Codierungstheorie

Ausblick zur Linearen Algebra A

Benjamin Sambale

Leibniz Universität Hannover

29.01.2021

programmiert mit LATEX + TikZ + BEAMER

Situation

Situation

"Hallo"

Sender
$$\longrightarrow$$
 Kanal \longrightarrow Empfänger (Luft, Kupferkabel, Glasfaser, ...)

'Hallo" $\xrightarrow{\text{Code}}$...01011... \longrightarrow "Hallo"

→ "Hallo"

Situation

Speicherung/Verarbeitung akustischer oder visueller Signale
 → Signalverarbeitung → Nachrichtentechnik

- $\begin{array}{c} \textbf{0} \ \, \mathsf{Speicherung/Verarbeitung} \ \, \mathsf{akustischer} \ \, \mathsf{oder} \ \, \mathsf{visueller} \ \, \mathsf{Signalverarbeitung} \ \, \longrightarrow \ \, \mathsf{Nachrichtentechnik} \\ \end{array}$
- **2** Geringe Bandbreite/Geschwindigkeit \longrightarrow Datenkompression (Bsp. zip, mp3, jpeg) \longrightarrow Informationstheorie

- Speicherung/Verarbeitung akustischer oder visueller Signale
 → Signalverarbeitung → Nachrichtentechnik
- ② Geringe Bandbreite/Geschwindigkeit → Datenkompression (Bsp. zip, mp3, jpeg) → Informationstheorie
- **3** Geheimhaltung \longrightarrow Kryptographie (Bsp. AES, DSA, RSA) \longrightarrow Zahlentheorie

- Speicherung/Verarbeitung akustischer oder visueller Signale
 → Signalverarbeitung → Nachrichtentechnik
- ② Geringe Bandbreite/Geschwindigkeit → Datenkompression (Bsp. zip, mp3, jpeg) → Informationstheorie
- **3** Geheimhaltung \longrightarrow Kryptographie (Bsp. AES, DSA, RSA) \longrightarrow Zahlentheorie
- ullet Störungsresistenz \longrightarrow Codierungstheorie \longrightarrow Lineare Algebra

- Speicherung/Verarbeitung akustischer oder visueller Signale
 → Signalverarbeitung → Nachrichtentechnik
- ② Geringe Bandbreite/Geschwindigkeit → Datenkompression (Bsp. zip, mp3, jpeg) → Informationstheorie
- **3** Geheimhaltung \longrightarrow Kryptographie (Bsp. AES, DSA, RSA) \longrightarrow Zahlentheorie
- ullet Störungsresistenz \longrightarrow Codierungstheorie \longrightarrow Lineare Algebra

In der Praxis kombiniert man diese Verfahren.

• Idee: Sende jedes Symbol zweimal:

```
"Test" \longrightarrow "TTeesstt" \longrightarrow "TTeesxtt"
```

• Idee: Sende jedes Symbol zweimal:

```
"Test" \longrightarrow "TTeesstt" \longrightarrow "TTeesxtt"
```

 Damit lässt sich ein Fehler erkennen, aber nicht korrigieren (s oder x ist falsch).

Idee: Sende jedes Symbol zweimal:

- Damit lässt sich ein Fehler erkennen, aber nicht korrigieren (s oder x ist falsch).
- Besser: Sende jedes Symbol dreimal (s → sss → sxs).
 Dann lässt sich ein Fehler erkennen und korrigieren, aber nicht zwei.

Idee: Sende jedes Symbol zweimal:

- Damit lässt sich ein Fehler erkennen, aber nicht korrigieren (s oder x ist falsch).
- Besser: Sende jedes Symbol dreimal (s → sss → sxs).
 Dann lässt sich ein Fehler erkennen und korrigieren, aber nicht zwei.
- Allgemein: Mit n Wiederholungen lassen sich $\frac{n-1}{2}$ Fehler korrigieren. Nachteil: Datenmenge erhöht sich.

Definition

Ein Code der Länge n ist eine nichtleere Teilmenge $C \subsetneq \mathbb{F}_2^n$. Die Elemente von C heißen Codeworte.

Definition

Ein Code der Länge n ist eine nichtleere Teilmenge $C \subsetneq \mathbb{F}_2^n$. Die Elemente von C heißen Codeworte. Für $x,y\in\mathbb{F}_2^n$ sei

$$d(x,y) := |\{i : x_i \neq y_i\}|$$

der Abstand von x und y (Metrik im Sinne der Analysis).

Definition

Ein Code der Länge n ist eine nichtleere Teilmenge $C \subsetneq \mathbb{F}_2^n$. Die Elemente von C heißen Codeworte. Für $x,y\in\mathbb{F}_2^n$ sei

$$d(x,y) := |\{i : x_i \neq y_i\}|$$

der Abstand von x und y (Metrik im Sinne der Analysis).

ullet Sei S eine Menge von zu sendenden Daten (Bsp. lateinisches Alphabet).

