

AD-A153 685

DIRECT DIGITAL CONTROL STUDY(U) KLING-LINDQUIST INC
PHILADELPHIA PA FEB 85 HNDSP-85-105-ED-ME
DACA87-82-D-0036

1/1

UNCLASSIFIED

F/G 9/3

NL

END
NAME
DATE

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963 A

**US Army Corps
of Engineers**

Huntsville Division

AD-A153 685

DIRECT DIGITAL CONTROL STUDY

DMC FILE COPY

MAY 1 1985

HNDSP -85-105-EDME
FEBRUARY 1985

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER HNDSP85-105-ED-ME	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) DIRECT DIGITAL CONTROL STUDY		5. TYPE OF REPORT & PERIOD COVERED
		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s)		8. CONTRACT OR GRANT NUMBER(s) DACA 87-82-D-0036
9. PERFORMING ORGANIZATION NAME AND ADDRESS KLING LINQUIST INC. 2301 CHESTNUT STREET PHILADELPHIA, PA. 19103		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS U.S. Army Engineer Division, Huntsville P.O. Box 1600 Huntsville, Alabama 35807-4301		12. REPORT DATE FEBRUARY, 1985
		13. NUMBER OF PAGES 78 PGS
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)		15. SECURITY CLASS. (of this report) UNCLASSIFIED
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report) DISTRIBUTION STATEMENT A: APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) ENERGY MANAGEMENT, MONITORING		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) THE PURPOSE OF THIS REPORT IS TO DESCRIBE THE STATE OF THE ART OF DIRECT DIGITAL CONTROL (DDC) SYSTEM TECHNOLOGY THAT MONITORS AND CONTROLS MECHANICAL AND ELECTRICAL SYSTEMS FOUND IN GOVERNMENT FACILITIES. A DDC SYSTEM CAN OPERATE EITHER AS A STAND-ALONE CONTROL SYSTEM OR AS AN EXTENSION TO AN ENERGY MONITORING AND CONTROL SYSTEM (EMCS).		

NOTICE

This report has been prepared by Kling-Lindquist, Inc. of Philadelphia, Pennsylvania under contract to the U.S. Army Corps of Engineers, Huntsville Division. The tables in this report, which summarize DDC manufacturers' responses to a questionnaire.

Ten of the thirteen manufacturers that responded to the Questionnaire provided written statements that verified the data summarized in Tables 2-1 to 2-9 and Table 3-1. The remaining three manufacturers, identified in the Tables as Companies "A", "B" and "C" did not provide such authorization. Until written authorization is received, these manufacturers will remain anonymous. A copy of the letter requesting verification of data included in the report appears in Appendix D.

Al

EXECUTIVE SUMMARY

Scope of Work

The purpose of this report is to describe the state-of-the-art of direct digital control (DDC) system technology that monitors and controls mechanical and electrical systems found in Government facilities. A DDC system can operate either as a stand-alone control system or as an extension to an Energy Monitoring and Control System (EMCS).

General

Direct digital control systems are self-contained computer based systems which monitor and control processes in accordance with predetermined strategies.

This report addresses the commercial-type DDC systems, in which sensors and controls are connected to a control panel. Control devices are modulated directly by the DDC system in accordance with established algorithms. Unlike industrial-type DDC systems, commercial-type DDC systems do not have a specific address for each control point position.

The results presented in this report are based on data provided by DDC equipment manufacturers' responses to a questionnaire developed by Kling/Lindquist (K/L) and from K/L engineering experience with DDC design and installation. At the present time, a number of vendors provide commercial-type DDC system panels which handle 4 to 256 analog and digital input/output points. The DDC systems use either 8 bit or 16 bit microprocessors with a minimum of 64 Kbytes of total memory. These DDC system panels typically provide stand-alone operation without the need of a supervisory or central control system such as an EMCS. DDC systems as a general rule use standard off-the-shelf electrical devices. DDC systems require digital to analog converters for actuating pneumatic control devices.

Hardware/Software

DDC panels are manufactured to handle a specific maximum number of analog and digital input and output (I/O) points. The actual number of points that a DDC panel can handle depends upon the memory available after memory has been allocated for the operating system and applications programs. For example, a DDC system with a maximum number of 32 I/O points may only be able to monitor and control 16 I/O points in order for the panel to contain application software for energy management of a variable air volume system.

Standardized application programs to control the types of mechanical and electrical equipment from most manufacturers found in Government facilities are presently available and can be implemented in DDC systems. Typical DDC application programs include Optimum Start/Stop, Duty Cycling, and Demand Limit. Customized programs must be developed for mechanical and electrical equipment requiring non-standard application programs.

DDC systems can be programmed and can run diagnostics with the use of portable devices such as CRTs, a printer or other dedicated terminal devices. The man-machine interfaces for the DDC systems vary among manufacturers and can either use alphanumeric or full english words. The operation of these man machine interfaces and the operation of the DDC systems require specialized training by facility operating personnel.

Installation

The installation of the DDC panel systems presents no technical problems. DDC systems can be installed by the manufacturer using currently available instrumentation and control devices in accordance with the National Electric Code. The installation of individual DDC panel systems prior to acceptance can be typically completed within two to three months after shop drawing approval.

DDC startup and checkout can present problems not found with conventional pneumatic and electrical/electronic control systems. The availability and technical ability of the manufacturer's personnel required to startup and checkout the DDC system is not always adequate. The location and size of the project in many cases dictates the type of personnel available from the manufacturer to install DDC systems. Therefore, the location and size of the manufacturer's support organization that serves the facility on which the DDC system is located and their familiarity with the DDC system equipment will have a great impact on the completion and the installation quality of the DDC System.

Maintenance And Operations

DDC systems are generally easier to maintain than conventional systems with pneumatic controls because there are fewer parts, and these parts can be easily replaced when they fail. In addition, DDC systems do not have the calibration problems that are common to conventional systems with pneumatic controls.

The lack of standardization among various manufacturer's DDC system operation, maintenance and programming procedures will cause problems in Government facilities where more than one type of DDC system has been installed. Government personnel will have to be trained for each type of installed system. Differences in DDC system maintenance requirements

among manufacturers may force the Government to either develop a specialized maintenance crew or purchase maintenance contracts from the equipment manufacturers. In most cases, spare parts and diagnostic equipment must be purchased and stored for each type of DDC system.

Government personnel who have no background in electronic equipment will need retraining to become familiar with the operations of DDC systems.

Additional training is required for facility personnel to become familiar with programming techniques for each type of installed DDC in order to effect changes in operating setpoints and application programs.

Communication Interfaces

Communication interfaces exist for data exchange between DDC system and EMCS systems of the same manufacturer. At the present time, no standard communications interface protocol exists for communication among DDC systems of different manufacturers. No standards exist or are being proposed for DDC systems to communicate with DDC systems or with EMCS systems of different manufacturers. The absence of DDC system interface protocols presents a problem similar to the one Government has experienced with EMCS systems. Interface protocols are manufacturers' proprietary information and are therefore subject to the Federal Acquisition Regulations (FAR) regarding rights in software and technical data.

Costs

Most of the DDC manufacturers responding to the questionnaire provided some budget cost information on standard, stand-alone DDC equipment packages. This data and information on recent bid prices of DDC systems in non-government facilities indicates that DDC systems are cost competitive with conventional control systems in facilities containing mechanical systems requiring stand-alone energy management programs. The use of DDC systems as the primary control system in conjunction with an EMCS of the same manufacturer can save up to 20 percent of the installation cost of separate pneumatic or electric control systems and EMCS. The savings are attributed to a reduction in wiring and in the number of instrumentation and control devices needed.

Engineering Documentation Requirements

The design of DDC systems requires that the DDC contract documents prepared for bid are as complete as the bid documents currently prepared for EMCS projects. All instrumentation and control devices must be shown and located. Detailed sequences of operation must be prepared for every mechanical and electrical system controlled from the DDC system in order for the contractor to program the DDC system.

Advantages and Disadvantages of DDC Systems

DDC systems can provide more accurate control with less maintenance than systems with pneumatic or electric/electronic controls. DDC systems inherently provide proportional, derivative and integral close loop control (three mode control). Three mode control capabilities can reduce the amount of energy consumed to provide heating and cooling to a facility. Changes in DDC system application software allows for variation in the equipment sequence of operation without physical changes to the installed instrumentation and control devices. Controlled equipment operating setpoints can be changed without recalibration of instrumentation devices. Changes to the application software, operating setpoints and parameters require the use of trained personnel.

Recommendations

It is recommended that the U.S. Army Corps of Engineers embark on a program to adopt DDC systems as the primary control system in Government facilities only after the following items have been addressed and resolved:

- A. Develop a standard communications protocol for the interface of DDC systems and EMCS of different manufacturers. Requirements must be established for delivery of manufacturer proprietary data to the Government for its own use and for third party use (EMCS Manufacturer). For interfacing purposes, standard communication interface parameters must be considered and should be based on one of the existing Local Area Networks (LAN) or other parameters currently being developed by the computer industry.
- B. Unless a standard communications protocol is developed by the DDC industry, consider the installation of DDC system of only one manufacturer in any one Government installation. This practice will facilitate DDC system interface with an EMCS when it is required.
- C. Establish policies by which DDC systems of different manufacturers will be maintained and system operational changes performed, (such as setpoint changes). It is conceivable that a Government installation may contain DDC systems from more than one manufacturer, and therefore Government facility personnel may not be able to cope with the variations in equipment maintenance and operation.
- D. Establish minimum design and documentation requirements for the construction contracts and for contractor furnished data that the Government will need after the DDC system is installed.
- E. Develop a Corps of Engineer Guide Specification for DDC Systems.

The lessons learned by the Government in the procurement of EMCS apply to DDC Systems. Similar problems experienced by the Government in expanding EMCS can be expected with DDC Systems when the DDC System is required to be interfaced with an EMCS of different manufacturers. Therefore, Government requirements must be established for contractor furnished data that the Government will need after the DDC system is installed.

TABLE OF CONTENTS

<u>Chapter</u>		<u>Page Nos.</u>
1	INTRODUCTION	
	1.1 General	1-1
	1.2 Description of DDC	1-1
2	DDC STATE-OF-THE-ART TECHNOLOGY	
	2.1 General	2-1
	2.2 DDC System Hardware	2-1
	2.3 Data Transmission With Central Computers (EMCS)	2-2
	2.4 Software	2-2
	2.5 Power Failure	2-3
	2.6 Surge Protection and Overvoltage Protection	2-4
	2.7 Reliability/Repairs	2-4
	2.8 Pricing	2-4
	2.9 Summary of DDC Capabilities and Limitations	2-5
3	CURRENT DDC DESIGN AND INSTALLATION PRACTICES	
	3.1 General	3-1
	3.2 Codes & Standards	3-1
	3.3 Contract Documents	3-1
	3.4 Shop Drawings	3-1
	3.5 Installation	3-2
4	CURRENT DDC TESTING PRACTICES	
	4.1 General	4-1
	4.2 Hardware	4-1
	4.3 Software	4-1
	4.4 Acceptance Testing	4-1
5	CURRENT DDC MAINTENANCE PRACTICES	
	5.1 General	5-1
	5.2 Equipment	5-1
	5.3 Training/Personnel	5-1

<u>Chapter</u>		<u>Page Nos.</u>
6	FUTURE TRENDS	
6.1	General	6-1
6.2	Hardware	6-1
6.3	Software	6-1
6.4	Installation	6-1
6.5	Interface With EMCS	6-2
6.6	Diagnostics	6-2
6.7	Maintenance and Repair	6-2
7	RECOMMENDATIONS	
7.1	General	7-1
7.2	Hardware	7-1
7.3	Communications Protocol	7-1
7.4	Software	7-2
7.5	Specifications	7-3
7.6	Contract Document Preparation	7-3
7.7	Shop Drawings	7-3
7.8	Installation	7-3
7.9	Contractor Testing	7-3
7.10	Government Acceptance Testing	7-4
7.11	Maintenance and Operation	7-4
APPENDICES		
"A"	Abbreviations	
"B"	Glossary	
"C"	Bibliography	
"D"	Sample Questionnaire	

LIST OF FIGURES AND TABLES

Figure Nos.

