Low-density value line devices are STM32F100xx microcontrollers where the flash memory density ranges between 16 and 32 Kbytes.

Medium-density value line devices are STM32F100xx microcontrollers where the flash memory density ranges between 64 and 128 Kbytes.

High-density value line devices are STM32F100xx microcontrollers where the flash memory density ranges between 256 and 512 Kbytes.

This section applies to the whole STM32F100xx family, unless otherwise specified.

25.1 Overview

The STM32F100xx are built around a Cortex[®]-M3 core which contains hardware extensions for advanced debugging features. The debug extensions allow the core to be stopped either on a given instruction fetch (breakpoint) or data access (watchpoint). When stopped, the core's internal state and the system's external state may be examined. Once examination is complete, the core and the system may be restored and program execution resumed.

The debug features are used by the debugger host when connecting to and debugging the STM32F100xx MCUs.

Two interfaces for debug are available:

- Serial wire
- JTAG debug port

Figure 284. Block diagram of STM32 MCU and Cortex®-M3-level debug support

Note: The debug features embedded in the Cortex[®]-M3 core are a subset of the Arm[®] CoreSight Design Kit.

The Arm[®] Cortex[®]-M3 core provides integrated on-chip debug support. It is comprised of:

- SWJ-DP: Serial wire / JTAG debug port
- AHP-AP: AHB access port
- ITM: Instrumentation trace macrocell
- FPB: Flash patch breakpoint
- DWT: Data watchpoint trigger
- TPUI: Trace port unit interface (available on larger packages, where the corresponding pins are mapped)

It also includes debug features dedicated to the STM32F100xx:

- Flexible debug pinout assignment
- MCU debug box (support for low-power modes, control over peripheral clocks, etc.)

Note:

For further information on debug functionality supported by the Arm[®] Cortex[®]-M3 core, refer to the Cortex[®]-M3 -r1p1 Technical Reference Manual and to the CoreSight Design Kit-r1p0 TRM (see Section 25.2).

25.2 Reference Arm® documentation

- Cortex[®]-M3 r1p1 Technical Reference Manual (TRM)
 It is available from:
- http://infocenter.arm.com/
- Arm[®] Debug Interface V5
- Arm[®] CoreSight Design Kit revision r1p1 Technical Reference Manual

25.3 SWJ debug port (serial wire and JTAG)

The core of the STM32F100xx integrates the Serial Wire / JTAG Debug Port (SWJ-DP). It is an Arm[®] standard CoreSight debug port that combines a JTAG-DP (5-pin) interface and a SW-DP (2-pin) interface.

- The JTAG Debug Port (JTAG-DP) provides a 5-pin standard JTAG interface to the AHP-AP port.
- The Serial Wire Debug Port (SW-DP) provides a 2-pin (clock + data) interface to the AHP-AP port.

In the SWJ-DP, the two JTAG pins of the SW-DP are multiplexed with some of the five JTAG pins of the JTAG-DP.

Figure 285. SWJ debug port

Figure 285 shows that the asynchronous TRACE output (TRACESWO) is multiplexed with TDO. This means that the asynchronous trace can only be used with SW-DP, not JTAG-DP.

577

RM0041 Rev 6 671/709

25.3.1 Mechanism to select the JTAG-DP or the SW-DP

By default, the JTAG-Debug Port is active.

If the debugger host wants to switch to the SW-DP, it must provide a dedicated JTAG sequence on TMS/TCK (respectively mapped to SWDIO and SWCLK) which disables the JTAG-DP and enables the SW-DP. This way it is possible to activate the SWDP using only the SWCLK and SWDIO pins.

This sequence is:

- 1. Send more than 50 TCK cycles with TMS (SWDIO) =1
- 2. Send the 16-bit sequence on TMS (SWDIO) = 0111100111100111 (MSB transmitted first)
- 3. Send more than 50 TCK cycles with TMS (SWDIO) =1

25.4 Pinout and debug port pins

The STM32F100xx MCUs are available in various packages with different numbers of available pins. As a result, some functionality (ETM) related to pin availability may differ between packages.

25.4.1 SWJ debug port pins

Five pins are used as outputs from the STM32F100xx for the SWJ-DP as *alternate functions* of general-purpose I/Os. These pins are available on all packages.

SWJ-DP pin name	JTAG debug port			SW debug port	Pin	
SW3-DF pill flame	Туре	Description	Туре	Debug assignment	assignment	
JTMS/SWDIO	I	JTAG Test Mode Selection	Ю	Serial Wire Data Input/Output	PA13	
JTCK/SWCLK	I	JTAG Test Clock	I	Serial Wire Clock	PA14	
JTDI	I	JTAG Test Data Input	-	-	PA15	
JTDO/TRACESWO	0	D JTAG Test Data Output		TRACESWO if async trace is enabled	PB3	
NJTRST	I	JTAG Test nReset	-	-	PB4	

Table 145. SWJ debug port pins

25.4.2 Flexible SWJ-DP pin assignment

After RESET (SYSRESETn or PORESETn), all five pins used for the SWJ-DP are assigned as dedicated pins immediately usable by the debugger host (note that the trace outputs are not assigned except if explicitly programmed by the debugger host).

However, the STM32F100xx MCU implements the *AF remap and debug I/O configuration register (AFIO_MAPR)* register to disable some part or all of the SWJ-DP port and so releases the associated pins for General Purpose IOs usage. This register is mapped on an APB bridge connected to the Cortex[®]-M3 System Bus. Programming of this register is done by the user software program and not the debugger host.

Three control bits allow the configuration of the SWJ-DP pin assignments. These bits are reset by the System Reset.

- AFIO_MAPR (@ 0x40010004 in the STM32F100xx MCU)
 - READ: APB No Wait State
 - WRITE: APB 1 Wait State if the write buffer of the AHB-APB bridge is full.

Bit 26:24= SWJ_CFG[2:0]

Set and cleared by software.

These bits are used to configure the number of pins assigned to the SWJ debug port. The goal is to release as much as possible the number of pins to be used as General Purpose IOs if using a small size for the debug port.

The default state after reset is "000" (whole pins assigned for a full JTAG-DP connection). Only one of the 3 bits can be set (it is forbidden to set more than one bit).

