Reading: Schrijver, Chapter 41

Matroid Intersection Algorithm

Claim: (Edmonds, 1970) For matroids M_1, M_2 on S,

$$\max_{J \in \mathcal{I}_1 \cap \mathcal{I}_2} \{ |J| \} = \min_{A \subseteq S} \{ r_1(A) + r_2(\overline{A}) \}.$$

Strong exchange

Idea: Augmenting paths in graphs

Claim: Strong exchange property: For any B, B' bases, $\forall x \in B \setminus B', \exists y \in B' \setminus B$ such that B - x + y and B' - y + x are bases.

Def: Span of A is $\{e \in S | r(A + e) = r(A)\}$. Claim:

- 1. If $A \subseteq B$, then $\operatorname{span}(A) \subseteq \operatorname{span}(B)$.
- 2. If $e \in \text{span}(A)$, then span(A + e) = span(A).

Proof: By submodularity of r:

$$r(X \cup Y) + r(X \cap Y) \le r(X) + r(Y)$$

1. Suppose $e \in \text{span}(A)$ and let X = A + e, Y = B. Then,

$$r(A+e)+r(B) \ge$$

$$r((A+e) \cap B) + r(B+e) \ge$$
$$r(A) + r(B+e)$$

and r(A) = r(A + e) so $r(B) \ge r(B + e)$. Equality by monotonicity, so $e \in \operatorname{span}(B)$.

- 2. $\operatorname{span}(A) \subseteq \operatorname{span}(A+e)$ follows from 1. Other direction:
 - Suppose $e \in \text{span}(A)$ and $f \in \text{span}(A+e)$.
 - Let x = A + e and Y = A + f.
 - Submodularity: r(A+e) + r(A+e) $f) \ge r(A+e+f) + r((A+e) \cap (A+e))$ $f) \ge r(A+e+f) + r(A)$.
 - r(A) = r(A + e) and monotonicity imply r(A + f) = r(A + e + f).
 - $f \in \operatorname{span}(A+e)$ so r(A+e+f) = r(A+e).
 - $e \in \operatorname{span}(A)$ so r(A+e) = r(A)
 - thus r(A + f) = r(A) so $f \in \text{span}(A)$.

Claim: (corollary): span(span(A)) = span(A)

Proof: (of strong basis exchange)

- suppose $x \in B \setminus B'$
- B' basis so B' + x contains unique* circuit C
- C must contain x (subsets of B' indep) so $x \in \operatorname{span}(C-x)$ so $x \in \operatorname{span}((B \cup C)-x)$.

- by claim, $\operatorname{span}((B \cup C) x) = \operatorname{span}(B \cup C) = S$ (since B basis)
- hence $B \cup C x$ contains a basis B''
- B x and B'' both indep and |B''| > |B x| so $\exists y \in B'' \setminus (B x)$ such that (B x) + y indep and a basis.
- and can pick y in C x: $B'' \setminus (B x) \subseteq ((B \cup C) x) \setminus (B x) \subseteq C x$
- C unique circuit of B' + x and $x, y \in C$ so (B' y) + x basis (contains no circuit since C unique)

Claim: If I indep and I + x dependent, then I + x contains a *unique* circuit.

Proof: Suppose two circuits C_1 and C_2 . Then $C_1 \cup C_2 - x$ contains a circuit:

- Suppose $C_1 \cup C_2 x$ indep
- Take $y \in C_1 \setminus C_2$
- Note $C_1 y$ indep since C_1 circuit
- Extend to max indep set in $C_1 \cup C_2$, say Z
- Note Z doesn't contain C_2 (else C_2 indep) and doesn't contain y
- Hence $|Z| < |C_1 \cup C_2 x|$ contradicting Z max indep set in $C_1 \cup C_2$.

Exchange graphs

Def: Exchange graph $\mathcal{D}(I)$ of M w.r.t. indep set I is bipartite graph with

• vertices $I, S \setminus I$

• edges (x, y) if I - x + y indep

Claim: Let I and J be two indep sets with |I| = |J|. Then there's a perfect matching between $I \setminus J$ and $J \setminus I$ in $\mathcal{D}(I)$.

Proof:

- Consider truncated matroid $M' = (S, \{I' \in \mathcal{I} : |I'| \le |I|).$
- Then I and J are bases in M'.
- Take $y \in J \setminus I$ and $x \in I \setminus J$ s.t. I x + y and J y + x bases in M'(x, y) exist by strong basis exchange).
- Hence indep in M so (x, y) edge in $\mathcal{D}(I)$, add to matching
- replace I, J with I, J y + x and induct (as $I \setminus (J y + x)$ has one less elt than $I \setminus J$

]]

[[Converse not true (why?), but...

