МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Факультет математики и компьютерных наук

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Прикладной функциональный анализ и интегральные уравнения

Кафедра дифференциальных уравнений и функционального анализа факультета математики и компьютерных наук

Образовательная программа

01.04.02 - Прикладная математика и информатика

Профиль подготовки

Математическое моделирование и вычислительная математика

Уровень высшего образования **магистратура**

Форма обучения очная

Статус дисциплины: вариативная

Махачкала, 2018

Рабочая программа дисциплины «**Прикладной функциональный анализ и интегральные уравнения**» составлена в 2018 году в соответствии с требованиями ФГОС ВО по направлению

подготовки <u>01.04.02 Прикладная математика и информатика (уровень магистриатуры)</u> от 28 августа 2015 г. № 911

Разработчик: <u>кафедра дифференциальных уравнений и функционального анализа</u>, Меджидов З. Г., к. ф.-м.н., доцент

Рабочая программа дисциплины одобрена: на заседании кафедры <u>ДУ и ФА</u> от 31.05.2018 г., протокол № 10.

на заседании Методической комиссии факультета <u>М и КН</u> от 27.06.2018 г., протокол № 6.

Председатель (подпись) Бейбалаев В.Д.

Рабочая программа дисциплины согласована с учебно-методическим управлением

«<u>29</u>» <u>июня</u> 2018 г. ______ Гасангаджиева А.Г.

Содержание

' ' L
Аннотация рабочей программы дисциплины
1. Цели освоения дисциплины5
2. Место дисциплины в структуре ООП магистратуры5
3. Компетенции обучающегося, формируемые в результате освоения дисциплины (перечень планируемых результатов обучения)
4. Объем, структура и содержание дисциплины
5. Образовательные технологии9
6. Учебно-методическое обеспечение самостоятельной работы студентов10
7. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины
8. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины
9. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины19
10. Методические указания для обучающихся по освоению дисциплины. 20
11. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем
12. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Аннотация рабочей программы дисциплины

Дисциплина «Прикладной функциональный анализ и интегральные уравнения» входит в вариативную часть образовательной программы магистратуры по направлению 01.04.02 - Прикладная математика и информатика.

Дисциплина реализуется на факультете математики и компьютерных наук кафедрой дифференциальных уравнений и функционального анализа.

Содержание дисциплины охватывает круг вопросов, связанных с теорией ограниченных и неограниченных операторов в нормированных пространствах. Изучаемый материал применяется в задачах математической физики, в теории интегральных уравнений, в общей теории приближенных методов и т.д. Дисциплина «Прикладной функциональный анализ и интегральные уравнения» необходимо изучать для овладения общими методами решения операторных уравнений и применения их при решении конкретных задач.

Дисциплина нацелена на формирование следующих компетенций выпускника: профессиональных – ОПК-4, ПК-1.

Преподавание дисциплины предусматривает проведение следующих видов учебных занятий: лекции, практические занятия и самостоятельная работа.

Рабочая программа дисциплины предусматривает проведение следующих видов контроля успеваемости: в форме *контрольных работ и коллоквиумов*, промежуточный контроль в форме *зачета*.

Объем дисциплины 2 зачетные единицы, в том числе в академических часах по видам учебных занятий:

		Форма						
		в том числе						промежу-
		Контактная работа обучающихся с препо-						точной ат-
Ce-					тестации			
местр	Bce		из них					(зачет,
мсстр	ГО	Лек	Лабора-	Практи-	КСР	кон-	CPC	дифферен-
		ции	торные	ческие		сульта-		цирован-
			занятия	занятия		ции		ный зачет,
							экзамен)	
9	72	6		26			40	Зачет

1. Цели освоения дисциплины

Целями освоения дисциплины «Прикладной функциональный анализ и интегральные уравнения» являются:

освоение основных понятий и методов функционального анализа; формирование у обучаемых математических знаний для успешного овладения общенаучными и общеинженерными дисциплинами на необходимом научном уровне; освоение основных навыков приближенного решения функциональных и интегральных уравнений.

2. Место дисциплины в структуре ООП магистратуры

Дисциплина «Прикладной функциональный анализ и интегральные уравнения» входит в базовую часть образовательной программы магистратуры по направлению 01.04.02 - Прикладная математика и информатика.

Дисциплина относится к числу прикладных математических дисциплин и связана с приложениями методов функционального анализа к ряду важных разделов общей теории приближенных методов. Изучение данной дисциплины базируется на знаниях студентами общих курсов линейной алгебры, математического анализа, теории дифференциальных уравнений и уравнений с частными производными.

