CONTENTS

12.0 EXPLODED VIEW	43
11.0 CIRCUIT DIAGRAM	43
10.0 LAYOUT FOR MAIN COMPONENTS AND ADJUSTED	
9.0 PARTS LIST	
8.0 IC CONFIGURATION	31
Picture distortion	27
No vertical scan	25
7.6.2 Vertical Deflection Circuit	25
No Raster H-Asynchronous Linearity Out of phase Width Abnormal	
7.6.1 Horizontal Deflection Circuit	21
7.5 VIDEO CIRCUIT TROUBLESHOOTING ROUTINE	
7.4 MICON CIRCUIT TROUBLESHOOTING ROUTINE	15
7.3 POWER SUPPLY CIRCUIT TROUBLESHOOTING ROUTINE	13
7.2 POWER SAVING CIRCUIT TROUBLESHOOTING ROUTINE	12
7.1 MAIN TROUBLESHOOTING ROUTINE	
7.0 TROUBLESHOOTING	
6.1 1569VL ADJUSTMENT	
6.0 ADJUSTMENT	
5.0 TIMING MODE (CTX PRESETTING TIMING)	
4.0 DESCRIPTION OF CIRCUIT	
3.0 FUNCTION BLOCK DIAGRAM	
2.0 GENERAL MAINTENANCE PROCEDURE	
SAFETY PRECAUTIONSCHECK OF HIGH VOLTAGE HOLD DOWN CIRCUITPRODUCT SAFETY NOTICE	
IMPORTANT NOTICEINTRODUCTION	
1.0 IMPORTANT NOTICE & INTRODUCTION & SAFETY NOTICE	

1.0 IMPORTANT NOTICE & INTRODUCTION & SAFETY NOTICE

IMPORTANT NOTICE

Please read before attempting service

- While the monitor is in operation, do not attempt to connect or disconnect any wires.
- 2. Make sure the power cord is disconnected before replacing any parts in the monitor.
- When the power is on, do not attempt to short any portion of the circuit. This shorting may cause damage to the transistors in the monitor.
- 4. When servicing the H.V. area, be certain that the C.R.T anode is safely discharged before removing the anode cap.
- Caution must exercised when servicing this monitor.

INTRODUCTION

Enhanced repair capabilities

This Service Manual is edited for model 1569VL when service is necessary, there are four primary parts included in this troubleshooting guide which offer the easiest way to locate problem points and repair the machine to the best possible condition.

- The Adjustment section offers the adjustable method, steps and all data of the factory's initial settings which can make the machine get the best performance at that time. By the way, before adjusting, the machine must be warmed up for at least 10 minutes and the CRT face must be in an east ward direction.
- 2. The Troubleshooting section has four main parts including: power supply, power saving, CRT, deflection & video circuit. Each offers fast repair routine and the IC, transistor voltage records against all specified signal modes. These voltage readings are measured with a HP 34401A multimeter with input impedance 10M (0.1V1000V range) and waveforms shown on circuit schematics are measured by a Tektronix TDS 520 digital

- oscilloscope, the monitor receives VGA-480 full white square pattern.
- 3. The Spare parts list offers the CTX part number (P/N) which is used frequently by repairmen / technicians. For details please refer to the service guide or service manual. If there is any engineering change regarding this model, CTX will issue the updated information by a non-periodical Technical Bulletin.
- 4. The transistor voltage records are measured from LEFT side to RIGHT side when face to the front (printed side) of transistor.

SAFETY PRECAUTIONS

NOTICE: Comply with all cautions and safety related notes located on or inside the cabinet and on the chassis or picture tube.

The following precautions should be observed.

- Do not install, remove, or handle the picture tube in any manner unless shatterproof goggles are worn. People not so equipped should be kept away while picture tubes are handled. Keep picture tube away from the body while handling.
- When replacing a chassis in the monitor, all the protective devices must be put back in place, such as barriers, non-metallic knobs, adjustment and compartment shields, and isolation resistor-capacitor, etc..
- When service is required, observe the original lead dress. Extra precaution should be taken to assure correct lead dress in the high voltage circuitry area.
- 4. Always use the manufacturer's replacement components. Especially critical components as indicated on the Replacement parts list should not be replaced bv other manufacturer's Furthermore where a short circuit has occurred. replace those components that indicate evidence of overheating.
- 5. Before returning a serviced monitor to the customer, the service technician must thoroughly test the unit to be certain that it is completely safe to operate without danger of electrical shock, and be sure that no protective device built into the monitor by the manufacturer has become defective, or

CTX

inadvertently defeated during servicing. Therefore, the following checks should be performed for continued protection of the customer and service technician.

High Voltage

This monitor is provided with a high voltage hold down circuit for clearly indicating that voltage has increased in excess of a predetermined value. Comply with all notes described in this Service Manual regarding this hold down circuit when servicing, so that this hold down circuit may function correctly.

Service Warning

With minimum Brightness and Contrast the operation high voltage in this display is lower than 26KV.

If any component having influence on the high voltage is replaced, confirm that the high voltage with minimum Brightness and Contrast is lower than 26KV. To measure high voltage use a high impedance high-voltage meter. (SENSITIVE RESEARCH Model: ESH or Equivalent) Connect (-) to chassis earth and (+) to the CRT anode button. (See the following connection diagram Fig. 1).

NOTE:

- Turn power switch off without fail before making the connection to the Anode button.
- Before turn power switch ON, confirm the AC line voltage, set the "Voltage Selector".

Fig. 1

X-radiation

TUBE: The primary source of X-radiation in this monitor is the picture tube. The tube

utilized in this chassis is specially constructed to limit X-radiation emissions. For continued X-radiation protection, the replacement tube must be the same type as the original. manufacturer approved type. When troubleshooting and making test measurements in a monitor with a problem of voltage, excessive high avoid beina unnecessarily close to the picture tube and the high voltage components. Do not operate the chassis longer than is necessary to locate the cause of excessive voltage.

CHECK OF HIGH VOLTAGE HOLD DOWN CIRCUIT

Checking of the high voltage hold down circuit operation.

- Turn the switch of the unit ON.
- 2. Set Brightness, Contrast controls to max...
- 3. Check the voltage of TP3 is 8.0±0.5V.
- 4. Turn off the unit and connect a DC power source to TP3 and chassis ground as showen in Fig. 2.

DC 9V TO 12V

Main Board Assembly

Fig. 2

- 5. Turn the switch of the unit ON and turn on the DC power source.
- 6. Check the picture should disappear when the reading of DC power source is more than 9.2±0.5V.
- 7. Turn the switch of the unit OFF immediately after the picture disappears.
- 8. Remove the DC power source.

2.0 GENERAL MAINTENANCE PROCEDURE

3.0 FUNCTION BLOCK DIAGRAM

4.0 DESCRIPTION OF CIRCUIT

Power supply circuit

The power supply is a "serial & universal AC input" switching power supply. The start up circuit will provide a DC voltage for PWM (Pulse Width Modulation) IC (IC101) when power on. When IC101 works normal start up circuit Q101 will cut off the DC voltage IC101 will auto-detect output voltage of V1 from pin2 and correct the duty cycle of pin6 output pulse to compensate the variation of output voltage.

The output of IC101 connected to power mosfet to drive the power transformer T101. When power mosfet is on, the energy stored in the primary winding of T101. Once mosfet is off, the energy transfer to the secondary and charges the output capacitor to get the stable DC voltage.

Oscillation circuit 2.

Form Pin1~Pin13 of IC201 are for horizontal oscillation and Pin15~Pin19 are for vertical oscillation. The Pin2 is H-sync input, through Pin2 & 3 are for phase control, and then output to A.F.C (Auto Frequency The H-phase from horizontal output circuit is sent to Pin4 for saw tooth generator. The Pin7 is A.F.C output connected to O.S.C control circuit to make the output frequence stable. The Pin12 is square wave output and connected horizontal output stage & H.V output stage Pin13 is X-RAY protect input. When H.V output circuit is abnormal (H.V too high), the X-RAY protect circuit will shut off the horizontal output, H.V. also will be shut down.

Horizontal output circuit 3.

The H.V adjustment circuit consist of C703, Q709 and H.V regulation (Q711, Q712, Q713, Q714, IC701) which control the H.V. output level. The duty cycle of Q709 gate directly control output voltage of C703. The C703 is a supply capacitor which supply the energy to primary winding of FBT and Q701 switch repeatedly to transfer the energy to FBT secondary winding.

4. Micon circuit

The IC501 (CPU) will detect polarity and frequence of input H.V Sync.. The CPU will determine the mode of input timing (preset or users mode) and load data from IC502 (E²PROM). The output of IC501 were connected the other function (ie. H-SIZE, V-SIZE, H-PHASE.....) Also, the user can adjust picture from keyboard and the data will be saved into IC502 automatically. For the O.S.D mode, when O.S.D manual is active CPU willinfrom the OSD IC to send O.S.D BLK signal to blank the video signal from VGA card and the IC603 (O.S.D IC) will send O.S.D R-G-B video signal the consist the O.S.D manual.

<u>IC501</u>	Function control
Pin1	H-phase
Pin3	Contrast
Pin17~19	H-linearity
Pin20,21	Power saving
Pin22	Degauss
Pin23	Mute
Pin32,33	H & V Sync output
Pin35	Parallel
Pin36	Keystone
Pin37	Side-pin
Pin38	V-position
Pin39,40	H & V Sync input

5. DC-DC convertor circuit

Due to output DC voltage is higher than input DC voltage we call the circuit step-up DC-DC regulator. The PWM control IC3843 is kernel of the circuit. The 3843 will detect the output of H-O/P and then change the duty of Pin6. When Q401 is on, the energy stored in the secondary of power transformer. The energy will be released and to get the B+ when Q401 turn off. So, the input duty cycle of Q401 gate is higher, the output B+ is higher.

6. Vertical output circuit

The vertical pulse from oscillation IC201 (LA7856) is sent to Pin2 of vertical IC (LA7838). The amplifier output Pin12 drives the vertical deflection will directly. Voltage setting on Pin4 determines the peak level of the saw-tooth ramp, thus can be used as vertical height control. The DC feedback is sent to Pin7 of vertical IC (LA7838) adjusting VR801 can achieve best linearity.

7. Video output circuit

Video circuit consists of video preamplifier IC601 (M52737SP) and output cascode amplifier with RLC peripherals. IC601 is a Video processing IC equipped with three DC amplifiers to pre-amplify R.G.B signals form 0.6V to 3V. The voltage gain of these amplifiers are call DC controlled from Micro processor. The R.G.B GAIN & BIAS control signal are from DACs of OSD IC(STV9425). So simple voltage drive with resistors and timmers can be used to adjust the voltage GAIN and BIAS of each RGB signal's amplification and thus achieve a well balanced white picture.

The OSD IC is to control picture of OSD window. The video output stage contains three identical cascode amplifiers to amplify the video signal from IC601 to capable of driving CRT.

