$$f(x) = \sqrt{2\pi}$$
 $f(t)^{(x)}$ $f(t)^{(x)}$

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ

{\fg\≤\\1 ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ(2)

$$P(X = x) = \{x\}^{\frac{1}{2}}$$

$$P(X = x) = \{x\}^{\frac{1$$

$$f(z) = \sqrt{2\pi}e^{-\frac{z^2}{2}}$$

$$x^n + y^n = x^n$$

f (8)

$$\frac{x^n + y^n = z^n}{x^n + y^n = z^n}$$

 $f = f(t(u(x))) \Rightarrow \bar{d}x$ $2^n+3^n=z^n$ Дифференцируемость функции нескольких переменных

Частные производные

Геометрический смысл частных производных.

Дифференцируемость функции нескольких переменных

Дифференцирование сложной функции, зависящей от одной переменной Дифференцирование сложной функции, зависящей от нескольких

переменных

eⁱⁿ =

f (8)

[\fg\≤\\!

ДИФФЕРЕНЦИРУЕМОСТЬ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

[\f9\≤\\!

 $f = f(t(u(x))) \Rightarrow \bar{d}x$

Частные производные

Рассмотрим функцию f(x,y), определенную в области D.

HATN

Приращение $\Delta_x z$, называемое частным приращением по переменной x, определяется равенством $\Delta_x z = f(x + \Delta x, y) - f(x, y)$.

Полное приращение функции z = f(x,y) определяется равенством $\Delta z = f(x+\Delta x,y+\Delta y) - f(x,y)$.

MF TUS = MVEW

Определение 13.1

 $(a+b)^n = \sum_{k=0}^n {n \choose k} a^{n-k}$ Частной производной функции z = f(x, y) по переменной x называется предел отношения частного приращения функции $\Delta_x z$ к вызвавшему его приращению аргумента Δx при условии, что последнее стремится к нулю.

 $f = f(t(u(x))) \Rightarrow \bar{d}x$

 $x^n + y^n = z^n$

| \fg\ ≤ \\!

Обозначается такая частная производная $\frac{-}{\partial x}$

Итак,

$$\frac{\partial z}{\partial x} \stackrel{def}{=} \lim_{\Delta x \to 0} \frac{z(x + \Delta x, y) - z(x, y)}{\Delta x}$$
 по переменной x обозначается также $z_x' = f_x'(x, y)$.

Частная производная по переменной x обозначается также $z'_x = f'_x(x, y)$.

Аналогично определяется частная производная $\frac{\partial z}{\partial y}$, т.е. $\frac{\partial z}{\partial y} \stackrel{def}{=} \lim_{\Delta y \to 0} \frac{\Delta_y z}{\Delta y}$.

Геометрический смысл частных производных.

Допустим, что в области D функция z = f(x, y) положительна. Этой функции соответствует некоторая поверхность S, расположенная над областью D

 $f = f(t(u(x))) \Rightarrow \overline{dx}$

Принимая во внимание геометрический смысл обыкновенной производной, нетрудно заметить, что значение частной производной $\frac{\partial z}{\partial x}$ в точке M(x,y) дает нам тангенс угла наклона касательной к линии пересечения поверхности z = f(x,y) и плоскости y = const с положительным направлением оси 0x

 $f = f(t(u(x))) \xrightarrow{\rightarrow} dx$ $f = f(t(u(x))) \xrightarrow{\rightarrow} dx$ $f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$ $f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$

Значение частной производной $\frac{\partial z}{\partial y}$ в точке M(x,y) соответственно равно тангенсу угла наклона касательной к линии пересечения поверхности z=f(x,y) и плоскости x=const с положительным направлением оси 0у.

 $f = f(t(u(x))) \Rightarrow \bar{d}x$ $x^n + y^n = z^n$ Onpedeление 13.2

Определение 13.2 Произведение частных производных $\frac{\partial z}{\partial x}$ и $\frac{\partial z}{\partial y}$ на приращения независимых переменных Δx и Δy называются частными дифференциалами и обозначаются соответственно $d_x z$ и $d_y z$, т.е.

ein =

[\f9\≤\\!

