Two independent traffic lights

LF2.6-3

light 1 || light 2 $\not\models$ "infinitely often $green_1$ " although light 1 \models "infinitely often $green_1$ "

Two independent traffic lights

LF2.6-3

light 1 || light 2 $\not\models$ "infinitely often green₁"

interleaving is completely time abstract!

liveness property = "each waiting process will eventually enter its critical section"

LF2.6-4

 $\mathcal{T}_{sem} \not\models$

"each waiting process will eventually enter its critical section"

level of abstraction is too coarse!

two independent non-communicating processes $P_1 \mid \mid P_2$

possible interleavings:

$$P_1$$
 P_2 P_2 P_1 P_1 P_1 P_2 P_1 P_2 P_2 P_2 P_1 P_1 ... fair P_1 P_1 P_2 P_1 P_1 P_2 P_1 P_1 P_2 P_1 P_1 P_2 P_1 ... fair P_1 P_2 ... unfair

of the nondeterminism resulting from interleaving and competitions

- unconditional fairness, e.g.,
 every process enters gets its turn infinitely often.
- strong fairness, e.g.,
 every process that is enabled infinitely often gets its turn infinitely often.
- weak fairness, e.g.,
 every process that is continuously enabled from a certain time instance on, gets its turn infinitely often.

Let \mathcal{T} be a TS with action-set Act, $A \subseteq Act$ and $\rho = s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} s_2 \xrightarrow{\alpha_2} \dots$ infinite execution fragment

• ρ is unconditionally **A**-fair, if $\stackrel{\infty}{\exists} i \geq 0$. $\alpha_i \in A$

"actions in **A** will be taken infinitely many times"

Let \mathcal{T} be a TS with action-set Act, $A \subseteq Act$ and $\rho = s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} s_2 \xrightarrow{\alpha_2} \dots$ infinite execution fragment

- ρ is unconditionally **A**-fair, if $\stackrel{\infty}{\exists} i \geq 0$. $\alpha_i \in A$
- ρ is strongly **A**-fair, if

$$\stackrel{\circ}{\exists} i \geq 0. \ A \cap Act(s_i) \neq \emptyset \quad \Longrightarrow \quad \stackrel{\circ}{\exists} i \geq 0. \ \alpha_i \in A$$

"If infinitely many times some action in **A** is enabled, then actions in **A** will be taken infinitely many times."

Let T be a TS with action-set Act, $A \subseteq Act$ and $\rho = s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} s_2 \xrightarrow{\alpha_2} \dots$ infinite execution fragment

- ρ is unconditionally **A**-fair, if $\exists i \geq 0. \alpha_i \in A$
- ρ is strongly **A**-fair, if

$$\stackrel{\infty}{\exists} i \geq 0. A \cap Act(s_i) \neq \emptyset \implies \stackrel{\infty}{\exists} i \geq 0. \alpha_i \in A$$

• ρ is weakly **A**-fair, if

$$\overset{\infty}{\forall} i \geq 0. \ A \cap Act(s_i) \neq \varnothing \quad \Longrightarrow \quad \overset{\infty}{\exists} i \geq 0. \ \alpha_i \in A$$

"If from some moment, actions in **A** are enabled, then actions in **A** will be taken infinitely many times."

Let \mathcal{T} be a TS with action-set Act, $A \subseteq Act$ and $\rho = s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} s_2 \xrightarrow{\alpha_2} ...$ an infinite execution fragment

- ρ is unconditionally **A**-fair, if $\stackrel{\infty}{\exists} i \geq 0$. $\alpha_i \in A$
- \bullet ρ is strongly **A**-fair, if

$$\stackrel{\infty}{\exists} i \geq 0. A \cap Act(s_i) \neq \emptyset \implies \stackrel{\infty}{\exists} i \geq 0. \alpha_i \in A$$

 \bullet ρ is weakly **A**-fair, if

$$\overset{\infty}{\forall} i \geq 0. A \cap Act(s_i) \neq \varnothing \implies \overset{\infty}{\exists} i \geq 0. \alpha_i \in A$$

unconditionally A-fair \implies strongly A-fair \implies weakly A-fair

strong A-fairness is violated if

- no A-actions are executed from a certain moment
- A-actions are enabled infinitely many times

weak A-fairness is violated if

- no A-actions are executed from a certain moment
- A-actions are continuously enabled from some moment on

fairness for action set $A = \{enter_1\}:$ $\langle n_1, u, n_2 \rangle \rightarrow \left(\langle n_1, u, w_2 \rangle \rightarrow \langle w_1, u, w_2 \rangle \rightarrow \langle crit_1, I, w_2 \rangle\right)^{\omega}$

