Linear Algebra Preliminary Exam 2011

1. Find the eigenvalues and eigenvectors of

$$\mathbf{A} = \left(\begin{array}{ccc} 4 & 0 & 1 \\ -1 & -6 & -2 \\ 5 & 0 & 0 \end{array} \right).$$

2. Consider the matrices

$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 1 & k \end{pmatrix} \quad \text{and} \quad \mathbf{B} = \begin{pmatrix} 1 & -1 \\ -1 & k \end{pmatrix}$$

Find the values of *k* such that

- a) $(AB)^{-1} = B^{-1}A^{-1}$
- b) $(\mathbf{A} + \mathbf{B})^{-1} = \mathbf{A}^{-1} + \mathbf{B}^{-1}$
- 3. Consider the subspace **V** of \mathbb{R}^4 that is spanned by the vectors $\mathbf{v}_1 = (1,1,0,1)$ and $\mathbf{v}_2 = (0,0,1,0)$.
 - a) Find a basis for the orthogonal complement V^{\perp} .
 - b) Find a projection matrix **P** onto **V**.
 - c) Find the vector in **V** closest to the vector $\mathbf{b} = (0, 1, 0, -1)^T$ in \mathbf{V}^{\perp} .
 - d) Write the vector $\mathbf{c} = (1, -1, 1, -1)$ in the form $\mathbf{c} = \mathbf{v} + \mathbf{w}$ where $\mathbf{v} \in \mathbf{V}$ and $\mathbf{w} \in \mathbf{V}^{\perp}$.
- 4. Suppose

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 0 & 3 \\ 0 & 0 & 0 & 0 \\ 2 & 4 & 0 & 1 \end{pmatrix} \quad \text{and} \quad \mathbf{b} = (b_1, b_2, b_3)^T$$

- a) What are the conditions on **b** for there to exist a solution to Ax = b?
- b) Find a basis for the nullspace of A.
- c) Find a general solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$, when a solution exists.
- d) Find a basis for the column space of A.
- e) What is the rank of A^T ?

5. Let **A** be an $N \times N$ square matrix with elements

$$A_{nm} = a_n a_m$$

with positive real numbers $a_n > 0$, n = 1,...,N. Show that **A** has two distinct nonnegative eigenvalues λ_1 and λ_2 with corresponding eigenspace of dimension 1 and N-1, respectively.

6. Let **P** be a linear operator defined on a vector space V with the property

$$\mathbf{P} = \mathbf{P}^2. \tag{0.1}$$

- a) Show that **P** can only have eigenvalues 1 or 0.
- b) Explain why an operator that fullfills property. (0.1) is called a projector.
- c) Let $V = \mathbb{R}^n$ and U be a subspace with orthonormal basis \mathbf{u}_i , i = 1,...,k and $k \le n$. Show that \mathbf{P} can be constructed explicitly as

$$\mathbf{P} = \sum_{i=1}^{k} \mathbf{P}_{i} \quad \text{with} \quad \mathbf{P}_{i} = \mathbf{u}_{i} \mathbf{u}_{i}^{T}, \tag{0.2}$$

i.e. show that $\mathbf{Pu} = \mathbf{u}$ and $\mathbf{Pw} = 0$ for $\mathbf{u} \in U$ and $\mathbf{w} \in U^{\perp}$ and $\mathbf{P}^2 = \mathbf{P}$. The notation \mathbf{xy}^T is the outer product of two vectors, i.e. $(\mathbf{xy}^T)_{ij} = x_i y_j$ for $\mathbf{x} = (x_1, ..., x_n)$ and $\mathbf{y} = (y_1, ..., y_n)$.

- d) Show that all \mathbf{P}_i are projectors as well and that $\mathbf{P}_i\mathbf{P}_j=0$ for $i\neq j$.
- e) Let U be the plane in \mathbb{R}^3 orthogonal to the vector $\mathbf{v} = (a, b, c)^T$ in cartesian coordinates. Construct \mathbf{P} explicitly that projects onto U.