Моделирование счетчиков АШИФ детектора КЕДР

Овтин И.В. для аэрогелевой группы детектора КЕДР

9 Апреля 2019

KedrSim - пакет моделирования детектора КЕДР основанный на GEANT 3.21.

Моделирования системы АШИФ включает:

- Описание реальной геометрии всех 160 счетчиков:
 - три активные среды аэрогель, шифтер (ПММА), тефлон (PTFE)
 - боксы электроники и BB выводы.
- Для каждого счетчика используется индивидуальный показатель преломления и измеренная неоднородность светосбора, а также учитывается долговременная стабильность счетчиков.
- Для генерации реальной амплитуды используются одноэлектронные калибровочные спектры из БД.

Сигнал от заряженной частицы в счетчике:

$$I = I_{\text{ch_aer}} + I_{\text{ch_sh}} + I_{\text{ch_tef}} + I_{\text{sc_aer}} + I_{\text{sc_sh}} + I_{\text{sc_tef}}.$$

Величина сцинтилляционного сигнала пропорциональна энергетическим потерям в веществе:

$$I_{\text{sc}_i} = \alpha_i \Delta E_i$$

где α_i – коэффициент пропорциональности.

Число черенковских фотоэлектронов от релятивистских частиц выше порога:

$$I_{\mathrm{ch_{i}}} = \frac{dN_{\mathrm{i}}}{dx_{\mathrm{i}}} = K_{\mathrm{i}} \cdot K_{\mathrm{cnt}} \cdot z^{2} \sin^{2}\Theta = K_{\mathrm{i}} \cdot K_{\mathrm{cnt}} \cdot z^{2} (1 - \frac{1}{(n_{\mathrm{i}}\beta)^{2}}),$$

где $n_{\rm i}$ – показатель преломления, $K_{\rm i}$ – коэффициент пропорциональности учитывающий неоднородность светосбора, $K_{\rm cnt}$ – корректирующий коэффициент для каждого счетчика, $\beta=v/c,\ |z|=1$ – заряд частицы.

Коэффициент пропорциональности определяется из экспериментальных данных:

$$K_{\rm i} = \frac{\frac{N_{\rm ph.e.}}{L_{\rm track}}}{(1 - \frac{1}{(n_{\rm i}\beta)^2})},$$

где $N_{
m ph.e.}$ – число фотоэлектронов, $L_{
m track}$ – длина трека в счетчике.

Определение коэффицента $K_{\rm i}$

Данные получены на космических мюонах

Длинный счетчик первого слоя — 68 областей

P	6.84±0.09	7.33±0.08	7.61±0.08	7.78±0.07	7.95±0.08	7.39±0.075.	75±0.09
6,92±0.07	7.60±0.04	8.22±0.04	8.47±0.03	8.88±0.03	9.03±0.03	8.37±0.03	88.08
92	8.77±0.05	9.41±0.04	9.69±0.04	10.18±0.04	10.54±0.04	9.84±0.04	H H
9	10.07±0.08 11.79±0.21	10.72±0.07 12.55±0.19	11.13±0.07 12.78±0.17	11.58±0.06 13.33±0.18	12.18±0.07 13.95±0.19	11.84±0.08	
9	11.65=0.37 10.23±0.09	11.84±0.30 10.97±0.08	12.69±0.30 11.25±0.07	11.62±0.07	13.32±0.29 12.15±0.07	13,57±0.40 11,79±0.08	4 1
Ö	8.97±0.05	9.57±0.04	9.90±0.04	10.26±0.04	10.59±0.04	9.93±0.04	
6.75±0.06	7.52±0.04	8.19±0.03	8.48±0.03	8.81±0.03	9.06±0.03	8.24±0.03	4 6 8 8
Ψ	6.62±0.07	7.32±0.06	7.54±0.06	7.71±0.06	7.88±0.06	7.23±0.06 5.	82±0.08

