"ALGORITMI"

CORSO DI STUDIO IN INFORMATICA (laurea triennale) UNIVERSITÀ DEGLI STUDI DI CATANIA ANNO ACCADEMICO 2014/15

Prima sessione di esami (II appello) - 02 marzo 2015

Si svolgano i seguenti esercizi, argomentando adeguatamente le risposte.

ESERCIZIO 1

Si consideri la seguente operazione \oplus sui numeri naturali, definita da: $a \oplus b =_{Def} 3a + 4b$.

- (a) Si verifichi con un esempio a scelta che l'operazione \oplus non è associativa.
- (b) Utilizzando la metodologia della programmazione dinamica, si determini un algoritmo che, data una sequenza di numeri naturali a_1, a_2, \ldots, a_n , calcoli il valore massimo che l'espressione $a_1 \oplus a_2 \oplus \cdots \oplus a_n$ possa assumere al variare di tutte le possibili parentesizzazioni.

ESERCIZIO 2

Sia T un testo di 250 caratteri in un alfabeto con dieci caratteri a_1, \ldots, a_{10} , le cui frequenze sono rispettivamente 1, 1, 3, 7, 13, 21, 31, 43, 57, 73.

Dopo aver definito la nozione di $codice \ prefisso$, si determini il numero minimo di bit necessari per rappresentare il testo T utilizzando un codice prefisso ottimo, illustrando anche l'algoritmo utilizzato.

ESERCIZIO 3

Sia dato il grafo non orientato \mathcal{G} rappresentato dalle seguenti liste di adiacenza

$A \to B, C, E$	$\mathrm{D} \to \mathrm{F}, \mathrm{H}, \mathrm{I}$	$G \rightarrow B, H, I$
$B \to A, E, F, G$	$E \to A, B, C$	$H \to C, D, G$
$C \to A, E, H$	$F \to B, D, I$	$I \rightarrow D, F, G$

Dopo aver descritto l'algoritmo di visita in profondità, si effettui la visita in profondità del grafo \mathcal{G} a partire dal vertice A, indicando per ogni vertice i tempi di inizio e fine visita.

ESERCIZIO 4

Si risolva l'equazione di ricorrenza parametrica, al variare del parametro reale k > 1,

$$T(n) = k^{2} \cdot T\left(\frac{n}{3}\right) + n^{2} \log^{2} n,$$

e quindi si determini per quali valori di k si ha:

- (a) $T(n) = o(n^2 \log^3 n)$;
- (b) $T(n) = \mathcal{O}(n^4)$.

ESERCIZIO 5

Si descrivano gli algoritmi Counting-Sort e Radix-Sort e quindi si illustri l'azione di Radix-Sort sulla sequenza