Для освоения дисциплины обучающиеся должны владеть следующими знаниями: знание курса «Математический анализ» в полном объеме; знание курса «Линейная алгебра и геометрия» в части, касающейся теории линейных пространств и линейных операторов; знание курсов «Дифференциальные уравнения» и «Уравнения в частных производных» в части, касающейся граничных и краевых задач.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины (перечень планируемых результатов обучения)

Компе-	Формулировка компе-	Планируемые результаты обучения (по-
тенции	тенции из ФГОС ВО	казатели достижения заданного уровня
		освоения компетенций)
ОПК-4	Способность использо-	Знает: основные понятия и теоремы
	вать и применять углуб-	общей теории приближенных методов
	ленные знания в области	для линейных уравнений в банаховых и
	прикладной математики	гильбертовых пространствах.
	и информатики	Умеет применять полученные знания
		при исследовании конкретных диффе-
		ренциальных, интегральных уравнений
		и систем уравнений
		Владеет техникой применения функци-
		онального анализа к решению приклад-

		ных задач.
ПК-1	Способность проводить	Знает общенаучные понятия функцио-
	научные исследования и	нального анализа, операторных уравне-
	получать новые научные	ний, в частности, интегральных уравне-
	и прикладные результа-	ний.
	ты самостоятельно и в	Умеет применять полученные знания
	составе научного кол-	при решении задач, связанных с: раз-
	лектива	ностными методами, методами решения
		некорректных задач, квадратурными
		формулами, численными методами и др.
		Владеет аппаратом функционального
		анализа и методами решения оператор-
		ных уравнений для постановки задач и
		осуществления математического моде-
		лирования различных объектов и явле-
		ний.

4. Объем, структура и содержание дисциплины.

4.1. Объем дисциплины составляет 2 зачетные единицы, 72 академических часа.

4.2. Структура дисциплины.

				вкл	цы уче ючая (самос	тоят	ель-	Формы те- кущего
No ′		0	Неделя семестра	_	работ				контроля
Π/	Вориония и помия ника			тру	трудоемкость (в час				успеваемо-
П	Разделы и темы дисциплины	Семестр			КИ	КИ			сти (по неделям се-
	циплины	еме	ЭК		Ірактич. занятия	TKI	pa(ота	местра)
		C	цел		3a]	3aF	ΙM.)a6	Форма про-
			He	и	ИЧ.	aT.	ca .	T. T	межуточной
				ПП	ıKT	op	ттр	100	аттестации
				Лекции	Tps	Лаборат. занятия	Контр. сам. раб.	Самост. работа	,
	Модуль 1. Линейные	onen	amons	•					
1	Пространство ли-	9	1-2	2	4	 	ı	6	Устный
	нейных ограничен-		1 2	_					onpoc
	ных операторов								S. P. S. S.
2	Обратный оператор.	9	3-4		4			6	Устный
	Непрерывная обра-								onpoc
	тимость.								
3	Вполне непрерыв-	9	5-7	2	6			8	Тестирова-
	ные операторы.								ние
	Итого по модулю 1			4	14			20	Коллоквиум
	Модуль 2. Элементь	ı meoj	рии не	глиней	йных с	nepa	тор	06	
1	Дифференцирова-	9	8-	2	6			10	Устный
	ние нелинейных		10						onpoc
	операторов								
2	Принципы непо-	9	11-		6			10	Контроль-
	движной точки и их		13						ная работа
	применения				10			20	10
	Итого по модулю 2			2	12			20	Коллоквиум
	ИТОГО			6	26			40	

4.3. Содержание дисциплины, структурированное по темам (разделам).

4.3.1. Содержание лекционных занятий по дисциплине

Модуль 1. Линейные операторы и функционалы

Тема 1. Пространство линейных ограниченных операторов.

Линейные ограниченные операторы и функционалы. Норма оператора и функци-

онала. Сопряженное пространство. Теорема Хана-Банаха.

Тема 2. Обратный оператор. Непрерывная обратимость.

Обратный оператор. Непрерывная обратимость линейного оператора. Теорема Банаха об обратном операторе. Спектр и резольвента оператора.

Тема 3. Вполне непрерывные операторы.

Вполне непрерывные операторы. Свойства вполне непрерывных операторов. Спектр компактного оператора. Теорема Гильберта-Шмидта. Интегральные уравнения Фредгольма и Вольтерра второго рода. Компактность интегральных операторов с вырожденным и симметричным ядрами. Теоремы Фредгольма для интегральных уравнений.

Модуль 2. Элементы теории нелинейных операторов

Тема 1. Пространство линейных ограниченных операторов.

Линейные ограниченные операторы и функционалы. Норма оператора и функционала. Сопряженное пространство. Теорема Хана-Банаха.

Тема 2. Обратный оператор. Непрерывная обратимость.

Обратный оператор. Непрерывная обратимость линейного оператора. Теорема Банаха об обратном операторе. Спектр и резольвента оператора.

Тема 3. Вполне непрерывные операторы.

Вполне непрерывные операторы. Свойства вполне непрерывных операторов. Спектр компактного оператора. Теорема Гильберта-Шмидта. Интегральные уравнения Фредгольма и Вольтерра второго рода. Компактность интегральных операторов с вырожденным и симметричным ядрами. Теоремы Фредгольма для интегральных уравнений.

Тема 5. Дифференцирование нелинейных операторов.