- 1-1 Conventional Closed Loop System
- 1-2 Direct Digital Control Loop
- 1-3 Proportional Control
- 1-4 Proportional Integral Control
- 1-5 Proportional Integral Derivative Control
- 1-6 Pulse Width Modulation

Table Nos.

- 2-1 DDC System Hardware Configuration
- 2-2 DDC System Memory Capabilities
- 2-3 DDC Hardware Features
- 2-4 DDC System Transmission And Interface
- 2-5 DDC System Software
- 2-6 DDC Application Software
- 2-7 DDC Power Failure/Auto Restart
- 2-8 DDC System Reliability/Repair
- 2-9 DDC System Costs
- 3-1 DDC System Design And Installation Guidelines

CHAPTER I

INTRODUCTION

1.1 GENERAL

This Chapter presents a general description of DDC system hardware and software. Features that are common to most DDC systems are described. Subsequent Chapters present a more detailed discussion of DDC system characteristics and show variations among the systems from various manufacturers.

1.2 DESCRIPTION OF DDC

Direct digital control (DDC) systems are self-contained computer-based systems which monitor and control processes in accordance with predetermined strategies. Processes that can be monitored and controlled using DDC include the mechanical and electrical equipment used in environmental systems for comfort conditioning. DDC systems can replace the conventional monitoring and control equipment which utilize pneumatic or electric/electronic controllers to perform control functions. Figure 1-1 illustrates a typical closed loop control system using the conventional method of monitoring and control. Figure 1-2 shows how the DDC system replaces the conventional controller. For new installations, the advantages of DDC systems include:

- Replacement of conventional sensors and controllers which require periodic maintenance and calibration with more reliable electronic components.
- Fewer components to install and maintain.
- Greater monitoring accuracy and control precision.
- Repair within the DDC panel generally involves simple replacement of a plug-in circuit board.
- Ease of modifying control strategies without rewiring or repiping of existing installations.

DDC systems are best suited to two-state signals such as on/off or open/close signals (called digital inputs and outputs). These systems can also receive and generate signals that vary with time such as temperature and pressure (called analog signals) using digital to analog converters.

TABLE 2-4
SOC SYSTEM TRANSMISSION AND INTERACTIONS
DURING INVESTIGATIVE RESPONSES

THE AMERICAN JOURNAL OF

TABLE 2-3
DDC HARDWARE FEATURES
SUMMARY OF DDC'S ONLINE RESPONSES

		DDC LINE NUMBER	DDC LINE NUMBER	SELF TEST SWITCH	RESET SWITCH	REAL TIME CLOCK	CLOCK INTERFACE	COMPORT	AUTO ANSWER AUTO DRGS	PITCHER PORTS	NO.	BUILT WITH:	LOCAL BUILT IN DISP/PROG	REMOTE BUILT IN DISP/PROG	DISPLAY & PROCESSOR NAME	I/O PORTS	PROCESSING (BTU)	EQUIPMENT FOR DISPLACEMENT	EQUIPMENT FOR DIAGNOSTICS
1	1.000000	1000	1000	NC	NC	YES	YES	RS232C	YES	2	YES	NO	YES	YES	6	600	200	200	200
1	1.000000	1000	1000	NC	YES	YES	YES	RS232C	YES	2	YES	NO	YES	YES	6	600	200	200	200
1	1.000000	1000	1000	NC	YES	YES	YES	RS232C	NO	1	YES	YES	YES	YES	16	16	BUILT IN	BUILT IN	BUILT IN
2	1.000000	1000	1000	NC	YES	YES	YES	RS232C	NO	1	YES	YES	YES	YES	16	16	16	16	16
2	1.000000	1000	1000	NC	YES	YES	YES	RS422	YES	3	YES	YES	YES	YES	16	16	16	16	16
2	1.000000	1000	1000	NC	YES	YES	YES	RS422	YES	NO LIMIT	YES	YES	YES	YES	16	16	16	16	16
3	1.000000	1000	1000	YES	YES	YES	YES	RS232C	YES	2	NO	NO	YES	YES	8	8	CENTRAL, PDU	TERMINAL	TERMINAL
3	1.000000	1000	1000	YES	YES	YES	YES	RS232C	YES	1	NO	NO	YES	YES	8	8	CENTRAL, PDU	TERMINAL	TERMINAL
4	1.000000	1000	1000	NO	NO	YES	YES	ASYNC	NO	3	YES	YES	YES	YES	8	8	REPLACE PROM	PROM	PROM
4	1.000000	1000	1000	NO	NO	YES	YES	RS232C	YES	2	YES	YES	YES	NO	8	8	REPLACE PROM	PROM	PROM
5	1.000000	1000	1000	YES	YES	YES	YES	RS232C	OPTIONAL	1	YES	YES	YES	YES	NO	8	CENTRAL, TEST SET	CENTRAL, TEST SET	CENTRAL, TEST SET
6	1.000000	1000	1000	NOT STD	NO	NO	YES	RS232C	NO	24	YES	YES	YES	YES	8	8	TERMINAL	TERMINAL	TERMINAL
7	1.000000	1000	1000	NO	NO	NO	NO	RS422	YES	1	YES	NO	OPTION	YES	8	OPEN, S TERMINAL	OPEN, S TERMINAL	OPEN, S TERMINAL	
8	1.000000	1000	1000	NO	NO	YES	YES	FSK	YES	2	YES	YES	YES	YES	8	16 FIELD	16 FIELD	16 FIELD	16 FIELD
9	1.000000	1000	1000	NO	NO	YES	YES	RS232C	YES	1	1	6	YES	YES	6	6	6	6	6
10	1.000000	1000	1000	NO	NO	YES	YES	RS449	YES	1	1	6	YES	YES	6	6	6	6	6
11	COMPANY A	1000	1000	YES	YES	YES	YES	RS232C	NO	24	YES	YES	NO	YES	8	8	CENTRAL	CENTRAL	CENTRAL
12	COMPANY B	1000	1000	YES	YES	YES	YES	RS232C	YES	4	YES	YES	YES	YES	8	8	CENTRAL	CENTRAL	CENTRAL
13	COMPANY C	1000	1000	NO	NO	NO	NO	RS232C	YES	1	YES	YES	YES	NO	16	16	BUILT IN DEVICE	BUILT IN DEVICE	BUILT IN DEVICE
13	COMPANY C	1000	1000	NO	NO	NO	NO	RS422	YES	1	NO	NO	NO	NO	16	16	BUILT IN DEVICE	BUILT IN DEVICE	BUILT IN DEVICE

TABLE 2-2
DOC SYSTEM MEMORY CAPABILITIES
SUMMARY OF QUESTIONNAIRE RESPONSES

MANUFACTURER	MODEL TYPE	TOTAL RAM ROM	TOTAL SYSTEM ROM	OPER. PARAM RAM	DEFAULT APPLICA. PARAM SOFTWARE RAM	OPER. SYSTEM ROM	DEFAULT APPLICA. PARAM SOFTWARE ROM	APPLICATION SOFTWARE ROM	CALCULATIONS FOR MEMORY REQUIREMENTS
1. ANTELER	AC253 A25	128K 32K	128K	64K NOT REQUIRED	N/A	80K	32K	N/A	MEMORY SIZED FOR 320 CONTROL LOOPS. MEMORY SIZED FOR 32 CONTROL LOOPS.
2. ANDERSON CONTROLS	MCI-ESS MCI-SSC MCI-240	24K 8K MCI-240	24K 8K MCI-240	48K N/A	N/A N/A	N/A	N/A	N/A	MEMORY SIZED TO MEET MAX NO. OF LOOPS. MEMORY SIZED TO MEET MAX NO. OF LOOPS. MEMORY SIZED TO MEET MAX NO. OF LOOPS.
3. ATLANTIC ENERGY	AET 616/32 AET 443	16K 8K	16K 16K	4K 2K	1K 1K	7.5K 3.5K	14K 14K	0 0	16 APPLIC. PROGRAMS WITH 64 LINES/PROG & 59 BYTES/LINE 8 APPLIC. PROGRAMS WITH 64 LINES/PROG & 59 BYTES/LINE
4. CLIMATRON	400C 2100	253K 8K	3000K 16K	6K,2K 1K	1K,1K 4K	600K 12K	285, 1K	2003K 12K	MEMORY SIZED TO MEET MAXIMUM NUMBER OF LOOPS. MEMORY SIZED TO MEET MAXIMUM NUMBER OF LOOPS.
5. COMPUTER SCIENCES	INFOSEN	16K	32K	3K	13K	13K	20K	12K	12K 20 WORDS PER DOC POINT
6. DIVERSIT		4K	16K	4K					
7. EPC	91513	16K	64K		8K	48K		ALL CONTROL LOOPS AND PROG REQ FOR 6-8 HVAC UNITS = 8K
8. JCRG/DO CONTROL	DCS-3500	45K	40K	2K
9. EASTMAN	FPC-100 FPC-200	32K 32K	32K 32K	1K 1K	1K 31K	32K 32K	32K 32K	16K
10. TURBO AND ANDERSON	12 USA V30	4K 8K 8K	20K 32K 32K	3K 7K 7K	1K 1K 1K	DEPENDS ON WHAT IS BEING CONTROLLED AND HOW. DEPENDS ON WHAT IS BEING CONTROLLED AND HOW. DEPENDS ON WHAT IS BEING CONTROLLED AND HOW.
11. COMPANY A		16K	16K						EACH FIELD DEVICE HAS 32 AI, 16 AO, 64 DI, 30 DO.
12. COMPANY B		16K	4K	12K	2K	2K			40 ANALOG CONFIG. LINES, 220 DIGITAL CONFIGURATION LINES
13. COMPANY C		32K	128K 32K	NO LOCAL MEMORY LIMIT. LIMIT IN PHYSICAL OUTPUTS ONLY.

