Fontes:

Silberschatz cap 3 Tanenbaum cap 2

Processos

- Conceituação
- Gerência de processos
- Estrutura de processos
- Troca de contexto
- Estados de processos

Mono x Multiprogramação

Multiprogramação

- "pseudoparalelismo": coleção de processos sendo executados alternadamente na CPU
 - execução concorrente
- ideia: reduzir o desperdício de CPU devido às operações de E/S
- objetivos:
 - aumentar a taxa de uso da CPU
 - melhorar a utilização dos recursos
 - aumentar o throughput

Conceito(s) de Processo

- job = processo
- programa em execução
 - "o processo é uma diferenciação entre o programa e sua execução"
- entidade ativa que compete por recursos oferecidos pelo SO:
 - acesso a discos, periféricos e, principalmente, CPU
- interage com outros processos
- execução: sequencial

Processo: conceitos relacionados

- Programa código, sequência de instruções (conceito estático)
- Job programa batch em execução
- Tarefa (task) execução de um fluxo de sequencial de instruções. Pode ser implementada como um processo, uma thread, um job ou uma transação
- Processo programa em execução (conceito dinâmico)
- Thread processo leve (compartilha código)

Programa x Processo

Programa

- Entidade estática e permanente
 - Sequência finita de instruções
 - Passivo sob o ponto de vista do SO (não se altera c/ passar do tempo)
 - Armazenado em disco

Processo

- Entidade dinâmica e efêmera
 - Altera seu estado a medida que avança sua execução
- Um programa pode ter várias instâncias em execução
 - → diferentes processos

Modelo de processo (1)

- Organização sequencial
- Processo: programa em execução, acompanhado dos valores atuais de PC, registradores e variáveis
- Obs.:
 - Com a CPU alternando entre processos, a velocidade de execução de cada processo:
 - não será uniforme
 - não será reproduzível se os mesmos processos forem executados novamente

Modelo de processo (2)

Figura (a): 4 processos na memória

Figura (b): cada processo possui seu PC

Figura (c): sequência de execução dos processos

Modelo de processo (3)

- Realidade: existe apenas 1 PC
 - Ao executar, o PC do sistema é carregado com o endereço do processo "selecionado"
 - Ao terminar o tempo de CPU do processo "selecionado", o PC "físico" é salvo no PC "lógico" do processo na memória

Processo: o que esperar do SO?

- Alternar a execução de processos
 - Maximizar o uso da CPU
 - Fornecer tempo de resposta razoável
- Alocar recursos a processos
- Suportar a criação de processos pelo usuário
- Suportar a comunicação entre processos

Controle de processos

- Para gerenciar processos o SO precisa conhecer:
 - onde o processo está localizado
 - os atributos do processo

- Como um processo é representado?
 - Imagem do processo = programa + dados + pilha(s) + atributos
 - Atributos: informações necessárias pelo SO
 - Imagem está na MP

Representação da imagem de um processo

- Um processo é representado por uma imagem:
 - segmento de código (o que ele vai fazer?)
 - espaço de endereçamento (onde, na memória, ele vai fazer algo?)
 - contexto (o que ele precisa para fazer algo?)
- Uma parte da imagem é de responsabilidade do usuário, a outra é gerenciada em modo protegido (SO)

Componentes de um processo

- Processo inclui:
 - contador de programa (PC)
 - indica próxima instrução a executar
 - pilha de execução (stack)
 - com valores temporários (parâmetros de funções, endereços de retorno, ...)
 - área de dados
 - com os valores das variáveis globais

Implementação de processos

- Tabelas do sistema
 - SO precisa manter informações sobre o estado atual de cada processo e recurso
 - Usa estruturas de controle:
 - Tabelas de memória
 - Tabelas de dispositivos
 - Tabelas de arquivos
 - Tabelas de processos

Gerência de processos – PCB

- SO mantém uma Tabela de Processos
 - armazena informações que variam de um processo para outro
 - há uma entrada na tabela para cada processo
 - cada entrada é chamada de PCB (Bloco de Controle de Processos)
 - PCB
 - vetor ou lista encadeada de estruturas
 - um para cada processo do sistema

estado do ponteiro processo número do processo apontador de instruções registradores limites na memória lista de arquivos abertos

