Chapitre 13- Compléments sur les variables aléatoires réelles

Dans tout ce chapitre, on considère un espace probabilisé (Ω, \mathcal{A}, P) . Les variables aléatoires considérées seront définies sur cet espace probabilisé.

1 Compléments sur les variables à densité

1.1 Fonction de répartition des variables à densité : rappels et compléments

Définition 1 (Variable aléatoire à densité)

Soit X une variable aléatoire définie sur (Ω, \mathcal{A}, P) . On dit que X est une variable aléatoire **à densité** si sa fonction de répartition F_X est :

- continue sur ℝ,
- de classe C^1 sur $\mathbb R$ sauf éventuellement en un nombre fini de points.

Définition 2 (Densité)

Soit X une variable aléatoire à densité définie sur (Ω, \mathcal{A}, P) . On appelle **densité de** X toute fonction f à valeurs positives telle que $f = F_X'$ sauf éventuellement en un nombre fini de points.

Remarque 1

On parle de **la** fonction de répartition car elle est unique mais d'**une** densité car il n'y a pas unicité.

Méthode 1 (Montrer qu'un variable aléatoire est à densité)

Étant donnée une variable aléatoire X, pour montrer qu'il s'agit d'une variable à densité :

- on calcule sa fonction de répartition,
- on vérifie si elle satisfait les conditions de la définition 1.

Exemple 1

Soit X une variable aléatoire dont la fonction de répartition est donnée par :

$$\forall x \in \mathbb{R}, \quad \mathrm{F}_{\mathrm{X}}(x) = \left\{ \begin{array}{cc} 0 & si \ x < 1 \\ 1 - \frac{1}{x^2} & si \ x \geq 1. \end{array} \right.$$

Montrons que X est une variable à densité.

. Montrons q	que $F_{ m X}$ est continu	ie.		
. Montrons o	que F _X est de class	$\operatorname{se} C^1 \operatorname{sur} \mathbb{R} \setminus \{1\}.$		

3. Donc X est bien une variable aléatoire à densité. Déter	minons une densité de X.

Test 1 (Voir solution.)

Soit X une variable aléatoire de fonction de répartition donnée par

$$\forall x \in \mathbb{R}, \quad F_{X}(x) = \begin{cases} 1 - e^{-x^{2}} & si \ x \ge 0 \\ 0 & si \ x < 0. \end{cases}$$

Montrer que X est à densité et déterminer une densité.

Proposition 1

Soit X une variable réelle à densité et f une densité de X. Alors

$$\forall x \in \mathbb{R}, \quad F_{\mathbf{X}}(x) = \int_{-\infty}^{x} f(t) dt.$$

Plus généralement, pour tout $(a, b) \in \mathbb{R}^2$ avec $a \leq b$ on a :

$$P(a \le X \le b) = P(a < X \le b) = P(a \le X < b) = P(a < X < b) = \int_{a}^{b} f(t)dt.$$

Remarque 2

Une densité de probabilité est une fonction possédant un nombre fini de points de discontinuité. Cela a donc bien du sens de parler d'intégrale dans ce contexte et la proposition ci-dessus implique en particulier que les intégrales impropres qui apparaissent sont convergentes.

Théorème 1 (Caractérisation des fonctions de répartition des variables à densité)

Soit F une fonction de $\mathbb R$ dans $\mathbb R$ telle que :

- F est croissante sur \mathbb{R} ,
- $\lim_{x \to -\infty} F(x) = 0$ et $\lim_{x \to +\infty} F(x) = 1$,
- F est continue sur \mathbb{R} ,
- F est de classe \mathbb{C}^1 sur \mathbb{R} sauf éventuellement en un nombre fini de points.

Alors F est la fonction de répartition d'une variable aléatoire à densité.

Remarque 3

La réciproque de ce théorème est bien évidemment vraie puisque la fonction de répartition F d'une variable aléatoire réelle X est toujours croissante sur \mathbb{R} et vérifie $\lim_{x \to -\infty} F(x) = 0$ et $\lim_{x \to +\infty} F(x) = 1$.

