

Low Voltage, 1.15 V to 5.5 V, 4-Channel, Bidirectional Logic Level Translator

Data Sheet ADG3304

FEATURES

Bidirectional level translation Operates from 1.15 V to 5.5 V Low quiescent current < 5 μ A No direction pin Qualified for automotive applications

APPLICATIONS

SPI, MICROWIRE level translation
Low voltage ASIC level translation
Smart card readers
Cell phones and cell phone cradles
Portable communications devices
Telecommunications equipment
Network switches and routers
Storage systems (SAN/NAS)
Computing/server applications
GPS
Portable POS systems
Low cost serial interfaces

GENERAL DESCRIPTION

The ADG3304 is a bidirectional logic level translator that contains four bidirectional channels. It can be used in multivoltage digital system applications, such as data transfer, between a low voltage digital signal processing controller and a higher voltage device using SPI and MICROWIRE interfaces. The internal architecture allows the device to perform bidirectional logic level translation without an additional signal to set the direction in which the translation takes place.

The voltage applied to $V_{\rm CCA}$ sets the logic levels on the A side of the device, while $V_{\rm CCY}$ sets the levels on the Y side. For proper operation, $V_{\rm CCA}$ must always be less than $V_{\rm CCY}$. The $V_{\rm CCA}$ -compatible logic signals applied to the A side of the device appear as $V_{\rm CCY}$ -compatible levels on the Y side. Similarly, $V_{\rm CCY}$ -compatible logic levels applied to the Y side of the device appear as $V_{\rm CCA}$ -compatible logic levels on the A side.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

The enable pin (EN) provides three-state operation on both the A side and the Y side pins. When the EN pin is pulled low, the terminals on both sides of the device are in the high impedance state. The EN pin is referred to the $V_{\rm CCA}$ supply voltage and driven high for normal operation.

The ADG3304 is available in compact 14-lead TSSOP, 12-ball WLCSP, and 20-lead LFCSP. It is guaranteed to operate over the 1.15 V to 5.5 V supply voltage range.

PRODUCT HIGHLIGHTS

- 1. Bidirectional level translation.
- 2. Fully guaranteed over the 1.15 V to 5.5 V supply range.
- 3. No direction pin.
- Available in 14-lead TSSOP, 12-ball WLCSP, and 20-lead LFCSP.

Data Sheet

ADG3304

TABLE OF CONTENTS

Features	Theory of Operation	17
Applications1	Level Translator Architecture	17
Functional Block Diagram	Input Driving Requirements	17
General Description	Output Load Requirements	17
Product Highlights	Enable Operation	17
Revision History	Power Supplies	17
Specifications	Data Rate	18
Absolute Maximum Ratings	Applications	19
ESD Caution6	Layout Guidelines	19
Pin Configurations and Function Descriptions7	Outline Dimensions	20
Typical Performance Characteristics	Ordering Guide	21
Test Circuits	Automotive Products	21
Terminology		
REVISION HISTORY		
4/16—Rev. D to Rev. E	12/05—Rev. A to Rev. B	
Changed CP-20-1 to CP-20-6 Throughout	Changes to Table 1	
Changes to Figure 3 and Table 3	Changes to Table 2	
Moved Figure 4 8	Changes to Figure 3 and Table 4 Updated Outline Dimensions	
Updated Outline Dimensions	Changes to Ordering Guide	
Changes to Ordering Guide	Changes to Ordering Guide	21
4/13—Rev. C to Rev. D	6/05—Rev. 0 to Rev. A	
Changes to Figure 3 and Table 4	Added LFCSP Package	Universal
12/12—Rev. B to Rev. C	1/05—Revision 0: Initial Version	
Changes to Table 1		
Changes to Table 26		
Changes to V _{CCY} Description, Table 3 and Table 47		
Changes to Ordering Guide		

SPECIFICATIONS

 $V_{\text{CCY}} = 1.65 \text{ V to } 5.5 \text{ V}, V_{\text{CCA}} = 1.15 \text{ V to } V_{\text{CCY}}, GND = 0 \text{ V}, T_{\text{A}} = 25^{\circ}\text{C}. \text{ All specifications } T_{\text{MIN}} \text{ to } T_{\text{MAX}}, \text{ unless otherwise noted.}$

Table 1.

