

(19) 日本国特許庁(JP)

(12) 公開特許公報 (A)

(11) 特許出願公開番号

特開2003-120399
 (P2003-120399A)
 (43) 公開日 平成15年4月23日(2003.4.23)

(51) Int. C.I.
 F 02 D 45/00
 F 01 N 3/00
 3/08
 3/24

審査請求 未請求 請求項の数 8

F I
 F 02 D 45/00
 F 01 N 3/00
 3/08
 3/24

OL (全 13 頁) 最終頁に続く

(21) 出願番号 特願2001-311835(P2001-311835)

(71) 出願人 000003207

(22) 出願日 平成13年10月9日(2001.10.9)

トヨタ自動車株式会社

愛知県豊田市トヨタ町1番地

(72) 発明者 池田 慶治

愛知県豊田市トヨタ町1番地 トヨタ自動車株式会社内

(74) 代理人 100077517

弁理士 石田 敬 (外2名)

(54) 【発明の名称】 NO_x センサ異常検出装置

(57) 【要約】

【課題】 NO_x センサ異常検出装置を提供する。

【解決手段】 内燃機関の燃焼室から排出される排気ガス中のNO_x濃度に応じて異なる値の出力値を出力し、該出力値から排気ガス中のNO_x濃度を検出することができるNO_xセンサの異常を検出するためのNO_xセンサ異常検出装置において、NO_xセンサに到達する排気ガス中のNO_x濃度を強制的に変動させ、このときにNO_xセンサが出力する出力値の変動が当該NO_xセンサが正常であるときに取りうる変動からはずれている場合に、NO_xセンサに異常があると判定する。

図1

(2)

特開2003-120399

2

【特許請求の範囲】

【請求項1】 内燃機関の燃焼室から排出される排気ガス中のNO_x濃度に応じて異なる値の出力値を出力し、該出力値から排気ガス中のNO_x濃度を検出することができるNO_xセンサの異常を検出するためのNO_xセンサ異常検出装置において、NO_xセンサに到達する排気ガス中のNO_x濃度を強制的に変動させ、このときにNO_xセンサが输出する出力値の変動が当該NO_xセンサが正常であるときに取りうる変動からずれている場合に、NO_xセンサに異常があると判定するようにしたことを特徴とするNO_xセンサ異常検出装置。

【請求項2】 内燃機関が通常の運転制御に従って運転せしめられているときに取りうる排気ガス中のNO_x濃度の変動よりも大きく排気ガス中のNO_x濃度を強制的に変動させるようにしたことを特徴とする請求項1に記載のNO_xセンサ異常検出装置。

【請求項3】 内燃機関が燃焼室から排出された排気ガスを再び燃焼室内に循環させるように構成されている場合には、燃焼室内に循環せしめられる排気ガスの量を強制的に変動させることにより、排気ガス中のNO_x濃度を強制的に変動させるようにしたことを特徴とする請求項1に記載のNO_xセンサ異常検出装置。

【請求項4】 内燃機関が燃焼室から排出された排気ガスを再び燃焼室内に循環させるように構成されている場合には、燃焼室内に循環せしめられる排気ガスの温度を強制的に変動させることにより、排気ガス中のNO_x濃度を強制的に変動させるようにしたことを特徴とする請求項1に記載のNO_xセンサ異常検出装置。

【請求項5】 燃焼室内において燃料を点火するタイミングを強制的に変動させることにより、排気ガス中のNO_x濃度を強制的に変動させるようにしたことを特徴とする請求項1に記載のNO_xセンサ異常検出装置。

【請求項6】 内燃機関の運転が定常状態にあるときにのみNO_xセンサの異常を検出するための制御を実行するようにしたことを特徴とする請求項1～5のいずれか1つに記載のNO_xセンサ異常検出装置。

【請求項7】 流入する排気ガスの空燃比がリーンであるときには排気ガス中のNO_xを吸収し且つ流入する排気ガス中の空燃比がリッチとなると吸収しているNO_xを放出して排気ガス中の炭化水素により還元浄化し且つ流入する排気ガスの空燃比がリッチである間に吸収しているNO_xの量が零に近づくとアンモニアを生成するNO_x吸収剤が内燃機関の排気通路に配置され、上記NO_xセンサが該NO_x吸収剤から流出する排気ガス中のNO_x濃度を検出するようにNO_x吸収剤下流の排気通路に配置されている場合には、NO_x吸収剤にリッチ空燃比の排気ガスを供給してNO_x吸収剤に吸収されているNO_xの量を零に近づけ、このときにNO_xセンサが输出する出力値の変動が当該NO_xセンサが正常であるときに取りうる変動からずれている場合に、NO_xセンサに異常があると判定することを特徴とするNO_xセンサ異常検出装置。

【請求項8】 内燃機関の燃焼室から排出される排気ガ

10

20

30

40

ス中のNO_x濃度に応じて異なる値の出力値を出力し、該出力値から排気ガス中のNO_x濃度を検出することができるNO_xセンサの異常を検出するためのNO_xセンサ異常検出装置において、流入する排気ガスの空燃比がリーンであるときには排気ガス中のNO_xを吸収し且つ流入する排気ガスの空燃比がリッチとなると吸収しているNO_xを放出して排気ガス中の炭化水素により還元浄化し且つ流入する排気ガスの空燃比がリッチである間に吸収しているNO_xの量が零に近づくとアンモニアを生成するNO_x吸収剤が内燃機関の排気通路に配置され、上記NO_xセンサが排気ガス中のアンモニア濃度に応じて異なる値の出力値を出力し、該出力値から排気ガス中のアンモニア濃度を検出することができ、上記NO_xセンサが該NO_x吸収剤から流出する排気ガス中のNO_x濃度またはアンモニア濃度を検出するようにNO_x吸収剤下流の排気通路に配置されている場合には、NO_x吸収剤にリッチ空燃比の排気ガスを供給してNO_x吸収剤に吸収されているNO_xの量を零に近づけ、このときにNO_xセンサがoutputする出力値の変動が当該NO_xセンサが正常であるときに取りうる変動からずれている場合に、NO_xセンサに異常があると判定することを特徴とするNO_xセンサ異常検出装置。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】本発明はNO_xセンサ異常検出装置に関する。

【0002】

【従来の技術】内燃機関から排出される排気ガス中のNO_x濃度を検出するためのNO_xセンサが特開平11-14589号公報に開示されている。また、NO_xセンサにより検出されたNO_x濃度が正確であるか否かを知るためにには、NO_xセンサの異常を検出する必要があることから、上記公報では、NO_x濃度を検出するために排気ガス中の酸素をポンピング処理したときに、このように酸素をポンピング処理するための2つの電極間にポンプ電流が発生するが、これら電極間のインピーダンスは、電極を含む回路をヒータにより加熱したときには、NO_xセンサが正常であれば、或る一定の値になることを利用して、NO_xセンサの異常を検出するようにしている。

【0003】すなわち上記公報では、酸素をポンピング処理するための電極を含む回路をヒータにより加熱したときに、これら電極間のインピーダンスが規定値に達していない場合に、NO_xセンサに異常があると判定するようしている。

【0004】

【発明が解決しようとする課題】このようにNO_xセンサの分野においては、NO_xセンサの異常を検出するという要請がある。そこで本発明の目的は上記公報に記載されているNO_xセンサ異常検出方法とは異なる方法を

50

(3)

