

datasheet

PRELIMINARY SPECIFICATION

1/5" color CMOS UXGA (1600 x 1200) image sensor with OmniPixel3-HS™ technology

Copyright @2013 OmniVision Technologies, Inc. All rights reserved.

This document is provided "as is" with no warranties whatsoever, including any warranty of merchantability, non-infringement, fitness for any particular purpose, or any warranty otherwise arising out of any proposal, specification, or sample.

OmniVision Technologies, Inc. and all its affiliates disclaim all liability, including liability for infringement of any proprietary rights, relating to the use of information in this document. No license, expressed or implied, by estoppel or otherwise, to any intellectual property rights is granted herein.

The information contained in this document is considered proprietary to OmniVision Technologies, Inc. and all its affiliates. This information may be distributed to individuals or organizations authorized by OmniVision Technologies, Inc. to receive said information. Individuals and/or organizations are not allowed to re-distribute said information.

Trademark Information

OmniVision, the OmniVision logo, and VarioPixel are registered trademarks of OmniVision Technologies, Inc. OmniPixel3-HS is a trademark of OmniVision Technologies, Inc.

All other trademarks used herein are the property of their respective owners.

color CMOS UXGA (1600 x 1200) image sensor with OmniPixel3-HS™ technology

datasheet (CSP5)
PRELIMINARY SPECIFICATION

version 1.01 december 2013

To learn more about OmniVision Technologies, visit www.ovt.com.

OmniVision Technologies is publicly traded on NASDAQ under the symbol OVTI.

applications

- ultra books
- PC multimedia
- games
- mobile phones
- tablets

ordering information

OV02680-H47A (color, lead-free) 47-pin CSP5

features

- MIPI and D-PHY specification (contains one clock lane) with a maximum of 750 Mbps data transfer rate
- support for output formats: 10-bit RAW RGB
- programmable controls for frame rate, mirror and flip, cropping, and windowing
- low operating voltage and low power consumption for embedded portable applications
- supports global analog gain

- high sensitivity and low dark current for low-light conditions
- supports free-running clock and gated clock
- supports down-sampling and binning mode
- auto black level calibration
- defect correction capability
- supports horizontal and vertical subsampling

key specifications (typical)

active array size: 1616 x 1216

power supply:

core: $1.58V \pm 3\%$ analog: $2.6 \sim 3.0V$ I/O: $1.7 \sim 3.0V$

power requirements:

active: 123 mW XSHUTDN: < 1 µA

temperature range:

operating: -30°C to 85°C junction temperature (see table 6-2)

stable image: 0°C to 50°C junction temperature (see table 6-2)

• output formats: 10-bit Raw RGB data

lens size: 1/5"

 lens chief ray angle: 28.5° non-linear (see figure 8-2)

input clock frequency: 6~27 MHz

max S/N ratio: TBDdynamic range: TBD

■ maximum image transfer rate: 30 fps

■ sensitivity: TBD

scan mode: progressive

■ maximum exposure interval: 1 frame – 4 t_{ROW}

pixel size: 1.75 μm x 1.75 μm

dark current: TBD

• image area: 2840 μm x 2150 μm

package dimensions: 4180 μm x 3480 μm

table of contents

1	signal descriptions	1-1
2	system level description	2-1
	2.1 overview	2-1
	2.2 architecture	2-1
	2.3 video timing overview	2-4
	2.4 pixel array addresses	2-5
	2.5 mirror and flip	2-5
	2.6 format and frame rate control	2-6
	2.7 integration time control (electronic shutter control)	2-7
	2.8 black level calibration	2-7
	2.9 PLL and clock generator	2-7
	2.10 MIPI interface	2-7
3	image sensor core digital functions	3-1
	3.1 serial camera control bus (SCCB)	3-1
	3.1.1 data transfer protocol	3-1
	3.1.2 message format	3-1
	3.1.3 read/write operation	3-1
	3.2 exposure and gain control	3-5
	3.3 general purpose input and output (GPIO)	3-5
	3.4 group write	3-6
4	image sensor processor digital functions	4-1
	4.1 ISP general controls	4-1
	4.2 black level calibration (BLC)	4-2
	4.3 average algorithms	4-2
	4.4 manual white balance (MWB)	4-2
	4.5 test pattern	4-3
	4.5.1 color bar	4-3
	4.5.2 square	4-4
	4.5.3 random data	4-4
	4.5.4 transparent effect	4-4
	4.5.5 rolling bar effect	4-4
5	register tables	5-1
	5.1 system control [0x0100, 0x0103, 0x3002, 0x300A ~ 0x3034]	5-1

5.2 PLL control [0x3080 - 0x3088]	5-5
5.3 SCCB control [0x3100 - 0x3106]	5-6
5.4 group hold [0x3200 - 0x320F]	5-6
5.5 AEC/AGC [0x3500 - 0x3513]	5-7
5.6 analog control [0x3600 - 0x362A]	5-8
5.7 sensor control [0x3700 - 0x373F]	5-9
5.8 PSRAM [0x3780 - 0x3798]	5-9
5.9 timing control [0x3800 - 0x383D]	5-9
5.10 BLC [0x4000 - 0x4047]	5-12
5.11 frame control [0x4200 - 0x4207]	5-15
5.12 format [0x4300 - 0x430F]	5-16
5.13 CADC sync [0x4500 - 0x4504]	5-17
5.14 VFIFO [0x4600 ~ 0x4604]	5-17
5.15 MIPI control [0x4800 - 0x484F]	5-18
5.16 ISP [0x5000 - 0x5015]	5-25
5.17 pre-ISP [0x5080 - 0x50A5]	5-27
5.18 window [0x5700 - 0x570C]	5-29
5.19 DPC [0x5780 - 0x579D]	5-30
5.20 average [0x5900 - 0x5913]	5-31
6 operating specifications	6-1
6.1 absolute maximum ratings	6-1
6.2 functional temperature	6-1
6.3 DC characteristics	6-2
6.4 timing characteristics	6-4
6.5 power up sequence	6-4
6.6 hardware and software standby	6-4
6.7 power up and power down sequence	6-4
6.7.1 power up sequence	6-4
6.7.2 on-chip power up	6-4
6.8 power down sequence	6-8
7 mechanical specifications	7-1
7.1 physical specifications	7-1
7.2 IR reflow specifications	7-2
8 optical specifications	8-1
8.1 sensor array center	8-1

8.2 lens chief ray angle (CRA)

8-2

list of figures

figure 1-1	pin diagram	1-4
figure 2-1	OV2680 block diagram	2-2
figure 2-2	OV2680 reference design schematic	2-3
figure 2-3	video timing overview	2-4
figure 2-4	standard readout	2-5
figure 2-5	horizontally mirrored readout	2-5
figure 2-6	vertically flipped readout	2-5
figure 2-7	horizontally mirrored vertically flipped readout	2-6
figure 3-1	message type	3-1
figure 3-2	SCCB single read from random location	3-2
figure 3-3	SCCB single read from current location	3-2
figure 3-4	SCCB sequential read from random location	3-2
figure 3-5	SCCB sequential read from current location	3-3
figure 3-6	SCCB single write to random location	3-3
figure 3-7	SCCB sequential write to random location	3-3
figure 3-8	SCCB interface timing	3-4
figure 4-1	color bar test patterns	4-3
figure 4-2	square test patterns	4-4
figure 4-3	transparent effect	4-4
figure 4-4	rolling bar effect	4-4
figure 6-1	power up sequence	6-6
figure 6-2	standby sequence	6-7
figure 6-3	power down sequence	6-9
figure 7-1	package specifications	7-1
figure 7-2	IR reflow ramp rate requirements	7-2
figure 8-1	sensor array center	8-1
figure 8-2	chief ray angle (CRA)	8-2

list of tables

table 1-1	signal descriptions	1-1
table 1-2	pin configuration under various conditions	1-3
table 1-3	pad symbol and equivalent circuit	1-4
table 2-1	image orientation control registers	2-6
table 2-2	supported resolution and frame rate	2-6
table 2-3	integration time registers	2-7
table 3-1	SCCB interface timing specifications	3-4
table 3-2	exposure and gain control functions	3-5
table 3-3	GPIO and sensor working modes	3-5
table 3-4	GPIO control functions	3-5
table 3-5	group hold control	3-6
table 4-1	ISP top registers	4-1
table 4-2	BLC control functions	4-2
table 4-3	AVG output information	4-2
table 4-4	MWB control registers	4-2
table 4-5	general color bar selection control	4-5
table 5-1	system control registers	5-1
table 5-2	PLL control registers	5-5
table 5-3	SCCB control registers	5-6
table 5-4	group hold registers	5-6
table 5-5	AEC/AGC registers	5-7
table 5-6	analog control registers	5-8
table 5-7	sensor control registers	5-9
table 5-8	PSRAM registers	5-9
table 5-9	timing control registers	5-9
table 5-10	BLC registers	5-12
table 5-11	frame control registers	5-15
table 5-12	format registers	5-16
table 5-13	CADC sync registers	5-17
table 5-14	VFIFO registers	5-17
table 5-15	MIPI control registers	5-18
table 5-16	ISP registers	5-25

table 5-17	pre-ISP registers	5-27
table 5-18	window registers	5-29
table 5-19	DPC registers	5-30
table 5-20	average registers	5-31
table 6-1	absolute maximum ratings	6-1
table 6-2	functional temperature	6-1
table 6-3	DC characteristics (30° C < TJ < 85° C)	6-2
table 6-4	timing characteristics	6-4
table 6-5	power up sequence timing constraints power up	6-5
table 6-6	power down sequence timing constraints	6-8
table 7-1	package dimensions	7-1
table 7-2	reflow conditions	7-2
table 8-1	CRA versus image height plot	8-2

signal descriptions

table 1-1 lists the signal descriptions and their corresponding pin numbers for the OV2680 image sensor. The package information is shown in section 7.

signal descriptions (1 of 2) table 1-1

	0 1	(= 0)	,	
pin number	signal name	pin type	description	
A1	NC	_	no connect	
A2	AVDD	power	analog power	
A3	DOVDD	power	I/O power	
A4	GPIO	I/O	general purpose I/O	
A5	VSYNC	I/O	video output vertical signal	
A6	XSHUTDN	input	reset and power down (active low with internal pull down resistor)	
A7	DVDD	power	digital circuit power	
A8	NC	-	no connect	
B1	DOGND	ground	I/O ground	
B2	DOGND	power	I/O ground	
В3	DVDD	power	digital circuit power	
B4	DOGND	ground	I/O ground	
B5	DVDD	power	digital circuit power	
B6	FSIN	I/O	frame sync input	
В7	DOVDD	power	I/O power	
B8	AGND	ground	analog ground	
C1	DVDD	power	digital circuit power	
C2	AGND	ground	analog ground	
C3	SIOD	I/O	SCCB interface data	
C4	SIOC	input	SCCB interface input clock	
C5	SID	input	SCCB last bit ID input 0: SCCB ID address = 0x6C 1: SCCB ID address = 0x20	
C6	DOGND	ground	I/O ground	
C7	DOGND	ground	I/O ground	
C8	AVDD	power	analog power	

table 1-1 signal descriptions (2 of 2)

pin number	signal name	pin type	description
D1	XVCLK	input	system clock input
D2	EGND	ground	MIPI ground
D3	EVDD	power	MIPI power
D4	MCN	I/O	MIPI TX clock lane negative output
D5	DOVDD	power	I/O power
D6	DOVDD	power	I/O power
D7	NVDD	reference	analog reference
D8	HVDD	reference	analog reference
E1	DOGND	ground	I/O ground
E2	MDN0	I/O	MIPI TX data lane negative output
E3	EGND	ground	MIPI ground
E4	MCP	I/O	MIPI TX clock lane positive output
E5	DOGND	ground	I/O ground
E6	DOVDD	power	I/O power
E7	DOGND	ground	I/O ground
E8	AGND	ground	analog ground
F1	DVDD	power	digital circuit power
F2	MDP0	I/O	MIPI TX data lane positive output
F3	EVDD	power	MIPI power
F5	PVDD	power	PLL analog power
F6	DVDD	power	digital circuit power
F7	AVDD	power	analog power
F8	NC	_	no connect

pin configuration under various conditions table 1-2

nin number	signal name	XSHUTDN ^a	after XSHUTDN releaseb	software standby ^c
pin number	signal name	VOLIDIA_	alter ASHUTDIN Telease	Software Startuby
A4	GPIO	high-z	input by default (configurable)	input by default (configurable)
A5	VSYNC	high-z	input by default (configurable)	input by default (configurable)
A6	XSHUTDN	input	input	input
B6	FSIN	high-z	input by default (configurable)	input by default (configurable)
C3	SIOD	high-z	input	input
C4	SIOC	high-z	input	input
C5	SID	high-z	input by default (configurable)	input by default (configurable)
D1	XVCLK	input	input	input
D4	MCN	high-z	zero	high by default (configurable)
E2	MDN0	high-z	zero	high by default (configurable)
E4	MCP	high-z	zero	high by default (configurable)
F2	MDP0	high-z	zero	high by default (configurable)

a. XSHUTDN = 0

b. XSHUTDN from 0 to 1

sensor set to sleep from streaming mode

figure 1-1 pin diagram

table 1-3 pad symbol and equivalent circuit (1 of 2)

pad symbol and equivalent circuit (2 of 2) table 1-3

symbol	equivalent circuit
XVCLK	DOGND EN EN
SIOD	PAD From core PD PD popen-drain
SIOC	PAD PD
GPIO, FSIN, VSYNC	DOUT PAD PAD DIN PD DOGND
MCN, MCP, MDN0, MDP0	PAD DOGND DOGND
SID	PAD DOGND DOGND

2 system level description

2.1 overview

The OV2680 color sensor is a low voltage, high performance 1/5 inch UXGA (2 megapixel) CMOS image sensor that provides the full functionality of a single-chip UXGA (1600 x 1200) camera in a small footprint package. It provides full-frame, sub-sampled, or windowed 10-bit images in various formats via the control of the Serial Camera Control Bus (SCCB) interface.

