

Trường & Giải tích

Người trình bày: Carina

Mục lục

- 1. Trường vô hướng và giải tích đa biến
- 1.1 Hàm đa biến
- 1.2 Đạo hàm riêng
- 1.3 Gradient
- 1.4 Tích phân đa biến
- 2. Trường vector và giải tích vector
- 3. Về trường lực xuyên tâm

Hình: Biểu đồ nhiệt độ theo khu vực

Định nghĩa

Hàm f theo n biến là quy tắc gán một véc-tơ $\mathbf{x}=(x_1,x_2,\ldots,x_n)$ trong tập xác định $D\subseteq\mathbb{R}^n$ với một số thực $f(\mathbf{x})$.

Hình: Hàm số hai biến z = f(x, y)

Đồ thị hàm f bao gồm mọi điểm $(x_1, x_2, \dots, x_n, z)$ trong \mathbb{R}^{n+1} sao cho $z = f(x_1, x_2, \dots, x_n)$.

Hình: Miền giá trị và miền xác định

Một số ví dụ:

$$z = \sin x + \cos y$$
: $D = \mathbb{R}^2$, $z \in [-2, 2]$

$$z = \sqrt{x + y + 1}: D = \{(x, y) | x + y + 1 \ge 0\}, z \in [0, +\infty)$$

Hình: Miền xác định của hàm $z = \sqrt{x + y + 1}$

Đồ thị đường mức của hàm $f(\mathbf{x})$ là tập hợp véc-tơ \mathbf{x} sao cho $f(\mathbf{x}) = c$ với một hằng số c.

Hình: Đường mức của hàm $z = xye^{-(x^2+y^2)}$.

Hình: Đường mức của hàm $f = x^2 + y^2 + z^2$

Đao hàm riêng

Dinh nghĩa

Đạo hàm riêng của hàm
$$f(\mathbf{x})$$
 theo x_i tại điểm $\mathbf{a}=(a_1,a_2,\ldots,a_n)$ là giới hạn
$$f_{x_i}=\frac{\partial f}{\partial x_i}(\mathbf{a})=\lim_{h\to 0}\frac{f(a_1,\ldots,a_{i-1},a_i+h,a_{i+1},\ldots,a_n)-f(a_1,a_2,\ldots,a_n)}{h} \quad (1)$$
 nếu giới hạn này tồn tại.

Khi này, vi phân của hàm f tại điểm a có thể được biểu diễn như sau:

$$df = f_{x_1} dx_1 + f_{x_2} dx_2 + \ldots + f_{x_n} dx_n$$
 (2)

xPhO Physics Club

Đạo hàm riêng

Xét đồ thị hàm số z(x,y). Mặt phẳng x=a và y=b cắt đồ thị tại hai đường cong C_2 và C_1 . Khi đó các đạo hàm riêng chính là độ dốc của các tiếp tuyến T_2 và T_1 của hai đường cong tại điểm P(a,b,c).

Hình: Ý nghĩa hình học của đạo hàm riêng

Đạo hàm riêng

Định lý Clairut

Nếu hàm f(x,y) có đạo hàm riêng bậc nhất liên tục lân cận điểm (a,b) thì

$$f_{xy}(a,b) = f_{yx}(a,b) \tag{3}$$

Định lý trên thường được sử dụng trong nhiệt động lực học. Ví dụ, ta có các hàm F(T,V), P(T,V), S(T,V) có các vi phân liên hệ với nhau: dF = -SdT - PdV. Áp dung định lý Clairut:

$$F_{TV} = F_{VT} \Rightarrow \left(\frac{\partial S}{\partial V}\right)_T = \left(\frac{\partial P}{\partial T}\right)_V$$
 (4)

Phương trình trên là một trong các phương trình Maxwell trong nhiệt động lực học.

Gradient

Định nghĩa

Trường vô hướng gán tương ứng một giá trị vô hướng cho mọi điểm trong không gian.