5 / 25

Benjamin Sambale (LUH) Codierungstheorie 29.01.2021

Definition

Ein Code der Länge n ist eine nichtleere Teilmenge $C \subsetneq \mathbb{F}_2^n$. Die Elemente von C heißen Codeworte. Für $x,y\in\mathbb{F}_2^n$ sei

$$d(x,y) := |\{i : x_i \neq y_i\}|$$

der Abstand von x und y (Metrik im Sinne der Analysis).

- ullet Sei S eine Menge von zu sendenden Daten (Bsp. lateinisches Alphabet).
- Codierung ist eine bijektive Abbildung $\gamma: S \to C$.

5 / 25

Benjamin Sambale (LUH) Codierungstheorie 29.01.2021

Definition

Ein Code der Länge n ist eine nichtleere Teilmenge $C \subsetneq \mathbb{F}_2^n$. Die Elemente von C heißen Codeworte. Für $x,y\in\mathbb{F}_2^n$ sei

$$d(x,y) := |\{i : x_i \neq y_i\}|$$

der Abstand von x und y (Metrik im Sinne der Analysis).

- ullet Sei S eine Menge von zu sendenden Daten (Bsp. lateinisches Alphabet).
- Codierung ist eine bijektive Abbildung $\gamma: S \to C$.
- Decodierung ist eine Abbildung $\gamma' : \mathbb{F}_2^n \to S$ mit $\gamma' \circ \gamma = \mathrm{id}_S$.

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● める○

• Übertragungsfehler werden erkannt, falls $x := \gamma(s) \notin C$.

- Übertragungsfehler werden erkannt, falls $x := \gamma(s) \notin C$.
- Fehler werden korrigiert, falls genau ein Codewort $c \in C$ mit minimalem Abstand zu x existiert. Setze $\gamma'(x) := \gamma^{-1}(c)$.

- Übertragungsfehler werden erkannt, falls $x := \gamma(s) \notin C$.
- Fehler werden korrigiert, falls genau ein Codewort $c \in C$ mit minimalem Abstand zu x existiert. Setze $\gamma'(x) := \gamma^{-1}(c)$.
- Diese Heuristik setzt voraus, dass Fehler "selten" und zufällig auftreten.

- Übertragungsfehler werden erkannt, falls $x := \gamma(s) \notin C$.
- Fehler werden korrigiert, falls genau ein Codewort $c \in C$ mit minimalem Abstand zu x existiert. Setze $\gamma'(x) := \gamma^{-1}(c)$.
- Diese Heuristik setzt voraus, dass Fehler "selten" und zufällig auftreten.
- Bei zerkratzten CDs ist dies beispielsweise nicht erfüllt.

$$S := \mathbb{F}_2,$$

$$C := \{(0, \dots, 0), (1, \dots, 1)\} \subseteq \mathbb{F}_2^n,$$

$$\gamma(x) := (x, \dots, x).$$

$$S := \mathbb{F}_2,$$

$$C := \{(0, \dots, 0), (1, \dots, 1)\} \subseteq \mathbb{F}_2^n,$$

$$\gamma(x) := (x, \dots, x).$$

• Durch eine Störung wird 1 auf $x := (1, 1, 1, 0, 1, 0) \notin C$ abgebildet.

$$S := \mathbb{F}_2,$$

$$C := \{(0, \dots, 0), (1, \dots, 1)\} \subseteq \mathbb{F}_2^n,$$

$$\gamma(x) := (x, \dots, x).$$

- Durch eine Störung wird 1 auf $x := (1, 1, 1, 0, 1, 0) \notin C$ abgebildet.
- Offenbar ist $c:=(1,1,1,1,1,1)\in C$ das einzige Codewort mit minimalem Abstand d(x,c)=2.

$$S := \mathbb{F}_2,$$

$$C := \{(0, \dots, 0), (1, \dots, 1)\} \subseteq \mathbb{F}_2^n,$$

$$\gamma(x) := (x, \dots, x).$$

- Durch eine Störung wird 1 auf $x := (1, 1, 1, 0, 1, 0) \notin C$ abgebildet.
- Offenbar ist $c:=(1,1,1,1,1,1)\in C$ das einzige Codewort mit minimalem Abstand d(x,c)=2.
- ullet Somit kann x zu c korrigiert werden.

