## 1. Постановка задачи и построение математической модели

## 1.1. Постановка задачи



Требования по потокам  $\Pi_j$ , j=1,2,4, поступают пачками, причем пачки поступают в соответствии с Пуассоновским процессом с параметром  $\lambda_j$ . Требования из потока  $\Pi_1$ , будучи обслуженными, образуют поток  $\Pi_3$ . Требования по потоку  $\Pi_j$  поступают в соответствующую очередь  $O_j$ ,  $j=\overline{1,4}$ .

Первый перекресток может находиться в одном из двух состояний:

- обслуживать поток  $\Pi_1$  (состояние  $\Gamma^{(1,1)}$  длительностью  $T^{(1,1)}$ ) и
- обслуживать поток  $\Pi_2$  (состояние  $\Gamma^{(1,2)}$  длительностью  $T^{(1,2)}$ ).

Второй перекресток имеет три состояния:

- обслуживание потока  $\Pi_3$  (состояние  $\Gamma^{(2,1)}$  длительностью  $T^{(2,1)}$ );
- обслуживание потока  $\Pi_4$  (состояние  $\Gamma^{(2,2)}$  длительностью  $T^{(2,2)}$ ) и
- продолжение обслуживания потока  $\Pi_4$  в случае превышения объема оставшейся очереди  $O_4$  некого порога (состояние  $\Gamma^{(2,3)}$  длительностью  $T^{(2,3)}$ );

Объединим рассматриваемые обслуживающие устройства в одно, состояние которого опишем с помощью вектора из множества  $S_{general}\left(\Gamma^{(1,i_1)};\Gamma^{(2,i_2)};T\right)$ , где  $i_1\in\{1,2\},\,i_2\in\{1,2,3\},\,T\in\left\{1,2,\ldots,\max_{i_1,i_2}\left(T^{(1,i_1)},T^{(2,i_2)}\right)\right\}$ . Свое состояние новое устройство меняет в моменты смены состояний одного из составляющих его устройств.

Теорема 1.1. Количество состояний полученного обслуживающего устройства конечно

*Proof.* Поскольку множество различных состояний  $\Gamma$ , в которые обслуживающее устройство может совершить переход, является подмножеством  $S_{general}$  ( $S \subset S_{general}$ ), то

$$|S| \le |S_{general}| = 2 \times 3 \times \max_{i_1, i_2} (T^{(1, i_1)}, T^{(2, i_2)})$$

В следствие этого результата мы можем перенумеровать состояния  $\Gamma = \left\{\Gamma^{(1)}, \Gamma^{(2)}, \dots, \Gamma^{(n)}\right\}$ , а также соответствующие им длительности  $T = \left\{T^{(1)}, T^{(2)}, \dots, T^{(n)}\right\}$ . Каждое состояние  $\Gamma^{(r)}$  принадлежит одному из следующих четырех классов  $\Gamma^{I}$ ,  $\Gamma^{II}$ ,  $\Gamma^{III}$  и  $\Gamma^{IV}$ .

- в состоянии  $\Gamma^{(r)} \in \Gamma^I$  обслуживаются только требования из очередей  $O_1$  и  $O_3$ ;
- $\bullet$ в состоянии  $\Gamma^{(r)} \in \Gamma^{II}$  обслуживаются только требования из очередей  $O_1$  и  $O_4;$
- в состоянии  $\Gamma^{(r)} \in \Gamma^{III}$  обслуживаются только требования из очередей  $O_2$  и  $O_3$ ;
- ullet в состоянии  $\Gamma^{(r)} \in \Gamma^{IV}$  обслуживаются только требования из очередей  $O_2$  и  $O_4$ .

