```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats import ttest_ind,f_oneway,kruskal
import warnings
warnings.filterwarnings("ignore")
```

## Importing files

```
In [2]: customer=pd.read_csv("Customers.csv")
    dc=pd.read_csv("Discount_Coupon.csv")
    ms=pd.read_csv("Marketing_Spend.csv")
    os=pd.read_csv("Online_Sales.csv")
    ta=pd.read_csv("Tax_amount.csv")
```

In [3]: os.head()

Out[3]

| ]: |   | CustomerID | Transaction_ID | Transaction_Date | Product_SKU    | Product_Description                                   | Product_Category | Quantity | Avg_Price | Delivery_Charges | Coup |
|----|---|------------|----------------|------------------|----------------|-------------------------------------------------------|------------------|----------|-----------|------------------|------|
|    | 0 | 17850      | 16679          | 1/1/2019         | GGOENEBJ079499 | Nest Learning<br>Thermostat 3rd Gen-<br>USA - Stainle | Nest-USA         | 1        | 153.71    | 6.5              |      |
|    | 1 | 17850      | 16680          | 1/1/2019         | GGOENEBJ079499 | Nest Learning<br>Thermostat 3rd Gen-<br>USA - Stainle | Nest-USA         | 1        | 153.71    | 6.5              |      |
|    | 2 | 17850      | 16681          | 1/1/2019         | GGOEGFKQ020399 | Google Laptop and<br>Cell Phone Stickers              | Office           | 1        | 2.05      | 6.5              |      |
|    | 3 | 17850      | 16682          | 1/1/2019         | GGOEGAAB010516 | Google Men's 100%<br>Cotton Short Sleeve<br>Hero Tee  | Apparel          | 5        | 17.53     | 6.5              |      |
|    | 4 | 17850      | 16682          | 1/1/2019         | GGOEGBJL013999 | Google Canvas Tote<br>Natural/Navy                    | Bags             | 1        | 16.50     | 6.5              |      |

| n [4]: c           | ustomer. | head | I()            |            |                  |             |
|--------------------|----------|------|----------------|------------|------------------|-------------|
| <br>Out[4]:        | Custom   | erID | Gender I       | Location   | Tenure_M         | onths       |
| 0                  | 17       | 7850 | М              | Chicago    |                  | 12          |
| 1                  | 13       | 3047 | МС             | California |                  | 43          |
| 2                  | 12       | 2583 | М              | Chicago    |                  | 33          |
| 3                  | 13       | 3748 | FC             | California |                  | 30          |
| 4                  | 1!       | 5100 | МС             | California |                  | 49          |
| in [5]: <b>d</b>   | c.head() | )    |                |            |                  |             |
| Out[5]:            |          |      | duct Catego    | ory Cour   | on Code          | Discount_pc |
|                    |          | 7100 |                |            |                  |             |
| 0                  |          |      | Appa           |            | SALE10<br>SALE20 | 1(          |
| 2                  |          |      | Арра           |            |                  | 20          |
| 3                  |          |      | Appa<br>Nest-U |            | SALE30<br>ELEC10 |             |
| 4                  |          |      | Nest-U         |            | ELEC10           | 10          |
| ·                  | 100      |      | 11030 0        | 57.1       | 222020           | _           |
| in [6]: <b>m</b> : | s.head() | )    |                |            |                  |             |
| out[6]:            | Date     | e Of | ffline_Spend   | d Online   | _Spend           |             |
| 0                  | 1/1/201  | 9    | 4500           | ) ;        | 2424.50          |             |
| 1                  | 1/2/2019 | 9    | 4500           | ) :        | 3480.36          |             |
| 2                  | 1/3/201  | 9    | 4500           | )          | 1576.38          |             |
| 3                  | 1/4/201  | 9    | 4500           | ) ;        | 2928.55          |             |
| 4                  | 1/5/201  | 9    | 4500           | ) 4        | 4055.30          |             |
| T.o. [7]. L        | a hoad/\ |      |                |            |                  |             |
| In [7]: t          | a.head() | )    |                |            |                  |             |

| Out[7]: | Pro | duct_Category | GST |
|---------|-----|---------------|-----|
|         | 0   | Nest-USA      | 10% |
|         | 1   | Office        | 10% |
|         | 2   | Apparel       | 18% |
|         | 3   | Bags          | 18% |
|         | 4   | Drinkware     | 18% |

## Basic operation on data set

```
In [8]: os['Transaction_Date'] = pd.to_datetime(os['Transaction_Date'])
    os['Month']=os['Transaction_Date'].dt.strftime('%b')
    os.head()
```

| Out[8]: |   | CustomerID | Transaction_ID | Transaction_Date | Product_SKU    | Product_Description                                   | Product_Category | Quantity | Avg_Price | Delivery_Charges | Coup |
|---------|---|------------|----------------|------------------|----------------|-------------------------------------------------------|------------------|----------|-----------|------------------|------|
|         | 0 | 17850      | 16679          | 2019-01-01       | GGOENEBJ079499 | Nest Learning<br>Thermostat 3rd Gen-<br>USA - Stainle | Nest-USA         | 1        | 153.71    | 6.5              |      |
|         | 1 | 17850      | 16680          | 2019-01-01       | GGOENEBJ079499 | Nest Learning<br>Thermostat 3rd Gen-<br>USA - Stainle | Nest-USA         | 1        | 153.71    | 6.5              |      |
|         | 2 | 17850      | 16681          | 2019-01-01       | GGOEGFKQ020399 | Google Laptop and<br>Cell Phone Stickers              | Office           | 1        | 2.05      | 6.5              |      |
|         | 3 | 17850      | 16682          | 2019-01-01       | GGOEGAAB010516 | Google Men's 100%<br>Cotton Short Sleeve<br>Hero Tee  | Apparel          | 5        | 17.53     | 6.5              |      |
|         | 4 | 17850      | 16682          | 2019-01-01       | GGOEGBJL013999 | Google Canvas Tote<br>Natural/Navy                    | Bags             | 1        | 16.50     | 6.5              |      |
| 4       |   |            |                |                  |                |                                                       |                  |          |           |                  |      |

```
In [9]: new=pd.merge(os,dc,on=['Month','Product_Category'],how='left')
    new.head()
```

| Out[9]:                                                                   |   | CustomerID | Transaction_ID | Transaction_Date | Product_SKU    | Product_Description                                   | Product_Category | Quantity | Avg_Price | Delivery_Charges | Coup |
|---------------------------------------------------------------------------|---|------------|----------------|------------------|----------------|-------------------------------------------------------|------------------|----------|-----------|------------------|------|
|                                                                           | 0 | 17850      | 16679          | 2019-01-01       | GGOENEBJ079499 | Nest Learning<br>Thermostat 3rd Gen-<br>USA - Stainle | Nest-USA         | 1        | 153.71    | 6.5              |      |
|                                                                           | 1 | 17850      | 16680          | 2019-01-01       | GGOENEBJ079499 | Nest Learning<br>Thermostat 3rd Gen-<br>USA - Stainle | Nest-USA         | 1        | 153.71    | 6.5              |      |
|                                                                           | 2 | 17850      | 16681          | 2019-01-01       | GGOEGFKQ020399 | Google Laptop and<br>Cell Phone Stickers              | Office           | 1        | 2.05      | 6.5              |      |
|                                                                           | 3 | 17850      | 16682          | 2019-01-01       | GGOEGAAB010516 | Google Men's 100%<br>Cotton Short Sleeve<br>Hero Tee  | Apparel          | 5        | 17.53     | 6.5              |      |
|                                                                           | 4 | 17850      | 16682          | 2019-01-01       | GGOEGBJL013999 | Google Canvas Tote<br>Natural/Navy                    | Bags             | 1        | 16.50     | 6.5              |      |
| 4                                                                         |   |            |                |                  |                |                                                       |                  |          |           |                  | •    |
| In [10]: merge df=nd.merge(new.ta. on = 'Product Category', how = 'left') |   |            |                |                  |                |                                                       |                  |          |           |                  |      |

