Éwiczenia 4 23.10

1. Dla danego alfabetu z zależnością (Σ,D) i języha

L nozvażny pytanie, czy L jest zamhniety na nównoważność śladowa. Pohaż, że pytanie to jest nozstnygalne dla L regularnego. Udowodnij, że problem staje się nierozstnygalny, gdy zatożymy,

ze L jest bezhontekstony.

- 1) L segularry
- * udo Lodniliśmy już, że jeśli regularny języh L
 jest zamknięty na równoważność śladowa, to

L jest diamentory

pytanie: czy można otnymać automat diamentory,

minimalny automat deterministyczny rozpoznający

minimalizując automat nozpoznający język, który nie jest zamknięty na nównowaźność Sladowa $(\equiv_D)^2$ NIE

pokażemy, że każdy automat diamentowy A nozpoznaje języh LA zamhniety na ≡D dla kazdych stów u E LA i V E [u], mając dany bieg ahceptujący dla u w A, możemy nygenerować bieg ahceptujący dla v * wystanczy pohazać, że jeśli akceptowane jest sTowo xaby, $x,y \in \mathbb{Z}^*$, $(a,b) \in \mathbb{I}$, to acceptowane jest też xbay (bo v otrzymujemy z u przez ciag takich zamian) * povyzsze vynika bezpośrednio z utasności automatu diamentovego prejscie po 6 z q istnieje, bo automat jest deterministyczny (i ma stan "śmietnik")

stad, żeby sprawdzić, czy L zamhnięty na = D wystarczy zminimalizować automat rospoznający L i sprawdzić, czy jest diamentowy (w każdym stanie spraudzavny przejścia po kazdej parze (a,b) E] bezhontekstory dla gramatyhi bezkontekstowej problem sprandzenia, czy generalany przez nia, języh zawiera uszystkie stava nad alfabetem symboli terminalnych, jest nierozstrzygalny (problem universalności gramatyhi) pohazujemy vienozstnygalność naszego problemu przez redukcję: zamknietość na =D uniwersalnosé \leftarrow $\hat{\Sigma} = \Sigma \oplus \{a,b\}$ $I = \{(a,b), (b,a)\}$ alfabet Z G: abG, ba (2*) gramatyka G L generouary przez 6 język L czy G universalna? = czy Ĺ zamknięty na ≡p?

2. Pohaz, że produkty asynchroniczne automatów

nozpoznaja doltadnie języki prostokatne.

Przypomnienie teorii i rozwiązanie z ksiażki:

Distributed alphabets A distributed alphabet over Σ , or a distribution of Σ , is a tuple of nonempty sets $\theta = \langle \Sigma_1, \Sigma_2, \dots, \Sigma_k \rangle$ such that $\bigcup_{1 \leq i \leq k} \Sigma_i = \Sigma$. For each action $a \in \Sigma$, the locations of a with respect to the distribution θ is the set $loc_{\theta}(a) = \{i \mid a \in \Sigma_i\}$. If θ is clear from the context, we write just loc(a) instead of $loc_{\theta}(a)$. dom (a) ~ produkty asynchroniczne automatów

Direct product automaton Let $\langle \Sigma_1, \Sigma_2, \dots, \Sigma_k \rangle$ be a distribution of Σ . For each $i \in [1..k]$, let $A_i = (Q_i, \rightarrow_i, Q_{in}^i, F_i)$ be an automaton over Σ_i . The direct product automaton $(A_1 \parallel A_2 \parallel \cdots \parallel A_k)$ is the automaton $A = (Q, \rightarrow, Q_{\text{in}}, F)$ over

 $\Sigma = \bigcup_{1 \le i \le k} \Sigma_i$, where:

- $Q = Q_1 \times Q_2 \times \cdots \times Q_k$.
- Let $\langle q_1, q_2, \dots, q_k \rangle$, $\langle q'_1, q'_2, \dots, q'_k \rangle \in Q$. Then $\langle q_1, q_2, \dots, q_k \rangle \stackrel{a}{\longrightarrow} \langle q'_1, q'_2, \dots, q'_k \rangle$ if
 - For each $j \in loc(a)$, $q_j \xrightarrow{a}_j q'_j$.
 - For each $j \notin loc(a)$, $q_i = q'_i$.
- $Q_{\text{in}} = Q_{\text{in}}^1 \times Q_{\text{in}}^2 \times \ldots \times Q_{\text{in}}^k$. $F = F_1 \times F_2 \times \ldots \times F_k$.

Direct product language Let $(\Sigma_1, \Sigma_2, \dots, \Sigma_k)$ be a distribution of Σ . $L \subseteq \Sigma^*$ is said to be a direct product language if there is a direct product automaton $A = (A_1 \parallel A_2 \parallel \cdots \parallel A_k)$ such that L = L(A).

Direct product languages can be precisely characterized in terms of their projections onto the local components of the system.