特開2003-120399

4

3

採用したNO_xセンサ異常検出装置を提供することにある。

【0005】

【課題を解決するための手段】上記課題を解決するために、1番目の発明では、内燃機関の燃焼室から排出される排気ガス中のNO_x濃度に応じて異なる値の出力値を出力し、該出力値から排気ガス中のNO_x濃度を検出することができるNO_xセンサの異常を検出するためのNO_xセンサ異常検出装置において、NO_xセンサに到達する排気ガス中のNO_x濃度を強制的に変動させ、このときにNO_xセンサが输出する出力値の変動が当該NO_xセンサが正常であるときに取りうる変動からずれている場合に、NO_xセンサに異常があると判定する。すなわちNO_xセンサは排気ガス中のNO_x濃度に応じて異なる値の出力値を出力するので、排気ガス中のNO_x濃度を強制的に変動させれば、NO_xセンサの出力値も変動し、ここでNO_xセンサが正常であればこのときにはNO_xセンサの出力値は或る所定の形態でもって変動するはずであるから、このときのNO_xセンサの出力値の変動がNO_xセンサが正常であるときに取りうる変動からずれていれば、NO_xセンサに異常が生じている。

【0006】2番目の発明では1番目の発明において、内燃機関が通常の運転制御に従って運転せしめられているときに取りうる排気ガス中のNO_x濃度の変動よりも大きく排気ガス中のNO_x濃度を強制的に変動させる。

【0007】3番目の発明では1番目の発明において、内燃機関が燃焼室から排出された排気ガスを再び燃焼室内に循環させるように構成されている場合には、燃焼室内に循環せしめられる排気ガスの量を強制的に変動させることにより、排気ガス中のNO_x濃度を強制的に変動させる。

【0008】4番目の発明では1番目の発明において、内燃機関が燃焼室から排出された排気ガスを再び燃焼室内に循環させるように構成されている場合には、燃焼室内に循環せしめられる排気ガスの温度を強制的に変動させることにより、排気ガス中のNO_x濃度を強制的に変動させる。

【0009】5番目の発明では1番目の発明において、燃焼室内において燃料を点火するタイミングを強制的に変動させることにより、排気ガス中のNO_x濃度を強制的に変動させる。

【0010】6番目の発明では1～5番目の発明において、内燃機関の運転が定常状態にあるときにのみNO_xセンサの異常を検出するための制御を実行する。

【0011】7番目の発明では1～5番目の発明において、流入する排気ガスの空燃比がリーンであるときには排気ガス中のNO_xを吸収し且つ流入する排気ガス中の空燃比がリッチとなると吸収しているNO_xを放出して排気ガス中の炭化水素により還元浄化し且つ流入する排気ガスの空燃比がリッチである間に吸収しているNO_x

の量が零に近づくとアンモニアを生成するNO_x吸収剤が内燃機関の排気通路に配置され、上記NO_xセンサが該NO_x吸収剤から流出する排気ガス中のNO_x濃度を検出するようにNO_x吸収剤下流の排気通路に配置されている場合には、NO_x吸収剤に流入する排気ガスの空燃比がリーンであるときにNO_xセンサの異常を検出する。

【0012】上記課題を解決するために8番目の発明では、内燃機関の燃焼室から排出される排気ガス中のNO_x濃度に応じて異なる値の出力値を出力し、該出力値から排気ガス中のNO_x濃度を検出することができるNO_xセンサの異常を検出するためのNO_xセンサ異常検出装置において、流入する排気ガスの空燃比がリーンであるときには排気ガス中のNO_xを吸収し且つ流入する排気ガスの空燃比がリッチとなると吸収しているNO_xを放出して排気ガス中の炭化水素により還元浄化し且つ流入する排気ガスの空燃比がリッチである間に吸収しているNO_xの量が零に近づくとアンモニアを生成するNO_x吸収剤が内燃機関の排気通路に配置され、上記NO_x

10 センサが排気ガス中のアンモニア濃度に応じて異なる値の出力値を出力し、該出力値から排気ガス中のアンモニア濃度を検出することができ、上記NO_xセンサが該NO_x吸収剤から流出する排気ガス中のNO_x濃度またはアンモニア濃度を検出するようにNO_x吸収剤下流の排気通路に配置されている場合には、NO_x吸収剤にリッチ空燃比の排気ガスを供給してNO_x吸収剤に吸収されているNO_xの量を零に近づけ、このときにNO_xセンサが输出する出力値の変動が当該NO_xセンサが正常であるときに取りうる変動からずれている場合に、NO_x

20 センサに異常があると判定する。すなわちNO_xセンサは排気ガス中のアンモニア濃度に応じて異なる値の出力値を出力し、該出力値から排気ガス中のアンモニア濃度を検出することができ、上記NO_xセンサが該NO_x吸収剤から流出する排気ガス中のNO_x濃度またはアンモニア濃度を検出するようにNO_x吸収剤下流の排気通路に配置されている場合には、NO_x吸収剤にリッチ空燃比の排気ガスを供給してNO_x吸収剤に吸収されているNO_xの量を零に近づけ、このときにNO_xセンサが输出する出力値の変動が当該NO_xセンサが正常であるときに取りうる変動からずれている場合に、NO_x

30 センサに異常があると判定する。すなわちNO_xセンサは排気ガス中のアンモニア濃度に応じて異なる値の出力値を出力し、該出力値から排気ガス中のアンモニア濃度を検出することができ、上記NO_xセンサが該NO_x吸収剤から流出する排気ガス中のNO_x濃度またはアンモニア濃度を検出するようにNO_x吸収剤下流の排気通路に配置されている場合には、NO_x吸収剤にリッチ空燃比の排気ガスを供給してNO_x吸収剤に吸収されているNO_xの量を零に近づけ、このときにNO_xセンサがoutputする出力値の変動が当該NO_xセンサが正常であるときに取りうる変動からずれている場合に、NO_x

40 センサに異常があると判定する。すなわちNO_xセンサは排気ガス中のアンモニア濃度に応じて異なる値の出力値を出力し、該出力値から排気ガス中のアンモニア濃度を検出することができ、上記NO_xセンサが該NO_x吸収剤から流出する排気ガス中のNO_x濃度またはアンモニア濃度を検出するようにNO_x吸収剤下流の排気通路に配置されている場合には、NO_x吸収剤にリッチ空燃比の排気ガスを供給してNO_x吸収剤に吸収されているNO_xの量を零に近づければ、NO_x吸収剤からアンモニアが流出し、したがって、NO_xセンサの出力値も変動し、ここでNO_xセンサが正常であればこのときにはNO_xセンサの出力値は或る所定の形態でもって変動するはずであるから、このときのNO_xセンサの出力値の変動がNO_xセンサが正常であるときに取りうる変動からずれていれば、NO_xセンサに異常が生じている。

【0013】

【発明の実施の形態】図面を参照して本発明の実施例について説明する。以下では、本発明を筒内噴射式火花点火機関に適用した実施例を説明するが、本発明は圧縮着火式内燃機関にも適用可能である。

【0014】図1を参照すると、1は機関本体、2はシリンダブロック、3はシリンダブロック2内で往復動するピストン、4はシリンダブロック2上に固定されたシリンダヘッド、5はピストン3とシリンダヘッド4との間に形成された燃焼室、6は吸気弁、7は吸気ポート、

(4)

特開2003-120399

6

5

8は排気弁、9は排気ポートを夫々示す。図1に示したように、シリンドヘッド4の内壁面の中央部には点火栓10が配置され、シリンドヘッド4の内壁面周辺部には燃料噴射弁11が配置される。また、ピストン3の頂面上には燃料噴射弁11の下方から点火栓10の下方まで延びるキャビティ12が形成されている。