5.0 TIMING MODE (CTX Presetting Timing)

		T	-		f	ı			
NAME	VGA-400	VGA-480	640X480-85	640X480-120	800X600-65	800X600-100	1024X768-85	1280X1024-60	
PIXEL CLOCK	28.322 MHZ	25.175 MHZ	36.000 MHZ	54.890 MHZ	56.250 MHZ	67.297 MHZ	94.5 MHZ	108 MHZ	
Fh	31.469 KHZ	31.469 KHZ	43.269 KHZ	63.530 KHZ	53.674 KHZ	63.883 KHZ	68.677 KHZ	63.981 KHZ	
Fv	70.087 HZ	60 HZ	85.008 HZ	119.868 HZ	85.061HZ	99.973 HZ	84.997 HZ	60.020 HZ	
INTERLACE MODE	NO								
VIDEO	ANALOG- COLOR								
XS SYNC ON GREEN	NO								
VIDEO LEVEL	700mv								
WHITE LEVEL	700mV	700Mv	700mV	700 M ∨	700mV	700mV	700mV	700mV	
BLANK LEVEL	0 IRE								
16 BIT HEX DATA	0000	0000	0000	0000	0000	0000	0000	0000	
UNIT OF DATA	Us/ms								
H TOTAL	31.778 us	31.778 us	23.111 us	15.741 us	18.631 us	15.654 us	14.561 us	15.631 us	
H DISPLAY	25.422 us	25.422 us	17.778 us	11.660 us	14.222 us	11.870 us	10.836 us	11.852 us	
H B-PORCH	1.907 us	1.907 us	2.222 us	1.731 us	2.702 us	2.003 us	2.201 us	2.296 us	
H-S-WIDTH	3.813 us	3.813 us	1.556 us	1.749 us	1.138 us	1.187 us	1.016 us	1.037 us	
H BORDER	0.000 us								
H SIZE	4.000 mm								
V TOTAL	14.268 ms	16.683 ms	11.763 ms	8.343 ms	11.756 ms	10.003 ms	11.765 ms	16.661 ms	
V DISPLAY	12.711 ms	15.253 ms	11.093 ms	7.555 ms	11.179 ms	9.392 ms	11.183 ms	16.005 ms	
V B-PORCH	1.112 ms	1.048 ms	0.578 ms	0.567 ms	0.503 ms	0.501 ms	0.524 ms	0.594 ms	
V S WIDTH	0.064 ms	0.064 ms	0.069 ms	0.094 ms	0.056 ms	0.063 ms	0.044 ms	0.047 ms	
V BORDER	0.000 ms								
V SIZE	3.000 mm								
н ѕ оитрит	ON (-)	ON (-)	ON (-)	ON (-)	ON (+)	ON (+)	ON (+)	ON (+)	
V S OUTPUT	ON (+)	ON (-)	ON (-)	ON (-)	ON (+)	ON (+)	ON (+)	ON (+)	
X S OUTPUT	ON (-)	ON (-)	ON (-)	ON (-)	ON (+)	ON (+)	ON (+)	ON (+)	
X S SELETE	н	н	н	н	н	Н	н	н	

6.0 ADJUSTMENT

6.1 1569VL ADJUSTMENT

REM:PRESET MODE DATA ADJUSTMENT:

- A. Turn off it.
- B. Press the $\ \oplus$ and $\ \ominus$ at same time where on the external control panel.
- C. Turn on it.

Remark: Before adjusting, monitor must warm up 10 minutes and CRT must be degaussed.

		To minutes and CRT must be degaus			
ADJUSTMENT	LOCATION	SPECIFICATION/DESCRIPTION	TIMING & PATTERN		
86V	VR101	TP1=86V±0.5V	VGA-480, X'HATCH		
12V	VR102	TP2=12V±0.2V	VGA-480, X'HATCH		
H.V.	VR702	CRT ANODE=25KV±0.5KV	VGA-480, X'HATCH		
H-HOLD (L)	VR202	Picture stand or flow slowly when TP4 shorted to GND.	VGA-480 (31KHz) , X'HATCH		
H-HOLD (H)	VR201	Ditto	VII1024-75, X'HATCH		
H-PHASE	OSD H-PHASE MANUAL	$\frac{ R-L }{2} \le 2.5$ mm	All of PRESET modes, X'HATCH		
V-CENTER	OSD V-CENTER MANUAL	<u> U-D </u> ≤ 2.5mm	All of PRESET modes , X'HATCH		
V-LINE	VR801	Ymax-Ymin Ymax ≤ 10%	VESA1024 , X'HATCH		
H-CENTER	VR701	Adj. Raster to center.	VII1024-75 , X'HATCH		
	©Raster in center put jumper box in here.	r I	DRaster in left side put jumper box in here and adj. VR701.		
	③Raster in right side put jumper box in here and adj. VR701.	•			
H-WIDTH	VR401	H-width=260±3mm with OSD H-width manual is min	VII1024-75 , X'HATCH		
	OSD. H-WIDTH MANUAL	H-WIDTH=270±5mm	All of PRESET modes , X'HATCH		
V-SIZE	OSD V-SIZE MANUAL	V-SIZE=202±5mm	All of PRESET modes , X'HATCH		
	OSD. SIDE-PIN MANUAL	PINCUSHION ≤ 1.5mm BEZEL ≤ 1mm	All of PRESET modes , X'HATCH		
	OSD. KEYSTONE MANUAL	≤ 3mm	All of PRESET modes , X'HATCH		
	OSD. PARALLEL MANUAL	≤ 3mm	All of PRESET modes , X'HATCH		
	OSD. ROTATION MANUAL	≤ 2mm	All of PRESET modes , X'HATCH		
SCREEN	FBT SCREEN VR	Raster=1~2FL when Brightness value=100, Contrast value=100.	VGA-400 , MOSAIC		
FOCUS	FBT FOCUS VR	Optimum point	SVGAIII(48K), "m"		

WHITE BALANCE PRE-SET OSD. COLOR MANUAL OSD. R.G.B. GAIN/BIAS MODE 1 9300 °K CONTRAST value=100 WHITE DAC VALUE=50 VGA-480 , M WHITE BALANCE PRE-ADJ OSD. G2 MANUAL OSD. G2 MANUAL RASTER Y=1~2FL RASTER x=0.281±0.01, y=0.311±0.01 VGA-480 , M OSD. G2 MANUAL RASTER 0.02FL, When BRIGHTNESS value=50 CONTRAST value=100 VGA-480 , M WHITE BALANCE ADJ. OSD. R.G.B. BIAS X=0.281±0.015 ; y=0.311±0.015, When BRIGHTNESS value=50 and adjust CONTRAST to get the picture is in 2~3FL. VGA-480 , FU OSC. R.G.B. BIAS X=0.281±0.02 ; y=0.311±0.02 When BRIGHTNESS value=0 and VGA-480 , FU	IOSAIC IOSAIC
PRE-SET OSD. R.G.B. GAIN/BIAS DAC VALUE=50 WHITE OSD. G2 MANUAL RASTER Y=1~2FL VGA-480 , M BALANCE OSD R.G.B. BIAS RASTER x=0.281±0.01, y=0.311±0.01 VGA-480 , M PRE-ADJ OSD. G2 MANUAL RASTER 0.02FL, When BRIGHTNESS value=50 CONTRAST value=100 VGA-480 , M OSD. SUB-CONT MANUAL MOSAIC Y=53±1FL VGA-480 , M WHITE BALANCE ADJ. OSD. R.G.B. BIAS X=0.281±0.015 ; y=0.311±0.015, When BRIGHTNESS value=50 and adjust CONTRAST to get the picture is in 2~3FL. VGA-480 , FL OSC. R.G.B. BIAS X=0.281±0.02 ; y=0.311±0.02 VGA-480 , FL	IOSAIC IOSAIC
WHITE BALANCE PRE-ADJ OSD. G2 MANUAL OSD R.G.B. BIAS RASTER Y=1~2FL RASTER x=0.281±0.01, y=0.311±0.01 VGA-480, M VGA-480, M OSD. G2 MANUAL OSD. G2 MANUAL DOSD. SUB-CONT MANUAL WHITE BALANCE ADJ. RASTER 0.02FL, When BRIGHTNESS value=50 CONTRAST value=100 VGA-480, M VGA-480, M VGA-480, M VGA-480, M VGA-480, FL When BRIGHTNESS value=50 and adjust CONTRAST to get the picture is in 2~3FL. OSC. R.G.B. BIAS x=0.281±0.02; y=0.311±0.02 VGA-480, FL	IOSAIC IOSAIC
BALANCE PRE-ADJ OSD R.G.B. BIAS RASTER x=0.281±0.01, y=0.311±0.01	IOSAIC IOSAIC
PRE-ADJ y=0.311±0.01 OSD. G2 MANUAL RASTER 0.02FL, When BRIGHTNESS value=50 CONTRAST value=100 VGA-480 , MOSAIC Y=53±1FL WHITE BALANCE ADJ. OSD. R.G.B. BIAS X=0.281±0.015 ; y=0.311±0.015, When BRIGHTNESS value=50 and adjust CONTRAST to get the picture is in 2~3FL. VGA-480 , FL OSC. R.G.B. BIAS X=0.281±0.02 ; y=0.311±0.02 VGA-480 , FL	IOSAIC
OSD. G2 MANUAL RASTER 0.02FL, When BRIGHTNESS value=50 CONTRAST value=100 OSD. SUB-CONT MANUAL MOSAIC Y=53±1FL OSD. R.G.B. BIAS VGA-480 , M VGA-480 , FL	IOSAIC
BRIGHTNESS value=50 CONTRAST value=100 OSD. SUB-CONT MANUAL MOSAIC Y=53±1FL VGA-480 , NOTE VGA-480 V	IOSAIC
CONTRAST value=100	
OSD. SUB-CONT MANUAL MOSAIC Y=53±1FL VGA-480 , M WHITE BALANCE ADJ. OSD. R.G.B. BIAS	
WHITE BALANCE ADJ. OSD. R.G.B. BIAS x=0.281±0.015 ; y=0.311±0.015, When BRIGHTNESS value=50 and adjust CONTRAST to get the picture is in 2~3FL. VGA-480 , FL OSC. R.G.B. BIAS x=0.281±0.02 ; y=0.311±0.02 VGA-480 , FL	
BALANCE ADJ. When BRIGHTNESS value=50 and adjust CONTRAST to get the picture is in 2~3FL. OSC. R.G.B. BIAS X=0.281±0.02; y=0.311±0.02 VGA-480, FL	ILL WHITE
and adjust CONTRAST to get the picture is in 2~3FL. OSC. R.G.B. BIAS	
picture is in 2~3FL. OSC. R.G.B. BIAS x=0.281±0.02 ; y=0.311±0.02 VGA-480 , FL	
OSC. R.G.B. BIAS x=0.281±0.02 ; y=0.311±0.02 VGA-480 , FL	
	LI WHITE
Which Distorting of and	LL VVI II I L
CONTRAST value=100	
OSD. R.G.B. GAIN x=0.281±0.02 , y=0.311±0.02 VGA-480 , FU	LL WHITE
When BRIGHTNESS value=50	
and CONTRAST value=100	
CONVERGENCE 4 POLE OF PCM Vertical RED and BLUE lines are VGA-480, N	AGERTA
converged by varying the angle X'HATCH	
between the two tabs.	
4 POLE OF PCM Horizontal RED and BLUE lines VGA-480 , N	AGENTA
are converged by moving the two tabs at the same time.	
6 POLE OF PCM Vertical GREEN and MAGENTA VGA-480 , X	'НАТСН
lines are converged by varying the	IIAIOII
angle between the two tabs.	
6 POLE OF PCM Horizontal GREEN and MAGENTA VGA-480 , X	'HATCH
lines are converged by moving the	
two tabs at the same time.	
	,
DEFLECTION YOKE	
DEFLECTION TORE	
$\parallel \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \;$	
┃	
6-POLE	
CONVERGENCE MAGNETS	
4-POLE CONVERGENCE MAGNETS	
PURITY MAGNETS	
PCM:PURITY CONVERGENCE MAGNET	
	1

10

7.0 TROUBLESHOOTING

7.1 MAIN TROUBLESHOOTING ROUTINE

7.2 POWER SAVING CIRCUIT TROUBLESHOOTING ROUTINE

7.0 TROUBLESHOOTING

7.3 POWER SUPPLY CIRCUIT TROUBLESHOOTING ROUTINE

7.0 TROUBLESHOOTING <u>1569VL</u>

VOLTAGE MEASURED RECORD

TEST CONDITIONS: TIMING : VGA-480

PATTERN: CROSS HATCH

Unit: Volt

TR	G	2106 (2SB7	72)	Q	107 (2SD88	32)	Q108 (C945)			
PIN STATUS	Е	С	В	E	С	В	E	С	В	
NORMAL	24.82	24.71	24.10	12.06	15.28	12.72	GND	0.07	0.68	
SUSPEND	26.17	2.39	26.17	1.66	13.80	2.22	GND	26.15	0.04	
OFF	27.14	2.42	27.14	1.66	15.22	2.24	GND	27.13	0.04	

TR		Q109 (C94	5)	Q	110 (2SB7	72)	Q111 (C945)			
PIN STATUS	E	С	В	E	С	В	Е	С	В	
NORMAL	6.21	12.72	6.83	7.14	7.05	6.41	GND	0.08	0.69	
SUSPEND	1.66	2.23	0.94	5.51	5.41	4.80	GND	0.07	0.69	
OFF	1.66	2.24	0.94	8.01	0	8.00	GND	8.00	0.04	

IC	IC102 (C7805)			IC (6	8P61)	TR		5)	
PIN STATUS	J	G	0	20	21	PIN STATUS	E	С	В
NORMAL	12.11	GND	5.01	4.97	4.97	NORMAL	GND	12.04	-0.01
SUSPEND	9.62	GND	5.02	4.97	0.08	DEGAUSS	GND	0.16	0.84
OFF	11.58	GND	5.02	0.08	0.08				

TR	C	Q101 (BT169D)			101 (BT169D) Q103 (2SC945)				Q104 (2SK1507)		
PIN AC IN	K	G	А	E	С	В	G	D	S		
110V	1.63	0	136.7	GND	0.00	0.73	3.45	136.5	0.10		
220V	0.72	0	292.1	GND	0.00	0.72	1.37	292.8	0.05		

IC		IC101 (3842)											
PIN AC IN	1	2	3	4	5	6	7	8					
110V	3.65	2.49	0.18	0.78	GND	3.84	14.89	4.99					
220V	3.73	2.49	0.22	0.81	GND	1.74	14.85	4.99					

1569VL 7.0 TROUBLESHOOTING

7.4 MICON CIRCUIT TROUBLESHOOTING ROUTINE

7.0 TROUBLESHOOTING <u>1569VL</u>

Transistor & Integration circuit

Unit: Volt

TR		Q501 (733))	(Q502 (A733	3)	Q503 (C945)			
PIN MODE	Ε	С	В	E	С	В	E	С	В	
VGA-480	7.44	-0.55	5.00	4.31	4.97	5.00	2.44	9.99	3.05	
VESA 53K	7.44	-0.50	5.00	4.31	4.98	5.00	2.68	9.96	3.30	
VESA 68K	7.44	-0.49	5.00	4.31	4.98	5.00	2.69	9.96	3.30	

TR	C	Q504 (A733	3)	. (Q508 (C945	5)	Q509 (C945)			
PIN MODE	Е	С	В	Е	С	В	E	С	В	
VGA-480	10.61	1.07	9.99	4.99	12.04	5.00	4.99	9.23	5.00	
VESA 53K	10.58	1.42	9.96	5.00	12.04	5.00	0.21	0.24	0.96	
VESA 68K	10.58	1.41	9.96	0.23	0.26	0.98	0.24	0.26	0.99	

TR	(Q510 (C945	5)	(Q511 (C94	5)	Q512 (A733)			
PIN MODE	E	С	В	E	С	В	E	С	В	
VGA-480	4.99	8.27	5.00	0.50	5.00	0.78	3.35	0.57	2.79	
VESA 53K	0.25	0.28	1.01	0.29	5.00	0.53	3.35	0.57	2.80	
VESA 68K	0.28	0.31	1.03	0.33	5.00	0.58	3.35	0.57	2.80	

TR		Q515 (C945	5)	Q	516 (JC33	7)	Q517 (JC337)			
PIN MODE	Ε	С	В	E	С	В	E	С	В	
VGA-480	10.92	12.04	11.35	0	13.65	0.57	13.06	24.68	13.65	
VESA 53K	4.88	12.05	4.62	0	13.68	0.57	13.09	25.04	13.68	
VESA 68K	0.80	12.05	0.16	0	13.68	0.57	13.09	25.12	13.68	

TR	C	2518 (A73	3)		Q522 (C94	5)	Q523 (C945)			
PIN MODE	E	C	В	Е	С	В	E	С	В	
VGA-480	10.92	0	11.35	0	3.49	0.01	0	0.01	0.65	
VESA 53K	4.88	0	4.62	0	2.69	0.27	0	0.27	0.22	
VESA 68K	0.80	0	0.16	0	3.03	0.30	0	0.30	0.26	

17

IC					IC501 ((68P61)				
PIN MODE	1	2	3	4	5	6	7	8	9	10
VGA-480	2.46	0.13	2.31	4.98	5.00	0	2.66	2.50	5.01	5.01
VESA 53K	3.28	0.15	2.21	4.98	5.00	0	2.66	2.50	5.01	5.01
VESA 68K	1.74	0.11	2.15	4.98	5.00	0	2.66	2.50	5.01	5.01

IC					IC501 ((68P61)				
PIN MODE	11	12	13	14	15	16	17	18	19	20
VGA-480	5.00	5.00	5.00	5.00	5.00	4.99	5.00	5.00	5.00	4.98
VESA 53K	5.00	5.00	5.00	5.00	5.00	4.99	0.25	0.21	5.00	4.98
VESA 68K	5.00	5.00	5.00	5.00	5.00	4.99	0.28	0.24	0.23	4.98

IC				. :	IC501 ((68P61)				
PIN MODE	21	22	23	24	25	26	27	28	29	30
VGA-480	4.98	0.08	0.02	0	4.99	2.01	4.99	4.99	0.03	0.70
VESA 53K	4.98	0.14	0.08	0	5.00	2.01	5.00	5.00	0.08	2.01
VESA 68K	4.98	0.17	0.11	0	5.00	2.01	5.00	5.00	0.05	2.02

IC		IC501 (68P61)											
PIN MODE	31	32	33	34	35	36	37	38	39	40			
VGA-480	3.72	0.23	0.78	11.30	1.88	1.15	0.56	1.23	3.77	4.61			
VESA 53K	2.81	0.24	0.53	4.61	1.81	1.61	0.99	1.14	0.34	0.03			
VESA 68K	3.21	0.24	0.58	0.18	1.83	1.63	0.98	1.17	0.38	0.03			

IC				IC502 ((24C04)			
PIN MODE	1	2	3	4	5	6	7	8
VGA-480	5.01	0	5.01	0	5.00	5.00	0	5.01

CTX

7.5 VIDEO CIRCUIT TROUBLESHOOTING ROUTINE

The following voltage records was measured with full white cross-hatch pattern.

Transistor & Integration circuit

Unit: Volt

TR	C	Q605 (C945	5)	Q630	,650,670 (0	C3953)	Q631,651,671 (C3953)			
PIN MODE	E	С	В	E	С	В	E	С	В	
Full White	3.77	4.90	4.38	50.12	85.44	61.45	11.28	55.46	11.91	
Cross-hatch	3.76	4.90	4.38	68.44	86.62	71.50	11.32	65.90	11.94	

TR	Q632,6	52,672 (P	H2369)	Q633,	653,673 (A1370)	Q634,654,674 (BF423)			
PIN MODE	С	В	E	E	С	В	Е	С	В	
Full White	11.28	2.95	2.33	49.33	0	54.87	50.72	0	51.27	
Cross-hatch	11.33	1.78	1.16	67.86	0	65.92	51.84	0	52.03	

TR	Q635	,655,675 (E	3F422)		Q661 (C94	5)	Q662 (C1906)			
PIN MODE	E	С	В	E	С	В	E	С	В	
Full White	4.31	47.95	4.90	0	3.23	-0.11	0	0.50	0.69	
Cross-hatch	4.31	48.75	4.90	0	3.22	-0.11	0	0.51	0.69	

IC					IC601 (I	M52737)				
PIN MODE	1	2	3	4	5	6	7	8	9	10
Full White	0.01	11.95	2.94	2.74	0.01	0	11.95	2.86	3.52	0.01
Cross-hatch	0.01	11.97	2.50	2.74	0.01	0.00	11.96	2.49	3.52	0.01

IC		IC601 (M52737)											
PIN MODE	11	12	13	14	15	16	17	18	19	20			
Full White	0	11.95	2.94	3.16	0.01	0	3.01	0.09	2.06	0.50			
Cross-hatch	0	11.96	2.50	3.16	0.01	0	3.34	0.09	2.06	0.51			

IC		IC601 (M52737)											
PIN MODE	21	22	23	24	25	26	27	28	29	30			
Full White	0	0	4.03	11.92	3.04	0	0	4.04	11.92	2.98			
Cross-hatch	0	0	4.02	11.95	1.81	0	0	4.03	11.95	1.80			

7.0 TROUBLESHOOTING

IC		IC601 (M52737)											
PIN MODE	31	32	33	34	35	36							
Full White	0	0	4.06	11.92	2.83	1.44							
Cross-hatch	0	0	4.05	11.95	1.78	1.44							

IC		IC603 (STV9425)											
PIN MODE	1	2	3	4	5	6	7	8	9	10			
Full White	2.89	4.12	0.01	0.21	0.50	4.90	1.05	2.38	2.08	2.02			
Cross-hatch	2.90	4.12	0.01	0.22	0.51	4.90	1.05	2.38	2.08	2.02			

IC		IC603 (STV9425)											
PIN MODE	11	12	13	14	15	16	17	18	19	20			
Full White	2.43	3.39	4.87	2.78	4.92	4.92	4.89	0	0.01	0.01			
Cross-hatch	2.43	3.39	4.88	2.78	4.92	4.92	4.89	0	0.01	0.01			

IC		IC603 (STV9425)											
PIN MODE	21	22	23	24									
Full White	0.01	0	3.54	3.98									
Cross-hatch	0.01	0	3.54	3.99									

7.6 DEFLECTION CIRCUIT TROUBLESHOOTING ROUTINE

7.6.1 Horizontal Deflection Circuit

H-Asynchronous

REMARK: "L" means the voltage between gate and source is <4V which can't turn on the MOSFET. "H" means the voltage between gate and source is ≥4V which can turn on the MOSFET.

Out of phase **START** NG IS THE OSD MENU **FUNCTION NORMAL** OK NG CHECK H-F/V-VOLTAGE (PIN 34 OF IC501) **REPLACE IC501 AND THEIR** PERIPHERAL PARTS OK REPLACE Q201,Q202,Q205, NG CHECK Q201,Q202,Q205, C203,C204 AND THEIR C203,C204 PERIPHERAL PARTS OK **REPLACE IC201**

7.6.2 Vertical Deflection Circuit

No vertical scan

Picture distortion

V-Asynchronous

Vertical position

Vertical Size

The following voltage records were measured with cross-hatch pattern.

Transistor

Unit:: volt

TR		Q201 (A73	3)		2202 (C94	5)	(3)	
PIN MODE	E	С	В	E	С	B.	E	С	В
VGA-480	4.02	0	3.40	GND	0	0.70	10.52	5.83	9.92
VESA 53K	3.44	0	2.81	GND	2.54	0.16	9.61	5.78	9.00
VESA 68K	2.85	0	2.22	GND	2.20	0.18	8.99	5.76	8.38

TR	(Q204 (C945	5)		Q205 (C945)			Q206 (C945)			
PIN MODE	Е	С	В	E	С	В	E	С	В		
VGA-480	0.04	11.71	0.23	3.40	11.71	4.05	4.28	11.71	4.37		
VESA 53K	0.04	11.71	0.24	2.81	11.71	3.46	4.32	11.70	4.34		
VESA 68K	0.04	11.70	0.24	2.22	11.70	2.86	4.28	11.70	4.25		

TR	C	207 (A73	3)	Q209 (C945)			Q210 (C945)		
PIN MODE	E	С	В	E	С	В	E	С	В
VGA-480	4.28	0	4.37	1.51	4.36	2.16	4.36	12.04	4.99
VESA 53K	4.32	0	4.34	1.51	4.36	2.16	4.36	12.04	4.99
VESA 68K	4.28	0	4.25	1.50	4.36	2.16	4.36	12.04	5.00

TR		Q211 (C94	5)	Q40	Q401 (FS12UM-5)			Q701 (C4924)		
PIN MODE	E	С	В	G	D	s	В	С	E	
VGA-480	4.36	9.25	4.99	1.97	40.68	0.06	-0.96	52.43	0	
VESA 53K	4.36	9.38	4.99	3.93	40.94	0.13	-1.14	90.85	0	
VESA 68K	4.36	9.32	4.99	5.10	40.97	0.17	-1.05	120.9	0	

TR	(2702 (C268	8)	Q	704 (FS12L	JM)	Q705 (FS12UM)		
PIN MODE	E	С	В	G	D	s	G	D	S
VGA-480	0	82.89	0.20	12.04	0	0	9.23	0	0
VESA 53K	0	83.77	0.17	12.04	0	0	0.24	36.90	0
VESA 68K	0	83.86	0.11	0.26	37.66	0	0.26	37.85	0

TR	Q708 (JC337)			Q.	709 (7KM1	6A)	Q711 (A733)			
PIN MODE	E	С	В	G	D	S	E	С	В	
VGA-480	0	0.04	0.70	15.42	4.94	0	17.12	12.01	16.55	
VESA 53K	0	12.01	0.25	14.77	9.80	0	17.40	9.46	16.93	
VESA 68K	0	12.02	0.27	14.20	13.05	0	17.48	9.08	17.06	

TR	C	Q712 (A73	3)	Q713 (C945)		Q714 (A733)			
PIN MODE	E	С	В	E	С	В	Е	С	В
VGA-480	15.83	0	11.97	15.42	24.19	15.83	15.42	0	15.83
VESA 53K	15.14	0	9.46	14.77	24.48	15.14	14.77	0	15.14
VESA 68K	14.55	0	9.08	14.21	24.55	14.55	14.21	0	14.55

TR	Q715 (BF423)			Q716 (C945)			Q717 (C945)		
PIN MODE	E	С	В	E	С	В	E	С	В
VGA-480	2.56	-0.64	1.98	GND	0.29	0.75	GND	0.02	0.70
VESA 53K	2.71	-1.69	2.15	GND	0.38	0.74	GND	0.46	-0.59
VESA 68K	2.70	-1.68	2.15	GND	0.38	0.74	GND	0.49	-0.64

TR	Q718 (JC327)		Q721 (A733)			Q722 (C945)			
PIN MODE	Ε	С	В	E	С	В	E	С	В
VGA-480	-0.07	-0.57	0.41	1.93	GND	1.29	GND	0.75	0.01
VESA 53K	-0.03	-1.14	0.44	2.10	GND	1.48	GND	0.74	0.04
VESA 68K	-0.02	-1.05	0.46	2.57	GND	1.94	GND	0.74	0.05

TR	Q801 (C945)			(Q802 (A733)			Q803 (C945)		
PIN MODE	Е	С	В	E	С	В	Е	С	В	
VGA-480	2.50	6.06	3.01	6.04	GND	6.05	0.74	10.15	1.35	
VESA 53K	3.38	6.05	3.91	6.05	GND	6.06	0.69	11.27	1.30	
VESA 68K	3.39	6.05	3.91	6.05	GND	6.06	0.71	11.14	1.31	

TR	Q804 (JC337)			Q	Q805 (JC327)			Q806 (A733)		
PIN MODE	E	С	В	E	С	В	E	С	В	
VGA-480	10.66	24.68	10.69	10.66	0	10.10	3.01	0	2.39	
VESA 53K	11.76	25.04	11.79	11.76	0	11.21	3.91	0	3.29	
VESA 68K	11.60	25.11	11.62	11.60	0	11.05	3.91	0	3.29	

8.0 IC CONFIGURATION

(1) IC101,IC401 (3842,3843)

(2) IC102 (7805)

(3) IC201 (LA7856)

(4) IC501 (UM68P61)

(5) IC601 (M52737SP)

(6) IC603 (STV9425)

					1	
B-GIN	1	PWM0		PWM7	24	R-OUT
R-GIN	2	PWM1		PWM6	23	G-GAIN
FBLK	3	FBLK	S	TEST	22	TEST
VS	4	VSYNC	4 2	В	21	OSDG
HS	5	HSYNC	ъ	G	20	OSDR
VDD	6	VDD	>	R	19	OSDB
PXCK	7	PXCK	S	GND	18	GND
CKOUT	8	CKOUT		RESET	17	RESET
OSC-OUT	9	XTAL OL	ΙT	SDA	16	SDA
OSC-IN	10	XTAL IN		SCL	15	SCL
BRIGHT	11	PWM2		PWM5	14	B-CUT
G-CUT	12	PWM3		PWM4	13	CONT
	1				I	

(7) IC801 (LA7838)

(8) IC502 (24C04)

9.0 PARTS LIST

1569VL Parts List

Abbreviations : Capacitors EL: Electrolytic Aluminum, TA: Tantalum, CE: Ceramic

PP: Polypropylene, PEI: Polyster (Inductive),

PEN: Polyster (Non-Inductive) PPS: Serial Poly Propylene, MPE: Polyster Metalized, MPP: Polypropylene Metalized. CF: Carbon Film, MF:Metal Film, VR: Variable Resistor.

MOF: Metal Oxide Film, POT: Potentiometer

Semiconductor TR: Transistor, DI: Diode, ZD: Zener Diode, IC: IC.

Remark: •: 1st priority , Recommended Q'ty = (Location Number x3)

O: 2nd priority, Recommended Q'ty = (Location Number x2)

N : New parts

Resistors

!: Critical components Affecting X-radiation

Location	Part No.	Description	Location	Part No.	Description
	TRANSISTOR		Q511	14C92-111B	TR NPN 2SC945P/Q
	1100	1010101	Q512	14A92-021B	TR PNP 2SA733P/Q
Q101	14T92-011E	TR SCR BT169D	Q515	14C92-111B	TR NPN 2SC945P/Q
Q102	14C92-111B	TR NPN 2SC945P/Q	Q516	14C92-311E	TR NPN JC337-25
Q103	14C92-111B	TR NPN 2SC945P/Q	Q517	14C92-311E	TR NPN JC337-25
• Q104	14K22-150U	TR MOS FET FS10KM-12	Q518	14A92-021B	TR PNP 2SA733P/Q
Q106	14B26-030B	TR PNP 2SB772	Q522	14C92-111B	TR NPN 2SC945P/Q
Q107	14D26-010B	TR NPN 2SD882P/Q	Q523	14C92-111B	TR NPN 2SC945P/Q
⊚ Q108	14C92-111B	TR NPN 2SC945P/Q	Q605	14C92-111B	TR NPN 2SC945P/Q
Q109	14C92-111B	TR NPN 2SC945P/Q	Q630	14C26-160C	TR NPN 2SC3953
Q110	14B26-030B	TR PNP 2SB772	Q632	14C92-031E	TR NPN PH2369
⊚ Q111	14C92-111B	TR NPN 2SC945P/Q	Q633	14A93-041C	TR PNP 2SA1370
⊚ Q201	14A92-021B	TR PNP 2SA733P/Q	N⊚ Q634	14A92-061E	TR PNP BF423
⊙ Q202	14C92-111B	TR NPN 2SC945P/Q	Q635	14C92-011E	TR NPN BF422
⊙ Q203	14A92-021B	TR PNP 2SA733P/Q	Q650	14C26-160C	TR NPN 2SC3953
Q204	14C92-111B	TR NPN 2SC945P/Q	Q652	14C92-031E	TR NPN PH2369
⊚ Q205	14C92-111B	TR NPN 2SC945P/Q	Q653	14A93-041C	TR PNP 2SA1370
⊙ Q206	14C92-111B	TR NPN 2SC945P/Q	NO Q654	14A92-061E	TR PNP BF423
⊙ Q207	14A92-021B	TR PNP 2SA733P/Q	Q655	14C92-011E	TR NPN BF422
Q209	14C92-111B	TR NPN 2SC945P/Q	Q661	14C92-111E	TR NPN 2SC945P/Q
Q210	14C92-111B	TR NPN 2SC945P/Q	Q662	14C92-281P	TR NPN 2SC1906
Q211	14C92-111B	TR NPN 2SC945P/Q	Q670	14C26-160C	TR NPN 2SC3953
N● Q401	14K22-110WU	TR MOS FET FS12UM-5	Q672	14C92-031E	TR NPN PH2369
Q501	14A92-021B	TR PNP 2SA733P/Q	Q673	14A93-041C	TR PNP 2SA1370
Q502	14A92-021B	TR PNP 2SA733P/Q	NO Q674	14A92-061E	TR PNP BF423
Q503	14C92-111B	TR NPN 2SC945P/Q	Q675	14C92-011E	TR NPN BF422
Q504	14A92-021B	TR PNP 2SA733P/Q	• Q701	14C3P-150C	TR NPN 2SC4924 (LOW)
Q508	14C92-111B	TR NPN 2SC945P/Q	Q702	14C26-040B	TR NPN 2SC2688K
Q509	14C92-111B	TR NPN 2SC945P/Q	N● Q704	14K22-110W	TR MOS FET 630/890
Q510	14C92-111B	TR NPN 2SC945P/Q	N● Q705	14K22-110W	TR MOS FET 630/890

Location	Part No.	Description	Location	Part No.	Description
N Q708	14C92-311E	TR NPN JC337-25	D630	15S11M001F	DI SWITCH 0.5A 50V (1N4148)
N⊚ Q709	14K22-280U	TR MOS FET FS7KM-16A	D631	15S11M001F	DI SWITCH 0.5A 50V (1N4148)
⊙ Q711	14A92-021B	TR PNP 2SA733P/Q	D632	15S11M001F	DI SWITCH 0.5A 50V (1N4148)
⊙ Q712	14A92-021B	TR PNP 2SA733P/Q	D633	15S11M001F	DI SWITCH 0.5A 50V (1N4148)
⊙ Q713	14C92-111B	TR NPN 2SC945P/Q	D650	15S11M001F	DI SWITCH 0.5A 50V (1N4148)
Q714	14A92-021B	TR PNP 2SA733P/Q	D651	15S11M001F	DI SWITCH 0.5A 50V (1N4148)
Q715	14A92-061E	TR PNP BF423	D652	15S11M001F	DI SWITCH 0.5A 50V (1N4148)
Q716	14C92-111B	TR NPN 2SC945P/Q	D653	15S11M001F	DI SWITCH 0.5A 50V (1N4148)
Q717	14C92-111B	TR NPN 2SC945P/Q	D664	15S11M001F	DI SWITCH 0.5A 50V (1N4148)
Q718	14A92-151E	TR PNP JC327-25	D670	15S11M001F	DI SWITCH 0.5A 50V (1N4148)
Q721	14A92-021B	TR PNP 2SA733P/Q	D671	15S11M001F	DI SWITCH 0.5A 50V (1N4148)
Q722	14C92-111B	TR NPN 2SC945P/Q	D672	15S11M001F	DI SWITCH 0.5A 50V (1N4148)
© Q801	14C92-111B	TR NPN 2SC945P/Q	D673	15S11M001F	DI SWITCH 0.5A 50V (1N4148)
Q802	14A92-021B	TR PNP 2SA733P/Q	D702	15S3C-702F	DI MD SW 5A 1500V (DD54RC)
Q803	14C92-111B	TR NPN 2SC945P/Q	D703	15S11M001F	DI SWITCH 0.5A 50V (1N4148)
Q804	14C92-311E	TR NPN JC337-25	D704	15S65M201F	DI RECTIFIER 1A 400V (1N4004)
Q805	14A92-151E	TR PNP JC327-25	D705	15S65M201F	DI RECTIFIER 1A 400V (1N4004)
⊙ Q806	14A92-021B	TR PNP 2SA733P/Q	D706	15S11M001F	DI SWITCH 0.5A 50V (1N4148)
			D709	15S33T201F	DI MD SW 1A 200V(BYD33D)
	DIC	DDES	D710	15S35T201F	DI MD SW 1A 200V(BYD33D)
D101	15S47T3 01F	DI HI SW 1.5A 600V (BYV36C)	D714	15S11M001F	DI SWITCH 0.5A 50V (1N4148)
D102	15S47T301F	DI HI SW 1.5A 600V (BYV36C)	D715	15S11M001F	DI SWITCH 0.5A 50V (1N4148)
D103	15S11M001F	DI SWITCH 0.5A 50V (1N4148)	D801	15S62M201F	DI RECTIFIER 1A 100V (1N4002)
D104	15S33T201F	DI MD SW 1A 200V(BYD33D)	D802	15S11M001F	DI SWITCH 0.5A 50V (1N4148)
D105	15S11M001F	DI SWITCH 0.5A 50V (1N4148)	D803	15S11M001F	DI SWITCH 0.5A 50V (1N4148)
D107	15S11M001F	DI SWITCH 0.5A 50V (1N4148)		7010	R DIODE
D108	15S47T301F	DI HI SW 1.5A 600V (BYV36C)		ZENE	- DIODE
D109	15S64-A01F	DI RECTIFIER 10A 300V (BYT28-300)	ZD102	15Z33M6290H	ZD 6.2V 5% 0.5W
D110	15S47TK00F	DI HI SW 2.3A 600V (BYM26C)	ZD103	15Z33M1800H	ZD 18V 5% 0.5W
D111	15S43T401T	DI HI SW 2A 200V (HER203)	! ZD201	15Z33M8290H	ZD 8.2V 5% 0.5W
D112	15S43T601T	DI HI SW 3A 200V (HER303)	ZD202	15Z33M5190H	ZD 5.1V 5% 0.5W
D113	15S11M001F	DI SWITCH 0.5A 50V (1N4148)	ZD401	15Z33M4390P	ZD 4.3V 5% 0.5W
D114	15S11M001F	DI SWITCH 0.5A 50V (1N4148)	ZD501	15Z33M3990H	ZD 3.9V 5% 0.5W
D116	15S33T201F	DI MD SW 1A 200V(BYD33D)	ZD502	15Z33M1200H	ZD 12V 5% 0.5W
D117	15S11M001F	DI SWITCH 0.5A 50V (1N4148)	ZD504	15Z33M5190H	ZD 5.1V 5% 0.5W
D202	15S11M001F	DI SWITCH 0.5A 50V (1N4148)	ZD505	15Z33M5190H	ZD 5.1V 5% 0.5W
D204	15S11M001F	DI SWITCH 0.5A 50V (1N4148)	ZD702	15Z33M4790H	ZD 4.7V 5% 0.5W
D207	15S33T201F	DI MD SW 1A 200V(BYD33D)	ZD704	15Z33M4390P	ZD 4.3V 5% 0.5W
D401	15S11M001F	DI SWITCH 0.5A 50V (1N4148)			
D402	15S11M001F	DI SWITCH 0.5A 50V (1N4148)		RESI	STORS
D403	15S11M001F	DI SWITCH 0.5A 50V (1N4148)	J657	22225-102M	RES CF 1K 5% 1/4W
D404	15S11M001F	DI SWITCH 0.5A 50V (1N4148)	R101	22245-4741	RES CF 470K 5% 1/2W
D405	15S11M001F	DI SWITCH 0.5A 50V (1N4148)	R102	23755-3634	RES MOF 36K 5% 2W
D407	15S43T601T	DI HI SW 3A 200V (HER303)	R103	23765-303B	RES MOF 30K 5% 3W
D503	15S62M201F	DI RECTIFIER 1A 100V (1N4002)	R104	23765-102B	RES MOF 1K 5% 3W
D504	15S11M001F	DI SWITCH 0.5A 50V (1N4148)	R106	22215-152M	RES CF 1K5 5% 1/8W

			p.		
Location	Part No.	Description	Location	Part No.	Description
R107	23755-8204	RES MOF 82R 5% 2W	R206	22215-511M	RES CF 510R 5% 1/8W
R109	22215-472M	RES CF 4K7 5% 1/8W	R207	22215-363M	RES CF 36K 5% 1/8W
R110	22215-822M	RES CF 8K2 5% 1/8W	R208	22215-223M	RES CF 22K 5% 1/8W
R111	22215-433M	RES CF 43K 5% 1/8W	R209	22215-223M	RES CF 22K 5% 1/8W
R113	22225-394M	RES CF 390K 5% 1/4W	R210	22215-473M	RES CF 47K 5% 1/8W
R114	22225-363M	RES CF 36K 5% 1/4W	R211	22215-752M	RES CF 7K5 5% 1/8W
R115	22215-154M	RES CF 150K 5% 1/8W	R212	22215-562M	RES CF 5K6 5% 1/8W
R116	22225-101M	RES CF 100R 5% 1/4W	R213	22225-272M	RES CF 2K7 5% 1/4W
R117	22215-101M	RES CF 100R 5% 1/8W	R214	22215-333M	RES CF 33K 5% 1/8W
R118	22215-473M	RES CF 47K 5% 1/8W	R215	22215-471M	RES CF 470R 5% 1/8W
R119	22225-472M	RES CF 4K7 5% 1/4W	R216	23A11-392M	RES MF 3K9 1% 1/8W
R120	22215-560M	RES CF 56R 5% 1/8W	R217	22225-102M	RES CF 1K 5% 1/4W
R121	22225-271M	RES CF 270R 5% 1/4W	R218	22225-822M	RES CF 8K2 5% 1/4W
R123	22225-103M	RES CF 10K 5% 1/4W	R219	22215-151M	RES CF 150R 5% 1/8W
R125	22225-471M	RES CF 470R 5% 1/4W	R220	22215-622M	RES CF 6K2 5% 1/8W
R126	23755-2284	RES MOF 0.22R 5% 2W	R221	22215-473M	RES CF 47K 5% 1/8W
R127	22215-391M	RES CF 390R 5% 1/8W	R222	22215-471M	RES CF 470R 5% 1/8W
R128	22225-392M	RES CF 3K9 5% 1/4W	R223	22215-123M	RES CF 12K 5% 1/8W
R129	22215-681M	RES CF 680R 5% 1/8W	R224	23A11-334M	RES MF 330K 1% 1/8W
R130	22215-102M	RES CF 1K 5% 1/8W	R225	22215-823M	RES CF 82K 5% 1/8W
R131	22215-242M	RES CF 2K4 5% 1/8W	R226	22215-332M	RES CF 3K3 5% 1/8W
R132	22215-272M	RES CF 2K7 5% 1/8W	R227	22215-103M	RES CF 10K 5% 1/8W
R133	22215-391M	RES CF 390R 5% 1/8W	R228	22215-332M	RES CF 3K3 5% 1/8W
R134	22215-751M	RES CF 750R 5% 1/8W	R229	22215-222M	RES CF 2K2 5% 1/8W
R135	22215-223M	RES CF 22K 5% 1/8W	R230	23A11-203M	RES MF 20K 1% 1/8W
R136	22225-223M	RES CF 22K 5% 1/4W	R231	23A11-203M	RES MF 20K 1% 1/8W
R137	22225-223M	RES CF 22K 5% 1/4W	R232	22225-204M	RES CF 200K 5% 1/4W
R138	22225-223M	RES CF 22K 5% 1/4W	R233	22215-103M	RES CF 10K 5% 1/8W
R139	22215-472M	RES CF 4K7 5% 1/8W	R234	23A11-912M	RES MF 9K1 1% 1/8W
R140	23245-5104	RES MOF 51R 5% 1W	R235	23A11-243M	RES MF 24K 1% 1/8W
R141	22215-472M	RES CF 4K7 5% 1/8W	R236	22215-222M	RES CF 2K2 5% 1/8W
R142	23755-1004	RES MOF 10R 5% 2W	R237	22215-752M	RES CF 7K5 5% 1/8W
R143	22225-224M	RES CF 220K 5% 1/4W	R239	22215-433M	RES CF 43K 5% 1/8W
R144	22225-363M	RES CF 36K 5% 1/4W	R240	22215-103M	RES CF 10K 5% 1/8W
R145	23245-1894	RES MOF 1R8 5% 1W	R241	22215-222M	RES CF 2K2 5% 1/8W
R146	22215-222M	RES CF 2K2 5% 1/8W	R242	22215-103M	RES CF 10K 5% 1/8W
R147	22225-394M	RES CF 390K 5% 1/4W	R243	22215-222M	RES CF 2K2 5% 1/8W
R148	22215-222M	RES CF 2K2 5% 1/8W	R244	22215-103M	RES CF 10K 5% 1/8W
R149	22215-203M	RES CF 20K 5% 1/8W	R245	23A21-202M	RES MF 2K 1% 1/4W
R151	22215-470M	RES CF 47R 5% 1/8W	R246	22215-152M	RES CF 1K5 5% 1/8W
R152	22225-224M	RES CF 220K 5% 1/4W	R247	22215-152M	RES CF 1K5 5% 1/8W
R201	22215-223M	RES CF 22K 5% 1/8W	R250	22215-122M	RES CF 1K2 5% 1/8W
R202	22215-202M	RES CF 2K 5% 1/8W	R251	22225-221M	RES CF 220R 5% 1/4W
R203	22215-183M	RES CF 18K 5% 1/8W	R252	23A21-202M	RES MF 2K 1% 1/4W
R204	22215-102M	RES CF 1K 5% 1/8W	R401	23A11-202M	RES MF 2K 1% 1/8W
R205	22215-183M	RES CF 18K 5% 1/8W	R402	23A11-682M	RES MF 6K8 1% 1/8W

35

					:
Location	Part No.	Description	Location	Part No.	Description
R403	22215-512M	RES CF 5K1 5% 1/8W	R543	22215-103M	RES CF 10K 5% 1/8W
R404	22215-105M	RES CF 1M 5% 1/8W	R545	22215-182M	RES CF 1K8 5% 1/8W
R405	23A11-102M	RES MF 1K 1% 1/8W	R547	22215-222M	RES CF 2K2 5% 1/8W
R406	23755-2284	RES MOF 0.22R 5% 2W	R548	22225-103M	RES CF 10K 5% 1/4W
R407	23755-2284	RES MOF 0.22R 5% 2W	R549	22215-472M	RES CF 4K7 5% 1/8W
R410	22225-224M	RES CF 220K 5% 1/4W	R550	22215-103M	RES CF 10K 5% 1/8W
R411	23A11-274M	RES MF 270K 1% 1/8W	R551	22215-103M	RES CF 10K 5% 1/8W
R412	22225-184M	RES CF 180K 5% 1/4W	R552	22215-472M	RES CF 4K7 5% 1/8W
R414	22215-121M	RES CF 120R 5% 1/8W	R555	22215-472M	RES CF 4K7 5% 1/8W
R415	22225-221M	RES CF 220R 5% 1/4W	R556	22215-222M	RES CF 2K2 5% 1/8W
R416	22215-102M	RES CF 1K 5% 1/8W	R557	22215-221M	RES CF 220R 5% 1/8W
R417	23755-2284	RES MOF 0.22R 5% 2W	R559	22215-332M	RES CF 3K3 5% 1/8W
R418	22215-470M	RES CF 47R 5% 1/8W	R560	22215-681M	RES CF 680R 5% 1/8W
R419	22215-471M	RES CF 470R 5% 1/8W	R562	22215-332M	RES CF 3K3 5% 1/8W
R420	23755-1014	RES MOF 100R 5% 2W	R563	22215-332M	RES CF 3K3 5% 1/8W
R421	22215-104M	RES CF 100K 5% 1/8W	R564	22215-681M	RES CF 680R 5% 1/8W
R501	22215-512M	RES CF 5K1 5% 1/8W	R567	22225-152M	RES CF 1K5 5% 1/4W
R502	22215-272M	RES CF 2K7 5% 1/8W	R568	22215-562M	RES CF 5K6 5% 1/8W
R503	22225-102M	RES CF 1K 5% 1/4W	R572	22225-472M	RES CF 4K7 5% 1/4W
R504	22225-301M	RES CF 300R 5% 1/4W	R573	22215-332M	RES CF 3K3 5% 1/8W
R506	22215-332M	RES CF 3K3 5% 1/8W	R574	22215-511M	RES CF 510R 5% 1/8W
R507	22225-302M	RES CF 3K 5% 1/4W	R575	22215-102M	RES CF 1K 5% 1/8W
R508	22215-272M	RES CF 2K7 5% 1/8W	R576	22225-472M	RES CF 4K7 5% 1/4W
R510	22215-243M	RES CF 24K 5% 1/8W	R581	22215-103M	RES CF 10K 5% 1/8W
R515	22215-563M	RES CF 56K 5% 1/8W	R582	22215-153M	RES CF 15K 5% 1/8W
R516	22215-392M	RES CF 3K9 5% 1/8W	R583	22215-103M	RES CF 10K 5% 1/8W
R517	22215-102M	RES CF 1K 5% 1/8W	R584	22215-472M	RES CF 4K7 5% 1/8W
R519	22215-432M	RES CF 4K3 5% 1/8W	R585	22215-472M	RES CF 4K7 5% 1/8W
R520	22215-332M	RES CF 3K3 5% 1/8W	R586	22215-103M	RES CF 10K 5% 1/8W
R525	22215-242M	RES CF 2K4 5% 1/8W	R587	22215-473M	RES CF 47K 5% 1/8W
R527	22215-472M	RES CF 4K7 5% 1/8W	R588	22215-473M	RES CF 47K 5% 1/8W
R528	22215-332M	RES CF 3K3 5% 1/8W	R589	23A11-474M	RES MF 470K 1% 1/8W
R529	22215-683M	RES CF 68K 5% 1/8W	R601	23A11-750M	RES MF 75R 1% 1/8W
R530	22215-223M	RES CF 22K 5% 1/8W	R602	23A11-750M	RES MF 75R 1% 1/8W
R531	22215-432M	RES CF 4K3 5% 1/8W	R603	23A11-750M	RES MF 75R 1% 1/8W
R532	22215-182M	RES CF 1K8 5% 1/8W	R604	22215-103M	RES CF 10K 5% 1/8W
R533	22215-432M	RES CF 4K3 5% 1/8W	R605	22245-1011	RES CF 100R 5% 1/2W
R534	22225-302M	RES CF 3K 5% 1/4W	R606	22215-101M	RES CF 100R 5% 1/8W
R535	22225-302M	RES CF 3K 5% 1/4W	R607	22215-472M	RES CF 4K7 5% 1/8W
R536	22215-242M	RES CF 2K4 5% 1/8W	R608	22215-822M	RES CF 8K2 5% 1/8W
R537	22225-222M	RES CF 2K2 5% 1/4W	R609	22225-471M	RES CF 470R 5% 1/4W
R538	22215-302M	RES CF 3K 5% 1/8W	R610	22225-471M	RES CF 470R 5% 1/4W
R539	22215-332M	RES CF 3K3 5% 1/8W	R611	22225-471M	RES CF 470R 5% 1/4W
R540	22215-103M	RES CF 10K 5% 1/8W	R612	22215-103M	RES CF 10K 5% 1/8W
R541	22215-222M	RES CF 2K2 5% 1/8W	R613	22215-102M	RES CF 1K 5% 1/8W
R542	22225-332M	RES CF 3K3 5% 1/4W	R614	22215-103M	RES CF 10K 5% 1/8W

Location	Part No.	Description	Location	Part No.	Description
LUCALIUII	rait No.	Description	Location	Fait NO.	Description
R617	22215-472M	RES CF 4K7 5% 1/8W	R672	22225-104M	RES CF 100K 5% 1/4W
R620	22245-3331	RES CF 33K 5% 1/2W	R673	22225-220M	RES CF 22R 5% 1/4W
R621	22215-101M	RES CF 100R 5% 1/8W	R674	22225-220M	RES CF 22R 5% 1/4W
R622	22225-470M	RES CF 47R 5% 1/4W	R675	22225-101M	RES CF 100R 5% 1/4W
R623	22215-470M	RES CF 47R 5% 1/8W	R676	22215-220M	RES CF 22R 5% 1/8W
R624	22215-470M	RES CF 47R 5% 1/8W	R677	22245-4701	RES CF 47R 5% 1/2W
R625	22215-102M	RES CF 1K 5% 1/8W	R678	22215-103M	RES CF 10K 5% 1/8W
R627	22215-202M	RES CF 2K 5% 1/8W	R679	22215-622M	RES CF 6K2 5% 1/8W
R628	22215-223M	RES CF 22K 5% 1/8W	R680	22215-752M	RES CF 7K5 5% 1/8W
R629	22215-122M	RES CF 1K2 5% 1/8W	R681	22215-470M	RES CF 47R 5% 1/8W
R630	23885-1520	RES MOF 1K5 5% 5W	R683	22215-102M	RES CF 1K 5% 1/8W
R631	22215-224M	RES CF 220K 5% 1/8W	R684	22215-752M	RES CF 7K5 5% 1/8W
R632	22225-104M	RES CF 100K 5% 1/4W	R685	22215-223M	RES CF 22K 5% 1/8W
R633	22225-220M	RES CF 22R 5% 1/4W	R686	22225-103M	RES CF 10K 5% 1/4W
R634	22225-220M	RES CF 22R 5% 1/4W	R687	22215-103M	RES CF 10K 5% 1/8W
R635	22225-101M	RES CF 100R 5% 1/4W	R691	22215-222M	RES CF 2K2 5% 1/8W
R636	22215-220M	RES CF 22R 5% 1/8W	R694	22215-432M	RES CF 4K3 5% 1/8W
R637	22245-4701	RES CF 47R 5% 1/2W	R695	22215-102M	RES CF 1K 5% 1/8W
R638	22215-103M	RES CF 10K 5% 1/8W	R696	22215-223M	RES CF 22K 5% 1/8W
R639	22225-622M	RES CF 6K2 5% 1/4W	R697	22215-102M	RES CF 1K 5% 1/8W
R640	22215-752M	RES CF 7K5 5% 1/8W	R701	23245-5624	RES MOF 5K6 5% 1W
R641	22215-470M	RES CF 47R 5% 1/8W	R702	22215-152M	RES CF 1K5 5% 1/8W
R643	22225-102M	RES CF 1K 5% 1/4W	R703	22225-689M	RES CF 6R8 5% 1/4W
R644	22215-752M	RES CF 7K5 5% 1/8W	R704	22225-159M	RES CF 1R5 5% 1/4W
R645	22215-103M	RES CF 10K 5% 1/8W	R705	22225-220M	RES CF 22R 5% 1/4W
R646	22215-243M	RES CF 24K 5% 1/8W	R707	23745-3001	RES MOF 30R 5% 1W
R647	22215-243M	RES CF 24K 5% 1/8W	R709	22225-470M	RES CF 47R 5% 1/4W
R648	22215-243M	RES CF 24K 5% 1/8W	R710	22225-224M	RES CF 220K 5% 1/4W
R649	22215-102M	RES CF 1K 5% 1/8W	R711	22215-682M	RES CF 6K8 5% 1/8W
R650	23885-1520	RES MOF 1K5 5% 5W	! R712	22215-333M	RES CF 33K 5% 1/8W
R651	22215-224M	RES CF 220K 5% 1/8W	R715	22245-4721	RES CF 4K7 5% 1/2W
R652	22225-104M	RES CF 100K 5% 1/4W	R716	22225-680M	RES CF 68R 5% 1/4W
R653	22225-220M	RES CF 22R 5% 1/4W	R717	22215-392M	RES CF 3K9 5% 1/8W
R654	22225-220M	RES CF 22R 5% 1/4W	R718	22225-102M	RES CF 1K 5% 1/4W
R655	22225-101M	RES CF 100R 5% 1/4W	R719	22225-152M	RES CF 1K5 5% 1/4W
R656	22225-101W 22215-220M	RES CF 22R 5% 1/8W	R719 R720	22225-152M 22225-152M	RES CF 1K5 5% 1/4W
R657	22215-220IVI 22245-4701	RES CF 47R 5% 1/2W	R720 R722	22225-152W 22225-821M	RES CF 820R 5% 1/4W
R658	22215-103M	RES CF 10K 5% 1/8W	R723	22225-222M	RES CF 2K2 5% 1/4W
R659	22215-622M	RES CF 6K2 5% 1/8W	R724	22245-2021	RES CF 2K 5% 1/2W
R660	22215-752M	RES CF 7K5 5% 1/8W	R725	22225-102M	RES CF 1K 5% 1/4W
R661	22215-470M	RES CF 47R 5% 1/8W	R726	22225-102M	RES CF 1K 5% 1/4W
R663	22215-102M	RES CF 1K 5% 1/8W	R729	22225-682M	RES CF 6K8 5% 1/4W
R664	22225-752M	RES CF 7K5 5% 1/4W	R730	22215-473M	RES CF 47K 5% 1/8W
R666	22225-472M	RES CF 4K7 5% 1/4W	R732	22215-470M	RES CF 47R 5% 1/8W
R670	23885-1520	RES MOF 1K5 5% 5W	R733	23755-8204	RES MOF 82R 5% 2W
R671	22215-224M	RES CF 220K 5% 1/8W	R734	22215-203M	RES CF 20K 5% 1/8W

CTX 37

Location `	Part No.	Description	Location	Part No.	Description
R735	23755-8204	RES MOF 82R 5% 2W	R858	22215-470M	RES CF 47R 5% 1/8W
R736	22225-473M	RES CF 47K 5% 1/4W		VADIARI E	RESISTOR
R737	22245-8231	RES CF 82K 5% 1/2W		VARIABLE	RESISTON
R738	22215-332M	RES CF 3K3 5% 1/8W	VR101	25B20-202B	RES POT 2KB 0.1W
R739	22215-433M	RES CF 43K 5% 1/8W	VR102	25B20-102B	RES POT 1KB 0.1W
R740	22215-472M	RES CF 4K7 5% 1/8W	VR201	25B20-202B	RES POT 2KB 0.1W
R741	22215-562M	RES CF 5K6 5% 1/8W	VR202	25B20-302B	RES POT 3KB 0.1W
R742	22225-100M	RES CF 10R 5% 1/4W	VR401	25B20-102B	RES POT 1KB 0.1W
R743	22225-225M	RES CF 2M2 5% 1/4W	VR701	25A43-101BH	RES POT 100RB 0.5W
R744	23245-151B	RES MOF 150R 5% 1W	! VR702	25B20-203B	RES POT 20KB 0.1W
R745	23245-8204	RES MOF 82R 5% 1W	VR801	25B20-202B	RES POT 2KB 0.1W
R746	22215-153M	RES CF 15K 5% 1/8W		CADA	ACITOR
R747	22225-153M	RES CF 15K 5% 1/4W		CAPA	ACITOR
R748	22215-100M	RES CF 10R 5% 1/8W	C101	42A77-224A	SAFETY 0.22U 20% AC250V
R750	22215-102M	RES CF 1K 5% 1/8W	C102	42D77-2224	SAFETY 2200P 20%
R751	22225-510M	RES CF 51R 5% 1/4W	C103	42D77-2224	SAFETY 2200P 20% AC250V
R752	22225-223M	RES CF 22K 5% 1/4W	C104	28ED7-1518	EL 150U 20% 400V
R753	22225-223M	RES CF 22K 5% 1/4W	C105	39446-1038	CE 0.01U 10% 500V
R754	22215-153M	RES CF 15K 5% 1/8W	C106	39446-1038	CE 0.01U 10% 500V
R755	22225-100M	RES CF 10R 5% 1/4W	C107	39446-221R	CE 220P 10% 500V
R756	22215-203M	RES CF 20K 5% 1/8W	C108	42D77-2224	SAFETY 2200P 20% AC250V
R762	22215-822M	RES CF 8K2 5% 1/8W	C109	28H37-101R	EL 100U 20%
R767	22225-102M	RES CF 1K 5% 1/4W	C110	31115-104R	PEI 0.1U 5% 50V
R770	22215-272M	RES CF 2K7 5% 1/8W	C111	28H47-221RC	EL 220U 20% 25V
R801	22215-303M	RES CF 30K 5% 1/8W	C113	39B87C104R	ML 0.1U 20% 50V
R802	22215-682M	RES CF 6K8 5% 1/8W	C114	31115-222R	PEI 2200P 5% 50V
R804	22225-472M	RES CF 4K7 5% 1/4W	C115	42A77-104C	SAFETY 0.1U 20%
R805	22215-273M	RES CF 27K 5% 1/8W	C116	31115-222R	PEI 2200P 5% 50V
R806	22215-473M	RES CF 47K 5% 1/8W	C118	39146-471R	CE 470P 10% 50V
R807	23A11-683M	RES MF 68K 1% 1/8W	C119	28H97-1011	EL 100U 20%
R808	23A31-1291	RES MF 1R2 1% 1/2W	C120	28H97-4701	EL 47U 20% 100V
R809	22215-102M	RES CF 1K 5% 1/8W	C121	28N67-4711	EL 470U 20% 50V
R810	22215-331M	RES CF 330R 5% 1/8W	C122	39446-221R	CE 220P 10% 500V
R811	22215-472M	RES CF 4K7 5% 1/8W	C123	28H57-4711	EL 470U 20% 35V
R812	22215-472M	RES CF 4K7 5% 1/8W	C124	28A47-6811	EL 680U 20% 25V
R813	22245-4791	RES CF 4R7 5% 1/2W	C125	28H47-4711	EL 470U 20% 25V
R814	22215-182M	RES CF 1K8 5% 1/8W	C127	28H37-101R	EL 100U 20% 16V
R815	22245-1511	RES CF 150R 5% 1/2W	C128	28H37-331R	EL 330U 20% 16V
R816	22225-332M	RES CF 3K3 5% 1/4W	C129	28H37-331R	EL 330U 20% 16V
R817	22215-272M	RES CF 2K7 5% 1/8W	C130	28H37-470R	EL 47U 20% 16V
R818	22215-103M	RES CF 10K 5% 1/8W	C131	39446-272R	-CE 2700P 10% 500V
R819	23755-1214	RES MOF 120R 5% 2W	C133	42D77-2224	SAFETY 2200P 20% AC250V
R820	22215-472M	RES CF 4K7 5% 1/8W	C135	39187-103R	CE 0.01U 20% 50V
R821	22215-101M	RES CF 100R 5% 1/8W	C137	28H37-470R	EL 47U 20% 16V
R856	22215-104M	RES CF 100K 5% 1/8W	C138	28H37-470R	EL 47U 20% 16V
R857	22215-511M	RES CF 510R 5% 1/8W	C139	39446-681R	CE 680P 10% 500V

Location	Part No.	Description	Location	Part No.	Description
C140	39446-331R	CE 330P 10% 500V	C503	39B87C104R	ML 0.1U 20% 50V
C141	39446-331R	CE 330P 10% 500V	C504	39B87C104R	ML 0.1U 20% 50V
C151	28H37-470R	EL 47U 20% 16V	C505	28H27-221R	EL 220U 20% 10V
C201	38115-470R	CE 47P 5% 50V NPO	C507	38115-330R	CE 33P 5% 50V NPO
C202	28H67-479R	EL 4U7 20%	C508	38115-330R	CE 33P 5% 50V NPO
C203	31115-102R	PEI 1000P 5% 50V	C509	39B87C104R	ML 0.1U 20% 50V
C204	38115-221R	CE 220P 5% 50V NPO	C510	28H37-101R	EL 100U 20% 16V
C205	31115-272R	PEI 2700P 5% 50V	C516	28H27-221R	EL 220U 20% 10V
C206	31115-182R	PEI 1800P 5% 50V	C517	39B87C104R	ML 0.1U 20% 50V
C207	28H67-109R	EL 1U 20% 50V	C518	39146-102R	CE 1000P 10% 50V
C208	31115-103R	PEI 0.01U 5% 50V	C519	39146-102R	CE 1000P 10% 50V
C209	33322-222R	PPI 2200P 2% 100V	C522	39146-102R	CE 1000P 10% 50V
C210	28H67-109R	EL 1U 20% 50V	C523	39146-102R	CE 1000P 10% 50V
C211	39B87C104R	ML 0.1U 20% 50V	C524	28H67-100R	EL 10U 20% 50V
C212	28H37-471R	EL 470U 20% 16V	C525	39187-103R	CE 0.01U 20% 50V
C213	28H67-109R	EL 1U 20% 50V	C526	39146-102R	CE 1000P 10% 50V
C214	31115-104R	PEI 0.1U 5% 50V	C527	28H67-479R	EL 4U7 20% 50V
C216	31115-103R	PEI 0.01U 5% 50V	C528	39146-222R	CE 2200P 10% 50V
C217	28H37-470R	EL 47U 20% 16V	C529	39B87C333R	ML 0.033U 20% 50V
C218	28H37-1021	EL 1000U 20% 16V	C530	28H37-101R	EL 100U 20% 16V
C219	28H67-478R	EL 0.47U 20% 50V	C532	39B87C104R	ML 0.1U 20% 50V
C220	28H67-109R	EL 1U 20% 50V	C533	39146-101R	CE 100P 10% 50V
C221	38115-271R	CE 270P 5% 50V NPO	C534	39146-101R	CE 100P 10% 50V
C222	28H67-100R	EL 10U 20% 50V	C535	39146-101R	CE 100P 10% 50V
C223	39187-103R	CE 0.01U 20% 50V	C536	39146-101R	CE 100P 10% 50V
C224	28467-109R	EL 1U 20% 50V NP	C537	28H67-109R	EL 1U 20% 50V
C225	28H67-100R	EL 10U 20% 50V	C538	39B87C104R	ML 0.1U 20% 50V
C227	28H37-101R	EL 100U 20%	C539	28H67-100R	EL 10U 20% 50V
C228	28H67-100R	EL 10U 20% 50V	C601	28H67-109R	EL 1U 20% 50V
C229	28H37-470R	EL 47U 20%	C602	28H67-109R	EL 1U 20% 50V
C230	28H67-100R	EL 10U 20% 50V	C604	28H67-109R	EL 1U 20% 50V
C401	28H67-109R	EL 1U 20% 50V	C605	39146-103R	CE 0.01U 10% 50V
C402	28J67-109R	EL 1U 20% 50V	C606	39146-103R	CE 0.01U 10% 50V
C403	31115-104R	PEI 0.1U 5% 50V	C607	28H37-101R	EL 100U 20% 16V
C404	39146-102R	CE 1000P 10% 50V	C608	39146-103R	CE 0.01U 10% 50V
C405	39B87C333R	ML 0.033U 20% 50V	C609	28H67-109R	EL 1U 20% 50V
C406	28H67-109R	EL 1U 20% 50V	C610	28H67-109R	EL 1U 20% 50V
C407	39146-332R	CE 3300P 10% 50V	C611	28H67-109R	EL 1U 20% 50V
C408	39146-271R	CE 270P 10% 50V	C612	28H37-101R	EL 100U 20% 16V
C409	39B87C104R	ML 0.1U 20% 50V	C613	39146-103R	CE 0.01U 10% 50V
C410	28H37-101R	EL 100U 20% 16V	C614	39646-1028	CE 1000P 10% 2KV
C411	39146-222R	CE 2200P 10% 50V	C615	28H37-101R	EL 100U 20% 16V
C412	39146-102R	CE 1000P 10% 50V	C616	28H07-2201	EL 22U 20% 160V
C415	28467-109R	EL 1U 20% 50V NP	C617	39446-681R	CE 680P 10% 500V
C416	39446-471R	CE 470P 10% 500V	C618	39B87C104R	ML 0.1U 20% 50V
C502	28H27-221R	EL 220U 20% 10V	C619	39146-103R	CE 0.01U 10% 50V