			В	Versior	1 ¹	
Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
LOGIC INPUTS/OUTPUTS						
A Side						
Input High Voltage ²	V _{IHA}	$V_{CCA} = 1.2 \text{ V} + 0.1 \text{ V} / -0.05 \text{ V}$	$V_{\text{CCA}} \times 0.88$			V
		$V_{CCA} = 1.8 \text{ V} \pm 0.15 \text{ V}$	$V_{\text{CCA}} \times 0.72$			V
		$V_{CCA} = 2.5 \text{ V} \pm 0.2 \text{ V}$	1.7			V
		$V_{CCA} = 3.3 \text{ V} \pm 0.3 \text{ V}$	2.2			V
		$V_{CCA} = 5 V \pm 0.5 V$	$V_{\text{CCA}} \times 0.7$			V
Input Low Voltage ²	V _{ILA}	$V_{CCA} = 1.2 \text{ V} + 0.1 \text{ V} / -0.05 \text{ V}$			$V_{\text{CCA}} \times 0.35$	V
		$V_{CCA} = 1.8 \text{ V} \pm 0.15 \text{ V}$			$V_{CCA} \times 0.35$	٧
		$V_{CCA} = 2.5 V \pm 0.2 V$			0.7	V
		$V_{CCA} = 3.3 \text{ V} \pm 0.3 \text{ V}$			0.8	V
		$V_{CCA} = 5 V \pm 0.5 V$			$V_{CCA} \times 0.3$	٧
Output High Voltage	V _{OHA}	$V_Y = V_{CCY}$, $I_{OH} = 20 \mu A$, see Figure 29	$V_{CCA} - 0.4$			V
Output Low Voltage	V _{OLA}	$V_Y = 0 \text{ V}, I_{OL} = 20 \mu\text{A}, \text{ see Figure 29}$			0.4	V
Capacitance ²	CA	f = 1 MHz, EN = 0, see Figure 34		9		рF
Leakage Current	I _{LA, Hi-Z}	$V_A = 0 \text{ V/V}_{CCA}$, EN = 0, see Figure 31			±1	μA
Y Side	15.97.11.2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Input High Voltage ²	V _{IHY}	$V_{CCY} = 1.8 \text{ V} \pm 0.15 \text{ V}$	$V_{CCY} \times 0.67$			V
pacg veitage		$V_{CCY} = 2.5 \text{ V} \pm 0.2 \text{ V}$	1.7			V
		$V_{CCY} = 3.3 \text{ V} \pm 0.3 \text{ V}$	2			v
		$V_{CCY} = 5 \text{ V} \pm 0.5 \text{ V}$	$V_{CCY} \times 0.7$			v
Input Low Voltage ²	VILY	$V_{CCY} = 1.8 \text{ V} \pm 0.15 \text{ V}$	VCC1 / U.7		$V_{CCY} \times 0.35$	v
input Low Voltage	VILT	$V_{CCY} = 2.5 \text{ V} \pm 0.2 \text{ V}$			0.7	v
		$V_{CCY} = 3.3 \text{ V} \pm 0.2 \text{ V}$ $V_{CCY} = 3.3 \text{ V} \pm 0.3 \text{ V}$			0.7	V
		$V_{CCY} = 5.5 \text{ V} \pm 0.5 \text{ V}$ $V_{CCY} = 5 \text{ V} \pm 0.5 \text{ V}$			$V_{CCY} \times 0.25$	V
Output High Voltage	V _{OHY}	$V_{A} = V_{CCA}$, $I_{OH} = 20 \mu A$, see Figure 30	V _{CCY} - 0.4		V((() × 0.23	v
Output Low Voltage	V _{OLY}	$V_A = 0 \text{ V}, I_{OL} = 20 \mu\text{A}, \text{ see Figure 30}$	VCCY U.T		0.4	v
Capacitance ²	C _Y	f = 1 MHz, EN = 0, see Figure 35		6	0.4	pF
Leakage Current		_		U	±1	-
_	I _{LY} , Hi-Z	$V_Y = 0 \text{ V/V}_{CCY}$, EN = 0, see Figure 32			エΙ	μΑ
Enable (EN)	N/	$V_{CCA} = 1.2 \text{ V} + 0.1 \text{ V} / -0.05 \text{ V}$	$V_{CCA} \times 0.88$			V
Input High Voltage ²	VIHEN					
		$V_{CCA} = 1.8 \text{ V} \pm 0.15 \text{ V}$	$V_{CCA} \times 0.72$			V
		$V_{CCA} = 2.5 \text{ V} \pm 0.2 \text{ V}$	1.7			V
		$V_{CCA} = 3.3 \text{ V} \pm 0.3 \text{ V}$	2.2			V
		$V_{CCA} = 5 V \pm 0.5 V$	$V_{CCA} \times 0.7$			V
Input Low Voltage ²	V _{ILEN}	$V_{CCA} = 1.2 \text{ V} + 0.1 \text{ V} / -0.05 \text{ V}$			$V_{CCA} \times 0.35$	٧
		$V_{CCA} = 1.8 \text{ V} \pm 0.15 \text{ V}$			$V_{CCA} \times 0.35$	V
		$V_{CCA} = 2.5 \text{ V} \pm 0.2 \text{ V}$			0.7	V
		$V_{CCA} = 3.3 \text{ V} \pm 0.3 \text{ V}$			0.8	V
		$V_{CCA} = 5 \text{ V} \pm 0.5 \text{ V}$			$V_{CCA} \times 0.3$	V
Leakage Current	I _{LEN}	$V_{EN} = 0 \text{ V/V}_{CCA}, V_A = 0 \text{ V, see Figure 33}$			±1	μΑ
Capacitance ²	C _{EN}			3		pF
Enable Time ²	t _{EN}	$R_S = R_T = 50 \Omega$, $V_A = 0 V/V_{CCA} (A \rightarrow Y)$,		1	1.8	μs
		$V_Y = 0 \text{ V/V}_{CCY} (Y \rightarrow A)$, see Figure 36				