Théorème 2 (Caractérisation des densités)

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction telle que

- f est positive,
- f est continue sauf éventuellement en un nombre fini de points,
- l'intégrale $\int_{-\infty}^{+\infty} f(t)dt$ converge et vaut 1.

Alors la fonction f est la densité d'une variable aléatoire X. Dans ce cas, la fonction de répartition de X est donnée par

$$\forall x \in \mathbb{R}, \quad F_{X}(x) = \int_{-\infty}^{x} f(t) dt.$$

Proposition 2

Si f est une densité de probabilité, la fonction $F: x \mapsto \int_{-\infty}^{x} f(t) dt$ définie sur \mathbb{R} est de classe C^1 en tout point où f est continue. En un tel point x, F'(x) = f(x).

Plus généralement, si f est continue à droite (resp. à gauche) en x, F est dérivable à droite (resp. à gauche) en x.

Méthode 2 (Montrer qu'une fonction est la fonction de répartition/la densité d'une variable à densité)

- Le théorème 1 permet de montrer qu'une fonction est la fonction de répartition d'une variable aléatoire à densité. Ici, la question est un peu différente de la question de la méthode précédente : on ne sait pas si la fonction est une fonction de répartition!
- Le théorème 2 permet de montrer qu'une fonction est la densité d'une variable aléatoire à densité.

Exemple 2

 $Soit F \ la \ fonction \ définie \ sur \mathbb{R} \ par: \forall x \in \mathbb{R}, \quad F(x) = \left\{ \begin{array}{ccc} 0 & si \ x < -1 \\ \frac{1}{2}x^2 + x + \frac{1}{2} & si \ -1 \leqslant x < 0 \\ -\frac{1}{2}x^2 + x + \frac{1}{2} & si \ 0 \leqslant x < 1 \\ 1 & si \ x \geqslant 1 \end{array} \right..$

Montrons que F est la fonction de répartition d'une variable à densité.

1. Montrons que F est continue sur \mathbb{R} .

	2.	Montrons que F est croissante sur ℝ.
	3.	On a bien $\lim_{x \to -\infty} F(x) = 0$ et $\lim_{x \to +\infty} F(x) = 1$.
	4.	Montrons que F est de classe C^1 sauf éventuellement en un nombre fini de points.
	Ainsi	F est la fonction de répartition d'une variable aléatoire à densité.
Ex	emple	<u>3</u>
	Soit f	`la fonction définie sur ℝ par :
		$\forall x \in \mathbb{R}, f(x) = \begin{cases} 0 & \text{si } x < 0 \\ e^{-x} & \text{si } x \ge 0 \end{cases}.$
		$(e^{-st}x) \neq 0$
	1.	<i>Montrons que f est une densité d'une variable aléatoire</i> X.

	2.	Montrons que Y est une variable à densité.
	3.	Déterminons une densité de Y en fonction de f .
Те	st 4 (<i>Voir sol</i>	ution.)
	Soit X une	variable aléatoire à densité dont une densité est la fonction f définie par :
		$\forall x \in \mathbb{R}, f(x) = \begin{cases} 0 & si \ x < 1 \\ \frac{2}{x^3} & si \ x \ge 1 \end{cases}.$
	Montrer qu	\sim le $3X-1$ est une variable à densité et en déterminer une densité.
г.		drugo vograblo olkotojno à domoité
	ponentiene emple 5	d'une variable aléatoire à densité.
		variable aléatoire à densité de densité f . On va montrer que $Y = e^X$ est à densité et déterminer une Y .
		Déterminons la fonction de répartition $F_{ m Y}$ de $ m Y.$

