2장. 수의체계

- 01. 10진수
- 02. 2진수
- 03. 8진수와 16진수
- 04. 진법 변환
- 05. 2진 정수 연산과 보수
- 06. 2진 부동소수점수의 표현

□ 10진수 표현법

- ❖ 기수가 10인 수
- ❖ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 사용

진법을 나타내는 기본수를 기수(基數, radix)라 한다. 10이 기수인 수를 10진법, 2가 기수인 수를 2진법이라 한다.

02 2 진수

□ 2진수 표현법

- ❖ 기수가 2인 수
- ❖ 0,1 사용

 $1010.1011_{(2)}$

Punch card

Core memory

예제 2-1

2진수 1000101.1011₍₂₎ 을 10진수로 변환하여라.

풀이

$$1000101.1011_{(2)} = 1 \times 2^{6} + 1 \times 2^{2} + 1 \times 2^{0} + 1 \times 2^{-1} + 1 \times 2^{-3} + 1 \times 2^{-4}$$
$$= 64 + 4 + 1 + 0.5 + 0.125 + 0.0625$$
$$= 69.6875_{(10)}$$

End of Example

□ 8진수 표현법

• 0,1,2,3,4,5,6,7까지 여덟 개의 수로 표현, 기수가 8인 수

$$607.36_{(8)} = 6 \times 100_{(8)} + 0 \times 10_{(8)} + 7 \times 1_{(8)} + 3 \times 0.1_{(8)} + 6 \times 0.01_{(8)}$$
$$= 6 \times 8^{2} + 0 \times 8^{1} + 7 \times 8^{0} + 3 \times 8^{-1} + 6 \times 8^{-2}$$

• 2진수 3자리는 8진수 1자리 : $2^3 = 8^1$

$$10101110100010.01111111_{(2)} = 10\ 101\ 110\ 100\ 010.011\ 111\ 1_{(2)}$$

□ 8진수에 해당하는 2진수

8진수	0	1	2	3	4	5	6	7
2진수	000	001	010	011	100	101	110	111

□ 16진수 표현법

• 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F까지 16개의 기호로 표현, 기수: 16

$$\begin{aligned} 6\text{C}7.3\text{A}_{(16)} &= 6 \times 16^2 + \text{C} \times 16^1 + 7 \times 16^0 + 3 \times 16^{-1} + \text{A} \times 16^{-2} \\ &= 6 \times 256 + 12 \times 16 + 7 \times 1 + 3 \times 0.0625 + 10 \times 0.0039625 \\ &= 1536 + 192 + 7 + 0.1875 + 0.0390625 \\ &= 1735.2265625 \end{aligned}$$

• 2진수 4자리는 16진수 1자리 : $2^4 = 16^1$

 $10101110100010.01111111_{(2)} = 10\ 1011\ 1010\ 0010.0111\ 111_{(2)}$

□ 16진수에 해당하는 2진수

10진수	0	1	2	3	4	5	6	7
16진수	0	1	2	3	4	5	6	7
2진수	0000	0001	0010	0011	0100	0101	0110	0111
10진수	8	9	10	11	12	13	14	15
10진수 16진수	8	9	10	11	12	13	14	15

예제 2-2 다음 8진수와 16진수를 10진수로 변환하여라.

(a) $475.26_{(8)}$

(b) A91.CD₍₁₆₎

풀이

(a)
$$475.26_{(8)} = 4 \times 8^2 + 7 \times 8^1 + 5 \times 8^0 + 2 \times 8^{-1} + 6 \times 8^{-2}$$

 $= 4 \times 64 + 7 \times 8 + 5 \times 1 + 2 \times 0.125 + 6 \times 0.015625$
 $= 256 + 56 + 5 + 0.25 + 0.09375$
 $= 317.34375_{(10)}$

16진수	10진수
Α	10
В	11
С	12
D	13
Е	14
F	15

(b) A91.CD₍₁₆₎ =
$$A \times 16^2 + 9 \times 16^1 + 1 \times 16^0 + C \times 16^{-1} + D \times 16^{-2}$$

= $10 \times 256 + 9 \times 16 + 1 \times 1 + 12 \times 0.0625 + 13 \times 0.00390625$
= $2560 + 144 + 1 + 0.75 + 0.05078125$
= $2705.80078125_{(10)}$

End of Example

10진수-2진수 변환

- ❖ 정수부분과 소수부분으로 나누어 변환
- ❖ 정수부분은 2로 나누고, 소수부분은 2를 곱한다.
- ❖ 10진수 75.6875를 2진수로 변환하는 경우

10진수-8진수 변환

- 10진수 75.6875를 8진수로 변환
- 8로 나누고, 곱한다.

$$75.6875_{(10)} = 113.54_{(8)}$$

10진수-16진수 변환

■ 10진수 75.6875를 16진수로 변환

$$75.6875_{(10)} = 4B.B_{(16)}$$

2진수-8진수-16진수-10진수 상호 변환

10진수	2진수	8진수	16진수
0	0000	00	0
1	0001	01	1
2	0010	02	2
3	0011	03	3
4	0100	04	4
5	0101	05	5
6	0110	06	6
7	0111	07	7
8			
9			
10			
11			
12			
13			
14			
15			

2진수-8진수-16진수-10진수 상호 변환

변환하고자 하는 기수로 나누거나 곱한다.

