IBM ASSIGNMENT-3

PROJECT TITLE: Fertilizers Recommendation System for Disease Protection

IBM GitHub Repo: IBM-EPBL/IBM-Project-29707-1660128631

Team Members:

- (1) Chandni SM (Team Leader)
- (2) Nishanthi P
- (3) Priyadharshini S
- (4) Sweatha SV

Question:

Build CNN Model for classification of flowers

PROGRAM:

```
import pandas as pd
import numpy as np
 import matplotlib.pyplot as plt
 import seaborn as sns
 df=pd.read csv('abalone.csv')
 df.head()
   Sex Length Diameter Height Whole weight Shucked weight Viscera
 weight \
 0 M
        0.455
                  0.365
                          0.095
                                       0.5140
                                                       0.2245
 0.1010
    Μ
        0.350
                  0.265
                          0.090
                                       0.2255
                                                       0.0995
 0.0485
                                                       0.2565
    F
        0.530
                  0.420
                          0.135
                                       0.6770
 0.1415
                  0.365
    M
        0.440
                          0.125
                                       0.5160
                                                       0.2155
 0.1140
    Ι
        0.330
                  0.255
                          0.080
                                       0.2050
                                                       0.0895
 0.0395
    Shell weight Rings
 0
          0.150
                    15
 1
          0.070
                     7
                     9
 2
          0.210
 3
          0.155
                    10
                     7
 4
          0.055
 df.tail()
      Sex Length Diameter Height
                                    Whole weight Shucked weight \
 4172
       F
           0.565
                     0.450
                           0.165
                                          0.8870
                                                          0.3700
 4173
           0.590
                     0.440 0.135
                                          0.9660
                                                          0.4390
 4174 M
           0.600
                     0.475 0.205
                                          1.1760
                                                          0.5255
 4175 F
           0.625
                     0.485
                             0.150
                                          1.0945
                                                          0.5310
 4176 M
           0.710
                     0.555
                             0.195
                                          1.9485
                                                          0.9455
      Viscera weight Shell weight
                                    Rings
 4172
              0.2390
                            0.2490
                                       11
 4173
              0.2145
                            0.2605
                                       10
 4174
              0.2875
                            0.3080
                                       9
 4175
              0.2610
                            0.2960
                                       10
                                       12
 4176
              0.3765
                            0.4950
 df.isnull().any()
 Sex
                  False
                  False
 Length
 Diameter
                  False
                  False
 Height
```

```
Whole
        weight
                  False
Shucked
          weight False
Viscera
          weight
                  False
Shell weight
                  False
Rings
                   False
dtype: bool
df.rename({'Rings':'Age'},axis=1, inplace=True)
df
     Sex Length Diameter Height
                                     Whole weight Shucked weight \
0
       Μ
           0.455
                      0.365
                              0.095
                                            0.5140
                                                             0.2245
1
           0.350
                      0.265
                              0.090
                                            0.2255
                                                             0.0995
       Μ
2
       F
           0.530
                      0.420
                              0.135
                                            0.6770
                                                             0.2565
3
       Μ
           0.440
                      0.365
                              0.125
                                            0.5160
                                                             0.2155
4
       Ι
           0.330
                      0.255
                              0.080
                                            0.2050
                                                             0.0895
                                . . .
             . . .
                        . . .
                                               . . .
                                                                . . .
. . .
                              0.165
                                                             0.3700
4172
       F
           0.565
                      0.450
                                            0.8870
4173
           0.590
                      0.440
                              0.135
                                            0.9660
                                                             0.4390
4174
           0.600
                      0.475
                              0.205
                                            1.1760
                                                             0.5255
       Μ
4175
      F
           0.625
                      0.485
                              0.150
                                            1.0945
                                                             0.5310
4176 M
           0.710
                      0.555
                              0.195
                                            1.9485
                                                             0.9455
      Viscera weight Shell weight
                                     Age
              0.1010
0
                             0.1500
                                      15
1
               0.0485
                             0.0700
                                       7
2
              0.1415
                             0.2100
                                        9
3
              0.1140
                             0.1550
                                      10
4
               0.0395
                             0.0550
                                       7
4172
              0.2390
                             0.2490
                                      11
4173
              0.2145
                             0.2605
                                      10
4174
              0.2875
                             0.3080
                                       9
4175
               0.2610
                             0.2960
                                      10
4176
                             0.4950
              0.3765
                                      12
[4177 rows x 9 columns]
hi= pd.Series(df.Age)
hi
0
        15
1
         7
2
         9
3
        10
         7
4
        . .
        11
4172
        10
4173
4174
         9
```

```
4175
       10
4176
        12
Name: Age, Length: 4177, dtype: int64
for i in hi:
    age=(hi+1.5)
age
0
        16.5
1
        8.5
        10.5
2
3
        11.5
        8.5
        . . .
       12.5
4172
4173
       11.5
4174
       10.5
4175
        11.5
4176
       13.5
Name: Age, Length: 4177, dtype: float64
y=age
У
0
        16.5
1
        8.5
2
        10.5
3
        11.5
        8.5
        . . .
4172
       12.5
4173
        11.5
4174
       10.5
4175
       11.5
4176
        13.5
Name: Age, Length: 4177, dtype: float64
```

