



Swarm Intelligence – W5:
Swarm Intelligence for
Machine Learning:
An Introduction to
Genetic Algorithms and
Particle Swarm Optimization



### Outline



- Machine-learning-based methods
  - Rationale for real-time, embedded systems
  - Classification and terminology
- Genetic Algorithms (GA)
  - Terminology
  - Main operators and features
- Particle Swarm Optimization (PSO)
  - Terminology
  - Main operators and features
- Comparison between GA and PSO







# Rationale and Classification





## Why Machine-Learning?

- Complementarity to a model-based/engineering approaches: when low-level details matter (optimization) and/or good models do not exist (design)!
- When the design/optimization space is too big (infinite)/too computationally expensive to be systematically searched
- Automatic design and optimization techniques
- Role of engineer reduced to specifying performance requirements and problem encoding





## Why Machine-Learning?

- There are design and optimization techniques robust to noise, nonlinearities, discontinuities
- Individual real-time adaptation to new environmental conditions; i.e. increased individual flexibility when environmental conditions are not known/cannot predicted a priori
- Search space: parameters and/or rules





## ML Techniques: Classification

- Supervised techniques: "a trainer/teacher" is available.
  - Ex: a set of input-output examples is provided to the system, performance error given by difference between system output and true/teacher-defined output, error fed to the system using optimization algorithm so that performance is increased over trials
  - The generality of the system after training is tested on examples not previously presented to the system (i.e. a "test set" exclusive from the "training set")
- Unsupervised techniques: "trial-and-error", "evaluative" techniques; no teacher available.
  - The system judges its performance according to a given metric (fitness function) to be optimized
  - The metrics does not refer to any specific input-to-output mapping
  - The system tries out possible design solutions, does mistakes, and tries to learn from its mistakes
  - Number of possible examples is very large, possibly infinite, and not known a priori





## ML Techniques: Classification

- Off-line: in simulation, download the learned/evolved solution onto real hardware when certain criteria are met
- Hybrid: most of the time in simulation (e.g. 90%), last period (e.g. 10%) of the process on real hardware
- On-line: from the beginning on real hardware (no simulation). Depending on the algorithm more or less rapid





## ML Techniques: Classification

ML algorithms require sometimes fairly important computational resources (in particular for multi-agent search algorithms), therefore a further classification is:

- On-board: machine-learning algorithm run on the system to be learned or evolved (no external unit)
- Off-board: the machine-learning algorithm runs off-board and the system to be learned or evolved just serves as phenotypical, embodied implementation of a candidate solution





# Selected Unsupervised ML Techniques Robust to Noisy Fitness/Reinforcement Functions

- Evolutionary computation
  - Genetic Algorithms (GA) → Today
  - Genetic Programming (GP)
  - Evolutionary Strategies (ES)
  - Particle Swarm Optimization (PSO) Today
- Learning
  - In-Line Adaptive Learning
     Week 8
  - Reinforcement Learning





## Genetic Algorithms





## Genetic Algorithms Inspiration

- In natural evolution, organisms adapt to their environments better able to survive over time
- Aspects of evolution:
  - Survival of the fittest
  - Genetic combination in reproduction
  - Mutation
- Genetic Algorithms use evolutionary techniques to achieve parameter optimization





## GA: Terminology

- Population: set of m candidate solutions (e.g. m = 100); each candidate solution can also be considered as a genetic individual endowed with a single chromosome which in turn consists of multiple genes.
- Generation: new population after genetic operators have been applied (n = # generations e.g. 50, 100, 1000).
- Fitness function: measurement of the efficacy of each candidate solution
- Evaluation span: evaluation period of each candidate solution during a given generation. The time cost of the evaluation span differs greatly from scenario to scenario: it can be extremely cheap (e.g., simply computing the fitness function in a benchmark function) or involve an experimental period (e.g., evaluating the performance of a given control parameter set on a robot)
- Life span: number of generations a candidate solution survives
- Population manager: applies genetic operators to generate the candidate solutions of the new generation from the current one
- Principles: selection (survival of the fittest), recombination, and mutation



## Evolutionary Loop: Several Generations





#### Ex. of end criteria:

• # of generations

• best solution performance

• . . .













## GA: Coding & Decoding

phenotype genotype phenotype coding (chromosome) decoding

- phenotype: usually represented by a vector of dimension D, D being the dimension of the hyperspace to search; vector components are usually real numbers in a bounded range
- genotype: chromosome = string of genotypical segments, i.e. genes, or mathematically speaking, again a vector of real or binary numbers; vector dimension varies according to coding schema (≥ D)

 $G_1$   $G_2$   $G_3$   $G_4$  ...  $G_n$ 

 $G_i$  = gene = binary or real number

Coding: real-to-real or real-to-binary via Gray code (minimization of nonlinear jumping between phenotype and genotype)

Decoding: inverted operation

#### Rem:

- Artificial evolution: usually one-to-one mapping between phenotypic and genotypic space
- Natural evolution: 1 gene codes for several functions, 1 function coded by several genes.





