Answers/Solutions of Exercise 7 (Version: May 25, 2012)

- 1. (a) T_1 is a linear transformation with standard matrix $\begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$.
 - (b) T_2 is not a linear transformation.
 - (c) T_3 is a linear transformation with standard matrix $\begin{pmatrix} 1 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$.
 - (d) T_4 is not a linear transformation.
 - (e) T_5 is a linear transformation with standard matrix $(y_1 \ y_2 \ \cdots \ y_n)$.
 - (f) T_6 is not a linear transformation.
- 2. (a) There is enough information.

$$T\left(\begin{pmatrix} x \\ y \\ z \end{pmatrix}\right) = \frac{1}{5} \begin{pmatrix} x + 2y \\ 3x + 2y + 4z \\ -y + z \\ x + 4y + 6z \end{pmatrix} \quad \text{for } \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3.$$

The standard matrix is $\begin{pmatrix} 1 & 2 & 0 \\ 3 & 2 & 4 \\ 0 & -1 & 1 \\ 1 & 4 & 6 \end{pmatrix}$.

- (b) The information is not enough because the two vectors do not form a basis for \mathbb{R}^2 .
- (c) There is enough information.

$$T\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = \frac{1}{5} \begin{pmatrix} x - y \\ x + y \end{pmatrix} \text{ for } \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2.$$

The standard matrix is $\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$.

(d) There is enough information.

$$T\left(\begin{pmatrix} x \\ y \\ z \end{pmatrix}\right) = \frac{1}{5} \begin{pmatrix} x + 17y - 8z \\ x + 22y - 8z \end{pmatrix} \text{ for } \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3.$$

The standard matrix is $\begin{pmatrix} \frac{1}{5} & \frac{17}{5} & \frac{-8}{5} \\ \frac{1}{5} & \frac{22}{5} & \frac{-8}{5} \end{pmatrix}$.

(e) There is enough information.

$$T\left(\begin{pmatrix} x \\ y \\ z \end{pmatrix}\right) = \begin{pmatrix} y+z \\ z \\ x+z \end{pmatrix} \text{ for } \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3.$$

The standard matrix is $\begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix}$.

(f) The information is not enough because the three vectors do not form a basis for \mathbb{R}^3 .

3. (a)
$$(S \circ T) \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2x \\ 2y \\ x+y \end{pmatrix}$$
.

 $T \circ S$ is not defined.

(b)
$$(S \circ T) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -2x - y + 3z \\ -x - y + 3z \\ -3x - 2y + 6z \end{pmatrix}$$
.
 $(T \circ S) \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2x + 2y \\ 2x + y \end{pmatrix}$.

- 4. (\Rightarrow) It is a particular case of Theorem 7.1.4.2.
 - (⇐) Suppose

$$T(c\mathbf{u} + d\mathbf{v}) = cT(\mathbf{u}) + dT(\mathbf{v})$$
 for all $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ and $c, d \in \mathbb{R}$.

Let $\{e_1, e_2, \dots, e_n\}$ be the standard basis for \mathbb{R}^n and let A be the $m \times n$ matrix $(T(e_1) \ T(e_2) \ \cdots \ T(e_n))$.

For any $\mathbf{u} = (u_1, u_2, \dots, u_n)^{\mathrm{T}} \in \mathbb{R}^n$, $\mathbf{u} = u_1 \mathbf{e_1} + u_2 \mathbf{e_2} + \dots + u_n \mathbf{e_n}$. By applying (*) repeatedly, we have

$$T(\boldsymbol{u}) = u_1 T(\boldsymbol{e_1}) + u_2 T(\boldsymbol{e_2}) + \dots + u_n T(\boldsymbol{e_n})$$

$$= (T(\boldsymbol{e_1}) \ T(\boldsymbol{e_2}) \ \dots \ T(\boldsymbol{e_n})) \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix}$$

$$= \boldsymbol{A} \boldsymbol{u}.$$

Thus T is a linear transformation.