Univariate analysis

```
sns.displot(df.Height)
```

<seaborn.axisgrid.FacetGrid at 0x21f6c00ebc0>

sns.displot(df.Diameter)

<seaborn.axisgrid.FacetGrid at 0x21f6e2cfdf0>

df.Height.plot()

Bi-Variate Analysis

sns.lineplot([df.Length,df.Height])

sns.pairplot(df)

<seaborn.axisgrid.PairGrid at 0x21f6e61a4a0>


```
array([[<AxesSubplot:title={'center':'Length'}>,
        <AxesSubplot:title={'center':'Diameter'}>,
        <AxesSubplot:title={'center':'Height'}>],
       [<AxesSubplot:title={'center':'Whole weight'}>,
        <AxesSubplot:title={'center':'Shucked weight'}>,
        <AxesSubplot:title={'center':'Viscera weight'}>],
       [<AxesSubplot:title={'center':'Shell weight'}>,
        <AxesSubplot:title={'center':'Age'}>, <AxesSubplot:>]],
      dtype=object)
```


df.plot()

df.describe()

	Length	Diameter	Height	Whole weight	Shucked
weight \					
		.77.000000 41	.77.000000	4177.000000	
4177.0000					
Mean	0.523992	0.407881	0.139516	0.828742	
0.359367					
std	0.120093	0.099240	0.041827	0.490389	
0.221963					
min	0.075000	0.055000	0.000000	0.002000	
0.001000					
25%	0.450000	0.350000	0.115000	0.441500	
0.186000					
50%	0.545000	0.425000	0.140000	0.799500	
0.336000					
75%	0.615000	0.480000	0.165000	1.153000	
0.502000					
max	0.815000	0.650000	1.130000	2.825500	
1.488000					
Vi	scera weight	Shell weight		Age	
count	4177.000000	4177.000000	4177.000	000	
mean	0.180594	0.238831	9.933	684	
std	0.109614	0.139203	3.224	169	
min	0.000500	0.001500	1.000	000	

25%	0.093500	0.130000	8.000000
50%	0.171000	0.234000	9.000000
75%	0.253000	0.329000	11.000000
Max	0.760000	1.005000	29.000000

df.isnull().any()

Sex False
Length False
Diameter False
Height False
Whole weight False
Shucked weight False
Viscera weight False
Shell weight False
Age False

dtype: bool

df.isnull().sum()

