$MOSFET V_t$

- **6.1** 15 Ω -cm = 10¹⁵ cm⁻³, $\therefore E_f = E_v + 0.26 \text{eV}$ oxide trap density = 8×10^{10} cm⁻², Z = 50 μm , $L = 2 \,\mu\text{m}$, $T_{\text{ox}} = 5 \text{nm}$
 - (a) $V'_{fb} = V_{fb} + \Delta V$. $V_{fb} = 3.1 (3.1 + 0.86) = -0.86 \text{eV}$, $\Delta V = Q_f/C_{ox} = 18.5 \text{ mV}$. Therefore $V'_{fb} \cong V_{fb} = -0.86 \text{ eV}$ When oxide thickness is thin, the trap charge effect can be ignored.
 - (b) $V_t = V'_{fb} + V_{ox} + V_s \cong V_{fb} + 2\phi_B + (2\epsilon_s q N_a 2\phi_B)^{1/2}/C_{ox}$ = -0.86 +0.6 + 0.02V = -0.24V
 - (c) To make $V_t = 0.5$ V, one should implant boron into silicon substrate such that $\Delta V_t = Q_{\rm imp}/C_{\rm ox}$. Therefore ion implant dose should be $(0.5\text{V}+0.24\text{V}) \times C_{\rm ox} \div q = 3.2 \times 10^{12} \text{ cm}^{-2}$.
- **6.2** (a) Using Equation 4.16.4 and referring to Table 1-4, we find $\phi_{bi} = \phi_{Bn} kT \ln \left(\frac{N_c (GaAs)}{N_d} \right) = 1V kT \ln \left(\frac{4.7 \times 10^{17}}{1 \times 10^{17}} \right) = 0.96V .$ Then, $W_{dep} = \sqrt{\frac{2\varepsilon_s \phi_{bi}}{q} \frac{1}{N_d}} = \sqrt{\frac{2(13\varepsilon_0)\phi_{bi}}{q} \frac{1}{N_d}} = 0.12 \ \mu m .$
 - (b) $W_{dep} = 0.2 \,\mu m = \sqrt{\frac{2(13\varepsilon_0)(\phi_{bi} + V)}{q} \frac{1}{N_d}} \Rightarrow V = \frac{qN_dW_{dep}^2}{2(13\varepsilon_0)} \phi_{bi} = 1.82V$.

A negative V_g is need to increase W_{dep} and turn-off the channel. (A metal/N-type semiconductor Schottky diode exhibits the same forward/reverse bias properties as an P^+/N diode.)

- (c) Yes. If the positive V_g is kept small (say 0.5V), the forward current of the Schottky gate maybe comparable to the subthreshold drain leakage current. A positive V_g would reduce W_{dep} and therefore raise I_{ds} .
- (d) The channel thickness or doping concentration must be reduced so that $W_{dep} \ge$ channel thickness at $V_g = 0$.

6.3
$$C_{ox} = 6.9 \times 10^{-7} \frac{F}{cm^2}, \phi_B = \frac{kT}{q} \ln \frac{N_{sub}}{n_i} = 0.47 \text{eV}$$

(a) $V_t = V_{fb} + 2\phi_B + \frac{1}{C_{ox}} \sqrt{2q\varepsilon_s N_{sub} 2\phi_B}$
 $V_t = -\frac{E_g}{2} - \phi_B + 2\phi_B + \frac{1}{C_{ox}} \sqrt{2q\varepsilon_s N_{sub} 2\phi_B} = -0.09 + 0.61 = 0.52V$

(b) $V_t = V_{fb} - 2\phi_B - \frac{1}{C_{ox}} \sqrt{2q\varepsilon_s N_{sub} 2\phi_B}$
 $V_t = -\frac{E_g}{2} + \phi_B - 2\phi_B - \frac{1}{C_{ox}} \sqrt{2q\varepsilon_s N_{sub} 2\phi_B} = -0.56 - 0.47 - 0.61 = -1.64V$

(c) $V_t = V_{fb} - 2\phi_B - \frac{1}{C_{ox}} \sqrt{2q\varepsilon_s N_{sub} 2\phi_B}$
 $V_t = \frac{E_g}{2} + \phi_B - 2\phi_B - \frac{1}{C_{ox}} \sqrt{2q\varepsilon_s N_{sub} 2\phi_B} = -0.52V$

(d)
$$V_b = 0V$$

 $V_s = 0V$
 $V_d = 2.5V$
 $V_{\varphi} = 2.5V$

(e)
$$V_b = 2.5V$$

 $V_s = 2.5V$
 $V_d = 0V$
 $V_g = 0V$

(f)
$$I_{dsat} = \frac{\mu_n W C_{ox}}{2L} (V_{gs} - V_t)^2$$

$$\frac{I_{dsatc}}{I_{dsatb}} = \frac{(-2.5 - (-0.52))^2}{(-2.5 - (-1.64))^2} \approx 5.3$$

The transistor with the lower absolute value of threshold voltage has a higher saturation current. That is why P⁺ poly-gate PMOSFETs are typically used in IC.

