18.445 Introduction to Stochastic Processes

Lecture 4: Introduction to Markov chain mixing

Hao Wu

MIT

23 February 2015

Hao Wu (MIT) 18.445 23 February 2015 1 / 9

Announcement

Midterm : April 6th.(on class)

Final: May 18th.

The tests are closed book, closed notes, no calculators.

Recall

If $(X_n)_n$ is an irreducible Markov chain with stationary distribution π , then

$$\lim_{n\to\infty}\frac{1}{n}\sum_{i=0}^n 1_{[X_j=x]}=\pi(x),\quad \mathbb{P}_{\mu}-a.s.$$

Today's goal We will show that X_n converges to π under some "strong sense".

- total variation distance
- the convergence theorem
- mixing times

23 February 2015 2 / 9

Three ways to characterize the total variation distance

 μ and ν : probability measures on Ω .

$$||\mu - \nu||_{TV} = \max_{A \subset \Omega} |\mu(A) - \nu(A)|.$$

Lemma

•

$$||\mu - \nu||_{TV} = \frac{1}{2} \sum_{x \in \Omega} |\mu(x) - \nu(x)|.$$

•

$$||\mu - \nu||_{TV} = \frac{1}{2} \sup\{\mu f - \nu f : f \text{ satisfying } \max_{x \in \Omega} |f(x)| \le 1\}.$$

•

$$||\mu - \nu||_{TV} = \inf\{\mathbb{P}[X \neq Y] : (X, Y) \text{ is a coupling of } \mu, \nu\}.$$

Definition

We call (X, Y) the optimal coupling if $\mathbb{P}[X \neq Y] = ||\mu - \nu||_{TV}$.

23 February 2015

The Convergence Theorem

Suppose that $(X_n)_n$ is a Markov chain with transition matrix P. Assume that P is irreducible and aperiodic, then

- there exists r such that $P^r(x, y) > 0$ for all $x, y \in \Omega$;
- there exists a unique stationary distribution π and $\pi(x) > 0$ for all $x \in \Omega$.

Theorem

Suppose that P is irreducible, aperiodic, with stationary distribution π . Then there exist constants $\alpha \in (0,1)$ and C>0 such that

$$\max_{\mathbf{x}\in\Omega}||P^n(\mathbf{x},\cdot)-\pi||_{TV}\leq C\alpha^n\quad\forall n\geq 1.$$

Hao Wu (MIT) 18.445 23 February 2015

Mixing time

Definition

$$d(n) = \max_{x \in \Omega} ||P^n(x, \cdot) - \pi||_{TV}$$

$$\bar{d}(n) = \max_{x,y \in \Omega} ||P^n(x,\cdot) - P^n(y,\cdot)||_{TV}$$

Lemma

$$d(n) \leq \bar{d}(n) \leq 2d(n)$$

Lemma

$$\bar{d}(m+n) \leq \bar{d}(m) \cdot \bar{d}(n)$$

Corollary

$$\bar{d}(mn) \leq \bar{d}(n)^m$$

5/9

Mixing time

Definition

$$t_{mix} = \min\{n : d(n) \le 1/4\}, \quad t_{mix}(\epsilon) = \min\{n : d(n) \le \epsilon\}$$

Lemma

$$t_{mix}(\epsilon) \leq \log(\frac{1}{\epsilon}) \frac{t_{mix}}{\log 2}$$

Questions: How long does it take the Markov chain to be close to the stationary measure?

Lecture 5 : Upper bounds on t_{mix} ; Lecture 6 : Lower bounds on t_{mix} ; Lecture 7 : Interesting models.

Couple two Markov chains

Definition

A coupling of two Markov chains with transition matrix P is a process $(X_n, Y_n)_{n>0}$ with the following two properties.

- Both (X_n) and (Y_n) are Markov chains with transition matrix P.
- They stay together after their first meet.

Notation: If $(X_n)_{n\geq 0}$ and $(Y_n)_{n\geq 0}$ are coupled Markov chains with $X_0=x, Y_0=y$, then we denote by $\mathbb{P}_{x,y}$ the law of $(X_n,Y_n)_{n\geq 0}$.

Hao Wu (MIT) 18.445 23 February 2015 7 / 9

Couple two Markov chains

Theorem

Suppose that P is irreducible with stationary distribution π . Let $(X_n, Y_n)_{n\geq 0}$ be a coupling of Markov chains with transition matrix P for which $X_0=x$, $Y_0=y$. Define τ to be their first meet time :

$$\tau=\min\{n\geq 0: X_n=Y_n\}.$$

Then

$$||P^n(x,\cdot)-P^n(y,\cdot)||_{TV}\leq \mathbb{P}_{x,y}[\tau>n].$$

In particular,

$$d(n) \leq \max_{x,y} \mathbb{P}_{x,y}[\tau > n].$$

8/9

Hao Wu (MIT) 18.445 23 February 2015

Random walk on N-cycle : Upper bound on t_{mix}

Lazy walk: it remains in current position with probability 1/2, moves left with probability 1/4, right with probability 1/4.

- It is irreducible.
- The stationary measure is the uniform measure.

Theorem

For the lazy walk on N-cycle, we have

$$t_{mix} \leq N^2$$
.

Hao Wu (MIT) 18.445 23 February 2015