

#### Shenzhen Huatongwei International Inspection Co., Ltd.

1/F,Bldg 3,Hongfa Hi-tech Industrial Park,Genyu Road,Tianliao,Gongming,Shenzhen,China Phone:86-755-26748019 Fax:86-755-26748089 http://www.szhtw.com.cn



# **FCC REPORT**

**Report Reference No.....: TRE1510017001** R/C........... 32128

FCC ID.....: 2AEHF-SMARTLITE

Applicant's name.....: NOBUX, LLC

Manufacturer...... NOBUX, LLC

Test item description .....: Smart Lite

Trade Mark ...... NOBUX

Model/Type reference...... S3501

Listed Model(s) ..... -

Standard .....: FCC Part 22: PUBLIC MOBILE SERVICES

FCC Part 24: PERSONAL COMMUNICATIONS SERVICES

Date of receipt of test sample............ Oct 28,2015

Date of testing...... Oct 29,2015- Nov 08,2015

Date of issue...... Nov 10,2015

Result...... Pass

Compiled by

( position+printed name+signature)..: File administrators Candy Liu

Supervised by

( position+printed name+signature)..: Project Engineer Lion Cai

Approved by

( position+printed name+signature)..: Manager Hans Hu

Testing Laboratory Name .....: Shenzhen Huatongwei International Inspection Co., Ltd

Gongming, Shenzhen, China

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Report No: TRE1510017001 Page: 2 of 54 Issued: 2015-11-10

## **Contents**

| <u>1.</u> | TEST STANDARDS AND TEST DESCRIPTION              | 3  |
|-----------|--------------------------------------------------|----|
| 1.1.      | Test Standards                                   | 3  |
| 1.2.      | Test Description                                 | 3  |
| <u>2.</u> | SUMMARY                                          | 4  |
| 2.1.      | Client Information                               | 4  |
| 2.2.      | Product Description                              | 4  |
| 2.3.      | EUT operation mode                               | 5  |
| 2.4.      | EUT configuration                                | 5  |
| 2.5.      | Modifications                                    | 5  |
| <u>3.</u> | TEST ENVIRONMENT                                 | 6  |
| 3.1.      | Address of the test laboratory                   | 6  |
| 3.2.      | Test Facility                                    | 6  |
| 3.3.      | Environmental conditions                         | 7  |
| 3.4.      | Statement of the measurement uncertainty         | 7  |
| 3.5.      | Equipments Used during the Test                  | 8  |
| <u>4.</u> | TEST CONDITIONS AND RESULTS                      | 9  |
| 4.1.      | Conducted Emissions Test                         | 9  |
| 4.2.      | Conducted Peak Output Power                      | 12 |
| 4.3.      | Occupy Bandwidth                                 | 13 |
| 4.4.      | Out of band emission at antenna terminals        | 20 |
| 4.5.      | Band Edge compliance                             | 31 |
| 4.6.      | Radiated Power Measurement                       | 36 |
| 4.7.      | Radiated Spurious Emssion                        | 39 |
| 4.8.      | Frequency stability V.S. Temperature measurement | 45 |
| 4.9.      | Frequency stability V.S. Temperature measurement | 47 |
| <u>5.</u> | TEST SETUP PHOTOS OF THE EUT                     | 48 |
| 6.        | EXTERNAL AND INTERNAL PHOTOS OF THE EUT          | 49 |

Report No: TRE1510017001 Page: 3 of 54 Issued: 2015-11-10

### 1. TEST STANDARDS AND TEST DESCRIPTION

### 1.1. Test Standards

The tests were performed according to following standards:

FCC Part 22 (10-1-13 Edition): PRIVATE LAND MOBILE RADIO SERVICES.

FCC Part 24(10-1-13 Edition): PUBLIC MOBILE SERVICES

TIA/EIA 603 D June 2010: Land Mobile FM or PM Communications Equipment Measurement and Performance Standards.

