VS postopek za izračun vrednosti polinomov več spremenljivk

Janez Radešček, Miha Avsec

Fakulteta za matematiko in fiziko

2019

Polinom v Bernstein-Bezierjevi obliki (BB)

Naj bo T trikotnik, potem polinom v baricentričnih koordinatah (r, s, t) lahko zapišemo kot

$$p(r, s, t) = \sum_{i=0}^{d} \sum_{j=0}^{i} b_{d-i, i-j, j} B_{d-i, i-j, j}^{d},$$

kjer je

$$B_{i,j,k}^d(r,s,t) = \frac{d!}{i!j!k!}r^i s^j t^k$$

Bernsteinov polinom stopnje d.

De Casteljau

De Casteljaujev algoritem

for k=1:d for i=0:d-k for j=0:i
$$b_{d-i-k,i-j,j}^k = r*b_{d-i-k+1,i-j,j}^{k-1} + s*b_{d-i-k,i-j+1,j}^{k-1} + r*b_{d-i-k,i-j,j+1}^{k-1}$$

$$p(r,s,t) = b_{0,0,0}^d$$

Algoritem potrebuje d(d+1)(d+2)/2 množenj.

Modificirana Bernstein-Bezierjeva oblika polinoma (MBB)

Polinom v Bernsteinovi obliki lahko zapišemo kot

$$p(r, s, t) = \sum_{i=0}^{d} \sum_{j=0}^{i} c_{d-i, i-j, j} r^{d-i} s^{i-j} t^{j},$$

kjer za $c_{d-i,i-j,j}$ vzamemo

$$c_{d-i,i-j,j} = \frac{d!}{(d-i)!(i-j)!j!}b_{d-i,i-j,j}, \quad j=0,\ldots,i; i=0,\ldots,d.$$

Modificirana Bernstein-Bezierjeva oblika polinoma

Razdelitev domenskega trikotnika v primeru, ko je d=2

Modificirana Bernstein-Bezierjeva oblika polinoma

Razvoj po spremenljivki r:

$$p(r,s,t) = \sum_{i=0}^{2} \sum_{j=0}^{i} c_{2-i,i-j,j} r^{2-i} s^{i-j} t^{j}$$

$$= r^{2} \sum_{j=0}^{0} c_{2,-j,j} s^{-j} t^{j} + r \sum_{j=0}^{1} c_{1,1-j,j} s^{1-j} t^{j} + \sum_{j=0}^{2} c_{0,2-j,j} s^{2-j} t^{j}$$

$$= r^{2} (c_{1}) + r (c_{2}s + c_{3}t) + (c_{4}s^{2} + c_{5}st + c_{6}t^{2})$$

$$= r^{2} (c_{1} + \frac{s}{r}c_{2} + \frac{t}{r}c_{3} + \frac{s^{2}}{r^{2}}c_{4} + \frac{st}{r^{2}}c_{5} + \frac{t^{2}}{r^{2}}c_{6})$$

$$= r^{2} (\frac{s}{r}(c_{2} + \frac{s}{r}c_{4} + \frac{t}{r}c_{5}) + \frac{t}{r}(\frac{t}{r}c_{6} + c_{3}) + c_{1})$$

Modificiran Bernstein-Bezierjev algoritem

VS algoritem

```
\begin{array}{lll} sr &=& s/r\,, & tr = & s/r\,\\ A &=& c_{0,d,0}\,; \\ for & i &=& 1:d\\ & B &=& c_{0,d-i,i}\\ & for & j &=& i:-1:1\\ & B &=& B*tr + c_{i-j+1,d-i,j-1}\,;\\ A &=& A &*sr &+B\,;\\ p\big(r\,,s\,,t\,\big) &=& Ar^d \end{array}
```

Algoritem potrebuje $(d^2 + 5d)/2$ množenj

Izbira spremenljivke

Posamezne regije so določena na sledeč način

- $1 r \geq s, r \geq t$
- $2 s > r, s \ge t$
- t > r, t > s

Taylor

Zapis polinoma v Taylorjevi obliki

$$p(u, v) = \sum_{i=0}^{d} \sum_{j=0}^{d-i} a_{i,j} u^{i} v^{j}$$

Taylorjev algoritem

Taylorjev algoritem

```
p = a_{0,d}

for i = 1:d

A = a_{i,d-i}

for j = 1:i

A = A * u + a_{i-j,d-i}

end

p = p * v + A
```

Algoritem potrebuje $(d^2 + 3d)/2$ množenj.

Primerjava metod

d	2	3	4	5	6	7	8	9
dCas	12	30	60	105	168	256	360	495
VSC	12	21	32	45	60	77	96	117
VS	9	14	20	27	35	44	54	65
Гау	5	9	14	20	27	35	44	54

■ dCas: De Casteljoujev algoritem

■ VS: algoritem za polinom v MBB olbiki

■ VSC: VS + pretvorba baz

■ Tay: Taylorjev algoritem

Polinom v treh spremenljivkah

Naj bo T tetraeder v \mathbb{R}^3 in naj bodo (r,s,t,u) pripadajoče baricentrične koordinate točke P. Potem lahko polinom v točki P zapišemo kot

$$p(r,s,t,u) = \sum_{i=0}^{d} \sum_{j=0}^{i} \sum_{k=0}^{j} c_{d-i,i-j,j-k,k} r^{d-i} s^{i-j} t^{j-k} u^{k}.$$

Polinom v treh spremenljivkah

Algoritem za polinom v treh spremenljivkah

```
ru = r/u
                  su= s/u
                                        tu= t/u
A = c_{d,0,0,0};
for i = 1.d
    B = c_{d-i,i,0,0}
    for i = 1:
         C = c_{d-i,i-j,j,0}
             for k = 1: j
                   C = C * tu + c_{d-i,i-j,j-k,k}
         B = B * ru + C
    A = A * ru + B;
p(r,s,t,u) = Au^d
```