	2	. Montrons que Y est une variable à densité.
	3	Déterminons une densité de Y en fonction de f .
Γρ	 st 5 (<i>Voir s</i>	olution)
_	ı	e variable aléatoire de loi $\mathscr{E}(2)$. Déterminer la loi de Y = e^X .
_		
	rre d'une ' emple 6	rariable aléatoire à densité.
	Soit X un	e variable aléatoire à densité de densité f . On pose $Y = X^2$.
	Soit X un On va mo	ntrer que Y est à densité et déterminer une densité de Y.
	Soit X un On va mo	e variable aléatoire à densité de densité f . On pose $Y=X^2$. Intrer que Y est à densité et déterminer une densité de Y . Déterminons la fonction de répartition F_Y de Y .
	Soit X un On va mo	ntrer que Y est à densité et déterminer une densité de Y.
	Soit X un On va mo	ntrer que Y est à densité et déterminer une densité de Y.
	Soit X un On va mo	ntrer que Y est à densité et déterminer une densité de Y.
	Soit X un On va mo	ntrer que Y est à densité et déterminer une densité de Y.
	Soit X un On va mo	ntrer que Y est à densité et déterminer une densité de Y.
	Soit X un On va mo	ntrer que Y est à densité et déterminer une densité de Y.
	Soit X un On va mo	ntrer que Y est à densité et déterminer une densité de Y.
	Soit X un On va mo	ntrer que Y est à densité et déterminer une densité de Y. Déterminons la fonction de répartition F _Y de Y.
	Soit X un On va mo	ntrer que Y est à densité et déterminer une densité de Y.
	Soit X un On va mo	ntrer que Y est à densité et déterminer une densité de Y. Déterminons la fonction de répartition F _Y de Y.
	Soit X un On va mo	ntrer que Y est à densité et déterminer une densité de Y. Déterminons la fonction de répartition F _Y de Y.
	Soit X un On va mo	ntrer que Y est à densité et déterminer une densité de Y. Déterminons la fonction de répartition F _Y de Y.
	Soit X un On va mo	ntrer que Y est à densité et déterminer une densité de Y. Déterminons la fonction de répartition F _Y de Y.
	Soit X un On va mo	ntrer que Y est à densité et déterminer une densité de Y. Déterminons la fonction de répartition F _Y de Y.
	Soit X un On va mo	ntrer que Y est à densité et déterminer une densité de Y. Déterminons la fonction de répartition F _Y de Y.
	Soit X un On va mo	ntrer que Y est à densité et déterminer une densité de Y. Déterminons la fonction de répartition F _Y de Y.

	3.	Déterminons une densité de Y en fonction de f .
Te	st 6 (<i>Voir so</i>	lution.)
	Soit X suiv	vant une loi uniforme sur $[-1,1]$. Déterminer la loi de X^2 .
		nation usuelle.
Ex	emple 7	
	Soit X suiv On pose h	ant une loi uniforme sur $[0,1[$ et soit $\lambda > 0$. On pose $Y = -\frac{1}{\lambda} \ln (1-X)$. Déterminons la loi de Y . $: [0,1[\to \mathbb{R} \text{ définie par } h(x) = -\frac{1}{\lambda} \ln (1-x)$.
	l	Déterminons $h([0,1])$.
	1.	
	2	Déterminons la fonction de répartition de Y
	3.	Déterminer la loi de Y.
Va	leur absolu	e d'une variable aléatoire à densité.
Te	st 7 (<i>Voir so</i>	lution.)
	$Soit X \hookrightarrow .$	$\mathcal{N}(0,1)$. On pose Y = X . Montrer que Y est une variable à densité et déterminer une densité de Y.

▶ Partie entière d'une variable aléatoire à densité.

Voir TD.

1.3 Moments d'une variable à densité

Définition 3 (Espérance/moments d'une variable aléatoire à densité)

Soit $r \in \mathbb{N}^*$. Soit X une variable aléatoire à densité dont on note f une densité de X.

• On dit que X possède un **moment d'ordre** r si l'intégrale $\int_{-\infty}^{+\infty} t^r f(t) dt$ converge absolument. On note alors

 $m_r(X) = \int_{-\infty}^{+\infty} t^r f(t) dt.$

• Sous réserve d'existence, le moment d'ordre 1 est appelé l'**espérance** de X et noté E(X).

Remarque 4

L'espérance ainsi définie vérifie en particulier les propriétés énoncées au paragraphe 3.2.