In [10]: merge\_df=pd.merge(new,ta, on = 'Product\_Category', how = 'left')
 merge\_df.head()

| Out[10 | ]: | CustomerID | Transaction_ID | Transaction_Date | Product_SKU    | Product_Description                                   | Product_Category | Quantity | Avg_Price | Delivery_Charges | Coup |  |
|--------|----|------------|----------------|------------------|----------------|-------------------------------------------------------|------------------|----------|-----------|------------------|------|--|
|        | 0  | 17850      | 16679          | 2019-01-01       | GGOENEBJ079499 | Nest Learning<br>Thermostat 3rd Gen-<br>USA - Stainle | Nest-USA         | 1        | 153.71    | 6.5              |      |  |
|        | 1  | 17850      | 16680          | 2019-01-01       | GGOENEBJ079499 | Nest Learning<br>Thermostat 3rd Gen-<br>USA - Stainle | Nest-USA         | 1        | 153.71    | 6.5              | 5    |  |
|        | 2  | 17850      | 16681          | 2019-01-01       | GGOEGFKQ020399 | Google Laptop and<br>Cell Phone Stickers              | Office           | 1        | 2.05      | 6.5              |      |  |
|        | 3  | 17850      | 16682          | 2019-01-01       | GGOEGAAB010516 | Google Men's 100%<br>Cotton Short Sleeve<br>Hero Tee  | Apparel          | 5        | 17.53     | 6.5              |      |  |
|        | 4  | 17850      | 16682          | 2019-01-01       | GGOEGBJL013999 | Google Canvas Tote<br>Natural/Navy                    | Bags             | 1        | 16.50     | 6.5              |      |  |
| 4      |    |            |                |                  |                |                                                       |                  |          |           |                  | •    |  |
|        |    |            |                |                  |                |                                                       |                  |          |           |                  |      |  |

In [11]: merge\_df['GST'] = merge\_df['GST'].str.rstrip('%').astype(float)
merge\_df.head()

| Out[11]: |   | CustomerID | Transaction_ID | Transaction_Date | Product_SKU    | Product_Description                                   | Product_Category | Quantity | Avg_Price | Delivery_Charges | Coup |
|----------|---|------------|----------------|------------------|----------------|-------------------------------------------------------|------------------|----------|-----------|------------------|------|
|          | 0 | 17850      | 16679          | 2019-01-01       | GGOENEBJ079499 | Nest Learning<br>Thermostat 3rd Gen-<br>USA - Stainle | Nest-USA         | 1        | 153.71    | 6.5              |      |
|          | 1 | 17850      | 16680          | 2019-01-01       | GGOENEBJ079499 | Nest Learning<br>Thermostat 3rd Gen-<br>USA - Stainle | Nest-USA         | 1        | 153.71    | 6.5              |      |
|          | 2 | 17850      | 16681          | 2019-01-01       | GGOEGFKQ020399 | Google Laptop and<br>Cell Phone Stickers              | Office           | 1        | 2.05      | 6.5              |      |
|          | 3 | 17850      | 16682          | 2019-01-01       | GGOEGAAB010516 | Google Men's 100%<br>Cotton Short Sleeve<br>Hero Tee  | Apparel          | 5        | 17.53     | 6.5              |      |
|          | 4 | 17850      | 16682          | 2019-01-01       | GGOEGBJL013999 | Google Canvas Tote<br>Natural/Navy                    | Bags             | 1        | 16.50     | 6.5              |      |
| 4        |   |            |                |                  |                |                                                       |                  |          |           |                  | •    |

In [14]: final=pd.merge(merge\_df,customer,on=['CustomerID'],how='left')
 final.head()

| Out[14]: |                                                        | CustomerID                | Transaction_ID | Transaction_Date | Product_SKU    | Product_Description                                   | Product_Category | Quantity | Avg_Price | Delivery_Charges | Coup |
|----------|--------------------------------------------------------|---------------------------|----------------|------------------|----------------|-------------------------------------------------------|------------------|----------|-----------|------------------|------|
|          | 0                                                      | 17850                     | 16679          | 2019-01-01       | GGOENEBJ079499 | Nest Learning<br>Thermostat 3rd Gen-<br>USA - Stainle | Nest-USA         | 1        | 153.71    | 6.5              |      |
|          | 1                                                      | 17850                     | 16680          | 2019-01-01       | GGOENEBJ079499 | Nest Learning<br>Thermostat 3rd Gen-<br>USA - Stainle | Nest-USA         | 1        | 153.71    | 6.5              |      |
|          | 2                                                      | 17850                     | 16681          | 2019-01-01       | GGOEGFKQ020399 | Google Laptop and<br>Cell Phone Stickers              | Office           | 1        | 2.05      | 6.5              |      |
|          | 3                                                      | 17850                     | 16682          | 2019-01-01       | GGOEGAAB010516 | Google Men's 100%<br>Cotton Short Sleeve<br>Hero Tee  | Apparel          | 5        | 17.53     | 6.5              |      |
|          | 4                                                      | 17850                     | 16682          | 2019-01-01       | GGOEGBJL013999 | Google Canvas Tote<br>Natural/Navy                    | Bags             | 1        | 16.50     | 6.5              |      |
| 4        |                                                        |                           |                |                  |                |                                                       |                  |          |           |                  | •    |
| In [15]: | final.drop(columns='Product_Description',inplace=True) |                           |                |                  |                |                                                       |                  |          |           |                  |      |
| In [16]: |                                                        | nal.head()<br>p=final.cop | y() # fro cal  | culation         |                |                                                       |                  |          |           |                  |      |

# **Numerical Analysis**

```
In [17]: final.shape
Out[17]: (52924, 16)

In [18]: final.ndim
Out[18]: 2

In [19]: final.size
Out[19]: 846784
```

```
In [20]: final.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 52924 entries, 0 to 52923
         Data columns (total 16 columns):
                               Non-Null Count Dtype
              Column
              CustomerID
                                52924 non-null int64
              Transaction ID
                                52924 non-null int64
              Transaction Date 52924 non-null datetime64[ns]
          3
              Product SKU
                                52924 non-null object
              Product Category 52924 non-null object
          4
              Quantity
                                52924 non-null int64
              Avg Price
          6
                                52924 non-null float64
              Delivery Charges 52924 non-null float64
              Coupon_Status
                               52924 non-null object
              Month
                                52924 non-null object
                               52524 non-null object
          10 Coupon Code
          11 Discount pct
                                52524 non-null float64
          12 GST
                                52924 non-null float64
          13 Gender
                                52924 non-null object
                                52924 non-null object
          14 Location
          15 Tenure Months
                                52924 non-null int64
         dtypes: datetime64[ns](1), float64(4), int64(4), object(7)
         memory usage: 6.5+ MB
```

### **Handling NULL**

```
In [21]: final.isnull().sum()
```

```
0
          CustomerID
Out[21]:
          Transaction ID
                                 0
          Transaction Date
                                 0
          Product SKU
                                 0
          Product Category
                                 0
          Ouantity
                                 0
          Avg Price
                                 0
          Delivery Charges
                                 0
          Coupon Status
                                 0
          Month
                                 0
          Coupon Code
                               400
          Discount pct
                               400
          GST
                                 0
          Gender
                                 0
          Location
                                 0
          Tenure Months
                                 0
          dtype: int64
In [22]: final['Coupon Code'].fillna('NA',inplace=True)
          final['Discount pct'].fillna(0,inplace=True)
In [23]: final['Invoice Value'] = ((final['Quantity'] * final['Avg_Price']) * (1 - final['Discount pct']/100) * (1 + final['GST']/100)) +
          final['Invoice Value']=np.round(final['Invoice Value'],2)
          final.head()
Out[23]:
             CustomerID Transaction ID Transaction Date
                                                           Product_SKU Product_Category Quantity Avg_Price Delivery_Charges Coupon_Status Month Co
          0
                  17850
                                16679
                                            2019-01-01
                                                       GGOENEBJ079499
                                                                               Nest-USA
                                                                                              1
                                                                                                    153.71
                                                                                                                       6.5
                                                                                                                                    Used
                                                                                                                                            Jan
          1
                  17850
                                16680
                                                       GGOENEBJ079499
                                                                               Nest-USA
                                                                                                    153.71
                                                                                                                       6.5
                                            2019-01-01
                                                                                              1
                                                                                                                                    Used
                                                                                                                                            Jan
          2
                  17850
                                16681
                                                                                                      2.05
                                                                                                                       6.5
                                            2019-01-01 GGOEGFKQ020399
                                                                                  Office
                                                                                              1
                                                                                                                                    Used
                                                                                                                                            Jan
                                                                                Apparel
          3
                  17850
                                16682
                                            2019-01-01 GGOEGAAB010516
                                                                                              5
                                                                                                     17.53
                                                                                                                       6.5
                                                                                                                                Not Used
                                                                                                                                            Jan
                                                                                                                       6.5
          4
                  17850
                                16682
                                            2019-01-01
                                                       GGOEGBJL013999
                                                                                   Bags
                                                                                                     16.50
                                                                                                                                    Used
                                                                                                                                            Jan
          final.isnull().sum()
In [24]:
```

```
CustomerID
                             0
Out[24]:
         Transaction ID
                             0
         Transaction_Date
                             0
         Product SKU
                             0
         Product Category
                             0
         Quantity
                             0
         Avg_Price
                             0
         Delivery_Charges
                             0
         Coupon_Status
                             0
         Month
                             0
         Coupon Code
         Discount_pct
                             0
         GST
                             0
         Gender
                             0
         Location
                             0
         Tenure_Months
                             0
         Invoice Value
                             0
         dtype: int64
In [25]: final.duplicated().value_counts()
         False
                  52924
Out[25]:
         Name: count, dtype: int64
         final.describe()
In [26]:
```

