

Venkata Naga Sri Sai Pranavi Kolipaka Other

PDF generated at: 27 Jun 2025 18:46:47 UTC

View this report on HackerRank ぴ

Score

100% • 80 / 80

scored in TIP102: Unit 4 Version A (Standard) - Summer 2025 in 65 min 30 sec on 27 Jun 2025 10:39:18 PDT

Candidate Information

Email kolipakavnssaipranavi@gmail.com

TIP102: Unit 4 Version A (Standard) - Summer 2025 Test

Candidate Packet View ℃

Taken on 27 Jun 2025 10:39:18 PDT

Time taken 65 min 30 sec/ 90 min

Personal Member ID 129054

Email Address with CodePath kolipakavnssaipranavi@gmail.com

Github username with CodePath Pranavi2002

Invited by CodePath

Suspicious Activity detected

Code similarity

Code similarity • 1 question

Candidate Report Page 1 of 18

Skill Distribution

There is no associated skills data that can be shown for this assessment

Tags Distribution

There is no associated tags data that can be shown for this assessment

Questions

Coding Questions • 60 / 60

Status	No.	Question	Time Taken	Skill	Score	Code Quality
8	1	Move Zeroes Coding	10 min 1 sec	-	20/20 🏳	-

Candidate Report Page 2 of 18

8	2	Check if Array Is Sorted and Rotated Coding	19 min 23 sec	20/20	-
\otimes	3	Subarray Sum Equals K Coding	19 min 29 sec	20/20	-

Multiple Choice + Debugging • 20 / 20

Status	No.	Question	Time Taken	Skill	Score	Code Quality
8	4	What is the time complexity of complex_function()? Multiple Choice	2 min 49 sec	-	5/5	-
⊗	Which of the following data structures/algorithmic techniques would be most appropriate for implementing this function? Multiple Choice		4 min 7 sec	-	5/5	-
8	6	What is the output of the following code? Multiple Choice	3 min 2 sec	-	5/5	-
8	7	Fing the bug Coding	6 min 5 sec	-	5/5	-

Candidate Report Page 3 of 18

1. Move Zeroes

Correct

Coding

Question description

Given a 0-indexed integer array nums of length n and an integer target, write a function count_pairs() that returns the number of pairs (i, j) where 0 <= i < j < n, and nums[i] + nums[j] < target

```
Input: nums = [-1,1,2,3,1], target = 2
Output: 3
Explanation: There are 3 pairs of indices that satisfy the conditions in the statement:
- (0, 1) since 0 < 1 and nums[0] + nums[1] = 0 < target
- (0, 2) since 0 < 2 and nums[0] + nums[2] = 1 < target
- (0, 4) since 0 < 4 and nums[0] + nums[4] = 0 < target

Note that (0, 3) is not counted since nums[0] + nums[3] is not strictly less than the target.
```

Candidate's Solution

Language used: Python 3

```
1 #!/bin/python
2
3 import math
4 import os
5 import random
6 import re
7 import sys
8
  import ast
9
10
11 #
12 # Complete the 'count_pairs' function below.
13 #
14 # The function is expected to return an INTEGER.
15 # The function accepts following parameters:
16 # 1. INTEGER ARRAY nums
17 #
     2. INTEGER target
18
```

Candidate Report Page 4 of 18

```
19 # Psuedo-code:
20 #
       take a variable count = 0
21 #
       loop i starts from 0 until n - 1
       loop j starts from i+1 until n
22 #
23 #
       if nums[i] + nums[j] < target</pre>
24 #
        count += 1
25 # return count
26
27 def count_pairs(nums, target):
28
       # Write your code here
29
        count = 0
30
        for i in range(0, len(nums) - 1):
31
            for j in range(i+1, len(nums)):
                if nums[i] + nums[j] < target:</pre>
32
33
                    count += 1
34
        return count
35
36 if name == ' main ':
37
       outfile = open(os.environ['OUTPUT PATH'], 'w')
38
        input data = sys.stdin.read().strip().splitlines()
39
40
        results = []
41
        for line in input data:
42
43
            # Convert the line to list of lists
44
            nums, target = eval(line)
45
            result = count pairs(nums, target)
46
            results.append(result)
47
        for res in results:
48
            outfile.write(str(res) + '\n')
49
        outfile.close()
50
```

TESTCASE	DIFFICULTY	TYPE	STATUS	SCORE	TIME TAKEN	MEMORY USED
Testcase 0	Easy	Hidden	Success	0	0.0279 sec	10.9 KB
Single Pair Less Than Target	Easy	Hidden	Success	0	0.0298 sec	10.9 KB

Candidate Report Page 5 of 18

All Elements Form Valid Pairs	Easy	Hidden	Success	0	0.0308 sec	10.8 KB
No Valid Pairs	Easy	Hidden	Success	0	0.0284 sec	10.9 KB
Empty Array	Easy	Hidden	Success	0	0.0275 sec	10.9 KB
Single Element	Easy	Hidden	Success	0	0.0282 sec	10.9 KB
All Elements Greater Than or Equal to Target	Easy	Hidden	Success	0	0.0279 sec	10.9 KB
All Elements Less Than Target, Multiple Occurrences	Easy	Hidden	Success	0	0.0299 sec	10.6 KB
Duplicates with Same Result	Easy	Hidden	Success	0	0.0299 sec	10.9 KB
Pass/Fail Case	Easy	Hidden	Success	20	0.0352 sec	10.9 KB

No comments.

