ANNOUNCEMENTS

The vector potential A due to a long straight wire with current I along the z-axis is in the direction parallel to:

A. *î*

B. $\hat{\phi}$ (azimuthal)

C. \hat{s} (radial)

Assume the Coulomb Gauge

• Homework 10 (it's long; you started it, right?)

- Due this Friday
- Final Homework is due Friday the 9th
 - Magnetic dipoles and some magnetic matter
- Final Exam (20%)
 - 12:45pm-2:45pm on Thursday the 15th in this room
- Detailed grade projections by Monday 12th
 - w/ clicker bonus, but not HW 11
- SIRS are open
 - Please fill out; it helps shape departmental offerings

Consider a fat wire with radius a with uniform current I_0 that runs along the +z-axis. We can compute the vector potential due to this wire directly. What is J?

A.
$$I_0/(2\pi)$$

B.
$$I_0/(\pi a^2)$$

C.
$$I_0/(2\pi a)\hat{z}$$

D.
$$I_0/(\pi a^2)\hat{z}$$

E. Something else!?

Consider a fat wire with radius a with uniform current I_0 that runs along the +z-axis. Given $\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{J}(\mathbf{r}')}{\Re} d\tau'$, which components of \mathbf{A} need to be computed?

A. All of them

B. Just A_x

C. Just A_y

D. Just A_z

E. Some combination

Consider line of charge with uniform charge density, $\lambda = \rho I(\pi a^2)$. What is the magnitude of the electric field outside of the line charge (at a distance s > a)?

A.
$$E = \lambda/(4\pi\varepsilon_0 s^2)$$

B.
$$E = \lambda/(2\pi\varepsilon_0 s^2)$$

$$C. E = \lambda/(4\pi\varepsilon_0 s)$$

D.
$$E = \lambda/(2\pi\varepsilon_0 s)$$

E. Something else?!

Use Gauss' Law

Consider a shell of charge with surface charge σ that is rotating at angular frequency of ω . Which of the expressions below describe the surface current, \mathbf{K} , that is observed in the fixed frame.

 $A. \sigma \omega$

B. $\sigma \dot{\mathbf{r}}$

 $C. \sigma \mathbf{r} \times \omega$

 $D. \sigma \omega \times \mathbf{r}$

E. Something else?