OPL1000 Peripheral PWM Application Notes

SALES@OPULINKS.COM

MAY 31, 2018

Revision History

版本号	时间	说明
v0.1	2018/05/23	Draft version
v0.2	2018/05/31	Update according to TW team review feedback

Content

- PWM Module features
- PWM Port Resource and Setting
- Configuration by Pin-Mux Tool
- PWM module API
- Simple Configure Mode with different clock source
- Square Wave use complex configure mode
- Complex Configuration Mode Example
- Application Notice
- Reference

PWM Module Features

- Electrical spec: up to VDDO, $V_{OL} = 0.4v$, $V_{OH} = 2.4v$; $I_{OL} = 29.5$ mA (typical), $I_{OH} = 60.3$ mA (typical)
- Two clock source: 32KHz and 22MHz clock
- Two configuration mode: Simple mode and Complex mode.
- Simple Mode: 3 parameters need to set.
 - Clock source
 - ② Duty rate: 1%~100%, precise 1%
 - Output frequency (Hz unit)
- Complex Mode: 7 parameters, duty rate can varies, precise is higher than simple mode.
 - 1 PWM period, defined in clock cycles number
 - ② Ramp up and ramp down interval
 - Bright and Dull duration can be defined independently
 - 4 Hold bright and dull duration can be defined independently

PWM Port Resource and Setting

OPL1000 support 6 PWM port, PWM0~PWM5

Index	PWM	IO-Idx	Pin-Loc	Pin @DEVKIT
1	PWM0	1023	29	J2 – Pin2
2	PWM1	1022	48	J2 – Pin13
3	PWM2	1021	47	J2 – Pin12
4	PWM3	1020	46	J2 – Pin11
5	PWM4	1019	45	J2 – Pin10
6	PWM5	IO18	44	J2 – Pin9

DEVKIT GPIO mapping

		ANT		
Pin Name	Pin No	AINI	Pin No	Pin Name
GND	pin 14		pin 14	GND
GPIO22	pin 13		pin 13	+3V3
GPIO21	pin 12		pin 12	GND
GPIO20	pin 11		pin 11	CHIP_EN
GPIO19	pin 10		pin 10	RST_N
GPIO18	pin 9		pin 9	GPIO0(REV)
GND	pin 8		pin 8	GPIO1(REV)
GPIO11	pin 7		pin 7	GPIO2
GPIO10	pin 6		pin 6	GPIO3
GPIO9(REV)	pin 5		pin 5	GPIO4
GPIO8(REV)	pin 4		pin 4	Ex_5V
GPIO7(REV)	pin 3		pin 3	GND
GPIO23	pin 2		pin 2	GPIO5
GND	pin 1	USB	pin 1	GPIO6

Configuration by Pin-Mux Tool

- Pin-Mux tool only provide simple mode PWM configuration method
- Complex mode setting need to define PWM module of OPL1000_periph directly
- Clock source shall be same for multiple PWM port

PWM Module API (1)

- Hal_Pinmux_Pwm_Init: Initialize PWM module
- Hal_Pinmux_Pwm_Config: Configure PWM port, include pin assignment and parameter setting
- Hal_Pinmux_Pwm_Enable: Enable defined PWM port, single or multiple
- Hal_Pinmux_Pwm_Disable: Disable PWM port, certain on port or multiple ports
- Hal_PinMux_Get_Index : Get PWM index according to assigned Pin number
- T_OPL1000_Periph OPL1000_periph: global variable, defines peripheral resource, include PWMport
 - Element: uint8_t pwm_num defines how many PWM ports need to config
 - Element: _OPL1000_Pwm pwm[PWM_MAX_NUM] defined pin assignment and other parameters

The state of the s

PWM Module API (2)

T_OPL1000_Pwm structure definition:

```
uint8 t pin;
                    // PWM pin assignment
E_PwmClkSrc_t clkSrc;
                        // clock source, 32kHz or 22MHz clock
E_PwmCfgType_t cfgType; // Configuration mode, simple or complex mode
                     // duty rate, from 1 to 100, corresponding to 1% to 100%
uint8_t duty;
uint32_t clkHz;
                     // output PWM waveform frequency, in Hz unit
uint32 t period;
                      // the tick count in one PWM cycle
uint32 t dutyBright;
                        // max tick count of high level in on PWM cycle
                       // min tick count of high level in one PWM cycle
uint32 t dutyDull;
uint32_t rampUp;
                        // delta count from dull to bright per clock cycle
uint32 t rampDown;
                          // delta count from bright to dull per clock cycle
uint32_t holdBright;
                        // hold times of the bright state
uint32_t holdDull;
                       // hold times the dull state
```


