Τετάρτη 15 Ιουνίου 2022

Slot 1: 9:00-10:30

- 1. (3 μον.)
 - (α) Δώστε τον ορισμό της συγκλίνουσας ακολουθίας.
- (β) Δείξτε ότι αν $a_k>0$ για χάθε $k\in\mathbb{N}$ χαι η $\sum_{k=1}^\infty a_k$ συγχλίνει, τότε η $\sum_{k=1}^\infty a_k^2$ συγχλίνει. Ισχύει το συμπέρασμα αν δεν υποθέσουμε ότι $a_k>0$;
- 2. (3 μον.)

(i)
$$\sum_{k=2}^{\infty} \frac{1}{k(\log_2 k)^{3/2}}$$
, (ii) $\sum_{k=1}^{\infty} \frac{2^k k!}{k^k}$, (iii) $\sum_{k=1}^{\infty} \frac{\sqrt{k+1} - \sqrt{k}}{\sqrt{k}}$.

3. (4 μον.) Υπολογίστε τα παρακάτω ολοκληρώματα:

(i)
$$\int e^x \cos x \, dx$$
, (ii) $\int \frac{x^2 + x + 3}{(x+2)(x^2+1)} \, dx$.

ΚΑΛΗ ΕΠΙΤΥΧΙΑ!

Παρατήρηση: η κατανομή της βαθμολογίας είναι ενδεικτική.

ANA $\Lambda \Upsilon \Sigma H 1$

Πέμπτη 15 Σεπτεμβρίου 2022 **Slot 1**, Ώρα 9:00–10:30

Θέμα 1. $(1+2=3 \mu o \nu)$

- (α) Δώστε τον ορισμό της συγκλίνουσας ακολουθίας.
- (β) Έστω $f\colon [0,1]\to \mathbb{R}$ Riemann ολοκληρώσιμη συνάρτηση τέτοια ώστε f(q)=0 για κάθε $q\in [0,1]\cap \mathbb{Q}$. Δείξτε ότι $\int_0^1 f(t)\,dt=0$.

Θέμα 2. (3 μον.) Εξετάστε ως προς τη σύγκλιση τις παρακάτω σειρές:

(i)
$$\sum_{k=1}^{\infty} \frac{k^2 - k}{8k^3 + k^{5/2}}$$
, (ii) $\sum_{k=1}^{\infty} \frac{2^k k!}{k^k}$, (iii) $\sum_{k=1}^{\infty} (\sqrt{4k} - 1)$.

 Θ έμα 3. (1.25+2.75=4 μον.) Υπολογίστε τα παρακάτω ολοκληρώματα:

(i)
$$\int x^3 \ln x \, dx$$
, (ii) $\int \frac{5x^2 - 17x + 23}{(x-2)^2 (x+1)} \, dx$.

Τρίτη 9 Ιουλίου 2024 8:45 - 11:45

- 1. $(0.75+0.75+0.5+1=3 \mu \text{ov.})$
 - (α) Δώστε τον ορισμό της συνεχούς συνάρτησης.
 - (β) Δώστε τον ορισμό της ομοιόμορφα συνεχούς συνάρτησης.
 - (γ) Δώστε παράδειγμα συνάρτησης που είναι συνεχής και όχι ομοιόμορφα συνεχής.
 - (δ) Έστω $f,g:[a,b]\to\mathbb{R}$ συνεχείς τέτοιες ώστε f(x)< g(x) για κάθε $x\in[a,b]$. Δείξτε ότι $\max(f)<\max(g)$. (Όπου $\max(f)=\max\{f(x):x\in[a,b]\}$.)
- 2. (3 μον.) Εξετάστε ως προς τη σύγκλιση τις παρακάτω σειρές:

$$\text{(i)} \ \ \sum_{k=1}^{\infty} \frac{k! \ 2^k}{k^k}, \qquad \text{(ii)} \ \ \sum_{k=1}^{\infty} \Big(\sqrt[k]{2k} - \frac{1}{2}\Big)^k, \qquad \text{(iii)} \ \ \sum_{k=1}^{\infty} \frac{\cos^2(k)}{k^2},$$

$$\text{(iv) } \sum_{k=2}^{\infty} \frac{1}{k \log_2(k)^3}, \quad \text{(v) } \sum_{k=1}^{\infty} \frac{2 + (-1)^k}{2^k}.$$

3. (0.75+0.75+1.5=3 μον.) Υπολογίστε τα παραχάτω ολοχληρώματα:

(i)
$$\int (\sin x)^3 (\cos x)^2 dx$$
, (ii) $\int e^x \cos(x) dx$, (iii) $\int \frac{2x^3 + 2x + 2}{(x-1)^2 (x^2 + 1)} dx$.

