

Formel: $R = \frac{\textit{nicht genutzte Kombinationen}}{\textit{alle möglichen Kombinationen}}$

Der 1 aus 10 Code hat also eine Redundanz von 99%

Der Hamming-Abstand eines Codes gibt an, wie viele Bits man **mindestens ändern** muss, um ein anderes (gültiges) Zeichen desselben Codes zu erhalten.

Tendenziell gilt: Je grösser die Redundanz, desto grösser ist der mögliche Hamming-Abstand eines Codes.

Variante	Gerade Anzahl Einsen	Ungerade Anzahl Einsen
Even Parity	Paritätsbit: 0	Paritätsbit: 1
Odd Parity	Paritätsbit: 1	Paritätsbit: 0
Originale Nachricht	1001 0000	

Originale Nachricht: 1001 0000

Vorgegebener Rahmen, welcher die Plätze mit 2er-Potenznummern reserviert hat:

P	latz	12	11	10	9	8	7	6	5		3	2	
	Data												
:	Schri	tt 1: N	achrich	nt in R	ahmer	n «abfü	üllen»:						
P	latz	12	11	10	9	8	7	6	5	4	3	2	
	Data	1	0	0	1		0	0	0		0		

Schritt 2: Alle Positionsnummern mit einer Eins werden XOR-verknüpft.

 Position 12:
 1100

 Position 9:
 1001

 XOR-Verknüpfung:
 0101

Schritt 3: Die XOR-Verknüpfung in die reservierten Plätze «abfüllen»:

Platz	12	11	10	9	8	7	6	5	4	3	2	1
Data	1	0	0	1	0	0	0	0	1	0	0	1

Decodieren auf Empfängerseite

XOR-Verknüpfung aller Positionen mit einer Eins:

 Position 12:
 1100

 Position 9:
 1001

 Position 4:
 0100

 Position 1:
 0001

 XOR-Verknüpfung:
 0000

Beispiel Fehlerkorrektur

										_	_	-
Platz	12	11	10	9	8	7	6	5	4	3	2	1
Data	1	0	0	1	0	0	1	0	1	0	0	1

Durch Fehlübermittlung wurde an Stelle 6 eine Eins empfangen...

Position 12: 1100
Position 9: 1001
Position 6: 0110
Position 4: 0100
Position 1: 0001

XOR-Verknüpfung: 0110 → Fehler auf Position 6!

Durch Setzen des Wertes 0 auf Position 6 wird der Fehler behoben...

Beispiel: 234 $_{(10)} \rightarrow x_{(2)}$

Dezimal: Binär:

My Ltip Cikation Binar:

	1	1	*	1	1			1	0	1	1	*	1	0	1	1
				1	1								1	0	1	1
			1	1								1	0	1	1	
Behalte											0	0	0	0		
			1	2	1					1	0	1	1			
							Behalte				1	1	1	1		
										1	1	1	1	0	0	1

Binär:

	1	0	0	0	0
Behalte	1	1	1	1	
			1	1	1
		1	0	0	1

0 0

1

0 1

Binär:

Behalte

Dezimal:

	2		(
Behalte		Behalte	
	7		
	9		

AND AND AND AND AND AND AND AND	Operator	Symbol nach Norm A	Symbol nach Norm B
XOR NOT NAND NAND	AND	8	AND
NOT NAND NAND	OR	≥1	OR
NAND NANDO-	XOR	-1	XOR
	NOT	* 20	NOT—
	NAND		NAND)0-

1 1 1		1	1	1	
1	0	1	1	0	0
0	1	1	0	1	0
0	0	0	0	0	0
1 1	111	`	Xr	7/2	
J /-	YIVI)		/ / \	
A	FIV L	Ausdruck !(A&B)	A	В	Ausdruck A#B
A 1	B 1	Ausdruck !(A&B)	A 1	B 1	Ausdruck A#B
A 1 1	B 1 0	Ausdruck !(A&B) 0	1 1	B 1 0	A#B

(A||B)

> Als erstes wird ein Addierer für einstellige Binärzahlen benötigt:

0

0

0

Diese Schaltung wird zusammengefasst als Halbaddierer bezeichnet.

В

Ausdruck (A&B)

Um mehrstellige Binärzahlen addieren zu können, benötigt man eine Schaltung, welche (analog zu der schriftlichen Binär-Addition) die Überträge der letzten Stelle mit einbezieht:

Diese Schaltung wird zusammengefasst als Volladdierer bezeichnet.

gesetz		
Kommutativ-	A&B = B&A	A B = B A
Assoziativ-	(A&B)&C = A&(B&C)	(A B) C = A (B C)
Idempotenz-	A&A = A	A A = A
Distributiv-	A&(B C) = (A&B) (A&C)	A (B&C) = (A B)&(A C)
Neutralitäts-	A&1 = A	A 0 = A
Extremal-	A&0 = 0	A 1 = 1
Doppelnegation-	!(!A) = A	
De Morgan	!(A&B) = !A !B	!(A B) = !A&!B
Dualitäts-	!0 = 1	!1 = 0
Absorptions-	A (A&B) = A	A&(A B) = A