David Gómez, Laura Rincón

DEMOSTRACIONES DE PRYE

MATEMÁTICAS

ÍNDICE David G., Laura R.

Índice

1.	Intr	oducci	ôn .	2
2.	Pro	babilid	ad	3
3.	Propiedades de la Varianza y el Valor Esperado			7
	3.1.	Propie	dades da valor esperado	7
	3.2.	Propie	dades de varianza	7
4. Distribuciones		ones	8	
	4.1.	Distrib	iones Discretas	
		4.1.1.	Binomial	8
		4.1.2.	Hipergeométrica	11
		4.1.3.	Uniforme Discreta	15
		4.1.4.	Poisson	18
	4.2.	Distrib	ouciones Continuas	20
		4.2.1.	Distribución Normal	20
		4.2.2.	Chi-cuadrada	24
		4.2.3.	Distribucion F	27
	43	Teoren	nas de Aproximación	20

1 INTRODUCCIÓN David G., Laura R.

1. Introducción

Por ahora, cualquier cosa

2. Probabilidad

Uno de los problemas no resueltos de esta primera parte del curso fue hallar la probabilidad de una unión finita de eventos.

Esta probabilidad, sin embargo, se puede hallar mediante una forma recursiva con la siguiente expresión

$$P(A_1 \cup A_2) = P(A_1) + P(A_2) - P(A_1 \cap A_2)$$

$$P\left(\bigcup_{i=1}^{n+1} A_i\right) = P(A_{n+1}) + P\left(\bigcup_{i=1}^{n} A_i\right) - P\left(\bigcup_{i=1}^{n} (A_{n+1} \cap A_i)\right)$$

Lo que se quiere es resolver esta función de recursión. Para esto, se evaluaran unos cuantos de sus resultados.

$$P(A_1 \cup A_2 \cup A_3)$$
=
$$P(A_3) + P(A_1 \cup A_2) - P((A_3 \cap A_1) \cup (A_3 \cap A_2))$$
=
$$P(A_3) + P(A_2) + P(A_1) - P(A_1 \cap A_2)$$

$$-[P(A_1 \cap A_3) + P(A_2 \cap A_3) - P(A_1 \cap A_2 \cap A_3)]$$
=
$$P(A_1) + P(A_2) + P(A_3) - P(A_1 \cap A_2) - P(A_1 \cap A_3)$$

$$-P(A_2 \cap A_3) + P(A_1 \cap A_2 \cap A_3)$$
=
$$\sum_{i=1}^{3} P(A_i) - \sum_{i=1}^{2} \sum_{j=i+1}^{3} P(A_i \cap A_j) + P\left(\bigcap_{i=1}^{3} A_i\right)$$

Análogamente para cuatro eventos, usando lo obtenido

$$P(A_1 \cup A_2 \cup A_3 \cup A_4)$$
=
$$P(A_4) + P(A_1 \cup A_2 \cup A_3) - P\left(\bigcup_{i=1}^{3} (A_4 \cap A_i)\right)$$

$$P(A_4) + \sum_{i=1}^{3} P(A_i) - \sum_{i=1}^{2} \sum_{j=i+1}^{3} P(A_i \cap A_j) + P\left(\bigcap_{i=1}^{3} A_i\right)$$

$$- \left[\sum_{i=1}^{3} P(A_4 \cap A_i) - \sum_{i=1}^{2} \sum_{j=i+1}^{3} P(A_4 \cap A_i \cap A_j) + P\left(\bigcap_{i=1}^{4} A_i\right)\right]$$

$$=$$

$$\sum_{i=1}^{4} P(A_i) - \sum_{i=1}^{3} \sum_{i=1}^{4} P(A_i \cap A_j) + \sum_{i=1}^{2} \sum_{j=i+1}^{3} \sum_{k=j+1}^{4} P(A_1 \cap A_j \cap A_k) - P\left(\bigcap_{i=1}^{4} A_i\right)$$

Por último, recordar que

Teorema 1: Sean A_1, A_2, \ldots, A_n eventos de un espacio muestral. Entonces,

$$P\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{1 \le i \le n} P(A_i) - \sum_{1 \le i < j \le n} P(A_i \cap A_j) + \sum_{1 \le i < j < k \le n} P(A_i \cap A_j \cap A_k) - \dots + (-1)^n P\left(\bigcap_{i=1}^{n} A_i\right)$$

De otra forma, la probabilidad de una unión finita es la suma de la probabilidad de cada evento menos las posibles intersecciones dos a dos, sumando las probabilidades tres a tres...

Demostración: Siguiendo por inducción. Los caso base n=1 y n=2 caen en la definición recursiva y para n=3 fue el desarrollo anterior. Para el paso inductivo, supóngase que la propiedad se mantiene hasta un valor n.

$$P\left(\bigcup_{i=1}^{n+1} A_i\right)$$

$$=$$

$$P(A_{n+1}) + P\left(\bigcup_{i=1}^{n} A_i\right) - P\left(\bigcup_{i=1}^{n} (A_{n+1} \cap A_i)\right)$$

$$=$$

$$P(A_{n+1}) + P\left(\bigcup_{i=1}^{n} A_i\right)$$

$$-\left[\sum_{1 \le i \le n} (A_{n+1} \cap A_i) - \sum_{1 \le i < j \le n} (A_{n+1} \cap A_j) + \dots + (-1)^n P\left(\bigcap_{i=1}^{n+1} A_i\right)\right]$$

$$\sum_{1 \le i \le n+1} P(A_i) - \sum_{1 \le i < j \le n+1} P(A_i \cap A_j) + \sum_{1 \le i < j < k \le n+1} P(A_i \cap A_j \cap A_k) - \dots + (-1)^{n+1} P\left(\bigcap_{i=1}^{n+1} A_i\right)$$

Definición 1: Sean A y B eventos de un espacio muestral. Se dice que A y B son independientes, cuando $P(A \cap B) = P(A) P(B)$.

Teorema 2: Sean A y B eventos independientes. Entonces

- (i) A^c y B^c son independientes.
- (ii) A^c y B son independientes.

Demostración: Supóngase A y B eventos independientes de un espacio muestral.

(i) Partiendo de que $A^c \cap B^c = (A \cup B)^c$.

$$P(A^{c} \cap B^{c})$$
=
$$1 - P(A \cup B)$$
=
$$1 - [P(A) + P(B) - P(A \cap B)]$$
=
$$1 - P(A) + P(B) - P(A)P(B)$$
=
$$(1 - P(A))(1 - P(B))$$
=
$$P(A^{c}) P(B^{c})$$

Así, los eventos A^c y B^c también son independientes.

(ii) Partiendo de que $B = (B \cap A) \cup (B \cap A^c)$

$$P(B)$$
=
$$P((B \cap A) \cup (B \cap A^c))$$
=
$$P(B \cap A) + P(B \cap A^c) - P(\emptyset)$$
=
$$P(B) P(A) + P(B \cap A^c)$$

Tomando la primera y última igualdad

$$P(B \cap A^{c})$$

$$=$$

$$P(B) - P(B)P(A)$$

$$=$$

$$P(B)(1 - P(A))$$

$$=$$

$$P(B)P(A^{c})$$

Así, los eventos A^c y B también son independientes.

