Online Appendices

Appendices A

We drop female individuals whose age is a multiple of five and re-estimate the model.

Appendices B

We conduct the donut regression discontinuity design: dropping female individuals whose age are 48 or 49 and re-estimate the model.

Appendices C

Including age heaping ratio in different age groups as a control variable and using the data sets used Appendees B, we re-estimate the model.

Appendices D

Using 4th order polynomial function as control function to control the time trend, we re-estimate the model.

Appendices E

Tables and Graphs related with the analysis using the 1988 census data.

Appendices A

In Tables A1–A10, we conduct robustness checks to examine the effect of heaping in age. In each table, we drop observations whose age is a multiple of 5, such as 35, 40, 45, and so on and re-estimate the model.

Table A1. Dropping Women Whose Age is Multiples of Five from the Sample
The Effect of Years of Schooling and Literacy on Number of Births (2SLS)
Second Stage Estimates in 2SLS

		Dependent Variable							
	(1)	(2)	(3)	(4)	(5)	(6)			
Panel A.		Number of Births							
Years of Schooling	-0.0810**	-0.0726**	-0.0669**	-0.0668**	-0.0261	0.0274			
	(0.0377)	(0.0368)	(0.0329)	(0.0294)	(0.0346)	(0.0455)			
Kleibergen-Paap Rank	54.46	87.79	143.9	184.2	41.28	31.18			
N	159,368	159,368	159,368	159,368	91,516	133,859			
Window size	[15,15]	[15,15]	[15,15]	[15,15]	[9,9]	[13,13]			
Sub-sample mean			6.0	196					
Panel B.			Number	of Births					
Literate Dummy	-0.680**	-0.617**	-0.581**	-0.587**	-0.247	0.876			
	(0.318)	(0.314)	(0.288)	(0.261)	(0.258)	(0.697)			
Kleibergen-Paap Rank	54.73	91.09	137	171.1	30.49	22.51			
N	159,368	159,368	159,368	159,368	109,530	147,069			
Window size	[15,15]	[15,15]	[15,15]	[15,15]	[10,10]	[14,14]			
Sub-sample mean			6.0	196					
Specifications									
Order of Polynomials	2	2	3	3	1	1			
Triangular Weight	No	Yes	No	Yes	No	Yes			

Table A2. Dropping Women Whose Age is Multiples of Five from the Sample
The Effect of Years of Schooling on Probability of Having
at Least One Birth and a Few Births: Second Stage Estimates of 2SLS

	Dependent Variable							
(1)	(2)	(3)	(4)	(5)	(6)			
	Dui	nmy(having	g at least 1 b	irth)				
0.0158***	0.0176***	0.0199***	0.0215***	0.0208***	0.0196***			
(0.00223)	(0.00171)	(0.00150)	(0.00124)	(0.000907)	(0.00115)			
54.46	87.79	143.9	184.2	134.6	127.8			
[15,15]	[15,15]	[15,15]	[15,15]	[4,4]	[5,5]			
		0.9	945					
	Dun	nmy (having	; at least 2 bi	irths)				
0.0184***	0.0209***	0.0233***	0.0253***	0.0235***	0.0230***			
(0.00431)	(0.00360)	(0.00252)	(0.00215)	(0.00281)	(0.00292)			
54.46	87.79	143.9	184.2	136.7	127.8			
[15,15]	[15,15]	[15,15]	[15,15]	[5,5]	[5,5]			
		3.0	398					
				irths)				
0.0147**	0.0181***	0.0216***	0.0235***	0.0221***	0.0206***			
(0.00594)	(0.00508)	(0.00364)	(0.00326)	(0.00420)	(0.00407)			
54.46	87.79	143.9	184.2	136.7	34.68			
[15,15]	[15,15]	[15,15]	[15,15]	[5,5]	[12,12]			
		3.0	333					
-0.0102**	-0.00307	0.0122	0.0113	0.0109	0.00950			
(0.00485)	(0.00354)	(0.00904)	(0.00759)	(0.00877)	(0.00749)			
22.38	24.42	14.63	20.02	11.04	8.942			
[15,15]	[15,15]	[15,15]	[15,15]	[5,5]	[7,7]			
		0.7	756					
2	2	3	3	1	1			
No	Yes	No	Yes	No	Yes			
	0.0158*** (0.00223) 54.46 [15,15] 0.0184*** (0.00431) 54.46 [15,15] 0.0147** (0.00594) 54.46 [15,15] -0.0102** (0.00485) 22.38 [15,15]	(1) (2) Dun 0.0158*** 0.0176*** (0.00223) (0.00171) 54.46 87.79 [15,15] [15,15] Dun 0.0184*** 0.0209*** (0.00431) (0.00360) 54.46 87.79 [15,15] [15,15] Dun 0.0147** 0.0181*** (0.00594) (0.00508) 54.46 87.79 [15,15] [15,15] Dun -0.0102** -0.00307 (0.00485) (0.00354) 22.38 24.42 [15,15] [15,15]	(1) (2) (3) Dummy(having 0.0158*** 0.0176*** 0.0199*** (0.00223) (0.00171) (0.00150) 54.46 87.79 143.9 [15,15] [15,15] [15,15] Dummy (having 0.0184*** 0.0209*** 0.0233*** (0.00431) (0.00360) (0.00252) 54.46 87.79 143.9 [15,15] [15,15] [15,15] 0.0147** 0.0181*** 0.0216*** (0.00594) (0.00508) (0.00364) 54.46 87.79 143.9 [15,15] [15,15] [15,15] 0.0147** 0.0181*** 0.0216*** (0.00594) (0.00508) (0.00364) 54.46 87.79 143.9 [15,15] [15,15] [15,15] -0.01 2.000000 0.0122 (0.00485) (0.00354) (0.00904) 22.38 24.42 14.63 [15,15] [15,15] [15,15] 2 2 3 <td>(1) (2) (3) (4) Dummy(having at least 1 b (0.00223) (0.00171) (0.00150) (0.00124) 54.46 87.79 143.9 184.2 [15,15] [15,15] [15,15] [15,15] Dummy (having at least 2 b) (0.0184*** 0.0209*** 0.0233*** 0.0253*** (0.00431) (0.00360) (0.00252) (0.00215) 54.46 87.79 143.9 184.2 [15,15] [15,15] [15,15] [15,15] 0.0147** 0.0181*** 0.0216*** 0.0235*** (0.00594) (0.00508) (0.00364) (0.00326) 54.46 87.79 143.9 184.2 [15,15] [15,15] [15,15] [15,15] (0.00594) (0.00508) (0.00364) (0.00326) 54.46 87.79 143.9 184.2 [15,15] [15,15] [15,15] [15,15] O.0102** -0.00307 0.0122 0.0113 (0.00485) (0.0036</td> <td>(1) (2) (3) (4) (5) Dummy(having at least 1 bimy) 0.0158*** 0.0176*** 0.0199*** 0.0215*** 0.0208*** (0.00223) (0.00171) (0.00150) (0.00124) (0.000907) 54.46 87.79 143.9 184.2 134.6 [15,15] [15,15] [15,15] [4,4] O.0184*** 0.0209*** 0.0233*** 0.0253*** 0.0235*** (0.00431) (0.00360) (0.00252) (0.00215) (0.00281) 54.46 87.79 143.9 184.2 136.7 [15,15] [15,15] [15,15] [5,5] O.0147** 0.0181*** 0.0216*** 0.0235*** 0.0221*** (0.00594) (0.0058) (0.00364) (0.00326) (0.00420) 54.46 87.79 143.9 184.2 136.7 [15,15] [15,15] [15,15] [5,5] O.012** 0.013** 0.024** <td colspa<="" td=""></td></td>	(1) (2) (3) (4) Dummy(having at least 1 b (0.00223) (0.00171) (0.00150) (0.00124) 54.46 87.79 143.9 184.2 [15,15] [15,15] [15,15] [15,15] Dummy (having at least 2 b) (0.0184*** 0.0209*** 0.0233*** 0.0253*** (0.00431) (0.00360) (0.00252) (0.00215) 54.46 87.79 143.9 184.2 [15,15] [15,15] [15,15] [15,15] 0.0147** 0.0181*** 0.0216*** 0.0235*** (0.00594) (0.00508) (0.00364) (0.00326) 54.46 87.79 143.9 184.2 [15,15] [15,15] [15,15] [15,15] (0.00594) (0.00508) (0.00364) (0.00326) 54.46 87.79 143.9 184.2 [15,15] [15,15] [15,15] [15,15] O.0102** -0.00307 0.0122 0.0113 (0.00485) (0.0036	(1) (2) (3) (4) (5) Dummy(having at least 1 bimy) 0.0158*** 0.0176*** 0.0199*** 0.0215*** 0.0208*** (0.00223) (0.00171) (0.00150) (0.00124) (0.000907) 54.46 87.79 143.9 184.2 134.6 [15,15] [15,15] [15,15] [4,4] O.0184*** 0.0209*** 0.0233*** 0.0253*** 0.0235*** (0.00431) (0.00360) (0.00252) (0.00215) (0.00281) 54.46 87.79 143.9 184.2 136.7 [15,15] [15,15] [15,15] [5,5] O.0147** 0.0181*** 0.0216*** 0.0235*** 0.0221*** (0.00594) (0.0058) (0.00364) (0.00326) (0.00420) 54.46 87.79 143.9 184.2 136.7 [15,15] [15,15] [15,15] [5,5] O.012** 0.013** 0.024** <td colspa<="" td=""></td>			

