Training (convolutional) neural networks for classification

Mitko Veta IMAG/e, Eindhoven University of Technology

Outline

- Gradient descent
- Loss function
- Backpropagation
 - The modular way
- Implementing a layer
 - Example: linear layer in caffe
- Regularization
- Initialization
- Some practical considerations

Find "good" values for θ

The loss informs us how "good" the parameters are

Minimizing the loss

$$\underset{\theta}{\operatorname{argmin}} \frac{1}{D} \sum_{t} E(\mathbf{f}(x^{(t)}, \boldsymbol{\theta}), y^{(t)}) + \lambda \Omega(\boldsymbol{\theta})$$

$$\downarrow \qquad \qquad \downarrow$$
Loss function Regularization

Gradient descent

 Update the parameters θ in the direction of the steepest descent;

Gradient descent

 Update the parameters θ in the direction of the steepest descent;

$$\Delta = -\frac{1}{D} \sum_{t} \nabla_{\theta} E(\mathbf{f}(x^{(t)}; \boldsymbol{\theta}), y^{(t)}) - \mu \nabla_{\theta} \Omega(\boldsymbol{\theta})$$

$$\theta \leftarrow \theta + \eta \Delta$$

Learning rate

- What needs to be defined/computed:
 - Loss function
 - Derivative of $E(\mathbf{f}(\mathbf{x}, \boldsymbol{\theta}), y)$ and $\Omega(\boldsymbol{\theta})$ w.r.t every parameter θ_i
 - So we can perform gradient descent
 - This has to be done in an efficient way that scales well for deep networks
 - Initial values for θ

- What needs to be defined/computed:
 - Loss function
 - Derivative of $E(\mathbf{f}(\mathbf{x}, \boldsymbol{\theta}), y)$ and $\Omega(\boldsymbol{\theta})$ w.r.t every parameter θ_i
 - So we can perform gradient descent
 - This has to be done in an efficient way that scales well for deep networks
 - Initial values for θ

Loss function

- Negative log-likelihood → cross-entropy

$$f(\mathbf{x}; \mathbf{\theta})_{c} = p(y = c | \mathbf{x}; \mathbf{\theta})$$

$$E(\mathbf{f}(\mathbf{x}^{(t)}; \mathbf{\theta}), y^{(t)}) = -\sum_{c} 1_{y^{(t)} = c} \log p(y = c | \mathbf{x}^{(t)}; \mathbf{\theta})$$
sum over all classes

Softmax

- Generalization of the logistic function
 - Squashes the inputs to the [0 1] range

Logistic function:
$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Softmax function:
$$\sigma(\mathbf{z})_j = \frac{e^{z_j}}{\sum_i e^{z_i}}$$

- How to <u>efficiently</u> compute the gradient w.r.t. to every parameter?
- Backpropagation: it's just the chain rule of differentiation applied to neural networks

$$z = f(y); y = g(x); z = f(g(x))$$

$$x \qquad g(\cdot) \qquad y \qquad f(\cdot) \qquad z$$

$$\frac{dz}{dx} = \frac{dz}{dv} \frac{dy}{dx}$$

- "Classical" view: individual neurons with nonlinearities
- Better:
- Each layer can be a single entity (module) that computes a function
- The layers have vector inputs, outputs and (sometimes) parameters
- This is how NNs are implemented in code

$$\frac{\partial E}{\partial \boldsymbol{\theta}^{l}} = \frac{\partial E}{\partial \mathbf{z}^{l+1}} \frac{\partial \mathbf{z}^{l+1}}{\partial \boldsymbol{\theta}^{l}} = \frac{\partial E}{\partial \mathbf{z}^{l+1}} \frac{\partial \mathbf{f}^{l}(\mathbf{z}^{l}, \boldsymbol{\theta}^{l})}{\partial \boldsymbol{\theta}^{l}}$$

$$\frac{\partial E}{\partial \mathbf{z}^{l}} = \delta^{l} = \frac{\partial E}{\partial \mathbf{z}^{l+1}} \frac{\partial \mathbf{z}^{l+1}}{\partial \mathbf{z}^{l}} = \delta^{l+1} \frac{\partial \mathbf{z}^{l+1}}{\partial \mathbf{z}^{l}}$$

$$\boldsymbol{\delta}^{l} = \boldsymbol{\delta}^{l+1} \frac{\partial \mathbf{f}^{l}(\mathbf{z}^{l}, \boldsymbol{\theta}^{l})}{\partial \mathbf{z}^{l}} \quad \checkmark$$

