Definitionen

Definition 1.45

Die Menge

$$\mathcal{L}(n) := \mathcal{A}(\lambda_n^*)$$

heißt Menge der Lebesgue-messbaren Mengen.

Das dazugehörige Maß

$$\lambda_n := \lambda_n^*|_{\mathcal{L}(n)}$$

heißt Lebesgue-Maß.

Eigenschaften

- (1) $(\mathbb{R}^n, \mathcal{L}(n), \lambda_n)$ ist ein vollständiger Maßraum,
- (2) alle Borelmengen sind Lebesgue-messbar, $\mathcal{B}^n \subseteq \mathcal{L}(n)$,
- (3) damit ist auch $(\mathbb{R}^n, \mathcal{B}^n, \lambda_n|_{\mathcal{B}^n})$ ein Maßraum, $\lambda_n|_{\mathcal{B}^n}$ heißt Borel-Lebesgue-Maß,
- (4) $\lambda_n(A) = \operatorname{vol}_n(a, b)$ für alle A mit $(a, b) \subseteq A \subseteq [a, b]$, $a, b \in \mathbb{R}^n$,
- (5) ist $A \subseteq \mathbb{R}^n$ beschränkt und Lebesgue-messbar, dann ist $\lambda_n(A) < \infty$,
- (6) abzählbare Mengen sind Nullmengen,
- (7) λ_n ist σ -endlich: $\mathbb{R}^n = \bigcup_{j=1}^{\infty} [-j, +j]^n$.

Regularität

Satz 1.69

Das Lebesgue-Maß λ_n ist regulär in folgendem Sinne. Für $A \in \mathcal{L}(n)$ gilt

$$\lambda_{\textit{n}}(\textit{A}) = \inf\{\lambda_{\textit{n}}(\textit{O}): \textit{O} \supseteq \textit{A}, \textit{O} \textit{ offen}\},$$

$$\lambda_n(A) = \sup\{\lambda_n(K) : K \subseteq A, K \text{ kompakt}\}.$$

Lebesgue messbare Menge ist fast Borel

Satz 1.70

Sei $A \in \mathbb{R}^n$. Dann ist $A \in \mathcal{L}(n)$ genau dann, wenn eine Folge kompakter Mengen (K_j) und eine Nullmenge N existieren, so dass

$$A = N \cup \bigcup_{j=1}^{\infty} K_j.$$

Beweis von \Rightarrow . Schritt 1: $\lambda_n(A) < +\infty$.

$$\forall j \in \mathbb{N} \,\,\exists\,\, \mathit{K}_j \subseteq \mathit{A} \,\, \mathsf{kompakt}, \,\, \mathsf{so} \,\, \mathsf{dass} \,\, \lambda_\mathit{n}(\mathit{A}) \leq \lambda_\mathit{n}(\mathit{K}_j) + rac{1}{j} \,\,.$$

Setze $N := A \setminus \bigcup_{i=1}^{\infty} K_i$, dann

$$N \subseteq A \setminus K_j, \qquad \lambda_n(N) = \lambda_n(A) - \lambda_n(K_j) \leq \frac{1}{i} \to 0.$$

Lebesgue messbaren Mengen sind fast Borel

Schritt 2: $A \in \mathcal{L}(n)$ beliebig. Nutzen σ -Endlichkeit.

$$A=\bigcup_{i=1}^{\infty}(A\cap B_i(0))$$

nach Schritt 1

$$A = \bigcup_{i=1}^{\infty} \left(N_i \cup \bigcup_{j=1}^{\infty} K_{i,j} \right) = \left(\bigcup_{i=1}^{\infty} \bigcup_{j=1}^{\infty} K_{i,j} \right) \cup \left(\bigcup_{i=1}^{\infty} N_i \right).$$

Bemerkung 1.71

$$\mathcal{L}(m) \otimes \mathcal{L}(n) \subsetneq \mathcal{L}(m+n)$$
.

Gleichheit gilt hier nicht!

 $\{0\} \in \mathcal{L}(m)$ eine Nullmenge.

Für $B \subseteq \mathbb{R}^n$ ist $\{0\} \times B \in \mathcal{L}(m+n)$, da es eine λ_{m+n}^* -Nullmenge ist.

