J. Triângulos

Time limit: 1s

São dados N pontos em uma circunferência. Você deve escrever um programa que determine quantos triângulos equiláteros distintos podem ser construídos usando esses pontos como vértices.

A figura abaixo ilustra um exemplo; (a) mostra um conjunto de pontos, determinados pelos comprimentos dos arcos de circunferência que têm pontos adjacentes como extremos, e (b) mostra os dois triângulos que podem ser construídos com esses pontos.

Entrada

A entrada contém vários casos de teste. A primeira linha de cada caso de teste contém um número inteiro \mathbf{N} ($3 \le \mathbf{N} \le 10^5$), o número de pontos dados. A segunda linha contém \mathbf{N} inteiros \mathbf{X}_i ($1 \le \mathbf{X}_i \le 10^3$) para $1 \le i \le \mathbf{N}$, representando os comprimentos dos arcos entre dois pontos consecutivos na circunfer^encia: para $1 \le i \le (\mathbf{N} - 1)$, \mathbf{X}_i representa o comprimento do arco entre os pontos \mathbf{N} e 1. O final da entrada é determinado por EOF (fim de arquivo).

Saída

Seu programa deve produzir uma única linha para cada caso de teste, contendo um único inteiro, o número de triângulos equiláteros distintos que podem ser construídos utilizando os pontos dados como vértices.

Exemplo de Entrada	Exemplo de Saída
8	2
4 2 4 2 2 6 2 2	1
6	
3 4 2 1 5 3	

Maratona de Programação da SBC 2013.

Maratona de Programação da SBC 🛜 Brasil