2. Check if Array Is Sorted and Rotated

⊘ Correct

Coding

Question description

Given an array nums, return True if the array was originally sorted in non-decreasing order, then rotated **some** number of positions (including zero). Otherwise, return False.

There may be **duplicates** in the original array.

Note: Rotating an array by a certain number of positions means shifting each element that many positions to the right (or left). When shifted one position to the right, the last element in the array becomes the first element in the array. Formally, an array A rotated by x positions results in an array B of the same length such that A[i] == B[(i+x) % A.length], where % is the modulo operation.

Example 1:

Input: nums = [3,4,5,1,2]

Output: True

Explanation: [1,2,3,4,5] is the original sorted array.

You can rotate the array by x = 3 positions to begin on the the element of value 3: [3,4,5,1,2].

Example 2:

Input: nums = [2,1,3,4]

Output: False

Explanation: There is no sorted array once rotated that can make nums.

Example 3:

Input: nums = [1,2,3]

Output: true

Explanation: [1,2,3] is the original sorted array.

You can rotate the array by x = 0 positions (i.e. no rotation) to make nums.

Candidate's Solution

Language used: Python 3

1 #!/bin/python

2

3 import math

4 import os

5 import random

6 import re

7 import sys

Candidate Report Page 7 of 18

```
import ast
8
 9
10
11
12 #
13 # Complete the 'is_sorted_rotated' function below.
14 #
15 # The function is expected to return a BOOLEAN.
16 # The function accepts INTEGER ARRAY nums as parameter.
17
18 #
       Psuedo-code:
       take length of nums array as n
19 #
       initialize count to 0
20 #
21 #
       loop i until n
       if nums[i] > nums[(i+1) % n], means if the number is greater than its
22 #
   next number, check if the last num is greater than first num
23 #
       increment count
24 #
       count has to be less than or equal to 1 for the array to be sorted and
   rotated
25
26 def is sorted rotated(nums):
27
       # Write your code here
       n = len(nums)
28
       count = 0
29
30
       for i in range(n):
31
            if nums[i] > nums[(i+1) % n]:
32
                count += 1
33
               # if count > 1:
34
                      return False
35
       # return True
        return count <= 1
36
37
38
39
40 if name == ' main ':
41
        outfile = open(os.environ['OUTPUT PATH'], 'w')
42
        input data = sys.stdin.read().strip().split('\n')
43
44
        for line in input data:
45
            nums = ast.literal eval(line.strip())
46
            result = is sorted rotated(nums)
47
            outfile.write(str(result) + '\n')
       outfile.close()
48
```

Candidate Report Page 8 of 18

TESTCASE	DIFFICULTY	TYPE	STATUS	SCORE	TIME TAKEN	MEMORY USED
Basic Case	Easy	Hidden	Success	0	0.0286 sec	11 KB
Standard Case without Rotation	Easy	Hidden	Success	0	0.0271 sec	11 KB
No Rotation Needed	Easy	Hidden	Success	0	0.0286 sec	11 KB
Single Element	Easy	Hidden	Success	0	0.0283 sec	10.9 KB
Two Elements Sorted	Easy	Hidden	Success	0	0.0278 sec	11 KB
Two Elements Not Sorted	Easy	Hidden	Success	0	0.034 sec	10.9 KB
All Identical Elements	Easy	Hidden	Success	0	0.0287 sec	11 KB
Array Already Sorted with Rotation	Easy	Hidden	Success	0	0.0282 sec	11 KB
Empty Array	Easy	Hidden	Success	0	0.0276 sec	10.6 KB
Pass/Fail Case	Easy	Hidden	Success	20	0.0293 sec	10.9 KB

Candidate Report Page 9 of 18

No comments.

3. Subarray Sum Equals K

⊘ Correct

Coding

Question description

Given an array of integers nums and an integer k, return the total number of continuous subarrays whose sum equals to k.

```
Example 1:
Input: [1,1,1], 2
Output: 2

Example 2:
Input: [1, 2, 3], 7
Output: 0
```

Candidate's Solution

Language used: Python 3

Candidate Report Page 10 of 18

```
16 # The function accepts following parameters:
      1. INTEGER ARRAY nums
18 # 2. INTEGER k
19
20
21 def subarray_sum(nums, k):
22
       # Write your code here
23
       count = 0
24
       prefix sum = 0
25
       prefix map = {0: 1} # sum : frequency
26
27
       for num in nums:
28
            prefix sum += num
29
            if prefix sum - k in prefix map:
30
                count += prefix map[prefix sum - k]
31
            prefix map[prefix sum] = prefix map.get(prefix sum, 0) + 1
32
33
        return count
34
   if name == ' main ':
35
       outfile = open(os.environ['OUTPUT PATH'], 'w')
       input data = sys.stdin.read().strip().splitlines()
36
37
38
        results = []
39
40
       for line in input data:
41
            parts = json.loads(f"[{line}]")
42
            nums = parts[0]
43
            k = parts[1]
44
            result = subarray sum(nums, k)
            results.append(result)
45
46
       for res in results:
47
            outfile.write(str(res) + '\n')
48
49
       outfile.close()
```

TESTCASE	DIFFICULTY	TYPE	STATUS	SCORE	TIME TAKEN	MEMORY USED
Basic Case	Easy	Hidden	Success	0	0.031 sec	11 KB

Candidate Report Page 11 of 18

Target Sum Found	Easy	Hidden	Success	0	0.0324 sec	11 KB
Multiple Subarrays for Target 0	Easy	Hidden	Success	0	0.0323 sec	10.9 KB
Single Element Equal to k	Easy	Hidden	Success	0	0.0306 sec	10.9 KB
No Valid Subarrays	Easy	Hidden	Success	0	0.0449 sec	10.8 KB
Negative Numbers	Easy	Hidden	Success	0	0.0307 sec	10.9 KB
All Zeros	Easy	Hidden	Success	0	0.0418 sec	11 KB
Target Sum Greater than Sum of All Elements	Easy	Hidden	Success	0	0.033 sec	10.9 KB
Large k Value	Easy	Hidden	Success	0	0.0335 sec	10.9 KB
Alternating Positive and Negative Values	Easy	Hidden	Success	0	0.0314 sec	11 KB
All Negative Elements, Target is Negative	Easy	Hidden	Success	0	0.0304 sec	10.9 KB

Candidate Report Page 12 of 18

Pass/Fail Case	Easy	Hidden	Success	20	0.0292 sec	11 KB
No comments.						
4. What is the time	complexity	of complex_fu	nction()?			⊘ Correct
Multiple Choice						
Question description	1					
What is the time comp	lexity of comp	olex_function	()?			
def complex_functi total = 0 for i in range(len(for j in range(i,	(nums)): len(nums)):	[i]				
Candidate's Solution						
Options: (Expected ans	swer indicated	d with a tick)				
O(1)						
O(log n)						

Candidate Report Page 13 of 18

5. Which of the following data structures/algorithmic techniques would be most appropriate for implementing this function?

Multiple Choice

Question description

The function find_mode() takes in a list of elements lst and returns the mode of the the list. If there are multiple modes, it returns them all as a list. If there is a single mode it returns the mode as a single value. The mode is the element that occurs most often in the list.

Which of the following data structures/algorithmic techniques would be most appropriate for implementing this function?

```
# Example usage:
nums1 = [1, 2, 2, 3, 4]
print(find_mode(nums1)) # Output: 2

nums2 = [1, 2, 2, 3, 3, 4]
print(find_mode(nums2)) # Output: [2, 3]

nums3 = [1, 2, 3, 4, 5]
print(find_mode(nums3)) # Output: [1, 2, 3, 4, 5] (all values are unique)
```

Candidate Report Page 14 of 18

Candidate's Solution

Options: (Expected answer indicated with a tick)	
stack	
queue	
two pointer	
frequency map	\otimes
① No comments.	
6. What is the output of the following code?	⊘ Correct
Multiple Choice Question description	
<pre>def process_numbers(nums, threshold): stack = [] for num in nums: if num < threshold: stack.append(num) elif num <= 10 and stack: stack.pop() return stack</pre>	

Candidate Report Page 15 of 18

print(process_numbers([3, 5, 1, 9, 6, 15], 8))

Candidate's Solution

Options: (Expected answer indicated with a tick)

No comments.

7. Fing the bug

⊘ Correct

Coding

Question description

The following code incorrectly implements is_anagram() . When implemented correctly, is_anagram() should accept two strings s and t and return True if s and t are anagrams of each other. Otherwise, it should return False .

Candidate Report Page 16 of 18

An anagram is a word or phrase formed by rearranging the letters of a different word or phrase, using all the original letters exactly once.

Identify any bug(s) within the given implementation and correct the code so that it successfully passes the provided test cases.

Candidate's Solution

Language used: Python 3

```
1 #!/bin/python
 2
 3 import math
 4 import os
 5 import random
 6 import re
 7 import sys
 8 import ast
 9
10 from collections import defaultdict
11 def is anagram(s, t):
12
       if len(s) != len(t):
            return False
13
14
15
        s freq = defaultdict(int)
16
       t freq = defaultdict(int)
17
18
        for char in s:
19
            s freq[char] += 1
20
        for char in t:
21
22
            t freq[char] += 1
23
24
        return s freq == t freq
25 if __name__ == '__main__':
26
        input data = sys.stdin.read().strip()
27
        input list = ast.literal eval(input data)
28
29
        s = input list[0]
       t = input list[1]
30
31
        result = is anagram(s, t)
32
33
        print(result)
```

Candidate Report Page 17 of 18

TESTCASE	DIFFICULTY	TYPE	STATUS	SCORE	TIME TAKEN	MEMORY USED
Pass/Fail Case	Easy	Hidden	Success	5	0.0275 sec	10.9 KB

No comments.

Candidate Report Page 18 of 18