Verlinde Bundles

Orlando Marigliano

10.4.2017

Contents

1. Universal Families of Extensions	1
2. Verlinde Bundles on Lefschetz Pencils	4
3. Specialization	8
References	10

1. Universal Families of Extensions

Let X and S be Noetherian schemes over a field k. Let $f: X \to S$ be a flat, projective morphism, let \mathcal{F} and \mathcal{G} be coherent \mathcal{O}_X -modules, flat over \mathcal{O}_X .

Recall that an element $\xi \in \operatorname{Ext}_X^1(\mathcal{F}, \mathcal{G})$ corresponds to an equivalence class of short exact sequences of the form

$$0 \to \mathcal{G} \to \mathcal{E} \to \mathcal{F} \to 0$$
,

where two such sequences are equivalent if there exists an isomorphism between them that induces the identity on \mathcal{F} and \mathcal{G} . The set of these equivalence classes can be given the structure of a $H^0(S, \mathcal{O}_S)$ -module, see for example [Wei95, 3.4]. This correspondence is functorial in both arguments, and preserves the $H^0(S, \mathcal{O}_S)$ -module structure.

Explicitely, the sum of two elements of Ext^1 corresponds to the Baer sum of the associated extensions, while the scalar multiplication of an extension as above by $a \in H^0(S, \mathcal{O}_S)$ is given by the pullback sequence along the map $\mathcal{F} \xrightarrow{a} \mathcal{F}$.

The next proposition shows there exists a k-scheme V that parametrizes the points of $\operatorname{Ext}^1_X(\mathcal{F},\mathcal{G})$.

Proposition 1.1. Let $V := \mathbb{V}(\operatorname{Ext}_X^1(\mathcal{F},\mathcal{G})^{\vee})$. On the scheme $X \times V$ there exists an extension

$$\xi_{\text{univ}} : 0 \to \operatorname{pr}_1^* \mathcal{F} \to \mathcal{E} \to \operatorname{pr}_1^* \mathcal{G} \to 0$$

Such that for all affine k-schemes Y, the map $\operatorname{Hom}(Y,V) \to \operatorname{Ext}^1_{X_Y}(\mathcal{F}_Y,\mathcal{G}_Y)$ defined by $\alpha \mapsto (\operatorname{id}_X \times \alpha)^* \xi_{\operatorname{univ}}$ is an isomorphism, functorial in Y. In particular, we have an isomorphism $\operatorname{Hom}(\operatorname{Spec}(k),V) \xrightarrow{\sim} \operatorname{Ext}^1_X(\mathcal{F},\mathcal{G})$.

Proof. Write $Y = \operatorname{Spec}(A)$. We aim to construct a functorial isomorphim

$$\operatorname{Hom}(Y, V) \simeq \operatorname{Ext}^1_{X \times Y}(\mathcal{F}_Y, \mathcal{G}_Y).$$

Given such an isomorphism for all Y, the required universal extension is the image of id $\in \text{Hom}(V, V)$.

Note that there exist functorial isomorphisms

$$\operatorname{Hom}(Y, V) \simeq \operatorname{Hom}_{\operatorname{k-alg}}(\operatorname{Sym} \operatorname{Ext}_X^1(\mathcal{F}, \mathcal{G})^{\vee}, A) \simeq \operatorname{Hom}_{\operatorname{k-mod}}(\operatorname{Ext}_X^1(\mathcal{F}, \mathcal{G})^{\vee}, A)$$
$$\simeq A \otimes_k \operatorname{Ext}_X^1(\mathcal{F}, \mathcal{G}).$$

For the final isomorphism $A \otimes_k \operatorname{Ext}_X^1(\mathcal{F}, \mathcal{G}) \simeq \operatorname{Ext}_{X \times Y}^1(\mathcal{F}_Y, \mathcal{G}_Y)$, it suffices to prove that the δ -functors $A \otimes_k \operatorname{Hom}_X(\mathcal{F}, -)$ and $\operatorname{Hom}_{X \times Y}(\mathcal{F}_Y, -_Y)$ are canonically isomorphic.

In fact, there exists a canonical homomorphism $A \otimes_k \operatorname{Hom}_X(\mathcal{F}, \mathcal{G}) \to \operatorname{Hom}_{X \times Y}(\mathcal{F}_Y, \mathcal{G}_Y)$, functorial in \mathcal{G} , that sends an elementar tensor $a \otimes u$ to the homomorphism $a \otimes u$. This is an isomorphism on stalks by [Bou72, Ch. I, §2.10]. There, we need the assumptions that \mathcal{F} is coherent and X Noetherian.