Sex 0
Length 0
Diameter 0
Height 0
Whole weight 0
Shucked weight 0
Viscera weight 0
Shell weight 0
Age 0

dtype: int64

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4177 entries, 0 to 4176
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Sex	4177 non-null	object
1	Length	4177 non-null	float64
2	Diameter	4177 non-null	float64
3	Height	4177 non-null	float64
4	Whole weight	4177 non-null	float64
5	Shucked weight	4177 non-null	float64
6	Viscera weight	4177 non-null	float64
7	Shell weight	4177 non-null	float64
8	Age	4177 non-null	int64

dtypes: float64(7), int64(1), object(1)

memory usage: 293.8+ KB

Outlier Detection

df.shape

(4177, 9)

sns.boxplot(df.Height)

<AxesSubplot:>


```
q1=df.Height.quantile(0.25)
q3=df.Height.quantile(0.75)
```

IQR=q3-q1

upper limit= q3 + 1.5*IQR

lower limit= q1 - 1.5*IQR

upper_limit

0.24000000000000000

lower_limit

0.0399999999999999

df.median()

C:\Users\nojma\AppData\Local\Temp\ipykernel_21444\530051474.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

```
df.median()
```

Length	0.5450
Diameter	0.4250
Height	0.1400
Whole weight	0.7995
Shucked weight	0.3360
Viscera weight	0.1710
Shell weight	0.2340
Age	9.0000
dtype: float64	

df['Height']=

sns.boxplot(df.Height)


```
df['Height']=
np.where(df['Height']>upper limit, 0.240000000000000, df['Height'])
```

sns.boxplot(df.Height)

<AxesSubplot:>

df.shape (4177, 9)

The Categorical columns and perform Encoding.

df.head()

Sex weight	Length \	Diameter	Height	Whole weight	Shucked weight	Viscera
0 M	0.455	0.365	0.095	0.5140	0.2245	
0.1010						
1 M	0.350	0.265	0.090	0.2255	0.0995	
0.0485						
2 F	0.530	0.420	0.135	0.6770	0.2565	
0.1415						
3 M	0.440	0.365	0.125	0.5160	0.2155	
0.1140						
4 I	0.330	0.255	0.080	0.2050	0.0895	
0.0395						

Shell weight Age

```
0
          0.150
                  15
1
          0.070
                  7
2
          0.210
                  9
3
          0.155
                 10
          0.055
                  7
df.Sex.value_counts()
Μ
     1528
     1342
Ι
F
     1307
Name: Sex, dtype: int64
from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()
df.Sex=le.fit transform(df.Sex)
df.head()
   Sex Length Diameter Height Whole weight Shucked weight \
0
     2
         0.455
                   0.365
                         0.095
                                        0.5140
                                                        0.2245
         0.350
                   0.265
                           0.090
                                        0.2255
                                                        0.0995
1
     2
2
         0.530
                   0.420
                          0.135
                                        0.6770
                                                        0.2565
3
     2
         0.440
                   0.365
                           0.125
                                        0.5160
                                                        0.2155
4
     1
         0.330
                   0.255
                           0.080
                                        0.2050
                                                        0.0895
  Viscera weight Shell weight Age
0
           0.1010
                          0.150
                                  15
1
           0.0485
                          0.070
                                   7
2
           0.1415
                          0.210
                                   9
3
           0.1140
                          0.155
                                  10
           0.0395
                          0.055
                                  7
df.tail()
      Sex Length Diameter Height Whole weight
                                                   Shucked weight \
4172
        0
           0.565
                      0.450
                             0.165
                                           0.8870
                                                            0.3700
                      0.440
4173
        2
           0.590
                              0.135
                                           0.9660
                                                            0.4390
4174
        2 0.600
                      0.475
                            0.205
                                           1.1760
                                                            0.5255
4175
            0.625
        0
                      0.485
                              0.150
                                           1.0945
                                                            0.5310
4176
        2
            0.710
                      0.555
                              0.195
                                           1.9485
                                                           0.9455
      Viscera weight Shell weight
                                    Age
4172
              0.2390
                            0.2490
                                     11
4173
              0.2145
                            0.2605
                                     10
4174
              0.2875
                            0.3080
                                     9
                                     10
4175
              0.2610
                            0.2960
4176
              0.3765
                            0.4950
                                     12
```

