

Code in 10 days

Day 1

Topics for Today

- Introduction to Programming
- About Algorithms and Flowcharts
- Getting started with C++

Programming

- A program serves the purpose of commanding a computer.
- They are step by step instructions to a computer to perform a specific task.
- Programming languages are used to communicate with the computer.

Phases of Programming

Algorithms and Flowcharts

- An algorithm is the step by step procedure to solve a problem.
- Whereas, a flowchart is the pictorial representation of an algorithm.
- Flowcharts have specific symbols for different instructions.

Advantages of Algorithms

- Effective communication.
- Efficient and easy coding.
- Easy debugging.
- Independent of programming languages.

Advantages of Flowcharts

- Effective and easier communication.
- Effective analysis and synthesis.
- Efficient coding.
- Easy debugging and efficient testing.
- Efficient program maintenance.
- Proper documentation.

Basic Flowchart Symbols

Start/End

 Represents the start/end point of a flowchart

Decision

- Indicates a decision.

Process

- Represents a process

Arrows

- A connector that represents the relationships between the different structures.

Input/Output

- A parallelogram represents input or output.

Connector

- Indicates that the flow continues where a matching symbol is found.

Flowcharts

Document

- Represents a printed document

Start Input Amount Input Years Input Rate Compute Interest = Amount*Years*Rate/100 Output Interest End

Example

Algorithm

Step 1: Start

Step 2: Input the amount.

Step 3: Input the number of years.

Step 4: Input the interest rate.

Step 5: Interest = amount*years*rate/100.

Step 6: Print interest.

Step 7: Stop.

Example

Algorithm

Step 1: Start

Step 2: Input the temperature.

Step 3: Check if it is less than 32.

Step 4: If true, print "Below Freezing".

Step 5: If false, print "Above Freezing".

Step 6: Stop.

Programming Languages

Programming Paradigms

Procedural Programming

- This paradigm emphasizes on procedure in terms of underlying machine model.
- It instructs a device how to finish a task in logical steps.

Programming Paradigms

Object Oriented Programming

- Object oriented programming views problems as objects.
- This programming paradigm aims to implement real-world entities like inheritance, hiding and polymorphism in programming.

Getting Started With C++

About C++

- C++ is an object oriented programming language.
- It was developed at AT&T Bell Laboratories, in the early 1980s, by Bjarne Stroustrup.
- Initially called "C with classes", the name C++ was coined later on by Rick Mascitti.

More about C++

Applications

- Operating Systems
- Banking Applications
- Embedded Systems
- Compilers
- Browsers
- Graphic Software

Character Set

- Letters: A-Z, a-z
- Digits: 0-9
- Special Characters
- White Spaces: Blank space, Horizontal tab, Return, etc.
- Other Characters: 256 ASCII characters

Tokens

Tokens are the smallest individual unit in a program. C++ has the following tokens:

- Keywords
- Identifiers
- Literals
- Punctuators
- Operators

Keywords

- A word having a special meaning, reserved by the programming language.
- Examples: int, float, do, else, if etc.

Identifiers

 Fundamental building blocks of a program. It is the general terminology used for names of different parts of the program (variables, objects, functions, etc.)

Rules to follow while constructing Identifiers

- 1. Names can contain letters, digits and underscores
- 2. Names must begin with a letter or an underscore (_)
- Names are case sensitive (myVar and myvar are different variables)
- 4. Names cannot contain whitespaces or special characters like !, #, %, etc.
- 5. Reserved words (like C++ keywords, such as int) cannot be used as names

Literals

Data items that never change their value during a program.

Punctuators

• [](){},;:*=...#

Operators

 Tokens that trigger some computation when applied to variables and other objects in an expression.

Types of Literals

- 1. Integer Literal: It is used to represent integer constant.
- 2. Float Literal: It is used to represent float constant.
- 3. Character Literal: It is used to represent a single character.
- 4. String Literal: It is used to represent the character sequence(string).
- 5. Boolean Literal: It is used to represent Boolean(true or false).

Escape Sequence

\n	Newline or line feed			
\r ^C	Carriage return (Enter) Horizontal Tab			
\t				
\ v	Vertical Tab			
\\	Print back slash			
\?	Print question mark			
\'	Print single quote			
\"	Print double quote			
\0	Null character			

Structure of a C++ program

Program 1

```
#include <iostream>
using namespace std;

int main() {
  cout << "Hello, world!" << endl;
  return 0;
}</pre>
```

Output:

Hello, world!

Data Types

Data types are a means to identify the type of data and the associated operations of handling it.

Fundamental Data Types:

- a) int
- b) char
- c) float
- d) double
- e) void

Program 2

```
#include<iostream>
using namespace std;
int main()
   int a, b, sum;
   cout<<"Enter the first number";
   cin>>a;
cout<<"Enter the second number";
   cin>>b;
   sum = a+b;
   cout<<"Sum: "<<sum;
   return 0;
```

Sample Output:

```
Enter the first number: 10
Enter the second number: 50
Sum: 60
```

Program 3

```
#include<iostream>
using namespace std;
int main()
{
    float radius, area;
    cout<<"Enter radius: ";
    cin>>radius;
    area= 3.14*radius*radius;
    cout<<"Area: "<<area;
    return 0;
}</pre>
```

Sample Output:

Enter radius: 23 Area: 1661.06

Thank You