	SWJ IO pin assigned						
Available debug ports	PA13 / JTMS / SWDIO	PA14 / JTCK / SWCLK	PA15 / JTDI	PB3 / JTDO	PB4 / NJTRST		
Full SWJ (JTAG-DP + SW-DP) - Reset State	Χ	X	Х	Χ	Х		
Full SWJ (JTAG-DP + SW-DP) but without NJTRST	Х	Х	Х	Х			
JTAG-DP Disabled and SW-DP Enabled	Х	Х			•		
JTAG-DP Disabled and SW-DP Disabled			Rele	ased			

Table 146. Flexible SWJ-DP pin assignment

Note:

When the APB bridge write buffer is full, it takes one extra APB cycle when writing the AFIO_MAPR register. This is because the deactivation of the JTAGSW pins is done in two cycles to guarantee a clean level on the nTRST and TCK input signals of the core.

- Cycle 1: the JTAGSW input signals to the core are tied to 1 or 0 (to 1 for nTRST, TDI and TMS, to 0 for TCK)
- Cycle 2: the GPIO controller takes the control signals of the SWJTAG IO pins (like controls of direction, pull-up/down, Schmitt trigger activation, etc.).

25.4.3 Internal pull-up and pull-down on JTAG pins

It is necessary to ensure that the JTAG input pins are not floating since they are directly connected to flip-flops to control the debug mode features. Special care must be taken with the SWCLK/TCK pin which is directly connected to the clock of some of these flip-flops.

To avoid any uncontrolled IO levels, the device embeds internal pull-ups and pull-downs on the JTAG input pins:

NJTRST: Internal pull-up

JTDI: Internal pull-up

JTMS/SWDIO: Internal pull-upTCK/SWCLK: Internal pull-down

Once a JTAG IO is released by the user software, the GPIO controller takes control again. The reset states of the GPIO control registers put the I/Os in the equivalent state:

NJTRST: Input pull-upJTDI: Input pull-up

JTMS/SWDIO: Input pull-upJTCK/SWCLK: Input pull-down

• JTDO: AF output floatingInput floating

The software can then use these I/Os as standard GPIOs.

Note:

The JTAG IEEE standard recommends to add pull-ups on TDI, TMS and nTRST but there is no special recommendation for TCK. However, for JTCK, the device needs an integrated pull-down.

Having embedded pull-ups and pull-downs removes the need to add external resistors.

25.4.4 Using serial wire and releasing the unused debug pins as GPIOs

To use the serial wire DP to release some GPIOs, the user software must set SWJ_CFG=010 just after reset. This releases PA15, PB3 and PB4 which now become available as GPIOs.

When debugging, the host performs the following actions:

- Under system reset, all SWJ pins are assigned (JTAG-DP + SW-DP).
- Under system reset, the debugger host sends the JTAG sequence to switch from the JTAG-DP to the SW-DP.
- Still under system reset, the debugger sets a breakpoint on vector reset.
- The system reset is released and the Core halts.
- All the debug communications from this point are done using the SW-DP. The other JTAG pins can then be reassigned as GPIOs by the user software.

Note: For user software designs, note that:

To release the debug pins, remember that they are first configured either in input-pull-up (nTRST, TMS, TDI) or pull-down (TCK) or output tristate (TDO) for a certain duration after reset until the instant when the user software releases the pins.

When debug pins (JTAG or SW or TRACE) are mapped, changing the corresponding IO pin configuration in the IOPORT controller has no effect.

25.5 STM32F100xx JTAG TAP connection

The STM32F100xx MCUs integrate two serially connected JTAG TAPs, the boundary scan TAP (IR is 5-bit wide) and the Cortex[®]-M3 TAP (IR is 4-bit wide).

To access the TAP of the Cortex®-M3 for debug purposes:

- 1. First, it is necessary to shift the BYPASS instruction of the boundary scan TAP.
- 2. Then, for each IR shift, the scan chain contains 9 bits (=5+4) and the unused TAP instruction must be shifted in using the BYPASS instruction.
- 3. For each data shift, the unused TAP, which is in BYPASS mode, adds 1 extra data bit in the data scan chain.

Note: Important: Once Serial-Wire is selected using the dedicated Arm® JTAG sequence, the boundary scan TAP is automatically disabled (JTMS forced high).

577

RM0041 Rev 6 675/709

Figure 286. JTAG TAP connections

25.6 ID codes and locking mechanism

There are several ID codes inside the STM32F100xx MCUs. ST strongly recommends tools designers to lock their debuggers using the MCU DEVICE ID code located in the external PPB memory map at address 0xE0042000.

25.6.1 MCU device ID code

The STM32F100xx MCUs integrate an MCU ID code. This ID identifies the ST MCU partnumber and the die revision. It is part of the DBG_MCU component and is mapped on the external PPB bus (see <u>Section 25.15</u>). This code is accessible using the JTAG debug port (four to five pins) or the SW debug port (two pins) or by the user software. It is even accessible while the MCU is under system reset.

Only the DEV_ID[11:0] must be used for identification by the debugger/programmer tools.

DBGMCU_IDCODE

Address: 0xE004 2000

Only 32-bits access supported. Read-only.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							REV_	ID[15:0]							
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Rese	anuad							DEV_	ID[11:0]					
	Rest	si ved		r	r	r	r	r	r	r	r	r	r	r	r

Bits 31:16 REV_ID[15:0] Revision identifier

This field indicates the revision of the device:

In low and medium density value line devices:

- 0x1000 = Revision A
- 0x1001 = Revision Z

In high density value line devices:

0x1000 = Revision A

Bits 15:12 Reserved, must be kept at reset value.

Bits 11:0 DEV_ID[11:0]: Device identifier

This field indicates the device ID.

For low- and medium-density value line devices, the device ID is 0x420

For high-density value line devices, the device ID is 0x428

25.6.2 Boundary scan TAP

JTAG ID code

The TAP of the STM32F100xx BSC (boundary scan) integrates a JTAG ID code equal to

- In low and medium-density value line devices:
 - 0x06420041 = Revision A and Revision Z
- In high-density value line devices:
 - 0x06428041 = Revision A

25.6.3 Cortex[®]-M3 TAP

The TAP of the Arm[®] Cortex[®]-M3 integrates a JTAG ID code. This ID code is the Arm[®] default one and has not been modified. This code is only accessible by the JTAG Debug Port, it is 0x3BA00477 (corresponds to Cortex[®]-M3 r1p1-01rel0, see *Section 25.2*).

