MEASURE ENERGY CONSUMPTION

PHASE:4 PROJECT SUBMISSION

Analyzing the energy consumption data & Creating visualizations.

MEASURE ENERGY CONSUMPTION

VISUALIZATIONS

- Visualization (graphics), the physical or imagining creation of images, diagrams, or animations to communicate a message.
- Data and information visualization, the practice of creating visual representations of complex data and information.
- Music visualization, animated imagery based on a piece of music.
- Mental image, the experience of images without the relevant external stimuli.

FEATURE ENGINEERING

The process of using domain knowledge to select and transform the most relevant variables from raw data when creating a predictive model using machine learning or statistical modeling.

MODEL TRAINING

Model training is the process of feeding engineered data to a parametrized machine learning algorithm in order to output a model with optimal learned trainable parameters that minimize an objective function.

MODEL EVALUATION

Model evaluation in machine learning is the process of determining a model's performance via a metrics-driven analysis. It can be performed in two ways:

offline: The model is evaluated after training during experimentation or continuous retraining.

online: The model is evaluated in production as part of model monitoring.

```
importnumpyasnp
importpandasaspd
importmatplotlib.pyplotasplt
importtensorflowastf
importsklearn.preprocessing
fromsklearn.metricsimportr2_score
fromkeras.layersimportDense, Dropout, SimpleRNN, LS
TM
fromkeras.modelsimportSequential
AEP=pd.read_csv('../input/hourly-energy-
consumption/AEP hourly.csv',index col=[0],parse dates=[0]
mau=["#F8766D","#D39200","#93AA00","#00BA38","#00C1
9F","#00B9E3","#619CFF","#DB72FB"]
bieudo=AEP.plot(style='.',figsize=(15,5),color=mau[0],title='
AEP')
```

#Data transformation

```
defcreate features(df,label=None):
df=df.copy()
df['date']=df.index
df['hour']=df['date'].dt.hour
df['dayofweek']=df['date'].dt.dayofweek
df['quarter']=df['date'].dt.quarter
df['month']=df['date'].dt.month
df['year']=df['date'].dt.year
df['dayofyear']=df['date'].dt.dayofyear
df['dayofmonth']=df['date'].dt.day
df['weekofyear']=df['date'].dt.weekofyear
X=df[['hour','dayofweek','quarter','month','year',
'dayofyear','dayofmonth','weekofyear']]
iflabel:
y=df[label]
returnX,v
returnX
X,y=create features(AEP,label='AEP MW')
features and target=pd.concat([X,y],axis=1)
print(features_and_target)
plt.show()
plt.figure(figsize=(15,6))
data csv=AEP.dropna()
dataset=data csv.values
dataset=dataset.astype('float32')
max_value=np.max(dataset)
min_value=np.min(dataset)
scalar=max value-min value
```

```
dataset=list(map(lambdax:(x-min_value)/scalar,dataset))
plt.plot(dataset)
print(max_value,min_value)
```

hour dayofweek quarter month year dayofyear \ Datetime

```
2004-12-31 01:00:00
                                   12 2004
                                               366
                     1
2004-12-31 02:00:00
                                  12 2004
                                               366
                     2
                           4
2004-12-31 03:00:00
                     3
                                  12 2004
                                               366
2004-12-31 04:00:00
                     4
                               4
                                  12 2004
                                               366
                           4
                     5
2004-12-31 05:00:00
                           4
                                4
                                  12 2004
                                               366
2018-01-01 20:00:00
                    20
                           0
                                1
                                  1 2018
                                                1
2018-01-01 21:00:00
                    21
                           0
                               1
                                    1 2018
                                                1
2018-01-01 22:00:00
                    22
                                1
                                    1 2018
                           0
                                                1
2018-01-01 23:00:00
                    23
                           0
                                1
                                    1 2018
                                                1
2018-01-02 00:00:00
                                    1 2018
                                               2
                    0
                           1
                                1
```

dayofmonth weekofyear AEP_MW Datetime

```
53 13478.0
2004-12-31 01:00:00
                        31
                               53 12865.0
2004-12-31 02:00:00
                        31
2004-12-31 03:00:00
                        31
                               53 12577.0
2004-12-31 04:00:00
                        31
                               53 12517.0
2004-12-31 05:00:00
                               53 12670.0
                        31
2018-01-01 20:00:00
                        1
                               1 21089.0
```