Table A3. Dropping Women Whose Age is Multiples of Five from the Sample
The Effect of Years of Schooling on Probability of
Having a Large Number of Births: Second Stage Estimates of 2SLS

	Large Mullib	er or birties.	Second Stag	ge Estimates	, 01 Z3L3	
			Depender	nt Variable		
	(1)	(2)	(3)	(4)	(5)	(6)
Panel A.		Dun	nmy (having	g at least 8 bi	irths)	
Years of schooling	-0.0222***	-0.0234***	-0.0250***	-0.0248***	-0.0230***	-0.0141**
	(0.00525)	(0.00562)	(0.00632)	(0.00562)	(0.00529)	(0.00619)
Kleibergen-Paap Rank	54.46	87.79	143.9	184.2	136.7	33.60
Window size	[15,15]	[15,15]	[15,15]	[15,15]	[5,5]	[9,9]
Sub-sample mean			0.3	346		
Panel B.		Dun	nmy (having	g at least 9 bi	irths)	
Years of schooling	-0.0217***	-0.0244***	-0.0278***	-0.0283***	-0.0249***	-0.0205***
	(0.00345)	(0.00299)	(0.00389)	(0.00369)	(0.00306)	(0.00443)
Kleibergen-Paap Rank	54.46	87.79	143.9	184.2	136.7	34.83
Window size	[15,15]	[15,15]	[15,15]	[15,15]	[5,5]	[8,8]
Sub-sample mean			0.	25		
Panel C.		Dum	my (having	at least 10 b	irths)	
Years of schooling	-0.0182***	-0.0207***	-0.0237***	-0.0247***	-0.0220***	-0.0173***
	(0.00257)	(0.00183)	(0.00227)	(0.00216)	(0.00178)	(0.00324)
Kleibergen-Paap Rank	54.46	87.79	143.9	184.2	136.7	34.83
Window size	[15,15]	[15,15]	[15,15]	[15,15]	[5,5]	[8,8]
Sub-sample mean			0.1	173		
Specifications						
Order of Polynomials	2	2	3	3	1	1
Triangular Weight	No	Yes	No	Yes	No	Yes

Table A4. Dropping Women Whose Age is Multiples of Five from the Sample The Effect of Years of Schooling on Number of Child Deaths and Child Mortality Second Stage Estimates of 2SLS

		Dependent Variable							
	(1)	(2)	(3)	(4)	(5)	(6)			
Panel A.		Nur	nber of Dea	ths of Child					
Years of Schooling	-0.183***	-0.194***	-0.203***	-0.208***	-0.166***	-0.137***			
	(0.0207)	(0.0159)	(0.00964)	(0.00766)	(0.0235)	(0.0234)			
Kleibergen-Paap Rank	54.46	87.79	143.9	184.2	41.28	34.68			
Window size	[15,15]	[15,15]	[15,15]	[15,15]	[9,9]	[12,12]			
Sub-sample mean			1.2	254					
Panel B		Dummy ((having at l	east one chi	ild death)				
Years of Schooling	-0.0370***	-0.0395***	-0.0418***	-0.0429***	-0.0288***	-0.0230***			
	(0.00602)	(0.00514)	(0.00356)	(0.00280)	(0.00770)	(0.00719)			
Kleibergen-Paap Rank	54.46	87.79	143.9	184.2	29.85	34.68			
Window size	[15,15]	[15,15]	[15,15]	[15,15]	[10,10]	[12,12]			
Sub-sample mean		0.55							
Panel C	Dummy (having at least 4 child death)								
Years of Schooling	-0.0327***	-0.0348***	-0.0365***	-0.0365***	-0.0312***	-0.0266***			
	(0.00346)	(0.00256)	(0.00162)	(0.00122)	(0.00331)	(0.00358)			
Kleibergen-Paap Rank	54.46	87.79	143.9	184.2	41.28	31.22			
Window size	[15,15]	[15,15]	[15,15]	[15,15]	[9,9]	[11,11]			
Sub-sample mean			0.1	107					
Panel D			Child Mor	tality Rate					
Years of Schooling	-0.0276***	-0.0300***	-0.0326***	-0.0338***	-0.0250***	-0.0174***			
	(0.00441)	(0.00387)	(0.00264)	(0.00220)	(0.00455)	(0.00510)			
Kleibergen-Paap Rank	49.75	77.19	125.6	165.3	38.56	22.62			
Window size	[15,15]	[15,15]	[15,15]	[15,15]	[9,9]	[14,14]			
Sub-sample mean			0.1	179					
Specification									
Order of Polynomial	2	2	3	3	1	1			
Triangular Weight	No	Yes	No	Yes	No	Yes			

Table A5. Dropping Women Whose Age is Multiples of Five from the Sample
The Effect of Years of Schooling on Number of Surviving Children
Second Stage Estimates of 2SLS

		a Stage Esti		nt Variable		
	(1)	(2)	(3)	(4)	(5)	(6)
Panel A.			nber of Sur	viving Chil		()
Years of Schooling	0.127**	0.149***	0.169***	0.174***	0.163***	0.165***
	(0.0567)	(0.0525)	(0.0408)	(0.0351)	(0.0391)	(0.0405)
Kleibergen-Paap Rank	54.46	87.79	143.9	184.2	41.28	31.22
Window size	[15,15]	[15,15]	[15,15]	[15,15]	[9,9]	[11,11]
Sub-sample mean			4.8	358		
Panel B.		Dummy (ha		st one survi	iving child)
Years of Schooling	0.0192***	0.0217***	0.0248***	0.0269***	0.0254***	0.0237***
	(0.00330)	(0.00271)	(0.00209)	(0.00175)	(0.00196)	(0.00207)
Kleibergen-Paap Rank	54.46	87.79	143.9	184.2	134.6	127.8
Window size	[15,15]	[15,15]	[15,15]	[15,15]	[4,4]	[5,5]
Sub-sample mean			0.	93		
Panel C.					ng children	,
Years of Schooling	0.0261***	0.0299***	0.0342***	0.0367***	0.0330***	0.0320***
	(0.00586)	(0.00500)	(0.00344)	(0.00293)	(0.00398)	(0.00407)
Kleibergen-Paap Rank	54.46	87.79	143.9	184.2	136.7	127.8
Window size	[15,15]	[15,15]	[15,15]	[15,15]	[5,5]	[5,5]
Sub-sample mean			3.0	364		
Panel D.			aving at leas	st 8 survivii	ng children)
Years of Schooling	0.00269	0.00163	-0.000823	-0.000178	0.000738	0.00434
	(0.00559)	(0.00582)	(0.00600)	(0.00537)	(0.00562)	(0.00601)
Kleibergen-Paap Rank	54.46	87.79	143.9	184.2	136.7	34.83
Window size	[15,15]	[15,15]	[15,15]	[15,15]	[5,5]	[8,8]
Sub-sample mean			0.1	.82		
Specification						
Order of Polynomial	2	2	3	3	1	1
Triangular Weight	No	Yes	No	Yes	No	Yes

Appendices B

In Table B1-B10, we conduct the donut regression discontinuity design. We drop the observations whose age is very close to the threshold, cohorts whose age is 48 or 49. Then, we re-estimate the model. In Table B1-B5, we drop observation whose age is 48. In Table B6-B10, we drop the observations whose age is 49.