25.6.4 Cortex®-M3 JEDEC-106 ID code

The Arm[®] Cortex[®]-M3 integrates a JEDEC-106 ID code. It is located in the 4 KB ROM table mapped on the internal PPB bus at address 0xE00FF000 0xE00FFFFF.

This code is accessible by the JTAG Debug Port (4 to 5 pins) or by the SW Debug Port (two pins) or by the user software.

25.7 JTAG debug port

A standard JTAG state machine is implemented with a 4-bit instruction register (IR) and five data registers (for full details, refer to the Cortex[®]-M3 r1p1 *Technical Reference Manual (TRM)*, for references, see *Section 25.2*).

IR(3:0)	Data register	Details
1111	BYPASS [1 bit]	-
1110	IDCODE [32 bits]	ID CODE 0x3BA00477 (Arm [®] Cortex [®] -M3 r1p1-01rel0 ID Code)
1010	DPACC [35 bits]	Debug port access register This initiates a debug port and allows access to a debug port register. - When transferring data IN: Bits 34:3 = DATA[31:0] = 32-bit data to transfer for a write request Bits 2:1 = A[3:2] = 2-bit address of a debug port register. Bit 0 = RnW = Read request (1) or write request (0). - When transferring data OUT: Bits 34:3 = DATA[31:0] = 32-bit data which is read following a read request Bits 2:0 = ACK[2:0] = 3-bit Acknowledge: 010 = OK/FAULT 001 = WAIT OTHER = reserved Refer to Table 148 for a description of the A[3:2] bits

Table 147. JTAG debug port data registers

Table 147. JTAG debug port data registers (continued)

IR(3:0)	Data register	Details
1011	APACC [35 bits]	Access port access register Initiates an access port and allows access to an access port register. - When transferring data IN: Bits 34:3 = DATA[31:0] = 32-bit data to shift in for a write request Bits 2:1 = A[3:2] = 2-bit address (sub-address AP registers). Bit 0 = RnW= Read request (1) or write request (0). - When transferring data OUT: Bits 34:3 = DATA[31:0] = 32-bit data which is read following a read request Bits 2:0 = ACK[2:0] = 3-bit Acknowledge: 010 = OK/FAULT 001 = WAIT OTHER = reserved There are many AP registers (see AHB-AP) addressed as the combination of: - The shifted value A[3:2] - The current value of the DP SELECT register
1000	ABORT [35 bits]	Abort register - Bits 31:1 = Reserved - Bit 0 = DAPABORT: write 1 to generate a DAP abort.

Table 148. 32-bit debug port registers addressed through the shifted value A[3:2]

Address	A[3:2] value	Description
0x0	00	Reserved, must be kept at reset value.
0x4	01	DP CTRL/STAT register. Used to: Request a system or debug power-up Configure the transfer operation for AP accesses Control the pushed compare and pushed verify operations. Read some status flags (overrun, power-up acknowledges)
0x8	10	DP SELECT register: Used to select the current access port and the active 4-words register window. - Bits 31:24: APSEL: select the current AP - Bits 23:8: reserved - Bits 7:4: APBANKSEL: select the active 4-words register window on the current AP - Bits 3:0: reserved
0xC	11	DP RDBUFF register: Used to allow the debugger to get the final result after a sequence of operations (without requesting new JTAG-DP operation)

25.8 SW debug port

25.8.1 SW protocol introduction

This synchronous serial protocol uses two pins:

- SWCLK: clock from host to target
- SWDIO: bidirectional

The protocol allows two banks of registers (DPACC registers and APACC registers) to be read and written to.

Bits are transferred LSB-first on the wire.

For SWDIO bidirectional management, the line must be pulled-up on the board (100 K Ω recommended by Arm[®]).

Each time the direction of SWDIO changes in the protocol, a turnaround time is inserted where the line is not driven by the host nor the target. By default, this turnaround time is one bit time, however this can be adjusted by configuring the SWCLK frequency.

25.8.2 SW protocol sequence

Each sequence consist of three phases:

- 1. Packet request (8 bits) transmitted by the host
- 2. Acknowledge response (3 bits) transmitted by the target
- 3. Data transfer phase (33 bits) transmitted by the host or the target

Bit	Name	Description
0	Start	Must be "1"
1	APnDP	0: DP Access 1: AP Access
2	RnW	0: Write Request 1: Read Request
4:3	A[3:2]	Address field of the DP or AP registers (refer to <i>Table 148</i>)
5	Parity	Single bit parity of preceding bits
6	Stop	0
7	Park	Not driven by the host. Must be read as "1" by the target because of the pull-up

Table 149. Packet request (8-bits)

Refer to the $Cortex^{\text{@}}$ -M3 r1p1 TRM for a detailed description of DPACC and APACC registers.

The packet request is always followed by the turnaround time (default 1 bit) where neither the host nor target drive the line.

Table 150. ACK response (3 bits)

Bit	Name	Description
		001: FAULT
02	ACK	010: WAIT
		100: OK

The ACK Response must be followed by a turnaround time only if it is a READ transaction or if a WAIT or FAULT acknowledge has been received.

Table 151. DATA transfer (33 bits)

Bit	Name	Description
031	WDATA or RDATA	Write or Read data
32	Parity	Single parity of the 32 data bits

The DATA transfer must be followed by a turnaround time only if it is a READ transaction.

25.8.3 SW-DP state machine (reset, idle states, ID code)

The State Machine of the SW-DP has an internal ID code which identifies the SW-DP. It follows the JEP-106 standard. This ID code is the default Arm[®] one and is set to 0x1BA01477 (corresponding to Cortex[®]-M3 r1p1).

Note: Note that the SW-DP state machine is inactive until the target reads this ID code.

- The SW-DP state machine is in RESET STATE either after power-on reset, or after the DP has switched from JTAG to SWD or after the line is high for more than 50 cycles
- The SW-DP state machine is in IDLE STATE if the line is low for at least two cycles after RESET state.
- After RESET state, it is mandatory to first enter into an IDLE state AND to perform a READ access of the DP-SW ID CODE register. Otherwise, the target issues a FAULT acknowledge response on another transactions.

Further details of the SW-DP state machine can be found in the Cortex[®]-M3 *r1p1 TRM* and the *CoreSight Design Kit r1p0 TRM*.

