```
In [122]: # The following code references from
          # https://github.com/yhat/DataGotham2013/tree/master/notebooks
          import pandas as pd
          import numpy as np
          %matplotlib inline
          import matplotlib.pyplot as plt
          import pylab as pl
          # import pipline files:
          import read
          import explore
          import clean
          import gen_features
          import classifier
          import evaluate
          #Global Variable:
          explore.DEP_VAR = 'SeriousDlqin2yrs'
          explore.LEAD VAR = 2
          gen features.DEP VAR ='SeriousDlqin2yrs'
          classifier.DEP VAR ='SeriousDlqin2yrs'
```

In [123]: # Read/load data df = read.read("credit-data.csv") # Adjust data type -percentage df.RevolvingUtilizationOfUnsecuredLines = df.RevolvingUtilizationOfUns ecuredLines*100 df.DebtRatio = df.DebtRatio*100 df.head()

Out[123]:

	PersonID	SeriousDlqin2yrs	RevolvingUtilizationOfUnsecuredLines	age	zipcode	N 59
0	1	1	76.612661	45	60644	2
1	2	0	95.715102	40	60637	0
2	3	0	65.818014	38	60601	1
3	4	0	23.380978	30	60601	0
4	5	0	90.723940	49	60625	1

```
In [124]: d = explore.explore(df)
summary = d["summary"]
features = d["features"]
```

```
features
In [125]:
Out[125]: ['RevolvingUtilizationOfUnsecuredLines',
            'age',
            'zipcode',
            'NumberOfTime30-59DaysPastDueNotWorse',
            'DebtRatio',
            'MonthlyIncome',
            'NumberOfOpenCreditLinesAndLoans',
            'NumberOfTimes90DaysLate',
            'NumberRealEstateLoansOrLines',
            'NumberOfTime60-89DaysPastDueNotWorse',
            'NumberOfDependents']
```

In [126]:

Summary statistics for the whole dataset summary

Out[126]:

	PersonID	SeriousDlqin2yrs	RevolvingUtilizationOfUnsecuredLines	age
count	150000.000000	150000.000000	1.500000e+05	15000
mean	75000.500000	0.066840	6.048438e+02	52.295
std	43301.414527	0.249746	2.497554e+04	14.771
min	1.000000	0.000000	0.000000e+00	0.0000
25%	37500.750000	0.000000	2.986744e+00	41.000
50%	75000.500000	0.000000	1.541807e+01	52.000
75%	112500.250000	0.000000	5.590462e+01	63.000
max	150000.000000	1.000000	5.070800e+06	109.00

In [127]: # Plot distribution for variable 'age', 'NumberOfOpenCreditLinesAndLoa

and 'NumberOfDependents'with respect to 'SeriousDlqin2yrs'

In [128]: age_graph = explore.explore_var(df,'age','line')["graph"]

In [131]: #check the null value
 clean.check_missing_data(df)

Out[131]:

value	False	True
variable		
DebtRatio	150000	0
MonthlyIncome	120269	29731
NumberOfDependents	146076	3924
NumberOfOpenCreditLinesAndLoans	150000	0
NumberOfTime30-59DaysPastDueNotWorse	150000	0
NumberOfTime60-89DaysPastDueNotWorse	150000	0
NumberOfTimes90DaysLate	150000	0
NumberRealEstateLoansOrLines	150000	0
PersonID	150000	0
RevolvingUtilizationOfUnsecuredLines	150000	0
SeriousDlqin2yrs	150000	0
age	150000	0
zipcode	150000	0

In [132]: #Check null values again after filling in missing values
 df = clean.clean(df,'NumberOfDependents','zero')
 df = clean.clean(df,'MonthlyIncome','mean')
 clean.check_missing_data(df)