Производная и дифференциал Фреше нелинейного оператора. Производная и дифференциал Гато нелинейного оператора. Связь между сильной и слабой дифференцируемостью.

Тема 6. Принципы неподвижной точки и их применения.

Принцип сжимающих отображений и его применение. Итерационный процесс Ньютона. Принцип неподвижной точки Шаудера и его применение к решению краевых задач.

4.3.2. Содержание лабораторно-практических занятий по дисциплине

Тема 1. Пространство линейных ограниченных операторов.

Линейные ограниченные операторы и функционалы. Норма оператора и функционала. Сопряженное пространство. Теорема Хана-Банаха.

Тема 2. Обратный оператор. Непрерывная обратимость.

Обратный оператор. Непрерывная обратимость линейного оператора. Теорема Банаха об обратном операторе. Спектр и резольвента оператора.

Тема 3. Вполне непрерывные операторы.

Вполне непрерывные операторы. Свойства вполне непрерывных операторов. Спектр компактного оператора. Теорема Гильберта-Шмидта. Интегральные уравнения Фредгольма и Вольтерра второго рода. Компактность интегральных операторов с вырожденным и симметричным ядрами. Теоремы Фредгольма для интегральных уравнений.

Тема 5. Дифференцирование нелинейных операторов.

Производная и дифференциал Фреше нелинейного оператора. Производная и дифференциал Гато нелинейного оператора. Связь между сильной и слабой дифференцируемостью.

Тема 6. Принципы неподвижной точки и их применения.

Принцип сжимающих отображений и его применение. Итерационный процесс Ньютона. Принцип неподвижной точки Шаудера и его применение к решению краевых задач.

5. Образовательные технологии

При освоении дисциплины используются следующие сочетания видов учебной работы с методами и формами активизации познавательной деятельности магистров для достижения запланированных результатов обучения и формирования компетенций: лекции в виде дискуссии, командная работа на практическом занятии, опережающая самостоятельная работа, разбор кейсов и др.

Одной из первых лекций должна быть обзорная лекция о современном состоянии развития функционального анализа.

Занятия по темам раздела «Элементы теории нелинейных операторов» проводятся в интерактивной форме с использованием видеопроектора.

При прохождении темы «Принципы неподвижной точки и их применение» целесообразно организовать встречу со специалистами по дифференциальным уравнениям из ДГПУ, ДГТУ и ДНЦ РАН.

6. Учебно-методическое обеспечение самостоятельной работы студентов.

Для обеспечение самостоятельной работы магистров использовать учебные пособия

1) Колмогоров, А.Н. Элементы теории функций и функционального анализа: учебник для вузов / А. Н. Колмогоров, С. В. Фомин. - 6-е изд., испр. - М.: Наука.

Гл. ред. физ.-мат. лит., 1989. - 624 с. : ил. - ISBN 5-02-013993-9 : 1-50.

2) Фёдоров В.М. Курс функционального анализа: учебник / Фёдоров В. М. - СПб.

[и др.]: Лань, 2005. - 351 с. ; 20 см. - (Учебники для вузов. Специальная

литература). - Библиогр.: с. 351. - ISBN 5-8114-0589-8 : 187-66.

- 3) Люстерник Л.А. Краткий курс функционального анализа: учеб. пособие / Люстерник Л.А., В. И. Соболев. Изд. 2-е, стер. СПб. [и др.]: Лань : Изд. высшая школа, 1982. 270,[1] с. (Классическая учебная литература по математике). ISBN 978-5-8114-0976-1: 288-75.
- 4) Кириллов А. А. Теоремы и задачи функционального анализа: [учебное пособие

для вузов] / Кириллов А.А., А. Д. Гвишиани. - М. : Наука, 1979. - 384 с.: ил. - Библиогр.: с. 369-372. - Предм. указ.: с. 373-377. - 1-10.

- 5) Рамазанов А.К. Функциональный анализ: учеб. пособие для вузов. Ч.1 / Рамазанов А.К., Р. К. Рагимханов; Минобрнауки России, Дагест. гос. ун-т. Махачкала: Изд-во ДГУ, 2013. 318,[1] с. 222-00.
- 6) Треногин В А. Задачи и упражнения по функциональному анализу: Учеб. пособие для втузов / Треногин В.А.; Б.М.Писаревский, Т.С.Соболева. Изд. 2-е,

испр. и доп. - М.: Физматлит, 2002. - 239 с. - ISBN 5-9221-0271-0 : 151-01.

