# **Project Design Phase-II**

## **Technology Stack (Architecture & Stack)**

| Date          | 29 June 2025                                                             |
|---------------|--------------------------------------------------------------------------|
| Team ID       | LTVIP2025TMID59837                                                       |
| Project Name  | Hematovision: Advanced Blood Cell Classification using Transfer Learning |
| Maximum Marks | 4 Marks                                                                  |

#### **Technical Architecture:**

The Deliverable shall include the architectural diagram as below and the information as per the table 1 & table 2

| S.No | Component                 | Description                                                          | Technology                           |
|------|---------------------------|----------------------------------------------------------------------|--------------------------------------|
| 1.   | Image Capture<br>& Upload | Microscope captures blood smear images and sends them to the system. | - Digital Microscope<br>- Web upload |

| 2. | `         | Interface for the lab technician to upload images and view results. | - React.js or Vue.js<br>- Tailwind CSS |
|----|-----------|---------------------------------------------------------------------|----------------------------------------|
|    | iniciace) | images and view results.                                            |                                        |

**Example: Helping a Lab Technician Spot Infections Quickly** 

Reference: <a href="https://in.search.yahoo.com">https://in.search.yahoo.com</a>



**Table-1: Application Component:** 

| 3.  | Backend API                    | Handles requests from the frontend                                        | - FastAPI or Flask<br>(Python)                                                |
|-----|--------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| 4.  | Image<br>Preprocessing         | Prepares images (resize, normalize, denoise) for classification           | OpenCV - Pillow (PIL) - NumPy                                                 |
| 5.  | Deep Learning<br>Model         | Classifies blood cells using a fine-tuned transfer learning model.        | - PyTorch or TensorFlow -<br>EfficientNet or ResNet<br>pretrained on ImageNet |
| 6.  | Model Serving                  | Exposes the trained model to handle realtime predictions.                 | - TorchServe or<br>TensorFlow Serving<br>- ONNX Runtime                       |
| 7.  | Cell Detection<br>& Annotation | Highlights and labels each blood cell in the image.                       | - YOLOv5/YOLOv8 (for detection) - Matplotlib / OpenCV for overlay             |
| 8.  | Report<br>Generation           | Creates a summary of the cell count and any alerts for abnormal values.   | Jinja2 (Python template engine) - WeasyPrint (PDF generation)                 |
| 9.  | Database                       | Stores image metadata, classification results, user actions, and reports. | PostgreSQL or<br>MongoDB                                                      |
| 10. | Authentication & Security      | Manages user roles (e.g., technician, admin), encrypts data.              | - JWT / OAuth2 for login<br>- HTTPS (SSL/TLS)                                 |

### **Table-2: Application Characteristics:**

| S.No | Characteristics                   | Description                                                        | Technology                                   |
|------|-----------------------------------|--------------------------------------------------------------------|----------------------------------------------|
| 1.   | Real-time,<br>High-<br>Resolution | Captures high-quality images of blood smear slides via microscope. | - Digital Microscope<br>- USB/HDMI interface |
| 2.   | Lightweight,<br>Fast              | Connects frontend with AI model and manages data flow.             | - FastAPI or Flask<br>(Python)               |
| 3.   | Automated,<br>Accurate            | Enhances image quality, normalizes formats for ML model input.     | -OpenCV<br>- Pillow                          |

| 4. | Transfer<br>Learning,<br>FineTuned | Classifies cell types using pretrained model adapted to blood cell images. | -PyTorch or TensorFlow<br>- EfficientNet, ResNet |
|----|------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------|
|----|------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------|

#### **References:**

https://proceedings.mlr.press/ https://in.search.yahoo.com/