TABLE 2-1
DOC SYSTEM HARDWARE CONFIGURATION
SUMMARY OF QUESTIONS FOR USE IN FIELD CASES

MANUFACTURER	MODEL TYPE	INTERFACE WITH CENTRAL			CAN INCLUDE CENTRAL			TOTAL I/O POINTS.			MAXIMUM POINTS PER CONTROL LOOP.....		
		STAND ALONE	ALONE	CENTRAL	ANALOG INPUTS	DIGITAL OUTPUTS	PULSE INPUTS	DIGITAL OUTPUTS	PULSE ACCUMUL.	CONTROL LOOPS	ANALOG INPUTS	DIGITAL OUTPUTS	PULSE INPUTS
1 ANDERSON CORPUS	AC235 A33	YES	YES	YES	32-512 (170's ARE UNIVERSAL) 14 (110's ARE UNIVERSAL)	16-256	80	256	80	320	512 (170's ARE UNIVERSAL) 14 (110's ARE UNIVERSAL)	80	256
2 ANDERSON CORPUS	MCU-550 MCU-250 MCU-25C	YES	YES	YES	192 240 NO LIMIT	256 240 NO LIMIT	80 240 NO LIMIT	240 240 NO LIMIT	120 120 NO LIMIT	192 216 NO LIMIT	80 216 NO LIMIT	80 216 NO LIMIT	
3 ATLANTIC ENERGY	AET B16/32 NET 448	YES	YES	YES	16 8 NO LIMIT	0 4 NO LIMIT	8 4 NO LIMIT	44 4 NO LIMIT	8 8 NO LIMIT	16 8 NO LIMIT	8 8 NO LIMIT	8 8 NO LIMIT	
4 CLIMATRON	4000 2100	YES	YES	YES	480 39 NO	64 24 2-48	496 24 48	512 64 512	1 2 1	256 64 32	16 4 16	4 1 16	
5 COMPUTER SCIENCES	INFOSCAN	YES	YES	YES	10	10	10
6 Energenist		YES	YES	NO	2-48	2-48	2-48	8-192	8	256/8PTS	48	48	8
7 HONEYWELL	R7510	YES	YES	YES	8	8	8	8	8
8 JOHNSON CONTROLS	DSC-8500	YES	YES	YES	15	8	8	16	8	15	8	8	16
9 PAYTHEM	FID-104M FID-104Z	YES	NO	YES	8 8-40	4 4-24	8 8-48	1 1-4	1 30	8 30	8 8-40	4 4-24	8 8-48
10 TOWER AND ANDERSON	V2 V3A V3D	YES	YES	YES	16 16 16	0 6 0	16 16 16	16 10 16	16 12 12	16 12 12	12 12 12	12 12 12	
11 COMPANY A		YES	NO	NO	1000	500	2000	N/A	500	32	64	16	64
12 COMPANY B		YES	YES	YES	16	12	16	16	4	12	2	2	4
13 COMPANY C		NO	YES	NO	16 64	8 64	10 128	8 128	8 16	125 125	125 125	125 125	125 125

The current equipment cost of DDC panels (not including installation) ranges from \$2,500 for the smaller panels with 32 points to \$10,000 for larger DDC panels with over 100 I/O points. The total number of I/O points is not a good indicator of DDC system cost for larger systems. Other features such as the number of peripheral ports, types of software system memory, and communications capabilities also impact DDC cost.

DDC systems are generally cost competitive with conventional pneumatic control systems if the facility in which the DDC System is being installed requires energy management applications programs.

least a couple of energy management programs. DDC systems may cost less than systems with pneumatic controls as the number of energy management program requirements increase. Table 2-9 summarizes the costs for stand-alone DDC system panels.

2.9 SUMMARY OF DDC CAPABILITIES AND LIMITATIONS

Most DDC systems can operate as stand-alone units or as part of a larger EMCS with a central computer. If the DDC is to interface with a central computer, communications protocol must be provided. Communications protocol must also be provided if a DDC system must communicate with a DDC system from a different manufacturer. At the present, the problems of obtaining communications protocol from manufacturers have imposed real constraints on interfacing DDC Systems of different manufacturers.

Most DDC systems use english words for man-machine interface. However, the methods of system operation are likely to vary among DDC systems from different manufacturers. Operators in facilities with different types of systems must be familiar with these variations.

All DDC systems provide information on point status (on/off), parameter values, change of state, and equipment failure. This data can be displayed at the DDC panel also and can be displayed at the central computer if the DDC panel is configured as part of the EMCS. Most EMCS-type applications programs are also readily available for stand-alone DDC use. Typical DDC applications programs include equipment start/stop, duty cycling, day/night setback, temperature reset programs, and economizer/enthalpy control programs. Special control requirements that are job specific are likely to require new program development or modifications to existing programs. Program modifications require trained personnel who are familiar with the language used by the DDC System.

In addition to the proportional control method used by conventional control systems, DDC systems use more sophisticated control methods to reduce offset and improve control accuracy. These methods include proportional/integral (PI) and proportional/integral/deviative control (PID). DDC systems can use pulse width modulation, proportional electric/electronic control of analog devices, or transduced pneumatic signals for two position or proportional pneumatic control. Most DDC systems can interface with existing electric and pneumatic controls through a digital to analog transducer.

The mean time between DDC panel failures (not including sensors or control devices) ranges from 4,000 hours to 30,000 hours, depending on the manufacturer. The mean time to repair ranges from one hour to 24 hours for most DDC panels. Spare parts for each manufacturer's DDC system can be stored on site so that the central processing unit (CPU), I/O, power supply and memory boards can be replaced in the field.

when power failure exceeds battery backup capability. Typically, operating software is resident in non-volatile memory. Some DDC systems also contain application software and operating parameters in non-volatile memory. Software that is resident in volatile memory is lost when power failure exceeds battery backup capability. After power is restored, software that was lost is reloaded using a portable diagnostic device or by downloading the software from a central computer. Software that is resident in volatile memory typically includes applications programs and/or operating parameters. Failure modes for digital and analog I/O points are found to vary among different DDC Systems.

2.6 SURGE PROTECTION AND OVERVOLTAGE PROTECTION

Digital logic systems are susceptible to interference from transients such as power line surges and lightning. Transient protection devices should be provided to minimize the damage which can be caused by transients. Some DDC manufacturers indicated surge protection and overvoltage protection are provided on DDC equipment.

2.7 RELIABILITY/REPAIRS

Table 2-8 summarizes the system reliability and mean time to repair the central computer and DDC system panels. There is a large variation in these time factors among the manufacturers surveyed. According to the data provided, the mean time between DDC equipment failures tends to be greater than the central computer and the mean time to repair is shorter.

Most manufacturers indicated CPU, I/O, power supply, and memory boards can be replaced in the field and spare parts can be stored on site.

2.8 PRICING

Most manufacturers were able to provide cost estimates for standard DDC equipment, but indicated installation costs are site specific. Only a couple of manufacturers provided cost estimates for individual analog and digital points.

The cost differential between DDC systems and conventional systems with pneumatic control varies according to the project application software requirements and the manufacturer. Two manufacturers indicated there was no significant cost differential. Three manufacturers indicated DDC systems are likely to cost more than systems with pneumatic controls. One manufacturer indicated the relative cost of DDC equipment is dependent on the number of energy management programs required at the installation. According to this manufacturer, DDC systems costs are comparable to conventional pneumatic control systems if the installation requires at

Application software contains the instructions for controlling equipment in accordance with predetermined control strategies. As Table 2-6 indicates, most DDC systems are capable of performing most EMCS application programs. Programming languages are used to develop software and modify application software required by sequences of operation which are job specific. There is no standard programming language for DDC systems. The most common "generic" software language for programming DDC systems is "BASIC" or a modified form of BASIC. Some manufacturers have developed their own proprietary software.

Changes to DDC application software are generally accomplished through a local programming panel or through a portable terminal such as a portable printer or CRT/keyboard unit. DDC systems connected to a central computer can be reprogrammed by downloading programs from the central to the DDC panel. Changes to programs at the local DDC panel can also be uploaded to the central computer. Access to software modifications are limited by password protection.

Communications protocol is required for the DDC system to respond to central computer commands and to transmit information back to the central computer either through a dial-up modem or twisted pair. In most cases, communications protocol is proprietary. As a result, facilities with DDC systems and EMCS from different manufacturers have problems interfacing the DDC systems with a EMCS central computer. Some DDC system manufacturers have indicated communication is feasible only if the DDC system communications protocol is available for use from the central computer manufacturers. Most DDC and EMCS manufacturers stated that they are unwilling to permit the release of protocol to third parties, even with non-disclosure agreements.

Diagnostic software is used to identify and locate DDC system malfunctions. In some systems, diagnostics can be performed from either a central computer or from equipment built into the DDC. Some manufacturers also use portable diagnostic devices (refer to Table 2-3).

2.5 POWER FAILURE

In the event of power failure, all DDC systems have battery back-up capability for the real time clock and for volatile memory (RAM). Battery back-up capability varies from 8 hours to 30 days, depending on the system. (Refer to Table 2-7 for the summary of power failure back-up specifications).

In the event of power failure, DDC systems have battery back-up capability for the real time clock and for volatile memory (RAM). Battery back-up capability typically varies from 8 hours to 30 days, depending on the system. Software that is resident in non-volatile memory is not lost

2.3 DATA TRANSMISSION WITH CENTRAL COMPUTERS (EMCS)

The transmission media most frequently used by DDC systems for reporting to central computers of Energy Monitoring and Control Systems (EMCS) are twisted pair, dedicated telephone lines, dial up telephone lines and fiber optics. Transmission baud rates range from 300 to 9,600 baud, depending on the type and quality of transmission media used. Most manufacturers can connect at least eight DDC systems to each 1,200 baud transmission line (refer to Table 2-4). DDC response time to queries from a central computer of an EMCS varies from fractions of a second to several seconds, depending on the manufacturer and the type of information requested. For example, one manufacturer indicated the response time for an alarm is faster than the response time for data collection.

2.4 SOFTWARE

The basic types of software in DDC systems include:

- Operating software
- EMCS application software
- Programming language(s) for algorithmic control sequences
- Communications protocol
- Diagnostics

Operating software controls the operation of DDC system computer. Typical operating software functions include loading and executing programs, allocating storage for data and programs, and handling errors. In most DDC systems, the operating software is in non-volatile memory. Consequently, in the event of power failure and loss of battery backup, the operating software is not lost. In all but one case, the DDC system can be started up as a stand-alone unit. Most systems can also be started up from a EMCS central computer (refer to Table 2-5).

English words are more likely to be used at the central computer than at the DDC terminal, although the majority of the systems use english words for both. DDC units that don't use english words will frequently use key words or alphanumeric codes. In most cases, point status, parameters values, change of state and equipment failure data can be displayed at the DDC unit via a built-in panel. For DDC systems interfaced with the central computer, this data is also displayed at the central computer (refer to Table 2-5).

Most systems provide protection against unauthorized access to the data base and several levels of access into the DDC system (refer to Table 2-5).

CHAPTER 2
DDC STATE-OF-THE-ART TECHNOLOGY

2.1 GENERAL

This chapter summarizes the types of DDC hardware and software that are commercially available today. This information is primarily based on DDC manufacturers' literature and on a questionnaire developed by Kling-Lindquist and completed by DDC manufacturers within the past six months (see Appendix D for a sample questionnaire). Additional information is derived from technical publications (refer to Appendix C for a bibliography).

