| ND-R163 837  | MODIFIED<br>CRAMER-VO                                                                                                                                                                     | KOLMOGOROV- | SHIRNO | Y ANDE | RSON- | DARLIN<br>CE INS | G AND | FCH | 1/ | 2 |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------|--------|-------|------------------|-------|-----|----|---|
| UNCLASSIFIED | MODIFIED KOLMOGOROY-SHIRMOY ANDERSON-DARLING AND CRAMER-YON MISES TESTS F. (U) AIR FORCE INST OF TECH MRIGHT-PATTERSON AFB ON SCHOOL OF ENGI. JE PORTER DEC 85 AFIT/GSO/MA/85D-6 F/G 12/1 |             |        |        |       |                  |       |     | NL | • |
|              | 1,                                                                                                                                                                                        |             |        |        |       |                  |       |     |    |   |
|              |                                                                                                                                                                                           |             |        |        |       |                  |       |     |    |   |
|              |                                                                                                                                                                                           |             |        |        |       |                  |       |     |    |   |
|              |                                                                                                                                                                                           |             |        |        |       |                  |       |     |    |   |
|              |                                                                                                                                                                                           |             |        |        |       |                  |       |     |    |   |
|              |                                                                                                                                                                                           |             |        |        |       |                  |       |     |    |   |
|              |                                                                                                                                                                                           |             |        |        |       |                  |       |     |    |   |
|              |                                                                                                                                                                                           |             |        |        |       |                  |       |     |    |   |



MICROCOPY RESOLUTION TEST CHART
NATIONAL BURGALLOG STANDARDS-1963-A



MODIFIED KOLMOGOROV-SMIRNOV, ANDERSON-DARLING, AND CRAMER-VON MISSS TESTS FOR THE PARETO DISTRIBUTION WITH UNKNOWN LOCATION AND SCALE PARAMETERS

THESIS

James E. Porter III Captain, USAF

AFIT/GSD/MA/85D-6

DISTRIBUTION STATEMENT A

Approved for public released
Distribution Unlimited

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNIOLOGY

Writing to the transfer took a least of the



AFIT/GSD/MA/85D-6



MODIFIED KOLMOGOROV-SMIRNOV, ANDERSON-DARLING, AND CRAMER-VON MISES TESTS FOR THE PARETO DISTRIBUTION WITH UNKNOWN LOCATION AND SCALE PARAMETERS

THESIS

James E. Porter III Captain, USAF

AFIT/GSO/MA/85D-6

Approved for public release; distribution unlimited

# MODIFIED KOLMOGOROV-SMIRNOV, ANDERSON-DARLING, AND CRAMER-VON MISES TESTS FOR THE PARETO DISTRIBUTION WITH UNKNOWN LOCATION AND SCALE PARAMETERS

#### THESIS

Presented to the Faculty of the School of Engineering of the Air Force Institute of Technology

Air University

in Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Space Operations



James E. Porter III, B.S.

Captain, USAF

December 1985

| Acces              | sion For                          | · |  |  |  |  |  |  |  |
|--------------------|-----------------------------------|---|--|--|--|--|--|--|--|
| DTIC<br>Unani      | CRA&I<br>TAB<br>nounced<br>cation |   |  |  |  |  |  |  |  |
| By                 |                                   |   |  |  |  |  |  |  |  |
| Availability Codes |                                   |   |  |  |  |  |  |  |  |
| Dist               | Avail and<br>Specia               |   |  |  |  |  |  |  |  |
| A-1                |                                   |   |  |  |  |  |  |  |  |

Approved for public release; distribution unlimited

#### **PREFACE**

This thesis develops goodness-of-fit tests for the Pareto distribution by generating critical value tables for the modified Kolmogorov-Smirnov, Anderson-Darling, and Cramer-von Mises statistics. These tables can be used to test whether a set of observed values follows a Pareto distribution when the location and scale parameters are unspecified and must be estimated from the observed sample data. Additionally, the power of each of the three goodness-of-fit tests is studied and compared. Finally, the functional relationship between the critical values and the Pareto shape parameter is determined. Hopefully the material is presented in sufficient detail to be easily understood by those with only a passing knowledge of statistical analysis.

I wish to thank my reader and class advisor,
Lieutenant Colonel Joseph Coleman, who guided me throughout
my AFIT tour; and especially my thesis advisor, Dr. Albert H.
Moore, who maintained my interest in statistical analysis,
offered constant encouragement, and suggested the subject of
this thesis. I also thank my classmates Majors Dennis Charek
and Denny Danielson for their help in debugging the computer
programs used in this thesis.

Above all I thank my family, especially my wife Judy, for their love and understanding during my tour at AFIT.

James E. Porter III

# TABLE OF CONTENTS

|       |      |      |              |                  |      |      |      |      |      |             |     |     |     |     |     |     |     |       |   |   |   |   |   | Page         |
|-------|------|------|--------------|------------------|------|------|------|------|------|-------------|-----|-----|-----|-----|-----|-----|-----|-------|---|---|---|---|---|--------------|
| Prefa | LC @ |      |              | •                | •    | •    | •    | •    | •    | •           | •   | •   |     | •   | •   | •   | •   | •     | • | • | • | • | • | ii           |
| List  | of   | Fig  | ur es        |                  | •    | •    | •    | •    | •    |             | •   | •   | •   | •   |     | •   | •   | •     | • | • | • | • | • | ٧i           |
| List  | of   | Tab  | les          | ~                | •    | •    | •    |      | •    | •           | •   |     | •   | •   |     | •   | •   | •     | • | • | • | • | • | vii          |
| Abstr | act  | t .  |              | •                | •    | •    | •    | •    | -    | •           |     | •   |     | •   | •   | •   | •   | •     | • | • | • | • | • | viii         |
| ı.    | Ir   | ntro | duct         | i O              | n    | •    | •    | -    | •    | •           | •   | •   |     | •   |     | •   | -   | •     | • | • | • | • | • | 1-1          |
|       |      |      | pter         |                  |      |      |      |      |      |             |     |     |     |     |     |     |     |       |   |   |   |   |   | 1-1          |
|       |      |      | kgra         |                  |      |      |      |      |      |             |     |     |     |     |     |     |     |       |   |   |   |   |   | 1-1          |
|       |      |      | blem         |                  |      |      |      |      |      |             |     |     |     |     |     |     |     |       |   |   |   |   |   | 1-3          |
|       |      |      | earc         |                  |      |      |      |      |      |             |     |     |     |     |     |     |     |       |   |   |   |   |   | 1-3          |
|       |      |      | ecti         |                  |      |      |      |      |      |             |     |     |     |     |     |     |     |       |   |   |   |   |   | 1-4          |
|       |      | Pre  | sent         | at:              | i or | 1 (  | o f  | Re   | ?50  | Par         | -ct | 1   | •   | •   | •   | •   | •   | •     | • | • | • | • | • | 1-4          |
| II.   | 60   | nboc | <b>e</b> ss- | of.              | -Fi  | it   | Te   | est  | :5   |             | •   | •   | •   | •   | •   | •   | •   | •     | • | • | • | • | • | 2-1          |
|       |      |      | pter         |                  |      |      |      |      |      |             |     |     |     |     |     |     |     |       |   |   |   |   |   | 2-1          |
|       |      | Int  | rodu         | ct:              | i or | 1    | •    | •    | •    | •           | •   | •   | •   |     | •   | •   | •   | •     | • | • | • | • | • | 2-1          |
|       |      |      | kgra         |                  |      |      |      |      |      |             |     |     |     |     |     |     |     |       |   |   |   |   |   | 2-2          |
|       |      | Нур  | othe         | si:              | 5    | re:  | sti  | ng   | 7 4  | <b>3</b> 00 | 4   | Te: | st  | S   | tai | ti: | st: | i C ! | 5 | - |   | - |   | 2-4          |
|       |      | Emp  | iric         | al               | Di   | st   | tri  | bu   | iti  | i or        | n F | ÷uı | 101 | tic | חכ  |     |     |       |   |   |   |   |   | 2-6          |
|       |      | Ù    | sing         | U                | nkr  | 101  | ٧n   | Pa   | ar i | ame         | ete | er: | 5   |     |     |     |     |       |   |   |   |   |   | 2-9          |
|       |      |      | ol ma        |                  |      |      |      |      |      |             |     |     |     |     |     |     |     |       |   |   |   |   |   | 2-11         |
|       |      |      | rame         |                  |      |      |      |      |      |             |     |     |     |     |     |     |     |       |   |   |   |   |   |              |
|       |      |      |              |                  |      |      |      |      |      |             |     |     |     |     |     |     |     |       |   |   |   |   |   | 2-13         |
|       |      |      |              |                  |      |      |      |      |      |             |     |     |     |     |     |     |     |       |   |   |   |   |   | 2-14         |
| III.  | TI   | ne P | aret         | .o 1             | Dis  | str  | -it  | ut   | ii   | חכ          |     | •   | •   |     | •   | •   | •   | •     | • | • | • | • |   | 3-1          |
|       |      | Cha  | pter         | · O              | ver  | ~vi  | i ev | •    |      |             |     |     |     |     |     |     | _   |       |   |   |   |   |   | 3-1          |
|       |      | His  | tory         | aı               | nđ   | Ap   | op I | ic   | :at  | Lic         | חכ  |     |     |     |     |     |     |       | • | • |   |   |   | 3-1          |
|       |      | O    | rigi         | n                | •    | •    | •    |      |      |             |     |     |     |     |     |     |     |       |   | • |   |   | - | 3-1          |
|       |      |      | arly         |                  |      |      |      |      |      |             |     |     |     |     |     |     |     |       |   |   |   |   |   | 3-2          |
|       |      |      | ecen         | •                |      |      |      |      |      |             |     |     |     |     |     |     |     |       |   |   |   |   |   |              |
|       |      |      | ir F         |                  |      |      |      |      |      |             |     |     |     |     |     |     |     |       |   |   |   |   |   |              |
|       |      |      | Par          |                  |      |      |      |      |      |             |     |     |     |     |     |     |     |       |   |   |   |   |   | 3-7          |
|       |      | Par  | amet         | 8                | F    | Et i |      | at i |      | •           | •   | •   | •   | •   | •   | •   | •   | •     | • | • | • | • | : | 3-13         |
|       |      |      | ario         |                  |      |      |      |      |      |             |     |     |     |     |     |     |     |       |   |   |   |   |   | 3-13         |
|       |      |      | est          |                  |      |      |      |      |      |             |     |     |     |     |     |     |     |       |   |   |   |   |   | 3-15<br>3-15 |
|       |      |      | LUEs         |                  |      |      |      |      |      |             |     |     |     |     |     |     |     |       |   |   |   |   | • | 3-13         |
|       |      |      | LUEs         |                  |      |      |      |      |      |             |     |     |     |     |     |     |     |       |   |   |   |   | • | 3-17         |
|       |      |      | umma         |                  |      |      |      |      |      |             |     |     |     |     |     |     |     |       |   |   |   |   |   |              |
|       |      | a    |              |                  |      |      |      |      |      |             |     |     |     |     |     |     |     |       |   |   |   |   |   | 3-24         |
|       |      |      | ニスす          | . <b>WIL</b> J . |      |      |      |      | •    | •           |     | •   |     | •   |     | •   |     | •     |   | • | • | • |   | ა_∠4         |

|      |                                           | Page |
|------|-------------------------------------------|------|
|      | Modified Test Statistics                  | 3-27 |
|      | Hypothesized Pareto CDF                   | 3-27 |
|      | Example 2                                 | 3-28 |
|      | Modified K-S Statistic                    | 3-29 |
|      | Example 3                                 | 3-30 |
|      | Modified A-D Statistic                    | 3-31 |
|      | Example 4                                 | 3-31 |
|      | Modified CV-M Statistic                   | 3-32 |
|      | Example 5                                 | 3-32 |
|      | Chapter Summary                           | 3–33 |
| IV.  | Methodology                               | 4-1  |
|      | Chapter Overview                          | 4-1  |
|      | Basic Principles                          | 4-1  |
|      | The Monte Carlo Method                    | 4-1  |
|      | The Inverse Transform Technique           | 4-4  |
|      | Identifying Critical Values               | 4-9  |
|      | The Plotting Positions Technique          | 4-11 |
|      | Specific Procedures                       | 4-18 |
|      | Stage 1: Generating Critical Value Tables | 4-18 |
|      | Stage 2: Comparing Power                  | 4-21 |
|      | Stage 3: Determining Relationship         | 4-26 |
|      | Chapter Summary                           | 4-27 |
| v.   | Results and Application                   | 5-1  |
|      | Chapter Overview                          | 5-1  |
|      | Critical Value Tables                     | 5-1  |
|      | Power Comparison Tables                   | 5-5  |
|      | Regression Tables                         | 5-8  |
|      | Use of Tables                             | 5-11 |
|      | Using Critical Value Tables               | 5-11 |
|      | Using Power Comparison Tables             | 5-13 |
|      | Using Linear Regression Tables            | 5-13 |
|      | Chapter Summary                           | 5-15 |
| VI.  | Analysis and Discussion                   | 6-1  |
|      | Chapter Overview                          | 6-1  |
|      | Critical Values                           | 6-1  |
|      | Power Comparison                          | 6-2  |
|      | Regression Analysis                       | 6-4  |
|      | Verification and Validation               | 6-5  |
|      | Chapter Summary                           | 6-7  |
| VII. | Conclusions and Recommendations           | 7-1  |
|      | Conclusions                               | 7-1  |
|      | Recommendations                           | 7-2  |

|          |      |                |                  |     |   |    |    |    |             |     |    |     |     |     |     |   |   |   | Page |
|----------|------|----------------|------------------|-----|---|----|----|----|-------------|-----|----|-----|-----|-----|-----|---|---|---|------|
| Appendix | A:   | Сомри          | ter Pro          | gra | M | fo | or | Cr | -i+         | tio | a) | ١ ١ | /ai | l u | 25  | • | • | • | A-1  |
|          | Flow | Chart          |                  | •   |   | •  |    |    |             |     |    |     |     |     |     |   |   | • | A-2  |
|          | Main | Progra         | am CRIT          | VAL |   |    | •  |    | •           |     |    | •   |     | •   |     | • |   | • | A-4  |
|          | Subr | outine         | PARDEV           | •   |   | •  | •  |    | •           | •   |    |     |     |     |     | • | • | • | A-12 |
|          | Subr | outine         | BXVALS           | •   |   | -  | •  |    |             | •   | •  |     | . • |     |     | - | • |   | A-14 |
|          |      |                | BLCLE2           |     |   |    |    |    |             |     |    |     |     |     |     |   |   |   | A-17 |
|          | Subr | outine         | BLCGT2           |     |   | -  |    |    |             |     |    |     |     |     |     |   |   |   | A-19 |
|          | Subr | outine         | HYPCDF           |     |   | •  | •  |    | •           | •   |    |     |     | •   |     | - |   | • | A-21 |
|          | Subr | outine         | TESTAT           | •   |   |    |    |    |             |     | •  |     |     | •   | •   |   |   | • | A-23 |
|          | Subr | outin <b>e</b> | CRTVAL           | •   | • | •  | •  | •  | •           | •   | •  | •   | •   | •   | •   | • | • | • | A-26 |
| Appendi  | c B: | Comput         | t <b>e</b> r Pro | gra | M | fo | )r | Po | <b>DW</b> ( | er  | Ca | omp | aı  | -i: | 5O1 | 7 | • |   | B-1  |
|          | Flow | Chart          |                  | •   |   |    |    | •  |             | •   |    |     |     |     |     |   |   |   | B-2  |
|          | Main | Progra         | am POWE          | R   | - |    | •  |    | •           |     |    |     | •   |     |     | • | • | • | B-4  |
|          | Subr | outine         | PARETO           | •   | • |    | •  | •  |             | •   |    |     | •   |     | •   |   |   |   | B-11 |
|          | Subr | outine         | BXVALS           | •   | - | •  |    |    |             |     |    |     | •   |     |     | • |   | • | B-13 |
|          | Subr | outine         | BLCLE2           | •   |   | -  | •  |    | •           | •   |    |     |     | •   | •   | • |   | • | B-16 |
|          | Subr | outine         | BLCGT2           |     | • |    | -  |    |             |     | •  |     |     |     |     | • |   | - | B-18 |
|          | Subr | outine         | HYPCDF           |     | • |    | •  |    | •           | •   | •  |     |     |     | -   | • |   | - | B-20 |
|          | Subr | outine         | TESTAT           | •   | - | •  | •  | •  | •           |     |    | •   | •   | •   | -   | • |   | • | ₽-22 |
|          | Subr | outine         | COMPAR           | •   | • | •  | •  | •  | •           | •   | •  | •   | •   | •   | •   | • | • | • | B-27 |
| Bibliogr | aphy | • •            |                  | •   | • | •  | •  | •  | •           | •   | •  | •   | •   | •   | •   | • | • | • | C-1  |
|          |      |                |                  |     |   |    |    |    |             |     |    |     |     |     |     |   |   |   |      |

·...

# LIST OF FIGURES

| Figur |                                                 | Page |
|-------|-------------------------------------------------|------|
| 1     | Three-Parameter Pareto Curves for Shape c=2     | 3-10 |
| 2     | Two-Parameter Pareto Curves for Shape c=2       | 3-10 |
| 3     | One-Parameter Pareto Curves for Several c       | 3-11 |
| 4     | Probability Density of One-Parameter Pareto     | 3-11 |
| 5     | Finding Critical Values from Plotting Positions | 4-17 |
| 6     | Procedure for Generating Critical Values        | A-2  |
| 7     | Procedure for Determining Power Values          | B-2  |

# LIST OF TABLES

| Table |                                                 | Page |
|-------|-------------------------------------------------|------|
| I     | Calculation of BLUEs                            | 3-25 |
| II    | Calculation of Hypothesized Pareto CDF          | 3-29 |
| 111   | Calculation of Modified K-S Statistic           | 3-30 |
| IV    | Calculation of Modified A-D Statistic           | 3-31 |
| V     | Calculation of Modified C-VM Statistic          | 3-32 |
| VI    | Critical Values for the Modified K-S Test       | 5-2  |
| VII   | Critical Values for the Modified A-D Test       | 5-3  |
| VIII  | Critical Values for the Modified C-VM Test      | 5-4  |
| IX    | Power Test for $H_0$ : Pareto CDF (c = 1.0)     | 5-6  |
| x     | Power Test for $H_0$ : Pareto CDF (c = 3.5)     | 5-7  |
| XI    | K-S Critical Values vs. Pareto Shape Parameter  | 5-9  |
| XII   | C-VM Critical Values vs. Pareto Shane Parameter | 5-10 |

### **ABSTRACT**

Modified Kolmogorov-Smirnov (K-S), Anderson-Darling (A-D), and Cramer-von Mises (C-VM) critical values are generated for the three-parameter Pareto distribution. The values may be used to test whether a set of observations follows a Pareto distribution when the location and scale parameters are unspecified and thus must be estimated from the sample. A Monte Carlo simulation of 5000 repetitions is used to generate critical values for sample sizes 5(5)30 (i.e., 5 to 30 in increments of 5) and Pareto shape parameters .5(.5)4.0.

A 5000-repetition Monte Carlo investigation is carried out by using 5, 15, and 25 observations from eight alternate distributions to compare the powers of the K-S, A-D, C-VM, and Chi-square tests. The power values of the tests are relatively low for a sample size of five. However, the powers of the modified K-S, A-D, and C-VM tests are considerably better than the Chi-square test at larger sample sizes. Next to the Chi-square test, the A-D test has the lowest power in most cases.

A functional relationship is identified between the modified K-S and C-VM test statistics and the Pareto shape parameter. The critical values are found to be a linear function of the shape parameters between 1.5 and 4.0.

# MODIFIED KOLMOGOROV-SMIRNOV, ANDERSON-DARLING, AND CRAMER-VON MISES TESTS FOR THE PARETO DISTRIBUTION WITH UNKNOWN LOCATION AND SCALE PARAMETERS

#### I. INTRODUCTION

## Chapter Overview

This chapter introduces the topic of goodness-of-fit testing and its applications. It states the problem, the research question, and the objectives of the research.

#### Background

Because the Air Force depends on highly complex weapons systems to perform its missions, factors such as the reliability and maintainability of equipment continue to receive a great deal of emphasis. Of particular importance to the Air Force is the ability to forecast time-to-failure of equipment components and expected maintenance service times.

In studying such phenomena, analysts often face the problem of testing agreement between probability theory and actual observations. When trying to develop a valid statistical model of observed data, the analyst performs four basic steps (5:332):

 Collect and plot the raw data to develop a histogram (frequency distribution graph).

- 2. Hypothesize the underlying statistical distribution of the data by comparing the histogram to probability density functions of known distributions.
- 3. Use the observed data to estimate parameters that characterize the distribution.
- 4. Test the distributional assumption and parameter estimates for goodness-of-fit. If the hypothesis (that the data follow the assumed distribution) fails, return to step 2 (assume a different distribution) and repeat the process.

between the distribution of an observed data sample and a theoretical distribution. Three tests widely used for this purpose are the Kolmogorov-Smirnov (K-S), Anderson-Darling (A-D), and the Cramer-von Mises (C-VM). Such tests have been developed for several well known distributions, including the normal, exponential, Weibull, gamma, uniform, Laplace, and others (9;19;34;35). However, there are many other distributions which have not been successfully examined for goodness-of-fit when the parameters of the distribution are unknown. One such distribution, which has significant potential for Air Force applications, is known as the Pareto distribution.

The Pareto distribution is an important function in statistical analysis, and several applications have been identified in the fields of economics and operations research. For example, the Pareto distribution has played a major role in investigations concerning the distributions of

city population sizes, natural resources, stock price fluctuations, and oil field locations (28:242). Other studies indicate that the Pareto can be used to model phenomena which may be applicable to Air Force interests, such as time—to—failure of equipment components (16), maintenance service times (22), nuclear fallout dispersion (18), and error clusters in communications circuits (7). Use of the Pareto for such practical applications would be enhanced by an accurate method to test goodness—of—fit of the Pareto distribution.

# Problem Statement

A test to determine goodness-of-fit has not been developed for the Pareto distribution when the location and scale parameters are unknown. Such a test would be useful in determining whether a random sample of data taken from an observed phenomenon behaves as the Pareto distribution.

### Research Question

How can the existing K-S, A-D, and C-VM tests be modified to produce new goodness-of-fit tests which can be applied to the Pareto distribution when the location and scale parameters are unknown?

# Objectives

The objectives of this thesis are to:

- Generate and document the modified K-S, A-D, and C-VM critical value tables for the Pareto distribution.
   These tables can be used to test goodness-of-fit when parameters of the distribution are unknown.
- 2. Compare the powers of the modified K-S, A-D, and C-VM tests to determine which test can best detect a false Pareto distribution hypothesis. The power of a statistical test is the probability of correctly rejecting a false hypothesis.
- 3. Determine what (if any) functional relationship exists between the shape parameter and the critical values generated for the Pareto function. This relationship can then be used to interpolate critical values corresponding to parameters not found in the generated tables.

### Presentation of Research

The report on this thesis effort is presented in seven chapters. In this, the first chapter, the general topic of goodness-of-fit has been introduced and the problem, research question, and objectives have been stated.

Chapter II describes various types of goodness-of-fit tests; explains hypothesis testing and test statistics; and discusses the empirical distribution function.

Chapter III describes applications of the Pareto

distribution; presents its various forms; explores parameter estimation for the Pareto function; and develops the modified K-S, A-D, and C-VM test statistics for the Pareto.

Chapter IV describes the basic principles and specific procedures used to satisfy the research objectives.

Chapter V presents the results of the research effort, including tables of critical values, power comparisons, and regression coefficients.

Chapter VI further discusses the results of the research. Observations are made concerning the tables of critical values, power comparisons, and regression coefficients.

Chapter VII contains conclusions and recommendations based on the conduct and results of the research effort.

Finally, the flow charts and computer programs used to carry out the research are contained in the appendices.

#### II. GOODNESS-OF-FIT TESTS

## Chapter Overview

This chapter briefly reviews the literature to provide a background for goodness-of-fit tests. It also describes hypothesis testing and test statistics as they relate to goodness-of-fit. Finally, it discusses the empirical distribution function and related statistics, including the exact and computational forms of the Kolmogorov-Smirnov (K-S), Anderson-Darling (A-D), and Cramer-von Mises (C-VM) test statistics.

## Introduction

Goodness-of-fit tests measure the degree of agreement between the distribution of an observed data sample and a theoretical statistical distribution (13:189). For example, a test for goodness-of-fit may involve examining a random sample from some unknown distribution to test the hypothesis that the underlying distribution is actually a known, specified function (13:345). If such tests indicate a close fit, the hypothesized distribution can then be applied in simulation modeling to predict failure and operational availability rates of Air Force systems and their components.

## **Background**

For years statisticians have attempted to find test statistics whose sampling distributions do not depend on certain parameter values or on the explicit form of the distribution of the population. Such tests are called non-parametric or distribution—free tests (39:68).

Two of the oldest and best known distribution-free tests for goodness-of-fit are the Chi-square and the Kolmogorov-Smirnov (K-S) tests (13:189;47:2). The Chi-square test compares frequencies of the observed data with expected frequencies of the hypothesized distribution. The test is flexible enough to allow some parameters to be estimated from the observed data, but it has some limitations. For example, it is restricted to large sample sizes (1:73). Also, it requires that the data be arbitrarily grouped, which may affect the results (13:357). The K-S test compares the cumulative distribution function (CDF) of the hypothesized distribution against the empirical distribution function (EDF) of the observed data sample. The K-S test can be used for large or small samples; however, it is restricted to distributions which are fully specified (i.e., there can be no unknown parameters that must be estimated from the sample) (13:357). The same limitation applies to two other related methods, the Anderson-Darling (A-D) and the Cramer-von Mises (C-VM) tests (19:204; 47:3-4).

In a significant development, David and Johnson (14) found that if a distribution has only a location and scale parameter, then the K-S and related goodness-of-fit tests are independent of the true parameter values when the parameters are replaced by invariant estimators. The estimators must be invariant in the sense that if each x is transformed by x+ax+b then the estimate T=T(x) is similarly transformed by T+aT+b (4:4). Therefore, critical values dependent only on sample size and significance level can be generated (54:5). This property also applies to a three-parameter CDF provided the shape parameter is treated as a constant. A more detailed explanation of this principle is included below in the section on "Using Unknown Parameters".

Based on this discovery by David and Johnson, critical value tables for the K-S and related tests have been modified to allow their use in several cases where parameters are estimated from observed data. In a modified test, the form of the test statistic itself remains essentially the same, except that estimates are used in place of exact parameters. However, the critical values for a modified test are considerably different. The critical value tables are no longer the same for all distributions. Instead, they are different for each different hypothesized distribution function. A modified test is still non-parametric or distribution—free because the level of significance is still independent of any untested assumptions regarding the

distribution of the underlying population. In fact, the form of the hypothesized distribution is the hypothesis being tested (13:357).

There are numerous cases for which modified tests have already been developed. For example, Lilliefors developed a modified K-S test for the normal (34) and exponential (35) distributions; Ream (43) developed another set of modified tests for the normal distribution; Woodruff, Moore, and Cortes (53) developed a modified K-S test for the three-parameter Weibull distribution; Bush (9) modified the A-D and C-VM tests to expand the goodness-of-fit tests for the Weibull distribution; Viviano (49) modified the K-S, A-D, and C-VM tests for the gamma distribution; and Yoder (54) developed a modified K-S, A-D, and C-VM test for the logistic distribution. The modified K-S, A-D, and C-VM tests have also been developed for the uniform, normal, Laplace, exponential, and Cauchy distributions (19). Using a different technique, Woodbury (52) too developed a set of modified tests for the uniform distribution.

# Hypothesis Testing and Test Statistics

A fundamental concept in statistical testing is the hypothesis test. When studying a given phenomenon, it is often desirable to determine the distribution of the population being studied. In many cases, however, it is not practical to observe the entire population. Instead, a

relatively small sample of the population is usually selected, and observations are made from the small sample.

は国内をおおいいから、アイトルというと

Hypothesis testing is the process of inferring from a sample whether to "accept" a certain statement (the null hypothesis) about the population from which the sample is drawn. Actually, "acceptance" of the null hypothesis does not imply that the null hypothesis is true, but that there is insufficient evidence from the data sample to reject the hypothesis. The null hypothesis, denoted  $H_0$ , is the hypothesis to be tested. The alternative hypothesis, denoted  $H_1$ , is equivalent to stating that  $H_0$  is not true (13:75-76).

Another key concept in statistical testing is the test statistic, a function of random variables which is used to help make the decision in a hypothesis test. In order to be useful for data analysis, the test statistic chosen should possess certain desirable properties. Most importantly, the statistic should assign real numbers to points in the sample so that the points are arranged in an order which reflects their ability to distinguish between a true  $H_0$  and a false  $H_0$  (13:77). For example, the test statistic normally assigns larger values to situations that indicate most strongly that  $H_0$  ought to be rejected, while smaller values of the test statistic usually indicate insufficient evidence to reject  $H_0$ . In this type of "one-tailed" test, if the value of the test statistic for a given set of data is greater than a certain "critical value", the analyst would reject  $H_0$ 

(13:77). The critical value is chosen so that when the null hypothesis  $\rm H_0$  is true, the chance of erroneously rejecting  $\rm H_0$  is some specified probability (e.g., .01 or .05) (2:193).

There are two types of errors that can be made in applying the decision criterion. The Type I error results in rejection of  $\rm H_{O}$  when  $\rm H_{O}$  is true. The Type II error results in acceptance of  $\rm H_{O}$  when  $\rm H_{O}$  is false. The probability of committing a Type I error, denoted by  $\alpha$ , is called the level of significance of the test. The probability of a Type II error is denoted  $\beta$ . The power of a statistical test, denoted  $1-\beta$ , is the probability of correctly rejecting a false  $\rm H_{O}$  (13:79).

# Statistics Based on the Empirical Distribution Function

One class of test statistic used in goodness-of-fit testing compares an observed sample distribution function and an hypothesized theoretical distribution function. These statistics are based on the empirical distribution function (EDF), and in many cases are easily calculated and competitive in terms of power. The K-S, A-D, and C-VM test statistics are of the EDF type (45:730).

When analyzing phenomenon such as time-to-failure of equipment components, H(x), the actual distribution function of the phenomenon, is rarely known. Often an educated guess of the form of the distribution is made, and the guess is used to approximate the true distribution function. One way

to make a "good guess" is to observe several values from random samples of the phenomenon and construct a graph that can be used to estimate the entire unknown distribution function H(x). One widely used method of constructing such a graph is the empirical distribution function S(x), which equals the fraction of observed values that are less than or equal to x (47:1), i.e.,

$$S(x) = \frac{\text{number of values} \le x}{\text{total number of values}}$$
 (1)

For a sample consisting of n observations, the EDF, which may be denoted  $S_n(x)$  to indicate the particular sample size, is a step-shaped function where each step is of height 1/n and occurs only at the sample values. As n becomes larger,  $S_n(x)$  should better approximate H(x), provided that  $H_0$  is true. When the n observations are arranged in ascending order, i.e., letting  $x_{(1)}$ ,  $x_{(2)}$ ,...,  $x_{(n)}$  be the "order statistics" (15:4; 20:70), then  $S_n(x)$  is defined (47:1) as:

$$S_{n}(x) = \begin{cases} 0 & \text{for all } x < x_{(1)} \\ i/n & \text{for } x_{(i)} \le x < x_{(i+1)}, i=1,2,...,n-1 \\ 1 & \text{for all } x > x_{(n)} \end{cases}$$
 (2)

Like a CDF,  $S_n(x)$  is a nondecreasing function that ranges from zero to one in height; however,  $S_n(x)$  is determined empirically (from an observed sample), thus its name (13:70).

In a typical test for goodness-of-fit, a random sample from an unknown distribution is examined to test the null hypothesis that the unknown CDF H(x) is in fact a known, specified function F(x), i.e.,  $H_{O}x H(x) = F(x)$ . The random sample is compared with the hypothesized distribution F(x) in some way to determine whether it is reasonable to conclude that F(x) is the true CDF of the random sample. Using the EDF  $S_n(x)$  is one way to compare the random sample with F(x). The fact that  $S_n(x)$  is, by definition, the proportion of a random sample less than x implies that it should serve as a good estimate of F(x), which is defined as the probability that the random variable X is less than the value x (47:1). Since the EDF  $S_n(x)$  may be useful as an estimator of the hypothesized CDF F(x), then  $S_n(x)$  can be compared with F(x)to see if there is close agreement. If the level of agreement is poor, then the null hypothesis is rejected, i.e., the true but unknown CDF H(x) is not the same as the hypothesized function F(x) (13:345).

Based on this approach, the K-S, A-D, and C-VM tests use criteria that measure the discrepancy or "distance" between the hypothesized CDF F(x), which approximates H(x) under  $H_0$ , and the EDF  $S_n(x)$ . The definitions of the three criteria relate to the full range of x, leading to integral forms of the A-D and C-VM test statistics. Conveniently, all three test statistics can be expressed in computational forms in terms of F and  $S_n$  at the observed x values (19:204).

Using Unknown Parameters. In their unmodified forms, most popular goodness-of-fit tests based on EDF statistics, including the K-S, C-VM, and A-D tests, are meant to be used only when the null-hypothesized distribution F(x) is fully specified (i.e., when all parameters are known). However, cases are rare in statistical practice when H<sub>O</sub> is completely specified; thus, it is more realistic to have unknown parameters for the null distribution. When unknown parameters are involved, the K-S, C-VM, and A-D tests are no longer distribution—free, so that different critical values will relate to different F(x) in the null hypothesis (19:204). The reason for this is that the distributions of these and other EDF statistics depend on the sample size n and also on the values of the unknown parameters (47:4).

The K-S, C-VM, and A-D tests depend on the probability integral transformation described by David and Johnson (14). This transformation, when applied to a random sample from a distribution of specified parameters, produces ordered values from a uniform distribution over the interval from 0 to 1. These values are then used to calculate the EDF test statistic. As a result, the EDF statistic becomes a function of ordered uniform random variables. However, when parameters are unknown and must be estimated from the sample, the transformation fails to produce ordered uniform random variables (47:4). Unless appropriately modified, therefore, any EDF tests based on this transformation will generally be

restricted to cases where all parameters are specified.

An important exception occurs if the unknown parameters are location and scale only. David and Johnson (14) showed that if a distribution can be completely specified by a single parameter for location and a single parameter for scale, then goodness-of-fit tests based on the probability integral transformation are independent of the true parameter values when invariant estimators are used (38:384).

Fortunately, the Pareto distribution can be completely specified by a single location and a single scale parameter (28:239). The three-parameter form of the Pareto, presented in the next chapter, can be expressed in terms of a single location and scale parameter by treating the shape parameter as a known constant. Thus, the value of each EDF test statistic for the Pareto will depend only on the sample size and significance level, but not on the exact values of the unknown parameters (35:387). As a result, rather than having to produce a separate set of critical value tables for each set of location and scale parameters, only one set of tables is needed for each shape parameter and each sample size n. It is this principle, coupled with the fact that the Pareto possesses the necessary location and scale property, that allows the generation of valid critical value tables for the Pareto distribution (47:5).

To accomplish this goal, the existing (unmodified) K-S, A-D, and C-VM test statistics can be modified using an

invariant estimator; but first, the unmodified statistics are discussed in the following sections.

を聞いているからの**の**間にいっていた。

The Kolmogorov-Smirnov Statistic. The K-S statistic in its unmodified form is especially useful when sample sizes are small and when no parameters are estimated from the data. Often it is a more powerful test than the Chi-square for any sample size (34:399; 39:76). However, when parameter estimates must be made from the sample, the Chi-square test is easily modified by reducing the number of degrees of freedom, whereas the existing K-S critical values are overly conservative and must be modified using Monte Carlo techniques (5:357). In this context, the term "conservative" means that the critical values are too large so that the actual level of significance is smaller than the stated level of significance (13:90).

The K-S test statistic (36:259-260; 5:270; 19:204) is the largest (denoted "sup" for supremum) vertical distance between the completely specified hypothesized CDF F(x) and the observed EDF  $S_n(x)$ . Therefore, the test statistic is expressed as:

$$D = \sup_{x} |F(x) - S_n(x)|$$
 (3)

which is equivalent to the computational form given by

$$D = \max (D^+, D^-) \tag{4}$$

 $H_{0}$  is rejected if D exceeds a corresponding critical value (13:358).

If there are n observations,  $x_{(i)}$  is the i-th smallest observation, and  $z_i = F(x_{(i)})$  then (39:69):

$$D^{+} = \sup \left[ (i/n) - z_{i} \right] \quad \text{and} \quad D^{-} = \sup \left[ z_{i} - (i-1)/n \right] \quad (5)$$

$$1 \le i \le n$$

Thus the K-S statistic is the larger of these two values.