Parentee Symbol Test Conditions/Comments Min Typ Max Unit				Е	Versio	1 ¹	
3.3 \(\frac{1}{2} \) \$\(\simeq \) \$\(\	Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
A-yY Level Translation	SWITCHING CHARACTERISTICS ²						
Propagation Delay True							
Rise Time			$R_S = R_T = 50 \Omega$, $C_L = 50 pF$, see Figure 37				
Fall Time	, ,	t _{P, A→Y}			6	10	ns
Maximum Data Rate Channel-to-Channel Skew Part-to-Part Skew Propagation Delay Rise Time Channel-to-Channel Skew Part-to-Part Skew Part-t		t _{R, A→Y}			2	3.5	ns
Channel-to-Channel Skew Part-to-Part Skew Posper, Any Part-to-Part Skew Posper, Any Ros Rise Time Rise Time Downward Rate Channel-to-Channel Skew Downward Rise Time Rise Rise Rise Rise Rise Rise Rise Ris		t _{F, A→Y}			2	3.5	
Part-to-Part Skew Topograpia Any		D _{MAX} , A→Y		50			Mbps
Y→A Level Translation R _S = R _T = 50 Ω, C _L = 15 pF, see Figure 38 4 7 ns Rise Time t _{V, Y+A} 1 3 ns Fall Time t _{V, Y+A} 3 7 ns Maximum Data Rate DMX, Y+A 50 Mbps Channel-to-Channel Skew t _{DMX, Y+A} 2 3.5 ns Part-to-Part Skew t _{DMX, Y+A} 1 2 3.5 ns 1.8 V ± 0.15 V ≤ V _{CCA} ≤ V _{CCY} , V _{CCY} = 3.3 V ± 0.3 V t _{D, A,Y} R _S = R _T = 50 Ω, C _L = 50 pF, see Figure 37 2 3.5 ns Propagation Delay t _{D, A,Y} R _S = R _T = 50 Ω, C _L = 50 pF, see Figure 37 50 Mbps Mbps Fall Time t _{D, A,Y} R _S = R _T = 50 Ω, C _L = 15 pF, see Figure 38 50 Mbps Propagation Delay t _{D, Y, Y, A} R _S = R _T = 50 Ω, C _L = 15 pF, see Figure 38 50 Mbps R _S = R _T = 50 Ω, C _L = 15 pF, see Figure 38 50 Mbps N _S = R _S = R _T = 50 Ω, C _L = 50 pF, see Figure 38 50 N _S = R _S = R _S = R _S = R _S = S = S = S = S = S = S = S = S = S =	Channel-to-Channel Skew	tskew, a⇒y			2	4	ns
Propagation Delay Co, y, v, o, Rise Time Co, y, v, o, c, v, v, o, c, v, v, o, c, v, o, o, c, o,	Part-to-Part Skew	$t_{\text{PPSKEW, A} o Y}$				3	ns
Rise Time t _{1, YAA} 1 3 ns Fall Time t _{1, YAA} 50 Mbps Maximum Data Rate t _{1, YAA} 50 Mbps Channel-to-Channel Skew t _{1, SAY} 2 3,5 ns Part-to-Part Skew t _{1, SAY} 2 3,5 ns 1.8 V ± 0.15 V ≤ V _{CCX} ≤ V _{CCY} , V _{CCY} = 3.3 V ± 0.3 V t _{1, SAY} 8 11 ns Propagation Delay t _{1, AAY} 2 5 ns Propagation Delay t _{1, AAY} 2 5 ns Maximum Data Rate t _{1, AAY} 50 Mbps Part-to-Part Skew t _{1, YAA} 50 Mbps Propagation Delay t _{1, YAA} 50 Mbps R _S = R _T = 50 Ω, C _L = 15 pF, see Figure 38 1 ns Propagation Delay t _{1, YAA} 2 3.5 ns R _S = R _T = 50 Ω, C _L = 15 pF, see Figure 38 50 Mbps Channel-to-Channel Skew t _{1, AAY} 2 3.5 ns R	Y→A Level Translation		$R_S = R_T = 50 \Omega$, $C_L = 15 pF$, see Figure 38				
Fall Time	Propagation Delay	t _{P,Y→A}			4	7	ns
Maximum Data Rate Channel-to-Channel Skew Part-to-Part Skew 1.8 V ± 0.15 V ≤ Vcc ≤ Vcc, Vccr = 3.3 V ± 0.3 V A-y Translation Propagation Delay Rise Time Maximum Data Rate DMMX, ν.ΑΛ Tersiew, ν.ΑΛ 1.8 V ± 0.15 V ≤ Vcc ≤ Vcc, Vccr = 3.3 V ± 0.3 V A-y Translation Propagation Delay Rise Time Maximum Data Rate DMMX, ν.ΑΛ Part-to-Part Skew Tersiew, ν.ΑΛ 1.15 V to 1.3 V ≤ Vcc ≤ Vcc, Vccr = 3.3 V ± 0.3 V A-y Translation Propagation Delay Rise Time Rise Rire 50 Ω, C _L = 50 pF, see Figure 37 Rise Rire So Ω, C _L = 50 pF, see Figure 37 Rise Rire So Ω, C _L = 50 pF, see Figure 37 Rise Rire So Ω, C _L = 50 pF, see Figure 37 Rise Rire So Ω, C _L = 50 pF, see Figure 37 Rise Rire So Ω, C _L = 50 pF, see Figure 37 Rise Rire So Ω, C _L = 50 pF, see Figure 37 Rise Rire So Ω, C _L = 50 pF, see Figure 37 Rise Rire So Ω, C _L = 50 pF, see Figure 37 Rise Rire So Ω, C _L = 50 pF, see Figure 37 Rise Rire So Ω, C _L = 50 pF, see Figure 38 Rise Rire So Ω, C _L = 50 pF, see Figure 38 Rise Rire So Ω, C _L = 50 pF, see Figure 38 Rise Rire So Ω, C _L = 50 pF, see Figure 38 Rise Rire So Ω, C _L = 50 pF, see Figure 38 Rise Rire So Ω, C _L = 50 pF, see Figure 37 Rise Rire So Ω, C _L = 50 pF, see Figure 37 Rise Rire So Ω, C _L = 50 pF, see Figure 37 Rise Rire So Ω, C _L = 50 pF, see Figure 37 Rise Rire So Ω, C _L = 50 pF, see Figure 38 Rise Rire So Ω, C _L = 50 pF, see Figure 38 Rise Rire So Ω, C _L	Rise Time	t _{R, Y→A}			1	3	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fall Time	t _{F, Y→A}			3	7	ns
Part-to-Part Skew 1.8 V ± 0.15 V ≤ V _{CCA} ≤ V _{CCY} , V _{CCY} = 3.3 V ± 0.3 V A-Y Translation Propagation Delay R _S = R _T = 50 Ω, C _L = 50 pF, see Figure 37 V _A A-Y R _S = R _T = 50 Ω, C _L = 50 pF, see Figure 37 R _S = R _T = 50 Ω, C _L = 50 pF, see Figure 37 R _S = R _T = 50 Ω, C _L = 50 pF, see Figure 37 R _S = R _T = 50 Ω, C _L = 15 pF, see Figure 37 R _S = R _T = 50 Ω, C _L = 15 pF, see Figure 37 R _S = R _T = 50 Ω, C _L = 15 pF, see Figure 38 R _S = R _T = 50 Ω, C _L = 15 pF, see Figure 38 R _S = R _T = 50 Ω, C _L = 15 pF, see Figure 38 R _S = R _T = 50 Ω, C _L = 15 pF, see Figure 38 R _S = R _T = 50 Ω, C _L = 15 pF, see Figure 38 R _S = R _T = 50 Ω, C _L = 15 pF, see Figure 38 R _S = R _T = 50 Ω, C _L = 15 pF, see Figure 38 R _S = R _T = 50 Ω, C _L = 15 pF, see Figure 38 R _S = R _T = 50 Ω, C _L = 15 pF, see Figure 38 R _S = R _T = 50 Ω, C _L = 15 pF, see Figure 37 R _S = R _T = 50 Ω, C _L = 50 pF, see Figure 37 R _S = R _T = 50 Ω, C _L = 50 pF, see Figure 37 R _S = R _T = 50 Ω, C _L = 50 pF, see Figure 37 R _S = R _T = 50 Ω, C _L = 50 pF, see Figure 37 R _S = R _T = 50 Ω, C _L = 50 pF, see Figure 37 R _S = R _T = 50 Ω, C _L = 15 pF, see Figure 37 R _S = R _T = 50 Ω, C _L = 15 pF, see Figure 37 R _S = R _T = 50 Ω, C _L = 15 pF, see Figure 37 R _S = R _T = 50 Ω, C _L = 15 pF, see Figure 37 R _S = R _T = 50 Ω, C _L = 15 pF, see Figure 37 R _S = R _T = 50 Ω, C _L = 15 pF, see Figure 38 R _S = R _T = 50 Ω, C _L = 15 pF, see Figure 38 R _S = R _T = 50 Ω, C _L = 15 pF, see Figure 38 R _S = R _T = 50 Ω, C _L = 15 pF, see Figure 38 R _S = R _T = 50 Ω, C _L = 15 pF, see Figure 38 R _S = R _T = 50 Ω, C _L = 15 pF, see Figure 38 R _S = R _T = 50 Ω, C _L = 15 pF, see Figure 38 R _S = R _T = 50 Ω, C _L = 15 pF, see Figure 38 R _S = R _T = 50 Ω, C _L = 15 pF, see Figure 38 R _S = R _T = 50 Ω, C _L = 15 pF, see Figure 38 R _S = R _T = 50 Ω, C _L = 15 pF, see Figure 38 R _S = R _T = 50 Ω, C _L = 15 pF, see Figure 38 R _S = R _T = 50 Ω, C _L = 15 pF, see Figure 38 R _S = R _T	Maximum Data Rate	D _{MAX, Y→A}		50			Mbps
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Channel-to-Channel Skew	tskew, y⇒a			2	3.5	ns
	Part-to-Part Skew	t _{PPSKEW, Y→A}				2	ns
Propagation Delay $t_{r,A+Y}$ $t_{r,A+Y}$ 8 11 ns Rise Time $t_{r,A+Y}$ $t_{r,A+Y}$ 2 5 ns Fall Time $t_{r,A+Y}$ 50 Mbps Mbps Channel-to-Channel Skew $t_{r,Y+A}$ 50 Mbps Mbps Part-to-Part Skew $t_{r,Y+A}$ $t_{r,Y+A}$ 4 ns Propagation Delay $t_{r,Y+A}$ $t_{r,Y+A}$ 5 8 ns Rise Time $t_{r,Y+A}$ $t_{r,Y+A}$ 2 3.5 ns Maximum Data Rate $t_{r,Y+A}$ $t_{r,Y+A}$ 50 Mbps Channel-to-Channel Skew $t_{r,Y+A}$ $t_{r,Y+A}$ $t_{r,Y+A}$ $t_{r,Y+A}$ $t_{r,Y+A}$ $t_{r,Y+A}$ 1.1.5 V to 1.3 V ≤ Vccx ≤ Vccy, Vccy = 3.3 V ± 0.3 V $t_{r,X+Y}$	$1.8~V\pm0.15~V \leq V_{\text{CCA}} \leq V_{\text{CCY}}, V_{\text{CCY}} = 3.3~V\pm0.3~V$						
Rise Time	A->Y Translation		$R_S = R_T = 50 \Omega$, $C_L = 50 pF$, see Figure 37				
