

## ADVANCED CALCULUS

 $\mathcal{X}$ . Show that if f(x) is continuous for  $0 \le x \le 1$ , then

$$\lim_{n \to \infty} \frac{1}{n} \left[ f(\frac{1}{n}) + f(\frac{2}{n}) + \dots + f(\frac{n-1}{n}) + f(\frac{n}{n}) \right] = \int_0^1 f(x) \, dx.$$

lience, show that

$$\lim_{n \to \infty} \frac{1^2 + 2^2 + \dots + n^2}{n^3} = \frac{1}{3}$$

2. Find the length of the circumference of a circle

- (a) using the parametric representation  $x = a \cos \vartheta$ ,  $y = a \sin \vartheta$ .
- (b) using the parametric representation  $x = \frac{a(1-t^2)}{1+t^2}$ ,  $y = \frac{2nt}{1+t^2}$
- 3. Evaluate  $\partial F/\partial n$  at a general point (x, y, z) on the surface S, where  $\vec{n}$  is the outer normal to S, if:

(a) 
$$F = x^2 - y^2$$
 and  $S: x^2 + y^2 + z^2 = 4$   
(b)  $F = xyz$  and  $S: x^2 + 2y^2 + 4z^2 = 8$ 

4. Evaluate the following contour integrals (where f and g are arbitrary smooth functions, and where closed contours are traversed in the usual counterclockwise sense):

$$(x^2 + y^3) = (x^2 + y^3) + (x^2 + y^3) + (x^2 + y^3) = (x^2 + y^3) + (x^2 + y^3) +$$

 $\oint_{\mathcal{C}} f(x) dx + g(y) dy; \quad C: \text{ any smooth simple closed curve}$ 

 $\oint_C \frac{-y \, dx + x \, dy}{x^2 + y^2}; \quad C: \text{ any smooth simple closed curve not enclosing the origin}$ 

(heck  $\frac{-y\,dx+x\,dy}{x^2+y^2}$ ; C: any smooth simple closed curve enclosing the origin

