Niki Vazou

IMDEA Software

e.g., theorem:

$$\Phi = (\exists x. \forall y. (p \times y)) \Rightarrow (\forall y. \exists x. (p \times y))$$

Encode Theorem as Haskell Type, then Proof is a Haskell Expression.

- I. Refinement Types
- II. Theorems as Types
- III. Proofs as Programs

I. Refinement Types

42 :: Int


```
2:: {v:Int | v == 2}
42:: {v:Int | v == 42}
div:: Int -> {v:Int | v /= 0} -> Int
```

div 42 2 :: ??

2:: {v:Int | v == 2}

 $42 :: \{v:Int \mid v == 42\}$

 $div :: Int -> \{v:Int | v/= 0\} -> Int$

42 :: Int 2 :: {v:Int | v/= 0}

div 42 2 :: ??

2:: {v:Int | v == 2}

42 :: {v:Int | v == 42}

 $div :: Int -> \{v:Int | v/= 0\} -> Int$

We know \nearrow We want $2 :: \{v:Int \mid v == 2\} \Rightarrow 2 :: \{v:Int \mid v \neq 0\}$ $2 :: \{v:Int \mid v \neq 0\}$

That is subtyping!

$$t_1 <: t_2 \text{ iff. } \forall e. \ e::t_1 \Rightarrow e::t_2$$

$$\{v:Int \mid v == 2\} <: \{v:Int \mid v /= 0\}$$

2:: $\{v:Int \mid v == 2\} \Rightarrow 2:: \{v:Int \mid v /= 0\}$

 $\{v:Int \mid v == 2\} <: \{v:Int \mid v \neq 0\}$

Implication implies subtyping

$$\forall v. v == 2 \Rightarrow v /= 0$$

$$\{v:Int \mid v == 2\} <: \{v:Int \mid v /= 0\}$$

Putting it all together

$$\forall$$
 v. v == 2 \Rightarrow v /= 0

$$2 :: \{v:Int \mid v == 2\} \{v:Int \mid v == 2\} <: \{v:Int \mid v /= 0\}$$

42 :: Int

 $2:: \{v:Int \mid v/=0\}$

div 42 2 :: Int

Observe: Implications have the language of specifications

$$\forall v. v == 2 \Rightarrow v \neq 0$$

div 42 2 :: Int

Let p be the language of refinements

Implications

$$\forall \overline{x} \cdot p \Rightarrow p$$

$$\forall v. v == 2 \Rightarrow v \neq 0$$

div 42 2 :: Int

Let p be the language of refinements

Implications

$$\forall \overline{x} \cdot p \Rightarrow p$$

$$\forall v. v == 2 \Rightarrow v \neq 0$$

Let p be the language of refinements

Implications

$$\forall \overline{x} \cdot p \Rightarrow p$$

$$\forall v. v == 2 \Rightarrow v \neq 0$$

$$2 :: \{v:Int \mid v/= 0\}$$

Specifications over p

Implications

 $\forall \ \overline{x} \cdot p \Rightarrow p$

Specifications over p

Implications

$$\forall \overline{x} \cdot p \Rightarrow p$$

For decidable implications, p should be quantifier free.

How to express quantified theorems?

Specifications

over p

- I. Refinement Types
- II. Theorems as Types

II. Theorems as Types (a.k.a. Curry Howard Correspondence)

Logical Formula

Native Term

е

Conjunction

φ1Λ φ2

Disjunction

 $\phi_1 V \phi_2$

Implication

 $\phi_1 \Rightarrow \phi_2$

Forall

 $\forall x. \phi$

Exists

∃х. φ

Native Term e

Conjunction $\varphi_1 \wedge \varphi_2$

Disjunction $\phi_1 \vee \phi_2$

Implication $\phi_1 \Rightarrow \phi_2$

Forall $\forall x. \phi$

Exists $\exists x. \varphi$

Native Term

Conjunction $\varphi_1 \wedge \varphi_2$

Disjunction $\phi_1 \vee \phi_2$

Implication $\phi_1 \Rightarrow \phi_2$

Forall $\forall x. \phi$

e

Exists $\exists x. \varphi$

Native Term e as a Refinement Type

Native Term

e

{v:() | e }

$$x == y$$

$$\{v:() \mid x == y \}$$

$$\{v:() \mid p \times y \}$$

Native Term

e

{v:() | e }

Conjunction

 $\phi_1 \wedge \phi_2$

??

