NYPD Shooting Assignment

Cody S

Todo

□ Clean up plots□ Do some more categorical plots□ Figure out a model and anlaysis

incident_df <- read.csv(source_url)</pre>

Import, tidy and analyze the NYPD Shooting Incident dataset obtained. Be sure your project is reproducible and contains some visualization and analysis. You may use the data to do any analysis that is of interest to you. You should include at least two visualizations and one model. Be sure to identify any bias possible in the data and in your analysis.

```
library(tidyverse)
library(lubridate)
```

```
-- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
v dplyr
          1.1.4
                    v readr
                                 2.1.5
v forcats
           1.0.0
                                 1.5.1
                     v stringr
v ggplot2 3.5.1
                                 3.2.1
                     v tibble
v lubridate 1.9.3
                                 1.3.1
                     v tidyr
v purrr
           1.0.2
-- Conflicts ----- tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag()
                 masks stats::lag()
i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become
```

```
source_url <- "https://data.cityofnewyork.us/api/views/833y-fsy8/rows.csv?accessType=DOWNLOA</pre>
```

glimpse(incident_df)

```
Rows: 28,562
Columns: 21
$ INCIDENT_KEY
                         <int> 244608249, 247542571, 84967535, 202853370, 270~
$ OCCUR_DATE
                         <chr> "05/05/2022", "07/04/2022", "05/27/2012", "09/~
                         <chr> "00:10:00", "22:20:00", "19:35:00", "21:00:00"~
$ OCCUR_TIME
                         <chr> "MANHATTAN", "BRONX", "QUEENS", "BRONX", "BROO~
$ BORO
$ LOC_OF_OCCUR_DESC
                         <chr> "INSIDE", "OUTSIDE", "", "", "", "", "", "", "~
                         <int> 14, 48, 103, 42, 83, 23, 113, 77, 48, 49, 73, ~
$ PRECINCT
$ JURISDICTION_CODE
                         <int> 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0~
                         <chr> "COMMERCIAL", "STREET", "", "", "", "", "", ""~
$ LOC_CLASSFCTN_DESC
                         <chr> "VIDEO STORE", "(null)", "", "", "", "MULTI DW~
$ LOCATION_DESC
$ STATISTICAL_MURDER_FLAG <chr> "true", "true", "false", "false", "false", "fa-
                         <chr> "25-44", "(null)", "", "25-44", "25-44", "", "~
$ PERP_AGE_GROUP
                         <chr> "M", "(null)", "", "M", "M", "", "", "", "", "~
$ PERP_SEX
                         <chr> "BLACK", "(null)", "", "UNKNOWN", "BLACK", "",~
$ PERP RACE
                         <chr> "25-44", "18-24", "18-24", "25-44", "25-44", "~
$ VIC_AGE_GROUP
                         $ VIC_SEX
                         <chr> "BLACK", "BLACK", "BLACK", "BLACK", "FLACK", "~
$ VIC_RACE
                         <dbl> 986050, 1016802, 1048632, 1014493, 1009149, 99~
$ X_COORD_CD
$ Y_COORD_CD
                         <dbl> 214231.0, 250581.0, 198262.0, 242565.0, 190104~
                         <dbl> 40.75469, 40.85440, 40.71063, 40.83242, 40.688~
$ Latitude
                         <dbl> -73.99350, -73.88233, -73.76777, -73.89071, -7~
$ Longitude
$ Lon_Lat
                         <chr> "POINT (-73.9935 40.754692)", "POINT (-73.8823~
```

desc_counts <- lapply(incident_df[, c("LOC_CLASSFCTN_DESC", "LOCATION_DESC", "PERP_RACE", "V
print(desc_counts)</pre>

\$LOC_CLASSFCTN_DESC

	(null)	COMMERCIAL	DWELLING	HOUSING	OTHER
25596	2	208	243	460	59
PARKING LOT	PLAYGROUND	STREET	TRANSIT	VEHICLE	
15	41	1886	23	29	

