«» 2	021г.
Зав. каф. Оби	цей и
теоретической фи	зики
к.фм.н. Р.Г. Поло	ЭКОВ

ИСПОЛЬЗОВАНИЕ ТУЛИЕВЫХ БОЛОМЕТРОВ В КАЧЕСТВЕ ПЕРЕСПЕКТИВНЫХ ДЕТЕКТОРОВ СОЛНЕЧНЫХ АКСИОНОВ

выпускная квалификационная работа бакалавра

Направление 03.03.01 Прикладные математика и физика

Кузьмичев Артем Михайлович

Научный руководитель	Е.В. Унжаков
Студент	А.М. Кузьмичев

Санкт-Петербург, 2021

Содержание

Введение
Глава 1. Обзор экспериментов по поиску аксиона
1.1. Предпосылки к существованию аксиона
1.2. Теория Печчеи — Квинн
1.3. Взаимодействие аксиона
1.4. Солнечные аксионы
Глава 2. Резонансное поглощение аксиона
2.1. Эксперименты ПИЯФ
2.2. Использование тулиевых болометров
Глава 3. Оценка радиоактивной частоты сырья
3.1. Чувствительность HPGe детектора
3.2. Экспериментальные спектры сырья
3.3. Верхний предел на содержание
Глава 4. Верхний предел на существование аксиона
4.1. Моделирование эксперимента
4.2. Оценка числа возможных аксионных событий 10
4.3. Предел на константы связи
Выводы
Заключение
Список питературы

Введение

Стандартная модель в настоящее время является наиболее успешной теорией, описывающей элементарные частицы и их взаимодействия. Тем не менее, существует целый ряд наблюдений и экспериментов, для которых Стандартная модель не даёт адекватного объяснений.

Появление в теории гипотетической псевдоскалярной частицы - аксиона - связано с проблемой ненаблюдения нарушения СР-симметрии в сильных взаимодействиях. Так называемый θ -член в лагранжиане квантовой хромодинамики (КХД) отвечает за взаимодействие глюонных полей и имеет следующий вид:

Тулий-169 имеет низколежащий ядерный уровень 8.41 кэВ, что даёт возможность взять его как ядро-мишень для поиска резонансного поглощения солнечных аксионов. Планируется использование тулийсодержащего кристалла семейства гранатов $Tm_3Al_5O_{12}$ в качестве болометрического детектора .

С данной целью был выращен образец кристалла и испытаны его болометрические и оптические свойства. В данной работе представлен общий обзор проблематики поиска солнечных аксионов, результаты текущих исследований и установленный верхний предел на существование аксиона, полученный из сгенерированных методом Монте-Карло данных.

Глава 1. Обзор экспериментов по поиску аксиона

1.1 Предпосылки к существованию аксиона

Обнаружение аксиона - гипотетической псевдоскалярной частицы, может способствовать значительному продвижению в ряде нерешённых вопросов современной физики. Среди них:

- 1. Сильная CP-проблема
- 2. Поиск частиц тёмной материи
- 3. Аномальная прозрачность Вселенной для гамма-излучения

4. Быстрое охлаждение некоторых звёзд

Проблема ненаблюдения нарушения СР-симметрии в сильных взаимодействиях, также известная как сильная СР-проблема исторически послужила причиной появления в аксиона в теории. Рассмотрим её несколько подробнее.

СР-симметрия - это симметрия системы отностиельно одновременного выполнения следующих преобразований: зарядового сопряжение и пространственное отражение. Простым языком, первое превращает частицу в её античастицу, а второе создает зеркальное изображение физической системы

В Лагранжиане КХД при ненулевом выборе параметров θ -угла и хиральной фазы кварковой массы θ' можно ожидать, что CP-симметрия будет нарушена.

$$\mathcal{L} = -\frac{1}{4} tr F_{\mu\nu} F^{\mu\nu} - \frac{n_f g^2 \theta}{32\pi^2} tr F_{\mu\nu} \tilde{F}^{\mu\nu} + \bar{\psi} i \gamma^{\mu} \left(D_{\mu} - m e^{i\theta' \gamma^5} \right) \psi \tag{1}$$

Сильная СР проблема заключается в том, что в эксперименте с достаточно большой достоверностью обнаружить такого нарушения не удалось!