Claim: Let J be s.t. |J| = |I| and $\mathcal{D}(I)$ has a *unique* perfect matching between $I \setminus J$ and $J \setminus I$. Then $J \in \mathcal{I}$.

Proof:

- \bullet Let N be unique matching
- Orient edges in N from $S \setminus I$ to I, rest from I to $S \setminus I$
- By uniqueness, no directed cycles
- Number vertices in topological sort of DAG $\mathcal{D}(I)$ s.t. $N = \{(y_1, x_1), \dots, (y_t, x_t)\}$ and (x_i, y_j) never an edge for i > j
- Suppose J has a circuit C (for contradiction)
- Take largest i s.t. $y_i \in C$ (must exist one elt of C in $J \setminus I$ since $C \subseteq J$ and I indep)
- By choice of largest i, we have (x_i, y_j) not an arc for $y_j \in C y_i$
- So $y_j \in \int_{\sqrt{}} \exists \backslash (I x_i)$
- For all $z \in C y_i$ either $z \in I \cap J$ or $= y_j \in J I$ for some j, so $C y_i \subseteq \text{span}(I x_i)$
- But C a circuit, so $y_i \in \text{span}(C y_i) \subseteq \text{span}(\text{span}(I x_i)) = \text{span}(I x_i)$ condradicting that $I x_i + y_i \in \mathcal{I}$

Intersection exchange graph

 $\begin{bmatrix} Overlay \ two \ copies \ of \ previous \ graph, \ direct \ M_1 \ edges \ left-to-right \ and \ M_2 \ edges \\ right-to-left. \end{bmatrix}$

Def: For $I \in \mathcal{I}_1 \cap \mathcal{I}_2$, the exchange graph $\mathcal{D}_{M_1,M_2}(I) = (I, S \setminus I, E)$ with (y, x) an arc if $I-y+x \in \mathcal{I}_1$ and (x, y) an arc if $I-y+x \in \mathcal{I}_2$.

Let

- $\bullet \ X_1 = \{ x \not\in I | I + x \in \mathcal{I}_1 \}$
- $\bullet \ X_2 = \{ x \not\in I | I + x \in \mathcal{I}_2 \}$

Algorithm:

- 1. Find augmenting path P from X_1 to X_2 with no shortcuts. [If $X_1 \cap X_2 \neq \emptyset$, use singleton path.
- 2. Replace I with $I\Delta P$
- 3. If no path , set $U = \{z \in S | z \text{ can reach some vertex in } X_2\}$

Claim: Correctness:

- 1. When we stop, sets I and U give equality in min/max formula.
- 2. At each stage, $I\Delta P \in \mathcal{I}_1 \cap \mathcal{I}_2$.

Proof: (of 1): We show $r_1(U) = |I \cap U|$ (by similar proof $r_2(S \setminus U) = |I \setminus U|$).

- Note $X_2 \subseteq U$, $X_1 \cap U = \emptyset$, and U has no incoming arcs.
- If $r_1(U) \neq |I \cap U|$ then $r_1(U) > |I \cap U|$ (rank function monotone).
- Then $\exists x \in U \setminus (I \cap U)$ s.t. $(I \cap U) + x \in \mathcal{I}_1$.
- Note $I + x \notin \mathcal{I}_1$ since $X_1 \cap U = \emptyset$.
- Thus unique circuit in I + x so $\exists y \in I \setminus U$ s.t. $I y + x \in \mathcal{I}_1$ (killed only circuit in I + x).
- Then (y, x) arc in $\mathcal{D}_{M_1, M_2}(I)$ contradicting U has no incoming arcs.

Proof: (of 2): We show indep in M_1 (other similar).

- Let $P = x_0, y_1, x_1, \dots, y_t, x_t$ be shortest path.
- Add new elt t to I indep of everything (in new matroids).

- Let $J = \{x_1, \dots, x_t\} \cup (I \setminus \{y_1, \dots, y_t\}.$
- Then $J \cup \{x_0\} \subseteq S \cup \{t\}$, $|J \cup \{x_0\}| = |I \cup \{t\}|$, and arcs from $\{y_1, \ldots, y_t\}$ to $\{x_1, \ldots, x_t\}$ plus arc from t to x_0 form unique perfect matching from $I \cup \{t\} \setminus J \cup \{x_0\}$ to $J \cup \{x_0\} \setminus I \cup \{t\}$ (since P has no shortcuts so y_1 has no other match, draw picture).
- Therefore $J \cup \{x_0\}$ indep in extended matroid so also in M_1 .