The OV2680 has an image array capable of operating at up to 30 frames per second (fps) in UXGA resolution with complete user control over image quality, formatting and output data transfer. All required image processing functions including exposure control and defective pixel canceling are programmable through the SCCB interface. In addition, OmniVision image sensors use proprietary sensor technology to improve image quality by reducing or eliminating common lighting/electrical sources of image contamination, such as fixed pattern noise, smearing, etc., to produce a clean, fully stable, color image. The OV2680 has a single lane MIPI interface.

2.2 architecture

The OV2680 sensor core generates streaming pixel data at a constant frame rate to a pixel clock of 66 MHz. **figure 2-1** shows the functional block diagram of the OV2680 image sensor.

The timing generator outputs clocks to access the rows of the imaging array, precharging and sampling the rows of the array sequentially. In the time between precharging and sampling a a row, the charge in the pixels decrease with exposure to incident light. This is the exposure time in rolling shutter architecture.

The exposure time is controlled by adjusting the time interval between precharging and sampling. After the data of the pixels in the row has been sampled, it is processed through an analog circuitry to correct the offset and multiply the data with corresponding gain. Following analog processing is the ADC which outputs a 10-bit data for each pixel in the array.

0V2680 image output image sensor core image sensor processor interface column sample/hold black level calibration digital gain MCP 10-bit FIFO МР DSP MCN image array ADC MDP0 MDN0 gain control control register bank SCCB slave interface timing generator and system control logic GPIO SIOC SIOD 2680_DS_2_1

figure 2-1 OV2680 block diagram

Gida

figure 2-2 OV2680 reference design schematic

2680 CSP5 DS 2 2

2.3 video timing overview

The sensor supports the following video timing functions.

- · programmable image size
- image readout order modes horizontal mirror and vertical flip
- variable line length and frame length

A host system can configure and control the OV2680 video timing through video timing register. For details of register control, please refer to the Register Description chapter (see **section 5**).

figure 2-3 video timing overview

2.4 pixel array addresses

The addressable pixel array of the OV2680 sensor is 1616 x 1216. The addressed region of the pixel array is controlled by the horizontal_start, vertical_start, horizontal_end and vertical_end registers. The start and end addresses are limited to even and odd numbers, respectively, to ensure that there is always an even number of pixels read out in x and y.

2.5 mirror and flip

The OV2680 provides mirror and flip readout modes, which respectively reverse the sensor data readout order horizontally and vertically (see figure 2-4).

figure 2-4 standard readout

figure 2-5 horizontally mirrored readout

figure 2-6 vertically flipped readout

figure 2-7 horizontally mirrored vertically flipped readout

table 2-1 image orientation control registers

address	register name	default value	R/W	description
0x3820	FORMAT1	0x00	RW	Bit[2]: Flip ON/OFF select 0: Flip OFF 1: Flip ON
0x3821	FORMAT2	0x00	RW	Bit[2]: Mirror ON/OFF select 0: Mirror OFF 1: Mirror ON

2.6 format and frame rate control

The OV2680 supports frame rate control by variable line length and frame length control. It supports up to 30 frames per second in UXGA resolution. The OV2680 supports 10-bit RAW through a one-lane MIPI interface.

table 2-2 supported resolution and frame rate

format	resolution	max frame rate	methodology	MIPI total bit rate
UXGA	1600x1200	30 fps	full resolution	1-lane @ 660Mbps
1600 HD+	1600x900	30 fps	full resolution (16:9) crop	1-lane @ 660Mbps
SXGA	1280x960	30 fps	cropped 4:3	1-lane @ 660Mbps
720p	1280x720	60 fps	cropped 16:9	1-lane @ 660Mbps
quarter size	800x600	60 fps	2x2 binning/skip	1-lane @ 660Mbps
VGA	640x480	60 fps	crop + 2x2 binning/skip	1-lane @ 660Mbps

2.7 integration time control (electronic shutter control)

Throughout one image, all pixels of the OV2680 integrate light for exactly the same amount of time. This amount of time, the 'integration time', is defined using integer control parameters, integration_time_line. The integration_time_line parameter sets the number of complete sensor line periods of integration time.

table 2-3 integration time registers

address	register name	default value	R/W	description
0x3500~ 0x3502[7:4]	INTEGRATION TIME LINE	0x0020	RW	'Coarse' Integration Time in Unit of Line Period

2.8 black level calibration

The black level calibration can be applied before data is output. The black level calibration block subtracts the average signal level of optical black pixels to compensate for the dark current in the pixel output. The host can disable black level calibration.

2.9 PLL and clock generator

The OV2680 contains phase locked loop (PLL) blocks, which generate all of the necessary internal clocks from the external clock input pad. Contact your local OmniVision FAE for more details.

2.10 MIPI interface

The OV2680 supports a MIPI interface with a data transfer rate of up to 750Mbps. The OV2680 MIPI interface provides a single uni-directional clock lane and one uni-directional data lane to communicate to components in a mobile device. The data lane has full support for high speed (HS) data transfer mode. Contact your local OmniVision FAE for more details

3 image sensor core digital functions

3.1 serial camera control bus (SCCB)

The host can access the registers through the SCCB interface to control the OV2680.

3.1.1 data transfer protocol

The data transfer of the OV2680 follows the SCCB protocol.

3.1.2 message format

The OV2680 supports the message format shown in **figure 3-1**. The 8-bit address of the OV2680 is 0x20 when SID pin is set to 1 or 0x6C when SID pin is set to 0. The repeated START (Sr) condition is not shown in **figure 3-2**, but is shown in **figure 3-3** and **figure 3-4**.

figure 3-1 message type

message type: 16-bit index, 8-bit data, and 8-bit slave address

3.1.3 read / write operation

The OV2680 supports four different read operations and two different write operations:

- a single read from random locations
- · a sequential read from random locations
- a single read from current location
- · a sequential read from current location
- single write to random locations
- · sequential write starting from random location

The index in the sensor automatically increases by one after each read/write operation.

In a single read from random locations, the master does a dummy write operation to desired index, issues a repeated start condition and then addresses the camera again with a read operation. After acknowledging its slave address, the

camera starts to output data onto the SIOD line as shown in **figure 3-2**. The master terminates the read operation by setting a negative acknowledge and stop condition.

figure 3-2 SCCB single read from random location

If the host addresses the camera with read operation directly without the dummy write operation, the camera responds by setting the data from last used index to the SIOD line as shown in **figure 3-3**. The master terminates the read operation by setting a negative acknowledge and stop condition.

figure 3-3 SCCB single read from current location

The sequential read from a random location is illustrated in figure 3-4. The master does a dummy write to the desired index, issues a repeated start condition after acknowledge from slave and addresses the slave again with read operation. If a master issues an acknowledge after receiving data, it acts as a signal to the slave that the read operation shall continue from the next index. When master has read the last data byte, it issues a negative acknowledge and stop condition.

figure 3-4 SCCB sequential read from random location

The sequential read from current location is similar to a sequential read from a random location. The only exception is that there is no dummy write operation. as shown in **figure 3-5**. The master terminates the read operation by setting a negative acknowledge and stop condition.

figure 3-5 SCCB sequential read from current location

The write operation to a random location is illustrated in **figure 3-6**. The master issues a write operation to the slave, sets the index and data correspondingly after the slave has acknowledged. The write operation is terminated with a stop condition from the master.

figure 3-6 SCCB single write to random location

The sequential write is illustrated in figure 3-7. The slave automatically increments the index after each data byte. The sequential write operation is terminated with stop condition from the master.

figure 3-7 SCCB sequential write to random location

figure 3-8 SCCB interface timing

table 3-1 SCCB interface timing specifications ab

symbol	parameter	min	typ	max	unit
f _{SIOC}	clock frequency			400	kHz
t _{LOW}	clock low period	1.3			μs
t _{HIGH}	clock high period	0.6			μs
t _{AA}	SIOC low to data out valid	0.1		0.9	μs
t _{BUF}	t _{BUF} bus free time before new start				μs
t _{HD:STA}	t _{HD:STA} start condition hold time				μs
t _{SU:STA}	start condition setup time	0.6			μs
t _{HD:DAT}	data in hold time	0			μs
t _{SU:DAT}	SU:DAT data in setup time				μs
t _{SU:STO}	$t_{\text{SU:STO}}$ stop condition setup time				μs
t_R , t_F	t _R , t _F SCCB rise/fall times			0.3	μs
t _{DH}	t _{DH} data out hold time				μs

a. SCCB timing is based on 400kHz mode

b. timing measurement shown at the beginning of the rising edge and/or of the falling edge signifies 30%, timing measurement shown in the middle of the rising/falling edge signifies 50%, timing measurement shown at the beginning of the rising edge and/or of the falling edge signifies 70%

3.2 exposure and gain control

In the OV2680, the exposure time and gain are set manually from an external controller. The OV2680 supports manual gain and exposure control only for normal applications, no auto mode.

table 3-2 exposure and gain control functions

function	registers	description		
manual exposure control (integration time)	0x3500~0x3502	manual exposure control[15:12] = 0x3500[3:0] manual exposure control[11:4] = 0x3501[7:0] manual exposure control[3:0] = 0x3502[7:4]		
manual gain control	0x350A~0x350B	manual gain control[10:8] = 0x350A[2:0] manual gain control[7:0] = 0x350B[7:0]		

3.3 general purpose input and output (GPIO)

The OV2680 has one general purpose I/O pin (GPIO) that can be configured to output logic high, output logic low, or high impedance (input mode) by writing to a register via SCCB. The default condition after initial power up is input mode.

table 3-3 GPIO and sensor working modes

GPIO
high-z
high-z
programmable (default input)
programmable

table 3-4 GPIO control functions

function	register	description
input/output control	0x3002	Bit[2]: Input/output control for GPIO 0: Input 1: Output
output logic level	0x300D	Bit[2]: Output value for GPIO
output select	0x3010	Bit[2]: Select general GPIO value through GPIO 0: HREF 1: Programmed logic level

3.4 group write

Group write is supported in order to update a group of registers at the same time. These registers are guaranteed to be written prior to the internal latch at the frame boundary (0x31xx registers will not support group write).

The OV2680 supports up to two groups. These groups share 128 bytes of memory and the size of each group is programmable by adjusting the start address.

table 3-5 group hold control

		8 - 1			
	address	register name	default value	R/W	description
	0x3208	GROUP ACCESS	0x00	RW	Group Access Bit[7:4]: group_ctrl 0000: Group hold start 0001: Group hold end 1010: Group delay launch 1110: Group quick launch Others: Debug mode Bit[3:0]: group_ctrl 0000: Group bank 0, default start from address 0x00 0001: Group bank 1, default start from address 0x00 Others: Debug mode
	0x3209	GRP0_PERIOD	0x00	RW	Frames for Staying in First Group (must be group 0) 0 means always stay in first group
C.	0x320A	GRP1_PERIOD	0x00	RW	Frames for Staying in Second Group 0 means always stay in second group
Cours	0x320B	GRP_SWCTRL	0x01	RW	Bit[7]: Auto switch Bit[3]: group_switch_repeat_en
CiO	0x320D	GRP_ACT	_	R	Indicates Which Group is Active
-5	0x320E	FRAME_CNT_GRP0	_	R	frame_cnt_grp0
	0x320F	FRAME_CNT_GRP1	_	R	frame_cnt_grp1

image sensor processor digital functions

4.1 ISP general controls

The ISP module provides image processor functions, creating the necessary control signals.

