Aufgabe	A40	A41	A42	A43	A44	Σ
Punkte						

Aufgabe 40. (a) In der *i*-ten Runde wird das Kapital mit $1 + (-0.5)_i^k$ multipliziert, wobei $k_i = 0$ für Kopf stehe und $k_i = 1$ bedeute, dass in der *i*-ten Runde Zahl geworfen wird. Offenbar ist k_i Bernoulli-verteilt mit n = 1, p = 0.5. Daher gilt $R_i \stackrel{i.i.d}{\sim} 1 + (-0.5)^{B_{0.5}}$.

(b) Es gilt

$$\mathbb{E}(K_n) = \mathbb{E}\left(\prod_{i=1}^n R_i\right)$$

$$\stackrel{\coprod R_i}{=} \prod_{i=1}^n \mathbb{E}(R_i)$$

$$\stackrel{R_i \sim 1 + (-0.5)^{B_{0.5}}}{=} \mathbb{E}(1 + (-0.5)^{B_{0.5}})^n$$

$$= (0.5(1.5 + 0.5))^n$$

$$= 1$$

(c) Es gilt

$$\mathbb{E}(\ln R_1) = 0.5 \cdot \ln(0.5) + 0.5 \cdot \ln(1.5) = \frac{\ln(3)}{2} - \ln(2) < 0.$$

Insbesondere ist $\ln(R_1) \in \mathcal{L}_1$. Außerdem ist $(\ln R_i)_{i \in \mathbb{N}}$ eine unabhängig und identisch verteilte Folge reeller Zufallsvariablen. Daher sind die Voraussetzungen fürs SGGZ erfüllt und wir erhalten

$$\lim_{n \to \infty} \frac{1}{n} \ln K_n = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{\infty} \ln R_i$$

$$= \lim_{n \to \infty} \overline{\ln R_i}$$

$$\stackrel{\text{SGGZ}}{=} \mathbb{E}(R_1)$$

$$= \frac{\ln(3)}{2} - \ln(2) < 0.$$

Wir schließen daraus

$$\lim_{n\to\infty} \ln K_n = -\infty.$$

Schlussendlich folgt

$$\lim_{n \to \infty} K_n = \lim_{n \to \infty} e^{\ln K_n}$$

$$\exp \underset{=}{\text{stetig}} e^{\ln K_n}$$

$$= 0.$$

Aufgabe 41. (a) Aus dem ZGWS folgt mit Korollar 31.04: $\sqrt{n}[\overline{X_n} - \mu] \xrightarrow{D} N_{(0,\sigma^2)}$. Daraus erhalten wir für $a_n = \sqrt{n}, X_n = \overline{X_n}$ und $x = \mu$ mit Satz 29.19 $\overline{X}_n \xrightarrow{\mathbb{P}} \mu = \mathbb{E}(X_1)$. Das ist genau die Aussage des schwachen Gesetzes der großen Zahlen.

(b) Wir zeigen $X_n \xrightarrow{\mathbb{P}} 0$. Daraus folgt dann die Behauptung. Sei $\epsilon > 0$. Es gilt wegen $\sqrt[n]{n} \xrightarrow{n \to \infty} 1$

$$\lim_{n \to \infty} \sqrt[n]{\frac{2\epsilon}{n+1}} = 1.$$

Für beliebiges $x \in (-1,1)$ existiert daher ein $n \in \mathbb{N}$ mit $|x| < \sqrt[n]{\frac{2\epsilon}{n+1}}$. Insbesondere ist

$$\limsup_{n \to \infty} \left\{ \left| \frac{n+1}{2} |x|^n \mathbb{1}_{(-1,1)} \right| > \epsilon \right\} = \limsup_{n \to \infty} \left\{ x \in (-1,1), |x| > \sqrt[n]{\frac{2\epsilon}{n+1}} \right\} = \emptyset$$

und damit auch $\limsup_{n\to\infty} \mathbb{P}(\{|X_n| > \epsilon\}) = 0$. Das ist gerade die Definition von $X_n \xrightarrow{\mathbb{P}} 0$, die Behauptung ist also bewiesen.

