Boosting Generalization in Diffusion-Based Neural Combinatorial Solver via Energy-guided Sampling

Table of Contents

- **Introduction**
- II Related works
- **III** Theoreitical Analysis
- **IV** Proposed Approach
- **V** Numerical Results

How to solve Combinatorial Optimizaion Problems?

Combinatorial Optimizaion Problems

Exact Solver

- Optimal Solution
- Large computation Complexity

Heuristic & Approximation

- Find Feasible Solution faster than exact solver
- Certain level of optimality

- Fast Computation time
- Less Optimality gap

1.Cross-scale problem

2. Cross-problem transfer capability

Adapter Foundation

Figure 4.1: Overview of RouteFinder.

Reference:

RouteFinder Towards Foundation Models for Vehicle Routing Problems https://openreview.net/pdf?id=hCiaiZ6e4G

MOE Foundation

Reference:

MVMoE: Multi-Task Vehicle Routing Solver with Mixture-of-Experts https://arxiv.org/pdf/2405.01029

II. Related works

Generative Model(Diffusion)

parameterized Markov chain trained using variational inference to produce samples matching the data after finite time

$$p_ heta(X_0) := \int p_ heta(X_{0:T}) dX_{1:T}$$

II. Related works

Guided Sampling

Classifier guidance

$$p_{\theta,\phi}(x_t|x_{t+1},y) = Zp_{\theta}(x_t|x_{t+1})p_{\phi}(y|x_t)$$

Classifier-Free guidance

$$\tilde{\boldsymbol{\epsilon}}_{\theta}(\mathbf{z}_{\lambda}, \mathbf{c}) = (1 + w)\boldsymbol{\epsilon}_{\theta}(\mathbf{z}_{\lambda}, \mathbf{c}) - w\boldsymbol{\epsilon}_{\theta}(\mathbf{z}_{\lambda})$$

Training-Free guidance

Figure 2: The directed graphical model considered in this work.

Reference:

Diffusion Models Beat GANs on Image
https://arxiv.org/pdf/2105.05233#page=25&zoom=100,144,96
CLASSIFIER-FREE DIFFUSION GUIDANCE
https://arxiv.org/pdf/2207.12598
Universal Guidance for Diffusion Models
https://arxiv.org/pdf/2302.07121

Figure 1: Overview of energy-guided sampling framework for achieving cross-problem generalization. Left: Pre-trained diffusion model performs denoising on original problem G (TSP). Right: Proposed energy-guided sampling on target problem G' (PCTSP) conducts K rewrite iterations of noise addition and guided denoising.

Combinatorial Optimization problem

TSP

Prize Collecting TSP(PCTSP)

Orienteering Problem

Combinatorial Optimization problem

Prize Collecting TSP(PCTSP)

The goal is to collect as much prize as possible while minimizing the total travel cost.

The prize is only revealed when the node is visited.

if not visit node, each node have penalty

Combinatorial Optimization problem

Orienteering Problem

At each step, the agent chooses a location to visit in order to maximize the collected prize.

The total length of the path must not exceed a given threshold.

CO problem objective Formulation

$$egin{aligned} \mathbf{x}^* &= rg\min_{\mathbf{x} \in \mathcal{X}_{\mathcal{G}}} f(\mathbf{x}; G) \ f(\mathbf{x}; G) &= f_{ ext{cost}}(\mathbf{x}; G) + eta \cdot f_{ ext{valid}}(\mathbf{x}; G) \end{aligned}$$

 $f_{ ext{cost}}(\cdot;G)$: means the solution quality $f_{ ext{valid}}(\cdot;G)$: problem- specific constraints through a penalty coefficient $\mathbf{x} \in \{0,1\}^N$: decision variable

CO problem objective Formulation

$$egin{aligned} \mathbf{x}^* &= rg\min_{\mathbf{x} \in \mathcal{X}_{\mathcal{G}}} f(\mathbf{x}; G) \ f(\mathbf{x}; G) &= f_{\mathrm{cost}}(\mathbf{x}; G) + eta \cdot f_{\mathrm{valid}}(\mathbf{x}; G) \end{aligned}$$