Рассмотрим следующий пример. Теоретическими методами, отталкиваясь от вида лагранжиана на предыдущем слайде, можно рассчитать[] электрический дипольный момент, который должен возникать у нейтрона

$$d_n \sim \theta \cdot 10^{-16} e \cdot cm \tag{2}$$

В то же время существующий экспериментальный предел

$$|d_n| < 1.8 \cdot 10^{-26} e \cdot cm \,(90\% \, c.l.) \tag{3}$$

позволяет заключить, что параметр $\theta < 10^{-10}$

1.2 Теория Печчеи — Квинн

В 1977 Роберто Печчеи и Хелен Квинн ввели дополнительную киральную симметрию для решения данной проблемы. Скомпенсировать CP-

неинвариантное слагаемое в лагранжиане КХД стало возможно благодаря спонтанному нарушению симметрии Печчеи-Квинн на некотором энергетическом масштабе f_A .

Практически сразу Вайнберг и Вилчек показали, что за счёт механизма Намбу-Голдстоуна должна возникать новая псевдоскалярная нейтральная частица, получившая в дальнейшем название аксион

1.3 Взаимодействие аксиона

Перейдём к обзору теоретических моделей, в которые входит аксион. Свойства аксиона описывают с помощью эффективных констант взаимодействия с обычной материей:

- 1. $g_{A\gamma}$ (фотоны)
- 2. g_{Ae} (лептоны)
- 3. g_{AN} (нуклоны)

Теоретические модели тем или иным способом дают рецепт, как посчитать эти константы.

Масса новой частицы m_A и её константы связи оказываются обратно пропорциональным масштабу нарушения симметрии f_A :

$$m_A \approx \frac{f_\pi m_\pi}{f_A} \frac{z}{(1+z+w)(1+z)} \approx \frac{6.0 \cdot 10^6}{f_A (GeV)}$$
 (4)

Изначальная теория, названная по первым буквам её создателей (Рессеі-Quinn-Weinberg-Wilczek) предполагала, что масштаб нарушения симметрии должен быть приблизительно как и у электрослабого взаимодействия, т.е. около 250 GeV. Эксперименты опровергли данную модель с большим уровнем достоверности

В настоящее время актуальными являются два класса теоретических моделей так называемого "невидимого" аксиона, сохраняющих идею появления данной частицы, но в то же время подавляющих её взаимодействие с обычной материей.

- 1. Адронный аксион или KSVZ (Kim, Shifman, Vainshtein, Zakharov) Постулирует наличие дополнительного тяжёлого кварка
- 2. GUT или DFSZ (Dine, Fischer, Srednicki, Zhitnycki) Постулирует наличие дополнительного хиггсовского поля

Некоторые из процессов, в которых принимает участие новая частица

- а $A \to 2\gamma$ распад
- ь Обратный эффект Примакова
- с Аксиоэлектрический эффект
- d Комптоновское рассеяние аксиона

1.4 Солнечные аксионы

Рассмотрим процессы в звёздах, которые гененируют аксионы:

- 1. Ядерные реакции (g_{AN})
- 2. Тепловое возбуждение ядер (g_{AN})
- 3. Эффект Примакова $(g_{A\gamma})$
- 4. Аксионное тормозное излучение (g_{Ae})
- 5. Комптоновское рассеяние аксиона (g_{Ae})
- 6. Атомные переходы магнитного типа (g_{Ae})

Сделав некоторые предположения относительно величин констант можно рассчитать ожидаемый поток от ближайшей к нам звезды - Солнца.

(картинка с потоком)

Рассмотрим некоторые процессы, с помощью которых можно зарегистрировать аксион

1. $(g_{A\gamma})$ Эффект Примакова, конверсия аксиона в фотон в магнитном поле (CAST, ADMX)

- 2. (g_{Ae}) Аксиоэлектрический эффект (EDELWEISS, XENON, XMASS)
- 3. (g_{AN}) Резонансное поглощение атомными ядрами (ПИЯ Φ)

Глава 2. Резонансное поглощение аксиона

Аксион способен испытывать резонансное поглощение атомным ядром в переходах магнитного типа, так как является псевдоскалярной частицей.

 $(^{57}Fe, ^{83}Kr, ^{169}Tm)$ обладают подходящими низколежащими ядерными переходами для поиска аксиона данным методом.

Релаксация возбужденных ядер приводит к образованию γ -квантов, а также конверсионых и Оже-электронов, которые детектируются обычными средствами.

Сечение резонансного поглощения аксионов в данном переходе:

$$\sigma(E_A) = 2\sqrt{\pi}\sigma_{0_{\gamma}} \frac{-4(E_A - E_{M1})}{\Gamma^2} \left(\frac{\omega_A}{\omega_{\gamma}}\right)$$
 (5)

2.1 Эксперименты ПИЯФ

С 2007 в Петербургском институте ядерной физики ведутся эксперименты по поиску резонансного поглощения солнечных аксионов по схеме «мишень-детектор» с нуклидами $^{57}Fe~(14.4~{\rm kpB})$ и $^{169}Tm.(8.41~{\rm kpB})$.