ISP top registers table 4-1

address	register name	default value	R/W	descriptio	n
				Bit[7]: Bit[6]: Bit[5]:	Not used awb_gain_en AWB gain function enable signal 0: Disable 1: Enable lcd_en LCD function enable signal 0: Disable
				Bit[4]:	1: Enableavg_enAverage function enable signal0: Disable1: Enable
0x5000	ISP CTRL00	0x1F	RW	Bit[3]:	dgc_en Digital gain compensation enable 0: Disable 1: Enable
	SIC			Bit[2]:	bc_en Black pixel cancellation function enable signal 0: Disable 1: Enable
				Bit[1]:	wc_en White pixel cancellation function enable signal 0: Disable 1: Enable
	90			Bit[0]:	blc_en BLC function enable signal 0: Disable 1: Enable
0x5003	ISP CTRL03	0x00	RW	Bit[7:0]:	bias_man

4.2 black level calibration (BLC)

The OV2680 black level calibration function compensates for dark current to ensure constant output of black level regardless of changes in exposure time, gain, and temperature.

table 4-2 BLC control functions

function	register	description
auto/manual mode	0x4001	Bit[4]: BLC manual mode 0: Auto mode 1: Manual mode
target	0x4002 ~ 0x4003	Black target to be achieved {0x4002[1:0], 0x4003[7:0]}
blacklevel B manual offset	0x4030 ~ 0x4031	BLCBMOffs[10:0] = {0x4030[2:0], 0x4031[7:0]}
blacklevel Gb manual offset	0x4032 ~ 0x4033	BLCGBMOffs[10:0] = {0x4032[2:0], 0x4033[7:0]}
blacklevel Gr manual offset	0x4034 ~ 0x4035	BLCGRMOffs[10:0] = {0x4034[2:0], 0x4035[7:0]}
blacklevel R manual offset	0x4036 ~ 0x4037	BLCRMOffs[10:0] = {0x4036[2:0], 0x4037[7:0]}

4.3 average algorithms

The OV2680 average module uses raw data as input data for calculation. Based on the start address and the horizontal and vertical window size, the selected area will be used as 16 zones to calculate the average value of the image.

table 4-3 AVG output information

function	register	description
average	0x5913	Bit[7:0]: average[7:0]

4.4 manual white balance (MWB)

The OV2680 MWB function provides digital gain for R, G, and B channels. Each channel gain is 12-bit. 0x400 is 1x gain.

table 4-4 MWB control registers (1 of 2)

address	register name	default value	R/W	description
0x5004	MWB RED GAIN	0x04	RW	Bit[3:0]: AWB red gain[11:8]
0x5005	MWB RED GAIN	0x00	RW	Bit[7:0]: AWB red gain[7:0]

table 4-4 MWB control registers (2 of 2)

address	register name	default value	R/W	description
0x5006	MWB GRN GAIN	0x04	RW	Bit[3:0]: AWB green gain[11:8]
0x5007	MWB GRN GAIN	0x00	RW	Bit[7:0]: AWB green gain[7:0]
0x5008	MWB BLU GAIN	0x04	RW	Bit[3:0]: AWB blue gain[11:8]
0x5009	MWB BLU GAIN	0x00	RW	Bit[7:0]: AWB blue gain[7:0]

4.5 test pattern

For testing purposes, the OV2680 offers three types of test patterns: color bar, square, and random data.

Also, the OV2680 offers two effects: transparent effect and rolling bar effect.

The output type of test pattern is controlled by the test_pattern_type register (0x5080[1:0]).

4.5.1 color bar

There are four types of color bars (see figure 4-1), which can be switched using the bar_style register (0x5080[3:2]).

figure 4-1 color bar test patterns

4.5.2 square

There are two types of square patterns (see **figure 4-2**): color square and black-white square. The square_mode register (0x5080[4]) determines which type of square pattern will be output. This works only when register 0x5080[1:0] = 2'b10.

figure 4-2 square test patterns

4.5.3 random data

There are two types of random data test pattern: frame-changing and frame-fixed random data. The output type of random data is determined by the same_seed_en register (0x5081[4]). The random seed is set by the seed register (0x5081[3:0]).

4.5.4 transparent effect

The transparent effect is enabled by the transparent_en register (0x5080[5]). If this register is set, the transparent test pattern will be output. **figure 4-3** shows an example of a transparent color bar image.

figure 4-3 transparent effect

4.5.5 rolling bar effect

The rolling bar is set by the rolling_bar_en register (0x5080[6]). If this register bit is set, an inverted-color rolling bar will roll from top to bottom of the color bar pattern. figure 4-4 shows an example of a rolling bar on a color bar image.

figure 4-4 rolling bar effect

table 4-5 general color bar selection control

address	register name	default value	R/W	description
0x5080	PRE ISP CTRL00	0x00	RW	Bit[7]: test_en Test enable 0: Disable test function 1: Enable test function Bit[6]: rolling_bar_en 0: Disable rolling bar function 1: Enable rolling bar function Bit[5]: transparent_en 0: Disable transparent effect function 1: Enable transparent effect function Bit[4]: square_mode 0: Color square 1: Black-white square Bit[3:2]: color_bar_style 00: Standard color bar 10: Right-left darker color bar 11: Bottom-top darker color bar Bit[1:0]: test_mode 00: Color bar 01: Random data 10: Square 11: Black image
0x5081	PRE ISP CTRL01	0x41	RW	Bit[4]: same_seed_en When this bit is set, the seed used to generate the random data is the same as what is set in the seed register Bit[3:0]: seed This is the seed used in generating the random data

5 register tables

The following tables provide descriptions of the device control registers contained in the OV2680. For all register enable/disable bits, enable = 1 and DISABLE = 0. The 8-bit device slave address is 0x20 when SID pin is set to 1 or 0x6C when SID pin is set to 0.

5.1 system control [0x0100, 0x0103, 0x3002, 0x300A - 0x3034]

table 5-1 system control registers (1 of 4)

address	register name	default value	R/W	description
0x0100	STREAM CTRL	0x00	RW	Bit[7:1]: Not used Bit[0]: Mode select 0: software_standby 1: Streaming
0x0103	SOFT RESET	-	W	Bit[7:1]: Not used Bit[0]: software_reset
0x3002	PAD OEN	0x6C	RW	Bit[3]: Reserved Bit[2]: io_gpio0_oen Bit[1]: io_vsync_oen Bit[0]: io_fsin_oen
0x300A	CHIP ID	0x26	R	Bit[7:0]: chip_id[23:16]
0x300B	CHIP ID	0x80	R	Bit[7:0]: chip_id[15:8]
0x300C	CHIP ID	0x00	R	Bit[7:0]: chip_id[7:0]
0x300D	PAD OUT2	0x00	RW	Bit[3]: Reserved Bit[2]: io_gpio0_o Bit[1]: io_vsync_o Bit[0]: io_fsin_o
0x3010	PAD SEL2	0x00	RW	Bit[3]: Reserved Bit[2]: io_gpio0_sel Bit[1]: io_vsync_sel Bit[0]: io_fsin_sel
0x3011	PAD	0x02	RW	Bit[7]: pd_ana Bit[6]: pd_pwc Bit[5:3]: Not used Bit[1:0]: ip2x3v[3:0]

table 5-1 system control registers (2 of 4)

table 5 1	System control	registers (2)	31 1)		
address	register name	default value	R/W	descriptio	n
0x3016	MIPI PHY	0x10	RW	Bit[5:4]: Bit[3]: Bit[2]:	pgm_lph pgm_lptx[1:0] Driving strength of low speed transmitter bp_c_hs_en_lat bp_d_hs_en_lat Bypass latch of hs_enable ictl[1:0] Bias current adjustment
0x3017	MIPI PHY	0x00	RW	Bit[3:2]:	pgm_vcm[1:0] High speed common mode voltage Not used d0_skew ck_skew
0x3018	MIPI SC CTRL	0x44	RW	Bit[7:5]: Bit[4]: Bit[3:2]: Bit[1]: Bit[0]:	Not used r_phy_pd_mipi 1: Power down PHY HS TX mipi_bit_sel 00: 8-bit mode 01: 10-bit mode 10: 12-bit mode 11: Reserved mipi_lane_dis mipi_pad_o
0x3019	MIPI SC CTRL	0x40	RW	Bit[7:0]:	mipi_sc_ctrl[7:0] MIPI ULPS resume mark1 detect length
0x301A	CLKRST0	0xF0	RW	Bit[7]: Bit[6]: Bit[5]: Bit[4]: Bit[3]: Bit[2]: Bit[1]: Bit[0]:	Not used sclk_psram sclk_aec sclk_tc mipi_phy_rst_o rst_psram rst_aec rst_tc
0x301B	CLKRST1	0xF0	RW	Bit[7]: Bit[6]: Bit[5]: Bit[4]: Bit[3]: Bit[2]: Bit[1]: Bit[0]:	sclk_blc sclk_isp sclk_avg sclk_vfifo rst_blc rst_isp rst_avg rst_vfifo

table 5-1 system control registers (3 of 4)

address	register name	default value	R/W	description
0x301C	CLKRST2	0xF0	RW	Bit[7]: pclk_dvp Bit[6]: sclk_mipi Bit[5]: sclk_sync Bit[4]: sclk_asram_tst Bit[3]: rst_dvp Bit[2]: rst_mipi Bit[1]: rst_sync Bit[0]: rst_asram_tst
0x301D	CLKRST3	0xF0	RW	Bit[7]: sclk_fc Bit[6]: sclk_grp Bit[5]: sclk_bist Bit[4]: daclk_sel0 Bit[3]: rst_fc Bit[2]: rst_grp Bit[1]: rst_bist Bit[0]: rst_ac
0x301E	CLKRST4	0xF0	RW	Bit[7]: sdclk_sd Bit[6]: padclk_mipi_sc Bit[5]: pclk_vfifo Bit[4]: pclk_mipi Bit[3]: rst_sd Bit[2]: rst_mipi_sc Bit[1:0]: Not used
0x301F	FREX RST MASK0	0x00	RW	Bit[7]: frex_mask_aec Bit[6]: frex_mask_blc Bit[5]: frex_mask_isp Bit[4]: frex_mask_dvp Bit[3]: frex_mask_mipi Bit[2]: frex_mask_vifio Bit[1]: frex_mask_avg Bit[0]: frex_mask_mipi_phy
0x3020	CLOCK SEL	0x00	RW	Bit[5]: yuv_out_en 0: Output RAW data Bit[3]: pclk_sel Bit[2]: auto_rst_mipiphy_disable Bit[1]: auto_pwd_mipiphy_disable Bit[0]: sclk2x_sel

table 5-1 system control registers (4 of 4)

address	register name	default value	R/W	descriptio	n
0x3021	MISC CTRL	0x03	RW	Bit[5]: Bit[4]: Bit[3]: Bit[2]: Bit[1]: Bit[0]:	fst_stby_ctr 0: Software standby enter at v_bl 1: Software standby enter at l_bll mipi_ctr_en 0: Disable function 1: Enable MIPI remote reset and suspend control SC mipi_rst_sel 0: MIPI remote reset all registers 1: MIPI remote reset all digital modules gpio_pclk_en frex_ef_sel cen_global_o
0x302A	SUB ID	0xF0	R	Bit[7:4]: Bit[3:0]:	
0x302B	CTRL43	0x6C	RW	Bit[7:0]:	sccb_id When SID is 0
0x3030	REG30	0x88	RW	Bit[7]: Bit[6]: Bit[5:4]: Bit[3]: Bit[2:0]:	mask_daclk
0x3031	REG31	0x55	RW	Bit[7]: Bit[6:4]: Bit[3]: Bit[2:0]:	Not used
0x3032	REG32	0x90	RW	Bit[7:0]:	sccb_id2
0x3033	REG33 CTRL	0x20	RW	Bit[7:0]:	sccb_id When SID is 1
0x3034	IO PAD	-	R	Bit[2]: Bit[1]: Bit[0]:	p_fsin_i p_vsync_i p_gpio0_i

5.2 PLL control [0x3080 - 0x3088]

PLL control registers table 5-2

address	register name	default value	R/W	description
0x3080	PLL PREDIV	0x02	RW	Bit[7:3]: Not used Bit[2:0]: pll_prediv[2:0]
0x3081	PLL MULTIPLIER	0x00	RW	Bit[7:1]: Not used Bit[0]: pll_multiplier[8]
0x3082	PLL MULTIPLIER	0x37	RW	Bit[7:0]: pll_multiplier[7:0]
0x3083	PLL MIPI DIV	0x03	RW	Bit[7:2]: Not used Bit[1:0]: pll_mipi_div[1:0]
0x3084	PLL SYS CLK DIV	0x09	RW	Bit[7:4]: Not used Bit[3:0]: pll_sys_clk_div[3:0]
0x3085	PLL DAC DIV	0x04	RW	Bit[7:4]: Not used Bit[3:0]: pll_dac_div[3:0]
0x3086	PLL SP DIV	0x00	RW	Bit[7:4]: Not used Bit[3:0]: pll_sp_div[3:0]
0x3087	PLL LANE DIV	0x00	RW	Bit[7:2]: Not used Bit[1:0]: pll_lane_div[1:0]
0x3088	PLL CTRL	0x01	RW	Bit[7]: pll_rst Bit[6]: pll_bypass Bit[5]: pll_freq_sel Bit[4]: pll_pre_div0 Bit[2:0]: pll_cp

