VE270 Homework 2

Liu Yihao 515370910207

Problem 1.

\mathbf{X}	У	$x \oplus y'$	$x' \oplus y$	$(x \oplus y)'$
0	0	1	1	1
0	1	0	0	0
1	0	0	0	0
1	1	1	1	1

$$x \oplus y' = x' \oplus y = (x \oplus y)'$$

Problem 2.

 $\mathbf{S} \oplus \mathbf{E}$

 $\mathrm{S} + \mathrm{H}'$

(c) $(S \oplus E)(S + H') = SE' + S'EH'$

Problem 3.

$$F = a'b(c + d') + a(b' + c) + a(b + d)c$$

$$= a'bc + a'bd' + ab' + ac + abc + acd$$

$$= a'bc + a'bd' + ab' + ac(1 + b + d)$$

$$= a'bc + a'bd' + ab' + ac$$

Problem 4.

$$\begin{split} F' &= (abc + a'b)' \\ &= (abc)'(a'b)' \\ &= (a' + b' + c')(a + b') \\ &= aa' + ab' + ac' + a'b' + b' + b'c' \\ &= 0 + b'(1 + a + c') + ac' \\ &= b' + ac' \end{split}$$

Problem 5.

$$F = a'b'c' + a'bc' + ab'c' + ab'c + abc'$$

$$= a'c'(b + b') + ac'(b + b') + ab'c$$

$$= a'c' + ac' + ab'c$$

$$= c' + ab'c$$

Problem 6.

$$\begin{split} F(a,b,b) &= abc + ab + a + b + c \\ &= m_1 + m_2 + m_3 + m_4 + m_5 + m_6 + m_7 \\ &= \sum m(1,2,3,4,5,6,7) \end{split}$$

Problem 7.

Problem 8.

(a)

$$F(a,b,b) = ab'c + abc + a'bc + abc'$$

$$= ab(c+c') + ac(b+b') + bc(a+a')$$

$$= ab + ac + bc$$

(b)

$$F(a,b,b) = ab + ac + bc$$

Problem 9.

$$F(a,b,b) = c'd + abd$$

Problem 10.

F(a,b,b) = ac + bd

Problem 11.

The squared implicants are all prime implicants, but none of them is essential prime implicants.

Problem 12.

delay: 2 gate inputs: 22

$$\begin{split} F(a,b,b,d,e,f,g) &= abcde + abcd'e'fg + abcd'e'f'g' \\ &= abc[de + d'e'(fg + f'g')] \end{split}$$

delay: 5 gate inputs: 19