Sum of Squares: Part 1

Apoorv Vikram Singh

February 3, 2021

Introduction

Reason two basic problems about polynomial inequalities

1. Feasibility of polynomial system.

$$\rho_1(\mathbf{x}) \ge 0$$

$$\vdots$$

$$\rho_m(\mathbf{x}) \ge 0$$
(1)

Is there an x such that (1) is satisfied?

2. Checking non-negativity: Is $q(x) \ge 0$, $\forall x$ satisfying (1) ?

Justification: Feasibility

Feasibility checking is highly expressive.

- Example: MaxCut.
- . Input: G = (V, E), |V| = n.
- . Goal: Find $S\subseteq V$ such that $\left|E(S,\overline{S})\right|$ is maximized.
- . Polynomial Feasibility: For some $\beta \in \mathbb{Z}^+$,

$$\frac{1}{4} \sum_{(i,j) \in E} (\mathbf{x}_i - \mathbf{x}_j)^2 = \beta |E|$$

$$\mathbf{x}_i^2 = 1, \quad \forall 1 \leq i \leq n.$$

. n+1 degree-2 polynomials. Enumerate over polynomial number of values of β and solve MaxCut.

Other examples: MaxClique, Max 3-SAT, Knapsack. Therefore, polynomial feasibility checking problem is *NP*-Hard.

Goal

Analyze a relaxation for the feasibility problem, and try to find interesting situations where one can get a poly-time algorithms.

Justification: Non-Negativity

- ▶ Checking positivity: Given $f: \{-1,1\}^n \to \mathbb{R}$ with rational coefficients, decide if:
 - $f \ge 0$, $\forall x \in \{-1, 1\}^n$, or,
 - find an $\mathbf{x} \in \{-1,1\}^n$ such that $f(\mathbf{x}) \leq 0$.
- ▶ Example MaxCut: Decide if MaxCut $\leq c$.
 - . Let $f_G(\mathbf{x}) \stackrel{\text{def}}{=} \frac{1}{4} \sum_{(i,j) \in E} (\mathbf{x}_i \mathbf{x}_j)^2$.
 - . Decide if $c f_G(\mathbf{x}) \ge 0$, $\forall \mathbf{x} \in \{-1, 1\}^n$.

Certifying Non-Negativity

Given $f:\{-1,1\}^n\to\mathbb{R}$, find an "efficiently verifiable" certificate of non-negativity.

SoS Certificates

Definition (SoS cert of non-neg (or) SoS proof of non-neg)

A <u>degree-d</u> SoS certificate of non-negativity of $f: \{-1,1\}^n \to \mathbb{R}$ is a list of polynomials $g_1, \ldots, g_r: \{-1,1\}^n \to \mathbb{R}$, such such that

- . $\deg(g_i) \leq d/2$, and
- $f(\mathbf{x}) = \sum_{i \leq r} g_i^2(\mathbf{x}), \ \forall \mathbf{x} \in \{-1, 1\}^n.$

Efficiently Verifiable (?)

Polynomials f, g_1, \dots, g_r are represented as a vector of coefficients.

- 1. How large if r? ($\leq n^d$, see later)
- 2. How large are coefficients of g_i ?

Efficiently Verifiable

Proposition (Efficiently Verifiable)

Suppose $r \leq n^d$, all coefficients of g_i are bounded in magnitude by $2^{\text{poly}(n^d)}$. Then the identity $f = \sum_{i \leq r} g_i^2$ over all $\mathbf{x} \in \{-1,1\}^n$ can be checked in $\text{poly}(n^d)$ time.

Proof.

- . Given g_i , can compute g_i^2 , and $\sum_{i \leq r} g_i^2$ in polynomial time.
- . Check if $(f \sum_{i < r} g_i^2)(x) = 0$, $\forall x \in \{-1, 1\}^n$.
- . Using the fact that coefficient vector representation is unique, just check if $f-\sum_{i\le r}g_i^2=\mathbf{0}$

Fact (Unique Representation)

 $\forall f: \{-1,1\}^n \to \mathbb{R}$, there exists a <u>unique</u> representation of f: The multi-linear representation of f

$$f = \sum_{S \subseteq [n]} \hat{f}(S) \prod_{i \in S} x_i.$$

(this representation is its Fourier transform)

 \implies coefficient vector representation is unique.

