TD 3-Espaces vectoriels

Exercice 1

Dans $\mathbb{R}_3[x]$, on considère les polynômes P, Q, R et S définis par :

$$P(x) = (x+4)^2$$
, $Q(x) = (x+2)^2$, $R(x) = (x+1)^2$, $S(x) = x-1$.

Le polynôme P est-il combinaison linéaire des polynômes Q, R, S?

Exercice 2

Soit $n \in \mathbb{N}^*$. Dans chaque cas, montrer que F est un sous-espace vectoriel de E.

- 1. $E = \mathcal{M}_n(\mathbb{R})$ et $F = \{M \in E \mid {}^tM = M\}$.
- 2. $E = \mathbb{R}^4$ et $F = \{(x, y, z, t) \in \mathbb{R}^4 \mid 2x + y t = 0 \text{ et } y = t\}.$
- 3. $E = \mathbb{R}_n[x]$ et $F = \{P \in \mathbb{R}_n[x] \mid P'(3) = 2P(3)\}.$

Exercice 3

Soient F et G deux sous-espaces vectoriels d'un espace vectoriel E. Montrer que $F \cap G$ est un sous-espace vectoriel de E.

Exercice 4

Expliciter les sous-espaces vectoriels dans chacun des cas suivants.

- 1. Le sous-espace vectoriel $Vect(x^3, x^2, x, 1)$ de $\mathbb{R}_4[x]$.
- 2. Le sous-espace vectoriel Vect(x + 1, x + 2, x + 3) de $\mathbb{R}_1[x]$.
- 3. Le sous-espace vectoriel Vect((-1,2),(2,-4)) de \mathbb{R}^2 .
- 4. Le sous-espace vectoriel Vect((1,0),(0,1)) de \mathbb{R}^2 .

Exercice 5

Dans \mathbb{R}^3 , on définit les vecteurs $\overrightarrow{u}=(2,1,-3)$, $\overrightarrow{v}=(3,2,-1)$, $\overrightarrow{s}=(1,0,-5)$ et $\overrightarrow{t}=(1,1,2)$.

Montrer que $Vect(\overrightarrow{u}, \overrightarrow{v}) = Vect(\overrightarrow{s}, \overrightarrow{t})$

Exercice 6

Dans chacun des cas suivants, montrer que F est un sous-espace vectoriel de E et donner

une famille génératrice de F.

1.
$$E = \mathbb{R}^3$$
 et $F = \{(x, y, z) \in \mathbb{R}^3 \mid 2y - z = 0 \text{ et } x + y + z = 0\}.$

2.
$$E = \mathcal{M}_2(\mathbb{R})$$
 et $F = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in E \mid a = 2c \right\}$.

3.
$$E = \mathbb{R}_3[x]$$
 et $F = \{(a+c)x + (2ax+b)x^2 - cx^2, (a,b,c) \in \mathbb{R}^3\}.$

4.
$$E = \mathbb{R}_2[x]$$
 et $F = \{P \in E \mid P(1) = P(2)\}.$

Exercice 7

Montrer que l'ensemble des solutions $(x, y, z, t) \in \mathbb{R}^4$ du système homogène

$$\begin{cases} 2x + y + 2z - t = 0 \\ x + y + z = 0 \end{cases}$$

est
$$Vect(2, -1, -1, 1), (0, 1, -1, -1)$$
.

Exercice 8

Dans chaque cas, exprimer F à l'aide d'équations.

- 1. Dans \mathbb{R}^3 , F = Vect((1,1,1),(-1,2,1)).
- 2. Dans \mathbb{R}^3 , F = Vect((2, 1, -3), (1, 1, -2), (1, 0, 0)).

Exercice 9

Soient
$$E = \text{Vect}\left(\begin{pmatrix} 2\\3\\-1 \end{pmatrix}, \begin{pmatrix} 1\\-1\\-2 \end{pmatrix}\right)$$
 et $F = \text{Vect}\left(\begin{pmatrix} 3\\7\\0 \end{pmatrix}, \begin{pmatrix} 5\\0\\-7 \end{pmatrix}\right)$. Montrer que $F = E$.