$$h(d) = \begin{cases} d & \text{if } d \in \text{Standard} \\ S(d) & \text{if } d \in \text{Nonstandard} \end{cases}$$

Required: Show that h is an isomorphism from M^* onto M^* .

Lemma 1: If $d \in \text{Standard}$, then $S(d) \in \text{Standard}$.

Let $d \in \text{Standard}$. Hence, $d = S^n(p)$ for some $n \in \mathbb{N}$. Hence, $S(d) = S(S^n(p)) = S^{n+1}(p) \in \text{Standard}$, proving **Lemma 1**.

Lemma 2: If $d \in \text{Nonstandard}$, then $S(d) \in \text{Nonstandard}$.

Let $d \in \text{Nonstandard}$. Assume for sake of contradiction that $S(d) \notin \text{Nonstandard}$. Then, $S(d) \in \text{Standard}$ and $S(d) = S^n(p)$ for some $n \in \mathbb{N}$.

If n=0 then $S(d)=S^n(p)=S^0(p)=p$. Hence, S(d)=p. We know that for any $x\in\mathbb{N}$, we have $x+1\neq 0$. Hence, $M\models \forall \mathbf{v_1}(\mathbf{fv_1}\neq \mathbf{c})$. Since $M\equiv M^*$, we know $M^*\models \forall \mathbf{v_1}(\mathbf{fv_1}\neq \mathbf{c})$. Hence, we must have $S(d)\neq p$ which contradicts S(d)=p. Hence, $n\neq 0$. Hence, $n\geq 1$. Hence, $n-1\geq 0$.

So we have $S(d) = S^n(p) = S(S^{n-1}(p))$. By Fact 3 on the assignment handout, since $S(d) = S(S^{n-1}(p))$ we have that $d = S^{n-1}(p) \in \text{Standard where } n-1 \geq 0$. So we have $d \in \text{Standard which contradicts the fact that } d \in \text{Nonstandard}$.

Therefore, $S(d) \in \text{Nonstandard}$, proving **Lemma 2**.

Lemma 3: For any $x \in \text{Standard}$ and for any $y \in \text{Nonstandard}$, we have $x \prec y$.

Let $x \in \text{Standard}$ and let $y \in \text{Nonstandard}$.

We know that for $m, n \in \mathbb{N}$, either m = n or m < n or n < m.

Hence, $M \models \forall \mathbf{v_1} \forall \mathbf{v_2} (\mathbf{v_1} = \mathbf{v_2} \vee \mathbf{R} \mathbf{v_1} \mathbf{v_2} \vee \mathbf{R} \mathbf{v_2} \mathbf{v_1})$

Since $M \equiv M^*$, we have $M^* \models \forall \mathbf{v_1} \forall \mathbf{v_2} (\mathbf{v_1} = \mathbf{v_2} \vee \mathbf{R} \mathbf{v_1} \mathbf{v_2} \vee \mathbf{R} \mathbf{v_2} \mathbf{v_1})$

Hence, either x = y or $x \prec y$ or $y \prec x$.

We know x = y is impossible since $x \in \text{Standard}$ and $y \in \text{Nonstandard}$ and $y \in \text{Standard}$ and $y \in$

Assume for the sake of contradiction that $y \prec x$. Since $x \in \text{Standard}$, we know $x = S^n(p)$ for some $n \in \mathbb{N}$.

Note, $\{y \in D^{\sharp} : y \prec x\} = \{y \in D^{\sharp} : y \prec S^{n}(p)\} = \{S^{0}(p), S(p), ..., S^{n-1}(p)\}.$

Since we assumed $y \prec x$, we know that $y = S^m(p)$ for some $m \in \mathbb{N}$ such that $0 \leq m \leq n-1$.

But this implies that $y = S^m(p) \in \text{Standard}$ which contradicts the fact that $y \in \text{Nonstandard}$.

Hence, $y \not\prec x$.

Since we have $x \neq y$ and $y \not\prec x$, we must have that $x \prec y$ which proves **Lemma 3**.