3. Propiedades de la Varianza y el Valor Esperado

3.1. Propiedades da valor esperado

Teorema 3: Sea X una variable aleatoria real entonces:

- (i) Si $P(X \ge 0) = 1$ y E[X] existe entonces $E[X] \ge 0$
- (ii) $E[\alpha] = \alpha$ para α constante
- (iii) Si existe $M \ge 0$ tal que $P(|X| \le M) = 1$ entonces E[X] existe.
- (iv) Si α y β son constantes, y si g y h son funciones tales que g(X) y h(X) son variables aleatorias cuyos valores esperados existen, entonces $\mathrm{E}[\alpha g(X) + \beta h(X)] = \alpha \mathrm{E}[g(X)] + \beta \mathrm{E}[h(X)]$
- (v) Si g y h son funciones tales que g(X) y h(X) son variables aleatorias cuyos valores esperados existen y $g(x) \le h(x)$ para todo x, entonces $E[g(X)] \le E[X]$

3.2. Propiedades de varianza

Teorema 4: (i)

4. Distribuciones

En esta sección se repasarán las definiciones de algunas distribuciones de la probabilidad.

4.1. Distribuciones Discretas

Las distribuciones discretas son aquellas cuyas funciones de masa tienen dominio en los enteros. Este hecho se asumirá a lo largo de las definiciones y demostraciones a cerca de estas distribuciones. De no ser especificado el valor de una función de masa en algún subconjunto de \mathbb{Z} , se asumirá un como nulo.

4.1.1. Binomial

Supóngase que se realiza un experimento el cual tiene como posible resultado a o b exclusivamente, y además, el resultado de realizar nuevamente el experimento es independiente al resultado anterior. Dado que a y b son los únicos resultados, para un único experimento, se debe tener que P(a) = 1 - P(b). Sea p = P(a). Supóngase que este experimento es realizado n veces. Se define una variable aleatoria X correspondiente a la cantidad de ocurrencias de a. Entonces

$$P(X = x) = \binom{n}{x} p^x (1-p)^{n-x}$$

Definición 2: Sea X una variable aleatoria discreta. X sigue una distribución binomial con parámetros n y p $(n \in \mathbb{Z}^+, p \in [0, 1])$, denotada por B(n, p), cuando su función de masa es

$$f(x) = P(X = x) = B(n, p)(x) = \binom{n}{x} p^x (1 - p)^{n - x}$$
 $(0 \le x \le n)$

Teorema 5: Sea $X \sim B(n, p)$. Entonces

- (i) Para todo $x \in \mathbb{Z}$ con 0 < x < n, P(X = x) > 0.
- (ii) $\sum_{x \in \mathbb{Z}} P(X = x) = 1.$
- (iii) E[X] = np.
- (iv) Var[X] = np(1-p).

Demostración: Desarrollando ambos valores, y recordando el teorema del binomio...

(i) Sea $x \in \mathbb{Z}$ con $0 \le x \le n$. Recordando que

$$P(X = x) = \binom{n}{x} p^x (1-p)^{n-x}$$

Dado todos los términos de la expresión son no negativos, se concluye que $P(X=x) \ge 0$

(ii)

$$\sum_{x=0}^{n} P(X = x)$$

$$=$$

$$\sum_{x=0}^{n} \binom{n}{x} p^{x} (1-p)^{n-x}$$

$$=$$

$$(p+1-p)^{n}$$

$$=$$
1

(iii)

$$\begin{split} & & \quad \ = \\ & \quad \sum_{x=0}^{n} x \binom{n}{x} p^{x} (1-p)^{n-x} \\ & = \\ & \quad np \sum_{x=1}^{n} \frac{(n-1)!}{(n-k)! (x-1)!} p^{x} (1-p)^{n-x} \\ & = \\ & \quad np \sum_{x=0}^{n-1} \binom{n-1}{x} p^{x} (1-p)^{n-1-x} \\ & = \\ & \quad np \left(p+1-p\right)^{n-1} \\ & = \\ & \quad np \end{split}$$

(iv)

$$\begin{aligned} &\operatorname{Var}[X] \\ &= \\ &\operatorname{E}[X^2] - \operatorname{E}^2[X] \\ &= \\ &\sum_{x=0}^n x^2 \binom{n}{x} p^x (1-p)^{n-x} - (np)^2 \\ &= \\ &np \left[\sum_{x=1}^n x \binom{n-1}{x-1} p^{x-1} (1-p)^{n-x} - np \right] \\ &= \\ &np \left[\sum_{x=0}^{n-1} (x+1) \binom{n-1}{x} p^x (1-p)^{n-1-x} - np \right] \\ &= \\ &np \left[\sum_{x=0}^{n-1} x \binom{n-1}{x} p^x (1-p)^{n-1-x} + \sum_{x=0}^{n-1} \binom{n-1}{x} p^x (1-p)^{n-1-x} - np \right] \\ &= \\ &np \left[p(n-1) \sum_{x=1}^{n-1} \binom{n-2}{x-1} p^{x-1} (1-p)^{n-1-x} + 1 - np \right] \\ &= \\ &np \left[p(n-1) \sum_{x=0}^{n-2} \binom{n-2}{x} p^x (1-p)^{n-2-x} + 1 - np \right] \\ &= \\ &np[p(n-1) + 1 - np] \\ &= \\ &np(1-p) \end{aligned}$$

Este argumento es válido siempre que $n \geq 2$. Si n < 2, entonces n = 1 y

$$Var[X]$$

$$= E[X^{2}] - E^{2}[X]$$

$$= \sum_{x=0}^{1} x^{2} {1 \choose x} p^{x} (1-p)^{1-x} - p^{2}$$

$$= p - p^{2}$$

$$= p (1-p)$$

Así, el resultado se mantiene para todo $n \in \mathbb{Z}^+$

4.1.2. Hipergeométrica

Supóngase que se tienen dos tipos de objetos, a y b en un total de N objetos exclusivamente de estos dos tipos. Sea K el número de objetos de tipo a en el total de los N objetos, es decir hay N-K objetos de tipo b. Supóngase que se toman ahora n objetos del total (N). Se define una variable aleatoria X correspondiente al número de objetos de tipo a en los n objetos tomados. Entonces

$$P(X = x) = \frac{\binom{K}{x} \binom{N - K}{n - x}}{\binom{N}{n}}$$

Definición 3: Sea X una variable aleatoria discreta. X sigue una distribución hipergeométrica con parámetros $N, K, n \ (N, K, n \in \mathbb{Z}^+, K \le N, n \le N)$, denotada por Hg(N, K, n), cuando su función de masa es

$$f(x) = P(X = x) = \frac{\binom{K}{x} \binom{N - K}{n - x}}{\binom{N}{n}} \qquad (\max\{0, n + K - N\} \le x \le \min\{K, n\})$$

