Geometry and Topology Seminar March 14, 2025, Lanzhou University

Spectrum and Strichartz estimate on locally symmetric spaces

Hong-Wei Zhang (Paderborn University)

Objects

Application (original motivation): Strichartz inequality

Hyperbolic Space

Hyperbolic plane

$$\mathbb{H}^2 = \{ z \in \mathbb{C} \mid \text{Im} z > 0 \}$$

 $\mathbb{H}^2 = \mathrm{SL}(2,\mathbb{R})/\mathrm{SO}(2)$

(upper half-plane)

Real hyperbolic space

$$\mathbb{H}^n = \{ x \in \mathbb{R} \times \mathbb{R}^n \mid -x_0^2 + x_1^2 + \dots + x_{n+1}^2 = -1, x_0 \ge 1 \}$$

(hyperboloid)

$$\mathbb{H}^n = \mathrm{SO}_e(n+1,\mathbb{R})/\mathrm{SO}(n)$$

Hyperbolic Space

Hyperbolic plane

$$\mathbb{H}^2 = \{ z \in \mathbb{C} \mid \text{Im} z > 0 \}$$

 $\mathbb{H}^2 = \mathrm{SL}(2,\mathbb{R})/\mathrm{SO}(2)$

(upper half-plane)

Real hyperbolic space

$$\mathbb{H}^n = \{ x \in \mathbb{R} \times \mathbb{R}^n \mid -x_0^2 + x_1^2 + \dots + x_{n+1}^2 = -1, x_0 \ge 1 \}$$

(hyperboloid)

$$\mathbb{H}^n = SO_e(n+1,\mathbb{R})/SO(n)$$

Noncompact symmetric space of rank 1

$$\mathbb{H}^n = \mathbb{H}^n(\mathbb{R})$$

$$\mathbb{H}^n(\mathbb{C})$$

$$\mathbb{H}^n(\mathbb{H})$$

$$\mathbb{H}^2(\mathbb{O})$$

L^2 -Spectrum

- $\bullet \ -\Delta f = \lambda f$
- $\sigma(-\Delta) = \{\lambda \in \mathbb{C} \mid (-\Delta \lambda)^{-1} : L^2 \to L^2 \text{ does not exist} \}$

L^2 -Spectrum

- $\bullet \ -\Delta f = \lambda f$
- $\sigma(-\Delta) = \{\lambda \in \mathbb{C} \mid (-\Delta \lambda)^{-1} : L^2 \to L^2 \text{ does not exist} \}$

Euclidean setting

L^2 -Spectrum

- $\bullet \ -\Delta f = \lambda f$
- $\sigma(-\Delta) = \{\lambda \in \mathbb{C} \mid (-\Delta \lambda)^{-1} : L^2 \to L^2 \text{ does not exist} \}$

Euclidean setting

Torus
$$\mathbb{Z}^n \backslash \mathbb{R}^n$$
: $\sigma_d(-\Delta)$

$$\mathbb{R}^n \colon \sigma_c(-\Delta) = [0, \infty)$$

$$\mathbb{Z}^{n-k} \backslash \mathbb{R}^n \colon \sigma_d(-\Delta) \cup \sigma_c(-\Delta)$$

Real Hyperbolic space

Spectral gap
$$\sigma_c(-\Delta)$$

$$\lambda_0(\mathbb{H}^n) = (\frac{n-1}{2})^2 \qquad \infty$$

Hyperbolic plane
$$\mathbb{H}^2 = \operatorname{SL}(2, \mathbb{R})/\operatorname{SO}(2) : \quad \bullet \quad 0$$

Spectral gap
$$\sigma_c(-\Delta)$$

$$\lambda_0(\mathbb{H}^2) = \frac{1}{4}$$

Hyperbolic plane
$$\mathbb{H}^2 = \operatorname{SL}(2,\mathbb{R})/\operatorname{SO}(2): \quad \bullet \quad \begin{array}{c} \operatorname{Spectral gap} & \sigma_c(-\Delta) \\ \hline \lambda_0(\mathbb{H}^2) = \frac{1}{4} \end{array}$$

