HMMT February 2019 February 16, 2019

Algebra and Number Theory

1. What is the smallest positive integer that cannot be written as the sum of two nonnegative palindromic integers? (An integer is *palindromic* if the sequence of decimal digits are the same when read backwards.)

Proposed by: Yuan Yao

Answer: 21

We need to first prove that every positive integer N less than 21 can be written as sum of two nonnegative palindromic integers. If N is in the interval [1,9], then it can be written as 0+N. If N is in the interval [10,18], it can be written as 9+(N-9). In addition, 19 and 20 can be written as 11+8 and 11+9, respectively.

Second, we need to show that 21 cannot be expressed in such a way. Lets suppose 21 = a + b with $a \le b$. It follows that b has to be at least 11. Since $b \le 21$, the only way for b to be palindromic is that b = 11. However, this leads to a = 21 - b = 10, which is not a palindrome. Therefore, 21 is the smallest number that satisfy the problem condition.

2. Let $N=2^{\binom{2^2}{2}}$ and x be a real number such that $N^{\binom{N^N}{2}}=2^{\binom{2^x}{2}}$. Find x.

Proposed by: Yuan Yao

Answer: 66

We compute

$$N^{(N^N)} = 16^{16^{16}} = 2^{4 \cdot 2^{4 \cdot 2^4}} = 2^{2^{2^6 + 2}} = 2^{2^{66}}$$

so x = 66.

3. Let x and y be positive real numbers. Define $a = 1 + \frac{x}{y}$ and $b = 1 + \frac{y}{x}$. If $a^2 + b^2 = 15$, compute $a^3 + b^3$. Proposed by: Michael Tang

Answer: 50

Note that $a-1=\frac{x}{y}$ and $b-1=\frac{y}{x}$ are reciprocals. That is,

$$(a-1)(b-1)=1 \implies ab-a-b+1=1 \implies ab=a+b.$$

Let t = ab = a + b. Then we can write

$$a^2 + b^2 = (a+b)^2 - 2ab = t^2 - 2t,$$

so $t^2 - 2t = 15$, which factors as (t - 5)(t + 3) = 0. Since a, b > 0, we must have t = 5. Then, we compute

 $a^{3} + b^{3} = (a+b)^{3} - 3ab(a+b) = 5^{3} - 3 \cdot 5^{2} = 50.$

- 4. Let \mathbb{N} be the set of positive integers, and let $f: \mathbb{N} \to \mathbb{N}$ be a function satisfying
 - f(1) = 1;
 - for $n \in \mathbb{N}$, f(2n) = 2f(n) and f(2n+1) = 2f(n) 1.

Determine the sum of all positive integer solutions to f(x) = 19 that do not exceed 2019.

Proposed by: Yuan Yao

Answer: 1889

For $n = 2^{a_0} + 2^{a_1} + \dots + 2^{a_k}$ where $a_0 > a_1 > \dots > a_k$, we can show that $f(n) = 2^{a_0} - 2^{a_1} - \dots - 2^{a_k} = 2^{a_0+1} - n$ by induction: the base case f(1) = 1 clearly holds; for the inductive step, when n is even

we note that $f(n) = 2f(\frac{n}{2}) = 2(2^{a_0} - \frac{n}{2}) = 2^{a_0+1} - n$ as desired, and when n is odd we also have $f(n) = 2f(\frac{n-1}{2}) - 1 = 2(2^{a_0} - \frac{n-1}{2}) - 1 = 2^{a_0+1} - n$, again as desired.

Since $19 = f(n) \le 2^{a_0} \le n$, we have $a_0 \ge 5$ and $n = 2^{a_0+1} - 19 \le 2019$ gives $a_0 \le 9$. So the answer is $\sum_{a=5}^{9} (2^{a+1} - 19) = (2^{11} - 2^6) - 19 \cdot 5 = 1889.$

5. Let a_1, a_2, \ldots be an arithmetic sequence and b_1, b_2, \ldots be a geometric sequence. Suppose that $a_1b_1 = 20$, $a_2b_2 = 19$, and $a_3b_3 = 14$. Find the greatest possible value of a_4b_4 .