Текущая и опережающая самостоятельная работа, направленная на углубление и закрепление знаний, а также развитие практических умений заключается в:

- работе студентов с лекционным материалом, поиске и анализе литературы и электронных источников информации по заданной проблеме и выбранной теме реферата или доклада,
- в выполнении домашних заданий,
- в изучении тем, вынесенных на самостоятельную проработку,
- в изучении теоретического материала к практическим занятиям,
- подготовке к зачету.
- 6.1. Темы, выносимые на самостоятельную проработку:

- Три принципа линейного функционального анализа.
- Компактные множества и вполне непрерывные операторы.
- Решение интегральных уравнений с симметричным и вырожденным ядром.
- Теоремы Фредгольма для интегральных уравнений.
- 6.2. Творческая проблемно-ориентированная самостоятельная работа направлена на развитие интеллектуальных умений, комплекса общекультурных и профессиональных компетенций, повышение творческого потенциала магистров и заключается в:
- поиске, анализе, структурировании и презентации информации, анализе научных публикаций по определенной теме исследований,
- исследовательской работе и участии в научных студенческих конференциях и семинарах.

Для успешного освоения отдельных разделов рекомендуется написать реферат или сделать доклад на практическом занятии.

6.3. Примерные варианты самостоятельных работ по теме «Линейные нормированные и метрические пространства»

Вариант 1

- 1. Доказать, что замыкание [A] множества A есть наименьшее замкнутое множество, содержащее A.
- 2. Сходится ли в $C^1[0,1]$ последовательность $x_n(t) = \frac{t^{n+1}}{n+1} \frac{t^{n+2}}{n+2}$?
- 3. Доказать, что в $CL_1[0,1]$ нельзя ввести скалярное произведение, согласованное с нормой $||x|| = \int_0^1 |x(t)| dt$ этого пространства.
- 4. Доказать, что любое конечное множество метрического пространства замкнуто.
- 5. Доказать, что равномерно ограниченное множество функций $M \subset C[a, b]$, удовлетворяющее условию Липшица с общей постоянной, компактно в C[a, b].
- 6. Проверить, можно ли на вещественной прямой метрику задать равенством: а) $\rho(x,y) = \left|x^3 - y^3\right|$; b) $\rho(x,y) = \left|x^2 - y^2\right|$; c) $\rho(x,y) = \left|\sin x - \sin y\right|$.

Вариант 2

- 1. Доказать, что метрическое пространство, состоящее из иррациональных чисел отрезка [0; 1] с метрикой $\rho(x, y) = |x y|$ сепарабельно.
- 2. Доказать, что совокупность внутренних точек intA множества A есть наибольшее открытое множество, содержащееся в A.
- 3. Сходится ли в C[0,1] последовательность $y_n(t) = t^n t^{2n}$, n = 1,2,...?
- 4. Доказать, что любое непрерывное отображение отрезка [a,b] в себя имеет неподвижную точку.

- 5. Доказать, что в пространстве \mathbb{R}^n n мерных векторов можно ввести метрику формулой $\rho(x,y) = \sum_{k=1}^n \frac{|x_k y_k|}{1 + |x_k y_k|}$. Будет ли \mathbb{R}^n с этой метрикой полным метрическим пространством?
- 6. Доказать, что на множестве № натуральных чисел метрику можно ввести формулой

$$\rho(n,m) = \begin{cases} 1 + \frac{1}{n+m}, & n \neq m. \\ 0, & n = m. \end{cases}$$

Будет ли (\mathbb{N}, ρ) полным пространством?

Вариант 3

- 1. Доказать, что множество изолированных точек сепарабельного пространства не более чем счетное.
- 2. Банахово пространство X изоморфно линейному нормированному пространству Y. Доказать, что Y банахово пространство.
- 3. Пусть $x_n(t) \in C[a,b]$, n=1,2,... равностепенно непрерывное множество функций и $x_n(t) \to x_0(t)$, $n \to \infty$, для любого $t \in [a,b]$. Доказать, что $x_0(t) \in C[a,b]$.
- 4. Пусть L подпространство гильбертова пространства H, $L \neq H$. Доказать, что существует $x \in H$ такой, что $x \perp L$.
- 5. Провести ортогонализацию элементов $x_0(t) \equiv 1$, $x_1(t) = t$, $x_2(t) = t^2$, $x_3(t) = t^3$ в пространстве $cL_2[-1,1]$.
- 6. Доказать, что множество непрерывно дифференцируемых на [a,b] функций x(t) таких, что

$$\left|x(a)\right| \le k_1, \int_a^b \left|x'(t)\right|^2 dt \le k_2$$

 $(k_1 \ge 0, k_2 > 0$ — константы) относительно компактно в C[a, b].

7. Доказать, что всякое множество, предкомпактное в пространстве $C^1[a,b]$, является предкомпактным и в пространстве C[a,b].

6.4. Примерные темы докладов и рефератов для самостоятельной работы

Разделы (модули) и темы для само- стоятельного изучения	Виды и содержание самостоятельной работы
Модуль 1. Линейные операторы и	функционалы
1. Пространство линейных огра-	Рефераты на темы:
ниченных операторов.	1. Пространства, сопряженные к основ-
	ным функциональным пространствам
	2. Виды сходимости в сопряженном про-
	странстве и их взаимосвязь

2. Вполне непрерывные операто-	Доклады на темы:
ры.	1. Метод нахождения спектра оператора
	Фредгольма с симметричным ядром.
	2. Построение резольвенты некоторых
	интегральных операторов.
Модуль 2. Элементы теории нели	инейных операторов
1. Дифференцирование нелиней-	Реферат на тему «Применение диффе-
ных операторов.	ренциала Гато к обращению лучевого
	преобразования функции».
2. Принципы неподвижной точки	Доклад на тему «Применение принципа
и их применения.	сжимающих отображений к решению ин-
	тегральных уравнений».

7. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины

7.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы.

Компетенция	Знания, умения, навыки	Процедура освоения
ОПК-4	Знает: основные понятия и тео-	Написание рефератов,
	ремы общей теории прибли-	взаимное рецензирова-
	женных методов для линейных	ние магистрами работ
	уравнений в банаховых и гиль-	друг друга.
	бертовых пространствах.	
	Умеет применять полученные	
	знания при исследовании кон-	
	кретных дифференциальных,	
	интегральных уравнений и си-	
	стем уравнений	
	Владеет техникой применения	
	функционального анализа к ре-	
	шению прикладных задач.	
ПК-1	Знает общенаучные понятия	Контрольная работа,
	функционального анализа, опе-	коллоквиум, зачет
	раторных уравнений, в частно-	
	сти, интегральных уравнений.	
	Умеет применять полученные	
	знания при решении задач, свя-	
	занных с: разностными метода-	
	ми, методами решения некор-	
	ректных задач, квадратурными	
	формулами, численными мето-	
	дами и др.	

Владеет аппаратом функцио-
нального анализа и методами
решения операторных уравне-
ний для постановки задач и
осуществления математическо-
го моделирования различных
объектов и явлений.

7.2. Типовые контрольные задания

- 7.3.1. Примерные контрольные вопросы к коллоквиуму по разделу «Пространство линейных ограниченных операторов»
- 1. Линейные ограниченные операторы и функционалы.
- 2. Формулы для нормы оператора и функционала.
- 3. Доказать, что оператор $A: C[0;1] \to C[0;1], Ax(t) = t \int_0^1 x(\tau) d\tau$, является линейным ограниченным и найти его норму.
- 4. Линейные ограниченные операторы и функционалы в пространстве непрерывных функций.
- 5. Линейные ограниченные операторы и функционалы в пространстве числовых последовательностей.
- 6. Пространство линейных ограниченных операторов и его полнота.
- 7. Два вида сходимости в пространстве линейных ограниченных операторов.
- 8. Исследовать на сходимость последовательность операторов A_n : $l_2 \to l_2$, $A_n x = A_n(x_1, x_2, ...) = (0,0,...,x_n,0,0,...)$.
- 9. Принцип равномерной ограниченности линейных операторов.
- 10. Сопряженное пространство. Два вида сходимости последовательности непрерывных линейных функционалов.
- 11. Будет ли линейный функционал $f(x) = x'\left(\frac{1}{2}\right)$, определенный на множестве непрерывно дифференцируемых функций из C[0;1], ограниченным? Если да, то найти его норму.
- 12. Доказать, что если линейный оператор $A: X \to X$ не является ограниченным в одной из двух эквивалентных норм, то он не будет ограниченным и в другой норме.
- 13. Доказать, что всякий линейный оператор, заданный на конечномерном пространстве, ограничен.
- 14. Слабая ограниченность и слабая сходимость.
- 15. Теорема Хана-Банаха. Следствия.
- 16. Теорема Рисса об общем виде линейного непрерывного функционала в гильбертовом пространстве.
- 17. Доказать, что в конечномерном пространстве всякая слабо сходящаяся последовательность сходится по норме.
- 18. Найти характеристические числа и собственные функции уравнения

$$x(t) - \lambda \int_{0}^{1} (t^2 - 2ts)x(s)ds = 0.$$

19. Решить с помощью резольвенты интегральное уравнение

$$x(t) = \frac{2}{3} \int_{0}^{t} tsx(s)ds + 3t - 2.$$

- 7.3.2. Примерные контрольные вопросы к коллоквиуму по разделу "Вполне непрерывные операторы"
- 1. Теоремы Фредгольма в гильбертовом пространстве.
- 2. Интегральные уравнения второго рода. Союзное уравнение. Характеристические числа и собственные функции.
- 3. Компактность интегральных операторов с вырожденным и непрерывным ядрами.
- 4. Теоремы Фредгольма для интегральных уравнений.
- 5. Решение интегральных уравнений Фредгольма с вырожденным и симметричным ядром.
- 6. Решение интегральных уравнений Вольтерра с вырожденным и симметричным ядром.
- 7. В пространстве C[-1;1] решить интегральное уравнение $x(t) + \int_{-1}^{1} e^{s+2t} x(s) ds = e^{t}$.

