Data Science in a Box datasciencebox.org

Modified by Tyler George

 We prefer simple models when possible, but parsimony does not mean sacrificing accuracy (or predictive performance) in the interest of simplicity

- We prefer simple models when possible, but parsimony does not mean sacrificing accuracy (or predictive performance) in the interest of simplicity
- Variables that go into the model and how they are represented are just as critical to success of the model

- We prefer simple models when possible, but parsimony does not mean sacrificing accuracy (or predictive performance) in the interest of simplicity
- Variables that go into the model and how they are represented are just as critical to success of the model
- **Feature engineering** allows us to get creative with our predictors in an effort to make them more useful for our model (to increase its predictive performance)

Same training and testing sets as before

```
# Fix random numbers by setting the seed
# Enables analysis to be reproducible when random numbers are used
set.seed(1116)

# Put 80% of the data into the training set
email_split <- initial_split(email, prop = 0.80)

# Create data frames for the two sets:
train_data <- training(email_split)
test_data <- testing(email_split)</pre>
```

A simple approach: mutate()

```
train_data %>%
  mutate(
    date = lubridate::date(time),
    dow = wday(time),
    month = month(time)
    ) %>%
  select(time, date, dow, month) %>%
  sample_n(size = 5) # shuffle to show a variety
```

■ Create a **recipe** for feature engineering steps to be applied to the training data

- Create a **recipe** for feature engineering steps to be applied to the training data
- Fit the model to the training data after these steps have been applied

- Create a **recipe** for feature engineering steps to be applied to the training data
- Fit the model to the training data after these steps have been applied
- Using the model estimates from the training data, predict outcomes for the test data

- Create a recipe for feature engineering steps to be applied to the training data
- Fit the model to the training data after these steps have been applied
- Using the model estimates from the training data, predict outcomes for the test data
- Evaluate the performance of the model on the test data

Building recipes

Initiate a recipe

```
## # A tibble: 21 x 4
     variable
                           role
                  type
                                    source
     <chr>
                  <chr>
                          <chr>
                                    <chr>>
## 1 to multiple nominal predictor original
## 2 from
                  nominal predictor original
## 3 cc
                  numeric predictor original
## 4 sent email nominal predictor original
                          predictor original
## 5 time
## 6 image
                  numeric predictor original
                  numeric predictor original
## 7 attach
                  numeric predictor original
## 8 dollar
## 9 winner
                  nominal predictor original
                  numeric predictor original
## 10 inherit
## 11 viagra
                  numeric predictor original
                  numeric predictor original
## 12 password
                  numeric predictor original
## 13 num char
## 14 line breaks numeric predictor original
                  nominal predictor original
## 15 format
                  nominal predictor original
## 16 re subj
## 17 exclaim subj numeric predictor original
## 18 urgent subj nominal predictor original
## 19 exclaim mess numeric predictor original
                  nominal predictor original
## 20 number
## 21 spam
                  nominal outcome original
```

Remove certain variables

```
email_rec <- email_rec %>%
  step_rm(from, sent_email)
```

```
## Recipe
##
## Inputs:
##
## role #variables
## outcome 1
## predictor 20
##
## Operations:
##
## Delete terms from, sent_email
```

Feature engineer date

```
email_rec <- email_rec %>%
  step_date(time, features = c("dow", "month")) %>%
  step_rm(time)
```

```
## Recipe
##
## Inputs:
##
## role #variables
## outcome 1
## predictor 20
##
## Operations:
##
## Delete terms from, sent_email
## Date features from time
## Delete terms time
```

Discretize numeric variables

```
email_rec <- email_rec %>%
  step_cut(cc, attach, dollar, breaks = c(0, 1)) %>%
  step_cut(inherit, password, breaks = c(0, 1, 5, 10, 20))
```

```
## Recipe
##
## Inputs:
##
## role #variables
## outcome 1
## predictor 20
##
## Operations:
##
## Delete terms from, sent_email
## Date features from time
## Delete terms time
## Cut numeric for cc, attach, dollar
## Cut numeric for inherit, password
```

Create dummy variables

```
email_rec <- email_rec %>%
  step_dummy(all_nominal(), -all_outcomes())
```

```
## Recipe
##
## Inputs:
##
## role #variables
## outcome 1
## predictor 20
##
## Operations:
##
## Delete terms from, sent_email
## Date features from time
## Delete terms time
## Cut numeric for cc, attach, dollar
## Cut numeric for inherit, password
## Dummy variables from all_nominal(), -all_outcomes()
```