Projections Let $(\Sigma_1, \Sigma_2, \dots, \Sigma_k)$ be a distribution of Σ . For $w \in \Sigma^*$ and $i \in$ [1..k], the projection of w onto Σ_i is denoted $w\downarrow_{\Sigma_i}$ and is defined inductively as follows:

- $\varepsilon \downarrow_{\Sigma_i} = \varepsilon$, where ε is the empty string.
- $wa\downarrow_{\Sigma_i} = \begin{cases} (w\downarrow_{\Sigma_i})a \text{ if } a \in \Sigma_i \\ (w\downarrow_{\Sigma_i}) \text{ otherwise} \end{cases}$

Shuffle closure The shuffle closure of L with respect to $\langle \Sigma_1, \Sigma_2, \dots, \Sigma_k \rangle$, $shuffle(L, \langle \Sigma_1, \Sigma_2, \dots, \Sigma_k \rangle)$, is the set

$$\{w \in \Sigma^* \mid \forall i \in [1..k], \exists u_i \in L, w \downarrow_{\Sigma_i} = u_i \downarrow_{\Sigma_i} \}$$

As usual, we write just shuffle(L) if $\langle \Sigma_1, \Sigma_2, \dots, \Sigma_k \rangle$ is clear from the context.

Proposition 1.1. Let $\langle \Sigma_1, \Sigma_2, \dots, \Sigma_k \rangle$ be a distribution of Σ and let $L \subseteq \Sigma^*$ be a regular language. L is a direct product language iff L = shuffle(L).

Proof Sketch: (\Rightarrow) Suppose that L is a direct product language. It is easy to see that $L \subseteq shuffle(L)$, so we show that $shuffle(L) \subseteq L$. Since L is a direct product language, there exists a direct product automaton $A = (A_1 \parallel A_2 \parallel \cdots \parallel A_k)$ such that L = L(A).

Let $w \in shuffle(L)$. For each $i \in [1..k]$, there is a witness $u_i \in L$ such that $w\downarrow_{\Sigma_i} = u_i\downarrow_{\Sigma_i}$. Since $u_i \in L$, there is an accepting run $q \in Q_{\text{in}}^i \xrightarrow{u\downarrow_{\Sigma_i}} q_f \in F_i$ in A_i . Since this is true for every i, we can "glue" these runs together and construct an accepting run for A on w, so $w \in L(A) = L$.

(\Leftarrow) Suppose that L = shuffle(L). We prove that L is a direct product language. For $i \in [1..k]$, $L_i = L \downarrow_{\Sigma_i}$ is a regular language, since homomorphic images of regular languages are regular. For each $i \in [1..k]$, there exists a deterministic automaton A_i such that $L_i = L(A_i)$. It is then easy to see that $L = L(A_1 \parallel A_2 \parallel \cdots \parallel A_k)$.

Distributed Alphabets

Dodateh o produktach asynchronicznych:

Proposition 1.2. Direct product languages are not closed under boolean operations.

Example 1.3.

Let $\theta = \langle \{a\}, \{b\} \rangle$ and let $L = \{ab, ba, aabb, abab, abba, baab, baba, bbaa\}$. Then L is clearly the union of $\{ab, ba\}$ and $\{aabb, abab, abba, baba, baba, bbaa\}$, both of which are direct product languages. However, L is not itself a direct product language because $L \neq shuffle(L)$. For instance, $abb \in shuffle(L) \setminus L$.

3. Udovodnij, że uogólnione produkty asynctroniczne rozpoznaja, dokładnie sumy języków prostokatnych.

Synchronized product automaton Let $\langle \Sigma_1, \Sigma_2, \ldots, \Sigma_k \rangle$ be a distribution of Σ . For each $i \in [1..k]$, let $TS_i = (Q_i, \rightarrow_i, Q^i_{\mathrm{in}})$ be a transition system over Σ_i . The synchronized product automaton of $(TS_1, TS_2, \ldots, TS_k)$ is an automaton $A = (Q, \rightarrow, Q_{\mathrm{in}}, F)$ over $\Sigma = \bigcup_{1 \leq i \leq k} \Sigma_i$, where:

asynchroniczny

- $Q = Q_1 \times Q_2 \times \cdots \times Q_k$
- Let $\langle q_1, q_2, \dots, q_k \rangle$, $\langle q'_1, q'_2, \dots, q'_k \rangle \in Q$. Then $\langle q_1, q_2, \dots, q_k \rangle \xrightarrow{a} \langle q'_1, q'_2, \dots, q'_k \rangle$ if
 - For each $j \in loc(a)$, $q_j \xrightarrow{a}_j q'_j$. - For each $j \notin loc(a)$, $q_i = q'_i$.
- $Q_{\rm in} = Q_{\rm in}^1 \times Q_{\rm in}^2 \times \ldots \times Q_{\rm in}^k$.
- $F \subseteq Q_1 \times Q_2 \times \ldots \times Q_k$.