Now we will show h is a homomorphism from M^* into M^* .

Show: h(p) = p

We know that $p = S^0(p) \in \text{Standard}$. Hence, by definition of h we have h(p) = p.

Show: h(S(d)) = S(h(d)) for each $d \in D^{\sharp}$.

Let $d \in D^{\sharp}$.

If $d \in \text{Standard}$, then $d = S^n(p)$ for some $n \in \mathbb{N}$. Hence,

$$h(S(d)) = h(S(S^{n}(p)))$$
 Since $d = S^{n}(p)$

$$= h(S^{n+1}(p))$$
 Since $S^{n+1}(p) \in S$ tandard

$$= S(S^{n}(p))$$
 Since $S^{n}(p) \in S$ tandard

$$= S(h(S^{n}(p)))$$
 Since $S^{n}(p) \in S$ tandard

$$= S(h(d))$$
 Since $d = S^{n}(p)$

If $d \in Nonstandard$, then we have the following.

$$h(S(d)) = S(S(d))$$
 Since $S(d) \in \text{Nonstandard by Lemma 2}$
= $S(h(d))$ Since $d \in \text{Nonstandard}$

Therefore, we have shown that h(S(d)) = S(h(d)) for each $d \in D^{\sharp}$.

Show: $d_1 \prec d_2$ iff $h(d_1) \prec h(d_2)$ for each $d_1, d_2 \in D^{\sharp}$.

Let $d_1, d_2 \in D^{\sharp}$.

Case 1: If $d_1, d_2 \in \text{Standard}$, then $h(d_1) = d_1$ and $h(d_2) = d_2$. Trivially we have $d_1 \prec d_2$ iff $d_1 \prec d_2$

Since $h(d_1) = d_1$ and $h(d_2) = d_2$, we have

$$d_1 \prec d_2$$
 iff $h(d_1) \prec h(d_2)$

Case 2: If $d_1, d_2 \in \text{Nonstandard}$, then $h(d_1) = S(d_1)$ and $h(d_2) = S(d_2)$.

We know that for $m, n \in \mathbb{N}$, we have m < n iff m + 1 < n + 1.

Hence, $M \models \forall \mathbf{v_1} \forall \mathbf{v_2} (\mathbf{R} \mathbf{v_1} \mathbf{v_2} \leftrightarrow \mathbf{R} \mathbf{f} \mathbf{v_1} \mathbf{f} \mathbf{v_2}).$

Since $M \equiv M^*$, we have $M^* \models \forall \mathbf{v_1} \forall \mathbf{v_2} (\mathbf{R} \mathbf{v_1} \mathbf{v_2} \leftrightarrow \mathbf{R} \mathbf{f} \mathbf{v_1} \mathbf{f} \mathbf{v_2})$.

Hence we have,

$$d_1 \prec d_2$$
 iff $S(d_1) \prec S(d_2)$

But we know that $h(d_1) = S(d_1)$ and $h(d_2) = S(d_2)$. Hence,

$$d_1 \prec d_2$$
 iff $h(d_1) \prec h(d_2)$

Case 3: If $d_1 \in \text{Standard}$ and $d_2 \in \text{Nonstandard}$, then we know $h(d_1) = d_1 \in \text{Standard}$ and we know $h(d_2) = S(d_2) \in \text{Nonstandard}$ by **Lemma 2**.

Hence, $d_1 \prec d_2$ by **Lemma 3**. And, $h(d_1) \prec h(d_2)$ by **Lemma 3**.

Therefore, trivially we have

$$d_1 \prec d_2$$
 iff $h(d_1) \prec h(d_2)$

Case 4: If $d_1 \in \text{Nonstandard}$ and $d_2 \in \text{Standard}$, then we know $h(d_1) = S(d_1) \in \text{Nontandard}$ by Lemma 2 and $h(d_2) = d_2$.

Hence, $d_2 \prec d_1$ by **Lemma 3** and $h(d_2) \prec h(d_1)$ by **Lemma 3**.