The Cramer-von Mises Statistic. Another way to measure the discrepancy between the hypothesized CDF F(x) and the observed EDF  $S_n(x)$  is to use statistics of the Cramer-von Mises family, based on the squared integral of the difference between the EDF and the distribution tested (47:2). One such statistic is the C-VM statistic itself (46:357):

$$W^{2} = n \int_{-\infty}^{\infty} \mathbb{E}S_{n}(x) - F(x) \, \mathbf{1}^{2} dF(x)$$
 (6)

which in computational form is (3:766; 45:731):

$$W^{2} = [1/(12n)] + \sum_{j=1}^{n} [z_{j} - (2_{j}-1)/2n]^{2}$$
 (7)

where  $x_{(1)} \le x_{(2)} \le x_{(n)}$  are n ordered observations from the sample and  $z_j = F(x_{(j)})$  for j=1,2,...,n.

The Anderson-Darling Statistic. Another member of the Cramer-von Mises family is the A-D statistic. To allow more flexibility in goodness-of-fit tests, Anderson and Darling (2:194) introduced the technique of incorporating a weight function into the K-S and C-VM test statistics. The result is still another method of testing the hypothesis that n observations have been drawn from a population with specified distribution function F(x).

Anderson and Darling (3:767) suggested using a nonnegative weight function, here denoted  $\theta(u)$ , chosen by the analyst to accentuate the values of  $S_n(x) - F(x)$  in those areas where the test is desired to have greater sensitivity. This weight function serves to counteract the fact that the discrepancy between  $S_n(x)$  and F(x) becomes smaller in the tails, since each approaches 0 and 1 at the extremes (47:2). They found that choosing the weight function  $\theta$  in the form of  $\theta(u) = 1/[u(1-u)]$  has the effect of heavily weighting the discrepancy in the tails of the two distributions. The resulting A-D test statistic (2:193; 46:357) is:

$$A^{2} = n \int_{-\omega}^{\omega} [S_{n}(x) - F(x)]^{2} \theta [F(x)] dF(x)$$

$$\text{here} \quad \theta [F(x)] = [F(x) \cdot (1 - F(x))]^{-1}$$

Thus the C-VM statistic may be considered a special case of the A-D statistic where  $\theta(F(x)) = 1$ .

In computational form the A-D statistic is (3:765):

$$A^{2} = -n - (1/n) \sum_{j=1}^{n} (2j-1) \left[ \ln z_{j} + \ln(1-z_{n+1-j}) \right]$$
 (9)

where  $x_{(1)} \le x_{(2)} \le x_{(n)}$  are n ordered observations from the sample and  $z_i = F(x_{(i)})$  for j=1,2,...,n.

The A-D statistic is designed to be used when the analyst wants the test to have good power against alternatives in which F(x) and H(x), the true distribution, disagree near the tails of F(x), and is willing to sacrifice power against alternatives in which they disagree near the median of F(x) (3:767). Thus, the A-D statistic is used when the analyst wants to reject  $H_0$  if H(x) differs greatly from F(x), and especially if the difference is in the tails.

#### Chapter Summary

The K-S, A-D, and C-VM tests are non-parametric tests of goodness-of-fit which offer advantages over the older Chi-square test. In their usual forms, the K-S, A-D, and C-VM tests are restricted to distributions which are fully specified. However, when location and scale parameters are replaced by invariant estimators, the three tests can be modified to produce valid critical values for a given distribution. Hypothesis testing and test statistics are two statistical concepts which can be used to modify the existing tests for the Pareto distribution, which is discussed in detail in the next chapter.

#### III. THE PARETO DISTRIBUTION

# Chapter Overview

This chapter reviews the history and application of the Pareto Law; presents the Pareto distribution and its three parameters; explores parameter estimation for the Pareto function; and develops the modified Kolmogorov-Smirnov (K-S), Anderson-Darling (A-D), and Cramer-von Mises (C-VM) test statistics for the Pareto distribution.

# History and Application

Origin. The Pareto distribution is an important function in statistical analysis. It is named after Vilfredo Pareto (1848-1923), a Swiss professor of economics who conducted the first extensive statistical study of the distribution of incomes. His analysis of nineteenth century income in various countries led to the development of his first law:

<sup>. . .</sup> if x signify [sic] a given income and N the number of persons with incomes exceeding x, and if a curve be drawn, of which the ordinates are logarithms of x and the abscissae logarithms of N, this curve, for all the countries examined, is approximately a straight line . . . This means that, if the number of incomes greater than x is equal to N, the number greater than mx is equal to  $N/m^{1-5}$ , whatever the value of m may be. Thus the scheme of income distribution is everywhere the same [42:647].

Therefore, "the logarithm of the percentage of units with an income greater than some value is a linear function of that value with negative slope, provided that this value is greater than an appropriate positive number" (32:6). This is known as the "strong" form of the Pareto Law, with functional form given by equation (11) below. The "weak" form of the law pertains to the asymptotic nature of a distribution's tail and implies that if  $\log [1-F_{\chi}(x)]$  is plotted against  $\log x$ , then the resulting curve should be asymptotic to a line with slope -c as x gets larger (32:6; 28:245).

Early Applications. Since the early days of its formulation, the Pareto Law and its related distribution functions have been examined primarily for potential applications in economics and operations research.

Based on his statistical observations, Pareto believed that any influence that causes an increase in the national income overall must also increase the income of the poor:
"We cannot be confronted with any proposal the adoption of which would both make the dividend larger and the share of the poor smaller, or vice versa" (42:648). Pareto also believed his law to be universally inevitable, regardless of economic, social, and political conditions. Economists have since identified flaws (11:609; 17:171) in the Pareto Law to the extent that for several years the Pareto distribution became disreputable (28:233; 7:235) as an economic predictor:

The general defence of "Pareto's Law" as a law of even limited necessity rapidly crumbles. His statistics warrant no inference as to the effect on distribution of the introduction of any cause that is not already present . . This consideration is really fatal; and Pareto is driven, in effect, to abandon the whole claim [42:654].

Nevertheless, more recent studies have shown the Pareto distribution can be very useful.

Recent Applications. Several more recent studies have revived interest in the Pareto distribution by demonstrating that it can be used to model or predict numerous empirical phenomena. For example, the Pareto distribution has played a major role in investigations concerning city population size, resources, stock price fluctuations, and oil fields (28:242). The Pareto has also been used to describe property values, inheritance, business mortality, worker migration, consumer prices, and effects of underreported income (32:7; 51).

Fisk (17:171, 174-175) showed that in some cases the Pareto distribution offers an improvement over the lognormal distribution, especially at the extremities (tails) of the distribution. Steindl (44:187-246) cited several examples of empirical economic data which follow the Pareto distribution, including the distribution of wealth, jobs by basic salary, the growth rate of firms and corporations, and several others. He also reaffirmed the Pareto Law's usefulness in economic theory:

Empirical laws are rare in economics, and the most obvious instance of such laws is the regular pattern of certain statistical distributions, such as the distribution of persons according to income or of business firms according to sales. A good many of these distributions conform to the so-called law of Pareto, i.e. the number of firms (for example) with sales in excess of X, plotted against X on logarithmic paper, is a straight line . . . The Pareto distribution is encountered in many fields and often the fit is very good [44:11].

Air Force Applications. Other studies have shown that the Pareto can be used to model phenomena which may be applicable to Air Force interests, such as time-to-failure of equipment, maintenance service times, nuclear fallout particles, and error clusters in communication circuits.

For example, Davis and Feldstein (16:299) showed the Pareto can be used to model survival data based on a population of items whose times—to—failure from a well defined origin are being observed. If each member of the population has a constant hazard rate based on a two—parameter gamma distribution, then the time—to—failure for the population is the Pareto type II of equation (13). Further, in some cases the Pareto competes with the Weibull distribution as a model for failure times of components. Like the Weibull, the generalized Pareto includes the exponential, and can therefore be used to test departures from the exponential (16:305—306).

Kaminsky and Nelson (30) showed how the Pareto distribution can be used in situations involving life testing.

reliability, and replacement policy. Specifically, they showed how to use the Pareto to predict the time of future failures from times of early failures in the same sample. They found, for example, that if items are put into service simultaneously, and it becomes necessary to begin replacing them when a certain percentage remain functional, then it is possible to predict the replacement time of future failures from the early failure times. In another example, "if n items form an n-component parallel system, then we can predict the time of system failure . . ." (30:145).

いる。直見ないないとなり、大きないのないないないのは、一日で

The Pareto distribution can also be of use in modeling queuing systems in which equipment maintenance service times are conditioned upon a random parameter. Harris (22:307) showed that if the conditional service distribution is exponential and the random parameter has a gamma density, then the resultant service times follow the Pareto distribution. Further, if a system consists of components which have exponentially distributed times—to—failure with a gamma parameter density, then the unconditional times to failure would follow the Pareto distribution (22:312). Harris also used the Pareto to develop a model which provides a means of obtaining measures of effectiveness of a large scale and complicated queuing process (22:308-309).

Freiling showed that the Pareto distribution, in the form of equation (10) with c=3, can be used to model mass sizes of nuclear fallout particles (18:4). In addition, he

compared the usefulness of the Pareto and lognormal distributions in modeling the size distribution of particle mass in the fallout from land—surface bursts. For this specific application, Freiling found close similarities between the two distributions: "The agreement is such that if one curve is correct, the other will never be proved wrong . . . Thus it appears that the differences between the two approaches are trivial" (18:12). He concluded his study by noting that, in the case of nuclear airburst debris, the lognormal distribution has the advantage of having an "observationally confirmed theoretical basis." If the observational data is truncated, however, the Pareto distribution has the advantage of simplifying calculations of particle surface distribution.

In a study of error clusters in communication circuits, Berger and Mandelbrot (7:224) revealed still another application of the Pareto distribution. They proposed a new mathematical model to describe the distribution of the occurence of errors in data transmission over telephone lines. They found that the statistics of communications errors can be described in terms of an error probability depending solely on the time elapsed since the last occurrence of an error. Further, they discovered that the distribution of inter-error intervals closely approximates the Pareto distribution of exponent less than one. As a result, the relative number of errors tend to zero as message lengths increase.

### The Pareto Function

Pareto's Law in its original form can be expressed as  $N = Ax^{-C}$  where A and c are parameters which characterize the function and N is the number of people having income of at least x. In a form more commonly used in statistical analysis, Pareto's Law becomes the Pareto distribution:

$$P(x) = Pr[X \ge x] = (k/x)^{C} \text{ for } k, c > 0; x \ge k$$
 (10)

where P(x) is the probability that the value of a random variable X (e.g., income) is at least x, k is a lower bound on X (e.g., some minimum income), and c characterizes the shape of the graph of the distribution (28:233-234).

Accumulated probabilities over the range of values of x are given by the corresponding cumulative distribution function (CDF) of X, also known as the "Pareto distribution of the first kind" (28:234) or the "strong" Pareto law (32:50):

$$F_{X}(x) = 1 - (k/x)^{C}$$
 for  $k, c > 0; x \ge k$  (11)

The corresponding Pareto probability density function is:

$$p_{X}(x) = ck^{C}/x^{C+1} = (c/k)(k/x)^{C+1} \text{ for } c > 0; x \ge k > 0$$
 (12)

Pareto proposed two other forms of the distribution.

The "Pareto distribution of the second kind" (also called the Pareto Type II or the Lomax distribution), is:

$$F_{\chi}(x) = 1 - K_1/[(x+C)^C]$$
 (13)

The third form proposed by Pareto, the "Pareto distribution of the third kind" (or Pareto Type III), has the CDF:

$$F_X(x) = 1 - k_2 e^{-bx} / [(x+C)^C]$$
 (14)

which reduces to the Type II form when b = 0.

The basic difference between these various forms is in the number of parameters. The Pareto distribution of the first kind, equation (11), represents the "usual formulation" of the function and is the one most commonly found in the literature. However, the fact that it consists of only two parameters (i.e., c and k) may limit its usefulness in general applications. Hastings and Peacock (26) regard three types of parameters as basic to any distribution function. These three parameters are the location, scale, and shape parameters, which they denote as a, b, and c respectively. The location parameter (a) represents "the abscissa of a location point (usually the lower or midpoint) of the range of the variate." The scale parameter (b) is "a parameter which determines the scale of measurement of the fractile x".

Finally, the shape parameter (c) "determines the shape . . . of the distribution function within a family of shapes associated with a specified type of variate" (26:20).

Kulldorff and Vannman (33:218) introduced a more general form of the CDF than the two-parameter form shown in equation (11). By using the parameter notation of Hastings and Peacock, and the functional form of Kulldorff and Vannman, the generalized (three-parameter) form of the Pareto distribution is illustrated in Figure 1 and can be written as:

$$F(x) = 1 - [1 + (x-a)/b]^{-c}$$
 for  $x \ge a$ ;  $b,c > 0$  (15)

where again a is location, b is scale, and c is shape.

In the special case when a = b, if we let k = a = b as in Figure 2, then from equation (15):

$$F(x) = 1 - [1 + (x-a)/b]^{-C} = 1 - [1 + (x-k)/k]^{-C}$$

$$= 1 - [1 + (x/k) - (k/k)]^{-C} = 1 - (1 + x/k - 1)^{-C}$$

$$= 1 - (x/k)^{-C} = 1 - (k/x)^{-C}$$

where k,b,c > 0 and  $x \ge k = a$ . The last expression is the "usual formulation" given by equation (11).

Another form commonly found in the literature (26:102; 51:1) is the one-parameter form (Figures 3 and 4) given by:

$$F(x) = 1 - x^{-C} \text{ for } x \ge 1; c > 0$$
 (16)



Fig 1. Three-Parameter Pareto Curves (Eqn 15) for Several Values of Location a and Scale b with Shape c=2.



Fig 2. Two-Parameter Pareto Curves (Eqn 11) for Several Values of k with Shape c=2 and a=b=k.





Fig 3. One-Parameter Pareto Curves (Eqn 16) for Several Values of Shape c with k = a = b = 1.



Fig 4. Probability Density (Eqn 12) of the One-Parameter Pareto with k=1 (Reprinted from 26:103).

Equation (16) is simply a special case of (15) found by setting a = b = 1. As such, it represents the least general form of the Pareto distribution.

The greater generality inherent in the three-parameter form, equation (15), allows the Pareto distribution to be more useful in practical applications. For example, in some situations the random variable represented by x may be positive by its very nature, making the assumption a = 0 more realistic than a = b (33:218). In the special case where a = 0, the three-parameter Pareto distribution becomes:

$$F(x) = 1 - [1 + (x-a)/b]^{-c} = 1 - (1 + x/b)^{-c}$$
$$= 1 - (b/b + x/b)^{-c} = 1 - [(x+b)/b]^{-c}$$
$$= 1 - [b/(x+b)]^{c} = 1 - b^{c}/[(x+b)^{c}]$$

This last expression can be written as equation (13) by simply setting  $b^C = K_1$  and b = C.

Therefore, equations (11), (13), and (16) each represent special cases of the three-parameter form given by equation (15). Since (15) is a more general and hence more useful form of the Pareto distribution, this thesis uses the functional form in (15) to develop the goodness-of-fit tests for the Pareto distribution. Selecting the more general form as a basis for the test statistics will ensure the widest possible application of the goodness-of-fit tests.

## Parameter Estimation

As explained in Chapter II, the development of modified Kolmogorov-Smirnov, Anderson-Darling, and Cramer-von Mises tests depends on the use of an invariant estimator for the unspecified location and scale parameters (38:384). This section begins by briefly examining several published studies on various estimation techniques for Pareto distributions. It concludes by discussing the best linear unbiased estimator (BLUE), which is the invariant estimator used in this thesis.

Various Estimators. The two methods of invariant estimation most commonly used in modified goodness—of—fit tests are the maximum likelihood estimator (MLE) and the best linear unbiased estimator (BLUE). Various techniques for estimating the parameters of the Pareto distribution can be found in the literature. However, as Kulldorff and Vannman (33:218) point out, few studies consider the general three—parameter form of equation (15). Instead, most studies consider only "special cases", such as a = b, corresponding to equations (11) and (12).

Numerous examples of "special case" estimators can be cited. Moore and Harter (41; 23:69,86) developed a biased, single-order-statistic MLE for the Pareto shape parameter when location is specified. Harris (22:308, 310-311) considered estimation for the two-parameter form given by

equation (12): "As a first try, we can appeal to the techniques of maximum likelihood estimation. However, this particular method does not yield sufficiently simple equations (for even numerical methods)" (22:310). As a result, Harris resorted to the method of moments instead. Johnson and Kotz (28:234-240) presented MLEs for the two-parameter form in equation (11), as well as several other estimation techniques. Hastings and Peacock (26:102) gave the MLE for the one-parameter form of equation (16). In his dissertation, Koutrouvelis (32:97-115) attempted to estimate the parameters of the upper tail of Pareto distributions, but found it too difficult to calculate the Pareto MLEs, even with a computer. Instead, he developed a new method of estimating parameters based on the asymptotic theory of quantiles using only data consisting of sample values greater than some specified value. Wingo (50) wrote a FORTRAN program to calculate the MLEs from a reduced log-likelihood function for the two-parameter form in equation (12). Davis and Feldstein (16:299-300, 305) developed MLEs from progressively censored data for the Pareto Type III, equation (14). Bell, Ahmad, Park, and Lui (6:4-7) presented the MLEs, the minimum variance unbiased estimators (MVUEs), and the minimal sufficient statistic (MSS) for the two-parameter form, equation (11). Several other estimation studies are cited by Koutrouvelis (32:55) and Johnson and Kotz (28:235-240). Unfortunately, none of these studies provide

the invariant estimators of the three-parameter form in equation (15) as needed for this thesis.

Parameter estimation for the general case given by equation (15) went virtually ignored until Kulldorff and Vannman (33) derived the BLUEs of the unknown parameters on the basis of a complete Pareto sample with shape c > 2. In a follow-up paper, Vannman (48) derived the BLUEs for shape  $c \le 2$ . Later, Kaminsky (29:7-8, 12-14) and Kaminsky and Nelson (30:148) extended the work of Kulldorff and Vannman by deriving, for equation (15), the best linear unbiased predictors of future observations from censored samples. Most recently, Charek (12) examined minimum distance estimation for the three-parameter Pareto.

Best Linear Unbiased Estimator (BLUE). The BLUE derives its name from its main properties as an estimator. It is a "linear" estimator because it can be expressed as a linear function of a random sample. It is "unbiased" because its bias term is zero; and the expected value of the estimator is equal to the true parameter value. It is considered the "best" estimator because it has the minimum variance among all other linear unbiased estimators (27:227). However, for the purposes of this thesis, the most important property of the BLUE is invariance under transformation of parameters.

The BLUE is a subset of a larger class of estimators

known as least-squares estimators. In general, least squares estimators do not possess the invariance property. However, when a least-squares estimator is also a linear function, then the invariance property holds (40:349-350). Therefore, in addition to its other properties, the BLUE is also an invariant estimator. It is this property of invariance under parameter transformations that allowed, for example, Green and Hegazy (19:205) and Woodbury (52) to use the BLUE in producing modified goodness-of-fit tests based on the findings of David and Johnson (14).

Intuitively, the property of invariance implies, for example, that if a parameter  $\theta$  is estimated, and  $\theta^2$  is also estimated from the same data, then the estimate of  $\theta^2$  should be the square of the estimate of  $\theta$  (37:434). Generally, the invariance property requires that if  $f(\theta)$  is a single valued function of a parameter  $\theta$ , and  $\hat{\theta}$  is the BLUE of  $\theta$ , then  $f(\hat{\theta})$  is the BLUE of  $f(\theta)$ , i.e.,  $f(\hat{\theta}) \approx \hat{f}(\theta)$  (8:94).

The studies by Kulldorff and Vannman (33; 48) derived the BLUEs of equation (15) for b when a and c are known; for a when b and c are known; and for a and b when c is known. The last case, which corresponds to invariant estimation of location and scale when shape is known, is used in this thesis to develop the modified K-S, A-D, and C-VM tests. The next two subsections use the findings of Kuldorff and Vannman to derive computational forms of the BLUEs for the Pareto location and scale parameters, assuming shape is known.

$$\hat{a} = x_{(1)} - Y/[(nc-1)(nc-2)-ncD]$$
 (17)

$$\hat{b} = Y(nc-1) / [(nc-1)(nc-2)-ncD]$$

$$= [x_{(1)} - \hat{a}](nc-1)$$
(18)

In the special case when it is known that a = b, as in equation (11), the BLUE reduces to:

$$\hat{k} = [1 - 1/(nc)] \times (1)$$
 (19)

However, before equations (17) and (18) can be used to find the BLUEs for the general case, the following terms must first be calculated:

$$B_{i} = \frac{\int (n-i+1) \int (n+1-2/c)}{\int (n-i+1-2/c) \int (n+1)} \quad \text{for } i = 1, 2, \dots, n$$
 (20)

$$D = (c+1) \prod_{i=1}^{n-1} B_i + (c-1)B_n$$
 (21)

$$Y = (c+1) \prod_{i=1}^{n-1} B_i \times_{(i)} + (c-1)B_n \times_{(n)} - D \times_{(1)}$$
 (22)

After these values are calculated, they can be substituted into equations (17) and (18) to find the BLUEs  $\hat{a}$  and  $\hat{b}$ .

From equations (17) to (22), it is obvious that the use of the BLUEs  $\hat{a}$  and  $\hat{b}$  involves the computation of all the coefficients  $B_i$  for  $i=1,2,\cdots,n$ . Therefore, in order to derive a computational form of the BLUEs, the first task is to simplify equation (20). Each  $B_i$  is the ratio of a product of gamma functions. Banks and Carson (5) note that "the gamma function can be thought of as a generalization of the factorial notion which applies to all positive numbers, not just integers" (5:144). For any real m>0:

$$\Gamma(m) = (m-1) \Gamma(m-1) \tag{23}$$

By definition  $\Gamma(1)=1$ , so that whenever m is an integer, equation (23) becomes:

$$\Gamma(m) = (m-1)! \tag{24}$$

Applying these gamma definitions in equation (20) reveals:

$$B_{1} = \frac{\int (n-1+1) \int (n+1-2/c)}{\int (n-1+1-2/c) \int (n+1)} = \frac{\int (n) \int (n+1-2/c)}{\int (n-2/c) \int (n+1)}$$

$$= \frac{(n-1)! (n-2/c) \int (n-2/c)}{n (n-1)! \int (n-2/c)} = \frac{n-2/c}{n}$$

$$= 1 - 2/(cn)$$
(25)

Similarly,  $B_2$  is found from equation (20) as follows:

$$B_{2} = \frac{\Gamma(n-2+1) \Gamma(n+1-2/c)}{\Gamma(n-2+1-2/c) \Gamma(n+1)} = \frac{\Gamma(n-1) \Gamma(n+1-2/c)}{\Gamma(n-1-2/c) \Gamma(n+1)}$$

$$= \frac{(n-2)! (n-2/c) \Gamma(n-2/c)}{\Gamma(n-1-2/c) n!}$$

$$= \frac{(n-2)! (n-2/c) (n-1-2/c) \Gamma(n-1-2/c)}{n(n-1) (n-2)! \Gamma(n-1-2/c)}$$

$$= \frac{(n-2/c) (n-1-2/c)}{n(n-1)}$$

Continuing in this manner, it turns out that:

= [1 - 2/(cn)] [1 - 2/c(n-1)]

$$B_n = [1 - 2/(cn)][1 - 2/c(n-1)] \cdots [1 - 2/c(1)]$$
 (27)

(26)

The calculations can be simplified as follows: Let  $g_1=2/$  (cn),  $g_2=2/$  [c(n-1)], ...,  $g_n=2/c$ . Also let  $b_1=1-g_1$ ,  $b_2=1-g_2$ , ...,  $b_n=1-g_n$ .

Then  $B_1 = b_1$ ,  $B_2 = b_1b_2$ , ...,  $B_n = b_1b_2$ ... $b_n$ .

In general, then, each  $B_i$  can be expressed in computational form as:

$$B_{i} = \prod_{j=1}^{i} b_{j}$$
 (28)

where  $b_j = 1 - g_j$  and  $g_j = 2/c(n-j+1)$  for  $j = 1,2, \cdots, i$ . From these results, if we let  $B_0 = 1$ , then another way to write  $B_i$  is (48:705):

$$B_i = [1 - 2/c(n-i+1)] B_{i-1}$$
 for  $i = 1, 2, \dots, n$  (29)

As mentioned earlier, once all of the  $B_i$  are computed from equation (28) or (29), then D and Y can be computed from equations (21) and (22). Finally, these values for  $B_i$ , D, and Y are substituted into equations (17) and (18) to find the BLUEs  $\hat{a}$  and  $\hat{b}$ .

$$a_k^* = x_{(1)} - b_k^*/(nc-1)$$
 (30)

and

$$b_{k}^{*} = (1/U_{k}) \{ (c+1)_{i=1}^{k-1} B_{i} \times_{(i)}$$

$$+ [(n-k+1)c -1] B_{k} \times_{(k)}$$

$$- [(nc-1)/(nc)] (nc-2-U_{k}) \times_{(i)} \}$$
(31)

where

$$U_{k} = \frac{(nc-2)(nc-c-2) - ncl(n-k)c -23 B_{k}}{(nc-1)(c+2)}$$
(32)

Whenever possible, k should be chosen to achieve highest efficiency, which occurs when k=n-[2/c], where "[2/c]" denotes the integer portion of 2/c. Vannman (48:707) also points out that in the case where 2/c is an integer, and k is selected for highest efficiency so that k=n-2/c, then equation (31) can be simplified to:

$$b_{k}^{*} = \frac{(c+1)(c+2)(nc-1)}{(nc-2)(nc-c-2)} \begin{bmatrix} \frac{n-2/c}{2} \\ i=1 \end{bmatrix} B_{i} \times_{(i)} - \frac{nc-2}{c+2} \times_{(1)} \end{bmatrix}$$
(33)

By substituting this result for  $b_k^{\ \ \ \ }$  in equation (30), the BLUE for a, based on the first n~2/c order statistics, can be written in the following computational form:

$$a_{k}^{*} = x_{(1)} - \frac{(c+1)(c+2)}{(nc-2)(nc-c-2)} \begin{bmatrix} \frac{n-2}{2} \\ \frac{1}{2} \end{bmatrix} B_{i} \times_{(i)} - \frac{nc-2}{c+2} \times_{(1)} \end{bmatrix}$$
(34)

Once  $a_k^*$  has been computed, it is easy to use equation (30) to find a computational form of the BLUE for b:

$$b_k^* = b_{n-2/c}^* = (nc-1) (x_{(1)} - a_k^*)$$
 (35)

Equations (34) and (35) give the BLUEs for location a and scale b provided all of the following conditions apply:

- 1) shape parameter c is specified
- 2) 2/n < c ≤ 2
- 3) 2/c is an integer

When sample size n=5, 10, 15, 20, 25, or 30, then all three of these conditions hold for shape parameter c=.5, 1, or 2. Therefore, for these values of n and c, it appears that equations (34) and (35) apply. There is, however, one important exception. As explained earlier, k must be chosen so that  $2 \le k < n+1-2/c$ . In the case where n=5 and c=.5, notice that n+1-2/c=2. Thus k cannot be selected as before, since it would need to satisfy  $2 \le k < 2$ , which is not possible. As a result, the above equations fail to provide BLUEs for the special case c=.5 and n=5; thus, when c=.5, this thesis will use n=6 instead of n=5.

As explained in the next chapter, this thesis uses sample sizes of n = 5, 10, 15, 20, 25, and 30, with shape

parameters of c = .5, 1, 1.5, 2, 2.5, 3, 3.5, and 4. The preceding subsection presented the BLUEs to be used for c = 2.5, 3, 3.5, and 4. This subsection has thus far shown that equations (34) and (35) provide the BLUEs for c = .5, 1, and 2, except for the special case c = .5 and n = 5. The one remaining case to be addressed is when c = 1.5.

When the shape parameter c = 1.5, equations (34) and (35) do not apply since condition 3) fails to hold, i.e., 2/c is not an integer. To ensure highest efficiency, k is selected so that k = n - [2/c], where "[2/c]" denotes the integer portion of 2/c. Thus:

$$k = n - [2/c] = n - [1.333] = n - 1$$
 (36)

According to Vannman (48:707), substituting this value of k into equations (30) to (32) gives the desired BLUEs:

$$a_k^* = a_{n-1}^* = x_{(1)} - b_{n-1}^*/(nc-1)$$
 (37)

$$b_{k}^{*} = (1/U_{n-1}) \{(c+1) \sum_{i=1}^{n-2} B_{i} \times_{(i)} + (2c-1) B_{n-1} \times_{(n-1)} - [(nc-1)/(nc)] (nc-2-U_{n-1}) \times_{(1)} \}$$
(38)

where

$$U_k = U_{n-1} = \frac{(nc-2)(nc-c-2) - nc(c-2)B_{n-1}}{(nc-1)(c+2)}$$
 (39)

Summary of BLUEs. For shape parameter c=.5, 1, or 2, this thesis uses equations (34) and (35) to calculate the BLUEs for location parameter a and scale parameter b; however, the case c=.5 and n=5 is omitted, since then the BLUEs cannot be found. When c=1.5, the BLUEs are given by equations (37) to (39). For c=2.5, 3, 3.5, or 4, equations (17), (18), (21), (22) and (29) are used to calculate the BLUEs for a and b. Once the BLUEs have been computed, the K-S, A-D and C-VM test statistics can be modified to accommodate unspecified location and scale parameters. An example will help to illustrate the calculations involved.

Example 1. In Table I the data listed under the  $x_i$  column was generated from a Pareto distribution of shape parameter c=2.5, using equation (47) in the next chapter. Suppose it is desired to find the BLUE estimators  $\hat{a}$  and  $\hat{b}$  based on this particular random sample of size n=10. Since in this case it is known that c=2.5, the BLUEs will be computed from equations (17) and (18). One procedure to accomplish this is as follows:

Step 1. Arrange the  $x_i$  sample values in order from smallest to largest. The resulting order statistics (20:70) are listed under the  $x_{(i)}$  column of Table I.

Table I
CALCULATION OF BLUES

| i                                                     | ×i                                                                                               | ×(i)                                                               | Ci                                                                 | B <sub>i-1</sub>                                             | B <sub>i</sub>                                                               | B <sub>i</sub> ×( <sub>i</sub> )                                   |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                  | 1.7986<br>1.0684<br>1.3725<br>1.1779<br>1.4743<br>1.0095<br>4.8304<br>1.0586                     | 1.0095<br>1.0586<br>1.0684<br>1.1267<br>1.1779<br>1.3725<br>1.4743 | . 9200<br>. 9111<br>. 9000<br>. 8857<br>. 8667<br>. 8400<br>. 8000 | 1.0000<br>.9200<br>.8382<br>.7544<br>.6682<br>.5791<br>.4864 | . 9200<br>. 8382<br>. 7544<br>. 6682<br>. 5791<br>. 4864<br>. 3891<br>. 2854 | . 9287<br>. 8873<br>. 8060<br>. 7529<br>. 6821<br>. 6676<br>. 5737 |
| 9<br>10                                               | 1.1267<br>3.9974                                                                                 | 3.9974<br>4.8304                                                   | .6000<br>.2000                                                     | .2854<br>.1712                                               | .1712<br>.0342                                                               | .6844<br>.1652                                                     |
| $D = (c+1) \sum_{i=1}^{n-1} B_i + (c-1)B_n = 17.8733$ |                                                                                                  |                                                                    |                                                                    |                                                              |                                                                              |                                                                    |
| Y                                                     | = (c+1) n i i i                                                                                  | -1<br>E <sub>1</sub> B <sub>i</sub> × <sub>(i)</sub>               | + (c-1)F                                                           | 3 <sub>n × (n)</sub> -                                       | p <sub>×(1)</sub> =                                                          | 4.9407                                                             |
|                                                       | $\hat{a} = x_{(1)} - Y/[(nc-1)(nc-2)-ncD] = .9625$ $\hat{b} = (x_{(1)} - \hat{a})(nc-1) = 1.128$ |                                                                    |                                                                    |                                                              |                                                                              |                                                                    |

Step 2. Compute each  $B_i$  for  $i=1,2,\cdots,n$  using equation (29). Thus:

For 
$$i=1$$
,  $B_1 = [1-2/2.5(10-1+1)]B_0 = (1-2/25.0)(1.000) = .9200$   
For  $i=2$ ,  $B_2 = [1-2/2.5(10-2+1)]B_1 = (1-2/22.5)(.9200) = .8382$ 

•

For 
$$i=10$$
,  $B_{10}=[1-2/2.5(10-10+1)]B_{9}=(1-2/2.5)(.1712)=.0342$ 

Table I lists all of the values of  $C_i \approx 1 - 2/c(n-i+1)$  and  $B_i = C_i B_{i-1}$  as computed from equation (29).

Step 3. Use the B; to compute D from equation (21):

$$D = (c+1)(B_1+B_2+\cdots+B_7) + (c-1)B_{10}$$

$$= (2.5 + 1)(.9200+ .8382+\cdots+ .1712) + (2.5 - 1)(.0342)$$

$$= (3.5)(5.092) + (1.5)(.0342) = 17.8733$$

Step 4. Use the  $x_{(i)}$ , D, and  $B_i$  values to compute Y from equation (22). Table I lists the values of  $B_i x_{(i)}$ :

$$Y = (c+1)[B_{1} \times (1) + B_{2} \times (2) + \cdots + B_{9} \times (9)] + (c-1)B_{10} \times (10) -D \times (1)$$

$$= (3.5)(.9287 + .8873 + \cdots + .6844)$$

$$+ (1.5)(.1652) - 17.8733(1.0095)$$

$$= (3.5)(6.496) + .2478 - 18.0431 = 4.9407$$

Step 5. Use Y and D to compute  $\stackrel{\wedge}{a}$  from equation (17):

$$\hat{a} = x_{(1)} - Y/[(nc-1)(nc-2)-ncD]$$
= 1.0095 - (4.9407)/[(25-1)(25-2) -25(17.8733)]
= 1.0095 - 4.9407/105.1675 = .9625

Step 6. Use  $\stackrel{\wedge}{a}$  to compute  $\stackrel{\wedge}{b}$  from equation (18):

$$\dot{b} = (x_{(1)} - \dot{a}) (nc-1) = (1.0095 - .9625) (25 - 1) = 1.128$$

In this example, then, the BLUEs for a and b are  $\hat{a}=.9625$  and  $\hat{b}=1.128$ . (The  $x_i$  values were actually generated from a Pareto distribution with a=b=1 and c=2.5). Once the BLUEs have been computed, the test statistics can be appropriately modified.

# Modified Test Statistics

At the end of Chapter II, the standard forms of the Kolmogorov-Smirnov (K-S), Anderson-Darling (A-D), and Cramer-von Mises (C-VM) test statistics were presented. To use these "unmodified" statistics with their existing critical value tables, all parameters must be specified. When unknown location and scale parameters are involved, the test statistics must be modified to generate new critical value tables before they will produce accurate results. This section shows how to calculate the modified test statistics using an ordered sample and the BLUEs described in the preceding section. The notation and approach are adapted from Littell, McClave, and Offen (36:259-260).

Hypothesized Pareto CDF. Before computing the modified test statistics, the hypothesized Pareto CDF must be calculated for each value of the random sample. Let  $x_1, x_2, \cdots, x_n$  be a random sample from the Pareto distribution with unknown location and scale parameters a and b, and known shape c; and let  $x_{(i)}$  denote the ith order statistic (20:70). The

appropriate BLUEs for location a and scale b (computed from the previous section), the specified shape c, and the n ordered Pareto deviates,  $x_{(i)}$ , are substituted into equation (15) to calculate the hypothesized Pareto CDF:

$$P_{i} = F(x_{(i)}; \hat{a}, \hat{b}, c) = 1 - [1 + (x_{(i)} - \hat{a})/\hat{b}]^{-c}$$
 (40)

for i = 1,2, \*\*\*, n. Note that for a given shape c (e.g., c=2.5 or c=4) and sample size n (e.g., n=10 or n=30), a specific, fixed pair of location and scale values (e.g., a=b=1 or a=0, b=1) is used to produce the random Pareto deviates needed to compute the hypothesized CDF. This can be done without loss of generality because, as discussed in Chapter II, the use of invariant estimators (in this case the BLUEs) for location and scale ensures that the distribution of the test statistic depends only on the shape c and sample size n, and is independent of location and scale (36:260).

Example 2. In Example 1, the BLUEs for location a and scale b were found from a sample of size n=10 generated from a Pareto distribution having shape c=2.5. In this example, the same sample of values  $x_1, x_2, \cdots, x_{10}$  will be used to compute the hypothesized Pareto CDF from equation (40). Table II contains the values obtained while making the calculations. The columns for  $x_i$  and  $x_{(i)}$  are duplicated from Table I. The BLUEs  $\hat{a}$  and  $\hat{b}$  are as derived in Example 1.