47 CFR FCC Part 15 Subpart B: - Unintentional Radiators

FCC Part 2: FREQUENCY ALLOCA-TIONS AND RADIO TREATY MAT-TERS; GENERAL RULES AND REG-ULATIONS

<u>KDB971168 D01:2013-06-07</u> Procedures for Compliance Measurement of the Fundamental Emission Power of Licensed Wideband (> 1 MHz) Digital Transmission Systems

ANSI C63.4:2009 Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

### 1.2. Test Description

| Test Item                              | Section in CFR 47                                    | Result |
|----------------------------------------|------------------------------------------------------|--------|
| AC Power Conducted Emission            | Part 15.207                                          | Pass   |
| RF Output Power                        | Part 2.1046<br>Part 22.913 (a)(2)<br>Part 24.232 (c) | Pass   |
| Modulation Characteristics             | Part 2.1047                                          | Pass   |
| 99% & -26 dB Occupied Bandwidth        | Part 2.1049<br>Part 22.917<br>Part 24.238            | Pass   |
| Spurious Emissions at Antenna Terminal | Part 2.1051<br>Part 22.917 (a)<br>Part 24.238 (a)    | Pass   |
| Field Strength of Spurious Radiation   | Part 2.1053<br>Part 22.917 (a)<br>Part 24.238 (a)    | Pass   |
| Out of band emission, Band Edge        | Part 22.917 (a)<br>Part 24.238 (a)                   | Pass   |
| Frequency stability vs. temperature    | Part 2.1055(a)(1)(b)                                 | Pass   |
| Frequency stability vs. voltage        | Part 2.1055(d)(1)(2)                                 | Pass   |

Remark: The measurement uncertainty is not included in the test result.

Report No: TRE1510017001 Page: 4 of 54 Issued: 2015-11-10

# 2. **SUMMARY**

## 2.1. Client Information

| Applicant:    | NOBUX, LLC                                       |
|---------------|--------------------------------------------------|
| Address:      | 8600 NW SOUTH RIVER DR #103 MIAMI, FLORIDA 33166 |
| Manufacturer: | NOBUX, LLC                                       |
| Address:      | 8600 NW SOUTH RIVER DR #103 MIAMI, FLORIDA 33166 |

## 2.2. Product Description

| Name of EUT                  | Smart Lite                       |
|------------------------------|----------------------------------|
| Trade Mark:                  | NOBUX                            |
| Model No.:                   | S3501                            |
| Listed Model(s):             |                                  |
| Power supply:                | DC 5V From internal battery      |
| Adapter information:         | Input:AC 100-240V 50/60Hz 0.15A  |
|                              | Output:5Vd.c., 500mA             |
| 2G:                          |                                  |
| Support Network:             | GSM, GPRS                        |
| Support Band:                | GSM850, DCS1900                  |
| Modulation:                  | GSM/GPRS: GMSK                   |
| Transmit Frequency:          | GSM850: 824.20MHz-848.80MHz      |
|                              | PCS1900: 1850.20MHz-1909.80MHz   |
| Receive Frequency:           | GSM850: 869.20MHz-893.80MHz      |
|                              | PCS1900: 1930.20MHz-1989.80MHz   |
| GPRS Class:                  | 12                               |
| EGPRS Class:                 | 12                               |
| Antenna type:                | Intergal Antenna                 |
| Antenna gain:                | GSM850:-3.5dBi,PCS1900:-3.8dBi   |
| Hardware version:            | F2_MB_V4.0                       |
| Software version:            | S3501_B_F2_HC01V02_20151022      |
| 3G:                          |                                  |
| Operation Band:              | FDD Band II and FDD Band V       |
| Power Class:                 | Power Class 3                    |
| Modilation Type:             | QPSK for WCDMA/HSUPA/HSDPA       |
| WCDMA Release Version:       | Release 7                        |
| HSDPA Release Version:       | Category 14                      |
| HSUPA Release Version:       | Category 6                       |
| DC-HSUPA Release<br>Version: | Not Supported                    |
| Antenna type:                | Intergal Antenna                 |
| Antenna gain:                | Band II:-3.3dBi, Band V: -4.1dBi |

Report No: TRE1510017001 Page: 5 of 54 Issued: 2015-11-10

### Test Frequency:

| GSM 850 |                 | PCS     | 1900            |  |  |
|---------|-----------------|---------|-----------------|--|--|
| Channel | Frequency (MHz) | Channel | Frequency (MHz) |  |  |
| 128     | 824.20          | 512     | 1850.20         |  |  |
| 190     | 836.60          | 661     | 1880.00         |  |  |
| 251     | 848.80          | 810     | 1909.80         |  |  |

| FDD Band II |                              | FDD E | Band V          |
|-------------|------------------------------|-------|-----------------|
| Channel     | Frequency (MHz) Channel Freq |       | Frequency (MHz) |
| 9262        | 1852.4                       | 4132  | 826.40          |
| 9400        | 1880.0                       | 4182  | 836.60          |
| 9538        | 1907.6                       | 4233  | 846.60          |

### 2.3. EUT operation mode

The EUT has been tested under typical operating condition. The Applicant provides software to control the EUT for staying in continous transmitting and receiving mode for testing.