2018-01-01 21:00:00	1	1	20999.0
2018-01-01 22:00:00	1	1	20820.0
2018-01-01 23:00:00	1	1	20415.0
2018-01-02 00:00:00	2	1	19993.0
[121273 ROWS X 9 COLU	MNS1		

25695.0 9581.0


```
fpath='../input/hourly-energy-consumption/DOM_hour
ly.csv'
#Let's use datetime(2012-10-01 12:00:00,...) as index i
nstead of numbers(0,1,...)
#This will be helpful for further data analysis as we ar
e dealing with time series data
df=pd.read_csv(fpath,index_col='Datetime',parse_dat
es=['Datetime'])
df.head()
#checking missing data
df.isna().sum()
#Data visualization
df.plot(figsize=(16,4),legend=True)
plt.title('DOM hourly power consumption data - BEFO
RE NORMALIZATION')
plt.show()
```



```
defnormalize_data(df):
```

```
scaler=sklearn.preprocessing.MinMaxScaler()
df['DOM_MW']=scaler.fit_transform(df['DOM_MW'].val
ues.reshape(-1,1))
returndf

df_norm=normalize_data(df)
df_norm.shape

#Visualize data after normalization

df_norm.plot(figsize=(16,4),legend=True)

plt.title('DOM hourly power consumption data - AFTE
R NORMALIZATION')

plt.show()
```



```
defload_data(stock,seq_len):
X train=[]
y_train=[]
foriinrange(seq_len,len(stock)):
X_train.append(stock.iloc[i-seq_len:i,0])
y_train.append(stock.iloc[i,0])
# 1 last 6189 days are going to be used in test
X_test=X_train[110000:]
y_test=y_train[110000:]
# 2 first 110000 days are going to be used in training
X_train=X_train[:110000]
y_train=y_train[:110000]
#3 convert to numpy array
X_train=np.array(X_train)
y_train=np.array(y_train)
X_test=np.array(X_test)
y_test=np.array(y_test)
# 4 reshape data to input into RNN models
X_train=np.reshape(X_train,(110000,seq_len,1))
X_test=np.reshape(X_test,(X_test.shape[0],seq_len,1)
return[X_train,y_train,X_test,y_test]
```

```
#create train, test data
seq_len=20#choose sequence length
X_train,y_train,X_test,y_test=load_data(df,seq_len)
print('X_train.shape = ',X_train.shape)
print('y_train.shape = ',y_train.shape)
print('X_test.shape = ',X_test.shape)
print('y_test.shape = ',y_test.shape)
X_{train.shape} = (110000, 20, 1)
y_train.shape = (110000,)
X_{\text{test.shape}} = (6169, 20, 1)
y_test.shape = (6169,)
#RNN model
rnn_model=Sequential()
rnn_model.add(SimpleRNN(40, activation="tanh", retu
rn_sequences=True,input_shape=(X_train.shape[1],1)
))
rnn_model.add(Dropout(0.15))
```

```
rnn_model.add(SimpleRNN(40,activation="tanh",retu
rn_sequences=True))
rnn_model.add(Dropout(0.15))
rnn_model.add(SimpleRNN(40,activation="tanh",retu
rn_sequences=False))
rnn_model.add(Dropout(0.15))
rnn_model.add(Dense(1))
rnn_model.summary()
rnn_model.compile(optimizer="adam",loss="MSE")
rnn_model.fit(X_train,y_train,epochs=10,batch_size
=1000)
```

