

KONKURS MATEMATYCZNY

dla uczniów szkół podstawowych województwa mazowieckiego w roku szkolnym 2016/2017

Model odpowiedzi i schematy punktowania

UWAGA 1.

Łącznie uczeń może zdobyć 20 punktów.

Laureatami konkursu będą uczniowie, którzy w etapie wojewódzkim uzyskają co najmniej 80% punktów możliwych do zdobycia (co najmniej 16 punktów).

Finalistami konkursu będą uczniowie, którzy w etapie wojewódzkim uzyskają co najmniej 60% punktów możliwych do zdobycia (co najmniej 12 punktów).

UWAGA 2.

Za każde poprawne rozwiązanie, inne niż przewidziane w schemacie punktowania rozwiązań zadań, przyznajemy maksymalną liczbę punktów.

ROZWIĄZANIA ZADAŃ ZAMKNIĘTYCH

Nr zadania	1.	2.	3.	4.	5.
Maks. liczba punktów	1 pkt				
Prawidłowa odpowiedź	В	A	D	В	С

Uwaga do Zad. 4. Punkt jest przyznawany także wtedy, gdy uczeń wskaże w zadaniu aspekt techniczny.

ROZWIĄZANIA ZADAŃ OTWARTYCH

Zadanie 6. (3 pkt)

Kolumna ciężarówek długości 80 m jedzie z Gdańska do Kielc z prędkością 72 km/h. Kolumna rowerzystów długości 120 m jedzie w tę samą stronę. Kolumna ciężarówek wyprzedza rowerzystów w ciągu 12 s.

Z jaką prędkością jadą rowerzyści? Wynik zapisz w km/h.

Uczeń		
1.	oblicza długość drogi przebytej przez kolumnę ciężarówek w ciągu 12 s	1p
	$\frac{12}{3600} \cdot 72 = 0.24 \text{ (km)}$	1
2.	oblicza długość drogi przebytej przez rowerzystów	1p
	0.24 - 0.2 = 0.04 (km)	
3.	oblicza z jaką prędkością jadą rowerzyści	1p
	$0.04: \frac{12}{3600} = 12 \text{ (km/h)}$	-r

Zadanie 7 (3 pkt.)

W kratki wpisano cyfry od 1 do 9 (w każdą kratkę inną cyfrę) w taki sposób, że poniższe dodawanie ułamków było prawdziwe Marek starł niektóre cyfry i zastąpił je literami.

Znajdź brakujące cyfry A, B, C, D.

Uczeń		
1.	znajduje mianownik pierwszego ułamka, jako trzycyfrową wielokrotność	1p
	liczby 13, której cyfrą jedności jest 7 i która nie zawiera cyfr 5, 8, 1, 3 (247)	
2.	sprowadza wszystkie ułamki do mianownika 247 i zauważa, że ostatnią cyfrą	1p
	iloczynu 19 · 8D musi być 4	
3.	zapisuje znalezione cyfry: $A = 9$, $B = 2$, $C = 4$, $D = 6$	1p
Uwaga	l	
	Rozpatrywana suma to: $\frac{95}{247} + \frac{86}{13} = \frac{95 + 1634}{247} = 7$	

Zadanie 8 (3 pkt.)

Magda bawi się jednakowymi sześciennymi klockami. Długość krawędzi każdego z klocków jest równa 1 cm. Z tych klocków Magda zbudowała piramidkę w taki sposób, że klocki przylegają do siebie całymi ścianami. Na rysunku przedstawiony jest widok tej piramidki oglądany z przodu, z lewej strony i z góry. Oblicz pole powierzchni piramidki.

Uczeń		
1.	zauważa, że piramidka składa się z 12 klocków: przed ścianą zbudowaną	1p
	z 10 klocków znajdują się 2 klocki	
2.	określa pole powierzchni ścian piramidki na podstawie rysunku: 10 (przód) +	1p
	6 (lewa strona) + 5 (góra)	
3.	oblicza pole powierzchni:	1p
	$(10+6+5) \times 2 = 42 \text{ (cm}^2)$	1 1

Zadanie 9 (3 pkt.)

Latawiec w kształcie sześciokąta foremnego pomalowany jest na czarno i biało tak, jak na rysunku. Wiedząc, że pole czarnej części latawca jest równe $10\frac{2}{3}\,\mathrm{dm}^2$, oblicz pole powierzchni latawca.

Uczeń:

 zauważa, że pole sześciokąta foremnego można obliczyć jako sumę pól 6 jednakowych trójkątów równobocznych. Wysokość białego trójkąta jest 2 razy większa od wysokości takiego trójkąta, a podstawa do której poprowadzona jest ta wysokość, jest równa podstawie trójkąta równobocznego. Zatem pole białego trójkąta stanowi trzecią część pola powierzchni latawca.

uzasadnia, że pole czarnej części to ²/₃ pola powierzchni latawca

3. oblicza pole powierzchni latawca: $10\frac{2}{3} \cdot \frac{3}{2} = 16 \text{ (dm}^2\text{)}$

Uwaga

Jeśli uczeń zinterpretuje szukane pole jako sumę pól powierzchni obu stron latawca i poprawnie wyznaczy pole powierzchni latawca, otrzymuje 3 pkt.

1p

1p

Jeżeli uczeń poprawnie wyznaczy pole latawca, bez uzasadnienia, że pole białej części latawca stanowi $\frac{1}{3}$ pola latawca, otrzymuje 2 pkt. Uzasadnienie może być rachunkowe lub graficzne na rysunku.

Zadanie 10 (3 pkt.)

Na stole leżały monety pięciogroszowe, dziesięciogroszowe i dwudziestogroszowe. Razem 6 zł. Monet dziesięciogroszowych było o tyle więcej od pięciogroszowych, o ile więcej było monet dwudziestogroszowych od dziesięciogroszowych. Monet pięciogroszowych było dziesięć. Oblicz, jaką częścią wszystkich monet były monety dziesięciogroszowe.

Uczeń:	
 dokonuje analizy zadania i zapisuje zależność między liczbą monet 	
poszczególnych rodzajów	1p
10 - liczba monet pięciogroszowych	
x - liczba monet dziesięciogroszowych	
2x - 10 - liczba monet dwudziestogroszowych	
2. zapisuje i rozwiązuje odpowiednie równanie	1p
$10 \cdot 5 + x \cdot 10 + (2x - 10) \cdot 20 = 600$	
3. wyznacza liczbą monet dziesięciogroszowych, określa jaką częścią wszystkich	
monet były monety dziesięciogroszowe: $\frac{15}{10+15+20} = \frac{1}{3}$	1p
Uwaga	
Jeśli uczeń poda liczbę poszczególnych monet lub różnicę między ich liczbą bez	
uzasadnienia i poprawnie określi szukany ułamek, otrzymuje 2 pkt.	