Math 532 Notes

Jake Bailey

April 3, 2020

Contents

1	Compact Subspaces of the Real Line $<2020-03-30~Mon~09:03>$	>	1
2	Compact Subsets of the Real Line $<2020\text{-}04\text{-}01$ Wed $08\text{:}59>$	3	

- 3 Limit Point Compactness <2020-04-01 Wed 09:37> 4
- 4 More Limit Point Compactness < 2020-04-03 Fri 09:07> 4

1 Compact Subspaces of the Real Line $<2020-03-30 \; Mon \; 09:03>$

Theorem 1.1. The extreme value theorem: Let $f: X \to Y$ be continuous, where Y is an ordered set in the order topology. If X is compact, then $\exists c, d \in X$ such that $f(x) \leq f(x) \leq f(d)$.

Proof. Assume $f: X \to Y$ be continuous, X compact, Y ordered w/ the order topology. Let A = f(X). The continuous image of a compact space is itself is compact, so A is compact. Claim that A has a largest element M and a smallest element m. I.e. $m, M \in A$, so $\exists c, d \in X$ such that f(c) = m, f(d) = M.

If A has no largest element, then we can build an open cover which has no finite subcover: $\{(-\infty, a) \mid a \in A\}$ is an open cover of A. But A is compact, so it has a finite subcovering, say $\{(-\infty, a_1), \ldots, (-\infty, a_n)\}$. Let $a = \max\{a_1, \ldots, a_n\}$. This $a \in A$ is not a member of any $(-, a_i)$. This is a contradiction, since these sets were assumed to be a cover. So A has a largest element. The argument for a smallest element is similar.

Definition 1.1. Let (X, d) be a metric space. Let $A \subseteq X$, $A \neq \emptyset$. For $x \in X$ define $d(x, A) = \inf\{d(x, y) \mid y \in A\}$ as the distance from x to A.

Note: for fixed A this is a continuous function of x. Next, we want to find a sort of diameter of containment of the set A. We can do so by finding the supremum of the distance between any two points in the set.

Definition 1.2. Let (X,d) be a metric space, $A \subseteq X$, A bounded. The diameter of A is: $diamA = sup\{d(x,y) \mid x,y \in A\}$.

Lemma 1.1. The Lebesgue Number Lemma: Let A be an open covering of (X,d), a metric space. If X is compact, then $\exists \delta > 0$, called a Lebesgue number, such that every subset of X with diameter less than δ is a subset of some member of A.

Note: δ is the Lebesgue number of A.

Proof. Let A be an open covering of (X, d), a compact metric space. If $X \in A$, then any positive number will work as a Lebesgue number (and we're done). So, now we assume $X \notin A$.

Choose a finite subcollection of A which will still cover X (since X is compact), say $\{A_1, \ldots, A_n\}$. Each A_i is open, so its complement must be closed. Let $C_i = X \setminus A_i$ be these closed complements.

Define $f: X \to \mathbb{R}$ as $f(x) = 1/n \sum_{i=1}^{n} d(x, C_i)$. Essentially, we're taking the average distance of the closed sets to X. First, we claim that the average distance is not zero. Let $x \in X$, and choose A_i which contains x. Choose $\epsilon > 0$ so that $B_d(x, \epsilon) \subseteq A_i$. Thus, $d(x, C_i) \ge \epsilon$. So $f(x) \ge \epsilon$ /n.

Now, we have that f is a continuous map from a compact set to an ordered one, so by the extreme value theorem, it has both a minimum and a maximum. Call the minimum δ , and claim that δ is the Lebesgue number of A.

Let $B \subseteq X$ with diam $B < \delta$. Let $x_o \in B$. Then, $B \subseteq B_d(x_0, \delta)$. Now, $\delta \leq f(x_0) \leq d(x_0, C_m)$ where $d(x_0, C_m)$ is the largest of all the distances from x_0 to each C_i .

So, $B \subseteq B_d(X_0, \delta) \subseteq A_m = X \setminus C_m$. Thus, δ is the Lebesgue number of A.

Definition 1.3. A function $f:(X,d_x) \to (Y,d_y)$ between metric spaces is continuous at $x_0 \in X$ if $\forall \epsilon > 0, \exists \delta > 0$ such that $\forall y \in X, d_x(x_0,y) < \delta \Rightarrow d_y(f(x_0),f(y)) < \epsilon$. This is a pointwise condition, where δ depends on both ϵ and x_0 .

Definition 1.4. A function $f:(X,d_x)\to (Y,d_y)$ between metric spaces is said to be uniformly continuous if $\forall \epsilon>0, \exists \delta>0, \forall x_0,x_1\in X$ such that $d_x(x_0,x_1)<\delta\Rightarrow d_y(f(x_0),f(x_1))<\epsilon$.

Theorem 1.2. The Uniform Continuity Theorem: If $f: X \to Y$ is a continuous map from a compact metric space to a metric space, then that map is uniformly continuous.

Proof. Let $\epsilon > 0$, cover y by sets $B(y, \epsilon/2)$ for $y \in Y$. Cover X by $A = \{f^{-1}(B(y, \epsilon/2)) \mid y \in Y\}$. Let δ be the Lebesgue number of A. If $x_1, x_2 \in X$, and the $d(x_1, x_2) < \delta$, then diam $\{x_1, x_2\} < \delta$, and this set is a subset of one of the covering elements in A, i.e. $\{x_1, x_2\} \subseteq f^{-1}(B(y, \epsilon/2))$ for some $y \in Y$. Then, $d_y(f(x_1), f(x_2)) \le d(f(x_1), y) + d(f(x_2), y) < \epsilon/2 + \epsilon/2 = \epsilon$.