Расположение мишени – непосредственно над полупроводниковым Si(Li) детектором. Сама установка находилась на поверхности земли.

Следущим шагом было создание низкофоновой установки в сотрудничестве с БНО на базе газового пропорционального счётчика

На слайде представлены низкофоновые характеристики БНО, способствующие чувствительности эксперимента.

- 1. Глубокое расположение (4800 метров водного эквивалента)
- 2. Поток мюонов на 7 порядков ниже, чем на поверхности земли $(2.6m^{-2}d^{-1})$

Пропордиональный счётчик ^{83}Kr Нами был использован газообразный криптон, обогащённый изотопом ^{83}Kr Были получены следующие ограничения:

2.2 Использование тулиевых болометров

Перейдём к мотивировке использования тулиеввых болометров.

Внесение вещества мишени в рабочий объём детектора позволяет существенно увеличить, чувствительность эксперимента.

Нивелируется самопоглощение гамма-квантов веществом мишени.

Низколежащие ядерные уровни имеют значительные коэффициенты внутренней конверсии ($\approx 10^{-2}$), поэтому практически вся энергия рассеивается в детекторе

Для разработки экспериментальной установки в сотрудничестве с коллегами из других институтов были выращены образцы тулийсодержащих кристаллов $Tm_3Al_5O_{12}$

Лагранжиан, описывающий взаимодействие аксионного поля ϕ_A с электромагнитным полем, задаваемым тензором $F^{\mu\nu}$:

$$\mathcal{L} = g_{A\gamma}\varphi_A\varepsilon_{\alpha\beta\mu\nu}F_{\alpha\beta}F^{\mu\nu} = g_{A\gamma}\varphi_A\vec{B}\cdot\vec{E}$$
 (6)

Константа свзяи с фотоном $g_{A\gamma}$ в моделях "невидимого аксиона равна:

$$g_{A\gamma} = \frac{\alpha}{2\pi f_A} \left[\frac{E}{N} - \frac{2(4+z)}{3(1+z)} \right] = \frac{\alpha}{2\pi f_A} C_{A\gamma\gamma}$$
 (7)

Данное взаимодействие ответственно за рождение аксионов на Солнце вследствие конверсии фотонов в электромагнитном поле. Для аксионов, достигающих поверхность Земли, энергетический спектр определяется следующим выражением[ссылька1, ссылка2]: dphi/dea

Скорость поглощения солнечных аксионов R_A одним ядром ^{169}Tm в единицу времени составит:

• в терминах констант связи

$$R_A = C_{Ax} \cdot g_{Ax}^2 \left(g_{AN}^0 + g_{AN}^3 \right)^2 \left(\frac{p_A}{p_\gamma} \right)^3 \tag{8}$$

$$C_{A\gamma} = 104 \qquad C_{Ae} = 2.76 \cdot 10^5$$
 (9)

• в терминах произведения констант связи и массы

$$R_A = C'_{Ax} \cdot g_{Ax}^2 m_A^2 \left(\frac{p_A}{p_\gamma}\right)^3 \tag{10}$$

$$C_{A\gamma} = 104 \qquad C_{Ae} = 2.76 \cdot 10^5 \tag{11}$$

• в терминах массы аксиона

$$R_A = C_{Ax}^{"} m_A^4 \left(\frac{p_A}{p_\gamma}\right)^3 \tag{12}$$

$$C_{A\gamma}^{"} = 6.64 \cdot 10^{-32} \qquad C_{Ae}^{"} = 8.08 \cdot 10^{-31}$$
 (13)

В приведённых формулах m_A - масса аксиона в эВ. Константы C_{Ax} , а также их пересчитанные версии C'_{Ax} и C''_{Ax} , зависят от аксионной модели, мишени и др. параметров и были вычислены для ядер ^{169}Tm в работах [14,30].