(multilinear representation exists because ${\it x}_i^2=1$)

Are non-negative functions always certifiable?

Proposition (Certifiablity of non-negative functions)

Let $f:\{-1,1\}^n\to\mathbb{R}$ be non-negative over $\{-1,1\}^n$. Then, there exists a $\deg(2n)$ -SoS certificate of non-negativity.

Proof.

- . Consider $g: \{-1,1\}^n \to \mathbb{R}$, and $g(\mathbf{x}) = \sqrt{f(\mathbf{x})}$.
- . Every function on $\{-1,1\}^n$ is a polynomial of deg $\leq n$.
- . $f = g^2 \implies \deg(2n)$ -SoS Certificate.

Tensor Notation

- . Suppose vector $\mathbf{v} \in \mathbb{R}^n$.
- . $\mathbf{v}^{\otimes 2} \in \mathbb{R}^{n^2}$, where $\mathbf{v}(i,j) = \mathbf{v}_i \mathbf{v}_j$.
- . $\mathbf{v}^{\otimes k} \in \mathbb{R}^{n^k}$.

Proving Efficient Verifiability

Theorem (PSD Matrices and SoS Certificates)

 $f: \{-1,1\}^n \to \mathbb{R}$ has a $\deg(d)$ -SoS certificate of non-negativity \underline{iff} there exists a matrix A such that $A \succcurlyeq 0$, and

$$f(\mathbf{x}) = \left\langle (1, \mathbf{x})^{\otimes \frac{d}{2}}, A \cdot (1, \mathbf{x})^{\otimes \frac{d}{2}} \right\rangle.$$

- Parsing Notation:
 - $(1, \mathbf{x}) \in \mathbb{R}^{(n+1)}$.
 - . $(1, \mathbf{x})^{\otimes \frac{d}{2}}$: populate in a vector all possible monomials in the variable \mathbf{x} of degree at most d/2.
 - $A \in \mathbb{R}^{(n+1)^{d/2} \times (n+1)^{d/2}}$

Proof

- If Part:

$$f(\mathbf{x}) = \left\langle (1, \mathbf{x})^{\otimes \frac{d}{2}}, A \cdot (1, \mathbf{x})^{\otimes \frac{d}{2}} \right\rangle$$

$$= \left\langle (1, \mathbf{x})^{\otimes \frac{d}{2}}, (B^{\top}B) \cdot (1, \mathbf{x})^{\otimes \frac{d}{2}} \right\rangle$$

$$= \left\langle B \cdot (1, \mathbf{x})^{\otimes \frac{d}{2}}, B \cdot (1, \mathbf{x})^{\otimes \frac{d}{2}} \right\rangle$$

$$= \left\| B \cdot (1, \mathbf{x})^{\otimes \frac{d}{2}} \right\|^{2}. \tag{2}$$

- . Let $g_i(\mathbf{x}) = \left\langle e_i, B \cdot (1, \mathbf{x})^{\otimes \frac{d}{2}} \right\rangle$, i.e., *i*-th entry of the vector.
- . B is a matrix of constants, applied to monomials of degree at most d/2, therefore, $deg(g_i) \leq d/2$.
- . Therefore,

$$f(\mathbf{x}) = \sum_{i=1}^{(n+1)^{\otimes d/2}} g_i^2(\mathbf{x}).$$

Proof Cont...

- Only if Part: Suppose f has a degree-d SoS certificate.

$$f = \sum_{i \leq r} g_i^2$$
, and $\underbrace{g_i(\mathbf{x})}_{\deg \leq d/2} = \left\langle \mathbf{v}_i, (1, \mathbf{x})^{\otimes \frac{d}{2}} \right\rangle$.

$$f(\mathbf{x}) = \sum_{i \leq r} \left\langle \mathbf{v}_i, (1, \mathbf{x})^{\otimes \frac{d}{2}} \right\rangle^2$$

$$= \left\langle (1, \mathbf{x})^{\otimes \frac{d}{2}}, \underbrace{\left(\sum_{i \leq r} \mathbf{v}_i \mathbf{v}_i^{\top}\right)}_{0} \cdot (1, \mathbf{x})^{\otimes \frac{d}{2}} \right\rangle.$$

Efficient Verifiability

Corollary (Bound on r)

If $f: \{-1,1\}^n \to \mathbb{R}$ has a degree-d SoS certificate, then it has a certificate with $r \leq (n+1)^{d/2}$.

