2. Gruppteori 2. Isomorfier

21 juli

Definition. En *isomorfi* φ mellan grupperna G_1 och G_2 är en kartläggning (funktion) så att:

- 1. Varje element i G_2 antas som värde av φ för exakt ett element i G_1 .
- 2. För alla a, b i G_1 gäller $\varphi(a) \star \varphi(b) = \varphi(a \star b)$.
- 3. För identitetselementen e_1, e_2 i G_1 respektive G_2 gäller att $\varphi(e_1) = e_2$.
- 1. Gruppen G_1 av "klä om strumpan"-operationer (från förra lektionen), består av operationerna: "Gör inget", "byt fot", "vänd ut och in", "vänd och byt fot". Gruppen G_2 består istället av mängden $\{e,a,b,c\}$ och operatorn \star som uppfyller multiplikationstabellen

Hitta en isomorfi mellan G_1 och G_2 .

- **2**. Hitta på en grupp som är isomorf med både G_1 och G_2 från förra uppgiften. Ju skummare desto bättre!
- 3. Låt $\varphi(n) = 2n$. Är φ en isomorfi från heltalen under addition till de jämna heltalen under addition? Vilka andra sådana isomorfier finns det?
- **4**. Grupperna G_1 , G_2 kallas isomorfa om det finns en isomorfi mellan dem. Visa att om G_1 är isomorf med G_2 och G_2 är isomorf med G_3 så är G_1 isomorf med G_3 .

Definition. En grupp G kallas cyklisk om det finns ett element a i G så att G är exakt potenserna till a.

- **5. (Cykliska grupper).** Visa att heltalen modulo *n* under addition är cykliska.
- **6. (Cykliska grupper).** Visa att alla cykliska grupper av storlek n är isomorfa med varandra och inga andra.
- 7. (Cykliska grupper). Låt a vara ett element i G_1 och φ vara en isomorfi från G_1 till G_2 . Visa att $a^n = e_1$ är ekvivalent $\varphi(a)^n = e_2$.

Definition. För två grupper G_1, G_2 definieras den *direkta produkten* $G_1 \times G_2$ som gruppen där:

- 1. Elementen är mängden av alla par (a_1, a_2) där a_1, a_2 är element i G_1 respektive G_2 .
- 2. Operatorn appliceras elementvist enligt $(a_1, a_2) \star (b_1, b_2) = (a_1 \star b_1, a_2 \star b_2)$.
- 8. (Direkta produkten). Låt \mathbb{Z}_n vara heltalen modulo n. Är (a) $\mathbb{Z}_2 \times \mathbb{Z}_2 \sim \mathbb{Z}_4$ (b) $\mathbb{Z}_2 \times \mathbb{Z}_3 \sim \mathbb{Z}_6$?
- **9.** (Direkta produkten). Vilka krav ställs på n och m om $\mathbb{Z}_{n \cdot m} \sim \mathbb{Z}_n \times \mathbb{Z}_m$?
- 10. (**Direkta produkten**). Låt φ vara en isomorfi från $\mathbb{Z}_{2\cdot 3\cdot 5\cdot 7}$ till $\mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_5 \times \mathbb{Z}_7$. (a) Beräkna $\varphi(11^{-1})$ där 11^{-1} är den multiplikativa inversen till 11 i $\mathbb{Z}_{2\cdot 3\cdot 5\cdot 7}$. (b) Beskriv hur man skulle kunna beräkna 11^{-1} .
- 11. Är de rationella talen under addition isomorfa med de nollskilda rationella talen under multiplikation?
- 12. Är heltalen under addition isomorfa med de rationella talen under addition?
- 13. Är de rationella talen under addition isomorfa med de reella talen under addition?
- 14. Är de komplexa talen under addition isomorfa med \mathbb{R}^2 (punkter i reella talplanet) under addition?
- 15. Hur kan man definiera produkten på \mathbb{R}^2 för att de ska vara isomorfa med de komplexa talen under multiplikation?