PH 712 Probability and Statistical Inference

Recap for Midterm

Zhiyang Zhou (zhou67@uwm.edu, zhiyanggeezhou.github.io)

Probability

- Probability: A function quantifying the occurrence likelihood of an event
 - Event: a subset of the sample space (Ω) which is the set of all the possible outcomes
- Conditional probability of B given A (with Pr(A) > 0): the occurrence probability of B, given that A has already occurred
 - (Bayes' theorem) $\Pr(A_i \mid B) = \Pr(A_i) \Pr(B \mid A_i) / \sum_{n=1}^{N} \Pr(A_n) \Pr(B \mid A_n)$ if $\{A_n\}_{n=1}^{N}$ are mutually exclusive and $\Omega = \bigcup_{n=1}^{N} A_n$
- Independence between events B and A (i.e., $B \perp A$): $\Pr(B \cap A) = \Pr(A) \Pr(B)$, or equiv. $\Pr(B \mid A) = \Pr(B)$

Random variable (RV)

- RV: encoding the entries of the sample space (i.e., all the possible outcomes)
- Knowing the distribution of an RV ⇔ knowing one of the following functions
 - Cumulative distribution function (cdf): $Pr(X \le x)$
 - * " $X \leq x$ " short for the event $\{\omega \in \Omega : X(\omega) \leq x\}$
 - Probability mass function (pmf, specifically for discrete RVs: Pr(X = x)
 - * "X = x" short for the event $\{\omega \in \Omega : X(\omega) = x\}$
 - Probability density function (pdf, specifically for continuous RVs): derivative of the cdf with respect to x
 - Moment generating function (mgf, not always existing)
- Support: supp $(X) = \{x \in \mathbb{R} : p_X(x) \text{ or } f_X(x) > 0\}$
- Expectation

$$E\{g(X)\} = \begin{cases} \int_{x \in \text{supp}(X)} g(x) f_X(x) dx & \text{for continuous } X \\ \sum_{x \in \text{supp}(X)} g(x) p_X(x) & \text{for discrete } X \end{cases}$$

- Examples
 - * Taking g(X) = X

$$E(X) = \begin{cases} \int_{x \in \text{supp}(X)} x f_X(x) dx & \text{for continuous } X \\ \sum_{x \in \text{supp}(X)} x p_X(x) & \text{for discrete } X \end{cases}$$

- E(aX + b) = aE(X) + b for constants a and b
- * Taking $g(X) = \exp(tX)$, $E\{g(X)\}$ is the mgf if it is finite at least for t in a neighborhood of 0
- * Taking $g(X) = X^k$ with positive integer k:

$$E(X^k) = \begin{cases} \int_{x \in \text{supp}(X)} x^k f_X(x) dx & \text{for continuous } X \\ \sum_{x \in \text{supp}(X)} x^k p_X(x) & \text{for discrete } X \end{cases}$$

·
$$E(X^k) = M^{(k)}(0)$$
 if the mgf $M(t)$ is well-defined
* Taking $g(X) = \{X - E(X)\}^2$:

$$\operatorname{var}(X) = \operatorname{E}[\{X - \operatorname{E}(X)\}^2] = \begin{cases} \int_{x \in \operatorname{supp}(X)} \{x - \operatorname{E}(X)\}^2 f_X(x) \mathrm{d}x & \text{for continuous } X \\ \sum_{x \in \operatorname{supp}(X)} \{x - \operatorname{E}(X)\}^2 p_X(x) & \text{for discrete } X \end{cases}$$

- $\operatorname{var}(X) = E(X^2) \{E(X)\}^2$
- $\cdot \operatorname{var}(aX + b) = a^2 \operatorname{var}(X)$
- $\operatorname{sd}(X) = \sqrt{\operatorname{var}(X)}$: the standard deviation of X

Univariate transformation: finding the distribution of Y = g(X), given the distribution of X

- Figure out supp $(Y) = \{y : y = q(x), x \in \text{supp}(X)\}$
- For discrete Y with discrete X: $p_Y(y) = \Pr(Y = y) = \Pr(g(X) = y)$
- For continuous Y

$$-F_Y(y) = \Pr\{g(X) \le y\}$$

- $f_Y(y) = \frac{\mathrm{d}}{\mathrm{d}y} F_Y(y) = \frac{\mathrm{d}}{\mathrm{d}y} \int_{\{x:g(x) \le y\}} f_X(x) \mathrm{d}x$

- $-f_Y(y) = \frac{\mathrm{d}}{\mathrm{d}y} F_Y(y) = \frac{\mathrm{d}}{\mathrm{d}y} \int_{\{x:g(x) \leq y\}} f_X(x) \mathrm{d}x$ * Integration region $\{x:g(x) \leq y\}$ may be expressed in terms of a series of intervals with endpoints as functions of y, say [a(y), b(y)], [c(y), d(y)], etc.
 - * The integration of f_X is often avoidable by employing the Leibniz Rule (CB Thm. 2.4.1):

$$\frac{d}{dy} \int_{a(y)}^{b(y)} f(x) dx = f\{b(y)\} \frac{d}{dy} \{b(y)\} - f\{a(y)\} \frac{d}{dy} \{a(y)\}$$

with a(y) and b(y) both differentiable with respect to y.