Tabela de Processos e Bloco de Controle de Processos

Estrutura do processo: PCB

Exemplo de PCB

```
struct desc_proc {
   char estado atual;
                                 /* Estado do processo */
   int prioridade;
                                 /* Prioridade do processo */
   unsigned inicio_memoria;
                                 /* Endereço inicial da memória */
   unsigned tamanho memoria; /* memória usada (bytes) */
   struct arquivo arq_abertos[20] /* Arquivos abertos */
   unsigned tempo_de_CPU;
                                /* Tempo de CPU */
                                 /* Valor do PC (registrador) */
   unsigned proc_pc;
   unsigned proc_sp;
                                 /* Valor do SP (registrador) */
                                /* Valor do ACC (registrador) */
   unsigned proc_acc;
   unsigned proc_rx;
                                /* Valor do RX (registrador) */
   struct desc_proc *proximo
                                 /* Aponta para o próximo */
struct desc_proc tab_desc[MAX_PROCESS];
```

Execução de Processos

Troca de Contexto (1)

- Lembrando ...
 - contexto de um processo
 - informações necessárias p/ que o processo possa ser restaurado a partir do ponto em que foi interrompida a sua execução
 - a troca de um processo de hw por outro no processador é chamada de troca de contexto

Troca de Contexto (2)

Dispatcher x scheduler

créditos: prof. Maziero

Troca de Contexto: etapas

- Salvar o estado do processador
- Mudar o estado do processo
- Mudar o processo para a fila apropriada
- Selecionar o novo processo
- Atualizar o PCB do novo processo
- Modificar os mapeamentos de memória
- Restaurar o estado do processador

Troca de Contexto: causas

- interrupção do relógio: fatia de tempo de posse do processador expirou
- interrupção de I/O: resposta de um dispositivo de I/O
- falta de memória (page fault): endereço de memória procurado está na memória virtual (disco)
- interrupção por erro: associada a erro na execução de uma instrução
- chamada de sistema: solicitação de um serviço do SO (ex.: I/O)

Overhead da Troca de Contexto

- tempo da troca de contexto = desperdício (overhead)
 - nenhum processo está rodando
 - depende do suporte de hardware
 - pode consistir em um gargalo no sistema
 - atraso varia, conforme o hw (tamanho da memória, nº de registradores, velocidade da CPU, ...)
- possível solução: threads
 - visa diminuir o tempo gasto na criação/eliminação de um PCB p/ cada subprocesso
 - Threads compartilham o mesmo espaço de endereçamento

Ciclos de um processo

- A execução de um processo é composta por ciclos:
 - na CPU (*CPU-burst*)
 - na E/S (*I/O-burst*)
 - primeiro ciclo é sempre de processador
 - Troca de ciclos por:
 - CPU → E/S: chamada de sistema
 - E/S → CPU: ocorrência de evento (interrupção)
 - CPU → E/S ou E/S → CPU: interrupção

Classificação dos Processos: taxa de uso da CPU ou I/O

(a) processo CPU-bound

- Ciclo de CPU >>> ciclo de I/O
- processamento predominante, pouco I/O
- Ex.: processo p/ multiplicação de matrizes, processo renderizador de imagens

(b) processo I/O-bound

- Ciclo de I/O >>> ciclo de CPU
- I/O predominante (ou espera por I/O), pouco processamento
- Ex.: processo p/ cópia de arquivos, processos interativos (processadores de texto)

Estados de um processo

- novo (new)
 - processo em criação (sendo admitido no sistema)
- executando (running)
 - instruções estão sendo executadas
- bloqueado (waiting)
 - processo está esperando a ocorrência de um evento
- pronto (ready)
 - processo está esperando p/ ganhar o processador
- terminado (terminated)
 - processo terminou sua execução

Diagrama de estados de um processo

Exemplos de transições de estado

Ready → running: Algoritmo de escalonamento

Running → ready: Interrupção por tempo

Interrupção pelo escalonador

Decisão espontânea (yield)

Running → waiting: Solicitação de serviço (ex.: E/S)

Waiting → ready: Interrupção (término de operação)

Running → exit: Término normal