【0015】各気筒の吸気ポート7は夫々対応する吸気枝管13を介してサージタンク14に連結され、サージタンク14は吸気ダクト15およびエアフローメータ16を介してエアクリーナ(図示せず)に連結される。吸気ダクト15内にはステップモータ17によって駆動されるスロットル弁18が配置される。一方、各気筒の排気ポート9は排気マニホールド19に連結され、この排気マニホールド19は酸化触媒または三元触媒20を内蔵した触媒コンバータ21および排気管22を介してNO_x吸収剤23を内蔵したケーシング24に連結される。排気マニホールド19とサージタンク14とは再循環排気ガス(以下、EGRガスという)導管26を介して互いに連結され、このEGRガス導管26内にはEGRガス制御弁27が配置される。

【0016】電子制御ユニット31はディジタルコンピュータからなり、双方向性バス32を介して相互に接続されたRAM(ランダムアクセスメモリ)33、ROM(リードオンリーメモリ)34、CPU(マイクロプロセッサ)35、入力ポート36および出力ポート37を具備する。エアフローメータ16は吸入空気量に比例した出力電圧を発生し、この出力電圧が対応するAD変換器38を介して入力ポート36に入力される。排気マニホールド19には空燃比を検出するための空燃比センサ28が取り付けられ、この空燃比センサ28の出力信号が対応するAD変換器38を介して入力ポート36に入力される。またNO_x吸収剤23を内蔵したケーシング24の出口に接続された排気管25内には排気ガス中のNO_x濃度を検出可能なNO_xセンサ29と、空燃比を検出可能な空燃比センサ30とか配置され、これらNO_xセンサ29および空燃比センサ30の出力信号が対応するAD変換器38を介して入力ポート36に入力される。

【0017】また、アクセルペダル40にはアクセルペダル40の踏込み量に比例した出力電圧を発生する負荷センサ41が接続され、負荷センサ41の出力電圧は対応するAD変換器38を介して入力ポート36に入力される。クランク角センサ42は例えばクランクシャフトが30度回転する毎に出力パルスを発生し、この出力パルスが入力ポート36に入力される。CPU35ではこのクランク角センサ42の出力パルスから機関回転数が計算される。一方、出力ポート37は対応する駆動回路39を介して点火栓10、燃料噴射弁11、ステップモータ17およびEGR制御弁27に接続される。

【0018】詳細は後述するが、本実施例のNO_x吸収剤はそこに流入する排気ガスの空燃比がリーンであると

きに排気ガス中のNO_xを吸収し、そこに流入する排気ガスの空燃比がリッチとなると、吸収しているNO_xを放出し、この放出されたNO_xを排気ガス中の炭化水素により還元浄化することができる。

【0019】また、これも詳細は後述するが、本実施例のNO_xセンサは排気ガス中のNO_x濃度に応じて異なる値の出力値(出力信号)を出力する。すなわち、排気ガス中のNO_x濃度が変動すれば、NO_xセンサ29の出力値も変動する。以下で説明する本実施例のNO_xセンサ異常検出方法は、基本的には、こうしたNO_xセンサの出力特性を利用するものである。

【0020】次に本実施例のNO_xセンサの異常検出方法について説明する。本実施例のNO_xセンサ異常検出装置は、NO_xセンサ29の異常を検出しようとしたときに、燃焼室5から排出される排気ガス中のNO_x濃度を強制的に変動させ、これによりNO_xセンサ29に到達する排気ガス中のNO_x濃度を変動させ、このときのNO_xセンサ29の出力値(出力信号)の変動をNO_xセンサ29が正常であったならば取ったであろう所定の変動と比較し、このNO_xセンサ29の出力値の変動が所定の変動からはずれている場合に、NO_xセンサ29に異常があると判定する。

【0021】なお、NO_xセンサ29に異常が生じていると判定する場合における所定の変動からのNO_xセンサ29の出力値の変動のずれの程度は、任意に決定されればよく、予め定めされた一定程度でもよいし、内燃機関の運転状態に応じて異なる程度でもよい。

【0022】また、NO_xセンサ29の異常を検出しようとしたときに、NO_xセンサ29に到達する排気ガス中のNO_x濃度を変動させるべき幅は、NO_xセンサ29の異常を検出していないとき、すなわち、内燃機関が通常運転せしめられているときに起こりうる排気ガス中のNO_x濃度の変動の幅よりも大きくなる。

【0023】本実施例のNO_xセンサ異常検出方法の一例を図2に示したタイムチャートを参照して説明する。図2に示した例は、NO_xセンサ異常検出時において、NO_xセンサ29に到達する排気ガス中のNO_x濃度を変動させるための手段として、燃焼室5内に循環せしめられる排気ガス(EGRガス)の空気に対する割合(以下、EGR率と称す)を変動するという手段を採用した例である。

【0024】図2において、ReggrはEGR率であり、CnoxinはNO_x吸収剤23に流入する排気ガス中のNO_x濃度、すなわち、燃焼室5から排出される排気ガス中の濃度であり、CnoxoutはNO_x吸収剤23から流出した排気ガス中のNO_x濃度、すなわち、NO_xセンサ29に到達する排気ガス中のNO_x濃度であり、InoxはNO_xセンサ29の出力値である。

【0025】図2に示したタイムチャートにおいて、時

(5)

特開2003-120399

8

7

刻 t_1 以前の通常制御が実行されている期間、すなわち、 NO_x センサ 2 9 の異常を検出していない期間においては、燃焼室 5 内にて発生する NO_x の量（以下、 NO_x 発生量と称す）が所定量よりも少ないほぼ一定の量に維持されるように、すなわち、 NO_x 吸収剤 2 3 に流入する排気ガス中の NO_x 濃度 $C_{\text{no}x\text{in}}$ が所定濃度よりも低いほぼ一定の濃度に維持されるように、EGR 率 R_{egr} が予め定められたほぼ一定の率に維持されている。このとき NO_x 吸収剤 2 3 から流出する排気ガス中の NO_x 濃度 $C_{\text{no}x\text{out}}$ はほぼ一定濃度となるので、 NO_x センサ 2 9 の出力値 $I_{\text{no}x}$ もほぼ一定の出力値を出力する。

【0026】一方、図 2 に示したタイムチャートにおいて、時刻 t_1 から時刻 t_2 までの期間、すなわち、 NO_x センサ 2 9 の異常を検出するための期間においては、EGR 率 R_{egr} が時刻 t_1 以前の通常制御における変動幅よりも大きな変動幅にて強制的に変動せしめられる。このように EGR 率 R_{egr} が大きく変動せしめられると、燃焼室 5 内にて発生する NO_x の量も大きく変動し、したがって、 NO_x 吸収剤 2 3 に流入する排気ガス中の NO_x 濃度 $C_{\text{no}x\text{in}}$ も大きく変動する。

【0027】このとき NO_x 吸収剤 2 3 に流入する排気ガス中の NO_x の多くは NO_x 吸収剤 2 3 に吸収されるとはいえ、 NO_x 吸収剤 2 3 から流出する排気ガス中の NO_x 濃度 $C_{\text{no}x\text{out}}$ も通常制御が実行されているときにおける変動幅よりも大きな変動幅にて変動する。

【0028】さてこのとき、 NO_x センサ 2 9 が正常であれば、 NO_x センサ 2 9 の出力値 $I_{\text{no}x}$ も通常制御中における NO_x センサ 2 9 の出力値の変動幅よりも大きな変動幅にて変動する。しかしながら、 NO_x センサ 2 9 に異常があれば、 NO_x センサ 2 9 の出力値 $I_{\text{no}x}$ は NO_x センサ 2 9 が正常であるときに取りうる変動幅よりも小さく変動するか、或いは、ほとんど変動しない。