Proof.

Follows from (2):

$$f(\mathbf{x}) = \left\| B \cdot (1, \mathbf{x})^{\otimes \frac{d}{2}} \right\|^2.$$

Efficient Verifiability

Lemma (Bit-complexity of SoS proofs)

Suppose f has a degree-d SoS certificate over $\{-1,1\}^n$. Then, we can find a degree-d SoS certificate for $f+\varepsilon$ in time $\operatorname{poly}(n^d,\log 1/\varepsilon)$.

• $\{-1,1\}^n$ is important, and doesn't necessarily hold for other domains.

Proof

Since we are given f, we know that it can be efficiently represented.

Therefore, we try to bound the entries of A in terms of f.

- $f(\mathbf{x}) = \left\langle (1, \mathbf{x})^{\otimes \frac{d}{2}}, A \cdot (1, \mathbf{x})^{\otimes \frac{d}{2}} \right\rangle$, for some A.
- . $f = \sum_{u} \hat{f}_{u} \mathbf{x}_{u}$, where $\mathbf{x}_{u} = \prod_{i \in u} \mathbf{x}_{i}$.
- . Expanding the inner product, we see $\hat{f}_u = \sum_{S,T} A_{S,T}$, such that odd (S + T) = u, and $|S|, |T| \le d/2$.

$$\hat{f}_{\emptyset} = \sum_{S} A_{S,S} = \operatorname{tr}(A) = \sum_{i} \underbrace{\lambda_{i}(A)}_{>0}.$$

$$||A||_F^2 = \sum_{S,T} A_{S,T}^2 = \sum_i \lambda_i^2(A) \le \hat{f}_{\phi}^2.$$

We do not know if entries of A are rational, therefore, above proof doesn't suffice. We now try to find an A.

Connection between SDP and SoS: Find A

Proof Cont...

Recall

$$f(\mathbf{x}) = \left\langle \underbrace{(1,\mathbf{x})^{\otimes \frac{d}{2}}, A \cdot (1,\mathbf{x})^{\otimes \frac{d}{2}}}_{\text{ef}_{g_A}(\mathbf{x})} \right\rangle,$$

Then, we form the following constraints:

- 1. $A \geq 0$.
- 2. $\operatorname{mult}(g_A(x)) = \operatorname{mult}(f(x)).$

Therefore, we get the following SDP feasibility problem:

$$orall u\subseteq [n]: \hat{f}_u=\sum_{\mathrm{odd}(S+T)=u}A_{S,T}; \qquad \left((n+1)^d \mathsf{constraints}
ight) \ A\succcurlyeq 0\,.$$

It is unknown if we can decide the feasibility of this system. Therefore, we try to solve it approximately.

Tools for Approximately Solving SDP

Definition (Weak Separation Oracle)

Let $K \subseteq \mathbb{R}^N$ be a convex set. Weak Separation Oracle:

- . Input: Rational vector $\mathbf{x} \in \mathbb{R}^N$, and $\varepsilon > 0$.
- . Output: Either
 - Correctly asserts that $\mathbf{x} \in K + \mathcal{B}(0, \varepsilon)$, or,
 - Returns an "almost separating hyperplane", i.e., returns $\mathbf{y} \neq \mathbf{0} \in \mathbb{R}^N$, such that

$$\langle \boldsymbol{y}, \boldsymbol{x} \rangle > \langle \boldsymbol{y}, \boldsymbol{z} \rangle - \varepsilon \| \boldsymbol{y} \|_2, \forall \boldsymbol{z} \in K.$$

Tools for Approximately Solving SDP

Theorem (Grötschel, Lovász, Schrijver '81)

Let K be a closed, convex, and bounded set. Suppose there exists R > r > 0, such that $\mathcal{B}(\boldsymbol{p},r) \subseteq K \subseteq \mathcal{B}(\boldsymbol{0},R)$. Assume that we have a poly-time weak-separation oracle for K. Then given any rational vector $\boldsymbol{v} \in \mathbb{R}^N$, we can compute a rational vector $\boldsymbol{x} \in \mathbb{R}^N$ such that

- 1. $x \in K$.
- 2. $\langle \mathbf{v}, \mathbf{x} \rangle \geq \langle \mathbf{v}, \mathbf{z} \rangle \varepsilon$, $\forall \mathbf{z} \in K$.

