L'Hôpital's Rule

If f and g are differentiable and $g'(x) \neq 0$ on an interval containing a (except possibly at x = a). If $\lim_{x \to a} f(x) = 0$ and $\lim_{x \to a} g(x) = 0$ then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

so long as the right-hand limit exists, or is $\pm \infty$. Moreover, the same technique can be used

- if $\lim_{x\to a} f(x) = \pm \infty$ and $\lim_{x\to a} g(x) = \pm \infty$,
- for one-sided limits,
- for limits at infinity.

Compute the following limits.

$$1. \lim_{x \to 0} \frac{\sin(5x)}{\sin(3x)}$$

2.
$$\lim_{x\to 0} \frac{\cos(x)-1}{x}$$

3.
$$\lim_{x\to 0} \frac{\cos(x)-1}{x^2}$$

$$4. \lim_{x\to -\infty} xe^x.$$

$$5. \lim_{x \to 0} \frac{\arcsin(x)}{x}$$

6.
$$\lim_{x \to 0} \frac{e^x}{x+3}$$
. Careful!!

7.
$$\lim_{x \to 0^+} \frac{e^{1/x}}{\ln x}$$
.

$$8. \lim_{x\to\infty} \left(1+\frac{5}{x}\right)^x.$$