5.3 SCCB control [0x3100 - 0x3106]

table 5-3 SCCB control registers

address	register name	default value	R/W	description
0x3100	SCCB CTRL	0x00	RW	Bit[3]: r_sda_dly_en Bit[2:0]: r_sda_dly
0x3101	SCCB OPT	0x12	RW	Bit[4]: en_ss_addr_inc Bit[3]: r_sda_byp_sync 0: Two clock stage sync for sda_i 1: No sync for sda_i Bit[2]: r_scl_byp_sync 0: Two clock stage sync for scl_i 1: No sync for scl_i Bit[1]: r_msk_glitch Bit[0]: r_msk_stop
0x3102	SCCB FILTER	0x00	RW	Bit[7:4]: r_sda_num Bit[3:0]: r_scl_num
0x3105	CTRL5	0x10	RW	Bit[5]: sclk use p_clk_i Bit[4]: sleep_en
0x3106	CTRL6	0x01	RW	Bit[3:2]: sclk_div_opt Bit[1]: rst_arb Bit[0]: byp_arb

5.4 group hold [0x3200 - 0x320F]

table 5-4 group hold registers (1 of 2)

address	register name	default value	R/W	description
0x3200	GROUP ADR0	0x00	RW	Bit[7:3]: Not used Bit[2:0]: group_adr0[2:0]
0x3201	GROUP ADR1	0x10	RW	Bit[7:3]: Not used Bit[2:0]: group_adr1[2:0]
0x3202	GROUP ADR2	0x20	RW	Bit[7:3]: Not used Bit[2:0]: group_adr2[2:0]
0x3203	GROUP ADR3	0x30	RW	Bit[7:3]: Not used Bit[2:0]: group_adr3[2:0]

table 5-4 group hold registers (2 of 2)

address	register name	default value	R/W	description
0x3204	CTRL4	_	W	Bit[7:0]: Ctrl4
0x3205	CTRL5	_	W	Bit[7:0]: Ctrl5
0x3206	CTRL6	_	W	Bit[7:0]: Ctrl6
0x3207	CTRL7	_	W	Bit[7:0]: Ctrl7
0x3208	GROUP ACCESS	0x01	W	Bit[7:4]: group_ctrl 0000: Group hold start 0001: Group hold end 1010: Group launch Others: Reserved Bit[3:0]: group_id 0000: Group bank 0, default start from address 0x00 0001: Group bank 1, default start from address 0x00 Others: Reserved
0x3209	GRP0	0x00	RW	Bit[7:0]: grp0 Frames for staying in grp0
0x320A	GRP1	0x00	RW	Bit[7:0]: grp1 Frames for staying in grp1
0x320B	GRP SWCTRL	0x01	RW	Bit[7]: auto_sw Bit[4]: Not used Bit[3]: group_switch_repeat Bit[2]: context_en Bit[1:0]: Second group selection
0x320D	GRP ACT	_	R	Bit[7:0]: grp_act Indicates which group is active
0x320E	CTRL14	_	R	Bit[7:0]: frm_cnt_grp0
0x320F	CTRL15	_	R	Bit[7:0]: frm_cnt_grp1

5.5 AEC/AGC [0x3500 - 0x3513]

AEC/AGC registers (1 of 2) table 5-5

address	register name	default value	R/W	description
0x3500	EXPO PK	0x00	RW	Bit[7:4]: Not used Bit[3:0]: expo_pk[19:16]
0x3501	EXPO PK	0x02	RW	Bit[7:0]: expo_pk[15:8]

table 5-5 AEC/AGC registers (2 of 2)

	, 0 (,		
address	register name	default value	R/W	description
0x3502	EXPO PK	0x00	RW	Bit[7:0]: expo_pk[7:0]
0x3503	R MANUAL	0x00	RW	Bit[7:6]: Not used Bit[5]: Gain delay option 0: 1 frame latch 1: Delay 1 frame latch Bit[4]: Choose delay option 0: Delay disable 1: Delay enable Bit[3]: gain_change_delay Bit[2]: vts_manual Bit[1]: agc_manual Bit[0]: aec_manual
0x3504	MAN GAIN SNR	0x00	RW	Bit[7:2]: Not used Bit[1:0]: man_gain_snr[9:8]
0x3505	MAN GAIN SNR	0x00	RW	Bit[7:0]: man_gain_snr[7:0]
0x3509	R CTRL9	0x10	RW	Bit[7:5]: Not used Bit[4]: convert_en Bit[3]: gain_man_en Bit[2:0]: Not used
0x350A	GAIN PK	0x00	RW	Bit[7:3]: Not used Bit[2:0]: gain_pk[10:8]
0x350B	GAIN PK	0x10	RW	Bit[7:0]: gain_pk[7:0]
0x3510	PK GAIN O	_	R	Bit[7:2]: Not used Bit[1:0]: pk_gain_o[9:8]
0x3511	PK GAIN O	_	R	Bit[7:0]: pk_gain_o[7:0]
0x3512	SNR GAIN	_	R	Bit[7:2]: Not used Bit[1:0]: snr_gain[9:8]
0x3513	SNR GAIN	-	R	Bit[7:0]: snr_gain[7:0]

0x3513 SNR GAIN – 5.6 analog control [0x3600 ~ 0x362A]

table 5-6 analog control registers

address	register name	default value	R/W	description
0x3600~ 0x362A	ANALOG CONTROL	-	-	Analog Control Registers

5.7 sensor control [0x3700 - 0x373F]

table 5-7 sensor control registers

address	register name	default value	R/W	description
0x3700~ 0x373F	SENSOR CONTROL	-	-	Sensor Control Registers

5.8 PSRAM [0x3780 - 0x3798]

PSRAM registers table 5-8

address	register name	default value	R/W	description
0x3780~ 0x3798	PSRAM CONTROL	- 💉	-0	PSRAM Control Registers

5.9 timing control [0x3800 - 0x383D]

timing control registers (1 of 4) table 5-9

address	register name	default value	R/W	description
0x3800	X ADDR START	0x00	RW	Bit[7:0]: x_addr_start[15:8] Array horizontal start point high byte
0x3801	X ADDR START	0x00	RW	Bit[7:0]: x_addr_start[7:0] Array horizontal start point low byte
0x3802	Y ADDR START	0x00	RW	Bit[7:0]: y_addr_start[15:8] Array vertical start point high byte
0x3803	Y ADDR START	0x00	RW	Bit[7:0]: y_addr_start[7:0] Array vertical start point low byte
0x3804	X ADDR END	0x06	RW	Bit[7:0]: x_addr_end[15:8] Array horizontal end point high byte
0x3805	X ADDR END	0x4F	RW	Bit[7:0]: x_addr_end[7:0] Array horizontal end point low byte
0x3806	Y ADDR END	0x04	RW	Bit[7:0]: y_addr_end[15:8] Array vertical end point high byte

table 5-9 timing control registers (2 of 4)

	address	register name	default value	R/W	description	n
	0x3807	Y ADDR END	0xBF	RW	Bit[7:0]:	y_addr_end[7:0] Array vertical end point low byte
	0x3808	X OUTPUT SIZE	0x06	RW	Bit[7:0]:	x_output_size[15:8] ISP horizontal output width high byte
	0x3809	X OUTPUT SIZE	0x40	RW	Bit[7:0]:	x_output_size[7:0] ISP horizontal output width low byte
	0x380A	Y OUTPUT SIZE	0x04	RW	Bit[7:0]:	y_output_size[15:8] ISP vertical output height high byte
	0x380B	Y OUTPUT SIZE	0xB0	RW	Bit[7:0]:	y_output_size[7:0] ISP vertical output height low byte
	0x380C	HTS	0x06	RW	Bit[7:0]:	HTS[15:8] Total pixels per line high byte
	0x380D	HTS	0xA4	RW	Bit[7:0]:	HTS[7:0] Total pixels per line low byte
	0x380E	VTS	0x05	RW	Bit[7:0]:	VTS[15:8] Total lines per frame high byte
	0x380F	VTS	0x0E	RW	Bit[7:0]:	VTS[7:0] Total lines per frame low byte
	0x3810	ISP X WIN	0x00	RW	Bit[7:0]:	isp_x_win[15:8] ISP horizontal windowing offset high byte
×	0x3811	ISP X WIN	0x08	RW	Bit[7:0]:	isp_x_win[7:0] ISP horizontal windowing offset low byte
	0x3812	ISP Y WIN	0x00	RW	Bit[7:0]:	isp_y_win[15:8] ISP vertical windowing offset high byte
	0x3813	ISP Y WIN	0x08	RW	Bit[7:0]:	isp_y_win[7:0] ISP vertical windowing offset low byte
Cida	0x3814	X INC	0x11	RW	Bit[7:4]: Bit[3:0]:	x_odd_inc x_even_inc
	0x3815	Y INC	0x11	RW	Bit[7:4]: Bit[3:0]:	y_odd_inc y_even_inc
	0x3816	VSYNC START ROW	0x00	RW	Bit[7:0]:	vsync_start_row[15:8]
	0x3817	VSYNC START ROW	0x00	RW	Bit[7:0]:	vsync_start_row[7:0]
	0x3818	VSYNC END ROW	0x00	RW	Bit[7:0]:	
	0x3819	VSYNC END ROW	0x04	RW	Bit[7:01:	vsync_end_row[7:0]
				-	[].	,

timing control registers (3 of 4) table 5-9

address	register name	default value	R/W	description
0x3820	FORMAT1	0xC0	RW	Bit[7]: vsub48_blc Bit[6]: vflip_blc Bit[5:3]: Not used Bit[2]: vflip Bit[1]: vbinf Bit[0]: Not used
0x3821	FORMAT2	0x00	RW	Bit[7:4]: Not used Bit[3]: manual format configuration Bit[2]: mirror Bit[1]: ASRAM readout pixel order Bit[0]: hbin
0x3822	REG22	0x46	RW	Bit[7:5]: addr0_num[3:1] Bit[4:0]: ablc_num[5:1]
0x3823	REG23	0x00	RW	Bit[7]: r_disable_vref_rst Bit[6]: ext_vs_re Bit[5]: ext_vs_en Bit[4]: r_init_man Bit[3]: r_fix_cnt_en Bit[2:0]: ablc_adj
0x3824	CS RST FSIN	0x00	RW	Bit[7:0]: cs_rst_fsin[15:8] CS reset value high byte at vs_ext
0x3825	CS RST FSIN	0x10	RW	Bit[7:0]: cs_rst_fsin[7:0] CS reset value low byte at vs_ext
0x3826	R RST FSIN	0x00	RW	Bit[7:0]: r_rst_fsin[15:8] R reset value high byte at vs_ext
0x3827	R RST FSIN	0x00	RW	Bit[7:0]: r_rst_fsin[7:0] R reset value low byte at vs_ext
0x3828	FVTS	0x00	RW	Bit[7:0]: fvts[15:8] Fractional vertical timing size high byte
0x3829	FVTS	0x00	RW	Bit[7:0]: fvts[7:0] Fractional vertical timing size low byte
0x382A	REG2A	0x00	RW	Bit[7:5]: Not used Bit[4]: frame_insert Bit[3]: vts_auto_en Bit[1:0]: href_w
0x382B	REG2B	0x02	RW	Bit[7:5]: Not used Bit[4:0]: grp_wr_start Set value at least larger than zline_number + 1

table 5-9 timing control registers (4 of 4)

address	register name	default value	R/W	description
0x382C	REG2C	0xC5	RW	Bit[7]: isp_x_win_auto Bit[6]: isp_y_win_auto Bit[5]: Not used Bit[4:0]: tc_r_int_adj
0x382D	REG2D	0x00	RW	Bit[7:2]: Not used Bit[1]: vsync_polarity Bit[0]: first_frame_begin_dis
0x382F	REG2F	0x0D	RW	emb_start_adj
0x3831	GAIN ADJ	0x00	RW	Bit[7]: pregain_man_en Bit[6]: pregain_ctrl_8x Bit[5]: pregain_ctrl_4x Bit[4]: pregain_ctrl_2x Bit[3]: gain_use_aecpk 0: Use mapping gain 1: Use aec_pk_gain Bit[2:0]: Not used
0x383C	VSYNC CS POINT	0x00	RW	Bit[7:0]: VSYNC fine start point[15:8]
0x383D	VSYNC CS POINT	0x01	RW	Bit[7:0]: VSYNC fine start point[7:0]