Forward computation:

$$\mathbf{z}^{l+1} = \mathbf{f}^{l}(\mathbf{z}^{l}; \mathbf{\theta})$$

Backward computation:

$$\frac{\partial E}{\partial \mathbf{\theta}^{l}} = \mathbf{\delta}^{l+1} \frac{\partial \mathbf{f}^{l}(\mathbf{z}^{l}; \mathbf{\theta}^{l})}{\partial \mathbf{\theta}^{l}}$$

$$\boldsymbol{\delta}^{l} = \boldsymbol{\delta}^{l+1} \frac{\partial \mathbf{f}^{l}(\mathbf{z}^{l}; \boldsymbol{\theta}^{l})}{\partial \mathbf{z}^{l}}$$

- Forward computation:
 - Given the input, compute the output of every layer
- Backward computation:
 - Given the input and the gradient term term passed from the layer above:
 - Compute the derivatives of the loss w.r.t. to the parameters of the layer
 - Compute the gradient term for the current layer

Implementing a module

Forward computation:

$$\mathbf{z}^{l+1} = \mathbf{f}^l(\mathbf{z}^l; \mathbf{\theta})$$

Backward computation:

$$\frac{\partial E}{\partial \mathbf{\theta}^{l}} = \mathbf{\delta}^{l+1} \frac{\partial \mathbf{f}^{l}(\mathbf{z}^{l}; \mathbf{\theta}^{l})}{\partial \mathbf{\theta}^{l}}$$

$$\boldsymbol{\delta}^{l} = \boldsymbol{\delta}^{l+1} \frac{\partial \mathbf{f}^{l}(\mathbf{z}^{l}; \boldsymbol{\theta}^{l})}{\partial \mathbf{z}^{l}}$$

Forward computation:

$$z_j^{l+1} = \sum_i z_i \theta_{i,j}^l$$

Backward computation:

$$\frac{\partial E}{\theta_{i,j}^{l}} = \delta_{j}^{l+1} \frac{\partial z_{j}^{l+1}}{\theta_{i,j}^{l}} = \delta_{j}^{l+1} z_{i}^{l}$$

$$\delta_{i}^{l} = \frac{\partial E}{\partial z_{i}^{l}} = \sum_{j} \frac{\partial E}{\partial z_{j}^{l+1}} \frac{\partial z_{j}^{l+1}}{\partial z_{i}^{l}} = \sum_{j} \delta_{j}^{l+1} \theta_{i,j}^{l}$$

- Forward computation, single sample
 - Ignoring biases

Forward computation, more than one sample

Example implementation: linear layer in caffe

Forward computation:

```
template <typename Dtype>
void InnerProductLayer<Dtype>::Forward_cpu(
    const vector<Blob<Dtype>*>& bottom,
    const vector<Blob<Dtype>*>& top)

{
    const Dtype* bottom_data = bottom[0]->cpu_data();
        Dtype* top_data = top[0]->mutable_cpu_data();
    const Dtype* weight = this->blobs_[0]->cpu_data();

    caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasTrans, M_, N_, K_, (Dtype)1.,
        bottom_data, weight, (Dtype)0., top_data);
...
}
```

gemm \equiv general matrix multiplication (BLAS function): $C \leftarrow \alpha \, AB + \beta \, C$

- Backward computation
 - Gradient w.r.t. parameters

- Backward computation
 - Gradient w.r.t. input

Example implementation: linear layer in caffe

Backward computation:

```
template <typename Dtype>
void InnerProductLayer<Dtype>::Backward cpu(
    const vector<Blob<Dtype>*>& top, const vector<bool>& propagate down,
    const vector<Blob<Dtype>*>& bottom)
 if (this->param propagate down [0]) {
    const Dtype* top diff = top[0]->cpu diff();
   const Dtype* bottom data = bottom[0]->cpu data();
   // Gradient with respect to weight
    caffe cpu gemm<Dtype>(CblasTrans, CblasNoTrans, N , K , M , (Dtype)1.,
        top diff, bottom data, (Dtype)1., this->blobs [0]->mutable cpu diff());
 if (propagate down[0]) {
    const Dtype* top diff = top[0]->cpu diff();
   // Gradient with respect to bottom data
    caffe cpu gemm<Dtype>(CblasNoTrans, CblasNoTrans, M_, K_, N_, (Dtype)1.,
        top diff, this->blobs [0]->cpu data(), (Dtype)0., bottom[0]->mutable cpu diff());
```

Regularization

- L2 regularization
 - Penalize the square of the weights
 - Keeps the weights small
 - A.k.a. weight decay

$$\operatorname{argmin}_{\theta} \frac{1}{D} \sum_{d} E(\mathbf{f}(x^{(d)}, \mathbf{\theta}), y^{(d)}) + \lambda \Omega(\mathbf{\theta})$$

$$\Omega(\theta) = \frac{1}{2} \sum_{l} \sum_{i} \sum_{j} (\theta_{i,j}^{l})^{2}$$

$$\frac{\partial \Omega(\theta)}{\partial \theta_{i,j}^{l}} = \theta_{i,j}^{l}$$

Regularization

- L1 regularization
 - Penalize the absolute values of the weights
 - Keeps the weights small, leads to sparse weights

$$\Omega(\theta) = \frac{1}{2} \sum_{l} \sum_{i} \sum_{j} |(\theta_{i,j}^{l})|$$

$$\frac{\partial \Omega(\theta)}{\partial \theta_{i,j}^{l}} = \operatorname{sign}(\theta_{i,j}^{l})$$

