

Departamento de Física UNIVERSIDADE DE AVEIRO

Modelação em Física Estatística

2019.03.27

1º teste

- 1. Considera um canal de informação em que um bit tem uma probabilidade p de ser transmitido com erro e 1-p de ser transmitido sem erro (canal binário simétrico, BSC).
- a) (2 valores) Se X for uma variável binária de entrada que toma valor 0 com probabilidade q e 1 com probabilidade 1-q e Y a variável correspondente ao bit recebido, determina os valores da probabilidade conjunta $p_{X,Y}(x,y)$. Os valores da função podem ser dados como uma tabela.

Resolução: A probabilidade $p_{X,Y}(x,y)$ obtém-se usando a fórmula de Bayes: $p_{X,Y}(x,y) = p_{Y|X}(y|x) p_X(x)$.

Temos $p_{Y|X}(0|0) = p_{Y|X}(1|1) = 1 - p$ e $p_{Y|X}(1|0) = p_{Y|X}(0|1) = p$.

Então $p_{X,Y}(x,y)$ é dada pela tabela:

$p_{X,Y}(x,y)$		y	
		0	1
x	0	q(1-p)	q p
	1	(1-q)p	(1-q)(1-p)

b) (1 valor) Mostra a partir de $p_{X,Y}(x,y)$ que:

$$p_{\scriptscriptstyle X}(x) = q \, \delta_{\scriptscriptstyle x,0} + (1-q) \delta_{\scriptscriptstyle x,1} \quad \text{e} \qquad p_{\scriptscriptstyle Y}(y) = \left(q \, (1-p) + (1-q) \, p \right) \delta_{\scriptscriptstyle y,0} + \left(q \, p + (1-q)(1-p)\right) \delta_{\scriptscriptstyle y,1} \quad \text{onde} \quad \delta_{\scriptscriptstyle x,y} \quad \text{representa o delta de Kronecker.}$$

Resolução: A soma dos valores da tabela ao longo de cada coluna para uma dada linha dá-nos a probabilidade $p_X(x) = \sum_y p_{X,Y}(x,y)$ obtendo-se:

$$p_X(0) = q(1-p) + q p = q$$
 e $p_X(1) = (1-q)p + (1-q)(1-p)p = 1-q$.

A soma dos valores da tabela ao longo de cada linha para uma dada coluna dá-nos a probabilidade $p_{Y}(y) = \sum_{x} p_{X,Y}(x,y)$ obtendo-se:

$$p_{y}(0)=q(1-p)+(1-q)p=A$$
 e $p_{y}(1)=(1-q)(1-p)+qp=1-A$ com $A=q+p-2qp$.

c) (3 valores) Mostra que a informação mútua $I_{X,Y}$ se pode escrever na forma:

$$I_{X,Y} = (1-p)\log_2(1-p) + p\log_2p - A\log_2A - (1-A)\log_2(1-A) \quad \text{com} \quad A = q + p - 2\,qp$$

Resolução: Usando a definição de informação mútua: $I_{X,Y} = \sum_{x,y} p_{X,Y}(x,y) \log_2 \left(\frac{p_{X,Y}(x,y)}{p_X(x)p_Y(y)} \right)$

obtendo:

$$I_{X,Y} = p_{X,Y}(0,0)\log_2\left(\frac{1-p}{A}\right) + p_{X,Y}(0,1)\log_2\left(\frac{p}{1-A}\right) + p_{X,Y}(1,0)\log_2\left(\frac{p}{A}\right) + p_{X,Y}(1,1)\log_2\left(\frac{1-p}{1-A}\right)$$

que se pode escrever como,

$$I_{X,Y} = (p_{X,Y}(0,0) + p_{X,Y}(1,1))\log_2(1-p) - (p_{X,Y}(0,0) + p_{X,Y}(1,0))\log_2 A + (p_{X,Y}(0,1) + p_{X,Y}(1,0))\log_2 p - (p_{X,Y}(0,1) + p_{X,Y}(1,1))\log_2(1-A)$$

e simplificar para

$$I_{X,Y} = (1-p)\log_2(1-p) - A\log_2A + p\log_2p - (1-A)\log_2(1-A)$$

d) (2 valores) Determina a capacidade do canal de informação definida como $C = max_q I_{X,Y}$. Comenta a dependência de C na probabilidade p.

Resolução: Começa-se por de terminar a o máximo de $I_{X,Y}$ relativamente à variável q.

$$\frac{d}{dq}I_{X,Y} = -\frac{dA}{dq}\log_2 A - A\frac{dA}{dq}\frac{1}{A} + \frac{dA}{dq}\log_2(1-A) + (1-A)\frac{dA}{dq}\frac{1}{1-A}$$

$$\frac{d}{dq}I_{X,Y} = \frac{dA}{dq}\log_2\frac{1-A}{A} \quad \text{Portanto}, \quad \frac{d}{dq}I_{X,Y} = 0 \quad \text{para} \quad A = 1/2 \quad .$$

Como A = q + p - 2qp podemos escrever q(1-2p) = 1/2 - p obtendo $q = \frac{1/2 - p}{(1-2p)} = 1/2$.

Então, temos para a capacidade $C=\max_q I_{X,Y}=(1-p)\log_2(1-p)+p\log_2(p)-1$. A capacidade é máxima para p=0 ou p=1 quando não há erros na transmissão ou quando todas as transmissões têm erro e toma o valor 0 quando p=1/2.

