Assignment Project Exam Help

https://eduassistpro.github.io/

COMSC 2
Add WeChat edu_assist_pro

Outline

- Intel Microprocessors
- IA-32 Registers Assignment Project Exam Help
- Instruction Execution
- IA-32 Memory Manag

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Intel Microprocessors

- Intel introduced the 8086 microprocessor in 1979
- 8086, 8087, 8088, and 80186 processors . Assignment Project Exam Help
 - 16-bit processors with 16-bi
 - 16-bit data bus and 20-bit a https://eduassistpro.github.io/
 - Physical address space = 2²⁰ bytes = 1 MB
 - 8087 Floating-Point co-processor WeChat edu_assist_pro
 - Uses segmentation and real-address mode to address memory
 - Each segment can address 2¹⁶ bytes = 64 KB
 - 8088 is a less expensive version of 8086
 - Uses an 8-bit data bus
 - 80186 is a faster version of 8086

Intel 80286 and 80386 Processors

- 80286 was introduced in 1982

 - 24-bit address bus ⇒ 2²⁴ bytes = 16 MB address space
 Introduced protected mode

 Assignment Project Exam Help
 - Segmentation in protected mod https://eduassistpro.github.io/
- 80386 was introduced in 1
 - First 32-bit processor with 32-bilde Welchat edu_assist_pro
 - First processor to define the IA-32 architecture
 - 32-bit data bus and 32-bit address bus
 - 2^{32} bytes \Rightarrow 4 GB address space
 - Introduced paging, virtual memory, and the flat memory model
 - Segmentation can be turned off

Intel 80486 and Pentium Processors

- 80486 was introduced 1989

 - Improved version of Intel 80386
 On-chip Floating-Point unit (Dx versions)
 - On-chip unified Instruction/ https://eduassistpro.github.io/
 - Uses Pipelining: can execute up to 1 instruction
- Pentium (80586) was introduced in We Shat edu_assist_pro
 - Wider 64-bit data bus, but address bus is still 32 bits
 - Two execution pipelines: U-pipe and V-pipe
 - Superscalar performance: can execute 2 instructions per clock cycle
 - Separate 8 KB instruction and 8 KB data caches
 - MMX instructions (later models) for multimedia applications

Intel P6 Processor Family

- P6 Processor Family: Pentium Pro, Pentium II and III
- Pentium Pro was introduced in 1995
 Assignment Project Exam Help
 Three-way superscalar: can execute 3 instructions per clock cycle

 - 36-bit address bus ⇒ up thttps://eduassistpro.giffate.io/
 - Introduced dynamic execution
 - Out-of-order and speculative excluder WeChat edu assist pro
 - Integrates a 256 KB second level L2 cache on-chip
- Pentium II was introduced in 1997
 - Added MMX instructions (already introduced on Pentium MMX)
- Pentium III was introduced in 1999
 - Added SSE instructions and eight new 128-bit XMM registers

Pentium 4 and Xeon Family

- Pentium 4 is a seventh-generation x86 architecture
 - Introduced in 2000
 - · New micra-assigned lied intelligence
 - Very deep inst
 ery high frequencies
 - Introduced the https://eduassistpro.github.io/sion to \$\$E)
 - Tuned for multimedia and operating edu_assis M_registers
- In 2002, Intel introduced Hyper-Threading technology
 - Allowed 2 programs to run simultaneously, sharing resources
- Xeon is Intel's name for its server-class microprocessors
 - Xeon chips generally have more cache
 - Support larger multiprocessor configurations

Pentium-M and EM64T

- Pentium M (Mobile) was introduced in 2003
 - Designed for low-power laptop computers
 - Modified version of Pentassignmenta Porgiocet Efficiency Help
 - Large second-level cache (2 M
 - Runs at lower clock than Penti https://eduassistpro.github.io/
- Extended Memory 64-bit Technologw EM64T edu_assist_pro
 - Introduced in 2004
 - 64-bit superset of the IA-32 processor architecture
 - 64-bit general-purpose registers and integer support
 - Number of general-purpose registers increased from 8 to 16
 - 64-bit pointers and flat virtual address space
 - Large physical address space: up to 2⁴⁰ = 1 Terabytes

