METROLOGY AND COINAGE IN ANCIENT INDIA AND CONTEMPORARY WORLD

N.G. DONGRE Sah Industrial Research Institute, Sarnath, Varanasi

(Received 8 December 1993)

For the study of Metrology in ancient India, one has to base his studies on the ancient literature available, as well as on the archaeological findings. To build up a consistent description, we include the period from the Harappan or Revedic era to the Kuṣāṇa era, i.e., 2500 B.C. to 100 A.D.

In this paper it is shown that 'Aryan' unit of length 'Danda', identified as metre, has the same relation with earth's dimensions as we have in this modern age (1793 AD). Further the derivation of Indus inch, Greek inch and Attic inch from the unit 'Angula' definitely prove that these belong to the same single universal system where 'Angula' is 96th part of one danda or metre.

The study of weights and coinage may be divided into two broad divisions. Firstly, the theoretical discussions about the different weight standards and denominations used by different global civilizations at different periods based on the documental and literary references, then their adoption for minting the coins and their possible co-relations. The scientific investigations lead to prove that the Aryan unit of mass, the 'māṣa' is the mass of one cubic aṅgula of water. Thus, this unit mass is a scientifically based unit like gramme. Further we find that not only it provides a nice co-relation between different weight systems that were in use in India but also indicates its probable adoption by the various weight systems like Indus, Babylonian, Assyrian, Greek, Persian, Roman and British.

Introduction

For the study of metrology in ancient India, one has to base his studies on the ancient literature available as well as on the archaeological findings. To build up a consistent description, we include the period from the Harappan or Rgvedic era to the Kusāna era, i.e. 2500 BC to 100 AD.

In ancient India it seems that the unit of length was based on the length unit 'angula' right from the Vedic period down to that of Kuṣāṇa. The important multiples were parva of 3 angula, dhanurgraha (Muṣṭi) of 4 angula, vitasti of 12 angula, hasta of 24 angula, daṇḍa of 96 angula and yojana of 8000 daṇḍa, where the relations of 'angula' and yojana have been associated with the circumference and radius of the earth in the similar fashion as in the late eighteenth century A.D. and has wide acceptance in the modern scientific world.

The Indus inch¹ discovered at the sites of Harappa and Mohan-jo-Daro is nothing

362 N.G. DONGRE

but the edge of the cube of the equivalent volume of a sphere of one musti of 4 angula diameter. Further, it can be shown that the Greek inch² and Attic inch² are radii of the spheres of equivalent volumes of the cubes of one parva of 3 angula and one musti of 4 angula respectively.

What has been said above may be expressed as follows:

3 angula	= 1 parva
4 angula	= 1 mușți
12 aṅgula	= 1 vitasti
24 angula	= 1 hasta
96	= 1 daņḍa
2000 daņļa	= 1 krośa
4 krośa	= 1 yojana

ANCIENT UNIT 'DANDA' AND ITS RELATION TO EARTHS PERIMETER

It will be interesting here if we discuss the first stanza of Puruṣa Sūkta of Rgveda where 'aṅgula' term appears. Puruṣa Sūkta is supposed to describe the evolution which took place on the earth. This evolution is possible only when one considers the surrounding atmosphere as one system and it seems that this sphere has been literally symbolized by the word 'Puruṣa'. The first Stanza of Puruṣa Sūkta³ may be arranged in the prose form as follows:

Sahasra sīrṣā sahasrākṣaḥ sahasrapāt saḥ Purusah viśvataḥ bhūmīm vrtvā dasāṅgulam atyatisṭhat.

The perimeter of 1000 x 2000 x 2000 (angula) symbolized as puruşa which externally encircling the earth remains afar by ten angula.

Then the circumference of the earth must be 24/25 of the perimeter of purusa.

