UNIVERSIDADE FEDERAL DE SÃO CARLOS

Centro de Ciências Exatas e de Tecnologia Departamento de Computação

Laboratório de Controle e Servomecanismo

Prática 1 - Simulink

Professor: Prof. Roberto Santos Inoue

Integrantes do Grupo

Alexandre Strabello, 770076, Engenharia Física Felipe Moreira Sallazar, 770097, Engenharia Física Pedro Miguel Pereira, 770157, Engenharia Física

1 Descrição do Experimento

O objetivo do presente experimento consiste no treinamento e revisão sobre o funcionamento dos softwares MATLAB $^{\circledR}$ e Simulink $^{\circledR}$. Para tanto, dividiu-se a prática em duas sessões, a primeira utilizando operações de integração ou derivação para transformar uma função do tipo f(t) = A sen(wt) para outra dada por g(t) = A cos(wt), onde A e w representam a amplitude da onda e a frequência angular da mesma, respectivamente. Já a segunda sessão consistiu na construção de um modelo para um sistema massa mola sem amortecimento ou força externa.

1.1 Conversão da Função Seno em Cosseno

Partindo de uma função descrita por f(t) = A sen(w t), pode-se realizar a obtenção da função cosseno de acordo com o procedimento a seguir:

$$\int_0^t A \operatorname{sen}(w \, t) \, dt = \frac{-A \cos(w \, t)}{w} \Big|_0^t = \frac{A - A \cos(w \, t)}{w}$$
$$\Rightarrow A \cos(w \, t) = -w \left(\int_0^t A \operatorname{sen}(w \, t) \, dt - \frac{A}{w} \right),$$

onde a constante somada à integral é a condição inicial do sistema, isto é, $F(t=0)=-\frac{A}{w}$.

Outra possibilidade seria aplicar a operação de derivada em relação ao tempo na mesma função original, tal como apresentado abaixo:

$$\frac{\mathrm{d}}{\mathrm{d}t}(A\operatorname{sen}(w\,t)) = A\operatorname{w}\operatorname{cos}(w\,t)$$
$$\Rightarrow A\operatorname{cos}(w\,t) = \frac{1}{w}\,\frac{\mathrm{d}}{\mathrm{d}t}(A\operatorname{sen}(w\,t))$$

1.2 Sistema Massa Mola

Um sistema massa mola consiste em uma partícula de massa m presa em uma de suas extremidades por uma mola com constante elástica K, tal como apresentado na Figura 1.

Figura 1: Representação de um sistema massa mola.

Fonte: Autoria Própria.

Seja x o deslocamento da extremidade da mola presa à massa em relação à sua posição

de origem. De acordo com a 2ª Lei de Newton. Tratando-se de um caso unidimensional, o módulo da força resultante sobre a partícula é dada por:

$$F_{res} = m a = -K x, \tag{1}$$

em que a representa a aceleração da partícula de massa m. Desenvolvendo (1), obtém-se:

$$m\,a=m\,\frac{\mathrm{d}^2x}{\mathrm{d}t^2}=-K\,x$$

$$\frac{\mathrm{d}^2x}{\mathrm{d}t^2}+\frac{K}{m}\,x=0\ ,\,\mathrm{seja}\,w^2=\frac{K}{m},\,\mathrm{tal}\;\mathrm{que}$$

$$\frac{\mathrm{d}^2x}{\mathrm{d}t^2}+w^2\,x=0$$

Essa equação tem solução dada por

$$x(t) = A\cos(wt + \phi)^{[1]},\tag{2}$$

em que A representa a amplitude de oscilação e ϕ corresponde à fase da onda. Esses parâmetros tem seus valores definidos de acordo com o problema inicial apresentado. Assim, o sistema descreve um deslocamento em relação ao tempo segundo uma função senoidal, com limites dados por $x=\pm A$.