Table B1. Donut RDD: Dropping Women from the Sample Whose Age is 48
The Effect of Years of Schooling and Literacy on Number of Births (2SLS)
Second Stage Estimates in 2SLS

		Dependent Variable						
	(1)	(2)	(3)	(4)	(5)	(6)		
Panel A.			Number	of Births				
Years of Schooling	-0.160***	-0.128***	-0.113**	-0.0828**	-0.147***	-0.110***		
	(0.0291)	(0.0262)	(0.0494)	(0.0416)	(0.0288)	(0.0294)		
	[0.0232]	[0.0241]	[0.0327]	[0.0379]	[0.0334]	[0.0199]		
Kleibergen-Paap Rank	22.38	24.42	14.63	20.02	11.04	17.97		
N	224,804	224,804	224,804	224,804	73,106	119,459		
Window size	[15,15]	[15,15]	[15,15]	[15,15]	[5,5]	[8,8]		
Sub-sample mean		6.096						
Panel B.			Number	of Births				
Literate Dummy	-1.339***	-1.212***	-0.943**	-1.207***	-0.742**	-0.657***		
	(0.246)	(0.242)	(0.420)	(0.377)	(0.371)	(0.245)		
	[0.195]	[0.202]	[0.274]	[0.335]	[0.234]	[0.164]		
Kleibergen-Paap Rank	21.10	23.20	13.40	16.84	14.17	17.61		
N	224,804	224,804	224,804	224,804	86,889	119,459		
Window size	[15,15]	[15,15]	[15,15]	[15,15]	[6,6]	[8,8]		
Sub-sample mean			6.0)96				
Specifications								
Order of Polynomials	2	2	3	3	1	1		
Triangular Weight	No	Yes	No	Yes	No	Yes		

Table B2. Donut RDD: Dropping Women from the Sample Whose Age is 48

The Effect of Years of Schooling on Probability of Having
at Least One Birth and a Few Births: Second Stage Estimates of 2SLS

	Dependent Variable								
	(1)	(2)	(3)	(4)	(5)	(6)			
Panel A.		Dur	nmy(having	g at least 1 bi	irth)				
Years of Schooling	0.0107***	0.0127***	0.0167***	0.0202***	0.0186***	0.00919***			
	(0.00362)	(0.00368)	(0.00512)	(0.00503)	(0.00597)	(0.00353)			
Kleibergen-Paap Rank	22.38	24.42	14.63	20.02	11.04	17.97			
Window size	[15,15]	[15,15]	[15,15]	[15,15]	[5,5]	[8,8]			
Sub-sample mean			0.9	945					
Panel B.			-	; at least 2 bi					
Years of schooling	0.00910**	0.0121***	0.0186**	0.0204***	0.0192**	0.0104**			
	(0.00401)	(0.00418)	(0.00747)	(0.00674)	(0.00799)	(0.00418)			
Kleibergen-Paap Rank	22.38	24.42	14.63	20.02	11.04	17.97			
Window size	[15,15]	[15,15]	[15,15]	[15,15]	[5,5]	[8,8]			
Sub-sample mean			3.0	398					
Panel C.				at least 3 bi					
Years of schooling	0.00233	0.00698	0.0169	0.0172*	0.0178	0.00871			
	(0.00492)	(0.00515)	(0.0104)	(0.00986)	(0.0120)	(0.00550)			
Kleibergen-Paap Rank	22.38	24.42	14.63	20.02	11.04	17.97			
Window size	[15,15]	[15,15]	[15,15]	[15,15]	[5,5]	[8,8]			
Sub-sample mean			8.0	333					
Panel D.				at least 4 bi					
Years of schooling	-0.0102**	-0.00307	0.0122	0.0113	0.0109	0.00950			
	(0.00485)	(0.00354)	(0.00904)	(0.00759)	(0.00877)	(0.00749)			
Kleibergen-Paap Rank	22.38	24.42	14.63	20.02	11.04	8.942			
Window size	[15,15]	[15,15]	[15,15]	[15,15]	[5,5]	[7,7]			
Sub-sample mean			0.7	756					
Specifications									
Order of Polynomials	2	2	3	3	1	1			
Triangular Weight	No	Yes	No	Yes	No	Yes			

Table B3. Donut RDD: Dropping Women from the Sample Whose Age is 48

The Effect of Years of Schooling on Probability of

Having a Large Number of Births: Second Stage Estimates of 2SLS

	Dependent Variable					
	(1)	(2)	(3)	(4)	(5)	(6)
Panel A.		Dun	nmy (having	at least 8 bi	irths)	
Years of schooling	-0.0295***	-0.0317***	-0.0365***	-0.0405***	-0.0297***	-0.0248***
	(0.00527)	(0.00495)	(0.00637)	(0.00573)	(0.00712)	(0.00707)
Kleibergen-Paap Rank	22.38	24.42	14.63	20.02	11.04	8.942
Window size	[15,15]	[15,15]	[15,15]	[15,15]	[5,5]	[7,7]
Sub-sample mean			0.3	346		
Panel B.		Dun	nmy (having	at least 9 bi	irths)	
Years of schooling	-0.0216***	-0.0254***	-0.0334***	-0.0380***	-0.0257***	-0.0226***
	(0.00554)	(0.00514)	(0.00641)	(0.00620)	(0.00707)	(0.00558)
Kleibergen-Paap Rank	22.38	24.42	14.63	20.02	11.04	12.21
Window size	[15,15]	[15,15]	[15,15]	[15,15]	[5,5]	[6,6]
Sub-sample mean			0.	25		
Panel C.		Dum	my (having	at least 10 b	irths)	
Years of schooling	-0.0172***	-0.0204***	-0.0272***	-0.0303***	-0.0219***	-0.0186***
	(0.00401)	(0.00373)	(0.00460)	(0.00425)	(0.00473)	(0.00484)
Kleibergen-Paap Rank	22.38	24.42	14.63	20.02	11.04	8.942
Window size	[15,15]	[15,15]	[15,15]	[15,15]	[5,5]	[7,7]
Sub-sample mean			0.1	.73		
Specifications						
Order of Polynomials	2	2	3	3	1	1
Triangular Weight	No	Yes	No	Yes	No	Yes

Table B4. Donut RDD : Dropping Women from the Sample Whose Age is 48
The Effect of Years of Schooling on Number of Child Deaths and Child Mortality
Second Stage Estimates of 2SLS

		-	Depender	nt Variable				
	(1)	(2)	(3)	(4)	(5)	(6)		
Panel A.		Nur	nber of Dea	aths of Child	dren			
Years of Schooling	-0.137***	-0.144***	-0.159***	-0.184***	-0.153***	-0.138***		
	(0.0276)	(0.0277)	(0.0334)	(0.0340)	(0.0371)	(0.0390)		
Kleibergen-Paap Rank	22.38	24.42	14.63	20.02	11.04	8.942		
Window size	[15,15]	[15,15]	[15,15]	[15,15]	[5,5]	[7,7]		
Sub-sample mean			1.2	254				
Panel B		Dummy		east one ch	ild death)			
Years of Schooling	-0.0260***	-0.0259***	-0.0259***	-0.0328***	-0.0246***	-0.0208**		
	(0.00638)	(0.00631)	(0.00730)	(0.00721)	(0.00833)	(0.00836)		
Kleibergen-Paap Rank	22.38	24.42	14.63	20.02	11.04	8.942		
Window size	[15,15]	[15,15]	[15,15]	[15,15]	[5,5]	[7,7]		
Sub-sample mean			0.	55				
Panel C		Dummy (having at least 4 child death)						
Years of Schooling	-0.0241***	-0.0260***	-0.0301***	-0.0333***	-0.0292***	-0.0264***		
	(0.00498)	(0.00503)	(0.00657)	(0.00650)	(0.00721)	(0.00741)		
Kleibergen-Paap Rank	22.38	24.42	14.63	20.02	11.04	8.942		
Window size	[15,15]	[15,15]	[15,15]	[15,15]	[5,5]	[7,7]		
Sub-sample mean			0.1	107				
Panel D			Child Mor	tality Rate				
Years of Schooling	-0.0181***	-0.0195***	-0.0225***	-0.0263***	-0.0218***	-0.0140***		
	(0.00519)	(0.00521)	(0.00619)	(0.00650)	(0.00723)	(0.00485)		
Kleibergen-Paap Rank	20.98	22.75	13.84	18.33	10.16	17.28		
Window size	[15,15]	[15,15]	[15,15]	[15,15]	[5,5]	[8,8]		
Sub-sample mean			0.1	179				
Specification								
Order of Polynomial	2	2	3	3	1	1		
Triangular Weight	No	Yes	No	Yes	No	Yes		

Table B5. Donut RDD: Dropping Women from the Sample Whose Age is 48
The Effect of Years of Schooling on Number of Surviving Children
Second Stage Estimates of 2SLS

