MODELLI E ALGORITMI PER IL SUPPORTO ALLE DECISIONI

ESERCIZIO 1. (11 punti) Sia dato il problema KNAPSACK con capacità dello zaino b = 12 e con 5 oggetti aventi i seguenti valori v_i e pesi p_i

i	1	2	3	4	5
v_i	31	32	28	1	29
p_i	6	7	4	2	6

Lo si risolva con l'algoritmo di programmazione dinamica trovando tutte le soluzioni ottime.

ESERCIZIO 2. (6 punti) Si dimostri la correttezza dell'algoritmo di Ford-Fulkerson per il problema di flusso massimo e di taglio a costo minimo.

ESERCIZIO 3. (6 punti) Sia dato il problema di ottimizzazione $\max_{x \in S} f(x)$. Si consideri un algoritmo branch-and-bound per la sua risoluzione e siano $S_1, S_2 \subset S$ due sottinsiemi della sua regione ammissibile. Per ciascuna delle seguenti affermazioni dire se è vera o falsa **motivando la risposta**:

- se $U(S_1) > LB$, allora in S_1 ci sono sicuramente soluzioni ammissibili con valore della funzione obiettivo maggiore dell'attuale valore di lower bound LB;
- se $U(S_2) \leq LB$, allora in S_2 non ci possono essere soluzioni ottime del problema;
- se $U(S_1) > U(S_2)$, allora in S_1 ci sono certamente soluzioni ammissibili con valori della funzione obiettivo più elevati rispetto a S_2 .

ESERCIZIO 4. (8 punti) Si indichi la risposta corretta per ciascuna delle seguenti domande motivando la risposta.

- (1) Si consideri l'algoritmo del simplesso per i problemi di flusso a costo minimo per problemi con capacità sugli archi. Sia data una tripla (B, N_0, N_1) . Un coefficiente di costo ridotto pari a -2 per un arco fuori base indica che:
 - A: Incrementando di un'unità il flusso lungo quell'arco, il costo diminuisce di 2 se l'arco è in N_0 e aumenta di 2 se l'arco è in N_1 .
 - **B:** L'arco non entrerà mai in una base durante l'esecuzione dell'algoritmo se è in N_1
 - C: L'arco entrerà sicuramente in una base durante l'esecuzione dell'algoritmo se è in N_0 .
 - D: Incrementando di un'unità il flusso lungo quell'arco, il costo diminuisce di 2
- (2) Dire quale tra le seguenti affermazioni non è corretta
 - A: Ogni problema che sta nella classe P, sta anche nella classe NP.
 - **B:** Ogni problema che sta nella classe NP è trasformabile in tempo polinomiale in un problema NP-completo
 - C: Ogni problema NP-completo sta anche nella classe NP.
 - **D:** Non esistono problemi che siano contemporaneamente NP-completi e che stiano nella classe P.
- (3) A una data iterazione dell'algoritmo di Dijkstra con il relativo insieme W di nodi esplorati, la funzione ρ associa ad ogni nodo:
 - A: La lunghezza del cammino minimo dal nodo di partenza s a quel nodo.
 - **B:** La lunghezza del cammino minimo dal nodo di partenza s a quel nodo, se il nodo appartiene a W, mentre se non appartiene a W, rappresenta la lunghezza del cammino minimo dal nodo di partenza s a quel nodo passando solo per nodi di W.
 - C: La lunghezza del cammino minimo dal nodo di partenza s a quel nodo, se il nodo non appartiene a W, mentre se appartiene a W, rappresenta la lunghezza del cammino minimo dal nodo di partenza s a quel nodo passando solo per nodi di W.
 - \mathbf{D} : La lunghezza del cammino massimo dal nodo di partenza s a quel nodo.

(4) A ogni iterazione dell'algoritmo MST-2 il numero di componenti connesse a ogni iterazione viene:

A: ridotto di un'unità.B: ridotto di due unità.

 \mathbf{C} : almeno dimezzato.

 $\mathbf{D} \text{:}\,$ è il logaritmo in base due del numero di componenti connesse dell'iterazione precedente.