Lecture Notes for

Neural Networks and Machine Learning

Multi-task Learning

Logistics and Agenda

- Logistics
 - Back to regular office hours
 - No virtual option?
- Agenda
 - Multi-task networks and demo
 - Town Hall
- Next Time
 - CNN Visualization

Last Time

- Early Fusion: Merge sensor layers early in the process
- Assumption: there is some data redundancy, but modes are conditionally independent
- Problem: architecture parameter explosion
 - Need dimensionality reduction

Culput

Model

Data Fusion

PCA

- Late Fusion: Merge sensor layers right before flattening
- Use Decision Fusion on outputs.
- Assumption: little redundancy or conditional independence—just an ensemble architecture
- Problem: just separate classifiers, limited interplay

Neural Architecture Search for Mode Fusion

Applied Intelligence https://doi.org/10.1007/s10489-022-04095-x

An approach for combining multimodal fusion and neural architecture search applied to knowledge tracing

Xinyi Ding¹ · Tao Han¹ · Yili Fang¹ · Eric Larson²

Accepted: 18 August 2022

BC

O The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

- Latent Space Transfer (universality)
 - From another domain, map to a similar latent space for the same task
 - Useful for unifying data based upon a new input mode when old mode is well understood
 - for example, biometric data.
 - I have never seen a research paper on this...

Multi-Task Models

Multi-task learning overview

- For deep networks, simple idea: share parameters in early layers
- Used shared parameters as feature extractors

Train separate, unique layers for each task

Multi-task Learning Parameter Sharing

Task 1

Task One Loss

Pool Losses
Over Multiple Batches
From Multiple Tasks,
Update via BackProp

Pool Losses
Over Multiple Batches
From Multiple Tasks,
Add Intra-Network
Similarity Loss
Update via BackProp

Network N

Multi-task Optimization

Multi-Label per Input

Measure Loss for each label simultaneously
Back propagate everything at one time for a given batch

Multi-task Optimization

Single Task Label per Input

Multi-Task Learning in Keras with Multi-Label Data

Fashion week, colors and dresses

Follow Along: https://www.pyimagesearch.com/2018/06/04/keras-multiple-outputs-and-multiple-losses/

Multi-Task Learning School Data, Computer Surveys

Follor

LukeWood Luke Wood

KerasCV Author, Full Time Keras team member & Machine Learning researcher @ Google, Part Time UCSD Ph.D student

Traian-Pop Traian Pop

Method One: Batch updates across multiple tasks

need to perform customized gradient calculations

Method Two: Update small batches using a random task

easier, but can cause instability in training

Follow Along: LectureNotesMaster/03 LectureMultiTask.ipynb

Lab Two Town Hall

Multi-Task Networks Multi-Modal Networks

Lecture Notes for

Neural Networks and Machine Learning

Multi-Modal and Multi-Task

Next Time:

Circuits

Reading: Chollet 8.1-8.5

108

Backup slides

Backup Slides

Active Transfer Learning

Active Learning Overview

- Basic Idea: Use a trained model to sample from an oracle that can magically give you a new label
 - Active Learning:
 What labels should we ask the oracle about?
- Uncertainty Sampling
 - Choose instances where the model is most uncertain or most certain
 - Various ways to measure certainty
- Diversity Sampling
 - Choose instances that are similar or different from training distribution

Uncertainty Sampling with a Neural Network

Uncertainty Sampling with a Neural Network

Problems:

- Training pool is represented by classes the model already does well predicting
- Limited diversity of Samples
- Training pool can become contaminated easily from a few wrong predictions
- For Oracle: we might be asking to get labels that the model is already good at classifying

New Layer Becomes Oracle

Diversity Sampling with a Neural Network

are Added to Validation Data

Diversity Sampling with a Neural Network

Discussion:

- Training pool is not contaminated
- Expands validation data in well mannered way, not adding too "far away" samples
- Validation versus Unlabeled might not be the best comparison, because it ignores confusions in the training data
- For Oracle: we can get labels to inputs that the model is likely to be unsure about
- But... this only helps us when we have an Oracle to give us labels

yer Decides if Samples led to Validation Data

ATLAS: Active Transfer Learning for Adaptive Sampling

Time Period	Protocol	Expected Feedback
First Week	Homeowner provides 8-20 examples over the first week: • 1-2 Shower usages • 1 run of the dishwasher	HydroSense relies on the rule based classifier for the first week. Pressure waves are saved in order to
	 1 run of the laundry machine 2 examples of each toilet 	create a sparse codebook of features.
	 l example of hot and cold water use for each dual handle faucet l example of hot, cold, and mixed water use for each single handle faucet (2 examples if in kitchen) 	Results are displayed at the fixture category for dishwashers, showers, and washing machines.
Start of Second Week	Homeowner provides 2-4 labels every other day when the system messages them on their mobile device	Results are displayed at the full fixture category level from the CoDBN-VE algorithm. Expected accuracy: • 85% at fixture category level
End of Second Week	Homeowner has supplied 9-12 examples that were flagged by active learning.	HydroSense now displays results at the Lumped Fixture level. Expected accuracy: • 82% at fixture level • 87% at fixture category level
End of Third Week	Homeowner continues to supply sparsely selected examples every other day. About 9-12 additional examples provided.	Valve level accuracy now provided. Expected accuracy: • 80% at valve level • 87% at fixture level • 92% at fixture category level
Fourth Week	Homeowner can optionally continue to provide examples to the system for increased accuracy.	Expected accuracy: • 81% at valve level • 89% at fixture level • 93% at fixture category level
Table 8-2. Expected feedback and calibration protocol for semi-supervised HydroSense system		

Optional Topic: Multi-Task Model Examples

He uses statistics like a drunken man uses a lamp post, more for support than illumination.

-- Andrew Lang

Multi-task: Deep Relationship Networks

- Start training traditionally (CCE)
- Minimize Kroenecker Product of fully connected task specific layers (here matrices are vectorized and therefore it is an outer product)
 - intuitively: make Covariances between tasks close to a given prototype Covariance
 - encourages feature maps in each task to be less
 correlated to feature maps of another task

Multi-task: Adaptive Feature Sharing

- Trair
- Rep
 - 0

$$A^{\star}, \omega^{\star}(l) = \underset{A \in \mathbb{R}^{d \times d'}, |\omega| = d'}{\arg \min} ||W^{p,l} - AW^{p,l}_{\omega:}||_F, \qquad (2)$$

where $W_{\omega}^{p,l}$ is a truncated weight matrix that only keeps the rows indexed by the set ω . This problem is NP-hard, however, there exist approaches based on convex relaxation

- Cut weights and retrain (fine tune) network
- Decrement current layer index

Multi-task: Cross Stitch Networks

- Only works for simultaneous multi-label problems
 - like semantic segmentation and surface normal segmentation (clustering similarly facing objects)
- Take a learned weighted sum of the activations
- Works a little better than single task, but no worse

Multi-task: Uncertainty Weighting

- Use variance of each loss function from each task to normalize
 - Which is a great idea, tasks with more uncertainty become less influential to loss function
 - call it homoscedastic without sound reasoning because that feels better than "normalized variance"
 - talk about homoscedasticity for no reason
- Write an entire paper in a "mathy" way to make contribution less clear
- Reviewers give you a pass because you have a history of doing good work

Current Multi-task Research

- Incredibly diverse sets of solutions
- Mostly not evaluated on similar datasets
- Reasoning given is mostly ad-hoc...
- Theory is wildly under developed
 - because the problem is incredibly difficult
- Neural architecture search is an option...

AlphaCode

124