Московский государственный технический университет им. Н. Э. Баумана Факультет «Информатика и системы управления» Кафедра «Системы обработки информации и управления»

Отчёт по лабораторной работе №2

по курсу «**Введение в машинное обучение**»

Исполнила: Алиева Д.Г., ИУ5-41

Проверил: Гапанюк Ю.Е.

Задание:

Необходимо реализовать скрипт, выполняющий следующие действия:

1. Скачивание 1000 последних объявлений с hh.ru

Для выполнения этого пункта вам понадобится библиотека requests. С помощью этой библиотеки можно делать HTTP-запросы в API hh.ru. Что такое api. С API, предоставляемым hh.ru, можно ознакомиться здесь. Общая информация здесь Вам понадобится этот метод. Чтобы тестировать запросы в api и смотреть, что они возвращают, можно использовать Postman. В качестве поискового запроса можно вводить ключевые слова, связанные с тематикой анализа данных: machine learning, data science, машинное обучение, big data, data analytics и тд. В ответе API будут интересующие нас поля: salary, area, name, employer

2. Получить медианное значение зарплат

Необходимо сделать обработку полученных на первом шаге данных и получить следующую структуру: Словарь, где ключом является название вакансии (как оно задано на hh.ru), а значением - медианное значение зарплаты по этой вакансии. То есть необходимо сгруппировать данные по имени вакансии. Также можно использовать другие варианты, например, сгруппировать по городу или любому другому интересному параметру из выдачи. В поле salary hh.ru отдает значения диапазона. Значением зарплаты считать среднее значение из диапазона, например, если зп от 100 до 150, то фиксировать значение 125.

3. Получить распределение зарплат по диапазонам

Необходимо выделить диапазоны зарплат, например: до 80к, 80-120к, 120-150к, 150-200к, 200-300к, 300к+ Для каждого диапазона подсчитать количество предлагаемых вакансий.

*. Построить графики по пунктам 2 и 3.

Скрипт:

```
# In[1]:
import requests
import matplotlib.pyplot as plt
arr1 = []
for i in range(10):
  #print(i)
  str0 =
'https://api.hh.ru/vacancies/?per_page=100&page='+str(i)+'&text=machine+learning+OR+big+data+OR+da
ta+science+OR+data+analytics'
  #print(str0)
  req0 = requests.get(str0)
  if reg0.status code != requests.codes.ok:
     print("Error: server return status code: " + str(req.status_code))
  arr1 += (req0.json()['items'])
print(arr1)
#len(arr2)
# In[2]:
vac sal = {}
for i in arr1:
  if ((i['salary'] != None) and (i['salary']['currency'] == 'RUR')):
     if i['salary']['to'] == None:
       vac_sal[i['name']] = (i['salary']['from'])
    elif i['salary']['from'] == None:
       vac_sal[i['name']] = (i['salary']['to']/2)
     elif ((i['salary']['from'] != None) and (i['salary']['to'] != None)):
       vac sal[i['name']] = ((i['salary']['to'] + i['salary']['from']) / 2)
  elif ((i['salary'] != None) and (i['salary']['currency'] == 'USD')):
    if i['salary']['to'] == None:
       vac sal[i['name']] = (i['salary']['from'] * 57)
     elif i['salary']['from'] == None:
       vac sal[i['name']] = ((i['salary']['to'] / 2) * 57)
     elif ((i['salary']['from'] != None) and (i['salary']['to'] != None)):
       vac_sal[i['name']] = (i['salary']['to'] + i['salary']['from'] / 2) * 57
  elif ((i['salary'] != None) and (i['salary']['currency'] == 'EUR')):
     if i['salary']['to'] == None:
       vac_sal[i['name']] = (i['salary']['from'] * 71)
     elif i['salary']['from'] == None:
       vac sal[i['name']] = ((i['salary']['to'] / 2) * 71)
     elif ((i['salary']['from'] != None) and (i['salary']['to'] != None)):
       vac sal[i['name']] = (i['salary']['to'] + i['salary']['from'] / 2) * 71
vac sal
```

```
data science = []
for i in vac_sal:
  if (('ata' in i) and ('cien' in i)):
    data_science.append(vac_sal[i])
data science.sort()
print(data_science)
med_ds = (data_science[len(data_science)//2])
print('медиана=', med_ds)
# In[4]:
machine learning = []
for i in vac_sal:
  if (('achine' in i) or ('earning' in i)):
    machine_learning.append(vac_sal[i])
machine_learning.sort()
print(machine_learning)
med_ml = (machine_learning[len(machine_learning)//2])
print('медиана=', med_ml)
# In[5]:
programmer = list()
for i in vac_sal:
  if ('рограммист' in i):
    programmer.append(vac_sal[i])
programmer.sort()
print(programmer)
med_prg = (programmer[len(programmer)//2])
print('медиана=', med_prg)
# In[6]:
analyst = list()
for i in vac_sal:
  if (('нали' in i) or ('naly' in i)):
    analyst.append(vac_sal[i])
analyst.sort()
print(analyst)
med_anl = (analyst[len(analyst)//2])
print('медиана=', med_anl)
# In[7]:
developer = list()
for i in vac sal:
  if (('азработ' in i)or ('evelop' in i)):
    developer.append(vac_sal[i])
```

```
developer.sort()
print(developer)
med dvp = (developer[len(developer)//2])
print('медиана=', med_dvp)
# In[8]:
names = ['Data science', 'Developer', 'Analyst', 'Programmer', 'Machine learning']
x = [0, 1, 2, 3, 4]
med = [med ds, med dvp, med anl, med prg, med ml]
plt.bar(x, med)
plt.xticks(x, names, rotation = 30)
plt.show()
# In[9]:
a = 0
b = 0
c = 0
d = 0
e = 0
f = 0
print(len(vac sal))
for i in vac sal:
  if (vac sal[i] < 80000):
    a += 1
  elif ((vac sal[i] >= 80000) and (vac sal[i] < 120000)):
    b += 1
  elif ((vac sal[i] >= 120000) and (vac sal[i] < 150000)):
    c += 1
  elif ((vac_sal[i] >= 150000) and (vac_sal[i] < 200000)):
    d += 1
  elif ((vac_sal[i] >= 200000) and (vac_sal[i] < 300000)):
    e += 1
  elif (vac sal[i] >= 300000):
    f += 1
print(a , b, c, d, e, f)
# In[10]:
names2 = ['<80k', '80k-120k', '120k-150k', '150k-200k', '200k-300k', '>300k']
x2 = [0, 1, 2, 3, 4, 5]
count = [a, b, c, d, e, f]
plt.bar(x2, count)
plt.xticks(x2, names2, rotation = 30)
plt.show()
```