Como essa situação não apresenta nenhum fator de amortecimento, a energia do sistema é conservada, de modo que durante a oscilação ocorre apenas a transformação de energia cinética em potencial, ou vice-versa. Assim, quando o deslocamento da partícula é máximo, a energia do sistema corresponde apenas à energia potencial, dada por $U(x)=\frac{K\,x^2}{2}$. Por outro lado, quando na posição de origem (x=0), a única parcela existente é de energia cinética, dada por $T(v)=\frac{m\,v^2}{2}$, onde v representa a velocidade da partícula.

2 Execução do Experimento

Como descrito na secção 1, o objetivo da primeira parte do experimento consiste em implementar as duas equações apresentadas a seguir:

$$A\cos(wt) = \frac{1}{w}\frac{\mathrm{d}}{\mathrm{d}t}(A\operatorname{sen}(wt)) \tag{3}$$

$$A\cos(wt) = -w\left(\int_0^t A\sin(wt)dt - \frac{A}{w}\right) \tag{4}$$

Para implementação no Simulink[®], as operações de multiplicação e divisão foram implementadas por blocos de ganhos, enquanto procedimentos para integrar ou derivar a

função receberam seu bloco próprio. O sistema completo é apresentado na Figura 4.

Figura 2: Diagrama para construção da função cosseno utilizando ferramentas de derivação e integração

Seguindo a mesma lógica das equações, configurou um bloco fonte para gerar um sinal senoidal de frequência e amplitudes definidas pelos blocos Edit "w [rad/s"e "A", respectivamente. Em seguida o sinal foi separado em três caminhos distintos. O primeiro passa pelo bloco integrador com a condição inicial definida como $F(t=0)=-\frac{A}{w}$, seguido do bloco de ganho de valor igual a -w. O segundo passa por um bloco de derivação seguido do bloco de ganho de $\frac{1}{w}$. O terceiro, assim como o primeiro e o segundo, todos foram conectados ao bloco MUX para assim serem gerados e observados no osciloscópio.

Os resultados obtidos foram exportados para o ambiente do MATLAB® pelo bloco *out.simout* com intuito de serem plotados. O código implementado para geração dos gráficos é apresentado a seguir:

```
%Vari veis extraidas do simulink
t = out.tout(2:end);
cos_int = out.simout(2:end,1);
cos_ddt = out.simout(2:end,2);
sin = out.simout(2:end,3);

plot(t,sin,'r',t,cos_int,'b',t,cos_ddt,'g--','LineWidth',2)
legend(' Seno',' Cosseno-Integral',' Cosseno-Derivada','FontSize',15)
xlabel('Tempo [s]','FontSize',20)
ylabel('Amplitude','FontSize',20)
ax = gca;
ax.FontSize = 15;
grid on
```

Para a segunda sessão do experimento, buscou-se implementar um modelo para solucionar a equação diferencial do sistema massa mola dada a seguir:

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + w^2 x = 0 \tag{5}$$

Para construção desse modulo no Simulink foram utilizados dois blocos integradores

com realimentação, onde a entrada no primeiro bloco sofria ação de um bloco de ganho para realizar a multiplicação por w^2 presente em (5). Também foram implementados blocos para realizar o cálculo das energias cinética e potencial, necessários para construção dos gráficos para verificação do funcionamento do sistema. O diagrama desenvolvido é apresentado na Figura 3.

Figura 3: Diagrama para implementação de um sistema massa mola.

