### Rain prediction model using ANN

#### Dataset:

-Link in Kaggle:

https://www.kaggle.com/datasets/jsphyg/weather-dataset-rattle-package

 This dataset contains daily weather observations from 2008 to 2017 for the most of Australia`s states

 Our targe here is predicting if it would rain the next day or not

- The data original shape is (145461,23)

# Data Wrangling & Preprocessing:

First, we have a time series at Date column –splitting it into year, month, day at month and day we convert them to cyclic continuous feature and encoding them: without it the model will train the day 1 in specific month and day 2 arent near also with months it doesn't consider that month 12 not near to month 1 and this increases the model`s accuracy

#### References:

<u>deep learning - Encoding Date/Time (cyclic data) for Neural Networks - Cross Validated (stackexchange.com)</u>

Encoding Cyclical Features for Deep Learning (kaggle.com)

\_\_\_\_\_

# -Dealing with null values

| <br>Date      | 0     |         |
|---------------|-------|---------|
| Location      | 0     |         |
| MinTemp       | 1485  |         |
| MaxTemp       | 1261  |         |
| Rainfall      | 3261  |         |
| Evaporation   | 62790 |         |
| Sunshine      | 69835 |         |
| WindGustDir   | 10326 |         |
| WindGustSpeed | 10263 |         |
| WindDir9am    | 10566 |         |
| WindDir3pm    | 4228  |         |
| WindSpeed9am  | 1767  |         |
| WindSpeed3pm  | 3062  |         |
| Humidity9am   | 2654  |         |
| Humidity3pm   | 4507  |         |
| Pressure9am   | 15065 |         |
| Pressure3pm   | 15028 |         |
| Cloud9am      | 55888 |         |
| Cloud3pm      | 59358 |         |
| Temp9am       | 1767  |         |
| Temp3pm       | 3609  |         |
| RainToday     | 3261  |         |
| RainTomorrow  | 3267  |         |
| year          | 0     |         |
| month         | 0     |         |
| month_sin     | 0     |         |
|               |       |         |
| month_cos     | 0     |         |
| day           | 0     |         |
| day_sin       | 0     |         |
| day_cos       | 0     |         |
| dtype: int64  |       |         |
| · · · · · ·   | 1.0   | 11 11 1 |

We got that percentage of null values is not large with respect to all data rows so I`ve filled categorical features with mode

And numerical columns with median because most of columns aren't normal distribution and there are many outliers will affect on the values using mean

This a visualization of distribution after filling null values



From problems of this data that there are columns are imbalanced like these:



There is high difference between raining or not this causes data leckage during training the model

We`ve handled it using oversampling Smote algorithm to make a balance between columns

Deleting outliers:

Using z-score and quantile range
Visualization before deleting outliers



And after deleting:



Distribution after deleting outliers:



# After using oversampling



# Encoding categorical columns -using LableEncoder

# Before encoding:

| V 0.03              |                |      |       |     |           |             |            |            |           |              |  |             |             |           | ·         | ryaion |
|---------------------|----------------|------|-------|-----|-----------|-------------|------------|------------|-----------|--------------|--|-------------|-------------|-----------|-----------|--------|
|                     | Date           | year | month | day | location  | windgustdir | winddir9am | winddir3pm | raintoday | raintomorrow |  | pressure9am | pressure3pm | cloud9am  | cloud3pm  | temp   |
| 20604               | 2016-<br>01-28 | 2016 |       |     | NorahHead | NE          | NNW        | NE         | Yes       | Yes          |  | 1009.000000 | 1004.700000 | 12.194034 | 12.194034 |        |
| 15749               | 2010-<br>10-05 | 2010 |       |     | Newcastle |             |            |            | Yes       | Yes          |  | 12.194034   | 12.194034   | 7.000000  | 4.000000  |        |
| 90501               | 2009-<br>08-19 | 2009 |       |     | GoldCoast |             | SSE        |            | No        | No           |  | 1027.200000 | 1023.300000 | 12.194034 | 12.194034 |        |
| 128336              | 2013-<br>05-16 | 2013 |       |     | Walpole   |             |            |            | No        | Yes          |  | 1013.000000 | 1009.500000 | 12.194034 | 12.194034 |        |
| 20025               | 2014-<br>06-28 | 2014 |       | 28  | NorahHead | NNW         |            |            | No        | No           |  | 1008.500000 | 1000.800000 | 12.194034 | 12.194034 |        |
| 5 rows × 30 columns |                |      |       |     |           |             |            |            |           |              |  |             |             |           |           |        |
|                     |                |      |       |     |           |             |            |            |           |              |  |             |             |           |           |        |

#### After encoding:



# Normalization

-using StandardScaler

## Splitting Data:

Training----- 99.98%

Test----- 0.02

X\_train.shape(176155,26)

Y\_train.shape(176155,)

X\_train.shape(3595,26)

X\_test.shape(3595,)

### Modeling

-Using keras sequence model with:

6layers:

Input layer with

3 hidden layers with output neuons respectively (32,32,16,8)

Activation function is used in hidden layers is: Relu function

Optimizer: ADAM(Adaptive Moment Estimation)

Loss function: Binary Crossentropy

Metrics: Accuracy

Batch Size = 32

Epochs = 150

# Validation Split = 0.2

# Loss Curve over epochs:



## Accuracy over epochs:

Training and Validation Accuracy over Epochs



# Confusion matrix:



# Roc curve:



|              | precision | recall | f1-score | support |  |
|--------------|-----------|--------|----------|---------|--|
| 0            | 0.91      | 0.86   | 0.88     | 1799    |  |
|              | 0.52      | 0.64   | 0.57     | 422     |  |
| accuracy     |           |        | 0.82     | 2221    |  |
| macro avg    | 0.71      | 0.75   | 0.73     | 2221    |  |
| weighted avg | 0.84      | 0.82   | 0.83     | 2221    |  |