| Out[26]: |       | CustomerID  | Transaction_ID | Transaction_Date                 | Quantity     | Avg_Price    | Delivery_Charges | Discount_pct | GST          | Tenure_Months | I      |
|----------|-------|-------------|----------------|----------------------------------|--------------|--------------|------------------|--------------|--------------|---------------|--------|
|          | count | 52924.00000 | 52924.000000   | 52924                            | 52924.000000 | 52924.000000 | 52924.000000     | 52924.000000 | 52924.000000 | 52924.000000  | 52924. |
|          | mean  | 15346.70981 | 32409.825675   | 2019-07-05<br>19:16:09.450532864 | 4.497638     | 52.237646    | 10.517630        | 19.802358    | 13.746183    | 26.127995     | 89.    |
|          | min   | 12346.00000 | 16679.000000   | 2019-01-01<br>00:00:00           | 1.000000     | 0.390000     | 0.000000         | 0.000000     | 5.000000     | 2.000000      | 4.     |
|          | 25%   | 13869.00000 | 25384.000000   | 2019-04-12<br>00:00:00           | 1.000000     | 5.700000     | 6.000000         | 10.000000    | 10.000000    | 15.000000     | 18.    |
|          | 50%   | 15311.00000 | 32625.500000   | 2019-07-13<br>00:00:00           | 1.000000     | 16.990000    | 6.000000         | 20.000000    | 18.000000    | 27.000000     | 40.    |
|          | 75%   | 16996.25000 | 39126.250000   | 2019-09-27<br>00:00:00           | 2.000000     | 102.130000   | 6.500000         | 30.000000    | 18.000000    | 37.000000     | 123.   |
|          | max   | 18283.00000 | 48497.000000   | 2019-12-31<br>00:00:00           | 900.000000   | 355.740000   | 521.360000       | 30.000000    | 18.000000    | 50.000000     | 8979.  |
|          | std   | 1766.55602  | 8648.668977    | NaN                              | 20.104711    | 64.006882    | 19.475613        | 8.278878     | 4.582478     | 13.478285     | 152.   |
| 4        |       |             |                |                                  |              |              |                  |              |              |               |        |

• There is no Duplicate

# **Non Graphical Analysis**

In [27]: final.head()

```
Out[27]:
             CustomerID Transaction ID Transaction Date
                                                           Product SKU Product Category Quantity Avg Price Delivery Charges Coupon Status Month Co
                  17850
                                16679
                                                                                                    153.71
          0
                                            2019-01-01
                                                       GGOENEBJ079499
                                                                               Nest-USA
                                                                                              1
                                                                                                                       6.5
                                                                                                                                    Used
                                                                                                                                            Jan
          1
                  17850
                                16680
                                            2019-01-01
                                                                              Nest-USA
                                                                                              1
                                                                                                    153.71
                                                                                                                       6.5
                                                                                                                                    Used
                                                       GGOENEBJ079499
                                                                                                                                            Jan
                  17850
                                                                                  Office
                                                                                                      2.05
                                                                                                                       6.5
          2
                                16681
                                            2019-01-01 GGOEGFKQ020399
                                                                                              1
                                                                                                                                    Used
                                                                                                                                            Jan
                                            2019-01-01 GGOEGAAB010516
                  17850
                                16682
                                                                                                     17.53
                                                                                                                       6.5
                                                                                                                                Not Used
          3
                                                                                Apparel
                                                                                              5
                                                                                                                                            Jan
          4
                  17850
                                16682
                                            2019-01-01
                                                       GGOEGBJL013999
                                                                                  Bags
                                                                                              1
                                                                                                     16.50
                                                                                                                       6.5
                                                                                                                                    Used
                                                                                                                                            Jan
          value_count=["Product_Category","Quantity","Coupon_Status","Month","Coupon_Code",
In [28]:
                        "Discount pct", "Gender", "Location"]
          for col in value count:
              print("Value counts for column", col)
              print(round(final[col].value counts(normalize=True)*100,2))
              print()
              print()
```

```
Value counts for column Product Category
Product Category
Apparel
                        34.25
Nest-USA
                        26.48
Office
                        12.31
                         6.58
Drinkware
Lifestyle
                         5.84
                         4.15
Nest
Bags
                         3.56
Headgear
                         1.46
Notebooks & Journals
                         1.42
                         1.05
Waze
Nest-Canada
                         0.60
Bottles
                         0.51
Accessories
                         0.44
Fun
                         0.30
Gift Cards
                         0.30
Housewares
                         0.23
Google
                         0.20
Backpacks
                         0.17
More Bags
                         0.09
Android
                         0.08
Name: proportion, dtype: float64
Value counts for column Quantity
Quantity
1
       66.77
2
       13.26
3
        4.32
        3.28
5
4
        2.34
       . . .
        0.00
176
78
        0.00
220
        0.00
        0.00
146
        0.00
209
Name: proportion, Length: 151, dtype: float64
```

Value counts for column Coupon\_Status Coupon\_Status Clicked 50.88

```
Used 33.83
Not Used 15.29
```

Name: proportion, dtype: float64

#### Value counts for column Month

#### Month

Aug 11.62 Jul 9.92 May 8.64 Dec 8.51 Mar 8.21 Sep 8.10

Jun 7.92 Oct 7.87

Apr 7.84 Jan 7.68 Nov 7.48

Feb 6.21

Name: proportion, dtype: float64

#### Value counts for column Coupon\_Code

#### Coupon\_Code

SALE20 12.04 SALE30 11.18 SALE10 11.03 ELEC10 9.12 ELEC30 8.78 ELEC20 8.58 EXTRA10 4.38 OFF10 4.25 EXTRA20 4.18 OFF20 4.16 OFF30 3.89 EXTRA30 3.87 1.90 NE30 NE20 1.40 AI010 1.24

1.17

1.15

0.86

0.76

0.56

AI020

AI030

NE10

NJ20

NA

```
NJ10
            0.53
           0.50
HGEAR20
HGEAR10
            0.50
HGEAR30
           0.45
WEMP20
           0.39
WEMP30
           0.35
NJ30
           0.32
WEMP10
           0.31
           0.22
NCA10
NCA30
           0.21
           0.19
BT10
ACC20
           0.18
NCA20
           0.17
GC10
           0.17
BT30
           0.16
BT20
            0.16
ACC30
           0.15
ACC10
           0.11
HOU20
           0.09
H0U10
           0.08
GC20
           0.08
HOU30
            0.06
GC30
           0.05
AND30
           0.03
AND10
           0.03
AND20
           0.02
Name: proportion, dtype: float64
Value counts for column Discount_pct
Discount_pct
20.0
       33.69
10.0
        33.01
30.0
       32.54
         0.76
0.0
```

Value counts for column Gender Gender F 62.37

Name: proportion, dtype: float64

M 37.63

Name: proportion, dtype: float64

Value counts for column Location
Location
Chicago 34.73
California 30.49
New York 21.11
New Jersey 8.51
Washington DC 5.16
Name: proportion, dtype: float64

- Among the categories, Apparel (34%) and Nest-USA (24%) contributed to the most sales.
- A majority (66%) of customers preferred one particular quantity.
- Coupon usage was recorded at 34%.
- August saw the highest sales compared to other months.
- The most popular coupon was 'sale20' used at 33.69%.
- Females made up a larger portion of the customers than males.
- Chicago and California had the most sales compared to other locations.