Remove zero variance variables

Variables that contain only a single value

```
email_rec <- email_rec %>%
  step_zv(all_predictors())
```

```
## Recipe
##
## Inputs:
##
## role #variables
## outcome 1
## predictor 20
##
## Operations:
##
## Delete terms from, sent_email
## Date features from time
## Delete terms time
## Cut numeric for cc, attach, dollar
## Cut numeric for inherit, password
## Dummy variables from all_nominal(), -all_outcomes()
## Zero variance filter on all_predictors()
```

All in one place

```
email_rec <- recipe(spam ~ ., data = email) %>%
  step_rm(from, sent_email) %>%
  step_date(time, features = c("dow", "month")) %>%
  step_rm(time) %>%
  step_cut(cc, attach, dollar, breaks = c(0, 1)) %>%
  step_cut(inherit, password, breaks = c(0, 1, 5, 10, 20)) %>%
  step_dummy(all_nominal(), -all_outcomes()) %>%
  step_zv(all_predictors())
```

Building workflows

Define model

```
email_mod <- logistic_reg() %>%
   set_engine("glm")

email_mod

## Logistic Regression Model Specification (classification)
##
## Computational engine: glm
```

Define workflow

Workflows bring together models and recipes so that they can be easily applied to both the training and test data.

```
email_wflow <- workflow() %>%
  add_model(email_mod) %>%
  add_recipe(email_rec)
```

Fit model to training data

```
email_fit <- email_wflow %>%
  fit(data = train_data)
```

Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

```
## # A tibble: 31 x 5
                        estimate std.error statistic p.value
##
     term
##
     <chr>>
                           <dbl>
                                       <db1>
                                                <dbl>
                                                         <dbl>
                         -0.914
                                     0.251
                                                      2.62e- 4
## 1 (Intercept)
                                               -3.65
                                     0.933
## 2 image
                         -1.65
                                               -1.76
                                                     7.78e- 2
                         2.27
## 3 viagra
                                  182.
                                               0.0125 9.90e- 1
## 4 num char
                         0.0469
                                     0.0243
                                               1.93
                                                      5.40e- 2
## 5 line breaks
                         -0.00509
                                     0.00138
                                               -3.68
                                                      2.32e- 4
## 6 exclaim subi
                         -0.202
                                     0.277
                                               -0.729 4.66e- 1
## 7 exclaim mess
                         0.00882
                                     0.00186
                                               4.74
                                                      2.17e- 6
## 8 to multiple X1
                         -2.61
                                     0.354
                                               -7.37
                                                      1.69e-13
## 9 cc X.1.68.
                         -0.312
                                     0.489
                                               -0.638 5.24e- 1
## 10 attach X.1.21.
                         2.05
                                     0.368
                                                      2.55e- 8
                                               5.57
## 11 dollar X.1.64.
                         0.218
                                     0.217
                                                      3.16e- 1
                                               1.00
                         2.18
                                     0.428
                                                      3.71e- 7
## 12 winner yes
                                               5.08
                                               -0.0121 9.90e- 1
## 13 inherit X.1.5.
                         -9.25
                                  764.
## 14 inherit X.5.10.
                         2.52
                                               1.75
                                                     7.97e- 2
                                     1.44
## 15 password X.1.5.
                         -1.71
                                     0.749
                                               -2.29 2.22e- 2
## 16 password X.5.10. -12.5
                                  475.
                                               -0.0263 9.79e- 1
## 17 password X.10.20. -13.7
                                  813.
                                               -0.0168 9.87e- 1
## 18 password X.20.22. -13.9
                                 1029.
                                               -0.0135 9.89e- 1
## 19 format X1
                         -0.920
                                     0.159
                                               -5.79
                                                     6.95e- 9
                         -2.91
                                     0.437
## 20 re subj X1
                                               -6.65
                                                      2.88e-11
## 21 urgent subj X1
                         3.52
                                     1.08
                                               3.25
                                                      1.16e- 3
## 22 number small
                         -0.902
                                     0.168
                                               -5.38
                                                     7.43e- 8
## 23 number big
                         -0.209
                                     0.250
                                               -0.838 4.02e- 1
                         0.134
                                     0.297
## 24 time dow Mon
                                               0.453 6.51e- 1
                         0.441
                                     0.268
## 25 time dow Tue
                                               1.65
                                                      9.99e- 2
## 26 time dow Wed
                         -0.131
                                     0.275
                                               -0.478 6.33e- 1
## 27 time dow Thu
                         0.123
                                     0.279
                                               0.442 6.58e- 1
## 28 time dow Fri
                         0.0896
                                     0.283
                                               0.316 7.52e- 1
## 29 time dow Sat
                         0.277
                                     0.300
                                               0.923 3.56e- 1
## 30 time month Feb
                         0.760
                                     0.180
                                               4.22
                                                      2.41e- 5
                         0.519
                                     0.180
                                                      4.01e- 3
## 31 time month Mar
                                                2.88
```

