

NPTEL Online Certification Courses Indian Institute of Technology Kharagpur

Course: Signal Processing for mm Wave communication for 5G and beyond

Assignment:

Week -4

TYPE OF QUESTION: MCQ/MSQ

Number of questions: 10 Total mark: 10 X 1 = 10

Q.1 Consider the random signal, $x(t) = \sin(\omega t + \phi)$ varies over time t where, the ϕ follows uniform distribution in $(0,2\pi)$ i.e., $\phi \sim U(0,2\pi)$. The mean of the parameter x is given by

- a. π
- b. 0
- c. $sinc(\omega t + \phi)$
- d. $sinc(\omega t)$

Answer: b. 0

Hints: Compute expectation of x(t) using definition.

Q.2 The auto-correlation of a stationary signal x(t) is given by $R_x(\tau) = 16e^{-5|\tau|}\cos 20\,\pi\tau + 8\cos\pi\tau$. The variance of the signal is given by

- a. 16
- b. 8
- c. 24
- d. 17.88

Answer: c. 24

Explanation: The variance is $R_x(0) = 16 + 8 = 24$.

Q.3 A weakly stationary process x(t) has autocorrelation given by $R_x(k) = (-0.5)^{|k|}$ with mean zero. The PSD for f=0 is

- a. $\frac{1}{3}$
- b. 3
- c. $\frac{1}{2}$
- d. 2

Answer: a. $\frac{1}{3}$

Explanation: The PSD is computed by taking Fourier transform of the autocorrelation function, which is given by

$$S_x = \frac{\frac{3}{4}}{\cos(2\pi f) + \frac{5}{4}}$$

For
$$f = 0$$
, $S_x(0) = \frac{1}{3}$.

Q.4 Suppose, a discrete-time random process representation of the channel h[n] has zero mean, and represented by

$$h[n] = ah[n-1] + bw[n],$$

where, the input process $\{w[n]\}$ is weakly stationary and Gaussian distributed, with zero-mean and variance $\sigma_w^2=3$. Given that, the autocorrelation function for h[n], is given by

 $R_h(k) = 4\left(\frac{1}{3}\right)^{|k|}$. The value of a and b are

a.
$$a = \sqrt{\frac{32}{27}}$$
, $b = \frac{1}{3}$

b.
$$b = \sqrt{\frac{32}{27}}$$
, $a = \frac{1}{3}$

c.
$$a = 3, b = \sqrt{\frac{32}{27}}$$

d.
$$b = 3, a = \sqrt{\frac{32}{27}}$$

Answer: b.
$$b=\sqrt{rac{32}{27}}$$
 , $a=rac{1}{3}$

Explanation: The transfer function is given by, $H(z)=\frac{b}{1-az^{-1}}$, and $R_h(k)=\frac{b^2\sigma^2}{1-a^2}a^{|k|}$. Comparing with the given information, $a=\frac{1}{3}$, and $b=\sqrt{\frac{32}{27}}$.

Q.5 A zero-mean random process h(t) has PSD $S_h(f) = \delta(f) + 2$, for $f \in [-0.5, 0.5]$, and it is periodic with periodicity 1. The process is also

- a. Mean ergodic process
- b. Not a mean ergodic process
- c. Cannot be predicted from the given data

Answer: b. Not a mean ergodic process

Explanation: The auto-correlation for the process is $R_h(k)=2\delta(k)+1$. Let, k takes values from -2N to 2N. Hence, $\lim_{N\to\infty}\frac{1}{2N+1}\sum_{k=-2N}^{2N}\left(1-\frac{|k|}{2N+1}\right)R_h(k)=1\neq 0$. As the timeaverage and ensemble average did not match here, hence not ergodic.

Q.6 The characteristic polynomial of AR (p) model of a random process X_t , is given by $\phi(B) = \prod_{i=1}^p (1 - \alpha_i B)$. The process X_t cannot be stationary for which of the given choice of α_i

a.
$$\alpha_i = 2$$

b.
$$\alpha_i = -0.75$$

c.
$$\alpha_i = 0.75$$

d.
$$\alpha_i = 0$$

Answer: a. $\alpha_i = 2$

Explanation: The poles of the AR model must lie within the unit circle of a stationary process X_t , $||\alpha_i|| < 1$, for i = 1, 2, ..., p.

Q.7 An AR (1) process is given by

 $h_t = 0.75 \ h_{t-1} + w_t$, where, w_t is white noise with zero mean, and variance 0.5. The variance of h_t is given by

- a. 0.55
- b. 0.57
- c. 0.59
- d. 0.5

Answer: b. 0.57

Explanation: The variance of AR(1) process h_t is given by, $\sigma^2 = \frac{\sigma_w^2}{1-a^2}$. Here, a = 0.75, $\sigma_w^2 = 0.5$, hence, $\sigma^2 = 0.5714$.

Q.8 The Yule-Walker equation for some AR process h_t is given as

$$\begin{bmatrix} h_1 \\ h_2 \\ h_3 \end{bmatrix} = \begin{bmatrix} 0.5 & 0.5 & -0.5 \\ 0.25 & 0.25 & -0.25 \\ 0 & 0 & -0.125 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} . \text{ The order of the given process } h_t \text{is }$$

- a. 1
- b. 2
- c. 3
- d. None

Answer: b. 2

Explanation: The system matrix has rank of 2. We will get two independent column vectors only, for two roots of the polynomial. Hence, it is a AR(2) process.

Q.9 Given a set of pilot data (x) and received data (y) in a communication system as follows.

x	1	0.9	0.75
y	1.1	1	0.72

The relationship between x and y is given by $y = \alpha + \beta x + w$, where w is the noise term. What are the approximate values of α and β using the tabular data?

- a. 0.42, 1.54
- b. -0.42, 1.54
- c. 0.42,-1.54
- d. -0.42,-1.54

Answer: b. $\alpha = -0.42, \beta = 1.54$

Explanation: Try least square estimation method, explained in Lecture 21.

Q.10 In a communication system, which of the following order is more suitable for equalizer design?

- a. Signal model -> data detection -> Channel Estimation
- b. Data detection -> Signal Model -> Channel Estimation
- c. Signal Model -> Channel Estimation -> Data Detection
- d. Channel Estimation -> Signal model -> Data detection

Answer: c. Signal Model -> Channel Estimation -> Data Detection

Explanation: We assume a suitable signal model first. With the pilot, channel estimation is performed. Using the estimated channel, data detection is performed which is the ultimate goal.