Disjunction

 $\phi_1 V \phi_2$

Implication

 $\phi_1 \Rightarrow \phi_2$

Forall

 $\forall x. \phi$

Exists

∃ х. ф

Conjunction $\phi_1 \wedge \phi_2$ as a Refinement Type

$$(\phi_1, \phi_2)$$

Conjunction $\varphi_1 \wedge \varphi_2$ as a Refinement Type

$$\Gamma \vdash e :: (\phi_1, \phi_2)$$

$$\Gamma \vdash \text{case e of } \{(x,y) \rightarrow x\} :: \phi_1$$

(i.e., ∧-L-Elimination)

Conjunction $\varphi_1 \wedge \varphi_2$ as a Refinement Type

$$\Gamma \vdash e :: (\phi_1, \phi_2)$$

$$\Gamma \vdash \text{case e of } \{(x,y) \rightarrow y\} :: \varphi_2$$

(i.e., ∧-R-Elimination)

Conjunction $\varphi_1 \wedge \varphi_2$ as a Refinement Type

$$\Gamma \vdash e_1 :: \phi_1 \quad \Gamma \vdash e_2 :: \phi_2$$

$$\Gamma \vdash (e_1, e_2) :: (\phi_1, \phi_2)$$

(i.e., \Lambda-Introduction)

Native Term

{v:() | e }

Conjunction

 $\phi_1 \wedge \phi_2$

 (ϕ_1,ϕ_2)

Disjunction

 $\phi_1 V \phi_2$

Implication

 $\phi_1 \Rightarrow \phi_2$

Forall

 $\forall x. \phi$

Exists

∃ х. ф

Native Term

е

{v:() | e }

Conjunction

φι Λ φε

 (ϕ_1,ϕ_2)

Disjunction

 $\phi_1 V \phi_2$

??

Implication

 $\phi_1\Rightarrow\phi_2$

Forall

 $\forall x. \phi$

Exists

∃ х. ф

Disjunction $\varphi_1 \vee \varphi_2$ as a Refinement Type

Either ϕ_1 ϕ_2

data Either a b = Left a | Right b

Native Term

е

{v:() | e }

Conjunction

 $\phi_1 \wedge \phi_2$

 (ϕ_1,ϕ_2)

Disjunction

φ1 ν φ2

Either $\varphi_1 \varphi_2$

Implication

 $\phi_1\Rightarrow\phi_2$

Forall

 $\forall x. \phi$

Exists

∃ х. ф

Logical Formula Refinement Type

Native Term

е

{v:() | e }

Conjunction

 $\phi_1 \wedge \phi_2$

 (φ_1, φ_2)

Disjunction

 $\phi_1 V \phi_2$

Either $\varphi_1 \varphi_2$

Implication

 $\phi_1 \Rightarrow \phi_2$

??

Forall

 $\forall x. \phi$

Exists

∃ х. ф

Implication $\phi_1 \Rightarrow \phi_2$ as a Refinement Type

$$\phi_1 \rightarrow \phi_2$$

Implication $\phi_1 \Rightarrow \phi_2$ as a Refinement Type

$$\Gamma, x: \phi_1 \vdash e :: \phi_2$$

$$\Gamma \vdash \backslash x. \ e :: \phi_1 \rightarrow \phi_2$$

(i.e., ⇒-Introduction)

Implication $\phi_1 \Rightarrow \phi_2$ as a Refinement Type

$$\frac{\Gamma \vdash e :: \phi_1 \rightarrow \phi_2 \quad \Gamma \vdash e_x :: \phi_1}{\Gamma \vdash e e_x :: \phi_2}$$

(i.e., ⇒-Elimination)

Logical Formula Refinement Type

Native Term

e

{v:() | e }

Conjunction

 $\phi_1 \wedge \phi_2$

 (φ_1, φ_2)

Disjunction

 $\phi_1 V \phi_2$

Either $\varphi_1 \varphi_2$

Implication

 $\phi_1 \Rightarrow \phi_2$

 $\phi_1 \rightarrow \phi_2$

Forall

 $\forall x. \phi$

??

