Transport Layer and UDP

Daniel Zappala

CS 460 Computer Networking Brigham Young University

Transport Layer

Transport Layer UDP

Logical Communication and Message Segmentation

- logical communication between processes running on different hosts
 - network may lose, delay, duplicate, or re-order packets
 - provide an abstraction that two machines are directly connected
- message segmentation
 - sender divides messages into segments, passes them to network layer
 - receiver reassembles segments into a continuous byte stream

Transport Layer UDP

Transport Protocols

- TCP: reliable service
 - reliable, ordered byte-stream: cope with network events
 - flow control: avoid overwhelming receiver
 - congestion control: avoid overwhelming the network
- UDP: best-effort service
 - connectionless: no state setup
 - unreliable: lost packets are not re-sent
 - no flow control
 - no congestion control
- services not available
 - bandwidth guarantees
 - delay guarantees

UDP

UDP Header Format

- defined in RFC 768
- port numbers (16 bits each)
- length of UDP segment, including header (bytes)
- checksum
- application data (sometimes called ADU)

UDP Checksum

- goal: detect some bit errors in transmitted segment
- sender
 - treat segment (header and data) as a sequence of 16-bit integers
 - take the one's complement of the one's complement sum of the entire segment
 - put resulting value in UDP checksum field
 - ▶ RFC 768
- receiver
 - compute checksum of received segment
 - check if computed checksum = -0
 - yes no error detected
 - no a bit error occurred

1's Complement Addition

Binary		Decimal	Hex
0000	0000	0	00
0000	0001	1	01
0000	0010	2	02
0000	0011	3	03
1111	1111	-0	FF
1111	1110	-1	FE
1111	1101	-2	FD
1111	1100	-3	FC

- add the carry to the least-significant bit
- -3 + 5 = 2
- \bullet 1111 1100 + 0000 0101 = (01) 0000 0001 = 0000 0010
- checksum for $-3 + 5 + 0 = 1111 \ 1101$
- checksum for $-3 + 5 + -2 = 1111 \ 1111 = -0$