2.2 DDC SYSTEM HARDWARE CONFIGURATION

Most DDC systems can function as stand-alone systems or can interface with a central computer as part of central computer system such as Energy Monitoring and Control Systems (EMCS). DDC systems which interface with a central computer require communications protocol that is compatible with the central computer. Table 2-1 indicates which systems can communicate with a central computer and which systems may include a central computer as a part of total system configuration.

Table 2-1 also shows the total number of analog and digital I/O points and pulse accumulators available to typical DDC units, the number of control loops, and the number of I/O points per control loop. The smaller DDC systems typically have 32 to 64 I/O points and can handle 6 to 30 control loops. The number of I/O points for larger DDC systems can range from 100 to 500 points, depending on the manufacturer. Larger systems also have a large variation in the number of control loops.

Table 2-2 summarizes the variations in DDC system memory capacities among various manufacturers. In most systems, operating system programs are in nonvolatile memory, while default parameters and applications programs are in volatile memory. System memory is typically sized to meet the maximum number of control loops, and is job specific.

Hardware features common to all DDC systems include a real time clock, power failure/auto restart, and communications interface. The most common communications interface is RS232C. DDC systems typically use 8 or 16 bit microprocessors. Most DDC systems have at least two peripheral ports, a built-in diagnostic programming panel and capability for local display and control. Systems without built-in programming and diagnostic panels generally use portable terminals for diagnostics and programming. Hardware features of DDC systems are summarized in Table 2-3.

FIGURE 1 - 5: PROPORTIONAL INTEGRAL DERIVATIVE CONTROL

FIGURE 1 - 6: PULSE WIDTH MODULATION

FIGURE 1 - 3: PROPORTIONAL CONTROL

FIGURE 1 - 4: PROPORTIONAL INTEGRAL CONTROL

Methods of control associated with the use of DDC systems include:

- Proportional control
- Proportional/Integral control (PI)
- Proportional/Integral/Derivative Control (PID)
- Pulse width modulation

Proportional Control is a control technique that assumes a specific position for each change in a measured variable (see Figure 1-3). Proportional control is the most common method of analog control in facilities where control point offsets can be tolerated. This method of control has the greatest probability of error in comparison with PI and PID due to the oscillation and offset that are characteristic of proportional control.

Proportional/Integral Control (PI) is a control technique which integrates the control point values over time to minimize the number of oscillations as it approaches the setpoint (see Figure 1-4). This method of control has a greater probability of error than PID control. PI control offset is used in control of processes with fast response times.

Proportional/Integral/Derivative Control (PID) is a control technique which resets the proportional and integral correction signals based on the rate of change of the control point from the setpoint (see Figure 1-5). By using three mode control, PID eliminates hunting and offset when properly tuned. PID is used in processes with slow response times.

Pulse-width Modulation is a method of controlling a modulating device by using "On/Off" signals that vary with the duration of the signal and with the duration between signals. Decreasing pulse widths are used as the setpoint is approached (see Figure 1-6).

The computer-based DDC System contains the necessary software to perform the following types of functions:

- Computer System operation
- Monitoring of Inputs and Outputs
- Reporting Function (alarm, status, logging)
- Application software to implement predetermined control strategies

FIGURE 1 - 1: CONVENTIONAL CLOSED LOOP SYSTEM

FIGURE 1 - 2: DIRECT DIGITAL CONTROL LOOP

SAFETY ASSOCIATES INC. • 300 S. 5TH ST. • MILWAUKEE, WI 53201-1530 • (414) 273-3500

DOC START-D.		ACCESS		ENGLISH WORDS:		DATA DISPLAY AT DDC:		DATA DISPLAY AT CENTRAL COMPUTER:		CONTROL TECHNIQUES.....		ANALOG OUTPUT.....	
MANUFACTURER	DOC NO.	INPUT	OUTPUT	AT CENTRAL COMPUTER	DDC	ONE OF EQUIP	ONE OF EQUIP	ONE OF EQUIP	ONE OF EQUIP	PULSE PROPAGATION	PULSE PROPAGATION	PULSE PROPAGATION	PULSE PROPAGATION
1. BENDIX	1000000	YES	YES	3 LEVELS	YES	YES	YES	YES	YES	NO	NO	NO	NO
2. BENDIX CORNELL	15	YES	YES	AT LEAST 1 LEVEL	YES	YES	YES	YES	YES	3 LEVELS	3 LEVELS	3 LEVELS	3 LEVELS
3. ATLANTIC SHEAR	NO	YES	YES	3 LEVELS	YES	YES	YES	YES	YES	1 LEVEL	1 LEVEL	1 LEVEL	1 LEVEL
4. CIRTRAN	NO	YES	YES	AT LEAST 1 LEVEL	YES	YES	YES	YES	YES	NO	NO	NO	NO
5. COMM-FRAZER SENSORS	NO	YES	YES	NO	YES	YES	YES	YES	YES	NO	NO	NO	NO
6. ENERGY	NO	YES	YES	NO	YES	YES	YES	YES	YES	NO	NO	NO	NO
7. HONEYWELL	NO	YES	YES	NO	YES	YES	YES	YES	YES	NO	NO	NO	NO
8. JOHNSON CONTROLS	NO	YES	YES	NO	YES	YES	YES	YES	YES	NO	NO	NO	NO
9. BARTENDER	NO	YES	YES	NO	YES	YES	YES	YES	YES	NO	NO	NO	NO
10. TDR AND TDS	NO	YES	YES	NO	YES	YES	YES	YES	YES	NO	NO	NO	NO

Table 2-6
DEC APPLICATION SOFTWARE
ASPECTS OF DECISION-MAKING RESPONSES

DECISION	SYSTEM STATE	DUTY CYCLE	DEMAND	NIGHT	EDGARD-WEILER	ENTHOLY	VENT	DAY	REPEAT	HOT/COLD	BOILER	ON DRILLER	WATER CHILL	LIGHT	CONDENSER	CHILL	COMPUTER	PROGRAMMING LANGUAGE
1. REACTOR	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	NO	NO
2. REACTOR CONCNS.	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	NO	NO
3. ATOMIC ENERGY	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	NO	NO
4. CLOTHING	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	NO	NO
5. COMPUTER SCIENCES	YES	YES	YES	YES	YES	YES	YES	YES	YES	NO	YES	NO	YES	NO	YES	YES	NO	NO
6. ELECTIONS	YES	YES	YES	YES	YES	YES	YES	YES	YES	NO	YES	YES	YES	NO	YES	YES	NO	NO
7. ENERGY	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	NO	NO
8. JOHNSON CONTROL	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	NO	NO
9. BOILER	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	NO	NO
10. TURBINE AND GEN	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	NO	NO
11. COGENERATION	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	NO	NO
12. COGENERATION	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	NO	NO
13. COGENERATION	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	NO	NO

35. विद्युत विभाग के अधीन संस्थानों का विवरण

TABLE 2-8
DOC SYSTEM RELIABILITY/REPAIR
CAPACITY OF DESIGN/TEST SPECIMENS

TABLE 2-9
DOC SYSTEM COSTS
SUMMARY OF QUESTIONNAIRE RESPONSES

EQUIPMENT COSTS FOR STANDARD UNIT							PNEUMATIC/DOC PRICE DIFFERENTIAL
MANUFACTURE #	NOTE: STAND ALONE AC 14	STAND ALONE AC 11C	DIGITAL WITH 1:1 OUTPUT	DIGITAL INPUT	ANALOG INPUT	PULSE INPUT	
1 ANDOVER	AC-256 AC-8	1820 3500	NO ADDITIONAL CHARGE NO ADDITIONAL CHARGE	DOC IS COST COMPETITIVE FOR CENTRAL PLANT AND APU. PNEUMATICS IS 20 - 40% LESS FOR VARIOUS TERMINAL UNITS.
2 ANDERSON CORRELUS	ACU-564 ACU-256 ACU-250	
3 ATLANTIC ENERGY	RET 616/25	1500	1500	NO DIFFERENCE, BASED ON LAST 10 PROJECTS BID.
4 CLINTONTRON	4000 2100	5000 No	8000 2400-5400	
5 COMPUTER SCIENCES	INFOSCAN	2000	110	DEPENDS ON COMPLEXITY OF SYSTEM.
6 ENERGIST	5500 (60 PTS)	DOC IS 10% HIGHER.
7 HONEYWELL	RT510	9000 (96 PTS)	DOC IS 20-30% HIGHER WITH NO ENERGY MANAGEMENT PROGRAM.
8 JOHNSON CONTROLS	DSC-6304	18000 INSTALLED	DOC IS COST COMPETITIVE FOR A FEW ENERGY MGT. PROGRAMS. DOC COSTS LESS IF PROJECT HAS A LOT OF ENERGY MGT. PROGRAMS.
9 BRYTHEON	FIDELIS FIDELIS I	
10 TOUR AND ANDERSON	V2 V3A V3D	3800 3500 3500	4000 4500 4500	7 7 7	7 1 1	100	DOC IS 20-30% HIGHER.
11 COMPANY A	75000	25000 FOR 32 AI, 16 AO, 64 DI, 64 DO	
12 COMPANY B	
13 COMPANY C	2000-3000	2500-4000	GENERALLY, DOC IS COST COMPETITIVE. IN THE WORST CASE, DOC IS 10-15% MORE COSTLY.

CHAPTER 3

CURRENT DDC DESIGN AND INSTALLATION PRACTICES

3.1 GENERAL

This chapter describes the codes and standards currently being used for DDC system design and installation, and the estimated lead time and special requirements for shop drawings and installation. This information is based on data received from DDC equipment manufacturers, (as summarized in Table 3-1) and from recent engineering experience with DDC installations.

3.2 CODES AND STANDARDS

The National Electrical Code is the most commonly used code in the design and installation of DDC systems. Most of the wiring required for DDC systems is low voltage (48 volts or lower). Sensor and control wiring does not need to be installed in conduit except as required for physical protection of the wiring.

3.3 CONTRACT DOCUMENTS

The contract documents for a DDC system describe the type of system to be installed, the layout of the DDC equipment, controls and sensors to be used by the DDC, and software required for the project. The procedures developed for EMCS contract documentation are typically used by the engineer for DDC system projects.

3.4 SHOP DRAWINGS

Shop drawings contain the list of equipment, sequences of operation, and materials required for DDC system installation. On these drawings, the installing contractor indicates the system configuration, proposed layout and installation methods. Shop drawings indicate wiring methods and routing. Requirements for DDC shop drawings are the same as those for conventional control systems. It is particularly important that the contractor provide software descriptions and logic diagrams to ensure that the DDC can perform the control functions specified for the job.

In the questionnaire, DDC manufacturers were asked to estimate the lead time to complete shop drawings for a stand-alone DDC project with approximately 100 points. The estimated time range was two weeks to two months, depending on the system (see Table 3-1). The preparation of shop drawings

for a single DDC system panel is estimated to require one month. The lead time for shop drawing approval of DDC systems is the same as for shop drawing approval of conventional pneumatic systems.

