# Section 5.2 Observational Studies with Multiple Quantitative Variables

Kevin Cummiskey November 4, 2019

### Review

Let's say you are interested in the effects of sleep and coffee consumption on academic performance. You randomly assign cadets in a class to one of three sleep groups (3,5,7 hours) and coffee groups (0, 200, 400 mg) in a 3 x 3 factorial design and record their performance on a WPR. Let  $y_i$  be the WPR grade,  $x_{1,i}$  be sleep in hours (standardized), and  $x_{2,i}$  be the coffee consumption (standardized) of cadet i. Consider the following model:

$$y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \epsilon_i \quad \epsilon_i \sim N(0, \sigma^2)$$

- 1. Why do we standardize explanatory variables?
- 2. Interpret  $\beta_0$ .
- 3. Will the adjusted and unadjusted effect of sleep on WPR performance be the same? Explain.
- 4. Can we use this model to test whether the effect of sleep on WPR performance depends upon coffee consumption? Explain.

# Example 5.2

#### PIQ and Brain Size

```
brains %>% ggplot(aes(x = BrainSize, y = PIQ)) +
  geom_point() +
  geom_smooth(method = "lm", se = FALSE)
```



```
model_unadjusted = lm(PIQ ~ BrainSize, data = brains)
summary(model_unadjusted)
```

```
##
## Call:
## lm(formula = PIQ ~ BrainSize, data = brains)
## Residuals:
               1Q Median
##
      Min
                               3Q
  -40.079 -17.508 -2.096 17.100 41.574
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.66036
                         43.71288
                                    0.107
                                            0.9157
## BrainSize
               0.11765
                          0.04806
                                    2.448
                                            0.0194 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 21.21 on 36 degrees of freedom
## Multiple R-squared: 0.1427, Adjusted R-squared: 0.1189
## F-statistic: 5.993 on 1 and 36 DF, p-value: 0.01937
```

What conclusions should we draw from the unadjusted model?

## Confounding by Height?

```
library(gridExtra)
p1 = brains %>% ggplot(aes(x = BrainSize, y = Height)) +
  geom_point() + geom_smooth(method = "lm", se = F)
p2 = brains %>% ggplot(aes(x = Height, y = PIQ)) +
  geom_point() + geom_smooth(method = "lm", se = F)
grid.arrange(p1,p2, ncol = 2)
```



Is there evidence of confounding? How will adjusting for height change the effect of BrainSize on PIQ?

Let's look at the height-adjusted PIQ.

```
model_PIQheight = lm(PIQ ~ Height, data = brains)
summary_PIQheight = model_PIQheight %>% fortify()

#height-adjusted PIQ
brains = brains %>%
    mutate(PIQ_height_adj = mean(PIQ) + summary_PIQheight$.resid)

#plots on page 382
# color scale
sc = scale_color_distiller(palette = "Spectral", direction = 1)

p3 = brains %>% ggplot(aes(x = BrainSize, y = PIQ, color = Height)) +
    geom_point() + ylim(65,155) + sc
p4 = brains %>% ggplot(aes(x = BrainSize, y = PIQ_height_adj, color = Height)) +
    geom_point() + ylim(65,155) + sc
grid.arrange(p3,p4,ncol = 2)
```



How did we obtain height-adjusted PIQ? What happened to PIQ after adjusting for height?

Let's look at height-adjusted brainsize.

```
model_Brainheight = lm(BrainSize ~ Height, data = brains)
summary_Brainheight = model_Brainheight %>% fortify()

#height-adjusted PIQ
brains = brains %>%
    mutate(BrainSize_height_adj = mean(BrainSize) + summary_Brainheight$.resid)

#plots on page 382
p5 = brains %>% ggplot(aes(x = BrainSize, y = PIQ, color = Height)) +
    geom_point() + ylim(65,155) + sc
p6 = brains %>%
    ggplot(aes(x = BrainSize_height_adj, y = PIQ_height_adj, color = Height)) +
    geom_point() +
    ylim(65,155) +
    sc
grid.arrange(p5,p6,ncol = 2)
```



How do we obtain height-adjusted BrainSize?

Let's look at an added variable plot predicting PIQ from BrainSize before (black line) and after (blue line) adjusting for height.

```
p6 + geom_smooth(method = "lm", se = FALSE) +
geom_abline(aes(slope = 0.1177, intercept = 4.66))

Height
74
70
66
80

BrainSize_height_adj
```

```
Let's fit the main effects model.
```

```
model_height_brainsize = lm(PIQ ~ BrainSize + Height, data = brains)
summary(model_height_brainsize)
```

```
##
## Call:
## lm(formula = PIQ ~ BrainSize + Height, data = brains)
## Residuals:
             1Q Median
##
     Min
                           3Q
                                 Max
## -32.74 -12.09 -3.84 14.18 51.69
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 111.27847
                          55.86881
                                   1.992 0.054243 .
                0.20606
                           0.05467
                                     3.769 0.000605 ***
## BrainSize
## Height
               -2.72984
                           0.99322 -2.748 0.009403 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 19.51 on 35 degrees of freedom
## Multiple R-squared: 0.2949, Adjusted R-squared: 0.2546
## F-statistic: 7.319 on 2 and 35 DF, p-value: 0.00221
```

What would we conclude from these results?

#### Interaction

If we test for an interaction, what research question are we answering?

Why should we standardize BrainSize and Height?

```
brains = brains %>% mutate(std.BrainSize = scale(BrainSize),
                           std.Height = scale(Height))
model_interaction = lm(PIQ ~ std.BrainSize * std.Height,
                       data = brains)
summary(model_interaction)
## Call:
## lm(formula = PIQ ~ std.BrainSize * std.Height, data = brains)
## Residuals:
##
       Min
                1Q Median
                                3Q
                                       Max
## -32.779 -12.001 -3.871 14.209 51.604
##
## Coefficients:
                             Estimate Std. Error t value Pr(>|t|)
##
```

What do we conclude from these results?