【0029】すなわち、 NO_x センサ 2 9 の出力値 $I_{\text{no}x}$ は、 NO_x センサ 2 9 が正常であれば、図 2 のタイムチャートの鎖線 A で示したように変動し、 NO_x センサ 2 9 に異常があれば、図 2 のタイムチャートの実線 B で示したように変動する。

【0030】そこで本実施例では、EGR 率を通常制御中におけるその変動幅よりも大きく変動させ、このときの NO_x センサ 2 9 の出力値の変動幅を監視し、この変動幅が通常制御中におけるその変動幅よりも小さい場合、或いは、通常制御中における変動幅に対する異常検出中における変動幅の割合が一定割合よりも小さい場合に、 NO_x センサ 2 9 に異常があると判定する。

【0031】図 3 に本実施例の NO_x センサ異常検出を実行するためのフローの一例を示した。図 3 に示したフローでは、最初にステップ 1 0 において、車両が定常走行中であるか否かが判別される。ここでは車速が 80 km/h

であるときに車両が定常走行中であると判別される。さてステップ 1 0 において、車両が定常走行中ではないと判別されたときには、ルーチンは終了するが、車両が定常走行中であると判別されたときには、ルーチンはステップ 1 1 に進む。

【0032】ステップ 1 1 では、 NO_x 吸収剤 2 3 から NO_x を放出させて排気ガス中の炭化水素により還元浄化する NO_x 還元処理が実行されているか否かが判別される。ステップ 1 1 において、 NO_x 還元処理が実行されていると判別されたときには、ルーチンは終了するが、 NO_x 還元処理が実行されていないと判別されたときには、ルーチンはステップ 1 2 に進む。

【0033】ステップ 1 2 では、EGR 率が強制的に大きな変動幅でもって変動せしめられ、次いでステップ 1 3 においてこのときの NO_x センサ 2 9 の出力値の最大値と最小値との差 $\Delta I_{\text{no}x}$ が算出される。

【0034】次いでステップ 1 4 において、ステップ 1 3 において算出された出力差 $\Delta I_{\text{no}x}$ が所定の値 ΔI_{th} よりも小さいか否かが判別される。ステップ 1 4 において、 $\Delta I_{\text{no}x} \geq \Delta I_{\text{th}}$ であると判別されたときには、ルーチンは終了する。すなわち、このときには NO_x センサ 2 9 は正常であると判定される。一方、ステップ 1 4 において、 $\Delta I_{\text{no}x} < \Delta I_{\text{th}}$ であると判別されたときには、 NO_x センサ 2 9 に異常があると判定し、ルーチンはステップ 1 5 に進んで NO_x センサ 2 9 に異常があることを表示する。

【0035】次に上述した実施例とは別の実施例について説明する。この第 2 の実施例の NO_x センサ異常検出装置では、 NO_x センサ 2 9 に到達する排気ガス中の NO_x 濃度を変動させる手段として、EGR ガスの温度を変動させるという手段が採用される。すなわち、燃焼室 5 内にて発生する NO_x の量 (NO_x 発生量) は、EGR ガスの温度が変動しても変動する。そこで第 2 の実施例では、 NO_x センサ 2 9 の異常を検出しようとしたときには、EGR ガスの温度が通常制御における変動幅よりも大きな変動幅にて強制的に変動せしめられる。このように EGR ガスの温度が大きく変動せしめられると、燃焼室 5 内にて発生する NO_x の量 (NO_x 発生量) も大きく変動し、したがって、 NO_x 吸収剤 2 3 に流入する排気ガス中の NO_x 濃度も大きく変動し、したがって、 NO_x 吸収剤 2 3 から流出する排気ガス中の NO_x 濃度も大きく変動する。

【0036】このとき、 NO_x センサ 2 9 が正常であれば、 NO_x センサ 2 9 の出力値も通常制御中における NO_x センサ 2 9 の出力値の変動幅よりも大きな変動幅にて変動する。しかしながら、 NO_x センサ 2 9 に異常があれば、 NO_x センサ 2 9 の出力値は NO_x センサ 2 9 が正常であるときに取りうる変動幅よりも小さく変動するか、或いは、ほとんど変動しない。

【0037】そこで第 2 の実施例では、 NO_x センサ異

(6)

特開2003-120399

10

常検出中において、EGRガスの温度を通常制御中におけるEGRガスの温度の変動幅よりも大きく変動させ、このときのNO_xセンサ29の出力値の変動幅を監視し、この変動幅が通常制御中における変動幅よりも小さい場合、或いは、通常制御中における変動幅に対する異常検出中における変動幅の割合が一定割合よりも小さい場合に、NO_xセンサ29に異常があると判定する。

【0038】また、本発明の第3の実施例のNO_xセンサ異常検出装置では、NO_xセンサ29に到達する排気ガス中のNO_x濃度を変動させる手段として、燃焼室5内において点火栓10により燃料を点火するタイミング（以下、点火タイミングと称す）を変動させるという手段が採用される。すなわち、燃焼室5内にて発生するNO_xの量（NO_x発生量）は、点火タイミングが変動しても変動する。そこで第3の実施例では、NO_xセンサ29の異常を検出しようとするときには、点火タイミングが通常制御中に行われる点火タイミングの変動幅よりも大きな変動幅にて強制的に変動せしめられる。このように点火タイミングが大きく変動せしめられると、燃焼室5内にて発生するNO_xの量（NO_x発生量）も大きく変動し、したがって、NO_x吸収剤23に流入する排気ガス中のNO_x濃度も大きく変動し、したがって、NO_x吸収剤23から流出する排気ガス中のNO_x濃度も大きく変動する。

【0039】このとき、NO_xセンサ29が正常であれば、NO_xセンサ29の出力値も通常制御中におけるNO_xセンサ29の出力値の変動幅よりも大きな変動幅にて変動する。しかしながら、NO_xセンサ29に異常があれば、NO_xセンサ29の出力値はNO_xセンサ29が正常であるときに取りうる変動幅よりも小さく変動するか、或いはほとんど変動しない。

【0040】そこで第3の実施例では、NO_xセンサ異常検出中において、点火タイミングを通常制御中における点火タイミングの変動幅よりも大きく変動させ、このときのNO_xセンサ29の出力値の変動幅を監視し、この変動幅が通常制御中における変動幅よりも小さい場合、或いは、通常制御中における変動幅に対する異常検出中における変動幅の割合が一定割合よりも小さい場合に、NO_xセンサ29に異常があると判定する。

【0041】ところで上述した実施例では、NO_xセンサ異常検出中においては、EGR率を変動させ、或いは、EGRガスの温度を変動させ、或いは、点火タイミングを変動させて、NO_xセンサ異常検出中の内燃機関の運転状態は少なからず要求される運転状態からずれることとなる。このことは内燃機関から安定した出力を出力させるという観点からは好ましくない。

【0042】そこで上述した実施例では、NO_xセンサ29の異常を検出するための制御が実行されたとしても内燃機関の運転状態が要求運転状態からずれる程度が小さく抑制される条件が満たされているときにのみ、NO

10

センサ異常検出が実行される。別の言い方をすれば、NO_xセンサ29の異常を検出するための制御を実行したとしても内燃機関がOutputするトルクの変動が許容範囲内に収まるときにのみ、NO_xセンサ異常検出が実行される。