Для описания процесса обслуживания будут также использоваться потоки насыщения  $\Pi_j^{sat},\ j=\overline{1,4},$  определяемые как выходные потоки при максимальной загруженности обслуживающего устройства. Пусть

- для j=1  $^{j}\Gamma=\Gamma^{I}$ [ ] $\Gamma^{II}$ ;
- для j=2  $^{j}\Gamma=\Gamma^{III}$  [ ]  $\Gamma^{IV}$ ;
- для j=3  $^{j}\Gamma=\Gamma^{I}$  |  $\Gamma^{III}$ ;
- для j=4  $^{j}\Gamma=\Gamma^{II}$   $\Gamma^{IV}$ ;

Тогда поток насыщения  $\Pi_j^{sat}$  будет содержать неслучайное число  $l_{r,j}$  требований, обслуженных в течение времени  $T^{(r)}$ , если  $\Gamma^{(r)} \in {}^j \Gamma$ , и не будет содержать требований в противном случае,  $\Gamma^{(r)} \notin {}^j \Gamma$ .

Моменты  $\tau_0=0,\tau_1,\ldots$  наблюдения за системой положим совпадающими с моментами переключения состояния обслуживающего устройства. Определим следующие случайные величины и элементы:

- количество  $\varkappa_{j,i} \in Z_+$  требований в очереди  $O_j$  в момент времени  $\tau_i$ ;
- ullet состояние обслуживающего устройства  $\Gamma_i \in \Gamma = \left\{\Gamma^{(1)}, \Gamma^{(2)}, \dots, \Gamma^{(n)}\right\}$  в течение  $(\tau_{i-1}; \tau_i];$
- количество  $\eta_{j,i}$  требований, поступивших в очередь  $O_j$  по потоку  $\Pi_j$  в течение  $(\tau_i; \tau_{i+1}];$
- количество  $\xi_{j,i}$  требований по потоку насыщения  $\Pi_j^{sat}$  в течение  $(\tau_i; \tau_{i+1}];$
- количество  $\overline{\xi_{j,i}}$  реально обслуженных требований по потоку  $\Pi_j$ .

## 1.2. Свойства условных распределений

Будем считать, что закон изменения состояния обслуживающего устройства нам известен и задается следующей функцией:

$$\Gamma_{i+1} = h(\Gamma_i, \varkappa_{4,i}).$$

Также для определения длительности  $T_i$  состояния обслуживающего устройства в течение  $(\tau_{i-1}; \tau_i]$ , удобно ввести следующую функцию:

$$T_{i+1} = h_T(\Gamma_i, \varkappa_{4,i}) = T^{(r')}, \quad \text{где } \Gamma^{(r')} = h(\Gamma_i, \varkappa_{4,i}).$$
 (1)

Тогда имеем

$$\overline{\xi}_{j,i} = \min \left\{ \xi_{j,i}, \varkappa_{j,i} + \eta_{j,i} \right\}, \quad \varkappa_{i+1} = \max \left\{ 0, \varkappa_{j,i} + \eta_{j,i} - \xi_{j,i} \right\} 
\Gamma_{i+1} = h(\Gamma_i, \varkappa_{4,i}), \quad \eta_{3,i} = \overline{\xi_{1,i}} = \varkappa_{1,i} + \eta_{1,i} + \min \left\{ 0, \xi_{1,i} - \left( \varkappa_{1,i} + \eta_{1,i} \right) \right\}.$$
(2)

Обозначим через  $\varphi_j(x,t)$  вероятность того, что за время t>0 по потоку  $\Pi_j$  поступит ровно  $x\in Z_+$  требований:

$$P\left(\left\{\omega \colon \eta_{j,i} = b\right\} \middle| \left\{\omega \colon \Gamma_i = \Gamma^{(r)}, \varkappa_{4,i} = x\right\}\right) = \varphi_j(b, T_{i+1}). \tag{3}$$

Учитывая закон распределения процесса Пуассона и количества требований в пачках, величины  $\varphi_j(x,t)$  могут быть найдены из соотношений

$$\sum_{x=0}^{\infty} z^x \varphi_j(x,t) = \exp\left\{\lambda_j t \left(\sum_{b=1}^{\infty} z^b \pi(b,j) - 1\right)\right\}$$
(4)

Для потоков насыщения имеем следующие соотношения:

$$P\left(\xi_{j,i} = 0 \middle| \Gamma_i = \Gamma^{(r)}\right) = 1, \quad \Gamma_{i+1} \notin^j \Gamma, \tag{5}$$

$$P\left(\xi_{j,i} = l_{r',j} \middle| \Gamma_i = \Gamma^{(r)}\right) = 1, \quad \Gamma_{i+1} = \Gamma^{(r')} \in {}^{j}\Gamma, \tag{6}$$

где  $j = \overline{1,4}$ .