La razón de esta condición para x está en que tenga sentido para lo que se está representando. Por un lado, no tiene sentido pensar en la probabilidad de tomar más objetos de tipo a de los que hay en el total de la muestra o tomar más objetos de tipo a del total de estos. De la misma forma, no tiene sentido tomar una cantidad negativa de objetos tipo a, o tomar una cantidad de objetos tipo a de forma que haya una cantidad negativa de objetos tipo a para completar los a objetos o más objetos de tipo a de los que hay en total. De forma más concreta, se pueden ver las condiciones de a dada la expresión de la función de masa presentada.

$$\begin{split} 0 & \leq x \leq K \quad \wedge \quad 0 \leq n-x \leq N-K \\ \Leftrightarrow \\ 0 & \leq x \leq K \quad \wedge \quad n+K-N \leq x \leq n \\ \Leftrightarrow \\ & \max\{0,n+K-N\} \leq x \leq \min\{K,n\} \end{split}$$

Sin embargo, tomando la convención de que $\binom{n}{k} = 0$ cuando k > n, se puede tomar a x entre 0 y n. Para demostrar la validez de esta función de masa, hace falta un resultado sobre la combinatoria.

Lema (Identidad de Vandermonde): Sean $m, n, k \in \mathbb{Z}$ no negativos. Entonces

$$\binom{m+n}{k} = \sum_{r=0}^{k} \binom{m}{r} \binom{n}{k-r}$$

Esta identidad tiene sentido tomando la convención mencionada anteriormente.

Demostración: La demostración se hará por inducción sobre m, tomando k, n como enteros no negativos arbitrarios. Caso base (m = 0):

$$\binom{0+n}{k} = \sum_{r=0}^{k} \binom{0}{r} \binom{n}{k-r} = \binom{n}{k}$$

Paso inductivo: sea $k \in \mathbb{Z}$ con $k \geq 1$ y supóngase que la propiedad se mantiene para todo entero no negativo hasta k. (Para k = 0 la propiedad es trivial)

$$\begin{pmatrix} m+n \\ k+1 \end{pmatrix} =$$

$$\begin{pmatrix} m+n \\ k \end{pmatrix} + \begin{pmatrix} m+n \\ k-1 \end{pmatrix} =$$

$$\sum_{r=0}^{k} {m \choose r} {n \choose k-r} + \sum_{r=0}^{k-1} {m \choose r} {n \choose k-1-r} =$$

$$\begin{pmatrix} m \\ k \end{pmatrix} + \sum_{r=0}^{k-1} {m \choose r} {n \choose k-r} + {n \choose k-1-r}$$

$$=$$

$$\begin{pmatrix} m \\ k \end{pmatrix} + \sum_{k=0}^{k-1} {m \choose r} {n \choose k-r} =$$

$$\sum_{k=0}^{k} {m \choose k} {n \choose k-r} =$$

$$=$$

$$\sum_{k=0}^{k} {m \choose k} {n \choose k-r} =$$

Teorema 6: Sea $X \sim Hg(N, K, n)$. Entonces,

(i) para todo $x \in \mathbb{Z}$ con $0 \le x \le n$, $P(X = x) \ge 0$.

12

(ii)
$$\sum_{x \in \mathbb{Z}} P(X = x) = 1.$$

(iii)
$$E[X] = \frac{nK}{N}$$
.

(iv)
$$Var[X] = \frac{n K(N - K)(N - n)}{N^2(N - 1)}$$
.

Demostración:

(i) Sea $x \in \mathbb{Z}$ con $0 \le x \le n$. Recordando que

$$P(X = x) = \frac{\binom{K}{x} \binom{N - K}{n - x}}{\binom{N}{n}}$$

dado que todos los términos de la expresión son no negativos, se concluye que $P(X=x) \ge 0$

(ii)

$$\sum_{x=0}^{n} P(X=x)$$

=

$$\sum_{x=0}^{n} \frac{\binom{K}{x} \binom{N-K}{n-x}}{\binom{N}{n}}$$

=

$$\frac{1}{\binom{N}{n}} \sum_{x=0}^{n} \binom{K}{x} \binom{N-K}{n-x}$$

=

$$\frac{\binom{N}{n}}{\binom{N}{n}}$$

=

1

(iii)

$$E[X] = \frac{\sum_{x=0}^{n} x \frac{\binom{K}{x} \binom{N-K}{n-x}}{\binom{N}{n}}}{\binom{N}{n}} = \frac{1}{\binom{N}{n}} \sum_{x=0}^{n} x \binom{K}{x} \binom{N-K}{n-x}}{\binom{N-K}{n}} = \frac{K}{\binom{N}{n}} \sum_{x=0}^{n-1} \binom{K-1}{x-1} \binom{N-K}{n-x-1}}{\binom{N}{n}} = \frac{K}{\binom{N}{n}} \binom{N-1}{n-1}}{\binom{N}{n}} = \frac{Kn}{N}$$

(iv)

$$Var[X] = E[X^{2}] - E[X] + E[X] - E^{2}[X]$$

$$= \frac{1}{\binom{N}{n}} \sum_{x=0}^{n} x^{2} \binom{K}{x} \binom{N-K}{n-x} - \frac{1}{\binom{N}{n}} \sum_{x=0}^{n} x \binom{K}{x} \binom{N-K}{n-x} + \frac{nK}{N} - \frac{n^{2}K^{2}}{N^{2}}$$

$$\frac{K}{\binom{N}{n}} \left[\sum_{x=0}^{n-1} x \binom{K-1}{x-1} \binom{N-K}{n-x-1} - \sum_{x=0}^{n-1} \binom{K-1}{x-1} \binom{N-K}{n-x-1} \right] + \frac{nK}{N} - \frac{n^2 K^2}{N^2}$$

$$= \frac{K(K-1)}{\binom{N}{n}} \sum_{x=0}^{n-2} \binom{K-2}{x} \binom{N-K}{n-x-2} + \frac{nK}{N} - \frac{n^2 K^2}{N^2}$$

$$= \frac{K(K-1)}{\binom{N}{n}} \binom{N-2}{n-2} + \frac{nK}{N} - \frac{n^2 K^2}{N^2}$$

$$= \frac{K(K-1)n(n-1)}{N(N-1)} + \frac{nK}{N} - \frac{n^2 K^2}{N^2}$$

$$= \frac{nK(N-K)(N-n)}{N^2(N-1)}$$

4.1.3. Uniforme Discreta

Algunas distribuciones surgen por la función de masa que las define, más que por la similitud con un evento real, esto debido a resultados conocidos sobre los enteros en este caso.

