

Ho Chi Minh City International University

$HCMIU_Thinking Tourists$

Nguyen Xuan Tung, Lam Quoc Dinh, Luu Trung Duc

ICPC World Finals 2023 2023-11-15

Contents

HCMIU_ThinkingTourists Team Notebook WORLD FINALS EDITION

1	Contest	1		
2	Mathematics	1		
3	Data structures	3		
4	Numerical	5		
5	Number theory	9		
6	Combinatorial	10		
7	Graph	11		
8	Geometry	18		
9	Strings	22		
10 Various 24				
Contest (1)				
template.cpp $^{17 \text{ lines}}$				

//#pragma GCC optimize("Ofast") //#pragma GCC target("avx, avx2, fma, popcnt")
<pre>#include <bits stdc++.h=""></bits></pre>
using namespace std;
<pre>#define rep(i, a, b) for(int i = a; i < (b); ++i)</pre>
<pre>#define all(x) begin(x), end(x)</pre>
<pre>#define sz(x) (int)(x).size()</pre>
typedef long long 11;
<pre>typedef pair<int, int=""> pii;</int,></pre>
typedef vector <int> vi;</int>
<pre>template <typename t=""> using min_heap = priority_queue<t, th="" vecto:<=""></t,></typename></pre>
signed main() {
ios::sync_with_stdio(0); cin.tie(0);

hash.sh

-dD -P -fpreprocessed | tr -d '[:space:]' | md5sum | cut -c-6

troubleshoot.txt

cin.exceptions(cin.failbit);

Write a few simple test cases if sample is not enough. Are time limits close? If so, generate max cases. Is the memory usage fine? Could anything overflow? Any functions not returning? Make sure to submit the right file.

```
Wrong answer:
Print your solution! Print debug output, as well.
Are you clearing all data structures between test cases?
Can your algorithm handle the whole range of input?
Read the full problem statement again.
Do you handle all corner cases correctly?
Have you understood the problem correctly?
```

Any uninitialized variables? Any overflows?

Confusing N and M, i and j, etc.? Are you sure your algorithm works?

What special cases have you not thought of? Are you sure the STL functions you use work as you think? Add some assertions, maybe resubmit.

Create some testcases to run your algorithm on. Go through the algorithm for a simple case. Go through this list again.

Explain your algorithm to a teammate. Ask the teammate to look at your code. Go for a small walk, e.g. to the toilet.

Is your output format correct? (including whitespace) Rewrite your solution from the start or let a teammate do it.

Runtime error:

Have you tested all corner cases locally? Any uninitialized variables? Are you reading or writing outside the range of any vector? Any assertions that might fail? Any possible division by 0? (mod 0 for example) Any possible infinite recursion? Invalidated pointers or iterators? Are you using too much memory?

Debug with resubmits (e.g. remapped signals, see Various).

Time limit exceeded:

Do you have any possible infinite loops? What is the complexity of your algorithm? Are you copying a lot of unnecessary data? (References) How big is the input and output? (consider scanf) Avoid vector, map. (use arrays/unordered_map) What do your teammates think about your algorithm?

Memory limit exceeded:

What is the max amount of memory your algorithm should need? Are you clearing all data structures between test cases?

Mathematics (2)

2.1 Equations

$$ax^2 + bx + c = 0 \Rightarrow x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

The extremum is given by x = -b/2a.

$$ax + by = e$$

$$cx + dy = f$$

$$\Rightarrow x = \frac{ed - bf}{ad - bc}$$

$$y = \frac{af - ec}{ad - bc}$$

In general, given an equation Ax = b, the solution to a variable x_i is given by

$$x_i = \frac{\det A_i'}{\det A}$$

where A'_i is A with the i'th column replaced by b.

2.2 Recurrences

If $a_n = c_1 a_{n-1} + \cdots + c_k a_{n-k}$, and r_1, \ldots, r_k are distinct roots of $x^k + c_1 x^{k-1} + \cdots + c_k$, there are d_1, \ldots, d_k s.t.

$$a_n = d_1 r_1^n + \dots + d_k r_k^n.$$

Non-distinct roots r become polynomial factors, e.g. $a_n = (d_1 n + d_2)r^n.$

2.3 Trigonometry

$$\sin(v+w) = \sin v \cos w + \cos v \sin w$$
$$\cos(v+w) = \cos v \cos w - \sin v \sin w$$

$$\tan(v+w) = \frac{\tan v + \tan w}{1 - \tan v \tan w}$$
$$\sin v + \sin w = 2\sin\frac{v+w}{2}\cos\frac{v-w}{2}$$
$$\cos v + \cos w = 2\cos\frac{v+w}{2}\cos\frac{v-w}{2}$$

$$(V+W)\tan(v-w)/2 = (V-W)\tan(v+w)/2$$

where V, W are lengths of sides opposite angles v, w.

$$a\cos x + b\sin x = r\cos(x - \phi)$$

$$a\sin x + b\cos x = r\sin(x + \phi)$$

where $r = \sqrt{a^2 + b^2}$, $\phi = \operatorname{atan2}(b, a)$.

2.4 Geometry

2.4.1 Triangles

Side lengths: a, b, c

Semiperimeter:
$$p = \frac{a+b+c}{2}$$

Area:
$$A = \sqrt{p(p-a)(p-b)(p-c)}$$

Circumradius:
$$R = \frac{abc}{4A}$$

nradius:
$$r = \frac{A}{p}$$

Length of median (divides triangle into two equal-area triangles): $m_a = \frac{1}{2}\sqrt{2b^2 + 2c^2 - a^2}$

Length of bisector (divides angles in two):

$$s_a = \sqrt{bc \left[1 - \left(\frac{a}{b+c}\right)^2\right]}$$

Law of sines:
$$\frac{\sin \alpha}{a} = \frac{\sin \beta}{b} = \frac{\sin \gamma}{c} = \frac{1}{2R}$$

Law of cosines: $a^2 = b^2 + c^2 - 2bc \cos \alpha$

Law of tangents:
$$\frac{a+b}{a-b} = \frac{\tan \frac{\alpha+\beta}{2}}{\tan \frac{\alpha-\beta}{2}}$$

2.4.2 Quadrilaterals

With side lengths a,b,c,d, diagonals e,f, diagonals angle θ , area A and magic flux $F=b^2+d^2-a^2-c^2$:

$$4A = 2ef \cdot \sin \theta = F \tan \theta = \sqrt{4e^2 f^2 - F^2}$$

For cyclic quadrilaterals the sum of opposite angles is 180° , ef = ac + bd, and $A = \sqrt{(p-a)(p-b)(p-c)(p-d)}$.

2.4.3 Spherical coordinates

$$\begin{aligned} x &= r \sin \theta \cos \phi & r &= \sqrt{x^2 + y^2 + z^2} \\ y &= r \sin \theta \sin \phi & \theta &= \arccos(z/\sqrt{x^2 + y^2 + z^2}) \\ z &= r \cos \theta & \phi &= \operatorname{atan2}(y, x) \end{aligned}$$

2.5 Derivatives/Integrals

$$\frac{d}{dx}\arcsin x = \frac{1}{\sqrt{1-x^2}} \qquad \frac{d}{dx}\arccos x = -\frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}\tan x = 1 + \tan^2 x \qquad \frac{d}{dx}\arctan x = \frac{1}{1+x^2}$$

$$\int \tan ax = -\frac{\ln|\cos ax|}{a} \qquad \int x\sin ax = \frac{\sin ax - ax\cos ax}{a^2}$$

$$\int e^{-x^2} = \frac{\sqrt{\pi}}{2}\operatorname{erf}(x) \qquad \int xe^{ax}dx = \frac{e^{ax}}{a^2}(ax-1)$$

Integration by parts:

$$\int_{a}^{b} f(x)g(x)dx = [F(x)g(x)]_{a}^{b} - \int_{a}^{b} F(x)g'(x)dx$$

2.6 Sums

$$c^{a} + c^{a+1} + \dots + c^{b} = \frac{c^{b+1} - c^{a}}{c-1}, c \neq 1$$

$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(2n+1)(n+1)}{6}$$

$$1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \frac{n^{2}(n+1)^{2}}{4}$$

$$1^{4} + 2^{4} + 3^{4} + \dots + n^{4} = \frac{n(n+1)(2n+1)(3n^{2} + 3n - 1)}{30}$$

2.7 Series

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots, (-\infty < x < \infty)$$

$$\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots, (-1 < x \le 1)$$

$$\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^{2}}{8} + \frac{2x^{3}}{32} - \frac{5x^{4}}{128} + \dots, (-1 \le x \le 1)$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \dots, (-\infty < x < \infty)$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \dots, (-\infty < x < \infty)$$

2.8 Probability theory

Let X be a discrete random variable with probability $p_X(x)$ of assuming the value x. It will then have an expected value (mean) $\mu = \mathbb{E}(X) = \sum_x x p_X(x)$ and variance $\sigma^2 = V(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 = \sum_x (x - \mathbb{E}(X))^2 p_X(x)$ where σ is the standard deviation. If X is instead continuous it will have a probability density function $f_X(x)$ and the sums above will instead be integrals with $p_X(x)$ replaced by $f_X(x)$.

Expectation is linear:

$$\mathbb{E}(aX + bY) = a\mathbb{E}(X) + b\mathbb{E}(Y)$$

For independent X and Y,

$$V(aX + bY) = a^2V(X) + b^2V(Y).$$

2.8.1 Discrete distributions Binomial distribution

The number of successes in n independent yes/no experiments, each which yields success with probability p is $Bin(n,p), n=1,2,\ldots,0 \le p \le 1$.

$$p(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

$$\mu = np, \, \sigma^2 = np(1-p)$$

Bin(n, p) is approximately Po(np) for small p.

template hash troubleshoot

First success distribution

The number of trials needed to get the first success in independent yes/no experiments, each wich yields success with probability p is Fs(p), $0 \le p \le 1$.

$$p(k) = p(1-p)^{k-1}, k = 1, 2, \dots$$

$$\mu = \frac{1}{p}, \, \sigma^2 = \frac{1-p}{p^2}$$

Poisson distribution

The number of events occurring in a fixed period of time t if these events occur with a known average rate κ and independently of the time since the last event is $Po(\lambda)$, $\lambda = t\kappa$.

$$p(k) = e^{-\lambda} \frac{\lambda^k}{k!}, k = 0, 1, 2, \dots$$
$$\mu = \lambda, \sigma^2 = \lambda$$

2.8.2 Continuous distributions Uniform distribution

If the probability density function is constant between a and b and 0 elsewhere it is U(a, b), a < b.

$$f(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & \text{otherwise} \end{cases}$$

$$\mu = \frac{a+b}{2}, \, \sigma^2 = \frac{(b-a)^2}{12}$$

Exponential distribution

The time between events in a Poisson process is $\operatorname{Exp}(\lambda)$, $\lambda > 0$.

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$$

$$\mu = \frac{1}{\lambda}, \, \sigma^2 = \frac{1}{\lambda^2}$$

Normal distribution

Most real random values with mean μ and variance σ^2 are well described by $\mathcal{N}(\mu, \sigma^2)$, $\sigma > 0$.

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

If $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ then

$$aX_1 + bX_2 + c \sim \mathcal{N}(\mu_1 + \mu_2 + c, a^2\sigma_1^2 + b^2\sigma_2^2)$$

c43c7d, 26 lines

2.9 Markov chains

A Markov chain is a discrete random process with the property that the next state depends only on the current state. Let X_1, X_2, \ldots be a sequence of random variables generated by the Markov process. Then there is a transition matrix $\mathbf{P} = (p_{ij})$, with $p_{ij} = \Pr(X_n = i | X_{n-1} = j)$, and $\mathbf{p}^{(n)} = \mathbf{P}^n \mathbf{p}^{(0)}$ is the probability distribution for X_n (i.e., $p_i^{(n)} = \Pr(X_n = i)$), where $\mathbf{p}^{(0)}$ is the initial distribution.

 π is a stationary distribution if $\pi = \pi \mathbf{P}$. If the Markov chain is irreducible (it is possible to get to any state from any state), then $\pi_i = \frac{1}{\mathbb{E}(T_i)}$ where $\mathbb{E}(T_i)$ is the expected time between two visits in state i. π_j/π_i is the expected number of visits in state j between two visits in state i.

For a connected, undirected and non-bipartite graph, where the transition probability is uniform among all neighbors, π_i is proportional to node i's degree.

A Markov chain is *ergodic* if the asymptotic distribution is independent of the initial distribution. A finite Markov chain is ergodic iff it is irreducible and *aperiodic* (i.e., the gcd of cycle lengths is 1). $\lim_{k\to\infty} \mathbf{P}^k = \mathbf{1}\pi$.

A Markov chain is an A-chain if the states can be partitioned into two sets **A** and **G**, such that all states in **A** are absorbing $(p_{ii} = 1)$, and all states in **G** leads to an absorbing state in **A**. The probability for absorption in state $i \in \mathbf{A}$, when the initial state is j, is $a_{ij} = p_{ij} + \sum_{k \in \mathbf{G}} a_{ik}p_{kj}$. The expected time until absorption, when the initial state is i, is $t_i = 1 + \sum_{k \in \mathbf{G}} p_{ki}t_k$.

Data structures (3)

OrderStatisticTree.h

HashMap.h

Description: A set (not multiset!) with support for finding the n'th element, and finding the index of an element. To get a map, change null_type.

Description: Hash map with mostly the same API as unordered_map, but ~3x faster. Uses 1.5x memory. Initial capacity must be a power of 2 (if provided).

#include <bits/extc++.h>
// To use most bits rather than just the lowest ones:
struct chash { // large odd number for C
 const uint64_t C = 11(4e18 * acos(0)) | 71;
 11 operator()(11 x) const { return __builtin_bswap64(x*C); }
};
__qnu_pbds::gp_hash_table<11,int,chash> h({},{},{},{},{},{1<<16});</pre>

SegmentTree.h

Description: Zero-indexed max-tree. Bounds are inclusive to the left and exclusive to the right. Can be changed by modifying T, f and unit. **Time:** $\mathcal{O}(\log N)$

```
0f4bdb, 19 lines
struct Tree {
 typedef int T;
 static constexpr T unit = INT_MIN;
 T f(T a, T b) { return max(a, b); } // (any associative fn)
 vector<T> s; int n;
 Tree (int n = 0, T def = unit) : s(2*n, def), n(n) {}
 void update(int pos, T val) {
   for (s[pos += n] = val; pos /= 2;)
     s[pos] = f(s[pos * 2], s[pos * 2 + 1]);
 T query (int b, int e) { // query [b, e)
   T ra = unit, rb = unit;
    for (b += n, e += n; b < e; b /= 2, e /= 2) {
     if (b \% 2) ra = f(ra, s[b++]);
     if (e \% 2) rb = f(s[--e], rb);
   return f(ra, rb);
```

LazySegmentTree.h

Description: Segment tree with ability to set values of large intervals [L, R), and compute max of intervals. Can be changed to other things.

```
Time: O(\log N).
                                                     805523, 55 lines
struct STLazy {
 int n;
 vector<int> tr. lz:
 STLazy(int n) : n(n), tr(4*n + 8), lz(4*n + 8) {}
 void push(int v, int lo, int hi) {
   if (lz[v] != 0) {
     tr[v] += lz[v];
     if(lo+1 != hi) {
       1z[v*2] += 1z[v];
       1z[v*2+1] += 1z[v];
     lz[v] = 0;
 void update(int v, int lo, int hi, int l, int r, int val) {
   push (v. lo, hi);
   if (lo >= hi || lo >= r || hi <= 1) return;
   if (lo >= 1 && hi <= r) {
     lz[v] += val; // put lazy tag here
     push (v, lo, hi);
     return;
```

```
update (v*2, lo, mid, l, r, val);
   update (v*2 + 1, mid, hi, l, r, val);
   tr[v] = max(tr[2*v], tr[2*v+1]);
  int query(int v, int lo, int hi, int l, int r) {
   push (v, lo, hi);
    if (lo >= hi || lo >= r || hi <= l) return -INF;
    if (lo >= 1 && hi <= r) return tr[v];
   int mid = (lo + hi)/2;
   int p1 = query(v*2, lo, mid, l, r);
   int p2 = query (v*2 + 1, mid, hi, 1, r);
    return max(p1, p2);
 void update(int 1, int r, int val) {
    update(1, 0, n, 1, r, val);
 int query(int 1, int r) {
   return query (1, 0, n, 1, r);
};
```

UnionFindRollback.h

Description: Disjoint-set data structure with undo. If undo is not needed, skip st, time() and rollback().

```
Usage: int t = uf.time(); ...; uf.rollback(t);

Time: O(\log(N))
```

```
de4ad0, 21 lines
struct RollbackUF {
 vi e; vector<pii> st;
 RollbackUF(int n) : e(n, -1) {}
 int size(int x) { return -e[find(x)]; }
  int find(int x) { return e[x] < 0 ? x : find(e[x]); }
  int time() { return sz(st); }
  void rollback(int t) {
    for (int i = time(); i --> t;)
      e[st[i].first] = st[i].second;
    st.resize(t);
 bool join(int a, int b) {
    a = find(a), b = find(b);
    if (a == b) return false;
    if (e[a] > e[b]) swap(a, b);
    st.push_back({a, e[a]});
    st.push_back({b, e[b]});
    e[a] += e[b]; e[b] = a;
    return true;
};
Matrix.h
```

Description: Basic operations on square matrices.

```
Usage: Matrix<int, 3> A;
A.d = {{{{1,2,3}}, {{4,5,6}}, {{7,8,9}}}};
vector<int> vec = {1,2,3};
vec = (A'N) * vec;
```

```
template<class T, int N> struct Matrix {
  typedef Matrix M;
  array<array<T, N>, N> d{};
  M operator*(const M& m) const {
    M a;
  rep(i,0,N) rep(j,0,N)
```

int mid = (lo + hi) / 2;

```
rep(k, 0, N) \ a.d[i][j] += d[i][k]*m.d[k][j];
    return a;
  vector<T> operator*(const vector<T>& vec) const {
    vector<T> ret(N);
   rep(i, 0, N) rep(j, 0, N) ret[i] += d[i][j] * vec[j];
  M operator^(ll p) const {
   assert (p >= 0);
   M a, b(*this);
   rep(i, 0, N) \ a.d[i][i] = 1;
    while (p) {
     if (p&1) a = a*b;
     b = b * b;
     p >>= 1;
    return a;
};
```

DvnamicLichaoTree.h

Description: Convex hull trick. Adds lines of the form ax + b, queries \max/\min on certain x. Supports adding segments as well.

```
Time: \mathcal{O}(\log N)
                                                      c76365, 57 lines
struct Line {
 ll a, b;
 inline 11 calc(11 x) const {return a*x + b;}
struct DynamicLiChaoTree {
  // modify these at will
  static const bool maximum = true;
  static const 11 \min X = -1e6, \max X = 1e6, \operatorname{defVal} = -1e18;
  struct Node {
   Line line = {0, maximum ? defVal : -defVal};
   Node *lt = nullptr, *rt = nullptr;
  DynamicLiChaoTree() {root = new Node();}
  void update (Node* cur, 11 1, 11 r, 11 u, 11 v, Line nw) {
    \#define newNode(x) if (!x) x = new Node()
    if (v < 1 || r < u) return;
   11 \text{ mid} = (1 + r) >> 1;
   if (u <= 1 && r <= v) {
      if (cur->line.calc(l) >= nw.calc(l)) swap(cur->line, nw);
     if (cur->line.calc(r) <= nw.calc(r)) {</pre>
       cur->line = nw; return;
      if (nw.calc(mid) >= cur->line.calc(mid)) {
       newNode(cur->rt);
       update(cur->rt, mid + 1, r, u, v, cur->line);
        cur->line = nw;
      } else {
       newNode(cur->lt);
        update(cur->lt, l, mid, u, v, nw);
    } else {
     newNode(cur->lt); newNode(cur->rt);
     update(cur->lt, l, mid, u, v, nw);
      update(cur->rt, mid + 1, r, u, v, nw);
    #undef newNode
  void add(ll a, ll b, ll l = minX, ll r = maxX) {
   if (!maximum) a = -a, b = -b;
```

```
update(root, minX, maxX, 1, r, {a, b});
 ll query(ll x) {
   Node* cur = root;
    ll res = cur->line.calc(x), l = minX, r = maxX, mid;
    while (cur) {
      res = max(res, cur->line.calc(x));
      mid = (1 + r) >> 1;
      if (x \le mid) cur = cur \rightarrow lt, r = mid;
      else cur = cur->rt, l = mid + 1;
   return maximum ? res : -res;
};
```

Treap.h

Description: A short self-balancing tree. It acts as a sequential container with log-time splits/joins, and is easy to augment with additional data. Time: $\mathcal{O}(\log N)$

```
struct Node {
 Node *1 = 0, *r = 0;
  int val, y, c = 1;
  Node(int val) : val(val), y(rand()) {}
  void recalc();
int cnt(Node* n) { return n ? n->c : 0; }
void Node::recalc() { c = cnt(1) + cnt(r) + 1; }
template < class F > void each (Node * n, F f) {
 if (n) { each (n->1, f); f(n->val); each (n->r, f); }
pair<Node*, Node*> split (Node* n, int k) {
  if (!n) return {};
  if (cnt(n->1) >= k) { // "n-> val >= k" for lower_bound(k)}
    auto pa = split(n->1, k);
    n->1 = pa.second;
    n->recalc();
    return {pa.first, n};
    auto pa = split(n\rightarrow r, k - cnt(n\rightarrow 1); // and just "k"
    n->r = pa.first;
    n->recalc();
    return {n, pa.second};
Node* merge(Node* 1, Node* r) {
 if (!1) return r:
  if (!r) return 1;
  if (1->v > r->v) {
    1->r = merge(1->r, r);
    1->recalc();
    return 1;
  } else {
    r->1 = merge(1, r->1);
    r->recalc();
    return r:
Node* ins(Node* t, Node* n, int pos) {
 auto pa = split(t, pos);
 return merge (merge (pa.first, n), pa.second);
```

```
void move(Node*& t, int l, int r, int k) {
 Node *a, *b, *c;
 tie(a,b) = split(t, 1); tie(b,c) = split(b, r - 1);
 if (k \le 1) t = merge(ins(a, b, k), c);
 else t = merge(a, ins(c, b, k - r));
```

FenwickTree.h

9556fc, 55 lines

Time: Both operations are $\mathcal{O}(\log N)$.

Description: Computes partial sums a[0] + a[1] + ... + a[pos - 1], and updates single elements a[i], taking the difference between the old and new

```
struct FT {
 vector<ll> s;
 FT(int n) : s(n) {}
  void update(int pos, 11 dif) { // a[pos] += dif
    for (; pos < sz(s); pos |= pos + 1) s[pos] += dif;
 11 query (int pos) { // sum of values in [0, pos)
    11 \text{ res} = 0;
    for (; pos > 0; pos &= pos -1) res += s[pos-1];
    return res;
 int lower_bound(ll sum) \{// min \ pos \ st \ sum \ of \ [0, \ pos] >= sum
    // Returns n if no sum is \geq sum, or -1 if empty sum is.
    if (sum \le 0) return -1;
    int pos = 0;
    for (int pw = 1 << 25; pw; pw >>= 1) {
      if (pos + pw \le sz(s) \&\& s[pos + pw-1] \le sum)
        pos += pw, sum -= s[pos-1];
    return pos;
};
```

FenwickTree2d.h

Description: Computes sums a[i,j] for all i<I, j<J, and increases single elements a[i,j]. Requires that the elements to be updated are known in advance (call fakeUpdate(), then init()).