The scheme V of Proposition 1.1 is a special case of the solution to a more general moduli problem of classifying relative extensions of sheaves. The rest of this section sketches the more general situation. The material is taken from the article [Lan83].

Definition 1.2. 1. The *i-th relative Ext module* $\mathcal{E}xt_f^i(\mathcal{F},\mathcal{G})$ is the image of \mathcal{G} under the right-derived functor $R^i(f_*\mathcal{H}om(\mathcal{F},\mathcal{G}))$: $\mathrm{Mod}_{\mathcal{O}_X} \to \mathrm{Mod}_{\mathcal{O}_S}$.

2. For $s \in S$, define the homomorphism

$$\Phi_s = \Phi_{s,\mathcal{F},\mathcal{G}} \colon \operatorname{Ext}^1_X(\mathcal{F},\mathcal{G}) \to \operatorname{Ext}^1_{X_s}(\mathcal{F}_s,\mathcal{G}_s)$$

by restricting extensions of \mathcal{F} by \mathcal{G} to the fiber X_s . This is possible since \mathcal{F} is flat over S.

3. A family of extensions of \mathcal{F} by \mathcal{G} over S is a family

$$\xi_s \in \operatorname{Ext}_{X_s}^1(\mathcal{F}_s, \mathcal{G}_s) \quad (s \in S)$$

such that there exists an open covering \mathfrak{U} of S and for all $U \in \mathfrak{U}$ an extension $\xi_U \in \operatorname{Ext}_{f^{-1}(U)}^1(\mathcal{F}_U, \mathcal{G}_U)$ with $\Phi_{s,\mathcal{F}_U,\mathcal{G}_U}(\xi_U) = \xi_s$ for all $s \in S$. Such a family is globally defined if we can take $\mathfrak{U} = \{S\}$.

Remark 1.3. If S is affine, then we have $\mathcal{E}xt_f^i(\mathcal{F},\mathcal{G}) = \operatorname{Ext}_X^i(\mathcal{F},\mathcal{G})^{\sim}$.

¹Recall that $A \otimes_k$ – is exact.

Proposition 1.4. Let $g: Y \to S$ be a morphism of Noetherian schemes. There exists a number $N \geq 0$ dependent on \mathcal{G} such that for all quasi-coherent \mathcal{O}_Y -modules \mathcal{M} , all $i \geq 1$ and $n \geq N$ we have

$$\mathcal{E}xt^i_{f_Y}(\mathcal{O}_{X_Y}(-n),\mathcal{G}\boxtimes\mathcal{M})=0$$

Proposition 1.5. Let $g: Y \to S$ be a morphism of Noetherian schemes. For all $i \ge 0$ there exists a canonical base change homomorphism

$$\tau_g^i \colon g^* \mathcal{E} x t_f^i(\mathcal{F}, \mathcal{G}) \to \mathcal{E} x t_{f_Y}^i(g_X^* \mathcal{F}, g_X^* \mathcal{G}).$$

Furthermore, if g is flat, then τ_q^i is an isomorphism for all $i \geq 0$.

Definition 1.6. We say that $\mathcal{E}xt_f^i(\mathcal{F},\mathcal{G})$ commutes with base change if for all morphisms of Noetherian schemes $g\colon Y\to S$, the base change homomorphism τ_g^i is an isomorphism.

Proposition 1.7. Let $s \in S$ be a point such that τ_s^i is surjective. Then there exists an open neighborhood U of s such that $\tau_{s'}^i$ is an isomorphism for all $s' \in U$. Furthermore, the homomorphism τ_s^{i-1} is surjective if and only if $\operatorname{Ext}_f^i(\mathcal{F},\mathcal{G})$ is locally free on an open neighborhood of s.

Remark 1.8. 1. If τ_s^i is an isomorphism for all $s \in S$, then $\mathcal{E}xt_f^i(\mathcal{F},\mathcal{G})$ commutes with base change.