Split the Data into Dependent and Independent variables.

```
x=df.drop(columns=['Age'],axis=1)
x
```

	Sex	Length	Diameter	Height	Whole weight	Shucked weight \	
0	2	0.455	0.365	0.095	0.5140	0.2245	
1	2	0.350	0.265	0.090	0.2255	0.0995	
2	0	0.530	0.420	0.135	0.6770	0.2565	
3	2	0.440	0.365	0.125	0.5160	0.2155	
4	1	0.330	0.255	0.080	0.2050	0.0895	
4172	0	0.565	0.450	0.165	0.8870	0.3700	
4173	2	0.590	0.440	0.135	0.9660	0.4390	
4174	2	0.600	0.475	0.205	1.1760	0.5255	
4175	0	0.625	0.485	0.150	1.0945	0.5310	
4176	2	0.710	0.555	0.195	1.9485	0.9455	

```
Viscera weight Shell weight
0
             0.1010
                          0.1500
1
             0.0485
                          0.0700
2
             0.1415
                          0.2100
3
             0.1140
                          0.1550
4
             0.0395
                          0.0550
             0.2390
                          0.2490
4172
             0.2145
4173
                          0.2605
4174
             0.2875
                          0.3080
4175
             0.2610
                          0.2960
4176
            0.3765
                         0.4950
```

```
[4177 rows x 8 columns]
```

```
У
0
      16.5
       8.5
1
2
       10.5
3
       11.5
       8.5
       . . .
       12.5
4172
4173
      11.5
4174
      10.5
      11.5
4175
4176
       13.5
```

Name: Age, Length: 4177, dtype: float64

Scale the independent variables

from sklearn.preprocessing import scale

```
x_scaled=pd.DataFrame(scale(x),columns=x.columns)
x scaled.head()
```

Sex	Length	Diameter	Height	Whole weight	Shucked
weight \					
0 1.151980	-0.574558	-0.432149	-1.158093	-0.641898	_
0.607685					
1 1.151980	-1.448986	-1.439929	-1.288751	-1.230277	_
1.170910					
2 -1.280690	0.050033	0.122130	-0.112828	-0.309469	_
0.463500					
3 1.151980	-0.699476	-0.432149	-0.374145	-0.637819	_
0.648238					
4 -0.064355	-1.615544	-1.540707	-1.550067	-1.272086	_
1.215968					

```
Viscera weight Shell weight
0 -0.726212 -0.638217
1 -1.205221 -1.212987
2 -0.356690 -0.207139
3 -0.607600 -0.602294
4 -1.287337 -1.320757
```

Split the data into training and testing

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test =
train_test_split(x_scaled, y, test_size=0.2, random_state=0)
X_train.shape
(3341, 8)
y_train.shape
(3341,)
X_test.shape
(836, 8)
y_test.shape
(836,)
```

Model building

```
from sklearn.linear_model import LinearRegression
model=LinearRegression()
model.fit(X train,y train)
```

Output

Testing:

```
pred test=model.predict(X test)
pred test
array([14.53244534, 11.0078981 , 11.70625188, 7.02813239,
12.18242535,
       13.35584542, 9.28710687, 11.42212394, 10.12653741,
13.51180524,
       10.27844483, 7.98154103, 9.59514319, 10.44626088,
7.22370756,
       10.68720552, 9.24091016, 15.75581247, 12.64239931,
9.57397868,
        9.21366024, 8.56592733, 10.72833811, 8.97344174,
11.55892361,
       13.04994427, 6.25948905, 14.78324032, 12.25371328,
12.67496945.
        9.47615295, 6.19887287, 12.80393235, 14.62478044,
9.06495082,
       10.18031923, 10.66594652, 11.78933452, 10.18198705,
12.97094919,
       13.42820172, 10.72507517, 13.5003741, 13.48852193,
13.96119858,
       10.96541652, 10.64272246, 13.17887707, 13.85346053,
9.69107776,
       12.98216095, 8.91133409, 10.40251492, 15.06229965,
10.60235007,
        9.05207143, 7.62747477, 8.75816059, 9.02348271,
8.76280894,
       11.08732622, 10.56218347, 11.79619028, 9.63045715,
9.82486158,
       13.78750076, 14.09087368, 13.99322601, 10.64057633,
15.83697549,
       11.2933687 , 20.47350024, 12.43234857, 11.59001976,
11.34988504,
       10.82440164, 11.15896341, 11.20527522, 12.69403663,
9.52758487,
       10.85907235, 7.67114484, 9.09760133, 13.93585886,
11.71409318,
        9.85798751, 11.43937101, 14.11714606, 6.51672826,
8.87371877,
       11.87465528, 12.12501048, 9.52022006, 4.00964382,
13.76887416,
        7.8371364 , 12.21012604, 9.17569268, 16.11145446,
10.98158594,
       11.34284257, 13.69497776, 11.32164788, 12.42320552,
7.15386018,
```

```
11.888862 , 9.18449066, 8.53466049, 9.38646006,
14.97023344,
       10.5747346 , 12.5980386 , 12.81432213, 9.67064342,
15.60552497.
       11.6603456 , 13.27570247, 14.7189357 , 6.84372814,
11.60998243,
       8.86782202, 13.3099358, 8.47605783, 11.09172386,
12.3761562 ,
       14.25380571, 12.08405342, 12.32891244, 9.57995662,
12.05635419,
       11.75046698, 9.42634719, 11.32432279, 12.7506026,
12.73823653,
       12.50471301, 11.83921499, 10.92067913, 9.0738368,
15.50115667,
       12.06204485, 13.03217064, 8.94525188, 9.67189824,
13.03917867,
       11.75642295, 10.97080939, 9.14406821, 9.75675431,
8.47569441,
       10.98926348, 18.92776394, 8.83827004, 12.32715664,
9.21560814,
       8.42775612, 13.13924886, 8.67259087, 14.86140354,
9.43480738,
      11.89566497, 8.62565569, 11.9546325, 12.26800955,
6.72007654,
       14.63631512, 9.45543374, 8.25661349, 12.87098071,
11.49114466,
       10.48887513, 6.76977253, 9.80172366, 12.0937076,
14.16988145,
       11.72466997, 7.41598683, 10.31656596, 9.44969535,
13.1791082 ,
       11.3996152 , 12.04948826, 9.85994981, 10.7436796 ,
14.07361863,
       11.98125435, 10.40218538, 10.35634978, 8.34198772,
10.30304523,
       12.09259587, 11.31854318, 11.10907473, 11.73484321,
11.6942021 ,
       10.67334871, 9.75645553, 10.01288358, 6.70811431,
16.66985206,
       10.96322846, 12.17269595, 16.48579947, 11.28635242,
10.64728124,
       13.75748187, 7.7871626, 13.82641821, 11.72114564,
13.89984085,
        7.36789009, 11.81986802, 12.39318903, 11.28190258,
13.06228982,
       12.143357 , 11.73621345, 12.51855138, 7.25569876,
14.03068684,
       13.54635237, 13.50386891, 9.99171305, 10.85760463,
13.31730598,
       15.71778649, 12.90307396, 10.8203456, 13.48715389,
10.29961161,
```

