CIS 471/571 (Fall 2020): Introduction to Artificial Intelligence

Thanh H. Nguyen

Source: http://ai.berkeley.edu/home.html

Announcement

- Project 3: Reinforcement Learning
 - Deadline: Nov 10th, 2020

Assignment Project Exam Help

https://eduassistpro.github.io/

- Homework 3: MDPs And dw Reinst edu_assist to rearning
 - Will be posted tomorrow
 - Deadline: Nov 09th, 2020

Thanh H. Nguyen 10/28/20

Recap: MDPs

- Markov decision processes:
 - States S
 - Actions A
 - Transitions P(s'|s,a) (ssignment) Project Exam Help.
 - Rewards R(s,a,s') (and d
 - Start state s₀

https://eduassistpro.github.io/

Add WeChat edu_assist_pro s,a,s'

- Quantities:
 - Policy = map of states to actions
 - Utility = sum of discounted rewards
 - Values = expected future utility from a state (max node)
 - Q-Values = expected future utility from a q-state (chance node)

Optimal Quantities

• The value (utility) of a state s:

 $V^*(s)$ = expected utility starting in s and acting optimally Assignment Project Exam Help

The value (utility) of https://eduassistpro.github

Q*(s,a) = expected utility startin edu_assist_prout having taken action a from s,a,s state s and (thereafter) acting optimally

s is a state

(s, a) is a *q-state*

(s,a,s') is a transition

s,a,s

• The optimal policy:

 $\pi^*(s)$ = optimal action from state s

Example: Grid World

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path Assignment Project Exam Help
- Noisy movement: actions do not
 - 80% of the time, the action Norhttps://eduassistpro.github.io/ North
 - 10% of the time, North takes the adeht Weth a redu_assist_pro
 - If there is a wall in the direction the agent would been taken, the agent stays put
- The agent receives rewards each time step
 - Small "living" reward each step (can be negative)
 - Big rewards come at the end (good or bad)
- Goal: maximize sum of (discounted) rewards

The Bellman Equations

Assignment of the Example 19

https://eduassistpro.githute.id/first action

Add Wechazedu_assist_proptimal

The Bellman Equations

 Definition of "optimal utility" via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

$$V^*(s) = \max_a Q^*(s, a)$$
 Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro-

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

• These are the Bellman equations, and they characterize optimal values in a way we'll use over and over

Value Iteration

• Bellman equations characterize the optimal values:

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

Assignment Project Exam Help

Value iteration computes th

https://eduassistpro.github.io/

- Value iteration is just a fixed point solution method
 - ullet ... though the V_k vectors are also interpretable as time-limited values
- Theorem: will converge to unique optimal values
 - Basic idea: approximations get refined towards optimal values
 - Policy may converge long before values do

Problems with Value Iteration

• Value iteration repeats the Bellman updates:

Assignment Project Exam Help

https://eduassistpro.github.io/

■ Problem 1: It's slow – Q(S2A) errai edu_assist_pro

Problem 3: The policy often converges long before the values

Assignment Project Exam Help

https://eduassistpro.github.io/

Assignment Project Exam Help

https://eduassistpro.github.io/

Assignment Project Exam Help

https://eduassistpro.github.io/

Assignment Project Exam Help

https://eduassistpro.github.io/

Assignment Project Exam Help

https://eduassistpro.github.io/

Assignment Project Exam Help

https://eduassistpro.github.io/

Assignment Project Exam Help

https://eduassistpro.github.io/

Assignment Project Exam Help

https://eduassistpro.github.io/

Assignment Project Exam Help

https://eduassistpro.github.io/

Assignment Project Exam Help

https://eduassistpro.github.io/

k = 10

Assignment Project Exam Help

https://eduassistpro.github.io/

k = 11

Assignment Project Exam Help

https://eduassistpro.github.io/

Assignment Project Exam Help

https://eduassistpro.github.io/

k = 100

Assignment Project Exam Help

https://eduassistpro.github.io/

Policy Methods

Assignment Project Exam Help

https://eduassistpro.github.io/

Policy Evaluation

Assignment Project Exam Help

https://eduassistpro.github.io/

Fixed Policies

Do the optimal action

Do what π says to do

- Expectimax trees max over all actions to compute the optimal values
- If we fixed some policy $\pi(s)$, then the tree would be simpler only one action per state
 - ... though the tree's value would depend on which policy we fixed

