ESO 202A/204: Mechanics of Solids (2016-17 II Semester) Solution of Assignment No. 6

6.2

6.1

6.4

$$q(x) = -q_0 \sin(\pi x/1)$$

$$\frac{dV}{dx} + q(x) = 0$$

$$\frac{dM}{dx} + V(x) = 0$$

$$\} M=0 \text{ at } x=0, 1$$

$$V = -q_0(1/\pi)\cos(\pi x/1) + C_1$$

$$M=q_0(l^2/\pi^2)\sin(\pi x/l)-C_1x+C_2$$

Using B.C we find that $C_1=C_2=0$

6.5 Let us use superposition of loads.

Note: Net B.M.D will be superposition of two diagrams.

(i) For no +ve B.M in the beam: $q_0 l^2/8 \le q_0 a^2/2$ i.e. $a \ge l/2$

(ii) For Max. + ve B.M = Max. - ve B.M:
Net + ve B.M =
$$(q_0l^2/8 - q_0a^2/2)$$

Therefore,

(q₀
$$l^2/8$$
 - q₀ $a^2/2$) = q₀ $a^2/2$
Or, $l^2/8 = a^2$ or, $a = l/(2\sqrt{2})$

For a < l/2, the SFD & BMD are:

6.6

Total drag =
$$D$$

$$\tan\theta = (540/1800)$$
 gives, $\theta^0 = 16.7^0$

Drag per unit length = D/L

$$L = 540$$
mm

$$\sum F_x = 0$$
 gives, $R_x + T_x = D$ which gives, $R_x = (D-T_x)$
 $\sum F_y = 0$ gives, $R_y = T_y$

 $\sum M_B = 0$ gives, $T_x.L-D.(L/2)-M_0 = 0$, which gives, $M_0 = (T_xL-DL/2) =$ moment at the base of antenna (which is negative B.M. and is maximum)

Now, the bending moment at a section x is:

For maximum moment to be minimized, we must have,

$$T_x.L - DL/2 = -T_x^2.L/2D$$

or, $T_x^2 + 2D.T_x - D^2 = 0$ or, $T_x = 0.414D$

$$T_x = T \cos\theta = 0.9578T$$
 hence, $T = 0.432D$

6.7

Horizontal reaction at A will be zero.

$$\sum F_y = 0$$
 gives $R_A + R_B + R_C = 8x100$ (1)
 $\sum M_A = 0$ gives $8 R_B + 16 R_C = 100x8x4$ (2)

Consider a section at B, given that $M_B = -400$ KNm.

Therefore, $8 R_C + 400 = 0$ $R_C = -50 \text{ KN}$. From 1 and 2, $R_B = 500 \text{ KN}$ $R_A = 350 \text{ KN}$

One can now draw the SFD and BMD

BM where SF is zero, i.e at 3.5 m from support A = $R_A \times 3.5 - \frac{100x3.5x3.5}{2} = 612.5 \text{KNm}$ To find X (Where BM is zero):

$$R_A.X - \frac{100}{2}.X^2 = 0$$
 or $350X - 50X^2 = 0$, $X = 7m$