\$LOCATION_DESC

(null) ATM 14977 1711 1

BANK	BAR/NIGHT CLUB	BEAUTY/NAIL SALON
3	668	119
CANDY STORE	CHAIN STORE	CHECK CASH
7	7	1
CLOTHING BOUTIQUE	COMMERCIAL BLDG	DEPT STORE
14	304	9
DOCTOR/DENTIST	DRUG STORE	DRY CLEANER/LAUNDRY
1	14	32
FACTORY/WAREHOUSE	FAST FOOD	GAS STATION
8	130	74
GROCERY/BODEGA	GYM/FITNESS FACILITY	HOSPITAL
750	4	77
HOTEL/MOTEL	JEWELRY STORE	LIQUOR STORE
35	14	42
LOAN COMPANY	MULTI DWELL - APT BUILD	MULTI DWELL - PUBLIC HOUS
1	2964	5007
NONE	PHOTO/COPY STORE	PVT HOUSE
175	1	983
RESTAURANT/DINER	SCHOOL	SHOE STORE
212	1	10
SMALL MERCHANT	SOCIAL CLUB/POLICY LOCATI	STORAGE FACILITY
44	73	1
STORE UNCLASSIFIED	SUPERMARKET	TELECOMM. STORE
37	21	11
VARIETY STORE	VIDEO STORE	
11	8	

\$PERP_RACE

(null) 1141 9310 AMERICAN INDIAN/ALASKAN NATIVE ASIAN / PACIFIC ISLANDER 169 BLACK BLACK HISPANIC 11903 1392 UNKNOWN WHITE 1837 298 WHITE HISPANIC 2510

\$VIC_RACE

AMERICAN INDIAN/ALASKAN NATIVE ASIAN / PACIFIC ISLANDER

```
11 440
BLACK BLACK HISPANIC
20235 2795
UNKNOWN WHITE
70 728
WHITE HISPANIC
4283
```

\$LOC_OF_OCCUR_DESC

INSIDE OUTSIDE 25596 460 2506

```
# Modify, reorder, and select columns in a pipeline
cleaned_df <- df %>%
    # Rename 'category' to 'type' and 'value' to 'score'
    rename(type = category, score = value) %>%

# Reorder columns: put 'type' first, followed by 'id', and 'date' and 'score'
    select(type, id, date, score) %>%

# Remove rows where 'score' is less than 15
    select(score >= 15)

# remove completely
    select(-bad_column)
```

```
# make a nicer datetime column
clean_incident_df <- incident_df %>%
   mutate(Date = as.POSIXct(paste(OCCUR_DATE, OCCUR_TIME), format="%m/%d/%Y %H:%M:%S")) %>%
   rename(In_Out = LOC_OF_OCCUR_DESC, Location_Category = LOC_CLASSFCTN_DESC, Location_details
   select(Date, BORO, Location_Category, Location_details, In_Out, OCCUR_DATE, OCCUR_TIME, -J
glimpse(clean_incident_df)
summary(clean_incident_df)
```

<chr> "INSIDE", "OUTSIDE", "", "", "", "", "", "", "~ \$ In_Out \$ OCCUR_DATE <chr> "05/05/2022", "07/04/2022", "05/27/2012", "09/~ <chr> "00:10:00", "22:20:00", "19:35:00", "21:00:00"~ \$ OCCUR_TIME \$ INCIDENT KEY <int> 244608249, 247542571, 84967535, 202853370, 270~ <int> 14, 48, 103, 42, 83, 23, 113, 77, 48, 49, 73, ~ \$ PRECINCT <int> 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0~ \$ JURISDICTION CODE \$ STATISTICAL MURDER FLAG <chr> "true", "true", "false", "false", "false", "fac-<chr> "25-44", "(null)", "", "25-44", "25-44", "", "~ \$ PERP_AGE_GROUP <chr> "M", "(null)", "", "M", "M", "", "", "", "", "~ \$ PERP SEX <chr> "BLACK", "(null)", "", "UNKNOWN", "BLACK", "",~ \$ PERP_RACE \$ VIC_AGE_GROUP <chr> "25-44", "18-24", "18-24", "25-44", "25-44", "~ \$ VIC_SEX <chr> "BLACK", "BLACK", "BLACK", "BLACK", "BLACK", "~ \$ VIC_RACE <dbl> 986050, 1016802, 1048632, 1014493, 1009149, 99~ \$ X_COORD_CD <dbl> 214231.0, 250581.0, 198262.0, 242565.0, 190104~ \$ Y_COORD_CD \$ Latitude <dbl> 40.75469, 40.85440, 40.71063, 40.83242, 40.688~ \$ Longitude <dbl> -73.99350, -73.88233, -73.76777, -73.89071, -7~ <chr> "POINT (-73.9935 40.754692)", "POINT (-73.8823~ \$ Lon_Lat