Ví dụ:

- Trong bản đồ nhiệt độ, nhiệt độ $T(\varphi,\lambda)$ được gán với các kinh độ và vĩ độ.
- Trong trường điện từ, điện thế V(x,y,z) được gán với các tọa độ trong không gian.

Gradient

Định nghĩa

Gradient của trường vô hướng f(x, y, z) là véc-tơ

$$\nabla f = f_{x} \widehat{\mathbf{x}} + f_{y} \widehat{\mathbf{y}} + f_{z} \widehat{\mathbf{z}}$$
 (5)

Như vậy, ta có thể viết tìm biến thiên df của hàm f khi dịch chuyển một đoạn $d\mathbf{r} = (dx, dy, dz)$ trong không gian như sau:

$$df = f_x dx + f_y dy + f_z dz = \nabla f \cdot d\mathbf{r}$$
 (6)

Gradient

Về mặt hình học, gradient ∇f chỉ hướng tăng nhanh nhất của hàm f và có độ lớn bằng độ dốc theo hướng này.

Hình: Ý nghĩa hình học của gradient

Làm thế nào để tính thể tích của một paraboloid $z=x^2+y^2$ nằm dưới mặt phẳng z=a?

Thể tích V của paraboloid có thể được tính bằng tổng thể tích của các đĩa dày dz:

Trong hệ tọa độ trụ, diện tích của mỗi đĩa được tính bằng tổng diện tích các tam giác nhỏ có góc nhọn $d\phi$:

Khi đó, thể tích V có thể được tính như sau:

$$V = \int_0^a \int_0^{2\pi} \frac{r^2}{2} d\phi dz \tag{7}$$

Biểu thức trên là một tích phân hai lớp.

Như vậy, thể tích của paraboloid là:

$$V = \int_0^a \pi r^2 dz$$

$$= \int_0^a \pi z dz = \boxed{\frac{\pi a^2}{2}}$$
(8)

Trong hệ tọa độ Đề-các, diện tích của đĩa được tính bằng tổng diện tích của các hình vuông nhỏ có chiều rộng dy:

Khi đó, thể tích V có thể được tính như sau:

$$V = \int_0^a \int_{-\sqrt{z}}^{\sqrt{z}} \int_{-\sqrt{z-y^2}}^{\sqrt{z-y^2}} dx dy dz \quad (9)$$

Biểu thức trên là một **tích phân ba lớp**. Thực hiện phép tích phân trên, cuối cùng ta vẫn thu được:

$$V = \boxed{\frac{\pi a^2}{2}} \tag{10}$$

Tích phân đường

Gọi $\mathbf{v}(x,y,z)$ là một hàm véc-tơ ứng với mọi điểm trong không gian. C là một đường cong trong không gian nối hai điểm \mathbf{a} và \mathbf{b} , và có véc-tơ chỉ phương là \mathbf{u} .

Khi đó tích phân đường của ${\bf v}$ dọc theo C là:

$$\int_{C} \mathbf{v} \cdot \mathbf{u} dl = \int_{C} \mathbf{v} \cdot d\mathbf{l}. \tag{11}$$

Tích phân đường

Định lý cơ bản của giải tích

Nếu f là một hàm vô hướng có đạo hàm liên tục trong miền chứa đường cong C nối hai điểm \mathbf{a} và \mathbf{b} , thì

$$\int_{C} \nabla f \cdot d\mathbf{l} = f(\mathbf{b}) - f(\mathbf{a}). \tag{12}$$

Mục lục

- 1. Trường vô hướng và giải tích đa biến
- 1.1 Hàm đa biến
- 1.2 Đạo hàm riêng
- 1.3 Gradient
- 1.4 Tích phân đa biến
- 2. Trường vector và giải tích vector
- 3. Về trường lực xuyên tâm

