CC1-S2

2020-2021

- Correction - Analyse -

EXERCICE 1

On cherche les fonctions $g: \mathbb{R}^2 \to \mathbb{R}$, de classe C^1 , vérifiant :

$$\frac{\partial g}{\partial x} + \frac{\partial g}{\partial y} = a , \quad a \in \mathbb{R}$$

1. On note $f: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par $f(u,v) = g\left(\frac{u+v}{2}, \frac{u-v}{2}\right)$. Montrer que

$$\frac{\partial f}{\partial u} = \frac{a}{2}$$

Par le théorème de composition, g étant de classe C^1 sur \mathbb{R}^2 ainsi que $(u,v)\mapsto \left(\frac{u+v}{2},\frac{u-v}{2}\right)$, on a :

$$\forall (u,v) \in \mathbb{R}^2, \ \frac{\partial f}{\partial u}(u,v) = \frac{\partial g}{\partial x} \left(\frac{u+v}{2}, \frac{u-v}{2} \right) \frac{1}{2} + \frac{\partial g}{\partial y} \left(\frac{u+v}{2}, \frac{u-v}{2} \right) \frac{1}{2} = \frac{a}{2}$$

puisque g est solution sur \mathbb{R}^2 de $\frac{\partial g}{\partial x} + \frac{\partial g}{\partial y} = a$.

$$\frac{\partial f}{\partial u} = \frac{a}{2} \iff \forall (u, v) \in \mathbb{R}^2, \ f(u, v) = \frac{a}{2}u + \lambda(v) \text{ où } \lambda \in C^1(\mathbb{R}, \mathbb{R}).$$

2. En déduire les solutions de l'équation initiale. $\frac{\partial f}{\partial u} = \frac{a}{2} \iff \forall (u,v) \in \mathbb{R}^2, \ f(u,v) = \frac{a}{2}u + \lambda(v) \text{ où } \lambda \in C^1\left(\mathbb{R},\mathbb{R}\right).$ On peut donc conclure que g est solution de $\frac{\partial g}{\partial x} + \frac{\partial g}{\partial y} = a$ si, et seulement si, $\forall (u,v) \in \mathbb{R}^2$,

$$g\left(\frac{u+v}{2}, \frac{u-v}{2}\right) = \frac{a}{2}u + \lambda(v)$$
 où $\lambda \in C^1(\mathbb{R}, \mathbb{R})$.

Comme $\begin{cases} x = \frac{u+v}{2} \\ y = \frac{u-v}{2} \end{cases} \iff \begin{cases} u = x+y \\ v = x-y \end{cases}$, on peut conclure que l'ensemble des solutions de l'équation

$$\frac{\partial g}{\partial x} + \frac{\partial g}{\partial y} = a \text{ est}$$

$$\left\{(x,y) \mapsto \frac{a}{2}(x+y) + \lambda(x-y), \ \lambda \in C^1\left(\mathbb{R},\mathbb{R}\right)\right\}$$

EXERCICE 2

1. a.

On pose
$$J_n = \int_0^{+\infty} t^n e^{-t^2} dt$$
 et $I_n = \int_{-\infty}^{+\infty} t^n e^{-t^2} dt$.

i. Justifier que pour tout $n \in \mathbb{N}$, $t^n e^{-t^2} = \circ \left(\frac{1}{t^2}\right)$. Résulte du théorème des croissances comparées

ii. Montrer alors que pour tout $n \in \mathbb{N}$, l'intégrale J_n est convergente.

 $t \mapsto t^n e^{-t^2}$ est continue sur \mathbb{R}^+ , donc localement intégrable et $t^n e^{-t^2} = \left(\frac{1}{t^2}\right)$, donc, comme $\int_{t}^{+\infty} \frac{1}{t^2} dt$ converge (Riemann), on conclut par comparaison que J_n converge absolument, donc converge.

Spé PT Page 1 sur 3 iii. En déduire que pour tout $n \in \mathbb{N}$, l'intégrale I_n est convergente.

Le changement de variable u = -t (C^1 , bijectif et strictement décroissant sur \mathbb{R}) transforme J_n en une intégrale de même nature, c'est à dire convergente;

de plus on a l'égalité
$$J_n = \int_0^{-\infty} (-u)^n e^{-u^2} (-du) = (-1)^n \int_{-\infty}^0 u^n e^{-u^2} du$$
.

En conséquence, $\int_{-\infty}^{0} u^n e^{-u^2} du$ converge, puis par somme, I_n converge.

On peut par ailleurs écrire que $I_n = ((-1)^n + 1) J_n$.

iv. En déduire que pour tout polynôme $P \in \mathbb{R}[X]$, l'intégrale $\int_{-\infty}^{+\infty} P(t) e^{-t^2} dt$ est convergente.

 $\forall P \in \mathbb{R}[X], \ \exists p \in \mathbb{N}, (a_k)_{k \in \llbracket 0, p \rrbracket} \in \mathbb{R}^{p+1}, \ P = \sum_{k=0}^p a_k X^k \text{ et, de ce qui précède, } \forall k \in \llbracket 0, p \rrbracket, \ I_k \text{ est}$

convergente. On en déduit que par combinaison linéaire, $\sum_{k=0}^{p} a_k I_k$ converge, ou encore $\int_{-\infty}^{+\infty} P(t) e^{-t^2} dt$ est convergente.

b. Calcul

Pour la suite, on admet que $\int_{-\infty}^{+\infty} e^{-t^2} dt = \sqrt{\pi}$.

i. Établir à l'aide d'une intégration par parties que pour tout $n \in \mathbb{N}$, $I_{n+2} = \frac{n+1}{2}I_n$.

