

Semester 1 Examinations 2021/2022

Exam Codes 3BA1, 4BCT1, 4BMS2, 4BS2, 4FM2

Exams B.A.

B.Sc.

B.Sc. Mathematical Science

B.Sc. Financial Mathematics & Economics M.Sc. Mathematics/Mathematical Science

Module Measure Theory

Module Code MA490

External Examiner Prof. C. Roney-Dougal

Internal Examiners Prof. G. Pfeiffer

*Dr M. Kerin

<u>Instructions</u> Answer all four questions.

Duration 2 Hours

No. of Pages 4 pages, including this one

School Mathematical and Statistical Sciences

Requirements No special requirements

Release to Library: Yes Release in Exam Venue: Yes

[8% each]

- (a) Let X be a set and let $A, B \subseteq X$ be proper, non-empty subsets of X such that $A \subseteq B$ and $A \neq B$. Compute the σ -algebra $\mathcal{A}(S)$ of subsets of X generated by $S = \{A, B\}$.
- (b) Give an example, with justification, of two σ -algebras \mathcal{A}_1 and \mathcal{A}_2 of subsets of a set X such that $\mathcal{A}_1 \cup \mathcal{A}_2$ is <u>not</u> a σ -algebra.
- (c) Determine the Lebesgue measure of the subset of [0,1] whose elements have neither first nor second digit in their ternary expansion equal to '2'.
- (d) Compute the ternary expansion of the number $\frac{8}{11}$ and use it to determine whether $\frac{8}{11}$ is an element of the Cantor set.
- (e) Determine $\liminf A_n$ and $\limsup A_n$ for the sequence $(A_n)_{n\in\mathbb{N}}$ of subsets of \mathbb{R} given by

$$A_n = \begin{cases} \left[\frac{1}{n^2} - 3, 1 - \frac{2}{n} \right], & n \text{ odd,} \\ \left(1 - \frac{1}{n}, 2 + \frac{1}{n+1} \right), & n \text{ even.} \end{cases}$$

- (f) Let $(X, \mathcal{A}, \mathbb{P})$ be a probability space and $(A_n)_{n \in \mathbb{N}}$ an increasing, independent sequence of events in \mathcal{A} with $\mathbb{P}(A_1) > 0$. Determine the probability of the event $\limsup A_n$.
- (g) Suppose $(X, \mathcal{A}, \mu) = (\Omega, \mathcal{E}, \mathbb{P})$ is the Bernoulli probability space associated to our share-price model, where $\Omega = \{(\omega_j)_{j \in \mathbb{N}} \mid \omega_j \in \{u, d\} \ \forall \ j \in \mathbb{N}\}$ and \mathcal{E} is the σ -algebra generated by the simple events $E_n = \{(\omega_j)_{j \in \mathbb{N}} \in \Omega \mid \omega_n = u\}, \ n \in \mathbb{N}$. Determine whether the sequence $(A_n)_{n \in \mathbb{N}}$ of events in \mathcal{E} defined by

$$A_n = E_n^c \cap E_{n+3}^c \cap E_{2n+1}$$

is an independent sequence of events.

- (h) Let $(\mathbb{R}, \mathcal{L}, \lambda)$ be the Lebesgue measure space and $f : \mathbb{R} \to \mathbb{R}$ a function with f(x) = 3 5x for all $x \in \mathbb{Q}^c$. Show that f is measurable with respect to \mathcal{L} .
- (i) Show, with justification, that

$$\sum_{n=0}^{\infty} \int_{3}^{5} \left(\frac{x}{6}\right)^{n} dx = 6 \ln(3).$$

(j) Let $(\mathbb{R}, \mathcal{L}, \lambda)$ be the Lebesgue measure space and, for each $n \in \mathbb{N}$, let $f_n : \mathbb{R} \to \mathbb{R}$ be the non-negative, measurable function defined by $f_n(x) = 3 - \frac{5x}{n^2}$. If $A \in \mathcal{L}$, show that

$$\lim_{n \to \infty} \int_A f_n \, d\lambda = 3 \, \lambda(A) \, .$$

Continued on the next page.

Q2 [20%] Let \mathcal{A} be a σ -algebra of subsets of a set X and let $\mu : \mathcal{A} \to [0, \infty]$ be a measure on \mathcal{A} .

- (a) Give the definitions of the terms
 - (i) σ -algebra (ii) measure. [4%]
- (b) Let $(A_n)_{n\in\mathbb{N}}$ be a sequence of sets in the σ -algebra \mathcal{A} . Show that

$$\bigcap_{n=1}^{\infty} A_n \in \mathcal{A}.$$
 [6%]

- (c) Let $B \subseteq X$ be a subset of X.
 - (i) If $B \in \mathcal{A}$, show that the function

$$\mu_B: \mathcal{A} \to \mathbb{R} \cup \{\infty\}; A \mapsto \mu(A \cap B)$$

is also a measure on \mathcal{A} .

(ii) If $B \notin \mathcal{A}$, explain why the function μ_B above would not define a measure on \mathcal{A} . [2%]

Q3 [20%] Let X be a set and \mathcal{A} a σ -algebra of subsets of X.

- (a) Define what it means for a function $f: X \to \mathbb{R}$ to be measurable with respect to \mathcal{A} . [2%]
- (b) Show that every constant function $f: X \to \mathbb{R}$ is measurable with respect to \mathcal{A} . [4%]
- (c) Suppose that a function $g: X \to \mathbb{R}$ is both measurable with respect to \mathcal{A} and positive, i.e. g(x) > 0 for all $x \in X$. Prove that

$$h: X \to \mathbb{R}: x \mapsto \ln(a(x) + 3)$$

is also a measurable function with respect to A.

[4%]

[8%]

(d) Suppose $A \subseteq X$ is not an element of the σ -algebra \mathcal{A} . Let $(f_n)_{n \in \mathbb{N}}$ be the sequence of functions given by

$$f_n: X \to \mathbb{R}; x \mapsto 4 - \frac{7}{3n^2 + 1} \chi_A(x), \quad n \in \mathbb{N},$$

where $\chi_A: X \to \mathbb{R}$ denotes the characteristic function of A.

- (i) Show that the function f_n is not measurable with respect to \mathcal{A} for any $n \in \mathbb{N}$. [5%]
- (ii) Show that the sequence $(f_n)_{n\in\mathbb{N}}$ converges uniformly to a function $f:X\to\mathbb{R}$ which is measurable with respect to \mathcal{A} .

Continued on the next page.

- **Q4** [20%] (a) Let (X, \mathcal{A}, μ) be a complete measure space and let $\chi_Y : X \to \mathbb{R}$ denote the characteristic function of a subset $Y \subseteq X$.
 - (i) If $A, B \subseteq X$, show that

$$\chi_A + \chi_B = \chi_{A \cup B} + \chi_{A \cap B}. \tag{3\%}$$

(ii) If $(A_n)_{n\in\mathbb{N}}$ is a sequence of pairwise disjoint subsets of X, show that the characteristic function of the set $\bigcup_{n=1}^{\infty} A_n \subseteq X$ satisfies the identity

$$\chi_{\bigcup_{n=1}^{\infty} A_n} = \sum_{n=1}^{\infty} \chi_{A_n}$$

and that the function

$$\sum_{n=1}^{\infty} \chi_{A_n} : X \to \mathbb{R} \, ; \, x \mapsto \sum_{n=1}^{\infty} \chi_{A_n}(x)$$

converges for all $x \in \mathbb{R}$.

[5%]

(iii) Let $f: X \to \mathbb{R}$ be a measurable, non-negative function and let $\eta: \mathcal{A} \to \mathbb{R} \cup \{\infty\}$ be the function defined by

$$\eta(A) = \int_A f \, d\mu \,, \quad A \in \mathcal{A} \,.$$

If $(A_n)_{n\in\mathbb{N}}$ is a sequence of pairwise disjoint sets in \mathcal{A} , show that η satisfies the identity

$$\eta\left(\bigcup_{n=1}^{\infty}A_n\right) = \sum_{n=1}^{\infty}\eta(A_n)$$

by applying an appropriate convergence theorem.

[8%]

(b) Suppose $(\Omega, \mathcal{E}, \mathbb{P})$ is the Bernoulli probability space associated to our share-price model, where $\Omega = \{(\omega_j)_{j \in \mathbb{N}} \mid \omega_j \in \{u, d\} \ \forall \ j \in \mathbb{N}\}$ and \mathcal{E} is the σ -algebra generated by the simple events $E_n = \{(\omega_j)_{j \in \mathbb{N}} \in \Omega \mid \omega_n = u\}, \ n \in \mathbb{N}$. Compute the expected value $\mathbb{E}(Y)$ of the random variable $Y : \Omega \to \mathbb{R}$ defined by

$$Y = 3 \chi_{(E_1 \cap E_3^c) \cup E_5}$$
,

where $\chi_A: \Omega \to \mathbb{R}$ denotes the characteristic function of a subset $A \subseteq \Omega$. [4%]