Lista 2

- 1. Se $T:V\to W$ é linear então $V/\ker T$ é isomorfo a T(V). Em particular dim $V=\dim T(V)+\dim\ker T$. Sugestão: Considere $\phi:V/\ker T\to T(V),\ \phi(x+\ker T)=T(x)$.
- 2. Sejam V e W espaços vetoriais. Então o produto cartesiano, $V \times W = \{(x,y): x \in V, y \in W\}$ também é um espaço vetorial se definirmos

$$(v, w) + (v', w') = (v + v', w + w');$$
$$\lambda(v, w) = (\lambda v, \lambda w).$$

Verifique essa afirmação e calcule a dimensão de $V \times W$ para V e W de dimensão finita.

- 3. Seja V um espaço vetorial, e $\mathcal{L}(V,V)$ o espaço vetorial de todas as transformações lineares $S:V\to V$. Fixe um vetor não nulo $u\in V$ e seja $\mathcal{L}_u=\{S\in\mathcal{L}(V,V):u\text{ \'e} \text{ um autovetor de }S\}$. Mostre que \mathcal{L}_u \'e um subespaço linear de \mathcal{L} .
- 4. Verifique que

$$\langle x, y \rangle = \frac{1}{2} (|x + y|^2 - |x|^2 - |y|^2)$$

para o produto interno $\langle x, y \rangle$.

- 5. Seja X um espaço vetorial com produto interno e seja S um conjunto ortogonal de vetores não nulos (isto é, se $x,y\in S$, então $\langle x,y\rangle=0$). Mostre que S é um conjunto linearmente independente.
- 6. Seja $V = \{f: [-1,1] \to \mathbb{R}: f \text{ contínua}\}$ com produto interno

$$\langle f, g \rangle = \int_{-1}^{1} f(t) g(t) dt.$$

Seja W o espaço vetorial gerado for $\{f_i(\cdot): i=1,2,3\}$ sendo $f_i(t)=t^i$. Obtenha uma base ortonormal para W.

7. Considere o espaço vetorial \mathbb{R}^3 (sobre o corpo dos reais) com produto interno $\langle y, z \rangle = \sum_{i=1}^3 y_i z_i$. Seja $\{x_1, x_2, x_3\}$ uma base ortonormal de

1

 \mathbb{R}^3 . A transformação linear $A:\mathbb{R}^3\to\mathbb{R}^3$ tem a propriedade de que

$$Ax_1 = x_1 + 2x_2 + 3x_3,$$

 $Ax_2 = x_2 + x_3,$
 $Ax_3 = x_1 + x_3.$

Escreva A^*x_1, A^*x_2, A^*x_3 em termos da base $\{x_1, x_2, x_3\}$, onde A^* é a transformação adjunta de A.

- 8. Seja X um espaço com produto interno e de dimensão finita, e seja M um subespaço de X. Defina $M^{\perp} := \{y \in X : \langle x, y \rangle = 0 \text{ para todo } x \in M\}$, o subconjunto de todos os vetores ortogonais a todos os vetores de M. Mostre que M^{\perp} é um subespaço vetorial de X.
- 9. Seja X um espaço com produto interno e de dimensão finita e seja M um subespaço de X. Mostre que $X = M \oplus M^{\perp}$.
- 10. Seja S um subconjunto de X, um espaço com produto interno. Mostre que $S^{\perp} = [S]^{\perp}$.
- 11. Seja S um subconjunto de X, um espaço com produto interno. Seja $S^{\perp\perp}=\left(S^{\perp}\right)^{\perp}$. Mostre que $[S]\subset S^{\perp\perp}$. Se X tem dimensão finita, mostre que $[S]=S^{\perp\perp}$.
- 12. Seja X um espaço com produto interno e seja $A: X \to X$ uma transformação linear sobrejetiva com a propriedade de que $\langle x,y \rangle = \langle Ax, Ay \rangle$ para todos $x,y \in X$. Mostre que $A\left(U^{\perp}\right) = A(U)^{\perp}$ para todo subconjunto $U \subset X$.
- 13. Seja M um subespaço vetorial (de um espaço com produto interno de dimensão finita) invariante sob a transformação linear $T: X \to X$; isto é, $T(M) \subset M$. Mostre que M^{\perp} é invariante sob a adjunta T^* .
- 14. Seja X um espaço com produto interno e de dimensão finita, e seja $T: X \to X$ uma transformação linear. Mostre que $\operatorname{ran}(A)^{\perp} = \ker(A^*)$, sendo $\operatorname{ran}(A) := \{Ax : x \in X\}$ a imagem de A e $\ker(A^*) := \{x : A^*x = 0\}$ é o núcleo de A^* .