Os dados foram exportados para o ambiente do MATLAB® em virtude da necessidade de analisar as energias cinética e potencial em função do deslocamento. Como condição inicial tomou-se a posição inicial do sistema em $x=0.2\ m$. O código desenvolvido é apresentado abaixo:

```
%Vari veis extraidas do simulink
t = out.tout;
u = out.simout(:,1);
x = out.simout(:,2);
v = out.simout(:,3);
k = out.simout(:,4);
                  o do deslocamento
%Energia em fun
subplot(2,2,1)
plot(x,k,'r',x,u,'b','LineWidth',2)
legend(' Cin tica',' Potencial','FontSize',15)
xlabel('Deslocamento [m]','FontSize',20)
ylabel('Energia [J]','FontSize',20)
ax = gca;
ax.FontSize = 15;
grid on
%Energia em fun
                  o da velocidade
subplot (2, 2, 3)
plot(v,k,'r',v,u,'b','LineWidth',2)
legend(' Cin tica',' Potencial','FontSize',15)
xlabel(' Velocidade [m/s]','FontSize',20)
```

```
ylabel('Energia [J]','FontSize',20)
ax = gca;
ax.FontSize = 15;
grid on

%Velocidade em fun o do deslocamento
subplot(1,2,2)
plot(x,v,'r','LineWidth',2)
xlabel('Deslocamento [m]','FontSize',20)
ylabel('Velocidade [m/s]','FontSize',20)
ax = gca;
ax.FontSize = 15;
grid on
```

3 Avaliação e análise crítica dos resultados do experimento

Inicialmente avaliou-se os resultados obtidos para a primeira seção do experimento, referente à geração de uma onda cossenoidal utilizando uma fonte senoidal. A Figura 4 apresenta a evolução temporal dos sinais gerados pelo diagrama no Simulink[®].

Figura 4: Construção de uma curva do tipo cosseno a partir de uma fonte senoidal.

A curva em vermelho representa o sinal original gerado pela fonte senoidal, enquanto as demais se referem às ondas cossenoidais produzidas utilizando ferramentas de integração e derivação do sinal original. Observa-se que ambos os resultados gerados tratam-se de curvas do tipo cosseno, já que ocorre uma defasagem de 90° em relação a curva senoidal. Tal fato pode ser averiguado visualmente ao notar que, quando a amplitude do sinal senoidal é máxima, isto é, igual a 10, os sinais gerados tem amplitude igual a 0 e vice e versa.

De acordo com a simulação realizada para o sistema massa mola, foi verificada as energias cinética e potencial em relação à posição da partícula. Os resultados obtidos estão apresentados na Figura 5.

Figura 5: Energia do sistema massa mola em função do deslocamento da partícula.

Na Figura 5a observa-se o aumento de energia potencial de acordo com a distância em relação a posição de equilíbrio da mola. Nessa condição, a velocidade se torna nula, de modo que a energia cinética assume valores mais elevados em distâncias inferiores. Já na Figura 5b observa-se um padrão similar, porém os comportamentos estão trocados quando comparados ao caso da Figura 5a, já que a variável utilizada como parâmetro foi a velocidade da partícula, tal que, quando a mesma se encontra nula, a energia presente é somente do tipo potencial.

Esse comportamento bate com o padrão esperado para um sistema massa mola com oscilação natural e sem nenhum fator de amortecimento, onde a energia mecânica se conserva, sofrendo conversão entre energia potencial e cinética de acordo com o deslocamento da partícula.

Considerando que a energia cinética sofreu variação de acordo com o deslocamento da partícula, buscou-se também avaliar a velocidade da mesma ao longo da oscilação do sistema. Os resultados obtidos estão ilustrados na Figura 6.

Figura 6: Velocidade da partícula em função do seu deslocamento.

Na Figura 6, a velocidade em função do deslocamento apresenta o formato de uma

elipse, com o valor do módulo máximo no centro e mínimo nos extremos. Além de apresentar dois valores de mesmo módulo e sinais opostos em cada ponto. Tal comportamento era esperado para um oscilador harmônico simples, no qual a velocidade é máxima no ponto de equilíbrio e sofre desaceleração conforme se afasta deste. Os sinais opostos representam o movimento de ida e volta da partícula em dois momentos diferentes em uma mesma posição.

Referências

[1] Herch Moysés Nussenzveig. *Curso de Física básica: Fluidos, Oscilações e Ondas, Calor (vol. 2).* Editora Blucher, 2002.