 8. В пространстве C[0;1] решить интегральное уравнение $x(t) = \int_{0}^{1} \sin \pi (t t) dt$
- $s) x(s) ds + \cos \pi t$.
- 7.3.3. Примерные варианты контрольных работ по теме «Линейные ограниченные операторы»

Вариант 1

- 1. Доказать формулу для нормы ограниченного линейного оператора $A: X \to Y, X, Y$ - $\Pi H \Pi$, $D(A) = X : ||A|| = \sup_{x \in X, ||x|| = 1} ||Ax||$.
- 2. Доказать ограниченность линейного оператора $A: CL_2[0,1] \to CL_2[0,1]$, $Ax(t) = t \int_0^1 x(\tau) d\tau$ и найти его норму.
- 3. В пространстве $C^1[0,1]$ рассмотрим подпространство $L = \{x(t) \in C^1[0,1] : x(0) = 0\}$ и оператор $A: L \to C[0,1]$, $Ax(t) = \frac{dx(t)}{dt} + tx(t)$. Доказать, что A — непрерывно обратим.
- 4. Доказать, что функционал $f(x) = \sum_{k=1}^{\infty} 2^{-k+1} x_k$, $x = (x_1, x_2, \dots) \in l_1$, является линейным ограниченным, и найти его норму.
- 5. Доказать, что оператор $\Phi: L(X,Y) \to R$, $\Phi(A) = ||A||$, непрерывен.

- 6. Пусть $A: X \to Y$ замкнутый линейный оператор, R(A) = Y и A^{-1} существует. Доказать, что $A^{-1} \in L(X,Y)$.
- 7. В пространстве $C^1[0,1]$ рассмотрим подпространство $L = \{x(t) \in C^1[0,1] : x(0) = 0\}$ и оператор $A: L \to C[0,1]$,

$$Ax(t) = \frac{dx}{dt} + a(t)x(t), \ a(t) \in C[0,1].$$

Доказать, что A непрерывно обратим и найти A^{-1} .

Вариант 2

- 1. Пусть $A: l_2 \to l_1$, Ax = x, $D(A) = \{x = (x_1, x_2, \cdots) \in l_2, \sum_{n=1}^{\infty} |x_n| < \infty \}$. Найти $D(A^*)$ и A^* .
- 2. Доказать, что функционал $f: l_1 \to R$, $f(x) = \sum_{k=1}^{\infty} (1 \frac{1}{k}) x_k$ ограничен и найти его норму.
- 3. Доказать, что сопряженное к нормированному пространству банахово.
- 4. Доказать, что оператор $A: C[0,1] \to C[0,1], Ax(t) = x(t) + \int_{0}^{1} e^{s+t} x(s) ds$ непрерывно обратим и найти оператор A^{-1} .
- 5. Пусть линейный функционал f определен на вещественном ЛНП X и неограничен. Доказать, что в любой окрестности нуля он принимает все вещественные значения.
- 6. Доказать, что ядро KerA ограниченного линейного оператора $A: X \to Y$ является подпространством в X.
- 7. Доказать, что функционал $f(x) = \int_{-1}^{1} x(\frac{|t-1|}{2})dt$ является линейным непрерывным на C[0,1] и найти его норму.
- 8. Пусть X линейное пространство $A, B: X \to X$ линейные операторы с $D_A = D_B = X$, удовлетворяющие соотношениям AB + A + I = 0, BA + A + I = 0. Доказать, что оператор A^{-1} существует.

7.3.4. Примерные задания тестов

Тест №1

- 1. Для того чтобы линейный оператор был взаимно однозначен, необходимо и достаточно, чтобы:
 - А) его ядро состояло только из нулевого элемента;
 - Б) его ядро было пустым множеством;
 - В) его ядро было линейным многообразием.
- 2. Оператор $A: X \to Y$ непрерывно обратим. Тогда неверно
 - A) $\exists y \in Y : \forall x \ D(A)Ax \neq y;$
 - Б) A^{-1} ограничен;
 - В) А взаимно однозначен.

- 3. Какая из следующих функций является решением интегрального уравнения $x(t) = 6 \int_{-1}^{1} t s x(s) ds 2$:
 - A) x(t) = t 2;
 - Б) x(t) = -2;
 - B) x(t) = t/3 2.
- 4.Оператор $A: X \to Y$ не является непрерывным в точке $a, a \in X$, если...
 - A) $\exists \varepsilon > 0 \ \forall \delta > 0 \ \forall x \in X$: $||x a|| < \delta \implies ||Ax Aa|| \ge \varepsilon$;

