2. ANHARMONIC OSCILLATOR

A non-relativistic particle with mass m moves one-dimensionally in the potential

$$V(x) = \frac{1}{2}m\omega^2 x^2 + \lambda x^4$$
, with $\lambda > 0$.

Let $|\Psi_0(\lambda)\rangle$ be the ground state of this system, and $E_0(\lambda)$ be the ground-state energy. For small λ , the quartic term in the potential can be treated as a small perturbation of the $\lambda = 0$ harmonic oscillator problem, which has an oscillation frequency ω .

- (a) The particle coordinate x can be expressed as an operator in terms of a^{\dagger} and a, the raising and lowering operators for the $\lambda=0$ harmonic oscillator problem, where $a|\Psi_0(\lambda=0)\rangle=0$. Give such an expression for x.
- (b) Compute the perturbation expansion of the ground-state energy $E_0(\lambda)$ up to first order in λ .
- (c) Again up to first order in λ , compute the perturbation expansion of the ground-state expectation value $\langle \Psi_0(\lambda)|x^2|\Psi_0(\lambda)\rangle$.

In the opposite limit of large positive $\lambda \to \infty$, the leading behavior of the ground state energy $E_0(\lambda)$ will be proportional to λ^{α} where α is a positive exponent.

(d) (Up to an undetermined numerical multiplicative factor) find the asymptotic large- λ behavior of the ground-state energy $E_0(\lambda)$, giving the explicit value of α .

(You may find a simple variational estimate of $E_0(\lambda)$, or scaling arguments, helpful in part (d).)