- 4. (1+1+1=3 μον.)
 - (α) Έστω $f\colon [a,b]\to\mathbb{R}$ Riemann ολοκληρώσιμη συνάρτηση. Δείξτε ότι υπάρχει $s\in [a,b]$ τέτοιο ώστε $\int_a^s f(t)\,dt=\int_s^b f(t)\,dt.$
 - (β) Έστω $f:(0,+\infty)\to\mathbb{R}$ παραγωγίσιμη συνάρτηση με την εξής ιδιότητα: $|f'(x)|\leq \frac{1}{x^2}$. Δείξτε ότι $\lim_{x\to+\infty}\left(f(2x)-f(x)\right)=0$.
 - (γ) Έστω $(a_k)_k$ αχολουθία θετιχών όρων τέτοια ώστε η σειρά $\sum_{k=1}^\infty a_k$ συγχλίνει. Δείξτε ότι η σειρά $\sum_{k=1}^\infty \frac{a_k^3}{2+a_k^3}$ συγχλίνει.

ΚΑΛΗ ΕΠΙΤΥΧΙΑ!

Παρατήρηση: η κατανομή της βαθμολογίας είναι ενδεικτική.

ΑΝΑΛΥΣΗ Ι

Τρίτη 30 Ιουνίου 2020

Slot 2

- 1. $(1+2=3 \mu o \nu.)$
 - (α) Δώστε τον ορισμό της συγκλίνουσας ακολουθίας.
 - (β) Έστω $f: [0,1] \to \mathbb{R}$ συνεχώς παραγωγίσιμη. Αν $\mathcal{P} = \{0 = x_0 < \cdots < x_n = 1\}$ είναι διαμέριση του [0,1], δείξτε ότι $\sum_{k=0}^{n-1} |f(x_{k+1}) f(x_k)| \le \int_0^1 |f'(t)| \, dt$.
- 2. (3 μον.) Εξετάστε ως προς τη σύγκλιση τις παρακάτω σειρές:

(i)
$$\sum_{k=1}^{\infty} (\sqrt{4k} - 1)$$
, (ii) $\sum_{k=1}^{\infty} \frac{3^k}{k!}$, (iii) $\sum_{k=1}^{\infty} \frac{(\cos k)^3}{k^2}$.

3. (1.25+2.75=4 μον.) Υπολογίστε τα παρακάτω ολοκληρώματα:

(i)
$$\int x(\sin x)^2 dx$$
, (ii) $\int \frac{2x^2 + x + 1}{(x+3)(x-1)^2} dx$.

 $[\Upsilon πόδειξη: (\sin x)^2 = \frac{1-\cos(2x)}{2}.]$

Δευτέρα 7 Σεπτεμβρίου 2020 **Slot 1**, $\Omega_{P} \alpha 8:30-11:00$

1. $(1+2=3 \mu o \nu.)$

- (α) Δώστε τον ορισμό της συνεχής συνάρτησης.
- (β) Έστω ότι $a_k > 0$ για κάθε $k \in \mathbb{N}$. Αν η σειρά $\sum_{k=1}^{\infty} a_k$ συγκλίνει, δείξτε ότι οι σειρές: $(\beta.i) \sum_{k=1}^{\infty} a_k^2, \quad (\beta.ii) \sum_{k=1}^{\infty} \frac{a_k}{1+a_k}, \quad \text{και } (\beta.iii) \sum_{k=1}^{\infty} \frac{a_k^2}{1+a_k^2}, \quad \text{συγκλίνουν}.$
- 2. (3 μον.) Εξετάστε ως προς τη σύγκλιση τις παρακάτω σειρές:

(i)
$$\sum_{k=2}^{\infty} \frac{1}{k(\log_2 k)^{2/3}}$$
, (ii) $\sum_{k=1}^{\infty} (\sqrt{k^5 + 1} - \sqrt{k^5})$, (iii) $\sum_{k=1}^{\infty} \frac{4^k}{k!}$.

3. (1.25+2.75=4 μον.) Υπολογίστε τα παρακάτω ολοκληρώματα:

(i)
$$\int (\sin x)^3 (\cos x)^2 dx$$
, (ii) $\int \frac{3x^2 + 3x - 2}{(x+3)(x-1)^2} dx$.

