Knowledge-oriented CNN for causal relation extraction

Pengfei Li, Kezhi Mao

Presented by James Finch

Neural causal relation extraction

"Rising global temperatures create perfect conditions for tsunamis."

- Assume marked events e₁, e₂ in some sentence
- Binary classification of whether events are causally linked
- Neural architecture incorporating handcrafted knowledge

Idea: look for similarities with known causal indicators

- "Create" links the two events in a causal way
- We know about explicit linking words like "cause"
- Can we leverage some similarity between "cause" and "create"?

Architecture

How to get known causal words?

- 40 causal frames from FrameNet
 - a. "Causation"
 - b. "Reason"
 - c. "Explaining_the_facts" ...
- 2. Get lexical units from these frames
- 3. Extract additional lexical units using WordNet synsets
- 4. K-means clustering of 800 lexical unit embeddings

Architecture

Full architecture with data-oriented channel

P. Li, K. Mao/Expert Systems With Applications 115 (2019) 512-523

Fig. 1. Overall architecture of K-CNN.

Data-oriented channel

- Word embeddings of entire input sentence
- Wordnet top-level category of events
- Causal score based on FrameNet:

$$p(c \mid w_i) = \begin{cases} \|\operatorname{sent}_{cf}\| / \|\operatorname{sent}\| & \text{if } w_i \in \operatorname{causal frames} \\ 0 & \text{if } w_i \notin \operatorname{causal frames} \end{cases}$$

Proportion of the time the word is used in sentences that are examples of causal frames, out of 170,000 annotated frame example sentences

Experiments

- SemEval 2010 task 8:
 - restricted web, no named entities
 - 1,300 causal, 9000 not causal
- Causal-TB
 - News
 - 300 causal, 300 not causal
- Event Storyline
 - Calamity events
 - 110 causal, 220 not causal

Table 1

Macro-averaged precision (P), recall (R) and F1 scores of K-CNN without and with data-oriented channel. Scores are shown in percentage(%).

Datasets		K-CNN_K	K-CNN
SemEval	Р	92.74	93.12
	R	85.56	90.73
	F1	88.85	91.82
Causal-TB	P	71.84	76.91
	R	70.24	75.85
	F1	70.92	76.29
Event-SL	P	77.38	82.07
	R	74.11	80.58
	F1	75.60	81.25

Impact of semantic features

Table 3Macro-averaged precision (P), recall (R) and F1 scores of K-CNN without and with semantic features (SF). Scores are shown in percentage (%).

Datasets		K-CNN w/o SF	K-CNN with SF
SemEval	P	93.37	94.61
	R	91.40	90.87
	F1	92.34	92.64
Causal-TB	P	76.94	78.71
	R	75.70	77.26
	F1	76.21	77.86
Event-SL	P	82.78	84.57
	R	81.03	82.15
	F1	81.84	83.31