Index

Note: Page numbers followed by "f" and "t" indicate figures and tables respectively

A	special design considerations, 191–194
3PM. See Plant Production Performance Model	American National Standards Institute (ANSI)
AAs. See Anti-agglomerants	448
Absolute open flow, 20	ANSI RP 755 Standard, 448
Absorber, 235–236, 492	ANSI/API RP 755 Standard, 449
side cooler, 192	Amine
Absorption, 182, 419–420	processes, 186–191, 296–298
Acid gas	double absorption process, 190–191
enrichment, 308	two-stage absorption process,
feed drums, 325–326	189–190
fuel burner, 308	unit operating problems, 194–195
treating system, 426	Annular flow, 44–45
Acid gas enrichment unit (AGEU), 308	Annular mist. See Annular flow
Acid gas removal unit (AGRU), 127,	Annular velocity (V _{ann}), 155-156. See also
171, 318	Media velocity (V _{med})
Acoustical treatment, 400–401	ANSI. See American National Standards
Activated alumina, 242–243	Institute
Adsorbent, 336, 420	Anti-agglomerants (AAs), 80–82
selection, 238–243	APC system. See Advanced process control
Adsorption, 182	system
capacity, 238	Application Service Provider (ASP), 521
isotherm, 237–238	Aquifers, 34
principle, 243–244	Aquisulf process, 322
Advanced process control system (APC system),	ASP. See Application Service Provider
132–133, 468, 471–473, 488–489, 488f	Asset
Advanced regulatory control, 427	management, 425–426
Aerosols, 150–151, 151f	values, 518
AFE. See Authority for expenditure	ATC. See Available Technical Capacity
AGEU. See Acid gas enrichment unit	Authority for expenditure (AFE),
AGRU. See Acid gas removal unit	547, 550
Alarm management, 449–450	Automation, 413
alarm philosophy, 450–451	applications, 424–433
audit, 453	Available Technical Capacity (ATC), 511
detailed design, 451-452	_
identification, 451	В
implementation, 452	BAHX. See Brazed aluminum heat exchanger
maintenance, 452	Baillie and Wichert method, 74-75, 77f
management of change, 452	Baselining, 432
monitoring and assessment, 452	Bed refluxing, 256
operation stage, 452	Beggs and Brill method, 52-56
rationalization, 451	Benfield process, 195
Alkanolamine solvents, 183–195	Bernoulli's equation, 384
amine processes, 186-191	Bio-SR process, 314
amine unit operating problems, 194-195	Brake horsepower (BHP), 366

Brazed aluminum heat exchanger (BAHX),	Churn (transition) flow, 45
270–271, 278–279, 338	Clathrate, 68–69
Breakdown maintenance, 455	Claus
British thermal unit (Btu), 6	converters, 306–307
Bubble flow, 45	process, 418
Bulk modulus of elasticity. See Isothermal gas	reaction, 303
compressibility	Clinsulf process, 311
Business	CNG. See Compressed natural gas
owner representative, 547	Coal-bed methane. See Natural gas
and project objectives, 546-548	from coal
Butanes splitter, 499	Code of Federal Regulations (CFR),
	442–443
C	Cold box, 478
Calcium chloride, 258	Coldfinger process, 230
Capital expenditure (CAPEX), 397, 563	Columns, 475–476
	Combustion air blowers, 326
Carbon aromaticity, 528	Commercial software programs, 78-79
Carbon dioxide (CO ₂), 11–12, 181	Commissioning, 437–442
removal for NGL, 129	control systems testing, 438–439
Carbon disulfide (CS ₂), 181	mechanical completion, 437–438
Carbonyl sulfide (COS), 181, 242, 297–298	performance testing, 442
Cascade	precommissioning, 437–438
flash separation, 170–171	process commissioning, 440–442
refrigeration, 268–270	start-up procedures, 440
Casinghead gas, 3–4	Communications medium, 415
Catacarb process, 195	Compressed natural gas (CNG), 24-27
Catalytic oxidation, 318	Compression, 349
sub-dew-point processes, 318	model, 492–494
SuperClaus process, 318	power, 408
Cathodic protection, 89	calculation, 366–367
Caustic processes, 294–295	Compression ratio (CR), 362–364
Centrifugal compressors, 268, 351–353, 352f,	Compressor stations, 394
363, 369–376, 378, 422–423. See also	acoustical treatment, 400–401
Reciprocating compressors	arrangements, 399
performance map, 370f	facilities, 395–399
recycle system layout for, 372f	reliability and availability, 401–402
Centrifugal pumps, 423	spacing, 404–408
Centrifugal separators, 145–146	control, 399–400
CFD. See Computational fluid dynamics	Compressor(s), 396
CFR. See Code of Federal Regulations	control, 367–374
CGR. See Condensate/gas ratio	drivers, 396–397
Checklist approach, 555	performance maps, 375–376
Chemical absorption processes,	selection, 354–355
183–195. See also Physical solvent	Computational fluid dynamics (CFD), 163
processes	Computational pipeline monitoring. See
alkanolamine solvents, 183–195	Internally based methods
potassium carbonate solution, 195	Condensate
Chemical inhibition, 80–86	effluent treatment, 176–178
inhibitor types, 80–83	hydrotreating, 174–175
injection system design, 85-86	production, 169–170
prediction of inhibitor requirements, 83-85	stabilizer case study, 434–436
Chemisorption, 237	storage, 178–180
Chemsweet® process, 213	siolage, 1/0-100