PWM Module API (3)

PWM Setting process flow:

- Use pin-mux tool to define PWM port resource (generate OPL1000_pin_mux_define.c file)
- 2. Get PWM port number from OPL1000_periph variable
- 3. Initialize PWM module
- 4. Disable all PWM port output
- 5. Enter loop processing.
 - For each PWM port , get PWM index according to IO Pin number
 - Calculate pwm index mask for multiple PWM port case
 - Call Hal_Pinmux_Pwm_Config to config each PWM port
- 5. Enable PWM port according to combined pwm_index_mask

```
// Example code:
uint8 t pwm num = OPL1000 periph.pwm num;
uint8 t i,pwm index mask = 0, pwm idx;
if(pwm num > 0)
    Hal Pinmux Pwm Init();
    // Disable all PWM output
    Hal Pinmux Pwm Disable(HAL PWM IDX ALL);
    for (i=0; i<pwm num;i++)
      pwm idx = Hal PinMux Get Index(OPL1000 periph.pwm[i].pin);
      pwm index mask = pwm index mask | pwm idx;
      // pwm[0] corresponding to PWM4 - IO19, complex mode config
      Hal Pinmux Pwm Config(&OPL1000 periph.pwm[i]);
    Hal Pinmux Pwm Enable(pwm index mask);
```

Simple Configure Mode (32kHz clock source)

PWM1: {OPL1000_IO22_PIN, CLK_32KHz,CFG_SIMPLE,20,10000,0,0,0,0,0,0,0}: CH1, 20% duty, 10kHz; 32kHz clock source

PWM4: {OPL1000 IO19 PIN, CLK 32KHz ,CFG SIMPLE,50,3000,0,0,0,0,0,0,0}: CH2, 50% duty, 3kHz; 32kHz clock source

Simple Configure Mode (22MHz clock source)

PWM1: {OPL1000_IO22_PIN,CLK_22MHz,CFG_SIMPLE,20,10000,0,0,0,0,0,0,0}: CH1, 20% duty, 10kHz; 22MHz clock source

PWM4: {OPL1000_IO19_PIN,CLK_22MHz,CFG_SIMPLE,50,3000,0,0,0,0,0,0,0}: CH2, 50% duty, 3kHz; 22MHz clock source

Square Wave use complex configure mode (1)

PWM parameter setting:

{OPL1000_IO22_PIN,CLK_22MHz,CFG_COMPLEX,20,10000,1,1,0,1,1,1,499}

- Clock cycle is 1/22MHZ = 45ns, PWM cycle = (1+499)*clock_cycle = 22.7us
- Bright pulse (high level) width = 1 clock cycle
- Because Duty_dull = 0 and ramp_down = 1, then next cycle bright (high level) is 0
- Enter into Dull state, keep for 499 clock cycles.
- Turn to ramp up stage, duty is changed to "Bright" state, keep 1 cycle (hold_bright =1)
- Hence one repeat pattern duration is: 1+499=500 clock cycle
- duty rate is fixed to (1/500) = 0.2%. Dull rate = 1-duty = 99.8%

Parameters	Value
PWM period	1
Duty_Bright	1
Duty_Dull	0
Ramp_Up	1
Ramp_Down	1
Hold_Bright	1
Hold_Dull	499

Complex Configuration Mode (2)

- Period = 22.68us, Freq = 1/Period = 44.1 KHz
- high level pulse width = 55.24ns, whole period = 22.68us, hence duty_rate = 0.24%