Fall Time Maximum Data Rate D _{MAX, A>Y} Channel-to-Channel Skew Part-to-Part Skew Ty⇒A Translation Propagation Delay Rise Time Raximum Data Rate D _{MAX, Y→A} Rs = R _T = 50 Ω, C _L = 15 pF, see Figure 38 Rs = R _T = 50 Ω, C _L = 15 pF, see Figure 38 Rs = R _T = 50 Ω, C _L = 15 pF, see Figure 38 Rs = R _T = 50 Ω, C _L = 15 pF, see Figure 38 Rs = R _T = 50 Ω, C _L = 15 pF, see Figure 38 Rs = R _T = 50 Ω, C _L = 15 pF, see Figure 38 Rs = R _T = 50 Ω, C _L = 15 pF, see Figure 38 Rs = R _T = 50 Ω, C _L = 15 pF, see Figure 38 Rs = R _T = 50 Ω, C _L = 50 pF, see Figure 37 Rs = R _T = 50 Ω, C _L = 50 pF, see Figure 37 Rs = R _T = 50 Ω, C _L = 50 pF, see Figure 37 Rs = R _T = 50 Ω, C _L = 50 pF, see Figure 37 Rs = R _T = 50 Ω, C _L = 50 pF, see Figure 37 Rs = R _T = 50 Ω, C _L = 50 pF, see Figure 37 Rs = R _T = 50 Ω, C _L = 50 pF, see Figure 37 Rs = R _T = 50 Ω, C _L = 50 pF, see Figure 37 Rs = R _T = 50 Ω, C _L = 50 pF, see Figure 37 Rs = R _T = 50 Ω, C _L = 50 pF, see Figure 37 Rs = R _T = 50 Ω, C _L = 50 pF, see Figure 38 Rs = R _T = 50 Ω, C _L = 50 pF, see Figure 38 Rs = R _T = 50 Ω, C _L = 50 pF, see Figure 38 Rs = R _T = 50 Ω, C _L = 15 pF, see Figure 38 Rs = R _T = 50 Ω, C _L = 15 pF, see Figure 38 Rs = R _T = 50 Ω, C _L = 15 pF, see Figure 38 Rs = R _T = 50 Ω, C _L = 15 pF, see Figure 38 Rs = R _T = 50 Ω, C _L = 15 pF, see Figure 38	Propagation Delay	t _{P, A→Y}			8	11	ns
Maximum Data Rate D _{MAX, A-Y} to Channel-to-Channel Skew D _{MAX, A-Y} to Channel-to-Channel Skew 50 Mbps Part-to-Part Skew to Poskew, A-Y to Poskew, A-Y 2 4 ns Y→A Translation to Y→A Translation </td <td>Rise Time</td> <td>t_{R, A→Y}</td> <td></td> <td></td> <td>2</td> <td>5</td> <td>ns</td>	Rise Time	t _{R, A→Y}			2	5	ns
Channel-to-Channel Skew $t_{SKEW, A+Y}$ $t_{PPSKEW, A+Y}$	Fall Time	t _{F, A→Y}			2	5	ns
Part-to-Part Skew $Y \Rightarrow$ A Translation $P = P = P = P = P = P = P = P = P = P $	Maximum Data Rate	D _{MAX} , A→Y		50			Mbps
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Channel-to-Channel Skew	tskew, a⇒y			2	4	ns
Propagation Delay $t_{P, Y \Rightarrow A}$ $t_{Rise Time}$ $t_{R, Y \Rightarrow A}$ $t_{F, A \Rightarrow Y}$	Part-to-Part Skew	t PPSKEW, A→Y				4	ns
Rise Time $t_{R,Y \Rightarrow A}$ $t_{R,Y \Rightarrow A}$ 2 3.5 ns Haximum Data Rate $D_{MAX,Y \Rightarrow A}$ 50 Mbps Channel-to-Channel Skew $t_{RKEW,Y \Rightarrow A}$ 2 3 ns Part-to-Part Skew $t_{PPSKEW,Y \Rightarrow A}$ 2 3 ns 1.15 V to 1.3 V $\leq Vcc_A \leq Vcc_Y, Vcc_Y = 3.3 V \pm 0.3 V$ $t_{PPSKEW,Y \Rightarrow A}$ 3 ns A \Rightarrow Y Translation $t_{P,A \Rightarrow Y}$ 9 18 ns Propagation Delay $t_{R,A \Rightarrow Y}$ 9 18 ns Fall Time $t_{R,A \Rightarrow Y}$ 3 5 ns Maximum Data Rate $t_{R,A \Rightarrow Y}$ 40 Mbps Channel-to-Channel Skew $t_{R,A \Rightarrow Y}$ 40 Mbps Part-to-Part Skew $t_{PPSKEW,A \Rightarrow Y}$ 10 ns Y \Rightarrow A Translation $t_{R,A \Rightarrow Y}$ $t_{R,Y \Rightarrow A}$ 5 9 ns Propagation Delay $t_{P,Y \Rightarrow A}$ $t_{P,Y \Rightarrow A}$ 5 9 ns	Y→A Translation		$R_S = R_T = 50 \Omega$, $C_L = 15 pF$, see Figure 38				
Fall Time $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	Propagation Delay	t _{P, Y→A}			5	8	ns
Maximum Data Rate Channel-to-Channel Skew Part-to-Part Skew $D_{MAX,Y+A}$ $t_{SKEW,Y+A}$ 50Mbps 21.15 V to 1.3 V ≤ V _{CCA} ≤ V _{CCY} , V _{CCY} = 3.3 V ± 0.3 V A⇒Y Translation $R_S = R_T = 50 \Omega$, $C_L = 50 pF$, see Figure 37918nsPropagation Delay Rise Time Fall Time Maximum Data Rate Channel-to-Channel Skew Part-to-Part Skew $t_{P,A+Y}$ $t_{SKEW,A+Y}$ Part-to-Part Skew40MbpsY⇒A Translation Propagation Delay $t_{P,X+A}$ $t_{P,Y+A}$ $R_S = R_T = 50 \Omega$, $C_L = 15 pF$, see Figure 38 $t_{P,Y+A}$	Rise Time	t _{R, Y→A}			2	3.5	ns
Channel-to-Channel Skew $t_{SKEW,Y\to A}$ $t_{PPSKEW,Y\to A}$ $t_{PPSKEW,A\to Y}$ t_{PPS	Fall Time	t _{F, Y→A}			2	3.5	ns
Part-to-Part Skew $1.15 \ V \text{ to } 1.3 \ V \leq V_{\text{CCA}} \leq V_{\text{CCY}}, V_{\text{CCY}} = 3.3 \ V \pm 0.3 \ V$ $A \Rightarrow Y \text{ Translation}$ $Propagation Delay$ $R_S = R_T = 50 \ \Omega, C_L = 50 \ \text{pF}, \text{ see Figure } 37$ $Propagation Delay$ $R_S = R_T = 50 \ \Omega, C_L = 50 \ \text{pF}, \text{ see Figure } 37$ $R_S = R_T = 50 \ \Omega, C_L = 50 \ \text{pF}, \text{ see Figure } 37$ $R_S = R_T = 50 \ \Omega, C_L = 50 \ \text{pF}, \text{ see Figure } 37$ $R_S = R_T = 50 \ \Omega, C_L = 50 \ \text{pF}, \text{ see Figure } 37$ $R_S = R_T = 50 \ \Omega, C_L = 50 \ \text{pF}, \text{ see Figure } 37$ $R_S = R_T = 50 \ \Omega, C_L = 15 \ \text{pF}, \text{ see Figure } 38$ $R_S = R_T = 50 \ \Omega, C_L = 15 \ \text{pF}, \text{ see Figure } 38$ $R_S = R_T = 50 \ \Omega, C_L = 15 \ \text{pF}, \text{ see Figure } 38$ $R_S = R_T = 50 \ \Omega, C_L = 15 \ \text{pF}, \text{ see Figure } 38$ $R_S = R_T = 50 \ \Omega, C_L = 15 \ \text{pF}, \text{ see Figure } 38$	Maximum Data Rate	D _{MAX, Y→A}		50			Mbps
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Channel-to-Channel Skew	t _{skew, y→A}			2	3	ns
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Part-to-Part Skew	t _{PPSKEW, Y→A}				3	ns
Propagation Delay $t_{P,A \to Y}$ Rise Time $t_{R,A \to Y}$ $Translation$ $t_{P,A \to Y}$ $t_{R,A \to Y}$	1.15 V to 1.3 V \leq V $_{\text{CCA}} \leq$ V $_{\text{CCY}},$ V $_{\text{CCY}} = 3.3$ V \pm 0.3 V						
Rise Time $t_{R,A \to Y} \\ Fall Time \\ t_{F,A \to Y} \\ Maximum Data Rate \\ Channel-to-Channel Skew \\ Part-to-Part Skew \\ Y \to A Translation \\ Propagation Delay $	A→Y Translation		$R_S = R_T = 50 \Omega$, $C_L = 50 pF$, see Figure 37				
Fall Time $t_{F,A\to Y} \\ Maximum Data Rate \\ D_{MAX,A\to Y} \\ Channel-to-Channel Skew \\ Part-to-Part Skew \\ Y\to A Translation \\ Propagation Delay t_{F,A\to Y} \\ t_{F,A\to Y} \\ t_{SKEW,A\to Y} \\ R_S = R_T = 50 \Omega, C_L = 15 pF, see Figure 38$	Propagation Delay	t _{P, A→Y}			9	18	ns
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Rise Time	t _{R, A→Y}			3	5	ns
Channel-to-Channel Skew $t_{SKEW,A o Y}$ $t_{PPSKEW,A o Y}$ t_{PPS	Fall Time	t _{F, A→Y}			2	5	ns
Part-to-Part Skew $t_{PPSKEW,A\rightarrow Y}$ $t_{R_S}=R_T=50\Omega,C_L=15pF,seeFigure38$ $t_{P,Y\rightarrow A}$ $t_$	Maximum Data Rate	$D_{MAX, A \rightarrow Y}$		40			Mbps
Y \rightarrow A Translation $R_S = R_T = 50 \Omega$, $C_L = 15 pF$, see Figure 38 $t_{P, Y \rightarrow A}$ $rac{5}{9}$ $rac{9}{1}$ $rac{1}{2}$	Channel-to-Channel Skew	tskew, a⇒y			2	5	ns
Propagation Delay t _{P, Y>A} 5 9 ns	Part-to-Part Skew	t PPSKEW, A→Y				10	ns
	Y→A Translation		$R_S = R_T = 50 \Omega$, $C_L = 15 pF$, see Figure 38				
Rise Time $t_{R,Y o A}$ 2 4 ns	Propagation Delay	t _{P,Y→A}			5	9	ns
	Rise Time	t _{R, Y→A}			2	4	ns
Fall Time $t_{\text{F,Y}}$ 2 4 ns	Fall Time	t _{F, Y→A}			2	4	ns
Maximum Data Rate D _{MAX, Y->A} 40 Mbps	Maximum Data Rate	D _{MAX, Y→A}		40			Mbps
Channel-to-Channel Skew t _{SKEW, Y->A} 2 4 ns	Channel-to-Channel Skew	t _{skew, y→A}			2	4	
Part-to-Part Skew t _{PPSKEW, Y->A} 4 ns	Part-to-Part Skew	t ppskew, y→A				4	ns

