Name: KimJaeHwan Student ID: 20230499

CSED261: Discrete Mathematics for Computer Science Homework 6: Relations

Question 1. Determine whether the relation R on the set of all real numbers is reflexive, symmetric, antisymmetric, and/or transitive, where $(x, y) \in R$ if and only if

- 1. x + y = 0.
- 2. $x = \pm y$.
- 3. x y is a rational number.

Solutions

- 1. x + y = 0
 - Reflexive: $\forall x[x \in A \to (x, x) \in R]$. Let's assume that x = 1, then $1 + 1 = 2 \neq 0$. Thus, it is not reflexive.
 - symmetric: $\forall x \forall y [(x,y) \in R \to (y,x) \in R]$. Let's assume that $(x,y) \in R$, then x+y=0, also y+x=0. Thus, it is symmetric.
 - Antisymmetric: $\forall x \forall y [(x,y) \in R \land (y,x) \in R \rightarrow x = y]$. Let's assume that $(x,y) \in R, (y,x) \in R$. then, x+y=0, y+x=0, y=-x. Thus, it is not antisymmetric.
 - Transitive: $\forall x \forall y \forall z [(x,y) \in R \land (y,z) \in R \rightarrow (x,z) \in R]$. Let's assume that $(x,y) \in R, (y,z) \in R$. then, x+y=0, y+z=0. However, x-z=0, not x+z. So, it is not transitive.

Relation 1 has: symmetry.

- 2. $x = \pm y$
 - (a) **Reflexive:** $\forall x[x \in A \to (x, x) \in R]$. For all $x, x = \pm x \to x = x$. Thus, it is reflexive.
 - (b) **symmetric:** $\forall x \forall y [(x,y) \in R \to (y,x) \in R]$. Let's assume that $(x,y) \in R$, then $x = \pm y$, also $y = \pm x$. Thus, it is symmetric.
 - (c) **Antisymmetric:** $\forall x \forall y [(x,y) \in R \land (y,x) \in R \rightarrow x = y]$. Let's assume that $(x,y) \in R, (y,x) \in R$. then, $x = \pm y, y = \pm x$. x and y can be 1 and -1 (not equal). So, it is not antisymmetric.
 - (d) **Transitive:** $\forall x \forall y \forall z [(x,y) \in R \land (y,z) \in R \rightarrow (x,z) \in R]$. Let's assume that $(x,y) \in R, (y,z) \in R$. then, $x = \pm y, y = \pm z$. This means, $z = \pm (\pm x) = \pm x$. Thus, it is transitive.

Relation 2 has: reflexivity, symmetry, transitivity.

3. x - y is a rational number

- (a) **Reflexive:** $\forall x[x \in A \to (x, x) \in R].$ $\forall x \in \mathbb{R}, x x = 0$ is rational number, so it is reflexive.
- (b) **symmetric:** $\forall x \forall y [(x,y) \in R \to (y,x) \in R]$. Let's assume that $(x,y) \in R$, then x-y is rational number, then also -(x-y) = y-x is rational number. Thus, it is symmetric.
- (c) **Antisymmetric:** $\forall x \forall y [(x,y) \in R \land (y,x) \in R \rightarrow x = y]$. When x is 5 and y is 3, x-y=2 is rational number, y-x=-2 is also rational number but x is not equal to y. Thus, it is not antisymmetric.
- (d) **Transitive:** $\forall x \forall y \forall z [(x,y) \in R \land (y,z) \in R \rightarrow (x,z) \in R]$. Let's assume that $(x,y) \in R, (y,z) \in R$. then, x-y is rational number, y-z is rational number. Thus, x-z=(x-y)+(y-z) is rational number(sum of two rational numbers). So, it is transitive.

Relation 3 has: reflexivity, symmetry, transitivity.

Question 2. Represent each of these relations on $\{1, 2, 3, 4\}$ with a matrix (with the elements of this set listed in increasing order).

1.
$$\{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)\}$$

2.
$$\{(1,1),(1,4),(2,2),(3,3),(4,1)\}$$

3.
$$\{(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)\}$$

4.
$$\{(2,4),(3,1),(3,2),(3,4)\}$$

Solutions

1.

$$\begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

2.

$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

3.

$$\begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

4.

$$\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Question 3. Suppose that the relation R is reflexive. Show that R* is reflexive.