Proposed by: Michael Tang

Answer: $\frac{37}{4}$

We present two solutions: the first more algebraic and computational, the second more conceptual.

Solution 1. Let $\{a_n\}$ have common difference d and $\{b_n\}$ have common ratio d; for brevity, let $a_1 = a$ and $b_1 = b$. Then we have the equations ab = 20, (a + d)br = 19, and $(a + 2d)br^2 = 14$, and we want to maximize $(a + 3d)br^3$.

The equation (a+d)br = 19 expands as abr + dbr = 19, or 20r + bdr = 19 since ab = 20. Similarly, $(20+2bd)r^2 = 14$, or $10r^2 + bdr^2 = 7$. Multiplying the first equation by r and subtracting the second, we get

$$10r^2 = 19r - 7 \implies (5r - 7)(2r - 1) = 0,$$

so either $r = \frac{7}{5}$ or $r = \frac{1}{2}$.

For each value of r, we have $bd = \frac{19-20r}{r} = \frac{19}{r} - 20$, so

$$(a+3d)br^3 = (20+3bd)r^3 = \left(\frac{57}{r} - 40\right)r^3 = r^2(57-40r).$$

The greater value of this expression is $\frac{37}{4}$, achieved when $r = \frac{1}{2}$.

Solution 2. The key is to find a (linear) recurrence relation that the sequence $c_n = a_n b_n$ satisfies. Some knowledge of theory helps here: c_n is of the form $snr^n + tr^n$ for some constants r, s, t, so $\{c_n\}$ satisfies a linear recurrence relation with characteristic polynomial $(x - r)^2 = x^2 - 2rx + r^2$. That is,

$$c_n = 2rc_{n-1} - r^2c_{n-2}$$

for some constant r.

Taking n=3, we get $14=2r\cdot 19-r^2\cdot 20$, which factors as (5r-7)(2r-1)=0, so either $r=\frac{7}{5}$ or $r=\frac{1}{2}$. Then

$$c_4 = 2rc_3 - r^2c_2 = 28r - 19r^2.$$

This expression is maximized at $r = \frac{14}{19}$, and strictly decreases on either side. Since $\frac{1}{2}$ is closer to $\frac{14}{19}$ than $\frac{7}{5}$, we should choose $r = \frac{1}{2}$, giving the answer $c_4 = 14 - \frac{19}{4} = \frac{37}{4}$.

6. For positive reals p and q, define the remainder when p is divided by q as the smallest nonnegative real r such that $\frac{p-r}{q}$ is an integer. For an ordered pair (a,b) of positive integers, let r_1 and r_2 be the remainder when $a\sqrt{2} + b\sqrt{3}$ is divided by $\sqrt{2}$ and $\sqrt{3}$ respectively. Find the number of pairs (a,b) such that $a,b \leq 20$ and $r_1 + r_2 = \sqrt{2}$.

Proposed by: Yuan Yao

Answer: 16

The remainder when we divide $a\sqrt{2}+b\sqrt{3}$ by $\sqrt{2}$ is defined to be the smallest non-negative real r_1 such that $\frac{a\sqrt{2}+b\sqrt{3}-r_1}{\sqrt{2}}$ is integral. As $\frac{x}{\sqrt{2}}$ is integral iff x is an integral multiple of $\sqrt{2}$, it follows that $r_1=b\sqrt{3}-c\sqrt{2}$, for some integer c. Furthermore given any real r such that $\frac{a\sqrt{2}+b\sqrt{3}-r}{\sqrt{2}}$ is integral, we may add or subtract $\sqrt{2}$ to r and the fraction remains an integer. Thus, the smallest non-negative real r_1 such that the fraction is an integer must satisfy $0 \le r_1 < \sqrt{2}$.