Modular curve $SL(2,\mathbb{Z})\backslash\mathbb{H}^2$ (non-compact and finite area):

Hyperbolic plane
$$\mathbb{H}^2 = \operatorname{SL}(2,\mathbb{R})/\operatorname{SO}(2): \quad \underbrace{\begin{array}{c} \operatorname{Spectral gap} \\ \lambda_0(\mathbb{H}^2) = \frac{1}{4} \end{array}} \qquad \underbrace{\begin{array}{c} \sigma_c(-\Delta) \\ \end{array}}$$

Modular curve $SL(2,\mathbb{Z})\backslash\mathbb{H}^2$ (non-compact and finite area):

i.e., there are

- infinitely many embedded eigenvalues
- no exceptional eigenvalues

(Selberg's 1/4 Conjecture for general Riemann surface)

Hyperbolic plane
$$\mathbb{H}^2 = \operatorname{SL}(2,\mathbb{R})/\operatorname{SO}(2) : 0 \quad \frac{\operatorname{Spectral gap}}{\lambda_0(\mathbb{H}^2) = \frac{1}{4}} \quad \sigma_c(-\Delta)$$

Thin group: $\Gamma \leq \mathrm{SL}(2,\mathbb{R})$ s.t. $\mathrm{Vol}(\Gamma \backslash \mathbb{H}^2) = \infty$

Hyperbolic plane
$$\mathbb{H}^2 = \operatorname{SL}(2,\mathbb{R})/\operatorname{SO}(2): \quad \bullet \quad \begin{array}{c} \operatorname{Spectral gap} & \sigma_c(-\Delta) \\ \lambda_0(\mathbb{H}^2) = \frac{1}{4} \end{array}$$

Thin group:
$$\Gamma \leq \mathrm{SL}(2,\mathbb{R})$$
 s.t. $\mathrm{Vol}(\Gamma \backslash \mathbb{H}^2) = \infty$

$$0 \qquad \qquad \lambda_0(\Gamma \backslash \mathbb{H}^2) \qquad \infty$$

Hyperbolic plane
$$\mathbb{H}^2 = \operatorname{SL}(2,\mathbb{R})/\operatorname{SO}(2): \quad \underbrace{\begin{array}{c} \operatorname{Spectral gap} \\ \lambda_0(\mathbb{H}^2) = \frac{1}{4} \end{array}} \qquad \underbrace{\begin{array}{c} \sigma_c(-\Delta) \\ \end{array}}$$

Thin group:
$$\Gamma \leq \mathrm{SL}(2,\mathbb{R}) \text{ s.t. } \mathrm{Vol}(\Gamma \backslash \mathbb{H}^2) = \infty$$

i.e., all eigenvalues are exceptional (finitely many)

Hyperbolic plane
$$\mathbb{H}^2 = \operatorname{SL}(2,\mathbb{R})/\operatorname{SO}(2) : 0 \qquad \qquad \sum_{\lambda_0(\mathbb{H}^2) = \frac{1}{4}}^{\operatorname{Spectral gap}} \sigma_c(-\Delta)$$

Thin group:
$$\Gamma \leq \mathrm{SL}(2,\mathbb{R}) \text{ s.t. } \mathrm{Vol}(\Gamma \backslash \mathbb{H}^2) = \infty$$

i.e., all eigenvalues are exceptional (finitely many)

Characterize
$$\lambda_0(\Gamma \setminus X) := \inf_{f \in \mathcal{C}_c^{\infty}(\Gamma \setminus X)} \frac{\int_{\Gamma \setminus X} \|\operatorname{grad} f\|^2 \, \mathrm{d} vol}{\int_{\Gamma \setminus X} \|f\|^2 \, \mathrm{d} vol} = \inf_{\sigma_c(-\Delta)}$$

$$\delta_{\Gamma} = \limsup_{R \to \infty} \frac{\log(\#\{\gamma \in \Gamma \mid d(e, \gamma e) \le R\})}{R}$$

$$\delta_{\Gamma} = \limsup_{R \to \infty} \frac{\log(\#\{\gamma \in \Gamma \mid d(e, \gamma e) \le R\})}{R}$$

$$\delta_{\Gamma} = \inf \left\{ s \in \mathbb{R} \left| \sum_{\gamma \in \Gamma} e^{-sd(e,\gamma e)} < \infty \right. \right\}$$

