TODO: ADD TITLE PAGE

Jelölések

	Ez egy egyszerű szövegdoboz.
	Ez egy megjegyzés.
!	Ez egy állítás.
ı	Ez egy példa.
	Kitekintő
	Ez egy kitekintés.
	Definíció 0.1
	Ez egy definíció.
	Tétel 0.1
	Ez egy tétel.
ı	Felkészülést segítő kérdések
	Ezek segítenek a tanulásban.

Logikai szimbólumok			
Jel	Megnevezés	Példa	
۸	és	<i>p</i> ∧ <i>q</i>	
V	vagy	$p \lor q$	
A	minden / bármely	$\forall x \in X$	
3	létezik	$\exists x \in X$	
∃!	biztosan létezik	$\exists ! x \in X$	
∄	nem létezik	$ \nexists x \in X $	
!	legyen	$!x \in X$	

Egyenlőség, relációk			
Jel	Megnevezés	Példa	
=	egyenlő	2 + 2 = 4	
≠	nem egyenlő	2 ≠ 3	
≡	ekvivalens	$2 \equiv 2$	
<	kisebb	2 < 3	
<u>≤</u>	kisebb vagy egyenlő	2 ≤ 3	
>	nagyobb	3 > 2	
≥	nagyobb vagy egyenlő	$3 \ge 2$	

Műveletek		
Jel	Megnevezés	Példa
a + b	összeg	2 + 3 = 5
a-b	különbség	5 - 3 = 2
$a \cdot b$	szorzat	$2 \cdot 3 = 6$
a/b	hányados	6/3 = 2
a^b	hatvány	$2^3 = 8$
\sqrt{a}	négyzetgyök	$\sqrt{4} = 2$
$\sqrt[n]{a}$	n-edik gyök	$\sqrt[3]{8} = 2$
a!	faktoriális	$3! = 3 \cdot 2 \cdot 1 = 6$

	Halmazok és halmazműveletek		
Jel	Megnevezés	Példa	
Ø,{}	üreshalmaz	$ \emptyset = 0$	
N	természetes számok halmaza	$1 \in \mathbb{N}$	
\mathbb{Z}	egész számok halmaza	$-1 \in \mathbb{Z}$	
Q	racionális számok halmaza	$\pi \notin \mathbb{Q}$	
Q*	irracionális számok halmaza	$\pi \in \mathbb{Q}$	
R	valós számok halmaza	$\sqrt{2} \in \mathbb{R}$	
C	komplex számok halmaza	$i\in\mathbb{C}$	
A,B,C	halmazok	$A = \{1; 2; 3\}$	
a, b, c	halmazok elemei	$x \in A$	
$x \in A$	eleme	$i\in\mathbb{C}$	
$x \notin A$	nem eleme	$\pi otin \mathbb{Q}$	
A = B	ekvivalencia	{} = Ø	
$A \subseteq B$	részhalmaza	$\{1\} \subseteq \{1;2\}$	
$A \subset B$	valódi részhalmaza	$A \subset B \Leftrightarrow A \subseteq B \land A \neq B$	
\overline{A}	komplementer halmaz	$\{x \in X \mid x \notin A\}$	
$A \cup B$	unió	$\{x \in X \mid x \in A \lor x \in B\}$	
$A \cap B$	metszet	$\{x \in X \mid x \in A \land x \in B\}$	
$A \setminus B$	kivonás	$\{x \in X \mid x \in A \land x \notin B\}$	

		Intervallumok
Jel	Megnevezés	Példa
[a; b]	zárt intervallum	[0;1]
(a; b)	nyílt intervallum	(0;1)
[a; b)	balról zárt, jobbról nyitott intervallum	[0;1)
(a; b]	balról nyitott, jobbról zárt intervallum	(0;1]

Konstansok		
Jel	Megnevezés	Példa
π	pi	$\pi \approx 3.14159$
e	Euler-féle szám	e ≈ 2.71828
i	imaginárius egység	$i^2 = -1$