Введем следующие события:

$$A_{i}(r; x_{1}; x_{2}; x_{3}; x_{4}) = \left\{\Gamma_{i} = \Gamma^{(r)}, \varkappa_{4,i} = x_{4}\right\} \bigcap \left\{\varkappa_{1,i} = x_{1}, \varkappa_{2,i} = x_{2}, \varkappa_{3,i} = x_{3}\right\}$$
(7)

$$B_i(b_1; b_2; b_4; y_1; y_2; y_3; y_4) = \{ \eta_{1,i} = b_1, \eta_{2,i} = b_2, \eta_{4,i} = b_4, \xi_{1,i} = y_1, \xi_{2,i} = y_2, \xi_{3,i} = y_3, \xi_{4,i} = y_4 \}$$
(8)

В соответствии с описанной структурой системы, количество требований пришедших по потокам  $\Pi_1$ ,  $\Pi_2$ ,  $\Pi_4$ ,  $\Pi_1^{out}$ ,  $\Pi_2^{out}$ ,  $\Pi_3^{out}$  и  $\Pi_4^{out}$  за (i+1)-ый такт зависит лишь от состояния обслуживающего устройства и размера очередей  $O_j$ ,  $j=\overline{1,4}$ , в момент  $\tau_i$ . Поэтому условные распределения рассматриваемых в системе потоков, учитывая все «прошлое» системы можно расписать следующим образом:

$$P\left(B_{i}\left(b_{1};b_{2};b_{4};y_{1};y_{2};y_{3};y_{4}\right)\middle|\bigcap_{t=0}^{i}A_{t}\left(r_{t};x_{1,t};x_{2,t};x_{3,t};x_{4,t}\right)\right) =$$

$$=P\left(\eta_{1,i}=b_{1},\eta_{2,i}=b_{2},\eta_{4,i}=b_{4},\xi_{1,i}=y_{1},\xi_{2,i}=y_{2},\xi_{3,i}=y_{3},\xi_{4,i}=y_{4}\middle|\Gamma_{i}=\Gamma^{(r_{i})},\varkappa_{4,i}=x_{4,i}\right) =$$

$$=P\left(\eta_{1,i}=b_{1}\middle|\Gamma_{i}=\Gamma^{(r_{i})},\varkappa_{4,i}=x_{4,i}\right)\times P\left(\eta_{2,i}=b_{2}\middle|\Gamma_{i}=\Gamma^{(r_{i})},\varkappa_{4,i}=x_{4,i}\right)\times$$

$$P\left(\eta_{4,i}=b_{4}\middle|\Gamma_{i}=\Gamma^{(r_{i})},\varkappa_{4,i}=x_{4,i}\right)\times P\left(\xi_{1,i}=y_{1}\middle|\Gamma_{i}=\Gamma^{(r_{i})},\varkappa_{4,i}=x_{4,i}\right)\times$$

$$P\left(\xi_{2,i}=y_{2}\middle|\Gamma_{i}=\Gamma^{(r_{i})},\varkappa_{4,i}=x_{4,i}\right)\times P\left(\xi_{3,i}=y_{3}\middle|\Gamma_{i}=\Gamma^{(r_{i})},\varkappa_{4,i}=x_{4,i}\right)\times$$

$$P\left(\xi_{4,i}=y_{4}\middle|\Gamma_{i}=\Gamma^{(r_{i})},\varkappa_{4,i}=x_{4,i}\right)$$

$$(9)$$

В завершение построении математической модели рассматриваемой системы сформулируем и докажем следующую теорему:

**Теорема 1.2.** При заданном распределении начального вектора  $(\Gamma_0, \varkappa_{1,0}, \varkappa_{2,0}, \varkappa_{3,0}, \varkappa_{4,0})$  последовательность  $\{(\Gamma_i, \varkappa_{1,i}, \varkappa_{2,i}), \varkappa_{3,i}, \varkappa_{4,i}, i \geqslant 0\}$  является цепью Маркова.

