CMSC 474, Game Theory

6a. Repeated Games

Dana Nau
University of Maryland

Repeated Games

• Repeatedly play the same game against the same opponent

Finitely Repeated Games

- Some game *G* is played multiple times by the same set of agents
 - \triangleright G is called the stage game
 - Usually (but not always) a normalform game
 - ➤ Each occurrence of *G* is called an **iteration**, **round**, or **stage**
- Usually each agent knows what all the agents did in the previous iterations, but not what they're doing in the current iteration
 - Thus, imperfect information with perfect recall
- Usually each agent's payoff function is additive

		C	D
Prisoner's Dilemma:	C	3, 3	0, 5
	D	5, 0	1, 1

Iterated Prisoner's Dilemma, 2 iterations:

Agent 1:

C

C

Agent 2:

Stage 2:

Stage 1:

D

C

Total payoff:

3+5=8

3+0 = 3

Strategies

- Much bigger strategy space than the stage game
 - > E.g., Iterated Prisoner's Dilemma (IPD)
 - ➤ 1 iteration → each player has 1 choice node, 2 pure strategies
 - \rightarrow 2 iterations \rightarrow each has 1 + 4 choice nodes, 2^{1+4} pure strategies
 - > *n* iterations \rightarrow each has $1 + 4 + 4^2 + ... + 4^{n-1} = (4^n 1)/3$ choice nodes, $2^{(4^n 1)/3}$ pure strategies

d

0, 5

1, 1

 \mathcal{C}

3, 3

5, 0

D

Simple Strategies

- Stationary strategy: use the same strategy in every stage game
 - ➤ In IPD, only 2 pure stationary strategies
- Slightly more complicated: non-stationary strategy that only depends on the last *k* iterations

Updated 10/20/16

- Some well-known IPD strategies:
- AllC: always cooperate AIID. always defect

TFTT Tester

 C

D

C

AIID: always defect	C	\mathbf{C}	C	C	C	D
Grim: cooperate until the other	C	C	C	C	C	C
agent defects, then defect forever	C	C	C	C	C	D
Tit-for-Tat (TFT): on 1st move,	÷	:	÷	i		÷
cooperate. On n^{th} move, repeat						
the other agent's $(n-1)^{th}$ move			TFT or		D 1	
Tit-for-Two-Tats (TFTT): like TFT, but	only		Grim	AllD	Pavlo	v AllD
only retaliates if the other agent defects twice in a row			C	D	C	D
Tester : D then C. If opponent retaliates, play C then			D	D	D	D
TFT. Otherwise alternate D and C			D	D	C	D
Pavlov: in 1st stage, cooperate. Thereafter,			D	D	D	D
win => use same action on next stage;			D	D	C	D
lose => switch to the other action			D	D	D	D
("win" means 3 or 5 points, "lose" means 0 or 1 point)			D	D	C	D
odated 10/20/16			÷	÷	÷	÷

AllC,

Grim,

TFT, or

Pavlov

AllC,

Grim,

TFT, or

Pavlov

 \mathbf{C}

TFT Tester

- *n* iterations, all players know what *n* is, rationality is common knowledge
- Use backward induction to find a subgame-perfect equilibrium
- This time it's simpler than game-tree search
 - All subgames at stage 2 have the same SPE

Update

ory :

- *n* iterations, all players know what *n* is, rationality is common knowledge
- Use backward induction to find a subgame-perfect equilibrium
- This time it's simpler than game-tree search
 - ➤ All subgames at stage 2 have the same SPE
 - All subgames at stage 3 have the same SPE

Update

- *n* iterations, all players know what *n* is, rationality is common knowledge
- Use backward induction to find a subgame-perfect equilibrium
- This time it's simpler than game-tree search
 - All subgames at stage 2 have the same SPE
 - All subgames at stage 3 have the same SPE
- For j = 1, ..., n, all subgames at stage j have the same SPE

