Model Question Paper-II with effect from 2022

USN

Fourth Semester B.E Degree Examination Complex Analysis, Probability & Linear Programming (Mechanical Engg. And Allied branches)-21MATME41

TIME: 03 Hours Max. Marks: 100

Note: Answer any **FIVE** full questions, choosing at least **ONE** question from each module.

Note:		Answer any FIVE full questions, choosing at least ONE question from each module.	T	1 _					
Q.No.		Question	M	L	CO				
		Module -1		1	1				
01	a	With usual notations, derive the Cauchy-Riemann equation in the polar form	06	L2	CO1				
	b	Find the constants a, b, c and d if	07	L2	CO1				
		$f(z) = (ax^4 + bx^2y^2 + cy^4 + dx^2 - 2y^2) + i(4x^3y - exy^3) + 4xy$ is analytic							
	c	Determine the analytical function whose real part is $e^{2x}(x\cos 2y - y\sin 2y)$	07	L2	CO1				
		OR							
02	a	Show that z^n is analytic. Hence, find its derivative	06	L2	CO1				
	b	If f(z) is analytic function show that $\left(\frac{\partial}{\partial x} f(z) \right)^2 + \left(\frac{\partial}{\partial y} f(z) \right)^2 = f'(z) ^2$	07	L2	CO1				
	С	Find the regular function whose imaginary part is $e^x \sin y$	07	L2	CO1				
	1	Module-2							
03	a	Discuss the transformation $w = z^2$	06	L3	CO2				
	b	State and prove Cauchy Integral formula	07	L2	CO2				
	С	Find the bilinear transformation which maps the points $z = 1, i, -1$ onto the points	07	L2	CO2				
		$\omega = 0, 1, \infty$							
	•	OR		•	•				
4	a	Evaluate $\int_{c} \frac{z^2 - z + 1}{z - 1} dx$, where C is the circle (i) $ z = 1$ (ii) $ z = \frac{1}{2}$	06	L3	CO2				
	b	Discuss the transformation $w = z + \frac{1}{z}$	07	L3	CO2				
	c	Evaluate $\oint \frac{\sin \pi z + \cos \pi z}{(z-1)(z-2)(z-3)} dz$, over the curve $ z = 4$	07	L3	CO2				
	Module-3								
5	a	A random variable <i>X</i> has the following probability function:	06	L2	CO3				
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
		Find the value of k and evaluate $ F(x) = 0 $							
		i. $P[0 < X < 5]$							
		ii. P[X < 6]							
		iii. $P[X > 2]$							
	b	Find the mean and variance of a Poisson distribution	07	L2	CO3				

	С	If the probability that a new-born child is a male is 0.6, Using Binomial distribution find the probability in a family of 5 children i. There is no boy ii. There is at least one boy iii. There are exactly 3 boys	07	L3	CO3			
6		OR The n d f of a centinuous rendem veriable V is given by	06	L2	CO3			
O	a	The p.d.f of a continuous random variable X is given by $f(x) = \begin{cases} k x^3 & 0 \le x \le 1 \\ 0, & elsewhere \end{cases}$ Find (i) The value of k $(ii) P\left[\frac{1}{3} < X < \frac{1}{2}\right]$ $(iii) Mean of X$	00	L2	COS			
	b	The length of a telephone conversation has an exponential distribution with a mean of 3 minutes. Find the probability that a call i. ends in less than 3 minutes ii. Takes between 3 and 5 minutes	07	L3	CO3			
	С	In a distribution, 31% of the items are under 45 and 8% are over 64. Find the mean and standard deviation of the distribution.	07	L3	CO3			
		Module-4	,		_			
7	a	Find an optimal solution to the following LPP by computing all possible basic solutions and then finding one that maximizes the objective function. $Maximize\ Z = 2x_1 + 3x_2 + 4x_3 + 7x_4$, subject to: $2x_1 + 3x_2 - x_3 + 4x_4 = 8$ $x_1 - 2x_2 + 6x_3 - 7x_4 = -3$ $x_1, x_2, x_3, x_4 \ge 0$	10	L3	CO4			
	b	Using the Simplex method to solve the L.P.P $Maximize\ Z = 3x_1 + 2x_2$, subject to: $2x_1 + x_2 \le 40$ $x_1 + x_2 \le 24$ $2x_1 + 3x_2 \le 60$ $x_1, x_2 \ge 0$	10	L3	CO4			
	OR							
8	a	a Define the following terms A Linear Programming Problem, Basic solution, Basic feasible solution, Optimal solution, artificial variables of an LPP		L3	CO4			
	b	Solve the LPP by the two-Phase method $ \begin{aligned} & \textit{Maximize } Z = 5x_1 + 8x_2, \text{ subject to:} \\ & 3x_1 + 2x_2 \geq 3 \\ & x_1 + 4x_2 \geq 4 \\ & x_1 + x_2 \leq 5 \\ & x_1, x_2 \geq \end{aligned} $	10	L3	CO4			

		_			Mo	dule-5						
9	a	Find an initial basic feasible solution by Vogel's method to the following							9 06		CO5	
		transportation problem.							L3			
		Destination										
				A	В	C	D	Е	Availability			
			I	3	4	6	8	8	20			
		Source	II	+	10	1	5	30	30			
			III		11	20	40	15	15			
			IV	2	1	9	14	18	13			
			Requirements	40	6	8	18	6				
	b	Four jobs	are to be done	on four	diffe	rent mac	hines	The cost	(in rupees) of	07	L3	CO5
		Four jobs are to be done on four different machines. The cost (in rupees) of producing i^{th} job on the j^{th} machine is given below										
		F										
				I	Mach	ines	•					
				M_1		M_2		M_3	M_4			
			J_1	15		11		13	15			
			J_2	17		12		12	13			
		Jobs	J_3	14		15		10	14			
		3008	J_4	16		13		11	17			
		Assign the	jobs to different	machines	so as	to minir	nize th	e total cost				
		8				OR						
10	a	A company has three cement factories located in cities 1, 2, 3 which supply cement							supply cement	10	L3	CO5
									11 .			
		to four projects located in towns 1, 2, 3 4, each plant can supply 6, 1, 10 truckloads of cement daily respectively and daily cement requirements of the projects are										
		respectively 7, 5, 3, 2 truck loads. The transport costs per truckload of cement (in										
		hundreds of rupees) from each plant to each project site are as follows.										
				1 1	Pro	oject site		1 4				
			1	1		2	3	4				
		Factories	2	2		0	11	7				
		lactories	3	5		8	6 15	9				
		Determine	the optimal dist	ribution fo	r the	-		_	e the total			
		transportat	-	11044101110	1 1110	Company	50 45					
	b		company has on	e car at eac	ch of	five depo	ots a, b	, c, d and e	. a custom R	10	L3	CO5
			car in each town									
			towns are given									
			a	b		c		d	e			
		A	160	130		175		190	200			
		В	135	120		130		160	175			
		C	140	110		155		170	185			
		D	50	50		80		80	110			
		E	55	35		70		80	105			
		How shoul	d cars be assigned	ed to custo	mers	so as to	mınım	ize the dista	ance travelled?			1

	Lower-order thinking skills								
Bloom's Taxonom y Levels	Remembering (knowledge): L ₁	Understanding (Comprehension): L_2	Applying (Application): L_3						
y Levels	Higher-order thinking skills								
	Analyzing (Analysis): L ₄	Valuating (Evaluation): L ₅	Creating (Synthesis): L ₆						