

Отладочная плата

HELPER

Master-модуль
LDM-HELPER-K1986BE1QI
AVIA

СДЕЛАНО В РОССИИ

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	3
1 Основные технические характеристики модуля	
2 Маркировка и опции	5
3 Описание и работа	6
3.1 Принципиальная электрическая схема	6
3.2 Питание и настройка перемычек	8
3.3 Комплектация	g
3.4 Монтажные чертежи	g
3.5 Трассировка по слоям	10
4 Эксплуатация, хранение и транспортирование	12

ВВЕДЕНИЕ

Отладочная плата *LDM-HELPER-K1986BE1QI* представляет собой master-модуль к мультиплатформенной системе проектирования семейства *HELPER*. Она создана на базе российского микроконтроллера фирмы АО «ПКК Миландр» *K1986BE1QI* с встроенным Ethernet MAC+PHY. На плате может быть установлен микроконтроллер как в пластиковом корпусе LQFP144, так и в металлокерамическом корпусе 4229.132-3.

Общий вид отладочной платы приведен на рисунках 1 и 2.

Рисунок 1. Общий вид отладочной платы LDM-HELPER-K1986BE1QI-FULL в полной комплектации с контроллером в пластиковом корпусе LQFP144

Рисунок 2. Общий вид отладочной платы LDM-HELPER-K1986BE1QI-FULL-M в полной комплектации с контроллером в металлокерамическом корпусе 4229.132-3

1 Основные технические характеристики модуля

Параметр	Значение
Тип	Master-модуль
Архитектура контроллера	RISC 32 бит
Маркировка контроллера	K1986BE1QI
Габаритные размеры (ДхШхВ)	130х74х8 мм
Макетное поле (шаг 2.54 мм)	Нет
Корпус контроллера	LQFP-144
Количество линий I/O	96
Кварцевый резонатор	16 МГц основной и 25МГц Ethernet
Напряжение питания платы	+5 B±10%
Встроенный программатор	USB-UART
FLASH-программ	128 Кб
SRAM	48 Кб
Интерфейс RS-485	1
Интерфейс USB-UART	1
Ethernet	10/100 MAC+PHY Transceiver
USB	Device и Host FS (до 12 Мбит/с)
АЦП	12 бит, 2 канала
ЦАП	12 бит, 2 канала
Интерфейс по ГОСТ 18977-79	
(ARINC-429)	1
Интерфейс по ГОСТ Р 52070-2003	
(МКИО)	2

Вместе с master-модулем можно использовать slave-модули:

- аналоговый модуль АЦП, ЦАП, цифровые потенциометры;
- радиочастотный модуль WiFi, ZigBee, Bluetooth;
- навигационный модуль GPS, ГЛОНАСС;
- мультимедиа модуль аудиокодек, драйвер HDMI;
- функциональный модуль цифровой термометр, датчик давления, FRAM, MRAM, EEPROM, FLASH, IO экспандер, RTC, датчик тока, цифровой компас, гироскоп;
- силовой модуль мощные низковольтные, маломощные высоковольтные с опторазвязкой ключи;
- плата 5-тиосевого ЧПУ модуля (SPI-интерфейс);
- плата сбора данных с 5-ти энкодеров (SPI-интерфейс).

Список модулей постоянно пополняется.

Возможно изготовление специализированных модулей по ТЗ заказчика.

2 Маркировка и опции

Отладочная плата сконструирована так, чтобы давать возможность пользователю выбирать требуемую конфигурацию. В базовую комплектацию входит плата с минимальной обвязкой. Все дополнительные опции можно заказать отдельно.

Маркировка: LDM-HELPER-K1986BE1QI-[Опции]

Маркировка опции	Описание
Α	USB-UART
В	RS-485
С	NAND FLASH
D	5 кнопок, 8 светодиодов
Е	Кварцевый резонатор 32,768 кГц
FULL	Все опции
M	Контроллер в металлокерамическом корпусе 4229.132-3 К1986ВЕ1ТК ОТК (диапазон работы 0 +70 °C)

Пример:

1) Модуль с микросхемой K1986BE1QI с интерфейсами USB-UART, RS-485 и кварцевым резонатором 32,768 кГц.

LDM-HELPER-K1986BE1QI-ABF

2) Модуль с микросхемой К1986ВЕ1Т в металлокерамическом корпусе 4229.132-3.

LDM-HELPER-K1986BE1QI-FULL-M

В приложениях, в которых необходимо использовать интерфейсы ARINC-429 (ГОСТ 18977-79) и МКИО (ГОСТ Р 52070-2003), можно использовать дополнительный slave-модуль специализированных интерфейсов LDM-HELPER-SI (Рисунок 3). Slave-модуль LDM-HELPER-SI создан на базе интерфейсных микросхем ОАО НПО «Физика» 5559ИН13У2, 1586ИН2У, 1586ИН4У и развязки на базе трансформатора ТИЛ-6В производства ОАО «МСТАТОР».