(g) The ratio of the current is the ratio of the mobilities. To find μ_n , $(V_{gs} + V_t + 0.2) / 6T_{oxe} = (2.5 + 0.52 + 0.2)V / (6 \times 5 \times 10^{-7})cm = 1.07MV / cm$ and $\mu_n = 250 \text{cm}^2 \text{V}^{-1} \text{s}^{-1}$

To find
$$\mu_p$$
,
$$-(V_{gs} + 1.5V_t - 0.25)/6T_{oxe} = -(-2.5 + 1.5 \times (-0.52) - 0.25)V/(6 \times 5 \times 10^{-7})cm = 1.01MV/cm$$
 and $\mu_p = 63 \text{cm}^2 \text{V}^{-1} \text{s}^{-1}$.

$$\frac{I_{dsat(c)}}{I_{dsat(a)}} = \frac{\mu_p}{\mu_n} \approx \frac{1}{4}$$

Basic MOSFET IV Characteristics

- **6.4** (a) Due to the highly doped regions nearby, transistor C-V always approaches C_{ox} in inversion. Hence, it is impossible to determine the frequency. Either high or low frequency could have been used.
 - (b) Since $V_t > V_{fb}$, this is a NMOS.
 - (c) From the I_d-V_g curve, V_t is 0.55V. More precisely, $I_d = \mu C_{ox} \frac{W}{L} V_{ds} \left(V_g V_t \frac{V_{ds}}{2} \right) \Rightarrow 0.55 V_t \frac{V_{ds}}{2} = 0$ $V_t = 0.5V$
 - (d) Slope of curve I_d V_g line = $\mu C_{ox} \frac{W}{L} V_{ds} = 5 \times 10^{-3} \Omega^{-1}$. $V_{ds} = 0.1 V$ From the CV curve, $C_{ox} WL = 1 pF \Rightarrow C_{ox} \frac{W}{L} = 10^{-4} \frac{F}{cm^2}$ Thus, $\mu = \frac{5 \times 10^{-3}}{0.1 \times 10^{-4}} = 500 \frac{cm^2}{Vs}$

(e)
$$V_{dsat} = V_g - V_t$$

 $I_{dsat} = \frac{\mu C_{ox} W}{2L} (V_{dsat})^2 = 0.025 \frac{A}{V^2} V_{dsat}^2$

 $\begin{array}{cccc} V_g & 1V & 2.5V \\ V_{dsat} & 0.5V & 2V \\ I_{dsat} & 6.25 mA & 100 mA \end{array}$

6.5 (a) For V_{gs} =4V, $V_{dsat} \sim 3V$ =(V_{gs} -V_t) and V_t =1V

(b)
$$I_{dsat} = \mu_n C_{ox} W / 2L \cdot (V_g - V_t)^2$$

 $C_{ox} = 3.45 \times 10^{-7} F / cm^2$
 $\mu_n = \frac{2I_{dsat}}{C_{ox} \left(\frac{W}{L}\right) (V_g - V_t)^2} = 361cm^2 / Vs$

(c) At $V_{gs}=3V$, $V_{dsat}=(3-1)V=2V$ $I_{dsat} = 361 \times 3.45 \times 10^{-7} \cdot (10/2) \cdot (3-1)^2 / 2 = 1.25 \times 10^{-3} A$

6.6 (a) At saturation, $V_d = V_{dsat} = V_g - V_t$. $V_{dd} = 2V$. Therefore the transistor is in saturation mode when $V_g < 2.5V$. $I_{dsat} = 125(V_g - 0.5)^2 \,\mu\text{A}$. When $V_g > 2.5V$, the transistor is in linear region with $I_d = 500(V_g - 1.5) \,\mu\text{A}$.

(b) & (c) Transconductance: solid line, Output Conductance: dotted line

6.7 (a)
$$V_{gs} - V_t = 2V$$

$$V_{gs} = 2.5V$$
 (b) $Q_n = -C_{ox}(V_{gs} - V_t - V_c) = 0$ (Pinch-Off)

