Forecasting Energy
Load for Efficient
Utilization of
Battery Energy
Storage Systems

Tim Prause, Kadisatou Fane, Cosima Birkmaier

Contents

- Motivation
- Dataset
- Baseline Models
- Models
- Model Comparison
- ☐ Summary & Outlook
- ☐ References

Motivation

- more renewable energy sources
- new challenges for power grids
- electricity generation must be flexibly adapted to power consumption
- one solution: batteries:
 - Battery Energy Storage Systems (BESS)
 - charge, when more energy is generated than needed
 - discharge to the grid, when demand is higher than (renewable) generation
 - financially: buy energy, when prices are low, sell it, when prices are high
 - supply and demand
- goal of our project: predict energy load for better battery charging and discharging

Dataset

- Dataset obtained from Bundesnetzagentur (Federal Agency for Grids)
- Total energy load from Germany and Luxembourg
- From 01.11.2018 to 31.10.2024
- Energy production per production type (e.g. wind, solar...)
- Hourly data
- Added features:
 - Time Features (hour, weekday, holidays...)
 - Energy Prices in Europe
- Final dataset:
 - o 52,620 samples
 - 35 features

Data Visualization & Preparation

Data Visualization & Preparation

Feature Engineering:

Added features:

- Time Features
 - o hour of day in cos and sin
 - weekday cos and sin
 - o day of year cos and sin
 - holiday
 - workday True or False
- Energy Prices in Germany
- Energy Production in Germany
 - Wind, solar, coal, gas...

Feature selection:

- Random forest Regressor for feature selection: Feature and importance
 - o hour: 0.40
 - o day of week: 0.086
 - o nuclear energy: 0.028
 - o holiday: 0.023
 - o coal energy: 0.024
 - o ..
- Threshold = 0.1 resulted in 13 remaining features

Baseline Models: Naive Forecast

Mean Absolute Percentage Error (MAPE): 3.4592% Mean Absolute Error (MAE): 1807.92

Baseline Models: Sarimax 1

Mean Absolute Percentage Error (MAPE): 7.06%

Mean Absolute Error (MAE): 3657.26

FB Prophet:

FB Prophet:

FB Prophet:

Janurary 2024 Forecast vs Actuals

Mean Absolute Percentage Error (MAPE): 5.3319% Mean Absolute Error (MAE): XXX

LSTM:

- Architecture:
 - o 3 layers
 - o 128 neurons
 - o 0.2 dropout layer
 - o 48 window size
- Test Set MAPE: 1.85%
- Test Set MAE: 957.33

Multivariate Tree Models:

- XGBoost
 - 1000 estimators
 - o 30 max depth
 - o learning rate 0.01
- LightGBoost:
 - o 3000 estimators
 - o 35 max depth
 - o learning rate 0.05
- RandomForest;
 - o 30 estimators
 - o 25 max depth

Multivariate Tree Models:

- XGBoost
 - o mape: 0.86%
 - o mae: 489.51
- LightGBoost:
 - o mape: 1.09%
 - o mae: 450.10
- RandomForest;
 - o mape: 0.89%
 - o mae: 515.27

Transformer Model

- TensorFlow
- 34,718 parameters (all trainable)
- 4 attention heads
- batch size = 1
- 50 epochs
- training time: 1:04 h
- MAPE: 3.69 %
- MAE: 1,898.06

FFT and Spectral Analysis

- Perform FFT
- Filter results to obtain most relevant frequencies
- Represent those frequencies with their amplitudes (and phases) as sine waves
- Add the sine waves as new columns to the dataset
- Perform SARIMAX with those columns as exogenous factors
- MAPE: 15.78 %
- MAE: 7,634.24
- Quick computation time (a few minutes for FFT, spectral analysis and SARIMAX)

SARIMAX with FFT

Frequency = weekly using average hourly load Interval: 2019-01-01:2023-12-31 | Data points: 1826 Split: 75%

Model: SARIMAX(4, 1, 0)x(1, 0, [1], 7)

Heteroskedasticity (H): 0.55

AIC:833.944 MAPE :0.048

Runtime: 94.254 seconds

Frequency = 24x7

Interval: 2023-10-01:2023-12-31 | Data points: 2160

Split: 75%

Model: SARIMAX(0, 0, 3)×(1, 0, [1], 168)

