Zucchetti dataset analysis

Al for cybersecurity A.A 2021/2022
Department of computer engineering, Pisa
Carlo Leo
Riccardo Gallo

INITIAL DATASET: raw data regarding logs

Attributes:

- User ID
- *Timestamp*: when the log occurred
- Event type:
 - $0 1 \rightarrow successful login$
 - 0 2 \rightarrow failed login
 - o $3 \rightarrow logout$
- Application: application acronym (nominal)
- *IP address* (mocked)

OBJECTIVE:

FIND PATTERNS OF SUSPICIOUS LOGS

Preprocessing

Data preprocessing:

- Substituted not-specified IP addresses with UNKNOWN default value (treated as separate IP address)
- Checked data consistency for eventType attribute
- Performed numerosity reduction to delete duplicate rows
- Sorted tuples by date

Login Dataframe

Attributes:

- userId
- date
- day: number from 1 (Monday) to 7 (Sunday)
- workingTime: boolean value True if the log occurred between 8am 19pm
- eventType
- application
- Ip (mocked)

Observations:

- Every log between Saturday and Sunday occurred outside working time
- Whatever kind of event is happened in both working time and non-working time hours
- Failed logins attempts occurred only for application ERM, HRW and TM3

Series

Skimming:

- Delete users having only 0 or 1 login error
- Delete users having all login success after an erroneous login
- Delete users not having at least two login errors in 24h
- Delete logs referring to application with no login errors

Series:

- Sequence of login errors ended either with or without a correct login. The maximum delay between two attempts is 5 minutes.
- Created for:
 - o <u>userld</u>
 - IP address
- Each event of the series has been represented as a tuple:
 - <date, eventType, application, workingTime, day, userId or ip>

Series Dataframe

Attributes:

- userId / ip
- avgTime: average time between 2 login attempts
- failedAttempts: number of login errors in the series
- hasSuccess: value stating if the series ends with a successful login (1) or not (0)
- application
- workingTime
- day
- ipAmount / userAmount: number of ip/users in the series

HEURISTIC DEVISED: Suspicious

Computed as the product of the following weights:

- w1: depends on the week day and the working time
- w2 : depends on the number of ip/users found in the series
 - \circ 1/(1-amount) if amount > 1 else 0.4
- w3: depends on the average time
- w4: depends on the number of attempts found in the series

Since each weight ranges in (0,1) to avoid underflow the Graham function has been used (where pi is the wi):

$$p = \frac{1}{1+e^{\eta}}$$
, with $\eta = \sum_{i=1}^{N} [\ln(1-p_i) - \ln p_i]$

Constants used to weight a series

- Average time range and relative weights
- Failed attempts boundaries and relative weights
- Week day and working time weights
- → changing them you can vary the granularity of the analysis e.g. MAX_DELAY_ERRORS

```
# working hours boundaries
START_WORKING = 8
END_WORKING = 19
# time boundaries for series construction
AT_LEAST_ONE_DAY = 24 * 3600 * 1000 # 24 h
MAX_DELAY_ERRORS = 5 * 60 * 1000 # 5min
MAX_DELAY_SUCCESS = 5 * 60 * 1000 # 5min
# attempts boundaries
MAX_ATTEMPTS = 3
MAX_TIME_BOT = 5000 # estimate both maximum time. We consider mocking user typing
RESIDUAL_TIME = MAX_DELAY_ERRORS - MAX_TIME_BOT
```

. . .

Results – User series

- Suspicious series have been found regardless of working time and day of the week
- Comparing the number of IP and failed attempts came up that: with one or two IPs, the number of failed attempts is bigger
- When the <u>maximum average</u> time between login attempts narrows, the number of failed attempts increases

Results – IP series

 When requests coming from the same IP, are for different users, the average time between attempts decreases

 Looking at the most frequent incoming IP address can be usefull

count	494.000000
mean	0.458877
std	0.335637
min	0.122744
25%	0.122744
50%	0.557377
75%	0.746082
max	0.996529

Results – IP series vs. User series

	userld	avgTime	failedAttempts	hasSuccess	application	workingTime	day	ipAmount	suspicious
35404	31002	4000	11	0	ERM	0	6	1	0.999348
22039	20272	83250	33	0	ERM	1	1	5	0.993082

	ip	avgTime	failedAttempts	hasSuccess	application	workingTime	day	userAmount	suspicious
27027	ip_38662	4000	11	0	ERM	0	6	1	0.999348
34469	ip_5989	4142	8	0	ERM	0	6	1	0.999348

Conclusions

- <u>Following rule of thumb provides</u>
 <u>meaningfull results</u>, e.g several attempts in narrow time window, <u>if computed values</u>
 are analyzed enough in detail
- Pay attention on choosing metrics for searching for suspicious pattern of logs
- Human factor is tedious to foresee

	userld	avgTime	failedAttempts	hasSuccess	application	workingTime	day	ipAmount	suspicious
33203	28878	11000	2	1	ERM	1	2	1	0.122744
33210	28878	7000	3	1	ERM	1	3	1	0.122744
33212	28878	7333	3	1	ERM	1	5	1	0.122744
33214	28878	6000	3	1	ERM	1	4	1	0.122744
33219	28878	8500	2	1	ERM	1	3	1	0.122744
33221	28878	9000	2	1	ERM	1	3	1	0.122744
33224	28878	10000	2	1	ERM	1	4	1	0.122744
33235	28878	14500	2	1	ERM	1	5	1	0.122744
33236	28878	8000	3	1	ERM	1	5	1	0.122744
33238	28878	9000	2	1	ERM	1	5	1	0.122744
33239	28878	8500	2	1	ERM	1	2	1	0.122744
33240	28878	8000	2	1	ERM	1	3	1	0.122744
33242	28878	9000	2	1	ERM	1	4	1	0.122744
33250	28878	14500	2	1	ERM	1	3	1	0.122744
33260	28878	6500	2	1	ERM	1	4	1	0.122744
33262	28878	6500	2	1	ERM	1	5	1	0.122744

Questions?

Thank you!!!!

All work is avaliable on GitHub at: https://github.com/carloleo/AI-for-cybersecurity

