Сергеева Диана РК6-46Б

Задача 2.2. Требуется построить кубический сплайн, который проходит через следующие узлы $(x_i; f(x_i))$, i = 1,2,3, где:

$$x_1 \in (-5; 0); f(x_1) \in [-4; -2]$$

 $x_2 \in [0; 5); f(x_2) \in [3; 6]$
 $x_3 \in [5; 10]; f(x_3) \in [-4; 7]$

и имеет известные граничные условия $f'(x_1) \in [-4;4]$ и $f'(x_3) \in [-1;1]$.

Конкретные значение x_i , $f(x_i)$, $f'(x_1)$, $f'(x_3)$ следует задать произвольно. Дополнительно требуется построить эскиз графика кубического сплайна.

Решение:

Запишем уравнения для сплайна, т.к. сплайн кусочно-заданный то:

$$S(x) = \begin{cases} S_1(x) = a_1 + b_1(x - x_1) + c_1(x - x_1)^2 + d_1(x - x_1)^3 \\ S_2(x) = a_2 + b_2(x - x_2) + c_2(x - x_2)^2 + d_2(x - x_2)^3 \end{cases}$$

Для того, чтобы построить кубический сплайн, нужно найти 8 констант: a_1 , a_2 , b_1 , b_2 , c_1 , c_2 , d_1 , d_2 . Для этого составляем 8 уравнений.

Первые 2 уравнения достаём из условия, что значения в узлах равно значению функции:

$$S_1(x_1) = a_1 = f(x_1)$$
 (1)

$$S_2(x_2) = a_2 = f(x_2)$$
 (2)

Т.к. значения $S_1(x)$, $S_2(x)$ должны быть согласованы в правых интерполяционных узлах, то следующие 2 уравнения имеют вид:

$$S_1(x_2) = a_1 + b_1(x_2 - x_1) + c_1(x_2 - x_1)^2 + d_1(x_2 - x_1)^3 = f(x_2)$$
(3)

$$S_2(x_3) = a_2 + b_2(x_3 - x_2) + c_2(x_3 - x_2)^2 + d_2(x_3 - x_2)^3 = f(x_3)$$
(4)

Т.к. сплайн должен быть гладкий, непрерывный, то должны быть согласованы значения первой и второй производных:

$$S_1'(x_2) = S_2'(x_2) \Rightarrow b_1 + 2c_1(x_2 - x_1) + 3d_1(x_2 - x_1)^2 = b_2$$
 (5)

$$S_1''(x_2) = S_2''(x_2) \Rightarrow 2c_1 + 6d_1(x_2 - x_1) = 2c_2 \tag{6}$$

Естественные граничные условия для сплайна:

$$S_1''(x_1) = 0 \Rightarrow 2c_1 = 0 \tag{7}$$

$$S_2''(x_3) = 0 \Rightarrow 2c_2 + 6d_2(x_2 - x_1) = 0$$
 (8)

Таким образом, мы получаем наши 8 уравнений:

$$\begin{cases} a_1 = f(x_1) \\ a_2 = f(x_2) \end{cases}$$

$$a_1 + b_1(x_2 - x_1) + c_1(x_2 - x_1)^2 + d_1(x_2 - x_1)^3 = f(x_2)$$

$$a_2 + b_2(x_3 - x_2) + c_2(x_3 - x_2)^2 + d_2(x_3 - x_2)^3 = f(x_3)$$

$$b_1 + 2c_1(x_2 - x_1) + 3d_1(x_2 - x_1)^2 = b_2$$

$$2c_1 + 6d_1(x_2 - x_1) = 2c_2$$

$$2c_1 = 0$$

$$2c_2 + 6d_2(x_2 - x_1) = 0$$

Теперь зададим произвольно значения:

Т.К.
$$f(x_1) \in [-4; -2]$$
: $(x_1) = -2$
Т.К. $f(x_2) \in [3; 6]$: $f(x_2) = 4$
Т.К. $f(x_3) \in [-4; 7]$: $f(x_3) = 0$
Т.К. $x_1 \in (-5; 0)$: $x_1 = -1$
Т.К. $x_2 \in [0; 5)$: $x_2 = 4$
Т.К. $x_3 \in [5; 10]$: $x_3 = 5$

Тогда система пример вид:

$$\begin{cases} a_1 = -2 \\ a_2 = 4 \\ a_1 + 5b_1 + 25c_1 + 125d_1 = 4 \\ a_2 + b_2 + c_2 + d_2 = 0 \\ b_1 + 10c_1 + 75d_1 = b_2 \\ 2c_1 + 30d_1 = 2c_2 \\ c_1 = 0 \\ 2c_2 + 30d_2 = 0 \end{cases}$$

Решив систему уравнений, получим:

$$\begin{cases} a_1 = -2 \\ a_2 = 4 \\ b_1 = \frac{517}{160} \\ b_2 = \frac{-229}{80} \\ c_1 = 0 \\ c_2 = \frac{-39}{32} \\ d_1 = \frac{-13}{160} \\ d_2 = \frac{13}{160} \end{cases}$$

Построим кубический сплайн:

