Đúng Sai

3.8 Hàm Bessel loại I $J_{\alpha}(z)$ và loại II $Y_{\alpha}(z)$ luôn luôn độc lập tuyến tính.

Đúng Sai

3.9 Hàm Bessel loại I $J_{\alpha}(z)$ và $J_{-\alpha}(z)$ luôn phụ thuộc tuyến tính.

Đúng

3.10 Nếu hàm f(x) khai triển thành chuỗi Fourier-Bessel thì f(x) là hàm tuần hoàn.

Sai Đúng

3.11. Áp dụng phép biến đổi Laplace suy ra các công thức khai triển sau:

$$\operatorname{Ei}(x) = -\gamma - \ln x + \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} \frac{x^{n+1}}{(n+1)!} \; ; \; \operatorname{Ci}(x) = \gamma + \ln x + \sum_{n=0}^{\infty} \frac{(-1)^n}{2n} \frac{x^{2n}}{(2n)!}.$$

3.12. Tính

a.
$$\frac{\Gamma(3)\Gamma\left(\frac{5}{2}\right)}{\Gamma\left(\frac{11}{2}\right)}$$
 b. $\Gamma\left(-\frac{1}{2}\right)$ c. $\Gamma\left(-\frac{5}{2}\right)$ d. $\Gamma\left(-\frac{1}{4}\right)\Gamma\left(\frac{1}{4}\right)$.

b.
$$\Gamma\left(-\frac{1}{2}\right)$$

c.
$$\Gamma\left(-\frac{5}{2}\right)$$

d.
$$\Gamma\left(-\frac{1}{4}\right)\Gamma\left(\frac{1}{4}\right)$$
.

3.13. Sử dụng hàm Gamma tính các tích phân sau:

$$\mathbf{a.} \int_{0}^{\infty} x^{3} e^{-x} dx$$

a.
$$\int_{0}^{\infty} x^{3} e^{-x} dx$$
 b. $\int_{0}^{\infty} x^{6} e^{-2x} dx$

3.14. Sử dụng hàm Gamma tính các tích phân sau:

a.
$$\int_{0}^{\infty} \sqrt{y} e^{-y^3} dy$$
 b. $\int_{0}^{\infty} 3^{-4t^2} dt$

$$\mathbf{b.} \quad \int_{0}^{\infty} 3^{-4t^2} dt$$

3.15. Chứng minh: $\int_{0}^{1} x^{m} (\ln x)^{n} dx = \frac{(-1)^{n} n!}{(m+1)^{n+1}} \quad n \in \mathbb{N}, \ m \in \mathbb{R}, \ m > -1.$

3.16. Áp dụng hàm Beta tính các tích phân sau:

a.
$$\int_{0}^{1} x^{4} (1-x^{3}) dx$$

b.
$$\int_{0}^{2} \frac{x^2 dx}{\sqrt{2-x}}$$

a.
$$\int_{0}^{1} x^{4} (1-x^{3}) dx$$
 b. $\int_{0}^{2} \frac{x^{2} dx}{\sqrt{2-x}}$ **c.** $\int_{0}^{2} x^{3} \sqrt{8-x^{3}} dx$

3.17. Ap dụng hàm Beta tính các tích phân sau:

a.
$$\int_{0}^{\frac{\pi}{2}} \sin^{4}\theta \cos^{5}\theta d\theta$$
 b.
$$\int_{0}^{\frac{\pi}{2}} \cos^{6}\theta d\theta$$
 c.
$$\int_{0}^{\frac{\pi}{2}} \sqrt{\operatorname{tg}\theta} d\theta$$

b.
$$\int_{0}^{\frac{\pi}{2}} \cos^{6} \theta d\theta$$

$$\mathbf{c.} \quad \int_{0}^{\frac{\pi}{2}} \sqrt{\mathsf{tg}\theta} \, d\theta$$

3.18. Chứng minh:
$$\int_{0}^{\pi/2} \sin^{n} \theta d\theta = \int_{0}^{\pi/2} \sin^{n} \theta d\theta = \begin{cases} \frac{\pi}{2} \frac{(n-1)!!}{n!!} & \text{nếu } n \text{ chắn} \\ \frac{(n-1)!!}{n!!} & \text{nếu } n \text{ lẻ} \end{cases}$$

$$(2k+1)!! = 1.3.5...(2k+1).$$

 $(2k)!! = 2.4.6...(2k).$

3.19. Đặt
$$I = \int_{0}^{\pi/2} \sin^{2p} x dx$$
, $J = \int_{0}^{\pi/2} \sin^{2p} 2x dx$, $p > 0$

a. Chứng minh: I = J

b. Chứng minh:
$$I = \frac{\Gamma(p + \frac{1}{2})\sqrt{\pi}}{2\Gamma(p+1)}$$
; $J = \frac{2^{2p-1}\left\{\Gamma(p + \frac{1}{2})\right\}^2}{\Gamma(2p+1)}$

c. Suy ra công thức nhân đôi của hàm Gamma:

$$2^{2p-1}\Gamma(p)\Gamma\left(p+\frac{1}{2}\right) = \sqrt{\pi}\Gamma(2p).$$

3.20. Chứng minh rằng:

a.
$$\int_{0}^{\infty} \frac{x^{p-1}}{x+1} dx = \Gamma(p) \Gamma(1-p), \quad 0$$

b.
$$\int_{0}^{\infty} \frac{dx}{x^p + 1} = \Gamma\left(1 + \frac{1}{p}\right) \Gamma\left(1 - \frac{1}{p}\right), \ p > 1.$$

3.21. Tính các tích phân sau

a.
$$\int_{0}^{\infty} \frac{dx}{x^4 + 1} dx$$
 b. $\int_{0}^{\infty} \frac{x dx}{x^6 + 1}$ **c.** $\int_{0}^{\infty} \frac{x^2 dx}{x^4 + 1}$.