5.10 BLC [0x4000 - 0x4047]

table 5-10 BLC registers (1 of 4)

	address	register name	default value	R/W	description
	0x4000	BLC CTRL00	0x01	RW	Bit[7:4]: avg_weight Bit[3]: target_adj_dis Bit[2]: cmp_en Bit[1]: dither_en Bit[0]: mf_en
	0x4001	BLC CTRL01	0x40	RW	Bit[7]: gain_trig_beh Bit[6]: format_trig_beh Bit[5]: kcoef_man_en Bit[4]: off_man_en Bit[3]: zero_ln_out_en Bit[2]: blk_ln_out_en Bit[1:0]: byp_mode
-	0x4002	BLK LVL TARGET	0x00	RW	Bit[7:2]: Not used Bit[1:0]: blk_lvl_target[9:8] blk_lvl_target high 2 bits

table 5-10 BLC registers (2 of 4)

address	register name	default value	R/W	description	1
0x4003	BLK LVL TARGET	0x10	RW	Bit[7:0]:	blk_lvl_target[7:0] blk_lvl_target low 8 bits
0x4004	HWIN OFF	0x00	RW		Not used hwin_off[11:8] hwin_off high 4 bits
0x4005	HWIN OFF	0x02	RW	Bit[7:0]:	hwin_off[7:0] hwin_off low 8 bits
0x4006	HWIN PAD	0x00	RW	Bit[7:4]: Bit[3:0]:	Not used hwin_pad[11:8] hwin_pad high 4 bits
0x4007	HWIN PAD	0x02	RW		hwin_pad[7:0] hwin_pad low 8 bits
0x4008	BLC CTRL08	0x00	RW	Bit[7:0]:	bl_start
0x4009	BLC CTRL09	0x0B	RW	Bit[7:0]:	bl_end
0x400A	OFF LIM TH	0x02	RW	Bit[7:0]:	off_lim_th[15:8] off_lim_th high 8 bits
0x400B	OFF LIM TH	0x00	RW	Bit[7:0]:	off_lim_th[7:0] off_lim_th low 8 bits
0x4010	BLC CTRL10	0xF0	RW	Bit[7]: Bit[6]: Bit[5]: Bit[4]: Bit[3]: Bit[2]: Bit[1]: Bit[0]:	off_trig_en gain_chg_trig_en fmt_chg_trig_en rst_trig_en man_avg_en man_trig off_frz_en off_always_up
0x4011	BLC CTRL11	0xFF	RW	Bit[4]: Bit[3]: Bit[2]: Bit[1]:	r_qoption_en off_chg_mf_en fmt_chg_mf_en gain_chg_mf_en rst_mf_mode off_chg_mf_mode fmt_chg_mf_mode gain_chg_mf_mode
0x4012	BLC CTRL12	0x08	RW	Bit[5:0]:	rst_trig_fn
0x4013	BLC CTRL13	0x02	RW	Bit[5:0]:	fmt_trig_fn
0x4014	BLC CTRL14	0x02	RW	Bit[5:0]:	gain_trig_fn
0x4015	BLC CTRL15	0x02	RW	Bit[5:0]:	off_trig_fn

table 5-10 BLC registers (3 of 4)

100100	220.08(300.3)	,			
addres	s register name	default value	R/W	descriptio	n
0x4016	OFF TRIG TH	0x00	RW		Not used off_trig_th[9:8] off_trig_th high 2 bits
0x4017	OFF TRIG TH	0x04	RW	Bit[7:0]:	off_trig_th[7:0] off_trig_th low 8 bits
0x4020	BLC CTRL20	0x00	RW	Bit[5:0]:	off_cmp_th000
0x4021	BLC CTRL21	0x00	RW	Bit[5:0]:	off_cmp_k000
0x4022	BLC CTRL22	0x00	RW	Bit[5:0]:	off_cmp_th001
0x4023	BLC CTRL23	0x00	RW	Bit[5:0]:	off_cmp_k001
0x4024	BLC CTRL24	0x00	RW	Bit[5:0]:	off_cmp_th010
0x4025	BLC CTRL25	0x00	RW	Bit[5:0]:	off_cmp_k010
0x4026	BLC CTRL26	0x00	RW	Bit[5:0]:	off_cmp_th011
0x4027	BLC CTRL27	0x00	RW	Bit[5:0]:	off_cmp_k011
0x4030	OFF MAN000	0x00	RW	Bit[7:2]: Bit[1:0]:	Not used off_man000[9:8] off_man000 high 2 bits
0x4031	OFF MAN000	0x00	RW	Bit[7:0]:	off_man000[7:0] off_man000 low 8 bits
0x4032	OFF MAN001	0x00	RW	Bit[7:2]: Bit[1:0]:	Not used off_man001[9:8] off_man001 high 2 bits
0x4033	OFF MAN001	0x00	RW	Bit[7:0]:	off_man001[7:0] off_man001 low 8 bits
0x4034	OFF MAN010	0x00	RW	Bit[7:2]: Bit[1:0]:	Not used off_man010[9:8] off_man010 high 2 bits
0x4035	OFF MAN010	0x00	RW	Bit[7:0]:	off_man010[7:0] off_man010 low 8 bits
0x4036	OFF MAN011	0x00	RW		Not used off_man011[9:8] off_man011 high 2 bits
0x4037	OFF MAN011	0x00	RW	Bit[7:0]:	off_man011[7:0] off_man011 low 8 bits
0x4040	BLC OFFSET000	_	R	Bit[7:2]: Bit[1:0]:	Not used blc_offset000[9:8] blc_offset000 high 2 bits

BLC registers (4 of 4) table 5-10

address	register name	default value	R/W	description
0x4041	BLC OFFSET000	_	R	Bit[7:0]: blc_offset000[7:0] blc_offset000 low 8 bits
0x4042	BLC OFFSET001	-	R	Bit[7:2]: Not used Bit[1:0]: blc_offset001[9:8] blc_offset001 high 2 bits
0x4043	BLC OFFSET001	-	R	Bit[7:0]: blc_offset001[7:0] blc_offset001 low 8 bits
0x4044	BLC OFFSET010	-	R	Bit[7:2]: Not used Bit[1:0]: blc_offset010[9:8] blc_offset010 high 2 bits
0x4045	BLC OFFSET010	-	R	Bit[7:0]: blc_offset010[7:0] blc_offset010 low 8 bits
0x4046	BLC OFFSET011	-	R	Bit[7:2]: Not used Bit[1:0]: blc_offset011[9:8] blc_offset011 high 2 bits
0x4047	BLC OFFSET011	- X	R	Bit[7:0]: blc_offset011[7:0] blc_offset011 low 8 bits

5.11 frame control [0x4200 - 0x4207]

frame control registers table 5-11

address	register name	default value	R/W	description
0x4200	R0	0x00	RW	Bit[2]: fcnt_eof_sel Bit[1]: fcnt_mask_dis Bit[0]: fcnt_reset
0x4201	R1	0x00	RW	Bit[3:0]: frame_on_number
0x4202	R2	0x00	RW	Bit[3:0]: frame_off_number
0x4203	R3	0x00	RW	Bit[6]: rblue_mask_dis Bit[5]: data_mask_dis Bit[4]: valid_mask_dis Bit[3]: href_mask_dis Bit[2]: eof_mask_dis Bit[1]: sof_mask_dis Bit[0]: all_mask_dis
0x4207	R7	_	R	Bit[7:0]: frame_counter

5.12 format [0x4300 - 0x430F]

table 5-12 format registers

	address	register name	default value	R/W	descriptio	n
	0x4300	CTRL0	0xFF	RW	Bit[7:0]:	clip_max[9:2]
	0x4301	CTRL1	0x00	RW	Bit[7:0]:	clip_min[9:2]
	0x4302	CLIP LO	0x0C	RW	Bit[7:4]: Bit[3:2]: Bit[1:0]:	
	0x4303	FORMAT CTRL3	0x00	RW	Bit[7]: Bit[6]: Bit[5]: Bit[4]: Bit[3]: Bit[2]: Bit[1:0]:	r_inc_en r_inc_pattern r_pad_lsb r_bar_mux r_bar_en r_isp_bypass Not used
	0x4304	FORMAT CTRL4	0x08	RW	Bit[6:4]: Bit[3]: Bit[2:0]:	data_bit_swap tst_full_win bar_pad
	0x4305	PAD LOW1	0x40	RW	Bit[7:6]: Bit[5:4]: Bit[3:2]: Bit[1:0]:	pad66 pad33
	0x4306	PAD LOW2	0x0E	RW	Bit[3:2]: Bit[1:0]:	•
	0x4307	REG7	0x31	RW	Bit[7:0]:	Not used
	0x4308	TST X START HIGH	0x00	RW	Bit[2:0]:	tst_x_start[10:8]
	0x4309	TST X START LOW	0x00	RW	Bit[7:0]:	tst_x_start[7:0]
	0x430A	TST Y START HIGH	0x00	RW	Bit[2:0]:	tst_y_start[10:8]
	0x430B	TST Y START LOW	0x00	RW	Bit[7:0]:	tst_y_start[7:0]
>	0x430C	TST WIDTH HIGH	0x00	RW	Bit[2:0]:	tst_width[10:8]
	0x430D	TST WIDTH LOW	0x00	RW	Bit[7:0]:	tst_width[7:0]
	0x430E	TST HIGHT HIGH	0x00	RW	Bit[3:0]:	tst_height[11:8]

5.13 CADC sync [0x4500 - 0x4504]

table 5-13 CADC sync registers

address	register name	default value	R/W	description
0x4500	CTRL	0x45	RW	Bit[7:4]: FIFO read delay Bit[3:1]: chn_man Bit[0]: srclk_inv
0x4501	R1	0x0D	RW	Bit[7]: byp_sync_fifo Bit[6:5]: Not used Bit[4]: Disable gray to binary conversion Bit[3]: hbin_avg 0: Sum mode hbin 1: Average mode hbin Bit[2]: hbin_en Bit[1:0]: rawout_sw
0x4503	R3	0x00	RW	Bit[7:2]: Not used Bit[1:0]: output_data_shft 00: Normal 01: Left shift 1 bit 10: Left shift 2 bits 11: Left shift 3 bits
0x4504	R4	0x01	RW	Bit[7:2]: Not used Bit[1:0]: array_max_hsub

5.14 VFIF0 [0x4600 - 0x4604]

address	register name	default value	R/W	descriptio	n
0x4600	R VFIFO READ START	0x00	RW	Bit[7:0]:	r_vfifo_read_start[15:8] read_start size high byte
0x4601	R VFIFO READ START	0x10	RW	Bit[7:0]:	r_vfifo_read_start[7:0] read_start size low byte
0x4602	R2	0x00	RW	Bit[7:4]: Bit[3]: Bit[2]: Bit[1]: Bit[0]:	r_rm r_test1 Not used Frame reset enable RAM bypass enable
0x4603	R3	0x01	RW	Bit[4]: Bit[1:0]:	man_start_mode start_offseet

table 5-14 VFIFO registers (2 of 2)

address	register name	default value	R/W	description
0x4604	R4	-	R	Bit[3]: ram_full Bit[2]: ram_empty Bit[1]: fo_full Bit[0]: fo_empty