ΑΝΑΛΥΣΗ 1 Τετάρτη 28 Ιουνίου 2023 8:45-11:45

- 1. $(1+0.5+0.5+0.5=2.5 \mu \text{oV.})$
 - (α) Δώστε τον ορισμό της συγκλίνουσας ακολουθίας.
 - (β) Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς. Αιτιολογήστε την α-
 - $(\beta.i) \ \ \text{Aν} \ a_k>0 \ \ \text{gia} \ \ \text{k} \in \mathbb{N} \ \ \text{kai} \ \ \eta \ \sum_{k=1}^\infty a_k \ \text{sugnitives}, \ \text{the} \ \eta \ \sum_{k=1}^\infty a_k^2 \ \text{sugnitives}.$
 - (β.ii) Αν η ακολουθία $s_n=a_1+\cdots+a_n$ είναι φραγμένη, τότε η $\sum_{k=1}^\infty a_k$ συγκλίνει.
 - (β.iii) Έστω $f\colon [0,1] \to \mathbb{R}$ φραγμένη συνάρτηση. Αν η |f| είναι Riemann ολοκληρώσι-
- 2. (3 μον.) Εξετάστε ως προς τη σύγκλιση τις παρακάτω σειρές:

(i)
$$\sum_{k=2}^{\infty} \frac{1}{k(\log_2 k)}$$
, (ii) $\sum_{k=1}^{\infty} \frac{k!}{k^k}$, (iii) $\sum_{k=1}^{\infty} \frac{\sqrt{k^2 + 1} - k}{k^2}$, (iv) $\sum_{k=1}^{\infty} \frac{1}{\sqrt{k}(k-1)}$, (v) $\sum_{k=1}^{\infty} (\sqrt[k]{4k} - 1)$

(iv)
$$\sum_{k=1}^{\infty} \frac{1}{\sqrt{k}(\cos k)^8}$$
, (v) $\sum_{k=1}^{\infty} (\sqrt[k]{4k} - 1)$.

3. (0.75+0.75+2.5=4 μον.) Υπολογίστε τα παρακάτω ολοκληρώματα:

(i)
$$\int (\sin x)(\cos x)^4 dx$$
, (ii) $\int \sin(\ln x) dx$, (iii) $\int \frac{3x^2 + 4x + 6}{(x+2)^2 (x^2+1)} dx$.

- 4. $(1+1+1=3 \mu o v.)$
- (α) Έστω $f\colon [0,1] \to \mathbb{R}$ Riemann ολοκληρώσιμη συνάρτηση τέτοια ώστε f(q)=0 για κάθε $q \in [0,1] \cap \mathbb{Q}$. Δείξτε ότι $\int_0^1 f(t) dt = 0$.
- (eta) Έστω $f\colon [0,1] o \mathbb{R}$ συνεχής συνάρτηση με την εξής ιδιότητα: για κάθε συνεχή συνάρτηση $g\colon [0,1] \to \mathbb{R}$ με g(0)=g(1)=1 έχουμε $\int_0^1 f(t)g(t)\,dt=0$. Δείξτε ότι f(x) = 0 για κάθε $x \in [0, 1]$.
- (γ) Έστω $f\colon [0,1]\to \mathbb{R}$ συνεχώς παραγωγίσιμη συνάρτηση τέτοια ώστε f(0)=0. Δείξτε ότι $|f(x)|\le \int_0^1 |f'(t)|^2\,dt$ για κάθε $x\in [0,1]$.

ΚΑΛΗ ΕΠΙΤΥΧΙΑ!

Παρατήρηση: η κατανομή της βαθμολογίας είναι ενδεικτική.

Tpitty 18 Iouviou 2019

- 1. $(1+0.5+0.5+0.5=2.5 \mu ov.)$
 - (a) Δώστε τον ορισμό της συγκλίνουσας ακολουίλας.
 - (β) Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς. Αιτιολογήστε την απάντησή σας.
 - (β.i) Av $a_k > 0$ για κάθε $k \in \mathbb{N}$ και η $\sum_{k=1}^{\infty} a_k$ συγκλίνει, τότε η $\sum_{k=1}^{\infty} a_k^2$ συγκλίνει.
 - (β.ii) Αν (a_n) φραγμένη και (b_n) συγκλίνουσα, τότε η (a_nb_n) είναι συγκλίνουσα.
 - (β.iii) Έστω $f: [0,1] \to \mathbb{R}$ φραγμένη συνάρτηση ώστε η |f| είναι Riemann ολοκληρώσιμη, τότε και η f είναι Riemann ολοκληρώσιμη.
- 2. (3 μον.) Εξετάστε ως προς τη σύγκλιση τις παρακάτω σειρές:

(i)
$$\sum_{k=2}^{\infty} \frac{1}{k(\log_2 k)^{3/2}}$$
, (ii) $\sum_{k=1}^{\infty} \frac{k!}{k^k}$, (iii) $\sum_{k=1}^{\infty} \frac{\sqrt{k+1} - \sqrt{k}}{k}$, (iv) $\sum_{k=1}^{\infty} \frac{1}{k(\cos k)^8}$, (v) $\sum_{k=1}^{\infty} (\sqrt[k]{4k} - 1)$.