Intel Core Microarchitecture

- 64-bit cores
- Wide dynamic execution (execute four instructions simultaneously)
- Intelligent power capa
- https://eduassistpro.github.io/
 een cores)
- Smart memory access (memory disa edu_assist, pro
- Advanced digital media boost

See the demo at

http://www.intel.com/technology/architecture/coremicro/demo/dem o.htm?iid=tech core+demo

CISC and RISC

- CISC Complex Instruction Set Computer
 - Large and complex instruction set

 - Variable width instructions.
 Assignment Project Exam Help
 Requires microcode interpreter
 - Each instruc https://eduassistpro.github.io/
 - Example: Intel
- RISC Reduced Add Welchat edu_assiste pro
 - Small and simple instruction set
 - All instructions have the same width
 - Simpler instruction formats and addressing modes
 - Decoded and executed directly by hardware
 - Examples: ARM, MIPS, PowerPC, SPARC, etc.

Next ...

- Intel Microprocessors
- IA-32 Registers Assignment Project Exam Help
- Instruction Execution
- IA-32 Memory Manag

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Basic Program Execution Registers

- Registers are high speed memory inside the CPU
 - Eight 32-bit general-purpose registers
 - Six 16-bit segment registers ent Project Exam Help
 - Processor Status Flags
 Pointer (EIP)

General-Purpose Registers

- Used primarily for arithmetic and data movement
 - move constant 10 into register eax • mov eax, 10
- Specialized uses of Registers and Project Exam Help

 - EAX Accumulator register
 Automatically used by multiplic
 https://eduassistpro.github.io/
 - ECX Counter register
 - Automatically used by LOOP instructions WeChat edu_assist_pro
 - ESP Stack Pointer register
 - Used by PUSH and POP instructions, points to top of stack
 - ESI and EDI Source Index and Destination Index register
 - Used by string instructions
 - EBP Base Pointer register
 - Used to reference parameters and local variables on the stack

Accessing Parts of Registers

- EAX, EBX, ECX, and EDX are 32-bit Extended registers
 - Programmers can access their 16-bit and 8-bit parts
 - Lower 16-bit of EAX is named AX

32-bit	16-bit	8-bit (high)	8-bit (low)	
EAX	X AX AH		AL	
EBX	BX	ВН	BL	
ECX	CX	СН	CL	
EDX	DX	DH	DL	

32-bit	16-bit		
ESI	SI		
EDI	DI		
EBP	BP		
ESP	SP		

Accessing Parts of Registers

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Special-Purpose & Segment Registers

- EIP = Extended Instruction Pointer
 - Contains address of next instruction to be executed
- EFLAGS = Extended Flags Register
 - Contains Atalianment Project Exam Help
 - Each flag is a https://eduassistpro.github.io/
- Six 16-bit Segment Registers

 Add WeChat edu_assist_pro

 Support segmented memory
 - Six segments accessible at a time
 - Segments contain distinct contents
 - Code
 - Data
 - Stack

EFLAGS Register

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

- Status Flags
 - Status of arithmetic and logical operations
- Control and System flags
 - Control the CPU operation
- Programs can set and clear individual bits in the EFLAGS register

Status Flags

- Carry Flag
 - Set when unsigned arithmetic result is out of range
- Overflow Flag
 - Set when signed arithmetic result is out of range Assignment Project Exam Help
- Sign Flag
 - Copy of sign bihttps://eduassistpro.github.io/
- Zero Flag
 - Set when result is zero

 Add WeChat edu_assist_pro
- Auxiliary Carry Flag
 - Set when there is a carry from bit 3 to bit 4
- Parity Flag
 - Set when parity is even
 - Least-significant byte in result contains even number of 1s

Floating-Point, MMX, XMM Registers

- Floating-point unit performs high speed FP operations
- Eight 80-bit floating-point data registers

Used with SSE instructions

Next ...

- Intel Microprocessors
- IA-32 Registers Assignment Project Exam Help
- Instruction Execution
- IA-32 Memory Manag

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Fetch-Execute Cycle

 Each machine language instruction is first fetched from the memory and stored in an Instruction Register (IR).
Assignment Project Exam Help
• The address of the inst
is stored

- is stored in a register called **Program Count** https://eduassistpro.githabrig/uters this register is called the Instruction Pointer or I
 Add WeChat edu_assist_pro

 • After the instruction is fetched, the incre
- incremented to point to the address of the next instruction.
- The fetched instruction is decoded (to determine what needs to be done) and executed by the CPU.