			Depender	nt Variable			
	(1)	(2)	(3)	(4)	(5)	(6)	
Panel A.		Nur	nber of Sur	viving Chile	dren		
Years of Schooling	-0.00693	0.0178	0.0704	0.0746	0.0853	0.0425	
	(0.0395)	(0.0408)	(0.0663)	(0.0622)	(0.0769)	(0.0445)	
Kleibergen-Paap Rank	22.38	24.42	14.63	20.02	11.99	17.97	
Window size	[15,15]	[15,15]	[15,15]	[15,15]	[7,7]	[8,8]	
Sub-sample mean			4.8	358			
Panel B.		Dummy (ha	aving at lea	st one survi	ving child)	
Years of Schooling	0.0125**	0.0148***	0.0196***	0.0235***	0.0211***	0.0101**	
	(0.00497)	(0.00503)	(0.00675)	(0.00678)	(0.00814)	(0.00492)	
Kleibergen-Paap Rank	22.38	24.42	14.63	20.02	11.04	17.97	
Window size	[15,15]	[15,15]	[15,15]	[15,15]	[5,5]	[8,8]	
Sub-sample mean			0.	93			
Panel C.	Dummy (having at least 2 surviving children)						
Years of Schooling	0.0136**	0.0177***	0.0265***	0.0289***	0.0259**	0.0140**	
	(0.00594)	(0.00613)	(0.00981)	(0.00892)	(0.0108)	(0.00612)	
Kleibergen-Paap Rank	22.38	24.42	14.63	20.02	11.04	17.97	
Window size	[15,15]	[15,15]	[15,15]	[15,15]	[5,5]	[8,8]	
Sub-sample mean				364			
Panel D.		Dummy (ha		st 8 survivii	ng children)	
Years of Schooling	-0.00853**	-0.0110***	-0.0163***	-0.0164***	-0.00984*	-0.00433	
	(0.00381)	(0.00331)	(0.00365)	(0.00301)	(0.00508)	(0.00672)	
Kleibergen-Paap Rank	22.38	24.42	14.63	20.02	11.04	8.942	
Window size	[15,15]	[15,15]	[15,15]	[15,15]	[5,5]	[7,7]	
Sub-sample mean			0.1	182			
Specification							
Order of Polynomial	2	2	3	3	1	1	
Triangular Weight	No	Yes	No	Yes	No	Yes	

Table B6. Donut RDD: Dropping Women Whose Age is 49 from the Sample The Effect of Years of Schooling and Literacy on Number of Births (2SLS) Second Stage Estimates in 2SLS

		Dependent Variable							
	(1)	(2)	(3)	(4)	(5)	(6)			
Panel A.		Number of Births							
Years of Schooling	-0.128***	-0.108***	-0.0859***	-0.105***	-0.0906***	-0.0373			
	(0.0363)	(0.0291)	(0.0252)	(0.0187)	(0.0233)	(0.0337)			
Kleibergen-Paap Rank	13.17	22.67	28.51	56.79	13.45	13.14			
N	217,078	217,078	217,078	217,078	111,733	140,541			
Window size	[15,15]	[15,15]	[15,15]	[15,15]	[8,8]	[11,11]			
Sub-sample mean			6.0	96					
Panel B.			Number	of Births					
Literate Dummy	-1.050***	-0.870***	-0.677***	-0.864***	-0.733***	0.0238			
	(0.250)	(0.225)	(0.248)	(0.268)	(0.214)	(0.207)			
Kleibergen-Paap Rank	762.1	921.9	778.4	652.2	1020	1097			
N	217,078	217,078	217,078	217,078	111,733	152,299			
Window size	[15,15]	[15,15]	[15,15]	[15,15]	[8,8]	[11,11]			
Sub-sample mean			6.0	96					
Specifications									
Order of Polynomials	2	2	3	3	1	1			
Triangular Weight	No	Yes	No	Yes	No	Yes			

Table B7. Donut RDD: Dropping Women Whose Age is 49 from the Sample
The Effect of Years of Schooling on Probability of Having
at Least One Birth and a Few Births: Second Stage Estimates of 2SLS

		Dependent Variable							
	(1)	(2)	(3)	(4)	(5)	(6)			
Panel A.		Dur	nmy(having	g at least 1 bi	irth)				
Years of Schooling	0.00465***	0.00482***	0.00448**	0.00561***	0.00785***	0.00326*			
	(0.00137)	(0.00125)	(0.00178)	(0.00155)	(0.000876)	(0.00177)			
Kleibergen-Paap Rank	13.17	22.67	28.51	56.79	103.1	11.19			
Window size	[15,15]	[15,15]	[15,15]	[15,15]	[5,5]	[8,8]			
Sub-sample mean			0.9	945					
Panel B.		Dun	nmy (having	g at least 2 bi	rths)				
Years of schooling	0.00579**	0.00607***	0.00476**	0.00598***	0.00630***	0.00920***			
	(0.00291)	(0.00185)	(0.00207)	(0.00141)	(0.00191)	(0.00220)			
Kleibergen-Paap Rank	13.17	22.67	28.51	56.79	8.502	14.40			
Window size	[15,15]	[15,15]	[15,15]	[15,15]	[7,7]	[8,8]			
Sub-sample mean			0.0	398					
Panel C.		Dummy (having at least 3 births)							
Years of schooling	9.84e-05	0.00172	0.00176	0.00200	0.00498**	0.00524			
	(0.00426)	(0.00295)	(0.00262)	(0.00232)	(0.00251)	(0.00343)			
Kleibergen-Paap Rank	13.17	22.67	28.51	56.79	103.1	12.01			
Window size	[15,15]	[15,15]	[15,15]	[15,15]	[5,5]	[9,9]			
Sub-sample mean			0.0	333					
Panel D.		Dun	my (having	g at least 4 bi	rths)				
Years of schooling	-0.00688	-0.00185	0.00263	0.00117	0.00296	-0.00209			
	(0.00518)	(0.00317)	(0.00201)	(0.00180)	(0.00237)	(0.00216)			
Kleibergen-Paap Rank	13.17	22.67	28.51	56.79	103.1	11.19			
Window size	[15,15]	[15,15]	[15,15]	[15,15]	[5,5]	[8,8]			
Sub-sample mean			0.2	756					
Specifications									
Order of Polynomials	2	2	3	3	1	1			
Triangular Weight	No	Yes	No	Yes	No	Yes			

Table B8. Donut RDD: Dropping Women Whose Age is 49 from the Sample The Effect of Years of Schooling on Probability of

Having a Large Number of Births: Second Stage Estimates of 2SLS

	Dependent Variable					
	(1)	(2)	(3)	(4)	(5)	(6)
Panel A.	Dummy (having at least 8 births)					
Years of schooling	-0.0204***	-0.0187***	-0.0160***	-0.0180***	-0.0196***	-0.0125**
	(0.00536)	(0.00474)	(0.00451)	(0.00349)	(0.00374)	(0.00490)
Kleibergen-Paap Rank	13.17	22.67	28.51	56.79	45.41	12.01
Window size	[15,15]	[15,15]	[15,15]	[15,15]	[6,6]	[9,9]
Sub-sample mean	•		0.3	346		
Panel B.		Dun	nmy (having	; at least 9 bi	irths)	
Years of schooling	-0.0138***	-0.0140***	-0.0134***	-0.0143***	-0.0154***	-0.0102**
	(0.00374)	(0.00308)	(0.00354)	(0.00324)	(0.00280)	(0.00416)
Kleibergen-Paap Rank	13.17	22.67	28.51	56.79	45.41	12.01
Window size	[15,15]	[15,15]	[15,15]	[15,15]	[6,6]	[9,9]
Sub-sample mean			0.	25		
Panel C.		Dum	my (having	at least 10 b	irths)	
Years of schooling	-0.0140***	-0.0149***	-0.0151***	-0.0157***	-0.0129***	-0.0107***
	(0.00268)	(0.00234)	(0.00290)	(0.00213)	(0.00255)	(0.00283)
Kleibergen-Paap Rank	13.17	22.67	28.51	56.79	13.45	12.01
Window size	[15,15]	[15,15]	[15,15]	[15,15]	[8,8]	[9,9]
Sub-sample mean	0.173					
Specifications						
Order of Polynomials	2	2	3	3	1	1
Triangular Weight	No	Yes	No	Yes	No	Yes

Table B9. Donut RDD: Dropping Women Whose Age is 49 from the Sample
The Effect of Years of Schooling on Number of Child Deaths and Child Mortality
Second Stage Estimates of 2SLS