Synchronized product language Let $\langle \Sigma_1, \Sigma_2, \dots, \Sigma_k \rangle$ be a distribution of Σ . $L \subseteq \Sigma^*$ is said to be a synchronized product language if there is a synchronized product automaton A such that L = L(A).

Proposition 1.5. A language is a synchronized product language if and only if it can be written as a finite union of direct product languages.

Proof Sketch: (\Rightarrow) Let $A = (Q, \rightarrow, Q_{\text{in}}, F)$ be a synchronized product such that $\langle TS_1, TS_2, \dots, TS_k \rangle$ are the component transition systems over $\langle \Sigma_1, \Sigma_2, \dots, \Sigma_k \rangle$. For each $f = \langle f_1, f_2, \dots, f_k \rangle \in F$, extend TS_i to an automaton $A_i^f = (TS_i, f_i)$ and construct the direct product $A_f = (A_1^f \parallel A_2^f \parallel \dots \parallel A_k^f)$. Then, $L(A) = \bigcup_{f \in F} L(A_f)$.

(\Leftarrow) Conversely, let L be a finite union of direct product languages $\{L_i\}_{i\in[1..m]}$, where each L_i is recognized by a direct product $A^i = (A_1^i \parallel A_2^i \parallel \cdots \parallel A_k^i)$. For $j \in [1..k]$, let $A_j^i = (Q_j^i, \rightarrow_j^i, Q_{\rm in}^{ij}, F_j)$ be the j^{th} component of A^i . We construct a synchronous product $\hat{A} = (\hat{A}_1 \parallel \hat{A}_2 \parallel \cdots \parallel \hat{A}_k)$ as follows. For each component j, we let \hat{Q}_j be the disjoint union $\biguplus_{i \in [1..m]} Q_j^i$ and define the set of initial states of component j be $\bigcup_{i \in [1..m]} Q_{\rm in}^{ij}$. The local transition relations of each component are given by the union $\bigcup_{i \in [1..m]} \rightarrow_j^i$. The crucial point is to define the global set of final states as $(F_1^1 \times F_2^1 \times \cdots \times F_k^1) \cup (F_1^2 \times F_2^2 \times \cdots \times F_k^2) \cup \cdots \cup (F_1^m \times F_2^m \times \cdots \times F_k^m)$. This ensures that the synchronized product accepts only if all components agree on the choice of L_i .

VAS - vector addition system

* niewjenny webtor począthony u E Nd

* skończony zbiór weltorów $V \subseteq \mathbb{Z}^d$ oznaczających || możliwe przejścia || j z weltora u można

osiagnaé u+v U jednym krohu, tylho jeśli v E V i u+v E INd (nie można spaść na żadnej

uspotrzędnej wektora poniżej zera)

* wektor w jest osiagalny z u jeśli istnieje

sehvenýa krohów, którymi možna przejší do w VASS – vector addition system with states

* graf shierowany (Q,T), gdzie Q są stanami

(vierzchothami), a T to krawędzie etyhietowane wehtorami (formalnie $T \subseteq Q \times \mathbb{Z}^d \times Q$)

z konfiguração poczathovej $(p, u) \in \mathbb{Q} \times \mathbb{N}^d$ mozna v jednym krohu osiągnąć (q, u+v),

jesti (p,v,q) ET i u+v EIN⁴

Automat licznihory bez testów O

- * zbiór licznihów (komórek przechowyjących nieujemne liczby cathowite)
- * shończony niedeterministyczny automat
- * u automacie przejścia sa, etyhietowane akcją zmniejszenia /zwiększenia wybranego liczniha o 1
- * gdy automat jest w stanie p i ma
 wychodzaca, krawędź (p, deci, q), a ci=0,
 to przejście jest niemożliwe
- 1. Zapropony transformaye n-wymianowego VASSu do nównoważnego (n+s)-wymianowego VASu. Jak mate może być s?
- 2^D 0 ile wighsza site maja, automaty licznihowe z testami na zero? Pohaż, że można nimi zasymulować taśme, maszyny Turinga.

Uwaga: na następnej stronie jest
rozwiązanie zadania domowego
2^D 2 poprzednich Zwiczeń

2º Ogólna sieć Petniego N 2 konfiguracja M jest żyva
i 1-ograniczona. Czy vynika stad, że z dowolnej
osiągalnej konfiguracji M' można wrócić do M?

- * u pougzszej sieci jedynie początkowa konfiguracja ma dua żetony po prauje stronie zielonej liviii
- * caty czas zachowany jest niezmiennik: jeden żeton w górnej części sieci i jeden w dolnej
- * każde przeniesienie żetona na prawą stronę zielonej linii hymaga, aby drugi żeton był po lewej stronie