NASA CR-165, 259

NASA CR--165259

RETROFIT AND ACCEPTANCE TEST OF 30 cm ION THRUSTERS

NASA-CR-165259 19820004260

R. L. Poeschel

Hughes Research Laboratories 3011 Malibu Canyon Road Malibu, CA 90265

June 1981

NAS 3-21357

Final Report

12 April 1978 through 1 April 1981

HANNY GOTY

NOV 3 0 1981

LAMPLEY RUSTAROH DENTER LOGRARY, NASA MADILTON, VIRGINIA

Sponsored by
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Lewis Research Center
21000 Brookpark Road
Cleveland, OH 44135

HUGHES Research Laboratories

A DIVISION OF HUGHES AIRCRAFT COMPANY 3011 MALIBU CANYON ROAD MALIBU, CALIFORNIA 90265 Telephone: (213) 456--6411 Telex: 652310 HACRESL MLBU

In reply refer to: 81M-1503/E2746

5 November 1981

SUBJECT:

Contract No. NAS 3-21357

Retrofit and Acceptance Test of

30 cm Thrusters

Final Report

T0:

NASA/Lewis Research Center

21000 Brookpark Road Cleveland, OH 44135

ATTN: Propulsion and Power Section

(MS 500-306)

In accordance with the Reports of Work Requirements of subject contract, submitted herewith please find one (1) copy of subject report. With this submission all requirements of subject contract are complete. Additional distribution is in accordance with the provided NASA distribution list.

Should additional information be required regarding this subject, please contact the undersigned at your convenience.

HUGHES AFRCRAFT COMPANY

John E. Murphy / Jr.

Senior Contract Negotiator Research Laboratories Division

JEM:pe

Enclosure: 1 cy

			CHINICAL REPORT 31	ANDARD TITLE PAGE
1. Report No. NASA CR-165259	2. Government Acce	ssion No.	3. Recipient's Catalog	No.
4. Title and Subtitle			5. Report Date	
RETROFIT AND ACCEPTANCE THRUSTERS	RETROFIT AND ACCEPTANCE TEST OF 30-CM ION THRUSTERS			zation Code
7 Author(s)		· · · · · · · · · · · · · · · · · · ·	8. Performing Organi	ization Report No.
R.L. Poeschel, et. al				
9. Performing Organization Name and Ad		·	10. Work Unit No.	
Hughes Research Laborat 3011 Malibu Canyon Road Malibu, CA 90265			11. Contract or Grant NAS 3-21357	No.
			13. Type of Report an	d Period Covered
12. Sponsoring Agency Name and Address NASA Lewis Research Cen		į	12 April 193 1 April 1983	
21000 Brookpark Road Cleveland, OH 44135			14. Sponsoring Agend	cy Code
15. Supplementary Notes				
NASA Project Managers:	R.T. Bechtel J. Maloy - NAS	•	rch Center	
ful lifetime of 15,000 hours. Under the program described in this report, six government-furnished thrusters were modified to the J-series design and evaluated using standardized test procedures. The thruster performance meets the design objectives (lifetime objective requires verification) and documentation (drawings, etc.) for the design has been completed and upgraded. The retrofit modifications are described and the test data for the modifications are presented and discussed.				
17. Key Words (Selected by Author(s)) Electric Propulsion Mercury Ion Thruster Solar Electric Propulsion		18. Distribution Sta UNCLASSIE	toment FIED — UNLIMITE	ED
19. Security Classif. (of this report)	20. Security Classif. (c	of this page)	21. No. of Pages	22. Price*
UNCLASSIFIED	UNCLASSIFIED UNCLASSIFIED		328	

^{*}For sale by the Clearinghouse for Federal Scientific and Technical Information, Springfield, Virginia 22151.

FOREWORD

The work described in this report was carried out over a period of approximately three years at Hughes Research Laboratories (HRL) under the responsibility of several Department and Program Managers. Initially, the program was managed by Dr. R. L. Poeschel within the Ion Physics Department, managed by Mr. J. H. Molitor. In 1979 responsibility was transferred to Mr. D. E. Schnelker within the High Voltage Technology Department, managed by Dr. H. J. King. Mr. Schnelker left HRL during 1979, and Dr. R. L. Poeschel resumed the responsibility of program manager. Key contributions were made to the program by several members of the Ion Physics and High Voltage Technology Departments as indicated below:

Thruster Design - D. E. Schnelker, S. Kami, and R.E. Jones

Documentation Upgrade - R. E. Jones

Acceptance Testing - C. R. Collett, C. R. Dulgeroff

Hughes also acknowledges the valuable comments and recommendations of Messrs. J. Maloy and R. Zavesky of NASA's Lewis Research Center in formulating iterations on improvements to the thruster design.

N82-12/33#

TABLE OF CONTENTS

SECTION	PA	GΕ
	LIST OF ILLUSTRATIONS	6
	SUMMARY	9
1	INTRODUCTION	.1
2	RETROFIT MODIFICATION OF THE GOVERNMENT FURNISHED 900-SERIES, 30-CM THRUSTERS	.3
	A. Development of the Ion Optics Assembly Design and Fabrication Procedures	.4
	B. Development of the J-Series Vaporizer Designs and Fabrication Procedures	.5
	C. Cathode Heaters	5
	D. Other Modifications Incorporated into the Thrusters Retrofit Under This Program	8
3	ACCEPTANCE TESTING	3
	A. Acceptance Test Procedures 5	3
	B. Propellant Measurement 6	0
	C. Acceptance Test Results 6	3
4	DOCUMENTATION	1
	A. Initial Review	1
5	CONCLUSIONS	'3
	REFERENCES	75
	APPENDICES	7
	DISTRIBUTION LIST	:5

LIST OF ILLUSTRATIONS

FIGURE	PAGE
1	Definition of design parameters for ion-optics apertures
2	Electrode support ring design for 800-900 series thruster
3	Cross-section of ion-optics-electrode mount used in NASA/Hughes 700-900-series 30 cm thruster
4	30-cm J-series ion optics assembly (side view)
5	30-cm J-series ion optical assembly (top view)
6	Detal of 30-cm, J-series grid mounting to support ring
7	30-cm electrode mounting detail-rivet locations
8	Vaporizer flow (in equivalent amperes) versus inverse vaporizer temperature
9	Vaporizer flow (in equivalent amperes) versus inverse vaporizer temperature for neutralizer vaporizers made from porous tungsten fabricated using the specifications shown in Table 4
10	Cathode vaporizer assembly (800-900 series thrusters)
11	Vaporizer housing to propellant line transition 36
12	Cathode vaporizer assembly — J-series thruster design
13	Penetration of porous tungsten plug (percent by volume) versus mercury pressure (absolute)
14	Vaporizer flow (in equivalent amperes) versus inverse vaproizer temperature
15	Typical configuration of swaged coaxial heater (dimensions shown are for cathode heaters)

FIGURE		PAGE
16	Characteristic of cathode keeper voltage versus magnetic baffle current	56
17	Thruster start-up algorithm	59
18	Comparison of the propellant efficiencies measured at each of the acceptance test points for thrusters SNJ4, J5, and J6	62
19	Comparison of the propellant efficiencies measured at each of the acceptance test points for thrusters SN J2, J3, J7, J8, J9, and J10	64
20	Variation of propellant efficiency and manifold temperature as a function of time after thruster turn on	65
21	Selected magnetic baffle currents	67
22	Neutralizer keeper voltage as a function of beam current	68

SUMMARY

The Retrofit and Acceptance Test program was conducted primarily to modify six government furnished 900-series 30-cm thrusters to the J-series design as it had been defined under NASA contract NAS 3-21052. 1,2 Each of the modified thrusters was then evaluated by a standardized acceptance test. Additional work was performed for evaluating the performance and improving the techniques for fabrication of porous tungsten vaporizors. As a consequence of preliminary test results obtained during this program, and in testing under other programs, iteration was necessary on several of the design modifications to satisfy the objectives of the retrofit activity. The thruster components that required resolution of critical problems were the ion optics assembly, the vaporizer assemblies, and the swaged, coaxial heaters. Other relatively minor adjustments of the design were also made to correct observed or potential failures (wire routing or clamping, etc.).

The standardized procedures 1 for acceptance testing of thrusters were also refined to improve the accuracy and reproducibility of test data. Propellant flow is the most difficult performance parameter to measure accurately, so testing procedures were modified during the program to incorporate the improvements recommended by the NASA Lewis Research Center. Dispersion in the propellant flow data obtained was reduced appreciably (from $\pm 3\%$ to $\pm 1\%$).

The documentation for the J-series thruster design (drawings, etc.) was upgraded under this program to include all of the modifications incorporated as a consequence of the work under this program, and to approach the standards set by the DOD-D-1000, level-2 specifications. The design can now be considered finalized until new system requirements or test results dictate new thruster design requirements (the J-series thruster design objectives are for production of 130-mN of thrust at 2.68-kW input power, with a specific impulse of 3000 sec and an overall efficiency of 71% over a 15,000-hour useful lifetime).

SECTION 1

INTRODUCTION

The program described in this report was conducted with the objective of performing retrofit modifications on six government-furnished 30-cm ion thrusters, and then acceptance testing these thrusters, using standardized procedures, before delivery to NASA's Lewis Research Center (LeRC). At the outset, it was planned that the six thrusters would be modified in the same way as the "prototype" J-series thruster (SN J1) had been modified under NASA contract NAS 3-21052. Testing of thruster SN J1 under contract NAS 3-21052, and testing of isolator vaporizer components under this program revealed unanticipated deficiencies in some aspects of the J-series thruster design that was the "baseline" at the beginning of this program. Consequently, it was recognized early-on that iterations would have to be made on the design modifications, as determined under contract NAS 3-21052, and this program was subsequently expanded and extended to complete the development of the J-series, 30-cm mercury ion thruster design. The major design deficiency noted was in the ion optics assembly; however, fabrication procedures and material specifications also had to be revised for vaporizer subassemblies and all swaged heaters to achieve acceptably reproducible hardware. The hardware failures (heaters and vaporizers) that led to tightening of tolerances on parts and specifications for heaters and vaporizers also caused a closer scrutiny of all of the drawings and assembly procedures that document the thruster design. An iteration on the upgrading of drawings and inpsection and process documents (IPDs) resulted.

A standardized acceptance test had been formulated under NASA contract NAS 3-21052 and applied to thruster SN Jl. Under this program, the test procedures were revised and refined to provide for the measurement of the same basic data, but under a streamlined procedural approach. Procedures were formulated on the basis of using a thruster power processor and control system that is automated like that of the NASA LeRC two-inverter power processor developed for endurance testing of a 30-cm thruster under NASA contract NAS 3-18914. This power processor was used to perform all acceptance tests under this program in order to eliminate any possibility for introduction of

power-processor-related anomalies in thruster operation. Nevertheless, inconsistencies in measurement of thruster performance were observed. Thus, it became necessary to vary test procedures in an attempt to minimize the dispersion in test results that would be attributed to test procedures (primarily propellant flow measurement).

The work performed under this program, therefore, constituted considerably more than a straightforward retrofit and acceptance test of six 30-cm ion thrusters. The retrofit modification was, in fact, a final development of the design modifications required to achieve the desired performance capabilities for the 30-cm J-series thruster. Acceptance testing comprised a refinement of test procedures and techniques to provide an accurate, reproducible record of a thruster's performance capabilities. The details of this work are described in the following sections.

SECTION 2

RETROFIT MODIFICATION OF THE GOVERNMENT FURNISHED 900-SERIES, 30-CM THRUSTERS

Six thrusters were furnished for this contract for retrofit to the J-series design by implementing the modifications defined under NASA contract NAS 3-21052, and described in Appendix A. Testing of the first retrofit thruster (SN J1) revealed a thermo-mechanical instability in the ion optics assembly. As a result, investigation and elimination of that instability became the foremost activity under this program.

New criteria for determining the acceptability of vaporizers (porous tungsten vaporizer material) were defined under NASA contract NAS 3-21052, and one task under this program was to remove all the isolator-vaporizer assemblies and perform evaluation tests. These tests revealed that most of the existing components could not meet the new criteria in all regards, nor could the new components from a small sampling that were fabricated and tested under this program using the revised procedures. This led to a redesign of the vaporizers and fabrication of another set of components.

Cathode heaters failed in the initial cathode conditioning on several of the retrofit thrusters, and this led to an investigation of swaged-heater fabrication. Specifications on insulator compaction, welding of the inner to outer conductor, and quality control inspection were revised to ensure that swaged-heater fabrication would produce the heater reliability that had been established previously. This resulted in a very long delay in obtaining heaters. The resolution of the heater problem is still somewhat uncertain.

This section discusses the work performed to enable completion of the retrofit modification with regard to the components described above. Several other minor modifications were incorporated in the later retrofit thrusters to correct deficiencies noted in the endurance testing of the earlier retrofit thrusters. A brief description of these thruster modifications is included.

A. DEVELOPMENT OF THE ION OPTICS ASSEMBLY DESIGN AND FABRICATION PROCEDURES

The performance of the ion optics assembly is governed by the values specified for the aperture parameters as defined and listed in Figure 1. For the J-series, 30-cm thruster, the design values for these aperture specifications are as follows:

$$d_{a} = 0.114 \text{ cm } (0.045 \text{ in.})$$

$$d_{s} = 0.191 \text{ cm } (0.075 \text{ in.})$$

$$t_{s} = t_{a} = 0.038 \text{ cm } (0.015 \text{ in.})$$

$$\ell_{g} = 0.063 \text{ cm } (0.025 \text{ in.})$$

$$\phi_{a} = 0.243$$

$$\phi_{s} = 0.674$$

$$S = 0.22 \text{ cm } (0.087 \text{ in.}).$$

The grids have approximately 15,000 such aperture pairs, and maintaining these aperture pairs in proper alignment and spacing (ℓ_{g}) has been a major focus of attention in advancing the thruster design from the 600 to 900 series. The only modifications to the ion-optics-assembly parameters that were determined under contract NAS 3-21052 were a change in da from 0.152 cm (0.060 in.) to 0.114 cm (0.045 in.), and a change in t_a from 0.05 cm (0.020 in.) to 0.038 cm (0.015 in.). The ion optics grids for the retrofit J-series thrusters were initially formed and mounted using the same procedures and support ring as specified for the 800-900-series design. Figure 2 shows the electrode support ring for an ion optics assembly of the 800-900-series design. details of the attachment of the grids to the mounting ring for this design are shown in Figure 3. In this assembly, the screen grid (molybdenum) was fastened directly to the rigid mounting ring (titanium) using countersunk machine screws. The accel electrode was similarly mounted to a molybdenum "stiffening" ring. While this design had proven successful for all of the tests performed on 700-800-series thrusters, the initial testing of the retrofit thrusters using the smaller accel aperture were accompanied by erratic performance that was not noted previously. 3,4

da - ACCEL HOLE DIAMETER

d - SCREEN HOLE DIAMETER

ta - ACCEL GRID THICKNESS

ts - SCREEN GRID THICKNESS

 $\ell_{\rm q}$ - SCREEN-TO-ACCEL INTERELECTRODE SPACING

$$\phi_a$$
 - ACCEL GRID OPEN AREA FRACTION $\sqrt{\frac{3}{6}} \frac{\pi}{s^2} \frac{d_a^2}{s^2}$

$$\phi_s$$
 - SCREEN GRID OPEN AREA FRACTION $\frac{\sqrt{3}\pi}{6}\frac{d_s^2}{s^2}$

S - APERTURE SPACING

Figure 1. Definition of design parameters for ionoptics apertures.

Figure 2. Electrode support ring design for 800-900-series thruster.

Figure 3. Cross-section of ion-optics-electrode mount used in NASA/Hughes 700-900-series 30-cm thruster.

In testing thruster SN Jl, it was noted that the extraction voltages could not be applied at the time called for in the start-up procedure without severe overload of the screen power supply (arcing). It was later determined that the electrodes did, in fact, come into contact for a period of time during heating of the discharge chamber in the start-up sequence. As the discharge chamber and ion-optics-assembly temperature approached the steady-state operating temperature, the contact between electrodes disappeared. Since all of the ion optics assemblies had been retrofitted with the small hole accelerator grids, it was decided to proceed with the testing of these assemblies. shows the results of these tests. Perveance was measured at beam currents of 0.75 A and 2.0 A using the procedures prescribed by the acceptance test document (IPD-PR-138). The entry shown as "minimum total voltage" is the value of the total voltage $(V_b + V_{accel})$ for which a further decrease in voltage causes a rapid rise in accelerator current. All of these measurements were made using thruster SN J4, and therefore, the dispersion in the perveance characteristics can be attributed solely to the ion optics assemblies. The performance variations shown in Table 1 were considered unacceptable and the task of identifying and correcting the cause of the difficulty was divided between NASA LeRC, an ongoing NASA technology program (contract NAS 3-21040), and this program. Finite element analyses of the grids and support structure were performed both at NASA LeRC and under NASA contract NAS 3-21040. distributions were measured on operating thrusters at both HRL and LeRC to support these calculations. The details of the HRL analysis are described in the final report for contract NAS 3-21040. 5,6 Without going into detail, these analyses show that the titanium support ring increases in diameter by a greater amount than the edge of the molybdenum grids. In the 700-900-series assembly shown in Figures 2 and 3, this produces stresses that form moments about the attachment points between the grids and the mount. This moment deforms the flat portions of both of the grids. Because the grids were fastened with countersunk screws, the deformation probably varied from grid to grid and from point to point around the periphery of each grid. Consequently, the deflection of the screen grid and accel grid and the spacing between them was not uniform.

A design modification was proposed and modeled analytically to predict performance. Instead of attaching the grids directly to the rigid titanium structure, the grids were mounted on heavier molybdenum rings by riveting.

Table 1. Perveance Measurement Summary

Electrode Set S/N	Minimum V_T at $J_b = 0.75$	Minimum V _T at J = 2.0 b V		
828	1150	1450		
831*	900	1240		
832	1140	1450		
834*	980	1240		
835	not measured	1500		
836	1300	1500		
837	1180	1320		
841*	1200	1620		
Design value	650	1240		
*Electrodes measure short circuit during warm-up period				

These heavier rings were then attached to the titanium mount through "softened" supports, as shown in Figures 4 through 7. In this mounting configuration, the titanium support ring provides rigidity in the axial and azimuthal directions, but is weak in the radial direction. This type of support was accomplished by cutting slots in the titanium mounting ring at the points where the molybdenum grid support ring is attached to the mounting.

In addition to the changes made in the mounting ring and grid support rings, the procedures for forming and stress relieving were modified. Previously, the grids were hydroformed and stress was relieved with a spacer at the flat, supporting edge of the grid. It was originally thought that this technique would ensure that the minimum interelectrode spacing would occur in the curved, active region of the grids. Analysis under this program indicated that use of the spacer distorted the spherical surface of the grids and may have contributed to the non-uniform thermal expansion of the grids that resulted in the unstable, unpredictable performance observed. Consequently, the grids with 900 series serial numbers were hydroformed without spacers, and all grids were stress-relieved in a newly machined fixture without spacers. The stress

Figure 4. 30-cm J-series ion optics assembly (side view).

Figure 5. 30-cm J-series ion optical assembly (top view).

Figure 6. Detail of 30-cm, J-series grid mounting to support ring.

Figure 7. 30-cm electrode mounting detail-rivet locations.

relief heat treatment is performed in a vacuum furnace, and the time and temperature are specified at 2 hours and 927°C .

The combination of the changes in configuration and fabrication procedures produced the J-series ion optics assemblies that were used to retrofit the six thrusters provided. All of the 900 series ion optics assembly components were fabricated on another NASA contract (NAS 3-21759) and provided as GFE to this program. The perveance measurements performed during the acceptance tests of thrusters SN J2 through SN J7 produced the minimum total voltage values shown in Table 2.* It is apparent that there is far less dispersion in the performance of these assemblies than was seen in the performance of the 800-series mounting as shown previously in Table 1. Consequently, it can be concluded that the ion optics assembly, as modified under this program, can provide the required performance under the normal operating conditions of the J-series thruster.

Grid Set Minimum Vm

THR S/N	Grid Set S/N*	Minimum V_T at $J_b = 0.75$ V	Minimum V _T at J _b = 2.0 V
Ј2	902	830	1220
Ј3	901	834	1179
J4	837	899	1220
J5	834	790	1090
J6	903	792	1220
J7	904	850	1232

Table 2. Perveance Measurement Summary

It should be noted, however, that the accel grid mounting is still quite rigid, and differential thermal expansion of the grid support and the mounting ring causes relative motion between the screen and accel grids. This behavior was predicted by the computations in Reference 5 and has been supported by the

Note that two grid sets have 800-series serial numbers. These grids were reprocessed by the revised procedures (stress-relieved).

results obtained in measuring the perveance limit as a function of ion beam current during the thruster acceptance tests under this program. It should be noted, however, that the validity of the design has been analyzed and verified only for thruster operation under nominal conditions existing in ground test facilities, and not for all possible thermal conditions that could exist in space environments.

B. DEVELOPMENT OF THE J-SERIES VAPORIZER DESIGNS AND FABRICATION PROCEDURES

In a mercury ion thruster, the vaporizer acts as the propellant control valve that meters the flow of propellant gas to the hollow cathode discharges (discharge cathode and neutralizer) and to the discharge chamber. Phase separation and flow control has been successfully demonstrated (SERT II) using porous tungsten as vaporizer material. Mercury does not readily "wet" tungsten, and therefore the capillary forces of the minute pores in the porous tungsten prevent penetration of liquid mercury, while the vapor can flow through the porous material. The vapor flow depends on the temperature of the mercury (vapor pressure) that is in contact with the porous material and the transmission coefficient of the porous material. At the outset of this program, it was recognized that the vaporizer designs and fabrication procedures that had been used in fabricating the 700 and 800-series vaporizers had resulted in assemblies that displayed a relatively wide dispersion of performance characteristics (mercury intrusion pressure and mercury flow versus temperature characteristic). Variations occurred not only between vapor assemblies, but also between purchase lots of vaporizer material. Consequently, a standardized screening test was formulated to evaluate vaporizer performance during the fabrication and assembly of vaporizers (IPD-PR-133). This screening test provides for the following measurements:

- Measurement of the pressure of mercury at ambient temperature that the porous tungsten vaporizer can withstand before mercury begins to intrude the pores (intrusion pressure).
- Measurement of the mercury vapor flow through the porous tungsten vaporizer at four standard temperatures (260°, 280°, 300°, and 320°C).
- Measurement of the vaporizer intrusion pressure at 400°C vaporizer temperature.

• Operation of the assembled vaporizer for 50 hours at elevated temperature and pressure (350°C and 60 psia) with measurement of flow at three points during the test.

Absolute standards for these screening tests were not established during the program; however, selection of components for use on the retrofit thrusters was based primarily on the results of these tests. At the outset, the only isolator-vaporizer components available were those removed from the GFE thrusters. These components were subjected to the above tests, with the results shown in Table 3. It was planned that three new sets of isolator-vaporizer components would be fabricated, and the best six of the nine would be used in the retrofit. The selection criteria was as follows:

- High mercury intrusion pressure.
- Small variation in flow during the 50-hour test.
- Vapor-flow/temperature characteristic in the "typical" operating range.

The values of the vaporizer properties listed in Table 3 that were considered somewhat arbitrarily to be the objectives for satisfying these criteria were:

- Intrusion pressure greater than 120 psi.
- Less than 10% increase in flow during the 50-hour test.
- Vapor-flow/temperature values in the shaded region of Figure 8.

It is apparent that none of the main vaporizers met the intrusion pressure screening objective. However, all except one of the cathode vaporizers (SN 817) and one of the neutralizer vaporizers (SN 911) passed the intrusion pressure screening. Six of the 17 vaporizers tested were unable to operate for 50 hours without an increase in flow exceeding the 10% objective. The temperature-flow characteristics are compared graphically against the "desired" behavior in Figure 8.

If the vapor flow through the porous tungsten is a diffusion process, the variation of flow with temperature should be proportional to a exp (-b $T_{\rm VAP}^{-1}$) where $T_{\rm VAP}^{-1}$ is the vaporizer temperature in degrees Kelvin, and a and b are arbitrary constants dependent on the porous matrix. From the flow characteristics shown in Figure 8, it can be concluded that some consistency has been

		Vaporizers																
		IV-N					IV-C				IV-M							
Component Serial Number		910	911	815	909	907	906	821	819	823	817	811	807	805A	815	815	817	814
Test Performed						,												
1.	Measured Intrusion Pressure, PSIA					·			1				{			'		
	at room temperature	>125	117	>125	>125	>125	>125	121	>125	>125	112	120	94	90	110	104	97	89
	at 400° C after 50 hour test	>125	>125	>125	>125	>125	>125	120	>125	>125	107	112	93	94	78	95	80	77
2.	Pressured Flow Rates (Equiv. mA, A)	mA	πA	mA	mA.	mA	mΛ	m.A	m.A	mA	mA	mA	A	A	A	A	A	Α
	at 260°C	9	14	13	10	11	6	15	11	14	16	21	0.63	0.62	0.75	0.62	1.14	0.61
	at 280°C	17	20	14	15	25	12	25	17	22	30	46	1.1	1.06	1.25	1.18	1.84	1.11
	at 300°C	27	36	31	27	31	20	45	30	32	45	79	1.89	1.73	2.12	1.94	2.98	1.72
	at 320°C	46	61	52	46	48	32	66	51	48	80	122	2.93	2.88	3.39	3.11	4.54	2.6
	at beginning of 50 hr. test	93	155	126	108	138	76	159	123	119	258	289	1.31	1.38	1.64	1.43	2.6	1.35
}	during 50 hour test	104	192	137	107	143	75	155	119	123	261	283	1.32	1.36	1.51	1.39	2.5	1.35
	at end of 50 hour test	101	216	148	152	135	74	155	121	117	339	283	1.31	1.24	1.55	1.33	2.1	1.33
3.	Change in Flow Rate, %	3.1	39.4	17.5	40.7	2.2	2.7	2.5	1.5	1.6	31.4	2.1	0	10.1	5.5	6.9	19.2	1.5
4.	Manufacturer of Porous Tungsten	а	а	ь	a	a	а	а	a	а	b	ь	b	b	ь	ь	ь	b
	a. Spectra-Mat, Inc. b. Hughes Research Labs																	

Figure 8. Vaporizer flow (in equivalent amperes) versus inverse vaporizer temperature.

Figure 8. Vaporizer flow (in equivalent amperes) versus inverse vaporizer temperature.

Figure 8. Vaporizer flow (in equivalent amperes) versus inverse vaporizer temperature.

obtained in the transmission of vapor through the porous material. However, the effective transmission area of the porous material was not reproduced very consistently. Consequently, the porous tungsten material specifications were revised for fabrication of vaporizers under this program. Table 4 lists the essential parameters of the revised specifications for procurement of porous tungsten. The flow and intrusion characteristics of three of the first neutralizer vaporizers fabricated are shown in Table 5 and Figure 9. characteristics show less variation, but still fall outside the desirable region. For neutralizers, this vaporizer material would produce normal thruster operation with a neutralizer vaporizer temperature in the 280-300°C range, and would be quite acceptable. The remainder of the initial lot of porous tungsten vaporizer material procured to the specifications in Table 4 was rejected during the fabrication process (for one reason or another). Because of this, and propellant line failures that are described in the following paragraph, the vaporizer design and fabrication procedures were reviewed and revised.

Table 4. Specification for Porous Tungsten Vaporizer Material

- 1. Tungsten Powder:
 - a. Nominal particle size to be 4.5 microns.
 - b. Powder to be classified to eliminate particles and agglomerates above 10 microns.
- 2. Powder Shape:

Angular or spherical

- 3. Size of Porous Plug:
 - a. Thickness 0.152 ± 0.005 cm $(0.060 \pm 0.002 \text{ in.})$ for main vaporizers
 - 0.117 \pm 0.005 cm (0.046 \pm 0.002 in.) for cathode and neutralizer vaporizers.
 - b. Area cylindrical discs capable of being machined to a diameter of 1.55 cm (0.61 in.) for main vaporizers and 0.479 cm (0.188 in.) for cathode and neutralizer vaporizers.

Table 5. Vaporizer Test Summary

	IV-N Vaporizers								
	S	pectrama	t Materi	Semicon Material					
Component Serial Number	910	911	909	907	4	7	19		
Test Performed									
1. Measured Intrusion Pressure, PSIA				·					
at room temperature	>125	117	>125	>125	119	>125	122		
at 400°C after 50 hour test	>125	>125	>125	>125	>125	110	112		
2. Measured Flow Rates, mA equivalent							·		
at 260°C	9	14	10	11	12	10	13		
at 280°C	17	20	15	25	25	22	23		
at 300°C	27	36	27	31	36	31	41		
at 320°C	46	61	46	48	61	58	63		
at beginning of 50 hr. test ^A	93	155	108	138	166	164	153		
during 50 hour test	104	192	107	143	182	168	153		
at end of 50 hour test	101	216	152	135	183	180	159		
3. Change in Flow Rate, %	3.1	39.4	40.7	2.2	10.2	9.7	3.9		

Figure 9. Vaporizer flow (in equivalent amperes) versus inverse vaporizer temperature for neutralizer vaporizers made from porous tungsten fabricated using the specifications shown in Table 4.

The vaporizer configuration that was in use on the 900-series thrusters is shown in Figure 10. As a consequence of manipulating the propellant line for screening tests and then for reinstallation on thrusters, many of the assemblies began to leak at the transition from the tantalum vaporizer housing and the stainless steel propellant line. This was thought to be caused by the difficulty in establishing the correct tolerance between the stainless steel tubing and the hole drilled in the tantalum housing. If the parts fit too tightly, the expansion of the tubing during brazing forces the braze material out of the hole. If the parts fit too loosely, the braze material will not fill the void. Thus, the configuration shown in Figure 11 was adopted. In this case, the transition was both welded and brazed to the propellant line so that the spacing between the tantalum vaporizer housing and the propellant line transition could be readily controlled. All of the vaporizers were retrofitted to this configuration to prevent development of propellant leaks.

Although the vaporizer configuration shown in Figure 11 was satisfactory for eliminating propellant line failures, the seal (by electron beam welding) between the porous tungsten vaporizer plug and its housing evolved as the next problem area. Review of the vaporizer configuration and fabrication procedures used by NASA LeRC in building the vaporizers for the SERT II thrusters resulted in a further design refinement and a newly defined vaporizer task. The configuration for the cathode vaporizer is shown as Figure 12. The essential features of this design are as follows:

- The edges of the porous tungsten plug are sealed by melting (washing) with the electron beam in the electron beam welder.
- The weld between the porous plug and its housing is made from the side (tantalum to beam washed tungsten).
- The wall of the tantalum plug housing has a very thin wall to prevent stresses in the weld upon differential thermal expansion.
- The vaporizer assembly housing has a "built in" temperature sensor receptacle to improve the reproducibility of attaching the platinum resistance-temperature-sensing element.

To obtain the performance goals for the vaporizer assembly, the following process steps were considered necessary, and were used in fabricating five sets of components under this program.

Figure 10. Cathode vaporizer assembly (800-900 series thrusters).

Figure 11. Vaporizer housing to propellant line transition.

Figure 12. Cathode vaporizer assembly - J-series thruster design.

- The porous tungsten vaporizer plug was checked for porosity and pore size using a porosimeter; to be acceptable, results must fall within, or to the right of the shaded area in Figure 13.
- The porous plug was inspected at 10x magnification and rejected if chips or cracks were visible (or pores smeared over).
- All tantalum parts were vacuum fired at 1000°C for 15 minutes.
- The edge of the porous tungsten plug was electron beam washed to seal 99% of the surface (determined by visual inspection at 10x magnification).
- The "edge washed" vaporizer plugs were vacuum fired at 1650° C for one hour (at vacuum pressure less than 10^{-5} Torr).
- The fired vaporizer plugs were inspected at 30x magnification and rejected if cracks were visible.
- The vaporizer plug was electron beam welded into its housing and inspected again for cracks in the plug or the weld at 30x magnification (or greater).
- The plug and housing assembly was put through thermal cycle and then flow-tested by observing the bubble pattern obtained when flowing gaseous nitrogen through the porous plug while it was immersed in methanol.
- The transmission coefficient for the flow of gaseous nitrogen was measured.

After assembly of the vaporizers, the screening tests (intrusion pressure and flow calibration) were performed as described earlier in this section. The part (drawing) numbers for the J-series thruster vaporizer designs are 1095763 (IV-C), 1095755 (IV-M), and 1095761 (IV-N). The details of the fabrication and assembly procedures can be found in the IPDs numbered:

- IPD-PR-010
- IPD-PR-035
- IPD-PR-047
- IPD-PR-049
- IPD-PR-057
- IPD-PR-074

Figure 13. Penetration of porous tungsten plug (percent by volume) versus mercury pressure (absolute). Material is considered acceptable for vaporizers if points fall within, or to the right of, the shaded area.

- IPD-PR-133
- IPD-PR-151

Vaporizer screening test results for vaporizers fabricated to the configuration shown in Figure 12, and by the procedures listed above, are shown in Table 6 and Figure 14. These vaporizers were not all fabricated under this program. However, the test results are included here to show the variation that was still observed in the screening tests. For the cathode vaporizer, the test results show a marked decrease in the dispersion of the flow characteristics. The results for the main and neutralizer vaporizers did not show the same improvement. In the case of the neutralizer vaporizers, two assemblies (SN 904 and SN 905) deviate significantly from the other three assemblies (for which the data shows minimal variation in characteristic). It is thought that these vaporizers were not adequately "baked out" after the intrusion pressure screening test before the flow calibration was performed. characteristic for neutralizer vaporizer SN 903 was initially identical to that of neutralizer vaporizer SN 904 during flow calibration. However, after a bakeout of about 30 hours, additional data was obtained at NASA LeRC (see Figure 14). The main vaporizers displayed similar results, in that the main vaporizer SN 902 changed flow characteristics after installation and operation on the thruster. If it is assumed that the flow calibrations for neutralizer vaporizers SN 904 and SN 905 and for the main vaporizer, SN 902, were in error because of partial intrusion, then the flow characteristics of the remaining vaporizers show relatively little dispersion. Consequently, the improvements in vaporizer material and fabrication procedures were considered to have accomplished their goals; however, the final screening test procedures (IPD-PR-133) require further review and refinement. As will be discussed later, new requirements have been identified for propellant reservoir configuration, mercury filling procedures, and flow data collection. improvements in flow measuring techniques will have to be incorporated in the screening tests before variations in vaporizer flow characteristics like those seen in Figures 14b and 14c can be attributed to the vaporizer design or fabrication processes.

Table 6. Vaporizer Test Summary

		Vaporizers															
	CV				NV				MV								
Component Serial Number	901	902	903	904	907	908	901	902	903	904	905	901	902	903	904	905	909
Test Performed																	
1. Measured Intrusion Pressure, PSIA												'				ļ	
at room temperature	-125	-125	×125	>125	123	≥125	:125	>125	>125	>125	123	105	>125	88.7	113	111.7	101.2
at 400°C after 50 hour test	·125	>125	÷125	107	120	123	>125	>125	>125	В	>125	96	108	121.9	115.5	104.7	102.3
2. Measured Flow Rates, A			-														
at 260°C	.010	.010	.010	.012	.012	.014	.012	.007	(©	.034	.022	.216	0.72	.261	.192	.166	.714
at 280°C	.019	.019	.018	.022	.022	.025	.022	.024	.021	.062	.036	.363	1.26	.424	.301	.308	.818
at 300°C	.041	.041	.032	.034	.035	.038	.035	.039	.036	.106	.058	.595	1.99	.709	.508	.510	1.088
at 320°C	.051	.051	.045	.053	.053	.062	.057	.064	.057	.181	.094	.959	3.27	1.08	.842	.792	1.389
at beginning of 50 hour test ^A	.101	.113	.117	.111	.121	.138	.111	.116	.123	(3)	.142	.497	2.27	.526	.643	. 394	1.834
during 50 hour test	.103	.176	.125	.116	.122	.141	.111	.115	.128		.163	.496	2.46	.538	.679	.404	.514
at end of 50 hour test	.106	.209	.128	.119	.127	.151	.111	.119	.128		.147	.516	2.61	.542	.670	.394	.528

 $[\]stackrel{\frown}{\text{A}}$ The main vaporizer was operated at a temperature of 290°C and a reservoir pressure of 60 PSIA during the 50 hour test.

B) Testing terminated after flow calibration.

[©] Measured at NASA LeRC.

Figure 14. Vaporizer flow (in equivalent amperes) versus inverse vaporizer temperature.

Figure 14. Continued.

Figure 14. Continued.

The final vaporizer assembly assignment for the retrofit thrusters is shown in Table 7. To date, no anomalies in vaporizer operation have been observed for these vaporizers.

Table 7. Vaporizer Subassembly Assignment for the Retrofit Thrusters (as delivered)

Thruster	IV-M	IV-C	IV~N
Ј2	903	901	815
J3	825	805	917
Ј4	819	807	907
J5	821	817	906
Ј6	811	814	919
Ј7	901	902	920

C. CATHODE HEATERS

The changing of cathode heaters was not a part of the retrofit modifications planned for the GFE thrusters; however, heater failures occurred on three thrusters during preliminary cathode conditioning and thereby made replacement of the failed heaters a necessity. The cathode heater is a coaxial swaged heater with a configuration as shown in Figure 15. The center conductor is the heating element and is electrically insulated from the outer conductor by compressed magnesium oxide. For the cathode heaters (discharge and neutralizer) the center conductor and sheath material is tantalum. The heater is fabricated in a swaging operation that compresses the outer conductor, magnesium oxide insulator, and center conductor to final diameter, and expands these diameters in a gradual transition to larger diameter for a "lead in" to the active element. The failure of the heaters was traced to poor quality tantalum that formed flakes on the interior of the outer conductor during These flakes were then compressed and forced into the magnesium oxide insulator, eventually resulting in a short circuit between the center and outer conductor. This failure led to the addition of specifications and assembly instructions to the heater procurement drawing (B1025262 Rev E). quality controls that are considered essential are:

Figure 15. Typical configuration of swaged coaxial heater (dimensions shown are for cathode heaters).

46

- Magnesium oxide (MgO) insulation of 99% purity.
- Center conductor wire and sheath tubing to be free of nicks, notches, abrasions, reduced diameter or other defects as determined by inspection under 30x magnification.
- All annealing operations to be performed $1204 \pm 10^{\circ}$ C (2200 ± 50° F) with time in heat zone limited to 6 min.
- Compaction density of MgO insulator to be 90 ± 2% (verified by test).
- Weld of center conductor to outer conductor to be checked by die penetrant test.
- Active section of heater and weld to be radiographed (two views, 90° apart) before coiling of heater.
- Heating uniformity to be checked by infrared scan (transient and steady-state with heater operated in argon atmosphere; acceptable variation is ±50°C from average).

Heaters of this type had been more-or-less routinely supplied by vendors specializing in heater fabrication. Addition of these specifications both escalated the costs and all but eliminated the suppliers willing to bid (with extremely long delivery times). None of the heaters that were delivered in accordance with these manufacturing controls has shown any evidence of deterioration or failure.

In addition to the establishment of more stringent quality controls in heater fabrication, screening tests were instituted for ferreting out potential early failures. Each heater was carefully measured (for heater resistance) and then thermally cycled (in vacuum) to full operating temperature for 100 cycles. The heater resistance was then re-measured, and had to be within ±10% of its original value or the heater was rejected.

These controls were applied to all of the heaters used in repairing or fabricating new parts for the thrusters retrofit under this contract (including the nichrome-center-conductor isolator and vaporizer heaters). No attempt has been made to correlate any relaxation of these control measures with heater failures (since there was no opportunity to do so within the scope of this program). Consequently, a rather rigid adherence to arbitrarily severe acceptance criteria was employed. This resulted in a rather low yield of acceptability in the heaters fabricated (25%). Heater fabrication processes and controls that bear further attention are:

- Materials specifications for tantalum wire and tube (purity, hardness, testing required).
- Number of annealing operations, cleanliness of annealing environment.
- Process for welding center conductor to outer conductor (type of weld, heat sinking, molding of outer conductor before weld).
- Correlation of inspection results with failure rates.

D. OTHER MODIFICATIONS INCORPORATED INTO THE THRUSTERS RETROFIT UNDER THIS PROGRAM

Several other minor modifications were required in performing the retrofit modifications either to accommodate fabrication problems, to correct incompatibilities introduced by the design modifications previously approved, or to correct design deficiencies recently identified under other programs. Five of the more significant modifications are listed below:

- Modification of the outer casing to accommodate the dimensions of the revised ion optics assembly.
- Increasing the number of anode support insulators from six to nine.
- The material of the rivets used to fasten nut plates to the discharge chamber was changed from aluminum to stainless steel.
- The material used for fabricating the wiring cable clamps was changed from $MACOR^{(R)}$ to VESPEL(R).
- The dimensions of the wire diameter and spacing were changed for the wire mesh used to cover the main-keeper-insulator shields. This also required a new procedure for attachment of the wire mesh to the shields.

These and other less significant changes (e.g., dimensions of parts, etc.) have been incorporated in the design documents (drawings and IPD) and in some of the retrofit thrusters. Table 8 identifies which of the five changes listed above that were incorporated in each thruster.

Other requirements for modifications in the thruster design or fabrication procedures have been identified since completing the retrofit of thrusters SN J2 through SN J7 as a result of testing performed by NASA. Some of these requirements were determined under this contract as a result of analyzing the

Table 8. Matrix of Additional Modifications Incorporated in the Retrofit Thrusters

Thruster S/N	J2	J3	J4	J5	J6	J7
Outer casing modification	Yes	No	No	No	No	Yes
Additional anode supports	Yes	No	No	No	No	Yes
Stainless steel rivets	Yes	No	No	No	No	Yes
Vespel harness clamps	Yes	No	No	No	No	Yes
Keeper-insulator shields	Yes	Yes	No	No	No	Yes

thrusters returned to HRL after test. Other requirements have been identified by the staff of NASA LeRC, or under other contracts. The objective here is to make the list of requirements as complete as possible, and representative of the status at the time this report is printed. A brief description of the requirements that have been identified at this point follows.

1. Isolator Insulator Protection

The insulation of two cathode isolators was observed to deteriorate during testing in the Mission Profile Life Test (NASA contract NAS 3-20399). Although the investigation of these failures has not yet been completed, it has been determined that the principal contaminant on the surface of the insulator is carbon. An improvement in protection of these insulators will be required. The form of this improvement depends on whether the insulator becomes contaminated during fabrication, during preliminary testing or handling (test facilities or shipping procedures), or as a consequence of outgassing of materials used in the thruster during operation of the thruster.

2. Spalling of Sputter-Deposited Material

Most of the interior surfaces of the thruster discharge chamber have special coverings to retard erosion by ion sputtering, or to inhibit the spalling of sputter-deposited coatings. One surface that becomes deposited with back-sputtered material (tantalum) has been overlooked, and spalling of relatively large flakes of material resulted during the testing of thruster SN J7 (leading to early termination of an endurance test). This surface is on the interior of the baffle support cylinder (mild steel) that is part of the cathode pole assembly. A grit-blasted tantalum covering for this surface would be the most tractable thruster modification.

3. Vespel Cable Clamp

The cable clamps that secure the wiring harness at the point where the wiring exits the thruster's outer casing represent an unshielded high voltage insulator. Consequently, deposition (of some form of material) on the surface

of these clamps has led to electrical breakdown and cracking of the insulator. These clamps will have to be shadow-shielded in the same manner as other high voltage insulators.

4. Isolator Shadow Shields

The isolator shields are re-entrant shadow-shields fabricated from thin stainless steel sheet. The sharp edge of the inner shield is negative with respect to the outer shield, and there is evidence that discharges have occurred between the shields of the two cathode isolators that failed, perhaps contributing to the failure. The conditions for breakdown can be enhanced by any slight distortion of the concentricity of the isolator shields (which can easily occur during installation of the isolator because of the flexibility of the shields). A design revision to eliminate the sharp edge of the inner shield and provide more rigidity would alleviate this potential failure hazard.

SECTION 3

ACCEPTANCE TESTING

A set of test procedures was formulated under NASA contract NAS 3-21052 to provide a standard acceptance test that could be performed on newly fabricated thrusters and periodically throughout the life of the thrusters to determine operating characteristics and performance parameters. In formulating these procedures, an attempt was made to make the instructions and descriptions sufficiently general to enable anyone with an elementary understanding of thruster operation to reproduce acceptance test conditions using an arbitrary set of power supplies. Having experienced considerable difficulty in performing the acceptance tests on thruster SN J1, the test procedures were revised and redefined under this program to facilitate testing. The procedures as now written require a test console with a certain degree of automation, as described in a NASA LeRC document entitled "Thruster Requirements Document" (see Appendix B). Several iterations on the procedures were required, first to provide opportunity for a real time review of the test data by NASA LeRC personnel, and finally, to improve the accuracy of propellant flow measurement. The discussion in this section describes the essential issues raised in evolution of the acceptance test procedures, presents data relating to the problems of obtaining accurate measurement of propellant flow, and compares test results for the retrofit thrusters. A summary of the test data for each thruster is provided in Appendix C. More complete data packages were provided to NASA LeRC; copies may be obtained directly from that center.

A. ACCEPTANCE TEST PROCEDURES

The procedures for performing acceptance testing of the 30-cm J-series thruster are described in six documents in the Hughes IPD (inspection and process document) format. These IPD's are numbered IPD-PR-138 through IPD-PR-143. A short description of each document is as follows:

• IPD-PR-138, 30-cm Thruster Acceptance Procedure, provides detailed instructions for taking data and reducing data.

- IPD-PR-139, Thruster Test Facility, specifies the vacuum facility and thruster interface requirements.
- IPD-PR-140, Power Processor, specifies the power supply requirements and characteristics needed for thruster testing.
- IPD-PR-141, Instrumentation and Calibration, describes the test equipment and methods used for calibration.
- IPD-PR-142, Preliminary Thruster Preparation, describes the measurements and procedures required in installing a thruster in a test facility.
- IPD-PR-143, Data Formats for Thruster Testing, contains the data formats for recording the data in acceptance and performance evaluation tests.

The performance of the thruster testing is governed by IPD-PR-138. The major test elements are:

- Initial cathode conditioning.
- Thruster start-up.
- Determination of the minimum magnetic baffle current for stable operation.
- Measurement of neutralizer-keeper-voltage/vaporizer-temperature characteristics.
- Determination of the minimum emission current (eV/ion) for selected operating points.
- Measurement of thruster efficiencies for ten operating points.
- Documentation of oscillation in specified thruster parameters.
- Documentation of thruster high voltage overload recycle characterstics.
- Documentation of the ion optics system for selected operating points.

The sequence and procedures for performing these tests is described in the IPDs (available from NASA LeRC). Although the sequence of tests may seem relatively unimportant, it was determined during this program that there is a preferred sequence for performing these tests if the data is to be obtained

reproducibly without accumulating an excessive amount of thruster operating time. The ten standard test points are specified by selecting the net accelerating voltage, $V_{\rm b}$, the ion beam current, $J_{\rm b}$, the discharge voltage, $V_{\rm D}$, and the discharge emission current, $J_{\rm E}$. Two other reference values are required to fully specify the thruster control parameters: neutralizer-keeper voltage, $V_{\rm NK}$, and the magnetic baffle current, $J_{\rm MB}$. The values for these parameters are determined as a function of beam current in the tests described in the third and fourth elements above. Table 9 gives a matrix of the test points and tests performed during a standard acceptance test. Test points numbered 1, 4, 6, 7, and 9 are typically referred to as the principal throttling points, and therefore receive the majority of attention in the acceptance test. Test point number 11 provides information about the neutralizer control characteristic that is useful in predicting the effect of the high voltage recycle algorithm on the operation of the neutralizer cathode.

The first quantity that must be determined for operation of a new thruster is the value of magnetic baffle current for obtaining the correct division of propellant flow into the discharge hollow-cathode and the discharge chamber. The form of the characteristic for cathode keeper voltage, V_{CK} , versus magnetic baffle current, J_{MB} , is shown in Figure 16. The value of J_{MB} that becomes the reference value for each value of beam current is determined from this characteristic (as shown in Figure 16) by the following criteria:

- \bullet $\;\;$ J_{MB} should be about 0.2 A less than the value for which V_{CK} is a minimum
- \bullet V_{CK} for the selected value of J_{MB} should not be more than 0.02 V greater than the minimum value of V_{CK}

This characteristic changes during the first few hours of thruster operation, and the minimum value of V_{CK} shifts (usually to a lower value of J_{MB}). Consequently, it is necessary to allow the thruster to "run-in" for a minimum of about eight hours before meaningful characterization can be obtained.

If the thruster is new and being run for the first time, some period of operation is required to obtain stable operation at full-power (to obtain

Figure 16. Characteristic of cathode keeper voltage versus magnetic baffle current.

Table 9. Matrix of Acceptance Test Control Parameters and Tests Performed

***************************************	Control Parameters											
	Test Point	1	2	3	4	5	6	7	8	9	10	11
	J _b ,A	2.0	2.0	2.0	1.6	1.3	1.3	1.0	.75	.75	.75	0
	V _b ,V	1100	1100	1100	940	1100	820	700	1100	600	600	0
	ν _D , ν	32	31	32	32	32	32	32	32	32	31	36
	J _E ,A	12	12	11.4	10	8.5	8.5	7.0	5.75	5.75	5.75	0
Tests Performed												
c. Magnetic Baffle Current		•			•		•	•		•		:
d. Neutralizer Keeper Voltage		• /			•		•	•		•		•
e. Minimum eV/ion		•	-		•		•	•		•		
f. Electrical and Propellant Efficiencies		•	•	•	.•	•	•	•	•	•	•	
g. Oscillatory Behavior		•			•		•	•		•		
h. High Voltage Recycle		•			•		•		•	•		
i. Ion Optics Perveance		•			•			•		•		
• Indicates Test Perform	ned											<u></u>

infrequent overcurrents or "arcs" and operating parameters in normal range). Consequently, the preferred sequence of performing the acceptance test is to "condition" or "activate" the cathode inserts by heating and start the thruster by the algorithm shown in Figure 17. This brings the thruster on at the conditions for test set-point number 9. The thruster operator then adjusts the value of \textbf{V}_{NK} and \textbf{J}_{MB} to keep the thruster operation stable and in "normal" ranges of parameters while gradually increasing the beam current until the 2-A set-point (test point number 1) is reached. The thruster is allowed to operate at this point for approximately four hours without recording data (other than for reference purposes). Operation and monitoring of the thruster during this initial run-in is best performed by an experienced operator, since it is difficult to describe all possible variations or combinations of abnormalities (or apparent abnormalities) that can occur. After the thruster has operated stably for at least four hours at the test point number 1, (TP 1), the magnetic baffle test procedure (c) and the neutralizer characteristic procedure (d) are performed to obtain the values of $\boldsymbol{J}_{\boldsymbol{M}\boldsymbol{R}}$ and $\boldsymbol{V}_{\boldsymbol{N}\boldsymbol{K}}$ that are used for the remaining tests under TP 1, TP 2, and TP 3. Procedures for (i), and then (e) are performed before recording data for determining thruster efficiency. At least three hours of operation must be performed at the beam current level for which the thruster is being tested if the propellant flow data is to be valid (this will be discussed in more detail in the next section). Consequently, the procedures for TP 2 and TP 3 are performed immediately after those for TP 1. In terms of working time, the testing up to this point has required two 12-16 hour days. At least four additional days of testing are required to complete the test - one day each for the test group as follows: TP 8, TP 9, and TP 10; TP 5 and TP 6; TP 4 and TP 7; TP 11 and test procedures (g) and (h) for all applicable TP's. The order of these test groups is not important, provided that the thruster is allowed to stabilize at each new value of $J_{\overline{b}}$ for at least three hours (except for procedures g and h). Test times (beam on) have varied from as little as 43 hours to in excess of 100 hours. This variation depends on the amount of time required to stabilize the thruster at $J_h = 2$ A initially, and whether data points have to be repeated (because of beam probe

Figure 17. Thruster start-up algorithm.

malfunction, or difficulty in obtaining some particular characteristic because of a narrow range of thruster stability).

The sequence described above differs slightly from that in the latest revision of IPD-PR-138 because of the requirement for three-hour operation to obtain stable propellant flow. The period of three-hours operating time for obtaining thermal equilibrium may not, in fact, be long enough, and therefore further revision of the procedure is considered premature without more test data.

B. PROPELLANT MEASUREMENT

The measurement of the propellant (mercury) flow must be performed with high accuracy to provide a valid data base for comparing one thruster with another, or for monitoring the characteristics of a given thruster over its lifetime. The electrical efficiency of the thruster is determined almost entirely by the thruster control parameters that are established by the operator. The efficiency of the thruster in ionizing the mercury to produce the programmed beam current is, therefore, the most significant measure of a thruster's performance characteristic. The pertinent figure of merit is the propellant or mass utilization efficiency. To be absolutely valid, this efficiency should be defined as the ratio of the number of ions that leave the thruster in the ion beam to the number of neutral atoms that enter the discharge chamber each The rate of ions leaving the discharge chamber can be readily determined by measuring both the beam current and the ration of singly to doubly charged ions in the extracted ion beam. The ion beam current can be measured quite accurately; however, measurement of the ratio of singly to doubly charged ions requires a relatively sophisticated probe measurement. An analysis of the accuracy of this measurement technique has been performed under NASA contract NAS 3-21943, with the result that the inherent capability (error <1%) exceeds that of the capability for measuring propellant flow (see Appendix D).

Propellant flow has been measured, traditionally, by recording the volume of mercury remaining in a calibrated supply reservoir, as a function of time.

The accuracy of the measurement depends on several factors. First, since the volume of mercury used per unit of time is relatively small, any change in temperature of the propellant system can produce an apparent change in the mercury remaining in the supply reservoir. Secondly, if a small amount of gas is trapped in the mercury supply lines, it will expand more rapidly than the mercury as it moves nearer the high temperature of the thruster and vaporizer, thereby changing the apparent flow from the reservoir. Finally, because of the small volume of propellant used per unit of time, the propellant flow measurements have to be made over a time interval of at least one-half hour. This imposes a rather stringent stability requirement on the power electronics unit and its control system. In the course of testing the thrusters that were retrofit under this program, procedures were implemented to address the elimination of gas trapped in the propellant system, and to ensure a steady-state temperature before recording flow data.

The retrofit thrusters were tested in the sequence as follows: J5, J4, J6, J3, J7, J2. The first three thrusters in this sequence were tested before attention was focused on the relatively large dispersion in propellant flows being measured. Figure 18 shows the propellant efficiencies measured at each of the test points for these three thrusters. An intensive examination of the propellant system, the reservoir calibration, and the filling procedures was undertaken to improve the accuracy of propellant measurement, primarily at NAS LeRC, but with some work performed under this program. Making use of the information provided by NASA LeRC in TRIM 104, (see Appendix B), the propellant reservoir configuration and filling procedure was modified. The dispersion in propellant flow measurements was markedly reduced, as shown in Figure 19. All of the data shown in Figure 19 was obtained after ensuring that the propellant system was free from trapped gas pockets by using a pressurization criteria derived from the NASA experiments. The propellant utilization efficiency data obtained in acceptance testing of thrusters SN J8, J9, and J10 (not performed under this contract) have been included in Figure 19 to illustrate the improvement in the data. Whereas the scatter in propellant efficiency for the data in Figure 18 is of the order of $\pm 3\%$, the scatter seen in Figure 19 is only $\pm 1\%$.

Figure 18. Comparison of the propellant efficiencies measured at each of the acceptance test points for thrusters SNJ4, J5, and J6.

It is likely that Figure 18 displays only measurement error, while the variations seen in Figure 19 may, in fact, be real differences between thrusters.

Some measurement error may still be present, however, since it was determined during thruster testing at NASA LeRC (see Appendix B), and then at HRL in testing of thruster SN J7, that the time required for the propellant system to reach thermal equilibrium is on the order of three hours. This was indicated by the variation of propellant efficiency and manifold temperature with time after the thruster was turned on (see Figure 20). This means that the thruster must be operated at the point under test for a minimum of three hours before propellant flow data is recorded, at least for startup from a cold start. It is not known whether this is adequate for all initial conditions or test facilities, or whether it is necessary to monitor the temperature stability of more of the propellant system components.

Variation in performance between thrusters on the order of $\pm 1\%$ would not be unreasonable since there has been no effort directed towards identifying critical tolerances of thruster dimensions or magnetic field strength that correlate with performance variations. The axial component of magnetic induction measured on the centerline, for example, varies from a minimum value of 58 gauss (thruster SN J8) to a maximum value of 66 gauss (thruster SN J9), with values for other thrusters distributed rather uniformly between these limits (variation $\pm 6\%$). Based on Figure 19, this variation does not appear to result in significant performance variation; however, this is only one of many possible observations.

C. ACCEPTANCE TEST RESULTS

As a part of the acceptance test for each of the thrusters (SN J2 through SN J7) that were retrofit under this program, the data was reduced and a detailed report was delivered to the NASA program manager. These reports are available through the NASA Lewis Research Center. The symbols, definitions and equations used for describing and processing thruster data are provided

Figure 19. Comparison of the propellant efficiencies measured at each of the acceptance test points for thrusters SN J2, J3, J7, J8, J9, and J10.

Figure 20. Variation of propellant efficiency and manifold temperature as a function of time after thruster turn on.

in Appendix C with a summary of the more important acceptance test data for each thruster. A short discussion of these data is presented in this section.

The most important characteristics of the thruster from the viewpoint of the thrust system designer are the power input required (P_T), the thrust produced (F), and the effective specific impulse ($I_{\rm sp}$). These characteristics are shown for the principal operating points in Table 10 (as defined by ion beam voltage, $V_{\rm b}$, and ion beam current, $J_{\rm b}$). Since the control of the J-series thruster is based on beam voltage and beam current, Table 10 provides a calibration for the thruster tested with regard to the performance that can be anticipated. Some variations would be expected, based on the error in propellant measurement contained in most of these data (discussed in the preceding section). Although the statistical sampling is too small to provide any validity to the averages shown, they should be useful as representative values. It should also be noted that propellant efficiencies measured at NASA LeRC have consistently been 1 to 2% lower than those measured at Hughes. Consequently the values of $n_{\rm T}$ shown in Table 10 should be considered optimistic (at least until the remaining source of error can be identified).

Two other important thruster "calibrations" are the reference values for the magnetic baffle current (J_{MB}) and the neutralizer keeper voltage (V_{NK}) as functions of beam current. Figure 21 shows the values of magnetic baffle current determined as "optimum" by the acceptance test procedure (including two points repeated at NASA LeRC). The dashed line indicates a best fit to the data shown that could be acceptable for determining the reference value of magnetic baffle current at any given beam current without appreciable loss of stability or change in propellant flows. However, it would have to be verified experimentally that stable thruster operation would result from using the best fit value of magnetic baffle current for a specific thruster.

Figure 22 shows the neutralizer voltage reference values for each thruster that were determined by the acceptance test procedures. Again, the dashed curve represents a best fit of the data; however, this curve is of value only as a tool in estimating or modeling thruster performance. The neutralizer

Figure 21. Selected magnetic baffle currents.

Figure 22. Neutralizer keeper voltage as a function of beam current.

Table 10. Summary of J-Series Thruster Performance Characteristics

Thruster	Performance Characteristics							
s/n	v _b ,	^Ј ь,	P _T ,	<u>,</u>	_F 2	n _T , %	F, mN	I SP, sec
2 3 4 5 6 7	1100	2.0	2647 2661 2663 2626 2658 2664	0.977 0.966 0.964 0.967 0.982 0.958	0.988 0.986 0.982 0.982 0.986 0.989	74.6 73.1 72.2 72.5 77.0 73.1	130.5 129.3 128.5 127.7 131.3 128.5	3091 3066 3049 3043 3179 3094
Average	•	,	2653	0.969	0.986	73.7	129.3	3087
2 3 4 5 6 7	920	1.6	1874 1877 1890 1889 1861 1890	0.985 0.975 0.972 0.945 0.972 0.972	0.988 0.987 0.977 0.983 0.986 0.985	71.7 69.2 68.1 65.0 70.9 73.3	96.8 96.3 95.1 93.0 96.6 95.8	2833 2771 2764 2695 2824 2828
Λverage			1880	0.970	0.984	69.7	95.6	2786
2 3 4 5 6 7	820	1.3	1397 1394 1406 1398 1394 1399	0.991 0.978 0.978 0.967 0.976 0.973	0.989 0.986 0.978 0.982 0.985 0.983	68.7 64.8 67.6 61.9 64.7 63.6	74.5 72.9 72.6 72.2 73.0 72.4	2630 2531 2510 2447 2511 2510
Average			1398	0.977	0.984	65.2	72.9	2523
2 3 4 5 6 7	700	1.0	982 980 978 977 978 982	0.995 0.984 0.983 0.97 0.988 0.98	0.988 0.984 0.977 0.982 0.984 0.986	61.4 58.4 59.6 55.3 62.8 59.9	53.0 52.0 51.7 51.5 52.6 52.0	2320 2249 2251 2142 2390 2306
Λverage			980	0.983	0.984	59.6	52.1	2276
2 3 4 5 6 7	600	0.75	692 691 681 696 691	0.999 0.99 0.99 0.98 0.99	0.988 0.98 0.977 0.983 0.984 0.99	54.7 51.3 50.7 50.3 50.2 52.7	37.1 36.3 35.6 36.16 36.7 36.7	2085 1993 1941 1977 1926 2035
Average			691	0.992	0.984	51.6	36.4	1992

 $[\]fbox{\Large 1}$ α is the correction factor for contributions of doubly charged ions to $\textbf{J}_{b}.$

 $[\]bigcirc$ F $_{\mathrm{T}}$ is the correction factor for non-axial velocity components of beam ions.

for thruster SN J7, for example, cannot operate stably at a value of $V_{\rm NK}$ on the best fit line since the minimum point of its characteristics ($V_{\rm NK}$ vs $T_{\rm NV}$) are only slightly less than the values determined by the "best fit" line (in voltage, see Appendix C). Consequently, the dispersion displayed in the data shown in Figure 22 demonstrates the need for individual thruster calibration and the provision in the power processor for accommodating these differences.

The conclusions that can be drawn from the acceptance test data for the retrofit thrusters are as follows:

- There is relatively little dispersion in the important performance measures, even though the test procedures and quality control measures used were undergoing refinement throughout the retrofit activity.
- All of the thrusters can be operated stably by the same power processor by programming a few of the control references.

SECTION 4

DOCUMENTATION

The documentation discussed in this section is the collection of engineering drawings and inspection and process documents (IPDs) used for fabrication of the 30-cm J-series thruster. The design of the J-series thruster, as determined by these documents was reviewed, modified, and considered to be complete and final under the Retrofit and Verification Test contract (NAS 3-21052). There were approximately 200 drawings and 40 IPDs that described the thruster design in somewhat more detail than required by the DOD-D-1000, level 1 standard. However, in the formal terminology of Configuration Management, the design documentation was incomplete for establishing "configuration identification" and a detailed "end item" specification. The work performed under this program upgraded and augmented the existing documents to improve the "technology readiness" status for a more formal configuration management and document control program.

A. INITIAL REVIEW

With the completion of the documentation update to include the retrofit modifications designed under contract NAS 3-21052, the completeness of the drawings and IPDs for the J-series thruster was considered adequate for the status of the thruster development at that time. It was soon learned that further design modifications (primarily in the vaporizer and ion optics assemblies) would be necessary to meet the objectives of the thruster retrofit. Consequently, a new task was added to this program to incorporate into the drawings and IPDs the changes that were required to correct the deficiencies in the thruster design that had been observed in verification and acceptance tests. This work was completed and the drawing and IPD package was placed under control of the HRL document control organization. A formalized procedure was established for providing further engineering changes, subject to Hughes and NASA review and approval. Shortly after the documentation package had been completed and placed under drawing control, closer scrutiny by both Hughes and NASA personnel began to uncover relatively minor, but significant errors

of omission, inconsistencies between drawings, and inadequacies in the cross-referenced parts list. The discrepancies noted were of the following general types:

- omission of some critical dimensions or tolerances
- omission of IPD references
- omission of process specifications
- inconsistency of dimensions or tolerances
- incorrect dimensions, callouts, or tolerances
- inadequate criteria for inspection
- confusing or ambiguous instructions
- incorrect sequence of operations

In the end, 89 engineering change requests (ECRs) were written and processed, with 85 being resolved and completed, and four rejected for lack of data to formulate the missing specifications in a meaningful way (so that specifications could be met without radically changing the way in which HRL previously has built or procured thruster parts). The type of specifications that require a more definitive formulation cover the general areas of

- welding (electron beam and TIG)
- materials (impregnated porous tungsten, tantalum, etc.)
- purchased parts (heaters, etc.)

Adequate treatment of these areas could not be performed within the scope of the resources allotted to this task.

To provide a guide to the documentation available for the 30-cm J-series thruster, the final indentured parts list has been included in this report as Appendix E. The completeness of the documentation for the 30-cm, J-series thruster as represented by this parts list now satisfies the requirements of the DOD-D-1000, level 2 standard. Consequently, the objectives of the documentation task are considered to be satisfied.

SECTION 5

CONCLUSIONS

Under this program, six 900 series, 30-cm mercury ion thrusters were modified to the J-series design and evaluated using standardized test procedures. The performance of the retrofit thrusters now meets the design objectives with regard to operating characteristics, electrical efficiency, and mass efficiency. On the basis of preliminary test results (obtained under other programs) it can be inferred that the design objectives for all other thruster properties (not evaluated under this program) will also be satisfied by the thruster design. In order to complete the retrofit modifications and satisfy the evaluation tests, it was necessary to advance the status of several technology areas. First, the design of the ion optics assembly was improved to provide dimensional stability under normal thermal conditions. Second, the porous tungsten vaporizer design was improved to eliminate vaporizer failures (by penetration of the mercury propellant). Third, quality control measures were instituted to improve fabrication of swaged heaters for cathodes and vaporizers. Finally, the procedures for preparation and testing of thrusters were improved to reduce inherent measurement error.

The test data for the six thrusters shows relatively little dispersion, considering that the improvements in fabrication and testing procedures were cumulative throughout the program. If the fabrication and testing uncertainties were factored out, the performance variations would be less than $\pm 2\%$. Moreover, the thrusters could all be operated with a single power processor, and within a "normal" range of control parameters.

The drawings and IPDs for fabricating thrusters of the J-series design are now quite adequate for reproduction of J-series thrusters by any industrial organization having the appropriate fabrication and assembly skills, and some understanding of ion thruster operating principles. The completeness of the documentation for a formal "configuration management" program is subject to question.

Not all of the initial design objectives were met during the program.

The vaporizer design that evolved resulted in characteristics for vaporizer

temperature versus propellant-flow that require operation at a temperature approximately 50°C higher than was considered desirable at the outset of the program. If it is necessary to operate the thruster in a higher temperature environment than anticipated (e.g., for a Comet Encke redezvous), the vaporizer design may, in fact, be satisfactory. The adequacy and finality of the J-series design will therefore depend on future definitions of systems requirements and the results of the continuing verification and life tests (under other programs).

REFERENCES

- 1. C. R. Dulgeroff and R. L. Poeschel, "Retrofit and Verification Test of 30 cm Ion Thruster", NASA CR165233, January, 1981.
- 2. C. R. Collett, R. L. Poeschel, and S. Kami, "Characteristics of the LeRC/Hughes J-Series 30-cm Engineering Model Thruster", AIAA Paper, 79, 2077 (November 1979).
- 3. V. K. Rawlin, "Sensitivity of 30-cm Mercury Bombardment Ion Thruster Characteristics to Accelerator Grid Design", NASA TM 78861, 1978.
- 4. R. P. Vahrenkamp, "Characteristics of a Thruster Operated With Small Hole Accelerator Grid Ion Optics", AIAA Paper 76, 1030 (November, 1976).
- 5. R. L. Poeschel and J. R. Beattie, "Primary Electric Propulsion Technology Study", NASA CR 159688 (November, 1979).
- 6. R. L. Poeschel, J. R. Beattie, P. A. Robinson and J. W. Ward, "30-cm Mercury Ion Thruster Technology", AIAA Paper 79, 2052 (Princeton, N.J. November, 1979).
- 7. J. E. Maloy, R. L. Poeschel, and C. R. Dulgeroff, "Characteristics of 30-cm Mercury Ion Thrusters", NASA TM 81706, (April, 1981).

APPENDIX A

MODIFICATIONS FOR UPGRADING 900 SERIES 30 CM THRUSTERS TO THE J-SERIES THRUSTER DESIGN

APPENDIX A

MODIFICATIONS FOR UPGRADING 900 SERIES 30 CM THRUSTERS TO THE J-SERIES THRUSTER DESIGN

The design of the 900 series 30-cm thruster was reviewed under NASA 3-21052, and 20 design modifications were identified to correct failure modes that had either been identified in design validation testing or were considered potential failures. These modifications were implemented in thruster SN 901 to obtain the first of the J-series thrusters (SN J1). A discussion of these design modifications follows.

Screen Grid

Based on the erosion rate of the screen grid during a 4000-hour endurance test, the projected lifetime of the screen grid was estimated to be less than 10,000 hours. Since the design goal for the thruster lifetime is 15,000 hours, it was imperative that a corrective measure be taken. The action taken was to alter the accelerator grid design. Lewis Research Center (LeRC) and Hughes Research Laboratories (HRL) technology programs showed that a low transmission (less than 30%) accelerator grid permits a lowering of discharge chamber voltage without a loss in thruster efficiency. A lower discharge voltage reduces the fraction of doubly charged ions that are produced in the chamber; therefore, the lower energy and fewer doubly charged ions reduces the screen grid wear. The recommended change was to decrease the diameter of the apertures in the accelerator grid from 0.152 cm (0.060 in.) to 0.114 cm (0.045 in.). More will be said later about a modification to the accelerator support brought about by this change.

Insulation of Wire Near Cathode Polepiece

Teflon/Kapton insulated leads connected to the cathode heater, magnetic baffle coil, and cathode keeper pass through the region around the cathode polepiece. Operating temperatures of 300°C caused the insulation to loosen, which could permit a short between the leads and surfaces at different potentials. In fact, this happened to the cathode keeper lead during the endurance test after 4000 hours of operation. To prevent this from occurring, a change in the insulation in the hot region was proposed. Ceramic beads were suggested as replacements, as shown in Figure A-1. The insulation was to remain the same in the cooler regions.

Figure A-1. Modification in wiring to eliminate Teflon/ Kapton insulation in proximity to the cathode pole piece.

Cathode Polepiece Wire Mesh Covering

Wire mesh is used to cover surfaces where sputter deposition is anticipated. The mesh inhibits spalling by providing an irregular curved surface for the deposition. In spite of this, large flakes were observed in the interior of the cathode polepiece during an examination following 4000 hours of testing. Tests at LeRC showed that a better choice for mesh size would be a 0.018 cm (0.007 in.) spacing between 0.009 cm (0.0035 in.) diameter wires. This wire size was proposed as a replacement for the original mesh.

Gimbal Bracket Insulators

Two gimbal pads are used to support the thruster. Both are diametrically opposite each other on the outer cylindrical surface of the thruster and are supported by ceramic insulators. Some of these insulators fractured during a vibration test. For this reason, replacement with insulators made of Vespel have been suggested. The Vespel insulator design includes threaded steel inserts, and a temperature limit of 300°C, which would be acceptable since the insulator temperature is not expected to exceed 200°C.

The following are lesser modifications that were also proposed and have been accepted.

Anode

Stainless steel wire mesh was attached to the inner surface of the anode in several places. The purpose of the mesh was to minimize the formation of flakes. Unfortunately, the method of attachment permitted the mesh to lift away from the anode surface. The proposed modification was to use anode material that had the mesh bonded to it.

Baffle Support and Magnetic Coil

The end of the tubular baffle support has openings that permit electrons to pass from the cathode past the baffle into the discharge chamber. The material next to these openings is covered with tantalum foil. This foil interfered with the magnetic coil when it was installed on the support tube. The proposed design increases the magnetic coil diameter and the diameter of the part of the baffle support used to mount the coil. The dimensions of the openings in the end of the baffle support would remain the same.

Cathode Inserts

Tantalum wires were used to attach the porous tungsten inserts to the cathode tube. These wires frequently became brittle and broke during assembly. Rhenium wire was suggested as replacement to decrease the chance of failure.

Neutralizer Erosion Shields

Examination after the 4000-hour test revealed erosion in the neutralizer assembly. An extension of the neutralizer erosion shield was suggested to protect this area.

Wiring Harness

An increase of the harness wire length (to 3.65 m) was proposed to accommodate the interface requirements for thruster testing. A Hughes specification for lead wire was also proposed for wire purchases.

Anode Insulator

Since Lucalox is no longer available, HRL proposed that the anode support insulator be changed to alumina (AL 300).

Vaporizer

Variation in vaporizer behavior was observed in several instances. In order to obtain more uniform vaporizer material, a new specification was proposed. Detailed fabrication instructions were also suggested to be incorporated into the design package.

Neutralizer Fasteners

Neutralizer fasteners were located in places that were close to insulated wire leads. Using excessive torque on these fasteners resulted in damage to the insulation in some cases. This damage was difficult to prevent and detect. The relocation of these fasteners was proposed to avoid the problem.

Wire Harness Clamp

The Mycroy harness clamp broke several times during assembly. The design change proposed that the material be changed to machinable ceramic.

Insulator Shield

Cup shields are used to protect insulators from material deposits. Misalignment of the shields could occur easily creating a short. A self-centering design for the shields was proposed.

Gimbal Pad

Tolerance buildup could create an extremely small clearance between the gimbal pad (at spacecraft potential) and the accelerator grid mounting (at screen potential). This required a custom fit to avoid arcing. A change in the pad dimension was suggested to eliminate this special handling during assembly.

Backplate Structure Base

The backplate was fitted to the backplate structural brace with shims. This procedure was time consuming and inaccurate. The design proposed incorporates spacers that are fitted by custom machining.

Cathode Isolator Heater

Identical main and cathode isolator heaters were fabricated, but the heater used on the cathode isolator had to be partially uncoiled when assembled. This bending of an active part of the heater was undesirable. A request to change the design of the cathode isolator heater to its final configuration was made.

Ground Screen

Once a thruster was attached to the gimbal pads, access to the wiring terminals or inspection of some thruster components required that the thruster be removed from the mount and the neutralizer assembly detached from the ground screen. The proposed design altered the ground screen so that it could be removed without disturbing the neutralizer or the mount.

Propellant Manifold

Performance testing requires individual monitoring of mercury flow to the three vaporizers. This meant that propellant line connections had to be made within the ground screen and required undesirable manipulation of the propellant lines. A manifold was proposed that would be located at the rear of the thruster for access to the feed lines for the three vaporizers, and that could be used for either single or multiple mercury lines.

Coaxial Heater Terminal

Coaxial heaters are used on the vaporizers and cathodes. The terminals are complex, fragile, and difficult to fabricate. It was proposed to use the simpler terminal that is employed on the 8-cm thruster.

Two additional modifications were proposed and rejected. They dealt with the backplate wire mesh specification and the isolator heaters. It was determined at the design review that there was not a good justification for the proposed changes and they were dropped.

Only fifteen of the design modifications listed and described in the paragraphs above were approved for retrofitting existing thrusters. The modifications incorporated were those affecting the following components or subassemblies:

- 1. Ion optics electrodes (accelerator aperture diameter)
- Cathode pole-piece subassembly (wire mesh coverings)
- 3. Anode (bonded wire mesh)
- 4. Gimbal pad mounting insulators (Vespel)
- 5. Porous tungsten cathode inserts (lead attachment)

- 6. Neutralizer erosion shields (change in area)
- 7. Wiring harness (wire size and lengths)
- 8. Anode insulators (alumina)
- 9. Neutralizer housing subassembly (dimensions)
- 10. Wire harness clamp (material)
- 11. Insulator shields (self-centering)
- 12. Ion optics assembly mounting ring (fastener recess)
- 13. Backplate structural brace (custom spacers)
- 14. Outer ground screen (improve fit)
- 15. Propellant line manifold (test interface).

APPENDIX B
NASA DOCUMENTS

Appendix B

NASA Documents

This appendix is comprised of internal NASA documents that were supplied for reference under Contract NAS 3-21357. The work described in these documents was essential to the conduct of the work performed under this contract.

THRUSTER REQUIREMENTS DOCUMENT

Prepared by: /

P T D--1-4-1

Date

2/12/80

NASA - Lewis Research Center

1.0 SCOPE

This document identifies the electrical power and control capabilities required to operate a J-series 30-cm thruster according to the algorithms of Refs. 1 and 2 and Section 7.0.

2.0 DEFINITION OF TERMS

- 2.1 Load resistance is measured at the heater terminal and does not include cable, connectors, or instrumentation impedances (standard thruster is supplied with 12 foot harness per Table I).
- 2.2 Operating points are the independently selectable current or voltage values required for thruster operation.
- 2.3 Regulation and low frequency ripple includes all line, load, and thermal variations; accuracy and repeatability of operating point selection; and any low frequency (<100Hz) oscillations.
- 2.4 High frequency ripple includes all oscillations and variations >100Hz.
- 2.5 Symbols are defined in Table II.
- 3.0 The following algorithms are considered as part of this thruster design.
 - 3.1 Pre-condition
 - 3.2 Start-up
 - 3.2.1 Preheat High (PHT Hi)
 - 3.2.2 Preheat Low (PHT Lo)
 - 3.2.3 Ignition Heat (IG/HT)
 - 3.2.4 Run (Normal) including throttle
 - 3.3 All off-normal detection and correction algorithms.
 - 3.4 The recycle sequence algorithm (see 7.0 below).
 - 3.5 Algorithms of 3.1, 3.2, and 3.3 are detailed in Ref. 2.

4.0 THRUSTER LOADS

The thruster consists of 12 loads consisting of 6 heaters, 1 electromagnet, 3 discharges, the beam and the accelerator grid.

4.1 The 12 thruster loads are listed below:

```
4.1.1 Main Vaporizer Heater
```

- 4.1.2 Cathode Vaporizer Heater
- 4.1.3 Neutralizer Vaporizer Heater
- 4.1.4 Cathode Tip Heater
- 4.1.5 Neutralizer Tip Heater
- 4.1.6 Isolator Heater (2 in parallel)
- 4.1.7 Neutralizer Keeper Discharge
- 4.1.8 Cathode Keeper Discharge
- 4.1.9 Main Discharge
- 4.1.10 Magnetic Baffle Coil
- 4.1.11 Beam Extraction (Screen Grid)
- 4.1.12 Accelerator Grid
- 4.2 The electrical requirements of each load are given below and in Table III.

4.2.1 Main Vaporizer Load Resistance

6.3 \(\text{nom.} \)
6.8 \(\text{max.} \)

Operating Points

Continuously variable from 0 to $14.2W \pm 1W$ vaporizer heater power to maintain Jg constant to within \pm .03A (0 to 1.5A rms or DC)

JB	Set	Points
	0.75	5A
	0.8	
	0.9	
	1.0	
	1.1	
	1.2	
	1.3	
	1.4	
	1.5	
	1.6	
	1.7	
	1.8	
	1.9	
	2.0	

Reg. and L. F. Ripple

No Spec.

H. F. Ripple

No Spec.

4.2.2 Cathode Vaporizer

Load Resistance

3.3 a nom. 3.6 a max.

Operating Points:

Continuously Variable from 0 to $13.2W \pm 1W$ vaporizer heater power to maintain ΔV_1 constant to within \pm .05V (0 to 2A rms or DC)

ΔV_1 Set Points (at load)

32 V

34 V

36 V

Reg. and L. F. Ripple

No Spec.

H. F. Ripple

No Spec.

4.2.3 Neutralizer Vaporizer

Load Resistance

3.32 nom.

3.6-72 max.

Operating Points:

Continuously variable from 0 to 13.2W \pm 1W vaporizer heater power to maintain V_{NK} constant to within \pm .2V

V_{NK} Set Points (at thruster)

17.0∨	14.0
16.0	13.5
15.0	13.0
14.0	12.5

Reg. and L. F. Ripple

No. Spec.

H. F. Ripple

No. Spec.

4.2.4 Cathode Tip Heater

Load Resistance:

3.0 ← (hot) nom. 3.3 ← (hot) max.

Operating Points:

18.8 watt (2.5A rms or DC) 54.2 watt (4.25A rms or DC)

Reg. and L. F. Ripple

<u>+ 1 watt (+ approx. .05A)</u>

H. F. Ripple

+ 10%

4.2.5 Neutralizer Tip Heater

Load Resistance:

3.0.a. (hot) nom.

3.3a (hot) max.

Operating Points:

18.8W (2.5A rms or DC)

48.0W (4.0A rms or DC)

Reg. and L. F. Ripple

<u>+</u> IW (<u>+</u> approx. 0.05A)

H. F. Ripple

± 10%

4.2.6 Isolator Heater

Load Resistance:

2.2 nom.

2.5<u>c</u> max.

Operating Point:

(main and cathode in parallel)

108W (7A rms or DC) 55W (5A rms or DC)

Reg. and L. F. Ripple

+ 5% (+ approx. 0.03A)

H. F. Ripple

+ 10%

4.2.7 Neutralizer Keeper (Low Voltage)

Operating Points 2.1A 2.4A

Reg. & L. F. Ripple + 0.05A

H. F. Ripple (> 100Hz) + 5%

Output Z - Inductive, required for recycle algorithm, 7.0

Present values for power processor of Refs. 1 and 3

1.9 mhy @ full load DC 2.2 mhy @ full load DC

4.2.8 Cathode Keeper

Volt/Amp Requirements $\geq 25 \text{V} @ 0.025 \text{A} \\ \geq 18 \text{V} @ 1.0 \text{A}$ Operating Points 1.0A

Reg. & L. F. Ripple + 0.05 AH. F. Ripple (> 100 Hz) + 5%Output Z No Spec.

4.2.9 Boost Section (High Voltage for Keeper Supplies)

Volt/Amp Requirements 375 ± 25V @ 0A 28 ± 3V @ 0.025A ± 0.005A

Max. power not to exceed 3.5 watts

4.1.10 Main Discharge

Volt/Amp Requirements	50V @ 0A 45V @ 14A
Operating Points (1)	5.75A 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0
Reg. & L. F. Ripple	<u>+</u> 0.2A
H. F. Ripple	<u>+</u> 5%

Output Z - Inductive, required for recycle algorithm, 7.0

Present values for power processor of Refs. 1 and 3

0.48 mhy @ full load DC **0.55** mhy @ 2A - DC

⁽¹⁾ Emission current (J_E) set and measured in negative output without screen current included.

4.2.11 Beam

Volt/Amp Requirements	1100V @ 0.4A 1100V @ 2.1A <1100V @ < 0.4A
	600 650 700 750 800 850 900 950 1000
Reg. & L. F. Ripple (1)	<u>+</u> 50V
H. F. Ripple (> 100 Hz)	<u>+</u> 5%
Output Z, Capacitive, ≥ luf (approx.	1/2 Joule storage)
4.2.12 Accelerator	
Volt/Amp Requirements	300V @ 0.A 300V @ .03A 250V @ .10A
Operating Points	300V
Reg. & L. F. Ripple	<u>+</u> 10V
H. F. Ripple	<u>+</u> 5%
Output Z	Capacitive,≥0.lµf
4.2.13 Mag Baffle	
Load Resistance	0.24 nom. 0.54 max.
Current Operating Points	Q to 4.5A in .1A increments
Reg. & L. F. Ripple	<u>+</u> 0.1A
H. F. Ripple	<u>+</u> 5%
Output Z	No Spec.

4.3 The algorithms and phases for which each operating point is required is given below:

	Pre-Cond.	PHT Hi	PHT Lo	1G/HT	Run (Norm.)	Run (Off-Norm.)
Main Vap. (all J _B set pts.)				х	x	x
Cath. Vap. (all ΔV ₁ set pts.)				Х	. X	X
Neut. Vap. (all V _{NK} set pts.)			Х	X	Х	Х
Cath. Tip 54.2W 18.8W	X	X	Х	X ⁽¹⁾		χ(1)
Neut. Tip 48.0W 18.8W	X	Х	Х	x ⁽²⁾		x ⁽²⁾
Isol. Htr. 108W 55W		X	x			
Neut. Kpr. 2.4A 2.1A Boost	•	Х	x x	X X	X X	X X X
Cath. Kpr. 1.0A Boost		X	Х	X X	х	X
Discharge (all J _E set pts.)				x	x	x
Beam (all V _I set pts.)					χ -	. X
Accelerator 300V					Х	Х
Mag. Baffle (all J _{MB} set pts.)				х	х	Х

Only if $J_E < 4A$ for 5 sec

 $⁽²⁾_{0nly}$ if $J_{NK} \angle .7A$ for 5 sec

5.0 CONTROL FUNCTIONS

The following control functions must be provided by the power processor or some other controller.

- 5.1 Sense J_E and insure that the cathode tip current is set to 0A within 5 sec after J_F exceeds 4A.
- 5.2 Sense J_{NK} and insure that the neutralizer tip current is set to 0A within 5 sec after J_{NK} exceeds 0.7A.
- 5.3 Sense J_B and J_A and initiate and control the recylcle sequence in accordance with the attached recycle algorithm. Total sequence time < 600m sec (see 7.0).
- 5.4 Provide continuous control of 3 vaporizer heaters as described in 4.2.

6.0 TELEMETRY

6.1 The following parameters <u>must</u> be measured and made available for algorithm decisions or thruster operational and performance evaluation:

 V_1 , J_B , J_A , ΔV_1 , J_E , J_{MB} , V_{NK} , J_{NK} , V_{CK} , and V_G .

6.2 The following parameters are <u>useful</u> for thruster operational and performance evaluation:

Jy, J_{CV}, J_{NV}, J_{CT}, V_{CT}, J_{NT}, V_{NT}, J_{CK}, V_A, T_N, T_{CV}, and T_{NV}.

6.3 Platinum resistance vaporizer temperature sensors are provided for temperature measurement. These sensors are Nom. 200 £ 0 0 with a gain of 0.72 0.

7.0 RECYCLE SEQUENCE ALGORITHM

7.1 Conditions for Initiating Sequence

 $J_R > 2.1A$ and/or $J_A > 60mA$ for > 70m sec.

- 7.2 At Sequence Time t = 0
 - 7.2.1 Turn off screen and accel. voltages
 - **7.2.2** Decrease J_E to 2.6A \pm 0.2A
 - 7.2.3 Increase J_{NK} to 2.4A \pm 0.05 A
 - 7.2.4 Disable JB, JA Comparison Circuits
- 7.3 At Sequence Time $t = 150m \sec + 10m \sec$

Turn on screen and accel. voltages to previous run values.

- 7.4 At Sequence Time $t = 250m \sec \pm 20m \sec$
 - 7.4.1 Reset J_E to previous run value
 - 7.4.2 Reset J_{NK} to previous run value
 - 7.4.3 Enable J_B , J_A comparison circuits and reset 70m sec timer to zero if necessary.
- 7.5 Rise and Decay Times (Typical) are as Follows:

	<u>Rise</u>	Decay
٧s	< 30m sec	<5m sec
VAS	< 30m sec	<5m sec
JE	100 - 150m sec	<50m sec
JNK	<pre>5m sec</pre>	<5m sec

- 7.6 Typical sequences are attached. Photo Set 1, 3, and 4 are for 0.75A J_B at 600V V_I ; Photo Set 2, 5, 6, 7 and 8 are for 2A J_B at 1100V V_I .
- 7.7 A flow chart of the algorithm is attached.

Set #1 #1 V_I 500 v/cm #2 V_A 200 v/cm #3 J_D 4 amp/cm #4 J_{NK} 1 amp.cm no delay

Set #2 #1 V_I 500 v/cm #2 V_A 200 v/cm #3 J_D 4 amp/cm #4 J_{NK} 1 amp/cm 260 msec delay

Set #3 #1 V_I 500 v/cm #2 V_A 200 v/cm #3 I_B 0.5 amp/cm #4 I_A 0.1 amp/cm no delay

Set #4 #1 V₁ 500 v/cm #2 V_A 200 v/cm #3 I_B 0.5 amp/cm #4 I_A 0.1 amp/cm 260 msec delay

Set #5 #1 V₁ 500 v/cm #2 V_A 200 v/cm #3 I_B 1 amp/cm #4 I_A 0.1 amp/cm no delay

Set #6 #1 V₁ 500 v/cm #2 V_A 200 v/cm #3 I_B 1 amp/cm #4 I_A 0.1 amp/cm 260 msec delay

Set #7
#1 V₁ 500 v/cm
#2 V_A 200 v/cm
#3 J_D 4 amp/cm
#4 J_{NK} 2 amp/cm
no delay

Set #8 #1 V₁ 500 v/cm #2 V_A 200 v/cm #3 J_D 4 amp/cm #4 J_{NK} 1 amp/cm 300 msec delay

REYCLE ALGORITIM

8.0 POWER REQUIREMENT MARGINS

- 8.1 Two potential areas of degradation which might impact power requirements exist. These are cathode degradation and beam extraction degradation. Although no evidence of either of these problems has appeared in any long term tests to date, final verification through 15,000 hours has not explicitly been achieved.
- 8.2 Cathode degradation could cause difficulty in starting and/or difficulty in maintaining desired emission current levels during steady state. Although neither difficulty has been encountered, present power processor designs carry a 4 to 5 watt power margin for the former and the capability of operating tip heaters during steady state operation for the later. Neither margin has been required to date in J series thruster testing.
- 8.3 Beam extraction degradation could require higher total extraction voltages for a given beam current. Current power processor designs carry an extra 200V margin (500V total capability) in the accelerator supply if needed. This margin has never been required to date in J series thruster testing.

TABLE I - Thruster Wire List

TERMINAL NO.	TERMINATION	AWG NO.	WIRE NO.
1	Cathode Vaporizer	16	1
2	Neutralizer Keeper	16	2
2 3 4 5 6	Neutralizer Heater	16	3
4	Neutralizer Vaporizer	16	4
5	Neutralizer Common	16,16	5A, 5B
6	Accelerator	20	6
7 8	Main Vaporizer	16	7 8
8	Main Isolator	16	8
9	Discharge (Anode)	16,16,20	9A, 9B, 9P
10	Cathode Heater	16	10
11	Cathode Keeper	20	11
12	Magnetic Baffle (Outer)	16	12
13	Cathode Isolator	16	13
14	Vaporizer Return	16	14
15	High Voltage Return	16,16,20	15A, 15B, 15P
16	Sensor Common	20	16
17	Mag Baffle (Inner)	16	17
18	Main Vaporizer Sensor	20	18
19	Cathode Vaporizer Sensor	20	19
20	Neutralizer Vaporizer Sensor	20	20
21(-) 22(+)	Main Vaporizer Thermocouple		21(-), 22(+)
23(-) 24(+)	Cathode Vaporizer Thermo-		
	couple		23(-), 24(+)
25(-) 26(+)	Neutralizer Vaporizer Thermo- couple		25(-), 26(+)

TABLE II - Symbols

v _{CT}	Cathode Tip Heater Voltage
VNT	Neutralizer Tip Heater Voltage
v_{NK}	Neutralizer Keeper Voltage
v _{cK}	Cathode Keeper Voltage
Δνι	Discharge Voltage
ν_{A}	Accelerator Potential
v_1	Beam or Net Accelerating Potential
ν_{G}	Neutralizer to Ground Coupling Voltage
JV	Main Vaporizer Current
JCV	Cathode Vaporizer Current
J _{CT}	Cathode Tip Heater Current
J _{NT}	Neutralizer Tip Heater Current
JNV	Neutralizer Vaporizer Current
J _{NK}	Neutralizer Keeper Current
J _{CK}	Cathode Keeper Current
J _E	Cathode Emission Current
J_{A}	Accelerator Drain or Impingement Current
JB	Beam Current
J _{MB}	Mag Baffle Current
T_{V}	Main Vaporizer Temperature
T _{CV}	Cathode Vaporizer Temperature
T _{NV}	Neutralizer Vaporizer Temperature

TABLE III - SUMMARY OF RESISTIVE LOADS

		d, r		cal Req.	Туре	Ref.	Reg. & L.F.	H.F.
	Nom.	Max.	Power, W	Current, A	Control	Para	LF Ripple	Ripple
Main Vaporizer	6.3	6.8	15.2		Vary W/JB	4.2.1	~ ~ -	
Cathode Vaporizer	3.3	3.6	14.2		Vary W/ΔV	4.2.2		
Neutralizer Vaporizer	3.3	3.6	14.2		Vary W/V _{NK}	4.2.3	~	
Cathode Tip Heater	3.0	3.3	54.2		Fixed	4.2.4	<u>+</u> 1W	<u>+</u> 10%
(Hot)			18.8	·				
Neutralizer Tip Heater	3.0	3.3	48.0		Fixed	4.2.5	<u>+</u> 1W	<u>+</u> 10%
(Hot)			18.8					
Isolator Heater	2.2	2.5	108		Fixed	4.2.6	<u>+</u> 5%	<u>+</u> 10%
			55					
Magnetic Baffle	0.2	0.5	** **	4.5	Fixed in .1A Inc.	4.2.7	<u>+</u> .1A	<u>+</u> 5%

REFERENCES

- Reference 1 30-cm Ion Thruster Subsystem Design Nominal (Section 5) NASA TMX 79191.
- Reference 2

 Bechtel R. T. and James, E. L.: Preliminary Results of the Mission Profile Life Test of a 30-cm Hg
 Bombardment Thruster NASA TMX 79261, AIAA No. 79-
- Reference 3

 Biess, J. J., et al., Electric Prototype Power Processor for a 30-cm Ion Thruster NASA-CR-135287, March 1977.

CALIBRATION OF FLOW TUBES FOR MEASUREMENT
OF THRUSTER MERCURY PROPELLANT FLOW RATES

March 24, 1980

Prepared By: R. Bechtel

NASA-Lewis Research Center

CALIBRATION OF FLOW TUBES FOR MEASUREMENT OF

THRUSTER MERCURY PROPELLANT FLOW RATES

.O BACKGROUND

The determination of ion thruster efficiency and evaluation of performance requires accurate determination of neutral mercury propellant flowrate to deternine propellant (mass) utilization efficiency. Unlike the electrical operating parameters, the measurement of Hg flow is not a straightforward one. The technique most commonly used is to measure the volume of Hg used per unit time. This can then be converted to mass per unit time and, with the assumption of a single charge per atom, to couloumbs per unit time or equivalent amperes. The ratio of the measured electrical beam current to the equivalent amperes of Hg flow, is the propellant or mass utilization efficiency.

