Locating Fast Food for Success

A Data Driven Investigation

Objective/Stakeholders

- Observe Fast Food business in the city of Philadelphia to predict opportunities for potential franchisees
- Derive the attributes of the high traffic areas through statistical and machine analysis
- Minimize the risk and maximize the expected return on investment in opening a new Fast Food Location

Our Input Variables

- A subset of the census variables provided by Safegraph.com
 (http://safegraph.com/open-census-data). We base our models on the Census Block Group areas defined in this data set.
- Total visitors per CBG also provided by Safegraphs with their census data
- Crime reports as provided by the City of Philadelphia (https://bit.ly/37Bgy8D), which we sum instances per CBG
- Walk and transit score as obtained from Walk Score (https://www.walkscore.com/)

Output Variables

- A sum of fast food locations per CBG, procured by summary of limited service restaurants from Safegraph (https://shop.safegraph.com/)
- Total visitors to limited service restaurants in each CBG, again totaled from data obtained from Safegraph

Data Processing

- Census Data is subsetted to just Philadelphia Data
 - Philadelphia CBGs pulled from Safegraph CBG geometry file with a streaming JSON reader
 - CBGs with data gaps are filtered out, along with CBGs labeled Philadelphia but not matching the codes for Philadelphia
- Census Geocoding service used to get CBG for lat/long of each reported crime, as well as CBG of for address of each restaurant
- Google map api used to get addresses for the lat/long of each CBG, then used to do Walk Score and Transit Score lookup
- Data combined via Pandas and output to CSV

Successful CBGs

Variable Correlation with Total Consumers Positive:

Undergrads and Grads	0.546434
raw_visit_count	0.546264
Crime Counts	0.376914
Transit_score	0.343890
Pop. that Works from Home	0.254979
Total Population	0.245195
Negative	
Married Parent Households	-0.176664
Owner Occupied Households	-0.188451
Single Parent Households	-0.189105

Top Variables for Market Share

The Percentage of all fast food consumers in the top 20% of CBGs for each variable

Regression

- Experimenting with Regression models to predict total consumers to a CBG, our best model is produced by sklearn's random forest
 - Top 8 variables account for 81.5% of our model's decision: 'Total Population', 'Undergrads and Grads', 'Degree attained', 'Households in Poverty', 'Below 40k Earners', 'Crime Counts', 'walk_score', and 'raw_visit_count'

 With R² scores 0.89 on the training data and .61 on our test data

Classification

Using classification models to predict 'high traffic' areas.

Our best overall classifier is sklearn's Multilayer Perceptron Classifier with Lasso emphasized variables:

	Training	Testing
Recall	1.0	1.0
Precision	1.0	0.67
AUC	1.0	0.86

Customer Segmentation

 We try a few unsupervised learning techniques, and are best able to isolate a cluster of successful CBGs by performing KMeans on a 6 component PCA transformation of a subset of variables identified by

KNearestNeighbors:

col_0	0	1	2	3	4	5
Successful Location						
False	16	14	64	29	0	1
True	4	2	9	2	2	6

Cluster 4

Cluster 5

High	Low	High	Low
Single Occupant Households,	Single Parent Households	Population that Works from Home	Single Occupant Households,
Degree attained population,	Married Parent Households	Undergrads and Grads	Single Parent Households, Married
Households in Poverty, 40-100k			Parent Households, Diploma/GED
Earners, Renter Occupied			as Highest Educational Attainment,
Households, Crime Counts, Walk			Households in Poverty, Income
Score, transit_score, raw_visit_count			Earners of any Tier, Owner
			Occupied Households

Takeaways/Next Steps

- Target areas with universities and downtown areas with high single populations for new restaurant locations
- Gather data from more cities so a targeted regressor can be trained on just restaurant counts in successful areas. A regressor trained on our full data set for restaurant count was too poor for consideration.
- With more data, train a multi classifier for each of three classes and develop separate models for success in each
 - University
 - downtown
 - other

Reference

A more extensive report and python notebooks are located in https://github.com/jon-e-pizza/Springboard/tree/master/CapstoneFastFoodEs tablishments

Appendix: Linear Regression

Data Sets have gone through SKLearn Standard Scaler, variables picked by function, then ran through LR

Best Ridge:

alpha	Training R ²	Testing R ²
100	0.53	0.55

Significant Variables	Coefficients
raw_visit_count	520.81
Undergrads and Grads	348.16
Transit Score	173.11
Crime Counts	166.14
Total Population	123.19
Single Parent Households	-111.95

Best	Lasso:	а

10 0.54 0.57	•	alpha	Training R ²	Testing R ²
		10	0.54	0.57

Significant Variables	Coefficients
raw_visit_count	1163.82
Undergrads and Grads	735.43
Transit Score	315.52
Diploma/GED attained	96.41
Walk Score	-125.30
Above 100k Earners	-131.18
Total Population	-175.79
Crime Counts	-205.48

Appendix Gradient Boosting Regressor

n_estimators	max_depth	learning_rate	Training R ²	Testing R ²
100	5	0.01	0.82	0.59

Significant Variables	Feature Importance
Undergrads and Grads	0.47
walk_score	0.17
Degree Attained	0.10
Crime Counts	0.07
raw_visit_count	0.04
Diploma/GED attained	0.04

Appendix Classifiers

Test AUC

0.71

0.87

-	Logistic Regression	SVM	Random Forest	Gradient Boosting	KNeighbors
Best Variable Subset	'Total Population', 'Undergrads and Grads', 'Diploma/GED attained', 'Above 100k Earners', 'Crime Counts', 'walk_score', 'transit_score', 'raw_visit_count'	'Total Population', 'Undergrads and Grads', 'Diploma/GED attained', 'Above 100k Earners', 'Crime Counts', 'walk_score', 'transit_score', 'raw_visit_count'	Total Population', 'Undergrads and Grads', 'Diploma/GED attained', 'Above 100k Earners', 'Crime Counts', 'walk_score', 'transit_score', 'raw_visit_count'	Undergrads and Grads raw_visit_count Crime Counts walk_score Single Parent Households Married Parent Households	'Married Parent Households', 'Single Parent Households', 'Undergrads and Grads', 'Crime Counts', 'walk_score', 'raw_visit_count', 'Households in Poverty', 'Below 40k Earners'
Training Recall	0.32	0.32	1.0	1.0	0.6
Training Precision	0.8	1.0	1.0	1.0	0.94
Training AUC	0.85	0.93	1.0	1.0	0.96
Test Recall	0.5	0.5	0.5	0.5	0.5
Test Precision	1.0	1.0	1.0	1.0	1.0

0.92

0.91

0.70