Thus the circumference of the earth

$$= \frac{24}{25} \text{ of } 1000 \times 2000 \times 2000 \text{ angula}$$

$$= \frac{24}{25} \times 4 \times 10^9 \text{ angula} = 4 \times 10^7 \text{ danda}$$

According to Sūrya Siddhānta⁴ the radius of the earth is 800 yojana. The radius in daṇḍa unit will be 64,00,000 daṇḍa. Therefore, the circumference of the earth = $2 \pi 64 \times 10^5$ danda

$$= 4 \times 10^7 danda$$

Thus we find that whether in Rgveda or Jyotişa (Indian Astronomy), the value of the perimeters of the earth are numerically the same.

METRIC UNIT OF LENGTH, THE 'METRE'

On 1st August 1793, in France 'The Metre' was originally defined as one tenth million of the quadrant from the equator to the north pole through Drunkirk and was widely accepted by the scientific world.

In the modern scientific age the equatorial circumference of the earth is measured and comes out to be 24900 miles⁵ which when converted into metre stands 4 x 10⁷ metre.

Thus, this numeral equivalence of ancient Indian and modern sicentific values of the equatorial circumfernce clearly yields

1 Daṇḍa = 1 Metre
1 aṅgula =
$$\frac{100}{96}$$
 cms = 1.0416 cms.

Thus the other denominations are as follows:

THE 'INDUS INCH' MAY BE CONSIDERED NOW

The volume of a sphere of one 'Muşti' diameter

$$= \frac{4}{3} \pi \cdot \left[\frac{4.16}{2}\right]^3 = 37.695cc = (3.3529cms)3 = (1.32")3$$

Thus if a cube of 1.32 inch is formed, then the volume of this cube will be equal to that of a sphere of one musti diameter. Archaeologically the measure of Indus inch is 1.32".

This suggests that there was a peaceful relation too with Rgvedic and Harappan people. A similar conclusion may also be arrived at after the discussions of the various weight systems.

364 N.G. DONGRE

GREEK INCH2

Let us consider a sphere of r' of volume equal to that of a cube of edge of length of one parva (or 3 angula). Then

$$= \frac{4}{3} \pi r'^3 = (3.125 \text{ cms})^3 \text{ or } r' = 1.938 \text{ cms.} = 0.76''$$

Thus the 'Greek Inch' unit is the radius of the sphere of equivalent volume of a cube of 1 'parva' (or 3 angula) edge.

ATTIC INCH 2

Similarly, let us cinsider a sphere of r" or volume equal to that of a cube of edge of length of one muşti (or 4 angula), then

=
$$\frac{4}{3}$$
 π r^{"3} = (4.16 cms)³ or r" = 2.58 cms. = 0.016"

These findings clearly show that 'Aryan' unit of length 'Danda' identified as metre has the same relation with earth's dimensions as we have in this modern age. Further, the derivations of Indus inch, Greek inch and Attic inch from the unit 'angula' definitely prove that these belong to the same single universal system.

UNIT AND DERIVED UNITS OF WEIGHT STANDARDS

The study of weights and coinage may be divided into two broad divisions. Firstly, the theoretical discussions about the different weight standards and denominations used by different global civilizations at different periods based on the documental and literary references, then their adoption for minting the coins and their possible correlations.

In India, there were various units of weight standards in use and these are clearly mentioned in various ancient literatures such as Rgveda, Pāṇini Aṣṭādhyāyī, Mahābhārata, Smrtis', Caraka Samhitā etc. They may be chronologically arranged as shown in the Table-II. Further, if we do some exercise to scientifically investigate the different weight systems and their denominations, which seem to be independent in different periods, it appears that arbitrary choices were in use in India. Moreover, one may also find the relation between Indus, Babylonian, Indo-Greek, Persian, Roman and British weight systems, and probably one may find how they were scientifically based on the vedic weight standards, namely.

10 kṛṣṇala = 4 aṇḍaka = 1 māṣa

16 māṣa = 1 suvarṇa (the gold pala or vedic pala).

SCIENTIFIC INVESTIGATIONS

Kautilya states: "Sarva dhātūnām gaurava vṛddhau sattvavṛddhih" which means the increase in density (gaurava vṛddhih) is increase in matter/price (sattva) for all metals (dhātu) of equal volumes. In ancient periods metals were used for exchange in the form of coins (punch marked).

