Existen dos vectores especiales en \mathbb{R}^2 que nos permiten representar a cualquier otro vector en el plano de una forma conveniente. Se denota el vector (1, 0) por el símbolo **i** y el vector (0, 1) por el símbolo **j** (vea la figura 4.9). Si $\mathbf{v} = (a, b)$ es cualquier vector en el plano, entonces como (a, b) = a(1, 0) + b(0, 1), se puede escribir

Vectores i y j

Figura 4.8
Los vectores $\mathbf{u} - \mathbf{v}$ y $\mathbf{v} - \mathbf{u}$ tienen la misma magnitud pero direcciones opuestas.

$$\mathbf{v} = (a, b) = a\mathbf{i} + b\mathbf{j} \tag{4.1.6}$$

Con esta representación se dice que v está expresado en sus componentes horizontal y vertical. Los vectores i y j tienen dos propiedades:

- i) Ninguno de ellos es múltiplo del otro. (En la terminología del capítulo 5, son *linealmente independientes*.)
- ii) Cualquier vector v se puede escribir en términos de i y j como en la ecuación (4.1.6).*

Nota histórica

Hamilton utilizó por primera vez los símbolos $\bf i$ y $\bf j$. Definió su cuaternión como una cantidad de la forma $a+b{\bf i}+c{\bf j}+d{\bf k}$, donde a es la "parte escalar" y $b{\bf i}+c{\bf j}+d{\bf k}$ es la "parte vectorial". En la sección 4.3 se escribirán los vectores en el espacio en la forma $b{\bf i}+c{\bf j}+d{\bf k}$.

Bajo estas dos condiciones se dice que \mathbf{i} y \mathbf{j} forman una base en \mathbb{R}^2 . En el capítulo 5 se estudiarán las bases en espacios vectoriales arbitrarios.

Base

Ahora se definirá un tipo de vector que es muy útil en ciertas aplicaciones.

Definición 4.1.3

Vector unitario

Un vector unitario es un vector con longitud 1.

EJEMPLO 4.1.4 Un vector unitario

El vector $\mathbf{u} = \left(\frac{1}{2}\right)\mathbf{i} + \left(\frac{\sqrt{3}}{2}\right)\mathbf{j}$ es un vector unitario ya que

$$|\mathbf{u}| = \sqrt{\left(\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} = \sqrt{\frac{1}{4} + \frac{3}{4}} = 1$$

^{*} En la ecuación (4.1.6) se dice que v se puede escribir como una combinación lineal de i y j. Se estudiará el concepto de combinación lineal en la sección 5.5.