UCLA DEPARTMENT OF ELECTRICAL ENGINEERING

EE102: SYSTEMS & SIGNALS

Final Examination 17th March, 2022

T 7	
Your name :	
Tour manic.	

Instructions

- This exam has 5 questions and 8 pages.
- The exam is closed book. Two double-sided A4 sized cheat sheets are allowed. The use of calculators is permitted.
- All steps and working must be shown. No marks will be awarded for answers without math steps and/or an explanation.
- Write legibly and clearly! Any illegible work will not be graded.
- All plots must be neatly drawn and completely labelled (axes, intercepts, amplitudes) for full credit.

Good Luck!

Table 1: Score Table

Question	Total	Break up	Marks scored	Total score
1	20	5 + 7 + 8		
2	20	10 + 10		
3	20	8 + 5 + 7		
4	20	3+3+4+10		
5	20	12 + 8		
Total	100			

Table 3.1 One-Sided Laplace Transforms		
	Function of Time	Function of s, ROC
1.	$\delta(t)$	1, whole s-plane
2.	u(t)	$\frac{1}{s}$, $\mathcal{R}e[s] > 0$
3.	r(t)	$\frac{1}{s^2}$, $\mathcal{R}e[s] > 0$
4.	$e^{-at}u(t), \ a>0$	$\frac{1}{s+a}$, $\Re e[s] > -a$
5.	$\cos(\Omega_0 t)u(t)$	$\frac{s}{s^2+\Omega_0^2}$, $\Re e[s]>0$
6.	$\sin(\Omega_0 t)u(t)$	$\frac{\Omega_0}{s^2+\Omega_0^2}$, $\mathcal{R}e[s]>0$
7.	$e^{-at}\cos(\Omega_0 t)u(t), \ a>0$	$\frac{s+a}{(s+a)^2+\Omega_0^2}$, $\mathcal{R}e[s] > -a$
8.	$e^{-at}\sin(\Omega_0 t)u(t),\ a>0$	$\frac{\Omega_0}{(s+a)^2+\Omega_0^2}$, $\mathcal{R}e[s] > -a$
9.	$2A e^{-at} \cos(\Omega_0 t + \theta) u(t), \ a > 0$	$\frac{A\angle\theta}{s+a-j\Omega_0} + \frac{A\angle-\theta}{s+a+j\Omega_0}$, $\mathcal{R}e[s] > -a$
10.	$\frac{1}{(N-1)!} t^{N-1} u(t)$	$\frac{1}{s^N}$ N an integer, $\mathcal{R}e[s] > 0$
11.	$\frac{1}{(N-1)!} t^{N-1} e^{-at} u(t)$	$\frac{1}{(s+a)^N}$ N an integer, $\mathcal{R}e[s] > -a$
12.	$\frac{2A}{(N-1)!} t^{N-1} e^{-at} \cos(\Omega_0 t + \theta) u(t)$	$\frac{A\angle\theta}{(s+a-j\Omega_0)^N} + \frac{A\angle-\theta}{(s+a+j\Omega_0)^N}$, $\mathcal{R}e[s] > -a$

Table 3.2 Basic Properties of One-Sided Laplace Transforms			
Causal functions and constants	$\alpha f(t)$, $\beta g(t)$	$\alpha F(s), \ \beta G(s)$	
Linearity	$\alpha f(t) + \beta g(t)$	$\alpha F(s) + \beta G(s)$	
Time shifting	$f(t-\alpha)$	$e^{-\alpha s}F(s)$	
Frequency shifting	$e^{\alpha t}f(t)$	$F(s-\alpha)$	
Multiplication by t	t f(t)	$-\frac{dF(s)}{ds}$	
Derivative	$\frac{df(t)}{dt}$	sF(s) - f(0-)	
Second derivative	$\frac{d^2f(t)}{dt^2}$	$s^2F(s) - sf(0-) - f^{(1)}(0)$	
Integral	$\int_{0-}^{t} f(t')dt$	$\frac{F(s)}{s}$	
Expansion/contraction	$f(\alpha t) \ \alpha \neq 0$	$\frac{1}{ \alpha }F\left(\frac{s}{\alpha}\right)$	
Initial value	$f(0+) = \lim_{s \to \infty} sF(s)$	•	
Final value	$\lim_{t\to\infty} f(t) = \lim_{s\to 0} sF(s)$		

