SaltaCasella

enumerazione ricorsiva

il gioco

- riempire una matrice quadrata di ordine $N \ge 4$ con i naturali da 1 a N^2
- punto di inizio qualsiasi
- non si può usare una casella già piena o fuori dalla matrice
- messo un numero in una casella si può mettere il successivo spostandosi in croce o in obliquo
 - se ci si sposta in croce si lasciano due celle vuote
 - in obliquo: si lascia una cella vuota

esempio

- N = 5
- inizio da (0, 0)
- numero tentativi 1372
 - è un tentativo l'inserimento di un numero in una casella
 - ne sarebbero bastati 25
- con 64 tentativi è riuscito a posizionare i numeri fino a 24 ma non è stato poi possibile posizionare il 25

1	16	13	4	17
24	21	10	7	22
14	5	18	15	12
2	8	23	3	9
25	20	11	6	19

una soluzione enumerativa

- si tentano tutte le possibili assegnazioni
 - sono N! (ad es., $25! \cong 1.6 \times 10^{25}$)
 - non è necessario esplorarle tutte perché spesso si giunge ad inserire i e a non poter posizionare i+1 in una delle otto caselle circostanti consentite
 - quando si giunge a un vicolo cieco si torna all'ultima volta che era possibile posizionare diversamente il più alto valore già posizionato e si cambia la sua casella
 - non c'è bisogno di gestire il riposizionamento esplicitamente perché può essere fatto sfruttando la ricorsione
 - enumerazione basta su backtracking

algoritmo ricorsivo saltacasella

- 1. tenta scrittura di n in (i,j)
- 2. se non si può, ritorna fallimento
- 3. se $n = N^2$ ritorna vittoria
- 4. m = n+1
- 5. for h = 1 to 8 do
 - chiama ricorsivamente sulla h-esima delle 8 caselle circostanti per posizionare m
 - se la chiamata ricorsiva ritorna vittoria, ritorna vittoria
- 6. ripulisci (i,j)
- 7. ritorna fallimento