Рисунок 3. Общий вид slave-модуля LDM-HELPER-SI (ARINC-429 и МКИО)

3 Описание и работа

3.1 Принципиальная электрическая схема

3.2 Питание и настройка перемычек

Питание отладочной платы LDM-HELPER-K1986BE1QI осуществляется от постоянного стабилизированного источника с напряжением +5 B, 0.3÷0.5 A (выводы Vin 22,23 X2) или от USB порта (X1), подключенного кабелем к порту USB персонального компьютера. В таблице 1 приведены режимы включения джамперов, переключателей и их функции.

Таблица 1 Режимы включения джамперов и их функции

Джампер	Положение	Функционал
X1	-	Разъем интерфейса USB-UART (UAB/UART Load)
X2	-	Межплатные разъемы модуля
X3	-	Отсутствует
X4	-	Разъем интерфейса RS-485
X5	-	Разъем JTAG интерфейса
X6	-	Перемычка для устранения падения напряжения на
		диоде VD4 линии +5Vext
JP1	1-2	Питание BUcc осуществляется от +3.3 B
	2-3	Питание BUcc осуществляется от U _{BAT}
JP2	1-2	Вывод МК РЕ6 используется на линии OSC32_OUT
	2-3	Вывод МК РЕ6 используется на линии ETH_LED1
JP3	1-2	Вывод МК RXD1 используется на линии UART_RX
JFS	2-3	Вывод МК RXD1 используется на линии CAN_RX
		Внимание!
JP4	1-2	Перемычка ЈР4 всегда должна быть установлена
		в позицию 1-2 - JTAG включен (ON)
JP5	1-2	Вывод МК РЕ7 используется на линии OSC32_IN
31 3	2-3	Вывод МК РЕ7 используется на линии ETH_LED0
JP6	1-2	Вывод МК TXD1 используется на линии UART_TX
	2-3	Вывод МК TXD1 используется на линии CAN_TX
SA1	OFF	Режим загрузки JTAG
	ON	Режим загрузки USB_UART
SA2	SELECT	Кнопка джойстика "Выбор"
SA3	UP	Кнопка джойстика "Вверх"
SA4	DOWN	Кнопка джойстика "Вниз"
SA5	LEFT	Кнопка джойстика "Влево"
SA6	RIGHT	Кнопка джойстика "Вправо"
SA7*	PWROFF - ON	Нажата - Отключение питания от МК
	PWROFF - OFF	Не нажата – Питание к МК подано

^{* -} Не допускается периодическое нажатие с интервалом менее 1 сек.

Рисунок 4. Вид отладочной платы LDM-HELPER-K1986BE1QI с переходником JTAG IDC20 в PBS12 для подключения программатора ULINK2

3.3 Комплектация

- отладочная плата LDM-HELPER-K1986BE1QI;
- CD-диск с описанием к плате, демонстрационными примерами и дополнительным программным обеспечением.

Переходник JTAG IDC20 в PBS12 поставляется отдельно.

3.4 Монтажные чертежи

Слой ТОР

3.5 Трассировка по слоям

Слой ТОР

Слой ВОТТОМ

Присоединительные размеры

4 Эксплуатация, хранение и транспортирование

Требования к условиям эксплуатации:

Изделие при испытаниях, перевозке, хранении и эксплуатации не наносит вреда окружающей среде и здоровью человека. Сохраняет свои параметры во всем диапазоне рабочих температур от 0°C до +70°C в закрытом помещении с относительной влажностью воздуха не более 80 %, без конденсата, при изменении напряжения первичного источника электропитания в допустимых пределах. По электромагнитной совместимости изделие соответствует всем требованиям для аппаратуры данного класса.

Требования к условиям хранения:

Изделие должно храниться в складских помещениях, защищенных от воздействий атмосферных осадков, на стеллажах в упаковке производителя при отсутствии в воздухе паров кислот, щелочей и других веществ, вызывающих коррозию. Условия хранения изделия по ГОСТ 15150-69: температура воздуха от +5°C до +40°C, относительная влажность до 80% при температуре +25°C. Предельный срок хранения в указанных условиях - три года.

Требования к условиям транспортирования:

Транспортирование изделия разрешается в упаковке производителя всеми видами транспорта, за исключением негерметизированных отсеков самолета, без ограничения расстояния.

Транспортирование упакованных изделий может производиться в крытых вагонах и автомашинах, трюмах судов и герметичных кабинах самолетов при температуре воздуха от -20°C до +70°C. При любом способе транспортирования необходимо предусмотреть крепление ящика к кузову (платформе) транспортного средства с помощью крепежной арматуры.