Poincaré Series:
$$\sum_{\gamma \in \Gamma} e^{-sd(e,\gamma e)} \begin{cases} < \infty & \text{if} \quad s > \delta_{\Gamma} \\ = \infty & \text{if} \quad s < \delta_{\Gamma} \end{cases}$$

e.g. In \mathbb{H}^2 : $0 \le \delta_{\Gamma} \le 1$ In \mathbb{H}^n : $0 \le \delta_{\Gamma} \le n-1$

Characterization in Dimension 2

 $L^2(\Gamma \backslash X)$ is tempered

Theorem [Elstrodt '73 Math. Ann., Patterson '76 Acta Math.]

$$\lambda_0(\Gamma \backslash \mathbb{H}^2) = \begin{cases} \frac{1}{4} & \text{if } 0 \le \delta_{\Gamma} \le \frac{1}{2} \\ \frac{1}{4} - (\delta_{\Gamma} - \frac{1}{2})^2 & \text{if } \frac{1}{2} \le \delta_{\Gamma} \le 1 \end{cases}$$

Characterization on G/K of Rank 1

 $L^2(\Gamma \backslash X)$ is tempered

Theorem [Elstrodt '73, Patterson '76, Sullivan '87 JDG, Corlette '90 Invent. Math.]

$$\lambda_0(\Gamma \backslash X) = \begin{cases} \rho^2 & \text{if } 0 \le \delta_{\Gamma} \le \rho \\ \rho^2 - (\delta_{\Gamma} - \rho)^2 & \text{if } \rho \le \delta_{\Gamma} \le 2\rho \end{cases}$$

where $\rho = \frac{n-1}{2}$ on $\mathbb{H}^n(\mathbb{R})$, n on $\mathbb{H}^n(\mathbb{C})$, 2n+1 on $\mathbb{H}^n(\mathbb{H})$, 11 on $\mathbb{H}^2(\mathbb{O})$

Temperedness (柔曼性)

G connected semisimple Lie group \implies direct integrals:

$$L^2(\Gamma \backslash G) \cong \int_{\widehat{G}}^{\oplus} \mathcal{H}_{\pi} \, \mathrm{d}\nu(\pi) \quad \text{and} \quad L^2(\Gamma \backslash X) \cong \int_{\widehat{G}_K}^{\oplus} (\mathcal{H}_{\pi})^K \, \mathrm{d}\nu(\pi)$$

In rank 1, \widehat{G}_K consists of

- the unitary spherical principal series $\pi_{\pm\lambda}$ ($\lambda \in \mathbb{R}/\pm 1$)
- the trivial representation $\pi_{\pm i\rho} = 1$
- the complementary series $\pi_{\pm i\lambda}$ ($\lambda \in I$), where

$$I = \begin{cases} (0, \rho) & \text{if } X = \mathbb{H}^n(\mathbb{R}) \text{ or } \mathbb{H}^n(\mathbb{C}) \\ (0, \frac{m_{\alpha}}{2} + 1] & \text{if } X = \mathbb{H}^n(\mathbb{H}) \text{ or } \mathbb{H}^2(\mathbb{O}) \end{cases}$$

(no higher rank analogue)

Temperedness

By definition

- $L^2(\Gamma \backslash G)$ is called tempered if \widehat{G}_K does not involve complementary series
- $-\Delta$ acts on $(\mathcal{H}_{\pi})^{K}$ by multiplication by $\lambda^{2} + \rho^{2}$

Question

? When $\Gamma \setminus X$ is of higher rank and infinite volume?