5.15 MIPI control [0x4800 - 0x484F]

table 5-15 MIPI control registers (1 of 7)

	address	register name	default value	R/W	description
	0x4800	MIPI CTRL00	0x04	RW	Bit[7:6]: Not used Bit[5]: gate_sc_en 0: Clock lane is free running 1: Gate clock lane when no packet to transmit Bit[4]: line_sync_en 0: Do not send line short packet for each line 1: Send line short packet for each line Bit[2:0]: Not used
Colui	0x4801	MIPI CTRL01	0x00	RW	Bit[6]: spkt_dt_sel 1: Use dt_spkt as short packet data Bit[5]: first_bit Change clk_lane first bit 0: Output 8'h05 1: Output 8'hAA Bit[4]: Not used Bit[1]: LPX_select for pclk domain 0: Auto calculate t_lpx_p, unit pclk2x cycle 1: Use lpx_p_min[7:0] Bit[0]: Not used

table 5-15 MIPI control registers (2 of 7)

address	register name	default value	R/W	description
				Bit[7]: hs_prepare_sel 0: Auto calculate T_hs_prepare, unit pclk2x 1: Use hs_prepare_min_o[7:0] Bit[6]: clk_prepare_sel 0: Auto calculate T_clk_prepare, unit pclk2x
				1: Use clk_prepare_min_o[7:0] Bit[5]: clk_post_sel 0: Auto calculate T_clk_post, unit pclk 1: Use clk_post_min_o[7:0]
0x4802	MIPI CTRL02	0x00	RW	Bit[4]: clk_trail_sel 0: Auto calculate T_clk_trail, unit pclk2 1: Use clk_trail_min_o[7:0]
		e ni		Bit[3]: hs_exit_sel 0: Auto calculate T_hs_exit, unit pclk2 1: Use hs_exit_min_o[7:0]
				Bit[2]: hs_zero_sel 0: Auto calculate T_hs_zero, unit pclk 1: Use hs_zero_min_o[7:0]
				Bit[1]: hs_trail_sel 0: Auto calculate T_hs_trail, unit pclk2 1: Use hs_trail_min_o[7:0] Bit[0]: clk_zero_sel
				0: Auto calculate T_clk_zero, unit pclk 1: Use clk_zero_min_o[7:0]
	ch C			Bit[3]: manu_ofset_o t perio manual offset
0x4803	MIPI CTRL03	0x00	RW	Bit[2]: r_manu_half2one t_period half to 1
				Bit[1:0]: Not used
0x4804	MIPI CTRL04	0x04	RW	Bit[7:4]: man_lane_num Bit[3]: lane_num_manual_enable Bit[2]: lane4_6b_en 1: Support 4, 7, 8 lane 6-bit Bit[1:0]: Not used
c'à	9.0			Bit[3]: lpda_retim_manu_o Bit[2]: lpda_retim_sel_o
0x4805	MIPI CTRL05	0x00	RW	1: Manual Bit[1]: lpck_retim_manu_o Bit[0]: lpck_retim_sel_o 1: Manual

table 5-15 MIPI control registers (3 of 7)

	table 5-15	MIPICOILLOLLE	egisters (3	017)		
	address	register name	default value	R/W	descriptio	n
	0x4806	MIPI CTRL06	0x10	RW	Bit[4]: Bit[3]: Bit[2]: Bit[1]: Bit[0]:	pu_mark_en_o Power up mark1 enable mipi_remot_rst mipi_susp lane_ch_en tx_lsb_first 0: Transmit high bit first 1: Low power transmit low bit first
	0x4807	MIPI CTRL07	0x03	RW	Bit[3:0]:	sw_t_lpx ul_tx T_lpx
	0x4808	MIPI CTRL08	0x18	RW	Bit[7:0]:	wkup_dly Mark1 wakeup delay/2^10
	0x4810	FCNT MAX	0xFF	RW	Bit[7:0]:	fcnt_max[15:8] High byte of max frame counter of frame sync short packet
	0x4811	FCNT MAX	0xFF	RW	Bit[7:0]:	fcnt_max[7:0] Low byte of max frame counter of frame sync short packet
	0x4813	MIPI CTRL13	0x00	RW	Bit[2]: Bit[1:0]:	vc_sel Input VC or reg VC VC Virtual channel of MIPI
, Ç	0x4814	MIPI CTRL14	0x2A	RW	Bit[6]: Bit[5:0]:	lpkt_dt_sel 0: Use mipi_dt 1: Use dt_man_o as long packet data dt_man Manual data type
Collins	0x4815	MIPI CTRL15	0x00	RW	Bit[6]:	pclk_inv 0: Using falling edge of mipi_pclk_o to generate MIPI bus to PHY 1: Using rising edge of mipi_pclk_o to generate MIPI bus to PHY manu_dt_short Manual type for short packet
Silv	0x4816	EMB DT CTRL	0x52	RW	Bit[6]: Bit[5:0]:	Not used emb_dt Manually set embedded data type
	0x4818	HS ZERO MIN	0x00	RW	Bit[7:2]: Bit[1:0]:	

table 5-15 MIPI control registers (4 of 7)

address	register name	default value	R/W	description
0x4819	HS ZERO MIN	0x70	RW	Bit[7:0]: hs_zero_min[7:0] Low byte of minimum value of hs_zero hs_zero_real = hs_zero_min_o + Tui*ui_hs_zero_min_o
0x481A	HS TRAIL MIN	0x00	RW	Bit[7:2]: Not used Bit[1:0]: hs_trail_min[9:8] High byte of minimum value of hs_trail, unit ns
0x481B	HS TRAIL MIN	0x3C	RW	Bit[7:0]: hs_trail_min[7:0] Low byte of minimum value of hs_trail hs_trail_real = hs_trail_min_o + Tui*ui_hs_trail_min_o
0x481C	CLK ZERO MIN	0x01	RW	Bit[7:2]: Not used Bit[1:0]: clk_zero_min[9:8] High byte of minimum value of clk_zero, unit ns
0x481D	CLK ZERO MIN	0x2C	RW	Bit[7:0]: clk_zero_min[7:0] Low byte of minimum value of clk_zero clk_zero_real = clk_zero_min_o + Tui*ui_clk_zero_min_o
0x481E	CLK PREPARE MAX	0x5F	RW	Bit[7:0]: clk_prepare_max[7:0] Maximum value of clk_prepare, unit ns
0x481F	CLK PREPARE MIN	0x26	RW	Bit[7:0]: clk_prepare_min[7:0] Minimum value of clk_prepare clk_prepare_real = clk_prepare_min_o + Tui*ui_clk_prepare_min_o
0x4820	CLK POST MIN	0x00	RW	Bit[7:2]: Not used Bit[1:0]: clk_post_min[9:8] High byte of minimum value of clk_post, unit ns
0x4821	CLK POST MIN	0x3C	RW	Bit[7:0]: clk_post_min[7:0] Low byte of minimum value of clk_post clk_post_real = clk_post_min_o + Tui*ui_clk_post_min_o
0x4822	CLK TRAIL MIN	0x00	RW	Bit[7:2]: Not used Bit[1:0]: clk_trail_min[9:8] High byte of minimum value of clk_trail, unit ns
0x4823	CLK TRAIL MIN	0x3C	RW	Bit[7:0]: clk_trail_min[7:0] Low byte of minimum value of clk_trail clk_trail_real = clk_trail_min_o + Tui*ui_clk_trail_min_o

table 5-15 MIPI control registers (5 of 7)

	address	register name	default value	R/W	descriptio	n
	0x4824	LPX P MIN	0x00	RW	Bit[7:2]: Bit[1:0]:	Not used lpx_p_min[9:8] High byte of minimum value of lpx_p, unit ns
	0x4825	LPX P MIN	0x32	RW	Bit[7:0]:	<pre>lpx_p_min[7:0] Low byte of minimum value of lpx_p lpx_p_real = lpx_p_min_o + Tui*ui_lpx_p_min_o</pre>
	0x4826	HS PREPARE MIN	0x32	RW	Bit[7:0]:	hs_prepare_min[7:0] Minimum value of hs_prepare, unit ns
	0x4827	HS PREPARE MAX	0x55	RW	Bit[7:0]:	hs_prepare_max[7:0] Maximum value of hs_prepare hs_prepare_real = hs_prepare_max_o + Tui*ui_hs_prepare_max_o
	0x4828	HS EXIT MIN	0x00	RW	Bit[7:2]: Bit[1:0]:	
	0x4829	HS EXIT MIN	0x64	RW	Bit[7:0]:	hs_exit_min[7:0] Low byte of minimum value of hs_exit hs_exit_real = hs_exit_min_o + Tui*ui_hs_exit_min_o
Ć.	0x482A	UI HS ZERO MIN	0x06	RW	Bit[7:6]: Bit[5:0]:	Not used ui_hs_zero_min[5:0] Minimum UI value of hs_zero, unit UI
	0x482B	UI HS TRAIL MIN	0x04	RW	Bit[7:6]: Bit[5:0]:	Not used ui_hs_trail_min[5:0] Minimum UI value of hs_trail, unit UI
	0x482C	UI CLK ZERO MIN	0x00	RW	Bit[7:6]: Bit[5:0]:	
Sida	0x482D	UI CLK PREPARE	0x00	RW	Bit[7:4]: Bit[3:0]:	ui_clk_prepare_max Maximum UI value of clk_prepare, unit UI ui_clk_prepare_min Minimum UI value of clk_prepare, unit UI
	0x482E	UI CLK POST MIN	0x34	RW	Bit[7:6]: Bit[5:0]:	
	0x482F	UI CLK TRAIL MIN	0x00	RW	Bit[7:6]: Bit[5:0]:	Not used ui_clk_trail_min[5:0] Minimum UI value of clk_trail, unit UI

table 5-15 MIPI control registers (6 of 7)

address	register name	default value	R/W	description
0x4830	UI LPX P MIN	0x00	RW	Bit[7:6]: Not used Bit[5:0]: ui_lpx_p_min[5:0] Minimum UI value of lpx_p(pclk2x domain), unit UI
0x4831	UI HS PREPARE	0x64	RW	Bit[7:4]: ui_hs_prepare_max
0x4832	UI HS EXIT MIN	0x00	RW	Bit[7:6]: Not used Bit[5:0]: ui_hs_exit_min[5:0] Minimum UI value of hs_exit, unit UI
0x4833	CTRL51	0x18	RW	Bit[7:0]: Ctrl51
0x4836	GLB MODE SEL	0x00	RW	Bit[0]: bitrate_cal_en 0: Use period to calculate 1: Use bit rate to calculate
0x4837	PCLK PERIOD	0x18	RW	Bit[7:0]: pclk_period[7:0] Period of pclk2x, pclk_div=1, and 1-bit decimal
0x4838	MIPI LP GPIO0	0x00	RW	Bit[7]:
0x483C	MIPI CTRL3C	0x02	RW	Bit[3:0]: t_clk_pre Unit: pclk2x cycle
0x483D	MIPI LP GPIO4	0x00	RW	Bit[7]:

table 5-15 MIPI control registers (7 of 7)

address	register name	default value	R/W	descriptio	n
0x484A	SEL MIPI CTRL4A	0x27	RW	Bit[5]: Bit[4]: Bit[3]: Bit[2]: Bit[1]: Bit[0]:	slp_lp_pon_man_o Set for power up slp_lp_pon_da slp_lp_pon_ck mipi_slp_man_st MIPI bus status manual control enable ir sleep mode clk_lane_state data_lane_state
0x484B	START OPTIONS	0x07	RW	Bit[2]: Bit[1]: Bit[0]:	line_st_sel_o 0: Line starts after HREF 1: Line starts after fifo_st clk_start_sel_o 0: Clock starts after SOF 1: Clock starts after reset sof_sel_o 0: Frame starts after HREF 1: Frame starts after SOF
0x484C	SEL MIPI CTRL4C	0x03	RW	Bit[6]: Bit[5]: Bit[4]: Bit[3]:	fcnt_i select prbs_enable hs_test_only MIPI high speed only test mode enable set_frame_cnt_0 Set frame count to inactive mode (keep 6)
0x484D	TEST PATTEN DATA	0xB6	RW	Bit[7:0]:	test_patten_data[7:0] Data lane test pattern
0x484E	FE DLY	0x10	RW	Bit[7:0]:	r_fe_dly_o Last packet to frame end delay / 2
0x484F	TEST PATTEN CK DATA	0x55	RW	Bit[7:0]:	clk_test_patten_reg