- 5. (a) For any $\mathbf{u} \in \mathbb{R}^n$, $(T_1 + T_2)(\mathbf{u}) = T_1(\mathbf{u}) + T_2(\mathbf{u}) = \mathbf{A}\mathbf{u} + \mathbf{B}\mathbf{u} = (\mathbf{A} + \mathbf{B})\mathbf{u}$. So $T_1 + T_2$ is a linear transformation and the standard matrix for $T_1 + T_2$ is $\mathbf{A} + \mathbf{B}$.
 - (b) For any $\mathbf{u} \in \mathbb{R}^n$, $(\lambda T)(\mathbf{u}) = \lambda T(\mathbf{u}) = \lambda \mathbf{A}\mathbf{u} = (\lambda \mathbf{A})\mathbf{u}$. So λT is a linear transformation and the standard matrix for λT is $\lambda \mathbf{A}$.
- 6. (a) (i) T is invertible and the inverse of T is T itself.
 - (ii) T is not invertible. Assume there exists an inverse $S: \mathbb{R}^2 \to \mathbb{R}^2$. Then $(1,0)^{\mathrm{T}} = S \circ T((1,0)^{\mathrm{T}}) = S((1,0)^{\mathrm{T}}) = S \circ T((0,1)^{\mathrm{T}}) = (0,1)^{\mathrm{T}}$, a contradiction.
 - (b) A^{-1} .
- 7. (a) Note that $(\boldsymbol{n} \cdot \boldsymbol{x})\boldsymbol{n} = \boldsymbol{n}\boldsymbol{n}^{\mathrm{T}}\boldsymbol{x}$ where LHS is the scalar $\boldsymbol{n} \cdot \boldsymbol{x}$ multiplied to the vector \boldsymbol{n} while all operations on RHS are matrix multiplications. (To verify the equation, let $\boldsymbol{n} = (a_1, \dots, a_n)^{\mathrm{T}}$ and $\boldsymbol{x} = (x_1, \dots, x_n)^{\mathrm{T}}$ and then check that both sides give us the same vector.)

For any $\mathbf{x} \in \mathbb{R}^n$, $P(\mathbf{x}) = \mathbf{x} - (\mathbf{n} \cdot \mathbf{x})\mathbf{n} = \mathbf{I}\mathbf{x} - \mathbf{n}\mathbf{n}^{\mathrm{T}}\mathbf{x} = (\mathbf{I} - \mathbf{n}\mathbf{n}^{\mathrm{T}})\mathbf{x}$. So P is a linear transformation and the standard matrix for P is $\mathbf{I} - \mathbf{n}\mathbf{n}^{\mathrm{T}}$.

(b) Since for all $\boldsymbol{x} \in \mathbb{R}^n$,

$$(P \circ P)(\boldsymbol{x}) = P(P(\boldsymbol{x})) = P(\boldsymbol{x} - (\boldsymbol{n} \cdot \boldsymbol{x})\boldsymbol{n})$$

$$= \boldsymbol{x} - (\boldsymbol{n} \cdot \boldsymbol{x})\boldsymbol{n} - \{\boldsymbol{n} \cdot [\boldsymbol{x} - (\boldsymbol{n} \cdot \boldsymbol{x})\boldsymbol{n}]\}\boldsymbol{n}$$

$$= \boldsymbol{x} - (\boldsymbol{n} \cdot \boldsymbol{x})\boldsymbol{n} - \{(\boldsymbol{n} \cdot \boldsymbol{x}) - (\boldsymbol{n} \cdot \boldsymbol{x})(\boldsymbol{n} \cdot \boldsymbol{n})\}\boldsymbol{n}$$

$$= \boldsymbol{x} - (\boldsymbol{n} \cdot \boldsymbol{x})\boldsymbol{n} = P(\boldsymbol{x}),$$

 $P \circ P = P$.

Alternatively, since n is a unit vector, $n^{T}n = n \cdot n = 1$. Thus

$$(\boldsymbol{I} - \boldsymbol{n} \boldsymbol{n}^{\mathrm{\scriptscriptstyle T}})^2 = (\boldsymbol{I} - \boldsymbol{n} \boldsymbol{n}^{\mathrm{\scriptscriptstyle T}})(\boldsymbol{I} - \boldsymbol{n} \boldsymbol{n}^{\mathrm{\scriptscriptstyle T}}) = \boldsymbol{I} - 2\boldsymbol{n} \boldsymbol{n}^{\mathrm{\scriptscriptstyle T}} + \boldsymbol{n} \boldsymbol{n}^{\mathrm{\scriptscriptstyle T}} \boldsymbol{n} \boldsymbol{n}^{\mathrm{\scriptscriptstyle T}} = \boldsymbol{I} - \boldsymbol{n} \boldsymbol{n}^{\mathrm{\scriptscriptstyle T}}.$$

By Theorem 7.1.11, $P \circ P = P$.