Результаты:

{'Data Scientist (ML/AI/Big Data/Python)': 100000, 'Big Data Developer': 100000.0, 'Руководитель разработки / Архитектор (СТО, Machine Learning)': 150000.0, 'Программист Руthon (big data, machine learning)': 150000.0, 'Куководитель отдела Data Science / Маchine Learning': 150000.0, 'Программист Руthon (big data, machine learning)': 2750.0, 'Диліог Data Analyst': 120000.0, 'Product manager Big Data': 75000.0, 'Специалист по внедрению аналитичес ких решений (прогностическая аналитика, big data)': 120000.0, 'Бизнес-аналитик (Big Data решения)': 115.0, 'Руководитель проекто в (Big Data решения)': 115.0, 'Руководитель проекто в (Big Data решения)': 115.0, 'Руководитель проекто в (Big Data решения)': 12000.0, 'Руководитель проекто в (Big Data peшения)': 15000.0, 'Pycosoдитель проекто в (Big Data peшения)': 15000.0, 'Pycosoдитель проекто в (Big Data peшения)': 15000.0, 'Pycosoдитель проекто Data Science': 130000, 'Paspaботчик (Big Data Python Developer': 200000, 'Cпециалист по анализу данных / Data Scientist': 1000000.0, 'Alanaviruk Data Scientist': 100000.0, 'Paspaботчик (Machine Learning)': 125000.0, 'Data Scientist (Tech Lead)': 3000, 'P уководитель отдела Data Science': 300000, 'Scala/Java (big data)': 150000, 'Data Scientist (BigData Ananuruk)': 175000.0, 'Aналитик-математик (Data scientist)': 190000.0, 'Aналитик-математик (Data scientist)': 190000.0, 'Aналитик-математик (Data scientist)': 190000.0, 'Aналитик-математик (Junior data scientist)': 190000.0, 'Python Developer (Data Scientist)': 150000, 'Программист-разработчик нейронных сетей (Deep Learning Engineer)': 125000.0, 'Python Developer (Data Scientist)': 150000, 'Python Developer (Data Scientist)': 150000, 'Python Developer (Peat Scientist)': 150000, 'Python Developer (Peat Scientist)': 150000, 'Python Developer': 100.0, 'Python Developer': 25000.0, 'Python Developer': 25000.0, 'Python Developer': 25000.0, 'Python Developer': 25000.0, 'Python Developer': 250000, 'Python Developer': 250000, 'Python Developer': 250000, 'Python Developer': 250000, 'Python De

[0 1 7 11 16 9 22 7 10 8 14 9 3 6 3 2 4 2 6 1 0 0 1 1 0 0 0 1 0] [15000 25000 35000 45000 55000 65000 75000 85000 95000 105000 115000 125000 135000 145000 155000 165000 175000 185000 195000 205000 215000 225000 235000 245000 255000 265000 275000 285000 295000]

115000.0 70000 80000.0 75000.0 [3 1 0] [50000 100000 150000 200000]