еменных
$$\Delta x$$
 и Δy называются частными дифференциалами значаются соответственно $d_x z$ и $d_y z$, т.е.
$$d_x z = \frac{\partial z}{\partial x} \cdot \Delta x, \ d_y z = \frac{\partial z}{\partial y} \cdot \Delta y$$

 $f = f(t(u(x))) \Rightarrow \bar{d}x$ $2^n+3^n=2^n$ HIVEN

e = -1

Аналогично определяются и частные производные от функций, зависящих от $P(X = x) = {n \choose x} p^{x} (1 - p)^{n-x}$ трех и более независимых переменных.

При отыскании частной производной по х на все прочие переменные, входящие в выражение функции, следует смотреть как на постоянные.

甘三〇二

Поэтому остается в силе таблица производных и правила дифференцирования, рассмотренные подробно при изучении производных функции одной переменной

f(t)dt = f(b) - f(a) f(t)dt = f(b) - f(a) $f(a) = \sqrt{2\pi}$ $f = f(t(u(x))) \Rightarrow \frac{\partial f}{\partial x} = \frac{\partial f}{\partial t} \frac{\partial f}{\partial x}$ $\nabla = x^n + y^n = x^n$ $\nabla = x^n + y^n = x^n$ $\nabla = x^n + y^n = x^n$ MT TUS = MIN VEW

 $= \frac{\partial f}{\partial t} \frac{\partial t}{\partial u} \frac{\partial u}{\partial x}$

In pume p1.
$$u = xyt^2 - \sqrt{1 + x^2z}$$
. Hant $u = xyt^2 - \sqrt{1 + x^2z}$. Hant $u = xyt^2 - \sqrt{1$

Пример1.
$$u = xyt^2 - \sqrt{1 + x^2z}$$
. Найти $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$

1.
$$\frac{\partial u}{\partial x} = yt^2 - \frac{x \cdot z}{\sqrt{1 + x^2 z}}$$

$$2. \frac{\partial u}{\partial y} = xt^2$$

2.
$$\frac{\partial u}{\partial y} = xt^2$$

3. $\frac{\partial u}{\partial t} = 2x \cdot y \cdot t$ $f(t) dt = f(b) - f(a)$

4. $\frac{\partial u}{\partial z} = -\frac{x^2}{2\sqrt{1+x^2\cdot z}}$ $\sqrt{2\pi}$

iπ =

 $\| \sqrt{f} \, a \| \leq \| \| \|$

 $x^n + y^n = x^n$

n (n) an-43h

3.
$$\frac{\partial u}{\partial t} = 2x \cdot y \cdot t$$

$$\frac{\partial u}{\partial z} = -\frac{x^2}{2\sqrt{1 + x^2 \cdot z}}$$

Дифференцируемость функции нескольких переменных

 $f = f(t(u(x))) \Rightarrow \overline{dx}$

двух независимых переменных определенную в некоторой области D плоскости x0у.

1F=0=0F.JF=0 Если полное приращение функции z = f(x, y) в точке (x, y)можно представить в виде $\Delta z = A \cdot \Delta x + B \cdot \Delta y + \alpha \cdot \Delta x + \beta \cdot \Delta y$, где A и B – выражения, не зависящие от Δx и Δy , а α и β – бесконечно малые, стремящиеся к нулю, если $\Delta x \to 0$, $\Delta y \to 0$, то функция z = f(x, y) называется **дифференцируемой в точке** (x, y).

MT. Tas = MVEN

 $f = f(t(u(x))) \Rightarrow \bar{d}x$ $x^n + y^n = z^n$ Теорема 13.1 d.S = 111

 $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k}b^k$ Eсли функция z=f(x,y) дифференцируема в точке (x,y), то y нее существуют частные производные $\frac{\partial z}{\partial x}$ и $\frac{\partial z}{\partial y}$ в этой точке. Доказательство.

ein =

[\fs\ ≤\\!

