第八章 假设检验

统计推断 估计 两大基本问题 假设检验

参数检验 分布拟合检验

第八章 假设检验

假设检验是统计推断的另一个重要内容,在数理统计中的理论研究与实际应用中占有重要地位。

所谓假设检验,就是由实际问题的需要,对总体的某个(些)我们关心的方面提出看法(一般称为假设),再由样本所提供的信息,建立数学模型,根据一定的方法对所提出的假设作出接受还是拒绝的判断,这类统计推断问题在数理统计中称为统计假设检验问题,简称假设检验。

参数假设检验

假设检验分类

总体分布已知,检验关于未知参数的某个假设。

非参数假设检验

总体分布未知,针对未知分布的 类型或它的某些特征(如独立性、 相关性等)所作假设进行的检验。

本章主要介绍一些参数检验和关于总体分布的拟合检验法。

§ 1 假设检验

一、基本概念

1. 假设的数学模型

在假设检验问题中,通常根据实际问题,作出合理的假设,以此作为假设检验问题开始。

H₀: 关于总体的某个假设; H₁: 关于总体的另一个假设

其中H₀ 称为原假设/零假设 (Null Hypothesis)

H₁ 称为备择假设 (Alternative Hypothesis)

如 检验总体均值 H_0 : $\mu = \mu_0$; H_1 : $\mu \neq \mu_0$

2. 两类错误

假设检验中,我们是<u>依据样本值,按一定规则来判断原假设H₀的真伪,以决定对它的取舍</u>。由于 <u>样本的随机性和样本提供信息的有限性</u>,因此就存 在犯两种错误的可能性。

所做判断真实情况	接受 H ₀	拒绝 H ₀	
H ₀ 为真	正确	犯第 [类错误 <u>弃真</u>	
H ₀ 不真	犯第Ⅱ类错误 取伪	正确	

所做判断 真实情况	接受H ₀	拒绝 H ₀	
H ₀ 为真	正确	犯第 [类错误 <u>弃真</u>	
H ₀ 不真	犯第Ⅱ类错误 <u>取伪</u>	正确	

■ 两类错误不是对立事件

□ 两类错误概率之和 α+β $\overline{ }$ $\overline{$

所做判断 真实情况	接受H ₀	拒绝 H ₀
H ₀ 为真	正确	犯第 I 类错误 <u>弃真</u>
H ₀ 不真	犯第Ⅱ类错误 <u>取伪</u>	正确

理想的检验方法应该使犯两类错误的概率都尽可能的小,但在样本容量n固定时,不可能同时减小犯两类错误的概率,如果减小一个,就会增大犯另一类错误的概率。因此,要想同时减小犯两类错误的概率,只有增加样本容量n。

3. 显著性检验

只控制犯第 I 类错误的概率,而不考虑第 II 类错误的概率的检验,称为显著性检验(Test of Statistical Significance)。

即 控制 P{弃真} ≤ α 其中, α 称为显著性水平 (Significance Level)。

4. 拒绝域与临界点

可以将样本空间划分为两个互不相交的区域:

拒绝域 拒绝H₀的样本点所在的区域。接受域 接受H₀的样本点所在的区域。

4. 拒绝域与临界点

拒绝域的边界点称为临界点。(也即接受域和拒绝域的分界点)

划分拒绝域和接受域的依据:

原假设 H_0 成立条件下选定的<u>检验统计量</u>的分布所具有的概率性质以及显著性水平 α 。

检验统计量 类似于参数估计问题,要借助样本的函数进行统计推断。用于假设检验问题的统计量称为检验统计量。

5. 假设检验原理

实际推断原理

小概率事件在一次试验中几乎是不发生的

反证法思想

首先提出假设,为检验其是否成立,用适当的统计方法来确定假设成立的可能性大小,如果可能性小,则认为假设不成立,拒绝它;反之,则间接肯定。

6. 假设检验的基本思想

设有某个假设 H_0 需要检验,先假设 H_0 正确,在 H_0 成立条件下,选取一个适当的检验统计量Z,由检验统计量Z的分布和给定显著性水平 α 确定拒绝域和接受域。若 H_0 成立时,由样本值计算出检验统计量Z的观察值落在拒绝域内,依据实际推断原理此时原假设 H_0 是不正确的,应该拒绝 H_0 ;否则,接受 H_0 。