				B Version	1	
Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
1.15 V to 1.3 V \leq V _{CCA} \leq V _{CCY} , V _{CCY} = 1.8 V \pm 0.3 V						
A→Y Translation		$R_S = R_T = 50 \Omega$, $C_L = 50 pF$, see Figure 37				
Propagation Delay	$t_{P,\;A\to Y}$			12	25	ns
Rise Time	t _{R, A→Y}			7	12	ns
Fall Time	t _{F, A→Y}			3	5	ns
Maximum Data Rate	$D_{\text{MAX, A} \to Y}$		25			Mbps
Channel-to-Channel Skew	t _{SKEW, A→Y}			2	5	ns
Part-to-Part Skew	t _{PPSKEW} , A→Y				15	ns
Y→A Translation		$R_S = R_T = 50 \Omega$, $C_L = 15 pF$, see Figure 38				
Propagation Delay	$t_{P,Y\to A}$			14	35	ns
Rise Time	t _{R, Y→A}			5	16	ns
Fall Time	t _{F, Y→A}			2.5	6.5	ns
Maximum Data Rate	D _{MAX, Y→A}		25			Mbps
Channel-to-Channel Skew	t _{SKEW, Y→A}			3	6.5	ns
Part-to-Part Skew	t ppskew, y→A				23.5	ns
$2.5~V \pm 0.2~V \le V_{CCA} \le V_{CCY}, V_{CCY} = 3.3~V \pm 0.3~V$						
A→Y Translation		$R_S = R_T = 50 \Omega$, $C_L = 50 pF$, see Figure 37				
Propagation Delay	t _{P, A→Y}			7	10	ns
Rise Time	t _{R, A→Y}			2.5	4	ns
Fall Time	t F, A→Y			2	5	ns
Maximum Data Rate	D _{MAX, A→Y}		60			Mbps
Channel-to-Channel Skew	t _{skew, A→Y}			1.5	2	ns
Part-to-Part Skew	t PPSKEW, A→Y				4	ns
Y→A Translation		$R_S = R_T = 50 \Omega$, $C_L = 15 pF$, see Figure 38				
Propagation Delay	t _{P, Y→A}			5	8	ns
Rise Time	t _{R, Y→A}			1	4	ns
Fall Time	t _{F, Y→A}			3	5	ns
Maximum Data Rate	D _{MAX, Y→A}		60			Mbps
Channel-to-Channel Skew	t _{SKEW, Y→A}			2	3	ns
Part-to-Part Skew	t _{PPSKEW, Y→A}				3	ns
POWER REQUIREMENTS						
Power Supply Voltages	V_{CCA}	V _{CCA} ≤ V _{CCY}	1.15		5.5	V
	V_{CCY}		1.65		5.5	V
Quiescent Power Supply Current	Icca	$V_A = 0 \text{ V/V}_{CCA}, V_Y = 0 \text{ V/V}_{CCY}, \\ V_{CCA} = V_{CCY} = 5.5 \text{ V, EN} = 1$		0.17	5	μΑ
	Іссу	$V_A = 0 \text{ V/V}_{CCA}, V_Y = 0 \text{ V/V}_{CCY}, \\ V_{CCA} = V_{CCY} = 5.5 \text{ V, EN} = 1$		0.27	5	μΑ
Three-State Mode Power Supply Current	I _{Hi-Z, A}	$V_{CCA} = V_{CCY} = 5.5 \text{ V, EN} = 0$		0.1	5	μΑ
	I _{Hi-Z, Y}	$V_{CCA} = V_{CCY} = 5.5 \text{ V, EN} = 0$		0.1	5	μΑ

