13.4 习题

张志聪

2025年2月18日

13.4.1

从 E 中任选一个元素组成集合 E_1 , $E_2 := E \setminus E_1$ 。

当使用离散度量 d_disc 时,所有集合都既是开的又是闭的,又 $E=E_1\cup E_2$,所以 E 是不连通的。

13.4.2

• ⇒

因为 (X,d) 是连通的空间,且 f 是连续的,那么由定理 13.4.6 可知, f(X) 是连通的,又由习题 13.4.1 可知 f(X) 中只能含有一个元素,所以 f 是常数函数。

• =

f 是常数函数,按照连续的定义可知,f 是连续的。

13.4.3

• (b) \Longrightarrow (c)

讨论 X 是非空集合,在广义实数 \mathbb{R}^* 中, $\sup(X)$, $\inf(X)$ 是存在的,让 $M:=\sup(X), m:=\inf(X)$ 。

任意 $z \in (m, M)$,存在 $x, y \in X$ 使得 x < z < y,因为 (b) 成立,所以 $[x, y] \in X$,所以 $z \in X$,由 z 的任意性可知 $(m, M) \subseteq X$,而 X 中的任意元素(除了 m, M)都属于 (m, M),于是 X 可以表示成区间

([m, M], [m, M), (m, M], (m, M) 中的任意一种), m, M 是否属于 X, 只会影响区间的表示(闭的或开的)。

• (c) \Longrightarrow (b)

X 是区间,那么,按照定义 9.1.1 可知,任意 $x, y \in X$ 且 x < y, [x, y] 包含在 X 中是显然的。

13.4.4

反证法,假设 f(E) 不是连通的,那么存在两个不相交的非空开集 V 和 W 使得 $f(E) = V \cup W$ 。

由习题 13.1.6,习题 13.1.7 和定理 13.1.5(c) 可知,集合 $f^{-1}(V)$ 和 $f^{-1}(W)$ 都是非空开集,并且不相交。(如果存在 $x \in f^{-1}(V) \cap f^{-1}(W)$,那 么 $f(x) \in V \cap W$,这与 V 和 W 不相交矛盾。) $E = f^{-1}(V) \cup f^{-1}(W)$ 是易证的。(对任意 $x \in E$,f(x) 要么属于 V 要么属于 W,于是可得 $x \in f^{-1}(V)$ 或 $x \in f^{-1}(W)$ 。)

综上, E 是不连通的, 这与题设矛盾。

13.4.5

由定理 13.4.6 可知 f(E) 是连通的。

任意 $f(a), f(b) \in f(E)$, 设 f(a) < f(b) ($f(a) \ge f(b)$ 证明类似)。由定理 13.4.5(b) 可知, $[f(a), f(b)] \subseteq f(E)$, 因为 $f(a) \le y \le f(b)$, 于是可得 $y \in [f(a), f(b)] \subseteq f(E)$, 所以存在 $c \in E$ 使得 f(c) = y。

13.4.6

反证法,假设 $\bigcup_{\alpha\in I} E_{\alpha}$ 是不连通的,那么, $\bigcup_{\alpha\in I} E_{\alpha}$ 中存在两个不相交的开集 V 和 W 使得 $\bigcup_{\alpha\in I} E_{\alpha} = V\cup W$,任意 $\alpha\in I$,取 $V_{\alpha} = V\cap E_{\alpha}$, $W_{\alpha} = W\cap E_{\alpha}$,由命题 12.3.4(a) 可知, V_{α} 和 W_{α} 都是相对于 E_{α} 的开集,因为 E_{α} 是连通的,所以 V_{α} 和 W_{α} 必须有一个是空集,否则 E_{α} 是不连通的,于是任意 $\alpha\in I$,要么 $E_{\alpha}\subseteq V$ 要么 $E_{\alpha}\subseteq W$ 。因为 V,W 是非空的,那么存在 $\alpha,\alpha'\in I$ 使

