Queuing in a Packet Switch Assignment-3

Introduction

Objective

Understand - working of an input queue, an output queue and ISLIP protocol

INQ - Packets are queued at the InputPort

KOUQ - If Number of Packets is less than K, then Packets Queued at OutputPort. If more than K packets arrive in particular output port, select randomly K packets and remaining packets are dropped

iSLIP - Has three steps in Each iteration Request, Grant and Accept

INQ Algorithm

- Generate the Packet for Ports
- Packet Scheduling Calculate the delay at Input Port
- Transfer the Packets
- Pseudo code

KOUQ

- Generate the Packet for Ports
- Packet Scheduling
- Transfer the Packet Calculate the Delay at Output Port
- Pseudo code

PIM

- Parallel Iterative Matching
- developed by DEC Systems Research Center

PIM has three phases in each iteration

- 1. Request Phase All input ports send request to output ports in parallel
- 2. Grant Phase Each output port Randomly grants to one of the requests that it received
- 3. Accept Phase Each input port Randomly accept one of the Grants that it is received

Example - First Iteration

Example - Second Iteration

iSLIP

Variation of PIM

Request Phase: Same as PIM

Grant Phase:

- PIM grants randomly to one of the requesting inputs.
- iSLIP grants in Round-Robin order to the first requesting input after the previously marked input

Accept Phase:

- PIM accepts randomly one of the granting outputs.
- iSLIP accepts, in Round-Robin order

Example - iSLIP

Input to the Program

\$ routing -N switchportcount -B buffersize -p packetgenprob -queue INQ | KOUQ | ISLIP -K knockout -out outputfile -T maxtimeslots

Option	Description	Default Value		
N	N number of Input and Output Port			
В	Size fo the Buffer	4		
p	probability that an input port will generate a packet in a given slot;	0.5		
queue	Algorithm – INQ or KOUQ or iSLIP	INQ		
K	Max K packets are queued per Output Port	0.6		
outputfile	File name to store the output	5 - 2		
T	Max simulation time			

 $Knockout = K \times N$

Program - Output

N P	Qtype	AvgPD	Std. Dev of PD	Avg LU
-----	-------	-------	----------------	--------

N - Number of Input and Output Port

P - Packet Generation Probability

Qtype - INQ or KOUQ or ISLIP

AvgPD - Average packet delay

AvgPktDelay=(TotalDelay*1.0)/(PacketTransmitted*1.0)

Std. Dev of PD - Standard Deviation of Packet Delay
StdDevPacketDelay=AvgPktDelay/sqrt(PacketTransmitted*1.0)

Avg LU - Average Link Utilization
AvgLinkUtilization=(PacketTransmitted*1.0)/((maxtimeslots*1.0)*(NumberofPorts*1.0))

A technical Report - Refer to Technical Report Requirements.

Thank you