The conversion from volume to charge is given by the equation:

$$\frac{Q}{V} = \frac{N}{M} \times Q_{O} \times Hg$$

 $N = Avogadro's number = 6.022169 \times 10^{23} atoms/mole$

M = AMU of Hg = 200.61 gm/mole

 Q_0 = Charge of Ion = 1.6021917 x 10^{19} couloumb

Ha = Density of Hg = 13.546 gm/cc @ 20 $^{\circ}$ C

Thus:

$$\frac{Q}{V} = 6.5151723 \times 10^3 \text{ coul/cc}$$

Note that the density of Hg varies approx. $.02\%/^{\circ}$ C and hence small thermal variations about ambient do not affect the calculation.

The conversion of time rate of change of volume to equivalent Amps is given by:

J (Eq - Amps) =
$$6.515172 \times 10^{3} \times \frac{(CC)}{(Sec)}$$

= $108.5862 \times \frac{(CC)}{(Min.)}$
= $1.80977 \times \frac{(CC)}{(Hr.)}$

The usual method of determining the time rate of change of volume is to measure the difference in height in a glass reservoir per unit time. In order to enhance resolution, tubes having diameters of .040" to .120" are used depending on the expected flowrates. If the glass reservoir is calibrated in CC or ml, then the conversion factors above can be applied directly. If the glass reservoir is calibrated in cm, then the bore diameter must be known. The following table shows the conversion factor for commonly used diameters bore tubes.

<u>d (</u> M	IILS)	CAL. FACTOR (EQAMP)
19.68	(½mm)	0.2132
20.00	-	0.220!
39.00		0.8369
39.37	(1mm)	0. 8528
40.00		0.8803
78.00		3.3475
78.74	(2mm)	3.4113
79.00	•	3. 4339
80.00		3.5214
98.42	(2.5mm)	5.3302
118.11	(3mm)	7. 6755
120.00		7.9231

In some instances it may be desired to confirm the bore diameters of a known tube or measure the bore diameter of an unknown tube. Several techniques are available. One is the use of precision pins which can be slipped into the bore. This technique can determine the diameter to the nearest .0001 inch. However, eccentricity over the tube length may not be confirmed by this technique. The calibration technique in this procedure consists of filling with Hg, draining, and weighing to determine the volume. Effective bore diameter can then be calculated and it does not depend on bore roundness or straightness. As a practical matter, past calibrations of many glass tubes have shown that these tubes are usually within several tenths of a mil of the manufacturer's quoted diameter.

It should be noted that the accurate determinations of the calibration constant is only one factor in the accurate determination of the thruster flowrates. Principles of the fill procedure that follows are also applicable to filling thruster test systems when accurate flow measurements are desired

2.0 SCOPE

This paper defines a methode for calibrating mercury flow tubes by a fill, drain and weigh technique. Factors other than calibration of Hg flow tubes, which affect the accuracy of thruster flowrate measurement, are beyond the scope of this document. This method was derived for use with the apparatus described in 3.0. However, the general approach is valid for all types of calibration and feed systems.

3.0 DESCRIPTION OF CALIBRATION APPARATUS

The test setup for performing calibrations is shown in the following figure.

Most of the tubing used is 1/8 inch diameter stainless steel tubing. The number of valves and fittings used should be minimized so that trapped gas and voids in the filled system can be minimized. Voids in the system lead to erroneous results due to compressibility effects as head height changes or due to surface tension effects as varying intrusion into void volumes.

"Zero displacement" or stop-cock type valves are recommended. Circleseal series 9500 miniature plug shutoff valves have been used successfully. The drain valve should be mounted backwards to the indicated flow direction so that the plug of mercury stays in the movable part of the valve during on-off operations.

A vacuum pump capable of achieving 10 micron or better vacuums is needed.

A pressure source for pressurizing the flow tube up to 12 psig is needed.

A weighing system with 0.001 gram accuracy and resolution is needed.

4.0 FLOW TUBE FILL PROCEDURE

- 1) Install flow tube in 1/4" swagelok, close drain valve.
- 2) If line between reservoir valve and fill valve is not filled satisfactorily, close reservoir valve and open fill valve to drain line.

If line is filled solid to fill valve, leave fill valve closed and check to confirm reservoir valve open.

- 3) Connect pumping station to top of flow tube, pump to better than 10 micron vacuum. (Diffusion pump pressures are preferred.)
- 4) If fill valve is open, close fill valve and open reservoir valve to fill line. If fill valve is closed, continue.
- 5) Open fill valve slowly unith flow is felt in line. Hg should move into glass portion of tube smoothly without bubbling.
- 6) Fill to high-level of tube. Record level

	5.0	FLOW	TUBE	CALIBRA [*]	NOIT	PROCEDURE
--	-----	------	------	----------------------	------	-----------

should be less than .025 cm

1)	Record Level at vacuum	
2)	Vent to ATM, record level	·.
3)	Pressurize to 10 psig, record level	
4)	Cycle all valves until cycling does not cause change in Hg level	
5)	Vent to ATM, record level	
6)	Re-pressurize to 10 psig, record level. Compression	· Å.

6) If compression is acceptable continue, otherwise drain and re-fill.

Record level.

a. _____CM

Weigh empty bottle, record.

b. GM

Drain about 1/3 of tube - record level.

c. CM

Weigh bottle, record.

I. GM

Drain another 1/3 of tube - record level.

e. CM

Weigh bottle, record.

GM.

Drain remainder of tube - record level.

a. CM

Weigh bottle, record.

h. GM

7) Calculate the mass drained per centimeter height change on each of the three increments and also on the overall height change.

$$\Delta_1 = \frac{d-b}{a-c}$$
; $\Delta_2 = \frac{f-d}{c-e}$; $\Delta_3 = \frac{h-f}{e-g}$; $\Delta_T = \frac{h-b}{a-g}$

$$\Delta_1 = gm/cm$$

$$\Delta_2 = gm/cm$$

$$\Delta_3 = gm/cm$$

• All the values calculated should be the same within experimental accuracy. It should be considerably better than one percent. If the data is not reasonable, repeat the procedure.

8) If needed, calculate the tube diameter.

$$d = \sqrt{\frac{4\Delta_T}{\pi \rho_T}}$$

at 20°C

$$d = \sqrt{9.40\Delta_T} , mm$$

$$d = \sqrt{1.457\Delta_T} \times 10^2, mils$$

Correlate this diameter with pin-measured diameter or with tubing puchase specification.

National Aeronautics and Space Administration

Lewis Research Center Cleveland, Ohio 44135

TRIM 119

Pecry to Attn of:

6122

May 5, 1980

TO:

Record

FROM:

6122/Manager, Solar Electric Propulsion Office

SUBJECT: Statistical Analysis of 30cm Thruster Steady State Propellant

Flow Rate Data

REF:

Report on Flow Tube Variation During Warm-up/Startup by C. E. Siegert

Thruster testing in the technology readiness program is designed to document performance of several thrusters. Certain data is obtained on each thruster so that thruster-to-thruster variations can be determined. It is necessary to separate data scatter from real thruster-to-thruster variations. This analysis was performed to determine how much data scatter exists in flow data being taken by the usual method.

Flow Rate Determination

Flow rates are usually determined by measuring the rate of flow tube height change. Typically, at least six data points are taken with time intervals of 5 to 10 minutes when the thruster is operating steady state. The reading time of the main flow tube is accurately timed by countdown. Cathode and neutralizer tubes are read in consistent rhythm after each main reading.

Flow tubes normally used have inside diameters of 2mm for the main vaporizer and 1mm for the cathode and neutralizer. The tubes have millimeter graduations. Readings are estimated to 0.1mm.

Flow rates are calculated from flow tube data by one of two methods. One method is to determine the height change in each interval and multiply the average height change per interval by a constant to determine flow rate for each vaporizer. Another method is to perform a straight line, least square fit of the flow tube height verses time data. The slope of the line is determined and multiplied by a constant to determine the three flow rates. Conversion factors are then used to convert flow rates to "equivalent amperes" units. Flows for the three vaporizers are then summed and compared to the actual beam current to determine efficiency.

Data Discussion

The data base for this analysis was developed during a test on April 21-24, 1980 to measure flow tube variations during thruster startup. The test was conducted by Su Gooder, Cliff Siegert and myself at Port W-1 of Tank 6 EPL. The referenced memo will summarize the results of that test. Data used in this analysis had been taken after the thrusters had reached thermal equilibrium after over night, steady state runs. Thrusters J-1 and 702 were mounted side by side in "Bimod" configuration. Once a thruster was started, it was left to run overnight. In the morning, flow data was taken. Five sets of data exist in which 10-minute flow readings were taken for 1 hour when the thrusters were known to be at equilibrium. Tables attached summarize that data for the following cases:

Table	Thruster	Beam Current	
. 1	J-1	.739 a	Thruster 702 was off
2	J-1	.739 a }	simultaneous data
3	702	.739 a √	
4	J-1	2.009 a ī	Simultaneous data
5	702	1.958 a ∫	

CAUTION: Do not use the absolute efficiency values contained in this memo. The feed system of thruster J-1 contained too much air to produce good efficiency data. Thruster 702 magnetic baffle current was not set at the optimum value.

This analysis was undertaken to quantify the scatter that exists in the data. If one assumes that the data represents independent measurements of a constant process, standard deviations for data sets can be calculated and compared.

The flow rate measurement data sets do not precisely fit that criteria. The data points are not independent since the end time of one interval is also the start time for the next interval. An error in one measurement will affect two readings. If a single large measurement error is made, relatively large and small height change values will be adjacent. For the 90 height changes in this data set, the maximum and minimum heights were adjacent only five times. It was decided that the standard deviation could be calculated and used as an indicator of variations of the data sets.

An explanation of the entries in Tables 1 through 5 follows. The flow tube height changes for each of the three vaporizers are shown for each interval. The calibration constant for converting to equivalent milliamperes is listed for each tube. Using those calibration factors, utilization efficiencies are calculated for each of the six time intervals.

The entry labeled 10psi compression has direct bearing on the accuracy and repeatability of measurements. The flow system is pressurized to 10psi above atmospheric and the flow tube height changes are recorded. The value is indicative of the trapped air or gas in the system. As flow readings are taken, the pressure on the "bubble" drops as the head height reduces. The bubble then is continuously expanding and subtracting from the fall of the mercury column. Hence "too-low" flows are measured. Tables 1 and 3 show that J-1 had a "poor" fill and 702 had a "good" fill. One of the results of this test is to compare and document results from the two types of fill.

The statistical data in Tables 1 through 5; namely, mean, range, variation, standard deviation and 30 apply to the six point data set above in each column. The slope and correlation coefficients also apply to the column above. The efficiency calculation in the lower right results from calculating efficiency from the individual flows determined by the slope method.

Observations and Conclusions

The following observations and conclusions resulted from this analysis.

1. Table 6 shows that efficiency readings had less variation in the 702 thruster with the "hard fill" than in the J-1 thruster with the "soft" fill. Even the best hard filled system showed efficiency varied over a range of 0.8 to 1.5 percent. Three-sigma deviation would be expected to be +1.0 to +1.7 percent for quarter power to full power operation. Precise flow readings require a "hard filled" system. It may be possible to calculate out the compressibility effects in a "soft-filled" system but that is a complicating factor and such techniques have not been developed.

it should be pointed out that the data variation noted applies to 10-minute readings. When six such readings are averaged, the accuracy of the efficiency calculated from that mean would be better - perhaps six times better. As stated previously, the 10 minute data points are not really uncoupled since the end point of one interval is the start point for the next interval. The absolute value of the time and height reading errors are the same for a one hour reading as for each of the 10 minute intervals. The accuracy of that one hour reading (or the average of six 10 minute readings in this case) would be much more accurate and less variable than the values shown in Table 6 for 10 minute readings.

- 2. In Table 7 the data for the 15 flows is arranged in order of increasing standard deviation. The measurement range followed the same order. Most of the "hard" compression feed systems appear near the top of the list and "soft" compression systems appear near the bottom.
- 3. Table 8 shows that the "average delta" method and the "slope" method of calculation produce the same result. The small variations are probably due to roundoff in making calculations. The correlation coefficient test of the slope method is more difficult to interpret than the standard deviation test that arises from the "delta" approach.
- 4. Review of Tables 1 through 5 shows that cathode and neutralizer indicated flow rates had a large percentage variation. Ten minute timing intervals are not long enough to obtain definitive cathode and neutralizer data. In general, the longest practical interval time periods will produce more accurate data. Another modification to produce more accurate flow data in a shorter time would be to use smaller bore tubes. Height changes would be larger and reading errors would be a smaller fraction of the total.
- 5. If test objectives permit, more accurate total flow data would be obtained by taking all mercury flow from a single tube. The three flow terms would be added in the flow tube and two of the three flow error terms would vanish.

- 6. During the test a definite "stick-slip" tendency of mercury on the glass tube walls was noted. This adds to reading variation especially in low-flow tubes and short time intervals. The tubes should be cleaned. A small amount of distilled water should cover the mercury in the tube to prevent oxidation of mercury that sticks to the tube walls. This technique was used in SERT II.
- 7. It is very difficult to estimate heights in the flow tube to one tenth of the smallest division.

Accuracy may be improved by using height as the independent variable and time as dependent variable. Instead of taking 10 minute readings, 6 centimeter readings should be tried. The mercury height could be more accurately determined at centimeter marks on the tube. Time measurement in seconds would provide very good resolution in time intervals of about 600 seconds.

J. F. DePauw

cc:

6120/ESB File

6122/J. DePauw

6122/R. Bechtel

6122/J. Maloy

6122/R. Zavesky

6121/D. Byers

6121/V. Rawlin

6151/S. Gooder

Thruster J 739 ma Be			Date Time	2 4-22-80 0712-0812
IOMIN	MAIN AL	CATH Sh	Neut sh	Effic
INTERVAL	(cm)	(cm)	(cm)	(%)
	2,11 \$	1,40	.32 4	84.42
2	2,09	48 1	38	83,96
3	2,05	1,37	1,40	86,05
4	2,07	1,35 8	40	85,53
5	2.08	_1,43	1.46 1	84.05
6	2.03	_ ,37	.34	87.09
CAL: Ma	-346,4	83,97	84.09	
CM/10.min_				
10 PSI Compression	2.08 CM	0.72cm	Z.99 CM	
Mean	2.072 (717.6 Ma)	1.40 (117.5)	337 (32.5)	85.2
Vange	0,08 (27,7 Ma)	0.13 (10.9)	(8.11) 41.	3,13
Variation (%)	3.86	9.29		3.6
std dev	.0285 (9.8 ma)	1048 (4.0)	36.2	1.25
35	1.0855 (29,6 Ma)	.144 (12.1)	.141 (11.9)	3.76
Slope	2,065 (715,3 ma)	1,39 (117,1)	.405 (34.1)	85.3
correl coef	.9999937	99993	1.9006	

	ruster 1-1 9 Ma Beau	M		DATE	
	;	ranin sh	Cath ah (cm)	Neut ah (am)	CFF1C (%)
	<u> </u>	105	1.40 1	0.48 1	83.80 84.64 83.08
	2	10 7	1.41	0,42	84.61 86.06 85.04
CAL;		346,4	83.97	84.09	
lopsi	Congression	Z.08 cm	0,72 CM	2.99 cm	
Men Ran Vario Std	thon (%) Dev .o	2.070 (717 ma) 2.06 (20.8 ma) 2.9 237 (8.2 ma) 710 (24.6 ma)	1.442 (121.1) .11 (9.2) 7.6 .0436 (3.7) .1306 (11.0)	.43 (36.2) .09 (7.6) .20.9 .0316 (2.7) .0949 (8.0)	84,5 2,98 3,5 1.03 3,08
S101 Corve	1. 16 :	1068 (716,4)	1,445 (121,4)	0.419 (35,2)	24.7

Thruster 702 739 ma Bea			Date Time	2 4/23/80
IOMIU	MAIN sh	City sh (cm)	Neut bh (cm)	Effic. (70)
	2,13 /	2,05	0.77	75.60
2- 3	2,06 6	2,08	0.82 1	76.99 1 75.49
4	2,10	2.06	0.77	76,35
6	2,09	2.05	0.79	76.56 76.34
CAL: Ma cm/10MIN	347.5	84,14	84,18	
10 Psi Compress	ion 0.05 cm	0.05 cm	0,00	
MEAN	2.10 (729,8 ma)	2,063 (123,6)	787 (66,2)	76.2
vange 10	0.07 (24,3 ma)	0.08 (6.7)	0.06 (5,0)	1,50
Variation (%) Std Dev	3,33 .0237 (8,2 Ma)	3.88	0242 (7.0)	1.97
37	.0710 (24,7 ma)	.0541 (7.1)	.0727 (3.1)	1.73
Slope	2,096 (728,4)	2.068 (174,0)	0,789 (65,1)	7.3
correl coef	.999995	.9999'78	99991	

Thruster J-1				ate 4-24
2009 Ma Bear	9			ime 07°2-
IO MIN OI	MAID AL	CATH Ah	Neut ah	EFF
INTERVAL	(cm)	(cm)	(cm)	(%)
	5.35	1.36	31 4	100.8
2	5.32	1.32 6	.39 1	101.1
3	5.40 1.	1.35		99.9
4	5,31	1.35	.33	101.4
5	5,27 1	1.32	.33	102.3
6	5,30	1.38 1	.32	101.5
CAL: Ma	346.4	83,97	84,09	
CM/10MID				
10 psi Compression	2.08 cm	0,72 Cm	2.99 cm	
Mean	5.325 (1844,6 Ma)	1,347 (113.1)	,333 (28.0)	101.2
Range	.13 (45,0 Ma)	.06 (5,0)	.08 (6,7)	2.4
Variation (%)	2.4	4.5		2.4
Std dev	.045 (15,6 Ma)	.023 (1.9)	.029 (2.4)	.80
34	.135 (46,8 Ma)	.070 (5.9)	.086 (7.2)	2,40
Slope	5,32/	1,343	.335	101.25
Correl Coef .	9999931	.9999845	,999 5237	

		Flow Data a	t 1.958 Amp	learn
Thruster 702				Date 4-24-8
1958 Ma Beau	M			Time 0702-08
10 M/N	Main Sh	CATH Oh	Neut sh	EFFIC
INTERVAL	(cm)	(cm)	(cm)	(%)
/	5.88	0.78	0.50	91.0
3	5,89	0.75	0.56	90,6
4	5.93 /	0.72	0.54	91.0
5	5.37 1	0.73	0.58 1	90.3 1
6	5,88	0.74	0.55	91.0
cal: Ma	_347,5	84,14	84.18	
Cm/10min				
lopsi Compression	0.05Cm	0.05 cm	0.00	
Meau	5,89 (2046,8 ma)	1.738 (62.1)	.55 (46.3)	90.8
Pange Variation (2)	.06 (20.9 ma)	.06 (5.0)	08 (6.7)	0.8
	1.0 ,021 (7.3 ma)	1025 (2.1)	14.5	0.9
	.064 (22,2 ma)	.074 (6.2)	.028 (2.4)	31
	- con	17 (614)	116)	
Slope	5,896	.727	.561	90.8
Correl Coef.	.9999992	19999753	999954	JO 0 3

TABLE 6. - REPEATIBILITY OF EFFICIENCY MEASUREMENTS

Thruster	Beam Current	Efficiency Range	Std Deviation
J-1	.739	3.13	1,25
J-1	.739	2.98	1.03
702	.739	1.50	0.58
J-1	2.009	2.4	0.80
702	1.958	0.8	0., 31

TABLE 7. - DATA POINTS ARRANGED IN ORDER BY STANDARD DEVIATION

Standard		Range (percent		Beam		
Deviation	Range	of mean)	Thruster	Current	Vaporizer	Compression
.021	.06	1.0	702	1958	Main	0.05
.023	.06	4.5	J-1	2009	Cath	0.72
.024	.06	2.9	J-1	739	Main	2.08
.024	. 07	3.33	702	739	Main	0.05
.024	.06	7.6	702	739	Neut	0.00
.025	.06	8.1	702	1958	Cath	0.05
.028	.08	3.88	702	739	Cath	0.05
.028	.08	14.5	702	1958	Neut	0.00
.0285	.08	3.86	J-1	739	Main	2.08
.029	.08	24.0	J-1	2009	Neut	2.99
.032	.09	20.9	J-1	739	Neut	2.99
.044	.11	7.6	J-1	739	Cath	0.72
.045	.13	2.4	J-1	2009	Main	2.08
.047	. 14	36.2	J-1	739	Neut	2.99
.048	.13	9.29	J-1	739	Cath	0.72

TABLE 8. - COMPARISON OF AVERAGE DELTA VS SLOPE METHOD OF CALCULATION

	Beam	Efficiency			
<u>Thruster</u>	Current	Average Delta	Slope		
J-1	.739	85,2	85,3		
J-1	.739	84.5	84.7		
702	.739	76.2	76.3		
J-1	1.958	101.2	101,25		
702	2.009	90.8	90.8		

Lewis Research Center Cleveland, Ohio 44135

TRIM 122

Peply to Attn of:

6122

May 5, 1980

T0:

6122/J. F. DePauw

FROM:

6122/C. E. Siegert

SUBJECT: Report on Flow Tube Variation During Warm-Up/Start-Up

RFF:

Flow Tube Variation During Warm-Up/Start-Up (Test Procedure)

TRIM 105

OBJECTIVES

The purpose of this test was to accomplish the following:

- (1) determine the length of time required for the thruster to reach stability so that accurate flow data can be taken.
- (2) determine if flow rate changes when second thruster is operated.

INTRODUCTION

This test was performed using thruster J-1 with FM-3 power processor and thruster 702 with FM-2 power processor in 10 foot port of tank 6 in EPL. The thrusters were located in the center section of the 10 foot port and the power processors were mounted to heat pipes and located outside the 10 foot port.

A mercury feed system located outside the 10 foot port had individual feed lines to the main vaporizer, cathode vaporizer and neutralizer vaporizer of each thruster. Each feed line had a precision bore tube as the measuring instrument and a set of valves. The precision bore tubes were filled with mercury from a reservoir and then isolated from the reservoir. The mercury used by the thruster was supplied from the precision bore tubes.

Each tube had been calibrated prior to installation into the feed system. The following table shows the calibration constants for each precision bore tube. (When the calibration constant is multiplied by the number of millimeters of mercury that flowed in one minute the result is equal to equivalent milliamps of flow.)

J-1	main Vaporizer	346.4	ma- <u>min</u>
J-1	cathode Vaporizer	83.97	ma- <u>min</u>
J-1	neutralizer vaporizer	84.09	ma- <u>min</u>
702	main vaporizer	347.5	ma- <u>min</u>
702	cathode vaporizer	84.14	ma- <u>min</u> mm
702	neutralizer vaporizer	84.18	ma- <u>min</u>

For this test a compression test was performed on the mercury feed system for J-1 and 702 thrusters. The mercury height is noted in each precision bore tube. 10 psi is applied and the height is noted. If there is a change in height there is an indication that the feed line contains trapped gas. This trapped gas will cause inaccurate flow measurements. The results of the compression test were as follows:

702	neutralizer	0.00	
702_	cathode	0.05	cm
702	main	0.05	Cm
J-1	neutralizer	2.99	cm
J-1	cathode	0.72	cm
J-1	main	2.08	cm

The 702 compression was acceptable and J-1 as unacceptable for accurate flow measurements. Since the purpose of this test was not to obtain accurate flow data the system was used as it was. For that reason the data should not be used for absolute level of performance.

TEST DATA

The test data will be presented by discussing the series of figures attached. Complete raw data from the test is attached.

Figure 1

Figure 1 shows the sequence of events that occurred during this testing. On April 21, 1980 the thruster J-1 was started and flow and temperature data were recorded during startup. The thruster J-1 was operated overnight at a 0.75 amp beam to ensure that thermal equilibrium had been achieved. Then transient flow and temperature data was taken when the thruster was throttled from 0.75 amp beam to a 1.0 am beam. After four hours of operation at 1.0 amp the thruster J-1 was throttled to 0.75 amp beam current. Two hours later the thruster 702 was started.

Both thrusters were operated at 0.75 amp beam overnight. On April 23 data was taken on both thrusters while they were operating at the 0.75 amp beam current. The two thrusters were then throttled to the 2.0 amp beam current. Data was not taken until the thrusters had operated at the 2.0 amp beam current for 3 hours. The thrusters were then operated overnight at the 2.0 amp set point and data on both thrusters was taken on the morning of April 24, 1980. The test was then terminated by commanded shutdown of the thrusters.

Figure 2

Figure 2 represents a plot of the height of mercury in main, cathode, and neutralizer flow tubes during the warmup and startup of the thrusters J-1 and 702 and also the temperature of the vaporizers. The height of the mercury increases as the thruster starts to warmup due to the expansion of the mercury in the vaporizer and feed system. Then as the vaporizer temperature increases more the height starts to decrease as the mercury is heated enough to cause flow. Note that mercury flow exists in the vaporizers prior to "Beam On".

Figure 3

Figure 3 represents a plot of the flow of the three vaporizers in milliamps, a temperature plot of the J-1 manifold, total flow in milliamps, and thruster efficiency. The manifold temperature was taken by a thermocouple on the propellant manifold which is mounted on the rear of the thruster.

On the left side of the figure is the transient startup data taken on April 21, 1980. On the right side of the figure is the data after the thruster had operated overnight. Note that the efficiency and total flow of the thruster at about 13:00 on April 21 is about the same as the data taken the next morning. However, the contribution by the main on the 21st is more than the one on the 22nd. The cathode contribution is less on the 21st than it was on the 22nd. Based on this set of data it could be concluded that the efficiency and total flow has stabilized about one hour after the manifold temperature has reached equilibrium; however, the flow distribution between the main vaporizer and cathode vaporizer has not reached their final values.

Figure 4

Figure 4 represents the mercury flow as the thruster was throttled from 0.739 amp to 0.995 amp. Based on this data the total flow and efficiency at about 11:30 have stabilized to their final value, however, the percentage of contribution by the main and cathode have not reached steady state. The sudden shift in main flow rate at 11:00 has been attributed to refilling the feed tubes and gas being trapped in the lines.

Figure 5

Figure 5 represents the flow and efficiency data for both thrusters operating at a 0.75 amp beam current (0.739 actual). The operating point for thruster 702 had not been optimized, therefore, the efficiency is lower than thruster J-1. The purpose of this figure is to show that there exists variation in flow rate measurements of the thruster J-1 flow rates which did not have an acceptable feed system fill and thruster 702 flow rates which did have an acceptable feed system fill. It appears that at this power level (0.75 amp beam current) variation experienced in the measurement of flows was independent of the type of fill the feed system had. At the 2.0 amp level, the efficiency variations of thruster 702 (with a good fill) were significantly less than those of thruster J-1 (with a poor fill).

Figure 6

Figure 6 is a comparison of the flow data taken on J-1 when it was operating alone and when thruster 702 was operating. As can be seen the magnitude of the flow rates and the variations for a given measurement were the same for both operating conditions. It can be concluded that the flow rates of a thruster are not affected by a second thruster operating.

Figure 7

Figure 7 is the data plotted for thruster 702 starting about 3 hours after it had been throttled from 0.739 to 1.995 amp beam current. The data shows that there is slightly over a 1% variation in the main flow rate on April 23, and there is still about a 1% variation on April 24.

Data Variations

The efficiency data discussed above shoed more scatter than expected. In case of the J-1 thruster, apparently the gas in the feed system is a major contributor. However, it was also noted in the test that the mercury meniscus in the feed tube did not drop uniformly. The meniscus changed shape and seemed to stick at certain places. Stick-slip tendency at one place in a tube was repeated several times when the flow tube was repeatedly refilled to cause flow past the same area. The following data was taken to illustrate the

point. Time was marked when the column of mercury passed millimeter marks on the flow tube. Time variations show that the height change was not uniform.

The following table shows the time for the mercury level to move one millimeter. The data is for the main vaporizer feed tube for J-1. The two columns are readings by different people on April 23, 1980.

Time	Difference	Time	Difference	
08:16:47				
17:16	29	08:23:44		
17:47	31	24:10	· 26	
18:10	23	24:34	24	
18:47	37	25:05	31	
19:19	32	25:33	28	
19:45	26	26:04	• 31	
20:13	28	26:35	31	
29:38	25	27:02	27	
21:02	34	27:32	30	
21:40	28	27:51	19	
22:17	37	28:20	29	
22:42	25	28:49	29	
23:04	22	·	-	

This stick-slip tendency was attributed to unclean flow tubes.

RESULTS AND CONCLUSION

- (1) For the test configuration in EPL a stable total flow measurement of a thruster is possible one hour after manifold temperature reaches equilibrium or four hours after startup, however, the absolute value of the main and cathode take longer, possibly 8 hours.
- (2) An unacceptable fill of the mercury system caused inaccurate flow data regardless of how long the thruster operates at a given set point. When calculation of efficiencies for J-1 at 2.0 amp beam current are made, the efficiencies were 100%.
- (3) A variation of flow rates was obtained for the J-1 and 702 thrusters. This variation cannot be attributed only to the acceptability or unacceptability of the "fill" of the system. During the test it was noted that the mercury did not flow evenly in the tubes. The meniscus of the mercury did not maintain its shape. The uneven flow and meniscus are attributed to "unclean"glassware. (During post test tube cleaning, the tubes were examined under a microscope. The bore of the precision tubes was found to be rough and to contain some tiny pits

The bore is not as glossy-smooth as the outside of the glass. The volume of this roughness and the pits is inconsequential but it may account for the stick-slip tendency)

C. E. Siegert

cc:

6151/S. T. Gooder

6122/R. T. Bechtel

6122/J. E. Maloy

6122/R. J. Zavesky

6121/D. C. Byers

6121/V. K. Rawlin

6122/J. F. DePauw

,		•		• • •
· .		•	•	
		pdy State 0.25	Stead, State 1.0	2
These numbers re the data used to	present sta	0.75 Amp Beam 702 to	Amp Boto on 702 2.0 Amp Over night R Brom Dota on 702 or	un V
the figures for t	his report and	Overnight Pun Beam Transfert Ball on 702	on 702 2.0 Hinsp Bea	
(2) (3) steady S Amp Dat		np Date on J-1	J Amp Data on J-	
Stort-up of J-1 Ove J-1 to 0.75 at 0.75 / Amp Berni Beam	Amp Bo	and and 2.0 Amp	2.0 Amp Over night R Beam Data on J-11 at on J-1 2.0 Amp Bea	T-1 < 1.+ dema
Transient		/ 1 Ocom		
Dota on 3-1	Threight Data on T-1	(Com)	1	
Data on 3-1 1	Timesent 7-1 Data on 7-1 6:65 9:00 12:00 15:00	18:00 6:00 9:00	12:00 15:00 IE:00 6	:00 9:06 12:00 15:00
pc+5 ou 2-1	Data on 3-1	18:00 6:00 9:00	· 	:00 9:06 12:00 15:00 APRIL 21, 1980
C:00 9:00 12:00 15:00 18:00	Data on 3-1	18:00 6:00 9:00	12:00 15:00 IE:00 6	:00 9:06 12:00 15:00 APRIL 21, 1980
Data on 3-1 1	6:65 9:00 12:00 15:00 APRIL 22, 1980	18:00 6:00 9:00 APRIL	12:00 15:00 IE:00 6	:00 9:06 12:00 15:00 APRIL 24, 1980

:

•

131

FIGURE 7

TRIM 105- Flow Tube Variation During Warmup Flaures 702 Tubes Flow Flow TIME Tubes 1-1 Main Main CATH NeuT CATH Deut HR MN SC cm cm cm cm CM em 32.40 Pre Lt 30,50 SAVY 32.30 9 3045 | 32.95 30.75 30,75 32,40 9 32 00 32.95 32,3 30,50 30.75 30.75 32,34 32,40 30,50 93400 32,97 30.75 30,75 9 36 00 33,00 32,39 32,45 30,50 30.75 30.75 9 38 00 33,10 32,45 32,48 30,50 30.75 30.75 94000 33,20 32,50 32,50 30.75 30,75 30,50 942 00 | 33,29 32,60 32,53 30.75 30,75 30.50 133,35 32,67 34,75 9 44 00 32,58 30.75 30,50 Vibration ? 7 133.35 30.73 94600 32,75 32,65 30,75 30,50 33, 29 32.80 32,72 30,72 30,75 30,50 94800 133.11 32,87 32.79 9 50 00 30.71 30,77 30.50 95200 32,85 32,86 30,77 30,50 32,90 30.70 95400 32.41 on, 32.90 30,51 Neut 33,00 30,70 30.77 9 56 00 32,90 31.90 33,17 30,70 30,77 30.51 32.90 30,51 9 58 00 31.50 30,72 30,77 33.15 32,90 130,99 30,71 30.77 30.51 10 00 00 33.13 10 02 00 30.48 32.90 30.71 30,77 30,52 33.07 10 04 00 29.95 32,88 33,00 30,70 30,75 30,52 32.90 10 06 00 29,43 32.90 30,70 30,77 30,52 Fan Turned 10 00 00 23,92 32.80 32.75 30.70 30.75 30,50 32,70 10 10 00 28 .42 32,50 30.70 30.75 30,49 32,30 Fan Turned 10 12 00 77.97 30.70 32.62 30,69 30.47 32,05 32,50 30,70 30.72 30.48 10 14 00 27.60 10 16 00 27,21 31.80 32,46 30.70 30.72 30,49 30,49 10 18 ON 26.87 30.72 31,52 32,40 130.70 30.49 32,35 10 20 00 26,47 31.25 30,70 30.73 31.00 30,72 30.49 10 2200 26.05 32, 29 30,70 10 24 00 25,68 30.75 30,75 32.25 30.70 30.50 10 26 00 25.30 30,50 32. 23 30.77 30.70 30.51 10 12 01 24,90 30.27 30,70 30,78 32,20 10 30 00 24.50 30,00 30.71 30,80 32,15 30 , 5 5

NASA-C-8018 (10-24-51)

TRI	u 105-	Flow T	ube Var	ration	During	Warmu	<u>C</u>	.NG	······································
	1	eighi	t date	1 for	Figu	ves/2	1) = (3	
								4	
	TIME	1-1	Flow	Tubes	702	Flow	Tubes		
	HR MN SC	Main	CATH	NeuT	Main	CATH	Neut em		
	10 32 00	<u> </u>		32.10	30,72	30,80	30.57		
	10 34 00	l		32,00	30,73	T	30,57		,
	10 36 00			31,98	30.71	30,80	30,59		
	10 38 00	1 .	þ	31,93	30.71	30,80	30.60		
		22,57		31,90	30,70	30.82	30,60		
				31,82			30,60		
	10 44 00			31.73	30,72	30,82	30,60	Ream	On
	b 46 00			31.68	30.70	I	30.60		
	10 48 00					30.81	30.60		
	105000			31.60	30.71		j .		
	105200		27:0	30.51	"	30.88	30.60	1)21	0
	1054	19.79		31.45	30,71				
	1056	19.39	26,50		30.70	30,80	30.60	Eliospit	
	10:58	19.99	26,22	31.32	30.70	30.85	30.61	·	
	11:00	18.59	26.0	31.26	30.70		30.61		
	11:02	18.20	25.75	31.20	30.70	30.85	30.65		
	11:04	17.8	25.50	31,15	30.70	30.87	30,65		
	11:06	17.39	25,21		30.70		30.65		
	11:08	16.98	24.98	31.0	30.7	30.85	30.65		
	11:10	16.60	24.72	30.92	30.70	30.85	30.65		
	11:12	16.19	24.45	30.90	30,70	30.85	30.65		
	11:14	15.80	14.20	30.8	30.70	30.85	30.65		
	11:16	15.40	13.98	30,75	30.69	30.85	30.65		
	11:18	14.99	23.72	30.69	30.70	30.87	30.67		'
	11:20:10		23.5	30,6	30.70	30.87	30,67		
	11:22	14.2	23.23		30.70	30.87	30.68		
	11:24	13.8	23.0	30.50	30.70	30.88	30.68		
	11:26	13.41	22.75	30.45	30.70	30.89	30.69		
	11:28	13.00	11.50	30.36	30.70	30.89	30.69		
	11:30	12.60	22.21	30.27	30.70	30.89	30.69		

TRIM 105-Flow	, Tube	Variation	During	Warmu	P

	Γ	1			T		NG	<u> </u>
<u> </u>								
TIME		Class	Tubes	702	Flow	Tubes		
TIME	J-1 Main	Flow	 	<u> </u>	 			
HR MN SC	cm	CATH	NeuT	Main	CATH	Deut		
11:32	51.50	50.60	51.28			•		
12:32	39,10	42.68	48,85	30,60	30,80	30,60		
12:34	38.68	42,40		30,60	30,80	30.60		
12: 36	38.20	42.15	48.68					
12133	37.83	41.88	48,58					
12:40	37.42	41.60	48,50					
12; 42	37,00	41.32	48,40					
12 44	36.60	41.05	43,30					·
12 46	36.18	40.80	48.20					<u></u>
12 48	35.78	40,52	48.12	30.60	30.80	30.60		
12 50	35,35							
12 52		40,00	47.98	•				
12 54	34.52	39.70					, , , , , , , , , , , , , , , , , , , ,	
	34,10	39,42				·		
12 58	33,70	39,20	i					
13 00		38.95		-				
13 02	32,90	38,68	47.60					
	<i></i>	V 00	m 100				-	
		55,38			- (0.0		•	
13 40	48.75	50.70	54.45	30.60	30.83	30.64		
1/3 45	41,10	50.05	24,30					
13 50	76.68	77,35	54,04					
		45:69		, , , , , , , , , , , , , , , , , , ,			· · · · · · · · · · · · · · · · · · ·	<u> </u>
14 02		46.95			·			<u></u>
14 10 00								
		42,55						
15 10 30	10.00	38.55	50 60			1		
15 10 50	0 1110	0,70	70.00					
 							-	
						·		

J.O. 4 DATE 4-22-80

TRI	u 105-	Flow T	ube Var	ration	-During	Warmu	PE	NG. M.	med -
		72	ta for	+ Fig	ive (4)			
)				
1	TIME	1_1	Flow	Tubes	7. 10	Flow	Tubes		
		Main	CATH	 			Neut		
	HR MN SC	•	CA/A CM	em	Main	CATH	cm	•	
	07 12 00	56.50	55 90	56,10	29.68	30,05	29.85		
	07 22 00	1	1						
				55,40					
	074200	50,25	51.65	55,00					
	075200	48, 18	50,30	54,60		··			
	03 02 00			1			·		
ļ	08 12 00								,
	TH	Corre	UP 7	0 /	OA.	ot	0816		
	081700			1					-
			54.98						
				55,27	29,68	30,19	29,98		
-	0 } 23 00								
	08 25 00					· · · · · · · · · · · · · · · · · · ·			
	08 27 00					·			
 	08 29 00				29,70	30,20	29,99		
	083100								
ļI	08 33 00	21,40	53,15	54,93					
-	033600		C2 92	1100					
-	083600								
-	083700							· · · · · · · · · · · · · · · · · · ·	
	083900 084400					· · · · · · · · · · · · · · · · · · ·			
\vdash	084700	41.99	1105	57.60 CUUY				· ·	
	0854 00								
	8857 80			54.20					
	090400			54.04			,		
	090901		48.5	53.9					
	- /		47.88	53.76				·	
	091900	38.7	47.2	53.6	.	······································		-	
	07:40)	37. 35	46.6	53.46					
	092400	35.98	45.95	53.3					

DATE 41-22-80 ENG. STIEGENT TRIM 105- Flow Tube Variation During Warmup Flow Tubes 702 Flow Tubes TIME 1-1 NeuT Main CATH Main Deut CATH HR MN SC cm CM cm CM cm cm 45.31 093400 34.60 53.16 44.68 093900 35.22 53.00 31.87 44.02 52.85 094400 29.15 42,76 52,52 095400 26.4 41.4 51.2 100400 51.9 23,69 40.15 10/400 20.97 38.8 51.56 102400 10344 18.28 37.55 51.25 36,2250.93 104400 15.57 105400 12,87 35.00 50,61 Retill Tobes 55.87 In 5500 56,40 55,80 111500 50,84 53,18 55,20 51.88 54,88 112500 48.04 50.55 1/35 00 45.27 54,52 11 4500 42,50 49,30 54,20 11 5500 39.75 48.00 53,90 29,65 30,88 30.64 12 0500 36,97 146.78 53.60 changed "o" Pressurize hose 45,30 53,45 Liottle 3/4 back 1230 70

NASA-C-8018 (10-24-51)

RIV	u 105-	Flow T	ube Var	riation	During	Warmu	P	NG	···
	_								·
	. 4	÷ 4	·						
	TIME	7-1	Flow	Tubes	702	Flow	Tubes		
	40 2016	Main		NeuT		CATH	Neut		
	HR MN SC		cm	cm	cm	CM	cm.	<u> </u>	<u> </u>
			tle ba		1				
	12 35			55.40	 		(7) /2		
	1245		53,38			58,25	57,10		
			51.95						
	13 05		50.55						
			49,15	53.86					
	13 25	44.10	47,75	53,49					> .
	13 35 00	42.00	46.37	53,10					
			44.98	T	59.15	58,47	57.33		
			43.55					0371	3973
	14 05 00								
			40.78						
	14:	`/	eadin		3 & Vs	Set	py-	,	
	141		eadin			6,1	2		
	144700			7.3.7	2 70		. / .	C 22 1 -L	
			<i>\</i>	Trush		NOVA		STRIF	
		55,20	55.86	53,36		5P.75			
	1452 00				59,27		57,62		
	14-54-00					58,88			
	14 56 00					58.98			
	1458 00					59.04			
	1500 00	53,16	54,50	55.15		59.10			
	150200				59,75	59.20	57,95		
	150400		•		59,77	59,28	58,00		
	1506					59,30			
	1508					59.30			
	15/0 00	51.05	53.10	54.82		59.34			
	151200		, ,		1	59,40	. 1		
	15 14 00					59,40			
	15 16						over 60		
	15 18				-2116	91110		<u> </u>	
	1520	49,00	51.78	54 CA	52.60	59.40	5715		
	C-1019/10-3		21,10	07130	30100	177, TU	- /,/3		

RIV	N 105-					Warmu	<u></u>	NG	
••	• .	Dat	a for	FIQU	re (5)	\$(6)	·		
	٤.								
ان. .	TIME	1-1	Flow	Tubes	702	Flow	Tubes		
	HR MN SC	Main Cm	CATH	NeuT cm.	Main	CATH	Vert		
	1524 00				58,04	59.36	57,10		
	152600				57,80	58.80	>60	2	<u> </u>
	152800				\	ļ		Perkir	9.
	153000	46,96	50.40	54,15		57.14	760	1	8
	153200				57.10	57,12	55.2		ON
	153400					57.00	55,06		
	36					56.98	54,80		
	38				55,10	56.98	54.5	701	
	154000	44.95	49,00	53,85				5404	down
	4/23/8								
	070500	67 21	55,30	56.00	58,85	58,70	59.10	J. D.P	
	07 15 00		53.88		56.75			A ·	
	07 20 00				l .	55.65		78	
	072500					54.60		1	
	0730 ro		l I	t i		53.54	1	<u>_</u>	
	1		1			57.52			<u> </u>
	07 4000	40 93	50,72	54,47	51.50	51.48.	56.75		
						50.41			
						49.40			
						48.35		j.	•
						47,31			
						46,30		<u> </u>	
						45,28			
	0815					44,27			
	0830	Both			hrotti	ed from	n. O.7	5 to 2	. Offm
		Bear	n Cur	rent	-				
			j.						

J.0.

DATE $\frac{4}{23/80}$

RIM	105 - Flow	Tube	Variation	During	Warmup

							/	NG	
			Date	for	Figura	(7)			
					•				
	TIME	1-1	Flow	Tubes	702	Flow	Tubes		
		Main	CATH	NeuT	Main	CATH	Neut		
	HR MN SC	cm	cm	cm	cm	cm	cm		
	Thrus		both	a.v	2,0	amps			
	11 32 00	55,78	55,50	55.42	58,20	58.70	58,62		
	11 5200	45,08	52.72	54.30	46,34	57.15	57,51		
	121200	34,40	50,00	54.18	34,48	\$5,65	56,42		,
	123200	23,85	47,28	53.52	22.68	54.15	55,32		
	124200	18,60	45.88	53,20	16.75	53.40	54.77		
	125200	13.45	44.50	52.88	10.80	52.62	54,20		
			till 7	4			•		•
	12 5:00				58.28	58.62	58.70		
	1304	50.02	54.20	55:10	5230	57.90	58.12		
						57.10			
						56.35			
						55,52			
						Thro			
			1	, .					
	16 10 00	55.93	55,50	55,60	58,40	58,84	59,00	. : <u>5</u> 1	
						58.05		,,	
	16 30 00					57.26		• •	
7/ ₂₄	(80)		_						
	070200	55.15	55,08	55,30	57.60	58,68	58,50	` /- 5	
						57,90			·
		. 1	77			57.15		. 6	
						56.44			
·						55.72			
	1 · 1 t	-				54.99	4		
	0202	23,20	47.00	53.30	12.25	54.25	55.20		
		EFIL	!						
	0805	55.63	55.29	55.05	58.41	58.90	58.49		
			,						

DATE 4/2//80

			1								T]
Ti	ne	1	+1 To	emp	707	TE	MP		6	IMB.	AL TO	EMPS	
										02	1-1		
1	j	Tu	Tou	TNU	Tu	Tev	Tur		#/	#2	#3	mani	· •.
סע	MN SC	°C	2	20	ی ^ہ	°c	ا مح		ے.	00	200	mani- fold	
09	30	19	20	13	17	17	/3		21	2/	21	20	PRHT Hi
	3.2	19	21	13	17	17	13		21	21	2/	20	
	34	29	31	20	17	17	13		21	21	21	20	
	36	54	33	39	17	17	13		21	21	2/	20	
	38	86	80	62	17	17	13		21	21	21	2/	
	40	123	106	86	17	17	13		21	21	21	21	
	42	15-8	131	108	17	17	13		21	21	21	22	
	44	189	15-4	128	17	17	(3		2/	21	21	22	
	46	215	176	146	17	17	13		21	21	21	2-3	
	48	236	197	160	17	17	13		21	21	121	24	PRHTLO
	50	253	218	172	17	17	13		21	2/	21	25	, , , , , ,
	52	265	J33	182	17	17	13		21	21	21	27	
	53	762	238	186							,	-	VARON
•	54	271	241	210	17	17	/3		2/	2/	2/	28	. "
	55	-573	244				·						
	56	274	246	298	17	17	13		21	21	21	29	
	58	275	249	.310	16	17	13		21	2/	21	3/	
10		275	25-1	3 10	16	17	/3		21	21	21	32	
	02	276	253	310	16	17	/3		21	21	21	34	•
	04	276		310		17	13		21	21	2/	35	
	05	ا ا	256				· -						IG/H;
	06	779			16	17	13		21	21	21	37	
	07	276			7.								
	08	275		3/0	16	17	/3		21	<u>ス/</u>	a./	38	
	10	J71		310	15	17	13		21	21	21	39	
	12	264	308	_		16	/3		2/	2/	7/	41	CR = 1.1.
-	13	260		- ,			, 2				- ,	//	BEAM
	14		3/1			16	/3		21	2/	ارو	42	
	15		316									43)Es
	16		-316			-,,	12				-, , 	44	
<u> </u>	18	765	315	-78	1	16	13	1	21	21	7/	45	

1727 85 % 1118 TRIM 105-TEMPS DURING WARMUP

JO. - 4/21/80

							1]		
Tir	ne	1	1 70	emp	707	TE	MP		6	IMBI	LTO	MPS
										02	7-14	*
·		Tu	Tev	TNU	Tu	Ter	Tur		#1	#2	#3·	men I fold C
HR	MN SC	00	2	ے م	ی	۰ي٠	اع.		ے	°د	°ċ.	196
10	20	265	315	298		16	13		2/	21	21	46.
	22	265	315	298								47
	24	266	315	298			/3	·			2/	48
	26	266	314	298							21	50
	28	266	314	298								51
	30	266	314	298		16	13		21	21	2	52
	34	736	314	298							7/	55
		266	3/3	298								5%
	38	266	313	298						·	21	3-8
	40	265	3/3	292		· · · · · · · · · · · · · · · · · · ·						59
	42	266	313	298		16	13		21	2/	31	60
	48	246	3/3	198								64
	J52	266	3/2	278							•	67
	56	266		298		16	/3		2/	2/	2/	68
11	00	266		298								70
	04	266		298								72
	08	266		398								74
		266	311	298								76
		266	7//	292								77
	20	266										79.
		266	310	290								80
	28	266	3/0	298								92
		766	310	298		15	13		20	20	21	22
12	00	266	3/0	298			<i></i>					89
12	28	266	310	298								92
12	32	266	310	298	15	15	13		20	20	22	92
17		266	310	297								93
13	04 w											94
13	15											94
	3500											95
_	32 W											26
	(10.24. 19 00								l		1 ·	96
12	19 00					1 4 7						7 7

147

(3)

TIZI	M 105	5 - TE	EMP5	DU	RING	WAI	rmuf	, 	DATE	4/2	2/8	70
		1		<u> </u>	T	1	T		Γ	7	7	
		-	ļ						3			- 2-
111	ne	1	1 Te	EMP	707	- TE	MP		<u> </u>	}	LTO	EMPS
		1	ا برا	7		-	_		八	02	1-1	
		Tu	Tev	TNU	Tu	Ter	Tur		4/		#3	mani- fold
	MN SC		2	ے	ح ا	°c	<u>°</u> د		ے ا	°د	2°	
	07 00			294		16	14	<u> </u>	20	20	25	95
71	ROTT	KE =	1 A	30		· .	ļ	 	<u> </u>			0.7
<u>p8</u>	1600			294			· · · · · · ·				ļ	96
	1630		3//	292				<u> </u>				
	1700			390			<u> </u>	 				
 		278		289								
-	1800		310				<u> </u>					5 /
-				289				ļ				76
			3/0	289								96
			310									99
8		278	310	289			ļ					99
- 0	.06	278		~								101
9		278	310 310	289 289								102
9	16		310	289								102
9	37	278		289								103
	37		309	289								105
1 1	10	278	300									105
11	28	278		289								105
12			309		16	16	13		20	20	26	105
	30 00		the	TO	314				·			
				294		Priv	tout	26	59			105
	35 OU			294	-			·			.1	105
13	0500	267	3/2	293								102
	41	267	311	293							·	99
14	17 00	267	31/	293	16	14	13	26	21	21	26	98
14	30	14	rd ji	15%	12	5	V5	Set	P7			
			U					·			·	
-												
<u> </u>												
	(10-24-									L1		

P

TRIM 105-TEMPS DURING WARMUP

DA.

			T	F	T	T	T :	•	<u> </u>			T .
			ļ				 		ļ			
Tiv	ne	1.	1 To	emp	707	TE	MP			IMBI	L TO	EMPS
			,			•	*, * *	4	カフ	02	1-1	}
1		Tu	Tev oc	TNV	Tu	Tev	Tur	a .	141	# Z	# 2	mani-
HR	MN SC	ص.	0,	0,	ح ا	00	ا می		ے	°د	20	mani- feld
1	49 00	<u> </u>			17	17	7					98
14	5/30	-			24	28	20					
	5300				37	45						
	5400				47	58						
	55 00				60	72						
	56 00				74	85	60					
	57 00				87	99	71					
	58 00				99	111	81					
	5900					124	35					
	00 00				1.'	<u> </u>						
	0100				132	146	111					
	0200				143	156	1					•
	03 03		•		154	165					,	
	0400				163	174						
	05				172	-181						
15					180	188	150					
	07				189	193	155					
	08				196	198	160			-		
_	09				203							
15	71											
15					211	208	172	-				
	12					209	254					
10	/3											
15					219	214	325					
	15						358					
	16						372					
	18					220						
	20				٦	·						
	21				226	224	298					

C #01 (10-24-51)

•	TRI	M 109	5 - TE	Emps	Du	RING	WAI	RMUF)	J O	1/	22/2	80	<u>.</u> ·
				<u> </u>	7		. •	T	T)	- /-	1	1	-]
	Ti	ne	1.	1 70	emp	707	TE	MP			IMBI	LT	EMPS	3
						8	<i>5.</i>				02	1-1		
	מנו	441) 66	7v 0c	Tev %	100 C	T,	oc oc	Tur		#/ °C	2°C	#3 °C	Mani- feld	
		MN 50 24 00						335					<u> </u>	1
		26 00	1					377					 	1
		2800	1			223		380						1
		29 30				219	330						ļ	1
		3100						382			· ·		<u> </u>	1
		3200	1					379		2000 C	N		97	1
		33 00				236	253	335	1				1	1
		34 00						332				٠.		j •
		3500						332				,		1
		34					228							1
	1 -	37					218							1
	15	38						288						
	15	39 30										,		7-3 63
	16	الثاون	266	312	293	238	346	331		22	22	26	97	702 01
7			7				,							15 3
	4/	23/8	0										·	į
ł							1							
	07	00 00	266	311	293	247	314	330	·	28	29	28	98	
	08	46 00		311			314			28	28	28	98	
	08	48 XX	Com	mau	4	Both	TA	VUST	c15	カナ	trot	1/0 7	υ Z,	OH .
	08	55 XX	Boy	KT	vust	ł 1	at		OA					
	08	5600	<i>3</i> 03	315	287	1 1	313	319		28	28	28	98	
	09	3700											121	
	10	06 00	,										131	
	10	22+0											134	·
.	10	59 00											137	
	//	38 00											138	
	12	0400	303	312	289	287	280	220					138	
4		130												
•		6400		297	320									Stuble
	07	0400	304	31(239	286	277	320		33	33	32	138	stable of Zwa both of
	C 801	(10-24-	51)							•				both th

		-			. •	<u></u>	•	1.		J 0.	·····		
No. of the State o		14	ROT	TLE		20	WI	V		DATE	4/2	4/8	30
•			1	<u> </u>	<u> </u>	<u> </u>	T .		T	<u> </u>	T	Ì	<u> </u>
			J.	+1	1			171	DZ	-		•	
								1, –		ĺ			
÷		Tv .	Tou	Tw	TM	ľ	TI	Tev	TNV		7	IME	-
JB = 2 A		304		289	137	<u> </u>		278	320			52	40
JB - all				 		27/6		70	0.	75			,
		268.	304	296	136		256	3/8			1.0	04	
		268	305	295	125			3/8	330		10	24	
				294			, , ,	318			10	36	
			305	. /				319	330		10	46	
		268	305	294	109		245	319	330		11	02	
•							·	·					
•							·						
·													
							·						
										·			
·										· · · · · ·			
		·											
,											h mind		
			•										
•													
·	·												
•													
										•		ì	
					·								
• .													
•										 ,			

APPENDIX C ACCEPTANCE TEST DATA

APPENDIX C

ACCEPTANCE TEST DATA

This appendix defines the symbols and equations used in this report for describing the thruster characteristics and reducing data. Tables and curves presenting the more important data from the acceptance tests of the retrofit thrusters is included also.

1. Symbols, Definitions and Equations

The symbols for the thruster parameters which follow are related to the power supplies and test circuit as shown in Figure C1.

a) DIRECTLY MEASURED PARAMETERS

SYMBOL	SUPPLY IDENTIFICATION	DESCRIPTION
V _{MV}	v ₁	Main Vaporizer Voltage
v _{cv}	v ₂	Cathode Vaporizer Voltage
V CH	v ₃	Cathode Heater Voltage
AlH	v ₄	Isolator Heater Voltage
Y _{NH}	V ₅	Neutralizer Heater Voltage
V _{NV}	٧6	Neutralizer Vaporizer Voltage
V _{NK}	v ₇	Neutralizer Keeper Voltage
V _{CK}	ý,	Cathode Keeper Voltage
v _D	e ^V	Discharge Chamber Voltage
VAS	v _{ro}	Accelerator Supply Voltage
V Accel		Accelerator Potential
v _s	y ₁₁	Screen Supply Voltage
٨		Beam (Net Accelerating) Potential
V _{MS}	42	Magnetic Baffle Voltage
Y _G		Neutralizer to Ground Coupling Voltage
٧		Total Accelerating Voltage

Fig. C.1 Acceptance Test Circuit Diagram

SYMBOL	SUPPLY IDENTIFICATION	DESCRIPTION
JMA	\mathfrak{d}_{1}	Main Vaporizer Current
JCA	\mathfrak{I}_2	Cathode V. porizer Current
^Ј СН	\mathfrak{J}_3	Cathode Heater Current
J ^{IH}	J ₄	Isolator Heater Current
JNH	\mathfrak{I}_{5}	Neutralizer Heater Current
J _{NV}	J_6	Neutralizer Vaporizer Current
JNK	J,	Neutralizer Keeper Current
^Ј ск	J ₈	Cathode Keeper Current
JE		Cathode Emission Current
J _D	. J _y	Discharge (Anode) Current
J _{Acce1}	J ₁₀	Accelerator Orain or Impingement Current
J _S	งก่	Screen Current
J		Beam Current
ž _{M8}	J ₁₂	Magnetic Baffle Current
G		Neutralizer to Ground Clamp Current
T _{MV}	•	Main Vaporizer Temperature
TCV		Cathode Vaporizer Temperature
T _{NV}		Neutralizer Vaporizer Temperature

b. VALUES OBTAINED THOM EXB PROBE

α Thrust reduction factor due to doubly charged ions

F_T Thrust reduction factor due to non-axial ion trajectories

± 4, 43,00,001,103

Jb Singly charged ion beam current

 J_b^{++} Doubly charged ion beam current

c. DIRECTLY MEASURED PROPELLANT FLOW RATES

 \dot{m}_{MV} Main Propellant Flow Rate

 $\mathring{\mathbf{m}}_{\mathbf{CV}}$ Cathode Propellant Flow Rate

many Reutralizer Propellant Flow Rate

& RELATIONS BETWEEN DIRECTLY MEASURED PARAMETERS

 $V_b = V_S + V_D - |V_G|$, V

VACCET = VAS - VG . V

 $V_T = V_b + V_{Accel}$, V

 $J_S = J_b + J_{Accel}$, A

 $J_0 = J_E + J_b , A$

 $J_b = J_b^+ + J_b^{++}$, A

e. CALCULATED POHERS

4. OTHER PERFORMANCE CALCULATIONS

$$\gamma$$
 = Total Thrust Reduction Factor = αF_T

β = Discharge Chamber Utilization =
$$\left[\frac{Y}{F_T}(1 + \sqrt{\frac{2}{2}}) - \sqrt{\frac{2}{2}}\right]$$

Corrector Factor

$$\dot{m}_{\tau}$$
 = Total Propellant Flow Rate = $\dot{m}_{MV} + \dot{m}_{CV} + \dot{m}_{NV}$, A eq.

$$n_{mD}$$
 (unc)= Uncorrected Discharge Propellant Utilization = $\frac{J_b}{\dot{m}_{MV} + \dot{m}_{CV}}$ x 100, %

$$\eta_{\text{tnD}}$$
 = Corrected Discharge Propellant Utilization = β η_{mD} (unc) , %

$$n_{m}(Unc)$$
 = Uncorrected Total Propellant Utilization = $\frac{J_{b}}{m}$ X 100, %

$$n_e$$
 = Electrical Efficiency = $(\frac{J_b V_o}{r_t} \times 100)$, %

$$n_T$$
 = Corrected Tatal
Thruster Efficiency = $Y^2 = \frac{n_e n_m(Unc)}{100}$, %

F = Corrected Thrust = 2.0391 Y
$$J_b \sqrt{V_b}$$
 , mN

$$I_{SP}$$
 = Corrected Specific Impulse - 100.08 Y $\frac{J_b}{m_t} \sqrt{V_b}$, sec.

2. Thruster Performance Data and Characteristics

The data contained in the following pages is organized by thruster and is comprised of the following:

- Acceptance Test Data/Performance Summary
- Magnetic Baffle Current Characterization and Reference Selection
- Neutralizer Characteristics and Reference Selection
- Ion Optics Characteristics (Perveance) and Minimum Extraction Voltage
- Minimum Discharge Loss Characteristic

ACCEPTANCE TEST DATA/PERFORMANCE SUMMARY

	TECT NA.	NT		l .			Γ		ñ -		<u> </u>	1	
	TEST POI		1	2	3	4	5	6	7	8	9	10	
	V _b	V.	1100	1100	1099	936	1101	819	700	1161	600	(CO)	
	J _b	A	1.998	 	1,445	1.594	1.303	1.302	1.000	1.751	1.752	525.	
1	V _D	V	32.01	30.97	3707	33.05	33.02	32.00	3200	31.48		31.00	<u> </u>
ERS	JD	Α .	14.0	14.0	13.4	11.59	9.8	9.8	8.0	6.51		}	ļ
¥	JE	A	12.0	15-0	11.4	10.0	8.5	8.5	7.0	5.76	5.76	5.74	
PARAMETERS	Јмв	А	2.60	2.60	2.6	2.90	3.10	3.10	3.30	3.30	3.30	3.30	
	V _{СК}	V	3.92	3.99	406	4.62	4.97	4.88	5.7A	6.58	6.55	6.64	
OPERATING	Jск	А	1.02	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.03	
ERA.	VAccel	V	-308	-307	308	-304	-306	-301	749	-304	-296	-246	
8	Accel	mΑ	3.31	357	3,50	2.49	1.93	2.17	1.57	1.80	1.24	1.31	
}	^V NK	V	13,38	13.43	13.40	13.49	13.31	13.33	13.89	3.70	13.70	13.71	
ľ	JNK	А	1.80	1.80	1.80	1.80	1.80	1-80	1.80	1.80	1.80	1.80	
	v _G	V	9,47	9.47	9.46	9.38	9.35	9.28	9.16	9.18	9.02	9.06	
1	T _{MV}	°c	349	349	349	340	332	333	3>>	311	311	312	<u> </u>
	T _{CV}	°c	335	337	333	350	347	345	352	355	355	357	
	T _{NV}	°c	291	291	289	298	297	298	248	302	303	303	
	ṁ _{MV}	eq. A	1.993	1.445	1986	1572	1.305	1.302	1.05	76	.754	.781	
	фСЛ	eqA	.056	.060	.053	.078	.072	.665	. 080	.086	.584	.087	
FLOWS	ṁ _{NV.}	eq. A	.023	.024	.023	.027	.027	.023	.027	.031	.630	.031	
E	^m t	eq. A	2.072	2.079	2.062	1.677	1.404	1.390	1.122	. 881	. ६७३	.849	
	η _{mD} (unc)	i3 13	97.5	97.2	57.8	96.6	94.6	95.2	91.3		-84.2	866	
	חות	ž	93.7	94.1	94.4	94,4	43,2	43.8.	90.5	1.88	88.3	86.4	
	ກ _{າກ} (unc)	a <u>y</u>	96,4	196.1	96.8	95.1	92.8	93.7	89.1	85.2	86.1	83.6	
POWER	P _b	И.	2198	2197	2193	1492	1435	1066	700	827	451	451	
P0	P _V	W	12.41	1300	1230	1364	13.98	13.88	14.36	15.53	15.53	15.34	
	Pt	Й	2647	2634	xy	1874	9071	1397	982	1070	692	686	
	ne	c'.	83.0	83.4	83.6	796	81.3	76.3	71.3	77.3	65.Z	ST	
¥	α		.9773	.9814	.9796	.9855	.9911	५००	.9951	,498)	9494	.9985	
BEAM	FT		.9880	.4850	.4884	.4873	.4 443	.4843	.9४७४	.4877	.4881	.9883	
	γ		1	.9696								1	
	В			.9681									
	J _b ++/J _b +			.८७६७					.0164		.0013	1	
.;	r r	%		75.3								S3.S	
MISC.		mii	i	130.0	·	1			J		37.1	37.1	
,	sp n.	S	3091	3091	3103	3833	3022	<u> </u>	3350	7161	2085	7074	
	Ptank	pa	8.6	1.18-4	1.18-41	[.024	1.26	(.0 ⁻ >)	1.4(5)	474	4.34-5	4,267	

_ خ	. \ _ =	1 _ 1	13.1		١.	D (· C 1		ساء		y hr	us T		28
_>@ 		Test		d re	7,0	1281	-416	. Cur	vento	>:		_		•
			**********	~						- -				
F														
[-										. <u>.</u>				
				ļ	1 1									
Ė														
}														
ŀ														
E														
-														
• [
	H-a	4.0-									11			
ŀ	e e	3												
}	++h						1 1 1 1							
-	11													
Ī	7			<u> </u>										
t														
. [
Ė	ر ن			 		0-								
F				•			N -							
Ī	رن	3.0												
ţ														
	- 6									ļ				
}	C							 						
.													•	
								1						
		1												
	9	<u> </u>										ļ		
	2							L						
		-20				1						~ =		!]
			γ	۵	11.	٠	ļ	,0 1				ξ. ε	0	
				<u> </u>	Be	am	C	144	: ~ t	· J.	A			
								1) <i>F</i>)			
	L			·		~							J	

Thruster___ JZ TP-6 5b=1.3A

·		THRUSTER J)
		TP-7
		Jb= 1.0A
		0 1.073
Z		
1.21.1.1.5		
760		
	· · · · · · · · · · · · · · · · · · ·	
30		
2		
0 6		
73.7		
F-3-1-		
9		
05.8		
3		
<u> </u>		Y Y Y Y Y Y Y Y Y Y
3		
51		
3		
370 +		
à		
١٠٠٠ کړه		
		/@
		•
Ď		
0350		
D I		
6.5 D.6 2.3	14 2.6 28 30 3.4 3	3,4,3
Man	atic Bassla Curant T	
1,199,1	etic Baffle Current, J	Way The

MON KEUFFLA ESSER CO MAIGNUSA

<u>Sel</u>	cct	<u>ed</u>	Ne	0 tv	1/20	5 N /	<u> </u>	24	. /	/- N	SN	815	
	1+0								-	,			
											•		
									- -				
	 			·					-		٠		
									<u>. </u>	,			
					<u> </u>				 -	<u> </u>			
									i	<u> </u>	<u> </u>		
		·				l	<u> </u>		!				
							ļ		1	1	1		
					ļ		!		<u> </u>	ļ			
										 			i
									i				
					<u></u>						 -		
										<u> </u>			
	-		<u></u>				1	<u> </u>					
										 			
			!						<u> </u>	 			
									!		<u> </u>		-
<u>2</u>	15						<u> </u>			<u> </u>			
<u> </u>	1		·	:						+==			
	5		ļ	1	<u> </u>								
1	<u> </u>		<u> </u>						<u> </u>	 	-		
a										 	1		
• • • •	~~~			<u> </u>	<u> </u>		 		<u> </u>				
							3		İ	<u> </u>			
十士	'				- 3		-						
			<u> </u>	<u> </u>									
			!					0				-	
	13									!===			
o									-	 			
5			<u> </u>										_
<i>,</i>					 		 						
										ļ <u> </u>			
	12			!						 			
له)———	ļ					 	 					
	·		·							1			
	·									 			
<i>></i>									+				
-	-11		:							-			
	ļ.———		-								:		
	·												
		E		1									
										1			
	10			τ		-							
		6	2	3	6 ,	B = I	.01	.a	.4		1.8		
								<u> </u>					
				Bec	λ.γν.	C	446	~F	J.	- P			
	<u> </u>	ļ		-			-1	<u> </u>	ים	ַ ַ ַ			
				!									

Thruster J2

	Veutralize	r Choro	cteristi	<u>c </u>	IV-N SN 815
					,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
				- 	•
					•
					•
					J
				-J _b	VWK min
			TPI	2 A	11.31
			T D 1		
			TP4	1.6 A	11.5 V
			TPG	1.3 A	11.33
		The state of the s			
			TP7	1.0 A	14.83V
			T-P-9	.75A	11.631
				40 011	13.00V
18+					
17			<u> </u>		
		-			
			(1		
0 16		- P	<u> </u>		
<u> </u>			<u> </u>		
15			AT.		
->>		- CV+7	(-	
		(7)(-1	X	G CI	
0-14		O31	122		
υ			m-22	- KJ	
			Je 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A T	
7,7				X	
<i>U</i>			-1-3/ X		
13					
				O	
3					
2-10					
25	0 240 270	०१६ ०४६	300 310	. 3€0 . 3	30 340 350 360
	110 41-11			70	12 T 00
	- Neu IVAI	1561 10	ASA LEGA	icmbe	rature, Thuy, oc
·					·

K-E 10 × 10 TO THE INCH+7 × 10 INCHES KEUFFEL & ESSER CO. MINK IN U.A.

•							•	,	· · ·			i	
	TEST POI		1	2	3	4	5	6	7	8	9	10	·
	ν _b	٧	1101	1100	1100	940	1099	317	695	1099	597	596	
	J ^p	A	7.007	2.002	5,003	4.600	1.300	1.297	.997	.751	.750	750	
	V _D		32.0	.31.0	320	25.0	32.0	9.75	37.0	32.0	32.0	31.0	
SR.	JD	Α.	14.0	14.0	13:4	11.6	9.8	9.8	Ø.0	6.49	4.49	6.49	<u> </u>
Ē	JE	Α	12.0	12.0	11.4	0.0	8.S	8.50	7.0	504	5.74	574	
PARAMETERS	J _{MB}	Α.	2.1	2.10	٥١.٤	2.5	2.70	0٦.۲	290	3.00	3.00	3.00	
4	VCK	٧	4.30	4.22	4.30	4.80	5.31	5.34	5.99	672	4.75	6.88	
OPERATING	J _{СК}	A	957	,457	958	اع (م)	.457	967	954	456	.967	.453	
[<u>8</u>	V _{Acce1}	٧	-340	-340	-340	-336	-341	-324	-331	-339	-328	-327	
9 9	Acce1	mΑ	4.14	4.11	3.90	٦.46	1.93	٦.٤٦	1.75	1.10	1.35	1.52	
	V _{NK}	٧	15.08	14.70	14.72	14.99	15,34	15.28	15,71	15.73	15.72	15.80	
	JNK	Α .	1.8!	2.10	2.10	1.31	1.81	1.81	1.81	18-1	1.81	1.80	
	v _G .	٧	1055	10.61	10.61	10.84	10.96	11.09	11.14	1	10.40	11.16	
	T _{MV}	°C	314	313	311	309	297	296	787	ವ್ಯಾ	275	174	
	- T _{CV}	ОС	326	330	321	336	340	338	338	·	344	357	
	T _{NV}	°C	298	306	304	304	30%	306	309	316	311	316	
	m _{MV}	eq. A	1,971	2016	2.002	1.593	1.28	1-394		754	755	.716	
	фсv	ecA	.073	.018	.065	.084		.090	i	,103	.103	144	
FLOWS	ψ ^{NΛ}	ed• y	960.	.027	,030		:029	:030	.034		.036	850,	
급	m̂t	eq. A	2.570		7.097		i	1.414			.894	1	
	π _D (unc)	्रा । 3	98.2	 	96.9	95.4			90.6	87.6	87.4	872	
	ηπο	ő .	92.5		91.8		90.5			86.2	1	85.6	
	η _m (unc)			94.4									
E E	P _b	W	ĭ	2002		,		:					
POWER	P _V	W		11.42	1			,			7		1
1.	Pt	й	264	1	i		1763			;	,	1	1
	·n _e	of /2	83.1	;	83.5	1					64.8		-
Σ	α			19721			:				:		
BEAM	F		ī — —	7877		1				,			
	γ		1	.9601						1		1	
	В			1.7525	*								
	J5++/J5+			1051									
1.	. ٦٢٠	.*,	73.1	154	730	69.2	69.7	64.3	53,4	(01.6	51.3	51.8	
SC.	F.	mN	129.3	1300	1296	96.3	84.9	172.9	52.0	49.6	36.3	136,4	
-			115.10						· *				
MISC	I _{so} P _{tank}		3066	3008	3033	2771	2950	2531	2249	2714	1993	1992	

175 .

			1.	Thro	stev_	T3
			·		-P-	
						1
	• • · . · . · · · · · · · · · ·				7P.	= 2.0 A
		1				
				•• • • • • • • •		
<u> </u>		\wedge				
		Y •				
_4.4-						
+++++						
74.8						
3						
- V						
4.7						
3						
4.6-		ļ				
		,				
		. '			IV-C	SN 825
360						
1						
è						
الم الم		2-4				
0						
1230-	1 1 1 1 1 1 1 1					
- d						
- o						
二十						
520 a.	o 2,2 3.	4 26 3	3 3.0 B	2 3.4 36 rent Jin	38 4	0
	Magne	tic Baf	fle Cur	rent Jus	A	
	! !		¦		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

ぜ 176

Thruster___ J3 TP-4 Jp=1.6

K. 10 X 10 TO THE INCH . 7 X 10 INCHES

Thruster___ J3 TP-9 $J_b = .75A$

						5 × ×			•			•	
יען	+1,c	غرم د	\$						•				
												٠.	
		<u> </u>										•	
		 			<u> </u>								
	1		:						!	. –			:
	1 1 1 .				!								
					-								
	<u> </u>		!			1 1			1		<u> </u>		<u> </u>
			!										
													
			:		<u> </u>						<u>: </u>		
H	1 - 1	-											
		1					Ţ						
			<u> </u>			<u></u>							1
		-	-						1			 	
	10			i	•	<u> </u>					<u> </u>		
111			!						1		<u> </u>	 	+
													
							,		1 . 1 1		1 1		
 	++++	+	 - . .		,			-3		-	 		+
	>											(3)	
	15		1							<u>></u>		-	1
	! y										<u> </u>	\rightarrow	
	1												
	>	1	<u> </u>						<u> </u>		1		<u> </u>
1	+	- 	+		 	1			 	 	 	 	+
	a		1				!		1				ļ:
	14		<u>† — — </u>		<u>. </u>	 	i 1			1	<u> </u>		
1 1	0			-	:		-				-	<u> </u>	+
	1												
1111					<u> </u>						· · · · · · · · · · · · · · · · · · ·		
-					1					-		 	
									1 : : : :				
	2 13				1	1	<u> </u>	1	<u> </u>			<u> </u>	<u> </u>
1 1			1	-	! 			-	+	 		 	
	J												
	J		<u> </u>		<u> </u>		<u>!</u>		<u>:</u>	<u> </u>	!	<u> </u>	
 	Y		 	 		 	 	 	 		+		+
											1	ļ	
	> 13		·			<u>i</u>			ī	<u> </u>	<u> </u>		
+ + -	راد ا		 		!		1	 	1	 	+	 	+
			1							1			
	<u> </u>		.		1	İ	1		<u>'</u>	 	1		1
	b			1					<u> </u>	<u> </u>	 		+
	- 3		+				•			-	-	-	-
	1-1-1-1	1	· · · · · ·	 	ļ. ·	ļ							
 	3	<u> </u>		-	!			1	<u> </u>	<u> </u>	-i		!
	2	-	1					F				1	
			1 -		 	<u> </u>	,			 		1	1
1 1				 		<u> </u>		<u> </u>		<u> </u>	1	1	+
				1		Ţ		<u> </u>					
	- 10	. 1	<u></u>	·			·			<u> مر</u> .			
		- O	· &	•		بال ا	.0 1	٠٠. ١	<u> </u>	العاد ان	<i>.</i>	ــــ ص	
1		-								1:	,	1	
 				to	LM.		rre.			! 🔼		1	
		-,		. — — -						, , , , ,			-, .

Thruster J3 Neutralizer Characteristics IV-N SN. 917 9 A 1.6 A 1.0 A -INHV-OFF J. 2.1 250 260 270 280 290 300 310 330 330 340 350 360 Veporizer Temperature, Thu, oc

AND A MUNITIE & LINGER CO., MADE OF USA

THRUSTER

,t,

houster Ja

	TEST POI	NT	1	2	3	4	5	6	7	8	9	10	
1	V _b	٧	1103	1103	1103	943	1101	820	701	1100	ω	599	
	J _b	Α	1	€00,5	·		1.249		1.0	.751	.75	751	
	V _D	٧	32.0	31.0	32.0		32.0	T	32.0	33.0	320	31.0	
RS	JD	Α	14.0	14.0	13.4	11,6	9.8	9.8	8.0	4.5	6.51	6.49	
PARAMETERS	JE	Α	0.61	0.61	11.4	10.0	3.5	8.5	7.0	5.76		574	
1RA	J _{MB}	A	2.71	2.80	08.G	3.0	3.3	3.40	3.40	3.5	3.50	3.40	
1	VCK	٧	3.92	4.08	4.12	4.60	5.06	5.15	5.82	6,52	6.67	6.76	
OPERATING	JCK	A	934	.455	.453	.452	.451	.452	.950	.451	432	954	
RA.	VAccel	٧	-338	-338	-339	-335	<u>-338</u>	<u>-33a</u>	-329	-337	-326	325	
8	JAccel	mA	4.02	4.07	3.42	2.95	70.6	2.47	1.84	1.08	1.39	1.41	· ·
1	V _{NK}	V	12.44	13.03	13.03	13.10	13.21	13.09	13.20	13.31	13.33	13.31	
Ì	J _{NK}	A	1.82	1.81	1.80	1.81	1.81	1.81	1.81	1.80	1.81	1.81	
	V _G	٧	9.39	9.57	9.59	9.51	9.68	9.52	9.69	9.99	9.77	9.79	
	TMV	°c	726	248	296	288	186	781	273	<u>a</u> @	264	264	
	TCV	°c	348	353	345	356	359	361	363	367	368	370	
Į.	TNV	°c	245	246	242	300	3∞	303	30€	310	310	313	
,	ṁν	eq. A	1.967	5.075	2.017	1.580	1.292	1.283	1.000	75 5	.758	コムン	
S	ψCΛ	eq. A	.075	080,	070.	E80,	101,	401.	.104	.116	911.	.113	
FLOWS	^m NV	eq. A	760.	.৩৯5	.028	9٤٥.	.035	255	,034	.045	,043	.040	
	. m̂t	eq. A	2.064	2.127	2.115	1.689	1.428	1.420	1.143	.916	.417	.915	
	nmD (unc)	% *	98.2	95.3	96.1	96.2	৭১.১	93.8	90.2	86.2	85.8	85.8	
	nD Out	%											
	ກ _{າກ} (unc)		96.9	94.2	94.8	94.7	91.0	915	87.1	0.63	લ .૪	82.1	
POWER	Pb	W	2515	2209	ععاع	1509	1430	1065	89	268	450	450	į
P0,	P v	W	11.6	11.9	11:1	9.61	12.0	13.2	13.7	14.3	14.5	14.5	
	Pt	Ä	১৫63	৯৫৭৫	2641	1840	1760	1406	979	1066	681	684	
	η _e	ر بھ	83.1	83.5	83.8	79,8	81.3	75.7	71.3	775	66.1	65.8	·
ВЕАМ	3		.9643	4718	.4649	רורא	9784	4782	.9834	9879	લવા	.4429	
BE	F _T		.9818	.9785	4782	9771	4767	.4778	4774	.4773	.4771	4779	
	γ		.9467	9509	.4482	.4494	.4556	.4565	.9612	4654	.4684	अगाप	
	β		4340	.4519	9478	.4517	.4631	9627	9717	4193	.4848	4579	
 	Jb++/Jb+		9 ì	1064	1	1	i	1	l	1	í		
	η _T	8 ×		71.2									
.×15C	F •••• · · · · ·		1582			i	1		1	L.			
1 1	sp .	S	3049	2976	7 488	2764	5887	2510	7598	7.27	1941	1954	
L l	Plank	pa	1.9-0	1.9-4	1,5-4	1.2	6.67	1.1	5.3	77.	4.5	33 7	

Sclected	Magnetic	Baffle	Currents	11102101 34
	9			·
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
				
4.0	·			
5				
- J		•		
5			•	
0				
U 3.0				
6				
3.0.5	j a A	.6	0 12 14	1.6 1.8 2.0
			Jr; e~ t, J	
	j j 	ひと ひんこう しょう		

Thruster_ta TP-1 5/= 30 A S/N 807 22 24 26 24 30 32 34 36 38 40 Magnetic Baffie Current, Juis, A [189 🗲

	Thruster	- 54
	Discharge Characteristics TD.	- 4_
	<u> </u>	B=1.6A
: / ;		
3		
J		
> 4.4		
3		
Š		
- ŏ		
2 4.8		
3		
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
4.7		
		V-C S/N 807
3		
380		
2		
5		
5		
0 360		
ಶ		
- 350	3.0 2.2 3.4 2.6 38 3.0 3.3 3.4 3.6 3.8	4.0
	Magnetic Baffle Current, Jins, A	
	ζ 190	

46 U/8U

IN " AT KEUFFEL & ESSER CO. MADE IN USA.

0,5 8,1 2,1 4,1 8.

THRUSTER

5/W J4

+

BURNING A CARGO

THRUSTER S/NJA

ACCEPTANCE TEST DATA/PERFORMANCE SUMMARY

	TEST POI	NT	1	2	3	4	5	6	7	8	9	10	
	٧ _b	٧	1087	1085	1086	940	1094	822	698	1098	605	604	i
	J ^p	Α	2.00	2.00	1.99	1.60	1.30	1.30	1.00	0.75	0.75	0.75	
	v _D	٧	32.0	31,0	32.1	32.0	32.0	32.0	32.0	31.9	32.0	31.0	
S	JD	A	14.0	14.0	13,5	11.6	9.8	9.8	8.0	6.5	6.5	6.5	
EE	JE	А	12.0	12.0	11.46	10.0	8.5	8.5	7.0	5.75	5.75	5.8	
RAM	J _{MB}	Α.	3.4	3.4	3.4	3,0	3,2	3.0	3,4	3.4	3,45	3.4	
PA	V _{CK}	٧	4.0	4.0	4.0	4.3	4.8	4.8	5,5	6.3	6.3	6.3	
OPERATING PARAMETERS	^Ј СК	Α	 	0,86	0.86	0.85	0.85	0.85	0,85	0.86	0,86	0.86	
RAT	V _{Acce1}	٧	338	338	338	334	334	334	331	327	327	327	
OPE	J _{Acce1}	mA	5,3	5.3	5.3	4.2	2.7	2.7	2.0	1.6	1.6	1.6	
	V _{NK}	٧	15.3	15,3	15.2	15.0	15.0	15.0	14.7	14.7	14.7	14.7	
	J _{NK}	Α	1.80	1.80	1.80	1.80	1.80	1.80	1.81	1.81	1.81	1.81	
	V _G	٧	10.6	10.6	10.6	10.6	10.7	10.7	10.8	11.0	11.0	11.0	
	T _{MV}	о _С -	308	3 09	310	300	243	294	284	a75	275	276	
-	Tcv	ОС	349	330	322	327	330	328	336	34	341	344	
	TNV	ос	316	316	315	318	324	325	331	337	338	337	
	m _{MV}	eq. A	1.943	2.090	2.100	1.610	1.317	1.350	1.053	0.788	0.777	0.807	
	т́СV	eqA	0,094	0.069	0,053	0,052	0,056	0,065	0,086	0.087	1.083	0.092	
FLOWS	m̈νν	eq. A	0,023	ì — — — — — — — — — — — — — — — — — — —									
F.	ṁt	eq. A	2.060	2.186	2.181	1.693	1.399	1.448	1./8/	0.924	0.898	0,945	
	ກ _{ກD} (unc)	%	98.2	92.6	92.4	96.3	94.7	91.9	87.7	85.7	87.2	83.4	
	η _{mD}	5/0	92.7	87.4	86.4	87.3	90.1	86.6		82.7		78.4	
	ກ _m (unc)		97.1	91.5	91.2	94.5	92.9	89.8	84.7	81.2			
POWER	Pb	W	2.174	2170	2161	1504	1422	1069	698	823	454	453	
. P0	PV	W	12.4			14.3		10.0	9.7		14.9		
	Pt	W ·	2626	2608	2595	1889	1751	1398	977	1061	695.	689	
	η _e	ay ,,	82.8	83,2	83,3	79.6	81.2	76.4	71.4	77.6	65.2	65.7	
₩.	α		.9671	.9670	9616	.4454	.9715	.9667	.9733	9797	9784	.9647	
BEAM	F _T		.9818	,9813	.9815	.9830	,9820	.9822	,9825	.9824	.9826	.9833	
	γ		,9495	.9489	.9438	.9293	.9540	.9495	.9563	.9625	.9614	.9486	
	β .			. 9437									
	J _b ++/J _b +	·	1	.1270						.0744			
	η _T	0 /0		68.5			68.7						
MISC.	F	mN .		127.5							36,2		
	¹sp .	S	3043	2863	2839	2695	2934	2447	2142	2592	1977	/853	
L	Ptank	pa	<u></u>] 200						<u> </u>	

46 0780

KAZ DEN DE DIE DELDE VERDEN DE DE

- 202 .

46 0/80

~ 204 /

NOTE TO X 10 TO THE INCH-7 X 10 INCHES

·香味品质。 化物质

208 -

5005

5/700

5 600

∑ 500

46 0780

Kezz profitt To the tre that a printer

142 REUFFEL & ESSER CO. MADE IN U.S.A.

Thruster J-S

46 0780

K.E. busine a restrict consultation of E.

				•			Min	imu	mEr						
														Ex(min) aVion	
į							- O K	9				0 4	1.6	4740	
		5						02				♦ Q	11.3	189.5	•
												4 9	.75	298 %	
		4												} 6 8	
		2613												C C)
	} }	7						89.5						H	
,	$_{\mathrm{M}} :: \mathcal{T}$	<u> </u>													
		,									4				
	_								J.A	8					
															4
															7 5 5 6
		1	60), < c	180		000	006 V T) v.9	210 ev ()	E T \	// 0 M	0	40 ASO	
															+05 J
							, ,	•				. —			5-5
1			(r					*	•			•	2 - 1	

2 S AND PRINTED TO PROPER TO COLUMN 10 PRINTED TO C

ACCEPTANCE TEST DATA/PERFORMANCE SUMMARY

	TEST POI	NT	1	2	3	4	5	6	1 I	6	9	10	
	V _b	V	1107	1106	1106	943	1101	820	703	1098	602	599	
	J _b	А	2.0	2.0	2.0	1.61		1.30		,7.5		,75	
	V _D	٧	32	31	32	32	32	32	32	32	32	31	
SS.	JD	A	14.06	14.0	13,4	11.81	9.84	9,82	7.98	6.51	6.49	6,51	
PARAMETERS	JE	А	12.06	12.0					i ————			5.76	
IRAM	J _{MB}	A	2.59	2.60	2.60	2,80	2.88	2,88	3,30	3,40	3,39	3,40	
1	VCK	٧	4.20	4.30	4.34	5,32	5,28	5,31	6.04	6.81	6.85	7.15	
OP ERATING	JCK	A	.983	.980	.981	956	.981	.973	979	981	979	.981	
RA.	V Accel	У	-340	-339	-340	-335	-339	-335	-331	-338	-330	-328	
OP I	'Accel	mA	3.54	4.00	3.76	2.20	1.93	2,41	1.54	1.18	1.14	1.34	
	V _{NK}	V	13.59	13,58	13,59	13.60	13,64	13.41	1348	1398	13,14	13.99	
	JNK	A	1.81	1.80	1.82	1.81	1.82	1.81	1.82	1.82	1,82	1.82	
	V _G	٧ .	10,36	10,39	-10.31 -	10.16	10.52	10,59	-10.75	-10.84	-11.32	-10.76	
	TMV	O _C	320	315	315	306	301	306	289	281	279	278	
	Tcv	°c	1	281			292			306	318	326	
	NV V	°c	1292	293	292	306	303	302	306	31.1	322	310	
	МV	eq. A	1.9.29	1945	1954	1.563	1,252	1.290	950	761	.759	,700	
S	_{μι} ςΛ	ea.mA	65,1	71.3	43.4	76.5	76.3	79.9	88.2	100,2	99.6	1563	
FLOWS	Vi ^d ii	ed. mA	33.4	20.4	30.5	39.9	34.9	48,9	40.9	54.1	<u>~75</u>	51.1	
it.	in _t	eq. A	2.028	2.037	2.028	1.679	1,363	1.419	1.079	915	.934	907	
	ⁿ 5(unc)	ກິ	100.3	99.2	100.1	98.2	97.9	94.9	96,3	87.1	87.4	87.6	
	^{ri} D	is .		95.0									
	n _{t(unc)}	er :	98.6	98.2	98.6	95,9	95.4	91.6	92.7	820	80.2	82.7	
POWER	Pb	11	2214	2212	2212	1518	1429	1066	701	824	452	450	
60	PV	W		9.42									
	Pt	M	1	<u> 2645.1</u>									
	n _e	65		83.6									
BEA.A	α -			9753									
BE	FT		.9857	,9851	.9845	,9862	.9837	9847	9836	9839	9843	.9838	
	γ		9680	9608	9572	<u>9584</u>	9674	9616	9720	9775	9769	,9785	
	7. 44/T. +			9579									
	J _b ++/J _b +		i	,0920		4							 -
ا ب	F	72 mN		75.8					· · · · · · · · · · · · · · · · · · ·				
HISC	I _{SP}		7	130.3		i i			1				 -
į į	Ptank			3140 1.1 ⁻⁴									
	LACIN	pa	11.7	1.1		1.3 _{213	1.0	1.2	3.1	1.0	1.064	0,1	

ACCEPTANCE TEST DATA/PERFORMANCE SUMMARY

	TEST POI	NT	1	2	3	4	5	6	7	8	9	10	
	V _b _	V.	1099			939		820	701		548		
	η _P	Α	loas			1.598		1.399			,750		
	٧ _D .	V	32,0			32.0		32.0	32.02		32.0		
SS.	JD	Α	13.48			11.60		9.50	8,0		6.51		
OPERATING PARAMETERS	JE	Α	11.48			0.0		8.5	7.0		5.76		
IRAM	J _{MB}	-A .	2.6			2.7		2.7	3.0		3.10		<u> </u>
4	^V CK	٧	4.36			4.93		5.55	6.33		7.16		
NI	^Ј СК	А	1.02			(.00		999	1.03		1.03		
RA.	V _{Accel}	٧	-307			-304		-301	-299		-246		
P P	^J Acce1	mA	4.16			309		1.40	1.85		1.48		<u> </u>
	VNK	٧	13.40			14.01		14.3	14.35		14.90		
	JNK	Α.	1.81			1.80		1.40	1.80		1.80		
	V _G	V	(1.0)			10.10		10.12	10.20		16.23		
	¹ MV	°c	316			309		302	292		383		
	TCV	°c	296	<u> </u>		363		30 <i>5</i>			315		
	NV	°c	288			291		245	298		244		ļ
	тму	eq. A	2010			1.613		1.312	1.035		.773		
6	^π cν	eq. A	.054			600		,065	.075		.680.		
FLOWS	MNV.	eq. A	.029			(031		.033	.०३७		360.		
1	m _t	eq. A	2.093			1.706		1.410	1.136		.842		
	ກ _{mD} (unc)	c/ /2	969			95.4		94.3	90.6		87.6		
	mD	υ/ 13											-
	η _{πι} (unc)		95.6			93.7		92.1	87.8		841		<u> </u>
POWER	P _b	M	2199			1501		1065	७१५		444		
8	P _V	W	8.56			873			10(9		11.76		
	Pt	h	2647			1889			980		690		<u> </u>
ļ	η _e	6/ /3	83.1			79.8		76.3	71.3	·	65.1		
ВЕАМ	Γ												
_ <u>~</u>	·		-								 		
	γ												
				·						-			-
	n _T	ey .											
MISC.	F	mN											<u> </u>
MI	sņ	S									-		
	Ptank	pa	1.2-4			93-5		9.0-5	6.5 ⁻⁵		'c:0-5		
						214 🗸	_a_						

				n a samuni Samuni Samuni	τ.	hrus to	2v 76
5	elected	Magne	tic Bas	fle Cur	renta		
E		- 0					
-						ان الله الله الله الله الله الله الله ال	
	 						·
E						A HARRY OF HELD	·
			<u> </u>				
ļ							
. [
F							
-			- 1				
·F							
. [
F							
ļ							
•							
ŀ							
ļ	40						
[4.0						
	1 1						
ļ							
. [11+1						
ŀ							
. [9					/	
-	 						
ŀ							
	$-\sigma$		0				
	1 3.0			0			
Ì					0	3	
							3
	50						
	д						
	A.U.	99	46	ז ַ ַ ַ כּוּד ַ בּ		e. 1/3. ÷	
. •					 		
-			Beam	Corre	マーナーゴ	, A :: : :	
		i	<u> </u>			• • • • • • • • • • • • • • • • • • •	
. '				215 —	——————————————————————————————————————		·

KOS 10 X 10 TO 111L INCHO / X 10 INCHES ESSEN CO. NAGEN USA.