- **2.** We have directly from Proposition 1.7 that if $\mathcal{E}xt_f^i(\mathcal{F},\mathcal{G})$ commutes with base change for i=0,1, then $\mathcal{E}xt_f^1(\mathcal{F},\mathcal{G})$ is locally free.
- **3.** In case S is reduced, if $\mathcal{E}xt_f^1(\mathcal{F},\mathcal{G})$ is locally free then $\mathcal{E}xt_f^i(\mathcal{F},\mathcal{G})$ commutes with base change for i=0,1.

Definition 1.9. Let $u: Y' \to Y$ be a morphism of Noetherian S-schemes.

1. We define a functoriality map $H^0(Y, \mathcal{E}xt^1_{f_Y}(\mathcal{F}_Y, \mathcal{G}_Y)) \to H^0(Y', \mathcal{E}xt^1_{f_{Y'}}(\mathcal{F}_{Y'}, \mathcal{G}_{Y'}))$ as the composition

$$H^{0}(Y, \mathcal{E}xt^{1}_{f_{Y}}(\mathcal{F}_{Y}, \mathcal{G}_{Y})) \xrightarrow{1 \otimes \mathrm{id}} H^{0}(Y', u^{*}\mathcal{E}xt^{1}_{f_{Y}}(\mathcal{F}_{Y}, \mathcal{G}_{Y}))$$

$$\xrightarrow{H^{0}(\tau^{1}_{u})} H^{0}(Y', \mathcal{E}xt^{1}_{f_{Y'}}(u^{*}_{X_{Y}}\mathcal{F}_{Y'}, u^{*}_{X_{Y}}\mathcal{G}_{Y'})).$$

- **2.** Given a family of extensions $\xi = (\xi_y)_{y \in Y}$ of \mathcal{F}_Y by \mathcal{G}_Y over Y, we set $(u^*\xi)_{y'} := u^*\xi_{u(y')}$ for every $y' \in Y'$. This defines a family $u^*\xi$ of extensions of $\mathcal{F}_{Y'}$ by $\mathcal{G}_{Y'}$ over Y'. Moreover, if the family ξ is globally defined, then so is its pullback $u^*\xi$.
- **3.** We define thus functors

$$E, E' \colon \{ \text{Noeth. schemes over } S \} \to \{ \text{Sets} \};$$

$$E(Y) := H^0(Y, \operatorname{Ext}^1_{f_Y}(\mathcal{F}_Y, \mathcal{G}_Y)),$$

 $E'(Y) := \{\text{families of extensions of } \mathcal{F}_Y \text{ by } \mathcal{G}_Y \text{ over } Y\}.$

Remark 1.10. The spectral sequence $H^p(S, \mathcal{E}xt^q_f(\mathcal{F}, \mathcal{G})) \Rightarrow \operatorname{Ext}_X^{p+q}(\mathcal{F}, \mathcal{G})$ gives an exact sequence

$$0 \to H^1(S, f_* \mathcal{H}om(\mathcal{F}, \mathcal{G})) \xrightarrow{\varepsilon} \operatorname{Ext}_X^1(\mathcal{F}, \mathcal{G}) \xrightarrow{\mu} H^0(S, \mathcal{E}xt_f^1(\mathcal{F}, \mathcal{G}))$$
$$\xrightarrow{d_2} H^2(S, f_* \mathcal{H}om(\mathcal{F}, \mathcal{G})).$$

Proposition 1.11. Suppose that S is reduced and $\mathcal{E}xt_f^1(\mathcal{F},\mathcal{G})$ commutes with base change. Restricted to the category of reduced Noetherian S-schemes, the functors E and E' are isomorphic.

Proposition 1.12. Suppose that $\mathcal{E}xt_f^1(\mathcal{F},\mathcal{G})$ commutes with base change for i=0,1. Then the \mathcal{O}_S -module $\mathcal{E}xt_f^1(\mathcal{F},\mathcal{G})^\vee$ is locally free and the functor E is representable by the S-scheme $\mathbb{V}(\mathcal{E}xt_f^1(\mathcal{F},\mathcal{G})^\vee)$.

Corollary 1.13. Suppose that S is reduced and $\operatorname{Ext}_f^1(\mathcal{F},\mathcal{G})$ commutes with base change for i=0,1. Restricted to the category of reduced Noetherian S-schemes, the functor E' is representable by the S-scheme $\mathbb{V}(\operatorname{Ext}_f^1(\mathcal{F},\mathcal{G})^\vee)$.

