第2回 食品機能学

「栄養学を思い出す」 ~① 五大栄養素~ 三大栄養素

料を開発・商品化した経験も持つ。

栄養とは?

生命の維持,正常な機能と形態の 恒常性の維持および成長のために必 要な摂取すべき物質。

五大栄養素の定義

五大栄養素

三大栄養素 摂取量が多く、エネルギー源となる有機化合物で、組織を構成する
 ①糖質(炭水化物-食物繊維) 水に溶ける
 ②脂質 水に溶けず有機溶媒に溶ける
 ③たんぱく質 窒素を含む
 微量栄養素 摂取量が微量で、微量で生理作用を発現し、体内で合成できない
 ④ミネラル 無機化合物(元素)で組織を構成する

⑤ビタミン 有機化合物 (分子) で組織を構成しない

食物繊維 ヒトの消化酵素で消化できないが、腸内細菌に利用される

糖質とは?

炭水化物のうち、糖質は栄養表示基準では下記のよう に定義されています。

糖質=炭水化物-食物繊維

ちなみに、栄養表示基準では通常は炭水化物表示としますが、【炭水化物】に代えて【糖質、食物繊維】表示を行うことが可能です。

糖質の種類と分類

食物繊維の分類

たんぱく質

微生物的消化による(食物繊維)難消化性糖質の生体利用

アミノ酸とは

• C炭素, H水素, O酸素, N窒素から成る

たんぱく質とアミノ酸の関係

食品たんぱく質 どちらも、20種類のアミノ酸の組み合わせ 体たんぱく質

たんぱく質(プロテイン)・・・アミノ酸が100個以上連鎖した状態 アミノ アミノ アミ アミノ ペプチド・・・アミノ酸が少数で連なった状態

ペプチド結合

脂肪族アミノ酸

	グリシン	H-CH-COOH
	アラニン	H3C-CH-COOH NH2
分岐鎖アミノ酸	バリン	H ₃ C>CH-CH-COOH I NH ₂
	ロイシン	H ₃ C>CH-CH ₂ -CH-COOH I NH ₂
	イソロイシン	H ₃ C-CH ₂ >CH-CH-COOH NH ₂

タンパク質合成に必要なアミノ酸

<u>必須アミノ酸</u>	非必須アミノ酸	
(9種類)	(11種類)	
イソロイシン (Ile) スレオニン (Thr) トリプトファン (Trp) バリン (Val) ヒスチジン (His) フェニルアラニン (Phe) メチオニン (Met) リジン (Lys) ロイシン (Leu)	アスパラギン (Asn) アスパラギン酸 (Asp) アラニン (Ala) アルギニン (Arg) グリシン (Gly) グルタミン (Gln) グルタミン酸 (Glu) システイン (Cys) セリン (Ser) チロシン (Pro)	

()内にアミノ酸の3文字標記を示した

原材料名

グリシン、クエン酸、香料 ※グレーブフルーツの果汁は含まれておりません。

標準栄養成分(スティック1本あたり)

エネルギー12.4kcal、たんぱく質3g、脂質0g、 炭水化物0.1g、ナトリウム0mg、グリシン3.0g ※たんぱく質として分析された全てがグリシンです。

栄養成分表示		00ml 当たり
エネルギー		18keal
タンパク質		1g
脂質		Og
炭水化物		3.6g
ナトリウム		49mg
カリウム		200mg
アミノ酸		1,000mg
	バリン	200mg
	ロイシン	400mg
	イソロイシン	200mg
	アルギニン	200mg
クエン酸		450mg

りんご味 30kcal/103g **足の表え、気になりませんか?**いつまでもアクティブに
動きたいあなたに!!

機能性表示食品

アミノエール。 ゼリータイプ ロイシン40

ヒドロキシアミノ酸と含硫アミノ酸

- メーカー名 TWINLAB社
- 内容量 60カブセル
- ◆ 商品重量 178.605g
- 成分内容(1カプセル中) L-システイン500mg

L-システインで内側からケア

L-システインの働き

L÷システインとは分子構造に SH(イオウと水素)を持つア≥/酸で、体内に存在しますが、 年々減少していきます。効能としてはシミ、ソバカスを予防し、 皮膚の再生を助けるといわれています。

Lーシステインはお肌や髪の毛の重要な構成要素であるアミン酸、お肌のターンオーバーを促進し、コラーゲンの生成助けてくれる美白に欠かせない成分でもあります。Lーシステインで紫外線から守る肌、メラニン色素を作らない肌にしましょう。

芳香族アミノ酸

栄養成分 100ml あたり
エネルギー 52kcal
たんぱく質 3.1g
脂質 Og
炭水化物 10.0g
ナトリウム 6mg
リン Ome
カリウム 2mg
アルギニン 1,000mg
アラニン 2,000mg
ナイアシン 20mg
マカエキス 10mg
カフェイン 50mg
ビタミンB2 5mg
ビタミンB6 5mg

塩基性アミノ酸

リジン	CH ₂ -(CH ₂) ₃ -CH-COOH I NH ₂ NH ₂
アルギニン	NH -(CH ₂) 3 - CH - COOH I NH= C- NH ₂ NH ₂
ヒスチジン	CH2-CH-COOH

酸性アミノ酸およびそのアミド

アスパラギン酸	HOOC-CH ₂ -CH-COOH
アスバラギン	O= C-CH2-CH-COOH NH2 NH2
グルタミン酸	HOOC-(CH ₂) ₂ -CH-COOH I NH ₂
グルタミン	O= C-(CH ₂) 2- CH- COOH I NH2 NH2