```
10.96002483, 10.00336493, 7.55924283, 12.8017881,
8.47091039,
       13.73403571, 9.64709623, 7.11196213, 9.92675198,
11.59328786,
       10.2751291 , 11.2107656 , 13.10280082, 11.22659975,
12.09112963,
       11.66904478, 13.04307667, 9.78935392, 12.70012771,
16.14996165,
       13.83052785, 9.30224518, 14.03595581, 9.76134506,
12.7805409 ,
       12.90428981, 9.14267407, 11.26826599, 12.00507241,
16.7313471 ,
       11.81696703, 10.74277241, 12.66214248, 8.68523556,
13.04725679,
       10.29424062, 10.33034869, 9.11815232, 9.64806126,
8.7985689 ,
       12.3271005 , 10.27733392, 9.88096756, 9.90607841,
8.05621571,
       12.28817417, 14.82613035, 10.53368251, 11.47606595,
11.44223583,
        8.97785412, 13.14634588, 9.35863532, 10.9952972,
11.42691368,
       13.09889687, 8.74544285, 12.08024064, 12.13045483,
14.47002341,
        9.20646477, 10.63893824, 7.47973256, 11.60957319,
9.08222752,
        9.31338168, 8.44986855, 7.90573357, 11.74114067,
16.7840848 ,
       10.41146936, 9.74343019, 14.06769462, 11.65339721,
10.53275913,
       10.53875286, 11.30995401, 11.52954947, 12.90110473,
10.6866098 ,
       10.80030225, 12.33074628, 9.88421546, 12.08292967,
18.68188504,
       13.48704046, 11.10041368, 8.35171557, 10.26829434,
11.9678599 .
       12.36646872, 11.41422212, 11.07149653, 11.35340471,
13.93803813,
       10.99418782, 10.98822115, 12.1099718, 17.51215828,
11.33130539,
       10.64923592, 12.95798921, 6.59506361, 12.88491434,
11.9613266 ,
       12.79203863, 8.74882679, 10.27351234, 12.65563604,
12.3092988 ,
       11.3923696 , 11.57184033, 11.9682194 , 12.89975525,
14.02164748,
        8.73043508, 7.60681346, 14.04892383, 14.72962318,
9.26562703,
        8.15863577, 10.39090267, 14.07176433, 11.65317097,
12.54070566,
```

```
11.48555441, 12.23853577, 10.13462226, 9.91150534,
11.65965714,
       10.28485825, 11.54001118, 9.81709407, 10.63653115,
11.07401186,
        7.51402104, 8.16082003, 10.75265268, 9.36278012,
11.58984382,
       12.14925066, 8.99771109, 13.19704189, 9.7300532,
14.38018654,
       14.5990285 , 14.71724396, 10.07866002, 12.37471443,
6.59114425,
       10.40872379, 11.57766499, 11.3666394, 14.4287674,
7.92578333,
       12.39753924, 17.001288 , 10.78155124, 9.55361564,
8.17748895,
       16.77915551, 11.55965325, 12.61125594, 11.40279445,
19.03085946,
        9.1974374 , 12.56834828, 10.86339483, 12.68562536,
12.13741854,
       10.20388759, 10.01405387, 8.36924958, 14.8441481,
9.90015183,
       11.44262366, 8.02316032, 13.18493306, 17.44919756,
11.27941733,
       11.72269422, 9.26902521, 11.75876981, 12.49828672,
15.89949294,
       12.81194268, 15.23265741, 13.12646364, 16.20431199,
11.54229386,
       10.52055193, 11.05148003, 12.27553724, 12.84343187,
7.73479626,
       10.93879109, 12.05629185, 13.03774149, 12.91363689,
15.70157825,
       11.29056019, 12.30560738, 10.36123108, 14.42541568,
10.68101781,
       10.80400139, 13.47263131, 11.07707206, 11.23080603,
12.31402767,
       10.01522273, 8.53743557, 14.7621652, 10.13512612,
8.36290541,
        8.98170785, 15.17510849, 7.28852514, 12.19656398,
11.90511798,
        6.17321917, 8.62385721, 11.04741416, 8.62460938, -
1.47297544,
        9.95419162, 12.89211251, 11.24023027, 10.54271974,
13.55685826.
        8.90822473, 16.78956387, 9.93937733, 11.79317417,
11.1794635 ,
       13.6266044 , 8.42754654, 21.36688423, 11.97210624,
10.29763889,
        9.26711611, 12.33505259, 9.37129839, 16.5749059,
10.44211327,
       10.67922834, 9.80101147, 9.71581467, 9.10780792,
12.38216486,
```