25.8.4 DP and AP read/write accesses

- Read accesses to the DP are not posted: the target response can be immediate (if ACK=OK) or can be delayed (if ACK=WAIT).
- Read accesses to the AP are posted. This means that the result of the access is
 returned on the next transfer. If the next access to be done is NOT an AP access, then
 the DP-RDBUFF register must be read to obtain the result.
 The READOK flag of the DP-CTRL/STAT register is updated on every AP read access
 or RDBUFF read request to know if the AP read access was successful.
- The SW-DP implements a write buffer (for both DP or AP writes), that enables it to
 accept a write operation even when other transactions are still outstanding. If the write
 buffer is full, the target acknowledge response is "WAIT". With the exception of

RM0041 Rev 6 681/709

- IDCODE read or CTRL/STAT read or ABORT write which are accepted even if the write buffer is full.
- Because of the asynchronous clock domains SWCLK and HCLK, two extra SWCLK cycles are needed after a write transaction (after the parity bit) to make the write effective internally. These cycles must be applied while driving the line low (IDLE state) This is particularly important when writing the CTRL/STAT for a power-up request. If the next transaction (requiring a power-up) occurs immediately, it fails.

25.8.5 SW-DP registers

Access to these registers are initiated when APnDP=0

Table 152. SW-DP registers

	Table 102. 044-bi Teglatera					
A[3:2]	R/W	CTRLSEL bit of SELECT register	Register	Notes		
00	Read	-	IDCODE	The manufacturer code is not set to ST code. 0x1BA01477 (identifies the SW-DP)		
00	Write	-	ABORT	-		
01	Read/Write	0	DP- CTRL/STAT	Purpose is to: - request a system or debug power-up - configure the transfer operation for AP accesses - control the pushed compare and pushed verify operations. - read some status flags (overrun, power-up acknowledges)		
01	Read/Write	1	WIRE CONTROL	Purpose is to configure the physical serial port protocol (like the duration of the turnaround time)		
10	Read	-	READ RESEND	Enables recovery of the read data from a corrupted debugger transfer, without repeating the original AP transfer.		
10	Write	-	SELECT	The purpose is to select the current access port and the active 4-words register window		
11	Read/Write	-	READ BUFFER	This read buffer is useful because AP accesses are posted (the result of a read AP request is available on the next AP transaction). This read buffer captures data from the AP, presented as the result of a previous read, without initiating a new transaction		

25.8.6 SW-AP registers

Access to these registers are initiated when APnDP=1

There are many AP registers (see AHB-AP) addressed as the combination of:

- The shifted value A[3:2]
- The current value of the DP SELECT register

25.9 AHB-AP (AHB access port) - valid for both JTAG-DP and SW-DP

Features:

- System access is independent of the processor status.
- Either SW-DP or JTAG-DP accesses AHB-AP.
- The AHB-AP is an AHB master into the Bus Matrix. Consequently, it can access all the data buses (Dcode Bus, System Bus, internal and external PPB bus) but the ICode bus.
- Bitband transactions are supported.
- AHB-AP transactions bypass the FPB.

The address of the 32-bits AHP-AP resisters are 6-bits wide (up to 64 words or 256 bytes) and consists of:

- d) Bits [7:4] = the bits [7:4] APBANKSEL of the DP SELECT register
- e) Bits [3:2] = the 2 address bits of A[3:2] of the 35-bit packet request for SW-DP.

The AHB-AP of the Cortex[®]-M3 includes 9 x 32-bits registers:

Table 153. Cortex[®]-M3 AHB-AP registers

Address offset	Register name	Notes
0x00	AHB-AP Control and Status Word	Configures and controls transfers through the AHB interface (size, hprot, status on current transfer, address increment type
0x04	AHB-AP Transfer Address	-
0x0C	AHB-AP Data Read/Write	-
0x10	AHB-AP Banked Data 0	
0x14	AHB-AP Banked Data 1	Directly maps the 4 aligned data words without rewriting
0x18	AHB-AP Banked Data 2	the Transfer Address register.
0x1C	AHB-AP Banked Data 3	
0xF8	AHB-AP Debug ROM Address	Base Address of the debug interface
0xFC	AHB-AP ID register	-

Refer to the Cortex[®]-M3 r1p1 *TRM* for further details.

25.10 Core debug

Core debug is accessed through the core debug registers. Debug access to these registers is by means of the *Advanced High-performance Bus* (AHB-AP) port. The processor can access these registers directly over the internal *Private Peripheral Bus* (PPB).

It consists of 4 registers:

Table 154. Core debug registers

Register	Description
DHCSR	The 32-bit Debug Halting Control and Status register This provides status information about the state of the processor enable core debug halt and step the processor
DCRSR	The 17-bit Debug Core register Selector register: This selects the processor register to transfer data to or from.
DCRDR	The 32-bit Debug Core register Data register: This holds data for reading and writing registers to and from the processor selected by the DCRSR (Selector) register.
DEMCR	The 32-bit Debug Exception and Monitor Control register: This provides Vector Catching and Debug Monitor Control. This register contains a bit named <i>TRCENA</i> which enable the use of a TRACE.

Note: **Important**: these registers are not reset by a system reset. They are only reset by a power-on reset.

Refer to the Cortex®-M3 r1p1 TRM for further details.

To Halt on reset, it is necessary to:

- enable the bit0 (VC_CORRESET) of the Debug and Exception Monitor Control register
- enable the bit0 (C DEBUGEN) of the Debug Halting Control and Status register.

25.11 Capability of the debugger host to connect under system reset

The reset system of the STM32F100xx MCU comprises the following reset sources:

- POR (power-on reset) which asserts a RESET at each power-up.
- Internal watchdog reset
- Software reset
- External reset

The Cortex®-M3 differentiates the reset of the debug part (generally PORRESETn) and the other one (SYSRESETn)

This way, it is possible for the debugger to connect under System Reset, programming the Core Debug registers to halt the core when fetching the reset vector. Then the host can release the system reset and the core immediately halts without having executed any instructions. In addition, it is possible to program any debug features under System Reset.

Note:

It is highly recommended for the debugger host to connect (set a breakpoint in the reset vector) under system reset.

