Øving 2 - Laplacetransform II

Obligatoriske oppgaver

- 1 Bevis konvolusjonsteoremet for laplacetransform.
- 2 Lag et script som plotter Heavisidefunksjonen på intervallet $[-\pi, \pi]$.

3 a)
$$y'' + 4y' + 5y = \delta(t-1)$$
 $y(0) = 0$, $y'(0) = 3$

b)
$$y'' + 5y' + 6y = \delta\left(t - \frac{\pi}{2}\right) + u(t - \pi)\cos t$$
 $y(0) = 0$, $y'(0) = 0$

c)
$$ty'' - ty' + y = 1$$
, $y(0) = 1$, $y'(0) = 2$

d)
$$y(t) - \int_0^t y(\tau)(t-\tau) d\tau = 2 - \frac{1}{2}t^2$$

Anbefalte oppgaver

- $\boxed{1}$ Utled formlene for *s*-skift og *t*-skift.
- 2 Finn de inverse laplacetransformene

a)
$$\frac{1}{s^2(s^2+1)}$$

b)
$$\frac{s}{s^2 + 2s + 1}$$

c)
$$\frac{2s}{(s^2+1)^2}$$

d)
$$(s-3)^{-5}$$

3 Finn laplacetransformene

a)
$$f(t) = (u(t) - u(t - \pi)) \cos t$$

b)
$$f(t) = u(t - a)t^2$$
, $a > 0$

c)
$$f(t) = u(t) + 2\sum_{i=1}^{\infty} (-1)^{i} u(t - ia), a > 0$$

4 Løs likningene

a)
$$y'' + y = u(t - \pi)$$
 $y(0) = 0$, $y'(0) = 0$

b)
$$y - y * t = t$$
.

| 5 | Strømmen i(t) i kretsen under er gitt ved likningen

$$Li'(t) + Ri(t) + \frac{1}{C} \int_0^t i(\tau)d\tau = v(t). \tag{1}$$

Anta i(0) = i'(0) = 0, $R = 4 \Omega$, L = 1 H, C = 0.05 F og

$$v(t) = \begin{cases} 34e^{-t} \text{ V} & \text{if } 0 < t < 4, \\ 0 \text{ V} & \text{ellers.} \end{cases}$$

Flnn strømmen i.

Nøtt a) Detail the calculation showing that $\mathcal{L}(t^n)(s) = \frac{\Gamma(n+1)}{s^{n+1}}$, where $\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$, (x > 0), is the classical Gamma-function.

- b) Show that $\Gamma(x+1)=x\Gamma(x)$ and calculate $\Gamma(\frac{2k+1}{2})$, for k being a non-negative integer.
- c) Show that $\Gamma(1/2) = 2 \int_0^\infty e^{-p^2} dp$.
- d) Prove that $2\int_0^\infty e^{-p^2}dp=\sqrt{\pi}.$
- e) Combine part b), c) and d) to calculate the Laplace transform $\mathcal{L}(\frac{2}{\sqrt{\pi}}\int_0^{\sqrt{t}}e^{-p^2}dp)$.

Hint (at least three ways):

- 1. Expanding the exponential e^{-p^2} by using $e^x = 1 + x + \frac{x^2}{2} + \dots + \frac{x^n}{n!} + \dots$;
- 2. Use definition of Laplace transform and two variables calculus;
- 3. Compute derivative of $\int_0^{\sqrt{t}} e^{-p^2} dp$ then use $\mathcal{L}(f')(s) = sF(s) f(0)$.