Noncompact (Riemannian) Symmetric Space

A noncompact symmetric space is a complete Riemannian manifold

- with nonpositive sectional curvature
- which is simply connected (Cartan-Hadamard manifold)

Noncompact (Riemannian) Symmetric Space

A noncompact symmetric space is a complete Riemannian manifold

- with nonpositive sectional curvature
- which is simply connected (Cartan-Hadamard manifold)
- with symmetric property
- which growths exponentially fast at infinity

Noncompact (Riemannian) Symmetric Space

A noncompact symmetric space is a complete Riemannian manifold

- with nonpositive sectional curvature
- which is simply connected (Cartan-Hadamard manifold)
- with symmetric property
- which growths exponentially fast at infinity
- which can be identified as a homogeneous space G/K

e.g.
$$\mathbb{H}^2 = \mathrm{SL}(2,\mathbb{R})/\mathrm{SO}(2)$$
 and $\mathbb{H}^3 = \mathrm{SL}(2,\mathbb{C})/\mathrm{SU}(2)$

Locally Symmetric Space

Noncompact symmetric space

$$X = G/K$$

- G noncompact semisimple Lie group (connected, finite center)
- \bullet K maximal compact subgroup of G

- $\Gamma \leq G$: discrete and torsion-free subgroup of G
 - Γ is a lattice: $Vol(\Gamma \setminus X) < \infty$
 - Γ has infinite covolume: $Vol(\Gamma \backslash X) = \infty$

Rank

Cartan subspace a: maximal connected, totally geodesic, flat sub-manifold of X

$$\mathfrak{a} pprox \mathbb{R}^{\ell}$$

and
$$\ell = \dim \mathfrak{a} = \operatorname{rank} G/K$$

Rank

Cartan subspace a: maximal connected, totally geodesic, flat sub-manifold of X

$$\mathfrak{a} \approx \mathbb{R}^{\ell}$$
 and $\ell = \dim \mathfrak{a} = \operatorname{rank} G/K$

• Cartan decomposition $G = K(\exp \overline{\mathfrak{a}^+})K$

Rank

Cartan subspace a: maximal connected, totally geodesic, flat sub-manifold of X

$$\mathfrak{a}\,pprox\,\mathbb{R}^\ell$$

and
$$\ell = \dim \mathfrak{a} = \operatorname{rank} G/K$$

- Cartan decomposition $G = K(\exp \mathfrak{a}^+)K$
- Cartan projection $\mu: G \longrightarrow \overline{\mathfrak{a}^+}$ such that

$$g \in Ke^{\mu(g)}K$$

•
$$d(e, \gamma e) = \|\mu(\gamma)\| \quad \forall \gamma \in \Gamma$$

In higer rank: $\rho \in \mathfrak{a}^+$ is a vector, known as $\rho = \frac{1}{2} \sum_{\alpha \in \Sigma^+} m_{\alpha} \alpha$

Rank

Cartan subspace a: maximal connected, totally geodesic, flat sub-manifold of X

$$\mathfrak{a} pprox \mathbb{R}^{\ell}$$

and
$$\ell = \dim \mathfrak{a} = \operatorname{rank} G/K$$

- Cartan decomposition $G = K(\exp \mathfrak{a}^+)K$
- Cartan projection $\mu: G \longrightarrow \overline{\mathfrak{a}^+}$ such that

$$g \in Ke^{\mu(g)}K$$

•
$$d(e, \gamma e) = \|\mu(\gamma)\| \quad \forall \gamma \in \Gamma$$

In higher rank: $\rho \in \mathfrak{a}^+$ is a vector, known as $\rho = \frac{1}{2} \sum_{\alpha \in \Sigma^+} m_{\alpha} \alpha$

General Characterization

Theorem [Anker-Z. '22 Geom. Dedicata]

$$\lambda_0(\Gamma \backslash X) = \begin{cases} \|\rho\|^2 & \text{if } 0 \le \tilde{\delta}_{\Gamma} \le \|\rho\| \\ \|\rho\|^2 - (\tilde{\delta}_{\Gamma} - \|\rho\|)^2 & \text{if } \|\rho\| \le \tilde{\delta}_{\Gamma} \le 2\|\rho\| \end{cases}$$