Table II

CALCULATION OF HYPOTHESIZED PARETO CDF

| i    | ×i                                               | ×(i)   | Mi                                     | Ni     | o <sub>i</sub> | P <sub>i</sub> |  |
|------|--------------------------------------------------|--------|----------------------------------------|--------|----------------|----------------|--|
| 1    | 1.7986                                           | 1.0095 | .0470                                  | .0417  | . 9030         | .0970          |  |
| 2    | 1.0684                                           | 1.0586 | .0961                                  | . 0852 | .8151          | . 1849         |  |
| 3    | 1.3725                                           | 1.0684 | . 1059                                 | .0939  | . 7990         | .2010          |  |
| 4    | 1.1779                                           | 1.1267 | .1642                                  | . 1456 | .7119          | . 2881         |  |
| 5    | 1.4743                                           | 1.1779 | .2154                                  | .1910  | - 6460         | .3540          |  |
| 6    | 1.0095                                           | 1.3725 | .4100                                  | . 3635 | . 4607         | <b>. 5</b> 393 |  |
| 7    | 4.8304                                           | 1.4743 | .5118                                  | . 4537 | . 3925         | . 6075         |  |
| 8    | 1.0586                                           | 1.7986 | .8361                                  | .7412  | . 2500         | .7500          |  |
| 9    | 1.1267                                           | 3.9974 | 3.0349                                 | 2.6905 | .0382          | .9618          |  |
| 10   | 3.9974                                           | 4.8304 | 3.8679                                 | 3.4290 | .0242          | . 9758         |  |
|      | $M_i = x_{(i)} - \hat{a} = x_{(i)}9625$          |        |                                        |        |                |                |  |
|      | $N_i = M_i / \stackrel{\wedge}{b} = M_i / 1.128$ |        |                                        |        |                |                |  |
|      | $0_i = (1 + N_i)^{-c} = (1 + N_i)^{-2.5}$        |        |                                        |        |                |                |  |
| I    | Hypothesized Pareto CDF: $P_i = 1 - O_i$         |        |                                        |        |                |                |  |
| ===: | ::::::::::::::::::::::::::::::::::::::           |        | :===================================== | *****  |                |                |  |

Modified K-S Statistic. After computing all n of the values of  $P_i$  from equation (40), the modified Kolmogorov-Smirnov test statistic is found from equation (4) by substituting  $P_i$  in place of  $z_i$  in equation (5). Thus the modified test statistic in computational form is:

$$D = \max (D^+, D^-) \tag{41}$$

where

$$D^+ \approx \sup [(i/n)-P_i]$$
 and  $D^- \approx \sup [P_i-(i-1)/n]$  (42)  
 $1 \le i \le n$ 

Table III

CALCULATION OF MODIFIED K-S TEST STATISTIC

| i                                  | ×(i)                                                                                    | P <sub>i</sub>          | i/n            | (i-1)/n        | D <sub>i</sub> +          | D <sub>i</sub>        |  |
|------------------------------------|-----------------------------------------------------------------------------------------|-------------------------|----------------|----------------|---------------------------|-----------------------|--|
| 1 2 3                              | 1.0095                                                                                  | .0970                   | .1             |                |                           | .0849                 |  |
| 4<br>5                             | 1.0684<br>1.1267<br>1.1779                                                              | .2010<br>.2881<br>.3540 | .3<br>.4<br>.5 | - •            | .0990<br>.1119<br>(.1460) | .0010<br>0119<br>0460 |  |
| 6<br>7<br>8                        | 1.3725<br>1.4743<br>1.7986                                                              | .5393<br>.6075<br>.7500 | .6<br>.7<br>.8 | .5<br>.6<br>.7 | .0607<br>.0925<br>.0500   | · <del>-</del>        |  |
| 9<br>10                            | 3.9974<br>4.8304                                                                        | .9618<br>.9758          | .9<br>1.0      | .8<br>.9       | 0618<br>.0242             |                       |  |
|                                    | $D_i^+ = (i/n) - P_i^- = i/10 - P_i^-$                                                  |                         |                |                |                           |                       |  |
|                                    | $D^{+} = \sup [(i/n) - P_{i}] = .1460$ $D_{i}^{-} = P_{i} - (i-1)/n = P_{i} - (i-1)/10$ |                         |                |                |                           |                       |  |
| $D^{-} = \sup_{i} (i-1)/n = .1618$ |                                                                                         |                         |                |                |                           |                       |  |
| -<br>-<br>-                        | K-S Statistic: $D = max (D^+, D^-) = .1618$                                             |                         |                |                |                           |                       |  |

Example 3. Once the hypothesized Pareto CDF is computed, the values can be used to calculate the modified K-S test statistic. Table III continues the previous examples by showing the computations involved in calculating the modified K-S test statistic. As before, the calculations are based on the n=10 order statistics introduced in example 1, and the values  $P_i$  of the hypothesized Pareto CDF as computed in example 2.

Table IV

CALCULATION OF MODIFIED A-D TEST STATISTIC

| j                          | Pj                                                                         | P <sub>n+1-j</sub>                                 | L <sub>j</sub>                                                      | M                                                             | N <sub>j</sub>                                                         | ر 1)N <sub>j</sub>                                                              |  |
|----------------------------|----------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------|--|
| 1<br>2<br>3<br>4<br>5<br>6 | .0970<br>.1849<br>.2010<br>.2881<br>.3540<br>.5393                         | .9758<br>.9618<br>.7500<br>.6075<br>.5393<br>.3540 | -2.3330<br>-1.6879<br>-1.6045<br>-1.2444<br>-1.0385<br>6175<br>4984 | -3.7214<br>-3.2649<br>-1.3863<br>9352<br>7750<br>4370<br>3398 | -6.0544<br>-4.9528<br>-2.9908<br>-2.1796<br>-1.8135<br>-1.0545<br>8382 | -6.0544<br>-14.8584<br>-14.9540<br>-15.2572<br>-16.3215<br>-11.5995<br>-10.8966 |  |
| 8<br>9<br>10               | .7500<br>.7618<br>.9758                                                    | .2010<br>.1849<br>.0970                            | 4784<br>2877<br>0389<br>0245                                        | 2244<br>2040<br>1020                                          | 5121<br>2429<br>1265                                                   | -7.6815<br>-4.1293<br>-2.4035<br>-104.1559                                      |  |
| Lj                         | = ln P                                                                     |                                                    | M <sub>j</sub> = ln(                                                | 1-P <sub>n+1-j</sub> )                                        | N                                                                      | = L <sub>j</sub> + M <sub>j</sub>                                               |  |
|                            | $A^2 = -n - (1/n) \sum_{j=1}^{n} (2_{j}-1) [\ln P_{j} + \ln(1-P_{n+1-j})]$ |                                                    |                                                                     |                                                               |                                                                        |                                                                                 |  |
|                            | = -10 - (1/10)(-104.1559) = .4156                                          |                                                    |                                                                     |                                                               |                                                                        |                                                                                 |  |

Modified A-D Statistic. The modified Anderson-Darling test statistic is computed by substituting  $P_j$  from equation (40) in place of  $z_j$  in equation (9). Thus the computational form of the modified A-D test statistic is:

$$A^{2} = -n - (1/n) \sum_{j=1}^{n} (2j-1) [\ln P_{j} + \ln(1-P_{n+1-j})]$$
 (43)

Example 4. Table IV shows the calculations involved in finding the value of the modified A-D test statistic. The  $P_j$  values are as computed in example 2.

Table V

CALCULATION OF MODIFIED C-VM TEST STATISTIC

| j                                                                                                                    | Fj                                                                            | 2 <sub>j</sub> -1<br>2n                              | $P_{j} = \frac{(2_{j}-1)}{2n}$                                           | $[P_j - \frac{(2j-1)}{2n}]^2$                                                 |  |  |
|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------|--|--|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                                                            | .0970<br>.1849<br>.2010<br>.2881<br>.3540<br>.5393<br>.6075<br>.7500<br>.9618 | .05<br>.15<br>.25<br>.35<br>.45<br>.55<br>.65<br>.75 | .0470<br>.0349<br>0490<br>0619<br>0960<br>0107<br>0425<br>.0000<br>.1118 | .0022<br>.0012<br>.0024<br>.0038<br>.0092<br>.0001<br>.0018<br>.0000<br>.0125 |  |  |
| $\sum_{j=1}^{n} = .0339$ $W^{2} = [1/(12n)] + \sum_{j=1}^{n} [P_{j} - (2_{j}-1)/2n]^{2}$ $= (1/120) + .0339 = .0423$ |                                                                               |                                                      |                                                                          |                                                                               |  |  |

Modified C-VM Statistic. The computational form of the modified Cramer-von Mises test statistic is found from equation (7) by substituting  $P_j$  for  $z_j$ :

$$W^{2} = [1/(12n)] + \sum_{j=1}^{n} [P_{j} - (2j-1)/2n]^{2}$$
 (44)

Example 5. Table V shows the calculations involved in finding the value of the modified C-VM test statistic. The  $P_j$  values are as computed in example 2.

## Chapter Summary

Several applications for the Pareto distribution have been found in economics and operations research. It has played a major role in investigating the distributions of city population size, natural resources, stock price fluctuations, and oil field locations. Other studies show the Pareto can be used to model phenomena which may apply to Air Force interests, such as time—to—failure of equipment components, maintenance service times, nuclear fallout dispersion, and error clusters in communications circuits.

There are three basic forms of the Pareto distribution, each of which is a special case of the three-parameter form. The greater generality of the three-parameter form allows the Pareto distribution to be more useful in practical application. Various methods have been explored for estimation of Pareto parameters; but the best linear unbiased estimator (BLUE) is the only estimator known to possess the required invariance property for the three-parameter form.

For shape parameter c = .5, 1, or 2, the BLUEs are computed from equations (34) and (35). When c = 1.5, the BLUEs are given by equations (37) to (39). For c = 2.5, 3, 3.5, or 4, the BLUEs are computed from equations (17), (18), (21), (22), and (29). The BLUEs are used to compute the hypothesized distribution function from equation (40). The modified K-S, A-D, and C-VM test statistics can then be found using the methods presented in the next chapter.

#### IV. METHODOLOGY

#### Chapter Overview

This chapter describes the basic principles and specific procedures used to satisfy the research objectives of this thesis. Foremost is the Monte Carlo method used to generate the critical value tables of the modified K-S, A-D, and C-VM goodness-of-fit tests for the three-parameter Pareto distribution when only the shape parameter is specified.

#### Basic Principles

This section deals with some of the basic principles used to generate critical values. It begins with an overview of the Monte Carlo method in general. Next is discussed the inverse transform technique used to generate random Pareto deviates. Then the selection of critical values is discussed. Finally, the use of plotting positions to determine percentiles is explained.

The Monte Carlo Method. Mathematics can be divided into theoretical and experimental categories. The primary distinction is that "theoreticians deduce conclusions from postulates, whereas experimentalists infer conclusions from observations" (21:1). The Monte Carlo method is a branch of experimental mathematics involving experiments using random

numbers. It has been used extensively in statistical analysis, operational research, nuclear physics, and several other fields where there are problems not easily solved by theoretical mathematics alone (21:2).

An important feature of the Monte Carlo method is its usual reliance on computers to simulate random processes (10:2). Also known as the method of statistical trials, it is basically a system of techniques which allows the modeling of random processes conveniently by digital computer. Before the advent of the computer, a study of a random process was considered to be complete when it was reduced to an analytical description. The computer has now made it convenient in many cases to solve an analytical problem by reducing it to a random process and then simulating that process (10:vii). Thus a basic principle of the method involves simulating statistical experiments through computational techniques. and then analysing numerical characteristics observed from these experiments (10:ix). For this reason, the Monte Carlo method can be defined as "the construction of an artificial random process possessing all the necessary properties, but which is in principle realizable by means of ordinary computational apparatus" (10:2).

The Monte Carlo method is typically used to solve problems of two basic types. A deterministic problem has no direct association with random processes. In this case the Monte Carlo method is often used when the problem can be

formulated in theoretical language but cannot be solved by theoretical means. Usually the approach is to recognize the underlying problem structure as resembling some apparently unrelated random process, and then solve the deterministic problem numerically by an appropriate Monte Carlo simulation.

In the case of a probabilistic problem, the Monte Carlo method is directly concerned with the behavior and outcome of random processes. The approach is to observe random variates, chosen so that they directly simulate the physical random processes of the original problem. The desired solution is then inferred from the behavior of the random numbers (21:2-4). The latter Monte Carlo approach was used in this thesis to generate the critical value tables for the goodness-of-fit tests.

The main weakness in the Monte Carlo method is that the answers it produces are to some degree uncertain since they are inferred from raw observational data consisting of random numbers. This weakness must be accounted for because:

Whenever one is inferring general laws on the basis of particular observations associated with them, the conclusions are uncertain inasmuch as the particular observations are only a more or less representative sample from the totality of all observations which might have been made. Good experimentation tries to ensure that the sample shall be more rather than less representative . . . [Monte Carlo answers] can nevertheless serve a useful purpose if we can manage to make the uncertainty fairly negligible, that is to say to make it unlikely that the answers are wrong by very much [21:4-5].

Thus there is usually no cause for concern if the uncertainty is negligible for practical purposes.

One way of reducing uncertainty is to base the Monte Carlo analysis on a larger number of observations. However, economic and time constraints must be considered. "Broadly speaking, there is a square law relationship between the error in an answer and the requisite number of observations; to reduce it tenfold calls for a hundredfold increase in the observations, and so on" (21:5). Therefore, to avoid using an inordinate amount of computer time, and to conserve financial resources, this thesis follows the common practice (9:43:49:52:54) of using 5000 repetitions rather than, say, 10000 in performing the Monte Carlo analysis.

The Inverse Transform Technique. To apply the Monte Carlo method to the problem at hand requires random samples from the Pareto distribution. The most practical way to obtain such samples is to use a computer program to produce a group of n numbers that seem to come from a Pareto population. In terminology adapted from Conover (13:323-324,360), these n numbers are called "random Pareto deviates" because they are deliberately generated to resemble observations on independent Pareto random variables. Previous AFIT theses (9:43:49; etc.) involved distributions for which computer programs to generate random samples were already available from the International Mathematical Statistics Library

(IMSL). IMSL does not contain a similar subroutine for the Pareto distribution; therefore, a computer program needed to be written to generate random Pareto deviates.

One common method of using a computer to generate random samples from a given distribution is to first generate a uniform random sample on (0,1) and then transform it into a new sample having the desired distribution. This method, called the inverse transform technique, uses the fact that the random variable R = F(X) is uniformly distributed on (0,1), where X is a random variate (5:293-298). Thus, every variate is related to the uniform variate on (0,1) through its own inverse distribution function (26:22). Therefore, a set of uniformly distributed random numbers is required to generate a random sample from the Pareto distribution.

Conveniently, most random number generators are designed to generate random numbers which are uniformly distributed on the interval (0,1) (5:293). Hence, the inverse transform technique can be directly applied to a set of these random numbers to generate random Pareto deviates. However, the technique requires that for each random number r, the equation r = F(x) must be solved for the corresponding value of  $x = F^{-1}(r)$ . Therefore the technique is practical only when the CDF F(x) has an inverse which can be computed explicitly (5:294). Fortunately, the inverse transformation for the Pareto distribution can easily be expressed in closed form.

The inverse transform technique can be accomplished by the following four-step procedure (5:294-295):

Step 1. Compute the cumulative distribution function (CDF) of the desired random variable X. In this case, the CDF is the three-parameter Pareto CDF, given by equation (15) and repeated here for convenience:

$$F(x) = 1 - [1 + (x-a)/b]^{-c}$$
 for  $x \ge a$ ;  $b,c > 0$ 

Step 2. Set F(X) = R on the range of X, where X represents a random Pareto variable. This then becomes:

$$1 - [1 + (X-a)/b]^{-C} = R \text{ for } x \ge a$$
 (45)

Since X is a random variable (with the Pareto distribution in this case), then R is also a random variable. In fact, R has a uniform distribution over the interval (0,1) (5:295).

Step 3. Solve F(X) in terms of R to find  $X = F^{-1}(R)$ . In this case the inverse is found by solving equation (45):

$$1 - [1 + (X-a)/b]^{-C} = R$$

$$[1 + (X-a)/b]^{-C} = 1 - R$$

$$[b/b + (X-a)/b]^{-C} = 1 - R$$

$$(b + X - a)/b = (1 - R)^{-1/C}$$

$$b + X - a = b(1 - R)^{-1/C}$$
Therefore 
$$X = (a - b) + b(1 - R)^{-1/C} = F^{-1}(R)$$
 (46)

Equation (46) is called a "random variate generator" (5:295) for the Pareto distribution. As explained in the discussion following equation (40), a specific, fixed pair of location and scale values can be used to generate the required deviates without loss of generality. For this thesis, the Pareto deviates were generated using location and scale parameters of 1. Substituting a=b=1 into equation (46) gives:

$$X = a - b + b(1 - R)^{-1/c}$$

$$= 1 - 1 + 1(1 - R)^{-1/c}$$

$$= (1 - R)^{-1/c}$$
(47)

Since R is uniformly distributed from 0 to 1, then so is 1-R; thus R can replace 1-R in equation (47) to yield the particular random variate generator used to produce the random Pareto variates for this thesis:

$$X = R^{-1/c} = (1/R)^{1/c}$$
 (48)

Step 4. Generate n uniform random numbers  $R_1,R_2,\cdots,R_n$  and compute the n random Pareto deviates from equation (48). The random numbers used for this thesis were generated on the AFIT VAX/VMS computer system using the IMSL subroutine GGUBS. Like most random number generators (5:293), GGUBS is designed to generate random numbers which

are uniformly distributed on the interval (0,1). Therefore, the inverse transform technique was applied to these random numbers to generate random Pareto deviates.

In step 3 of the inverse transform procedure, the choice of the location and scale values is arbitrary, and 1 was used here for convenience. It should be noted, however, that the deviates can be easily transformed into deviates from a different Pareto distribution (i.e., one having the same shape c but different location a' or scale b'). The transformation stems from the fact that all variates having the same shape can be expressed in terms of the variate having location 0 and scale 1, as follows (26:21-22):

$$X_{a,b} = b X_{0,1} + a$$
 (49)

where  $X_{a,b}$  denotes a Pareto variate with location a and scale b and  $X_{0,1}$  is a Pareto variate with location 0 and scale 1. The transformation to the different variate is then found by expressing the given variate in terms of the 0,1 variate, since:

$$X_{a,b} = b X_{O,1} + a$$
 implies  $X_{O,1} = (X_{a,b} - a)/b$ 

Thus 
$$X_{a',b'} = b' X_{0,1} + a' = b'[(X_{a,b} - a)/b] + a'$$
 (50)

Therefore, given a variate having a specific pair of

values for location and scale, equation (50) can be used to transform the variate to one having a different pair of location and scale parameters. For example, the transformation from a variate having location and scale a=b=1 to one having location a'=2 and scale b'=3 is given by:

$$x_{2,3} = 3x_{0,1} + 2 = 3E(x_{1,1} - 1)/1] + 2 = 3x_{1,1} - 1$$

The random Pareto deviates generated by the inverse transform technique were used ultimately to compute values of the modified K-S, A-D, and C-VM test statistics. However, these test statistics can only be useful if their distribution functions are at least partially known (13:31). Thus, many test statistics were computed to determine the empirical distribution. Critical values were then identified using a plotting positions technique. Before examining the plotting positions technique, it may be helpful to understand how critical values are chosen.

Identifying Critical Values. The use of random deviates to generate critical value tables is based on the concept of hypothesis testing mentioned in Chapter II. Each group of n Pareto deviates represents a simulated sample from a parameter-specified Pareto distribution. This makes the null hypothesis " $H_0$ : H(x) = the Pareto CDF" true for each sample of n random Pareto deviates. For each of the three

tests (K-S, A-D, and C-VM), equations (41) - (44) were used to compute 5000 independent values of the test statistic under the condition that  $H_0$  is true (13:361). These 5000 values were then arranged in ascending order to form sets of 5000 order statistics. To determine critical values from these 5000 statistics (15000 total for all three tests), it is necessary to identify somehow the "critical region", i.e., the set of all values of the test statistic that would result in the erroneous decision to reject the true null hypothesis (13:78). Once the critical region is identified, then the critical values can be selected according to a desired "level of significance", or  $\alpha$ , which is the maximum probability of rejecting a true null hypothesis. Since the use of random Pareto deviates to compute the test statistics ensures that  $H_0$  is true,  $\alpha$  can be found by determining the probability that the test statistic will assume a value that falls within the critical region (13:78).

Since  $H_0$  is true and  $\alpha$  is the maximum probability of rejecting  $H_0$ , then the minimum probability of correctly accepting  $H_0$  is 1- $\alpha$ . This value of 1- $\alpha$  represents a certain percentile of the 5000 ordered test statistic values. For example, the 99th percentile is some number that the test statistic will exceed with probability .01 or less and will be less than with probability .99 or less (13:29). It is this percentile relationship that is used to select critical values from the 5000 test statistics.

One possible method of using the percentiles to determine critical values is to simply select the test statistic value corresponding to the desired percentile level and make that the critical value. For example, under this method, out of a set of 5000 ordered test statistic values, the critical value for the 90th percentile would simply be the 4500th value (52:6). This method has some disadvantages, however, especially when the test statistics, which represent a discrete distribution, are used to determine critical values for a continuous distribution. More recently, the plotting position technique has become popular as a more accurate method of selecting critical values for continuous distributions (43:7).

The Plotting Positions Technique. The plotting positions technique is one popular method of determining percentiles of the distribution underlying a se of n ordered sample values (24:1619; 25:317). The technique involves using a large number of discrete values of the ordered test statistics and locating them on a continuous spectrum by representing the spaces between them as piecewise linear functions. This makes it possible to linearly interpolate the desired percentiles between discrete values of the test statistics, thus obtaining more accurate critical values (43:7; 52:6).

Each ordered value may be assigned a plotting position

which is its cumulative probability, thus allowing each order statistic to be mapped onto a probability scale from 0 to 1. As seen from equation (2), the distribution function of these n observations is a step function which jumps from (i-1)/n to i/n at the ith order statistic of the sample. However, if the plotting position i/n is used, the largest value cannot be plotted, while if (i-1)/n is used, the smallest value cannot be plotted (24:1615). Therefore, numerous alternative plotting conventions have been proposed, most of which have been summarized by Harter (24), who presents various arguments for and against each. Harter also conducted a Monte Carlo analysis of plotting positions for several distributions and concluded that ". . . the optimum choice of plotting positions depends not only on the purpose of the investigation, but also (definitely) on the distribution of the variable under consideration" (25:342).

While Harter made no specific recommendation for the Pareto, he did observe that, "As samples increase above a sample size of 20, the differences among the positions determined by any method of estimation decrease to the point where they are practically unimportant" (24:1621). He also noted that "in practice, plotting positions differ little compared with the randomness of the data" (24:1622). Since this thesis employed 5000 independent values of each test statistic, well in excess of the 20 cited by Harter, use of a single plotting convention seems justified.

The plotting convention selected for this thesis is the median rank, which is closely approximated by the plotting position (24:1617):

$$Y_i = (i-0.3)/(n+0.4)$$
 (51)

where i = 1,\*\*\*,n and for this thesis, n=5000. Thus each  $Y_i$  value lies in the interval (0,1). The median ranks position yields median unbiased estimates of  $x_i$  for a specified  $F(x_i)$  and of  $F(x_i)$  for a specified  $x_i$  (24:1625). Also, in highly skewed distributions, the median ranks position tends to be more accurate than other conventions (31:300). Another advantage is that values of the median ranks have been tabulated for sample sizes of 1 to 50, i.e., n = 1(1)50 (31:486-489).

A detailed illustration showing how to use plotting positions to determine critical values was presented by Ream (43:11-23), and will only be summarized here. In graphical terms, the technique effectively plots the 5000 ordered test statistic values  $X_{(1)}, X_{(2)}, \cdots, X_{(5000)}$  along the abscissa (horizontal) axis and the 5000 plotting position values  $Y_1, Y_2, \dots, Y_{5000}$  computed from equation (51) along the ordinate vertical) axis. These values are assigned to positions 2 to 5001 on their respective axes. On the vertical axis, the interval [0,1] is completed by entering the endpoints  $Y_0 = 0$  at the 1st position and  $Y_{5001} = 1$  at the

5002nd position. The corresponding endpoints on the horizontal axis are found by linear extrapolation. Thus, in using the computer to program this technique, the arrays corresponding to the horizontal and vertical axes are each composed of 5002 entries, i.e., the original 5000 values and two extrapolated endpoints.

To map the collection of 5000 discrete values onto a fully continuous line between 0 and 1 requires extrapolation of the endpoints of the plotting axes. The first point on the horizontal axis,  $X_{(0)}$ , is computed by linearly extrapolating from the second and third points (i.e., the first and second order statistics), subject to a non-negativity restriction. Extrapolation is performed by using the standard linear slope-intercept formula Y = mX + b to compute the endpoints  $X_{(0)}$  and  $X_{(5001)}$ . To find the first endpoint on the horizontal axis, the slope is calculated by:

$$m = \frac{Y_2 - Y_1}{X_{(2)} - X_{(1)}}$$
 (52)

and the intercept is:

$$b = Y_1 - m X_{(1)}$$
 (53)

Then the lower endpoint  $X_{(0)}$  is found by:

$$X_{(O)} = (Y_O - b)/m = (O-b)/m = -b/m$$

The nonnegativity restriction means that whenever - b/m < 0, then  $X_{\{0\}}$  is simply set to 0. Thus:

$$X_{(O)} = \max (O, -b/m) \tag{54}$$

The higher endpoint  $X_{(5001)}$  is found in the same way as the lower endpoint. The slope is

$$m = \frac{{}^{Y}5000 - {}^{Y}4999}{{}^{X}(5000) - {}^{X}(4999)}$$
 (55)

and the intercept is:

$$b = Y_{4999} - m X_{(4999)}$$
 (56)

Then the second endpoint  $X_{(5001)}$  is extrapolated by:

$$X_{(5001)} = (Y_{5001} - b)/m = (1-b)/m$$
 (57)

Once the endpoints are added to the abscissa and ordinate axes, the 5002 discrete points on the graph are "connected" by straight lines, thus producing a completely continuous, piecewise linear function. The range of this continuous function is the interval [0,1] and contains the 5000 median rank values as well as the endpoints 0 and 1.

Its domain contains the set of 5000 test statistic values and their 2 extrapolated endpoints.

As shown in Figure 5, the desired critical value for a given percentile is found by linearly interpolating between two of the 5002 points used to construct the now continuous graph. For example, to find the 95th percentile ( $\alpha$  = .05), the largest plotting position  $Y_j$  is found such that  $Y_j \leq$  .95; thus  $Y_{j+1}$  is the first position greater than .95. Then the critical value corresponding to the 95th percentile is found by linearly interpolating between the points ( $X_{(j)}$ ,  $Y_j$ ) and ( $X_{(j+1)}$ ,  $Y_{j+1}$ ) using the formulas:

$$m = \frac{Y_{j+1} - Y_{j}}{X_{(j+1)} - X_{(j)}}$$
 (58)

$$b = Y_{j} - m X_{(j)}$$
 (59)

$$C_{D} = (p - b)/m \tag{60}$$

where  $C_p$  is the critical value for the the 100pth percentile. For this thesis, critical values were calculated for p = .80, .85, .90, .95, and .99, corresponding to the levels of significance  $\alpha$  = .20, .15, .10, .05, and .01.

The specific plotting position procedure performed for this thesis is described in step 7 of the next section.





Fig 5. Using Test Statistics  $X_{(j)}$  and Plotting Positions  $Y_j$  to Find Critical Value  $C_p$  for the 100(p)th Percentile (p = .99, .95, .90, .85, .80).

## Specific Procedures

By applying the basic principles and techniques described in the previous section, the K-S, A-D, and C-VM tests were modified to produce new goodness-of-fit tests for the Pareto distribution.

The research effort was performed in three stages, each corresponding to one of the three research objectives listed in Chapter I. The first stage consisted of a nine-step Monte Carlo simulation procedure to produce critical value tables for the modified K-S, A-D, and C-VM tests. The second stage of the research compared the powers of the three modified tests using eight alternative distributions. Finally, a regression analysis was performed to determine the functional relationship between the critical values and the shape parameters. Computer programs were written to accomplish the first two stages. The third stage was performed manually by using a hand calculator to compute linear relationships by the method of least squares.

Stage 1: Generating Critical Value Tables. During the first stage, critical value tables were generated using Monte Carlo simulation. A FORTRAN computer program was written for this purpose and is contained in Appendix A. The accompanying flow chart illustrates the logic flow of the program. The following nine steps outline the procedure used:

Step 1 - Generate the Data. Random deviates for a given sample size n were generated from a specified Pareto distribution by using the IMSL routine GGUBS to generate n random numbers, and then applying the inverse transform technique (equation 48).

Step 2 - Order the Data. Next, the n random deviates  $x_1, x_2, \cdots, x_n$  were converted to order statistics  $x_{(1)}, x_{(2)}, \cdots, x_{(n)}$  by arranging them in ascending order using the IMSL subroutine VSRTA.

Step 3 - Estimate the Parameters. The ordered Pareto deviates were then used to find the best linear unbiased estimates of the scale and location parameters as explained in the "Summary of BLUEs" section of Chapter III.

Step 4 ~ Compute the Hypothesized CDF. The estimated parameters found in step 3 were used with the n ordered Pareto deviates from step 2 to calculate the hypothesized cumulative distribution function (CDF)  $P_i$  for  $i=1,2,\dots,n$  (equation 40 in chapter III).

Step 5 - Calculate the Test Statistics. Based on the hypothesized CDF and the BLUEs, the modified K-S, A-D, and C-VM statistics were next calculated using equations (42), (43), and (44).

Step 6 - Generate 5000 Statistics. Each of these five steps were repeated 5000 times to generate 5000 independent K-S, A-D, and C-VM statistical values  $X_1, X_2, \cdots, X_{5000}$ .

Step 7 - Find the Critical Values. For each of the three tests, the 5000 statistics were ordered as in step 2. Using the median ranks plotting position technique (equation 51), the 80th, 85th, 90th, 95th, and 99th percentiles of the distributions of each test statistic were calculated by linear interpolation. These percentiles correspond, respectively, to the .20, .15, .10, .05, and .01 levels of significance and served as the critical values for the modified K-S, A-D, and C-VM goodness-of-fit tests. The specific step-by-step process was to:

- a. Use the IMSL subroutine VSRTA to order the 5000 test statistics, thus forming the 5000 order statistics  $X_{(1)}, X_{(2)}, \dots, X_{(5000)}$ .
- b. Use equation (51) to compute the 5000 plotting positions  $Y_1, Y_2, \cdots, Y_{5000}$ . Also, set  $Y_0 = 0$  and  $Y_{5001} = 1$ .
- c. Use equations (52), (53), and (54) to find  $\chi_{(0)}$ . Similarly, use equations (55), (56), and (57) to find  $\chi_{(5001)}$ .
- d. For a given p, find the largest  $Y_j$  such that  $Y_j \le p$ ; then use equations (58), (59), and (60) to find the critical value  $C_p$  representing the 100(p)th percentile. Repeat this step for p = .80, .85, .90, .95, and .99.

Step 8 - Repeat for Sample Sizes. To evaluate the effect of sample size on the critical values, steps 1 through 7 were repeated for each sample size n. This thesis

followed the common practice (9:15) of using sample sizes of n equal to 5, 10, 15, 20, 25, and 30.

Step 9 - Repeat for Shape Parameters. Steps 1 through 8 were repeated for specified shape parameters 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, and 4.0. The critical values were then arranged into tabular form and appear in Chapter V, Tables VI - VIII.

Stage 2: Comparing Power. The second stage of the research compared the powers of the modified K-S, A-D, and C-VM tests against the Chi-square to determine which test can best detect a false Pareto distribution hypothesis. As explained in Chapter II, the power of a statistical test is the probability of correctly rejecting a false null hypothesis. The null hypothesis that a set of sample deviates follows a Pareto distribution with a specified shape parameter was tested against the alternative hypothesis that the sample deviates follow some other distribution:

Ho: Sample deviates follow a Pareto CDF with shape c

H<sub>1</sub>: They follow some other distribution

For this thesis, the power study was conducted for both c=1 and c=3.5 in the null hypothesis.

The Chi-square portion of the study was performed as described by Banks and Carson (5:352-356) using five

equiprobable (ie, p = .20) class intervals (or cells) with expected frequencies of 3 observations per cell for n = 15 and 5 per cell for n = 25. The endpoints of each cell were computed from the Pareto CDF (equation 15) as follows:

$$F(e_i) = 1 - [1 + (e_i - a)/b]^{-c}$$
 (61)

where  $e_1$ ,  $e_2$ ,  $e_3$ ,  $e_4$  represent the right endpoints (maximum value) of the first four cells. Since  $F(e_i)$  is the cumulative area from 0 to  $e_i$ , then  $F(e_i) = ip = .2i$ , so equation (61) leads to:

After substituting the BLUEs for location and scale into this last expression, the right endpoints were found by:

$$e_i = {\stackrel{\wedge}{a}} - {\stackrel{\wedge}{b}} + {\stackrel{\wedge}{b}}(1 - .2i)^{-1/c}$$
 (62)

Assuming a true Pareto null hypothesis, the four endpoints  $e_1, \ldots, e_4$  essentially divide the real line into five equiprobable class intervals. Given a random sample, the

number of observations occuring within each cell were counted. The Chi-square test statistic was then computed by (5:350):

$$\chi^2 = \sum_{i=1}^{5} [(0_i - E)^2]/E$$
 (63)

where  $0_i$  is the number of observations occurring in cell i and E=n/5 is the expected frequency in each interval. The distribution of this test statistic approximately follows a chi-square CDF with s-1-k degrees of freedom (13:194) where s is the number of cells (i.e., s=5) and k is the number of parameters estimated from the sample (i.e., k=2).

Using the IMSL subroutines GGWIB, GGAMR, GGBTR, GGEXN, and GGNML, random deviates from different distributions of sample size n were generated. The alternate distributions used were, respectively, the Weibull at shape parameter 3.5, the Gamma at shape parameter 2.0, the Beta at parameters P = 2 and Q = 3, the exponential with mean = 2, and the normal distribution. Also tested were three sets of Pareto deviates generated by a FORTRAN subroutine. The first Pareto deviate set was generated using Q = 1.0; the second set used Q = 2, Q = 3, and Q = 3.5; the third used Q = 10, Q = 5, and Q = 2.0. Five thousand random samples of size n were generated for each of the alternate distributions.

The K-S, A-D, C-VM, and Chi-square test statistics were then calculated under the null hypothesis that the random

deviates follow the Pareto distribution with specified shape c = 1.0 or 3.5. To determine whether to reject the null hypothesis, the calculated K-S, A-D, and C-VM statistics were compared to the corresponding critical value obtained in stage one. The computed Chi-square test statistic was compared against two sets of critical values. The first set was taken from a standard table of Chi-square critical values (13:432) based on 2 degrees of freedom. The second set of critical values was generated by using equations (62) and (63) and applying the 9-step, 5000-repetition Monte Carlo procedure described in the previous section.

This procedure of comparing test statistics against critical values was repeated 5000 times for each distribution and test. The number of times each statistic exceeded the respective critical value was counted for each sample size. This total, representing the number of rejections of the null hypothesis, was divided by the total number of tests performed (5000), to yield an hypothesis rejection quotient. For a random sample generated from the hypothesized Pareto distribution, the quotient represents the rate of erroneous rejection of a true null hypothesis; thus, it is expected to be approximately the level of significance  $\alpha$ , which is the probability of committing a Type I error (13:78). In those cases involving random samples generated from an alternative distribution, the quotient represents the power of the test, since it approximates the probability of correctly rejecting

a false null hypothesis (13:79).

A FORTRAN program, written to compute the hypothesis rejection rates and accomplish the power study, is contained in Appendix B. Figure 7 in Appendix B shows how the program used the following 9-step process:

Step 1. Use IMSL or inverse transform to generate n random deviates from a selected distribution.

Step 2. Assume the null hypothesis that this set of n deviates follows the Pareto of given shape c=1.0. Then perform steps 2-5 of the previous section to compute the values of the Chi-square (eqn 63) and modified K-S, A-D, and C-VM test statistics (eqns 42-44).

Step 3. For a given level of significance  $\alpha$ , compare the test statistic value against the appropriate critical value found in the previous section. If the test statistic value equals or exceeds the critical value,  $H_0$  is rejected.

Step 4. Repeat steps 1-3 5000 times, each time using a different seed to generate the deviates.

Step 5. Count the number of times  ${\rm H}_{\rm O}$  was rejected and divide by 5000 to obtain the power.

Step 6. Repeat steps 1-5 for each alternative distribution considered.

Step 7. Repeat steps 1-6 for sample sizes n=5, 15, and 25.

Step 8. Repeat steps 1-7 for  $\alpha$  = .05 and .01. Step 9. Repeat steps 1-8 using hypothesized Pareto shape c = 3.5. The power values were then arranged into tabular form and appear in Chapter V. Tables IX and X.

Stage 3: Determining Functional Relationship. The third and final stage of the research was to determine what (if any) functional relationship exists between the shape parameter and the critical values generated. This relationship can then be used to interpolate critical values corresponding to parameters not found in the generated tables.

To accomplish this stage, shape parameters and critical values were examined for linear relationships. In an attempt to "fit" the data to a line, a linear regression was performed using the method of least squares (13:263-271), which minimizes the sum of the squares of the deviations of the actual data points from the straight line of "best" fit (5:359-363). Where applicable, the correlation coefficient (13:250-251) was also found.

Linear regression is a canability available on many hand calculators currently on the market, so it was unnecessary to write a separate computer program to perform this function. For each level of significance and sample size, critical values from Tables VI - VIII were paired against a corresponding Pareto shape parameter. The

regression and correlation coefficients were then obtained manually by using the linear regression keys on a Texas Instruments TI-55-II calculator. The results are contained in Chapter V, Tables XI and XII.

