第九章 分类数据分析

第九章 分类数据分析

9.1 分类数据与 χ^2 统计量

9.3 列联分布

9.4 列联表中的相关测量

 $9.4.1\,arphi$ 相关系数

9.4.2 列联相关系数

9.4.3 V 相关系数

9.4.4 数值分析

9.5 列联分析中应注意的问题

9.5.1 百分表的方向

 $9.5.2 \chi^2$ 分布的期望值准则

9.1 分类数据与 χ^2 统计量

分类数据的结果是频数,使用 χ^2 检验对分类数据的频数进行分析。用 f_0 和 f_e 分别代表观察频数和期望频数。(例题P190)

$$\chi^2 = \sum \frac{(f_o - f_e)^2}{f_e} \tag{1}$$

 χ^2 分布的自由度 df=R-1,R 是分类变量类型的个数。自由度越小,分布越左倾;自由度增加,偏斜程度越小,越接近正态分布。

9.3 列联分布

列联表就是将两种以上的变量进行交叉分类得到的频数分布表。 $(R \times C)$

独立性检验用于分析i列联表中的行变量和列变量是否独立,即各个变量是否存在依赖关系。在计算独立性的过程中,需要列出列联表里的每个单元格中的 f_e ,RT 和 CT 表示该变量所在的行、列的合计。

$$f_e = \frac{RT}{n} \times \frac{CT}{n} \times n = \frac{RT \times CT}{n} \tag{2}$$

根据这个结果按照行、列进行列表,然后得到 χ^2 统计量。 χ^2 的自由度 df=(R-1)(C-1)

自由度分析

	C1	C2	C3	Sum
R1	f	f	Х	RT_1
R2	f	f	Х	RT_2
R3	X	Х	0	RT_3

	C1	C2	C3	Sum
Sum	CT_1	CT_2	CT_3	T

9.4 列联表中的相关测量

$9.4.1 \varphi$ 相关系数

(P196)

 φ 相关系数是描述 2×2 列联表数据相关程度的相关系数。 $\varphi \in [0,1]$,越大说明二者相关度越高。

$$\varphi = \sqrt{\chi^2/n} \tag{3}$$

 χ^2 的表达式与§ 9.3 相同,在此有特殊的表达式为(a,b,c,d 的含义是条件频数,也就是观察值。)

$$\chi^2 = \frac{n(ad - bc)}{(a+b)(c+d)(a+c)(b+d)} \tag{4}$$

如果行变量和列变量是相互独立的,则 ad=bc (对角线乘积相等)。

	x_1	x_2	Sum
y_1	а	b	a+b
y_2	С	d	c+d
Sum	a+c	b+d	

9.4.2 列联相关系数

列联系数简称 c 系数,用于列联表大于 2×2 的情况。相互独立的时候,c=0; c 永远小于 1。

$$c = \sqrt{\frac{\chi^2}{\chi^2 + n}} \tag{5}$$

9.4.3 V 相关系数

V 相关系数在两个变量相互独立时 V=0 ;在完全相关时, V=1。 当 $\min[(R-1),(C-1)]=1$ 时 V 退化成 φ 。

$$V = \sqrt{\frac{\chi^2}{n \times \min[(R-1), (C-1)]}}$$
 (6)

9.4.4 数值分析

分析 φ, c, V , 详见 P198。

9.5 列联分析中应注意的问题

9.5.1 百分表的方向

9.5.2 χ^2 分布的期望值准则

如果只有两个单元,则每个单元的期望频数至少是 5.

倘若有两个以上的单元, 20% 的单元期望频数 $f_e < 5$ 则不能使用 χ^2 检验。