Komplex számok				
Jel	Megnevezés	Példa		
C	komplex számok halmaza	$z\in\mathbb{C}$		
i	imaginárius egység	$i^2 = -1$		
z	komplex szám	z = 3 + 4i		
$Re\{x\}$	valós rész	$Re\{z\} = 3$		
Im{ <i>x</i> }	képzetes rész	$Im\{z\} = 4$		
z = a + bi	algebrai alak	$Re\{z\} = a, Im\{z\} = b$		
$\overline{z} = a - bi$	konjugált	$\overline{3+4i} = 3-4i$		
z	abszolút érték / hossz	$ z = \sqrt{a^2 + b^2}$		
$arg\{z\}$	argumentum	$arg\{z\} = arctan(b/a)$		
$z = r(\cos \varphi + i \sin \varphi)$	trigonometrikus alak	$ z = r, \arg\{z\} = \varphi$		
$z = re^{i\varphi}$	exponenciális alak	$z = re^{i\varphi} = r \exp(i\varphi)$		

Sorozatok, sorok			
Jel	Megnevezés	Példa	
(a_n)	numerikus sorozat	$a_n = \frac{1}{n}$	
$ \lim_{n \to \infty} a_n = a $	sorozat határértéke	$\lim_{n\to\infty}\frac{1}{n}=0$	
$\sum a_n$	numerikus sor	$\sum_{n=0}^{\infty} \frac{1}{n}$	
$L = \sum_{n=0}^{\infty} a_n$	sor összege	$L = \sum_{n=0}^{\infty} \frac{1}{n} = \infty$	
$\sum_{n=0}^{\infty} a \cdot r^n$	geometriai sor $(r < 1 \text{ esetén})$	$\sum_{n=0}^{\infty} \frac{1}{2^n} = \frac{1}{1-r} = \frac{1}{1-\frac{1}{2}} = 2$	

		Függvények
Jel	Megnevezés	Példa
$f:\mathcal{D}\to\mathcal{R},x\mapsto y$	f függvény	$f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$
\mathcal{D}_f	értelmezési tartomány	$\mathcal{D}_f = \mathbb{R}$
\mathcal{R}_f	értékkészlet	$\mathcal{R}_f = [0; +\infty)$
$\mathcal{D} \to \mathcal{R}$	értékkészlet hozzárendelése az értelmezési tartományhoz	$f:\mathbb{R} o\mathbb{R}$
$x \mapsto y$	függvényértékek hozzárendelése az ősképekhez	$f: x \mapsto x^2$
f^{-1}	inverz függvény	ha $f(3) = 5$, akkor $f^{-1}(5) = 3$
$f \circ g$	összetett függvény	$f(x) = e^x, g(x) = x^2 :$ $(f \circ g)(x) = e^{x^2}$
$ \lim_{x \to a} f(x) = A $	függvény határértéke	$\lim_{x \to 0} \frac{\sin x}{x} = 1$
$\lim_{x \to a^+} f(x) = A$	jobboldali	$\lim_{x \to 0^+} \frac{1}{x} = +\infty$
$\lim_{x \to a^{-}} f(x) = A$	baloldali	$\lim_{x \to 0^-} \frac{1}{x} = -\infty$

		Nevezetes függvények
Jel	Megnevezés	Példa
e^x , exp x	exponenciális függvény	$e^{0} = 1$
ln x	természetes alapú logaritmus	ln 1 = 0
a^x	hatványfüggvény	$2^3 = 8$
$\log_a x$	a alapú logaritmus	$\log_2 8 = 3$
sin, cos, tan, cot	szögfüggvények	$\sin\frac{\pi}{2} = 1$
arcsin, arccos, arctan, arccot	inverz szögfüggvények	$\arcsin 1 = \frac{\pi}{2}$
sinh, cosh, tanh, coth	hiperbolikus függvények	sinh 0 = 0
arcsinh, arccosh, arctanh, arccoth	inverz hiperbolikus függvények	arcsinh 0 = 0