## Chapter Summary

The research for this thesis was performed by applying the Monte Carlo method using 5000 repetitions to generate critical value tables and a power study.

In stage 1, random Pareto deviates were generated by using the inverse transform technique, and 5000 test statistics were computed for each test. The median ranks plotting positions technique was then used to select critical values from the 5000 test statistics. In stage 2, the powers of the modified K-S, A-D, and C-VM tests were compared against the power of the Chi-square test. The calculations were performed by computer programs written to accomplish a 9-step Monte Carlo procedure. Stage 3 involved manual calculations based on the method of least squares to find linear relationships between shape parameters and critical values.

The results of this research are presented in the next chapter.

#### V. RESULTS AND APPLICATION

## Chapter Overview

This chapter shows the results obtained from carrying out the methodology described in Chapter IV. In response to the three research objectives listed in Chapter I, tables of critical values for the modified K-S, A-D, and C-VM tests are presented. Also included are tables comparing powers of the K-S, A-D, and C-VM statistics against the Chi-square. Tables of regression coefficients are presented as well. The use of the tables is explained, and an example is described.

## Critical Value Tables

Table VI contains critical values for the modified Kolmogorov-Smirnov Test. The modified Anderson-Darling critical values appear in Table VII. In Table VIII, the modified Cramer-von Mises critical values are presented. Critical values are presented for each level of significance  $\alpha$  = .20, .15, .10, .05, and .01; sample sizes n = 5, 10, 15, 20, 25, and 30; and Pareto shape parameters .5, 1, 1.5, 2, 2.5, 3, 3.5, and 4. It is important to note that for shape c = 0.5, the presented critical values correspond to sample size n = 6 instead of n = 5. As explained in Chapter III, this exception is necessary since the BLUEs could not be computed for the case where c = .5, n = 5.

Table VI

CRITICAL VALUES FOR THE MODIFIED KOLMOGOROV-SMIRNOV TEST

|              | ĺ     | F===================================== |       |         |          |         |          |         |        |  |
|--------------|-------|----------------------------------------|-------|---------|----------|---------|----------|---------|--------|--|
|              |       |                                        |       | Pare    | to Shape | Paramet | er c     | •       |        |  |
| ~====        |       |                                        |       |         |          |         |          |         |        |  |
| α            | n     | 0.5*                                   | 1.0   | 1.5     | 2.0      | 2.5     | 3.0      | 3.5     | 4.0    |  |
|              | 5*    | .400                                   | .318  | . 289   | . 286    | .283    | . 296    | .293    | . 297  |  |
|              | 10    | . 255                                  | . 222 | .217    | .219     | . 222   | .225     | .228    | . 231  |  |
| .20          | 15    | .204                                   | .184  | .184    | .185     | . 187   | .191     | .192    | .197   |  |
| •••          | 20    | .175                                   | .150  | .150    | .163     | .167    | .168     | .170    | .171   |  |
| 1            | 25    | .155                                   | . 144 | . 146   | .148     | .149    | .153     | . 154   | . 155  |  |
|              | 30    | .142                                   | .133  | .135    | .135     | .138    | .139     | .142    | .141   |  |
|              | 5*    | .426                                   | .328  | . 296   | . 294    | .293    | .298     | .306    | .309   |  |
|              | 10    | .268                                   | .230  | . 225   | .228     | .232    | .236     | .239    | .242   |  |
| .15          | 15    | .214                                   | . 191 | . 191   | .193     | .196    | .199     | .203    | .207   |  |
| 1.13         | 20    | .184                                   | .167  | .158    | .172     | .175    | .176     | .178    | .179   |  |
| l            | 25    | .163                                   | .150  | . 152   | 155      | . 157   | .160     | . 161   | .163   |  |
|              | 30    | .149                                   | .138  | .142    | .142     | . 145   | .146     | .150    | . 149  |  |
|              | 5*    | .467                                   | .341  | .305    | .306     | .307    | .314     | .323    | .327   |  |
| ĺ            | 10    | .284                                   | .241  | .236    | .239     | .245    | .251     | .253    | .258   |  |
|              | 15    | .227                                   | .200  | .201    | .204     | .208    | .212     | .216    | .219   |  |
| .10          | 20    | 196                                    | .175  | .176    | .182     | .185    | .187     | .198    | 191    |  |
| 1            | 25    | .173                                   | .158  | .160    | 164      | .156    | .171     | .170    | .173   |  |
|              | 30    | .159                                   | . 145 | . 149   | . 151    | .153    | .155     | .151    | . 159  |  |
|              | 5*    | .525                                   | .368  | .321    | .323     | .328    | .335     | .349    | .353   |  |
| 1            | 10    | .308                                   | . 257 | . 254   | .258     | .255    | .272     | .277    | .282   |  |
| .05          | 15    | .248                                   | .216  | .217    | .223     | .227    | .231     | .238    | .239   |  |
| .03          | 20    | .213                                   | .188  | .191    | 197      | .201    | .206     | .205    | .209   |  |
| l            | 25    | .189                                   | .170  | .174    | .177     | .180    | . 196    | 189     | .192   |  |
|              | 20    | .173                                   | .156  | .162    | .165     | .167    | .169     | .175    | .174   |  |
| <del>-</del> | 5*    | .609                                   | . 407 | .378    | .363     | .361    | <br>963. | .382    | .391   |  |
| 1            | 10    | .348                                   | 297   | .290    | .300     | .308    | .314     | .322    | .325   |  |
| .01          | 15    | .289                                   | .247  | .251    | .258     | .245    | .256     | .274    | . 282  |  |
| 1.01         | 20    | .247                                   | .216  | . 221   | .233     | .233    | .237     | .238    | . 249  |  |
| 1            | 25    | .222                                   | .201  | .201    | .208     | .210    | .220     | .218    | . 225  |  |
| Į.           | 30    | .204                                   | .180  | .187    | . 189    | .196    | .199     | .207    | .207   |  |
|              | ===== | P======                                |       | ======= | 222222   | ======= | ======   | ======= | ====== |  |

\*NOTE: For shape c=0.5, critical values correspond to sample size n=6 instead of n=5.

Table VII

CRITICAL VALUES FOR THE MODIFIED ANDERSON-DARLING TEST

|       |       | Pareto Shape Parameter c |         |               |       |       |       |         |        |
|-------|-------|--------------------------|---------|---------------|-------|-------|-------|---------|--------|
| α     | n     | 0.5 <sup>‡</sup>         | 1.0     | 1.5           | 2.0   | 2.5   | 3.0   | 3.5     | 4.0    |
|       | 5*    | 1.344                    | .736    | . 568         | .546  | .503  | . 494 | . 499   | . 497  |
| ļ     | 10    | .780                     | .587    | .544          | .535  | .541  | . 545 | .540    | .551   |
| .20   | 15    | .706                     | .589    | .562          | .559  | .562  | .568  | .581    | .588   |
|       | 20    | . 684                    | .582    | .571          | .586  | .591  | .586  | . 599   | .604   |
| (     | 25    | . 664                    | .588    | .591          | .585  | .600  | .608  | . 624   | .621   |
|       | 30    | .674                     | .598    | .607          | . 600 | . 506 | . 621 | . 638   | .625   |
| ]     | 5*    | 1.668                    | .935    | . 528         | . 602 | .545  | .532  | .538    | .537   |
| l     | 10    | .875                     | . 646   | . 594         | .589  | . 588 | . 601 | .597    | .610   |
| .15   | 15    | .789                     | . 645   | .621          | .612  | . 525 | .630  | . 650   | . 559  |
|       | 20    | .764                     | .639    | . 629         | . 646 | . 656 | . 559 | . 561   | . 673  |
|       | 25    | .750                     | . 653   | . 555         | . 452 | .660  | .672  | . 592   | . 594  |
| L     | 30    | .756                     | .665    | .679          | . 665 | . 678 | . 488 | .708    | . 690  |
|       | 5*    | 2.100                    | .966    | .709          | .671  | . 506 | .585  | .590    | .599   |
|       | 10    | 1.031                    | .726    | . 575         | . 655 | . 554 | . 578 | . 677   | . 691  |
| .10   | 15    | .917                     | .727    | . 70 <b>5</b> | .704  | .705  | .707  | .748    | . 756  |
|       | 20    | .862                     | .732    | .718          | .734  | .740  | .747  | .751    | .755   |
|       | 25    | .853                     | .748    | .742          | .766  | .750  | .769  | .788    | .801   |
|       | 30    | .862                     | .756    | .777          | .768  | .774  | .776  | .822    | .791   |
|       | 5*    | 2.903                    | 1.237   | .849          | .791  | .702  | . 583 | . 684   | . 687  |
| {     | 10    | 1.311                    | .886    | .808          | .783  | .788  | .805  | .818    | .835   |
| .05   | 15    | 1.154                    | .891    | .849          | .853  | .836  | .852  | .899    | .927   |
| 1.00  | 20    | 1.053                    | .874    | .866          | . 398 | .902  | .917  | .917    | . 925  |
| }     | 25    | 1.055                    | .915    | .910          | .940  | . 904 | .926  | .952    | .987   |
|       | 30    | 1.070                    | .913    | .952          | .947  | .960  | .937  | . 999   | . 990  |
|       | 5*    | 4.877                    | 2.076   | 1.145         | 1.100 | .932  | .983  | .913    | .903   |
| 1     | 10    | 1.872                    | 1.303   | 1.102         | 1.113 | 1.100 | 1.147 | 1.169   | 1.200  |
| .01   | 15    | 1.705                    | 1.250   | 1.229         | 1.154 | 1.256 | 1.316 | 1.269   | 1.358  |
| •••   | 20    | 1.535                    | 1.245   | 1.255         | 1.318 | 1.326 | 1.353 | 1.330   | 1.398  |
| ļ     | 25    | 1.543                    | 1.312   | 1.286         | 1.358 | 1.253 | 1.427 | 1.450   | 1.441  |
| ļ     | 30    | 1.631                    | 1.337   | 1.361         | 1.368 | 1.401 | 1.413 | 1.500   | 1.475  |
| P==== | ===== | F======                  | ======= | **======      |       |       |       | :====== | ====== |

**WETE:** For shape c = 0.5, critical values correspond to sample size n = 6 instead of n = 5.

Table VIII

CRITICAL VALUES FOR THE MODIFIED CRAMER-VON MISES TEST

|     |        |       | Pareto Shape Parameter c |       |         |         |       |       |       |  |
|-----|--------|-------|--------------------------|-------|---------|---------|-------|-------|-------|--|
| α   | n      | 0.5   | 1.0                      | 1.5   | 2.0     | 2.5     | 3.0   | 3.5   | 4.0   |  |
|     | 5*     | .212  | .103                     | .078  | .078    | .077    | .079  | .082  | .083  |  |
|     | 10     | .121  | .083                     | .081  | .082    | .086    | .088  | .087  | .092  |  |
| .20 | 15     | .108  | .086                     | .086  | .086    | .090    | .092  | .096  | .098  |  |
|     | 20     | .104  | .085                     | . 086 | .091    | .094    | .094  | .097  | .099  |  |
| ĺ   | 25     | .101  | .086                     | .090  | .090    | .094    | .097  | . 101 | .102  |  |
|     | 30     | .100  | .086                     | .091  | .092    | .095    | .097  | .102  | .101  |  |
|     | 5*     | .251  | .112                     | .083  | .084    | .084    | .085  | .089  | .092  |  |
|     | 10     | .135  | .093                     | .090  | .091    | .095    | .099  | .099  | .102  |  |
| .15 | 15     | .120  | .094                     | .094  | .097    | .100    | .103  | .108  | .111  |  |
|     | 20     | .115  | .095                     | .096  | .102    | .105    | . 106 | .108  | .110  |  |
| 1   | 25     | .112  | .097                     | .101  | .102    | .105    | .108  | .112  | .115  |  |
|     | 30     | .112  | .096                     | .102  | .105    | .106    | .109  | .116  | .114  |  |
|     | 5*     | .304  | .123                     | .093  | .093    | .093    | .096  | .100  | .103  |  |
| ļ   | 10     | .154  | .105                     | .102  | .104    | .108    | .114  | .113  | .119  |  |
| .10 | 15     | .139  | .109                     | .109  | .114    | .116    | .120  | .125  | .130  |  |
|     | 20     | .133  | .109                     | .111  | .118    | .120    | .123  | .125  | .129  |  |
| [   | 25     | .130  | .112                     | .115  | .120    | .121    | .127  | .130  | .133  |  |
|     | 30     | .129  | .110                     | .121  | .121    | .124    | .127  | .135  | . 131 |  |
|     | 5*     | .381  | .139                     | .113  | .111    | .111    | .112  | .119  | .120  |  |
| ļ   | 10     | .184  | .127                     | . 125 | .126    | .131    | .139  | .142  | .147  |  |
| .05 | 15     | .172  | .131                     | . 134 | .140    | .142    | .144  | . 156 | . 161 |  |
|     | 20     | .163  | .133                     | . 136 | .145    | . 148   | . 155 | . 153 | . 161 |  |
| [   | 25     | .157  | .139                     | . 142 | .149    | . 148   | .157  | .162  | .168  |  |
|     | 30     | .159  | .137                     | . 151 | .150    | . 156   | . 154 | .169  | . 166 |  |
|     | 5*     | .508  | .174                     | .157  | .148    | .149    | .150  | .157  | .163  |  |
| 1   | 10     | .251  | . 191                    | . 174 | .182    | . 194   | . 199 | .202  | . 209 |  |
| .01 | 15     | . 255 | .192                     | . 193 | .198    | .207    | .222  | . 222 | .238  |  |
|     | 20     | .233  | .195                     | .201  | .212    | .220    | .225  | .226  | . 239 |  |
|     | 25     | .245  | . 199                    | .206  | .224    | .215    | .238  | .240  | .250  |  |
| }   | 30     | .247  | .202                     | .217  | .218    | .230    | .243  | . 251 | .251  |  |
|     | ====== |       |                          |       | ======= | ======= |       |       | ===== |  |

\*NOTE: For shape c = 0.5, critical values correspond to sample size n = 6 instead of n = 5.

## Power Comparison Tables

Tables IX and X display the results of the power analysis. For sample sizes n=5, 15, and 25, the tables indicate relative power of the K-S, A-D, and C-VM tests to reject a null hypothesis when the hypothesis claims that a random sample of data follows a Pareto distribution. For sample sizes n=15 and 25, the power of the Chi-square test is also included. Table IX shows power values when the null hypothesized Pareto CDF has shape parameter c=1.0. In Table X, the hypothesized shape parameter is c=3.5. Both tables examine power performance against eight different distributions, including three variations of the Pareto distribution having different sets of parameters.

The power tables are divided into two levels of significance,  $\alpha$  = .05 and .01. In Table IX, the first column corresponds to a Pareto distribution with shape c = 1.0. Thus, the values in the first column of Table IX approximate the level of significance  $\alpha$ , since they represent rejection rates of the null hypothesis when  $H_0$  is true. Similarly in Table X, the second column represents a true null hypothesis since the underlying data was generated from a Pareto distribution with shape parameter c = 3.5. Aside from these two exceptions, all other columns represent power values since they indicate rejection rates of the null hypothesis when  $H_0$  is in fact false. A note following the tables indicates parameters of the alternate distributions.

Table IX

## POWER TEST FOR THE PARETO DISTRIBUTION Ho: Pareto Distribution at Shape c = 1.0 H<sub>1</sub>: The data follow another distribution

Level of Significance = .05

|              | j              | Alternate Distributions* |       |       |       |       |       |       |       |  |  |  |
|--------------|----------------|--------------------------|-------|-------|-------|-------|-------|-------|-------|--|--|--|
| <b>222</b> 2 | =====          | MITELIATE DISCLIDATIONS. |       |       |       |       |       |       |       |  |  |  |
| п            | Test           | Par.1                    | Par.2 | Par.3 | Weibl | Gamma | Beta  | Expon | Norml |  |  |  |
| 5            | K-S            | 0.046                    | 0.061 | 0.050 | 0.288 | 0.123 | 0.227 | 0.074 | 0.311 |  |  |  |
|              | A-D            | 0.048                    | 0.014 | 0.022 | 0.007 | 0.006 | 0.008 | 0.009 | 0.007 |  |  |  |
|              | CVM            | 0.050                    | 0.063 | 0.051 | 0.283 | 0.127 | 0.224 | 0.076 | 0.307 |  |  |  |
| 15           | K-S            | 0.048                    | 0.145 | 0.107 | 0.979 | 0.657 | 0.933 | 0.290 | 0.979 |  |  |  |
|              | A-D            | 0.052                    | 0.126 | 0.083 | 0.966 | 0.644 | 0.898 | 0.266 | 0.965 |  |  |  |
|              | CVM            | 0.052                    | 0.173 | 0.121 | 0.974 | 0.697 | 0.915 | 0.329 | 0.973 |  |  |  |
|              | X <sup>2</sup> | 0.043                    | 0.118 | 0.084 | 0.860 | 0.480 | 0.738 | 0.235 | 0.878 |  |  |  |
| 25           | K-S            | 0.052                    | 0.248 | 0.138 | 1.000 | 0.927 | 1.000 | 0.503 | 1.000 |  |  |  |
|              | A-D            | 0.049                    | 0.250 | 0.128 | 1.000 | 0.937 | 0.998 | 0.528 | 1.000 |  |  |  |
|              | CVM            | 0.050                    | 0.256 | 0.143 | 0.999 | 0.926 | 0.996 | 0.504 | 1.000 |  |  |  |
|              | X <sup>2</sup> | 0.045                    | 0.178 | 0.105 | 0.999 | 0.823 | 0.996 | 0.377 | 0.999 |  |  |  |

#### Level of Significance = .01

| 5  | K-8            | 0.010 | 0.021 | 0.021 | 0.171 | 0.067 | 0.115 | 0.034 | 0.172 |
|----|----------------|-------|-------|-------|-------|-------|-------|-------|-------|
|    | A-D            | 0.009 | 0.002 | 0.004 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 |
|    | CVM            | 0.010 | 0.019 | 0.019 | 0.155 | 0.059 | 0.098 | 0.030 | 0.160 |
| 15 | K-S            | 0.015 | 0.059 | 0.035 | 0.941 | 0.448 | 0.852 | 0.150 | 0.937 |
|    | A-D            | 0.011 | 0.038 | 0.021 | 0.875 | 0.356 | 0.716 | 0.103 | 0.878 |
|    | CVM            | 0.016 | 0.062 | 0.034 | 0.906 | 0.439 | 0.777 | 0.139 | 0.910 |
|    | X <sup>2</sup> | 0.006 | 0.031 | 0.016 | 0.645 | 0.172 | 0.400 | 0.064 | 0.669 |
| 25 | K-8            | 0.010 | 0.086 | 0.039 | 0.999 | 0.774 | 0.992 | 0.250 | 0.998 |
|    | A-D            | 0.009 | 0.080 | 0.032 | 0.997 | 0.778 | 0.982 | 0.247 | 0.997 |
|    | CVM            | 0.010 | 0.100 | 0.046 | 0.997 | 0.792 | 0.982 | 0.274 | 0.998 |
|    | X2             | 0.011 | 0.061 | 0.033 | 0.964 | 0.594 | 0.884 | 0.172 | 0.971 |

## \* Key to Alternate Distributions:

Par.1 - Pareto (a=1, b=1, c=1)

Par.2 ~ Pareto (a=2, b=3, c=3.5)

Par.3 - Pareto (a=10, b=5, c=2)

Weibl - Weibull (shape = 3.5)

Gamma - Gamma (shape = 2) Beta - Beta (P=2, Q=3)

Expon - Exponential (mean = 2)

Norml - Normal distribution

Table X

# POWER TEST FOR THE PARETO DISTRIBUTION $H_0$ : Pareto Distribution at Shape c=3.5 $H_1$ : The data follow another distribution

Level of Significance = .05

|          |                | Alternate Distributions* |       |       |       |       |       |       |       |  |  |
|----------|----------------|--------------------------|-------|-------|-------|-------|-------|-------|-------|--|--|
| _======= |                |                          |       |       |       |       |       |       |       |  |  |
| n        | Test           | Par.1                    | Par.2 | Par.3 | Weibl | Gamma | Beta  | Expon | Norml |  |  |
| 5        | K-S            | 0.120                    | 0.048 | 0.051 | 0.160 | 0.065 | 0.108 | 0.051 | 0.156 |  |  |
|          | A-D            | 0.182                    | 0.054 | 0.072 | 0.153 | 0.052 | 0.098 | 0.045 | 0.153 |  |  |
|          | CVM            | 0.122                    | 0.051 | 0.050 | 0.212 | 0.074 | 0.148 | 0.055 | 0.208 |  |  |
| 15       | K-S            | 0.312                    | 0.048 | 0.072 | 0.673 | 0.211 | 0.428 | 0.060 | 0.690 |  |  |
|          | A-D            | 0.389                    | 0.046 | 0.100 | 0.813 | 0.262 | 0.605 | 0.065 | 0.823 |  |  |
|          | CVM            | 0.332                    | 0.043 | 0.080 | 0.814 | 0.278 | 0.602 | 0.076 | 0.826 |  |  |
|          | $\chi$ 2       | 0.136                    | 0.037 | 0.044 | 0.707 | 0.169 | 0.480 | 0.060 | 0.717 |  |  |
| 25       | K-8            | 0.472                    | 0.045 | 0.086 | 0.928 | 0.387 | 0.763 | 0.084 | 0.942 |  |  |
|          | A-D            | 0.559                    | 0.051 | 0.122 | 0.983 | 0.531 | 0.924 | 0.092 | 0.985 |  |  |
|          | CVM            | 0.511                    | 0.049 | 0.099 | 0.980 | 0.527 | 0.907 | 0.098 | 0.982 |  |  |
|          | X <sup>2</sup> | 0.245                    | 0.036 | 0.048 | 0.940 | 0.317 | 0.784 | 0.071 | 0.948 |  |  |

## Level of Significance = .01

| 5  | K-8            | 0.075 | 0.009 | 0.017 | 0.033 | 0.011 | 0.026 | 0.005 | 0.034 |
|----|----------------|-------|-------|-------|-------|-------|-------|-------|-------|
|    | A-D            | 0.096 | 0.012 | 0.026 | 0.014 | 0.004 | 0.012 | 0.003 | 0.011 |
|    | CVM            | 0.064 | 0.011 | 0.014 | 0.053 | 0.015 | 0.041 | 0.010 | 0.056 |
| 15 | K-8            | 0.198 | 0.011 | 0.027 | 0.379 | 0.067 | 0.177 | 0.014 | 0.412 |
|    | A-D            | 0.261 | 0.009 | 0.038 | 0.578 | 0.081 | 0.317 | 0.012 | 0.603 |
|    | CVM            | 0.224 | 0.011 | 0.031 | 0.609 | 0.101 | 0.347 | 0.017 | 0.630 |
|    | X <sup>2</sup> | 0.078 | 0.015 | 0.013 | 0.576 | 0.094 | 0.346 | 0.026 | 0.582 |
| 25 | K-8            | 0.341 | 0.010 | 0.040 | 0.794 | 0.167 | 0.479 | 0.021 | 0.807 |
|    | A-D            | 0.402 | 0.008 | 0.052 | 0.912 | 0.209 | 0.685 | 0.016 | 0.915 |
|    | CVM            | 0.377 | 0.011 | 0.046 | 0.922 | 0.246 | 0.706 | 0.023 | 0.924 |
|    | X <sup>2</sup> | 0.130 | 0.009 | 0.011 | 0.878 | 0.148 | 0.614 | 0.022 | 0.882 |

## \* Key to Alternate Distributions:

Par.1 - Pareto (a=1, b=1, c=1)
Par.2 - Pareto (a=2, b=3, c=3.5)
Par.3 - Pareto (a=10, b=5, c=2)

Par.3 - Pareto (a=10, b=5, c=2) Weibl - Weibull (shape = 3.5) Gamma - Gamma (shape = 2)
Beta - Beta (P=2, Q=3)

Expon - Exponential (mean = 2)

Norml - Normal distribution

MODIFIED KOLHOGOROV-SHIRNOV ANDERSON-DARLING AND CRAMER-YON MISES TESTS F. (U) AIR FORCE INST OF TECH MRIGHT-PATTERSON AFB OH SCHOOL OF ENGI. J E PORTER DEC 85 AFIT/GSO/MA/85D-6 F/G 12/1 2/2 AD-A163 837 NL UNCLASSIFIED END FILMED



MICROCOPY RESOLUTION TEST CHART
NATIONAL BURGALL OF STANDARDS-1963-A

## Linear Regression Tables

Tables XI and XII indicate the linear relationships existing between critical values and Pareto shape parameters. Table XI pertains to Kolmogorov-Smirnov critical values, while Table XII pertains to Cramer-von Mises critical values. No consistent linear relationship was identified for Anderson-Darling critical values.

The two tables contain linear coefficients and correlation values for each combination of sample sizes n = 10, 15, 20, 25, and 30 and levels of significance  $\alpha$  = .20, .15, .10, .05, and .01. No consistent linear relationship could be found for sample size n = 5. Further, the linear relationships apply only for values of the shape parameter c in the range  $1.5 \le c \le 4.0$ . Critical values for c < 1.5 failed to display any consistent linear trend.

Each combination of sample size and significance level has its own linear coefficients and correlation value. In each case, the relationship between critical value Y and shape parameter c is given by the simple linear regression equation  $Y = b_0 + b_1 c$  where  $b_0$  corresponds to the Y-axis intercept and  $b_1$  represents the slope of the described line. The correlation value  $R^2$  indicates the percent of total variation explained by the regression line. Thus,  $R^2$  is a measure of the strength of the linear relationship, with values near 1 indicating a strong linear tendency (13:250).

Table XI COEFFICIENTS AND  $\rm R^2$  VALUES OF THE RELATIONSHIP \$^8\$ BETWEEN KOLMOGOROV-SMIRNOV CRITICAL VALUES AND PARETO SHAPE PARAMETERS FOR 1.5  $\leq$  C  $\leq$  4.0

|         |                | ******  | 422522743       | ##22#2 <u>2</u> 2 | *******  | ******          |
|---------|----------------|---------|-----------------|-------------------|----------|-----------------|
|         |                |         | Level           | of Signif         | icance   |                 |
|         |                |         |                 |                   |          | •               |
| n       | Coeff          | .20     | . 15            | .10               | . 05     | -01             |
|         |                |         |                 |                   |          |                 |
| 1       | ьо             | .2080   | .2154           | . 2222            | . 2359   | . 2704          |
| 10      | <b>b</b> 1     | .0057   | .0067           | .0090             | .0117    | .0144           |
|         | R <sup>2</sup> | 0.998   | 0 <b>. 99</b> 7 | 0.993             | 0.997    | 0.993           |
|         |                |         |                 |                   |          |                 |
|         | ьо             | .1752   | . 1804          | . 1896            | .2042    | . 2339          |
| 15      | <b>b</b> 1     | .0051   | .0065           | .0074             | .0091    | .0117           |
|         | R <sup>2</sup> | 0.977   | 0.993           | 0 <b>. 999</b>    | 0.990    | o <b>. 98</b> 7 |
|         |                |         | ~~~~~~          |                   |          |                 |
| ł       | ьо             | . 1544  | . 1630          | . 1699            | .1828    | .2102           |
| 20      | b <sub>1</sub> | .0044   | .0042           | .0054             | .0068    | .0091           |
|         | R <sup>2</sup> | 0.973   | 0.969           | 0.964             | 0.960    | 0.935           |
|         |                |         |                 |                   |          |                 |
| 1       | bo             | . 1403  | . 1461          | . 1535            | .1623    | . 1885          |
| 25      | b <sub>1</sub> | .0038   | .0043           | .0050             | .0075    | .0091           |
|         | R <sup>2</sup> | 0.980   | 0.991           | 0.963             | 0.994    | 0.964           |
|         |                |         |                 |                   |          |                 |
|         | ьо             | .1302   | .1362           | .1418             | . 1542   | . 1728          |
| 30      | <b>b</b> 1     | .0030   | .0034           | .0047             | .0053    | .0090           |
|         | R <sup>2</sup> | 0.944   | 0.947           | 0.946             | 0.967    | 0.979           |
| <b></b> |                | <b></b> | *********       | ********          | 22222222 | ******          |

<sup>\*</sup> Relationship between K-S critical values Y and Pareto shape parameter c is approximately

 $Y = b_0 + b_1 c$  where 1.5  $\leq c \leq$  4.0

Table XII COEFFICIENTS AND R<sup>2</sup> VALUES OF THE RELATIONSHIP\* BETWEEN CRAMER-VON MISES CRITICAL VALUES AND PARETO SHAPE PARAMETERS FOR 1.5  $\leq$  C  $\leq$  4.0

|                   |                | ARRESES      | ******      |                 | *******            | ###################################### |
|-------------------|----------------|--------------|-------------|-----------------|--------------------|----------------------------------------|
|                   |                |              | Level       | of Signif       | icanc <b>e</b>     |                                        |
| == <del>=</del> = | 822289         |              |             |                 |                    |                                        |
| n                 | Coeff          | . 20         | . 15        | .10             | .05                | .01                                    |
| ]                 | <u>.</u>       |              |             |                 |                    |                                        |
|                   | PO             | .0741        | . 0825      | .0915           | .1089              | . 1556                                 |
| 10                | <b>b</b> 1     | .0045        | .0050       | .0067           | .0095              | .0137                                  |
|                   | R <sup>2</sup> | 0.986        | 0.970       | 0.973           | 0.985              | 0.981                                  |
|                   |                |              | <del></del> | ~~~~            |                    |                                        |
| ł                 | bo             | .0769        | .0832       | . 0964          | .1170              | . 1643                                 |
| 15                | b <sub>1</sub> | .0053        | .0069       | .0083           | .0106              | .017B                                  |
|                   | R <sup>2</sup> | 0.982        | 0.996       | 0 <b>. 99</b> 3 | 0.965              | 0.980                                  |
|                   |                | <del> </del> |             |                 |                    |                                        |
| 1                 | ьо             | .0805        | .0905       | .1031           | . 1252             | . 1833                                 |
| 20                | <b>b</b> 1     | .0047        | .0051       | .0065           | . 00 <del>89</del> | .0135                                  |
|                   | R <sup>2</sup> | 0.966        | 0.957       | 0.978           | 0.957              | 0.974                                  |
|                   |                |              |             |                 |                    |                                        |
|                   | ьо             | .0806        | .0910       | . 1045          | .1264              | . 1831                                 |
| 25                | b <sub>1</sub> | .0055        | .0059       | .0072           | .0102              | .0166                                  |
|                   | R <sup>2</sup> | 0.979        | 0.989       | 0.992           | 0.978              | 0.932                                  |
|                   |                |              |             |                 |                    |                                        |
| l                 | PO             | .0834        | . 0936      | .1116           | .1372              | . 1907                                 |
| 30                | <b>b</b> 1     | .0047        | .0055       | .0054           | .0074              | .0161                                  |
|                   | R <sup>2</sup> | 0.964        | 0.945       | 0.899           | 0.872              | 0.967                                  |
|                   | *****          |              | ******      | ****            | ======             |                                        |

<sup>\*</sup> Relationship between C-VM critical values Y and Pareto shape parameter c is approximately

 $Y = b_0 + b_1 c$  where  $1.5 \le c \le 4.0$ 

## Use of Tables

This section explains how to use the research results contained in Tables VI - XII.

Using Critical Value Tables. The critical values contained in Tables VI - VIII can be used to test whether a random data sample of size n = 5, 10, 15, 20, 25, or 30 follows a three-parameter Pareto distribution having specified shape parameter c = .5, 1, 1.5, 2, 2.5, 3, 3.5, or 4. Given a random sample of observed data, the following steps outline basic elements of the procedure used in testing goodness-of-fit (13:357-367):

Step 1. Determine n, the number of observations contained in the random data sample.

Step 2. Identify the null and alternative hypotheses to be tested. In this case, the hypothesized shape parameter c must also be specified. Thus, the hypotheses are:

H<sub>O</sub>: The sample observations follow a Pareto distribution of specified shape c.

H<sub>1</sub>: At least one of the observations does not follow the Pareto of shape c.

Step 3. Determine the desired probability of committing a Type I error, i.e., the probability of erroneously rejecting the null hypothesis when  $H_{0}$  is true. This probability is the level of significance,  $\alpha$  (13:78).

Step 4. Order the n observations from smallest to largest.

Step 5. Assume  $H_0$  is true and estimate the unknown location and scale parameters using an invariant estimator. If the BLUE is selected as the estimator, and the sample size is small, the estimates can be computed manually from equations (34) and (35) for c = .5, 1, or 2; equations (37) to (39) for c = 1.5; or equations (17), (18), (21), (22), and (29) for c = 2.5, 3, 3.5, or 4. For larger sample sizes, or if several samples are involved, use the FORTRAN subroutines BXVALS, BLCLE2, and BLCGT2 in Appendix A.

Step 6. Use the estimates of location a and scale b, the hypothesized shape c, and the n ordered sample observations to compute the hypothesized Pareto CDF from equation (40). Subroutine HYPCDF in Appendix A can be used if manual calculations are not practical.

Step 7. Select the type of test to be performed and compute the corresponding test statistic. Use equation (42) for the modified Kolmogorov-Smirnov test, equation (43) for the modified Anderson-Darling test, or equation (44) for the modified Cramer-von Mises test. Subroutine TESTAT in Appendix A can be used to compute test statistics for all three tests.

Step 8. Identify the critical value from Table VI, VII, or VIII, based on test type, level of significance, sample size, and hypothesized shape parameter.

Step 9. Reject the null hypothesis if the value of the test statistic exceeds the critical value. If the test statistic does not exceed the critical value, conclude that there is insufficient evidence to reject the null hypothesis (13:76).

Using Power Comparison Tables. Tables IX and X can be used to draw conclusions regarding the relative ability of a test to correctly reject a false null hypothesis. This information can then be used to select the best test for a given situation. The higher the power value, the better are the chances against committing a Type II error because the probability of erroneously accepting a false null hypothesis is lessened (13:78).

Using Linear Regression Tables. Tables XI and XII can be used to estimate critical values for shape parameters which are not specifically listed in Tables VI and VIII, provided the hypothesized shape parameter c satisfies  $1.5 \le c \le 4.0$ . Given the sample size and specified level of significance, the linear slope and intercept values contained in Table XI can be substituted into the regression equation  $y = b_0 + b_1 c$  to find the Kolmogorov-Smirnov critical value y. If the Cramer-von Mises test is involved, the values should be taken from Table XII.

## Example

Suppose a maintenance unit wants to model the failure rate of a certain equipment component. Based on 10 independent random samples, the unit observes the following failure times of the component (expressed in months following initial use): 1.178, 1.127, 1.373, 1.068, 1.059, 1.010, 1.474, 4.830, 3.997, 1.799. The unit desires to test the hypothesis that the component failure times follow the Pareto distribution with shape c = 2.5. One specified requirement is that the test be designed so that the probability of erroneously rejecting a true null hypothesis must not exceed .05.

Since there are 10 random observations in the data sample, n=10 for this example. The required level of significance is  $\alpha=.05$ . The hypotheses are:

 $H_0$ : The observed failure times follow the Pareto distribution of shape c = 2.5.

H<sub>1</sub>: At least one of the observations does not follow the Pareto of shape 2.5.

The next step is to arrange the random sample in ascending order: 1.010, 1.059, 1.068, 1.127, 1.178, 1.373, 1.474, 1.799, 3.997, 4.830. These values are input into subroutine BXVALS which yields  $B_i$  values of .920, .838, .754, .668, .579, .486, .389, .285, .171, and .034. These values are then input into subroutine BLCGT2, which computes the parameter estimates  $\hat{a}$  = .963 and  $\hat{b}$  = 1.128. Subroutine

HYPCDF is then used to compute 10 values of the hypothesized Pareto CDF: .097, .185, .201, .288, .354, .539, .608, .750, .962, and .976.

The values of n, c, and the hypothesized Pareto CDF are input into subroutine TESTAT, which computes the test statistics K-S=.162, A-D=.416, and C-VM=.042. From Table VI, the K-S critical value for  $\alpha=.05$ , n=10, and c=2.5 is .265. Since the test statistic does not exceed the critical value, there is insufficient evidence to reject the null hypothesis. The same conclusion is reached from the A-D and C-VM critical values (Tables VII and VIII).

Now suppose the unit wants to test the null hypothesis that a set of n = 25 observed service times follows the Pareto distribution of shape c = 3.35. The analyst computes the K-S or C-VM test statistic as before, but the critical values are not listed for c = 3.35. Therefore, the next step is to determine the appropriate regression coefficients from Table XI or XII. For n = 25 and  $\alpha$  = .05 the K-S coefficients are  $b_0$  = .1623 and  $b_1$  = .0075. The K-S critical value is  $Y = b_0 + b_1$  c = .1623 + .0075 (3.35) = .1874.

## Chapter Summary

This chapter presented the results of the research conducted in response to the three objectives listed in Chapter I. Tables of critical values for the modified K~S, A-D, and C-VM tests were presented. Also included were

tables comparing powers of the K-S, A-D, and C-VM statistics against the Chi-square. Tables of regression coefficients were presented as well. The use of the tables was explained, and an example was described.

The research results are further analysed and discussed in the next chapter.

