Машинное обучение. Домашнее задание №9

Задача 1. Рассмотрим задачу классификации текстов $D = \{d_1, \ldots, d_{|D|}\}$ на K классов $Y = \{1, \ldots, K\}$. Каждый документ d_i представляет собой некоторое подмножество множества возможных слов $W = \{w_1, \ldots, w_{|W|}\}$ (т.е. нас не интересует порядок слов и количество вхождений каждого слова). В качестве признаков для каждого документа выберем индикаторы вхождения слов в него. Матрица «объекты-признаки» задается как

$$x_{ij} = [w_j \in d_i], \quad i = 1, \dots, |D|, \ j = 1, \dots, |W|.$$

Для решения задачи воспользуемся наивным байесовским классификатором, который основывается на предположении, что признаки независимы:

$$p(x_{i1},...,x_{i|W|} | y_i) = p(x_{i1} | y_i)...p(x_{i|W|} | y_i).$$

Будем считать, что при фиксированном классе каждый признак имеет распределение Бернулли. Таким образом, априорные распределения и функции правдоподобия задаются как

$$p(k \mid \pi) = \pi_k, \quad k = 1, \dots, K;$$

$$p(x_{ij} \mid k, \theta) = \theta_{jk}^{x_{ij}} (1 - \theta_{jk})^{1 - x_{ij}}, \quad i = 1, \dots, |D|, \ j = 1, \dots, |W|, \ k = 1, \dots, K.$$

Распределение одного документа записывается следующим образом:

$$p(d_i, y_i \mid \pi, \theta) = p(y_i \mid \pi) \prod_{j=1}^{|W|} p(x_{ij} \mid y_i, \theta) = \prod_{k=1}^{K} \pi_k^{[y_i = k]} \prod_{j=1}^{|W|} \prod_{k=1}^{K} p(x_{ij} \mid k, \theta_{jk})^{[y_i = k]}.$$

Докажите, что оценки максимального правдоподобия на параметры π и θ имеют вид

$$\begin{split} \hat{\pi}_k &= \frac{\sum_i [y_i = k]}{|D|}, \\ \hat{\theta}_{jk} &= \frac{\sum_i [y_i = k] [x_{ij} = 1]}{\sum_i [y_i = k]}, \end{split}$$

где все суммирования ведутся по документам от 1 до |D|.

Задача 2. Расширим модель из предыдущей задачи и введем априорные распределения на параметрах θ . В качестве априорного к распределению Бернулли удобно ¹

¹ Под «удобством» здесь понимается тот факт, что если функция правдоподобия имеет распределение Бернулли, а априорное распределение выбрано из класса бета-распределений, то апостериорное распределение тоже относится к классу бета-распределений.

брать бета-распределение

Beta
$$(x \mid \beta_1, \beta_2) = \frac{1}{B(\beta_1, \beta_2)} x^{\beta_1 - 1} (1 - x)^{\beta_2 - 1},$$

где $\beta_1, \beta_2 \geqslant 0$, а $B(\beta_1, \beta_2)$ — бета-функция.

Выпишите апостериорные распределения

$$p(\theta_{jk} \mid D) \propto p(\theta_{jk}) \prod_{i=1}^{|D|} p(d_i, y_i \mid \theta_{jk}),$$

где $p(\theta_{jk}) = \text{Beta}(\theta_{jk} \mid \beta_1, \beta_2).$

В качестве оценок на θ_{jk} возьмем матожидания апостериорных распределений:

$$\hat{\theta}_{jk} = \int_0^1 \theta_{jk} p(\theta_{jk} \mid D) d\theta_{jk}.$$

Найдите их в явном виде. Какова роль параметров β_1 и β_2 ?