Now, we know that for all $m, n \in \mathbb{N}$, exactly one of m = n or m < n or n < m holds. i.e. we have trichotomy.

Let ϕ be the following formula symbolizing trichotomy.

$$\forall \mathbf{v_1} \forall \mathbf{v_2} ((\mathbf{v_1} = \mathbf{v_2} \wedge \sim \mathbf{R} \mathbf{v_1} \mathbf{v_2} \wedge \sim \mathbf{R} \mathbf{v_2} \mathbf{v_1}) \vee (\mathbf{v_1} \neq \mathbf{v_2} \wedge \mathbf{R} \mathbf{v_1} \mathbf{v_2} \wedge \sim \mathbf{R} \mathbf{v_2} \mathbf{v_1}) \\ \vee (\mathbf{v_1} \neq \mathbf{v_2} \wedge \sim \mathbf{R} \mathbf{v_1} \mathbf{v_2} \wedge \mathbf{R} \mathbf{v_2} \mathbf{v_1}))$$

We know $M \models \phi$. Since $M^* \equiv M$, we have $M^* \models \phi$.

Hence, we know exactly one of $d_1 = d_2$ or $d_1 \prec d_2$ or $d_2 \prec d_1$ holds. And exactly one of $h(d_1) = h(d_2)$ or $h(d_1) \prec h(d_2)$ or $h(d_2) \prec h(d_1)$ holds.

Since $d_2 \prec d_1$ and $h(d_2) \prec h(d_1)$, we know that we must have $d_1 \not\prec d_2$ and $h(d_1) \not\prec h(d_2)$.

Hence, trivially we have

$$d_1 \not\prec d_2$$
 iff $h(d_1) \not\prec h(d_2)$

Equivalently,

$$d_1 \prec d_2$$
 iff $h(d_1) \prec h(d_2)$

Therefore, h is a homomorphism from M^* into M^* .

Show h is One-to-One: Assume $h(d_1) = h(d_2)$.

Case 1: Consider $h(d_1) = h(d_2) \in \text{Standard}$.

If $d_1 \in \text{Nonstandard}$, then $h(d_1) = S(d_1) \in \text{Nonstandard}$ by **Lemma 2** which would contradict $h(d_1) \in \text{Standard}$. Hence, $d_1 \in \text{Standard}$.

If $d_2 \in \text{Nonstandard}$, then $h(d_2) = S(d_2) \in \text{Nonstandard}$ by **Lemma 2** which would contradict $h(d_2) \in \text{Standard}$. Hence, $d_2 \in \text{Standard}$.

Since $d_1, d_2 \in \text{Standard}$, we have $d_1 = h(d_1) = h(d_2) = d_2$. Hence, $d_1 = d_2$.

Case 2: Consider $h(d_1) = h(d_2) \in Nonstandard$.

If $d_1 \in \text{Standard}$, then $h(d_1) = d_1 \in \text{Standard}$ which would contradict $h(d_1) \in \text{Nonstandard}$. Hence, $d_1 \in \text{Nonstandard}$.

If $d_2 \in \text{Standard}$, then $h(d_2) = d_2 \in \text{Standard}$ which would contradict $h(d_2) \in \text{Nonstandard}$. Hence, $d_2 \in \text{Nonstandard}$.

Since $d_1, d_2 \in$ Nonstandard, we have $S(d_1) = h(d_1) = h(d_2) = S(d_2)$. Hence, $S(d_1) = S(d_2)$. By Fact 3 on the assignment handout, since $S(d_1) = S(d_2)$, we have $d_1 = d_2$.

Therefore, in either case h is one-to-one.

Show h is Onto: Let $d' \in D^{\sharp}$.

Case 1: If $d' \in \text{Standard}$, then let d = d' so that h(d) = h(d') = d'.

Case 2: Now, consider $d' \in Nonstandard$.

We know that for $n \in \mathbb{N}$, if $n \neq 0$, then there exists an $m \in \mathbb{N}$ such that m + 1 = n.