			Depender	nt Variable		
	(1)	(2)	(3)	(4)	(5)	(6)
Panel A.		Nu	mber of Dea	ths of Child	ren	
Years of Schooling	-0.107***	-0.0983***	-0.0119***	-0.0133***	-0.0145***	-0.0141**
	(0.0194)	(0.0109)	(0.00307)	(0.00224)	(0.00557)	(0.00566)
Kleibergen-Paap Rank	13.17	22.67	28.51	56.79	14.97	12.01
Window size	[15,15]	[15,15]	[15,15]	[15,15]	[10,10]	[9,9]
Sub-sample mean			1.2	254		
Panel B		Dummy	(having at l	east one chil	ld death)	
Years of Schooling	-0.0212***	-0.0181***	-0.0119***	-0.0133***	-0.0145***	-0.0141**
	(0.00593)	(0.00363)	(0.00307)	(0.00224)	(0.00557)	(0.00566)
Kleibergen-Paap Rank	13.17	22.67	28.51	56.79	14.97	12.01
Window size	[15,15]	[15,15]	[15,15]	[15,15]	[10,10]	[9,9]
Sub-sample mean	0.55					
Panel C		Dumm	y (having at	least 4 child	l death)	
Years of Schooling	-0.0184***	-0.0174***	-0.0147***	-0.0134***	-0.0165***	-0.0161***
	(0.00338)	(0.00210)	(0.00185)	(0.00212)	(0.00244)	(0.00256)
Kleibergen-Paap Rank	13.17	22.67	28.51	56.79	13.45	12.01
Window size	[15,15]	[15,15]	[15,15]	[15,15]	[8,8]	[9,9]
Sub-sample mean			0.1	107		
Panel D			Child Mo	rtality Rate		
Years of Schooling	-0.0119***	-0.0112***	-0.00918***	-0.00923***	-0.00962***	-0.00880***
	(0.00277)	(0.00190)	(0.00172)	(0.00173)	(0.00226)	(0.00222)
Kleibergen-Paap Rank	13.15	22.55	28.91	58.27	14.18	13.04
Window size	[15,15]	[15,15]	[15,15]	[15,15]	[9,9]	[10,10]
Sub-sample mean			0.1	179		
Specification						
Order of Polynomial	2	2	3	3	1	1
Triangular Weight	No	Yes	No	Yes	No	Yes

Table B10. Donut RDD: Dropping Women Whose Age is 49 from the Sample
The Effect of Years of Schooling on Number of Surviving Children
Second Stage Estimates of 2SLS

		U	Depender	nt Variable		
	(1)	(2)	(3)	(4)	(5)	(6)
Panel A.		Nur	nber of Sur	viving Chil	dren	
Years of Schooling	-0.0141	-0.00145	0.00145	-0.0174	0.00239	0.0352
	(0.0429)	(0.0348)	(0.0276)	(0.0225)	(0.0255)	(0.0372)
Kleibergen-Paap Rank	13.17	22.67	28.51	56.79	13.45	12.01
Window size	[15,15]	[15,15]	[15,15]	[15,15]	[8,8]	[9,9]
Sub-sample mean			4.8	358		
Panel B.		Dummy (h	aving at lea	st one surv	iving child)
Years of Schooling	0.00429**	0.00457***	0.00429**	0.00554***	0.00774***	0.00388*
	(0.00185)	(0.00158)	(0.00206)	(0.00180)	(0.00123)	(0.00213)
Kleibergen-Paap Rank	13.17	22.67	28.51	56.79	103.1	12.01
Window size	[15,15]	[15,15]	[15,15]	[15,15]	[5,5]	[9,9]
Sub-sample mean			0.	93		
Panel C.	1	Dummy (ha	ving at leas	st 2 survivii	ng children)
Years of Schooling	0.0136**	0.0177***	0.0265***	0.0289***	0.0259**	0.0140**
	(0.00594)	(0.00613)	(0.00981)	(0.00892)	(0.0108)	(0.00612)
Kleibergen-Paap Rank	22.38	24.42	14.63	20.02	11.04	17.97
Window size	[15,15]	[15,15]	[15,15]	[15,15]	[5,5]	[8,8]
Sub-sample mean				364		
Panel D.					ng children)
Years of Schooling	-0.00853**	-0.0110***	-0.0163***	-0.0164***	-0.00984*	-0.00433
	(0.00381)	(0.00331)	(0.00365)	(0.00301)	(0.00508)	(0.00672)
Kleibergen-Paap Rank	22.38	24.42	14.63	20.02	11.04	8.942
Window size	[15,15]	[15,15]	[15,15]	[15,15]	[5,5]	[7,7]
Sub-sample mean			0.1	182		
Specification						
Order of Polynomial	2	2	3	3	1	1
Triangular Weight	No	Yes	No	Yes	No	Yes

Appendices C

In Table C1-C10, we conducted the robustness checks to examine the effect of heaping in age. First, using the data set used in Appendices B, we calculate the ratio of age heaping by creating the following groups: [33, 37], [38, 42], [43, 47], [49, 53], [54, 58], and [59, 63]. In another case, we create the following age groups: [34, 38], [39, 43], [44, 48], [50, 54], [55, 59], and [60, 64]. Then, by adding this variable as an additional control variable and using the same data sets used in Appendices B, we re-estimate the model.

Table C1. Dropping Women aged 48 and Including Ratio of Age Heaping : The Effect of Years of Schooling and Literacy on Number of Births (2SLS) Second Stage Estimates in 2SLS

		Dependent Variable				
	(1)	(2)	(3)	(4)		
Panel A.		Number	of Births			
Years of Schooling	-0.163***	-0.148***	-0.121**	-0.138***		
	(0.0299)	(0.0295)	(0.0495)	(0.0436)		
Kleibergen-Paap Rank	22.70	25.73	15.16	20.71		
N	224,804	224,804	224,804	224,804		
Window size	[15,15]	[15,15]	[15,15]	[15,15]		
Sub-sample mean		6.0)96			
Panel B.		Number	of Births			
Literate Dummy	-1.359***	-1.234***	-1.016**	-1.186***		
	(0.250)	(0.243)	(0.415)	(0.369)		
Kleibergen-Paap Rank	22.70	25.73	15.16	20.71		
N	224,804	224,804	224,804	224,804		
Window size	[15,15]	[15,15]	[15,15]	[15,15]		
Sub-sample mean		6.096				
Specifications						
Order of Polynomials	2	2	3	3		
Triangular Weight	No	Yes	No	Yes		
Ratio of Age Heaping	Yes	Yes	Yes	Yes		

Table C2. Dropping Women aged 48 and Including Ratio of Age Heaping :

The Effect of Years of Schooling on Probability of Having
at Least One Birth and a Few Births: Second Stage Estimates of 2SLS

at Least One Dirth and a	ev Birtio. 5		nt Variable	1 2020
	(1)	(2)	(3)	(4)
Panel A.	Dui	nmy(having	g at least 1 bi	irth)
Years of Schooling	0.0110***	0.0136***	0.0186***	0.0198***
	(0.00354)	(0.00348)	(0.00536)	(0.00474)
Kleibergen-Paap Rank	22.70	25.73	15.16	20.71
Window size	[15,15]	[15,15]	[15,15]	[15,15]
Sub-sample mean		0.9	945	
Panel B.			at least 2 bi	
Years of schooling	0.00929**	0.0130***	0.0203**	0.0201***
	(0.00399)	(0.00409)	(0.00804)	(0.00653)
Kleibergen-Paap Rank	22.70	25.73	15.16	20.71
Window size	[15,15]	[15,15]	[15,15]	[15,15]
Sub-sample mean		0.0	398	
Panel C.			at least 3 bi	
Years of schooling	0.00244	0.00792	0.0189*	0.0167*
	(0.00494)	(0.00515)	(0.0114)	(0.00963)
Kleibergen-Paap Rank	22.70	25.73	15.16	20.71
Window size	[15,15]	[15,15]	[15,15]	[15,15]
Sub-sample mean		3.0	333	
Panel D.	Dun	my (havino	at least 4 bi	rths)
Years of schooling	-0.0102**	-0.00307	0.0122	0.0113
rears or seriooning	(0.00485)	(0.00354)	(0.00904)	(0.00759)
Kleibergen-Paap Rank	22.38	24.42	14.63	20.02
Window size	[15,15]	[15,15]	[15,15]	[15,15]
Sub-sample mean			⁷ 56	
Specifications				
Order of Polynomials	2	2	3	3
or elect of a orly morning				
Triangular Weight	No	Yes	No	Yes

Table C3. Dropping Women aged 48 and Including Ratio of Age Heaping :

The Effect of Years of Schooling on Probability of

Having a Large Number of Births : Second Stage Estimates of 2SLS

		Depender	nt Variable	
	(1)	(2)	(3)	(4)
Panel A.	Dun	nmy (having	; at least 8 bi	rths)
Years of schooling	-0.0300***	-0.0327***	-0.0390***	-0.0404***
-	(0.00532)	(0.00488)	(0.00612)	(0.00562)
Kleibergen-Paap Rank	22.70	25.73	15.16	20.71
Window size	[15,15]	[15,15]	[15,15]	[15,15]
Sub-sample mean		0.3	346	
		/1 .	.1 .01	
Panel B.		nmy (having		
Years of schooling	-0.0220***	-0.0265***	-0.0362***	-0.0377***
	(0.00550)	(0.00493)	(0.00624)	(0.00591)
Kleibergen-Paap Rank	22.70	25.73	15.16	20.71
Window size	[15,15]	[15,15]	[15,15]	[15,15]
Sub-sample mean		0.	25	
Panel C.	Dum	my (having	at least 10 b	irths)
Years of schooling	-0.0174***	-0.0211***	-0.0290***	-0.0301***
	(0.00402)	(0.00364)		(0.00410)
Kleibergen-Paap Rank	22.70	25.73	15.16	20.71
Window size	[15,15]	[15,15]	[15,15]	[15,15]
Sub-sample mean		0.1	173	
Specifications				
Order of Polynomials	2	2	3	3
Triangular Weight	No	Yes	No	Yes
Ratio of Age Heaping	Yes	Yes	Yes	Yes

