Laws of the Calculus

Let P, Q, R be propositions

1. Constants

 $P \vee true = true$

 $P \vee false = P$

 $P \wedge true = P$

 $P \land false = false$

 $true \Rightarrow P \equiv P$

 $false \Rightarrow P \equiv true$

 $P \Rightarrow true = true$

 $P \Rightarrow false \equiv \neg P$

2. Law of excluded middle: $P \lor \neg P = true$

3. Law of contradiction: $P \land \neg P = false$

4 Negation : $\neg \neg P \equiv P$

5. Associativity: $P \lor (Q \lor R) \equiv (P \lor Q) \lor R$

 $P \wedge (Q \wedge R) \equiv (P \wedge Q) \wedge R$

6. Commutativity: $P \lor Q \equiv Q \lor P$

 $P \wedge Q \equiv Q \wedge P$

7. Idempotency: $P \lor P \equiv P$

 $P \wedge P \equiv P$

8. De Morgan's laws : $\neg (P \land Q) \equiv \neg P \lor \neg Q$

 $\neg (P \lor O) \equiv \neg P \land \neg O$

9. Implication $P \Rightarrow Q \equiv \neg P \lor Q$

 $P \Rightarrow Q \equiv \neg Q \Rightarrow \neg P$

 $(P \land Q) \Rightarrow R \equiv P \Rightarrow (Q \Rightarrow R)$

10. (If and only if) \equiv : $P = Q = (P \Rightarrow Q) \land (Q \Rightarrow P)$

11. Absorption: $[P \land (P \lor R) = P]$

$$[P \lor (P \land R) \equiv P]$$

12. Laws of distribution: $P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)$

$$P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$$

13. Predicate Calculus

Universal Quantification

Existential Quantification

14. Universal Quantification over Ranges

```
[\forall i : R : P = \forall i : \neg R \lor P] Trading

[\forall i : false : P = true]

[\forall i : i = x : P = P(i := x)] One-point rule

[(\forall i : R : P) \land (\forall i : R : Q) = (\forall i : R : P \land Q)]

[(\forall i : R : P) \land (\forall i : S : P) = (\forall i : R \lor S : P)]

[(\forall i : R : P) \lor (\forall i : R : Q) \Rightarrow (\forall i : R : P \lor Q)]

[Q \lor (\forall i : R : P) = (\forall i : R : Q \lor P)]

[Q \land (\forall i : R : P) = (\forall i : R : Q \land P)]
```

15. Existential Quantification over Ranges

```
[\exists i : R : P = \exists i : R \land P] Trading

[\exists i : false : P = false]

[\exists i : i = x : P = P(i := x)] One-point rule

[(\exists i : R : P \land Q) \Rightarrow (\exists i : R : P) \land (\exists i : R : Q)]

[(\exists i : R : P) \lor (\exists i : R : Q) = (\exists i : R : P \lor Q)]

[Q \lor (\exists i : R : P) = (\exists i : R : Q \lor P)]

[Q \land (\exists i : R : P) = (\exists i : R : Q \land P)]
```

16. Argument Forms

Modus Ponens: $P \Rightarrow Q, P : Q$ Modus Tollens: $P \Rightarrow Q, \neg Q : \neg P$

Hypothetical Syllogism: $P \Rightarrow Q, Q \Rightarrow R : P \Rightarrow R$

Disjunctive Syllogism: $P \lor Q, \neg P :: Q$

Simplification: $P \land Q \therefore P$ Conjunction: $P,Q \therefore P \land Q$ Addition: $P \therefore P \lor Q$

Constructive Dilemma: $(P \Rightarrow Q) \land (R \Rightarrow S), P \lor R : Q \lor S$

Destructive Dilemma: $(P \Rightarrow Q) \land (R \Rightarrow S), \neg Q \lor \neg S \therefore \neg P \lor \neg R$