Numeri interi senza segno

Caratteristiche generali

- numeri naturali (1,2,3,...) + lo zero
- rappresentabili con diverse notazioni
 - ♦ non posizionali (esempio: notazione romana: I, II, III, IV, V, IX, X, XI...)
 - ♦ posizionale (notazione araba): 1, 2, .. 10, 11, ... 100, ...
- caratteristiche
 - ♦ le notazioni *non posizionali* hanno regole proprie e rendono molto complessa l'esecuzione dei calcoli
 - ♦ la notazione *posizionale*, invece, consente di rappresentare i numeri in modo compatto, e rende semplice l'effettuazione dei calcoli

Notazione posizionale

- concetto di *base* di rappresentazione, *B*
- rappresentazione del numero come sequenza di simboli, detti cifre
 - ♦ appartenenti a un *alfabeto* composto di *B* simboli distinti
 - ♦ in cui ogni simbolo rappresenta un valore fra 0 e *B*-1
- il valore di un numero v espresso in questa notazione è ricavabile
 - ♦ a partire dal valore rappresentato da ogni simbolo
 - ◆ *pesato* in base alla *posizione* che occupa nella sequenza

Valore di un numero (espresso in notazione posizionale)

• Formalmente, il *valore* di un numero *v* espresso in questa notazione è dato dalla formula:

$$v = \sum_{k=0}^{n-1} d_k B^k$$

- ♦ B è la base
- \bullet d_k (k=0..n-1) sono le *cifre* (comprese fra 0 e B-1)

QUINDI, una sequenza di cifre *non è interpretabile* se non si precisa la base in cui è espressa.

Esempi

Stringa	Base	Alfabeto	Calcolo valore	Valore
12	4	{0,1,2,3}	4 * 1 + 2	sei
12	8	{0,1,,7}	8 * 1 + 2	dieci
12	10	{0,1,,9}	10 * 1 + 2	dodici
12	16	$\{0,,9,A,,F\}$	16 * 1 + 2	diciotto

Osservazioni

- ogni *numero* è esprimibile <u>in modo univoco</u> in una *qualunque base*; in particolare:
 - ♦ base $B=2 \rightarrow$ due sole cifre: 0 e 1
 - ♦ base B=8 → otto cifre: 0, 1, 2, 3, 4, 5, 6, 7
 - ♦ base B=10 → dieci cifre: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
 - ♦ base B=16 → sedici cifre: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

Il problema della Conversione di Rappresentazione

- Ogni numero è espresso, in una base data, da una ben precisa sequenza di cifre
- Dalla definizione di notazione posizionale segue che, <u>data una</u> rappresentazione sotto forma di sequenza di cifre e una base, <u>il numero corrispondente</u> si può ricavare applicando la formula già vista:

$$v = \sum_{k=0}^{n-1} d_k B^k$$

• ma come si ricava la rappresentazione di un dato numero, sotto forma di sequenza di cifre, in una base assegnata?

Conversione da numero a sequenza di cifre

Notazioni posizionali e non

- <u>in una notazione non posizionale</u>, si sarebbe dovuto procedere per confronti e/o applicando complesse regole (strettamente dipendenti dalla rappresentazione)
 - esempio: convertire 27 in notazione romana
 - 27 è compreso fra 20 e 30 → XX (parte residua non rappresentata: 7)
 - 7 è compreso fra 5 e 10 → V (parte residua non rappresentata: 2)
 - 2 si rappresenta direttamente → II conclusione: 27 si rappresenta in romano con la stringa di simboli *XXVII*
- invece, <u>si può sfruttare la notazione posizionale</u> per operare in modo più semplice ed efficiente.

Algoritmo di conversione ("Algoritmo delle divisioni successive")

Osservazione preliminare

- in una notazione posizionale, $v = d_0 + B^1 * d_1 + B^2 * d_2 + B^3 * d_3 + \dots$
- che si può riscrivere come $v = d_0 + B * (d_1 + B * (d_2 + B * (d_3 + ...)))$

Conseguenze

- d_0 si può ricavare come resto della divisione intera v / B
- quindi, il quoziente di tale divisione è $q = d_1 + B * (d_2 + B * (d_3 + ...))$
- perciò, le altre cifre si possono perciò ottenere iterando il procedimento
 - le cifre vengono prodotte nell'ordine dalla *meno significativa* (LSB) alla *più significativa* (MSB)

Algoritmo di conversione - Metodo operativo

Per convertire il numero v in una stringa di cifre che ne rappresentino il valore in base B

- si divide v per B
 - il resto costituisce la cifra meno significativa (LSB)
 - il quoziente serve a iterare il procedimento
- se tale quoziente è zero, l'algoritmo termina; se non lo è, lo si assume come nuovo valore v'
- si itera il procedimento con il valore v'.

