Homework 5

Alexander Brylev

The label "Problem" is used for required problems. "Exercise" is for suggested exercises.

Problem 1 (Golan 307). Let V be a vector space over a field F and let W be a subspace of V. For each $v \in V$, let $v + W = \{v + w \mid w \in W\}$. Let $V/W = \{v + W \mid v \in V\}$ be the collection of all sets of the form v + W, and define operations of addition and scalar multiplication on V/W by setting (v + W) + (v' + W) = (v + v') + W and c(v + W) = (cv) + W for all $v, v' \in V$ and $c \in F$. Show that

- 1. v + W = v' + W if and only if $v v' \in W$;
- 2. V/W, with the given operations, is a vector space over F;
- 3. The function $v \mapsto v + W$ is an epimorphism from V to V/W, the kernel of which equals W;
- 4. Every complement of W in V is isomorphic to V/W;
- 5. If $(v + W) \cap (v' + W) \neq \emptyset$, then v + W = v' + W.

The space V/W is called the factor space of V by W.

Solution. 1. Let v+W=v'+W for some $v,v'\in V$. Then $v+0_W=v'+w$ for some $w\in W$, so that $v-v'=w-0_W\in W$.

Now let $v - v' \in W$. Then v - v' = w' for some $w' \in W$, so that for any $w \in W$ we have $v + w = (v' + w') + w = v' + (w' + w) \in v' + W$, which shows $v + W \in v' + W$. Due to symmetry, we must also have $v' + W \in v + W$. Hence v + W = v' + W.

2. First, let's check that the given operations are well-defined, i.e. if u+W=v+W for some $u,v\in W$ and u'+W=v'+W for some $u',v'\in W$, then (u+u')+W=(v+v')+W and cu+W=cv+W for all $c\in F$.

If u+W=v+W and u'+W=v'+W for some $u,v,u',v'\in W$, then, by part 1,u-v=w and u'-v'=w' for some $w,w'\in W$. So $(u+u')-(v+v')=w+w'\in W$, and, using part 1 again, we get (u+u')+W=(v+v')+W. Also, $cu-cv=c(u-v)=cw\in W$, so that cu+W=cv+W, by part 1 as well. Thus, the given operations are indeed well-defined. To show V/W, with the given operations, is a vector space, we first need to prove V/W is an abelian group.

Let $u + W, u_1 + W, u_2 + W, u_3 + W \in V/W$. Then i) $((u_1 + W) + (u_2 + W)) + (u_3 + W) = ((u_1 + u_2) + W) + ((u_3 + W)) = ((u_1 + u_2) + u_3) + W = (u_1 + (u_2 + u_3)) + W = (u_1 + W) + ((u_2 + W) + (u_3 + W))$; ii) $(0_V + W) + (u + W) = (0_V + u) + W = u + W = (u + 0_V) + W = (u + W) + (0_V + W)$; iii) $(-u + W) + (u + W) = (-u + u) + W = 0_V + W$; iv) $(u_1 + W) + (u_2 + W) = (u_1 + u_2) + W = (u_2 + u_1) + W = (u_2 + W) + (u_1 + W)$. Hence $V/W = V/W, +, -, 0_V + W$ is an abelian group. For each $v \in V/W$ by $v_1 \in V/W$. Then