10진수

기수의 거듭제곱을 곱하여 **10**진수로 변환한다.

□ 상호변환 예

$$75.6875 = 1001011.1011_{(2)}$$

$$= 001 \ 001 \ 011.101 \ 100_{(2)}$$

$$= (8)$$

$$75.6875 = 1001011.1011_{(2)}$$

$$= 0100 \ 1011.1011_{(2)}$$

$$= (16)$$

□ 상호변환 예(Cont'd)

$$9A3.50F3_{(16)} = 1001 \ 1010 \ 0011.0101 \ 0000 \ 1111 \ 0011_{(2)}$$

16진수 1자리 = 2진수 4자리

$$101101.101_{(2)} = 1 \times 2^{5} + 0 \times 2^{4} + 1 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3}$$
$$= 32 + 0 + 8 + 4 + 0 + 1 + 0.5 + 0 + 0.125 = 45.625_{(10)}$$

각 자리에 기수의 거듭제곱을 곱하여 10진수로 변환

$$A3.D2_{(16)} = 10 \times 16^{1} + 3 \times 16^{0} + 13 \times 16^{-1} + 2 \times 16^{-2}$$

$$= 10 \times 160 + 3 \times 1 + 13 \times 0.8125 + 2 \times 0.0078125$$

$$= 160 + 3 + 0.8125 + 0.0078125$$

$$= 163.8203125_{(10)}$$

□ 상호변환 예(Cont'd)

A3.D2₍₁₆₎ = 1010 0011.1101 0010₍₂₎

$$= 1 \times 2^{7} + 0 \times 2^{6} + 1 \times 2^{5} + 0 \times 2^{4} + 0 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0}$$

$$+ 1 \times 2^{-1} + 1 \times 2^{-2} + 0 \times 2^{-3} + 1 \times 2^{-4} + 0 \times 2^{-5} + 0 \times 2^{-6} + 1 \times 2^{-7} + 0 \times 2^{-8}$$

$$= 128 + 0 + 32 + 0 + 0 + 0 + 2 + 1 + 0.5 + 0.25 + 0 + 0.0625 + 0 + 0 + 0.0078125 + 0$$

$$= 163.8203125_{(10)}$$

10진수 48.8125를 2진수, 8진수, 16진수로 변환하역라. **예제** 2-3

0 · · · 1 · · · · · 110000

$$110000.1101_{(2)} = 110\ 000.\ 110\ 100_{(2)} = 60.64_{(8)}$$
$$= 0011\ 0000.1101_{(2)} = 30.D_{(16)}$$

End of Example

2진수 양의 정수 덧셈

0+0=0, 0+1=1, 1+0=1, 1+1=10 (자리올림 발생)

10진수

2**진수**

8진수

16진수

2진수 음의 정수 표현과 보수

- ❖ MSB (최상위비트)가 부호 역할
 - 양수(+):0 음수(-):1
- ❖ 2진수 음수를 표시하는 방법
 - 부호와 절대치(sign-magnitude)
 - 1의 보수(1's complement)
 - 2의 보수(2's complement)

- ❶ 부호와 절대치
 - 부호비트만 양수와 음수를 나타내고 나머지 비트들은 같다.
- 2 1의 보수로 변환하는 방법
 - 0 → 1, 1 → 0으로 변환 00000011 → 1의 보수 = 11111100
- 3 2의 보수로 변환하는 방법
 - 1의 보수 + 1 = 2의 보수

$$00000011 \rightarrow 2$$
의 보수 = 1의 보수 + 1 = 111111100 + 1 = 111111101 $01101100 \rightarrow 2$ 의 보수 = 1의 보수 + 1 = $10010011 + 1 = 10010100$

- ❖r진법 n자릿수 x의 r-1의 보수 : r^n -1-x = 각 자리의 합이 r-1 이 되도록 하는 값
- ❖r진법 n자릿수 x의 r의 보수 : $r^n x$ = r-1의 보수 + 1
- **❖**10진 법
 - >567의 9의 보수: $10^3 1 567 = 999 567 = 432$
 - >567의 10의 보수: $10^3 567 = 1000 567 = 433$
- **❖**10진법
 - ➤ 00000011의 1의 보수: 2⁸-1-00000011=111111111-00000011=111111100
 - > 00000011의 2의 보수 : 2⁸ 00000011 = 100000000 00000011 = 111111101

- ❖ 양수를 보수로 바꾸면 음수
- ❖ 음수를 보수로 바꾸면 양수

- →보수끼리 더하면 0
- ❖ 어떤 수와 그 수의 <u>1의 보수</u>와의 합은 모든 bit가 1이 된다. (0을 의미)
- ❖ 어떤 수와 그 수의 <u>2의 보수</u>와의 합은 모든 bit가 0이 된다. (0을 의미) (자릿수를 벗어나는 비트는 제외)

A.