2 Compact Subsets of the Real Line <2020-04-01Wed~08:59>

Definition 2.1. $x \in X$ is isolated if $\{x\}$ is open in X.

Definition 2.2. A set A is countable if it is finite or countably infinite (i.e. there exists a bijection from the set to the naturals).

Theorem 2.1. Let X be a nonempty compact Hausdorff space. If X has no isolated points, then X is uncountable.

Proof. Step 1: Show that given $U \subseteq X$, open, nonempty, and taking $x \in X$, $\exists V \subseteq U$, nonempty, open, such that $x \notin \overline{V}$. Let $y \in U$, $y \notin x$. If $x \in U$ since x is not isolated, $U \notin X$, so $\exists y \in U, y \neq x$. If $x \notin U$, y exists since $U \neq \emptyset$.

Choose W_1, W_2 open such that $x \in W_1, y \in W_2$. Then $V = W_2 \cap U$ is the desired open set.

Step 2: Show that a function $f: \mathbb{Z}_+ \to X$ cannot be surjective. Then it follows that X is uncountable. Let $x_n = f(n)$. Apply step 1 with $x_1 = x, U = X_1$ to obtain nonempty open V_1 such that $x_1 \notin \overline{V}_1$. We are going to apply this recursively, choosing $U_{n+1} = V_n$. In general, $V_n \subseteq V_{n-1}, x_n \notin \overline{V}_n$. We have $\overline{V}_1 \overline{V}_2 \dots$, etc. Thus we have a descending sequence of nonempty closed sets.

Because X is compact, $\{\overline{V}_n \mid n \in \mathbb{N}\}$ is a collection of closed sets with the Finite Intersection Property, and $\exists x \in \cap_n \overline{V}_n$. Then, $\forall n, x \neq x_n$ since $x \in \overline{V}_n$ and $x_n \notin \overline{V}_n$.

One corollary of this: Every closed interval in \mathbb{R} is uncountable.

3 Limit Point Compactness < 2020-04-01 Wed 09:37>

Definition 3.1. A space X is said to be limit point compact if every infinite subset of X has a limit point.

Theorem 3.1. Compactness implies limit point compactness.

Proof. Let X be compact. Suppose $A \subseteq X$ has no limit point (i.e. A is closed, since it contains all (zero) of its limit points). For each $a \in A$, choose open U_a such that $a \in U_a$, and $(U_a \setminus \{a\}) \cap A = \emptyset$. Notice $\{X \setminus A\} \cup \{U_a \mid a \in A\}$ is an open cover of X, so it has a finite subcover (because X is compact). Notice $X \setminus A$ does not intersect A, each U_a contains only one point of A, and there can only be finitely many of them (finite subcover), so A must be finite. Thus, for a subset of X to not have a limit point, it must be finite, and all infinite subsets of X must have a limit point.

Note that the converse (limit point compactness implies compactness) is not true! Example: Let Y be a two point set in the indiscrete topology. Consider $X = \mathbb{Z}_+ \times Y$. Every nonempty subset of X has a limit point. But, $U_n = \{n\} \times Y$ is an open cover with a finite subcover.

4 More Limit Point Compactness <2020-04-03 Fri 09:07>

Definition 4.1. Let X be a well-ordered. Given $\alpha \in X$, let S_{α} denote $S_{\alpha} = \{x \mid x \in X, x < \alpha\}$. This is the section of X by α .

Lemma 4.1. There exists a well-ordered set A having largest element Ω so each section S_{Ω} of A by Ω is uncountable, but every other section of A is countable.

Proof. Begin with an uncountable well ordered set B. Let $C = \{1, 2\} \times B$ in the dictionary order topology. Some section of C has to be uncountable. any $1 \times b$ for $b \in B$ is less than any $2 \times b$. A section by $\alpha = 2 \times b$ is uncountable. Let Ω be the least element of X such that the section of C by Ω is uncountable. A is the section of C together with Ω .

 S_{Ω} is uncountable, well ordered, and every other section is countable, so it is called the minimum uncountable well ordered set. Denote $A = S_{\Omega} \cup \{\Omega\}$ by \overline{S}_{Ω} .

Theorem 4.1. If A is a countable subset of S_{Ω} , then A has an upper bound in S_{Ω} .

Is S_{Ω} compact? Take S_{α} for $\alpha \in A$. S_{Ω} has no largest element, so no finite subcover of this cover. So S_{Ω} is not compact. S_{Ω} is limit point compact: Let $A \subseteq S_{\Omega}$ be infinite. Let $B \subseteq A$ be countably infinite. Let b be an upper bound of B. So $B \subseteq [a_o, b]$ where $a_0 = \min S_{\Omega}$. Since S_{Ω} has a least upper bound, $[a_0, b]$ is compact. So B has a limit point in $[a_0, b]$. Then x is also a limit point of A. So S_{Ω} is limit point compact.

Definition 4.2. Let $(x_n)_{n \in \mathbb{Z}_+}$ be a sequence of elements of the topological space X. Let $\$n_1 < n_2 < \ldots < n_i < \ldots \$$ be an increasing sequence of positive integers. Then $(y_i)_{n \in \mathbb{Z}_+}$ defined as $y_i = x_{n_i}$ is a subsequence of (x_n) .

X is sequentially compact if every sequence of points of X has a convergent subsequence.

Theorem 4.2. Let X be a metrizable space. The following are equivalent:

- 1. X is compact.
- 2. X is limit point compact.
- 3. X is sequentially compact.

Proof. 1. implies 2): done above!

2. implies 3): Assume X is limit point compact. Let $(x_n)_{n\in\mathbb{Z}_+}$ be a sequence of elements of X.