Model: "sequential"

simple_rnn (SimpleI dropout (Dropout)		(None, 20, 40)		1680	
dropout (Dropout)	(No				
diopodi (Biopodi)	(110	ne, 20, 40)	0		
simple_rnn_1 (Simp	leRNN)	(None, 20, 40)	3240	
dropout_1 (Dropout	:) (N	one, 20, 40)	0		
simple_rnn_2 (Simp	leRNN)	(None, 40)		3240	
dropout_2 (Dropout	:) (N	one, 40)	0		

dense (Dense) (None, 1) 41

Total params: 8,201 Trainable params: 8,201 Non-trainable params: 0

Epoch 1/10 2022-08-19 16:26:37.061384: I tensorflow/compiler/mlir/mlir_graph_optimization _pass.cc:185] None of the MLIR Optimization Passes are enabled (registered 2) 110/110 [=============] - 10s 73ms/step - loss: 0.0820 **Epoch 2/10 Epoch 3/10 Epoch 4/10 Epoch 5/10 Epoch 6/10 Epoch 7/10 Epoch 8/10 Epoch 9/10 Epoch 10/10**

rnn_predictions=rnn_model.predict(X_test)
rnn_score=r2_score(y_test,rnn_predictions)
print("R2 Score of RNN model = ",rnn_score)

R2 SCORE OF RNN MODEL = 0.9466957722475382

defplot_predictions(test, predicted, title):

```
plt.figure(figsize=(16,4))
plt.plot(test,color='blue',label='Actual power consum
ption data')
plt.plot(predicted,alpha=0.7,color='orange',label='Pr
edicted power consumption data')
plt.title(title)
plt.xlabel('Time')
plt.ylabel('Normalized power consumption scale')
plt.legend()
plt.show()
plot_predictions(y_test,rnn_predictions,"Predictions
made by simple RNN model")
```

lstm_model=Sequential()

```
Istm_model.add(LSTM(40,activation="tanh",return_sequenc es=True,input_shape=(X_train.shape[1],1)))
Istm_model.add(Dropout(0.15))
Istm_model.add(LSTM(40,activation="tanh",return_sequenc es=True))
Istm_model.add(Dropout(0.15))
Istm_model.add(LSTM(40,activation="tanh",return_sequenc es=False))
Istm_model.add(Dropout(0.15))
Istm_model.add(Dropout(0.15))
Istm_model.add(Dense(1))
Istm_model.summary()
Istm_model.compile(optimizer="adam",loss="MSE")
Istm_model.fit(X_train,y_train,epochs=10,batch_size=1000)
```

Model: "sequential_1"

Layer (type)	Output Shape	Param # 	
Istm (LSTM)	(None, 20, 40)	6720	
dropout_3 (Dropout)	(None, 20, 40)	0	
Istm_1 (LSTM)	(None, 20, 40)	12960	
dropout_4 (Dropout)	(None, 20, 40)	0	
Istm_2 (LSTM)	(None, 40)	12960	
dropout_5 (Dropout)	(None, 40)	0	
dense_1 (Dense)	(None, 1)	41	
Total params: 32,68° Trainable params: 33 Non-trainable param	2,681		
Epoch 2/10		====] - 26s 193ms/step	
Epoch 3/10		====] - 20s 185ms/step	
110/110 [======= Epoch 4/10		====] - 21s 191ms/step	- loss: 0.0080
		====] - 21s 186ms/step	- loss: 0.0047
110/110 [====== s: 0.0037		======] - 20s 185	5ms/step - los
Epoch 6/10 110/110 [====== s: 0.0030		======] - 21s 194	1ms/step - los
Epoch 7/10			

OUT[10]:

<KERAS.CALLBACKS.HISTORY AT 0X7F01D4E38810>

r2 score for the values predicted by the above trained LSTM model

lstm_predictions=lstm_model.predict(X_test)
lstm_score=r2_score(y_test,lstm_predictions)

print("R^2 Score of LSTM model = ",lstm_score)

R^2 SCORE OF LSTM MODEL = 0.94996673239313

#actual values vs predicted values by plotting a graph

plot_predictions(y_test,lstm_predictions,"Predictions made by L STM model")


```
#RNN, LSTM model by plotting data in a single graph

plt.figure(figsize=(15,8))
plt.plot(y_test,c="orange",linewidth=3,label="Original values")
plt.plot(lstm_predictions,c="red",linewidth=3,label="LSTM predictions")
plt.plot(rnn_predictions,alpha=0.5,c="blue",linewidth=3,label="RN N predictions")
plt.legend()
plt.title("Predictions vs actual data",fontsize=20)
plt.show()
```