- unconditional A-fairness: yes
- strong A-fairness: **yes** ← unconditionally fair
- weak A-fairness: yes ← unconditionally fair

fairness for action-set
$$A = \{enter_1\}$$
:

$$\left(\langle n_1, u, n_2 \rangle \rightarrow \langle n_1, u, w_2 \rangle \rightarrow \langle n_1, I, \operatorname{crit}_2 \rangle\right)^{\omega}$$

- unconditional A-fairness: no
- strong A-fairness: **yes** \leftarrow A never enabled
- weak **A**-fairness: **yes** ← strongly **A**-fair

fairness for action-set $A = \{enter_1\}$:

$$\langle n_1, u, n_2 \rangle \rightarrow \left(\langle w_1, u, n_2 \rangle \rightarrow \langle w_1, u, w_2 \rangle \rightarrow \langle n_1, I, \text{crit}_2 \rangle \right)^{\omega}$$

- unconditional A-fairness: no
- strong **A**-fairness: **no**
- weak A-fairness: yes

fairness for action set
$$A = \{enter_1, enter_2\}$$
:

$$\left(\langle n_1, u, n_2 \rangle \rightarrow \langle n_1, u, w_2 \rangle \rightarrow \langle n_1, u, crit_2 \rangle\right)^{\omega}$$

- unconditional A-fairness: yes
- strong **A**-fairness: **yes**
- weak **A**-fairness: **yes**

Let T be a transition system with action-set Act.

A fairness assumption for T is a triple

$$\mathcal{F} = (\mathcal{F}_{ucond}, \mathcal{F}_{strong}, \mathcal{F}_{weak})$$

where \mathcal{F}_{ucond} , \mathcal{F}_{strong} , $\mathcal{F}_{weak} \subseteq 2^{Act}$.

An execution ρ is called \mathcal{F} -fair iff

- ρ is unconditionally **A**-fair for all $A \in \mathcal{F}_{ucond}$
- ρ is strongly **A**-fair for all $A \in \mathcal{F}_{strong}$
- ρ is weakly **A**-fair for all $A \in \mathcal{F}_{weak}$

 $FairTraces_{\mathcal{F}}(T) \stackrel{\mathsf{def}}{=} \{trace(\rho) : \rho \text{ is a } \mathcal{F}\text{-fair execution of } T\}$

A fairness assumption for T is a triple

$$\mathcal{F} = (\mathcal{F}_{ucond}, \mathcal{F}_{strong}, \mathcal{F}_{weak})$$

where \mathcal{F}_{ucond} , \mathcal{F}_{strong} , $\mathcal{F}_{weak} \subseteq 2^{Act}$.

An execution ρ is called \mathcal{F} -fair iff

- ρ is unconditionally **A**-fair for all $A \in \mathcal{F}_{ucond}$
- ρ is strongly A-fair for all $A \in \mathcal{F}_{strong}$
- ρ is weakly **A**-fair for all $A \in \mathcal{F}_{weak}$

If T is a TS and E a LT property over AP then:

$$T \models_{\mathcal{F}} E \stackrel{\mathsf{def}}{\iff} FairTraces_{\mathcal{F}}(T) \subseteq E$$

$$\mathcal{T} \models_{\mathcal{F}}$$
 "infinitely often b " ? answer: **no**

fairness assumption \mathcal{F}

- no unconditional fairness condition $\leftarrow \mathcal{F}_{ucond} = \varnothing$
- strong fairness for $\{\alpha, \beta\}$ $\leftarrow \mathcal{F}_{strong} = \{\{\alpha, \beta\}\}$
- no weak fairness condition

$$\leftarrow \mathcal{F}_{\mathsf{weak}} = arnothing$$

actions in $\{\alpha, \beta\}$ are executed infinitely many times

 $\mathcal{T} \models_{\mathcal{F}}$ "infinitely often \mathbf{b} "? answer: **no**