Man kann zeigen, dass $\{0\} \times B$ nicht in $\mathcal{L}(m) \otimes \mathcal{L}(n)$ ist, wenn $B \notin \mathcal{L}(n)$.

Lebesgue-Nullmengen

Folgerung 1.72

Sei A eine λ_n -Nullmenge. Dann gibt es für jedes $\epsilon>0$ abzählbar viele kompakte Würfel (I_j) mit $A\subseteq \bigcup_{j=1}^\infty I_j$ und $\sum_{j=1}^\infty \lambda_n(I_n)<\epsilon$.

Jede Lebesgue-Nullmenge ist Teilmenge einer Borel-Nullmenge:

Für $\epsilon = 1/k$ existiert $N_k \supseteq A$ mit $\lambda_n(N_k) \le \frac{1}{k}$

$$A\subseteq N:=\bigcap_k N_k$$

mit $N \in \mathcal{B}^n$ und $\lambda_n(N) \leq \lambda_n(N_k) \leq \frac{1}{k} \to 0$.

Lebesgue-Maß als Vervollständigung des Borel-Maßes

Satz 1.73

Der Maßraum $(\mathbb{R}^n, \mathcal{L}(n), \lambda_n)$ ist die Vervollständigung des Maßraums $(\mathbb{R}^n, \mathcal{B}^n, \lambda_n|_{\mathcal{B}^n})$.

Beweis

- $\mathcal{L}(n) \subseteq \overline{\mathcal{B}^n}$: Satz 1.70
- $\overline{\mathcal{B}^n} \subseteq \mathcal{L}(n)$: Teilmengen von Nullmengen sind in $\mathcal{L}(n)$

Nicht Borel aber Lebesgue messbar

Es gibt Lebesgue messbare Mengen, die nicht Borel sind. Drei Beweismöglichkeiten:

- (1) $|\mathcal{B}^1| = |\mathbb{R}|$, Cantor-Menge C mit $|C| = |\mathbb{R}|$ hat eine Teilmenge, die nicht Borel ist.
- (2) benutzen einer nicht Lebesgue messbaren Menge, Cantor-Menge und -Funktion.
- (3) explizite Konstruktion von Lusin ¹

¹https://almostsuremath.com/2023/07/16/non-measurable-sets/

∞ -Norm

Definition:

$$||x||_{\infty} := \max_{i=1}^n |x_i|.$$

"Kugeln" in dieser Norm sind Würfel:

$$\{y: \|y-x\|_{\infty}<\epsilon\}=\prod_{i=1}^{n}(x_i-\epsilon,\,x_i+\epsilon)\in\mathbb{J}(n)$$

Lemma 1.74

Sei $M\subseteq \mathbb{R}^n$. Es existiere $\delta>0$, so dass $\|x-y\|_\infty\leq \delta$ für alle $x,y\in M$. Dann ist M in einem Würfel mit Kantenlänge δ enthalten.

Beweis. $M_k := \{x_k : x \in M\}, a_k := \inf M_k, b_k := \sup M_k.$

$$|a_k - b_k| \le \delta$$
, $M_k \subseteq [a_k, b_k]$, $M \subseteq [a, b]$.

Der Quader [a, b] ist in einem Würfel mit Kantenlänge δ enthalten.

Bilder von Nullmengen

Satz 1.75

Sei $U \subseteq \mathbb{R}^n$ offen, $f: U \to \mathbb{R}^m$, $m \ge n$, Lipschitz stetig, d.h.

 $\exists L > 0$:

$$||f(x)-f(y)||_{\infty} \leq L||x-y||_{\infty} \ \forall x,y \in U.$$

Sei $A \subseteq U$ eine λ_n -Nullmenge. Dann ist f(A) eine λ_m -Nullmenge.

