Analisi 2

 ${\bf Emilio} \ {\bf Groppi}$

4 aprile 2024

Indice

L	Inte	egrali generalizzati o Impropri
	1.1	Funzioni localmente integrabili
	1.2	Funzioni integrabili in senso generalizzato
	1.3	Integrabilità in senso generalizzato delle funzioni campione
	1.4	Criteri di integrabilità
		1.4.1 Criterio generale di Cauchy
		1.4.2 Aut-aut per l'integrale generalizzato
		1.4.3 Criterio del confronto
	1.5	Funzioni assolutamente e semplicemente integrabili in senso generalizzato

4 INDICE

Capitolo 1

Integrali generalizzati o Impropri

1.1 Funzioni localmente integrabili

Nel definire l'integrale di Riemann $\int_a^b f(x)dx$ si è supposto che f fosse una funzione limitata definita su un intervallo chiuso e limitato (cioè compatto). Vogliamo ora rimuovere queste rstizioni.

Definizione 1.1

Una funzione f si dice **localmente integrabile** sull'intervallo J qualunque se f è integrabile $\forall K_{compatto} \subseteq J$

Esempio 1.1.1

Se $f: J \to \mathbb{R}$ continua, allora f è localmente integrabile su J.

Osservazione: Sia $f:J\to\mathbb{R}$ localmente integrabile e sia $c\in J$ finita. Allora la funzione integrale

$$F(x) = \int_{c}^{x} f(t)dt \ con \ x \in J$$

è continua in J.

Per ogni
$$d \in J$$
 si ha che $\lim x \to d \int_{c}^{x} f(t)dt = \lim_{x \to d} F(x) = F(d) = \int_{c}^{d} f(t)dt$

1.2 Funzioni integrabili in senso generalizzato

Idea

Se d è un punti do accolmulazione per J, una $d \notin J,$ si usa u linguaggio al limite. Distinguiamo i vari casi:

- 1. Sia J=[a,b[con $b\in\mathbb{R}\cup\{+\inf\}$ e sia $f:J\to\mathbb{R}$ localmente integrabile su J. Si dice che f è intregabile in senso generalizzato su J se esiste finito il limite $\lim_{x\to b}\int_a^x f(x)dt:=\int_a^b f(t)dt$
- 2. Sia J=]a,b[con $a\in\mathbb{R}\cup\{-\inf\}$ e sia $f:J\to\mathbb{R}$ localmente integrabile su J. Si dice che f è intregabile in senso generalizzato su J se esiste finito il limite $\lim_{x\to a}\int_x^b f(x)dt:=\int_a^b f(t)dt$
- 3. Sia J =]a, b[con $a \in \mathbb{R} \cup \{-\inf\}$ e $b \in \mathbb{R} \cup \{+\inf\}$ e sia f una funzione localmente integrabile su J. Si dice che f è integrabile in senso generalizzato su J se esiste $c \in J$ tale che f è integravile in senso generalizzato su [a, c] e [c, b] e si pone

$$\int_{a}^{b} f(t)dt := \int_{a}^{c} f(t)dt + \int_{c}^{b} f(t)dt$$

Osservazione 1.1.2

La definizione 3 non dipende da c.

1.3 Integrabilità in senso generalizzato delle funzioni campione

Teorema 1.2 (*J* illimitato) 1. Sia $J = [a, +\infty[$, con a > 0 si ha che:

$$\int_{a}^{+\infty} \frac{1}{x^{\alpha}} dx \text{ esiste finito } \Leftrightarrow \alpha > 1$$

2. Sia $J =]-\infty, b]$ con b < 0, si ha che:

$$\int_{-\infty}^{b} \frac{1}{x^{\alpha}} dx \text{ esiste finito } \Leftrightarrow \alpha > 1$$

Dimostrazione. 1. si ha

$$\int_{a}^{+\infty} \frac{1}{x^{\alpha}} dx = \begin{cases} \left[\frac{1}{1-\alpha} t^{1-\alpha} \right]_{a}^{x} = \frac{1}{1-\alpha} \left(x^{1-\alpha} - a^{1-\alpha} \right) & \text{se } \alpha \neq 1 \\ \left[\log t \right]_{a}^{x} = \log x - \log a & \text{se } \alpha = 1 \end{cases}$$

E quindi il limiti per $x \to +\infty$ è finito sse $\alpha > 1$

2. Simile

Teorema 1.3 (J limitato) 1. Sia J = [a, b[, con $b \in \mathbb{R}$ si ha che:

$$\int_{a}^{b} \frac{1}{(b-x)^{\alpha}} dx \text{ esiste finito } \Leftrightarrow \alpha > 1$$

2. Sia J =]a, b] con $a \in \mathbb{R}$, si ha che:

$$\int_{a}^{b} \frac{1}{(x-a)^{\alpha}} dx \text{ esiste finito } \Leftrightarrow \alpha < 1$$

Dimostrazione. 1. si ha

$$\int_{a}^{x} \frac{1}{x^{\alpha}} dx = \begin{cases} \left[\frac{-1}{1-\alpha} (b-t)^{1-\alpha} \right]_{a}^{x} = \frac{1}{1-\alpha} \left((b-a)^{1-\alpha} - (b-x)^{1-\alpha} \right) & \text{se } \alpha \neq 1 \\ \left[\log(b-t) \right]_{a}^{x} = \log(b-a) - \log(b-x) & \text{se } \alpha = 1 \end{cases}$$

E quindi il limiti per $x \to +\infty$ è finito sse $\alpha > 1$

2. Simile

1.4 Criteri di integrabilità

Premessa

Sappiamo ce esistono finiti $\int_0^1 \frac{1}{x^{\alpha}} dx$ se $\alpha < 1$ e $\int_1^{+\infty} \frac{1}{x^{\alpha}} dx$ se $\alpha > 1$, ma er esempio non siamo ancora in grado di decidere se è finito $\int_{-\infty}^b e^{-x^2} dx$, in quanto la funzione e^{-x^2} non ammette primitive elementari e quindi non possiamo calcolarlo esplicitamente.