Exemple 8

Soit X une variable aléatoire à densité dont une densité est la fonction f définie par

$$\forall x \in \mathbb{R}, \quad f(x) = \left\{ \begin{array}{ll} 0 & si \ x < 1 \\ \frac{2}{x^3} & si \ x \ge 1 \end{array} \right..$$

1. Montrons que f admet une espérance.

2.	La variable aléatoire X possède-t-elle un moment d'ordre 2 ?

Test 8 (Voir solution.)

On considère la fonction f définie sur \mathbb{R} par

$$\forall x \in \mathbb{R}, \quad f(x) = \frac{1}{\pi(1+x^2)}.$$

On admet que f est une densité de probabilité et on considère une variable aléatoire à densité X de densité f. La variable aléatoire X possède-t-elle une espérance? Le cas échéant, la calculer.

Théorème 3 (Théorème de transfert)

Soit X une variable aléatoire à densité et soit f une densité de X nulle en dehors d'un intervalle] a, b[(avec $-\infty \le a < b \le +\infty$).

Si g est une fonction continue sur]a,b[(sauf éventuellement en un nombre fini de points) alors la variable aléatoire g(X) admet une espérance si et seulement si l'intégrale $\int_a^b g(t)f(t)dt$ converge absolument. Dans ce cas :

 $E(g(X)) = \int_{a}^{b} g(t)f(t)dt.$

Remarque 5

En particulier, X possède un moment d'ordre $r \in \mathbb{N}^*$ si et seulement si X^r possède une espérance. Dans ce cas

$$m_r(X) = E(X^r).$$

Exemple 9

Soit $X \hookrightarrow \mathcal{E}(\lambda)$ avec $\lambda > 0$. La variable e^X possède-t-elle une espérance?	

Test 9 (Voir solution)

Soit $X \hookrightarrow \mathcal{E}(1)$. La variable $\frac{1}{1+e^{-X}}$ possède-t-elle une espérance? Si oui, la calculer.

Définition 4 (Variance/écart-type d'une variable aléatoire à densité)

Soit X une variable aléatoire à densité de densité f.

• On dit que X possède une variance si X possède une espérance et si (X – E(X)) possède un moment d'ordre 2. On appelle alors **variance de** X et on note V(X) le réel définie par :

$$V(X) = E((X - E(X))^{2}).$$

• Lorsque X possède une variance, on appelle **écart-type** et on note $\sigma(X)$ le réel :

$$\sigma(X) = \sqrt{V(X)}$$
.

Remarque 6

La variance ainsi définie vérifie en particulier les propriétés énoncées au paragraphe 3.2.

Proposition 3 (Formule de Koenig-Huygens)

Soit X une variable aléatoire à densité possédant une espérance. Alors X possède une variance si et seulement si X possède un moment d'ordre 2. Dans ce cas, on a :

$$V(X) = E(X^2) - E(X)^2$$
.

Exemple 10

Soit X une variable aléatoire à densité dont une densité est la fonction f définie par

$$\forall x \in \mathbb{R}, \quad f(x) = \begin{cases} 0 & \text{si } x < 1 \\ \frac{2}{x^3} & \text{si } x \ge 1 \end{cases}.$$

On a vu à l'exemple 8 que X ne possède pas de moment d'ordre 2.

Proposition 4

Soit X une variable aléatoire à densité possédant une variance. Alors pour tous réels a et b, la variable aléatoire aX + b possède une variance et

$$V(aX + b) = a^2V(X).$$

Définition 5 (Variable aléatoire centrée/réduite)

Soit X une variable aléatoire à densité.

- On dit que X est **centrée** si X possède une espérance nulle.
- On dit que X est **réduite** si X possède une variance égale à 1.

Exemple 11

Soit X une variable à densité possédant une variance non nulle. On pose $X^* = \frac{X - E(X)}{\sigma(X)}$.

1. La variable X* est centrée.

2 Lois usuelles à densité

2.1 Lois uniformes

Lois uniformes

Soit a < b deux nombres réels.

