Diskrete Wahrscheinlichkeitstheorie (SS 2013)

Hin.Ti's zu HA Blatt 9

Die folgenden Hinweise und Tipps zu Hausaufgaben sind für die Bearbeitung nicht notwendig, möglicherweise aber hilfreich. Man sollte zunächst versuchen, die Hausaufgaben ohne Hilfestellung zu lösen.

ad HA 9.1:

Man beachte, dass die ideale Notenvergabe fest definiert und in den Alternativen (a) und (b) lediglich auf unterschiedliche Weise angenähert wird. Die Wahrscheinlichkeitsverteilung für die Zufallsvariable K ist für jeden Studenten, d.h. jedes p, und jedes n fest definiert, allerdings unbekannt.

Nähere Hinweise und Tipps gibt es in der Zentralübung.

ad HA 9.2:

Ohne Angabe der Maßeinheit in Sekunden ist also die gemeinsame Verteilung aller X_i gegeben durch die Normalverteilung $\mathcal{N}(\mu, \sigma^2)$ mit dem Erwartungswert $\mu = 9.66$ und der Varianz $\sigma^2 = 0.011$.

Die Aufgabe schließt sich eng an Tutoraufgabe 8.2 von Blatt 8 an. Insbesondere sollte man die dortigen Bezeichnungen $X_{(1)}, X_{(2)}, \ldots, X_{(k)}, \ldots$ übernehmen.

- (a) Gefragt ist also nach dem kleinsten t, so dass $\Pr[X_{(1)} \leq t] \geq 0.99$ gilt. $\Pr[X_{(1)} \leq t] = 1 (1 \Phi_{\mu,\sigma}(t))^{10}$ ergibt sich unmittelbar aus TA 8.2. $\sqrt[10]{x}$ berechnet man mit einem Taschenrechner.
- (b) Nun ist gefragt nach dem kleinsten t, so dass $\Pr[X_{(3)} \leq t] \geq 0.99$ gilt. In TA 8.2 wurde die Verteilung $\Pr[X_{(k)} \leq t]$ berechnet, die nun für k = 3 spezialisiert wird. Allerdings ist es bequemer mit $\Pr[X_{(k)} > t]$ zu arbeiten, weil die betreffende Summenformel dann nur 3 Glieder besitzt.

Es ist hilfreich zu wissen, dass 0.3883 eine geeignete Nullstelle des Polynoms $x^{10}+10x^9(1-x)+45x^8(1-x)^2-0.01$ annähert.

ad HA 9.3:

Bestimmen Sie zunächst die Dichte f_Y der Summe $Y = X_1 + X_2$ und anschließend die gesuchte Dichte f_Z von $Z = Y + X_3$. In beiden Fällen wird die Faltungsformel angewandt. Beachten Sie, dass die Integration letztendlich auf die Fallunterscheidungen t < 0 bzw. $0 \le t < 1$ bzw. $1 \le t < 2$ bzw. $2 \le t \le 3$ bzw. 3 < t des Arguments t der Dichtefunktion f_Z führt.

Zur Ergebniskontrolle für die gesuchte Verteilungsfunktion $F_Z(t)$: Im Bereich $0 \le t \le 1$ gilt $F_Z(t) = t^3/6$.