8. (a) Suppose T is not the zero transformation. So there exists $\mathbf{x} \in \mathbb{R}^n$ such that $T(\mathbf{x}) \neq 0$. Define $\mathbf{u} = T(\mathbf{x})$. Then \mathbf{u} is a nonzero vector and

$$T(\boldsymbol{u}) = T(T(\boldsymbol{x})) = (T \circ T)(\boldsymbol{x}) = T(\boldsymbol{x}) = \boldsymbol{u}.$$

(b) Suppose T is not the identity transformation. So there exists $\mathbf{y} \in \mathbb{R}^n$ such that $T(\mathbf{y}) \neq \mathbf{y}$. Define $\mathbf{v} = T(\mathbf{y}) - \mathbf{y}$. Then \mathbf{v} is a nonzero vector and

$$T(\boldsymbol{v}) = T(T(\boldsymbol{y}) - \boldsymbol{y}) = (T \circ T)(\boldsymbol{y}) - T(\boldsymbol{y}) = T(\boldsymbol{y}) - T(\boldsymbol{y}) = \boldsymbol{0}.$$

(c) Let \mathbf{A} be the standard matrix for T. If T is not the zero transformation and the identity transformation, then by (a) and (b), 1 and 0 are the eigenvalues of \mathbf{A} . So by the result of Question 6.4,

$$\mathbf{A} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ or } \begin{pmatrix} r & s \\ t & 1 - r \end{pmatrix} \text{ where } st = r(1 - r).$$

- 9. (a) Similar to Question 7.7, for any $\mathbf{x} \in \mathbb{R}^n$, $F(\mathbf{x}) = \mathbf{x} 2(\mathbf{n} \cdot \mathbf{x})\mathbf{n} = \mathbf{I}\mathbf{x} 2\mathbf{n}\mathbf{n}^{\mathrm{T}}\mathbf{x} = (\mathbf{I} 2\mathbf{n}\mathbf{n}^{\mathrm{T}})\mathbf{x}$. So F is a linear transformation and the standard matrix for F is $\mathbf{I} 2\mathbf{n}\mathbf{n}^{\mathrm{T}}$.
 - (b) Since for all $\boldsymbol{x} \in \mathbb{R}^n$,

$$(F \circ F)(\mathbf{x}) = F(F(\mathbf{x})) = F(\mathbf{x} - 2(\mathbf{n} \cdot \mathbf{x})\mathbf{n})$$

$$= \mathbf{x} - 2(\mathbf{n} \cdot \mathbf{x})\mathbf{n} - 2\{\mathbf{n} \cdot [\mathbf{x} - 2(\mathbf{n} \cdot \mathbf{x})\mathbf{n}]\}\mathbf{n}$$

$$= \mathbf{x} - 2(\mathbf{n} \cdot \mathbf{x})\mathbf{n} - 2\{(\mathbf{n} \cdot \mathbf{x}) - 2(\mathbf{n} \cdot \mathbf{x})(\mathbf{n} \cdot \mathbf{n})\}\mathbf{n}$$

$$= \mathbf{x} - 2(\mathbf{n} \cdot \mathbf{x})\mathbf{n} - 2\{-(\mathbf{n} \cdot \mathbf{x})\} = \mathbf{x},$$

 $F \circ F$ is the identity transformation.

Alternatively,

$$(I - 2nn^{\mathrm{T}})^2 = (I - 2nn^{\mathrm{T}})(I - 2nn^{\mathrm{T}}) = I - 4nn^{\mathrm{T}} + 4nn^{\mathrm{T}}nn^{\mathrm{T}} = I.$$

By Theorem 7.1.11, $F \circ F$ is the identity transformation.

(c) Note that
$$(\boldsymbol{I} - 2\boldsymbol{n}\boldsymbol{n}^{\mathrm{T}})^{\mathrm{T}} = \boldsymbol{I} - 2(\boldsymbol{n}\boldsymbol{n}^{\mathrm{T}})^{\mathrm{T}} = \boldsymbol{I} - 2\boldsymbol{n}\boldsymbol{n}^{\mathrm{T}}$$
. Thus $(\boldsymbol{I} - 2\boldsymbol{n}\boldsymbol{n}^{\mathrm{T}})(\boldsymbol{I} - 2\boldsymbol{n}\boldsymbol{n}^{\mathrm{T}})^{\mathrm{T}} = (\boldsymbol{I} - 2\boldsymbol{n}\boldsymbol{n}^{\mathrm{T}})^{2} = \boldsymbol{I}$

by (b). The standard matrix is an orthogonal matrix.