### 2.4. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

supplied by the manufacturer

 $\bigcirc$  - supplied by the lab

|   | 11 /        |               |   |
|---|-------------|---------------|---|
| 0 | Power Cable | Length (m):   | / |
|   |             | Shield :      | / |
|   |             | Detachable :  | / |
| 0 | Multimeter  | Manufacturer: | / |
|   |             | Model No. :   | / |

### 2.5. Modifications

No modifications were implemented to meet testing criteria.

Report No: TRE1510017001 Page: 6 of 54 Issued: 2015-11-10

### 3. TEST ENVIRONMENT

### 3.1. Address of the test laboratory

Laboratory: Shenzhen Huatongwei International Inspection Co., Ltd.

Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China

Phone: 86-755-26748019 Fax: 86-755-26748089

### 3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

#### CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories

(identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Labo ratories, Date of Registration: February 28, 2015. Valid time is until February 27, 2018.

#### A2LA-Lab Cert. No. 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for tec hnical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing. Valid time is until December 31, 2016.

#### FCC-Registration No.: 317478

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FC C is maintained in our files. Registration 317478, Renewal date Jul. 18, 2014, valid time is until Jul. 18, 2017.

### IC-Registration No.: 5377A&5377B

The 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377A on Dec. 31, 2013, valid time is until Dec. 31, 2016.

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377B on Dec.03, 2014, valid time is until Dec.03, 2017.

#### **ACA**

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Aust ralian C-Tick mark as a result of our A2LA accreditation.

#### VCCI

The 3m Semi-

anechoic chamber (12.2m×7.95m×6.7m) of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-2484. Date of Registration: Dec. 20, 2012. Valid time is until Dec. 29, 2015.

Radiated disturbance above 1GHz measurement of Shenzhen Huatongwei International Inspection Co., Ltd. h as been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-292. Date of Registration: Dec. 24, 2013. Valid time is until Dec. 23, 2016.

Main Ports Conducted Interference Measurement of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-2726. Date of Registration: Dec. 20, 2012. Valid time is until Dec. 19, 2015.

Telecommunication Ports Conducted Interference Measurement of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-1837. Date of Registration: May 07, 2013. Valid time is until May 06, 2016.

#### DNV

Shenzhen Huatongwei International Inspection Co., Ltd. has been found to comply with the requirements of D NV towards subcontractor of EMC and safety testing services in conjunction with the EMC and Low voltage Di rectives and in the voluntary field. The acceptance is based on a formal quality Audit and follow-ups according to relevant parts of ISO/IEC Guide 17025 (2005), in accordance with the requirements of the D NV Laboratory Quality Manual towards subcontractors. Valid time is until Aug. 24, 2016.

Report No: TRE1510017001 Page: 7 of 54 Issued: 2015-11-10

### 3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

| Normal Temperature/Tnor: | 15~35°C      |
|--------------------------|--------------|
| lative Humidity          | 30~60 %      |
| Air Pressure             | 950-1050 hPa |

### 3.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics;Part 1" and TR-100028-02 "Electromagnetic compatibilityand Radio spectrum Matters (ERM);Uncertainties in the measurementof mobile radio equipment characteristics;Part 2 " and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen Huatongwei laboratory is reported:

| Test Items                                 | Measurement Uncertainty | Notes |
|--------------------------------------------|-------------------------|-------|
| Frequency stability                        | 25 Hz                   | (1)   |
| Transmitter power conducted                | 0.57 dB                 | (1)   |
| Transmitter power Radiated                 | 2.20 dB                 | (1)   |
| Conducted spurious emission 9KHz-12.75 GHz | 1.60 dB                 | (1)   |
| Conducted Emission 9KHz-30MHz              | 3.39 dB                 | (1)   |
| Radiated Emission 30~1000MHz               | 4.24 dB                 | (1)   |
| Radiated Emissio 1~18GHz                   | 5.16 dB                 | (1)   |
| Radiated Emissio 18-40GHz                  | 5.54 dB                 | (1)   |
| Occupied Bandwidth                         |                         | (1)   |
| Emission Mask                              |                         | (1)   |
| Modulation Characteristic                  |                         | (1)   |
| Transmitter Frequency Behavior             |                         | (1)   |