tank design considerations, 178–179	choice of corrosion-resistant metals, 87
tank emission control, 180	inhibitors, 87–89
Condensate stabilization, 127, 169–174,	monitoring, 90
420–421	protective coatings, 89–90 Corrosion resistant alloy (CRA), 87–88
cascade flash separation process, 170–171	• • • • • • • • • • • • • • • • • • • •
design considerations, 173–174	CR. See Compression ratio
stabilizer column pressure, 173	CRA. See Corrosion resistant alloy
stabilizer system control, 174	Cricondenbar, 4–5
distillation process, 171–172	Cricondentherm, 4–5
condensate and LPG production, 172, 173f	Cryogenic fractionation, 218
condensate production only, 171–172	Cryogenic nitrogen rejection process, 338
operating problems, 174	double-column nitrogen rejection process,
Condition manifesting See Predictive	340–342, 342f
Condition monitoring. See Predictive	process selection, 344–345
maintenance	single-column nitrogen rejection process
Containment, 525	classical design, 338–339, 339f
Continuous monitoring systems, 114	modified design, 339–340, 340f
Contractual agreements, 133–135	two-column nitrogen rejection process,
flat fees contracts, 134	343–344, 343f
keep-whole contracts, 134	Cryogenic process, 335–336
percentage of proceeds contracts, 134	Cryogenic recovery, 421 CrystaSulf [™] process, 313–314
processing fee contracts, 135	
Control	CSB. See U.S. Chemical Safety and Hazard
functions, 399	Investigation Board
methods, 109–111	Custom models, 492
system, 476	Cyclone separators. See Centrifugal separators
•	
checkout, 469-470	
checkout, 469–470 testing, 438–439	D
checkout, 469–470 testing, 438–439 Control room, 416	D D'GAASS process, 321–322
checkout, 469–470 testing, 438–439 Control room, 416 alarm management, 449–453	D'GAASS process, 321–322 DAP. See Double absorption process
checkout, 469–470 testing, 438–439 Control room, 416 alarm management, 449–453 fatigue mitigation, 448–449	D D'GAASS process, 321–322 DAP. See Double absorption process Darcy's law, 19
checkout, 469–470 testing, 438–439 Control room, 416 alarm management, 449–453 fatigue mitigation, 448–449 HAZOP, 445–446	D D'GAASS process, 321–322 DAP. See Double absorption process Darcy's law, 19 Data, 529
checkout, 469–470 testing, 438–439 Control room, 416 alarm management, 449–453 fatigue mitigation, 448–449 HAZOP, 445–446 LOPA, 446–448, 447f	D D'GAASS process, 321–322 DAP. See Double absorption process Darcy's law, 19 Data, 529 historians, 424
checkout, 469–470 testing, 438–439 Control room, 416 alarm management, 449–453 fatigue mitigation, 448–449 HAZOP, 445–446 LOPA, 446–448, 447f management, 442–443	D'GAASS process, 321–322 DAP. See Double absorption process Darcy's law, 19 Data, 529 historians, 424 DBM. See Design Basis Memorandum
checkout, 469–470 testing, 438–439 Control room, 416 alarm management, 449–453 fatigue mitigation, 448–449 HAZOP, 445–446 LOPA, 446–448, 447f management, 442–443 operational excellence key components, 453f	D D'GAASS process, 321–322 DAP. See Double absorption process Darcy's law, 19 Data, 529 historians, 424 DBM. See Design Basis Memorandum DCS. See Distributed control system
checkout, 469–470 testing, 438–439 Control room, 416 alarm management, 449–453 fatigue mitigation, 448–449 HAZOP, 445–446 LOPA, 446–448, 447f management, 442–443 operational excellence key components, 453f process safety management, 443–445	D D'GAASS process, 321–322 DAP. See Double absorption process Darcy's law, 19 Data, 529 historians, 424 DBM. See Design Basis Memorandum DCS. See Distributed control system DEA. See Diethanolamine
checkout, 469–470 testing, 438–439 Control room, 416 alarm management, 449–453 fatigue mitigation, 448–449 HAZOP, 445–446 LOPA, 446–448, 447f management, 442–443 operational excellence key components, 453f process safety management, 443–445 roles and responsibilities, 443	D D'GAASS process, 321–322 DAP. See Double absorption process Darcy's law, 19 Data, 529 historians, 424 DBM. See Design Basis Memorandum DCS. See Distributed control system DEA. See Diethanolamine Debutanizer, 498–499
checkout, 469–470 testing, 438–439 Control room, 416 alarm management, 449–453 fatigue mitigation, 448–449 HAZOP, 445–446 LOPA, 446–448, 447f management, 442–443 operational excellence key components, 453f process safety management, 443–445 roles and responsibilities, 443 training, 453–454	D D'GAASS process, 321–322 DAP. See Double absorption process Darcy's law, 19 Data, 529 historians, 424 DBM. See Design Basis Memorandum DCS. See Distributed control system DEA. See Diethanolamine Debutanizer, 498–499 Deep hydrocarbon dew pointing, 273–274
checkout, 469–470 testing, 438–439 Control room, 416 alarm management, 449–453 fatigue mitigation, 448–449 HAZOP, 445–446 LOPA, 446–448, 447f management, 442–443 operational excellence key components, 453f process safety management, 443–445 roles and responsibilities, 443 training, 453–454 Conventional demethanizer, 285	D D'GAASS process, 321–322 DAP. See Double absorption process Darcy's law, 19 Data, 529 historians, 424 DBM. See Design Basis Memorandum DCS. See Distributed control system DEA. See Diethanolamine Debutanizer, 498–499 Deep hydrocarbon dew pointing, 273–274 Deethanizer, 498
checkout, 469–470 testing, 438–439 Control room, 416 alarm management, 449–453 fatigue mitigation, 448–449 HAZOP, 445–446 LOPA, 446–448, 447f management, 442–443 operational excellence key components, 453f process safety management, 443–445 roles and responsibilities, 443 training, 453–454 Conventional demethanizer, 285 Conventional gas, 3, 17–20. See also	D D'GAASS process, 321–322 DAP. See Double absorption process Darcy's law, 19 Data, 529 historians, 424 DBM. See Design Basis Memorandum DCS. See Distributed control system DEA. See Diethanolamine Debutanizer, 498–499 Deep hydrocarbon dew pointing, 273–274 Deethanizer, 498 Dehydration, 130
checkout, 469–470 testing, 438–439 Control room, 416 alarm management, 449–453 fatigue mitigation, 448–449 HAZOP, 445–446 LOPA, 446–448, 447f management, 442–443 operational excellence key components, 453f process safety management, 443–445 roles and responsibilities, 443 training, 453–454 Conventional demethanizer, 285 Conventional gas, 3, 17–20. See also Unconventional gas	D D'GAASS process, 321–322 DAP. See Double absorption process Darcy's law, 19 Data, 529 historians, 424 DBM. See Design Basis Memorandum DCS. See Distributed control system DEA. See Diethanolamine Debutanizer, 498–499 Deep hydrocarbon dew pointing, 273–274 Deethanizer, 498 Dehydration, 130 Deliverability equation, 19–20
checkout, 469–470 testing, 438–439 Control room, 416 alarm management, 449–453 fatigue mitigation, 448–449 HAZOP, 445–446 LOPA, 446–448, 447f management, 442–443 operational excellence key components, 453f process safety management, 443–445 roles and responsibilities, 443 training, 453–454 Conventional demethanizer, 285 Conventional gas, 3, 17–20. See also Unconventional gas completion, 19	D D'GAASS process, 321–322 DAP. See Double absorption process Darcy's law, 19 Data, 529 historians, 424 DBM. See Design Basis Memorandum DCS. See Distributed control system DEA. See Diethanolamine Debutanizer, 498–499 Deep hydrocarbon dew pointing, 273–274 Deethanizer, 498 Dehydration, 130 Deliverability equation, 19–20 Demethanizer, 422, 498
checkout, 469–470 testing, 438–439 Control room, 416 alarm management, 449–453 fatigue mitigation, 448–449 HAZOP, 445–446 LOPA, 446–448, 447f management, 442–443 operational excellence key components, 453f process safety management, 443–445 roles and responsibilities, 443 training, 453–454 Conventional demethanizer, 285 Conventional gas, 3, 17–20. See also Unconventional gas completion, 19 drilling, 18–19	D D'GAASS process, 321–322 DAP. See Double absorption process Darcy's law, 19 Data, 529 historians, 424 DBM. See Design Basis Memorandum DCS. See Distributed control system DEA. See Diethanolamine Debutanizer, 498–499 Deep hydrocarbon dew pointing, 273–274 Deethanizer, 498 Dehydration, 130 Deliverability equation, 19–20 Demethanizer, 422, 498 feed chilling models, 499
checkout, 469–470 testing, 438–439 Control room, 416 alarm management, 449–453 fatigue mitigation, 448–449 HAZOP, 445–446 LOPA, 446–448, 447f management, 442–443 operational excellence key components, 453f process safety management, 443–445 roles and responsibilities, 443 training, 453–454 Conventional demethanizer, 285 Conventional gas, 3, 17–20. See also Unconventional gas completion, 19 drilling, 18–19 electric logs, 18f	D'GAASS process, 321–322 DAP. See Double absorption process Darcy's law, 19 Data, 529 historians, 424 DBM. See Design Basis Memorandum DCS. See Distributed control system DEA. See Diethanolamine Debutanizer, 498–499 Deep hydrocarbon dew pointing, 273–274 Deethanizer, 498 Dehydration, 130 Deliverability equation, 19–20 Demethanizer, 422, 498 feed chilling models, 499 Demisting device, 139
checkout, 469–470 testing, 438–439 Control room, 416 alarm management, 449–453 fatigue mitigation, 448–449 HAZOP, 445–446 LOPA, 446–448, 447f management, 442–443 operational excellence key components, 453f process safety management, 443–445 roles and responsibilities, 443 training, 453–454 Conventional demethanizer, 285 Conventional gas, 3, 17–20. See also Unconventional gas completion, 19 drilling, 18–19 electric logs, 18f exploration, 17	D'GAASS process, 321–322 DAP. See Double absorption process Darcy's law, 19 Data, 529 historians, 424 DBM. See Design Basis Memorandum DCS. See Distributed control system DEA. See Diethanolamine Debutanizer, 498–499 Deep hydrocarbon dew pointing, 273–274 Deethanizer, 498 Dehydration, 130 Deliverability equation, 19–20 Demethanizer, 422, 498 feed chilling models, 499 Demisting device, 139 "Dense phase" compressor, 362
checkout, 469–470 testing, 438–439 Control room, 416 alarm management, 449–453 fatigue mitigation, 448–449 HAZOP, 445–446 LOPA, 446–448, 447f management, 442–443 operational excellence key components, 453f process safety management, 443–445 roles and responsibilities, 443 training, 453–454 Conventional demethanizer, 285 Conventional gas, 3, 17–20. See also Unconventional gas completion, 19 drilling, 18–19 electric logs, 18f exploration, 17 production, 19–20	D'GAASS process, 321–322 DAP. See Double absorption process Darcy's law, 19 Data, 529 historians, 424 DBM. See Design Basis Memorandum DCS. See Distributed control system DEA. See Diethanolamine Debutanizer, 498–499 Deep hydrocarbon dew pointing, 273–274 Deethanizer, 498 Dehydration, 130 Deliverability equation, 19–20 Demethanizer, 422, 498 feed chilling models, 499 Demisting device, 139 "Dense phase" compressor, 362 DEPG. See Dimethyl ether of polyethylene
checkout, 469–470 testing, 438–439 Control room, 416 alarm management, 449–453 fatigue mitigation, 448–449 HAZOP, 445–446 LOPA, 446–448, 447f management, 442–443 operational excellence key components, 453f process safety management, 443–445 roles and responsibilities, 443 training, 453–454 Conventional demethanizer, 285 Conventional gas, 3, 17–20. See also Unconventional gas completion, 19 drilling, 18–19 electric logs, 18f exploration, 17 production, 19–20 seismic survey, 17f	D'GAASS process, 321–322 DAP. See Double absorption process Darcy's law, 19 Data, 529 historians, 424 DBM. See Design Basis Memorandum DCS. See Distributed control system DEA. See Diethanolamine Debutanizer, 498–499 Deep hydrocarbon dew pointing, 273–274 Deethanizer, 498 Dehydration, 130 Deliverability equation, 19–20 Demethanizer, 422, 498 feed chilling models, 499 Demisting device, 139 "Dense phase" compressor, 362 DEPG. See Dimethyl ether of polyethylene glycol
checkout, 469–470 testing, 438–439 Control room, 416 alarm management, 449–453 fatigue mitigation, 448–449 HAZOP, 445–446 LOPA, 446–448, 447f management, 442–443 operational excellence key components, 453f process safety management, 443–445 roles and responsibilities, 443 training, 453–454 Conventional demethanizer, 285 Conventional gas, 3, 17–20. See also Unconventional gas completion, 19 drilling, 18–19 electric logs, 18f exploration, 17 production, 19–20 seismic survey, 17f Conveying formed sulfur, 324	D'GAASS process, 321–322 DAP. See Double absorption process Darcy's law, 19 Data, 529 historians, 424 DBM. See Design Basis Memorandum DCS. See Distributed control system DEA. See Diethanolamine Debutanizer, 498–499 Deep hydrocarbon dew pointing, 273–274 Deethanizer, 498 Dehydration, 130 Deliverability equation, 19–20 Demethanizer, 422, 498 feed chilling models, 499 Demisting device, 139 "Dense phase" compressor, 362 DEPG. See Dimethyl ether of polyethylene glycol Depleted reservoirs, 34
checkout, 469–470 testing, 438–439 Control room, 416 alarm management, 449–453 fatigue mitigation, 448–449 HAZOP, 445–446 LOPA, 446–448, 447f management, 442–443 operational excellence key components, 453f process safety management, 443–445 roles and responsibilities, 443 training, 453–454 Conventional demethanizer, 285 Conventional gas, 3, 17–20. See also Unconventional gas completion, 19 drilling, 18–19 electric logs, 18f exploration, 17 production, 19–20 seismic survey, 17f Conveying formed sulfur, 324 Cooling water system model, 500	D'GAASS process, 321–322 DAP. See Double absorption process Darcy's law, 19 Data, 529 historians, 424 DBM. See Design Basis Memorandum DCS. See Distributed control system DEA. See Diethanolamine Debutanizer, 498–499 Deep hydrocarbon dew pointing, 273–274 Deethanizer, 498 Dehydration, 130 Deliverability equation, 19–20 Demethanizer, 422, 498 feed chilling models, 499 Demisting device, 139 "Dense phase" compressor, 362 DEPG. See Dimethyl ether of polyethylene glycol Depleted reservoirs, 34 Depropanizer, 498
checkout, 469–470 testing, 438–439 Control room, 416 alarm management, 449–453 fatigue mitigation, 448–449 HAZOP, 445–446 LOPA, 446–448, 447f management, 442–443 operational excellence key components, 453f process safety management, 443–445 roles and responsibilities, 443 training, 453–454 Conventional demethanizer, 285 Conventional gas, 3, 17–20. See also Unconventional gas completion, 19 drilling, 18–19 electric logs, 18f exploration, 17 production, 19–20 seismic survey, 17f Conveying formed sulfur, 324 Cooling water system model, 500 Corrective maintenance, 456	D'GAASS process, 321–322 DAP. See Double absorption process Darcy's law, 19 Data, 529 historians, 424 DBM. See Design Basis Memorandum DCS. See Distributed control system DEA. See Diethanolamine Debutanizer, 498–499 Deep hydrocarbon dew pointing, 273–274 Deethanizer, 498 Dehydration, 130 Deliverability equation, 19–20 Demethanizer, 422, 498 feed chilling models, 499 Demisting device, 139 "Dense phase" compressor, 362 DEPG. See Dimethyl ether of polyethylene glycol Depleted reservoirs, 34 Depropanizer, 498 Design Basis Memorandum (DBM), 545
checkout, 469–470 testing, 438–439 Control room, 416 alarm management, 449–453 fatigue mitigation, 448–449 HAZOP, 445–446 LOPA, 446–448, 447f management, 442–443 operational excellence key components, 453f process safety management, 443–445 roles and responsibilities, 443 training, 453–454 Conventional demethanizer, 285 Conventional gas, 3, 17–20. See also Unconventional gas completion, 19 drilling, 18–19 electric logs, 18f exploration, 17 production, 19–20 seismic survey, 17f Conveying formed sulfur, 324 Cooling water system model, 500	D'GAASS process, 321–322 DAP. See Double absorption process Darcy's law, 19 Data, 529 historians, 424 DBM. See Design Basis Memorandum DCS. See Distributed control system DEA. See Diethanolamine Debutanizer, 498–499 Deep hydrocarbon dew pointing, 273–274 Deethanizer, 498 Dehydration, 130 Deliverability equation, 19–20 Demethanizer, 422, 498 feed chilling models, 499 Demisting device, 139 "Dense phase" compressor, 362 DEPG. See Dimethyl ether of polyethylene glycol Depleted reservoirs, 34 Depropanizer, 498

