

Faster R-CNN

2022.08.10 김정윤

Introduction

Introduction

Rol Pooling 방식을 이용해 Proposal을 convolution 간 공유 → Real-time에 근접한 network

Introduction (idea)

Region-based detector의 convolution feature map이
 Region Proposal에도 쓰일 수 있다

Introduction (idea)

• 기존 conv layer에 추가적인 layer를 쌓아서, region proposal과 regression, objectness score 계산을 동시에 해보자

Introduction

 Input image를 pre-trained 된 convolutional network에 forward-pass 하여 feature map을 생성

• Feature map에 n*n(논문 : 3*3)의 sliding window를 적용 (intermediate layer)시켜 같은 크기의 feature map 생성

Intermediate Layer

Feature map 40*60*512

 생성된 Feature map의 각 픽셀은 앞선 3*3 sliding window에 mapping됨

• 여기까지가 RPN training의 base단계이며, 이후 anchor를 생성 또는 prediction network를 학습하는 두 갈래로 이해

	settings	anchor scales	aspect ratios	mAP (%)
	1 scale, 1 ratio	128^{2}	1:1	65.8
	1 Scale, 1 Tatio	256^{2}	1:1	66.7
	1 scale, 3 ratios	128^{2}	{2:1, 1:1, 1:2}	68.8
		256^{2}	{2:1, 1:1, 1:2}	67.9
	3 scales, 1 ratio	$\{128^2, 256^2, 512^2\}$	1:1	69.8
	3 scales, 3 ratios	$\{128^2, 256^2, 512^2\}$	{2:1, 1:1, 1:2}	69.9

- 3*3 sliding window를 적용하는 동시에, 각 window의 중 심에 anchor를 배치
- 각 anchor마다 scale*ratio의 k개 anchor box를 생성하며,
 이를 input image에 projection k = scale * ratio

 생성된 모든 anchor box에 대해 positive, negative, invalid(학습에 쓰이지 않음)로 labeling

 Positive anchor box에 한해, 해당하는 ground truth의 bounding box offset(x*,y*,w*,h*)를 Labeling

• 결과적으로 3*3 sliding window 단계에서 동시적으로 아래와 같이 anchor box를 생성 및 labeling

Prediction Network

- 3*3 sliding window를 거친 feature map에 1*1 convolution kernel을 두 가지 목적(reg, cls)을 위해 적용
- 모든 40*60의 위치에 대해 classification과 bbox regression predicaiton 목적의 vector 생성 ->anchor box로 만든 vector와 train

Anchor & Prediction Network

• 각 anchor별로 9개를 예측한 결과(predictions)와, 동시에 anchor box로 생성한 vector 를 이용해 RPN train

λ	0.1	1	10	100
mAP (%)	67.2	68.9	69.9	69.1

Loss Function of RPN

• 각 anchor 별로 9개를 예측한 결과 (predictions)와, 동시에 anchor box로 생성한 vector를 이용해 RPN train

$L(\{p_i\},\{t_i\})$

$$\frac{1}{N_{cls}} \sum_i L_{cls}(p_i, p_i^*)$$

하나의 anchor box가 object이면 pi=1, 아니면 0 → Log Loss 계산해 학습 softmax로 나타나는 각 벡터의 object 또는 background일 확률(Likelihood)을 곱하여 -log를 취한 형태 (값이 작을수록 loss가 적다)

$$\sqrt{\lambda \frac{1}{N_{reg}} \sum_{i} p_{i}^{*} L_{reg}(t_{i}, t_{i}^{*})}$$

$$L_{reg}(t_i, t_i^*) = R(t_i - t_i^*)$$

$$\begin{split} t_{\rm X} &= (x-x_{\rm a})/w_{\rm a}, \quad t_{\rm y} = (y-y_{\rm a})/h_{\rm a}, \\ t_{\rm w} &= \log(w/w_{\rm a}), \quad t_{\rm h} = \log(h/h_{\rm a}), \\ t_{\rm x}^* &= (x^*-x_{\rm a})/w_{\rm a}, \quad t_{\rm y}^* = (y^*-y_{\rm a})/h_{\rm a}, \\ t_{\rm w}^* &= \log(w^*/w_{\rm a}), \quad t_{\rm h}^* = \log(h^*/h_{\rm a}), \end{split}$$

 p_i^st 가 곱해지는 형태이기 때문에, 해당하는 anchor box에 object가 없다면 regressor는 학습되지 않음

$$L_{reg}(t_i, t_i^*) = SmoothL_1((x - x_a)/w_a - (x^* - x_a)/w_a))$$

위 Loss에서 줄여야 되는 부분은 결국 $(x-x^*)$ 이며, 결과적으로는 anchor를 매개체로 사용하여 ground truth와 최대한 가까운 proposal을 생성(예측)하도록 학습된다고 볼 수 있음

$$smooth_{L_1}(x) = \begin{cases} 0.5x^2 & \text{if } |x| < 1\\ |x| - 0.5 & \text{otherwise,} \end{cases}$$