CTX 39

				T							
Location	Part No.	Description	Location	Part No.	Description						
C619	39B87C104R	ML 0.1U 20% 50V	C710	35145-2746	MPP 0.27U 5% 250V						
C620	39146-103R	CE 0.01U 10% 50V	C711	39187-103R	CE 0.01U 20% 50V						
C621	39146-103R	CE 0.01U 10% 50V	C712	35145-6847	MPP 0.68U 5% 250V						
C622	28H67-109R	EL 1U 20% 50V	C716	35155H3047	MPP 0.3U 5% 400V						
C623	28H67-109R	EL 1U 20%	C717	28H67-479R	EL 4U7 20% 50V						
C624	28H67-109R	EL 1U 20%	C719	28H67-109R	EL 1U 20% 50V						
C626	39B87C104R	ML 0.1U 20% 50V	C720	28J67-478R	EL 0.47U 20% 50V						
C627	39146-103R	CE 0.01U 10% 50V	C721	28J67-109R	EL 1U 20%						
C628	39146-103R	CE 0.01U 10% 50V	C722	39B87C334R	ML 0.33U 20% 50V						
C629	39146-103R	CE 0.01U 10% 50V	C723	39B87C334R	ML 0.33U 20% 50V						
C630	28H97-109R	EL 1U 20% 100V	C724	28H57-221R	EL 220U 20% 35V						
C631	38115-101R	CE 100P 5% 50V NPO	C725	28HB7-479R	EL 4U7 20% 250V						
C632	28H97-109R	EL 1U 20% 100V	C726	28H27-221R	EL 220U 20% 10V						
C633	28H67-109R	EL 1U 20% 50V	C727	39146-102R	CE 1000P 10% 50V						
C634	28H67-109R	EL 1U 20% 50V	C728	28H37-470R	EL 47U 20% 16V						
C640	28H97-109R	EL 1U 20% 100V	MPP 0.39U 5% 250V								
C641	39146-103R	CE 0.01U 10% 50V	39B87C104R	ML 0.1U 20% 50V							
C642	39146-103R	CE 0.01U 10% 50V	C731	39446-221R	CE 220P 10% 500V						
C644	39146-103R	CE 0.01U 10% 50V	C732	39146-102R	CE 1000P 10% 50V						
C646	39B87C104R	ML 0.1U 20% 50V	C735	39446-272R	CE 2700P 10% 500V						
C648	28H67-109R	EL 1U 20% 50V	C736	28H37-470R	EL 47U 20% 16V						
C649	38115-101R	CE 100P 5% 50V NPO	C736	28H67-109R	EL 1U 20% 50V						
C650	28H97-109R	EL 1U 20% 100V	C737	28HB7-229R	EL 2U2 20% 250V						
C651	38115-101R	CE 100P 5% 50V NPO	C738	39446-102R	CE 1000P 10% 500V						
C651	38115-221R	CE 220P 5% 50V NPO	C747	31115-104R	PEI 0.1U 5% 50V						
C652	28H97-109R	EL 1U 20% 100V	C801	28H37-331R	EL 330U 20% 16V						
C653	28H67-109R	EL 1U 20% 50V	C802	39146-102R	CE 1000P 10% 50V						
C660	28H97-109R	EL 1U 20% 100V	C803	39146-102R	CE 1000P 10% 50V						
C670	28H97-109R	EL 1U 20% 100V	C804	28H67-100R	EL 10U 20% 50V						
C671	38115-101R	CE 100P 5% 50V NPO	C805	346B5-334R	MPE 0.33U 5% 63V						
C672	28H97-109R	EL 1U 20% 100V	C806	28H57-101R	EL 100U 20% 35V						
C674	38115-330R	CE 33P 5% 50V NPO	C807	28H57-1021	EL 1000U 20% 35V						
C675	38115-330R	CE 33P 5% 50V NPO	C808	31115-104R	PEI 0.1U 5% 50V						
C680	28H97-109R	EL 1U 20% 100V	C809	28H67-100R	EL 10U 20% 50V						
C686	31115-223R	PEI 0.022U 5% 50V	C810	28H47-2225	EL 2200U 20% 25V						
C687	39146-471R	CE 470P 10% 50V	C811	28H67-100R	EL 10U 20% 50V						
C688	39146-471R	CE 470P 10% 50V	C812	38496-100R	CE 10P 10% 500V						
C691	28H37-470R	EL 47U 20% 16V	C820	28H57-221R	EL 220U 20% 35V						
C692	38115-221R	CE 220P 5% 50V NPO	C821	39B87C104R	ML 0.1U 20% 50V						
C696	39146-471R	CE 470P 10% 50V			OII 6						
C701	39146-102R	CE 1000P 10% 50V		C	DILS						
C702	28637-2211	EL 220U 20%	L102	47E00-0260	XFMR EMI ET-24						
! C703	375B5-5127H	PPS 5100P 5% 2KV	L103	47E00-0110	XFMR EMI UU-10.5						
! C704	37575-2227H	PPS 2200P 5% 1.2KV	L104	45M1K-4704	COIL CHOKE 47U						
C708	35145-1044	MPP 0.1U 5% 250V	L106	45M1K-1214	COIL CHOKE 120U 10%						
C709	39187-103R	CE 0.01U 20% 50V	L107	45M1K-4704	COIL CHOKE 47U						

40

Location	Part No.	Description	Location	Part No.	Description						
L401	46N00-0410	COIL LINE CHOKE 85uH	L706	46N00-0330	COIL LINE CHOKE 820uH 10%						
L501	45B0K-102T	COIL PEAKING 1000U		46G00-0085	COIL ROTATION (300T)						
L601	45B0K-100T	COIL PEAKING 10U	:	46G00-0280	COIL DEGAUSSING (100T)						
L630	45B0K-569T	COIL PEAKING 5U6	TRANSFORMERS								
L650	45B0K-569T	COIL PEAKING 5U6		IRANG	BFORMERS						
L670	45B0K-569T	COIL PEAKING 5U6	T101	47S00-1080L	XFMR SPS ERL-35						
L701	46L00-0460L	COIL LINEAR 7.7uH	T701	47D10-0270T	XFMR DRIVE EI-19						
L702	46N00-0320	COIL LINE CHOKE 2.7mH 10%	N! T702	47F13-0830M	XFMR FBT						
L705	45M1K-4704	COIL CHOKE 47U			W/FOCUS/SCREEN/CR BLOCK						

Locat	tion	Part No.	Description									
	ITEGRATED CIRCUITS											
• IC10	01	17A06-150G	IC LINEAR 8P DEFLECTION3842									
IC10	02	17A07-040S	IC LINEAR 3P VOLTAGE REGULATOR KA7805A									
⊚ IC20	01	17A06-170H	IC LINEAR DEFLECTION 7856 20P									
• IC40	01	17A06-190G	IC LINEAR 8P DEFLECTIONUC3843B									
N⊚ IC50	01	16P40-028F	IC MICRO-PROCESSOR 40P 68P61A OTP 24K									
IC50	02	16M08-009R	IC EEPROM AT24C04 (B)-10PC (BLANK) 8P									
IC60	01	17A04-160V	IC LINEAR 36P VIDEO M52737SP									
N● IC60	03	16N24-002H	IC CONTROLLER 24P STV9425									
IC70	01	17A07-031D	IC LINEAR 3P VOLTAGE REGULATOR 431									
⊙ IC80	01	17A06-130H	IC LINEAR DEFLECTION 7838 13P									
		MISCELLA	NEOUS									
		11S31-085A	PCB MAIN-S 330*247*1.6MM 1569VL									
		11S33-032C	PCB CRT-S 138*120*1.6MM1569E									
BD1	101	15D68-F000	DIODE BRIDGE 4A 800V (KBL406G/PBL406)									
LED	9501	19D0A-0060	DIODE LED BICOLOR W-DIFFUSED(L-59GR/1YGW									
!		20H15-08AB	CRT C28 NG M36EDR320X131/2F01 (MASK)									
PTC	C101	26A00-0100	PTCR 9R 20% 2P									
NTC	C101	26B00-0081	NTCR 8R 15% 3A P=7.5MM									
SG6	630	42S00-0201	SPARK GAP DSP-201M 200V20%									
SG6	370	42S00-0201	SPARK GAP DSP-201M 200V20%									
SG6	550	42S00-0201	SPARK GAP DSP-201M 200V20%									
SG6	501	42S00-0301	SPARK GAP DSP-301N 300V30%									
FD6	601	46R00-0010	CORE RF BEAD RHW 3.5*6*1.0 TP									
FD1	01	46R00-0010	CORE RF BEAD RHW 3.5*6*1.0 TP									
FD6	S70	46R00-0010	CORE RF BEAD RHW 3.5*6*1.0 TP									
FD6	850	46R00-0010	CORE RF BEAD RHW 3.5*6*1.0 TP									
FD6	330	46R00-0010	CORE RF BEAD RHW 3.5*6*1.0 TP									
FOR	R D407*2	46R00-0300	CORE RF BRH 3.5*6*1.5									
D11	2*2	46R00-0300	CORE RF BRH 3.5*6*1.5									
FD7	701	46R00-0500	CORE RF C8 BRH 3.5*9*1.0									

CTX 41

Location	Part No.	Description
• F101	49FB2-0A0A	FUSE SLOW 3.15A 250V (NORDIC)
SW1	52P11-0100	SWITCH PRESS W/O LOCK SERIES
SW5	52P11-0100	SWITCH PRESS W/O LOCK SERIES
SW4	52P11-0100	SWITCH PRESS W/O LOCK SERIES
SW3	52P11-0100	SWITCH PRESS W/O LOCK SERIES
SW2	52P11-0100	SWITCH PRESS W/O LOCK SERIES
SW101	52P12-0060	SWITCH POWRE 1P2T 5A250V
RL101	53R001-008S	RELAY COIL DC12V 5A/250V (2-A)
RL701	53R001-011	RELAY COIL DC12V 10A/125V
	54B11-7207	WIRE BRAID 72CM
SHIELD COVER-BRACKET	54B12-1403	WIRE BRAID W/TUBE 14CM
TP4-CRT/GND	54L23B260Z	WIRE LEAD 1015#18 26L BLACK 10/PLUG
В	54L23B290Z	WIRE LEAD 1015#18 29L BLACK TUBE/PLUG
N-N'	54N23B0700	WIRE LEAD 1015#18 7L BK
SHIELD COVER-HEAT SINK	54S23B1700	WIRE TERMINAL/PLUG 1015#18 17L BLACK
	56Q67-1800	POWER CORD IBMPC VDE 1M8-B 250V10A
	57607-3007	TUBE TEFLON D=0.7MM T=0.3MM L=7MM
XL601	60R01-0010M	RESONATOR 8MHZ
XL501	60R01-0010M	RESONATOR 8MHZ
P101	64P20-1010	SOCKET POWER
	65S10-1770	CABLE SIGNAL 15D-11H 177CM BLACK W/C
P502-CRT/B P602	65W01333D1	CONN H/T WIRE 1007#24 10P 2.5 33L-T
P705-CRT/B P603	65W91333D0	CONN H/T WIRE 1007#24 9P-1 2.5 33L-T
	7900015202	SUPPORTS SAPCER
	7900040200	MOUNTING PURSE LOCK (AB-7)
CRT-R1B	7900049000	PLATE CRT
		·
	•	

42

CTX 1569VL EXPLODED VIEW PARTS LIST

(G	30	(3)	75	(4	32	(M	35	28	N3 (00	27	26	25	24	23	22	N,	20	ώ	(n)	1	က်	oi Oi	7:	(,	N)	:	Ö	ю	œ	7	ന	Oi	7	(1)	2		NO.
:				-		6740030240	6740030240	6724A3C080	6720430:00	6720430080	6724426060	6724430080	6776040160		0800025000	7420010100	0810023300	. 0830011300	7410023301	7900015201	7515189220	7620073200	7516673650	7516636220	7510060200	7516785650	7500039000	6771050360	7460004400	0850008000	7110049000	7414452000	7306147110	7110048000	7140402400	0820033000	PARTS NO.
						107	707	SCREW T3x8.0	SCREW M3×10	SCREW M3x8	SCREW T2.6x6	SCREW T3x8	SCREW T4x16.0	CVERLAY	REAR CAB'T	SPONGE	SHIVEL BOWL	SMIVEL BASE	GUN FOOT	SUPPORT SPACER	HEAT SINK	REAR BRACKET	HEAT SINK	HEAT SINK	TEAT SINK	HEAT SINK	CRT SHIELD COVER	SCREW PLASTIC T5.0x36	CRT WAHER	POWER LED LENS	FUNCTION KEY	INSULATING SHEET	POWER SPRING	POWER KNOB	NAME PLATE	FRONT CABINET	DESCRIPTION
											3		4				-	_	4	W	_					u		4	4	-	_	_	-			-	VI,0