Duality in the tableau.

vaciny in the capical.	
Example:	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
C / low /	S ₂ / -2 0 / 0 2
(P) max 2x+3y	S, 110017
$x, y \in \mathbb{R}$	-8 2 3 0 0 0 0
$S.tx + y \leq 3$	\downarrow
$\begin{array}{c} x - 2y \leq 2 \\ \times + y \leq 7 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
x, y ≥ 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	-Z 0 0 - 1 0 - 2 - 19

Opt sol to (P) is (X,y)=(2,5)
with ope value 19.

(P)
$$\min_{u,v,w \in \mathbb{R}} 3u + 2v + 7w$$

$$u,v,w \in \mathbb{R}$$

$$S.t. -u + v + w > 2$$

$$u - 2v + w > 3$$

$$u,v,w > 0$$

$$(P) \max_{A \times \leq b} C^{T} X \qquad (D) \min_{U^{T} A} U^{T} b$$

$$X \geq 0 \qquad U \geq 0$$

$$T_j = C_j - u^T A_j$$
, $u^T = C_B^T A_B^{-1}$, $u^T =$

 $opt \Rightarrow X_B = P$, $X_N = 0$

 $Z_0 = C_B X_B = C X$ (primal obj function).

in (1) Zo = U'b (dual obj function)

 $U^T = C_B A_B^{-1} => U^T b = C^T X (by the theorem in previous lecture)$: feasible sol for (P) has same obj Value as fensible sol to (D)

=) both opt.

 $U^{T} = C_{B}^{T} A_{B}^{-1}$ is the opt sol to (1))

Assume started with LP in Ax sb form and if > j'nst multiply -1.

ada	4 S	slack var	s. Ma	trix of	LP with	slack	
Voirs: [A [] Reduced costs of slack vars: $\Gamma_s^T = C_0^T - U^T A_0^T$ Slack vars don't appear							
Slack vary don't appear in object fun => $C_s^T = O^T$ $X_{13} X_{13} X_{14} X_{15} = 1$ $S A_{13} A_{14} A_{15}^T = 1$ $S A_{15} A_{14} A_{15}^T = 1$							
	XB	XN S		<u> </u>	= T ₈ ^T =	$-u^{T}$	
S	A 13	AN AST = I	b		Ţ.		
		$C_{N}^{T} C_{S}^{T} = 0^{T}$	the second second second second		nee we (
					when the different \mathcal{U}^{T} :		
<u>_</u> >		XB XN	S	301			
		I AB'AN		A=1 b			
		OT CN-CBABA					
$\Gamma_{N}^{T} = C_{N}^{T} - U^{T} A_{N} \qquad \Gamma_{S}^{T} = -U^{T}$							