Machine Learning 2018 – Dimension Reduction

Trung Le

December 18, 2018

How to visualize this dataset ?

Sepal length	Sepal width	Petal length	Petal width	Class
5.1	3.5	1.4	0.2	Setosa
4.9	3.0	1.4	0.2	Setosa
7.0	3.2	4.7	1.4	Versicolor
6.4	3.2	4.5	1.5	Versicolor
6.3	2.9	5.6	1.8	Virginica
5.9	3.0	5.1	1.8	Virginica

Figure: Pair plot of iris dataset, source: kaggle.com

- The number of such plots required for such visualizing data of n variables is $O(n^2)$
- The simplest way to reduce the dimension is by taking a random projection of the data.
- Though random projection allows some degree of visualization of the data structure, it is likely that the more interesting structure within the data will be lost.

- Dimensionality Reduction tries to express the data in lower dimension without losing too much information.
- Why dimensionality reduction ?
 - Reduce the dimensions of data to 2D or 3D to visualize it precisely.
 - Help in data compressing and reducing the storage space.
 - Remove redundant features, if any.
- Some of dimension reduction methods: PCA, t-SNE, LDA,...

Figure: PCA of IRIS dataset, source: scikit-learn.org

Background Mathematics

Given a dataset $X \in \mathbb{R}^{N \times D}$

- Mean: $\bar{X}_i = \frac{1}{N} \sum_{j=1}^N X_{ij}$
- Variance: $Var(X_i) = \frac{1}{N} \sum_{j=1}^{N} (X_{ij} \bar{X}_i)^2$
- Covariance:

$$Cov(X_i, X_k) = Cov(X_k, X_i) = \frac{1}{N} \sum_{j=1}^{N} (X_{ij} - \bar{X}_i)(X_{kj} - \bar{X}_k)$$

Covariance

Figure: Positive, negative and zero covariance

Covariance Matrix

• Covariance matrix of $X \in \mathbb{R}^{N \times D}$

$$\Sigma = \begin{pmatrix} Var(X_1) & Cov(X_1, X_2) & \dots & Cov(X_1, X_D) \\ Cov(X_2, X_1) & Var(X_2) & \dots & Cov(X_1, X_D) \\ \vdots & & \vdots & & \vdots \\ Cov(X_D, X_1) & Cov(X_D, X_2) & \dots & Var(X_D) \end{pmatrix}$$

$$(1)$$

• For centered data: $\Sigma = \frac{1}{N}XX^T$ where X is re-constructed by subtracting every column by it's mean $X_i = X_i - \bar{X}_i$.

Figure: Sample data points in 2D

Figure: Sample data points in 2D

Figure: PCA of sample data points in 2D

Figure: PCA of sample data points in 2D

- Algebraically, principal components are particular linear combinations of the D random variables $X_1, X_2, ..., X_D$.
- Geometrically, these linear combinations represent the selection of a new coordinate system obtained by rotating the original system.

- Let $X \in \mathbb{R}^{N \times D}$ is the original data matrix with N samples and D measurements.
- Consider the linear combinations:

$$Y_{1} = w_{1}^{T} X = w_{11} X_{1} + w_{12} X_{2} + ... + w_{1D} X_{D}$$

$$Y_{2} = w_{2}^{T} X = w_{21} X_{1} + w_{22} X_{2} + ... + w_{2D} X_{D}$$

$$\vdots$$

$$Y_{D} = w_{D}^{T} X = w_{D1} X_{1} + w_{D2} X_{2} + ... + w_{DD} X_{D}$$

$$(2)$$

where $w \in \mathbb{R}^{D \times D}$

Figure: Matrix multiplication visualization, source: eli.thegreenplace.net

Figure: Matrix multiplication visuallization, source: eli.thegreenplace.net

The important point to note is that the variance of any linear combination can be computed using the covariance matrix of the data:

$$Var(Y_i) = \frac{1}{N} \sum_{j} (X_j w_i)^2$$

$$= \frac{1}{N} (Xw_i)^T (Xw_i)$$

$$= \frac{1}{N} w_i^T X^T X w_i$$

$$= w_i^T \frac{X^T X}{N} w_i$$

$$= w_i^T \Sigma w_i$$
(3)