Table C4. Dropping Women aged 48 and Including Ratio of Age Heaping :
The Effect of Years of Schooling on Number of Child Deaths and Child Mortality
Second Stage Estimates of 2SLS

		Depender	nt Variable	
	(1)	(2)	(3)	(4)
Panel A.	Nu	ımber of Dea	ths of Child	ren
Years of Schooling	-0.139***	-0.148***	-0.168***	-0.184***
	(0.0274)	(0.0271)	(0.0344)	(0.0328)
Kleibergen-Paap Rank	22.70	25.73	15.16	20.71
Window size	[15,15]	[15,15]	[15,15]	[15,15]
Sub-sample mean		1.2	254	
Panel B	Dummy	(having at l		d death)
Years of Schooling	-0.0265***	-0.0271***	-0.0283***	-0.0324***
	(0.00623)	(0.00607)	(0.00702)	(0.00684)
Kleibergen-Paap Rank	22.70	25.73	15.16	20.71
Window size	[15,15]	[15,15]	[15,15]	[15,15]
Sub-sample mean			55	
Panel C		y (having at		
Years of Schooling	-0.0244***	-0.0267***	-0.0313***	-0.0333***
	(0.00500)	(0.00497)	(0.00688)	(0.00632)
Kleibergen-Paap Rank	22.70	25.73	15.16	20.71
Window size	[15,15]	[15,15]	[15,15]	[15,15]
Sub-sample mean		0.1	.07	
Panel D		Child Mor	tality Rate	
Years of Schooling	-0.0183***	-0.0203***	-0.0241***	-0.0261***
	(0.00515)	(0.00510)	(0.00651)	(0.00622)
Kleibergen-Paap Rank	21.39	24.01	14.37	19.14
Window size	[15,15]	[15,15]	[15,15]	[15,15]
Sub-sample mean		0.1	.79	
Specification				
Order of Polynomials	2	2	3	3
Triangular Weight	No	Yes	No	Yes
Ratio of Age Heaping	Yes	Yes	Yes	Yes

Table C5. Dropping Women aged 48 and Including Ratio of Age Heaping :
The Effect of Years of Schooling on Number of Surviving Children
Second Stage Estimates of 2SLS

<u> </u>	stage Estimate	Dependent	Variable	
	(1)	(2)	(3)	(4)
Panel A.	. ,	ber of Survi		
Years of Schooling	-0.00760	0.0210	0.0744	0.0737
G	(0.0406)	(0.0409)	(0.0703)	(0.0611)
Kleibergen-Paap Rank	22.70	25.73	15.16	20.71
Window size	[15,15]	[15,15]	[15,15]	[15,15]
Sub-sample mean		4.858	3	
Panel B.	Dummy (ha	ving at least	one survivi	ng child)
Years of Schooling	0.0128***	0.0159***	0.0217***	0.0230***
	(0.00491)	(0.00488)	(0.00720)	(0.00647)
Kleibergen-Paap Rank	22.70	25.73	15.16	20.71
Window size	[15,15]	[15,15]	[15,15]	[15,15]
Sub-sample mean		0.93		
Panel C.	Dummy (hav	ving at least 2	2 surviving	children)
Years of Schooling	0.0139**	0.0190***	0.0290***	0.0285***
	(0.00591)	(0.00600)	(0.0105)	(0.00859)
Kleibergen-Paap Rank	22.70	25.73	15.16	20.71
Window size	[15,15]	[15,15]	[15,15]	[15,15]
Sub-sample mean		0.864	4	
Panel D.	Dummy (ha	ving at least	8 surviving	children)
Years of Schooling	-0.00870**	-0.0114***	-0.0177***	-0.0163***
	(0.00390)	(0.00338)	(0.00370)	(0.00303)
Kleibergen-Paap Rank	22.70	25.73	15.16	20.71
Window size	[15,15]	[15,15]	[15,15]	[15,15]
Sub-sample mean		0.182	2	
Specification		· ·		
Order of Polynomials	2	2	3	3
Triangular Weight	No	Yes	No	Yes
Ratio of Age Heaping	Yes	Yes	Yes	Yes

Table C6. Dropping Women aged 49 and Including Ratio of Age Heaping : The Effect of Years of Schooling and Literacy on Number of Births (2SLS) Second Stage Estimates in 2SLS

	Dependent Variable				
	(1)	(2)	(3)	(4)	
Panel A.		Number	of Births		
Years of Schooling	-0.175***	-0.125***	-0.106***	-0.120***	
	(0.0540)	(0.0475)	(0.0355)	(0.0242)	
Kleibergen-Paap Rank	7.974	11.44	17.17	34.68	
N	217,078	217,078	217,078	217,078	
Window size	[15,15]	[15,15]	[15,15]	[15,15]	
Sub-sample mean		6.0)96		
Panel B.		Number	of Births		
Literate Dummy	-0.680**	-0.617**	-0.581**	-0.587**	
	(0.318)	(0.314)	(0.288)	(0.261)	
Kleibergen-Paap Rank	54.73	91.09	137	171.1	
N	159,368	159,368	159,368	159,368	
Window size	[15,15]	[15,15]	[15,15]	[15,15]	
Sub-sample mean	6.096				
Specifications					
Order of Polynomials	2	2	3	3	
Triangular Weight	No	Yes	No	Yes	
Ratio of Age Heaping	Yes	Yes	Yes	Yes	

Table C7. Dropping Women aged 49 and Including Ratio of Age Heaping:

The Effect of Years of Schooling on Probability of Having
at Least One Birth and a Few Births: Second Stage Estimates of 2SLS

		Depender	nt Variable			
	(1)	(2)	(3)	(4)		
Panel A.	Du	Dummy(having at least 1 birth)				
Years of Schooling	0.00539**	0.00737***	0.00643***	0.00693***		
	(0.00244)	(0.00192)	(0.00197)	(0.00156)		
Kleibergen-Paap Rank	22.70	25.73	15.16	20.71		
Window size	[15,15]	[15,15]	[15,15]	[15,15]		
Sub-sample mean		0.9	945			
D. I.D.	D		1	(1, -)		
Panel B.		mmy (naving 0.00563**	g at least 2 bi			
Years of schooling	0.00153		0.00447*	0.00582***		
VI-11 D D1	(0.00464)	(0.00286)	(0.00240)	(0.00157)		
Kleibergen-Paap Rank	22.70	25.73	15.16	20.71		
Window size	[15,15]	[15,15]	[15,15]	[15,15]		
Sub-sample mean		0.8	898			
Panel C.	Dui	mmy (having	g at least 3 bi	rths)		
Years of schooling	0.00244	0.00792	0.0189*	0.0167*		
O	(0.00494)	(0.00515)	(0.0114)	(0.00963)		
Kleibergen-Paap Rank	22.70	25.73	15.16	20.71		
Window size	[15,15]	[15,15]	[15,15]	[15,15]		
Sub-sample mean		0.0	833			
D1 D	Des		t l t 4 l- i-	utle a)		
Panel D.			g at least 4 bi			
Years of schooling	-0.0102**	-0.00307	0.0122	0.0113		
VI-11 D D1	(0.00485)	(0.00354)	(0.00904)	(0.00759)		
Kleibergen-Paap Rank	22.38	24.42	14.63	20.02		
Window size	[15,15]	[15,15]	[15,15]	[15,15]		
Sub-sample mean		0.7	756			
Specifications Only of Polymericals		2	2	2		
Order of Polynomials	2	2	3	3		
Triangular Weight	No	Yes	No	Yes		
Ratio of Age Heaping	Yes	Yes	Yes	Yes		

Table C8. Dropping Women aged 49 and Including Ratio of Age Heaping :

The Effect of Years of Schooling on Probability of
Having a Large Number of Births : Second Stage Estimates of 2SLS

