$^{8}/_{10}$

E3 Propagating Uncertainties

You will be penalized for an inappropriate number of significant figures (e.g. giving an uncertainty to 3sf, or giving a measurement to 2dp if the uncertainty is \pm 0.1). Please make sure that the unit of absolute uncertainties is clear - so 20.34 mA \pm 20 μ A or (20.34 \pm 0.02) mA are both appropriate, but 20.34 mA \pm 20 would not be clear. Note that 'nearest millimetre' implies an absolute uncertainty of \pm 0.5 mm not \pm 1 mm.

Calculate the relative uncertainty, in percent, of:

- E3.1 A resistance which is worked out from a voltage known to 3% and a current known to 7%. (Equation: $R = \frac{V}{I}$)
- E3.2 A frequency which is worked out from a time period known to 2%. (Equation: $f = \frac{1}{T}$)
- E3.3 The density of a cuboid block of iron whose lengths are known to 2% and whose mass is known to 0.1%. (Equation: density = $\frac{\text{mass}}{\text{volume}}$)
- E3.4 The time taken for a marble to fall by a distance known to 4%. (Equation: distance = $\frac{1}{2}gt^2$)
- E3.5 The resistivity of a constantan wire if the resistance is known to 8%, the diameter to 2% and the length to 5%. (Equation: resistivity = $\frac{RA}{L}$, where A is the cross sectional area)
- E3.6 Give the speed (with relative uncertainty) of a car which travels (20.0 ± 0.1) m in (1.3 ± 0.1) s.
- E3.7 Give the frequency (with absolute uncertainty) of a wave which travels at $(320 \pm 15) \text{ms}^{-1}$ and has a wavelength of $(32.2 \pm 0.3) \text{cm}$. (Equation: frequency = $\frac{\text{speed}}{\text{wavelength}}$)
- E3.8 Two resistors, each of 6 Ω resistance (\pm 2%) are connected in series. What is the relative uncertainty of the total resistance? (Total resistance of resistors in series = sum of the resistances.)
- E3.9 I need to put 3.0 kg of flour in a bowl for making some bread. My scales (which read to the nearest 5 g) only go up to 1.0 kg, so I measure out three equal helpings of flour separately, then put them in the bowl. What is the absolute uncertainty of the mass of flour in the bowl afterwards?
- E3.10 The speed of a trolley before and after (1.7 \pm 0.1)s of acceleration is measured. Before the acceleration, the trolley moved (100 \pm 1)mm in (1.78 \pm 0.01)s; after the acceleration it moved the same distance in (0.74 \pm 0.01)s. Calculate the relative uncertainty of the measured acceleration. (Equation: Acceleration = $\frac{\text{change in velocity}}{\text{time of acceleration}}$)