Homework 6 Solutions

December 2, 2019

4.16

Section 4.5.2 describes a way of storing a complete binary tree of n nodes in an array indexed by $1, 2, \ldots, n$.

- (a) Consider the node at position j of the array. Show that its parent is at position $\lfloor j/2 \rfloor$ and its children are at 2j and 2j+1 (if these numbers are $\leq n$).
- (b) What the corresponding indices when a complete d-ary tree is stored in an array?

Figure 4.16 shows pseudocode for a binary heap, modeled on an exposition by R.E. Tarjan. The heap is stored as an array h, which is assumed to support two constant-time operations:

- |h|, which returns the number of elements currently in the array;
- ullet h^{-1} , which returns the position of an element within the array.

The latter can always be achieved by maintaining the values of h^{-1} as an auxiliary array.

- (c) Show that the makeheap procedure takes O(n) time when called on a set of n elements. What is the worst-case input? (Hint: Start by showing that the running time is at most $\sum_{i=1}^{n} \log(n/i)$.)
- (d) What needs to be changed to adapt this pseudocode to d-ary heaps?

135

Figure 4.16 Operations on a binary heap.

```
procedure insert(h, x)
bubbleup(h, x, |h| + 1)
procedure decreasekey(h,x)
bubbleup (h, x, h^{-1}(x))
function deletemin(h)
if |h| = 0:
   return null
else:
   x = h(1)
   siftdown(h, h(|h|), 1)
   \operatorname{return} x
function makeheap(S)
h = \text{empty array of size } |S|
for x \in S:
   h(|h|+1) = x
for i = |S| downto 1:
   siftdown(h,h(i),i)
return h
procedure bubbleup(h, x, i)
(place element x in position i of h, and let it bubble up)
p = \lceil i/2 \rceil
while i \neq 1 and key(h(p)) > key(x):
   h(i) = h(p); \quad i = p; \quad p = \lceil i/2 \rceil
h(i) = x
procedure siftdown(h, x, i)
(place element x in position i of h, and let it sift down)
c = minchild(h, i)
while c \neq 0 and key(h(c)) < key(x):
   h(i) = h(c); i = c; c = minchild(h, i)
h(i) = x
function minchild (h, i)
(return the index of the smallest child of h(i))
if 2i > |h|:
   return 0 (no children)
else:
   \texttt{return } \arg\min\{\texttt{key}(h(j)): 2i \leq j \leq \min\{|h|, 2i+1\}\}
```

Solution

(a) Let node n_j at position j of array. In the complete binary tree from top to bottom, n_j is at vertical depth: a (let root node be at depth 0). The number of nodes above n_j is $1+2^1+2^2+\ldots 2^{a-1}=2^a-1$. From left to right, n_j is at horizontal order b (Number of nodes at left of n_j) and $0 < b < 2^a - 1$.

Now we have $j = 2^a - 1 + b + 1 = 2^a + b$.

Known the parent of n_j is at vertical depth a-1 and horizontal order $\lfloor b/2 \rfloor$. So, n_j 's parent is at position:

$$2^{a-1} + |b/2| = |j/2|$$

The children of n_j are at vertical depth a + 1, horizontal order 2b and 2b + 1. So, the positions are

$$2^{a+1} + 2b = 2j$$

And

$$2^{a+1} + 2b + 1 = 2j + 1$$

(b) Its parent is at position $\lceil (j-1)/d \rceil$

Its children are at positions jd - d + 2, jd - d + 1, ..., jd + 1

(c) Based on **Figure** 4.16, minchild function takes O(1) time. Under the worst case, siftdown function would sift down all elements from position i (depth level = $\log i$) to position n (depth level = $\log n$). At most $\log n - \log i$ siftdown operations would be implemented, which take $O(\log n - \log i) = O(\log(n/i))$. Last, procedure makeheap calls siftdown function n times with input $i = n \dots 1$. So, total running time of makeheap is

$$O(\log(n/1) + \log(n/2) + \log(n/3) + \dots + \log(n/i))$$
 (1)

$$=O(\sum_{i=1}^{n}\log(n/i))\tag{2}$$

$$=O(\log \frac{n^n}{n!})\tag{3}$$

By Stirling's formula, $n! \approx \sqrt{2\pi n} (\frac{n}{e})^n$, get

$$\log \frac{n^n}{n!} \approx \log(\frac{e^n}{\sqrt{2\pi n}}) = n \log e - \log(\sqrt{2\pi n}) = O(n)$$