• [Leuzinger '03]: Lower and upper bounds of $\lambda_0(\Gamma \backslash X)$ in terms of

$$\delta_{\Gamma} = \inf \left\{ s \in \mathbb{R} \, \Big| \, \sum_{\gamma \in \Gamma} e^{-s \|\mu(\gamma)\|} < \infty \right\}$$

• [Leuzinger '03]: Lower and upper bounds of $\lambda_0(\Gamma \backslash X)$ in terms of

$$\delta_{\Gamma} = \inf \left\{ s \in \mathbb{R} \, \Big| \, \sum_{\gamma \in \Gamma} e^{-s \|\mu(\gamma)\|} < \infty \right\}$$

• [Carron-Pedon '04, Anker-Z. '22]: Introduce the modified critical exponent

$$\tilde{\delta}_{\Gamma} = \inf \left\{ s \in \mathbb{R} \left| \sum_{\gamma \in \Gamma} e^{-\min\{s, \|\rho\|\} \left\langle \frac{\rho}{\|\rho\|}, \mu(\gamma) \right\rangle - \max\{0, s - \|\rho\|\} \frac{\|\mu(\gamma)\|}{\|\rho\|}} < \infty \right\} \right\}$$

• $0 \le \delta_{\Gamma} \le \tilde{\delta}_{\Gamma} \le 2\|\rho\|$ and $\delta_{\Gamma} = \tilde{\delta}_{\Gamma}$ in rank 1

Temperedness

Equivalence

- [Edwards-Oh '23 *Commun. Am. Math. Soc.*] : if Γ is Anosov
- [Lutsko-Weich-Wolf '24] : in general

Growth Indicator Function

Theorem [Wolf-Z. '24 *PAMS*]

$$\tilde{\delta}_{\Gamma} = \begin{cases} \sup_{H \in \overline{\mathfrak{a}^{+}}} \psi_{\Gamma}(H) \cdot \frac{\|\rho\|}{\rho(H)} & \text{if } \psi_{\Gamma} \leq \rho \\ \sup_{H \in \overline{\mathfrak{a}^{+}}} \frac{\psi_{\Gamma}(H) - \rho(H)}{\|H\|} + \|\rho\| & \text{otherwise} \end{cases}$$

Theorem [Wolf-Z. '24 *PAMS*]

$$\lambda_0(\Gamma \backslash X) = \|\rho\|^2 - \max \left\{ 0, \sup_{H \in \overline{\mathfrak{a}_+}} \frac{\psi_{\Gamma}(H) - \rho(H)}{\|H\|} \right\}^2$$

Kunze-Stein Phenomenon

• Young's inequality: $L^p(G) * L^q(G) \subset L^r(G)$ $\frac{1}{p} + \frac{1}{q} = \frac{1}{r} + 1$

$$L^1(G)*L^2(G)\subset L^2(G)$$

$$\frac{1}{p} + \frac{1}{q} = \frac{1}{r} + 1$$

Kunze-Stein Phenomenon

• Young's inequality: $L^p(G) * L^q(G) \subset L^r(G)$

$$\frac{1}{p} + \frac{1}{q} = \frac{1}{r} + 1$$

$$L^1(G)*L^2(G)\subset L^2(G)$$

• Kunze-Stein:

$$L^{\mathbf{p}}(G) * L^2(G) \subset L^2(G)$$

$$1 \le p < 2$$

PDE Motivation

e.g. Free Schrödinger equation: $(i\partial_t + \Delta_x)u(t,x) = 0$, u(0,x) = f(x) whose solution is given by $u(t,x) = e^{it\Delta}f(x)$

Strichartz estimate

$$||u||_{L_t^p(\mathbf{I},L_x^q(\mathcal{M}))} = \left(\int_{\mathcal{T}} dt \,||u||_{L^q(\mathcal{M})}^p\right)^{1/p} \lesssim ||f||_{\mathbf{H}^s(\mathcal{M})}$$

- for all admissible pairs (p,q)
- s = 0: without loss; s > 0: with loss of derivatives
- ullet $\mathcal I$ bounded: local-in-time; $\mathcal I$ unbounded: global-in-time

Strichartz Estiamte

e.g. Free Schrödinger equation: $(i\partial_t + \Delta_x)u(t,x) = 0$, u(0,x) = f(x) whose solution is given by $u(t,x) = e^{it\Delta}f(x)$