得 $E_{\alpha} \subseteq V, E_{\alpha'} \subseteq W$,因为 V, W 是不相交的,所以 $E_{\alpha} \cap E_{\alpha'} = \emptyset$,于是 $\bigcap_{\alpha \in I} E_{\alpha} = \emptyset$,与题设矛盾。

13.4.7

说明 1. 这里不能直接用定理 13.4.6 证明, 因为 $\gamma([0,1]) \subseteq E$, 而不是 $\gamma([0,1]) = E$ 。

说明 2. 逆命题我没有证, 主要是没读懂逆命题应该证明什么

反证法,假设 E 是不连通的。那么,E 中存在两个不相交的开集 V 和 W 使得 $E=V\cup W$ 。取 $x\in V,y\in W$,设 $Y:=\gamma([0,1]),Y\subseteq E$,可得 $Y\cap V\neq\varnothing,Y\cap W\neq\varnothing$,又由命题 12.3.4(a) 可知 $V\cap Y$ 和 $W\cap Y$ 都是相 对于 Y 的开集,因为 $V\cap W=\varnothing$,所以 $(V\cap Y)\cap (W\cap Y)=\varnothing$,又因为 $(V\cap Y)\cup (W\cap Y)=Y$ 可得,Y 是不连通的,但通过定理 13.4.6 可得,Y 是连通的,存在矛盾。

13.4.8

(1)

反证法,假设 \overline{E} 不连通,那么, \overline{E} 中存在两个不相交的开集 V,W 使得 $\overline{E} = V \cup W$ 。定义 $V' := V \cap E, W' := W \cap E$,于是我们有 $V' \cap W' = \emptyset$ (因为 V,W 不相交),并且 $V' \cup W' = E$ (因为 $E \subset \overline{E}$)。

接下来,我们需要证明 V',W' 不是空集。任意 $x \in V$,如果 $x \in E$,那 么 $x \in V' = V \cap E$ 。如果 $x \in \partial E$,因为 V 是开集,那么存在 r > 0 使得 $B(x,r) \subseteq V$,此时一定存在 $y \in B(x,r) \cap E$,否则 x 将是外点,与 x 是边 界点矛盾,于是 $y \in V' = V \cap E$ 。综上,所以 V' 不是空集。类似的,W' 也不是空集。

综上可得 $E=V'\cup W'$,且 V',W' 是 E 中的非空开集,所以 E 是不连通的,与题设矛盾。

(2) 逆命题是否成立?

不成立。比如 $\overline{E} := [-1,1], E := (-1,0) \cup (0,1).$

13.4.9

- (1) 证明: 这是一种等价关系。
- 自反性 (x ~ x)
 任意 x ∈ X,集合 {x} 是连通的且 x ∈ {x},于是可得 x ~ x。
- 对称性 $(x \sim y \implies y \sim x)$ 因为 $x \sim y$,所以存在一个同时包含 x, y 的连通子集 $E \subseteq X$,这也表明 $y \sim x$ 。
- 传递性 $(x\sim y,y\sim z\Longrightarrow x\sim z)$ $x\sim y$,所以存在一个同时包含 x,y 的连通子集 $E\subseteq X$ 。 $y\sim z$,所以存在一个同时包含 y,z 的连通子集 $F\subseteq X$ 。

因为 $x \in E, x \in F$,所以 $E \cap F \neq \emptyset$,并且 E, F 都是连通集,由习题 13.4.6 可知 $E \cup F$ 是连通的,且 $E \cup F$ 中包含 x, z,所以 $x \sim z$ 。

(2) 这种关系的等价类全是连通的闭集。

13.4.10

定理:

证明:

由命题 13.3.2 可知, 存在 $x_{max} \in X$ 使得 $f(x_{max}) = M$, 存在 $x_{min} \in X$ 使得 $f(x_{min}) = m$ 。由推论 13.4.7(介值定理)可知, 存在 $c \in X$ 使得 f(c) = y。