17.09.2021

Digital Image Processing (CSE/ECE 478)

Lecture-8: Bilateral Filtering, Linearity
Intro to Frequency Domain Processing

Center for Visual Information Technology (CVIT), IIIT Hyderabad

Announcements

• MQ2: Points will be awarded to students who "attempted" qs: To represent 95% of the area within the Gaussian distribution, which of the following standard deviation values should be used?

Recap

- PDF can be >1
 - E.g., Uniform distribution U(0,0.1) f(x) = K, $0 \le x \le 0.1$ and f(x) = 0, elsewhere

$$-\int_{-\infty}^{\infty} f(x)dx = \int_{0}^{0.1} K \, dx = K \, x \big|_{0}^{0.1} = 1$$

 Less consensus about Positive Laplacian (central element being positive vs. negative)

> https://academic.mu.edu/phys/matthysd/web226/Lab02.htm https://www.tutorialspoint.com/dip/laplacian_operator.htm

pepper noise

After applying max filter

Non-linear Spatial Filters (min)

salt noise

After applying min filter

Non-linear Spatial Filters (median)

salt & pepper noise

After applying median filter

max, min, median → also known as rank / order statistic filters

- ☐ Mean: blurs image, removes simple noise, no details are preserved
- \Box Gaussian: blurs image, preserves details only for small σ .
- ☐ Median: preserves some details, good at removing strong noise

original

3x3 mean

3x3 gaussian

3x3 median

- Edges ⇒ smooth only along edges
- "Smooth" regions ⇒ smooth isotropically

Bilateral Filters - 1D example

It is clear that in weighting this neighborhood, we would like to preserve the step

Gaussian Weights

1 Gaussian Weights

Edge loss

☐ Edge is smoothed/lost

Photometric Weights

☐ Introducing Photometric weights

☐ Filter Weights derived from both geometric and photometric distances

☐ Filter Weights derived from both geometric and photometric distances

$$BF\left[I\right]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} G_{\sigma_{s}} (\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{r}} (|I_{\mathbf{p}} - I_{\mathbf{q}}|) I_{\mathbf{q}}$$
 space range normalization

☐ Illustration of bilateral filter changes

Source: Sylvain Paris, "A Gentle Introduction to Bilateral Filtering and Its Applications", SIGGRAPH 2007

Source: Sylvain Paris, "A Gentle Introduction to Bilateral Filtering and Its Applications", SIGGRAPH 2007

Linear Spatial Filter

$$g(i,j) = \frac{\sum_{k,l} f(k,l) w(i,j,k,l)}{\sum_{k,l} w(i,j,k,l)}.$$

$$d(i, j, k, l) = \exp\left(-\frac{(i-k)^2 + (j-l)^2}{2\sigma_d^2}\right),\tag{3.35}$$

and a data-dependent range kernel (Figure 3.19d),

$$r(i, j, k, l) = \exp\left(-\frac{\|f(i, j) - f(k, l)\|^2}{2\sigma_r^2}\right).$$

When multiplied together, these yield the data-dependent bilateral weight function

$$w(i,j,k,l) = \exp\left(-\frac{(i-k)^2 + (j-l)^2}{2\sigma_d^2} - \frac{\|f(i,j) - f(k,l)\|^2}{2\sigma_r^2}\right).$$
(3.37)

Usual Gaussian Filtering

Same Gaussian kernel everywhere.

The kernel shape depends on the image content.

Iterating Bilateral Filter

$$I_{(n+1)} = BF\left[I_{(n)}\right]$$

- Generate more piecewise-flat images
- Often not needed in computational photo.

Source: Sylvain Paris, "A Gentle Introduction to Bilateral Filtering and Its Applications", SIGGRAPH 2007

Fig. 2.4 Iterations: the bilateral filter can be applied iteratively, and the result progressively approximates a piecewise constant signal. This effect can help achieve a limited-palette, cartoon-like rendition of images [72]. Here, $\sigma_s = 8$ and $\sigma_r = 0.1$.

