## UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

## MARK SCHEME for the October/November 2010 question paper for the guidance of teachers

## 9702 PHYSICS

9702/23

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.



|   | Page 2                                                                    | Mark Scheme: Teachers' version                                                                                                                                                                                                                                                                                           | Syllabus                          | Paper                |     |  |  |
|---|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------|-----|--|--|
|   |                                                                           | GCE A LEVEL – October/November 2010                                                                                                                                                                                                                                                                                      | 9702                              | 23                   |     |  |  |
| 1 | (a) allow 0.                                                              | 05 mm → 0.15 mm                                                                                                                                                                                                                                                                                                          |                                   | B1                   | [1] |  |  |
|   | <b>(b)</b> allow 0.                                                       | $25s \rightarrow 0.5s$                                                                                                                                                                                                                                                                                                   |                                   | B1                   | [1] |  |  |
|   | (c) allow 8                                                               | $N \rightarrow 12 N$                                                                                                                                                                                                                                                                                                     |                                   | B1                   | [1] |  |  |
|   | ignore number of significant figures                                      |                                                                                                                                                                                                                                                                                                                          |                                   |                      |     |  |  |
| 2 | •                                                                         | atoms / ions / particles in a regular arrangement / lattic<br>long range order / orderly pattern<br>(lattice) repeats itself<br>long chain molecules / chains of monomers<br>some cross-linking between chains / tangled chains<br>disordered arrangement of molecules / atoms / particle<br>any ordering is short-range | <ul><li>(1)</li><li>(1)</li></ul> | B1<br>B1<br>B1       |     |  |  |
|   | (three 'B' ma                                                             | arks plus any other 2 marks)                                                                                                                                                                                                                                                                                             |                                   | B2                   | [5] |  |  |
| 3 | adjust c.r.o.<br>measure ler<br>frequency =<br>(assume b is               | s measured as s cm <sup>-1</sup> , unless otherwise stated)                                                                                                                                                                                                                                                              |                                   | B1<br>B1<br>M1<br>A1 | [4] |  |  |
|   | (if statement is 'measure $T$ , $f = 1/T$ ' then last two marks are lost) |                                                                                                                                                                                                                                                                                                                          |                                   |                      |     |  |  |
| 4 | (a) accepta                                                               | ble straight line drawn (touching every point)                                                                                                                                                                                                                                                                           |                                   | B1                   | [1] |  |  |
|   | ` '                                                                       | ance fallen is not <i>d</i><br>distance fallen plus the diameter of the ball                                                                                                                                                                                                                                             |                                   | C1<br>A1             | [2] |  |  |
|   | ('d is no                                                                 | ot measured to the bottom of the ball' scores 2/2)                                                                                                                                                                                                                                                                       |                                   |                      |     |  |  |
|   |                                                                           | meter: allow 1.5 ± 0.5 cm (accept one SF) ecf from <b>(a)</b>                                                                                                                                                                                                                                                            |                                   | A1                   | [1] |  |  |
|   | gra                                                                       | dient = 4.76, $\pm$ 0.1 with evidence that origin has not beed dient = $g$ / 2 9.5 m s <sup>-2</sup>                                                                                                                                                                                                                     | en used                           | C1<br>C1<br>A1       | [3] |  |  |

