Terminalogy: An S-linear combination of a and b is an expression $S \cdot \alpha + t \cdot b$ (S, $t \in S$) We say R can be written as an S-linear ambination of a and b if there one $s,t \in S$ such that $s \cdot \alpha + t \cdot b = R$. We say a and b are S-linearly independent if Vs, tes, "s. a. + t. b = 0 => "s, t = 0" Ref. Linear algebra textbodes.

Ihm (Euler - Fermat) Let m be a modulus, and a $\in \overline{\mathcal{F}}(m)$. Then $= 1 \mod m$ Coro. Let m be a modulus, and a $\in \overline{\mathcal{F}}(m)$. Then

for any integers b & c s.t. $b \equiv c \mod \varphi(m)$, $a^{b} = a^{c} \mod m$ $a^{b} = a^{c+k \cdot e(m)} = a^{c} \cdot (a^{e(m)k})^{k}$

Rmk: Be aware of the modulus. It is NOT TRUE that
$$b \equiv c \mod m \implies a^b \equiv a^c \mod m$$

eg.
$$10 \equiv 3 \mod 7$$
 but $2^{10} \not\equiv 2^3 \mod 7$ and $2 \in \mathcal{I}(7)$

Recall the additive modulor dynamics:

Prop. Let m be a modulus, and a an integer.

The dynamics of + a mod m consists of GCD(a,m) many cycles of the same length.

Compare it to the multiplicative modulon dynamics:

Prop. Let m be a modulus, and $a \in \overline{\mathcal{F}}(m)$. Then the dynamics of or mod m consists of cycles of the same length.

Does the Coro suggests that {

multiplicative modular dynamics in \$\mathbb{I}(m)\$

are "isomorphic"?

No really,

eg.
$$m = 20$$

$$\underline{\mathcal{I}}(20) = \{1, 3, 7, 9, 11, 13, 17, 19\}$$

The dynamics of +1 mod 8

consists of only one cycle

But no a \(\int \overline{\phi}(m) \) such that \(\bullet \alpha \text{mod 20} \) consists of only one cycle.

Indeed:

· a=1: 8 cycles of length 1.

· a=3: 2 cycles of length 4.

7. — 19 1. — 19

· a = 7: 2 cycles of length 4.

· a = 9: 4 cycles of length Z.

15,9 35,7

11 5-19 135 17

a=11: 4 cycles of length Z.

3213

7217 9219

a=13:2 cycles of length 4.

1 13 11 3 1 1 1 1 17 9 7 19

a=17: 2 cycles of length 4:

7 17 11 77 11 77 13 13 19

a=19: 4 cycles of length 2.

1219 . 32.17.

11=9 13=7

Primitive Roots

For p a prime and $a \in \mathcal{J}(p)$, recall that $\ell(a) = \ell(a) = \ell(a)$ the length of each cycle in the dynamics $\ell(a) = \ell(a) = \ell(a)$

While proving Euler-Fermat Theorem, we have seen. $l(a) \quad \ell(p) = p - 1.$

Defn. Say $a \in \overline{F}(p)$ is a primitive root modulo p if l(a) = p-1. Namely, there is only one cycle in the dynamics of $\bullet a \mod p$

$$\alpha=1$$
 $\ell(\alpha)=1$

$$a = 2$$
 $\ell(2) = 3$

$$\alpha = 3 \quad L(3) = 6$$

$$a = 4 L(4) = 3$$

$$\alpha = 5$$
 $L(5) = 6$

$$a=6 \quad \mathcal{L}(6)=2$$

$$a=0$$
 length $a=0$

$$a = 1$$
. longth 6

Rmk:

1) I four do we generate a public key? Sufe prime . "Sophie Germain prime" is a prime 1 s.t. p = 29 + 1 is also a prime.Upshot: $9(p) = 2 \cdot 9$. If 1 is large. so is p.

And we have fast primality testing.

②③ The computation of $A \otimes B$ is fast, thanks to Pingala's algorithm (and S)

However, compute a (resp. 6) from A (resp. 8) is difficult!

Discrete logarithm: $g^x \equiv \alpha \mod \rho$

Especially when Y(P) has a large prime factor.

