10 Simple Entry Problems (Solutions)

CSC 240 Lyon College Fall Term 2024

Marcus Birkenkrahe

October 13, 2024

Entry test: write 10 simple programs (in C)

1. Declare two variables of type int, initialize them to appropriate values, and print them next to one another separated by a comma.

Solution:

2. Declare three integer variables: sum, a, b. Initialize sum to 0. Initialize the variables a and b to an appropriate integer value, use an assignment statement to assign sum the result of a plus b, and print the result: "The sum of _ and _ is _." using printf.

Solution:

```
/* ----- */
/* Declare three variables, sum up two of them, and print results */
```

```
/* (CC-BY-NC) Marcus Birkenkrahe modified from Rook's Guide (2013) */
  /* ----- */
  // declare three variables sum, a, b and initialize a, b
  int sum = 0;
  int a = 2, b = 5;
  // sum up a and b
  sum = a + b;
  // print the result
  printf("The sum of %d and %d is %d.\n",a,b,sum);
  The sum of 2 and 5 is 7.
3. Create a program in which 3 variables are declared. Create one float
  named myFloat, one int named myInt, and one double named myDouble.
  Initialize them to 3.14, 3, and 3.14159, respectively. Print each vari-
  able on a line of its own like this:
  myFloat = 3.14
  myInt
         = 3
  myDouble = 3.14159
  Solution:
  /* ----- */
  /* Declare 3 variables of different types & print them on one line */
  /* (CC-BY-NC) Marcus Birkenkrahe modified from Rook's Guide (2013) */
  /* ----- */
  // declare and initialize variables
  float myFloat = 3.14;
  int myInt = 3;
  double myDouble = 3.14159;
  // print result
  printf("myFloat = %g\n", myFloat);
  printf("myInt = %d\n", myInt);
  printf("myDouble = %g", myDouble);
  myFloat = 3.14
  myInt
         = 3
  myDouble = 3.14159
```

4. Create a program that displays the diameter and area of a circle for any given radius. Initialize the radius in the program. Use a const float to represent the literal. The output should look like this: The area of a circle of diameter 2 is 3.14159 (for r=1).
Solution:

```
/* ----- */
  /* With constant Pi, compute area of circle for given radius
                                                              */
  /* Sample input: r = 1.
                                                              */
  /* Sample output: The area of a circle of diameter 2 is 3.14159
                                                              */
  /* (CC-BY-NC) Marcus Birkenkrahe modified from Rook's Guide (2013) */
  /* ----- */
  // const declaration
  const float pi = 3.141592;
  // variable declarations
  float area:
  // initialize variables
  float radius = 1.f; // radius = 1
  // compute area
  area = pi * radius * radius;
  // print results
  printf("The area of a circle of diameter %g is %g\n",2*radius,area);
  The area of a circle of diameter 2 is 3.14159
5. Comment each line of this code:
  #include <stdio.h>
  int main(void)
  {
   int time;
   printf("Enter time in seconds:\n");
   scanf("%d",&time);
   printf("You entered: %d seconds", time);
   int answer = (32 * time * time) / 2;
   printf("The distance is %d feet.\n);
   return 0;
```

Background: In the imperial metric system, 32 feet per second squared (or 9.8 meter per second squared in the metric system) is the approximate acceleration due to Earth's gravity for a freely falling body (no air friction or other effects assumed).