DFM. See Drift-flux model	specific considerations, 474-476
DGA. See Diglycolamine	fuel gas system start-up analysis, 478-481
Diethanolamine (DEA), 183-184	in gas processing plants, 467
Diethylene glycol, 227	level of detail in model, 473-474
Differential pressure (DP), 157	model speed, 474
Digital multimeter (DMM), 461-462	trunk line online dynamic model, 481–485
Digital technology, 399-400	·
Diglycolamine (DGA), 183–184	E
Diisopropanolamine (DIPA), 183, 185	_
Dimethyl ether (DME), 27	EAM system. See Enterprise asset management
Dimethyl ether of polyethylene glycol (DEPG),	system EDI Cas External Data Interface
197, 202–207	EDI. See External Data Interface
carbon capture process, 205	EIA. See Energy Information Administration
hydrocarbon dew point control, 207	Elemental sulfur, 301 Emerganay shyddayng (ESD) 271, 273, 308
landfill gas, 207	Emergency shutdowns (ESD), 371, 373, 398, 469
mercaptan removal, 207	Emulsions, 157–158
process, 203–205	
DIPA. See Diisopropanolamine	Energy Information Administration (EIA), 16
Direct oxidation processes, 309–311	Engineering, Procurement, and Construction
Clinsulf process, 311	(EPC), 544
Selectox process, 310–311	Enterprise asset management system (EAM
Dispersed bubble flow, 42	system), 457
Distillation	Enterprise resource planning (ERP), 519 Enterprise risk management (ERM), 558
calculations, 496-499	
process, 171-172	Environmental engineer, 548
condensate and LPG production, 172, 173f	EOS. See Equation of state EPC. See Engineering, Procurement, and
condensate production only, 171-172	Construction
towers, 425	Equation of state (EOS), 8, 59
Distributed control system (DCS), 132-133,	Equilibrium zone (EZ), 244
413–416, 439, 462	ERM. See Enterprise risk management
DME. See Dimethyl ether	ERP. See Enterprise resource planning
DMM. See Digital multimeter	ESD. See Emergency shutdowns
Doctor sweetening process, 294-295	EUR. See Expected ultimate recovery
Double absorption process (DAP), 190-191, 319	Expander model, 494–496
Double-column nitrogen rejection process,	Expander thermodynamics, 494f
340-342, 342f. See also Single-column	Expected ultimate recovery (EUR), 20
nitrogen rejection process; Two-column	External Data Interface (EDI), 489
nitrogen rejection process	EZ. See Equilibrium zone
DP. See Differential pressure	22. dec 24e.
Drift-flux model (DFM), 57-59	F
DRIZO [™] process, 229	•
Dry-bed processes, 182	Fatigue mitigation, 448–449
DS. See Desuperheating station	Fatigue risk management system (FRMS),
Dual column reflux process, 281–282	448–449
Dynamic analysis, 480–481	Fault Tree Analysis (FTA), 444
Dynamic models, 468	Feed
Dynamic simulation, 467	contaminants, 346–347
areas of application, 467	gas, 191, 338
plant design, 468–471	characteristics, 345
plant operation, 471–473	cooling system, 268
equipment	preheating, 307
and process system control, 477–478	FEED. See Front-end engineering and design

FEF. See Front-end furnace	and transmission, 477
Ferrox process, 211	gravity method, 75-78
Fiber-reinforced plastic (FRP), 27	hydrates, 3–4, 68–86
Filters, 402	locus for natural gas components, 70, 71f
Finger-type slug catcher, 149f	prediction of hydrate formation conditions,
Fischer–Tropsch process (FT process), 27	70–79
Fixed fee price, 548–549	prevention techniques, 79-86
Flare system, 399	piping, 401
Flat fees contracts, 134	plant profitability, 518
Flexsorb, 316–317	specific gravity, 8
FLEXSORB SE process, 186	temperature profile prediction, 390–392
Floating liquefied natural gas (FLNG), 26	transmission pipelines
Flow assurance, 68	compressor station, 394f
risk management, 111-114	transient flow in, 392-393
Flow pattern maps, 46-48	transmission system, 394
Flow sheet development, 505	treating, 418, 477
FLUOR Solvent process, 198–200	viscosity, 14–15
Fluor twin column high absorption process, 285	Gas processing, 544
Fluor twin-reflux absorption process, 285–287	modeling, 467
Foaming, 195, 347	and optimization strategy, 513–514
Formed sulfur storage, 324	operations, 487
Fractionators, 492	plants, 467
Friction factor model. See Homogeneous flow	model speed, 474
approaches	Gas coalescers, 150-157, 152f. See also
FRMS. See Fatigue risk management system	High-efficiency liquid-liquid coalescers
Front-end engineering and design (FEED), 546	aerosols, 150–151, 151f
Front-end furnace (FEF), 309	applications, 157
FRP. See Fiber-reinforced plastic	construction/operation principles, 151–154
FT process. See Fischer–Tropsch process	modeling liquid, 154–156
FTA. See Fault Tree Analysis	performance/operational limits, 157
Fuel gas system, 478, 479f	effect of surface treatment, 153f
start-up analysis, 478–479	Gas compression thermodynamics, 355
dynamic analysis, 480–481	basic relations, 356–357
dynamic model, 481	isentropic model, 357-360
steady-state analysis, 479–480	polytropic model, 360–361
	real gas behavior, 361–362
G	Gas deviation factor. See Gas—compressibility
	factor
Gas. See also Natural gas	Gas horsepower (GHP), 366
compressibility factor, 8–12	Gas plant assets profitability, 517
compressors, 425	challenges, 517
condensate "A", 92–93	industrial relevance, 536
condensate "B", 93	information hierarchy, 530f
dehydration, 419–420, 477	integrated gas plant, 518-519
unit, 127	impact of living with information technology,
density, 13	529–530
flow fundamentals, 383	miscellaneous initiatives, 539
friction factor correlations, 385–388	model-based asset management, 532
general flow equation, 384–385	operations strategy, 531
simplified flow equations, 388–390	optimization, 533
formation volume factor, 12–13	alternatives, 534–536
gathering	tools for, 534
system, 417–418	· · · · · · · · · · · · · · · · · · ·