10. (a) By Theorem 7.1.4.2,

$$T(\boldsymbol{u} + \boldsymbol{v}) \cdot T(\boldsymbol{u} + \boldsymbol{v}) = (T(\boldsymbol{u}) + T(\boldsymbol{v})) \cdot (T(\boldsymbol{u}) + T(\boldsymbol{v}))$$

$$= T(\boldsymbol{u}) \cdot T(\boldsymbol{u}) + 2(T(\boldsymbol{u}) \cdot T(\boldsymbol{v})) + T(\boldsymbol{v}) \cdot T(\boldsymbol{v})$$

$$= ||T(\boldsymbol{u})||^2 + ||T(\boldsymbol{v})||^2 + 2(T(\boldsymbol{u}) \cdot T(\boldsymbol{v}))$$

$$= ||\boldsymbol{u}||^2 + ||\boldsymbol{v}||^2 + 2(T(\boldsymbol{u}) \cdot T(\boldsymbol{v})). \tag{1}$$

On the other hand,

$$T(\boldsymbol{u} + \boldsymbol{v}) \cdot T(\boldsymbol{u} + \boldsymbol{v}) = ||T(\boldsymbol{u} + \boldsymbol{v})||^{2}$$

$$= ||\boldsymbol{u} + \boldsymbol{v}||^{2}$$

$$= (\boldsymbol{u} + \boldsymbol{v}) \cdot (\boldsymbol{u} + \boldsymbol{v})$$

$$= \boldsymbol{u} \cdot \boldsymbol{u} + 2(\boldsymbol{u} \cdot \boldsymbol{v}) + \boldsymbol{v} \cdot \boldsymbol{v}$$

$$= ||\boldsymbol{u}||^{2} + ||\boldsymbol{v}||^{2} + 2(\boldsymbol{u} \cdot \boldsymbol{v}). \tag{2}$$

Thus (1) and (2) imply $T(\mathbf{u}) \cdot T(\mathbf{v}) = \mathbf{u} \cdot \mathbf{v}$.

(b) (\Leftarrow) Suppose \boldsymbol{A} is an orthogonal matrix of order n. Then by Question 5.32, for all $\boldsymbol{u} \in \mathbb{R}^n$,

$$||T(u)|| = ||Au|| = ||u||.$$

So T is an isometry.

(\Rightarrow) Suppose T is an isometry on \mathbb{R}^n . Let $\{e_1, e_2, \ldots, e_n\}$ be the standard basis for \mathbb{R}^n . Then

$$(\mathbf{A}\mathbf{e_i}) \cdot (\mathbf{A}\mathbf{e_j}) = (\mathbf{A}\mathbf{e_i})^{\mathrm{T}} \mathbf{A}\mathbf{e_j} = \mathbf{e_i}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \mathbf{A}\mathbf{e_j}$$

= the (i, j) -entry of $\mathbf{A}^{\mathrm{T}} \mathbf{A}$. (3)

On the other hand, by (a),

$$(\mathbf{A}\mathbf{e_i}) \cdot (\mathbf{A}\mathbf{e_j}) = T(\mathbf{e_i}) \cdot T(\mathbf{e_j}) = \mathbf{e_i} \cdot \mathbf{e_j} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j. \end{cases}$$
 (4)

By (3) and (4), $\mathbf{A}^{\mathrm{T}}\mathbf{A} = \mathbf{I}$. By Remark 5.4.4, \mathbf{A} is an orthogonal matrix.

(c) All isometries on \mathbb{R}^2 are of the form

$$T\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = \begin{pmatrix} x\cos(\theta) + \delta y\sin(\theta) \\ x\sin(\theta) - \delta y\cos(\theta) \end{pmatrix} \quad \text{for } \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2$$

where $\delta = \pm 1$ and $0 \le \theta < 2\pi$.

11. The standard matrix of T is $\begin{pmatrix} 2 & 1 & 0 \\ 1 & -1 & 1 \end{pmatrix}$.

$$\begin{pmatrix} 2 & 1 & 0 \\ 1 & -1 & 1 \end{pmatrix} \xrightarrow{\text{Gauss-Jordan}} \begin{pmatrix} 1 & 0 & \frac{1}{3} \\ 0 & 1 & -\frac{2}{3} \end{pmatrix}$$
Elimination

- (a) $\{(2,1)^{\mathrm{T}}, (1,-1)^{\mathrm{T}}\}$ is a basis for $\mathrm{R}(T)$. (For this example, any two linearly independent vectors in \mathbb{R}^2 is a basis for $\mathrm{R}(T)$. Why?)
- (b) $\{(-\frac{1}{3}, \frac{2}{3}, 1)^{\mathrm{T}}\}\$ is a basis for $\mathrm{Ker}(T)$.
- (c) $\operatorname{rank}(T) + \operatorname{nullity}(T) = \dim(R(T)) + \dim(\operatorname{Ker}(T)) = 2 + 1 = 3 = \dim(\mathbb{R}^3).$
- (d) For example, $\{(-\frac{1}{3}, \frac{2}{3}, 1)^T, (0, 1, 0)^T, (0, 0, 1)^T\}$ is a basis for \mathbb{R}^3 .