(c)
$$I_{ds} @V_{ds} = 4V$$

 $V_{dsat} = V_{gs} - V_{t} = 3V$
(in saturation)

$$I_{ds} \propto (V_{gs} - V_t)^2$$

 $I_{ds} = 10^{-3} \times \frac{3^2}{2^2} = 2.25 \times 10^{-3} A$

(d) C C_{ox} (Same for high and low frequencies) V_{fb} V_{t}

6.8 (a)
$$\phi_B = \frac{kT}{q} \ln \frac{N_a}{n_i} = 0.297V$$

$$C_{ox} = \frac{\mathcal{E}_{ox}}{t_{ox}} = 7.08 \times 10^{-8} \frac{F}{cm^2}$$

$$V_{fb} = \chi_{Si} - (\chi_{Si} + \frac{E_g}{2} + \phi_B) = -0.857V$$

$$V_g = V_{fb} + V_s + V_{ox} \Rightarrow V_t = V_{fb} + 2\phi_B + \frac{\sqrt{2\varepsilon_s q N_a 2\phi_B}}{C_{ox}} = -0.064V$$
(b) $I_{dsat} = \frac{\mu_n C_{ox} W}{2L} (V_g - V_t)^2 = 1.21 \text{mA}$

(c) Since V_d is less than $(V_g\text{-}V_t)$, it is in the linear region.

$$I_{d} = \frac{\mu C_{ox}W}{L} \left[\left(V_{g} - V_{t} \right) V_{d} - \frac{V_{d}^{2}}{2} \right]$$

$$g_{d} = \frac{\partial I_{d}}{\partial V_{D}} = \frac{\mu C_{ox}W}{L} \left[\left(V_{g} - V_{t} \right) - V_{d} \right] = 1.17 mS$$

(d) Since V_d is less than (V_g-V_t) , it is in the linear region.

$$I_{d} = \frac{\mu C_{ox} W}{L} \left[\left(V_{g} - V_{t} \right) V_{d} - \frac{V_{d}^{2}}{2} \right]$$

$$g_{d} = \frac{\partial I_{d}}{\partial V_{g}} = \frac{\mu C_{ox} W}{L} V_{d} = 1.13 mS$$

Potential and Carrier Velocity in MOSFET Channel

6.9
$$I_{d} = -Q_{n}\mu_{n} \frac{dV_{c}}{dx}W = (V_{g} - V_{t} - V_{c})C_{ox}\mu_{n} \frac{dV_{c}}{dx}W$$
$$\therefore \int_{0}^{x} \frac{I_{d}}{\mu_{n}C_{ox}W} dx = \int_{0}^{V_{c}} (V_{g} - V_{t} - V_{c})dV_{c}$$
$$\to I_{d} \cdot x/(\mu_{n}C_{ox}W) = (V_{g} - V_{t})V_{c} - 1/2V_{c}^{2}$$

Solving this quadratic equation of V_c, we get

$$\therefore V_{c}(x) = (V_{g} - V_{t}) \pm \sqrt{(V_{g} - V_{t})^{2} - \frac{2I_{d}x}{\mu_{n}C_{ox}W}}$$

Choosing "-" so that $V_c(0)=0$,

$$\therefore V_{c}(x) = (V_{g} - V_{t}) \left[1 - \sqrt{1 - \frac{2I_{d}x}{\mu_{n}C_{ox}W(V_{g} - V_{t})^{2}}} \right]$$

$$= (V_{g} - V_{t}) \left[1 - \sqrt{1 - \frac{2x\mu_{n}C_{ox}\frac{W}{2L}(V_{g} - V_{t})^{2}}{\mu_{n}C_{ox}W(V_{g} - V_{t})^{2}}} \right]$$

$$= (V_{g} - V_{t}) \left[1 - \sqrt{1 - x/L} \right].$$

6.10 (a)
$$I_{ds} = WC_{oxe}(V_{gs} - mV_{cs} - V_{t})\mu_{es}dV_{cs}/dx$$

$$\int_{0}^{x} I_{ds}dx = WC_{oxe}\mu_{s} \int_{0}^{V_{cs}} (V_{gs} - mV_{cs} - V_{t})dV_{cs}$$

$$I_{ds}x = WC_{oxe}\mu_{s}(V_{gs} - V_{t} - \frac{mV_{cs}}{2})V_{cs}$$

Equating the expression above with

$$I_{ds} = \frac{W}{L} C_{oxe} \mu_s (V_{gs} - V_t - \frac{m}{2} V_{ds}) V_{ds},$$

we get

$$\frac{x}{L} \left(V_{gs} - V_t - \frac{mV_{ds}}{2} \right) V_{ds} = \left(V_{gs} - V_t - \frac{mV_{cs}}{2} \right) V_{cs}$$

$$mV_{cs}^2 - 2(V_g - V_t) V_{cs} + \frac{x}{I} \left(2(V_g - V_t) - mV_{ds} \right) V_{ds} = 0$$

Solving the quadratic equation, we get

$$V_{cs} = \frac{V_{gs} - V_{t}}{m} \pm \frac{\sqrt{(V_{g} - V_{t})^{2} - m\frac{x}{L}(2(V_{g} - V_{t}) - mV_{ds})V_{ds}}}{m}$$

$$V_{cs} = \frac{V_{gs} - V_{t}}{m}(1 - \sqrt{1 - \frac{x}{L}})$$

(b)
$$Q_{inv}(x) = C_{oxe}(V_{gs} - mV_{cs} - V_t) = C_{oxe} \left[V_{gs} - V_t - (V_{gs} - V_t)(1 - \sqrt{1 - \frac{x}{L}}) \right]$$