Date BORO Location_Category

Min. :2006-01-01 02:00:00.0 Length:28562 Length:28562
1st Qu.:2009-09-04 07:15:00.0 Class :character Class :character
Median :2013-09-20 17:56:00.0 Mode :character Mode :character

Mean :2014-06-07 20:04:22.2 3rd Qu.:2019-09-30 10:10:30.0 Max. :2023-12-29 21:22:00.0

Location_details OCCUR_DATE OCCUR_TIME In_0ut Length: 28562 Length: 28562 Length: 28562 Length: 28562 Class : character Class :character Class : character Class : character Mode :character Mode :character Mode :character Mode :character

INCIDENT_KEY PRECINCT JURISDICTION_CODE STATISTICAL_MURDER_FLAG

Min. : 9953245 Min. : 1.0 Min. :0.0000 Length:28562 1st Qu.: 65439914 1st Qu.: 44.0 1st Qu.:0.0000 Class :character Median : 92711254 Median : 67.0 Median :0.0000 Mode :character

Mean :127405824 Mean : 65.5 Mean :0.3219 3rd Qu.:203131993 3rd Qu.: 81.0 3rd Qu.:0.0000 Max. :279758069 Max. :123.0 Max. :2.0000

NA's :2

PERP_SEX PERP_AGE_GROUP PERP_RACE VIC_AGE_GROUP Length:28562 Length: 28562 Length: 28562 Length: 28562 Class : character Class : character Class : character Class :character Mode :character Mode :character Mode :character Mode :character

VIC_SEX VIC_RACE X_COORD_CD Y_COORD_CD Length: 28562 Length:28562 : 914928 :125757 Min. Min. Class :character Class :character 1st Qu.:1000068 1st Qu.:182912 Mode :character Mode :character Median :1007772 Median :194901 Mean :1009424 Mean :208380 3rd Qu.:1016807 3rd Qu.:239814 :1066815 :271128 Max. Max.

Latitude Longitude Lon_Lat :40.51 :-74.25 Length:28562 Min. Min. 1st Qu.:40.67 1st Qu.:-73.94 Class :character Median :40.70 Median :-73.92 Mode :character :40.74 :-73.91 Mean Mean 3rd Qu.:40.82 3rd Qu.:-73.88 :40.91 Max. :-73.70 Max. NA's :59 NA's :59

`summarise()` has grouped output by 'year'. You can override using the `.groups` argument.

A tibble: 6 x 3

simple_date <date></date>	$total_by_day < int >$	month_year <date></date>
2023-12-22	8	2023-12-01
2023-12-23	4	2023-12-01
2023-12-24	5	2023-12-01
2023-12-26	6	2023-12-01
2023-12-27	1	2023-12-01
2023-12-29	3	2023-12-01

A tibble: 6 x 3

year <chr></chr>	month <chr></chr>	total_by_day <int></int>
2023	07	152
2023	08	108
2023	09	105
2023	10	99
2023	11	71
2023	12	83

```
ggplot(time_series_df, aes(x = simple_date, y = total_by_day)) +
geom_line(color = "blue")

ggplot(time_series_df, aes(x = simple_date, y = total_by_day)) +
geom_bar(stat = "identity", fill = "blue")

ggplot(time_series_df, aes(x = month_year, y = total_by_day)) +
geom_bar(stat = "identity", fill = "skyblue") +
labs(title = "Total Occurrences by Month", x = "Year", y = "Total Occurrences") +
theme_minimal() +
scale_x_date(date_labels = "%Y", date_breaks = "1 year")

ggplot(time_series_df, aes(x = year(simple_date), y = total_by_day)) +
geom_bar(stat = "identity", fill = "skyblue") +
labs(title = "Total Occurrences by Year", x = "Year", y = "Total Occurrences") +
theme_minimal()
```

```
# Plot occurrences by month (across all years)
ggplot(time_series_df, aes(x = month(simple_date, label = TRUE), y = total_by_day)) +
   geom_bar(stat = "identity", fill = "lightblue") +
   labs(title = "Total Occurrences by Month", x = "Month", y = "Total Occurrences") +
   theme_minimal()
```


[1] 10

```
name <- 'cody'
paste('The name is',name)</pre>
```

'The name is cody'