- Principal components are those linear combinations $Y_1, Y_2, ..., Y_D$ whose variances are as large as possible.
- First principal component: Linear combination $w_1^T X$ that maximize $Var(w_1^T X)$ subject to $||w_1||_2^2 = 1$
- Second principal component: Linear combination $w_2^T X$ that maximize $Var(w_2^T X)$ subject to $||w_2||_2^2 = 1$ and $w_2^T w_1 = 0$
- *i*th principal component: Linear combination $w_i^T X$ that maximize $Var(w_i^T X)$ subject to $||w_i||_2^2 = 1$ and $w_i^T w_k = 0$ for k < i

First Principal Component Analysis (PC1)

For the first principal component, we maximize:

$$Var(Y_1) = w_1^T \Sigma w_1 \tag{4}$$

subject to:

$$w_1^T w_1 = 1 \tag{5}$$

First Principal Component Analysis (PC1)

Using the Lagrange function:

$$\mathcal{L} = w_1^T \Sigma w_1 + \lambda_1 (1 - w_1^T w_1)$$
 (6)

Taking the partial derivative of \mathcal{L} with respect to w_1 , λ_1 :

$$\frac{\partial}{\partial w_1} \mathcal{L}(w_1, \lambda_1) = 2\Sigma w_1 - 2\lambda_1 w_1 = 0 \tag{7}$$

$$\frac{\partial}{\partial \lambda_1} \mathcal{L}(w_1, \lambda_1) = 1 - w_1^T w_1 = 0 \tag{8}$$

First Principal Component (PC1)

From 7, we've got:

$$\sum w_1 = \lambda w_1 \tag{9}$$

This implies w_1 is an eigenvector of Σ and λ_1 is the corresponded eigenvalue.

Multiply each side of 9 to w_1^T , we've got:

$$w_1^T \Sigma w_1 = Var(w_1^T X) = \lambda_1 w_1^T w_1 = \lambda_1$$
 (10)

So $Var(w_1^T X)$ is maximized when λ_1 is the largest eigenvalue of Σ .

Second Principal Component (PC2)

For the second principal component, we maximize:

$$Var(Y_2) = w_2^T \Sigma w_2 \tag{11}$$

subject to:

$$w_2^T w_2 = 1 (12)$$

$$w_1^T w_2 = 0 (13)$$

Second Principal Component (PC2)

Lagrangian of the problem 11:

$$\mathcal{L} = w_2^T \Sigma w_2 + \lambda_2 (1 - w_1^T w_1) + \beta w_1^T w_2$$
 (14)

Taking the partial derivative of \mathcal{L} with respect to w_1 , λ_1 , β :

$$\frac{\partial}{\partial w_2} \mathcal{L}(w_2, \lambda_2, \beta) = 2\Sigma w_2 - 2\lambda_2 w_2 + \beta w_1 = 0 \tag{15}$$

$$\frac{\partial}{\partial \lambda_2} \mathcal{L}(w_2, \lambda_2, \beta) = 1 - w_2^T w_2 = 0 \tag{16}$$

$$\frac{\partial}{\partial \beta} \mathcal{L}(w_2, \lambda_2, \beta) = w_1^T w_2 = 0 \tag{17}$$

Second Principal Component

Multiply each side of 15 with w_1^T :

$$2w_1^T \Sigma w_2 + \beta = 0$$

$$\Leftrightarrow 2w_1^T \Sigma w_2 + \beta = 0$$

$$\Leftrightarrow 2(\Sigma w_1)^T w_2 + \beta = 0$$

$$\Leftrightarrow 2\lambda_1 w_1^T w_2 + \beta = 0$$

$$\Rightarrow \beta = 0$$
(18)

Second Principal Component (PC2)

Equation 15 now becomes:

$$\sum w_2 = \lambda_2 w_2 \tag{19}$$

- This implies w_2 is an eigenvector of Σ and λ_2 is the corresponded eigenvalue.
- Multiply each side of 9 to w_2^T , we've got:

$$w_2^T \Sigma w_2 = Var(w_2^T X) = \lambda_2 w_2^T w_2 = \lambda_2$$
 (20)

- So $Var(w_2^T X)$ is maximized when λ_2 is the second largest eigenvalue of Σ .
- The *i*th principal component turns out to be obtained by the *i*th largest eigenvector of Σ.

