RELATÓRIO DE TESTE

QUESTÃO 9)

ANÁLISE DOS LADOS DE UM TRIÂNGULO:

É um triângulo? Antes de ser identificar o tipo do triângulo, ele precisa de fato ser um triângulo. A regra para saber se as retas podem formar um triângulo é: cada lado deve ter valor maior que o modulo da diferença dos outros dois, e valor menor que a somatória dos mesmos.

$$|b-c| \le a \le b+c$$

$$|a-c| \le b \le a+c$$

$$|a-b| \le c \le a+b$$

Triângulo equilátero: Todos os lados têm mesmo tamanho:

$$a=b=c$$

Triângulos isósceles: Dois lados quaisquer têm mesmo tamanho:

$$(a=b\neq c)\vee(a=c\neq b)\vee(b=c\neq a)$$

Triângulo escaleno: Todos os lados têm tamanhos diferentes:

$$a \neq b \neq c$$

VALORES A SEREM TESTADOS:

Tipos de entrada:

Teoricamente os valores que podem ser inseridos são inteiros e decimais, contudo, ao analisar o tráfico de rede, vemos que são passados como texto. Esperançosamente, internamente o valor é tratado e convertido, então temos que analisar o que ocorre ao passar diferentes tipos primitivos.

TIPOS:	Inteiro	Decimal	String	Vazio	None
--------	---------	---------	--------	-------	------

Tipos de entrada (usando partição equivalente):

Como já dito, os valores aceitos são apenas números reais não nulos e maiores que zero:

TIPO ENTRADA	VÁLIDO	INVALIDO	
Inteiro	> 0	<= 0	
Decimal	> 0.0	<= 0.0	
String		Todas	
Vazio		X	
null		X	
NaN		X	

Os dois últimos testes são devidos a as vezes o JavaScript forçar a conversão implícita de tipos, fazendo com que erros sejam inseridos.

Então a serem testados são (lembrando que são três campos):

ENTRADA			SAÍDA ESPERADA
0.1	200	1.2	VALIDO
1	2	0	INVALIDO
1	2	-2	INVALIDO
1	2	0.0	INVALIDO
1	2	a	INVALIDO
1	2		INVALIDO
1	2	null	INVALIDO
1	2	NaN	INVALIDO

Vale ressaltar que é bom testar o máximo de casos validos juntos de uma vez, pois como esperamos uma resposta valida deles já unimos todos. O oposto é verdade para os casos inválidos, queremos testar apenas um caso invalido por vez, pois se testarmos mais de um, fica difícil saber de quem é a responsabilidade da saída errada.

É um triângulo (usando valor limite):

No caso da regra de ser um triângulo ou não, vamos analisar os lados da igualdade isoladamente:

1.
$$|b-c| \leq a$$

2.
$$a \le b + c$$

Para a 1° desigualdade temos três fronteiras:

Para a 2° desigualdade temos três fronteiras:

b-c < a	VALIDO	<i>a</i> < <i>b</i> + <i>c</i>	VALIDO
b-c =a	VALIDO	a=b+c	VALIDO
b-c >a	INVALIDO	<i>a</i> > <i>b</i> + <i>c</i>	INVALIDO

Para o conjunto de entrada 4;2;2 já testamos todas as possibilidades de valido juntas, pois 2=2<6 e 0<4=4. E, matematicamente, não é possível ter os casos inválidos isolados, pois se o primeiro caso for invalido, o segundo, em alguma das três análises também será, então selecionei o valor 5;2;1.

ENTRADA			SAÍDA ESPERADA	
4	2.0	2	VALIDO	
5	2	1	INVALIDO	

Tipo do triângulo (usando valor limite):

Curiosamente, a análise dos tipos já nós dá todas as possibilidades combinacionais diferentes, pois, para três valores, só temos 3 possibilidades: todos são iguais, eles são iguais dois a dois; todos são diferentes.

	ENTRADA		SAÍDA ESPERADA
2	2	2	EQUILÁTERO
3	2	2	ISÓSCELES
3	2	1	ESCALENO

Agora combinando todas as análises para gerar meu caso de teste final:

DESCRIÇÃO	ENTRADA		ANÁLISE ESPERADA	SAÍDA ESPERADA	
Escaleno	0.1	200	1.2	VALIDO	Escaleno
Isósceles	4.0	2	2	VALIDO	Isósceles
Equilátero	2.0	2	2.0	VALIDO	Equilátero
Triângulo invalido	5	2	1	INVALIDO	Erro
Lado de tamanho zero não existe	1	2	0	INVALIDO	Erro
Lado de tamanho negativo não existe	1	2	-2	INVALIDO	Erro
Entrada vazia	1	2		INVALIDO	Digite os valores dos vértices do triângulo para identificar o seu tipo
É texto	1	2	a	INVALIDO	Erro
Null é texto	1	2	null	INVALIDO	Erro
NaN é texto		2	NaN	INVALIDO	Erro