Instruction Execute Cycle

Instruction Execution Cycle - cont'd

Pipelined Execution

- Instruction execution can be divided into stages
- Pipelining makes it possible to start an instruction before completing the execution of previous one

Wasted Cycles (pipelined)

• When one of the stages requires two or more clock cycles to complete, clock cycles are again wasted

Assume that Assaignment Project Exam Helptages execute stage

• Assume also that https://eduassistproclock cycles to complete Add WeChat edu a

As more instructions enter the pipeline, wasted cycles occur

 For k stages, where one stage requires 2 cycles, n instructions require k + 2n - 1 cycles

		_						
				-1				
l	t ec	u	ass	ist	pro			
	Φ			-3	l-2	I-1		
	Cycle	5			I-3	I-1		
	Ó	6				I - 2	I-1	
		7				I-2		l-1
		8				1- 3	I-2	
		9				I-3		I-2
		10					I-3	
		11				·		I-3

S6

Superscalar Architecture

- A superscalar processor has multiple execution pipelines
- The Pentium processor has two execution pipelines
 - Called U and V pipes
- In the following, stage
 Stages
 S4 has 2 pipeli https://eduassistpro.github.io/s4-
 - Each pipeline still requires 2 cycled WeCha
 - Second pipeline eliminates wasted cycles
 - For k stages and n instructions, number of cycles = k + n

				S3	u	V	S5	S6
at e	edu	as	SSIS	tp	ro			
	3	I-3	I-2	l-1				
Cycles	4	I-4	I-3	I-2	I-1			
ycl	5		I-4	I-3	l-1	I-2		
O	6			I-4	I-3	I-2	I-1	
	7				I-3	I-4	I-2	l-1
	8					I-4	I-3	I-2
	9						I-4	I-3
	10							I-4

Next ...

- Intel Microprocessors
- IA-32 Registers Assignment Project Exam Help
- Instruction Execution
- IA-32 Memory Manag

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Modes of Operation

- Real-Address mode (original mode provided by 8086)
 - Only 1 MB of memory can be addressed, from 0 to FFFFF (hex)
 - Programs can access any part of main memory
 - MS-DOS runsing named dreso jede Exam Help
- Protected mode
 - Each program c https://eduassistpro.github.io/ GB of memory
 - The operating system with the cou_assist rpmoing program
 - Programs are prevented from accessing each other's memory
 - Native mode used by Windows NT, 2000, XP, and Linux
- Virtual 8086 mode
 - Processor runs in protected mode, and creates a virtual 8086 machine with 1 MB of address space for each running program

Memory Segmentation

- Memory segmentation is necessary since the 20-bits memory addresses cannot fit in the 16-bits CPU registers
- Since x86 registers are 16-**Aitssyglameneth Phycicarte It xiamade of p**¹⁶ consecutive bytes (i.e. 64K bytes)
- Each segment has a number idehttps://eduassistpro.githube.io/e have segments numbered from 0 to 64K)
- A memory location within a memory segment has an offset of 0 while the last one has an offset of FFFFh
- To reference a memory location its logical address has to be specified. The logical address is written as:
 - Segment number:offset
- For example, A43F:3487h means offset 3487h within segment A43Fh.

Program Segments

- Machine language programs usually have 3 different parts stored in different memory segments:
 - Instructions: This is the code part and is stored in the code segment
 - Data: This is the data part which is manipulated by the today of the data segment
 - Stack: The stack is a special m -First-Out (LIFO) structure used by the CPU to implement procedure structure is stored in the stack https://eduassistpro.github.io/
- The segment numbers for the code segment, the dedu_assist_pro
- Program segments do not need to occupy the whole 64K locations in a segment

Real Address Mode

- A program can access up to six segments at any time
 - Code segment
 - Stack segaggment Project Exam Help
 - Data segment
 - Extra segmen https://eduassistpro.github.io/
- Each segment is Add We Chat edu_assist_pro
- Logical address
 - Segment = 16 bits
 - Offset = 16 bits
- Linear (physical) address = 20 bits

Logical to Linear Address Translation

```
Linear address = Segment × 10 (hex) + Offset
```

Example:

```
Assignment Project Exam Help segment = A1F0 (he

offset = 04C0 (hex) https://eduassistpro.github.io/

logical address = A1F0:04G0 (hex) Add WeChat edu_assist_pro
what is the linear address?
```

Solution:

```
A1F00 (add 0 to segment in hex)
+ 04C0 (offset in hex)
A23C0 (20-bit linear address in hex)
```

Segment Overlap

- There is a lot of overlapping between segments in the main memory.
- A new segrassity starts terriject Exam Help 10h locations (locations). https://eduassistpro.github.io/
- Starting address of always has a 0h LSD.
- Due to segments overlapping logical addresses are not unique.

