CART-POLE SYSTEM

- 1. Yeduru Rupasree 2020101097
- 2. Mudireddy Nandini Reddy 2020101038
- 3. Tharigopula Manaswini 2020113015
- 4. Mandyam Brunda 2020101057
- 5. Rohan Madineni 2020102066

Contribution

DQN - Nandini and Manaswini

DDPG - Rohan Madineni and Rupa

PPO - Rupa and Brunda

SAC - Nandini, Manaswini, Brunda

Problem Statement

The dynamics of the cart-pole system shown in figure given below. Here M and mp is the mass (kg) of the cart and pole respectively. The linear displacement (in m) of the cart is denoted by x, g is the acceleration due to gravity, θ is the angular displacement (radians) of the pole of length L (in m) and Fx is the input force applied to the cart (in N). Find the optimal control input (Fx) that takes the pole from the initial angular position i) $\theta(0) = \pi/3$, ii) $\theta(0) = \pi/6$, iii) $\theta(0) = \pi/2$ to the desired angular position $\theta(tf) = 0$? (Here, the final time tf is a free variable.) M= 40 Kg, mp= 2 kg, L = 0.75 m.

$$\ddot{\theta} = \frac{-m_p L \sin \theta \cos \theta \dot{\theta}^2 + (M + m_p) g \sin \theta + \cos \theta F_x}{(M + m_p (1 - \cos^2 \theta)) L}$$

$$\ddot{x} = \frac{-m_p L \sin \theta \dot{\theta}^2 + m_p g \sin \theta \cos \theta + F_x}{M + m_p (1 - \cos^2 \theta)}$$

Terminologies

State Variables:

- x(t): Linear displacement of the cart (m) at time t.
- $\dot{x}(t)$: Velocity of the cart (m/s) at time t.
- $\theta(t)$: Angular displacement of the pole (radians) at time t.
- $\theta(t)$: Angular velocity of the pole (radians/s) at time t.

Control Input:

• Fx(t): Horizontal force applied to the cart (N) at time t.

Objective:

The objective is to find a control policy for Fx(t) that balances the pole in the upright position ($\theta(t) = 0$) for as long as possible. This can be formulated as maximizing the total reward received over time.

Reward:

$$- heta^2-\dot{ heta}^2$$

DDPG

Algorithm

Pseudocode

Algorithm 1 Deep Deterministic Policy Gradient

- 1: Input: initial policy parameters θ , Q-function parameters ϕ , empty replay buffer \mathcal{D}
- 2: Set target parameters equal to main parameters $\theta_{\text{targ}} \leftarrow \theta$, $\phi_{\text{targ}} \leftarrow \phi$
- 3: repeat
- Observe state s and select action $a = \text{clip}(\mu_{\theta}(s) + \epsilon, a_{Low}, a_{High})$, where $\epsilon \sim \mathcal{N}$
- Execute a in the environment
- Observe next state s', reward r, and done signal d to indicate whether s' is terminal
- 7: Store (s, a, r, s', d) in replay buffer D
- If s' is terminal, reset environment state.
- 9: if it's time to update then
- 10: for however many updates do
- 11: Randomly sample a batch of transitions, $B = \{(s, a, r, s', d)\}$ from \mathcal{D}
- 12: Compute targets

$$y(r, s', d) = r + \gamma(1 - d)Q_{\phi_{\text{targ}}}(s', \mu_{\theta_{\text{targ}}}(s'))$$

13: Update Q-function by one step of gradient descent using

$$\nabla_{\phi} \frac{1}{|B|} \sum_{(s,a,r,s',d) \in B} (Q_{\phi}(s,a) - y(r,s',d))^2$$

