Yield: Statistical Modeling and Enhancement Techniques

Israel Koren

Dept. of Electrical and Computer Engineering University of Massachusetts, Amherst

Supported in part by JPL and by NSF

Preliminaries – Defects

- fraction of operational ICs manufactured
- and random spot defects Yield losses caused mainly by systematic defects
- Systematic defects parametric defects, mask misalignments dealt with during the fabrication process
- Random spot defects result of local contamination (dust particles) – cannot be eliminated
- Their effect can be minimized during the design process
- modeling and ways to minimize their harm We will focus on spot defects—their statistical

Defect Types

- Spot defects classification:
- Missing material may result in open circuits
- Extra patterns may result in short circuits
- intra-layer defects—missing or extra material between adjacent wires
- Inter-layer defects missing or extra material between two separate layers
- Not all spot defects result in structural faults
- Only defects that turn into faults cause yield losses
- What is the percentage of defects that become faults?

Defect vs. Fault

- Assumption A defect is circle shaped with diameter x(x is a random variable)
- Other geometrical shapes can be considered
- To become a fault, the defect needs to connect two disjoint conductors or disconnect a continuous pattern

Critical Area

pof-

Probability Of Failure: percentage of defects that cause faults depends on the type i and diameter x of the defect

- A defect will cause a fault if its center is located "properly"
- $A_i^c(x)$ and diameter x must fall in order to cause a circuit fault the size of the area in which the center of a defect of type $m{i}$ the critical area for defects of type i and diameter x
- distributed over the chip area, then Assuming that the centers of the defects are uniformly

$$pof_i(x) = rac{A_i^c(x)}{A_{chip}}$$

 1_{chip} — area of the whole chip

Defect Size Distribution

- To compute the yield, critical area must be averaged over all defect sizes x and defect types i
- To average over x, $f_d(x)$ the probability density function of the defect size x, is necessary
- Experimental data shows that $f_d(x)$ decreases as $1/x^p$ and x_M – the maximum size of a defect between x_0 - the resolution limit of the lithography process,
- on the defect type i (Typically, $2 \le p \le 3.5$) p and x_M are determined empirically and may depend
- Therefore, $f_d(x) = \left\{ egin{array}{ll} k/x^p & ext{if} \ x_o \leq x \leq x_M \\ 0 & ext{otherwise} \end{array}
 ight.$

where
$$k = (p-1)x_0^{p-1}x_M^{p-1}/(x_M^{p-1}-x_0^{p-1})$$

Averaging Critical Areas

A veraging over defect diameters x:

$$ullet egin{aligned} ullet pof_i &= \int \limits_{x_0}^{x_M} pof_i(x) \ f_d(x) \ dx \end{aligned}$$

- $ullet A_i^c = \int\limits_{x_0}^{x_M} A_i^c(x) \,\, f_d(x) \,\, dx$
- Averaging over defect types i:
- $d_i {
 m type} \; i \; {
 m defect} \; {
 m density} \;$ average number of defects of type i per unit area
- (of all types) on the chip average number of circuit faults

$$\lambda = \sum\limits_{i} A_{chip} \cdot |d_i| \cdot |pof_i| = \sum\limits_{i} A_i^{(c)} \cdot |d_i|$$

Calculating Critical Areas

- essential for yield prediction Calculating either pof or critical area of chip
- Several methods of calculation:
- Geometry-based methods for calculating $A_i^c(x)$
- Monte-Carlo methods for calculating $pof_i(x)$
- Geometrical methods polygon expansion technique, etc.
- fault is an estimate for $pof_i(x)$ The fraction of defects of type i and diameter x which cause a of different sizes are placed at random locations in the layout. Monte Carlo approach – simulated circles representing defects
- critical areas exist Commercial and academic tools for calculating

Critical Area Maps

Source: I. A. Wagner and I. Koren, "An Interactive VLSI CAD Tool for Yield May 1995. Estimation," IEEE Trans. on Semiconductor Manufacturing, Vol. 8, pp. 130-138,

Yield Modeling

- main parameter in yield modeling λ – The average number of faults
- In simplistic models $-\lambda$ of the whole chip is used
- In more advanced models $-\lambda_i$ for chip component ior for chip layer i
- Yield model a probabilistic model describing the distribution additional parameters of faults over the chip, using the parameter λ and possibly
- Which probabilistic model should be used?