25.12 FPB (Flash patch breakpoint)

The FPB unit:

- implements hardware breakpoints
- patches code and data from code space to system space. This feature gives the
 possibility to correct software bugs located in the Code Memory Space.

The use of a Software Patch or a Hardware Breakpoint is exclusive.

The FPB consists of:

- 2 literal comparators for matching against literal loads from Code Space and remapping to a corresponding area in the System Space.
- 6 instruction comparators for matching against instruction fetches from Code Space.
 They can be used either to remap to a corresponding area in the System Space or to generate a Breakpoint Instruction to the core.

RM0041 Rev 6 685/709

25.13 DWT (data watchpoint trigger)

The DWT unit consists of four comparators. They are configurable as:

- a hardware watchpoint or
- a PC sampler or
- a data address sampler

The DWT also provides some means to give some profiling informations. For this, some counters are accessible to give the number of:

- Clock cycle
- Folded instructions
- Load store unit (LSU) operations
- Sleep cycles
- CPI (clock per instructions)
- Interrupt overhead

25.14 ITM (instrumentation trace macrocell)

25.14.1 General description

The ITM is an application-driven trace source that supports *printf* style debugging to trace *Operating System* (OS) and application events, and emits diagnostic system information. The ITM emits trace information as packets which can be generated as:

- **Software trace.** Software can write directly to the ITM stimulus registers to emit packets.
- Hardware trace. The DWT generates these packets, and the ITM emits them.
- Time stamping. Timestamps are emitted relative to packets. The ITM contains a 21-bit counter to generate the timestamp. The Cortex[®]-M3 clock or the bit clock rate of the Serial Wire Viewer (SWV) output clocks the counter.

The packets emitted by the ITM are output to the TPIU (Trace Port Interface Unit). The formatter of the TPIU adds some extra packets (refer to TPIU) and then output the complete packets sequence to the debugger host.

The bit TRCEN of the Debug Exception and Monitor Control register must be enabled before programming or using the ITM.

25.14.2 Time stamp packets, synchronization and overflow packets

Time stamp packets encode time stamp information, generic control and synchronization. It uses a 21-bit timestamp counter (with possible prescalers) which is reset at each time stamp packet emission. This counter can be either clocked by the CPU clock or the SWV clock.

A synchronization packet consists of 6 bytes equal to 0x80_00_00_00_00 which is emitted to the TPIU as 00 00 00 00 00 80 (LSB emitted first).

A synchronization packet is a timestamp packet control. It is emitted at each DWT trigger.

For this, the DWT must be configured to trigger the ITM: the bit CYCCNTENA (bit0) of the DWT Control register must be set. In addition, the bit2 (SYNCENA) of the ITM Trace Control register must be set.

Note:

If the SYNENA bit is not set, the DWT generates Synchronization triggers to the TPIU which sends only TPIU synchronization packets and not ITM synchronization packets.

An overflow packet consists is a special timestamp packets which indicates that data has been written but the FIFO was full.

Table 155. Main ITM registers

Address	Register	Details
@E0000FB0	ITM lock access	Write 0xC5ACCE55 to unlock Write Access to the other ITM registers
		Bits 31-24 = Always 0
		Bits 23 = Busy
		Bits 22-16 = 7-bits ATB ID which identifies the source of the trace data.
		Bits 15-10 = Always 0
		Bits 9:8 = TSPrescale = Time Stamp Prescaler
		Bits 7-5 = Reserved
@E0000E80	ITM trace control	Bit 4 = SWOENA = Enable SWV behavior (to clock the timestamp counter by the SWV clock).
		Bit 3 = DWTENA: Enable the DWT Stimulus
		Bit 2 = SYNCENA: this bit must be to 1 to enable the DWT to generate synchronization triggers so that the TPIU can then emit the synchronization packets.
		Bit 1 = TSENA (Timestamp Enable)
		Bit 0 = ITMENA: Global Enable Bit of the ITM
		Bit 3: mask to enable tracing ports31:24
@E0000E40	ITM trace privilege	Bit 2: mask to enable tracing ports23:16
@E0000E40	ITM trace privilege	Bit 1: mask to enable tracing ports15:8
		Bit 0: mask to enable tracing ports7:0
@E0000E00	ITM trace enable	Each bit enables the corresponding Stimulus port to generate trace.
@E0000000- E000007C	Stimulus port registers 0-31	Write the 32-bits data on the selected Stimulus Port (32 available) to be traced out.

Example of configuration

To output a simple value to the TPIU:

- Configure the TPIU and assign TRACE I/Os by configuring the DBGMCU_CR (refer to Section 25.16.2 and Section 25.15.3)
- Write 0xC5ACCE55 to the ITM Lock Access register to unlock the write access to the ITM registers
- Write 0x00010005 to the ITM Trace Control register to enable the ITM with Sync enabled and an ATB ID different from 0x00
- Write 0x1 to the ITM Trace Enable register to enable the Stimulus Port 0
- Write 0x1 to the ITM Trace Privilege register to unmask stimulus ports 7:0
- Write the value to output in the Stimulus Port register 0: this can be done by software (using a printf function)

25.15 MCU debug component (DBGMCU)

The MCU debug component helps the debugger provide support for:

- Low-power modes
- Clock control for timers, watchdog, I2C during a breakpoint
- · Control of the trace pins assignment

25.15.1 Debug support for low-power modes

To enter low-power mode, the instruction WFI or WFE must be executed.

The MCU implements several low-power modes which can either deactivate the CPU clock or reduce the power of the CPU.

The core does not allow FCLK or HCLK to be turned off during a debug session. As these are required for the debugger connection, during a debug, they must remain active. The MCU integrates special means to allow the user to debug software in low-power modes.

For this, the debugger host must first set some debug configuration registers to change the low-power mode behavior:

- In Sleep mode, DBG_SLEEP bit of DBGMCU_CR register must be previously set by the debugger. This feeds HCLK with the same clock that is provided to FCLK (system clock previously configured by the software).
- In Stop mode, the bit DBG_STOP must be previously set by the debugger. This
 enables the internal RC oscillator clock to feed FCLK and HCLK in STOP mode.

25.15.2 Debug support for timers, watchdog and I²C

During a breakpoint, it is necessary to choose how the counter of timers and watchdog must behave:

- They can continue to count inside a breakpoint. This is usually required when a PWM is controlling a motor, for example.
- They can stop to count inside a breakpoint. This is required for watchdog purposes.

