# The Parser of Pascal

C++ Implementation

# Outline

- 1.Introduction
- 2.Journal of testing
- 3.Conclusion

# Outline

- 1.Introduction
- 2.Journal of testing
- 3.Conclusion



## Overview



Figure: Processing Pipeline

# Overview



We have reached here!

Figure: Processing Pipeline

### Introduction

- Writing a C++ parser with respect to SLR(1) mechanism.
- Two approaches to construct SLR(1) parser:
  - 1.Flex+Bison: Mature and Simple
  - 2.Hand-Writing: Learning SLR(1) the "hard" way

# Parser

- · Given a grammar and a statement;
- Judging if the statement matches the grammar.



# Bottom-Up Parsing

- Scanning and parsing the input text.
- Building up the parse tree bottom up, and left to right.



### Shift and Reduce Actions

- Shift: advances in the input stream by one symbol
- Reduce: applies a completed grammar rule



# Table-based LR(1)

- Stack: Runtime State, Symbol
- Goto Table: State Transition
- Action Table: Applied Action



### Table Construction

- Items, eg.  $E \rightarrow \bullet E + B$
- Closure of item sets
- Building the canonical LR(1) collection
- Finite automaton machine



# Conflict Resolution

- Manually defining the priority in the item set.
- · See our testing example below.



#### **Problems with Grammars**

- Grammars can cause problems when constructing a LR parser
  - Shift-reduce conflicts
  - Reduce-reduce conflicts

1/12/2010

@ 2002-10 Hal Perkins & UW CSE

D-32

# Outline

- 1.Introduction
- · 2.Journal of testing
- 3.Conclusion



# Input Grammar

- S program id; | compound\_stmt.
- compound\_stmt begin stmts end
- stmts stmt | stmts; stmt
- stmt id := expr | compound\_stmt | if\_stmt | for\_stmt | while bool do stmt | ε
- if\_stmt if bool then stmt | if bool then stmt else stmt
- for\_stmt for id := expr to expr do stmt | for id := expr downto expr do stmt
- bool expr > expr | expr < expr</li>
- expr expr + expr | expr expr | expr \* expr | expr / expr | expr ^ factor | factor
- factor id | num | ( expr )

# Test Program

```
program test;
  begin
     x = 19;
     for i:=100 downto 15 do
       if x < y + (15-9) then y := x
             else begin
          while x+y*z>x do begin y:=y+y^5-1 end;
           z := z * 7 + x
  end
end.
```

• Generating Token file by using our lexer program.

```
parser_tests — -bash — 58×24
ChenMac:parser_tests wasdns$ cat given_example_tocken.txt 🗏
Token(PROGRAM, 'PROGRAM')
Token(ID, 'test')
Token(BEGIN, 'BEGIN')
Token(ID, 'x')
Token(ASSIGN, ':=')
Token(INTEGER_CONST, 19)
Token(SEMI, ';')
Token(ID, 'for')
Token(ID, 'i')
Token(ASSIGN, ':=')
Token(INTEGER_CONST, 100)
Token(ID, 'downto')
Token(INTEGER_CONST, 15)
Token(ID, 'do')
Token(ID, 'if')
Token(ID, 'x')
Token(LANGBRA, '<')
Token(ID, 'y')
Token(PLUS, '+')
Token(LPAREN, '(')
Token(INTEGER_CONST, 15)
Token(MINUS, '-')
Token(INTEGER_CONST, 9)
```

Figure 2: Our Lexer Output(Partly)

• Converting the token.txt with the parser-familiar format

```
build — -bash — 58×24
ChenMac:build wasdns$ cat input.txt
program
id
begin
id
:=
num
for
id
:=
num
downto
num
do
if
id
<
id
+
num
```

Figure 3: Converted Lexer Output(Partly)

```
ChenMac:pascal-compiler wasdns$ ls
LICENSE
                                                 run_lexer.py
                        docs
                                                 run_lexer_ply.py
                         lexer_tests
README
build
                        parser_tests
                                                 run_parser_demo.sh
                        ply_frontend
cleanup.sh
                                                 src
ChenMac:pascal-compiler wasdns$ ./run_parser_demo.sh
ChenMac:pascal-compiler wasdns$ cd build/
ChenMac:build wasdns$ ls
action_and_goto.txt
                        grammar.txt
                                                 parser
                                                 slr.txt
                         input.txt
error.txt
first_and_follow.txt
                        output.txt
ChenMac:build wasdns$
```

```
ChenMac:pascal-compiler wasdns$ ls
LICENSE
                                                 run_lexer.py
                        docs
                                                 run_lexer_ply.py
                         lexer_tests
README
                                                run_parser_demo.sh
build
                        parser_tests
                        ply_frontend
cleanup.sh
                                                 src
[ChenMac:pascal-compiler wasdns$ ./run_parser_demo.sh
ChenMac:pascal-compiler wasdns$ cd build/
ChenMac:build wasdns$ ls
action_and_goto.txt
                        grammar.txt
                                                 parser
error.txt
                                                 slr.txt
                        input.txt
first_and_follow.txt
                        output.txt
ChenMac:build wasdns$
```

#### What's does this script do?

- 1.Creating build/ folder;
- 2. Running Lexer and generating **output files** in build/;
- 3. Compiling parser program;
- 4. Reading and parsing the grammar and the output files;
- 5. Generating results in build/folder.

```
ChenMac:pascal-compiler wasdns$ ls
LICENSE
                                                 run_lexer.py
                        docs
                                                 run_lexer_ply.py
                        lexer_tests
README
build
                        parser_tests
                                                 run_parser_demo.sh
                        ply_frontend
cleanup.sh
                                                 src
[ChenMac:pascal-compiler wasdns$ ./run_parser_demo.sh
ChenMac:pascal-compiler wasdns$ cd build/
ChenMac:build wasdns$ ls
action_and_goto.txt
                        grammar.txt
                                                 parser
                                                 slr.txt
error.txt
                        input.txt
first_and_follow.txt
                        output.txt
ChenMac:build wasdns$
```