In order to retain the size and shape of the coins or blocks of different metals it is very likely that for the different weight standards referred to different metals were in use. To keep their size comparable one may define different units of weights for different metals so that they may be inversely proportional to their respective densities. Considering the gold standard 'Suvarṇa' or gold pala or Vedic Pala as the basis of other weight units, 'pala' referred to the respective metals can be derived. For instance as the densities of gold, silver, copper, and iron are 19.3, 10.5, 8.96, and 7.86 respectively, we may have

Silver pala =
$$\frac{19.3}{10.5}$$
 x Suvarna = 1.8 x Suvarna.
Copper pala = $\frac{19.3}{8.96}$ x Suvarna = 2.1 x Suvarna.
Iron pala = $\frac{19.3}{7.86}$ x Suvarna = 2.5 x Suvarna.

It appears that Indians have approximated the density ratios to nearest whole numbers, and if we allow this,

Silver pala = Copper pala = 2 Suvarņa = 2 x 16 māṣa = 32 māṣa and Iron pala = 3 Suvarņa = 3 x 16 māṣa = 48 māṣa.

These units are same as those Kautilya describes as Āyamānī weight system.

A similar weight system as described by Caraka⁶ as pala (muṣṭi) equivalent to 48 māṣa is nothing but Iron pala of Āyamānī view.

Further Kauţilya describes various balances (tulā) in three sets and gives the sizes of iron rods and their weights in lauha (iron) pala. Assuming as a common man's approach the diameters as 1,2 and 2.5 angula respectively one may calculate the density of iron in māṣa per cubic anguli unit and tabulate as follows:

Mean density of iron for eighteen balances = 7.7 masa per cubic anguli.

			Table-I	į			
Calculated	densities	of	different	balance	rods	of	Kautilya

	Set Balance	Lenght in anguli	Weight in pala Iron	Dia- meter	Density: māṣa per cubic aṅguli
1.	First ten balances having pans on both ends	8	1	1	7.64
2.	(Samvaṛtta)				
	Ãyamānī	72	32	2	7.42
	Vyāvahārikī	60	33		7.64
1	Bhājanī	60	31		7.89
	Antahpura- bhājanī	54	29		8.20
3.	(Parimāņī)	<u> </u>			
	Äyamānī	96	70	2.5	7.13
	Vyāvahārikī	90	68		7.30
-	Bhājanī	84	66		7.68
	Antahpura- bhājanī	78	64		8.02

Thus we find that the numerical value of the density of iron in masa per cubic anguli is more or less same as in gm per cc. Therfore, the masa should be the mass of one cubic anguli of water.

1 masa = 1 cubic anguli of water =
$$(1.04167)^3$$
 gms = 1.13 gms, or, 17.5 grains (gt)

where I anguli = 1.04167 cms as we have already derived.

INDUS SYSTEM 1

The first series of the weights discovered at Indus valley (7) and denoted as A,B,C,D,E,F,G,H,I,J,K,L,M and N can now be easily shown to be in accordance with what has been described in Caraka Saṃhitā and pala or muṣṭi as Āyamānī Lauha pala or 48 māṣa which has been indentified as weight 'H' in the Table-II.

INDUS SYSTEM 2

The second weight series discovered has denominations like Caraka Samhitā with only difference that in this case pala or musti may be taken as Bhājanī lauha pala, where the density ration of gold to iron be taken as 2.5 (the ratio obtained by bhājana