### For marketing spend

| In [29]: | ms | head()   |               |              |
|----------|----|----------|---------------|--------------|
| Out[29]: |    | Date     | Offline_Spend | Online_Spend |
|          | 0  | 1/1/2019 | 4500          | 2424.50      |
|          | 1  | 1/2/2019 | 4500          | 3480.36      |
|          | 2  | 1/3/2019 | 4500          | 1576.38      |
|          | 3  | 1/4/2019 | 4500          | 2928.55      |
|          | 4  | 1/5/2019 | 4500          | 4055.30      |

In [30]: ms.shape

```
(365, 3)
Out[30]:
In [31]: ms.ndim
Out[31]:
In [32]: ms.size
Out[32]:
In [33]: ms.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 365 entries, 0 to 364
          Data columns (total 3 columns):
                              Non-Null Count Dtype
               Column
                              365 non-null
               Date
                                               object
               Offline Spend 365 non-null
                                               int64
               Online Spend 365 non-null
                                               float64
          dtypes: float64(1), int64(1), object(1)
          memory usage: 8.7+ KB
          ms.describe()
In [34]:
Out[34]:
                Offline_Spend Online_Spend
                   365.000000
                                365.000000
          count
                  2843.561644
                               1905.880740
          mean
                   952.292448
            std
                                808.856853
                   500.000000
                                320.250000
            min
           25%
                  2500.000000
                               1258.600000
           50%
                  3000.000000
                               1881.940000
           75%
                  3500.000000
                               2435.120000
                  5000.000000
                               4556.930000
           max
```

• Average offilne spend is 2843 and Average oline spend is 1905

Ther is no duplicate

### **Univarate analyis**

```
In [37]:
    univirate=["Product_Category","Month","Gender","Location","Discount_pct","Coupon_Code"]
    for i in univirate:
        plt.figure(figsize=(10,6))
        sns.countplot(data=final,x=i)
        plt.xticks(rotation=90)
        plt.title(f"countplot of {i}")
        ax=plt.gca()
        for bars in ax.containers:
            ax.bar_label(bars)
        plt.show()
```

### countplot of Product\_Category











### countplot of Location



### countplot of Discount\_pct



#### countplot of Coupon Code



```
In [38]: Coupon_Status_count=final['Coupon_Status'].value_counts()
    colors = ['#1f77b4', '#ff7f0e', '#2ca02c']
    plt.pie(Coupon_Status_count,autopct="%.2f%%",labels=Coupon_Status_count.index,colors=colors,explode=[0.02,.02,.02])
    plt.title("Coupon_Status_Distru")
```

#### Coupon Status Distru



- Among the categories, Apparel (34%) and Nest-USA (24%) contributed to the most sales.
- The majority (66%) of customers preferred purchasing a single item.
- August saw the highest sales compared to other months.
- Coupon usage was recorded at 34%.
- The most popular coupon was 'sale20' used at 33.69%.
- Females made up a larger portion of the customers than males.
- Chicago and California had the most sales compared to other locations.

```
In [39]: exp=final.copy()
exp.head()
```

| Out[39]: |   | CustomerID | Transaction_ID | Transaction_Date | Product_SKU    | Product_Category | Quantity | Avg_Price | Delivery_Charges | Coupon_Status | Month | Cc |
|----------|---|------------|----------------|------------------|----------------|------------------|----------|-----------|------------------|---------------|-------|----|
|          | 0 | 17850      | 16679          | 2019-01-01       | GGOENEBJ079499 | Nest-USA         | 1        | 153.71    | 6.5              | Used          | Jan   |    |
|          | 1 | 17850      | 16680          | 2019-01-01       | GGOENEBJ079499 | Nest-USA         | 1        | 153.71    | 6.5              | Used          | Jan   |    |
|          | 2 | 17850      | 16681          | 2019-01-01       | GGOEGFKQ020399 | Office           | 1        | 2.05      | 6.5              | Used          | Jan   |    |
|          | 3 | 17850      | 16682          | 2019-01-01       | GGOEGAAB010516 | Apparel          | 5        | 17.53     | 6.5              | Not Used      | Jan   |    |
|          | 4 | 17850      | 16682          | 2019-01-01       | GGOEGBJL013999 | Bags             | 1        | 16.50     | 6.5              | Used          | Jan   |    |
| 4        |   |            |                |                  |                |                  |          |           |                  |               |       | •  |

# **Bivariate Analysis**

#### **Gender vs Location**

```
In [40]: plt.figure(figsize=(10,6))
    sns.countplot(data=final,x='Location',hue='Gender')
    ax = plt.gca()
    for bars in ax.containers:
        ax.bar_label(bars)
    plt.show()
```



• Except for Washington D.C., all other locations have less male customers.

#### Month vs Gender

```
In [41]: plt.figure(figsize=(10,6))
    sns.countplot(data=final,x='Month',hue='Gender')
    ax=plt.gca()
    for bars in ax.containers:
```

ax.bar\_label(bars)
plt.show()



• Except for January, all other months have fewer males.

### Coupon\_Status vs Gender

```
In [42]: plt.figure(figsize=(10,6))
    sns.countplot(data=final,x='Coupon_Status',hue='Gender')
    ax=plt.gca()
    for bars in ax.containers:
        ax.bar_label(bars)
    plt.show()
```



• In coupon usage, females are ahead of males.

```
In [43]: plt.figure(figsize=(17,6))
    sns.countplot(data=final,x=final['Product_Category'],hue='Gender',)
    plt.xticks(rotation=90)
    ax=plt.gca()
    for bars in ax.containers:
        ax.bar_label(bars)
    plt.show()
```



• In the product category, females are predominant.

```
In [44]: monthly_transaction_counts = final.groupby('Month')['Transaction_ID'].count()
    plt.figure(figsize=(10, 6))
    monthly_transaction_counts.plot(kind='bar', color='skyblue')
    plt.title('Monthly Transaction Counts')
```

```
plt.xlabel('Month')
plt.ylabel('Transaction Count')
plt.xticks(rotation=90)
plt.grid(axis='y')
plt.tight layout()
ax=plt.gca()
for bars in ax.containers:
    ax.bar_label(bars)
plt.show()
```





• Most transactions occur in December.

### **Top 10 Most Purchase Products**

```
In [45]: cat_quatity=final.groupby('Product_SKU')['Quantity'].sum()
    top_10_cat=cat_quatity.sort_values(ascending=False).head(10)

plt.figure(figsize=(10,6))
    top_10_cat.plot(kind="bar", color='skyblue')
    plt.title("Top 10 Most Purchase Products")
    plt.xlabel("Products")
    plt.ylabel("Total Quantity of Purchased")
    ax=plt.gca()
    for bars in ax.containers:
        ax.bar_label(bars)
    plt.show()
```

Top 10 Most Purchase Products



• The product GGOEGGOA017399 has the highest number of purchases

### **Customer Acquisition & Retention**

#### Old customer vs New customer

```
exp['first transaction date'] = exp.groupby('CustomerID')['Transaction Date'].transform('min')
In [46]:
          exp['transaction month'] = exp['Transaction Date'].dt.to period('M')
          exp['first transaction month'] = exp['first transaction date'].dt.to period('M')
          \exp[\text{'Customer type'}] = \exp.\operatorname{apply}(\text{lambda x: 'New' if x['transaction month'}] == x['first transaction month'] else 'existing', axis=
          monthly revenue = exp.groupby(['Month', 'Customer type'])['Invoice Value'].sum()
          monthly revenue1 = monthly revenue.reset index()
          # Plotting
          plt.figure(figsize=(15, 8))
          sns.barplot(data=monthly revenue1, x='Month', y='Invoice Value', hue='Customer_type')
          ax=plt.gca()
          for bar in ax.patches:
              height = bar.get height()
              label = f'{int(height / 1000)}k' if not pd.isna(height) else '0k'
              ax.annotate(label,
                          (bar.get x() + bar.get width() / 2, height),
                          ha='center', va='center', size=12, xytext=(0, 8),
                          textcoords='offset points')
          plt.xlabel('Month')
          plt.ylabel('Invoice Value')
          plt.title('Monthly Invoice Value by Customer Type')
          plt.legend(title='Customer Type')
          plt.show()
```