Depending on the type of project, lead time for DDC drawing submittal may be one half of time required for conventional system drawing submittal.

3.5 INSTALLATION

For a 100 point DDC stand-alone system, most DDC manufacturers estimated installation time after shop drawing approval would require one to three months. Equipment and software should be immediately available for installation after DDC sensor and controls are installed. Software that is job specific is developed after shop drawing approval using the available high level language software.

DDC systems can be interfaced with electric and pneumatic controls with the use of transducer devices. Electronic interface between DDC equipment and an EMCS or other DDC equipment of a different manufacturer can not be readily accomplished without the development of special software. Unless communications protocol is provided by the DDC system manufacturer, interface with EMCS and DDC or between DDC systems of different manufacturers may be impossible.

Environmental requirements for various types of DDC systems are shown in Table 3-1. Most manufacturers require a dry bulb temperature range of 32°F to 120°F and a relative humidity range of 0 to 95 percent.

The power supply requirements for most DDC systems is 120 volts \pm 15 percent.

TABLE 3-1
DC SYSTEM DESIGN AND INSTALLATION GUIDELINES
Summary of Questionnaire Responses

PROJECT NUMBER	PROJECT NAME	CONTRACTOR	CODES AND INDUSTRY STANDARDS										ENVIRONMENTAL CONDITIONS					
			CIM	DIN	POWER LINE	I/O	FOR DC INSTRUMENTATION:	MIN DRY BULB °F	MIN WET BULB °F	RH %	AC POWER SUPPLY							
1 SOURCE	120V AC	1. 100W 1. 100W 1. 100W	Surge OVERVOLTAGE	Surge OVERVOLTAGE	Surge OVERVOLTAGE	Surge OVERVOLTAGE	NEC 800.4	32	120	0	95	117 + -20%						
2 INDUS. CONTROL	400V AC	1. 100W	YES	YES	YES	YES	YES	32	120	0	95	117 + -20%						
3 ELECTRIC ENERGY	400V AC	2. 200W	In Line CONSTANT VOLTAGE	DC POWER SUPPLY	DC POWER FILTER	DC POWER FILTER	DC 800.4	32	122	10	95	120 + -10%						
4 CIRCUIT BREAKERS	400V AC	0.5kW	OPTICAL ISOLATION	FUSE	FUSE	FUSE	NEC 800.4	32	125	5	95	120 + -15%						
5 COMPUTER SCIENCES	32V DC	15kW	IEEE 472	FUSE	IEEE 472	FUSE	IEEE 472	32	122	0	95	120 + -15V						
6 ENERGY STAR								40	110			110 + -5V						
7 HOME	342V	4. 100W	16 MONTHS	OPTICAL ISOLATION			STATIC PROTECTION	YES	YES	32	122	0	95	120 + -10% + -15%				
8 INDUS. CONTROLS	60V DC	20kW	30 DAYS	2. 1.5kA	UL 1360	NEC	YES		32	125	10	90	120 + -10%					
9 RAILROAD	120V AC	1. 100W	1. 100W				IEEE 472	IEEE 472	IEEE 472	YES	YES	0	50	0	95	112 + -10%		
10 TELECOM ACCESS	28.5 VDC	100W	3. 300W							32	120							
11 COMPANY A	STATIC POW.	5 MONTHS					YES	NO	YES	93	0	95	117 + -10%					
12 COMPANY B	6. 2kW	4. 100W	2 WEEKS				YES	YES	YES	-30	130	0	90					
13 COMPANY C	10.14 kW	30kW	...DEPOTS ON SITE,...											120 + -15%				

CHAPTER 4

CURRENT DDC TESTING PRACTICES

4.1 GENERAL

This Chapter describes the current practices for testing DDC hardware and software. Information is based on the questionnaire responses and engineering field experience.

4.2 HARDWARE

A 100 point stand-alone DDC panel takes from two days to two weeks for hardware checkout depending upon the manufacturer. Additional time is required for the sensors and control I/O checkout.

Hardware and software testing of DDC system prototypes is conducted in the Factory by the manufacturer. Factory tests should include surge protection and overvoltage protection tests, as well as lab testing of equipment for FCC-type acceptance of computer equipment. DDC equipment must be successfully tested prior to the delivery to the project site. In order to avoid costly delays in project completion, the DDC System to be installed should not require any new hardware or software development.

Calibration and adjustment of I/O is required only for analog points, and is performed by the contractor at the project site.

Diagnostics are conducted on DDC hardware using built-in devices or portable diagnostic devices, whichever is applicable to the type of DDC system.

4.3 SOFTWARE

No lead time is required to checkout the DDC operating system, since this software is inherent to the DDC system panel and is not job specific. Applications programs require from one week to six months for checkout, depending on the types of applications programs and the time of year the checkout occurs. For example, some of the applications programs may control the operation of seasonal equipment which is not in operation during the initial checkout period. Additional checkout tests are therefore required when this seasonal equipment is in operation. Typically, software testing of a 100 point system takes two weeks for checkout.

4.4 ACCEPTANCE TESTING

The complete DDC system is checked to verify system operation on a random basis required by the contract documents.

CHAPTER 5

CURRENT DDC MAINTENANCE PRACTICES

5.1 GENERAL

DDC systems are designed to be easily maintained by trained personnel. There are no moving parts which require calibration or adjustment, and most major DDC system panel circuit boards can be easily removed and replaced with spare boards to minimize down time.

5.2 EQUIPMENT

DDC system manufacturers indicated replaceable DDC boards include the central processing unit (CPU), memory, I/O boards, and power supply. Diagnostics can be performed by a built-in device or a portable diagnostic device. Modifications to application software can also be accomplished using built-in devices or a portable diagnostic device.

5.3 TRAINING/PERSONNEL

Most manufacturers provide short term (one day to two weeks) training for the Owner's employees in DDC diagnostics and repair. Additional training is required for employees who need to perform changes to the application software.

CHAPTER 6

FUTURE TRENDS

6.1 GENERAL

DDC systems are expected to play an increasing role in the commercial and industrial control industry as manufacturers continue to improve upon the technology and cost effectiveness of DDC system. Pneumatic/electric/electronic systems will be replaced as the technology advances and the price of DDC systems decline.

6.2 HARDWARE

Current trends in DDC hardware development indicates DDC systems are becoming more powerful and more adaptable to variations in project requirements. A number of manufacturers use "off-the-shelf" microcomputers to communicate with the remote DDC system panels, download application programs, and perform diagnostics. This approach enables DDC manufacturers to use the state-of-the-art in microcomputer technology without investing considerable capital in a proprietary system. In addition, new development in microcomputer technology such as expanded memory can increase the power of the DDC system.

6.3 SOFTWARE

DDC software capabilities will also expand as more systems are installed and users find new applications for DDC control. Man-machine interfaces will become more user friendly. Prompting menus are expected to be more commonplace. This approach minimizes the training required for operators to become familiar with the system.

Modification of existing programs and new program development will take place more often in the field through the use of high-level user-friendly programs.

6.4 INSTALLATION

Current methods of DDC installation are not expected to change in the future. However, installation and checkout problems are expected to decline as more DDC systems are installed and more personnel become familiar with installation practices.

6.5 INTERFACE WITH EMCS

The use of DDC systems with larger centralized EMCS will become more commonplace with minimum interface problems if both DDC and EMCS are from the same manufacturer.

As long as manufacturers continue to design DDC systems with proprietary communications protocol, problems of interfacing DDC systems with EMCS from different manufacturers will continue.

6.6 DIAGNOSTICS

Diagnostics software is expected to be more user-friendly to minimize training required for operators to become familiar with diagnostic procedures and results. Menu-driven software in portable diagnostic systems is becoming a very popular technique for DDC diagnostics.

6.7 MAINTENANCE AND REPAIR

Maintenance procedures on DDC systems are not expected to change in the near future. System malfunctions generally require circuit board replacements, which can be accomplished with little training.

CHAPTER 7

RECOMMENDATIONS

7.1 GENERAL

It is recommended that the Government consider DDC installation on a case by case basis. The complexity of the project, the types of monitoring control systems (EMCS) currently installed at the site, and the expected support of the manufacturer all have a direct bearing on the decision to use DDC systems. The following recommendations are intended to be minimum requirements for DDC system hardware and software.

7.2 HARDWARE

DDC systems should be able to function as stand-alone systems with the capability of interfacing with another DDC or with a central computer of at least the same manufacturer.

The equipment should be able to operate in an unconditioned space with a temperature range from 32 to 120 degrees F, and a relative humidity ranging from 0 to 95 percent.

Power line surge protection should be provided so that the equipment can meet surge requirements of IEEE 587. Sensor and control wiring should be protected against surges induced on control and sensor wiring installed outdoors.

The DDC system must be provided sufficient memory for the operating system software and applications programs. Each DDC panel should have a real time clock with battery backup, a communications interface (preferably RS232C) and at least one peripheral port (for local display, printer, etc.). Battery back-up should also be provided for volatile memory. Portable or built-in equipment should be provided for programming and diagnostics.

7.3 COMMUNICATIONS PROTOCOL

A standard communications protocol must be developed for interfacing DDC systems with EMCS of different manufacturers. Requirements should be established for delivery of manufacturer proprietary data to the Government for its own use and for third party use (EMCS Manufacturer) for interface purposes.

Unless a standard communications protocol is developed by the DDC industry, the Government should consider the installation of DDC system of

only one manufacturer in any one Government installation. Use of a single manufacturer's equipment can facilitate DDC system interface with an EMCS when interface is required.

7.4 SOFTWARE

The stand-alone DDC panel should have automatic restart capabilities when power is restored after a power failure, and the duration of the failure is less than battery capacity.

The DDC panel should be provided with a high-level language (such as BASIC) for writing application programs. The man-machine interface software should have english words that allow technician level operators to use the system without extensive training. In order to protect against unauthorized access, the DDC panel should have at least one password protection level. At the minimum, the following data should be provided at the DDC panel:

- Point status
- Parameter values
- Change of state
- Equipment failure

The DDC panels should have the capability of performing proportional PI, and PID control. The DDC panels should be able to interface with digital I/O points and analog I/O points through a device similar to an alarm analog to transducer (i.e. pressure to current transducer). DDC panels should be able to perform the following EMCS applications programs either with standard software or with software that can be developed:

- Start/Stop
- Optimum Start/Stop
- Duty Cycling
- Demand Limit
- Day/Night Setback
- Economizer
- Enthalpy
- Ventilation/Recirculation
- Hot Deck/Cold Deck Temperature Reset
- Reheat Coil temperature Reset
- Lighting Control
- Algorithmic Control Sequences

Diagnostics software should be available to detect component failures, check errors, and check computer memory.

APPENDIX "C"

BIBLIOGRAPHY

Coad, William, EMCS and Digital Controllers, Heating/Piping/Air Conditioning, August 1983, (pp. 112-119).

Direct Digital Control: Next Generation for Building Automation, Specifying Engineer, August 1982, (pp. 66-70).

Distributed Processing and DDC Control: A Retrofit Application, ASHRAE Transactions 1980, Vol. 86, Part 1.