Results of running parser

1.first\_and\_follow.txt: Print the first set and follow set

```
00
```

```
====FIRST====
FIRST(S') = { program }
FIRST(S) = { program }
FIRST(compound_stmt) = { begin }
FIRST(stmts) = \{;, begin, for, id, if, while, \epsilon\}
FIRST(stmt) = \{ begin , for , id , if , while , \epsilon \}
FIRST(if_stmt) = { if }
FIRST(for_stmt) = { for }
FIRST(bool) = \{ ( , id , num \}
FIRST(expr) = { ( , id , num }
FIRST(factor) = { ( , id , num }
FIRST(id) = { id }
FIRST(;) = { ; }
FIRST(.) = {.}
FIRST(begin) = { begin }
FIRST(end) = { end }
FIRST(:=) = { := }
FIRST(while) = { while }
FIRST(do) = { do }
FIRST(if) = { if }
FIRST(then) = { then }
FIRST(else) = { else }
FIRST(to) = { to }
FIRST(downto) = { downto }
FIRST(>) = { > }
FIRST(<) = { < }
FIRST(+) = \{ + \}
FIRST(-) = \{ - \}
FIRST(*) = { * }
FIRST(/) = { / }
FIRST(^) = { ^ }
FIRST(num) = { num }
FIRST(() = { ( } )
FIRST()) = { } 
FIRST(program) = { program }
FIRST(for) = { for }
FIRST(\$) = \{\$\}
_____
====F0LL0W====
FOLLOW(S) = \{ \$ \}
FOLLOW(compound_stmt) = { . , ; , else , end }
FOLLOW(stmts) = { ; , end }
FOLLOW(stmt) = { ; , else , end }
FOLLOW(if_stmt) = { ; , else , end }
FOLLOW(for_stmt) = { ; , else , end }
FOLLOW(bool) = { do , then }
```

Figure: First and Follow

Figure: First and Follow

```
8 0
                                                     first_and_follow.txt
                                                                                                 使用"文本编辑"打开
====FIRST====
FIRST(S') = { program }
FIRST(S) = { program }
FIRST(compound_stmt) = { begin }
FIRST(stmts) = { ; , begin , for , id , if , while , ε }
FIRST(stmt) = { begin , for , id , if , while , ε }
FIRST(if_stmt) = { if }
FIRST(for_stmt) = { for }
FIRST(bool) = { ( , id , num }
FIRST(expr) = { ( , id , num }
FIRST(factor) = { ( , id , num }
FIRST(id) = { id }
FIRST(;) = { ; }
FIRST(.) = { . }
FIRST(begin) = { begin }
FIRST(end) = { end }
FIRST(:=) = { := }
FIRST(while) = { while }
FIRST(do) = { do }
FIRST(if) = { if }
FIRST(then) = { then }
FIRST(else) = { else }
FIRST(to) = { to }
FIRST(downto) = { downto }
FIRST(>) = { > }
FIRST(<) = { < }
FIRST(+) = \{ + \}
FIRST(-) = \{ - \}
FIRST(*) = { * }
FIRST(/) = { / }
FIRST(^) = { ^ }
FIRST(num) = { num }
FIRST(() = { ( } )
FIRST()) = { ) }
FIRST(program) = { program }
FIRST(for) = { for }
FIRST(\$) = \{\$\}
====F0LL0W====
FOLLOW(S) = \{ s \}
FOLLOW(compound_stmt) = { . , ; , else , end }
FOLLOW(stmts) = { ; , end }
FOLLOW(stmt) = { ; , else , end }
FOLLOW(if_stmt) = { ; , else , end }
                                              Follow
FOLLOW(for_stmt) = { ; , else , end }
FOLLOW(bool) = { do , then }
-----
```

Figure: First and Follow

```
ChenMac:pascal-compiler wasdns$ ls
LICENSE
                                                 run_lexer.py
                        docs
                                                 run_lexer_ply.py
                         lexer_tests
README
build
                        parser_tests
                                                 run_parser_demo.sh
                        ply_frontend
cleanup.sh
                                                 src
[ChenMac:pascal-compiler wasdns$ ./run_parser_demo.sh
ChenMac:pascal-compiler wasdns$ cd build/
ChenMac:build wasdns$ ls
action_and_goto.txt
                        grammar.txt
                                                 parser
                                                 slr.txt
                        input.txt
error.txt
first_and_follow.txt
                        output.txt
ChenMac:build wasdns$
```

#### Results of running parser

```
1.first_and_follow.txt: Print the first set and follow set

2.action_and_goto.txt: Print the action and goto table
```