【0043】NO_xセンサ29の異常を検出するための制御を実行したとしても内燃機関の運転状態が要求運転状態からずれる程度が小さく抑制される条件としては、例えば、内燃機関の運転が定常状態にあるときであり、このように内燃機関の運転が定常状態にあるときとは、内燃機関に要求されるトルクが一定であるときであり、或いは、内燃機関が車両に搭載されている場合には車両が一定速度にて走行しているときである。

【0044】ところで上述したように、NO_x吸収剤23はそこに流入する排気ガスの空燃比がリッチとなると、吸収しているNO_xを放出し、この放出されたNO_xを排気ガス中の炭化水素により還元浄化する。ところでNO_x吸収剤23が吸収可能なNO_x量には限界がある。したがってNO_x吸収剤23に吸収されているトータルのNO_x量（以下、トータルNO_x吸収量と称す）が、その限界値（以下、NO_x吸収限界値）を超えるまでは、NO_x吸収剤23は流入するNO_xのほとんどを吸収することができるが、トータルNO_x吸収量がNO_x吸収限界値に達すると、NO_x吸収剤23はもはやNO_xを吸収することができず、したがってNO_x吸収剤23に流入したNO_xがNO_x吸収剤23に吸収されずにNO_x吸収剤23から流出し、結果として、排気エミッショ�이恶化する。

【0045】こうした理由による排気エミッショ의恶化を抑制するために、上述した実施例では、トータルNO_x吸収量がNO_x吸収限界値に達する前に、NO_x吸収剤23にリッチ空燃比の排気ガスを供給し、NO_x吸収剤23からNO_xを放出させ、この放出させたNO_xをNO_x吸収剤23に還元浄化させるためのNO_x還元処理を実行するようとする。斯くて上記実施例では、排気エミッショ의恶化が抑制される。

【0046】なお、NO_x吸収剤23に流入する排気ガスの空燃比をリッチにする方法は種々の方法がある。例えば燃焼室5内における混合気の平均空燃比をリッチにすることにより排気ガスの空燃比をリッチにすることもできるし、膨張行程末期または排気行程中に追加の燃料を噴射することによって排気ガスの空燃比をリッチにすることもできるし、またはNO_x吸収剤23上流の排気通路内に追加の燃料を噴射することによって排気ガスの空燃比をリッチにすることもできる。本発明の実施例では1番目の方法、すなわちリッチ空燃比のもとで均一混合気燃焼を行わせることによって排気ガスの空燃比をリッチにすることをしている。

【0047】ところでNO_x還元処理が実行され、NO_x吸収剤23に吸収されているNO_xの量（トータルN

50

(7)

特開2003-120399

12

11
 NO_x 吸収量) が零に近づくと、 NO_x 還元処理が終了せしめられるわけであるが、トータル NO_x 吸収量が零に近づくと NO_x 吸収剤 2 3 にてアンモニアが生成され、したがって、 NO_x 吸収剤 2 3 からアンモニアが流出する。

【0048】そして本実施例の NO_x センサ 2 9 はアンモニア濃度をも検出することができる。したがって、 NO_x センサ 2 9 の異常を検出しようとして EGR 率を変動させ、或いは、EGR ガスの温度を変動させ、或いは、点火タイミングを変動させたとしても、 NO_x 吸収剤 2 3 にリッチ空燃比の排気ガスが流入せしめられているときには、 NO_x 吸収剤 2 3 からアンモニアが流出し、したがって NO_x センサ 2 9 は NO_x 濃度ではなくアンモニア濃度を検出している可能性がある。すなわち NO_x 還元処理実行中において NO_x センサ異常検出が実行されても、精度高く NO_x センサ 2 9 の異常を検出することはできない。そこで上記実施例では、 NO_x 吸収剤 2 3 に流入する排気ガスの空燃比がリーンであるときにのみ、 NO_x センサ異常検出が実行される。

【0049】また、 NO_x 還元処理中において、燃焼室 5 内にてリッチ空燃比にて燃料を燃焼させることによりトータル NO_x 吸収量が零に近づいたときには、燃焼室 5 内にてリーン空燃比にて燃料が燃焼せしめられているときにのみ、 NO_x センサ異常検出が実行される。

【0050】さらに上述したように、 NO_x 還元処理が実行され、 NO_x 吸収剤 2 3 に吸収されている NO_x の量 (トータル NO_x 吸収量) が零に近づいたときに、 NO_x 吸収剤 2 3 にてアンモニアが生成され、 NO_x 吸収剤 2 3 からアンモニアが流出することを利用して、 NO_x センサ 2 9 の異常を検出することもできる。

【0051】すなわち、 NO_x センサ 2 9 の異常を検出しようとしたときに、 NO_x 吸収剤 2 3 にリッチ空燃比の排気ガスを供給し、 NO_x 吸収剤 2 3 に吸収されているトータル NO_x 吸収量が零に近づいたときの NO_x センサ 2 9 の出力値を監視し、このときの NO_x センサ 2 9 の出力値の変動が NO_x センサ 2 9 が正常であれば取ったであろう変動からずれているとき、より具体的には、このときの NO_x センサ 2 9 の出力値の変動幅が NO_x センサ 2 9 が正常であれば取ったであろう変動幅よりも小さいときに、 NO_x センサ 2 9 に異常があると判断するようにしてよい。

【0052】なお、 NO_x センサ異常検出中において、EGR 率の変動周期、或いは、EGR ガスの温度の変動周期、或いは、点火タイミングの変動周期は NO_x センサの応答時間の約 6 倍とされる。したがって NO_x センサの応答時間が約 1 秒であるときには、EGR 率の変動周期、或いは、EGR ガスの温度の変動周期、或いは、点火タイミングの変動周期は約 6 秒とされる。

【0053】また、 NO_x センサ異常検出中において、

10

一変動周期を一回の変動としたときに、EGR 率の変動回数、或いは、EGR ガスの温度の変動回数、或いは、点火タイミングの変動周期は少なくとも 3 回以上とされる。

【0054】次に図 4 を参照しつつ図 1 に示した NO_x センサ 2 9 のセンサ部の構造について簡単に説明する。図 4 を参照すると NO_x センサ 2 9 のセンサ部は互いに積層された 6 つの酸化ジルコニア等の酸素イオン伝導性固体電解質層からなり、これら 6 つの固体電解質層を以下、上から順に第 1 層 L₁、第 2 層 L₂、第 3 層 L₃、第 4 層 L₄、第 5 層 L₅、第 6 層 L₆ と称する。

【0055】図 4 を参照すると第 1 層 L₁ と第 3 層 L₃ との間に例えば多孔質のまたは細孔が形成されている第 1 の拡散律速部材 5 0 と第 2 の拡散律速部材 5 1 とが配置されており、これら拡散律速部材 5 0、5 1 間には第 1 室 5 2 が形成され、第 2 の拡散律速部材 5 1 と第 2 層 L₂ との間には第 2 室 5 3 が形成されている。また第 3 層 L₃ と第 5 層 L₅ との間には外気に連通している大気室 5 4 が形成されている。一方、第 1 の拡散律速部材 5 0 の外端面は排気ガスと接触している。したがって排気ガスは第 1 の拡散律速部材 5 0 を介して第 1 室 5 2 内に流入し、斯くして第 1 室 5 2 内は排気ガスで満たされている。