Time: $\mathcal{O}(\log^2 N)$. (Use persistent segment trees for $\mathcal{O}(\log N)$.)

"FenwickTree.h" 157f07, 22 lines struct FT2 { vector<vi> ys; vector<FT> ft; FT2(int limx) : ys(limx) {} void fakeUpdate(int x, int y) { for (; x < sz(ys); x = x + 1) $ys[x].push_back(y)$; void init() { for (vi& v : ys) sort(all(v)), ft.emplace_back(sz(v)); int ind(int x, int y) { return (int) (lower_bound(all(ys[x]), y) - ys[x].begin()); } void update(int x, int y, ll dif) { for (; x < sz(ys); x |= x + 1) ft[x].update(ind(x, y), dif); ll query(int x, int y) { 11 sum = 0;for (; x; x &= x - 1)sum += ft[x-1].query(ind(x-1, y)); return sum; };

Description: Range Minimum Queries on an array. Returns min(V[a], V[a + 1], ... V[b - 1]) in constant time.

// Example application: move the range $\lceil l, r \rceil$ to index k

```
Usage: RMQ rmq(values);
rmq.query(inclusive, exclusive);
Time: \mathcal{O}(|V|\log|V|+Q)
                                                        510c32, 16 lines
template<class T>
struct RMO {
 vector<vector<T>> jmp;
 RMQ(const vectorT>\&V) : jmp(1, V) {
    for (int pw = 1, k = 1; pw * 2 <= sz(V); pw *= 2, ++k) {
      jmp.emplace_back(sz(V) - pw * 2 + 1);
      rep(j, 0, sz(jmp[k]))
        jmp[k][j] = min(jmp[k - 1][j], jmp[k - 1][j + pw]);
 T query(int a, int b) {
    assert (a < b); // or return inf if a == b
   int dep = 31 - \underline{\phantom{a}} builtin_clz(b - a);
    return min(jmp[dep][a], jmp[dep][b - (1 << dep)]);</pre>
```

MoQueries.h

Description: Answer interval finding an approximate TSP through the queries, and moving from one query to the next by adding/removing points at the ends.

```
Time: \mathcal{O}\left(N\sqrt{Q}\right)
                                                        7b2870, 20 lines
void add(int ind, int end) { ... } // add a[ind] (end = 0 or 1)
void del(int ind, int end) { ... } // remove a / ind /
int calc() { ... } // compute current answer
vi mo(vector<pii> Q) {
 int L = 0, R = 0, blk = 350; // \sim N/sqrt(Q)
  vi s(sz(Q)), res = s;
#define K(x) pii(x.first/blk, x.second ^ -(x.first/blk & 1))
  iota(all(s), 0):
  sort(all(s), [\&](int s, int t) \{ return K(Q[s]) < K(Q[t]); \});
  for (int qi : s) {
    pii q = Q[qi];
    while (L > q.first) add(--L, 0);
    while (R < q.second) add (R++, 1);
    while (L < q.first) del(L++, 0);
    while (R > g.second) del(--R, 1);
    res[gi] = calc();
  return res:
```

MoTree.h

R[x] = N;

Description: Answer tree path queries by finding an approximate TSP through the queries, and moving from one query to the next by adding/removing points at the ends. If values are on tree edges, change step to add/remove the edge (a,c) and remove the initial add call (but keep in).

```
Time: O\left(N\sqrt{Q}\right) 35bcf9, 32 lines void add(int ind, int end) { ... } // add a[ind] (end = 0 or 1) void del(int ind, int end) { ... } // remove a[ind] int calc() { ... } // compute current answer vi moTree(vector<array<int, 2>> Q, vector<vi>& ed, int root=0) { int N = sz(ed), pos[2] = {}, blk = 350; // \sim N/sqrt(Q) vi s(sz(Q)), res = s, I(N), L(N), R(N), in(N), par(N); add(0, 0), in[0] = 1; auto dfs = [&](int x, int p, int dep, auto& f) -> void { par[x] = p; L[x] = N; if (dep) I[x] = N++; for (int y : ed[x]) if (y != p) f(y, x, !dep, f); if (!dep) I[x] = N++;
```

Numerical (4)

Polynomial.h

4.1 Polynomials and recurrences

```
struct Poly {
  vector<double> a;
  double operator() (double x) const {
    double val = 0;
    for (int i = sz(a); i--;) (val *= x) += a[i];
    return val;
  }
  void diff() {
    rep(i,1,sz(a)) a[i-1] = i*a[i];
    a.pop_back();
  }
  void divroot (double x0) {
    double b = a.back(), c; a.back() = 0;
    for (int i=sz(a)-1; i--;) c = a[i], a[i] = a[i+1]*x0+b, b=c;
    a.pop_back();
}
```

PolyRoots.h

if $(sign ^ (p(h) > 0)) {$

ret.push_back((l + h) / 2);

else h = m;

};

Description: Finds the real roots to a polynomial. **Usage:** polyRoots($\{\{2,-3,1\}\},-1e9,1e9\}$) // solve $x^2-3x+2=0$

```
Time: \mathcal{O}\left(n^2\log(1/\epsilon)\right)

"Polynomial.h"

vector<double> polyRoots(Poly p, double xmin, double xmax) {
  if (sz (p.a) == 2) { return {-p.a[0]/p.a[1]}; }
  vector<double> ret;
  Poly der = p;
  der.diff();
  auto dr = polyRoots(der, xmin, xmax);
  dr.push_back(xmin-1);
  dr.push_back(xmax+1);
  sort(all(dr));
  rep(i, 0, sz (dr) -1) {
    double l = dr[i], h = dr[i+1];
  bool sign = p(l) > 0;
```

rep(it,0,60) { // while (h - l > 1e-8)

double m = (1 + h) / 2, f = p(m); if $((f \le 0) ^ sign) 1 = m$;

```
return ret;
```

PolyInterpolate.h

Description: Given n points (x[i], y[i]), computes an n-1-degree polynomial p that passes through them: $p(x) = a[0] * x^0 + ... + a[n-1] * x^{n-1}$. For numerical precision, pick $x[k] = c * \cos(k/(n-1) * \pi), k = 0 \dots n-1$. **Time:** $\mathcal{O}\left(n^2\right)$

```
typedef vector<double> vd;
vd interpolate(vd x, vd y, int n) {
  vd res(n), temp(n);
  rep(k,0,n-1) rep(i,k+1,n)
    y[i] = (y[i] - y[k]) / (x[i] - x[k]);
  double last = 0; temp[0] = 1;
  rep(k,0,n) rep(i,0,n) {
    res[i] += y[k] * temp[i];
    swap(last, temp[i]);
    temp[i] -= last * x[k];
  }
  return res;
}
```

BerlekampMassev.h

Description: Recovers any n-order linear recurrence relation from the first 2n terms of the recurrence. Useful for guessing linear recurrences after brute-forcing the first terms. Should work on any field, but numerical stability for floats is not guaranteed. Output will have size $\leq n$.

```
Usage: berlekampMassey(\{0, 1, 1, 3, 5, 11\}) // \{1, 2\}
Time: \mathcal{O}(N^2)
".../number-theory/ModPow.h" 96548b, 20 lines
```

```
vector<1l> berlekampMassey(vector<1l> s) {
 int n = sz(s), L = 0, m = 0;
 vector<ll> C(n), B(n), T;
 C[0] = B[0] = 1;
 11 b = 1:
 rep(i, 0, n) \{ ++m;
   11 d = s[i] % mod;
   rep(j, 1, L+1) d = (d + C[j] * s[i - j]) % mod;
   if (!d) continue;
   T = C; 11 coef = d * modpow(b, mod-2) % mod;
   rep(j, m, n) C[j] = (C[j] - coef * B[j - m]) % mod;
   if (2 * L > i) continue;
   L = i + 1 - L; B = T; b = d; m = 0;
 C.resize(L + 1); C.erase(C.begin());
 for (11& x : C) x = (mod - x) % mod;
 return C;
```

LinearRecurrence.h

Description: Generates the k'th term of an n-order linear recurrence $S[i] = \sum_j S[i-j-1]tr[j]$, given $S[0... \ge n-1]$ and tr[0...n-1]. Faster than matrix multiplication. Useful together with Berlekamp-Massey.

Usage: linearRec({0, 1}, {1, 1}, k) // k'th Fibonacci number Time: $\mathcal{O}\left(n^2\log k\right)$ f4e444, 26 lin

```
typedef vector<ll> Poly;
ll linearRec(Poly S, Poly tr, ll k) {
  int n = sz(tr);

auto combine = [&] (Poly a, Poly b) {
   Poly res(n * 2 + 1);
   rep(i,0,n+1) rep(j,0,n+1)
   res[i + j] = (res[i + j] + a[i] * b[j]) % mod;
  for (int i = 2 * n; i > n; --i) rep(j,0,n)
```

```
res[i - 1 - j] = (res[i - 1 - j] + res[i] * tr[j]) % mod;
  res.resize(n + 1);
  return res;
Poly pol (n + 1), e(pol);
pol[0] = e[1] = 1;
for (++k; k; k /= 2) {
 if (k % 2) pol = combine(pol, e);
 e = combine(e, e);
rep(i, 0, n) res = (res + pol[i + 1] * S[i]) % mod;
return res;
```

Optimization

GoldenSectionSearch.h

Description: Finds the argument minimizing the function f in the interval [a, b] assuming f is unimodal on the interval, i.e. has only one local minimum. The maximum error in the result is eps. Works equally well for maximization with a small change in the code. See TernarySearch.h in the Various chapter for a discrete version. Usage: double func(double x) { return 4+x+.3*x*x; }

```
double xmin = gss(-1000, 1000, func);
Time: \mathcal{O}(\log((b-a)/\epsilon))
                                                       31d45b, 14 lines
double gss (double a, double b, double (*f) (double)) {
  double r = (sqrt(5)-1)/2, eps = 1e-7;
  double x1 = b - r*(b-a), x2 = a + r*(b-a);
  double f1 = f(x1), f2 = f(x2);
  while (b-a > eps)
    if (f1 < f2) { //change to > to find maximum
     b = x2; x2 = x1; f2 = f1;
     x1 = b - r*(b-a); f1 = f(x1);
    } else {
     a = x1; x1 = x2; f1 = f2;
     x2 = a + r*(b-a); f2 = f(x2);
 return a;
```

HillClimbing.h

Description: Poor man's optimization for unimodal functions_{8eeeaf, 14 lines}

```
typedef array<double, 2> P;
template<class F> pair<double, P> hillClimb(P start, F f) {
  pair<double, P> cur(f(start), start);
  for (double jmp = 1e9; jmp > 1e-20; jmp /= 2) {
   rep(j,0,100) rep(dx,-1,2) rep(dy,-1,2) {
     P p = cur.second;
     p[0] += dx * jmp;
     p[1] += dy * jmp;
     cur = min(cur, make_pair(f(p), p));
 return cur;
```

Integrate.h

template<class F>

Description: Simple integration of a function over an interval using Simpson's rule. The error should be proportional to h^4 , although in practice you will want to verify that the result is stable to desired precision when epsilon changes.

4756fc, 7 lines

```
double quad(double a, double b, F f, const int n = 1000) {
  double h = (b - a) / 2 / n, v = f(a) + f(b);
 rep(i,1,n*2)
    v += f(a + i*h) * (i&1 ? 4 : 2);
  return v * h / 3;
IntegrateAdaptive.h
Description: Fast integration using an adaptive Simpson's rule.
Usage: double sphereVolume = quad(-1, 1, [](double x) {
return quad(-1, 1, [&] (double y)
return quad(-1, 1, [&](double z)
return x*x + y*y + z*z < 1; {);});});
                                                    92dd79, 15 lines
#define S(a,b) (f(a) + 4*f((a+b) / 2) + f(b)) * (b-a) / 6
template <class F>
d rec(F& f, da, db, deps, dS) {
 dc = (a + b) / 2;
  d S1 = S(a, c), S2 = S(c, b), T = S1 + S2;
  if (abs(T - S) \le 15 * eps | | b - a < 1e-10)
    return T + (T - S) / 15;
  return rec(f, a, c, eps / 2, S1) + rec(f, c, b, eps / 2, S2);
template<class F>
d quad(d a, d b, F f, d eps = 1e-8) {
 return rec(f, a, b, eps, S(a, b));
```

Simplex.h

Description: Solves a general linear maximization problem: maximize $c^T x$ subject to Ax < b, x > 0. Returns -inf if there is no solution, inf if there are arbitrarily good solutions, or the maximum value of c^Tx otherwise. The input vector is set to an optimal x (or in the unbounded case, an arbitrary solution fulfilling the constraints). Numerical stability is not guaranteed. For better performance, define variables such that x = 0 is viable.

```
Usage: vvd A = \{\{1, -1\}, \{-1, 1\}, \{-1, -2\}\};
vd b = \{1, 1, -4\}, c = \{-1, -1\}, x;
T val = LPSolver(A, b, c).solve(x);
```

Time: $\mathcal{O}(NM * \#pivots)$, where a pivot may be e.g. an edge relaxation. $\mathcal{O}(2^n)$ in the general case.

```
typedef double T; // long double, Rational, double + mokP>...
typedef vector<T> vd;
typedef vector<vd> vvd;
const T eps = 1e-8, inf = 1/.0;
#define MP make_pair
#define ltj(X) if(s == -1 || MP(X[j],N[j]) < MP(X[s],N[s])) s=j
struct LPSolver {
 int m, n;
 vi N. B:
 vvd D:
 LPSolver (const vvd& A, const vd& b, const vd& c) :
   m(sz(b)), n(sz(c)), N(n+1), B(m), D(m+2), vd(n+2)) {
     rep(i, 0, m) rep(j, 0, n) D[i][j] = A[i][j];
     rep(i,0,m) { B[i] = n+i; D[i][n] = -1; D[i][n+1] = b[i];}
     rep(j, 0, n) \{ N[j] = j; D[m][j] = -c[j]; \}
     N[n] = -1; D[m+1][n] = 1;
 void pivot(int r, int s) {
   T *a = D[r].data(), inv = 1 / a[s];
   rep(i, 0, m+2) if (i != r \&\& abs(D[i][s]) > eps) {
```

```
b[s] = a[s] * inv2;
    rep(j, 0, n+2) if (j != s) D[r][j] *= inv;
    rep(i, 0, m+2) if (i != r) D[i][s] *= -inv;
    D[r][s] = inv;
    swap(B[r], N[s]);
  bool simplex(int phase) {
    int x = m + phase - 1;
    for (;;) {
     int s = -1;
      rep(j,0,n+1) if (N[j] != -phase) ltj(D[x]);
      if (D[x][s] >= -eps) return true;
      int r = -1;
      rep(i,0,m) {
       if (D[i][s] <= eps) continue;
        if (r == -1 \mid | MP(D[i][n+1] / D[i][s], B[i])
                     < MP(D[r][n+1] / D[r][s], B[r])) r = i;
      if (r == -1) return false;
      pivot(r, s);
 T solve(vd &x) {
    int r = 0;
    rep(i,1,m) if (D[i][n+1] < D[r][n+1]) r = i;
    if (D[r][n+1] < -eps) {
      pivot(r, n);
      if (!simplex(2) || D[m+1][n+1] < -eps) return -inf;</pre>
      rep(i, 0, m) if (B[i] == -1) {
        int s = 0;
        rep(j,1,n+1) ltj(D[i]);
        pivot(i, s);
    bool ok = simplex(1); x = vd(n);
    rep(i, 0, m) if (B[i] < n) x[B[i]] = D[i][n+1];
    return ok ? D[m][n+1] : inf;
};
```

4.3Matrices

XorBasis.h

Description: Maintains a xor basis of d bits. Can change to bitsets for larger d. add() returns true if vector is inserted, otherwise false. sz holds the current size of the basis.

Time: $\mathcal{O}(d)$

```
9221a8, 19 lines
struct xor_basis{
 int d, sz;
 vector<ll> basis;
  xor_basis(int d) {
    this->d = d; sz = 0; basis.resize(d);
 bool add(ll mask) {
    rep(i, 0, d) {
     if (mask & (1LL << i)) {
       if (!basis[i]) {
         basis[i] = mask; sz++;
          return 1;
        mask ^= basis[i];
    return 0;
```

T *b = D[i].data(), inv2 = b[s] * inv;

rep(j, 0, n+2) b[j] -= a[j] * inv2;

ebfff6, 35 lines

Determinant.h

Description: Calculates determinant of a matrix. Destroys the matrix.

Time: $\mathcal{O}(N^3)$ bd5cec, 15 lines double det(vector<vector<double>>& a) { int n = sz(a); double res = 1; rep(i,0,n) { int b = i; rep(j,i+1,n) if (fabs(a[j][i]) > fabs(a[b][i])) b = j; if (i != b) swap(a[i], a[b]), res *= -1; res *= a[i][i]; if (res == 0) return 0; rep(j,i+1,n) { double v = a[j][i] / a[i][i];if (v != 0) rep(k, i+1, n) a[j][k] -= v * a[i][k];

IntDeterminant.h

return res;

Description: Calculates determinant using modular arithmetics. Modulos can also be removed to get a pure-integer version.

Time: $\mathcal{O}(N^3)$

3313dc, 18 lines

```
const 11 mod = 12345;
11 det(vector<vector<11>>& a) {
 int n = sz(a); ll ans = 1;
  rep(i,0,n) {
   rep(j, i+1, n) {
     while (a[j][i] != 0) { // gcd step}
       11 t = a[i][i] / a[j][i];
       if (t) rep(k,i,n)
         a[i][k] = (a[i][k] - a[j][k] * t) % mod;
       swap(a[i], a[j]);
       ans *=-1;
   ans = ans \star a[i][i] % mod;
   if (!ans) return 0:
  return (ans + mod) % mod;
```

SolveLinear.h

Description: Solves A * x = b. If there are multiple solutions, an arbitrary one is returned. Returns rank, or -1 if no solutions. Data in A and b is lost. Time: $\mathcal{O}\left(n^2m\right)$

typedef vector<double> vd; const double eps = 1e-12; int solveLinear(vector<vd>& A, vd& b, vd& x) { int n = sz(A), m = sz(x), rank = 0, br, bc; if (n) assert(sz(A[0]) == m); vi col(m); iota(all(col), 0); rep(i,0,n) { double v, bv = 0; rep(r,i,n) rep(c,i,m)if ((v = fabs(A[r][c])) > bv)br = r, bc = c, bv = v; if (bv <= eps) { rep(j,i,n) if (fabs(b[j]) > eps) return -1; swap(A[i], A[br]); swap(b[i], b[br]); swap(col[i], col[bc]); rep(j,0,n) swap(A[j][i], A[j][bc]);

```
bv = 1/A[i][i];
  rep(j, i+1, n) {
    double fac = A[j][i] * bv;
    b[j] = fac * b[i];
    rep(k, i+1, m) A[j][k] -= fac*A[i][k];
  rank++;
x.assign(m, 0);
for (int i = rank; i--;) {
  b[i] /= A[i][i];
  x[col[i]] = b[i];
  rep(j, 0, i) b[j] = A[j][i] * b[i];
return rank; // (multiple solutions if rank < m)
```

SolveLinear2.h

Description: To get all uniquely determined values of x back from Solve-Linear, make the following changes:

```
"SolveLinear.h"
                                                       08e495, 7 lines
rep(j,0,n) if (j != i) // instead of rep(j,i+1,n)
// ... then at the end:
x.assign(m, undefined);
rep(i,0,rank) {
 rep(j,rank,m) if (fabs(A[i][j]) > eps) goto fail;
 x[col[i]] = b[i] / A[i][i];
fail:; }
```

SolveLinearBinary.h

Description: Solves Ax = b over \mathbb{F}_2 . If there are multiple solutions, one is returned arbitrarily. Returns rank, or -1 if no solutions. Destroys A and b. Time: $\mathcal{O}\left(n^2m\right)$

```
typedef bitset<1000> bs;
int solveLinear(vector<bs>& A, vi& b, bs& x, int m) {
 int n = sz(A), rank = 0, br;
 assert (m \le sz(x));
 vi col(m); iota(all(col), 0);
   for (br=i; br<n; ++br) if (A[br].any()) break;
   if (br == n) {
     rep(j,i,n) if(b[j]) return -1;
   int bc = (int)A[br]. Find next(i-1);
   swap(A[i], A[br]);
   swap(b[i], b[br]);
   swap(col[i], col[bc]);
   rep(j, 0, n) if (A[j][i] != A[j][bc]) {
     A[j].flip(i); A[j].flip(bc);
   rep(j,i+1,n) if (A[j][i]) {
     b[j] ^= b[i];
     A[j] ^= A[i];
   rank++;
 x = bs();
 for (int i = rank; i--;) {
   if (!b[i]) continue;
   x[col[i]] = 1;
   rep(j, 0, i) b[j] ^= A[j][i];
 return rank; // (multiple solutions if rank < m)
```

MatrixInverse.h

Description: Invert matrix A. Returns rank; result is stored in A unless singular (rank < n). Can easily be extended to prime moduli; for prime powers, repeatedly set $A^{-1} = A^{-1}(2I - AA^{-1}) \pmod{p^k}$ where A^{-1} starts as the inverse of A mod p, and k is doubled in each step. Time: $\mathcal{O}\left(n^3\right)$

```
int matInv(vector<vector<double>>& A) {
 int n = sz(A); vi col(n);
 vector<vector<double>> tmp(n, vector<double>(n));
 rep(i, 0, n) tmp[i][i] = 1, col[i] = i;
 rep(i,0,n) {
   int r = i, c = i;
   rep(j,i,n) rep(k,i,n)
     if (fabs(A[j][k]) > fabs(A[r][c]))
       r = j, c = k;
   if (fabs(A[r][c]) < 1e-12) return i;
   A[i].swap(A[r]); tmp[i].swap(tmp[r]);
    rep(j,0,n)
     swap(A[j][i], A[j][c]), swap(tmp[j][i], tmp[j][c]);
    swap(col[i], col[c]);
    double v = A[i][i];
   rep(j, i+1, n) {
     double f = A[j][i] / v;
     A[j][i] = 0;
     rep(k, i+1, n) A[j][k] = f * A[i][k];
     rep(k, 0, n) tmp[j][k] -= f*tmp[i][k];
   rep(j, i+1, n) A[i][j] /= v;
   rep(j,0,n) tmp[i][j] /= v;
   A[i][i] = 1;
 for (int i = n-1; i > 0; --i) rep(j,0,i) {
   double v = A[j][i];
   rep(k, 0, n) tmp[j][k] -= v*tmp[i][k];
 rep(i, 0, n) rep(j, 0, n) A[col[i]][col[j]] = tmp[i][j];
 return n;
```

MatrixInverse-mod.h

Description: Invert matrix A modulo a prime. Returns rank; result is stored in A unless singular (rank < n). For prime powers, repeatedly set $A^{-1} = A^{-1}(2I - AA^{-1}) \pmod{p^k}$ where A^{-1} starts as the inverse of A mod p, and k is doubled in each step.