For the I²C, the user can choose to block the SMBUS timeout during a breakpoint.

For timers having complementary outputs, when the counter is stopped (DBG_TIMx_STOP = 1), the outputs are disabled (as if the MOE bit was reset) for safety purposes.

25.15.3 Debug MCU configuration register

This register allows the configuration of the MCU under DEBUG. This concerns:

- Low-power mode support
- Timer and watchdog counter support
- Trace pin assignment

This DBGMCU_CR is mapped on the External PPB bus at address 0xE0042004

It is asynchronously reset by the PORESET (and not the system reset). It can be written by the debugger under system reset.

If the debugger host does not support these features, it is still possible for the user software to write to these registers.

DBGMCU_CR register

Address: 0xE004 2004

Only 32-bit access supported

POR Reset: 0x0000 0000 (not reset by system reset)

31	30	29	28	27	26 25 24		24	23	22	21	20	19	18	17	16	
	Reser	ved		DBG_ TIM14 _STO P	DBG_ TIM13 _STO P	DBG_ TIM12_ STOP	DBG_ TIM17 _STO P	DBG_ TIM16 _STO P	DBG_ TIM15 _STO _P	Res.	DBG_ TIM7_ STOP	DBG_ TIM6_ STOP	DBG_ TIM5_ STOP	Res.	DBG_I2C2 _SMBUS_ TIMEOUT	
				rw rw		rw	rw	rw	rw		rw	rw	rw		rw	
15	14	13	12	11	10	9	8	7	6	5	4 3		2	1	0	
DBG_I2C1 _SMBUS_ TIMEOUT	Res.	DBG_ TIM4_ STOP	DBG_ TIM3_ STOP	DBG_ TIM2_ STOP	DBG_ TIM1_ STOP	DBG_ WWDG STOP	DBG_ IWDG STOP	MC	TRACE_ MODE [1:0]		Rese	erved	DBG_ STAND BY	DBG_ STOP	DBG_ SLEEP	
rw		rw	rw	rw	rw	rw	rw	rw	rw	rw			rw	rw	rw	

Bits 31:28 Reserved, must be kept at reset value.

Bits 27:25 **DBG_TIMx_STOP:** TIMx counter stopped when core is halted (x = 12..14)

0: The clock of the involved timer counter is fed even if the core is halted

1: The clock of the involved timer counter is stopped when the core is halted

Bits 24:22 **DBG_TIMx_STOP:** TIMx counter stopped when core is halted (x = 17..15)

0: The clock of the involved timer counter is fed even if the core is halted

1: The clock of the involved timer counter is stopped when the core is halted

Bit 21 Reserved, must be kept at reset value.

- Bits 20:18 DBG_TIMx_STOP: TIMx counter stopped when core is halted (x=5 .. 7)
 - 0: The clock of the involved timer counter is fed even if the core is halted, and the outputs behave normally.
 - 1: The clock of the involved timer counter is stopped when the core is halted, and the outputs are disabled (as if there were an emergency stop in response to a break event).
 - Bit 17 Reserved, must be kept at reset value.
 - Bit 16 DBG I2C2 SMBUS TIMEOUT: SMBUS timeout mode stopped when Core is halted
 - 0: Same behavior as in normal mode
 - 1: The SMBUS timeout is frozen
 - Bit 15 DBG_I2C1_SMBUS_TIMEOUT: SMBUS timeout mode stopped when Core is halted
 - 0: Same behavior as in normal mode
 - 1: The SMBUS timeout is frozen
- Bits 13:10 **DBG_TIMx_STOP:** TIMx counter stopped when core is halted (x=4..1)
 - Bit 9 DBG WWDG STOP: Debug window watchdog stopped when core is halted
 - 0: The window watchdog counter clock continues even if the core is halted
 - 1: The window watchdog counter clock is stopped when the core is halted
 - Bit 8 DBG_IWDG_STOP: Debug independent watchdog stopped when core is halted
 - 0: The watchdog counter clock continues even if the core is halted
 - 1: The watchdog counter clock is stopped when the core is halted
 - Bits 7:5 TRACE MODE[1:0] and TRACE IOEN: Trace pin assignment control
 - With TRACE IOEN=0:
 - TRACE_MODE=xx: TRACE pins not assigned (default state)
 - With TRACE IOEN=1:
 - TRACE_MODE=00: TRACE pin assignment for Asynchronous mode
 - TRACE_MODE=01: TRACE pin assignment for Synchronous mode with a TRACEDATA size of 1
 - TRACE_MODE=10: TRACE pin assignment for Synchronous mode with a TRACEDATA size of 2
 - TRACE_MODE=11: TRACE pin assignment for Synchronous mode with a TRACEDATA size of 4
 - Bits 4:3 Reserved, must be kept at reset value.

Bit 2 DBG_STANDBY: Debug Standby mode

0: (FCLK=Off, HCLK=Off) The whole digital part is unpowered.

From software point of view, exiting from Standby is identical than fetching reset vector (except a few status bit indicated that the MCU is resuming from Standby)

1: (FCLK=On, HCLK=On) In this case, the digital part is not unpowered and FCLK and HCLK are provided by the internal RC oscillator which remains active. In addition, the MCU generate a system reset during Standby mode so that exiting from Standby is identical than fetching from reset

Bit 1 **DBG_STOP:** Debug Stop mode

0: (FCLK=Off, HCLK=Off) In STOP mode, the clock controller disables all clocks (including HCLK and FCLK). When exiting from STOP mode, the clock configuration is identical to the one after RESET (CPU clocked by the MHz internal RC oscillator (HSI)). Consequently, the software must reprogram the clock controller to enable the PLL, the Xtal, etc.

1: (FCLK=On, HCLK=On) In this case, when entering STOP mode, FCLK and HCLK are provided by the internal RC oscillator which remains active in STOP mode. When exiting STOP mode, the software must reprogram the clock controller to enable the PLL, the Xtal, etc. (in the same way it would do in case of DBG_STOP=0)

Bit 0 DBG_SLEEP: Debug Sleep mode

0: (FCLK=On, HCLK=Off) In Sleep mode, FCLK is clocked by the system clock as previously configured by the software while HCLK is disabled.

In Sleep mode, the clock controller configuration is not reset and remains in the previously programmed state. Consequently, when exiting from Sleep mode, the software does not need to reconfigure the clock controller.