【0056】一方、第 1 室 5 2 に面する第 1 層 L₁ の内周面上には陰極側第 1 ポンプ電極 5 5 が形成され、第 1 層 L₁ の外周面上には陽極側第 1 ポンプ電極 5 6 が形成されており、これら第 1 ポンプ電極 5 5、5 6 間には第 1 ポンプ電圧源 5 7 により電圧が印加される。第 1 ポンプ電極 5 5、5 6 間に電圧が印加されると第 1 室 5 2 内の排気ガス中に含まれる酸素が陰極側第 1 ポンプ電極 5 5 と接触して酸素イオンとなり、この酸素イオンは第 1 層 L₁ 内を陽極側第 1 ポンプ電極 5 6 に向けて流れる。したがって第 1 室 5 2 内の排気ガス中に含まれる酸素は第 1 層 L₁ 内を移動して外部に汲み出されることになり、このとき外部に汲み出される酸素量は第 1 ポンプ電圧源 5 7 の電圧が高くなるほど多くなる。

【0057】一方、大気室 5 4 に面する第 3 層 L₃ の内周面上には基準電極 5 8 が形成されている。ところで酸素イオン伝導性固体電解質では固体電解質層の両側において酸素濃度に差があると酸素濃度の高い側から酸素濃度の低い側に向けて固体電解質層内を酸素イオンが移動する。図 4 に示した例では大気室 5 4 内の酸素濃度の方が第 1 室 5 2 内の酸素濃度よりも高いので大気室 5 4 内の酸素は基準電極 5 8 と接触することにより電荷を受け取って酸素イオンとなり、この酸素イオンは第 3 層 L₃、第 2 層 L₂ および第 1 層 L₁ 内を移動し、陰極側第 1 ポンプ電極 5 5 において電荷を放出する。その結果、基準電極 5 8 と陰極側第 1 ポンプ電極 5 5 との間に符号 5 9 で示した電圧 V₀ が発生する。この電圧 V₀ は大気室 5 4 内と第 1 室 5 2 内との酸素濃度差に比例する。

(8)

特開2003-120399

13

14

【0058】図4に示した例ではこの電圧V₀が第1室5.2内の酸素濃度が1p.p.m.のときに生ずる電圧に一致するように第1ポンプ電圧源5.7の電圧がフィードバック制御される。すなわち、第1室5.2内の酸素は第1室5.2内の酸素濃度が1p.p.m.となるように第1層L₁を通して汲み出され、それによって第1室5.2内の酸素濃度が1p.p.m.に維持される。

【0059】なお陰極側第1ポンプ電極5.5はNO_xに対しては還元性の低い材料、例えば金Auと白金Ptとの合金から形成されており、したがって排気ガス中に含まれるNO_xは第1室5.2内ではほとんど還元されない。したがってこのNO_xは第2の拡散律速部材5.1を通して第2室5.3内に流入する。

【0060】一方、第2室5.3に面する第1層L₁の内周面上には陰極側第2ポンプ電極6.0が形成されており、この陰極側第2ポンプ電極6.0と陽極側第1ポンプ電極5.5.6との間には第2ポンプ電圧源6.1により電圧が印加される。これらポンプ電極6.0, 5.5.6間に電圧が印加されると第2室5.3内の排気ガス中に含まれる酸素が陰極側第2ポンプ電極6.0と接触して酸素イオンとなり、この酸素イオンは第1層L₁内を陽極側第1ポンプ電極5.6に向けて流れる。したがって第2室5.3内の排気ガス中に含まれる酸素は第1層L₁内を移動して外部に汲み出されることになり、このとき外部に汲み出される酸素量は第2ポンプ電圧源6.1の電圧が高くなるほど多くなる。

【0061】一方、前述したように酸素イオン伝導性固体電解質では固体電解質層の両側において酸素濃度に差があると酸素濃度の高い側から酸素濃度の低い側に向けて固体電解質層内を酸素イオンが移動する。図4に示した例では大気室5.4内の酸素濃度の方が第2室5.3内の酸素濃度よりも高いので大気室5.4内の酸素は基準電極5.8と接触することにより電荷を受け取って酸素イオンとなり、この酸素イオンは第3層L₃、第2層L₂および第1層L₁内を移動し、陰極側第2ポンプ電極6.0において電荷を放出する。その結果、基準電極5.8と陰極側第2ポンプ電極6.0との間に符号6.2で示した電圧V₁が発生する。この電圧V₁は大気室5.4内と第2室5.3内の酸素濃度差に比例する。

【0062】図4に示した例ではこの電圧V₁が第2室5.3内の酸素濃度が0.01p.p.m.のときに生ずる電圧に一致するように第2ポンプ電圧源6.1の電圧がフィードバック制御される。すなわち第2室5.3内の酸素は第2室5.3内の酸素濃度が0.01p.p.m.となるように第1層L₁を通して汲み出され、それによって第2室5.3内の酸素濃度が0.01p.p.m.に維持される。

【0063】なお陰極側第2ポンプ電極6.0もNO_xに対しては還元性の低い材料、例えば金Auと白金Ptとの合金から形成されており、したがって排気ガス中に含まれるNO_xは陰極側第2ポンプ電極6.0と接触しても

ほとんど還元されない。【0064】一方、第2室5.3に面する第3層L₃の内周面上にはNO_x検出用の陰極側ポンプ電極6.3が形成されている。この陰極側ポンプ電極6.3はNO_xに対して強い還元性を有する材料、例えばロジウムRhや白金Ptから形成されている。したがって第2室5.3内のNO_x、実際には大部分を占めるNOが陰極側ポンプ電極6.3上においてN₂とO₂とに分解される。図4に示したようにこの陰極側ポンプ電極6.3と基準電極5.8との間に一定電圧6.4が印加されており、したがって陰極側ポンプ電極6.3上において分解生成されたO₂は酸素イオンとなって第3層L₃内を基準電極5.8に向けて移動する。このとき陰極側ポンプ電極6.3と基準電極5.8との間にこの酸素イオン量に比例した符号6.5で示した電流I₁が流れる。

【0065】前述したように第1室5.2内ではNO_xはほとんど還元されず、また第2室5.3内には酸素はほとんど存在しない。したがって電流I₁は排気ガス中に含まれるNO_x濃度に比例することになり、斯くして電流I₁から排気ガス中のNO_x濃度を検出できることになる。

【0066】一方、排気ガス中に含まれるアンモニアNH₃は第1室5.2内においてNOとH₂Oとに分解され(4NH₃+5O₂→4NO+6H₂O)、この分解されたNOは第2の拡散律速部材5.1を通して第2室5.3内に流入する。このNOは陰極側ポンプ電極6.3上においてN₂とO₂とに分解され、分解生成されたO₂は酸素イオンとなって第3層L₃内を基準電極5.8に向けて移動する。このときにも電流I₁は排気ガス中に含まれるNH₃濃度に比例し、斯くして電流I₁から排気ガス中のNH₃濃度を検出できることになる。

【0067】図5は電流I₁と排気ガス中のNO_x濃度およびNH₃濃度との関係を示している。図5から電流I₁は排気ガス中のNO_x濃度およびNH₃濃度に比例していることがわかる。

【0068】一方、排気ガス中の酸素濃度が高いほど、すなわち空燃比がリーンであるほど第1室5.2から外部に汲み出される酸素量が多くなり、符号6.6で示した電流I₂が増大する。したがってこの電流I₂から排気ガスの空燃比を検出することができる。

【0069】なお第5層L₅と第6層L₆との間にはNO_xセンサ2.9のセンサ部を加熱するための電気ヒータ6.7が配置されており、この電気ヒータ6.7によってNO_xセンサ2.9のセンサ部は700°Cから800°Cに加熱される。

【0070】図6はNO_x吸収剤2.3下流の排気管2.5内に配置された空燃比センサ3.0の出力電圧E(V)、すなわち一般的な表現を用いると空燃比検出手段の出力信号レベルを示している。図6からわかるように空燃比センサ3.0は排気ガスの空燃比がリッチのときには0.

