This lecture
Quantum Characteristics
○ No cloning
 Measurement
BB84 Protocol

Perfect Secrecy and QKD

Symmetric Cryptography

One Time Pad (Vernam Cipher)

Quantum Key Distribution distributes Secure Key through Open Channel!!

QKD

encoding key on quantum bits!!

Quantum Bit

Classical Bit

Qubit

$$|\psi 7 = \alpha |0 > + \beta |1 >$$
 $|\alpha|^2 + |\beta|^2 = 1$

Measure:

107 with probability
$$|\alpha|^2$$
117 with " $|\beta|^2$.

No-Cloning Theorem:

You cannot clone an unknown quantum state

making a copy keeping original

Clone of an unknown classical state

Clone of an unknown quantum state 147=2107 + B117. 14) 16) 1f) ---> 11) 11) 15, > (alozeBliz) 167 (f) ~ x107 1671f) + B/12 167 1f) / x(0) (0) If, > + B(1) (1) If, >. what would be the clone of 142 (x10)+B(1)) 16> 1f)->(x10)+B(1)) (x10)+B(1)) 1f). 2/12/10/15/>+ 13/12/12/f +a1310>11>167+ aB11>10>15'> a cline an unknown quautum One cannot make

State 1

Measuring a quantum state:

Non-orthogonal quantum states

$$\sim 4107=0$$
 orthogonal. $\sim 4012=0$

orthogonal
$$2 < 1 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2 < 0 > 2$$

₹1+>,1->}.

$$\langle +|0\rangle = \frac{1}{\sqrt{2}}$$

$$\langle -|0\rangle = \frac{1}{\sqrt{2}}$$

preparation basis = Heasurement basis.

Heasured bit values match perfectly with prepared value.

Preparation basis + Measurement basis
Heasured bit value is some as prepared one only 50%
of the times

_. Eve cannot clone an unknown quantum state

All three basis are some so to fines.

Evror introduced in 25 %. Eve's information is 50%.