W99 Car Following Model How It Works

Guanghui Liu @ HNTB

Overview

W99demo.com

Traffic simulation on a webpage
Adjust model parameter in real time

How I built it

How you can build it

Car Following Model & W99

What is W99, and why you should care

How it began

Watch this Cat Car Video on Youtube

https://youtu.be/7wm-pZp_mi0

What just happened?

Sugiyama, Yuki, et al. "Traffic jams without bottlenecks—experimental evidence for the physical mechanism of the formation of a jam." New Journal of Physics 10.3 (2008): 033001.

"Flow Breakdown"

Critical Density

Uncongested ←→ Congested

Turbulence reaches critical level and breaks down traffic

Sugiyama, Yuki, et al. "Traffic jams without bottlenecks—experimental evidence for the physical mechanism of the formation of a jam." New Journal of Physics 10.3 (2008): 033001.

"Flow Breakdown"

Critical Density

Uncongested ←→ Congested

Turbulence reaches critical level and breaks down traffic

Can we do it on a webpage?

Let's draw a track...

... and some cars!

... and some cars!

... and some cars!

3, 2, 1, Go!!

High school physics

$$x = x0 + v * t$$

$$v = v0 + a * t$$

High school physics

$$x = x0 + v * t$$

$$v = v0 + a * t$$

High school physics

$$x = x0 + v * t$$

$$v = v0 + a * t$$

a - acceleration

How do we determine it?

a - acceleration

How do we determine it ?!

Car Following Model

Define how vehicles interact with each other

How car "follows"

Goal: Avoid Collision

... and how car not follow

Goal: Drive at desired speed

...and then there is micro-simulation

W99 Car Following Model

Wiedemann's Car Following Models

Vissim's favorite car following model

"Psycho-Physical" Model

"Psycho-Physical" Model

Acceleration/Free Driving

Speed not constrained by other vehicles

Following

Maintain speed and distance with leader

Deceleration

Approaching slower vehicle

Emergency Deceleration

To avoid collision

W99 Car Following Model - Parameters

AX – stationary distance

BX – min following distance

CLDV – perception threshold (near): speed higher than leader

SDV – perception threshold (far): speed higher than leader

OPDV – perception threshold: speed lower than leader

SDX – perception threshold: free acceleration

W99 Car Following Model - Parameters

- cc0 standstill distance
- cc1- headway time
- cc2 following variation
- cc3 threshold for entering "following"
- cc4 negative "following" threshold
- cc5 positive "following" threshold
- cc6 speed dependecy of oscillation
- cc7 oscilaltion acceleration
- cc8 standstill acceletation
- cc9 acceleration at 80 km/h

SystemStatus: XV(1)-X(1)

per=X(I-1)-L(I-1)
- B(1)<-V(I) then
x(I)=XV(I)-.5*W(I)*2/B(I)

X(1)=XV(1)+VV(1)+.5*B(1) V(1)=VV(1)=B(1) end 1f

SIMTOOL THRESHOLDS for dx	INTAC-12 Constants
THRESHOLDS for dV	$ \begin{bmatrix} 50 \text{Vic} \\ \text{SDVo} \\ \frac{1}{\pi} \text{Initial opening dV} \\ \frac{1}{\pi} \frac{1}{\sqrt{4}} \frac{1}{\sqrt{6}} \end{bmatrix} = 0.25 \\ \frac{1}{\pi} \frac{1}{\sqrt{6}} $
DRIVING ACTIVITIES	$ \left[\begin{array}{c} \text{car following activities } \pm b & \left\{ n/s^* \right\} : 0.25 \\ \text{acceleration behaviour when starting } \left\{ n/s^* \right\} : 2.00 \\ \text{acceleration behaviour at V-80 km/h} \cdot \left\{ n/s^* \right\} : 1.50 \\ \end{array} \right. $

V(1)=0 if Art(1)<2 then Art(1)=3: wids(OP121(1),12,1)=chr1(254)son CALIBRATION bu 15: so time persondelt, im Review 727 no sparen! X(1)=8umper: V(1)=V(1-1) if X(1)=150 then mids(OP12s(1),12,1)=chrs(219)

Too many formulas for a human being!

$$x = x0 + v * t$$

v = v0 + a * t

a from W99 model

$$x = x0 + v * t$$

$$v = v0 + a * t$$

a from W99 model

$$x = x0 + v * t$$

$$v = v0 + a * t$$

a from W99 model

$$x = x0 + v * t$$

$$v = v0 + a * t$$

a from W99 model

Putting it Together

Demo Time!

W99 Car Following Model - Parameters

W99 Car Following Model - Parameters

- cc0 standstill distance
- cc1- headway time
- cc2 following variation
- cc3 threshold for entering "following"
- cc4 negative "following" threshold
- cc5 positive "following" threshold
- cc6 speed dependecy of oscillation
- cc7 oscilaltion acceleration
- cc8 standstill acceletation
- cc9 acceleration at 80 km/h

Use it to learn, not to calibrate!

Nerd Eyes Only

JavaScript + HTML5

 ~ 1000 lines of code

Source Control & Web Hosting: Github

MIT License

Visit W99demo.com

Thank you!