3.22. Chứng minh các công thức truy toán đối với hàm Bessel

1)
$$J_{\alpha+1}(z) = \frac{2\alpha}{z} J_{\alpha}(z) - J_{\alpha-1}(z);$$
 2) $zJ'_{\alpha}(z) = zJ_{\alpha-1}(z) - \alpha J_{\alpha}(z);$

3)
$$zJ'_{\alpha}(z) = \alpha J_{\alpha}(z) - zJ_{\alpha+1}(z);$$
 4) $J'_{\alpha}(z) = \frac{1}{2} \{J_{\alpha-1}(z) - J_{\alpha+1}(z)\};$

5)
$$\frac{d}{dz}(z^{\alpha}J_{\alpha}(z)) = z^{\alpha}J_{\alpha-1}(z);$$
 6) $\frac{d}{dz}(z^{-\alpha}J_{\alpha}(z)) = -z^{-\alpha}J_{\alpha+1}(z);$

7)
$$z^{\alpha-n}J_{\alpha-n}(z) = \frac{d^n}{(zdz)^n}(z^{-\alpha}J_{\alpha}(z)); \ z^{-\alpha-n}J_{\alpha+n}(z) = (-1)^n \frac{d^n}{(zdz)^n}(z^{-\alpha}J_{\alpha}(z));$$

8)
$$\int_{z_0}^{z} z^{\alpha} J_{\alpha-1}(z) dz = z^{\alpha} J_{\alpha}(z) \Big|_{z_0}^{z}$$
 9)
$$\int_{z_0}^{z} z^{-\alpha} J_{\alpha+1}(z) dz = -z^{-\alpha} J_{\alpha}(z) \Big|_{z_0}^{z}$$

10)
$$\int_{0}^{z} J_{\alpha}(z)dz = 2\{J_{\alpha+1}(z) + J_{\alpha+3}(z) + \cdots\}$$

3.23. Tính các tích phân không xác định:

a.
$$\int x^n J_{n-1}(x) dx$$
 b. $\int \frac{J_{n+1}^{(x)}}{u^n} dx$ **c.** $\int x^4 J_1(x) dx$

b.
$$\int \frac{J_{n+1}^{(x)}}{r^n} dx$$

$$\mathbf{c.} \quad \int x^4 J_1(x) dx$$

3.24. Tính theo $J_1(x)$ và $J_0(x)$

a.
$$J_3(x)$$

b.
$$\int J_1(\sqrt[3]{x})dx$$

$$\mathbf{c.} \quad \int J_0(x) \sin x dx$$

3.25. Chứng minh:

a.
$$J_3(x)$$
 b. $\int J_1(\sqrt[3]{x}) dx$ **c.** $\int J_0(x) \sin x dx$ Chứng minh:
a. $1 = J_0(x) + 2J_2(x) + 2J_4(x) + \cdots$

b.
$$J_1(x) - J_3(x) + J_5(x) - J_7(x) + \dots = \frac{1}{2}\sin x$$
.

3.26. Chứng tỏ rằng

a.
$$\frac{1-x^2}{8} = \sum_{n=1}^{\infty} \frac{J_0(\lambda_n x)}{\lambda_n^3 J_1(\lambda_n x)}$$
, $0 < x < 1$.

Trong đó λ_n là nghiệm thực dương của phương trình $J_0(\lambda)=0$.

b.
$$x^3 = \sum_{n=1}^{\infty} \frac{2(8 - \lambda_n^2) J_1(\lambda_n x)}{\lambda_n^3 J_1(\lambda_n x)}$$
, $0 < x < 1$.

Trong đó λ_n là nghiệm thực dương của phương trình $J_1(\lambda) = 0$.

3.27. Chứng minh rằng nếu $f(x) = \sum_{n=0}^{\infty} a_n J_0(\lambda_n x)$, 0 < x < 1; trong đó λ_n là nghiệm thực durong của phương trình $J_0(\lambda) = 0$ thì $\int_0^1 x(f(x))^2 dx = \sum_{n=1}^\infty a_n^2 J_1^2(\lambda_n)$.

3.28. a. Chứng tổ rằng $x = \sum_{n=1}^{\infty} \frac{J_1(\lambda_n x)}{\lambda_n J_2(\lambda_n x)}$, 0 < x < 1. Trong đó λ_n là nghiệm thực dương của phương trình $J_1(\lambda) = 0$.

- **b.** Sử dụng bài 27. và a. chứng tỏ $\sum_{n=1}^{\infty} \frac{1}{\lambda_n^2} = \frac{1}{4}$.
- **3.29.** Chứng tổ rằng phương trình: $\frac{d^2y}{dx^2} + \frac{1}{x}\frac{dy}{dx} + (k^2 \frac{\alpha^2}{x^2})y = 0$

có nghiệm tổng quát: $y = AJ_{\alpha}(kx) + BY_{\alpha}(kx)$

3.30. Giải các phương trình sau:

a.
$$zy'' + y' + ay = 0$$

b.
$$4zy'' + 4y' + y = 0$$

c.
$$zy'' + 2y' + 2y = 0$$
 d. $y'' + z^2y = 0$.

d.
$$v'' + z^2v = 0$$