Production Cost Models

Sourabh Dalvi

Production Cost Models (PCM)

- Unit Commitment + Economic
 Dispatch models
- Scheduling problem to meet demand while minimizing cost
- Scheduling horizon 24- 48 hr
 Look ahead 24 hr
- Various formulations:
 - \circ UC + DC OPF (B- θ)
 - UC + Contingency Constraint
 - Stochastic UC
 - UC + Startup/ Shutdown trajectory
 - Linearized UC

Main Components of PCM

- Modeling Startup/ Shutdown
- Satisfying operating constraints
 - Min up/down-time
 - Ramping
- Calculating non-linear cost (quadratic)
- Meeting forecasted Demand on an hourly /sub-hourly time scale

Drawbacks

- Deal with at least one binary variable for each unit
- Cost function could be piecewise linear or quadratic
- Assumption of basic models
 - Instantaneous Start/Stop
 - Simplified operation of Plants
 - Perfect foresight
 - Ignore system inertia
 - o Ignore complex AC power flow dynamics

Commonly used hack

- Model Piecewise Linear Cost without using binary variables, as total variable cost (generation cost) is always increasing
- Using last day's commitment for mipstart reduces solution time by more than 50%
- Fixing commitment of large units (Nuclear and Coal)
- Provide Branching hierarchy
 - a. Cheapest unit first (Add small noise to cost, if there are multiply similar units)
 - b. Time
- Decomposing the problem according to balancing areas where transmission constraints can be relaxed and impose constraints on the power transmitted between balancing regions
- Solve only specific hours of the day with a representative scenarios set.

Reformulation of the problem

Compact

- Increases the searching speed
- Fewer constraints
- Compact formulation may be less tight

Tight

- Reduces the search space
- Fewer binary variables or more restricted variables
- Tighter formulation may be less compact

Addition Components:

- Compact formulation for different types of Start-up (hot, warm, cold)
- Tight Start/Shutdown constraints (no need for binary variables for start/shutdown)
- Initial Condition constraints for Minimum Up/Down time, ramping & commitment

Flexibility Analysis of CC units

100%

Increase in Ramp rate

50% Faster Start-up Ramp

- How does the unit operate after the upgrades?
- Does O&M Cost Change ?

20%

Increase in Maximum Generation Level

15 % Decrease in Minimum Generation Level

- Is it Committed more often?
- How much of the upgrades does it use?

30%

Decrease in Min-up and Min-down time

20 % Efficient Start-up (Hot Start only)

- How does its revenue change?
- Are there any cost savings for ISO?

Combined Cycle Units

- Most models either consider them as one combined unit or n separate units
- Generally, CC units have multiple modes of operation depending on the type of the unit
 - Running only the CT's
 - Running some combination of available CT's and ST
- So the Steam is units always need to be turned on after at least one CT is online
- Modeling these operation modes needs
 - o All units should be separate
 - Adding constraints to mimic the modes of operation

C1, C2 - Combustion turbines S - Steam Turbine

Operation of Traditional 2-on-1 Combined Cycle Unit

Combined Cycle Modeling

If we use the current set of binary variables we can model this behaviour

$$U^{S} \le U^{C1} + U^{C2}$$

- Here variable 'u' is binary variable that indicates the status of the unit
- This still insufficient to represent the time lag to bring the ST online

$$V^{S} \le U^{C1} + U^{C2}$$

 $W^{S} \le U^{C1} + U^{C2} + W^{C1} + W^{C2}$

- v^s binary variable that indicates the start-up decision for ST
- o w^s binary variable that indicates the shutdown decision for ST
- Model CC as one unit and not have accurate representation of the start/shutdowns