Total No. of Questions: 8]	9	SEAT No.:	
P6489		[Total No. of Pages	: 4

[5868] 105

F.E. (All Branches)

103004 : BASIC ELECTRICAL ENGINEERING (2019 Pattern) (Semester - I/II)

Time : 2½ Hours] Instructions to the candidates:	[Max. Marks : 70
Instructions to the candidates:	

- 1) Solve Q Lor Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.
- 2) Figures to the right indicate full marks.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Assume suitable additional data, if necessary.
- 5) Use of non-programmable calculator is allowed.
- Q1) a) Define and state the unit of admittance, conductance & susceptance.Also draw the admittance triangle for inductive circuit. [4]
 - b) Obtain the expression for current and power, when voltage $v = V_m$ sin ω t is applied across purely resistive circuit. Also draw the waveform for voltage, current & power on common X-axis. [6]
 - c) The series circuit having resistance 5 Ω , inductance 0.1 H and capacitance 150 μ F is connected to 1-phase, 200 V, 50 Hz AC supply. Calculate
 - i) Inductive reactance XL
- ii) Capacitive reactance Xc
- iii) Net reactance
- iv) Impedance Z
- v) Current drawn by the circuit vi) Power factor
- vii) Active power P
- viii) Reactive power

OR

- Q2) a) Define and state the unit of active, reactive and apparent power in case of single phase circuit. Draw the power triangle.[4]
 - b) Derive the expression for resonant frequency and comment on impedance, current and power factor in case of series resonance circuit. [6]
 - c) Derive the expression for power, when voltage v = V_m sin ωt is applied across R-L series circuit. Also draw the waveform for voltage, current & power on common X-axis.
 [8]

P.T.O.

<i>Q3</i>)	a)	Wha	at is phase sequence? State it's any two applications.	[3]
	b)	State	e the relation between:	[6]
		i)	Phase voltage and line voltage	
		ii)	Phase current and line current in case of balanced delta connect 3-ph load. Using above relations, obtain the expressions for 3-active power and 3-ph reactive power.	
	c)	W a	O kVA, 1000/250 V, 1-ph 50 Hz transformer has iron loss of 10 and copper loss 400 W, when its primary draws current of 50 culate Efficiency at full load and power factor = 0.8 lag.	
		ii)	Efficiency at half load and power factor = 1 lag.	
		2	OR	
<i>Q4</i>)	a) (Wha	at are the losses in the transformer? State the parts in which the	iey
		take	place.	[3]
	b)	Deri	ve the EMF equation of single phase transformer.	[6]
	c)		the identical impedances each of 6+j8 Ω are connected in star across, 415 V, 50 Hz ac supply. Determine	oss [8]
		i)	Line voltage	5
		ii)	Phase voltage	50
		iii)	Phase current and line current	
		iv)	3-ph active reactive and apparent power	
Q5)	a)	Defi	ne the practical voltage source & explain it by means of	[4]
		i)	Symbol of representation	
		ii)	Value of internal resistance	
		iii)	Graphs between V and I	
	b)		ve the equations to convert Delta connected resistive circuit in valent Star circuit.	nto [6]
[5868	3]-1 0	_	2	_

c) For the circuit given in fig 5c, write down the steps to find current through PQ using Superposition Theorem. [8]

Q6) a) State and explain KCL & KVL

[4]

b) Calculate the current flowing through 6 Ω (AB) for the circuit shown in fig 6b, using Kirchhoff's Laws. [6]

c) Calculate the current flowing through 6 Ω (AB) for the circuit shown in question 6b, using Thevenin's Theorem. [8]

Q7) a) Define resistivity of the material & state the factors on which it depends.

[3]

- b) Explain construction and working principle of Lithium Ion battery and state it's any two applications. [6]
- c) Derive an expression for insulation resistance of a single core cable.

 Draw the necessary diagram. Also comment on insulation resistance when [8]

[5868]-105

- Two cables are connected in series and i)
- ii) In parallel

- a) Write the name of materials used for anode, cathode and electrolyte in (0.8)case of Lead Acid Battery. State it's any three applications. [3]
 - b) If α_1 and α_2 are the RTC of a conducting material at t_1^0 C and t_2^0 C

respectively prove that
$$\alpha_2 = \frac{\alpha_1}{1 + \alpha_1(t_2 - t_1)}$$
 [6]

- A water pump lifts 12000 litre of water to a height of 15 m per minute. The efficiency of motor and pump is 75% & 80% respectively. Calculate [8]
 - i) Input power to motor in kW
 - Daily energy consumption if pump is used 04 hrs a day
 - Monthly electricity bill as per above daily uses for the month of iii) 30 days at the rate of 10 Rs/unit.

[5868]-105