

Lecture 0: Syllabus

Multimedia System
Spring 2020
School of Electronics Engineering, KNU

강의계획서

- 교과목명: 멀티미디어시스템개론 (EECS462)
- 강의학기: Spring, 2020
- 담당교수: 박순용
- 연락처 : 950-7575, sypark@knu.ac.kr
- 강의시간: 매주 월요일 10:30~11:45
 - 수요일 09:00~10:15
- 강의실: IT-1 #114
- 강의언어: 한국어

강의개요 및 목적

- 본 강의에서는 멀티미디어시스템의 이해를 위하여 "영상", "비디오", "컴퓨터비전"에 대한 이론과 응용에 대하여 학습한다.
 - 멀티미디어 센서의 이해 (camera, light, sound, ...)
 - 카메라 및 영상의 이해 (camera structure, color)
 - 영상과 비디오 코딩의 이해 (jpeg)
 - 영상과 비디오 압축의 이해 (compression)
 - 영상의 특징점 획득 및 정합 (image feature)
 - 3차원 영상카메라의 이해 (lidar, tof, stereo)
 - Immersive Video (MPEG_I, 3D VR)
 - 카메라를 이용한 3차원 정보의 획득 (3D sensing)
 - 카메라를 이용한 2차원 및 3차원 영상 정보의 활용 (3D application)

강의개요 및 목적

IEEE Multimedia Conference and EXPO Keyword

참고문헌

- Fundamental of Multimedia by Ze-Nian Li and Mark S. Drew, 2004
- Computer Vision: Algorithms and Applications, by Richard Szeliski, Springer, 2010.
- Learning OpenCV, by Gary Bradski & Adrian Kaehler, O'Reilly Media, 2008.
- Multiple View Geometry in Computer Vision, 2nd Edition, by R. Hartley, and A. Zisserman, Cambridge University Press, 2004.
- Computer Vision: A Modern Approach, by D.A. Forsyth and J. Ponce, Prentice Hall, 2002.

강의진행 방법 및 참고사항

- 3월말까지 비대면수업 진행
 - LMS 출석 체크
 - LMS 퀴즈, 과제제출
 - Youtube 실시간 방송 활용 수업
 - Youtube에서 'Soon-Yong Park' 검색 또는

https://www.youtube.com/channel/UCtNF2OMhc523j5wc1LrSR7Q

- 강의진행은 슬라이드 자료를 사용함
 - 슬라이드 강의자료는 LMS 강의자료 게시판에 게시함
- 특별한 교재는 필요치 않으며 인터넷에서 관련 자료를 많이 찾기바람
- 영상처리 또는 컴퓨터비전 알고리즘의 구현에 대한 homework 예정
- C,C++, Java 프로그래밍 사용 가능해야 함

과제 및 평가방법

- 중간고사:40% (중간고사기간 실시) 기말고사:45% (기말고사기간 실시)
- Homework: 13%
- 출석: 2%
- 성적분포
 - A-이상: 30%
 - B+ \sim B- : 40%
 - C+이하: 30%

강의일정

주차	강의내용
1	카메라 및 영상의 획득
2	그래픽과 영상 정보의 표현
3	영상과 비디오의 컬러 모델
4	영상 압축 기술
5	비디오 압축 기술
6	컴퓨터비전의 소개 및 응용분야
7	카메라 기하학
8	중간고사
9	2차원 영상에서 획득할 수 있는 2차원 특징 정보
10	2차원 영상 특징의 활용 (추적, 정합)
11	Immersive Video (MPEG-I)
12	3차원 정보의 획득 (ToF, Stereo, LiDAR)
13	3차원 센서 및 스테레오 비전
14	3차원 복원
15	기말고사