## CSC 461: Machine Learning Fall 2024

### **Decision Trees**

Prof. Marco Alvarez, Computer Science University of Rhode Island

### Setup

- Data instances
  - $x \in \mathbb{R}^d$  is typically a **feature vector** of <u>discrete values</u>
    - however, continuous values can also be handled
  - $y \in \{1,2,...,k\}$  for classification and  $y \in \mathbb{R}$  for regression
- Hypothesis
  - each solution (hypothesis) is a decision tree

 $h: \mathcal{X} \mapsto \mathcal{Y}, h \in \mathcal{H}$ 

## Learning a decision tree

### Learning approach

- **▶ top-down** tree construction
  - select best feature to split on
  - for each feature value => split the data into subsets and create child nodes
  - recursively apply these steps to child nodes
- Greedy algorithm
  - makes locally optimal choice at each step
  - efficient, but may lead to suboptimal solutions
  - cannot guarantee optimality (smallest consistent tree)

### DT induction

- > Start at the root node with entire dataset
- Create a decision node based on the best feature
  - best feature chosen by information gain, Gini impurity, variance reduction (for regression) or other
  - split the dataset according to feature values and create child nodes for each data split
- Repeat last step (<u>recursively</u>) for each child node
  - use subset of data that reached the node
  - stop the recursion when meeting a criterion (e.g., all data in node belongs to one class, maximum tree depth reached, or minimum samples per leaf reached)

| Outlook  | Temperature | Humidity | Wind   | Play |  |
|----------|-------------|----------|--------|------|--|
| sunny    | hot         | high     | weak   | no   |  |
| sunny    | hot         | high     | strong | no   |  |
| overcast | hot         | high     | weak   | yes  |  |
| rain     | mild        | high     | weak   | yes  |  |
| rain     | cool        | normal   | weak   | yes  |  |
| rain     | cool        | normal   | strong | no   |  |
| overcast | cool        | normal   | strong | yes  |  |
| sunny    | mild        | high     | weak   | no   |  |
| sunny    | cool        | normal   | weak   | yes  |  |
| rain     | mild        | normal   | weak   | yes  |  |
| sunny    | mild        | normal   | strong | yes  |  |
| overcast | mild        | high     | strong | yes  |  |
| overcast | hot         | normal   | weak   | yes  |  |
| rain     | mild        | high     | strong | no   |  |



| Outlook  | Temperature | Humidity | Wind   | Play |  |
|----------|-------------|----------|--------|------|--|
| sunny    | hot         | high     | weak   | no   |  |
| sunny    | hot         | high     | strong | no   |  |
| overcast | hot         | high     | weak   | yes  |  |
| rain     | mild        | high     | weak   | yes  |  |
| rain     | cool        | normal   | weak   | yes  |  |
| rain     | cool        | normal   | strong | no   |  |
| overcast | cool        | normal   | strong | yes  |  |
| sunny    | mild        | high     | weak   | no   |  |
| sunny    | cool        | normal   | weak   | yes  |  |
| rain     | mild        | normal   | weak   | yes  |  |
| sunny    | mild        | normal   | strong | yes  |  |
| overcast | mild        | high     | strong | yes  |  |
| overcast | hot         | normal   | weak   | yes  |  |
| rain     | mild        | high     | strong | no   |  |















### Show me the code

## Resulting decision tree

- Preference for smaller trees
  - reduced overfitting, improved generalization and interpretability
- Consistency with training examples
  - tree aims for consistency, however it may lead to overfitting especially on noisy data
- ▶ Agreement with true function
  - may not always agree due to limited training data, noise in the data, overfitting
  - larger training datasets generally lead to better approximation





# 



### Continuous features

- Transform continuous into discrete features
  - use thresholds defined by domain experts or automatically calculate from training data
- For example:
  - sort values in training set
  - find split points where class changes

| Temperature: | 40 | 48 | 60  | 72  | 80  | 90 |
|--------------|----|----|-----|-----|-----|----|
| PlayTennis:  | No | No | Yes | Yes | Yes | No |
|              |    |    |     |     |     |    |

### Continuous outputs

### ▶ Regression trees

- assign continuous values to leaves
- e.g., the **mean** of all y values that fall into the leaf



### Conclusion

### ▶ Advantages

- nonlinear decision boundaries
- interpretability
- fast inference

#### • Limitations:

- training can be computationally expensive
- prone to overfitting without proper regularization
- instability: small data changes can result in very different trees
- some complex functions require exponentially large trees (e.g., majority, parity functions)

### Preventing overfitting

- Remove irrelevant features
- Increase dataset size
- ► Stop growing branches during training (early stopping)
  - use hard thresholds or statistical measures
- ▶ Post-training pruning
  - remove branches that don't significantly contribute to performance