AIC:-2532.929 MAPE:0.1061

Runtime: 12m59s

24

Kalman Filter with expansion window: Hourly load Forecast

- Regressors: hour, is_weekend, is_holiday
- State variables: short-term trend & seasonality, long-term trend & seasonality
- Hyperparameters: state transition matrix (A), Observation matrix (H), Process noise covariance (Q), Observation noise covariance (R), Initial state vector, Initial state covariance

```
for t in range(forecast steps):
    # Predict step
   state pred = A @ state prev # Predict the next state
    P pred = A @ P prev @ A.T + Q # Predict the state covariance
    # Predict energy load (observation)
   energy load pred = H @ state pred
    forecasted energy load.append(energy load pred[0])
    # Optional: Expanding or Rolling window correction
   if t < len(test data):</pre>
        # Use expanding window: update with test data as it becomes
available
       observation residual = test data[t] - energy load pred #
Residual
       S = H @ P pred @ H.T + R # Innovation covariance
       K = P pred @ H.T @ np.linalg.inv(S) # Kalman Gain
        # Update states based on test observation
        state updated = state pred + K @ observation residual
        P updated = (np.eye(n states) - K @ H) @ P pred
   else:
        # For rolling window: Use the rolling window states
       state updated = state pred
        P updated = P pred
```


Frequency = hourly

Interval: 2022-10-01: 2023-12-31| Data points: 10969

split: 80%

MAPE: 0.0841

Runtime: 4 seconds

Frequency = daily

Interval: 2018-11-01: 2024-10-31| Data points: 2192

split: 80%

MAPE: 0.1007

Runtime: 4 seconds

GP model: another advanced architecture

- Features: load_lag_1, load_lag_2, load_lag_3, load_lag_4, load_lag_5, load_lag_6, load_lag_7, price, temperature, day_of_week, month
- Hyperparameters:
 - Out layer: Mean function, RBF kernel, Periodic Kernel, Matern Kernel, Gaussian Likelihood noise variance, Learning rate, Number of iterations
 - In layer: length scale, periodic length, v, output scale
 - > RBF Kernel models smooth trends over multiple features.
 - Periodic Kernels captures yearly and weekly seasonality (based on time-related features).
 - Matern Kernel adds flexibility for irregular variations.

Model Comparison

Model	MAPE	MAE	training time (estimated)
Naive Forecast	0.034592	1807.92	_
Sarimax 1	0.0706	3657.26	10 min
FBProphet	0.053319		4 min
LSTM	0.0185	957.33	20 min
Univariat XGBoost	0.038462	1988.07	4 min
Multi XGBoost	0.0086	489.51	10 min
Multi LGBoost	0.0109	450.10	3 min
Multi Random Forest	0.0089	515.27	7 min
Transformer	0.0369	1898.06	1 hour
Sarimax with FFT & Sine Waves	0.1578	7634.2403	2 min
Sarimax 2 Daily load forecast	0.048	_	1m34s
Kalman Filter with expansion window	0.0841	_	4s
Gaussian Process	(0.02795)	_	<1 min
Times FM	0.0332	_	< 1 min

Outlook:

- Add more Features
- More fine tuning for each model
- Use models optimized for rolling forecasts
- Forecast Energy price as well
- Forecast different regions
- Consider official and unofficial regional holidays (carnival) and the regions affected
- Consider long "bridge" weekends
- Reproduce the models with alternative set of features

- https://www.smard.de/home/downloadcenter/download-marktdaten/?downloadAttrib utes=%7B%22selectedCategory%22:1,%22selectedSubCategory%22:false,%22selectedFileType%22:false%7D
- International Energy Agency (2024): Batteries and Secure Energy Transitions.
 https://iea.blob.core.windows.net/assets/cb39c1bf-d2b3-446d-8c35-aae6b1f3a4a0/B
 atteriesandSecureEnergyTransitions.pdf
- Lewinson, E. (2022): Three Approaches to Encoding Time Information as Features for ML Models.
 - https://developer.nvidia.com/blog/three-approaches-to-encoding-time-information-as--features-for-ml-models/

Photo credit

Slide 3, top center:

https://unsplash.com/de/fotos/luftaufnahme-des-rasenplatzes-mit-blauen-sonnenkollektoren-Ilpf2eUPpUE

Slide 3, right:

https://pixabay.com/de/photos/windrad-energie-windkraft-5267130/

Slide 4, top center:

https://www.bundesnetzagentur.de/SharedDocs/Bilder/_init_bild_stromleitung.png?__blob=normal&v=3

Slide 4, right:

https://unsplash.com/de/fotos/weisse-windmuhle-auf-gelbblattrigem-blumenfeld-tagsuber-E56cTF65xFw