 - B) $\exists \varepsilon > 0 \ \forall \delta > 0 \ \exists x \in X : \|x a\| < \delta \implies \|Ax Aa\| \ge \varepsilon;$
 - $\Gamma) \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \exists x \in X \colon \|x a\| < \delta \Longrightarrow \|Ax Aa\| \ge \varepsilon.$
- 5. Среди следующих операторов выберите нелинейные:
 - A) $A: C[-2; 1] \to C[-2; 1], \ Ax(t) = \int_{-2}^{1} \sin s \ x(s) ds 3x(0);$
 - Б) $A: \mathbb{R}^2 \to \mathbb{R}^2$, $Ax = (0, x_1, 2x_2)$, $x = (x_1, x_2)$;
 - B) $C[0;1] \to C[0;1]$, $Ax(t) = x(t^4)$;
 - Γ) $A: \mathbb{R}^2 \to \mathbb{R}$, $Ax = 1 x_1 6x_2$, где $x = (x_1, x_2)$.
- 6. Норма оператора $Ax = 4x_1 3x_3, x \in \mathbb{R}^4$ равна
 - А) 3 Б) 4 В) 5 Г) 7.
- 7. Последовательность элементов пространства L(X,Y), сходящаяся по норме этого пространства, называется
 - А) сильно сходящейся;
 - Б) слабо сходящейся;
 - В) равномерно сходящейся;
 - Г) поточечно сходящейся.
- 8. Какое из чисел является собственным значением оператора

$$Ax(t) - \lambda \int_0^1 (t^2 - 2ts)x(s)ds = 0.$$

- A) π ; B) 1; B) 0; Γ) π .
- 7.4. Методические материалы, определяющие процедуру оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Общий результат выводится как интегральная оценка, складывающая из текущего контроля -50% и промежуточного контроля -50%.

Текущий контроль по дисциплине включает:

- посещение занятий 10 баллов,
- участие на практических занятиях 10 баллов,
- коллоквиум -40 баллов,
- выполнение аудиторных контрольных работ 40 баллов.

Промежуточный контроль по дисциплине включает:

- устный опрос -50 баллов,
- письменная контрольная работа 50 баллов.

8. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

а) основная литература:

- 1) Колмогоров, А.Н. Элементы теории функций и функционального анализа : учебник для вузов / А. Н. Колмогоров, С. В. Фомин. 6-е изд., испр. М.: Наука. Гл. ред. физ.-мат. лит., 1989. 624 с. : ил. ISBN 5-02-013993-9: 1-50.
- 2) Треногин В.А. Функциональный анализ: Учеб. пособие для втузов / В.А. Треногин. Изд. 3-е, испр. М.: Физматлит, 2002. 239 с. ISBN 5-9221-0272-0: 151-01.
- 3) Скопин В.А. Функциональный анализ и интегральные уравнения [Электронный ресурс]: методические указания к самостоятельной работе/ Скопин В.А., Седых И.А.— Электрон. текстовые данные.— Липецк: Липецкий государственный технический университет, ЭБС АСВ, 2012.— 17 с.— Режим доступа: http://www.iprbookshop.ru/55174.html.— ЭБС «IPRbooks»
- 4) Рамазанов А.К. Функциональный анализ : учеб. пособие для вузов. Ч.1 / Рамазанов А.К., Р. К. Рагимханов; Минобрнауки России, Дагест. гос. ун-т. Махачкала: Изд-во ДГУ, 2013. 318,[1] с. 222-00.
- 5) Треногин В А. Задачи и упражнения по функциональному анализу: Учеб. пособие для втузов / Треногин В.А.; Б.М.Писаревский, Т.С.Соболева. Изд. 2-е, испр. и доп. М.: Физматлит, 2002. 239 с. ISBN 5-9221-0271-0: 151-01.

Дополнительная литература

- 6) Люстерник Л.А. Краткий курс функционального анализа : учеб. пособие /Люстерник Л.А., В. И. Соболев. Изд. 2-е, стер. СПб. [и др.] : Лань : Изд. высшая школа, 1982. 270,[1] с. (Классическая учебная литература по математике). ISBN 978-5-8114-0976-1: 288-75.
- 7) Фёдоров В.М. Курс функционального анализа: учебник / Фёдоров В. М. СПб. [и др.]: Лань, 2005. 351 с.; 20 см. (Учебники для вузов. Специальная литература). Библиогр.: с. 351. ISBN 5-8114-0589-8: 187-66.

- 8) Кириллов А. А. Теоремы и задачи функционального анализа: [учебное пособие для вузов] / Кириллов А.А., А. Д. Гвишиани. М.: Наука, 1979. 384 с.: ил. -Библиогр.: с. 369-372. Предм. указ.: с. 373-377. 1-10.
- 9) Меджидов З.Г. Методические указания и задачи по курсу "Интегральные уравнения". Махачкала: ИПЦ ДГУ, 1999.
- 10) Глазырина П.Ю. Функциональный анализ. Типовые задачи [Электронный ресурс]: учебное пособие/ Глазырина П.Ю., Дейкалова М.В., Коркина Л.Ф.— Электрон. текстовые данные.— Екатеринбург: Уральский федеральный университет, ЭБС АСВ, 2016.— 216 с.— Режим доступа: http://www.iprbookshop.ru/66213.html. ЭБС «IPRbooks» (25.05.2018)
- 11) Власова Е.А. Функциональный анализ [Электронный ресурс]: методические указания к практическим занятиям/ Власова Е.А., Красновский Е.Е., Марчевский И.К.— Электрон. текстовые данные.— М.: Московский государственный технический университет имени Н.Э. Баумана, 2009.— 80 с. Режим доступа: http://www.iprbookshop.ru/31318.html. ЭБС «IPRbooks»

9. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины.