Esempi

Numero	Base	Calcolo valore	Stringa
quindici	4	15 / 4 = 3 con resto 2	
		3 / 4 = 0 con resto 3	32
undici	2	11 / 2 = 5 con resto 1	
		5/2 = 2 con resto 1	
		2/2 = 1 con resto 0	
		1/2 = 0 con resto 1	1011
sessantatre	10	63 / 10 = 6 con resto 3	
		6 / 10 = 0 con resto 6	63
sessantatre	16	63 / 16 = 3 con resto 15	
		3 / 16 = 0 con resto 3	3F

Esempi di rappresentazioni in diverse basi

Numero	Rappr. Base 2	Rappr. Base 8	Rappr. Base 16
uno	1	1	1
due	10	2	2
tre	11	3	3
quattro	100	4	4
cinque	101	5	5
otto	1000	10	8
dieci	1010	12	A
quindici	1111	17	F
sedici	10000	20	10
trentuno	11111	37	1F
trentadue	100000	40	20
cento	1100100	144	64
duecentocinquantacinque	11111111	377	FF

Osservazione

- in generale, la rappresentazione di un numero in due basi B1 e B2 è completamente diversa (anche se l'alfabeto A1 è contenuto nell'alfabeto A2, o viceversa)
- ma la situazione cambia se le due basi sono una potenza dell'altra:

le rappresentazioni di uno stesso numero su basi che sono una potenza dell'altra sono strettamente correlate.

Relazione fra rappresentazioni di un numero in diverse basi

La relazione fondamentale

- se **B1 = B2**ⁿ, **ogni cifra** nella rappresentazione R1 corrisponde a *n* **cifre** nella rappresentazione R2
 - ogni cifra esadecimale corrisponde a 4 cifre binarie
 - ogni cifra *ottale* corrisponde a 3 cifre binarie

Conseguenze

- se **B1** = **B2**ⁿ, per passare dalla rappresentazione di un numero in base B1 a quella in base B2 (o viceversa) non è necessario applicare l'algoritmo di conversione, ma si può agire direttamente
- sostituendo *ordinatamente* ogni cifra di R1 con gruppi di *n* cifre di R2.

Esempi

Rappr. Base 2	Rappr. Base 2	Rappr. Base 8	Rappr. Base 2	Rappr. Base 16
1	1	1	1	1
10	10	2	10	2
11	11	3	11	3
100	100	4	100	4
101	101	5	101	5
1000	1 000	1 0	1000	8
1010	1 010	1 2	1010	A
1111	1 111	1 7	1111	F
10000	10 000	2 0	1 0000	10
11111	11 111	3 7	1 1111	1 F
100000	100 000	4 0	10 0000	2 0
1100100	1 100 100	1 4 4	110 0100	6 4
11111111	11 111 111	277	1111 1111	FF

Operazioni aritmetiche

Quali regole?

- tutte le notazioni posizionali utilizzano per le operazioni le stesse regole, indipendentemente dalla base di rappresentazione adottata
- quindi, le regole già note per la familiare rappresentazione in base 10 restano valide.

Esempi di somme e sottrazioni

	+0000		0F + 15 =	
36	0010	0100	24	
	-0010 =0001		24 – 15 =	
15	0000	1111	 0F	

Operazioni aritmetiche - Moltiplicazioni e divisioni

- **concettualmente**, operando "con carta e matita", le operazioni si possono svolgere con le usuali regole, essendo queste ultime indipendenti dalla base adottata
- un elaboratore, però, può non essere in grado di svolgerle direttamente in quel modo (ciò richiede circuiti appositi), nel qual caso diviene necessario scomporre tali operazioni in mosse più semplici (esempio: moltiplicazione realizzata come serie di somme)

