Homework 9

Problem 1. Prove that TQBF restricted to formulas where the part following the quantifiers is in conjunctive normal form (CNF) is still PSPACE-complete.

Lemma. (Tseytin Transformation) An example of the Tseytin Transformation is as follows. Denote n as the length of ψ . Let $\psi = ((p \lor q) \land r) \to (\neg s)$, then

1. Take all the subformulas of ψ :

$$\neg s,$$

$$p \lor q,$$

$$(p \lor q) \land r,$$

$$((p \lor q) \land r) \rightarrow (\neg s).$$

Since the number of subformulas equals to the number of operators, so there the number of subformulas is O(n).

$$\begin{split} x_1 &\leftrightarrow \neg s, \\ x_2 &\leftrightarrow p \lor q, \\ x_3 &\leftrightarrow x_2 \land r, \\ x_4 &\leftrightarrow x_3 \rightarrow x_1. \end{split}$$

As a result of step(1), the number of variables which we have introduced is O(n).

- 2. Conjunct all substitutions and the substitution for ψ : $\psi' = x_4 \land (x_4 \leftrightarrow x_3 \rightarrow x_1) \land (x_3 \leftrightarrow x_2 \land r) \land (x_2 \leftrightarrow p \lor q) \land (x_1 \leftrightarrow \neg s)$
- 3. All substitutions can be transformed into CNF. Note that each subterm, for instance, $x_2 \leftrightarrow p \lor q$, is a 3-CNF. So expand them and we will gain at most 2^3n formulas, which is still O(n).

Therefore, the length of ψ' is linear to that of ψ . And it is clear that the Tseytin Transformation is polynomial-time computable.

Homework 9 熊泽恩

Solution. Denote the problem as TQBF(CNF). Consider Turing machine S:

1. Suppose the input is $\langle \varphi \rangle$. If φ has no quantifiers, Then φ has no variables. It either "True" or "False." Output accordingly.

- 2. If $\varphi = \exists x \ \psi$, then evaluate ψ with x equals true or false recursively. Accept if either case accepts. Reject otherwise.
- 3. If $\varphi = \forall x \ \psi$, then evaluate ψ with x equals true or false recursively. Accept if both case accepts. Reject otherwise.

Each recursive level uses constant extra space, so that the space complexity of S is O(n). So TQBF(CNF) \in PSPACE.

Now we will prove that TQBF(CNF) is PSPACE-complete by reducing TQBF to TQBF(CNF). Given $\varphi = Q_1x_1Q_2x_2\cdots Q_kx_k \ \psi \in \text{TQBF}$, then using the Tseytin Transformation, we can transform ψ into ψ' in polynomial time, and the length of ψ' is linear to that of ψ .

Therefore, TQBF(CNF) is PSPACE-complete.

Problem 2. Let SUM = $\{\langle x, y, z \rangle \mid x, y, z > 0 \text{ are binary integers satisfying } x+y=z\}$. Show that SUM \in L.

Solution. It is not possible to calculate x+y directly because we only can use an additional $O(\log n)$ space. However, we can construct an algorithm as follows. We use the pair $\langle p,c\rangle$ to describe the current state, where p is the position of the bit we're calculating, and $c \in \{0,1\}$ is the carry of the result that we have already calculated.

We can calculate the result from the lowest bit to the highest, bit by bit, increment p by one after every calculation of each bit.

Since p will not exceed the length of input n, so $p \leq n$, and the space complexity for p is $O(\log n)$. Additionally, c only needs O(1) space to store. Therefore, SUM \in L.

Problem 3.

(a) An undirected graph is *bipartite* if its nodes may be divided into two sets so that all edges go from a node in one set to a node in the other set. Show that a graph is bipartite if and only if it doesn't contain a cycle that has an odd number of nodes.

Homework 9 熊泽恩

(b) Let BIPARTITE = { $\langle G \rangle \mid G$ is a bipartite graph}. Prove that BIPARTITE is in NL.