		Depender	nt Variable			
	(1)	(2)	(3)	(4)		
Panel A.	Dun	Dummy (having at least 8 births)				
Years of schooling	-0.0202**	-0.0179***	-0.0153**	-0.0178***		
	(0.00787)	(0.00633)	(0.00655)	(0.00430)		
Kleibergen-Paap Rank	22.70	25.73	15.16	20.71		
Window size	[15,15]	[15,15]	[15,15]	[15,15]		
Sub-sample mean		0.3	346			
Panel B.	Dun	nmy (having	r at least 9 hi	rths)		
Years of schooling	-0.0101*	-0.0122***	-0.0121**	-0.0133***		
rears or schooling	(0.00609)	(0.00446)		(0.00389)		
Kleibergen-Paap Rank	22.70	25.73	15.16	20.71		
Window size	[15,15]	[15,15]	[15,15]	[15,15]		
Sub-sample mean		0.	25			
Panel C.	Dum	my (having	at least 10 b	irths)		
Years of schooling	-0.0104***	-0.0138***	-0.0145***	-0.0150***		
	(0.00374)	(0.00263)	(0.00301)	(0.00218)		
Kleibergen-Paap Rank	22.70	25.73	15.16	20.71		
Window size	[15,15]	[15,15]	[15,15]	[15,15]		
Sub-sample mean		0.173				
Specifications						
Order of Polynomials	2	2	3	3		
Triangular Weight	No	Yes	No	Yes		
Ratio of Age Heaping	Yes	Yes	Yes	Yes		

Table C9. Dropping Women aged 49 and Including Ratio of Age Heaping :
The Effect of Years of Schooling on Number of Child Deaths and Child Mortality
Second Stage Estimates of 2SLS

Second S	tage Estimates	6 OI 25L5				
		Depender	nt Variable			
	(1)	(2)	(3)	(4)		
Panel A.	Nu	ımber of Dea	aths of Child	ren		
Years of Schooling	-0.109***	-0.109***	-0.0862***	-0.0850***		
	(0.0238)	(0.0190)	(0.0106)	(0.00972)		
Kleibergen-Paap Rank	22.70	25.73	15.16	20.71		
Window size	[15,15]	[15,15]	[15,15]	[15,15]		
Sub-sample mean		1.2	254			
Panel B	Dummy		least one chil	d death)		
Years of Schooling	-0.0245***	-0.0203***	-0.0159***	-0.0156***		
	(0.00881)	(0.00497)	(0.00300)	(0.00213)		
Kleibergen-Paap Rank	22.70	25.73	15.16	20.71		
Window size	[15,15]	[15,15]	[15,15]	[15,15]		
Sub-sample mean		0.	.55			
Panel C	Dumm	ny (having at	least 4 child	l death)		
Years of Schooling	-0.0147***	-0.0153***	-0.0133***	-0.0131***		
	(0.00296)	(0.00274)	(0.00258)	(0.00240)		
Kleibergen-Paap Rank	22.70	25.73	15.16	20.71		
Window size	[15,15]	[15,15]	[15,15]	[15,15]		
Sub-sample mean		0.3	107			
Panel D		Child Mo	rtality Rate			
Years of Schooling	-0.0109***	-0.0111***	-0.00982***	-0.00965***		
Q	(0.00294)	(0.00268)	(0.00210)	(0.00196)		
Kleibergen-Paap Rank	21.39	24.01	14.37	19.14		
Window size	[15,15]	[15,15]	[15,15]	[15,15]		
Sub-sample mean		0.179				
Specification						
Order of Polynomials	2	2	3	3		
Triangular Weight	No	Yes	No	Yes		
Ratio of Age Heaping	Yes	Yes	Yes	Yes		

Table C10. Dropping Women aged 49 and Including Ratio of Age Heaping :
The Effect of Years of Schooling on Number of Surviving Children
Second Stage Estimates of 2SLS

<u> </u>	Dependent Variable			
	(1)	(2)	(3)	(4)
Panel A.	Number of Surviving Children			
Years of Schooling	-0.00760	0.0210	0.0744	0.0737
C	(0.0406)	(0.0409)	(0.0703)	(0.0611)
Kleibergen-Paap Rank	22.70	25.73	15.16	20.71
Window size	[15,15]	[15,15]	[15,15]	[15,15]
Sub-sample mean		4.858	3	
Panel B.	Dummy (ha	ving at least	one survivi	ing child)
Years of Schooling	0.00414	0.00639***	0.00566**	0.00641***
	(0.00296)	(0.00242)	(0.00249)	(0.00213)
Kleibergen-Paap Rank	22.70	25.73	15.16	20.71
Window size	[15,15]	[15,15]	[15,15]	[15,15]
Sub-sample mean	0.93			
Panel C.	Dummy (having at least 2 surviving children)			
Years of Schooling	0.00172	0.00762**	0.00742**	0.00856***
	(0.00565)	(0.00371)	(0.00289)	(0.00213)
Kleibergen-Paap Rank	22.70	25.73	15.16	20.71
Window size	[15,15]	[15,15]	[15,15]	[15,15]
Sub-sample mean		0.864	4	
Panel D.	Dummy (ha	ving at least	8 surviving	children)
Years of Schooling	-0.00283	-0.00516	-0.00642	-0.00835**
	(0.00674)	(0.00579)	(0.00591)	(0.00374)
Kleibergen-Paap Rank	22.70	25.73	15.16	20.71
Window size	[15,15]	[15,15]	[15,15]	[15,15]
Sub-sample mean	0.182			
Specification				
Order of Polynomials	2	2	3	3
Triangular Weight	No	Yes	No	Yes
Ratio of Age Heaping	Yes	Yes	Yes	Yes

Appendices D

In Appendices D, we use quartic functions to control time trend.

Table D1. Estimation Results Using Quartic Functions
The Effect of Years of Schooling and Literacy on Number of Births (2SLS)
Second Stage Estimates in 2SLS

	Depend	Dependent Variable		
	(1)	(2)		
Panel A.	Numb	er of Births		
Years of Schooling	-0.0753	-0.0365		
	(0.0457)	(0.0471)		
Kleibergen-Paap Rank	12.16	8.122		
N	232,877	232,877		
Window size	[15,15]	[15,15]		
Sub-sample mean				
Panel B.	Numb	Number of Births		
Literate Dummy	-0.738	-0.347		
	(0.460)	(0.444)		
Kleibergen-Paap Rank	8.026	5.625		
N	232,877	232,877		
Window size	[15,15]	[15,15]		
Sub-sample mean				
Specifications				
Order of Polynomials	4	4		
Triangular Weight	No	Yes		

Table D2. Estimation Results Using Quartic Functions
The Effect of Years of Schooling on Probability of Having
at Least One Birth and a Few Births: Second Stage Estimates of 2SLS

	Dependent Variable		
	(1)	(2)	
Panel A.	Dummy(having at least 1 birth)		
Years of Schooling	0.0317***	0.0366***	
	(0.00853)	(0.0117)	
Kleibergen-Paap Rank	12.16	8.122	
Window size	[15,15]	[15,15]	
Sub-sample mean	0.9	45	
Panel B.	Dummy (having	at least 2 births)	
Years of schooling	0.0375***	0.0429***	
-	(0.0110)	(0.0147)	
Kleibergen-Paap Rank	12.16	8.122	
Window size	[15,15] [15,1		
Sub-sample mean	0.898		
Panel C.	Dummy (having at least 3 births)		
Years of schooling	0.0353***	0.0419**	
O	(0.0127)	(0.0165)	
Kleibergen-Paap Rank	12.16	8.122	
Window size	[15,15] [15		
Sub-sample mean	0.8	33	
Panel D.	Dummy (having at least 4 births)		
Years of schooling	-0.0102**	-0.00307	
Ü	(0.00485)	(0.00354)	
Kleibergen-Paap Rank	12.16	8.122	
Window size	[15,15]	[15,15]	
Sub-sample mean	0.756		
Specifications			
Order of Polynomials	4	4	
Triangular Weight	No	Yes	

Table D3. Estimation Results Using Quartic Functions
The Effect of Years of Schooling on Probability of
Having a Large Number of Births: Second Stage Estimates of 2SLS

	Dependent Variable			
	(1)	(2)		
Panel A.	Dummy (having	g at least 8 births)		
Years of schooling	-0.0310***	-0.0285***		
	(0.00713)	(0.00683)		
Kleibergen-Paap Rank	12.16	8.122		
Window size	[15,15]	[15,15]		
Sub-sample mean	0.3	346		
Panel B.	Dummy (having	at least 0 hirths)		
	-0.0369***	-0.0366***		
Years of schooling				
	(0.00983)	(0.0115)		
Kleibergen-Paap Rank	12.16	8.122		
Window size	[15,15]	[15,15]		
Sub-sample mean	0.	25		
Panel C.	Dummy (haying	at least 10 births)		
	-0.0305***	-0.0297***		
Years of schooling				
	(0.00705)	(0.00864)		
Kleibergen-Paap Rank	12.16	8.122		
Window size	[15,15]	[15,15]		
Sub-sample mean	0.3	0.173		
Specifications				
Order of Polynomials	4	4		
Triangular Weight	No	Yes		

