Contents

Гrigonometric functions with CORDIC	1
The math	1
The software	1
Code	5

Trigonometric functions with CORDIC

The math

The basic idea behind the CORDIC algorithm is to perform a rotation of a unit vector to a particular angle β by performing many increasingly small rotations towards the desired angle, starting at 45° and halving each time.

Each step angle is defined by $\gamma_i = \arctan(2^{-i})$. Starting with $v_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $v_{i+1} = R_i v_i$ where R_i is a rotation matrix $\begin{bmatrix} \cos(\gamma_i) & -\sin(\gamma_i) \\ \sin(\gamma_i) & \cos(\gamma_i) \end{bmatrix}$.

 R_i can be simplified to $\cos(\gamma_i)$ $\begin{bmatrix} 1 & -\tan(\gamma_i) \\ \tan(\gamma_i) & 1 \end{bmatrix}$, and since γ_i is defined with arctan, we arrive at

$$R_i = \cos\bigl(\arctan(2^{-i})\bigr) \begin{bmatrix} 1 & -\sigma_i 2^{-i} \\ \sigma_i 2^{-i} & 1 \end{bmatrix}$$

where σ_i is either 1 or –1, depending on the direction in which the rotation must go to get closer to the desired final angle.

The identity $\cos(\gamma_i) = \frac{1}{\sqrt{1+\tan(\gamma_i)^2}}$ can be used to simplify the scalar of R_i to $K_i = \frac{1}{\sqrt{1+2^{-2i}}}$. This K can be extracted from the algorithm and applied at the end as a scaling factor

$$K(n) = \prod_{i=0}^{n-1} K_i$$

where n is the number of steps.

Thus, ${\cos(\beta)\brack\sin(\beta)}$ can be approximated as $K(n){x_n\brack y_n}$ where

$$\begin{bmatrix} x_{i+1} \\ y_{i+1} \end{bmatrix} = \begin{bmatrix} 1 & -\sigma_i 2^{-i} \\ \sigma_i 2^{-i} & 1 \end{bmatrix} \begin{bmatrix} x_i \\ y_i \end{bmatrix}$$

for n iterations.

The software

Instead of doing matrix multiplication for each iteration, you can simply keep track of x_i and y_i as separate variables and perform scalar multiplication $x_{i+1} = -\sigma_i 2^{-i} x_i$ (and similar for y). To greatly improve performance and complexity, most implementations decide on a static number of iterations and pre-compute K(n) as a constant scaling factor. In addition, in order to determine σ_i , each step angle is precomputed, and the current angle is compared with the desired angle on each iteration.

Code

I wrote my implementation in Rust, but I've created Python translations for ease of understanding.

```
def cordic(beta):
   theta = 0.0 # stores current angle
   point = (1.0, 0.0)
   p2i = 1.0 # stores 2^(-i)

# where STEPS is a list of precomputed step angles
for gamma in STEPS:
   sigma = 1 if theta < beta else -1
   theta += sigma * gamma
   point = (point[0] - sigma * point.1 * p2i, point[1] + sigma * p2i * point.0)
   p2i /= 2.0

# where K is precomputed
   return (point[0] * K, point[1] * K)</pre>
```