				1 h	ruster	56
					TP-	- 4
. ,						
				•	ン	B=20A
5.2						D C
/						
<u> </u>						
5.1						
6		<u> </u>				
0 6					-	
		8			1	
3				3		
Ç		2		3		
8		0.0	5			
		<u> </u>	-0-0			
74-1						•
						
		-				
UAS		<u> </u>				
7.8					-	
				1		
					/V-c	5/1/814
330					IV-c	S/N 814
					IV-c	5/1/814
330					/V-c	S/N 814
330					1V-C	5/1/8/4
330					/V-c	S/N 814
330					/V-c	5/1/8/4
330					/V-c	S/N 814
330				3	/V-c	S/J-814
330				3	/V-c	5/1/814
330				3	/V-c	S/J-814
330				3	/V-c	5/J-814
330				3	/V-c	S/J-814
330			3.3	3	1V-C	5/J-814
330				3	/V-c	S/J-814
330			3 3	3	1V-c	5/1/8/4
330				3	/V-c	S/J-814
330					1V-c	5/1/8/4
20 00 00 00 00 00 00 00 00 00 00 00 00 0					/V-c	5/J-8/4
20 00 00 00 00 00 00 00 00 00 00 00 00 0		3-				5/0-8/4
20 00 00 00 00 00 00 00 00 00 00 00 00 0	0 2.3 3	4 3.6 5	¥ 3 C 3	3	3 6 3 8	5/1/8/4
20 00 00 00 00 00 00 00 00 00 00 00 00 0	0 23 2 Magn	4 3.6 5	¥ 3 C 3	3 3 3 7 2 7 2 4 7 2 4	3 6 3 8	5/0-8/4
20 00 00 00 00 00 00 00 00 00 00 00 00 0	o 2.3 3 Magn	3-	¥ 3 C 3	;a 3.4	3 6 3 8	5/1/8/4
Thodae Vaporizer Emberra	O 2.3 3	4 3.6 5	¥ 3 C 3	3 3 3 7 2 7 2 4 7 2 4 7	3 6 3 8	5/8/4

<u>C</u> 217

	THRUSTER S/N J6
	TP-6
	$J_b = 1.3 A$
	I a not to be not a label to a control of the contr
· · · · / · · · · ·	
<u> </u>	
J	
<u> </u>	
57	
J	<u> - - - - -</u>
	<u> </u>
156	
9	
1	66.00
55	
	<u> </u>
	1V-C 5/N 8/H
	1V-C 5/W 8/4
9	
3	
<u> </u>	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
ō	
B · · ·	
c/310	
- d	
, ŏ	96
J	
<del>  € 300</del>	
<b>a</b>	C 2.2 2.4 2.6 28 30 32 3.4 36 38 4.0
	Magnetic Baffle Current, Jins, A
. : . : !	
<u> </u>	

		THRUSTER SIN JG
		- アターフ
		Jb=1.0A
		· ·
70		
Ť		
oc's		
× 6.4		
ಶ ಶ	00000	
6.3		
		1V-4 5/N 814
- 7		
=======================================		
<i>2</i>		
<del>ं । । । । । । । । । । । । । । । । । । ।</del>	6-9-6	
<del></del>	0 22 34 26 27 30 23	34 36 39 40
	Magretic Battle Currer	
		and the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second o

			THRUSTER S/N J6
			T P-9
			J6= 75A
3			
30			
- i			
- K		9	
37.2		000	0-0-0
0 4 1:			
$\mathcal{C}_{1}$			
			1V-C 5/N 814
3			
÷330			
5			
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		سرم	000
000	0-0-0	0000	
2 310			
0 de			
1			
- 30 a			
	Magnetic Bar	fle Corner	t, J., A.
	• •	· · · · · · · · · · · · · · · · · · ·	

<u> 220 6</u>

	_									1	アペイ	, ,	<u> </u>	. 10
	Sel	ec+	حط	Ne	otro	باير	sr k	15.00	24	•				
-														
l	_V.o	140	دم ع	3										
ŀ	1111		-0-											
-	1 1 1 1					•			 					•
	<u> </u>									<u> </u>			•	, 1
	1 i i .							•		<u> </u>				
	++++					 	-							
ı														
ı														
	111									 				
										1				
						1				<u> </u>				
i							1 1	 				 		
				, ;						<u> </u>			-	
		11												
											!			
	+++	1 1 1 1 1 1							1 1 1 1	- :				
										1 1				
													1111	
		15												
	++++	13				Q		-						
		*												
. '	+++						(<i>></i>	0					
•	a	1						 			<u> </u>			
				11		ii				·		·		
	<u> </u>	14									—			
		14))	
		14		• • • •)	(3 —-	
	—— - -	14)		3	-
	—— - -	14									>==		3	-
	—— - -	14											3	-
	7	13)	-
													3	-
-		, ,												-
-														-
													3	-
-														-
		13												-
		13												-
		13												-
		13												
		13												
		13												
		13												
		13												
		13												
		13												
		13												
		13												
		13							2 1		6 (
		13					3	.0 .1	2 1	4 1				
		13					3	,o .1	2 1	4 1				
		13					3	,o .1	2 1	4 1				

, ()

46 0780

KONT 10 X 10 TO THE INCHO X 10 INCHES KUFFEL & LISER CO. MADE IN USA

グイン ナクラ

1.

-1

NOT 10 X 10 TO THE INCH-7 X 10 INCHES

		•	
		Minimum	m Er
			TOBA Exminavior
			0 4 1.6 1.6
			HHHHHHH & G G 111,13 128 5
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 [
1 1 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
<u> </u>	111111111111111111111111111111111111111		
226	┈┡┈╏╺┠╸┨╸ ╂╸╏╶╂╌╿╶┼╌╏╌┼═╏╌		
HIIIMIIIII			
			╏╃╃╃┩┡╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╃╇╇╇╇╇╇╇╇╇╇╇
7		Linnay day	
4			
0.5	+++++	180 140	3.00 3.00 3.00 3.00 3.00 3.50 4
	Discho	V. C. C. N. D. T. N. P.	er Energy Et, av/10x
			er Energy Et, avior
1			

•

·蒙古特别的人名英格兰人

	TEST POI	NT	1	2	3	а	5	6	7	8	9	10	i
	٧ _b	٧	1100	1047	1100	9 3 9	1101	817	697	1100	5 9 6	595	
	J ^p	A	2.004	1	2.002		1.300		.998	.751	752	752	
	v _D	٧	32.05		32,03		31.96		31.45	31.46	32.0	310	
SS	J ^D	A	14.02		13.40		980		80	6.49	6.44	6.49	
ETE	JE	Α	12.02	12.0	11.40	10.0	8.5	8.50		574	5.74	5.74	
PARAMETERS	J _{MB}	Α	2.90		2.90	3.00		3.40	3.5	3. 55	3.55	3.55	i
1	VCK	٧	4.12	4.11	t ———	4.45		5.14	5.71	4.50	(.97	6,55	
OPERATING	J _{CK}	A	1.02	1.02	1.02	1.02		1.02	1.03	(دن)	1.03	1.03	
RAT	V Accel	٧	-311	-311	-310	-306	-308		-30!	-307	-295	-299	
OPE	J _{Accel}	mA	4.32	4.50	4.46	1.607	2.43	פרנ	1.97	1.31	1.58	1.55	
	VNK	٧	15.83	14.64	15.94	15.99	16.67	16.67	16.48	16.85	16.83	16.85	
	JNK	А	1.82	1.80	1.80	1.80	1.80	1.80	1.80	1-20	1.40	(_&0	
	V _G .	٧	11.73	11.78	11.67	11.63	11.75	11-40	11.75	12-09	1201	1201	;
	T _{MV}	ОС	347	347	346	33T	329	329	319	309	369	310	ì
	· ^T cv	°c	346	347	337	341	350	344	349	354	354	354	
	T _{NV}	ОС	299	295	294	286	289	294-	292	277	281	276	
	ṁ _{MV}	eq. A	1.933	1.478	1.452	1.568	1.781	1.301	,994	.750	.759	.764	
10	^m cv	eqA	TT0.	.083	.064	269	.085	.083	180.	.090	.७९०	.091	
FLOWS	^m ̄ΝV	eq. A	840.	.652.	.627	'ດጛ୯	:030	,03 Z	,031	.034	.635	.034	
	^m t	eq. A	38.0.5	1.093	2.04%	1.663	1,396	1.416	1.106	.874	.884	.ક&૧	
1	η _{mD} (unc)	9	99.7	97.0	99.1	97.4	95.2	93.4	92.8%	89.4	386	88.0	
	η _{mD}	c. ,5	926	91.7	932	93.2	91.4	896	84.8	86.4	87.1	٤٥.٦	
	η _m (unc)		983	95.6	97.8	46.3	93.1	91.7	90.2	85.9	85.1	84.6	
POWER	P _b	W	2204	2194	೨೨೧೯	1504	1431	1061	696	<u>१</u> ४७	448	447	
<u>@</u>	PV	И		11.7	1							12.1	
	Pt	h		2639									
	η _e	<i>d</i> ,	1	83.1								(5.1	
BEAM	α			.9676									<u></u>
H	FT		.9893	1867	.4864	.4846	.4856	1487	.५४७०	<u>4807</u>	<u>.4891</u>		<u> </u>
	γ		.9480	9547	-9519	.457.1	.4625	.9565	.9674	.9646	4743		
	В			.4457									
	J ₅ +÷/J ₅ +		ī	.1169							1		
	η _τ	,3 ,3	1	174								-	<u> </u>
MISC.	F.	niN	T	129.0									
	Sp	<u>S</u>		30,14								-	
	Ptank	pa	1.3-4	1	11-4	1	8-3	1.7.3	53	5.33	63		

2012 21:

	1000	Ma	dre	110	1000	, , ,	V	1	⊃ ;	, ,	, <u> </u>	\$ 1	/
			9						:		•		
					ļ- -				-				
1 1 1													
									_			*	
					 		-1-1				,	 	
				<u> </u>	<u> </u>								
7-1-1-1	TI.						1 1 1						
			<u> </u>										
++++	++++												
	1 1	-;	1 .		 								
1111	111												
	1 1			 				 - 			ŀ ╤╤╬		
++++													
111	++				 								
++++													
1 1 1	+++-							1 1					
	1 1		-	-						-	1 , , , i		-
110								1111					
	1												
1 6		·											
1 2		- 		 	++++	 	 	 		 			
r)	1 1 1				1 : ; :			111					
				1 1 1									
									<u> </u>				
	<u> </u>		i.						!				
1				-	0								-
>													
्				ļ				2					1
<u>_</u>			 		<u> </u>		<u> </u>			1			
-			-		<u> </u>		 	<u> </u>					<u> </u>
	- 	ļ	 	 	 	-	 	 					 -
J					1-1-								ļ
	3.0												†
								 				P	l
-0			<u>:</u>		<u> </u>				<u> </u>	<u> </u>	<u> </u>		
H-C'					+						 		
7 : 1				-				+					ļ
J.				1	 -	I	<u> </u>		ļ				
						† ====	<u> </u>		 	- -		<u> </u>	
			 	<u> </u>	 	· 	 		<u></u>				
5	A			-		+	 	1		ļ <u> </u>	1		
J.]	Ţ <u>-</u>]			 		1	F	-
- 0		ļ	 		-	1					 		
2		1			+	1	 	1	 				<u> </u>
		1	<u> </u>		<u> </u>		1. 1	1					<u>.L</u>
	-3.0°			-		<u> </u>		!	.				
		9	à.	4	Ġ.,	૱ .∵∵\	0	2 . 1	·4i	۱ ی	·8 ÷		
			<u> </u>				<u> </u>			1			1
				Ra	 کی کیء		10000	1	·	Δ-			
				1,00	W IV		, , , , ,	1 - 1) JF	ן א			
									· ·	1			

Thruster IT TP-1 $J_b = 2.0$ IV-C S/N 902 Magnetic Baffle Current, Jinis, A ີ 229 🚽

Thruster__ J7 TP-4 Jb=1.6A 330 0 22 24 26 28 20 22 24 36 24 Magnetic Baifle Current Jung A

g 231 c

Joseph Jo		thruster
56 58 58 758 758 758 758 758 758		TP-7
25.8 25.8 25.8 25.8 25.8 25.8 25.8 25.8		
0 5.6 0 5.6 1.5 0 5.6 1.5 0 5.6 1.5 0 5.6 1.5 0 5.6 1.5 0 5.6 1.5 0 5.6 1.5 0 5.6 1.5 0 5.6 1.5 0 7.5 0 7.5		
0 5.6 0 5.6 1.5 0 5.6 1.5 0 5.6 1.5 0 5.6 1.5 0 5.6 1.5 0 5.6 1.5 0 5.6 1.5 0 5.6 1.5 0 5.6 1.5 0 7.5 0 7.5	$\overline{\mathfrak{g}}$	
0 5.6 0 5.6 1.5 0 5.6 1.5 0 5.6 1.5 0 5.6 1.5 0 5.6 1.5 0 5.6 1.5 0 5.6 1.5 0 5.6 1.5 0 5.6 1.5 0 7.5 0 7.5	259	
0 5.6 0 5.6 1.5 0 5.6 1.5 0 5.6 1.5 0 5.6 1.5 0 5.6 1.5 0 5.6 1.5 0 5.6 1.5 0 5.6 1.5 0 5.6 1.5 0 7.5 0 7.5		
0 577 0 56 0 56 0 56 0 56 0 56 0 56 0 56 0 57 0 57 0 57 0 57 0 57 0 57 0 57 0 57	+	
0 5.6 0 5.6 1.5 0 5.6 1.5 0 5.6 1.5 0 5.6 1.5 0 5.6 1.5 0 5.6 1.5 0 5.6 1.5 0 5.6 1.5 0 5.6 1.5 0 7.5 0 7.5	058	
11-c 5/N 902 13-11-c 5/N 902 13-11-c 5/N 902 14-c 5/N 902 14-c 5/N 902 15-c 20 34-0 34-0 34-0 34-0 34-0 34-0 34-0 34-		
10-c 5/N 902 13-c 24 24 26 25 30 32 34 35 35 40 Magnetic Baffie Current, Juss, A	5	
10-c 5/N 902 13-c 24 24 26 28 30 33 34 33 38 40 Magnetic Baffie Current, Juss, A	35,7	
10-c 5/N 902 13-c 24 24 26 28 30 33 34 33 38 40 Magnetic Baffie Current, Juss, A		
10-c 5/N 902 13-c 24 24 26 28 30 33 34 33 38 40 Magnetic Baffie Current, Juss, A		
3/3/20 3/3/20	5.6	
3/3/20 3/3/20		
1000 1000		IV-C 5/N 902
1000 1000		
1000 1000		
0350 0350 1034		
0350 0350 1034		
0350 0350 1034	500	
1340 340 2.2 24 2.6 28 30 3.2 3.4 3.5 38 40 Magnetic Baffle Current, Jus., A		
1340 340 2.2 24 2.6 28 30 3.2 3.4 3.5 38 40 Magnetic Baffle Current, Jus., A	33,0	8-6
0340. a.c 2.2 a+ 2.6 ax 30 3.3 3.4 3.5 34 40 Magnetic Baffle Current, Jus, A		
Magnetic Baffle Current, Jus, A	_ • • • • • • • • • • • • • • • • • • 	

				• • • •	uster	
		 	·		TP-9	
• • • •				• •	. • • 	
					つど-	75K
	İ	 			Ų	• • •
				•		,
						
						
	· · · · · · · · 		<u> </u>			
Ç					-0	
٠ ال						
Ž						
164			 		ii	
9, 5.			ļ			
<u> </u>	l				· 	
5.0			I			
		 	l			
		<u>!ii</u>				
					14-6	5/N 902
					IV-C	5/N 902
					IV-E	5/N 902
					IV-E	5/N 902
					IV-C	5/N 902
					14-6	5/N 902
em.p., 7 c.)					IV-E	5/N 902
) 					IV-E	5/N 902
No least of the le					14-6	5/N 902
Per (em. p., 1 cs.)					IV-E	5/N 902
0 -					IV-E	5/N 902
We recombined					IV-E	5/N 902
John Per Rambing					IV-6	5/N 902
aporizer emp., Tcu					IV-6	5/N 902
Vapovi, recetemb., Tes					IV-E	5/N 902
Vaporizer emp. Jeu					1V-E	5/N 902
John John Ferrander John John John John John John John John					1V-E	5/N 902
od. c. Vaporizer emp., Tcu					IV-6	5/N 902
Moder Co Vapori Rece Cemp. Tologo					IV-E	5/N 902
thode of Vaponi rev Temp. Tell of						5/N 902
a-trodec. Vaporizer Emp., Tels						5/N 902
a-thod				· · · · · · · · · · · · · · · · · · ·		
a-thod	C 2.3 3			3 3.4 3	3.2	5/N 902
a-thod				3 3.4 3	3.2	
a-thod			3 30 3 fle Cur	3 3.4 3	3.2	
a-thod				3 3.4 3	3.2	5/N 902

46.0780

c 233 9

46 0/80

MON KEUFFEL & ESSER CO. MADE IN USA.

						1 1/2.	2 Z Z S	5 A. 7 1
	Neutral	1200	Chai	racterist	ic 9	-		•
	10000.	<u> </u>		. 0 - 1 - 1 - 1	1			
							•	•
 	·					•		
							•	
1::::		 			 			
 - - - - - - - - - 	 	 			 			
	 	1			† 		•	
	T				1	النسليل		<u> </u>
	_	 						
	-							
	 	├			ļ			
		1			 			
	11:1							
 		 						
		 				\	K-mit	
				· <u>·</u>				
	- 	 		OTPI	2 A-		16	
		 		<u> </u>	=			
				TP4	- 1.6 A	1-2	g-C2	
				<u> </u>	1.04		-1-2- -	
 	 	+ ++		V - V -	1770	7	- . , 	
				$\Diamond TPQ$	1.3 A	14	19	
		1			-!			
	 	 		<u> </u>	7 1.0 A	-\-	49-V	
						· · · · · · · · · · · · · · · · · · ·	•	
	1			AT-P-	7.75A	1-1-1	881	
	 	 -	——i					:
				ALT PL	11 HV-0F			
					170 01	1 73	. 2V	
		 						
1 2								
					<u> </u>	1V-/V	S/M_	920
18	+	 			 	- 		
' - d				1				
	- 	╂──┼		^	AT			
17		3	â	À XI	ব			
-		3	â	À AI	ব			
17		3	a di		<u>а</u>			
T T		3			a			
-							- Fir	
T T					A		1-4	
0 16					A		1-6	
0 16					A			
0 16					A			
0 16					A			
0 16					A			
0 16 0 15 0 15					A			
0 16 0 15 0 14					A			
0 16 0 15 0 15					A			
15 20 14 20 14					A			
5 15 0 14 0 14					A			
5 15 0 14 0 14					A			
5 15 5 15 0 14 0 14					A			
5 15 0 14 0 14					A			
15 5 15 0 14 0 14 7 7 8					A			
15 5 15 0 14 0 14 7 7 8					A			
15 5 15 0 14 0 14 7 7 8					A			
15 5 15 0 14 0 14 7 7 8					A			
15 5 15 0 14 0 14 7 7 8					A			
15 5 15 0 14 0 14 7 7 8					A			
15 5 15 0 14 0 14 7 7 8					A			
15 5 15 0 14 0 14 7 7 8					A			
15 5 15 0 14 0 14 7 7 8					A			
15 5 15 0 14 0 14 7 7 8					A			
15 5 15 0 14 0 14 7 7 8								
15 0 15 0 14 0 14 0 14 0 14 15 15 15 15 15 15 15 15 15 15 15 15 15								2 3 6 7
15 0 15 0 14 0 14 0 14 0 14 15 15 15 15 15 15 15 15 15 15 15 15 15								2 362
15 0 15 0 14 0 14 0 14 0 14 15 15 15 15 15 15 15 15 15 15 15 15 15								2 363
15 0 15 0 14 0 14 0 14 0 14 15 15 15 15 15 15 15 15 15 15 15 15 15	, alo (a)	70 28	(O a)	300 31	3 3 3 3	330 34	3 3 5 6	3-363
15 0 15 0 14 0 14 0 14 0 14 15 15 15 15 15 15 15 15 15 15 15 15 15	, alo (a)	70 28	(O a)	300 31	3 3 3 3	330 34	3 3 5 6	06
15 0 15 0 14 0 14 0 14 0 14 15 15 15 15 15 15 15 15 15 15 15 15 15	, alo (a)	70 28	(O a)	300 31	3 3 3 3	330 34	3 3 5 6	2 363 NV, OC
15 0 15 0 14 0 14 0 14 0 14 15 15 15 15 15 15 15 15 15 15 15 15 15	, alo (a)	70 28	(O a)	C 200 300 31	3 3 3 3	330 34	3 3 5 6	06
15 0 15 0 14 0 14 0 14 0 14 15 15 15 15 15 15 15 15 15 15 15 15 15	, alo (a)	70 28	(O a)	300 31	3 3 3 3	330 34	3 3 5 6	06

1 10 X 10-TO THE INCH . 7 X 10 INCHES TO ESSEN CO. WAR IN USA

Thruster 37

MinimumEr	·				
	TP J6 A	Er(min) eViin			
▗▗ ▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗		1-1-10-1-1			
	0 4 1.6	168			
5-1	0 G 1131	169.5			
		168.11 2			
	11011461	185.9			
3 - 3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
3 168		11111113			
5 S S S S S S S S S S S S S S S S S S S		,			
	╁╂┼┵┟┼┼┼┼┼┼	\sim			
239					
$\mathcal{C}_{i}:\mathcal$					
Oico 170 180 190 300 300 300 . Dischovia Chamber in evant Eat	230 230 3	10 350			
	?\/\io\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				
0160 170 180 190 200 210 EB, 6					
		المشاغ بالمغابث المارية بشميران			

houster J.

APPENDIX D

APPENDIX D

The thrust produced by an ion thruster is typically calculated from the measured ion beam current, J_b , and voltage, V_b , using the expression

$$F_c = J_b \frac{2m}{e} V_b^{1/2}$$
, (1)

where m and e are the charge and mass of the beam ions, respectively. The measured ion beam current contains contributions from doubly charged ions, but not all ion trajectories are paraxial. Consequently, the calculated thrust, F_c , has to be modified to account for these so-called thrust losses. The technique employed by Hughes makes use of a collimating mass spectrometer to measure the distribution of singly and doubly charged ions as functions of angle with respect to the thruster axis. This enables computation of the correction factors, α and F_t , used to correct the measured beam current for contributions of doubly charged ions and non-axial velocity components. Hence,

$$F = \alpha F_t F_c$$
,

where F is the true thrust computed from the calculated thrust. The accuracy of determining α , F_t , and F_c depends on both experimental and computational error that is inherent in the measurement technique. An investigation has been performed recently under NASA contract NAS 3-21943 to assess, quantitatively, the magnitude of the inherent error. This appendix summarizes this analysis and its results (a more detailed description will be found in the final report for contract NAS 3-21943).

A. EXPERIMENTAL PROCEDURE

Determination of the thrust-loss factors, α and F_t , requires a probing technique that can determine the singly and multiply charged ion beam current-density vectors as a function of the polar coordinates, r and θ , defined in Figure D-1. Assumption of symmetry about the thruster axis simplifies the measurement by eliminating the variable, θ , and the problem is reduced to that of

Figure D-1. Definition of polar coordinate system in relation to the thruster axis.

determining the current-density corresponding to each ionic species as a functionial coordinate r. This measurement is accomplished through the use of an articulating probe that can view a small region of the accelerator system from different angles, ϕ_p , and separate the total current leaving this region according to charge. This yields the currents, i_n (r, ϕ_p) , where the index n is used to denote the charge state. Integration of these currents over the angle, ϕ_p , gives the current-density vector, j(r), and the angle, ϕ , that this vector makes with respect to the thruster axis; Figure D-2 illustrates the geometry. A complete description of the technique used to determine the currents, $i_n(r, \phi_p)$, is presented below.

Figure D-2. Illustration of geometric variables for current density at the accelerator grid.

Velocity-Analyzer Probe

Separation of the total current emanating from the active region of the accelerator system into the current components, $i_n(r, \phi_p)$, is accomplished using a series-arrangement of a collimator and velocity filter. The collimator restricts the viewing area and transmits a highly collimated beam to the velocity filter. The transmission of the collimator is illustrated in Figure D-3, which shows the response of the collimator to a parallel beam inclined at an angle, ϕ_0 . The transmission is unity when the collimator is aligned with the beam ($\phi_p = \phi_0$), and drops rapidly to zero for angles $\pm \psi$ at about ϕ_0 . The angle, ψ , is the acceptance half-angle, which is small enough ($\psi < 0.3^\circ$) to enable the probe response at any angle, ϕ_p , to be interpreted as the response due to particles which leave the viewing area and follow straight-line trajectories inclined at an angle, ϕ_p , with respect to the thruster axis. The velocity filter is composed

Figure D-3. Angular response of the collimator.

of orthogonal electric and magnetic fields (E and B, as shown in Figure D-4) and transmits only those particles having velocity equal in magnitude to E/B. All other particles are "filtered out" by an imbalance in the electric and magnetic forces which deflects the particle trajectories into the upper or lower electric-field plates, depending upon whether the particle speed is greater-than or less-than the ratio, E/B. The series arrangement of the collimator and velocity filter results in a probe whose output is restricted to those particles having velocity vectors with magnitude, E/B, and direction in the range, $\phi_p - \psi \leq \phi \leq \phi_p + \psi$.

A schematic of the velocity-analyzer, or ExB probe, developed by Hughes for performing the measurements of $i_n(r, \phi_p)$ is presented in Figure D-5. The probe assembly consists of a collimator, drift tube, separation aperture, and current collector. The collimator apertures have a diameter of 0.25 mm, resulting in a viewing half-angle of ψ = 0.29°. With this geometry, and with the probe positioned 38 cm downstream of the accelerator grid, the viewing area is 0.13 cm², or about three accelerator apertures for the J-series-thruster electrode design.

Figure D-4. Configuration of velocity filter for separating singly and and doubly charged ions.

11268-5

Figure D-5. Configuration of collimating ExB probe.

The separator provides orthogonal electric and magnetic fields E and B, which prevent all ions from reaching the collector except those having velocities of magnitude E/B. The magnetic field is provided by a permanent magnet, while the electric field is provided by the potential applied to parallel plates. Varying the plate potential changes the ratio, E/B, allowing ions of different velocities to traverse the separator undeflected and reach the collector. Figure D-6 presents a typical variation of collector current with plate voltage and demonstrates

Figure D-6. Example of current output of probe as function of deflection plate voltage (probe measuring in thruster beam).

the ability of the probe to resolve the peaks associated with singly and doubly charged ions.* The nearly rectangular shape of the peaks enables the height to be used as an indication of the total current of each species, which simplifies the data acquisition and analysis requirements. The dimensions of the collimator result in a viewing area that is small, but still large enough to provide a readily measurable current (*10⁻⁹ A). The drift-tube length and collector aperture diameter ensure collection of the entire collimated and undeflected beam of the ion species of interest. The collector aperture is biased 45 V negative of the probe assembly to repel beam electrons and to return secondary electrons to the collector.

2. Test Facility

A sketch of the probe setup used in the Hughes 9 ft diameter vacuum chamber is presented in Figure D-7. The probe is moved vertically in or out of the thrust beam using a precision stepping motor located on the top of the vacuum chamber to vary the coordinate, r. The pitch angle, ϕ_p , is controlled using a precision stepping motor located inside the chamber. A precision potentiometer and digital readout provide a visual display of the probe pitch angle. The probe yaw angle, Ω , can be adjusted to position the probe axis parallel to the thruster axis. The vacuum feedthrough is located off-center in the flange shown in Figure D-7 so that the lateral position of the probe can be adjusted, enabling the vertical axis of the probe to be positioned on the thruster axis. The only maintenance requirement of the probe system is an occasional replacement of the collimator aperture, which eventually disintegrates as a result of on sputtering. The loss of the collimating aperture is detected by the operator in the form of an increase in collector current and the inability to resolve the peaks corresponding to the various ion species.

The probe can also resolve the peak associated with triply charged ions.

Figure D-7. Coordinates (r, $\phi_{\textbf{p}},~\Omega)$ for defining probe position with respect to the thruster (as located in the test facility.

3. Thruster Alignment

The probe-to-thruster alignment is accomplished by aligning both the thruster and the probe with the tank axis. This approach minimizes setup time since the probe-to-tank alignment is required only after removal and reinstallation of the probe. The thruster-to-tank alignment is accomplished by aligning the thruster with respect to the axis of the vacuum enclosure flange, as shown in Figure D-8.

VACUUM ENCLOSURE FLANGE

Figure D-8. Illustration of procedure used for aligning thruster with the the vacuum chamber axis.

The thruster support and vacuum enclosure flange position the thruster with respect to the tank axis, and the angular alignment is accomplished using the dial indicator to locate the edge of the accelerator grid at 90° intervals. In order to ensure that the angle between the thruster and flange axis is less than 1°, the difference between the readings obtained 180° apart must not exceed 0.5 cm. If the difference is greater, the mounting fasteners are loosened and the thruster is shifted to obtain the necessary tolerance.

4. Data Acquisition \

The probe-positioning and data-acquisition system is semi-automated, requiring the operator to select the probe pitch angle, locate the beam edge, and determine the plate potentials corresponding to the various ion species.* The first step the operator performs in conducting a beam scan is to set the probe pitch angle at $\phi_{\rm p}$ = 0, and then drive the probe down towards the beam until a collector current is detected. This locates the edge of the beam at the plane of the accelerator grid and provides a reference for subsequent movement of the probe into the beam a distance equal to one-half the diameter of the active region of the electrodes. If either the thruster or probe have been removed from the test facility since the last probe measurements were performed, the probe-to-thruster alignment is checked by varying the probe yaw angle, Ω , until maximum probe current is detected. With the probe-travel axis and thruster axis aligned, this step ensures that the viewing axis of the probe is coincident with the thruster The operator then varies the output of the electric-field power supply to determine the voltages, V_+ and V_{++} , corresponding to the peaks of the i_+ and it current profiles (see Figure D-4). These voltages are then input to the data-acquisition system via potentiometers located on the control panel. Next, the probe is driven up and out of the beam, and the pitch angle, ϕ_n , is set to the maximum negative value to be sampled (usually -15°). The probe is then driven down to locate the beam edge. The beam edge is always located by moving the probe in the downward direction, eliminating any position error that could be caused by hysteresis in the positioning mechanism. At this point, the operator places the system in the auto mode, which executes the following steps:

^{*}The normal operating conditions of the 8- and 30-cm thrusters result in a negligible population of triply charged ions; therefore, the standard practice has been to measure only the singly and doubly charged ion currents. However, the probe system located in the Hughes 9 ft vacuum chamber also has the capability of measuring triply charged ions, which may not be negligible in thrusters operating at high beam currents.

- 1. The probe is driven downward to a distance equal to one-fourth the radius of the active region of the electrodes.
- 2. Any vibration of the probe caused by the directed motion is allowed to dampen out.
- 3. The currents, i_+ and i_{++} , are sampled and recorded on paper tape.
- 4. Steps 1-3 are automatically repeated a total of four times, with the last measurement performed on the thruster axis.

Next, the operator drives the probe up and out of the beam, increases the pitch angle, ϕ , by 5°, locates the beam edge, and resets the auto mode.

In developing the computer program used for analyzing the probe data, one of the primary objectives was to minimize the number of input data points subject to the constraint that the accuracy of the reduced data should be at least comparable to that of the raw probe data (±2% of full scale based on the manufacturers specifications on the accuracy of the electrometer). Minimizing the data-collection time ensures that the thruster operating conditions remain nearly constant during the data scan and also relieves the operator of the time-consuming task of taking more data than is necessary. After the initial installation of the probe, scans having a different number of data points were taken, and it was found that four equally spaced radial values and seven equally spaced angular values were near optimum. A larger number of radial data points produced essentially the same results, while a smaller number produced discontinuous-appearing curves. While six angular values for each radial value were usually satisfactory, seven were better for more divergent beams. The final technique chosen was to use four radial values and seven angular values, resulting in a total of 56 data points per scan (28 each for i+ and i++). In practice, the operator may conduct the scan using as many as nine pitch angles so that the symmetry of the angular dispersion profiles can be checked, enabling the most symmetrical data to be used as input to the data-analysis routine.

B. DATA ANALYSIS PROCEDURE

The paper tape generated during the data acquisition contains 28 pairs of probe currents (i+ and i++) corresponding to the measurements conducted while viewing the four radial locations on the accelerator grid from seven discrete angles. After completing a beam scan, this tape is input to a DEL PDP-170 computer which performs the data analysis according to the procedure described below.

The probe collector current, i, corresponding to species, n, is given by the expression,

$$i_{n}(r, \phi_{p}) = \iint I_{n}(r, \phi) \cos(\phi - \phi_{p}) \{u[\phi - (\phi_{p} - \psi)] - u[\phi - (\phi_{p} + \psi)] \} T(\phi - \phi_{p}) d\omega dA_{p},$$
(3)

where I_n is the intensity of the ion flux, r and ϕ are the coordinates, ϕ_p is the probe angle, ψ is the acceptance half-angle of the collimator, u is the unit step function, T is the transmission of a cylindrical collimator, ω is the solid angle, and A_p is the aperture area. The combination of the transmission and unit step functions in Equation (3) effectively "collimates" the incoming flux (as illustrated in Figure D-9), allowing only a fraction of those ions having angles in the range ϕ_p \pm ψ to reach the velocity filter. In practice, the operator selects the ion species of interest by varying the ratio, E/B, to match the particle speed. The narrow acceptance angle (2 ψ) of the collimator permits the intensity in Equation (3) to be replaced by the value corresponding to the probe angle, ϕ_p . Since the collimator restricts the angle difference to $\phi - \phi_p \le \psi$, the cosine can be replaced by unity, and Equation (3) can be written as

$$i_n(r, \phi_p) = \iint I_n(r, \phi_p) T d\omega dA_p \qquad (4)$$

The narrow field-of-view of the collimator and the small size of the entrance aperture permits us to assume that the ion flux is homogeneous over the aperture area, and isotropic within the field-of-view. This enables the intensity to be expressed as

$$I_{n} = \frac{J_{n}}{\Omega} , \qquad (5)$$

Figure D-9. Transmission of a cylindrical collimator inclined at angle ϕ_p . The step functions filter out all angles except those of bandwidth 2ψ centered at ϕ_p . The function, T, is the transmission of cylindrical apertures viewing a parallel beam inclined at angle ϕ_p .

where J is the current density, and Ω is the solid angle subtended by the collimator. Reference to Figure D-10 shows that the solid angle, Ω , is given by

$$\Omega = \frac{A_p}{\ell^2} , \qquad (6)$$

where the aperture area, $\mathbf{A}_{\mathbf{D}}$, is given by

$$A_{p} = \pi \ell^{2} \psi^{2} . \qquad (7)$$

The differential solid angle, $d\omega$, is given by

$$d\omega = \frac{dA}{g^2} , \qquad (8)$$

$$=\frac{2\pi r dr}{\ell^2} \quad . \tag{9}$$

For small angles, $r = l\epsilon$, and the expression above can be written as

$$d\omega = 2\pi\varepsilon d\varepsilon . (10)$$

Combining Eqautions (4), (5), (6), and (10), and performing the integration over dA_D , results in

$$i_{n}(r, \phi_{p}) = \frac{2J_{n}(r, \phi_{p})A_{p}}{\psi^{2}} \int_{0}^{\psi} \varepsilon T d\varepsilon , \qquad (11)$$

which can be solved for the current density, J_n ,

$$J_{n}(r, \phi_{p}) = \frac{\psi^{2}}{2 \int_{0}^{\psi} \varepsilon T d\varepsilon} \frac{f_{n}(r, \phi_{p})}{A_{p}}. \qquad (12)$$

11268-10

Figure D-10. Definition of variables used in analysis of the response of a cylindrical collimator.

The transmission of the cylindrical collimator is given by

$$T = 1 - \frac{2}{\pi} \left\{ \frac{1+s}{2} \left[1 - \left(\frac{1+s}{2} \right)^2 \right]^{1/2} + \sin^{-1} \left(\frac{1+s}{2} \right) \right\} , \qquad (13)$$

where (for small angles ε)

$$\frac{1+s}{2} = \frac{\ell \varepsilon}{r_p} = \frac{\varepsilon}{\psi} \qquad (14)$$

The transmission represents the fractional overlap of the circular areas of the entrance and exit apertures (as shown in Figure D-11), and therefore represents the response of the collimator to a parallel beam. Combining Equations (13) and (14) gives

$$T = 1 - \frac{2}{\pi} \left\{ \frac{\varepsilon}{\psi} \left[1 - \left(\frac{\varepsilon}{\psi} \right)^2 \right]^{1/2} + \sin^{-1} \left(\frac{\varepsilon}{\psi} \right) \right\} . \tag{15}$$

Evaluation of the integral appearing in Equation (12) is simplified by making the substitution,

$$x = \frac{\varepsilon}{\psi} \quad , \tag{16}$$

which results in

$$\int_{0}^{\psi} \varepsilon T(\varepsilon) d\varepsilon = \psi^{2} \int_{0}^{1} x - \frac{2}{\pi} \left[x^{2} \sqrt{1 - x^{2}} + \sin^{-1} x dx \right]. \tag{17}$$

The integration can be performed using standard techniques to evaluate the following integrals:

$$\int_{0}^{\psi} x dx = \frac{1}{2} \quad , \tag{18}$$

$$\int_{0}^{1} x^{2} \sqrt{1 - x^{2}} dx = \frac{\pi}{16} , \qquad (19)$$

$$\int_{0}^{1} x \sin^{-1} x dx = \frac{\pi}{8} . \qquad (20)$$

Substituting these result into Equation (15) gives

$$\int_{0}^{\psi} \varepsilon T(\varepsilon) d\varepsilon = \psi^{2} \left[\frac{1}{2} - \frac{2}{\pi} \left(\frac{\pi}{16} + \frac{\pi}{8} \right) \right]$$

$$= \frac{\psi^{2}}{8} . \tag{21}$$

Combining Equation (12) and (21) gives the relationship between the current density at the probe aperture and the collector current,

$$J_{n}(r, \phi_{p}) = 4 \frac{i_{n}(r, \phi_{p})}{A_{p}}$$
 (22)

The relationship between the current density at the accel electrode and the collector current can be derived using the geometric variables defined in Figure D-12. The small area, A_0 , of the accelerator electrode is "viewed" from different angles, ϕ_p , resulting in a current-density dispersion profile similar to the one shown. This profile represents the current density* at the measurement plane due to ion flow from the area, A_0 . The total current from A_0 is obtained by integrating this current density over the measurement plane,

$$I_{n} = \int_{\mathbf{J}_{n}} \cdot \hat{\mathbf{n}} dA \qquad (23)$$

Note that the current density, J, is not necessarily the total current density at the measurement plane, since the collimator restricts the probe viewing area to A_0 . For this reason, the total current from the accelerator system cannot be found by integrating the current density at the measurement plane.

Figure D-11. Definition of variables used in analysis of the response of a cylindrical collimator.

Figure D-12. Definition of variables used in analysis of probe collector current.

The scalar product is given by

$$\vec{J} \cdot \hat{n} = J \cos \phi_{p} \qquad (24)$$

The area element, dA, is given by the expression

$$dA = \frac{dA_{\perp}}{\cos\phi_{\Omega}} , \qquad (25)$$

which is obtained by projecting the area element, dA, onto a plane normal to the direction defined by the angle, ϕ_0 , and corresponding to the peak of the current-density distribution. In this plane, the current density is assumed symmetrical about the radii defined by the angles, ϕ_{\min} and ϕ_{\max} , of Figure D-12. Under this assumption, the area element dA_{\perp} is given by

$$dA_1 = \pi R dR \quad , \tag{26}$$

where the coordinate R is given by

$$R = L \sec \phi_0 \tan(\phi_p - \phi_0) , \qquad (27)$$

and

$$dR = L \sec \phi_0 \sec^2 (\phi_p - \phi_0) d\phi_p . \qquad (28)$$

The distance, L, from the measurement plane to the accelerator grid is given by

$$L = L + R(1 - \cos\gamma) , \qquad (29)$$

where L_0 is the distance from the probe to the accelerator electrode on the thruster axis, and R_c is the radius of curvature of the electrodes (as shown, R_c is positive for electrodes dished outward). The angle, γ , is given by

$$\gamma = \sin^{-1}\left(\frac{r}{R_c}\right) . \tag{30}$$

Combining Equations (22) through (28) gives the desired expression for the current through the measurement plane,

$$I_{n} = \frac{4\pi L^{2} \sec^{3} \phi_{o}}{A_{p}} \int_{\phi_{min}}^{\phi_{max}} i_{n} \cos\phi_{p} \sec^{2} (\phi_{p} - \phi_{o}) \left| \tan (\phi_{p} - \phi_{o}) \right| d\phi_{p} . \tag{31}$$

This is also the current through the area, ${\bf A_o}$, of the accelerator grid, which can be written as

$$I_n = j_n \cos(\gamma - \phi)A_0 , \qquad (32)$$

where j_n is the current density at the accelerator electrode. Combining Equations (31) and (32) gives the desired expression relating the current density at the electrodes to the probe current,

$$j_{n}(r) = \frac{4\pi L^{2} \sec^{3} \phi_{o}}{\frac{A_{o} A_{p} \cos(\gamma - \phi)}{A_{o} A_{p} \cos(\gamma - \phi)}} \int_{\phi_{min}}^{\phi_{max}} i_{n}(r, \phi_{p}) \cos \phi_{p} \sec^{2} (\phi_{p} - \phi_{o}) \left| \tan(\phi_{p} - \phi_{o}) \right| d\phi_{p}}.$$
(33)

An expression for the angle ϕ can be derived by applying the momentum equation to the control volumes of Figure D-6. Using the measurement plane as the control surface, the net thrust is given by

$$F_{\text{net}}(\mathbf{r}) = \frac{m\mathbf{v}_{+}}{e} \int \left[\mathbf{j}_{+}(\mathbf{r}) + \frac{\sqrt{2}}{2} \, \mathbf{j}_{++}(\mathbf{r}) \, \cos(\gamma - \phi) \right] \cos\phi_{p} dA \quad . \tag{34}$$

Using the accelerator electrode as the control surface, the net thrust is given by

$$F_{\text{net}}(r) = \frac{mv_{+}}{e} \left[j_{+}(r) + \frac{\sqrt{2}}{2} j_{++}(r) \right] \cos(\gamma - \phi) \cos\phi A_{0}$$
 (35)

Equating the two expressions for net thrust and solving for the angle $\boldsymbol{\varphi}$ results in

$$\phi(r) = \cos^{-1} \frac{\int \left[J_{+}(r, \phi_{p}) + \frac{\sqrt{2}}{2} J_{++}(r, \phi_{p}) \right] \cos^{2} \phi_{p} dA}{\left[j_{+}(r) + \frac{\sqrt{2}}{2} j_{++}(r) \right] \cos(\gamma - \phi) A_{o}} . \quad (36)$$

Substituting Equations (22), (25), through (28), and (33) into Equation (36) gives the desired expression for the angle ϕ :

$$\int_{\text{max}} i(r)_{+} + \frac{\sqrt{2}}{2} i(r)_{++} \cos^{2} \phi_{p} \sec^{2} (\phi_{p} - \phi_{o}) \tan(\phi_{p} - \phi_{o}) d\phi_{p}$$

$$\phi(r) = \cos^{-1} \frac{\phi_{\min}}{\phi_{\max}} .$$

$$\int_{\phi_{\min}} i(r)_{+} + \frac{\sqrt{2}}{2} i_{++}(r) \cos \phi_{p} \sec^{2} (\phi_{p} - \phi_{o}) \tan(\phi_{p} - \phi_{o}) d\phi_{p}$$

$$(37)$$

The thrust-loss factors, $\boldsymbol{\alpha}$ and $\boldsymbol{F}_{\text{t}},$ are calculated using the expressions

$$\frac{\alpha = \frac{J_{+} + \frac{\sqrt{2}}{2} J_{++}}{J_{+} + J_{++}}}{J_{+} + J_{++}} , \qquad (38)$$

and

$$F_{t} = \frac{A_{g}}{A_{g}} j_{+} + \frac{\sqrt{2}}{2} j_{++} \cos(\gamma - \phi) \cos\phi dA \qquad (39)$$

$$A_{g}$$

where the total current of species n, and J_n , is determined by

$$J_{n} = \int_{A_{g}} j_{n} \cos(\gamma - \phi) \frac{2\pi r dr}{\cos \gamma} . \qquad (40)$$

The integrations of Equations (33), (37), (39), and (40) are performed using the trapezoidal rule, with the integrands evaluated at the midpoints of the probeangle intervals using a second-order interpolation routine. The probe current is set equal to zero at the integration limits, ϕ_{\min} and δ_{\max} , where these limits are defined as 5° less than the minimum input angle, and 5° greater than the maximum input angle, respectively.

APPENDIX E

APPENDIX E

The work performed under this program to upgrade the drawings and fabrication control documents for the J-series thruster is best summarized by the indentured parts list that catalogs these documents. The latest revision of this parts list is included here.

PARTS LIST

TITLE 30-cm J-SERIES ION THRUSTER

E1026510

REV G

DATE HIV VIN STAD

Revision Status by Page No.

BY SHEET OF 57 SHEETS

1		<u> </u>	T	<u> </u>				DATE DEV
PAGE	CHANGE	DATE REV.	PAGE	CHANGE	DATE REV.	PAGE	CHANGE	DATE REV.
1	В	5-29-81	18	A	2-16-81	35		3-25-80
2 ·	В	5-29-81	19	A	2-16-81	36	A	2-16-81
· 3	В	5-29-81	20	A	2-16-81	37	A	2-16-81
' 4	В	5-29-81	21	В	2-16-81	38		2-16-81
5		5-21-81	22	Α	2-16-81	39	Α	2-16-81
6		5-21-81	23	A	2-16-81	40	A	2-16-81
7		5-21-81	24	A	2-16-81	41	Α	2-16-81
. 8		5-21-81	25	А	2-16-81	42	Α	2-16-81
9		5-21-81	26	A	2-16-81	43	Α	2-16-81
10		5-21-81	27	Α	2-16-81	44 ^	Α	2-16-81
		5-21-81	28	Α	2-16-81	45	Α	2-16-81
26 ⁸ 12		5-21-81	29	A	2-16-81	46	Α	2-16-81
13		5-21-81	30	Α	2-16-81	47	Α	2-16-81
14	A	5-21-81	31	. A	2-16-81	48	- A	2-16-81
15	A	2-16-81	32	Α	2-16-81	49	A	2-16-81
16	Α	2-16-81	33	Α Α	2-16-81	50	В	2-16-81
17	A	2-16-81	34		3-25-80	51 52 53 54 55 56 57	A B A A A	2-16-81 2-16-81 2-16-81 2-16-81 2-16-81 2-16-81 2-16-81
:								

268

17. Carlotte	J-SERIES 30CM THRUSTE PT# E1026510	R STZFL SHE	EET OF STEETS
DUG/PT NO. Pa Pa Pa Pa Pa	DWG/PT NO. Po Pa Pa Pc Pa	DWG PT NO.	Pg Pa Pa Pa Fa
B 839299 14 B1024208 33,38 216 33,38 B 226-98 14 B -99 14 B 529 30,33,34,39 B 914 37 B 917 37 B 919-2 33,38 B 920 33,38 B 920 33,38 B 920 33,38 B 1024925 32,47 B1025262 30,44 B -2 16,27 B -3 28 B 266-1 16,27 B -2 16 B -2 16 B -2 16 B -2 16 B -2 16 B -2 16 B -2 16 B -1025316 7,56 C -97 56 C -98 24 D -99 324 D -99 33,38 B -90 33,38 B	B1026081-1 14 B 083-97 48 B -99 43 C 084 45 C -1 45 C -2 46 B 086 44 B 089-1 48 B 090 48 B 091 48 B 093 38 C 136 54 D 137-91 53 D 138-91 54 B 194 21 B 370 30 C 371 30 B1026374 30,44 B 447-1 16,26 C 451-1 21 C -2 21 C -3 21 D 452-1 21 D -2 17,56 D -99 56 D 485 15,29 D 488 15 E 498 21 D1026501 23 C 502 46 C 503 42 B 504 46 B -99 46 C 505 50 C 508-1 14 C -2 14 C -3 14 C 509 23 C -96 23 C -97 23 C -97 23 C -98 23 C -99 23 E 510 14 E 518-1 39 B1026518-2	B1026519-1 B	34 38 23 25 35,41 35,41 35,41 34,40 34,40 15 34 25 30 25 25 34 33 15,30 46 50 30 31 31,45 17 46 35,40,41 29 29 29 43 42 50 29 29 43 42 50 29 29 17 33 17 17 47 32 38 18 37 53 15 14 29

			IES 30CM THRUSÌER # E1026510	BY REJ	HEET OF SHEET.
DNG/PT NO.	Pg Pa Pg Pg Pg	DWG/PT NO.	Pg Pg Pg Pg Pg	DWG/PT NO.	Pg Pg Pg Pg Pg
D 123 B 135 B 238 B 239 B 241 B 242 B 243 B 244 B 245	17 18 32,47 16 15 16 25 26 26 26	C1095683-99 B 684-1 B -2 B 685 C 686 C -1 C 687 C -1 B 706 B 708 B 709	18 18 57 18,57 57 11,57 57 57	B1095771 C 772-98 C -99 D 773 B 778-98 B -99 C 808 C 809 B 810 B 811	32,47 53 54 16,42 53 15,22 46 42 26
B 282 C 283 B 285 B 286 B 290 B 291-93 B -95 B -97 B -99 B 292-95 B -97 B -99 B 293-97 B -99 B 294-97 B -99 B 294-97 B -99 B 295 B 296	48 49 44 45 48 44 49 44 43 49 43 49 43 49 43 49 43	B 712 B -1 B 713-1-	15,21,29 21,29 08 30 04 33,34,39 27 27 27 25 28 15,25 34 16 16 43 17 36,40,48 53 53 16,53	D 845 C 850 D 851 B 857 B 862 B 909 B 910	50,17,14,16,28 15 23 25 43
B 397 B 418 B 419-1 B -2 B 421	43 48,36,39 49,36,39 49,36,39 49,36,39 55	B 754 C 755 B 756 C 757 B 758 B 759	17,23,54 16,37 37 37 37 37	<u>HA</u> MS16995-2	35,40,41
	15 15 32,37,47,57	C 760-1 C -2 C 761	33 38 47	MS20426AD3-3 MS20426AD3-5	46,56 42
B -97 B -93 P -99	31 45 45,31 31 45 42	B 762 D 763 B 764 B 765 B 766 B 767	48 15,32 32,47 32,47 32 32,47	MS20427F2-2 -3 MS20427F3-3 MS21060-06 MS21070-06	52 42 24,24 56 24,46,56
D 682 C1098683	16,55	B 769	34,39	4\$2107€-06	46
			270]	

		SLIST	J-SERIES 30C PT# E10		BY REJ STEET OF SET
	D'IG/PT NO.	Pe Pa F. Pa Pa	DWG/PT NO. P	a Po Po Pa Pa	DWG/PT NO. Pa Pa Pa Pa Pa
	M521076-L06	42 56	,		MISCELLAMEOUS HARDWARE
			AN340-C4	52 20	.020/25 LOCKWIRE 18 22 52 55 QQ-W-423
	MS24673-1	19 22	AN340-C8	28	R44671-IP (RESISTOFIX)36 39 48 R44228-ZF-GZ(11) 11 11 11
	MS24673-5	19 85	A::345-CO AN960-C2 AN960-C4	36 20 51 41 51 49 28	PARKER 2-006 18 VITON O-RING
			AN960-C6	20 50 51 28	PRS-SCI C-SEAL 18 632-U55-0002-2
	MS24674-1 MS24674-2	19 50 19 19	AN960-C8 AN960-C10 AN960-C10L	20	146FB200(RSMT) 36 40 49
	. 3		ANSOU-CIUL		SCREW, PN HD CRES 36 40 0-80 x .62 L
				·	CT250 (ALBEROX) 25
	MS24693-C4 MS24693-C31 MS24693-C270	43 19 43			C-3 DYLON 36 40 49 SUPERBOND
	11324093-0270	:	NAS509 C8 NAS620 CO	20 36 41 50	321883 (Amp #2) 18 321884 (Amp #4) 18
·			NAS620 C4 NAS620 C6 NAS671 CO	20 20 20 36 41 52	CLOTH, CRES (304L) 26 26 27 .0035 x 94 SQ MESH
	MS35275-18	55 52	NAS698 CO6	36	322872 (Amp #6) 18 321895 (Amp #8) 18
·	MS35649-244 MS51957-13	35 35 40 41; 19	NAS1291 C3 NAS1291 CO4 NAS1291 CO6	20 20 55 50 20	WIRE, 16 & 20 AWG (Stranded) HMS 2-1820-16-B-9 18
	MS51957-17 MS51957-21	19 19 50	NAS1291 CO8	51	-20-B-9 18 0 FHC COMPER WIFE 16 ,009/010 \$
	MS 51957-26 -27	19 19 52	NAS1352 CO4H	51	TEFLON TAPE, INSUL 17 1.0 X . 004 LACING TIE (EEN KAR) 17 HMS 20 1924
	MS51957-28 -30 MS51957-125	19 19 19	NAS1352 CO4- 11 11 11 - NAS1352 CO8-	28 20 51	BEAD, CERAMIC 18 TANTALUM FOIL 26 ZX-12 X-005
			NAS1395 C3L	21 29	÷
			NAS1395 CO8L	45	
ļ	<u> </u>	The second secon	271		January and Company of the Company o

PARTS LIST

TITLE
30-CM TOOLS AND FIXTURES

5/21/81 REV NEXT ASS'Y
5/21/81 SHEET OF SHEETS
5 57

			1_5	
FIXTURE NUMBER	DESCRIPTION	USED ON	LOCATION	
T-1001 RING STRUCTURE DRILLING AND ASSEMBLY FIXTURE		E1024698	BLDG. 253 RM 711	٠
T-1002	RING STRUCTURE STRÉSS' RELIEF FIXTURE	E1026498	BLDG. 253 RM 711	
T-1004	REED TUBE CONNECTOR ASSEMBLY BRAZING FIXTURE	B1026611	BLDG. 253 RM 711	
T-1005	THRUSTER ASSEMBLY & GIMBAL DRILLING FIXTURE	D1025324		
T-1006 REAR BRACE WELD FIXTURE		D1026485		
T-1007 BACK SUPPORT BEAM FIXTURE		D1026485		
T-1008 30-CM OPTICS DRILL FIXTURE		E1095752		`
T-1011	HEATER TERMINAL LOCATING FIXTURE	C1025275 C1026622	BLDG. 253 RM 711	
T-1012	MIV PLATING PROTECTION FLANGE	C1025275	·	
T-1013	CIV PLATING PROTECTION RANGE	C1026622		
T-1014 EBW MANDREL - SHIELD INNER - SHIELD SEGMENT - 98		B1026541 B1026538-98	2130	
T-1015 EBW MANDREL - SHEILD OUTER - 99		B1026538	2130	
T-1016	45° ANGLE FORMING FIXTURE	B1026538-1	7111	-

PARTS LIST | TITLE | 30-CM TOOLS AND FIXTURES

and the second of the second of the second				57
FIXTURE NUMBER	DESCRIPTION	USED ON	LOCATION	
T-1017	EXPANDING MANDREL	B1026538+98 B1026541	7111	
T-1018	45° ANGLE FORMING FIXTURE	B1026538-99	7111	
T-1019	COPPER SPOT WELD FIXTURE	B1026538	7111	•
T-1020	FORMING STRUCTURE - STIFFENING GROOVES	B1026538-99	7111	
T-1021	FORMING FIXTURE - STIFFENING GROOVES	B1026541	7111	
T-1022	MISCELLANEOUS TOOLING AIDS	B1026538 B1026541	7111	
T-1023	T-1023 BENDING FIXTURE - FEED TUBE		7111	
T-1024	BAFFLE SUPPORT COVER FORMING PUNCH	B1026608	7111	
T-1025	ANODE-WIRE MESH EBW FIXTURE	D1095246	7111	
T-1026	ANODE DRILLING & GRIT BLAST FIXTURE	D1095246	7111 ·	
T-1027	NEUTRALIZER MOUNTING BRACKET ALIGNMENT FIXTURE	D1026506		
T-1028	DRILL BUSHING FIXTURE MAIN KEEPER ASSEMBLY	C1095033	7111	
T-1029	PLASMA SPRAY FIXTURE END PLATE 2.125 DIA.	C1095080	7111	•

PARTS LIST

TITLE
30-CM TOOLS AND FIXTURES

EATE REV NEXT ASS'Y
5/21/81

BY SHEET OF SHEETS
7 57

FIXTURE NUMBER	DESCRIPTION	USED ON	LOCATION	
T-1030 PLASMA SPRAY FIXTURE END PLATE 3.705 DIA.		C1095080	7111	
T-1031	PLASMA SPRAY MASK - TANTALUM TOP	B1095088	7111	
T-1032	WELDING FIXTURE - DRILLING FIXTURE - RING STRUCTURE	E1026498	7111	•
T-1033	STRESS RELIEVING FIXTURE - RING STRUCTURE	E1026498	7111	
T-1034 WELDING BOX - ARGON ATMOSPHERE FOR TITANIUM		E1026498 C1026509 B1026504 D1026506	7230	
T-1053 30-CM STRESS RELIEVING FIXTURE		E1026498	7111	
T-1054	EPOXY FORMING ROLLERS	D1095246 D1025381	7111	
T-1055	STRESS RELIEVE FIXTURE #1	1026137 6138	7250	
T-1056	STRESS RELIEVE FIXTURE	D1026137 D1026138	7250	
T-1059	HEAT SINK FOR RESISTOFLEX FITTING	C1095430	7111	
T-1066	MAGNET TESTING FIXTURE	B1095044	,	
T-1071	30-CM EMT MOUNTING U N			• • •
T-1074 -1 to -3	SCREEN ELECTRODE SIZING FIXTURE	1026137	7111	•

PARTS LIST

TITLE
30-CM TOOLS AND FIXTURES

5/21/81 REV NEXT ASS'Y
BY SHEET OF SHEETS
8 57

DESCRIPTION	USED ON		
	USED ON	LOCATION	
76 EBW FIXTURE FOR KEEPER ASSEMBLY C		7111	
		7111	
POROUS PLUS WASHING FIXTURE	8CM & 30 CM		,
30-CM OPTIC SR FIXTURE	30 CM E1095752		
30-CM RING STRUCTURE MACHINING FIXTURE	30 CM E1026498		
MANIFOLD LOCATING FIXTURE 30 CM	30 CM C1095683		
WRENCH - RESISTOFLEX FITTING B1095397	B1095397		
MASK TO GRID SPACING BARS	30 CM D1026462	7111	
SPECIAL DEPTCH MICROMETER	E1026510	7111	
FORMING FIXTURE NEUTRALIZER BRACKET 1027364	30 CM 1027364	7111	
FOR DISHING	30 CM	7111	
SHOE HORN - ANODE	D1025246 30 CM	7111	
RIVET GO-NO GO GAUGE	E1095752 30 CM		
	OXIDIZING HEADER FOR VAPORIZERS POROUS PLUS WASHING FIXTURE 30-CM OPTIC SR FIXTURE 30-CM RING STRUCTURE MACHINING FIXTURE MANIFOLD LOCATING FIXTURE 30 CM WRENCH - RESISTOFLEX FITTING B1095397 MASK TO GRID SPACING BARS SPECIAL DEPTCH MICROMETER FORMING FIXTURE NEUTRALIZER BRACKET 1027364 PIN ALIGNMENT FIXTURE FOR DISHING 30 CM ELECTRODES SHOE HORN - ANODE RIVET GO-NO GO GAUGE	OXIDIZING HEADER FOR VAPORIZERS POROUS PLUS WASHING FIXTURE 30 - CM & 30 CM & 30 CM & 1095752 30 - CM RING STRUCTURE MACHINING & 30 CM & 1026498 MANIFOLD LOCATING FIXTURE & 30 CM & 1095683 WRENCH - RESISTOFLEX FITTING & B1095397 MASK TO GRID & 30 CM & D1026462 SPECIAL DEPTCH MICROMETER & E1026510 FORMING FIXTURE & 30 CM & 1027364 PIN ALIGNMENT FIXTURE & D1026137 & 30 CM & 1027364 PIN ALIGNMENT FIXTURE & D1026137 & 30 CM & D1026138 & D1026138 SHOE HORN - ANODE & D1025246 & 30 CM	OXIDIZING HEADER FOR VAPORIZERS ALL VAPORIZERS 7111 POROUS PLUS WASHING FIXTURE 8CM & 30 CM 30 CM 30-CM OPTIC SR FIXTURE 30 CM E1095752 30 CM E1095752 30-CM RING STRUCTURE MACHINING FIXTURE 30 CM E1026498 30 CM C1095683 MANIFOLD LOCATING FIXTURE 30 CM S1095397 81095397 81095397 MASK TO GRID SPACING BARS 30 CM D1026462 7111 SPECIAL DEPTCH MICROMETER E1026510 7111 FORMING FIXTURE NEUTRALIZER BRACKET 1027364 30 CM 1027364 7111 PIN ALIGNMENT FIXTURE FOR DISHING 30 CM D1026138 30 CM D1026138 7111 SHOE HORN - ANODE D1025246 30 CM 7111 7111 RIVET GO-NO GO GAUGE E1095752 30 CM 7111

SPEC. NO. IPD-PR- CLEANING PROCEDURE - ION THRUSTER PARTS (METAL) HAVING COMPLEX CONFIGURATION Jan. '64 "B" REV	PEQUESTOR
IPD-PR- TITLE OF LETTER ISSUE DATE CLEANING PROCEDURE - ION THRUSTER PARTS (METAL) HAVING COMPLEX CONFIGURATION Jan. '64 "B" REV	REQUESTOR
010 (METAL) HAVING COMPLEX CONFIGURATION Jan. '64 "B" REV W	·
(CAVITIES, THREADS, ETC.) 5/29/81	N. D. Meyers
016 CLEANING & FIRING OF CERAPITC PARTS PARTS 101. 04 B REV W	Prepared by: V. Perkins V. D. Meyers
BRIGHT DIPPING TITANTOM PROCEDURE MOV. 74 "B" REV REV REV REV REV REV REV REV REV REV	Prepared by: R. Olney N. D. Meyers
043 FLASH NICKEL PLATING, ION THRUSTER Jul.'71 "B" REV 5/21/79	. Packman
050 R1026541 B	Prepared by: 3. Reeves 3. Schnelker
Oct.'73 "B" REV B	Prepared by: 3. Reeves 3. Schnelker
R1026611	Prepared by: 3. Reeves 3. Schnelker
.053 CATHODE ASSEMBLY C1026624 Oct. '75 "D" REV 9/12/80). Schnelker
054 BAFFLE AND POLE ASSEMBLY D1095719 Oct. '75 "C" REV 8/26/80). Schnelker
O55 ASSEMBLY PROCEDURE FOR 30-CM PLENUM ASSEMBLY 1025320 Jul.'79 "A" REV 7/16/80	. Kami
062 STRUCTURE FOR KING DEC. 75 B KEV B	repared by: 3. Reeves 3. Schnelker
). Schnelker
TUDISTED POPTS	epared by: McNulty Schnelker
069 111026462 101 103K 100. 75 8 KEV C.	epared by: Fibuzian Schnelker
O70 FINAL ASSEMBLY OF REAR SHIELD Nov.'75 "A" REV 9/2/80 D.	Schnelker

רכו אמו	is list	TITLE	5/21/81 REV NEXT ASS'Y SHEET OF SHEE		
		30-CM ASSEMBLY PROCED	20-CW W22FWRFA SKOCFDOKE2		
SPEC. NO.	TITLE		DATE OF ISSUE	REVISION LETTER DATE	REQUESTOR
071	ANODE FABRICAT D1095246	ION .	Jan.'76	"D" REV 9/10/80	D. Schnelker
074	HELIUM LEAK DE	FECTION .	Oct.'75		Prepared by: R. Olney D. Schnelker
075	MAGNETIZATION 30-CM ION THRUS B1095074 & B109		Nov. 174	"A" REV 10/20/75	Prepared by: R. Olney D. Schnelker
092	30 CM ION OPTION P/Ns D1026137	CS FORMING PROCEDURE & D1026138	Oct.'75	"A" REV 9/10/80	B. J. Reeves
093	CATHODE ASSEMBI P/N C1095283	Y-NEUT.	0ct.'75	"C" REV 9/10/80	D. Schnelker
094	CALIBRATION OF RADIAL MAGNETS	30 CM ION THRUSTER P/N B1095095	0ct.'75	"A" REV 9/15/80	Prepared by: R. Olney D. Schnelker
095	CALIBRATION OF AXIAL MAGNETS	30 CM ION THRUSTER P/N B1095094	0ct/75	"A" REV 9/15/80	D. Schnelker
098	DYE PENETRANT T SHEET METAL PAR	TEST FOR ALL FORMED .	Jan.'76	"A" REV 4/14/81	S. Kami
133	INTRUSION TEST PROCEDURE	AND FLOW FABRICATION	Aug. '77	"A" REV 5/10/78	S. Kami
138	30 CM THRUSTER PROCEDURE	ACCEPTANCE TEST	·	"A" REV 3/1/80	Prepared by: C. Dulgeroff
139	THRUSTER TEST F	FACILITY	Jul.'79		Prepared by: R. Poeschel
140	30 CM THRUSTER POWER PROCESSOR	R SPECIFICATION	Jul.'79		R. Poeschel
141	INSTRUMENTATION	AND CALIBRATION	Jul.'79	·	Prepared by: R. Poeschel
142	PRELIMINARY THE	RUSTER PREPARATION	Jul.'79		Prepared by: R. Poeschel
143	DATA FORMATS FO THRUSTER DOCUME			"A" REV 3/1/80	Prepared by: C. Dulgeroff

ובנו עמו	S LIST	TITLE		5/21/81	REV NEXT ASS'Y		
177-11	0 1.101	30-CM ASSEMBLY PROCED	URES	BY	SHEET OF SHEETS		
SPEC. NO.	TITLE		DATE OF ISSUE	REVISION LETTER DATE	REQUESTOR		
146		E STRESS RECEIVING 26137 & D1026138	Mar.'78	"B" REV 7/15/80	G. J. Reeves		
151		US PLUG - HOUSING; ROCESSING PROCEDURE	Jul.'79		Prepared by: S. Kami		
152	MAIN ISOLATER C1095755	VAPORIZER ASSEMBLY	Mar.'80	"A" REV 9/10/80	Prepared by: S. Kami		
153	30 CM OPTICS A 1095752	SSEMBLY PROCEDURE	Jul.'79		Prepared by: S. Kami		
154 .	CATHODE-ISOLAT ASSEMBLY 1095763	OR VAPORIZER	Jul.'79	"A" REV 9/10/80	Prepared by: S. Kami		
155	NEUTRALIZER AS 1095773	SEMBLY	Sep.'79	"A" REV 9/12/80	Prepared by: S. Kami		
156	NEUTRALIZER VA 1095761	PORIZER ASSEMBLY	Jul.'79		Prepared by: S. Kami		
,159	PREP. OF THRUS	TER DELIVERY	?	"A" REV 6/2/80	Prepared by: R. Poeschel		
165	VAP HEATER TEM	CYCLE	Mar.'80		Ray Maheux		
166	CATHODE HEATER	TEMP CYCLE	May. '80		R. Jones		
			<u>.</u>		<u> </u>		
				•			

r	A sand Lions	TITLE			क्षा कार्याच्या । जन्मान्य का प्रवेश प्रशासिक के	5/21/81	REV NEXT	A55'Y
1	ARTS LIST	30-CM MA	TERIALS	_IST		BY	SHEET O	57
NO.	MATERIAL AND USE		QTY PER THR.	NO.	MATERIAL A	AND USE		QTY PER THR.
1.	MOLYBDENUM FOR ION OPTI	CS		7.	TITANIUM	,		;
2	a015" ARC-CAST SHEET b075" POWDER-MET. SH c160" POWDER-MET. SH d. ½" ARC-CAST PLATE TANTALUM FOR CATHODES	IEET	4.18 kg		a020" THI b032" SHE c08" d. 3/8" DIA e. ½" DIA RO f. 1½" THICK	ET ROD D		2.0 1b 2.0 1b 2.0 1b .9 1b .016 1b 63
۲۰	AND POLE-PIECE SHIELDS			Q	MAGNETS			
	a. ½" DIA ROD b. 5/16" DIA ROD c. 2/16" DIA ROD d. ½" DIA ROD	. A	.42 1E .46 1E .09 1E		a. 12 AXIAL b. 12 RADIAL			15 15
	e. 3/4" DIA ROD f125" THICK SHEET g. 3/16" THICK SHEET h. ½" THICK SHEET		1.59 1t 2.40 1t 3.50 1t	9.	VESPEL a. ¼" SHEET b. ½" SHEET c. 3/4" ROD			4 sq.in. 4 sq.in. 14 in.
	i010 THICK SHEET j016 THICK SHEET k032 THICK SHEET	B C	.036 1t .096 1t .46 1t .54 1t .5 ft	10.		FITTINGS		5
	A 25 lb. Min. Order B 35 lb. Min. Order C 50 lb. Min. Order							
3.	CERAMIC INSULATORS MISCELLANEOUS ASSEMBLY		147 part	s				
4.	POROUS TUNGSTEN (VAPOR 3 VAPORIZERS (YIELD		12 part	s				
5.	IMPREGNATED POROUS W I 2 CATHODES (YIELD		3					
6.	HEATERS							
	a. CATHODE (Ta)	4 to get					
	b. VAPORIZER ()	6 to get					
	c. ISOLATOR ()	4 to get					
.			.1		1			1 i

$\Gamma \cap \Lambda$	177	. ()	LIST
1.7/.2	(~ ~	

TITLE 30-CM MATERIALS LIST DATE REV NEXT ASS'Y

5/21/81

BY SHEET OF SHEET

13 57

		KTV	,		113	5/
NO.	MATERIAL AND USE	QTY PER THR.	NO.	MATERIAL AND USE		QTY PER THR.
1.	302/304			•		
	a003 THICK SHEET	144 (in)? 4 (in)? 1233(in)? 18(in)? 8 (in)? 1"x4" 1"x4" 3" LG. 7" 8" 4" 5" 6" 6 ft				
2.	a. 165 x 800 302/304 SINTERED MESH	240(in) ²				
	b. 165 x 800 MESH c. 165 x 1400 d. 23 MICRON e. 94 MESH	250(in) ² 36(in) ² 12(in) ² 46(in) ²				
3.	KOVAR SHEET .020	36(in) ²				
١4.	ALUM a020 b025 c030 d. 1" DIA	50(in) ² 40(in) ² 510(in) ² 2" LG	1 1			
. 5.	1010/1018 C.R.S. a010 SHEET b024 SHEET c030 SHEET d. 1" DIA e. 3" O.D.x.050 WALL TUBE	36(in) ² 450(in) ² 6(in) ² 2" LG 1½" LG		•		
6.	OFHC COPPER .010 DIA	50"				
7.	2% THOR TUNGSTEN 1/4" DIA	1"				
8.	CLASS 200 NICKEL SHEET	2(in) ²				
9.	TA. MESH 50 x 700	2(in) ²				
20.	GRAPHITE .050	3"x10"				-
Í						

F	PARTS LIST	TITL		1026	551	0						*	BY	S-84 A NEXT ASS'Y
\vdash	NOMENCLAT			11.1	J - F								TOOL	, , , , , ,
ш	DRAWING NUM					3 LTR	QTY/ASS'n	// T(FIND NO	SΥ	RAGE	PR	T-	
SIZE	1 2 3 4 5 6 7 8	9	10	П	12	СНС	OTY	OΤ	FII	AS	83	-		MATERIAL
	OUTER HOUSING ASSEMBLY	_,											1094	
D	1025324					F	1	1	1	1	21	064	1001	
	INSULATOR-SPACER MALE													,313 0.0 × . 136 1.D. × . ETLY AL 300 ALUMNA
В	1024226-98		· ·			G	63	12	12	2		_		WESTEN GOLD & PLAT.
	SHIELD, TUBE		, ,											1.2 DIA A . DI THK BLANK 302/304 CT 35
В	1026081-1					В	O)	12	49	3		_	<u> </u>	CC-5-766
	WIRE MESH ANODE	· 										071	1055	11.82 X 4.9, 165X 930 MESH 304 L CCT; FLET
D	1095246	·				Ε	1	1	5	4			1026	MESA 304 L CCC 5 CTG BOND'D TO . 003/005 SALL CRES SHOOT
	INSULATOR-SPACER, FEMA	LĖ			· 									1313 O.D.X. 125 T.D. X.251 LG AL 300 ALUM-
В	1024226-99	· 	+		· 	G	9	12	13	5				INA, WISTEN GLD & PLOT
	SHIELD, INSULATOR	· 		<u> </u>										.50 DIA X.ZZ Lg 302/304 CRES BY.
В	839299	· 			· 	D	3	12	14	6	<u> </u>	-		QQ-5-763
	WIRE ASSY, ANODE	· 	· · ·											
D	1095845-04	· 		· 		G	3	5	50	7	<u> </u>	167		
	WIRE ASSY, ANODE	·									ĺ		ľ	
D	1095845-05	· 		·		G	3	3	56	8		157	ļ	
	WIRE ASSY, ANODE	· 	· ·									İ		
D	1095845-03	· 	· ·	· 		G	1	1	5€	9	_	167		
	WIRE ASSY, ANODE	·			· 								1	
D	1095845-02	· ———				G	1	1	56	10		167		
	BACK PLATE ASSEMBLY			-										
Ε	1025353	· ——				F	1	1	8	11	18	_	<u> </u>	
	RETAINER, RADIAL MAGN	EŢ		· 										3.3 X ,78 X .008 TIK COMIL PURE TITANIUM
С	1026508-1	· 				В	8	8	9	12		_		AMS 4740/490
	RETAINER, RADIAL MAGN	ΕŢ		· }							·			į l
C	1026508-2	· 	-			В	2	2	10	13		_		
	RETAINER, RADIAL MAGN	EŢ		-				ł						(1
С	1026508-3	· 	·		· 	В	2	2	11	14		<u> </u>		
	RETAINER, MAGNET, INNE	R	-	 	 						İ			5.2 6.1 x .012 Tex. Alsi 1010/1019 STECL
C	1025352	 -		-		С	1	1	23	15		_		
	MAGNET, RADIAL	-+	+	 	 							575		30 x 140 x 3.3 5
В	1095095		+			Α	12	12	3	16	_		1044	,
			+	 										
-		-	+		 	<u> </u>	_	_	-	<u> </u>				
		-+	+]			
<u></u>					1	l			l		1	l	1	

<u></u>	ADTO LICT TITL	E 30CM	J-	SER	IES	10	N T	HRU:	STE	R	DATE 2/16	G-31 A NEXT ASS'Y
	PARTS LIST								Ī	BY R	SHEET 15 OF 57 SHEETS	
	NOMENCLATURE			LTR	λŞ)T	NO	NO No	11	IPD	TOOL	
32	DRAWING NUMBER			сне ст	QTY/ASS	QT1/70T	FIND		Eld.	PR		
SIZI	1 2 3 4 5 6 7 8 9	10 11	12.	ਠ	QΤ	ОТ	FI	AS	15.	_		
	RETAINER, MAGNET, OUTER											·
D	1026488			С	1	1	6	17		043		14 4 4 5 1 5
	RETAINER, FORMED BLANK	 -				ì						14.0 O.D. x 11.5 1.D. X . U24 THK BLANK
С	1095850	 	<u>, </u>	<u></u>	1	1	(1)	(1)				AISI 1010/1018 STEEL
	MAGNET, AXIAL	 	.					-		075		.140 DIA X 5.5 Lg
В	1095094			Α	12	12	18	18			1066	
	PLENUM ASSEMBLY	 -	+									·
D	1025320		 	J	1	1	15	19	18	055		
	SHIELD, MESH	1 -	 									165X 500 DUTCH TWILL 304L CRES - TETCO, INC
Ð	1095429		 	А	1	1	50	20				14.0 DIA
	BAFFLE & POLE ASSEMBLY	 	+									
D	1095719	 	 	В	1	1	52	21	19	054		
	MESH, CIV	· 	· 		İ							165 X 800 DUTCH TWILL 304 L CRES-TETCO, INC
В	1095428		· 	В	1	1	51	22		_		4.0 DIA
	SHIELD, OUTER, INSULATOR	 	· +									COND A, GO S . No
В	1025317	· · · · · · · · · · · · · · · · · · ·		В	14	39	22	23				1.8 NA X.010 THK
	INSULATOR (CERAMIC)	· · ·	· +									& KOVAR OR EQ PER
В	1095778-99	· ·	· 	A.	2	24	19	24		-		ASTM F-15 CER. ASEAL PT# 8095072-1
	INSULATOR, ASSEMBLY - VESP	EL.	 				 					DU PONT DE NEMOURS
В	1095712	 	· ·	_	2	14	30	25	23	_		
	REAR BRACE ASSEMBLY	 	+									PURE, AMS 4900/01
D	1026485	 	+	Н	1	1	17	26	23	164		
	CATHODE ASSEMBLY-CIV	+	·									
С	1026624	· · · · · · · · · · · · · · · · · · ·		G	1	1	36	27	24	053		
	SEAL, CATHODE	 										COM'L PURE TA
В	1026601	 	+	Α	1	1	53	28		,		
	ISO-VAP ASSEMBLY, CATHODE	 	· ·						ļ		1013	
D	1095763	 	+	A.	1	1	42	29	2.5	154	1011	
	COVER, BAFFLE, UPSTREAM	 	+									.014/1016 CONIL 11/16
В	1095239		+	D	1	1	55	30		_		, in the second second
	BAFFLE	++	+									TOTO ALST STEEL 2.125 DIA X.03 Thk
В	1025423	 	+	G	1	1	18	31	_			A4-5-698
		 -	+									
	 	 	+	1		<u> </u>	<u> </u>	_	<u> </u>			
		 	+	1								,
					L.						<u> </u>	

	TITLE 30 CM Standar					Th.	irus	ter	DATE 2/16	PA NEXT ASS'Y
	PARTS LIST Standar	u i	iai c	1WG 1	-			ľ	BY RE	SHEET 1 C OF CT SHEETS
\Box	NOMENCLATURE	LTR	λSc	0.1	9 0 0	Q.	413	IPD	TOOL	
SIZE	DRAWING NUMBER	CHG L	OTY/ASS	QT 1/7 TQT		ASSY	PAG	PR	τ-	
8	COVER, BAFFLE, DOWNSTREAM	3	0	0	F1	AS	F			2,200 DA X-08419
В	1095238	Ε	1	1	54	32				TA COM'L PURE
H	SCREW, BAFFLE			-						.250 DIA X.250 4 TA
В	1095241	Α	3	3	37	33		_	`	COM'L PURE
H	ISO-VAP ASSEMBLY, MAIN							בלח		
С	1095755	Α	1	1	35	34	31	152	1012	
	NEUTRALIZER ASSEMBLY							074		
D	1095773	B	1	1	41	35	36	155		
	30CM OPTICS ASSEMBLY	_								
E	1095752	В	1	1	40	36	47	153		
	JÚMPÉR WIRE, ÁCCÉL		,	١,	r 7	27		167		
D	1095845-01 SHIELD	G	1	1	57	3/		107		1010 THKX 1.7 DIA
В	1026447-1	R	19	23	46	38		03:		TYPE 304 CRES PER QQ.S.766, LOND A
	INSULATOR, KEEPER, MALE	-	13		10	30		025		1375 DIAX LINE
В	1025268	Ε	19	22	47	39				GOLD & FLATINUM CO.
	INSULATOR, KEEPER, FEMALE					_				
В	1025267-2	C	19	20	48	40				
П	SHIELD, KEEPER									1010 TK 18-8 TYPE 304 CRES PER
В		C	38	42	45	41		980		QQ-5-766,CONUA
	PLATÉ, FEEDLINE SUPPORT									OZSTXX34X134 TYFE
В	1095723	_	1	├	31	42				QQ-5-766 COND A
	OFHC COPPER WIRE (ANNEALED)		1.	A /_						20.0 Lg (ZWRAPS)
<u> </u>	.009/.010 Dia	-	/Ŗ	/ R	63	43	_			016 716 17 77 717115
В	CLAMP, FEEDLINE SUPPORT		2	,	32	ΛA				.016 TK 18-8 TYPE 304 CRES FOR QQ-5-768 CONP A
	MANIFOLD ASSEMBLY, THRUSTER	<u> </u>	-	-	32	47				1.1 x.62 x.016 74K
С	1095683	_	1	1	25	45	49	074	HEAT	
H	JUMPER WIRE, MAG BAFFLE	-	 	 		.,			SIMK	
D	1095845-03	G	1.	1	59	45		167		
	JUMPER WIRE, MAG BAFFLE									
D	1095845-09	G	1	1	60	47		167		
										n.
			_	<u>L</u>						
										
			<u> </u>							

	TITLE 30CM J.	-SEF	RIES	5 10		THRU	JSTE	R	DATE 2/16/	REV NEXT ASS'Y
F	PARTS LIST STANDAR	RD F	HARDWARE BY SHEET T							SHEET 170F 57 SHEETS
	NOMENCLATURE	œ	Σ,	}	물	N	نين	100	TOOL	<u> </u>
ш	DRAWING NUMBER	G LTR	JTY/ASSY	ot v/T0T	FIND NO	ASSY		PR	T-	•
SIZE	1 2 3 4 5 6 7 8 9 10 11 12	원 왕	OT)	P	FI	AS	Ċ.	_		
	JUMPER WIRE, CATHODE HEATER								1 1	
Ð	1095845-06	G	1	1	38	43		167		
	CLAMP, GUIDE, CABLE	1								.015 TKX1.7 X.38 301 CRES PER AQ-5-766
В	1095709	_	4	4	4	49				COND. 1/4 HRD
	JUMPER WIRE, THERMISTER	}								
D	1095845-41	G	1	1	61	50		167		-
	WIRING & HARNESS ASSEMBLY			۱.						
D	1095845-16 thru 40 & -42	G	ಟ	ea	44	51		167		
	INSULATOR, WIRE CLAMP]					·			. 020 TK TEFLON MIL-P-22241
В	1095009	A	2	2	39	52		_		1.32 X · 5
	WIRE CLAMP (STRAP)]								1005 TK X I.I X 191 TYPS 304 CRES PER
В	1095008	A	2	2	38	53		-		QQ-P-766 CONID A
	TÁPE, INSULATION		(,	A						MIL-P-22241
	.004 x 1.0 (TEFLON)	_	/ _R	[/] R	70	54				
	GŲIDĖ-HARNĖSS									VESPEL SP-1 DU PONT DE NEMEUR!
В	1027398	E	4	4	33	55		_		1.3 x 1.4 x .38
	LACING TIE, WIRE (BEN HAR)		Α,							
Ŀ	HMS 20-1924	_	Ŕ	<u>-</u>	62	56				
	SHIELD, INNER, INSULATOR			İ						1010 THICK 2.5 DIA THE 304 CRES PER QQ-
В	1025318	В	4	38	21	57		095		P-766 COND A
	REAR SHIELD ASSEMBLY]								
Ε	1025316	T	1	1	7	58	50	070		
	COVER									ALUMINUM ALLOY
В	1026809	В	1	1	20	59				QQ-A- 250/11
	BRACKET, MOUNTING, NEUTRALIZER									SHEET, AMS 4900 /01
В	1095733	A	1	1	54	60			-	COM L PURE 1.5 × 1.75
	MASK ASSEMBLY									1016 FK 11
		C	1	1	16	51	50	069	1093	
	SHIM, MOUNTING	-	A	^	١.					19-8 TYPE 302/304
В		-	R	R	έŝ	62		_	<u> </u>	CRIES COUDA , 90-5-70 .
	SHIELD, OUTER, SEGMENT A	1							1	.030 TK 6061-T4 ALUM. QQ-A-250/11
D	1095121	D	1	<u> 1</u>	27	63		_	<u> </u>	10.1 X 7.5
	SHIELD, OUTER, SEGMENT B	1	_	_		۱ .				Į1
D	1095122	E	1	$\frac{1}{1}$	28	6+			 	22.2 × 7.5
		1	İ						1	
			L	L.			L_			

F	ARTS LIST TITLE 30CM J. STANDA	-SEF RD I	RIES	S IO	ON T	THRU	JSTI	ER	DATE 2/16/ BY	SHEET 10 OF ET SHEETS
SIZE	NOMENCLATURE DRAWING NUMBER	CHG LTR	QTY/ASSY	OTY/TOT	FIND NO	ASSY NC	PAGE	IPD PR	REJ TOOL T-	
D	SHIELD, OUTER, SEGMENT C 1095123	E	1	1	29	65		-		,030 TK 6061-T4 ALUM, QQ-A-250/11 18.3 X 7.5
С	PLT ASSEMBLY, HDR, MAN, 3-INLET 1095686 (Optional)	А	1	1	34	66	51		1090	Test Version
В	PLT-SPACER, MANIFOLD SEAL 1095684-1	В	1	1	24	67	-	Gr	ound	CRES COND A, 00 - S Test Version - 746
_	O-RING (VITON) PARKER #2-008	-	3	3	54	68	1	1		V-747-75 VITON Test Version
С	PLT ASSEMBLY, HDR, MAN, 1-INLET	А	1	1	26	6 9	51	074 F1	1090 ight	version
В	PLT SPACER, MANIFOLD SEAL 1095684-2	В	1	1	54	70	-	Fl	ight	CRES, COND A, QQ-S Version - 766
_	C-SEAL (PRESS SCI) 632-U55-0002-2	-	3	3	65	71	_	F1	ight	Version
_	QQ-W-423		A / _R	A / _R	69	72		-		
Ε	INTERFACE ENGR MODEL 1095023 (ref)	D	-	-	43	73		_		
D	WIRING & HARNESS ASSY (REF)	G	-	-	_	7+		167		
	HMS-2-182020E9	_	A/C	_	(1)	(1)		~		KFT -5001-4 (60RE) 235 FT
	WIRE, ELECT, STRANCED, ZO AVE HMS-2-182016139	-	YR	-	(2)	2		_		KFT-5001-3 (GORE)
B	GUIDE CARLE, INSULATED		4	4	(3)	(3)		-		1235 DIA X.625 Lg ALZ By AL-300 MEGERN GRESTING.
	BEAD, CERAMIC (FISH SHINE)		1711	40 10 47		(4)		_		ALUMINA
	TERMINAL LUG (AMP \$ 2)	_	6	5	5.	, i= ,				NI CLASS 340
	TERMINAL LUG (AMP #4)	_	ું ઉ	<u> </u>	4)	_ (ن)		_		Ni u u
	TERMINAL LUG (AMP #6)		25	25	/ - }	7)		_		Ni u u
	321885	_	رد	33	/8 [°]	(3)		_		Ni u u

F	PARTS LIST TITLE 30CM	1 J		RIE:			THR	USTE	R	DATE 2/15/		REV A	NEXT		
Ľ	Airio Eloi	St	and	ard		-	are		ł	BY F	<u> </u>	SHEE	T 19 º	⁵ 57	SHEETS
	NOMENCLATURE DRAWING NUMBER		LTR	OTY/ASSY	TOT	NO	OΝ		•				•		
SIZE	1 2 3 4 5 6 7 8 9 10 11	12	CHG	TY/A	0TW/T0T	FIND	ASSY								İ
H	MISCILLALEOUS HARDWARE			3	٦	ш	<u> </u>				-				
E	1026510-99		G	-	-	-	75 75								
	SCREW, CAP, SOC HD, 10-32, CRES×·3	269													
	MS 24673-1	•	1	22		102	(1)								
	SCREW, CAP, SOC HD, 10-32, CRES x.62	Lg													
	MS24673-3		-	6	_	112	(2)								
٠	SCREW, CAP, SOC HD, 6-32, CRES × -25	Lig					7.3								
	MS_24674-1		_	36	<u> </u>	110	(3)	\vdash							
	SCREW, CAP, SOC HD, 6-32, CRES x -33	Lg		16		100	(4)								
-	MS 24674-2 SCREW, CAP, SOC HD, 6-32, CRES X-8	a Lar	-	16	├	106	(4)	\vdash							
	M524674-3	, -,		1		125	(5)								
一	SCREW, FLT HD, CROSS REC, 6-32, CRI	- 5	_	_	-					<u> </u>	-				
	MS_24693-C31		_	4		124	(6)			İ					
	SCREW, PAN HD, 4-40, CRES X.25 Lg														
L	MS, 51957-13		_	1		114	(7)								
L															
	SCREW, PAN HD, 4-40, CRES 4.54														
_	MS 51957-17		_	6	_	118	(8)					<u> </u>			
	SCREW, PAN HD, 4-40, CRES X 1.0 Lg	-	_				(0)								
\vdash	MS 51957-21 SCREW, PAN HD, 6-32, CRES × ·25 Lg			9	-	103	(9)	-			-				
	MS 51957-26	<u> </u>	_	6		112	(10)								
一	SCREW, PAN HD, 6-32, CRES X . 3 3-4			-	-	<u> </u>	<u> </u>				 				
	MS 51957-28		-	32	ŀ	115	(u)								
Г	SCREW, PAN HD, 6-32, CRES X .5 Lg	-											_		
	MS 51957-30		-	6		102	(12)								
	SCREW, PAN HD, 6-32, CRES 1.38 L4						,								
L	MS 51957-125			7.2	_	117	13								
		 					1								
\vdash			<u> </u>	 	-			\vdash		-	-				
															
-		·	-	\vdash	 		-	\vdash		-					
İ															
ــــــا				1		L	1				<u></u>				

F	PARTS LIST	TITLE :		E	102	265	LO -	THR vare		DATE 2/16/ BY		REV A SHEET	NEXT A	57 SHEETS
SIZE	NOMENCLATU DRAWING NUM	BER		CHG LTR	OTY/ASSY	0TWT0T	FIND NO	SY NO	ᆜ			<u> </u>		
SI	1 2 3 4 5 6 7 8 NUT, HEY, PLAIN, 4-40,	┶╌┾	11 12	ō	ОТ	10								
\vdash	NUT, HEX, PLAIN, C-80 C	RES .		-	27			(14)				. ,,		
-	AN 345-CO WASHER, FLAT, NO. 4, CR	I I I ES , ,	·	_	8		117	(15)				·		
-	AN 960-C4 WASHER, FLAT, NO. 6, CR	 ES			14			(16)						
	AN,960-C6 WASHER, FLAT, NO. 10 CR	I I I ES _{I I}		-	109			(17)				· · · · ·		<u>-, -, -</u>
H	AN,960-C10 WASHER, FLAT, NO.,10,(T	HIN) CR	ES ,	-	12		101							
\vdash	AN,960-C10L, , , , , , , , , , , , , , , , , , ,	 		·-	22		116	(19)					<u> </u>	
	NUT, HEX, PLAIN, 8-32	1 1 1 (DRLD)	CRĘS			_	121	(20)						
	NAS 509 C8 WASHER, FLAT, NO.,4 (SM	0 ₁ D.)	CRES		3			21)				·		· · · · · ·
	NAS 620 C4 WASHER, FLAT, NO G (SM/	ILL Q. D.	CRES		16			(22)						
	NUT HEX, PLAIN 0-80	CRES		-	3		-	<i>(2.2)</i>			,	ALTERI	JATE	TO (15)
	NUT, SELF-LOCKING, 4-40 NAS 1291 CO4		+-	-	36		IGE	(23)						
	NUT, SELF-LOCKING, 6-32 NAS 1291, CO6	•		-	59			24)						
	NUT, SELE-LOCKING, 10-3 NAS 1291 C3				6		131	(2E)						
	SCREW. SOC HD CAP, 4-40 NAS 1352C04-16		x 1.0 Lg		20		122	(26)						
		+ + +												
			-											
		·	,											

Γ	!	P	ΔΕ		<u> </u>	1	IS'	 T					M						RUST		E102	6510		2	te 16 81	/ 1	B	NEXT /		
			—							דת	025	324				но	n2 1		,	MBLY	(Page 1 of 3)		BY	REJ	_ _	HEET	21 of	57 SHE	ETS
l _w	·L			DF	NON RAW	VINC VINC	CL/	ATU UME	BEF				CHG LTR	QTY/ASS	QT/T0T	ND #	# λS	PAGE #	PR PR	TOOL T-	MATERIAL									
SIZE		<u> </u>	2	3 4	5	6	7	8	9	10	Ш	12	ᆼ	QT,	Ω	됴	AS	PA											·	
D	\vdash	•	UTER 025,3	нри: 24	SINO	A AS	SEM	BLY			 1		F=	1	,	7	1 1		864	1094 1005										
۲	T	 		G STI	RMC.	TURE	-	 -	 		 1		<u></u>			1	10-1	一	164	1602 1032 1033 1034 1001					·					
E			•	6498	' -1	· 	· 		· ·		, 		F	1	1	1	1													
D	-	 	1	RING 1026	. 1	. –	TER	SU	PP0	RT			4. 4.	1	1	(2	(1		164		1050 THK COM'L PURE TI, AMS 4900/01									
	-	 +		JPRI	знт.	, R1	NG	SUP	POR	Γ	 		瓜				(2		164		.020 THK 11			٠,	,					
C		 +	-	1026 UPRI	GHТ	, RI	NG	SUP	POR	<u> </u>	 			<u></u> 9					164		·u		 	· · ·		·····				•
C	╀	+		1026	T		 	 					В	4	4	(4	(3	-	062						 					
C	F	 +		UPRI 1026			NG	SUP	POR	<u> </u>			В	4	4	(5	(4		164		11		i i						٠.	
	1			RING	, TI	ĮRUS	TER	SU	PP0	RT .			7						164 062		.050 THK 11									- .
10	+	+		1026 TUBE	1		TAI	 			 		<u>`</u>			(6	(5	_	062		183/.191 O.D	-							·	
В		 +		1026	1	4-11	11.	i	<u>''</u>		 		ے	12	12	(7	(6		164		183/.191 0.D X.150 1.D. Ti AMS 4100/01		ſ						,	
В	-		SHI 102	LD. 5318	11111	ER.	LNS	<u>اللـ</u>					В	22	38	3	2		098		.010 SHEET TYPE 302/304 CRES 1.6 DIA									
B	F	t _i		ULAT 5712	+	ASSE	MBL	Y -	VE	SPE	<u>-</u>			12	14	2	3				.685 DIA X.763 L VESPEL SP-1 E. J. DUPONT							· · · · · · · · · · · · · · · · · · ·		
		-	 - -	INSU	LAT	OR-1	ESP	EL	 		├ ──┤										11			<u> </u>						
В	+			1095		-	 -	001	I NC				_		14	<u>(</u> 1	(1	}_	-			 								
_	_	 1	· · · · · · · · · · · · · · · · · · ·	INSE NAS	кі, 139!	5 C	.r-L 	UCK	1116	<u> </u>	 		,	2	28	(2	(2		_								<u> </u>			

								IRUS'		E1026510		DATE 2/16/81	REV A	HEXT ASS'Y
PARTS LIST		102	5324	0	UTE	RH	lous	SING	ASSE	MBLY [] (Page 2	of 3)	REJ	SHEET	22 of 57 SHEETS
NOMENCLATURE DRAWING NUMBER	·····	CHG LTR	OTY/ASSY	QT/T0T	FIND #	ASSY #		IPD PR	TOOL T-	MATERIAL				
INSULATOR (CERAMIC), B 1095778-99	 	Α	10	24	4	4				CERAMASEAL PTH 80989797-1				
SHIELD, OUTER, INSUL. B 1025317	· · · · · · · · · · · · · · · · · · ·	В	12	26	5	5		apo		TYPE 302/304 CIES COND A, QQ-5-766				
SCREW, CAP, HEX SOC, DRLD, - MS 24673-1	10-32,CRE	1 1	40	56	6	6	·	_				*		
LOCKWIRE, .020025 (30)	²⁾		A/R		7	7								
OUTER SHELL D 1025381	· 	F	1	1	8	8		~_	1054	4008 THK TI SHETT PLR AMS 4400/01 GAL 4V TYPE				
	}												,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
										·				
	· · · · · · · · · · · · · · · · · · ·													
										·				
6818 RL DEC 1973	· · · · · · · · · · · · · · · · · · ·													·

Γ	-	7 /		~~	`			\ 		T	iΤι	E	30	CM	J-	SER	IES	IC	ר א	HRU	STER		E10265	10	DATE 2/16/81	REV	NEX	T ASS	5,A
	t	- /-	۱R	13	>	L	15	ì			10	253	324		OUT	ER	HOU	SIN	IG A	SSE	MBLY		[Page 3 (of 3)	REJ	SHFE	₹ 23	OF 5	7 SHEETS
SIZE		·			AW	יואכ	1 E	ATI MUM	BE	R		T		CHG LTR	Y/ASSY	QT/T0T	FIND #	ASSY #			T00		MATERIAL						
ĪS	['	1	3	4	5	6	7	8	9	10	4	"	12	ਹ	6	0	Œ	×	la la	 	-	4		 	 ······································				
С	-	•	IMBA	•	RAC	KET	<u> </u>	<u>SSEI</u>	4βL\	<u>Y</u>				E	2	2	9	,		16	4 103	ام						•	
۲	1	+-	10265	,	۰	- HON	 -		+		-		-	<u></u>	-	-	1 9	1	+	 	103	┧	.080 THK COM'L		 , —	•			
С	H		•	<u>ATE</u> 265	•	•	 	 	- 	+	 +-	 	\dashv	E	1		(1	(1					Pure ti per Ams 4900/01						
Γ		- 		ATE	T	·						 +	\neg						1			\neg	11						
С		-i		265	1	1	 			-				E	1	1	(2	(2		_									
	L	· 	PL	ATE	, B	ρττ	OM	· 		· 		· +							ı	Ì	1		11	Ì					
C			10	265	<u>09-</u>	96	-		: 	· 				E	1	1	(3	1		_					 · · · · · · · · · · · · · · · · · · ·				
	L		GL	SSE	Ţ_		· 	· ——	· 	-	· 					٠.			1	1			u	}					
c	L	· 	10	265	09-	97	· 	· ·	· 	· 	· 	· 		E	2	2	(4	(4											
	L		. IN	SER	Ţ,	THR	EΑ	DED	, 			<u>.</u>											41						
В			10	<u> 265</u>	20			· ·	' 	<u>.</u>				B	4	4	(5	16											
	-		· 	· 	, 	 	' }	, - 	- 		}-														*			Cor	IN MPOTEN HERE
 		. 5	HIM,	MOU	NT I	NG		- 							Α,							\exists	.002 THRU .040 THK						
В			10,957				 	- 		+	 -	 -			/ R	-	10	10			-		TYPE 302/304 CRES PER QQ-S-766 CONDA						
		Ė	RING,	DO	MNS	TRE	AM	•											Π	Ī			24 GA (-024) SHUCT AISI 1010/1018 PER						
D			10253		L			.1	1	-				E	_1	1	11	11		04	3		QQ-5-698	`} }					
		1	OLE	.	l		, 	1		1		1											11						
С]	10253	83		1		1	1	1		1		C] 1	_1	12	12		04	3								
		F	RING,	UP	STF	EAM			+-	+		-+											(1						
D		1	10265	01	· 			· 			-			C	1	1	13	13					·		 •				
		· 	RI	NG,	FC	RME	D,	BLAI	٧K	· 													11						
D	L	•	1	095	851			· ———	· 		•			_	1	_1	(1	(11						

	DADTO LICT	TITLE	30CM	J-:	SERI	ES	ION	TH	RUS	ER	E102651	10	2/16/8/	REV /	HEXT ASS	Y
	PARTS LIST		D102	532	0 -	PLE	ENUN	I AS	SEME	SLY [9 (Page 1 of 1)		BY REJ	SHEET	24 o F57	SHEETS
Γ.	NOMENCLATURE DRAWING NUMBER	₹	LTR	ASSY	101/10	# Q		E #	IPD 5	TOOL	MATERIAL					
SIZE	1 2 3 4 5 6 7 8 9	10 11 13	2 HS	OTY/	719	FIN	ASSY	PAG	PR -							
ļ	BACKPLATE ASSEMBLY	· · · · · · · · · · · · · · · · · · ·	- _								·			٠		,
E	1025353	 	F	1	1	8					, OZO THK SHEET					
E	ВАСКРLАТЕ 1025353799, , ,	 	F		,	1	1				COM'L PURE TI AMS 4900/4901					
一	NUTPLATE, \$LF-LKG, 6-3	l l l 2 EYD	1	 												
L-	M\$21070-06,	- 3 - ND	<u> </u>	8	39	2	2		-							
l	RIVET, ÇSK HD,093, ÇRE	<u> </u>														
Ŀ	M\$20427-F3-3			16	32	3	3						· 、			
											·					
	PLENUM ASSEMBLY															
	1025320	 -	12	1	1	15	II?		೧ಽ५							
	PLENUM 1	 }	┦╴								OIG THK SHEET COM'L PURE TI AMS 4900/4901					
尸		 - - 	1	1	1	1	-	_			302/304 CRES				<u>.</u>	
	MESH, 165x800, CRES	 -	٦,	_		١	,				23 MICRON					
	1025320-97	 	+	12	15	-3	2				DIG THE SHEET					
	DEFLECTOR	 	٦	١.	١.						COM'L PURE TI AMS 4100/4901					
L	 -	 	14	1	1	2	3		7 							
	TAB, SUPPOINT	 	-	4	4	1	4				3/16 × 3/8 × 101					
	NUTPLATE, SLF-LKG, 6-3	2, FXD														····
Ŀ	MŞ21070-06		_	8	39	4	5									
	RIVET, CSK HD, 1093, CR	S														
_	MŞ 20427 F3-3			16	32	5	6				•				A TANKA TANKA	_

	P/	٦R	TS	LI	S	Γ	T	ITL	•		1 J- 9571		IES BA	IO: FFL	N TI	HRUS POL	TER E ASS	E1026510 SEMBLY [2] (Page 1 of 4)		DATE 2/16/8/ BY REJ	REV A	NEXT ASS'Y
ZE			NON DRAV	MENG						G LTR	OTY/ASSY	QT/T0T	# QN	ASSY #	GE #	IPO PR	TCOL T-	MATERIAL	· · · · · · · · · · · · · · · · · · ·	1 KLO		
SIZE	1	2 3	4 5	6	7	8	9 1	2	1 12	왕	6	Ω	E	AS	PA	-						
	1		& POL	Ę AS	SEME	BLY,				В		1	52	121		054	·					
D	-	95719	+	 - 		4D1 V				1-	╁	┝╧	122	1	-		 - -					
		-	DDE PO	LE A	22E).	IBL,I	-+-	-+-		G	١,	1	1	1		054						
	-+-	10266	+	 	+	-+		- i		6	1	┤╌	 	 	 	.,,,,,,	 	·				
	-+-	.1	ANGE.	41				-1-		F	١,	١,	u	(1)								·
В			126521		 			-		-	-	1	14		_							
В	+		<u> LE, C</u> 125357	1 1	טב ן			-+-		F	1	1	13	(2		_				•		
D	- -	- 1	ANGE,	1 - 1	unns			+-		 	╁	1	-	2 (2			· .	TYPE 304 L CRES				
В			<u> 126603</u>	-11	поц			-+-		B	1	1	4) B				QQ-S-763 1.5 DIA X 1.0 LUG				
U	+		VER,	1 1	+		+	+-			<u> </u>				_			94 SQ MESH 304L				
В		•	115111 195245			 -				B		1	(5	0 (4	h	_		CRES CLOTH .0035 WIRE				·
			VER,	11	MN .	-											;	.625X.775X.010 TANTALUM, COM'L				
D		10	26605	<u>-99</u>						G	4	4	01	(5)	_		PURE				
		SI	IPPORT	, BA	FFLE	-	_		} -				Ì					1.0 DIA X . 800 1.D. X 1.407 LNG AISI				
В		10	25425							ی	1	1	(2	6	<u> </u>		<u></u>	TUBING				
		C	OLLAR,	TER	MI N	۱L أ	· ·		· — —			ļ	ŀ				}	1438 DIA X 125 LG BAR TYPE 304L				
В		10	95717	-	·					_	3	3	6) (7)	_		CRES COND A PER QQ-S-763				
	-	TI	ERMINA	L-FE	EDT	IRU	,Mo	DİF	IED		-	1										
В		1	0958	357			· i			_	3	3	(10) (8)	_	;	·				
			TER	M.,	EĘ	DTI	IRU											PURCHASED PART				
	<u>'</u>	· 	CT25	(ALE	ER	ύX)	· 		· <u>↓</u>	<u> </u> -	1		-1-	-1-								
	· 	· c(VER,	FLAN	GE ;	· 	· 	· 	· 									TANTALLIM, CON'L				
В		, 10	95242							15	1	1	(7) (9)(PURE	•			

N
Ó
ũ

	PARTS LIST	001						HRUS		E1026510	2/16/81	A	EXT ASS'Y
L	PARIS LIST	DIC	1957	19 B	Arr	LL	& P	ULE	ASSEI	MBLY [21] (Page 2 of 4)	REJ	SHEET 2	6 of 57 SHEETS
	NOMENCLATURE DRAWING NUMBER	7.0	ASSY	TOT	# 0	l .			TOOL	MATERIAL			
SIZE	1 2 3 4 5 6 7 8 9 10 1	1 12	01%	QT/T0T	FIN	ASS	PAGI	PR -	T-				
-	COVER, POLE PC, OUTER		+	-	-	_				1032 × 3.9 DIA			
В		 E	<u>.</u> 1	1	19	(10)				TANTALUM, OM'L PURE			
	, CO,VER, POLE, PC, INNER		$\overline{\cdot}$							2.940 O.D. 2.785 I.D. X 1.4 Lg			
В		T.	3 1	1	(8	(11				TANTALUM COM'L PURE			
	COIL, MAGNETIC BAFFLE		ĺ							PURCHASE FROM SEMCO INC. COXX COPPER - MGO-CU	*		
B	1025424	, 6	1	1	19	2				COM'L PURE	· · · · · · · · · · · · · · · · · · ·	_	G- 7
_	TANT. FOIL STRIP		- 3	3	,	(1)				COM L PURE	·	•	
-	CLOTH, CRES (COIL COVER)		Α,	 						4.0 X .50 RECT.			
	.0035x94 SQR MESH (304L)		. '	F -	20	3							
	SHIELD ASSEMBLY, INNER							,					
В	1095811	1	2	2	10	4		·					•
B	SHIELD, KEEPER 1025266-1			2	1	(1				OLO SHEET 19-9 TYPU 304 CRES COND A			,
F			- -	 -	7	1 (1	-			00-5-766			·
-		^^ -	- A _/ - R	_	(2) (2)			. 525 DIA PIECES			
r	INSULATOR, KEEPER, FEMALE		1							1375 O.P. X.205/.D. X.661 AL 300			
В			2	2	8	5				ALUMINA. WEST- ERN GOLD & PLAT.			
	SHIELD ASSEMBLY, OUTER												
B	·▐▗╼ ┈ ▊▗┈┈┃┈┈┃┈┈┃┈┈┃┈ ┈╂╌╾┼╌╼┼╌┈┤ ╸ ┈┦		2	2	9	6				1010 THK 19-8			
	SHIELD 1026447-1			23	(1	(1				1446 304 CRES COND A QQ-S-766			

PARTS LIST	TITLE 30									E1026510 BLY [21]	DATE REV 2/12/41 /-	NEXT ASS'Y
PARIS LIST		.050	, 23				•	<i>-</i>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(Page 3 of 4)	REJ SHEET	r 27 of 57 sheets
NOMENCLATURE DRAWING NUMBER		G LTR	OTY/ASSY	QT/T0T	# QN	ı			TOOL T-	MATERIAL		
W 7 I	10 11 12	CHG	OΤ	QT	H	AS	PA	_				
0035x94 SQ MESH (304			A A	-	(2)	(2)				184 X Z.O AND 1625 DIA PIECES		·
KEEPER ASSEMBLY C 1095715		A.	1	1	12	7		054	1076 1075 J028			
KEEPER			1	1	(1)	(1				OGZ THK X.312 X Z.312 ARC CAST MOLY PER AMS 7801		
BUSHING, KEEPER B 1095714		B	2	2		(2)				195 DIA X.438 L ARC CAST MOLY AMS 7800/01		
COVER MESH KEEPER		A	2	2	(3)			•		7/8 x 1/2 STRIP 94 SQ MESH . 0035 WIRE 304 CRES CUTH		
INSULATOR, KEEPER, MALE,		E	2	22	7			·		.094 I.D. X.375 O.D. AL 300 ALUMINA WESTERS GOLD & PLATINUM CO.		
SHIELD, KEEPER B 1025266-2		C		42	16	9				OIO THE X 1.5 DIA BLANK 304 CRES CONDA QQ-S-766		
FLANGE, BAFFLE B 1025422		D	1	1		10				1.280 0.0 x.062 THK AIST 1010/ 1018 STEEL BAR		
									•	·		
									·			
8818 RL DEC 1973												

+ 3

	F)	4		7	7	Γ;	S	,	L	.13	S	Т			TI	ΓLI			300	M 0	J-SI 719	ER!	LES BAF	S I	ON E 8	TI k	HRU POL	STE E A	R SS	SEMBLY 21		026 age		of 4)	S-16 RE	-8°	REV — SHEE		XT AS		SHEETS
SIZE	-	Ι	2	Ι	3	-	N D F	A S	5	E	G	LZ 7	AT UN B	UR	R	_	11		2	CHG LTR	OTY/ASSY	QT/T0T		FIND #	ASSY #	PAGE #			T00 T -	- 1	MAT	ER	UAI	<u></u>									
	-	<u>,</u>	-	+		_		-		· 	· ·		, ,		•	_	· -	· <u>·</u>	_																							·	
В		•	SI	•		•		•		PE	R		 				 	-		C	3	3		11	11						OIO THK BLANK 3 COND A,	X 7 204 QQ	2.3 (- CRI S-7	DIA ES 766									
В		_1_	C(. 1			ΙL	E	NE)	 	+		_	 	+		A	2	2		15	12						015 X . BLANK (F 304L CR QQ-S-7	OR	4 P	(5)	·								
	_	¥	W/ Al	•		-,-					_ _		· 	- -	_+ +	_		- 	-		2	30		14	13						,									٠.	•		
		+		-+-	_	-		-	0	_	, (AT	HO	DE	K	:EF	ER	· 		<u>G</u>	1	1			14			67											 				
_						1		•		HD 14	•	-4	0	· 	-+-		· 	` 	-	-	2	2	1	3	15												 						
-		1	AN	1	-			1	3 (· - -	—I	 	· 	· +		· 	· 	-	_	6	16	1	7	16												 ··-						
-		-	JN AN	7		7-		_	P	LA	IN	<u>.</u>	8-	32	+		\	; 			3	3	1	.8	17																		
		, - 		+-	<u>. </u>	+-		· -		-	-		· · · · · · · · · · · · · · · · · · ·	 	· ·			· · ·																									
·		-		+		+		 	_		+			+-	+			+-																					 •				
		+		+		+		+		<u> </u>	+		— —	+				+																									
		+		+	_	+		 	_		-1-				-+		 	+																									

	F	P	۱F	l T	S	l	_[,	S [·]	Τ		TIT	LE	В1	095	J-S 712 485	I	NSU	LAT	OR .	RUST ASSE ACE	MBLY	E1026510 , VESPEL 25 (Pago 4BLY <i>26</i> (Pago		1)	DATE 2/16/8/ BY REJ	A		O OF	S'Y 57 SHEE	TS
SIZE	-	2	3	0		WII	٧G	N		RE BEF	—- ₁	11	12	CHG LTR	QTY/ASSY	QT/T0T	1	ASSY #	PAGE #	IPO PR	TOOL T-	MATERIAL								
В		-1-	<u>ų</u> А 571	_,_	₹ A:	SSE	MBI	_Y -	VE	SPE					2	14														
В	_	<u>.</u> 1	095	712	?- <u>,1</u>	<u>- ,</u> V			 	 	I		-	-	1	14	1	1	_			.75 DIA X.763 L VESPEL SP-I DU PONT -	9							
-			NSE AS	•	•	•	<u>-L</u> f	OCK,	ING	 	 -	·			2	28	2	2								. <u></u>			<u></u>	
	F	+ REA	+- 	H- RA(+ + 45,5	- I EME	—-I —-I 3LY.		 	 	_	-		_												. · · · · ·			
D		102	648 EAM	5						 			 -	H	1	1	17	26	_	164	1006	.032/5 THK TI SHEET AMS 4900/	2			 		···	· · · · · · · · · · · · · · · · · · ·	_
В		<u>, 1</u>	027	34:		VE D	 +			 				ß	2	2	1	1				11								
В	-	1	027	367		PE	 +			 			 	A	2	2	6	2	_			11							•	
В		+-	027 RAC	-		TER	HIN	\AL					-	A	4	4	- 5	3	_			11					···		•	
В		+	027	-	<u> </u>	- 			· 	 			· 	A	4	4	4	4								·····			******	
В		+	USS 095	+-	 -		 +	 -		 			 	Ą	8	8	2	5				l t								
В		_	NSE 027					i						Д	22	22	3	6				.375 DIA X (+08) TITANIUM COM'L PUR AMS 4400/01	g E				•			
		<u>.</u>	· - 	· -			-1		· 	- ' 			-															•		

		TIT	LE 3	ОСМ	J-S	ERI	ES	ION	TH	RUST	ER	E1026510	2/16/91	REV	NEXT ASS'Y
	PARTS LIST		C	1026	5624	C	ATH	ODE	AS	SEMB	LY, (CIV 27 (Page 1 of 2)	BY REJ		30 OF 57 SHEETS
4.1	NOMENCLATURE DRAWING NUMBEI			LTR	ASSY	QT/T0T	# 0	# }	£ #	IPD	TOOL	, , , , , , , , , , , , , , , , , , , ,			
SIZE	1 2 3 4 5 6 7 8 9	10	11 12	: 물	OTX	QT/	FIN	ASS	PAG	-	T				·
	CATHODE, ASSEMBLY, CIV		·							_					
С	1026624	 		G	1	1	36	27	<u> </u>	053		1260 0.0 X 1010			
В	ΤυβΕ	 - 			1	1	1	1				WALL X 1.7 LG TA COM'L PURE SEAMLESS TUBING			
	DISK, ORIFICE	 										.235 DIA X.06 Lg 2% THORIATED	1		•.
В	1026370	J J		\mathbb{R}	1	1	4	2				TUNGSTEN			
С	FLANGE , 1026371			E	,	1	3	3				.668 DIA X.04 LG TA ROD, COM'L PURE	••		
<u> </u>	HEATER, CATHODE	 		+	╅	广		۲	_			COAX TA-MGO-TA			
В	1025262	 		75	1	2	13	4		166		PURCHASED PART			
	CLAMP	 		1	1	<u> </u>						,285 x ,370 x .135			
В	1026374	 		7	1	2	12	5				TA BAR, COM'L PURE			
	морит, сатноде,	1)	1									1.5 DIA X.250 Lg TA BAR COM'L			
В	1026604		1	B	1	1_	2	6				PURE	· 		•
	INSULATOR, HEATER, TERM	1										1.094 QD. X.04 1.0. X.094 Lg AL 300			
В	1024529		1	J	1	5	٠8	7			•	X.094 L9 AL 300 ALUMINA WESTERN GOLD & FLATINUM			
	TERMINAL, COAX HTR.											156 X.312 X.61 TA BAR COM'L			
В	1095713-1-08	· ·	· ·	C	1	1	7	8				PURE			
	STRAP	 i										1010X.035 X 1.019 TA STRIP, COM'L			
В	1026635-1			B	3	3	5	9	_			pure .	· · · · · · · · · · · · · · · · · · ·		
		· -	 	4											
		+		-	 		_	_						·····	
		+1	 	-											
	RL DEC 1973					<u></u>	<u></u>	<u> </u>					.,		

					_	TIT	ΓLΕ	30	ЭСМ	J-	SER	IES	10	N T	HRUS	STER	E1026510)		DATE 2/16/91	REV	NEXT A	55'Y
	P	ARTS	L	IST	_			C:	102	662	4	CA	THO	DE	ASSI	EMBLY	, CIV 27	. 01		BY	SHEET	31 of	57 SHEETS
-	_	N/C	MEN	ICLA"	TUDE	<u>!</u>			œ	}		395	T	35.	1.00	TAN	(Page 2 of MATERIAL	· <u>2)</u>		REJ	<u>. </u>		
W				3 NU					LTR	/ASS	T01	# 0	•		urp	TOOL T-	MAIERIAL	ı					
SIZE	1	2 3 4	5 6	7	8 9	10	11	12	СНС	OTY/ASSY	/19	FIL	ASSY	PAC	PR -	<u> </u>			•				
Γ		STRAP		1	1	.1	1.										TA STRIP COM'L			· .			
В		1026635-2		1 1		.1			8	1	1	6	10				PURE					•	/ 5 / 15 / 15 / 15 / 15 / 15 / 15 / 15
		SHIELD, R	ADIAT	r,ION			1										.000 X 4.5 L9 X						
В		1026637	. 1	<u> </u>	. 1	· 	1		\mathbb{B}_{j}	1	2	14	11			<u> </u>	.0005 THK TA FOIL , COM'L PURE						
		INSERT, C	АТНО[je i	· 		+		•								PURCHASED PART FROM SPECTRA-MAT					•	
В	<u>L</u>	1095590-1	·	· ·	· 	· 	· 		Α	1	1	11	12				WATSONVILLE CA						<u></u>
		INSERT	, IMF	REGN	ATED	+	+									}	POROUS TUDGSTEN W/BA-CA-AL IMPREG			-			
В	-	10,955,9	0-97	11-		+	!		Λ	1	2	(1	1/1	_		ļ	4:1:1 RATIO			•			
		WIRE,	RHENI	ĮυM,	.020	Dia	ļ	\square		Α,				1		Į	.020 DIA X,92 Lg						
B	 	109559	0-98	 		+	 		A	R	-	(2	(2	_		<u> </u>							
	<u> </u>			· · · · · · ·		+	 	\vdash						Ì									
<u> </u>	-			 -		1	 				_	_	_	_		<u> </u>							······································
	-		-+	 		- 	}]	Ì	}								
-	┨			 	- -	+	 			_		_	-	-	<u> </u>								<u> </u>
				1 1		+	+							ŀ									
-	┤─┤		-+-	1	-+-	+	 	┥			┝	-	-	-	 	 							•
		 	-	1 1		+	+																
-	╂━	 		1		+	 					 -	\vdash	 	-	-			 .				
		 -		1		-1	 		٠.					ĺ			·				•		•
-	╁~			-1		+	 	- 		 	 	_	-	╁	-	 							
		 		 	+	+	 	+							1								
H	╁	 -		++-		+	+	+		┢		-	\vdash	 	 			-+			 :		
				1		+	 	┤															
I				1		_1	L	1L		I	I	i	l	I	I	J	<u> </u>	1_					

299	
_	

1	TITLE 3	OCM	J-S	ERI	ES	ION	TH	RUST	ER	E1026510	DATE 2/16/91	REV NEXT ASS'Y
	PARTS LIST	1095	5763	I	SO -	VAP	AS	SEMB	LY, (CATHODE [29] (Page 1 of 5)	BY REJ	SHEET 32 OF 57 SHEETS
SIZE	NOMENCLATURE DRAWING NUMBER	CHG LTR	OTY/ASSY	QT/TOT	FIND #	ASSY #		IPD PR		MATERIAL		
D	ISOLATOR-VAPORIZER ASSY, CATHODE 1095763	A		1	42	25		154	1013 1011			•
ß		-										
В	PLUG, POROUS 10957,71	-	1	2	3	(1)			1078	<u> </u>		;
В	PLUG, POROUS, BLANK 1024925	H	1	2	(1)	-1-				185 DIA X.05 THK 80% DENSE POR- OUS TUNGSTEN PURCHASED PART	•	
В	HOUSING, PLUG, VAPORIZER 1095764	-	1	2	2	(2)				1270 DIA X.35 Lg TA BAR COM'L PURE		
В	MOUNT, VAPORIZER, CATHODE 1095766	A	1	1	4	2				ZGO DIAX.233 LY TA BAR, COM'L PURE		ν,
В	HEATER, VAPORIZER	E	1	2	14	3		165		PURCHASED PART COAX WOUNEL- VGO-NICHMME I		
В	HOUSING, VAPORIZER (RT., ANGLE)	A	1	2	1	4				.Z69 DIAX.57 L9 TA ROD, COM'L PURE		
В	MOUNT, RTD	A	1	2		5.				.364 X.19 X.43 TA BAR COM'L PURE		
В	TRANSITION, TUBING	<i>C.</i>		7						1168 DIAX 35 Lg 304 CRES ROD COND A QQ-A- 763		
В	FEED TUBE (.06) 1095016-2	C		1						OGZ O.D X.OIO WALL 321 CRES TUBE 10.5 LNG- MIL-T-8808 COMDA		
		1										

					_	-				TI.	TLE		30C1	1 J-	SEF	RIES	10	ר מ	THRU	STER		E1026510			DATE	6/81	REV A	NEXT ASS	Y
	P	AF	37	S	l	_1;	S					[109	9576	53 I	:SO-	VAF	AS	SEM	BLY,	CA	ATHODE [29] (Page 2	of 5)		BY	EJ		33 of 57	SHEETS
							CLA NI					-	LTR	ASSY	TOT	#	•			TOOL T-		MATERIAL	<u> </u>			5.			
SIZE		2	3	4	5	6	7	8	9	10	111	12	왕	OTY/ASSY	QT/T0T	FIN	ASSY	PAGE	-	'-									
		-								 																· . · · · · · · · · · ·			
		· ·	<u> </u>	-	· 	+	· 			· 	· 	` 		_		_	_		<u> </u>	<u> </u>	1					,,,, <u></u>			
		TER	MIN	<u>ΑL,</u> ,		AΧ	Щ	EAT	ER	 	+	+					8					312 X.15 X .61 L9							
В		109	<u> 571</u>	3- ₁ 2	<u>-Q4</u>	-+					 	+	<u>C</u>	1	4	19	-	<u> </u>		-	4	.094 O.DX,040							
	-	INS		1	<u>, H</u>	EĄ.	rer		ERM	1	+	1	J		_		9				`	I.D AL 300 ALUMINA, WESTERN GOLD & PLATINUM		Þ				•	
В		102		-				100	<u> </u>	 -	 	 	9	1	5	20	1	-	-		Т	1.5 DIA X.25 Lg				,		· · · · · <u> · · · · · · · · · · · · ·</u>	
С	H	<u>Р</u> ЦА 109			ULA	14	<u>₹- ٧</u> /	400	K1Z	EK	1	+	_	1	1	5	10					321 CRES BAR QQ-S-766 CONDA			••				
J		IS0			 ASS	 EMI				 	 -	 		Ť	<u> </u>	T	11				†	VENDOR BRAZED						 	
С		10,2				 +	+			 	 	 	C	1	2	1 6	1	l		ļ		HRL SUPPLIES BOW KOVAR RINGS		l !					
			BOD	-	- 1	LĄ.	ror				1	1									-	1.38 O.D.X 1.135							
В			102	1	-1-		1		· · · · · ·	L	J		Н	1	2	3	(1	_	098	,	1	AL 300 ALUMINA WSTRH GOLD & FLAT							
			RIN	G,	IS0	LA	ror	ВО	DΥ		· -	 									- 1	3.0 DIAX.02 THK BLANK KOVAR	1						
В		· 	102	491	9-2	_				· 	· - 	· 	E	2	4	1	6	_	09	3		OR EQUIV. (FORM'D							
			RIN				JP ,			-	+	-				1				'	Ι,	1.38 O.D. 1.14 I.D. X.05 THK AL 300							
В		 -	102	-+-		 +	+		,		+	+-	C	2	4	2		_	09	3		ALUMINA - WESTEN GOLD O FLATIUUM			· · · · · · · · · · · · · · · · · · ·	 			_
		RIN			LAT	OR		 -		 	+	+	_			١.	12				1	1.135 OD. X.870 1.D. X.12519 AL 300 ALUMINA, WESTRN							
В	_	102				- H				 	1	+	E	_	14	-	-	├-	098		\perp	GOLD & PLAT					·		·
В	<u> </u>	MES 102			LAI	UK 1				1-	1	 	E	8	16	8	13		010		-	165 X 1400 (17 M FIL TER CLOTH) 302/304		•					
_		CON		 -	AS	SY	, FI	EED	TU	IBE	1	-	Ť	╁	<u> </u>	 	-	-	┼	+	+	CRES (KRESSILK PR)							
С		102		- i -	 -	 +			<u>-</u>	1	- 	 	Н	1	1	10	14-		052										
		· · · · · · · · · · · · · · · · · · ·				 -			· · ·	·		+				Π					1							·	
			,		-1	, .	·																						

				· · ·			1	<u> </u>	r-		TIT	LE	J								TER		E1026	510	, · · · · · · · · · · · · · · · · · · ·	DATE 3-25-9	O RE	v	NEXT	ASS'Y
	<u></u>		\r	1	-	J	I ·	S ⁻	1				D10	957	63	IS	0-7	AP .	ASS	EMBL	.Y , C/	ATHODE [29]	(Page	3 of	5)	BY REJ	St	EET	34 o	F 57 SHEETS
									TUI		₹			LTR	ASSY	T0T	#	# _			TOOL	MATE	RIAL							
SIZE	-	2	3	4	1	5	6	7	8	9	10	Ш	12	CHG	OTY/ASS	101/10	FIND	ASSY	PAGE	PK -	T-				,					
								 +				<u> </u>																		
		+	+-		-+-		 +	 +				-						_	_		 	15014	<u></u>	-					. 	
	<u> </u>	-		-		- 1-	<u> </u>	AT(OR C	DUT	LET											TYPE 304	L CRES							
В				026		. 1	 +	-+				 		A	1	1	(1	(1	}		 	COND A, Q		<u> </u>						
		+-					SOL	AT()R ,	CA	ТНО	PE				ļ],				PURCHASE COAX INC	CONEL -							•
С		+		095	- -	- +					-	 		A	1	1	4	(2)		165	ļ					·				
	ļ	+		EED	-1-		ب)	09) +			 	\vdash	2			<u>ا</u> ,	١.,			1	WALL 32 TUBE MIL	I CRES			•				
В	-	+	-	026	-		+	+			 	 		D	1	1	(2)	[3]	-	052	1023	4.7 Lg(A)	(איניזוא	-					Take ye	TOTAL CONTRACTOR
	<u> </u> -	+	-				<u>.</u> [EE) TI	JBE ₁		 	-) a				١,,			ļ	304L CRG								• •
В	-	+	-	026	-+-	-	-+	+				 		A	1	1	(3	(4	-		-	.312 x.15:	x ,6 L1	-						
		+	•	•					HEA	\IE	<u> </u>			_		١.	ا (ا ,				200 NIC								
В	_	+-	+	095	+	-+						T		U	1	4	1/2	(5)	-		 	· 0:14 O·D. 3	x .041.0.							
В	_	+-	+-	พรบ 024	-+-		, r	IEA I	ER		EKM	I NA	-	J		_	10	1			1	AL 300 A	ALUMINA . GOLD	`						
P	-	+			-+-	 -	 		10118		N.C	 		7	1	5	6	<u>(6</u>	-			2.2.5 DIA								•
В	┝			սե <i>յ</i> 518	-+-	301	- H	JK 1	10U	111	IVG	 	-	A	1			15				304L CR	ES BAR							
۲	-	+-		KET	-+-	re p	 I	- 1				 	-	, ,	 	1		13	├		 	1.5 DIA X						<u>-</u>		•
В	-	+	-+-	769					 t	_		 	-		1	3	18	16				304L CR								
		ا SI	-1-	−+− LD,	- - -		−-t R.		!			 				-		Γ	一		1022		-					<u> </u>		,
В			-	- 				i				 		E	1	2	12	17	1	050	1017	1								
		 	-	TIT	-		 +					} -			Ť	<u> </u>		İ				5.0 X 1.04	X.003							
В			_	026	-1-	- 9	9	—- 	!		·			E,	1	2	(1	(1)				CRES CON	A at			, 		•		
		-																												
			-1		-1									١.																

		DADTO LICT	TIT	LE :									E1026510)	,	DATE 3-25-50	REV	NEXT /	ISS'Y
	P	PARTS LIST			0109	576:	3 IS	0-V	'AP	ASS	EMBL	.Y , C	ATHODE 29 (Page 4	of 5)		BY REJ	SHEET	35 ^{of}	57 SHEETS
13		NOMENCLATUR DRAWING NUMB	ER		LTR	/ASSY	101/10	# Q	# \			TOOL	MATERIAL						
SIZE	1	2 3 4 5 6 7 8	9 10	11 12	5 £	0T.	5	FIND	ASS	PAGE									
		SHIELD CLAMP,L.H.		 									.90 X.19 X.012/.015 THICK 304 CRES STRIP, CONDA	·					
В		1026920			A	1	4	(2	(2				QQ-S-766			· · · · · · · · · · · · · · · · · · ·			
		SHIELD CLAMP, R.H	· ·										11						
В		1026921	· ·	 	A	1	4	(3) (3									_	·
		SCREW, CAP, 2-56,C	RES		_ '						ļ								
_		MS 16995-2			-	1	4	(4	00										
		NUT, HEX, 2-56, CR	ES,	· ·	_	1				ľ									
_		MS 35649-244	-1	 		1	4	(5	(5	_						· · · · · · · · · · · · · · · · · · ·			
				 -	4	Ì													
		CUIEI D. OUTED		 		 	 	-	-		-		•						
В		SHIELD, OUTER 1026538			HB.	1	2	11	18		051	1019 1022							
		SHIELD		 	- 	┪	Ī					1020	5.5 X .73 X .003						
В		1026538-99		 	$\exists \mathcal{B}$	1	2	(1	(1	6		1015					÷		
		, SH,I EL,D , , ,										1017	4.9 X .36 X .003 THICK 302/304						
В		1026538-98			\mathbb{S}	1	2	(2	(2			1014	CITS STRIP CONDA						
		SHIELD CLAMP, LH											190X 110 X 1012/1015 THICK 304						
В	- "	, 1026920 ,			A	1	4	(3	(3				CRES STRIP CONDA					_	
		, SHIELD CLAMP, RH,											n						
В		1026921	1		A	1	4	(4	(4				•						
		SCREW, CAP, 2-56,	CRES																
_		MS 16995-2		 		1	4	(5	(5										
		NUT, HEX, 2-56, C	RES	· ·													-		
		MS35649-244			1-	1	4	16	16	_									

	PARTS LIST							JSTER SEMBLY	E1026510 , CATHODE [29]		DATE 2/16/71 BY	REV /~	NEXT ASS'Y
SIZE	NOMENCLATURE DRAWING NUMBER		CHG LTR	OTY/ASSY	QT/T0T	FIND #	1SSY #	D TOOL	(Page 5 o	f 5)	REJ		30 0. 57
В	INSULATOR, THERM TERM		В	2	7/27/21		19		.125 OD.X . OGZ I.D X . 177 Lf AL 300 ALUMINA, WESTERN GOLD & PLATINUM				
В	INSULATOR, THERM TERM 1095419-2		В	2	6	22	20		OITTO EXCEPT				·
В	SHIELD, THERM TERM 1095418	 	А	4	10	23	21		190 DIAX.095 LA TYPE 304 CRES CONDA QQ-5-763	,			
	NUT, SHOULDER (RE:	SISTOFLEX)	-	1	3		22	1001			· •	.,	. 94.
В	SHOULDER, MODIFIED 1095397	 	B	1	3	27	23	1091				· · · · · · · · · · · · · · · · · · ·	
-	SHOULDER (RESISTOR	LEX)	_	1	3	(1	(1)		PURCHASED PART MADE INTO ASSY NO 23 BY RESISTO- FLEX INC.				.5 B
_	BONDING AGENT (DYLUN) C-3 (SUPERBOND)		_	A / R	-	29	24						
В	SLEEVE, SENSOR 1095738	 	Α	1	3	13	25		.125 0.0 x .06 l.D. X .312 L.J AL 300 ALUMINA WESTEN GOLD & PLATINUM				•
_	SENSOR, TEMPERATURE (_	1	3_	17	26		PURCHASED PART				
-	SCREW, PAN HD, O-βO,CRE COMMERCIAL	5 × · 62 Lg	_	2	6		27						
-	WASHER, FLAT, #0 NAS 620 CO		_	2	8	25	28						
_	NUT, HEX, 0-80 NAS 671 CO, /AN 345	-00	_	2	8	26	29						

)

.,

•		PARTS LIST								IRUS \POR		E1026510 ASSEMBLY, MAIN [34] (Page 1 of 5)	DATE 0/14/91 BY RFJ	REV , A SHEET	NEXT ASS'Y
:	SIZE	NOMENCLATURE DRAWING NUMBER	R 10 11 12	CHG LTR	QTY/ASSY	QT/T0T	FIND #	ASSY #			TOOL T-	MATERIAL			
	C	ISOLATOR-VAPORIZER ASSEMB		T	1		35		1	152	5101 1101				
	В		· · · · · · · · · · · · · · · · · · ·												
	В	PLUG, POROUS, MAIN V	APORIZER	_	1	1_	3	(1)		१५।	1078				
	В	РЕНЬ РОВО В В РОВО В РОВО В В РОВО В РОВ В РОВО В РОВО В РОВ РО	NK, MAIN	H	1	1	(1)	-1-		151		.630 DIAX.OGTHK 73% DENSE POR- OUS TUNGSTEN PURCHASED PART			
304	В	HOUSING, PLUG, MAIN 1095756	YAPORIZE	<u> </u>	1	1	2	(2)				TANTALUM, COM'L PURE			
04	В	MOUNT, MAIN VAPORIZER	 	A	1	1	4	2				TANTALUM, COM'L PURE			
	В	HEATER, MAIN VAPORIZER 1024917	 	F	1	1	5	3		165		PURCHASED PART- COAX INCONEL-MGO - NICHROME T			
	В	STRAP, HEATER RETAINER 1095027		<u> </u>	4	4	27	4				1 X . 63 X . 003 THK STRIP. 302/304 CRES MIL-S-5059			
C	С	HOUSING, MAIN YAP. (RT.	ANGLE)	A	1	1	1	5				TANTALUM, COM'L. PURE			
	В	MOUNT, RTD, MAIN VAP	 	_	1	1	21	6		•		,23 DIA X .34 LG TANTALUM, COM'L PURE			
	В	TRANSITION, TUBING	· · · · · · · · · · · · · · · · · · ·	C	2	7	16	7				168 DIA X.35 Lg 304 CRES CONDA QQ-S-763		•	
			 - -	-											•

l	u	
C	\neg	
ί	'n	

	F	PARTS LIST	TITLE C109575									E1026510	DATE 3-25-70 BY	REV 	HEXT ASS'Y
		NOMENCLATURE DRAWING NUMBER	₹	LTR	ASSY	QT/T0T	# 0	# *	#	IPD PR	TOOL	(Page 2 of 5) MATERIAL	l REJ	<u>. </u>	
SIZE	ī	2 3 4 5 6 7 8 9	10 11 12	를 물 물	91%	15	FIND	ASSY	PAG	-					
	-														
В		FEED TUBE (06) 10950,16-3	 	-	1	1	25	8				.062 0.0 X.010 WALL 321 CRES TUBE, MIL-T-8808 CONDA, 5.5 LT			
c	_	PLATE, ISOLATOR-VAPORIZ	ER		1	1		9		-		1.5 DIA X . 25 Lg TYPE 321 CRES BAR COND A QQ-5-766			
C	_	ISOLATOR ASSEMBLY 1025498-2	 	1	1	2		10				VENDOR BRAZED HRL SUPPLIES BODY & KOVAR RINGS	••	•	al yanan anan anan anan anan anan anan a
В		BODY, ISOLATOR	 	Н	1	2		(1)				1.38 O.D. X 1.135 I.D. X.905 Lg AL 300 ALUMINA, WESTERN GOLD & PLATIANA			
В		RING, ISOLATOR BODY 1024919-2	-	E	2	4		(2				3.0 DIAX.OZ THK BLANK KOVAR OR EQIV (FORMED FART)			5 (AME)
В		RING, BACK-UP 1025499-2	 - 	c	2	4) (3				1.38 O.D., 1.14 1.0 X 1.05 THK AL 3.00 ALUMINA, WESTERN GOLD & PLATINUM			
В		RING, ISOLATOR 1024920	 	E	7	14		11				1.135 0.0. X.67 1.0. X.125 L.7 AL 300 ALUMINA, WESTERN COLD & PLATINUM		-1- <u></u>	
В		MESH, ISOLATOR 1024216	 	E	8	16	9					1.13 DIA DISIC - 165 X 1400 (17 M, FILTER CLOTH) 30734 CRES (KRUSSILK PERD)		· · · · · · · · · · · · · · · · · · ·	
В		FLANGE, ISOLATOR DUTLET	 	A	1	1	11	13				1.5 DIA X.51 Lg 304 L CRES CONDA BAR, QQ-5-766			
В		MESH, END CAP 1026093	 	A	1	1		14				200 X GOO RECT MESH (23 MICRON) 304 L CRES .8014			"
				1.									-	غسب <u>سي</u> ب	

)

Γ							1			7	IT	LE	30	CM	J-	SER	IES	10	N T	HRU:	STER			E1	.026	510		DA	16/2.		EV /.	NEX	T ASS'Y	
	F	A	R	T	3	L	.18	3T	•			C1									, MAI	N 34					f 5)	BÝ		1		39	of 57	SHEETS
								LAT						LTR	SSY	10	#=		===	IPC	TOOL		ERIA		. 3 -	Ť		<u>.</u>	1120					
SIZE	-	2	3		5		_		9 9		5	11	12	CHG L	TY/A	101/10	FIND	ASSY	PAGE	PR	T-	İ												
		 , ΗΕ/	ATE	R,	IS	-I - OL A	TOF	 ≀ ,			-	 -	7									PURCHA COAX I	SED PA	RT -M:0	,	\top								
В		10		,							_	1		<u>D</u>	1_	1	15	15		165	<u> </u>	-NICHRO	me d										•	
		FL	ANG	E	1	-																2.25 D 304L	CRES B	AR				_						
В	_	10	265	18-	1	· 	· 	· 	· 	· 	· 			A	1	1	10	16	_			COND												
				ĘΤ,	T	ERM	INA	I L			-		_	•							1	1.48 D	5-6 P	ARTS)									•	
В	<u> </u>	10	957	69	+-	+-	-+-				-4-	 -	_	_	2	3	17	17	 —	<u> </u>	-	3046	RES, P		_	-								
В	\vdash	IN:		1	Ŗ,	TE	RMI	NAL		+	-+		\dashv	Ј	2	5	24	18	j			AL 30 WESTE	O ALUI RN GO	1INA,			. 1	^						1
٣	_	1		NAL	1	- 	- - Y -	- ITD		+		-+	_		۲	3	124	110	-	1	 	PLATIA X SIE.	15 X.6		+-	\dashv								
В			•	13-	•	•	^ '				-+-	-+	_	اے	2	4	23	19				500 "	いてただし											
				1	1	-1	ERN		-! TER	-1- M,	 -	-+				<u> </u>						125 O	DX.O	67 I.D 300	+									
В		1		19-	1									В	2	6_	18	20				X.177 ALUMII GOUD E	JA, WE	STEAN JUM									•	
		IN	SUL	ATC	R,	TH	ERI	1AL	TER	М.	_											1125 0, X.127 L	0.X .00 4 AL	.Z 1.D 300	1									
В		10	954	19-	2_	· 	· 		· 	· 	· -			В	2	6	19	21			<u> </u>	GOLD &	NA WE PLATIN	14312 UM									_	
	_	1		7	THI	ERM.	AL	TER	M			-	_									187 DI 304 CI	ZES CO	nd y 12 Fg	İ									
В	_	 	954	+	 		-+-				-+			A	4	10	20	22	_			QQ-S			<u>↓</u>	_								
	_	 -		-			-	د (RES	IST)F(EX	긔							Ì		SHIPPE	ased f D with											
				28	+-	-	-+			-+-	-+-	+	_	_	1	3	_	23	_		1091	PURCH		DA DT*	-	_								
	<u> </u>		—	DER	<u>, </u>	MOD	IFI	ED			-+		\dashv	n		_						MADE	TO OR	DER										
В	\vdash	10;	953	OUL	DE I	- 	-1-			-1-		-		B	1	3	120	24	_	-	1091	PURCH	ASED	PART	╬	\dashv								
-	-			+	+-		(RE	SIS	TOF	LEX)	- +	\dashv	_	1	3	(i,	(1)				MADE BY RE INC.	INJTO .	#Z4	- 1						_			
		 -		+	+		 	~- 										Γ											,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		<u> </u>			
L		· ·		· 		· 									Ŀ	<u></u>																		

TITLE 30CM J-SERIES ION THRUSTER E1026510 PARTS LIST C1095755 ISO-VAP ASSEMBLY, MAIN [34] SHEET 40 OF 5/SHEETS RY (Page 4 of 5) RF.1 CHG LTR QTY/ASSY LIPO TOOL MATERIAL NOMENCLATURE QT/T0T DRAWING NUMBER FIND ASSY PAGE PR 7-SIZE 2 3 5 6 7 9 10 11 | 12 BONDING AGENT (DYLON) 32 25 (SUPERBOND) 1125 0.D.X.06 1.D X.312 Ld AL300 ALUMINA SLEEVE, SENSOR WESTRN GOLD & P' AT 10.957.38 3 28 26 В PURCHASED SENSOR, TEMP PART 146FB200 (ROSEMOUNT) 3 22 27 1021 SHIELD, INNER 2 13 28 550 1014 1026541 307 5.0x 1.04 x.003 SHIELD THE TYPE 302/304 CRES COND A MIL-S-5059 B (1) (1) 1026541-99 1 2 В 190 X.15 X.012/015 SHIELD CLAMP, LH THICK 304 CRES (2) (2) B 1026920 4 aa-5-766 SHIELD CLAMP, RH Ħ (3) (3) 1026921 4 В 1 SCREW, CAP, 2-56, CRES (4) (4) MS16995-2 4 NUT, HEX, 2-56, CRES (5) (5) MS 35649-244 1 4