Errori nelle operazioni

- in matematica, le operazioni sui numeri interi (senza segno) non danno mai luogo a errori
 - (la divisione però è una divisione "intera", che può produrre un *resto*)
- ma possono essere *impossibili*:
 - sottrazione con minuendo maggiore del sottraendo (esempio: 3-8)
 - divisione per zero
- in un elaboratore, invece, *possono generarsi degli errori*, perché è impossibile rappresentare *tutti* gli *infiniti* numeri
 - in particolare, con n bit, esiste un massimo numero rappresentabile, che è 2^n -1

Esempio

teoricamente	praticamente

						_
	\decimale	binario		decimale	bina	ario
	176+	1011	0000+	176+	1011	0000+
	84=	0101	0100=	84=	0101	0100=
	260	1 0000	0100	004	0000	0100

- Il risultato è completamente errato, perché è andato perso il contributo più significativo!!
- La causa è che i registri dell'elaboratore hanno posto per *n* bit, e quindi *il bit* di riporto che si genera
 - viene perduto: è l' OVERFLOW (straripamento)
- All'overflow non c'è rimedio: per evitarlo si può solo usare un maggior numero di bit
 - per questo il C definisce vari tipi numerici diversi.

Numeri interi

Numeri interi in un elaboratore: problematiche

- come rappresentare il "segno meno"
- possibilmente, rendere semplice l'esecuzione delle operazioni

Due tipi di rappresentazioni

- rappresentazione in modulo e segno
 - ♦ semplice e intuitiva
 - ♦ ma inefficiente e complessa nella gestione delle operazioni →
 non molto usata in pratica!
- rappresentazione in complemento a due
 - ♦ meno intuitiva, costruita ad hoc con un trucco matematico
 - ◆ però rende semplice la gestione delle operazioni → largamente usata!!

In pratica, nella notazione in complemento a due, un numero negativo ha una rappresentazione che fa in modo che esso, sommato a un numero positivo, dia un risultato che sia a tutti gli effetti la "differenza")

X - Y diventa uguale a **X** + (Y rappresentato in complemento a due)

Rappresentazione in modulo e segno

Caratteristiche generali

- usa UN BIT per *rappresentare esplicitamente il segno* (es: 0 = +, 1 = -)
- usa poi gli altri bit disponibli per *rappresentare il valore assoluto* come numero binario puro
- esempio:
 - 8 bit (MSB = segno, bit 6...bit 0 = valore assoluto)
 - **♦** -2 → 1 0000010
 - $+5 \rightarrow 0.0000101$
- note:
 - ◆ segno completamente DISGIUNTO dal valore assoluto
 - ◆ posizione del bit di segno entro la stringa di bit IRRILEVANTE (in linea di principio)

Difetti

- il valore 0 ha due distinte rappresentazioni (10000000 = "-0" e 00000000 = "+0")
- non permette di usare direttamente gli algoritmi già noti per eseguire le operazioni
 - ♦ in particolare, con le usuali regole di calcolo non è vero che X + (-X) = 0:

- e quindi:
 - ♦ richiede circuiti specifici (o software più complesso) per la realizzazione dei sommatori
 - ♦ maggior complicazione, maggior costo → praticamente non molto utilizzata.

Notazione in Complemento a due

Scopo

- poter utilizzare direttamente gli algoritmi dei numeri naturali per eseguire le operazioni
- in particolare, rendere verificata la proprietà che X + (-X) = 0 <u>usando le regole aritmetiche standard</u>

anche a prezzo di una notazione più complessa.

La notazione

- rappresentazione non (completamente) posizionale
- il bit più significativo di una stringa di n bit ha peso -2^{n-1} anziché 2^{n-1} (gli altri bit mantengono il peso che è loro proprio, come in binario puro)
- esempio:
 - ♦ utilizzando n=8 bit, il bit 7 ha peso -128 anziché +128
 - ♦ quindi la stringa 11110001 denota il valore: -128 + 64 + 32 + 16 + 1 = -15

Il valore denotato

• per definizione, il valore di un intero *v* espresso in questa notazione è dato dalla formula:

$$V = -d_{n-1}2^{n-1} + \sum_{k=0}^{n-2} d_k 2^k$$

dove i d_k (k=0..n-1) sono le cifre binarie della rappresentazione del numero.

• la formula differisce da quella usata per i numeri naturali *solo* per il peso negativo del MSB.