|      |    |      |       |    |          |          |          |          |       |     |          |        |          |              |       |          |          |     | 1    | actio    | n_ar    | nd_g | oto.t | xt ~  | ,      |          |      |   |              |         |          |          |               |         |        |        |     |
|------|----|------|-------|----|----------|----------|----------|----------|-------|-----|----------|--------|----------|--------------|-------|----------|----------|-----|------|----------|---------|------|-------|-------|--------|----------|------|---|--------------|---------|----------|----------|---------------|---------|--------|--------|-----|
| stat | :e | id   | ;     | ١. | beg      | in e     | nd   ::  | =  whil  | .e do | if  | then     | ı else | to  down | <u>to</u>  > | <     | +        | l-<br>   | *   | /    | <u> </u> |         | num  | (     | )     | progra | m fo<br> | r \$ | S | compound_stm | nt stmt | s stm1   | t if_stm | t for_stm<br> | t   boo | llexpr | factor | 1 1 |
| 0    | ١  |      | l<br> |    | <u> </u> |          | <u> </u> | <u> </u> |       | 1   | 1        | l      |          | <u> </u>     | l<br> | 1        | <u> </u> |     |      |          |         |      | l     | l<br> | S2     | <u> </u> | 1    | 1 |              | ı       | _I       | 1        |               | 1       | 1      | 1      | 1   |
| 1    | ١  |      | l     | 1  | 1        |          |          | <u> </u> |       |     | <u> </u> | I      |          | I            | l     | <u> </u> | <u> </u> |     | ١    |          | I       |      | l     | l     | l<br>  | <u> </u> | ac   | c |              | ı       | <u> </u> |          |               | 1       | I      | 1      | 1   |
| 2    | ١  | S3   | l     |    | ı        |          |          |          |       | 1   | <u> </u> | l      |          | l            | l     | I        | 1        | ١   | ١    |          | ا       |      | l     | l<br> |        | <u> </u> | ı    | ı |              | 1       | <u> </u> |          |               | 1       | 1      | 1      | 1   |
| 3    | l  |      | S4    |    | 1        | <u> </u> | 1        |          |       | 1   | <u> </u> | l      |          | l            | l     | 1        | 1        | ı   | ١    |          | ا       |      | l     | l<br> |        | <u> </u> | 1    | 1 |              |         | <u> </u> |          |               | 1       | l      |        | 1   |
| 4    | ١  |      |       |    | S6       |          | ı        | ı        |       | 1   | <u> </u> | l      |          | l            | l     | 1        | 1        | ١   | ١    |          | ا       |      | l     | l<br> |        | <u> </u> | ı    | ı | 5            |         | ı        |          | l             | ı       | 1      |        | 1   |
| 5    | ١  |      |       | S7 | ı        |          | ı        |          |       | 1   | <u> </u> | l      |          | l            | l     | ١        |          | ١   | ١    |          | ا       |      | l     | l     |        | <u> </u> | I    | ı |              | 1       | 1        |          | 1             | 1       |        |        | 1   |
| 6    | ١  | S10  | r10   |    | S6       | r        | 10       | S14      |       | S15 | 5        | r10    |          | l            | l     | I        | 1        | ١   | ١    |          | ا       |      | l     | l<br> |        | S1       | 6    | ı | 11           | 8       | 9        | 12       | 13            | ı       | 1      |        | 1   |
| 7    | ١  |      |       |    | ı        | l        | I        | ı        |       | 1   |          | I      |          | ı            |       | ١        |          | ١   | ١    | I        | ا       |      | l     |       |        | <u> </u> | r1   |   |              | ı       | I        |          | ı             | ı       |        |        | 1   |
| 8    | ١  |      | S18   | 1  | ١        | S        | 17       | I        | ١     | 1   | I        | I      |          | I            | I     | ١        | ١        | ١   | ١    | I        | ١       |      | l     | l     | I      | ı        | I    | ı | l            | I       | I        | l        | I             | I       | I      | 1      | 1   |
| 9    | I  |      | r3    | I  | ı        | r:       | 3        | ı        | ı     | I   | I        | I      | I I      | I            | I     | I        | ı        | ı   | ı    | ı        | I       |      | ı     |       | I      | ı        | ı    | ı | ı            | ı       | ı        | ı        | ı             | I       | I      | I      | I   |
| 10   | Ī  |      |       | I  | ı        | I        | S        | 19       | ı     | I   | I        | I      | I I      | I            | I     | I        |          | ı   | ı    | I        |         |      | ı     |       | ı      | ı        | ı    | ı | ı            | ı       | ı        | ı        | ı             | ı       | ı      | I      | Ī   |
| 11   | ī  |      | r6    | I  | ı        | r        | 6        | ı        | 1     | ı   | 1        | r6     | I I      | ı            | I     | ı        | 1        | ı   | ı    | I        |         |      | ı     |       |        | 1        | ı    | ı | ı            | ı       | ı        | ı        | I             | ı       | 1      | I      | Ī   |
| 12   | Ī  |      | r7    |    | ı        | r        | 7        | 1        | 1     | ı   | 1        | r7     | I I      | ı            |       | I        | 1        | ı   | Ī    | I        |         |      | ı     |       |        | 1        | ı    | ı |              | ı       | ı        |          | I             | ı       | I      |        | Ī   |
| 13   | Ī  |      | r8    | ı  | ı        | r        | В        | ı        | 1     | ı   | ı        | r8     | I I      | ı            | I     | 1        | 1        | ı   | ı    | 1        |         |      | Ι     |       |        | 1        | ı    | ı | 1            | ı       | 1        |          | Ι             | 1       | 1      | I      | ī   |
| 14   | ī  | S23  |       | ı  | ı        | ı        | ı        | ı        | 1     | ı   | ı        | ı      | I I      | ı            | ı     | ı        | ı        | ı   | ı    | 1        |         | S24  | S25   | ı     |        | ı        | ī    | ı |              | ı       | 1        |          | ı             | 20      | 21     | 22     | ī   |
| 15   | ī  | S23  |       | ı  | ı        | ı        | ı        | ı        | 1     | ı   | ı        | ı      |          | ı            | ı     | ı        | ı        | ı   | ı    | 1        |         | S24  | S25   | l     | ı      | ı        | ı    | ı |              | ı       | ı        | ı        | ı             | 26      | 21     | 22     | ï   |
| 16   | ī  | S27  |       | ı  | ı        | ı        | ı        | ı        | 1     | 1   | ı        | ı      | I I      | ı            | ı     | ı        | 1        | ı   | ı    | 1        |         |      | ı     | ı     | 1      | ı        | ı    | ı |              | ı       | ı        | 1        | ı             | 1       | ı      | ı      | ī   |
| 17   | Ī  |      | r2    | r2 | ı        | r        | 2        | ı        | 1     | 1   | ı        | r2     |          | ı            | ı     | ı        | ı        | ı   | ı    | 1        |         |      | ı     | ı     | ı      | 1        | ı    | ı |              | ı       | ı        | ı        | 1             | ı       | ı      | ı      | ī   |
| 18   | Ī  | S10  | r10   |    | S6       | r:       | 10       | 514      | 1     | S15 | 5        | r10    | I I      | ı            | l     | 1        | 1        | ı   | ı    | 1        |         |      | 1     |       | Ι      | 51       | 6    | ı | 11           | ı       | 28       | 12       | 13            | 1       | 1      | ı      | ī   |
| 19   | Ī  | S23  |       | 1  | 1        | 1        | 1        | ı        | 1     | ı   | ı        | ı      | I I      | ı            | l     | 1        | 1        | ı   | ı    | 1        |         | 524  | S25   |       | Ι      | 1        | ı    | ı |              | ı       | Ι        | 1        | I             | 1       | 29     | 22     | ī   |
| 20   | Ī  |      |       |    | ı        |          | 1        | 1        | 53    | 0   | ı        | ı      | I I      | 1            |       | 1        | 1        | ı   |      | 1        |         |      | I     |       | Ι      | 1        | ı    | ı |              | 1       | Ι        | 1        | I             | 1       | 1      | ı      | ī   |
| 21   | Ī  |      |       |    | 1        | 1        | 1        | 1        | 1     | 1   | ı        | ı      | I I      | 531          | S3    | 2 53     | 3 53     | 4 S | 35 9 | 36       | S37     |      | I     |       | 1      | 1        | 1    | ı |              | 1       | Ι        | 1        | I             | 1       | ī      | ı      | ī   |
| 22   | Ī  |      | r22   |    | ı        | r        | 22       | 1        | r2    | 2   | r22      | r22    | r22 r22  | r22          | r2    | 2 r2     | 2 r2     | 2 r | 22 1 | 22       | r22     |      | I     | r22   | 2      | 1        | ı    | ı |              | ı       | Ι        | 1        | I             | 1       | ı      | ı      | ī   |
| 23   | ı  |      | r23   |    | 1        | r        | 23       | 1        | r2    | 3   | r23      | r23    | r23 r23  | r23          | r2:   | 3 r2     | 3 r2     | 3 r | 23 1 | 23       | r23     |      | l     | r23   | 3      | 1        | 1    | ı |              | 1       | Ι        | 1        | I             | 1       | ı      | 1      | ī   |
| 24   | 1  |      | r24   |    | ı        | r        | 24       | Ι        | r24   | 4   | r24      | r24    | r24 r24  | r24          | r2    | 4 r2     | 4 r2     | 4 r | 24 1 | 24       | r24     |      |       | r24   | 4      |          | ı    | ı |              | Ι       | Ι        |          | I             | Ι       | ı      | Ι      | ī   |
| 25   |    | S23  |       | 1  | ı        | ı        | ı        | Ι        | ı     | ı   | ı        | ı      | I I      | Ι            | <br>  | 1        | 1        |     | I    |          | l       | S24  | S25   | <br>  | Ι      |          | ı    | ı |              | Ι       | Ι        | Ι        | I             | Ι       | 38     | 22     | ī   |
| 26   |    |      | <br>  | 1  |          |          | 1        |          | 1     | 1   | S39      | ı      | I I      | Ι            | <br>  | 1        | 1        |     | I    | I        | l       |      | <br>I | <br>  | I      |          |      | 1 |              | Ι       |          | 1        | I             | 1       | Ι      | Ι      | ī   |
| 27   |    |      | <br>  | 1  |          |          | S        | 40       | 1     | 1   |          | ı      | I I      | Ι            | <br>  | 1        |          |     | I    | I        | <br>    |      | <br>I | <br>  | <br>   |          | 1    | 1 |              | Ι       |          | Ι        | I             | 1       | Ι      | Ι      | ī   |
| 28   | I  |      | r4    | 1  |          | r        | 4        | Ι        | 1     | 1   |          | ı      | I I      | Ι            | <br>  | 1        | 1        |     | I    | I        | l       |      | <br>I | <br>  | I      |          |      | 1 |              | Ι       |          | 1        | I             |         |        | <br>   | ī   |
| 29   |    |      | r5    |    |          | r        | 5        | I        | 1     | 1   |          | r5     | I I      | I            | <br>  | S3       | 3 S3     | 4 S | 35 9 | 36       | <br>S37 |      | <br>  | <br>  | I      |          | 1    | 1 |              | Ι       |          | 1        | I             | 1       |        | <br>   | ī   |
| 30   | ۱  | S10  | r10   | )  | S6       | r:       | 10       | 514      | 1     | S15 | <br>5    | r10    | I I      | I            | <br>  | 1        |          |     | I    | I        | <br>    |      | <br>I | <br>  | I      | 51       | .6   | Ι | 11           | Ι       | 41       | 12       | 13            |         | Ι      | <br>   | ī   |
| 131  | 1  | 5231 |       | ı  | 1        | 1        | 1        | 1        | 1     | 1   | 1        | 1      | 1 1      | 1            | 1     | ı        | 1        | 1   | 1    |          |         | 524  | 1525  | ı     | 1      |          | 1    | 1 | 1            | 1       | 1        | 1        | 1             | 1       | 147    | 122    | 1   |
|      |    |      |       |    |          |          |          |          |       |     |          |        |          |              |       |          |          |     |      |          |         |      |       |       |        |          |      |   |              |         |          |          |               |         |        |        |     |