Kalkulus		
Jel	Megnevezés	Példa
$f'(x), f''(x), f^{(n)}(x)$	első, második és <i>n</i> -edik derivált (Lagrange jelölés)	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$
$\frac{\mathrm{d}f}{\mathrm{d}x}, \frac{\mathrm{d}^2f}{\mathrm{d}x^2}, \frac{\mathrm{d}^nf}{\mathrm{d}x^n}$	első, második és <i>n</i> -edik derivált (Leibniz jelölés)	$f'(x) = \frac{\mathrm{d}f}{\mathrm{d}x}$
$\dot{f}, \ddot{f}, \dot{f}$	első, második és <i>n</i> -edik derivált (Newton jelölés)	$\dot{f} = \frac{\mathrm{d}f}{\mathrm{d}t}$
$\int_{a}^{b} f(x) \mathrm{d}x$	Riemann-integrál	$\int_0^1 x^2 \mathrm{d}x = \frac{1}{3}$
$\int f(x) \mathrm{d}x$	határozatlan integrál	$\int f(x) \mathrm{d}x = F(x) + C$
F(x)	f(x) primitív függvénye	F'(x) = f(x)
$f(x) \in \mathcal{R}[a;b]$	f Riemann-integrálható az $[a;b]$ intervallumon	$x^2 \in \mathcal{R}(-\infty; +\infty)$

1.1. Alapfogalmak, alapműveletek

Alapfogalmak:

- axióma / posztulátum,
- definíció.
- · nem definiált alapfogalom,
- állítás / tétel / lemma / segédtétel.

A **halmaz** egy nem definiált alapfogalom:

- A halmazokat nagybetűvel jelöljük: A, B, ...
- Az elemeket kisbetűvel: *a*, *b*, ...
- Halmaz **eleme** jelölés: \in , pl.: $x \in Y$, x eleme az Y halmaznak.
- Halmaznak **nem eleme**: $\not\in$, pl.: $x \not\in Y$, x nem eleme az Y halmaznak.

Egy halmaz akkor **jól megadott**, ha bármely elemről eldönthető, hogy hozzá tartozik-e a halmazhoz, vagy nem.

Definíció 1.1: Üreshalmaz

Azt a halmazt, amelynek egyetlen eleme sincs, **üreshalmaz**nak nevezzük, jele: Ø.

A **Nemüres halmaz**: olyan halmaz, melynek legalább egy eleme van.

A halmazok megadási módjai:

- utasítással: $A := \{A 180 \text{ cm-n\'el magasabb emberek}\},$
- **felsorolással**: $B := \{1, 2, 3, 4, 5\}.$

Nevezetes halmazok:

- N természetes számok halmaza,
- Z egész számok halmaza,
- Q racionális számok halmaza,
- Q* irracionális számok halmaza,
- ℝ valós számok halmaza,
- C komplex számok halmaza.

Definíció 1.2: Részhalmaz

Legyenek A és B halmazok. Ha A minden eleme eleme B-nek is, akkor azt mondjuk, hogy az A a B részhalmaza, jele: \subseteq , vagy \subseteq (valódi részhalmaza).

A = B, ha $A \subset B$ és $B \subset A$ is teljesül (kölcsönös tartalmazás).

Legyenek A, B, C tetszőleges halmazok, ekkor teljesülnek az alábbiak:

- 1. $A \subset A$, azaz minden halmaz része önmagának (**reflexív**),
- 2. $A \subset B$ és $B \subset A$, akkor A = B (antiszimmetrikus),
- 3. $A \subset B \text{ \'es } B \subset C$, akkor $A \subset C$ (**tranzitív**).

Definíció 1.3: Unió, metszet, különbség

Legyenek A és B az X alaphalmaz részhalmazai, ekkor:

$$A \cup B := \left\{ x \in X \mid x \in A \lor x \in B \right\} \quad - \quad \textbf{unió}, \text{ egyesítés},$$

$$A \cap B := \left\{ x \in X \mid x \in A \land x \in B \right\} \quad - \quad \textbf{metszet},$$

$$A \setminus B := \left\{ x \in X \mid x \in A \land x \notin B \right\} \quad - \quad \textbf{különbség},$$

Halmazműveletek és logikai műveletek közötti kapcsolat

Definíció 1.4: Diszjunkt halmaz

Két halmaz diszjunkt, ha metszetük az üreshalmaz.

Definíció 1.5: Komplementer halmaz

Ha $A \subset B$, akkor az A halmaznak a B-re vonatkozó komplementere: $B \setminus A$, jele: \overline{A} .