Dobrowolski, Mark, Guide to Selecting Distributed Digital Control Systems, In Tech, June 1981, (pp. 45-52).

Energy Users News, Articles on Direct Digital Control, 9/27/82 and 4/30/84.

Haines, Roger, Monitoring and Control Systems (Parts I - IX), Heating/Piping/Air Conditioning, August 1982 - April 1983.

The Impact of Microprocessors on Process Control, Computer Design April 21, 1983, (pp. 111-116)

Meinhold, Ted, Computerized Energy Management Systems, Plant Engineering, August 19, 1982, (pp. 54-65).

U.S. Army Corps of Engineers, Huntsville, Alabama, Energy Monitoring and Control Systems, Guide Specifications for Energy Monitoring and Control Systems, Large System Configuration, May 1984.

<u>RS-232 and RS 422:</u>	Technical specifications established by the Electronics Industries Association for interfacing modems with terminals or computers.
<u>Selective Generation:</u>	Where the management of input/output is restricted to selected peripherals.
<u>Sensors:</u>	Devices used to detect or measure physical phenomena.
<u>Software:</u>	A term used to describe all programs whether in machine, assembly, or high-level language.
<u>Stand-Alone:</u>	A term used to designate a device or system which can perform its function totally independent of any other device or system.
<u>Supervisory Control:</u>	Separate (and usually remote) control and monitoring of local control loops. (See Direct Digital Control.)
<u>Three Mode Control:</u>	Proportional integral derivative control.
<u>True digital:</u>	A representation of any value by symmetric digits, used to form fixed length words.
<u>Volatile Memory:</u>	A semiconductor device in which the stored digital data is lost when power is removed.
<u>Word:</u>	A set of binary bits handled by the computer as the primary unit of information.
<u>Zone:</u>	An area composed of a building, a portion of a building, or a group of buildings affected by a single device or piece of equipment.

<u>Process Control:</u>	The collective functions performed by the equipment which is to control a variable.
<u>Program:</u>	A sequence of instructions causing the computer to perform a specified function.
<u>Proportional:</u>	A control technique that assumes there is a specific position for each change in a measured variable.
<u>Proportional Integral:</u>	A control technique which integrates the control plant reset values over time to minimize offset.
<u>Proportional/Integral Derivative Control (PID)</u>	A control technique which resets the proportional and integral correction signals based on the rate of the control point from setpoint.
<u>Protocol:</u>	A formal set of conventions governing the format and relative timing of message exchange between two terminals.
<u>Random Access Memory (RAM):</u>	Volatile semiconductor data storage device in device in which data may be stored or retrieved. Access time is effectively independent of data location.
<u>ROM, PROM, EPROM, EEPROM:</u>	Read-Only-Memory, Programmable ROM, Erasable PROM, Electronically Erasable PROM. All are non-volatile semiconductor memory.
<u>Real Time:</u>	A situation in which a computer monitors, evaluates, reaches decisions, and effects controls within the response time of the fastest phenomenon.
<u>Real Time Clock (RTC):</u>	A device which indicates actual time of day. The RTC may be updated by hardware or software.
<u>Register:</u>	A digital device capable of retaining information.
<u>Reinitialization:</u>	Refer to initialization.
<u>Resistance Temperature Detector (RTD):</u>	A device where resistance changes linear as a function of temperature.

<u>Microprocessor:</u>	A central processing unit fabricated as one integrated circuit.
<u>Mnemonic:</u>	A symbolic representation or abbreviation to help operators remember and understand.
<u>MODEM:</u>	An acronym for M0dulator/DEModulator. A hardware device used for changing digital information to and from an analog form to allow transmission over voice grade circuits.
<u>Non-Volatile Memory:</u>	Memory which retains information in the absence of applied power (i.e.; magnetic core, ROM, and PROM).
<u>Normal Mode Operation:</u>	Equipment operating and performing its assigned tasks.
<u>Open Loop Control:</u>	A control method where the computer can send commands to control points, but no information can be received from the field.
<u>Operating System:</u>	A complex software system which manages the computer and its components and allows for human interaction.
<u>Optical Isolation:</u>	Electrical isolation of a portion of an electronic circuit by using optical semiconductors and modulated light to carry the signal.
<u>Parameter:</u>	A variable that is given a constant value for a specific purpose or process.
<u>Parity:</u>	A checking code within a binary word used to help identify errors.
<u>PASCAL:</u>	A "structured programming" high level computer language.
<u>Peripheral Equipment:</u>	Equipment used for man-machine communications and further support of a processor.
<u>Point:</u>	Individual connected monitor or control devices (i.e., relay, temperature sensor).

<u>Input/Output Bus:</u>	The connection through which data is transmitted and received from peripheral devices interacting with the processor.
<u>Input/Output (I/O) Device:</u>	Digital hardware that transmits or receives data.
<u>Interactive:</u>	Functions performed by an operator with the machine prompting or otherwise assisting these endeavors, while continuing to perform all other tasks as scheduled.
<u>Interrupt:</u>	An external or internal signal requesting that current operations be suspended to perform more important tasks.
<u>Line Conditioning:</u>	Electronic modification of the characteristic response of a line to meet certain standards. The characteristics include frequency response, signal levels, noise suppression impedance, and time delay.
<u>Loader:</u>	A program used to prepare the computer and store other programs into memory locations in preparation for machine execution.
<u>Local Loop Control:</u>	The controls for any system or subsystem which existed prior to the installation of an EMCS and which will continue to function when the EMCS is non-operative.
<u>Memory:</u>	Any device that can store logic 1 and logic 0 bits in such a manner that a single bit or group of bits can be accessed and retrieved.
<u>Memory Address:</u>	A binary number that specifies the precise memory location of a stored word.
<u>Memory Modules:</u>	Increments of memory, usually 4K, 8K, 16K, etc. words in length.
<u>Microcomputer:</u>	A computer system based on a microprocessor and containing all the memory and interface hardware necessary to perform calculations and specified transformations.

<u>Disk Storage:</u>	A bulk storage, random access device for storing digital information. Usually constructed of a thin rotating circular plate having a magnetizable coating, a read/write head and associated control equipment.
<u>Distributed Processing System:</u>	A system of multiple processors each performing its own task, yet working together as a complete system under the supervision of a central computer, to perform multiple associated tasks.
<u>Download:</u>	The transfer of digital data or programs from a central computer to another data processing system such as a microcomputer.
<u>Duplex:</u>	A method of operation of a communications line in which each terminal can simultaneously transmit and receive.
<u>EMCS:</u>	Energy Monitoring and Control System.
<u>Firmware:</u>	A procedure for accomplishing arithmetic operations where the instruction set is resident in ROM or PROM.
<u>FORTRAN:</u>	An acronym for FORMula TRANslator. A highlevel, English-like programming language used for technical applications.
<u>Function Keys:</u>	Keys which, when depressed, send more than one character and are interpreted by the computer as a specific command.
<u>Half duplex:</u>	A method of operation of a communications line in which each terminal can transmit and receive, but not simultaneously.
<u>Hardware:</u>	Equipment such as a CPU, memory, peripherals, sensors, and relays.
<u>Initialization: (of the System)</u>	The process of loading the operating system with the computer. Initialization is required to start normal operation of the computer after the computer has been out of service.

<u>Control Sequence:</u>	Equipment operating order established upon a correlated set of data environment conditions.
<u>Control Loop:</u>	The path followed by control signals to perform a task and by feedback signals to indicate the response to control.
<u>Data Communications Equipment:</u>	A device for transmitting digital information to and from any other system.
<u>Data Transmission Media (DTM):</u>	Transmission equipment including cables and interface modules (excluding MODEMs) permitting transmission of digital and analog information.
<u>Debug:</u>	The procedure of running a program to detect and correct errors in a program.
<u>Deck:</u>	In HVAC terminology, the air discharge of the hot or cold coil in a duct serving a conditioned space.
<u>Demand:</u>	The term used to describe the maximum rate of use of electrical energy averaged over a specific interval of time and usually expressed in kilo-watts.
<u>Diagnostic Program:</u>	Machine-executable instructions used to detect and isolate malfunctions.
<u>Digital Signals:</u>	A discontinuous signal, the various states of which are discrete intervals apart. In radix 2 the signal is either on or off (zero or one) and is referred to as binary.
<u>Direct Digital Control (DDC):</u>	Sensing and control of processes directly with digital control electronics.
<u>Digital to Analog (D/A) Converter:</u>	A hardware device which converts a digital signal into a voltage or current proportional to the digital input.

<u>Bus:</u>	A circuit path (or parallel paths) over which data instructions are transferred to all points in the computer system. Computers have several separate busses: the data, address, and control busses are those of greatest importance.
<u>Byte:</u>	Eight bits.
<u>Cathode Ray Tube (CRT):</u>	An electron beam tube in which the beam is focused to a small cross section on a luminescent screen and varied in position and intensity to produce a visible pattern.
<u>Central Processing Unit (CPU):</u>	The portion of a computer that performs the interpretation and execution of instructions. It does <u>not</u> include memory or I/O.
<u>Character:</u>	One of a set of elementary symbols which normally include both alpha and numeric codes plus punctuation marks and any other symbol which may be read, stored, or written.
<u>Clock:</u>	A device or a part of a device that generates all the timing pulses for the coordination of a digital system. System clocks usually generate two or more clock phases. Each phase is a separate, square wave pulse train output.
<u>Closed Loop Control:</u>	A control method where a sensor continuously feeds information about a variable back to the controller.
<u>Communications Interface Protocol:</u>	A formal set of conventions governing the format and relative timing of message exchange between two terminals.
<u>Contract Documents:</u>	Developed by the Government to describe the type of DDC to be installed. Used by the contractor to describe the scope of work.
<u>Controls:</u>	Devices which govern the performance of a system.
<u>Control Point Adjustment (CPA):</u>	The procedure of changing the operating point of a local loop controller from a remote location.

APPENDIX "B"

DEFINITIONS

<u>Algorithm:</u>	A set of well defined rules or procedures for solving a problem or providing an output from a specific set of inputs.
<u>Analog:</u>	A continuously varying signal value (temperature, current, pressure, etc.)
<u>Analog to Digital Converter:</u>	A circuit or device whose input is information in analog form and whose output is the same information in digital form.
<u>Applications Programs</u>	Set of instructions for controlling equipment based on a set of conditions that may vary over time. For example, the start/stop applications program starts up and/or shuts down equipment according to the time of day and the day of the week.
<u>ASCII:</u>	American Standard Code for Information Interchange. An 8-bit coded character set to be used for the general interchange of data among information processing systems, communications systems, process control systems, and associated equipment. Various character/graphic subsets are discussed in FIPS PUB 15.
<u>BASIC:</u>	An acronym for Beginners All-Purpose Symbolic Instruction Code, a highlevel, English-like programming language used for general applications.
<u>Baud:</u>	A unit of signalling speed equal to the number of discrete conditions, or signal events, per second.
<u>Bit:</u>	An acronym for binary digit. The smallest unit of information which can be represented. A bit may be in one of two states, represented by the binary digits 0 and 1.