 $^{^1\,}T_A$ for typical specifications is 25°C. $^2\,Guaranteed$ by design, not production tested.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 2.

Parameter	Rating
V _{CCA} to GND	−0.3 V to +7 V
V _{CCY} to GND	V _{CCA} to +7 V
Digital Inputs (A)	$-0.3 \text{ V to } (V_{CCA} + 0.3 \text{ V})$
Digital Inputs (Y)	$-0.3 \text{ V to } (V_{CCY} + 0.3 \text{ V})$
EN to GND	−0.3 V to +7 V
Operating Temperature Range	−40°C to +85°C
Storage Temperature Range	−65°C to +150°C
Junction Temperature	150°C
θ_{JA} Thermal Impedance (4-Layer Board)	
14-Lead TSSOP	89.21°C/W
12-Ball WLCSP	120°C/W
20-Lead LFCSP	30.4°C/W
Lead Temperature, Soldering	As per JEDEC J-STD-020

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Only one absolute maximum rating can be applied at any one time.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

NOTES
1. NC = NO CONNECT.
2. THE EXPOSED PADDLE CAN BE TIED TO GND OR LEFT FLOATING. DO NOT TIE IT TO V_{CCA} OR V_{CCY}.

Figure 3. 20-Lead LFCSP Pin Configuration

Table 3. 14-Lead TSSOP and 20-lead LFCSP Pin Function Descriptions

Pin No.			
TSSOP	LFCSP	Mnemonic	Description
1	19	V _{CCA}	Power Supply Voltage Input for the A1 to A4 I/O Pins (1.15 V \leq V _{CCA} \leq V _{CCY}).
2	20	A1	Input/Output A1. Referenced to V _{CCA} .
3	2	A2	Input/Output A2. Referenced to V _{CCA} .
4	3	A3	Input/Output A3. Referenced to V _{CCA} .
5	4	A4	Input/Output A4. Referenced to V _{CCA} .
6, 9	1, 5, 6, 7, 10, 11, 15, 16	NC	No Connect.
7	8	GND	Ground.
8	9	EN	Active High Enable Input.
10	12	Y4	Input/Output Y4. Referenced to V _{CCY} .
11	13	Y3	Input/Output Y3. Referenced to V _{CCY} .
12	14	Y2	Input/Output Y2. Referenced to V _{CCY} .
13	17	Y1	Input/Output Y1. Referenced to V _{CCY} .
14	18	V_{CCY}	Power Supply Voltage Input for the Y1 to Y4 I/O Pins (1.65 V \leq V _{CCY} \leq 5.5 V).
Not applicable	0	EPAD	Exposed Paddle. The exposed paddle can be tied to GND or left floating. Do not tie it to V_{CCA} or V_{CCY} .

Figure 4. 12-Ball WLCSP Pin Configuration

Table 4. 12-Ball WLCSP Pin Function Descriptions

Pin No.	Mnemonic	Description
A1	Y1	Input/Output Y1. Referenced to V _{CCY} .
B1	Y2	Input/Output Y2. Referenced to V _{CCY} .
C1	Y3	Input/Output Y3. Referenced to V _{CCY} .
D1	Y4	Input/Output Y4. Referenced to V _{CCY} .
A2	V _{CCY}	Power Supply Voltage Input for the Y1 to Y4 I/O Pins (1.65 V \leq V _{CCY} \leq 5.5 V).
B2	V _{CCA}	Power Supply Voltage Input for the A1 to A4 I/O Pins (1.15 V \leq V _{CCA} \leq V _{CCY}).
C2	EN	Active High Enable Input.
D2	GND	Ground.
A3	A1	Input/Output A1. Referenced to V _{CCA} .
B3	A2	Input/Output A2. Referenced to V _{CCA} .
C3	A3	Input/Output A3. Referenced to V _{CCA} .
D3	A4	Input/Output A4. Referenced to V _{CCA} .

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 5. I_{CCA} vs. Data Rate (A \rightarrow Y Level Translation)

Figure 6. I_{CCY} vs. Data Rate (A \rightarrow Y Level Translation)

Figure 7. I_{CCA} vs. Data Rate (Y \rightarrow A Level Translation)

Figure 8. I_{CCY} vs. Data Rate (Y \rightarrow A Level Translation)

Figure 9. I_{CCY} vs. Capacitive Load at Pin Y for A \Rightarrow Y (1.2 V \Rightarrow 1.8 V) Level Translation

Figure 10. I_{CCA} vs. Capacitive Load at Pin A for Y \rightarrow A (1.8 V \rightarrow 1.2 V) Level Translation

Figure 11. I_{CCY} vs. Capacitive Load at Pin Y for A \rightarrow Y (1.8 V \rightarrow 3.3 V) Level Translation

Figure 12. I_{CCA} vs. Capacitive Load at Pin A for Y \rightarrow A (3.3 V \rightarrow 1.8 V) Level Translation

Figure 13. I_{CCY} vs. Capacitive Load at Pin Y for A \rightarrow Y (3.3 V \rightarrow 5 V) Level Translation

Figure 14. I_{CCA} vs. Capacitive Load at Pin A for Y \rightarrow A (5 V \rightarrow 3.3 V) Level Translation

Figure 15. Rise Time vs. Capacitive Load at Pin Y ($A \rightarrow Y$ Level Translation)

Figure 16. Fall Time vs. Capacitive Load at Pin Y ($A \rightarrow Y$ Level Translation)

Figure 17. Rise Time vs. Capacitive Load at Pin A (Y \rightarrow A Level Translation)

Figure 18. Fall Time vs. Capacitive Load at Pin A ($Y \rightarrow A$ Level Translation)

Figure 19. Propagation Delay (t_{PLH}) vs. Capacitive Load at Pin Y $(A \rightarrow Y Level Translation)$

Figure 20. Propagation Delay (t_{PHL}) vs. Capacitive Load at Pin Y ($A \rightarrow Y$ Level Translation)

Figure 21. Propagation Delay (t_{PLH}) vs. Capacitive Load at Pin A ($Y \rightarrow A$ Level Translation)