Corollary 1.14. Suppose that S is affine and $\operatorname{Ext}_f^1(\mathcal{F},\mathcal{G})$ commutes with base change for i=0,1. The functor

$$\{Affine \ S\text{-schemes}\} \to \{Sets\} \colon Y \mapsto \operatorname{Ext}^1_{X_Y}(\mathcal{F}_Y, \mathcal{G}_Y)$$

is representable by the S-scheme $\mathbb{V}(\mathcal{E}\!\mathit{xt}_f^1(\mathcal{F},\mathcal{G})^{\vee})$.

Remark 1.15. As a special case of the above, we recover Proposition 1.1.

Remark 1.16. The article [Lan83] continues on to define a "projectivized" version of the problem, so that over $\operatorname{Spec}(k)$, the scheme $\mathbb{P}(\operatorname{Ext}_X^1(\mathcal{F},\mathcal{G})^{\vee})$ parametrizes the equivalence classes of nonsplit extensions of \mathcal{F} by \mathcal{G} , modulo the action of k^{\times} . See also [HL10, Example 2.1.12].

2. Verlinde Bundles on Lefschetz Pencils

The thesis [Hem] studies Verlinde bundles for families of polarized schemes. This section further discusses the example of the universal family of quartics in \mathbb{P}^3 , after summarizing some of its properties.

Denote by $|\mathcal{O}(4)|$ the complete linear system $\mathbb{P}(H^0(\mathbb{P}^3, \mathcal{O}(4)))$ of quartics in \mathbb{P}^3 . Consider the universal family $\pi \colon \mathfrak{X} \to |\mathcal{O}(4)|$, given by

$$\mathfrak{X} = \{(x,q) \in \mathbb{P}^3 \times |\mathcal{O}(4)| : x \in q\}.$$

The family \mathfrak{X} is a closed subscheme of $\mathbb{P}^3 \times |\mathcal{O}(4)|$.

Throughout, the coordinates of \mathbb{P}^3 will be denoted by x_i , $i = 0, \ldots, 4$.

We define the line bundle \mathcal{L} on \mathfrak{X} as the restriction of $\mathcal{O}(1) \boxtimes \mathcal{O}$ to \mathfrak{X} , in other words as the pullback of $\mathcal{O}(1)$ under the canonical projection $\mathfrak{X} \to \mathbb{P}^3$.

Proposition 2.1. Let $k \ge 1$. The following statements hold:

- **1.** If $q \in |\mathcal{O}(4)|$ then $h^0(\mathfrak{X}_q, \mathcal{L}^{\otimes k}|_q) = \binom{k+3}{3} \binom{k-1}{3}$. In particular this dimension is independent of the rank q.
- 2. The sheaf $\pi_* \mathcal{L}^{\otimes k}$ is locally free of rank $\binom{k+3}{3} \binom{k-1}{3}$.
- 3. For all cartesian diagrams of the form

$$\begin{array}{ccc} \mathfrak{X}_{Z} & \longrightarrow & \mathfrak{X} \\ \downarrow & \times & \downarrow^{\pi} \\ Z & \xrightarrow{\rho} & |\mathcal{O}(4)| \end{array}$$

we have $\rho^* \pi_* \mathcal{L}^{\otimes k} \simeq (\pi_Z)_* \mathcal{L}_Z^{\otimes k}$.

Proof. For the first statement, see the proof of [Hem, Proposition 4.1]. The others follow from Grauert's Theorem [Vak17, 28.1.5]. \Box

Let $t \subseteq |\mathcal{O}(4)|$ be the closed subscheme defined as the image of a linear embedding $\mathbb{P}^1 \to |\mathcal{O}(4)|$. We call t a *Lefschetz pencil* of quartics. Its universal family is the scheme $\mathfrak{X}_{\mathbb{P}^1}$, which comes equipped with the pullback line bundle $\mathcal{L}_{\mathbb{P}^1}$. The situation is summarized in the picture below:

$$\begin{array}{ccc} \mathfrak{X}_{\mathbb{P}^1} & \longrightarrow & \mathfrak{X} \\ \downarrow & \times & \downarrow^{\pi} \\ \mathbb{P}^1 & \longrightarrow & |\mathcal{O}(4)| \end{array}$$

For $k \geq 1$, we define the k-th Verlinde bundles $V_k := \pi_* \mathcal{L}^k$ and $V_{k,t} := (\pi_{\mathbb{P}^1})_* \mathcal{L}^k_{\mathbb{P}^1}$. These bundles are related by $V_k|_t = V_{k,t}$ using Proposition 2.1.