Time: $\mathcal{O}\left(n^3\right)$

```
"../number-theory/ModPow.h"
                                                      a6f68f, 36 lines
int matInv(vector<vector<ll>>& A) {
 int n = sz(A); vi col(n);
 vector<vector<ll>> tmp(n, vector<ll>(n));
 rep(i, 0, n) tmp[i][i] = 1, col[i] = i;
 rep(i,0,n) {
   int r = i, c = i;
   rep(j,i,n) rep(k,i,n) if (A[j][k]) {
     r = j; c = k; goto found;
    return i;
found:
    A[i].swap(A[r]); tmp[i].swap(tmp[r]);
    rep(j,0,n) swap(A[j][i], A[j][c]), swap(tmp[j][i], tmp[j][c
        1);
    swap(col[i], col[c]);
    11 v = modpow(A[i][i], mod - 2);
    rep(j, i+1, n) {
      ll f = A[j][i] * v % mod;
```

```
A[i][i] = 0;
   rep(k, i+1, n) A[j][k] = (A[j][k] - f*A[i][k]) % mod;
   rep(k,0,n) tmp[j][k] = (tmp[j][k] - f*tmp[i][k]) % mod;
  rep(j, i+1, n) A[i][j] = A[i][j] * v % mod;
 rep(j, 0, n) tmp[i][j] = tmp[i][j] * v % mod;
 A[i][i] = 1;
for (int i = n-1; i > 0; --i) rep(j, 0, i) {
 11 v = A[j][i];
 rep(k, 0, n) tmp[j][k] = (tmp[j][k] - v*tmp[i][k]) % mod;
rep(i,0,n) rep(j,0,n)
 A[col[i]][col[j]] = tmp[i][j] % mod + (tmp[i][j] < 0 ? mod
return n;
```

Tridiagonal.h

Description: x = tridiagonal(d, p, q, b) solves the equation system

$$\begin{pmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_{n-1} \end{pmatrix} = \begin{pmatrix} d_0 & p_0 & 0 & 0 & \cdots & 0 \\ q_0 & d_1 & p_1 & 0 & \cdots & 0 \\ 0 & q_1 & d_2 & p_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & q_{n-3} & d_{n-2} & p_{n-2} \\ 0 & 0 & \cdots & 0 & q_{n-2} & d_{n-1} \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_{n-1} \end{pmatrix}$$

This is useful for solving problems on the type

```
a_i = b_i a_{i-1} + c_i a_{i+1} + d_i, \ 1 \le i \le n,
```

where a_0, a_{n+1}, b_i, c_i and d_i are known. a can then be obtained from

$$\begin{aligned} \{a_i\} &= \operatorname{tridiagonal}(\{1,-1,-1,\ldots,-1,1\},\{0,c_1,c_2,\ldots,c_n\},\\ \{b_1,b_2,\ldots,b_n,0\},\{a_0,d_1,d_2,\ldots,d_n,a_{n+1}\}). \end{aligned}$$

Fails if the solution is not unique.

If $|d_i| > |p_i| + |q_{i-1}|$ for all i, or $|d_i| > |p_{i-1}| + |q_i|$, or the matrix is positive definite, the algorithm is numerically stable and neither tr nor the check for diag[i] == 0 is needed.

Time: $\mathcal{O}(N)$

```
8f9fa8, 26 lines
typedef double T;
vector<T> tridiagonal(vector<T> diag, const vector<T>& super,
   const vector<T>& sub, vector<T> b) {
  int n = sz(b); vi tr(n);
  rep(i, 0, n-1) {
   if (abs(diag[i]) < 1e-9 * abs(super[i])) { // diag[i] == 0
     b[i+1] = b[i] * diag[i+1] / super[i];
     if (i+2 < n) b[i+2] = b[i] * sub[i+1] / super[i];
     diaq[i+1] = sub[i]; tr[++i] = 1;
     diag[i+1] -= super[i]*sub[i]/diag[i];
     b[i+1] = b[i] * sub[i] / diag[i];
  for (int i = n; i--;) {
   if (tr[i]) {
     swap(b[i], b[i-1]);
     diag[i-1] = diag[i];
     b[i] /= super[i-1];
     b[i] /= diag[i];
     if (i) b[i-1] -= b[i] * super[i-1];
 return b;
```

4.4 Fourier transforms

FastFourierTransform.h

Description: fft(a) computes $\hat{f}(k) = \sum_{x} a[x] \exp(2\pi i \cdot kx/N)$ for all k. N must be a power of 2. Useful for convolution: conv(a, b) = c, where $c[x] = \sum a[i]b[x-i]$. For convolution of complex numbers or more than two vectors: FFT, multiply pointwise, divide by n, reverse(start+1, end), FFT back. Rounding is safe if $(\sum a_i^2 + \sum b_i^2) \log_2 N < 9 \cdot 10^{14}$ (in practice 10^{16} ; higher for random inputs). Otherwise, use NTT/FFTMod. **Time:** $O(N \log N)$ with N = |A| + |B| (~1s for $N = 2^{22}$)

```
00ced6, 35 lines
typedef complex<double> C;
typedef vector < double > vd;
void fft(vector<C>& a) {
 int n = sz(a), L = 31 - builtin clz(n);
 static vector<complex<long double>> R(2, 1);
 static vector<C> rt(2, 1); // (^ 10% faster if double)
 for (static int k = 2; k < n; k \neq 2) {
   R.resize(n); rt.resize(n);
   auto x = polar(1.0L, acos(-1.0L) / k);
   rep(i,k,2*k) rt[i] = R[i] = i\&1 ? R[i/2] * x : R[i/2];
 vi rev(n);
 rep(i, 0, n) \ rev[i] = (rev[i / 2] | (i & 1) << L) / 2;
 rep(i,0,n) if (i < rev[i]) swap(a[i], a[rev[i]]);
 for (int k = 1; k < n; k *= 2)
   for (int i = 0; i < n; i += 2 * k) rep(j,0,k) {
     Cz = rt[j+k] * a[i+j+k]; // (25\% faster if hand-rolled)
     a[i + j + k] = a[i + j] - z;
     a[i + j] += z;
vd conv(const vd& a, const vd& b) {
 if (a.emptv() || b.emptv()) return {};
 vd res(sz(a) + sz(b) - 1);
 int L = 32 - \underline{\text{builtin\_clz}(\text{sz(res)})}, n = 1 << L;
 vector<C> in(n), out(n);
 copy(all(a), begin(in));
 rep(i, 0, sz(b)) in[i].imag(b[i]);
 fft(in);
 for (C\& x : in) x *= x;
 rep(i, 0, n) out[i] = in[-i & (n - 1)] - conj(in[i]);
 fft (out);
 rep(i, 0, sz(res)) res[i] = imag(out[i]) / (4 * n);
 return res;
```

FastFourierTransformMod.h

Description: Higher precision FFT, can be used for convolutions modulo arbitrary integers as long as $N \log_2 N \cdot \text{mod} < 8.6 \cdot 10^{14}$ (in practice 10^{16} or higher). Inputs must be in [0, mod).

Time: $\mathcal{O}(N \log N)$, where N = |A| + |B| (twice as slow as NTT or FFT)

```
"FastFourierTransform.h"
typedef vector<ll> vl:
template<int M> vl convMod(const vl &a, const vl &b) {
 if (a.emptv() || b.emptv()) return {};
 vl res(sz(a) + sz(b) - 1);
 int B=32-__builtin_clz(sz(res)), n=1<<B, cut=int(sqrt(M));</pre>
 vector<C> L(n), R(n), outs(n), outl(n);
 rep(i, 0, sz(a)) L[i] = C((int)a[i] / cut, (int)a[i] % cut);
 rep(i, 0, sz(b)) R[i] = C((int)b[i] / cut, (int)b[i] % cut);
 fft(L), fft(R);
 rep(i,0,n) {
   int j = -i \& (n - 1);
   outl[j] = (L[i] + conj(L[j])) * R[i] / (2.0 * n);
   outs[j] = (L[i] - conj(L[j])) * R[i] / (2.0 * n) / 1i;
 fft (outl), fft (outs);
 rep(i, 0, sz(res)) {
```

```
ll av = ll(real(outl[i]) + .5), cv = ll(imag(outs[i]) + .5);
  11 \text{ bv} = 11 (imag(outl[i]) + .5) + 11 (real(outs[i]) + .5);
  res[i] = ((av % M * cut + bv) % M * cut + cv) % M;
return res;
```

NumberTheoreticTransform.h

Description: ntt(a) computes $\hat{f}(k) = \sum_{x} a[x]g^{xk}$ for all k, where $g = \sum_{x} a[x]g^{xk}$ $\operatorname{root}^{(mod-1)/N}$. N must be a power of 2. Useful for convolution modulo specific nice primes of the form $2^a b + 1$, where the convolution result has size at most 2^a . For arbitrary modulo, see FFTMod. conv(a, b) = c, where $c[x] = \sum a[i]b[x-i]$. For manual convolution: NTT the inputs, multiply pointwise, divide by n, reverse(start+1, end), NTT back. Inputs must be in [0, mod).

```
Time: \mathcal{O}(N \log N)
```

```
"../number-theory/ModPow.h"
const 11 mod = (119 \ll 23) + 1, root = 62; // = 998244353
// For p < 2^30 there is also e.g. 5 << 25, 7 << 26, 479 << 21
// and 483 \ll 21 (same root). The last two are > 10^9.
typedef vector<ll> vl;
void ntt(vl &a) {
  int n = sz(a), L = 31 - \underline{builtin_clz(n)};
  static vl rt(2, 1):
  for (static int k = 2, s = 2; k < n; k *= 2, s++) {
    rt.resize(n);
    ll z[] = \{1, modpow(root, mod >> s)\};
    rep(i,k,2*k) rt[i] = rt[i / 2] * z[i & 1] % mod;
  rep(i, 0, n) rev[i] = (rev[i / 2] | (i & 1) << L) / 2;
  rep(i,0,n) if (i < rev[i]) swap(a[i], a[rev[i]]);
  for (int k = 1; k < n; k *= 2)
    for (int i = 0; i < n; i += 2 * k) rep(j,0,k) {
     11 z = rt[i + k] * a[i + i + k] % mod, &ai = a[i + i];
      a[i + j + k] = ai - z + (z > ai ? mod : 0);
      ai += (ai + z >= mod ? z - mod : z);
vl conv(const vl &a, const vl &b) {
  if (a.emptv() || b.emptv()) return {};
  int s = sz(a) + sz(b) - 1, B = 32 - _builtin_clz(s), n = 1
      << B;
  int inv = modpow(n, mod - 2);
  vl L(a), R(b), out(n);
  L.resize(n), R.resize(n);
  ntt(L), ntt(R);
  rep(i,0,n) out[-i & (n-1)] = (11)L[i] * R[i] % mod * inv %
      mod:
  ntt(out);
  return {out.begin(), out.begin() + s};
```

FastSubsetTransform.h

Description: Transform to a basis with fast convolutions of the form $c[z] = \sum_{z=x \oplus y} a[x] \cdot b[y], \text{ where } \oplus \text{ is one of AND, OR, XOR.}$ The size of a must be a power of two.

```
Time: \mathcal{O}(N \log N)
```

```
464cf3, 16 lines
void FST(vi& a, bool inv) {
 for (int n = sz(a), step = 1; step < n; step \star = 2) {
   for (int i = 0; i < n; i += 2 * step) rep(j,i,i+step) {
     int &u = a[j], &v = a[j + step]; tie(u, v) =
       inv ? pii(v - u, u) : pii(v, u + v); // AND
       inv ? pii(v, u - v) : pii(u + v, u); // OR
       pii(u + v, u - v);
                                              // XOR
```

60dcd1, 12 lines

04d93a, 7 lines

```
if (inv) for (int x : a) x /= sz(a); // XOR only
vi conv(vi a, vi b) {
 FST(a, 0); FST(b, 0);
 rep(i, 0, sz(a)) a[i] *= b[i];
 FST(a, 1); return a;
```

Number theory (5)

5.1 Modular arithmetic

Modular Arithmetic.h

Description: Operators for modular arithmetic. You need to set mod to some number first and then you can use the structure.

```
35bfea, 18 lines
const 11 mod = 17; // change to something else
struct Mod {
 11 x;
 Mod(11 xx) : x(xx) \{ \}
  Mod operator+(Mod b) { return Mod((x + b.x) % mod); }
  Mod operator-(Mod b) { return Mod((x - b.x + mod) % mod); }
  Mod operator*(Mod b) { return Mod((x * b.x) % mod); }
  Mod operator/(Mod b) { return *this * invert(b); }
  Mod invert (Mod a) {
   11 x, y, q = euclid(a.x, mod, x, y);
    assert(g == 1); return Mod((x + mod) % mod);
  Mod operator (11 e) {
   if (!e) return Mod(1);
   Mod r = *this ^ (e / 2); r = r * r;
    return e&1 ? *this * r : r;
};
```

ModInverse.h

Description: Pre-computation of modular inverses. Assumes LIM < mod and that mod is a prime.

```
const 11 mod = 1000000007, LIM = 200000;
ll* inv = new ll[LIM] - 1; inv[1] = 1;
rep(i,2,LIM) inv[i] = mod - (mod / i) * inv[mod % i] % mod;
```

ModPow.h

```
b83e45, 8 lines
const 11 mod = 1000000007; // faster if const
ll modpow(ll b, ll e) {
 11 \text{ ans} = 1;
  for (; e; b = b * b % mod, e /= 2)
   if (e & 1) ans = ans * b % mod;
  return ans;
```

Description: Returns the smallest x > 0 s.t. $a^x = b \pmod{m}$, or -1 if no such x exists. modLog(a,1,m) can be used to calculate the order of a.

```
Time: \mathcal{O}(\sqrt{m})
ll modLog(ll a, ll b, ll m) {
 unordered_map<11, 11> A;
  while (j \le n \&\& (e = f = e * a % m) != b % m)
  A[e * b % m] = j++;
 if (e == b % m) return j;
 if (__gcd(m, e) == __gcd(m, b))
   rep(i,2,n+2) if (A.count(e = e * f % m))
     return n * i - A[e];
```

```
return -1;
```

ModSum.h

Description: Sums of mod'ed arithmetic progressions. modsum(to, c, k, m) = $\sum_{i=0}^{to-1} (ki+c)\%m$. divsum is similar but for

```
floored division.
Time: \log(m), with a large constant.
                                                                  5c5bc5, 16 lines
```

```
typedef unsigned long long ull;
ull sumsq(ull to) { return to /2 * ((to-1) | 1); }
ull divsum (ull to, ull c, ull k, ull m) {
 ull res = k / m * sumsq(to) + c / m * to;
 k %= m; c %= m;
 if (!k) return res;
 ull to2 = (to * k + c) / m;
 return res + (to - 1) * to2 - divsum(to2, m-1 - c, m, k);
ll modsum (ull to, ll c, ll k, ll m) {
 c = ((c % m) + m) % m;
 k = ((k % m) + m) % m;
 return to * c + k * sumsq(to) - m * divsum(to, c, k, m);
```

ModMulLL.h

Description: Calculate $a \cdot b \mod c$ (or $a^b \mod c$) for $0 < a, b < c < 7.2 \cdot 10^{18}$ **Time:** $\mathcal{O}(1)$ for modmul, $\mathcal{O}(\log b)$ for modpow

```
typedef unsigned long long ull:
ull modmul(ull a, ull b, ull M) {
 ll ret = a * b - M * ull(1.L / M * a * b);
 return ret + M * (ret < 0) - M * (ret >= (11) M);
ull modpow (ull b, ull e, ull mod) {
 nll ans = 1:
 for (; e; b = modmul(b, b, mod), e /= 2)
   if (e \& 1) ans = modmul(ans, b, mod);
 return ans;
```

ModSqrt.h

Description: Tonelli-Shanks algorithm for modular square roots. Finds x s.t. $x^2 = a \pmod{p}$ (-x gives the other solution).

Time: $\mathcal{O}\left(\log^2 p\right)$ worst case, $\mathcal{O}\left(\log p\right)$ for most p

```
19a793, 24 lines
ll sgrt(ll a, ll p) {
 a \% = p; if (a < 0) a += p;
 if (a == 0) return 0;
 assert (modpow(a, (p-1)/2, p) == 1); // else no solution
 if (p % 4 == 3) return modpow(a, (p+1)/4, p);
 // a^{(n+3)/8} \text{ or } 2^{(n+3)/8} * 2^{(n-1)/4} \text{ works if } p \% 8 == 5
 11 s = p - 1, n = 2;
 int r = 0, m:
 while (s % 2 == 0)
   ++r, s /= 2;
 while (modpow(n, (p-1) / 2, p) != p-1) ++n;
 11 x = modpow(a, (s + 1) / 2, p);
 ll b = modpow(a, s, p), g = modpow(n, s, p);
 for (;; r = m) {
   11 t = b;
    for (m = 0; m < r && t != 1; ++m)
     t = t * t % p;
    if (m == 0) return x;
   11 \text{ gs} = \text{modpow}(g, 1LL \ll (r - m - 1), p);
   q = qs * qs % p;
   x = x * qs % p;
   b = b * q % p;
```

5.2 Primality

MillerRabin.h

"ModMulLL.h"

Description: Deterministic Miller-Rabin primality test. Guaranteed to work for numbers up to $7 \cdot 10^{18}$; for larger numbers, use Python and extend A randomly.

```
Time: 7 times the complexity of a^b \mod c.
```

```
bool isPrime(ull n) {
 if (n < 2 || n % 6 % 4 != 1) return (n | 1) == 3;
 ull A[] = \{2, 325, 9375, 28178, 450775, 9780504, 1795265022\},
   s = \_builtin\_ctzll(n-1), d = n >> s;
 for (ull a : A) { // ^ count trailing zeroes
   ull p = modpow(a%n, d, n), i = s;
   while (p != 1 && p != n - 1 && a % n && i--)
     p = modmul(p, p, n);
   if (p != n-1 && i != s) return 0;
 return 1;
```

Description: Pollard-rho randomized factorization algorithm. Returns prime factors of a number, in arbitrary order (e.g. 2299 -> {11, 19, 11}).

Time: $\mathcal{O}\left(n^{1/4}\right)$, less for numbers with small factors.

```
"ModMulLL.h", "MillerRabin.h"
                                                      a33cf6, 18 lines
ull pollard(ull n) {
 auto f = [n] (ull x) \{ return modmul(x, x, n) + 1; \};
 ull x = 0, y = 0, t = 30, prd = 2, i = 1, q;
 while (t++ % 40 || _gcd(prd, n) == 1) {
   if (x == y) x = ++i, y = f(x);
   if ((q = modmul(prd, max(x,y) - min(x,y), n))) prd = q;
    x = f(x), y = f(f(y));
 return __gcd(prd, n);
vector<ull> factor(ull n) {
 if (n == 1) return {};
 if (isPrime(n)) return {n};
 ull x = pollard(n);
  auto l = factor(x), r = factor(n / x);
 l.insert(l.end(), all(r));
  return 1:
```

5.3 Divisibility

euclid.h

Description: Finds two integers x and y, such that $ax + by = \gcd(a, b)$. If you just need gcd, use the built in __gcd instead. If a and b are coprime, then x is the inverse of $a \pmod{b}$. ee6239, 5 lines

```
ll euclid(ll a, ll b, ll &x, ll &y) {
 if (b) { 11 d = euclid(b, a % b, y, x);
   return y = a/b * x, d; }
 return x = 1, y = 0, a;
```

CRT.h

Description: Chinese Remainder Theorem.

crt (a, m, b, n) computes x such that $x \equiv a \pmod{m}$, $x \equiv b \pmod{n}$. If |a| < m and |b| < n, x will obey $0 \le x < \operatorname{lcm}(m, n)$. Assumes $mn < 2^{62}$ Time: $\log(n)$ "euclid.h"

```
11 crt(ll a, ll m, ll b, ll n) {
```

```
if (n > m) swap(a, b), swap(m, n);
ll x, y, g = euclid(m, n, x, y);
assert((a - b) % g == 0); // else no solution
x = (b - a) % n * x % n / g * m + a;
return x < 0 ? x + m*n/g : x;
}</pre>
```

5.3.1 Bézout's identity

For $a \neq b \neq 0$, then d = gcd(a, b) is the smallest positive integer for which there are integer solutions to

$$ax + by = d$$

If (x, y) is one solution, then all solutions are given by

$$\left(x + \frac{kb}{\gcd(a,b)}, y - \frac{ka}{\gcd(a,b)}\right), \quad k \in \mathbb{Z}$$

phiFunction.h

Description: Euler's ϕ function is defined as $\phi(n) := \#$ of positive integers $\leq n$ that are coprime with n. $\phi(1) = 1$, p prime $\Rightarrow \phi(p^k) = (p-1)p^{k-1}$, m, n coprime $\Rightarrow \phi(mn) = \phi(m)\phi(n)$. If $n = p_1^{k_1}p_2^{k_2}...p_r^{k_r}$ then $\phi(n) = (p_1-1)p_1^{k_1-1}...(p_r-1)p_r^{k_r-1}$. $\phi(n) = n \cdot \prod_{p|n} (1-1/p)$. $\sum_{d|n} \phi(d) = n$, $\sum_{1 \leq k \leq n, \gcd(k,n)=1} k = n\phi(n)/2, n > 1$

Euler's thm: a, n coprime $\Rightarrow a^{\phi(n)} \equiv 1 \pmod{n}$.

Fermat's little thm: $p \text{ prime } \Rightarrow a^{p-1} \equiv 1 \pmod{p} \ \forall a.$

```
const int LIM = 5000000;
int phi[LIM];

void calculatePhi() {
  rep(i,0,LIM) phi[i] = i&1 ? i : i/2;
  for (int i = 3; i < LIM; i += 2) if(phi[i] == i)
    for (int j = i; j < LIM; j += i) phi[j] -= phi[j] / i;
}</pre>
```

5.4 Fractions

ContinuedFractions.h

Description: Given N and a real number $x \ge 0$, finds the closest rational approximation p/q with $p,q \le N$. It will obey $|p/q - x| \le 1/qN$.

For consecutive convergents, $p_{k+1}q_k - q_{k+1}p_k = (-1)^k$. $(p_k/q_k$ alternates between > x and < x.) If x is rational, y eventually becomes ∞ ; if x is the root of a degree 2 polynomial the a's eventually become cyclic.

Time: $\mathcal{O}(\log N)$

```
typedef double d; // for N ~ 1e7; long double for N ~ 1e9
pair<11, 11> approximate (d x, 11 N) {
    11 LP = 0, LQ = 1, P = 1, Q = 0, inf = LLONG_MAX; d y = x;
    for (;;) {
        11 lim = min(P ? (N-LP) / P : inf, Q ? (N-LQ) / Q : inf),
            a = (11) floor (y), b = min (a, lim),
            NP = b*P + LP, NQ = b*Q + LQ;
        if (a > b) {
            // If b > a/2, we have a semi-convergent that gives us a
            // better approximation; if b = a/2, we *may* have one.
            // Return {P, Q} here for a more canonical approximation.
            return (abs(x - (d)NP / (d)NQ) < abs(x - (d)P / (d)Q)) ?
            make_pair(NP, NQ) : make_pair(P, Q);
        }
        if (abs(y = 1/(y - (d)a)) > 3*N) {
            return {NP, NQ};
        }
        LP = P; P = NP;
        LQ = Q; Q = NQ;
        }
}
```

```
}
```

FracBinarySearch.h

Description: Given f and N, finds the smallest fraction $p/q \in [0,1]$ such that f(p/q) is true, and $p, q \leq N$. You may want to throw an exception from f if it finds an exact solution, in which case N can be removed.