5.16 ISP [0x5000 - 0x5015]

table 5-16 ISP registers (1 of 2)

address	register name	default value	R/W	description
0x5000	R ISP CTRL0	0x1F	RW	Bit[7]: Not used Bit[6]: awb_gain_en Bit[5]: lcd_en Bit[4]: avg_en Bit[3]: dgc_en Bit[2]: bc_en Bit[1]: wc_en Bit[0]: blc_en
0x5001	R ISP CTRL1	0x05	RW	Bit[7]: latch_en Bit[6:4]: win_y_offset_adjust Bit[3]: bias_man_en Bit[2:0]: avg_sel
0x5002	R ISP CTRL2	0x20	RW	Bit[7:5]: Not used Bit[4]: sof_sel Bit[3:2]: eof_sel Bit[1:0]: Not used
0x5003	BIAS MAN	0x00	RW	Bit[7:0]: bias_man[7:0]
0x5004	AWB R GAIN	0x04	RW	Bit[7:4]: Not used Bit[3:0]: awb_r_gain[11:8]
0x5005	AWB R GAIN	0x00	RW	Bit[7:0]: awb_r_gain[7:0]
0x5006	AWB G GAIN	0x04	RW	Bit[7:4]: Not used Bit[3:0]: awb_g_gain[11:8]
0x5007	AWB G GAIN	0x00	RW	Bit[7:0]: awb_g_gain[7:0]
0x5008	AWB B GAIN	0x04	RW	Bit[7:4]: Not used Bit[3:0]: awb_b_gain[11:8]
0x5009	AWB B GAIN	0x00	RW	Bit[7:0]: awb_b_gain[7:0]
0x500A	LCD R GAIN	0x04	RW	Bit[7:4]: Not used Bit[3:0]: lcd_r_gain[11:8]
0x500B	LCD R GAIN	0x00	RW	Bit[7:0]: lcd_r_gain[7:0]
0x500C	LCD G GAIN	0x04	RW	Bit[7:4]: Not used Bit[3:0]: lcd_g_gain[11:8]

table 5-16 ISP registers (2 of 2)

	address	register name	default value	R/W	description
	0x500D	LCD G GAIN	0x00	RW	Bit[7:0]: lcd_g_gain[7:0]
	0x500E	LCD B GAIN	0x04	RW	Bit[7:4]: Not used Bit[3:0]: lcd_b_gain[11:8]
	0x500F	LCD B GAIN	0x00	RW	Bit[7:0]: lcd_b_gain[7:0]
-	0x5010	ANA REAL GAIN	_	R	Bit[7:2]: Not used Bit[1:0]: ana_real_gain[9:8]
	0x5011	ANA REAL GAIN	- 5	R	Bit[7:0]: ana_real_gain[7:0]
	0x5012	DGC	-0	R	Bit[7:2]: Not used Bit[1:0]: dgc[9:8]
	0x5013	DGC	\leftarrow	R	Bit[7:0]: dgc[7:0]
-	0x5014	CTRLE	-	R	Bit[7]: Not used Bit[6]: blk_ln_rblue_i Bit[5:0]: blk_ln_num_i
	0x5015	CTRLF	-	R	Bit[7:6]: Not used Bit[5:4]: dig_gain_i Bit[3]: gain_chg_i Bit[2]: fmt_chg_i Bit[1]: mirror_i Bit[0]: flip_i

5.17 pre-ISP [0x5080 - 0x50A5]

table 5-17 pre-ISP registers (1 of 2)

	pre isi registers	` '		
address	register name	default value	R/W	description
0x5080	PRE ISP CTRL00	0x00	RW	Bit[7]: test_en Test enable Bit[6]: rolling_en Bit[5]: trans_test_mode Bit[4]: squ_en Bit[3:2]: bar_style Bit[1:0]: test_mode_sel
0x5081	PRE ISP CTRL01	0x41	RW	Bit[7]: Not used Bit[6]: cut_en Window cut enable Bit[5]: low_bits ISP test, low bits to 0 Bit[4]: random_reset Test mode, random data reset Bit[3:0]: random_seed Random seed
0x5088	PRE ISP CTRL08	0x00	RW	Bit[7:0]: x_manual_offset[15:8]
0x5089	PRE ISP CTRL09	0x00	RW	Bit[7:0]: x_manual_offset[7:0]
0x508A	PRE ISP CTRL10	0x00	RW	Bit[7:0]: y_manual_offset[15:8]
0x508B	PRE ISP CTRL11	0x00	RW	Bit[7:0]: y_manual_offset[7:0]
0x508C	PRE ISP CTRL12	-	R	Bit[7:0]: pixel_number[15:8]
0x508D	PRE ISP CTRL13	-	R	Bit[7:0]: pixel_number[7:0]
0x508E	PRE ISP CTRL14	-	R	Bit[7:0]: line_number[15:8]
0x508F	PRE ISP CTRL15	-	R	Bit[7:0]: line_number[7:0]
0x5090	PRE ISP CTRL16	0x0C	RW	Bit[7:6]: Not used Bit[5]: mirror_opt Mirror option for x offset Bit[4]: flip_opt Flip option for y offset Bit[3]: mirror_order Mirror order, bg or gb Bit[2]: flip_order Flip order, br or rb Bit[1]: offset_man_en Offset manual enable Bit[0]: scale_man Scale input size manual mode

table 5-17 pre-ISP registers (2 of 2)

		pre ioi regiot	C13 (2 01 2)			
а	address	register name	default value	R/W	description	1
0)x5091	PRE ISP CTRL17	0x00	RW	Bit[7]: Bit[6:4]: Bit[3]: Bit[2:0]:	dmy_man_en Dummy line manual mode dmy_ln_num Dummy line number dmy_black_half Dummy line blanking half dmy_man_ratio Dummy line clock/data manual ratio
0)x5096	PRE ISP CTRL22	40	R	Bit[7:5]: Bit[4]: Bit[3]: Bit[2:0]:	Not used dmy_err Dummy error Not used auto_ratio Auto clock/data ratio
0)x5097	PRE ISP CTRL23	-	R		x_odd_inc y_odd_inc
0)x5098	PRE ISP CTRL24	-	R	Bit[7:0]:	x_offset[15:8]
0	x5099	PRE ISP CTRL25	-	R	Bit[7:0]:	x_offset[7:0]
0)x509A	PRE ISP CTRL26	-	R	Bit[7:0]:	y_offset[15:8]
0)x509B	PRE ISP CTRL27	-	R	Bit[7:0]:	y_offset[7:0]
0)x509C	PRE ISP CTRL28	-	R	Bit[7:0]:	win_x_offset[15:8]
0)x509D	PRE ISP CTRL29	-	R	Bit[7:0]:	win_x_offset[7:0]
0)x509E	PRE ISP CTRL30	-	R	Bit[7:0]:	win_y_offset[15:8]
0)x509F	PRE ISP CTRL31	-	R	Bit[7:0]:	win_y_offset[7:0]
0)x50A0	PRE ISP CTRL32	-	R	Bit[7:0]:	win_x_output_size[15:8]
0)x50A1	PRE ISP CTRL33	-	R	Bit[7:0]:	win_x_output_size[7:0]
0)x50A2	PRE ISP CTRL34	-	R	Bit[7:0]:	win_y_output_size[15:8]
0)x50A3	PRE ISP CTRL35	-	R	Bit[7:0]:	win_y_output_size[7:0]
0)x50A4	PRE ISP CTRL36	-	R	Bit[5:4]:	Not used
0)x50A5	PRE ISP CTRL37	_	R		x_even_inc y_even_inc

5.18 window [0x5700 - 0x570C]

window registers table 5-18

address	register name	default value	R/W	description
0x5700	XSTART	0x00	RW	Bit[7:5]: Not used Bit[4:0]: xstart[12:8]
0x5701	XSTART	0x00	RW	Bit[7:0]: xstart[7:0]
0x5702	YSTART	0x00	RW	Bit[7:4]: Not used Bit[3:0]: ystart[11:8]
0x5703	YSTART	0x00	RW	Bit[7:0]: ystart[7:0]
0x5704	X WIN	0x10	RW	Bit[7:5]: Not used Bit[4:0]: x_win[12:8]
0x5705	X WIN	0xA0	RW	Bit[7:0]: x_win[7:0]
0x5706	Y WIN	0x0C	RW	Bit[7:4]: Not used Bit[3:0]: y_win[11:8]
0x5707	Y WIN	0x78	RW	Bit[7:0]: y_win[7:0]
0x5708	CONTROL	0x00	RW	Bit[2]: flip_offset_en Bit[1]: mirror_offset_en Bit[0]: win_man_en
0x5709	PX CNT		R	Bit[7:5]: Not used Bit[4:0]: px_cnt[12:8]
0x570A	PX CNT	_	R	Bit[7:0]: px_cnt[7:0]
0x570B	LN CNT	-	R	Bit[7:4]: Not used Bit[3:0]: In_cnt[11:8]
0x570C	LN CNT	_	R	Bit[7:0]: In_cnt[7:0]

5.19 DPC [0x5780 ~ 0x579D]

table 5-19 DPC registers (1 of 2)

		address	register name	default value	R/W	description
		0x5780	DPC CTRL0	0x14	RW	Bit[5]: enable_tail Bit[4]: enable_saturate_crosscluster Bit[3]: enable_3x3_cluster Bit[2]: enable_crosscluster Bit[1]: enable_general_tail Bit[0]: manual_mode_en
		0x5781	DPC CTRL1	0x0F	RW	Bit[7:4]: Saturate Bit[3]: enable_diffchannel_wpconn Bit[2]: enable_diffchannel_bpconn Bit[1]: enable_samechannel_wpconn Bit[0]: enable_samechannel_bpconn
	0x5782	WTHRE LIST0	0x04	RW	Bit[7:4]: Not used Bit[3:0]: wthre_list0[3:0]	
	0x5783	WTHRE LIST1	0x02	RW	Bit[7:4]: Not used Bit[3:0]: wthre_list1[3:0]	
	0x5784	WTHRE LIST2	0x01	RW	Bit[7:4]: Not used Bit[3:0]: wthre_list2[3:0]	
		0x5785	WTHRE LIST3	0x01	RW	Bit[7:4]: Not used Bit[3:0]: wthre_list3[3:0]
	(C)	0x5786	ADPTIVE PATTERN THRE	0x00	RW	Bit[7:4]: Not used Bit[3:0]: adptive_pattern_thre[3:0]
	(0)	0x5787	ADPTIVE PATTERN STEP	0x04	RW	Bit[7:4]: Not used Bit[3:0]: adptive_pattern_step[3:0]
		0x5788	MORE CONNECTION CASE THRE	0x0C	RW	Bit[7:4]: Not used Bit[3:0]: more_connection_case_thre[3:0]
		0x5789	DPC LEVEL LIST0	0x00	RW	Bit[7:2]: Not used Bit[1:0]: dpc_level_list0[1:0]
Gida	19.0	0x578A	DPC LEVEL LIST1	0x01	RW	Bit[7:2]: Not used Bit[1:0]: dpc_level_list1[1:0]
	0x578B	DPC LEVEL LIST2	0x02	RW	Bit[7:2]: Not used Bit[1:0]: dpc_level_list2[1:0]	
		0x578C	DPC LEVEL LIST3	0x03	RW	Bit[7:2]: Not used Bit[1:0]: dpc_level_list3[1:0]
		0x578D	GAIN LISTO	0x03	RW	Bit[7]: Not used Bit[6:0]: gain_list0[6:0]

table 5-19 DPC registers (2 of 2)

address	register name	default value	R/W	description
0x578E	GAIN LIST1	0x0F	RW	Bit[7]: Not used Bit[6:0]: gain_list1[6:0]
0x578F	GAIN LIST2	0x3F	RW	Bit[7]: Not used Bit[6:0]: gain_list2[6:0]
0x5790	MATCHING THRE	0x08	RW	Bit[7:4]: Not used Bit[3:0]: matching_thre[3:0]
0x5791	STATUS THRE	0x04	RW	Bit[7:4]: Not used Bit[3:0]: status_thre[3:0]
0x5792	THRE RATIO	0x04	RW	Bit[7:4]: Not used Bit[3:0]: thre_ratio[3:0]
0x5793	CTRL19	0x00	RW	Bit[7:0]: Ctrl19
0x5794	CTRL20	0x03	RW	Bit[7:0]: Ctrl20
0x5797	BTHRE	- •	R	Bit[7]: Not used Bit[6:0]: bthre[6:0]
0x5798	WTHRE	-//	R	Bit[7:5]: Not used Bit[4:0]: wthre[4:0]
0x5799	THRE1		R	Bit[7:5]: Not used Bit[4:0]: thre1[4:0]
0x579A	THRE2)_	R	Bit[7:6]: Not used Bit[5:0]: thre2[5:0]
0x579B	THRE3	-	R	Bit[7]: Not used Bit[6:0]: thre3[6:0]
0x579C	THRE4	-	R	Bit[7:5]: Not used Bit[4:0]: thre4[4:0]
0x579D	LEVEL	-	R	Bit[7:4]: Not used Bit[3:0]: level[3:0]

5.20 average [0x5900 - 0x5913]

table 5-20 average registers (1 of 2)

address	register name	default value	R/W	description
0x5900	XSTART	0x00	RW	Bit[7:5]: Not used Bit[4:0]: Xstart[12:8]
0x5901	XSTART	0x00	RW	Bit[7:0]: Xstart[7:0]

table 5-20 average registers (2 of 2)

	address	register name	default value	R/W	descriptio	n
	0x5902	YSTART	0x00	RW		Not used Ystart[11:8]
	0x5903	YSTART	0x00	RW	Bit[7:0]:	Ystart[7:0]
	0x5904	X WIN	0x10	RW		Not used x_win[12:8]
	0x5905	X WIN	0xA0	RW	Bit[7:0]:	x_win[7:0]
	0x5906	Y WIN	0x0C	RW		Not used y_win[11:8]
	0x5907	Y WIN	0x78	RW	Bit[7:0]:	y_win[7:0]
	0x5908	R AVG CTRL08	0x11	RW	Bit[7:4]: Bit[3:0]:	
	0x5909	R AVG CTRL09	0x11	RW	Bit[7:4]: Bit[3:0]:	
	0x590A	R AVG CTRL0A	0x11	RW	Bit[7:4]: Bit[3:0]:	
	0x590B	R AVG CTRL0B	0x11	RW	Bit[7:4]: Bit[3:0]:	
	0x590C	R AVG CTRL0C	0x11	RW	Bit[7:4]: Bit[3:0]:	
Ç.	0x590D	R AVG CTRL0D	0x11	RW	Bit[7:4]: Bit[3:0]:	
.0	0x590E	R AVG CTRL0E	0x11	RW	Bit[7:4]: Bit[3:0]:	
	0x590F	R AVG CTRL0F	0x11	RW	Bit[7:4]: Bit[3:0]:	
Gida	0x5910	R AVG CTRL10	0x02	RW	Bit[7:2]: Bit[1]: Bit[0]:	Not used avg_opt avg_man
-:0.0	0x5911	WT SUM O	-	R	Bit[7:0]:	wt_sum_o[7:0]
9.	0x5912	AVG SCCB DONE	-	R	Bit[7:1]: Bit[0]:	Not used avg_sccb_done[0]
	0x5913	AVG	-	R	Bit[7:0]:	avg[7:0]

6 operating specifications

6.1 absolute maximum ratings

table 6-1 absolute maximum ratings

parameter		absolute maximum rating ^a
ambient storage temperature		-40°C to +125°C
	V _{DD-A}	4.5V
supply voltage (with respect to ground)	V _{DD-D}	3V
	V_{DD-IO}	4.5V
electro etatio discharge (FCD)	human body model	2000V
ectro-static discharge (ESD)	machine model	200V
all input/output voltages (with respect to ground)		-0.3V to V _{DD-IO} + 1V
I/O current on any input or output pin	10	± 200 mA
peak solder temperature (10 second dwell time)		245°C

exceeding the absolute maximum ratings shown above invalidates all AC and DC electrical specifications and may result in permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.

