Math 6a - Problem Set 2

- 1. The number 1288119601 is composite. Find a Miller-Rabin witness for this fact.
- 2. (a) Show that $n! \leq n^n$ for all natural numbers n.
 - (b) Show that for any natural number k,

$$\left(1+\frac{1}{k}\right)^k < \left(1+\frac{1}{k+1}\right)^{k+1}.$$

(c) Letting $e = \lim_{k \to \infty} \left(1 + \frac{1}{k}\right)^k$ (you may assume that this exists), show that

$$n! > \frac{n^n}{e^n}$$

for all natural numbers n.

- 3. (a) A lottery consists of 47 balls from which 6 are chosen at random. You win the grand prize if and only if you can pick these six numbers in advance. What is your chance of winning?
 - (b) What are your chances if you also have to stipulate the order in which the 6 balls come out?
 - (c) You hear through the grapevine that the lottery has been fixed and there are always three numbers taken from $1, 2, \ldots, 24$ and three numbers from $25, 26, \ldots, 47$. Now what are your chances?
 - (d) Suppose now that the lottery has n numbers, where n is even, and 6 are again chosen. How much does knowing that there are always three numbers from $1, 2, \ldots, n/2$ and three from $n/2 + 1, \ldots, n$ improve your chances?
- 4. A graph has 6 vertices and 12 edges. Each vertex has degree either 2 or 5. How many vertices have degree 2 and how many have degree 5?
- 5. (a) Show that every graph with at least two vertices contains two vertices with the same degree.
 - (b) Show that in a connected graph any two paths of maximum length intersect.
 - (c) Show that if a tree is not a path, it must have at least three leaves.