(c) (a) Es gilt $\forall x < 0$: $\mathbb{F}_n(x) = 0 \implies \mathbb{F}(x) = 0$, $\forall x \in [0,1]$: $\mathbb{F}_n(x) = \frac{x}{1+1/n} \implies \mathbb{F}(x) = x$ und $\forall x \geq 1$: $\mathbb{F}_n(x) = \frac{x}{1+1/n}$ für $x < 1 + 1/n \Leftrightarrow n < \frac{1}{x-1}$. Für $n > \frac{1}{x-1}$ gilt $\mathbb{F}_n(x) = 0$. Daraus folgt $\mathbb{F}(x) = 0$. Wir erhalten als Grenzwert der Verteilungsfunktionen

$$\lim_{n \to \infty} \mathbb{F}_n(x) = \mathbb{F}(x) := \begin{cases} 0 & |x < 0| \\ x & |0 \le x \le 1| \\ 1 & |1 < x| \end{cases}$$

Dies ist genau die Verteilungsfunktion von $U_{[0,1]}$, also wähle gilt $X_n \xrightarrow{D} U_{[0,1]}$.

(b) Es gilt

$$\lim_{n \to \infty} \mathbb{F}_n(x) = \lim_{n \to \infty} \begin{cases} \int_0^x ne^{-n\tilde{x}} d\tilde{x} = 1 - e^{-nx} & |x > 0 \\ 0 & |x \le 0 \end{cases}$$
$$= \begin{cases} 1 - \lim_{n \to \infty} e^{-nx} & |x > 0 \\ 0 & |x \le 0 \end{cases}$$
$$= \mathbb{I}_{\mathbb{R}^+_{00}}$$

Es gilt aber $\lim_{x\searrow 0} \mathbbm{1}_{\mathbb{R}^+_{\setminus 0}}(x) = 1 \neq 0 = \mathbbm{1}_{\mathbb{R}^+_{\setminus 0}}(0)$. Daher ist der Grenzwert der Verteilungsfunktion nicht rechtsstetig. Es kann daher keine Zufallsvariable mit dieser Verteilung existieren.

(c) Es gilt

$$\lim_{n \to \infty} \mathbb{F}_n(x) = \lim_{n \to \infty} \begin{cases} \int_0^x \frac{1}{n} e^{-\frac{1}{n}\tilde{x}} d\tilde{x} = 1 - e^{-\frac{1}{n}x} & |x > 0 \\ 0 & |x \le 0 \end{cases}$$
$$= \begin{cases} 1 - \lim_{n \to \infty} e^{-\frac{1}{n}x} = 0 & |x > 0 \\ 0 & |x \le 0 \end{cases}$$
$$\equiv 0$$

Es gilt aber $\lim_{x\to\infty}0=0\neq 1$. Es kann daher keine Zufallsvariable mit dieser Verteilung existieren.

Aufgabe 42. (a) Sei $t \in \mathbb{R}$ beliebig. Dann rechne

$$\mathbb{E}(\cos(tX)) = \int_{a}^{b} \cos(tx) \frac{1}{b-a} \, \mathrm{d}x = \frac{1}{b-a} \frac{1}{t} \sin(tx) \Big|_{a}^{b} = \frac{1}{t(b-a)} (\sin(tb) - \sin(ta))$$

$$\mathbb{E}(\sin(tX)) = \int_{a}^{b} \sin(tx) \frac{1}{b-a} \, \mathrm{d}x = \frac{1}{t(b-a)} (\cos(ta) - \cos(tb))$$

Insgesamt ergibt sich

$$\varphi_X(t) = \frac{1}{t(b-a)} \left[\sin(tb) - \sin(ta) + i\cos(ta) - i\cos(tb) \right] = \frac{1}{it(b-a)} \left[\exp(tai) - \exp(tbi) \right].$$