## count by month

```
In [47]: final['Month2'] = pd.to_datetime(final['Month'], format='%b')
    customer_count_by_month = final.groupby('Month2')['CustomerID'].count()
    plt.figure(figsize=(10,6))
    customer_count_by_month.plot(kind='bar', color='skyblue')
    plt.xticks(ticks=range(0, 12), labels=['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'], rotat
    ax = plt.gca()
    for bars in ax.containers:
```

```
ax.bar_label(bars)
plt.title(' Customer Count by Month')
plt.xlabel('Month')
plt.ylabel('Number of Unique Customers')
plt.show()
```



# **Customer Acquisition by Month**

```
In [48]: s=exp.groupby("first_transaction_month")['CustomerID'].nunique()
    plt.figure(figsize=(10,6))
    s.plot(kind="bar")
    plt.xticks(ticks=range(0, 12), labels=['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'], rotat
    ax = plt.gca()
    for bars in ax.containers:
        ax.bar_label(bars)
    plt.title(' Customer Count by Month')
    plt.xlabel('Month')
    plt.ylabel('Number of Unique Customers')
    plt.show()
```

### **Customer Count by Month**



### **Customer Retention by month**

```
retention = [0]
for i in range(11):
 set1 = set(month dict[months[i]])
 set2 = set(month dict[months[i+1]])
 common items = len(set1.intersection(set2))
 retention.append(common items)
plt.figure(figsize=(10,6))
plt.bar(months, retention, color='skyblue')
plt.xlabel('Months')
plt.ylabel('Retention Count')
plt.title('Customer Retention by Month')
plt.xticks(rotation=90)
ax = plt.gca()
for bars in ax.containers:
    ax.bar_label(bars)
plt.show()
```

### Customer Retention by Month



• The retention rate is high in July, August, and September

# Revenu by month

### Monthly Invoice Value



# **Marketing Campaign Impact**

| Out[51]: |   | Date     | Offline_Spend | Online_Spend |
|----------|---|----------|---------------|--------------|
|          | 0 | 1/1/2019 | 4500          | 2424.50      |
|          | 1 | 1/2/2019 | 4500          | 3480.36      |
|          | 2 | 1/3/2019 | 4500          | 1576.38      |
|          | 3 | 1/4/2019 | 4500          | 2928.55      |
|          | 4 | 1/5/2019 | 4500          | 4055.30      |

```
In [52]: sns.boxplot(data=ms,y='Offline_Spend')
```

Out[52]: <Axes: ylabel='Offline\_Spend'>



```
In [53]: (ms['Offline_Spend'].quantile(.25),
    ms['Offline_Spend'].quantile(.75))
```

```
Out[53]: (2500.0, 3500.0)
```

• The majority of offline spending is between 2500 and 3500.

```
In [54]: sns.boxplot(data=ms,y='Online_Spend')
    ax=plt.gca()
    for i in ax.containers:
        ax.bar_label(i)
```



```
In [55]: (ms['Online_Spend'].quantile(.25),
    ms['Online_Spend'].quantile(.75))
```

Out[55]: (1258.6, 2435.12)

• Most of the online spending is between 1258 and 435.

### Hypothesis testing

#### Test 1

- Null(H0):There is no significance difference between the mean of offline spend and online spend
- Alternative (H1):There is significance difference between the mean of offline spend and online spend

```
In [56]: alpha=0.05
s,p=ttest_ind(ms['Online_Spend'],ms['Offline_Spend'])
print(f"statistic value: {s} and p-value: {p}")
if p<alpha:
    print("Reject Null, There is significance difference between the mean of offline spend and online spend")
else:
    print("Fail to reject null, There is no significance difference between the mean of offline spend and online spend")

statistic value: -14.337872271632449 and p-value: 3.011705072303923e-41
Reject Null, There is significance difference between the mean of offline spend and online spend</pre>
```

• Here wew conclude that there is significance difference between the mean of offline spend and online spend

#### Test 2

- Null(H0):There is no sginificance difference between the mean of Male revenue and female revenue
- Alternative (H1):There is sginificance difference between the mean of Male revenue and female revenue

```
print("Reject Null, There is sginificance difference between the mean of Male revenue and female revenue")
else:
    print("Fail to reject null, There is no sginificance difference between the mean of Male revenue and female revenue")
```

statistic value: 0.17201582058911902 and p-value: 0.8634257490902747

Fail to reject null, There is no sginificance difference between the mean of Male revenue and female revenue

• Here we conclude that, There is no sginificance difference between the mean of Male revenue and female revenue

### Test 3

- Null(H0):There is no significance difference across the mean of all the location
- Alternative(H1):There is significance difference across the mean of all the location

```
In [58]: Chicago =final[final["Location"]=="Chicago"]['Invoice Value']
    California =final[final["Location"]=="New York"]['Invoice Value']
    New_York =final[final["Location"]=="New York"]['Invoice Value']
    New_Jersey =final[final["Location"]=="New Jersey"]['Invoice Value']
    Washington_DC =final[final["Location"]=="Washington DC"]['Invoice Value']

alpha=0.05
    s,p=f_oneway(Chicago,California,New_York,New_Jersey,Washington_DC)
    print(f"statistic value: {s} and p-value: {p}")
    if p<alpha:
        print("Reject Null,There is significance difference across the mean of all the location ")
    else:
        print("Fail to reject null,There is no significance difference across the mean of all the location ")</pre>
```

statistic value: 2.701953854090806 and p-value: 0.02882189631217692 Reject Null, There is significance difference across the mean of all the location

• Therefore we conclue that There is significance difference across the mean of all the location

```
In [59]: final.head()
```

| Out[59]: |   | CustomerID | Transaction_ID | Transaction_Date | Product_SKU    | Product_Category | Quantity | Avg_Price | Delivery_Charges | Coupon_Status | Month | Cc |
|----------|---|------------|----------------|------------------|----------------|------------------|----------|-----------|------------------|---------------|-------|----|
|          | 0 | 17850      | 16679          | 2019-01-01       | GGOENEBJ079499 | Nest-USA         | 1        | 153.71    | 6.5              | Used          | Jan   |    |
|          | 1 | 17850      | 16680          | 2019-01-01       | GGOENEBJ079499 | Nest-USA         | 1        | 153.71    | 6.5              | Used          | Jan   |    |
|          | 2 | 17850      | 16681          | 2019-01-01       | GGOEGFKQ020399 | Office           | 1        | 2.05      | 6.5              | Used          | Jan   |    |
|          | 3 | 17850      | 16682          | 2019-01-01       | GGOEGAAB010516 | Apparel          | 5        | 17.53     | 6.5              | Not Used      | Jan   |    |
|          | 4 | 17850      | 16682          | 2019-01-01       | GGOEGBJL013999 | Bags             | 1        | 16.50     | 6.5              | Used          | Jan   |    |
| 4        |   |            |                |                  |                |                  |          |           |                  |               |       | •  |

### Test 4

```
In [61]: Clicked =final[final["Coupon_Status"]=="Clicked"]['Invoice Value']
    Used =final[final["Coupon_Status"]=="Not Used"]['Invoice Value']
    Not_Used =final[final["Coupon_Status"]=="Not Used"]['Invoice Value']

alpha=0.05
s,p=kruskal(Clicked,Used,Not_Used)
print(f"statistic value: {s} and p-value: {p}")
if p<alpha:
    print("Reject Null,There is significance difference across the mean of various coupon status")</pre>
```

```
else:
    print("Fail to reject null, there is no significance difference across the mean of various coupon status")

statistic value: 1.709922299041085 and p-value: 0.4252997138591098

Fail to reject null, there is no significance difference across the mean of various coupon status
```

• Here we conclude that, there is no significance difference across the mean of various coupon status