12.
$$\begin{pmatrix} 3 & -1 & 2 & 7 \\ 1 & 2 & 3 & 0 \\ 0 & 1 & 1 & -1 \end{pmatrix}$$
 Gauss-Jordan $\begin{pmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

- (a) $\{(3,1,0)^{\mathrm{T}}, (-1,2,1)^{\mathrm{T}}\}$ is a basis for R(T).
- (b) $\{(-1, -1, 1, 0)^{\mathrm{T}}, (-2, 1, 0, 1)^{\mathrm{T}}\}$ is a basis for $\mathrm{Ker}(T)$.
- (c) $\operatorname{rank}(T) + \operatorname{nullity}(T) = \dim(R(T)) + \dim(\operatorname{Ker}(T)) = 2 + 2 = 4 = \dim(\mathbb{R}^4).$
- 13. (a) 2. (b) 2. (c) 2.
- 14. (a) $\{0\}$. (b) \mathbb{R}^n .
- 15. (a) Let $\{v_1, v_2, \ldots, v_k\}$ be an orthonormal basis for V. By Theorem 5.2.15,

$$P(\boldsymbol{u}) = (\boldsymbol{u} \cdot \boldsymbol{v_1}) \boldsymbol{v_1} + (\boldsymbol{u} \cdot \boldsymbol{v_2}) \boldsymbol{v_2} + \dots + (\boldsymbol{u} \cdot \boldsymbol{v_k}) \boldsymbol{v_k}$$

$$= \boldsymbol{v_1} \boldsymbol{v_1}^{\mathrm{T}} \boldsymbol{u} + \boldsymbol{v_2} \boldsymbol{v_2}^{\mathrm{T}} \boldsymbol{u} + \dots + \boldsymbol{v_k} \boldsymbol{v_k}^{\mathrm{T}} \boldsymbol{u}$$

$$= (\boldsymbol{v_1} \boldsymbol{v_1}^{\mathrm{T}} + \boldsymbol{v_2} \boldsymbol{v_2}^{\mathrm{T}} + \dots + \boldsymbol{v_k} \boldsymbol{v_k}^{\mathrm{T}}) \boldsymbol{u}$$

Note that $\boldsymbol{v_1}\boldsymbol{v_1}^{\mathrm{T}} + \boldsymbol{v_2}\boldsymbol{v_2}^{\mathrm{T}} + \cdots + \boldsymbol{v_k}\boldsymbol{v_k}^{\mathrm{T}}$ is an $n \times n$ matrix. So P is a linear transformation.

- (b) $Ker(P) = span\{(a, b, c)\}$ and R(P) = V.
- 16. (\Rightarrow) Let $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^n$ such that $T(\boldsymbol{u}) = T(\boldsymbol{v})$. Then $T(\boldsymbol{u} \boldsymbol{v}) = T(\boldsymbol{u}) T(\boldsymbol{v}) = \boldsymbol{0}$ and hence $\boldsymbol{u} \boldsymbol{v} \in \text{Ker}(T)$. Since $\text{Ker}(T) = \{\boldsymbol{0}\}$, $\boldsymbol{u} \boldsymbol{v} = \boldsymbol{0}$, i.e. $\boldsymbol{u} = \boldsymbol{v}$. Thus T is one-to-one.
 - (\Leftarrow) By Theorem 7.1.4.1, $T(\mathbf{0}) = \mathbf{0}$. Since T is one-to-one, for all $\mathbf{v} \in \mathbb{R}^n$, if $\mathbf{v} \neq \mathbf{0}$, $T(\mathbf{v}) \neq T(\mathbf{0}) = \mathbf{0}$. Thus $Ker(T) = \{\mathbf{0}\}$.
- 17. (a) Let $\mathbf{u} \in \operatorname{Ker}(S)$, i.e. $S(\mathbf{u}) = \mathbf{0}$. Then $T \circ S(\mathbf{u}) = T(S(\mathbf{u})) = T(\mathbf{0}) = \mathbf{0}$ and hence $\mathbf{u} \in \operatorname{Ker}(T \circ S)$.