Table D4. Estimation Results Using Quartic Functions
The Effect of Years of Schooling on Number of Child Deaths and Child Mortality
Second Stage Estimates of 2SLS

	Dependent Variable		
	(1)	(2)	
Panel A.	Number of Dea	aths of Children	
Years of Schooling	-0.275***	-0.311***	
	(0.0747)	(0.101)	
Kleibergen-Paap Rank	12.16	8.122	
Window size	[15,15]	[15,15]	
Sub-sample mean	1.3	254	
Panel B	Dummy (having at l	least one child death)	
Years of Schooling	-0.0604***	-0.0682***	
	(0.0179)	(0.0239)	
Kleibergen-Paap Rank	12.16	8.122	
Window size	[15,15]	[15,15]	
Sub-sample mean	0.	.55	
Panel C	Dummy (having at	t least 4 child death)	
Years of Schooling	-0.0462***	-0.0532***	
	(0.0133)	(0.0180)	
Kleibergen-Paap Rank	12.16	8.122	
Window size	[15,15]	[15,15]	
Sub-sample mean	0.:	107	
Panel D		rtality Rate	
Years of Schooling	-0.00909***	-0.00939***	
	(0.00308)	(0.00272)	
Kleibergen-Paap Rank	12.16	8.122	
Window size	[15,15]	[15,15]	
Sub-sample mean	0.	179	
Specification			
Order of Polynomials	4	4	
Triangular Weight	No	Yes	

Table D5. Estimation Results Using Quartic Functions
The Effect of Years of Schooling on Number of Surviving Children
Second Stage Estimates of 2SLS

	Dependent Variable		
	(1)	(2)	
Panel A.	Number of Surv	iving Children	
Years of Schooling	0.245**	0.325**	
	(0.116)	(0.154)	
Kleibergen-Paap Rank	12.16	8.122	
Window size	[15,15]	[15,15]	
Sub-sample mean	4.85	58	
Panel B.	Dummy (having at leas	t one surviving child)	
Years of Schooling	0.0405***	0.0468***	
	(0.0119)	(0.0162)	
Kleibergen-Paap Rank	12.16	8.122	
Window size	[15,15]	[15,15]	
Sub-sample mean	0.9	3	
Panel C.	Dummy (having at least	2 surviving children)	
Years of Schooling	0.0531***	0.0607***	
	(0.0160)	(0.0215)	
Kleibergen-Paap Rank	12.16	8.122	
Window size	[15,15]	[15,15]	
Sub-sample mean	0.86	54	
Panel D.	Dummy (having at leas	t 8 surviving children)	
Years of Schooling	0.00327	0.0101	
	(0.00790)	(0.00922)	
Kleibergen-Paap Rank	12.16	8.122	
Window size	[15,15]	[15,15]	
Sub-sample mean	0.18	32	
Specification			
Order of Polynomials	4	4	
Triangular Weight	No	Yes	

Appendices E

Appendices E include the estimation results and graphs related with the analysis using the 1988 census data.

Table E1 shows that summary statistics of the 1988 census data. Table E2 shows the regression result using the 1988 census data when we drop the observations whose age is the multiples of five. Table E2 shows that the estimated coefficients of Table E2 are quite similar to the estimated coefficients in Table 12 and Table 13.

Figure E1 shows the histogram of the 1988 census data and 2012 census data. Two figures show that there is an issue of heaping in age.

Figure E2-E5 correspond the regression results in Table 12 and Table 13. Figure E2 and E5 show that there are discontinuous jump at the threshold in different specifications and the results are robust.

Table E1. Summary Statistics of 1988 Census Dataset

	Treatmen	t Group	Contro	l Group	A	All
VARIABLES	mean	sd	mean	sd	mean	sd
Years of schooling and Fertility					,	
Age	19.24	2.199	28.60	2.660	23.62	5.264
Years of schooling	5.585	2.841	3.485	3.467	4.602	3.320
Literate	0.809	0.393	0.559	0.496	0.692	0.462
Number of births	0.893	1.278	3.804	2.498	2.256	2.429
Number of births ≥1	0.487	0.500	0.914	0.281	0.687	0.464
Number of suriving children	0.759	1.095	3.163	2.103	1.884	2.037
Number of suriving children≥ 1	0.459	0.498	0.896	0.305	0.663	0.473
Child Mortality						
Number of deaths of children	0.0984	0.424	0.612	1.087	0.339	0.846
Number of death of children ≥ 1	0.0726	0.260	0.351	0.477	0.203	0.402
Mortality rate of children	0.0643	0.163	0.128	0.189	0.104	0.182
N for mortality rate of children	41,7	87	68,	990	110),777
N for other variables	85,7	73	75,	509	161	,282

Table E2. Robustness Checks in Using the 1988 Census Data : Dropping Individuals Whose Ages are Multiples of Five (2SLS)

	Dependent Variable		
	(1)	(2)	
Panel A.	Number of Births		
Years of Schooling	-0.164***	-0.257***	
	(0.0429)	(0.0281)	
Kleibergen-Paap Rank	11.92	15.28	
Window size	[6,11]	[11,11]	
N	106,133	152,513	
Sub-sample mean		.151	
Panel B		eaths of Children	
Years of Schooling	-0.0216*	-0.0461***	
	(0.0115)	(0.00779)	
Kleibergen-Paap Rank	11.92	15.28	
Window size	[6,11]	[11,11]	
N	106,133	152,513	
Sub-sample mean	0.527		
Panel C		ate of Children	
Years of Schooling	-0.00980***	-0.0109***	
	(0.00338)	(0.00284)	
Kleibergen-Paap Rank	10.10	16.99	
Window size	[6,11]	[8,13]	
N	80,664	90,932	
Sub-sample mean	0.117		
Panel D	Number of Surviving Children		
Years of Schooling	-0.158***	-0.225***	
	(0.0345)	(0.0220)	
Kleibergen-Paap Rank	11.92	15.28	
Window size	[6,11]	[11,11]	
N	106,133	152,513	
Sub-sample mean	2.646		
Specification			
Order of Polynomial	1	1	
Triangular Weight	No	Yes	

Notes: The sample is female individuals in 1988 PHCT. Female individuals whose age is a multiple of five are dropped from the sample. Notes of Table 3 apply.

Figure E1. Relative Sample Size of Each Age in the 1988 and 2012 Censuses

Notes: The horizontal axis is age. The vertical axis measures the relative sample size of each age (percent). Two red lines are the threshold cohort in 1988 and 2012 censuses, respectively. The sample is restricted to female individuals in each census dataset.

Figure E2. The Number of Births over Age in the 1988 Census: Different Specifications

(e) Donut regression discontinuity design

Notes: The horizontal axis is age. In (a) and (b), the window size is [8, 10]. In (c) and (d), the optimal window size is chosen to minimize the MSE assuming a linear polynomial function. The chosen window size is [8, 12]. In (e), the observations whose age is the multiple of five are dropped.

Figure E3. The Number of Deaths of Children over Age in the 1988 Census: Different Specifications

(a) Polynomial Fit of Order 3

(b) Polynomial Fit of Order 3: the graph is Enlarged

(c) A Liner Control Function

(d) A linear Control Function: the graph is enlarged

(e) Donut regression discontinuity design

Notes: The horizontal axis is age. In (a) and (b), the window size is [8, 10]. In (c) and (d), the optimal window size is chosen to minimize the MSE assuming a linear polynomial function. The chosen window size is [8, 12]. In (e), the observations whose age is the multiple of five are dropped.

Figure E4. The Mortality Rate of Children over Age in the 1988 census: Different Specifications

(a) Polynomial Fit of Order 3

(b) Polynomial Fit of Order 3: the graph is Enlarged

(c) A Liner Control Function

(d) A linear Control Function: the graph is enlarged

(e) Donut Regression Discontinuity Design

Notes: The horizontal axis is age. In (a) and (b), the window size is [8, 10]. In (c) and (d), the optimal window size is chosen to minimize the MSE assuming a linear polynomial function. The chosen window size is [8, 12]. We dropped the observations whose age is the multiple of five.

Figure E5. The Number of Surviving Children over Age in the 1988 Census: Different Specifications

(a) Polynomial Fit of Order 3

(b) Polynomial Fit of Order 3: the graph is Enlarged

(c) A Liner Control Function

(d) A linear Control Function: the graph is enlarged

(e) Donut Regression Discontinuity Design

Notes: The horizontal axis is age. In (a) and (b), the window size is [8, 10]. In (c) and (d), the optimal window size is chosen to minimize the MSE assuming a linear polynomial function. The chosen window size is [8, 12]. We dropped the observations whose age is the multiple of five.