1. Resuelve el siguiente circuito, que se 2. llama circuito con polarización con realimentación de emisor (considera $\beta = 100 \text{ y VCE} = 0.65 \text{V}$

 $I_E = 2,22 \text{ mA}; V_{CE} = 4,04 \text{ V}$

Resuelve el siguiente circuito, que se llama circuito con polarización con realimentación de colector (considera $\beta = 100 \text{ y VCE} = 0.65 \text{V}$

Solución: $I_B = 0.022$ mA; $I_C = 2.2$ mA; Solución: $I_B = 0.048$ mA; $I_C = 4.77$ mA; $I_E = 4.82 \text{ mA}; V_{CE} = 10.18 \text{ V}$

3. Resuelve el siguiente circuito, que se 4. llama circuito con polarización con realimentación de colector y de emisor. (considera $\beta = 100 \text{ y VCE} = 0.65 \text{V}$)

Solución: $I_B = 0.024 \text{ mA}$; $I_C = 2.41 \text{ mA}$; $I_E = 2,434 \text{ mA}; V_{CE} = 7,86 \text{ V}$

Resuelve siguiente circuito, el indicando el estado en el que está funcionando (considera β =100 $V_{CE} = 0.65V$

Solución: se encuentra en saturación. $V_{CE} = 0.2 \text{ V}$; $I_B = 0.376 \text{ mA}$; $I_C = 4.212 \text{ mA}$; $I_E = 4,588 \text{ mA}$

5. La siguiente configuración de dos transistores se llama **par Darlington**. Se utiliza para amplificar una pequeña intensidad y hacerla más grande. Calcula todas las intensidades que pasan por el circuito de la figura. Supón que, en los dos transistores, V_{BE} = 0'65 V y β = 100.

Solución:

PRIMER TRANSITOR:

 $I_{B1} = 0.083 \mu A; I_{C1} = 0.083 \mu A; I_{E1} = 0.084 \mu A; V_{CE1} = 4.13 V$

SEGUNDO TRANSISTOR:

$$I_{B2}$$
 = 0'084 mA; I_{C2} = 0'842 mA; I_{E2} = 0'85 mA; V_{CE2} = 4'75 V

 Resuelve el siguiente circuito, teniendo en cuenta que, en un L.E.D. podemos suponer que existe una tensión de 2 V cuando se encuentra encendido. Supón, además, que V_{BE} = 0'65 V y β = 100.

Solución:

 I_B = 0'085 mA; I_C = 8'5 mA; I_E = 8'585 mA V_{CE} = 1'5 V.

- Utilizando el dato del ejercicio anterior sobre el L.E.D., se pide:
 - a) Resuelve el transistor.
 - b) ¿Qué intensidad atraviesa al L.E.D. conectado en serie con la resistencia?
 - c) ¿Qué intensidad atraviesa el L.E.D conectado al colector y al emisor?

Solución:

- a) $I_B = 0'071$ mA; $I_C = 7'08$ mA; $I_E = 7'151$ mA; $V_{CE} = 2$ V.
- b) $I_{LED1} = 26,67 \text{ mA}$
- c) $I_{LED2} = 19'59 \text{ mA}$