 Thus $\operatorname{Ker}(S) \subseteq \operatorname{Ker}(T \circ S)$.
 - (b) Let $\mathbf{v} \in \mathrm{R}(T \circ S)$, i.e. there exists $\mathbf{u} \in \mathbb{R}^n$ such that $\mathbf{v} = T \circ S(\mathbf{u})$. Put $\mathbf{w} = S(\mathbf{u}) \in \mathbb{R}^m$. Then $\mathbf{v} = T(S(\mathbf{u})) = T(\mathbf{w})$. This means that $\mathbf{v} \in \mathrm{R}(T)$. Thus $\mathrm{R}(T \circ S) \subseteq \mathrm{R}(T)$.
- 18. For this question, it is helpful if you first compute $T((1,0)^T)$ and $T((0,1)^T)$ and then sketch the vectors on the xy-plane.
 - (a) T is the dilation by a factor of 3.
 - (b) T is the contraction by a factor of 0.5.

(c)
$$\begin{pmatrix} -\frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} = \begin{pmatrix} \cos(150^\circ) & \sin(150^\circ) \\ \sin(150^\circ) & -\cos(150^\circ) \end{pmatrix}$$

T is the reflection about the line $y = x \tan(75^\circ)$.

$$(\mathrm{d}) \ \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} = \begin{pmatrix} \cos(30^\circ) & -\sin(30^\circ) \\ \sin(30^\circ) & \cos(30^\circ) \end{pmatrix}$$

T is the anti-clockwise rotation about the origin through an angle 30° .

(e)
$$\begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} = \begin{pmatrix} \cos(-30^\circ) & -\sin(-30^\circ) \\ \sin(-30^\circ) & \cos(-30^\circ) \end{pmatrix}$$

T is the clockwise rotation about the origin through an angle 30° .

(f)
$$\begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix} = \begin{pmatrix} \cos(30^\circ) & \sin(30^\circ) \\ \sin(30^\circ) & -\cos(30^\circ) \end{pmatrix}$$

T is the reflection about the line $y = x \tan(15^\circ)$.

- (g) T is the scaling along axes in the directions of $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ by factors of 3 and 2 respectively.
- 19. The standard matrices for F_1 and F_2 are

$$\begin{pmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} \cos(2\phi) & \sin(2\phi) \\ \sin(2\phi) & -\cos(2\phi) \end{pmatrix}$$

respectively. Thus the standard matrices for $F_2 \circ F_1$ is

$$\begin{pmatrix} \cos(2\phi) & \sin(2\phi) \\ \sin(2\phi) & -\cos(2\phi) \end{pmatrix} \begin{pmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{pmatrix}$$

$$= \begin{pmatrix} \cos(2\phi)\cos(2\theta) + \sin(2\phi)\sin(2\theta) & \cos(2\phi)\sin(2\theta) - \sin(2\phi)\cos(2\theta) \\ \sin(2\phi)\cos(2\theta) - \cos(2\phi)\sin(2\theta) & \sin(2\phi)\sin(2\theta) + \cos(2\phi)\cos(2\theta) \end{pmatrix}$$

$$= \begin{pmatrix} \cos(2(\phi - \theta)) & -\sin(2(\phi - \theta)) \\ \sin(2(\phi - \theta)) & \cos(2(\phi - \theta)) \end{pmatrix}$$

which is the standard matrix for the anti-clockwise rotation about the origin through an angle $2(\phi - \theta)$.

20. (a) The standard matrix for $T_1 \circ T_2$ is $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$ and the standard matrix for $T_2 \circ T_1$ is $\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$.

Hence $T_1 \circ T_2 = T_2 \circ T_1$.

- (b) The standard matrix for $T_1 \circ T_2$ is $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix}$ and the standard matrix for $T_2 \circ T_1$ is $\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}$.

 Hence $T_1 \circ T_2 \neq T_2 \circ T_1$.
- (c) The standard matrix for $T_1 \circ T_2$ is $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ and the standard matrix for $T_2 \circ T_1$ is $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$.

 Hence $T_1 \circ T_2 \neq T_2 \circ T_1$.
- 21. (a) True. Let the standard matrices for R_1 and R_2 be $\begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$ and $\begin{pmatrix} \cos(\phi) & -\sin(\phi) \\ \sin(\phi) & \cos(\phi) \end{pmatrix}$ respectively. Then the standard matrix for $R_2 \circ R_1$ is $\begin{pmatrix} \cos(\theta)\cos(\phi) \sin(\phi)\sin(\theta) & -\cos(\theta)\sin(\phi) \sin(\theta)\cos(\phi) \\ \sin(\theta)\cos(\phi) + \cos(\theta)\sin(\phi) & -\sin(\theta)\sin(\theta) + \cos(\theta)\cos(\phi) \end{pmatrix}$ = $\begin{pmatrix} \cos(\theta + \phi) & -\sin(\theta + \phi) \\ \sin(\theta + \phi) & \cos(\theta + \phi) \end{pmatrix}$.