Update

- *n* iterations, all players know what *n* is, rationality is common knowledge
- Use backward induction to find a subgame-perfect equilibrium
- This time it's simpler than game-tree search
 - ➤ All subgames at stage 2 have the same SPE
 - > All subgames at stage 3 have the same SPE
- For j = 1, ..., n, all subgames at stage j have the same SPE
- First calculate the SPE action profile for stage *n* (the last iteration)
- For stage j = n-1, n-2, ..., 1,
 - \rightarrow Common knowledge of rationality \rightarrow everyone will play their SPE actions after stage $j \rightarrow$ can calculate each player's cumulative payoff
 - Create payoff matrix showing cumulative payoffs from stage j onward
 - > From this, calculate SPE at stage *j*

- Stage *n* (last stage): SPE profile is (D,D); each player gets 1 \longrightarrow
- Stage n-1:
 - \triangleright Cumulative payoffs = (stage n-1 payoffs) + 1
 - $SPF \cdot (D D)$ at stages n-1 and n

• SPE: (D,D) at stages $n-1$ and n			
• Each player's SPE payoff = 2	C	4, 4	1, 6
Stage <i>n</i> –2:	D	6, 1	2, 2
ightharpoonup Cumulative payoffs = (stage n –2 payoffs) + 2			
> SPE: (D,D) stages $n-2$, $n-1$, and n	<i>n</i> –2	C	D
Each player's SPE payoff = 3	C	5, 5	2, 7
>	D	7, 2	3, 3
		, , -	
SPE: play (D,D) at every stage			

D

0, 5

1, 1

3, 3

5, 0

n

D

n–1

- Limitation
 - > If the other players play something other than their SPE strategies, then your SPE strategy isn't your best response
- **Poll**: Suppose you're playing the IPD with 4 iterations, and the other player's strategy is TFT. Which of the following is a best response?
 - C,C,C,C
 - C,C,C,D
 - C,C,D,D
 - D,C,C,C
 - D,D,D,D

	C	D
C	3, 3	0, 5
D	5, 0	1, 1

Limitation

> If the other players play something other than their SPE strategies, then your SPE strategy isn't your best response

	C	D
C	3, 3	0, 5
D	5, 0	1, 1

IPD:

- > Situation somewhat similar to the Centipede game
- > If both players cooperate until near the end, both do better

Rock, Paper, Scissors

A_1	Rock	Paper	Scissors
Rock	0, 0	-1, 1	1, -1
Paper	1, -1	0, 0	-1, 1
Scissors	-1, 1	1, -1	0, 0

- Zero-sum game, nothing to be gained by cooperating
- Nash equilibrium for the stage game:
 - \triangleright choose randomly, P=1/3 for each move
- SPE for the repeated game:
 - \triangleright always choose randomly, P=1/3 for each move, expected payoff = 0
- Suppose the other player doesn't use the SPE strategy
 - > If you can predict their actions well, you may be able to do much better
- One reason the other agents might not use the SPE strategy:
 - Because they may be trying to predict your actions too

Rock, Paper, Scissors

A_1	Rock	Paper	Scissors
Rock	0, 0	-1, 1	1, -1
Paper	1, -1	0, 0	-1, 1
Scissors	-1, 1	1, -1	0, 0

- 1999 international roshambo programming competition www.cs.ualberta.ca/~darse/rsbpc1.html
 - > Round-robin tournament:
 - 55 programs, 1000 iterations for each pair of programs
 - Lowest possible score = -55000; highest possible score = 55000
 - Average over 25 tournaments:
 - Lowest score (*Cheesebot*): –36006
 - Highest score (*Iocaine Powder*): 13038
 - http://www.veoh.com/watch/e1077915X5GNatn