Proposition 2.2. There exists a short exact sequence of coherent $\mathcal{O}_{|\mathcal{O}(4)|}$ -modules

$$0 \to \mathcal{O}(-1) \otimes H^0(\mathbb{P}^3, \mathcal{O}(k-4)) \to \mathcal{O} \otimes H^0(\mathbb{P}^3, \mathcal{O}(k)) \to V_k \to 0.$$

Let I_d range over the tuples of the form (i_0, \ldots, i_3) with $\sum i_j = d$. The first map is then given by $\xi \otimes x^{I_{k-4}} \mapsto \sum_{I_4} \xi x^{I_4} \otimes x^{I_{k-4}+I_4}$.

Proof. See [Hem, Proposition 4.2].

Remark 2.3. Let t be a Lefschetz pencil of quartics.

1. The sequence from Proposition 2.2 restricts to a sequence

$$0 \to \mathcal{O}(-1) \otimes H^0(\mathbb{P}^3, \mathcal{O}(k-4)) \to \mathcal{O} \otimes H^0(\mathbb{P}^3, \mathcal{O}(k)) \to V_{k,t} \to 0$$

5

over \mathbb{P}^1 .

2. The vector bundle $V_{k,t}$ has determinant $\mathcal{O}(\binom{k-1}{3})$ and rank $\binom{k+3}{3} - \binom{k-1}{3}$.

Definition 2.4. Let $k \geq 1$.

- **1.** A type candidate for V_k is a non-decreasing tuple (d_1, \ldots, d_r) of non-negative integers with $r = \operatorname{rk} V_k$ and $\sum d_i = \binom{k-1}{3}$.
- **2.** The general type candidate for V_k is the unique² type candidate for V_k of the form $(d, \ldots, d, d+1, \ldots d+1)$.
- **3.** Let t be a Lefschetz pencil of quartics. The type of $V_{k,t}$ is the unique type candidate (d_i) such that $V_{k_t} \simeq \bigoplus \mathcal{O}(d_i)$.
- **4.** We say that $V_{k,t}$ has general type if its type (d_i) is a general type candidate.

The rational points of Gr(2,35) correspond to the Lefschetz pencils of quartics $t \subseteq |\mathcal{O}(4)|$ in the following way. Let P the universal \mathbb{P}^1 -bundle over Gr(2,35). It comes equipped with a projection map $P \to \mathbb{P}^3$ such that for all Lefschetz pencils of quartics t' there exists a unique rational point $t \in Gr(2,35)$ and a commutative diagram

$$P_t \xrightarrow{P} P \xrightarrow{p} |\mathcal{O}(4)|$$

$$\downarrow \qquad \times \qquad \downarrow^{\varphi}$$

$$\operatorname{Spec}(\kappa(t)) \longrightarrow \operatorname{Gr}(2,35)$$

such that the image of the fiber P_t in $|\mathcal{O}(4)|$ is t'.

Definition 2.5. Let $k \geq 1$ and (d_i) be a type candidate for V_k . We define the set $Z_{(d_i)}$ of all rational points $t \in Gr(2,35)$ such that $V_{k,t}$ has type (d_i) . For the set of points t where $V_{k,t}$ has generic type, we also write Z_{gen} .

Proposition 2.6. The set Z_{gen} is Zariski open. Its complement is the union

$$\operatorname{Gr}(2,35) \setminus Z_{gen} = \operatorname{Supp}(R^1 \varphi_* p^* V_k(-d-1)) \cup \operatorname{Supp}(R^1 \varphi_* p^* V_k(-d)^{\vee}),$$

where d is the smaller of the two numbers appearing in the general type candidate $(d, \ldots, d, d+1, \ldots, d+1)$ for V_k .

Proof. We begin by finding a characterization of the set $Z_{\rm gen}$ via cohomology.

Let $t \in Gr(2,35)$ be a rational point, write $V_{k,t} = \bigoplus_{i=1}^r \mathcal{O}(d_i)$. The conditions that for all i we have $d \leq d_i$ and $d_i \leq d+1$ are equivalent to the conditions

$$H^1(P_t, V_{k,t}(-d-1)) = 0$$
 and $H^1(P_t, V_{k,t}(-d)^{\vee}) = 0$,

respectively. Both conditions together are in turn equivaleng to $t \in \mathbb{Z}_{gen}$.