<sup>(1)</sup> This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Report No: TRE1510017001 Page: 8 of 54 Issued: 2015-11-10

## 3.5. Equipments Used during the Test

| AC Po | AC Power Conducted Emission   |               |             |            |           |  |  |
|-------|-------------------------------|---------------|-------------|------------|-----------|--|--|
| No.   | Equipment                     | Manufacturer  | Model No.   | Serial No. | Last Cal. |  |  |
| 1     | Artificial Mains              | Rohde&Schwarz | ESH2-Z5     | 100028     | 2015/11/2 |  |  |
| 2     | EMI Test Receiver             | Rohde&Schwarz | ESCS 30     | 100038     | 2015/11/2 |  |  |
| 3     | Pulse Limiter                 | Rohde&Schwarz | ESHSZ2      | 100044     | 2015/11/2 |  |  |
| 4     | EMI Test Software             | Rohde&Schwarz | ES-K1 V1.71 | N/A        | N/        |  |  |
| 5     | UNIVERSAL RADIO COMMUNICATION | Rohde&Schwarz | CMU200      | 112012     | 2015/11/2 |  |  |

|        | Output Power(Conducted) & Occupied Bandwidth & Emission Bandwidth & Band Edge Compliance |               |        |        |           |  |  |  |
|--------|------------------------------------------------------------------------------------------|---------------|--------|--------|-----------|--|--|--|
| & Cond | & Conducted Spurious Emission                                                            |               |        |        |           |  |  |  |
| No.    | No. Equipment Manufacturer Model No. Serial No. Last Cal.                                |               |        |        |           |  |  |  |
| 1 1    | UNIVERSAL RADIO COMMUNICATION                                                            | Rohde&Schwarz | CMU200 | 112012 | 2015/11/2 |  |  |  |
| 2      | 2 Spectrum Analyzer Rohde&Schwarz FSU26 201141 2015/11/2                                 |               |        |        |           |  |  |  |
| 3      | Splitter                                                                                 | Mini-Circuit  | ZAPD-4 | 400059 | 2015/11/2 |  |  |  |

| Freque | Frequency Stability           |               |           |            |           |  |  |
|--------|-------------------------------|---------------|-----------|------------|-----------|--|--|
| No.    | Equipment                     | Manufacturer  | Model No. | Serial No. | Last Cal. |  |  |
| 1      | UNIVERSAL RADIO COMMUNICATION | Rohde&Schwarz | CMU200    | 112012     | 2015/11/2 |  |  |
| 2      | Spectrum Analyzer             | Rohde&Schwarz | FSU26     | 201141     | 2015/11/2 |  |  |
| 3      | Climate Chamber               | ESPEC         | EL-10KA   | 05107008   | 2015/11/2 |  |  |
| 4      | Splitter                      | Mini-Circuit  | ZAPD-4    | 400059     | 2015/11/2 |  |  |