Complex Configuration Example

{OPL1000_IO22_PIN,CLK_32KHz,CFG_COMPLEX,20,10000,100,80,20,5,10,4,8}

- PWM period is fixed, but duty rate is changed between 20% ~ 80%
- Clock cycle is 1/32KHZ = 31.25us, PWM cycle = 100*clock_cycle = 3.125ms
- Duty is reduced from 80 clock cycle to 20, reduce interval is 10. hence needs 6 PWM cycle
- then keep Duty@20 clk cycle for 8 PWM cycle
- Duty is increased from 20 clock cycle to 80, increase interval is 5, hence needs 12 PWM
 cycle
- then keep Duty@80 clk cycle for 4 PWM cycle
- One repeat pattern duration is : 6 + 8 + 12 + 4 = 30 PWM cycles

Parameters	Value
PWM period	100
Duty_Bright	80
Duty_Dull	20
Ramp_Up	5
Ramp_Down	10
Hold_Bright	4
Hold_Dull	8

Ramp_Down Duration	Hold_Dull Duration	Ramp_Up Duration	Hold_Bright Duration
6 PWM cycle	8 PWM cycle	12 PWM cycle	4 PWM cycle

Complex Setting: Overall picture

- Ramp_up time = (80-20)/10 = 6
- $\blacksquare \quad \mathsf{Hold_dull} = 8$
- Ramp_down time = (80-20)/5 = 12
- Hold_Bright = 4
- Total = 6+8+12+4=30

Complex Setting: Duty_Bright

- Duty_Bright = 80 cycle. In theory it is T = 80*(1/32kHz) = 2.5ms
- Due to equipment measurement error, one clock cycle is 30 us instead of 31.25us, hence "bright" width = 80*30 = 2.4ms

Complex Setting: Hold Bright State

- Hold_Bright = 4, back count from 0ms, there are 4 cycles BIGHT state. High pulse width = 80*clock_cycle = 80*(1/32kHz) = 2.5 ms
- From 0ms time line, Bright is 80 cycle, period = 100 cycle = 100*(1/32 KHz) = 3.125 ms

Complex Setting: Ramp_Down Stage

- Duty_Bright = 80, Ramp_down = 10, hence duty bright is reduced from 80 to 20 cycle, pass (80-20)/10 = 6 periods
- Start from timeline t1 = 0ms, end to timeline t2 = 6*[100*(1/32KHz)] = 18.75 ms. Real is 6*3 = 18ms

Complex Setting: Duty_Dull

- Duty_Dull = 20 clock cycle, width equals 20*(1/32KHz) = 625us.
- Hold Dull stage, from timeline t3 = 7*[100*(1/32KHz)] = 21.875ms. Keep Hold_dull = 8 period, duration is 25 ms

Complex Setting: Hold Dull Stage

- Hold_dull = 8, from 2^{nd} , keep 8 cycles DULL state. High pulse width = 20*clock_cycle = 20*(1/32kHz) = 625us
- From 9^{th} , duty_dull is increased. timeline = (6+8+1)*100*(1/32KHz) = 46.875ms. Its width = 20+5 (clock cycle) = 25*(1/32KHz) = 781 us

Complex Setting: Ramp up procedure

- Start time = 46.875ms. Ramp_up = 5, period count = (80-20)/5 = 12, end timeline = (6+8+12)*100*(1/32KHz) = 81.25ms
- "Bright" pulse duration = 80 clock cycle = 2.5ms, Hold_Bright=4, keep 4*100*(1/32KHz) = 12.5 ms duration. Real is 4*3ms = 12 ms.

The state of the s

Application Notice

- In one application PWM port clock source shall be one choice.
- Both "Simple Mode " and "Complex mode" can generate regular square wave which duty rate is fix value
- "simple mode" duty rate precise is 1%.
- "complex mode" setting can get higher precision duty rate (< 1%), depends on PWM waveform frequency.</p>
- Roughly output waveform freq and duty precise have inverse relation. The formula is:

```
(f_{clock}/f_{pwm})*p_{duty} > 1 here f_{clock} is clock souce freq, f_{pwm} is output waveform frequency, p_{duty} is duty rate.
```

- In one words, if f_pwm is higher then duty rate precise will be lower.
- Maximum output waveform frequency is half of clock source frequency.
- Minimum output waveform frequency is clock source frequency div 511.

Reference

- 1. OPL1000-pinmux-tool-user-guide.pdf
- 2. OPL1000-DS-R04.pdf
- 3. OPL1000-HDK-R02.pdf
- 4. A0_MODULE_MOTHER_BOARD_2018_02_28.pdf