Usage: fracBS([](Frac f) { return f.p>=3*f.q; }, 10); // {1,3} Time: $\mathcal{O}(\log(N))$ 27ab3e, 25 lines struct Frac { 11 p, q; };

```
template<class F>
Frac fracBS(F f, 11 N) {
 bool dir = 1, A = 1, B = 1;
 Frac lo{0, 1}, hi{1, 1}; // Set hi to 1/0 to search (0, N]
 if (f(lo)) return lo;
   11 adv = 0, step = 1; // move hi if dir, else lo
    for (int si = 0; step; (step *= 2) >>= si) {
     Frac mid{lo.p * adv + hi.p, lo.q * adv + hi.q};
     if (abs(mid.p) > N || mid.q > N || dir == !f(mid)) {
       adv -= step; si = 2;
   hi.p += lo.p * adv;
   hi.q += lo.q * adv;
    dir = !dir;
   swap(lo, hi);
   A = B; B = !!adv;
 return dir ? hi : lo;
```

5.5 Pythagorean Triples

The Pythagorean triples are uniquely generated by

$$a = k \cdot (m^2 - n^2), b = k \cdot (2mn), c = k \cdot (m^2 + n^2),$$

with m > n > 0, k > 0, $m \perp n$, and either m or n even.

5.6 Primes

p=962592769 is such that $2^{21}\mid p-1$, which may be useful. For hashing use 970592641 (31-bit number), 31443539979727 (45-bit), 3006703054056749 (52-bit). There are 78498 primes less than 1000000.

Primitive roots exist modulo any prime power p^a , except for p=2, a>2, and there are $\phi(\phi(p^a))$ many. For p=2, a>2, the group $\mathbb{Z}_{2^a}^{\times}$ is instead isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_{2^{a-2}}$.

5.7 Estimates

 $\sum_{d|n} d = O(n \log \log n).$

The number of divisors of n is at most around 100 for n < 5e4, 500 for n < 1e7, 2000 for n < 1e10, 200 000 for n < 1e19.

5.8 Mobius Function

$$\mu(n) = \begin{cases} 0 & n \text{ is not square free} \\ 1 & n \text{ has even number of prime factors} \\ -1 & n \text{ has odd number of prime factors} \end{cases}$$

Mobius Inversion:

$$g(n) = \sum_{d|n} f(d) \Leftrightarrow f(n) = \sum_{d|n} \mu(d)g(n/d)$$

Other useful formulas/forms:

$$\sum_{d|n} \mu(d) = [n=1]$$
 (very useful)

$$g(n) = \sum_{n|d} f(d) \Leftrightarrow f(n) = \sum_{n|d} \mu(d/n)g(d)$$

$$g(n) = \sum_{1 \le m \le n} f(\lfloor \frac{n}{m} \rfloor) \Leftrightarrow f(n) = \sum_{1 \le m \le n} \mu(m) g(\lfloor \frac{n}{m} \rfloor)$$

Combinatorial (6)

6.1 Permutations

6.1.1 Factorial

n		-	0	•	8		10	
n!	1 2 6	24 1	20 72	0 5040	40320	362880	3628800	-
n	11	12	13	1	4 1	5 16	17	
$\overline{n!}$	4.0e7	7 4.8e	8 6.2	e9 8.7e	e10 1.3	e12 2.1e	13 3.6e14	
n	20	25	30	40	50	100 15	0 171	
$\overline{n!}$	2e18	2e25	3e32	8e47	3e64 9e	$e157 \ 6e2$	$62 > DBL_N$	IAX

IntPerm.h

Description: Permutation -> integer conversion. (Not order preserving.) Integer -> permutation can use a lookup table. **Time:** $\mathcal{O}(n)$

int permToInt(vi& v) {
 int use = 0, i = 0, r = 0;
 for(int x:v) r = r * ++i + __builtin_popcount(use & -(1<<x)),
 use |= 1 << x;
 return r;</pre>

6.1.2 Cycles

Let $g_S(n)$ be the number of *n*-permutations whose cycle lengths all belong to the set S. Then

$$\sum_{n=0}^{\infty} g_S(n) \frac{x^n}{n!} = \exp\left(\sum_{n \in S} \frac{x^n}{n}\right)$$

6.1.3 Derangements

Permutations of a set such that none of the elements appear in their original position.

$$D(n) = (n-1)(D(n-1) + D(n-2)) = nD(n-1) + (-1)^n = \left\lfloor \frac{n!}{e} \right\rfloor$$

phiFunction ContinuedFractions FracBinarySearch IntPerm

6.1.4 Burnside's lemma

Given a group G of symmetries and a set X, the number of elements of X up to symmetry equals

$$\frac{1}{|G|} \sum_{g \in G} |X^g|,$$

where X^g are the elements fixed by g (g.x = x).

If f(n) counts "configurations" (of some sort) of length n, we can ignore rotational symmetry using $G = \mathbb{Z}_n$ to get

$$g(n) = \frac{1}{n} \sum_{k=0}^{n-1} f(\gcd(n,k)) = \frac{1}{n} \sum_{k|n} f(k)\phi(n/k).$$

6.2 Partitions and subsets

6.2.1 Partition function

Number of ways of writing n as a sum of positive integers, disregarding the order of the summands.

$$p(0) = 1, \ p(n) = \sum_{k \in \mathbb{Z} \setminus \{0\}} (-1)^{k+1} p(n - k(3k - 1)/2)$$
$$p(n) \sim 0.145/n \cdot \exp(2.56\sqrt{n})$$
$$\frac{n}{p(n)} \begin{vmatrix} 0.1 & 2.3 & 4.5 & 6.7 & 8.9 & 20.50 & 100\\ 1 & 1 & 2.3 & 5.7 & 11.15 & 22.30 & 627 & \sim 2e5 & \sim 2e8 \end{vmatrix}$$

6.2.2 Lucas' Theorem

Let n, m be non-negative integers and p a prime. Write $n = n_k p^k + \ldots + n_1 p + n_0$ and $m = m_k p^k + \ldots + m_1 p + m_0$. Then $\binom{n}{m} \equiv \prod_{i=0}^k \binom{n_i}{m_i} \pmod{p}$.

6.2.3 Binomials

multinomial.h

Description: Computes
$$\binom{k_1+\cdots+k_n}{k_1,k_2,\ldots,k_n} = \frac{(\sum k_i)!}{k_1!k_2!\ldots k_n!}$$
.

11 multinomial (vi& v) {
 11 c = 1, m = v.empty() ? 1 : v[0];
 rep(i,1,sz(v)) rep(j,0,v[i])
 c = c * ++m / (j+1);
 return c;
}

6.3 General purpose numbers

6.3.1 Bernoulli numbers

EGF of Bernoulli numbers is $B(t) = \frac{t}{e^t - 1}$ (FFT-able). $B[0, ...] = [1, -\frac{1}{2}, \frac{1}{6}, 0, -\frac{1}{30}, 0, \frac{1}{42}, ...]$

Sums of powers:

$$\sum_{i=1}^{n} n^{m} = \frac{1}{m+1} \sum_{k=0}^{m} {m+1 \choose k} B_{k} \cdot (n+1)^{m+1-k}$$

Euler-Maclaurin formula for infinite sums:

$$\sum_{i=m}^{\infty} f(i) = \int_{m}^{\infty} f(x)dx - \sum_{k=1}^{\infty} \frac{B_{k}}{k!} f^{(k-1)}(m)$$

$$\approx \int_{m}^{\infty} f(x)dx + \frac{f(m)}{2} - \frac{f'(m)}{12} + \frac{f'''(m)}{720} + O(f^{(5)}(m))$$

6.3.2 Stirling numbers of the first kind

Number of permutations on n items with k cycles.

$$c(n,k) = c(n-1,k-1) + (n-1)c(n-1,k), \ c(0,0) = 1$$

$$\sum_{k=0}^{n} c(n,k)x^{k} = x(x+1)\dots(x+n-1)$$

c(8,k) = 8, 0, 5040, 13068, 13132, 6769, 1960, 322, 28, 1 $c(n,2) = 0, 0, 1, 3, 11, 50, 274, 1764, 13068, 109584, \dots$

6.3.3 Eulerian numbers

Number of permutations $\pi \in S_n$ in which exactly k elements are greater than the previous element. k j:s s.t. $\pi(j) > \pi(j+1)$, k+1 j:s s.t. $\pi(j) > j$, k j:s s.t. $\pi(j) > j$.

$$E(n,k) = (n-k)E(n-1,k-1) + (k+1)E(n-1,k)$$

$$E(n,0) = E(n,n-1) = 1$$

$$E(n,k) = \sum_{j=0}^{k} (-1)^{j} \binom{n+1}{j} (k+1-j)^{n}$$

6.3.4 Stirling numbers of the second kind

Partitions of n distinct elements into exactly k groups.

$$S(n,k) = S(n-1,k-1) + kS(n-1,k)$$

$$S(n,1) = S(n,n) = 1$$

$$S(n,k) = \frac{1}{k!} \sum_{j=0}^{k} (-1)^{k-j} \binom{k}{j} j^{n}$$

6.3.5 Bell numbers

Total number of partitions of n distinct elements. B(n) = 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, For <math>p prime,

$$B(p^m + n) \equiv mB(n) + B(n+1) \pmod{p}$$

6.3.6 Labeled unrooted trees

on n vertices: n^{n-2} # on k existing trees of size n_i : $n_1 n_2 \cdots n_k n^{k-2}$ # with degrees d_i : $(n-2)!/((d_1-1)!\cdots(d_n-1)!)$

6.3.7 Catalan numbers

$$C_n = \frac{1}{n+1} {2n \choose n} = {2n \choose n} - {2n \choose n+1} = \frac{(2n)!}{(n+1)!n!}$$

$$C_0 = 1, \ C_{n+1} = \frac{2(2n+1)}{n+2} C_n, \ C_{n+1} = \sum_{n=1}^{\infty} C_i C_{n-n}$$

 $C_n = 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, \dots$

• sub-diagonal monotone paths in an $n \times n$ grid.

multinomial BellmanFord FloydWarshall

 \bullet strings with n pairs of parenthesis, correctly nested.

• binary trees with with n+1 leaves (0 or 2 children).

• ordered trees with n+1 vertices.

• ways a convex polygon with n + 2 sides can be cut into triangles by connecting vertices with straight lines.

• permutations of [n] with no 3-term increasing subseq.

Graph (7)

7.1 Fundamentals

BellmanFord.h

Description: Calculates shortest paths from s in a graph that might have negative edge weights. Unreachable nodes get dist = inf; nodes reachable through negative-weight cycles get dist = -inf. Assumes $V^2 \max |w_i| < \sim 2^{63}$. **Time:** $\mathcal{O}(VE)$

```
const ll inf = LLONG_MAX;
struct Ed { int a, b, w, s() { return a < b ? a : -a; }};
struct Node { 11 \text{ dist} = \inf; \text{ int prev} = -1; };
void bellmanFord(vector<Node>& nodes, vector<Ed>& eds, int s) {
 nodes[s].dist = 0;
 sort(all(eds), [](Ed a, Ed b) { return a.s() < b.s(); });
 int lim = sz(nodes) / 2 + 2; // /3+100 with shuffled vertices
 rep(i,0,lim) for (Ed ed : eds) {
   Node cur = nodes[ed.a], &dest = nodes[ed.b];
   if (abs(cur.dist) == inf) continue;
   11 d = cur.dist + ed.w;
   if (d < dest.dist) {
     dest.prev = ed.a;
     dest.dist = (i < lim-1 ? d : -inf);
 rep(i,0,lim) for (Ed e : eds)
   if (nodes[e.a].dist == -inf)
     nodes[e.b].dist = -inf;
```

FlovdWarshall.h

Description: Calculates all-pairs shortest path in a directed graph that might have negative edge weights. Input is an distance matrix m, where $m[i][j] = \inf$ if i and j are not adjacent. As output, m[i][j] is set to the shortest distance between i and j, \inf if no path, or $-\inf$ if the path goes through a negative-weight cycle.

Time: $\mathcal{O}(N^3)$

```
const ll inf = 1LL << 62;
void floydWarshall(vector<vector<1l>>& m) {
  int n = sz(m);
  rep(i,0,n) m[i][i] = min(m[i][i], 0LL);
  rep(k,0,n) rep(i,0,n) rep(j,0,n)
  if (m[i][k] != inf && m[k][j] != inf) {
    auto newDist = max(m[i][k] + m[k][j], -inf);
    m[i][j] = min(m[i][j], newDist);
  }
  rep(k,0,n) if (m[k][k] < 0) rep(i,0,n) rep(j,0,n)
  if (m[i][k] != inf && m[k][j] != inf) m[i][j] = -inf;</pre>
```

XYBFS h

Description: Use queue to find shortest path from single source when all edges have weight $\hat{W} = X$ or W = Y $(X, \hat{Y} > 0)$ Time: $\mathcal{O}(N+M)$

```
2a89cc, 11 lines
queue OX , OY
push source S to QX
  while one of the two queues is not empty:
  u = pop minimal distant node among the two queue heads
    for all edges e of form (u, v):
     if dist(v) > dist(u) + cost(e):
     dist(v) = dist(u) + cost(e);
     if cost(e) == X:
        QX.push(dist(v), v);
      else:
        QY.push(dist(v), v);
```

KShortestPaths.h

Description: Finds the k shortest paths (not required to be simple) from S to T in a digraph.

```
Time: \mathcal{O}(M + NloqN + K)
                                                     4a5525, 57 lines
struct Edge {int u, v, w;};
struct Node {
 int v. h: 11 w:
 Node *ls, *rs;
 Node (int v, 11 w) : v(v), h(1), w(w), ls(0), rs(0) {}
Node* merge(Node* u, Node* v) {
 if (!u) return v;
  if (!v) return u;
  if (u->w > v->w) swap(u, v);
 Node* p = new Node(*u);
  p->rs = merge(u->rs, v);
  if (p->rs && (!p->ls || p->ls->h < p->rs->h)) swap(p->ls, p->
  p->h = (p->rs ? p->rs->h : 0) + 1;
  return p;
vector<11> k_shortest(int N, const vector<Edge>& edges, int S,
    int T, int K) {
  vector<vi> G(N);
  rep(i, 0, sz(edges)) G[edges[i].v].push_back(i);
  min_heap<pair<ll, int>> pq;
  vector<11> d(N, -1); vi done(N), par(N, -1), p;
  pq.emplace(d[T] = 0, T);
  while (!pq.empty()) {
  int u = pq.top().second; pq.pop();
  if (done[u]) continue;
  p.push_back(u); done[u] = 1;
  for (int i : G[u]) {
   auto [v, _, w] = edges[i];
     if (d[v] == -1 || d[v] > d[u] + w) {
       par[v] = i;
       pg.emplace(d[v] = d[u] + w, v);
    }
  if (d[S] == -1) return vector<11>(K, -1);
  vector<Node*> heap(N);
  rep(i,0,sz(edges)) {
  auto [u, v, w] = edges[i];
   if (~d[u] && ~d[v] && par[u] != i)
     heap[u] = merge(heap[u], new Node(v, d[v] + w - d[u]));
  for (int u : p) if (u != T)
   heap[u] = merge(heap[u], heap[edges[par[u]].v]);
  min_heap<pair<ll, Node*>> q;
  if (heap[S]) q.emplace(d[S] + heap[S]->w, heap[S]);
```

```
vector<ll> res = {d[S]};
for (int i = 1; i < K && !q.empty(); ++i) {
 auto [w, node] = q.top(); q.pop(); res.push_back(w);
 if (heap[node->v])
   q.emplace(w + heap[node->v]->w, heap[node->v]);
  for (auto s : {node->ls, node->rs})
   if (s) q.emplace(w + s->w - node->w, s);
res.resize(K, -1);
return res;
```

7.2 Network flow

McmfSSPA.h

 $\textbf{Description:} \ \, \textbf{Min-cost max-flow.} \ \, \textbf{If costs can be negative, call setpi before}$ maxflow, but note that negative cost cycles are not supported. To obtain the actual flow, look at positive values only.

Time: Approximately $\mathcal{O}(E^2)$

```
9f8ac7, 89 lines
#include <bits/extc++.h>
const 11 INF = numeric_limits<11>::max() / 4;
struct MCMF {
 int N:
 vector<vector<int>> adj;
 struct edge_t {
   int dest:
   11 cap, cost;
 vector<edge_t> edges;
 vector<char> seen;
 vector<ll> pi;
 vector<int> prv;
 void addEdge(int from, int to, ll cap, ll cost) {
   assert (cap >= 0);
   int e = int(edges.size());
   edges.emplace_back(edge_t{to, cap, cost});
   edges.emplace_back(edge_t{from, 0, -cost});
   adj[from].push back(e);
   adj[to].push_back(e+1);
 vector<ll> dist;
  __gnu_pbds::priority_queue<pair<ll, int>> q;
  vector<typename decltype(q)::point_iterator> its;
 void path(int s) {
   dist.assign(N, INF);
   dist[s] = 0;
    its.assign(N, q.end());
   its[s] = q.push({0, s});
   while (!q.empty()) {
     int i = q.top().second; q.pop();
     11 d = dist[i];
     for (int e : adi[i]) {
       if (edges[e].cap) {
         int j = edges[e].dest;
         11 nd = d + edges[e].cost;
         if (nd < dist[j]) {</pre>
            dist[j] = nd;
            prv[j] = e;
            if (its[j] == q.end()) {
             its[j] = q.push({-(dist[j] - pi[j]), j});
            } else {
             q.modify(its[j], {-(dist[j] - pi[j]), j});
```

```
swap(pi, dist);
pair<11, 11> maxflow(int s, int t) {
  assert(s != t);
  11 \text{ totFlow} = 0; 11 \text{ totCost} = 0;
  while (path(s), pi[t] < INF) {
    11 curFlow = numeric_limits<11>::max();
    for (int cur = t; cur != s; ) {
      int e = prv[cur];
      int nxt = edges[e^1].dest;
      curFlow = min(curFlow, edges[e].cap);
    totFlow += curFlow;
    totCost += pi[t] * curFlow;
    for (int cur = t; cur != s; ) {
      int e = prv[cur];
      int nxt = edges[e^1].dest;
      edges[e].cap -= curFlow;
      edges[e^1].cap += curFlow;
      cur = nxt;
  return {totFlow, totCost};
// If some costs can be negative, call this before maxflow:
void setpi(int s) { // (otherwise, leave this out)
  fill(all(pi), INF); pi[s] = 0;
  int it = N, ch = 1; ll v;
  while (ch-- && it--)
    rep(i,0,N) if (pi[i] != INF)
      for (int e : adj[i]) if (edges[e].cap)
        if ((v = pi[i] + edges[e].cost) < pi[edges[e].dest])</pre>
          pi[edges[e].dest] = v, ch = 1;
  assert(it >= 0); // negative cost cycle
explicit MCMF(int N_{-}): N(N_{-}), adj(N), pi(N, 0), prv(N) {}
```

Dinic.h

Description: Flow algorithm with complexity $O(VE \log U)$ where U =max |cap|. $O(\min(E^{1/2}, V^{2/3})E)$ if U = 1; $O(\sqrt{V}E)$ for bipartite match-

```
struct Dinic {
 struct Edge {
    int to, rev;
   11 c. oc:
   11 flow() { return max(oc - c, OLL); } // if you need flows
 vi lvl, ptr, q;
 vector<vector<Edge>> adj;
 Dinic(int n) : lvl(n), ptr(n), q(n), adj(n) {}
 void addEdge(int a, int b, ll c, int rcap = 0) {
   adj[a].push back({b, sz(adj[b]), c, c});
   adj[b].push_back({a, sz(adj[a]) - 1, rcap, rcap});
 11 dfs(int v, int t, ll f) {
   if (v == t || !f) return f;
   for (int& i = ptr[v]; i < sz(adj[v]); i++) {
     Edge& e = adj[v][i];
     if (lvl[e.to] == lvl[v] + 1)
       if (ll p = dfs(e.to, t, min(f, e.c))) {
         e.c -= p, adj[e.to][e.rev].c += p;
         return p;
   return 0;
```

```
}
ll calc(int s, int t) {
    ll flow = 0; q[0] = s;
    rep(L,0,31) do { // 'int L=30' maybe faster for random data
    lvl = ptr = vi(sz(q));
    int qi = 0, qe = lvl[s] = 1;
    while (qi < qe && !lvl[t]) {
        int v = q[qi++];
        for (Edge e : adj[v])
            if (!lvl[e.to] && e.c >> (30 - L))
                 q[qe++] = e.to, lvl[e.to] = lvl[v] + 1;
        }
    while (ll p = dfs(s, t, LLONG_MAX)) flow += p;
    } while (lvl[t]);
    return flow;
}
bool leftOfMinCut(int a) { return lvl[a] != 0; }
;
```

MinCut.h

Description: After running max-flow, the left side of a min-cut from s to t is given by all vertices reachable from s, only traversing edges with positive residual capacity.

GlobalMinCut.h

Description: Find a global minimum cut in an undirected graph, as represented by an adjacency matrix.

```
Time: \mathcal{O}(V^3)
                                                        8b0e19, 21 lines
pair<int, vi> globalMinCut(vector<vi> mat) {
  pair<int, vi> best = {INT_MAX, {}};
  int n = sz(mat);
  vector<vi> co(n);
  rep(i, 0, n) co[i] = {i};
  rep(ph,1,n) {
    vi w = mat[0];
    size_t s = 0, t = 0;
    rep(it,0,n-ph) { // O(V^2) \rightarrow O(E \log V) with prio. queue
     w[t] = INT MIN;
      s = t, t = max_{element(all(w))} - w.begin();
     rep(i, 0, n) w[i] += mat[t][i];
    best = min(best, \{w[t] - mat[t][t], co[t]\});
    co[s].insert(co[s].end(), all(co[t]));
    rep(i, 0, n) mat[s][i] += mat[t][i];
    rep(i, 0, n) mat[i][s] = mat[s][i];
    mat[0][t] = INT_MIN;
  return best;
```

GomorvHu.h

Description: Given a list of edges representing an undirected flow graph, returns edges of the Gomory-Hu tree. The max flow between any pair of vertices is given by minimum edge weight along the Gomory-Hu tree path. **Time:** $\mathcal{O}(V)$ Flow Computations

```
}
return tree;
```

FlowDemands.h

typedef vector<ll> vl;

Description: Computes a minimal flow with demands. Edges of the type u, v, cap, demand. Returns pair: First is flow, -1 if no solution. Second is flow through each edge in order. To find minimum flow, binary search on INF. To find maximum flow, subtract found network, and run flow again "pinic.h" b387d1. 32 lines

```
pair<11, vl> flowDemand(int n, int s, int t, vector<tuple<int,</pre>
    int, 11, 11>> &edges) {
 Dinic f(n+2):
 vl din(n), dout(n);
 11 \text{ sumd} = 0;
  for (auto [u, v, c, d]: edges) {
   f.addEdge(u, v, c-d);
    din[v] += d; dout[u] += d;
    sumd += d;
  rep(i, 0, n) {
    f.addEdge(n, i, din[i]);
    f.addEdge(i, n+1, dout[i]);
  f.addEdge(t, s, INF);
  if (f.calc(n, n+1) != sumd) {
    return {-1, vector<11>(0)};
    vi ptr(n);
    vl ans; ll totflow = 0;
    for (auto [u, v, c, d]: edges) {
     ll g = d + f.adj[u][ptr[u]].flow();
     ans.push_back(q);
     if (u == s) totflow += g;
     ptr[u]++;
    return {totflow, ans};
```

7.3 Matching

hopcroftKarp.h

int res = 0;

for (;;) {

Description: Fast bipartite matching algorithm. Graph g should be a list of neighbors of the left partition, and btoa should be a vector full of -1's of the same size as the right partition. Returns the size of the matching. btoa[i] will be the match for vertex i on the right side, or -1 if it's not matched. **Usage:** vi btoa (m, -1); hoperoftKarp (g, btoa);

int hopcroftKarp(vector<vi>& g, vi& btoa) {

vi A(g.size()), B(btoa.size()), cur, next;

```
fill(all(A), 0);
fill(all(B), 0);
cur.clear();
for (int a : btoa) if (a !=-1) A[a] = -1;
rep(a, 0, sz(g)) if(A[a] == 0) cur.push_back(a);
for (int lay = 1;; lay++) {
 bool islast = 0;
  next.clear();
  for (int a : cur) for (int b : g[a]) {
   if (btoa[b] == -1) {
      B[b] = lay;
      islast = 1;
    else if (btoa[b] != a && !B[b]) {
      B[b] = lav;
      next.push_back(btoa[b]);
  if (islast) break:
  if (next.empty()) return res;
  for (int a : next) A[a] = lay;
  cur.swap(next);
rep(a, 0, sz(q))
  res += dfs(a, 0, g, btoa, A, B);
```

DFSMatching.h

Description: Simple bipartite matching algorithm. Graph g should be a list of neighbors of the left partition, and btoa should be a vector full of -1's of the same size as the right partition. Returns the size of the matching. btoa[i] will be the match for vertex i on the right side, or -1 if it's not matched.