Table II

The Various Ancient Global Weight Systems

Based on Documental and Literary References Based on Archaeological References	Designation Weight Symbol / Name Weight Remarks	1 Ма́қа 1.1300 gm Yet there is no 1 Śana 4.5200 gm Archaeological 1 Suvarna or 18.0800 gm evidence 1 Hiranya Pala 72.3200 gm 72.3200 gm	1 A.L. Sāṇa 3.3900 gm (Āyamānī Louha Śāṇa) 0.8475 gm A 0.87 gm Pādasāṇa 0.8475 gm A 0.87 gm Pādasāṇa 1.6950 gm B 1.76 gm 2 Māṣaka 2.2600 C 2.28 gm 2 Māṣaka 3.3900 D 3.41 gm In accordance 1 A.L. Śāṇa 6.7800 gm E 6.82 gm with or Kola or Badar 13.5600 gm F 13.81 gm Caraka Saṃhitā 1 Al. Karṣa 27.1200 gm F 13.81 gm A or Muṣṭi 27.1200 gm F 13.81 gm A or Muṣṭi 135.6000 gm F 13.59 gm B 1 Muṣṭi 135.6000 gm K 174.50 gm A 5 Muṣṭi 542.4000 gm M 546.70 gm 25 Muṣṭi 1355.00 gm N 1375.00 gm	1 Māṣa 1 B.L. Sāṇa 2.96225 gm (Rhāianī I anha Ṣāna)
nental and Literary References		1	Sāṇa) 1 2 2 1 13 135	l Māṣa 1 B.L. Śāṇa (Bhāianī Lauha Śāna)
Based on Docun	Weights & their Denominations	10 Kṛṣṇala 4 Māṣa 4 Śāṇa 4 Sūṇa 4 Suvaṃa	12 Aṇḍaka 3 Aṇḍaka 6 Aṇḍaka 8 Aṇḍaka 3 Māṣaka 2 A.L. Śāṇa 4 A.L. Śāṇa 4 A.L. Śāṇa 6 A.L. Śāṇa 70 A.L. Śāṇa 70 A.L. Śāṇa 80 A.L. Śāṇa 160 A.L. Śāṇa 160 A.L. Śāṇa	4 Andaka 2.5 Māşa
	System	(i) Vaidika System	(ii) Indus System I	
	Period	1200 to 800 B.C.	I.,	

		Based on Do	Based on Documental and Literary References		Based on Archaeological References	ogical References	
Period	System	Weights & their Denominations	Designation	Weight	Symbol / Name	Weight	Remarks
	(iii) Tadus	1/3 B.L. Śāṇa		0.9850 gm	a. c	0.98 gm	
	System II	1 B.L. Śāna		2.9560 gm	y ex	3.03 gm	
		4/3 B.L. Śāṇa		3.9420 gm	S	3.92 gm	
		8 B.L. Śāņa		23.6500 gm	H	24.50 gm	
		16 В.Г. Śāņа	l Bhājanī Muṣṭi	47.3000 gm	'n	47.30 gm	
		1 Māṣa		1.1300 gm			
	(iv)	1 Andaka		0.2825 gm	1 Andaka	0.279 gm	
	Heavy	60 Andaka	1 Large Shekel	16.8000 gm	1 Shekel	16.75 gm	
	Assyrian	60 Large Shekel	1 Large Mina	1008.0000 gm	1 Mina	1005.00 gm	
	System	60 Large Mina	1 Talent	60480.00 gm	1 Talent	60303.00 gm	
		1 Talent		60480.00 gm	1 Talent	60303.00 gm	
		15 Mina		15120.00 gm	15 Mina	14933.00 gm	
		5 Mina		5040.00 gm	5 Mina	5043.00 gm	
		3 Mina		3024.00 gm	3 Mina	2865.00 gm	
		2 Mina		2016.00 gm	2 Mina	1962.00 gm	
		1 Mina		1008.00 gm	1 Mina	ш3 00.066	
		2/3 Mina		672.00 gm	2/3 Mina	mg 00.999	
		1/4 Mina		252.00 gm	1/4 Mina	237.00 gm	
		1/5 Mina		201.00 gm	1/5 Mina	198.00 gm	
		1/6 Mina		168.00 gm	1/6 Mina	178.00 gm	
		1/8 Mina		126.00 gm	1/8 Mina	128.00 gm	
		3 Shekel		50.40 gm	3 Shekel	52.40 gm	
		2 Shekel		33.60 gm	2 Shekel	36.00 gm	
		1 Shekel	30 Aṇḍaka	8.40 gm			
		1 Talent		30240.00 gm	1 Talent	30240.00 gm	
		30 Mina		15120.00 gm	30 Mina	15120.00 gm	