| 00    | 0        |       |     |          |           |                                              |          |          |    |     |      |            |          |      |      |      | $\overline{C}$ |      |     | ac                                           | tion_ | and | got  | to.tx | ~   |    | 9/9   |       |            |            |          |       |         |            |        | 319           |          |        |
|-------|----------|-------|-----|----------|-----------|----------------------------------------------|----------|----------|----|-----|------|------------|----------|------|------|------|----------------|------|-----|----------------------------------------------|-------|-----|------|-------|-----|----|-------|-------|------------|------------|----------|-------|---------|------------|--------|---------------|----------|--------|
| state | e id     | ;     |     | begi     | n end<br> | :=                                           | whil     | e do     | if | the | n el | se te      | o  downt | :o > | <    | +    | 5              | te   | lt  | e                                            | 1,    | A   | 1    | CU    | lC  | n  | am fo | or \$ | S          | compound_s | tmt stmt | s stm | t if_st | mt for_str | nt boo | l <u>ex</u> p | r facto  | rl<br> |
| 10    | <u>.</u> |       |     | <u> </u> |           | <u>.                                    </u> | <u> </u> |          |    |     |      |            |          |      |      |      | !              |      |     | <u>.                                    </u> | -     | ٠   |      |       |     | S2 |       |       | 1          |            |          |       | -       |            |        |               | <u> </u> |        |
| 1     | 1        |       |     | <u> </u> |           | <u> </u>                                     | 1        |          | 1  | 1   |      |            | 1        |      |      |      |                |      |     | <u> </u>                                     | 1     | 1   |      |       |     |    |       | a     | cc         | 1          |          | 1     | 1       | 1          | 1      | 1             |          |        |
| 2     | 53       |       |     | l        |           | I                                            | 1        | 1        | 1  | 1   | 1    | 1          | 1        | 1    | 1    |      |                |      |     | 1                                            | 1     | 1   | 1    |       |     |    | 1     |       |            | 1          |          |       | 1       | 1          | 1      |               | 1        |        |
| 3     | 1        | 54    |     |          | 1         | 1                                            | 1        | 1        | 1  | 1   | 1    | 1          | 1        | 1    | 1    | _    | _              | _    |     | 1                                            | 1     | 1   | . !  | _     |     |    |       | 1     | 1          | 1          |          | 1     | 1       | 1          | 1      | 1             | 1        | 1      |
| 4     | 1        | 1 1   |     | S6       | 1         | 1                                            | 1        | 1        | 1  | 1   | 1    | 1          | 1        | 1    | 1    | 1    | 1              | 1    |     | 1                                            | 1     | 1   | 1    | 1     | -   |    | 1     | 1     | 1          | 5          |          | 1     | 1       | 1          | 1      | 1             | 1        | 1      |
| 5     | 1        | 1 1   | 57  | 1        | 1         | 1                                            | 1        | 1        | 1  | 1   | 1    | 1          | 1        | 1    | 1    | 1    | 1              |      |     | 1                                            | 1     | 1   | 1    | 1     |     |    | 1     | 1     | 1          | 1          |          | 1     | 1       | 1          | 1      | 1             | 1        | 1      |
| 16    | 510      | r10   |     | 56       | r10       | 1                                            | S14      | 1        | 51 | 5   | r:   | 10         | 1        | -1   | I    | -    | - 1            |      |     | 1                                            | 1     | 1   | I    | - 1   |     |    | Si    | 16    | - 1        | 11         | 8        | 19    | 12      | 13         |        | 1             | 1        |        |
| 17    | 1        | 1 1   |     | 1        | 1         | 1                                            | 1        | 1        | 1  | 1   | 1    | 1          | 1        | 1    | 1    | -1   | -              | -    |     | 1                                            | 1     | 1   | 1    | - 1   | 1   |    | 1     | Ir    | 1          | 1          | 1        | 1     | 1       | 1          | 1      | 1             | 1        | 1      |
| 8     | 1        | 518   |     |          | S17       | ī                                            | 1        | 1        | 1  | 1   | 1    | 1          | 1        | 1    |      | 1    | I              |      |     | 1                                            | 1     | 1   | T    | 1     | ı   |    |       | 1     | 1          | 1          | 1        | 1     | 1       | 1          |        | 1             | 1        |        |
| 19    | 1        | r3    |     | 1        | r3        | 1                                            | 1        | 1        | 1  | 1   | 1    | 1          | 1        | 1    | 1    | 1    | Ī              | I    |     | 1                                            | 1     | ı   | 1    | I     | 1   |    | 1     | 1     | 1          | 1          |          | 1     | 1       | 1          |        | 1             | 1        | 1      |
| 10    | 1        | 1     |     | 1        | 1         | 519                                          | 1        | 1        | 1  | 1   | 1    | 1          | 1        | 1    | 1    | 1    | ī              | ı    |     | 1                                            | 1     | 1   | 1    | 1     | 1   |    | 1     | 1     | 1          | 1          |          | 1     | 1       | 1          | 1      | 1             | 1        | 1      |
| 11    | ī        | r6    |     | 1        | r6        | ı                                            | 1        | 1        | 1  | 1   | 16   | 1          | 1        | 1    | 1    | 1    | 1              | i    |     | 1                                            | 1     | 1   | 1    | 1     | 1   |    | 1     | 1     | 1          | 1          |          | 1     | 1       | ī          | 1      | 1             |          | ī      |
| 12    | 1        | r7    |     | 1        | 17        | ı                                            | 1        | 1        | 1  | 1   | 17   | 1          | 1        | 1    | 1    | 1    | ī              | 1    |     | ī                                            | 1     | 1   | 1    | 1     | 1   |    | 1     | 1     | 1          | 1          | 1        | 1     | 1       | 1          |        | 1             | 1        |        |
| 13    | 1        | r8    |     |          | r8        | 1                                            | 1        | 1        | 1  | ī   | 18   |            | 1        | 1    | 1    | 1    | ī              | I    |     | 1                                            | 1     | 1   | 1    |       | 1   |    | 1     | 1     | 1          | 1          | 1        | 1     | 1       | 1          |        | 1             | 1        | ī      |
| 14    | 523      | 31 1  |     | 1        | 1         | 1                                            | 1        | 1        | 1  | 1   | 1    | 1          | 1        | 1    | 1    | 1    | 1              | 1    |     | 1                                            | 1     | 152 | 24 5 | 25    | 1   |    | 1     | 1     | 1          | 1          |          | 1     | 1       | 1          | 120    | 21            | 22       | 1      |