Usage: vi btoa(m, -1); dfsMatching(g, btoa);

```
Time: \mathcal{O}(VE)
                                                      522b98, 22 lines
bool find(int j, vector<vi>& q, vi& btoa, vi& vis) {
 if (btoa[i] == -1) return 1;
 vis[j] = 1; int di = btoa[j];
 for (int e : q[di])
   if (!vis[e] && find(e, g, btoa, vis)) {
     btoa[e] = di;
      return 1;
 return 0;
int dfsMatching(vector<vi>& g, vi& btoa) {
 vi vis;
  rep(i, 0, sz(g)) {
    vis.assign(sz(btoa), 0);
    for (int j : q[i])
      if (find(j, g, btoa, vis)) {
        btoa[j] = i;
        break;
 return sz(btoa) - (int)count(all(btoa), -1);
```

MinimumVertexCover.h

Description: Finds a minimum vertex cover in a bipartite graph. The size is the same as the size of a maximum matching, and the complement is a maximum independent set.

2965e5, 33 lines

```
rep(i,0,n) if (lfound[i]) q.push_back(i);
while (!q.empty()) {
  int i = q.back(); q.pop_back();
  lfound[i] = 1;
  for (int e : g[i]) if (!seen[e] && match[e] != -1) {
   seen[e] = true;
   q.push_back(match[e]);
rep(i,0,n) if (!lfound[i]) cover.push_back(i);
rep(i,0,m) if (seen[i]) cover.push back(n+i);
assert (sz (cover) == res);
return cover;
```

WeightedMatching.h

Description: Given a weighted bipartite graph, matches every node on the left with a node on the right such that no nodes are in two matchings and the sum of the edge weights is minimal. Takes cost[N][M], where cost[i][j] = cost for L[i] to be matched with R[j] and returns (min cost, match), where L[i] is matched with R[match[i]]. Negate costs for max cost.

```
Time: \mathcal{O}(N^2M)
                                                      1e0fe9, 31 lines
pair<int, vi> hungarian(const vector<vi> &a) {
  if (a.empty()) return {0, {}};
  int n = sz(a) + 1, m = sz(a[0]) + 1;
  vi u(n), v(m), p(m), ans(n-1);
  rep(i,1,n) {
   p[0] = i;
    int j0 = 0; // add "dummy" worker 0
    vi dist(m, INT_MAX), pre(m, -1);
    vector<bool> done(m + 1);
    do { // dijkstra
      done[j0] = true;
     int i0 = p[j0], j1, delta = INT_MAX;
      rep(j,1,m) if (!done[j]) {
       auto cur = a[i0 - 1][j - 1] - u[i0] - v[j];
       if (cur < dist[j]) dist[j] = cur, pre[j] = j0;
        if (dist[j] < delta) delta = dist[j], j1 = j;</pre>
      rep(j, 0, m) {
       if (done[j]) u[p[j]] += delta, v[j] -= delta;
       else dist[j] -= delta;
      j0 = j1;
    } while (p[j0]);
    while (j0) { // update alternating path
     int j1 = pre[j0];
     p[j0] = p[j1], j0 = j1;
  rep(j,1,m) if (p[j]) ans[p[j] - 1] = j - 1;
  return {-v[0], ans}; // min cost
```

GeneralMatchingEdmonds.h

Description: Matching for general graphs. ans holds the matching size, and match[u] is the match for node u (or n if no match). Vertices are 0-indexed. Time: $\mathcal{O}(N^3)$

```
struct Matching {
  queue<int> q; int ans, n;
  vi fa, s, v, pre, match;
 Matching (vector \langle vi \rangle \& g): ans (0), n(g.size()), fa(n + 1),
  s(n + 1), v(n + 1), pre(n + 1, n), match(n + 1, n) {
    for (int x = 0; x < n; ++x)
      if (match[x] == n) ans += Bfs(q, x, n);
```

```
int Find(int u) {
  return u == fa[u] ? u : fa[u] = Find(fa[u]); }
int LCA(int x, int y, int n) {
  static int tk = 0; tk++; x = Find(x); y = Find(y);
  for (;; swap(x, y)) if (x != n) {
    if (v[x] == tk) return x;
    v[x] = tk;
    x = Find(pre[match[x]]);
void Blossom(int x, int y, int 1) {
  for (; Find(x) != 1; x = pre[y]) {
    pre[x] = y, y = match[x];
   if (s[y] == 1) q.push(y), s[y] = 0;
    for (int z: \{x, y\}) if (fa[z] == z) fa[z] = 1;
bool Bfs (auto &&q, int r, int n) {
  iota(all(fa), 0); ranges::fill(s, -1);
  q = queue < int > (); q.push(r); s[r] = 0;
  for (; !q.empty(); q.pop()) {
    for (int x = q.front(); int u : g[x])
      if (s[u] == -1) {
        if (pre[u] = x, s[u] = 1, match[u] == n) {
          for (int a = u, b = x, last;
              b != n; a = last, b = pre[a])
            last = match[b], match[b] = a, match[a] = b;
          return true;
        q.push(match[u]); s[match[u]] = 0;
      } else if (!s[u] && Find(u) != Find(x)) {
        int 1 = LCA(u, x, n);
        Blossom(x, u, 1); Blossom(u, x, 1);
  return false;
```

7.4 DFS algorithms

SCC.h

af6f47, 46 lines

Description: Finds strongly connected components in a directed graph. If vertices u, v belong to the same component, we can reach u from v and vice

Usage: $scc(graph, [\&](vi\& v) \{ ... \})$ visits all components in reverse topological order. comp[i] holds the component index of a node (a component only has edges to components with lower index). ncomps will contain the number of components.

```
Time: \mathcal{O}\left(E+V\right)
vi val, comp, z, cont;
int Time, ncomps;
template < class G, class F> int dfs(int j, G& g, F& f) {
 int low = val[j] = ++Time, x; z.push_back(j);
 for (auto e : q[j]) if (comp[e] < 0)
    low = min(low, val[e] ?: dfs(e,g,f));
  if (low == val[i]) {
      x = z.back(); z.pop_back();
      comp[x] = ncomps;
      cont.push_back(x);
    } while (x != i);
    f(cont); cont.clear();
    ncomps++;
  return val[j] = low;
```

```
int n = sz(q);
val.assign(n, 0); comp.assign(n, -1);
Time = ncomps = 0;
rep(i,0,n) if (comp[i] < 0) dfs(i, g, f);
```

BiconnectedComponents.h

Description: Finds all biconnected components in an undirected graph, and runs a callback for the edges in each. In a biconnected component there are at least two distinct paths between any two nodes. Note that a node can be in several components. An edge which is not in a component is a bridge, i.e., not part of any cycle.

```
Usage: int eid = 0; ed.resize(N);
for each edge (a,b) {
ed[a].emplace_back(b, eid);
ed[b].emplace_back(a, eid++); }
bicomps([&](const vi& edgelist) {...});
Time: \mathcal{O}\left(E+V\right)
```

```
vi num, st;
vector<vector<pii>>> ed;
int Time;
template<class F>
int dfs(int at, int par, F& f) {
 int me = num[at] = ++Time, e, y, top = me;
 for (auto pa : ed[at]) if (pa.second != par) {
    tie(y, e) = pa;
   if (num[y]) {
      top = min(top, num[y]);
      if (num[y] < me)</pre>
        st.push back (e);
    } else {
      int si = sz(st);
      int up = dfs(y, e, f);
      top = min(top, up);
     if (up == me) {
        st.push_back(e);
        f(vi(st.begin() + si, st.end()));
        st.resize(si);
      else if (up < me) st.push_back(e);</pre>
      else { /* e is a bridge */ }
 return top;
template<class F>
void bicomps(F f) {
 num.assign(sz(ed), 0);
  rep(i, 0, sz(ed)) if (!num[i]) dfs(i, -1, f);
```

Description: Calculates a valid assignment to boolean variables a, b, c,... to a 2-SAT problem, so that an expression of the type (a|||b)&&(!a|||c)&&(d|||!b)&&... becomes true, or reports that it is unsatisfiable. Negated variables are represented by bit-inversions ($\sim x$).

```
Usage: TwoSat ts(number of boolean variables);
ts.either(0, \sim3); // Var 0 is true or var 3 is false
ts.setValue(2); // Var 2 is true
ts.atMostOne(\{0, \sim 1, 2\}); // <= 1 of vars 0, \sim 1 and 2 are true
ts.solve(); // Returns true iff it is solvable
ts.values[0..N-1] holds the assigned values to the vars
Time: \mathcal{O}(N+E), where N is the number of boolean variables, and E is the
```

```
number of clauses.
                                                              5f9706, 56 lines
struct TwoSat {
  int N;
```

template < class G, class F> void scc(G& g, F f) {

```
vector<vi> gr;
vi values; // 0 = false, 1 = true
TwoSat (int n = 0) : N(n), gr(2*n) {}
int addVar() { // (optional)
 gr.emplace back();
 gr.emplace_back();
  return N++;
void either(int f, int j) {
 f = \max(2*f, -1-2*f);
  j = \max(2*j, -1-2*j);
 gr[f].push_back(j^1);
 gr[j].push_back(f^1);
void setValue(int x) { either(x, x); }
void atMostOne(const vi& li) { // (optional)
  if (sz(li) <= 1) return;
  int cur = \simli[0];
  rep(i,2,sz(li)) {
   int next = addVar();
   either(cur, ~li[i]);
   either(cur, next);
   either (~li[i], next);
   cur = \sim next:
  either(cur, ~li[1]);
vi val, comp, z; int time = 0;
int dfs(int i) {
  int low = val[i] = ++time, x; z.push_back(i);
  for(int e : gr[i]) if (!comp[e])
   low = min(low, val[e] ?: dfs(e));
  if (low == val[i]) do {
   x = z.back(); z.pop_back();
   comp[x] = low;
   if (values[x>>1] == -1)
     values[x>>1] = x&1;
  } while (x != i);
  return val[i] = low;
bool solve() {
  values.assign(N, -1);
 val.assign(2*N, 0); comp = val;
  rep(i,0,2*N) if (!comp[i]) dfs(i);
 rep(i,0,N) if (comp[2*i] == comp[2*i+1]) return 0;
 return 1;
```

Description: Eulerian undirected/directed path/cycle algorithm. Input should be a vector of (dest, global edge index), where for undirected graphs, forward/backward edges have the same index. Returns a list of nodes in the Eulerian path/cycle with src at both start and end, or empty list if no cycle/path exists. To get edge indices back, add .second to s and ret.

```
Time: \mathcal{O}(V+E)
vi eulerWalk (vector<vector<pii>> & gr, int nedges, int src=0) {
 int n = sz(qr);
 vi D(n), its(n), eu(nedges), ret, s = \{src\};
 D[src]++; // to allow Euler paths, not just cycles
  while (!s.empty()) {
   int x = s.back(), y, e, &it = its[x], end = sz(gr[x]);
```

```
if (it == end) { ret.push_back(x); s.pop_back(); continue; }
  tie(y, e) = gr[x][it++];
 if (!eu[e]) {
   D[x] --, D[y] ++;
   eu[e] = 1; s.push_back(y);
for (int x : D) if (x < 0 \mid \mid sz(ret) != nedges+1) return \{\};
return {ret.rbegin(), ret.rend()};
```

7.5 Coloring

EdgeColoring.h

Description: Given a simple, undirected graph with max degree D, computes a (D+1)-coloring of the edges such that no neighboring edges share a color. (D-coloring is NP-hard, but can be done for bipartite graphs by repeated matchings of max-degree nodes.)

```
Time: \mathcal{O}(NM)
                                                     e210e2, 31 lines
vi edgeColoring(int N, vector<pii> eds) {
 vi cc(N + 1), ret(sz(eds)), fan(N), free(N), loc;
 for (pii e : eds) ++cc[e.first], ++cc[e.second];
 int u, v, ncols = *max_element(all(cc)) + 1;
 vector<vi> adj(N, vi(ncols, -1));
 for (pii e : eds) {
   tie(u, v) = e;
   fan[0] = v:
   loc.assign(ncols, 0);
    int at = u, end = u, d, c = free[u], ind = 0, i = 0;
    while (d = free[v], !loc[d] && (v = adj[u][d]) != -1)
     loc[d] = ++ind, cc[ind] = d, fan[ind] = v;
    cc[loc[d]] = c;
    for (int cd = d; at != -1; cd ^= c ^ d, at = adj[at][cd])
     swap(adj[at][cd], adj[end = at][cd ^ c ^ d]);
    while (adj[fan[i]][d] != -1) {
     int left = fan[i], right = fan[++i], e = cc[i];
      adj[u][e] = left;
     adj[left][e] = u;
     adj[right][e] = -1;
      free[right] = e;
    adj[u][d] = fan[i];
    adj[fan[i]][d] = u;
    for (int y : {fan[0], u, end})
      for (int& z = free[y] = 0; adj[y][z] != -1; z++);
 rep(i, 0, sz(eds))
    for (tie(u, v) = eds[i]; adj[u][ret[i]] != v;) ++ret[i];
  return ret;
```

7.6 Heuristics

MaximalCliques.h

Description: Runs a callback for all maximal cliques in a graph (given as a symmetric bitset matrix; self-edges not allowed). Callback is given a bitset representing the maximal clique.

```
Usage: cliques(eds, [\&](const B& clq) \{...\});
Time: \mathcal{O}\left(3^{n/3}\right), much faster for sparse graphs
```

```
b0d5b1, 12 lines
typedef bitset<128> B:
template<class F>
void cliques (vector < B > & eds, F f, B P = \sim B(), B X={}, B R={}) {
 if (!P.any()) { if (!X.any()) f(R); return; }
 auto q = (P | X)._Find_first();
 auto cands = P & ~eds[q];
 rep(i, 0, sz(eds)) if (cands[i]) {
   R[i] = 1:
   cliques (eds, f, P & eds[i], X & eds[i], R);
   R[i] = P[i] = 0; X[i] = 1;
```

```
MaximumClique.h
```

Description: Quickly finds a maximum clique of a graph (given as symmetric bitset matrix; self-edges not allowed). Can be used to find a maximum independent set by finding a clique of the complement graph.

Time: Runs in about 1s for n=155 and worst case random graphs (p=.90). Runs faster for sparse graphs.

f7c0bc, 49 lines

```
typedef vector<br/>bitset<200>> vb;
struct Maxclique {
  double limit=0.025, pk=0;
  struct Vertex { int i, d=0; };
 typedef vector<Vertex> vv;
  vb e;
 vv V;
  vector<vi> C:
 vi qmax, q, S, old;
  void init(vv& r) {
    for (auto \& v : r) v.d = 0;
    for (auto \& v : r) for (auto j : r) v.d += e[v.i][j.i];
    sort(all(r), [](auto a, auto b) { return a.d > b.d; });
    int mxD = r[0].d;
    rep(i, 0, sz(r)) r[i].d = min(i, mxD) + 1;
 void expand(vv& R, int lev = 1) {
    S[lev] += S[lev - 1] - old[lev];
    old[lev] = S[lev - 1];
    while (sz(R)) {
     if (sz(q) + R.back().d <= sz(qmax)) return;
      q.push_back(R.back().i);
     vv T;
      for(auto v:R) if (e[R.back().i][v.i]) T.push_back({v.i});
      if (sz(T)) {
        if (S[lev]++ / ++pk < limit) init(T);</pre>
        int j = 0, mxk = 1, mnk = max(sz(qmax) - sz(q) + 1, 1);
        C[1].clear(), C[2].clear();
        for (auto v : T) {
          int k = 1;
          auto f = [&](int i) { return e[v.i][i]; };
          while (any_of(all(C[k]), f)) k++;
          if (k > mxk) mxk = k, C[mxk + 1].clear();
          if (k < mnk) T[j++].i = v.i;
          C[k].push_back(v.i);
        if (j > 0) T[j - 1].d = 0;
        rep(k, mnk, mxk + 1) for (int i : C[k])
         T[j].i = i, T[j++].d = k;
        expand (T, lev + 1);
      } else if (sz(q) > sz(qmax)) qmax = q;
      q.pop_back(), R.pop_back();
  vi maxClique() { init(V), expand(V); return qmax; }
  Maxclique(vb conn): e(conn), C(sz(e)+1), S(sz(C)), old(S) {
    rep(i, 0, sz(e)) V.push_back({i});
};
```

MaximumIndependentSet.h

Description: To obtain a maximum independent set of a graph, find a max clique of the complement. If the graph is bipartite, see Minimum Vertex Cover.

7.7 Trees

LCA.h

Description: Data structure for computing lowest common ancestors in a tree (with 0 as root). C should be an adjacency list of the tree, either directed

Time: $\mathcal{O}(N \log N + Q)$ "../data-structures/RMQ.h"

0f62fb, 21 lines

```
struct LCA {
 int T = 0;
 vi time, path, ret;
  RMO<int> rmg;
  LCA(vector < vi > \& C) : time(sz(C)), rmq((dfs(C, 0, -1), ret)) {}
  void dfs(vector<vi>& C, int v, int par) {
   time[v] = T++;
   for (int y : C[v]) if (y != par) {
     path.push_back(v), ret.push_back(time[v]);
     dfs(C, y, v);
  int lca(int a, int b) {
   if (a == b) return a;
   tie(a, b) = minmax(time[a], time[b]);
   return path[rmq.query(a, b)];
  //dist(a,b){return depth[a] + depth[b] - 2*depth[lca(a,b)];}
```

CompressTree.h

Description: Given a rooted tree and a subset S of nodes, compute the minimal subtree that contains all the nodes by adding all (at most |S|-1) pairwise LCA's and compressing edges. Returns a list of (par, orig_index) representing a tree rooted at 0. The root points to itself.

Time: $\mathcal{O}(|S| \log |S|)$

```
9775a0, 21 lines
typedef vector<pair<int, int>> vpi;
vpi compressTree (LCA& lca, const vi& subset) {
  static vi rev; rev.resize(sz(lca.time));
 vi li = subset, &T = lca.time;
  auto cmp = [\&] (int a, int b) { return T[a] < T[b]; };
  sort(all(li), cmp);
  int m = sz(li)-1;
  rep(i,0,m) {
   int a = li[i], b = li[i+1];
   li.push back(lca.lca(a, b));
  sort (all(li), cmp);
 li.erase(unique(all(li)), li.end());
  rep(i, 0, sz(li)) rev[li[i]] = i;
  vpi ret = {pii(0, li[0])};
  rep(i, 0, sz(li)-1) {
   int a = li[i], b = li[i+1];
   ret.emplace_back(rev[lca.lca(a, b)], b);
  return ret;
```

HLD.h

Description: Flattens the tree into an array representing DFS order of HLD. Takes as input the full adjacency list. VALS_EDGES being true means that values are stored in the edges, as opposed to the nodes. Root must be 0. pos_u is the index of node u in the HLD order, rt_u the upper node of HLD. process() decomposes path into smaller paths.

