RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU

I. Równania o zmiennych rozdzielonych

Przekształcamy tak, żeby uzyskać:

$$(zwiqzek \ z \ y) \cdot dy = (zwiqzek \ z \ x) \cdot dx$$

$$\int (zwiqzek \ z \ y) \cdot dy = \int (zwiqzek \ z \ x) \cdot dx$$

$$\downarrow$$
Rozwiązanie

II. Równania typu y' = f(ax + by + c)

Podstawiamy: t = ax + by + c, wyznaczamy y' i przechodzimy na równanie typu I (o zmiennych rozdzielonych).

III. Równania typu
$$y' = f\left(\frac{y}{x}\right)$$

Podstawiamy: $t = \frac{y}{x}$, wyznaczamy y' i przechodzimy na równanie typu I (o zmiennych rozdzielonych).

IV. Równania typu
$$y' = f\left(\frac{a_1x + b_1y + c_1}{a_2x + b_2y + c_2}\right)$$

Jeśli $a_1b_2-b_1a_2\neq 0$, wtedy:

Rozwiązujemy układ równań
$$\begin{cases} a_1x+b_1y+c_1=0\\ a_2x+b_2y+c_2=0 \end{cases} \text{, mamy rozwiązanie } \begin{cases} x=\alpha\\ y=\beta \end{cases} ,$$

podstawiamy
$$x = u + \alpha$$
 , oraz $\frac{dy}{dx} = \frac{dv}{du}$ i przechodzimy na równanie typu III.

Jeśli $a_1b_2 - b_1a_2 = 0$, wtedy:

wyciągamy $a_{\!\scriptscriptstyle 1}, a_{\!\scriptscriptstyle 2}\,$ przed nawias ze składników z x i y i przechodzimy na równanie typu II.

V. Równania liniowe $p(x) \cdot y' + q(x) \cdot y = r(x)$

- 1. Rozwiązujemy równanie $p(x) \cdot y' + q(x) \cdot y = 0$. Jest to równanie o zmiennych rozdzielonych. Mamy rozwiązanie w postaci: $y = C \cdot ...$
- 2. W rozwiązaniu $y = C \cdot \dots$ "uzmienniamy stałą" i mamy $y = C(x) \cdot \dots$
- 3. Z powyższego obliczamy y'.
- 4. y' i y wstawiamy do wyjściowego równania. Składniki z C(x) powinny się skrócić. Wyznaczamy C'(x).
- 5. Związek $C'(x) = \dots$ obustronnie całkujemy. Mamy wynik: C(x).
- 6. C(x) wyznaczone w 5. wstawiamy do 2. i mamy rozwiązanie.

VI. Równania Bernoulliego $p(x) \cdot y' + q(x) \cdot y = r(x) y^n$

Podstawiamy: $z = y^{1-n}$, z tego podstawienia wyznaczamy y, y', y^n i wychodzimy na równanie liniowe (typu V).

VII. Równania Riccatiego
$$y' = p(x) \cdot y^2 + q(x)y + r(x)$$

Mamy dane rozwiązanie (całkę) szczególną: $y_1(x)$

Podstawiamy: $y = y_1(x) + \frac{1}{u}$ i wychodzimy na równanie liniowe (typu V).

VIII. Równania Clairauta
$$y = xy' + f(y')$$

Równanie obustronnie różniczkujemy, wychodzimy na równanie: y"(x+f'(y'))=0, z równań y"=0 i x+f'(y')=0 wyznaczamy y' (y"=0 obustronnie całkujemy) i wstawiamy do wyjściowego równania, otrzymując w ten sposób rozwiązania.

IX. Równania różniczkowe zupełne P(x, y)dx + Q(x, y)dy = 0

Spełniony musi być warunek: $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$

Rozwiązujemy układ równań $\begin{cases} \frac{\partial F}{\partial x} = P\left(x,y\right) \\ \frac{\partial F}{\partial y} = Q\left(x,y\right) \end{cases}$, rozwiązaniem jest funkcja $F\left(x,y\right)$.

Rozwiązanie całego równania zapisujemy w postaci: F(x, y) = C.

X. Czynnik całkujący P(x, y)dx + Q(x, y)dy = 0

Jeśli warunek $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$ nie jest spełniony, szukamy czynnika całkującego $\mu(x,y)$.

١.

Jeśli związek $\frac{1}{Q} \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} \right)$ jest funkcją tylko zmiennej x, wtedy $\mu(x,y) = \mu(x) = e^{\int \frac{1}{Q} \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} \right) dx}$ II.

Jeśli związek $\frac{1}{P} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right)$ jest funkcją tylko zmiennej y, wtedy $\mu(x, y) = \mu(y) = e^{\int \frac{1}{P} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dy}$

Równanie wyjściowe obustronnie mnożymy przez znalezione $\mu(x)$ lub $\mu(y)$ i otrzymujemy równanie typu IX (zupełne).

XI. Równanie różniczkowe rodziny linii

Aby otrzymać równanie różniczkowe rodziny linii F(x, y, C) = 0 należy to równanie rodziny linii obustronnie zróżniczkować i z otrzymanych równań "wyrugować" parametr.

Aby otrzymać równanie rodziny linii ortogonalnych do F(x,y,C)=0, należy w równaniu różniczkowym tej rodziny linii zastąpić y' związkiem $-\frac{1}{y'}$. Otrzymamy w ten sposób

równanie różniczkowe rodziny linii ortogonalnych, które możemy jeszcze rozwiązać.