Characteristic Equation With Double 100t

Given aj'' + bj' + cj = 0 and given that $b^2 - 4ac = 0$. Hence the Characteristic equation $al^2 + bl + c = 0$ Yields one lost $l = -\frac{b}{2a}$ and Lence one solution $d = -\frac{b}{2a}t$ for the ODE.

In order to find the general solution of the ODE, we need a second solution y such that W[y, ye] \$0.

Clearly, $y_2 \neq Ce^{-\frac{b}{2a}t}$ (otherwise $W[y_1, y_2] = 0$).

Then maybe $y_2(t) = \sigma(t) y_1(t)$ with a proper charice of $\sigma(t)$. Let us so if we can determine such $\sigma(t)$.

We apply in the sea oper and

Now, $y'_1 = e^{-\frac{b}{2a}t} = y'_1 = \frac{b}{2a}e^{-\frac{b}{2a}t}$ and $y''_1 = \frac{b^2}{4a^2}e^{\frac{b}{2a}t}$

We plug in into the ODE, and after some appelora, (78)

We obtain:

$$e^{-\frac{b}{2a}t}\left(a\sigma''-\frac{1}{4a}\left(b^2-4ac\right)\sigma\right)=0.$$

Hence we have many choices for u; we choose the Simplest: C= 1 and R=0

in A second solution for the ook is: y2(t)= te-20.

(You can reasily clock that W[y,, y,] \$0).

 $\frac{E_{X}}{E_{X}}$: y'' - 4y' + 4y' = 0; y(0) = 12 and y'(0) = -3.

Solution: $(1-4)+4=0=)((-2)^2=0=)(=2\bar{x})$

: General solution is: y(t): c, e2t + c2te2t.

But y(0)=12 => 9=17.

y'(0)=-3; y'= 24e2+ cze2+ 2czte2t =) -3= 24 + C2 => C2 = -27.

-- partiular solution is : y = = 12e2-27te26

The procedure we used to guess a second solution to the linear homogeneous equation with constant coefficients having a double root can be used in other instances.

Ex: Given that $y_i = \frac{1}{L}$ is a solution of $2 \frac{1}{2} \frac{1}{2} \frac{1}{2} + \frac{3}{2} \frac{1}{2} \frac{1}{2} + \frac{3}{2} \frac{1}{2} \frac{1}{2$

Solution: Set $y_2 = \sigma(E)y_1$, where $\sigma(E)$ is to be determined.

=)
$$y_2 = \frac{1}{5} \sigma \text{ and } y_2' = -\frac{1}{62} \sigma + \frac{1}{5} \sigma'$$

$$y_1' = +\frac{2}{\xi^2} S - \frac{1}{\xi^2} S' - \frac{1}{\xi^2} S' + \frac{1}{\xi} S''$$

$$=\frac{2}{t^3}$$
 $-\frac{2}{t^2}$ $-\frac{1}{t}$ $-\frac{1}{t}$ $-\frac{1}{t}$

Substituting in the ODE we obtain:

Let W=U' => 2tw-w=0. this is now a

first order one which in fact is separable.

$$2 + \omega' = \omega = 2 + \omega' = \frac{1}{2}$$

$$= 2 + \omega = 2 + \omega' = \frac{1}{2} + \omega'$$

=)
$$W = C t^{\frac{1}{2}}$$
 ie $S' = C t^{\frac{1}{2}}$

=)
$$\sigma(t) = \int c t^{1/2} dt = c \frac{t^{3/2}}{\sqrt{3}/2} + k$$
.

We have found many choices for v(t); Choose C=1 and $k \ge 0$ $-: v(t) = 2 + \frac{2}{3} t^{3/2}.$

A second solution is therefore $y_2 = \frac{2}{3} t^{3/2} = \frac{2}{3} t^{1/2}$.

For reassurance, we check that W[y, 1/2] \$0.

$$W[y_{1}/y_{2}] = y_{1}y_{2} - y_{1}'y_{2} = \frac{1}{2} \left[\frac{2}{3} \cdot \frac{1}{2} t^{-1/2} \right] - \left[-\frac{1}{2} \cdot \frac{2}{3} t^{1/2} \right]$$

$$= \frac{1}{3} t^{-3/2} + \frac{2}{3} t^{-3/2} = t^{-3/2} \neq 0 \text{ (hopefully, no alphanometer)}$$

$$\text{Nistake!)}$$

-: General solution of this OPE is:

Remark: this method we used is called the method of reduction of order, because to find oft),

We were eventually worked with a first order

ODE, where the unknown is W (=v').