## GA: Basic Operators

- Selection: roulette wheel (selection probability determined by normalized fitness), ranked selection (selection probability determined by fitness order), elitist selection (highest fitness individuals always selected)
- Crossover: 1 point, 2 points (e.g.  $p_{crossover} = 0.2$ )



• Mutation (e.g.  $p_{\text{mutation}} = 0.05$ )



Note: examples for fixed-length chromosomes!





### GA: Discrete vs Continuous

- For default GA, all parameters discrete (e.g., binary bits, choice index)
- Common adaptation for continuous optimization:
  - Parameters are real values
  - Mutation: apply randomized adjustment to gene value (i.e.  $G_i' = G_i + m$ ) instead of replacing value
- Selection of adjustment range affects optimization progress





## Particle Swarm Optimization









## Reynolds' Rules for Flocking

#### More on Week 7

- 1. Separation: avoid collisions with nearby flockmates
- 2. Alignment: attempt to match velocity (speed and direction) with nearby flockmates
- 3. Cohesion: attempt to stay close to nearby flockmates

#### **Position control**



separation al

#### **Velocity control**



alignment

#### **Position control**



cohesion





## **PSO:** Terminology

- Population: set of candidate solutions tested in one time step, consists of m particles (e.g., m = 20)
- Particle: represents a candidate solution; it is characterized by a velocity vector  $\mathbf{v}$  and a position vector  $\mathbf{x}$  in the hyperspace of dimension D
- Evaluation span: evaluation period of each candidate solution during one a time step; as in GA the evaluation span might take more or less time depending on the experimental scenario.
- Fitness function: measurement of efficacy of a given candidate solution during the evaluation span
- Population manager: update velocities and position for each particle according to the main PSO loop
- Principles: imitate, evaluate, compare



## Evolutionary Loop: Several Generations





#### Ex. of end criteria:

- # of time steps
- best solution performance

• . . .





### Initialization: Positions and Velocities







## The Main PSO Loop – Parameters and Variables

#### Functions

- rand ()= uniformly distributed random number in [0,1]
- Parameters
  - w: velocity inertia (positive scalar)
  - c<sub>p</sub>: personal best coefficient/weight (positive scalar)
  - c<sub>n</sub>: neighborhood best coefficient/weight (positive scalar)

#### Variables

- $x_{ij}(t)$ : position of particle i in the j-th dimension at time step t (j = [1,D])
- $-v_{ij}(t)$ : velocity particle i in the j-th dimension at time step t
- $-x_{ij}^{*}(t)$ : position of particle i in the j-th dimension with maximal fitness up to iteration t
- $-x_{i'j}^{*}(t)$ : position of particle i' in the j-th dimension having achieved the maximal fitness up to iteration t in the neighborhood of particle i





## The Main PSO Loop

(Eberhart, Kennedy, and Shi, 1995, 1998)

At each time step *t*for each particle i
for each component *j* 

update  $v_{ij}(t+1) = wv_{ij}(t) +$ the  $c_p rand()(x_{ij}^* - x_{ij}) + c_n rand()(x_{i'j}^* - x_{ij})$ velocity

then move  $x_{ij}(t+1) = x_{ij}(t) + v_{ij}(t+1)$ 





## The main PSO Loop - Vector Visualization







## Neighborhoods Types

#### • Size:

- Neighborhood index considers also the particle itself in the counting
- Local: only k neighbors considered over m particles in the population (1 < k < m); k=1 means no information from other particles used in velocity update
- Global: m neighbors

#### • Topology:

- Geographical
- Social
- Indexed
- Random

**–** ...





## Neighborhood Examples: Geographical vs. Social







## Neighborhood Example: Indexed and Circular (lbest)







### **PSO** Animated Illustration







## GA vs. PSO - Qualitative

| Parameter/function                                       | GA                                | PSO                                                    |
|----------------------------------------------------------|-----------------------------------|--------------------------------------------------------|
| General features                                         | Multi-agent, probabilistic search | Multi-agent, probabilistic search                      |
| Individual memory                                        | no                                | yes (randomized hill climbing)                         |
| Individual operators                                     | mutation                          | personal best position<br>history, velocity<br>inertia |
| Social operators                                         | selection, crossover              | neighborhood best position history                     |
| Particle's variables (tracked by the population manager) | position                          | position and velocity                                  |





