Familienname:	Bsp.	1	2	3	4	$\sum /40$	
Vorname:							
Matrikelnummer:							
Studienkennzahl(en):		Note:					

Prüfung zu Grundbegriffe der Topologie

Sommerersemester 2015, Roland Steinbauer 2. Termin, 30.9.2015

- 1. (Sub-)Basen topologischer Räume. topologischer Raum.
 - (a) Definiere den Begriff Basis und Subbasis einer Topologie. (2 Punkte)
 - (b) Gib explizit eine Basis für die natürliche Topologie auf \mathbb{R}^3 , sowie den diskreten topologischen Raum an. (2 Punkte)
 - (c) Zeige folgende Charakterisierung von Basen für \mathcal{O} : (2 Punkte)

$$\mathcal{B}$$
 ist Basis für $\mathcal{O} \Leftrightarrow \forall O \in \mathcal{O} \ \forall x \in O \ \exists B_x \in \mathcal{B}: \ x \in B_x \subseteq O$

- (d) Sei $f:(X,\mathcal{O}_X)\to (Y,\mathcal{O}_Y)$ eine Abbildung. Zeige, dass f genau dann stetig ist, wenn für alle Mengen S aus einer(!) Subbasis S von \mathcal{O}_Y gilt, dass $f^{-1}(S)$ offen in X ist. (4 Punkte)
- 2. Zusammenhang.
 - (a) Definiere die Begriffe Disjunktion und zsammenhängender topologischer Raum. (2 Punkte)
 - (b) In zusammenhängenden topologischen Räumen kann in typischer Weise von lokalen Eigenschaften auf globale Eigenschaften geschlossen werden. Formuliere und Beweise das entsprechende "Theorem" aus der Vorlesung. (5 Punkte)
 - (c) Diskutiere den Zwischenwertsatz der Analysis im Kontext zusammenhängender topologischer Räume. (3 Punkte)

Bitte umblättern!

3. Verschiedenes

- (a) Spurtopologie als initiale Topologie. Wie ist die Spurtopologie auf einer Teilmenge Y eines topologischen Raumes (X, \mathcal{O}) definiert? Die Spurtopologie kann auch als initiale Topologie aufgefasst werden. Wie? (4 Punkte)
- (b) Homöomorphismen. Was versteht man unter einem Homöomorphismus zwischen topologischen Räumen? Worin liegt die große Bedeutung von Homöomorphismen? (3 Punkte)
- (c) Kompaktheit. Zeige, dass kompakte Teilmengen eines Hausdorffraums abgeschlossen sind. (3 Punkte)

4. Richtig oder falsch?

Sind die folgenden Aussagen richtig oder falsch? Gib ein (möglichst explizites und einfaches) Gegenbeispiel an oder argumentiere für oder gegen die Richtigkeit der Aussage. (je 2 Punkte)

- (a) Sind alle Singletons (d.h. die einpunktigen Mengen) $\{x\}$ im topologischen Raum (X, \mathcal{O}) abgeschlossen, dann ist \mathcal{O} die diskrete Topologie.
- (b) Stetige Urbilder kompakter Mengen sind kompakt.
- (c) Umgebungen sind immer offen.
- (d) Jeder AA2-Raum ist auch schon separabel.
- (e) Vollständigkeit ist eine topologische Eigenschaft (d.h. eine Eigenschaft, die unter Homöomorphismen topologischer Räume erhalten bleibt).