Hence, $M \models \forall \mathbf{v_1}(\mathbf{v_1} \neq \mathbf{c} \rightarrow \exists \mathbf{v_2}(\mathbf{fv_2} = \mathbf{v_1})).$

Since $M \equiv M^*$, we have $M^* \models \forall \mathbf{v_1} (\mathbf{v_1} \neq \mathbf{c} \rightarrow \exists \mathbf{v_2} (\mathbf{fv_2} = \mathbf{v_1}))$.

Hence, for all $x \in D^{\sharp}$, if $x \neq p$, then there exists $y \in D^{\sharp}$ such that S(y) = x.

If d'=p, then $d'=p=S^0(p)\in \text{Standard}$ which would contradict the fact that $d'\in \text{Nonstandard}$. Hence, $d'\neq p$.

Since $d' \neq p$, there exists $d \in D^{\sharp}$ such that S(d) = d'.

Now, if $d \in \text{Standard}$, then $S(d) = d' \in \text{Standard}$ by **Lemma 1** which would contradict the fact that $d' \in \text{Nonstandard}$.

Hence, $d \in Nonstandard$.

Hence,
$$h(d) = S(d) = d'$$
.

Therefore, h is onto.

Since we've shown h is a homomorphism from M^* into M^* and is one-to-one and onto, we conclude that h is an isomorphism from M^* onto M^* , as required. Notice that this shows that h is an automorphism from M^* onto M^* .

Suppose that $A \subseteq D^{\sharp}$ is definable in M^* . Show the following: there is an object $d \in D^{\sharp}$ such that, for every $d' \in D^{\sharp}$, if $d \prec d'$, then $d' \in A$ iff $S(d') \in A$.

Let d=q. We know from Fact 8 on the assignment handout that for every $n \geq 0$, $S^n(p) \neq q$. Hence, $d=q \neq S^n(p)$ for every $n \geq 0$. Hence, $d=q \notin S$ tandard. Hence, $d=q \in S$ Nonstandard.

Let $d' \in D^{\sharp}$ and assume $d \prec d'$.

Show: $d' \in A$ iff $S(d') \in A$.

We know that $d \prec d'$. We want to first show that $d' \in \text{Nonstandard}$. Assume for the sake of contradiction that $d' \in \text{Standard}$. Hence, $d' = S^m(p)$ for some $m \in \mathbb{N}$.

By Fact 7 on the assignment sheet we know that for every $n \ge 0$, we have $S^n(p) \prec q$. Hence, $S^m(p) \prec q$. Notice, $S^m(p) = d'$ and q = d. Hence, $d' \prec d$.

So we have $d \prec d'$ and $d' \prec d$ which contradicts Fact 5 on the assignment handout which says that \prec is antisymmetric.

Hence, our initial assumption was wrong and $d' \in \text{Nonstandard}$. Hence, h(d') = S(d').

 (\Rightarrow) : Assume $d' \in A$.

By the Automorphism Theorem, we know that A is closed under h. i.e. if $x \in A$, then $h(x) \in A$.

Since $d' \in A$, we have that $h(d') \in A$. Since h(d') = S(d'), we have that $S(d') \in A$.

 (\Leftarrow) : Assume $S(d') \in A$.

Since h(d') = S(d'), we have that $h(d') \in A$.

We know that h is an automorphism from M^* onto M^* . Hence, h^{-1} is an automorphism from M^* onto M^* .

By the Automorphism Theorem, we know that h^{-1} is closed under A. i.e. if $x \in A$, then $h^{-1}(x) \in A$.

Since $h(d') \in A$, we have that $h^{-1}(h(d')) \in A$. And we know $h^{-1}(h(d')) = d'$.

Therefore, $d' \in A$. This completes the proof, as required.

Suppose that ϕ is a formula of L with at most one free variable, $\mathbf{v_1}$. Show that $M \models \exists \mathbf{v_2} \forall \mathbf{v_1} (\mathbf{R} \mathbf{v_2} \mathbf{v_1} \to (\phi \leftrightarrow sub(\phi, \mathbf{fv_1}, \mathbf{v_1})))$.