Proof. Для доказательства достаточно показать, что

$$P\left(A_{i+1}\left(r;x_{1};x_{2};x_{3};x_{4}\right)\middle|\bigcap_{t=0}^{i}A_{t}\left(r_{t};x_{1,t};x_{2,t};x_{3,t};x_{4,t}\right)\right) = P\left(A_{i+1}\left(r;x_{1};x_{2};x_{3};x_{4}\right)\middle|A_{i}\left(r_{i};x_{1,i};x_{2,i};x_{3,i};x_{4,i}\right)\right)$$
(10)

Распишем сначала левую часть равенства (10). Учитывая то, что сумма непересекающихся событий  $B_i\left(b_1;b_2;b_4;y_1;y_2;y_3;y_4\right)$  есть достоверное событие  $\Omega,\bigcup_{b,y}B_i\left(b_1;b_2;b_4;y_1;y_2;y_3;y_4\right)=\Omega$  получим

$$P\left(A_{i+1}\left(r;x_{1};x_{2};x_{3};x_{4}\right)\middle|\bigcap_{t=0}^{i}A_{t}\left(r_{t};x_{1,t};x_{2,t};x_{3,t};x_{4,t}\right)\right) =$$

$$= \sum_{b,y} P\left(A_{i+1}\left(r;x_{1};x_{2};x_{3};x_{4}\right)\bigcap B_{i}\left(b_{1};b_{2};b_{4};y_{1};y_{2};y_{3};y_{4}\right)\middle|\bigcap_{t=0}^{i}A_{t}\left(r_{t};x_{1,t};x_{2,t};x_{3,t};x_{4,t}\right)\right) =$$

$$= \sum_{b,y} P\left(B_{i}\left(b_{1};b_{2};b_{4};y_{1};y_{2};y_{3};y_{4}\right)\middle|\bigcap_{t=0}^{i}A_{t}\left(r_{t};x_{1,t};x_{2,t};x_{3,t};x_{4,t}\right)\right) \times$$

$$\times P\left(A_{i+1}\left(r;x_{1};x_{2};x_{3};x_{4}\right)\middle|\bigcap_{t=0}^{i}A_{t}\left(r_{t};x_{1,t};x_{2,t};x_{3,t};x_{4,t}\right)\bigcap B_{i}\left(b_{1};b_{2};b_{4};y_{1};y_{2};y_{3};y_{4}\right)\right) \quad (11)$$

Беря во внимание (2), найдем второй множитель:

$$P\left(A_{i+1}\left(r;x_{1};x_{2};x_{3};x_{4}\right)\middle|\bigcap_{t=0}^{i}A_{t}\left(r_{t};x_{1,t};x_{2,t};x_{3,t};x_{4,t}\right)\bigcap B_{i}\left(b_{1};b_{2};b_{4};y_{1};y_{2};y_{3};y_{4}\right)\right)=$$

$$=P\left(\Gamma_{i+1}=\Gamma^{(r)},\varkappa_{1,i+1}=x_{1},\varkappa_{2,i+1}=x_{2},\varkappa_{3,i+1}=x_{3},\varkappa_{4,i+1}=x_{4}\middle|\bigcap_{t=0}^{i-1}A_{t}\left(r_{t};x_{1,t};x_{2,t};x_{3,t};x_{4,t}\right)\bigcap\right)$$

$$\bigcap\left\{\Gamma_{i}=\Gamma^{(r_{i})},\varkappa_{1,i}=x_{1,i},\varkappa_{2,i}=x_{2,i},\varkappa_{3,i}=x_{3,i},\varkappa_{4,i}=x_{4,i}\right\}\bigcap\right\}$$

$$\bigcap\left\{\eta_{1,i}=b_{1},\eta_{2,i}=b_{2},\eta_{4,i}=b_{4},\xi_{1,i}=y_{1},\xi_{2,i}=y_{2},\xi_{3,i}=y_{3},\xi_{4,i}=y_{4}\right\}\right)=$$

