Inference 2, 2023, lecture 5

Rolf Larsson

November 15, 2023

Today

Chap. 3.3. Inference Principles (continued):

• Sufficiency and the Exponential family

Sufficiency

Recall:

Definition (3.7)

A statistic T is said to be **sufficient** for the statistical model $\{P_{\theta} : \theta \in \Theta\}$ of **X** if the conditional distribution of **X** given T = t is independent of θ for all t.

Theorem (3.7)

The Factorization criterion:

Let $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$ be a statistical model with probability function $p(\cdot; \theta)$.

A statistic T is sufficient for \mathcal{P} if and only if there exist nonnegative functions $g(\cdot; \theta)$ and h such that

$$p(\mathbf{x}; \theta) = g\{T(\mathbf{x}); \theta\}h(\mathbf{x}).$$

Minimal sufficiency

Recall:

Definition (3.8)

A sufficient statistic T is **minimal sufficient** if.f. it is a function of any other sufficient statistic.

Theorem 3.8:

If $\frac{L(\theta; \mathbf{x})}{L(\theta; \mathbf{y})}$ is no function of θ if.f. $T(\mathbf{x}) = T(\mathbf{y})$, then T is minimal sufficient.

Recall: X belongs to the exponential family if

$$p(x; \theta) = A(\theta) \exp \left\{ \sum_{j=1}^{k} \zeta_j(\theta) T_j(x) \right\} h(x).$$

For a sample $X_1, ..., X_n$ of independent random variables distributed as X, with observations $\mathbf{x} = (x_1, ..., x_n)$,

$$p(\mathbf{x};\theta) = \prod_{i=1}^{n} A(\theta) \exp \left\{ \sum_{j=1}^{k} \zeta_{j}(\theta) T_{j}(x_{i}) \right\} h(x_{i})$$

$$= A(\theta)^n \exp \left\{ \sum_{j=1}^k \zeta_j(\theta) \sum_{i=1}^n T_j(x_i) \right\} \prod_{i=1}^n h(x_i).$$

By the factorization theorem, a sufficient statistic is given by

$$T_{(n)}(\mathbf{x}) = \{\sum_{i=1}^n T_1(x_i), ..., \sum_{i=1}^n T_k(x_i)\}.$$

Rolf Larsson Inference 2, 2023, lecture 5 231115

5/9

Theorem (3.9)

For a sample of i.i.d. random variables from a strictly k-dimensional exponential family it holds that

- **1** The statistic $T_{(n)}(\mathbf{x}) = \{\sum_{i=1}^n T_1(x_i), ..., \sum_{i=1}^n T_k(x_i)\}$ is minimal sufficient.
- ② The distribution of $T_{(n)}(\mathbf{x})$ belongs to a k-parameter exponential family.

Relax the independence condition:

Corollary (3.4)

For a sample $\mathbf{X} = (X_1, ..., X_n)$ from a strictly k-dimensional exponential family with

$$p(\mathbf{x}; \theta) = A(\theta) \exp \left\{ \sum_{j=1}^{k} \zeta_j(\theta) T_j(\mathbf{x}) \right\} h(\mathbf{x}),$$

it holds that

- The statistic $T(\mathbf{x}) = \{T_1(\mathbf{x}), ..., T_k(\mathbf{x})\}$ is minimal sufficient.
- ② The distribution of T belongs to a k-parameter exponential family.

Suppose we have an *i.i.d.* sample from any of the following distributions. Using theorem 3.9, derive minimal sufficient statistics for the parameters.

- **1** Exponential with intensity β
- \mathbf{O} $N(\mu, \sigma^2)$

News of today

For the exponential family:

- "Read off" minimal sufficiency directly from the likelihood.
- The minimal sufficient statistic belongs to an exponential family.
- Solve problems!