(b) Da Y und Z unabhängig, sind auch $\exp(itY)$ und $\exp(itZ)$ unabhängig. Damit folgt für $t \in \mathbb{R}$: $\varphi_{Y+Z}(t) = \mathbb{E}(\exp(it(Y+Z))) = \mathbb{E}(\exp(itY)\exp(itZ)) = \mathbb{E}(\exp(itY))\mathbb{E}(\exp(itZ)) = \varphi_Y(t)\varphi_Z(t).$ Es gilt nach VL $\mathbb{E}(\overline{Z}) = \overline{\mathbb{E}(Z)}$, also folgt

$$\varphi_{-Y}(t) = \mathbb{E}(\exp(-itY)) = \mathbb{E}(\overline{e^{itY}}) = \overline{\mathbb{E}(e^{itY})} = \overline{\varphi_Y(t)}.$$

Seien nun Y,Z identisch verteilt. Dann ist $\varphi_Y=\varphi_Z$ und es folgt für $t\in\mathbb{R}$

$$\varphi_{Y-Z}(t) = \varphi_Y \varphi_{-Y}(t) = \varphi_Y(t) \overline{\varphi_Y(t)} = |\varphi_Y(t)|^2 \ge 0.$$

Aber $\varphi_X(t)=\frac{\sin(t)}{t}$ für $X\sim U_{[-1,1]}$ und für $t=\frac{3}{2}\pi$ folgt $\varphi_X(\frac{3}{2}\pi)=-\frac{2}{3\pi}<0$. Also ist $\varphi_X(t)\neq \varphi_{Y-Z}(t)$, also ist Y-Z nicht $U_{[-1,1]}$ verteilt.

(c) Es gilt für $t \in \mathbb{R}$

$$\varphi_{X_2}(t) = \varphi_{X_1}(t) = \varphi_{X_1 + X_2}(t) = \varphi_{X_1}(t)\varphi_{X_2}(t).$$

Da $\varphi_{X_1}(t) = \varphi_{X_2}(t) \neq 0$, folgt

$$\varphi_{X_1}(t) = \varphi_{X_2}(t) = 1.$$

Setze Z := 0. Dann ist $\varphi_Z(t) = 1 \ \forall t \in \mathbb{R}$, also folgt

$$\varphi_{X_1}(t) = \varphi_{X_2}(t) = \varphi_Z(t).$$

Betrachte nun $Y_n := X_1 \ \forall n \in \mathbb{N}$. Dann ist $Y_n \xrightarrow{D} Z$. DaZ konstant, folgt damit auch $Y_n \xrightarrow{\mathbb{P}} Z$. Also $\forall \epsilon > 0$

$$\mathbb{P}(|X_2| > \epsilon) = \mathbb{P}(|X_1| > \epsilon) = \lim_{n \to \infty} \mathbb{P}(|Y_n - Z| > \epsilon) = 0.$$

Da ϵ beliebig, folgt $\mathbb{P}(X_1=0)=\mathbb{P}(X_2=0)=1$. Also $X_1=0=X_2$ \mathbb{P} f.s.

Aufgabe 43. (a) Setze $Y_i(x) := \mathbb{1}_{\{X_i \le x\}}$. Dann ist $Y_i(x) \sim \text{Bernoulli}_p$ mit:

$$p := \mathbb{P}(X_i < x) = \mathbb{P}(X_1 < x) = \mathbb{F}(x).$$

Dann ist $n\hat{\mathbb{F}}_n(x) = \sum_{i=1}^n Y_i(x)$ und damit $n\hat{\mathbb{F}}_n(x) \sim \text{Bin}_{n,p}$ mit $p = \mathbb{P}(X_1 \leq x) = \mathbb{F}(x)$. Damit folgt

$$\mathbb{E}(\hat{\mathbb{F}}_n(x)) = \frac{1}{n} \mathbb{E}(n\hat{\mathbb{F}}_n(x)) = \frac{1}{n} np = p = \mathbb{F}(x)$$

$$\mathbb{V}\operatorname{ar}(\hat{\mathbb{F}}_n(x)) = \frac{1}{n^2} \mathbb{V}\operatorname{ar}(n\hat{\mathbb{F}}_n(x)) = \frac{p(1-p)}{n} = \frac{\mathbb{F}(x)(1-\mathbb{F}(x))}{n}.$$

