

Development Env. Setup Guide (부제 : RL 실습 환경 셋업 가이드)

JuSung Kang, LiberVance Co. Ltd., jskang.libervance@gmail.com,

Development Env. Setup Guide

- Requirements
 - OS
 - Windows 10/11
 - Packages
 - Anaconda3 for Python 3.x
 - Pytorch
 - Pycharm
 - OpenAl Gymnasium

Development Env. Setup Guide – Anaconda3

- Anaconda3 (Download)
 - https://www.anaconda.com/
 - Free Download >> Download >> (files) Anaconda3-2023.09-0-Windows-x86_64.exe

Development Env. Setup Guide – Anaconda3

- Anaconda3 (Install)
 - Next >> I Agree >> Next >> Next >> Install >> Next >> Finish

Development Env. Setup Guide – Anaconda3

- Anaconda3
 - 검색창 >> Anaconda Prompt 실행
 - >(base) conda create –n JNU_RL_Demo
 - >(base) conda activate JNU_RL_Demo

- Pytorch
 - https://pytorch.org/get-started/locally/
 - > (JNU_RL_Demo) conda install pytorch torchvision torchaudio cpuonly -c pytorch
 - * GPU computing H/W 에 맞는 Cuda, cuDNN 설치 필요
 - * https://wannabenice.tistory.com/54

Development Env. Setup Guide - OpenAI Gym, Matplotlib

- OpenAl Gym
 - > (JNU_RL_Demo) pip install nes-py
 - If error message occurs, see the next page
 - "~ pyproject.toml-based projects"
 - > (JNU_RL_Demo) pip install gymnasium[classic-control] gym-super-mariobros==7.4.0
- Matplotlib
 - > (JNU_RL_Demo) conda install -c conda-forge matplotlib

Development Env. Setup Guide – OpenAl Gym (Opt.)

- OpenAl Gym (Optional For Debugging)
 - > (JNU_RL_Demo) pip install nes-py
 - If error message occurs, go on the the MS site as bellow:
 - "~ pyproject.toml-based projects"
 - https://visualstudio.microsoft.com/ko/visual-cpp-build-tools/
 - vs_BuildTools.exe 실행

Development Env. Setup Guide – OpenAl Gym (Opt.)

- OpenAl Gym (Optional For Debugging)
 - > (JNU_RL_Demo) pip install nes-py
 - 계속 >> 'C++ 를 사용한 데스크톱 개발' 선택 및 설치 >> 설치 (few min.)
 - Nes-py 재설치 (Go back to page 7)

Development Env. Setup Guide – Env. Setup Test

- Env. Setup Test
 - > (JNU_RL_Demo) python
 - >> import torch
 - >> import gym, gymnasium
 - >> import matplotlib
 - >> import gym_super_mario_bros
 - >> x = torch.rand(5,3)
 - >> print(x)

```
Anaconda Prompt - conda install pytorch torchvision in chaudio cpuonly -c pytorch - conda install -c conda-forge matplotlib - python — □ X done

(JNL_PL_Demo) C: \( \text{MJSers}\( \text{MJSKang} \) \( \text{python} \) \( \text{Pile}'' \), "copyright", "credits" or "license" for more information.

Ye "help", "copyright", "credits" or "license" for more information.

Ye import torch

Ye import gym, symnasium

Ye import gym, symnasium

Ye import gym_super_mario_bros

Ye torch, rand(5,3)

Ye rint(x)

Ye tensor([[0.3848, 0.6417, 0.0494], [0.6470, 0.2265, 0.3222], [0.2100, 0.0983, 0.8729], [0.7978, 0.1552, 0.2816], [0.7978, 0.1552, 0.2816], [0.0250, 0.2432, 0.0176]])
```

Development Env. Setup Guide – Env. Export and Import Method (Opt.)

- Env. Export and Import method (Optional It takes few min.)
 - > (JNU_RL_Demo) conda deactivate
 - > (base) conda env create -n JNU_RL_Demo2 -f JNU_RL_Demo.yaml
 - Export env.) conda env export -n JNU_RL_Demo > JNU_RL_Demo.yaml

- Pycharm
 - https://www.jetbrains.com/ko-kr/pycharm/
 - 다운로드 > Pycharm Community Edition (다운로드) > (files) pycharm-community-2023.3.2.exe 실행

- Pycharm
 - Next >> Next >> Check options and Next >> Install

- Pycharm Project Setting
 - 검색창 >> Pycharm Community Edition 실행
 - Create New Project
 - Location 지정 (Project Name & Location)
 - Interpreter Type
 - Custom Env. >> Select Existing >> Conda >> JNU_RL_Demo >> Create
 - * Interpreter location
 - C:₩Users₩JSKang₩anaconda 3₩envs₩JNU_RL_Demo₩pyt hon.exe
 - C:₩ProgramData₩envs₩JNU _RL_Demo₩python.exe

- Pycharm Project Setting
 - Project Interpreter 설정방법
 - File >> Settings >> Project >> Project Interpreter >> Add Interpreter >> Add local interpreter >> Conda Environment >> Select conda env. >> ok >> ok

Development Env. Setup Guide – Pycharm Test code

- Pycharm Setup test code
 - Copy all files to project location
 - C:₩Users₩JSKang₩PycharmProjects ₩JNU_RL_Demo
 - 'CartPole.py' file
 - Right click >> Run 'CartPole"

Development Env. Setup Guide – Pycharm Test code

- Pycharm Setup test code
 - Setup Done!
 - Enjoy your RL

Development Env. Setup Guide – Pycharm Test code

Test Sample Code

 https://gymnasium.farama.org/environments/class ic_control/cart_pole/

Action Space

- 0 : Push Cart to the left
- 1 : Push Cart to the right

Observation Space

{(Position, Velocity, Angle, Angular Velocity)}

Rewards

• +1 for every step taken.

Terminates

- Angle greater than ±12°
- Position greater than ± 2.4
- Step length greater than 500

Cart Pole

This environment is part of the Classic Control environments which contains general information about the environment.

Action Space	Discrete(2)
Observation Space	Box([-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38], [4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38], (4,), float32)
import	<pre>gymnasium.make("CartPole-v1")</pre>

Description

This environment corresponds to the version of the cart-pole problem described by Barto, Sutton, and Anderson in "Neuronlike Adaptive Elements That Can Solve Difficult Learning Control Problem". A pole is attached by an un-actuated joint to a cart, which moves along a frictionless track. The pendulum is placed upright on the cart and the goal is to balance the pole by applying forces in the left and right direction on the cart.

Action Space

The action is a ndarray with shape (1,) which can take values {0, 1} indicating the direction of the fixed force the cart is pushed with.

- 0: Push cart to the left
- 1: Push cart to the right