• On dit qu'une variable aléatoire X suit la **loi uniforme sur** [a,b] et on note X $\hookrightarrow \mathcal{U}([a,b])$ si X a pour densité la fonction f définie par

$$\forall x \in \mathbb{R}, \quad f(x) = \begin{cases} \frac{1}{b-a} & \text{si } x \in [a,b] \\ 0 & \text{sinon} \end{cases}.$$

• Si $X \hookrightarrow \mathcal{U}([a,b])$ alors la fonction de répartition de X est donnée par

$$\forall x \in \mathbb{R}, \quad F_{X}(x) = \begin{cases} 0 & \text{si } x < a \\ \frac{x-a}{b-a} & \text{si } x \in [a,b] \\ 1 & \text{si } x > b \end{cases}.$$

• Si $X \hookrightarrow \mathcal{U}([a,b])$ alors X possède une espérance et une variance et :

$$E(X) = \frac{a+b}{2}$$
 ; $V(X) = \frac{(b-a)^2}{12}$.

Test 10 (Voir solution.)

 $Soit X \hookrightarrow \mathcal{U}([a,b])$ avec a < b deux réels. Montrer que X possède une variance et que cette variance vaut $\frac{(b-a)^2}{12}$.

Proposition 5

Soient a < b deux nombres réels et X une variable aléatoire. Alors :

$$X \hookrightarrow \mathcal{U}([0,1]) \Longleftrightarrow a + (b-a)X \hookrightarrow \mathcal{U}([a,b]).$$

Test 11 (Voir solution.)

Démontrer la proposition.

2.2 Lois normales

Loi normale centrée réduite

• On dit qu'une variable aléatoire X suit la **loi normale centrée réduite** et on note $X \hookrightarrow \mathcal{N}(0,1)$ si X a pour densité la fonction f définie par

$$\forall x \in \mathbb{R}, \quad f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}.$$

• Si $X \hookrightarrow \mathcal{N}(0,1)$ alors la fonction de répartition de X est donnée par

$$\forall x \in \mathbb{R}, \quad F_{X}(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^{2}}{2}} dt.$$

• Si $X \hookrightarrow \mathcal{N}(0,1)$ alors X possède une espérance et une variance et

$$E(X) = 0$$
 ; $V(X) = 1$.

Proposition 6

Soit $X \hookrightarrow \mathcal{N}(0,1)$. Alors, pour tout $x \in \mathbb{R}$, on a :

$$F_{X}(-x) = 1 - F_{X}(x)$$
.

En particulier, $F_X(0) = \frac{1}{2}$.

Remarque 7

On ne sait pas exprimer la fonction de répartition d'une variable suivant une loi normale centrée réduite à l'aide des fonctions usuelles.

Lois normales

Soit μ et $\sigma > 0$ deux réels.

• On dit qu'une variable aléatoire X suit la **loi normale de paramètres** μ et σ^2 et on note X $\hookrightarrow \mathcal{N}(\mu, \sigma^2)$ si X a pour densité la fonction f définie par

$$\forall x \in \mathbb{R}, \quad f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$

• Si $X \hookrightarrow \mathcal{N}(\mu, \sigma)$ alors la fonction de répartition de X est donnée par

$$\forall x \in \mathbb{R}, \quad F_{X}(x) = \int_{-\infty}^{x} \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(t-\mu)^{2}}{2\sigma^{2}}} dt.$$

• Si $X \hookrightarrow \mathcal{N}(\mu, \sigma^2)$ alors X possède une espérance et une variance et

$$E(X) = \mu$$
 ; $V(X) = \sigma^2$.

Proposition 7

Soient μ , σ , a et b des nombres réels tels que : $\sigma > 0$ et $a \neq 0$. Soit X une variable aléatoire. Alors :

$$X \hookrightarrow \mathcal{N}(\mu, \sigma^2) \iff aX + b \hookrightarrow \mathcal{N}(a\mu + b, a^2\sigma^2).$$

Test 12 (Voir solution.)

