VIRKNES UN ATLIKUMI

Definīcija: Par aritmētisku progresiju sauc galīgu vai bezgalīgu virkni a_1, a_2, a_3, \ldots , kam katra divu blakusesošu locekļu starpība $a_2 - a_1 = a_3 - a_2 = \ldots = a_{k+1} - a_k$ vienāda ar to pašu skaitli d, ko sauc par diferenci.

Progresiju piemēri: 4, 11, 18, 25 (datumi, kas 2024.g. decembrī ir trešdienās); $10, 20, 30, \ldots$ (visi skaitļi, kas dalās ar $10, 1, 3, 5, 7, \ldots$ (visi nepāra skaitļi).

Definīcija: Par *geometrisku progresiju* sauc galīgu vai bezgalīgu virkni b_1, b_2, b_3, \ldots , kam katru divu blakusesošu locekļu dalījums $b_2/b_1 = b_3/b_2 = \ldots = q$ vienāds ar to pašu skaitli q, ko sauc par *kvocientu*.

Definīcija: Par *Fibonači virkni* sauc virkni, ko definē šādi: $F_0 = 0$, $F_1 = 1$, $F_{k+2} = F_{k+1} + F_k$ (katram $k \ge 0$) – t.i. katru nākamo locekli iegūst, saskaitot divus iepriekšējos.

k	0	1	2	3	4	5	6	7	8	9	10
F_k	0	1	1	2	3	5	8	13	21	34	55

Definīcija: Par periodisku virkni sauc tādu virkni a_1, a_2, a_3, \ldots , kuras locekļi atkārto vienus un tos pašus skaitļus: eksistē tāds skaitlis T, kam $a_{k+T}=a_k$ jebkuram k. Ja virknes periods parādās tikai pēc kāda laika, tad locekļus, kuri bija pirms šī perioda, sauc par priekšperiodu.

Piemērs: Skaitlim 1/13 = 0.076923076923076923... cipari aiz komata veido virkni 0, 7, 6, 9, 2, 3, ..., kas ir periodiska ar periodu 6; tā ir $t\bar{t}ri$ periodiska bez priekšperioda.

Definīcija: Virkni a_1, a_2, a_3, \ldots sauc par *ierobežotu*, ja eksistē tāds intervāls [M; N], ka ikviens virknes loceklis atrodas šajā intervālā. (Piemēram jebkāda ciparu virkne ir ierobežota, jo cipari ir intervālā [0; 9].)

Uzdevumi:

10.1. Uzdevums: Par trijstūra skaitli T_k sauc aplīšu skaitu, ko var salikt trijstūrītī, ja uz katras no trijstūra malām ir k aplīši.

- **10.2.** Uzdevums: Aplūkojam virkni a_k , kuras loceklis a_k vienāds ar Fibonači skaitļa F_k atlikumu, dalot ar 2. Aplūkojam arī virkni b_k , kuras loceklis b_k vienāds ar Fibonači skaitļa F_k atlikumu, dalot ar 5.
 - (A) Vai virknes a_k un b_k ir periodiskas? Ja jā, tad cik lieli ir to periodi?
 - (B) Ik pēc cik skaitļiem Fibonači virknes locekļi F_k beigsies ar ciparu 0?
- 10.3. Uzdevums: Skaitlim $1/7 = 0.142857(142857)\dots$ cipari aiz komata veido periodu garumā seši cipari.

- (A) Atrast periodus ciparu virknēm šādu skaitļu pierakstos: 1/11, 1/37, 1/41, 1/101.
- (B) Vai eksistē skaitlis 1/n, kura cipari aiz komata veido periodu tieši no septiņiem cipariem?
- **LV.NOL.2009.8.3** Atrodiet skaitļa $113^{113} 19^{19}$ pēdējo ciparu.
- **LV.NOL.2010.7.3** Cik ir tādu naturālu skaitļu x robežās no 1 līdz 2010 ieskaitot, ka (x+1)(x+2)(x+3) dalās ar 343?
- **LV.NOL.2005.7.1** Kādu mazāko daudzumu no skaitļiem $1, 2, 3, \dots, 12, 13$ var izsvītrot, lai katru divu atlikušo summa būtu salikts skaitlis?
- **LV.NOL.2004.8.2** Ir zināms, ka skaitļa 2^{200} decimālajā pierakstā ir 61 cipars. Cik daudziem no skaitļiem $2^1, 2^2, 2^3, \dots, 2^{199}, 2^{200}$ decimālais pieraksts sākas ar ciparu 1?
- **LV.NOL.2006.8.3** Vai var izrakstīt rindā visus naturālos skaitļus no 1 līdz 2006 ieskaitot katru vienu reizi tā, lai katru 3 pēc kārtas uzrakstīto skaitļu summa dalītos ar 4?
- **LV.NOL.2008.6.4** Vai eksistē tāds naturāls skaitlis n, ka reizinājums $n \cdot n$ sākas ar $1234567 \dots$?
- LV.NOL.2009.7.2 Rindā no sākuma bija uzrakstīti 2009 vieninieki. Ar vienu gājienu nodzēš divus pirmos rindā esošos skaitļus un tās otrā galā pieraksta abu nodzēsto skaitļu summu. Šādus gājienus atkārto, līdz rindā paliek tikai viens skaitlis.
 - (A) cik gājienu tiks izdarīti? (B) atrast vienīgo palikušo skaitli.