Utilities for a Fixed Policy

 Another basic operation: compute the utility of a state s under a fixed (generally non-optimal) policy

Assignment Project Exam Help

• Define the utility of a stat $y \pi$: $V^{\pi}(s) = \text{expected total discount https://eduassistpro.gathwww.} \pi$

Add WeChat edu_assist_pro

Recursive relation (one-step look-ahead / Bellman equation):

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

Example: Policy Evaluation

Always Go Right

Always Go Forward

Assignment Project Exam Help

https://eduassistpro.github.io/

Example: Policy Evaluation

Always Go Right

Always Go Forward

Policy Evaluation

- How do we calculate the V's for a fixed policy π ?
- Idea 1: Turn recursive Bellman equations into updates Assignment Project Exam Help (like value iteration)

$$V_0^{\pi}(s) = 0$$

https://eduassistpro.github.io/

- Efficiency: O(S²) per iteration
- Idea 2: Without the maxes, the Bellman equations are just a linear system
 Solve with Matlab (or your favorite linear system solver)

Policy Extraction

Assignment Project Exam Help

https://eduassistpro.github.io/

Computing Actions from Values

- Let's imagine we have the optimal values V*(s)
- How should we act? Assignment Project Exam Help
 - It's not obvious!
 https://eduassistpro.github.io/
- We need to do a mini-expective at edu_assist_pro

$$\pi^*(s) = \arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

 This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

- Let's imagine we have the optimal q-values:
- How should we act? Assignment Project Exam Help
 - Completely trivial to deci https://eduassistpro.github.io/

$$\pi^*(s) = \underset{a}{\operatorname{arg\,max}} Q^*(A, dd)$$
 WeChat edu_assist_pro

• Important lesson: actions are easier to select from q-values than values!

Policy Iteration

Assignment Project Exam Help

https://eduassistpro.github.io/

Policy Iteration

- Alternative approach for optimal values:
 - Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal utilities!) until convergence exam Help
 - Step 2: Policy improvem
 g one-step look-ahead with resulting converged (but https://eduassistpro.ganubture values
 - Repeat steps until polic
 Add WeChat edu_assist_pro
- This is policy iteration
 - It's still optimal!
 - Can converge (much) faster under some conditions

Policy Iteration

- Evaluation: For fixed current policy π , find values with policy evaluation:
 - Iterate until values converge:
 Assignment Project Exam Help

https://eduassistpro.github.io/

- Improvement: For fixed values, get a better policy using policy extraction
 - One-step look-ahead:

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$

Comparison

- Both value iteration and policy iteration compute the same thing (all optimal values)
- In value iteration: Assignment Project Exam Help
 - Every iteration updates bo citly the policy
 - We don't track the policy, https://eduassistpro.gattubasio/mplicitly recomputes

- In policy iteration:
 - We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
 - After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
 - The new policy will be better (or we're done)
- Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

- So you want to....
 - Compute optimal values: use value iteration or policy iteration
 - Compute values for a particular policycure policycure policycure
 - Turn your values into a ction (one-step lookahead)
 https://eduassistpro.github.io/
- These all look the same Add WeChat edu_assist_pro
 - They basically are they are all variations of Bellman updates
 - They all use one-step look-ahead expectimax fragments
 - They differ only in whether we plug in a fixed policy or max over actions

Example: Racing

- Discount: $\gamma = 0.1$
- Initial policy
 - $\pi_0(Cool) = Slow$
 - $\pi_0(Warm) = Slow$
 - $\pi_0(Overheated) = \emptyset$

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

+1

