Universidade de Aveiro

DEPARTAMENTO DE ELECTRÓNICA, TELECOMUNICAÇÕES E INFORMÁTICA

Introdução à Arquitetura de Computadores (2018/2019)

Teste 1 – 3 de Abril de 2019 – Duração: 1h00m

Notas Importantes:

Justifique todas as suas respostas.

O exame é individual e sem consulta. Não é permitida a utilização de calculadora.

Nome: Andre Almeida Clinaira Nº Mec. 107637

Grupo I

1. Assuma uma máquina com palavras de 10 bits. Considerando os diferentes sistemas de representação estudados, preencha a tabela seguinte com o menor e o maior número representável. (apresente os números escritos em base 2 e qual o seu valor no sistema decimal).

Sistema de Representação		o representável bits)	Maior Número Representável (10 bits)				
	Em binário	Em base 10	Em binário	Em base 10			
Sem sinal	0000000000	= 0	{{{{1}}{{1}}}}	1023			
Sinal e Módulo	000000	- 511	OH111111	511			
Complemento para 2	(000000000	-512	0111111111	= 511			

2. Efetue a operação seguinte e apresente o resultado. Considerando números representados <u>em complemento para</u> 2 com 8 bits, comente o resultado obtido:

3. Represente o número 9.625 no formato de virgula flutuante IEEE 754 com precisão simples.

4. Considerando dois números, A e B, representados em complemento para 2 com 4 bits escreva uma equação algébrica que determine a ocorrência de *overflow* na soma em função dos bits de A, B e do resultado S.

$Ov = \overline{A_3}\overline{B_3}\underline{S_3} + A_3\overline{B_3}\overline{S_3}$	A ₃	B3	Cim	53				A_3	A_2	A_1	A_0
	0	0	ô	ô			+ C.	$\frac{B_3}{S_3}$	$\frac{B_2}{S_2}$	$\frac{B_1}{S_1}$	$\frac{B_0}{S_0}$
	0	1	0	1			\mathcal{L}_{O_3}	53	52	\mathcal{I}_1	\mathcal{S}_0
	1	0	0	1		ι					
	1	1	0	0	-						
	1	1	0 1		0	© 1	© (© 1	⊚ 1	⊚ 1	⊚ 1

	Gru	po I				Grupo III			Grupo IV			
1	2	3	4	5	6	7	8	9	10	11	12	13
1	1	1	2	0,5	1	1	2	1,5	1	1	1	6

Grupo II

Considere a seguinte tabela de verdade da função lógica F.

5. Usando um descodificador 3:8 e uma porta lógica adicional projete um circuito que implemente a função F.

6. É possível implementar a função F usando um multiplexer 2:1 e algumas portas lógicas adicionais? Se sim esboce esta solução.

7. O que se entende num circuito de lógica combinatória por um Glitch? Quais são as causas deste fenómeno?

Um yello i uma transição inderejada que ocorre devida a uma mudança de estado de um sind de entrada. Esta mudança de estado é consequência de um atrano de sinal maior num da visiries cameintos que o sinal de entrado pot processer. Este otraso de sinal potencio causar um estatel quando a vicirio cameintos que O simal de embrado paraste se juntam num sá numa pola de saida.

- 8. Considere uma memória com 10 bits de endereço e 16 bits de dados.
 - a) Quantos bytes podem ser armazenados na memória?
 - b) Qual é a endereçabilidade da memória?

- 9. a) Explique o significado siglas RAM e ROM relativamente às memórias de computadores?
 - b) Qual a diferença conceptual entre a memória ROM, RAM estática e RAM dinâmica?

RAH: Sandom Steens Kumory RON: Stead Unly Tumory

Chama-se memòria RAM, Joque se pob auder com igual facilidade a guelque poiços de memòria e é odátel. Glama e memoria ROH, lorque as primeiras memorias exam pogramodos em fáltica ar exciter for um poerro dutativo e é mós volátil.
La mumiria AAN dimánuca o volo petro de um xe-vento priodicamente e também rumpe que é lido e ma mumiria AAN extitico o volo é mantedo urguanto o circuito extern alimentodo.