| 15    | 523      | 3     |     | 1        | 1         | 1                                            | 1        | 1        | 1  | 1   | I    | 1          |          | 1    | 1    | 1    | 1              | 1    |     | 1                                            | 1     | 152 | 24 5 | 25    | 1   |    | ī     | 1     | 1          | 1          | 1        | 1     | 1       | 1          | 26     | 21            | 22       | ī      |
| 16    | 527      | 71 1  |     | 1        | 1         | 1                                            | 1        | 1        | 1  | 1   | 1    | 1          | 1        | 1    | 1    | 1    | 1              |      |     | 1                                            | 1     | ī   | 1    | ī     | 1   |    | 1     | 1     | 1          |            | 1        | 1     | 1       | 1          | 1      | 1             | 1        | 1      |
| 17    | 1        | r2    | r2  | 1        | r2        | 1                                            | 1        | 1        | 1  | 1   | r2   |            | 1        | 1    | 1    | 1    | T              |      |     | 1                                            | ī     | 1   | T    | 1     | 1   |    | 1     | 1     | 1          | 1          |          | 1     | 1       | 1          |        | 1             | 1        | 1      |
| 18    | 510      | ) r10 |     | S6       | r10       | 1                                            | 514      | 1        | 51 | 5   | r:   | 10         | 1        | 1    | 1    | 1    | 1              |      |     | ī                                            | ī     | 1   | ī    | 1     | ī   |    | 51    | 16    | 1          | 11         |          | 28    | 12      | 13         |        | 1             | 1        |        |
| 19    | 523      | 3     |     | 1        | 1         | 1                                            | 1        | 1        | 1  | 1   | 1    | 1          | 1        | 1    | 1    | 1    | 1              |      |     | 1                                            | 1     | 152 | 24 5 | 25    | 1   |    | 1     | 1     | 1          |            |          | ī     | 1       | 1          | 1      | 29            | 22       |        |
| 120   | 1        |       |     | 1        | 1         | 1                                            | 1        | 530      | 01 | 1   | 1    |            | 1        | 1    | 1    | 1    | 1              | ī    |     | 1                                            | 1     | 1   | ī    | 1     | 1   |    | ī     | 1     | 1          | 1          |          | 1     | 1       | 1          | 1      | 1             | 1        |        |
| 21    | 1        | 1     |     | 1        | 1         | 1                                            | 1        | 1        | 1  | 1   | 1    | 1          | 1        | IS   | 31 5 | 32 5 | 33             | 534  | 535 | 53                                           | 5 53  | 7   |      | 1     | 1   |    | T     | 1     | 1          | 1          |          | 1     | 1       | 1          | 1      | 1             |          |        |
| 22    | 1        | r22   |     | 1        | r22       | 1                                            | 1        | r22      | 2  | r22 | Ira  | 2  r       | 22 r22   | Ir   | 22 r | 22 r | 22             | r22  | r22 | r2                                           | 2 r2  | 2   | 1    | 1     | 22  |    | 1     | 1     | 1          | 1          |          | 1     | 1       | 1          | 1      | 1             | 1        |        |
| 23    | 1        | r23   |     | 1        | r23       | 1                                            | 1        | r23      | 3  | r23 | r2   | 3  r       | 23 r23   | In   | 23 r | 23 r | 23             | r23  | r23 | r2                                           | 3 r2  | 3   | 1    | 1     | 23  |    | 1     | 1     | 1          | 1          | 1        | 1     | 1       | 1          | 1      | 1             | 1        |        |
| 24    | 1        | r24   |     |          | r24       | 1                                            | 1        | r2       | 4  | r24 | r2   | 4  r       | 24 r24   | r2   | 24 r | 24 r | 24             | r24  | r24 | r2                                           | 4 r2  | 4   | 1    | 1     | -24 |    | 1     | 1     | 1          | 1          | 1        | 1     | 1       | 1          |        | 1             | 1        |        |
| 25    |          |       |     |          | 1         |                                              | 1        | 1        | 1  | 1   |      | 1          |          | 1    | 1    | 1    |                | 1    |     |                                              |       |     |      | 25    |     |    |       |       | 1          |            | 1        | 1     | 1       | 1          |        |               | 22       |        |
| 126   |          |       |     |          | 1         | 1                                            | 1        |          | 1  | 539 |      |            |          | 1    | 1    | 1    |                |      |     |                                              |       |     |      |       | -   |    | 1     | 1     | 1          | 1          |          | 1     | 1       | 1          |        | 1             |          |        |
| 27    |          |       |     |          | <u> </u>  |                                              |          | <u> </u> |    |     |      | <u>-</u> - |          | 1    | I    | 1    |                |      |     | 1                                            | 1     | 1   | 1    |       |     |    |       |       | <u>-</u> - |            |          | 1     |         |            |        |               |          | -      |
| 28    |          |       |     |          | 14        |                                              |          |          | 1  | 1   | 1    |            |          | 1    | 1    | 1    |                |      |     | 1                                            | 1     | 1   | 1    |       |     |    |       |       |            |            |          | 1     |         |            | 1      | 1             |          |        |
| 29    |          |       |     |          |           |                                              |          | -        |    |     | Ir   | 5          |          |      |      | 15   | 331            | 5341 | S35 | 153                                          | 5 53  | 71  |      |       |     |    |       |       |            |            |          | 1     |         | 1          |        | 1             |          |        |
| 130   |          |       |     |          |           |                                              |          |          |    |     |      |            |          |      |      |      |                |      |     | 1                                            |       |     |      |       |     |    |       |       |            | 11         |          | 141   | 12      | 13         |        | -             |          |        |
| 131   |          |       |     |          |           |                                              |          |          |    |     |      |            |          |      | -    |      |                |      |     | 1                                            | -     | IS  | 2419 | 251   |     |    |       |       |            | 1          |          | 1     |         | 1          |        | 142           | 122      |        |
|       |          |       | 200 |          |           |                                              |          |          |    |     |      |            |          | 100  |      |      | 1              |      |     |                                              |       |     |      |       |     |    |       |       |            |            |          |       |         |            |        |               |          |        |

