E Neural Networks XOR:

Es wurde zusätzlich zu der Lösung aus der Vorlesung (Abbildung 1) eine weitere Lösung (Abbildung 2) gefunden:

Abbildung 1: Lösung aus der Vorlesung

Abbildung 2: Alternativlösung

Gegeben: AND(a, b) = a*b

OR(a, b) = a + b - a*b

NOT (a) = 1 - a

Zu zeigen: XOR (a, b) = a + b - 2a*b

Herleitung der XOR - Funktion aus AND, OR und NOT:

Für Lösung 1:

 $a = \{0; 1\}$ $b = \{0; 1\}$

XOR(a, b) = AND(NOT(AND(a, b), OR(a, b))

= AND(NOT(a*b), a + b - a*b) = AND (1 - a*b, a + b - a*b) = (1 - a*b)*(a + b - a*b)

 $= a + b - a*b - a^2*b - a*b^2 + a^2*b^2$

= a + b - 2a*b

Für Lösung 2:

 $a = \{0; 1\}$ $b = \{0; 1\}$

XOR(a, b) = OR(AND(a, NOT(b)), AND (b, NOT(a)))

= OR(AND(a, 1 - b), AND(b, 1 - a))

= OR(a*(1 - b), b*(1 - a))

= OR (a - a*b, b - a*b)

= a - a*b + b - a*b - ((a - a*b)*(b - a*b))

Da a = $\{0;1\}$ und b = $\{0;1\}$ kann man an dieser Stelle zur weiteren Vereinfachung rechnen mit: $a^2 = a$ und $b^2 = b$

=
$$a - 2a*b + b - (a*b - a^2*b - a*b^2 + a^2b^2)$$

= $a + b - 2a*b$

Da a = $\{0;1\}$ und b = $\{0;1\}$ kann man an dieser Stelle zur weiteren Vereinfachung rechnen mit: $a^2 = a$ und $b^2 = b$

Überprüfen der gefundenen XOR-Funktion:

$$XOR(a, b) = a + b - 2a*b$$

Einsetzen von a = 0 und b = 0:

$$XOR(0, 0) = 0 + 0 - 0 = 0$$

Einsetzen von a = 1 und b = 0:

$$XOR(1, 0) = 1 + 0 - 0 = 1$$

Einsetzen von a = 0 und b = 1:

$$XOR(0, 1) = 0 + 1 - 0 = 1$$

Einsetzen von a = 1 und b = 1:

$$XOR(1, 1) = 1 + 1 - 2 = 0$$

q.e.d.