Итак, пусть функция z = f(x, y) дифференцируема в точке (x, y), тогда ее $\Delta z = A \cdot \Delta x + B \cdot \Delta y + \alpha \cdot \Delta x + \beta \cdot \Delta y$ полное приращение равно

$$\Delta z = A \cdot \Delta x + B \cdot \Delta y + \alpha \cdot \Delta x + \beta \cdot \Delta y$$

Если мы зафиксируем y, т.е. положим $\Delta y=0$, то получим частное приращение $\Delta y=0$, $\Delta y=0$, $\Delta y=0$ $\Delta_x z = A \cdot \Delta x + \alpha \cdot \Delta x.$

 $2^n+3^n=2^n$

e^{in z}

 $f = f(t(u(x))) \Rightarrow \bar{d}x$

Отсюда следует, что существует частная производная

Действительно $\frac{\partial z}{\partial x} = \lim_{\Delta x \to 0} \frac{\Delta_x z}{\Delta x} = \lim_{\Delta x \to 0} (A + \alpha)$ Т.к. A от Δx не зависит, а $\alpha \to 0$ при $\Delta x \to 0$, то получим $\frac{\partial z}{\partial x} = A$. f = f(t(u(x)))

MF TUS = MVEW

Совершенно аналогично $\frac{\partial z}{\partial y} = B$.

 $f = f(t(u(x))) \Rightarrow \bar{d}x$ $x^n + y^n = z^n$

То есть, если функция дифференцируема в точке (x,y), то ее полное прирашение можно записати $x = -\frac{1}{2}$ $\Delta z = \frac{\partial z(x,y)}{\partial x} \cdot \Delta x + \frac{\partial z(x,y)}{\partial y} \cdot \Delta y + \alpha \cdot \Delta x + \beta \cdot \Delta y$ где $\alpha \to 0$, $\beta \to 0$ при $\Delta x \to 0$, $\Delta y \to 0$. приращение можно записать в виде

$$\Delta z = \frac{\partial z(x, y)}{\partial x} \cdot \Delta x + \frac{\partial z(x, y)}{\partial y} \cdot \Delta y + \alpha \cdot \Delta x + \beta \cdot \Delta y$$

Отметим, что так же, как для функции одной переменной, из дифференцируемости z = f(x, y) в точке (x, y) вытекает ее непрерывность в этой точке. at du do

Действительно, очевидно, что в этом случае полное приращение $\Delta z \to 0$ при $\Delta x \to 0$, $\Delta y \to 0$.

MT TOS = MIN VEW

$$f(x) = \sqrt{2\pi}$$

$$f(x$$

 $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k}b^k$ $u = f(x/n) = \sum_{k=0}^n \binom{n}{k} a^{n-k}b^k$ **Дифференциалом функции** z = f(x, y) называется линейная относительно

ein =

f (8)

[\fs\≤\\]

Дифференциалом функции
$$z = f(x,y)$$
 называется линейная относите Δx и Δy часть полного приращения дифференцируемой функции, т.е.
$$dz = \frac{\partial z(x,y)}{\partial x} \cdot \Delta x + \frac{\partial z(x,y)}{\partial y} \cdot \Delta y$$

$$dz = \frac{\partial z(x,y)}{\partial x} \cdot \Delta x + \frac{\partial z(x,y)}{\partial y} \cdot \Delta y$$

$$dz = \frac{\partial z(x,y)}{\partial x} \cdot \Delta x + \frac{\partial z(x,y)}{\partial y} \cdot \Delta y$$

 $f = f(t(u(x))) \Rightarrow \bar{d}x$ $x^n + y^n = z^n$ SIF IS = SI

 $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$ $\mathbf{u} \quad \mathbf{y} \quad - \quad \mathbf{He3aBucura} \quad p^2 (1-p)^n$ | \fg\ \le \| ! Заметим, что если x и y – независимые переменные, дифференциалы этих переменных совпадают с их приращениями, т.е. $dx = \Delta x$, $dy = \Delta y$. Тогда можно уточнить форму дифференциала функции,

Заметим, что если
$$x$$
 и y — независимые переменные, то дифференциалы этих переменных совпадают с их приращениями, т.е $dx = \Delta x$, $dy = \Delta y$. Тогда можно уточнить форму дифференциала функции зависящей от двух независимых переменных:
$$dz = \frac{\partial z(x,y)}{\partial x} \cdot dx + \frac{\partial z(x,y)}{\partial y} \cdot dy$$

$$f(z) = \sqrt{2\pi}e^{-\frac{z^2}{2}}$$

MF TUS = MVEW

e^{in z}

Теорема 13.2 (достаточные условия дифференцируемости функции нескольких переменных)

 $x^n + y^n = z^n$

ein =

f (8)

 $f = f(t(u(x))) \Rightarrow \overline{dx}$

нескольких переменных) Если в некоторой точке M(x,y), принадлежащей области D, функция z=f(x,y) имеет непрерывные частные производные $\frac{\partial z(x,y)}{\partial x}$ и $\frac{\partial z(x,y)}{\partial y}$, то она в этой точке дифференцируема.