Figure: Action and Goto



Figure: Action and Goto

```
ChenMac:pascal-compiler wasdns$ ls
LICENSE
                                                 run_lexer.py
                        docs
                                                 run_lexer_ply.py
                        lexer_tests
README
build
                        parser_tests
                                                 run_parser_demo.sh
                        ply_frontend
cleanup.sh
                                                 src
[ChenMac:pascal-compiler wasdns$ ./run_parser_demo.sh
ChenMac:pascal-compiler wasdns$ cd build/
ChenMac:build wasdns$ ls
action_and_goto.txt
                        grammar.txt
                                                 parser
error.txt
                                                 slr.txt
                        input.txt
first_and_follow.txt
                        output.txt
ChenMac:build wasdns$
```

#### Results of running parser

```
1.first_and_follow.txt: Print the first set and follow set2.action_and_goto.txt: Print the action and goto table3.output.txt: Print the runtime stack and applied actions
```

output.txt (112) stateStack: 0 2 3 4 6 8 18 16 27 40 51 54 57 59 15 26 39 50 52 6 8 18 10 19 29 35 22 symbolStack: program id ; begin stmts ; for id := expr downto expr do if bool then stmt else begin stmts; id := expr \* factor INPUT: + id end end . \$ 根据expr-> factor规约 (113) stateStack: 0 2 3 4 6 8 18 16 27 40 51 54 57 59 15 26 39 50 52 6 8 18 10 19 29 35 46 symbolStack: program id : begin stmts : for id := expr downto expr do if bool then stmt else begin stmts; id := expr \* expr INPUT: + id end end . \$ 移入 (114) stateStack: 0 2 3 4 6 8 18 16 27 40 51 54 57 59 15 26 39 50 52 6 8 18 10 19 29 35 46 33 symbolStack: program id ; begin stmts ; for id := expr downto expr do if bool then stmt else begin stmts; id := expr \* expr + INPUT: id end end . \$ 移入 (115) stateStack: 0 2 3 4 6 8 18 16 27 40 51 54 57 59 15 26 39 50 52 6 8 18 10 19 29 35 46 33 23 symbolStack: program id ; begin stmts ; for id := expr downto expr do if bool then stmt else begin stmts ; id := expr \* expr + id INPUT: end end . \$ 根据factor-> id规约 (116) stateStack: 0 2 3 4 6 8 18 16 27 40 51 54 57 59 15 26 39 50 52 6 8 18 10 19 29 35 46 33 22 symbolStack: program id ; begin stmts ; for id := expr downto expr do if bool then stmt else begin stmts ; id := expr \* expr + factor INPUT: end end . \$ 根据expr-> factor规约 (117) stateStack: 0 2 3 4 6 8 18 16 27 40 51 54 57 59 15 26 39 50 52 6 8 18 10 19 29 35 46 33 44 symbolStack: program id; begin stmts; for id := expr downto expr do if bool then stmt else begin stmts ; id := expr \* expr + expr INPUT: end end . \$ 根据expr-> expr + expr规约 (118) stateStack: 0 2 3 4 6 8 18 16 27 40 51 54 57 59 15 26 39 50 52 6 8 18 10 19 29 35 46 symbolStack: program id ; begin stmts ; for id := expr downto expr do if bool then stmt else begin stmts; id := expr \* expr INPUT: end end . \$ 根据expr-> expr \* expr规约 (119) stateStack: 0 2 3 4 6 8 18 16 27 40 51 54 57 59 15 26 39 50 52 6 8 18 10 19 29 symbolStack: program id ; begin stmts ; for id := expr downto expr do if bool then stmt else begin stmts; id := expr INPUT: end end . \$ 根据stmt-> id := expr规约 (120) stateStack: 0 2 3 4 6 8 18 16 27 40 51 54 57 59 15 26 39 50 52 6 8 18 28 symbolStack: program id ; begin stmts ; for id := expr downto expr do if bool then stmt else begin stmts; stmt INPUT: end end . \$ 根据stmts-> stmts; stmt规约 (121) stateStack: 0 2 3 4 6 8 18 16 27 40 51 54 57 59 15 26 39 50 52 6 8 symbolStack; program id; begin stmts; for id := expr downto expr do if bool then stmt else begin stmts INPUT: end end . \$ 移入 (122) stateStack: 0 2 3 4 6 8 18 16 27 40 51 54 57 59 15 26 39 50 52 6 8 17 symbolStack: program id ; begin stmts ; for id := expr downto expr do if bool then stmt else begin stmts end INPUT: end . \$ 根据compound stmt-> begin stmts end规约 (123) stateStack: 0 2 3 4 6 8 18 16 27 40 51 54 57 59 15 26 39 50 52 11 symbolStack: program id ; begin stmts ; for id := expr downto expr do if bool then stmt else compound stmt INPUT: end . \$ 根据stmt-> compound stmt规约 (124) stateStack: 0 2 3 4 6 8 18 16 27 40 51 54 57 59 15 26 39 50 52 55 symbolStack: program id ; begin stmts ; for id := expr downto expr do if bool then stmt else stmt INPUT: end . \$ 根据if\_stmt-> if bool then stmt else stmt规约 (125) stateStack: 0 2 3 4 6 8 18 16 27 40 51 54 57 59 12 symbolStack: program id ; begin stmts ; for id := expr downto expr do if\_stmt INPUT: end . \$ 根据stmt-> if\_stmt规约 (126) stateStack: 0 2 3 4 6 8 18 16 27 40 51 54 57 59 61 symbolStack: program id ; begin stmts ; for id := expr downto expr do stmt INPUT: end . \$ 根据for\_stmt-> for id := expr downto expr do stmt规约 (127) stateStack: 0 2 3 4 6 8 18 13 symbolStack: program id ; begin stmts ; for\_stmt INPUT: end . \$ 根据stmt-> for\_stmt规约 (128) stateStack: 0 2 3 4 6 8 18 28 symbolStack: program id ; begin stmts ; stmt INPUT: end . \$ 根据stmts-> stmtx ; stmt规约 (129) stateStack: 0 2 3 4 6 8 symbolStack: program id; begin stmts INPUT: end . \$ 移入 (130) stateStack: 0 2 3 4 6 8 17 symbolStack: program id ; begin stmts end INPUT: . \$ 根据compound\_stmt-> begin stmts end规约 (131) stateStack: 0 2 3 4 5 symbolStack: program id; compound\_stmt INPUT: . \$ 移入 (132) stateStack: 0 2 3 4 5 7 symbolStack; program id; compound stmt . INPUT: \$ 根据S-> program id; compound stmt .规约