Let $A \subseteq D^{\sharp}$ be the set that is defined by the formula ϕ .

Consider the following T-biconditional. Note, we will skip the trivial steps of showing a T-Biconditional below. And we will use \forall and \exists ambiguously in the metalanguage.

```
M^* \models \exists \mathbf{v_2} \forall \mathbf{v_1} (\mathbf{R} \mathbf{v_2} \mathbf{v_1} \to (\phi \leftrightarrow sub(\phi, \mathbf{fv_1}, \mathbf{v_1})))
iff M^* \models \exists \mathbf{v_2} \forall \mathbf{v_1} (\mathbf{R} \mathbf{v_2} \mathbf{v_1} \to (\phi \leftrightarrow sub(\phi, \mathbf{fv_1}, \mathbf{v_1})))[s]
iff \exists d \in D^{\sharp}, \forall d' \in D^{\sharp}, \text{ if } d \prec d', \text{ then } M^* \models \phi[(s_{\mathbf{v_2}}^d)_{\mathbf{v_1}}^{d'}] \text{ iff } M^* \models sub(\phi, \mathbf{fv_1}, \mathbf{v_1})[(s_{\mathbf{v_2}}^d)_{\mathbf{v_1}}^{d'}]
iff \exists d \in D^{\sharp}, \forall d' \in D^{\sharp}, \text{ if } d \prec d', \text{ then } M^* \models \phi[(s_{\mathbf{v_2}}^d)_{\mathbf{v_1}}^{d'}] \text{ iff } M^* \models \phi[(s_{\mathbf{v_2}}^d)_{\mathbf{v_1}}^{S(d')}]
iff \exists d \in D^{\sharp}, \forall d' \in D^{\sharp}, \text{ if } d \prec d', \text{ then } d' \in A \text{ iff } S(d') \in A
```

Note that line 4 follows from the fact that $\mathbf{fv_1}$ is free for $\mathbf{v_1}$ in ϕ and from **Theorem 3.1.11** in the booklet. And line 5 follows from the fact that ϕ defines the set A.

We have shown $\exists d \in D^{\sharp}, \forall d' \in D^{\sharp}, \text{ if } d \prec d', \text{ then } d' \in A \text{ iff } S(d') \in A \text{ in Exercise 2}.$

Therefore, looking at our T-biconditional we have that $M^* \models \exists \mathbf{v_2} \forall \mathbf{v_1} (\mathbf{R} \mathbf{v_2} \mathbf{v_1} \to (\phi \leftrightarrow sub(\phi, \mathbf{fv_1}, \mathbf{v_1}))).$

Since $M \equiv M^*$, we have that $M \models \exists \mathbf{v_2} \forall \mathbf{v_1} (\mathbf{R} \mathbf{v_2} \mathbf{v_1} \to (\phi \leftrightarrow sub(\phi, \mathbf{fv_1}, \mathbf{v_1})))$.

This is what we wanted to show, as required.

Show that every subset of \mathbb{N} that is definable in M is either finite or cofinite.

Let $A \subseteq \mathbb{N}$ be definable by a formula ϕ .

