

Name: Karappagari Alekya

Batch: 2

ID: cometfwc024 Date: 9th July 2025

GATE CS 2010 – Question Number 31

Question

What is the Boolean expression for the output f of the combinational logic circuit of NOR gates given below?

Q.31 What is the boolcan expression for the output f of the combinational logic circuit of NOR gates given below?

Figure: NOR Gate Logic Circuit

Solution

Let us denote:

$$\begin{split} A &= \overline{P + Q} \\ B &= \overline{Q + R} \\ C &= \overline{A + B} = \overline{\overline{P + Q} + \overline{Q + R}} \\ D &= \overline{P + R} \\ E &= \overline{Q + R} \\ F &= \overline{D + E} = \overline{\overline{P + R} + \overline{Q + R}} \\ f &= \overline{C + F} \end{split}$$

Substitute step-by-step:

$$f = \overline{\overline{P + Q} + \overline{Q + R}} + \overline{\overline{P + R} + \overline{Q + R}}$$

This is a complex NOR-based logic expression. Let us test this against options. Let us evaluate for all combinations.

Truth Table

P	Q	R	f
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

Truth Table of the Circuit

This matches the output of option (A): $\overline{Q+R}$

Correct Option: (A) $\overline{Q+R}$

Hardware Implementation: Raspberry Pi Pico2W

Components Required

Component	Quantity
Raspberry Pi Pico2W /	1
Arduino Uno	
Push Buttons (Inputs for P, Q,	3
(R)	
LED (Output indicator for f)	1
220Ω Resistors (for LED current	1
limiting)	
$10k\Omega$ Resistors (for button	3
pull-downs)	
Breadboard	1
Jumper Wires (Male-to-Male)	As required
USB Cable (Micro USB /	1
USB-B for upload)	

Table: Components Used for Hardware Implementation

Component	GPIO Pin	Role
Button P	GP14	Input
Button Q	GP15	Input
Button R	GP16	Input
LED f	GP13	Output
GND	GND	Common ground
3.3V	3.3V	Pull-up

Pico2W Connection Table

GPIO Pin Connections (Pico2W)

Upload Steps

- 1. Connect Pico2W via USB while holding BOOTSEL.
- 2. Flash MicroPython UF2 firmware.
- 3. Open Thonny IDE and select Pico2W.
- 4. Write logic for $\overline{Q+R}$ using digital inputs.
- 5. Observe LED output for input combinations.

Hardware Implementation:Arduino Uno

GPIO Connections

Component	Arduino Pin	Role
Button P	D2	Input
Button Q	D3	Input
Button R	D4	Input
LED f	D5	Output
GND	GND	Ground
VCC	5V	Pull-up

Arduino Pin Configuration

Upload Steps

- 1. Connect Arduino Uno via USB.
- 2. Open Arduino IDE, select port and board.
- 3. Write code for logic: $\overline{Q+R}$.
- 4. Upload and test using push buttons and LED.

GitHub Repository

You can find the source files, circuit diagrams, and code at: https://github.com/Alekyakuruba/fwc/tree/main/hardware

Figure: Implementation of NOR logic circuit

Conclusion

This question involved a multi-level NOR gate circuit. By simplifying step-by-step and evaluating truth table, we found that the expression simplifies to $\overline{Q+R}$. Hardware implementation verified using Raspberry Pi Pico2W and Arduino Uno confirms the correct logical behavior.

Final Answer: (A) $\overline{Q+R}$