Effect of noise on derivatives

$$I[x, y = j]$$

$$\frac{d}{dx}I[x, y = j]$$

Solution: smooth first

$$\frac{d}{dx}(f*g) = f*\frac{d}{dx}g$$

• This saves us one operation:

Source: S. Seitz

Other Important Filters

- Laplacian of Gaussian
 - Noise Suppression

Robert Collins CSE486

1D Gaussian and Derivatives

$$g(x) = e^{-\frac{x^2}{2\sigma^2}}$$

$$g'(x) = -\frac{1}{2\sigma^2} 2xe^{-\frac{x^2}{2\sigma^2}} = -\frac{x}{\sigma^2}e^{-\frac{x^2}{2\sigma^2}}$$

$$g''(x) = (\frac{x^2}{\sigma^4} - \frac{1}{\sigma^2})e^{-\frac{x^2}{2\sigma^2}}$$

Other Important Filters

- Laplacian of Gaussian
 - Noise Suppression

Robert Collins CSE486

Second Derivative of a Gaussian

$$g''(x) = (\frac{x^2}{\sigma^4} - \frac{1}{\sigma^2})e^{-\frac{x^2}{2\sigma^2}}$$

Image Source: https://homepages.inf.ed.ac.uk/rbf/HIPR2/log.htm

Other Important Filters

- Laplacian of Gaussian
 - Noise Suppression

- Difference of Gaussian
 - Band-pass

Efficient Implementation Approximating LoG with DoG

LoG can be approximate by a Difference of two Gaussians (DoG) at different scales

Linear System

A system T is **linear** if it satisfies the following two properties:

1) Scaling

$$x[n] \longrightarrow T \longrightarrow y[n] \Rightarrow \alpha x[n] \longrightarrow T \longrightarrow \alpha y[n]$$

2) Additivity

$$x_1[n] \rightarrow T \rightarrow y_1[n] \quad x_2[n] \rightarrow T \rightarrow y_2[n]$$

$$\Rightarrow \quad x_1[n] + x_2[n] \rightarrow T \rightarrow y_1[n] + y_2[n]$$

'Linear' Spatial Filtering

Convolution / Linear Filters

- Smoothing (Average, Gaussian)
- Edge Filters (Prewitt, Sobel, Laplacian)

$$I'(u,v) \leftarrow \sum_{j=-1}^{1} \sum_{i=-1}^{1} I(u+i,v+j) \bullet H(i,j)$$

\ j									
i	-1	0	1						
-1	а	b	С						
0	d	е	f						
1	g	h	i						

120	190	140	150	200
17	21	30	8	27
89	123	150	73	56
10	178	140	150	18
190	14	76	69	87

	98		

Convolution vs Cross-Correlation

 Cross-correlation: operation of sliding the kernel/filter across the image and computing SOP

$$H^{\circ}I(x,y) = \sum_{i=-N}^{N} \sum_{j=-N}^{N} H(i,j) \cdot I(x+i,y+j) \begin{bmatrix} 1 & 2 & 3\\ 4 & 5 & 6\\ 7 & 8 & 9 \end{bmatrix}$$

• Convolution involves rotating the kernel/filter by 180° (flip rows and then flip columns), slide the kernel and compute SOP

$$H * I(x,y) = \sum_{i=-N}^{N} \sum_{j=-N}^{N} H(i,j) \cdot I(x-i,y-j) \quad \begin{bmatrix} 9 & 8 & 7 \\ 6 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

References

- ▶ GW Chapter 3.4
- Convolution:
- http://www.songho.ca/dsp/convolution/convolution.html
- http://www.ceri.memphis.edu/people/smalley/ESCI7355/Ch6_Linear_Systems_Conv.pdf
- https://towardsdatascience.com/convolution-vs-correlation-af868b6b4fb5

Image Processing – Two Paradigms

Directly manipulating pixels in spatial domain

Manipulating in transform domain

Spatial vs. Transform Domain Processing

Transform Domain

Image Enhancement in Frequency Domain –

Preliminary Concepts

Periodic Signals

• Periodic → Frequency of occurrence - Repetitions/<Unit> (cycles/sec = Hz) $\cos \theta$ Θ $\sin \theta$ $x(t) = A\cos(\omega t) = A\cos(2\pi f t) = A\cos(\frac{2\pi}{T}t)$

Angular frequency

Fundamental Period

Simple periodic signals

- $x(t) = A\cos(t)$
- $x(t) = A\cos(2t)$
- $x(t) = A\cos(t/2)$

•
$$x(t) = A\cos(\omega t) = A\cos(2\pi f t) = A\cos(\frac{2\pi}{T}t)$$

Angular frequency

Signal and Frequency Domains

Signal and Frequency Domains

Periodic Images

$I(x, y) = 128 \sin(2\pi x/16)$

Sinusoid patternrepeats every 16 pixels f = 1/16 cycles/pixel

Periodic Images

Spatial period = Minimal # of pixels between two identical patterns in a "periodic" image

Spatial frequency representation

Image Courtesy: https://www.cs.unm.edu/~brayer/vision/fourier.html

Spatial frequency representation

Sine wave with 4 cycles

Sine wave with 16 cycles

Image Courtesy: https://legacy.imagemagick.org/Usage/fourier/