#### VI. ANALYSIS AND DISCUSSION

## Chapter Overview

This chapter discusses the results presented in Chapter V. Observations are made concerning the tables of critical values, power comparisons, and regression coefficients, including an explanation as to how the computer programs were verified and validated.

# Critical Values

The critical value tables generated for this thesis are located in Chapter V. For the K-S test (Table VI), the critical values for a given level of significance and shape parameter decrease as the sample size increases. Further, the size of the decrease becomes smaller at larger values of n. This trend suggests that the K-S critical values may converge to a lower limit as the sample size increases. However, the use of sample sizes larger than 30 would have required much more computer processing time, and thus was beyond the scope of this thesis. The A-D critical values (Table VII) exhibit a different pattern. The values for each combination of significance level and shape parameter generally decrease from n = 5 to 20 and increase from n = 20 to 30, suggesting a convergence between 15 and 20. Similarly, the C-VM critical values (Table VIII) appear to converge between n = 25 and 30,

since the values consistently decrease until n = 30, then begin to increase.

An important observation is made when the table of modified K-S values is compared to a standard (unmodified) K-S table (13:462). For each value of n in Table VI, the critical values for shape 1 or 2 at a .05 significance level are nearly the same as the critical values for a .20 significance level using the standard table. Thus the result of using the standard K-S table when location and scale parameters are estimated would be to obtain an extremely conservative test in the sense that the actual significance level would be much lower than that given by the standard table.

#### Power Comparison

The power comparison tables generated for this thesis are located in Chapter V. Values in Table IX pertain to a null hypothesis for which the Pareto shape parameter is 1.0, whereas in Table X the hypothesized shape parameter is 3.5. Both tables are divided into two sections based on a level of significance of .05 or .01. It is obvious from the tables that none of the three tests developed in this thesis is very powerful when the sample size is only five. Nevertheless, they at least provide some means of testing goodness-of-fit for sample sizes which are too small to use the Chi-square test. For sample sizes of 15 or 25, the powers improve dramatically.

For each alternative distribution the three tests tended to be more powerful than the Chi-square. Two sets of Chi-square critical values were examined. The first set of values was taken from a standard table of Chi-square critical values corresponding to 2 degrees of freedom (13:432). After completing 5000 Monte Carlo repetitions, it was discovered that the tabled Chi-square value for a level of significance of .05 displayed a probability of a Type I error (i.e., rejecting  $H_{\Omega}$  when true) of .10, which was twice the claimed level of significance of .05. Similarly, the probability of Type I error for a claimed level of significance .01 was, in fact, .02. This discrepancy was due to the fact that the tabled Chi-square values represent only an approximation of the actual asymptotic distribution of the Chi-square, so that the actual value lies somewhere between Chi-square with 2 degrees of freedom and Chi-square with 4 degrees of freedom (34:401-402). Since the Type I errors were twice their expected value, a second set of Chi-square critical values was generated using Monte Carlo simulation in the same manner as was used to generate critical values for the K-S, A-D, and C-VM tests. As apparent from Tables IX and X, the second set of Chi-square values display Type I error rates which is much closer to the claimed level of significance of .05 or .01. Therefore, these values were used in the power comparison tables rather than the less accurate values stemming from the standard Chi-square table.

The modified K-S, A-D, and C-VM tests are especially powerful when the sample data are taken from the Weibull, the Beta, or the normal distribution. On the other hand, the three tests display relatively low power in their ability to distinguish against the exponential or the Pareto with different shape parameters. In general, the K-S test has higher power tham the others when the hypothesized shape parameter is 1.0. When the shape parameter is 3.5, the C-VM test tends to be more powerful. Next to the Chi-square, the A-D test appears to have the lowest power in most cases.

# Regression Analysis

が生まれるのなが、このこのでは、

The regression tables generated for this thesis are also located in Chapter V. Table XI contains regression coefficients and correlation values for the modified Kolmogorov-Smirnov test, while Table XII contains regression values for the Cramer-von Mises test.

It is apparent from Tables VI and VIII that for a given significance level and sample size except n = 5, the K-S and C-VM critical values decrease from shape parameter 0.5 to 1.5, then steadily increase for shapes 1.5 to 4.0. Using the method of least squares, a simple linear regression analysis was performed on the critical values. The correlation of regression on the shape parameter interval 0.5 to 1.5 was in most cases less than .80. However, the regression relationships on the shape interval 1.5 to 4.0 showed very

strong correlation (.97 or higher in most cases). Therefore, regression coefficients corresponding to the interval  $1.5 \le c$   $\le 4.0$  were included in Tables XI and XII.

No consistent linear trend could be identified for the Anderson-Darling critical values. In general the values seem to decrease on the interval  $0.5 \le c \le 2.5$  and then increase on  $2.5 \le c \le 4.0$ . However, when least squares regression was applied to the two intervals, the correlation values tended to be less than .80 in most cases. Therefore, it was decided not to include a regression table for the A-D test.

# Verification and Validation

The critical values were computed by the CRITVAL program and associated subroutines contained in Appendix A. The power study was conducted using the POWER program and subroutines in Appendix B. The purpose of verification was to ensure that the concepts and equations developed in this thesis were reflected accurately in the computer code. The five verification techniques suggested by Banks and Carson (5:379) were implemented as follows:

1. Have the code checked. The code was checked by two individuals knowlegeable of FORTRAN programming. One of the individuals, Charek, was also very familiar with the logic required for computing parameter estimates for the Pareto distribution, since he too has conducted extensive research in this area (12).

- 2. Make a flow diagram. Flow diagrams illustrating the logic involved in generating critical values served as the basis of the program and were closely followed during the actual writing of the program. The diagrams are included in Appendices A and B.
- 3. Examine a wide variety of output. The output of each subroutine and the results of each individual computation was checked through extensive use of print statements. Each computational stage was checked at least once against manual calculations to ensure the expected values were produced. A pre-production run involving 50 replications was thoroughly examined for reasonableness prior to the final production run of 5000 replications.
- 4. Print the input parameters. During the test runs, input parameters were printed before and after each calculation to ensure against any inadvertant alteration of parameters.
- 5. Make the code self-documenting. Extensive comments have been incorporated into the programs and subroutines to allow easy interpretation of the logic. At the beginning of each program component, every variable is defined and the purpose explained.

Validation of the computer programs was provided in the results of the power study. For each hypothesized shape parameter and sample size, the K-S, A-D, and C-VM tests

displayed a Type I error rate equal to or very near the claimed level of significance. This fact validates the critical values as well as the power comparison values.

# Chapter Summary

The results of this thesis are presented in Tables VI-XII. The results of the power study show that the three tests developed in this thesis offer tests which can be used with small sample sizes and are more powerful than the Chi-square at larger sample sizes. The programs used to generate the tables were thoroughly verified and validated.

Conclusions and recommendations for further study are presented in the next chapter.

#### VII. CONCLUSIONS AND RECOMMENDATIONS

#### Conclusions

The following conclusions are based on the results contained in this thesis:

- 1. The first research objective listed in Chapter I has been successfully fulfilled. Tables VI-VIII contain critical values of the modified Kolmogorov-Smirnov (K-S), Anderson-Darling (A-D), and Cramer-von Mises (C-VM) tests. The validity of these critical values has been verified by a Monte Carlo power study which has shown that all three tests achieve the claimed level of significance when the null hypothesis is true. Therefore, each table of critical values can be used to test whether a random sample of data follows the three-parameter Pareto distribution with specified shape parameter.
- 2. The second research objective has also been completed successfully. The results of the power study are contained in Tables IX and X. It appears that none of the three tests developed in this thesis is very powerful when the sample size is only five. For sample sizes of 15 or 25, however, the powers improve dramatically. For each of the alternative distributions considered, the three tests tended to be more powerful than the Chi-square, as expected. The three tests are especially powerful when the sample data are

taken from the Weibull, the Beta, or the normal distribution. In general, the K-S test has higher power than the others when the hypothesized shape parameter is 1.0. When the shape parameter is 3.5, the C-VM test tends to be more powerful. Next to the Chi-square, the A-D test appears to have the lowest power in most cases.

3. Successful completion of the third research objective has revealed a strong linear relationship between shape parameters and critical values for the K-S and C-VM tests. Linear coefficients and correlation values are contained in Tables XI and XII. However, no consistent functional relationship could be identified for the A-D test.

# Recommendations

Based on observations made during the investigation for this thesis, the following research areas are proposed for further study:

- Apply the techniques used in this thesis to generate modified K-S, A-D, and C-VM tests for other distribution functions.
- 2. Investigate whether other types of goodness-of-fit tests can be modified through Monte Carlo techniques. For example, if the S statistic of Mann, Scheuer, and Fertig (38) can be modified for the Pareto distribution, a power study can be conducted to determine whether the S statistic is more powerful than the K-S, A-D, or C-VM tests.

- Derive the maximum likelihood estimators of location and scale for the three-parameter Pareto.
- 4. Compute critical values for sample sizes and Pareto shape parameters not specifically included in Tables VI-VIII. For example, the tables can be expanded to include all sample sizes from 3 to 100 and shape parameters from 0.25 to 10.
- 5. Increase the accuracy of the critical values by using various techniques (5:406-442) of experimental design (e.g., increased repetitions, multiple batch runs, replications, antithetic random number seeds, analysis of variance, etc.) to reduce the inherent uncertainty and to determine the amount of variance involved.
- 6. Apply more sophisticated regression techniques to determine the functional relationship between Pareto shape parameters and Anderson-Darling critical values.
- 7. Apply the results of this thesis to earlier studies (Chapter III) involving the Pareto distribution. For example, Berger and Mandelbrot's (7) conclusion that the Pareto can be used to model errors in communications circuits can now be tested for goodness-of-fit.
- 8. Further investigate potential applications of the Pareto distribution as an accurate model of actual phenomena. The tests developed in this thesis contribute to the usefulness of the Pareto distribution which, in many situations, should be considered as a viable model when simulating or testing the underlying distribution of a given population.

APPENDIX A

Computer Program and Subroutines

for Generating Critical Values



THE STATE OF THE S

Fig 6. Procedure for Generating Critical Values



Fig 6 (Continued). Procedure for Generating Critical Values

```
c***** Classroom Support Computer (CSC) - VAX 11/785 - VMS 4.1 ****
2
3
       c##### CRITVAL PROGRAM FOR PARETO GOODNESS-OF-FIT TESTS
5
       C**********************************
       6
7
       C**
8
       C**
              BEGIN
                         CRITVAL
                                        MAIN
                                                  PROGRAM
                                                                 **
9
       C##
                                                                 **
10
       11
12
          Ref: Appendix A, Figure 6.
       \boldsymbol{\mathsf{C}}
13
       C
14
15
       C
16
       c
          Purpose:
17
                      Generate critical value tables for the modified
       C
18
                   Kolmogorov-Smirnov (K-S), Anderson-Darling (A-D),
       C
19
       C
                   and Cramer-von Mises (C-VM) tests for the three-
20
       C
                   parameter Pareto distribution when location and
21
       C
                   scale parameters must be estimated from sample data.
22
       C
                   Provide extensive commentary to help novice prog-
23
       C
                   rammers develop similar goodness-of-fit programs.
24
       C
                   Thus, diagnostic print routines have been retained as
25
       c
                   part of the commentary rather than deleted.
26
       C
27
       28
       C
29
       C
          Variables:
30
       C
                 dseed = random number seed
31
       C
                     c = shape parameter
32
       c
                     n = sample size
33
       C
                  nshp = shape parameter counter (8 different values)
34
       c
                  nsiz = sample size counter (6 different values of n)
35
       c
                  npct = percentile counter (5 different percentiles)
36
       C
                   nst = number of test statistics to be used
37
       C
                    it = iteration counter (5000 repetitions required)
                    KS = array of values of modified K-S test statistic
38
       C
39
       C
                   CVM = array of values of modified C-VM test statistic
40
       C
                    AD = array of values of modified A-D test statistic
41
       C
                 alpha = level of significance
42
       \boldsymbol{\mathsf{c}}
43
       44
       C
45
       C
          Inout:
46
               nst = number of repetitions (input at computer terminal)
       C
47
       C
             dseed = random number seed (input at computer terminal)
48
       c
```

```
50
51
         C
            Subroutines:
52
53
              PARDEV - Generates n ordered Pareto deviates
         C
54
              BXVALS - Calculates B values and summations of B and Bx
         C
55
              BLCLE2 - Finds BLUEs for location and scale when c <= 2
         C
56
              BLCGT2 - Finds BLUEs for location and scale when c > 2
         C
57
              HYPCDF - Computes the Hypothesized Pareto CDF
         C
58
              TESTAT - Calculates the K-S. A-D. and C-VM test statistics
         c
59
              CRTVAL - Determines critical values from plotting positions
60
61
         62
         C
63
           Calculate:
         C
64
         C
65
                nc = n * c
         C
66
         c
67
                Plotting Positions (Eqn 51):
48
69
                   Y(i) = (i - 0.3)/(nst + 0.4) for i = 1,...,nst(=5000)
         C
70
71
         72
         c
73
            Output:
         C
74
         C
75
              KScrit = 3-D array of critical values for modified K-S test
         c
76
              ADcrit = 3-D array of critical values for modified A-D test
         C
77
         C
              CVcrit = 3-D array of critical values for modified C-VM test
78
79
80
81
         \subset
            Declare Variables:
82
83
                 common dseed.x.n.c.nc.B.D.ablu.bblu.P.pct.Bsum1, Bxsum1.
84
              1
                        Bxsum2.Bxsm2c,KS.AD,CVM.it.nsiz.nshp.npct.nst,
85
              1
                        KScrit, ADcrit, CVcrit, Y
86
                 integer n.nsiz.nshp.it.npct.nst
87
                 real \times (30), ablu, bblu, B(30), D, KS(5000, 5, 8), AD(5000, 5, 8),
88
              1
                      CVM(5000,6,8),c,nc,Bsum1,Bxsum1,Bxsum2,Bxsm2c,P(30),
89
              1
                      KScrit(6,8,5), ADcrit(6,8,5), CVcrit(6,8,5), r(30), pct,
90
              1
                      Y (5002), alpha
91
                 double precision dseed
92
93
               ** Open Output Files to Store Computed Critical Values: **
         C
OΔ
                       open (unit=7.file='CRIT'.status='new')
95
96
               ** Number of Test Statistics to be Used on Each Run: **
97
                       print*,'The Monte Carlo analysis will require'
98
                       print*, 2
                                   5000 test statistics.'
00
                       print*.'Enter the number to be used for this run:'
100
                       read*,nst
101
```

```
102
          C
                     Calculate 5002 Plotting Positions on the Y-axis: **
103
          C
104
                        Y(0) = 0.0
105
                    do 10 i = 1,nst
106
                        Y(i) = (i - 0.3)/(nst + 0.4)
107
            10
                    continue
108
                        Y(nst + 1) = 1.0
109
          C
                     print*,' '
110
111
                     print*, 'SELECTED MEDIAN RANKS PLOTTING POSITIONS'
112
                     print*.' TO BE USED TO FIND CRITICAL VALUES:'
                     print*,' '
113
                     print*.'
114
                                    Y(5001) = ', Y(5001)
                                    Y(5000) = ', Y(5000)
                     print*, '
115
                     print*, '99PCT: Y(4950) = ',Y(4950)
116
                     print*, '95PCT: Y(4750) = ',Y(4750)
117
118
                     print*. '90PCT: Y(4500) = '.Y(4500)
119
                     print*, '85PCT: Y(4250) = ', Y(4250)
120
                     print*, '80PCT: Y(4000) = ', Y(4000)
121
                                    Y(0001) = {}^{1},Y(1)
                     print*,'
122
                     orint*.'
                                    Y(0000) = ', Y(0)
123
                     124
          C
125
          C
                       Plotting Positions Computation Complete
126
          c
127
                print*, 'Enter random number seed or "1." for default:'
128
                read*.dseed
129
                      if (dseed .eq. 1.) dseed = 123457.d00
130
                print*,' '
131
                print*,'STANDBY . . . COMPUTATIONS IN PROGRESS'
132
          C
133
                nshp = 0
134
          C
135
          c --- Begin DO Loop 90 for Shape Parameter Values c = .5(.5)4 ---
136
          c
                do 90 \text{ shape} = 0.5, 4.0, .5
137
138
                       c = shape
139
                    nshp = nshp + 1
140
141
                   Write Headings for Output Data:
142
                       write(7,52)
                       write(7,51)
143
144
                       write(7,52)
145
                       write(7,54)
146
                       write(7,52)
147
                       write(7,56)
148
          C
149
                       nsiz = 0
150
          c
151
          C
                      Begin DO Loop 80 for Sample Sizes n = 5(5)30 ---
152
```

do 80 nsamp = 5.30.5

```
154
155
                             if ((c.eq.0.5) .and. (nsamp.eq.5)) then
156
                             the BLUEs do not exist, so we must let:
157
                                n = 6
158
                             else
159
                                n = nsamp
                             end if
160
161
          \mathsf{c}
                             nsiz = nsiz + 1
162
163
                               nc = n * c
164
165
                             write(7,58)
166
                        --- Begin DO Loop 60 for 5000 Iterations ---
167
168
169
                             do 60 it = 1,nst
170
                             ** Perform Steps 1 & 2 of Fig 6: **
171
172
                                     call PARDEV
173
174
175
                             ** Perform Step 3 of Figure 6: **
176
                                     call BXVALS
177
178
                                     if (c .1e. 2.0) then
179
                                         call BLCLE2
180
181
                                     el se
182
                                         call BLCGT2
183
                                     end if
184
                             ** Perform Step 4 of Figure 6: **
185
          c
186
          C
                                     call HYPCDF
187
188
                              ** Perform Step 5 of Figure 6: **
189
          C
190
          c
                                     call TESTAT
191
192
193
             60
                              continue
194
          C
195
                            End DO Loop 60 for 5000 Iterations
           C
196
          c
                              ** Completes Step 6 of Figure 6 **
197
           c
198
                              ** Perform Step 7 of Figure 6: **
           C
199
           C
                               Begin DO Loop 70 for Percentiles
200
           C
201
           c
202
                     do 70 npct = 1.5
203
           C
204
                                     call CRTVAL
205
```

```
206
207
                           -- Write CRTVAL Output to File --
208
                      write(7,62),1.-pct,n,c.KScrit(nsiz,nshp,npct),
209
              1
                         ADcrit(nsiz,nshp,npct),CVcrit(nsiz,nshp,npct)
210
                        print*,' '
211
                        print*, 'CRITICAL VALUES FROM MAIN PROGRAM'
212
                        print*,' pct =',pct,' n=',n,' ** c=',c
213
                        print*,' K-S =',KScrit(nsiz,nshp,npct),
214
                              ' A-D =', ADcrit(nsiz, nshp, npct),
215
              1
              1
                              ' CVM =',CVcrit(nsiz,nshp,npct)
216
                        print*,' '
217
218
219
           70
                   continue
220
         C
                              End DO Loop 70 for Percentiles
221
         C
222
         C
           80
223
                       continue
224
         C
                     End DO Loop 80 for Sample Sizes n = 5(5)30
225
         C
                           ** Completes Step 8 of Figure 6 **
226
         C
227
228
           90 continue
229
          C
230
                End DO Loop 90 for Shape Parameter Values c = .5(.5)4 ---
          c ---
                           ** Completes Step 9 of Figure 6 **
231
          c
232
          233
234
             OUTPUT INSTRUCTIONS: The remainder of the main program
235
          C
             consists of commands to format the output data and write
236
          C
237
             the data and headers to a file which can be printed out
          c
238
             in hardcopy.
          C
239
          240
241
          c *** Write KS Critical Value Tables to File by Alpha Level: ***
242
243
244
               write(7,52)
245
               write(7, 130)
               write(7,52)
246
247
               write(7, 132)
248
               write(7.52)
               write(7,200)
249
               write(7.201)
250
251
               write(7.52)
252
          C
253
               npct = 0
254
          C
          c ---Begin DO Loop 105 to Sort Critical Values by Alpha Level---
255
256
          C
257
               do 105 \text{ npct} = 1.5
```

```
258
          C
259
                    if (npct .ne. 5) alpha = .25 ~ (.05*npct)
                    if (npct .eq. 5) alpha = .01
1)
261
          C
                    nsiz = 0
262
                    n = 0
263
264
          c
                --- Begin DO Loop 107 to Sort Output by Sample Size ---
265
          c
266
          C
                    do 107 \text{ nsiz} = 1.6
267
268
          C
269
                       n = 5 * nsiz
270
                       Write(7,120), alpha, n, KScrit(nsiz, 1, npct), KScrit
271
                           (nsiz,2,npct),KScrit(nsiz,3,npct),KScrit(nsiz,
272
                           4, npct), KScrit(nsiz, 5, npct), KScrit(nsiz, 6, npct),
273
                          KScrit(nsiz,7,npct),KScrit(nsiz,8,npct)
274
                1
275
276
           107
                    continue
277
           C
278
                      End DO Loop 107 After Sorting by Sample Size
           C
279
          c
                    write(7,201)
280
281
           C
282
            105 continue
283
           C
284
                   End DO Loop 105 After Sorting Output by Alpha Level
           c .
285
           C
286
           c *** Write AD Critical Value Tables to File by Alpha Level: ***
287
288
289
                 write(7,52)
290
                 write(7,140)
291
                 write(7,52)
292
                 write(7,142)
293
                 write(7,52)
294
                 write(7,200)
                 write(7,201)
295
                 write(7.52)
296
297
           C
298
                 npct ≈ 0
299
           C
           c --- Begin DO Loop 115 to Sort Critical Values by Alpha Level ---
300
301
                 do 115 npct = 1,5
302
303
                     if (npct .ne. 5) alpha = .25 - (.05*npct)
304
                     if (npct .eq. 5) alpha = .01
305
306
           C
307
                     nsiz ≈ 0
308
                     n = 0
```

```
--- Begin DO Loop 117 to Sort Output by Sample Size ---
310
          c
311
                    do 117 nsiz = 1.6
312
313
          c
                       n = 5 * nsiz
314
315
                       Write(7,120), alpha, n, ADcrit(nsiz, 1, npct), ADcrit
316
                           (nsiz, 2, npct), ADcrit(nsiz, 3, npct), ADcrit(nsiz,
317
                           4, npct), ADcrit(nsiz, 5, npct), ADcrit(nsiz, 6, npct),
318
                           ADcrit(msiz,7,mpct),ADcrit(msiz,8,mpct)
319
320
          C
            117
                    continue
321
322
          C
                      End DO Loop 117 After Sorting by Sample Size
323
          c
324
          c
325
                    write(7,201)
326
           C
327
            115 continue
328
          C
                   End DO Loop 115 After Sorting Output by Alpha Level
329
           c -
330
          C
331
           c *** Write CVM Critical Value Tables to File by Alpha Level ***
332
333
334
                  write(7,52)
                  write(7,150)
335
336
                  write(7.52)
                  write(7,152)
337
338
                  write(7,52)
339
                  write(7,200)
                  write(7.201)
340
341
                  write(7,52)
342
           C
343
                 nect = 0
344
           c
345
               --Begin DO Loop 125 to Sort Critical Values by Alpha Level---
346
           c
347
                 do 125 npct ≈ 1,5
348
           C
                     if (npct .ne. 5) alpha = .25 - (.05*npct)
349
                    if (npct .eq. 5) alpha = .01
350
351
           C
352
                    nsiz = 0
353
                     n = 0
354
           C
355
                 --- Begin DO Loop 127 to Sort Output by Sample Size ---
           c
356
           C
                     do 127 \text{ nsiz} = 1.6
357
358
359
                        n = 5 * nsiz
```

```
361
                    Write(7,120), alpha, n, CVcrit(nsiz, 1, npct), CVcrit
362
                        (nsiz, 2, npct), CVcrit(nsiz, 3, npct), CVcrit(nsiz,
363
                       4, npct), CVcrit(nsiz, 5, npct), CVcrit(nsiz, 6, npct),
364
                       CVcrit(nsiz,7,npct), CVcrit(nsiz,8,npct)
365
366
          127
                  continue
367
         C
348
         C
                    End DO Loop 127 After Sorting by Sample Size
369
         C
370
                  write(7.201)
371
372
          125 continue
373
         C
374
                 End DO Loop 125 After Sorting Output by Alpha Level
         C
375
         C
376
         C
                Specify Format for Hardcopy Output Data and Headers:
377
378
           51
               379
               format(' ')
           52
380
               format(' ** PARETO CRITICAL VALUES FOR SHAPE C =
381
           56
               format(' alpha',3X,'n',4X,'c',7X,'KS',8X,'AD',8X,'CVM')
382
383
           62 format(' ',T3,F3.2,I5,F6.1,3F10.4)
384
          120 format(' '.T3,F3.2,I5,F8.3,7F9.3)
385
               format('1',36X,'Table VI')
          130
386
               format(20X, 'CRITICAL VALUES FOR THE MODIFIED K-S TEST')
          132
               format('1',36X,'Table VII')
387
          140
388
          142
               format(20X, 'CRITICAL VALUES FOR THE MODIFIED A-D TEST')
389
          150
               format('1',35X,'Table VIII')
390
               format(19%, 'CRITICAL VALUES FOR THE MODIFIED C-VM TEST')
391
          200
               format(' alpha',3X,'n',4X,'c=.5',5X,'1.0',6X,'1.5',6X,
392
                        '2.0',6X,'2.5',6X,'3.0',6X,'3.5',6X,'4.0')
393
          201
               format(81('-'))
394
         C
395
               close(7)
396
397
               end
398
399
400
                                 END MAIN PROGRAM
401
```

```
402
                Subroutine PARDEV
403
        404
        C**
405
        C##
                  BEGIN
                             SUBROUTINE
                                                  PARDEV
                                                                   **
406
        C##
                                                                   **
407
        408
409
          Ref: Appendix A, Fig 6, Steps 1 & 2.
410
411
412
413
           Purpose: For a specified sample size n, generate n random
414
                    deviates from a Pareto distribution with location and
415
                    scale parameters set to one (a = b = 1) and the shape
         C
416
                    parameter c set to some specified positive value.
         C
417
418
419
420
           Variables:
                         r = array containing n random numbers
421
         c
422
        C
                         c = shape parameter
423
         C
                         x = array containing n Pareto deviates
424
         c
                         n = sample size
425
                     dseed = random number seed
426
427
428
         c
429
         C
          Input:
                     dseed = random number seed (from MAIN program)
430
                         c = shape parameter = .5(.5)4 (MAIN DO Loop 90)
        C
431
                         n = sample size = 5(5)30 (MAIN DQ Loop 80)
         C
432
433
434
435
           IMSL Subroutines:
         c
436
        C
437
         C
            GGUBS - generates random numbers uniformly distributed on (0.1)
438
            VSRTA - arranges a set of numbers in ascending order
439
440
441
442
          Calculate:
         c
443
         C
444
              x(j) = (1/r(j)) ** (1/c)
                                      for j = 1, 2, ..., n (from eqn 48)
445
446
447
448
           Output:
                      x = array of n ordered Pareto deviates
449
450
451
452
          Declare Variables:
453
```

```
454
                 common dseed, x, n, c, nc, B, D, ablu, bblu, P, pct, Bsum1, Bxsum1,
455
                        Bxsum2.Bxsm2c.KS.AD.CVM.it.nsiz.nshp.npct,nst,
              1
456
              1
                        KScrit, ADcrit, CVcrit, Y
457
                 real x(30),ablu,bblu,B(30),D,KS(5000,6,8),AD(5000,6,8),
458
                      CVM(5000,6,8),c,nc,Bsum1,Bxsum1,Bxsum2,Bxsm2c,P(30),
459
                      r(30), KScrit(6,8,5), ADcrit(6,8,5), CVcrit(6,8,5),
              1
460
                      Y (5002)
              1
461
                 integer n,npct
462
                 double precision dseed
463
464
            -- Begin DO Loop 10 to Generate n Random Pareto Deviates ---
465
466
                 do 10 j = 1, n
467
         C
468
          C
                     Use IMSL subroutine to generate random numbers:
469
                          call GGUBS (dseed, n,r)
470
         C
471
                     Use eqn 48 to transform them to Pareto deviates:
          C
472
                          x(j) = (1.0/r(j)) * * (1.0/c)
473
474
           10
                 continue
475
         C
476
                 End DO Loop 10 after Generating n Random Deviates
477
                        ** (Completes Step 1 of Figure 6) **
         \Box
478
         C
479
            Use IMSL subroutine to place the deviates in ascending order:
480
                 call vsrta(x,n)
481
                         ** (Completes Step 2 of Figure 6) **
         C
482
         c
483
                  return
484
                 end
485
         C
486
487
                                END SUBROUTINE PARDEV
488
```

い。原理の研究というでは、一般の意味のでは、

```
Subroutine BXVALS
489
490
491
         C##
                                                                          **
492
         C**
                    BEGIN
                                 SUBROUTINE
                                                        BXVALS
493
         C##
                                                                          **
         494
495
496
            Ref: Appendix A, Fig. 6, Step 3.
         \boldsymbol{\mathsf{c}}
497
         C .
         498
499
            Purpose: For a given sample size n, calculate the B values
500
                      used to find the BLUEs of location and scale. Also
501
         c
                      find the sum of the first n-1 values of B(i). Then,
502
         C
                      compute the three values equal to the sums of the
503
                      first n-1, the first n-2, and (for c = .5, 1, or 2)
504
         c
505
                      the first n - 2/c values of B(i) \times (i).
         c
506
507
508
509
                         c = shape parameter
            Variables:
510
         C
                         n = sample size
                         x = array containing n ordered Pareto deviates
511
         C
                         B = array containing n values of B
512
         C
                     Bsum1 = sum of B(i) values for i = 1, 2, ..., (n-1)
513
          C
                    Bxsum1 = sum of B(i)x(i) for i = 1,2,...,(n-1)
514
          c
                    Bxsum2 = sum of B(i)x(i) for i = 1,2,...,(n-2)
515
          C
                    Bxsm2c = sum of B(i)x(i) for i = 1,2,...,(n-2/c)
516
          \overline{\phantom{a}}
517
          c
513
519
          \boldsymbol{\mathsf{c}}
                      c = shape parameter = .5(.5)4 (from MAIN DO Loop 90)
520
            Input:
          C
                      n = sample size = 5(5)30 (from MAIN DO Loop 80)
521
          C
522
                      nc = n‡c
                                (from MAIN program)
          C
                       x = ordered Pareto deviates (from PARDEV)
523
          C
524
          c
525
526
527
            Calculate:
          C
528
          C
                    B(i) = [1 - 2/c(n-i+1)] * B(i-1)
                                                        (ean 29)
529
          C
530
          c
                   Bsum1 = B(1) + B(2) + ... + B(n-1)
531
          c
532
          C
                  Bxsum1 = B(1)*x(1) + ... + B(n-1)*x(n-1)
533
          C
534
          C
                  Bxsum2 = B(1)*x(1) + ... + B(n-2)*x(n-2)
535
          C
536
          C
                  Bxsm2c = B(1)*x(1) + ... + B(n-2/c)*x(n-2/c)
537
538
539
540
```