(b) Es ist $\hat{\mathbb{F}}_n(x) = \overline{Y}_n(x)$. Also folgt

$$\lim_{n \to \infty} \hat{\mathbb{F}}_n(x) = \lim_{n \to \infty} \overline{Y}_n(x) \stackrel{\text{SGGZ}}{=} \mathbb{E}(Y_1) = \mathbb{F}(x).$$

(c) Es gilt da $\operatorname{Var}(Y_1) = p(1-p) = \mathbb{F}(x)(1-\mathbb{F}(x))$:

$$\sqrt{n}(\hat{\mathbb{F}}_n(x) - \mathbb{F}(x)) = \sqrt{n}(\overline{Y}_n(x) - \mathbb{F}(x)) \xrightarrow{D} N_{(0,\mathbb{V}ar(Y_1(x)))} = N_{(0,\mathbb{F}(x)(1-\mathbb{F}(x)))}.$$

Aufgabe 44. (a) Sei $b \in \mathbb{R}^+$. Dann ist

$$\operatorname{Bias}_{b}(\hat{b}_{n}) = \mathbb{E}_{b}(\hat{b}_{n} - b) = 2\mathbb{E}_{b}(\overline{X}_{n}) - b = 2\mathbb{E}_{b}(X_{1}) - b = 0$$

$$\operatorname{Var}_{b}(\hat{b}_{n}) = 4\operatorname{Var}_{b}(\overline{X}_{n}) = \frac{4}{n}\operatorname{Var}_{b}(X_{1}) = \frac{b^{2}}{3n}.$$

Setze $Y_i := 2X_i$. Dann ist $\overline{Y}_n = 2\overline{X}_n = \hat{b}_n$. Damit folgt mit ZGWS direkt

$$\sqrt{n}(\hat{b}_n - b) = \sqrt{n}(\overline{Y}_n - \mathbb{E}(Y_1)) \xrightarrow{D} N_{(0, \mathbb{V}ar(Y_1))} = N_{(0, b^2/3)}.$$

(b) Es ist \hat{b}_n nach (a) \sqrt{n} -konsistent. Außerdem ist mit (a), dass

$$\frac{\sqrt{3n}}{b}(\hat{b}_n - b) \xrightarrow{D} N_{(0,1)}.$$

Also ist $\frac{b}{\sqrt{3}}$ Störparameter. Da $\hat{b}_n = \overline{Y}_n$ und $\mathbb{E}(Y_1) = b$, folgt mit dem SGGZ, dass

$$\hat{b}_n = \overline{Y}_n \xrightarrow{\mathbb{P} \text{ f.s.}} \mathbb{E}(Y_1) = b.$$

Also insbesondere \hat{b}_n konsistenter Schätzer für b und damit auch $\frac{\hat{b}_n}{\sqrt{3}}$ konsistenter Schätzer für den Störparameter $\frac{b}{\sqrt{3}}$. Damit folgt nach VL, dass $C_n^{(b)} \coloneqq [\hat{b}_n - \frac{\hat{b}_n}{\sqrt{3n}}q_{1-\alpha}, \infty)$ ein $1-\alpha$ KB für die richtigen Parameter $\mathcal{R}_b = [b, \infty)$ ist, wobei $q_{1-\alpha}$ das $1-\alpha$ Quantil der Standardnormalverteilung ist.

(c) H_0 ist die assoziierte Nullhypothese zu \mathcal{R}_{b_0} . Damit folgt nach VL, da $C_n^{(b)}$ asympt. $1 - \alpha$ -KB, dass

$$\phi_n^{(b)} = \mathbb{1}_{\{b_0 \notin C_n^{(b)}\}} = \mathbb{1}_{\{\hat{b}_n - \frac{\hat{b}_n}{\sqrt{3n}}q_{1-\alpha} > b_0\}}$$

ein asympt. $1 - \alpha$ Test ist.

(d) Ausrechnen ergibt $\overline{X}_n = 50.88$ und damit

$$\hat{b}_{10} - \frac{\hat{b}_{10}}{\sqrt{3 \cdot 10}} 1.64 = 71.28 < 100$$
 $C_{10}^{(b)} = [71.28, \infty).$

Also sollte H_0 nicht abgelehnt werden.