= $C_{oxe}(V_{gs} - V_t) \left[1 - \left(1 - \sqrt{1 - \frac{x}{L}} \right) \right] = C_{oxe}(V_{gs} - V_t) \left(\sqrt{1 - \frac{x}{L}} \right)$

(c)
$$\frac{dV_{cs}}{dx} = \mathcal{E}(x) = \frac{\left(V_g - V_t\right)}{m} \left(\frac{1}{2}\right) \left(\frac{1}{\sqrt{1 - x_L'}}\right) \left(\frac{1}{L}\right) = \frac{\left(V_g - V_t\right)}{2mL} \left(\frac{1}{\sqrt{1 - x_L'}}\right)$$

$$\upsilon(x) = \mu_n \frac{dV_{cs}}{dx} = \mu_n \mathcal{E}(x) = \frac{\mu_n \left(V_g - V_t\right)}{2mL} \left(\frac{1}{\sqrt{1 - \frac{x}{L}}}\right)$$

(d)
$$WQ_{inv}\mu_n \mathcal{E} = W.C_{oxe}(V_{gs} - V_t) \left(\sqrt{1 - \frac{x}{L}} \right) \cdot \frac{\mu_n \left(V_g - V_t \right)}{2mL} \left(\frac{1}{\sqrt{1 - \frac{x}{L}}} \right)$$

$$= \frac{WC_{oxe}\mu_n}{2mL} \left(V_{gs} - V_t \right)^2 = I_{dsat}$$

IV Characteristics of Novel MOSFET

6.11 (a)
$$I_{d} = -Q_{n}\mu_{n}\frac{dV_{c}}{dx}W = (V_{g} - V_{t} - V_{c})C_{ox}(x)\mu_{n}\frac{dV_{c}}{dx}W$$

$$= (V_{g} - V_{t} - V_{c})\frac{\varepsilon_{ox}}{Ax^{2} + B}\mu_{n}\frac{dV_{c}}{dx}W$$

$$\therefore \int_{-L/2}^{L/2}I_{d} \cdot (Ax^{2} + B)dx = \int_{0}^{V_{ds}}(V_{g} - V_{t} - V_{c})\varepsilon_{ox}\mu_{n}WdV_{c}$$

$$\to I_{d} \cdot \left[\frac{A}{3}x^{3} + Bx\right]_{-L/2}^{L/2} = \varepsilon_{ox}\mu_{n}W[(V_{g} - V_{t})V_{c} - 1/2V_{c}^{2}]_{0}^{V_{ds}}$$

$$\therefore I_{d} = \frac{W}{L} \cdot \frac{\varepsilon_{ox}\mu_{n}}{\frac{AL^{2}}{12} + B} \cdot \left[(V_{g} - V_{t})V_{ds} - 1/2V_{ds}^{2}\right]$$
(b) $V_{dsat} = V_{ds} \otimes \frac{\partial I_{d}}{\partial V_{t}}|_{V_{gs}} = 0 \qquad \therefore V_{dsat} = V_{g} - V_{t}$

6.12 (a)
$$I_d = -Q_n \mu_n \frac{dV_c}{dx} W(x) = (V_g - V_t - V_c) C_{ox} \mu_n \frac{dV_c}{dx} W(x)$$

$$\therefore \int_0^L I_d / W(x) dx = \int_0^{V_{ds}} (V_g - V_t - V_c) \mu_n C_{ox} dV_c$$

$$\to I_d \cdot \ln[(W_0 + L) / W_0] = \mu_n C_{ox} [(V_g - V_t) V_{ds} - 1/2 V_{ds}^2]$$

$$\therefore I_d = \frac{\mu_n C_{ox}}{\ln(1 + L/W_0)} [(V_g - V_t) V_{ds} - 1/2 V_{ds}^2]$$

(c) It suggests a large W_{dmax} . $V_{ox} = Q_n / C_{ox}$

(b)
$$V_{dsat} = V_{ds} @ \frac{\partial I_d}{\partial V_{ds}} |_{V_{gs}} = 0$$
 $\therefore V_{dsat} = V_g - V_t$

$$\therefore I_{dast} = \frac{\mu_n C_{ox}}{\ln(1 + L/W_0)} \cdot \frac{(V_g - V_t)^2}{2}$$