【成分1瓶 (100mL) 中】

成分	含量
L-アスパラギン酸カリウム	100mg
L-アスパラギン酸マグネシウ ム	100mg
クエン酸鉄アンモニウム	15mg
タウリン	1,500mg

成分	含量
ビタミンB2リン酸エステル	5mg
ビタミンB6	5mg
ニコチン酸アミド	20mg
無水力フェイン	50mg

重要

■木隻以汀■			
1袋当り(12.4g)の栄養価			
熱料	38kcal	ビタミンC	80mg
たんぱく質	5.3g	クエン酸	5,000mg
脂質	0.0g	グルタミン	5,000mg
炭水化物	5.6g	カルニチン	180mg
ナトリウム	698mg		

見かけのN吸収量=N摂取量-便中N排泄量

(真の)N吸収量

=N摄取量-(便中N排泄量-N外分泌量)

※ N外分泌量は、無タンパク質食時の便中N排泄量

(真の)体内保留N量(体内に入った量)

=真のN吸収量

-(尿中N排泄量-内因性尿中N排泄量)

※内因性尿中N排泄量は、無タンパク質食時の尿中N排泄量

生物価(BV)=(体内保留N量/吸収N量)×100

- ※ 吸収されたアミノ酸がどれだけ体タンパク質になるかを示す
- ※ 吸収率の問題は排除し、アミノ酸組成を評価する

生物価と正味たんぱく質利用率

どうやって測るか?

たんぱく質に含まれる窒素(N)を観察

重要

ブタにやるのはエサだけ・・・ ヒトはいろいろなものを食べる・・・

生物 価

動物を太らせて確かめるのは面倒・・・ もっと簡単に評価できないか? アミノ酸組成を分析して計算で推定できないか!

これが「**リービッヒの桶」**だっ!

一種類でも足りなければ、その種類の身の丈にしか育たない!

足りない物が何か解れば、一発逆転はある!

制限アミノ酸

たんぱく質の栄養的価値は・・・

アミ/酸の比率の良否

アミ/酸価(スコア)

制限アミノ酸という考え方

アミノ酸の栄養価的分類

体タンパク質を構成するアミノ酸は20種類

必須アミノ酸・・・ 体内で生合成できないアミノ酸なので食べることが必須 (不可欠) ※成長期に生合成が追いつかないアミノ酸も含まれる。

非必須アミノ酸・・・ 体内で生合成できるアミノ酸なので食べなくても死なない (可欠)

| 必須・非必須は、食べる必要が有るか、無いかで決まっている!

化 学 価

CS: Chemical Score

第一制限アミノ酸量

CS = 評価するタンパク質の第一制限アミノ酸の

基準とするタンパク質中の量

基準とするタンパク質 全卵タンパク質:卵価

人乳タンパク質:人乳価

 $\times 100$

アミノ酸価(スコア)

FAO/WHO/UNU アミノ酸評点パタンを基準に制限アミノ酸量から計算する

現時点でのリービッヒの桶の板の高さのゴールドスタンダード

アミノ酸評点パタン

成人の不可欠アミノ酸必要量					
アミノ酸	WHO/FA	WHO/FAO/UNU (2007)		FAO/WHO/UNU (1985)	
	(mg/kg/day)) (mg/g protein)	(mg/kg/day)	(mg/g protein)	
His	10	15	8–12	15	
lle	20	30	10	15	
Leu	39	59	14	21	
Lys	30	45	12	18	
Met + Cys	15	22	13	20	
Methionine	10	16	_	_	
Cysteine	4	6	_	_	
Phe + Tyr	25	38	14	21	
Thr	15	23	7	11	
Trp	4	6	3.5	5	
Val	26	39	10	15	
不可欠アミノ酸の合計	184	277	93.5	141	

成人のたんぱく質推定平均必要量は0.66g/kg 体重旧として計算されている。 (日本人のたんぱく質推定平均必要量は0.65g/kg体重/日である。)

アミノ酸1日1包総重量(=内容量)4.0gあたり バリン292mg、ロイシン437mg、イソロイシン224mg リジン336mg、フェニルアラニン280mg、スレオニン168mg メチオニン168mg、ヒスチジン112mg、トリプトファン45mg ビタミンC 100mg、ビタミンB2 5mg (熱量:1包あたり16.0kcal)

窒素-たんぱく質換算係数

食品名	換算係数
小麦(玄穀)、大麦、ライ麦	5.83
小麦(粉)、うどん、マカロニ、スパゲッティ	5.70
*	5.95
₹ <i>ば</i>	6.31
落花生	5.46
くり、くるみ、ごま、その他のナッツ類	5.30
アーモンド	5.18
ひまわりの種実	5.40
大豆、大豆製品	5.71
乳、乳製品	6.38

たんぱく質(g) = 窒素(g) × 6.25

※アミノ酸評点パタンの係数も6.25である。

成人のタンパク質摂取基準 体重60kgだとすると・・・

タンパク質摂取基準量(g/kg体重・日) = 60×0.66×(100/90)×1.3(1.25)

= 57.2g

体重1kg当たりのおおよその摂取基準量は、1gとなる!

成人のタンパク質摂取基準

体重当たりで考える

タンパク質摂取基準量(g/kg体重・日) = 体重(kg)×0.66×(100/90)×1.3

※ 体重1kg当たり0.66gを基にして、 栄養価(スコア)を平均90と見積もり、 安全率(97.5%のヒトで充足する) を掛けて算出

アミノ酸の炭素骨格の代謝

で・・・ アミノ基は、どこへ行った?

回復系アミノ酸オルニチンに、ビタミンCもプラス。 ほどよい甘みと酸味が特徴のアセロラ風味が、 リフレッシュシーンにもおすすめです。 オルニチンは体内で使われても自らがオルニ チンに戻るので回復系アミノ酸と呼びます。