1: (FCLK=On, HCLK=On) In this case, when entering Sleep mode, HCLK is fed by the same clock that is provided to FCLK (system clock as previously configured by the software).

25.16 TPIU (trace port interface unit)

25.16.1 Introduction

The TPIU acts as a bridge between the on-chip trace data from the ITM.

The output data stream encapsulates the trace source ID, that is then captured by a *trace port analyzer* (TPA).

The core embeds a simple TPIU, especially designed for low-cost debug (consisting of a special version of the CoreSight TPIU).

Figure 287. TPIU block diagram

25.16.2 TRACE pin assignment

Asynchronous mode

The asynchronous mode requires 1 extra pin and is available on all packages. It is only available if using Serial Wire mode (not in JTAG mode).

Table 156. Asynchronous TRACE pin assignment

TPIII nin namo		Trace synchronous mode	STM32F100xx pin		
TPUI pin name	Type	Description	assignment		
TRACESWO	0	TRACE Async Data Output	PB3		

Synchronous mode

The synchronous mode requires from 2 to 6 extra pins depending on the data trace size and is only available in the larger packages. In addition it is available in JTAG mode and in Serial Wire mode and provides better bandwidth output capabilities than asynchronous trace.

Table 157. Synchronous TRACE pin assignment

TPUI pin name		Trace synchronous mode	STM32F100xxpin		
Tr of pill flame	Type	Description	assignment		
TRACECK	0	TRACE Clock	PE2		
TRACED[3:0]	0	TRACE Sync Data Outputs Can be 1, 2 or 4.	PE[6:3]		

TPUI TRACE pin assignment

By default, these pins are NOT assigned. They can be assigned by setting the TRACE_IOEN and TRACE_MODE bits in the **MCU Debug component configuration register**. This configuration has to be done by the debugger host.

In addition, the number of pins to assign depends on the trace configuration (asynchronous or synchronous).

- Asynchronous mode: 1 extra pin is needed
- **Synchronous mode**: from 2 to 5 extra pins are needed depending on the size of the data trace port register (1, 2 or 4):
 - TRACECK
 - TRACED(0) if port size is configured to 1, 2 or 4
 - TRACED(1) if port size is configured to 2 or 4
 - TRACED(2) if port size is configured to 4
 - TRACED(3) if port size is configured to 4

To assign the TRACE pin, the debugger host must program the bits TRACE_IOEN and TRACE_MODE[1:0] of the Debug MCU configuration register (DBGMCU_CR). By default the TRACE pins are not assigned.

This register is mapped on the external PPB and is reset by the PORESET (and not by the SYSTEM reset). It can be written by the debugger under SYSTEM reset.

	CU_CR ister	Pins	TRACE IO pin assigned												
TRACE _IOEN	TRACE _MODE [1:0]	assigned for:	PB3 /JTDO/ TRACESWO	PE2/ TRACECK	PE3 / TRACED[0]	PE4 / TRACED[1]	PE5 / TRACED[2]	PE6 / TRACED[3]							
0	XX	No Trace (default state)	Released (1)			-									
1	00	Asynchronous Trace	TRACESWO	-	-	(u	Released (usable as GPIO)								
1	01	Synchronous Trace 1 bit		TRACECK	TRACED[0]	-	-	-							
1	10	Synchronous Trace 2 bit	Released ⁽¹⁾	TRACECK	TRACED[0]	TRACED[1]	-	-							
1	11	Synchronous Trace 4 bit		TRACECK	TRACED[0]	TRACED[1]	TRACED[2]	TRACED[3]							

Table 158. Flexible TRACE pin assignment

Note: By default, the TRACECLKIN input clock of the TPIU is tied to GND. It is assigned to HCLK two clock cycles after the bit TRACE IOEN has been set.

The debugger must then program the Trace Mode by writing the PROTOCOL[1:0] bits in the SPP_R (Selected Pin Protocol) register of the TPIU.

- PROTOCOL=00: Trace Port Mode (synchronous)
- PROTOCOL=01 or 10: Serial Wire (Manchester or NRZ) Mode (asynchronous mode).
 Default state is 01

It then also configures the TRACE port size by writing the bits [3:0] in the CPSPS_R (Current Sync Port Size register) of the TPIU:

- 0x1 for 1 pin (default state)
- 0x2 for 2 pins
- 0x8 for 4 pins

25.16.3 TPUI formatter

The formatter protocol outputs data in 16-byte frames:

- seven bytes of data
- · eight bytes of mixed-use bytes consisting of:
 - 1 bit (LSB) to indicate it is a DATA byte ('0) or an ID byte ('1).
 - 7 bits (MSB) which can be data or change of source ID trace.
- one byte of auxiliary bits where each bit corresponds to one of the eight mixed-use bytes:
 - if the corresponding byte was a data, this bit gives bit0 of the data.
 - if the corresponding byte was an ID change, this bit indicates when that ID change takes effect.

^{1.} When Serial Wire mode is used, it is released. But when JTAG is used, it is assigned to JTDO.

Note: Refer to the Arm[®] CoreSight Architecture Specification v1.0 (Arm[®] IHI 0029B) for further information

25.16.4 TPUI frame synchronization packets

The TPUI can generate two types of synchronization packets:

The Frame Synchronization packet (or Full Word Synchronization packet)
 It consists of the word: 0x7F_FF_FF_FF (LSB emitted first). This sequence can not occur at any other time provided that the ID source code 0x7F has not been used.
 It is output periodically *between* frames.

In continuous mode, the TPA must discard all these frames once a synchronization frame has been found.

The Half-Word Synchronization packet

It consists of the half word: 0x7F FF (LSB emitted first).

It is output periodically **between or within** frames.

These packets are only generated in continuous mode and enable the TPA to detect that the TRACE port is in IDLE mode (no TRACE to be captured). When detected by the TPA, it must be discarded.

25.16.5 Transmission of the synchronization frame packet

There is no Synchronization Counter register implemented in the TPIU of the core. Consequently, the synchronization trigger can only be generated by the **DWT**. Refer to the registers DWT Control register (bits SYNCTAP[11:10]) and the DWT Current PC Sampler Cycle Count register.