Similarly, we find $r_2 = a\sqrt{2} - d\sqrt{3}$ for some integer d and $0 \le r_2 < \sqrt{3}$. Since $r_1 + r_2 = \sqrt{2}$, then

$$(a-c)\sqrt{2} + (b-d)\sqrt{3} = \sqrt{2} \iff a-c = 1 \text{ and } b-d = 0.$$

Finally, substituting in c = a - 1 and d = b plugging back into our bounds for r_1 and r_2 , we get

$$\left\{ \begin{array}{l} 0 \leq b\sqrt{3} - (a-1)\sqrt{2} < \sqrt{2} \\ 0 \leq a\sqrt{2} - b\sqrt{3} < \sqrt{3} \end{array} \right.$$

or

$$\begin{cases} (a-1)\sqrt{2} \le b\sqrt{3} \\ b\sqrt{3} < a\sqrt{2} \\ b\sqrt{3} \le a\sqrt{2} \\ a\sqrt{2} < (b+1)\sqrt{3} \end{cases}$$

Note that $b\sqrt{3} < a\sqrt{2} \implies b\sqrt{3} \le a\sqrt{2}$ and

$$(a-1)\sqrt{2} \le b\sqrt{3} \implies a\sqrt{2} \le b\sqrt{3} + \sqrt{2} < b\sqrt{3} + \sqrt{3} = (b+1)\sqrt{3}$$

so the last two inequalities are redundant. We are left with

$$(a-1)\sqrt{2} \le b\sqrt{3} < a\sqrt{2}.$$

Since the non-negative number line is partitioned by intervals of the form $[(a-1)\sqrt{2}, a\sqrt{2})$ for positive integers a, for any positive integer b, we can find a positive integer a that satisfies the inequalities. As clearly a > b, it remains to find the number of b such that $a \le 20$. This is bounded by

$$b\sqrt{3} < a\sqrt{2} \le 20\sqrt{2} \iff b < \frac{20\sqrt{2}}{\sqrt{3}} \implies b \le 16$$

so there are 16 values of b and thus 16 ordered pairs of positive integers (a, b) that satisfy the problem.

7. Find the value of

$$\sum_{a=1}^{\infty} \sum_{b=1}^{\infty} \sum_{c=1}^{\infty} \frac{ab(3a+c)}{4^{a+b+c}(a+b)(b+c)(c+a)}.$$

Proposed by: Andrew Gu

Answer: $\frac{1}{54}$

Let S denote the given sum. By summing over all six permutations of the variables a, b, c we obtain

$$\begin{split} 6S &= \sum_{a=1}^{\infty} \sum_{b=1}^{\infty} \sum_{c=1}^{\infty} \frac{3(a^2b + a^2c + b^2a + b^2c + c^2a + c^2b) + 6abc}{4^{a+b+c}(a+b)(b+c)(c+a)} \\ &= \sum_{a=1}^{\infty} \sum_{b=1}^{\infty} \sum_{c=1}^{\infty} \frac{3}{4^{a+b+c}} \\ &= 3\left(\sum_{a=1}^{\infty} \frac{1}{4^a}\right) \left(\sum_{b=1}^{\infty} \frac{1}{4^b}\right) \left(\sum_{c=1}^{\infty} \frac{1}{4^c}\right) \\ &= 3\left(\frac{1}{3}\right)^3 \\ &= \frac{1}{9}. \end{split}$$

Hence $S = \frac{1}{54}$.

8. There is a unique function $f: \mathbb{N} \to \mathbb{R}$ such that f(1) > 0 and such that

$$\sum_{d|n} f(d)f\left(\frac{n}{d}\right) = 1$$

for all $n \ge 1$. What is $f(2018^{2019})$?