Consider the following T-biconditional. Note, we will skip the trivial steps of showing a T-Biconditional below. And we will use \forall and \exists ambiguously in the metalanguage. And instead of writing successor(n), we will instead write n+1 for notational convenience.

```
M \models \exists \mathbf{v_2} \forall \mathbf{v_1} (\mathbf{R} \mathbf{v_2} \mathbf{v_1} \to (\phi \leftrightarrow sub(\phi, \mathbf{f} \mathbf{v_1}, \mathbf{v_1})))
iff M \models \exists \mathbf{v_2} \forall \mathbf{v_1} (\mathbf{R} \mathbf{v_2} \mathbf{v_1} \to (\phi \leftrightarrow sub(\phi, \mathbf{f} \mathbf{v_1}, \mathbf{v_1})))[s]
iff \exists m \in \mathbb{N}, \forall n \in \mathbb{N}, \text{ if } m < n, \text{ then } M \models \phi[(s_{\mathbf{v_2}}^m)_{\mathbf{v_1}}^n] \text{ iff } M \models sub(\phi, \mathbf{f} \mathbf{v_1}, \mathbf{v_1})[(s_{\mathbf{v_2}}^m)_{\mathbf{v_1}}^n]
iff \exists m \in \mathbb{N}, \forall n \in \mathbb{N}, \text{ if } m < n, \text{ then } M \models \phi[(s_{\mathbf{v_2}}^m)_{\mathbf{v_1}}^n] \text{ iff } M \models \phi[(s_{\mathbf{v_2}}^m)_{\mathbf{v_1}}^{n+1}]
iff \exists m \in \mathbb{N}, \forall n \in \mathbb{N}, \text{ if } m < n, \text{ then } n \in A \text{ iff } n+1 \in A
```

Note that line 4 follows from the fact that $\mathbf{fv_1}$ is free for $\mathbf{v_1}$ in ϕ and from **Theorem 3.1.11** in the booklet. And line 5 follows from the fact that ϕ defines the set A.

By Exercise 3 we know that $M \models \exists \mathbf{v_2} \forall \mathbf{v_1} (\mathbf{R} \mathbf{v_2} \mathbf{v_1} \to (\phi \leftrightarrow sub(\phi, \mathbf{f} \mathbf{v_1}, \mathbf{v_1}))).$

Therefore, looking at our T-biconditional we have that $\exists m \in \mathbb{N}, \forall n \in \mathbb{N}$, if m < n, then $n \in A$ iff $n + 1 \in A$.

So consider such an $m \in \mathbb{N}$.

Hence, for all $n \in \mathbb{N}$, if m < n, then $n \in A$ iff $n + 1 \in A$. Call this **Fact 1**.

Consider $m+1 \in \mathbb{N}$. We have two cases to consider. Either $m+1 \in A$ or $m+1 \notin A$.

Case 1: $m + 1 \in A$.

Claim: $m + k \in A$ for all $k \ge 1$.

We will prove this by induction on k.

Base Case: $m+1 \in A$ by assumption.

IH: $m + k \in A$

Show: $m+k+1 \in A$

We know m < m + k. Hence, by **Fact 1** we know that $m + k \in A$ iff $m + k + 1 \in A$. Since $m + k \in A$ by **IH**, we have that $m + k + 1 \in A$, proving the **Claim**.

By our Claim we have that $m + k \in A$ for all $k \ge 1$.

But this implies that $m + k \notin \mathbb{N} \setminus A$ for all $k \ge 1$.

Hence, the only possible elements of $\mathbb{N} \setminus A$ are among 0, 1, ..., m.

Hence, $\mathbb{N} \setminus A \subseteq \{0, 1, ...m\}$. Hence, $\mathbb{N} \setminus A$ is finite.

Therefore, A is cofinite.

Case 2: $m+1 \notin A$.

Claim: $m + k \notin A$ for all $k \ge 1$.

We will prove this by induction on k.

Base Case: $m+1 \notin A$ by assumption.

IH: $m + k \notin A$

Show: $m+k+1 \not\in A$

We know m < m + k. Hence, by **Fact 1** we know that $m + k \in A$ iff $m + k + 1 \in A$. Since $m + k \notin A$ by **IH**, we have that $m + k + 1 \notin A$, proving the **Claim**.

By our Claim we have that $m + k \not\in A$ for all $k \ge 1$.

Hence, the only possible elements of A are among 0, 1, ..., m.

Hence, $A \subseteq \{0, 1, ...m\}$.

Therefore, A is finite.

Hence, in either case we have that A is finite or cofinite.

Since $A \subseteq \mathbb{N}$ was an arbitrary subset that was definable in M and was shown to be finite or cofinite, we conclude that every subset of \mathbb{N} that is definable in M is either finite or cofinite, as required.