```
11.90848986, 13.60040865, 10.40779974, 13.31542559,
15.39122244.
       13.60006414, 11.67899133, 11.36281632, 9.75447768,
12.31767215,
        6.49410505, 10.71006135, 14.06874949, 12.16349645,
8.78905515,
        9.12525815, 9.7320658, 8.02209857, 12.90627833,
10.91071125,
        9.04966193, 13.97216624, 8.70568136, 13.59272751,
11.98728331,
       12.13772726, 13.10949811, 15.88972076, 9.67042181,
7.40711774,
       11.6273047 , 10.37835044, 16.21089949, 16.59849124,
11.11386189,
       10.03576924, 12.18992544, 11.60586954, 15.16949992,
11.9208423 ,
       12.29780979, 11.53540376, 12.10458326, 11.22214465,
9.03256482,
       14.61093967, 10.5722459 , 11.40050064, 10.38354932,
10.35606742,
        9.57959998, 9.36621381, 10.06218198, 11.85878282,
6.6759175 ,
       11.41453866, 13.78165367, 13.77621232, 9.33431658,
15.2380223 ,
        9.4378123 , 11.5315538 , 9.34981915, 14.07801547,
8.64742722,
       11.90734109, 9.98023159, 10.05349931, 12.29744499,
11.15067085,
       12.46772396, 15.31130349, 9.99155172, 16.25178226,
12.37445419,
        9.50924737, 9.9242075, 10.93733949, 11.85357544,
11.72610291,
       13.4268923 , 10.94792578, 13.23018349, 10.42403757,
12.27863955,
        7.64552142, 9.98743011, 9.45625093, 11.63488557,
9.68133387.
       12.20397764, 9.9835451, 10.13970686, 11.07580134,
10.5634322 ,
        9.74141341, 12.83625607, 11.50020725, 12.82380982,
6.34536263,
       14.44763715, 8.03398937, 7.21138956, 8.17068277,
9.79484807,
       10.61117355, 22.26035682, 11.76325478, 10.6032389 ,
13.98329507,
        7.57216955, 11.49228434, 11.35798073, 9.69807617,
13.77320211,
       11.87456673, 6.08722484, 10.13070558, 8.13271563,
11.55426638,
       10.53393164, 14.55693877, 11.64934356, 10.76502919,
13.64233197,
```

```
11.48446041, 11.20665011, 8.70454581, 11.21603585,
13.41524187,
        9.15435852, 14.67089754, 11.17586771, 10.75017826,
12.4443991 ,
       14.90198919, 10.64477219, 9.46950572, 15.56130213,
11.98546967,
       11.55707512, 13.65822981, 9.00227742, 11.51153315,
12.64959113,
       13.14413401, 10.48760552, 14.77196813, 10.71500399,
11.95082094,
       11.86600702, 8.89458951, 9.82765902, 10.21972444,
9.83418416,
       11.59508749, 6.96283107, 16.52033076, 10.87007468,
11.67482471,
       11.78728465, 11.33986386, 12.93762116, 10.91346786,
11.15820943,
       11.17447772, 9.13333596, 11.39091376, 14.34494209,
12.81082189,
        9.74110154, 9.9875444, 9.96278186, 10.92584332,
8.64925917,
       14.40628057, 9.3513612, 10.21036434, 12.18792665,
14.7724984 ,
       12.95491527, 9.64140307, 14.68273119, 13.05481542,
13.53525668,
       10.28743488, 10.93367104, 7.60718771, 8.40076924,
12.96969653,
       11.19538403, 13.15981986, 16.86515026, 13.25325946,
7.36017467,
        9.44373172, 10.36749135, 8.01250773, 8.83867386,
17.44949175,
      15.26822303, 11.03949477, 12.27387613, 11.73810955,
10.72377222,
        9.38165472, 13.10917813, 12.76709793, 12.37796384,
18.37825831,
       10.86495486, 13.20101148, 13.30476443, 15.26466599,
9.5735314 .
       11.75595797, 16.60509027, 14.45096879, 9.47512897,
9.69160693,
        8.54935647, 12.39902329, 10.72217414, 14.73829784,
10.79303989,
       12.99534963, 11.42641917, 10.11843876, 14.74614287,
13.87854227,
        7.6911517 , 6.97546365, 7.58372621, 12.34110329,
8.81401579,
       10.91473141, 12.85890858, 10.1137732, 9.10523083,
10.05964618,
       15.02621266, 6.9446349, 10.86458695, 8.66879173,
14.97963642,
        7.52614906, 9.96335965, 9.70658273, 13.70340806,
12.67256336,
```