In \mathbb{R}^n [..., Strichartz '77 *Duke*, ..., Keel-Tao '98 *AJM*]

Global-in-time Strichartz inequality without loss

$$||u||_{L^p(\mathbb{R},L^q(\mathbb{R}^n))} \lesssim ||f||_{L^2(\mathbb{R}^n)}$$

holds for all **admissible** pairs (p, q), i.e.,

$$\frac{2}{p} + \frac{n}{q} = \frac{n}{2} \qquad p \ge 2 \qquad (p,q) \ne (2,\infty)$$

Strichartz on manifolds

In \mathbb{R}^n

Global-in-time Strichartz holds without loss of derivatives

Compact manifold (M, g)

$$\|e^{it\Delta_g}u_0\|_{L^p_t(I,L^q_x(M))} = \left(\int_I dt \|e^{it\Delta_g}u_0\|_{L^q(M)}^p\right)^{1/p} \lesssim \|u_0\|_{H^s(M)}$$

• I is bounded

Strichartz on manifolds

In \mathbb{R}^n

Global-in-time Strichartz holds without loss of derivatives

Compact manifold (M, g)

$$\|e^{it\Delta_g}u_0\|_{L^p_t(I,L^q_x(M))} = \left(\int_I dt \|e^{it\Delta_g}u_0\|_{L^q(M)}^p\right)^{1/p} \lesssim \|u_0\|_{H^s(M)}$$

- I is bounded
- \mathbb{T}^n [Bourgain '93 GAFA]: $s > \frac{n}{4} \frac{1}{2}$
- M [Burq-Gérard-Tzvetkov '04 AJM]: $s = \frac{1}{p}$

Strichartz on manifolds

In \mathbb{R}^n

Global-in-time Strichartz holds without loss of derivatives

Compact manifold (M, g)

$$\|e^{it\Delta_g}u_0\|_{L^p_t(I,L^q_x(M))} = \left(\int_I dt \|e^{it\Delta_g}u_0\|_{L^q(M)}^p\right)^{1/p} \lesssim \|u_0\|_{H^s(M)}$$

- I is bounded
- \mathbb{T}^n [Bourgain '93 GAFA]: $s > \frac{n}{4} \frac{1}{2}$
- M [Burq-Gérard-Tzvetkov '04 AJM]: $s = \frac{1}{p}$

Question: on which manifolds does Strichartz hold without any loss?

Strichartz on G/K

Global-in-time Strichartz estimate

$$||e^{it\Delta}u_0||_{L_t^p(\mathbb{R},L_x^q(G/K))} \lesssim ||u_0||_{L^2(G/K)}$$

holds without any loss of derivatives for all (p,q) admissible:

[Anker-Meda-Perfelice-Vallarino-Z. '23 JDE, Anker-Z. '24 AJM]

On Locally Symmetric Space

Strichartz estimate

Global-in-time Strichartz inequality holds without lossing any derivatives for the large X-admissible set if the following conditions are met:

- \bullet X has rank 1
- Γ is convex cocompact
- $\delta_{\Gamma} < \rho$

[Burq-Guillarmou-Hassell '10 GAFA, Fotiadis-Mandouvalos-Marias '18 Math. Ann.]

Figure: Convex hull of the limit set Λ_{Γ} in \mathbb{H}^2

 Γ convex cocompact

On Locally Symmetric Space

Strichartz estimate

Global-in-time Strichartz inequality holds without lossing any derivatives for the large X-admissible set if the following conditions are met:

- \bullet X has rank 1
- Γ is convex cocompact
- $\delta_{\Gamma} < \rho$

[Burq-Guillarmou-Hassell '10 GAFA, Fotiadis-Mandouvalos-Marias '18 Math. Ann.]

Remark.

- δ_{Γ} small enough \implies Γ is convex cocompact [Liu-Wang '23 GT]
- $\delta_{\Gamma} < \rho \implies \text{temperedness} \implies \text{Kunze-Stein} [Z. '20 JGA]$