## GA vs. PSO - Qualitative

| Parameter/function                                       | GA                                                                  | PSO                                                                |
|----------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------|
| # of algorithmic parameters (basic)                      | $p_m$ , $p_c$ , selection par.<br>(1), m, position range<br>(1) = 5 | w, $c_n$ , $c_p$ , k, m,<br>position and velocity<br>range (2) = 7 |
| Population diversity                                     | somehow tunable via $p_c/p_m$ ratio and selection schema            | Mainly via local neighborhood                                      |
| Global/local search balance                              | somehow tunable via $p_c/p_m$ ratio and selection schema            | Tunable with w (w↑  → global search; w↓  → local search)           |
| Particle's variables (tracked by the population manager) | position                                                            | position and velocity                                              |





## GA vs. PSO - Quantitative

- Goal: minimization of a given  $f(\mathbf{x})$
- Standard benchmark functions with thirty terms (n = 30) and a fixed number of iterations
- All x<sub>i</sub> constrained to [-5.12, 5.12]

| Function<br>Name          | Function                                                                                          | Iterations |
|---------------------------|---------------------------------------------------------------------------------------------------|------------|
| Sphere                    | $f_1(\bar{x}) = \sum_{i=1}^n x_i^2$                                                               | 400        |
| Generalized<br>Rosenbrock | $f_2(\bar{x}) = \sum_{i=1}^{n-1} \left[ 100(x_i^2 - x_{i+1})^2 + (1 - x_i)^2 \right]$             | 20000      |
| Rastrigin                 | $f_3(\bar{x}) = \sum_{i=1}^n \left[ x_i^2 - 10\cos(2\pi x_i) + 10 \right]$                        | 400        |
| Griewank                  | $f_4(\bar{x}) = 1 + \frac{1}{4000} \sum_{i=1}^n x_i^2 - \prod_{i=1}^n \cos(\frac{x_i}{\sqrt{i}})$ | 400        |







- GA: Roulette Wheel for selection, mutation applies numerical adjustment to gene
- PSO: lbest ring topology with neighborhood of size 3
- Algorithm parameters used (but not thoroughly optimized):

| GA                    |             | PSO                          |     |
|-----------------------|-------------|------------------------------|-----|
| Population Size       | 20          | Swarm Size                   | 20  |
| Crossover Probability | 0.6         | Personal Best Attraction     | 2.0 |
| Mutation Probability  | 0.05        | Neighborhood Best Attraction | 2.0 |
| Mutation Range        | [-0.5, 0.5] | Inertia Factor               | 0.6 |





## GA vs. PSO - Quantitative

Bold: best results; 30 runs; no noise on the performance function

| Function                  | GA                   | PSO                  |
|---------------------------|----------------------|----------------------|
| (no noise)                | $(mean \pm std dev)$ | $(mean \pm std dev)$ |
| Sphere                    | $0.02 \pm 0.01$      | $0.00 \pm 0.00$      |
| Generalized<br>Rosenbrock | $34.6 \pm 18.9$      | $7.38 \pm 3.27$      |
| Rastrigin                 | 157 ±21.8            | 48.3 ± 14.4          |
| Griewank                  | $0.01 \pm 0.01$      | $0.01 \pm 0.03$      |





### GA vs. PSO – Overview

- According to most recent research, PSO outperforms GA on most (but not all!) continuous optimization problems
- No-Free-Lunch Theorem
- GA still much more widely used in general research community
- Because of random aspects, very difficult to analyze either metaheuristic or make guarantees about performance





## Conclusion





## Take Home Messages

- A key difference in machine-learning is supervised vs. unsupervised techniques
- Unsupervised techniques are key for robotic learning
- Two robust multi-agent probabilistic search techniques are GA and PSO
- They share some similarities and some fundamental differences
- PSO is a younger technique than GA but extremely promising; it has been invented by the swarm intelligence community



## Additional Literature — Week 5



#### **Books**

- Mitchell M., "An Introduction to Genetic Algorithms". MIT Press, 1996.
- Goldberg D. E., "Genetic Algorithms in Search: Optimization and Machine Learning". Addison-Wesley, Reading, MA, 1989.
- Kennedy J. and Eberhart R. C. with Y. Shi, "Swarm Intelligence". Morgan Kaufmann Publisher, 2001.
- Clerc M., "Particle Swarm Optimization". ISTE Ltd., London, UK, 2006.
- Engelbrecht A. P., "Fundamentals of Computational Swarm Intelligence". John Wiley & Sons, 2006.