8818 PL DEC 1973

NEXT ASS'Y

REV

		···		\ <u></u>		_						T	TIT	LE	30	СМ	J-S	ERI	ES	ION	TI	IRI	USTE	R	E1026510			 1	DATE 2/14	191	REV	NE	XT ASS	, Y
	<u>}</u>	Α	\	\	3	>	ı		5	1			(310	95/	55	I	S0-	VAP	AS	SEI	MB1	LY,	MAIN	(Page 5 o	f 5)		BY R			T 41	oF ₅₇	SHEETS
				(N SR	OI	VII VII	270	CL S N	AT UN	URI 1BE	E R				CHG LTR	ASSY	QT/T0T	# 0		#	=	PD	TOOL	MATERIAL									
SIZE	ī	2		3	4	5	T	6	7	8	9		10	П	12	왕	OTY/	QT/	FIN	ASS	0 4 6		-	T-				 						
		+	-1-	-+		 			<u> </u>	· 	-	-			-							1												
-	_	+		- +		 	+		 -	+	-			ļ				_	_	-	-	4									····			
	_	.	,			Qυ	ΤĘΙ	R	 	+	-1	-				12								1019		-								
B	-	+10)26	53 SU		+-			-	+-	+	-+		—	 	B		2	14	29	+	+		1022	5.5 × .73 × .003									
В	一	+		Տ <u></u> 10		1	- 8-!	99		+-	- -	-+		-	 	B	١,	2	a) (i				1018	THK 302/304 CF STRIP COUD A MIL-5-5059	res							·	
				SH		_	_			 		 -			 					 		1		1016	4.9 x.36 x.00 THK 302/304 CR STRIP COND A MIL -5-5059	3								
В			, -				8-9	98		-	, —				-	B	_1	2	0	2	_			1017	STRIP CONS A MIL -5-5059			 	٠,					
	_	+	+	SH	ΙE	ĻD		CL	AMP	<u>-</u>	ĻН	<u>-</u> 1-			 										.012/.015 X.19 X.90 304 CRUS	s	,							
В	<u> </u> _	+	-		26	1	- 1		-	+-	+	-+			-	<u>A</u>	1	4	(3	<u>] (3</u>	}	4			JIN 17, QQ-3-700			 						
	H	+	+-	_		1	1-	CL	AMP	<u> </u>	RH	-+		·	 	A	١,	,	0						11									
В	-	+-	+-	-+	26 PF	┼		ΔP		-5	ا 5, 0	RF	ς.		 	7		4	14) (4	1	+												
_	 	+	+	_	_	+	-ĭ' 5-¦		<u>-</u>	1	71	-1			 	_	1	4	(5	(5	1		.			-								
		+-		-+		+—	-		! 2-5	6	CRE	-+ S			!	-		<u> </u>	<u> </u>		+	†												•
Ŀ			-	-		+	9-2		_	1 -						_	1	4	(6) (6	<u>\</u>													
		<u>'s</u> c	ĊŘE	₩,	Р	ÀΝ	HI	D,	0-	80	<u>, c</u>	RĘ	S	· —	·											_								
1-	_	CC	440	ER	CI.	AL	<u>-</u>			· 	· - -	· -		· 		_	2	6	31	30	1	1						 		···	··			
	_	1	1.			1			CRE	1	#p			ļ												.								
 -		-	-	_		-	-1			-		-+		 	 		2	8	29	3.1	1	+				_		 						
	-	1	$\overline{}$			7	\neg		CR 3	_	-0	- 			+	_	,	۾ ۾	30	32														
-		+11/	'Υ-	<u> </u>	<u> </u>	γυ	4			Ť	- 	-+				\vdash	 -	"	30	13/	+	\dagger				_			*		·			
		- 	-1-	 +		 			 	-1					 																		•	

r J

	PARTS LIST	T LE 30	CM J 0957	-SER 73 N	IES EUT	ION RAL	N TI	HRUS R AS	TER SEMBL	E1026510		<u>, , , , , , , , , , , , , , , , , , , </u>	DATE 2/16/21 BY	REV	NEXT ASS	
										(Page 1 o	f 11)	·	REJ	SHEET	42 or 57	SHEETS
	NOMENCLATURE DRAWING NUMBER		ASSY ASSY	5	#=	#	#	IPD	TOOL	MATERIAL						
SIZE		11 12	OTY/ASSY	QT/T0T		YSSY	AGE	PR -	τ-					•		
-	NEUTRALIZER, ASSEMBLY,		10	+	┝		-				· · ·		·			
D		 ∫,	3	İ	41	35		155	1027							
۲	BRACKET, NEUTRALIZER	 	+		1	30								···········		
С	1027364	' ' (1 1	2	1			1095	**************************************						
一	BRACKET, FLAT PATTERN,	NEUTRL	-		 					4.95 × 9.16 ×						
C	1095593		4	1 1	(1)	(1)				O32 THK TITALIUM SHEET, AMS 4900/61						
	BRACKET, MAIN SUPPORT															
C	1026503	1	1	1 1	6	2							••			74.47
	BRACKET, FORMED, MAIN	SUPPT.														
C	1095809			1 1	(1)	(1)				·						
1	BRACKET, FLT PATT,				-					3.37 X 4.7 X .032 THK TITANIUM ,						
C	1095592	 	3	1 1	-1-	-1-				SHEET, AMS 4900/01						4
	NUTPLT, SLF-LKG, 6-32,	COR			 					-						* 1
<u> -</u>	NAS 698 CO6		_ _	2 2	(2)	(2)										
	RIVET, CSK HD, 100°, .06	2, CRES	- 1		١.,											
1	MS 20427 F2-3		_ _	44	(3,	(3)										
	NUTPLATE, SLF-LKG, FLTG,	6-32	1										·			
 -	MS 21076-L06	1 1	_	2 14	(4)	(4)	_				 					
1	RIVET, CSK HD, 100°.0	94 AT			1						[[•		
F	MS 20426 AD3-5	 		4 4	(3)	(9)		ļ							 -	
																
 	 	 -			-											
															,	ř
8810	RL DEC 1973	ı			<u></u>			L	<u> </u>		لـــا			********		

า

	PARTS LIST	TITLE 30								R SEMBL	E 1026510 Y [35]	DATE 2/16/9	REV	NEXT ASS'Y
	PANTO LIST										(Page 2 of 11)	BY REJ	SHEET	43 OF 57 SHEETS
	NOMENCLATURE DRAWING NUMBER		LTR	ASSY	T0T	#		#		TOOL	MATERIAL			
SIZE	1 2 3 4 5 6 7 8 9	10 11 12	4 <u>0</u>	OTY/ASSY	QT/T0T	FINI	ASSY	PAGE	PR	-				
	GRAPHITE, COVER, BOTTOM										1.5 X 2.1 X.05 THK GRAPHITE TYPE			
В	1095296	· · ·	A	1	_1	17	3				HPD-1 (POCO GRAPII)	······································		•
	GRAPHITE COVER, INNER	· 									1.9 X.51X.05 THK GRAPHITE			
В	1095297	 - - 	14	2	2	16	4				TYPE HPD-1 (POCO)			
	GRAPHITE COVER, OUTER	 	\ - `								GRAPHITE TYPE HPD-1 (FOCO GRAPH)			
<u>B</u>	1095426	 	1/7	2	-2	18	5				185 X .70 X .032			
В	BRACKET, TERM MTG , 1095729	 	A	1	1	12	6				THE TITANIUM COM'L PURS AMS AMOOFMAN	•		
٢	KEĘPER, ORIFICĘ	 	1			-	Ű				1.25 X.98 X.38 ARC CAST MOLY			
В	1027360	 	7	1	1	5	7				AMS 7801			
	TEŖMIŊAL-LIŅK										.63 X .31 X .015 THK NICKEL 200			·
В	,1026083-99	111	D.	1	1	20	8							·
	SHIELD, OUTER	 }]_								1.8 DIA X.OI THK 304 CRES			
В	1095291-99		A	6	6	32	9				SHEET QU-S-766			
1	INSULATOR, OUTER	 	4								.274 OD X.1871.D. X.307 Lg AL 300			
В	1095293-99	 	B	6	6	28	10				X.307 Lg AL 300 97% pure western GOLD 3 PLATHUM		···	
	SHIELD, INNER 1095292-99	 	1			2.	, ,				1.8 DIA X.OI THK BLANK 304 CRES QQ-S-766			
B		 	<u>^</u>	6	Ь	31	11				1.6 DIA X.01 THK			
В	SHIELD, INNER	 	A	,	6	20	12				BLANK 304 CRES			•
1	1095292-97 SHIM, NEUTRALIZER	 	+	_	A,	30	14				130 DIA X .002.3			
В	1095662	 	A	17	/ R	9	13				1005 (1010 THK 302/304 CRES 00-5-766			
														
		· · · · · · · · · · · · · · · · · · ·										يىدىمەمىمىدىدىدىدىدىدىدىدىدىدىدىدىدىدىدىد		

E.J

	PARTS LIST	TITLE 30	CM	J-S 773	ERI	ES :	ON	THE	RUSTI	ER	E1026510	DATE 2/15/51	REV /	NEXT A	IS'Y
	PANIO LIGI)	.090	113	ı	NEU	IKAL	.1 4	K AS	סבויום	SLY [35] (Page 3 of 11)	BY RF.J	SHEET	44 OF	57SHEETS
	NOMENCLATURE DRAWING NUMBEI		LTR	15SY	TOT	#	# /			TOOL	MATERIAL				
SIZE	1 2 3 4 5 6 7 8 9	10 11 12	CHG LTR	OTY/ASSY	QT/T0T	FIND	ASSY	PAGE	PR	T-			•		
		 													
-	SHIELD, QUTER	 	-								1.6 DIA X.OI THK BLANK 304 CRES				
В	, 1095291-97		A	2	2	29	14				QQ-5-766				. !
	INSULATOR, INNER	1 1									1.0.x.38Lg 97%P				
В	1095294-99	· · ·	A	6	_6	27	15				1.D.X.38L9 97%P AL 300 ALUMINA WESTRN GLD & PLAT				
	SHIELD, OUTER	 	┤.			İ					1.7 DIA X.OI THK BLANK 304 CRES	'	,		•
<u>B</u> _	1095291-95	 	<u>A</u>	6	_6_	33	16				QQ-5-766				18 80
		 									·				
	CATHODE ASSEMBLY, NEUTR	ALIZER,													···
C	1095283	· · ·	C	1	1	3	17		093			· · · · · · · · · · · · · · · · · · ·			and the state of t
	END CAP	 									.38 DIA X.16 LØ TANTALUM BAR COM'L PURE				
B	1095290	 	<u>B</u>	1	1	(9)	(1)		·		1235 DIA X . 052				•
В	DISK, ORIFICE, 1025431	 		1	,	(3)	(Z)				THK 2% THORIAT-				
-	TUBE	 	1	-		(3)	(4)				.250 O.D X .010	· · · · · · · · · · · · · · · · · · ·			
В	1025433-1	1 1 1 -	D	1	1	(2)	(3)				WALL SEAMLESS TA TUBING, 3 Lg COM'L PURE				
	HĘATĘR, CAŢHODE	 									PURCHASED PART COAX TA-MJO-TA				
В	1025262	<u> </u>	E	1	2	(8)	(4)		166						
	CLAMP	· · · · · · · · · · · · · · · · · · ·									1.37 X 1.29 X .125 TA BAR COM'L				
В	1026374		C	1	2	(7)	(5)				PURE	····			·
	SUPPORT, TUBE										,375 X . 250 XI . 25 TA BAR COM'L				
В	1026086		11/	12	2	口	6)	<u> </u>		<u> </u>	PURE				

Disparse Disparse		PARTS LIST		OCM 109						RUST ER A		E 1026510	·	DATE 2/16/81	A	NEXT ASS'Y
FLANGE, TUBE, NEUTRALIZER 1095285						بتنسيد.					002,10		1)		SHEET	45 OF 57 SHEE
FLANGE, TUBE, NEUTRALIZER 1095285				TR	SSY	10						MATERIAL	ļ			
FLANGE, TUBE, NEUTRALIZER 1095285	IZE	 		된 된	TY/A	1/1	IND	SSY	AGE	PR	T-					
TA BAR COM'L TOBE, NEUTRALIZER C 1 1 (6 (7) TA BAR COM'L PURE	<u>s</u>	 -	 	10	0	6	Ŧ	A	Ь			.440 DIA X.ZI Lg		•		
SHIELD - RADIATION B 1026637 B 1 2 10 (8)		, _, _, _, _, _, _, _, _, _, _, _, _,	IZER	ا								TA BAR COM'L				
B 1026637 B 1 2 (10) (8) THK-TA FOIL CON'L PURE	 		 	1	1	1	<u> 1</u> 6	[7]								
B			 	_								THK. TA FOIL				
B 1095590-2 A 1 1 (4 (9) FROM SECTEMATE B 1095590-97 A 1 1 -1 -1 FROM SECTEMATE WIRE, Re., 020 DIA. B 1095590-99 A 3 3 -2 -2 BAFFLE, NEUTRALIZER B 1025645 PLATE, SUPPORT B 1025645-1 PLATE, END B 1025645-2 B 2 2 Z -2- BRACKET, INSULATION ASSEMBLY	B			15	1	2	(10)	8								
B	_		 	١. ٔ								FROM SPECTRAMAT				•
B 1095590-97 A 1 1-1-1-	B	 	 	A	1	1	(4	9				·				<u> </u>
WIRE, Re., 020 DIA. B 1095590-99		╎┈┈╞╼╼╪┈╍╞┈┈ ┆┈ ┈		┨.				1				W/Ba-Ca-AL IMPREG				
B 1095590-99 A 3 3-2-2- BAFFLE, NEUTRALIZER B 1025645 PLATE, SUPPORT B 1025645-1 PLATE, END PLATE, END B 1025645-2 B 2 2 Z -2- BRACKET, INSULATION ASSEMBLY	B	 -	 	A	1	_1	<u>-1</u> -	-1-	_			·		· •		<u></u>
B 1025645 B 1 1 (5)(0) PLATE, SUPPORT B 1025645 - 1 B 1 1 1 1 - 1 - COM'L PURE PLATE, END B 1025645 - 2 B 2 2 2 - 2 - COM'L PURE BRACKET, INSULATION ASSEMBLY)IA. I	١.								,020 DIA X 2.16 Cg		".		
B 1025645 B 1 1 (5) (0) PLATE, SUPPORT B 1025645 - 1 B 1 1 1 - 1 COM'L PURE PLATE, END B 1025645 - 2 B 2 2 Z - 2 COM'L PURE BRACKET, INSULATION ASSEMBLY	B		 	A	3	3	-2	-2:				**************************************				
PLATE, SUPPORT B 1025645-1 B 1 1 1 -1- PLATE, END B 1025645-2 B 2 2 2 2 -2- BRACKET, INSULATION ASSEMBLY			R													
B 1025645 - 1 B 1 1 1 -1- COM'L PURE PLATE, END B 1025645 - 2 B 2 2 2 -2- COM'L PURE BRACKET, INSULATION ASSEMBLY	В	 		B	1	1	(5)	(10)								
PLATE, END B 1025645-2 BRACKET, INSULATION ASSEMBLY				4								1005 THK TA				
B 1025645-2 B 2 2 Z -2- COM'L PURE BRACKET, INSULATION ASSEMBLY	B	 		B	1	1	1	-1-								
BRACKET, INSULATION ASSEMBLY				4_								OID THK TA				
▗▊ ▗▐▀▀▐▀▐▀▐▀▐▀▊▀▊▀▊▀▊▀▊▀▊ ▃▋▃▍▐▗▐▗▐▗▐▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗	IR	1025645-2		B	2	2	2	-z-	_			COM'L PURE				
▗▊ ▗▐▀▀▐▀▐▀▐▀▐▀▊▀▊▀▊▀▊▀▊▀▊ ▃▋▃▍▐▗▐▗▐▗▐▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗				4	İ											•
▗▊ ▕▝▀▐▀▐▀▐▀▐▀▐▀▊▀▊▀▊▀▊▀▊ ▃▋▃▍▐▗▐▗▐▗▐▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗	-	DDACKET THEIR ATTOM AGO.		╁	 		L	↓	_			· · · · · · · · · · · · · · · · · · ·				
C 1020084 E 2 2 15 18		 -	EMBLY I I I I I	┦_		1	ĺ									
	-	- 	+	15	2	2	15	18	_							
BRACKET - VESPEL VESPEL SP-1			+	4		·]				1.561 X.62 X.46.				
C 1026084-1 E 1 2 (1) (1) VESPEL SP-1 DU PONT DE NEIMOUR	1	1026084-1		E	1	2	(1)	(1)				DU PONT DE NEMOUR				_
INSERT, SELF-LOCKING, 8-32		INSERT, SELF-LOCKING	8-32													
NAS, 1395 CO8L		الرسيات أنطابها بالشبهان والترابي والترابي والترابي والترابي والترابي والترابي والترابي والترابي			2	4	(3)	(2)	Ŀ							

 $\langle \cdot \rangle$

	TITLE 30			ERI	ES	ION	TH	RUST	ER	E1026510 DATE REV NEXT ASS'Y
	PARTS LIST	1093	5773		NEC		LIZ	EK P	122EM	2//3/9/ ->
	NOMENCLATURE DRAWING NUMBER	LTR	ASSY	TOT	# (۲ #		IPD	TOOL	MATERIAL
SIZE	1 2 3 4 5 6 7 8 9 10 11 12	СНС	OTY/ASSY	QT/TOT	FIND	ASSY	PAG	PR -	T -	
	BRACKET - VESPEL									1.561 x.62 x.19 VESPEL SP-1
<u></u>	192698472	13	1	2	(2)	(3)				DU PONT DE NEMOURS
	SHIFLD, BRACKET									3.7 X 3.72 X.005 THK TITANIUM SHEET AMS 4901
B_	1095295	A	1	_1	7	19				
	GROMMET	,								DU PONT TEFLON
В	1026882	0	1	1	26	20				
	HOUSING, NEUTRALIZER	D								
<u>c</u>	1026502	1	1	1	1	21				
	HOUSING FORMED NEUTRALIZER				,,					
C_	1095808	_	1	1	(1)	(1)				5.92 × 9.58 × .02
	HOUSING, FLT PATT, NEUTR.	D		1	,	,				THK 6061-TA AWM QQ-A 250/11
C_	1026633 NUTPLATE, SELF-LOCKING, FXD	1	-		-1.	1-				
_	M\$21070-06	_	14	39	(2)	(2)				
厂	RIVET, ÇSK,HD, 094, ALUM	_								
-	MS 20426 AD3-3	-	28	102	(3)	(3)				
	BRACKET ASSEMBLY, SUPPORT									
В	1026504	C	2	2	11	22		164	1034	
	BRACKET, SUPPORT									5.3 × 1.5 × 1.03 THK TITANIUM
В	1026504-99	2	1	2	(1)	(1)				ANS 4900/01
	NUTPLATE, SELF-LOCKING, FLTG									
<u>_</u>	MS 21076-06		2	4	(2)	(2)				
	RIVET, ÇSK HD, .094, ALUM									
<u> -</u>	MS 20426 AD3-3	_	4	102	(3)	(3)				

		30CM 109					IRUS IZER		E1026510 MBLY ISS (Page 6 of 11)	DATE REV NEXT ASS'Y AND SHEET 47 OF 57 SHEETS REJ
SIZE	NOMENCLATURE DRAWING NUMBER	CHG LTR	OTY/ASSY	QT/T0T	FIND #	ASSY #		T00L T-	MATERIAL	
С	VAPORIZER ASSEMBLY, NEUTRALIZER	A	1	1	4	23	156			
В										
В	PLUG, POROUS 1095771	-	1	2	(7)	-1-		1078		
В	PĻUG, POROŲS, BLANK 1024925	Н	1	2	-1-	(1)			185 DIAX.05 THK 80% DENSE POR- OUS TUNGSTEN PURCHASED PART	·
В	HOUSING, PLUG, VAPORIZER 1095764		1	2	(8)	-2-			.275 DIAX.358 Ly TA BAR COM'L PURE	
В	HOUSING VAPORIZER (RT ANGLE)	A	1	2	(10)	(2)			.270 DIAX .575 LY TA ROD COM'L PURE	
В	TRANSITION, TUBING	C	2	7	(11)	(3)			168 DIA X 351d 304 CRES CONDA QQ-S-763	
В	FEEDTUBE (.06) 1095016-1	C	1	1	(12)	(4·)			1062 0.D. X 010 WALL 321 CRES TUBE CONDA, 21 Lg MIL-T-8808	
В	MQUNT, RTD 1095767	A	1			(5)			1364 X.43 X.187 THK TA BAR COM'L PURE	
В	HEATER, VAPORIZER	E	1			(e)			PURCHASED PART COAX INCONUL- M90-NICHROME I	

 $\underline{\ }\ominus$

			J-: 577					IRUS ZER		E1026510 DATE Color Colo
-	NOMENCLATURE DRAWING NUMBER	LTR	YSS!	_0T	#	##	#		TOOL	(Page 7 of 11) REJ L MATERIAL
SIZE	1 2 3 4 5 6 7 8 9 10 11 12	СНС	QTY/ASSY	QT/1	FIND	ASSY	PAGE	PR	τ-	
В	MOUNT, NEUTRALIZER-YAPORIZER	4	1	1	(5)	(7)				139 DIA X 36 LG TA ROD COM!L PURE
В	TUBE, INSULATOR	C.	1			(B)				1.375 0.0 × .125 1.0 × .3 Ld AL 300 ALUMINA WESTRN GLD & PLAT
В	SHIELD	C	1	1		(9)				150 DIAX.51 Lg TA BAR COM'L PURE
В	SCREEN 1026089-1	C.	1	1		(10)			•	TA MESH DUTCH USE UNIQUE WEED USE TO MESH DUTCH
В	SCREEN 1026089-2	C.	1	1		(11)				VISC SAME AS ABOVE
В	FLANGE, VAPORIZER	B	1	1		(12)				144 DIA X.217 LA TA BAR COM'L PURE
	NUT, SHOULDER (RESISTORY) R44Z28-ZP-OZ	_	1	3		(13)			<u>তেখ</u> হ	PURCHASED PART SHIPPED WITH NO. 7 (14) BELOW
В	SHOULDER, MODIFIED	В	1	3	(14)	(14)			1059 1002	PUKCHASED PART 9 MADE TO ORDER BY RESISTOFLEX INC.
_	SHOULDER (RESISTOFLEX)	_	1	3						PURCHASED PART MADE INTO ASSY NO (14) BY RESISTOFLEX INC.
В	CLAMP, NEUTRALIZER	C	1			24				1.0 x .55 x · 25 MOLY BAR, ARC CAST AMS 7801
В	TERMINAL-LINK ,1026083-97	В	1			25				. 31건 X · 625 X · 015 THE LUCKEL 200

)

	•	DARTO LICT	TITLE 30			ERI	ES I	ON	THR	USTE	ER	E1026510		DATE 2//	1/81	REV	NEXT A	\$\$'Y
	ŀ	PARTS LIST	וט	.095	//3		VE U I	I KAL	. 1 2 5	K AS	O S E M D	LY <u>35</u> (Page 8 of	11)	BY	EJ	SHEET	49 of	57 SHEETS
		NOMENCLATURE DRAWING NUMBER	₹	LTR	15SY	TOT	#	# /			TOUL	MATERIAL						
SIZE	-	1 2 3 4 5 6 7 8 9	10 11 12	ا ت	OTY/ASS	QT/T0T	FIND	ASSY	PAGE	PR -	-		,			•		
		_																
_	1		· · · ·			_	_			-							······································	
}		SEAL, NEUTRALIZER		4								1.D, X 105 Lg	21					
В	_	1095282		B	1	1	14	26				TA COM'L PURE						
	_	SHIELD, INNER		'								1.7 DIA X . OI THK 304 CRES BLANK	51					
В	↓_	1095292-95	 	A	2	2	35	27		-		02-5-766 1.8 DIA X :01 THK						·
	\vdash	SHIELD, OUTER		A								304 CRES BLANK	21					
В	╁	1095291-93		_	2	2	36	28				.274 0.0 X . 115 1. D.						
В	-	INSULATOR, INNER 1095294-97		A.	2	2	34	29				X.44 LJ AL 300 ALUMINA, VESTRU GOLD B FLATINUM	35					
۴	╁	INSULATOR, OUTER		 	 -	-	37	2.3	_			1274 2.57 .187 l.D.			·- ·			
В	 	1095293-97		B	2	2	37	3Ū				X 185 LA AL 300 ALUMINA 97% PURE WESTRICCLD & FLAT,	35					
	1	INSULATOR, THERM TERM	 	1								125 0.0 X.062 1.D. × 177 Lo AL	35					
В		1095419-1		В	2	6	22	31				300 ALUMINA WESTRII GLD & FLAT.						
		INSULATOR, THERM TERM	· · · ·]		ļ						(EXCEPT :175 Lg)	35					
В	<u>, L</u>	1095419-2	·	E	2	6	24	32									, <u></u>	
	_	BONDING AGENT (DYLON)		1	A/													
-	<u> </u>	C-3 (SUPERBOND)		1-	R	<u>-</u>	48	33				12 = 00 1/ 0/210						·
В	_	SLEEVE, SENSOR		A								1125 O.D. X , 063 I.D. X . 312 Lg AL 300 ALUMINA WESTER	35					
۴	-	1095738 SENSOR TEMP			1	3	47	3.4		<u> </u>		GOLD & PLATINUM PURCHASED PART						
	-	SENSOR, TEMP 146FB-200 (ROSEMOUNT)		_	,	,	16	2 ~					126				•	
T	 	SHIELD, THERM TERM		-	-	3	40	35				190 DIA X .095						•
В		1095418		A	2	10	25	36				LO 304 CRES COND A QQ-5-763	51					•
1700	سيمك	DEC 1973		1			استا	ليتا	لسي	- Appendix	لحصا	GQ-5-76-5						

_ ()

	<u> </u>										
	DA DESCRIPTION T	ITLE 3	OCM	J-:	SERI	ES	ION	TH	RUST	ER	E1026510 DATE 2/16/8/ B NEXT ASS'Y
	PARTS LIST	U	109	0//	3 . 1	IEU I	KAL	1 4 5	K AS	25 EMB	BY SHEET 50 OF 57 SHEET
<u> </u>				-			-				(Page 9 of 11) REJ
	NOMENCLATURE DRAWING NUMBER		LTR	QTY/ASSY	10	#=	#=		IPD	TOOL	
SIZE	1 2 3 4 5 6 7 8 9 10		HG	8	1/1	FIND	ASSY	PAGE	PR	T-	
S	1 2 3 4 3 6 7 8 9 10	11112)	0	ð	ш,	A	ď			<u> </u>
	COVER NEUTRALIZER	· 						٠,			
_	,1026505		Α	1	1	8	37				
	COVER FLAT PATTERN NE	UTRL.				ľ					1.692 x 11.348 Lg x.020 THK ALUM
c	1026634,	1	B	1	1	α	(1)				6061-T4, 20-A- 250/11
۲				-	一	مشد	3				2.14 X 1.692 X
	SHIELD, KEEPER	1-1-	A	,	,	10					OZO TITANIUM AMS 4900/01
В	1027366		 `	1		10	38				
	WIRE ASSY (5) NEUTR		_	,							
0	1095845 -10 1A20 -15	-11-	F	EA		56	39				
}			ŀ								
									. 5	tand	ndard Hardware
	SCREW, PAN HD, 4-40 × 1.0	Lg									
_	MS 51957-21 / 35233-21		_	8	36	38	40				
	WASHER, FLAT, #4 CRES										DEMINE A MASH GEAT OF SHUR INTERFERENCE
	, AN960-C4,		_	1,6	26	30	41				INTERFERENCE
F				10	20	33	-				
	NUT, SELF-LOCKING, #4-40	1-1-	l				42				
<u> </u>	NAS 1291 CO4		_	10	40	40	42				
	SCREW, SOC HD, DRLD, 6-3	$2 \times .25 L_g$	i								
	MS 24674-1		_	6	22	41	43				·
	WASHER, FLAT, #6 CRES			1							
-	AN 960-C6		_	6	83	42	44				•
									,		
											·
		. - 		 	-						
											
			<u> </u>	<u> </u>							
8318	RL DEC 1973										•

	PARTS LIST	TITLE 31	OCM 1095	J-S 5773	ERI	ES NEU	ION JTRA	l Th	IRUSTER ZER ASSEMBLY 35	E1026 (Page	510 10 of	11)	DATE 2/16/4/ BY REJ	REV A SHEET	NEXT ASS'Y
SIZE	NOMENCLATURE DRAWING NUMBER	10 11 12	СНG LTR	OTY/ASSY	\sim	FIND #	ASSY #	PAGE #							
_	NUT, SELF-LOCKING, #8-32 NAS 1291 CO8		_	6	6	43	45							<u> </u>	
<u> </u> _	SCREW, HEX SKT HD, 4-40 NAS 1352 CO4 H4	x.25 Lg	-	2	2	44	46				·····				
-	SCREW, PAN HD, 0-80, X.6	52 Lg	_	2	6	45	47							<u>.</u>	
_															
_	WASHER, FLAT, #0 CRES	\$ 	_	4	8	49	48								
	WASHER, FLAT, #2 - CE - AN, 960 - C 2		_	2	2	50	4.9								
_	NUT, HEX, #0-80 CRE:		_	4		51	50	ļ							`
_	NAS1352C08-8	×.5 Lg	-	4	4	52	51								
-	WASHER, FLAT, #8 CRES	5 	-	4	16	53	52			·= ·			·	-	
													,		·

	DADTO LICT	TITLE 300	CM J	I-SE	RIE	S I	ON T	HRUSTER	E1026510		DATE 2/16/9/	REV B	NEXT ASS'Y
	PARTS LIST	DT(J95 <i>1</i>	//3	NEU	IRA	LIZE	R ASSEMBLY 35	(Page 11 of 1	1)	REJ	SHEET	520F 57 SHEETS
	NOMENCLATURE DRAWING NUMBER	₹	СНG LTR	ASSY	TOT	# 0	# ↓	#					
SIZE	1 2 3 4 5 6 7 8 9	10 11 12	CHG	OTY/ASSY	QT/T0T	FIND	ASSY	PAGE					
	SCREW, PAN HD, 6,32,×.3	l La											
-	MS 51957-27	 	_	16	16	54	53						
	RIVET, CSK, HD, . Q62, CR	ES , , ,	_		.2		54						
	MS 20427 F2-2	 	-	-		55	3,						
								·					
	LOCK WIRE, .020-025 (30	2) CRES		A,									
-	QQ-W-423		_	R		57	55				. *	 	· · · · · · · · · · · · · · · · · · ·
	SCREW, PHIL HD, SLTD, D MS 35275-18	RLD 4-40x 56 لخ	_	,	2	50	56						
	NUT, HEX, PLAIN, 4-40		\vdash	-	-	39				 -	Maria de la contrata		
_	AN 340-C4	 	_	2	11	60	57		•				
		 											
-	 	 	 	_		_					~		•
		 	1						•				
	 	 	-	-	-								·
		 						·					
		 											
-			 	_	_								
		 	1										•
1	 	 	\vdash	-					****			<u> </u>	
		 							•				•

													HEXT ASS'Y
	PARTS LIST	109	3/ 5	Z 3	SUCP	1 UF	110	,5 A3	SEMB	(Page 1 of 3)	BY REJ	SHEET	53 OF 57 SHEETS
厂	NOMENCLATURE DRAWING NUMBER	TR	SSY	0T	#	#	#	IPO	TOOL	MATERIAL			
SIZE	1 2 3 4 5 6 7 8 9 10 11 12	CHG LTR	OTY/ASSY	QT/T0T	FIND	ASSY	PAGE	PR —	T-				
	30CM OPTICS ASSEMBLY												
E	1095752	В	1	1	40	36		153	1008				
	RING, OPTICS MOUNTING												
D	1027457		1	1	5	_1			1080				
C	RING, BLANK, OPT MTG. 1095093	8	1	1	(1)	(1)		,		15.3 O.D.XIZ.O I.D. XI.5 LG TITANIUM AMS 4900/4901			·
۲	RIVET, ELECTRODE	-	-	_	7	7-7				PURCHASED PART-			
В	,1095751	B	48	48	10	2				CUSTOM MADE-OF MOLY PER AMS 7800 156 DIA XISGLO	^	•	
	RING, SUPPORT, SCREEN ELECTRODE												
C	1095747	Ą	1	1	2	3				5.605.00.0010			· · · ·
С	RING, BLANK, ELECTRO. SUPPT.	<i>7</i> 4	1	,	(1)	(1)		,		13.685 O.D.X 11.810. X.100 THK MOLY PER AMS 7800 (PRESSED A SIMERED)			
۲	COYER, ALIGNMENT HOLES				7.	<u>(-</u> /				125 X, 25 X, 001			<u></u>
E	1095752-99	В	8	8	16	4				304 CRES QQ-5-766			
r	ELECTRODE, SCREEN, , , ,								1079	12.625 DIA X.015 THK ARC CAST MOLY			
D	.1026137-91	5	1	1	1	5			1056	AMS 7801			
	SHIELD, INNER, INSUL,						-		1053	2.5 DIA X.OI THK BLANK 302/304			
В	1025318	B	12	38	8	6				cres ar-s-766			
	INSULATOR (ÇERAMIÇ)									PURCHASED PART ALUMINA-KOVAR			
В	1095778-98	Ą	12	24	6	7				(CERAINASEAL INC)			
			:										
<u> </u>		<u> </u>			_						 	<u> </u>	
		}											

w	
2	
-	

	PARTS LIST								PARTS LIST						TILE 30CM J-SERIES ION THRUSTER E1026510 E1095752 30CM OPTICS ASSEMBLY 36 (Page 2 of 3) (Page 2 of 3) (Page 2 of 3) (Page 2 of 3) (Page 2 of 3)																			
SIZE				DF	}AW	יוויכ	N	ATU UME	3EF								10 11 12			0 11 12			QTY/ASSY	T/T0T	# QN)	ASSY #	PAGE #		TOOL T-	MATERIAL				
S	-	 	3	4	+	6	7	8	9	10	''	12	СНС	10	Ò	匠	¥	/d	_		2.0 DIA X . OI THK													
В	 	,	<u> 253</u>	T-	<u>μυ ι</u>	ER,	111/	JUL			 1		13	12	38	7	8		୦୬୫		302 CRÉS CONDA QQ-S-766				•									
В		SP		R	- 	 	 	 	}		 		G		12		9				.375 O.D., X. 204 I.D. X. 553 L.J 302/304 CRES QQ-5-763 COND A													
В			IM, 957	T	ТИЦ	ING	 		 	 	 		-	1 / R	_	11	10				1.0 X . 002,003, 1.0 X . 002,003, .005,012,015 d . 040 302/4 CRES COLUMA 92-5-766													
С		RI 10	,	Ŧ	ÇEL	ST	Į F F	NG			 -		۴	1	1	4	11					·			to:									
С		·		1		LAN -99	,	CCI	EL	5	FNG		А	1	1	(1)	(1)				14.825 O.D. X 11.80 1.D. X. 075 THK NOW PRESSED 4 SINTERED PER AMS 7800													
D		, ,	1	ROE 38-	1	ACC	EL.	 	 	 	· · · · · · · · · · · · · · · · · · ·		Н	1	1	3	12		092 146	1053 1056 1055	12.625 DIAX.015 THK ARC CAST MOLY AMS 7801				e de la companya de la companya de la companya de la companya de la companya de la companya de la companya de									
		· 	· 	· -	· - 	· .	!	· 												1097														
		•	· · · ·	+	ĻΤ Ç27	+	1	00°,	10) – 3;	2 (2	εs	1	12	12	13	13				· .				,									
		1	 	, F 93-	+	HD	, 1	oo°,	, — ·	4-40	CR	€S		12	12	14	14																	
		,	 	+	+		 	 		 														,										
			 	-		1	 			 																								
				+				 																										

30CM J-SERIES ION THRUSTER E1026510 DATE 2/16/8/ **NEXT ASS'Y** REV TITLE E1095752 30CM OPTICS ASSEMBLY 36 PARTS LIST (Page 3 of 3) C1095683 MANIFOLD ASSY, THRUSTER (Page 1 of 1) 45 SHEET 55 OF 57 SHEETS REJ QTY/ASSY MATERIAL LTR IPD QT/TCT #= TOOL NOMENCLATURE #= DRAWING NUMBER FIND PR ASSY PAGE T-SIZI 10 11 12 2 3 6 SCREW, CAP, HEX SOC, 19-32 CRES 12 12 15 15 MS24673-5 NUT, ŞELF-LOCKING. 12 40 12 16 NAS1291 CO4 LOCKWIRE, .020-025 Dia (302) - 17 17 00-W-423 MANIFOLD ASSEMBLY, THRUSTER 1095683 074 25 45 2.6 X . 89 X . 81 MANIFOLD, PROPELLANT BAR 304L CRES QQ-5-766 1095682 D PURCHASED PART FITTING, MANIFOLD 4R4467Z FEF. (RESISTUFLEX INC) 1095421 В 3 3 2 125 Lg 304 CRES PIN, .045 DIA, CRES QQ-5-763 1095683-99 2 3

8818 RL DEC 1973

 (\cdot,\cdot)

322

()

)

..

	PARTS LIST	TITLE 30	CM (ERIE	SI	ON	THR	USTE	R EMBL	E1026510 ([58] ((Page 1 of 1)		DATE /7/	REV	NEXT ASS	Υ
	PARIS LIST		0264	162	MA	SK	ASS	EMB	LY	61]	(<u> 59</u>	1)	BY REJ	SHEET	56 of 5	7 SHEETS
	NOMENCLATURE DRAWING NUMBER		LTR	1SSY	.0T	# (# /	# :	IPD DD	TOOL T-	MATERIAL					
SIZE		10 11 12	CHG LTR	OTY/ASSY	QT/T0T	FIND	ASS	PAGE	PR -	•						
	REAR SHIELD ASSEMBLY															
1	1025316		T	1	1	7	58		070							
	REAR SHIELD							}			18.0 DIA OR SOR X.OZS THIC GOG!					
Ε	,1025316-99	· ·	Т	1	1	1	1				- T4 QQ-A-250/11 (BLANK) AUM					
	DISK							İ			1.0 DIA X.025 THK 6061-TA ALUM, RQ-A-259/					
Ε	1025316-97	· ·	T	8	8	2	2				ALUM, QQ-A-250/11					
	NUTPLATE, SLF-LOCKING, FL	TG, 6-32											,		4.4	
<u> -</u>	MS21076-L06		_	12	14	3	3						••		<u> </u>	•
	RIVET, CSK HD, 094, ALUI	1														
<u> -</u>	MS20426 AD3-3		<u> -</u>	38	102	4	4		<u> </u>							
	NUTPLATE, SELF-LKG, FXD,	6-32														
Ŀ	MS21070-06		_	7	39	5	5									
																
_	 			_												
İ	MASK ASSEMBLY										•					
D	1026462		C	1	1	16	61		69	ļ	10 50 5 7 11 0					
-	MASK										18.50.0. X 11.0 1.0. X : OIG THK (BLANK) TITANIUM AMS 4900/01					
D	1026462-99		C	1	1	1	1				AMS 4900/01		·····		·	
	NUT PLT, SELF-LOCKING, FL	TG, 6-3	4													,
-	MS21060-06		_	12	12	2	2									
	NUT PLT, SLF-LOCKING, FXD	6-32														
-	MS21070-06		匚	2	39	3	3						·····	<u> </u>		
	RIVET, CSK HD, 094 ALUM					,									•	
	MS20426 AD3-3		\subseteq	28	102	4	4			<u></u>			<u> رسیست ساخت</u>			

1*~1

	P	ΑR	TS	3	LI	S	T		TI'	ΓLE	C	109	9568	36 P	LT.	AS	SY	HDR	MAN. MAN.	3-INLET 69	E1026	510 1 of	: 1)	DATE 2/16/8/ BY REJ	REV A SHEET	r ass'y of 57	SHFETS
SIZE			DR	ÁW	INC	N	ATU UME	3EF		1 1	-	CHG LTR	QTY/ASSY	QT/T0T	FIND #	ASSY #			TOOL T-	MATERI			-,	, , , , ,	. !		
<u>s</u>		2 3	4	5	6	7	8	9	10	"	12	ਹ	5	Ö	<u>iii</u>	¥	<u>a</u>	_		 						 	
С		<u>TE ,AS</u> 5686	7			-	OLD	. 3	<u>- I !</u>	LET		A	1	1	34	55		o 7 4		·							
С		ТИВІ N 10956	IG,.()6	+	-	ÇRES		-	 		Α	1	1	3	1				18.0 Lg 32 SEAMLESS TO OLOWALL MI	JBING	4					
В		TRANS 10954	ITI(ı	TUE	3INO	G			 		C	1	7	2	2				168 PIA X . 3 304 CRGS COND A QQ-	ROD						
В		PLATE 10956		ADI	E R	MAI	IFC	LD		 		C	1	1	1	3				1.93 X. 812 X THK 304L C PLT. CCNDA -766	lkes -						
				 		 	 		 																		
			· 		 		!		· 	· · · · · ·																	
С		TE AS 5687	ŞΥ,	HDI	R M/	INA	ĘOL C	1-	IN	EΤ		Α	1	1	26	69		074						·			
С		ТИВІ 10956	1)6]	× .01	i, CI	RES			 		Ą	1	1	3	î.				LENGTH TO OLO WALL S 321 CRES MI BROR TYP	eamless L-T-		·				
В		TRANS 10954		Ņ,	TUE	βIN	G	· —		 		_	1	7	2	2				168 DIAX 1 304 CRES R CONDA, QO	200						
В		PLATE 10957	, HI	ADI	R	MAI	VIFO	LD		 		<u></u>	1	1	1	3		·		1.93 x . 812) THK 304L CI PLATE COND QQ-5-766	ZES A						
			+		 	! !	1 -		 	 						1											
									-	 																	

 $C_{\mathcal{A}}$

DISTRIBUTION LIST

	Copies
National Aeronautics and Space Administration Washington, DC 20546	
Attn: RS-5/Mr. Dell Williams, III	1
RTS-6/Mr. Wayne Hudson	1
RTS-6/Mr. Jerome Mullin	1
MT-3/Mr. Ivan Bekey	1
National Aeronautics and Space Administration Lewis Research Center 21000 Brookpark Road	
Cleveland, OH 44135	
Attn: Technology Utilizaton Office, MS 7-3	1
Report Control Office, MS 5-5	1
Library, MS 60-3 Mr. N. Musial, MS 500-318	2 1
Dr. M. Goldstein, MS 5-3	1
Propulsion and Power Section, MS 500-306	ī
Mr. B. Banks, MS 77-4	ī
Mr. D. Byers, MS 501-7	1
Mr. W. Kerslake, MS 501-7	5
National Aeronautics and Space Administration Marshall Space Flight Center Huntsville, AL 35812	
Attn: Mr. Jerry Hethcoate	1
Mr. John Harlow	1
Mr. W.R. Marshall	1
Research and Technology Division	
Wright-Patterson Air Force Base, OH 45433	1
Attn: (ADTM) Lt. David A. Fromme	1
Mr. Everett B. Bailey	1
NASA Scientific and Technical Information Facility P.O. Box 8757	. 1
Baltimore, MD 21240	
Attn: Accessioning Department	
Case Western Reserve University 10900 Euclid Avenue	1
Cleveland, OH 44106	•
Attne Dr Eld Boshotko	

National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt MD 20771	Copies
Attn: Mr. W. Isley, Code 734 Mr. A.A. Vetman Dr. David H. Suddeth	1 1 1
COMSAT Laboratories P.O. Box 115 Clarksburg, MD 20734	
Attn: Dr. B. Free Mr. O. Revesz	1 1
COMSAT Corporation 950 L'Enfant Plaza, SW Washington, DC 20024 Attn: Mr. Sidney O. Metzger	1
Rocket Propulsion Laboratory Edwards Air Force Base, CA 93523 Attn: LKDA/Mr. Tom Waddell LKDH/Dr. Robert Vondra	1 1
Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, CA 91102	•
Attn: Dr. Kenneth Atkins Technical Library Mr. Eugene Pawlik Mr. James Graf Mr. Kevin Rudolph Mr. Dennis Fitzgerald	1 1 1 1
Xerox Electro-Optical Systems 300 North Halstead Street	
Pasadena, CA 91107 Attn: Dr. R. Worlock Mr. E. James Mr. W. Ramsey	1 1 1
TRW Inc. TRW Systems	
One Space Park Redondo Beach, CA 90278 Attn: Dr. M. Huberman	1
Mr. H. Ogawa Mr. Sid Zafran Dr. B. Marcus	1 1
DEA BA MATCHS	1

	Cobre
National Aeronautics and Space Administration Ames Research Center Moffett Field, CA 94035 Attn: Technical Library	1
National Aeronautics and Space Administration Langley Research Center Hampton, VA 23365 Attn: Technical Library	1
Mr. B.Z. Henry	1
United States Air Force Office of Scientific Research Washington, DC 20025 Attn: Mr. M. Slawsky	1
Princeton University	
Princeton, NJ 08540 Attn: Mr. W.F. Von Jaskowsky Dean R.G. Jahn Dr. K.E. Clark	1 1 1
Joint Institute for Laboratory Astrophysics University of Colorado Boulder, CO 80302 Attn: Dr. Gordon H. Dunn	1
Boeing Aerospace Co. P.O. Box 3999	
Seattle, WA 98124 Attn: Mr. Donald Grim	1
Mr. Russell Dod Mr. A.J. Hill Mr. C.H. Terwilliger	1 1 1
Lockheed Missiles and Space Company	
Sunnyvale, CA 94088 Attn: Dr. William L. Owens, Dept. 62-13 Mr. Steve Debrock, Dept. 62-13	1 1
Fairchild Republic Company Farmingdale, NY 11735 Attn: Dr. Dominic J. Palumbo	1
Bell Laboratories 600 Mountain Avenue	
Murray Hill, NJ 07974 Attn: Dr. Edward G. Spencer Dr. Paul H. Schmidt	1 1

	Copies
Sandia Laboratories Mail Code 5743 Albuquerque, NM 87115 Attn: Mr. Ralph R. Peters	1
Ion Tech, Inc. P.O. Box 1388 1807 E. Mulberry Fort Collins, CO 80522 Attn: Dr. Gerald C. Isaacson	1
EG&G Idaho P.O. Box 1625 Idaho Falls, ID 83401 Attn: Dr. G.R. Longhurst, TSA-104	1
The Aerospace Corporation P.O. Box 95085 Los Angeles, CA 90045 Attn: Dr. B.A. Hartunion Mr. A.H. Silva	1 1
Michigan State University East Landing, MI 48824 Attn: Dr. J. Asmussen Dr. M.C. Hawley	1 1
General Dynamics Kearney Mesa Plant San Diego, CA 92112 Attn: Dr. W. Ketchum Dr. J.W. Stractman	1 1
Ford Aerospace Corporation 3939 Fabian Way Palo Alto, CA 94303 Attn: Mr. Robert C. Kelsa	1
The Aerospace Corporation Space Sciences Laboratory P.O. Box 92957 Los Angeles, CA 90009 Attn: Dr. Y.T. Chiu	1
Massachusetts Institute of Technology Department of Physics PSTIS/Administrative Assistant Cambridge, MA 02139 Attn: Gail Morchower	1