Soit $(\mu,\sigma)\in\mathbb{R}\times\mathbb{R}_+^*.$ Démontrer le cas particulier suivant :

$$X \hookrightarrow \mathcal{N}(0,1) \Longleftrightarrow \sigma X + \mu \hookrightarrow \mathcal{N}(\mu, \sigma^2).$$

Remarque 8

De manière équivalente (μ , $\sigma > 0$ des réels) :

$$X \hookrightarrow \mathcal{N}(\mu, \sigma^2) \Longleftrightarrow \frac{X - \mu}{\sigma} \hookrightarrow \mathcal{N}(0, 1).$$

Proposition 8

- 1. Soient $X_1 \hookrightarrow \mathcal{N}(\mu_1, \sigma_1^2)$ et $X_2 \hookrightarrow \mathcal{N}(\mu_2, \sigma_2^2)$ deux variables aléatoires **indépendantes** alors $X_1 + X_2$ suit une loi normale $\mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$.
- 2. Soient $X_1, ..., X_n$ avec $n \ge 2$ des variables aléatoires **mutuellement indépendantes** telles que :

$$\forall i \in [1, n], \quad X_i \hookrightarrow \mathcal{N}(\mu_i, \sigma_i^2).$$

Alors $X_1 + \cdots + X_n$ suit une loi normale $\mathcal{N}(\mu_1 + \cdots + \mu_n, \sigma_1^2 + \cdots + \sigma_n^2)$.

Remarque 9

La notion d'indépendance pour les variables quelconques (donc en particulier pour les variables à densité) sera définie au paragraphe suivant.

2.3 Lois exponentielles

Lois exponentielles

Soit $\lambda > 0$.

• On dit qu'une variable aléatoire X suit la loi **exponentielle de paramètre** $\lambda > 0$ et on note X $\hookrightarrow \mathcal{E}(\lambda)$ si X a pour densité la fonction f définie par

$$\forall x \in \mathbb{R}, \quad f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{si } x \ge 0 \\ 0 & \text{sinon} \end{cases}.$$

• Si $X \hookrightarrow \mathcal{E}(\lambda)$ alors la fonction de répartition de X est donnée par

$$\forall x \in \mathbb{R}, \quad F_{X}(x) = \begin{cases} 0 & \text{si } x < 0 \\ 1 - e^{-\lambda x} & \text{si } x \ge 0 \end{cases}.$$

• Si $X \hookrightarrow \mathcal{E}(\lambda)$ alors X possède une espérance et une variance et

$$E(X) = \frac{1}{\lambda}$$
 ; $V(X) = \frac{1}{\lambda^2}$.

Test 13 (Voir solution.)

Soit $X \hookrightarrow \mathcal{E}(\lambda)$ avec $\lambda > 0$. Montrer que X possède une variance et que cette variance vaut $\frac{1}{\lambda^2}$.

3 Complément sur les variables aléatoires réelles quelconques

Dans cette partie, les variables considérées sont quelconques. En particulier, les résultats qui y sont présentés s'appliquent aussi bien aux variables aléatoires discrètes qu'aux variables aléatoires à densité.

3.1 Compléments sur l'indépendance

Définition 6 (Indépendance de deux variables aléatoires réelles)

Soient X et Y des variables aléatoires réelles définies sur (Ω, \mathcal{A}, P) . On dit que X et Y sont **indépendantes** (pour la probabilité P) si pour tous intervalles réels I et J on a :

$$P([X \in I] \cap [Y \in J]) = P([X \in I]) P([Y \in J]).$$

Méthode 4

1. Pour montrer que deux variables aléatoires réelles X et Y sont indépendantes il faut montrer que :

 $P\left([X\in I]\cap [Y\in J]\right)=P\left([X\in I]\right)P\left([Y\in J]\right) \ \textit{pour tous les intervalles réels } I \ \textit{et } J.$

 $2. \ \ Pour montrer \ que \ deux \ variables \ al\'eatoires \ r\'eelles \ X \ et \ Y \ ne \ sont \ pas \ ind\'ependantes \ il \ suffit \ de \ montrer \ que \ :$

 $P\left([X\in I]\cap [Y\in J]\right)\neq P\left([X\in I]\right)P\left([Y\in J]\right) \textit{pour (au moins) un intervalle }I\textit{ et un intervalle }J.$