$$S := \mathbb{F}_2,$$

$$C := \{(0, \dots, 0), (1, \dots, 1)\} \subseteq \mathbb{F}_2^n,$$

$$\gamma(x) := (x, \dots, x).$$

- Durch eine Störung wird 1 auf $x := (1, 1, 1, 0, 1, 0) \notin C$ abgebildet.
- Offenbar ist $c:=(1,1,1,1,1,1)\in C$ das einzige Codewort mit minimalem Abstand d(x,c)=2.
- ullet Somit kann x zu c korrigiert werden.
- Andererseits kann x:=(1,0,1,0,1,0) nicht korrigiert werden, denn $d(x,(0,\ldots,0))=3=d(x,(1,\ldots,1)).$

$$S := \mathbb{F}_2,$$

$$C := \{(0, \dots, 0), (1, \dots, 1)\} \subseteq \mathbb{F}_2^n,$$

$$\gamma(x) := (x, \dots, x).$$

- Durch eine Störung wird 1 auf $x := (1, 1, 1, 0, 1, 0) \notin C$ abgebildet.
- Offenbar ist $c:=(1,1,1,1,1,1)\in C$ das einzige Codewort mit minimalem Abstand d(x,c)=2.
- ullet Somit kann x zu c korrigiert werden.
- Andererseits kann x:=(1,0,1,0,1,0) nicht korrigiert werden, denn $d(x,(0,\ldots,0))=3=d(x,(1,\ldots,1)).$
- Bei mehr als drei Fehlern wird $x:=(1,{\color{red}0},{\color{red}0},{\color{red}0},{\color{red}1},{\color{red}0})$ sogar falsch "korrigiert" zu $c=(0,\ldots,0).$

• $S = \{s_0, \dots, s_{127}\}$ häufig verwendete Symbole:

`	,	^	~		~	٥	·		_		۰		,	<	>
	"	,,	*	»	_	_		0	1	J	ff	fi	fl	ffi	ffl
J	!	"	#	\$	%	&	,	()	*	+	,	-		/
0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
0	A	В	С	D	E	F	G	H	I	J	K	L	M	N	О
P	Q	R	S	Т	U	V	W	X	Y	Z	[\]	^	
-	a	ь	С	d	е	f	g	h	i	j	k	1	m	n	0
Р	q	r	s	t	u	v	w	x	У	z	{		}	~	-

• $S = \{s_0, \dots, s_{127}\}$ häufig verwendete Symbole:

`	,	^	~		~	٥	Ť		_		۰		,	<	>
	,,	,,	*	»	_	_		0	1	J	ff	fi	fl	ffi	ffl
J	!	"	#	\$	%	&	,	()	*	+	,	-		/
0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
@	A	В	С	D	E	F	G	H	I	J	K	L	M	N	0
P	Q	R	S	Т	U	V	W	X	Y	Z	[/]	^	
-	a	ь	С	d	е	f	g	h	i	j	k	1	m	n	0
P	q	r	s	t	u	v	w	x	У	z	{		}	~	-

• Binärcode von k liefert Zuordnung $s_k \longleftrightarrow (a_1, \ldots, a_7) \in \mathbb{F}_2^7$ (beachte: $2^7 = 128$).

• $S = \{s_0, \dots, s_{127}\}$ häufig verwendete Symbole:

$\overline{}$			~												_
`		^	~		~		ľ	_	_				,	<	>
	"	,,	*	>>	_	_		0	1	J	ff	fi	fl	ffi	ffl
J	!	"	#	\$	%	&	,	()	*	+	,	-		/
0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
@	A	В	C	D	E	F	G	H	I	J	K	L	M	N	0
P	Q	R	S	Т	U	V	W	X	Y	Z	[/]	^	
-	a	ь	С	d	е	f	g	h	i	j	k	1	m	n	0
P	q	r	s	t	u	v	w	x	У	z	{		}	~	-

- Binärcode von k liefert Zuordnung $s_k \longleftrightarrow (a_1, \ldots, a_7) \in \mathbb{F}_2^7$ (beachte: $2^7 = 128$).
- Ergänze Prüfbit $a_8 := a_1 + \ldots + a_7 \in \mathbb{F}_2$. Danach: 8 Bits = 1 Byte.

• $S = \{s_0, \dots, s_{127}\}$ häufig verwendete Syr	vmbole:
---	---------

`	,	^	~		~	٥	Ť		_		۰		,	<	>
	"	,,	*	>>	_	_		0	1	J	ff	fi	fl	ffi	ffl
J	!	"	#	\$	%	&	,	()	*	+	,	-		/
0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
0	A	В	С	D	E	F	G	H	I	J	K	L	M	N	0
P	Q	R	S	Т	U	V	W	X	Y	Z	[\]	^	
•	a	ь	С	d	е	f	g	h	i	j	k	1	m	n	0
P	q	r	s	t	u	v	w	x	У	z	{		}	~	-

- Binärcode von k liefert Zuordnung $s_k \longleftrightarrow (a_1, \ldots, a_7) \in \mathbb{F}_2^7$ (beachte: $2^7 = 128$).
- Ergänze Prüfbit $a_8 := a_1 + \ldots + a_7 \in \mathbb{F}_2$. Danach: 8 Bits = 1 Byte.
- Nun ist

$$C := \{(x_1, \dots, x_8) \in \mathbb{F}_2^8 : x_1 + \dots + x_8 = 0\} \subseteq \mathbb{F}_2^8$$

ein Code der Länge 8 und Codierung $\gamma:S\to C$, $s_k\mapsto (a_1,\ldots,a_8)$.

