mag2352: HW0 and HW1

Step 3: Test File Import

Replace the UNI in the steps with your UNI.

```
In [1]: import mag2352_HW0
In [2]: mag2352_HW0.t1()
Out[2]: 'mag2352 says Hello World'
```

The text above should look like my example, but with you UNI.

Note: Any time you change the underlying Python file, you must restart the kernel using the menu. You must then re-import and rerun any cells.

Step 4: Install PyMYSQL and iPython-SQL

- You run the commands below in an Anaconda terminal window.
- Install pymysql in your Anaconda environment.
- Install iPython-SQL in your Anaconda environment.
- Restart the notebook Kernel.
- The following cell should execute.

```
import pymysql
pymysql.__version__

Out[3]: '1.0.2'
```

In the cell below, replace dbuser:dbuserdbuser with your MySQL user ID and password.

• The following is a simple test. You should get similar results, but your might be slightly different.

```
* mysql+pymysql://root:***@192.168.1.137
79 rows affected.
```

Out[5]: Tables_in_information_schema

ADMINISTRABLE_ROLE_AUTHORIZATIONS

APPLICABLE_ROLES

CHARACTER_SETS

CHECK_CONSTRAINTS

COLLATION_CHARACTER_SET_APPLICABILITY

COLLATIONS

COLUMN_PRIVILEGES

COLUMN_STATISTICS

COLUMNS

COLUMNS_EXTENSIONS

ENABLED_ROLES

ENGINES

EVENTS

FILES

INNODB_BUFFER_PAGE

INNODB_BUFFER_PAGE_LRU

INNODB_BUFFER_POOL_STATS

INNODB_CACHED_INDEXES

INNODB_CMP

INNODB_CMP_PER_INDEX

INNODB_CMP_PER_INDEX_RESET

INNODB_CMP_RESET

INNODB_CMPMEM

INNODB_CMPMEM_RESET

INNODB_COLUMNS

INNODB_DATAFILES

INNODB_FIELDS

INNODB_FOREIGN

INNODB_FOREIGN_COLS

INNODB_FT_BEING_DELETED

INNODB_FT_CONFIG

INNODB_FT_DEFAULT_STOPWORD

INNODB_FT_DELETED

INNODB_FT_INDEX_CACHE

INNODB_FT_INDEX_TABLE

INNODB_INDEXES

INNODB_METRICS

INNODB_SESSION_TEMP_TABLESPACES

INNODB_TABLES

INNODB_TABLESPACES

INNODB_TABLESPACES_BRIEF

INNODB_TABLESTATS

INNODB_TEMP_TABLE_INFO

INNODB_TRX

INNODB_VIRTUAL

KEY_COLUMN_USAGE

KEYWORDS

OPTIMIZER_TRACE

PARAMETERS

PARTITIONS

PLUGINS

PROCESSLIST

PROFILING

REFERENTIAL_CONSTRAINTS

RESOURCE_GROUPS

ROLE_COLUMN_GRANTS

ROLE_ROUTINE_GRANTS

ROLE_TABLE_GRANTS

ROUTINES

SCHEMA_PRIVILEGES

SCHEMATA

SCHEMATA_EXTENSIONS

ST_GEOMETRY_COLUMNS

ST_SPATIAL_REFERENCE_SYSTEMS

ST_UNITS_OF_MEASURE

STATISTICS

TABLE_CONSTRAINTS

TABLE_CONSTRAINTS_EXTENSIONS

TABLE_PRIVILEGES

TABLES

TABLES_EXTENSIONS

TABLESPACES

TABLESPACES_EXTENSIONS

TRIGGERS

USER_ATTRIBUTES

USER_PRIVILEGES

VIEW_ROUTINE_USAGE

VIEW_TABLE_USAGE

VIEWS

Step 5: Load Sample Data

- In the directory where you cloned the project, there is a sub-folder db book.
- Start DataGrip.
- In DataGrip, choose File->New DataSource->MySQL.
 - Accept the default name for the data source.
 - Set the MySQL user ID and password.
 - You may see a message stating that you need to install database drives. Install the drivers.
- Select the newly created data source. The name will Run SQL Script . Navigate to and choose the file DDL_drop.sql .
- Do the same for smallRelationsInsertFile.sql.
- You will see an icon/text on the side bar labelled db_book. It may be greyed-out. Right click on the entry and choose New query console. You may see a message Current schema not introspected and Introspect schema on the far right. Click on Introspect schema.
- Enter select * from course in the query console window. Click on the little green arrow to run the query.
- Take a screen show of your DataGrip window and save the screen show into the folder of the form dff9_src using your UNI. Remember the name of the file.
- Set your file name in the cell below replacing the example and run the cell. You should see your screenshot below. Yours will look a little different from mine. As long as yours shows the query result, you are fine.

```
print("\n")
from IPython.display import Image
Image(filename=file_name)
```

Out[6]:

Step 6: Very %sql

• Execute the cell below. Your answer will be similar to mine but may not match exactly.