二、假设检验的基本步骤

- 1. 根据实际问题提出原假设H₀和备择假设H₁;
- 2. 确定检验统计量及其在 H_0 成立条件下的概率分布;
- 3. 给定的显著性水平 α ,在 H_0 成立的条件下,确定拒绝域和临界点;
- 4. 由样本值计算检验统计量的观测值,依据该值所 落入区域(拒绝域或接受域)作出判断:

接受Ho 或 拒绝Ho。

例1(P178 例1) 某车间用一台包装机包装葡萄糖,袋装糖的净重是一个RV,它服从正态分布。当机器正常时,其均值为0.5kg,标准差为0.015kg。某日开工后为检验包装机是否正常,随机地抽取它所包装的9袋糖,称得净重为(kg):

0.497 0.506 0.518 0.524 0.498 0.511

0.520 0.515 0.512,

问机器是否正常? $(\alpha = 0.05)$

分析

以 μ 和 σ 分别表示袋装糖的净重总体X 的均值和标准差。长期实践表明:标准差比较稳定,于是 σ =0.015,而这里 μ 未知,即 $X \sim N(\mu, 0.015^2)$ 。现在的问题是要根据样本来判断 μ 是否为0.5?为此,我们进行如下的假设检验:

 $H_0: \mu = \mu_0 = 0.5; H_1: \mu \neq \mu_0$

解: 检验 H_0 : $\mu = \mu_0$; H_1 : $\mu \neq \mu_0$

检验统计量
$$Z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0,1)$$

$$\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1)$$

控制
$$P\{$$
拒绝 $H_0|H_0$ 为真 $\}=P_{\mu_0}\left\{\left|\frac{\bar{X}-\mu_0}{\sigma/\sqrt{n}}\right|\geq k\right\}=\alpha$

拒绝域
$$\left| \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \right| \ge z_{\frac{\alpha}{2}} \qquad \overline{x} = 0.511, \sigma = 0.015$$

$$n = 9, \alpha = 0.05$$

检验统计量的观测值
$$\left| \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \right| = 2.2 > z_{\frac{0.05}{2}} = 1.96$$

落入拒绝域,故应拒绝H₀。

1) 通常显著性水平α取值较小(一般取0.01, 0.05),

因而当
$$H_0$$
为真($\mu = \mu_0$)时,事件 $\left\{ \left| \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} \right| \ge z_{\frac{\alpha}{2}} \right\}$ 是一

个小概率事件,根据实际推断原理,若H₀为真,则

由一次试验得到的样本值
$$\overline{x}$$
满足不等式 $\left| \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \right| \ge z_{\frac{\alpha}{2}}$

几乎是不会发生的。

但现在,在一次观察中竟然出现了满足不等式

$$\left| \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \right| \ge z_{\alpha}$$
的 \overline{x} ,即小概率事件现在发生了,则我们有理由怀疑假设 H_0 的正确性,因此拒绝 H_0 。如果在一次观察中的样本值满足 $\left| \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \right| < z_{\alpha}$

则我们没有理由拒绝 H_0 ,故只能接受 H_0 。

此可以看出:显著性检验问题是实际推断原理 和反证法思想的综合应用。

2) 假设检验中所用的反证法与确定数学中的反证法有区别。

一般反证法: 在原假设成立的条件下得出明显矛盾的结果, 从而下结论推翻原假设。

在假设检验中,我们在原假设成立的条件下得出的结论是一个具有很大概率的事件(即接受域),它几乎必然成立,但仍有很小的概率不成立(即拒绝域)。那么为什么认为我们的反证法具有说服力呢?这主要是基于实际推断原理——小概率事件在一次观察中是不会发生的,如果发生了,就只能怀疑(否定)原假设。