# **RFM Analysis**

| In [62]: | fi       | nal.head()  |                             |                   |                              |                                                                              |          |           |                  |               |        |     |
|----------|----------|-------------|-----------------------------|-------------------|------------------------------|------------------------------------------------------------------------------|----------|-----------|------------------|---------------|--------|-----|
| Out[62]: |          | CustomerID  | Transaction_ID              | Transaction_Date  | Product_SKU                  | Product_Category                                                             | Quantity | Avg_Price | Delivery_Charges | Coupon_Status | Month  | Cc  |
|          | 0        | 17850       | 16679                       | 2019-01-01        | GGOENEBJ079499               | Nest-USA                                                                     | 1        | 153.71    | 6.5              | Used          | Jan    |     |
|          | 1        | 17850       | 16680                       | 2019-01-01        | GGOENEBJ079499               | Nest-USA                                                                     | 1        | 153.71    | 6.5              | Used          | Jan    |     |
|          | 2        | 17850       | 16681                       | 2019-01-01        | GGOEGFKQ020399               | Office                                                                       | 1        | 2.05      | 6.5              | Used          | Jan    |     |
|          | 3        | 17850       | 16682                       | 2019-01-01        | GGOEGAAB010516               | Apparel                                                                      | 5        | 17.53     | 6.5              | Not Used      | Jan    |     |
|          | 4        | 17850       | 16682                       | 2019-01-01        | GGOEGBJL013999               | Bags                                                                         | 1        | 16.50     | 6.5              | Used          | Jan    |     |
| 4        |          |             |                             |                   |                              |                                                                              |          |           |                  |               |        | •   |
| In [63]: | se<br>se | gmentation= | rename(column reset_index(i | s = {'Transaction | 'Transaction<br>'Invoice Val | n_Date': <b>lambda</b> x<br>_ID':'count',<br>ue':'sum'})<br>y', 'Transaction |          |           |                  | :'Monetory'}, | inplac | e = |
|          | bi       | •           |                             | 00]               |                              |                                                                              |          |           |                  |               |        |     |

```
segmentation['recency bin'] = pd.cut(segmentation['Recency'], bins = bins, labels = labels, right=False)
# for Frequency bin
bins = [0,15,35,60,85,900]
labels = [5,4,3,2,1]
segmentation['frequency bin'] = pd.cut(segmentation['Frequency'], bins = bins, labels = labels, right=False)
# for Monetry Bin
bins = [0,2000,3500,5000,7000,90000]
labels = [5,4,3,2,1]
segmentation['monetory bin'] = pd.cut(segmentation['Monetory'], bins = bins, labels = labels,right=False)
#Converitng into int
segmentation['recency bin'] = segmentation['recency bin'].astype('int')
segmentation['frequency bin'] = segmentation['frequency bin'].astype('int')
segmentation['monetory bin'] = segmentation['monetory bin'].astype('int')
segmentation['RFM'] = segmentation['recency bin'] + segmentation['frequency bin'] + segmentation['monetory bin']
def rfm analysis(rfm):
   if rfm >= 11:
        return 'Premium'
    elif rfm > 5 and rfm < 11:</pre>
        return 'Gold'
    else:
        return 'Silver'
```

```
In [64]: segmentation['Customer_segmentation'] = segmentation['RFM'].apply(rfm_analysis)
segmentation
```

| Out[64]: |      | CustomerID | Recency | Frequency | Monetory | recency_bin | frequency_bin | monetory_bin | RFM | Customer_segmentation |
|----------|------|------------|---------|-----------|----------|-------------|---------------|--------------|-----|-----------------------|
|          | 0    | 12346      | 107     | 2         | 174.98   | 2           | 5             | 5            | 12  | Premium               |
|          | 1    | 12347      | 59      | 60        | 12090.30 | 2           | 2             | 1            | 5   | Silver                |
|          | 2    | 12348      | 73      | 23        | 1501.90  | 2           | 4             | 5            | 11  | Premium               |
|          | 3    | 12350      | 17      | 17        | 1183.72  | 1           | 4             | 5            | 10  | Gold                  |
|          | 4    | 12356      | 107     | 36        | 1753.42  | 2           | 3             | 5            | 10  | Gold                  |
|          |      |            |         |           |          |             |               |              |     |                       |
|          | 1463 | 18259      | 270     | 7         | 816.43   | 4           | 5             | 5            | 14  | Premium               |
|          | 1464 | 18260      | 87      | 40        | 2647.24  | 2           | 3             | 4            | 9   | Gold                  |
|          | 1465 | 18269      | 194     | 8         | 155.66   | 3           | 5             | 5            | 13  | Premium               |
|          | 1466 | 18277      | 69      | 1         | 301.02   | 2           | 5             | 5            | 12  | Premium               |
|          | 1467 | 18283      | 82      | 102       | 6970.80  | 2           | 1             | 2            | 5   | Silver                |

1468 rows × 9 columns

```
In [65]: df=segmentation[['CustomerID','Customer_segmentation']]
    final2=pd.merge(final,df,on='CustomerID',how='left')
    final2.head()
```

| Out[65]: |   | CustomerID | Transaction_ID | Transaction_Date | Product_SKU    | Product_Category | Quantity | Avg_Price | Delivery_Charges | Coupon_Status | Month | Cc |
|----------|---|------------|----------------|------------------|----------------|------------------|----------|-----------|------------------|---------------|-------|----|
|          | 0 | 17850      | 16679          | 2019-01-01       | GGOENEBJ079499 | Nest-USA         | 1        | 153.71    | 6.5              | Used          | Jan   |    |
|          | 1 | 17850      | 16680          | 2019-01-01       | GGOENEBJ079499 | Nest-USA         | 1        | 153.71    | 6.5              | Used          | Jan   |    |
|          | 2 | 17850      | 16681          | 2019-01-01       | GGOEGFKQ020399 | Office           | 1        | 2.05      | 6.5              | Used          | Jan   |    |
|          | 3 | 17850      | 16682          | 2019-01-01       | GGOEGAAB010516 | Apparel          | 5        | 17.53     | 6.5              | Not Used      | Jan   |    |
|          | 4 | 17850      | 16682          | 2019-01-01       | GGOEGBJL013999 | Bags             | 1        | 16.50     | 6.5              | Used          | Jan   |    |
| 4        |   |            |                |                  |                |                  |          |           |                  |               |       | •  |

## **Discount Analysis**

### Impact of Discount on Average Order Value

```
In [66]: aov_with_discount_30 = final[final['Discount_pct'] == 30.0]['Invoice Value'].mean()
    aov_with_discount_20 = final[final['Discount_pct'] == 20.0]['Invoice Value'].mean()
    aov_with_discount_10 = final[final['Discount_pct'] == 10.0]['Invoice Value'].mean()
    aov_with_discount_0 = final[final['Discount_pct'] == 0.0]['Invoice Value'].mean()

# Printing the results
    print(f"AOV using 30% discount is {round(aov_with_discount_30,2)}")
    print(f"AOV using 20% discount is {round(aov_with_discount_20,2)}")
    print(f"AOV without discount is {round(aov_with_discount_10,2)}")

AOV using 30% discount is 79.98
    AOV using 30% discount is 85.76
    AOV using 10% discount is 101.36
    AOV without discount is 92.37
```