14: Update policy by one step of gradient ascent using

$$\nabla_{\theta} \frac{1}{|B|} \sum_{s \in B} Q_{\phi}(s, \mu_{\theta}(s))$$

15: Update target networks with

$$\phi_{\text{targ}} \leftarrow \rho \phi_{\text{targ}} + (1 - \rho) \phi$$

 $\theta_{\text{targ}} \leftarrow \rho \theta_{\text{targ}} + (1 - \rho) \theta$

- 16: end for
- 17: end if
- 18: until convergence

Critic Network

```
class CriticNetwork(nn.Module):
   def __init__(self, beta, input_dims, fc1_dims, fc2_dims, n_actions, name):
        super(CriticNetwork, self). init ()
       self.input dims = input dims
       self.fc1 dims = fc1 dims
        self.fc2 dims = fc2 dims
        self.n actions = n actions
       self.fc1 = nn.Linear(*self.input dims, self.fc1 dims)
       f1 = 1./np.sqrt(self.fc1.weight.data.size()[0])
       T.nn.init.uniform (self.fc1.weight.data, -f1, f1)
       T.nn.init.uniform (self.fc1.bias.data, -f1, f1)
       self.bn1 = nn.LayerNorm(self.fc1 dims)
       self.fc2 = nn.Linear(self.fc1_dims, self.fc2_dims)
       f2 = 1./np.sqrt(self.fc2.weight.data.size()[0])
       T.nn.init.uniform (self.fc2.weight.data, -f2, f2)
       T.nn.init.uniform_(self.fc2.bias.data, -f2, f2)
       self.bn2 = nn.LayerNorm(self.fc2 dims)
       self.action value = nn.Linear(self.n actions, self.fc2 dims)
        f3 = 0.003
       self.q = nn.Linear(self.fc2 dims, 1)
       T.nn.init.uniform (self.q.weight.data, -f3, f3)
       T.nn.init.uniform (self.q.bias.data, -f3, f3)
       self.optimizer = optim.Adam(self.parameters(), lr=beta)
       self.device = T.device('cuda:0' if T.cuda.is available() else 'cpu')
        self.to(self.device)
```

```
def forward(self, state, action):
    state_value = self.fc1(state)
    state_value = self.bn1(state_value)
    state_value = F.relu(state_value)
    state_value = self.fc2(state_value)
    state_value = self.bn2(state_value)

action_value = F.relu(self.action_value(action))
    state_action_value = F.relu(T.add(state_value, action_value))
    state_action_value = self.q(state_action_value)
```

Hyper-Parameters

Hyper Parameters of CriticNetwork

- Learning_rate = 0.002
- Layer1_size = 30
- Layer2_size = 30

Actor Network

```
class ActorNetwork(nn.Module):
   def init (self, alpha, input dims, fc1 dims, fc2 dims, n actions, name):
       super(ActorNetwork, self). init ()
       self.input dims = input dims
       self.fc1 dims = fc1 dims
       self.fc2 dims = fc2 dims
       self.n actions = n actions
       self.fc1 = nn.Linear(*self.input_dims, self.fc1_dims)
       f1 = 1./np.sqrt(self.fc1.weight.data.size()[0])
       T.nn.init.uniform (self.fc1.weight.data, -f1, f1)
       T.nn.init.uniform_(self.fc1.bias.data, -f1, f1)
       self.bn1 = nn.LayerNorm(self.fc1 dims)
       self.fc2 = nn.Linear(self.fc1 dims, self.fc2 dims)
       f2 = 1./np.sqrt(self.fc2.weight.data.size()[0])
       T.nn.init.uniform (self.fc2.weight.data, -f2, f2)
       T.nn.init.uniform (self.fc2.bias.data, -f2, f2)
       self.bn2 = nn.LayerNorm(self.fc2 dims)
        f3 = 0.003
       self.mu = nn.Linear(self.fc2_dims, self.n_actions)
       T.nn.init.uniform (self.mu.weight.data, -f3, f3)
       T.nn.init.uniform (self.mu.bias.data, -f3, f3)
       self.optimizer = optim.Adam(self.parameters(), lr=alpha)
       self.device = T.device('cuda:0' if T.cuda.is available() else 'cpu')
       self.to(self.device)
```

```
def forward(self, state):
    x = self.fc1(state)
    x = self.bn1(x)
    x = F.relu(x)
    x = self.fc2(x)
    x = self.bn2(x)
    x = F.relu(x)
    x = T.tanh(self.mu(x))
    return x
```

Hyper-Parameters

Hyper Parameters of ActorNetwork

- Learning_rate = 0.001
- Layer1_size = 30
- Layer2_size = 30

Average reward vs episode

Optimal Input and state Trajectory

theta = pi/2

theta = pi/3

Optimal Input and state Trajectory[cont]

theta = pi/6

PPO

Algorithm

Pseudocode

Algorithm 1 PPO-Clip

- 1: Input: initial policy parameters θ_0 , initial value function parameters ϕ_0
- 2: **for** k = 0, 1, 2, ... **do**
- 3: Collect set of trajectories $\mathcal{D}_k = \{\tau_i\}$ by running policy $\pi_k = \pi(\theta_k)$ in the environment.
- Compute rewards-to-go R̂_t.
- Compute advantage estimates, Â_t (using any method of advantage estimation) based on the current value function V_{φk}.
- 6: Update the policy by maximizing the PPO-Clip objective:

$$\theta_{k+1} = \arg\max_{\theta} \frac{1}{|\mathcal{D}_k|T} \sum_{\tau \in \mathcal{D}_k} \sum_{t=0}^{T} \min\left(\frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta_k}(a_t|s_t)} A^{\pi_{\theta_k}}(s_t, a_t), \ g(\epsilon, A^{\pi_{\theta_k}}(s_t, a_t))\right),$$

typically via stochastic gradient ascent with Adam.

