Algoritmos de Busca

Busca Linear e Busca Binária

(Fonte: Material adaptado dos Slides do prof. Monael.)

Problema da Busca

Formalmente:

Suponha uma coleção V de elementos de tamanho n:

$$\mathbf{V} = \{ \mathbf{v}_0, \, \mathbf{v}_1, \, \mathbf{v}_2, \, ..., \, \mathbf{v}_{n-1} \}$$

- E um elemento x qualquer.
- Averiguar se $\mathbf{x} = \mathbf{v_i}$, onde $0 \le \mathbf{i} < \mathbf{n}$
- Informalmente:
 - Verificar se um elemento x está no vetor V de tamanho n. Se sim, retorne o índice i, tal que v_i = x, caso contrário retorno -1.

Problema da Busca

Entradas:

- vetor V[0..n-1]
- elemento x

• Saída:

- índice i tal que V[i] == x
- --1 se x não estiver em \vee

Exemplo 1

Buscar na lista: €**

• Exemplo 1

• Exemplo 1

Exemplo 1

Encontramos com 6 comparações!

(Pergunta: Quantas comparações no PIOR caso?)

Exemplo 2

Buscar na lista:★

(Pergunta: Quantas comparações no PIOR caso?)

Exemplo 2

(Pergunta: Quantas comparações no PIOR caso? Resp: n = 10.)

Complexidade de Algoritmos

 Perceba que a quantidade de comparações aumenta conforme aumenta o tamanho da lista.

Tamanho	Comparações
10	10
100	100
1x10 ⁶	1x10 ⁶
1x10 ¹⁰⁰	1x10 ¹⁰⁰

 O esforço do algoritmo (quantidade de comparações) aumenta conforme aumenta-se o tamanho da lista a uma taxa linear.

(Pergunta: Quantas comparações no PIOR caso?)

Complexidade de Algoritmos

Linear

(Pergunta: Quantas comparações no PIOR caso?)

Complexidade de Algoritmos

Consumo de Tempo	Notação
constante	O(1)
logarítmica (Ex. Busca Binária)	O(log n)
linear (Ex. Busca Linear)	O(n)
quadrática	O(n ²)
cúbica	O(n ³)

Busca Linear Iterativa

- Diremos que o algoritmo abaixo consome tempo linear.
- Diremos também que o algoritmo é (n).

```
1. int busca (int *v, int n, int x) {
2.    int i;
3.    for (i = 0; i < n; i++) {
4.        if (v[i] == x) {
5.            return i;
6.        }
7.     }
8.     return -1;
9. }</pre>
```

(Pergunta: Quantas comparações no PIOR caso?)

Busca Linear Iterativa

- Diremos que o algoritmo abaixo consome tempo linear.
- Diremos também que o algoritmo é (n).

(Pergunta: Quantas comparações no PIOR caso?) (Quantas vezes cada linha é executada?)

// Total: O(n) + O(n) + O(3)

Busca Linear Iterativa

- Entradas: vetor V[0..n-1], tamanho de V, elemento x
- Saída: índice i tal que $V[i] == x \quad ou \quad -1 \text{ se } x \text{ não estiver em } V$

```
//"Rascunho":

1. int busca (int *v, int n, int x) {
2. int i;
3. for (i = 0; i < n; i++) { //3.0(n)
4. if (v[i] == x) { //4.0(n) * O(1)
5. return i;  //5.0(1)
6. }
7. }
8. return -1;  //8.0(1)
```

(Pergunta: Quantas comparações no PIOR caso?) // Total: O(n) + O(n) + O(3) (Quantas vezes cada linha é executada?)

- Seria possível fazer a busca linear recursiva?
 - Qual o caso base? (Base da recursão)
 - Quando se encontra o elemento buscado.
 - Quando não há mais onde buscar. (Acaba o espaço de busca)
 - Qual o passo recursivo?
 - Decremente o espaço de busca.