Soit $n \in \mathbb{N}$, $u: t \mapsto t^{n+1}$ et $v: t \mapsto -\frac{1}{2}e^{-t^2}$.

u,v sont C^1 sur $\mathbb R$ et $\lim_{t\to\pm\infty}u(t)v(t)=0$ par croissances comparées donc, d'après le théorème d'intégra-

tions par parties : $\int_{-\infty}^{+\infty} t^{n+2} e^{-t^2} dt = \int_{-\infty}^{+\infty} t^{n+1} t e^{-t^2} dt = \frac{n+1}{2} \int_{-\infty}^{+\infty} t^n e^{-t^2} dt$, soit encore

$$I_{n+2} = \frac{n+1}{2}I_n$$

ii. Montrer que pour tout $p \in \mathbb{N}$, $I_{2p+1} = 0$.

Résulte de l'imparité de la fonction $t \mapsto t^{2p+1} e^{-t^2}$ ou de a)iii).

iii. Montrer que pour tout $p \in \mathbb{N}$, $I_{2p} = \frac{(2p)!}{2^{2p}p!}\sqrt{\pi}$.

Une récurrence immédiate donne le résultat attendu à partir du i), en notant que $I_0 = \sqrt{\pi}$.

2. Recherche des extrema

Soit F la fonction définie sur \mathbb{R}^2 par

$$F(x,y) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} (t-x)^2 (t-y)^2 e^{-t^2} dt$$

a. Montrer que F est définie sur \mathbb{R}^2 et que $\forall (x,y) \in \mathbb{R}^2$, $F(x,y) = \frac{3}{4} + \frac{1}{2}(x^2 + 4xy + y^2) + x^2y^2$.

Soit $(x,y) \in \mathbb{R}^2$. En posant $P = \frac{1}{\sqrt{\pi}}(X-x)^2(X-y)^2$ alors d'après 1)a)iv, F est bien définie sur \mathbb{R}^2 .

De plus, $P = \frac{1}{\sqrt{\pi}} \left(X^4 - (2x + 2y)X^3 + (x^2 + 4xy + y^2)X^2 - (2x^2y + 2xy^2)X + x^2y^2 \right)$ donc, toujours d'après

 $1)a)iv), F(x,y) = \frac{1}{\sqrt{\pi}} \left(I_4 - (2x+2y)I_3 + (x^2+4xy+y^2)I_2 - (2x^2y+2xy^2)I_1 + x^2y^2I_0 \right).$

Enfin, en tenant compte de 1)b), on trouve bien

$$F(x,y) = \frac{3}{4} + \frac{1}{2}(x^2 + 4xy + y^2) + x^2y^2$$

b. Montrer que F possède trois points critiques sur \mathbb{R}^2 qui sont (0,0), $\left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$ et $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$. Puisque F est polynomiale en les composantes de (x,y), on en déduit que F est de classe C^2 sur \mathbb{R}^2 .

 $\operatorname{Sp\'{e}}\operatorname{PT}$ Page 2 sur 3

Ainsi le gradient et la matrice hessienne de f existent en tous points de \mathbb{R}^2 .

$$\forall (x,y) \in \mathbb{R}^2, \ \overrightarrow{Grad}(F)(x,y) = (x + 2y + 2xy^2, y + 2x + 2yx^2) \text{ et}$$

$$\forall (x,y) \in \mathbb{R}^2, \ \overline{\operatorname{Grad}}(F)(x,y) = (x+2y+2xy^2,y+2x+2yx^2) \text{ et}$$

$$\overline{\operatorname{Grad}}(F)(x,y) = \overrightarrow{0} \iff \begin{cases} x+2y+2xy^2=0 \\ y+2x+2yx^2=0 \end{cases} \iff \begin{cases} x+2y+2xy^2=0 \\ (y-x)(1+2xy)=0 \end{cases}.$$

$$\operatorname{Donc} \ \overline{\operatorname{Grad}}(F)(x,y) = \overrightarrow{0} \iff \begin{cases} x=y \\ 3x+2x^3=0 \end{cases} \text{ ou } \begin{cases} 2xy=-1 \\ x+y=0 \end{cases}.$$

Donc
$$\overrightarrow{\text{Grad}}(F)(x,y) = \overrightarrow{0} \iff \begin{cases} x = y \\ 3x + 2x^3 = 0 \end{cases}$$
 ou $\begin{cases} 2xy = -1 \\ x + y = 0 \end{cases}$

En conclusion, F admet 3 points critiques sur \mathbb{R}^2 qui sont bien (0,0), $\left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$ et $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$.

Déterminer, lorsqu'ils existent, les extremum locaux de F sur \mathbb{R}^2 . La matrice hessienne de F en (x,y) est $H_F(x,y) = \begin{pmatrix} 1+2y^2 & 2+4xy \\ 2+4xy & 1+2x^2 \end{pmatrix}$. Dès lors :

$$\rightarrow$$
 det $(H_F(0,0)) = -3 < 0$, donc F admet un point col en $(0,0)$.

$$ightharpoonup \det\left(H_F\left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)\right) = 4 > 0 \text{ et } \operatorname{Tr}\left(H_F\left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)\right) = 4 > 0, \text{ donc } F \text{ admet un minimum local en } \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right).$$

$$Arr F\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) = F\left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$$
 donc le point $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ est de même nature que le précédent.

Une remarque pour terminer :
$$F\left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right) = \frac{1}{2}$$
 et

$$\forall (x,y) \in \mathbb{R}^2$$
, $F(x,y) - \frac{1}{2} = \left(\frac{1}{2} + xy\right)^2 + \frac{1}{2}(x+y)^2 \ge 0$, ce qui fait que ce minimum est global.

Spé PT Page 3 sur 3