Beweis. Sei I=(a,b) ein Würfel. Für $x,y\in I\cap U$ ist

$$||y-x||_{\infty} \le ||b-a||_{\infty}$$

und

$$||f(y) - f(x)||_{\infty} \le L||x - y||_{\infty} \le L||b - a||_{\infty}.$$

Damit $f(I \cap U) \subseteq W$, W Würfel mit Kantenlänge $L||b-a||_{\infty}$ und Volumen

$$\text{vol}_m(W) = (L||b-a||_{\infty})^m = L^m \text{vol}_n(a,b)^{m/n}.$$

Bilder von Nullmengen

Sei $A \subseteq U$ eine λ_n -Nullmenge. Sei $\epsilon \in (0,1)$ und (I_j) die Überdeckung von A durch kompakte Würfel mit $\sum_{j=1}^{\infty} \lambda_n(I_j) < \epsilon$.

$$\lambda_m(f(A)) \le \sum_{j=1}^{\infty} \lambda_m(f(I_j))$$

$$\le \sum_{j=1}^{\infty} L^m \operatorname{vol}_n(I_j)^{m/n}$$

$$\le L^m \sum_{j=1}^{\infty} \operatorname{vol}_n(I_j)^1 < L^m \epsilon.$$

Bilder von messbaren Mengen

Satz 1.78

Sei $U \subseteq \mathbb{R}^n$ offen, $f: \overline{U} \to \mathbb{R}^m$, $m \ge n$, Lipschitz stetig, d.h. $\exists L > 0$:

$$||f(x)-f(y)||_{\infty} \leq L||x-y||_{\infty} \ \forall x,y \in U.$$

Sei $A \subseteq U$ mit $A \in \mathcal{L}(n)$. Dann ist $f(A) \in \mathcal{L}(m)$.

Beweis.

$$A = N \cup \bigcup_{j=1}^{\infty} K_j = (N \cap \bar{U}) \cup \bigcup_{j=1}^{\infty} (K_j \cap \bar{U})$$

mit kompakten Mengen (K_j) und Nullmenge N.

$$f(A) = \underbrace{f(N \cap \bar{U})}_{\text{Nullmenge}} \cup \bigcup_{j=1}^{\infty} \underbrace{f(K_j \cap \bar{U})}_{\text{kompakt}} \in \mathcal{L}(m).$$

Translationsinvarianz

Für $a \in \mathbb{R}^n$ definiere Verschiebung

$$\tau_a(x) := x + a, \ x \in \mathbb{R}^n.$$

Satz 1.79 - $\mathcal{L}(n)$ und λ_n sind translationsinvariant

Für alle $a \in \mathbb{R}^n$, $A \in \mathcal{L}(n)$ gilt

$$\tau_{\mathsf{a}}(A) \in \mathcal{L}(n), \qquad \lambda_{\mathsf{n}}(A) = \lambda_{\mathsf{n}}(\tau_{\mathsf{a}}(A)).$$

Beweis. $\mathbb{J}(n)$ und vol_n sind translations invariant: $I \in \mathbb{J}(n)$ impliziert $\tau_a(I) \in \mathbb{J}(n)$ und $\operatorname{vol}_n(I) = \operatorname{vol}_n(\tau_a(I))$. Damit sind λ_n^* und $\mathcal{L}(n)$ translations invariant, also auch λ_n .

Eindeutigkeit des Lebesgue-Maßes

Satz 1.80

Es sei \mathcal{M} eine translationsinvariante σ -Algebra mit $\mathbb{J}_r(n)\subseteq\mathcal{M}\subseteq\mathcal{L}(n)$ und μ ein translationsinvariantes Maß auf \mathcal{M} . Es sei $\alpha:=\mu([0,1)^n)<\infty$. Dann gilt

$$\mu(A) := \alpha \lambda_n(A) \quad \forall A \in \mathcal{M}.$$

Lebesgue-Maß ist eindeutig bestimmt durch: Messbarkeit von Quadern, Translationsinvarianz, Maß vom Einheitswürfel ist Eins.

