BME2322 – Logic Design

The Instructors:

Dr. Görkem SERBES (C317)

gserbes@yildiz.edu.tr

https://avesis.yildiz.edu.tr/gserbes/

Lab Assistants:

Nihat AKKAN

nakkan@yildiz.edu.tr

https://avesis.yildiz.edu.tr/nakkan

LECTURE 3

Inside the Digital Gates

Inside the Digital Gate

The Digital Abstraction

- Discretize value: 0, 1
- Static discipline -- digital devices meet voltage thresholds

Specifies how gates must be designed

Combinational Elements

Combinational gate abstraction

- → outputs function of input alone
- → satisfies static discipline

How to build a digital gate

(a) The lightbulb circuit with a switch; (b) the lumped circuit representation.

The switch is normally off and behaves like an open circuit. When pressure is applied to the switch, it closes and behaves like a wire and conducts current.

Accordingly, the switch can be modeled as the three-terminal device

How to build a digital gate

When the control terminal has a TRUE or a logical 1 signal on it, the input is connected to the output through a short circuit.

Otherwise, there is an open circuit between the input and the output.

v-i Characteristis of the Switch

The v-i characteristics of a switch can also be expressed in algebraic form as:

for Control = "0,"
$$i = 0$$

and

for Control = "1,"
$$v = 0$$
.

v–*i* characteristics of a switch. *v* is the voltage across the input and the output terminals of the switch and *i* is the current through the same pair of terminals.

Logic Functions using Switches

(a) The lightbulb circuit with switch in an AND configuration; (b) the lightbulb circuit with switches in an OR configuration.

Using Three Terminal Switch Device

Behavior of this Basic Circuit

NAND Gate

NOR Gate

An Example

We can also build compound gates

Now let's get back to reality... we need a physical switch

Example 1

In the figure shown there are three circuits. The first two, labeled "a" and "b", are an inverter and a NOR gate, respectively. Circuit "c" is a bit more complex.

Z = ?

The MOSFET Device

Metal-Oxide Semiconductor Field-Effect Transistor

3 terminal lumped element behaves like a switch

Port representation of a MOSFET.

G: control terminal

D, S: behave in a symmetric manner (for our needs)

The MOSFET Device (S model)

17

MOSFET Device on Scope

A MOSFET Inverter

Note the power of abstraction:

The abstract inverter gate representation hides internal details such as power supply connections, R_L, GND, etc. When we build digital circuits, the 1 and ___ are common across all gates!

Input – Output Voltage Relation

Question: The T1000 model laptop needs gates that satisfy a static discipline with voltage thresholds given below. Does our inverter qualify?

$$V_{OL}$$
 = 0.5V V_{IL} = 0.9V V_{OH} = 4.5V V_{IH} = 4.1V

Does our inverter satisfy the voltage thresholds for this static discipline?

Does our inverter satisfy the static discipline for these different thresholds?

$$V_{OL} = 0.2V$$
 $V_{IL} = 0.5V$
 $V_{OH} = 5.1V$ $V_{IH} = 4.5V$

$$V_{OL}$$
 = 0.2V V_{IL} = 0.5V V_{OH} = 5.1V V_{IH} = 4.5V

How about these thresholds?

$$V_{OL} = 0.5V$$
 $V_{IL} = 1.5V$

$$V_{OH}$$
= 4.5V V_{IH} = 3.5V

$$V_{OL}$$
 = 0.5V V_{IL} = 1.5V V_{OH} = 4.5V V_{IH} = 3.5V

$$V_{OH}$$
 = 4.5V V_{IH} = 3.5V

Example 2

The graph shows the input/output behavior of the inverter, given the S-model (perfect switch model) of the MOSFET. The inverter shown must meet the static discipline: $0 \le V_{OL} < V_{IL} < V_{IH} < V_{OH} \le V_{S}$

The required discipline is: $V_{OL}=0.32$ V, $V_{IL}=0.576000000000001$ V, $V_{IH}=2.624000000000000000$ V, $V_{OH}=2.88$ V, and $V_S=3.2$ V.

For what values of the MOS threshold V_T can the design satisfy the static discipline?

What is the minimum possible value of V_T (in Volts)?

What is the maximum possible value of V_T (in Volts)?

Switch-Resistor (SR) Model – More Accurate

SR Model of MOSFET

Using SR Model - Inverter

when the input ν_N is high (and above the threshold VT), the MOSFET is on and displays a resistance R_{ON} between its D and S terminals, thereby pulling the output voltage lower

$$\nu_{\text{OUT}} = V_S \frac{R_{\text{ON}}}{R_{\text{ON}} + R_L}.$$

Using SR Model - Inverter

The resulting inverter transfer characteristics, assuming $V_S = 5$ V, $V_T = 1$ V, $R_{\rm ON} = 1$ k Ω , and $R_L = 14$ k Ω , are shown in Figure . Notice that the lowest output voltage of the inverter is no longer 0 V, rather it is

$$V_S \frac{R_{\rm ON}}{R_{\rm ON} + R_L} = 0.33 \text{ V}.$$

Inverter transfer characteristics using the SR model.

Static Discipline Criteria

When the RL/Ron ratio is 10.

Does our inverter satisfy the voltage thresholds for this static discipline?

Example 3

For this problem, consider the convention that a logical one corresponds to a high voltage level and a logical zero corresponds to a low voltage level. Thus, when the voltage v_A associated with the Boolean variable A is high, A is one. When v_A is low, A is zero. The same holds for v_B and B, and v_C and C. Assume also the following:

- · The high voltage level is much greater than the threshold voltage,
- The "on" resistance of the MOSFET is 50.0Ω ,
- The "off" resistance of the MOSFET is 10MΩ.

For each of the following diagrams we provide a corresponding truth table. You will provide the value of the output voltage v_C for each row of the table. We will refer to a row by an index placed next to the logical value of C in the table.

What is the value of v_C (in Volts) at entry i?

What is the value of v_C (in Volts) at entry j?

Example 3 Cont.

What is the value of v_C (in Volts) at entry k?

2.9997

What is the value of v_C (in Volts) at entry l?

2.9994

What is the value of v_C (in Volts) at entry m?

2.9994

What is the value of v_C (in Volts) at entry m?

0.142857

Example 3 Cont.

What is the value of v_C (in Volts) at entry o?

2.9988

What is the value of v_C (in Volts) at entry p?

0.073167162577

What is the value of v_C (in Volts) at entry q?

0.073167162577

What is the value of v_C (in Volts) at entry r?

0.037037

Static Power – NAND Gate Example

In this case, the output voltage when both inputs are high is given by

$$v_{\text{OUT}} = V_S \frac{2R_{\text{ON}}}{2R_{\text{ON}} + R_L}.$$

SR circuit model for NAND gate.

Demo – Analog and Digital Elements