	Gru	po I				G	rupo I	Grupo IV				
1	2	3	4	5	6	7	8	9	10	11	12	13
1	1	1	2	0,5	1	1	2	1,5	1	1	1	6

Grupo III

10. Von Neuman ficou na história dos computadores por uma contribuição revolucionária. Descreva a contribuição dele, a sua vantagem e o modelo funcional dos computadores que ele propôs.

Yon Turman prefér a armazinagem da dedar e do pograma na mienno mientra o que levo a que a pagnamar foduriam un quardada e realpareitada.
che unidades fundamentais de um comfutado sá as unidades de entrado, as unidades de saída, mumária e CPU. The unidades de embrada furnitum a sucefició de informaça vindo do exterior (dada, pagramas) e que é armajenada em mumária. The unidades de saída furnitum o envió de serultada firo o exterior. To mumária armajono pagramas, dada por paceramento e seultados. U CPU pocera informaça atrassi do excerço do pagrama armajenado em mumária. To madelo de tros teuranos escutis ofera uma mumária fartillada for instruças e por dados.

11. Explique o que se entende por instrução e qual a informação que ela deve conter.

Urma instrução dux indicar qual a durção a reclijar, qual a latelização de deranda (u existiram), orde calação a resultada e qual a posição instrução (em cordição normale à a instrução seguinhe no requincia e, potanto, más é, normalmente, explicitarmente mencionada, cara contráxio, em instrução que alterem a requincia de excução a instrução dureró forecer o endurção do posição a no executado.

Oum, tema que umo instrução é o cariento de informação necessária po a realização de uma determinado targo.

12. Explique em que consiste o ciclo básico de execução de uma instrução

Sumo regundo etalo, o pacerador ececula o invocução, acedemolo ou derander, redijando derações eles e guadande o xerebado

	Gru	po I				Grupo III			Grupo IV			
1	2	3	4	5	6	7	8	9	10	11	12	13
1	1	1	2	0,5	1	1	2	1,5	1	1	1	6

Grupo IV

13. Pretende projetar-se uma máquina de estados que implemente um contador binário de 2 bits com a sequência (00, 01, 10, 11, 00, ...).

A máquina deve ter uma entrada de *Enable*, E, que quando a 1, permite avançar para o estado seguinte, e, quando igual a 0, mantém o estado atual.

13. a) Desenhe o diagrama de estados e transições da máquina.

13. b) Obtenha a tabela de estados e transições em função do estado atual e da entrada.

Estado	atual So	Emable	Euledo.	uguinte
0	0	0	0	0
0	4	0	0	10
4	0	1	1	0
1	1	0	1	1

13 c) Escreva as equações do estado seguinte em função do estado atual e das entradas e simplifique-as.

	Gru	po I				G	rupo I	Grupo IV				
1	2	3	4	5	6	7	8	9	10	11	12	13
1	1	1	2	0,5	1	1	2	1,5	1	1	1	6

Nome: Modri Almeida Ulivira Nº Mec. 107637

13 d) Esboce o circuito que implementa a máquina.

13 e) Adicione à máquina anterior uma saída **Max**, que assume o valor lógico **1** quando o valor da sequência for máximo. Escreva a equação lógica de **Max** em função do estado atual, e junte o circuito no diagrama da resposta anterior.

MAX = 5,50

	Gru	po I				G	rupo I	Grupo IV				
1	2	3	4	5	6	7	8	9	10	11	12	13
1	1	1	2	0,5	1	1	2	1,5	1	1	1	6

Zona de rascunho	

	Gru	ро I				Grupo III			Grupo IV			
1	2	3	4	5	6	7	8	9	10	11	12	13
1	1	1	2	0,5	1	1	2	1,5	1	1	1	6