```
9.75930209, 12.87901199, 13.36454163, 14.33288441,
10.5833593 ,
       12.24976985, 8.95261265, 9.51815416, 10.40738817,
7.73876283.
       13.4790368 , 10.09713362, 8.73631873, 8.46152289,
12.06845303,
        9.11647045, 10.89287842, 10.09381971, 10.48160872,
10.66557638,
       11.41005482, 11.17882154, 9.27793561, 12.66536743,
9.73414768,
       13.38319446, 11.37257725, 8.93722555, 10.76511186,
15.70881856,
        8.6278767 , 8.39895778, 9.36077029, 7.81331226,
12.81419264,
       10.87514152, 11.69582811, 8.27216684, 12.95952949,
9.6629573 .
        8.76111272, 10.71023335, 15.21989454, 11.86739891,
10.51573331,
       12.22576065, 8.86097055, 15.16108111, 9.21950581,
11.67870977.
       16.22547646, 14.17701226, 9.39828153, 8.9573144,
10.50793761,
       10.2000563 , 10.93607193, 10.22054406, 11.08046947,
12.54039172,
       11.31575611, 11.99842664, 15.16688865, 12.95581089,
14.63051012,
       10.49806683, 13.04845619, 11.37493048, 6.22816992,
12.4270097 ,
       11.19134436, 9.86689109, 10.09837641, 7.78497896,
8.4308489 ,
       10.09392535, 10.7071512 , 12.7289974 , 9.55080414,
10.06964749,
       10.68784557, 9.04165464, 11.47395606, 14.02838581,
12.40239912,
       10.92102594, 10.91191076, 13.56439785, 14.11253667,
11.73321252,
        7.57107634, 12.24330433, 12.4819393 , 8.32934602,
9.8410542 ,
       10.37420246, 13.04819633, 11.66093331, 8.28699911,
8.6437147 ,
        9.94700644, 11.6921597, 10.31474559, 9.96224932,
13.89646102,
        7.202036851)
pred train = model.predict(X train)
pred train
array([ 7.19974119, 6.84237887, 15.18412216, ..., 10.94694691,
       13.11797394, 9.980799931)
```

```
Age= pd.DataFrame({'Actual Age':y test,'pred Age':pred test})
Age
     Actual Age pred Age
          14.5 14.532445
668
1580
           9.5 11.007898
          12.5 11.706252
3784
463
           6.5 7.028132
2615
          13.5 12.182425
. . .
           . . .
         12.5 11.692160
575
          13.5 10.314746
3231
1084
           8.5 9.962249
290
          18.5 13.896461
           5.5 7.202037
2713
[836 rows x 2 columns]
Performance using Metrics
from sklearn import metrics
# r2score
print(metrics.r2 score(y test,pred test)) # test accuracy
0.5418733297497837
print(metrics.r2 score(y train,pred train)) # train accuracy
0.531977913488948
#MSE
print(metrics.mean squared error(y test,pred test)) # test accuracy
4.975398170943831
print(metrics.mean_squared_error(y_train,pred_train)) # train
accuracy
```

4.807868180891602