C

```
541
          c
              Output:
542
          C
                         B = array containing n values of B
543
                    Bsum1 = sum of first (n-1) B values
          C
544
          C
                   Bxsum1 = sum of first (n-1) B*x values
545
          c
                   Bxsum2 = sum of first (n-2) Btx values
546
                   Bxsm2c = sum of first (n-2/c) B*x (if 2/c is integer)
          C
547
548
549
          C
550
             Declare Variables:
551
          C
                   common dseed, x, n, c, nc, B, D, ablu, bblu, P, pct, Bsumi, Bxsumi,
552
553
                1
                           Bxsum2, Bxsm2c, KS, AD, CVM, it, nsiz, nshp, npct, nst,
554
                1
                           KScrit, ADcrit, CVcrit, Y
555
                   real x (30), ablu, bblu, B (30), D, KS (5000, 6, 8), AD (5000, 6, 8),
556
                         CVM (5000, 6, 8), c, nc, Bsum1, Bxsum1, Bxsum2, Bxsm2c, P(30),
557
                         KScrit(6,8,5), ADcrit(6,8,5), CVcrit(6,8,5), Y(5002)
558
                   integer n
559
                   double precision dseed
560
561
              Calculate the first B value (eqn 25):
562
          C
563
                   B(1) = 1.0 - 2.0/nc
564
          C
565
          c --- Begin DO Loop 10 to Find the 2nd thru nth B values ---
566
          C
                   do 10 j = 2,n
567
568
                       B(j) = B(j-1) * (1.0 - (2.0/(c*(n-j+1))))
569
             10
                   continue
570
          C
571
          C
                 --- End DO Loop 10 ---
572
          C
573
                   Bsum1 = 0
574
          C
              -- Begin DO Loop 20 to Sum the First n-1 Values of B
575
          C
576
577
                   do 20 k=1, (n-1)
578
                       Bsum1 = Bsum1 + B(k)
579
             20
                   continue
580
          C
581
                 --- End DO Loop 20 ---
582
          C
583
                   Bxsum1 = 0
584
585
             --- Begin DO Loop 30 to Sum the First n-1 Values of Bx ---
           C
586
587
                   do 30 l=1,(n-1)
588
                       Bxsum1 = Bxsum1 + (B(1)*x(1))
589
             30
                   continue
590
          C
591
                 --- End DO Loop 30 -
          C
592
          c
```

```
593
               Bxsum2 = Bxsum1 - (B(n-1)*x(n-1))
594
        C
595
        c --- Find Bxsm2c When 2/c is an Integer (c=.5, 1, or 2) ---
596
597
               Bxsm2c = 0
598
599
               if (c .eq. 1.0) then
                  Bxsm2c = Bxsum2
600
601
                else if (c .eq. 2.0) then
602
                  Bxsm2c = Bxsum1
                else if (c .eq. 0.5) then
603
                  Bxsm2c = Bxsum2 - (B(n-3)*x(n-3)) - (B(n-2)*x(n-2))
604
605
                end if
606
607
               return
608
                end
609
610
611
                             END SUBROUTINE BXVALS
         612
```

```
613
                Subroutine BLCLE2
614
         615
        rii.
616
        C**
                  BEGIN
                              SUBROUTINE
                                                  BLCLE 2
                                                                   **
        C**
617
                                                                   XX.
618
         619
620
           Ref: Appendix A, Figure 6, Step 3.
621
622
623
        c
624
           Purpose: Given an ordered sample of size n and specified shape
625
                    c<=2, calculate the BLUEs of location a and scale b.</pre>
        C
626
         c
627
         628
629
           Variables:
         C
630
         c
                     x = array containing n ordered Pareto deviates
631
         C
                     c = shape parameter
632
         C
                     n = sample size
                     B = array of B values used to calculate the BLUEs
633
         c
634
                    nc = product of n and c
         C
635
                 Coef1 = coefficient used to compute BLUE of location a
         c
636
                 Coef2 = coefficient used to compute BLUE of location a
         c
637
                 Coef3 = coefficient used to compute BLUE of scale b
         C
638
                 Bxsum2 = sum of B(i)*x(i) terms for i = 1, ..., n-2
639
                B \times sm2c = sum of B(i) \times x(i) terms for i = 1,...,n-2/c
         c
640
                  ablu = BLUE of the location parameter a
         C
641
                  bblu = BLUE of the scale parameter b
         C
642
         C
                     U = value used to compute BLUEs when c = 1.5
643
                  Termi = terms used to compute U (i=1,2,3)
644
         645
646
         C
647
                     x = array of n ordered Pareto deviates (from PARDEV)
         C
           Input:
648
         C
                     c = shape parameter = 0.5, 1.0, 1.5, or 2.0
                     n = sample size = 5(5)30 (from MAIN DD Loop 80)
649
         c
550
         C
                    nc = n*c (from MAIN program)
651
                     B = array containing n values of B (from BXVALS)
652
                 Bxsum2 = sum of first n-2 values of B (from BXVALS)
653
                 Bxsm2c = sum of first n-2/c values of B (from BXVALS)
654
         C=46488434682346436664446448842124485523658468456245523552362565355
655
656
657
           Calculate (if c = 0.5, 1, or 2):
658
659
         C
                  Coef1 = [(c+1)*(c+2)] / [(nc-2)*(nc-c-2)]
660
                 Coef2 = (nc-2) / (c+2)
         C
661
         C
662
                  ablu = x(1) - Coef1 * [Bxsm2c - (Coef2*x(1))] (eqn 34)
         C
663
                  bblu = (nc-1) * [x(1) - ablu]
         (ean 35)
664
         C
```

```
665
667
            Calculate (if c = 1.5):
668
         c
669
         c
                  Term1 = (nc-2) * (nc-c-2)
670
         c
                  Term2 = nc * (c-2) * B(n-1)
671
         c
                  Term3 = (nc-1) * (c+2)
672
                  Coef3 = [(nc-1)/nc] * (nc-2-U)
         C
673
         C
                      U = (Term1 - Term2) / Term3
674
         c
675
                   ablu = x(1) - bblu / (nc-1)
                                                 (eqn 37)
         \subset
                   bblu = (1/U) * [(c+1)*(Bxsum2) + (2c-1)*B(n-1)*x(n-1)
676
         c
677
                          - Coef3 * \times (1)]
                                             (ean 38)
         679
681
            Output:
682
         C
                   ablu = BLUE of location parameter a
                   bblu = BLUE of scale parameter b
683
         685
687
            Declare Variables:
688
689
                 common dseed, x, n, c, nc, B, D, ablu, bblu, P, pct, Bsum1, Bxsum1,
690
              1
                       Bxsum2,Bxsm2c,KS,AD,CVM,it,nsiz,nshp,npct,nst,
691
              1
                       KScrit, ADcrit, CVcrit, Y
                 integer n
692
693
                 real x(30), ablu, bblu, B(30), D, c, nc, Bsum1, Bxsum1, Bxsum2,
                     Bxsm2c,P(30),Term1,Term2,Term3,Coef1,Coef2,Coef3,U,
694
695
                     KScrit(6,8,5), ADcrit(6,8,5), CVcrit(6,8,5), Y(5002)
                 double precision dseed
696
697
         C
                 if ((c.eq.0.5) .or. (c.eq.1.0) .or. (c.eq.2.0)) then
698
699
                     Coef1 = ((c+1.0)*(c+2.0)) / ((nc-2.0)*(nc-c-2.0))
700
                     Coef2 = (nc-2.0) / (c+2.0)
                      ablu = x(1) - Coef1 * (Bxsm2c - (Coef2*x(1)))
701
                      bblu = (nc-1.0) * (x(1) - ablu)
702
703
704
                 else if (c .eq. 1.5) then
705
                     Term1 = (nc-2.0) * (nc-c-2.0)
706
                     Term2 = nc * (c-2.0) * B(n-1)
707
                     Term3 = (nc-1.0) * (c+2.0)
708
                         U = (Term1 - Term2) / Term3
709
                     Coef3 = ((nc-1.0)/nc) * (nc-2.0-U)
710
                      bblu = (1.0/U) *((c+1.0) * (Bxsum2)
                            + (2.0 \pm c - 1.0) \pm B(n-1) \pm x(n-1) - Coef3 \pm x(1))
711
              1
712
                      ablu = x(1) - (bblu / (nc-1.0))
713
         C
                 end if
714
715
                 return
716
717
                 end
718
         C
719
                        720
                              END SUBROUTINE BLCLE2
721
```

```
722
               Subroutine BLCGT2
723
        724
        C##
725
        C**
                 BEGIN
                            SUBROUTINE
                                                BLCGT2
                                                               **
726
        C**
                                                               **
727
        728
729
           Ref: Appendix A, Figure 6, Step 3.
730
731
        732
        C
733
           Purpose: Given an ordered sample of size n and a specified
        C
734
                   shape c > 2, calculate the best linear unbiased
        c
735
                   estimates (BLUEs) of location and scale.
        C
736
        c
737
        738
739
           Variables: x = array containing n ordered Pareto deviates
740
        Ç
                     c = shape parameter
741
                     n = sample size
        C
742
                    nc = product of n and c
        C
743
                     B = array of B values used to calculate the BLUEs
        C
744
                 Bsum1 = sum of B(i) terms for i = 1, ..., n-1
        c
745
                 Bxsum1 = sum of B(i) *x(i) terms for i = 1, ..., n-1
        C
746
                     D = value used to calculate the BLUEs
        C
747
                    YV = value used to calculate the BLUEs
        C
748
                  ablu = BLUE for location parameter a
        C
749
                  bblu = BLUE for scale parameter b
        C
750
        c
751
        c=
752
        C
753
        C
           Input:
                     x = array of ordered Pareto deviates (from PARDEV)
754
        C
                     c = shape parameter = 2.5, 3.0, 3.5, or 4.0
755
        C
                     n = sample size = 5(5)30 (from MAIN DO Loop 80)
756
        C
                    nc = n*c (from MAIN Program)
757
                     B = array of B values (from BXVALS)
        c
                  Bsum1 = sum of first (n-1) B values (from BXVALS)
758
        c
759
                 Bxsum1 = sum of first n-i B*x values (from BXVALS)
760
761
762
        C
763
        c Calculate:
764
        C
765
                  D = [(c+1) * Bsum1] + [(c-1) * B(n)]
        C
                                                          (egn 21)
766
        C
767
                 YV = (c+1)*Bxsum1 + (c-1)*B(n)*x(n) - D*x(1) (egn 22)
        c
768
        C
769
                ablu = x(1) - YV/[(nc-1)*(nc-2) - D*nc]
        C
                                                          (egn 17)
770
        c
771
        c
                bblu = (nc-1) * [ x(1) - ablu ]
                                                          (egn 18)
772
773
```

```
774
775
                       ablu = BLUE for location a
         c
            Output:
776
                       bblu = BLUE for scale b
         c
777
         C
778
         C=
779
         C
780
         c
            Declare Variables:
781
782
                 common dseed, x,n,c,nc,B,D,ablu,bblu,P,pct,Bsumi,Bxsumi,
783
              1
                        Bxsum2,Bxsm2c,KS,AD,CVM,it,nsiz,nshp,npct,nst,
784
              1
                        KScrit, ADcrit, CVcrit, Y
785
                 integer n
786
                 real x(30),ablu,bblu,B(30),D,KS(5000,6,8),AD(5000,6,8),YV,
787
                      CVM(5000,6,8),c,nc,Bsum1,Bxsum1,Bxsum2,Bxsm2c,P(30),
788
              1
                      KScrit(6,8,5), ADcrit(6,8,5), CVcrit(6,8,5), r(30).
789
                      Y (5002)
790
                 double precision dseed
791
         c
792
                    D = ((c+1.0) * Bsumi) + ((c-1.0) * B(n))
793
                    YV = ((c+1.0)*Bxsum1) + ((c-1.0)*B(n)*x(n)) - (D*x(1))
794
                    ablu = x(1) - YV/((nc-1.0)*(nc-2.0) - (D*nc))
795
                    bblu = (nc-1.0) * (x(1) - ablu)
796
         C
797
                 return
798
                 end
799
800
801
                               END SUBROUTINE BLCGT2
802
```

```
803
               Subroutine HYPCDF
804
        805
        C**
        C##
806
                 BEGIN
                            SUBROUTINE
                                                HYPCDF
                                                                 **
807
        C**
                                                                 **
808
        809
810
        c Ref: Appendix A. Figure 6, Step 4.
811
812
813
        C
814
           Purpose: Given an ordered sample of size n, a specified
815
                    shape c, and the BLUEs of location a and scale b,
        C
816
                    compute the hypothesized Pareto distribution
        C
817
                    function P(i) for i = 1, 2, ..., n.
        C
818
819
820
        C
821
           Variables:
        C
822
                       x = array containing n ordered Pareto deviates
        c
823
        C
                       n = sample size
824
        C
                       c = shape parameter
825
                     ablu = BLUE of location a
        C
                     bblu = BLUE of scale b
826
        C
827
                       P = array containing n points of the
        C
828
                           hypothesized Pareto CDF
829
        C
830
        831
832
           Input:
        C
833
                 x = array of n ordered Pareto deviates (from PARDEV)
        C
834
        C
                 c = shape parameter = .5(.5)4 (from MAIN DO Loop 90)
835
        C
                 n = \text{sample size} = 5(5)30 (from MAIN DO Loop 80)
836
        C
               ablu = BLUE of location a (from BLCLE2 or BLCGT2)
837
               bblu = BLUE of scale b (from BLCLE2 or BLCGT2)
838
839
840
        C
841
         c Calculate:
842
        C
843
              P(i) = 1 - [1 / [1 + (x(i) - ablu)/bblu]] **c
         \mathbf{c}
                                                          (ean 40)
844
845
846
847
        c Output: P = array of n points of the hypothesized CDF
848
849
850
851
        c Declare Variables:
```

```
852
         C
                 common dseed.x.n,c,nc,B,D,ablu,bblu,P,pct,Bsum1,Bxsum1.
853
854
              1
                       Bxsum2, Bxsm2c, KS, AD, CVM, it, nsiz, nshp, npct, nst,
855
              1
                       KScrit, ADcrit, CVcrit, V
856
                 integer n
                 real x(30),ablu,bblu,B(30),D,KS(5000,6,8),AD(5000,6,8),
857
                     CVM(5000,6,8),c,nc,Bsum1,Bxsum1,Bxsum2,Bxsm2c,P(30),
858
859
                     KScrit(6,8,5), ADcrit(6,8,5), CVcrit(6,8,5), r(30),
                     Y (5002)
860
                 double precision dseed
861
862
         C
863
                 do 10 i = 1, n
                    P(i) = 1.0 - (1.0 + (x(i) - ablu)/bblu) ** (-c)
864
865
           10
                 continue
866
         c
867
                 return
868
                 end
869
         c
870
         C=
871
                             END SUBROUTINE HYPCDF
         872
```

```
873
               Subroutine TESTAT
874
        875
        C**
876
        C**
                             SUBROUTINE
                                                 TESTAT
                  BEGIN
                                                                 **
877
        C**
                                                                 11
878
        _**********************************
879
880
           Ref: Appendix A. Figure 6. Step 5.
881
        C
882
        884
        C
           Purpose:
                   Given a sample size n, and the hypothesized Pareto
885
                   distribution function P(i), compute values of the
        c
886
        c
                   test statistics of the modified K-S, A-D, and CVM
887
                    goodness-of-fit tests.
        _
889
        891
           Variables:
        C
892
        C
                    n ≈ sample size
893
        ¢
                  nshp = shape parameter counter (8 values, 1-8)
894
        C
                  nsiz = sample size counter (6 values, 1-6)
895
        c
                    it = iteration counter (1-5000)
896
        C
                    P = array of n values of the hypothesized Pareto CDF
897
        C
898
                   DP = positive differences between EDF and CDF points
        C
899
        C
                   DM = negative differences between EDF and CDF points
900
        C
                 DPLUS = maximum positive difference (largest DP value)
901
        c
                DMINUS = maximum negative difference (largest DM value)
902
        C
                   KS ≈ values of the modified K-S test statistic
903
        C
904
        C
                   AL = value used to calculate the A-D test statistic
905
        C
                   AM = value used to calculate the A-D test statistic
906
        ¢
                   AN = AL + AM
907
        c
                   AAA = values to be summed for A-D test statistic
908
        C
                  SAAA = sum of AAA values
909
                    AD = values of the modified A-D test statistic
        C
910
911
        c
                   ACV = squared quantities in the C-VM formula
912
                  SACV = sum of the ACV values
        C
913
                   CVM = values of the modified C-VM test statistic
        C
915
        917
        \boldsymbol{\epsilon}
           Inputs
918
        \subset
                  n = sample size = 5(5)30 (from MAIN DO Loop 80)
919
                  P = array of n values of hypothesized CDF (from HYPCDF)
        c
920
                 it = iteration counter (from MAIN Do Loop 60)
921
               nsiz = sample size counter (from MAIN DO Loop 80)
922
               nshp = shape parameter counter (from MAIN DO Loop 90)
924
           926
           Calculations for K-S test statistic (eqns 41 & 42):
927
928
                    DP(i) = ABS[(i/n) - P(i)]
        C
929
                    DM(i) = ABS[P(i) - (i-1)/n]
        \subset
930
        C
                    DPLUS = max [ DP(i) ] for i=1,2,...,n
931
```

```
732
                        DMINUS = max [ DM(i) ] for i=1,2,...,n
          C
933
          C
934
          c
                             KS = max (DPLUS, DMINUS)
935
          c
936
          C.
937
          c
938
          C
              Calculations for A-D test statistic (eqn 43):
939
          C
940
          C
                          AL(j) = ln(P(j))
941
          C
                         AM(j) = In (1 - P(n+1-j))
942
                         AN(j) = AL(j) + AM(j)
          c
943
          c
944
                        AAA(j) = (2*j - 1) * AN(j)
          c
945
                           SAAA = AAA(1) + AAA(2) + ... + AAA(n)
          C
946
          C
947
                             AD = -n - (1/n) * SAAA
          c
948
949
950
          c
951
             Calculations for C-VM test statistic (eqn 44):
952
          C
953
                        ACV(k) = [P(k) - (2*k - 1)/(2*n)]**2
          C
                           SACV = ACV(1) + ACV(2) + ... + ACV(n)
954
          C
955
          c
956
                            CVM = (1/(12*n)) + SACV
          C
957
          c
958
          C
959
960
961
          C
              Declare Variables:
962
963
                   common dseed, x, n, c, nc, B, D, ablu, bblu, P, pct, Bsumi, Bxsumi,
964
                1
                           Bxsum2,Bxsm2c,KS,AD,CVM,it,nsiz,nshp,npct,nst,
965
                1
                           KScrit, ADcrit, CVcrit, Y
966
                   integer n,nsiz,nshp,it
967
                   real x(30),ablu,bblu,B(30),D,KS(5000,6,8),AD(5000,6,8),
968
                1
                        CVM(5000,6,8),c,nc,Bsum1,Bxsum1,Bxsum2,Bxsm2c,P(30),
969
                         KScrit(6,8,5), ADcrit(6,8,5), CVcrit(6,8,5), r(30),
                1
970
                1
                         DP(30), DM(30), DPLUS, DMINUS, AL(30), AM(30),
971
                         AN(30), AAA(30), SAAA, ACV(30), SACV, Y(5002)
972
                   double precision dseed
973
           C
974
                   DPLUS = 0
975
                   DMINUS = 0
976
           c
977
                   do 5 ik = 1.30
978
                       DP(ik) = 0
979
                      DM(ik) = 0
980
             5
                   continue
981
982
                     Compute the K-S Test Statistic (eqns 41 % 42): ----
           \subset
983
           C
```

```
984
                  do 10 i = 1, n
985
                      DP(i) = ABS((i/real(n)) - P(i))
986
                      DM(i) = ABS(P(i) - (i-1)/real(n))
987
            10
                  continue
988
989
                  DPLUS = MAX(DP(1),DP(2),DP(3),DP(4),DP(5),DP(6),DP(7),
                            DP(8),DP(9),DP(10),DP(11),DP(12),DP(13),DP(14),
990
991
                           DP(15), DP(16), DP(17), DP(18), DP(19), DP(20),
                1
992
                            DP(21), DP(22), DP(23), DP(24), DP(25), DP(26),
                1
993
                1
                            DP(27),DP(28),DP(29),DP(30))
994
           c
                  DMINUS = MAX(DM(1),DM(2),DM(3),DM(4),DM(5),DM(6),DM(7),
995
996
                            DM(8),DM(9),DM(10),DM(11),DM(12),DM(13),DM(14),
                1
997
                1
                            DM(15), DM(16), DM(17), DM(18), DM(19), DM(20),
998
                1
                            DM(21), DM(22), DM(23), DM(24), DM(25), DM(26),
999
                1
                            DM(27),DM(28),DM(29),DM(30))
1000
           C
1001
                  KS(it.nsiz.nshp) = MAX(DPLUS.DMINUS)
1002
           C
1003
                       Compute the A-D Test Statistic (eqn 43):
           C
1004
           C
1005
                   SAAA = 0
1006
           C
                   do 20 j = 1.n
1007
1008
1009
                       AL(j) = log(P(j))
                       AM(j) = log (1.0 - P(n+1-j))
1010
                       AN(j) = AL(j) + AM(j)
1011
1012
                       AAA(j) \approx (2.0*j - 1.0) * AN(j)
1013
                       SAAA = SAAA + AAA(i)
1014
1015
             20
                   continue
1016
           c
1017
                   AD(it,nsiz,nshp) = -n - (1.0/real(n)) * SAAA
1018
1019
                       Compute the C-VM Test Statistic (eqn 44):
1020
           C
                   SACV = 0
1021
1022
           c
1023
                   do 30 k = 1.n
                       ACV(k) = (P(k) - (2.0*k - 1.0)/(2.0*real(n)))**2
1024
1025
                       SACV = SACV + ACV(k)
1026
             30
                   continue
1027
           C
1028
                   CVM(it,nsiz,nshp) = SACV + (1.0/(12.0*real(n)))
1029
           C
1030
                   return
1031
                   and
1032
1033
1034
                                 END SUBROUTINE TESTAT
           1035
```

```
1036
                  Subroutine CRTVAL
1037
          1038
          C**
                                                                         **
1039
          C**
                     BEGIN
                                 SUBROUTINE
                                                       CRTVAL
                                                                         **
1040
          C**
                                                                         **
1041
          1042
1043
             Ref: Appendix A, Figure 6, Step 7.
1044
1045
1046
          C
1047
            Purpose:
          C
1048
          c
1049
                  Given a set of 5000 values of test statistics from the
          C
1050
                  modified Kolmogorov-Smirnov (K-S). Anderson-Darling (A-D).
1051
          c
                  or Cramer-von Mises (C-VM) test, select critical values
1052
                  by using median ranks plotting positions to compute
          C
1053
                  specified percentile levels.
1054
1055
1056
          C
1057
             Variables:
          c
1058
          C
                        c = shape parameter
1059
          C
                        n = sample size
1060
                      pct = percentile value
          c
1061
          c
                     nshp = shape parameter counter (1: c=.5; 2: c=1.0;
1062
                            3: c=1.5; 4: c=2.0; 5: c=2.5; 6: c=3.0;
          C
1063
                            7: c=3.5; 8: c=4.0)
          C
1064
                     nsiz = sample size counter (1: n=5 or 6; 2: n=10;
          C
1065
                            3: n=15; 4: n=20; 5: n=25; 6: n=30)
          C
1066
                     npct = percentile counter (0: pct=0; 1: pct=.80;
          C
1067
          C
                            2: pct=.85; 3: pct=.9; 4: pct=.95; 5: pct=.99)
1068
          c
                      nst = total number of statistics used
1069
          C
                       it = iteration counter (5000 repetitions required)
1070
          C
                       KS = 3D array of 5000 modified K-S test statistics
1071
                      KS1 = 1D array of 5000 K-S test statistics
          C
1072
                      CVM = 3D array of 5000 modified C-VM test statistics
          ¢
1073
                      CV1 = 1D array of 5000 C-VM test statistics
          C
1074
          C
                       AD = 3D array of 5000 modified A-D test statistics
1075
          c
                       AD1 = 1D array of 5000 A-D statistics
1076
          C
                     STAT = 1D array of test stats (KS, AD, or CVM)
1077
          c
                    KScrit = array of critical values for the K-S test
1078
          c
                   CVMcrit = array of critical values for the C-VM test
1079
                    ADcrit = array of critical values for the A-D test
          C
1080
          C
                     CRIT = either the KS. AD. or CVM critical value array
1081
          C
                         Y = array containing 5002 plotting positions
1082
          c
                     slpm = array of slopes used to find critical values
1083
          c
                        bi = array of intercepts used to find critical vals
1084
1085
1086
          _
1087
            Input:
          c
```

```
1088
                                                     Y = array of plotting positions (MAIN DO Loop 10)
1089
                                                      c = shape parameter (from MAIN DO Loop 90)
                      C
1090
                                                      n = sample size (from MAIN DO Loop 80)
                      C
1091
                                               nshp = shape parameter counter (from MAIN DO Loop 90)
                      C
1092
                                               nsiz = sample size counter (from MAIN DO Loop 80)
1093
                                               npct = percentile counter (from MAIN DO Loop 70)
                      C
1094
                                                  nst = number of test statistics used (from MAIN Prog)
                      c
1095
                                                   KS = array of 5000 K-S test statistics (from TESTAT)
                      C
1096
                                                  CVM = array of 5000 C-VM test stats (from TESTAT)
1097
                                                    AD = array of 5000 A-D test statistics (from TESTAT)
                      C
1098
1099
1100
1101
                             IMSL Subroutine: VSRTA - orders the test statistic values
1102
                       C=44=2=772,0 + 3737,0 + 374,0 + 44=8 + 840 + 820 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420 + 420
1103
1104
1105
                             Calculate Endpoints of Test Statistics (Egns 52 - 57):
1106
1107
                                              slpm(0) = (Y(2) - Y(1)) / (STAT(2) - STAT(1))
                       C
                                                  bi(0) = Y(1) - slpm(0) * STAT(1)
1108
                       c
1109
                                              STAT(0) = max ( 0, -bi(0)/slpm(0) )
                       C
1110
                                              slpm(6) = (Y(5000) - Y(4999))/(STAT(5000) - STAT(4999))
1111
                       c
1112
                                                  bi(6) = Y(4999) - slpm(6) * STAT(4999)
                       C
                                              STAT(6) = (1.0 - bi(6)) / slpm(6)
1113
1114
1115
1116
1117
                             Calculate Critical Values (Eqns 58 - 60):
1118
                       C
1119
                                        slpm(npct) = (Y(j+1) - Y(j)) / (STAT(j+1) - STAT(j))
                       C
                                           bi(npct) = Y(j) - slpm(npct) * STAT(j)
1120
1121
                                        CRIT(npct) = (pct - bi(npct)) / slpm(npct)
1122
1123
1124
                       C
1125
                             Output:
                       c
1126
                       C
1127
                                  KScrit - array of critical values for modified K-S test
1128
                                  ADcrit - array of critical values for modified A-D test
                       C
1129
                                  CVcrit - array of critical values for modified C-VM test
1130
                        1131
1132
1133
                             Declare Variables:
1134
 1135
                                        common dseed, x, n, c, nc, B, D, ablu, bblu, P, pct, Bsum1, Bxsum1,
1136
                                  1
                                                       Bxsum2, Bxsm2c, KS, AD, CVM, it, nsiz, nshp, npct, nst,
 1137
                                                       KScrit, ADcrit, CVcrit, Y
 1138
                                        integer n.nsiz,nshp,it,npct,nst,ntest
 1139
                                        real \times (30), ablu, bblu, B(30), D, KS(5000, 6, 8), AD(5000, 6, 8),
```

```
1140
                         CVM(5000, 6, 8), c, nc, Bsum1, Bxsum1, Bxsum2, Bxsm2c, P(30),
1141
                         KScrit(6,8,5), ADcrit(6,8,5), CVcrit(6,8,5), r(30),
1142
                 1
                         Y(5002), STAT(5002), CRIT(6,8,7), slpm(7), bi(7), pct,
1143
                         KS1 (5000), CV1 (5000), AD1 (5000)
1144
                    double precision dseed
1145
           C
                    if (npct .eq. 1) pct = .80
1146
1147
                    if (npct .eq. 2) pct = .85
1148
                    if (npct .eq. 3) pct = .90
1149
                    if (npct .eq. 4) pct = .95
1150
                    if (npct .eq. 5) pct = .99
1151
           C
1152
                  ** Store the 3 Sets of 5000 Test Stats into 1D Arrays: **
           C
1153
           C
1154
                   do 16 ncnt = 1.nst
                      KS1(ncnt) = KS(ncnt,nsiz,nshp)
1155
1156
                      AD1(ncnt) = AD(ncnt, nsiz, nshp)
1157
                      CV1(ncnt) = CVM(ncnt,nsiz,nshp)
1158
              16
                   continue
1159
           C
                  ** Use IMSL Subroutine to Order the Test Statistics: **
1160
           C
1161
                      Call VSRTA(KSi,nst)
1162
                            print*,'ORDERED KS STATISTICS FROM CRTVAL:'
1163
           C
                             print*,'n=',n,' c=',c
1164
           c
                             do 2 jks = 1,nst
1165
           C
1166
                                print*, 'KS STAT =', KS1(jks)
           C
1167
              2
           C
                             continue
1168
           C
1169
                      Call VSRTA(AD1, nst)
1170
                            print*.'ORDERED AD STATISTICS FROM CRTVAL:'
           c
                            print*,'n=',n,' c='.c
1171
           C
1172
           C
                             do 4 jad = 1.nst
1173
                                print*, 'AD STAT =', AD1(jad)
           C
1174
                            continue
           C
1175
            C
1176
                      Call VSRTA(CV1,nst)
1177
           C
                             print*,'ORDERED CVM STATISTICS FROM CRTVAL:'
                             print*,'n=',n,' c=',c
1178
           C
1179
           c
                             do 6 jcv = 1,nst
1180
                                print*,'CV STAT =',CV1(jcv)
            c
1181
           C
                             continue
1182
            C
1183
            c --- Begin DO Loop 20 to Rotate Through KS, AD, and CVM ---
1184
           C
1185
                  do 20 ntest = 1.3
1186
1187
                        Begin DO Loop 30 for 5000 Data Points
            C
1188
            c
1189
                     da 30 j = 1, nst
1190
                         if (ntest .eq. 1) then
```

```
1192
                           STAT(j) = KS1(j)
1193
                       else if (ntest .eq. 2) then
                           STAT(j) = AD1(j)
1194
1195
                       else if (ntest .eq. 3) then
1196
                           STAT(i) = CV1(i)
1197
                       end if
1178
1199
             30
                     continue
1200
          C
                       End DO Loop 30 for 5000 Data Points
1201
          C
1202
          C
1203
                ** Extrapolate Left Endpoint of the Test Statistics: **
          C
1204
          C
1205
                     if (STAT(1) .eq. STAT(2)) then
1206
          C
1207
          C
                        print*, '$$$$$$$$$$$$$$$$$$$$$$$$
1208
          C
                        print*,'TWO LEFT ENDPOINT STATS EQUAL'
1209
                           if (ntest .eq. 1) print*, 'FOR KS TEST'
          C
1210
                           if (ntest .eq. 2) print*, 'FOR AD TEST'
          C
1211
                           if (ntest .eq. 3) print*, 'FOR CVM TEST'
          C
1212
                        print*,'n=',n.' c=',c,' pct=',pct
          C
1213
                        print*,'STAT(1)=',STAT(1)
          C
1214
          C
                        print*, 'STAT(2) = ', STAT(2)
1215
          C
                        1216
          C
                        print*,' '
1217
          C
1218
                        dif0 = STAT(3) - STAT(1)
1219
                              if (dif0 .eq. 0.0) dif0 = .00001
1220
                        slpm(0) = (Y(3) - Y(1)) / dif0
1221
                     el se
1222
                       dif0 = STAT(2) - STAT(1)
1223
                       slpm(0) = (Y(2) - Y(1)) / dif(0)
1224
                     end if
1225
1226
                     bi(0) = Y(1) - slpm(0) * STAT(1)
                     STAT(0) = max(0.0, -bi(0)/slpm(0))
1227
1228
                     print*.' '
1229
                     C
1230
           C
                        if (ntest .eq. 1)print*, 'FOR KS TEST STATISTICS'
1231
                        if (ntest .eq. 2)print*, 'FOR AD TEST STATISTICS'
1232
                        if (ntest .eq. 3)print*, 'FOR CVM TEST STATISTICS'
           C
1233
                      print*,'LEFT ENDPT X(0000) =',STAT(0)
           C
1234
                     print*,'----FIRST X(0001) =',STAT(1)
           ¢
1235
                      print*,'80PCT STAT X(4000) =',STAT(4000)
           C
1236
                     print*,'85PCT STAT X(4250) =',STAT(4250)
           C
1237
                      print*,'90PCT STAT X(4500) =',STAT(4500)
           C
1238
                     print*.'95PCT STAT X(4750) ='.STAT(4750)
           C
1239
                      print*, '99PCT STAT X(4950) =', STAT(4950)
           C
1240
                      print*.'---- LAST X(5000) ='.STAT(5000)
           C
1241
           C
1242
                 ** Extrapolate Right Endpoint of the Test Statistic: **
```

```
1244
                    if (STAT(nst-1) .eq. STAT(nst)) then
1245
           c
                         print*, '$$$$$$$$$$$$$$$$$$$$$$$$$
1246
           C
1247
                         print*, 'TWO RIGHT ENDPOINT STATS EQUAL:'
           C
1248
                            if (ntest .eq. 1) print*, 'FOR KS TEST'
           C
1249
           C
                            if (ntest .eq. 2) print*, 'FDR AD TEST'
1250
                            if (ntest .eq. 3) print*, 'FOR CVM TEST'
           C
                         print*,'n=',n,' c=',c,' pct=',pct
1251
           C
                         print*, 'STAT(4999) = ', STAT(nst-1)
1252
           C
1253
                         print*, 'STAT(5000)=', STAT(nst)
           C
1254
                         C
                         print*, '
1255
           C
1256
           c
                        dif6 = STAT(nst) - STAT(nst-2)
1257
1258
                               if (dif6 .eq. 0.0) dif6 = .00001
                        slom(6) = (Y(nst)-Y(nst-2)) / dif6
1259
1260
                     el se
                        dif6 = STAT(nst) - STAT(nst-1)
1261
1262
                        slpm(6) = (Y(nst)-Y(nst-1)) / dif6
1263
                     end if
1264
1265
                     bi(6) = Y(nst-1) - slpm(6) *STAT(nst-1)
1266
                     STAT(nst+1) = (1.0 - bi(6)) / slpm(6)
1267
                      print*,'RGHT ENDPT X(5001) =',STAT(nst+1)
           C
1268
1269
                 ** Interpolate Critical Values Between Test Stats: **
           C
1270
                    -- Begin DO Loop 50 to Find Max Y(k) < pct: --
1271
           C
1272
                        do 50 \text{ kj} = 1,\text{nst}
1273
1274
                           k = nst + 1 - k_j
1275
1276
                           if (Y(k) .le. pct) then
1277
1278
                     if (STAT(k) .eq. STAT(k+1)) then
1279
                         print*, '$$$$$$$$$$$$$$$$$$$$$$$
1280
           C
1281
                         print*,'TWO ADJACENT STATS EQUAL:'
           C
1282
           C
                            if (ntest .eq. 1) print*, 'FOR KS TEST'
1283
                            if (ntest .eq. 2) print*, 'FOR AD TEST'
           c
1284
           C
                            if (ntest .eq. 3) print*, 'FOR CVM TEST'
                         print*,'n=',n,' c=',c,' pct=',pct
1285
           C
1286
           C
                         print*, 'STAT(k)=', STAT(k)
1287
           C
                         print*, 'STAT(k+1)=', STAT(k+1)
                         1288
           C
1289
           C
                         print*,' '
1290
                        dif = STAT(k+1) - STAT(k-1)
1291
1292
                              if (dif .eq. 0.0) dif = .00001
1293
                        slpm(npct) = (Y(k+1)-Y(k-1)) / dif
1294
                     else
                        dif = STAT(k+1) - STAT(k)
1295
```

```
1296
                        slpm(npct) = (Y(k+1)-Y(k)) / dif
1297
                     end if
1298
           C
1299
                        bi(npct) = Y(k) - slpm(npct) * STAT(k)
1300
                        CRIT(nsiz,nshp,npct)
1301
                                 = (pct-bi(npct))/slpm(npct)
1302
                             GOTO 75
1303
           C
1304
                           end if
1305
1306
             50
                        continue
1307
           C
1308
           C
                      -- End DQ Loop 50 Upon Finding Crit Val --
1309
           C
1310
                     Associate the Critical Values with Test Type: **
           C
1311
1312
             75
                      if (ntest .eq. 1) then
                      KScrit(nsiz,nshp,npct) = CRIT(nsiz,nshp,npct)
1313
                       print*,'n=',n,' ** c=',c,' pct=',pct
1314
           C
                       print*,'CRTVAL KS Crit Val =',KScrit(nsiz,nshp,npct)
1315
           C
1316
                   else if (ntest .eq. 2) then
                      ADcrit(nsiz,nshp,npct) = CRIT(nsiz,nshp,npct)
1317
1318
                       print*, 'CRTVAL AD Crit Val =', ADcrit(nsiz, nshp, npct)
           C
1319
                   else if (ntest .eq. 3) then
1320
                      CVcrit(nsiz,nshp,npct) = CRIT(nsiz,nshp,npct)
1321
                       print*,'CRTVAL CV Crit Val =',CVcrit(nsiz,nshp,npct)
           C
1322
                       print*, ' '
           c
1323
                   end if
1324
1325
             20 continue
1326
           C
1327
           c --- End DO Loop 20 After Rotating Through KS, AD, and CVM ---
1328
1329
                 return
1330
                 end
1331
1332
                          1333
                            END SUBROUTINE CRTVAL
```