| Output | Output Power (Radiated) & Radiated Spurious Emission |                              |           |             |           |  |  |  |  |
|--------|------------------------------------------------------|------------------------------|-----------|-------------|-----------|--|--|--|--|
| No.    | Equipment                                            | Manufacturer                 | Model No. | Serial No.  | Last Cal. |  |  |  |  |
| 1      | UNIVERSAL RADIO COMMUNICATION                        | Rohde&Schwarz                | CMU200    | 112012      | 2015/11/2 |  |  |  |  |
| 2      | Spectrum Analyzer                                    | Rohde&Schwarz                | FSU26     | 201141      | 2015/11/2 |  |  |  |  |
| 3      | HORN ANTENNA                                         | ShwarzBeck                   | 9120D     | 1012        | 2015/11/2 |  |  |  |  |
| 4      | HORN ANTENNA                                         | ShwarzBeck                   | 9120D     | 1011        | 2015/11/2 |  |  |  |  |
| 5      | Ultra-Broadband Antenna                              | ShwarzBeck                   | VULB9163  | 538         | 2015/11/2 |  |  |  |  |
| 6      | Ultra-Broadband Antenna                              | ShwarzBeck                   | VULB9163  | 539         | 2015/11/2 |  |  |  |  |
| 7      | TURNTABLE                                            | MATURO                       | TT2.0     |             | N/A       |  |  |  |  |
| 8      | ANTENNA MAST                                         | MATURO                       | TAM-4.0-P |             | N/A       |  |  |  |  |
| 9      | EMI Test Software                                    | Audix                        | E3        | N/A         | N/A       |  |  |  |  |
| 10     | EMI Test Receiver                                    | Rohde&Schwarz                | ESIB 26   | 100009      | 2015/11/2 |  |  |  |  |
| 11     | RF Test Panel                                        | Rohde&Schwarz                | TS / RSP  | 335015/0017 | 2015/11/2 |  |  |  |  |
| 12     | High pass filter                                     | Compliance Direction systems | BSU-6     | 34202       | 2015/11/2 |  |  |  |  |
| 13     | Splitter                                             | Mini-Circuit                 | ZAPD-4    | 400059      | 2015/11/2 |  |  |  |  |
| 14     | Horn Antenna                                         | SCHWARZBECK                  | BBHA9170  | 25841       | 2015/11/2 |  |  |  |  |
| 15     | Horn Antenna                                         | SCHWARZBECK                  | BBHA9170  | 25842       | 2015/11/2 |  |  |  |  |
| 16     | Preamplifier                                         | ShwarzBeck                   | BBV 9718  | BBV 9718    | 2015/11/2 |  |  |  |  |
| 17     | Broadband Preamplifier                               | ShwarzBeck                   | BBV743    | 9743-0079   | 2015/11/2 |  |  |  |  |
| 18     | Signal Generator                                     | Rohde&Schwarz                | SMF100A   | 101932      | 2015/11/2 |  |  |  |  |
| 19     | Amplifer                                             | Compliance Direction systems | PAP1-4060 | 120         | 2015/11/2 |  |  |  |  |
| 20     | TURNTABLE                                            | ETS                          | 2088      | 2149        | 2015/11/2 |  |  |  |  |
| 21     | ANTENNA MAST                                         | ETS                          | 2075      | 2346        | 2015/11/2 |  |  |  |  |
| 22     | HORN ANTENNA                                         | Rohde&Schwarz                | HF906     | 100068      | 2015/11/2 |  |  |  |  |
| 23     | HORN ANTENNA                                         | Rohde&Schwarz                | HF906     | 100039      | 2015/11/2 |  |  |  |  |

The calibration interval was one year.

Report No: TRE1510017001 Page: 9 of 54 Issued: 2015-11-10

### 4. TEST CONDITIONS AND RESULTS

### 4.1. Conducted Emissions Test

#### LIMIT:

| Fraguency of Emission (MLIT) | Conducted  | Limit (dBuV) |
|------------------------------|------------|--------------|
| Frequency of Emission (MHz)  | Quasi-peak | Average      |
| 0.15-0.5                     | 66 to 56 * | 56 to 46 *   |
| 0.5-5                        | 56         | 46           |
| 5-30                         | 60         | 50           |

<sup>\*</sup> Decreasing linearly with the logarithm of the frequency

### **TEST CONFIGURATION**



### **TEST PROCEDURE**

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system; a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.4-2009.
- 2 Support equipment, if needed, was placed as per ANSI C63.4-2009.
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.4-2009.
- 4 If a EUT received DC power from the adapter, the adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

#### **TEST RESULTS**

Note: We tested all modes and recorded the worst case at GSM900

Report No: TRE1510017001 Page: 10 of 54 Issued: 2015-11-10

### GSM850

| Test mode: | GSM850 | Polarization | L |
|------------|--------|--------------|---|