		Based on Do	Based on Documental and Literary References		Based on Archaeological References	gical References	
Period	System	Weights & their Denominations	Designation	Weight	Symbol / Name	Weight	Remarks
	(v) Light Rahvlonian	5 Mina 3 Mina 2 Mina		2520.00 gm 1512.00 gm 1008.00 gm	5 Mina 3 Mina 2 Mina	2520.00 gm 1512.00 gm 1003.00 em	Mean Value of Shekel exactly tallies with
	System	2 Mina 1 Mina 30 Shekel 20 Shekel		504.00 gm 252.00 gm 168.00 gm	1 Mina 1 Mina 30 Shekel 20 Shekel	252.00 gm 168.00 gm	that found by Marshall
		10 Shekel 5 Shekel 2 Shekel 1 Shekel 1/2 Shekel 1/4 Shekel 1/8 Shekel		84.00 gm 42.00 gm 16.80 gm 8.40 gm 4.20 gm 2.10 gm 1.05 gm	10 Shekel 5 Shekel 2 Shekel 1 Shekel 1/2 Shekel 1/4 Shekel 1/8 Shekel	84.00 gm 42.00 gm 16.80 gm 8.40 gm 4.20 gm 2.10 gm 1.05 gm	
800 to 500 B.C.	(vi) Kātyāyanī System or Viņšatikā System	10 Kṛṣṇala 25 Kṛṣṇala 4 Pāda	1 Māṣa 1 Pāda 1 Pāṇitala Or Śatamāna	18.00 gm 45.60 gm 182.50 gm	Pāņitala or Śatamāna	180.00 gt 177.30 gt	Bimbasāra Ajātasatru
	(vii) South Indian System	4 Pāņitala 20 Mañjadi 10 Śana (Kalañju)	1 Bhājanī Muṣṭi 1 Vaidika Śāṇa or Kalañju 1 Bhājanī Muṣṭi or 40 Māṣa	73.00 gt 730.00 gt	Kalanju	73.00 gt	Nanda Dynasty

		Based on Door	Based on Documental and Literary References		Based on Archaeological References	gical References	
Period	System	Weights & their Denominations	Designation	Weight	Symbol / Name	Weight	Remarks
	(viii) Dhama System	1 Māṣa 20 Sāmbya 10 Dharaṇa	l Dharana I Ayamani Pala	17.50 gt 56.00 gt 560.00 gt	Dharna	56.00 gt	Maurya Dynasty
	(ix) Āyamānī System	1 Māṣa 4 Māṣa 4 Karṣa	i Karşa 1 Ayamânî Pala of 32 Mãşa	17.50 gt 140.00 gt	Kārşāpaņa	144.00 gt	
400 B.C. and Onward	(x) Vyāvahārikī System or Greek System	1 Māṣa 8 Drankṣaṇa 1 Dranksaṇa	a 1 Vyāvaharikī pala of 30.4 Māṣa 3.8 Māṣa	17.50 gt	Drachm	62.00 gt	
	(xi) Bhājanī System or Persian	1 Masa 1 Karsa of Bhanani Pala of	7.2 Māṣa	18.00 gt 129.60 gt	Kārşāpaņa	144.00 gt	
	System	28.8 Masa 1/6 Bhajani	4.8 Māṣa	86.40 gt	Shekei Siglos	130.00 gt 84.00 gt	
	(xii) Antahpura Bhājanī Systems or	1 Māṣa 1 Karṣa of Antaḥpura Bhājanī Pala		18.00 gt			

		Based on Do	Based on Documental and Literary References		Based on Archaeological References	gical References	
Period	System	Weights & their Denominations	Designation	Weight	Weight Symbol / Name	Weight	Remarks
	(xiii) Avoirdupois or British System	1 Māṣa 40 Māṣa 10 Vaiṃśatikā Pala	1 Vaimsika Pala 1 British Pound of 400 Māşa	17.50 gt 700.00 gt 7000.00 gt	British Pound	7000.00 gt	
	(xiv) Apothecaries or Troy	1 Māṣa 32 Māṣa 10 Āyamānī Pala	l Āyamānī Pala l Troy Pound	18.00 gt 576.00 gt 5670.00 gt	Troy Pound	5760.00 gt	

Note: 1 -> Abbreviations: gm = Gramme, gt = Troy grain: 2 -> Symbols A to U are in accordance with Marshall (1931)

372 N.G. DONGRE

or division). The Bhājanī lauha pala will be equal to 2.5 times Suvarņa pala, i.e., $.2.5 \times 16 = 40$ māsa.