Infinitely Repeated Games

- An infinitely repeated game in extensive form would be an infinite tree
 - > Payoffs can't be attached to any terminal nodes
- Let $r_i^{(1)}$, $r_i^{(2)}$, ... be an infinite sequence of payoffs for agent i
 - > the sum usually is infinite, so it can't be i's payoff
- Two common ways around this problem:
- **1.** Average reward: average over the first k iterations; let $k \to \infty$

$$\lim_{k \to \infty} \sum_{j=1}^{k} r_i^{(j)} / k$$

2. Future discounted reward:

$$\sum_{j=1}^{\infty} \beta^{j} r_{i}^{(j)}$$

- $\beta \in [0,1)$ is a constant called the *discount factor*
- > Two possible interpretations:
 - 1. The agent cares more about the present than the future
 - 2. At each stage, the game ends with probability 1β

Nash Equilibria

- What are the Nash Equilibria in an infinitely repeated game?
 - Often many more equilibria than in the finitely repeated game
- Infinitely repeated prisoner's dilemma:
 - Infinitely many Nash equilibria
- There's a "folk theorem" that tells what the possible equilibrium **payoffs** are in repeated games, if we use average rewards

• First we need some definitions ...

Feasible Payoff Profiles

- Stage game G, action profiles $\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_m$, reward profiles $\mathbf{u}(\mathbf{a}_1), ..., \mathbf{u}(\mathbf{a}_m)$
- Example: Prisoner's Dilemma

$$\mathbf{u}(C,C) = (3,3), \quad \mathbf{u}(C,D) = (0,5), \quad \mathbf{u}(D,C) = (5,0), \quad \mathbf{u}(D,D) = (1,1)$$

- In the repeated game, a payoff profile $\mathbf{r} = (r_1, r_2, ..., r_n)$ is *feasible* if \mathbf{r} is a convex rational combination of $\mathbf{u}(\mathbf{a}_1), ..., \mathbf{u}(\mathbf{a}_m)$
 - $ightharpoonup Convex combination: \mathbf{r} = c_1 \mathbf{u}(\mathbf{a}_1) + \ldots + c_j \mathbf{u}(\mathbf{a}_j) + \ldots + c_n \mathbf{u}(\mathbf{a}_n)$
 - $c_1, c_2, ..., c_m$ are nonnegative numbers that sum to 1
 - \triangleright Rational combination: $c_1, c_2, ..., c_m$ are rational numbers
- Intuitive meaning:
 - r is feasible if there's a finite sequence of action profiles $\mathbf{a}^{(1)}$, $\mathbf{a}^{(2)}$, ..., $\mathbf{a}^{(n)}$ whose average reward profile is \mathbf{r}
 - > Can achieve **r** if the players repeat the action profiles *ad infinitum*

Feasible Payoff Profiles

- Stage game G, action profiles $\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_m$, reward profiles $\mathbf{u}(\mathbf{a}_1), ..., \mathbf{u}(\mathbf{a}_m)$
- Example: Prisoner's Dilemma

$$\mathbf{u}(C,C) = (3,3), \quad \mathbf{u}(C,D) = (0,5), \quad \mathbf{u}(D,C) = (5,0), \quad \mathbf{u}(D,D) = (1,1)$$

- (2, 13/4) is feasible
 - > Sequence of action profiles (C,C), (C,D), (C,D), (D,C)
 - $\frac{1}{4}(\mathbf{u}/(C,C) + \mathbf{u}(C,D) + \mathbf{u}(C,D) + \mathbf{u}(D,C))$ $= \frac{1}{4}((3,3) + (0,5) + (0,5) + (5,0))$ $= \frac{1}{4} (8.13)$
- (5,5) isn't feasible; no convex combination can produce it
 - > If one agent's average payoff is 5, then the other's is 0
- $(\pi/2, \pi/2)$ isn't feasible; no **rational** convex combination can produce it

