Assertion

The frequency and intensity of heavy precipitation events have increased since the 1950s over most land area for which observational data are sufficient for trend analysis (high confidence), (and human-induced climate change is likely the main driver.)

5 min:

-enjeux de caractériser la pluie / conséquence d'une augmentation de la pluie (diminution de la pluie dans certaines zones et sécheresse ?) a modifier avec ce qu'on trouve

-on se focus plus sur les causes des heavy rains et sur les méthode de mesure

I- la pluie a augmenté dans plein d'area (on explique tout)

- méthode de mesure: 5jours / 1 jour en moyenne
- graphique et citation de l'article ; https://aqupubs.onlinelibrary.wilev.com/doi/full/10.1029/2005JD006290

Comment on arrive à high confidence ? i on trouve

- SPI

II - parler des causes

- air plus stocke plus d'eau (clapeyron)
- comment les déterminer

III - modèle adapté (modèle numérique à trouver)

si pas assez pourquoi on pense que c'est l'humain (GEP modifié atmosphére ?)

CC:

II. Des mécanismes physiques qui lient réchauffement et fortes pluies CAUSES

→ Chapitres 8.2, TS.2.6

A. Le rôle central de la vapeur d'eau : effet Clausius-Clapeyron

- Chaque degré de réchauffement permet à l'air de contenir ≈ 7 % d'humidité en plus.
- Conclusion: Plus d'humidité = plus de carburant pour les événements pluvieux violents.

B. Modification des circulations atmosphériques (PIERRE)

- Changement dans la répartition des zones de convergence, dépression,
- Exemples régionaux : mousson plus variable en Asie, tempêtes plus intenses dans l'Atlantique Nord.

C. Amplification du cycle hydrologique (Pierre)

- Plus de pluie dans les zones humides, plus de sécheresse dans les zones sèches → dualité « le sec devient plus sec, le humide devient plus humide ».
- comment on mesur ca et on le quantifie