HEAVY ASSYRIAN AND BABYLONIAN SYSTEMS

It is well known that Heavy Assyrian and Babylonian unit of weight standards are sexagesimal systems where 60 large shekel is equal to one large mina and 60 large mina is equal to one talen. It is interesting to note that one lower member of this system is 'aṇḍaka' i.e. 60 aṇḍaka equals one large shekel showing 'aṇḍaka', which is one quarter of māṣa unit at the root of this Babylonian sexagesimal system.

ŚATAMĀNA SYSTEM

800 to 500 BC in Northern India there was a system known as śatamāna equivalent to 100 kṛṣṇala (ratti) or 10 māṣa having a denomination as Pāda, a quarter of the śatamāna.

SOUTH INDIAN SYSTEM

In South India there was a weight system in which twenty mañjadi was equal to the weight Kalañju, an equivalent of one śāṇa, or 4 māṣa, or one tenth of viṃśatikā or Bhājanī lauha pala belonging to the second system of Indus culture.

DHARANA SYSTEM

Parallel to this system in 500 to 400 BC another system was prevailing in India. In this system 20 śāṃbya were equal to one dharaṇa, while 10 dharaṇa were equal to 1 Āyamānī pala.

INDO-GREEK, PERSIAN AND ROMAN SYSTEMS

The other weight systems which have been described as Vyāvahārikī, Bhājanī and Antahpura bhājanī of weights 9.5, 9 and 8.5 dharaṇa respectively by Kauṭilya can also be well understood on the density ratio hypothesis. In fact these standards can be numerically obtained by considering the corresponding density ratios as 1.9, 1.8 and 1.7, which when multiplied by 5 yield 9.5, 9, and 8.5 respectively. As 1.8 is the actual ratio of densities of gold and silver and the bhājanī weight system is derived by this ratio it seems that the name Bhājanī is derived from bhajana- the division. The contemporary Greek, Persian and Roman weight systems as fixed by numismaticians seem to be Vyāvahārikī, Bhājanī and Antaḥpura bhājanī weight systems. These have been depicted in the Table-II.

The difference in density ratio (1.8 ± 0.1) may be accounted for purities of the metals in different parts of the world. The Indians have rounded it to two, though they were knowing the correct ratio as the name of the system. Bhājanī, itself suggests.

BRITISH AND TROY SYSTEMS:

In western countries, before the advent of CGS or MKS system Avoirdupois pound or British pound, and Troy or Apothecaries pound were in use as the weight standards. Here it will be interesting to note that these weight units are simply 10 pala weights of Vimsatikā and Āyamānī systems respectively.

CONCLUSION

These calculations, along with the archaeological data, not only confirm the Aryan unit of mass as māṣa, a scientifically based unit like gramme, but also indicate a probable adoption by the others with slight modifications, without mentioning māṣa, the Indian unit of mass.

REFERENCES

- 1. Prāchīn Bhārat Mē Rasāyan Kā Vikās; Satya prakash; p. 746; (1960)
- Outlines of the Evolution of Weights and Measures and The Metric System; William Hallock and Herbert T Wade; The Mac Millan & Company Ltd; (1906)
- 3. 'Purușa Sūkta 1'; Rgveda
- 4. Madhyamādhikāraḥ 59, Sürya Siddhānta
- 5. University Encyclopedia
- Caraka Samhitā
- Mohan-jo-daro and Indus Civilization; Sir John Marshall; Volume-II; Arthur Probsthain, 41 Great Russel Street, London, W.C.I.; (1931)