Gas plant assets profitability (Continued)	maintenance, 454–458
organizational behavior model, 519-528	plant turnarounds, 464
scientific approach, 537-539	troubleshooting, 458–463
strategies for organizational behavior and	Gas subcooled process (GSP), 282-283
information, 519	Gas-condensate
successful information strategy, 528-529	flow regimes, 49
technology integration challenge, 537	wax deposition envelope, 92-95
vision of modern plant operation, 530–531	Gas-to-liquids (GTL), 24–25, 27–28
Gas plant project management, 543–544.	Gas-to-solids technologies (GTS technologies),
See also Integrated gas plant; Natural gas	24–25, 28–29
commissioning and start-up, 566	Gas-to-wire technologies (GTW technologies),
industry perspective, 544–545	24–25, 29–30
operation and evaluation, 566–567	Gas-well gas, 3–4
process, 545	Gas–liquid cylindrical cyclone separator (GLCC
conceptual estimates and schedules, 549–551	separator), 145–146, 146f
contracting strategy, 548–549	Gas–oil ratio streams (GOR streams), 141
defining business and project objectives,	GCV. See Gross Calorific Value
546–548	GHP. See Gas horsepower
pre-project planning measurement, 552	GLCC separator. See Gas–liquid cylindrical
project execution planning, 551–552	cyclone separator
responsibility matrix, 552–554, 553t	Glycol
team integration phases, 554f	circulate rate, 232–233
project closeout, 567	dehydration, 226–237
project controls, 554	conventional TEG dehydration process,
project timeline, 555–556	227–228
risk management, 556–564	enhanced TEG dehydration process, 229–230
quality assurance, 564–565	future technology developments, 237
Gas processing plant automation, 413	glycol injection process, 230–232
applications, 424–433	operational problems, 235–237
centrifugal	TEG unit design considerations, 232–234
compressors, 422–423	gas dehydration process, 477
pumps, 423	injection process, 230–232
condensate stabilizer case study, 433–436	purity, 234
early methods, 413–414	GOR streams. See Gas-oil ratio streams
gas dehydration, 419–420	Granulated sulfur, 324
gas gathering system, 417–418	Graphical user interface (GUI), 484, 513
gas treating system, 418	Gravity segregation, 137
liquids recovery, 420–422	Gravity separators, 137–144
microprocessor-based automation, 414–416	design considerations, 144
NGL fractionation, 422	general description, 138–140
reciprocating pumps, 423	horizontal three-phase separator, 139f
sulfur recovery, 418–419	selection, 140–142
utilities, 423–424	theory, 142–144
Gas processing plant operations, 437	vertical three-phase separator, 140f
commissioning and start-up	Gross Calorific Value (GCV), 506
control systems testing, 438–439	GSP. See Gas subcooled process
mechanical completion, 437–438	GTL. See Gas-to-liquids
performance testing, 442	GTS technologies. See Gas-to-solids
precommissioning, 437–438	technologies
process commissioning, 440-442	GTW technologies. See Gas-to-wire
start-up procedures, 440	technologies
control room management, 442-454	GUI. See Graphical user interface

Н	HVDC. See High-voltage direct current
Hagen-Poiseuille equation, 386	Hydrate
Hazard and Operability Study (HAZOP),	curve, 70
444–446	formation, 347
analysis, 550	prevention techniques, 79-86
HCN. See Hydrogen cyanide	chemical inhibition, 80–86
HE. See Hydrate envelope	thermal methods, 79-80
Health, Safety, and Environment (HSE), 518	Hydrate envelope (HE), 95
Heat exchangers, 476	Hydrocarbon dew pointing
Heaters, 403	control, 207
Heating value	deep, 273–274
natural gas, 387	gas plant with, 125-128, 126f
of sales gas, 386	acid gas removal unit, 127
Hexane plus (C_6^+) , 5–6	condensate stabilization, 127
High-efficiency liquid. See Gas coalescers	gas compression and transmission, 128
High-efficiency liquid-liquid coalescers,	gas dehydration unit, 127
157–162, 160f	inlet facility, 125–126
applications, 162	nitrogen rejection, 128
emulsions, 157–158	sulfur recovery and handling unit, 127
limitations, 162	with Joule–Thomson cooling, 271–272
liquid-liquid coalescer performance, 161-162	with propane refrigeration, 272
mechanism of operation, 158–161	Hydrocarbon removal processes, 287–289
coalesced droplets separation, 160–161	membrane separation, 287–289
coalescence, 159–160	solid-bed adsorption process, 287
solid separation /fluid preconditioning,	Twister® supersonic separation, 289
158–159	Hydrodynamic slugging, 102–103
principles and materials of construction, 158	Hydrogen cyanide (HCN), 202
High-pressure (HP), 126	Hydrogen sulfide (H ₂ S), 11–12, 181, 301
column, 343	scavenger, 311–312
services, 126	liquid injection scavenger, 311–312
High-voltage direct current (HVDC), 24-25	selective H ₂ S removal section, 316–317
Higher heating value, 6	Hydrogenation section, 315–316
HMI. See Human Machine Interface	Hydrostatic tests, 438
Holdup, 38–39	_
Homogeneous flow approaches, 50-56	
Beggs and Brill method, 52-56	I/O. See Input-output
Lockhart and Martinelli method, 51-52	IFPEX-1 [®] , 258
Horizontal flow regimes, 42-44. See also	IGCC. See Integrated gasification combined
Vertical flow regimes	cycle
annular flow, 44	IGT. See Institute of Gas Technology
dispersed bubble flow, 42	In situ velocity. See Phase velocity
plug (elongated bubble) flow, 42	Incident analysis, 472
slug flow, 43–44	Inclined flow regimes, 45–46
stratified (smooth and wavy) flow, 43	Independent protection layer (IPL), 447
Horizontal separators, 141	Industrial relevance, 536
Horizontal three-phase separator, 139f	Inflow performance relationship (IPR), 22
Horsepower (HP), 356	Information, 529
Hot gas bypassing, 307	Inlet diverters, 142
Hot pot process, 195	Inlet facility, 125–126
HP. See High-pressure; Horsepower	Input-output (I/O), 415-416, 461
HSE. See Health, Safety, and Environment	Institute of Gas Technology (IGT), 388
Human Machine Interface (HMI), 414	Insulation, 346

