

Анализ и предсказание данных с применением Random Forest и линейной регрессии

Анализ и предсказание цен жилья

Искусственный интеллект давно применяет методы Random Forest и Linear Regression для оценки рыночной стоимости недвижимости. Будет рассмотрен полный аналитический цикл в RapidMiner, иллюстрируя преимущества и ограничения обеих моделей на датасете Boston Housing.

Практическая значимость

- **Финансы** Банки снижают риск залогового кредитования, опираясь на прогнозы медианной цены жилья.
- **Девелопмент** Достоверные оценки позволяют планировать проекты и контролировать маржу.
- **Муниципалитет** Прогноз помогает формировать налоговую базу и распределять инфраструктурные ресурсы.

Обзор датасета Boston Housing

Набор включает 506 наблюдений, тринадцать числовых признаков и бинарный индикатор CHAS, отражающий близость к реке. Целевая переменная MEDV выражена в тысячах долларов, упрощая интерпретацию экономических эффектов при сравнении прогнозов.

CRIM — удельная преступность;
RM — среднее число комнат;
LSTAT — доля малоимущих семей;
NOX — загрязнение воздуха.

ТАХ фиксирует налоговую нагрузку; PTRATIO — показатель «ученик-учитель»; RAD — транспортная доступность; AGE — доля старых зданий.

Социально-экологический контекст

Комбинация экологических, инфраструктурных и социальных переменных показывает, как качество среды и общественные условия совместно формируют стоимость жилья, создавая реалистичную модель, превосходящую прогнозы, основанные только на технических характеристиках строений.

Read CSV загружает Boston Housing Sorted.csv, автоматически определяет типы столбцов и проверяет целостность файла; дополнительно задаётся кодировка UTF-8 и символ десятичного разделителя, устраняя потенциальные ошибки последующей аналитической обработки.

Нормализация
признаков

Normalize переводит числовые столбцы, включая MEDV, в диапазон [0;1]. Операция устраняет дисбаланс масштабов, ослабляет влияние экстремумов и улучшает сходимость градиентных алгоритмов линейной регрессии при большом числе признаков.

Parameters ×		
Normalize		
attribute filter type 💙	all	v
invert selection		Œ
include special attri	utes	

Разметка и сплит

Set Role помечает MEDV как label, остальные столбцы как regular. Split Data формирует 80% обучающую и 20% тестовую выборки, фиксируя random seed, обеспечивая воспроизводимую и объективную проверку обобщающей способности моделей.

Зачем сплит и нормализация

R

Разделение выборки защищает от переобучения: параметры оцениваются только на train-части, тест остаётся «невидимым».

Нормализация, выполненная до сплита, гарантирует одинаковое масштабирование обеих подвыборок, исключая утечку статистической информации.

R

Линейная регрессия: теория

Линейная регрессия описывает зависимости MEDV и признаков уравнением $\beta_0 + \Sigma \beta_i X_i$, оцениваемым методом наименьших квадратов при предположениях гомоскедастичности ошибок, их нормальности и ограниченной мультиколлинеарности независимых переменных.

Линейная регрессия: параметры

ridge = 1×10^{-8} вводит L2-регуляризацию, смягчающую раздувание коэффициентов при коррелированных признаках. min tolerance = 0.05завершает оптимизацию, когда снижение среднеквадратичной ошибки становится статистически незначимым, экономя вычислительные ресурсы.

Сильные и слабые стороны LR

Прозрачность коэффициентов и малые вычислительные требования делают линейную регрессию популярной; однако нелинейные зависимости, взаимодействия признаков и выбросы снижают точность, требуя регуляризации и диагностических проверок.

Random Forest: концепция

R

Ансамбль решающих деревьев обучается на бутстрапподвыборках объектов и случайных подмножествах признаков. Усреднение прогнозов уменьшает дисперсию, сохраняя низкое смещение и выявляя нелинейные зависимости между социальными, экологическими, инфраструктурными факторами.

RANDOM FOREST

Random Forest: ключевые настройки

- number of trees = 100 обеспечивает достаточное усреднение;
- maximal depth = 10 ограничивает переобучение;
- criterion = least squares минимизирует MSE;
- minimal leaf size = 2 снижает шум;
- prepruning = on удаляет
 статистически бесполезные
 расщепления, ускоряя расчёт.

Бутстрап и случайный выбор признаков делают деревья слабо коррелированными; агрегированное предсказание подчиняется закону больших чисел: средняя ошибка ансамбля убывает быстрее, чем ошибка каждого дерева, обеспечивая статистически надёжный результат.