The TPUI Frame synchronization packet (0x7F_FF_FF_FF) is emitted:

- after each TPIU reset release. This reset is synchronously released with the rising edge of the TRACECLKIN clock. This means that this packet is transmitted when the TRACE_IOEN bit in the DBGMCU_CFG register is set. In this case, the word 0x7F_FF_FF is not followed by any formatted packet.
- at each DWT trigger (assuming DWT has been previously configured). Two cases occur:
 - If the bit SYNENA of the ITM is reset, only the word 0x7F_FF_FF is emitted without any formatted stream which follows.
 - If the bit SYNENA of the ITM is set, then the ITM synchronization packets follow (0x80 00 00 00 00), formatted by the TPUI (trace source ID added).

25.16.6 Synchronous mode

The trace data output size can be configured to 4, 2 or 1 pin: TRACED(3:0)

The output clock is output to the debugger (TRACECK)

Here, TRACECLKIN is driven internally and is connected to HCLK only when TRACE is used.

Note: In this synchronous mode, it is not required to provide a stable clock frequency.

The TRACE I/Os (including TRACECK) are driven by the rising edge of TRACLKIN (equal to HCLK). Consequently, the output frequency of TRACECK is equal to HCLK/2.

57

RM0041 Rev 6 695/709

25.16.7 Asynchronous mode

This is a low cost alternative to output the trace using only 1 pin: this is the asynchronous output pin TRACESWO. Obviously there is a limited bandwidth.

TRACESWO is multiplexed with JTDO when using the SW-DP pin. This way, this functionality is available in all STM32F100xx packages.

This asynchronous mode requires a constant frequency for TRACECLKIN. For the standard UART (NRZ) capture mechanism, 5% accuracy is needed. The Manchester encoded version is tolerant up to 10%.

25.16.8 TRACECLKIN connection inside the STM32F100xx

In the STM32F100xx, this TRACECLKIN input is internally connected to HCLK. This means that when in asynchronous trace mode, the application is restricted to use to time frames where the CPU frequency is stable.

Note: Important: when using asynchronous trace: it is important to be aware that:

The default clock of the STM32F100xx MCUs is the internal RC oscillator. Its frequency under reset is different from the one after reset release. This is because the RC calibration is the default one under system reset and is updated at each system reset release.

Consequently, the trace port analyzer (TPA) must not enable the trace (with the TRACE_IOEN bit) under system reset, because a Synchronization Frame Packet is issued with a different bit time than trace packets which are transmitted after reset release.

25.16.9 TPIU registers

The TPIU APB registers can be read and written only if the bit TRCENA of the Debug Exception and Monitor Control register (DEMCR) is set. Otherwise, the registers are read as zero (the output of this bit enables the PCLK of the TPIU).

Address Register Description Allows the trace port size to be selected: Bit 0: Port size = 1 Bit 1: Port size = 2 0xE0040004 Current port size Bit 2: Port size = 3, not supported Bit 3: Port Size = 4 Only 1 bit must be set. By default, the port size is one bit. (0x00000001) Allows the Trace Port Protocol to be selected: Bit1:0= 00: Svnc Trace Port Mode 0xE00400F0 Selected pin protocol 01: Serial Wire Output - manchester (default value)

10: Serial Wire Output - NRZ

11: reserved

Table 159. Important TPIU registers

Table 159. Important TPIU registers (continued)

Address	Register	Description
0xE0040304	Formatter and flush control	Bits 31-9 = always '0 Bit 8 = TrigIn = always '1 to indicate that triggers are indicated Bits 7-4 = always 0 Bits 3-2 = always 0 Bit 1 = EnFCont. In Sync Trace mode (Select_Pin_Protocol register bit1:0=00), this bit is forced to '1: the formatter is automatically enabled in continuous mode. In asynchronous mode (Select_Pin_Protocol register bit1:0 <> 00), this bit can be written to activate or not the formatter. Bit 0 = always 0 The resulting default value is 0x102 Note: In synchronous mode, because the TRACECTL pin is not mapped outside the chip, the formatter is always enabled in continuous mode -this way the formatter inserts some control packets to identify the source of the trace packets).
0xE0040300	Formatter and flush status	Not used in Cortex [®] -M3, always read as 0x00000008

25.16.10 Example of configuration

- Set the bit TRCENA in the Debug Exception and Monitor Control register (DEMCR)
- Write the TPIU Current Port Size register to the desired value (default is 0x1 for a 1-bit port size)
- Write TPIU Formatter and Flush Control register to 0x102 (default value)
- Write the TPIU Select Pin Protocol to select the sync or async mode. Example: 0x2 for async NRZ mode (UART like)
- Write the DBGMCU control register to 0x20 (bit IO_TRACEN) to assign TRACE I/Os for async mode. A TPIU Sync packet is emitted at this time (FF_FF_FF_7F)
- Configure the ITM and write the ITM Stimulus register to output a value

25.17 DBG register map

The following table summarizes the Debug registers.

Table 160. Value DBG register map and reset values

Addr.	Register	70	3	38	28	27	; %	25	24	23	22	21	: 6	19	18	17	16	15	14	13	12	11	10	? σ	۰ «	7		5.	4	c	2		0
0xE0042000	DBGMCU_ IDCODE		REV_ID													R	lese	erve	d					D	ŒV	/_I[D						
	Reset value ⁽¹⁾	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х					Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х
0xE0042004	DBGMCU_ CR	1	Rese	erve	•d	DBG_TIM14_STOP	DBG_TIM13_STOP	DBG_TIM12_STOP	DBG_TIM17_STOP	DBG_TIM16_STOP	DBG_TIM15_STOP	Reserved	DBG_TIM7_STOP	DBG_TIM6_STOP	DBG_TIM5_STOP	Reserved	DBG_I2C2_SMBUS_TIMEOUT	DBG_I2C1_SMBUS_TIMEOUT	Reserved	DBG_TIM4_STOP	DBG_TIM3_STOP	DBG_TIM2_STOP	DBG_TIM1_STOP	DBG_WWDG_STOP	DBG_IWDGSTOP	TDACE MODEL1:01		TRACE_IOEN	Reserved		DBG_STANDBY	DBG_STOP	DBG_SLEEP
	Reset value					0	0	0	0	0	0		0	0	0		0	0		0	0	0	0	0	0	0	0	0			0	0	0

^{1.} The reset value is product dependent. For more information, refer to Section 25.6.1: MCU device ID code.