APPENDIX B

Computer Program and Subroutines

for Determining Power Values



Fig 7. Procedure for Determining Power Values



Fig 7 (Continued). Procedure for Determining Power Values

<u> Para na agricultura de la cial de la coma de la fina de la coma de la coma de la coma de la coma de la coma</u>

```
c***** Classroom Support Computer (CSC) - VAX 11/785 - VMS 4.1 ****
3
        C*****
                  POWER PROGRAM FOR PARETO GOODNESS-OF-FIT TESTS
5
        6
7
        C**
8
        C**
                 BEGIN
                              POWER
                                           MAIN
                                                     PROGRAM
                                                                     **
9
        C**
                                                                      **
        10
11
12
           Ref: Appendix B. Figure 7.
        C
13
        C
        14
15
        C
16
           Purpose: Test the null hypothesis that a set of sample data
        c
17
              follows the Pareto distribution with hypothesized shape c
        C
18
              against the alternate hypothesis that the data follow some
        c
19
              other distribution. The goals are to:
        c
20
        c
21
                Compare powers of the modified Kolmogorov-Smirnov (K-S),
        \boldsymbol{\mathsf{c}}
22
        C
              Anderson-Darling (A-D), and Cramer-von Mises (C-VM) tests
23
              against the Chi-Square test to determine which test can
        C
24
              best detect a false Pareto distribution hypothesis.
25
        c
26
        C
              2. When the Pareto null hypothesis is true, confirm that
27
              the hypothesis rejection rates under the modified K-S. A-D.
        С
              and C-VM statistics are low enough to satisfy a claimed level
28
        C
29
        C
              of significance.
30
31
        c
              3. Provide extensive commentary to assist novice programmers
32
        C
              to conduct similar power studies in statistical analysis.
33
              Diagnostic print statements have been retained as commentary
        C
7.4
        C
              to contribute to this goal.
35
36
37
38
           Variables:
        c
39
                  dseed = random number seed
        c
40
                  alpha = level of significance (.01 or .05 used here)
        C
41
        c
                      n = sample size
                      c = null-hypothesis Pareto shape parameter
42
        c
43
                   nshp = null-hyp Pareto shape counter (1:c=1.0, 2:c=3.5)
        C
44
                   nalf = significance level counter (1: \alpha = .05, 2: \alpha = .01)
        C
45
                   nsiz = sample size counter (1:n=5, 2:n=15, 3:n=25)
        C
46
                   nalt = alternative distribution counter (8 in all)
        C
47
                   nrep = number of repetitions to be used
        C
48
                     it = iteration counter (5000 repetitions required)
        C
49
        C
                     KS = array of values of modified K-S test statistic
50
        C
                    CVM = array of values of modified C-VM test statistic
51
                     AD = array of values of modified A-D test statistic
        C
52
        c
                     X2 = array of values of Chi-square test statistic
```

```
nrKS = number of hypothesis rejects under the K-S test
54
          C
                      nrAD = number of hypothesis rejects under the A-D test
55
                      nrCV = number of hypothesis rejects under the CVM test
          C
56
                      nrX2 = number of hypothesis rejects under Chi-square
57
58
59
60
          C
             Input:
61
          C
                 nrep = number of repetitions (input at computer terminal)
62
          C
                dseed = random number seed (input at computer terminal)
63
          C
64
65
66
             Subroutines:
          c
67
          C
               PARETO - Generates n random Pareto deviates
68
          C
69
               BXVALS - Calculates B values and summations of B and Bx
          C
70
               BLCLE2 - Finds BLUEs for location and scale when c <= 2
          C
71
          C
               BLCGT2 - Finds BLUEs for location and scale when c > 2
72
          C
               HYPCDF - Computes the Hypothesized Pareto CDF
73
               TESTAT - Calculates the K-S, A-D, and C-VM test statistics
          C
74
               COMPAR - Compares test stats vs. crit vals and counts rejects
75
76
77
78
             IMSL Subroutines:
79
          C
80
                GGWIB - Generates random Weibull deviates
          C
                GGAMR - Generates random Gamma deviates
81
          C
                GGBTR - Generates random Beta deviates
82
          C
83
          C
                GGEXN - Generates random Exponential Deviates
84
                GGNML - Generates random Normal Deviates
          C
85
          C
                VSRTA - Arranges data in ascending order
86
          c
87
88
89
             Output:
          C
90
          C
91
                KSpwr(nshp,nalf,nsiz,nalt) = power values for K-S test
          C
92
                ADpwr(nshp,nalf,nsiz,nalt) = power values for A-D test
          c
93
                CVpwr(nshp,nalf,nsiz,nalt) = power values for C-VM test
          C
94
                X2pwr(nshp,nalf,nsiz,nalt) = power values for Chi-square
          C
95
96
97
98
             Declare Variables:
99
100
                  common dseed, x, n, c, nc, B, D, ablu, bblu, P, Bsumi, Bxsumi,
101
               1
                           Bxsum2,Bxsm2c,KS,AD,CVM,it,nsiz.nshp,nrep,
102
               1
                           nalt, nalf, nrKS, nrAD, nrCV, nrX2, X2
103
                  integer n.nsiz.nshp,it.nrep,nrKS(2,2,3,8).nrAD(2,2,3,8),
104
                           nrCV(2,2,3,8),nrX2(2,2,3,8)
               1
```

```
105
                           x(25), ablu, bblu, B(25), D, KS(2, 2, 3, 8), AD(2, 2, 3, 8),
                   real
106
                1
                           CVM(2,2,3,8),c,nc,Bsum1,Bxsum1,Bxsum2,Bxsm2c,
107
               1
                           P(25), r(25), alpha, KSpwr(2, 2, 3, 8), ADpwr(2, 2, 3, 8),
108
               1
                           CVpwr(2,2,3,8), X2crit(2,2,3), X2(2,2,3,8),
109
                           X2pwr(2,2,3,8)
110
                   character test(4) #3, altcdf(8) #12
111
                   double precision dseed
112
          C
113
                         test(1) = 'K-S'
114
                         test(2) = 'A-D'
115
                         test(3) = 'CVM'
116
                         test(4) = 'CHI'
117
          C
118
                         altcdf(1) = 'Pareto c=1.0'
119
                         altcdf(2) = 'Pareto c=3.5'
120
                         altcdf(3) = 'Pareto c=2.0'
                         altcdf(4) = 'Weibull'
121
122
                         altcdf(5) = 'Gamma'
123
                         altcdf(6) = 'Beta'
124
                         altcdf(7) = 'Exponential'
125
                         altcdf(8) = 'Normal'
126
127
                 ** Open Output File to Store Computed Power Values: **
128
                         open (unit=7,file='X2ALL',status='new')
129
130
                 ** Number of Repetitions to be Used on Each Run: **
131
                         print*,'The Monte Carlo power analysis will require'
132
                                       5000 repetitions.'
133
                         print*,'Enter the number to be used for this run:'
134
                         read*, nrep
135
          C
                 print*,'Enter random number seed or "1." for default:'
136
137
                 read*,dseed
138
                       if (dseed .eq. 1.) dseed = 123457.d00
139
                 print*,' '
140
                 print*,'STANDBY . . . COMPUTATIONS IN PROGRESS'
141
          C
142
          c --- Begin DO Loop 90 for Null-Hypothesis Pareto Shape c
143
          C
144
                 do 90 nshp = 1,2
145
          C
146
                    if (nshp .eq. 1) then
147
                       c = 1.0
148
                       write(7,51)
149
                       write(7,56)
150
                       write(7,58)
151
                       write(7.62)
152
                    else if (nshp .eq. 2) then
153
                       c = 3.5
154
                       write(7,52)
155
                       write(7.56)
156
                       write(7,59)
```

```
157
                     write(7,62)
158
                  end if
159
         C
160
                --- Begin DO Loop 80 for Alpha Significance Levels ---
         C
161
         C
                  do 80 nalf =1.2
162
143
164
                     if (nalf .eq. 1) then
                        alpha = .05
165
                        write(7,64)
166
167
                     else if (nalf .eq. 2) then
168
                        alpha = .01
                        write(7,66)
169
170
                      end if
171
          c
172
                     write(7,54)
173
                     write(7,74)
174
                     write(7,68)
175
                     write(7,72)
176
                     write(7,76)
177
                     write(7,72)
178
179
                     nsiz = 0
180
181
                   c
                   print*, 'Numbers of Rejects After do 80/Before do 70'
182
          c
183
                   print*,'c =',c,'alpha =',alpha,'n=',n,'CDF: ',altcdf(nalt)
          C
184
                   print*,'KS Rejects = ',nrKS(nshp,nalf,nsiz,nalt)
          c
                   print*,'AD Rejects = ',nrAD(nshp,nalf,nsiz,nalt)
185
          c
186
          c
                   print*,'CV Rejects = ',nrCV(nshp,nalf,nsiz,nalt)
                   187
          c
188
          c
189
          c
                           Begin DO Loop 70 for Sample Sizes
190
          C
                      do 70 \text{ n} = 5.25.10
191
192
          c
193
                         nsiz = nsiz + 1
194
195
                         nc = n * c
196
          c
197
                       -- Begin DO Loop 60 for Alternate CDFs
          C
198
          C
199
                         do 60 nalt = 1,8
200
          c
201
202
                         nrKS(nshp,nalf,nsiz,nalt) = 0
203
                         nrAD(nshp,nalf,nsiz,nalt) = 0
204
                         nrCV(nshp,nalf,nsiz,nalt) = 0
205
                         nrX2(nshp,nalf,nsiz,nalt) = 0
206
          c
207
                         -- Begin DO Loop 40 for Repetitions --
          c
208
```

```
209
                           do 40 it = 1,nrep
210
          C
211
          C
                         ** Perform Step 1 of Figure 7: **
212
213
                        if (nalt .eq. 1) call PARETO
                        if (nalt .eq. 2) call PARETO
214
215
                        if (nalt .eq. 3) call PARETO
216
                        if (nalt .eq. 4) call GGWIB(dseed, 3.5, n, x)
217
                        if (nalt .eq. 5) call GGAMR(dseed, 2., n, 1, x)
218
                        if (nalt .eq. 6) call GGBTR(dseed, 2., 3., n, x)
219
                        if (nalt .eq. 7) call GGEXN(dseed,2.,n,x)
220
                        if (nalt .eq. B) call GGNML(dseed,n,x)
221
          C
222
                         ** Perform Step 2 of Figure 7: **
          C
223
224
                            call VSRTA(x.n)
225
                            call BXVALS
226
          C
227
                            if (c .eq. 1.0) call BLCLE2
228
                            if (c .eq. 3.5) call BLCGT2
229
          C
230
                            call HYPCDF
231
                            call TESTAT
232
          C
233
                         ** Perform Step 3 of Figure 7: **
          C
234
          C
235
                            call COMPAR
236
          C
237
            40
                            continue
238
          C
239
                             End DO Loop 40 for Repetitions
          C
240
                         ** Completes Step 4 of Figure 7 **
          C
241
          C
242
                         ** Perform Step 5 of Figure 7: **
          c
243
          C
244
                     C
245
          C
                     print*, 'Numbers of Rejects Prior to Power Calculation'
246
                     print*,'c =',c,'alpha =',alpha,'n=',n,'nalt=',nalt
          c
247
                     print*,'KS Rejects = ',nrKS(nshp,nalf,nsiz,nalt)
          C
                     print*,'AD Rejects = ',nrAD(nshp,nalf,nsiz,nalt)
248
          C
                     print*,'CV Rejects = ',nrCV(nshp,nalf,nsiz,nalt)
249
          C
                     print*,'X2 Rejects = ',nrX2(nshp,nalf,nsiz,nalt)
250
          C
251
          C
                     print:,'smessemmesmesmesmesmesmes.
252
          C
253
                              KSpwr(nshp,nalf,nsiz,nalt) =
254
                        nrKS(nshp,nalf,nsiz,nalt)/real(nrep)
255
          C
256
                             ADpwr(nshp,nalf,nsiz,nalt) =
257
                        nrAD(nshp,nalf,nsiz,nalt)/real(nrep)
258
259
                             CVpwr(nshp,nalf,nsiz,nalt) =
260
               1
                        nrCV(nshp.nalf.nsiz,nalt)/real(nrep)
```

```
261
262
                              X2pwr(nshp,nalf,nsiz,nalt) =
263
               1
                        nrX2(nshp,nalf,nsiz,nalt)/real(nrep)
264
          C
265
                           print*, **********************************
266
                           print*,' POWER VALUES FROM MAIN PROGRAM'
267
                           print*,' Null-hyp c =',c,'alpha =',alpha
268
                           print*,' n=',n,'
                                               Alternate CDF: ',altcdf(nalt)
269
                            print*,'========================
          C
270
          C
                            print*,' KS Rejects = ',nrKS(nshp,nalf,nsiz,nalt)
                            print*,' AD Rejects = '.nrAD(nshp.nalf.nsiz.nalt)
271
          C
272
                            print*,' CV Rejects = ',nrCV(nshp,nalf,nsiz,nalt)
          C
273
                            print*,' X2 Rejects = ',nrX2(nshp,nalf,nsiz,nalt)
          C
274
          C
                            prints, 'ssessessessessesses'
275
                           print*,' KS Power =',KSpwr(nshp,nalf,nsiz,nalt)
                           print*,' AD Power =',ADpwr(nshp,nalf,nsiz,nalt)
276
                           print*,' CV Power =',CVpwr(nshp,nalf,nsiz,nalt)
277
278
                           print*,' X2 Power =',X2pwr(nshp,nalf,nsiz,nalt)
                           279
280
                           print*,' '
281
282
            60
                          continue
283
          c
284
          C
                         -- End DO Loop 60 for Alternate CDFs --
285
          C
                            ** Completes Step 6 of Figure 7 **
286
          c
287
                              Write Power Results to File
          C
288
          C
289
                         write(7,110),n,test(1),KSpwr(nshp,nalf,nsiz,1),
290
               1
                         KSpwr (nshp, nalf, nsiz, 2), KSpwr (nshp, nalf, nsiz, 3),
291
               1
                          KSpwr (nshp, nalf, nsiz, 4), KSpwr (nshp, nalf, nsiz, 5),
292
               1
                         KSpwr(nshp,nalf,nsiz,6),KSpwr(nshp,nalf,nsiz,7),
293
                          KSpwr (nshp, nalf, nsiz, 8)
294
          C
295
                         write(7,110),n,test(2),ADpwr(nshp,nalf,nsiz,1),
296
               1
                          ADpwr(nshp,nalf,nsiz,2),ADpwr(nshp,nalf,nsiz,3),
297
               1
                          ADpwr (nshp, nalf, nsiz, 4), ADpwr (nshp, nalf, nsiz, 5),
298
               1
                          ADpwr (nshp, nalf, nsiz, 6), ADpwr (nshp, nalf, nsiz, 7),
299
               1
                          ADpwr (nshp, nalf, nsiz, 8)
300
          C
301
                         write(7,110),n,test(3),CVpwr(nshp,nalf,nsiz,1),
302
               1
                         CVpwr (nshp,nalf,nsiz,2), CVpwr (nshp,nalf,nsiz,3),
303
               1
                          CVpwr(nshp, nalf, nsiz, 4), CVpwr(nshp, nalf, nsiz, 5),
304
               1
                         CVpwr (nshp, nalf, nsiz, 6), CVpwr (nshp, nalf, nsiz, 7),
305
               1
                         CVpwr(nshp,nalf,nsiz,8)
306
          C
307
                         write(7,110),n,test(4),X2pwr(nshp,nalf,nsiz,1),
308
               1
                         X2pwr(nshp,nalf,nsiz,2),X2pwr(nshp,nalf,nsiz,3),
309
               1
                          X2pwr(nshp,nalf,nsiz,4),X2pwr(nshp,nalf,nsiz,5),
310
               1
                          X2pwr(nshp,nalf,nsiz,6),X2pwr(nshp,nalf,nsiz,7),
311
               1
                          X2pwr(nshp,nalf,nsiz,8)
```

C

```
write(7,72)
313
314
315
          70
                   continue
316
         C
317
         C
                         End DO Loop 70 for Sample Sizes
                        ** Completes Step 7 of Figure 7 **
318
         C
319
320
           80
                  continue
321
         c
322
         C
                 End DO Loop 80 for Alpha Significance Levels ---
323
                        ** Completes Step 8 of Figure 7 **
         C
324
325
                 write(7,74)
326
327
           90
               continue
328
329
         c --- End DO Loop 90 for Null-Hypothesis Pareto Shape Parameter ---
330
331
         332
         C
333
               Specify Format for Hardcopy Output Data and Headers:
         C
334
           51 format('1',36X,'Table XVII')
335
           52 format('1',35X,'Table XVIII')
336
             format(' ')
337
           54
338
           56 format('0',22X,'POWER TEST FOR THE PARETO DISTRIBUTION')
              format(22X,'Ho: Pareto Distribution at Shape c = 1.0')
339
           58
340
              format(22X,'Ho: Pareto Distribution at Shape c = 3.5')
           59
              format(22X,'Ha: The data follow another distribution')
341
342
              format('0',28X,'Level of Significance
           64
                                                  = .05')
343
          66 format('0',28X,'Level of Significance
344
           68 format(35X,'Alternate Distributions')
345
           72 format(80('-'))
346
           74 format(80('='))
              format(2X,' n',3X,'Test',4X,'Par.1',3X,'Par.2',3X,'Par.3',3X,
347
                    'Weibl',3X,'Gamma',3X,'Beta',4X,
348
                     'Expon',3X,'Norml')
349
350
          110 format(' ', I3, A7, F9.3, 7F8.3)
351
352
              close(7)
353
         c
354
              end
355
356
                             357
                               END MAIN PROGRAM
358
```

```
359
             Subroutine PARETO
360
       361
       C##
362
       C**
              BEGIN
                        SUBROUTINE
                                         PARETO
                                                       **
       C**
363
                                                       XX
364
       365
366
         Ref: Appendix B. Fig 7, Step 1.
367
368
       369
370
         Purpose: For a specified sample size n, generate n random
371
                deviates from a Pareto distribution with parameters of
       C
372
       c
                location, scale, and shape set to specified positive
373
       c
                values.
374
375
376
377
       C
         Variables:
378
       c
                    r = array containing n random numbers
379
                   ac = actual shape parameter of Pareto deviates
380
                    x = array containing n Pareto deviates
381
       C
                    n = sample size
382
                 dseed = random number seed
383
384
       385
386
         Input:
                 dseed = random number seed (from MAIN program)
387
                    n = \text{sample size} = 5.15, or 25 (MAIN DO Loop 70)
388
       C
                  nalt = alternate CDF counter (MAIN DO Loop 60)
389
       c
390
       391
392
         IMSL Subroutines:
       c
393
394
          66UBFS - generates random numbers distrib uniformly on (0.1)
       C
705
          VSRTA - arranges a set of numbers in ascending order
       c
396
       C
397
       398
       C
399
        Calculate:
       C
400
       C
           x(j) = (1/r(j)) ** (1/ac) for j = 1,2,...,n (from eqn 48)
401
       C
402
       c
403
          x(a'.b') = b' * ((x(a,b) - a) / b) + a' (from eqn 50)
       c
404
405
406
407
         Output:
                  x = array of n random Pareto deviates
408
409
       410
```

```
411
            Declare Variables:
412
413
                  common dseed, x, n, c, nc, B, D, ablu, bblu, P, Bsumi, Bxsumi,
414
               1
                          Bxsum2.Bxsm2c.KS.AD.CVM.it.nsiz.nshp.nrep.
415
               1
                          nalt.nalf.nrKS.nrAD.nrCV.nrX2.X2
                  integer n.nsiz.nshp.it.nrep.nrKS(2.2.3.8).nrAD(2.2.3.8),
416
417
                          nrCV(2,2,3,8)
418
                  real
                          \times (25).ablu.bblu.B(25).D.KS(2.2.3.8),AD(2.2.3.8).
419
                          CVM(2,2,3,8),c.nc.Bsum1,Bxsum1,Bxsum2,Bxsm2c.
420
               1
                          P(25).r(25).alpha.KSpwr(2.2.3.8),ADpwr(2.2.3.8),
421
                          CVpwr (2, 2, 3, 8), ac
422
                  double precision dseed
423
          C
424
                    if (nalt .eq. 1) ac = 1.0
425
                    if (nalt .eq. 2) ac = 3.5
426
                    if (nalt .eq. 3) ac = 2.0
427
428
          c--- Begin DO Loop 10 to Generate n Random Pareto Deviates ---
429
430
                  do 10 j = 1, n
431
          C
432
                      Use IMSL subroutine to generate random numbers:
          C
433
                           r(i) = GGUBFS(dseed)
434
          c
435
                      Use eqn 48 to transform them to Pareto deviates
436
                      with location a = 1 and scale b = 1:
437
                           x(j) = (1.0/r(j))**(1.0/ac)
438
          C
439
          c
                      Use eqn 50 to transform to Pareto deviates with
440
                      a = 2. b = 3 for the second alternate CDF:
          C
441
                           if (nalt .eq. 2) x(i) = 3. * x(i) - 1.
442
          C
443
                      Use eqn 50 to transform to Pareto deviates with
          C
444
                      a = 10, b = 5 for the third alternate CDF:
445
                           if (nalt .eq. 3) x(j) = 5. x(j) + 5.
446
447
            10
                  continue
448
449
                 End DO Loop 10 after Generating n Random Deviates
450
451
                  return
452
                  end
453
454
          455
                                 END SUBROUTINE PARETO
456
```

```
457
                Subroutine BXVALS
         458
459
         C**
         C**
460
                   BEGIN
                               SUBROUTINE
                                                     BXVALS
                                                                      **
461
         C**
                                                                      **
462
         C************************
463
464
           Ref: Appendix B, Fig. 7, Step 2.
465
466
467
         C
468
            Purpose: For a given sample size n, calculate the B values
469
                     used to find the BLUEs of location and scale. Also
         C
470
                     find the sum of the first n-1 values of B(i). Then,
         C
471
                     compute the three values equal to the sums of the
         C
472
                     first n-1, the first n-2, and (for hypothesized
473
         c
                     c = .5, 1. or 2) the first n - 2/c values of B(i)x(i).
474
475
476
         C
477
            Variables:
                        c = null-hypothesis shape parameter
         ¢
478
         ¢
                        n = sample size
479
         c
                        x = array containing n ordered deviates
480
         C
                            from an alternate distribution
481
         C
                        B = array containing n values of B
482
                    Bsum1 = sum of B(i) values for i = 1,2,...,(n-1)
         C
483
         c
                    Bxsum1 = sum of B(i)x(i) for i = 1,2,...,(n-1)
484
         C
                    Bxsum2 = sum of B(i)x(i) for i = 1,2,...(n-2)
485
         C
                    B \times sm2c = sum of B(i) \times (i) for i = 1, 2, ..., (n-2/c)
486
487
         488
         C
489
            Input:
                     c = null-hyp shape parameter
                                                  (from MAIN DO Loop 90)
490
                     n = sample size = 5, 15, or 25 (from MAIN DO Loop 70)
         C
491
          c
                               (from MAIN program)
                    nc = n*c
492
                      x = ordered deviates of alternate CDF MAIN)
493
494
495
496
            Calculate:
          C
497
          C
498
                   B(i) = [1 - 2/c(n-i+1)] * B(i-1)
                                                      (ean 29)
          C
499
          C
                  Bsum1 = B(1) + B(2) + ... + B(n-1)
500
          C
501
          C
502
                 Bx = B(1) *x(1) + ... + B(n-1) *x(n-1)
          c
503
                 Bx = B(1) x(1) + ... + B(n-2) x(n-2)
504
          C
505
                 Bx \le 2c = B(1) x(1) + ... + B(n-2/c) x(n-2/c)
506
507
508
```

```
509
          C
510
             Output:
          C
511
                       B = array containing n values of B
          C
                   Bsum1 = sum of first (n-1) B values
512
          C
513
                  Bxsum1 = sum of first (n-1) B*x values
          C
514
                  Bxsum2 = sum of first (n-2) B*x values
          \overline{\phantom{a}}
                  Bxsm2c = sum of first (n-2/c) B*x (if 2/c is integer)
515
          c
516
          C
517
          518
          C
519
             Declare Variables:
520
          c
521
                  common dseed,x,n,c,nc,B,D,ablu,bblu,P,Bsumi,Bxsumi,
522
               1
                           Bxsum2, Bxsm2c, KS, AD, CVM, it, nsiz, nshp, nrep,
523
                           nalt, nalf, nrKS, nrAD, nrCV, nrX2, X2
524
                  integer n.nsiz.nshp,it.nrep,nrKS(2,2,3,8),nrAD(2,2,3,8),
525
               1
                           nrCV(2, 2, 3, 8)
526
                           \times (25), ablu, bblu, B(25), D, KS(2, 2, 3, 8), AD(2, 2, 3, 8),
                  real
527
               1
                           CVM(2,2,3,8),c,nc,Bsum1,Bxsum1,Bxsum2,Bxsm2c,
528
                           P(25),r(25),alpha,KSpwr(2,2,3,8),ADpwr(2,2,3,8),
               1
529
                           CVpwr (2.2.3.8)
530
                  double precision dseed
531
532
             Calculate the first B value (egn 25):
533
534
                  B(1) = 1.0 - 2.0/nc
535
          C
536
          c --- Begin DO Loop 10 to Find the 2nd thru nth B values ---
537
          C
538
                  do 10 \ j = 2.n
539
                     B(j) = B(j-1) * (1.0 - (2.0/(c*(n-j+1))))
540
            10
                  continue
541
          C
542
                 --- End DO Loop 10 ---
          C
543
544
                   Bsum1 = 0
545
546
            --- Begin DO Loop 20 to Sum the First n-1 Values of B ---
547
          C
548
                  do 20 k=1, (n-1)
549
                      Bsum1 = Bsum1 + B(k)
550
            20
                   continue
551
          C
552
                 --- End DO Loop 20 ---
          C
553
          C
554
                   Bxsum1 = 0
555
          ς
556
          c --- Begin DO Loop 30 to Sum the First n-1 Values of Bx ---
557
558
                   do 30 l=1.(n-1)
559
                      Bxsum1 = Bxsum1 + (B(1)*x(1))
560
            30
```

continue

```
561
         C
562
         C
              --- End DO Loop 30 ---
563
         C
564
                Bxsum2 = Bxsum1 - (B(n-1)*x(n-1))
565
         C
566
         c --- Find Bxsm2c When 2/c is an Integer (c=.5, 1, or 2) ---
567
568
                 Bxsm2c = 0
569
570
                 if (c .eq. 1.0) then
571
                   B \times sm2c = B \times sum2
572
                 else if (c .eq. 2.0) then
573
                   B \times sm2c = B \times sum1
574
                 else if (c .eq. 0.5) then
575
                   Bxsm2c = Bxsum2 - (B(n-3)*x(n-3)) - (B(n-2)*x(n-2))
576
                 end if
577
578
                 return
579
                 end
580
581
582
                               END SUBROUTINE BXVALS
583
```

```
584
                Subroutine BLCLE2
585
        586
        CXX
587
                              SUBROUTINE
        C**
                  BEGIN
                                                  BLCLE 2
                                                                  **
588
         C**
         589
590
591
          Ref: Appendix B, Figure 7, Step 2 (continued).
592
593
594
595
           Purpose: Given an ordered sample of size n and null-hypothesis
596
         _
                    c<=2, calculate the BLUEs of location a and scale b.</pre>
597
         598
600
         C
           Variables:
601
         \boldsymbol{\mathsf{c}}
                     x = array containing n ordered deviates from a CDF
602
         \boldsymbol{\epsilon}
                     c = null-hypothesis Pareto shape parameter
603
         C
                     n = sample size
604
         C
                     B = array of B values used to calculate the BLUEs
605
         C
                    ne = product of n and c
606
         C
                  Coef1 = coefficient used to compute BLUE of location a
607
         C
                  Coef2 = coefficient used to compute BLUE of location a
608
         C
                  Coef3 = coefficient used to compute BLUE of scale b
                 Bxsum2 = sum of B(i)*x(i) terms for i = 1,...,n-2
609
510
                 Bxsm2c = sum of B(i)*x(i) terms for i = 1,...,n-2/c
611
                   ablu = BLUE of the location parameter a
         C
612
                  bblu = BLUE of the scale parameter b
         c
613
         C
                     U = value used to compute BLUEs when c = 1.5
614
                  Termi = terms used to compute U (i=1.2.3)
616
         x = array of n ordered deviates (from MAIN Program)
618
            Inout:
                     c = null-hyp shape = 1.0 (from MAIN DO Loop 90)
619
620
                     n = sample size = 5, 15, or 25 (from MAIN DO Loop 70)
         C
621
                     nc = n*c (from MAIN program)
         c
622
                      B = array containing n values of B (from BXVALS)
         \boldsymbol{\mathsf{c}}
623
                 B \times sum2 = sum of first n-2 values of B (from BXVALS)
624
                 Bxsm2c = sum of first n-2/c values of B (from BXVALS)
626
         628
            Calculate (if c = 0.5, 1.0, or 2.0):
         C
 629
         c
 630
         C
                  Coef1 = [(c+1)*(c+2)] / [(nc-2)*(nc-c-2)]
                  Coef2 = (nc-2) / (c+2)
 832
                   ablu = x(1) - Coef1 * [Bxsm2c - (Coef2*x(1))] (eqn 34)
 633
          C
                   bblu = (nc-1) * [x(1) - ablu]
                                                 (eqn 35)
 634
 636
          c Calculate (if c = 1.5):
 638
 639
                   Term1 = (nc-2) * (nc-c-2)
 640
          C
                   Term2 = nc * (c-2) * B(n-1)
 441
          C
                   Term3 = (nc-1) * (c+2)
 642
```

```
643
         c
                  Coef3 = [(nc-1)/nc] * (nc-2-U)
644
                     U = (Term1 - Term2) / Term3
                                                  (ean 39)
645
646
                   ablu = x(1) - bblu / (nc-1)
                                                (ean 37)
         c
647
                   bblu = (1/U) * [(c+1)*(Bxsum2) + (2c-1)*B(n-1)*x(n-1)
        C
648
                         - Coef3 * x(1)]
                                            (egn 38)
650
         652
           Output:
         \mathbf{c}
                   ablu = BLUE of location parameter a
653
654
                   bblu = BLUE of scale parameter b
        C
         454
657
        _
658
           Declare Variables:
659
        c
640
                common dseed.x,n,c,nc,B,D,ablu,bblu,P,Bsum1,Bxsum1,
661
             1
                       Bxsum2, Bxsm2c, KS, AD, CVM, it, nsiz, nshp, nrep,
662
             1
                       nalt, nalf, nrKS, nrAD, nrCV, nrX2, X2
663
                integer n.nsiz.nshp.it.nrep.nrKS(2,2,3,8),nrAD(2,2,3,8),
664
                       nrCV(2, 2, 3, 8)
             1
                       \times (25), ablu, bblu, B(25), D, KS(2, 2, 3, 8), AD(2, 2, 3, 8),
665
                real
                       CVM(2,2,3,8),c,nc,Bsum1,Bxsum1,Bxsum2,Bxsm2c.
666
567
             1
                       P(25),r(25),alpha,KSpwr(2,2,3,8),ADpwr(2,2,3,8),
866
                       CVpwr(2,2,3,8), Term1, Term2, Term3, Coef1, Coef2,
             1
669
                       Coef3,U
670
                double precision dseed
671
672
                if ((c.eq.0.5) .or. (c.eq.1.0) .or. (c.eq.2.0)) then
673
                     Coef1 = ((c+1.0)*(c+2.0)) / ((nc-2.0)*(nc-c-2.0))
674
                     Coef2 = (nc-2.0) / (c+2.0)
675
                     ablu = x(1) - Coef1 * (Bxsm2c - (Coef2*x(1)))
                     bblu = (nc-1.0) * (x(1) - ablu)
676
677
                else if (c .eq. 1.5) then
678
679
                     Term1 = (nc-2.0) * (nc-c-2.0)
                     Term2 = nc * (c-2.0) * B(n-1)
680
                     Term3 = (nc-1.0) * (c+2.0)
681
                        U = (Term1 - Term2) / Term3
482
683
                     Coef3 = ((nc-1.0)/nc) * (nc-2.0-U)
684
                     bblu = (1.0/U) *((c+1.0) * (Bxsum2)
                           + (2.0*c-1.0)*B(n-1)*x(n-1) - Coef3 * x(1) )
685
             1
686
                      ablu = x(1) - (bblu / (nc-1.0))
687
        C
488
                end if
689
690
                return
691
                end
692
693
         694
                             END SUBROUTINE BLCLEZ
         695
```

```
696
                Subroutine BLCGT2
697
         698
         C**
699
         C**
                  BEGIN
                               SUBROUTINE
                                                    BLC5T2
                                                                     **
700
         C**
                                                                     **
         701
702
703
           Ref: Appendix B, Figure 7, Step 2 (continued).
704
705
706
707
         c Purpose: Given an ordered sample of size n and a Pareto null
708
                     hypothesis with shape c > 2, calculate the best
709
         c
                     linear unbiased estimates (BLUEs) of location and
710
                     scale.
         C
711
712
713
714
            Variables: x = array containing n ordered deviates
715
         C
                       c = null-hypothesis Pareto shape parameter
716
                       n = sample size
         C
717
                      nc = product of n and c
         C
718
                       B = array of B values used to calculate the BLUEs
                   Bsum1 = sum of B(i) terms for i = 1, ..., n-1
719
         C
720
                  B \times sum1 = sum of B(i) \times x(i) terms for i = 1,...,n-1
         c
721
                       D = value used to calculate the BLUEs
         C
722
                      YV = value used to calculate the BLUEs
                    ablu = BLUE for location parameter a
723
724
                    bblu = BLUE for scale parameter b
         C
725
726
727
         C
728
                       x = array of ordered deviates (from MAIN Program)
            Input:
729
                       c = shape parameter = 3.5 (from MAIN DO Loop 90)
         C
                       n = sample size = 5, 15, or 25 (MAIN DO Loop 70)
730
         c
731
                      nc = n*c (from MAIN Program)
732
                       B = array of B values (from BXVALS)
733
                   Bsum1 = sum of first (n-1) B values (from BXVALS)
734
                  Bxsum1 = sum of first n-1 B*x values (from BXVALS)
         C
735
736
737
738
            Calculate:
739
740
                    D = [(c+1) * Bsum1] + [(c-1) * B(n)]
         C
                                                              (ean 21)
741
         C
742
                  YV = (c+1)*Bxsumi + (c-1)*B(n)*x(n) - D*x(1) (eqn 22)
         C
743
         C
744
         c
                 ablu = x(1) - YV/[(nc-1)*(nc-2) - D*nc]
                                                               (ean 17)
745
746
                 bblu = (nc-1) * [ x(1) - ablu ]
                                                               (egn 18)
747
```

```
748
749
          C
750
                        ablu = BLUE for location a
          C
             Output:
                        bblu = BLUE for scale b
751
          C
752
          C
753
754
755
            Declare Variables:
          C
756
757
                  common dseed, x, n, c, nc, B, D, ablu, bblu, P, Bsum1, Bxsum1,
758
               1
                          Bxsum2, Bxsm2c, KS, AD, CVM, it, nsiz, nshp, nrep,
759
                          nalt, nalf, nrKS, nrAD, nrCV, nrX2, X2
               1
                  integer n,nsiz,nshp,it,nrep,nrKS(2,2,3,8),nrAD(2,2,3,8),
760
761
                          nrCV(2, 2, 3, 8)
762
                          x(25), ablu, bblu, B(25), D, KS(2,2,3,8), AD(2,2,3,8),
                  real
763
               1
                          CVM(2,2,3,8),c,nc,Bsum1,Bxsum1,Bxsum2,Bxsm2c,
764
               1
                          P(25),r(25),alpha,KSpwr(2,2,3,8),ADpwr(2,2,3,8),
765
                          CVpwr (2, 2, 3, 8), YV
766
                  double precision dseed
767
          C
                     D = ((c+1.0) * Bsumi) + ((c-1.0) * B(n))
768
                     YV = ((c+1.0)*Bxsum1) + ((c-1.0)*B(n)*x(n)) - (D*x(1))
769
770
                     ablu = x(1) - YV/((nc-1.0)*(nc-2.0) - (D*nc))
771
                     bblu = (nc-1.0) * (x(1) - ablu)
772
          C
                  return
773
774
                  end
775
776
777
                                END SUBROUTINE BLCGT2
778
```

```
779
                Subroutine HYPCDF
780
         781
         C**
782
         C**
                  BEGIN
                              SUBROUTINE
                                                   HYPCDF
                                                                     **
783
         C**
                                                                     **
784
         785
786
            Ref: Appendix B, Figure 7, Step 2 (continued).
787
788
789
790
            Purpose: Given an ordered sample of size n, a Pareto null-hyp
791
         C
                     of shape c, and the BLUEs of location a and scale b,
792
                     compute the hypothesized Pareto distribution
         c
793
                     function P(i) for i = 1, 2, ..., n.
794
795
796
797
            Variables:
798
         c
                         x = array containing n ordered deviates
799
                         n = sample size
         C
800
         C
                         c = null hypothesized Pareto shape parameter
801
                      ablu = BLUE of location a
         c
802
                      bblu = BLUE of scale b
         C
803
                         P = array containing n points of the
         C
804
                             hypothesized Pareto CDF
805
806
807
808
            Input:
         C
809
                  x = array of n ordered deviates (from MAIN Program)
         c
810
                  c = null hyp shape = 1.0 or 3.5 (MAIN DO Loop 90)
         c
811
         c
                  n = sample size = 5, 15, or 25 (from MAIN DO Loop 70)
812
                ablu = BLUE of location a (from BLCLE2 or BLCGT2)
813
                bblu = BLUE of scale b (from BLCLE2 or BLCGT2)
814
815
816
817
         c Calculate:
818
819
               P(i) = 1 - [1 + (x(i) - ablu)/bblu] ] ** (-c)
         C
                                                              (eqn 40)
820
821
822
823
            Output: P = array of n points of the hypothesized CDF
824
         C
825
826
827
            Declare Variables:
828
829
                 common dseed, x, n, c, nc, B, D, ablu, bblu, P, Bsumi, Bxsumi,
830
                        Bxsum2, Bxsm2c, KS, AD, CVM, it, nsiz, nshp, nrep,
              1
```

```
831
                      nalt, nalf, nrKS, nrAD, nrCV, nrX2, X2
832
               integer n,nsiz,nshp,it,nrep,nrKS(2,2,3,8),nrAD(2,2,3,8),
833
             1
                      nrCV(2, 2, 3, 8)
834
               real
                      x(25), ablu, bblu, B(25), D, KS(2, 2, 3, 8), AD(2, 2, 3, 8),
835
                      CVM(2,2,3,8),c,nc,Bsum1,Bxsum1,Bxsum2,Bxsm2c,
836
             1
                      P(25), r(25), alpha, KSpwr(2, 2, 3, 8), ADpwr(2, 2, 3, 8),
837
                      CVpwr (2, 2, 3, 8)
838
               double precision dseed
839
840
               do 10 i = 1, n
841
                   P(i) = 1.0 - (1.0 + (x(i) - ablu)/bblu) ** (-c)
842
          10
               continue
843
844
               return
845
               end
846
847
        848
                           END SUBROUTINE HYPCDF
849
```

```
850
                 Subroutine TESTAT
851
         852
853
         C**
                    BEGIN
                                SUBROUTINE
                                                      TESTAT
                                                                        ÌÌ
         C##
854
                                                                        **
855
         856
857
            Ref: Appendix B, Figure 7, Step 2.
858
859
860
861
            Purpose: Given a sample size n, and the hypothesized Pareto
862
                      distribution function P(i), compute values of the
863
                      test statistics of the Chi-square and the modified
864
                      K-S, A-D, and CVM goodness-of-fit tests.
845
866
867
868
            Variables:
869
                       n = sample size
870
                    nshp = null-hyp shape counter (1: c=1.0, 2: c=3.5)
         C
871
                    nalf = alpha level counter (1: \alpha =.05, 2: \alpha =.01)
872
                    nsiz = sample size counter (1: n=5, 2: n=15, 3: n=25)
         C
873
                    nalt = alternate distribution counter
874
                       P = array of n values of the hypothesized Pareto CDF
875
876
                      DP = positive differences between EDF and CDF points
877
                      DM = negative differences between EDF and CDF points
         C
878
                   DPLUS = maximum positive difference (largest DP value)
879
         C
                  DMINUS = maximum negative difference (largest DM value)
                      KS = values of the modified K-S test statistic
880
881
882
                      AL = value used to calculate the A-D test statistic
883
                      AM = value used to calculate the A-D test statistic
884
                      AN = AL + AM
         C
885
                     AAA = values to be summed for A-D test statistic
886
         c
                    SAAA = sum of AAA values
887
                      AD = values of the modified A-D test statistic
         C
888
889
         c
                     ACV = squared quantities in the C-VM formula
890
                    SACV = sum of the ACV values
         C
891
                     CVM = values of the modified C-VM test statistic
892
                    ablu = BLUE of location parameter a
893
894
                    bblu = BLUE of scale parameter b
         C
895
                       c = null-hypothesized Pareto shape parameter
896
                     obs = number of observations in each of 5 cells
         C
897
                   rtend = right endpoint of a cell
898
                      X2 = array of values of the Chi-square test statistic
899
900
901
```

```
902
             Input:
903
                     n = sample size = 5, 15, or 25 (from MAIN DO Loop 70)
904
                     P = array of n values of hypothesized CDF (from HYPCDF)
          C
905
                  nshp = null-hyp shape counter (from MAIN DO Loop 90)
906
                  malf = significance level counter (from MAIN DO Loop 80)
          C
907
                  nsiz = sample size counter (from MAIN DO Loop 70)
          Ç
908
                  nalt = alternate CDF counter (from MAIN DO Loop 60)
909
                  ablu = BLUE of location a (from BLCLE2 or BLCGT2)
910
                  bblu = BLUE of scale b (from BLCLE2 or BLCGT2)
911
                     c = hypothesized Pareto shape (from MAIN DO Loop 90)
912
913
914
915
             Calculations for K-S test statistic (eqns 41 & 42):
916
917
                        DP(i) = ABS[(i/n) - P(i)]
          C
                        DM(i) = ABS[P(i) - (i-1)/n]
918
          C
919
                        DPLUS = max [ DP(i) ] for i=1,2,...,n
920
921
                       DMINUS = \max [DM(i)] for i=1,2,...,n
          C
922
923
                           KS = max (DPLUS, DMINUS)
924
925
926
927
             Calculations for A-D test statistic (egn 43):
928
          C
929
                        AL(j) = In(P(j))
          C
930
                        AM(j) = In (1 - P(n+1-i))
          C
931
                        AN(j) = AL(j) + AM(j)
          C
932
933
          ¢
                       AAA(j) = (2*j - 1) * AN(j)
934
                         SAAA = AAA(1) + AAA(2) + ... + AAA(n)
935
          c
936
                           AD = -n - (1/n) * SAAA
937
938
939
940
             Calculations for C-VM test statistic (eqn 44):
941
942
                       ACV(k) = [P(k) - (2*k - 1)/(2*n)]**2
          C
943
                         SACV = ACV(1) + ACV(2) + ... + ACV(n)
944
945
                          CVM = (1/(12*n)) + SACV
946
947
948
949
          c Calculations for Chi-square test statistic (eqn 62):
950
          C
951
                    rtend(i) = ablu - bblu + bblu * (1 - .2*i) ** (-1/c)
          c
952
                        ex = n / 5.
953
```

```
954
                   X2 = [(obs(1)-ex)**2] / ex + [(obs(2)-ex)**2] / ex
           C
 955
                         + ... + [(obs(5)-ex)**2] / ex
           c
 956
957
958
           C
959
              Declare Variables:
           C
960
           C
961
                    common dseed, x, n, c, nc, B, D, ablu, bblu, P, Bsumi, Bxsumi,
                             Bxsum2, Bxsm2c, KS, AD, CVM, it, nsiz, nshp, nrep.
962
                 1
963
                             nalt, nalf, nrKS, nrAD, nrCV, nrX2, X2
964
                    integer n,nsiz,nshp,it,nrep,nrKS(2,2,3,8),nrAD(2,2,3,8),
965
                             nrCV(2, 2, 3, 8), abs(5), nrX2(2, 2, 3, 8)
966
                    real
                             \times (25), ablu, bblu, B(25), D, KS(2, 2, 3, 8), AD(2, 2, 3, 8),
967
                             CVM(2,2,3,8),c,nc,Bsum1,Bxsum1,Bxsum2,Bxsm2c,
                             P(25),r(25),alpha,KSpwr(2,2,3,8),ADpwr(2,2,3,8),
 968
                             CVpwr (2, 2, 3, 8), DP (25), DM (25), DPLUS, DMINUS, AL (25),
 969
 970
                             AM(25), AN(25), AAA(25), SAAA, ACV(25), SACV, rtend(4),
 971
                             X2crit(2,2,3), X2(2,2,3,8), ex
 972
                    double precision dseed
 973
 974
                       Compute the K-S Test Statistic (eqns 41 & 42):
 975
                         DPLUS = 0
 976
 977
                         DMINUS = 0
 978
                         do 5 ik = 1.25
 979
                            DP(ik) = 0
 980
                            DM(ik) = 0
 981
                         continue
 982
 983
                         do 10 i = 1, n
 984
 985
                           DP(i) = ABS((i/real(n)) - P(i))
 986
                           DM(i) = ABS(P(i) - (i-1)/real(n))
 987
 988
            C
                               if (nshp.eq.1 .and. nalf.eq.2 .and. n.eq.5 .and.
 989
                                    nalt .lt. 3) then
           C
 990
                                print*, 'P(i)=',P(i),'DP(i)=',DP(i),'DM(i)=',DM(i)
            C
 991
                               end if
           C
 992
           C
 993
              10
                         continue
 994
           C
 995
                              MAX( DP(1),DP(2),DP(3),DP(4),DP(5),DP(6),DP(7),
 996
                              DP(8),DP(9),DP(10),DP(11),DP(12),DP(13),DP(14),
                 1
 997
                              DP(15), DP(16), DP(17), DP(18), DP(19), DP(20),
                 1
 998
                              DP(21), DP(22), DP(23), DP(24), DP(25))
                 1
 999
            C
1000
                    DMINUS = MAX(DM(1), DM(2), DM(3), DM(4), DM(5), DM(6), DM(7),
1001
                 1
                              DM(8),DM(9),DM(10),DM(11),DM(12),DM(13),DM(14),
1002
                 1
                              DM(15), DM(16), DM(17), DM(18), DM(19), DM(20),
1003
                 1
                              DM(21), DM(22), DM(23), DM(24), DM(25))
1004
1005
                    KS(nshp,nalf,nsiz,nalt) = MAX(DPLUS,DMINUS)
```