3. (2+1=3 μον.) Υπολογίστε τα παρακάτω ολοκληρώματα:

(i)
$$\int (\sin x)^2 (\cos x)^3 dx$$
, (ii) $\int x^2 \ln x dx$, (iii) $\int x (\sin x)^2 dx$,
(iv) $\int \frac{2x^3 + 12x^2 + 16x + 14}{(x+3)^2(x^2+1)} dx$.

 $[\Upsilon εόδειξη: (\sin x)^2 = \frac{1-\cos(2x)}{2}.]$

- 4. (0.5+1+1+1=3.5 μον.)
 - (a) Έστω $f:[a,b] \to \mathbb{R}$ συνεχής συνάρτηση και $x_1,x_2 \in [a,b]$. Δείξτε ότι για κάθε $\lambda \in [0,1]$ υπάρχει $y \in [a,b]$ ώστε $f(y) = \lambda f(x_1) + (1-\lambda)f(x_2)$.
 - (β) Έστω $f: [0,1] \to \mathbb{R}$ Riemann ολοκληρώσιμη συνάρτηση τέτοια ώστε f(q) = 0 για κάθε $q \in [0,1] \cap \mathbb{Q}$. Δείξτε ότι $\int_0^1 f(t) dt = 0$.
- (γ) Έστω $f: [0,1] \to \mathbb{R}$ συνεχής συνάρτηση με την εξής ιδιότητα: για κάθε συνεχή συνάρτηση $g: [0,1] \to \mathbb{R}$ με g(0) = g(1) = 1 έχουμε $\int_0^1 f(t)g(t) \, dt = 0$. Δείξτε ότι f(x) = 0 για κάθε $x \in [0,1]$.
- (8) Estw $f: [0,1] \to \mathbb{R}$ sunecase the page of the problem of $f: [0,1] \to \mathbb{R}$ sunecase the page of $f: [0,1] \to \mathbb{R}$ sunecase $f: [0,1] \to \mathbb{R}$ sunecase

KAAH EΠΙΤΥΧΙΑ!

- 1. (1+0.5+0.5+0.5=2.5 µnv.)
- (σ) Δώστε τον ορισμό της συγκλλισμούς ακιλομθέας.
- (β) Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς. Αντικλογήστε την απάντησή σας:
 - (B.1) As a socialist $a_n = a_1 + \cdots + a_n$ then appropriate the $\sum_{n=1}^{\infty} a_n$ successives.
 - (β .II) Av $\eta f: (0,1) \to \mathbb{R}$ eight praymything sundprints, the eight approximation
- (3.16) Esta $f:[0,1]\to\mathbb{R}$ arayleth sundright. As $\eta:[f]$ the Riemann checkership in, tote for $\eta:[f]$ from Riemann checkership.
- 2. (3 μον.) Εξετάστε ως προς τη σύγκλιση τις παρακάτω σειρές:

$$\text{(i)} \ \sum_{k=1}^{\infty} \frac{\sqrt{k+1}-\sqrt{k}}{k^{2/3}}, \ \ \text{(ii)} \ \sum_{k=1}^{\infty} \frac{k!}{k^k}, \ \ \text{(iii)} \ \sum_{k=2}^{\infty} \frac{1}{k\log_2(k)}, \ \ \text{(iv)} \ \sum_{k=1}^{\infty} (\sqrt[k]{4k}-1), \ \ \text{(v)} \ \sum_{k=1}^{\infty} \frac{\cos(k)^2}{k^3}.$$

3. (2+1=3 μον.) Υπολογίστε τα παρακάτω ολοκληρώματα:

(i)
$$\int \sin(x)^3 \cos(x)^2 dx$$
, (ii) $\int \sin(\ln x) dx$, (iii) $\int x \cos(x)^2 dx$, (iv) $\int \frac{1}{(x+1)(x^2+1)} dx$.

$$[\Upsilon$$
πόδειξη: $cos(x)^2 = \frac{1+cos(2x)}{2}$.]