Proposition A.5 (Prize Collecting TSP (PCTSP)). Given a complete graph G = (V, E) with edge weights $w : E \to \mathbb{R}^+$, vertex prizes $r : V \to \mathbb{R}^+$, penalties $p : V \to \mathbb{R}^+$, and prize threshold R, find $\mathbf{x} \in \{0,1\}^{|E|}$, $\mathbf{y} \in \{0,1\}^{|V|}$ that minimizes:

$$f(\mathbf{x}, \mathbf{y}; G) = f_{cost}(\mathbf{x}, \mathbf{y}; G) + \beta \cdot f_{valid}(\mathbf{x}, \mathbf{y}; G)$$

$$where \quad f_{cost}(\mathbf{x}, \mathbf{y}; G) = \sum_{e \in E} w_e x_e + \sum_{v \in V} p_v (1 - y_v)$$

$$f_{valid}(\mathbf{x}, \mathbf{y}; G) = \max(0, R - \sum_{v \in V} r_v y_v)$$

 $f_{\mathrm{cost}}(\cdot;G): ext{meausres the solution quality}$

 $f_{\mathrm{valid}}(\cdot;G):$ problem- specific constraints through a penalty coefficient

 $\mathbf{x} \in \{0,1\}^N$: decision variable

CO problem objective Formulation

Proposition A.6 (Orienteering Problem (OP)). Given a complete graph G = (V, E) with edge weights $w: E \to \mathbb{R}^+$, vertex scores $s: V \to \mathbb{R}^+$, and budget B, find $\mathbf{x} \in \{0,1\}^{|E|}$, $\mathbf{y} \in \{0,1\}^{|V|}$ that minimizes:

$$egin{aligned} \mathbf{x}^* &= rg\min_{\mathbf{x} \in \mathcal{X}_{\mathcal{G}}} f(\mathbf{x}; G) \ f(\mathbf{x}; G) &= f_{ ext{cost}}(\mathbf{x}; G) + eta \cdot f_{ ext{valid}}(\mathbf{x}; G) \end{aligned}$$

$$f(\mathbf{x}, \mathbf{y}; G) = f_{cost}(\mathbf{x}, \mathbf{y}; G) + \beta \cdot f_{valid}(\mathbf{x}, \mathbf{y}; G)$$

$$where \quad f_{cost}(\mathbf{x}, \mathbf{y}; G) = -\sum_{v \in V} s_v y_v$$

$$f_{valid}(\mathbf{x}, \mathbf{y}; G) = \max(0, \sum_{e \in E} w_e x_e - B)$$

 $f_{ ext{cost}}(\cdot;G): ext{meausres the solution quality}$

 $f_{\mathrm{valid}}(\cdot;G):$ problem- specific constraints through a penalty coefficient

 $\mathbf{x} \in \{0,1\}^N$: decision variable

Analysis transfer of Combinatorial Optimization problem (PCTSP)

Definition 4.1 (Marginal Decrease). For a non-empty subset of nodes $S \subseteq V$, let TSP(S) denote the cost of the optimal TSP tour visiting all nodes in S. The marginal decrease of a subset S is defined as

$$\Delta(S) = \mathrm{TSP}(V) - \mathrm{TSP}(V \setminus S).$$

The marginal decrease measures the cost reduction of not visiting a subset of nodes S, which helps quantify the difference between the optimal tours. Take PCTSP as an example. If for any non-empty subset of nodes $S \subseteq V$, the penalty of not visiting the nodes in S satisfies $\sum_{i \in S} p_i \ge \Delta(S)$, then PCTSP and TSP share the same optimal tours. Based on this notion, we formalize the structural similarities in the following theorem.

TSP(V): cost of the optimal TSP

TSP(V\S): cost of the optimal TSP except for subset S

\Delta(S): cost reduction TSP except for subset S

Analysis transfer of Combinatorial Optimization problem (PCTSP)

Under these assumptions, we compare the optimal solutions of PCTSP/OP with that of TSP as follows.