#### Figure: Runtime Output

(133) stateStack: 0 1 symbolStack: S INPUT: \$ accept

#### No. 1 State Stack | Symbol Stack Input Action of book then start else begin stmts ; id := expr \* expr INPUT: + id end end . \$ 移入 (114) stateStack: 0 2 3 4 6 8 18 16 27 40 51 54 57 59 15 26 39 50 52 6 8 18 10 19 29 35 46 33 symbolStack: program id ; begin stmts ; for id := expr downto expr do if bool then stmt else begin stmts ; id := expr \* expr + INPUT: id end end . \$ 移入 (115) stateStack: 0 2 3 4 6 8 18 16 27 40 51 54 57 59 15 26 39 50 52 6 8 18 10 19 29 35 46 33 23 symbolStack: program id ; begin stmts ; for id := expr downto expr do if bool then stmt else begin stmts ; id := expr \* expr + id INPUT: end end . \$ 根据factor-> id规约 (116) stateStack: 0 2 3 4 6 8 18 16 27 40 51 54 57 59 15 26 39 50 52 6 8 18 10 19 29 35 46 33 22 symbolStack: program id ; begin stmts ; for id := expr downto expr do if bool then stmt else begin stmts; id := expr \* expr + factor INPUT: end end . \$ 根据expr-> factor规约 (117) stateStack: 0 2 3 4 6 8 18 16 27 40 51 54 57 59 15 26 39 50 52 6 8 18 10 19 29 35 46 33 44 symbolStack: program id ; begin stmts ; for id := expr downto expr do if bool then stmt else begin stmts; id := expr \* expr + expr INPUT: end end . \$ 根据expr-> expr + expr规约 (118) stateStack: 0 2 3 4 6 8 18 16 27 40 51 54 57 59 15 26 39 50 52 6 8 18 10 19 29 35 46 symbolStack: program id ; begin stmts ; for id := expr downto expr do if bool then stmt else begin stmts ; id := expr \* expr INPUT: end end . \$ 根据expr-> expr \* expr规约 (119) stateStack: 0 2 3 4 6 8 18 16 27 40 51 54 57 59 15 26 39 50 52 6 8 18 10 19 29 symbolStack: program id ; begin stmts ; for id := expr downto expr do if bool then stmt else begin stmts ; id := expr INPUT: end end . \$ 根据stmt-> id := expr规约 (120) stateStack: 0 2 3 4 6 8 18 16 27 40 51 54 57 59 15 26 39 50 52 6 8 18 28 symbolStack: program id ; begin stmts ; for id := expr downto expr do if bool then stmt else begin stmts; stmt INPUT: end end . \$ 根据stmts-> stmts; stmt规约 (121) stateStack: 0 2 3 4 6 8 18 16 27 40 51 54 57 59 15 26 39 50 52 6 8 symbolStack: program id ; begin stmts ; for id := expr downto expr do if bool then stmt else begin stmts INPUT: end end . \$ 移入 (122) stateStack: 0 2 3 4 6 8 18 16 27 40 51 54 57 59 15 26 39 50 52 6 8 17 symbolStack: program id ; begin stmts ; for id := expr downto expr do if bool then stmt else begin stmts end INPUT: end . \$ 根据compound\_stmt-> begin stmts end规约 (123) stateStack: 0 2 3 4 6 8 18 16 27 40 51 54 57 59 15 26 39 50 52 11 symbolStack: program id ; begin stmts ; for id := expr downto expr do if bool then stmt else compound\_stmt INPUT: end . \$ 根据stmt-> compound\_stmt规约 (124) stateStack: 0 2 3 4 6 8 18 16 27 40 51 54 57 59 15 26 39 50 52 55 symbolStack: program id ; begin stmts ; for id := expr downto expr do if bool then stmt else stmt INPUT: end . \$ 根据if stmt-> if bool then stmt else stmt规约 (125) stateStack: 0 2 3 4 6 8 18 16 27 40 51 54 57 59 12 symbolStack: program id ; begin stmts ; for id := expr downto expr do if\_stmt INPUT: end . \$ 根据stmt-> if\_stmt规约 (126) stateStack: 0 2 3 4 6 8 18 16 27 40 51 54 57 59 61 symbolStack: program id ; begin stmts ; for id := expr downto expr do stmt INPUT: end . \$ 根据for\_stmt-> for id := expr downto expr do stmt规约 (127) stateStack: 0 2 3 4 6 8 18 13 symbolStack: program id ; begin stmts ; for\_stmt INPUT: end . \$ 根据stmt-> for\_stmt规约 (128) stateStack: 0 2 3 4 6 8 18 28 symbolStack: program id ; begin stmts ; stmt INPUT: end . \$ 根据stmts-> stmts ; stmt规约 (129) stateStack: 0 2 3 4 6 8 symbolStack: program id; begin stmts INPUT: end . \$ 移入 (130) stateStack: 0 2 3 4 6 8 17 symbolStack: program id ; begin stmts end INPUT: . \$ 根据compound\_stmt-> begin stmts end规约 (131) stateStack: 0 2 3 4 5 symbolStack: program id; compound\_stmt INPUT: . \$ 移入 (132) stateStack: 0 2 3 4 5 7 symbolStack: program id ; compound\_stmt . INPUT: \$ 根据S-> program id ; compound\_stmt .规约