RTC	Real time clock
RTD	Resistance temperature detector
S/S	Start/stop

EMI	Electromagnetic interference
EEPROM	Electronically erasable PROM
EPROM	Erasable PROM
FAR	Federal Acquisition Regulations
HVAC	Heating, ventilating, and air conditioning
I/O	Input/output
K	Thousand
kHz	Kilohertz
kW	Kilowatt
kWh	Kilowatt-hour
LAN	Local Area Networks
Mb	Megabyte
MBtu	Btu (millions)
MODEM	Modulator/demodulator
OA	Outside air
PROM	Programmable ROM
PI	Proportional integral
PID	Proportional integral derivative
psig	Pounds per square inch, gauge
PT	Potential transformer
RAM	Random access memory
RF	Radio frequency
RH	Relative humidity
ROM	Read only memory

APPENDIX "A"

ABBREVIATIONS

A/D	Analog to digital
AHU	Air handling unit
AI	Analog input
AO	Analog output
ASCII	American Standard Code For Information Interchange
ATC	Automatic temperature control
bps	Bits per second
Btu	British thermal unit
CPA	Control point adjustment
cps	Characters per second
CPU	Central processing unit
CRT	Cathode ray tube
CT	Current transformer
D/A	Digital to analog
dc	Direct current
DDC	Direct digital control
DE	Data environment
DI	Digital input
DO	Digital output
DTM	Data transmission media
EMCS	Energy monitoring and control systems

7.10 GOVERNMENT ACCEPTANCE TESTING

Performance verification and endurance tests should be conducted on DDC systems prior to Government acceptance. A number of the tests developed for EMCS can apply to DDC systems.

7.11 MAINTENANCE AND OPERATION

Policies should be established for maintaining and operating DDC systems. If a Government installation contains DDC systems from more than one manufacturer, Government facility personnel must be trained to handle the variations in equipment maintenance and operation procedures.

7.5 SPECIFICATIONS

It is recommended that a Corps of Engineer Guide Specification be developed for DDC systems.

7.6 CONTRACT DOCUMENT PREPARATION

The procedures developed for EMCS contract documentation should be used in DDC system design. Minimum design and documentation requirements for Government construction contracts should be established. It is particularly important that there be full documentation on the location and installation of sensors and controls used by the DDC system, and full documentation of software requirements.

Detailed sequences of operation should be provided so that the contractor can program the DDC system to meet the needs of the project.

Requirements must be established for contractor furnished data that the Government will need after the DDC system is installed. By establishing these requirements, the Government can avoid similar problems that have resulted in expanding EMCS.

7.7 SHOP DRAWINGS

Shop drawings for DDC systems should be prepared under the same requirements as those for EMCS. The contractor must indicate system configuration, proposed layout and installation. Shop drawings should detail sensor and control wiring and routing. It is recommended that the contractor provide detailed software descriptions, and logic diagrams, and sequence of operation to ensure that the software meets contract requirements.

7.8 INSTALLATION

DDC system installation should be conducted under the same guidelines as those established for EMCS installation.

7.9 CONTRACTOR TESTING

It is recommended that the contractor conduct field tests to verify that sensors and controls are properly wired, DDC equipment is properly installed and grounded, overvoltage and surge protection devices are properly installed, and all components are operable.

Manufacturer's literature from:

Advanced Electrical Applications
Anderson Cornelius
Andover Controls
Atlantic Energy Technologies
Barber Coleman
Beckman
Climatron
Computer Sciences Corporation
Daytronics
Detection Systems
Honeywell
HSQ Technology
Margaux Systems
MCC Powers
Raytheon
Staefa Control
Tano
United Technologies
Westinghouse

APPENDIX "D"

SAMPLE DDC QUESTIONNAIRE

I. DEFINITIONS

1. Direct Digital Controller (DDC) - Computer based equipment designed to directly modulate a controlled device to obtain a desired set point. The DDC can interface with either electronic or pneumatic devices.
2. Central Computer - An independent computer system that can interface with a DDC. The computer contains a central processing unit, volatile and non-volatile memory. The central computer's functions are likely to include central monitoring, control and diagnostics of the DDCs.
3. Applications Programs - Set of instructions for controlling equipment based on a set of conditions that may vary over time. For example, the start/stop applications program starts up and/or shuts down equipment according to the time of day and the day of the week.
4. Open Loop Control - A control method where the computer can send commands to control points, but no information can be received from the field.
5. Closed Loop Control - A control method where a sensor continuously feeds information about a variable back to the controller.

II. CONFIGURATION

1. Can your DDC equipment function as a stand-alone system (without a central computer)? (Yes/No) _____

2. Can the DDC equipment interface with other manufacturers' central processing systems? (Yes/No) _____
If yes, which systems? _____

3. Does your DDC System standard configuration have a central computer system available? (Yes/No) _____

4. Do you have more than one size DDC that relates to the complexity of the control functions and/or I/O requirements. Please describe each basic system type in terms of:

	<u>Type 1</u>	<u>Type 2</u>	<u>Type 3</u>
Model No.	_____	_____	_____
Number of Analog Inputs	_____	_____	_____
Number of Analog Outputs	_____	_____	_____
Number of Digital Inputs	_____	_____	_____
Number of Digital Outputs	_____	_____	_____
Number of Pulse Accumulators	_____	_____	_____

	<u>Type 1</u>	<u>Type 2</u>	<u>Type 3</u>
Total Volatile Memory (RAM) Capacity	_____	_____	_____
Total Non-Volatile Memory (PROM) Capacity	_____	_____	_____
RAM (Kbytes) used for Operating and Diagnostic Software	_____	_____	_____
RAM (Kbytes) used for Default Parameters	_____	_____	_____
RAM (Kbytes) used for Application Software	_____	_____	_____
ROM (Kbytes) used for Operating and Diagnostic Software	_____	_____	_____
ROM (Kbytes) used for Default Parameters	_____	_____	_____
ROM (Kbytes) used for Application Software	_____	_____	_____

III. EQUIPMENT

1. Please indicate if your DDC contains the following (Yes/No):

	<u>Type 1</u>	<u>Type 2</u>	<u>Type 3</u>
On-Off Line Switch (for communication to a central system)	_____	_____	_____
Self Test Switch	_____	_____	_____
Reset Switch	_____	_____	_____
Real Time Clock	_____	_____	_____
Communications Interface (indicate types)	_____	_____	_____
Auto Answer/Auto Originate Modem for Remote Central Computer Interface	_____	_____	_____
Clock Battery Backup (indicate hours)	_____	_____	_____
RAM Memory Battery Backup (Indicate hours)	_____	_____	_____

	<u>Type 1</u>	<u>Type 2</u>	<u>Type 3</u>
Power Failure Automatic Restart	_____	_____	_____
Peripheral Ports (indicate quantity)	_____	_____	_____
Multiplexer to Communicate with Local I/O	_____	_____	_____
Multiplexer to Communicate with Remote I/O	_____	_____	_____
Digital Input	_____	_____	_____
Digital Output	_____	_____	_____
Analog Input	_____	_____	_____
Analog Output	_____	_____	_____
Pulse Accumulator Input	_____	_____	_____
Built-in Hardware Diagnostic and Programming Panel	_____	_____	_____
Built-in I/O	_____	_____	_____
Remote I/O via MUX	_____	_____	_____
Local Display and Control Panel at DDC _____	_____	_____	_____
Other (please List) _____	_____	_____	_____
	_____	_____	_____
	_____	_____	_____

2. What type of processor is used?

	Type 1	Type 2	Type 3
8 bit	_____	_____	_____
16 bit	_____	_____	_____
32 bit	_____	_____	_____

3. What type of support equipment is required at the DDC for:

Reprogramming _____
Diagnostics _____

4. How many of the following can your DDC equipment handle?

	Type 1	Type 2	Type 3
Model No.:	_____	_____	_____
Analog Inputs per Control Loop	_____	_____	_____
Digital Inputs per Control Loop	_____	_____	_____
Analog Outputs per Control Loop	_____	_____	_____
Digital Outputs per Control Loop	_____	_____	_____
Control Loops	_____	_____	_____
Pulse Accumulator	_____	_____	_____

5. With respect to the previous question, how does the memory requirements for application programs affect the number of control loops that each DDC can handle? If required please attach additional pages to answer this question.
-
-
-
-
-

6. What is the "rule of thumb" used to calculate the number of DDC control loops and I/O points for each type of DDC controller as a stand-alone unit if all of the following programs are implemented:

Start/Stop, Scheduled Start/Stop, Day-Night Setback, Ventilation/Recirculation and Duty Cycling.

7. Is the equipment standardized so that it can be used for monitoring and/or control of any type of equipment using standard instrumentation signals? If not, what components are not standard? _____

IV. SOFTWARE

1. What additional equipment and/or software is required for changing applications programs at the Central Computer? _____

2. How can each individual DDC be brought on line?

With Central Computer? _____

Without Central Computer (Stand-alone Mode)? _____

3. What equipment is needed to initially bring the DDC on line in a stand-alone mode?

Portable programming and diagnostic device _____

Central Computer _____

Other (please specify) _____

4. What equipment is required for software diagnostics at the DDC?

Central Computer _____

Portable Diagnostic Device _____

Built into the Equipment _____

5. How is a new program installed in the DDC?

Central Computer _____

Portable programming device _____

Other (specify) _____

6. How are safeguards provided against unauthorized access? _____

7. What programming languages are provided?

At central system _____

At DDC _____

8. Are english-like words provided for operator interface? (Yes/No)

Central computer _____

DDC _____

9. What applications programs are presently available that can be implemented in a stand-alone mode in a DDC without data from the Central Computer.

	<u>Off the Shelf</u>	<u>To be available (indicate year)</u>
Scheduled Start/Stop	_____	_____
Optimum Start/Stop	_____	_____
Duty Cycling	_____	_____
Demand Limiting	_____	_____
Day-Night Setback	_____	_____
Economizer	_____	_____
Enthalpy	_____	_____
Ventilation/Recirculation	_____	_____
Hot Deck - Cold Deck Reset	_____	_____
Reheat Coil Reset	_____	_____
Steam Boiler Optimization	_____	_____
Hot Water Outside Air Reset	_____	_____
Chiller Optimization	_____	_____
Chiller Water Temperature Reset	_____	_____
Condenser Water Temperature Reset	_____	_____
Chiller Demand Limit	_____	_____
Lighting Control	_____	_____
Other (please specify)	_____	_____

10. What information or commands can be manually requested for display at the DDC either through a built in display panel or a portable programming and diagnostic device? (Yes/No)

Point Status _____

Parameter Values _____

Change of State without Command _____

Change of State beyond allowed Limits _____

Equipment Failure _____

11. What information from the DDC can manually be requested and/or automatically displayed at the Central Computer?

Point Status _____

Parameter Values _____

Change of State without Command _____

Change of State beyond allowed Limits _____

Equipment Failure _____

Other (list) _____

V. TRANSMISSION MEDIA

1. What transmission media is used by the DDC for communication with the central computer?

	<u>Min. Speed (Baud)</u>	<u>Max. Speed (Baud)</u>
Coaxial cable	_____	_____
Twisted pair	_____	_____
Dedicated telephone lines	_____	_____
Dial up telephone lines	_____	_____
Fibre optics	_____	_____
Other (specify)	_____	_____

2. How many data transmission links can be handled by your DDC central computer system? What is the expected response time for a fully loaded system? _____

3. How many DDC can be connected to a single 1200 baud telephone line to the Central Computer? _____

VI. INTERFACE/CONTROL

1. Can your DDC be interfaced with other manufacturer's EMCS using standard electronic interfaces (RS232, RS422, etc/) with protocol information provided with the DDC controller under a sub-licensing agreement? (Yes/No) _____

If the DDC equipment cannot be interfaced with other manufacturer's EMCS equipment, please indicate the reason:

- a. No interface information can be made available. _____
b. No standard interface is part of the DDC panel. _____
c. Other (explain). _____

2. Can your DDC equipment interface with pneumatic and/or electronic control systems? (Yes/No) _____. How is this accomplished?
- _____
- _____

3. What control modes can the DDC control equipment perform?

Proportional _____

Proportional/Integral _____

Proportional/Integral/Derivative _____

Other (explain) _____

4. What method does your DDC use for analog output?

Pulse width modulation with feedback _____

Proportional electric output to drive transducers _____

Other (explain) _____

5. What type of control loop can your DDC provide?

Open Loop _____

Closed Loop _____

Other (explain) _____

VII. POWER FAILURE/AUTO RESTART

1. In the event of power failure, at the DDC controller are the contents of memory lost in the following if no memory battery backup is available?