### Discount impacting on revenue

```
gold with discount 30 = final2[(final2['Discount pct'] == 30.0) & (final2['Customer segmentation'] == 'Gold')]['CustomerID'].count
In [67]:
          gold with discount 20 = final2[(final2['Discount pct'] == 20.0) & (final2['Customer segmentation'] == 'Gold')]['CustomerID'].cour
          gold with discount 10 = final2[(final2['Discount pct'] == 10.0) & (final2['Customer segmentation'] == 'Gold')]['CustomerID'].cour
         gold with discount 0 = final2['final2['Discount pct'] == 0.0) & (final2['Customer segmentation'] == 'Gold')]['CustomerID'].count
          print(f"Gold segment customer with 30% discount: {round(gold with discount 30, 2)}")
         print(f"Gold segment customer with 20% discount: {round(gold with discount 20, 2)}")
          print(f"Gold segment customer with 10% discount: {round(gold with discount 10, 2)}")
          print(f"Gold segment customer with 0% discount: {round(gold with discount 0, 2)}")
         Gold segment customer with 30% discount: 32.95
         Gold segment customer with 20% discount: 33.29
         Gold segment customer with 10% discount: 32.98
         Gold segment customer with 0% discount: 0.78
         silver with discount 30 = final2['final2['Discount pct'] == 30.0) & (final2['Customer segmentation'] == 'Silver')]['CustomerID']
         silver with discount 20 = final2['final2['Discount pct'] == 20.0) & (final2['Customer segmentation'] == 'Silver')]['CustomerID']
         silver with discount 10 = final2['final2['Discount pct'] == 10.0) & (final2['Customer segmentation'] == 'Silver')]['CustomerID']
         silver with discount 0 = final2['Discount pct'] == 0.0) & (final2['Customer segmentation'] == 'Silver')]['CustomerID'].co
          print(f"Silver segment with 30% discount: {round(silver with discount 30, 2)}")
          print(f"Silver segment with 20% discount: {round(silver with discount 20, 2)}")
          print(f"Silver segment with 10% discount: {round(silver with discount 10, 2)}")
          print(f"Silver segment with 0% discount: {round(silver with discount 0, 2)}")
         Silver segment with 30% discount: 31.68
         Silver segment with 20% discount: 35.12
         Silver segment with 10% discount: 32.47
         Silver segment with 0% discount: 0.73
          premium with discount 30 = final2[(final2['Discount pct'] == 30.0) & (final2['Customer segmentation'] == 'Premium')]['CustomerID'
In [69]:
         premium with discount 20 = final2['final2['Discount pct'] == 20.0) & (final2['Customer segmentation'] == 'Premium')]['CustomerID'
         premium with discount 10 = final2['final2['Discount pct'] == 10.0) & (final2['Customer segmentation'] == 'Premium')]['CustomerID'
          premium with discount 0 = final2[(final2['Discount pct'] == 0.0) & (final2['Customer segmentation'] == 'Premium')]['CustomerID'].
          print(f"Premium segment with 30% discount: {round(premium with discount 30, 2)}%")
          print(f"Premium segment with 20% discount: {round(premium with discount 20, 2)}%")
          print(f"Premium segment with 10% discount: {round(premium with discount 10, 2)}%")
          print(f"Premium segment with 0% discount: {round(premium with discount 0, 2)}%")
```

Premium segment with 30% discount: 33.22%
Premium segment with 20% discount: 32.05%
Premium segment with 10% discount: 33.97%
Premium segment with 0% discount: 0.75%

In [70]: final.head()

|         | 7         |  |
|---------|-----------|--|
| ( ) i i | 1 7 ( A 1 |  |
| UUU     | 1 / (/) 1 |  |
|         | L , ~ 1   |  |

| ]: |   | CustomerID | Transaction_ID | Transaction_Date | Product_SKU    | Product_Category | Quantity | Avg_Price | Delivery_Charges | Coupon_Status | Month | Cc       |
|----|---|------------|----------------|------------------|----------------|------------------|----------|-----------|------------------|---------------|-------|----------|
|    | 0 | 17850      | 16679          | 2019-01-01       | GGOENEBJ079499 | Nest-USA         | 1        | 153.71    | 6.5              | Used          | Jan   |          |
|    | 1 | 17850      | 16680          | 2019-01-01       | GGOENEBJ079499 | Nest-USA         | 1        | 153.71    | 6.5              | Used          | Jan   |          |
|    | 2 | 17850      | 16681          | 2019-01-01       | GGOEGFKQ020399 | Office           | 1        | 2.05      | 6.5              | Used          | Jan   |          |
|    | 3 | 17850      | 16682          | 2019-01-01       | GGOEGAAB010516 | Apparel          | 5        | 17.53     | 6.5              | Not Used      | Jan   |          |
|    | 4 | 17850      | 16682          | 2019-01-01       | GGOEGBJL013999 | Bags             | 1        | 16.50     | 6.5              | Used          | Jan   |          |
|    |   |            |                |                  |                |                  |          |           |                  |               |       | <b>•</b> |

# **Seasonality & Trends**

```
In [71]: # month wise highest Revenue
month=final2.groupby('Month')['Invoice Value'].sum()
print(month)
month.plot()
plt.show()
```

```
Apr
      447998.27
Aug
      418158.14
Dec
      439531.46
Feb
      327896.25
      463881.87
Jan
Jul
      423981.63
Jun
      289831.04
Mar
      336805.27
May
      318556.12
      475901.17
Nov
      450838.47
0ct
Sep
      321128.14
Name: Invoice Value, dtype: float64
475000
 450000
425000
 400000 -
375000
350000
325000
300000
                                                                  Oct
          Apr
                     Dec
                                Jan
                                           Jun
                                                      May
                                        Month
```

Month

```
top weeks=final2.groupby("week")['Invoice Value'].sum()
         top weeks.nlargest(5)
         week
Out[72]:
         2019-47
                    148842.57
         2019-15
                    129306.23
         2019-50
                   126055.23
         2019-28
                   123184.03
         2019-30
                   120746.53
         Name: Invoice Value, dtype: float64
In [73]: # Day wise Revenue
         final2['Day']=pd.to_datetime(final2['Transaction_Date']).dt.date
         top weeks=final2.groupby("Day")['Invoice Value'].sum()
         top weeks.nlargest(5)
         Day
Out[73]:
         2019-04-05
                       56753.03
         2019-04-18
                       50158.96
         2019-11-27
                      49267.73
         2019-07-18
                       39867.30
                       37138.37
         2019-08-02
         Name: Invoice Value, dtype: float64
In [74]: final2.head()
```

| Out[74]: |      | CustomerID    | Transaction_ID | Transaction_Date | Product_SKU    | Product_Category | Quantity | Avg_Price | Delivery_Charges | Coupon_Status | Month | •••      |
|----------|------|---------------|----------------|------------------|----------------|------------------|----------|-----------|------------------|---------------|-------|----------|
|          | 0    | 17850         | 16679          | 2019-01-01       | GGOENEBJ079499 | Nest-USA         | 1        | 153.71    | 6.5              | Used          | Jan   |          |
|          | 1    | 17850         | 16680          | 2019-01-01       | GGOENEBJ079499 | Nest-USA         | 1        | 153.71    | 6.5              | Used          | Jan   |          |
|          | 2    | 17850         | 16681          | 2019-01-01       | GGOEGFKQ020399 | Office           | 1        | 2.05      | 6.5              | Used          | Jan   |          |
|          | 3    | 17850         | 16682          | 2019-01-01       | GGOEGAAB010516 | Apparel          | 5        | 17.53     | 6.5              | Not Used      | Jan   |          |
|          | 4    | 17850         | 16682          | 2019-01-01       | GGOEGBJL013999 | Bags             | 1        | 16.50     | 6.5              | Used          | Jan   |          |
|          | 5 rc | ows × 21 colu | umns           |                  |                |                  |          |           |                  |               |       |          |
| 4        |      |               |                |                  |                |                  |          |           |                  |               |       | <b>•</b> |

# key performance indicators (KPIs)

Revenue by Product Category, month, week, day

```
In [75]: print('Top 5 Product_Category by revenue')
    revenue_cat=final2.groupby('Product_Category')['Invoice Value'].sum()
    print(revenue_cat.nlargest(5))
    print()
    print('Top 5 Month by revenue')
    revenue_month=final2.groupby('Month')['Invoice Value'].sum()
    print(revenue_month.nlargest(5))
    print()
    print("________")
    print()
    print('Top 5 Week by revenue')
    revenue_week=final2.groupby('week')['Invoice Value'].sum()
```

```
print(revenue_week.nlargest(5))
print()
print("_______")
print()

print('Top 5 Day by revenue')
revenue_Day=final2.groupby('Day')['Invoice Value'].sum()
print(revenue_Day.nlargest(5))
print()
print("______")
print()
```

## Top 5 Product\_Category by revenue Product Category

Nest-USA2351314.07Apparel735448.41Nest439979.13Office343998.29Drinkware240267.79

Name: Invoice Value, dtype: float64

```
Top 5 Month by revenue
```

Month

Nov 475901.17 Jan 463881.87 Oct 450838.47 Apr 447998.27 Dec 439531.46

Name: Invoice Value, dtype: float64

#### Top 5 Week by revenue

week

2019-47 148842.57 2019-15 129306.23 2019-50 126055.23 2019-28 123184.03 2019-30 120746.53

Name: Invoice Value, dtype: float64

#### Top 5 Day by revenue

Day

2019-04-05 56753.03 2019-04-18 50158.96 2019-11-27 49267.73 2019-07-18 39867.30 2019-08-02 37138.37