Regularization

- Other approaches to combat over-fitting
 - Smaller architectures
 - Data augmentation
 - Dropout
 - Early stopping

Dropout

- During training, randomly "turn off" some neurons
- Prevents co-adaptation

(a) Standard Neural Net

(b) After applying dropout.

Parameter initialization

Glorot, Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural networks." International conference on artificial intelligence and statistics. 2010.

Weights

- Small random numbers usually drawn from Gaussian or uniform distribution
- Heuristic for the scale of the weights that prevents the "signal" from shrinking as it propagates trough the network:

$$\operatorname{var}(\boldsymbol{\theta}^{\mathbf{l}}) = \frac{1}{n_{\text{fan in}}}$$

$$\operatorname{var}(\boldsymbol{\theta}^{\mathbf{l}}) = \frac{2}{n_{\text{fan in}} + n_{\text{fan out}}}$$

Parameter initialization

Biases

- Usually initialized to 0
- When using ReLU
 nonlinearities consider values
 >0 to avoid "dead" units

Glorot, Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural networks." International conference on artificial intelligence and statistics. 2010.

Stochastic gradient descent

Batch:
$$\Delta = -\frac{1}{D} \sum_{t} \nabla_{\boldsymbol{\theta}} E(\mathbf{f}(\boldsymbol{x}^{(t)}; \boldsymbol{\theta}), \boldsymbol{y}^{(t)}) - \mu \nabla_{\boldsymbol{\theta}} \Omega(\boldsymbol{\theta})$$

$$\theta \leftarrow \theta + \eta \Delta$$

Stochastic:
$$\Delta_s = \nabla_{\theta} E(\mathbf{f}(x^{(t)}; \theta), y^{(t)}) - \mu \nabla_{\theta} \Omega(\theta)$$

Mini-batch:
$$\Delta_{s} = -\frac{1}{M} \sum_{m} \nabla_{\theta} E(\mathbf{f}(x^{(m)}; \theta), y^{(m)}) - \mu \nabla_{\theta} \Omega(\theta)$$

$$M \ll D$$

Momentum

$$\Delta_{s} = -\frac{1}{M} \sum_{m} \nabla_{\theta} E(\mathbf{f}(x^{(m)}; \boldsymbol{\theta}), y^{(m)}) - \mu \nabla_{\theta} \Omega(\boldsymbol{\theta})$$

$$\mathbf{v} = \mu \mathbf{v} + \eta \Delta_s$$

Momentum

$$\theta \leftarrow \theta + \mathbf{v}$$

Instead of:

$$\theta \leftarrow \theta + \eta \Delta_s$$

Observing the training process

Data split:

- Training subset: used during the optimization
- Validation subset: used to monitor overfitting, select meta-parameters
- Testing dataset: used to evaluate the performance of the trained model

Observing the training process

Observing the training process

A more realistic example (with excellent generalization)

Choosing the learning rate

- Too small: slow to reach a minima
- Too large: may oscillate around a minima

Image from: http://cs231n.github.io/

Choosing the learning rate

- Too small: slow to reach a minimum
- Too large: may oscillate around a minimum

Observing the learned features

 The lower-level features should be "smooth" and have structure

Example workflow

- Data augmentation/normalization
 - Explore invariances of your data/problem
 - Subtract mean, whitening (decorelate the input variables)
- Network architecture
- Loss function
 - NLL with softmax for most classification problems
- Weight initialization
 - Based on the number of inputs/outputs to the layer
- Regularization strategy
 - Weight decay (L2 is the most common choice), dropout, early stopping
- Gradient descent method
 - SGD with momentum in most cases
- Learning rate
- Observe the training process and make necessary adjustments
 - Consider an optimization strategy (such as grid or random search) for the meta-parameters (learning rate, weight decay etc.)

Recommended resources

- Oxford Machine Learning Course from Nando de Freitas
 - https://www.cs.ox.ac.uk/people/nando.defreitas/machinelearning/
- Stanford Convolutional Neural Networks for Visual Recognition Course from Andrej Karpathy
 - http://cs231n.github.io/
- Nural Networks Online Course from Hugo Larochelle
 - http://info.usherbrooke.ca/hlarochelle/neural_networks/content.html
- Caffe documentation and examples
 - http://caffe.berkeleyvision.org/