(9)

特開2003-120399

15

16

9 (V) 程度の出力電圧を発生し、排気ガスの空燃比がリーンのときには0.1 (V) 程度の出力電圧を発生する。すなわち図6に示した例ではリッチであることを示す出力信号レベルは0.9 (V) であり、リーンであることを示す出力信号レベルは0.1 (V) である。

【0071】一方、前述したようにNO_xセンサ29の電流I_aから排気ガスの空燃比を検出することができ、したがって空燃比検出手段としてNO_xセンサ29を用いることもできる。この場合には空燃比センサ30を設ける必要がない。

【0072】次に図7 (A) を参照しつつ図1に示した内燃機関の燃料噴射制御について説明する。なお図7 (A)において縦軸は機関負荷Q/N (吸入空気量Q/機関回転数N) を表しており、横軸は機関回転数Nを表している。

【0073】図7 (A)において実線X₁よりも低負荷側の運転領域では成層燃焼が行われる。すなわちこのときには図1に示したように圧縮行程末期に燃料噴射弁11からキャビティ12内に向けて燃料Fが噴射される。この燃料はキャビティ12の内周面により案内されて点火栓10周りに混合気を形成し、この混合気が点火栓10によって着火燃焼せしめられる。このとき燃焼室5内における平均空燃比はリーンとなっている。

【0074】一方、図7 (A)において実線X₁よりも高負荷側の領域では吸気行程中に燃料噴射弁11から燃料が噴射され、このときには均一混合気燃焼が行われる。なお実線X₁と鎖線X₂との間ではリーン空燃比のもとで均一混合気燃焼が行われ、鎖線X₂と鎖線X₃との間では理論空燃比のもとで均一混合気燃焼が行われ、鎖線X₃よりも高負荷側ではリッチ空燃比のもとで均一混合気燃焼が行われる。

【0075】本発明では空燃比を理論空燃比とするのに必要な基本燃料噴射量T_{AU}が図7 (B) に示したように機関負荷Q/Nおよび機関回転数Nの関数としてマップの形で求めROM34内に記憶されており、基本的にはこの基本燃料噴射量T_{AU}に補正係数Kを乗算することによって最終的な燃料噴射量T_{AUO} (= K · T_{AU}) が算出される。この補正係数Kは図7 (C) に示したように機関負荷Q/Nおよび機関回転数Nの関数としてマップの形で求めROM34内に記憶されている。

【0076】この補正係数Kの値はリーン空燃比のもとで燃焼が行われる図7 (A) の鎖線X₂よりも低負荷側の運転領域では1.0よりも小さく、リッチ空燃比のもとで燃焼が行われる図7 (A) の鎖線X₃よりも高負荷側の運転領域では1.0よりも大きくなる。またこの補正係数Kは鎖線X₂と鎖線X₃との間の運転領域では1.0とされ、このとき空燃比は理論空燃比となるように空燃比センサ28の出力信号に基づいてフィードバック制御される。

【0077】次に、NO_x吸収剤23について説明す

る。NO_x吸収剤23は例えばアルミナを担体とし、この担体上に例えばカリウムK、ナトリウムNa、リチウムLi、セシウムCsのようなアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類、ランタンLa、イットリウムYのような希土類から選ばれた少なくとも一つと、白金Ptのような貴金属とが担持されている。この場合、ケーシング24内に例えばコーチライトからなるパティキュレートフィルタを配置し、このパティキュレートフィルタ上にアルミナを担体とするNO_x吸収剤23を担持させることもできる。

【0078】いずれの場合であっても機関吸気通路、燃焼室5およびNO_x吸収剤23上流の排気通路内に供給された燃料(炭化水素)の量に対する空気の量の比をNO_x吸収剤23への流入排気ガスの空燃比と称するとこのNO_x吸収剤23は流入排気ガスの空燃比がリーンのときにはNO_xを吸収し、流入排気ガスの空燃比が理論空燃比またはリッチになると吸収したNO_xを放出するNO_xの吸放出作用を行う。

【0079】このNO_x吸収剤23を機関排気通路内に配置すればNO_x吸収剤23は実際にNO_xの吸放出作用を行うがこの吸放出作用の詳細なメカニズムについては明らかでない部分もある。しかしながらこの吸放出作用は図8に示したようなメカニズムで行われているものと考えられる。次にこのメカニズムについて担体上に白金PtおよびバリウムBaを担持させた場合を例にとって説明するが他の貴金属、アルカリ金属、アルカリ土類、希土類を用いても同様なメカニズムとなる。

【0080】図1に示した内燃機関では使用頻度の高い大部分の運転状態において空燃比がリーンの状態で燃焼が行われる。このように空燃比がリーンの状態で燃焼が行われている場合には排気ガス中の酸素濃度は高く、このときには図8 (A) に示したようにこれら酸素O₂がO₂⁻またはO²⁻の形で白金Ptの表面に付着する。一方、流入排気ガス中のNOは白金Ptの表面上でO₂⁻またはO²⁻と反応し、NO₂となる(2NO + O₂ → 2NO₂)。次いで生成されたNO₂の一部は白金Pt上で酸化されつつ吸収剤内に吸収されて酸化バリウムBaOと結合しながら図8 (A) に示したように硝酸イオンNO₃⁻の形で吸収剤内に拡散する。このようにしてNO_xがNO_x吸収剤23内に吸収される。流入排気ガス中の酸素濃度が高い限り白金Ptの表面でNO₂が生成され、吸収剤のNO_x吸収能力が飽和しない限りNO₂が吸収剤内に吸収されて硝酸イオンNO₃⁻が生成される。

【0081】一方、流入排気ガスの空燃比がリッチにされると流入排気ガス中の酸素濃度が低下し、その結果、白金Ptの表面でのNO₂の生成量が低下する。NO₂の生成量が低下すると反応が逆方向(NO₃⁻ → NO₂)に進み、斯くして吸収剤内の硝酸イオンNO₃⁻がNO₂の形で吸収剤から放出される。このときNO_x吸収剤23から放出されたNO_xは図8 (B) に示したように流

(10)

特開2003-120399

17

入排気ガス中に含まれる多量の未燃HC、COと反応して還元せしめられる。このようにして白金Ptの表面上にNO_xが存在しなくなると吸収剤から次から次へとNO_xが放出される。したがって流入排気ガスの空燃比がリッチにされると短時間のうちにNO_x吸収剤23からNO_xが放出され、しかもこの放出されたNO_xが還元されるために大気中にNO_xが排出されることはない。

【0082】なおこの場合、流入排気ガスの空燃比を理論空燃比にしてもNO_x吸収剤23からNO_xが放出される。しかしながら流入排気ガスの空燃比を理論空燃比にした場合にはNO_x吸収剤23からNO_xが徐々にしか放出されないためにNO_x吸収剤23に吸収されている全NO_xを放出させるには若干長い時間を要する。