05 2진수 정수 연산과 보수

❖ 부호와 절대치의 표현 (4bit)

		/ 누	호	<u> </u>	三			/부호 비트	=
0	0	0	0	0		0		0 0 0 0	0
	0	0	0	1		+1		1 1 1 1	-1
	0	0	1	0		+2	1의 보수로 바꾼	1 1 1 0	-2
	0	0	1	1	4	+3	후 1을 더함	1 1 0 1	-3
+	0	1	0	0		+4		1 1 0 0	-4
	0	1	0	1		+5		1 0 1 1	-5
	0	1	1	0		+6		1 0 1 0	-6
	0	1	1	1		+7		1 0 0 1	-7
	1	0	0	0		-8	201 H A	1 0 0 0	-8
	1	0	0	1		-7	2의 보수	0 1 1 1	+7
	1	0	1	0		-6		0 1 1 0	+6
_	1	0	1	1		-5		0 1 0 1	+5
_	1	1	0	0		-4		0 1 0 0	+4
	1	1	0	1		-3		0 0 1 1	+3
	1	1	1	0		-2		0 0 1 0	+2
	1	1	1	1		-1		0 0 0 1	+1

2진수의 표현 방법 3가지 (8bit)

2진수	8비트 크기이며, MSB가 부호비트임					
ZÜT	부호와 절대치	1의 보수	2의 보수			
00000000	+0	+0	+0			
00000001	+1	+1	+1			
00000010	+2	+2	+2			
00000011	+3	+3	+3			
•••	•••	•••	•••			
01111100	+124	+124	+124			
01111101	+125	+125	+125			
01111110	+126	+126	+126			
01111111	+127	+127	+127			
10000000						
10000001						
10000010						
10000011						
•••		•••	•••			
11111100						
11111101						
11111110						
11111111		-0				

자릿수 맞춤

• 뺄셈 : 보수를 취하여 더하면 뺄셈을 수행 (Carry가 있으면 버림)

$$7928-879 = 7928+(-879) = 7928+(-0879)$$

$$\Rightarrow 7928+(10^4-0879) = 7928+9121 = 17049$$

$$\Rightarrow 17049 - 10^4 = 7049$$

n비트 2의 보수에 대한 10진수의 표현 범위

비트 수	2의 보수를 사용한 2진 정수의 표현 범위
<i>n</i> bit	$-2^{n-1} \sim +2^{n-1} -1$
4 bit	$-2^{4-1} \sim +2^{4-1} -1 (-8 \sim +7)$
8 bit	$-2^{8-1} \sim +2^{8-1} -1 (-128 \sim +127)$
16 bit	$-2^{16-1} \sim +2^{16-1} -1 (-32,768 \sim +32,767)$

❖ 부호 확장이란 늘어난 비트 수 만큼 부호를 늘려주는 방법

2진수 표현 방법에 따른 부호 확장

2진수	ㅂㅎ 하자 바버			<mark></mark> ଜା
표현 방법	부호 확장 방법		8bit	16bit
ㅂ=이 그기	부호만 MSB에 복사하고,	양수	00101010	
부호와 크기	나머지는 0으로 채움	수 음	10010111	
101日人	늘어난 길이만큼 부호와	수 향	00101010	
1의 보수	같은 값으로 모두 채움	수 음	10010111	
2의 보수	늘어난 길이만큼 부호와	양수	00101010	
	같은 값으로 모두 채움	수 음	10010111	

2의 보수로 표현된 음수를 10진수로 변환

(2의 보수 10101100을 10진수로 변환하는 경우)

2의 보수로 바꾸어 10진수로 바꾼 다음 -부호를 붙인다.

10101100₍₂₎ ⇒ 2의 보수 01010100₍₂₎

$$= 0 \times 2^{7} + 1 \times 2^{6} + 0 \times 2^{5} + 1 \times 2^{4} + 0 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 0 \times 2^{0}$$

$$= 0 + 64 + 0 + 16 + 0 + 4 + 0 + 0$$

- 부호를 붙이면 -84

5. 2의 보수 연산 (8bit)

$$X - Y$$

58–49 :

overflow

Carry
$$\rightarrow 1000010$$

$$01100010$$

$$+ 01001010$$

$$0 10101100$$

□ 2진 정수의 2의 보수 개념도

5에서 +방향으로 5만을 이동하면 -6이 된다.

98+74는 98에 +방향으로 74**만을** 이동하면 -84가 된다.

예제 2-5

8비트 연산 98+74는 오버플로우가 발생하여 잘못 계산된 결과를 얻었다. 부호 확장을 통해서 올바른 결과를 얻을 수 있음을 설명하여라.

풀이

부호를 확장하여 연산하는 과정은 다음과 같다.

$$\begin{array}{rcl}
carry & \underline{\mathbf{0}}0000000 & 10000010 \\
98 & = & 00000000 & 01100010 \\
+74 & = & +00000000 & 01001010 \\
\hline
172 & = & \underline{\mathbf{0}}00000000 & 10101100
\end{array}$$

직전 캐리와 최종 캐리(밑줄 친 부분)가 같으므로 정상적으로 계산된 것임을 알 수 있고, 그 결과는 $10101100_{(2)} = 128 + 32 + 8 + 4 = 172_{(10)}$ 이다.

End of Example

• 컴퓨터의 부동소수점수는 IEEE 754표준을 따른다.

 -1.23×10^{2}

- 부호(sign), 지수(exponent), 가수(mantissa)의 세 영역으로 표시
- 단일정밀도(single precision) 부동소수점수와 2배정밀도(double precision) 부동소수점수의 의 두 가지 표현 방법이 있다.

단일정밀도 및 2배정밀도 부동소수점수의 비트 할당

0

06 2진 부동소수점수의 표현

□ 정규화(normalization): 과학적 표기방법

❖ 2진수의 정규화

$$75.6875 = 1001011.1011_{(2)}$$
$$= 1.0010111011_{(2)} \times 2^{6}$$
$$= 1.0010111011_{(2)} \times 2^{110_{(2)}}$$

바이어스된 지수값

지수=127:0

지수>127 : 양의 지수

지수<127: 음의 지수

- ❖ 바이어스(bias) : 지수의 양수, 음수를 나타내기 위한 방법
 - IEEE 754 표준에서는 바이어스 127(단일정밀도) 또는 1023(2배정밀도)을 사용
 - 표현 지수=바이어스+2진 지수 값

부호 : 1비트	지수(bias 127) : 8비트	가수(1.xxx):23비트
양수	127 + 6 $(011111111 + 00000110)$	1.을 생략한 가수 (1. <mark>0001011011</mark>)
0	10000101	001011101100000000000000000000000000000

가수 앞에 "1."이 생략되어 있다.

□ 10진수 -0.2를 단일정밀도 부동소수점으로 표현

• 2진수로 변환하고 정규화한다.

$$\begin{aligned} -0.2 &= -0.0011001100110011001..._{(2)} \\ &= -1.10011001100110011001..._{(2)} \times 2^{-3} \\ &= -1.10011001100110011001... \times 2^{-11_{(2)}} \end{aligned}$$

부호 : 1비트	지수(bias 127) : 8비트	가수(1.xxx): 23비트
음수	127 - 3 (01111111 - 00000011)	1.을 생략한 가수 (1.1001100110011001100)
1	01111100	1001100110011001100

가수 앞에 "1."이 생략되어 있다.

□ 컴퓨터에서의 부동소수점수의 표현 범위

	단일정밀도 부동소수점수	2배정밀도 부동소수점수
비정규화된 2진수	~ $\pm 2^{-149}$ to $\pm (1-2^{-23})$ x 2^{126}	~ $\pm 2^{-1074}$ to $\pm (1-2^{-52})x2^{1022}$
정규화된 2진수	~ $\pm 2^{-126}$ to $\pm (2-2^{-23})x2^{127}$	~ $\pm 2^{-1022}$ to $\pm (2-2^{-52})x2^{1023}$
10진수	$\sim \pm 1.40 \text{x} 10^{45} \text{ to } \pm 3.40 \text{x} 10^{38}$	~ ± 4.94 x 10^{-324} to ± 1.798 x 10^{308}

단일정밀도 부동소수점수의 표현 범위

예제 2-6

 $\frac{1}{256}$ 을 단일정밀도 부동소수점 방식으로 표현하여라.

풀이

$$\frac{1}{256}$$
을 정규화된 방법으로 표현하면 $\frac{1}{256} = \frac{1}{2^8} = 2^{-8} = 1.0 \times 2^{-8}$ 이다.

그러므로 $1.0_{(2)} \times 2^{-1000_{(2)}}$ 를 단일정밀도 부동소수점수로 표현하면 다음과 같다.

부호	지수(bias 127)	가수(1.××× ₍₂₎)
양수	01111111(127) - 1000(8)	1. 을 생략한 가수
0	01110111	000000000000000000000000000000000000000

End of Example