CMOS

- **6.13** (a) $V_{fb,NMOS} = -(E_g/2) (kT/q * ln(5e15/1e10)) = -0.55 -0.4 = -0.95V$ $V_{fb,PMOS} = -0.55 + 0.4 = -0.15V$ Not symmetrical
 - (b) $V_{fb,NMOS} = 0.55 0.4 = 0.15V$ $V_{fb,PMOS} = 0.55 + 0.4 = 0.95V$ Not symmetrical
 - (c) Since V_{ox} and V_s will be symmetrical, I would use a mid-gap gate material such as tungsten. So the workfuction will be $4.05 \text{ eV} + E_{g,Si}/2 = 4.6 \text{eV}$. However, processing issues makes tungsten (or any metal gates for that matter) a challenge to implement.
 - (d) In the same process, the NMOS and PMOS will have same oxide thickness. If the substrate doping levels for n and p flavors are the same, then I would use P^+ gates for PMOS devices and N^+ gates for NMOS devices. In this way, the flatband voltages will be symmetrical and the resulting $|V_t|$ small.
- **6.14** (a) PMOS, N-type substrate:

$$\phi_n = kT \ln \frac{N_d}{n_i} = 0.38V$$

$$V_{fb} = \phi_m - \chi_{si} - \frac{E_g}{2} + \phi_n = 4.1 - 4.05 - 0.55 + 0.38 = -0.12V.$$

NMOS, N-type substrate:

$$\phi_p = kT \ln \frac{N_a}{n_i} = 0.42V$$

$$V_{fb} = \phi_m - \chi_{si} - \frac{E_g}{2} - \phi_p = 4.1 - 4.05 - 0.55 - 0.42 = -0.92V$$

(b)
$$C_{ox} = \frac{\varepsilon_{ox}}{t_{ox}} = 6.9 \times 10^{-7} \frac{F}{cm^2}$$

PMOS:

$$V_{t} = V_{fb} - 2\phi_{n} - \frac{1}{C_{ox}} \sqrt{2\varepsilon_{s} q N_{d} 2\phi_{n}} = -0.12 - 0.76 - 0.10 = -0.98V$$

NMOS:

$$V_{fb} + 2\phi_p + \frac{1}{C_{ox}} \sqrt{2\varepsilon_s q N_d 2\phi_p} = -0.92 + 0.84 + 0.24 = 0.16V$$

(c) The threshold voltage must be changed by

$$\Delta V_t = -\frac{Q_{impl}}{C_{ox}} = 0.82 \text{V}.$$

Hence,

$$Q_{impl} = -5.7 \times 10^{-7} \, \frac{C}{cm^2} \, .$$

6.15
$$I_{ds} = WC_{oxe}(V_{gs} - mV_{cs} - V_{t}) \frac{\mu_{s} dV_{cs}/dx}{1 + \frac{dV_{cs}}{dx}/\varepsilon_{sat}}$$

$$\int_{0}^{L} I_{ds} dx = \int_{0}^{V_{ds}} \left[WC_{oxe} \mu_{s} \left(V_{gs} - mV_{cs} - V_{t} \right) - I_{ds}/\varepsilon_{sat} \right] dV_{cs}$$

$$I_{ds} L + I_{ds} \frac{V_{ds}}{\varepsilon_{sat}} = WC_{oxe} \mu_{s} (V_{gs} - V_{t} - \frac{m}{2} V_{ds}) V_{ds}$$

$$I_{ds} = WC_{oxe} \mu_{s} (V_{gs} - V_{t} - \frac{m}{2} V_{ds}) V_{ds} / \left(L + \frac{V_{ds}}{\varepsilon_{sat}} \right)$$

$$I_{ds} = \frac{W}{L} C_{oxe} \mu_{s} (V_{gs} - V_{t} - \frac{m}{2} V_{ds}) V_{ds} / \left(1 + \frac{V_{ds}}{L \varepsilon_{sat}} \right) = \frac{I_{ds} (Long \ channel)}{1 + V_{ds}/\varepsilon_{sat} L}.$$

6.16

	NFET Operation Mode	PFET Operation Mode	
A	Cut-off	Linear	
В	Saturation	Linear	
С	Linear	Saturation	
D	Linear	Cut-off	

A: Vgs<Vth for NFET, therefore it is cut off. For PFET |Vgs| > |Vth| and |Vds| < |Vdsat| ($|Vds| \sim 0V$, $|Vdsat| \sim 1.05V$), so it operates in linear mode.

B: For NFET Vgs > Vth and Vds>Vdsat (Vds \sim 1.75V, Vdsat \sim 0.3V), so it operates in saturation mode. For PFET |Vgs| > |Vth| and |Vds|<|Vdsat| (|Vds| \sim 0.25V, |Vdsat| \sim 0.6V), so it operates in linear mode.

The answers to C and D can be worked out through the same procedure.

