Adversarial Training of Neural Networks

Aysu Sayın

Introduction

Project: Training the model with **adversarial samples** to increase **robustness**

- FGSM Attack
- Two Models
- German Traffic Sign Dataset

Fast Gradient Sign Method

Goodfellow, I.J., Shlens, J., Szegedy, C.: <u>Explaining and harnessing adversarial examples</u>

 $adv_x = x + \epsilon * \mathrm{sign}(\nabla_x J(\theta, x, y))$

- adv_x : Adversarial image.
- x : Original input image.
- y : Original input label.
- ϵ : Multiplier to ensure the perturbations are small.
- θ: Model parameters.
- J: Loss.

Dataset

German Traffic Sign Dataset:

German Traffic Sign Benchmark

More than 50,000 images

43 Classes

Models: LeNet-5

Models: VGGNet

Generating Adversarial Samples

- Used FGSM
- $\epsilon = 0.01, 0.10, 0.15$
- 710 adversarial image for LeNet-5
- 500 adversarial image for VGGNet
- Example: Generate Adversarial Samples

 $\epsilon = 0.01$

 $\epsilon = 0.10$

 ϵ = 0.15

Results: LeNet-5

Normal Training

Training Set Size: 39209

Validation Set Size: 5000

Test Set Size: 7629

Training Set Accuracy: 97.06%

Validation Set Accuracy: 86.22%

Test Set Accuracy: 85.88%

<u>Jupyter Notebook</u>

Results: LeNet-5

Adversarial Training

Training Set Size: 40709

Test Set Size: 8258

Training Set Accuracy: 97.80%

Test Set Accuracy: 85.67%

Jupyter Notebook

Comparison

Total adversarial test data: 629

	LeNet Model	LeNet Model - Adversarial Train
Wrongly predicted	514	249
Accuracy	18.28%	60.41%
Test Set Accuracy	85.88%	85.67%

Real label: 5
Predicted label by original model: 3
Predicted label by adversarially trained model: 5

Results: VGGNet

Normal Training

Training Set Size: 39209

Validation Set Size: 5000

Test Set Size: 7629

Training Set Accuracy: 99.85%

Validation Set Accuracy: 86.22%

Test Set Accuracy: 95.73%

Jupyter Notebook

Results: VGGNet

Adversarial Training

Training Set Size: 39909

Test Set Size: 7932

Training Set Accuracy: 99.26%

Test Set Accuracy: 95.60%

Jupyter Notebook

Comparison

Total adversarial test data: 303

	VGGNet Model	VGGNet Model - Adversarial Train
Wrongly predicted	139	101
Accuracy	54.12%	66.67%
Test Set Accuracy	95.73%	95.60%

Real label: 33 Predicted label by original model: 14 Predicted label by adversarially trained model: 33

Conclusion

Adversarial training does not increase the test accuracy but it increases the accuracy of predicting the true labels of the adversarial samples. Thus, it increases robustness.

Thank you!