Make predictions for test data

#ataseumberox.feet>

```
email pred <- predict(email fit, test data, type = "prob") %>%
  bind cols(test data)
## Warning: There are new levels in a factor: NA
email pred
## # A tibble: 785 x 23
    .pred 0 .pred 1 spam to multiple from cc sent email
##
    <dbl> <dbl> <fct> <fct> <fct> <fct> <int> <fct>
##
## 1 0.995 0.00451 0
                                                0 1
    0.999 0.00129 0
## 2
                                                1 1
## 3 0.969 0.0306
                                                0 0
    0.999 0.000816 0 0
## 4
                                                1 0
## 5
     0.993 0.00680
                                                4 0
## 6
     0.852 0.148
                                                0 0
    ... with 779 more rows, and 16 more variables: time <dttm>,
## #
      image <dbl>, attach <dbl>, dollar <dbl>, winner <fct>,
## #
      inherit <dbl>, viagra <dbl>, password <dbl>, num char <dbl>,
## #
      line breaks <int>, format <fct>, re subj <fct>,
## #
      exclaim subj <dbl>, urgent subj <fct>, exclaim mess <dbl>,
```

Evaluate the performance

```
email_pred %>%
  roc_curve(
    truth = spam,
    .pred_1,
    event_level = "second"
) %>%
  autoplot()
```


Evaluate the performance

```
email_pred %>%
  roc_auc(
    truth = spam,
    .pred_1,
    event_level = "second"
)
```


Making decisions

Output Code

Suppose we decide to label an email as spam if the model predicts the probability of spam to be **more than 0.5**.

	Email is not spam	Email is spam
Email labelled not spam	708	60
Email labelled spam	8	8
NA	1	NA

Output

Code

```
cutoff_prob <- 0.5
email_pred %>%
  mutate(
    spam = if_else(spam == 1, "Email is spam", "Email is not spam"),
    spam_pred = if_else(.pred_1 > cutoff_prob, "Email labelled spam", "Email labelled not spam")
    ) %>%
  count(spam_pred, spam) %>%
  pivot_wider(names_from = spam, values_from = n) %>%
  kable(col.names = c("", "Email is not spam", "Email is spam"))
```

Output Code

Suppose we decide to label an email as spam if the model predicts the probability of spam to be **more than 0.25**.

	Email is not spam	Email is spam
Email labelled not spam	665	33
Email labelled spam	51	35
NA	1	NA

Output

Code

```
cutoff_prob <- 0.25
email_pred %>%
  mutate(
    spam = if_else(spam == 1, "Email is spam", "Email is not spam"),
    spam_pred = if_else(.pred_1 > cutoff_prob, "Email labelled spam", "Email labelled not spam")
    ) %>%
  count(spam_pred, spam) %>%
  pivot_wider(names_from = spam, values_from = n) %>%
  kable(col.names = c("", "Email is not spam", "Email is spam"))
```

Output Code

Suppose we decide to label an email as spam if the model predicts the probability of spam to be **more than 0.75**.

	Email is not spam	Email is spam
Email labelled not spam	714	65
Email labelled spam	2	3
NA	1	NA

Output

Code

```
cutoff_prob <- 0.75
email_pred %>%
  mutate(
    spam = if_else(spam == 1, "Email is spam", "Email is not spam"),
    spam_pred = if_else(.pred_1 > cutoff_prob, "Email labelled spam", "Email labelled not spam")
    ) %>%
  count(spam_pred, spam) %>%
  pivot_wider(names_from = spam, values_from = n) %>%
  kable(col.names = c("", "Email is not spam", "Email is spam"))
```