#### Figure: Runtime Output

(133) stateStack: 0 1 symbolStack: S INPUT: \$ accept

```
No. 1 State Stack | Symbol Stack | Input | Action of book then start else
begin stmts ; id := expr * expr INPUT: + id end end . $ 移》
 (114) stateStack: 0 2 3 4 6 8 18 16 27 40 51 54 57 59 15 26 39 50 52 6 8 18 10 19 29 35 46 33 symbolStack: program id ; begin stmts ; for id := expr downto expr do if bool then stmt
else begin stmts ; id := expr*expr+INPUT: id end end . $ 移入
  (127) stateStack: 0 2 3 4 6 8 18 13 symbolStack: program id ; begin stmts ; for_stmt INPUT: end . $ 根据stmt-> for_stmt规约
  (128)stateStack: 0 2 3 4 6 8 18 28 symbolStack: program id ; begin stmts ; stmt INPUT: end . $ 根据stmts-> stmts ; stmt规约
  (129) stateStack: 0 2 3 4 6 8 symbolStack: program id ; begin stmts INPUT: end . $ 移入
  (130)stateStack: 0 2 3 4 6 8 17 symbolStack: program id ; begin stmts end INPUT: . $ 根据compound_stmt-> begin stmts end规约
  (131) stateStack: 0 2 3 4 5 symbolStack: program id ; compound_stmt INPUT: . $ 移入
  (132)stateStack: 0 2 3 4 5 7 symbolStack: program id ; compound_stmt . INPUT: $ 根据S-> program id ; compound_stmt .规约
  (133) stateStack: 0 1 symbolStack: S INPUT: $ accept
end INPUT: end . $ 根据compound_stmt-> begin stmts end规约
(123) stateStack: 0 2 3 4 6 8 18 16 27 40 51 54 57 59 15 26 39 50 52
                                                              symbolStack: program id; begin stmts; for id := expr downto expr do if bool then stmt else compound_stmt
INPUT: end . $ 根据stmt-> compound_stmt规约
(124) stateStack: 0 2 3 4 6 8 18 16 27 40 51 54 57 59 15 26 39 50
                                                           55 symbolStack: program id ; begin stmts ; for id := expr downto expr do if bool then stmt else stmt INPUT: end .
$ 根据if stmt-> if bool then stmt else stmt规约
(125) stateStack: 0 2 3 4 6 8 18 16 27 40 51 54 57 59 12 symbols
                                                        ack: program id ; begin stmts ; for id := expr downto expr do if_stmt INPUT: end . $ 根据stmt-> if_stmt规约
(126) stateStack: 0 2 3 4 6 8 18
                                                       tack: program id ; begin stmts ; for id := expr downto expr do stmt INPUT: end . $ 根据for_stmt-> for id := expr downto
expr do stmt规约
(127) stateStack: 0 2 3 4 6 8 18 13 symbolStack: program id ; begin stmts ; for_stmt INPUT: end . $ 根据stmt-> for_stmt规约
(128) stateStack: 0 2 3 4 6 8 18 28 symbolStack: program id ; begin stmts ; stmt INPUT: end . $ 根据stmts-> stmts ; stmt规约
(129) stateStack: 0 2 3 4 6 8 symbolStack: program id ; begin stmts INPUT: end . $ 移入
(130) stateStack: 0 2 3 4 6 8 17 symbolStack: program id ; begin stmts end INPUT: . $ 根据compound_stmt-> begin stmts end规约
(131) stateStack: 0 2 3 4 5 symbolStack: program id; compound stmt INPUT: . $ 移入
(132) stateStack: 0 2 3 4 5 7 symbolStack: program id ; compound_stmt . INPUT: $ 根据S-> program id ; compound_stmt .规约
(133) stateStack: 0 1 symbolStack: S INPUT: $ accept
```

Figure: Runtime Output

```
ChenMac:pascal-compiler wasdns$ ls
LICENSE
                                                 run_lexer.py
                        docs
                                                 run_lexer_ply.py
                         lexer_tests
README
build
                        parser_tests
                                                 run_parser_demo.sh
                        ply_frontend
cleanup.sh
                                                 src
[ChenMac:pascal-compiler wasdns$ ./run_parser_demo.sh
ChenMac:pascal-compiler wasdns$ cd build/
ChenMac:build wasdns$ ls
action_and_goto.txt
                        grammar.txt
                                                 parser
error.txt
                                                 slr.txt
                        input.txt
first_and_follow.txt
                        output.txt
ChenMac:build wasdns$
```

#### Results of running parser

```
1.first_and_follow.txt: Print the first set and follow set 2.action_and_goto.txt: Print the action and goto table 3.output.txt: Print the runtime stack and applied actions 4.error.txt: The runtime error log
```

```
int main() {
582
         char gramarFile[50] = "./grammar.txt";
583
         char outputFile[50] = "./output.txt";
584
         char actionAndGotoFile[50] = "./action_and_goto.txt";
585
         char DFAFile[50] = "./slr.txt";
586
         char errorFile[50] = "./error.txt";
587
         char inputFile[50] = "./input.txt";
588
589
         init();
590
         getGrammar(gramarFile);
591
         getCanonical();
592
593
594
         calFirst();
         printFirst();
595
         calFollow();
596
         printFollow();
597
598
         printDFA(DFAFile);
599
         setActionAndGoto();
600
601
         printActionAndGoto(actionAndGotoFile);
         readInput(inputFile);
602
         solve(outputFile, errorFile);
603
604
         return 0;
605 }
```

Figure: Overview of Main Procedure

# Outline

- 1.Introduction
- 2.Journal of testing
- 3.Conclusion



### Conclusion

- Introduction of SLR(1) and Our Program;
- Giving an Example of Testing Our Program.



### Experiences

- · Requiring enough time to complete this task.
- Fully understanding of parser mechanism.
- The other things are coming soon. Stay Tuned!



# That's all. Thank you!

Group Members: 吴媛媛, 林诗尧, 陈翔