Using mini-batch in training

- RPN train시 "image-centric" sampling을 사용
- 하나의 image에서 256개의 anchor box를 sample하되, positive와 negative 비율이 (최대한) 1:1이 되도록 sample (Positive보다 Negative에 치우쳐(biased) 학습이 될 가능성을 최소화)

4-step Alternating Training

→ 결과적으로 RPN과 Fast RCNN이 Convolutional Feature를 공유할 수 있도록 하는 학습

RPN+Fast R-CNN

RPN+Fast R-CNN

• Train된 RPN에서 뱉는 propsal은 Fast RCNN으로 넘어가 classification 및 regression을 수행

Anchor Boxes are important

큰 object에 대해서도 준수한 예측성능을 보이고 이미지를 벗어나는 object에 대해서도 예측 가능

Anchor Boxes are important

Translation Invariant

Multi-scale Anchors as Regression References

- ✓ Anchor를 sliding 방식으로 사용하면 서, 물체의 translation에 invariant한 성질
- ✓ MultiBox는 k-means를 통해 anchor 를 생성(translation variant)함. 이 방 식에 비해 Faster-RCNN은 훨씬 적은 parameter를 갖게 되며,동시에 overfitting 확률도 낮춤
- ✓ Multi-scale prediction을 위해 pyramid-of-image, pyramid-offilters등 방법 존재 (각각 다른 image,필터 scale에 의존)
- ✓ Faster RCNN이 사용하는 pyramid of anchors방식은 동일한 scale의 feature map과 동일한 크기의 kernel 에 의존
 - ->feature sharing의 key component

train-time region proposals		test-time region		
method	# boxes	method	# proposals	mAP (%)
SS	2000	SS	2000	58.7
EB	2000	EB	2000	58.6
RPN+ZF, shared	2000	RPN+ZF, shared	300	59.9
ablation experiments for	ollow below			
RPN+ZF, unshared	2000	RPN+ZF, unshared	300	58.7
SS	2000	RPN+ZF	100	55.1
SS	2000	RPN+ZF	300	56.8
SS	2000	RPN+ZF	1000	56.3
SS	2000	RPN+ZF (no NMS)	6000	55.2
SS	2000	RPN+ZF (no cls)	100	44.6
SS	2000	RPN+ZF (no cls)	300	51.4
SS	2000	RPN+ZF (no cls)	1000	55.8
SS	2000	RPN+ZF (no reg)	300	52.1
SS	2000	RPN+ZF (no reg)	1000	51.3
SS	2000	RPN+VGG	300	59.2

			COCO val		COCO test-dev	
method	proposals	training data	mAP@.5	mAP@[.5, .95]	mAP@.5	mAP@[.5, .95]
Fast R-CNN [2]	SS, 2000	COCO train	-	-	35.9	19.7
Fast R-CNN [impl. in this paper]	SS, 2000	COCO train	38.6	18.9	39.3	19.3
Faster R-CNN	RPN, 300	COCO train	41.5	21.2	42.1	21.5
Faster R-CNN	RPN, 300	COCO trainval	-	-	42.7	21.9

On MS COCO

Pascal VOC 2007 bench mark

method	# proposals	data	mAP (%)	,						
SS	2000	07	66.9 [†]	•						
SS	2000	07+12	70.0	model	system	conv	proposal	region-wise	total	rate
RPN+VGG, unshared	300	07	68.5	VGG VGG	SS + Fast R-CNN RPN + Fast R-CNN	146 141	1510 10	174 47	1830 198	0.5 fps 5 fps
RPN+VGG, shared	300	07	69.9	ZF	RPN + Fast R-CNN	31	3	25	59	17 fps
RPN+VGG, shared	300	07+12	73.2							
RPN+VGG, shared	300	COCO+07+12	78.8	•						

Is VGG-16 Better?

	proposals		detector	mAP (%)
Two-Stage	RPN + ZF, unshared	300	Fast R-CNN + ZF, 1 scale	58.7
One-Stage	dense, 3 scales, 3 aspect ratios	20000	Fast R-CNN + ZF, 1 scale	53.8
One-Stage	dense, 3 scales, 3 aspect ratios	20000	Fast R-CNN + ZF, 5 scales	53.9

One stage vs Two stage

Conclusion

- 효율성
 - Convolutional feature를 Fast R-CNN과 공유함
 으로써 region proposal이 near cost free
- 정확도
 - Detector로 fine-tuning된 RPN을 이용하게 되면서, 좀더 정확한 localization이 가능한 detection system 구축

Thank You