- Qual o caso base?
 - Quando se encontra o elemento buscado.
 - Quando não há mais onde buscar. (Acaba o espaço de busca)
- Qual o passo recursivo?
 - Decremente o espaço de busca.

```
1. int busca (int *v, int n, int x) {
2.    if (n == 0 || v[n-1] == x) { // Base da recursão
3.        return n-1;
4.    }
5.    else {
6.        return busca (v, n-1, x); // Passo recursivo
7.    }
8. }
```

```
// n = 10
int i = busca (v, 10, x);
```

```
if (n == 0 || v[n-1] == x) {  // Base da recursão
    return n-1;
4.    }
5.    else {
6.        return busca (v, n-1, x); // Passo recursivo
7.    }
8. }
```

```
// n = 10
int i = busca (v, 10-1, x);
```

```
1. int busca (int *v, int n, int x) {
2.    if (n == 0 || v[n-1] == x) { // Base da recursão
3.        return n-1;
4.    }
5.    else {
6.        return busca (v, n-1, x); // Passo recursivo
7.    }
8. }
```

```
int i = busca (v, 9, x);
```

```
1. int busca (int *v, int n, int x) {
2.    if (n == 0 || v[n-1] == x) { // Base da recursão
3.        return n-1;
4.    }
5.    else {
6.        return busca (v, n-1, x); // Passo recursivo
7.    }
8. }
```

```
int i = busca (v, 9-1, x);
```

```
1. int busca (int *v, int n, int x) {
2.    if (n == 0 || v[n-1] == x) { // Base da recursão
3.        return n-1;
4.    }
5.    else {
6.        return busca (v, n-1, x); // Passo recursivo
7.    }
8. }
```

```
int i = busca (v, 8, x);
```

```
1. int busca (int *v, int n, int x) {
2.    if (n == 0 || v[n-1] == x) { // Base da recursão
3.        return n-1;
4.    }
5.    else {
6.        return busca (v, n-1, x); // Passo recursivo
7.    }
8. }
```

```
int i = busca (v, 8-1, x);
```

```
1. int busca (int *v, int n, int x) {
2.    if (n == 0 || v[n-1] == x) { // Base da recursão
3.        return n-1;
4.   }
5.    else {
6.        return busca (v, n-1, x); // Passo recursivo
7.   }
8. }
```

```
int i = busca (v, 7, x);
```

```
1. int busca (int *v, int n, int x) {
2.    if (n == 0 || v[n-1] == x) { // Base da recursão
3.        return n-1;
4.    }
5.    else {
6.        return busca (v, n-1, x); // Passo recursivo
7.    }
8. }
```

```
int i = busca (v, 7-1, x);
```

```
    0
    1
    2
    3
    4
    5
    6
    7
    8
    9

    v:
    ★
    ★
    ★
    ★
    ★
    ★
    ★
    ★
    ★
    ★
```

```
1. int busca (int *v, int n, int x) {
2.    if (n == 0 || v[n-1] == x) { // Base da recursão
3.        return n-1;
4.    }
5.    else {
6.        return busca (v, n-1, x); // Passo recursivo
7.    }
8. }
```

```
int i = busca (v, 6, x);
```



```
1. int busca (int *v, int n, int x) {
2.    if (n == 0 || v[n-1] == x) { // Base da recursão
3.        return n-1;
4.    }
5.    else {
6.        return busca (v, n-1, x); // Passo recursivo
7.    }
8. }
```

```
int i = busca (v, 6, x);
```



```
1. int busca (int *v, int n, int x) {
2.    if (n == 0 || v[n-1] == x) {    // Base da recursão
3.        return n-1; // Devolve índice 5
4.    }
5.    else {
6.        return busca (v, n-1, x); // Passo recursivo
7.    }
8. }
    (Pergunta: Quantas comparações?)
```

```
// n = 10
int i = busca (v, 10, x);
```



```
x = \star?
```

```
// n = 10
int i = busca (v, 10, x);
```

```
1. int busca (int *v, int n, int x) {
2.    if (n == 0 || v[n-1] == x) { // Base da recursão
3.        return n-1;
4.    }
5.    else {
6.        return busca (v, n-1, x); // Passo recursivo
7.    }
8. }

(Pergunta: Quantas comparações no PIOR caso?)
```

```
int i = busca (v, 10-1, x);
```

```
1. int busca (int *v, int n, int x) {
2.    if (n == 0 || v[n-1] == x) {    // Base da recursão
3.        return n-1;
4.    }
5.    else {
6.        return busca (v, n-1, x); // Passo recursivo
7.    }
8. }
    (Pergunta: Quantas comparações no PIOR caso?)
```

```
int i = busca (v, 9, x);
```

```
><
  1. int busca (int *v, int n, int x) {
           if (n == 0 \mid | \mathbf{v}[\mathbf{n}-1] == \mathbf{x})  { // Base da recursão
          return n-1;
  5. else {
               return busca (v, n-1, x); // Passo recursivo
                               (Pergunta: Quantas comparações no PIOR caso?)
```

```
int i = busca (v, 9-1, x);
//
... 0
```



```
x = \star i
```