- 4 ロト 4 個 ト 4 恵 ト 4 恵 ト - 恵 - 夕 Q (^)

• Beispiel: $s_{98} = b \longrightarrow (1, 1, 0, 0, 0, 1, 0)$

• Beispiel: $s_{98} = b \longrightarrow (1, 1, 0, 0, 0, 1, 0, \frac{1}{2})$

• Beispiel: $s_{98} = b \longrightarrow (1, 1, 0, 0, 0, 1, 0, 1) =: \gamma(b)$

- Beispiel: $s_{98} = b \longrightarrow (1, 1, 0, 0, 0, 1, 0, 1) =: \gamma(b)$
- ASCII-Code erkennt einen Fehler, aber kann nicht korrigieren, denn für $x \in \mathbb{F}_2^8 \setminus C$ gibt es 8 Codewörter $c \in C$ mit d(x,c) = 1.

ASCII-Code

- Beispiel: $s_{98} = b \longrightarrow (1, 1, 0, 0, 0, 1, 0, 1) =: \gamma(b)$
- ASCII-Code erkennt einen Fehler, aber kann nicht korrigieren, denn für $x \in \mathbb{F}_2^8 \setminus C$ gibt es 8 Codewörter $c \in C$ mit d(x,c) = 1.
- Ähnlich funktionieren

GTIN: 4 260213 390268

4["]260213 ["] 390268

IBAN und ISBN (erkennt auch Vertauschung von Ziffern).

Definition

Ein Code $C\subsetneq \mathbb{F}_2^n$ heißt linear, falls C ein nicht-trivialer Unterraum von \mathbb{F}_2^n ist.

Definition

Ein Code $C \subsetneq \mathbb{F}_2^n$ heißt linear, falls C ein nicht-trivialer Unterraum von \mathbb{F}_2^n ist. Gegebenenfalls heißt

$$w(C) := \min \bigl\{ d(0,c) : c \in C \setminus \{0\} \bigr\}$$

Gewicht von C.

Definition

Ein Code $C \subsetneq \mathbb{F}_2^n$ heißt linear, falls C ein nicht-trivialer Unterraum von \mathbb{F}_2^n ist. Gegebenenfalls heißt

$$w(C) := \min \big\{ d(0,c) : c \in C \setminus \{0\} \big\}$$

Gewicht von C.

• Man nennt C einen (n, k, w)-Code, falls $k = \dim C$ und w = w(C).

Definition

Ein Code $C \subsetneq \mathbb{F}_2^n$ heißt linear, falls C ein nicht-trivialer Unterraum von \mathbb{F}_2^n ist. Gegebenenfalls heißt

$$w(C) := \min \big\{ d(0,c) : c \in C \setminus \{0\} \big\}$$

Gewicht von C.

- Man nennt C einen (n, k, w)-Code, falls $k = \dim C$ und w = w(C).
- Die Rate $\frac{k}{n} \le 1$ von C beschreibt das Verhältnis von Informationsgehalt zu Speicherbedarf.

Satz

Für jeden linearen Code C gilt

- **1** C erkennt e Fehler $\iff w(C) > e$.
- **2** C korrigiert e Fehler $\iff w(C) > 2e$.

Satz

Für jeden linearen Code C gilt

- **1** C erkennt e Fehler $\iff w(C) > e$.
- **2** C korrigiert e Fehler $\iff w(C) > 2e$.

Beweis.

① $C \leq \mathbb{F}_2^n$ erkennt genau dann e Fehler, falls

$$1 \le d(c, x) \le e \implies x \notin C \qquad (\forall c \in C, \ x \in \mathbb{F}_2^n)$$

Satz

Für jeden linearen Code C gilt

- **1** C erkennt e Fehler $\iff w(C) > e$.
- **2** C korrigiert e Fehler $\iff w(C) > 2e$.

Beweis.

 $\mathbf{0}$ $C \leq \mathbb{F}_2^n$ erkennt genau dann e Fehler, falls

$$1 \le d(c, x) \le e \implies x \notin C \qquad (\forall c \in C, \ x \in \mathbb{F}_2^n)$$
$$d(c, c') \le e \implies c = c' \qquad (\forall c, c' \in C)$$

Satz

Für jeden linearen Code C gilt

- **1** C erkennt e Fehler $\iff w(C) > e$.
- **2** C korrigiert e Fehler $\iff w(C) > 2e$.

Beweis.

 $\textbf{1} \ C \leq \mathbb{F}_2^n \ \text{erkennt genau dann} \ e \ \text{Fehler, falls}$

$$1 \leq d(c,x) \leq e \implies x \notin C \qquad (\forall c \in C, \ x \in \mathbb{F}_2^n)$$
$$d(c,c') \leq e \implies c = c' \qquad (\forall c,c' \in C)$$
$$d(c-c',0) \leq e \implies c-c' = 0 \qquad (\forall c,c' \in C)$$

Satz

Für jeden linearen Code C gilt

- **1** C erkennt e Fehler $\iff w(C) > e$.
- **2** C korrigiert e Fehler $\iff w(C) > 2e$.