Next, we want to use the Cohomology and Base Change Theorem [Vak17, 28.1.6] on the map $\varphi \colon P \to \operatorname{Gr}(2,25)$, which is a \mathbb{P}^1 -bundle, in particular proper and flat. The last property ensures that locally free sheaves on P are flat over $\operatorname{Gr}(2,35)$.

²The equations $ad + bd + b = {k-1 \choose 3}$ and $a + b = \operatorname{rk} V_k$ have an unique solution (a, b).

For all rational $t \in Gr(2,35)$ we have

$$h^{2}(P_{t}, p^{*}V_{k,t}(-d-1)) = 0$$
 and $h^{2}(P_{t}, p^{*}V_{k,t}(-d)^{\vee}) = 0$.

Since the sheaves $p^*V_{k,t}(-d-1)$ and $p^*V_{k,t}(-d)^{\vee}$ are locally free and coherent, the Cohomology and Base Change Theorem applies and we have

$$(R^{1}\varphi_{*}p^{*}V_{k}(-d-1))_{t} = H^{1}(P_{t}, V_{k,t}(-d-1))$$

and

$$(R^1 \varphi_* p^* V_k (-d)^{\vee})_t = H^1 (P_t, V_{k,t} (-d)^{\vee}).$$

By the previous characterization, we have

$$\operatorname{Gr}(2,35) \setminus Z_{\operatorname{gen}} = \operatorname{Supp}(R^1 \varphi_* p^* V_k(-d-1)) \cup \operatorname{Supp}(R^1 \varphi_* p^* V_k(-d)^{\vee}),$$

which is a Zariski-closed set.

Proposition 2.7. The closed subsets

- 1. Supp $(R^1\varphi_*p^*V_k(-d-1))$ and
- 2. Supp $(R^1\varphi_*p^*V_k(-d)^\vee)$

are determinantal varieties.

Proof. To simplify notation, we set

$$r_1 := \dim H^0(\mathbb{P}^3, \mathcal{O}(k))$$
 and $r_2 := \dim H^0(\mathbb{P}^3, \mathcal{O}(k-4))$.

Rewrite the exact sequence from Proposition 2.2 as

$$0 \to \mathcal{O}(-1)^{r_2} \to \mathcal{O}^{r_1} \to V_k \to 0. \tag{1}$$

1. Twisting the sequence (1) with $\mathcal{O}(-d-1)$ and pulling back to P gives an exact sequence

$$0 \to p^* \mathcal{O}(-d-2)^{r_2} \to p^* \mathcal{O}(-d-1)^{r_1} \to p^* V_k(-d-1) \to 0.$$

For every rational $t \in Gr(2,35)$ we have $h^2(P_t, \mathcal{O}(-d-2)^{r_2}) = 0$, hence $R^2\varphi_*p^*\mathcal{O}(-d-2)^{r_2} = 0$ and applying φ_* to the above sequence gives an exact sequence

$$R^1\varphi_*p^*\mathcal{O}(-d-2)^{r_2} \xrightarrow{\alpha} R^1\varphi_*p^*\mathcal{O}(-d-1)^{r_1} \to R^1\varphi_*p^*V_k(-d-1) \to 0.$$

Note that since the numbers

$$h_2^1 := h^1(P_t, \mathcal{O}(-d-2)^{r_2}) \text{ and } h_1^1 := h^1(P_t, \mathcal{O}(-d-1)^{r_1})$$

do not depend on the point t, Grauert's Theorem applies, and the first two terms of the above sequence are locally free and coherent of rank h_1^2 and h_1^1 , respectively. Since

taking the fiber is right-exact, we see that for all t we have $(R^1\varphi_*p^*V_k(-d-1))_t \neq 0$ if and only if $\operatorname{coker}(\alpha_t) \neq 0$. Concluding, we have

$$\operatorname{Supp}(R^{1}\varphi_{*}p^{*}V_{k}(-d-1)) = \{t : \operatorname{rk}(\alpha_{t}) \leq h_{1}^{1} - 1\}.$$

As a final remark, note that $h_1^1 = dr_1 = d\binom{k+3}{3}$.

2. The proof for this point is analogous to the first point. We start with the sequence (1), twist with $\mathcal{O}(-d)$, take duals, pull back to P, and apply φ_* . Since for each rational $t \in Gr(2,35)$ we have $h^1(P_t,\mathcal{O}(d)^{r_1}) = 0$, we obtain an exact sequence

$$\varphi_* p^* \mathcal{O}(d)^{r_1} \xrightarrow{\beta} \varphi_* p^* \mathcal{O}(d+1)^{r_2} \to R^1 \varphi_* p^* V_k(-d)^{\vee} \to 0.$$

Since the numbers

$$h_1^0 := h^0(P_t, \mathcal{O}(d)^{r_1}) \text{ and } h_2^0 := h^0(P_t, \mathcal{O}(d+1)^{r_2})$$

do not depend on the point t, again by Grauert's Theorem the first two terms of the sequence are locally free of rank h_1^0 and h_2^0 , respectively. As before, we obtain the characterization

$$\operatorname{Supp}(R^{1}\varphi_{*}p^{*}V_{k}(-d)^{\vee}) = \{t : \operatorname{rk}(\beta_{t}) \leq h_{2}^{0} - 1\}.$$

Here, we have $h_2^0 = (d+2)r_2 = (d+2)\binom{k-1}{3}$.

3. Specialization

In this section we collect some facts about specialization phenomena. We say that a vector bundle \mathcal{V} on a k-scheme X specializes to another vector bundle \mathcal{V}' over the same scheme if there exists a vector bundle \mathcal{W} on $\mathbb{A}^1 \times X$ such that $\mathcal{W}|_{0 \times X} \simeq \mathcal{V}'$ and $\mathcal{W}|_{t \times X} \simeq \mathcal{V}$ for all rational $t \in \mathbb{A}^1$.

Remark 3.1. Let

$$0 \to \mathcal{F} \xrightarrow{f} \mathcal{E} \xrightarrow{g} \mathcal{G} \to 0$$

be a short exact sequence of coherent sheaves over a k-scheme X and let $\xi \in \operatorname{Ext}^1(\mathcal{G}, \mathcal{F})$ be the corresponding element. If $a \in H^0(X, \mathcal{O}_X^{\times})$, then the element $a\xi$ corresponds to the sequence

$$0 \to \mathcal{F} \xrightarrow{f} \mathcal{E} \xrightarrow{a^{-1}g} \mathcal{G} \to 0.$$

Example 3.2. The vector bundle $\mathcal{O}(1) \oplus \mathcal{O}(1)$ on \mathbb{P}^1 specializes to $\mathcal{O} \oplus \mathcal{O}(2)$. This can be seen as follows. Consider $\operatorname{Ext}^1(\mathcal{O}(2),\mathcal{O})$, whose elements correspond to extensions of the form

$$0 \to \mathcal{O} \to \mathcal{E} \to \mathcal{O}(2) \to 0$$

up to equivalence, the zero element corresponding to the split extension $\mathcal{E} = \mathcal{O} \oplus \mathcal{O}(2)$. Note that all such extensions must have \mathcal{E} locally free. Considering the formulae for ranks and determinants of the components of the sequence, we see that the nonsplit extensions must have $\mathcal{E} = \mathcal{O}(1) \oplus \mathcal{O}(1)$. Furthermore, we have $\operatorname{Ext}^1(\mathcal{O}(2), \mathcal{O}) = \operatorname{Ext}^1(\mathcal{O}, \mathcal{O}(-2)) = H^1(\mathcal{O}(-2)) = k$. By Proposition 1.1, there exists an extension of the form

$$0 \to \mathcal{O} \boxtimes \mathcal{O}_{\mathbb{A}^1} \to \mathcal{E}_{\text{univ}} \to \mathcal{O}(2) \boxtimes \mathcal{O}_{\mathbb{A}^1} \to 0$$

such that for all nonzero rational points $\xi \in \mathbb{A}^1 = \mathbb{V}(\operatorname{Ext}^1(\mathcal{O}(2), \mathcal{O})^{\vee})$ we have the isomorphisms $\mathcal{E}_{\operatorname{univ}}|_{\xi \times \mathbb{A}^1} \simeq \mathcal{O}(1) \oplus \mathcal{O}(1)$ and $\mathcal{E}_{\operatorname{univ}}|_{0 \times \mathbb{A}^1} \simeq \mathcal{O} \oplus \mathcal{O}(2)$. Note that $\mathcal{E}_{\operatorname{univ}}$ has to be locally free as the end terms of the sequence are.

