A1 gyakorlat, 2005-2006/1., 4. hét

Az $(1+1/n)^n$ sorozattal kapcsolatos feladatok

- 1. Ha 100 Ft évi 6%-kal kamatozik, az év végére nyilván 106 Ft lesz. Jobban járunk, ha minden negyedév végén az időarányosan elért kamatot hozzáadjuk a betett összeghez, tehát a nyereség is tovább kamatozik. Így mennyi pénzünk lesz az év végére? $(100~{\rm Ft}\cdot (1+\frac{0.06}{4})^4\approx 106.136~{\rm Ft})$ Mennyi pénzünk lesz, ha havonta, ill. naponta lehet visszaforgatni a nyereséget? Feltéve, hogy akár másodpercenként vagy még gyakrabban lehet visszaforgatni a nyereséget, meddig lehet fokozni az év végi össznyereséget? (100 Ft $\cdot e^{0.06} = 106.1836...$ Ft) Mutassuk meg, hogy a nyereség nő, ha sűrűbben forgatunk vissza!
- 2. Határozzuk meg a következő sorozatok határértékét!

$$a) \quad \left(\frac{n-3}{n-2}\right)^{2n-1}, \qquad b) \quad \left(\frac{n+3}{n+1}\right)^{6n-2}, \qquad c) \quad \left(\frac{3n-2}{3n+2}\right)^{2n},$$

b)
$$\left(\frac{n+3}{n+1}\right)^{6n-2}$$

$$c) \quad \left(\frac{3n-2}{3n+2}\right)^{2n}$$

$$d) \quad \left(\frac{n+2}{2n}\right)^{n+1},$$

d)
$$\left(\frac{n+2}{2n}\right)^{n+1}$$
, e) $\left(\frac{3n-1}{2n-1}\right)^{n+8}$, f) $\left(1+\frac{1}{2^n}\right)^{2^n}$,

$$f) \quad \left(1 + \frac{1}{2^n}\right)^{2^n},$$

$$g) \quad \left(1 + \frac{1}{n^2}\right)^n, \qquad h) \quad \left(1 - \frac{1}{n}\right)^{n^2}.$$

$$h$$
) $\left(1-\frac{1}{n}\right)^{n^2}$.

Rekurzív sorozatok

- 1. $a_1 = 5$, $a_{n+1} = \frac{1}{2} \left(a_n + \frac{4}{a_n} \right)$ Mutassuk meg, hogy $a_n > 2$, és a_n csökkenő! (Pl. $(a_{n+2} a_{n+1})$ kifejezhető $(a_{n+1} a_n)$ -el.) Bizonyítsuk be, hogy
- 2. $x_1 = 1, x_{n+1} = x_1 + x_2 + \cdots + x_n, n \ge 1$. Adjunk képletet x_n -re!
- 3. $x_1 = \cos 1$, $x_{n+1} = \max\{x_n, \cos(n+1)\}$. Igazoljuk, hogy a sorozat konvergens! Nehezebb, a jó hallgatók próbálják belátni, hogy $x_n \to 1$.

Függvényhatárérték; ε -hoz δ keresés

1.
$$\lim_{x\to 4} \sqrt{2x+1} = 3$$
 -nál $\varepsilon = 10^{-3}$, $\delta(\varepsilon) = ?$

2.
$$\lim_{x\to 1} \frac{2x-3}{x+1} = -\frac{1}{2}$$
-nél $\varepsilon = 10^{-5}$, $\delta(\varepsilon) = ?$, általános ε -ra $\delta(\varepsilon) = ?$

stb...