• If $X \sim \mathcal{N}(\mu, \sigma^2)$, then Y = aX + b, $a \neq 0$, is also normally distributed. Specifically, $Y \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$.

Normal sampling theory

- RVs X_1, \ldots, X_n : a random sample of size n
 - Independent and identically distributed (iid) sample: X_1, \ldots, X_n are iid
 - iid normal sample: $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$
- Statistic: any function of a random sample, e.g.,

 - Sample mean: $\bar{X} = n^{-1} \sum_{i=1}^{n} X_i$ Sample variance: $S^2 = (n-1)^{-1} \sum_{i=1}^{n} (X_i \bar{X})^2$ Sample standard deviation: $S = \sqrt{(n-1)^{-1} \sum_{i=1}^{n} (X_i \bar{X})^2}$
- Identities for an iid normal sample

$$-\sum_{i=1}^{n} X_i^2 \sim \chi^2(n) \text{ if } X_1, \dots, X_n \stackrel{\text{iid}}{\sim} \mathcal{N}(0, 1)$$
$$* Q \sim \chi^2(n) \Rightarrow \mathcal{E}(Q) = n \text{ and } \operatorname{var}(Q) = 2n$$

- $-Z/\sqrt{Q/n} \sim t(n)$ if $Z \sim \mathcal{N}(0,1)$ and $Q \sim \chi^2(n)$ are independent of each other $-(P/m)/(Q/n) \sim F(m,n)$ if $P \sim \chi^2(m)$ and $Q \sim \chi^2(n)$ are independent of each other
- $-n^{1/2}(\bar{X} \mu)/\sigma \sim \mathcal{N}(0, 1)$ $(n-1)S^2/\sigma^2 \sim \chi^2(n-1)$ $\bar{X} \perp S^2$
- $-n^{1/2}(\bar{X}-\mu)/S \sim t(n-1)$

Parametric model

- The true model assumed to be an element of a set of pdfs/pmfs $\{f(\cdot \mid \theta) : \theta \in \Theta\}$
 - Finding the true model reducing to locating the true parameter $\theta_0 \in \Theta$
 - $-\theta_0$ unknown but believed to be fixed (frequentist statistics)

Point estimation

- Method of moments (MM) (for iid sample)
 - 1. Equate the kth-order RAW moments $(E(X_1^k))$ to its empirical counterpart $(n^{-1}\sum_{i=1}^n X_i^k)$.
 - Better to work with a small k
 - 2. Solve the resulting equation(s) for θ .
- Maximum likelihood (ML)
 - $-L(\theta)$ is the joint pdf/pmf of the sample (consisting of n RVs) with emphasis on $\theta \in \Theta$
 - * For an independent sample $L(\theta) = \prod_{i=1}^n f_{X_i}(X_i \mid \theta), \ \theta \in \Theta$
 - $-\hat{\theta}_{\mathrm{ML}}$ is the maximizer of $L(\theta)$ (or $\ell(\theta) = \ln L(\theta)$) within Θ
 - * For discrete Θ : compare $L(\theta)$ (or $\ell(\theta)$) over all the possible values of θ
 - * For continuous Θ :
 - · If $\ell'(\theta) = 0$ has no solution: utilize the monotonicity of $L(\theta)$ (or $\ell(\theta)$)
 - · If $\ell'(\theta) = 0$ has at least one solution: get the solution(s) (i.e., stationary point(s)) and then compare $L(\theta)$ (or $\ell(\theta)$) over all the stationary points and boundary points of Θ
 - Invariance property: $g(\hat{\theta})_{\text{ML}} = g(\hat{\theta}_{\text{ML}})$

Evaluating estimators

- $MSE(\hat{\theta}) = Bias^2(\hat{\theta}) + var(\hat{\theta})$
- Cramér-Rao lower bound (CRLB) for the variance of any unbiased estimator of $q(\theta)$: if $E(T_n) = q(\theta)$, then $var(T_n) \ge \{g'(\theta)\}^2/I_n(\theta)$
 - Fisher information $I_n(\theta) = \text{var}\{\ell'(\theta)\} = \text{E}[\{\ell'(\theta)\}^2] = -\text{E}\{\ell''(\theta)\}$ If $g(\theta) = \theta$, then CRLB becomes $I_n^{-1}(\theta)$.
- If $E(T_n) = g(\theta)$, then Efficiency $(T_n) = CRLB/var(T_n)$.
 - The higher efficiency the better (typically up to 1);
 - $-T_n$ is an efficient estimator for $g(\theta) \iff E(T_n) = g(\theta)$ and its efficiency = 1.