Глава 3. Оценка радиоактивной частоты сырья

3.1 Чувствительность HPGe детектора

Детектор farPPD, расположенный в Баксанской нейтринной обсерватории: фотография*

Для исследования чистоты сырья, используемого для изготовления тулиевого болометра, были произведены измерения на установке в БНО. Данная установка была промоделирована в Geant4 с целью получения за-

Рис. 1: Спектры зарегистрированных событий для малых энергий гамма-кванта

висимости чувствительности детектора от энергии гамма-частицы, выпускаемой в объёме условного образца:

Спектры Монте-Карло симуляции:

Чувствительность детектора вычислялась как отношение зарегистрированных событий в пике к полному числу выпущенных частиц:

3.2 Экспериментальные спектры сырья

TODO(есть, но их нужно калибровать)

3.3 Верхний предел на содержание

TODO

Глава 4. Верхний предел на существование аксиона

4.1 Моделирование эксперимента

Эксперимент моделировался на Geant4 следующим образом: TODO

4.2 Оценка числа возможных аксионных событий

Slim < чего-то

Рис. 2: Спектры зарегистрированных событий для высоких энергий гамма-кванта

Рис. 3: Чувствительность детектора в диапазоне малых энергий гамма-кванта

Detector sensitivity dependency on gamma energy

Рис. 4: Чувствительность детектора в диапазоне энергий естественного радиационного фона

4.3 Предел на константы связи

Найдём число ядер в мишени N_{Tm} Для этого вычислим молярную массу вещества детектора:

$$\mu \left(Tm_3 A l_5 O_{12} \right) = 3 \cdot 168.93 + 5 \cdot 26.98 + 12 \cdot 16 = 833.69 \frac{\Gamma}{\text{MOJIB}}$$
 (14)

Каждая молекула мишени содержит 3 ядра ^{169}Tm , поэтому

$$N_{Tm} = 3\nu \cdot N_A = 3\frac{m}{\mu}N_A = 3\frac{m}{\mu}N_A \tag{15}$$

Подставляя m=8.18 г, получаем $N_{Tm}=3\cdot\frac{8.18}{833.69}\cdot6.022\cdot10^{23}\approx1.77\cdot10^{22}$

Полное число зарегистрированных событий в пике, который можно сопоставить с аксионом, пропорционально числу ядер ^{169}Tm в мишени, времени измерений и эффективности регистрации детектором. Вероятность зарегистрировать аксионный пик зависит от уровня фона и разрешения детектора. Полагая:

- Число ядер в мишени $N_{Tm} = 1.77 \cdot 10^{22}$
- Эффективность регистрации $\varepsilon \sim 1$, так как в болометрических де-

текторах ядра мишени находится непосредственно внутри активного объема

• Время экспозиции 1 год: $T = 3.15 \cdot 10^7 c$

Мы можем записать предел:

$$\varepsilon \cdot T \cdot R_A \cdot N_{Tm} \leqslant S_{\lim} \tag{16}$$

Если предположить $\frac{p_A}{p_\gamma} \approx 1$, то можно получить ограничение на константы связи, воспользовавшись выражением (10):

$$\left| g_{A\gamma}^2 \left(g_{AN}^0 + g_{AN}^3 \right)^2 \right| \leqslant \frac{S_{\lim}}{C_{Ax} \cdot \varepsilon \cdot T \cdot N_{Tm}} \tag{17}$$

$$\left| g_{Ae}^2 \left(g_{AN}^0 + g_{AN}^3 \right)^2 \right| \leqslant \frac{S_{\lim}}{C_{Ae} \cdot \varepsilon \cdot T \cdot N_{Tm}} \tag{18}$$

Выводы

Проведённые расчёты показывают, что создание криогенной установки на основе тулиевых болометров может улучшить существующие экспериментальные пределы на несколько порядков

Заключение

Основные результаты, полученные в работе, заключаются в следующем: 1. Создана экспериментальная установка с Si(Li)-детекторами и мишенью из 169Tm. Низкофоновая установка включает в себя пассивную и активную защиту от космического излучения, а также регистрирующую аппаратуру. 2. Создана программа накопления данных с Si(Li)-детекторов, позволяющая проводить длительные измерения и контролирующая работу детекторов и активной защиты. Создана программа для расчета эффективности регистрации гамма-квантов для различной геометрии между планарным детекторам и мишенью. 3. Проведен поиск резонансного поглощения солнечных аксионов, возникающих в результате конверсии тепловых фотонов в поле плазмы, ядрами 169Tm, приводящего к возбуждению первого ядерного уровня соответствующий энергии первого возбужденного уровня 169Tm, статистически не проявился, что позволило

Полученные результаты были представлены на 146 международной конференции по проблемам ядерной спектроскопии и структуре атомного ядра (Кибердянск 2077) и опубликованы в работах

Список литературы

- [1] Griffin D.W., Lim J.S. «Multiband excitation vocoder». IEEE ASSP-36 (8), 1988, pp. 1223-1235.
- [2] Griffin D.W., Lim J.S. «Multiband excitation vocoder». IEEE ASSP-36 (8), 1988, pp. 1223-1235.