ECON6080/8080 Assignment 1

Total marks: 10 marks. Marks will depend on accuracy and clarity. Speed is not an issue. Use Python to answer all questions.

Q1 [2 marks]

In the class we wrote a program that evaluate an (n-1)-th order polynomial

$$\sum_{i=0}^{n-1} a_i x^i,$$

by adding up $a_i x^i$ for i = 0, 1, ..., n - 1. This is however known to be inefficient.

Horner's method is a more efficient way to evaluate a polynomial. It is an iterative method illustrated by the following pseudo-code:

- 1. Initialize $x \in \mathbb{R}$ and $a \in \mathbb{R}^n$.
- 2. Initialize p = 0.0.
- 3. Starting from i = n 1,

$$p \leftarrow a[i] + p \times x$$

$$i \leftarrow i-1$$

and keep repeating until i = 0.

Write a function that implements Horner's method (steps 2 and 3 above). It must take (x, a) as input and return p as output. (It may be useful to realize that, if a is a list or a numpy.ndarray,

then a[::-1] is a list/array with a reversed order. But you are not required to use it.)

Q2 [2 marks]

Write a program which

- 1. Asks a user to enter a number;
- 2. Displays "It is a positive odd number." if the entered number is a positive odd number;
- 3. Displays "It is a positive even number." if the entered number is a positive even number; and
- 4. Displays "It is either negative or non-integer." if neither condition is satisfied.

Hint: To judge whether a number is an odd number or an even number, an operator % may be useful. See e.g. https://automatetheboringstuff.com/chapter1/. Report what happens when the user enters a non-number object such as letters.

Q3 [2 marks]

Write another program that extends the program in Q2 so that it displays "It is not a number." when the user enters a non-number object such as letters. (Don't lose your answer to Q2! Answer in a different cell if you use Jupyter notebook and in a different file if you write .py files.)

Hint: Read the Exception Handling section in https://automatetheboringstuff.com/chapter3/.

Q4 [2 marks]

Consider a difference equation:

$$x_{n+1} = 1 + \frac{1}{x_n}, \quad n = 0, 1, 2, \dots$$
 (1)

with a strictly positive initial value:

$$x_0 > 0$$
.

The sequence $\{x_n\}_{n=0}^{\infty}$ converges to a certain value $x^* > 0$. The goal here is to obtain x^* approximately.

An obvious algorithm is to start from a strictly positive initial condition x_0 and to iterate equation (1) until $|x_{n+1} - x_n|$ becomes sufficiently small.

Write a program that implements such an algorithm. Make sure you display the value of x_{n+1} at each step n. (Hint: pre-specify a stopping criterion or a convergence criterion, xtol > 0 (a sufficiently small number), and then stop the iteration when $|x_{n+1} - x_n| < xtol$.)

Q5 [2 marks]

Some useful classes of polynomials can be obtained recursively. Consider Chebyshev polynomials.

Their recursion is given by:

• Chebyshev polynomial (of the first kind)

$$T_0(x) = 1$$
, $T_1(x) = x$, and $T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$, for $n=1, 2,...$

For any positive integers N and $n \leq N$, $T_n(x)$ can be written as

$$T_n(x) = \sum_{i=0}^{N} \theta(n, i) x^i.$$

The goal here is to obtain a set of polynomial coefficients $\{\theta(n,i)\}_{i=0}^N$ for n=0,1,...,5 (N=5).

Write a program that calculates a (N+1)-by-(N+1) numpy.ndarray (or a matrix), Tmat, such that

• for $i, j \in \{0, ..., N\}$, Tmat[i,j] stores $\theta(i, j)$ i.e. a coefficient on x^j in $T_i(x)$.

(Hint: Quite obviously, the first two rows of Tmat are [1, 0, 0, ..., 0] and [0, 1, 0, 0, ..., 0]. Write a for loop statement to fill the remaining rows in Tmat.)

You can check whether your calculation is correct, by comparing your Tmat with the coefficients in https://en.wikipedia.org/wiki/Chebyshev_polynomials.