$$=P\left(h\left(\Gamma^{(r_{i})},x_{4,i}\right)=\Gamma^{(r)},\max\left\{0,x_{1,i}+b_{1}-y_{1}\right\}=x_{1},\max\left\{0,x_{2,i}+b_{2}-y_{2}\right\}=x_{2},\right\}$$

$$\max\left\{0,x_{3,i}+x_{1,i}+b_{1}+\min\left\{0,x_{1,i}-\left(x_{1,i}+b_{1}\right)\right\}-y_{3}\right\}=x_{3},\max\left\{0,x_{4,i}+b_{4}-y_{4}\right\}=x_{4},\right\}$$

$$\bigcap_{t=0}^{i-1}A_{t}\left(r_{t};x_{1,t};x_{2,t};x_{3,t};x_{4,t}\right)\bigcap\left\{\Gamma_{i}=\Gamma^{(r_{i})},\varkappa_{1,i}=x_{1,i},\varkappa_{2,i}=x_{2,i},\varkappa_{3,i}=x_{3,i},\varkappa_{4,i}=x_{4,i}\right\}\bigcap\right\}$$

$$\bigcap\left\{\eta_{1,i}=b_{1},\eta_{2,i}=b_{2},\eta_{4,i}=b_{4},\xi_{1,i}=y_{1},\xi_{2,i}=y_{2},\xi_{3,i}=y_{3},\xi_{4,i}=y_{4}\right\}\right)=$$

$$=P\left(h\left(\Gamma^{(r_{i})},x_{4,i}\right)=\Gamma^{(r)},\max\left\{0,x_{1,i}+b_{1}-y_{1}\right\}=x_{1},\max\left\{0,x_{2,i}+b_{2}-y_{2}\right\}=x_{2},\right\}$$

$$\max\left\{0,x_{3,i}+x_{1,i}+b_{1}+\min\left\{0,x_{1,i}-\left(x_{1,i}+b_{1}\right)\right\}-y_{3}\right\}=x_{3},\max\left\{0,x_{4,i}+b_{4}-y_{4}\right\}=x_{4},\right\},$$

$$\left\{0,x_{3,i}+x_{1,i}+b_{1}+\min\left\{0,x_{1,i}-\left(x_{1,i}+b_{1}\right)\right\}-y_{3}\right\}=x_{3},\max\left\{0,x_{4,i}+b_{4}-y_{4}\right\}=x_{4},\right\},$$

где последнее равенство верно, поскольку оставшаяся под знаком вероятности величина уже не является случайной. Из (9), (11) и (12) получаем выражение для левой части равенства (10):

$$P\left(A_{i+1}\left(r;x_{1};x_{2};x_{3};x_{4}\right)\middle|\bigcap_{t=0}^{i}A_{t}\left(r_{t};x_{1,t};x_{2,t};x_{3,t};x_{4,t}\right)\right) =$$

$$=\sum_{b,y}P\left(\eta_{1,i}=b_{1},\eta_{2,i}=b_{2},\eta_{4,i}=b_{4},\xi_{1,i}=y_{1},\xi_{2,i}=y_{2},\xi_{3,i}=y_{3},\xi_{4,i}=y_{4}\middle|\Gamma_{i}=\Gamma^{(r_{i})},\varkappa_{4,i}=x_{4,i}\right)\times$$

$$\times P\left(h\left(\Gamma^{(r_{i})},x_{4,i}\right)=\Gamma^{(r)},\max\left\{0,x_{1,i}+b_{1}-y_{1}\right\}=x_{1},\max\left\{0,x_{2,i}+b_{2}-y_{2}\right\}=x_{2},\right)$$

$$\max\left\{0,x_{3,i}+x_{1,i}+b_{1}+\min\left\{0,x_{1,i}-\left(x_{1,i}+b_{1}\right)\right\}-y_{3}\right\}=x_{3},\max\left\{0,x_{4,i}+b_{4}-y_{4}\right\}=x_{4},\right)$$

