DIGITAL TWIN AS A SERVICE

Prasad Talasila

Prasad.talasila@ece.au.dk

WHAT IS A CYBER-PHYSICAL SYSTEM?

- Systems of interacting systems
 - Computing elements
 - Physical elements
 - Human interactions
- Complex, networked character
- Distributed control
- Error detection and recovery

THE ELEMENTS IN AND AROUND A CPS

WHAT IS A DIGITAL TWIN?

Satisfies a specification of expected behaviour and performance.

Adds value by enhancing the performance of the Sol, or adding services, without compromising the Sol's satisfaction of its spec.

Comprehensive View of

A Digital Twin

C - Cyber

P - Physical

This is just one digital twin.
There will be many many in the real world.

How can we automate everything except physical twin?

WHAT DOES SUCH AN AUTOMATION **REQUIRE?**

AARHUS

ENGINEERING

Violations detected $S_{dt}(t)$ $S_{pt}(t)$ communication Communication facilities Update communication Real **Deploy**

External

Internal

Monitors visualization (0)Update database Deploy AARHUS UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Internal Services

Update

Deploy

database

Decision making (external service)

WHO EXECUTES A DIGITAL TWIN?

docker container

docker container

virtual machine

execution manager

WHO TAKES A DIGITAL TWIN THROUGH DIFFERENT PHASES?

IN DEPTH LOOK AT DIGITAL TWIN LIFECYCLE

Author DT Components (on or off platform)

Consolidate and Explore DT Components (like a market place)

Create / Configure new DT (like a Lego playground)

Execute one DT (with a click)

Analyze (using data science tools)

Save(any of DT components)

Scenario Analysis

(execute many DTs with a click)

OVERALL SEQUENCE DIAGRAM FOR ONE DIGITAL TWIN

WHAT DOES SUCH AN AUTOMATION REQUIRE?

Reusable Components

Communication Facilities

Databases

Visualization

Execution Manager

Lifecycle Manager

Usual Suspects.

Unified Web Application

Gateway (for single point of entry)

Security

Accounting

SYSTEM ARCHITECTURE

WHAT IS THE CURRENT STATUS?

Component	Current Status of Microservice	Off the Shelf Software	Temporary Replacement	
Web Application	Under Development			
Reusable Components	Under Development		local files, gitlab	
Security	Gitlab Oauth		HTTP Auth with Traefik	
Gateway		Traefik		
Execution Manager	Under Development	MiCADO, Ansible, Vagrant	Static Scripts	
Communication Facilities	Integrated into Execution Manager, , Microservice Discovery (Mesh / Consul)	TCP Gateway	SSH	
Databases	Not Started		InfluxDB	
Visualization	Not Started		Grafana	
Accounting	Not Started			
DT Lifecycle	Not Started			

WHAT IS THE CURRENT STATUS?

Component	Current Status of Microservice	Off the Shelf Software	Temporary Replacement
Web Application	Under Development		
Reusable Components	Under Development		local files, gitlab
Security		Gitlab Oauth	HTTP Auth with Traefik
Gateway		Traefik	
Execution Manager	Under Development		Static Scripts

SO, WHAT ARE THE SOFTWARE DEVELOPMENT PRIORITIES FOR US?

WHO ARE THE USERS?

Type of User	Create DT Components	Configure DT	Execute DT	Analyze Results	Save DT
SME Manufacturers	~	✓	~		
SME Customers		✓	~	\	✓
Software Consultants		✓	~	~	
Researchers		✓	✓	✓	✓

WHAT GOES INTO DT COMPONENTS

Basic Components

Into the Component Library

DIFFERENT LAYERS OF COMPONENT LIBRARY

User₁

Software Tools and Frameworks

SOFTWARE ENGINEERING AND COMPUTING SYSTEMS

15 MARCH 2023

Client

Storage

Ownership

LIB (REUSABLE COMPONENTS) MICROSERVICE

THE DIRECTORY STRUCTURE OF COMPONENT LIBRARY

Common URL: <domain>/gitlab/dtaas/

example: https://sandbox.cps.digit.au.dk/gitlab/dtaas/

User	Complete URL path
user ₁	https://sandbox.cps.digit.au.dk/gitlab/dtaas/user1
user ₂	https://sandbox.cps.digit.au.dk/gitlab/dtaas/user2
common	https://sandbox.cps.digit.au.dk/gitlab/dtaas/common

Concrete namespace:

Gitlab instance runs at. https://sandbox.cps.digit.au.dk/gitlab *Gitlab group*. dtaas

FIRST DEMO ON 31-MARCH-2023

REFERNCES

Peter Gorm Larsen, Increasing Dependability of Cyber-Physical Systems by using Digital Twins (Presentation), March 2023.