Trường vector

Hình: Trường vận tốc của chất lưu

$$\mathbf{v} = \mathbf{v}(x, y) = \mathbf{v}(r, \theta)$$

Hình: Trường tĩnh điện của điện tích điểm

$$\mathbf{E} = \mathbf{E}(x, y, z) = \mathbf{E}(r)$$

Trường (lực) thế

1. Giá trị của tích phân đường (công) chỉ phụ thuộc vào điểm đầu và điểm cuối:

$$-\int_{\textbf{r}_1}^{\textbf{r}_2} \textbf{F} \cdot d\textbf{I} = V(\textbf{r}_1) - V(\textbf{r}_2).$$

2. Lưu số trên một đường cong kín là bằng không:

$$\oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{I} = 0.$$

3. Trường lực thế có thể biểu diễn dưới dạng gradient của một hàm vô hướng:

$$\mathbf{F} = -\nabla V$$
.

Ví dụ về các lực thế: lực hấp dẫn, lực đàn hồi, ...

Quan hệ giữa các tính chất của trường thế

Từ tính chất thứ nhất,

$$-\mathbf{F} \cdot d\mathbf{I} = dV$$
.

Do đó,

$$- \big(F_x \mathsf{d} x + F_y \mathsf{d} y + F_z \mathsf{d} z \big) = \partial_x V \mathsf{d} x + \partial_y V \mathsf{d} y + \partial_z V \mathsf{d} z.$$

Đồng nhất hai vế,

$$\mathbf{F} = -\nabla V$$
.

Từ tính chất thứ hai (xét trên mặt phẳng xy),

$$\oint \mathbf{F} \cdot d\mathbf{I} = dXdY (\partial_x F_y - \partial_y F_x) = 0.$$

Tương tự cho các mặt phẳng khác,

$$dYdZ(\partial_y F_z - \partial_z F_y) = 0.$$

$$dXdZ(\partial_z F_x - \partial_x F_z) = 0.$$

Curl và định lý Curl(Stokes)

Curl của F được định nghĩa là

$$\nabla \times \mathbf{F} \equiv \det \left(\begin{bmatrix} \hat{x} & \hat{y} & \hat{z} \\ \partial_{x} & \partial_{y} & \partial_{z} \\ F_{x} & F_{y} & F_{z} \end{bmatrix} \right).$$

Định lý Stokes tổng quát hoá cho mọi bề mặt:

$$\int_{\mathcal{S}} (\nabla \times \mathbf{F}) \cdot d\mathbf{a} = \oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{l}.$$

Chú ý, C là đường biên của bề mặt S.

Curl của một trường thế bằng không nên ${\bf F}$ phải có dạng $-\nabla V$ vì

$$\nabla \times (\nabla V) = 0 \quad \forall V.$$

Cụ thể,

$$\partial_{xy} V = \partial_{yx} V,$$

$$\partial_{yz} V = \partial_{zy} V,$$

$$\partial_{zx} V = \partial_{xz} V.$$

Tóm lại, điều kiện cần và đủ của một trường thế là

$$\nabla \times \mathbf{F} = \mathbf{0}$$
.

Minh hoạ cho dòng chảy xoáy

$$\mathbf{v} = -y\hat{x} + x\hat{y},$$

$$abla imes \mathbf{v} = 2\hat{z}.$$

Hình: Định lý Stokes

Hình: Chiều của vector pháp tuyến

Mục lục

- 1. Trường vô hướng và giải tích đa biến
- 1.1 Hàm đa biến
- 1.2 Đạo hàm riêng
- 1.3 Gradient
- 1.4 Tích phân đa biến
- 2. Trường vector và giải tích vector
- 3. Về trường lực xuyên tâm

Tài liệu tham khảo I

- [1] I.V.Savelyev, *Giáo trình vật lý đại cương tập 1*. Nhà xuất bản Đại học và Trung học chuyên nghiệp, 1988.
- [2] D. Morin, *Introduction to classical mechanics: with problems and solutions*. Cambridge University Press, 2008.
- [3] J. .-. M. Brébec, PFIEV Co học 1. NXB Giáo dục, 2015.
- [4] J. .-. M. Brébec, PFIEV Co học 2. NXB Giáo dục, 2015.