Defect Maps

- The previous picture showed a defect map
- Faults are a percentage of the defects
- only with fewer points Their distribution on the wafer will look similar,
- How do we describe the distribution of defects/faults in a probabilistic manner?

Basic Yield Models

- In the past, the spatial Poisson distribution was used to describe the defect and fault distribution
- It assumes a uniform distribution of defects and faults over the wafer resulting in

$$Prob(Number\ of\ Faults\ on\ Chip\ =\ k)\ =\ e^{-\lambda}\,rac{\lambda^k}{k!}$$

Chip Yield =
$$Prob(Number\ of\ Faults\ on\ Chip = 0) = e^{-\lambda}$$

- This is a very simplistic model and does not fit empirical manufacturing data
- In practice, both defects and faults are more clustered than predicted by the pure Poisson distribution

Yield Models – Clustering

Effect of fault clustering on chip yield

(a) Non-clustered faults,

$$Y_{chip}=0.5\,$$

(b) Clustered faults,

$$Y_{chip}=0.7$$

incorporated into the fault distribution model Clustering increases the yield, and must be

Introducing Clustering

- with a given probability density function Clustering is introduced by regarding λ the average number of faults - as a random variable
- fault distributions Different density functions for λ result in different
- The most common model $-\lambda$ has a Gamma density function

Negative Binomial Yield Model

Integrating

$$Chip\ Yield = e^{-\lambda}$$

over λ with regard to the Gamma distribution results in

$$Chip \ Yield = \left(rac{1+\lambda}{lpha}
ight)^{-lpha}$$

This is called the Negative Binomial model

Negative Binomial Model – cont.

- It is characterized by the two parameters:
- the average number of faults per chip
- α the clustering parameter
- Typically, $0.5 \le \alpha \le 5$
- The smaller the value of α , the more pronounced the clustering
- approaches the Poisson distribution As $\alpha \longrightarrow \infty$, the Negative Binomial distribution
- The use of the Negative Binomial distribution for yield projection is now the industry standard

Effect of Clustering on Yield

The effect of α on the chip yield $(\lambda = 0.5)$

Negative Binomial Distribution – Variations

Variations on the basic model:

Including the effect of systematic defects in addition to spot defects

$$Chip \ Yield = Y_0 \left(rac{1+\lambda}{lpha}
ight)^{-lpha}$$

that there are no systematic defects on the chip Y_0 is the called the gross yield factor and is the probability

Dealing with varying fault densities such as for different chip components or for different chip layers $Chip \ Yield = \ \Pi\left(rac{1+\lambda_i}{lpha}
ight)^{-lpha}$

Yield Enhancement

- to be operational, the whole chip must be fault-free All the models mentioned so far assume no redundancy in the chip
- The yield of a chip can be enhanced through
- Architecture choice (i.e., redundancy)
- Decreasing the critical area at the design stage (during placement, routing and compaction)
- Decreasing the defect density
- We will concentrate on the first two options

Effect of Redundancy on Yield

- Redundancy effective for identical, replicated circuits
- Most common example large memory chips
- Basic model: N modules needed, R spares added, all identical
- For proper operation at least N out of the N+Rmust be fault-free
- λ average number of faults per module

$$Chip\ Yield = \sum\limits_{i=N}^{N+R} \sum\limits_{k=0}^{N+R-i} (-1)^k inom{N+R-i}{i} inom{N+R-i}{k} inom{1+(i+k)\lambda}{lpha}^{-lpha}$$

Effective Yield

- Adding spare modules increases the yield
- At the same time it also increases the chip area less chips out of the wafer
- Even with a higher yield, we may end up with fewer operational chips per wafer
- with redundancy Yield may not be the right measure for circuits
- Effective Yield takes into account the increase in chip area

$$Y_{chip}^{\it eff} = Y_{chip} rac{Area~of~Chip~Without~Redundancy}{Area~of~Chip~With~Redundancy}$$