Thus $R_2 \circ R_1$ is a rotation in \mathbb{R}^2 .

- (b) True. The standard matrix for $R_1 \circ R_2$ is $\begin{pmatrix} \cos(\phi + \theta) & -\sin(\phi + \theta) \\ \sin(\phi + \theta) & \cos(\phi + \theta) \end{pmatrix}$ which is also the standard matrix for $R_2 \circ R_1$.
- (c) True. Let the standard matrices for F and R be $\begin{pmatrix} \cos(2\phi) & \sin(2\phi) \\ \sin(2\phi) & -\cos(2\phi) \end{pmatrix}$ and $\begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$ respectively. Then the standard matrix for $F \circ R$ is $\begin{pmatrix} \cos(2\phi \theta) & \sin(2\phi \theta) \\ \sin(2\phi \theta) & -\cos(2\phi \theta) \end{pmatrix}$.

Thus $F \circ R$ is a reflection in \mathbb{R}^2 .

- (d) False. For example, see Question 7.20(c).
- (e) False. For example, let F_1 and F_2 be reflections about the x-axis and the line y = x respectively. Then $F_2 \circ F_1$ is the anti-clockwise rotation about the origin through an angle 90° .

- (f) False. Using the example in (e), $F_1 \circ F_2$ is the clockwise rotation about the origin through an angle 90°.
- 22. For this question, it is helpful if you first compute $T((1,0,0)^{\mathrm{T}})$, $T(0,1,0)^{\mathrm{T}})$ and $T((0,0,1)^{\mathrm{T}})$ and then figure out the positions of the vectors in \mathbb{R}^3 .
 - (a) T is the dilation by a factor of 2.
 - (b) T is the contraction by a factor of $\frac{1}{3}$.
 - (c) T is the anti-clockwise rotation about the x-axis through an angle $\theta = \cos^{-1}(\frac{4}{5})$.
 - (d) T is the reflection about the plane spanned by $(1,0,0)^{\mathrm{T}}$ and $(0,\cos(\phi),\sin(\phi))^{\mathrm{T}}$ where $\phi = \frac{1}{2}\cos^{-1}(\frac{3}{5})$.
 - (e) T is the scaling along axes in the directions of $(1,0,0)^{\mathrm{T}}$, $(0,\frac{4}{5},\frac{3}{5})^{\mathrm{T}}$ and $(0,-\frac{3}{5},\frac{4}{5})^{\mathrm{T}}$ by factors of 2, 1 and 0.5 respectively.
- 23. (a) The standard matrix for $T_1 \circ T_2$ is

$$\begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0.5 & 0 & 0 \\ 0 & 0.5 & 0 \\ 0 & 0 & 0.5 \end{pmatrix} = \begin{pmatrix} 0 & -0.5 & 0 \\ 0.5 & 0 & 0 \\ 0 & 0 & 0.5 \end{pmatrix}$$

and the standard matrix for $T_2 \circ T_1$ is

$$\begin{pmatrix} 0.5 & 0 & 0 \\ 0 & 0.5 & 0 \\ 0 & 0 & 0.5 \end{pmatrix} \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & -0.5 & 0 \\ 0.5 & 0 & 0 \\ 0 & 0 & 0.5 \end{pmatrix}.$$

Hence $T_1 \circ T_2 = T_2 \circ T_1$.

(b) The standard matrix for $T_1 \circ T_2$ is

$$\begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

and the standard matrix for $T_2 \circ T_1$ is

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

9

Hence $T_1 \circ T_2 = T_2 \circ T_1$.

(c) The standard matrix for $T_1 \circ T_2$ is

$$\begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

and the standard matrix for $T_2 \circ T_1$ is

$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Hence $T_1 \circ T_2 \neq T_2 \circ T_1$.

24. By sketching the effect of the rotation on the standard basis vectors, we find that $R(e_1) = -e_1$, $R(e_2) = e_3$ and $R(e_3) = e_2$. So the standard matrix for R is

$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \text{ and } R \begin{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -x \\ z \\ y \end{pmatrix} \text{ for } \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3.$$

25. Let $v_1 = \frac{1}{\sqrt{2}}(-1,1,0)^{\mathrm{T}}$, $v_2 = \frac{1}{\sqrt{6}}(1,1,2)^{\mathrm{T}}$ and $v_3 = \frac{1}{\sqrt{3}}(1,1,-1)^{\mathrm{T}}$ where v_1, v_2 are vectors on the plane x + y - z = 0 while v_3 lies on the axis of rotation.

