

Deep Learning

Dr. Mehran Safayani safayani@iut.ac.ir

safayani.iut.ac.ir

https://www.aparat.com/mehran.safayani

https://github.com/safayani/deep_learning_course

Department of Electrical and computer engineering, Isfahan university of technology, Isfahan, Iran

Hyperparameter tuning

Tuning process

Hyper parameters

- ① α momentum $\beta = 0.9$ Adam β_1 , β_2 , ε 0.9 0.999 10⁻⁸
- 3 #layers
- (2) #hidden units
- 3 Learning rate decay
- 2 mini-batch size

Hyperparameter tunning

- Grid Search
- Random search

Coarse to fine

Using an appropriate scale to pick hyperparameters

$$n^{[l]} = 50, \dots, 100$$

- #Layers
 - L: 2 4
 - 2,3,4
- α = 0.0001, ...,1

$$\alpha = 10^r r = -1 * np \cdot random \cdot randint(4)$$

Using an appropriate scale to pick hyperparameters

•
$$r = -4 * np \cdot random \cdot rand()$$
 $r \in [-4, 0]$

•
$$\alpha = 10^{r}$$

•
$$\beta = 0.9 \cdots 0.999$$

•
$$1 - \beta = 0.1 \cdots 0.001$$

•
$$r \in [-3, -1]$$

$$1 - \beta = 10^r$$

$$\beta = 1 - 10^r$$

Bayesian Optimization

Expected Improvement function

Suppose that we'd like to maximize f(x), and the best solution we have so far is x^*

$$\mathrm{EI}(x) = (\mu - f(x^\star)) \, \Phi\left(\frac{\mu - f(x^\star)}{\sigma}\right) + \sigma \varphi\left(\frac{\mu - f(x^\star)}{\sigma}\right)$$

Where arphi(z) is the probability density function of the normal distribution $\mathcal{N}(0,1)$,

$$\Phi(z) \equiv \mathrm{CDF}(z)$$

Babysitting one model

Panda

Training many models in parallel

