Sztuczna inteligencja. Co dalej?

Paweł Rychlikowski

Instytut Informatyki UWr

14 czerwca 2018

Pytanie: co dalej?

- Rozumienie 1: jakie perspektywy ma Al? Można zgadywać:
 - Znikanie pewnych zawodów, pojawianie się nowych.
 - Rozwój robotyki, uczenia, uczenia ze wzmocnieniem.
 - Lepsza integracja sieci neuronowych z klasycznym wnioskowaniem.
 - Lepsze granie w gry (brydż, RTS, FPS)
 - Lepsza synteza i analiza mowy oraz obrazów
 - Przesunięcie w stronę przechodzenia testu Turinga

Lepsze podstawy matematyczne dla różnych metod heurystycznych

Rozumienie 2: czego można jeszcze się nauczyć o AI w II.

Dzisiejszy wykład

- Popatrzymy na różne przedmioty w II, które mogą być kontynuacją dzisiejszego wykładu.
- Ale żeby nie było całkiem nudno, nie będziemy streszczać przedmiotu.
- W zamian weźmiemy jakiś drobiazg który:
 - a) Jest (lub mógłby być) na danym wykładzie
 - b) Ma związek z naszym wykładem
 - c) Jest (mam nadzieję) ciekawy.
- ... i o nim coś opowiemy.

Algorytm roju

- Przedmiot: Algorytmy metaheurystyczne
- Wykładowca: Paweł Rajba

Na tym przedmiocie również: local search, taboo, ewolucyjne przeszukiwanie.

Opowiemy o algorytmie **PSO** (particle swarn optimisation).

Algorytm roju (2)

- Mamy populacje cząstek (czyli rozwiązań jakiegoś problemu), zakodowanych liczbami float
- Szukamy maksimum funkcji, którą potrafimy obliczyć dla cząsteczki (nie musimy znać gradientu).
- Cząstki się poruszają (każda ma wektor prędkości, stąd populację nazywamy rojem).
- Pamiętamy:
 - 1. Najlepsze rozwiązanie do tej pory dla całego roju.
 - 2. Najlepsze rozwiązanie do tej pory dla każdej cząstki.

Algorytm roju (3)

Algorytm

- a) Zarządzaj położeniem cząstek (x += v)
- b) Zarządzaj maksimami: mp (dla czątki) i ms (dla roju)
- c) Zarządzaj prędkościami: v += c1 * r1 * (mp-x) + c2 * r2* (ms-x) (r1,r2 są losowane z przedziału (0,1))

Kończymy na przykład, gdy przez dłuższy czas nie zmieniło się żadne maksimum (ew. nie zmieniło się maksimum globalne).

Projektowanie mechanizmów

- Przedmiot: Algorytmiczna teoria gier
- Wykładowca: Jarosław Byrka

Na tym przedmiocie będzie też między innymi sporo o grach jednoturowych, równowadze Nasha itd.

Projektowanie mechanizmów (2)

- Zamiast tworzyć skomplikowanego agenta, grającego w trudną grę
- możemy stworzyć prostego agenta, grającego w łatwą grę

Przykład: aukcja

Rozważamy prostą, jednoturową aukcję: oferenci piszą swoje ceny, wygrywa najwieksza, przedmiot sprzedajemy za tę cenę

Co jest nie tak z tą aukcją?

Projektowanie mechanizmów (2)

Problemy

Co powinien robić agent, który jest w stanie kupić przedmiot za x?

- Złożyć ofertę za x? (jak przegra, to trudno nie dało się nic zrobić, ale jak wygra, to może przepłaci)
- Złożyć ofertę za y < x (ale jakie y? Musi modelować innych graczy i być lepszy o ε od najlepszego z nich)

A jak działałaby aukcja, w której zwycięzca płaciłby cenę drugą z kolei?

Aukcja: wygrywający płaci drugą cenę

Co jest optymalną strategią gracza dla aukcji Vickreya?

Optymalną strategią jest wypisać swoją cenę i nie przejmować się innymi graczami, bo:

- Jak napiszę za dużo, to być może okażę się niewypłacalny (duża przegrana)
- Nie mam też żadnego interesu w zaniżaniu swojej stawki
- Jak przegram, to znaczy że nie dało się wygrać.
- Jak wygram, to płace troszkę mniej niż $y = x_2 + \varepsilon$.

