Stabilizer 70 may be mounted either to rails 28, 29 or to crossbeam 22 by means of a mounting base 72. As shown more clearly in Figures 5-8, stabilizer 70 includes a shaft 74 having a distal end 76 and a proximal end 78. A foot 80 is pivotably mounted to distal end 76 by means of a ball joint 82. Foot 80 is configured to engage the surface of the heart on opposing sides of an anastomosis site, preferably having a pair of arms 84 generally parallel to each other and spaced apart by a distance in the range of about 1-5 cm. Arms 84 have a generally flat portion 86 for engaging the heart, an angled portion 88 sloping upwardly from flat portion 86, and a proximal portion 91 which connects arms 84 and may have a curved, angled, or other suitable shape for attachment to a stem 92 coupled to ball joint 82. the bottom surfaces of arms 84 are adapted for atraumatic engagement with the epicardium, usually being smooth and flat. In a preferred embodiment, a friction-enhancing element is disposed on the bottom surfaces of flat portions 86. For example, the bottom surfaces may be textured with grooves, ribs, knurling, projections or other features, or they may be coated or covered with a frictionenhancing material such as foam, DACRON gauze, no-slip material, or a roughened or textured metal or plastic plate. Such material will enhance friction with the epicardium sufficiently to prevent slippage and migration of the foot, but not to such an extent as to injure the epicardial tissue.

IN THE CLAIMS

Please cancel claims 6, 7, 10, 12 and 16 without prejudice or disclaimer.

4. (Amended) An apparatus for stabilizing an epicardial surface of the heart comprising:

an arm; and

a foot coupled to the arm, the foot having a contact surface for engaging the heart and a slot in which a vessel on the heart may be positioned, the slot being aligned with a central axis, the foot having a shape which is asymmetrical relative to the central axis.

20

2