Christian Andreas Mielers Phil Yannick Schrör

Ruhr-University Bochum Institute for Neural Computation Study Project

24th of February 2016

Convolutional Neural Networks

- Learns the weights of convolutional filters
- Exploits spatial structure in the input
- Convolving entire input with filter implies shared weights
- Reduced amount of weights allows lots of filters
- Filters specific to color channels

- Learns the weights of convolutional filters
- Exploits spatial structure in the input
- Convolving entire input with filter implies shared weights
- Reduced amount of weights allows lots of filters
- Filters specific to color channels

Convolutional Neural Networks

- Learns the weights of convolutional filters
- Exploits spatial structure in the input
- Convolving entire input with filter implies shared weights
- Reduced amount of weights allows lots of filters
- Filters specific to color channels

Network Structure

Layer	Туре	Configuration	Activation function
0	Convolutional	100 filters of size 7×7 per channel	tanh
1	Max Pooling	Pool size 2 × 2	-
2	Convolutional	150 filters of size 4×4 per channel	tanh
3	Max Pooling	Pool size 2 × 2	-
4	Convolutional	250 filters of size 4×4 per channel	tanh
5	Max Pooling	Pool size 2×2	-
6	Dense	300 neurons	tanh
7	Dense	43 neurons	softmax

- German Traffic Sign Recognition Benchmark
- What is the task?
- Show some images

Simple Setup

- Describe Simple Setup
- Present Results

Results on GTSRB

- Mention input distortions
- Explain them
- Present distortion parameters
- Maybe add one or two images before and after the transformations

Results with RELU

- Add RELU image
- Present results with RELU activation function

Missclassified images

- How well do the GTSRB filters generalize?
- Initialize new network with same structure randomly
- Copy GTSRB filters to the new network
- Train only the fully connected layers!

- Columbia Object Image Library 100 ⇒ COIL100
- 100 different objects
- Objects turning on a black turntable
- $lue{}$ One foto each time the object has turned by 5°
- 72 images per object, 7200 images in total
- Random separation into 58 training and 14 test images per object

- Describe INRIA dataset
- Show image
- Show results with reused filters
- Show results with original filters

Conclusion

■ Summarize results

Questions?

Questions?