Time: $\mathcal{O}\left((\log N)^2\right)$

```
"../data-structures/LazySegmentTree.h"
                                                              b9ac44, 46 lines
template <bool VALS EDGES> struct HLD {
```

```
int N, tim = 0;
 vector<vi> adj;
 vi par, siz, depth, rt, pos;
 STLazv tree;
 HLD(vector<vi> adj_)
   : N(sz(adj_)), adj(adj_), par(N, -1), siz(N, 1), depth(N),
     rt(N), pos(N), tree(N) { dfsSz(0); dfsHld(0); }
 void dfsSz(int v) {
   if (par[v] != -1) adj[v].erase(find(all(adj[v]), par[v]));
   for (int& u : adj[v]) {
     par[u] = v, depth[u] = depth[v] + 1;
     dfsSz(u);
     siz[v] += siz[u];
     if (siz[u] > siz[adj[v][0]]) swap(u, adj[v][0]);
 void dfsHld(int v) {
   pos[v] = tim++;
   for (int u : adi[v]) {
     rt[u] = (u == adj[v][0] ? rt[v] : u);
     dfsHld(u);
 template <class B> void process(int u, int v, B op) {
   for (; rt[u] != rt[v]; v = par[rt[v]]) {
     if (depth[rt[u]] > depth[rt[v]]) swap(u, v);
     op(pos[rt[v]], pos[v] + 1);
   if (depth[u] > depth[v]) swap(u, v);
   op(pos[u] + VALS_EDGES, pos[v] + 1);
 void modifyPath(int u, int v, int val) {
   process(u, v, [&](int 1, int r) {tree.update(1, r, val);});
 int queryPath (int u, int v) { // Modify depending on problem
   int res = -1e9;
   process(u, v, [&](int l, int r) {
     res = max(res, tree.query(1, r));
   });
   return res;
 int querySubtree(int v) { // modifySubtree is similar
   return tree.query(pos[v] + VALS_EDGES, pos[v] + siz[v]);
};
```

LinkCutTree.h

Description: Represents a forest of unrooted trees. You can add and remove edges (as long as the result is still a forest), and check whether two nodes are in the same tree.

```
Time: All operations take amortized \mathcal{O}(\log N).
                                                       5909e2, 90 lines
struct Node { // Splay tree. Root's pp contains tree's parent.
 Node *p = 0, *pp = 0, *c[2];
 bool flip = 0;
 Node() { c[0] = c[1] = 0; fix(); }
 void fix() {
   if (c[0]) c[0] -> p = this;
   if (c[1]) c[1] -> p = this;
    // (+ update sum of subtree elements etc. if wanted)
 void pushFlip() {
    if (!flip) return;
    flip = 0; swap(c[0], c[1]);
    if (c[0]) c[0]->flip ^= 1;
    if (c[1]) c[1]->flip ^= 1;
 int up() { return p ? p \rightarrow c[1] == this : -1; }
 void rot(int i, int b) {
```

```
int h = i ^ b;
    Node *x = c[i], *y = b == 2 ? x : x -> c[h], *z = b ? y : x;
    if ((y->p = p)) p->c[up()] = y;
    c[i] = z -> c[i ^ 1];
    if (b < 2) {
      x - c[h] = y - c[h ^ 1];
      z \rightarrow c[h ^1] = b ? x : this;
    y - c[i ^ 1] = b ? this : x;
    fix(); x\rightarrow fix(); y\rightarrow fix();
    if (p) p->fix();
    swap (pp, y->pp);
 void splay() {
    for (pushFlip(); p; ) {
      if (p->p) p->p->pushFlip();
      p->pushFlip(); pushFlip();
      int c1 = up(), c2 = p->up();
      if (c2 == -1) p \rightarrow rot(c1, 2);
      else p->p->rot(c2, c1 != c2);
 Node* first() {
    pushFlip();
    return c[0] ? c[0]->first() : (splay(), this);
};
struct LinkCut {
 vector<Node> node;
 LinkCut(int N) : node(N) {}
  void link(int u, int v) { // add an edge (u, v)
    assert(!connected(u, v));
    makeRoot(&node[u]);
    node[u].pp = &node[v];
 void cut (int u, int v) { // remove an edge (u, v)
    Node *x = &node[u], *top = &node[v];
    makeRoot(top); x->splay();
    assert(top == (x-pp ?: x-c[0]);
    if (x->pp) x->pp = 0;
      x->c[0] = top->p = 0;
      x \rightarrow fix():
  bool connected (int u, int v) { // are u, v in the same tree?
    Node* nu = access(&node[u])->first();
    return nu == access(&node[v])->first();
  void makeRoot(Node* u) {
    access (u);
    u->splay();
    if(u->c[0]) {
      u - c[0] - p = 0;
      u \rightarrow c[0] \rightarrow flip ^= 1;
      u - c[0] - pp = u;
      u \rightarrow c[0] = 0;
      u \rightarrow fix();
 Node* access (Node* u) {
    u->splay();
    while (Node* pp = u->pp) {
      pp \rightarrow splay(); u \rightarrow pp = 0;
      if (pp->c[1]) {
        pp - c[1] - p = 0; pp - c[1] - pp = pp; 
      pp - c[1] = u; pp - fix(); u = pp;
```

LCA CompressTree HLD LinkCutTree

```
}
    return u;
}
};
```

DirectedMST.h

Description: Finds a minimum spanning tree/arborescence of a directed graph, given a root node. If no MST exists, returns -1.

```
Time: \mathcal{O}\left(E\log V\right)
"../data-structures/UnionFindRollback.h"
                                                       39e620, 60 lines
struct Edge { int a, b; ll w; };
struct Node {
  Edge key;
 Node *1, *r;
  11 delta;
  void prop() {
    key.w += delta;
    if (1) 1->delta += delta;
    if (r) r->delta += delta;
    delta = 0:
  Edge top() { prop(); return key; }
Node *merge(Node *a, Node *b) {
 if (!a || !b) return a ?: b;
  a->prop(), b->prop();
  if (a->key.w > b->key.w) swap(a, b);
  swap(a->1, (a->r = merge(b, a->r)));
  return a;
void pop (Node \star \& a) { a->prop(); a = merge(a->1, a->r); }
pair<11, vi> dmst(int n, int r, vector<Edge>& g) {
  RollbackUF uf(n);
  vector<Node*> heap(n);
  for (Edge e : q) heap[e.b] = merge(heap[e.b], new Node{e});
  11 \text{ res} = 0;
  vi seen(n, -1), path(n), par(n);
  seen[r] = r;
  vector<Edge> Q(n), in(n, \{-1,-1\}), comp;
  deque<tuple<int, int, vector<Edge>>> cycs;
  rep(s,0,n) {
    int u = s, qi = 0, w;
    while (seen[u] < 0) {
      if (!heap[u]) return {-1,{}};
      Edge e = heap[u] \rightarrow top();
      heap[u]->delta -= e.w, pop(heap[u]);
      O[qi] = e, path[qi++] = u, seen[u] = s;
      res += e.w, u = uf.find(e.a);
      if (seen[u] == s) {
        Node * cyc = 0;
        int end = qi, time = uf.time();
        do cyc = merge(cyc, heap[w = path[--qi]]);
        while (uf.join(u, w));
        u = uf.find(u), heap[u] = cyc, seen[u] = -1;
        cycs.push_front({u, time, {&Q[qi], &Q[end]}});
    rep(i, 0, qi) in[uf.find(Q[i].b)] = Q[i];
  for (auto& [u,t,comp] : cycs) { // restore sol (optional)
    uf.rollback(t);
    Edge inEdge = in[u];
    for (auto& e : comp) in[uf.find(e.b)] = e;
    in[uf.find(inEdge.b)] = inEdge;
  rep(i, 0, n) par[i] = in[i].a;
  return {res, par};
```

```
MDST.h
```

Description: Minimum diameter spanning tree. Returns tuple of d, u, v, x, where d is the diameter length, (u, v) is the center edge of the diameter, x is twice the distance from u to the actual center. If u, v are the same, then center is on the node. To find tree, double all edge weights, then run multisource dijkstra from u and v, with initial distances $dist_u = x$, $dist_v = w - x$, w is the (doubled) weight of edge u, v. Take the shortest path tree.

```
Time: \mathcal{O}(N^3)
const 11 INF = 1e18;
tuple<11, int, int, 11> findMDST(int n, vector<tuple<int, int,
     11>> &edges) {
  vector<vector<ll>>> d(n, vector<ll>(n, INF));
  rep(i, 0, n) d[i][i] = 0;
  for (auto [u, v, w]: edges)
    d[u][v] = d[v][u] = min(d[u][v], w*2);
  rep(k, 0, n) rep(u, 0, n) rep(v, 0, n)
    d[u][v] = min(d[u][v], d[u][k] + d[k][v]);
  vector<vi> que(n);
  tuple<11, int, int, 11> ans = {INF, INF, INF, INF};
  rep(i,0,n) {
    que[i].resize(n);
    iota(all(que[i]), 0);
    sort(all(que[i]), [&](const int &a, const int &b) {
      return d[i][a] > d[i][b];
    ans = min(ans, {d[i][que[i][0]], i, i, 0});
  for (auto [u, v, w]: edges) {
    int p = 0;
    rep(j,1,n) {
      int a = que[u][j], b = que[u][p];
      if (d[v][a] > d[v][b]) {
        11 x = (d[v][b] - d[u][a] + w*2)/2;
        ans = min(ans, \{d[u][a] + x, u, v, x\});
  return ans;
```

DominatorTree.h

Description: Given a source, construct a dominator tree. Returns parent, or -1 if not in dominator tree

Usage: DTree dm(n, g); vi par = dm.build(src); **Time:** $\mathcal{O}(N)$

```
struct DTree{
  int cs = 0, n;
  vector<vi> e, re, rdom;
  vi s, rs, par, val, sdom, rp, dom;

DTree(vector<vi> &g): n(sz(g)), e(g), re(n), rdom(n),
  s(n, -1), rs(n), par(n), val(n),
  sdom(n), rp(n), dom(n) {}

int find(int x, int c = 0) {
  if (par[x] == x) return c ? -1 : x;
  int p = find(par[x], 1);
  if (p == -1) return c ? par[x] : val[x];
  if (sdom[val[x]] > sdom[val[par[x]]]) val[x] = val[par[x]];
  par[x] = p;
  return c ? p : val[x];
```

```
void merge(int x, int y) {
 void dfs(int x) {
   rs[s[x] = cs++] = x;
    par[cs] = sdom[cs] = val[cs] = cs;
    for (int e: e[x]) {
     if (s[e] == -1) dfs(e), rp[s[e]] = s[x];
      re[s[e]].push_back(s[x]);
 vi build(int src) {
    dfs(src);
    for (int i = cs-1; i >= 0; i--) {
      for (int e: re[i]) sdom[i] = min(sdom[i], sdom[find(e)]);
     if (i != src) rdom[sdom[i]].push back(i);
     for (int e: rdom[i]) {
       int p = find(e);
       if (sdom[p] == i) dom[e] = i;
       else dom[e] = p;
     if (i != src) merge(i, rp[i]);
   rep(i, 0, cs)
     if (sdom[i] != dom[i])
       dom[i] = dom[dom[i]];
   vi up(sz(e), -1);
    rep(i, 0, cs) up[rs[i]] = rs[dom[i]];
    return up;
};
```

TreeIsomorphism.h

Description: Given a (rooted) tree, returns it's isomorphic hash. To test if two rooted trees are isomorphic, compare their hashes. For non-rooted trees, root them at their centroids (try all centroids).

```
Usage: 11 treehash = gethash(g, root);
```

```
Time: O(V)

auto hasher = hash<string>();
11 gethash(vector<vi>&g, int u, int p = -1) {
  vector<11> hs;
  for (auto v: g[u])
    if (v != p)
    hs.push_back(gethash(g, v, u));
  string res = "1";
  sort (hs.begin(), hs.end());
  for (auto i: hs)
    res += to_string(i);
  return hasher(res);
```

7.8 Math

7.8.1 Number of Spanning Trees

- Create an N × N matrix mat, and for each edge a → b ∈ G, do mat[a][b]--, mat[b][b]++ (and mat[b][a]--, mat[a][a]++ if G is undirected). Remove the ith row and column, the determinant yields the number of directed spanning trees rooted at i (if G is undirected, remove any row/column).
- Given a degree sequence d_1, d_2, \ldots, d_n for each labeled vertices, there are $\frac{(n-2)!}{(d_1-1)!(d_2-1)!\cdots(d_n-1)!}$ spanning trees.

DirectedMST MDST DominatorTree TreeIsomorphism

• Let $T_{n,k}$ be the number of labeled forests on n vertices with k components, such that vertex $1, 2, \ldots, k$ belong to different components. Then $T_{n,k} = kn^{n-k-1}$.

7.8.2 Erdős–Gallai theorem

A simple graph with node degrees $d_1 \geq \cdots \geq d_n$ exists iff $d_1 + \cdots + d_n$ is even and for every $k = 1 \dots n$,

$$\sum_{i=1}^{k} d_i \le k(k-1) + \sum_{i=k+1}^{n} \min(d_i, k).$$

Geometry (8)

8.1 Geometric primitives

Point.h

Description: Class to handle points in the plane. T can be e.g. double or long long. (Avoid int.)

```
template \langle class T \rangle int sgn(T x) \{ return (x > 0) - (x < 0); \}
template<class T>
struct Point {
 typedef Point P;
 Тх, у;
  explicit Point (T x=0, T y=0) : x(x), y(y) {}
  bool operator < (P p) const { return tie(x,y) < tie(p.x,p.y); }
  bool operator==(P p) const { return tie(x,y)==tie(p.x,p.y); }
  P operator+(P p) const { return P(x+p.x, y+p.y); }
  P operator-(P p) const { return P(x-p.x, y-p.y); }
  P operator*(T d) const { return P(x*d, y*d); }
  P operator/(T d) const { return P(x/d, y/d); }
  T dot(P p) const { return x*p.x + y*p.y; }
  T cross(P p) const { return x*p.y - y*p.x; }
  T cross(P a, P b) const { return (a-*this).cross(b-*this); }
  T dist2() const { return x*x + y*y; }
  double dist() const { return sqrt((double)dist2()); }
  // angle to x-axis in interval [-pi, pi]
  double angle() const { return atan2(y, x); }
  P unit() const { return *this/dist(); } // makes dist()=1
  P perp() const { return P(-y, x); } // rotates +90 degrees
  P normal() const { return perp().unit(); }
  // returns point rotated 'a' radians ccw around the origin
  P rotate (double a) const {
   return P(x*\cos(a)-y*\sin(a),x*\sin(a)+y*\cos(a));}
  friend ostream& operator<<(ostream& os, P p) {</pre>
   return os << "(" << p.x << "," << p.v << ")"; }
```

lineDistance.h

Description:

Returns the signed distance between point p and the line containing points a and b. Positive value on left side and negative on right as seen from a towards b. a==b gives nan. P is supposed to be Point<T> or Point3D<T> where T is e.g. double or long long. It uses products in intermediate steps so watch out for overflow if using int or long long. Using Point3D will always give a non-negative distance. For Point3D, call .dist /S on the result of the cross product.

template<class P> double lineDist(const P& a, const P& b, const P& p) { return (double) (b-a).cross(p-a)/(b-a).dist();

```
SegmentDistance.h
```

Description:

Returns the shortest distance between point p and the line segment from point s to e.

Usage: Point < double > a, b(2,2), p(1,1); bool onSegment = segDist(a,b,p) < 1e-10;

5c88f4, 6 lines typedef Point < double > P; double segDist (P& s, P& e, P& p) { if (s==e) return (p-s).dist(); auto d = (e-s) . dist2(), t = min(d, max(.0, (p-s) . dot(e-s)));return ((p-s)*d-(e-s)*t).dist()/d;

SegmentIntersection.h

Description:

If a unique intersection point between the line segments going from s1 to e1 and from s2 to e2 exists then it is returned. If no intersection point exists an empty vector is returned. If infinitely many exist a vector with 2 elements is returned, containing the endpoints of the common line segment. The wrong position will be returned if P is Point<ll> and the intersection point does not have integer coordinates. Products of three coordinates are used in intermediate steps so watch out for overflow if using int or long long.

Usage: vector<P> inter = segInter(s1,e1,s2,e2); if (sz(inter) == 1)cout << "segments intersect at " << inter[0] << endl;</pre> "Point.h", "OnSegment.h" template < class P > vector < P > segInter (P a, P b, P c, P d) { auto oa = c.cross(d, a), ob = c.cross(d, b), oc = a.cross(b, c), od = a.cross(b, d);// Checks if intersection is single non-endpoint point. if (sgn(oa) * sgn(ob) < 0 && sgn(oc) * sgn(od) < 0)return {(a * ob - b * oa) / (ob - oa)}; if (onSegment(c, d, a)) s.insert(a); if (onSegment(c, d, b)) s.insert(b); if (onSegment(a, b, c)) s.insert(c); if (onSegment(a, b, d)) s.insert(d); return {all(s)};

lineIntersection.h

If a unique intersection point of the lines going through s1,e1 and s2,e2 exists {1, point} is returned. If no intersection point exists $\{0, (0,0)\}\$ is returned and if infinitely many exists $\{-1,$ (0,0)} is returned. The wrong position will be returned if P is Point<ll> and the intersection point does not have integer coordinates. Products of three coordinates are used in \$1 intermediate steps so watch out for overflow if using int or ll. Usage: auto res = lineInter(s1,e1,s2,e2);

```
if (res.first == 1)
cout << "intersection point at " << res.second << endl;</pre>
"Point.h"
                                                       a01f81, 8 lines
template<class P>
pair<int, P> lineInter(P s1, P e1, P s2, P e2) {
 auto d = (e1 - s1).cross(e2 - s2);
 if (d == 0) // if parallel
   return \{-(s1.cross(e1, s2) == 0), P(0, 0)\};
  auto p = s2.cross(e1, e2), q = s2.cross(e2, s1);
 return \{1, (s1 * p + e1 * q) / d\};
```

sideOf.h

Description: Returns where p is as seen from s towards e. $1/0/-1 \Leftrightarrow \text{left/on}$ line/right. If the optional argument eps is given 0 is returned if p is within distance eps from the line. P is supposed to be Point<T> where T is e.g. double or long long. It uses products in intermediate steps so watch out for overflow if using int or long long.

```
Usage: bool left = sideOf(p1,p2,q)==1;
"Point.h"
                                                       3af81c, 9 lines
template<class P>
int sideOf(P s, P e, P p) { return sgn(s.cross(e, p)); }
int sideOf(const P& s, const P& e, const P& p, double eps) {
 auto a = (e-s).cross(p-s);
 double l = (e-s).dist()*eps;
 return (a > 1) - (a < -1);
```

OnSegment.h

Description: Returns true iff p lies on the line segment from s to e. Use (segDist(s,e,p) <=epsilon) instead when using Point <double>.

```
template < class P > bool on Segment (P s, P e, P p) {
 return p.cross(s, e) == 0 \&\& (s - p).dot(e - p) <= 0;
```

linearTransformation.h Description:

Apply the linear transformation (translation, rotation and scaling) which takes line p0-p1 to line q0-q1 to point r.

LineProjectionReflection.h

Description: Projects point p onto line ab. Set refl=true to get reflection of point p across line ab insted. The wrong point will be returned if P is an integer point and the desired point doesn't have integer coordinates. Products of three coordinates are used in intermediate steps so watch out for overflow. "Point.h" b5562d, 5 lines

```
template<class P>
P lineProj(P a, P b, P p, bool refl=false) {
 return p - v.perp() * (1+refl) *v.cross(p-a) /v.dist2();
```

Description: A class for ordering angles (as represented by int points and a number of rotations around the origin). Useful for rotational sweeping. Sometimes also represents points or vectors.

```
Usage: vector<Angle> v = \{w[0], w[0].t360() ...\}; // sorted
int j = 0; rep(i,0,n) { while (v[j] < v[i].t180()) ++j; }
// sweeps j such that (j-i) represents the number of positively
oriented triangles with vertices at 0 and i
struct Angle {
 int x, y;
```

```
Angle(int x, int y, int t=0) : x(x), y(y), t(t) {}
Angle operator-(Angle b) const { return {x-b.x, y-b.y, t}; }
int half() const {
  assert(x || y);
  return y < 0 \mid | (y == 0 && x < 0);
```

```
Angle t90() const { return \{-y, x, t + (half() && x >= 0)\}; }
  Angle t180() const { return \{-x, -y, t + half()\}; }
  Angle t360() const { return \{x, y, t + 1\}; }
bool operator < (Angle a, Angle b) {
  // add a. dist2() and b. dist2() to also compare distances
  return make tuple(a.t, a.half(), a.v * (11)b.x) <</pre>
         make_tuple(b.t, b.half(), a.x * (ll)b.y);
// Given two points, this calculates the smallest angle between
// them, i.e., the angle that covers the defined line segment.
pair<Angle, Angle> segmentAngles(Angle a, Angle b) {
  if (b < a) swap(a, b);
  return (b < a.t180() ?
          make_pair(a, b) : make_pair(b, a.t360()));
Angle operator+(Angle a, Angle b) { // point a + vector b
 Angle r(a.x + b.x, a.y + b.y, a.t);
  if (a.t180() < r) r.t--;
  return r.t180() < a ? r.t360() : r;
Angle angleDiff(Angle a, Angle b) { // angle b - angle a
 int tu = b.t - a.t; a.t = b.t;
  return \{a.x*b.x + a.y*b.y, a.x*b.y - a.y*b.x, tu - (b < a)\};
```

8.2 Circles

CircleIntersection.h

Description: Computes the pair of points at which two circles intersect. Returns false in case of no intersection.

CircleTangents.h

Description: Finds the external tangents of two circles, or internal if r2 is negated. Can return 0, 1, or 2 tangents -0 if one circle contains the other (or overlaps it, in the internal case, or if the circles are the same); 1 if the circles are tangent to each other (in which case .first = .second and the tangent line is perpendicular to the line between the centers). .first and .second give the tangency points at circle 1 and 2 respectively. To find the tangents of a circle with a point set r2 to 0.

CircleLine.h

Description: Finds the intersection between a circle and a line. Returns a vector of either 0, 1, or 2 intersection points. P is intended to be Point<double>.

CirclePolygonIntersection.h

Description: Returns the area of the intersection of a circle with a ccw polygon.

Time: $\mathcal{O}\left(n\right)$

```
"../../content/geometry/Point.h"
                                                      a1ee63, 19 lines
typedef Point < double > P;
#define arg(p, g) atan2(p.cross(g), p.dot(g))
double circlePoly(P c, double r, vector<P> ps) {
 auto tri = [\&] (P p, P q) {
   auto r2 = r * r / 2;
   Pd = q - p;
   auto a = d.dot(p)/d.dist2(), b = (p.dist2()-r*r)/d.dist2();
   auto det = a * a - b;
   if (\det \le 0) return arg(p, q) * r2;
   auto s = max(0., -a-sqrt(det)), t = min(1., -a+sqrt(det));
   if (t < 0 \mid \mid 1 \le s) return arg(p, q) * r2;
   Pu = p + d * s, v = p + d * t;
   return arg(p, u) * r2 + u.cross(v)/2 + arg(v, q) * r2;
 auto sum = 0.0;
 rep(i, 0, sz(ps))
   sum += tri(ps[i] - c, ps[(i + 1) % sz(ps)] - c);
 return sum;
```

circumcircle.h Description:

"Point.h"

The circumcirle of a triangle is the circle intersecting all three vertices. ccRadius returns the radius of the circle going through points A, B and C and ccCenter returns the center of the same circle.


```
typedef Point<double> P;
double ccRadius(const P& A, const P& B, const P& C) {
  return (B-A).dist()*(C-B).dist()*(A-C).dist()/
     abs((B-A).cross(C-A))/2;
}
P ccCenter(const P& A, const P& B, const P& C) {
  P b = C-A, c = B-A;
  return A + (b*c.dist2()-c*b.dist2()).perp()/b.cross(c)/2;
```

MinimumEnclosingCircle.h

Description: Computes the minimum circle that encloses a set of points. **Time:** expected $\mathcal{O}(n)$

```
rep(j,0,i) if ((o - ps[j]).dist() > r * EPS) {
    o = (ps[i] + ps[j]) / 2;
    r = (o - ps[i]).dist();
    rep(k,0,j) if ((o - ps[k]).dist() > r * EPS) {
        o = ccCenter(ps[i], ps[j], ps[k]);
        r = (o - ps[i]).dist();
    }
    }
}
return {o, r};
```

8.3 Polygons

InsidePolygon.h

Description: Returns true if p lies within the polygon. If strict is true, it returns false for points on the boundary. The algorithm uses products in intermediate steps so watch out for overflow.

PolygonArea.h

Description: Returns twice the signed area of a polygon. Clockwise enumeration gives negative area. Watch out for overflow if using int as T!

"Point.h"

1db71d, 7 lines

```
template < class T>
T polygonArea2(vector < Point < T > & v) {
   if (v.empty()) return 0;
   T a = v.back().cross(v[0]);
   rep(i,0,sz(v)-1) a += v[i].cross(v[i+1]);
   return a;
}
```

PolygonCenter.h

Description: Returns the center of mass for a polygon.

Time: $\mathcal{O}(n)$

```
"Point.h" 9706dc, 9 lines

typedef Point<double> P;
P polygonCenter(const vector<P>& v) {
  P res(0, 0); double A = 0;
  for (int i = 0, j = sz(v) - 1; i < sz(v); j = i++) {
    res = res + (v[i] + v[j]) * v[j].cross(v[i]);
    A += v[j].cross(v[i]);
}
return res / A / 3;</pre>
```

PolygonCut.h Description:

Returns a vector with the vertices of a polygon with everything to the left of the line going from s to e cut away.


```
typedef Point < double > P;
vector<P> polygonCut (const vector<P>& poly, P s, P e) {
 vector<P> res;
  rep(i, 0, sz(poly)) {
   P cur = poly[i], prev = i ? poly[i-1] : poly.back();
   bool side = s.cross(e, cur) < 0;</pre>
   if (side != (s.cross(e, prev) < 0))
     res.push_back(lineInter(s, e, cur, prev).second);
     res.push_back(cur);
 return res;
```

PolygonUnion.h

Description: Calculates the area of the union of n polygons (not necessarily convex). The points within each polygon must be given in CCW order. (Epsilon checks may optionally be added to sideOf/sgn, but shouldn't be

Time: $\mathcal{O}(N^2)$, where N is the total number of points

```
"Point.h", "sideOf.h"
                                                      3931c6, 33 lines
typedef Point < double > P;
double rat(P a, P b) { return sqn(b.x) ? a.x/b.x : a.y/b.y; }
double polyUnion(vector<vector<P>>& poly) {
  double ret = 0;
  rep(i, 0, sz(poly)) rep(v, 0, sz(poly[i])) {
   P A = poly[i][v], B = poly[i][(v + 1) % sz(poly[i])];
    vector<pair<double, int>> segs = \{\{0, 0\}, \{1, 0\}\};
   rep(j, 0, sz(poly)) if (i != j) {
      rep(u, 0, sz(poly[j])) {
       P C = poly[j][u], D = poly[j][(u + 1) % sz(poly[j])];
        int sc = sideOf(A, B, C), sd = sideOf(A, B, D);
        if (sc != sd) {
          double sa = C.cross(D, A), sb = C.cross(D, B);
          if (\min(sc, sd) < 0)
            segs.emplace_back(sa / (sa - sb), sqn(sc - sd));
        } else if (!sc && !sd && j<i && sgn((B-A).dot(D-C))>0){
          segs.emplace_back(rat(C - A, B - A), 1);
          segs.emplace_back(rat(D - A, B - A), -1);
    sort (all (segs));
    for (auto\& s : seqs) s.first = min(max(s.first, 0.0), 1.0);
    double sum = 0;
    int cnt = segs[0].second;
    rep(j, 1, sz(seqs)) {
     if (!cnt) sum += segs[j].first - segs[j - 1].first;
     cnt += seqs[j].second;
    ret += A.cross(B) * sum;
  return ret / 2;
```

MinkowskiSum.h

Description: Minkowski sum of two polygons

Time: $\mathcal{O}(N+M)$

```
"Point.h"
                                                      2747a3, 18 lines
template<class P>
vector<P> minkowski (vector<P> &A, vector<P> &B) {
  int i = 0, j = 0, m = sz(A), n = sz(B);
  vector<P> C;
 C.push_back(A[0] + B[0]);
  while (i < m || j < n) {
   P last = C.back();
   P v1 = A[(i + 1) % m] - A[i];
   P v2 = B[(j + 1) % n] - B[j];
```

```
if (j == n \mid | (i < m && v1.cross(v2) >= 0)) {
    C.push_back(last + v1); ++i;
  } else {
    C.push_back(last + v2); ++j;
C.pop_back();
return C:
```

ConvexHull.h

Description:

Returns a vector of the points of the convex hull in counterclockwise order. Points on the edge of the hull between two other points are not considered part of the hull.

"Point.h" 310954, 13 lines typedef Point<11> P: vector<P> convexHull (vector<P> pts) { if (sz(pts) <= 1) return pts; sort(all(pts)); vector $\langle P \rangle$ h(sz(pts)+1); int s = 0, t = 0; for (int it = 2; it--; s = --t, reverse(all(pts))) for (P p : pts) { while $(t \ge s + 2 \&\& h[t-2].cross(h[t-1], p) \le 0) t--;$ return $\{h.begin(), h.begin() + t - (t == 2 && h[0] == h[1])\};$

HullDiameter.h

Description: Returns the two points with max distance on a convex hull (ccw, no duplicate/colinear points).

```
"Point.h"
                                                       c571b8, 12 lines
typedef Point<11> P;
array<P, 2> hullDiameter(vector<P> S) {
 int n = sz(S), j = n < 2 ? 0 : 1;
 pair<11, array<P, 2>> res({0, {S[0], S[0]}});
    for (;; j = (j + 1) % n) {
      res = \max(\text{res}, \{(S[i] - S[j]).dist2(), \{S[i], S[j]\}\});
      if ((S[(j+1) % n] - S[j]).cross(S[i+1] - S[i]) >= 0)
        break:
  return res.second;
```

PointInsideHull.h

Description: Determine whether a point t lies inside a convex hull (CCW order, with no colinear points). Returns true if point lies within the hull. If strict is true, points on the boundary aren't included.

Time: $\mathcal{O}(\log N)$

```
"Point.h", "sideOf.h", "OnSegment.h"
                                                      71446b, 14 lines
typedef Point<ll> P;
bool inHull(const vector<P>& 1, P p, bool strict = true) {
 int a = 1, b = sz(1) - 1, r = !strict;
 if (sz(1) < 3) return r && onSegment(1[0], 1.back(), p);
 if (sideOf(1[0], 1[a], 1[b]) > 0) swap(a, b);
 if (sideOf(1[0], 1[a], p) >= r || sideOf(1[0], 1[b], p) <= -r)
   return false:
 while (abs(a - b) > 1) {
   int c = (a + b) / 2;
    (sideOf(1[0], 1[c], p) > 0 ? b : a) = c;
 return sgn(l[a].cross(l[b], p)) < r;</pre>
```

LineHullIntersection.h

Description: Line-convex polygon intersection. The polygon must be ccw and have no colinear points. lineHull(line, poly) returns a pair describing the intersection of a line with the polygon: \bullet (-1,-1) if no collision, \bullet (i,-1) if touching the corner i, • (i, i) if along side (i, i + 1), • (i, j) if crossing sides (i, i+1) and (j, j+1). In the last case, if a corner i is crossed, this is treated as happening on side (i, i + 1). The points are returned in the same order as the line hits the polygon. extrVertex returns the point of a hull with the max projection onto a line.

Time: $\mathcal{O}(\log n)$

```
"Point.h"
                                                     7cf45b, 39 lines
#define cmp(i, j) sqn(dir.perp().cross(poly[(i)%n]-poly[(j)%n]))
#define extr(i) cmp(i + 1, i) >= 0 && cmp(i, i - 1 + n) < 0
template <class P> int extrVertex(vector<P>& poly, P dir) {
 int n = sz(poly), lo = 0, hi = n;
  if (extr(0)) return 0;
  while (lo + 1 < hi) {
    int m = (lo + hi) / 2;
    if (extr(m)) return m;
    int 1s = cmp(1o + 1, 1o), ms = cmp(m + 1, m);
    (1s < ms \mid | (1s == ms && 1s == cmp(1o, m)) ? hi : 1o) = m;
 return lo:
#define cmpL(i) sqn(a.cross(poly[i], b))
template <class P>
arrav<int, 2> lineHull(P a, P b, vector<P>& poly) {
 int endA = extrVertex(poly, (a - b).perp());
 int endB = extrVertex(poly, (b - a).perp());
 if (cmpL(endA) < 0 \mid | cmpL(endB) > 0)
   return {-1, -1};
  array<int, 2> res;
  rep(i, 0, 2) {
    int lo = endB, hi = endA, n = sz(poly);
    while ((lo + 1) % n != hi) {
      int m = ((lo + hi + (lo < hi ? 0 : n)) / 2) % n;
      (cmpL(m) == cmpL(endB) ? lo : hi) = m;
    res[i] = (lo + !cmpL(hi)) % n;
    swap (endA, endB);
 if (res[0] == res[1]) return {res[0], -1};
 if (!cmpL(res[0]) && !cmpL(res[1]))
    switch ((res[0] - res[1] + sz(poly) + 1) % sz(poly)) {
      case 0: return {res[0], res[0]};
      case 2: return {res[1], res[1]};
 return res;
```

HalfPlane.h

Description: Computes the intersection of a set of half-planes. Input is given as a set of planes, facing left. Output is the convex polygon representing the intersection. The points may have duplicates and be collinear. Will not fail catastrophically if 'eps > sqrt(2)(line intersection error)'. Likely to work for more ranges if 3 half planes are never guaranteed to intersect at the same point.

```
Time: \mathcal{O}(n \log n)
"Point.h", "sideOf.h", "lineIntersection.h"
                                                          eda44b, 31 lines
typedef Point < double > P;
typedef array<P, 2> Line;
#define sp(a) a[0], a[1]
#define ang(a) (a[1] - a[0]).angle()
int angDiff(Line a, Line b) { return sgn(ang(a) - ang(b)); }
bool cmp (Line a, Line b) {
 int s = angDiff(a, b);
```

PolygonUnion MinkowskiSum ConvexHull HullDiameter PointInsideHull LineHullIntersection HalfPlane

```
return (s ? s : sideOf(sp(a), b[0])) < 0;
vector<P> halfPlaneIntersection(vector<Line> vs) {
  const double EPS = sqrt(2) * 1e-8;
  sort(all(vs), cmp);
  vector<Line> deq(sz(vs) + 5);
  vector < P > ans(sz(vs) + 5);
  deq[0] = vs[0];
  int ah = 0, at = 0, n = sz(vs);
  rep(i, 1, n+1) {
   if (i == n) vs.push_back(deg[ah]);
   if (angDiff(vs[i], vs[i-1]) == 0) continue;
   while (ah<at && sideOf(sp(vs[i]), ans[at-1], EPS) < 0)
    while (i!=n && ah<at && sideOf(sp(vs[i]),ans[ah],EPS)<0)
   auto res = lineInter(sp(vs[i]), sp(deq[at]));
   if (res.first != 1) continue;
   ans[at++] = res.second, deg[at] = vs[i];
  if (at - ah <= 2) return {};
 return {ans.begin() + ah, ans.begin() + at};
```

8.4 Misc. Point Set Problems

ClosestPair.h

Description: Finds the closest pair of points.

```
Time: \mathcal{O}(n \log n)
"Point.h"
                                                        ac41a6, 17 lines
typedef Point<11> P;
pair<P, P> closest (vector<P> v) {
  assert (sz(v) > 1);
  set<P> S;
  sort(all(v), [](P a, P b) { return a.y < b.y; });</pre>
  pair<ll, pair<P, P>> ret{LLONG_MAX, {P(), P()}};
  int j = 0;
  for (P p : v) {
   P d\{1 + (11) sqrt(ret.first), 0\};
    while (v[j].y \le p.y - d.x) S.erase(v[j++]);
    auto lo = S.lower_bound(p - d), hi = S.upper_bound(p + d);
    for (; lo != hi; ++lo)
     ret = min(ret, {(*lo - p).dist2(), {*lo, p}});
    S.insert(p);
  return ret.second;
```

ManhattanMST.h

Description: Given N points, returns up to 4*N edges, which are guaranteed to contain a minimum spanning tree for the graph with edge weights w(p, q) = -p.x - q.x - + -p.y - q.y. Edges are in the form (distance, src, dst). Use a standard MST algorithm on the result to find the final MST. Time: $\mathcal{O}(N \log N)$

```
"Point.h"
                                                      df6f59, 23 lines
typedef Point<int> P;
vector<array<int, 3>> manhattanMST(vector<P> ps) {
 vi id(sz(ps));
 iota(all(id), 0);
  vector<array<int, 3>> edges;
  rep(k, 0, 4) {
   sort(all(id), [&](int i, int j) {
        return (ps[i]-ps[j]).x < (ps[j]-ps[i]).y;});
   map<int, int> sweep;
   for (int i : id) {
     for (auto it = sweep.lower_bound(-ps[i].y);
               it != sweep.end(); sweep.erase(it++)) {
       int j = it->second;
       P d = ps[i] - ps[j];
```

```
if (d.v > d.x) break;
        edges.push_back(\{d.y + d.x, i, j\});
      sweep[-ps[i].y] = i;
    for (P\& p : ps) if (k \& 1) p.x = -p.x; else swap(p.x, p.y);
 return edges;
kdTree.h
Description: KD-tree (2d, can be extended to 3d)
                                                     bac5b0, 63 lines
"Point.h"
typedef long long T;
typedef Point<T> P;
const T INF = numeric_limits<T>::max();
bool on_x(const P& a, const P& b) { return a.x < b.x; }</pre>
bool on_y(const P& a, const P& b) { return a.y < b.y; }</pre>
struct Node {
 P pt; // if this is a leaf, the single point in it
 T x0 = INF, x1 = -INF, y0 = INF, y1 = -INF; // bounds
 Node *first = 0, *second = 0;
 T distance (const P& p) { // min squared distance to a point
    T x = (p.x < x0 ? x0 : p.x > x1 ? x1 : p.x);
    T y = (p.y < y0 ? y0 : p.y > y1 ? y1 : p.y);
    return (P(x,y) - p).dist2();
  Node (vector P \ge \& \& vp) : pt (vp[0]) {
    for (P p : vp) {
     x0 = min(x0, p.x); x1 = max(x1, p.x);
     y0 = min(y0, p.y); y1 = max(y1, p.y);
    if (vp.size() > 1) {
      // split on x if width >= height (not ideal...)
      sort(all(vp), x1 - x0 >= y1 - y0 ? on_x : on_y);
      // divide by taking half the array for each child (not
      // best performance with many duplicates in the middle)
      int half = sz(vp)/2;
      first = new Node({vp.begin(), vp.begin() + half});
      second = new Node({vp.begin() + half, vp.end()});
};
struct KDTree {
  KDTree(const vector<P>& vp) : root(new Node({all(vp)})) {}
  pair<T, P> search (Node *node, const P& p) {
    if (!node->first) {
      // uncomment if we should not find the point itself:
      // if (p = node \rightarrow pt) return {INF, P()};
      return make_pair((p - node->pt).dist2(), node->pt);
    Node *f = node->first, *s = node->second;
    T bfirst = f->distance(p), bsec = s->distance(p);
    if (bfirst > bsec) swap(bsec, bfirst), swap(f, s);
    // search closest side first, other side if needed
    auto best = search(f, p);
    if (bsec < best.first)</pre>
     best = min(best, search(s, p));
    return best:
```

```
// find nearest point to a point, and its squared distance
// (requires an arbitrary operator< for Point)
pair<T, P> nearest (const P& p) {
  return search (root, p);
```

FastDelaunav.h

Description: Fast Delaunay triangulation. Each circumcircle contains none of the input points. There must be no duplicate points. If all points are on a line, no triangles will be returned. Should work for doubles as well, though there may be precision issues in 'circ'. Returns triangles in order $\{t[0][0], t[0][1], t[0][2], t[1][0], \dots\}$, all counter-clockwise. The voronoi diagram vertices are the circumcenters of each triangle (use circumcircle.h). The voronoi edges are the projection of the voronoi vertices to each of their respective triangle sides.

Time: $\mathcal{O}(n \log n)$

```
"Point.h"
                                                        bf87ec, 88 lines
typedef Point<ll> P;
typedef struct Quad* Q;
typedef __int128_t lll; // (can be ll if coords are < 2e4)
P arb (LLONG_MAX, LLONG_MAX); // not equal to any other point
struct Quad {
  bool mark; Q o, rot; P p;
  P F() { return r()->p; }
  Q r() { return rot->rot; }
  Q prev() { return rot->o->rot; }
  Q next() { return r()->prev(); }
bool circ(P p, P a, P b, P c) { // is p in the circumcircle?
  111 p2 = p.dist2(), A = a.dist2()-p2,
      B = b.dist2()-p2, C = c.dist2()-p2;
  return p.cross(a,b) *C + p.cross(b,c) *A + p.cross(c,a) *B > 0;
Q makeEdge (P orig, P dest) {
  Q q[] = \{new Quad\{0, 0, 0, orig\}, new Quad\{0, 0, 0, arb\},\
            new Quad{0,0,0,dest}, new Quad{0,0,0,arb}};
    q[i] \rightarrow 0 = q[-i \& 3], q[i] \rightarrow rot = q[(i+1) \& 3];
  return *q;
void splice(Q a, Q b) {
  swap(a->o->rot->o, b->o->rot->o); swap(a->o, b->o);
0 connect(0 a, 0 b) {
  Q = makeEdge(a->F(), b->p);
  splice(q, a->next());
  splice(q->r(), b);
  return q;
pair<0.0> rec(const vector<P>& s) {
  if (sz(s) \le 3) {
    Q = \text{makeEdge}(s[0], s[1]), b = \text{makeEdge}(s[1], s.back());
    if (sz(s) == 2) return { a, a->r() };
    splice(a->r(), b);
    auto side = s[0].cross(s[1], s[2]);
    0 c = side ? connect(b, a) : 0;
    return {side < 0 ? c->r() : a, side < 0 ? c : b->r() };
\#define H(e) e \rightarrow F(), e \rightarrow p
#define valid(e) (e->F().cross(H(base)) > 0)
  O A, B, ra, rb;
  int half = sz(s) / 2;
  tie(ra, A) = rec({all(s) - half});
```

ClosestPair ManhattanMST kdTree FastDelaunay

```
tie(B, rb) = rec({sz(s) - half + all(s)});
  while ((B\rightarrow p.cross(H(A)) < 0 \&\& (A = A\rightarrow next())))
         (A->p.cross(H(B)) > 0 && (B = B->r()->o));
  Q base = connect(B \rightarrow r(), A);
  if (A->p == ra->p) ra = base->r();
  if (B->p == rb->p) rb = base;
#define DEL(e, init, dir) Q e = init->dir; if (valid(e)) \
    while (circ(e->dir->F(), H(base), e->F())) {
      0 t = e^{-dir}
      splice(e, e->prev()); \
      splice(e->r(), e->r()->prev());
  for (;;) {
   DEL(LC, base->r(), o); DEL(RC, base, prev());
   if (!valid(LC) && !valid(RC)) break;
    if (!valid(LC) || (valid(RC) && circ(H(RC), H(LC))))
     base = connect (RC, base->r());
      base = connect(base->r(), LC->r());
  return { ra, rb };
vector<P> triangulate(vector<P> pts) {
  sort(all(pts)); assert(unique(all(pts)) == pts.end());
  if (sz(pts) < 2) return {};
  Q = rec(pts).first;
  vector < Q > q = \{e\};
  int qi = 0;
  while (e->o->F().cross(e->F(), e->p) < 0) e = e->o;
#define ADD { Q c = e; do { c->mark = 1; pts.push_back(c->p); \
  q.push\_back(c\rightarrow r()); c = c\rightarrow next(); } while (c != e); }
  ADD; pts.clear();
  while (qi < sz(q)) if (!(e = q[qi++]) -> mark) ADD;
  return pts;
```

8.5 3D

PolyhedronVolume.h

Description: Magic formula for the volume of a polyhedron. Faces should point outwards.

```
template<class V, class L>
double signedPolyVolume(const V& p, const L& trilist) {
  double v = 0;
  for (auto i : trilist) v += p[i.a].cross(p[i.b]).dot(p[i.c]);
  return v / 6;
}
```

Point3D.h

Description: Class to handle points in 3D space. T can be e.g. double or long long.

```
template<class T> struct Point3D {
    typedef Point3D P;
    typedef const P& R;
    T x, y, z;
    explicit Point3D(T x=0, T y=0, T z=0) : x(x), y(y), z(z) {}
    bool operator<(R p) const {
        return tie(x, y, z) < tie(p.x, p.y, p.z); }
    bool operator==(R p) const {
        return tie(x, y, z) == tie(p.x, p.y, p.z); }
    P operator+(R p) const {
        return P(x+p.x, y+p.y, z+p.z); }
    P operator-(R p) const {
        return P(x+p.x, y+p.y, z+p.z); }
    P operator*(T d) const {
        return P(x*d, y*d, z*d); }
    P operator/(T d) const {
        return P(x/d, y/d, z/d); }
    T dot(R p) const {
        return x*p.x + y*p.y + z*p.z; }
</pre>
```

```
P cross(R p) const {
   return P(y*p.z - z*p.y, z*p.x - x*p.z, x*p.y - y*p.x);
 T dist2() const { return x*x + y*y + z*z; }
 double dist() const { return sqrt((double)dist2()); }
 //Azimuthal angle (longitude) to x-axis in interval [-pi, pi]
 double phi() const { return atan2(v, x); }
 //Zenith angle (latitude) to the z-axis in interval [0, pi]
 double theta() const { return atan2(sqrt(x*x+y*y),z); }
 P unit() const { return *this/(T)dist(); } //makes dist()=1
 //returns unit vector normal to *this and p
 P normal(P p) const { return cross(p).unit(); }
 //returns point rotated 'angle' radians ccw around axis
 P rotate (double angle, P axis) const {
   double s = sin(angle), c = cos(angle); P u = axis.unit();
   return u*dot(u)*(1-c) + (*this)*c - cross(u)*s;
};
```

3dHull.h

Description: Computes all faces of the 3-dimension hull of a point set. *No four points must be coplanar*, or else random results will be returned. All faces will point outwards.