fairness assumption \mathcal{F}

- ullet strong fairness for lpha
- weak fairness for **B**

$$\leftarrow \mathcal{F}_{strong} = \{\{\alpha\}\}\$$

$$\leftarrow \mathcal{F}_{weak} = \{\{\beta\}\}$$

no unconditional fairness assumption

$$\mathcal{T} \models_{\mathcal{F}}$$
 "infinitely often b "

fairness assumption \mathcal{F}

• strong fairness for β

- $\leftarrow \mathcal{F}_{strong} = \{\{\beta\}\}$
- no weak fairness assumption
- no unconditional fairness assumption

fairness assumptions should be as weak as possible

Two independent traffic lights

LF2.6-13

$$A_1$$
 = actions of light 1 A_2 = actions of light 2

fairness assumption \mathcal{F} :

$$\mathcal{F}_{ucond} = \varnothing$$
 $\mathcal{F}_{strong} = \varnothing$

$$\mathcal{F}_{weak} = \{A_1, A_2\}$$

light 1
$$\parallel \parallel$$
 light 2 $\models_{\mathcal{F}} E$

$$T = T_1 \parallel \text{Arbiter} \parallel T_2$$

T₁ and T₂ compete to communicate with the arbiter by means of the actions *enter*₁ and *enter*₂, respectively

LF2.6-15

LT property *E*: each waiting process eventually enters its critical section

fairness assumption
$$\mathcal{F}$$

$$\mathcal{F}_{ucond} = \mathcal{F}_{strong} = \emptyset$$

$$\mathcal{F}_{weak} = \big\{ \{enter_1\}, \{enter_2\} \big\}$$

 $T \not\models_{\mathcal{F}} E$

as **enter**₂ is not enabled in $\langle \text{crit}_1, I, w_2 \rangle$

Example: MUTEX with fair arbiter

LF2.6-16

E: each waiting process eventually enters its crit. sectionD: each process enters its critical section infinitely often

 $\mathcal{T} \models_{\mathcal{F}} \mathcal{E},$ $\mathcal{T} \models_{\mathcal{F}} \mathcal{D}$

For asynchronous systems:

```
parallelism = interleaving + fairness
should be as weak as possible
```

rule of thumb:

- strong fairness for the
 - * choice between dependent actions
 - resolution of competitions
- weak fairness for the nondetermism obtained from the interleaving of independent actions
- unconditional fairness: only of theoretical interest

parallelism = interleaving + fairness

Process fairness and other fairness conditions

- can compensate information loss due to interleaving or rule out other unrealistic pathological cases
- can be requirements for a scheduler or requirements for environment
- can be verifiable system properties

liveness properties: fairness can be essential

safety properties: fairness is irrelevant

fairness assumption \mathcal{F} :

unconditional fairness
for action set $\{\alpha\}$ not realizable

does $\mathcal{T} \models_{\mathcal{F}}$ "infinitely often a" hold ?

answer: yes as there is no fair path

Realizability requires that each initial finite path fragment can be extended to a \mathcal{F} -fair path

fairness assumption \mathcal{F} :
unconditional fairness
for action set $\{\alpha\}$ not realizable

does $T \models_{\mathcal{F}}$ "infinitely often a" hold?

answer: yes as there is no fair path

Fairness assumption \mathcal{F} is said to be realizable for a transition system \mathcal{T} if for each reachable state \mathbf{s} in \mathcal{T} there exists a \mathcal{F} -fair path starting in \mathbf{s}

fairness assumption $\mathcal{F} = (\mathcal{F}_{ucond}, \mathcal{F}_{strong}, \mathcal{F}_{weak})$ for TS \mathcal{T}

- unconditional fairness for $A \in \mathcal{F}_{ucond}$ \leadsto might not be realizable
- strong fairness for $A \in \mathcal{F}_{strong}$
- weak fairness for $A \in \mathcal{F}_{weak}$

can always be guaranteed by a scheduler, i.e., an instance that resolves the nondeterminism in ${\boldsymbol{\mathcal{T}}}$

Realizable fairness assumptions are irrelevant for safety properties

Realizable fairness assumptions are irrelevant for safety properties

If \mathcal{F} is a realizable fairness assumption for TS \mathcal{T} and \mathbf{E} a safety property then:

$$T \models E$$
 iff $T \models_{\mathcal{F}} E$

... wrong for non-realizable fairness assumptions

 \mathcal{F} : unconditional fairness for $\{\alpha\}$

E = invariant "always a"

$$T \not\models E$$
, but $T \models_{\mathcal{F}} E$