Beweis.

1 $C \leq \mathbb{F}_2^n$ erkennt genau dann e Fehler, falls

$$1 \leq d(c,x) \leq e \implies x \notin C \qquad (\forall c \in C, \ x \in \mathbb{F}_2^n)$$
$$d(c,c') \leq e \implies c = c' \qquad (\forall c,c' \in C)$$
$$d(c-c',0) \leq e \implies c-c' = 0 \qquad (\forall c,c' \in C)$$
$$w(C) > e.$$

Beweis.

 $\mathbf{2} \ C \leq \mathbb{F}_2^n$ korrigiert genau dann e Fehler, falls

$$d(c,x) \le e \implies c = x \qquad (\forall c \in C, \ x \in \mathbb{F}_2^n)$$

Beweis.

2 $C \leq \mathbb{F}_2^n$ korrigiert genau dann e Fehler, falls

$$d(c,x) \le e \implies c = x \qquad (\forall c \in C, \ x \in \mathbb{F}_2^n)$$

$$d(c,x), d(c',x) \le e \implies c = x = c' \qquad (\forall c, c' \in C, \ x \in \mathbb{F}_2^n)$$

Beweis.

 \mathbf{Q} $C \leq \mathbb{F}_2^n$ korrigiert genau dann e Fehler, falls

$$d(c,x) \leq e \implies c = x \qquad (\forall c \in C, \ x \in \mathbb{F}_2^n)$$

$$d(c,x), d(c',x) \leq e \implies c = x = c' \qquad (\forall c,c' \in C, \ x \in \mathbb{F}_2^n)$$

$$d(c,c') \leq 2e \implies c = c' \qquad (\forall c,c' \in C)$$

Beweis.

 \mathbf{Q} $C \leq \mathbb{F}_2^n$ korrigiert genau dann e Fehler, falls

$$d(c,x) \le e \implies c = x \qquad (\forall c \in C, \ x \in \mathbb{F}_2^n)$$

$$d(c,x), d(c',x) \le e \implies c = x = c' \qquad (\forall c, c' \in C, \ x \in \mathbb{F}_2^n)$$

$$d(c,c') \le 2e \implies c = c' \qquad (\forall c, c' \in C)$$

$$w(C) > 2e.$$

Ziele der Codierungstheorie

- Konstruiere (n, k, w)-Codes mit möglichst großen $\frac{k}{n}$ und w!
- Entwickle effizienten Decodier-Algorithmus!

Ziele der Codierungstheorie

- Konstruiere (n, k, w)-Codes mit möglichst großen $\frac{k}{n}$ und w!
- Entwickle effizienten Decodier-Algorithmus!

Satz (Shannons Hauptsatz)

Es gibt Codes mit "großer" Rate, sodass die Wahrscheinlichkeit einer fehlerhaften Decodierung beliebig klein ist.

Ziele der Codierungstheorie

- Konstruiere (n, k, w)-Codes mit möglichst großen $\frac{k}{n}$ und w!
- Entwickle effizienten Decodier-Algorithmus!

Satz (Shannons Hauptsatz)

Es gibt Codes mit "großer" Rate, sodass die Wahrscheinlichkeit einer fehlerhaften Decodierung beliebig klein ist.

Beweis benutzt Statistik und ist nicht konstruktiv

Beispiele

• Wiederholungscode: (n,k,w)=(n,1,n), großes Gewicht, aber kleine Rate $\frac{1}{n}$.

Beispiele

- Wiederholungscode: (n, k, w) = (n, 1, n), großes Gewicht, aber kleine Rate $\frac{1}{n}$.
- ASCII-Code: (n,k,w)=(n,n-1,2), große Rate $\frac{n-1}{n}$, aber kleines Gewicht.

Beispiele

- Wiederholungscode: (n, k, w) = (n, 1, n), großes Gewicht, aber kleine Rate $\frac{1}{n}$.
- ASCII-Code: (n,k,w)=(n,n-1,2), große Rate $\frac{n-1}{n}$, aber kleines Gewicht.
- Mittelweg?

• Jeder lineare Code $C \leq \mathbb{F}_2^n$ lässt sich durch eine Erzeugermatrix $G \in \mathbb{F}_2^{k \times n}$ mit

$$C = \{xG : x \in \mathbb{F}_2^k\}$$

beschreiben.

• Jeder lineare Code $C \leq \mathbb{F}_2^n$ lässt sich durch eine Erzeugermatrix $G \in \mathbb{F}_2^{k \times n}$ mit

$$C = \{xG : x \in \mathbb{F}_2^k\}$$

beschreiben.

• Setzt man $S:=\mathbb{F}_2^k$, so ist die Codierung nun die lineare Abbildung $\gamma:S\to C, \ x\mapsto x\cdot G.$

• Jeder lineare Code $C \leq \mathbb{F}_2^n$ lässt sich durch eine Erzeugermatrix $G \in \mathbb{F}_2^{k \times n}$ mit

$$C = \{xG : x \in \mathbb{F}_2^k\}$$

beschreiben.