- i) $f_r((v_1+W)+(v_2+W)) = f_r((v_1+v_2)+W) = r(v_1+v_2)+W = (rv_1+rv_2)+W = (rv_1+W)+(rv_2+W) = r(v_1+W)+r(v_2+W) = f_r(v_1+W)+f_r(v_2+W)$; ii) $f_{r_1+r_2}(v+W) = (r_1+r_2)v+W = (r_1v+r_2v)+W = (r_1v+W)+(r_2v+W) = r_1(v+W)+r_2(v+W) = f_{r_1}(v+W)+f_{r_2}(v+W)$; iii) $f_{r_1}(f_{r_2}(v+W)) = f_{r_1}(r_2v+W) = r_1r_2v+W = f_{r_1r_2}(v+W)$; iv) $f_1(v+W) = 1v+W = v+W$. Therefore V/W is a vector space over F.
- 3. The map $f: V \to V/W$ defined via f(v) = v + W is obviously surjective and f(v + u) = (v + u) + W = (v + W) + (u + W) = f(v) + f(u) for all $u, v \in V$, which shows it is a homomorphism. Using part 1, f(v) = v + W = 0 + W if and only if $v = v 0 \in W$, which shows Ker(f) = W.
- 4. Using the first homomorphism theorem and part 3, $W^c = V/Ker(f) \cong Im(f) = V/W$.
- 5. Let $(v+W) \cap (v'+W) \neq \emptyset$. This means v+w=v'+w' for some $w,w' \in W$, which yields $v-v'=w'-w \in W$. By part 1, this implies v+W=v'+W.

Problem 2 (Golan 325). Let $\alpha \in \operatorname{Aut}(\mathbb{R}^2)$ be defined by $\alpha : \begin{bmatrix} a \\ b \end{bmatrix} \mapsto \begin{bmatrix} -b \\ a \end{bmatrix}$. Show that $\mathbb{R}\{\alpha, \sigma_1\}$ is a unital subalgebra of $\operatorname{End}(\mathbb{R}^2)$. Show that it is proper by giving an example of an endomorphism of \mathbb{R}^2 not in this subalgebra.

Problem 3 (Golan 326). Let V be the space of all real-valued functions on the interval [-1,1] which are infinitely differentiable, and let δ be the endomorphism of V which assigns to each function f its derivative. Find the kernel and image of δ .

Solution. We have $Ker\delta = \{v \in V : \delta(v) = 0\} = \{f \in C^{\infty}[-1,1] : f' = 0\} = \{f \in C^{\infty}[-1,1] : f(x) = c \text{ for some } c \in R\}$, i.e., a set of all constant functions defined on [-1,1]. We have $Im\delta = \{v \in V : \delta(u) = v \text{ for some } u \in V\} = \{f \in C^{\infty}[-1,1] : g' = f \text{ for some } g \in C^{\infty}[-1,1]\} = \{f \in C^{\infty}[-1,1] : f \text{ is integrable on } [-1,1]\}$, i.e., a set of all integrable functions from $C^{\infty}[-1,1]$.

Problem 4 (Golan 338). Let V be a vector space over a field F which is not finitely generated, and let $\sigma_0 \neq \alpha \in \operatorname{End}(V)$. Set $A = \{\beta \in \operatorname{End}(V) \mid \alpha\beta = \sigma_1\}$. Show that if A has more than one element then it is infinite.

Solution. Suppose A has two elements, β_1 and β_2 . Then there exists a basis vector v of V such that $\beta_1(v) \neq \beta_2(v)$. For $n \geq 3$, define $\beta_n \in \operatorname{End}(V)$ via $\beta_n(v) = (n-1)\beta_1(v) - (n-2)\beta_2(v)$ and $\beta_n(u) = \beta_1(u)$, where u is a basis vector of V such that $u \neq v$. Then $\alpha \beta_n(v) = (n-1)\alpha \beta_1(v) - (n-2)\alpha \beta_2(v) = (n-1)v - (n-2)v = v$ and $\alpha \beta_n(u) = \alpha \beta_1(u) = u$ for a basis vector u of V such that $u \neq v$. Thus, $\beta_n \in A$ for all n. For $n \neq k$, $\beta_n(v) - \beta_k(v) = (n-k)(\beta_1(v) - \beta_2(v)) \neq 0$, which shows $\beta_n \neq \beta_k$ for $n \neq k$. Hence A contains infinitely many elements.

Problem 5 (Golan 340). Let V be a vector space over a field F satisfying the condition that $\alpha\beta = \beta\alpha$ for all $\alpha, \beta \in \text{End}(V)$. Show that $\dim(V) = 1$.

