

MTH 309T LINEAR ALGEBRA EXAM 1

October 3, 2019

N	a	m	e	:

Pengfei Zhao

UB Person Number:

5	0	1	9	8	7	0	3
○ 1 ② ③ ④○ ⑥ ⑦ ⑧ ⑨	① ① ③ ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨	0 2 3 4 5 6 7 8 9	0 1 2 3 4 5 6 7 8	0 1 2 3 4 5 6 7 9 9	0 1 2 3 4 5 6 8 9	(1) (2) (3) (4) (5) (6) (7) (8) (9)	0 1 2 4 5 6 7 8 9

Instructions:

- Textbooks, calculators and any other electronic devices are not permitted.
 You may use one sheet of notes.
- For full credit solve each problem fully, showing all relevant work.

1	2	3	4	5	6	7	TOTAL	GRADE
			ū					
		,						12

							0	nan
1	2	3	4	5	6	7	TOTAL	GRADE

1. (20 points) Consider the following vectors in \mathbb{R}^3 :

$$\mathbf{v}_1 = \left[\begin{array}{c} 1 \\ 0 \\ 2 \end{array} \right], \quad \mathbf{v}_2 = \left[\begin{array}{c} -1 \\ 1 \\ -3 \end{array} \right], \quad \mathbf{v}_3 = \left[\begin{array}{c} 1 \\ 2 \\ 0 \end{array} \right], \quad \mathbf{w} = \left[\begin{array}{c} -2 \\ 2 \\ b \end{array} \right]$$

- a) Find all values of b such that $w \in \text{Span}(v_1, v_2, v_3)$.

b) Is the set
$$\{v_{1y}, v_2, v_3\}$$
, linearly independent? Justify your answer.

(a) $\sqrt{\frac{1}{2}} \left(\begin{array}{c} v_{1y}, v_2, v_3 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} v_{1y}, v_2, v_3 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} v_{1y}, v_2, v_3 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} v_{1y}, v_2, v_3 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} v_{1y}, v_2, v_3 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} v_{1y}, v_2, v_3 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} v_{1y}, v_2, v_3 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} v_{1y}, v_2, v_3 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} v_{1y}, v_2, v_3 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} v_{1y}, v_2, v_3 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} v_{1y}, v_2, v_3 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} v_{1y}, v_2, v_3 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} v_{1y}, v_2, v_3 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} v_{1y}, v_2, v_3 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} v_{1y}, v_2, v_3 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} v_{1y}, v_2, v_3 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} v_{1y}, v_2, v_3 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} v_{1y}, v_2, v_3 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} v_{1y}, v_2, v_3 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} v_{1y}, v_2, v_3 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} v_{1y}, v_2, v_3 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} v_{1y}, v_2, v_3 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} v_{1y}, v_2, v_3 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} v_{1y}, v_2, v_3 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} v_{1y}, v_2, v_3 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} v_{1y}, v_2, v_3 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} v_{1y}, v_2, v_3 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} v_{1y}, v_2, v_3 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} v_{1y}, v_2, v_3 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} v_{1y}, v_2, v_3 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} v_{1y}, v_2, v_3 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} v_{1y}, v_2, v_3 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} v_{1y}, v_2, v_3 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} v_{1y}, v_2, v_3 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} v_{1y}, v_2, v_3 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} v_{1y}, v_2, v_3 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} v_{1y}, v_2, v_3 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} v_{1y}, v_2, v_3 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} v_{1y}, v_2, v_3 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} v_{1y}, v_2, v_3 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} v_{1y}, v_2, v_3 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} v_{1y}, v_2, v_3 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} v_{1y}, v_2, v_3 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} v_{1y}, v_2, v_3 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} v_{1y}, v_2, v_3 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} v_{1y}, v_2, v_3 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} v_{1y}, v_2, v_3 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} v_{1y}, v_2, v_3 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} v_{1y}, v_2, v_3 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} v_{1y}, v_2, v_3 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} v_{1y}, v_3, v_3 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} v_{$

b.
$$V = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & 2 \\ 2 & -3 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

the number of well, V_2 , V_3 is 3.

 $R(V) = 2 < 3$

So the Set $\{V_1, V_2, V_3\}$ lead linearly independent.

2. (10 points) Consider the following matrix:

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix}$$

Compute A^{-1} .

All
$$R_{1}$$
 R_{2} R_{1} R_{2} R_{1} R_{2} R_{1} R_{2} R_{1} R_{2} R_{1} R_{2} R_{2} R_{3} R_{2} R_{2} R_{3} R_{2} R_{3} R_{2} R_{3} R_{3}

$$\int_{2}^{2} A^{-1} = \begin{bmatrix} -2 & 3 & 1 \\ 1 & -1 & 1 \\ 2 & -2 & 1 \end{bmatrix}$$

3. (10 points) Let A be the same matrix as in Problem 2, and let

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix} \qquad A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & 1 \end{bmatrix}$$

Find a matrix
$$C$$
 such that $A^TC = B$ (where A^T is the transpose of A) B .

$$A^TCC^{-1} = BC^{-1}$$

$$A^TE^{-1} = BC^{-1}$$

$$B^TA^{-1} = E^{-1}BC^{-1}$$

$$A^TC^{-1} = B^{-1}BC^{-1}$$

$$A^TC^{-1} = B^{-1}BC^{$$

4. (20 points) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation given by

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 - 2x_2 \\ x_1 + x_2 \\ x_1 - 3x_2 \end{bmatrix}$$

- a) Find the standard matrix of \mathcal{T} .
- b) Find all vectors u satisfying $T(u) = \begin{bmatrix} 1 \\ 10 \\ -2 \end{bmatrix}$.

5. (20 points) For each matrix A given below determine if the matrix transformation $T_A \colon \mathbb{R}^3 \to \mathbb{R}^3$ given by $T_A(\mathbf{v}) = A\mathbf{v}$ is one-to one or not. If T_A is not one-to-one, find two vectors \mathbf{v}_1 and \mathbf{v}_2 such that $T_A(\mathbf{v}_1) = T_A(\mathbf{v}_2)$.

a)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$

b)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

- 6. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If u,v,w are vectors in \mathbb{R}^3 such that $w+u\in \text{Span}(u,v)$ then $w\in \text{Span}(u,v)$.

tulse

b) If u,v,w are vectors in \mathbb{R}^3 such that the set $\{u,v,w\}$ is linearly independent then the set $\{u,v\}$ must be linearly independent.

false

let set {u,v,w} (allow S={u,v,w})

R(s) = 3 = the number of vectors

=) at least, one of W= kint ksv+ksw--- is hight.

- 7. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If A is a 2×2 matrix and u, v are vectors in \mathbb{R}^2 such that Au, Av are linearly dependent then u, v also must be linearly dependent.

False

b) If $T\colon \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation and $u,v,w\in \mathbb{R}^2$ are vectors such that u is in Span(v, w) then T(u) must be in Span(T(v), T(w)).

False n=m=2