Discrete Math: Aggignment 3

Proceed tracks.	Hisaigriment 5	
1. a. Erumovation: {-1,-3,-5,-7	.}	
lo. For position i EN+, S; =	-28+1 where l & N'	
ie S. = -2(1)+1=-1. S. = -	7(2)+1=-3, S3=-2(3)+1=-5; and so on.	
C. For KES, 1 = - K-1, W		
$16 \cdot \frac{-1-1}{2} = 1 \cdot \frac{-3)-1}{2} = 2 \cdot \frac{(-5)-1}{2}$	1 = 3, and so on.	
2. (AuB) - (= (A-C) u (B-C)		
Proof	Just dication	
(A-C) U (B-C)	Right side of equation	
= {x x \((A - () \(\) (B - ())}	Convert to set builder notation.	
$=$ $\{x \mid x \in (A-C) \lor x \in (B-C)\}$	Definition of U	
={x x \(\epsilon\) \\ \\ \\ \(\epsilon\)}	Definition of - (difference)	
={x x e - (n x e (A v B)}	Distributive Property	
= {x x = ¬(~ x = (AuB)}	Definition of U	
= {x x ∈ (AUB) - (}	Definition of - (difference)	
(AUB)-(Convert from set builder notation to get left side of eq	
The justifications show how each	n step preserves the equality and thus (A-C) U (B-C) = (AUB) - (
Since equality is symmetric, we	conclude (AUB)-(=(H-()U(B-c).	
		and the same