Lecture 14: With Constraints

November 2, 2016

Sunil Kumar Gauttam

Department of Mathematics, LNMIIT

Now we discuss a method of finding the absolute extrema of f(x, y) subject to the constraint g(x, y) = 0.

Theorem 14.1 (Lagrange Multiplier Theorem) Let $D \subseteq \mathbb{R}^2$ and let (x_0, y_0) be an interior point of D. Suppose $f, g: D \to \mathbb{R}$ are such that the partial derivatives of f and g exist and are continuous in $B_r(x_0, y_0)$ for some r > 0 with $B_r(x_0, y_0) \subseteq D$. Let $C := \{(x, y) \in D : g(x, y) = 0\}$. Suppose the following three conditions are satisfied.

- 1. $(x_0, y_0) \in C$, that is, $g(x_0, y_0) = 0$,
- 2. $\nabla g(x_0, y_0) \neq (0, 0)$, and
- 3. the function f, when restricted to C, has a local extremum at (x_0, y_0) .

Then $\nabla f(x_0, y_0) = \lambda_0 \nabla g(x_0, y_0)$ for some $\lambda_0 \in \mathbb{R}$

The Lagrange Multiplier Theorem, gives us the following recipe to determine constrained extrema.

To determine the absolute extremum of a real-valued function f of two variables, subject to the constraint q(x, y) = 0.

Step I Solve simultaneous equations for λ and points (x,y)

$$\nabla f(x,y) = \lambda \nabla g(x,y)$$
 and $g(x,y) = 0$.

Step II If it can be ensured that f does have an absolute extremum on the zero set of g (which will certainly be the case if the zero set of g is closed and bounded, and f is continuous), then check the values of f at such simultaneous solutions (x_0, y_0) of the above two equations for which $\nabla g(x_0, y_0) \neq (0, 0)$, and also at exceptional points such as points in the zero set of g at which ∇f or ∇g does not exist, or at which ∇g vanishes.

Example 14.2 Find the maximum and the minimum of the function f given by f(x, y) := xy on the unit circle.

Solution: Following the Lagrange Multiplier Method, we let $g(x,y) := x^2 + y^2 - 1$ for $(x,y) \in \mathbb{R}^2$ and consider the equations $\nabla f = \lambda \nabla g$ and g(x,y) = 0, that is,

$$y = 2\lambda x, x = 2\lambda y, \text{ and } x^2 + y^2 - 1 = 0.$$

Hence $y = 2\lambda(2\lambda y) \implies 4\lambda^2 = 1$. Thus $\lambda = \pm \frac{1}{2}$, Substituting $y = \pm x$ in $x^2 + y^2 - 1 = 0$ gives us $x = \pm \frac{1}{\sqrt{2}}$. So the simultaneous solutions of the above equations are given by $(x,y) = \left(\pm \frac{1}{\sqrt{2}}, \pm \frac{1}{\sqrt{2}}\right)$. Note that $\nabla g = (2x,2y)$ is nonzero at every solution of g(x,y) = 0. Also, the zero set of g, that is, the unit circle, is closed and bounded and f is continuous. Thus by the Lagrange Multiplier Theorem, the maximum of f on the unit circle is $\frac{1}{2}$, which is attained at $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ and, $\left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$ while the minimum is $-\frac{1}{2}$, which is attained at $\left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$ and, $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$.

Remark 14.3 The condition $\nabla f = \lambda \nabla g$ is not sufficient. Although $\nabla f = \lambda \nabla g$ is a necessary condition for the occurrence of an extreme value of f(x,y) subject to the conditions q(x,y) = 0 and $\nabla q \neq 0$, it does not in itself quarantee that one exists.

Example 14.4 Use the method of Lagrange multipliers to find a maximum value of f(x,y) =x + y subject to the constraint that xy = 16. $\nabla f = \lambda g$ gives us $(1,1) = \lambda(y,x)$ and g(x,y) = xy - 16 = 0. Since x = 0 and y = 0 both are not solutions of xy = 16 hence $1 = \lambda x, 1 = \lambda y$ implies $\lambda \neq 0$. So put $x = y = \frac{1}{\lambda}$ in xy = 16 to get $\lambda = \pm \frac{1}{4}$ Hence points (4,4) and (-4,-4) as candidates for the location of extreme values. Also ∇g is not zero at both points. Yet the sum x + y has no maximum value on the hyperbola xy = 16. The farther you go from the origin on this hyperbola in the first quadrant, the larger the sum f(x,y) = x + y becomes.

Exercise 14.5 Find the point on the curve $(x-1)^3 = y^2$ which is closet to the origin.

Solution: This amounts to finding the minimum of the function $f: \mathbb{R}^2 \to \mathbb{R}$ given by $f(x,y) := x^2 + y^2$ subject to the constraint given by $g(x,y) := (x-1)^3 - y^2 = 0$.

1.
$$\nabla f = \lambda \nabla g \implies (2x, 2y) = \lambda(3(x-1)^2, -2y) \iff 2x = \lambda(x-1)^2, 2y = -2\lambda y$$

- 2. $q(x,y) = 0 \implies (x-1)^3 = y^2$.
- 3. To find $\lambda, x, y \in \mathbb{R}$ such that

$$2x = 3\lambda(x-1)^2 \tag{14.1}$$

$$2y = -2\lambda y
y^2 = (x-1)^3$$
(14.2)
(14.3)

$$y^2 = (x-1)^3 (14.3)$$

If $y \neq 0$, then from (14.2), $\lambda = -1$. Using $\lambda = -1$ in (14.1), we get $2x + 3(x - 1)^2 = 0$. But $2x + 3(x - 1)^2 = 3x^2 + 3 - 4x = 0$ does not have any real roots since $b^2 - 4ac = (-4)^2 - 36 < 0$.

Now if y = 0 then from (14.3), we get x = 1. Substituting x = 1 in (14.1) we get 2 = 0 which is absurd.

Hence there is no solution to the simultaneous equations (14.1)-(14.3).

Question: Can we say that there is no point on the curve $(x-1)^3 = y^2$ which is nearest to the origin ?

Geometrically thinking, answer would be no. In fact if you draw this curve, this is how it looks like.

it is obvious that the minimum is 1 and it is attained at (1,0).

So now we are ensured (geometrically) that f attains it's absolute minimum on zero set of g. Also f and g are everywhere differentiable hence only possibility left where f attains its absolute minimum is the point where ∇g is zero and indeed we note that $\nabla g(1,0) = (0,0)$.