CS215 Assignment 5 Estimation Transformations

Tathagat Verma 180050111 Neel Aryan Gupta 180050067

	PAGE NO.
	DATE / /
	Question -4
	Pareto distribution $P(\theta) \propto \left(\frac{\theta}{\theta}\right)^d$ for $\theta \ge \theta_m$
	O otherwise
	First we find the normalization constant
	: (P(0 0 d) d0 = 1
	$\Rightarrow k \int_{-\infty}^{\infty} 0 d\theta + k \int_{0}^{\infty} \left(\frac{\partial}{\partial t} \right)^{d} d\theta = 1$
	$\Rightarrow k \cdot 0^{\frac{1}{2}} \int_{0^{\frac{1}{2}}}^{\infty} d\theta = 1$
	=) k. 0 d0 = 1
	J Oa
	, r 1~4°
	$\Rightarrow k \cdot \theta_{m}^{d} \left[\begin{array}{c} \theta^{-d} \end{array} \right]_{\theta_{m}}^{\infty} = 1$
	=> k. 0 m. 0 m = 1
	\Rightarrow $k = d-1$
1 24	None , use find the mean
	:. Jo. P(DID L) do = Men
	=) Mean = (0. d-1. (0,) d0 = (d-1)0, 1 do
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Om Om
	= (d-1) 8 d-1 \ \text{\theta}^2-1 \ \text{\theta}^2
	2-0
	: If d<2 then mean = 00 (absurd)
	Allume d>2
	-1 1
SC:	nned with

	PAGE NO. DATE / /
	=) Ma = - (4-1) 04-1 [0 2-x] 00
	=) Mean = $(a-1)$ 0 a^{-1} $\left[\begin{array}{c} 0 & 2 \\ 2 - d \end{array}\right]$ 0
	= (2-1) 0 2-1 . 0 2-1
	1-2
	$= \left(\frac{d-1}{d-2}\right) \Theta_m \text{where} d > 2$
	9/
	Likelihood: TT 1 = 1
(i)	Likelihood: T 1 = 1
	151 B ON
	=> O should be minimised
	But (Og 0) Should still contain all the
	data ξ}isi
) Lower bound for 0 = max & x; 3;=1
	lines of hal to be minimised
	⇒ 0 = max £x; 3; =
	lot 0 = max (x;) =
	: ÔMLE = Õ
	Posterior or TI 1. Prior = 1. (On) bor 0 > 0.
	Detil has to contain the dataset but
	Perior should also be maximesad
	$\Rightarrow \theta = \max(\theta_m, \tilde{\theta})$
	of on < 8 then likelihood would become zero
	at datapoints > On therapy halting the
	maximality of Posterior. That's why 0=max (On, 8)
	and NOT B= B.
	nned with
Ca	nScanner

	PAGE NO. DATE / /
	=> ôMAP = max (Dm, 8) & gmle = 8
(11)	Note that if $\theta_m < \tilde{\theta}$ then $\hat{\theta}^{MAP} = \hat{\theta}^{MLE}$ always. For large sample size, we see that $P(\theta_m > \tilde{\theta}) \approx 0$ $P(\theta_m > \tilde{\theta}) = P(\theta_m > x_1, \theta_m > x_2, \dots, \theta_m > x_N)$ $= \theta_m \cdot \theta_m$
1	$= \left(\frac{O_{m}}{O}\right)^{N} \qquad O \stackrel{\text{x} = x$}{\text{$x$}} \stackrel{\text{$x$}}{\text{$x$}} \stackrel{\text{$x$}}{\text{$o_{m}$}} \stackrel{\text{$0}}{\text{o}}$ But here $O_{m} < O \Rightarrow O \stackrel{\text{w}}{\text{o}} < I$ $= O \stackrel{\text{$w$}}{\text{$o$}} \stackrel{\text{$o$}}{\text{$o$}} > O \stackrel{\text{$f_{o}$}}{\text{$f_{o}$}} \stackrel{\text{$large}}{\text{o}} > N$ $= O \stackrel{\text{$f_{o}$}}{\text{$o$}} \stackrel{\text{$f_{o}$}}{\text{$o$}} \stackrel{\text{$f_{o}$}}{\text{$o$}} \stackrel{\text{$f_{o}$}}{\text{$o$}} > O \stackrel{\text{$f_{o}$}}{\text{$o$}} \stackrel{\text{$f_{o}$}}{\text{$o$}} > O \stackrel{\text{$f_{o}$}}{\text{$o$}} \stackrel{\text{$f_{o}$}}{\text{$o$}} > O \stackrel{\text{$f_{o}$}}{$
	This is desirable because we know that MLE estimators are the most effecient estimators for large sample sizes, using CRLB.
(v)	Note that posterior is zero if $\theta < max(\tilde{\theta}, \theta_m)$ and posterior $\propto \theta_m^{\alpha'} \cdot (\tilde{\theta} \cdot \tilde{\theta})$ =) Posterior $\propto \theta_m^{\alpha'} \cdot (\tilde{\theta} \cdot \tilde{\theta}) = \theta_m^{\alpha'}$ $\theta < max(\tilde{\theta}, \theta_m) = \theta_m^{\alpha'}$
	While is also a Pareto distribution which has $d' = d + N$ & $\theta_m' = max(\tilde{\theta}, \theta_m)$ We know the Pareto mean which is $\begin{pmatrix} d-1 \end{pmatrix} \theta_m$
	nned with mScanner

	PAGE NO. DATE / /
	So we get Posterior mean = (d+N-1) max (0, 0m)
	\Rightarrow $\hat{\theta}^{\text{postorial mean}} = \left(\frac{d+N-1}{d+N-2}\right) \cdot \hat{\theta}_{m}^{n}$ where $\hat{\theta}_{m}^{n} = \max(\hat{\theta}_{n})$
(\nabla_p)	As $N \rightarrow \infty$ $\lim_{N \rightarrow \infty} \left(\frac{d + N - 1}{L + N - 2} \right) O_m^n = O_m^n = \widehat{O}_m^{MAP}$ We know that \widehat{O}_m^{MAP} tends to \widehat{O}_m^{MLE} for large N \widehat{O}_m^{MLE} as $N \rightarrow \infty$
	This is desirable due to the same reason as mentioned in (i) that ô Mis is the most effecient estimator for N > 0. This shows Bayes estimators gives correct results even for large N (in this case).
-	