2. Pretende-se fazer uma simulação de um gás de fotões bidimensional, confinado a um quadrado de lado L, usando o algoritmo Demon. Os estados de um gás de fotões são especificados pelo número de fotões, $n_{\vec{k}}$ que têm um dado vetor de onda, $k_{x,y} = \frac{\pi}{L} n_{x,y}$ e $n_{x,y} = 1,2,...,\infty$. A energia de um fotão com vetor de onda \vec{k} é $E = \hbar c k$ onde c é a velocidade da luz e $\hbar = \frac{h}{2\pi}$ é a constante de Planck dividida por 2π .

a) Mostra que se a energia total fôr E_0 podemos fazer simulações considerando $n_{x,y} < n_{max} = ceil\left(\sqrt{\left(\frac{2LE_0}{hc}\right)^2 - 1}\right)$.

Resolução: Pretendemos encontrar o maior $n_{x,y} = n_{max}$ tal que a energia de fotões com $n_x \le n_{max}, n_y = 1$ ou $n_y \le n_{max}, n_x = 1$ é inferior a E_0 . Esse valor é dado pela condição $E_0 = \frac{hc}{2L} \sqrt{n_{max}^2 + 1}$ e portanto $n_{max} = \sqrt{\left(\frac{2LE_0}{hc}\right)^2 - 1}$. Deste modo todos os fotões não considerados, $n_{x,y} > n_{max}$, têm uma energia

b) (alínea a+ alinea b - 6 valores) Escreve um programa para fazer uma simulação de Monte Carlo usando o algoritmo do Demon de um gás de fotões a duas dimensões. Um estado do gás é especificado pelo número de fotões de cada tipo (n_x, n_y) , registado numa matriz \mathbf{nk} de dimensão $n_{max} \times n_{max}$.

superior a E_0 e portanto não podem ser criados durante a simulação.

Usa um valor de $n_{max} = min \left[\left(ceil \left(\sqrt{\left(\frac{2LE_0}{hc} \right)^2 - 1} \right), 50 \right] \right]$. A variável $nk(n_x, n_y)$ regista o número de fotões com energia $E = \frac{hc}{2L}n$, com $n = \sqrt{n_x^2 + n_y^2}$. Considera a unidade de energia, $u_E = \frac{hc}{2L}$, e uma unidade de temperatura, $u_T = u_E/k_B$. Para atualizar o estado do sistema escolhe aleatóriamente um tipo de fotão, $1 \le n_{x,y} \le n_{max}$ e propõe, com igual probabilidade, aumentar ou diminuir o número de fotões desse tipo em uma unidade. O número de fotões, $nk(n_x, n_y)$, é sempre uma quantidade positiva ou nula. Em cada passo de Monte Carlo consideram-se n_{max}^2 atualizações do estado do sistema. O programa deverá permitir escolher a energia total do sistema E_0 . Considera como estado inicial aquele em que não existem fotões no sistema e $E_D = E_0$. Despreza os nequi=2000 passos iniciais e calcula médias considerando as nmedidas=10000 efetuadas nos passos seguintes. É conveniente programar uma função:

[Emedio,Edmedio]=fprob2b(E0,nequi,nmedidas) que faz os cálculos para cada valor de E_0 .

Resolução: Ver ficheiro prob2.m e fprob2.m

c) (3 valores) Calcula numericamente a energia interna, em regime estacionário, do gás de fotões em função da temperatura medida pelo Demon, $T = \frac{\langle E_D \rangle}{k_B}$, e compara com a expressão teórica esperada:

$$\langle E \rangle = \frac{4\pi (k_B T)^3 L^2}{(hc)^2} 1.20206$$
 . Faz uma representação gráfica das duas quantidades usando as unidades

definidas na alínea anterior. Como a energia do Demon não varia continuamente, a expressão $T=\langle E_D\rangle$, em unidades de u_E e u_T é aproximada. Obtêm-se melhores resultados usando $T=\langle E_D\rangle-0.2$. Considera 8 valores de E_0 entre $\sqrt{2}$ e $80\sqrt{2}$. As temperaturas calculadas numéricamente, em unidades de u_T estão no intervalo [0,3].

Resolução: ver ficheiro prob2.m. A figura seguinte compara o resultado numérico para a energia interna do gás em função da temperatura com a expressão analítica.

d) (3 valores) Para uma configuração gerada num dado passo, calcula o número de fotões com energia entre ε e $\varepsilon + d\varepsilon$, $N(\varepsilon, d\varepsilon)$. Para isso convém definir previamente os vetores:

```
E=sqrt(2):sqrt(2):sqrt(nmax^2+1); % define o vetor de energias
ne=zeros(length(E),1); % regista o número de fotões com uma dada energia
iE=zeros(nmax,nmax); % faz a correspondencia entre (nx,ny) e a energia
for nx=1:nmax
    for ny=1:nmax
        iE(nx,ny)=floor((sqrt(nx^2+ny^2)-E(1))/(E(2)-E(1)))+1;
    end
end
```

No final de cada passo, em regime estacionário, calcula-se:

ou seja, acumulam-se o número de fotões com energia dentro de cada intervalo de energia. No final da simulação calcula-se a média: ne=ne/nmedidas;

Compara a média, em regime estacionário, desta quantidade com o resultado esperado $N(\varepsilon, d\varepsilon) = \frac{2\pi L^2}{(hc)^2} \frac{\varepsilon}{e^{\beta \varepsilon} - 1} d\varepsilon$ para 3 temperaturas correspondentes a $E_0 = 20\sqrt{2}$, $50\sqrt{2}$ e

 $80\sqrt{2}$. A quantidade $N(\epsilon$, $d\epsilon)$ é a distribuição de Planck para um gás de fotões bidimensional.

Resolução: ver ficheiro prob2.m e função fprob2d.m. O resultado da comparação entre a expressão teórica para o número médio de fotões com uma dada energia $N(\varepsilon, d\varepsilon)$ e o cálculo numérico, para as 3 temperaturas, encontra-se na figura seguinte:

