NIS2312-1 2022-2023 Fall

信息安全的数学基础(1)

Answer

2022 年 12 月 19 日

1

本次考试共有 6 道证明题, 共 $15 \times 4 + 20 \times 2 = 100$ 分, 其中 20 分的题会有 2/3 道小题, 15 分的题是相对基础的题.

考试知识点:

- (1) 集合、等价关系、映射、群的定义、子群的判定、循环群、置换群、群的阶、群元素的阶、陪集、拉格朗日定理、正规子群、商群、同态、同构、同态基本定理、直积、直和;
- (2) 环的定义、子环的判定、理想、商环、极大理想、素理想、单位、零因子、整环、多项式环、多项式的根;
- (3) 域的定义、素域、扩域、有限域的结构、有限域的阶、有限域的乘法群、有限域的存在、唯一性

Problem 1

设 α 是 \mathbb{F}_{16} 的一个本原元, 其中 α 是 $x^4+x+1\in\mathbb{F}_2$ 在 \mathbb{F}_{16} 上的一个根. 计算 \mathbb{F}_{16}^* 中全部元素的极小多项式, 并把 $x^{15}-1\in\mathbb{F}_2$ 分解成 \mathbb{F}_2 上的不可约多项式的乘积.

解: 如果 α 是 $x^4 + x + 1 \in \mathbb{F}_2$ 在 \mathbb{F}_{16} 上的一个根, 那么 α^2 也是根, 同理 α^4, α^8 , 故 如果 f 是 α 的极小多项式, 那么 f 也是 $\alpha^2, \alpha^4, \alpha^8, ...$ 的极小多项式. 因此有划分

$$\alpha^{0}$$

$$\alpha, \alpha^{2}, \alpha^{4}, \alpha^{8}$$

$$\alpha^{3}, \alpha^{6}, \alpha^{12}, \alpha^{9}$$

$$\alpha^{5}, \alpha^{10}$$

$$\alpha^{7}, \alpha^{14}, \alpha^{13}, \alpha^{11}$$

显然 $\alpha^0 = 1$ 的极小多项式是 x + 1;

因为 x^4+x+1 在 \mathbb{F}_2 上没有根, 在 \mathbb{F}_4 上也没有根 (因为 x^2+x+1 不整除 x^4+x+1), 故 x^4+x+1 是不可约多项式. 注意到 f 在 \mathbb{F}_{16} 上的一个根是 α , 则 α , α^2 , α^4 , α^8 对应的极小多项式为 x^4+x+1 , 又因为 α^7 , α^{14} , α^{13} , α^{11} 是 α , α^2 , α^4 , α^8 的逆, 故其极小多项式是互反的, 即 x^4+x^3+1 ;

 α^5 , α^{10} 的极小多项式次数为 2, 所以只能是 x^2+x+1 (因为只有 \mathbb{F}_2 上的 2 次不可约多项式只有一个);

 α^3 , α^6 , α^{12} , α^9 本身根是互反的 ($\alpha^3*\alpha^{12}=1$, $\alpha^6*\alpha^9=1$), 故其极小多项式是自反的, \mathbb{F}_2 上 4 次自反多项式只有 $x^4+x^3+x^2+x+1$ 和 $x^4+x^2+1=(x^2+x+1)^2$, 故极小多项式为 $x^4+x^3+x^2+x+1$.

上述极小多项式的根的集合恰好是 $\mathbb{F}_{2^4}^*$, 故 $x^{15}-1$ 的分解就是上述极小多项式的乘积

$$x^{15} - 1 = (x+1)(x^2 + x + 1)(x^4 + x + 1)(x^4 + x^3 + 1)(x^4 + x^3 + x^2 + x + 1).$$

Problem 2

有限域的例题 (仅给出部分例题, 考试绝对不会出现原题): 分解 $x^{p^n-1}-1$, 解题方法如上;

写出乘法表, 习题已经做过了;

构造一个 p^n 阶有限域, 并找出乘法群的生成元: 构造方法 $\mathbb{F}_p[x]/<f>, 其中 <math>f$ 是次数为 n 的首一不可约多项式, 乘法群的生成元就是寻找阶为 p^n-1 的元素;

证明多项式为 F_p 上的不可约多项式: 一般是反证;

有限域上的多项式的根: $x^3 + 2x + 1$ 在 \mathbb{F}_3 上如果有根 α , 那么 $\alpha + 1$ 也是根: $(x+1)^3 + 2(x+1) + 1 = x^3 + 1 + 2x + 2 + 1 = 0$, 同理 $\alpha + 1 + 1$ 也是根.