Running time: poly $(\log R/r + \log 1/\varepsilon + N)$.

Interpreting theorem: If I have a convex set K with non-empty interior, with a weak separation oracle, then I can approximately maximize $\mathbf{v}^{\top}\mathbf{x}$ over K.

Proof Cont...

Applying this to our problem. We define the following:

$$S = \left\{ A \,\middle|\, A \succcurlyeq 0, \langle\, C_i, A \rangle = b_i, \forall i, \|A\|_F^2 \le \hat{f}_\emptyset^2 \right\} \,.$$

We note that S is convex, bounded, closed. Now,

$$\mathcal{B}(\mathbf{p},r) \not\subseteq S$$
.

Therefore, relax the equality constraints. And find a point in S',

$$S' = \left\{ A \,\middle|\, A \succcurlyeq 0, \langle C_i, A \rangle = [b_i - \varepsilon, b_i + \varepsilon], \forall i, \|A\|_F^2 \le \hat{f}_\emptyset^2 \right\}.$$

Now, $\mathcal{B}(\boldsymbol{p},r)\subseteq S'$ because for any point $A\in S$, then $A+\delta I\in S'$ for δ small enough.

Applying the Theorem

Proof Cont...

- . We can find some f' such that f' has a degree-d SoS certificate and $\left|\hat{f}_u \hat{f}_u'\right| \leq \varepsilon$.
- . Note: f(x) = f'(x) + (f f')(x).
- . Small coefficient: $\sum_{|u| \leq d} \left| \hat{f}_u \hat{f}'_u \right| \leq \varepsilon (n+1)^d$.
- . Let $L = \sum_{|u| \leq d} \left| \hat{f}_u \hat{f}'_u \right|$.
- . Then, L + f f' has a degree d-SoS certificate.
- . Then, it implies, L+f has a degree-d SoS certificate, i.e., $\varepsilon(n+1)^d+f$ has a degree-d SoS certificate.
- . $\varepsilon = \mathcal{O}\!\left(n^{-d}\right)$ finishes the proof.

L + f - f' has a degree d-SoS certificate

Proof.

Claim

Let $f = \sum_{|S| \le d} \hat{f}_S x_S$. Then $(1 - x_S)$ and $(1 + x_S)$ has a degree-d SoS certificate.

- $f = \sum_{S} \left| \hat{f}_{S} \right| \left(\operatorname{sign}(\hat{f}_{S}) \boldsymbol{x}_{S} \right).$
- . By claim: $\sum_{S} \left| \hat{f}_{S} \right| \left(1 + \operatorname{sign}(\hat{f}_{S}) \mathbf{x}_{S} \right)$ has a degree-d SoS certificate.

$$\sum_{S} |\hat{f}_{S}| \left(1 + \operatorname{sign}(\hat{f}_{S}) \mathbf{x}_{S}\right) = \sum_{S} |\hat{f}_{S}| + \sum_{S} |\hat{f}_{S}| \operatorname{sign}(\hat{f}_{S}) \mathbf{x}_{S}$$
$$= \sum_{S} |\hat{f}_{S}| + f.$$

Proof of Claim

Proof.

- . Let $|S| \leq d$.
- $S = T_1 \cup T_2, |T_1| \le |T_2| \le d/2.$
- . Then $\mathbf{x}_s = \mathbf{x}_{T_1} \cdot \mathbf{x}_{T_2}$.

$$(\mathbf{x}_{T_1} - \mathbf{x}_{T_2})^2 = \mathbf{x}_{T_1}^2 + \mathbf{x}_{T_2}^2 - 2\mathbf{x}_{T_1}\mathbf{x}_{T_2}$$

$$= 2 - 2\mathbf{x}_{T_1}\mathbf{x}_{T_2}$$

$$\therefore (1 - \mathbf{x}_S) = \frac{1}{2}(\mathbf{x}_{T_1} - \mathbf{x}_{T_2})^2.$$

. Similarly for $(1 + x_S)$.

What if Degree-*d* SoS Certificate Doesn't Exist for *f*?

In that case

- 1. $\exists x$, such that f(x) < 0, or,
- 2. If $d \le 2n$, then f may be non-negative and yet a degree-d SoS certificate doesn't exist.
- ▶ Ideally, if f does not have a degree-d SoS certificate, we would like the "algorithm" to output an x such that f(x) < 0.
- However, that may not always be possible.
- ► To achieve that ideal aim, we construct an object called Pseudo-distribution.