Definición 4: Sea X una variable aleatoria discreta. X sigue una distribución uniforme discreta, de parámetros $n, m \in \mathbb{Z}$ (n < m), denotada por $U_d(n, m)$, cuando su función de masa es

$$f(x) = P(X = x) = \frac{1}{m - n + 1}$$
 $(n \le x \le m)$

Teorema 7: Sea $X \sim U(n, m)$. Entonces,

- (i) Para todo $x \in \mathbb{Z}$, $P(X = x) \ge 0$.
- (ii) $\sum_{x \in \mathbb{Z}} P(X = x) = 1.$
- (iii) $E[X] = \frac{n+m}{2}$
- (iv) $Var[X] = \frac{(m-n+1)^2 1}{12}$

Demostración:

(i) Se sigue inmediatamente de la definición.

(ii)
$$\sum_{r=n}^{m} \frac{1}{n+m+1} = \frac{n+m-1}{n+m-1} = 1$$

(iii)

$$\begin{split} & = \\ & \sum_{x=n}^{m} \frac{x}{m-n+1} \\ & = \\ & \frac{1}{m-n+1} \sum_{x=1}^{m-n+1} (x+n-1) \\ & = \\ & \frac{1}{m-n+1} \left[\frac{(m-n+1)(m-n+2)}{2} + n(m-n+1) - (m-n+1) \right] \\ & = \\ & \frac{m-n+2+2n-2}{2} \\ & = \\ & \frac{m+n}{2} \end{split}$$

(iv) Tomando N = m - n + 1.

$$Var[X]$$

$$=$$

$$E[X^{2}] - E^{2}[X]$$

$$=$$

$$\sum_{x=n}^{m} \frac{x^{2}}{m-n+1} - \left(\frac{n+m}{2}\right)^{2}$$

$$\frac{1}{N} \sum_{x=1}^{m-n+1} (x+n-1)^2 - \left(\frac{n+m}{2}\right)^2$$

$$= \frac{1}{N} \left[\frac{N(N+1)(2N+1)}{6} + 2(n-1) \frac{N(N+1)}{2} + N(n-1)^2 \right] - \left(\frac{n+m}{2}\right)^2$$

$$= \frac{(N+1) \frac{2N+1+6n-6}{6} + (n-1)^2 - \left(\frac{n+m}{2}\right)^2}{6}$$

$$= \frac{(N+1) \frac{2N+6n-5}{6} + \left(n-1 - \frac{n+m}{2}\right) \left(n-1 + \frac{n+m}{2}\right)}{2}$$

$$= \frac{(N+1) \frac{2N+6n-5}{6} + \left(\frac{m-m-2}{2}\right) \left(\frac{3n+m-2}{2}\right)}{2}$$

$$= \frac{(N+1) \frac{2N+6n-5}{6} + \left(\frac{m-n+2}{2}\right) \left(\frac{2-3n-m}{2}\right)}{12}$$

$$= \frac{(N+1) \frac{4N-3n-3m-4}{12}}{2}$$

$$= \frac{(N+1) \frac{4m-4n+4-3n-3m-4}{12}}{2}$$

$$= \frac{N^2-1}{12}$$

$$= \frac{(m-n+1)^2-1}{12}$$

4.1.4. Poisson

Recordando que $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$, y que esta es una función creciente cuyo valor es estrictamente positivo, se genera una función la cual cumple la definición de función de masa, obteniendo la siguiente distribución.

Definición 5: Sea X una variable aleatoria discreta. X sigue una distribución de Poisson con parámetro $\lambda \in \mathbb{R}^+$, denotada por Pois (λ) , cuando su función de masa es

$$f(x) = P(X = x) = \frac{\lambda^x e^{-\lambda}}{x!}$$
 $(x \in \mathbb{N})$

Teorema 8: Sea $X \sim \text{Pois}(\lambda)$. Entonces,

- (i) Para todo $x \in \mathbb{Z}$, $P(X = x) \ge 0$.
- (ii) $\sum_{x \in \mathbb{Z}} P(X = x) = 1.$
- (iii) $E[X] = \lambda$.
- (iv) $Var[X] = \lambda$.

Demostración:

(i) Sea $x \in \mathbb{N}$. Entonces

$$P(X = x) = \frac{\lambda^x e^{-\lambda}}{x!}$$

Como los términos involucrados son no negativos, se concluye que $P(X=x) \ge 0$.

(ii)

$$\sum_{x=0}^{\infty} \frac{\lambda^x e^{-\lambda}}{x!}$$

$$=$$

$$e^{-\lambda} \sum_{x=0}^{\infty} \frac{\lambda^x}{x!}$$

$$=$$

$$e^{-\lambda} e^{\lambda}$$

$$=$$
1

(iii)

$$\sum_{n=0}^{\infty} x \frac{\lambda^x e^{-\lambda}}{x!}$$

$$=$$

$$\sum_{n=1}^{\infty} \frac{\lambda^x e^{-\lambda}}{(x-1)!}$$

$$=$$

$$\lambda e^{-\lambda} \sum_{x=0}^{\infty} \frac{\lambda^x}{x!}$$

$$=$$

$$\lambda$$

(iv)

$$\sum_{x=0}^{\infty} x^2 \frac{\lambda^x e^{-\lambda}}{x!} - \lambda^2$$

$$= \sum_{n=1}^{\infty} x \frac{\lambda^x e^{-\lambda}}{(x-1)!} - \lambda^2$$

$$= \lambda \sum_{n=0}^{\infty} x \frac{\lambda^x e^{-\lambda}}{x!} + \lambda \sum_{n=0}^{\infty} \frac{\lambda^x e^{-\lambda}}{x!} - \lambda^2$$

$$= \lambda^2 + \lambda - \lambda^2$$

$$= \lambda$$

Para finalizar, se mostrará la validez de los procedimientos usados para estos cálculos. Se afirma que la serie $\sum_x \left| x^t \frac{\lambda^x}{x!} \right|$ converge para todo $t \in \mathbb{R}$. Por el criterio de la razón, cuando $x \to \infty$,

$$\left| (x+1)^t \frac{\lambda^{x+1} e^{\lambda}}{(x+1)!} \frac{x!}{x^t \lambda^x} \right| = \left(1 + \frac{1}{x} \right)^t \frac{\lambda}{x+1} \to 0 < 1$$

La convergencia absoluta de la serie permite el reordenamiento de la misma y la separación en sumas. $\ \square$

4.2. Distribuciones Continuas

4.2.1. Distribución Normal

Definición 6: Sea X una variable aleatoria continua. X tiene distribución normal de parámetros $\mu \in \mathbb{R}$, $\sigma^2 \in \mathbb{R}^+$ cuando su función de densidad es

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/(2\sigma^2)} \qquad (x \in \mathbb{R})$$

Esto se denotará como $X \sim N(\mu, \sigma^2).$

Teorema 9: Sean $X \sim N(\mu, \sigma^2)$ y f la función de masa de X. Entonces,

- (i) Para todo $x \in \mathbb{R}$, $f(x) \ge 0$.
- (ii) $\int_{\mathbb{R}} f(x) dx = 1.$
- (iii) $E[X] = \mu$.
- (iv) $Var[X] = \sigma^2$.