Thus $R(\mathbf{v_1}) = [\cos(\theta)]\mathbf{v_1} + [\sin(\theta)]\mathbf{v_2}$, $R(\mathbf{v_2}) = [-\sin(\theta)]\mathbf{v_1} + [\cos(\theta)]\mathbf{v_2}$ and $R(\mathbf{v_3}) = \mathbf{v_3}$.

(The answer for this question depends on the choices of $\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}$. A different choice may have a slightly different answer. For example, if $\mathbf{v_1'} = \frac{1}{\sqrt{2}}(1, -1, 0)^{\mathrm{T}}$, $\mathbf{v_2'} = \frac{1}{\sqrt{6}}(1, 1, 2)^{\mathrm{T}}$ and $\mathbf{v_3'} = \frac{1}{\sqrt{3}}(1, 1, -1)^{\mathrm{T}}$, then $R(\mathbf{v_1'}) = [\cos(\theta)]\mathbf{v_1'} - [\sin(\theta)]\mathbf{v_2'}$, $R(\mathbf{v_2'}) = [\sin(\theta)]\mathbf{v_1} + [\cos(\theta)]\mathbf{v_2'}$ and $R(\mathbf{v_3'}) = \mathbf{v_3'}$. Note that $\mathbf{v_1'} = -\mathbf{v_1}$, $\mathbf{v_2'} = \mathbf{v_2}$ and $\mathbf{v_3'} = \mathbf{v_3}$ in the diagram above.)

26. For any vector \boldsymbol{u} in \mathbb{R}^3 , we can write $\boldsymbol{u} = \boldsymbol{n'} + \boldsymbol{p}$ where $\boldsymbol{n'} = \left(\frac{\boldsymbol{u} \cdot \boldsymbol{n}}{\boldsymbol{n} \cdot \boldsymbol{n}}\right) \boldsymbol{n}$ and $\boldsymbol{p} = \boldsymbol{u} - \left(\frac{\boldsymbol{u} \cdot \boldsymbol{n}}{\boldsymbol{n} \cdot \boldsymbol{n}}\right) \boldsymbol{n}$. Since \boldsymbol{n} is orthogonal to the plane, $\boldsymbol{n'}$ is also orthogonal to the plane. Also, since $\boldsymbol{p} \cdot \boldsymbol{n} = \boldsymbol{u} \cdot \boldsymbol{n} - \left(\frac{\boldsymbol{u} \cdot \boldsymbol{n}}{\boldsymbol{n} \cdot \boldsymbol{n}}\right) \boldsymbol{n} \cdot \boldsymbol{n} = 0$, \boldsymbol{p} is a vector in plane.

10

So $T(\boldsymbol{u}) = \boldsymbol{p} - \boldsymbol{n'}$ is the reflection about the plane. The standard matrix for T is

$$\frac{1}{a^2 + b^2 + c^2} \begin{pmatrix} -a^2 + b^2 + c^2 & -2ab & -2ac \\ -2ab & a^2 - b^2 + c^2 & -2bc \\ -2ac & -2bc & a^2 + b^2 - c^2 \end{pmatrix}.$$

27. (a) The figure represented by \boldsymbol{B} is "N".

- (b) (i) The figure represented by \boldsymbol{PB} is "N". The transformation is a contraction by a factor of 0.5.
 - (ii) The figure represented by \boldsymbol{PB} is the inverted "Z". The transformation is a reflection about the line y=x.
 - (iii) The figure represented by PB is "Z". The transformation is a clockwise rotation about the origin through an angle 90° .
 - (iv) The figure represented by PB is "N". The transformation is a translation by distance of 1 in both the x and y direction.

28. (a)
$$\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$

(b)
$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}$$

The transformation is a translation that moves $(x, y)^T$ to $(x + 1, y - 2)^T$.

(c)
$$\begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0\\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ 0 & 0 & 1 \end{pmatrix}$$

(d) Note that the point $(-1,2)^T$ should be invariant under this transformation. So we first translate $(-1,2)^T$ to $(0,0)^T$ then do a rotation about the origin before performing the inverse translation.

11

The standard matrix is

$$\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & \frac{3}{\sqrt{2}} - 1 \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} + 2 \\ 0 & 0 & 1 \end{pmatrix}.$$