Exists

∃ х. ф

 \forall x. ϕ as a Refinement Type

$$x\!:\!\phi_x\!\to\phi$$

 \forall x. ϕ as a Refinement Type

$$\Gamma$$
, $x: \varphi_x \vdash e :: \varphi$

$$\Gamma \vdash \ \ x : \phi_x \to \phi$$

(i.e., ∀-Introduction)

 \forall x. ϕ as a Refinement Type

$$\frac{\Gamma \vdash e :: x : \phi_x \rightarrow \phi \quad \Gamma \vdash e_x :: \phi_x}{\Gamma \vdash e e_x :: \phi[e_x/x]}$$

(i.e., ∀-Elimination)

Logical Formula Refinement Type

Native Term

е

{v:() | e }

Conjunction

 $\phi_1 \wedge \phi_2$

 (ϕ_1,ϕ_2)

Disjunction

 $\phi_1 V \phi_2$

Either $\phi_1 \phi_2$

Implication

 $\phi_1 \Rightarrow \phi_2$

 $\phi_1 \to \phi_2$

Forall

 $\forall x. \phi$

 $x\!:\!\phi_x\to\phi$

Exists

∃ х. ф

??

 \exists x. ϕ as a Refinement Type

 $(x:\phi_x,\phi)$

∃ x. φ as a Refinement Type

$$\Gamma \vdash e_x :: \phi_x \quad \Gamma, x :: \phi_x \vdash e :: \phi$$

$$\Gamma \vdash (e_x, e) :: (x :: \phi_x, \phi)$$

(i.e., ∃-Introduction)

∃ x. φ as a Refinement Type

$$\begin{array}{c} \Gamma \vdash e :: (x : \phi_x, \phi) \\ \hline \Gamma, x : \phi_x, x_\phi : \phi \vdash e_0 :: \phi_0 \\ \hline \Gamma \vdash case \ e \ of \ \{(x, x_\phi) \ \text{->} \ e_0\} :: \phi_0 \end{array}$$

(i.e., ∃-Elimination)

Logical Formula Refinement Type

Native Terms

е

{v:() | e }

Conjunction

 $\phi_1 \wedge \phi_2$

 (ϕ_1,ϕ_2)

Disjunction

φ1 V φ2

Either ϕ_1 ϕ_2

Implication

 $\phi_1 \Rightarrow \phi_2$

 $\phi_1 \to \phi_2$

Forall

 $\forall x. \phi$

 $x:\phi_x \to \phi$

Exists

∃х. φ

 $(x:\varphi_x,\varphi)$

Logical Formula Refinement Type

Native Terms

е

{v:() | e }

Conjunction

 $\phi_1 \wedge \phi_2$

 (ϕ_1,ϕ_2)

Disjunction

φ1 V φ2

Either $\phi_1 \phi_2$

Implication

 $\phi_1 \Rightarrow \phi_2$

 $\phi_1 \to \phi_2$

Forall

 $\forall x. \phi$

 $x:\phi_x \to \phi$

Exists

∃х. φ

 $(x:\varphi_x,\varphi)$

$$(\exists x. \forall y. p x y) \Rightarrow (\forall y. \exists x. p x y)$$

 $(\exists x. \forall y. p x y) \Rightarrow (\forall y. \exists x. p x y)$

$$(\exists x. \forall y. p x y) \Rightarrow (\forall y. \exists x. p x y)$$

(x:a,)→

$$(\exists x. \forall y. p x y) \Rightarrow (\forall y. \exists x. p x y)$$

$$(\exists x. \forall y. pxy) \Rightarrow (\forall y. \exists x. pxy)$$

$$(x:a, y:a \rightarrow \{v: () \mid p \times y\}) \rightarrow$$

$$(\exists x. \forall y. p x y) \Rightarrow (\forall y. \exists x. p x y)$$

$$(x:a, y:a \rightarrow \{v: () \mid p \times y\}) \rightarrow y:a \rightarrow$$

$$(\exists x. \forall y. p x y) \Rightarrow (\forall y. \exists x. p x y)$$

$$(x:a, y:a \to \{v: () \mid p x y\}) \to y:a \to (x:a,$$

$$(\exists x. \forall y. p x y) \Rightarrow (\forall y. \exists x. p x y)$$

$$(x:a, y:a \rightarrow \{v: () \mid p x y\}) \rightarrow y:a \rightarrow (x:a, \{v:() \mid p x y\})$$

$$(\exists x. \forall y. p x y) \Rightarrow (\forall y. \exists x. p x y)$$

$$(x:a, y:a \to \{v: () \mid p \times y\}) \to y:a \to (x:a, \{v:() \mid p \times y\})$$

Proof?

Theorem Proving in Haskell

- I. Refinement Types
- II. Theorems as Types
- III. Proofs as Programs

III. Proofs as Programs DEMO

Theorem Proving in Haskell

- I. Refinement Types
- II. Theorems as Types
- III. Proofs as Programs

Looking for a PostDoc @IMDEA, Madrid

Theorem Proving in Haskell

- I. Refinement Types
- II. Theorems as Types
- III. Proofs as Programs