### MEASUREMENT RESULT: "GM1104556\_fin"

| 1 | 11/4/2015 9:02PM |               |              |               |              |          |      |     |
|---|------------------|---------------|--------------|---------------|--------------|----------|------|-----|
|   | Frequency<br>MHz | Level<br>dBµV | Transd<br>dB | Limit<br>dBµV | Margin<br>dB | Detector | Line | PE  |
|   | 0.348000         | 38.70         | 10.2         | 59            | 20.3         | QP       | L1   | GND |
|   | 0.595500         | 34.50         | 10.2         | 56            | 21.5         | QP       | L1   | GND |
|   | 0.681000         | 38.30         | 10.2         | 56            | 17.7         | QP       | L1   | GND |
|   | 0.825000         | 35.70         | 10.2         | 56            | 20.3         | QP       | L1   | GND |
|   | 1.234500         | 35.10         | 10.2         | 56            | 20.9         | QP       | L1   | GND |
|   | 1.513500         | 34.40         | 10.2         | 56            | 21.6         | QP       | L1   | GND |

### MEASUREMENT RESULT: "GM1104556\_fin2"

| 11/4/2015 | 9:02PM   |        |       |        |          |      |     |
|-----------|----------|--------|-------|--------|----------|------|-----|
| Frequen   | -        |        | Limit | Margin | Detector | Line | PE  |
| M         | Hz dBµ   | V dB   | dBµV  | dB     |          |      |     |
| 0.2895    | 00 28.3  | 0 10.2 | 51    | 22.2   | AV       | L1   | GND |
| 0.3480    | 00 29.20 | 10.2   | 49    | 19.8   | AV       | L1   | GND |
| 0.7170    | 00 11.1  | 10.2   | 46    | 34.9   | AV       | L1   | GND |
| 1.4640    | 00 26.6  | 0 10.2 | 46    | 19.4   | AV       | L1   | GND |
| 2.1615    | 00 23.4  | 10.2   | 46    | 22.6   | AV       | L1   | GND |
| 4.3035    | 00 21.7  | 10.3   | 46    | 24.3   | AV       | L1   | GND |

Report No: TRE1510017001 Page: 11 of 54 Issued: 2015-11-10

Test mode: GSM850 Polarization N



### MEASUREMENT RESULT: "GM1104555\_fin"

| 11/4/2015 8:5    | 8PM           |              |               |              |          |      |     |
|------------------|---------------|--------------|---------------|--------------|----------|------|-----|
| Frequency<br>MHz | Level<br>dBµV | Transd<br>dB | Limit<br>dBµV | Margin<br>dB | Detector | Line | PE  |
| 0.285000         | 34.80         | 10.2         | 61            | 25.9         | QP       | N    | GND |
| 0.289500         | 38.00         | 10.2         | 61            | 22.5         | QP       | N    | GND |
| 0.352500         | 37.80         | 10.2         | 59            | 21.1         | QP       | N    | GND |
| 0.496500         | 35.10         | 10.2         | 56            | 21.0         | QP       | N    | GND |
| 0.505500         | 34.70         | 10.2         | 56            | 21.3         | QP       | N    | GND |
| 1.275000         | 33.10         | 10.2         | 56            | 22.9         | OP       | N    | GND |

### MEASUREMENT RESULT: "GM1104555 fin2"

| 11/4/2015 8:5    | 8PM           |              |               |              |          |      |     |
|------------------|---------------|--------------|---------------|--------------|----------|------|-----|
| Frequency<br>MHz | Level<br>dBµV | Transd<br>dB | Limit<br>dBµV | Margin<br>dB | Detector | Line | PE  |
| 0.289500         | 26.40         | 10.2         | 51            | 24.1         | AV       | N    | GND |
| 0.343500         | 26.30         | 10.2         | 49            | 22.8         | AV       | N    | GND |
| 0.568500         | 24.70         | 10.2         | 46            | 21.3         | AV       | N    | GND |
| 0.766500         | 22.80         | 10.2         | 46            | 23.2         | AV       | N    | GND |
| 1.495500         | 20.90         | 10.2         | 46            | 25.1         | AV       | N    | GND |
| 2.143500         | 19.40         | 10.2         | 46            | 26.6         | AV       | N    | GND |

Report No: TRE1510017001 Page: 12 of 54 Issued: 2015-11-10

### 4.2. Conducted Peak Output Power

### **TEST CONFIGURATION**



Note: Measurement setup for testing on Antenna connector

### **TEST PROCEDURE**

- 1. The transmitter output port was connected to base station.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator, the path loss was compensated to the results for each measurement.
- 3. Set EUT at maximum power through base station.
- 4. Select lowest, middle, and highest channels for each band and different modulation.
- 5. Measure the maximum burst average power.