【0083】次にNO_x吸収剤23からNO_xを放出すべくNO_x吸収剤23に流入する排気ガスの空燃比をリッチにしたときの還元剤の量とNO_x吸収剤23から下流へ流出する排気ガス中のアンモニアNH₃の濃度との関係について説明する。まず初めに還元剤の量について説明する。NO_x吸収剤23に流入する排気ガスの空燃比を理論空燃比にするのに必要な燃料量に対して過剰な燃料はNO_xの放出および還元のために使用されるのでこの過剰な燃料の量がNO_xの放出および還元に使用される還元剤の量に一致する。このことはNO_x吸収剤23からNO_xを放出すべきときに燃焼室5内における混合気の空燃比をリッチにした場合でも、膨張行程末期または排気行程中に追加の燃料を噴射した場合でも、NO_x吸収剤23上流の排気通路内に追加の燃料を噴射した場合でも当てはまる。

【0084】次にアンモニアの濃度について説明する。空燃比がリーンのとき、すなわち酸化雰囲気のときにはアンモニアNH₃はほとんど発生しない。ところが空燃比がリッチになると、すなわち還元雰囲気になると吸入空気中または排気ガス中の窒素N₂が酸化触媒または三元触媒20において炭化水素HCにより還元され、アンモニアNH₃が生成される。しかしながら空燃比がリッチになるとNO_x吸収剤23からNO_xが放出され、生成されたアンモニアNH₃はこのNO_xを還元するために使用されるのでNO_x吸収剤23からNO_xが放出されている間、正確には供給された還元剤がNO_xの放出および還元のために使用されている間はNO_x吸収剤23から下流へアンモニアNH₃は流出しない。これに対してNO_x吸収剤23からのNO_xの放出が完了した後も空燃比がリッチにされていると、より正確に言うとNO_x吸収剤23からNO_xを放出し還元するために使用されない余剰の還元剤が供給されるとアンモニアNH₃はもはやNO_xの還元のために消費されることがなくなり、斯くしてこのときにはNO_x吸収剤23から下流へアンモニアNH₃が流出することになる。

【0085】このことはNO_x吸収剤23の上流に酸化触媒または三元触媒20が設けられていない場合でも生

18

する。すなわちNO_x吸収剤23も還元機能を有する白金Pt等の触媒を具えているので空燃比がリッチになるとNO_x吸収剤23においてアンモニアNH₃が生成される可能性がある。しかしながらたとえアンモニアNH₃が生成されたとしてもこのアンモニアNH₃はNO_x吸収剤23から放出されたNO_xを還元するために使用されるためにNO_x吸収剤23から下流へはアンモニアNH₃が流出しない。ところがNO_x吸収剤23からNO_xを放出し還元するために使用されない余剰の還元剤が供給されると前述したようにNO_x吸収剤23から下流へアンモニアNH₃が流出することになる。

【0086】このようにNO_x吸収剤23に流入する排気ガスの空燃比がリッチにされたときにNO_x吸収剤23からNO_xを放出し還元するために使用されない余剰の還元剤が供給されるとこの余剰の還元剤はアンモニアNH₃の形でNO_x吸収剤23から下流へ流出し、このとき流出するアンモニア量は余剰の還元剤の量に比例する。したがってこのとき流出するアンモニア量から余剰の還元剤量がわかることになる。このアンモニア量はアンモニア濃度を検出可能なNO_xセンサ29によって検出される。この場合、このアンモニア濃度の積算値は余剰の還元剤量を表していると考えられ、したがってアンモニア濃度の積算値は余剰の還元剤量を表わす代表値であると言える。またこのアンモニア濃度の最大値が余剰の還元剤量を表していると考えることもでき、したがってアンモニア濃度の最大値は余剰の還元剤量を表わす代表値であると言える。

【0087】

【発明の効果】NO_xセンサは排気ガス中のNO_x濃度

30 に応じて異なる値の出力値を出力するので、排気ガス中のNO_x濃度を強制的に変動させれば、NO_xセンサの出力値も変動し、ここでNO_xセンサが正常であればこのときにはNO_xセンサの出力値は或る所定の形態でもって変動するはずであるから、このときのNO_xセンサの出力値の変動がNO_xセンサが正常であるときに取りうる変動からずれていれば、NO_xセンサに異常が生じている。

【0088】また、NO_xセンサは排気ガス中のアンモニア濃度に応じて異なる値の出力値を出力するので、リッチ空燃比の排気ガスをNO_x吸収剤に供給してNO_x吸収剤に吸収されているNO_xの量を零に近づければ、NO_x吸収剤からアンモニアが流出し、したがって、NO_xセンサの出力値も変動し、ここでNO_xセンサが正常であればこのときにはNO_xセンサの出力値は或る所定の形態でもって変動するはずであるから、このときのNO_xセンサの出力値の変動がNO_xセンサが正常であるときに取りうる変動からずれていれば、NO_xセンサに異常が生じている。

【0089】したがって本発明によれば、NO_xセンサの異常を検出することができる。

50

(11)

特開2003-120399

19

20

【図面の簡単な説明】

【図1】本発明のNO_xセンサ異常検出装置を備えた内燃機関を示す図である。

【図2】本発明のNO_xセンサ異常検出装置の一例を説明するためのタイムチャートである。

【図3】本実施例のNO_xセンサ異常検出を実行するためのフローチャートである。

【図4】NO_xセンサの構造を説明するための図である。

【図5】NO_x濃度およびアンモニア濃度とNO_xセン

10

サの出力電流値との関係を示す図である。

【図6】空燃比センサの出力特性を示す図である。

【図7】内燃機関の運転を説明するための図である。

【図8】NO_x吸収剤の作用を説明するための図である。

【符号の説明】

1…機関本体

2-3…NO_x吸収剤2-9…NO_xセンサ

【図1】

【図2】

【図4】

【図5】

図4

図5

(12)

特開2003-120399

【図3】

図3

【図7】

図7

(A)

(B)

(C)

【図6】

図6

【図8】

図8

(A)

(B)

(13)

特開2003-120399

フロントページの続き

(51) Int. Cl. 7	識別記号	F I	テ-マコ-ト (参考)
F 0 1 N 3/28	3 0 1	F 0 1 N 3/28	3 0 1 C 3 G 3 0 1
F 0 2 D 21/08	3 0 1	F 0 2 D 21/08	3 0 1 Z
41/22	3 0 1	41/22	3 0 1 K
F 0 2 M 25/07	5 5 0	F 0 2 M 25/07	5 5 0 L 5 5 0 N
F 0 2 P 5/15		G 0 1 N 27/26	3 9 1 Z
G 0 1 N 27/26	3 9 1	F 0 2 P 5/15	A
27/416		G 0 1 N 27/46	3 1 1 G 3 2 7 G
27/419			3 2 7 R

F ターム(参考) 3G022 AA03 AA10 BA01 EA08 GA01
 GA05 GA06 GA08
 3G062 AA09 BA06 BA08 CA06 DA01
 DA02 EA10 ED01 ED04 ED10
 FA02 FA05 FA20 FA23 GA01
 GA04 GA06 GA17
 3G084 AA03 BA17 BA20 BA24 DA10
 DA27 EA02 EB06 FA07 FA10
 FA26 FA28 FA33 FA38
 3G091 AA17 AA24 AA28 AB03 AB06
 AB09 BA14 BA31 EA07 EA10
 EA20 EA33 EA34 GA06 GB02Y
 GB03Y GB04Y GB05W GB06W
 GB17X HA36 HA37 HB05
 3G092 AA01 DC09 EA21 FB02 HA01Z
 HA11Z HD01X HD05Z HD07X
 HE06Z HF08Z
 3G301 HA04 HA06 HA13 JB09 LA00
 MA01 NA08 NC01 PA01 PA11
 PD01 PD15 PE01 PE03 PE09
 PF03