Para las integrales involucradas en los resultados del teorema es conveniente tener el siguiente resultado anterior a proceder con el teorema.

$$I = \int_{\mathbb{R}} e^{-x^2} \mathrm{d}x = \sqrt{\pi}$$

$$I^{2}$$

$$= \left(\int_{\mathbb{R}} e^{-x^{2}} dx \right) \left(\int_{\mathbb{R}} e^{-x^{2}} dx \right)$$

$$= \left(\int_{\mathbb{R}} e^{-x^{2}} dx \right) \left(\int_{\mathbb{R}} e^{-y^{2}} dy \right)$$

$$= \int_{\mathbb{R}} \int_{\mathbb{R}} e^{-(x^{2}+y^{2})} dx dy$$

$$\int_{\mathbb{R}^2} e^{-(x^2+y^2)} dx dy$$
=
$$\int_{\mathbb{R}^2 - \{(0,0)\}} e^{-(x^2+y^2)} dx dy$$

La validez de este último paso se justifica demostrando que la integral de esta función sobre el conjunto $\{(0,0)\}$ es nula. Para $n \in \mathbb{Z}^+$, se define la sucesión $K_n = [-1/n, 1/n]$. Para todo $n \in \mathbb{Z}^+$, K_n es compacto y $K_{n+1} \subseteq K_n$, luego $\bigcap_{n \in \mathbb{Z}^+} K_n \neq \emptyset$ y diam $\bigcap_{n \in \mathbb{Z}^+} K_n = 0$. Dado que, para todo $n \in \mathbb{Z}^+$, $0 \in K_n$, $\bigcap_{n \in \mathbb{Z}^+} K_n = 0$. Como el máximo de $\left| e^{-(x^2+y^2)} \right|$ es 1, y la longitud del contorno $K_n \times K_n$ es 4/n, entonces,

$$\left| \int_{K_n \times K_n} e^{-(x^2 + y^2)} \mathrm{d}x \, \mathrm{d}y \right| \le \frac{4}{n}$$

Con esto se obtiene entonces que

$$\int_{\{(0,0)\}} e^{-(x^2+y^2)} \mathrm{d}x \, \mathrm{d}y = 0$$

Procediendo con la integral anterior a este resultado. Parametrizando $\mathbb{R}^2 - \{(0,0)\}$ con la función

$$\overrightarrow{t(r,\theta)} = \langle r\cos(\theta), r\sin(\theta)\rangle \qquad (r,\theta) \in R^+ \times [-\pi,\pi)$$

acomodando \overrightarrow{t} para \mathbb{R}^3 , el elemento de área es

$$|\overrightarrow{t_r} \times \overrightarrow{t_\theta}|$$
=
$$|\langle \cos(\theta), \sin(\theta), 0 \rangle \times \langle -r\sin(\theta), r\cos(\theta), 0 \rangle|$$
=
$$|\langle 0, 0, r\cos^2(\theta) + r\sin^2(\theta) \rangle|$$
=

Dado que

$$(x^2 + y^2) \circ \overrightarrow{t(r,\theta)} = r^2 \sin^2(\theta) + r^2 \cos^2(\theta) = r^2$$

La integral presentada se puede reescribir y desarrollar de la siguiente manera

$$\int_{0}^{\infty} \int_{-\pi}^{\pi} r e^{-r^{2}} d\theta dr$$

$$=$$

$$2\pi \int_{0}^{\infty} r e^{-r^{2}} dr$$

$$= \langle \text{Tomando } u = r^{2} \rangle$$

$$\pi \int_{0}^{\infty} e^{-u} du$$

$$=$$

Así,
$$I = \sqrt{\pi}$$

Continuando con la demostración del teorema

Demostración: Para las integrales implicadas en este resultado, se utilizará eventualmente el siguiente cambio de variable

$$t = \frac{x - \mu}{\sqrt{2\sigma^2}}$$

Cuando $x \to \pm \infty$, $t \to \pm \infty$.

(i) Dado que todos los términos de la función de densidad son no negativos, se cumple.

(ii)

$$\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/\left(2\sigma^2\right)} \mathrm{d}x$$

= \langle Haciendo uso del cambio de variable presentado \rangle

$$\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-t^2} \mathrm{d}t$$

=

1

(iii)

$$\mathrm{E}[X]$$

=

$$\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} x \, e^{-(x-\mu)^2/(2\sigma^2)} \, \mathrm{d}x$$

$$= \langle \text{Haciendo uso del cambio de variable presentado} \rangle$$

$$\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} (\sqrt{\pi\sigma^2} t + \mu) e^{-t^2} \, \mathrm{d}t$$

$$=$$

$$\sqrt{\frac{2\sigma^2}{\pi}} \int_{-\infty}^{\infty} t e^{-t^2} \, \mathrm{d}t + \frac{\mu}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-t^2} \, \mathrm{d}t$$

$$=$$

$$\sqrt{\frac{2\sigma^2}{\pi}} \left(\lim_{R_1 \to \infty} \int_{-R_1}^{0} t e^{-t^2} \, \mathrm{d}t + \lim_{R_2 \to \infty} \int_{0}^{R_2} t e^{-t^2} \, \mathrm{d}t \right) + \mu$$

Para proceder con ambas integrales, se realiza el cambio de variable $u=x^2$, cuando $x=0,\,u=0$, cuando $x=\pm R_{1,2},\,u=R_{1,2}^2$. Así

$$\sqrt{\frac{2\sigma^2}{\pi}} \left(\lim_{R_1 \to \infty} \int_{-R_1}^0 t e^{-t^2} dt + \lim_{R_2 \to \infty} \int_0^{R_2} t e^{-t^2} dt \right) + \mu$$

$$=$$

$$\sqrt{\frac{2\sigma^2}{\pi}} \left(\lim_{R_1 \to \infty} - \int_0^{R_1} e^{-u} du + \lim_{R_2 \to \infty} \int_0^{R_2} e^{-u} du \right) + \mu$$

$$=$$

$$\sqrt{\frac{2\sigma^2}{\pi}} \left(\lim_{R_1 \to \infty} -1 + e^{-R_1} + \lim_{R_2 \to \infty} -e^{-R_2} + 1 \right) + \mu$$

$$=$$

$$\mu$$

(iv)

$$\begin{aligned} &\operatorname{Var}[X] \\ &= \\ &\operatorname{E}[X^2] - \operatorname{E}[X] \\ &= \\ &\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} x^2 e^{-(x-\mu)^2/\left(2\sigma^2\right)} \mathrm{d}x - \mu^2 \\ &= & \langle \operatorname{Haciendo} \text{ uso del cambio de variable presentado} \rangle \end{aligned}$$

$$\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} (\sqrt{2\sigma^{2}}t + \mu)^{2} e^{-t^{2}} dt - \mu^{2}$$

$$= \frac{1}{\sqrt{\pi}} \left(2\sigma^{2} \int_{-\infty}^{\infty} t^{2} e^{-t^{2}} dt + 2\sqrt{2\sigma^{2}} \mu \int_{-\infty}^{\infty} t e^{-t^{2}} dt + \mu^{2} \int_{-\infty}^{\infty} e^{-t^{2}} dt \right) - \mu^{2}$$

$$= \frac{2\sigma^{2}}{\sqrt{\pi}} \int_{-\infty}^{\infty} t^{2} e^{-t^{2}} dt$$

$$= \frac{2\sigma^{2}}{\sqrt{\pi}} \left(\lim_{R_{1} \to \infty} \int_{-R_{1}}^{0} t^{2} e^{-t^{2}} dt + \lim_{R_{2} \to \infty} \int_{0}^{R_{2}} t^{2} e^{-t^{2}} dt \right)$$