Процесс RapidMiner

Read CSV → Set Role → Normalize → Split Data → параллельные ветви Linear Regression и Random Forest → Apply Model → Performance → Correlation Matrix.

В RapidMiner есть оператор **Performance**, где указываются нужные метрики:

- Root Mean Squared Error (RMSE): средний разброс предсказаний относительно реальных. Меньше – лучше.
- Correlation: коэффициент Пирсона между реальными и предсказанными значениями.

Сравнение результатов

R

Random Forest: RMSE 1.93 тыс.\$, correlation 0.98

Linear Regression: RMSE 4.68 тыс.\$, correlation 0.86

Разница заметна: лес гораздо точнее. Причины: RF учитывает нелинейности, работает в ансамбле деревьев. Линейная модель более простая, но при корректной регуляризации стабильно дает неплохие результаты.

Важность признаков

R

LSTAT, RM и CRIM суммарно объясняют 65 % вариации MEDV: снижение доли малоимущих или увеличение числа комнат повышают цену; высокая преступность статистически уменьшает стоимость, подчёркивая социальную чувствительность рынка недвижимости.

Корреляции и мультиколлинеарность

Коэффициент 0.91 между ТАХ и RAD, 0.76 между NOX и INDUS указывает на мультиколлинеарность.

В линейной модели дисперсия коэффициентов возрастает.

Random Forest смягчает проблему, выбирая случайные подмножества признаков.

Attribu	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT
CRIM	1	-0.200	0.407	-0.056	0.421	-0.219	0.353	-0.380	0.626	0.583	0.290	-0.385	0.456
ZN	-0.200	1	-0.534	-0.043	-0.517	0.312	-0.570	0.664	-0.312	-0.315	-0.392	0.176	-0.413
INDUS	0.407	-0.534	1	0.063	0.764	-0.392	0.645	-0.708	0.595	0.721	0.383	-0.357	0.604
CHAS	-0.056	-0.043	0.063	1	0.091	0.091	0.087	-0.099	-0.007	-0.036	-0.122	0.049	-0.054
NOX	0.421	-0.517	0.764	0.091	1	-0.302	0.731	-0.769	0.611	0.668	0.189	-0.380	0.591
RM	-0.219	0.312	-0.392	0.091	-0.302	1	-0.240	0.205	-0.210	-0.292	-0.356	0.128	-0.614
AGE	0.353	-0.570	0.645	0.087	0.731	-0.240	1	-0.748	0.456	0.506	0.262	-0.274	0.602
DIS	-0.380	0.664	-0.708	-0.099	-0.769	0.205	-0.748	1	-0.495	-0.534	-0.232	0.292	-0.497
RAD	0.626	-0.312	0.595	-0.007	0.611	-0.210	0.456	-0.495	1	0.910	0.465	-0.444	0.489
TAX	0.583	-0.315	0.721	-0.036	0.668	-0.292	0.506	-0.534	0.910	1	0.461	-0.442	0.544
PTRATIO	0.290	-0.392	0.383	-0.122	0.189	-0.356	0.262	-0.232	0.465	0.461	1	-0.177	0.374
В	-0.385	0.176	-0.357	0.049	-0.380	0.128	-0.274	0.292	-0.444	-0.442	-0.177	1	-0.366
LSTAT	0.456	-0.413	0.604	-0.054	0.591	-0.614	0.602	-0.497	0.489	0.544	0.374	-0.366	1

Интерпретация ошибки

R

Средняя ошибка (RMSE) 1.93 тыс.\$ составляет 6.4% от медианной цены 30 тыс.\$, эквивалентна двухлетнему инфляционному колебанию рынка. Точность RF достаточна для банковских залогов и бюджетного планирования городских проектов.

Практическое применение

R

Модели автоматически оценивают стоимость будущих объектов, обосновывают цену участков, проводят сценарный анализ влияния экологических программ, планировочных изменений, налоговых инициатив, поддерживая стратегические решения девелоперов, финансовых учреждений, муниципалитетов.

Пути улучшения точности

R

Оптимизация и новые алгоритмы

Сеточный либо байесовский поиск гиперпараметров, XGBoost, stacking-ансамбли повышают точность без ухудшения обобщения.

Recursive Feature Elimination, макроэкономические показатели, бутстрап-интервалы создают статистически устойчивые прогнозы независимо от объёма данных.

- Random Forest обеспечивает высокую точность и устойчивость.
- Линейная регрессия проще и объяснимее, но может недооценивать некоторые нелинейные связи.
- Окончательный выбор зависит от целей (прозрачность или точность) и объёма данных.