Deser

Historia o aukcji w Niemczech, Mannesmann vs. T-Mobile (18.18 * 1.1 = 19.998)

Przypomnienie

Pamiętaj, żeby przed przerwą zadać zagadkę!

Freebase, DBPedia, Wikipedia i inni

- Przedmiot: Text mining
- Wykładowca: Paweł Rychlikowski
- Przedmiot: Graph databases
- Wykładowca: Piotr Wieczorek
- Przedmiot: Tworzenie agentów konwersacyjnych (I1)
- Wykładowca: Paweł Rychlikowski

Źródło: Wikipedia

Mamy zbiór obiektów (przedmioty, filmy, książki, ?)

Źródło: Wikipedia

Osoba (obiekt typu 1) lubi/nie-lubi pewnych przedmiotów (obiekty typu 2).

Źródło: Wikipedia

Źródło: Wikipedia

Źródło: Wikipedia

Źródło: Wikipedia

Źródło: Wikipedia

Interesuje nas rekonstrukcja brakującego połączenia.

Źródło: Wikipedia

Źródło: Wikipedia

Źródło: Wikipedia

Źródło: Wikipedia

Źródło: Wikipedia

Źródło: Wikipedia

Źródło: Wikipedia

Chcemy wypełnić jedno pole w tej macierzy (wydedukować informacje o związku pewnej osoby z pewnym przedmiotem)

Źródło: Wikipedia

Szukamy **podobnych** osób do naszego bohatera (czyli z dużą liczbą zgodności i małą liczbą konfliktów preferencji)

Źródło: Wikipedia

Pozwalamy tym podobnym na głosowanie na temat naszej preferencji.

Źródło: Wikipedia

Wynikiem jest wniosek, że nasz bohater nie lubi telewizorów plazmowych (musimy wysłać mu reklamę czegoś innego).

Jaki jest facet

- Możemy w miejsce przedmiotów i osób wstawiać różne obiekty, również abstrakcyjne.
- Możliwe zastosowanie: popatrzmy na przymiotniki i rzeczowniki występujące obok siebie w korpusie.
- Można na przykład wydedukować, że z korpusu wynika, że facet jest (bywa) leniwy, mimo że tego połączenia nie ma w korpusie.

Uwaga

Wiedza o tym, że połączenie leniwy facet jest bardziej naturalne niż połączenie lenny facet może przydać się w wielu zadaniach związanych z interepretacją zaszumionego sygnału językowego (np. rozpoznawanie mowy).

Bazy trójek

Struktura bazy

Podstawową treścią takich zbiorów danych jak Freebase czy DBPedia są trójki postaci:

```
<obiekt1> <nazwa-relacji> <obiekt2>
```

Przykłady (DBPedia)

Albrecht von Graefe

- był naukowcem
- był lekarzem medycyny
- urodził się 1870-7-20
- był znany z jaskry

CF a bazy trójek

Uzupełnianie bazy

Relacje są (częściowo) pobierane z Wikipedii (np. infoboksy), ale częściowo wpisywane ręcznie, co oznacza luki i niekonsekwencje.

Zobacz prace: Andrew McCallum (i inni):

- Chains of Reasoning over Entities, Relations, and Text using Recurrent Neural Networks
- RelNet: End-to-End Modeling of Entities & Relations
- Compositional Vector Space Models for Knowledge Base Completion

Wizualizacja danych. PCA vs t-SNE

- Przedmiot: Eksploracja danych
- Wykładowca: Piotr Wnuk-Lipiński

Na tym przedmiocie będzie też o systemach rekomendujących (o których mówiliśmy przed chwilą)

Wizualizacja danych wielowymiarowych

- Często zajmujemy się danymi wielowymiarowymi.
- Ale my lubimy dwa wymiary, żeby zobaczyć je na płaszczyźnie.

Wizualizacja obrazów cyfr (MNIST)

Algorytm t-SNE:

MNIST dataset - Two-dimensional embedding of 70,000 handwritten digits with t-SNE

t-SNE vs PCA

Porównanie klasycznych metod i nowoczesnych

Neuroewolucja

- Przedmiot: Sieci neuronowe i deep learning
- Wykładowca: Jan Chorowski
- Przedmiot: Algorytmy ewolucyjne
- Wykładowca: Piotr Wnuk-Lipiński

O zagadnieniach związanych z tymi przedmiotami trochę mówiliśmy.