これにはなるとう からかなからで からん

```
1006
           C
1007
           c
                    print*,' '
1008
           C
                    1009
                    print*,' '
           C
1010
                    print*, 'KS VALUES FROM TESTAT -- ITERATION ='.it
           C
1011
           C
                    print*,'c=',c,'nalf=',nalf,' ** n=',n,' ** nalt=',nalt
1012
                    print*, 'KS Stat=', KS(nshp, nalf, nsiz, nalt),
           C
                           ' ** DPLUS=', DPLUS, ' ** DMINUS=', DMINUS
1013
           C
                    print*,' '
1014
           C
1015
           C
1016
           C
                       Compute the A-D Test Statistic (eqn 43):
1017
           c
1018
                   SAAA = 0
1019
1020
                   do 20 j = 1,n
1021
                       AL(i) = log(P(i))
1022
                       AM(j) = log (1.0 - P(n+1-j))
1023
                       AN(j) = AL(j) + AM(j)
1024
                       AAA(j) = (2.0*j - 1.0) * AN(j)
1025
                       SAAA = SAAA + AAA(i)
1026
             20
                   continue
1027
           c
1028
                   AD(nshp, nalf, nsiz, nalt) = -n - (1.0/real(n)) \ddagger SAAA
1029
           C
1030
           C
                       Compute the C-VM Test Statistic (eqn 44):
1031
           c
                   SACV = 0
1032
1033
           c
1034
                   do 30 k = 1,n
1035
                       ACV(k) = (P(k) - (2.0*k - 1.0)/(2.0*real(n)))**2
1036
                       SACV = SACV + ACV(k)
1037
             30
                   continue
1038
           c
1039
                   CVM(nshp, nalf, nsiz, nalt) = SACV + (1.0/(12.0*real(n)))
1040
1041
                    Compute the Chi-Square Test Statistic (eqn 62): ----
           C
1042
           c
1043
                     do 40 \text{ in} = 1.5
1044
                        obs(in) = 0
1045
             40
                     continue
1046
1047
                     do 50 \text{ ki} = 1.4
1048
                        rtend(ki) = ablu-bblu + bblu*(1.-.2*ki)**(-1./c)
1049
             50
                     continue
1050
1051
                     do 60 m = 1, n
1052
           C
1053
                        if(x(m).le. rtend(1)) then
1054
                           obs(1) = obs(1) + 1
1055
                        else if (x(m).le.rtend(2)) then
1056
                           obs(2) = obs(2) + 1
1057
                        else if (x(m).le.rtend(3)) then
```

```
1058
                           obs(3) = obs(3) + 1
1059
                        else if (x(m).le.rtend(4)) then
1060
                           obs(4) = obs(4) + 1
1061
1062
                           obs(5) = obs(5) + 1
1063
                        end if
1064
1065
                     continue
1066
           C
1067
                     ex = n / 5.
1068
           C
1069
                     X2(nshp, nalf, nsiz, nalt) = ((obs(1)-ex) **2) / ex
1070
                       + ((obs(2)-ex)**2)/ex + ((obs(3)-ex)**2)/ex
1071
                1
                       + ((obs(4)-ex)**2)/ex + ((obs(5)-ex)**2)/ex
1072
           C
1073
                    print*,' '
           C
1074
                    print*,'+ +
           C
1075
                    print*,' '
           c
1076
                    print*,'X2 VALUES FROM TESTAT -- ITERATION =',it
           c
                    print*,'c=',c,'nalf=',nalf,' ** n=',n,' ** nalt=',nalt
1077
           C
1078
           c
                    print*, 'RT ENDPOINTS OF INTERVALS:'
1079
                    print*,rtend(1),rtend(2),rtend(3),rtend(4)
           Ç
                    print*, 'x(1)=', x(1), 'x(10)=', x(10), 'x(25)=', x(25)
1080
           C
                    print*,'OBSERVATIONS PER CELL:'
1081
           C
                    print*,'Cell 1:',obs(1),' ** Cell 2:',obs(2)
print*,'Cell 3:',obs(3),' ** Cell 4:',obs(4)
1082
           c
1083
           c
1084
                    print*,'Cell 5:',obs(5)
           C
1085
           C
                    print*,'CHI SQUARE TEST STAT:'
1086
                    print*,'X2 Stat=',X2(nshp,nalf,nsiz,nalt)
           C
                    print*,' '
1087
           C
1088
1089
                   return
1090
                   end
1091
1092
1093
                                 END SUBROUTINE TESTAT
1094
```

```
1095
                 Subroutine COMPAR
1096
          1097
          CXX
1098
          C**
                    BEGIN
                                SUBROUTINE
                                                      COMPAR
                                                                       **
1099
          C##
                                                                       **
1100
          1101
1102
             Ref: Appendix B, Figure 7, Step 3.
1103
1104
1105
1106
             Purpose:
1107
1108
                 Compare a test statistic, calculated from Chi-square or the
          C
1109
                 modified Kolmogorov-Smirnov (K-S), Anderson-Darling (A-D),
          C
1110
          C
                 or Cramer-von Mises (C-VM) test, against the appropriate
1111
          \Box
                 critical value. From a series of test statistics, count the
                 number of times the null hypothesis is rejected, i.e., the
1112
          C
1113
                 number of test statistic values that exceed the critical
1114
                 value. The K-S, A-D, and C-VM critical values were taken
          C
                 from Tables VI- VIII of the thesis.
1115
1116
1117
1118
          C
1119
             Variables:
          C
1120
          2
                        c = null-hypothesis Pareto shape parameter
1121
                    alpha = significance level
          c
1122
          C
                        n ≈ sample size
1123
          C
                     nshp = shape parameter counter (1: c=1.0; 2: c=3.5)
1124
                     nalf = significance level counter (1: \alpha = .05; 2: \alpha = .01)
          c
1125
          C
                     nsiz = sample size counter (1: n=5; 2: n=15; 3: n=25)
1126
          c
                       KS = array of modified K-S test statistics
1127
                      CVM = array of modified C-VM test statistics
          c
1128
                       AD = array of modified A-D test statistics
          c
1129
                       X2 = array of Chi-square test statistics
1130
1131
          1132
          C
1133
          C
             Input:
1134
          C
                        c = null-hyp shape parameter (from MAIN DD Loop 90)
1135
          c
                    alpha = significance level (from MAIN DO Loop 80)
1136
                        n = sample size (from MAIN DO Loop 80)
1137
          c
                     nshp = shape parameter counter (from MAIN DD Loop 90)
1138
                     nalf = significance level counter (MAIN DO Loop 80)
          C
1139
          C
                     nsiz = sample size counter (from MAIN DO Loop 70)
1140
          c
                     nalt = alternate CDF counter (from MAIN DO Loop 60)
1141
          c
                       KS = array of K-S test statistics (from TESTAT)
1142
                      CVM = array of C-VM test stats (from TESTAT)
          C
1143
                       AD = array of A-D test statistics (from TESTAT)
          C
1144
          c
                KScrit(nshp,nalf,nsiz) = K-S critical values (Table VI)
1145
          c
                ADcrit(nshp,nalf,nsiz) = A-D critical values (Table VII)
1146
                CVcrit(nshp.nalf,nsiz) = CVM critical values (Table VIII)
```

```
1147
          C
                 X2crit(nshp,nalf,nsiz) = Chi-square critical values
1148
1149
          C==
1150
          C
1151
          C
             Calculations: none
1152
          C
          1153
1154
          C
1155
          C
             Output:
1156
          C
1157
               nrKS = number of times null hypothesis is rejected under K-S
          C
1158
               nrAD = number of times null hypothesis is rejected under A-D
          C
1159
               nrCV = number of times null hypothesis is rejected under CVM
          c
               nrX2 = number of times null hyp is rejected under Chi-square
1160
          C
1161
1162
          1163
          C
1164
             Declare Variables:
          C
1165
          C
1166
                  common dseed, x, n, c, nc, B, D, ablu, bblu, P, Bsumi, Bxsumi,
               1
1167
                          Bxsum2, Bxsm2c, KS, AD, CVM, it, nsiz, nshp, nrep,
1168
               1
                          nalt, nalf, nrKS, nrAD, nrCV, nrX2, X2
1169
                  integer n,nsiz,nshp,it,nrep,nrKS(2,2,3,8),nrAD(2,2,3,8),
1170
                          nrCV(2, 2, 3, 8), nrX2(2, 2, 3, 8)
               1
1171
                  real
                          x(25), ablu, bblu, B(25), D, KS(2, 2, 3, 8), AD(2, 2, 3, 8),
1172
               1
                          CVM(2,2,3,8),c,nc,Bsum1,Bxsum1,Bxsum2,Bxsm2c,
1173
               1
                          P(25),r(25),alpha,KSpwr(2,2,3,8),ADpwr(2,2,3,8),
1174
               1
                          CVpwr(2,2,3,8), KScrit(2,2,3), ADcrit(2,2,3),
1175
               1
                          CVcrit(2,2,3), X2crit(2,2,3), X2(2,2,3,8)
1176
                  double precision dseed
1177
          C
1178
                    1179
          C
                         print*,'Numbers of Rejects at COMPAR Entrance'
1180
                         print*,'c =',c,'nalf =',nalf,'n=',n,'nalt=',nalt
          C
                         print*,'KS Rejects = ',nrKS(nshp,nalf,nsiz,nalt)
1181
          C
                         print*,'AD Rejects = ',nrAD(nshp,nalf,nsiz,nalt)
1182
          c
                         print*,'CV Rejects = ',nrCV(nshp,nalf,nsiz,nalt)
1183
          c
1184
                         print*,'===========;
          C
1185
1186
                  Input K-S Critical Values from Table VI: ---
          C
1187
          c
1188
                  KScrit(1,1,1) = .3676251
1189
                  KScrit(1,1,2) = .2157919
1190
                  KScrit(1,1,3) = .1698559
1191
                  KScrit(1,2,1) = .4074441
                  KScrit(1,2,2) = .2468265
1192
1193
                  KScrit(1,2,3) = .2007451
1194
                  KScrit(2,1,1) = .3493998
1195
                  KScrit(2,1,2) = .2376525
1196
                  KScrit(2,1,3) = .1886063
1197
                  KScrit(2,2,1) = .3815996
1198
                  KScrit(2,2,2) = .2743093
```

```
KScrit(2,2,3) = .2182668
1199
1200
           C
1201
                   Input A-D Critical Values from Table VII: ---
           c
1202
           C
1203
                   ADcrit(1,1,1) = 1.236920
1204
                   ADcrit(1,1,2) = .8907447
1205
                   ADcrit(1,1,3) = .9147376
1206
                   ADcrit(1,2,1) = 2.076011
1207
                   ADcrit(1,2,2) = 1.250242
1208
                   ADcrit(1,2,3) = 1.311781
1209
                   ADcrit(2,1,1) = .6840515
1210
                   ADcrit(2,1,2) = .8985860
                   ADcrit(2,1,3) = .9520599
1211
1212
                   ADcrit(2,2,1) = .9126385
1213
                   ADcrit(2,2,2) = 1.268849
1214
                   ADcrit(2,2,3) = 1.449695
1215
1216
                   Input C-VM Critical Values from Table VIII: ---
           C
1217
           C
1218
                   CVcrit(1,1,1) = .1389776
1219
                   CVcrit(1,1,2) = .1312229
1220
                   CVcrit(1,1,3) = .1386932
1221
                   CVcrit(1,2,1) = .1738497
1222
                   CVcrit(1,2,2) = .1923594
1223
                   CVcrit(1,2,3) = .1988135
1224
                   CVcrit(2,1,1) = .1186844
1225
                   EVcrit(2,1,2) = .1561372
1226
                   CVcrit(2,1,3) = .1618638
1227
                   CVcrit(2,2,1) = .1574178
1228
                   CVcrit(2,2,2) = .2217665
1229
                   CVcrit(2,2,3) = .2403474
1230
1231
                   Input Chi-square Critical Values : ---
           C
1232
1233
                   X2crit(1,1,1) = 6.000003
1234
                   X2crit(1,1,2) = 7.3333337
1235
                   X2crit(1,1,3) = 7.600005
1236
                   X2crit(1,2,1) = 12.00000
1237
                   X2crit(1,2,2) = 10.66667
1238
                   X2crit(1,2,3) = 10.80000
1239
                   X2crit(2,1,1) = 6.000003
1240
                   X2crit(2,1,2) = 7.333337
1241
                   X2crit(2,1,3) = 7.600005
1242
                   X2crit(2,2,1) = 6.000003
1243
                   X2crit(2,2,2) = 10.46378
1244
                   X2crit(2,2,3) = 10.80000
1245
           C
1246
           C
               --- Compare Test Statistics vs Critical Values: -
1247
           C
1248
                  print*,'$$$$$$$$$$$$$$$$$$$$$$$$$$
           C
1249
                  print*,'BEFORE REJ COUNTER IS INCREMENTED:'
           C
1250
                  print*,'c =',c,'nalf =',nalf,' ** n=',n,' ** nalt=',nalt
           c
```

```
1251
1252
               print*, 'KS Stat ='.KS(nshp,nalf,nsiz,nalt),
         C
1253
                      ' Crit =',KScrit(nshp,nalf,nsiz)
         C
1254
         C
1255
         C
               print*,'AD Stat =',AD(nshp,nalf,nsiz,nalt),
                      'Crit =', ADcrit(nshp, nalf, nsiz)
1256
         C
1257
         C
1258
                print*,'CV Stat ='.CVM(nshp,nalf,nsiz,nalt),
1259
         C
                      ' Crit =',CVcrit(nshp,nalf,nsiz)
1260
         c
                print*,'X2 Stat =',X2(nshp,nalf,nsiz,nalt),
1261
         C
                      ' Crit =', X2crit(nshp, nalf, nsiz)
1262
         C
1263
          c
                print*, ***********************
1264
1265
                if ( KS(nshp,nalf,nsiz,nalt) .gt. KScrit(nshp,nalf,nsiz) )
                nrKS(nshp,nalf,nsiz,nalt) = nrKS(nshp,nalf,nsiz,nalt) + 1
1266
1267
          C
1268
                if ( AD(nshp,nalf,nsiz,nalt) .gt. ADcrit(nshp,nalf,nsiz) )
1269
                 nrAD(nshp,nalf,nsiz,nalt) = nrAD(nshp,nalf,nsiz,nalt) + 1
1270
          C
                if (CVM(nshp,nalf,nsiz,nalt) .gt. Cvcrit(nshp,nalf,nsiz) )
1271
1272
                 nrCV(nshp,nalf,nsiz,nalt) = nrCV(nshp,nalf,nsiz,nalt) + 1
1273
          C
                if ( X2(nshp,nalf,nsiz,nalt) .gt. X2crit(nshp,nalf,nsiz) )
1274
                 nrX2(nshp,nalf,nsiz,nalt) = nrX2(nshp,nalf,nsiz,nalt) + 1
1275
1276
          C
                    1277
          _
1278
                    print*, 'Numbers of Rejects at COMPAR Exit'
          C
                    print*,'c =',c,'nalf =',nalf,' n=',n,' nalt=',nalt
1279
          c
1280
                    print*,'KS Rejects = ',nrKS(nshp,nalf,nsiz,nalt)
          C
                    print*,'AD Rejects = ',nrAD(nshp,nalf,nsiz,nalt)
1281
          c
                    print*,'CV Rejects = ',nrCV(nshp,nalf,nsiz,nalt)
1282
          Ç
                    print*,'X2 Rejects = ',nrX2(nshp,nalf,nsiz,nalt)
1283
          C
                    1284
          C
1285
          C
1286
               return
1287
               end
1288
1289
                           1290
                             END SUBROUTINE COMPAR
1291
```

#### **BIBLIOGRAPHY**

- 1. Amstadter, B. Reliability Mathematics. New York: McGraw-Hill Book Company, 1971.
- 2. Anderson, T. W. and D. A. Darling. "Asymptotic Theory of Goodness of Fit Criteria Based on Stochastic Processes,"

  <u>Annals of Mathematical Statistics</u>, 23: 193-212 (1952).
- 3. Anderson, T. W. and D. A. Darling. "A Test of Goodness of Fit," <u>Journal of the American Statistical Association</u>, 49: 765-769 (Dec 1954).
- 4. Andrews, D. F. and others. <u>Robust Estimates of Location</u>. Princeton University Press, 1972.
- 5. Banks, Jerry and John S. Carson. <u>Discrete-Event System Simulation</u>. Englewood Cliffs: Prentice-Hall, 1984.
- 6. Bell, C. B. and others. <u>Signal Detection for Pareto Renewal Processes</u>. Technical Report No. 8-82 for the Office of Naval Research. Contract NO0014-80-C-0208. San Diego State University, San Diego CA, Oct 1982 (AD-A120 972).
- 7. Berger, J. M. and B. Mandelbrot. "A New Model for Error Clustering in Telephone Circuits," <u>IBM Journal of Research and Development</u>, 7: 224-236 (July 1963).
- 8. Brownlee, K. A. <u>Statistical Theory and Methodology in Science and Engineering</u> (Second Edition). New York: John Wiley and Sons, 1965.
- 9. Bush, J. G. and others. "Modified Cramer-von Mises and Anderson-Darling Tests for Weibull Distributions with Unknown Location and Scale Parameters," <u>Communications in Statistics</u>. Part A Theory and Methods, 12: 240-245 (1983).
- 10. Buslenko, N. P., and others. <u>The Monte Carlo Method</u>. New York: Pergamon Press, 1966.
- 11. Champernowne, D. G. "The Graduation of Income Distributions," <u>Econometrica</u>, <u>20</u>: 591-615 (1952).
- 12. Charek, Dennis J. <u>A Comparison of Estimation Techniques</u> for the <u>Three-Parameter Pareto Distribution</u>. MS Thesis, GSO/MA/85D-3. School of Engineering, Air Force Institute of Technology (AU), Wright Patterson AFB OH, December 1985.

- 13. Conover, W. J. <u>Practical Nonparametric Statistics</u> (Second Edition). New York: John Wiley and Sons, 1980.
- 14. David, F. N. and N. L. Johnson. "The Probability Integral Transformation When Parameters are Estimated from the Sample," <u>Biometrika</u>, <u>35</u>: 182-190 (1948).
- 15. David, Herbert A. <u>Order Statistics</u> (Second Edition). New York: John Wiley and Sons, 1981.
- 16. Davis, Henry T. and Michael L. Feldstein. "The Generalized Pareto Law as a Model for Progressively Censored Survival Data," <u>Biometrika</u>, <u>66</u>: 299-306 (1979).
- 17. Fisk, P. R. "The Graduation of Income Distributions," Econometrica, 29: 171-185 (1961).
- 18. Freiling, E. C. A Comparison of the Fallout Mass-Size Distributions Calculated by Lognormal and Power-Law Models. Report No. USNRDL-TR-1105 for the U.S. Naval Radiological Defense Laboratory, San Francisco CA, Nov 1966 (AD-646019).
- 19. Green, J. and Y. Hegazy. "Powerful Modified EDF Goodness-of-Fit Tests," <u>Journal of the American Statistical Association</u>, 71: 204-209 (1976).
- 20. Hajek, Jaroslav. A Course in Non-Parametric Statistics. San Francisco: Holden-Day, Inc., 1969.
- 21. Hammersley, J. M. and D. C. Handscomb. <u>Monte Carlo</u> <u>Methods</u>. London: Methuen and Co., 1967.
- 22. Harris, Carl M. "The Pareto Distribution as a Queue Service Discipline," <u>Operations Research</u>, <u>16</u>: 307-313 (Jan-Feb 1968).
- 23. Harter, H. L. <u>Order Statistics and Their Use in Testing and Estimation</u>, <u>Vol 2</u>. Aerospace Research Laboratories, Wright-Patterson AFB OH, 1969.
- 24. Harter, H. L. "Another Look at Plotting Positions," <a href="Communications in Statistics">Communications in Statistics</a>, <a href="A13(13)">A13(13)</a>: 1613-1633 (1984).
- 25. Harter, H. L. "A Monte Carlo Study of Plotting Positions," <u>Communications in Statistics</u>, <u>B14(2)</u>: 317-343 (1985).
- 26. Hastings, N. A. J. and J. B. Peacock. <u>Statistical Distributions</u>. London: Butterworth & Co. Ltd., 1974.

- 27. Hines, William W. and Douglas C. Montgomery. <u>Probability and Statistics in Engineering and Management Science</u>. New York: The Ronald Press Co., 1972.
- 28. Johnson, Norman L. and Samuel Kotz. <u>Continuous Univar-iate Distributions-1</u>. Boston: Houghton Mifflin Co., 1970.
- 29. Kaminsky, Kenneth S. <u>Best Linear Unbiased Prediction of Order Statistics in Exponential and Pareto Populations</u>. Contract F33615-71-C-1463. Technical Report No. ARL 75-0201 for Aerospace Research Laboratories, Wright-Patterson AFB OH, June 1975 (AD-A014 740).
- 30. Kaminsky, Kenneth S. and Paul I. Nelson. "Best Linear Unbiased Prediction of Order Statistics in Location and Scale Families," <u>Journal of the American Statistical Association</u>, 70: 145-150 (1975).
- 31. Kapur, K. C. and L. R. Lamberson. Reliability in Engineering Design. New York: John Wiley and Sons, 1977.
- 32. Koutrouvelis, Ioannis. <u>Estimation of Asymptotic Pareto Laws and the Tail of a Distribution</u>. Contract Number NOO014-72-C-0508. Technical Report No. 34 for Office of Naval Research, Arlington VA, Aug 1975 (AD-A018 173).
- 33. Kulldorff, Gunnar and Kerstin Vannman. "Estimation of the Location and Scale Parameters of a Pareto Distribution by Linear Functions of Order Statistics", <u>Journal of the American Statistical Association</u>, 68: 218-227 (1973).
- 34. Lilliefors, H. "On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown", <u>Journal of the American Statistical Association</u>, <u>62</u>: 399-402 (1967).
- 35. Lilliefors, H. "On the Kolmogorov-Smirnov Test for the Exponential Distribution with Mean Unknown", <u>Journal of the American Statistical Association</u>, 64: 387-399 (1969).
- 36. Littel, Ramon C., James McClave, and Walter Offen. "Goodness-of-Fit Tests for the Two Parameter Weibull Distribution", <u>Communications in Statistics</u>, <u>B8(3)</u>: 257-269 (1979).
- 37. Little, Robert E. Probability and Statistics for Engineers. Champaign IL: Matrix Publishers, Inc., 1978.
- 38. Mann, N. R., E. M. Scheuer, and K. W. Fertig. "A New Goodness-of-Fit Test for the Two-Parameter Weibull or Extreme-Value Distribution with Unknown Parameters", Communications in Statistics, 2: 383-400 (1973).

- 39. Massey, Frank J. "The Kolmogorov-Smirnov Test for Goodness of Fit", <u>Journal of the American Statistical</u>
  <u>Association</u>, <u>46</u>: 68-78 (1951).
- 40. Mood, A. M. and F. A. Graybill, <u>Introduction to the Theory of Statistics</u> (Second Edition). New York: McGraw Hill Inc., 1963.
- 41. Moore, Albert H. and H. L. Harter. "One-order-statistic Conditional Estimators of Shape Parameters of Limited and Pareto Distributions and Scale Parameters of Type II Asymptotic Distributions of Smallest and Largest Values,"

  IEEE Transactions on Reliability, R-16: 100-103 (1967).
- 42. Pigou, A. C., <u>The Economics of Welfare</u>. London: Macmillan and Co., 1948.
- 43. Ream, Thomas J. A New Goodness of Fit Test for Normality with Mean and Variance Unknown. MS Thesis, GOR/MA/81D-9. School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, Dec 1981.
- 44. Steindl, Josef. Random Processes and the Growth of Firms. New York: Hafner Publishing Co., 1965.
- 45. Stephens, M. A. "EDF Statistics for Goodness of Fit and Some Comparisons", <u>Journal of the American Statistical</u>
  <u>Association</u>, <u>69</u>: 730-737 (Sep 1974).
- 46. Stephens. M. A. "Asymptotic Results for Goodness-of-Fit Statistics with Unknown Parameters", <u>Annals of Statistics</u>, <u>4</u>: 357-369 (1976).
- 47. Stephens. M. A. <u>The Anderson-Darling Statistic</u>. Grant No. DAAG29-77-G-0031. Technical Report No. 39 for the U.S. Army Research Office. Dept. of Statistics, Stanford University, Stanford CA, Oct 1979 (AD-A079 807).
- 48. Vannman, Kerstin. "Estimators Based on Order Statistics from a Pareto Distribution", <u>Journal of the American</u>
  <u>Statistical Association</u>, <u>71</u>: 704-708 (Sep 1976).
- 49. Viviano, Philip J. A Modified Kolmogorov-Smirnov, Anderson-Darling, and Cramer-von Mises Test for the Gamma Distribution with Unknown Location and Scale Parameters. MS Thesis, GOR/MA/82D-4. School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, Dec 1982.

- 50. Wingo, Dallas R. "Estimation in a Pareto Distribution: Theory and Computation". <u>IEEE Transactions on Reliability</u>, R-28: 35-37 (Apr 1979).
- 51. Wong, Wing-Yue. On the Property of <u>Dullness of Pareto Distribution</u>. Contract No. NOO014-75-C0455. Technical Report No. 82-16 for the Office of Naval Research, Purdue University, West Lafayette IN, May 1982 (AD-A119 631).
- 52. Woodbury, Larry B. A New Goodness of Fit Test for the Uniform Distribution with Unspecified Parameters. MS Thesis, 60R/MA/82D-6. School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, Dec 1982.
- 53. Woodruff, Brian W. and others. "A Modified Kolmogorov-Smirnov Test for Weibull Distributions with Unknown Location and Scale Parameters," <u>IEEE Transactions on</u> Reliability, <u>R-32</u>: 209-213 (Jun 1983).
- 54. Yoder, John D. <u>Modified Kolmogorov-Smirnov</u>,

  <u>Anderson-Darling</u>, <u>and Cramer-Von Mises Tests for the Logistic Distribution with Unknown Location and Scale Parameters</u>. MS Thesis, GOR/ENC/83D. School of Engineering, Air Force Institute of Technology (AU), Wright Patterson AFB OH, December 1983.

#### VITA

Captain James E. Porter III was born in Tokyo, Japan, on 24 September 1951. He graduated from Judson High School, Converse, Texas, in 1969. He then attended the University of Texas at Austin and in 1974 graduated Phi Beta Kappa with a Bachelor of Science degree in Mathematics.

Upon completing Officer Training School and receiving his USAF commission in April 1975, he was assigned to the Space Systems (now called Space Operations) career field, Air Force Specialty Code (AFSC) 20XX. He served as a Space Surveillance Officer at the Sea-Launched Ballistic Missile Detection and Warning radar site, Fort Fisher AFS, North Carolina, from June 1975 to May 1977; and at the Ballistic Missile Early Warning System radar site, Thule, Greenland, from May 1977 to May 1978.

From June 1978 to May 1981 Captain Porter was assigned to Headquarters North American Aerospace Defense Command, Peterson AFB, Colorado, as a Space Systems Staff Officer. He next served as Space Operations Career Management Staff Officer, Air Force Manpower and Personnel Center, Randolph AFB, Texas, until May 1984. He then entered the Graduate Space Operations Program, School of Engineering, Air Force Institute of Technology.

Address: 4026 Kirby Drive, San Antonio, Texas 78219.

### UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE

| AD | المعدان | 113       | 01 | H         |
|----|---------|-----------|----|-----------|
|    | 2/L     | <u>62</u> | 12 | <u>'L</u> |

|                                                                                 |                                      |                                                                       | REPORT DOCUM                                                                               | ENTATION PAGE                       |                                                               |                                    |            |  |
|---------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------------------------------------|------------------------------------|------------|--|
| REPORT SECURITY CLASSIFICATION UNCLASSIFIED                                     |                                      |                                                                       | 1b. RESTRICTIVE MARKINGS                                                                   |                                     |                                                               |                                    |            |  |
| 26. SECURITY CLASSIFICATION AUTHORITY 26. DECLASSIFICATION/DOWNGRADING SCHEDULE |                                      | 3. DISTRIBUTION/AVAILABILITY OF REPORT  Approved for public release;  |                                                                                            |                                     |                                                               |                                    |            |  |
| 0. DECEMBER 100 100 100 100 100 100 100 100 100 10                              |                                      | distribution unlimited                                                |                                                                                            |                                     |                                                               |                                    |            |  |
| PERFOR                                                                          | MING ORGAN                           | IZATION REPORT NUM                                                    | BER(S)                                                                                     | 5. MONITORING OR                    | GANIZATION RE                                                 | EPORT NUMBER                       | S)         |  |
| 4                                                                               | FIT/GSQ/                             | MA/85D-6                                                              |                                                                                            |                                     |                                                               |                                    |            |  |
|                                                                                 |                                      | NG ORGANIZATION                                                       | 6b. OFFICE SYMBOL (If applicable)                                                          | 7a. NAME OF MONITORING ORGANIZATION |                                                               |                                    |            |  |
|                                                                                 | ol of Eng                            | and ZIP Code)                                                         | AFIT/ENS                                                                                   |                                     |                                                               |                                    |            |  |
| Air F<br>Wrigh                                                                  | Force Ins                            | titute of Techn<br>son AFB OH 4543<br>sponsoring                      |                                                                                            | 9. PROCUREMENT I                    |                                                               |                                    | UMBER      |  |
| UNGAN                                                                           | il EATTON                            |                                                                       | (1) applicable)                                                                            |                                     |                                                               |                                    |            |  |
| . ADDRE                                                                         | . ADDRESS (City, State and ZIP Code) |                                                                       |                                                                                            | 10. SOURCE OF FUNDING NOS.          |                                                               |                                    |            |  |
|                                                                                 |                                      |                                                                       | PROGRAM<br>ELEMENT NO.                                                                     | PROJECT<br>NO.                      | TASK<br>NO.                                                   | WORK UNIT                          |            |  |
| 1. TITLE (Include Security Classification) See Box 19                           |                                      |                                                                       |                                                                                            |                                     |                                                               |                                    |            |  |
|                                                                                 | AL AUTHOR                            | (S)<br>er III, Captain                                                | . USAF                                                                                     |                                     |                                                               |                                    |            |  |
| 3a. TYPE OF REPORT 13b. TIME COVERED                                            |                                      |                                                                       | 14. DATE OF REPORT (Yr., Mo., Day) 15. PAGE COUNT                                          |                                     |                                                               |                                    |            |  |
| MS Th                                                                           | MENTARY N                            | FROM                                                                  | то                                                                                         | 1985 December                       |                                                               | 18:                                | 183        |  |
| 7.<br>FIELD                                                                     | COSATI                               | CODES<br>SUB. GR.                                                     |                                                                                            | Method; Statis                      | tical Funct                                                   | ions; Proba                        | bility     |  |
| 12                                                                              | 01                                   |                                                                       | Distribution                                                                               | Function: Sta                       | tistical Ar                                                   | nalysis; Sta                       | atistical  |  |
| TITLE                                                                           | Es MODIF<br>FOR T                    | <i>IED KOLMOBOROU-<br/>HE PARETO DISTR</i><br>R: Dr Alb <b>e</b> rt H | didentify by block numbe<br>SMIRNOV, ANDERSI<br>IBUTION HITH UNK<br>Moore<br>f Mathematics | DN-DARLING, AN<br>(NOWN LOCATION    | AND SCALE Approved to publication E. WOLAVE Dean for Research | PARAMETERS  Ille release: IAW A  A | FR 190-1/. |  |
| •                                                                               |                                      | ILABILITY OF ABSTRA                                                   |                                                                                            | 21. ABSTRACT SECU                   | URITY CLASSIFI                                                |                                    |            |  |
|                                                                                 |                                      | IBLE INDIVIDUAL                                                       |                                                                                            | 22b. TELEPHONE No                   |                                                               | 22c. OFFICE SYN                    | ABOL       |  |
| Prof.                                                                           | Albert                               | H. Moore                                                              |                                                                                            | (513) 255-                          |                                                               | AFIT/E                             | ENC        |  |

#### 19. ABSTRACT

Modified Kolmogorov-Smirnov (K-S), Anderson-Darling (A-D), and Cramer-von Mises (C-VM) critical values are generated for the three-parameter Pareto distribution. The values may be used to test whether a set of observations follows a Pareto distribution when the location and scale parameters are unspecified and thus must be estimated from the sample. A Monte Carlo simulation of 5000 repetitions is used to generate critical values for sample sizes 5(5)30 (i.e., 5 to 30 in increments of 5) and Pareto shape parameters .5(.5)4.0.

A 5000-repetition Monte Carlo investigation is carried out by using 5, 15, and 25 observations from eight alternate distributions to compare the powers of the K-S, A-D, C-VM, and Chi-square tests. The power values of the tests are relatively low for a sample size of five. However, the powers of the modified K-S, A-D, and C-VM tests are considerably better than the Chi-square test at larger sample sizes. Next to the Chi-square test, the A-D test has the lowest power in most cases.

A functional relationship is identified between the modified K-S and C-VM test statistics and the Fareto shape parameter. The critical values are found to be a linear function of the shape parameters between 1.5 and 4.0.

# END

## FILMED

3-86

DTIC