Nótese que $\frac{\mathrm{d}}{\mathrm{d}t}e^{-t^2} = -2te^{-t^2}$, con lo que resulta conveniente hacer integración por partes tomando una de las funciones como t y la otra como te^{-t^2} . Así,

$$\frac{2\sigma^{2}}{\sqrt{\pi}} \left(\lim_{R_{1} \to \infty} \int_{-R_{1}}^{0} t^{2} e^{-t^{2}} dt + \lim_{R_{2} \to \infty} \int_{0}^{R_{2}} t^{2} e^{-t^{2}} dt \right)$$

$$= \frac{2\sigma^{2}}{\sqrt{\pi}} \left(\lim_{R_{1} \to \infty} R_{1} \frac{e^{-R_{1}^{2}}}{2} + \frac{1}{2} \int_{-R_{1}}^{0} e^{-t^{2}} dt + \lim_{R_{2} \to \infty} -R_{2} \frac{e^{-R_{2}^{2}}}{2} + \frac{1}{2} \int_{0}^{R_{2}} e^{-t^{2}} dt \right)$$

$$= \frac{2\sigma^{2}}{\sqrt{\pi}} \frac{1}{2} \int_{-\infty}^{\infty} e^{-t^{2}} dt$$

$$= \frac{\sigma^{2}}{\sqrt{\pi}} \frac{1}{2} \int_{-\infty}^{\infty} e^{-t^{2}} dt$$

4.2.2. Chi-cuadrada

Sea X una variable aleatoria tal que $X \sim \chi^2(v)$, entonces su fdd

$$F(x) = \frac{1}{2^{v/2}\Gamma\left(\frac{v}{2}\right)}x^{(v/2)-1}e^{-x/2}$$

Entonces Var[X] = 2v y E[X] = v

Demostración: Primero se comprueba E[X] = v

$$E[X] = \int_{0}^{\infty} x f(x) dx$$

$$= \frac{1}{2^{v/2} \Gamma\left(\frac{v}{2}\right)} \int_{0}^{\infty} x^{(v/2)} e^{-x/2} dx$$

$$= \frac{1}{2^{v/2} \Gamma\left(\frac{v}{2}\right)} 2 \int_{0}^{\infty} 2^{v/2} u^{v/2} e^{-u} du$$

$$= \frac{2}{\Gamma\left(\frac{v}{2}\right)} \int_{0}^{\infty} u^{v/2} e^{-u} du$$

$$= \frac{2}{\Gamma\left(\frac{v}{2}\right)} \Gamma\left(\frac{v}{2} + 1\right)$$

$$= \frac{2}{\Gamma\left(\frac{v}{2}\right)} \left(\frac{v}{2}\right) \Gamma\left(\frac{v}{2}\right)$$

$$= \frac{2}{\Gamma\left(\frac{v}{2}\right)} \left(\frac{v}{2}\right) \Gamma\left(\frac{v}{2}\right)$$

Ahora, se demuestra que Var[x] = 2v

v

$$\operatorname{Var}[X] = \frac{1}{2^{v/2}\Gamma\left(\frac{v}{2}\right)} - \operatorname{E}^{2}[X]$$

$$= \frac{1}{2^{v/2}\Gamma\left(\frac{v}{2}\right)} \int_{0}^{\infty} x^{2} x^{(v/2)-1} e^{-x/2} dx - v^{2}$$

$$= \frac{1}{2^{v/2}\Gamma\left(\frac{v}{2}\right)} \int_{0}^{\infty} x^{(v/2)+1} e^{-x/2} dx - v^{2}$$

$$= \frac{1}{2^{v/2}\Gamma\left(\frac{v}{2}\right)} 2 \int_{0}^{\infty} 2^{1+v/2} u^{1+v/2} e^{-u} du - v^{2}$$

$$= \frac{4}{\Gamma\left(\frac{v}{2}\right)} \Gamma\left(\frac{v}{2} + 2\right) - v^{2}$$

$$= \frac{4}{\Gamma\left(\frac{v}{2}\right)} \left(\frac{v}{2} + 1\right) \left(\frac{v}{2}\right) \Gamma\left(\frac{v}{2}\right) - v^{2}$$

$$= \frac{4}{\Gamma\left(\frac{v^{2}}{2}\right)} + 4\left(\frac{v}{2}\right) - v^{2}$$

$$= \frac{v^{2} + 2v - v^{2}}{2}$$

$$= \frac{2v}{2}$$

4.2.3. Distribucion F

Definición 7: Sean F una variable aleatoria continua. F tiene una distribución F de parámetros $u, v \in \mathbb{R}^+$, cuando su función de densidad es

$$f(x) = \frac{\Gamma\left(\frac{u+v}{2}\right)\left(\frac{u}{v}\right)^{u/2}}{\Gamma\left(\frac{u}{2}\right)\Gamma\left(\frac{v}{2}\right)} \frac{x^{(u/2)-1}}{\left(1+\frac{u}{v}x\right)^{(u+v)/2}} = \frac{\left(\frac{u}{v}\right)^{u/2}}{B\left(\frac{u}{2},\frac{v}{2}\right)} \frac{x^{(u/2)-1}}{\left(1+\frac{u}{v}x\right)^{(u+v)/2}} \qquad (x \in \mathbb{R}^+)$$

Recordando que B hace referencia a la función beta.

Teorema 10: Sea $F \sim F(u, v)$ y f su función de densidad. Entonces,

- (i) Para todo $x \in \mathbb{R}$, $f(x) \ge 0$.
- (ii) $\int_{\mathbb{R}} f(x) dx = 1.$
- (iii) $E[F] = \frac{v}{v-2}$ (v > 2)
- (iv) $Var[F] = \frac{2v^2(u+v-2)}{u(v-2)^2(v-4)}$ (v > 4)

Demostración:

- (i) Todos los términos de la expresión que define f son no negativos para $x \in \mathbb{R}^+$, con lo que se concluye $f(x) \ge 0$.
- (ii) Basta mostrar la siguiente igualdad

$$\int_0^\infty \frac{x^{(u/2)-1}}{\left(1+\frac{u}{v}x\right)^{(u+v)/2}} \mathrm{d}x = \left(\frac{u}{v}\right)^{-u/2} B\left(\frac{u}{2}, \frac{v}{2}\right)$$

Recordando que

$$B\left(\frac{u}{2}, \frac{v}{2}\right) = \int_0^1 t^{(u/2)-1} (1-t)^{(v/2)-1} dt$$