Enforceable Payoff Profiles

- A payoff profile $\mathbf{r} = (r_1, ..., r_n)$ is **enforceable** if for each i,
 - $ightharpoonup r_i \ge \text{player } i$'s minimax value in G
- Intuitive meaning:
 - > If i deviates from the sequence of action profiles that produces \mathbf{r} , the other agents can punish i by playing their minimax strategy profile against i
 - reduces *i*'s average reward to *i*'s minimax value
- The other agents can do this by using grim trigger strategies:
 - Generalization of the Grim strategy
 - If any agent *i* deviates from the sequence of actions it is supposed to perform, then the other agents punish i forever by playing their minimax strategies against i

Updated 10/20/16

The Theorem

Theorem: If G is infinitely repeated game with average rewards, then

- > If there's a Nash equilibrium with payoff profile **r**, then **r** is enforceable
- ➤ If **r** is both feasible and enforceable, then there's a Nash equilibrium with payoff profile **r**

Summary of the proof:

- Part 1: Use the definitions of minimax and best-response to show that in every Nash equilibrium, each agent i's average payoff $\geq i$'s minimax value
- Part 2: Show how to construct a Nash equilibrium that gives each agent i an average payoff r_i
 - The agents are grim-trigger strategies that cycle in lock-step through a sequence of action profiles $\mathbf{a}^{(1)}$, $\mathbf{a}^{(2)}$, ..., $\mathbf{a}^{(n)}$ such that $\mathbf{r} = (\mathbf{u}(\mathbf{a}^{(1)}) + \mathbf{u}(\mathbf{a}^{(2)}) + ... + \mathbf{u}(\mathbf{a}^{(n)}))/n$
 - No agent can do better by deviating, because the others will punish it
 Nash equilibrium

Iterated Prisoner's Dilemma

For a finitely iterated game with a large number of iterations, the practical effect can be roughly the same as if it were infinite

	C	D
C	3, 3	0, 5
D	5, 0	1, 1

- E.g., the Iterated Prisoner's Dilemma
- Widely used to study the emergence of cooperative behavior among agents
 - > e.g., Axelrod (1984), The Evolution of Cooperation
- Axelrod ran a famous set of tournaments
 - People contributed strategies encoded as computer programs
 - Axelrod played them against each other

If I defect now, he might punish me by defecting next time

TFT with Other Agents

- In Axelrod's tournaments, TFT usually did best
 - » It could establish and maintain cooperations with many other agents
 - » It could prevent malicious agents from taking advantage of it

TFT	AllC, TFT, TFTT, Grim, or Pavlov	TFT AllD	TFT Tester
C	\mathbf{C}	$C \qquad D$	C D
C	\mathbf{C}	D D	D C
C	C	D D	C C
C	C	D D	C C
C	C	D D	C C
C	\mathbf{C}	D D	C C
C	C	D D	C C
•	:	• • • • • • • • • • • • • • • • • • •	: :

• A real-world example of the IPD, described in Axelrod's book:

- Incentive to cooperate:
 - > If I attack the other side, then they'll retaliate and I'll get hurt
 - ➤ If I don't attack, maybe they won't either
- Result: evolution of cooperation
 - Although the two infantries were supposed to be enemies, they avoided attacking each other

IPD with Noise

- In noisy environments,
 - There's a nonzero probability (e.g., 10%) that a "noise gremlin" will change some of the actions
 - Cooperate (C) becomes Defect (D), and vice versa
- Can use this to model accidents
 - Compute the score using the changed action
- Can also model misinterpretations
 - Compute the score using the original action

Did he really intend to do that? Noise

Example of Noise

- Story from a British army officer in World War I:
 - I was having tea with A Company when we heard a lot of shouting and went out to investigate. We found our men and the Germans standing on their respective parapets. Suddenly a salvo arrived but did no damage.

