Problem Statement

A real estate agent want help to predict the house price for regions in USA.He gave us the dataset to work on to use linear regression model.Create a model that helps him to estimate of what the house would sell for

Import libraries

```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
```

```
In [2]: # To import dataset
df=pd.read_csv('20_states.csv')
df
```

Out[2]:

	id	name	country_id	country_code	country_name	state_code	type	latitude
0	3901	Badakhshan	1	AF	Afghanistan	BDS	NaN	36.734772
1	3871	Badghis	1	AF	Afghanistan	BDG	NaN	35.167134
2	3875	Baghlan	1	AF	Afghanistan	BGL	NaN	36.178903
3	3884	Balkh	1	AF	Afghanistan	BAL	NaN	36.755060
4	3872	Bamyan	1	AF	Afghanistan	BAM	NaN	34.810007
		•••			•••			•••
5072	1953	Mashonaland West Province	247	ZW	Zimbabwe	MW	NaN	-17.485103
5073	1960	Masvingo Province	247	ZW	Zimbabwe	MV	NaN	-20.624151
5074	1954	Matabeleland North Province	247	ZW	Zimbabwe	MN	NaN	-18.533157
5075	1952	Matabeleland South Province	247	ZW	Zimbabwe	MS	NaN	-21.052337
5076	1957	Midlands Province	247	ZW	Zimbabwe	MI	NaN	-19.055201
5077 rows × 9 columns								

```
In [3]: # To display top 10 rows
df.head(10)
```

Out[3]:

	id	name	country_id	country_code	country_name	state_code	type	latitude	lon
0	3901	Badakhshan	1	AF	Afghanistan	BDS	NaN	36.734772	70.8
1	3871	Badghis	1	AF	Afghanistan	BDG	NaN	35.167134	63.7
2	3875	Baghlan	1	AF	Afghanistan	BGL	NaN	36.178903	68.7
3	3884	Balkh	1	AF	Afghanistan	BAL	NaN	36.755060	66.8
4	3872	Bamyan	1	AF	Afghanistan	BAM	NaN	34.810007	67.8
5	3892	Daykundi	1	AF	Afghanistan	DAY	NaN	33.669495	66.0
6	3899	Farah	1	AF	Afghanistan	FRA	NaN	32.495328	62.2
7	3889	Faryab	1	AF	Afghanistan	FYB	NaN	36.079561	64.9
8	3870	Ghazni	1	AF	Afghanistan	GHA	NaN	33.545059	68.4
9	3888	Ghōr	1	AF	Afghanistan	GHO	NaN	34.099578	64.9
4									•

Data Cleaning and Pre-Processing

In [4]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5077 entries, 0 to 5076
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype			
0	id	5077 non-null	int64			
1	name	5077 non-null	object			
2	country_id	5077 non-null	int64			
3	country_code	5063 non-null	object			
4	country_name	5077 non-null	object			
5	state_code	5072 non-null	object			
6	type	1597 non-null	object			
7	latitude	5008 non-null	float64			
8	longitude	5008 non-null	float64			
<pre>dtypes: float64(2), int64(2), object(5)</pre>						

memory usage: 357.1+ KB

```
In [5]:
         df.describe()
Out[5]:
                          id
                              country_id
                                             latitude
                                                        Iongitude
                                                     5008.000000
          count 5077.000000
                             5077.000000
                                         5008.000000
          mean
                 2609.765413
                              133.467599
                                           27.576415
                                                        17.178713
                 1503.376799
                               72.341160
                                           22.208161
                                                       61.269334
            min
                    1.000000
                                1.000000
                                           -54.805400
                                                     -178.116500
                 1324.000000
                               74.000000
                                                        -3.943859
            25%
                                           11.399747
            50%
                 2617.000000
                              132.000000
                                           34.226432
                                                       17.501792
           75%
                 3905.000000
                              201.000000
                                           45.802822
                                                       41.919647
            max 5220.000000
                              248.000000
                                           77.874972
                                                      179.852222
In [6]: df.columns
Out[6]: Index(['id', 'name', 'country_id', 'country_code', 'country_name',
                  'state_code', 'type', 'latitude', 'longitude'],
                dtype='object')
In [7]: | a = df.dropna(axis='columns')
         a.columns
Out[7]: Index(['id', 'name', 'country_id', 'country_name'], dtype='object')
```

EDA and Visualization

In [8]: sns.pairplot(a)

Out[8]: <seaborn.axisgrid.PairGrid at 0x22239f86af0>

In [9]: sns.distplot(a['country_id'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[9]: <AxesSubplot:xlabel='country id', ylabel='Density'>

To Train the Model - Model Building

We are going to train Linear Regression model; We need to split out data into two variables x and y where x is independent variable (input) and y is dependent on x(output). We could ignore address column as it is not required for our model.

```
In [12]: x=a1[['id']]
y=a1['country_id']
```

To split my dataset into training and test data

```
In [16]:
         coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
         coeff
Out[16]:
             Co-efficient
               0.002029
          id
In [17]:
         prediction=lr.predict(x_test)
         plt.scatter(y_test,prediction)
Out[17]: <matplotlib.collections.PathCollection at 0x2223b38a820>
          138
          136
          134
          132
          130
          128
                        50
                               100
                                        150
                                                200
                                                         250
In [18]: print(lr.score(x_test,y_test))
         0.0017083297723273771
In [19]:
         from sklearn.linear_model import Ridge,Lasso
In [20]:
         rr=Ridge(alpha=10)
         rr.fit(x_train,y_train)
Out[20]: Ridge(alpha=10)
In [21]:
         rr.score(x_train,y_train)
Out[21]: 0.0017342131031994334
In [22]: rr.score(x_test,y_test)
Out[22]: 0.0017083297715219103
In [23]: rr.score(x_test,y_test)
Out[23]: 0.0017083297715219103
```

```
In [24]: la=Lasso(alpha=10)
         la.fit(x_train,y_train)
Out[24]: Lasso(alpha=10)
In [25]: |la.score(x_test,y_test)
Out[25]: 0.001706910407451523
In [26]: from sklearn.linear model import ElasticNet
         en = ElasticNet()
         en.fit(x_train,y_train)
Out[26]: ElasticNet()
In [27]: print(en.coef_)
         [0.0020287]
In [28]: |print(en.intercept_)
         127.5736789283807
In [29]:
         print(en.predict(x_test))
         [137.43316486 137.48996848 130.72019388 ... 127.95507468 136.5466226
          134.85265743]
In [30]:
         print(en.score(x test,y test))
         0.0017082590891673854
```

Evaluation Metrics

```
In [31]: from sklearn import metrics
    print("Mean Absolytre Error:",metrics.mean_absolute_error(y_test,prediction))
    print("Mean Squared Error:",metrics.mean_squared_error(y_test,prediction))
    print("Root Mean Squared Error:",np.sqrt(metrics.mean_squared_error(y_test,prediction))
        Mean Absolytre Error: 59.86992832773104
        Mean Squared Error: 4933.335203113695
        Root Mean Squared Error: 70.23770499606101
In [32]: import pickle
In [33]: filename='prediction2'
    pickle.dump(lr,open(filename,'wb'))
```

In []: