ECE368: Probabilistic Reasoning

Lab 1: Classification with Multinomial and Gaussian Models

Name:	Mingym Zheng	Student Number: 1903797661
	′ ′ ′ ′ ′ ′ ′ ′ ′ //	

You should hand in: 1) A scanned .pdf version of this sheet with your answers (file size should be under 2 MB); 2) one figure for Question 1.2.(c) and two figures for Question 2.1.(c) in the .pdf format; and 3) two Python files classifier.py and Idaqda.py that contain your code. All these files should be uploaded to Quercus.

1 Naïve Bayes Classifier for Spam Filtering

1. (a) Write down the estimators for p_d and q_d as functions of the training data $\{\mathbf{x}_n, y_n\}, n = 1, 2, \dots, N$ using the technique of "Laplace smoothing". (1 **pt**)

Spam:
$$Pd = \frac{Xnd+1}{Xn_1+\cdots+Xn_N+N} \left\{ \frac{Xn}{N} \right\}$$

ham: $Pd = \frac{Xnd+1}{Xn_1+\cdots+Xn_N+N} \left\{ \frac{Xn}{N} \right\}$

N: distinct words in spam & ham.

- (b) Complete function learn_distributions in python file classifier.py based on the expressions. (1 pt)
- 2. (a) Write down the MAP rule to decide whether y=1 or y=0 based on its feature vector \mathbf{x} for a new email $\{\mathbf{x},y\}$. The d-th entry of \mathbf{x} is denoted by x_d . Please incorporate p_d and q_d in your expression. Please assume that $\pi=0.5$. (1 **pt**)

- (b) Complete function classify_new_email in classifier.py, and test the classifier on the testing set. The number of Type 1 errors is ______, and the number of Type 2 errors is ______. (1 pt)
- (c) Write down the modified decision rule in the classifier such that these two types of error can be traded off. Please introduce a new parameter to achieve such a trade-off. (0.5 **pt**)

Write your code in file classifier.py to implement your modified decision rule. Test it on the testing set and plot a figure to show the trade-off between Type 1 error and Type 2 error. In the figure, the x-axis should be the number of Type 1 errors and the y-axis should be the number of Type 2 errors. Plot at least 10 points corresponding to different pairs of these two types of error in your figure. The two end points of the plot should be: 1) the point with zero Type 1 error; and 2) the point with zero Type 2 error. Please save the figure with name **nbc.pdf**. (1 **pt**)

(d) If we do not use Laplace smoothing and simply use maximum likelihood estimation in the training phase, what will go wrong? What kind of emails such a classifier would fail to classify? (0.5 pt)

For the test files, if a word only shows in one type of email (span/ham) then without Luplace smoothly, he trent the probability of that word show in the other type as o, while its not rigorous enough.

And P. 1 = 1 1 16t depends on 11 sample size)

And Fud = 1 Not deposes on Theory

2 Linear/Quadratic Discriminant Analysis for Height/Weight Data

1. (a) Write down the maximum likelihood estimates of the parameters μ_m , μ_f , Σ , Σ_m , and Σ_f as functions of the training data $\{\mathbf{x}_n, y_n\}$, n = 1, 2, ..., N. (1 **pt**)

 $\underline{M} = \frac{2}{4} \underbrace{I}_{1}^{2} \underbrace{M}_{1}^{-1} \underbrace{J}_{1}^{2} \\
\underline{M}_{1}^{-1} \underbrace{J}_{1}^{2} \underbrace{J}_{1}^{2} \underbrace{J}_{1}^{-1} \\
\underline{M}_{1}^{-1} \underbrace{J}_{1}^{-1} \underbrace{J}_{1}^{-1$

(b) In the case of LDA, write down the decision boundary as a linear equation of ${\bf x}$ with parameters ${\boldsymbol \mu}_m,\,{\boldsymbol \mu}_f,\,$ and ${\bf \Sigma}.$ Note that we assume $\pi=0.5.$ (0.5 pt)

Mm Z - = Mm Z - Mm Mg Z - = Mg Z Mf

In the case of QDA, write down the decision boundary as a quadratic equation of \mathbf{x} with parameters $\boldsymbol{\mu}_m$, $\boldsymbol{\mu}_f$, $\boldsymbol{\Sigma}_m$, and $\boldsymbol{\Sigma}_f$. Note that we assume $\pi = 0.5$. (0.5 **pt**)

- \(\frac{1}{2} \log | \frac{2}{2} m | - \frac{1}{2} (\frac{1}{2} - \frac{1}{2} m) \rightarrow \frac{1}{2} \log | \frac{2}{2} f | - \frac{1}{2} (\frac{1}{2} - \frac{1}{2} f) \rightarrow \frac{1}{2} f \rightarrow \frac{1}{2} - \frac{1}{2} f \rightarrow \frac{1}{2} \rightarrow \frac{1}{2} f \rightarrow \frac{1}{2} \rightarrow \frac{1}{2} f \rightarrow \frac{1}{2} \rightarrow \frac{1}{2} f \rightarrow \frac

- (c) Complete function discrimAnalysis in Idaqda.py to visualize LDA and QDA models and the corresponding decision boundaries. Please name the figures as Ida.pdf, and qda.pdf. (1 pt)
- 2. The misclassification rates are O'//82 for LDA, and O'/O' for QDA. (1 pt)