Interested and along \$10,510	find ambastics 207
Integrated gas plant, 518–519	feed preheating, 307
Integrated gasification combined cycle (IGCC), 203	hot gas bypassing, 307 Lean amine feed locations, 192
Intelligent pigs, 66	Lean oil absorption process, 279
Internally based methods, 65–66	Leveraging automation, 430
Interstage cooling, 364	automation upgrade master plans, 430
IPL. See Independent protection layer	benefits, 432–433
IPR. See Inflow performance relationship	Linde's Clinsulf process, 309
Iron sponge process, 210–211	Line sizing criteria, 403–404
Isentropic model, 357–360	Linear programming technique (LP technique),
Isothermal gas compressibility, 13–14	427
	Liquefied natural gas (LNG), 24-26, 124-125
J	Liquefied petroleum gas (LPG), 124, 171
Joule-Thomson (JT)	Liquid
coefficient, 15-16, 390-391	enthalpy, 497
cooling, 335–336	injection scavenger, 311-312
effect, 392	recovery, 420-422, 478
valve, 421, 478-479, 534	LNG. See Liquefied natural gas
	Load control, 380
K	Lockhart and Martinelli method, 51-52
K-factor method, 70-74	LOPA. See Layer of protection analysis
Kårstø gas processing plant, 505, 507f	Low Dosage Hydrate Inhibitor (LDHI), 80-82
implementation and usage, 512-513	Low-temperature separation (LTS), 482
large energy consumer, 509	LP technique. See Linear programming
modeling and optimization strategy, 513-514	technique
off-line usage, 515	LPG. See Liquefied petroleum gas
	LTS See Low-temperature congretion
online usage, 514	LTS. See Low-temperature separation
online usage, 514 optimization model features, 512	E13. See Low-temperature separation
optimization model features, 512 plant operation, 506–509	M
optimization model features, 512 plant operation, 506–509 plant-wide model, 513	M
optimization model features, 512 plant operation, 506–509 plant-wide model, 513 process description, 506	M mA. <i>See</i> Milliamp
optimization model features, 512 plant operation, 506–509 plant-wide model, 513 process description, 506 production objectives, 509	M mA. See Milliamp MAC. See Maximum Available Capacity
optimization model features, 512 plant operation, 506–509 plant-wide model, 513 process description, 506 production objectives, 509 project drivers, 509–512	M mA. <i>See</i> Milliamp
optimization model features, 512 plant operation, 506–509 plant-wide model, 513 process description, 506 production objectives, 509 project drivers, 509–512 quantifying measurement errors, 514–515	M mA. See Milliamp MAC. See Maximum Available Capacity Maintenance, gas processing plant, 454
optimization model features, 512 plant operation, 506–509 plant-wide model, 513 process description, 506 production objectives, 509 project drivers, 509–512 quantifying measurement errors, 514–515 use for planners, 515	M mA. See Milliamp MAC. See Maximum Available Capacity Maintenance, gas processing plant, 454 EAM system, 457
optimization model features, 512 plant operation, 506–509 plant-wide model, 513 process description, 506 production objectives, 509 project drivers, 509–512 quantifying measurement errors, 514–515 use for planners, 515 Keep-whole contracts, 134	M mA. See Milliamp MAC. See Maximum Available Capacity Maintenance, gas processing plant, 454 EAM system, 457 RCM, 457–458
optimization model features, 512 plant operation, 506–509 plant-wide model, 513 process description, 506 production objectives, 509 project drivers, 509–512 quantifying measurement errors, 514–515 use for planners, 515 Keep-whole contracts, 134 Kennelly equation, 391	M mA. See Milliamp MAC. See Maximum Available Capacity Maintenance, gas processing plant, 454 EAM system, 457 RCM, 457–458 types, 455–457
optimization model features, 512 plant operation, 506–509 plant-wide model, 513 process description, 506 production objectives, 509 project drivers, 509–512 quantifying measurement errors, 514–515 use for planners, 515 Keep-whole contracts, 134 Kennelly equation, 391 Kerogen, 2–3	M mA. See Milliamp MAC. See Maximum Available Capacity Maintenance, gas processing plant, 454 EAM system, 457 RCM, 457-458 types, 455-457 Man-Technology-Organization (MTO), 533
optimization model features, 512 plant operation, 506–509 plant-wide model, 513 process description, 506 production objectives, 509 project drivers, 509–512 quantifying measurement errors, 514–515 use for planners, 515 Keep-whole contracts, 134 Kennelly equation, 391 Kerogen, 2–3 Key performance indicator (KPI), 526–527	M mA. See Milliamp MAC. See Maximum Available Capacity Maintenance, gas processing plant, 454 EAM system, 457 RCM, 457-458 types, 455-457 Man-Technology-Organization (MTO), 533 MAOP. See Maximum allowable operating pressure Mass transfer zone (MTZ), 244
optimization model features, 512 plant operation, 506–509 plant-wide model, 513 process description, 506 production objectives, 509 project drivers, 509–512 quantifying measurement errors, 514–515 use for planners, 515 Keep-whole contracts, 134 Kennelly equation, 391 Kerogen, 2–3 Key performance indicator (KPI), 526–527 Kinetic hydrate inhibitor (KHI), 80–82	M mA. See Milliamp MAC. See Maximum Available Capacity Maintenance, gas processing plant, 454 EAM system, 457 RCM, 457-458 types, 455-457 Man-Technology-Organization (MTO), 533 MAOP. See Maximum allowable operating pressure Mass transfer zone (MTZ), 244 Material balance
optimization model features, 512 plant operation, 506–509 plant-wide model, 513 process description, 506 production objectives, 509 project drivers, 509–512 quantifying measurement errors, 514–515 use for planners, 515 Keep-whole contracts, 134 Kennelly equation, 391 Kerogen, 2–3 Key performance indicator (KPI), 526–527 Kinetic hydrate inhibitor (KHI), 80–82 K _{SB} . See Souders and Brown	M mA. See Milliamp MAC. See Maximum Available Capacity Maintenance, gas processing plant, 454 EAM system, 457 RCM, 457-458 types, 455-457 Man-Technology-Organization (MTO), 533 MAOP. See Maximum allowable operating pressure Mass transfer zone (MTZ), 244 Material balance equation, 19–20
optimization model features, 512 plant operation, 506–509 plant-wide model, 513 process description, 506 production objectives, 509 project drivers, 509–512 quantifying measurement errors, 514–515 use for planners, 515 Keep-whole contracts, 134 Kennelly equation, 391 Kerogen, 2–3 Key performance indicator (KPI), 526–527 Kinetic hydrate inhibitor (KHI), 80–82	M mA. See Milliamp MAC. See Maximum Available Capacity Maintenance, gas processing plant, 454 EAM system, 457 RCM, 457-458 types, 455-457 Man-Technology-Organization (MTO), 533 MAOP. See Maximum allowable operating pressure Mass transfer zone (MTZ), 244 Material balance equation, 19–20 model, 502
optimization model features, 512 plant operation, 506–509 plant-wide model, 513 process description, 506 production objectives, 509 project drivers, 509–512 quantifying measurement errors, 514–515 use for planners, 515 Keep-whole contracts, 134 Kennelly equation, 391 Kerogen, 2–3 Key performance indicator (KPI), 526–527 Kinetic hydrate inhibitor (KHI), 80–82 K _{SB} . See Souders and Brown	M mA. See Milliamp MAC. See Maximum Available Capacity Maintenance, gas processing plant, 454 EAM system, 457 RCM, 457–458 types, 455–457 Man-Technology-Organization (MTO), 533 MAOP. See Maximum allowable operating pressure Mass transfer zone (MTZ), 244 Material balance equation, 19–20 model, 502 Maximum allowable operating pressure
optimization model features, 512 plant operation, 506–509 plant-wide model, 513 process description, 506 production objectives, 509 project drivers, 509–512 quantifying measurement errors, 514–515 use for planners, 515 Keep-whole contracts, 134 Kennelly equation, 391 Kerogen, 2–3 Key performance indicator (KPI), 526–527 Kinetic hydrate inhibitor (KHI), 80–82 K _{SB} . See Souders and Brown design coefficient	M mA. See Milliamp MAC. See Maximum Available Capacity Maintenance, gas processing plant, 454 EAM system, 457 RCM, 457–458 types, 455–457 Man-Technology-Organization (MTO), 533 MAOP. See Maximum allowable operating pressure Mass transfer zone (MTZ), 244 Material balance equation, 19–20 model, 502 Maximum allowable operating pressure (MAOP), 405
optimization model features, 512 plant operation, 506–509 plant-wide model, 513 process description, 506 production objectives, 509 project drivers, 509–512 quantifying measurement errors, 514–515 use for planners, 515 Keep-whole contracts, 134 Kennelly equation, 391 Kerogen, 2–3 Key performance indicator (KPI), 526–527 Kinetic hydrate inhibitor (KHI), 80–82 K _{SB} . See Souders and Brown design coefficient L Landfill gas, 207	M mA. See Milliamp MAC. See Maximum Available Capacity Maintenance, gas processing plant, 454 EAM system, 457 RCM, 457–458 types, 455–457 Man-Technology-Organization (MTO), 533 MAOP. See Maximum allowable operating pressure Mass transfer zone (MTZ), 244 Material balance equation, 19–20 model, 502 Maximum allowable operating pressure (MAOP), 405 Maximum Available Capacity (MAC), 511
optimization model features, 512 plant operation, 506–509 plant-wide model, 513 process description, 506 production objectives, 509 project drivers, 509–512 quantifying measurement errors, 514–515 use for planners, 515 Keep-whole contracts, 134 Kennelly equation, 391 Kerogen, 2–3 Key performance indicator (KPI), 526–527 Kinetic hydrate inhibitor (KHI), 80–82 K _{SB} . See Souders and Brown design coefficient L Landfill gas, 207 Layer of protection analysis (LOPA), 446–448,	M mA. See Milliamp MAC. See Maximum Available Capacity Maintenance, gas processing plant, 454 EAM system, 457 RCM, 457–458 types, 455–457 Man-Technology-Organization (MTO), 533 MAOP. See Maximum allowable operating pressure Mass transfer zone (MTZ), 244 Material balance equation, 19–20 model, 502 Maximum allowable operating pressure (MAOP), 405 Maximum Available Capacity (MAC), 511 MDEA. See Methyldiethanolamine
optimization model features, 512 plant operation, 506–509 plant-wide model, 513 process description, 506 production objectives, 509 project drivers, 509–512 quantifying measurement errors, 514–515 use for planners, 515 Keep-whole contracts, 134 Kennelly equation, 391 Kerogen, 2–3 Key performance indicator (KPI), 526–527 Kinetic hydrate inhibitor (KHI), 80–82 K _{SB} . See Souders and Brown design coefficient L Landfill gas, 207 Layer of protection analysis (LOPA), 446–448, 447f	M mA. See Milliamp MAC. See Maximum Available Capacity Maintenance, gas processing plant, 454 EAM system, 457 RCM, 457–458 types, 455–457 Man-Technology-Organization (MTO), 533 MAOP. See Maximum allowable operating pressure Mass transfer zone (MTZ), 244 Material balance equation, 19–20 model, 502 Maximum allowable operating pressure (MAOP), 405 Maximum Available Capacity (MAC), 511 MDEA. See Methyldiethanolamine MEA. See Monoethanolamine
optimization model features, 512 plant operation, 506–509 plant-wide model, 513 process description, 506 production objectives, 509 project drivers, 509–512 quantifying measurement errors, 514–515 use for planners, 515 Keep-whole contracts, 134 Kennelly equation, 391 Kerogen, 2–3 Key performance indicator (KPI), 526–527 Kinetic hydrate inhibitor (KHI), 80–82 KSB. See Souders and Brown design coefficient L Landfill gas, 207 Layer of protection analysis (LOPA), 446–448, 447f LDHI. See Low Dosage Hydrate Inhibitor	M mA. See Milliamp MAC. See Maximum Available Capacity Maintenance, gas processing plant, 454 EAM system, 457 RCM, 457–458 types, 455–457 Man-Technology-Organization (MTO), 533 MAOP. See Maximum allowable operating pressure Mass transfer zone (MTZ), 244 Material balance equation, 19–20 model, 502 Maximum allowable operating pressure (MAOP), 405 Maximum Available Capacity (MAC), 511 MDEA. See Methyldiethanolamine MEA. See Monoethanolamine MEA. See Monoethanolamine Mechanical completion, 437–438
optimization model features, 512 plant operation, 506–509 plant-wide model, 513 process description, 506 production objectives, 509 project drivers, 509–512 quantifying measurement errors, 514–515 use for planners, 515 Keep-whole contracts, 134 Kennelly equation, 391 Kerogen, 2–3 Key performance indicator (KPI), 526–527 Kinetic hydrate inhibitor (KHI), 80–82 KSB. See Souders and Brown design coefficient L Landfill gas, 207 Layer of protection analysis (LOPA), 446–448, 447f LDHI. See Low Dosage Hydrate Inhibitor Leak detection, 65–66	M mA. See Milliamp MAC. See Maximum Available Capacity Maintenance, gas processing plant, 454 EAM system, 457 RCM, 457–458 types, 455–457 Man-Technology-Organization (MTO), 533 MAOP. See Maximum allowable operating pressure Mass transfer zone (MTZ), 244 Material balance equation, 19–20 model, 502 Maximum allowable operating pressure (MAOP), 405 Maximum Available Capacity (MAC), 511 MDEA. See Methyldiethanolamine MEA. See Monoethanolamine Mechanical completion, 437–438 Mechanistic models, 56
optimization model features, 512 plant operation, 506–509 plant-wide model, 513 process description, 506 production objectives, 509 project drivers, 509–512 quantifying measurement errors, 514–515 use for planners, 515 Keep-whole contracts, 134 Kennelly equation, 391 Kerogen, 2–3 Key performance indicator (KPI), 526–527 Kinetic hydrate inhibitor (KHI), 80–82 K _{SB} . See Souders and Brown design coefficient L Landfill gas, 207 Layer of protection analysis (LOPA), 446–448, 447f LDHI. See Low Dosage Hydrate Inhibitor Leak detection, 65–66 Lean acid gas operations, 307–308	M mA. See Milliamp MAC. See Maximum Available Capacity Maintenance, gas processing plant, 454 EAM system, 457 RCM, 457-458 types, 455-457 Man-Technology-Organization (MTO), 533 MAOP. See Maximum allowable operating pressure Mass transfer zone (MTZ), 244 Material balance equation, 19-20 model, 502 Maximum allowable operating pressure (MAOP), 405 Maximum Available Capacity (MAC), 511 MDEA. See Methyldiethanolamine MEA. See Monoethanolamine MEA. See Monoethanolamine Mechanical completion, 437-438 Mechanistic models, 56 Media velocity (V _{med}), 154-155. See also Annular
optimization model features, 512 plant operation, 506–509 plant-wide model, 513 process description, 506 production objectives, 509 project drivers, 509–512 quantifying measurement errors, 514–515 use for planners, 515 Keep-whole contracts, 134 Kennelly equation, 391 Kerogen, 2–3 Key performance indicator (KPI), 526–527 Kinetic hydrate inhibitor (KHI), 80–82 KSB. See Souders and Brown design coefficient L Landfill gas, 207 Layer of protection analysis (LOPA), 446–448, 447f LDHI. See Low Dosage Hydrate Inhibitor Leak detection, 65–66	M mA. See Milliamp MAC. See Maximum Available Capacity Maintenance, gas processing plant, 454 EAM system, 457 RCM, 457–458 types, 455–457 Man-Technology-Organization (MTO), 533 MAOP. See Maximum allowable operating pressure Mass transfer zone (MTZ), 244 Material balance equation, 19–20 model, 502 Maximum allowable operating pressure (MAOP), 405 Maximum Available Capacity (MAC), 511 MDEA. See Methyldiethanolamine MEA. See Monoethanolamine Mechanical completion, 437–438 Mechanistic models, 56