Длинный счетчик второго слоя – 68 областей

Короткий счетчик первого слоя – 58 областей

4.37±0.10	5.69±0.08	6.45±0.09	6.55±0.10	6.44=0.10	6.11±0.08	-
1888 1888 1888	6.65±0.03	7.71±0.04	7.58±0.04	7.38±0.04	6.77±0.05	8
	5.47±0.04	9.51±0.04	9.10±0.04	8.54±0.04	8.02±0.05	7,15±0,12
	9.90±0.07	10.87±0.06 12.72±1.12	10.45±0.06 12.17±0.15	10.07±0.07 11.36±0.16	9.61±0.08 11.47±0.22	Ē
 	15.14±1.25 10.66±0.10	11.17±0.60 11.07±0.08	11.52±0.62 10.67±0.08	10.31 ± 0.09	9.63±0.11	e e
	8.64±0.04	9.55±0.04	9.21±0.04	8.84±0.04	8.13±0.05	
0 0 0	6.70±0.03	7.62±0.04	7.51±0.03	7.32±0.03	6.77±0.04	6.931.0.23
58+0.08	5.84+0.07	6.52+0.05	6.49=0.06	6.27+0.07	5.98±0.05	

Короткий счетчик второго слоя - 58 областей

3.79±0.0I	4.57±0.04	5.24±0.05	5.27±0.05	5.07±0.05	4.59±0.05	
6 F 6	5.23±0.02	5.94±0.02	5.93±0.03	5.73±0.03	5.25±0.03	60
	6.70±0.04	7.27±0.03	7.23±0.03	7.01±0.04	6.52±0.04	5,15±0.07
	8.53±0.07	8.82±0.08 10.15±0.24	8.63±0.06 10.06±0.25	8.32±0.06 9.36±0.25	7.72±0.07	8
1 - 4	8.28±0.06	10.25±0.13 8.73±0.06	9.91±0.13 8.58±0.06	9.42±0.14 8.27±0.06	6.64±0.16 7.67±0.06	S
	6.60±0.03	7.20±0.03	7.05±0.03	6.87±0.04	6.38±0.04	5.19=0.07
1.21	5.31±0.02	5.88±0.03	5.93±0.03	5.80±0.03	5.30±0.03	5.19
92-0.08	4.64±0.05	5.17=0.06	5.30=0.06	5,03±0.06	4.65±0.07	

Торцевой счетчик — 28 областей

Тип счетчика (номер счетчика)	$egin{aligned} ext{Heoдhopodhoctb} \ ext{csetocbopa} \ (\delta = (x_{ ext{max}} - x_{ ext{min}})/x_{ ext{mean}}) \end{aligned}$
Короткий счетчик первого слоя (21-40)	±26%
Длинный счетчик первого слоя (41-60)	±25%
Короткий счетчик второго слоя (121-140)	±32%
Длинный счетчик второго слоя (101-120)	±36%
Торцевой счетчик (1-21,61-100,141-160)	±19%

Определение коэффицента $K_{\rm i}$

Временной итервал с данными делится на 14 областей (~ 1.5 месяца каждый) и для каждого определяются $K_{\rm i}$ для учета деградации аэрогеля.

Число фотоэлектронов описывается распределением Пуассона:

$$P_n = \frac{\mu^n e^{-\mu}}{n!},$$

где n – число фотоэлектронов, μ – среднее число фотоэлектронов в счетчике.

Амплитудное распределение является сверткой однофотоэлектронного спектра с распределением Пуассона:

$$F(x) = \sum_{n=0}^{n=40} P_n f_n(x).$$

$$f_n(x) = \int f_1(y) f_{n-1}(x-y) dy,$$

где $f_1(x)$ - однофотоэлектронный спектр.

Калибровочные коэффициенты $(K_{\rm i},\,K_{\rm cnt})$ и одноэлектронные спектры применяются на уровне реконструкции (домоделирование) – нет необходимости перемоделировать при корректировки набора коэффициентов.

Допороговая эффективность определяется:

- Черенковским излучением от δ-электронов в аэрогеле;
- Черенковским излучением в тефлоне (PTFE);
- Сцинтилляциями в тефлоне (PTFE).

Сцинтилляции в аэрогеле пренибрежимо малы и не учитываются – было показано по результатам обработки данных от 2000 г. с тестового пучка в г. Дубна (меморандум Белобородова К. – результаты не опубликованы)

21-60 счетчики, данные и моделирование для 5 временного диапазона (ноябрь 2014 г.)

21-60 счетчики, данные и моделирование для 9 временного диапазона (июнь 2015 г.)

101-140 счетчики, данные и моделирование для 1 временного диапазона (июнь 2014 г.)