Halmaz komplenterének komplementere önmaga, vagyis

$$\overline{\overline{A}} = A$$
.

Tétel 1.1: Halmazműveletek tulajdonságai

Legyenek $A, B, C \in X$

$$A \cup B = B \cup A \qquad \text{kommunutativ} \qquad A \cap B = B \cap A$$

$$A \cup (B \cup C) = (A \cup B) \cup C \qquad \text{asszociativ} \qquad A \cap (B \cap C) = (A \cap B) \cap C$$

$$A \cup A = A \qquad \text{idempotens} \qquad A \cap A = A$$

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C) \qquad \text{disztributiv} \qquad (A \cap B) \cup C = (A \cup C) \cap (B \cup C)$$

$$A \cup \emptyset = A \qquad \qquad A \cap \emptyset = \emptyset$$

$$A \cup \overline{A} = X \qquad \qquad A \cap \overline{A} = \emptyset$$

$$\overline{A \cup B} = \overline{A} \cap \overline{B} \qquad \text{De Morgan} \qquad \overline{A \cap B} = \overline{A} \cup \overline{B}$$

Bizonyítás (De Morgan azonosságok):

$$x \in \overline{A \cup B}$$

$$\downarrow$$

$$x \notin A \cup B$$

$$x \notin A \land x \notin B$$

$$x \in \overline{A} \land x \in \overline{B}$$

$$x \in \overline{A} \land x \in \overline{B}$$

$$x \in \overline{A} \cap \overline{B}$$

$$x \in \overline{A} \cup \overline{B}$$

$$x \in \overline{A} \cup \overline{B}$$

Definíció 1.6: Hatványhalmaz

Egy A halmaz összes részhalmazainak halmazát az A halmaz hatványhalmazának nevezzük.

Egy A véges halmaz összes részhalmazainak száma: $2^{|A|}$.

Bizonyítás:

A binomiális tétel:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k.$$

Vegyük észre, hogy a binomiális tételben a = b = 1, és n = |A| esetén:

$$2^{n} = (1+1)^{n} = \sum_{k=0}^{n} \binom{n}{k} 1^{n-k} 1^{k} = \sum_{k=0}^{n} \binom{n}{k} = \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n}$$

1.2. Relációk, leképezések, függvények

Definíció 1.7: Descartes-szorzat

Az *A* és *B* halmazok Descartes-szorzatán az *A* és *B* halmaz elemeiből álló **összes rendezett elempár**ok halmazát értjük:

$$A \times B := \left\{ (a; b) \mid (a \in A) \land (b \in B) \right\}.$$

Legyen $A = \{1, 2\}$ és $B = \{a, b\}$, ekkor az $A \times B$ Descartes-szorzat:

$$A \times B = \Big\{ (1; a); (1; b); (2; a); (2; b) \Big\}.$$

Definíció 1.8: Binér reláció

Az $A \times B$ szorzathalmaz $T \subset A \times B$ részhalmazát az A és B közötti binér (kételemű) relációnak hívjuk. Ha $(a;b) \in T$, akkor azt mondjuk, hogy a és b relációban vannak, és ezt aTb-vel jelöljük.

Definíció 1.9: Reláció értelmezési tartománya, értékkészlete és inverze

Legyen $T \subset A \times B$ egy reláció, ekkor

Definíció 1.10: Ekvivalenciareláció

Legyen $A \neq \emptyset$, a $T \subset A \times A$ relációt ekvivalenciarelációnak mondjuk, ha teljesülnek az alábbiak:

- reflexivitás $\forall A \in A$ esetén $(a; a) \in T$,
- szimmetria ha $(a;b) \in T$, akkor $(b;a) \in T$,
- tranzitivitás ha $(a; b) \in T$ és $(b; c) \in T$, akkor $(a; c) \in T$.

Tétel 1.2: Ekvivalencia osztályok

Minden $A \times A$ halmazon adott ekvivalenciareláció diszjunkt halmazokra bontja fel az A halmazt, ezeket a diszjunkt halmazokat ekvivalenciaosztályoknak nevezzük.

Két természetes szám relációban van egymással, ha hárommal osztva azonos maradékot adnak.

