CSE578: Computer Vision

Spring'19

Projective Geometry: A Quick Recap

Anoop M. Namboodiri

Center for Visual Information Technology

IIIT Hyderabad, INDIA

Points/Line at Infinity

- $\mathbf{x} = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}^T$ represents $\begin{bmatrix} x_1/x_3 & x_2/x_3 \end{bmatrix}$
- What happens when x₃→ 0?
- Becomes point at infinity, or vanishing point or ideal point in the direction (x_1, x_2) .
- Points at infinity can be handled like any other point in projective geometry
- $[x \ y \ 0]^T$ are all points at infinity on the plane.
- What do they form together?
- What is the representation of l_∞?

$$l_{\infty} = [0 \ 0 \ 1]^{\mathrm{T}}$$

Conics: 2nd order Entities

- General quadratic entity: $ax^2 + bxy + cy^2 + dx + ey + f = 0.$
- Rewrite using homogeneous coordinates as: $ax^2 + bxy + cy^2 + dxw + eyw + fw^2 = 0$.
- · Rewrite as:

$$\begin{bmatrix} x & y & w \end{bmatrix} \begin{bmatrix} a & b/2 & d/2 \\ b/2 & c & e/2 \\ d/2 & e/2 & f \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix} = 0$$

- A symmetric C represents a conic: x^TCx = 0.
 Covers circle, ellipse, parabola, hyperbola, etc.
- * Degenerate conics include a line (a = b = c = 0) and two lines when $C = Im^T + mI^T$.

Properties of Conics

- I = Cx gives the tangent line to the conic at x.
 - o A point x on the conic is on line I = Cx as x^T (Cx) = 0.
 - o If I intersects the conic in another point y;
 - y^TCy = 0 as y is on the conic; and
 - $(Cx)^Ty = x^TCy = 0$ as y is on the line.
 - · Thus, Cy is a line joining x and y.
 - That is Cy = Cx or x = y.
- Dual Conic: Conic defined by its tangent lines.

Hierarchy of Transformations

• Translation (2)
$$\rightarrow$$

$$\begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \end{bmatrix}$$
• Euclidean (3) or Rigid Body

• Similarity (4) \rightarrow

$$\begin{bmatrix} 1+a & -b & t_x \\ b & 1+a & t_y \end{bmatrix} \begin{bmatrix} c_\theta & -s_\theta & t_x \\ s_\theta & c_\theta & t_y \end{bmatrix}$$
• Affine (6)

• Projective (8) \rightarrow

$$\begin{bmatrix} 1+h_{00} & h_{01} & h_{02} \\ h_{10} & 1+h_{11} & h_{12} \\ h_{20} & h_{21} & 1 \end{bmatrix}$$

Invariants of Transformations

Property	Euclidean	Similarity	Affine	Projective
Length		No	No	
Angle	Yes	Yes	No	No
Length Ratio				No
Area Ratio		Yes		No
Parallelism				
Centroid		Yes		No
Ratio of len. ratio				
Collinearity				

Circular Points

- Affinity maps L to itself. Conversely, any transformation that does that is an affine one
- General projectivity can map I_ to a finite line and vice versa
- * A circle intersects I, at circular points. Canonical (Euclidean) circle is: $x^2 + y^2 + dxw + eyw + fw^2 = 0$.
- * Points on I. have w = 0. Thus, $x^2 + y^2 = 0$.
- Circular points are given canonically by:

$$I = \begin{bmatrix} 1 \\ i \\ 0 \end{bmatrix} \quad \text{and} \quad J = \begin{bmatrix} 1 \\ -i \\ 0 \end{bmatrix}$$

Affine Structure from Images

- Affine structure gives parallelism, ratio of areas, centroid, etc., and can be the basis of many decisions.
- Find I. in image using parallel lines.
- Apply a transformation H that maps the line to [0 0 1]^T

Affine Rectification

- Parallel lines are parallel after rectification
- Angles are not restored (see right angles)

Circular Points to Similarity

Circular points are fixed under similarity

$$\begin{bmatrix} s\mathbf{R} & t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -i \\ 0 \end{bmatrix} = s(cos\theta + isin\theta) \begin{bmatrix} 1 \\ -i \\ 0 \end{bmatrix}$$

- Conversely, any transformation that fixes circular points is a similarity.
- Thus, a transformation H that sends the circular points to their canonical form I and J leaves only a similarity transformation.

Dual Conic to Circular Points

- C_∞ = IJ^T + JI^T is a dual conic defined by the circular points. It is also fixed under similarity.
- In canonical or Euclidean frame, $C_{\infty}^* = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
- * We can see that

$$\begin{bmatrix} s\mathbf{R}^T & \mathbf{0} \\ t^T & 1 \end{bmatrix} C_{\infty}^* \begin{bmatrix} s\mathbf{R} & t \\ \mathbf{0} & 1 \end{bmatrix} = \begin{bmatrix} s^2 & 0 & 0 \\ \mathbf{0} & s^2 & 0 \\ \mathbf{0} & 0 & 0 \end{bmatrix} \equiv C_{\infty}^*$$

Metric Structure from Images

- Identify circular points in the image. This can be done by finding a world circle in the image as a conic, finding the I_m in the image and finding their intersection
- Map one circular point to I and the other to J. The transformation H that does it metric rectifies the image.
- 1 gives affine structure, the circle gives metric structure.
- Can be done using 2 non-parallel orthogonal line pairs instead of a circle or 5 orthogonal line pairs from projective!

Structured Lighting

- Finding correspondences is hard by itself
- Can we help it by projecting patterns onto the world?
- Structured Lights!
- Lightstrip range finders, etc.
- Combination of sinusoids sometimes to get dense matches
- Active vision, as it changes the appearance
- The light projected need not be in the visible spectrum

Xbox Kinect

IR-based range sensor for Xbox

- Aligned depth and RGB images at 640 × 480
- Original goal: Interact with games in full 3D
- Computer vision happy with realtime depth and image
 - o Games, HCI, etc.
 - Action recognition
 - Image based modelling of dynamic scenes
- Fastest selling electronic appliance ever!!
- Other products that use PrimeSense sensor

Visual Hull

- Object silhouette represents a generalized cone with the camera centre as the apex
- Intersect these cones for multiple views in the 3D space
- Visual Hull, like convex hull
- Cannot get fine details like concavities
- Gives a very good, approximate shape, without scene modification!

Space Carving

- Reason directly in a volumetric voxel space
- If a voxel is filled, it projects to similar colours in all cameras
- If a voxel is empty, its projections will have different appearances
- Colour consistency: filled or empty?
- Assume all filled initially; carve out empty ones by going over the images, guessing visibility, etc.