она в этой точке дифференцируема.

$$f(t)dt = f(b) - f(a)$$

$$f(t)dt = f(b)$$

$$f(t$$

Доказательство.

 $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$ Рассмотрим полное приращение функции z = f(x, y) и преобразуем его так:

 $x^n + y^n = z^n$

| \fg\ ≤ \\!

 $f = f(t(u(x))) \Rightarrow \bar{d}x$

отрим полное приращение функции
$$z = f(x, y)$$
 и преобразуем ег
$$\Delta z = f(x + \Delta x, y + \Delta y) - f(x, y) = [f(x + \Delta x, y + \Delta y) - f(x, y + \Delta y)] + [f(x, y + \Delta y) - f(x, y)]$$

К каждой из квадратных скобок можно применить теорему Лагранжа; $\Delta z = f_x'(x + \xi_1 \Delta x, y + \Delta y) \cdot \Delta x + f_y'(x, y + \xi_2 \Delta y) \cdot \Delta y,$

$$\Delta z = f_x'(x + \xi_1 \Delta x, y + \Delta y) \cdot \Delta x + f_y'(x, y + \xi_2 \Delta y) \cdot \Delta y,$$

где ξ_1 и ξ_2 есть некоторые константы, удовлетворяющие условиям $0 < \xi_1 < 1, \ 0 < \xi_2 < 1.$ NF Tas = MVEN

$$f(x) = \sqrt{2\pi}$$

По условию теоремы частные производные $f_x'(x,y), \ f_y'(x,y)$ непрерывны в точке M(x,y); это означает, что [\fs\≤\\]

ein =

По условию теоремы частные производные
$$f_x'(x,y)$$
, $f_y'(x,y)$ непрерточке $M(x,y)$; это означает, что
$$\lim_{\substack{\Delta x \to 0 \\ \Delta y \to 0}} f_x'(x+\xi_1 \Delta x,y+\Delta y) = f_x'(x,y),$$

$$\lim_{\substack{\Delta x \to 0 \\ \Delta y \to 0}} f_y'(x,y+\xi_2 \Delta y) = f_y'(x,y).$$

Отсюда
$$f'(x) = \int_{0}^{2\pi} dx = \int_{0}^{2\pi} d$$

$$f'_x(x+\xi_1\Delta x,y+\Delta y)=f'_x(x,y)+\alpha$$

$$f'(x, y + \xi_2 \Delta y) = f'(x, y) + \beta$$

$$f_y'(x,y+\xi_2\Delta y)=f_y'(x,y)+\beta$$
,
 α и β — некоторые бесконечно малые,
 $\tau.e.\ \alpha\to 0,\ \beta\to 0$ при $\Delta x\to 0,\ \Delta v\to 0.$

e^{in z}

[\fs\ \le \\]

т.е.
$$\alpha \to 0$$
, $\beta \to 0$ при $\Delta x \to 0$, $\Delta y \to 0$.

$$f(x) = f(x(x))$$
 $f(x) = f(x(x))$ $f(x$

бразом,
$$\Delta z = f_x'(x,y) \cdot \Delta x + f_y'(x,y) \cdot \Delta y + \alpha \cdot \Delta x + \beta \cdot \Delta y \,.$$
 вначает, что функция $z = f(x,y)$ дифференцируема в точке

e^{iπ} ≃

f (8)

[\fg| \le \\!

А это и означает, что функция
$$z=f(x,y)$$
 дифференцируема в точке $M(x,y)$.
$$\int_{\mathbb{R}^n} f(t) dt = \int_{\mathbb{R}^n} f(t)$$

 $f = f(t(u(x))) \Rightarrow \bar{d}x$ $x^n + y^n = z^n$ Onpedeление 13.4

Определение 13.4 Φ ункция z=f(x,y) называется дифференцируемой в некоторой области D, если она дифференцируема в каждой точке этой области. curl F = 0 = F

Замечание

f(t)dt = f(b) - f(a)Все, сказанное выше, распространяется на функции, зависящие от любого числа независимых переменных.

