```
Module No1.
```

Import Unicode.Utf8. (*We first give the axioms of Principia for the propositional calculus in *1.*)

```
Axiom MP1_1: \forall P Q: Prop,
(P \rightarrow Q) \rightarrow P \rightarrow Q. (*Modus ponens*)
```

(**1.11 ommitted: it is MP for propositions containing variables. Likewi se, ommitted the well-formedness rules 1.7, 1.71, 1.72*)

```
Axiom Taut1_2 : \forall P : Prop,
P \vee P\rightarrow P. (*Tautology*)
```

Axiom Add1_3 : \forall P Q : Prop, Q \rightarrow P \vee Q. (*Addition*)

Axiom Perm1_4 : \forall P Q : Prop, P \vee Q \rightarrow Q \vee P. (*Permutation*)

Axiom Assoc1_5 : \forall P Q R : Prop, P \vee (Q \vee R) \rightarrow Q \vee (P \vee R).

Axiom Sum1_6: \forall P Q R : Prop,

 $(Q \rightarrow R) \rightarrow (P \lor Q \rightarrow P \lor R)$. (*These are all the propositional axioms of P rincipia Mathematica.*)

Axiom Impl1_01 : \forall P Q : Prop,

 $(P \rightarrow Q) = (\sim P \lor Q)$. (*This is a definition in Principia: there \rightarrow is a define d sign and \lor , \sim are primitive ones. So we will use this axiom to switch bet ween disjunction and implication.*)

End No1.