Beweis Satz 1.80

(1) A = [0, b) mit $b \in \mathbb{N}^n$: [0, b) ist disjunkte Vereinigung von $\prod_{i=1}^n b_i$ Kopien von $[0, 1)^n$.

$$\mu([0,b)) = \sum_{a \in [0,b) \cap \mathbb{Z}^n} \mu(\tau_a([0,e))) = \sum_{a \in [0,b) \cap \mathbb{Z}^n} \mu([0,e))$$
$$= \alpha \sum_{a \in [0,b) \cap \mathbb{Z}^n} \lambda_n([0,e)) = \alpha \sum_{a \in [0,b) \cap \mathbb{Z}^n} \lambda_n(\tau_a([0,e))) = \alpha \lambda_n([0,b)).$$

- (2) A = [0, b) mit $b \in \mathbb{Q}^n$: $k \in \mathbb{N}$ so dass $kb \in \mathbb{N}^n$. [0, kb) ist disjunkte Vereinigung von k^n Kopien von [0, b).
- **(3)** *A* offen,
- (4) A kompakt: U offen mit $A \subseteq U$. $A = U \setminus (U \setminus K)$,

Beweis Satz 1.80

(5) $A \in \mathcal{M}$ beschränkt: nutzen Regularität von λ_n , existiert eine offene Menge $O \supseteq A$ und eine kompakte Menge $K \subseteq A$, so dass

$$\lambda_n(O) - \epsilon \le \lambda_n(A) \le \lambda_n(K) + \epsilon.$$

Wegen der Schritte 4 und 5 folgt

$$\mu(O) - \alpha \epsilon \leq \alpha \lambda_n(A) \leq \mu(K) + \alpha \epsilon.$$

Aus der Monotonie von μ bekommen wir

$$\mu(A) - \alpha \epsilon \leq \alpha \lambda_n(A) \leq \mu(A) + \alpha \epsilon.$$

(6) $A \in \mathcal{M}$ nutzen σ -Endlichkeit.

$$\mu(A) = \lim_{k \to \infty} \mu(A \cap B_k(0)) = \alpha \lim_{k \to \infty} \lambda_n(A \cap B_k(0)) = \alpha \lambda_n(A)$$

Orthogonale Matrizen

Satz 1.82

Sei $Q \in \mathbb{R}^{n \times n}$ eine orthogonale Matrix. Dann gilt $\lambda_n(A) = \lambda_n(QA)$ für alle $A \in \mathcal{L}(n)$, wobei $QA := \{Qx : x \in A\}$.

Beweis. $x \mapsto Qx$ ist Lipschitz stetig, und $QA \in \mathcal{L}(n)$ für alle $A \in \mathcal{L}(n)$.

$$\mu(A) := \lambda_n(QA).$$

 μ ist Maß auf $\mathcal{L}(n)$, μ translationsinvariant:

$$\mu(\tau_a(A)) = \lambda_n(Q(A+a)) = \lambda_n(QA+Qa) = \lambda_n(QA) = \mu(A).$$

$$A:=[0,1)^n \ \Rightarrow \ QA$$
 beschränkt, $\mu(A)<\infty$ und $\mu(A)=lpha\lambda_n(A)$

$$\alpha = 1$$
: Sei $B = B_1(0)$. Dann ist $QB = B$ und $\alpha = 1$ folgt.

Invertierbare Matrizen

Satz 1.83

Sei $S \in \mathbb{R}^{n \times n}$ eine invertierbare Matrix. Dann gilt

$$\lambda_n(SA) = |\det(S)|\lambda_n(A) \quad A \in \mathcal{L}(n).$$

Beweis. Diagonalisieren S^TS :

$$Q^T S^T S Q = D$$

mit Q orthogonal, D diagonal mit positiver Diagonale. Setze $\Sigma = D^{1/2}$. Dann ist $D = \Sigma^2$ und

$$\Sigma^{-1}Q^TS^TSQ\Sigma^{-1}=I_n,$$

also ist $P := \Sigma^{-1} Q^T S^T$ orthogonal und $PSQ = \Sigma$.

$$\mu(A) := \lambda_n(SA).$$

Dann bekommen wir für $A := [0,1)^n$

$$\mu(QA) = \lambda_n(SQA) = \lambda_n(P^T \Sigma A) = \lambda_n(\Sigma A),$$

 $\Sigma A = [0, \Sigma e)$ ein Quader mit Kantenlängen $\sqrt{d_{ii}}$ und Volumen $\det(\Sigma)$:

$$\det(\Sigma) = (\det D)^{1/2} = |\det S|.$$

Damit ist

$$\mu(QA) = |\det S|\lambda_n(A) = |\det S|\lambda_n(QA),$$

und es folgt $\alpha = |\det S|$, was die Behauptung war.