6.17 (a)

(b) At the point B where $V_i=V_x$, the NMOS is just becoming saturated from the linear region. Since NMOS is in the linear region

$$I_{dn} = K_N \left[(V_x - V_{tn})(V_x - V_{tn}) - \frac{(V_x - V_{tn})^2}{2} \right]$$

Since PMOS is saturated

$$I_{dp} = \frac{K_{P}}{2} (V_{dd} - V_{x} + V_{tp})^{2}$$

But
$$I_{DN} = I_{DP}$$

$$\therefore 40 \left[(V_x - 1)^2 - \frac{(V_x - 1)^2}{2} \right] = \frac{35}{2} (5 - V_x - 1)^2$$

$$40(V_x - 1)^2 = 40(4 - V_x)^2 \implies V_x = 2.45 \text{ V}$$

Body Effect

6.18 For a P-channel MOSFET, we have

$$V_{t} = V_{fb} + 2\phi_{B} + \frac{\sqrt{2\varepsilon_{s}qN_{d}(2\phi_{B} + V_{bs})}}{C_{ox}}$$

$$\Delta V_{\rm t} = \frac{\sqrt{2\varepsilon_{s}qN_{d}}}{C_{\rm or}}(\sqrt{2\phi_{B} + V_{bs}} - \sqrt{2\phi_{B}})$$

(a) For 100 nm oxide, $C_{ox} = 3.45 \times 10^{-8} \text{ F/cm}^2$. If $V_{bs} = 5V$, $\Delta V_t = -0.8V$.

By iteration, using initial guess of $\phi_B = 0.3V$, we obtain $N_d = 8.9 \times 10^{14} / \text{cm}^3$ and $\phi_B = 0.284V$.

(b) If
$$V_{\rm sb}$$
 is -2.5 V, $\Delta V_{\rm t} = -0.497$ V.
V_t = -1.5 - 0.497 = 2.0 V

Velocity-Saturation Effect

6.19 In all 3 cases, use the general equation I=WQ_{inv}V_{drift}.

Case A:

The NMOS is in the triode region.

On source side, $Q_{inv}=C_{ox}(V_g-V_t) = 138e-9(5-.7) = 593 \text{ nC/cm}^2$.

So $v_{drift} = I/(WQ_{inv}) = 1.5e-3/(15e-4 \times 593e-9) = 1.7 \text{ x } 10^6 \text{ cm/sec.}$

On drain side, $Q_{inv} = C_{ox}(V_g - V_t - V_d) = 138e - 9(5 - .7 - .5) = 524 \text{ nC/cm}^2$.

Thus, $v_{dr} = 1.5e-3/(15e-4 \times 524e-9) = 1.9 \times 10^6 \text{ cm/sec.}$

Case B:

The NMOS enters saturation region.

On source side, $v_{dr} = 3.75e-3/(15e-4 \times 593e-9) = 4.2 \times 10^6 \text{ cm/sec.}$

On drain side, the electron velocity is saturated.

Thus, $v_{dr} = v_{sat} = 8 \times 10^6 \text{ cm/sec.}$

Case C:

Similar to case B.

On source side, $v_{dr} = 4e-3/(15e-4\times593e-9) = 4.5 \times 10^6 \text{ cm/sec.}$

On drain side, $v_{dr} = v_{sat} = 8 \times 10^6 \text{ cm/sec.}$

	Tox	W	L	V _t	Vg
V_{dsat}	\uparrow	No change	\rightarrow	\uparrow	\rightarrow
I_{dsat}	↑	\rightarrow	↑	↑	\downarrow

Reducing T_{ox} means smaller $V_t => larger V_{dsat} (1/(V_g-V_t) + 1/(E_{sat}L))^{-1} \& larger I_{dsat} (Q_{inv} \propto C_{ox}).$

Reducing W has no effect on V_{dsat} and decreases I_{dsat} since $I_{dsat} = WQ_{inv}v_{sat}$. Reducing L reduces V_{dsat} (as discussed in lecture) and increases I_{dsat} . If you want to consider very short-channel length devices (L => 0), then essentially I_{dsat} is independent of L.

Reducing $V_t => larger \ V_{dsat} \ \& \ larger \ I_{dsat}$. Reducing $V_g => smaller \ V_{dsat} \ \& \ smaller \ I_{dsat}$.

6.21
$$I_{d} = \mu_{s} C_{ox} W \left(V_{gs} - V_{t} - m \frac{V_{ds}}{2} \right) V_{ds} / \left(L + \frac{V_{ds}}{\varepsilon_{sat}} \right)$$

$$= W C_{ox} \left(V_{gs} - V_{t} - m V_{ds} \right) V_{sat}$$

$$= W C_{ox} \left(V_{gs} - V_{t} - m V_{ds} \right) \mu_{s} \frac{\varepsilon_{sat}}{2}$$

$$\left(V_{gs} - V_{t} - m\frac{V_{ds}}{2}\right)V_{ds} = \left(V_{gs} - V_{t} - mV_{ds}\right)\mathbf{\varepsilon}_{sat} / 2\left(L + \frac{V_{ds}}{\mathbf{\varepsilon}_{sat}}\right)$$