- Setzt man $S:=\mathbb{F}_2^k$, so ist die Codierung nun die lineare Abbildung $\gamma:S\to C,\,x\mapsto x\cdot G.$
- \bullet Ebenso lässt sich C durch eine Kontrollmatrix $H \in \mathbb{F}_2^{(n-k) \times n}$ mit

$$C = \{x \in \mathbb{F}_2^n : Hx = 0\}$$

beschreiben.

• Jeder lineare Code $C \leq \mathbb{F}_2^n$ lässt sich durch eine Erzeugermatrix $G \in \mathbb{F}_2^{k \times n}$ mit

$$C = \{xG : x \in \mathbb{F}_2^k\}$$

beschreiben.

- Setzt man $S:=\mathbb{F}_2^k$, so ist die Codierung nun die lineare Abbildung $\gamma:S\to C,\,x\mapsto x\cdot G.$
- \bullet Ebenso lässt sich C durch eine Kontrollmatrix $H \in \mathbb{F}_2^{(n-k) \times n}$ mit

$$C = \{x \in \mathbb{F}_2^n : Hx = 0\}$$

beschreiben.

• Dann ist $x \in C \iff Hx = 0$ und w(C) die minimale Anzahl linear abhängiger Spalten von H.

Definition

Sei $m \geq 2$, $n := 2^m - 1$ und $\mathbb{F}_2^m \setminus \{0\} = \{v_1, \dots, v_n\}$. Der Code H_n mit Kontrollmatrix $H = \begin{pmatrix} v_1 & \cdots & v_n \end{pmatrix} \in \mathbb{F}_2^{m \times n}$ heißt Hamming-Code der Länge n.

Definition

Sei $m\geq 2$, $n:=2^m-1$ und $\mathbb{F}_2^m\setminus\{0\}=\{v_1,\ldots,v_n\}$. Der Code H_n mit Kontrollmatrix $H=\begin{pmatrix}v_1&\cdots&v_n\end{pmatrix}\in\mathbb{F}_2^{m\times n}$ heißt Hamming-Code der Länge n.

Satz

 H_n ist ein (n, n-m, 3)-Code.

Beweis.

Nach Konstruktion ist H_n die Lösungsmenge des homogenen Gleichungssystems Hx=0.

Beweis.

Nach Konstruktion ist H_n die Lösungsmenge des homogenen Gleichungssystems Hx=0. Da die Spalten von H die Standardbasis von \mathbb{F}_2^m umfassen, gilt

$$\dim C = n - \mathsf{Rang}(H) = n - m \qquad (\mathsf{Satz} \ \mathsf{6.6}).$$

Beweis.

Nach Konstruktion ist H_n die Lösungsmenge des homogenen Gleichungssystems Hx=0. Da die Spalten von H die Standardbasis von \mathbb{F}_2^m umfassen, gilt

$$\dim C = n - \mathsf{Rang}(H) = n - m \qquad (\mathsf{Satz} \ \mathsf{6.6}).$$

Je zwei Spalten von H sind als verschiedene Vektoren über \mathbb{F}_2 automatisch linear unabhängig.

Beweis.

Nach Konstruktion ist H_n die Lösungsmenge des homogenen Gleichungssystems Hx=0. Da die Spalten von H die Standardbasis von \mathbb{F}_2^m umfassen, gilt

$$\dim C = n - \mathsf{Rang}(H) = n - m \qquad (\mathsf{Satz} \ \mathsf{6.6}).$$

Je zwei Spalten von H sind als verschiedene Vektoren über \mathbb{F}_2 automatisch linear unabhängig. Dies zeigt $w(H_n) \geq 3$.

Beweis.

Nach Konstruktion ist H_n die Lösungsmenge des homogenen Gleichungssystems Hx=0. Da die Spalten von H die Standardbasis von \mathbb{F}_2^m umfassen, gilt

$$\dim C = n - \mathsf{Rang}(H) = n - m \qquad (\mathsf{Satz} \ \mathsf{6.6}).$$

Je zwei Spalten von H sind als verschiedene Vektoren über \mathbb{F}_2 automatisch linear unabhängig. Dies zeigt $w(H_n) \geq 3$. Andererseits besitzt H die drei linear abhängigen Spalten

$$\begin{pmatrix} 1\\0\\0\\\vdots\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\\vdots\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\0\\\vdots\\0\\0 \end{pmatrix}.$$

Beweis.

Nach Konstruktion ist H_n die Lösungsmenge des homogenen Gleichungssystems Hx=0. Da die Spalten von H die Standardbasis von \mathbb{F}_2^m umfassen, gilt

$$\dim C = n - \mathsf{Rang}(H) = n - m \qquad (\mathsf{Satz} \ \mathsf{6.6}).$$

Je zwei Spalten von H sind als verschiedene Vektoren über \mathbb{F}_2 automatisch linear unabhängig. Dies zeigt $w(H_n) \geq 3$. Andererseits besitzt H die drei linear abhängigen Spalten

$$\begin{pmatrix} 1\\0\\0\\\vdots\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\\vdots\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\0\\\vdots\\0\\0 \end{pmatrix}.$$

Es folgt $w(H_n) < 3$.