PCA step by step

Compute mean of each column:

$$\bar{X}_i = \frac{1}{N} \sum_{j=1}^{N} X_{ij}$$
 (21)

Subtract mean:

$$X_i = X_i - \bar{X}_i \tag{22}$$

Ompute covariance matrix:

$$\Sigma = \frac{1}{N} X X^T \tag{23}$$

- Compute eigenvectors and eigenvalues of Σ : $(\lambda_1, w_1), ..., (\lambda_D, w_D), \ \lambda_1 > \lambda_2 > ... > \lambda_D$
- **1** Pick K eigenvectors with highest eigenvalues as a matrix: U_K
- Operation of the project original data to selected eigenvectors:

$$\tilde{X} = U_K^T X \tag{24}$$

PCA step by step

PCA procedure

Figure: PCA procedure, source: machinelearningcoban.com

Applications

Figure: Eigenfaces in face recognition.

Figure: PCA on MNIST dataset

Figure: PCA on MNIST dataset

• How about non-linear data?

- t-Distributed Stochastic Neighbor Embedding (t-SNE) is a non-linear technique for dimensionality reduction that is particularly well suited for the visualization of high-dimensional datasets.
- The t-SNE algorithm models the probability distribution of neighbors around each point, so it preserve the local structure (neigborhood) of data.

Preserve the neighborhood

 Converting the high-dimensional Euclidean distances into conditional probabilities that represent similarities

$$\rho_{j|i} = \frac{\exp(-||x_i - x_j||^2 / 2\sigma^2)}{\sum_{j' \neq i} \exp(-||x_i - x_j'||^2 / 2\sigma^2)}$$
(25)

 Converting the high-dimensional Euclidean distances into conditional probabilities that represent similarities.

$$p_{j|i} = \frac{\exp(-||x_i - x_j||^2 / 2\sigma_i^2)}{\sum_{j' \neq i} \exp(-||x_i - x_j'||^2 / 2\sigma_i^2)}$$
(26)

 Since each point has different density, we'd use the symmetrized conditional:

$$p_{ij} = \frac{p_{j|i} + p_{i|j}}{2N} \tag{27}$$

• We set the bandwidth σ_i such that the conditional has fixed *perplexity*.

Similarity in low dimension is measured as:

$$q_{ij} = \frac{(1+||y_i - y_j||^2)^{-1}}{\sum_k \sum_{l \neq k} (1+||y_k - y_l||^2)^{-1}}$$
(28)

Cost function: Kullback Leibler (KL) divergence:

$$KL(P||Q) = \sum_{i} \sum_{j \neq i} p_{ij} \log \frac{p_{ij}}{q_{ij}}$$
 (29)

- Large p_{ij} modeled by small q_{ij} : \rightarrow Big penalty.
- Small p_{ij} modeled by large q_{ij} : \rightarrow Small penalty.
- t-SNE mainly preserves local similarity structure of data.
- Gradient:

$$\frac{\partial C}{\partial y_i} = 4 \sum_{j \neq i} (p_{ij} - q_{ij}) (1 + ||y_i - y_j||^2)^{-1} (y_i - y_j)$$
 (30)

Algorithm 1: Simple version of t-Distributed Stochastic Neighbor Embedding.

```
Data: data set X = \{x_1, x_2, ..., x_n\},\
cost function parameters: perplexity Perp,
optimization parameters: number of iterations T, learning rate \eta, momentum \alpha(t).
Result: low-dimensional data representation \mathcal{Y}^{(T)} = \{v_1, v_2, ..., v_n\}.
begin
     compute pairwise affinities p_{j|i} with perplexity Perp (using Equation 1)
     set p_{ii} = \frac{p_{j|i} + p_{i|j}}{2\pi}
     sample initial solution \mathcal{Y}^{(0)} = \{y_1, y_2, ..., y_n\} from \mathcal{N}(0, 10^{-4}I)
     for t=1 to T do
           compute low-dimensional affinities q_{ij} (using Equation 4)
          compute gradient \frac{\delta C}{\delta \Omega} (using Equation 5)
          set \mathcal{Y}^{(t)} = \mathcal{Y}^{(t-1)} + \eta \frac{\delta C}{\delta \Omega} + \alpha(t) \left( \mathcal{Y}^{(t-1)} - \mathcal{Y}^{(t-2)} \right)
     end
end
```

Figure: t-SNE learning algorithm

Figure: t-SNE on MNIST dataset

References

- [1] Richard Johnson et al, Applied Multivariate Statistical Analysis 6th Edition.
- [2] Tiep H. Vu, Principal Component Analysis, https://machinelearningcoban.com/2017/06/15/pca/
- [3] Laurens van der Maaten & Geoffrey Hinton, Visualizing Data using t-SNE.
- [4] Manifold learning, https://scikit-learn.org/stable/modules/manifold.html.