Automated generation of planar geometry olympiad problems

Author: Patrik Bak

Supervisor: doc. RNDr. Stanislav Krajči, PhD.

Consultant: Mgr. Michal Rolínek, PhD.

Overall goal

Design and implement software that is able to generate planar geometry olympiad problems by extending an initial configuration with new geometrical objects and subsequently finding non-trivial theorems in the generated configurations.

www.skmo.sk

imo-official.org

Acute triangle ABC

- Acute triangle ABC
- H is the orthocenter of ABC

- Acute triangle ABC
- H is the orthocenter of ABC
- D is the intersection of BC and the angle bisector of angle BHC

- Acute triangle ABC
- H is the orthocenter of ABC
- D is the intersection of BC and the angle bisector of angle BHC
- E, F are the reflections of D
 across AB and AC, respectively

- Acute triangle ABC
- H is the orthocenter of ABC
- D is the intersection of BC and the angle bisector of angle BHC
- E, F are the reflections of D
 across AB and AC, respectively
- S is the midpoint of arc BAC

- Acute triangle ABC
- H is the orthocenter of ABC
- D is the intersection of BC and the angle bisector of angle BHC
- E, F are the reflections of D
 across AB and AC, respectively
- S is the midpoint of arc BAC

Prove: A, E, S, F are concyclic

What was done in the bachelor thesis?

- 1. Object representation of geometrical objects, configurations and theorems
- 2. Algorithms that generate geometrical objects and configurations
- 3. Algorithms that find all possible theorems relevant to a configuration
- 4. Algorithms that verify a theorem using numerical analytic geometry

P. J. Safarik University Faculty of Science

GENERATING GEOMETRICAL PROBLEMS

BACHELOR THESIS

Košice 2018

Patrik Bak

Example of an input and output

Initial configuration: triangle

Constructor: midpoint

3 iterations

Constructor: circumcenter

Example of an input and output

Initial configuration: triangle

Constructor: midpoint

Constructor: circumcenter

3 iterations

- Configurations: 73
- Configurations with theorems: 54
- Total number of theorems: 242
- Duration: 360 ms

Something interesting?

Acute triangle ABC

- Acute triangle ABC
- D is the midpoint of AB

- Acute triangle ABC
- D is the midpoint of AB
- *E* is the circumcenter of *ABC*

- Acute triangle ABC
- D is the midpoint of AB
- E is the circumcenter of ABC
- F is the circumcenter of ACD

- Acute triangle ABC
- D is the midpoint of AB
- E is the circumcenter of ABC
- F is the circumcenter of ACD

Prove: AF, (CEF), (ABC) are concurrent

What is left for the master thesis?

■ 1. Automatic detection of trivial theorems

P. J. Safarik University Faculty of Science

AUTOMATED GENERATION OF PLANAR GEOMETRY OLYMPIAD PROBLEMS

MASTER'S THESIS

Košice 2020 Patrik Bak

Acute triangle ABC

- Acute triangle ABC
- D is the midpoint of AB

- Acute triangle ABC
- D is the midpoint of AB
- *E* is the circumcenter of *ABC*

- Acute triangle ABC
- D is the midpoint of AB
- *E* is the circumcenter of *ABC*

Prove: ED and AB are perpendicular

- Acute triangle ABC
- D is the midpoint of AB
- *E* is the circumcenter of *ABC*

Prove: ED and AB are perpendicular

Prove: EA = EB = EC

What is left for the master thesis?

- 1. Automatic detection of trivial theorems
- 2. Automatic generalization of theorems

P. J. Safarik University Faculty of Science

AUTOMATED GENERATION OF PLANAR GEOMETRY OLYMPIAD PROBLEMS

MASTER'S THESIS

Košice 2020 Patrik Bak

Generalized problem

- Acute triangle ABC
- *D* is (the midpoint) any point of *AB*
- *E* is the circumcenter of *ABC*
- F is the circumcenter of ACD

Prove: AF, (CEF), (ABC) are concurrent

What is left for the master thesis?

- 1. Automatic detection of trivial theorems
- 2. Automatic generalization of theorems
- 3. Automatic simplification of configurations

P. J. Safarik University
Faculty of Science

AUTOMATED GENERATION OF PLANAR GEOMETRY OLYMPIAD PROBLEMS

MASTER'S THESIS

Košice 2020 Patrik Bak

Line segment AB

- Line segment AB
- M is the midpoint of AB

- Line segment AB
- M is the midpoint of AB
- p is the perpendicular line to AB at M

- Line segment AB
- M is the midpoint of AB
- p is the perpendicular line to AB at M

- Line segment AB
- M is the midpoint of AB
- p is the perpendicular bisector of AB

What is left for the master thesis?

- 1. Automatic detection of trivial theorems
- 2. Automatic generalization of theorems
- 3. Automatic simplification of configurations
- 4. Implementing a database for generated results

P. J. Safarik University Faculty of Science

AUTOMATED GENERATION OF PLANAR GEOMETRY OLYMPIAD PROBLEMS

MASTER'S THESIS

Košice 2020 Patrik Bak

What is left for the master thesis?

- 1. Automatic detection of trivial theorems
- 2. Automatic generalization of theorems
- 3. Automatic simplification of configurations
- 4. Implementing a database for generated results
- 5. Implementing a user interface

(plus some other things listed in the bachelor thesis)

P. J. Safarik University Faculty of Science

AUTOMATED GENERATION OF PLANAR GEOMETRY OLYMPIAD PROBLEMS

MASTER'S THESIS

Košice 2020

Patrik Bak

Implementation

https://github.com/PatrikBak/GeoGen

KEEP CALM

AND

WRITE YOUR MASTER THESIS