The worst-case input would be an array corresponding to a binary tree which all parents are larger than their children, such as an array sorted in decreasing order.

(d) Change all number 2 into suitable formula of d, and add d as an input argument for each function.

For example, change function minchild(h,i) into:

```
MINCHILD(h, i, d)

1 if id - d + 2 > |h|:

2 return 0 (no children)

3 else:

4 return argmin\{key(h(j)): id - d + 2 \le j \le min\{|h|, di + 1\}\}

Change function bubbleup into

BUBBLEUP(h, x, i, d)

1 p = \lceil (i-1)/d \rceil

2 while i \ne 1 and key(h(p)) > key(x):

3 h(i) = h(p); i = p; p = \lceil (i-1)/d \rceil

4 h(i) = x
```

5.2

Suppose we want to find the minimum spanning tree of the following graph.

- (a) Run Prims algorithm; whenever there is a choice of nodes, always use alphabetic ordering (e.g., start from node A). Draw a table showing the intermediate values of the cost array.
- (b) Run Kruskal's algorithm on the same graph. Show how the disjoint-sets data structure looks at every intermediate stage (including the structure of the directed trees), assuming path compression is used.

Solution

(a)

Set S	A	В	С	D	E	F	G	Н
{}	0/nil	∞/nil						
A		1/A	∞/nil	∞/nil	4/A	8/A	∞/nil	∞/nil
A,B			2/B	∞/nil	4/A	6/B	6/B	∞/nil
A,B,C				3/C	4/A	6/B	2/C	∞/nil
A,B,C,G				1/G	4/A	1/G		1/G
A,B,C,G,D					4/A	1/G		1/G
A,B,C,G,D,F					4/A			1/G
A,B,C,G,D,F,H					4/A			

The tree looks like:

(b) — Sort the edges based on their weights:

Edge	A-B	F-G	D-G	G-H	В-С	C-G	C-D	A-E	D-H	E-F	B-F	B-G	A-F
Weight	1	1	1	1	2	2	3	4	4	5	6	6	8

 $- \ Do \ makeset(A), \ makeset(B), \ ..., \ makeset(H).$ Graph:

Path-compressed tree structure:

- Pick edges AB, DG, FG, GH. Do union(A, B), union(D, G), union(F, G), union(G, H).

Graph:

Path-compressed tree structure:

- Pick edges BC, CG. Do union(B, C), union(C, G). Graph:

Path-compressed tree structure:

- Pick edge CD. find(C) = find(D). No update.
- Pick edges AE, DH. Only update AE. Do union(A, E). Graph:

Path-compressed tree structure:

5.3

Design a linear-time algorithm for the following task.

Input: A connected, undirected graph G.

Question: Is there an edge you can remove from G while still leaving G connected?

Can you reduce the running time of your algorithm to O(|V|)?

Solution 1 in O(|V| + |E|) time:

Perform DFS until a back edge is found. Then remove any edge on the cycle will leave G connected. If no such a back edge is found, then no such an edge that can be removed and still leave the graph connected. This takes O(|E| + |V|) time due to DFS.

Solution 2 in O(|V|) time:

Count the total number of edges on the adjacency list. If exactly 2(|V|-1) edges are found, then the graph is a tree and removing any edge would disconnect the graph; If 2|V| edges have been counted, stop. Such an edge exists (though which edge is not clear). The constant 2 is due to each edge showing up twice in the adjacency list for an undirected graph. The total runtime is O(|V|).