Yield vs. Effective Yield

$$N=10,~\lambda=0.1,~\alpha=1,~R=0,1,2,...,10$$

of redundancy to be incorporated into the chip The maximum value of Y_{chip}^{eff} determines the optimal amount

Yield of Defect-Tolerant Memories

- Large memories must have some redundancy for yield
- enhancement

Conventional method of redundancy – spare rows and columns

- Memory chip includes some components (mainly control circuitry) which are uncorrectable
- $Chip\ Yield\ =\ Y_0\cdot Y_c\cdot Y_{uc}$
- $Y_0 {
 m gross}$ yield factor Y_c – yield of correctable part (with redundancy) $Y_{uc}-{
 m yield}$ of uncorrectable part

New Defect-Tolerant Memories

- Memory ICs have become very large
- Conventional redundancy of rows and columns is not sufficient
- Partitioning into sub-arrays is a must
- Decrease the current
- Shorten bit & word lines to reduce access time
- Disadvantages of conventional techniques
- Inefficient use of redundant lines
- Unable to deal with chip-kill defects
- New defect tolerance techniques are necessary

Memory with Redundant Blocks

J-H. Yoo et al., "A 32-Bank 1Gb Self-Strobing Synchronous DRAM 1635-1643, Nov. 1996. with 1GB/s Bandwidth," IEEE J. of Solid-State Circuits, vol. 31, pp.

- 1 Gb DRAM is partitioned into eight 128 Mb mats
- 512 basic arrays of size 256Kbit (32×16 matrix)
- 32 spare rows and 32 spare columns
- Four spare rows are allocated to a 16Mbit portion of the mat
- Eight spare columns are allocated to a 32 Mbit portion of the mat
- Eight redundant blocks of size 1Mbit each
- Four basic 256Kbit arrays
- Eight spare rows + four spare columns

$128 \mathrm{Mb}$ mat $(32 \times 16 \ 256 \mathrm{Kbit}$ arrays)

7																				
7 7																				
7																				
`																				
									П											
7																				
7 7 1									П											
•																				
7																				
				$ _{\square}$									$ \Box$			$ _{\square}$			$ _{\square}$	
9	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>				<u> </u>			<u> </u>			<u> </u>	<u> </u>	<u>'</u>	<u> </u>		L

Block Diagram

Eight mats (128Mbit each) + eight redundant blocks (RB) (1Mbit each)

A redundant block including four 256Kbit arrays, eight redundant rows and four redundant columns.

for High-Density Memory ICs," Proc. of the 1997 IEEE Intern. Symp. on Defect Source: I. Koren and Z. Koren, "Analysis of a Hybrid Defect-Tolerance Scheme and Fault Tolerance in VLSI Systems, pp. 166-174, Oct. 1997.

Yield Enhancement At The Design Stage

- Adding redundancy increases the chip size
- Modifications at the design stage can decrease the critical area without increasing the chip area
- Decreasing the critical area increases the yield

Effect of Decrease in Critical Area

Source: V.K.R. Chiluvuri and I. Koren, "Layout Synthesis Techniques for Yield Enhancement," IEEE Trans. on Semicond. Manufacturing, pp. 178-187, May 1995

Critical Area Reduction During Compaction

Two approaches to yield enhancement at the compaction stage:

- Local modification in the layout as a post-compaction step
- Modification of the compaction algorithm for critical area reduction

Reductions in critical area of about 8%

Minimization of Short-Circuit Type Faults

(a)

Original layout

Modified layout

Effect of Uniform Spacing

Probability of failure (θ) vs. Defect size

Minimization of Open-Circuit Type Faults

(a)

Modified for same defect density

(b)

Modified for higher short-circuit defect density

Effect of Wider Wires

Probability of failure (θ) vs. Defect size

Critical Area Reduction During Routing

on the previously obtained layout The effectiveness of enhancements during compaction depends

Two approaches to yield enhancement at the routing stage:

- Local modification in the layout as a post-routing step
- Modification of the routing algorithm for yield enhancement

Reductions in critical area of about 6%

Conclusions

- so do the importance and difficulty of achieving high yield As density and size of integrated circuits increase,
- is of utmost importance Accurate yield projection at every stage of the design
- design stage Yield enhancement efforts must be part of the physical