101-140 счетчики, данные и моделирование для 5 временного диапазона (ноябрь 2014 г.)

101-140 счетчики, данные и моделирование для 9 временного диапазона (июнь 2015 г.)

- Для оценки эффективности регистрации π и K, импульсы μ с соответствующим импульсом были выбраны: $(P_{\mu} = P_{\pi,K} * [m_{\mu}/m_{\pi,K}])$
 - $950 < P_K < 1450 \ MeV/c : \rightarrow 200 < P_{\mu} < 300 \ MeV/c \rightarrow 0.885 < \beta < 0.944$
 - $950 < P_{\pi} < 1450 \ MeV/c : \rightarrow 700 < P_{\mu} < 1100 \ MeV/c \rightarrow 0.989 < \beta < 0.995$

Толстый счетчик — 5 временной диапазон (ноябрь 2014 г.) порог — 0.7 ф.э.

Эффективность регистрации адронов

Экспериментальные данные:

- PDG: Br $(J/\psi \to \pi^+\pi^-\pi^0) = 0.020$
- Обрабатывались данные сезона 2015-2016 г.:
 - 21740÷23114 (28/04/2015-08/07/2015 и 14/10/2015-29/01/2016) \sim 500 заходов
 - Интегральная светимость Lt=0.953 пб⁻¹
 - $N_{J/\psi} = L_{int} * \sigma = 0.953 * 4000 = 3.8 * 10^6$
 - $N_{(J/\psi \to \pi^+\pi^-\pi^0)} \simeq 76240$

Моделирование:

- $e^+e^- \rightarrow J/\psi \rightarrow ...$ (BES-генератор на основе Jetset 7.4)
- GENE 214 MODE MODE - номер канала распада J/psi
 - 7 0.00400 $\rho^-\pi^+$ или $\rho^+\pi^-$ 8 0.00400 $\rho^+\pi^-$ или $\rho^-\pi^+$
 - 9 0.00450 $\rho^0 \pi^0$
- НАDR 4 задание пакета для моделирования ядерных взаимодействий, 4 пакет FLUKA
- Моделируется 200000 событий

Условия отбора

Предварительный отбор:

- Число треков равно 2 (один отрицательный, другой положительный);
- Минимальное число треков из точки взаимодействия ≥ 1 , но не > 2 (R< 3 см);
- Сумма зарядов треков равна нулю;
- Расколлинеарность треков: $(n1\ n2) > -0.998;$
- Минимальная энергия кластера 50 МэВ;
- 2 трека с привязанными кластерами в калориметре;
- Минимальное число кластеров 3;
- Максимальное число кластеров 6;
- е/р<0.80 для подавления электронов;
- Нет треков в мюонной системе ("Не космика"
по мюонной системе, ${
 m NhitMK}{<}3$
 - на событие);

Финальный отбор:

- Кинематическая реконструкция (Тодышев, Шамов) для выделения пионов (на выходе - число гипотез, предполагаемые частицы и χ^2) – пакет KrRec;

Условия отбора

- Для подавления ка
онов на χ^2 из кинематической реконструкции накладывается условие:
 $\chi^2(K)/\chi^2(\pi){>}1.020.$

Производится достаточно жесткий отбор событий.

Предварительный отбор проходит число событий:

- Эксперимент 134508
- Моделирование 150533

Финальный отбор проходит число событий:

- Эксперимент 10862
- Моделирование 63983
- Рассматривается область счетчика АШИФ по аэрогелю без отступа от края, с вырезом электроники и шифтера (геометрическая эффективность для толстого счетчика ~84%).

Эффективность регистрации адронов

Толстый счетчик

Эффективность регистрации адронов

Заключение

- Разработана программа моделирования для двухслойной системы счетчиков АШИФ в составе пакета KEDRSIM детектора KEДР;
- Моделирование эффективности регистрации мюонов хорошо согласуется с экспериментальными данными (из калибровочных заходов с космическими мюонами);
- Моделирование эффективности регистрации адронов в системе АШИФ выполненное для процесса $J/\psi \to \pi^+\pi^-\pi^0$ находится в сограсии с эффективностью полученной на экспериментальных данных, набранных в 2015-16 г. в пике J/ψ -резонанса при достаточно жестком отборе.