Macchine -						
P A	egie a u		lovoro e una ma Per fore a termide	emodina min tale lavoro cchica questo servo	ca chiuse, mi fo mu mo co macc	produce overe
					che strutte ltro fluido te calda Tr	
Tz >T1 Qr è 055 Qr è ce	ziomo uno serbito do 1 duto do 1	l durque	è positius è Negetius	Q ₂	H M	> W
	lovoro de ndo il c l'energia	in gioco		D Q2, O, , 1	N ed è tut	
				_ <u> </u>	W = Qz - 11 temperatur	

Sorius il volume in D, in funzione di VA $T_{A} = \left(\frac{V_{D}}{V_{A}}\right)^{r-1} T_{D}$ VD = TA VA = TA VA $\left(\frac{V_c}{V_D}\right)^{\frac{1}{2}-1} = \frac{V_c}{V_A^{\frac{1}{2}-1}} = \frac{V_c}{V_A^{$ $\left(\begin{array}{c} V_{B} \\ V_{A} \end{array}\right)^{\gamma-1} = \begin{array}{c} V_{C}^{\gamma-1} & T_{C} \\ V_{A}^{\gamma-1} & T_{A} \end{array}$ $\left(\frac{V_c}{V_h}\right)^{r_1} \left(\frac{V_b}{V_h}\right)^{r_1} = \left(\frac{V_c}{V_h}\right)^{r_1} = \left(\frac{V_$ VACVB m VACVB = 1 Bock to proof: Lume $\ell_n \frac{V_A}{V_B} < \ell_n 1 = 0$ $7 = 1 - \frac{1}{12} \left| \ln \left(\frac{V_D}{V_C} \right) \right| = 1 - \frac{1}{12} \left| \ln \left(\frac{V_A}{V_B} \right) \right| = 1 - \frac{1}{12} \left| \ln \left(\frac{V_B}{V_A} \right) \right| = 1 - \frac{1}{12} \left| \ln \left(\frac{V_B}{V_A} \right) \right| = 1 - \frac{1}{12} \left| \ln \left(\frac{V_B}{V_A} \right) \right| = 1 - \frac{1}{12} \left| \ln \left(\frac{V_B}{V_A} \right) \right| = 1 - \frac{1}{12} \left| \ln \left(\frac{V_B}{V_A} \right) \right| = 1 - \frac{1}{12} \left| \ln \left(\frac{V_B}{V_A} \right) \right| = 1 - \frac{1}{12} \left| \ln \left(\frac{V_B}{V_A} \right) \right| = 1 - \frac{1}{12} \left| \ln \left(\frac{V_B}{V_A} \right) \right| = 1 - \frac{1}{12} \left| \ln \left(\frac{V_B}{V_A} \right) \right| = 1 - \frac{1}{12} \left| \ln \left(\frac{V_B}{V_A} \right) \right| = 1 - \frac{1}{12} \left| \ln \left(\frac{V_B}{V_A} \right) \right| = 1 - \frac{1}{12} \left| \ln \left(\frac{V_B}{V_A} \right) \right| = 1 - \frac{1}{12} \left| \ln \left(\frac{V_B}{V_A} \right) \right| = 1 - \frac{1}{12} \left| \ln \left(\frac{V_B}{V_A} \right) \right| = 1 - \frac{1}{12} \left| \ln \left(\frac{V_B}{V_A} \right) \right| = 1 - \frac{1}{12} \left| \ln \left(\frac{V_B}{V_A} \right) \right| = 1 - \frac{1}{12} \left| \ln \left(\frac{V_B}{V_A} \right) \right| = 1 - \frac{1}{12} \left| \ln \left(\frac{V_B}{V_A} \right) \right| = 1 - \frac{1}{12} \left| \ln \left(\frac{V_B}{V_A} \right) \right| = 1 - \frac{1}{12} \left| \ln \left(\frac{V_B}{V_A} \right) \right| = 1 - \frac{1}{12} \left| \ln \left(\frac{V_B}{V_A} \right) \right| = 1 - \frac{1}{12} \left| \ln \left(\frac{V_B}{V_A} \right) \right| = 1 - \frac{1}{12} \left| \ln \left(\frac{V_B}{V_A} \right) \right| = 1 - \frac{1}{12} \left| \ln \left(\frac{V_B}{V_A} \right) \right| = 1 - \frac{1}{12} \left| \ln \left(\frac{V_B}{V_A} \right) \right| = 1 - \frac{1}{12} \left| \ln \left(\frac{V_B}{V_A} \right) \right| = 1 - \frac{1}{12} \left| \ln \left(\frac{V_B}{V_A} \right) \right| = 1 - \frac{1}{12} \left| \ln \left(\frac{V_B}{V_A} \right) \right| = 1 - \frac{1}{12} \left| \ln \left(\frac{V_B}{V_A} \right) \right| = 1 - \frac{1}{12} \left| \ln \left(\frac{V_B}{V_A} \right) \right| = 1 - \frac{1}{12} \left| \ln \left(\frac{V_B}{V_A} \right) \right| = 1 - \frac{1}{12} \left| \ln \left(\frac{V_B}{V_A} \right) \right| = 1 - \frac{1}{12} \left| \ln \left(\frac{V_B}{V_A} \right) \right| = 1 - \frac{1}{12} \left| \ln \left(\frac{V_B}{V_A} \right) \right| = 1 - \frac{1}{12} \left| \ln \left(\frac{V_B}{V_A} \right) \right| = 1 - \frac{1}{12} \left| \ln \left(\frac{V_B}{V_A} \right) \right| = 1 - \frac{1}{12} \left| \ln \left(\frac{V_B}{V_A} \right) \right| = 1 - \frac{1}{12} \left| \ln \left(\frac{V_B}{V_A} \right) \right| = 1 - \frac{1}{12} \left| \ln \left(\frac{V_B}{V_A} \right) \right| = 1 - \frac{1}{12} \left| \ln \left(\frac{V_B}{V_A} \right) \right| = 1 - \frac{1}{12} \left| \ln \left(\frac{V_B}{V_A} \right) \right| = 1 - \frac{1}{12} \left| \ln \left(\frac{V_B}{V_A} \right) \right| = 1 - \frac{1}{12} \left| \ln \left(\frac{V_B}{V_A} \right) \right| = 1 - \frac{1}{12} \left| \ln \left(\frac{V_B}{V_A} \right) \right| = 1 - \frac{1}{12} \left| \ln \left(\frac{V_B}{V_A} \right) \right| = 1 - \frac{1}{12} \left| \ln \left(\frac{V_B}{V_A} \right) \right| = 1 - \frac{1}{12} \left| \ln \left(\frac{V_B}{V_A} \right) \right| = 1 - \frac{1}{12} \left| \ln \left(\frac{V_B}{V_A$ compose un - $= 1 - \frac{T_{C}}{T_{A}} - \frac{l_{N}(\frac{V_{A}}{V_{O}})}{l_{N}(\frac{V_{D}}{V_{A}})} = 1 - \frac{T_{C}}{T_{A}} \frac{l_{N}(\frac{V_{A}}{V_{A}})}{l_{N}(\frac{V_{D}}{V_{A}})} = 1 - \frac{T_{C}}{T_{A}}$ 0