7: Fit value function by regression on mean-squared error:

$$\phi_{k+1} = \arg\min_{\phi} \frac{1}{|\mathcal{D}_k|T} \sum_{\tau \in \mathcal{D}_k} \sum_{t=0}^{T} \left(V_{\phi}(s_t) - \hat{R}_t \right)^2,$$

typically via some gradient descent algorithm.

8: end for

Policy Network

```
from torch import nn
class PolicyNetwork(nn.Module):
   def init (self, obs space size, action space size):
       super(). init ()
       self.shared layers = nn.Sequential(
           nn.Linear(obs space size, 64),
           nn.ReLU(),
           nn.Linear(64, 64),
           nn.ReLU()
       self.policy mean = nn.Sequential(
           nn.Linear(64, 64),
           nn.ReLU(),
           nn.Linear(64, action_space size)
       self.policy logstd = nn.Parameter(torch.zeros(1, action space size))
   def forward(self, obs):
       z = self.shared layers(obs)
       mean = self.policy_mean(z)
       std = torch.exp(self.policy logstd).to(device)
       return mean, std
```

Value Network

```
class ValueNetwork(nn.Module):
   def init (self, obs space size):
       super(). init ()
       self.shared layers = nn.Sequential(
           nn.Linear(obs_space_size, 64),
           nn.ReLU(),
           nn.Linear(64, 64),
           nn.ReLU()
       self.value_layers = nn.Sequential(
           nn.Linear(64, 64),
           nn.ReLU(),
           nn.Linear(64, 1)
    def forward(self, obs):
       z = self.shared_layers(obs)
       value = self.value layers(z)
       return value
```

Hyper-Parameters

Hyper Parameters of Policy Network:

- Policy_lr = 3e-4
- Max_policy_train_iters = 40
- Hidden_layer_dim =64

Hyper Parameters of Value Network:

- Value lr = 1e-3
- value_train_iters = 40
- hidden_layer_dim= 64

Average reward vs episode

Reward is increasing which indicates that learning is happening

Optimal Input and state Trajectory

theta = pi/2

theta = pi/3

Optimal Input and state Trajectory

theta = pi/6

SAC

Algorithm

Pseudocode

Algorithm 1 Soft Actor-Critic

- 1: Input: initial policy parameters θ , Q-function parameters ϕ_1 , ϕ_2 , empty replay buffer \mathcal{D}
- 2: Set target parameters equal to main parameters $\phi_{\text{targ},1} \leftarrow \phi_1$, $\phi_{\text{targ},2} \leftarrow \phi_2$
- 3: repeat
- 4: Observe state s and select action $a \sim \pi_{\theta}(\cdot|s)$
- Execute a in the environment
- 6: Observe next state s', reward r, and done signal d to indicate whether s' is terminal
- 7: Store (s, a, r, s', d) in replay buffer D
- If s' is terminal, reset environment state.
- 9: if it's time to update then
- 10: for j in range(however many updates) do
- 11: Randomly sample a batch of transitions, $B = \{(s, a, r, s', d)\}$ from \mathcal{D}
- 12: Compute targets for the Q functions:

$$y(r,s',d) = r + \gamma(1-d) \left(\min_{i=1,2} Q_{\phi_{\text{targ},i}}(s',\tilde{a}') - \alpha \log \pi_{\theta}(\tilde{a}'|s') \right), \quad \tilde{a}' \sim \pi_{\theta}(\cdot|s')$$

13: Update Q-functions by one step of gradient descent using

$$\nabla_{\phi_i} \frac{1}{|B|} \sum_{(s,a,r,s',d) \in B} (Q_{\phi_i}(s,a) - y(r,s',d))^2$$
 for $i = 1, 2$

14: Update policy by one step of gradient ascent using

$$\nabla_{\theta} \frac{1}{|B|} \sum_{s \in B} \left(\min_{i=1,2} Q_{\phi_i}(s, \tilde{a}_{\theta}(s)) - \alpha \log \pi_{\theta} \left(\tilde{a}_{\theta}(s) | s \right) \right),$$

where $\bar{a}_{\theta}(s)$ is a sample from $\pi_{\theta}(\cdot|s)$ which is differentiable wrt θ via the reparametrization trick.

