Microelectronics
Circuit Analysis and Design

Donald A. Neamen

Chapter 6

Basic BJT Amplifiers

Neamen

Microelectronics, 4e
McGraw-Hill

In this chapter, we will:

Understand the principle of a linear amplifier.

Discuss and compare the three basic transistor amplifier configurations.

> the common-emitter amplifier.

> the emitter-follower amplifier.

> the common-base amplifier.

Analyze multi-transistor amplifiers.

Small-Signal Equivalent Circuit for npn Common Emitter circuit
$V_{S} \stackrel{ B }{+} V_{\pi} = V_{be} \qquad r_{\pi} \qquad g_{m}V_{be} = \begin{cases} R_{C} & V_{ce} \\ g_{m}V_{\pi} & - \end{cases}$ $A_{v} = -(g_{m}R_{C})(\frac{r_{\pi}}{r_{\pi} + R_{B}})$
Neamen Microelectronics, 4e Chapter 6-13

	Transforma	tion of Elemen
Element	DC Model	AC Model
Resistor	R	R
Capacitor	Open	С
Inductor	Short	L
Diode	+V _γ , r _f -	$r_d = V_T/I_D$
Independent Constant Voltage Source	+ V _s -	Short
Independent Constant Current Source	I _S →	Open
Neamen /	Microelectronics, 4e McGraw-Hill	Chapter 6-15

Problem-Solving Technique: BJT AC Analysis

- 1. Analyze circuit with only dc sources to find Q point.
- 2. Replace each element in circuit with smallsignal model, including the hybrid π model for the transistor.
- 3. Analyze the small-signal equivalent circuit after setting dc source components to zero.

Neamen Microelectronics, 4e Chapter 6-14 McGraw-Hill

Problem-Solving Technique: Maximum Symmetrical Swing 1. Write dc load line equation that relates I_{CO} and V_{CEO} . 2. Write ac load line equations that relates ic and vce 3. In general, $i_c = I_{CQ} - I_{C}(min)$, where $I_{C}(min)$ is zero or other minimum collector current. 4. In general, $v_{ce} = V_{CEQ} - V_{CE}(min)$, where $V_{CE}(min)$ is some specified minimum collector-emitter voltage. 5. Combine above 4 equations to find optimum I_{CO} and V_{CEO} . Neamen Microelectronics, 4e Chapter 6-26 McGraw-Hill

	111	K. Ko
C.E. Av	>1 A:21	(cow KR) (nit but force of RC Moderate Mod to Hi
C-C (conthe follow) Az	5 / A:7/	(50-100K) (105 R) High Low-
CB Av>	1 Ay 3/	(10s.R) (hyd but function of Low Mad to Mi