Solution. Suppose dim(V) > 1. Then there exist two linearly independent vectors e_1 and e_2 in V. Define $\alpha \in \operatorname{End}(V)$ via $\alpha(e_1) = e_2$ and $\alpha(v) = 0$ if $v \notin \operatorname{span}(e_1)$. Define $\beta \in \operatorname{End}(V)$ via $\beta(e_2) = e_1$ and $\beta(v) = 0$ if $v \notin \operatorname{span}(e_2)$. Then $\alpha\beta(e_1) = \alpha(0) = 0$, which does not equal $\beta\alpha(e_1) = \beta(e_2) = e_1$, a contradiction.

Problem 6 (Golan 354). Let V be a vector space over a field F and let $\alpha \in \operatorname{Aut}(V)$. Let W_1, \ldots, W_k be subspaces of V satisfying $V = \bigoplus_{i=1}^k W_i$. For each $1 \le i \le k$, let $Y_i = \{\alpha(w) \mid w \in W_i\}$. Is $V = \bigoplus_{i=1}^k Y_i$?

Solution. Let $y \in V$. Since $\alpha \in Aut(V)$, then α is surjective and hence there exists $x \in V$ such that $\alpha(x) = y$. Since $x \in V$ and $V = \bigoplus_{i=1}^k W_i$, then $x = w_1 + w_2 + ... w_k$ for some $w_i \in W_i, 1 \le i \le k$. Then $y = \alpha(x) = \alpha(w_1 + w_2 + ... + w_k) = \alpha(w_1) + \alpha(w_2) + ... + \alpha(w_k) \in Y_1 + Y_2 + ... + Y_k$.

Let $v \in Y_i \cap Y_j$ for some $i \neq j$. Then $v = \alpha(w_i) = \alpha(w_j)$ for some $w_i \in W_i$ and $w_j \in W_j$. Since $\alpha \in Aut(V)$, then α is injective, and so $w_i = w_j \in W_i \cap W_j$. From $V = \bigoplus_{i=1}^k W_i$, it follows that $W_i \cap W_j = \{0\}$, and hence $w_i = w_j = 0$. So $v = \alpha(w_i) = \alpha(0) = 0$.

Exercise (Golan 415). Let V be the subspace of $\mathbb{R}[X]$ consisting of all polynomials of degree less than 3 and choose the basis $B = \{1, X, X^2\}$ for V. Let $\alpha \in \text{End}(V)$ satisfy

$$\Phi_{BB}(\alpha) = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{bmatrix}.$$

Let D be the basis $\{1, X+1, 2X^2+4X+3\}$ for V. What is $\Phi_{DD}(\alpha)$?

Exercise (Golan 467). Let n be a positive integer and let F be a field. Let $A, B \in \mathcal{M}_{n \times n}(F)$ satisfy A + B = I. Show that $AB = \mathbf{0}$ if and only if A and B are idempotent.

Solution. Since A + B = I, then B = I - A and A = I - B. So $AB = A(I - A) = AI - A^2 = A - A^2$ and $AB = (I - B)B = IB - B^2 = B - B^2$. Hence $AB = \mathbf{0}$ if and only if $A = A^2$ and $B = B^2$, i.e., if and only if A and B are idempotent.

Exercise (Golan 530). Let n be a positive integer and let F be a field. If $A \in \mathcal{M}_{n \times n}(F)$ is nonsingular, is the same necessarily true of $A + A^T$?

Solution. If n = 1, then A = (a) for some $a \in F$. If A is nonsingular, then $a \neq 0_F$, and so $A + A^T = (a) + (a) = (2a)$ is nonsingular, since $2a \neq 0_F$. Now, let n > 1. Define $A = (a_{ij})$ via $a_{1n} = -1_F$, $a_{i,(n+1)-i} = 1_F$ for $2 \leq i \leq n$, and $a_{ij} = 0_F$ elsewhere. Then $det(A) = -1_F \neq 0_F$, so that A is nonsingular. However, $A + A^T$ has a zero first row, and hence is singular.