 $f(z) = \sqrt{2\pi}^{6}$ MF TUS = MVEW

 $\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r}$ $\int_{0}^{\infty} ar^{n-1} = \frac{a}{1-r}$ $\int_{0}^{\infty} \frac{\partial f}{\partial t} \frac{\partial f}{\partial t} \frac{\partial f}{\partial t} \frac{\partial f}{\partial t}$

eⁱⁿ =

[\f9\≤\\!

 $f(x) = \int_{\mathbb{R}^n} f(x) dx =$

Дифференцируемость функции в точке, как мы установили, приводит к ее непрерывности. Поэтому из непрерывности частных производных функции вытекает непрерывность самой функции в точке. Для исследование функции нескольких переменных на непрерывность в рассматриваемой точке достаточно установить факт непрерывности частных производных этой функции в данной точке.

ДИФФЕРЕНЦИРОВАНИЕ СЛОЖНЫХ ФУНКЦИЙ НЕСКОЛЬКИХ переменных 🔭 🛨

HOFW

 $f = f(t(u(x))) \Rightarrow \bar{d}x$

Дифференцирование сложной функции зависящей от $P(X=x) = \binom{n}{x} p^{x} (1-p),$ одной переменной

Рассмотрим функцию двух аргументов z = f(x, y). Пусть, в свою очередь умента t уункцией аргумента t, при $z=f\left[x(t),y(t)\right].$ аргументы x и y являются функциями некоторого аргумента t: x = x(t), y = y(t). Тогда ясно, что z является сложной функцией аргумента t, причем x и y выступают здесь в качестве промежуточных аргументов, т.е.

| \f g \ \ \ \!

$$z = f[x(t), y(t)].$$

MF TAS = MINVEW

Предположим, что функция f(x,y) дифференцируема в некоторой точке M(x,y), а функции x=x(t) и y=y(t) дифференцируемы по переменной t. Тогда ясно, что если переменная t получит приращение Δt , то переменные x = x(t) и y = y(t) получат приращения Δx и Δy , следовательно, функция z = f[x, y] получит полное приращение

 $x^n + y^n = z^n$

 $x^n + y^n = x^n$ $x^n + y^n = x^n$ $x^n + y^n = x^n$

 $f = f(t(u(x))) \Rightarrow \overline{dx}$

пия z = J [x, y] $\Delta z = \frac{\partial z}{\partial x} \cdot \Delta x + \frac{\partial z}{\partial y} \cdot \Delta y + \alpha \cdot \Delta x + \beta \cdot \Delta y,$

где $\alpha \to 0$, $\beta \to 0$ при $\Delta x \to 0$, $\Delta y \to 0$. Разделим обе части этого равенства на Δt :

$$\frac{\Delta z}{\Delta t} = \frac{\partial z}{\partial x} \cdot \frac{\Delta x}{\Delta t} + \frac{\partial z}{\partial y} \cdot \frac{\Delta y}{\Delta t} + \alpha \cdot \frac{\Delta x}{\Delta t} + \beta \cdot \frac{\Delta y}{\Delta t}.$$

MF. Tas = MVEW

Устремим теперь
$$\Delta t$$
 к нулю, тогда и $\Delta x \to 0$, $\Delta y \to 0$, причем $\lim_{\Delta t \to 0} \frac{\Delta y}{\Delta t} = \frac{dy}{dt}$, $\lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dz}{dt}$.

Окончательно получим $\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt}$ $\int_{a}^{b} \frac{\partial z}{\partial t} \cdot \frac{\partial z}{\partial t} \cdot \frac{\partial z}{\partial t} = \int_{a}^{b} \frac{\partial z}{\partial t} \cdot \frac{\partial z}{\partial t} \cdot \frac{\partial z}{\partial t} = \int_{a}^{b} \frac{\partial z}{\partial t} \cdot \frac{\partial z}{\partial t} \cdot \frac{\partial z}{\partial t} \cdot \frac{\partial z}{\partial t} = \int_{a}^{b} \frac{\partial z}{\partial t} \cdot \frac{\partial z}{\partial t} \cdot \frac{\partial z}{\partial t} \cdot \frac{\partial z}{\partial t} = \int_{a}^{b} \frac{\partial z}{\partial t} \cdot \frac{\partial z}{\partial t} \cdot \frac{\partial z}{\partial t} \cdot \frac{\partial z}{\partial t} = \int_{a}^{b} \frac{\partial z}{\partial t} \cdot \frac{\partial z}{\partial t} = \int_{a}^{b} \frac{\partial z}{\partial t} \cdot \frac{\partial z}$

Пример. Найти $\frac{dz}{dt}$, если $z=\sqrt{x^2+y}$, $x=\cos t^2$, $y=\operatorname{tg} t$.