Osservazione 1.3.1

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{1}{2}t^2} dt$$
: Funzione di ripartizione della normale standard.

Cerchiamo dei metodi che ci permettano di stabilire l'integrabilità in senso generalizzato senza dover calcolare direttamente il limite.

1.4.1 Criterio generale di Cauchy

Teorema 1.4

Sia $f: J = [a, b[\to \mathbb{R}, \ con \ b \in \mathbb{R} \cup \{+\infty\} \ localmente \ integrabile.$ Si ha che f è integrabile in senso generalizzato su $J \Leftrightarrow$

$$\forall \epsilon > 0 \exists I \text{ intotno } di \text{ } b \text{ } t.c. \text{ } \forall x_1, x_2 \in I \text{ } se \text{ } x_1, x_2 \in I \Rightarrow \left| \int_{x_1}^{x_2} f(t) dt \right| < \epsilon$$

Dimostrazione. Posto $F(x) = \int_a^x f(t)dt$, esiste finito $\lim_{x\to b^-} F(x)$ se e solo se vale la condizione di Cauchy:

$$\forall \epsilon > 0 \exists I \text{ intotho di b } t.c. \ \forall x_1, x_2 \in I \text{ se } x_1, x_2 \in I \Rightarrow |F(x_2) - F(x_1)| < \epsilon$$

dove
$$F(x_2) - F(x_1) = \int_{x_1}^{x_2} f(t)dt$$

Vale un analogo risultato se J = [a, b] con $a \in \mathbb{R} \cup \{-\infty\}$

1.4.2 Aut-aut per l'integrale generalizzato

Teorema 1.5

Sia $f: J = [a, b] \to \mathbb{R}$, con $b \in \mathbb{R} \cup \{+\infty\}$ localmente integrabile e $f(x) \leq 0$ in J, allora esiste

$$\lim_{x \to b} \int_{a}^{x} f(t)dt = \sup_{x \in J} \int_{a}^{x} f(t)dt$$

Dimostrazione. Poiché $f(x) \ge 0$ in [a, b[, si ha che per ogni $x_1, x_2 \in [a, b[$, con $x_1 < x_2$

$$\int_{a}^{x_2} f(t)dt - \int_{a}^{x_1} f(t)dt = \int_{x_1}^{x_2} f(t)dt \ge 0$$

e quindi $F(x) = \int_a^x f(t)dt$ è crescente (in senso debole). Dunque per il teorema del limite delle funzioni monotone, esiste

$$\lim_{x \to b} F(x) = \sup_{x \in J} F(x)$$

Vale un analogo risultato se J = [a, b] con $a \in \mathbb{R} \cup \{-\infty\}$

Osservazione 1.5.1

Si può notare che in generale NON esiste $\lim_{x\to b} \int_a^x f(t)dt$.

Per esempio, se $f(t)=\cos t$, non esiste $\lim_{x\to+\infty}\int_0^x\cos tdt=\lim_{x\to+\infty}\sin x$

1.4.3 Criterio del confronto

Teorema 1.6

Siano $f,g:J=[a,b[\to \mathbb{R} \ localmente \ integrabili \ e \ tali \ che \ 0 \leq f(x) \leq g(x) \ in \ J.$ Si ha che:

- 1. Se g è integrabile in senso generalizzato su J, allora lo è anche f e $\int_a^b f(x)dx \le \int_a^b g(x)dx$
- 2. Se f non è integrabile in senso generalizzato su J, allora non lo è neanche g.

Dimostrazione. • Per ogni $x \in J$ si ha che:

$$F(x) = \int_{a}^{x} f(t)dt \le \int_{a}^{x} g(t)dt = G(x)$$

Per il teorema dell'aut-aut, esiste

$$\lim_{x\to b} F(x) = \sup_{x\in J} F(x) \le \sup_{x\in J} G(x) = \lim_{x\to b} G(x) < +\infty$$

e quindi f è integrabile in senso generalizzato e

$$\int_{a}^{b} f(t)dt \le \int_{a}^{b} g(t)dt$$

• Si tratta dell'implicazione contronominale della precedente

Vale un analogo risultato se J =]a, b] con $a \in \mathbb{R} \cup \{-\infty\}$

Corollario 1.6.1 (Criterio del confronto asintotico)

Siano $f,g:J=[a,b[\to\mathbb{R}\ localmente\ integrabili\ e\ tali\ che\ f(x)>0\ e\ g(x)>0\ in\ J,\ ed\ esiste$

$$\lim_{x \to b} \frac{f(x)}{g(x)} = L \in]0, +\infty[$$

allora feg sono entramb integravili in senso generalizzato oppure nessuna delle due lo è

Dimostrazione. Dalla definizione di limite di deduce che esiste $c \in J$ tale che:

$$\frac{1}{2}Lg(x) \le f(x) \le Lg(x) \quad \forall x \in [c, b[$$

Dal criterio del confronto segue la tesi.

Vale un analogo risultato se J = [a, b] con $a \in \mathbb{R} \cup \{-\infty\}$

1.5 Funzioni assolutamente e semplicemente integrabili in senso generalizzato