MEG. See Monoethylene glycol	lean acid gas operations, 307-308
Membrane separation, 287–289	acid gas enrichment, 308
Membrane systems, 214–217	acid gas/natural gas fuel burner, 308
membrane process, 216–217	feed preheating, 307
advantages, 215	hot gas bypassing, 307
disadvantages, 215-216	oxygen enrichment, 308-309
pretreatment system, 217	process description, 303-307
Membranes and Twister technology, 258	catalytic section, 305-306
MeOH. See Methanol	Claus burner performance, 306
Mercaptan, 7, 181	COS and CS ₂ destruction, 306-307
removal, 207	thermal section, 303-305
Mercury, 223	Molecular Gate TM adsorbent, 336
Mercury removal	Molecular Gate TM adsorption-based
natural gas hydration, 260-262	technology, 336
nonregenerative mercury sorbents, 260-261	Molecular sieves, 239–242
process selection considerations, 261–262	technology, 295-296
regenerative mercury adsorbents, 261	Molten sulfur handling system, 323
NGL, 130	Monoethanolamine (MEA), 183–184
Merox® process, 295	Monoethylene glycol (MEG), 126, 170, 227
Metal oxides (MO), 211	regeneration and reclaiming, 176–177, 176f
Metering stations, 402–403. See also	Moody correlation, 386
Compressor stations	Moody friction factor, 387f, 388
Metering system, 403	MPC. See Model-based Predictive Control;
Methanol (MeOH), 197, 207–208	Multivariable Predictive Controller
refrigeration, 258	MTO. See Man-Technology-Organization
Methyldiethanolamine (MDEA), 183, 185	MTZ. See Mass transfer zone
Microbiological treatment processes, 218–219,	Multiphase flow assurance, 68-114
314	corrosion, 86–90
Microprocessor-based automation, 414-416	flow assurance risk management, 111-114
Milliamp (mA), 461–462	gas hydrates, 68–86
Minimum housing diameter determination, 156	slugging, 102–111
Mixed refrigerants, 270–271	wax, 90–102
Mixture	Multiphase gas flow, 59-60
density, 40	Multiphase pipeline operations, 65–68
enthalpy, 41	leak detection, 65–66
pressure drop, 41	pigging, 66–68
velocity, 38	pipeline depressurization, 66
viscosity, 40–41	"Multiphase riser base lift" technique, 108
MO. See Metal oxides	Multiphase transportation technology, 37
Model-based asset management, 532	Multistage separation, 145
Model-based Predictive Control (MPC), 536	Multivariable predictive control (MVPC),
Modern NGL recovery processes, 281–287.	427–428, 471
See also Turboexpander NGL recovery	Multivariable Predictive Controller (MPC),
processes	472–473
dual column reflux process, 281–282	Murphree vapor tray efficiency, 497
Fluor twin column high absorption process, 285	MVPC. See Multivariable predictive control
Fluor twin-reflux absorption process, 285–287	Wivi C. See Wallivariable predictive control
GSP, 282–283	N
Ortloff single-column overhead recycle process,	N-methyl-2-pyrrolidone (NMP), 197, 208
283	Natural gas, 1, 383. See also Gas plant project
residue gas recycle, 283–285	management; Gas processing plant
Modified Claus process, 303–309	automation; Integrated gas plant
modified claus process, 505–507	automation, integrated gas plant

Natural gas (Continued)	CR, 362–364
chemical and physical properties, 6–15, 7t	example for operating compressor in pipeline
from coal, 3	system, 376–380
comparison of methods, 30-33	gas compression thermodynamics, 355–362
composition and classification, 3-4	reciprocating compressors, 350-351, 350f
dehydration, 223	stages, 364-366
glycol dehydration, 226-237	Natural gas fuel burner, 308
mercury removal, 260-262	Natural gas hydrates (NGHs), 28
process selection, 259-260	Natural gas liquid (NGL), 124, 223, 265, 442,
processes, 258	478, 505, 508
solid-bed dehydration, 237–258	CO ₂ removal, 129
water content determination, 224, 226f	dehydration, 130
exploration and production, 16-23	fractionation, 292-293, 422, 478
heaters, 403	column design and operation, 293
history, 1–2	gas plant for, 128–131
origin and sources, 2–3	hydrocarbon dew pointing
phase behavior, 4–6	deep, 273–274
processing, 33	with Joule-Thomson cooling, 271-272
contractual agreements, 133-135	with propane refrigeration, 272
industry, 520	hydrocarbon removal processes, 287-289
objectives, 123–124	liquid product processing, 293–298
pipeline gas specifications, 124t	dehydration, 298
plant configurations, 124–131	NGL contaminant treating, 293–298
route, 131	mercury removal, 130
support systems, 132–133	modern NGL recovery processes, 281–287
reserves, 16	recovery, 130–131, 265
thermodynamic properties, 15–16	refrigeration processes, 266–271
transportation, 24–33	selection, 289–290
treating, 181	technology development, 290
chemical absorption processes,	turboexpander NGL recovery processes,
183–195	274–279
cryogenic fractionation, 218	unit design considerations, 291
membrane systems, 214–217	unit operating problems, 291
microbiological treatment processes, 218–219	Near-infrared equipment (NIR equipment), 93 Neural network-based
mixed physical and chemical absorption	controllers, 534
processes, 208–210	models, 534
physical solvent processes, 196-208	NGHs. See Natural gas hydrates
processes, 182	NGL. See Natural gas liquid
selection, 219–220	NIR equipment. See Near-infrared equipment
solid bed absorption processes, 210-214	Nitrogen, 335
specifications, 181	cryogenic nitrogen rejection, 338-345
Natural gas compression	design considerations, 345–346
antisurge and recycle system, 371f	NRU integration, 336–338
centrifugal compressors, 351–353, 352f	operating problems, 346–347
comparison between compressors, 353–354	rejection, 128
compressor	cryogenic process, 335–336
control, 367–374	noncryogenic process, 336
design, 364	options, 335
performance maps, 375–376	safety, 347
power calculation, 366–367	Nitrogen rejection unit (NRU), 335, 434
selection, 354–355	with helium production, 338f