Solution. (a)

Suppose that G is bipartite, and let V_1 and V_2 be the two sets of nodes such that all edges go between V_1 to V_2 . Each edge permits us to travel from a node in V_1 to a node in V_2 and vice versa. Thus, if we start at a node in V_1 and follow an edge, we must arrive at a node in V_2 . If we follow another edge, we must arrive at a node in V_1 . We can continue this process. If it forms a cycle, then the number of nodes in the cycle must be even since we alternate between nodes in V_1 and V_2 .

Suppose G doesn't contain a cycle with an odd number of nodes. We can start at any node and assign it to V_1 . Then, we assign all neighbors of nodes in V_1 to V_2 , and all neighbors of nodes in V_2 to V_1 . We continue this process until no more nodes can be assigned. Since all cycles have an even number of nodes, all nodes in the cycle will alternate between V_1 and V_2 , and we won't have any conflicts. Thus, G is bipartite.

Therefore, a graph is bipartite if and only if it doesn't contain a cycle that has an odd number of nodes.

(b)

Suppose $G = \langle V, E \rangle$. Construct a nondeterministic Turing machine M as follows. Denote the current state as $\langle v, l \rangle$, where v is the current vertex, l is the length of the current path. For each vertex $v_{\text{init}} \in V$:

- 1. Start from v_{init} , and $\langle v, l \rangle \leftarrow \langle v_{\text{init},1} \rangle$.
- 2. (a) Nondeterministically guess the next vertex u.
 - (b) If edge $(v, u) \in E$:
 - If $u = v_{\text{init}}$,
 - If *l* is odd, return $\langle G \rangle$ \notin BIPARTITE.
 - If l is even, return $\langle G \rangle \in \text{BIPARTITE}$.
 - Otherwise, $v \leftarrow u, l \leftarrow l + 1$.
 - (c) If $l \geq |V|$, guess another vertex u.
- 3. Return $\langle G \rangle \in \text{BIPARTITE}$.

Since the length of the longest simple cycle in graph G is less than |V|, so $l \leq |V|$. Therefore, the cost of space complexity for storing $\langle v, l \rangle$ is $O(\log n)$.

Hence, BIPARTITE is in NL.

Homework 9 熊泽恩

Problem 4. Let $S(n) \ge \log n$ be a space-constructible function. Show that NSPACE(S(n)) = coNSPACE(S(n)) is a consequence of NL = coNL.

Solution. Suppose that $\operatorname{NL} = \operatorname{coNL}$. Consider a problem $Q \in \operatorname{NSPACE}(S(n))$ with an alphabet Σ . Since $S(n) \geq \log n$, so there exists $m \in \mathbb{N}$ such that $S(n) = \log m$. Pad the input $\langle I \rangle$ to $\langle I' \rangle = \langle I \ c^{m-n} \rangle$, where character $c \notin \Sigma$, so $|\langle I' \rangle| = m$.

Suppose the corresponding nondeterministic Turing machine for Q is M. Construct a new nondeterministic Turing machine M' as follows:

- 1. Parse the input as $\langle I' \rangle = \langle I c^k \rangle$.
- 2. Use M to solve $\langle I \rangle$. Return the result.

We have constructed a new nondeterministic Turing machine M' that solves the problem Q', where Q' corresponds to M' and $Q' \in \text{coNL}$. Now we will construct a new machine M'' that solves Q and belongs to coNSPACE(S(n)).

The machine M'' operates as follows:

- 1. On input $\langle I \rangle$, where $|\langle I \rangle| = n$:
- 2. Pad the input to $\langle I' \rangle = \langle I c^{m-n} \rangle$, as before.
- 3. Run M' on input $\langle I' \rangle$ to obtain the result R.
- 4. If R is "accept," then accept; otherwise, reject.

The machine M'' simulates M' on the padded input $\langle I' \rangle$ and returns the same result. Since M' uses $\log m = S(n)$ space, M'' also uses $\log m = S(n)$ space. Therefore, M'' solves the problem Q using $\log m = S(n)$ space, which means $Q \in \text{coNSPACE}(S(n))$. This leads to $\text{NSPACE}(S(n)) \subseteq \text{coNSPACE}(S(n))$. Reverse the procedure above, then similarly, we can prove that $\text{coNSPACE}(S(n)) \subseteq \text{NSPACE}(S(n))$.

Hence NSPACE(S(n)) = coNSPACE(S(n)).