Notazione in Complemento a due - Caratteristiche ed esempi

Conseguenze

- MSB = 0 → numero positivo (stesso valore che si avrebbe in binario puro: il diverso peso del MSB non ha influenza)
- MSB = 1 → numero negativo (il valore rappresentato si ottiene sommando il contributo negativo del MSB con i contributi positivi degli altri bit)

Esempi

• la stringa 11110001 denota il valore	-128 +	64	+	32	+	16	+
1,	cioè -15						
• la stringa 01110001 denota il valore		64	+	32	+	16	+
1,	cioè 113						
• la stringa 10000000 denota il valore	-128 +	0,					
• la stringa 11111111 denota il valore	-128 +	64	+	32	+	16	+
8 + 4 + 2 + 1,	cioè -1						
• la stringa 00000000 denota il valore		0,					
• la stringa 01111111 denota il valore		64	+	32	+	16	+
8 + 4 + 2 + 1,	cioè 127.						

Osservazioni

- valori opposti, come 15 e -15, hanno rappresentazioni completamente diverse
- rappresentazioni identiche a meno del MSB denotano valori interi completamente diversi (non deve stupire: solo la rappresentazione in modulo e segno conserva le "somiglianze").

Notazione in Complemento a due - Proprietà

Campo di valori rappresentabili

- Nei due casi:
 - ♦ MSB=0 \rightarrow n-1 bit usabili come in binario puro \rightarrow range da 0
 - ♦ MSB=1 → stesso intervallo traslato di -2^{n-1} → range da -2^{n-1} a -1
 - ♦ Totale: range da 2^{n-1} a 2^{n-1} -1
- Esempio:
 - ♦ 8 bit → 256 combinazioni → range -128...127 (anziché, come in binario puro, 0...255)
 - ♦ 256 combinazioni allocate metà ai positivi e metà ai negativi, anziché tutte ai positivi
- Nota:
 - ♦ il massimo intero *positivo* rappresentabile è di uno inferiore al minimo *negativo* rappresentabile perché lo 0 fa intrinsecamente parte dei positivi.

Proprietà

- lo zero ha ora un'unica rappresentazione (efficienza, semplicità)
- le somme algebriche si possono eseguire con le stesse regole dell'aritmetica binaria
 - ◆ tali regole rendono **verificata la proprietà X + (-X) = 0** (con una piccola convenzione!)
 - ♦ non è necessario nessun circuito particolare per trattare i negativi
 - ♦ semplicità e basso costo.

Notazione in Complemento a due - Un primo esempio

Operazione: -5 +3

- la rappresentazione di +3 è nota (è identica a quella che si avrebbe in binario puro)
- ma come ricavare la rappresentazione di -5?

Per ricavare la rappresentazione di un intero negativo:

- l'unico contributo negativo possibile è il -128 del MSB
- quindi, per ottenere -5 occorre determinare gli altri bit in modo che rappresentino il positivo +123
- · così,

$$-5 = -128 + 123 \rightarrow 11111011$$

• operazione:

$$\begin{array}{rcl}
 -5 & + & 11111011 \\
 +3 & = & 00000011 \\
 --- & & ---- \\
 -2 & 11111110
 \end{array}$$

• e in effetti:

$$1\ 11111110 \rightarrow -128 + 126 = -2$$

Funziona!

Notazione in Complemento a due - Altri esempi

Operazione: -1 +(-5)

- rappresentazione di -1 = -128 + 127 = 1 11111111
- operazione:

 $1111010 \rightarrow -128 + 122 = -6$

Il risultato va "quasi" bene... a patto di ignorare il riporto!

Due sottrazioni: 3-(+5) e 3-(-5)

• operazione:

Il risultato va bene... a patto di ignorare il prestito!

Basta ignorare il riporto (o il prestito) oltre l'MSB, e tutto funziona!

Ma perché funziona?

Notazione in Complemento a due - Perché funziona

La motivazione di fondo

- i valori positivi sono rappresentati come se la notazione fosse binaria pura
- i valori negativi hanno l'MSB che pesa -2ⁿ⁻¹ (-128) [anziché +2ⁿ⁻¹ (+128) come nel caso dei numeri naturali]
- quindi, fra le due interpretazioni *della stessa stringa di bit* vi è una differenza di 2ⁿ (256)
- esempio

```
10110110 = -128 + 54 = -74 (se interpretato in notazione complemento a due)

10110110 = 128 + 54 = 182 (se interpretato in binario puro)
```