Figure 22. Propagation Delay (t_{PHL}) vs. Capacitive Load at Pin A (Y→A Level Translation)

Figure 23. Eye Diagram at Y Output (1.2 V to 1.8 V Level Translation, 25 Mbps)

Figure 24. Eye Diagram at A Output (1.8 V to 1.2 V Level Translation, 25 Mbps)

Figure 25. Eye Diagram at Y Output (1.8 V to 3.3 V Level Translation, 50 Mbps)

Figure 26. Eye Diagram at A Output (3.3 V to 1.8 V Level Translation, 50 Mbps)

Figure 27. Eye Diagram at Y Output (3.3 V to 5 V Level Translation, 50 Mbps)

Figure 28. Eye Diagram at A Output (5 V to 3.3 V Level Translation, 50 Mbps)

TEST CIRCUITS

Figure 29. V_{OH}/V_{OL} Voltages at Pin A

Figure 32. Three-State Leakage Current at Pin Y

Figure 30. V_{OH}/V_{OL} Voltages at Pin Y

Figure 33. EN Pin Leakage Current

Figure 31. Three-State Leakage Current at Pin A

Figure 34. Capacitance at Pin A

Figure 35. Capacitance at Pin Y

Figure 36. Enable Time

Figure 37. Switching Characteristics (A \rightarrow Y Level Translation)

Figure 38. Switching Characteristics (Y→A Level Translation)

TERMINOLOGY

 V_{IHA}

Logic input high voltage at Pin A1 to Pin A4.

 V_{ILA}

Logic input low voltage at Pin A1 to Pin A4.

 $\mathbf{V}_{\mathsf{OHA}}$

Logic output high voltage at Pin A1 to Pin A4.

 V_{OLA}

Logic output low voltage at Pin A1 to Pin A4.

 $\mathbf{C}_{\mathbf{A}}$

Capacitance measured at Pin A1 to Pin A4 (EN = 0).

ILA, Hi-Z

Leakage current at Pin A1 to Pin A4 when EN = 0 (high impedance state at Pin A1 to Pin A4).

 V_{IHY}

Logic input high voltage at Pin Y1 to Pin Y4.

 \mathbf{V}_{ILY}

Logic input low voltage at Pin Y1 to Pin Y4.

 V_{OHY}

Logic output high voltage at Pin Y1 to Pin Y4.

 \mathbf{V}_{OLY}

Logic output low voltage at Pin Y1 to Pin Y4.

 $\mathbf{C}_{\mathtt{Y}}$

Capacitance measured at Pin Y1 to Pin Y4 (EN = 0).

ILY, Hi-Z

Leakage current at Pin Y1 to Pin Y4 when EN = 0 (high impedance state at Pin Y1 to Pin Y4).

VILLEN

Logic input high voltage at the EN pin.

 \mathbf{V}_{ILEN}

Logic input low voltage at the EN pin.

 C_{EN}

Capacitance measured at EN pin.

ILEN

Enable (EN) pin leakage current.

ten

Three-state enable time for Pin A1 to Pin A4 and Pin Y1 to Pin Y4.

 $t_{P,\;A\to Y}$

Propagation delay when translating logic levels in the $A\rightarrow Y$ direction.

 $\mathbf{t}_{R, A \rightarrow Y}$

Rise time when translating logic levels in the $A\rightarrow Y$ direction.

T_{F, A→Y}

Fall time when translating logic levels in the $A\rightarrow Y$ direction.

 $D_{MAX, A \rightarrow Y}$

Guaranteed data rate when translating logic levels in the $A\rightarrow Y$ direction under the driving and loading conditions specified in Table 1.

 $T_{SKEW, A \rightarrow Y}$

Difference between propagation delays on any two channels when translating logic levels in the $A\rightarrow Y$ direction.

tppskew, a→y

Difference in propagation delay between any one channel and the same channel on a different part (under same driving/loading conditions) when translating in the A→Y direction.

te v→

Propagation delay when translating logic levels in the $Y\rightarrow A$ direction.

 $t_{R, Y \to A}$

Rise time when translating logic levels in the Y \rightarrow A direction.

 $\mathbf{t}_{F, Y \to A}$

Fall time when translating logic levels in the Y \rightarrow A direction.

 $D_{\text{MAX, Y} \to A}$

Guaranteed data rate when translating logic levels in the Y→A direction under the driving and loading conditions specified in Table 1.

 $t_{\text{SKEW, Y} o A}$

Difference between propagation delays on any two channels when translating logic levels in the $Y\rightarrow A$ direction.

tppskew, y→A

Difference in propagation delay between any one channel and the same channel on a different part (under the same driving/loading conditions) when translating in the Y→A direction.

 \mathbf{V}_{CCA}

V_{CCA} supply voltage.

 V_{CCY}

V_{CCY} supply voltage.

 I_{CCA}

V_{CCA} supply current.

 I_{CCY}

V_{CCY} supply current.

IHi-Z, A

 V_{CCA} supply current during three-state mode (EN = 0).

IHi-Z. Y

 V_{CCY} supply current during three-state mode (EN = 0).

THEORY OF OPERATION

The ADG3304 level translator allows the level shifting necessary for data transfer in a system where multiple supply voltages are used. The device requires two supplies, V_{CCA} and V_{CCY} ($V_{\text{CCA}} \leq V_{\text{CCY}}$). These supplies set the logic levels on each side of the device. When driving the A pins, the device translates the V_{CCA} -compatible logic levels to V_{CCY} -compatible logic levels available at the Y pins. Similarly, because the device is capable of bidirectional translation, when driving the Y pins, the V_{CCY} -compatible logic levels are translated to V_{CCA} -compatible logic levels available at the A pins. When EN = 0, Pin A1 to Pin A4 and Pin Y1 to Pin Y4 are three-stated. When EN is driven high, the ADG3304 goes into normal operation mode and performs level translation.

LEVEL TRANSLATOR ARCHITECTURE

The ADG3304 consists of four bidirectional channels. Each channel can translate logic levels in either the A \rightarrow Y or the Y \rightarrow A direction. It uses a one-shot accelerator architecture, which ensures excellent switching characteristics. Figure 39 shows a simplified block diagram of a bidirectional channel.

Figure 39. Simplified Block Diagram of an ADG3304 Channel

The logic level translation in the A→Y direction is performed using a level translator (U1) and an inverter (U2), while the translation in the Y→A direction is performed using Inverter U3 and Inverter U4. The one-shot generator detects a rising or falling edge present on either the A side or the Y side of the channel. It sends a short pulse that turns on the PMOS transistors (T1 to T2) for a rising edge, or the NMOS transistors (T3 to T4) for a falling edge. This charges/discharges the capacitive load faster, which results in faster rise and fall times.

The inputs of the unused channels (A or Y) should be tied to their corresponding V_{CC} rail (V_{CCA} or V_{CCY}) or to GND.

INPUT DRIVING REQUIREMENTS

To ensure correct operation of the ADG3304, the circuit that drives the input of the ADG3304 channels should have an output impedance of less than or equal to 150 Ω and a minimum peak current driving capability of 36 mA.