$$(13)$$

Заметим, что в наших рассуждениях мы нигде не использовали информацию о событиях  $\bigcap_{t=0}^{i-1} A_t \left( r_t; x_{1,t}; x_{2,t}; x_{3,t}; x_{4,t} \right)$ , поэтому рассуждения для правой части (10) будут аналогичными:

$$\begin{split} P\left(A_{i+1}\left(r;x_{1};x_{2};x_{3};x_{4}\right)\middle|A_{i}\left(r_{i};x_{1,i};x_{2,i};x_{3,i};x_{4,i}\right)\right) &=\\ &=\sum_{b,y}P\left(B_{i}\left(b_{1};b_{2};b_{4};y_{1};y_{2};y_{3};y_{4}\right)\middle|A_{i}\left(r_{i};x_{1,i};x_{2,i};x_{3,i};x_{4,i}\right)\right)\times\\ &\times P\left(A_{i+1}\left(r;x_{1};x_{2};x_{3};x_{4}\right)\middle|A_{i}\left(r_{i};x_{1,i};x_{2,i};x_{3,i};x_{4,i}\right)\bigcap B_{i}\left(b_{1};b_{2};b_{4};y_{1};y_{2};y_{3};y_{4}\right)\right) =\\ &=\sum_{b,y}P\left(\eta_{1,i}=b_{1},\eta_{2,i}=b_{2},\eta_{4,i}=b_{4},\xi_{1,i}=y_{1},\xi_{2,i}=y_{2},\xi_{3,i}=y_{3},\xi_{4,i}=y_{4}\middle|\Gamma_{i}=\Gamma^{(r_{i})},\varkappa_{4,i}=x_{4,i}\right)\times\\ &\times P\left(\Gamma_{i+1}=\Gamma^{(r)},\varkappa_{1,i+1}=x_{1},\varkappa_{2,i+1}=x_{2},\varkappa_{3,i+1}=x_{3},\varkappa_{4,i+1}=x_{4}\middle|\right.\\ &\left.\left.\left\{\Gamma_{i}=\Gamma^{(r_{i})},\varkappa_{1,i}=x_{1,i},\varkappa_{2,i}=x_{2,i},\varkappa_{3,i}=x_{3,i},\varkappa_{4,i}=x_{4,i}\right\}\bigcap\right.\right.\\ &\left.\left.\left\{\eta_{1,i}=b_{1},\eta_{2,i}=b_{2},\eta_{4,i}=b_{4},\xi_{1,i}=y_{1},\xi_{2,i}=y_{2},\xi_{3,i}=y_{3},\xi_{4,i}=y_{4}\right\}\right)=\\ \end{split}$$

откуда опять в силу (2) получаем

$$\begin{split} &= \sum_{b,y} P\left(\eta_{1,i} = b_1, \eta_{2,i} = b_2, \eta_{4,i} = b_4, \xi_{1,i} = y_1, \xi_{2,i} = y_2, \xi_{3,i} = y_3, \xi_{4,i} = y_4 \big| \, \Gamma_i = \Gamma^{(r_i)}, \varkappa_{4,i} = x_{4,i} \right) \times \\ &\qquad \times P\left(h\left(\Gamma^{(r_i)}, x_{4,i}\right) = \Gamma^{(r)}, \max\left\{0, x_{1,i} + b_1 - y_1\right\} = x_1, \max\left\{0, x_{2,i} + b_2 - y_2\right\} = x_2, \right. \\ &\qquad \qquad \left. \left\{0, x_{3,i} + x_{1,i} + b_1 + \min\left\{0, x_{1,i} - \left(x_{1,i} + b_1\right)\right\} - y_3\right\} = x_3, \max\left\{0, x_{4,i} + b_4 - y_4\right\} = x_4, \right). \end{split}$$

Таким образом, выражения для левой и правой частей (10) совпадают, следовательно равенство верно и последовательность  $\left\{ \left( \Gamma_i, \varkappa_{1,i}, \varkappa_{2,i} \right), \varkappa_{3,i}, \varkappa_{4,i}, i \geqslant 0 \right\}$  является цепью Маркова.