Neuroewolucja

- Algorytm NEAT jest przykładem połączenia sieci neuronowych i algorytmów ewolucyjnych.
- Celem jest jednoczesne ustalenie struktury sieci dla danego zadania, jak i dobranie jej wag.

Wielość równoważnych reprezentacji

Mutacja struktury sieci

Możliwe są następujące zmiany:

- Dodanie krawędzi między istniejącymi, niepołączonymi węzłami (pilnujemy acykliczności)
- 2) Zmiana wagi na krawędzi
- 3) Dodanie węzła

Każda mutacja pamięta numer innowacji

Krzyżowanie (z wykorzystaniem numerów innowacji)

Pilnujemy, żeby numery innowacji się nie powtarzały.

Spacjowanie Pana Tadeusza

- Przedmiot: Przetwarzanie języka naturalnego
- Wykładowca: Paweł Rychlikowski
- Pamiętamy zadanie z pierwszej listy o wstawianiu spacji w sklejonym tekście.
- W rzeczywistości rozwiązywalibyśmy je trochę inaczej: korzystając z wiedzy o języku
- Wiedzę taką możemy nabyć analizując duże zbiory tekstów, tzw. korpusy.

Spacjowanie Pana Tadeusza

Definicja

Model języka określa prawdopodobieństwo tego, że dany ciąg (słów, liter) jest poprawnym napisem języka.
Pozwala wybierać pomiędzy różnymi wariantami wypowiedzi (poprawy literówek, OCR, rozpoznawanie mowy, tłumaczenie)

- Najprostszy model języka to model unigramowy: rozważamy prawdopodobieństwo wystąpienia słów.
- Żeby zdecydować jak spacjować partiachciała sprawdzamy czy:

$$P(partiach)P(ciała) > P(partia)P(chciała)$$

Szacujemy:

$$P(partiach) \approx \frac{ile \ razy \ słowo \ "partiach" \ było w korpusie}{liczba \ słów w korpusie}$$

Problemy modelu unigramewego

- Preferuje długie wyrazy (no i ok?) ew. można temu zaradzić biorąc średnią geometryczną prawdopodobieństwa
- Nie uwzględnia następst wyrazów.

Definicja

W modelu bigramowym zakładamy, że:

$$P(w_1 ... w_n) = P(w_1 | [start]) P(w_2 | w_1) ... P(w_n | w_{n-1})$$

Algorytm Viterbiego

- Dynamiczny algorytm, wybierający sekwencję maksymalizującą prawdopodobieństwo w modelu bigramowym nazywa się Algorytmem Viterbiego
- Bardzo podobny do tego, jak rozwiązywaliśmy zadanie ze spacjowaniem.
- Drobna różnica:
 - a) w zadaniu z listy, wystarczyło pamiętać, jaki jest koszt (i kształt) optymalnej ścieżki kończącej się na danej literce.
 - b) tu musimy pamiętać te dane dla każdej literki i każdego wyrazu, który może skończyć się w tym miejscu

Automatyczne tworzenie mechanizmów

- Przedmiot: Sztuczna inteligencja w grach
- Wykładowca: Jakub Kowalski

Na tym przedmiocie będzie też między innymi sporo o MCTS, MiniMax, $\alpha-\beta$

Automatyczne tworzenie mechaniki gier planszowych

Zadanie

Stworzyć program, który będzie odkrywał ciekawe gry planszowe.

Dwa problemy do rozwiązania:

- 1. Jak opisać grę planszową?
- 2. Jak odróżnić fajną grę planszową od słabej? (ciekawsze pytanie)

Ewolucja gier planszowych

Co powinna uwzględniać funkcja oceny?

Kryteria używane w ocenie

- Wewnętrzne jak wygląda opis gry (preferujemy poprawne, niezbyt długie i niezbyt skomplikowane)
- Grywalność zbalansowana dla obu graczy, niezbyt dużo remisów, gry o satysfakjonującej długości
- Jakość rozgrywki:
 - Dramatyzm: wyuczona funkcja oceniająca zmienia wartość w trakcie prawdziwych gier (najlepiej, żeby zmieniała się również przewaga)
 - Nieredukowalność: w rozegranych grach używane są wszystkie rodzaje ruchów
 - Krzywa uczenia: agent uczący się dłużej gra lepiej.

Oczywiście ważnym narzędziem jest TD-learning (żeby powstali jacyś sensowni agenci, których grę możemy analizować).