Solution:

```
/* ----- */
/* Compute distance of a freely falling body with constant
                                                             */
/* acceleration a = 32 ft/s<sup>2</sup> due to gravity, d = a t^2 / 2
                                                             */
/* Sample input: time = 10.
                                                             */
/* Sample output: You entered: 10 seconds. Distance is 1600 feet
                                                             */
/* (CC-BY-NC) Marcus Birkenkrahe modified from Rook's Guide (2013) */
/* ----- */
// Load input output header file
#include <stdio.h>
// main function - no arguments, returns integer
int main(void)
{ // body of main function begins
 // declare integer variable 'time'
 int time;
 // Ask for user input
 printf("Enter time in seconds:\n");
 // Scan user input from standard device to variable 'time'
 scanf("%d",&time);
 // Tell user which number he entered.
 printf("You entered: %d seconds\n", time);
 // declare and initialize variable 'answer' with arithmetic expression
 int answer = (32 * time * time) / 2;
 // print result 'answer' over one line ending with a new line
 printf("The distance is %d feet.\n",answer);
 // return 0 from main function
 return 0;
} // body of main functions ends
echo "10" > data/input
cat data/input
```

6. Data Types and conversion

Write a 3-line program that declares a variable named sampleSize and set it to 14.58093. Use a compound operator to increase its value by

12.495. Finally print the result converted to an integer using cout and int. The output should be 27.

Solution:

Integer sampleSize: 27

7. Conditionals

• Write a program that declares two integers a and b and initializes them with appropriate values. The program should print out one message that informs the user if a is smaller or bigger than b, or if they're the same.

Solution:

```
} else if (a > b) {
  printf("%d is bigger than %d!\n",a,b);
} else {
  printf("%d is smaller than %d!\n",a,b);
}

100 is bigger than 10!
```

• Rook's Guide to C++ contains this rather useless (though not wrong) flow chart (fig. 10.2, pg. 51). This chart can be improved a lot, see this BPMN model created at bpmn.io (link).

8. Loops

Do the first program, if you've completed section 7, and do the second program, if not.

(a) Wrap the program 'compare and b' from sect. 7 ("Conditionals") in an *infinite* loop, and ask the user after each iteration if he wants to quit or continue playing, exit the program accordinly, and print the number of iterations. Play at least once.

Solution:

```
/* ----- */
/* In an infinite loop: Ask user to enter two integer numbers, then /*
/* compare them. At the end of each iteration, ask if user wants to /*
/* quit. (CC-BY-NC) Marcus Birkenkrahe modified from Jensen (2013)
/* ----- */
// Declare variables
int a, b;
char quit;
// infinite loop
do {
// Ask for user input
printf("Enter two numbers: ");
// Store input in variables
scanf("%d%d",&a,&b);
// Compare values
if (a == b) {
 printf("%d and %d are the same!\n",a,b);
} else if (a > b) {
```

```
printf("%d is bigger than %d!\n",a,b);
   } else {
     printf("%d is smaller than %d!\n",a,b);
   printf("Quit playing? Enter Y: \n");
   scanf("%c",&quit);
    } while (quit != 'Y');
   printf("Done");
   Testing with sample data:
   echo "100 100 N
       -100 100 N
              1 Y" > data/compare
   cat data/compare
(b) Create a for loop that outputs your name to the screen 10 times
   before exiting the loop.
   Solution I:
   for (int i=0; i<10; i++) {
   printf("Marcus ");
    }
```

Marcus Ma

9. Arrays

Create a program in which an integer array named myArray is declared with a size of 10. Use a for loop to prompt the user to store a value in every index of the array. Aer the array is given values, output the values of the array to the screen using a for loop. Output each value of the array on its own line.

10. Functions

Write code that prompts the user for a number of miles travelled and a number of hours, then calculates the user's speed in miles per hour using a user-defined function named mph.

If you're doing this in Emacs, use the complete C++ program header and call mph in a main function:

```
int main() {
  // variable declarations
  double milesTravelled, hoursTravelled;
  // Get user input
  printf("Enter miles and hours travelled: ");
  scanf("%lf%lf",&milesTravelled,&hoursTravelled);
  printf("\n");
  //compute and print result
 printf("With %g miles in %g hours, your speed was %g mph.\n",
     milesTravelled,
     hoursTravelled,
    mph(milesTravelled,hoursTravelled));
     return 0;
     }
Testing:
echo "740 11.5" > data/mph
cat data/mph
```