№	Название	Электронный адрес	Содержание
1.	Math.ru	www.math.ru	Сайт посвящён математике (и математикам. Этот сайт — для школьников, студентов, учителей и для всех, кто интересуется математикой. Тех, кого интересует зона роста современной науки математика.
2.	Exponenta.ru]	Студентам: запустить установленный у Вас математический пакевыбрать в списке примеров, решенных в среде этого пакета, подходящий и решить свою задачу по аналогии; Преподавателям: использовать математические пакеты для поддержки курса лекций. Всем заинтересованным пользователям: 1. можно ознакомиться с примерами применения математических пакетов в образовательном процессе. 2. найти демо-версии популярных математических пакетов, электронные книги и свободно распространяемые программы.
3.	Математика	www.mathemati cs.ru	учебный материал по различным разделам математики – алгебра, планиметрия, стереометрия, функции, графики и другие.
4.	Российское об-	www.edu.ru	федеральный образовательный портал: учрежде-

	разование.		ния, программы, стандарты, ВУЗы, тесты ЕГЭ.
5.	Электронные	http://elib.dgu.ru	
	каталоги	,	
	Научной биб-	http://edu.icc.dg	
	лиотеки ДГУ	u.ru	
6.	Общероссий-	www.mathnet.ru	Портал, предоставляет различные возможности в
	ский матема-		поиске информации о математической жизни в
	тический пор-		России Портал содержит разделы: журналы, ви-
	тал (Math-		деотека, библиотека, персоналии, организации,
	Net. Ru)		конференции.

10. Методические указания для обучающихся по освоению дисциплины.

Специфика дисциплины «Прикладной функциональный анализ и интегральные уравнения» состоит в том, что рассмотрение теоретических вопросов здесь тесно связано с решением практических задач из разных разделов высшей математики. Эти задачи служат иллюстрацией отдельных понятий, теорем и методов функционального анализа.

Систематическое изложение научных материалов, освещение главных тем данной дисциплины проводится в ходе лекционного курса. Изучение теоретического курса выполняется самостоятельно каждым студентом по итогам каждой из лекций и практический занятий, используя конспект лекций, учебники, представленные в разделе 8 «Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины», результаты контролируются преподавателем на практических занятиях.

Если возникают вопросы, следует обратиться на кафедру к преподавателю, согласно графику консультаций ведущего преподавателя. Обращаясь за консультацией, необходимо указать, каким учебником пользовались и какой раздел, глава, параграф вам не понятен.

Индивидуальные задания для самостоятельной проработки сдаются в конце каждой зачетной единицы.

Для сдачи зачетной единицы «Линейные ограниченные операторы и функционалы» необходимо проанализировать лекционный материал с использованием источников литературы, предварительно проработав самостоятельно материал темы "Линейные нормированные и банаховы пространства".

Для подготовки к практическим занятиям нужно изучить соответствующий теоретический материал из следующих литературных источников:

1. Колмогоров, А.Н. Элементы теории функций и функционального анализа : учебник для вузов / А. Н. Колмогоров, С. В. Фомин. - 6-е изд., испр. - М.: Наука. Гл. ред. физ.-мат. лит., 1989. - 624 с. : ил. - ISBN 5-02-013993-9: 1-50.

- 2. Треногин В.А. Функциональный анализ: Учеб. пособие для втузов / В.А. Треногин. Изд. 3-е, испр. М.: Физматлит, 2002. 239 с. ISBN 5-9221-0272-0: 151-01.
- 3. Люстерник Л.А. Краткий курс функционального анализа : учеб. пособие /Люстерник Л.А., В. И. Соболев. Изд. 2-е, стер. СПб. [и др.] : Лань : Изд. высшая школа, 1982. 270,[1] с. (Классическая учебная литература по математике). ISBN 978-5-8114-0976-1: 288-75.

Решать задачи и упражнения из учебных и учебно-методических пособий:

- 1. Треногин В А. Задачи и упражнения по функциональному анализу: Учеб. пособие для втузов / Треногин В.А.; Б.М.Писаревский, Т.С.Соболева. Изд. 2-е, испр. и доп. М.: Физматлит, 2002. 239 с. ISBN 5-9221-0271-0 : 151-01.
- 2. Меджидов З.Г. Методические указания и задачи по курсу "Интегральные уравнения". Махачкала: ИПЦ ДГУ, 1999.
- 11. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем.

Для осуществления образовательного процесса по дисциплине: «Прикладной функциональный анализ и интегральные уравнения» необходимы:

Системное программное обеспечение: OC Windows 7/8/10; Прикладное программное обеспечение: MSOffice 2007/2010/2013; Сетевые приложения: электронная почта, поисковые системы Google, Yandex.

12. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине.

Для проведения лекционных занятий на факультете необходима аудитория на 25-35 мест, оборудованная ноутбуком, экраном и цифровым проектором.