 $f = f(t(u(x))) \Rightarrow \bar{d}x$

Решение. Имеем $\frac{dx}{dt} = -\sin t^2 \cdot 2t$, $\frac{dy}{dt} = \frac{1}{\cos^2 t}$,

 $f(z) = \sqrt{2\pi}^{\circ}$

$$\frac{\partial z}{\partial x} = \frac{x}{\sqrt{x^2 + y}}, \quad \frac{\partial z}{\partial y} = \frac{1}{2\sqrt{x^2 + y}},$$

 $2n+3^n=2^n$

ein =

[\fs\≤\!!

тогда

 $f(t)^{an} - \frac{1}{f(x)} = \frac{1}{\sqrt{n_{m}}} e^{-\frac{x^{2}}{2}}$

тогда
$$\frac{dz}{dt} = \frac{x}{\sqrt{x^2 + y}} \cdot \left(-2t \cdot \sin t^2\right) + \frac{1}{2\sqrt{x^2 + y}} \cdot \frac{1}{\cos^2 t} = \frac{1 - 4t \cdot \cos^3 t^2 \cdot \sin t^2}{2\cos^2 t \cdot \sqrt{\cos^2 t^2 + \lg t}} \cdot \right.$$
 Нетрудно обобщить сказанное на случай $z = f\left[t, x(t), y(t)\right]$. Получим

$$\frac{dz}{dt} = \frac{\partial z}{\partial t} + \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt}.$$

Пример. Найти $\frac{dz}{dt}$, если $z=x\cdot y\cdot t^2$, $x=\ln\sqrt{t}$, $y=e^{\arctan t}$.

 $f = f(t(u(x))) \Rightarrow \overline{Ax}$

 $x^n + y^n = z^n$

 $x^n + y^n = x^n$

e^{in z}

f (8)

[\fs\≤\\!

Решение. Ясно, что $\frac{\partial z}{\partial t} = 2xyt$, $\frac{\partial z}{\partial x} = y \cdot t^2$, $\frac{\partial z}{\partial y} = x \cdot t^2$, $\frac{dx}{dt} = \frac{1}{\sqrt{t}} \cdot \frac{1}{2\sqrt{t}} = \frac{1}{2t}, \frac{dy}{dt} = e^{arctgt} \cdot \frac{1}{1+t^2}, \text{ получим}$ $\frac{dz}{dt} = 2xyt + yt^2 \cdot \frac{1}{2t} + xt^2 \cdot \frac{e^{arctgt}}{1+t^2} = 2\ln\sqrt{t} \cdot e^{arctgt} \cdot t + e^{arctgt} \cdot t^2 \cdot \frac{1}{2t} + \frac{\ln\sqrt{t} \cdot t^2 \cdot e^{arctgt}}{1+t^2}$

 $f(t)^{(2)} = \frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}$

 $f(z) = \sqrt{12\pi}e^{-\frac{z^2}{2}}$ IIF BUS = IIIVEW n (n) an-hyb

 $f = f(t(u(x))) \Rightarrow \bar{d}x$ $x^n + y^n = z^n$ Оении» - 38 = III ¬ТЕЛУ

Дифференцирование сложной функции зависящей

 $P(X = x) = \binom{n}{x} p^{x} (1 - p)$ $e^{i\pi} = -1$

Рассмотрим теперь вопрос о дифференцировании функции z = z(u, v), где в свою очередь, u = u(x, y), v = v(x, y), причем функция z = z(u, v)дифференцируема по своим аргументам u и υ , а функции u(x,y) и v(x, y), в свою очередь, дифференцируемы по переменным x и y.