Towards Constructing Pseudo-distribution

Fact

The set $SoS_d \subseteq \mathbb{R}^{2^n}$, where

$$SoS_d \stackrel{\mathsf{def}}{=} \{f \mid f \text{ has a degree-d SoS certificate}\}\$$

is a closed, convex cone.

Theorem (Hyperplane Separation Theorem)

Suppose $K \subseteq \mathbb{R}^N$ is a convex set. Let $\mathbf{v} \notin K$. Then there exists a hyperplane $\mathcal{H} = \{\mathbf{x} | \langle \mathbf{u}, \mathbf{x} \rangle \geq 0\}$, such that $K \subseteq \mathcal{H}$, and $\mathbf{v} \notin \mathcal{H}$.

Towards Constructing Pseudo-distribution

Suppose $p \notin SoS_d$. Then, there exists μ such that p is on one side of the hyperplane (defined by μ) and SoS_d on the other side, i.e.,

$$\begin{split} \sum_{\boldsymbol{x} \in \{-1,1\}^n} \mu(\boldsymbol{x}) \cdot p(\boldsymbol{x}) &< 0, \\ \sum_{\boldsymbol{x} \in \{-1,1\}^n} \mu(\boldsymbol{x}) \cdot f(\boldsymbol{x}) &\geq 0, \qquad \forall f \in \mathrm{SoS}_d \\ \sum_{\boldsymbol{x} \in \{-1,1\}^n} \mu(\boldsymbol{x}) &= 1, \qquad \qquad \text{(by scaling)} \,. \end{split}$$

- Hypothetical: Suppose $\mu \ge 0$, then it describes a probability distribution over $\{-1,1\}^n$.
- . Therefore, there exists a distribution such that for $p \notin SoS_d$

$$\begin{split} & \mathop{\mathbb{E}}_{\mu} \rho < 0, \\ & \mathop{\mathbb{E}}_{\mu} f \geq 0, \\ & \forall f \in \mathrm{SoS}_{d}. \end{split}$$

Pseudo-distribution

▶ Notation: Pseudo-expectation (when μ is not non-negative)

$$\widetilde{\mathbb{E}}_{\mu} f = \sum_{\mathbf{x} \in \{-1,1\}^n} \mu(\mathbf{x}) \cdot f(\mathbf{x}).$$

Definition (Pseudo-distribution)

A $\frac{\text{degree-}d}{:\{-1,1\}^n}$ pseudo-distribution over $\{-1,1\}^n$ is a function $\mu:\overline{\{-1,1\}}^n\to\mathbb{R}$ such that $\tilde{\mathbb{E}}_\mu$ satisfies:

- 1. $\tilde{\mathbb{E}}_{\mu}\mathbf{1}=\mathbf{1}$.
- 2. $\forall f : \deg(f) \leq \frac{d}{2}, \ \tilde{\mathbb{E}}_{\mu} f^2 \geq 0.$

Fact

Every degree $\geq 2n$ pseudo-distribution μ is an actual probability distribution.

Proof Sketch.

- . Define indicator polynomial $f_{\mathbf{y}}: \{-1,1\}^n \to \mathbb{R}$, such that $f_{\mathbf{y}}(\mathbf{y}) = 1$, and $f_{\mathbf{y}}(\mathbf{x}) = 0$, $\forall \mathbf{x} \neq \mathbf{y}$. Moreover, $\deg(f) \leq n$.
- . By definition $\tilde{\mathbb{E}}_{\mu}f_{\mathbf{v}}^2 \geq 0$.
- . Construct the distribution $\operatorname{prob}(\mathbf{y}) \stackrel{\text{def}}{=} \widetilde{\mathbb{E}}_{\mu} f_{\mathbf{y}}^2$. And this distribution is the pseudo-distribution μ .

Specifying Pseudo-distributions

Pseudo-distributions can be specified as a vector $\mu' \in \mathbb{R}^{n^d}$.

Claim

For all degree-d pseudo-distributions, there exists a degree-d multi-linear polynomial $\mu': \{-1,1\}^n \to \mathbb{R}$, such that $\tilde{\mathbb{E}}_{\mu}p = \tilde{\mathbb{E}}_{\mu'}p$ for all p such that $\deg(p) \leq d$.

Proof Sketch.