依据备择假设的不同情况,将参数的假设检验 作如下分类:

双边备择假设 $H_0: \mu = \mu_0; H_1: \mu \neq \mu_0$

左边检验

 $H_0: \mu \ge \mu_0; H_1: \mu < \mu_0$

单边检验的拒绝域

设总体 $X \sim N(\mu, \sigma^2)$, σ^2 已知, X_1, X_2, \dots, X_n 是来自 X 的样本,给定显著性水平 α 。

① 右边检验的拒绝域

$$H_0: \mu \leq \mu_0; H_1: \mu > \mu_0$$

检验统计量
$$Z = \frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}}$$

拒绝域(形式)
$$\frac{\overline{x} - \mu_0}{\sigma/\sqrt{n}} \ge k$$
?

$$H_0: \mu \leq \mu_0; H_1: \mu > \mu_0$$

控制 $P\{$ 拒绝 $H_0|H_0$ 为真 $\}$

岩
$$\mu \leq \mu_0$$
,

$$\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \ge \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} \ge k$$

$$= \mathbf{P}_{\mu \le \mu_0} \left\{ \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \ge k \right\}$$

$$= \mathbf{P}_{\mu \leq \mu_0} \left\{ \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \geq k \right\} \qquad \text{if } \left\{ \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \geq k \right\} \supset \left\{ \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \geq k \right\}$$

$$\leq \mathbf{P}_{\mu \leq \mu_0} \left\{ \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \geq k \right\} \stackrel{\diamondsuit}{=} \alpha$$

可知
$$k = z_{\alpha}$$

故拒绝域
$$\frac{\overline{x} - \mu_0}{\sigma/\sqrt{n}} \ge z_{\alpha}$$

单边检验的拒绝域

设总体 $X \sim N(\mu, \sigma^2)$, σ^2 已知, X_1, X_2, \dots, X_n 是来自 X 的样本,给定显著性水平 α 。

② 左边检验的拒绝域

$$H_0: \mu \ge \mu_0; H_1: \mu < \mu_0$$

检验统计量
$$Z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$$

拒绝域(形式)
$$\frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \leq k$$
?

$$H_0: \mu \ge \mu_0; H_1: \mu < \mu_0$$

控制 $P\{$ 拒绝 $H_0|H_0$ 为真 $\}$

$$\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \le \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} \le k$$

$$= \mathbf{P}_{\mu \ge \mu_0} \left\{ \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \le k \right\}$$

$$= \mathbf{P}_{\mu \geq \mu_0} \left\{ \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \leq k \right\} \qquad \text{\Rightarrow $\not= \left\{ \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \leq k \right\} } \qquad \left\{ \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \leq k \right\}$$

$$\leq \mathbf{P}_{\mu \geq \mu_0} \left\{ \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \leq k \right\} \stackrel{\diamondsuit}{=} \alpha$$

可知
$$k = -z_{\alpha}$$

故拒绝域
$$\frac{\overline{x} - \mu_0}{\sigma/\sqrt{n}} \le -z_\alpha$$

§ 2 正态总体均值的假设检验

一、单个正态总体均值的检验

设总体 $X \sim N(\mu, \sigma^2), X_1, X_2, \dots, X_n$ 是来自X 的样本, 给定显著性水平 α , 讨论以下各种检验的拒绝域。

 $1. \sigma^2$ 已知,关于 μ 的检验

- ① $H_0: \mu = \mu_0; H_1: \mu \neq \mu_0$
- ② $H_0: \mu \leq \mu_0; H_1: \mu > \mu_0$
- ③ $H_0: \mu \ge \mu_0; H_1: \mu < \mu_0$