### **TEST RESULTS**

| EUT Mode                 | Channel | Frequency (MHz) | Power (dBm) |
|--------------------------|---------|-----------------|-------------|
|                          | 128     | 824.20          | 33.15       |
| GSM 850<br>(GMSK)        | 190     | 836.60          | 32.76       |
| (GMSR)                   | 251     | 848.80          | 33.28       |
|                          | 128     | 824.20          | 33.24       |
| GPRS850<br>(GMSK,1Slot)  | 190     | 836.60          | 32.47       |
| (OMOR, FOIOt)            | 251     | 848.80          | 33.32       |
|                          | 512     | 1850.20         | 29.68       |
| PCS1900<br>(GMSK)        | 661     | 1880.00         | 29.17       |
| (GWOTC)                  | 810     | 1909.80         | 29.74       |
|                          | 512     | 1850.20         | 29.85       |
| GPRS1900<br>(GMSK,1Slot) | 661     | 1880.00         | 29.64       |
| (OMOR, FOIOt)            | 810     | 1909.80         | 29.25       |
|                          | 9262    | 1852.40         | 20.82       |
| WCDMA Band II            | 9400    | 1880.00         | 20.29       |
|                          | 9538    | 1907.60         | 20.45       |
|                          | 4132    | 826.40          | 22.77       |
| WCDMA Band V             | 4183    | 836.60          | 22.59       |
|                          | 4233    | 846.60          | 22.43       |

Report No: TRE1510017001 Page: 13 of 54 Issued: 2015-11-10

### 4.3. Occupy Bandwidth

### **TEST CONFIGURATION**



Note: Measurement setup for testing on Antenna connector

### **TEST PROCEDURE**

- 1. The EUT's output RF connector was connected with a short cable to the spectrum analyzer
- 2. RBW was set to about 1% of emission BW, VBW= 3 times RBW.
- 3. -26dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

### **TEST RESULTS**

| EUT Mode                 | Channel | Frequency (MHz) | 99% Occupy bandwidth (KHz) | -26dB bandwidth<br>(KHz) |
|--------------------------|---------|-----------------|----------------------------|--------------------------|
|                          | 128     | 824.20          | 242.51                     | 321.43                   |
| GSM 850<br>(GMSK)        | 190     | 836.60          | 246.99                     | 317.09                   |
| (Giviert)                | 251     | 848.80          | 246.02                     | 316.14                   |
|                          | 128     | 824.20          | 244.61                     | 316.31                   |
| GPRS850<br>(GMSK,1Slot)  | 190     | 836.60          | 245.57                     | 317.38                   |
| (Ginera, relet)          | 251     | 848.80          | 247.97                     | 313.95                   |
|                          | 512     | 1850.20         | 244.08                     | 309.63                   |
| PCS1900<br>(GMSK)        | 661     | 1880.00         | 253.08                     | 324.34                   |
| (Giviert)                | 810     | 1909.80         | 242.35                     | 314.84                   |
|                          | 512     | 1850.20         | 241.55                     | 307.02                   |
| GPRS1900<br>(GMSK,1Slot) | 661     | 1880.00         | 248.27                     | 302.78                   |
| (Giviori, rolot)         | 810     | 1909.80         | 242.52                     | 314.84                   |
|                          | 9262    | 1852.4          | 4196.5                     | 4819                     |
| WCDMA Band II            | 9400    | 1880.0          | 4191.9                     | 4751                     |
|                          | 9538    | 1907.6          | 4200.8                     | 4798                     |
|                          | 4132    | 826.4           | 4155                       | 4691                     |
| WCDMA Band V             | 4183    | 836.6           | 4156.6                     | 4697                     |
|                          | 4233    | 846.6           | 4122.9                     | 4698                     |

