EECS 496: Sequential Decision Making

Soumya Ray

sray@case.edu

Office: Olin 516

Office hours: T 4-5:30 or by appointment

Recap

•	In the Baum-Welch algorithm's E step, we estimate the of each parameter given our dataset. In the M step we find the with these.
•	To do the E step for emission distributions, we check each position in each sequence where Then we find the probability that Then we the probabilities.
•	To do the E step for transition distributions, we check in each sequence. Then we find the probability that Then we the probabilities.
•	One procedure that is used as a subroutine in this process is the "backward" algorithm. This computes Pr({o,,o} s=).
•	What is the difference between a dynamic Bayesian network and an HMM? Why is this important/useful?
•	A DBN is represented by a pair of Each is a There are symmetric edges that
•	CPTs in a DBN represent Pr().
•	It is generally impossible to use exact inference in a DBN because To avoid, we must maintain a representation of the at at However, this could be very complex.
•	An approximate inference technique we can use is This extends the approach from BNs. It represents the at some time step with a set of
•	For each time step, (i) the set of are in time by from the
•	Then (ii) the new are by the of the (if any), at that time step.
•	Finally a set of samples are from This set is

Today

- Sequential Probabilistic Models (Ch 15)
- Review of part 1

Discrete Time, Continuous State Sequential Probabilistic Models

Continuous State Processes

- Many natural processes are best modeled as continuous processes
- Examples:
 - A robot is trying to localize itself as it moves
 - You are looking at blips on a radar screen and trying to track an object
- The underlying processes are continuous but we sample the states at discrete intervals

Kalman Filtering

- Specify the process state using continuous variables (e.g. position, velocity, acceleration)
- To model the evolution of the process state, we need a distribution $Pr(s_{t+1}/s_t)$
- One possibility is to use a *linear Gaussian* model: s_{t+1} is a linear function of s_t , with some Gaussian noise
 - This is called a Kalman Filter

Example

 Motion tracking: state has position and velocity (assume no acceleration)

$$x(t + \Delta t) = x(t) + v_x(t)\Delta t$$

$$y(t + \Delta t) = y(t) + v_y(t)\Delta t$$
Linear dynamics

• Then:

$$\Pr(X(t + \Delta t) = x(t + \Delta t) \mid x(t), v_x(t)) =$$

$$N(x(t + \Delta t); \mu = x(t) + v_x(t) \Delta t, \sigma)$$
Gaussian noise

Example contd.

- The previous model has "transition noise" but no "sensor noise"
- In general:

Transition Distribution: how likely are we to move to $\mathbf{s}(t+1)$ given we are in $\mathbf{s}(t)$

$$\Pr(\mathbf{s}(t+1) \mid \mathbf{s}(t)) = N(\mathbf{s}(t+1); A\mathbf{s}(t), \Sigma_s)$$

$$Pr(\mathbf{o}(t) | \mathbf{s}(t)) = N(\mathbf{o}(t); B\mathbf{s}(t), \Sigma_o)$$

Sensor Distribution: how likely are we to see o(t)given we are in s(t)

Prediction Problems

- In continuous state processes, we are often interested in *online* prediction problems
 - We see a sequence of observations and need to make predictions about the state as it evolves

Prediction Problems

- Filtering: what is the current state given the observations so far? $Pr(\mathbf{s}(t)/\mathbf{o}(1),...,\mathbf{o}(t))$
- Prediction: what is the next (k) state I am likely to be in? $Pr(\mathbf{s}(t+k)/\mathbf{o}(1),...,\mathbf{o}(t))$
- Smoothing: How likely was I to have been in some state in the past, given the observations so far? $Pr(\mathbf{s}(t-k)|\mathbf{o}(1),...,\mathbf{o}(t))$
- Most likely path: $argmax_s Pr(s/o(1),...,o(t))$

Filtering

Estimate the state at time t as:

Filtering with the Kalman Filter

- Key observation: If every distribution is linear Gaussian, the filtering computation has a closed form solution that is also linear Gaussian
- We'll need to assume a Gaussian prior for Pr(s(0))

Example

- Consider a process with a single variable x
- Let Pr(x(0))=N(0,1), Pr(x(t+1)/x(t))=N(x(t),1), Pr(o(t)/x(t))=N(x(t),1)

• Suppose the first observation is o(1) and we want to find Pr(x(1))

Example

$$\propto \Pr(o(1) \mid x(1)) \int_{x(0)} \Pr(x(1) \mid x(0)) \Pr(x(0)) dx(0)$$

$$\int_{x(0)} N(x(1); x(0), 1) N(x(0); 0, 1) dx(0)$$

$$=c\int_{-\infty}^{\infty}e^{-\frac{1}{2}((x(1)-x(0))^{2}+x(0)^{2})}dx(0)$$

Integrate by completing the square

$$=ce^{-\frac{1}{2}\left(\frac{x(1)^2}{2}\right)}$$

Example contd.

$$\propto \Pr(o(1) \mid x(1)) \int_{x(0)} \Pr(x(1) \mid x(0)) \Pr(x(0)) dx(0)$$

Pr(x(1) | o(1))

$$\propto N(o(1); x(1), 1)e^{-\frac{1}{2}\left(\frac{x(1)^2}{2}\right)}$$

 $\propto N\left(\frac{2o(1)}{3},\frac{2}{3}\right)$

Weighted mean of previous mean and current obs (weighted by variance)

Updated variance (does not depend on observation)

Learning: Parameter Estimation

- Given a sequence of observations, estimate the linear sensor and transition models and the Gaussian covariances
- Closed form solution (least squares)

Variations

- Kalman Filters are easy to work with because the math is nice
- But they make some very strong assumptions about the process being modeled
- People have looked at various ways to relax these assumptions
 - Extended KF uses nonlinear models
 - Switching KF models other distributions as mixtures of Gaussians
- Continuous time variants of the KF also exist

DBNs with KFs

- DBNs can be used with Kalman filters to provide a powerful, flexible, general purpose representation
- In this case, each CPT is represented as a linear Gaussian distribution
- For more flexibility, can use regression trees with linear Gaussian leaves
 - Learning needs lots of data but provides exceptionally good fits

DBNs with KFs

Review of part 1

 In this part, we have learned about various languages to represent the world and various inference algorithms to reason with these languages

Propositional Logic

How is the world represented?

How do we do inference?

What are some pros and cons for this representation?

Basic Probability Theory

How is the world represented?

How do we do inference?

What are some pros and cons for this representation?

Bayesian Networks

How is the world represented?

How do we do inference?

What are some pros and cons for this representation?

Sequential Probabilistic Models

How is the world represented?

How do we do inference?

 What are some pros and cons for this representation?