 Naturally both sides got down and our men started swearing at the Germans, when all at once a brave German got onto his parapet and shouted out:

 "We are very sorry about that; we hope no one was hurt. It is not our fault. It is that damned Prussian artillery."
- The salvo wasn't the German infantry's intention

> They didn't expect it nor desire it

Noise Makes it Difficult to Maintain Cooperation

- Consider two agents who both use TFT
- One accident or misinterpretation can cause a long string of retaliations

Some Strategies for the Noisy IPD

- **Principle**: be more forgiving in the face of defections
- Tit-For-Two-Tats (TFTT)
 - » Retaliate only if the other agent defects twice in a row
 - Can tolerate isolated instances of defections, but susceptible to exploitation of its generosity
 - Beaten by the Tester strategy I described earlier
- Generous Tit-For-Tat (GTFT)
 - » Forgive randomly: small probability of cooperation if the other agent defects
 - » Better than TFTT at avoiding exploitation, but worse at maintaining cooperation

Discussion

- The British army officer's story:
 - > a German shouted, "We are very sorry about that; we hope no one was hurt. It is not our fault. It is that damned Prussian artillery."
- The apology avoided a conflict
 - ➤ It was convincing because it was consistent with the German infantry's past behavior
 - > The British had ample evidence that the German infantry wanted to keep the peace
- If you can tell which actions are *affected* by noise, you can avoid *reacting* to the noise
- IPD agents often behave deterministically
 - > For others to cooperate with you it, helps if you're predictable
- This makes it feasible to build a model from observed behavior

The DBS Agent

- Work by Tsz-Chiu Au (one of my PhD graduates)
 - Now a professor elsewhere
- From the other agent's recent behavior, DBS builds a model of their strategy
- DBS use the model
 - > to filter noise
 - > to help plan its next action

Modeling the other agent

- A set of rules of the following form
 - action profile at previous stage \Rightarrow

Pr[the other agent will play C in the current stage]

- Four rules: one for each of (C,C), (C,D), (D,C), and (D,D)
- e.g., TFT is

$$(C, C) \Rightarrow 1;$$
 $(C, D) \Rightarrow 1;$

$$(D, C) \Rightarrow 0;$$
 $(D, D) \Rightarrow 0$

- How to get the probabilities?
 - One way: look at the agent's behavior in the recent past
- During the last k iterations,
 - > What fraction of the time did the other agent cooperate at iteration j when the action profile was (x,y) at iteration j-1?

Modeling the other agent

- The rules can only model a very small set of strategies
- They don't even model *TFTT* correctly:
 - ➤ If *TFTT* defects, it's because the other player defected in the past *two* stages
- But we're not trying to model an agent's entire strategy.
 - > Just want a simple model that can make reasonable predictions of an agent's next action
- If an agent's behavior changes, then the probabilities in π will change
 - > e.g., after *Grim* defects a few times, the rules will give a very low probability of it cooperating again

Noise Filtering

- Suppose the applicable rule is *deterministic*
 - \triangleright P[other agent will play C] = 0
 - or
 - ➤ P[other agent will play C] = 1
- Suppose DBS sees the other agent playing the opposite of what the rule predicts
 - Assume the observed action is noise
 - Behave as if the action were what the rule predicted

Change of Behavior

- Anomalies in observed behavior can be due either to noise or to a genuine change of behavior
- Changes of behavior occur because
 - the other agent can change their behavior anytime
 - ➤ E.g., suppose noise affects one of DBS's actions
 - other agent reacts to the noise rather than DBS's intended action
 - DBS doesn't know this happened
- How to distinguish noise from a real change of behavior?

I am *Grim*. If you ever defect, I will never forgive you.

Nau: Game Theory 34

Detection of a Change of Behavior

Temporary tolerance:

- When we observe unexpected behavior from the other agent
 - Don't immediately decide whether it's noise or a real change of behavior
 - Instead, defer judgment for a few iterations
- If the anomaly persists, then recompute the rules based on the other agent's recent behavior

Modified Version of Game-Tree Search

- At nodes where DBS moves, $v = \max$ of children's values
- At nodes where the other agent moves,
 - Use the rules to get probabilities that the agent will play C or D
 - Compute weighted average of children's values
- At leaf nodes, eval = DBS's total payoff so far

Suppose the rules are

R1. $(C,C) \to 0.7$

R2. $(C,D) \rightarrow 0.4$

R3. (D,C) $\to 0.1$

R4. $(D,D) \rightarrow 0.1$

Updated 10/20/16

- Suppose previous action profile was (C,C)
- Search to depth 2

$$\nu$$
(C) = 0.7*3 + 0.3*0 = 2.1 + 0 = 2.1

$$\nu$$
(D) = 0.7*5 + 0.3*1 = 3.5 + 0.3 = 3.8

- So *D* looks better
- Is it really what DBS should choose?