上述检验问题中,利用检验统计量 $Z = \frac{X - \mu_0}{\sigma / \sqrt{n}}$ 确定拒绝域,这种检验法称为Z检验法。

$2. \sigma^2$ 未知,关于 μ 的检验

双边检验 $H_0: \mu = \mu_0; H_1: \mu \neq \mu_0$

$$\sigma$$
已知, $Z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$

检验统计量
$$t = \frac{\overline{X} - \mu_0}{S/\sqrt{n}} \stackrel{\mathsf{H_0}}{\sim} t(n-1)$$

拒绝域
$$\left| \frac{\overline{x} - \mu_0}{S / \sqrt{n}} \right| \ge t_{\frac{\alpha}{2}} (n-1)$$

此外, σ^2 未知时, μ 的单边检验的拒绝域如下,即P189表8.1.

假设	检验统计量	拒绝域
$H_0: \mu = \mu_0, H_1: \mu \neq \mu_0$		$ t \ge t_{\frac{\alpha}{2}} (n-1)$
$H_0: \mu \ge \mu_0, H_1: \mu < \mu_0$	$t = \frac{\bar{X} - \mu_0}{S / \sqrt{n}}$	$t \leq -t_{\alpha} (n-1)$
$H_0: \mu \leq \mu_0, H_1: \mu > \mu_0$		$t \ge t_{\alpha}(n-1)$

上述检验利用t检验统计量得出拒绝域的检验法称为t检验法。

二、两个正态总体均值差的检验

设 X_1, X_2, \dots, X_n 是来自总体 $X \sim N(\mu_1, \sigma^2)$ 的样本, Y_1, Y_2, \dots, Y_n 是来自总体 $Y \sim N(\mu_2, \sigma^2)$ 的样本,且X与 Y独立,它们的样本均值为 \bar{X} , \bar{Y} ,样本方差为 S_1^2 , S_2^2 . 又设 μ_1, μ_2, σ^2 均未知,显著性水平为 α ,求检验 $H_0: \mu_1 - \mu_2 = \delta$ (已知常数); $H_1: \mu_1 - \mu_2 \neq \delta$ 的拒绝域?

 $H_0: \mu_1 - \mu_2 = \delta$ (已知常数); $H_1: \mu_1 - \mu_2 \neq \delta$ 检验统计量

$$t = \frac{\bar{X} - \bar{Y} - \delta}{\sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \sim t(n_1 + n_2 - 2)$$

拒绝域

$$\frac{\left|\overline{x} - \overline{y} - \delta\right|}{\sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}} \ge t_{\frac{\alpha}{2}} \left(n_1 + n_2 - 2\right)$$

此外,关于两个正态总体均值差的单边检验的拒绝域如下,即P189表8.1.

假设	检验统计量	拒绝域
$H_0: \mu_1 - \mu_2 = \delta, H_1: \mu_1 - \mu_2 \neq \delta$	$t = \frac{\overline{X} - \overline{Y} - \delta}{S_W \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}},$	$\left t \right \ge t_{\underline{\alpha}} \left(n_1 + n_2 - 2 \right)$
$H_0: \mu_1 - \mu_2 \ge \delta, H_1: \mu_1 - \mu_2 < \delta$		$t \leq -t_{\alpha} \left(n_{1} + n_{2} - 2 \right)$
$H_0: \mu_1 - \mu_2 \le \delta, H_1: \mu_1 - \mu_2 > \delta$	$S_W = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}$	$t \ge t_{\alpha} \left(n_1 + n_2 - 2 \right)$

上述检验法称为t检验法。

此外,当两个正态总体的方差均已知时(不一定相等),可以用Z检验法来检验两个正态总体均值差的假设。

检验统计量

$$Z = \frac{\bar{X} - \bar{Y} - \delta}{\sqrt{\frac{\sigma_1^2 + \sigma_1^2}{n_1 + n_2}}} \sim N(0,1)$$

具体拒绝域见下表,即P189表8.1.