Exemplo 2

```
int i = busca (v, 9-1, x);
//
... 0
```



```
1. int busca (int *v, int n, int x) {
2. if (n == 0 || v[n-1] == x) { // Base da recursão
3. return n-1;
4. }
5. else {
6. return busca (v, n-1, x); // Passo recursivo
7. }
8. }
(Pergunta: Quantas comparações no PIOR caso?)
```

Exemplo 2

```
int i = busca (v, 0, x);
```



```
x = \star?
```

```
1. int busca (int *v, int n, int x) {
2.    if (n == 0 || v[n-1] == x) {    // Base da recursão}
3.        return n-1; // Devolve índice -1
4.    }
5.    else {
6.        return busca (v, n-1, x); // Passo recursivo
7.    }
8. }
    (Pergunta: Quantas comparações no PIOR caso?)
```

- Diremos que o algoritmo abaixo consome tempo linear.
- Diremos também que o algoritmo é (n).

- Entradas: vetor V[0..n-1], tamanho de V, elemento x
- Saída: índice i tal que $V[i] == x \quad ou \quad -1 \text{ se } x \text{ não estiver em } V$

Complexidade de Algoritmos

- Existe algum algoritmo mais eficiente para se realizar a busca?
 - Sim. Entretanto, a lista de elementos deve estar ordenada.

• Exemplo 1: buscar x = 95

(Vetor ordenado. "Dividir para conquistar".)

• Exemplo 1: buscar x = 95

1. meio =
$$\lfloor$$
 (ini+fim) $/2 \rfloor$

2. É o 95?

(Vetor ordenado. "Dividir para conquistar". Direita ou esquerda?)

• Exemplo 1: buscar x = 95

- 1. meio = \lfloor (ini+fim) $/2 \rfloor$
- 2. É o 95?
- 3. Elemento na posição meio é > 95?
- 3.1. Não: Então: ini = meio+1

• Exemplo 1: buscar x = 95

1. meio =
$$\lfloor$$
 (ini+fim) $/2 \rfloor$

(Vetor ordenado. "Dividir para conquistar". Direita ou esquerda? R: Direita)

• Exemplo 1: buscar x = 95

1. meio =
$$\lfloor$$
 (ini+fim) /2 \rfloor

2. É o 95? Sim!

(Pergunta: Quantas comparações para encontrar x? Resp: 2)

• Exemplo 2: buscar $\times = 74$

0									
43	65	69	76	85	89	93	95	99	107

• Exemplo 2: buscar x = 74

1. meio =
$$\lfloor$$
 (ini+fim) /2 \rfloor

2. É o 74?

• Exemplo 2: buscar x = 74

- 1. meio = \lfloor (ini+fim) /2 \rfloor
- 2. É o 74?
- 3. Elemento na posição meio é > 74?
- 3.1. Não: Então: ini = meio+1
- → 3.2. Sim: Então fim = meio 1

• Exemplo 2: buscar x = 74

- 1. meio = \lfloor (ini+fim) /2 \rfloor
- 2. É o 74?
- 3. Elemento na posição meio é > 74?
- 3.1. Não: Então: ini = meio+1
- → 3.2. Sim: Então fim = meio 1

• Exemplo 2: buscar x = 74

1. meio =
$$\lfloor$$
 (ini+fim) /2 \rfloor

2. É o 74?

• Exemplo 2: buscar x = 74

- 1. meio = \lfloor (ini+fim) /2 \rfloor
- 2. É o 74?
- 3. Elemento na posição meio é > 74?
- → 3.1. Não: Então: ini = meio+1
 - 3.2. Sim: Então fim = meio 1

• Exemplo 2: buscar x = 74

- 1. meio = \lfloor (ini+fim) /2 \rfloor
- 2. É o 74?
- 3. Elemento na posição meio é > 74?
- → 3.1. Não: Então: ini = meio+1
 - 3.2. Sim: Então fim = meio 1

• Exemplo 2: buscar x = 74

2. É o 74?