Solutions

 R^* is the transitive closure of R, so $R^* = \bigcup_{i=1}^{\infty} R^i$ when $R^1 = R$, $R^n = R^{n-1} \circ R$. To prove this problem, we should show two things:

1. The composition of two reflexive relations is reflexive.

Let R_1, R_2 are reflexive relations, and $R = R_1 \circ R_2$. Then for all $x \in A$, xRx holds because xR_1x and xR_2x hold. Therefore, R is reflexive.

2. The union of two reflexive relations is reflexive.

Let R_1, R_2 are reflexive relations, and $R = R_1 \cup R_2$. Then for all $x \in A$, xRx holds because xR_1x or xR_2x holds. Therefore, R is reflexive.

Because R^* is constructed as the union and composition of reflexive relations R, R^* is reflexive.

Question 4. Suppose that the relation R is irreflexive. Is the relation R² necessarily irreflexive?

Solutions

No, I found a counterexample. It is relation R,

 $\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}.$

Then

$$\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \circ \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

(This is not matrix multiplication, but the composition of relations.)

The relation $R = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ is reflexive because all diagonal elements are 1. Therefore, the relation R^2 is not necessarily irreflexive even though the relation R is irreflexive.

Additional)

R is,

 R^2 is,

R does not have a self-loop of node A, but R^2 has a self-loop of every node. Therefore, R^2 is not irreflexive.

Question 5. Which of these relations on the set of all people are equivalence relations? Determine the properties of an equivalence relation that the others lack.

- 1. $\{(a,b)|$ a and b are the same age $\}$
- 2. $\{(a,b)|$ a and b have the same parents}
- 3. $\{(a,b)|$ a and b share a common parent $\}$
- 4. $\{(a,b)|$ a and b have met $\}$
- 5. $\{(a,b)|$ a and b speak a common language $\}$

Solutions

We have to check the three properties of an equivalence relation: reflexivity, symmetry, and transitivity.

1. $\{(a,b)|$ a and b are the same age $\}$

reflexivity: a is the same age as a because a is a.

symmetry: a and b are the same age if and only if b and a are the same age.

transitivity: If a is the same age as b and b is the same age as c, then a is the same age as c.

So, this relation is an equivalence relation.

2. $\{(a,b)|$ a and b have the same parents}

reflexivity: a has the same parents as a because a is a.

symmetry: a and b have the same parents if and only if b and a have the same parents.

transitivity: If a has same parents as b and b has the same parents as c, then a has the same parents as c. So, this relation is an equivalence relation.

3. $\{(a,b)| \text{ a and b share a common parent}\}$

reflexivity: a shares a common parent with a because a is a.

symmetry: a and b share a common parent if and only if b and a share a common parent.

transitivity: If a shares a common parent with b and b shares a common parent with c, but a may not share a common parent with c. (only one common parent is enough to satisfy the condition)

So, this relation is not an equivalence relation.

4. $\{(a,b)| \text{ a and b have met}\}$

reflexivity: a has met a because a is a. However, we cannot ensure that a can meet itself, it is awkward.

symmetry: a has met b if and only if b has met a.

transitivity: If a has met b and b has met c, but a may not have met c.

So, this relation is not an equivalence relation.

5. $\{(a,b)| \text{ a and b speak a common language}\}$

reflexivity: a speaks a common language with a because a is a.

symmetry: a speaks a common language with b if and only if b speaks a common language with a.

transitivity: If a speaks a common language with b and b speaks a common language with c, However, if b speaks English and Korean, a speaks English and c speaks Korean, then a and c don't speak a common language.

So, this relation is not an equivalence relation.

So, the equivalence relations are 1 and 2. relations 3, 4, and 5 are not equivalence relations because they do not satisfy the transitivity property.

Question 6. Let R be the relation on the set of ordered pairs of positive integers such that $((a, b), (c, d)) \in R$ if and only if ad = bc. Show that R is an equivalence relation.

Solutions

We have to check the three properties of an equivalence relation: reflexivity, symmetry, and transitivity.

Reflexivity: ((a,b),(a,b)) is in R because ab=ba, So R is reflexive.

Symmetry: If ((a,b),(c,d)) is in R, then ad=bc. So, ((c,d),(a,b)) is in R because cb=da. So, R is symmetric. **Transitivity:** If ((a,b),(c,d)) and ((c,d),(e,f)) are in R, then ad=bc and cf=de. So, ((a,b),(e,f)) is in R because $af=\frac{bc}{d}\cdot\frac{de}{c}=be$. So, R is transitive.

So, R is an equivalence relation.