$$= \left(V_{gs} - V_{t} - mV_{ds}\right)\frac{\mathbf{\varepsilon}_{sat}L}{2} + \left(V_{gs} - V_{t} - mV_{ds}\right)\frac{V_{ds}}{2}$$

$$V_{gs}V_{ds} - V_tV_{ds} = (V_{gs} - V_t - mV_{ds})\mathbf{\varepsilon}_{sat}L$$

$$V_{ds}(V_{gs} - V_t - m\mathbf{\varepsilon}_{sat}L) = (V_{gs} - V_t)\mathbf{\varepsilon}_{sat}L$$

$$V_{ds} = \frac{(V_g - V_t) \mathcal{E}_{sat} L}{\left(V_{gs} - V_t - m \mathcal{E}_{sat} L\right)} = \left[\frac{m}{(V_{gs} - V_t)} + \frac{1}{\mathcal{E}_{sat} L}\right]^{-1}$$

$$6.22 \quad I_{ds} = \frac{\frac{W}{L}C_{oxe}\mu_{ns}\left(V_{gs} - V_{t} - \frac{m}{2}V_{ds}\right)V_{ds}}{1 + \frac{V_{ds}}{\varepsilon_{sat}L}} = \frac{\frac{W}{L}C_{oxe}\mu_{ns}\left(\left(V_{gs} - V_{t}\right)\left(\frac{1}{V_{ds}}\right) - \frac{m}{2}\right)}{\frac{1}{V_{ds}^{2}} + \left(\frac{1}{\varepsilon_{sat}L}\right)\frac{1}{V_{ds}}}$$

$$\frac{1}{V_{dsat}} = \frac{m}{V_{gs} - V_{t}} + \frac{1}{\varepsilon_{sat}L}$$

6.23 (a) We know that

$$V_{dsat} = \left| \mathbf{\varepsilon}_c L \right| \left[\left(1 + 2 \cdot \frac{\left(V_g - V_t \right)}{\left| E_c L \right|} \right)^{\frac{1}{2}} - 1 \right]$$

$$\left| \mathbf{\varepsilon}_c L \right| = 0.1 \text{ V} \implies V_{dsat} = 0.1 \cdot \left[\left(1 + 2 \cdot \frac{4}{0.1} \right)^{\frac{1}{2}} - 1 \right] = 0.54 \text{ V}$$

(b)
$$|\varepsilon_{c}L| = 10 \text{ V} \implies V_{dsat} = 10 \cdot \left[\left(1 + 2 \cdot \frac{4}{10} \right)^{\frac{1}{2}} - 1 \right] = 1.83 \text{ V}$$

(c) We know that

$$I_{\text{dsat}} = \frac{\mu_{\text{n0}} C_{\text{ox}} Z}{2L} V_{\text{dsat}}^2 \quad \text{and} \quad C_{\text{ox}} Z = \frac{10 \text{fF}}{L}.$$

$$7 \text{mA} = \frac{\mu_{\text{n0}} 10 \text{fF}}{2L^2} 0.54^2$$

$$\mu_{\text{n0}} = 480 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$$

6.24
$$V_{dsat} = \varepsilon_{sat} L(V_g - V_t) / (V_g - V_t + \varepsilon_{sat} L)$$

What is ε_{sat} ? $2v_{sat}/\mu_s = \varepsilon_{sat}$. μ_s is given by the universal mobility curve.

At
$$T_{ox}$$
=60A, $(V_g+V_t+0.2)/6T_{ox}=\epsilon_{eff}=.9MV/cm$.
From the curve, $\mu_s\sim 250~cm^2V^{-1}s^{-1}$.

This yields $\mathcal{E}_{sat} \sim 2(8x10^6)/250 \text{ V/cm} = 6.4x10^4 \text{V/cm}$. Plug this back into the expression for V_{dsat} to get $L \sim 0.19$ um.

$$\begin{split} &I_{dsat}/W = Q_{inv}v_{sat} = C_{ox}(V_g - V_t - V_{dsat})v_{sat} \\ &= (3.9\epsilon_o/60e - 8) \times (2.5 - .5 - .75) \times 8 \times 10^6 = 575 uA/um \ width. \end{split}$$

Note: You will often find in literature that the saturation current is stated in units of uA/um instead of amperes. Also, notice that the Q_{inv} at $V_c = V_{dsat}$ is not zero. That is, I_{dsat} is limited by velocity saturation instead of pinch-off.