(i) For PCTSP, if for any non-empty subset of nodes $S \subseteq V$, the penalty of not visiting the nodes in S satisfies

$$\sum_{i \in S} p_i \ge \Delta(S),$$

then PCTSP and TSP share the same optimal solutions, since not visiting any subset of nodes would result in a higher total cost. We can thus formulate the optimal cost (tour length + penalty) of PCTSP as

$$PCTSP(V) = TSP(V) + \min_{S \subseteq V} \sum_{i \in S} p_i - \Delta(S).$$
(10)

And we have the optimal solutions of PCTSP being the tours in $TSP(V \setminus S)$ with

$$S \in \arg\min_{S \subseteq V} \sum_{i \in S} p_i - \Delta(S),$$

completing the proof for PCTSP.

Analysis transfer of Combinatorial Optimization problem

Figure 2: Illustration of policy optimization trajectories on VRP with varying difficulty levels - (a)(b)(d) easy and (c)(e) hard, and different constraint handling schemes - (a) feasibility masking, (b)(c) Lagrangian multiplier, and (d)(e) our PIP. The orange-filled circle denotes the feasible policy space Π_F , while the dotted frame represents the actual search space of the neural policies π_θ .

Probabilistic Modeling for CO

$$p_{\theta,\phi}(x_t|x_{t+1},y) = Zp_{\theta}(x_t|x_{t+1})p_{\phi}(y|x_t)$$

$$\mathcal{E}(\cdot|;\mathcal{G}) \doteq |y - f(\cdot;G)|$$

$$p(y|\mathbf{x};G) = \frac{\exp\left(-\frac{1}{\tau}\mathcal{E}(y,\mathbf{x};G)\right)}{\mathcal{Z}}, \text{ where } \mathcal{Z} = \sum_{\mathbf{x}} \exp\left(-\frac{1}{\tau}\mathcal{E}(y,\mathbf{x};G)\right),$$

tau: controls the temperature of system

Z: partition function for pmf condition

x: optimal solution

$$L(\theta) = \mathbb{E}_{G \sim \mathcal{G}}[-\log p_{\theta}(\mathbf{x}|y_G^*, G)].$$

Discrete Diffusion Generation Modeling

Loss

$$L(\theta) = \mathbb{E}_{G \sim \mathcal{G}}[-\log p_{\theta}(\mathbf{x}_{0}|G)]$$

$$\leq \sum_{t=2}^{T} \mathbb{E}_{q(\mathbf{x}_{t}|\mathbf{x}_{0})} \left[D_{KL}[q(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0})||p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t},G)] - \log p_{\theta}(\mathbf{x}_{0}|\mathbf{x}_{1},G) \right] + C.$$

Discrete Diffusion Generation Modeling(DIFUSCO)

$$q(x_{1:T}|x_0) = \Pi_{t=1}^T q(x_t|x_{t-1}) \qquad \qquad q(\mathbf{x}_t|\mathbf{x}_{t-1}) = \operatorname{Cat}(\mathbf{x}_t; \mathbf{p} = \widetilde{\mathbf{x}}_{t-1}\mathbf{Q}_t), \qquad \qquad \text{forward process}$$

$$p_{\theta}(x_{0:T}|G) = p(x_T)\Pi_{t=1}^T p_{\theta}(x_{t-1}|x_t, G) \quad p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t, G) = \sum_{\widetilde{\mathbf{x}}_0} q(\mathbf{x}_{t-1}|\mathbf{x}_t, \widetilde{\mathbf{x}}_0) p_{\theta}(\widetilde{\mathbf{x}}_0|\mathbf{x}_t, G). \qquad \text{backward process}$$

$$q(\mathbf{x}_{t}|\mathbf{x}_{0}) = \operatorname{Cat}(\mathbf{x}_{t}; \mathbf{p} = \widetilde{\mathbf{x}}_{0}\overline{\mathbf{Q}}_{t}),$$

$$q(\mathbf{x}_{t-1}|\mathbf{x}_{t}, \mathbf{x}_{0}) = \operatorname{Cat}\left(\mathbf{x}_{t-1}; \mathbf{p} = \frac{\widetilde{\mathbf{x}}_{t}\mathbf{Q}_{t}^{\top} \odot \widetilde{\mathbf{x}}_{0}\overline{\mathbf{Q}}_{t-1}}{\widetilde{\mathbf{x}}_{0}\overline{\mathbf{Q}}_{t}\widetilde{\mathbf{x}}_{t}^{\top}}\right), \qquad \mathbf{Q}_{t} = \begin{bmatrix} (1-\beta_{t}) & \beta_{t} \\ \beta_{t} & (1-\beta_{t}) \end{bmatrix}, \quad \beta_{t} \in [0, 1],$$

