Social-aware Information Dissemination in Mobile Social Networks

M. Phil. Probation Talk Hongxian Sun Supervisor: Dr. C. Wu

BackgroundThe opportunistic contacts among mobile users bring lots of chances for information sharing.

Current Discussions & Motivation

- •System performance discussed theoretically [Niyato2010, Ioannidis2009]
- •Routing Protocols either with or without social awareness [Li2010, Hui2010]
- •Assumption a user will exchange files with another **iff** they are *near*.
- A practical concern
 People always prefer interacting with their social friends.

How will message dissemination behave if the social ties of various strength are considered explicitly?

Our Angel of View

a MSN application with Nusers in an area A

- Metric end-to-end delivery delay between two randomly chosen users
- Structure of Friendship
- > every two users are friends to some extent
- either one is a friend of another or not in this case, the social network of friendship forms a scale-free topology

Hopefully we could identify the role of 'social-hubs' and/or the affect of different social network models.

Related Work I

- Node Mobility Model
- Simple independent and ergodic processes Random Way Point, Random Direction... an exponentially distributed inter-contact time
- Human mobility pattern is complex traces: a power-law fashion inter-contact time [Chaintreau2006]
- Simplification in our model an exponentially distributed inter-contact time
- Rationality
 Mathematical Tractability
 partially consistent with empirical studies [Karagiannis2007]

Related Work II

- Delivery delay E[Td]
- Markov Chain number of copies as states [Groenevelt2005]
- >ODEs are fluid limit of Markov Chains [Zhang2007, Banerjee2008] not accurate because of many assumptions
- Percolation theory assume that message can propagate over a connected component of a network instantaneously [Kong2008] discovers a critical value of node density ρ_c if $\rho < \rho_c$, delay \sim linear(init_dist(S-D)) else delay \sim sublinear(init_dist(S-D))

Related Work III

- Epidemic Spreading in Scale-free Networks mean-field equations
- >rich results on spatial behavior [Pastor-Satorras2000, Nekovee2007] show that an epidemic will never disappear in SIS dynamics (zero threshold for infection rate)
- ➤ limited result on temporal [Barthelemy2004] points out that in BA scale-free network, an epidemic pervades in a cascading fashion, from highest-degree nodes all the way down to lowest-degree ones.
- >No result obtained in terms of unicast delay
- >Starting point of our models

Model Framework

- Friendship

 a scale-free social graph with a power-law degree distribution
- Message Validity
- unlimited validity nodes never drop packets
- Limited validity
 a node may delete a message after carrying it for
 some finite time T
- Mean-field Equations
 govern the population of spreaders and ignorants
 in the system
 proposed by referencing the study on dynamics in
 scale-free networks

Friendship

- Social graph FN(V,E)
- > set of users $V = \{n_1, n_2, ..., n_N\}$
- > set of social connections E_i , $(n_i, n_j) \in E$ iff user n_i is an acquaintance of user n_j
- Degree distribution

$$P(k) = \begin{cases} 0, & k < m, \\ C(m, \gamma)k^{-\gamma}, & m \cdot k < N. \end{cases}$$

m is the smallest possible number of friends γ depicts the skewness of the distribution

Mean-field Equations

i(k,t)

Unlimited validity

s(k,t)

expected node degree in social graph
$$F_N(V,E)$$
 percentage of ignorants of social degree k at time t , $i(t) = \sum_{k=m}^{N-1} i(k,t)$

percentage of spreaders of social degree k at time t, $s(t) = \sum_{k=m}^{N-1} s(k,t)$

$$\begin{split} \frac{di(k,t)}{dt} &= -\lambda k i(k,t) \theta(k,t) & \stackrel{\theta(t) \text{ (or } \theta(k,t))}{\alpha(t)} \\ k &= m,m+1,....N-1. \end{split}$$

probability that a friend of a given ignorant is a spread auxiliary function, $\alpha(t) = \int_0^t \theta(x) dx$

percentage of timed-out nodes of social degree k at time

 $e(t) = \sum_{k=m}^{N-1} e(k,t)$

 $E[T_d]$ the expected end-to-end unicast delay T the timeout value

oLimited validity

while t > T, writing $g(k,t) = i(k,t)\theta(t)$, we have

$$\frac{di(k,t)}{dt} = -\lambda k g(t) \tag{2}$$

$$\frac{ds(k,t)}{dt} = \lambda k(g(t) - g(t-T)) \tag{3}$$

$$\frac{dt}{de(k,t)} = \lambda kg(t-T) \tag{4}$$

 $> \theta(k,t)$ is the probability that a friend of a given ignorant is a spreader. Neglecting degree correlations of F_N, $\theta(k,t) \equiv \theta(t)$ has the form

$$\theta(k,t) \approx \sum_{k'=m}^{N-1} \frac{k'-1}{\langle k \rangle} s(k',t) \tag{5}$$

- \triangleright Eqn. (1) \sim (5) together describes the populations of spreaders and ignorants. **But**
- >Computing each i(k,t) is very difficult if N is very large
- >No intuitive insights can be got from these equations

A Small Transformation

- >Using a variable limit integral $\alpha(t) = \int_0^t \theta(x) dx$
- >In unlimited validity case, an ODE holds

$$\frac{d\alpha(t)}{dt} = \theta(t) = \sum_{k=m}^{N-1} \frac{k-1}{\langle k \rangle} (P(k) - i(k,t))$$

$$= \sum_{k=m}^{N-1} \frac{(k-1)P(k)}{\langle k \rangle} (1 - \frac{N-1}{N} e^{-\lambda k \alpha(t)})$$
(6)

>For the case of limited message validity, we have the DDE

$$t < 0: \alpha(t) = 0,$$
$$d\alpha(t)$$

$$t > T : \frac{d\alpha(t)}{dt} =$$

$$\sum_{k=0}^{N-1} \frac{(k-1)P(k)}{\langle k \rangle} \left(\frac{1}{N} + \frac{N-1}{N} \left(e^{-\lambda k\alpha(t-T)} - e^{-\lambda k\alpha(t)}\right)\right) \tag{7}$$

>Further the expected delay goes like

$$E[T_d] = \int_0^\infty e^{-\lambda \langle k \rangle \alpha(t)} dt \tag{8}$$

>It' s valid for both two cases.

>With Eqn. (7) and (9), we can rigorously prove that the delay increases with γ and decreases with m monotonically.

oThe models

- >many assumptions and simplifications
- >moderate accuracy
- >good enough to capture the performance trend

Empirical Studies

oSteady behavior of delay w.r.t. network size

Figure 1. Expected delivery delay Figure 2. Average number of friends vs. network size. per user vs. N.

oDelay vs. m and γ

Figure 3. $E[T_d]$ vs. m.

Figure 4. $E[T_d]$ vs. γ .

oVerify the theoretical result

Limited Message Validity

The red line corresponds to

expected delay of successful dilveries

delivery ratio

While the blue line is the solution of the DDE.

With a timeout value T slightly larger than the expected delay obtained under the unlimited validity case, we achieve perfect trade-off between successful delivery ratio and power consumption.

Outlook

- Continue on message propagation
- Utimate Goal: give a clear yet vivid picture on how inhomogeneous friendship affects message dissemination
- ➤ A continuous characterization of friendship one possible way to go: a node n_i is willing to exchange message with any other node with probability p_i. In a system {p_i} are samples from some distribution.

nontrivial, nodes are stochastically different