OUTPUT LOAD REQUIREMENTS

The ADG3304 level translator is designed to drive CMOS-compatible loads. If current-driving capability is required, it is recommended to use buffers between the ADG3304 outputs and the load.

ENABLE OPERATION

The ADG3304 provides three-state operation at the A and Y I/O pins by using the enable pin (EN), as shown in Table 5.

Table 5. Truth Table

EN	Y I/O Pins	A I/O Pins
0	Hi-Z ¹	Hi-Z ¹
1	Normal operation ²	Normal operation ²

¹ High impedance state.

While EN = 0, the ADG3304 enters into three-state mode. In this mode, the current consumption from both the $V_{\rm CCA}$ and $V_{\rm CCY}$ supplies is reduced, allowing the user to save power, which is critical, especially on battery-operated systems. The EN input pin can be driven with either $V_{\rm CCA}$ -compatible or $V_{\rm CCY}$ -compatible logic levels.

POWER SUPPLIES

For proper operation of the ADG3304, the voltage applied to the V_{CCA} must be less than or equal to the voltage applied to V_{CCY} . To meet this condition, the recommended power-up sequence is V_{CCY} first and then V_{CCA} . The ADG3304 operates properly only after both supply voltages reach their nominal values. It is not recommended to use the part in a system where, during power-up, V_{CCA} can be greater than V_{CCY} due to a significant increase in the current taken from the V_{CCA} supply. For optimum performance, the V_{CCA} pin and V_{CCY} pin should be decoupled to GND as close as possible to the device.

² In normal operation, the ADG3304 performs level translation.

DATA RATE

The maximum data rate at which the device is guaranteed to operate is a function of the $V_{\rm CCA}$ and $V_{\rm CCY}$ supply voltage combination and the load capacitance. It is given by the maximum frequency of a square wave that can be applied to the device, which meets the $V_{\rm OH}$ and $V_{\rm OL}$ levels at the output and does not exceed the maximum junction temperature (see the Absolute Maximum Ratings section). Table 6 shows the guaranteed data rates at which the ADG3304 can operate in both directions (A \Rightarrow Y or Y \Rightarrow A level translation) for various $V_{\rm CCA}$ and $V_{\rm CCY}$ supply combinations.

Table 6. Guaranteed Data Rate (Mbps)1

		Vccy				
V cca	1.8 V (1.65 V to 1.95 V)	2.5 V (2.3 V to 2.7 V)	3.3 V (3.0 V to 3.6 V)	5 V (4.5 V to 5.5 V)		
1.2 V (1.15 V to 1.3 V)	25	30	40	40		
1.8 V (1.65 V to 1.95 V)	-	45	50	50		
2.5 V (2.3 V to 2.7 V)	-	-	60	50		
3.3 V (3.0 V to 3.6 V)	-	-	-	50		
5 V (4.5 V to 5.5 V)	-	-	-	-		

¹ The load capacitance used is 50 pF when translating in the A→Y direction and 15 pF when translating in the Y→A direction.

APPLICATIONS INFORMATION

The ADG3304 is designed for digital circuits that operate at different supply voltages; therefore, logic level translation is required. The lower voltage logic signals are connected to the A pins, and the higher voltage logic signals are connected to the Y pins. The ADG3304 can provide level translation in both directions from A \rightarrow Y or Y \rightarrow A on all four channels, eliminating the need for a level translator IC for each direction. The internal architecture allows the ADG3304 to perform bidirectional level translation without an additional signal to set the direction in which the translation is made. It also allows simultaneous data flow in both directions on the same part, for example, when two channels translate in A \rightarrow Y direction while the other two translate in Y \rightarrow A direction. This simplifies the design by eliminating the timing requirements for the direction signal and reducing the number of ICs used for level translation.

Figure 40 shows an application where two microprocessors operating at 1.8 V and 3.3 V, respectively, can transfer data simultaneously using two full-duplex serial links, TX1/RX1 and TX2/RX2.

Figure 40. 1.8 V to 3.3 V Level Translation Circuit on Two Full-Duplex Serial Links

When the application requires level translation between a microprocessor and multiple peripheral devices, the ADG3304 I/O pins can be three-stated by setting EN = 0. This feature allows the ADG3304 to share the data buses with other devices without causing contention issues. Figure 41 shows an application where a 1.8 V microprocessor is connected to a 3.3 V peripheral device using the three-state feature.

Figure 41. 1.8 V to 3.3 V Level Translation Circuit Using the Three-State Feature

LAYOUT GUIDELINES

As with any high speed digital IC, the printed circuit board layout is important for the overall performance of the circuit. Care should be taken to ensure proper power supply bypass and return paths for the high speed signals. Each $V_{\rm CC}$ pin ($V_{\rm CCA}$ and $V_{\rm CCY}$) should be bypassed using low effective series resistance (ESR) and effective series inductance (ESI) capacitors placed as close as possible to the $V_{\rm CCA}$ pin and the $V_{\rm CCY}$ pin. The parasitic inductance of the high speed signal track may cause significant overshoot. This effect can be reduced by keeping the length of the tracks as short as possible. A solid copper plane for the return path (GND) is also recommended.

OUTLINE DIMENSIONS

Figure 42. 14-Lead Thin Shrink Small Outline Package [TSSOP] (RU-14) Dimensions shown in millimeters

Figure 43. 12-Ball Wafer Level Chip Scale Package [WLCSP] (CB-12-1) Dimensions shown in millimeters

Figure 44. 20-Lead Lead Frame Chip Scale Package [LFCSP] 4 mm × 4 mm Body and 0.75 mm Package Height (CP-20-6) Dimensions shown in millimeters

ORDERING GUIDE

Model ^{1, 2}	Temperature Range	Package Description	Branding ³	Package Option
ADG3304BRUZ	−40°C to +85°C	14-Lead Thin Shrink Small Outline Package [TSSOP]		RU-14
ADG3304BRUZ-REEL	−40°C to +85°C	14-Lead Thin Shrink Small Outline Package [TSSOP]		RU-14
ADG3304BRUZ-REEL7	−40°C to +85°C	14-Lead Thin Shrink Small Outline Package [TSSOP]		RU-14
ADG3304BCPZ-REEL	−40°C to +85°C	20-Lead Lead Frame Chip Scale Package [LFCSP]		CP-20-6
ADG3304BCPZ-REEL7	−40°C to +85°C	20-Lead Lead Frame Chip Scale Package [LFCSP]		CP-20-6
ADG3304BCBZ-REEL	−40°C to +85°C	12-Ball Wafer Level Chip Scale Package [WLCSP]	SDC	CB-12-1
ADG3304BCBZ-REEL7	−40°C to +85°C	12-Ball Wafer Level Chip Scale Package [WLCSP]	SDC	CB-12-1
ADG3304WBRUZ-REEL	-40°C to +85°C	14-Lead Thin Shrink Small Outline Package [TSSOP]		RU-14

¹ Z = RoHS Compliant Part.

AUTOMOTIVE PRODUCTS

The ADG3304W model is available with controlled manufacturing to support the quality and reliability requirements of automotive applications. Note that this automotive model may have specifications that differ from the commercial models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for these models.

² W = Qualified for Automotive Applications.

³ Branding on these packages is limited to three characters due to space constraints.