$$x' = \frac{dx}{dt}$$
, $y' = \frac{dy}{dt}$ = $\frac{x'}{y'}$ = $\frac{dy}{dt}$ = $\frac{-5x}{dx}$ (=) $\frac{dy}{dx} = \frac{-5x}{2y}$ (=)

(2) phase portrait of the ocalar dynamical nystem

$$\dot{x} = \frac{-1}{5}x + x^{2} - x^{3}$$
; find $f(t,0)$ and det. the propr. of $f(t,1/4)$, $f(t,1/2)$, $f(t,1)$

$$\dot{x} = \frac{-1}{5}x + x^2 - x^3$$

$$\dot{x} = \frac{1}{5}x + x^2 - x^3$$

$$f(\eta^*) = 0 \Rightarrow \frac{1}{5}x + x^2 + x^3 = 0$$

$$x(-x^2 + x - \frac{1}{5}) = 0$$

$$f(\eta^{*}) = 0 = 0 \xrightarrow{\times 3} \eta^{*3} + \eta^{*2} - \frac{1}{5}\eta^{*} = 0 = 0 \quad \eta^{*} \left(-\eta^{*2} + \eta^{*} - \frac{1}{5}\right) = 0 \quad \begin{cases} -\eta^{*2} + \eta^{*} - \frac{1}{5} = 0 \\ -\eta^{*2} + \eta^{*} - \frac{1}{5} = 0 \end{cases}$$

$$-\eta^{\mu^2} + \eta^{\lambda} - \frac{1}{5} = 0 \quad (e) \quad \eta^{\mu^2} - \eta^{*} + \frac{1}{5} = 0 \quad =) \quad \eta^{\mu}_{2,3} = \frac{5 \pm \sqrt{5}}{10}$$

=)
$$m_1^* = 0$$
, $m_2^* = \frac{5+\sqrt{5}}{10}$, $m_3^* = \frac{5-\sqrt{5}}{10}$ - equilibrium points

The phase portnoit:

attractor repellar attractor

the abbits:
$$(-\infty;0):lot; (0;\frac{-15}{10}):l\frac{5-15}{10}:l\frac{5-15}{10}:l\frac{5+15}{10}:l$$

$$\{\frac{5+15}{10}:l\frac{5+15}{10}:l+\infty)\}$$

Pland $P(t,0)$

$$P(t,0) = P(t,0) = P(t,0$$

n is om eq. €) \$ (n = 0

=) $n_{*}^{*} = (0,0)$ and $n_{2}^{*} = (\frac{1}{2}, \frac{1}{2})$ the equilibrium points of the system

eigenvalues: 2,2= ±1

 $\lambda_1, \lambda_2 \in \mathbb{R}$, $\text{Re}(\lambda_1) \neq 0$, $\text{Re}(\lambda_2) = 0 \Rightarrow n_0^*$ is hypercholic $\lambda_1 = -1 < 0 < \lambda_2 = 1 \Rightarrow n_0^*$ is a raddle (unstable)

$$\eta_{2}^{k} = \left(\frac{1}{2}, \frac{1}{2}\right) \Rightarrow \delta\left(\frac{1}{2}; \frac{1}{2}\right) = \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}$$

eigenvalues: $\lambda_1, \lambda_2 = -1 \pm 13i$

Re(1,) +0, Re(1,) +0 = m2 is hyperbolic

Me is a focus attractor (Re(L) < 0, Re(L) < 0)