Name, Vorname:

CvO Universität Oldenburg

Institut für Mathematik

Prof. Dr. Hannes Uecker

S2012

Klausur "Mathematische Modellierung", 26.7.2012

• Bearbeitungszeit: 110 Minuten

• Erlaubte Hilfsmittel: eigene Notizen im Umfang von maximal 10 Seiten (=5 beidseitig beschriebene Blätter) keine elektronischen Hilfsmittel wie Mobiltelephone oder Taschenrechner.

Viel Erfolg!

Aufgabe 1 12 Punkte. Betrachte die 1D Iteration $x_{n+1} = f_{\mu}(x_n)$ mit $f_{\mu}(x) = \mu x e^{-x}$ für $x \ge 0$ mit Parameter $\mu > 0$.

- a) In Abhängigkeit von μ bestimme man alle Fixpunkte. Insbesondere bestimme man μ_0 , sodaß für $\mu < \mu_0$ genau ein Fixpunkt und für $\mu > \mu_0$ genau zwei Fixpunkte vorliegen.
- b) Man bestimme die Stabilität aller Fixpunkte.
- c) Man skizziere f_{μ} für $\mu = 2$ und für $\mu = 10$, und für beide μ und $x_0 = 1$ bestimme man das Verhalten von x_n für $n \to \infty$ mittels graphischer Iteration (cobwebbing).

Hinweis. $\ln 10 > \ln(3^2) > \ln(e^2) = 2$ (offensichtlich, aber vielleicht hilfreich).

Lösung zu 1 $f_{\mu}(x) = x \Leftrightarrow x(1-\mu e^{-x}) = 0 \Leftrightarrow x = 0 \text{ oder } x = x_{\mu} = \ln(\mu) \text{ (für } \mu > 1).$ $f'_{\mu}(x) = \mu(1-x)e^{-x}$, also x = 0 stabil (instabil) für $0 < \mu < 1$ ($1 < \mu$). Klar: $f'_{\mu}(x_{\mu}) = 1 - \ln \mu < 1$ für $\mu > 1$, und $f'_{\mu}(x_{\mu}) < -1$ für $\ln \mu > 2 \Leftrightarrow \mu > e^{2}$.

Aufgabe 2 8 Punkte. Man zeichne das Phasenporträt von

$$\ddot{x} = F'(x)$$
 mit $F(x) = -x^2 + 2x^4 - x^6$,

inklusive aller homo-bzw. heteroklinen Orbits und kennzeichne diese geeignet.

Hinweis: Man beginne mit einer 1D Skizze von -F(x).

Lösung zu 2 Energie $E = \frac{1}{2}\dot{x}^2 - F$, Phasenporträt ganz links.

Name, Vorname:

Aufgabe 3 8 Punkte Für das System $\dot{x} = -x + 2y$, $\dot{y} = -2x + 2y - y^3$ bestimme man die Fixpunkte und deren Stabilität, und skizziere das Phasenporträt inklusive Nullklinen und einiger Direktorpfeile.

Bonus, 5 Punkte. Man zeige die Existenz eines periodischen Orbits.

Hinweis: Betrachte das Vektorfeld auf ∂R mit $R = [-2l, 2l] \times [-l, l]$ mit l hinreichend groß und verwende Poincaré-Bendixon.

Lösung zu 3 Nullklinen: $\dot{x} = 0 \Leftrightarrow x = 2y, \ \dot{y} = 0 \Leftrightarrow x = y - \frac{1}{2}y^3$, einziger Schnitt-und also

Fixpunkt
$$(x,y) = (0,0)$$
. $J_f((x,y)) = \begin{pmatrix} -1 & 2 \\ -2 & 2 - 3y^2 \end{pmatrix}$, $J_f((0,0)) = \begin{pmatrix} -1 & 2 \\ -2 & 2 \end{pmatrix}$, Eigenwerte

 $\lambda_{1,2} = \frac{1}{2} \pm \frac{i}{2}\sqrt{7}$, also instabiler Strudel. Phasenporträt oben Mitte.

Zu periodischen Orbits: Auf x=2l gilt $\dot{x}\leq 0$ und $\dot{x}<0$ für $|y|\leq l$, und auf y=l gilt $\dot{y}\leq 6l-l^3<0$ für l hinreichend groß. Restliches ∂R durch Symmetrie. Existenz eines per. Orbits, da Ursprung einziger FP und instabil.

Aufgabe 4 12 Punkte. Gegeben ist das 2-Spezies-System

$$\dot{u} = u \left(\frac{2}{1+v^2} - u \right), \ \dot{v} = v (u-v), \quad u, v > 0.$$

Man bestimme alle Fixpunkte (mit u, v > 0) und ihre Stabilität und skizziere das Phasenporträt (inklusive Nullklinen). Um welchen Kolmogorov Typ (PP), (C) oder (S) handelt es sich?

Lösung zu 4 (PP). Nullklinen $\dot{u} = 0 \Leftrightarrow u = \frac{2}{1+v^2}, \ \dot{v} = 0 \Leftrightarrow v = u.$ Fixpunkt $(u, v)^* = (1, 1)$.

$$J_f(u,v) = \begin{pmatrix} \frac{2}{1+v^2} - 2u & \frac{-4uv}{(1+v^2)^2} \\ v & u - 2v \end{pmatrix}, J_f((1,1)) = \begin{pmatrix} -1 & -1 \\ 1 & -1 \end{pmatrix}, \text{ Eigenwerte } \lambda_{\pm} = -1 \pm i, \text{ stabiler } \lambda_{\pm}$$

Strudel. Phasenporträt oben rechts.