6.2 functional temperature

table 6-2 functional temperature

parameter	range
operating temperature ^a	-30°C to +85°C junction temperature
stable image temperature ^b	0°C to +50°C junction temperature

a. sensor functions but image quality may be noticeably different at temperatures outside of stable image range

b. image quality remains stable throughout this temperature range

6.3 DC characteristics

The OV2680 can use either the internal regulator or an external power supply to provide digital core 1.58V DVDD. When an external 1.58V is used to provide DVDD power, register bit 0x3605[3] must be set to 1 to bypass the internal regulator.

table 6-3 DC characteristics (30°C < T₁ < 85°C)

The	symbol	parameter	min	typ	max	unit			
can use either call regulator or	supply								
nal power o provide digital	V _{DD-A}	supply voltage (analog)	2.6	2.8	3.0	V			
8V DVDD.	V _{DD-IO}	supply voltage (digital I/O)	1.7	1.8	3.0	V			
n external used to provide ower, register	V _{DD-D} ^a	supply voltage (digital core for 1-lane MIPI up to 750 Mbps/lane)	1.53	1.58	1.62	V			
05[3] must be to bypass the	DOVDD = 1.8V, AVDD = 1.8V, external DVDD = 1.58V								
regulator.	I _{DD-A}	XU		21		mA			
	I _{DD-IO}	active (operating) current full size @ 30fps, RAW		1.6		mA			
	I _{DD-D}			39		mA			
	I _{DD-A}			16		mA			
	I _{DD-IO}	active (operating) current full size @ 15fps, RAW		1.5		mA			
	I _{DD-D}			22		mA			
	standby current								
	I _{DD-SCCB}	standby current ^b		50		μΑ			
	I _{DD-XSHUTDN} ^c	Standby current		<1		μΑ			
X	digital inputs (typical conditions: AVDD = 2.8V, DVDD = 1.58V, DOVDD = 1.8V, EVDD = 1.2V)								
	V _{IL}	input voltage LOW			0.54	V			
	V_{IH}	input voltage HIGH	1.26			V			
	C _{IN}	input capacitor			10	pF			
Sida	digital outputs (s	standard loading 25 pF)							
	V _{OH}	output voltage HIGH	1.62			V			
610.0	V _{OL}	output voltage LOW			0.18	V			
9.	serial interface in	nputs							
	V_{IL}^{d}	SIOC and SIOD	-0.5	0	0.54	V			
	V_{IH}	SIOC and SIOD	1.28	1.8	3.0	V			
=									

using the internal regulator is strongly recommended for minimum power down current

standby current is measured at room temperature

if using an external DVDD, it is necessary to cut off external DVDD outside the sensor to eliminate leakage current

d. based on DOVDD = 1.8V

6.4 timing characteristics

table 6-4 timing characteristics

symbol	parameter	min	typ	max	unit
oscillator a	and clock input				
f _{OSC}	frequency (XVCLK)	6	24	27	MHz
t _r , t _f	clock input rise/fall time			5 (10 ^a)	ns

a. if using internal PLL

6.5 power up sequence

The sensor includes an on-chip initial power-up reset feature that will reset the whole chip during power up.

6.6 hardware and software standby

The following suspend modes are available for the OV2680:

- hardware standby
 To initiate hardware standby mode, the XSHUTDN pin must be tied to low. When this occurs, the OV2680 internal device clock is halted and all internal counters and registers are reset.
- SCCB software standby

 Executing a software standby through the SCCB interface suspends internal circuit activity, but does not halt the device clock. All register content is maintained in standby mode.

6.7 power up and power down sequence

6.7.1 power up sequence

The digital and analog supply voltages can be powered up in any order, for example (DOVDD then AVDD or AVDD then DOVDD).

6.7.2 on-chip power up

- · if XSHUTDN is low when the power supplies are brought up, sensor will go into hardware standby mode
- if XSHUTDN is high when the power supplies are brought up, sensor will go into software standby mode

The XVCLK clock can either be initially low and then enabled during software standby mode or XVCLK can be a free running clock.

table 6-5 power up sequence timing constraints power up

constraint	label	min	max	unit
AVDD rising – DOVDD rising	t0	AVDD and DOVDD may rise in any order. rising separation can vary from 0 ns to infinity.		ns
DOVDD rising – AVDD rising	t1			ns
AVDD rising – XSHUTDN rising	t2	0.0		ns
XSHUTDN rising – first SCCB transaction	t3 ^a	8192		XVCLK cycles
minimum number of XVCLK cycles prior to the first SCCB transaction	t4	8192		XVCLK cycles
PLL start up/lock time	t5		0.2	ms
entering streaming mode – first frame start sequence (fixed part)	t6	۷(10	ms
entering streaming mode – first frame start sequence (variable part)	t7	delay is the integration	time value	lines

when using the internal DVDD, an additional 1ms must be added to t3 to wait for SCCB to become stable

hardware **STATE** power off software standby streaming (active) standby DOVDD - t6 (fixed) t2 **XSHUTDN** t7 -(variable) _t0 t1 AVDD (DOVDD rising first) AVDD (AVDD rising first) DOVDD and AVDD may rise in any order. note 1 (free running) **XVCLK** (gated) XVCLK may either be free running or gated. the requirement is that XVCLK must be active for time t4 prior to the first SCCB transaction SIOD SIOC

figure 6-1 power up sequence

note 1 when using the internal DVDD, an additional 1ms must be added to t3 to wait for

figure 6-2 standby sequence

6.8 power down sequence

The digital and analog supply voltages can be powered down in any order (e.g. DOVDD, then AVDD or AVDD, then DOVDD). Similar to the power-up sequence, the XVCLK input clock may be either gated or continuous. If the SCCB command to exit streaming is received while a frame of MIPI data is being output, then the sensor must wait to the MIPI frame end code before entering software standby mode.

If the SCCB command to exit streaming mode is received during the inter frame time, then the sensor must enter software standby mode immediately.

table 6-6 power down sequence timing constraints

	All			
constraint	label	min	max	unit
enter software standby SCCB command device in software standby mode	t0	wait for the MIPI e entering the softw	are for standby; ne software standby	
minimum of XVCLK cycles after the last SCCB transaction or MIPI frame end	t1	512		XVCLK cycles
last SCCB transaction or MIPI frame end, XSHUTDN falling	t2	512		XVCLK cycles
XSHUTDN falling - AVDD falling	t3	0.0		ns
AVDD falling - DOVDD falling	t4	AVDD and DOVD		ns
DOVDD falling - AVDD falling	t5	order, the falling separation can vary from 0 ns to infinity		ns

figure 6-3 power down sequence

mechanical specifications

7.1 physical specifications

figure 7-1 package specifications

table 7-1 package dimensions

parameter	symbol	min	typ	max	unit
package body dimension x	А	4155	4180	4205	μm
package body dimension y	В	3455	3480	3505	μm
package height	С	680	740	800	μm
ball height	C1	100	130	160	μm
package body thickness	C2	575	610	645	μm
thickness from top glass surface to wafer	C3	425	445	465	μm
glass thickness	C4	385	400	415	μm
air gap between sensor and glass	C5	41	45	49	μm
ball diameter	D	220	250	280	μm
total pin count	N		47 (3 NC)		
pins pitch x-axis	J1		510		μm
pins pitch y-axis	J2		480		μm
edge-to-pin center distance along x	S1	275	305	335	μm
edge-to-pin center distance along y	S2	510	540	570	μm

7.2 IR reflow specifications

figure 7-2 IR reflow ramp rate requirements

table 7-2 reflow conditions ab

zone	description	exposure
ramp up A (T ₀ to T _{min})	heating from room temperature to 150°C	temperature slope ≤ 3°C per second
soaking	heating from 150°C to 200°C	90 ~ 150 seconds
ramp up B (t _L to T _p)	heating from 217°C to 245°C	temperature slope ≤ 3°C per second
peak temperature	maximum temperature in SMT	245°C +0/-5°C (duration max 30sec)
reflow (t _L to T _L)	temperature higher than 217°C	30 ~ 120 seconds
ramp down A (T _p to T _L)	cooling down from 245°C to 217°C	temperature slope ≤ 3°C per second
ramp down B (T _L to T _f)	cooling down from 217°C to room temperature	temperature slope ≤ 2°C per second
T_0 to T_p	room temperature to peak temperature	≤ 8 minutes

a. maximum number of reflow cycles =3

b. N2 gas reflow or control O2 gas PPM<500 as recommendation

8 optical specifications

8.1 sensor array center

figure 8-1 sensor array center

note 1 this drawing is not to scale and is for reference only.

note 2 as most optical assemblies invert and mirror the image, the chip is typically mounted with pins A1 to A8 oriented down on the PCB.

2680 CSP5_D5_8_1

8.2 lens chief ray angle (CRA)

figure 8-2 chief ray angle (CRA)

table 8-1 CRA versus image height plot (1 of 2)

field (%)	image height (mm)	CRA (degrees)
0.00	0	0
0.05	0.087	2.42
0.10	0.175	4.83
0.15	0.263	7.23
0.20	0.35	9.57
0.25	0.438	11.86
0.30	0.525	14.09
0.35	0.613	16.23
0.40	0.7	18.29
0.45	0.787	20.23

table 8-1 CRA versus image height plot (2 of 2)

field (%)	image height (mm)	CRA (degrees)
0.50	0.875	22.05
0.55	0.963	23.68
0.60	1.05	25.08
0.65	1.138	26.24
0.70	1.225	27.11
0.75	1.313	27.75
0.80	1.4	28.19
0.85	1.488	28.45
0.90	1.575	28.53
0.95	1.663	28.41
1.00	1.75	28.19

revision history

08.23.2013 version 1.0

initial release

version 1.01 12.13.2013

- in key specifications, changed active power requirements from TBD to 123mW and XSHUTDN power requirements from <5 μA to <1 μA
- in table 2-2, changed last column from "pixel clock" to "MIPI total bit rate and changed all entries in last column to "1-lane x 660Mbps"
- in table 6-3, updated active current for full size @ 30fps, YUV, added rows for active current for full size @ 15fps, and updated typ values for standby current

defining the future of digital imaging™

OmniVision Technologies, Inc.

UNITED STATES

4275 Burton Drive Santa Clara, CA 95054

tel: + 1 408 567 3000 fax: + 1 408 567 3001

email: salesamerican@ovt.com

UNITED KINGDOM

Hampshire + 44 1256 744 610

GERMANY

Munich +49 89 63 81 99 88

INDIA

Bangalore +91 988 008 0140

CHINA

Beijing + 86 10 6580 1690 Shanghai + 86 21 6175 9888 Shenzhen + 86 755 8384 9733

Hong Kong + 852 2403 4011

JAPAN

Yokohama +81 45 478 7977 Osaka +81 6 4964 2606

KOREA

Seoul + 82 2 3478 2812

SINGAPORE +65 6933 1933

TAIWAN

Taipei +886 2 2657 9800 Hsinchu +886 3 6110933