Jak zarobić na ewolucji gier planszowych

- System Ludi służył do ewolucji gier planszowych.
- Podczas tygodnia ewolucji przeanalizowano 1389, z czego 19 autorzy uznali za grywalne, a dwie, jak piszą have proven to be of exceptional quality
- Zapakowali je do pudełka i sprzedawali jako pierwsze gry planszowe wymyślone przez maszynę.

Można poczytać w pcgbook.com, rozdział 6

Gra Yavalath

Kod gry

```
(game Yavalath
          (players White Black)
           (board (tiling hex) (shape hex) (size 5))
           (end (All win (in-a-row 4)) (All lose (in-a-row 3)))
)
```

Przykładowa sytuacja:

Logiki modalne

- Przedmiot: Model checking
- Wykładowca: Witold Charatonik

Na przedmiocie będą bardziej logiki temporalne, my też powiemy o logice epistemicznej.

Logiki modalne i temporalne

Definicja

Logiki modalne są rozwinięciami logiki zdaniowej o operatory modalności, które wyrażają na przykład:

- Właściwości czasowe (kiedyś, zawsze, jutro)
- Możliwość bądź konieczność czegoś
- Przekonanie lub wiedza agenta o czymś

Dla logiki temporalnej przyjmujemy często następujące aksjomaty (wybór):

- $\Box(\phi \to \psi) \to (\Box \phi \to \Box \psi)$ (\Box oznacza zawsze)
- $\Diamond \neg \phi \leftrightarrow \neg \Box \phi$ (\Diamond oznacza kiedyś)
- $\bigcirc(\phi \lor \psi) \leftrightarrow \bigcirc\phi \lor \bigcirc\psi$ (\bigcirc oznacza w kolejnym momencie czasu)

Logika epistemiczna

Dla każdego agenta a dodajemy modalność dotyczącą jego wiedzy, oznaczaną K_a

Przykładowe akjomaty i ich interpretacja:

• Jak agent zna przesłanki i regułę, to zna też wnioski:

$$K_i \varphi \wedge K_i (\varphi \implies \psi)) \implies K_i \psi$$

Agenci znają tautologie

jeżeli
$$M \models \varphi$$
 to $M \models K_i \varphi$.

• To co wiemy, jest prawdziwe

$$K_i \varphi \implies \varphi$$

Wiem, że nic nie wiem

• Jak coś wiem, to wiem że to wiem

$$K_i \varphi \implies K_i K_i \varphi$$

Jak czegoś nie wiem, to wiem że tego nie wiem

$$\neg K_i \varphi \implies K_i \neg K_i \varphi$$

Zagadka z zabłoconymi dziećmi

(na wykładzie był trochę inny wariant)

- Dzieci są posłuszne, mądre i świadome swej mądrości i posłuszeństwa.
- Przed Mamusią stoją na baczność, nie dotykają siebie i innych, nie odzywają się niepytane.
- Wchodzą po zabawie do domu i Mamusia mówi: Aha, niektóre z was mają błoto na czołach!
- A następnie prosi:

Niech te z dzieci, które są pewne, że mają zabłocone czoła podniosą rękę.

Prośbę powtarza kilka razy, za którymś razem pewna liczba rąk podnosi się do góry.

Polecenie

Wyjaśnij, co się stało.

Wspólna wiedza i najsłynniejsza zagadka logiki epistemicznej

Uwaga

To że ja wiem coś, i ty wiesz, że ja wiem że coś, nie oznacza jeszcze, że ja wiem, że ty wiesz, że ja wiem coś.

- Wprowadza się specjalny operarator wiedzy powszechnej (common knowledge)
- Definiujemy wiedzę grupową:

$$E_G \varphi \Leftrightarrow \bigwedge_{i \in G} K_i \varphi$$

Wprowadzamy notację:

$$E_G^n \varphi$$
 definiujemy jako $E_G E_G^{n-1} \varphi$

oraz
$$E_G^0 \varphi = \varphi$$

Operator wspólnej wiedzy

Definiujemy operator:

$$C\varphi \Leftrightarrow \bigwedge_{i=0}^{\infty} E^i \varphi$$

 Zdanie Mamusi (lub Kuglarza) nie jest zdaniem o zerowej informacji: wprowadza ono bowiem do bazy wiedzy wszystkich agentów formułę:

C ktoś-ma-zabłocone-czoło

Próbkowanie Gibbsa i sieci bayesowskie

- Przedmiot: Grafowe modele probabilistyczne
- Wykładowca: Jan Chorowski

[na tablicy?]