Auswahlaxiom

Auswahlaxiom der Mengenlehre

Es sei $(F_i)_{i\in I}$ ein System nicht-leerer Mengen. Dann existiert eine Abbildung f auf I mit $f(i) \in F_i$ für alle $i \in I$.

Lässt sich nicht mit den Axiomen der Zermelo-Fraenkel Mengenlehre beweisen (selbst nicht, wenn / abzählbar ist).

Auswahlaxiom

"Um aus unendlich vielen Paaren Socken jeweils eine Socke auszuwählen brauchen wir das Auswahlaxiom, für Schuhe wird es nicht benötigt: wir können jeweils den linken Schuh auswählen."

(Russell)

Auswahlaxiom Äquivalenzen

Auswahlaxiom ist äquivalent zu

- Zornschem Lemma,
- Wohlordnungssatz: Auf jeder Menge gibt es eine Ordnungsrelation, so dass jede nichtleere Teilmenge ein kleinstes Element hat.

"The Axiom of Choice is obviously true, the Well-ordering theorem is obviously false; and who can tell about Zorn's Lemma?"

J. Bona

Auswahlaxiom Äquivalenzen

Auswahlaxiom ist äquivalent zu

- jeder Vektorraum hat eine Basis,
- jede surjektive Funktion hat eine Rechtsinverse

abzählbares Auswahlaxiom

Fakt?

Die abzählbare Vereinigung abzählbarer Mengen ist abzählbar.

Benutzt das (abzählbare) Auswahlaxiom, um die Existenz einer Abzählfunktion für die unendlich vielen, abzählbaren Mengen zu bekommen.

In VI benutzt im Beweis von

- Satz 1.37: "Dann existiert zu jedem i eine Folge (K_{i,j})"
- Satz 1.70: "wegen des ersten Teils ist $A_i = N_i \cup \bigcup_{j=1}^{\infty} K_{i,j}$ "

Konstruktion einer nicht Lebesgue messbaren Menge

Lemma 1.87

Gilt das Auswahlaxiom, dann existiert eine nicht λ_1 -messbare Teilmenge A von [0,1], d.h., $A \notin \mathcal{L}(1)$.

Beweis. Betrachten Aquivalenzrelation

$$x \sim y \quad \Leftrightarrow \quad x - y \in \mathbb{Q}.$$

Menge der dazugehörigen Äquivalenzklassen

$$K := [0,1]/\sim$$

Nach dem Auswahlaxiom gibt es eine Abbildung

$$f:K\to [0,1],\quad f(\hat{x})\in \hat{x}$$

Setze

$$V := f(K)$$

Wir zeigen nun, dass V nicht messbar ist.

Konstruktion einer nicht Lebesgue messbaren Menge

Überdecken das Intervall [0,1] mit disjunkten Kopien von V. Zeigen:

$$[0,1]\subseteq igcup_{q\in \mathbb{O}\cap [-1,1]}(q+V).$$

Das gilt weil:

$$r \in [0,1] \Rightarrow \exists \hat{x} \in K : r \in \hat{x}, \ \exists v \in V \cap \hat{x} \Rightarrow \exists q \in \mathbb{Q} : r = v + q.$$

Da $r, v \in [0, 1]$ ist $q = r - v \in [-1, 1]$.

$$[0,1]\subseteq\bigcup_{q\in\mathbb{Q}\cap[-1,1]}(q+V)\subseteq[-1,2].$$

Das ist eine disjunkte Vereinigung:

$$q, q' \in \mathbb{Q}: q \neq q' \Rightarrow (q + V) \cap (q' + V) = \emptyset.$$

Wäre V messbar, dann wäre auch q + V messbar, und

$$1 \le \sum_{q \in \mathbb{Q} \cap [-1,1]} \lambda_1(V) \le 3.$$

Ein Widerspruch.

Ende Kapitel 1

Wir überspringen

- Metrische Maße
- Hausdorff Maße

Resultate und Begriffe aus Kapitel 1:

- (1) σ -Algebra und Maß
- (2) Lebesgue Maß, Lebesgue messbare Mengen

Berechnen von Maßen: umständlich. Besser wird das mit Integration.