integration, 336-338	OSHA. See U.S. Department of Labor
for sales gas production, 337f	Occupational Safety & Health
NMP. See N-methyl-2-pyrrolidone	Administration
NOGAT. See Northern Offshore Gas Transport	OTS. See Operator training simulator
Noise, 400–401	Overall equipment effectiveness (OEE), 454
Noncryogenic nitrogen separation process, 336	Oxygen enrichment, 308-309
Noncryogenic process, 336. See also Cryogenic	
nitrogen rejection process	P
Nonregenerative mercury sorbents,	Panhandle
260–261	"A" equation, 389–390
Northern Offshore Gas Transport (NOGAT),	"B" equation, 389–390
481–482	PC. See Propylene carbonate
trunk line system, 482f	Peng–Robinson equations of state (PR equations
NRU. See Nitrogen rejection unit	of state), 489–491
	Performance management, 425–426
0	Performance testing, 442
Object Linking and Embedding for Process	Periodic maintenance, 456
Control (OPC), 416	PHA. See Process hazard analysis
OEE. See Overall equipment effectiveness	Phase separation, 137
Off-line	centrifugal separators, 145–146
simulators, 535	gas coalescers, 150–157, 152f
system, 515	gravity separators, 137–144
usage, 515	high-efficiency liquid–liquid coalescers, 157–162
Oil well gas. See Casinghead gas	multistage separation, 145
Online model, 483, 513	practical design, 162–165
Online-adaptive control, 488	analysis, 164–165
OPC. See Object Linking and Embedding for	case study, 163
Process Control	modified situation, 165, 165f
Operating expenditure (OPEX), 397	objective and methodology, 164
Operational decisions, 530	situation, 164, 164f
Operationally induced slugging, 111	slug catchers, 148–150
"Operations wall", 521	Twister [™] supersonic separator, 146–147
Operator decision support, 472	Phase velocity, 39
Operator training, 472	PHMSA. See U.S. Department of Transportation
Operator training simulator (OTS), 567	Pipeline and Hazardous Materials Safety
OPEX. See Operating expenditure	Administration
Optimization, 429–430	Physical absorption, 418
gas plant assets, 533	Physical adsorption, 237–238
alternatives, 534-536	Physical solvent processes, 196-208
tools for, 534	DEPG, 202-207
objective function, 492	methanol (rectisol process), 207-208
Organizational behavior model, 519-520	NMP, 208
behavior, 528	PC, 198–202
capability to perform, 524-526	PID. See Proportional, integral, and derivative
information quality, 520-522	Pigging, 66–68, 67f
levels of readiness, 524f	Pipe-type slug catcher, 148–149
organizational hierarchy of needs,	Pipelines, 25
526–528	depressurization, 66
perception of information, 522-523	operations, 409-410
Vollman Triangle, 527f	Piping, 325
Ortloff single-column overhead recycle process,	equipment, 475
283	and valves, 398

Planning interface, 513	Proactive "life extension" maintenance,
Plant	456–457
design, 468	Process commissioning, 440–442
APC, 471	Process engineer, 548
control system checkout, 469-470	Process hazard analysis (PHA), 444
controllability, 468	Process safety management (PSM), 437
operability, 468	Processing fee contracts, 135
operator training, 470	Production engineer, 548
safety analysis, 468-469	Programmable logic controller (PLC), 400,
safety integrity system checkout,	414, 439
469–470	Project
start-up procedure, 469	charter, 547
manager, 547–548	execution planning, 551-552
model integration, 502	management, 543
measurement errors, 502-504	manager, 543, 547
model fidelity, 502-504	risk management methodology, 558-559
operation, 471	team roles and responsibilities, 547–548
APC system, 472–473	timeline, 555–556
incident analysis, 472	Project coordinator. See Project—manager
operator decision support, 472	Propane refrigeration, 266–268
operator training, 472	Proportional, integral, and derivative (PID),
plant performance enhancement, 471	413–414
troubleshooting, 471	Proprietary solvents, 316–317
optimum operation, 489	Propylene carbonate (PC), 197–202
turnarounds, 464	FLUOR solvent unit, 198–200
utility system, 426	innovations in FLUOR solvent process, 201–202
Plant Production Performance Model (3PM),	Protective coatings, 89–90
505, 514	Proved reserves, 16–17
PLC. See Programmable logic controller	PSA. See Pressure swing adsorption
Plug (elongated bubble) flow, 42	PSM. See Process safety management
Polytropic compression, 356	PURASPEC _{IM} technology, 211
Polytropic model, 360–361	PURASPEC [™] materials, 260–261
Potassium carbonate solution, 195	Purchasing representative, 548
Power factor, 501	"Purisol" process, 208
Power loss, 501	PV diagram. <i>See</i> Pressure–volume diagram
PR equations of state. See Peng–Robinson	Pyrobitumen, 2–3
equations of state	Tyroonumen, 2–3
Pre-project planning measurement, 552	Q
Precommissioning, 437–438	Qualitative project risk management, 560–561
Predictive maintenance method, 456	Quality
Pressure	assurance, 564–565
control, 346	control, 565
ratio, 363	planning, 564
reduction and regulation system, 403	Quantitative project risk management
relief system, 398	assessment, 561
Pressure swing adsorption (PSA), 252, 336	"Quick cycle" units, 242–243
Pressure-volume diagram (PV diagram),	Quick cycle units, 242–243
350–351, 356f	В
Prevention, 525	R
Preventive maintenance, 456	Rationalization, 451
Prilled sulfur, 324	Raw gas transmission
Primary thermogenic gas, 2–3	multiphase flow

assurance, 68-114	Regenerator, 236
design parameters, 49-60	Regulatory risk, 563–564
regimes, 42–49	Reid Vapor Pressure (RVP), 169-170, 433
terminology, 37-41	Reliability Centered Maintenance (RCM),
multiphase pipeline	457–458
operations, 65–68	Remote control panel, 415
temperature profile prediction, 60-64	Remote Transmission Unit (RTU), 415
velocity criteria for sizing, 64	Reservoir engineer, 548
RCM. See Reliability Centered Maintenance	Residue gas recycle, 283–285
Re. See Reynolds numbers	Responsibility matrix, 552-554, 553t
Real gas behavior, 361-362	Retrograde condensation, 4–5
Real-time control model, 534	Return on Capital Employed (ROCE), 518
Real-time optimization (RTO), 487	Revenue stream stabilization, 564
APC system, 488-489, 488f	Reynolds numbers (Re), 156, 385, 388
EDI interface, 490f	RGG. See Reducing gas generator
functions, 489	Rhombic sulfur, 301
Kårstø gas processing plant, 505-515	Riser base gas injection, 108-109
level, 533	Riser-induced (severe) slugging, 103-111
model interface, 490f	mechanism, 105-106
optimization models, 491-502	prevention and control, 107-111
physical properties, 489-491	control methods, 109-111
plant model integration, 502-504	riser base gas injection, 108-109
process plant online economic optimization,	topside choking, 109
487–488	stability analysis, 107
project considerations, 504-505	Risk management, 556–557
RTS interface, 491f	developing risk response strategies, 559-560
Real-Time Scheduling system (RTS system), 489	interaction with other management processes, 562–563
Reboiler, 236–237	project risk management methodology,
duties, 345-346	558–559
hydraulics, 346	qualitative project risk management,
Reciprocating compressors, 350–351, 350f, 363,	560–561
368, 375, 378-380. See also Centrifugal	quantitative project risk management
compressors	assessment, 561
Reciprocating pumps, 423	risk matrices, 560f
Redox process, 312	risk mitigation concepts, 563-564
Reducing gas generator (RGG), 315	risk process modeling, 561-562
Reduction, 402-403	risk response planning, 559
hydrogenation section, 315–316	ROCE. See Return on Capital Employed
processes, 314–317	Rod loading, 417
selective H ₂ S removal section, 316-317	Rotating equipment models, 492
Reflux	RTO. See Real-time optimization
duties, 345–346	RTS system. See Real-Time Scheduling system
exchanger, 274	RTU. See Remote Transmission Unit
Refrigeration, 421	RVP. See Reid Vapor Pressure
models, 499	Ryan–Holmes process, 218
processes, 266–271	c
cascade refrigeration, 268-270	\$
mixed refrigerants, 270–271	S3. See Slug suppression system
propane refrigeration, 266–268	Safety
system, 423–424	analysis, 468–469
unit, 266–268	integrity system checkout, 469-470

Safety (Continued)	flow, 43–45
systems, 133	Slug suppression system (S3), 110
Safety instrumented system (SIS), 446	Slugging, 102–111
Sales gas, 506	hydrodynamic slugging, 102-103
carbon dioxide concentration, 508-509	operationally induced slugging, 111
heating value, 386	riser-induced (severe) slugging, 103-111
NRU for, 337f	terrain-induced slugging, 103
Sales gas transmission, 33	Slurry processes, 213
compressor stations, 394-402	Chemsweet® process, 213
design considerations, 403	Chemsweet® process, 213 Sulfa-Check® process, 213
compression power, 408	Small-and medium-scale processes, 311–314
compressor station spacing, 404-408	CrystaSulf [™] process, 313–314
line sizing criteria, 403–404	H ₂ S scavenger, 311–312
gas flow fundamentals, 383-390	microbiological treatment processes, 314
gas temperature profile prediction, 390-392	Redox process, 312
pipeline operations, 409-410	SNPA. See Societe Nationale des Petroles
reduction and metering stations, 402-403	d'Aquitaine
transient flow in gas transmission pipelines,	SO ₂ scrubbing processes, 317
392–393	Soave-Redlich-Kwong equations of state (SRK
Salt caverns, 34–35	equations of state), 489-491
SCADA system. See Supervisory control and	Societe Nationale des Petroles d'Aquitaine
data acquisition system	(SNPA), 185
SCORE. See Single-column overhead recycle	Solid bed absorption processes, 210–213
process	iron sponge process, 210-211
SCOT. See Shell Claus Off-gas Treating	PURASPEC _{JM} technology, 211
Scrubbers, 138, 396	slurry processes, 213
Secondary thermogenic gas, 2–3	zinc oxide process, 211
SEEHT. See Skin effect electrical heat tracing	Solid desiccants properties, 243, 243t
Selectox process, 310–311	Solid-bed adsorption process, 213–214, 287
Selling, general, and administrative (SG&A),	Solid-bed dehydration, 237–258
539	adsorbent selection, 238–243
Shell Claus Off-gas Treating (SCOT), 314–315	adsorption capacity, 238
Short cycle units, 242–243	adsorption technology, 243–247
Shutdown system, 398	adsorption principle, 243–244
Silica gels, 242	solid-bed design considerations, 244–247
Single-column nitrogen rejection process.	operation, 247–251
See also Double-column nitrogen	2 + 2 mode of operation, 250
rejection process; Two-column nitrogen	3 + 1 mode of operation, 247–250
rejection process	mode operations, 250–251
classical design, 338–339, 339f	operational problems, 253–258
modified design, 339–340	unit design considerations, 251–253
Single-column overhead recycle process	Solidification. See Wax precipitation
(SCORE), 283	Solution-diffusion type, 214
Single-phase flow approaches, 50	Sorbead TM gel, 242
SIS. See Safety instrumented system	Souders and Brown design coefficient (K_{SB}) ,
Skin effect electrical heat tracing (SEEHT), 323	143
Slating, 323	Sour
Slip, 39	gas, 181
law, 58	water stripping, 177–178, 177f
velocity, 39	Spare capacity, 505
Slug	Specific heat, 15
catchers, 148–150	Specific speed, 495