El procedimiento inicia con el siguiente cambio de variable:

$$\tan^2(\theta) = \frac{u}{v}x$$

Cuando $x=0, \theta=0$ y cuando $x\to\infty, \theta\to\pi/2$. Recordando que $\frac{\mathrm{d}}{\mathrm{d}\theta}\tan^2(\theta)=2\tan(\theta)\sec^2(\theta)$, se obtienen las siguientes igualdades

$$\int_{0}^{\infty} \frac{x^{(u/2)-1}}{\left(1 + \frac{u}{v}x\right)^{(u+v)/2}} dx$$
=
$$2\frac{n}{m} \int_{0}^{\pi/2} \frac{\left(\frac{n}{m}\right)^{(m/2)-1} \tan^{m-2}(\theta)}{\left(1 + \tan^{2}(\theta)\right)^{(n+m)/2}} \tan(\theta) \sec^{2}(\theta) d\theta$$
=
$$2\left(\frac{n}{m}\right)^{m/2} \int_{0}^{\pi/2} \frac{\tan^{m-1}(\theta) \sec^{2}(\theta)}{\sec^{m+n}(\theta)} d\theta$$
=
$$2\left(\frac{n}{m}\right)^{m/2} \int_{0}^{\pi/2} \sin^{m-1}(\theta) \cos^{n-2}(\cos(\theta)) d\theta$$

Para continuar, se realiza el cambio de variable

$$v = \sin(\theta)$$

Cuando $\theta = 0$, v = 0 y cuando $\theta = \pi/2$, v = 1. Por otra parte, dado que $\cos^2(\theta) + \sin^2(\theta) = 1$, entonces $\cos(\theta) = (1 - v^2)^{1/2}$. Recordando que $\frac{d}{d\theta}\sin(\theta) = \cos(\theta)$, se obtiene la siguiente igualdad

$$2\left(\frac{n}{m}\right)^{m/2} \int_0^{\pi/2} \sin^{m-1}(\theta) \cos^{n-2} \cos(\theta) d\theta$$
=
$$2\left(\frac{n}{m}\right)^{m/2} \int_0^1 v^{m-2} (1-v^2)^{(n/2)-1} v dv$$

Por último, ser realiza el cambio de variable

$$t = v^2$$

Los límites de integración se mantienen. Recordando que $\frac{\mathrm{d}}{\mathrm{d}v}v^2 = 2v$, se obtienen las siguientes igualdades

$$2\left(\frac{n}{m}\right)^{m/2} \int_0^1 v^{m-2} (1-v^2)^{(n/2)-1} v dv$$

$$2\left(\frac{n}{m}\right)^{m/2} \int_0^1 \frac{1}{2} t^{(m/2)-1} (1-t)^{(n/2)-1} dt$$

$$= \left(\frac{n}{m}\right)^{m/2} B\left(\frac{u}{2}, \frac{v}{2}\right)$$

(iii) a

4.3. Teoremas de Aproximación

Se puede ver una similitud entre la distribución binomial y la distribución hipergeométrica, pues si en esta última, manteniendo un tamaño de muestra (n) fijo, a medida que aumentan el total de objetos $(N \ y \ K)$ bajo ciertas condiciones, los eventos que esta distribución describe tienen a ser independientes. Esto lleva al siguiente teorema de aproximación.

Teorema 11: Sea X una variable aleatoria con distribución hipergeométrica de parámetros N, K, n. Si para $\varepsilon_1, \varepsilon_2, \varepsilon_3 \in \mathbb{R}^+$, n > 1, x > 0, se tiene que

$$\frac{x-1}{K} < \varepsilon_1$$

$$\frac{n-x-1}{N-K} < \varepsilon_2$$

$$\frac{n-1}{N-n+1} < \varepsilon_3$$

entonces,

$$\left| \frac{Hg(N, K, n)(x)}{B\left(n, \frac{K}{N}\right)(x)} - 1 \right| < (\varepsilon + 1)^{2n} - 1$$

Nótese que la expresión en valor absoluto corresponde al error entre la función de masa de una distribución hipergeométrica y una binomial con ciertos parámetros.

Antes de comenzar con la demostración de este teorema, se presenta el siguiente lema, el cual será de utilidad para obtener el resultado presentado.

Lema: Sean $r \in \mathbb{Z}^+$, $\{S_{k,n}\}_1^r$ una colección de r sucesiones en función de n las cuales convergen a 1 y $\{\varepsilon_k\}_1^r$

una colección de r reales positivos. Si para un $N \in \mathbb{N}$, se tiene que

$$1 \le k \le r \quad \land \quad n \ge N \quad \Rightarrow \quad |S_{k,n} - 1| \le \varepsilon_k$$

entonces,

$$n \ge N \Rightarrow \left| \prod_{k=1}^{r} S_{k,n} - 1 \right| < \prod_{k=1}^{r} (\varepsilon_k + 1) - 1$$

Demostración: Supóngase la existencia de este N. Tomando una colección con r+1 sucesiones con una colección respectiva de cotas $\{\varepsilon_k\}_1^{r+1}$ para la diferencia de cada una con 1, se tiene lo siguiente

$$\left| \prod_{k=1}^{r+1} S_{k,n} - 1 \right| = \left| S_{r+1,n} \prod_{k=1}^{r} S_{k,n} - 1 \right| = \left| (S_{r+1,n} - 1) \left(\prod_{k=1}^{r} S_{k,n} - 1 \right) + (S_{r+1,n} - 1) + \left(\prod_{k=1}^{r} S_{k,n} - 1 \right) \right| \le \left| (S_{r+1,n} - 1) \left(\prod_{k=1}^{r} S_{k,n} - 1 \right) \right| + \left| \left(\prod_{k=1}^{r} S_{k,n} - 1 \right) \right| < \left| \prod_{k=1}^{r} S_{k,n} - 1 \right| (\varepsilon_{r+1} + 1) + \varepsilon_{r+1}$$

Se define entonces la siguiente función recursiva

$$f(1) = \varepsilon_1$$

$$f(n+1) = f(n)(\varepsilon_{n+1} + 1) + \varepsilon_{n+1}$$

Por el procedimiento anterior, es fácil ver que esta función cumple acotar la diferencia del producto de n sucesiones y 1 con las condiciones del enunciado. Se afirma que

$$f(n) = \prod_{k=1}^{n} (\varepsilon_k + 1) - 1$$

Caso base: n = 1, efectivamente $f(1) = \varepsilon_1$. Para n = 2, por definición

$$f(2) = \varepsilon_1(\varepsilon_2 + 1) + \varepsilon_2 = (\varepsilon_1 + 1)(\varepsilon_2 + 1) - 1$$

Paso inductivo: supóngase que, para algún $n \geq 2$,

$$f(n) = \prod_{k=1}^{n} (\varepsilon_k + 1) - 1$$

Entonces,

$$f(n+1)$$

$$=$$

$$f(n)(\varepsilon_{n+1}+1) + \varepsilon_{n+1}$$

$$=$$

$$\left(\prod_{k=1}^{n} (\varepsilon_k+1) - 1\right) (\varepsilon_{n+1}+1) + \varepsilon_{n+1}$$

$$=$$

$$\prod_{k=1}^{n+1} (\varepsilon_k+1) - \varepsilon_{n+1} - 1 + \varepsilon_{n+1}$$

$$=$$

$$\prod_{k=1}^{n+1} (\varepsilon_k+1) - 1$$

Con lo que

$$n \ge N \Rightarrow \left| \prod_{k=1}^r S_{k,n} - 1 \right| < \prod_{k=1}^r (\varepsilon_k + 1) - 1$$

Siguiendo ahora con el teorema...

