Zero-Shot Learning with Partial Attributes

Matías D. Molina matias.molina@unc.edu.ar

Universidad Nacional de Córdoba, Argentina

March, 2018

Outline

The Problem: Zero-Shot Learning

Why zero-shot learning?

How to transfer knowledge?

Zero-Shot Learning Models

Direct Attribute Prediction

Convex Combination of Semantic Embeddings

Structured Joint Embedding (SJE)

Embarrassingly simple approach to zero shot learning

Our Work: An improved variant of the SJE method.

Our Work: Zero-Shot Learning with Partial Attributes

Zero-Shot Learning with Partial Attributes

Attribute inference for ZSL

Using the attributes inference with SJE

Conclusions

Future Works

Why zero-shot learning?

- New categories are always emerging
- Great annotation effort for fine-grained problems
- Long tail distribution

MIT Place2 dataset (10M images)

How to transfer knowledge?

Subsidiary information

To represent all the (training and testing) categories:

- Human defined visual attributes.
 - Good performance
 - High cost (crowdsourcing techniques, human expert)
- Text-based word embeddings
 - Scalable
 - Inferior performance

How to transfer knowledge?

Lampert et.al. CVPR'09.

Word embeddings

Mikolov et.al. NIPS'13.

$$v(queen) \approx v(king) + v(woman) - v(man)$$

Zero-Shot Learning Models

Notation

- ▶ Training inputs (labels): $\mathcal{X}^{tr}(\mathcal{Y}^{tr})$
- ▶ Testing inputs (labels): $\mathcal{X}^{ts}(\mathcal{Y}^{ts})$
- ▶ Attribute set $A = \{a_1, ..., a_E\}$
- ► Attribute vector for class y: $a_y = (a_{y,1}, ..., a_{y,E})$
- Word embedding for class y: ω_y

Zero-Shot Learning Models

Direct Attribute Prediction (Lampert et. al.)

Training:

- ▶ Learn attribute predictors using image-attribute pairs from the training set: $p(a_i|x)$, $i = 1,..., E.x \in \mathcal{X}^{tr}$
- ▶ Define attribute-image predictor $p(a|x) = \prod_i p(a_i|x)$

Testing:

- ▶ Define the class-attribute predictor: $p(y|a) = \frac{\mathbb{I}[a=a_y]p(y)}{p(a_y)}$
- Combine both predictors to obtain image-class predictor $p(y|x) = \sum p(y|a)p(a|x)$
- ▶ Predict according to arg $\max_{y \in \mathcal{Y}^{ts}} p(y|x)$

Zero-Shot Learning Models

Convex Combination of Semantic Embeddings (Norouzi et. al.)

Standard classification problem adapted to the zsl problem by using the auxiliary information.

- ▶ Learn a supervised classifier: $p(y|x), (x, y) \in \{(\mathcal{X}^{tr}, \mathcal{Y}^{tr})\}$
- ▶ Predict the semantic embedding $\alpha(x)$ by combining the output embeddings of the t-th most likely labels:

$$\alpha(x) = \sum_{t=1}^{T} \frac{1}{Z} p(\hat{y}_t(x)|x) \psi(\hat{y}_t(x))$$

▶ Predict using cosine similarity arg $\max_{y \in \mathcal{Y}^{ts}} cos(\alpha(x), \psi(y))$

Zero-Shot learning models

Structured Joint Embedding (SJE, Akata et. al.)

Based on a bilinear compatibility function:

$$F(x, y; W) = \phi(x)^T W \psi(y)$$

- ► Training (by SGD) based on SSVM (Joachims, 2005): $F(x_n, y_n; W) F(x_n, y; W) \ge \Delta(y_n, y), \forall y \in \mathcal{Y}^{tr} \{y_n\}$
- $\ell(x_n, f(x_n; w)) = \\ [\max_{y \in \mathcal{Y}} \Delta(y_n, y) + F(x_n, y; W) F(x_n, y_n; W)]_+$
- ▶ Testing: $arg max_{y \in \mathcal{Y}^{ts}} F(x, y; W)$

Zero-Shot learning models

Embarrassingly simple approach to zero shot learning (Romera Paredes et. al.)

Starting from the general formulation:

$$\min_{W} L(X, Y; W) + \Omega(W)$$

Defining the following regularizer:

$$\Omega(W) = \gamma ||W\psi(Y)||_F^2 + \lambda ||\phi(X)^T W||_F^2 + \beta ||W||_F^2$$

And taking

$$L(X, Y, W) = ||\phi(X)^T W - \psi(Y)||_F^2, \beta = \lambda \gamma$$

The problem can be solved by a closed form.

Our Work: An improved variant of the SJE method.

