3.4.1

Диа- и парамагнетик

Егор Берсенев

1 Цель работы

Измерение магнитной восприимчивость диа- и парамагнитного образца.

2 Оборудование

Электромагнит, аналитические весы, милливеберметр, источник постоянного тока, образцы.

3 Теоретическая часть

Магнитная восприимчивость может быть определена методом измерения сил, действующих на тело в магнитном поле. Есть два классических метода: метод Фарадея и метод Гюи. Недостаток метода Фарадея состоит в том, что для расчета магнитной восприимчивости необходимо знать величину градиента магнитного поля. Мы же воспользуемся методом Гюи. Он состоит в том, что один из концов тонкого и длинного стержня помещают в зазор электромагнита с постоянным полем, а другой конец вне зазора, где полем можно пренебречь. Найдем выражение для магнитной силы, действующей на такой образец.

Пусть площадь образца равна S, его магнитная восприимчивость μ , а поле в зазоре равно B. При смещении образца вниз на Δl вниз магнитная сила, действующая на него, равна

$$F = \left(\frac{\Delta W_m}{\Delta l}\right)_I,$$

где ΔW_m — изменение магнитной энергии системы при постоянном токе, и следовательно, при постоянном поле в зазоре. Магнитная энергия рассчитывается по формуле:

$$W_m = \frac{1}{2} \int HB dV = \frac{1}{2\mu_0} \int \frac{B^2}{\mu} dV$$

Интеграл берется по всему пространству, но при смещении образца магнитная энергия меняется только в области зазора, а около верхнего конца стержня остается неизменным, поскольку поля там нет. Принимая поле внутри стержня равным полю в зазоре, получим:

$$\Delta W_m = \frac{1}{2\mu_0} \frac{B^2}{\mu} s \Delta l - \frac{1}{2\mu_0} B^2 s \Delta l = \frac{1-\mu}{2\mu_0 \mu} B^2 s \Delta l = -\frac{\chi}{2\mu_0 \mu} B^2 s \Delta l$$

А следовательно, на образец действует сила:

$$F = -\frac{\chi}{2\mu_0 \mu} B^2 s$$

Пренебрежем тем, что μ отличается от 1. Схема установки:

Измеряя перегрузку $\Delta P = F$ найдем силу, действующую на образец.

4 Ход работы

Проведем калибровку электромагнита.

Таблица 1: Калибровка электромагнита

Ф, мВб	0.25	0.5	0.7	0.9	1.2	1.4	1.85	2.3	2.7	3.2	3.6
I, A	0.1	0.2	0.3	0.4	0.5	0.6	0.8	1	1.2	1.4	1.6
В, Тл	0.03	0.07	0.10	0.13	0.17	0.19	0.26	0.32	0.38	0.44	0.50

Диаметр обоих цилиндров равен 1 см.

Проведем измерения с медным цилиндром:

Таблица 2: Медный цилиндр

T		Λ	A D		B^2	A D 10-5
I	m	Δm	ΔP	B	B-	$\Delta P \cdot 10^{-5}$
0	-0,5	0	0	0,000	0,0000	0
0,1	-0,6	-0,1	$-9.8 \cdot 10^{-7}$	0,035	0,0012	-0,10
0,2	-0,7	-0,2	$-2 \cdot 10^{-6}$	0,069	0,0048	-0,20
0,3	-0,9	-0,4	$-3,9 \cdot 10^{-6}$	0,097	0,0095	-0,39
0,4	-1,1	-0,6	$-5,9 \cdot 10^{-6}$	0,125	0,0156	-0,59
0,5	-1,6	-1,1	$-1, 1 \cdot 10^{-6}$	0,167	0,0278	-1,08
0,6	-1,8	-1,3	$-1,3\cdot 10^{-6}$	0,194	0,0378	-1,28
0,8	-2,3	-1,8	$-1,8 \cdot 10^{-6}$	0,257	0,0660	-1,77
1	-3,3	-2,8	$-2,7\cdot 10^{-6}$	0,319	0,1020	-2,75
1,2	-4,6	-4,1	$-4 \cdot 10^{-6}$	0,375	0,1406	-4,02
1,4	-6,3	-5,8	$-5,7\cdot 10^{-6}$	0,444	0,1975	-5,69

Рассчитаем магнитную восприимчивость:

$$\chi = \frac{8k \cdot 10^{-5} \mu_0}{\pi d^2} = (8.914 \pm 0.922) \cdot 10^{-6}$$

Проведем измерения с алюминиевым цилиндром:

таолица 3. му сарион							
I	m	Δm	ΔP	B	B^2	$\Delta P \cdot 10^{-5}$	
0	-0,1	0	0	0,000	0,0000	0	
0,1	0,2	0,3	$2,94 \cdot 10^{-6}$	0,035	0,0012	0,29	
0,2	0,3	0,4	$3,92 \cdot 10^{-6}$	0,069	0,0048	0,39	
0,3	1,2	1,3	$1,28 \cdot 10^{-5}E - 05$	0,097	0,0095	1,28	
0,4	1,9	2	$1,96 \cdot 10^{-5}$	0,125	0,0156	1,96	
0,5	2,4	2,5	$2,45\cdot 10^{-5}$	0,167	0,0278	2,45	
0,6	3,1	3,2	$3,14\cdot 10^{-5}$	0,194	0,0378	3,14	
0,8	5,5	5,6	$5,49 \cdot 10^{-5}$	0,257	0,0660	5,49	
1	8.1	8,2	$8.04 \cdot 10^{-5}$	0.319	0.1020	8.04	

Таблица 3: My caption

Рассчитаем магнитную восприимчивость:

$$\chi = \frac{8k \cdot 10^{-5} \mu_0}{\pi d^2} = (2.472 \pm 0.360) \cdot 10^{-5}$$

5 Вывод

Метод Гюи дает возможность получать достоверные значения магнитной восприимчивости. Табличные значения: $\chi_{Cu}=-9.2\cdot 10^{-6},~\chi_{Al}=2.22\cdot 10^{-5}.$ Полученные результаты сходятся с ними в пределах погрешности.