Введение

Одним из стандартных способов задания функций k-значной логики являются поляризованные полиномиальные формы (ППФ), которые также называются обобщенными формами Рида-Мюллера, или каноническими поляризованными полиномами. В ППФ каждая переменная имеет определенную поляризацию. Длиной полиномиальной формы называется число попарно различных слагаемых в ней. Длиной функции F в классе ППФ называется наименьшая длина среди длин всех поляризованных полиномиальных форм, реализующих F. Функция Шеннона $L_k^K(n)$ длины определяется как наибольшая длина среди всех функций k-значной логики в классе K от n переменных, если K опущено, то подразумевается класс ППФ. Практическое применение ППФ нашли при построении программируемых логических матриц (ПЛМ) $[1,\ 2]$, сложность ПЛМ напрямую зависит от длины ППФ, по которой она построена. Поэтому в ряде работ исследуется сложность ППФ различных функций.

В 1993 В. П. Супрун [3] получил первые оценки функции Шеннона для функций алгебры логики:

$$L_2(n) \geqslant C_n^{\left[\frac{n}{2}\right]},$$

$$L_2(n) < 3 \cdot 2^{n-1}.$$

где [a] обозначает целую часть a.

Точное значение функции Шеннона для функций алгебры логики в 1995 г. было найдено Н. А. Перязевым [4]:

$$L_2(n) = \left[\frac{2^{n+1}}{3}\right].$$

Функции k-значных логик являются естественным обобщением функций алгебры логики. Для функций k-значной логики верхняя оценка функции Шеннона была получена в $2002\,\mathrm{r}$. С. Н. Селезневой [5] :

$$L_k(n) < \frac{k(k-1)}{k(k-1)+1}k^n.$$

При построении ПЛМ рассматривают и другие полиномиальные формы. Например класс обобщенных полиномиальных форм, В отличие от класса поляризованных полиномиальных форм, переменные могут иметь различную поляризацию в разных слагаемых. В статье К. Д. Кириченко [6], опубликованной в 2005 г., получена верхняя оценка функции Шеннона в классе обобщенных полиномиальных форм функций алгебры логики:

$$L_2^{\text{O.II.}}(n) < \frac{2^{n+1}(\log_2 n + 1)}{n}.$$

Верхняя оценка функции Шеннона в классе обобщенных полиномиальных форм функций k-значной логики была получена С. H. Селезневой A. Б. Дайняком в 2008 г. [7]:

$$L_k^{\text{O.П.}}(n) \lesssim 2 \cdot \frac{k^n}{n} \cdot \ln n$$
 при $n \to \infty$.

В 2012 г. Н. К. Маркеловым была получена нижняя оценка функции Шеннона для функции трехзначной логики в классе поляризованных полиномов [8]:

$$L_3(n) \geqslant \left[\frac{3}{4}3^n\right].$$

Список литературы

- 1. Угрюмов Е. П. Цифровая схемотехника. СПб.: БХВ-Петербург, 2004.
- 2. Sasao T., Besslich P. On the complexity of mod-2 sum PLA's // IEEE Trans.on Comput. 39. N 2. 1990. P. 262–266.
- 3. Супрун В.П. Сложность булевых функций в классе канонических поляризованных полиномов // Дискретная математика. 5. №2. 1993. С. 111–115.
- 4. Перязев Н. А. Сложность булевых функций в классе полиномиальных поляризованных форм // Алгебра и логика. 34. №3. 1995. С. 323–326.
- 5. Селезнева С. Н. О сложности представления функций многозначных логик поляризованными полиномами. Дискретная математика. 14. №2. 2002. С. 48–53.
- 6. Кириченко К.Д. Верхняя оценка сложности полиномиальных нормальных форм булевых функций // Дискретная математика. 17. №3. 2005. С. 80–88.
- 7. Селезнева С. Н. Дайняк А. Б. О сложности обобщенных полиномов k-значных функций // Вестник Московского университета. Серия 15. Вычислительная математика и кибернетика. №3. 2008. С. 34–39.
- 8. Маркелов Н. К. Нижняя оценка сложности функций трехзначной логики в классе поляризованных полиномов // Вестник Московского университета. Серия 15. Вычислительная математика и кибернетика. №3. 2012. С. 40–45.
- 9. Селезнева С. Н. Маркелов Н. К. Быстрый алгоритм построения векторов коэффициэнтов поляризованных полиномов k-значных функций // Ученые записки Казанского университета. Серия Физико-математические науки. 2009. 151. №2 С. 147-151.