• Exemplo 2: buscar x = 74

- 1. meio = \lfloor (ini+fim) /2 \rfloor
- 2. É o 74?
- 3. Elemento na posição meio é > 74?
- → 3.1. Não: Então: ini = meio+1
 - 3.2. Sim: Então fim = meio 1

• Exemplo 2: buscar x = 74

- 1. meio = \lfloor (ini+fim) /2 \rfloor
- 2. É o 74?
- 3. Elemento na posição meio é > 74?
- → 3.1. Não: Então: ini = meio+1
 - 3.2. Sim: Então fim = meio 1

• Exemplo 2: buscar x = 74

• Exemplo 2: buscar x = 74

- 1. meio = \lfloor (ini+fim) /2 \rfloor
- 2. É o 74?
- 3. Elemento na posição meio é > 74?
- 3.1. Não: Então: ini = meio+1
- → 3.2. Sim: Então fim = meio 1

• Exemplo 2: buscar x = 74

- 1. meio = \lfloor (ini+fim) /2 \rfloor
- 2. É o 74?
- 3. Elemento na posição meio é > 74?
- 3.1. Não: Então: ini = meio+1
- → 3.2. Sim: Então fim = meio 1

(Pergunta: Quantas comparações no pior caso? Resp. 4 $= \lceil \log_2 10 \rceil$)

```
01. int buscaBin (int *v, int n, int x) {
02.
       int ini = 0, fim = n-1, meio;
03.
     while (ini <= fim) {</pre>
04.
          meio = (ini + fim) / 2;
05.
           if (v[meio] == x) {
06.
           return meio;
07.
08.
    else if (v[meio] > x) {
09.
               fim = meio-1;
10.
11.
       else {
12.
           ini = meio + 1;
13.
14.
15. return -1;
16. }
```

(Pergunta: Quantas comparações no PIOR caso? Resp. $\lceil \log_2 n \rceil$)

- Pior Caso: Busca Binária
 - No pior caso são necessárias log₂ n comparações.
 - Portanto a Busca Binária é um algoritmo logarítmico ou O(log₂ n).

Pior Caso: Busca Binária

Linear vs. Logarítmico

 Algoritmos logarítmicos são mais eficientes que algoritmos lineares. Por quê?

n	log(n)
2	1
4	2
8	3
10	3.3219280948873626
16	4
32	5
64	6
128	7

Velocidade de crescimento

Qual curva cresce mais lentamente?

Complexidade de Algoritmos

Consumo de Tempo	Notação
constante	O(1)
logarítmica (Ex. Busca Binária)	O(log n)
linear (Ex. Busca Linear)	O(n)
quadrática	O(n ²)
cúbica	O(n ³)
exponencial	Ex. O(2 ⁿ)

- Notação O(.) ("Ó-grande")
 - análise do comportamento assintótico
 - "para n grande"
 - consumo de tempo
 - consumo de espaço (memória)

- Pergunta: Qual seria uma "boa" medida para uma análise de consumo de tempo de um algoritmo?
 - Para cada linha do código, podemos somar:
 - 1) tempo de execução (ex. segundos)?
 - 2) quantidade de operações executadas?
 - 3) quantidade de vezes que cada linha é executada?

- Pergunta: Qual seria uma "boa" medida para uma análise de consumo de tempo de um algoritmo?
 - Para cada linha do código, podemos somar:
 - 1) tempo de execução (ex. segundos)? (depende da velocidade da máquina)
 - 2) quantidade de operações executadas?
 - 3) quantidade de vezes que cada linha é executada? ("Simplificação" = Notação assintótica)

Complexidade de Algoritmos

Comparação entre Complexidades

- * O(1): constante mais rápido, impossível
- * $O(\log \log n)$: super-rápido
- * $O(\log n)$: logarítmico muito bom
- * O(n): linear é o melhor que se pode esperar se algo não pode ser determinado sem examinar toda a entrada
- * O (n log n) : limite de muitos problemas práticos, ex.: ordenar uma coleção de números
- * $O(n^2)$: quadrático
- * $O(n^k)$: polinomial ok para n pequeno
- * $O(k^n)$, O(n!), $O(n^n)$: exponencial evite!

(Fonte: http://www.inf.ufrgs.br/~prestes/Courses/Complexity/aula1.pdf)