Discovering of Protein Folding Pathways and Folding Intermediates by the Analysis of Protein Folding Simulations

Luis Garreta

Doctoral Student in Engineering emph. in Computer Science

School of System Engineering and Computation Bioinformatics Research Group Universidad del Valle Cali-Colombia

Agenda

- 1 Introduction
 Background
- 2 The Problem
- 3 Data and Methods
 - Data Methodology Methods
- 4 Results
- 6 Conclusions

Importance of Proteins

- Most important biomolecules
- Key roles in all living systems.
- They are part of
 - vision,
 - immune system,
 - muscles,
 - tissues,
 - ...
- They are in all of our body.
- They are fundamental for life.

Rhodopsin Protein

Background

Wh

A necklace of beads

- Each bead is an amino acid
- Amino acids have an structure

Amino Acid Strcuture

- Composed by atoms
 - Carbon.
 - Oxygen,
 - Hydrogen, and
 - Nitrogen

Chains of Amino Acids Form 3D Structures

Proteins form Tridimensional Shapes Tridimensional Shapes

Examples of Proteins

- Proteins take many 3D structures (shapes)
- The shape is associated with the function
- Hemoglobin transports oxygen

Protein Folding Process

- Complex process in biology
- Hard to understand by scientist
- Challenge for biologists, biophysics, and computer scientists
- Very Important:
 - Medicine
 - Drugs discovery
 - Treatment of diseases
 - Among others...

Protein Folding as Mountain Climbing

• Bottom: unfolded state

 Points : intermediate states

 Top: folded or native state

Protein Folding Pathways

The Problem

Protein folding pathways and folding intermediates have not been observed experimentally.

Our Hypothesis

If we can measure features related with folding process of a protein, we can determine the status of a protein during its folding, and so we can observe if the protein follows a pathway and if this pathway has intermediates.

Data

Data

Protein Folding Simulations

Two types of Simulation Techniques:

- Molecular Dynamics
- Probabilistic Roadmap Method

oduction The Problem Data and Methods Results Conclusions

Methodology

Methodology

Discovering hidden features from observable physical properties

troduction The Problem Data and Methods Results Conclusion

Methods

Methods

Multivariate Analysis

troduction The Problem Data and Methods **Results** Conclusions

A Preliminary Analysis with The Villin-headpiece Protein

- Molecular Dynamics
- 32 Amino Acids
- 9 physical properties
- Factor Analysis: Failed!!
- Principal Component Analysis: Succeeded

troduction The Problem Data and Methods **Results** Conclusions

A Full Analysis with 27 Proteins

- Probabilistic Roadmap Method
- Different topologies and sizes
- 16 physical properties
- Principal Component Analysis among other methods for data reduction

A Visual Analysis

Four Analysis using Multidimensional Scaling (MDS)

ntroduction The Problem Data and Methods **Results** Conclusions

Principal Component Analysis

	Components									
Property	ID	C1	C2	C3	C4	C5	C6	C7	C8	C9C16
Native Contacts	NC	.72								
Contact Order	CO		93							
Radius of Gyration	RG		.64							
Hydrogen Bonds	HB	.72								
Access. Surface Area	AS		.82							
Root Mean Square Dev.	RM			61						
Local Root Mean Sq. Dev.	LR			84						
Residues in Correct SSEs	RC	.73								
Residues in Any SSEs	RA	.89								
Structural Score	SS			.81						
Degree of Freedom	DF	73								
Potential Energy	*PE				1.0					
Dipole Moment	*DM						.94			
Voids	*VD							.78		
Rigid Cluster	*CL					.83				
Stressed Regions	*SR								.99	l .
Proportion of Variance		.63	.09	.06	.06	.05	.03	.02	.03	
Cumulative Variance		.63	.72	.78	.84	.89	.92	.94	.97	

(a) Matrix of Loadings

(b) Folding Features

The Folding Status of A Protein Conformation

$$F_{1} = p_{1} * C_{1,1} + ... + p_{k} * C_{1,k} + ... + p_{11} * C_{1,11}$$

$$F_{2} = -(p_{1} * C_{2,1} + ... + p_{k} * C_{2,k} + ... + p_{11} * C_{2,11})$$

$$F_{3} = p_{1} * C_{3,1} + ... + p_{k} * C_{3,k} + ... + p_{11} * C_{3,11}$$

$$(1)$$

The Folding Status

The vector of three features: $[F_1, F_2, F_3]$, we called as the Folding Status of a Protein conformation

3D Space of Features For Protein

ntroduction The Problem Data and Methods **Results** Conclusion

Organization of Protein Conformations

(b) Cluster dendrogram

Distribution of the Features on the Groups

ntroduction The Problem Data and Methods **Results** Conclusion

Dynamic Behavior of Groups

Dynamic assignation of groups as a Markov chain

- An initial state: Group 1
- Two intermediates: Groups 2 and 3
- And a final state: Group 4

ntroduction The Problem Data and Methods **Results** Conclusions

Groups on Pathways

A sample of three pathways

- Step 0: unfolded structure
- Last step: native (folded) structure

Protein Folding Levels

- Four folding levels
 - Unfolded
 - Early intermediate
 - Late intermediate
 - Folded
- A global pathway:
 - Sequence of folding states
- Folding Intermediates:
 - Early and late

Folding Level and the ICF Score

A Protein Folding Classificator

$$lev(c) = \underset{g_k}{\operatorname{argmin}} \delta(c, g_k) | k = 1, ..., 4$$

ntroduction The Problem Data and Methods **Results** Conclusions

Predicted Folding Levels for Conformations

Conclusions

- We can measure hidden folding features
- Theoretical evidence of Protein Folding Pathways
- Theoretical evidence of Folding Intermediates
- We provided a set of theoretical tools to analyze protein folding
- Further work:
 - Verify our results with Molecular Dynamics simulations
 - Verify experimentally our results