Definíció 1.11: Függvény

A $T \subset A \times B$ binér relációt leképezésnek/függvénynek mondjuk, ha

$$(a;b) \in T \land (a;c) \in T \Rightarrow b = c.$$

Jelölés: $f:A\to B$, ahol A az értelmezési tartomány (\mathcal{D}_f) és B az értékkészlet (\mathcal{R}_f) .

Definíció 1.12: Bijekció

Az $f:A\to B$ kölcsönösen egyértelmű (egy-egyértelmű, bijektív), ha

- **injektív**, vagyis $f(a_1) = f(a_2) \Rightarrow a_1 = a_2$, valamint
- szürjektív, vagyis $\forall b \in B$ esetén $\exists a \in A : f(a) = b$.

Ha az $f:A\to B$ bijektív, akkor az $f^{-1}:B\to A$ leképezés
tfinverz leképezésének hívjuk.

Az $f: \mathbb{R} \to (0; +\infty), x \mapsto e^x$ függvény bijektív, inverze a természetes alapú logaritmus: $f^{-1}: (0; +\infty) \to \mathbb{R}, x \mapsto \ln x$.

1.3. A számfogalom kiépítése

Peano-axiómák:

Legyen $\mathbb{N} \neq \emptyset$, \mathbb{N} -t a természetes számok halmazának, elemeit természetes számoknak mondjuk, ha teljesülnek az alábbiak:

- 1. legyen adva egy $\varphi: \mathbb{N} \to \mathbb{N}$ leképezés,
- 2. φ injektív : $\varphi(a) = \varphi(b) \Rightarrow a = b$,
- 3. $\exists \mathbb{N}$ -nek egy kitüntetett eleme, ez a 0,
- 4. a 0-nak nincs ősképe, azaz $\nexists n \in \mathbb{N}$: $\varphi(n) = 0$,
- 5. a teljes indukció elve teljesül, azaz ha $H \subseteq \mathbb{N}$ és
 - a) $0 \in H$,
 - b) $n \in H \Rightarrow \varphi(n) \in H$,

akkor $H = \mathbb{N}$.

A természetes számok halmazát ekvivalenciarelációkkal ellátva megkapjuk a középiskolában megismert számhalmazokat:

- \mathbb{Z} : az egész számok halmaza ($\mathbb{N} \times \mathbb{N}$),
- \mathbb{Q} : a racionális számok halmaza ($\mathbb{Z} \times \mathbb{Z}$),
- Q*: az irracionális számok halmaza,
- \mathbb{R} : a valós számok halmaza ($\mathbb{Q} \cup \mathbb{Q}^*$).

A **transzcendens** számok olyan irracionális valós számok, amelyek nem algebraiak, azaz nem valamilyen algebrai egyenlet gyökei. Ilyen szám pélául a π vagy az e.

A valós számok axiómarendszere:

Értelmezzük két bináris műveletet, az összeadást (+) és a szorzást (·), valamint egy relációt (>).

1.
$$a + b = b + a$$

2.
$$(a + b) + c = a + (b + c)$$

3.
$$\exists ! 0 \in \mathbb{R} : a + 0 = a$$

4.
$$\forall a \in \mathbb{R} : \exists -a \in \mathbb{R} : a + (-a) = 0$$

5.
$$a \cdot b = b \cdot a$$

$$\sim$$
 kommutatív,

6.
$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$

7.
$$\exists ! 1 \in \mathbb{R} : a \cdot 1 = a$$

8.
$$\forall a \in \mathbb{R} \setminus \{0\}$$
: $\exists a^{-1} \in \mathbb{R}$: $a \cdot a^{-1} = 1$

$$\sim$$
 · inverz elem,

9.
$$a \cdot (b+c) = a \cdot b + a \cdot c$$

10.
$$\forall a, b \in \mathbb{R} : a < b \lor a = b \lor b < a$$

11.
$$\forall a, b, c \in \mathbb{R} : a < b \land b < c \Rightarrow a < c$$
 ~ < tranzitivitás,

12.
$$\forall a, b, c \in \mathbb{R}$$
 : $a < b \Rightarrow a + c < b + c$ ~ + monotonitás???,