Exemple 12

Soit X une variable aléatoire à densité dont une densité f est donnée par

$$\forall x \in \mathbb{R}, \quad f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}.$$

	$\sqrt{2\pi}$
	une loi discrète suivant une loi uniforme sur $\{-1,1\}$ et indépendante de X. On note $Y = \varepsilon X$.
1.	Reconnaître la loi de X.
2.	$\stackrel{\frown}{A}$ l'aide de la formule des probabilités totales montrer que pour tout $t \in \mathbb{R}$, $P(X \le t) = P(Y \le t)$.
3	En déduire la loi de Y.
•	an accume to face in
4.	Montrer que ε et Y sont indépendantes.

Exemple 13 (Loi du minimum de deux variables aléatoires réelles indépendantes)

	Soient X et Y deux variables aléatoires réelles indépendantes et soit $Z = \min(X, Y)$. Exprimer la fonction de répartition F_Z de Z en fonction des fonctions de répartition F_X de X et F_Y de Y.			
	1. Montrons que : $\forall t \in \mathbb{R}$, $[Z > t] = [X > t] \cap [Y > t]$.			
	2.	En déduire: $\forall t \in \mathbb{R}$, $P([Z > t]) = P([X > t])P([Y > t])$.		
	3.	Conclure.		
е	st 14 (V	Voir solution.)		

Tes

Soient X et Y deux variables aléatoires réelles indépendantes et soit Z = max(X, Y). Exprimer la fonction de répartition F_Z de Z en fonction des fonctions de répartition F_X de X et F_Y de Y.

Test 15 (Voir solution.)

Soient a et b deux réels strictement positifs et $X \hookrightarrow \mathcal{E}(a)$, $Y \hookrightarrow \mathcal{E}(b)$ deux variables aléatoires indépendantes.

- 1. On pose U = max(X,Y). Déterminer la fonction de répartition de U.
- 2. On pose V = min(X, Y).
 - (a) Déterminer la fonction de répartition de V.
 - (b) Reconnaître la loi de V.

Définition 7 (Indépendance mutuelle de variables aléatoires réelles)

Soit n un entier supérieur ou égal à 2 et soient $X_1, ..., X_n$ des variables aléatoires réelles définies sur

• On dit que $X_1,...,X_n$ sont **mutuellement indépendantes** si pour tous intervalles $I_1,...,I_n$ de $\mathbb R$ on a :

$$\mathbf{P}\left(\bigcap_{k=1}^{n} \left[\mathbf{X}_{k} \in \mathbf{I}_{k}\right]\right) = \prod_{k=1}^{n} \mathbf{P}\left(\left[\mathbf{X}_{k} \in \mathbf{I}_{k}\right]\right).$$

• Plus généralement, si $(X_n)_{n\in\mathbb{N}}$ est une suite de variables aléatoires réelles définies sur (Ω,\mathcal{A},P) . On dit que les variables $(X_n)_{n\in\mathbb{N}}$ sont **mutuellement indépendantes** si pour tout $n\geq 2, X_1,...,X_n$ sont mutuellement indépendantes.

Proposition 9 (Lemme des coalitions) Soient $X_1, ..., X_n$ ($n \ge 2$) des variables aléatoires réelles définies sur (Ω, \mathcal{A}, P). Si $X_1, ..., X_n$ sont mutuellement indépendantes alors toute variable aléatoire fonction de $X_1, ..., X_k$ est indépendante de toute variable aléatoire fonction de $X_{k+1}, ..., X_n$.

Exemple 14

3.2 Compléments sur l'espérance, la variance

En première année, vous avez rencontré la notion d'espérance pour les variables aléatoires réelles discrètes et pour les variables aléatoires réelles à densité. Même si la définition de la notion d'espérance/variance pour une variable aléatoire quelconque est largement hors-programme, les propriétés suivantes sont à retenir.