Suppose the rules are

R1.
$$(C,C) \to 0.7$$

R2.
$$(C,D) \rightarrow 0.4$$

R3. (D,C)
$$\to 0.1$$

R4.
$$(D,D) \rightarrow 0.1$$

- If DBS plays D in stage 1, the other agent is very likely to retaliate with D in stage 2
- Depth-2 search won't see this, but depth 4 will
 - In general, it's best to use a large search depth
- Problem: game trees grow exponentially
 - How to search deeply?

Suppose the rules are

R1. $(C,C) \to 0.7$

R2. $(C,D) \to 0.4$

R3. (D,C) $\rightarrow 0.1$

R4. $(D,D) \rightarrow 0.1$

Search Algorithm

- Assumption: other agent's strategy won't change in the future
 - Current rules will accurately predict all their future behavior
 - The rules depend **only** on the previous iteration
- Collapse the tree into a graph

- At each level, just four subtrees
 - one for CC, one for CD, one for DC, one for DD
- Makes the search polynomial in the search depth
 - Can easily search to depth 60
- This generates pretty good moves

20th Anniversary IPD Competition

http://www.prisoners-dilemma.com

- Category 2: IPD with noise
 - > 165 programs participated
- DBS dominated the top 10 places
- Two agents scored higher than DBS
 - > They both used master-and-slaves strategies

Rank	Program	Avg. score
1	BWIN	433.8
2 /	IMM01	$\boldsymbol{414.1}$
3	DBSz	408.0
4	DBSy	408.0
5	DBSpl	407.5
6	DBSx	406.6
7	DBSf	402.0
8	DBStft	401.8
9	(DBSd)	400.9
10	lowESTFT_classic	397.2
11	\mathbf{TFTIm}	397.0
12	Mod	396.9
13	${f TFTIz}$	395.5
14	\mathbf{TFTIc}	393.7
15	\mathbf{DBSe}	393.7
16	\mathbf{TTFT}	393.4
17	TFTIa	393.3
18	\mathbf{TFTIb}	393.1
19	TFTIx	393.0
20	$mediumESTFT_classi$	

Master & Slaves Strategy

- Each participant could submit up to 20 programs
- Some submitted programs that could recognize each other
 - (by communicating pre-arranged sequences of Cs and Ds)
- The 20 programs worked as a team
 - 1 master, 19 slaves
 - When a slave plays with its master
 - Slave cooperates, master defects
 - => maximizes the master's payoff
 - When a slave plays with an agent not in its team
 - It defects
 - => minimizes the other agent's payoff

Comparison

- Analysis
 - ➤ Each master-slaves team's average score was much lower than DBS's
 - ➤ If BWIN and IMM01 had each been restricted to ≤ 10 slaves, DBS would have placed 1st
 - Without any slaves, BWIN and IMM01 would have done badly
- In contrast, DBS had no slaves
 - ➤ DBS established cooperation with *many* other agents
 - ➤ DBS did this *despite* the noise, because it filtered out the noise

Summary

- Finitely repeated games backward induction
- Infinitely repeated games
 - average reward, future discounted reward
 - equilibrium payoffs
- Non-equilibrium strategies
 - opponent modeling in rock-paper-scissors
 - iterated prisoner's dilemma with noise
 - opponent models based on observed behavior
 - detection and removal of noise
 - game-tree search against the opponent model
 - > 20th anniversary IPD competition