- PCA projection step followed by an L2-normalization on the inputs and the outputs.
- ► ESZSL closed form solution as initialization for the weight matrix *W* when learning the objective.

		SJE(R)		SJE	++	Improvement	
		attr.	w2v	attr.	w2v	attr.	w2v
CUB	GoogLeNet	49.81	28.40	54.69	34.47	+4.88	+6.07
	ResNet	56.02	30.96	59.94	36.82	+3.92	+5.86
	VGG19	49.13	25.43	49.98	34.47	+0.85	+9.04
AWA	GoogLeNet	69.03	49.24	65.66	54.14	-3.37	+4.90
	VGG19	81.32	61.62	81.02	68.40	-0.30	+6.78

Our Work: An improved variant of the SJE method.

		SJE(R)		SJE	++	Improvement	
		attr.	w2v	attr.	w2v	attr.	w2v
CUB	${\sf GoogLeNet}$	49.81	28.40	54.69	34.47	+4.88	+6.07
	ResNet	56.02	30.96	59.94	36.82	+3.92	+5.86
	VGG19	49.13	25.43	49.98	34.47	+0.85	+9.04
AWA	GoogLeNet	69.03	49.24	65.66	54.14	-3.37	+4.90
AVVA	VGG19	81.32	61.62	81.02	68.40	-0.30	+6.78

- ▶ PCA improvement can be explained by considering the granularity of the visual concepts (classes).
- CUB (fine-grained): the PCA projection step helps in disentangling the subtle differences between the representations on both the visual and semantic spaces.

Our Work: An improved variant of the SJE method.

Comparison of SJE++ against the state-of-the-art methods for attribute-based zero-shot learning.

	ResNet		VG	G19	GoogLeNet		
	AWA	CUB	AWA	CUB	AWA	CUB	
DAP	57.1	37.5	57.23	-	-	-	
SSE	68.8	43.3	76.33	30.41	-	-	
LATEM	74.8	49.4	-	-	-	-	
SYNC	72.2	54.1	-	-	-	-	
ConSe	63.6	36.7	-	-	-	-	
ALE	78.6	53.2	-	-	-	-	
SJE	76.2	55.3	-	-	66.7	50.1	
ESZSL	74.7	55.1	75.32	-	-	-	
SJE++	-	59.94	81.02	49.98	65.66	54.69	

Our Work: Zero-Shot Learning with Partial Attributes The Partial Attributes Problem

Original ZSL problem vs. Our proposed problem

Zero-Shot Learning with Partial Attributes

Attribute inference for ZSL

Attributes for the testing classes are inferred by using the similarity between the word embedding for each label name:

$$\alpha(y) = \alpha_y = \frac{1}{Z(y)} \sum_{y' \in \mathcal{Y}^{tr}} S(y, y') a_{y'}$$

$$S(y,y') = s(\omega_y,\omega_{y'}) = exp\{-\tau||\omega_y - \omega_{y'}||^2\}$$

Using the attributes inference with SJE

Following the SJE formulation we define the compatibility function and the objective function using the new (transformed) attributes:

- ► Compatibility function: $F(x, y; W) = \phi(x)^T W \alpha(y)$
- Learning by minimizing the objective:

$$\frac{1}{M} \sum_{1}^{M} \max_{y \in \mathcal{Y}^{tr}} \{0, \Delta(y_n, y) + \phi(x)^T W(\alpha_y - \alpha_{y_n})\}$$

Using the attribute inference with SJE

Performance of our attribute inference approach

	CUB			AWA					
	SJE	SJE++	lpha-attr.	SJE	SJE++	lpha-attr.	SJE++	lpha-attr.	
	w2v	w2v	$\omega = \!\! \text{w2v}$	w2v	w2v	$\omega =$ w2v	GloVe	$\omega = GloVe$	
GoogLeNet	28.40	34.47	34.57	49.24	54.14	51.17	65.05	64.92	
ResNet	30.96	36.82	36.75	-	-	-	-	-	
VGG19	25.43	34.47	33.99	61.62	68.40	64.11	68.38	73.33	

Conclusions

- We added two simple steps of the SJE model with significant improvements.
 - Applying PCA projection on the inputs and the outputs improves the performance significantly.
 - PCA helps to disentangle fine-grained datasets.
 - Changing the random normal initialization of SJE, the method improves at most 1 point.
- We proposed a variant of the attribute-based zero-shot classification problem where the class attributes are not available at test time.
 - We solved this problem by inferring the attributes deterministically.

Future Works

- Evaluation with different splits (proposed split by Xian et al. (2018)).
- ► Experiments with more {fine,coarse}-grained datasets.
- Add visual information to create a better attribute inference.
- Learn an function to infer the attributes instead to define it deterministically.
- **.**..?

Thanks :)