Out[132]:

value	False
variable	
DebtRatio	150000
MonthlyIncome	150000
NumberOfDependents	150000
NumberOfOpenCreditLinesAndLoans	150000
NumberOfTime30-59DaysPastDueNotWorse	150000
NumberOfTime60-89DaysPastDueNotWorse	150000
NumberOfTimes90DaysLate	150000
NumberRealEstateLoansOrLines	150000
PersonID	150000
RevolvingUtilizationOfUnsecuredLines	150000
SeriousDlqin2yrs	150000
age	150000
zipcode	150000

```
In [133]: #Generate categorical bin boundary for selected variables
UnsecuredLines_bins = gen_features.generate_bins(df,'RevolvingUtilizat
ionOfUnsecuredLines',5)
DebtRatio_bins = gen_features.generate_bins(df,'DebtRatio',10)
income_bins = gen_features.generate_bins(df,'MonthlyIncome',500)
age_bins = gen_features.generate_bins(df,'age',5)

df = gen_features.build_category(df,'RevolvingUtilizationOfUnsecuredLines',UnsecuredLines_bins)
df = gen_features.build_category(df,'DebtRatio',DebtRatio_bins)
df = gen_features.build_category(df,'MonthlyIncome',income_bins)
df = gen_features.build_category(df,'age',age_bins)
```

```
In [134]: # Show df with newly added variables:
    # "RevolvingUtilizationOfUnsecuredLines_bucket"
    # "DebtRatio_bucket"
    # "MonthlyIncome_bucket"
    # "age_bucket"
    df.describe()
```

Out[134]:

	PersonID	SeriousDlqin2yrs	RevolvingUtilizationOfUnsecuredLines	age
count	150000.000000	150000.000000	1.500000e+05	15000
mean	75000.500000	0.066840	6.048438e+02	52.295
std	43301.414527	0.249746	2.497554e+04	14.771
min	1.000000	0.000000	0.000000e+00	0.0000
25%	37500.750000	0.000000	2.986744e+00	41.000
50%	75000.500000	0.000000	1.541807e+01	52.000
75%	112500.250000	0.000000	5.590462e+01	63.000
max	150000.000000	1.000000	5.070800e+06	109.00

```
In [135]: # Create dummy variables
DebtRatio_dummy = gen_features.create_dummy(df,'DebtRatio_bucket')
income_dummy = gen_features.create_dummy(df,'MonthlyIncome_bucket')
age_dummy = gen_features.create_dummy(df,'age_bucket')
```

Out[136]:

	PersonID	SeriousDlqin2yrs	RevolvingUtilizationOfUnsecuredLines	age	zipcode	N 5!
0	1	1	76.612661	45	60644	2
1	2	0	95.715102	40	60637	0
2	3	0	65.818014	38	60601	1
3	4	0	23.380978	30	60601	0
4	5	0	90.723940	49	60625	1

5 rows × 40 columns

```
#Select model and train model
In [137]:
          selected features = [
            'RevolvingUtilizationOfUnsecuredLines',
            'DebtRatio bucket 0',
            'DebtRatio bucket 1',
            'DebtRatio bucket 2',
            'DebtRatio bucket 3',
            'DebtRatio bucket 4',
            'DebtRatio bucket 5',
            'DebtRatio bucket 6',
            'DebtRatio bucket 7',
            'DebtRatio bucket 8',
            'MonthlyIncome bucket 0',
            'MonthlyIncome bucket 1',
            'MonthlyIncome bucket 2',
            'MonthlyIncome bucket 3',
            'MonthlyIncome bucket 4',
            'MonthlyIncome bucket 5',
            'MonthlyIncome bucket 6',
            'MonthlyIncome bucket 7',
            'age bucket 0',
            'age bucket 1',
            'age bucket 2',
            'age bucket 3',
            'age bucket 4',
            'age bucket_5']
In [138]:
          (X_train, X_test, y_train, y_test) = classifier.form_train_test(df_new
           , selected features, 0.3)
           (yhat, probs) = classifier.classifier("KNN", X train, X test, y train)
In [139]: # Evaluate KNN classifier/model
           (confusion matrix, report) = evaluate.evaluate(y test, yhat)
          confusion matrix
```

Out[139]:

Predicted	0	1
Actual		
0	41316	2776
1	704	204

```
0 0.94 0.98 0.96 42020
1 0.22 0.07 0.10 2980
avg / total 0.89 0.92 0.90 45000
```

```
In [144]: plot_roc("Perfect Classifier", y_test)
    plot_roc("Guessing", np.random.uniform(0, 1, len(y_test)))
    plot_roc("KNN", probs[::,1])
```


In [146]: # GB calssifier fit the data better