- . (1+0.5+1.5=3 μον.)
- (α) Έστω $f:[0,1]\to\mathbb{R}$ Riemann ολοκληρώσιμη συνάρτηση τέτοια ώστε f(q)=0 για κάθε $q\in[0,1]\cap\mathbb{Q}$. Δείξτε ότι $\int_0^1 f(t)\,dt=0$.
- $f:[a,b] \to \mathbb{R}$ συνεχής συνάρτηση και $x_1,x_2 \in [a,b]$. Δείξτε ότι για κάθι $\lambda \in [0,1]$ υπάρχει $y \in [a,b]$ ώστε $f(y) = \lambda f(x_1) + (1-\lambda)f(y_2)$.
- Έστω $f:[0,1]\to\mathbb{R}$ συνεχώς παραγωγίσιμη συνάρτηση τέτοια ώστε f(0)=0. Δείξ ότι $|f(x)|\leq \int_0^1|f'(t)|^2\,dt$ για κάθε $x\in[0,1]$.

ΑΝΑΛΥΣΗ 1 Σεπτέμβριος 2018

1. (1+0.5+0.5+0.5=2.5 μον.)

- (α) Δώστε τον ορισμό της συνεχής συνάρτησης.
- (β) Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς. Αιτιολογήστε την απάντησή σας.
 - (β.i) Αν $a_k>0$ για κάθε $k\in\mathbb{N}$ και η σειφά $\sum_{k=1}^\infty \sqrt{a_k}$ συγκλίνει, τότε η σειφά $\sum_{k=1}^\infty a_k$ συγκλίνει.
 - (3.ii) Αν η ακολουθία (a_n) είναι φραγμένη και η (b_n) είναι συκλίνουσα, τότε η ακολουθία $(a_n b_n)$ είναι συγκλίνουσα.
 - (3.iii) An h sunapthon $f\colon (0,1)\to \mathbb{R}$ since tarangungsishun an ibetiah, tôte sina and granyhén.
- 2. (3 μον.) Εξετάστε ως προς τη σύγκλιση τις παρακάτω σειρές:

(i)
$$\sum_{k=2}^{\infty} \frac{1}{k(\log_2 k)^{2/3}}$$
, (ii) $\sum_{k=1}^{\infty} (\sqrt{k^5 + 1} - \sqrt{k^5})$, (iii) $\sum_{k=1}^{\infty} \frac{3^k}{k!}$,

(iv)
$$\sum_{k=1}^{\infty} (\sqrt[k]{k} - 1)^k$$
, (v) $\sum_{k=1}^{\infty} \frac{1}{k(\cos k)^2}$

3. (2+1=3 μον.) Υπολογίστε τα παρακάτω ολοκληρώματα:

(i)
$$\int (\cos x)^3 dx$$
, (ii) $\int e^x \cos x dx$, (iii) $\int x(\sin x)^2 dx$, (iv) $\int \frac{2x^2 + x + 1}{(x+3)(x-1)^2} dx$.

$$[\Upsilon πόδειξη: (\sin x)^2 = \frac{1-\cos(2x)}{2}.]$$

4. (1+0.75+1.25=3 μον.)

- (α) Έστω $f: [0,1] \to \mathbb{R}$ συνεχώς παραγωγίσιμη. Αν $\mathcal{P} = \{0 = x_0 < \cdots < x_n = 1\}$ είνπι διαμέριση του [0,1], δείξτε ότι $\sum_{k=0}^{n-1} |f(x_{k+1}) f(x_k)| \le \int_0^1 |f'(t)|^2 \, dt$.
- (3) Έστω $f\colon [0,1]\to\mathbb{R}$ συνεχής συνάρτηση με την εξής ιδιότητα: για κάθε συνεχή συνάρτηση $g\colon [0,1]\to\mathbb{R}$ με g(0)=g(1)=1 έχουμε $\int_0^1 f(t)g(t)\,dt=0$. Δείξτε ότι f(x)=0 για κάθε $x\in [0,1]$.
- $(γ) \quad \text{Eotis sti} \ a_k > 0 \ \text{για κάθε} \ k \in \mathbb{N}. \ \text{An η σειρά $$\sum_{k=1}^\infty a_k$ συγκλίνει, δείξτε ότι οι σειρές:} \\ (γ.i) \ \sum_{k=1}^\infty a_k^2, \ (γ.ii) \ \sum_{k=1}^\infty \frac{a_k}{1+a_k}, \ \text{και} \ (γ.iii) \ \sum_{k=1}^\infty \frac{a_k^2}{1+a_k^2}, \ \text{συγκλίνουν}.$