Olimpiada Națională de Matematică 2007 Etapa județeană și a Municipiului București 3 martie 2007

CLASA A XII-A, SOLUŢII ŞI BAREMURI

Subiectul 1. Pentru un grup (G, *) și A, B submulțimi nevide ale lui G, notăm $A * B = \{a * b \mid a \in A \text{ și } b \in B\}.$

- a) Să se arate că dacă $n \in \mathbb{N}$, $n \geq 3$, atunci grupul $(\mathbf{Z}_n, +)$ se poate scrie sub forma $\mathbf{Z}_n = A + B$, unde A și B sunt două submulțimi nevide ale lui \mathbf{Z}_n cu $A \neq \mathbf{Z}_n, B \neq \mathbf{Z}_n$ și $|A \cap B| = 1$.
- b) Dacă (G, *) este un grup finit şi A, B sunt două submulțimi nevide ale lui G cu |A| + |B| > |G|. atunci G = A * B.

 $(Cu \mid M \mid s-a \text{ notat numărul elementelor mulțimii } M)$

Soluție și barem de corectare. a) Alegem $A=\{\hat{0},\hat{1}\}$ și $B=\{\hat{1},\hat{2},\dots,\hat{n-1}\}$. Cum $\hat{0}=\hat{1}+\hat{n-1}$ și $B\subset A+B$, rezultă $\mathbf{Z}_n=A+B$ 2 puncte

Subiectul 2. Se consideră funcțiile continue $f:[0,1]\to\mathbb{R}$ și $g:[0,1]\to(0,\infty)$. Să se arate că dacă f este crescătoare, atunci

$$\int_0^t f(x)g(x)dx \cdot \int_0^1 g(x)dx \le \int_0^t g(x)dx \cdot \int_0^1 f(x)g(x)dx,$$

pentru orice $t \in [0, 1]$.

Soluție și barem de corectare. Fie $k = \int_0^1 g(x) dx > 0$. Prin considerarea funcției $g_1 = \frac{1}{k}g$ putem presupune că $\int_0^1 g(x) dx = 1$.

Considerăm funcția $F:(0,1]\to\mathbb{R}$ definită prin

$$F(t) = \frac{\int_0^t f(x)g(x)dx}{\int_0^t g(x)dx}.$$

$$F'(t) = \frac{f(t)g(t) \int_0^t g(x) dx - g(t) \int_0^t f(x)g(x) dx}{\left(\int_0^t g(x) dx\right)^2}$$
$$= g(t) \frac{f(t) \int_0^t g(x) dx - \int_0^t f(x)g(x) dx}{\left(\int_0^t g(x) dx\right)^2}$$
$$\ge g(t) \frac{\int_0^t (f(t) - f(x))g(x) dx}{\left(\int_0^t g(x) dx\right)^2} \ge 0,$$

Pentru t = 0 inegaliatea este evidentă 1 punct

Subiectul 3. Determinați toate funcțiile continue $f : \mathbb{R} \to \mathbb{R}$ care verifică simultan condițiile:

a) există $\lim_{x \to \infty} f(x)$;

b)
$$f(x) = \int_{x+1}^{x \to \infty} f(t) dt$$
, pentru orice $x \in \mathbb{R}$.

Soluție și barem de corectare. Fie $a \in \mathbb{R}$ și șirul $(a_n)_n$ definit astfel $a_0 = a$ și prin inducție, pentru a_n definit, alegem $a_{n+1} \in [a_n+1, a_n+2]$ astfel încât

$$\int_{a_{n}+1}^{a_{n}+2} f(x) dx = f(a_{n+1}),$$

Subiectul 4. Fie k un corp cu 2^n elemente, $n \in \mathbb{N}^*$ și polinomul $f = X^4 + X + 1$. Să se arate că:

a) dacă n este par, atunci f este reductibil în k[X];

b) dacă n este impar, atunci f este ireductibil în k[X].

Soluție și barem de corectare. Cum $|k| = 2^n$ rezultă 1 + 1 = 0.

 $p = 1, n = 1 + q \text{ deci } q^2 + q + 1 = 0, \text{ fals.} \dots 3 \text{ puncte}$