Perché funzionano somme e sottrazioni

- Usando le regole dell'aritmetica binaria (valide per i naturali) per sommare o sottrarre valori rappresentati in notazione complemento a due:
 - ◆ per i positivi, nulla cambia;
 - ◆ per i negativi, si introduce un "errore" pari a 2ⁿ
 (è come operare non sul negativo -X, ma sul positivo 2ⁿ-X)
 - ♦ tale "errore" però non ha influenza perché <u>lavorando su n bit di</u>
 <u>fatto si opera modulo 2ⁿ</u>
- resta solo un "inestetismo":
 - ♦ possono generarsi *riporti o prestiti* oltre l'MSB, che potranno (e dovranno) essere *ignorati*.
- <u>Nota</u>: nessuno ha mai detto che funzionino anche <u>le altre operazioni</u> (moltiplicazione, divisione...)

Notazione in Complemento a due - Rappresentazione dei negativi

Come determinare la rappresentazione di un intero negativo?

- La definizione formale è precisa, ma poco pratica
- Una macchina ha bisogno di un procedimento più semplice e facilmente meccanizzabile
 - \rightarrow poter risalire alla rappresentazione del negativo -X a partire da quella del positivo X.

Osservazione chiave

- La rappresentazione in notazione complemento a due del negativo -X è espressa dalla stessa stringa che rappresenta, in binario puro, il positivo $Z = 2^n$ -X
 - ♦ Esempio: la stringa 11110001, che denota il valore -15 in notazione complemento a due, denota il valore Z = 256-15 = 241 se interpretata come valore binario puro.
 - → Per trovare la rappresentazione dell'intero negativo -X
 basta calcolare la rappresentazione (in binario puro) del positivo 2ⁿ-X

Ma come si fa a eseguire la sottrazione 2^n -X? Siamo da capo!!!

Perché 2ⁿ-X non è un problema

- 2^n -X si può riscrivere come $(2^n$ -1-X) +1
- l'operazione (2ⁿ-1-X) è una sottrazione *solo in apparenza*, perché (2ⁿ-1) è una *sequenza di n uni*
- quindi, (2ⁿ-1-X) si esegue facilmente *invertendo tutti i bit della* rappresentazione di X
- dopo di che, per ottenere 2ⁿ basta aggiungere 1.

Notazione in Complemento a due - L'algoritmo pratico di calcolo di -X

- 1. determinare la rappresentazione binaria del positivo +X
- 2. invertire tutti i bit di tale rappresentazione
- 3. aggiungere 1 al risultato così ottenuto.
- Esempio: determinazione della rappresentazione di -15 (su *n*=8 bit)
 - 1) $15 \rightarrow 00001111$
 - 2) inversione \rightarrow 11110000
 - 3) incremento di 1 \rightarrow 11110001 (verifica: -128 + 113 = -15)

Note

- il procedimento funziona anche al contrario
 - ♦ data la rappresentazione di -X, invertendo i bit e sommando 1 si ottiene la rappresentazione di X
- la *notazione* in complemento a due non va confusa con *l'operazione* di complementazione a due
 - ♦ la notazione, definita formalmente come sopra, detta la regole per la rappresentazione di *tutti* i numeri interi (positivi e negativi)
 - ♦ l'effettuazione del *calcolo* del complemento a due, secondo l'algoritmo ora definito, serve invece a ottenere la rappresentazione del negativo -X a partire da quella del positivo X (e viceversa).

Notazione in Complemento a due - Errori nei calcoli

Cosa può succedere

• esempio 1

$$-65 + 10111111$$
 $-65 = 10111111$
 $-- -130$ (1)01111110 (+126) È sbagliato!!

Siamo oltre -128!

• esempio 2

Siamo oltre +127!

Perché succede

- Con n bit, il range dei valori rappresentabili è -2^{n-1} ... $2^{n-1}-1$
- ma sommando due valori in quell'intervallo *il risultato può uscire da tale range*
- nel qual caso si ha invasione del bit di segno → OVERFLOW
 - ♦ si può dimostrare che l'overflow accade quando c'è un riporto oltre MSB senza che ci sia stato anche un riporto verso l'MSB
 - ♦ in altri termini, perché tutto funzioni occorre che o l'MSB non sia coinvolto in nessun riporto (né generandolo né ricevendolo), oppure che lo sia "totalmente" (ossia lo riceva e lo rigeneri).