Your turn . . .

What linear address corresponds to logical address 028F:0030?

Solution near the top leave th

Always us https://eduassistpro.githdeb.es

What logical address der Wespehat edu_assistations 28F30h?

Many different segment:offset (logical) addresses can produce the same linear address 28F30h. Examples:

28F3:0000, 28F2:0010, 28F0:0030, 28B0:0430, . . .

Flat Memory Model

- Modern operating systems turn segmentation off
- Each program uses one 32-bit linear address space Assignment Project Exam Help
 - Up to 2³² = 4 GB of memory
 - Segment registers are definhttps://eduassistpro.github.io/
 - All segments are mapped to the same linear a Add WeChat edu_assist_pro
- In assembly language, we use .MODEL flat
 - To indicate the Flat memory model
- A linear address is also called a virtual address
 - Operating system maps virtual address onto physical addresses
 - Using a technique called paging

Programmer View of Flat Memory

- Same base address for all segments
 - All segments are mapped to the same linear address space
- EIP Register Assignment Project Exam Help
 - Points at next i
- ESI and EDI Reg https://eduassistpro.github.io/
 - Contain data address eChat edu_assist_pro
 - Used also to index arrays
- ESP and EBP Registers
 - ESP points at top of stack
 - EBP is used to address parameters and variables on the stack

Linear address space of a program (up to 4 GB)

32-bit address

Protected Mode Architecture

- Logical address consists of
 - 16-bit segment selector (CS, SS, DS, ES, FS, GS)
 - 32-bit offset (EIP, ESP, EBP, ESI ,EDI, EAX, EBX, ECX, EDX)
- Segment uAisstiganslatte Phogical Taxdane Help linear address
 - Using a segm https://eduassistpro.github.io/
 - Linear addressista 2 wits (falt edu_assista paddress)
- Paging unit translates linear address to physical address

Logical to Linear Address Translation

Upper 13 bits of segment selector are used to index the descriptor table

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

TI = Table Indicator

Select the descriptor table

0 = Global Descriptor Table

1 = Local Descriptor Table

Segment Descriptor Tables

- Global descriptor table (GDT)

 - Only one GDT table is provided by the operating system
 GDT table contains segment descriptors for all programs
 - Also used by the operating s https://eduassistpro.github.io/
 - Table is initialized during bo
 - GDT table address is stored in Abback Wie Const edu_assist_pro
 - Modern operating systems (Windows-XP) use one GDT table
- Local descriptor table (LDT)
 - Another choice is to have a unique LDT table for each program
 - LDT table contains segment descriptors for only one program
 - LDT table address is stored in the LDTR register

Segment Descriptor Details

Base Address

- 32-bit number that defines the starting location of the segment
- 32-bit Base Address Assignment Project Franklesp

Segment Limit

https://eduassistpro.github.io/

- 20-bit number that specifies the size of th
- The size is specified eithe Aid by Weschatt edu_assistage to
- Using 4 KB pages, segment size can range from 4 KB to 4 GB

Access Rights

- Whether the segment contains code or data
- Whether the data can be read-only or read & written
- Privilege level of the segment to protect its access

Segment Visible and Invisible Parts

- Visible part = 16-bit Segment Register
 - CS, SS, DS, ES, FS, and GS are visible to the programmer
- Invisible Part = Segment Descriptor (64 bits)
 - Automatiaskygoarded friend the tolescaript bit the le

https://eduassistpro.github.io/

Paging

- Paging divides the linear address space into ...
 - Fixed-sized blocks called pages, Intel IA-32 uses 4 KB pages
- Operating system allocates main memory for pages
 - Pages can per spreaded to the Page
 - Pages in main erent programs
 - If main memo https://eduassistpro.gittouto.ito/e hard disk
- OS has a Virtual Memory Mat edu_assist pro
 - Uses page tables to map the p running program
 - Manages the loading and unloading of pages
- As a program is running, CPU does address translation
- Page fault: issued by CPU when page is not in memory