Write μ and p in multilinear form.

$$\mu(\mathbf{x}) = \sum_{S \subseteq [n]} \hat{\mu}_S \mathbf{x}_S$$

$$p(\mathbf{x}) = \sum_{S \subseteq [n], |S| \le d} \hat{p}_S \mathbf{x}_S.$$

$$\tilde{\mathbb{E}}_{\mu} p = \langle \mu, p \rangle = \langle \mu', p \rangle$$
, where μ' is a degree $\leq d$ part of μ .

Notation- Pseudo-moments: $\widetilde{\mathbb{E}}\mu(1,\mathbf{x})^{\otimes d}$.

(Expectation of a vector) expectations of degree $\leq d$ monomials.

Pseudo-distribution and PSD Matrices

Proposition

 μ is a degree-d pseudo-distribution iff

- 1. $\tilde{\mathbb{E}}_{\mu}\mathbf{1}=\mathbf{1}$,
- 2. $\underbrace{\tilde{\mathbb{E}}_{\mu}(1, \mathbf{x})^{\otimes \frac{d}{2}} \left((1, \mathbf{x})^{\otimes \frac{d}{2}} \right)^{\top}}_{\text{degree-d pseudo-moment matrix}} \geq 0.$
- Parsing notation: The S, T-th entry of the pseudo-moment matrix is $\tilde{\mathbb{E}}_{\mu} \mathbf{x}_{S} \mathbf{x}_{T} = \tilde{\mathbb{E}}_{\mu} \mathbf{x}_{\mathrm{odd}(S+T)}$.

Proof.

- . Let f be a degree-d/2 polynomial.
- . $\tilde{\mathbb{E}}_{\mu}f^{2}=c\left(\hat{f}
 ight)^{ op}M_{d/2}\hat{f}$, because

$$\tilde{\mathbb{E}}_{\mu} f^{2} = \tilde{\mathbb{E}}_{\mu} \left(\sum_{S} \hat{f}_{S} \mathbf{x}_{S} \right)^{2} = \tilde{\mathbb{E}}_{\mu} \sum_{S,T} \hat{f}_{S} \hat{f}_{S} \mathbf{x}_{S} \mathbf{x}_{T}
= \sum_{S,T} \hat{f}_{S} \hat{f}_{T} \tilde{\mathbb{E}}_{\mu} \mathbf{x}_{S} \mathbf{x}_{T}.$$

. But since f^2 is a degree-d SoS, the quadratic form is positive, and therefore, $M_{d/2} \succcurlyeq 0$.

Formal Pseudo-expectation Proof

Theorem

For every f, every even $d \in \mathbb{Z}_{\geq 0}$, there exists a degree-d SoS certificate of f \underline{iff}

 \forall degree-d pseudo-distribution over $\{-1,1\}^n$, $\tilde{\mathbb{E}}_{\mu}f \geq 0$.

Proof

- If Part: If f has a degree-d SoS certificate, $\tilde{\mathbb{E}}_{\mu}f = \sum_{i \leq r} \tilde{\mathbb{E}}_{\mu}g_i^2 \geq 0$.
- Only If Part: Suppose $f \notin SoS_d$, then there exists a hyperplane with μ as the normal vector such that

$$ilde{\mathbb{E}}_{\mu} f < 0,$$
 $ilde{\mathbb{E}}_{\mu} \, g^2 \geq 0,$ $orall g ext{ such that } \deg(g) \leq d/2 \,.$

Need: $\tilde{\mathbb{E}}_{\mu}\mathbf{1} > 0$.

$$\tilde{\mathbb{E}}_{\mu}\mathbf{1}>0$$

Proof Cont...

. We know, $\exists L>0$ such that L+f has a degree-d SoS certificate. We have $\tilde{\mathbb{E}}_{\mu}f<0$, and

$$egin{aligned} & ilde{\mathbb{E}}_{\mu}(L+f) \geq 0 \\ & ilde{\mathbb{E}}_{\mu}L \geq - ilde{\mathbb{E}}_{\mu}f \\ & L\, ilde{\mathbb{E}}_{\mu}\mathbf{1} \geq - ilde{\mathbb{E}}_{\mu}f \\ & ilde{\mathbb{E}}_{\mu}\mathbf{1} \geq rac{- ilde{\mathbb{E}}_{\mu}f}{I} > 0 \,. \end{aligned}$$