15: Update target networks with

$$\phi_{\mathrm{targ},i} \leftarrow \rho \phi_{\mathrm{targ},i} + (1-\rho)\phi_i$$
 for $i=1,2$

- 16: end for
- 17: end if
- 18: until convergence

Policy Network

```
class PolicyNetwork(nn.Module):
   def __init__(self, state_dim, action_dim, actor_lr):
        super(PolicyNetwork, self). init ()
        self.fc_1 = nn.Linear(state_dim, 128)
        self.fc 2 = nn.Linear(128,128)
        self.fc_mu = nn.Linear(128, action_dim)
        self.fc std = nn.Linear(128, action dim)
        self.lr = actor lr
        self.LOG_STD_MIN = -20
        self.LOG STD MAX = 2
        self.max action = 2
        self.min_action = -2
        self.action scale = (self.max action - self.min action) / 2.0
        self.action bias = (self.max action + self.min action) / 2.0
        self.optimizer = optim.Adam(self.parameters(), lr=self.lr)
   def forward(self, x):
       x = F.leaky relu(self.fc 1(x))
       x = F.leaky relu(self.fc 2(x))
        mu = self.fc mu(x)
       log_std = self.fc_std(x)
       log_std = torch.clamp(log_std, self.LOG_STD_MIN, self.LOG_STD_MAX)
        return mu, log_std
```

Q Network

```
class ONetwork(nn.Module):
   def init (self, state dim, action dim, critic lr):
       super(QNetwork, self). init ()
       self.fc s = nn.Linear(state dim, 64)
       self.fc a = nn.Linear(action dim, 64)
       self.fc 1 = nn.Linear(128, 128)
       self.fc_out = nn.Linear(128, action_dim)
       self.lr = critic lr
       self.optimizer = optim.Adam(self.parameters(), lr=self.lr)
   def forward(self, x, a):
       h1 = F.leaky relu(self.fc s(x))
       h2 = F.leaky_relu(self.fc_a(a))
       cat = torch.cat([h1, h2], dim=-1)
       q = F.leaky relu(self.fc 1(cat))
       q = self.fc out(q)
       return q
```

Hyper-Parameters

Hyper Parameters of Policy Network:

- lr_pi = 0.03
- hidden layer dim = 128

Hyper Parameters of Q Network:

- $Lr_q = 0.03$
- hidden layer dim = 128

```
Gamma = 0.999
```

$$Tau = 0.005$$

Average reward vs episode

Optimal Input and state Trajectory

theta = pi/6

theta = pi/3

Optimal Input and state Trajectory

theta = pi/2

Observation

- We can see that from the above graphs, the state(angle of the pole with vertical) is going to zero and oscillating around that.
- Since the angles 60, 30. 90 degrees are large, maybe the oscillation range is somewhat graeter.

Deep Q-Learning (DQN)

QNetwork

```
class ONetwork(nn.Module):
   def init (self, input dim, output dim, hidden dim) -> None:
        """DON Network
            input dim (int): `state` dimension.
                `state` is 2-D tensor of shape (n, input dim)
           output dim (int): Number of actions.
               Q value is 2-D tensor of shape (n, output dim)
           hidden dim (int): Hidden dimension in fc layer
       super(QNetwork, self). init ()
       self.layer1 = torch.nn.Sequential(
           torch.nn.Linear(input dim, hidden dim),
           torch.nn.PReLU()
       self.layer2 = torch.nn.Sequential(
           torch.nn.Linear(hidden dim, hidden dim),
           torch.nn.PReLU()
       self.layer3 = torch.nn.Sequential(
           torch.nn.Linear(hidden dim, hidden dim),
           torch.nn.PReLU()
       self.final = torch.nn.Linear(hidden dim, output dim)
```

```
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Returns a Q value
    Args:
        x (torch.Tensor): `State` 2-D tensor of shape (n, input dim)
    Returns:
        torch.Tensor: Q value, 2-D tensor of shape (n, output dim)
    11 11 11
    ## print('type(x) of forward:', type(x))
    x = self.layer1(x)
    x = self.layer2(x)
    x = self.layer3(x)
    x = self.final(x)
    return x
```

Hyper-Parameters

- BATCH SIZE = 64
- TAU = 0.005
- Gamma = 0.99
- Learning rate = 0.001
- TARGET UPDATE = 10
- $Hidden_dim = 16$

Average reward vs episode

This graph denotes average reward vs number of episodes. We can see learning is happening till 100 episodes using DQN algorithm.

Optimal Input and state Trajectory

theta = pi/2

theta = pi/3

In control input vs timetep graph, 0 on the y-axis represents force with magnitude 1 to the left and 1 represents force with magnitude 1 to the right

Optimal Input and state Trajectory

theta = pi/6

Experiments

Average reward vs episode [DQN]

- This graph shows average reward vs number of episodes when the reward funcion is taken as -|θ| where θ is the angle made by the pole with the vertical
- We can see that the learning is not happening here and this may be because of the poor choice of the reward function

Average reward vs episode [DDPG]

- This is the graph of average reward vs number of episodes for ddpg algorithm when the learning rate is taken too low.
- This is indicating that the learning of the model is not happening within the first 100 episodes

Thank you