|   |     | - J                                                         | GCE A LEVEL – October/November 2010 9702                                                                                                                                                                                                                                                | 23                       |     |
|---|-----|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----|
| 5 | (a) | (i)                                                         | Fig. 5.2                                                                                                                                                                                                                                                                                | B1                       | [1] |
|   |     | (ii)                                                        | Fig. 5.3                                                                                                                                                                                                                                                                                | B1                       | [1] |
|   | (b) | ) kinetic energy increases from zero then decreases to zero |                                                                                                                                                                                                                                                                                         | B1                       | [1] |
|   | (c) | (i)                                                         | $\Delta E_{\rm P} = mg\Delta h / mgh$<br>= 94 × 10 <sup>-3</sup> × 9.8 × 2.6 × 10 <sup>-2</sup> using $g = 10$ then -1<br>= 0.024 J                                                                                                                                                     | C1<br>A1                 | [2] |
|   |     | (ii)                                                        | either $0.024 = \frac{1}{2}k \times (2.6 \times 10^{-2})^2$ or $\frac{1}{2}kd^2 = \frac{1}{2}k \times (2.6 \times 10^{-2})^2 - \frac{1}{2}kd^2$<br>$0.012 = \frac{1}{2}k \times d^2$ $kd^2 = \frac{1}{2}k \times (2.6 \times 10^{-2})^2 - \frac{1}{2}kd^2$<br>d = 0.018 m $d = 0.018 m$ | C1<br>C1                 |     |
|   |     |                                                             | $d = 0.018 \mathrm{m}$ $d = 0.018 \mathrm{m}$ $= 1.8 \mathrm{cm}$                                                                                                                                                                                                                       | A1                       | [3] |
| 6 | (a) |                                                             | en two (or more) waves meet (at a point)<br>sultant) displacement is (vector) sum of individual displacements                                                                                                                                                                           | B1<br>B1                 | [2] |
|   | (b) | (i)                                                         | $\lambda = ax / D$ (if no formula given and substitution is incorrect then 0/3) $590 \times 10^{-9} = (1.4 \times 10^{-3} \times x) / 2.6$ $x = 1.1  \text{mm}$                                                                                                                         | C1<br>C1<br>A1           | [3] |
|   |     | (ii)                                                        | <b>1.</b> $180^{\circ}$ (allow $\pi$ if rad stated)                                                                                                                                                                                                                                     | A1                       | [1] |
|   |     |                                                             | <b>2.</b> at maximum, amplitude is 3.4 units and at minimum, 0.6 units intensity $\sim$ amplitude <sup>2</sup> allow $I \sim a^2$ ratio = $3.4^2 / 0.6^2$                                                                                                                               | C1<br>C1                 |     |
|   |     |                                                             | = 32                                                                                                                                                                                                                                                                                    | A1                       | [3] |
| 7 | (a) | (i)                                                         | path: reasonable curve upwards between plates straight and at a tangent to the curve beyond the plates                                                                                                                                                                                  | B1<br>B1                 | [2] |
|   |     | (ii)                                                        | <b>1</b> . ( <i>F</i> =) <i>E</i> . <i>g</i>                                                                                                                                                                                                                                            | B1                       | [1] |
|   |     |                                                             | <b>2.</b> $(t =) L / v$                                                                                                                                                                                                                                                                 | B1                       | [1] |
|   | (b) | (i)                                                         | total momentum of a system remains constant <b>or</b> total momentum of a system before a collision equals total momentum after collision provided no external force acts on the system (do not accept 'conserved' but otherwise correct statement gets 1/2)                            | M1<br>A1                 | [2] |
|   |     | (ii)                                                        | $(\Delta p =) EqL/v$ allow ecf from (a)(ii)                                                                                                                                                                                                                                             | B1                       | [1] |
|   |     | (iii)                                                       | either charged particle is not an isolated system so law does not apply or system is particle and 'plates' equal and opposite $\Delta p$ on plates / so law applies                                                                                                                     | M1<br>A1<br>(M1)<br>(A1) | [2] |
|   |     |                                                             |                                                                                                                                                                                                                                                                                         | . ,                      |     |

Mark Scheme: Teachers' version

Syllabus

Paper

Page 3

| Page 4 |                                           |                                                                                                                | Syllabus | Paper       | Paper            |  |
|--------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------|-------------|------------------|--|
|        |                                           | GCE A LEVEL – October/November 2010                                                                            | 9702     | 23          |                  |  |
| 8      | (a) (i)                                   | either $P = V^2 / R$ or $I = 1200 / 230$ or 5.22<br>$R = (230 \times 230) / 1200$                              |          | C1          |                  |  |
|        |                                           | $R = 230^2 / 1200$ or $R = 230 / 5.22$                                                                         |          | M1          |                  |  |
|        |                                           | $= 44.1\Omega \qquad \qquad = 44.1\Omega$                                                                      |          | A0          | [2]              |  |
|        | (ii)                                      | $R = \rho L / A$                                                                                               |          | C1          |                  |  |
|        |                                           | = $(1.7 \times 10^{-8} \times 9.2 \times 2) / (\pi \times \{0.45 \times 10^{-3}\}^2)$<br>= $0.492 \Omega$      |          | M1          | [2]              |  |
|        |                                           | = 0.49232                                                                                                      |          | A0          | [2]              |  |
|        |                                           | rent = 230 /44.6                                                                                               |          | C1          |                  |  |
|        | pov                                       | ver = $(230/44.6)^2 \times 44.1$<br>= 1170 W                                                                   |          | C1<br>A1    | [2]              |  |
|        | (all                                      | ow full credit for solution based on potential divider)                                                        |          | Ai          | [3]              |  |
|        |                                           |                                                                                                                |          |             |                  |  |
|        | <b>(c)</b> e.g                            | . less power dissipated in the heater / smaller p.d. across                                                    | heater / |             |                  |  |
|        |                                           | more power loss in cable / current lower cable becomes heated / melts                                          |          | B1<br>B1    | [2]              |  |
|        |                                           | (any two sensible suggestions, 1 each, max 2)                                                                  |          | ы           | [4]              |  |
|        |                                           |                                                                                                                |          |             |                  |  |
| 9      |                                           | cleus emits $\alpha$ -particles or $\beta$ -particles and/or $\gamma$ -radiation                               |          | B1          |                  |  |
|        | to form a different / more stable nucleus |                                                                                                                |          | B1          | [2]              |  |
|        | /I.V. /IV                                 |                                                                                                                | 41)      | <b>D</b> .4 | F 4 7            |  |
|        | (b) (i)                                   | fluctuations in count rate (not 'count rate is not constar                                                     | nt')     | B1          | [1]              |  |
|        | (ii)                                      | no effect                                                                                                      |          | B1          | [1]              |  |
|        | (iii)                                     |                                                                                                                |          | B1          |                  |  |
|        |                                           | either $\alpha$ -particles stopped within source (and gain ele or $\alpha$ -particles are helium <u>nuclei</u> | ctrons)  | B1          | [2]              |  |
|        |                                           | a participo dio ficilatti <u>fidolor</u>                                                                       |          | Ο,          | [ <del>-</del> ] |  |

allow 1/2 for 'parent nucleus gives off radiation to form daughter nucleus'