* mysql+pymysql://root:***@192.168.1.137
13 rows affected.

		arrececu.	13 1 0W3	
credits	dept_name	title]: course_id	Out[7]:
4	Biology	Intro. to Biology	BIO-101	
4	Biology	Genetics	BIO-301	
3	Biology	Computational Biology	BIO-399	
4	Comp. Sci.	Intro. to Computer Science	CS-101	
4	Comp. Sci.	Game Design	CS-190	
3	Comp. Sci.	Robotics	CS-315	
3	Comp. Sci.	Image Processing	CS-319	
3	Comp. Sci.	Database System Concepts	CS-347	
3	Elec. Eng.	Intro. to Digital Systems	EE-181	
3	Finance	Investment Banking	FIN-201	
3	History	World History	HIS-351	

MU-199 Music Video Production Music 3
PHY-101 Physical Principles Physics 4

Step 7: Pandas, CSV and SQL

• Run the cell below.

```
import pandas
pandas.__version__

Out[8]:
import pandas
pandas.__version__
```

- Install SQLAlchemy using an Anaconda prompt.
- Restart the notebook kernel and rerun all cells. Then run the cell below.

```
In [9]: from sqlalchemy import create_engine
```

- Go into DataGrip. Select your local database, e.g. @localhost .
- Open a query console and execute create database lahmansdb. Then execute the cell below.

- There is a folder data in the project you cloned. There is a file in the folder People.csv .
- Execute the following code cell. If you are on Windows, you may have to change the path to the file and may have to replace / with \\ in paths.
- You should see a result similar to mine below.

```
In [11]:
    df = pandas.read_csv('../data/People.csv')
    df
```

Out[11]:		playerID	birthYear	birthMonth	birthDay	birthCountry	birthState	birthCity	deathYear	dea
	0	aardsda01	1981.0	12.0	27.0	USA	CO	Denver	NaN	
	1	aaronha01	1934.0	2.0	5.0	USA	AL	Mobile	2021.0	

	playerID	birthYear	birthMonth	birthDay	birthCountry	birthState	birthCity	deathYear	dea
2	aaronto01	1939.0	8.0	5.0	USA	AL	Mobile	1984.0	
3	aasedo01	1954.0	9.0	8.0	USA	CA	Orange	NaN	
4	abadan01	1972.0	8.0	25.0	USA	FL	Palm Beach	NaN	
•••									
20353	zupofr01	1939.0	8.0	29.0	USA	CA	San Francisco	2005.0	
20354	zuvelpa01	1958.0	10.0	31.0	USA	CA	San Mateo	NaN	
20355	zuverge01	1924.0	8.0	20.0	USA	MI	Holland	2014.0	
20356	zwilldu01	1888.0	11.0	2.0	USA	МО	St. Louis	1978.0	
20357	zychto01	1990.0	8.0	7.0	USA	IL	Monee	NaN	

20358 rows × 24 columns

• We will now save the data to MySQL. Run the cells below. You will have to change dbuser:dbuserdbuser to your MySQL user ID and password.

```
In [12]: engine = create_engine("mysql+pymysql://root:dbuserdbuser@192.168.1.137")
In [13]: df.to_sql('people', con=engine, index=False, if_exists='replace', schema='lahmansdb')
```

• Test that you wrote the information to the databases.

* mysql+pymysql://root:***@192.168.1.137
19 rows affected.

deathMonth	deathYear	birthCity	birthState	birthCountry	birthDay	birthMonth	birthYear	playerID	Out[14]:
5.0	1941.0	Somerville	MA	USA	24.0	8.0	1877.0	williar01	
None	None	Whistler	AL	USA	15.0	6.0	1938.0	willibi01	
6.0	2013.0	Newberry	SC	USA	13.0	6.0	1932.0	willibi02	
4 (1974.0	Wadena	IN	USA	21.0	12.0	1887.0	willicv01	

willida05	1958.0	2.0	28.0	USA	NY	Brooklyn	None	None
willida07	1979.0	3.0	12.0	USA	AK	Anchorage	None	None
willide01	1896.0	12.0	13.0	USA	OR	Portland	1929.0	3.0
willigu02	1888.0	5.0	7.0	USA	NE	Omaha	1964.0	4.0
williju02	1995.0	8.0	20.0	USA	LA	Houma	None	None
willike01	1890.0	6.0	28.0	USA	OR	Grants Pass	1959.0	1.0
willile03	1905.0	12.0	2.0	USA	GA	Macon	1984.0	11.0
willima02	1953.0	7.0	28.0	USA	NY	Elmira	None	None
willima07	1991.0	8.0	21.0	USA	RI	Pawtucket	None	None
willimi02	1964.0	11.0	17.0	USA	CA	Santa Ana	None	None
willini01	1993.0	9.0	8.0	USA	TX	Galveston	None	None
willira01	1975.0	9.0	18.0	USA	TX	Harlingen	None	None
williri02	1893.0	12.0	18.0	USA	CA	Santa Cruz	1966.0	4.0
willist01	1892.0	1.0	31.0	USA	MT	Cascade	1979.0	6.0
willite01	1918.0	8.0	30.0	USA	CA	San Diego	2002.0	7.0
4								

Step 7: Done

• You are done.

Programming Track

• Include a screen capture of your PyCharm execution of the web application. Your should look like the one below but may be different.

```
In [16]: file_name = 'pycharm.png'
    print("\n")
```

from IPython.display import Image Image(filename=file_name)

Out[16]:

• Put a screen capture of access the web page. Yours will look similar to mine but may be slightly different

```
In [18]:
          file_name = 'browser.png'
          print("\n")
          from IPython.display import Image
          Image(filename=file_name)
```