Beispiel H_7

Für
$$m = 3$$
 ist $n = 2^3 - 1 = 7$ und

$$H = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{pmatrix}.$$

Beispiel H_7

Für m = 3 ist $n = 2^3 - 1 = 7$ und

$$H = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{pmatrix}.$$

Nach Satz 6.15 ist

$$H_7 = \langle \begin{pmatrix} 1\\1\\0\\1\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\1\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\1\\0\\0\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\1\\0\\0\\0\\1\\1 \end{pmatrix} \rangle.$$

Vergleich für n=7

Code	(n, k, w)
Wiederholungscode	(7, 1, 7)
Hamming-Code	(7, 4, 3)
ASCII-Code	(7, 6, 2)

Vergleich für n=7

Code	(n, k, w)
Wiederholungscode	(7, 1, 7)
Hamming-Code	(7, 4, 3)
ASCII-Code	(7, 6, 2)

Geht es besser?

Satz

Für jeden linearen (n,k,w)-Code C mit w>2e gilt

(1)
$$w \le n - k + 1$$
 (Singleton-Schranke).

(2)
$$\sum_{i=1}^{e} \binom{n}{i} \le 2^{n-k}$$
 (Hamming-Schranke).

Satz

Für jeden linearen (n, k, w)-Code C mit w > 2e gilt

(1)
$$w \le n - k + 1$$
 (Singleton-Schranke).

(2)
$$\sum_{i=1}^{e} \binom{n}{i} \le 2^{n-k}$$
 (Hamming-Schranke).

Beweis.

Die lineare Abbildung (Projektion)

$$\rho: C \to \mathbb{F}_2^{n-w+1},$$

$$(x_1, \dots, x_n) \mapsto (x_1, \dots, x_{n-w+1})$$

ist injektiv, denn für $x \in \text{Ker}(\rho)$ gilt $d(x,0) \leq w-1$, also x=0.

4 D > 4 D > 4 E > 4 E > E 990

Satz

Für jeden linearen (n, k, w)-Code C mit w > 2e gilt

(1)
$$w \le n - k + 1$$
 (Singleton-Schranke).

(2)
$$\sum_{i=1}^{e} \binom{n}{i} \le 2^{n-k}$$
 (Hamming-Schranke).

Beweis.

1 Die lineare Abbildung (Projektion)

$$\rho: C \to \mathbb{F}_2^{n-w+1},$$

$$(x_1, \dots, x_n) \mapsto (x_1, \dots, x_{n-w+1})$$

ist injektiv, denn für $x \in \text{Ker}(\rho)$ gilt $d(x,0) \leq w-1$, also x=0. Dies zeigt $2^k = |C| = |\rho(C)| \leq 2^{n-w+1}$ und $k \leq n-w+1$.

Beweis.

② Für $c \in C$ sei $K_e(c) := \{x \in \mathbb{F}_2^n : d(c,x) \le e\}$ die "Kugel" mit Radius e und Mittelpunkt c.

Beweis.

② Für $c \in C$ sei $K_e(c) := \{x \in \mathbb{F}_2^n : d(c,x) \le e\}$ die "Kugel" mit Radius e und Mittelpunkt c. Für d(c,x) = i unterscheidet sich x von c an genau i Positionen.

Beweis.

2 Für $c \in C$ sei $K_e(c) := \{x \in \mathbb{F}_2^n : d(c,x) \leq e\}$ die "Kugel" mit Radius e und Mittelpunkt c. Für d(c,x) = i unterscheidet sich x von c an genau i Positionen. Es gibt $\binom{n}{i}$ Möglichkeiten, diese Positionen zu wählen.

Beweis.

2 Für $c \in C$ sei $K_e(c) := \{x \in \mathbb{F}_2^n : d(c,x) \leq e\}$ die "Kugel" mit Radius e und Mittelpunkt c. Für d(c,x) = i unterscheidet sich x von c an genau i Positionen. Es gibt $\binom{n}{i}$ Möglichkeiten, diese Positionen zu wählen. Dies zeigt

$$|K_e(c)| = \sum_{i=0}^e \binom{n}{i}.$$

Beweis.

2 Für $c \in C$ sei $K_e(c) := \{x \in \mathbb{F}_2^n : d(c,x) \leq e\}$ die "Kugel" mit Radius e und Mittelpunkt c. Für d(c,x) = i unterscheidet sich x von c an genau i Positionen. Es gibt $\binom{n}{i}$ Möglichkeiten, diese Positionen zu wählen. Dies zeigt

$$|K_e(c)| = \sum_{i=0}^e \binom{n}{i}.$$

Aus w(C) > 2e folgt $K_e(c) \cap K_e(c') = \emptyset$, falls $c \neq c'$.

