Ideal Nozzle Simulation Inputs:

a: 0.05 meter ** 2 / kilogram

n: 0.65 m: -0.2

Oxidiser:

Initial Volume: 0.41 liter Initial Mass: 0.5 lbs

Injector Mass Flow Rate: 0.042 kilogram / second

Number of Injectors: 1 Ideal O/F Ratio: 4.83 External Temp: 90 degF Time Step: 0.001 second

Simulation Results:

Total Burn Time: 5.366 second

Impulse: 832.29 newton * second Average Thrust: 155.1 newton

Motor: J155

Nozzle Results:

Suggested Throat Diameter: 0.208 inch Suggested Exit Diameter: 0.473 inch Suggested Diffuser Length: 0.494 inch

Fuel Grain

Port Length: 13.4 inch

Fuel Density: 3.96 kilogram / meter ** 3

Grain Diameter: 1.75 inch Initial Port Diameter: 1.0 inch Final Port Diameter: 1.363 inch average fuel mass flow rate (kilogram / second) vs time (second)

average port diameter (inch) vs time (second)

average regression rate (inch / second) vs time (second)

average total mass flow rate (kilogram / second) vs time (second)

average total mass flux (kilogram / inch ** 2 / second) vs time (second)

inlet mach vs time (second)

inlet velocity (mph) vs time (second)

nozzle diffuser length (inch) vs time (second)

nozzle exit area (inch ** 2) vs time (second)

nozzle exit mach vs time (second)

nozzle exit velocity (mph) vs time (second)

+4.9403@ozzle naught temp (degF) vs time (second) 0.035 -0.034 -0.033 -0.032 0.031 nozzle naught temp (degF) 0.030 time (second)

nozzle star mach vs time (second)

nozzle star pressure (pound_force_per_square_inch) vs time (second)

nozzle throat area (inch ** 2) vs time (second)

nozzle throat diameter (inch) vs time (second)

nozzle thrust (newton) vs time (second)

oxi fuel ratio vs time (second)

oxidiser mass (kilogram) vs time (second)

oxidiser mass flow rate (kilogram / second) vs time (second)