Remark 3.3. If \mathcal{V} specializes to \mathcal{V}' and \mathcal{W} specializes to \mathcal{W}' , then $\mathcal{V} \oplus \mathcal{W}$ specializes to $\mathcal{V}' \oplus \mathcal{W}'$.

Remark 3.4. Let b_1, \ldots, b_m be non-negative numbers, let $a := \sum b_i$. The sequence

$$0 \to \mathcal{O}^{m-1} \xrightarrow{f} \mathcal{O}(b_1) \oplus \cdots \oplus \mathcal{O}(b_m) \xrightarrow{g} \mathcal{O}(a) \to 0$$

with

$$f = \begin{pmatrix} s^{b_1} \\ t^{b_2} & s^{b_2} \\ & t^{b_3} & \ddots \\ & & \ddots & s^{b_{m-1}} \\ & & & t^{b_m} \end{pmatrix}$$

and

$$g = \begin{pmatrix} -t^{a-b_1} & s^{b_1}t^{a-b_1-b_2} & \cdots & (-1)^m s^{b_1+\dots+b_{m-1}}t^{a-b_1-\dots-b_m} \end{pmatrix}$$

is exact.

Proposition 3.5. Let b_1, \ldots, b_m be non-negative numbers and π a partition of the set $\{1, \ldots, m\}$. For a set of indices $I \in \pi$, let $b'_I := \sum_{i \in I} b_i$. Then the vector bundle $\bigoplus_{i=1}^m \mathcal{O}(b_i)$ on \mathbb{P}^1 specializes to $\bigoplus_{I \in \pi} \mathcal{O}(b'_I) \oplus \mathcal{O}^{\oplus m - |\pi|}$.

Proof. By Remark 3.3 it suffices to prove the special case $\pi = \{\{1, \dots, m\}\}$. In other words, we prove that if $a = \sum b_i$, then $\bigoplus \mathcal{O}(b_i)$ specializes to $\mathcal{O}(n) \oplus \mathcal{O}^{m-1}$. By Remark 3.4, there exists a representative $\xi \in \operatorname{Ext}^1(\mathcal{O}(a), \mathcal{O}^{\oplus m-1})$ of an exact sequence of the form

$$0 \to \mathcal{O}^{m-1} \to \mathcal{O}(b_1) \oplus \cdots \oplus \mathcal{O}(b_m) \to \mathcal{O}(a) \to 0.$$

By Remark 3.1, scalar multiplication by $\lambda \neq 0$ does not change the isomorphism class of the middle term of the sequence, hence there exists a one-dimensional subspace $k \hookrightarrow \operatorname{Ext}^1(\mathcal{O}(a), \mathcal{O}^{\oplus m-1})$ such that each nonzero element corresponds to an exact sequence of the same form. Consider the associated closed embedding $\alpha \colon \mathbb{A}^1 \to \mathbb{V}(\operatorname{Ext}^1(\mathcal{O}(a), \mathcal{O}^{\oplus m-1})^\vee)$ and let \mathcal{E} be the universal extension from Proposition 1.1. Then, the vector bundle $(\operatorname{id}_{\mathbb{P}^1} \times \alpha)^* \mathcal{E}$ on $\mathbb{P}^1 \times \mathbb{A}^1$ realizes the required specialization.

Remark 3.6. By twisting the exact sequence in the proof of Proposition 3.5 and using the same argument, we see that for every integer n and with b_i , π , and b_I as above, the vector bundle $\bigoplus_{i=1}^m \mathcal{O}(b_i+n)$ specializes to $\bigoplus_{I\in\pi} \mathcal{O}(b_I'+n)\oplus\mathcal{O}(n)^{\oplus m-|\pi|}$.

References

- [Bou72] Nicolas Bourbaki. Commutative algebra. Vol. 8. Hermann Paris, 1972.
- [Hem] Christian Hemminghaus. Families of polarized K3 surfaces and associated bundles. Master thesis.
- [HL10] Daniel Huybrechts and Manfred Lehn. The geometry of moduli spaces of sheaves. Cambridge University Press, 2010.
- [Lan83] Herbert Lange. "Universal families of extensions". In: *Journal of Algebra* 83.1 (1983), pp. 101–112.
- [Vak17] Ravi Vakil. The rising sea. Foundations of algebraic geometry. Feb. 2017.
- [Wei95] Charles A Weibel. An introduction to homological algebra. 38. Cambridge university press, 1995.