Demostración: Inicialmente, se expresará la función de masa de X en otros términos

$$\frac{\binom{K}{x}\binom{N-K}{n-x}}{\binom{N}{n}}$$

=

$$\frac{K!}{(K-x)! \, x!} \frac{(N-K)!}{(N-K-n+x)! \, (n-x)!} \frac{(N-n)! \, n!}{N!}$$

$$= \begin{pmatrix} n \\ x \end{pmatrix} \frac{\prod_{i=1}^{K} i}{\prod_{K-x}^{K-i} \frac{\prod_{j=1}^{N-K} j}{N-K-n+x} \prod_{s=1}^{N-n} s} \prod_{s=1}^{N-k} s$$

$$= \begin{pmatrix} n \\ x \end{pmatrix} \prod_{i=1}^{K} i \prod_{j=1}^{N-K-n+x} \frac{\prod_{s=1}^{N-K} j}{\prod_{s=N-k-n+x+1}^{N-K} \frac{1}{\prod_{s=N-n+1}^{N-K} s}}$$

 $\binom{n}{x} \prod_{i=0}^{x-1} (K-i) \prod_{j=0}^{n-x-1} (N-K-j) \frac{1}{\prod_{s=0}^{n-1} (N-s)}$

 $\binom{n}{x} \left(\frac{K}{N}\right)^x \left(\frac{N-K}{N}\right)^{n-x} \frac{\prod_{i=0}^{x-1} (K-i)}{K^x} \frac{\prod_{j=0}^{n-x-1} (N-K-j)}{(N-K)^{n-x}} \frac{N^n}{\prod_{j=0}^{n-1} (N-s)}$

 $B\left(n,\frac{K}{N}\right)(x)\prod_{i=0}^{x-1}\left(1-\frac{i}{K}\right)\prod_{j=0}^{n-x-1}\left(1-\frac{j}{N-K}\right)\prod_{s=0}^{n-1}\left(1+\frac{s}{N-s}\right)$

En este proceso no se toma en cuenta el caso en el que x = 0 o x = n. Estos casos se resolverán posterior a tratar con la última expresión.

Tomando en cuenta este resultado,

$$\left| \frac{Hg(N,K,n)(x)}{B\left(n,\frac{K}{N}\right)(x)} - 1 \right|$$

$$= \left| \prod_{i=0}^{x-1} \left(1 - \frac{i}{K}\right) \prod_{i=0}^{n-x-1} \left(1 - \frac{j}{N-K}\right) \prod_{s=0}^{n-1} \left(1 + \frac{s}{N-s}\right) - 1 \right|$$

Nótese que cada término en cada productorio tiende a 1 cuando K, N, N - K tienden a infinito. Con

esto basta para demostrar la convergencia, debido a que estas condiciones de tendencia para N, K y N-K se deben a que $\frac{K}{N}$ debe ser un número entre 0 y 1.

En los productorios, se ven involucradas sucesiones las cuales convergen a 0 y además, son sencillas de acotar. Entonces, como

$$\left|1 - \frac{i}{K} - 1\right| = \frac{i}{K} \le \frac{x - 1}{K}$$

$$\left|1 - \frac{j}{N - K} - 1\right| = \frac{j}{N - K} \le \frac{n - x - 1}{N - K}$$

$$\left|1 + \frac{s}{N - s} - 1\right| = \frac{s}{N - s} \le \frac{n - 1}{N - n + 1}$$

Dado que las expresiones a la derecha de cada desigualdad representan sucesiones decrecientes en función de N, K y N-K respectivamente, se tiene que, si para valores de estas variables, se toman $\varepsilon_1, \varepsilon_2, \varepsilon_3 \in \mathbb{R}^+$ tales que

$$\frac{x-1}{K} < \varepsilon_1$$

$$\frac{n-x-1}{N-K} < \varepsilon_2$$

$$\frac{n-1}{N-n+1} < \varepsilon_3$$

Entonces, por el lema,

$$\left| \prod_{i=0}^{x-1} \left(1 - \frac{i}{K} \right) - 1 \right| < (\varepsilon_1 + 1)^x - 1$$

$$\left| \prod_{j=0}^{n-x-1} \left(1 - \frac{j}{N-K} \right) - 1 \right| < (\varepsilon_2 + 1)^{n-x} - 1$$

$$\left| \prod_{s=0}^{n-1} \left(1 + \frac{s}{N-s} \right) - 1 \right| < (\varepsilon_3 + 1)^n - 1$$

Denotando cada uno de estos productos como P_1 , P_2 y P_3 respectivamente, aplicando nuevamente el lema, se obtiene que

$$|P_1 P_2 P_3 - 1| < (\varepsilon_1 + 1)^x (\varepsilon_2 + 1)^{n-x} (\varepsilon_3 + 1)^n - 1$$

Recordando que todo lo anterior se hizo bajo la suposición de que x>0 y $x\neq n$. Para x=0

$$\begin{vmatrix} \frac{Hg(N,K,n)(0)}{B\left(n,\frac{K}{N}\right)(0)} - 1 \\ \\ = \\ \left| \frac{\binom{N-K}{n}}{\binom{N}{n}} \left(\frac{N-K}{N}\right)^{-n} - 1 \right| \\ \\ = \\ \left| \prod_{j=0}^{n-1} \left(1 - \frac{j}{N-K}\right) \prod_{s=0}^{n-1} \left(1 + \frac{s}{N-s}\right) - 1 \right| \end{aligned}$$

< (Aplicando el lema únicamente para las suceciones en estos productorios)

$$(\varepsilon_2+1)^n(\varepsilon_3+1)^n-1$$

Para x = n

$$\left| \frac{Hg(N,K,n)(n)}{B\left(n,\frac{K}{N}\right)(n)} - 1 \right|$$

=

$$\left| \frac{\binom{K}{n}}{\binom{N}{n}} \left(\frac{K}{N} \right)^{-n} - 1 \right|$$

=

$$\left| \prod_{i=0}^{n-1} \left(1 - \frac{i}{K} \right) \prod_{s=0}^{n-1} \left(1 + \frac{s}{N-s} \right) - 1 \right|$$

< (Aplicando el lema únicamente para las sucesiones en estos productos)

$$(\varepsilon_1+1)^n(\varepsilon_3+1)^n-1$$

Para n = 1 o n = 0, el error es nulo.