E.g.
$$P = 17$$
 Then $Q(p) = 2^{4}$.
 $Q = 3$ is a primitive prot. $L(3) | Q(p) = 2^{4}$, so $L(3) = 2^{1/2}$

But
$$3^2 = -1 \mod 17$$
, therefore, $1(3)$ has to be 2^4 .

Want to find
$$x$$
 in $z^x \equiv a \mod p$.

1. Set $x_0 = a$ and compute $y := z^{e-1} \mod p$

2. Forevery
$$k \in \{0, \dots, e-1\}$$
 do:

i) compute $Q_k = (\{e^{-\chi_k}Q\})^{qe-1-k} \mod p$

ii) Find $d_k \in \{0, \dots, q-1\}$ st. $Y^{dk} \equiv \alpha_k \mod p$

iii) Set $\chi_{k+1} = \chi_k + q^k d_k$.

32**	m.d /7
.3	3
. 32.	. 9 .
· 3 ²² ·	. 13
323	1

Then Xe would be a solution.

Back to the example: Let's pick
$$\alpha = 2$$

$$Solve: 3^x \equiv 2 \mod 17$$

$$0 \cdot x_{0} = 0 \quad x = 3^{2^{4-1}} \equiv -1 \mod 17 \quad d_{k} \in \{0, \dots, 2^{-1}\}$$

$$1 \cdot a_{0} = (3^{-0} \cdot 2)^{2^{4-1-0}} \equiv 1 \equiv x^{0} \mod 17 \quad d_{0} = 0$$

$$3 = 3^2 = -1 \mod 1.7$$

1.
$$a_0 = (3^{-0}.2)^2$$

$$d_0 = 0$$

$$\chi_{r} = 0 + 2^{\circ} \cdot 0 = 0$$

$$2 \cdot \alpha_{1} = (3^{-0} \cdot 2)^{2^{4-1-1}} \equiv -1 \equiv \gamma' \mod 17 \quad d_{1} = 1$$

$$x_{2}^{2} = x_{0}^{2} + 2^{1} \cdot 1 = 2$$

$$a_{2} = (3^{-\frac{1}{2}} \cdot 2)^{2^{\frac{4}{4} - 1 - 2}} \equiv (6^{\frac{1}{2}} \cdot 2)^{2} \equiv 4^{2} \mod 17$$

$$\equiv -1 \equiv \gamma \pmod{17} \quad d_{2} = 1$$

$$x_{3} = \frac{x_{1}}{2} + 2^{\frac{1}{2}} \cdot 1 = 6$$

$$4 \cdot a_{3} = (3^{-\frac{6}{2}} \cdot 2)^{2^{\frac{4}{4} - 1 - 3}} \equiv 6^{\frac{6}{2}} \cdot 2 \equiv 3^{\frac{6}{2}} \cdot 2^{\frac{7}{4} \mod 17}$$

$$\equiv -1 \equiv \gamma \pmod{17}$$

$$x_{4} = 6 + 2^{\frac{3}{2}} \cdot 1 = \boxed{14}$$

$$x_{4} = 6 + 2^{\frac{3}{2} \cdot 1} = \boxed{14}$$

$$x_{4} = 6 + 2^{\frac{3}{2} \cdot 1} = \boxed{14}$$

$$x_{5} = 3^{\frac{3}{4} + 2^{\frac{3}{2} +$$

After-class reading

- This webpage provides an animated illustration of modular dynamics.
- On similarity between additive modular dynamics and multiplicative modular dynamics: according to computation in today's lecture, can you give a **bijection** f from $\Phi(20)$ to $\mathbb{Z}/\varphi(20)$ so that f preserves the dynamics on both of them. Namely, f(ab) = f(a) + f(b).
- On Pohlig-Hellman algorithm: can you see why for $\gamma := g^{q^{e-1}} \pmod{p}$, the equation

$$\gamma^d \equiv a \pmod{p}$$

has a solution d in $\{0, 1, 2, \dots, q - 1\}$?

• We will discuss the **proof** of **primitive root theorem** next time. Please read the last part (polynomials over \mathbb{F}_p) of **chapter 5** and the rest of **chapter 6** for preparing.