Proposed by: Ashwin Sah

Answer:
$$\frac{\binom{4038}{2019}^2}{2^{8076}} \text{ OR } \frac{(4038!)^2}{(2019!)^4 \cdot 2^{8076}}$$

Fix any prime p, and let $a_n = f(p^n)$ for $n \ge 0$. Notice that using the relation for p^n , we obtain

$$\sum_{i=0}^{n} a_i a_{n-i} = 1,$$

which means that if we let $g(x) = \sum_{n \geq 0} a_n x^n$, then $g(x)^2 = 1 + x + x^2 + \dots = \frac{1}{1-x}$ as a generating function. Thus $g(x) = (1-x)^{-\frac{1}{2}}$, and this is well-known to have generating function with coefficients $a_n = \frac{\binom{2n}{n}}{4^n}$. One way to see this is using the Taylor series and then reorganizing terms; it is also intimately related to the generating function for the Catalan numbers. In particular, a_n is independent of our choice of p.

Now if we define $f_0(n) = \prod_{p|n} a_{v_p(n)}$, then we see that $f = f_0$ on the prime powers.

If we define the Dirichlet convolution of two functions $\chi_1, \chi_2 : \mathbb{N} \to \mathbb{R}$ as χ_3 such that

$$\chi_3(n) = \sum_{d|n} \chi_1(d) \chi_2\left(\frac{n}{d}\right),\,$$

then it is well-known that multiplicative functions $(\chi(m)\chi(n) = \chi(mn))$ if gcd(m,n), so e.g. $\phi(n)$, the Euler totient function) convolve to a multiplicative function.

In particular, f_0 is a multiplicative function by definition (it is equivalent to only define it at prime powers then multiply), so the convolution of f_0 with itself is multiplicative. By definition of a_n , the convolution of f_0 with itself equals 1 at all prime powers. Thus by multiplicativity, it equals the constant function 1 everywhere.

Two final things to note: $f_0(1) = a_0 = 1 > 0$, and f satisfying the conditions in the problem statement is indeed unique (proceed by induction on f that f(n) is determined uniquely and that the resulting algorithm for computing f gives a well-defined function). Therefore f_0 , satisfying those same conditions, must equal f.

At last, we have

$$f(p^{2019}) = f_0(p^{2019}) = \frac{\binom{4038}{2019}}{4^{2019}}$$

so

$$f(2018^{2019}) = f(2^{2019})f(1009^{2019}) = \frac{\binom{4038}{2019}^2}{4^{4038}} = \frac{\binom{4038}{2019}^2}{2^{8076}}.$$

9. Tessa the hyper-ant has a 2019-dimensional hypercube. For a real number k, she calls a placement of nonzero real numbers on the 2^{2019} vertices of the hypercube k-harmonic if for any vertex, the sum of all 2019 numbers that are edge-adjacent to this vertex is equal to k times the number on this vertex. Let S be the set of all possible values of k such that there exists a k-harmonic placement. Find $\sum_{k \in S} |k|$.

Proposed by: Yuan Yao

Answer: 2040200

By adding up all the equations on each vertex, we get 2019S = kS where S is the sum of all entries, so k = 2019 unless S = 0. In the latter case, by adding up all the equations on a half of the cube, we get

2018S - S = kS where S is the sum of all entries on that half of the cube, so k = 2017 unless S = 0. In the latter case (the sum of all entries of any half is zero), by adding up all the equations on a half of the half-cube, we get 2017S - 2S = kS, so k = 2015 unless S = 0. We continue this chain of casework until we get that the sum of every two vertices connected by unit segments is zero, in which case we have k = -2019. This means that k can take any odd value between -2019 and 2019 inclusive, so the sum of absolute values is $2 \cdot 1010^2 = 2040200$.

To achieve these values, suppose that the vertices of the hypercube are $\{0,1\}^{2019}$ and that the label of $(x_1,x_2,\ldots,x_{2019})$ is $a_1^{x_1}a_2^{x_2}\ldots a_{2019}^{x_{2019}}$ for constants $a_1,a_2,\ldots,a_{2019}\in\{-1,1\}$, then it is not difficult to see that this labeling is $(a_1+a_2+\cdots+a_{2019})$ -harmonic for any choice of a_i 's, so this can achieve all odd values between -2019 and 2019 inclusive.

10. The sequence of integers $\{a_i\}_{i=0}^{\infty}$ satisfies $a_0 = 3, a_1 = 4$, and

$$a_{n+2} = a_{n+1}a_n + \left[\sqrt{a_{n+1}^2 - 1}\sqrt{a_n^2 - 1}\right]$$

for $n \geq 0$. Evaluate the sum

$$\sum_{n=0}^{\infty} \left(\frac{a_{n+3}}{a_{n+2}} - \frac{a_{n+2}}{a_n} + \frac{a_{n+1}}{a_{n+3}} - \frac{a_n}{a_{n+1}} \right).$$

Proposed by: Ernest Chiu

Answer: $\frac{14}{69}$

The key idea is to note that $a_{n+1}a_n + \sqrt{a_{n+1}^2 - 1}\sqrt{a_n^2 - 1}$ is the larger zero of the quadratic

$$f_n(x) = x^2 - (2a_{n+1}a_n)x + a_n^2 + a_{n+1}^2 - 1.$$

Since a_{n+2} is the smallest integer greater than or equal to this root, it follows that $a_n^2 + a_{n+1}^2 + a_{n+2}^2 - 2a_na_{n+1}a_{n+2} - 1$ is some small nonnegative integer. For these particular initial conditions $(a_0 = 3, a_1 = 4, a_2 = 12 + \lceil \sqrt{120} \rceil = 23)$, this integer is $(3^2 + 4^2) + (23^2 - 2 \cdot 3 \cdot 4 \cdot 23) - 1 = 25 - 23 - 1 = 1$.

We now use induction to prove both

$$a_{n+3} = 2a_{n+2}a_{n+1} - a_n$$
 and $a_n^2 + a_{n+1}^2 + a_{n+2}^2 - 2a_na_{n+1}a_{n+2} - 1 = 1$

for $n \geq 0$. The base case is not difficult to check: $a_3 = 4 \cdot 23 + \lceil \sqrt{7920} \rceil = 181 = 2 \cdot 4 \cdot 23 - 3$, and the other equation has been checked above. Since the quadratic equation $f_{n+1}(x) = 1$ has a solution a_n by induction hypothesis. Then, using Vieta's theorem, $2a_{n+1}a_{n+2} - a_n$ is also a solution. Then, the two roots of $f_{n+1}(x) = 0$ must be in strictly between a_n and $2a_{n+1}a_{n+2} - a_n$, so we have that $a_{n+3} \leq 2a_{n+1}a_{n+2} - a_n$ since a_{n+3} is the ceiling of the larger root. In fact, since $a_{n+1}a_{n+2}$ is much larger than a_n for $n \geq 1$ (it is not difficult to see that a_n grows faster than exponential), meaning that the two roots of f_{n+1} are more than 1 away from the minimum, and $f(2a_{n+1}a_{n+2} - a_n) = 1$, we have $f(2a_{n+1}a_{n+2} - a_n - 1) < 0$, which mean that we must have $a_{n+3} = 2a_{n+1}a_{n+2} - a_n$, which simultaneously proves both statements due to Vieta jumping.

To finish, note that the above recurrence gives

$$\frac{a_{n+3}}{a_{n+2}} - \frac{a_{n+2}}{a_n} = 2a_{n+1} - \frac{a_n}{a_{n+2}} - 2a_{n+1} + \frac{a_{n-1}}{a_n} = -\frac{a_n}{a_{n+2}} + \frac{a_{n-1}}{a_n},$$

which telescopes with the other two terms. (Convergence can be shown since the ratio of adjacent terms is bounded above by 1/3. In fact it goes to zero rapidly.) The only leftover terms after telescoping are $\frac{a_3}{a_2} - \frac{a_2}{a_0} = -\frac{a_0}{a_2} + \frac{a_{-1}}{a_0} = -\frac{3}{23} + \frac{1}{3} = \frac{14}{69}$, giving the answer. (Here, we use the backwards recurrence $a_{n-1} = 2a_n a_{n+1} - a_{n+2}$ to find $a_{-1} = 2 \cdot 3 \cdot 4 - 23 = 1$.)