Time: $\mathcal{O}\left(n^2\right)$

3D.h" 5b45fc, 49 lines

```
typedef Point3D<double> P3;
struct PR {
 void ins (int x) { (a == -1 ? a : b) = x; }
 void rem(int x) { (a == x ? a : b) = -1; }
 int cnt() { return (a !=-1) + (b !=-1); }
 int a, b;
struct F { P3 q; int a, b, c; };
vector<F> hull3d(const vector<P3>& A) {
 assert (sz(A) >= 4);
 vector<vector<PR>> E(sz(A), vector<PR>(sz(A), {-1, -1}));
#define E(x,y) E[f.x][f.y]
 vector<F> FS;
 auto mf = [\&] (int i, int j, int k, int l) {
   P3 q = (A[j] - A[i]).cross((A[k] - A[i]));
   if (q.dot(A[1]) > q.dot(A[i]))
     q = q * -1;
   F f{q, i, j, k};
   E(a,b).ins(k); E(a,c).ins(j); E(b,c).ins(i);
   FS.push back(f);
 rep(i, 0, 4) rep(j, i+1, 4) rep(k, j+1, 4)
   mf(i, j, k, 6 - i - j - k);
 rep(i, 4, sz(A)) {
   rep(j, 0, sz(FS)) {
     F f = FS[i]:
     if(f.q.dot(A[i]) > f.q.dot(A[f.a])) {
       E(a,b).rem(f.c);
       E(a,c).rem(f.b);
       E(b,c).rem(f.a);
       swap(FS[j--], FS.back());
       FS.pop_back();
   int nw = sz(FS);
   rep(j, 0, nw) {
     F f = FS[j];
```

```
}
for (F& it : FS) if ((A[it.b] - A[it.a]).cross(
    A[it.c] - A[it.a]).dot(it.q) <= 0) swap(it.c, it.b);
return FS;
};</pre>
```

sphericalDistance.h

Description: Returns the shortest distance on the sphere with radius radius between the points with azimuthal angles (longitude) f1 (ϕ_1) and f2 (ϕ_2) from x axis and zenith angles (latitude) t1 (θ_1) and t2 (θ_2) from z axis (0 = north pole). All angles measured in radians. The algorithm starts by converting the spherical coordinates to cartesian coordinates so if that is what you have you can use only the two last rows. dx*radius is then the difference between the two points in the x direction and d*radius is the total distance between the points.

```
double sphericalDistance(double f1, double t1,
    double f2, double t2, double radius) {
    double dx = sin(t2)*cos(f2) - sin(t1)*cos(f1);
    double dy = sin(t2)*sin(f2) - sin(t1)*sin(f1);
    double dz = cos(t2) - cos(t1);
    double d = sqrt(dx*dx + dy*dy + dz*dz);
    return radius*2*asin(d/2);
}
```

Strings (9)

KMP.h

Description: pi[x] computes the length of the longest prefix of s that ends at x, other than s[0...x] itself (abacaba -> 0010123). Can be used to find all occurrences of a string.

```
Time: O(n)
vi pi(const string& s) {
  vi p(sz(s));
  rep(i,1,sz(s)) {
    int g = p[i-1];
    while (g && s[i] != s[g]) g = p[g-1];
    p[i] = g + (s[i] == s[g]);
  }
  return p;
```

Zfunc.h

Description: z[x] computes the length of the longest common prefix of s[i:] and s, except z[0] = 0. (abacaba -> 0010301) **Time:** O(n)

```
vi Z(string S) {
  vi z(sz(s));
  int l = -1, r = -1;
  rep(i,1,sz(s)) {
    z[i] = i >= r ? 0 : min(r - i, z[i - 1]);
    while (i + z[i] < sz(s) && S[i + z[i]] == S[z[i]])
    z[i]++;
  if (i + z[i] > r)
    l = i, r = i + z[i];
}
return z;
```

Manacher.h

Description: For each position in a string, computes p[0][i] = half length of longest even palindrome around pos i, <math>p[1][i] = longest odd (half rounded down).

```
\frac{\text{Time: } \mathcal{O}(N)}{\text{array}(v), 2> \text{manacher(const string\& s) }}
```

#define C(a, b, c) if (E(a,b).cnt() != 2) mf(f.a, f.b, i, f.c);

C(a, b, c); C(a, c, b); C(b, c, a);

```
int n = sz(s);
array<vi,2> p = {vi(n+1), vi(n)};
rep(z,0,2) for (int i=0,1=0,r=0; i < n; i++) {
   int t = r-i+!z;
   if (i<r) p[z][i] = min(t, p[z][i+t]);
   int L = i-p[z][i], R = i+p[z][i]-!z;
   while (L>=1 && R+!<n && s[L-1] == s[R+1])
      p[z][i]++, L--, R++;
   if (R>r) l=L, r=R;
}
return p;
```

PalindromicTree.h

Description: Computes palindromic tree. 0 is the 0-len root, 1 is the -1-len root get_link() returns the suffix link of node v, extend() returns true if new node is created.

```
Time: \mathcal{O}(n)
                                                      6fdd57, 25 lines
struct PalindromicTree {
  const static int N = 1e5 + 5, ALPHA = 26;
  int n, last, sz, s[N], len[N], link[N], to[N][ALPHA];
  PalindromicTree() {
   s[n++] = -1;
   link[0] = 1;
   len[1] = -1;
   sz = 2;
  int get_link(int v) {
   while (s[n - len[v] - 2] != s[n - 1]) v = link[v];
   return v;
  void extend(int c) {
   assert (c < ALPHA);
   s[n++] = c;
   last = get_link(last);
    if (!to[last][c]) {
     len [sz] = len[last] + 2;
     link[sz] = to[get link(link[last])][c];
     to[last][c] = sz++;
   last = to[last][c];
```

MinRotation.h

};

Description: Finds the lexicographically smallest rotation of a string. **Usage:** rotate(v.begin(), v.begin()+minRotation(v), v.end());

```
Time: \mathcal{O}(N) d07a42, 8 lines int minRotation(string s) { int a=0, N=sz(s); s += s; rep(b,0,N) rep(k,0,N) { if (a+k == b || s[a+k] < s[b+k]) {b += max(0, k-1); break;} if (s[a+k] > s[b+k]) { a = b; break; } } return a; }
```

SuffixArrav.h

Description: Builds suffix array for a string. sa[i] is the starting index of the suffix which is i'th in the sorted suffix array. The returned vector is of size n+1, and sa[0]=n. The lcp array contains longest common prefixes for neighbouring strings in the suffix array: lcp[i]=lcp(sa[i], sa[i-1]), lcp[0]=0. The input string must not contain any zero bytes. **Time:** $\mathcal{O}(n \log n)$

```
struct SuffixArray {
  vi sa, lcp;
```

```
SuffixArray(string& s, int lim=256) { // or basic_string<int>
   int n = sz(s) + 1, k = 0, a, b;
   vi x(all(s)+1), y(n), ws(max(n, lim)), rank(n);
    sa = lcp = y, iota(all(sa), 0);
    for (int j = 0, p = 0; p < n; j = max(1, j * 2), lim = p) {
     p = j, iota(all(y), n - j);
     rep(i, 0, n) if (sa[i] >= j) v[p++] = sa[i] - j;
     fill(all(ws), 0);
     rep(i, 0, n) ws[x[i]] ++;
     rep(i, 1, lim) ws[i] += ws[i - 1];
     for (int i = n; i--;) sa[--ws[x[y[i]]]] = y[i];
     swap(x, y), p = 1, x[sa[0]] = 0;
     rep(i,1,n) = sa[i-1], b = sa[i], x[b] =
        (y[a] == y[b] && y[a + j] == y[b + j]) ? p - 1 : p++;
   rep(i,1,n) rank[sa[i]] = i;
    for (int i = 0, j; i < n - 1; lcp[rank[i++]] = k)
     for (k \& \& k--, j = sa[rank[i] - 1];
         s[i + k] == s[j + k]; k++);
};
```

SuffixTree.h

Description: Ukkonen's algorithm for online suffix tree construction. Each node contains indices $[l,\,r)$ into the string, and a list of child nodes. Suffixes are given by traversals of this tree, joining $[l,\,r)$ substrings. The root is 0 (has $l=-1,\,r=0$), non-existent children are -1. To get a complete tree, append a dummy symbol – otherwise it may contain an incomplete path (still useful for substring matching, though).

```
Time: \mathcal{O}(26N)
                                                     aae0b8, 50 lines
struct SuffixTree {
 enum { N = 200010, ALPHA = 26 }; //N \sim 2*maxlen+10
 int toi(char c) { return c - 'a'; }
 string a; //v = cur \ node, q = cur \ position
 int t[N][ALPHA], l[N], r[N], p[N], s[N], v=0, q=0, m=2;
  void ukkadd(int i, int c) { suff:
    if (r[v] \le q) {
      if (t[v][c]==-1) { t[v][c]=m; l[m]=i;
       p[m++]=v; v=s[v]; q=r[v]; qoto suff; }
      v=t[v][c]; q=l[v];
    if (q==-1 || c==toi(a[q])) q++; else {
     l[m+1]=i; p[m+1]=m; l[m]=l[v]; r[m]=q;
      p[m]=p[v]; t[m][c]=m+1; t[m][toi(a[q])]=v;
      l[v]=q; p[v]=m; t[p[m]][toi(a[l[m]])]=m;
      v=s[p[m]]; q=l[m];
      while (q < r[m]) \{ v = t[v][toi(a[q])]; q + = r[v] - l[v]; \}
      if (q==r[m]) s[m]=v; else s[m]=m+2;
      q=r[v]-(q-r[m]); m+=2; qoto suff;
  SuffixTree(string a) : a(a) {
   fill(r,r+N,sz(a));
    memset(s, 0, sizeof s);
    memset(t, -1, sizeof t);
    fill(t[1],t[1]+ALPHA,0);
    s[0] = 1; 1[0] = 1[1] = -1; r[0] = r[1] = p[0] = p[1] = 0;
    rep(i, 0, sz(a)) ukkadd(i, toi(a[i]));
  // example: find longest common substring (uses ALPHA = 28)
  pii best:
  int lcs(int node, int i1, int i2, int olen) {
```

```
rep(c,0,ALPHA) if (t[node][c] != -1)
    mask |= lcs(t[node][c], i1, i2, len);
    if (mask == 3)
        best = max(best, {len, r[node] - len});
    return mask;
}
static pii LCS(string s, string t) {
    SuffixTree st(s + (char)('z' + 1) + t + (char)('z' + 2));
    st.lcs(0, sz(s), sz(s) + 1 + sz(t), 0);
    return st.best;
};
```

Suffix Automaton.h

Description: A minimal DFA that accepts all suffices of a string.

Usage: Call sa_init() once before running, then call sa_extend() for each character of the string.

```
Time: \mathcal{O}(Nloq26)
                                                     7695da, 41 lines
struct state {
 int len, link:
 map<char, int> next;
state st[MAXLEN * 2];
int sz, last;
void sa_init() {
 st[0].len = 0;
 st[0].link = -1;
 sz = 1; last = 0;
void sa_extend(char c) {
 int cur = sz++;
 st[cur].len = st[last].len + 1;
 int p = last;
 while (p != -1 \&\& !st[p].next.count(c)) {
    st[p].next[c] = cur;
    p = st[p].link;
 if (p == -1) {
    st[cur].link = 0;
 } else {
   int q = st[p].next[c];
    if (st[p].len + 1 == st[q].len) {
      st[cur].link = q;
    } else {
      int clone = sz++;
      st[clone].len = st[p].len + 1;
      st[clone].next = st[q].next;
      st[clone].link = st[q].link;
      while (p != -1 \&\& st[p].next[c] == q) {
        st[p].next[c] = clone;
        p = st[p].link;
      st[q].link = st[cur].link = clone;
 last = cur;
```

Hashing.h

Description: Self-explanatory methods for string hashing.

// Arithmetic mod 2^64-1. 2x slower than mod 2^64 and more // code, but works on evil test data (e.g. Thue-Morse, where // ABBA... and BAAB... of length 2^10 hash the same mod 2^64). // "typedef ull H;" instead if you think test data is random, // or work mod 10^9+7 if the Birthday paradox is not a problem.

int mask = 0, len = node ? olen + (r[node] - l[node]) : 0;

if (1[node] <= i1 && i1 < r[node]) return 1;

if (1[node] <= i2 && i2 < r[node]) return 2;

```
struct H {
  typedef uint64_t ull;
  ull x; H(ull x=0) : x(x) {}
#define OP(O,A,B) H operator O(H o) { ull r = x; asm \
  (A "addg %%rdx, %0\n adcg $0,%0": "+a"(r): B); return r; }
  OP(+,,"d"(o.x)) OP(*,"mul %1\n", "r"(o.x) : "rdx")
  H operator-(H o) { return *this + ~o.x; }
  ull get() const { return x + !\sim x; }
  bool operator==(H o) const { return get() == o.get(); }
  bool operator<(H o) const { return get() < o.get(); }</pre>
static const H C = (11)1e11+3; // (order \sim 3e9; random also ok)
struct HashInterval {
  vector<H> ha, pw;
  HashInterval(string& str) : ha(sz(str)+1), pw(ha) {
   pw[0] = 1;
   rep(i, 0, sz(str))
     ha[i+1] = ha[i] * C + str[i],
     pw[i+1] = pw[i] * C;
  H hashInterval(int a, int b) { // hash (a, b)
    return ha[b] - ha[a] * pw[b - a];
H hashString(string& s){H h{}; for(char c:s) h=h*C+c; return h;}
```

AhoCorasick.h

Description: Aho-Corasick automaton, used for multiple pattern matching. **Time:** $\mathcal{O}(N*alpha)$

```
93f1d1, 49 lines
const int alpha = 26;
const char first = 'a';
struct aho_corasick{
  struct Vertex {
    int next[alpha], go[alpha], p = -1, link = -1;
    char pch;
   bool leaf = 0;
    Vertex(int p = -1, char ch = '$') : p(p), pch(ch) {
     fill(all(next), -1);
      fill (all (go), -1);
  };
  vector<Vertex> t = vector<Vertex>(1);
  void add_string(string s) {
    int v = 0;
    for (char ch: s) {
     int c = ch - first;
     if (t[v].next[c] == -1) {
       t[v].next[c] = sz(t);
       t.emplace back(v, ch);
     v = t[v].next[c];
   t[v].leaf = 1;
  int get_link(int v) {
    if (t[v].link == -1) {
     if (v == 0 || t[v].p == 0)
       t[v].link = 0;
       t[v].link = go(get_link(t[v].p), t[v].pch);
    return t[v].link;
```

```
int go(int v, char ch) {
  int c = ch - first;
  if (t[v].go[c] == -1) {
    if (t[v].next[c] != -1)
        t[v].go[c] = t[v].next[c];
    else
        t[v].go[c] = v == 0 ? 0 : go(get_link(v), ch);
  }
  return t[v].go[c];
}
int is_leaf(int v) {return t[v].leaf;}
};
```

Various (10)

10.1 Intervals

IntervalContainer.h

Description: Add and remove intervals from a set of disjoint intervals. Will merge the added interval with any overlapping intervals in the set when adding. Intervals are [inclusive, exclusive).

```
Time: \mathcal{O}(\log N)
                                                     edce47, 23 lines
set<pii>::iterator addInterval(set<pii>& is, int L, int R) {
 if (L == R) return is.end();
  auto it = is.lower_bound({L, R}), before = it;
 while (it != is.end() && it->first <= R) {
   R = max(R, it->second);
   before = it = is.erase(it);
 if (it != is.begin() && (--it)->second >= L) {
   L = min(L, it->first);
   R = max(R, it->second);
    is.erase(it);
 return is.insert (before, {L,R});
void removeInterval(set<pii>& is, int L, int R) {
 if (L == R) return;
 auto it = addInterval(is, L, R);
 auto r2 = it->second;
 if (it->first == L) is.erase(it);
 else (int&)it->second = L;
 if (R != r2) is.emplace (R, r2);
```

IntervalCover.h

Description: Compute indices of smallest set of intervals covering another interval. Intervals should be [inclusive, exclusive). To support [inclusive, inclusive], change (A) to add | | R.empty(). Returns empty set on failure (or if G is empty).

```
Time: O(Nlog N)

template<class T>
vi cover(pair<T, T> G, vector<pair<T, T>> I) {
  vi S(sz(I)), R;
  iota(all(S), 0);
  sort(all(S), [&](int a, int b) { return I[a] < I[b]; });
  T cur = G.first;
  int at = 0;
  while (cur < G.second) { // (A)
    pair<T, int> mx = make_pair(cur, -1);
  while (at < sz(I) && I[S[at]].first <= cur) {
    mx = max(mx, make_pair(I[S[at]].second, S[at]));
    at++;
  }
  if (mx.second == -1) return {};</pre>
```

```
cur = mx.first;
R.push_back(mx.second);
}
return R;
```

ConstantIntervals.h

Description: Split a monotone function on [from, to) into a minimal set of half-open intervals on which it has the same value. Runs a callback g for each such interval.

Usage: constantIntervals(0, sz(v), [&](int x){return v[x];},

```
[&] (int lo, int hi, T val) \{\ldots\});
Time: \mathcal{O}\left(k\log\frac{n}{k}\right)
                                                        753a4c, 19 lines
template < class F, class G, class T>
void rec(int from, int to, F& f, G& q, int& i, T& p, T q) {
 if (p == q) return;
 if (from == to) {
    q(i, to, p);
    i = to; p = q;
    int mid = (from + to) >> 1;
    rec(from, mid, f, g, i, p, f(mid));
    rec(mid+1, to, f, g, i, p, q);
template<class F, class G>
void constantIntervals(int from, int to, F f, G g) {
 if (to <= from) return:
 int i = from; auto p = f(i), q = f(to-1);
 rec(from, to-1, f, g, i, p, q);
 q(i, to, q);
```

10.2 Misc. algorithms

TernarySearch.h

Description: Find the smallest i in [a,b] that maximizes f(i), assuming that $f(a) < \ldots < f(i) \ge \cdots \ge f(b)$. To reverse which of the sides allows non-strict inequalities, change the < marked with (A) to <=, and reverse the loop at (B). To minimize f, change it to >, also at (B).

```
Usage: int ind = ternSearch(0,n-1,[&](int i){return a[i];});
Time: \mathcal{O}(\log(b-a))
```

```
template < class F >
int ternSearch(int a, int b, F f) {
    assert(a <= b);
    while (b - a >= 5) {
        int mid = (a + b) / 2;
        if (f(mid) < f(mid+1)) a = mid; // (A)
        else b = mid+1;
    }
    rep(i,a+1,b+1) if (f(a) < f(i)) a = i; // (B)
    return a;
}</pre>
```

Josephus.h

Description: Josephus problem solver in 2 versions. Assume start counting at 0, remove every k-th number.

```
Time: O(N) or O(K log N)
int josephus1(int n, int k) { // O(N)
int res = 0;
rep(i, 1, n+1) res = (res + k) % i;
return res;
}
int josephus2(int n, int k) { // O(KlogN)
if (n == 1) return 0;
if (k == 1) return n-1;
```

```
if (k > n) return (josephus(n-1, k) + k) % n;
int cnt = n/k, res = josephus(n - cnt, k) - n % k;
if (res < 0) res += n;
else res += res/(k-1);
return res;</pre>
```

10.2.1 Matroid intersection

Start from $S = \emptyset$. In each iteration, let

- $Y_1 = \{ x \notin S \mid S \cup \{x\} \in I_1 \}$
- $Y_2 = \{ x \notin S \mid S \cup \{x\} \in I_2 \}$

If there exists $x \in Y_1 \cap Y_2$, insert x into S. Otherwise for each $x \in S, y \notin S$, create edges

- $x \to y \text{ if } S \{x\} \cup \{y\} \in I_1.$
- $y \to x \text{ if } S \{x\} \cup \{y\} \in I_2.$

Find a shortest path (with BFS) starting from a vertex in Y_1 and ending at a vertex in Y_2 which doesn't pass through any other vertices in Y_2 , and alternate the path. The size of S will be incremented by 1 in each iteration. For the weighted case, assign weight w(x) to vertex x if $x \in S$ and -w(x) if $x \notin S$. Find the path with the minimum number of edges among all minimum length paths and alternate it.

10.3 Dynamic programming

KnuthDP.h

};

Description: When doing DP on intervals: $a[i][j] = \min_{i < k < j} (a[i][k] + a[k][j]) + f(i,j)$, where the (minimal) optimal k increases with both i and j, one can solve intervals in increasing order of length, and search k = p[i][j] for a[i][j] only between p[i][j-1] and p[i+1][j]. This is known as Knuth DP. Sufficient criteria for this are if $f(b,c) \le f(a,d)$ and $f(a,c) + f(b,d) \le f(a,d) + f(b,c)$ for all $a \le b \le c \le d$. Consider also: LineContainer (ch. Data structures), monotone queues, ternary search. **Time:** $\mathcal{O}\left(N^2\right)$

DivideAndConquerDP.h

Description: Given $a[i] = \min_{lo(i) \le k < hi(i)} (f(i, k))$ where the (minimal) optimal k increases with i, computes a[i] for i = L..R - 1. **Time:** $\mathcal{O}((N + (hi - lo)) \log N)$

d38d2b, 18 lines struct DP { // Modify at will: int lo(int ind) { return 0; } int hi(int ind) { return ind; } 11 f(int ind, int k) { return dp[ind][k]; } void store(int ind, int k, ll v) { res[ind] = pii(k, v); } void rec(int L, int R, int LO, int HI) { if (L >= R) return; int mid = $(L + R) \gg 1$; pair<11, int> best (LLONG_MAX, LO); rep(k, max(LO, lo(mid)), min(HI, hi(mid))) best = min(best, make_pair(f(mid, k), k)); store (mid, best.second, best.first); rec(L, mid, LO, best.second+1); rec(mid+1, R, best.second, HI); void solve(int L, int R) { rec(L, R, INT_MIN, INT_MAX); }

10.4 Debugging tricks

- signal(SIGSEGV, [] (int) { _Exit(0); }); converts segfaults into Wrong Answers. Similarly one can catch SIGABRT (assertion failures) and SIGFPE (zero divisions). _GLIBCXX_DEBUG failures generate SIGABRT (or SIGSEGV on gcc 5.4.0 apparently).
- feenableexcept (29); kills the program on NaNs (1), 0-divs (4), infinities (8) and denormals (16).
- #pragma GCC optimize ("trapv") kills the program on integer overflows (but is really slow).
- double t = clock(); while ((clock()-t)/ CLOCKS_PER_SEC < TIME_LIMIT) runs until timeout (TIME_LIMIT in seconds).

10.5 Optimization tricks

__builtin_ia32_ldmxcsr(40896); disables denormals (which make floats 20x slower near their minimum value).

10.5.1 Bit hacks

- x & -x is the least bit in x.
- $x ^ (x >> 1)$ x-th gray binary code.
- for (int x = m; x;) { --x &= m; ... } loops over all subset masks of m (except m itself).
- c = x&-x, r = x+c; $(((r^x) >> 2)/c) | r$ is the next number after x with the same number of bits set.
- rep(b,0,K) rep(i,0,(1 << K))
 if (i & 1 << b) D[i] += D[i^(1 << b)];
 computes all sums of subsets.</pre>

FastMod.h

Description: Compute a%b about 5 times faster than usual, where b is constant but not known at compile time. Returns a value congruent to $a \pmod{b}$ in the range [0,2b).

```
typedef unsigned long long ull;
struct FastMod {
  ull b, m;
  FastMod(ull b) : b(b), m(-1ULL / b) {}
  ull reduce(ull a) { // a % b + (0 or b)
    return a - (ull)((_uint128_t(m) * a) >> 64) * b;
  }
};
```

FastInput.h

Description: Returns an integer. Usage requires your program to pipe in input from file. Can replace calls to gc() with $getchar_unlocked()$ if extra speed isn't necessary (60% slowdown).

Usage: ./a.out < input.txt</pre>

buf[0] = 0, bc = 0;

Time: About 5x as fast as cin/scanf.
inline char gc() { // like getchar()
static char buf[1 << 16];
static size_t bc, be;
if (bc >= be) {

```
be = fread(buf, 1, sizeof(buf), stdin);
}
return buf[bc++]; // returns 0 on EOF
}
int readInt() {
  int a, c;
  while ((a = gc()) < 40);
  if (a == '-') return -readInt();
  while ((c = gc()) >= 48) a = a * 10 + c - 480;
  return a - 48;
}
```

PairHash.h

Description: Allow using pair with hash-based containers

rs 14168c, 9 lines

```
namespace std {
  template<>
  struct hash<pair<int, int>> {
  public:
     size_t operator()(const pair<int,int>& x) const {
     return 1000000009LL * x.first + x.second;
     }
};
```

IterateBitset.h

Description: Iterate bitset in O(n/32)

1a1f05, 1 lines

```
for (int i = b._Find_first(); i < sz(b); i = b._Find_next(i)) {
    /*...*/}</pre>
```

10.6 Java

Main.java

Description: Basic template for Java

11488d, 14 lines

Euclid.java

Description: Finds $\{x, y, d\}$ s.t. $ax + by = d = \gcd(a, b)$. $_{6aba01, \ 11 \ lines}$ static BigInteger[] euclid(BigInteger a, BigInteger b) {

```
static BigInteger[] euclid(BigInteger a, BigInteger b) {
    BigInteger x = BigInteger.ONE, yy = x;
    BigInteger y = BigInteger.ZERO, xx = y;
    while (b.signum() != 0) {
        BigInteger q = a.divide(b), t = b;
        b = a.mod(b); a = t;
        t = xx; xx = x.subtract(q.multiply(xx)); x = t;
        t = yy; yy = y.subtract(q.multiply(yy)); y = t;
    }
    return new BigInteger[]{x, y, a};
}
```