 $f = f(t(u(x))) \Rightarrow \frac{\partial f}{\partial x} = \frac{\partial f}{\partial t} \frac{\partial u}{\partial x}$ $V = \sum_{n=1}^{\infty} \binom{n}{n} \binom{n-k}{n}^k$ HT TAS = MINVEW

 $f(x) = \sqrt{2\pi} e^{-\frac{x^2}{2}}$ $f(x) = \sqrt{2\pi} e^{-\frac{x^2}{2}}$

Дадим приращение переменной x, тогда функции u(x,y) и v(x,y) получают частные приращения $\Delta_x u$ и $\Delta_x v$, функция z=z(u,v) получит полное приращение, вызванное изменениями переменных u и v, но по отношению к переменной x это приращение будет частным, т.е. получим

$$\Delta_{x}z = \frac{\partial z}{\partial u} \cdot \Delta_{x}u + \frac{\partial z}{\partial v} \cdot \Delta_{x}v + \alpha \cdot \Delta_{x}u + \beta \cdot \Delta_{x}v,$$

где α и β стремятся к нулю при $\Delta_x u$ и $\Delta_x \upsilon$, стремящихся к нулю.

 $f(z) = \sqrt{2\pi}$ $f(z) = \sqrt{2\pi}$

(n) an-to be

{\fg\≤\!!

Разделим левую и правую часть этого равенства на Δx :

 $f = f(t(u(x))) \Rightarrow \bar{d}x$

 $x^n + y^n = z^n$

e^{in z}

[\fs\ ≤\\!

$$\frac{\Delta_x z}{\Delta x} = \frac{\partial z}{\partial u} \cdot \frac{\Delta_x u}{\Delta x} + \frac{\partial z}{\partial v} \cdot \frac{\Delta_x v}{\Delta x} + \alpha \cdot \frac{\Delta_x u}{\Delta x} + \beta \cdot \frac{\Delta_x v}{\Delta x}.$$

Устремляя Δx к нулю, получим $\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}$.

Устремляя
$$\Delta x$$
 к нулю, получим $\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}$. Аналогично $\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y}$.

 $x^{n} + y^{n} = x^{n}$ $x^{n} + y^{n} = x^{n}$ $x^{n} + y^{n} = x^{n}$ $x^{n} + y^{n} = x^{n}$ MF. Bas = MVEW

 $f(t) = \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}}$

 $f = f(t(u(x))) \Rightarrow \overline{Ax}$ $f(t)^{an} = \frac{1}{\sqrt{12\pi}}e^{-\frac{t^2}{2}}$ $x^n + y^n = z^n$

Пример. Вычислить $\frac{\partial z}{\partial x}$ и $\frac{\partial z}{\partial y}$, если $z = \sqrt{u^2 + uv}$, $u = \sin 3xy$, $v = \cos \frac{y}{x}$.

ein =

Pewerue. Minem $\frac{\partial z}{\partial u} = \frac{2u + v}{2 \cdot \sqrt{u^2 + uv}};$ $\frac{\partial z}{\partial v} = \frac{u}{2 \cdot \sqrt{u^2 + uv}},$ $\frac{\partial u}{\partial x} = 3x \cos 3xy,$ $\frac{\partial u}{\partial y} = 3x \cos 3xy.$ $\frac{\partial v}{\partial x} = \frac{y}{x^2} \sin \frac{y}{x},$ $\frac{\partial v}{\partial y} = \frac{1}{x} \sin \frac{y}{x}.$ n (n) an-hah

MF. HAS = MVEW

 $f(z) = \sqrt{2\pi}e^{-\frac{z^2}{2}}$ $f = f(t(u(z))) \Rightarrow \overline{\partial}z$ $z^n + z^n = z^n$ $z^n + z^n = z^n$

Принимая во внимание полученные выше выражения для $\frac{\partial z}{\partial x}$ и $\frac{\partial z}{\partial y}$, получим $\partial z = 2u + v$

$$\frac{\partial z}{\partial x} = \frac{2u + v}{2 \cdot \sqrt{u^2 + uv}} \cdot 3y \cos 3xy + \frac{u}{2 \cdot \sqrt{u^2 + uv}} \cdot \frac{y}{x^2} \cdot \sin \frac{y}{x} = \frac{\left(2\sin 3xy + \cos \frac{y}{x}\right) \cdot 3y \cos 3xy}{2 \cdot \sqrt{\sin^2 3xy + \sin 3xy \cdot \cos \frac{y}{x}}} + \frac{\left(\sin 3xy\right) \cdot \frac{y}{x^2} \cdot \sin \frac{y}{x}}{2 \cdot \sqrt{\sin^2 3xy + \sin 3xy \cdot \cos \frac{y}{x}}}$$

$$\frac{\partial z}{\partial y}$$
 находится аналогично