Beweis.

2 Für $c \in C$ sei $K_e(c) := \{x \in \mathbb{F}_2^n : d(c,x) \leq e\}$ die "Kugel" mit Radius e und Mittelpunkt c. Für d(c,x) = i unterscheidet sich x von c an genau i Positionen. Es gibt $\binom{n}{i}$ Möglichkeiten, diese Positionen zu wählen. Dies zeigt

$$|K_e(c)| = \sum_{i=0}^e \binom{n}{i}.$$

Aus w(C) > 2e folgt $K_e(c) \cap K_e(c') = \emptyset$, falls $c \neq c'$. Daher ist

$$2^{k} \sum_{i=0}^{e} \binom{n}{i} = |C| \sum_{i=0}^{e} \binom{n}{i} = \sum_{c \in C} |K_{c}(e)| = \left| \bigcup_{c \in C} K_{e}(c) \right| \le |\mathbb{F}_{2}^{n}| = 2^{n}.$$

Perfekte Codes

• Gilt Gleichheit in der Hamming-Schranke, so heißt C perfekt.

Perfekte Codes

- Gilt Gleichheit in der Hamming-Schranke, so heißt C perfekt.
- Dann ist \mathbb{F}_2^n die disjunkte Vereinigung von Kugeln mit Radius e um Codewörter.

Perfekte Codes

- Gilt Gleichheit in der Hamming-Schranke, so heißt C perfekt.
- Dann ist \mathbb{F}_2^n die disjunkte Vereinigung von Kugeln mit Radius e um Codewörter.
- Somit lässt sich jedes $x \in \mathbb{F}_2^n$ eindeutig decodieren.

$$\sum_{i=0}^{n} \binom{n}{i} = 1 + n = 2^m = 2^{n-k}.$$

ullet Die Hamming-Codes sind perfekt mit e=1, denn

$$\sum_{i=0}^{n} \binom{n}{i} = 1 + n = 2^m = 2^{n-k}.$$

 Unter allen Codes, die einen Fehler korrigieren können, haben die Hamming-Codes die größte Rate.

$$\sum_{i=0}^{n} \binom{n}{i} = 1 + n = 2^m = 2^{n-k}.$$

- Unter allen Codes, die einen Fehler korrigieren können, haben die Hamming-Codes die größte Rate.
- Nachteil: Existieren nur für $n = 2^m 1$.

$$\sum_{i=0}^{n} \binom{n}{i} = 1 + n = 2^m = 2^{n-k}.$$

- Unter allen Codes, die einen Fehler korrigieren können, haben die Hamming-Codes die größte Rate.
- Nachteil: Existieren nur für $n = 2^m 1$.
- Wiederholungscode mit n=2e+1=w ist ebenfalls perfekt, denn jedes $x\in\mathbb{F}_2^n$ unterscheidet sich an höchstens e Positionen von genau einem der Codewörter $(0,\dots,0)$ oder $(1,\dots,1)$.

$$\sum_{i=0}^{n} \binom{n}{i} = 1 + n = 2^m = 2^{n-k}.$$

- Unter allen Codes, die einen Fehler korrigieren können, haben die Hamming-Codes die größte Rate.
- Nachteil: Existieren nur für $n = 2^m 1$.
- Wiederholungscode mit n=2e+1=w ist ebenfalls perfekt, denn jedes $x\in\mathbb{F}_2^n$ unterscheidet sich an höchstens e Positionen von genau einem der Codewörter $(0,\ldots,0)$ oder $(1,\ldots,1)$.
- Außer diesen gibt es im Wesentlichen nur einen weiteren linearen perfekten Code (über \mathbb{F}_2):

Golay-Code

Der (23, 12, 7)-Golay-Code ist perfekt mit e = 3 und Erzeugermatrix:

Golay-Code

Der (23, 12, 7)-Golay-Code ist perfekt mit e = 3 und Erzeugermatrix:

Damit haben die Voyager-Sonden Bilder vom Jupiter zur Erde gesendet:

• Gilt Gleichheit in der Singleton-Schranke, so heißt C MDS-Code (maximum distance separable).

- Gilt Gleichheit in der Singleton-Schranke, so heißt C MDS-Code (maximum distance separable).
- Wiederholungscodes sind MDS-Codes.

- Gilt Gleichheit in der Singleton-Schranke, so heißt C MDS-Code (maximum distance separable).
- Wiederholungscodes sind MDS-Codes.
- Ein weiteres Beispiel ist der Reed-Solomon-Code, der unter anderen bei QR-Codes eingesetzt wird:

- Gilt Gleichheit in der Singleton-Schranke, so heißt C MDS-Code (maximum distance separable).
- Wiederholungscodes sind MDS-Codes.
- Ein weiteres Beispiel ist der Reed-Solomon-Code, der unter anderen bei QR-Codes eingesetzt wird:

Datenbank von optimalen linearen Codes:

http://www.codetables.de/