Operating System _____

Applications Programs _____

Operating Parameters _____

2. When power is restored at the DDC controller, can the equipment restart automatically without data and/or communication with the control computer if memory battery backup is provided? If not, what is required for restart?

3. What output failure modes are available when the DDC field panel fails?

	On	Off	Last Command	High Value	Low Value	Mid Range
Digital Output				N/A	N/A	N/A
Analog Output	N/A	N/A				

VIII. RELIABILITY/REPAIR

1. For DDC systems already installed in the field, what is the mean time between failures (MTBF)?

Central Computer _____

DDC Field Panels _____

2. For DDC systems already installed in the field, what is the mean time to repair (MTTR)?

Central Computer _____

DDC Field Panels _____

3. Can DDC repair/diagnostics be performed by trained owner personnel. What level of training is required? _____

4. What system boards of the DDC can be replaced in the field?

CPU _____ Power Supply _____
I/O Boards _____ Memory Boards _____

5. What spare parts need to be stored on-site to minimize the MTTR of the DDC when using the available diagnostic devices?

CPU _____ Power Supply _____
I/O Boards _____ Memory Boards _____

IX. DESIGN/TESTING

1. For a project requiring approximately 100 I/O points using a stand-alone DDC, what is your estimated lead time for:

Shop Drawings _____
Installation _____
Checkout _____

2. What codes and industry standards do you use for:

	Data Transmission	I/O	
	<u>Lines</u>	<u>Power Lines</u>	<u>Functions</u>
Surge Protection	_____	_____	_____
Oversupply Protection	_____	_____	_____

X. ENVIRONMENTAL CONDITIONS

1. What are the minimum and maximum environmental conditions allowable for the DDC field equipment?

Minimum Dry Bulb _____

Maximum Dry Bulb _____

Minimum Relative Humidity _____

Maximum Relative Humidity _____

AC Power Supply - Volts _____ Min/Max tolerance
(volts) _____

XI. INSTALLATION

1. What building codes are your DDC installations expected to meet?

NEC _____

BOCA _____

NFPA _____

XII. COSTS

1. What is the estimated equipment budget costs of the following DDC?

	Type 1	Type 2	Type 3
Stand-alone DDC with no I/O	_____	_____	_____
Stand-alone DDC with fully implemented I/O (No instrumentation or controls)	_____	_____	_____
Digital Output	_____	_____	_____
Digital Input	_____	_____	_____
Analog Input	_____	_____	_____
Analog Output	_____	_____	_____
Pulse Accumulator	_____	_____	_____

2. What is the estimated average budget costs to program a DDC for stand-alone operation?

Type 1 _____

Type 2 _____

Type 3 _____

3. What is the estimated installed cost differential between pneumatic control systems and control systems that utilize DDC controllers? _____
- _____
- _____
- _____

XIII. DDC SYSTEM INSTALLATION

Provide description of types, sizes and number of systems that have been installed and accepted by the user.

XIV. TECHNICAL LITERATURE

Please provide three copies of technical data on your DDC equipment and software.

Sample Letter sent to DDC Manufacturers requesting verification of data.

Gentlemen:

The Army Corps of Engineers, Huntsville Division wishes to release the report on "State-of-the-Art Technology Review of Direct Digital Control Systems for Electrical and Mechanical Systems to personnel in the Department of Defense. This report includes tables that describe certain characteristics of your equipment that was provided by your company to Kling-Lindquist, Inc. in a questionnaire. Before the report can be released, the Corps of Engineers requires a letter from your company, giving them permission to release this information.

Please review the attached tables and indicate which data can be released for distribution throughout the DOD. Please cross out any information you do not want released and modify any data that has changed since these tables were developed.

If you have not responded by October 15th, the Corps will assume that all data can be released. Please send letters authorizing release of the attached data to Kling-Lindquist, Inc. in Philadelphia.

Very truly yours,

Jeffery Costol, PE
Manager of Projects

JC/th
cc: Frank Carlin

Encls.

COMPUTER SCIENCES CORPORATION

SYSTEMS DIVISION

(703) 237-2000

6565 ARLINGTON BOULEVARD - FALLS CHURCH VIRGINIA 22046

October 9, 1984

KLING LINQUIST, INC.
2301 Chestnut Street
Philadelphia, PA 19103

Attention: Jeff Cosiol

Gentlemen:

Computer Sciences Corporation (CSC) hereby authorizes the release of the attached information about CSC INFOSCAN product.

If you have any additional questions concerning CSC or its product as it is applied to Direct Digital Control (DDC) please let us know.

Sincerely,

JAMES E. BUENING

Manager, Control Systems

JEB/lmq

Attachment

CLIMATRON

BUILDING AUTOMATION SYSTEMS

1370 Logan Avenue,
Costa Mesa, California 92626
(714) 540-4208

October 16, 1984

Mr. Jeffrey Cosiol, PE
Kling Lindquist, Inc.
2301 Chestnut Street
Philadelphia, PA 19103

Dear Mr. Cosiol:

Attached is the revised data on our Direct Digital Control Systems. I've also attached copies of the brochures for the CLIMATRON 2100 and 4000 Series Systems for your information.

If you have any questions regarding this information please give me a call. Thanks for extending our deadline.

Yours very truly,

CLIMATRON, INC.

Charles Williams
Vice President/Marketing

CW:bn

Enclosures

Energist, Inc., 4294 Lee Road, Cleveland, Ohio 44128 (216) 751-9344

October 5, 1984

Mr. Jeffrey Cosil, Manager of Projects
Kling Lindquist, Inc.
2301 Chestnut Street
Philadelphia, PA 19103

Dear Jeffery:

Enclosed please find copy of corrected data sheet for your use.
Corrections have been highlighted in yellow.

Thank you for your exposure.

Sincerely,

A handwritten signature in black ink, appearing to read "MARK STEVENSON". It is written in a cursive style with some loops and variations in thickness.

MARK STEVENSON,
ENERGIST, Inc.

MS/dd

Enclosure

Honeywell

October 1, 1984

Jeff Cosiol
Kling Lindquist Inc.
2301 Chestnut Street
Philadelphia, PA 19103

Dear Jeff,

Honeywell Commercial Division hereby does release the information regarding the direct digital control system information for use by DOD personnel.

Please note the changes made in tables 2/1, 2/2, 2/3, 2/5, and 2/7. The proper "Model Type" is R7510 rather than 7511. Please make these changes prior to issue.

Regards,

J. Dowdle
Manager, Sales Manager
Commercial Division

JRD/bmw

cc: Doyle Adams
C. Walker

RECEIVED
JAN 11 1985
KLING-LINDQUIST, INC.

POST OFFICE BOX 423
MILWAUKEE, WI 53201-0423
TEL. 414/274 4000
JAB-85-2

Dr. Francine Bomar
Kling Lindquist Inc.
Engineers
2301 Chestnut Street
Philadelphia, PA 19103

January 7, 1985

Dear Francine,

Thank you for seeking out an update on the state of the art technology survey for DDC.

Please make the following changes to our previously answered questionnaire:

- 1) In table 2-2, change the total RAM to 48K and the PROM to 40K. Please eliminate the 6K under application software RAM and let the note "proprietary data" apply to all memory application.
- 2) In table 2-7, change the battery backup for the clock and RAM to 72 hours. This is our standard backup package now.
- 3) In table 2-8, change the mean time between failures for the DDC device to 17,000 hours. As you can note, this is a marked improvement over our previous data. It happens to be based on more than 3500 DDC units shipped.

We appreciate your interest. Please let me know if there are further questions.

Sincerely,

JOHNSON CONTROLS, INC.

A handwritten signature in black ink that appears to read "John A. Enright".

John A. Enright, PE
Manager of Technical &
Engineering Services
National Accounts Department

cc: Joseph L. Toland, JCI, Philadelphia
Hugh Amerson, JCI, Milwaukee

RECEIVED
OCT 24 1984
TAYLOR & ANDERSON INC.

TA

October 22, 1984

KLING LINDQUIST INC.
1391 Chestnut Street
Philadelphia, Pa. 19103

Attn: Mr. Jeffrey Cosiol, PE
Manager of Projects

Dear Mr. Cosiol, PE
Manager of Projects

Dear Mr. Cosiol,

Regarding your letter of September 25, please find enclosed
the tables of questionaries.

sincerely yours,

Mac Dierf
Mac Dierf
Manager
Computer Systems

MD/aw

RAYTHEON SERVICE COMPANY
A SUBSIDIARY OF RAYTHEON COMPANY

RAYTHEON LABORATORY
2 EASTON ROAD
P.O. BOX 503
BURLINGTON, MA 01803 U.S.A.

TEL: 617-272-9300
TWX: 710-332-0617
TELEX: 094-9490

JAC:eag:9312-217
EM: 914

3 October 1984

Kling Lindquist Inc.
235 Chestnut Street
Philadelphia, PA 19103

Attention: Mr. Jeffery Cosiol

Subject: Energy Monitoring and Control Systems

Gentlemen:

We have received and reviewed the Kling Lindquist Inc. letter dated September 25, 1984 which requests permission for use of certain technical information related to Raytheon Service Company's Energy Monitoring and Control Systems. Raytheon Service Company hereby authorizes the use of the previously provided technical information in the planned DOD publication.

We request that the publication contain an accurate identification of the source of the information. Perhaps, the publication should note that if the reader wishes to obtain more complete technical information, he should contact us.

Raytheon Service Company
Burlington, Massachusetts
Directorate of Marketing

In addition, Raytheon Service Company would like to receive a copy of the proposed publication. Should additional information be required, then please contact the undersigned.

Very truly yours,

RAYTHEON SERVICE COMPANY

Joseph A. Clarke
Contract Administrator

END

FILMED

6-85

DTIC