6.25 (a)
$$1 + \frac{V_{gs} - V_{t}}{mE_{sat}L} = 2$$

$$V_{gs} - V_{t} = mE_{sat}L = \frac{2mv_{sat}L}{\mu_{ns}} = \frac{2 \cdot 1.2 \cdot 8 \times 10^{6} \text{ cm/s} \cdot 1 \times 10^{-5} \text{ cm}}{300 \text{ cm}^{2} / V - \text{s}} = 0.64V$$
(b)
$$V_{gs} - V_{t} = mE_{sat}L$$

$$L = \frac{V_{gs} - V_{t}}{mE_{sat}} = \frac{\mu_{ns}(V_{gs} - V_{t})}{2mv_{sat}} = \frac{300 \text{ cm}^{2} / Vs \cdot 0.2V}{2 \cdot 1.2 \cdot 8 \times 10^{6} \text{ cm/s}} = 3.13 \times 10^{-6} \text{ cm} = 31.3 \text{ nm}$$

Effective Channel Length

6.26 (a) For very small V_{ds} ,

$$R_{channel} = \frac{V_{ds}}{I_{ds}} = \frac{L}{\mu_s C_{ox} W(V_g - V_t)}$$

In a short-channel device, S/D resistance can seriously degrade saturation current. Note that series resistance is worse for higher currents because R_{channel} is the lowest under these bias conditions.

(b)
$$R_{total} = R_s + R_d + R_{channel} = R_{sd} + R_{channel}$$

$$= R_{sd} + \left[\frac{L_{eff}}{\mu_s C_{ox} W(V_g - V_t)} \right] = R_{sd} + \left(\frac{L_{gate} - \Delta L}{\mu_s C_{ox} W(V_g - V_t)} \right)$$

Think of R_{total} as the y-value, L_{gate} as the x-value, and $(\mu_s C_{ox} W(V_g - V_t))^{-1}$ as the slope. This fits nicely into the standard equation of the line: y = mx + b. You can choose devices with several gate lengths and measure the current from these devices at discrete gate voltages. Remember, that you are assuming V_{ds} is small (<100mV) in these measurements.

From the current, you can plot R_{total} versus L_{gate} . One sample data line is taken with the same V_g at different gate lengths. For example, if you measure your current at 5 different V_g 's, you will get 5 separate curves. Ideally, all the lines will intersect at the same point on your plot. This intersection point occurs at $L_{gate} = \Delta L$ and $R_{total} = R_{sd}$.

In practice, it is not always straightforward to make such a plot. For instance, V_t can be difficult to determine accurately. Also, there is a strong dependence of mobility on gate voltage for thin-oxide MOSFETs. It's a good idea to check your data by taking measurements at several different V_g instead of at 2 or 3 gate voltages.

(c)
$$I_{dsat} = k(V_{gs}-I_{dsat}R_s-V_t)$$
, where k is a constant of proportionality
$$I_{dsat}(1+kR_s) = k(V_{gs}-V_t) = I_{dsat0}$$
, notice here that $k = I_{dsat0}/(V_{gs}-V_t)$
$$I_{dsat} = I_{dsat0}/(1+kR_s) = I_{dsat0}/(1+I_{dsat0}R_s/(V_{gs}-V_t))$$

(d)
$$\epsilon_{sat} = (V_{gs} + V_t + 0.2)/6T_{ox} = 1.1 \text{ MV/cm}.$$

 $\mu_s \sim 225 \text{cm}^2 \text{V}^{-1} \text{s}^{-1}$ is picked out from the universal mobility plot.
 $\epsilon_{sat} = 2v_{sat}/(\mu_s) = 7x10^4 \text{V/cm}.$
 $I_{dsat0} = (\text{long channel } I_{dsat}) / (1 + (V_{gs} - V_t)/(\epsilon_{sat} L))$
 $= 1.6 \text{mA} / (1 + (1.1/.7)) = 0.622 \text{mA}.$

Plug in 0.622mA into the expression derived in part c and get the following:

@
$$R_s = 0ohms$$
, $I_{dsat} = .62mA$

@
$$R_s = 100$$
ohms, $I_{dsat} = .59$ mA

@
$$R_s = 1000$$
ohms, $I_{dsat} = .40$ mA

- **6.27** (a) Choose three transistors with same channel width, Z, and different channel length, L_1 , L_2 , and L_3 . Measure $I_{\rm dsat}$ at saturation condition for the 3 transistors to get $I_{\rm d1}$, $I_{\rm d2}$, and $I_{\rm d3}$. Solve the 3 equations to get μ , C_{ox} , and L_{eff} .
 - (b) $\Delta L = L$ $L_{\rm eff}$ when gate oxide thickness is 4.5nm. $Z = 10 \ \mu m$, $\mu = 300 \ cm^2/Vs$. Using approach of (a), $\Delta L \cong 0.1 \ \mu m$.

(c)
$$2.59\text{mA}(L_1 - L_{\text{eff}}) = Z\mu C_{ox}(V_{gs} - V_t), V_t = 0.5\text{V}.$$

