

PROYECTO: MEDICIÓN DE TENSIÓN SUPERFICIAL EN UNA GOTA COLGANTE

GEOMETRÍA DE LA GOTA

EDP

$$\frac{\partial \phi}{\partial S} = 2 - \beta Y - \frac{\sin(\phi)}{X}$$
$$\frac{\partial X}{\partial S} = \cos(\phi)$$
$$\frac{\partial Y}{\partial S} = \sin(\phi)$$

C.I.

$$X(0) = Y(0) = \phi(0) = 0$$

C.V.

$$X = \frac{x}{R_0} \quad Y = \frac{y}{R_0} \quad S = \frac{s}{R_0}$$

GOTAS PARA DISTINTOS NUMEROS DE BOND

Resolución de la EDP con el método de Runge Kutta de orden 4.

RESOLUCIÓN PARA 2000 VALORES

Resolución de la EDP iterativamente para 2000 valores distintos del número de Bond entre 0 y 0.5. Los datos resultantes fueron aproximados a un polinomio de grado 6, a través del método de mínimos cuadrados.

Bo en función de σ

¿Y OPENDROP?

Aproximación valida para valores mayores a 0.1

$$0,1756 \cdot x^2 + 0,5234 \cdot x^3 - 0,2563 \cdot x^4$$

x es un radio promedio normalizado obtenido a partir de la geometría de la gota.

COSAS POR MEJORAR

01 INTERFAZ RÁPIDA

Procesar más de una imagen, con el objetivo de obtener un valor promedio y una desviación estándar. 02 SELECCIÓN AUTOMÁTICA

Prescindir de la selección de la gota y la aguja. Es decir, que la identificación sea automática.

03 INTERFAZ INTEGRADA

Aunque funcionen las distintas aplicaciones de manera independiente, que todas estén dentro de una.

OPCIONES

Dejar a criterio del usuario que opciones usar. Por ejemplo, si se ingresará una imágen pre-procesada o no.

PROYECTO: MEDICIÓN DE LAS FUERZAS EN UNA GOTA DEFORMADA POR CÉLULAS.

RADIO DE CURVATURA INICIAL

Para obtener la presión isotrópica es necesario obtener el radio de la gota sin deformidades.

PARAMETRIZACIÓN EN 3D

Para obtener todos los parámetros es necesario representar la gota en 3D.

GEOMETRÍA DIFERENCIAL

Además, se debe poder trabajar con esta representación, aplicando la teoría de la geometría diferencial para obtener las fuerzas.

RADIO DE CURVATURA INICIAL

¿Las gotas esféricas son esféricas? Dado que el aceite es prácticamente incompresible, en equilibrio, debería tener forma de esfera.

GEOMETRÍA DIFERENCIAL

$$H = \frac{(1+h_x^2)h_{yy}-2h_xh_yh_{xy}+(1+h_y^2)h_{xx}}{(1+h_x^2+h_y^2)^{3/2}}.$$

Por otro lado, se ha encontrado diversas bibliografías referido a las curvas con mallas triangulares.

$$\kappa_{ij} = \frac{2n_i \cdot (p_i - p_j)}{|p_i - p_j|^2}$$

$$\kappa_{ij} = \frac{2n_i \cdot (p_i - p_j)}{|p_i - p_j|^2}$$

$$H = \frac{e G - 2 f F + g E}{2 \left(E G - F^2\right)}$$

Se han visto algoritmos que utilizan cotangentes (operador de Laplace), normales, áreas, derivadas, matrices hessianas o de métrica, formas fundamentales entre otros.

Existen diversas

fórmulas, en base a

derivadas, normales y

otros elementos

matemáticos.

Scientific I mage Analysis

PARAMETRIZACIÓN EN 3D

- SOFTWARE EN IDL
- Todavía se debe aprender a manejar de mejor manera el programa y el lenguaje utilizado.
- UTILIZACIÓN DE FIJI O PYTHON
 - ¿Qué tan factible sería implementar todo el trabajo 3D en un software en el que se esté más familiarizado?
- 03 IMPLEMENTACIÓN FINAL

¿Qué tan cómodo tendría que ser la aplicación final? ¿Qué tendría que ser capaz de hacer?

#