Simple Real Poles

If X(s) is a proper rational function

$$X(s) = \frac{N(s)}{D(s)} = \frac{N(s)}{\prod_{k} (s - p_k)}$$
 (3.21)

Table 5.1 Basic Properties of the Fourier Transform			
	Time Domain	Frequency Domain	
Signals and constants	$x(t), y(t), z(t), \alpha, \beta$	$X(\Omega), Y(\Omega), Z(\Omega)$	
Linearity	$\alpha x(t) + \beta y(t)$	$\alpha X(\Omega) + \beta Y(\Omega)$	
Expansion/contraction in time	$x(\alpha t), \alpha \neq 0$	$\frac{1}{ \alpha }X\left(\frac{\Omega}{\alpha}\right)$	
Reflection	x(-t)	$X(-\Omega)$	
Parseval's energy relation	$E_x = \int_{-\infty}^{\infty} x(t) ^2 dt$	$E_{x} = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\Omega) ^{2} d\Omega$	
Duality	X(t)	$2\pi x(-\Omega)$	
Time differentiation	$\frac{d^n x(t)}{dt^n}$, $n \ge 1$, integer	$(j\Omega)^n X(\Omega)$	
Frequency differentiation	-jtx(t)	$\frac{dX(\Omega)}{d\Omega}$	
Integration	$\int_{-\infty}^t x(t')dt'$	$\frac{X(\Omega)}{j\Omega} + \pi X(0)\delta(\Omega)$	
Time shifting	$x(t-\alpha)$	$e^{-j\alpha\Omega}X(\Omega)$	
Frequency shifting	$e^{j\Omega_0 t}x(t)$	$X(\Omega - \Omega_0)$	
Modulation	$x(t)\cos(\Omega_c t)$	$0.5[X(\Omega - \Omega_c) + X(\Omega + \Omega_c)]$	
Periodic signals	$x(t) = \sum_{k} X_k e^{jk\Omega_0 t}$	$X(\Omega) = \sum_{k} 2\pi X_{k} \delta(\Omega - k\Omega_{0})$	
Symmetry	x(t) real	$ X(\Omega) = X(-\Omega) $	
		$\angle X(\Omega) = -\angle X(-\Omega)$	
Convolution in time	z(t) = [x * y](t)	$Z(\Omega) = X(\Omega)Y(\Omega)$	
Windowing/multiplication	x(t)y(t)	$\frac{1}{2\pi}[X*Y](\Omega)$	
Cosine transform	x(t) even	$X(\Omega) = \int_{-\infty}^{\infty} x(t) \cos(\Omega t) dt$, real	
Sine transform	x(t) odd	$X(\Omega) = -j \int_{-\infty}^{\infty} x(t) \sin(\Omega t) dt$, imaginary	

Table 5.2 Fourier Transform Pairs		
	Function of Time	Function of Ω
1	$\delta(t)$	1
2	$\delta(t-\tau)$	$e^{-j\Omega au}$
3	u(t)	$\frac{1}{i\Omega} + \pi \delta(\Omega)$
4	u(-t)	$\frac{-1}{j\Omega} + \pi \delta(\Omega)$
5	$\operatorname{sgn}(t) = 2[u(t) - 0.5]$	$\frac{2}{i\Omega}$
6	$A, -\infty < t < \infty$	$2\pi A\delta(\Omega)$
7	$Ae^{-at}u(t), \ a>0$	$\frac{A}{j\Omega+a}$
8	$Ate^{-at}u(t),\ a>0$	$\frac{A}{(i\Omega+a)^2}$
9	$e^{-a t }, \ a > 0$	$\frac{2a}{a^2+\Omega^2}$
10	$\cos(\Omega_0 t), -\infty < t < \infty$	$\pi[\delta(\Omega - \Omega_0) + \delta(\Omega + \Omega_0)]$
11	$\sin(\Omega_0 t), -\infty < t < \infty$	$-j\pi \left[\delta(\Omega-\Omega_0)-\delta(\Omega+\Omega_0)\right]$
12	$A[u(t+\tau)-u(t-\tau)],\ \tau>0$	$2A\tau \frac{\sin(\Omega\tau)}{\Omega\tau}$
13	$\frac{\sin(\Omega_0 t)}{\pi t}$	$u(\Omega + \Omega_0) - u(\Omega - \Omega_0)$
14	$x(t)\cos(\Omega_0 t)$	$0.5[X(\Omega - \Omega_0) + X(\Omega + \Omega_0)]$