Energy-guided Sampling for Cross-problem

$$abla_x \log p(x|y) =
abla_x \log p(x) +
abla_x \log p(y|x)$$

$$\underbrace{\nabla_{\mathbf{x}_t} \log p_{\theta}(\mathbf{x}_t | y_{G'}^*, G')}_{\text{posterior score}} = \underbrace{\nabla_{\mathbf{x}_t} \log p_{\theta}(\mathbf{x}_t | G')}_{\text{pre-trained prior score}} + \underbrace{\nabla_{\mathbf{x}_t} \log p_{t}(y_{G'}^* | \mathbf{x}_t, G')}_{\text{energy-guided score}}.$$

Energy-guided Sampling for Cross-problem

$$abla_x \log p(x|y) =
abla_x \log p(x) +
abla_x \log p(y|x)$$

$$\underbrace{\nabla_{\mathbf{x}_t} \log p_{\theta}(\mathbf{x}_t | y_{G'}^*, G')}_{\text{posterior score}} = \underbrace{\nabla_{\mathbf{x}_t} \log p_{\theta}(\mathbf{x}_t | G')}_{\text{pre-trained prior score}} + \underbrace{\nabla_{\mathbf{x}_t} \log p_{t}(y_{G'}^* | \mathbf{x}_t, G')}_{\text{energy-guided score}}.$$

$$\nabla_{\mathbf{x}_t} \log p_t(y_{G'}^* | \mathbf{x}_t, G') \propto -\nabla_{\mathbf{x}_t} \mathcal{E}(y_{G'}^*, \mathbf{x}_0(\mathbf{x}_t); G'), \qquad \mathcal{E}(\cdot | ; \mathcal{G}) \doteq |y - f(\cdot ; G)|$$

Energy-guided Sampling for Cross-problem

$$abla_x \log p(x|y) =
abla_x \log p(x) +
abla_x \log p(y|x)$$

$$\underbrace{\nabla_{\mathbf{x}_t} \log p_{\theta}(\mathbf{x}_t | y_{G'}^*, G')}_{\text{posterior score}} = \underbrace{\nabla_{\mathbf{x}_t} \log p_{\theta}(\mathbf{x}_t | G')}_{\text{pre-trained prior score}} + \underbrace{\nabla_{\mathbf{x}_t} \log p_{t}(y_{G'}^* | \mathbf{x}_t, G')}_{\text{energy-guided score}}.$$

$$\nabla_{\mathbf{x}_t} \log p_t(y_{G'}^* | \mathbf{x}_t, G') \propto -\nabla_{\mathbf{x}_t} \mathcal{E}(y_{G'}^*, \mathbf{x}_0(\mathbf{x}_t); G'), \qquad \mathcal{E}(\cdot | ; \mathcal{G}) \doteq |y - f(\cdot ; G)|$$

$$p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t, y_{G'}^*, G') \propto p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t, G')p(y_{G'}^*|\mathbf{x}_t, G'),$$

$$p(y_{G'}^*|\mathbf{x}_t, G') = \exp\left(-\frac{1}{\tau}\nabla_{\mathbf{x}_t} f\left(\widetilde{\mathbf{x}}_0(\mathbf{x}_t); G'\right)\right).$$