13.
$$\forall a, b, c \in \mathbb{R} : a < b \land 0 < c \Rightarrow a \cdot c < b \cdot c \sim \text{monotonitás???},$$

14.
$$\forall a \in \mathbb{R} : \exists b \in \mathbb{N} : a < b$$

15.
$$a_n \le a_{n+1} \land b_n \ge b_{n+1} : \bigcap_{n=1}^{\infty} [a_n; b_n] \ne \emptyset$$
 ~ Cantor-axióma,

- 2-4: csoport,
- 1-4: Abel-csoport,
- 1 9: test,
- 1-13: rendezett test,
- 1 14: arkhimédészien rendezett test,
- 1 15: teljes rendezett test.

A ℚ és ℚ* sűrű.

1.4. Halmazok számossága

Definíció 1.13: Azonos számosságú halmazok

Ha két halmaz, A és B között kölcsönösen egyértelmű megfeleltetés hozható létre, akkor azt mondjuk, hogy a két halmaz számossága azonos. Jelölése: card A = card B.

A számosság ekvivalenciareláció.

Definíció 1.14: Véges halmaz

Az A halmaz véges, ha $\exists n \in \mathbb{N}$, hogy card $A = \text{card } \{1; 2; ...; n\}$, vagy ha $A = \emptyset$.

Ha nincs olyan n természetes szám, amelyre az $A \neq \emptyset$ halmaz ekvivalens volna az $\{1; 2; ...; n\}$ halmazzal, akkor az A halmazt végtelen számosságúnak mondjuk. Létezik megszámlálhatóan és megszámlálhatatlanul végtelen halmaz.

Tétel 1.3: Racionális számok halmazának számossága

A racionális számok halmaza megszámlálhatóan végtelen.

Bizonyítás (Cantor átlós módszere):

Minden pozitív racionális szám felírható tört alakban, ahol a nevező és a számláló is egész szám, ráadásul ezek egymás relatív prímjei.

Ezeket a törteket rendezzük egy olyan táblázatba, ahol az n sorban az m oszlopban az m/n tört áll. Ezeket a törteket az ábrán jelöl módszerrel sorba állítjuk, sorrendjük szerint pedig egyértelműen megfeleltethetők a természetes számoknak.

Könnyen belátható, hogy ez a módszer az összes racionális számra is kiterjeszthető, tehát a racionális számok halmaza valóban megszámlálhatóan végtelen.

Fontosabb jelölések:

- Nyílt halmaz jelölése: $(x; y) = |x; y| = \langle x; y \rangle$.
- Zárt halmaz jelölése: [x; y].
- Az a pont ε sugarú környezete: $K(a; \varepsilon) := (a \varepsilon; a + \varepsilon)$ (ezzel ekvivalens: $|x a| < \varepsilon$).

Definíció 1.15: Alsó és felső korlát

A felülről korlátos H halmaz legkisebb felső korlátja: supremum, jele: sup H. Az alulról korlátos H halmaz legnagyobb alsó korlátja: infimum, jele: inf H.

Tétel 1.4: Korlátos halmaz szuprémuma

Felülről korlátos nemüres halmaznak mindig van szuprémuma.

Tétel 1.5: Korlátos halmaz infimuma

Alulról korlátos nemüres halmaznak mindig van infimuma.

1.5. Felkészülést segítő kérdések

- 1. Mikor mondjuk, hogy egy halmaz jól definiált?
- 2. Válassza ki az alábbi halmazok közül azokat, amelyek jól definiáltak!
 - a) A magas férfihallgatók,
 - b) azon valós számok, amelyek négyzet nem kisebb háromnál,
 - c) a viharos erejű szelek,
 - d) a poliéderek.
- 3. Definiálja a következő fogalmakat: üreshalmaz, halmaz komplementere, részhalmaz, halmazok metszete, uniója
- 4. Definiálja két halmaz Descartes-szorzatát!
- 5. Hány részhalmaza van egy *n* elemű halmaznak?
- 6. Zárt-e az irracionális számok halmaza az összeadásra nézve?
- 7. Alulról korlátos-e a természetes számok halmaza? És felülről?
- 8. Adjon példát véges halmazokra!
- 9. Adjon példát megszámlálhatóan végtelen számosságú halmazokra!