Proposition 10 (Linéarité de l'espérance)

- 1. Soient X et Y deux variables aléatoires réelles définies sur (Ω, \mathcal{A}, P) . Si X et Y admettent une espérance alors X + Y admet une espérance et E(X + Y) = E(X) + E(Y).
- 2. Plus généralement, soient n un entier supérieur ou égal à 2 et $X_1, ..., X_n$ des variables aléatoires réelles définies sur (Ω, \mathcal{A}, P) possédant une espérance. Alors $X_1 + \cdots + X_n$ admet une espérance et $E(X_1 + \cdots + X_n) = E(X_1) + \cdots + E(X_n)$.

Proposition 11 (Espérance du produit de variables indépendantes)

- 1. Soient X et Y deux variables aléatoires réelles **indépendantes** définies sur (Ω, \mathcal{A}, P) . Si X et Y admettent une espérance alors XY admet une espérance et E(XY) = E(X)E(Y).
- 2. Plus généralement, soient n un entier supérieur ou égal à 2 et $X_1, ..., X_n$ des variables aléatoires réelles **mutuellement indépendantes** définies sur (Ω, \mathcal{A}, P) possédant une espérance. Alors $X_1 \times \cdots \times X_n$ admet une espérance et $E(X_1 \times \cdots \times X_n) = E(X_1) \times \cdots \times E(X_n)$.

Remarque 10

Ces résultats sont valables pour des variables aléatoires quelconques. Par exemple, si X est discrète et Y est à densité, les variables X + Y ou XY peuvent n'être ni discrètes ni à densité et les résultats ci-dessus permettent alors, dans certains cas, de calculer leur espérance (sous réserve d'existence).

Exemple 15

On reprend les variables aléatoires de l'exemple 12 : ϵ suit une loi uniforme sur $\{-1,1\}$, X une loi normale centrée				
réduite et X et ϵ sont indépendantes. On note Y = ϵ X. Calculer E(XY).				

Proposition 12 (Variance de la somme de variables indépendantes)

- 1. Soient X et Y deux variables aléatoires réelles **indépendantes** définies sur (Ω, \mathcal{A}, P) . Si X et Y admettent une variance alors X + Y admet une variance et V(X + Y) = V(X) + V(Y).
- 2. Plus généralement, soient n un entier supérieur ou égal à 2 et $X_1, ..., X_n$ des variables aléatoires réelles **mutuellement indépendantes** définies sur (Ω, \mathcal{A}, P) possédant une variance. Alors $X_1 + \cdots + X_n$ admet une variance et $V(X_1 + \cdots + X_n) = V(X_1) + \cdots + V(X_n)$.

Proposition 13 (Croissance de l'espérance)

Soient X et Y deux variables aléatoires réelles définies sur (Ω, \mathcal{A}, P) et possédant une espérance. Si $P(X \le Y) = 1$ (on dit que X prend des valeurs inférieures à celles de Y presque sûrement) alors :

$$E(X) \leq E(Y)$$
.

4 Objectifs

- 1. Savoir montrer que deux variables aléatoires quelconques sont/ne sont pas indépendantes. Savoir montrer que des variables aléatoires quelconques sont/ne sont pas mutuellement indépendantes.
- 2. Savoir étudier le min et max de deux variables aléatoires quelconques, de deux variables aléatoires à densité.
- 3. Savoir justifier qu'une variable aléatoire est/n'est pas à densité.
- 4. Savoir montrer qu'une fonction donnée est la fonction de répartition d'une variable à densité. Savoir montrer qu'une fonction donnée est une densité d'une variable à densité.
- 5. Sur des exemples simples, savoir déterminer la fonction de répartition, une densité de fonctions d'une variable aléatoire à densité.
- 6. Savoir déterminer si une variable aléatoire à densité possède une espérance, un moment d'ordre r ($r \in \mathbb{N}^*$) à partir de la définition.
- 7. Savoir montrer qu'une fonction d'une variable aléatoire à densité possède/ne possède pas une espérance à l'aide du théorème de transfert et le cas échéant, la calculer.
- 8. Savoir montrer qu'une fonction d'une variable aléatoire à densité possède/ne possède pas de variance et le cas échéant, la calculer.