SRK equations of state. See Soave–Redlich–	leakage of reheat exchanger, 329
Kwong equations of state	proper air ratio, 327–328
SRU. See Sulfur recovery unit	reactor activity, 328
Stabilizer	reactor pressure drop, 329
column pressure, 173	steam heater, 330
system control, 174	water vapor and carbon dioxide, 330
Standards and protocols, 416	Super-compressibility factor, 8, 13–14
Start-up procedures, 440, 469	SuperClaus process, 318
Statistical analysis, 432	Superficial velocity, 38
Statistical process control, 426–427	Supervisory control and data acquisition system
Steady-state	(SCADA system), 65–66, 132–133, 395,
analysis, 479–480	415, 443
detection, 489	Support systems, 132–133
model, 467	process control, 132–133
process model, 534	safety systems, 133
three-phase flow, 56–57	utility and off-site, 132
two-phase flow, 50-56	Surfactants, 157–158
homogeneous flow approaches, 50-56	Sweet gas, 181
mechanistic models, 56	-
single-phase flow approaches, 50	Т
Steam boiler system, 426	Tactical decisions, 530–531
Steam water system model, 500	Tail gas cleanup, 314–319
Sterically hindered amines, 186	catalytic oxidation, 318
Stratified (smooth and wavy) flow, 43	reduction processes, 314-317
Stretford process, 211	SO ₂ scrubbing processes, 317
Strippers, 492	tail gas treating configurations, 318-319
Sub-dew-point processes, 318	integration with AGEU, 319
Sulfa-Check® process, 213	integration with AGRU, 319
Sulfrex [™] process, 295	Tail gas treating unit (TGTU), 305
Sulfur	Tank design considerations, 178-179
condensers, 327	Tank emission control, 180
degassing, 320–322	TCHAP. See Twin column high absorption
disposal by acid gas injection, 332-333	process
forming, 323–324	TEG. See Triethylene glycol
handling unit, 127	Temperature control, 346
pit, 327	Temperature swing adsorption (TSA), 252
properties, 301–302	Terrain-induced slugging, 103
recovery, 302–314, 418–419, 477	Tetraethylene glycol, 227
selection, 331–332	TFM. See Two-fluid model
storage and handling, 322-324	TGs. See Turbogenerators
Sulfur recovery unit (SRU), 127, 303	TGTU. See Tail gas treating unit
design considerations, 324–327	Thermal methods, 79–80
acid gas feed drums, 325–326	Thermodynamics
combustion air blowers, 326	expander, 494f
main burner and reaction furnace, 326	gas compression, 355
piping, 325	basic relations, 356–357
waste heat boiler, 326–327	isentropic model, 357–360
operation problems, 327–331	polytropic model, 360–361
carbon deposits, 329	real gas behavior, 361–362
catalyst support screens, 330	inhibitors, 80–83
combustion air control, 330–331	second law, 359–360
excessive COS and CS ₂ , 329	Thiol. See Mercaptan
5.13655176 CO5 and CO2, 32)	Inter-sec intercupum

THIOPAQ [™] process, 218, 219f, 314	Two-phase flow regimes, 42-48
Three-phase flow regimes, 48–49. See also Two-	flow pattern maps, 46-48
phase flow regimes	horizontal flow regimes, 42-44
"Tie-back" model, 470	inclined flow regimes, 45-46
Time and expense contract, 548–549	vertical flow regimes, 44-45
Time-based maintenance, 456	Two-stage absorption process, 189-190
Titanium oxide (TiO ₂), 306–307	
Topside choking, 109	U
TPC. See Tubing performance curve	U.S. Chemical Safety and Hazard Investigation
Transient flow	Board (CSB), 448
in gas transmission pipelines, 392-393	U.S. Department of Labor Occupational
multiphase flow, 57-59	Safety & Health Administration
DFM, 58-59	(OSHA), 437
TFM, 57–58	U.S. Department of Transportation Pipeline and
Transportation tariffs, 32f	Hazardous Materials Safety
TRAP. See Twin reflux absorption process	Administration (PHMSA), 443
Tray-to-tray distillation models, 496–498	Unconventional gas. See also Conventional gas
Triazine, 312	completion, 21
Triethylene glycol (TEG), 130, 227	drilling, 21
unit design considerations, 232-234	exploration, 20
Troubleshooting, 458	production, 21–22
documentation, 461	resources, 3
instrumentation, 461-463	Underground gas storage, 33–34
process troubleshooting, 463	aquifers, 34
steps, 459–461	depleted reservoirs, 34
Troubleshooting, 471	salt caverns, 34–35
True Vapor Pressure (TVP), 169–170	sait caverns, 54 55
Trunk line online dynamic model, 481–485	V
TSA. See Temperature swing adsorption	-
Tubing performance curve (TPC), 22–23	Validity checking, 503
Turbine model, 500–502, 500f	Valves, 474–475
Turboexpander NGL recovery processes,	Vapor enthalpy, 497
274–279	Vapor-solid equilibrium constants, 71–72
BAHXs, 278–279	carbon dioxide and hydrogen sulfide, 76f
lean oil absorption process, 279	isobutane, 74f
Turboexpander process. See Cryogenic recovery	methane and ethane, 72f
Turbogenerators (TGs), 478–479	for n-butane, 75f
Turbomachinery control, 475	propane, 73f
Turn-key project. See Fixed fee price	Vapor–liquid equilibrium definition, 497
Turndown, 371	Variable speed planetary gear (VSPG), 396–397
TVP. See True Vapor Pressure	Venting system, 398
Twin column high absorption process (TCHAP),	Vertical flow regimes, 44–45. See also
285	Horizontal flow regimes
Twin reflux absorption process (TRAP), 286	annular flow, 45
Twister [™]	
	bubble flow, 45
separation, 289	bubble flow, 45 churn (transition) flow, 45
supersonic separator, 146-147	bubble flow, 45 churn (transition) flow, 45 slug flow, 45
supersonic separator, 146–147 Two-column nitrogen rejection process,	bubble flow, 45 churn (transition) flow, 45 slug flow, 45 Vertical separators, 141–142
supersonic separator, 146–147 Two-column nitrogen rejection process, 343–344, 343f. <i>See also</i> Double-column	bubble flow, 45 churn (transition) flow, 45 slug flow, 45 Vertical separators, 141–142 Vertical three-phase separator, 140f
supersonic separator, 146–147 Two-column nitrogen rejection process, 343–344, 343f. <i>See also</i> Double-column nitrogen rejection process; Single-	bubble flow, 45 churn (transition) flow, 45 slug flow, 45 Vertical separators, 141–142 Vertical three-phase separator, 140f Vessel-type slug catchers, 148–149
supersonic separator, 146–147 Two-column nitrogen rejection process, 343–344, 343f. <i>See also</i> Double-column	bubble flow, 45 churn (transition) flow, 45 slug flow, 45 Vertical separators, 141–142 Vertical three-phase separator, 140f

Void fraction, 39
Volatile organic compound (VOC), 227-228
Vollman Triangle, 527, 527f
Volume Optimized Transport and Storage
$(VOTRANS^{TM}), 27$
W

W

Waste heat boiler (WHB), 303-304, 326-327 Water content determination, 224, 226f refluxing, 256 wash trays, 191 water-washing process, 138-139 Wax, 90-102 controlled production of wax deposits, 101-102 deposition, 90-95 gas-condensate wax deposition envelope, 92-95 inhibition/prevention, 98-100 problems identification, 97-98 remediation, 101 WDE, 91-92

formation in multiphase gas-condensate pipelines, 95–102 precipitation, 90–91 slush, 99
Wax deposition envelope (WDE), 91–92
Wax precipitation, 90–91
Web-based optimization, 535
Well deliverability, 22–23, 23f
Wet-prilled sulfur, 324
Weymouth equation, 388–390
WHB. See Waste heat boiler
Wobbe Index (WI), 6, 482–483, 506
Wobbe number, 6

Υ

Y-Grade, 265, 266t

Z

Z-factor, 8–11 Zeolites. *See* Molecular sieves Zinc oxide process, 211