IV. Proposed Approach

Algorithm 1: Energy-guided Diffusion Sampling for Cross-problem Transfer

```
Input:
 1: p_{\theta}: Pre-trained diffusion model
 2: G': Target problem instance
 3: T: Number of diffusion steps
 4: \tau: Energy guidance temperature
 5: K: Number of re-inference iterations
Output: Optimal solution \mathbf{t}_K for problem instance G'
 6: Initialize \mathbf{x}_T with random binary values;
 7: for k = 1 to K do
        Initialize \mathbf{x}_T with previous best solution \mathbf{t}_{k-1}
        for t = T to 1 do
            Compute p_{\theta}(\mathbf{x}_t|G') from pre-trained model;
10:
            Compute energy gradient: \nabla_{\mathbf{x}_t} f(\widetilde{\mathbf{x}}_0(\mathbf{x}_t); G');
11:
            Compute p_t(y_{G'}^*|\mathbf{x}_t, G') \propto \exp(-\nabla_{\mathbf{x}_t} f/\tau);
12:
            Compute guided posterior: p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t, y_{G'}^*, G') \propto
13:
            p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t, G')p_t(y_{G'}^*|\mathbf{x}_t, G');
            Update next state with Bernoulli Sampling:
14:
            \mathbf{x}_{t-1} \sim \operatorname{Cat}\left(\mathbf{x}_{t-1}; p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t}, y_{G'}^{*}, G')\right);
        end for
15:
        Decode x_0 to the best solution t_k;
17: end for
18: return \mathbf{t}_K
```

V. Numerical Results

	Method	PCTSP-20		PCTSP-50		PCTSP-100		2			
		Gap ↓	Time ↓	Gap ↓	Time ↓	Gap ↓	Time ↓	Avg Gap↓	Training-based	Training Time \downarrow	
OR	Gurobi	0.00%	3.10s	_	_	_	_	_	_	_	
	OR-Tools	2.13%	12.31s	4.85%	2.02m	10.33%	5.84m	5.77%	_	_	
	ILS (C++)	1.07%	2.13s	0.00%	18.30s	0.00%	56.11s	0.36%	_	_	
	ILS (Python 10x)*	63.23%	3.05s	148.05%	4.70s	209.78%	5.27s	140.35%	_	_	
Auto-reg*	AM (Greedy)	2.88%	0.02s	17.95%	0.06s	29.24%	0.14s	16.69%	1	3.5 days	
	AM (Sampling)	2.54%	2.43s	14.58%	7.08s	22.20%	15.13s	13.11%	✓	3.5 days	
	MDAM (Greedy)	11.76%	41.10s	24.73%	1.31m	30.07%	1.96m	22.19%	✓	4.3 days	
	MDAM (Beam Search)	5.88%	2.70m	18.81%	4.77m	26.09%	6.97m	16.93%	✓	4.3 days	
	AM (ASP)	12.05%	0.03s	10.34%	0.08s	11.56%	0.18s	11.32%	✓	1.1 days	
	AM-FT (Sampling)	1.02%	2.51s	14.11%	8.02s	25.19%	18.21s	13.44%	✓	4.9 days	
Diff.	DIFUSCO (TSP)	19.21%	1.04s	18.61%	1.69s	43.42%	2.34s	27.08%	×	1.5 days	
	DIF-guide (Ours)	4.83%	4.58s	<u>7.58%</u>	6.37s	18.1%	10.79s	<u>10.17%</u>	×	0 days	

Table 1: Comprehensive evaluation of cross-scale generalization capabilities across different solver categories on PCTSP instances. Comparison includes exact solvers (Gurobi), OR-based heuristics (OR-Tools, ILS), autoregressive models (AM, MDAM, AM-ASP, AM-FT), and diffusion-based approaches (DIFUSCO, DIF-guide). Performance metrics include optimality gap, inference time, and training time. The best results marked with * are reported from (Wang et al. 2024). The proposed DIF-guide achieves competitive performance while requiring no training.

V. Numerical Results

Method		PCTSP-2	0		PCTSP-5	0	PCTSP-100		
	Cost	Gap	Time	Cost	Gap	Time	Cost	Gap	Time
DIFUSCO	3.78	19.21%	1.04s	5.20	15.97%	1.35s	8.14	35.61%	2.01s
DIF-Guide (Ours)	3.32	4.83%	5.58s	4.69	3.51%	7.51s	6.67	13.32%	12.20s

Table 2: Zero-shot cross-problem transfer performance comparison between baseline DIFUSCO and our DIF-Guide approach on PCTSP instances. Results show solution cost, optimality gap, and computation time across three problem scales (20, 50, and 100 nodes). The energy-guided sampling uses 50 iterations with greedy decoding strategy.

Figure 2: Trade-off between performance and inference time of energy-guided sampling with respect to rewriting rounds.