Report No: TRE1510017001 Page: 14 of 54 Issued: 2015-11-10



Report No: TRE1510017001 Page: 15 of 54 Issued: 2015-11-10



Report No: TRE1510017001 Page: 16 of 54 Issued: 2015-11-10 PCS1900 For GMSK Moudlation 99% Occupy bandwidth&-26dB bandwidth 99% Occupy bandwidth&-26dB bandwidth Agilent Agilent R T Freq/Channel Freq/Channel 1.8502 GHz Center Freq 1.85020000 GHz Center Freq 1.88000000 GHz ccupied Bandwidth cupied Bandwidth Start Freq 1.84970000 GHz Start Freq 1.87950000 GHz Ref 30.5 dBm #Atten 20 dB Ref 30.5 dBm #Atten 20 dB #Peak Stop Freq 1.85070000 GHz Stop Freq Log Log 1.88050000 GHz 10 10 dB/ d3/ CF Step CF Step Offst 20.5 dB Offst 20.5 100.000000 kHz 100.000000 kHz dB Freq Offset 0.00000000 Hz Freq Offset 0.00000000 Hz Center 1.85 GHz Span 1 MHz Center 1.88 GHz Span 1 MHz eep 10.36 ms (401 pts) Sweep 10.36 ms (401 pts) #VBW 30 kHz #Res BW 10 kHz #VBW 30 kHz Signal Track Signal Track Occupied Bandwidth Occupied Bandwidth Occ BW % Pwr 99 00 % Occ BW % Pwr 99.00 % On 244.0866 kHz x dB -26 00 dB 253.0869 kHz x dB -26 00 dB Scale Type Scale Type -2.269 kHz -2.357 kHz Transmit Freq Error Transmit Freq Error 309.633 kHz Log Log x dB Bandwidth x dB Bandwidth 324.346 kHz Channel 512 Channel 661 # Agilent R Freg/Channel Center Freq 1.90980000 GHz Start Freq 1.90930000 GHz Ref 30.5 dBr #Peak Log 10 dB/ Stop Freq 1.91030000 GHz CF Step Offst 20.5 dB 100.0000000 kHz Auto Man Freq Offset 0.00000000 Hz Center 1.91 GHz Span 1 MHz Sweep 10.36 ms (401 pts) #Res BW 10 kHz #VBW 30 kHz Signal Track Occupied Bandwidth Occ BW % Pwr 99.00 % x dB -26 00 dB 242.3553 kHz Scale Type -3.784 kHz Transmit Freg Error x dB Bandwidth 314 840 kHz Log Channel 810 GPRS1900 For GMSK Moudlation 99% Occupy bandwidth&-26dB bandwidth 99% Occupy bandwidth&-26dB bandwidth # Agilent RT Agilent RT Freg/Channel Freq/Channel Ch Freq Ch Freq Center Freq 1.88000000 GHz Center Freq Occupied Bandwidth Occupied Bandwidth 1.85020000 GHz 1.87950000 GHz 1.84970000 GHz #Peak #Peak Stop Freq 1.85070000 GHz Stop Freq 1.88050000 GHz Log Log 10 10 dB/ dB/ CF Step CF Step





Report No: TRE1510017001 Page: 17 of 54 Issued: 2015-11-10



Report No: TRE1510017001 Page: 18 of 54 Issued: 2015-11-10



Report No: TRE1510017001 Page: 19 of 54 Issued: 2015-11-10



Report No: TRE1510017001 Page: 20 of 54 Issued: 2015-11-10

### 4.4. Out of band emission at antenna terminals

#### **LIMIT**

Part 24.238 and Part 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

#### **TEST CONFIGURATION**



#### **TEST PROCEDURE**

- 1. The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation.
- 2. The resolution bandwidth of the spectrum analyzer was set at 1MHz, sufficient scans were taken to show the out of band Emissions if any up to 10th harmonic.
- 3. For the out of band: Set the RBW= 1MHz, VBW = 3MHz, Start=30MHz, Stop= 10th harmonic.

#### **TEST RESULTS**

Report No: TRE1510017001 Page: 21 of 54 Issued: 2015-11-10





Report No: TRE1510017001 Page: 22 of 54 Issued: 2015-11-10





Report No: TRE1510017001 Page: 23 of 54 Issued: 2015-11-10



Report No: TRE1510017001 Page: 24 of 54 Issued: 2015-11-10



Report No: TRE1510017001 Page: 25 of 54 Issued: 2015-11-10



Report No: TRE1510017001 Page: 26 of 54 Issued: 2015-11-10



Report No: TRE1510017001 Page: 27 of 54 Issued: 2015-11-10