Question 1 (20 marks)

Given below is the block diagram of a cascaded LTI causal system S_0 , comprising of three system blocks: S_1 , S_2 and S_3 , with impulse response functions $h_1(t)$, $h_2(t)$ and $h_3(t)$ respectively.

• System S_0 is given by the input output relation shown below, where x(t) is the input and y(t) is the output.

$$y(t) = x(t) - 9 \int_{-\infty}^{t} x(\sigma)(t - \sigma)e^{-2(t - \sigma)} d\sigma$$

- When an input $x(t) = e^{-5(t-3)}u(t-3)$ is applied to the block S_1 , we get the output as $z(t) = \delta(t-3) + 2e^{-2(t-3)}u(t-3)$.
- Further, S_2 and S_3 are single pole systems with no zeros. S_2 has the higher magnitude pole.
- (a) Find the transfer function $H_o(s)$ and indicate its ROC. (5 marks)
- (b) Find the transfer functions $H_1(s)$, $H_2(s)$ and $H_3(s)$. (7 marks)
- (c) Find the transfer function $\tilde{H}(s)$ of a system whose impulse response function is given by

$$\tilde{h}(t) = \int_{-\infty}^{\infty} e^{-(4t+\tau)} h_2(\tau) h_3(t-\tau) d\tau$$

Indicate its ROC. (8 marks)

Question 2 (20 marks)

An LTI causal system ${\mathcal S}$ has impulse response h(t) given by

$$h(t) = \int_0^t \sin(3\tau)e^{-3(t-\tau)}d\tau$$

- (a) Find the Frequency response function $H(\omega)$ of the system. (10 marks)
- (b) An input $x(t)=1+3\cos(3t)$ applied to the system results in output y(t). Sketch the magnitude response $|Y(\omega)|$. (10 marks)

Question 3 (20 marks)

Consider a periodic signal x(t) with period $T_{\rm o}=4$.

- (a) Find the complex Fourier series coefficients (X_k) of x(t). (8 marks)
- (b) Consider the periodic signal y(t) with period $T_0 = 4$. (5 marks)

Use properties of Fourier Series to find the complex Fourier Series coefficients (Y_k) of y(t) from X_k computed in part (a). Verify that the even harmonics of signal y(t) are zero.

(c) Sketch the magnitude response $|Z(\omega)|$ of z(t), where (7 marks)

$$z(t) = \left\{ y(t) \, * \, 7sinc\left(\frac{7\pi t}{4}\right) \right\}$$

Question 4 (20 marks)

Consider a system S with impulse response h(t) and frequency response $H(\omega)$ as shown below.

- (a) Without finding h(t) explicitly, find $\int_{-\infty}^{\infty} h(2t)dt$ (3 marks)
- (b) Without finding h(t) explicitly, find h(0) (3 marks)
- (c) Without finding h(t) explicitly, compute $\int_{-\infty}^{\infty} |h(t)|^2 dt$ (4 marks)
- (d) Find the Inverse Fourier transform h(t) without performing any integration. (10 marks) Hint: Use linearity property of Fourier transform to decompose $H(\omega)$. Thereafter, use sinc-rec Fourier transform pairs and properties of Fourier transforms.

Question 5 (20 marks)

Consider a real system with impulse response function $\ h(t) = 2sinc^2(\pi t) \left[1 + 2\cos(2\pi t)\right]$.

(a) Find the frequency response $H(\omega)$ and sketch its magnitude response. (12 marks) Hint: Use multiplication property of Fourier transform.

$$x(t)y(t) \xrightarrow{\mathcal{F}} \frac{1}{2\pi}X(\omega) * Y(\omega)$$

(b) Find the energy contained in output y(t) when an input $\delta(t)$ is applied to the above system, using Parseval's theorem. (8 marks)