC γ , we require that $||\dot{\gamma}|| = 1$ for γ to be unit-speed. Hence, we calculate $\dot{\gamma}(s) = (-\sin(s), \dots, -\sin(s), \cos(s), \dots, \cos(s))$, where there is n-total $-\sin$ and \cos components respectively. Then, we calculate the magnitude of $\dot{\gamma}$:

$$||\dot{\gamma}(s)|| = \sqrt{\frac{1}{n}(\sin^2(s) + \dots + \sin^2(s) + \cos^2(s) + \dots + \cos^2(s))}$$

$$||\dot{\gamma}(s)|| = \sqrt{\frac{1}{n}(n(\sin^2(s) + \cos^2(s))}$$

$$||\dot{\gamma}(s)|| = \sqrt{1}$$

$$||\dot{\gamma}(s)|| = 1$$

Hence, γ is a unit-speed curve.

Consequently, we calculate the Frenet-Serret frame for n = 1. We have $\gamma_1 : \mathbb{R} \to \mathbb{R}^2$, $s \mapsto (\cos(s), \sin(s))$, so $\dot{\gamma}_1 = (-\sin(s), \cos(s)) = \mathbf{T}$. Similarly, since γ_1 is unit-speed, we can calculate \mathbf{N} , which is simple for curves in \mathbb{R}^2 . $\mathbf{N} = (-\cos(s), -\sin(s))$. Therefore, the Frenet-Serret frame is $\{\mathbf{T}, \mathbf{N}\}$.

Question (3)

To find that γ is of unit-speed, we calculate the derivative as $\dot{\gamma} = (\frac{1}{2}\sqrt{1+s}, \frac{-1}{2}\sqrt{1-s}, \frac{1}{\sqrt{2}})$. Consequently, we calculate the magnitude as follows:

$$\begin{split} ||\dot{\gamma}(s)|| &= \sqrt{\frac{1}{4}(1+s) + \frac{1}{4}(1-s) + \frac{1}{2}} \\ ||\dot{\gamma}(s)|| &= \sqrt{\frac{1}{4} + \frac{s}{4} + \frac{1}{4} - \frac{s}{4} + \frac{1}{2}} \\ ||\dot{\gamma}(s)|| &= \sqrt{\frac{1}{2} + \frac{1}{2}} \\ ||\dot{\gamma}(s)|| &= \sqrt{1} \\ ||\dot{\gamma}(s)|| &= 1 \end{split}$$

Hence, γ is unit-speed.

To calculate the curvature and torsion, we use the respective equations:

$$\begin{split} \kappa &= \frac{||\dot{\gamma} \times \ddot{\gamma}||}{||\dot{\gamma}||^3} \\ \tau &= \frac{\det(\dot{\gamma} \mid \ddot{\gamma} \mid \dddot{\gamma})}{||\dot{\gamma} \times \ddot{\gamma}||^2} \end{split}$$

As the equations necessitate, we need the second and third derivatives of γ which, respectively, are:

$$\ddot{\gamma} = \left(\frac{1}{4\sqrt{1+s}}, \frac{1}{4\sqrt{1-s}}, 0\right)$$
$$\ddot{\gamma} = \left(\frac{-1}{8(1+s)^{\frac{-3}{2}}}, \frac{1}{8(1-s)^{\frac{-3}{2}}}, 0\right)$$

Firstly, note that γ is a unit-speed curve so $||\dot{\gamma}||=1$, hence $\kappa=||\ddot{\gamma}||.$ We solve for the curvature, κ , first:

$$\kappa = ||\ddot{\gamma}||$$

$$\kappa = \sqrt{\frac{1}{16(1+s)} + \frac{1}{16(1-s)}}$$

$$\kappa = \frac{1}{\sqrt{16}} \sqrt{\frac{1}{1+s} + \frac{1}{1-s}}$$

$$\kappa = \frac{1}{4} \sqrt{\frac{2}{1-s^2}}$$

$$\kappa = \frac{1}{4} \sqrt{\frac{2}{1-s^2}}$$

$$\kappa = \frac{\sqrt{2}}{4\sqrt{1-s^2}}$$

For τ , it is a longer calculation. We first calculate $\det(\dot{\gamma} \mid \ddot{\gamma} \mid \ddot{\gamma})$:

$$\begin{split} \tau &= \det(\dot{\gamma} \mid \ddot{\gamma} \mid \dddot{\gamma}) \\ \tau &= \dot{\gamma} \cdot (\ddot{\gamma} \times \dddot{\gamma}) \\ \tau &= \dot{\gamma} \cdot \left(0, 0, \frac{1}{16(1-s)^{\frac{3}{2}}}\right) \\ \tau &= \frac{\sqrt{2}}{32(1-s^2)^{\frac{3}{2}}} \end{split}$$

Similarly, we calculate $||\dot{\gamma} \times \ddot{\gamma}||$, which is just $||\ddot{\gamma}||$ for a unit-speed curve.

$$\begin{aligned} ||\dot{\gamma} \times \ddot{\gamma}|| &= || ||\dot{\gamma}|| \, ||\ddot{\gamma}|| \, \sin(\theta) \mathbf{n}|| \\ ||\dot{\gamma} \times \ddot{\gamma}|| &= || \mathbf{1} \cdot ||\ddot{\gamma}|| \cdot \mathbf{1} \cdot \mathbf{n}|| \\ ||\dot{\gamma} \times \ddot{\gamma}|| &= ||\ddot{\gamma}|| \\ ||\dot{\gamma} \times \ddot{\gamma}|| &= \frac{\sqrt{2}}{4\sqrt{1 - s^2}} \end{aligned}$$

Combining these components, we find the torsion, τ :

$$\begin{split} \tau &= \frac{\sqrt{2}}{32(1-s^2)^{\frac{3}{2}}} \cdot \frac{16(1-s^2)}{2} \\ \tau &= \frac{16\sqrt{2}(1-s^2)}{64(1-s^2)^{\frac{3}{2}}} \\ \tau &= \frac{\sqrt{2}}{4\sqrt{1-s^2}} \end{split}$$