Paging - cont'd

The operating system uses page tables to map the pages in the linear virtual address space onto main memory

Main Memory linear viewal address Page m Page n linear virtual address space of program 1 space of Program 2 ennent Project Exam Help Page 2 Page 1 Page 0 tps://eduassistpro.github/

Each running program has its own page table

Pages that cannot fit in main memory are stored on the hard disk

Add WeChat edu_assist peoperating system swaps pages between memory and the hard disk

As a program is running, the processor translates the linear virtual addresses onto real memory (called also physical) addresses

Components of an IA-32 Microcomputer

Assignment Project Exam Help

- https://eduassistpro.github.io/
- Video output Add WeChat edu_assist_pro
- Memory
- Input-output ports

Motherboard

- CPU socket
- External cache memory slots Project Exam Help
- Main memory slots
- BIOS chips

- https://eduassistpro.github.io/
- Sound synthesizer chip (options) hat edu_assist_pro
- Video controller chip (optional)
- IDE, parallel, serial, USB, video, keyboard, joystick, network, and mouse connectors
- PCI bus connectors (expansion cards)

Intel D850MD Motherboard

Intel 965 Express Chipset

Assignment Project Exam Help

https://eduassistpro.github.io/

Video Output

- Video controller
 - on motherboard, or on expansion card
 - AGP (accelerated graphics port technology)*
- Video mesignyn (MRIAPI) ject Exam Help
- Video CRT
 uses rast
 https://eduassistpro.github.io/

 - horizontal reltdat edu_assist_pro
 - vertical retrace
- Direct digital LCD monitors
 - no raster scanning required

^{*} This link may change over time.

Sample Video Controller (ATI Corp.)

Assignment Project Exam Help

https://eduassistpro.github.io/

Memory

- ROM
 - read-only memory
- EPROM
 - erasable poignmente Peroje of Exam Help
- Dynamic RAM (DR
 - inexpensive; https://eduassistpro.github.io/
- Static RAM (SRAM)
 - expensive; used decame Chat edu_assistrepro
- Video RAM (VRAM)
 - dual ported; optimized for constant video refresh
- CMOS RAM
 - complimentary metal-oxide semiconductor
 - system setup information
- See: <u>Intel platform memory</u> (Intel technology brief: link address may change)

Input-Output Ports

- USB (universal serial bus)
 - intelligent high-speed connection to devices
 - up to 12 megabits/second
 - · USA builgenneact Projetial Edenine Flelp
 - enumerevices
 - suppor https://eduassistpro.github.io/
- Parallel Add WeChat edu_assist_pro
 - short cable, high speed
 - common for printers
 - bidirectional, parallel data transfer
 - Intel 8255 controller chip

Input-Output Ports (cont)

- Serial
 - RS-232 serial port
 - one bit at a time
 - uses long eables and moderns Help
 - 16550 U https://eduassistpro.glthub.io/
 - programmade Westant edu_assist_pro

Next..

- General Concepts
- IA-32 Processor Architecture
- · Assignment Project Exam Help
- Com mputer
 Input https://eduassistpro.github.io/

Levels of Input-Output

- Level 3: High-level language function
 - examples: C++, Java
 - portable, convenient, Assignment Project Exam Help
- Level 2: Operating syst https://eduassistpro.github.io/
 - Application Programming Interface (API)
 - extended capabilities, lots of child child contact edu_assist_pro
- Level 1: BIOS
 - drivers that communicate directly with devices
 - OS security may prevent application-level code from working at this level

Displaying a String of Characters

Programming levels

Assembly language programs can perform input-output at each of the following levels:

Assignment Project Exam Help

https://eduassistpro.github.io/

Summary

- Central Processing Unit (CPU)
- Arithmetic Logic Unit (ALU)
- Instruction execution cycle Assignment Project Exam Help
- Multitasking

https://eduassistpro.github.io/

Floating Point Unit (FPU)

- Complex Instruction Set
- Real mode and Protected mode
- Motherboard components
- Memory types
- Input/Output and access levels