假设	检验统计量	拒绝域
$H_0: \mu_1 - \mu_2 = \delta, H_1: \mu_1 - \mu_2 \neq \delta$		$ Z \ge z_{\underline{\alpha}}$
$H_0: \mu_1 - \mu_2 \ge \delta, H_1: \mu_1 - \mu_2 < \delta$	$Z = \frac{\overline{X} - \overline{Y} - \delta}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$	$Z \leq -z_{\alpha}$
$H_0: \mu_1 - \mu_2 \le \delta, H_1: \mu_1 - \mu_2 > \delta$		$Z \ge z_{\alpha}$

三、基于成对数据的检验

有时为了比较两种产品、两种仪器、两种方法等的差异,我们常在相同条件下做对比试验,得到一批成对的观察值,然后分析观察数据作出推断,这种方法常称为逐对比较法。

X	x_1	x_2	•••	x_n
Y	y_1	y_2	•••	\mathcal{Y}_n
D = X - Y	$x_1^-y_1$	$x_2^-y_2$	•••	$x_n - y_n$

由于各种因素影响,<u>不能将X</u>或Y的观察值(上述表格中的第一行或第二行)看成是一个样本的样本值,如: P186例3,为了测试两台光谱仪的测量结果有无显著差异,现利用这两台仪器分别对9个试块进行测量,分别得到9对数据。但由于9个试块之间存在差异(成分含量、金属含量、均匀性等各不同),故<u>不能</u>将每台仪器测得的9个数据看成是来自同一总体的样本。

X	x_1	x_2	•••	x_n
Y	y_1	<i>y</i> ₂	•••	y_n
D = X - Y	$x_1^-y_1$	$x_2^-y_2$	•••	$x_n - y_n$

但是每一对数据之间的差值,即

$$d_i = x_i - y_i \ (i = 1, 2, ..., n)$$

却是由同一因素引起的。如例3中,都是由于两台仪器之间的差异所引起的。

因此,可以将di看成是来自同一总体的样本值,即

$$D_i = X_i - Y_i \ (i = 1,2,...,n)$$

 $D_1, D_2, ..., D_n$ 是 *i.i.d.* 样本。

X	x_1	x_2	•••	\mathcal{X}_n
Y	y ₁	y_2	•••	y_n
D = X - Y	$x_1 - y_1$	$x_2^-y_2$	•••	x_n - y_n

一般,若 $D_i \sim N(\mu_D, \sigma_D^2)$,(i=1,2,...,n),则可认为 $D_1, D_2, ..., D_n$ 是来自正态总体 $N(\mu_D, \sigma_D^2)$ 的一个样本,其中, μ_D, σ_D^2 未知。我们可基于这一样本检验假设

①
$$H_0: \mu_D = 0; H_1: \mu_D \neq 0$$

②
$$H_0: \mu_D \leq 0; H_1: \mu_D > 0$$

②
$$H_0: \mu_D \ge 0; \quad H_1: \mu_D < 0$$

对于上述检验问题,选用 t 检验,即

检验统计量
$$t = \frac{\overline{D}}{S_D/\sqrt{n}}$$
 ~ $t(n-1)$

其中: \bar{D} 是样本均值, S_D 是样本标准差。

拒绝域如下 (P186表8.1)

双边检验
$$\left| \frac{\bar{d}}{s_D/\sqrt{n}} \right| \ge t_{\alpha}(n-1)$$
 右边检验
$$\frac{\bar{d}}{s_D/\sqrt{n}} \ge t_{\alpha}(n-1)$$
 左边检验
$$\frac{\bar{d}}{s_D/\sqrt{n}} \le -t_{\alpha}(n-1)$$

小结

- > 本节介绍了参数假设检验问题,以正态总体为例
- ,讨论了有关总体均值的一些假设检验问题。

作业

Pages 218, 219: 第2, 3, 6, 7, 8题