Name: Invoice Value, dtype: float64

## Number of orders by Product Category, month, week, day

```
In [76]:
       print('Top 5 Product Category by No of Orders')
       no of Orders cat=final2.groupby('Product Category')['Transaction ID'].count()
       print(no of Orders cat.nlargest(5))
       print()
       print("
       print('Top 5 Month by No of Orders')
       no of Orders month=final2.groupby('Month')['Transaction ID'].count()
       print(no of Orders month.nlargest(5))
       print()
       print(" ")
       print()
       print('Top 5 Week by No of Orders')
       no of Orders week=final2.groupby('week')['Transaction ID'].count()
       print(no of Orders week.nlargest(5))
       print()
       print("_____
       print()
       print('Top 5 Day by No of Orders')
       No of Orders Day=final2.groupby('Day')['Transaction ID'].count()
       print(No of Orders Day.nlargest(5))
       print()
       print("
       print()
```

```
Top 5 Product Category by No of Orders
Product Category
Apparel
            18126
Nest-USA
            14013
Office
             6513
Drinkware
             3483
Lifestyle
             3092
Name: Transaction ID, dtype: int64
Top 5 Month by No of Orders
Month
Aug
       6150
       5251
Jul
May
       4572
Dec
       4502
       4346
Mar
Name: Transaction ID, dtype: int64
Top 5 Week by No of Orders
week
2019-30
           1515
2019-28
          1413
2019-32
          1392
2019-31
          1358
2019-34
          1343
Name: Transaction ID, dtype: int64
Top 5 Day by No of Orders
Day
2019-11-27
              335
2019-07-13
             311
2019-08-16
              298
2019-08-02
             292
2019-07-31
              291
Name: Transaction ID, dtype: int64
```

\_\_\_\_\_

## Aaverage order value by Product Category, month, week, day

```
print('Top 5 Product Category by AOV')
In [77]:
        avg order value by category=revenue cat/no of Orders cat
        print(round(avg order value by category,2).nlargest(5))
        print()
        print("
        print('Top 5 Month by AOV')
        avg order value by month=revenue month/no of Orders month
        print(round(avg order value by month,2).nlargest(5))
        print()
        print("
        print()
        print('Top 5 Week by AOV')
        avg order value by week=revenue week/no of Orders week
        print(round(avg order value by week,2).nlargest(5))
        print()
        print("_____
        print()
        print('Top 5 Day by AOV')
        avg order value by day=revenue Day/No of Orders Day
        print(round(avg order_value_by_day,2).nlargest(5))
        print()
        print("
        print()
```

```
Top 5 Product Category by AOV
Product Category
Nest-Canada
                       206.77
Nest
                       200.17
Nest-USA
                       167.80
Notebooks & Journals
                       146.02
Google
                       125.42
dtype: float64
Top 5 Month by AOV
Month
Nov
       120.15
Jan
      114.17
      108.27
0ct
      107.95
Apr
Feb
       99.85
dtype: float64
Top 5 Week by AOV
week
2019-47
          130.45
2019-13
          124.45
2019-46
          123.50
2019-15
          121.30
2019-41
          119.90
dtype: float64
Top 5 Day by AOV
Day
2019-04-05
             298.70
2019-04-18
             192.18
2019-10-16
             175.28
2019-07-01
             174.51
2019-01-28
             166.39
dtype: float64
```

\_\_\_\_\_

### Marketing Spend & Revenue

```
In [78]: ms['Date'] = pd.to_datetime(ms['Date'], format='%m/%d/%Y')
    ms['Month'] = pd.to_datetime(ms['Date']).dt.strftime("%b")
    ms['Total_spend'] = ms['Offline_Spend'] + ms['Online_Spend']

x = ms.groupby('Month')['Total_spend'].sum().reset_index()
y = final2.groupby('Month')['Invoice Value'].sum().reset_index()
z = final2.groupby('Month')['Discount_pct'].mean().reset_index()
deli_charg = final2.groupby('Month')['Delivery_Charges'].sum().reset_index()

result = x.merge(y, on='Month', how='inner')
result = result.merge(z, on='Month', how='inner')
# result = result.merge(tax, on='Month', how='inner')
result = result.merge(deli_charg, on='Month', how='inner')
market_spend_corr=result.corr(numeric_only=True)
market_spend_corr
```

#### Out[78]:

#### Total\_spend Invoice Value Discount\_pct Delivery\_Charges

| Total_spend      | 1.000000  | 0.614748  | 0.044452  | -0.325481 |
|------------------|-----------|-----------|-----------|-----------|
| Invoice Value    | 0.614748  | 1.000000  | -0.619476 | 0.024394  |
| Discount_pct     | 0.044452  | -0.619476 | 1.000000  | -0.206736 |
| Delivery_Charges | -0.325481 | 0.024394  | -0.206736 | 1.000000  |

```
In [79]: plt.figure(figsize=(10, 6))
sns.heatmap(market_spend_corr, annot=True, cmap='coolwarm', fmt=".2f", vmin=-1, vmax=1)
plt.title('Correlation Heatmap')
plt.show()
```



In [ ]:

## Product & Customer Relationships (Market basket analysis)

In [81]: plt.figure(figsize=(15,6))
 sns.barplot(x=x.index,y=x.values)
 plt.show()



### By Apriori Algorithum

```
In [82]: from mlxtend.frequent_patterns import apriori
    from mlxtend.frequent_patterns import association_rules

In [83]: Basket = final2.groupby(['Transaction_ID', 'Product_Category'])['Quantity'].sum().unstack().fillna(0)

In [84]: Basket
Basket
```

| 84]: | Product_Category | Accessories | Android | Apparel | Backpacks | Bags | Bottles | Drinkware | Fun | Gift<br>Cards | Google | Headgear | Housewares | Lifestyle | More<br>Bags | N |
|------|------------------|-------------|---------|---------|-----------|------|---------|-----------|-----|---------------|--------|----------|------------|-----------|--------------|---|
|      | Transaction_ID   |             |         |         |           |      |         |           |     |               |        |          |            |           |              |   |
|      | 16679            | 0.0         | 0.0     | 0.0     | 0.0       | 0.0  | 0.0     | 0.0       | 0.0 | 0.0           | 0.0    | 0.0      | 0.0        | 0.0       | 0.0          |   |
|      | 16680            | 0.0         | 0.0     | 0.0     | 0.0       | 0.0  | 0.0     | 0.0       | 0.0 | 0.0           | 0.0    | 0.0      | 0.0        | 0.0       | 0.0          |   |
|      | 16681            | 0.0         | 0.0     | 0.0     | 0.0       | 0.0  | 0.0     | 0.0       | 0.0 | 0.0           | 0.0    | 0.0      | 0.0        | 0.0       | 0.0          |   |
|      | 16682            | 0.0         | 0.0     | 10.0    | 0.0       | 16.0 | 0.0     | 35.0      | 0.0 | 0.0           | 0.0    | 0.0      | 0.0        | 0.0       | 0.0          |   |
|      | 16684            | 0.0         | 0.0     | 0.0     | 0.0       | 0.0  | 0.0     | 0.0       | 0.0 | 0.0           | 0.0    | 0.0      | 0.0        | 0.0       | 0.0          |   |
|      | •••              |             |         |         |           |      |         |           |     |               |        |          |            |           |              |   |
|      | 48493            | 0.0         | 0.0     | 0.0     | 0.0       | 0.0  | 0.0     | 0.0       | 0.0 | 0.0           | 0.0    | 0.0      | 0.0        | 0.0       | 0.0          |   |
|      | 48494            | 0.0         | 0.0     | 1.0     | 0.0       | 0.0  | 0.0     | 0.0       | 0.0 | 0.0           | 0.0    | 0.0      | 0.0        | 0.0       | 0.0          |   |
|      | 48495            | 0.0         | 0.0     | 0.0     | 0.0       | 0.0  | 0.0     | 0.0       | 0.0 | 0.0           | 0.0    | 0.0      | 0.0        | 0.0       | 0.0          |   |
|      | 48496            | 0.0         | 0.0     | 0.0     | 0.0       | 0.0  | 0.0     | 0.0       | 0.0 | 0.0           | 0.0    | 0.0      | 0.0        | 0.0       | 0.0          |   |
|      | 48497            | 0.0         | 0.0     | 0.0     | 0.0       | 0.0  | 0.0     | 0.0       | 0.0 | 0.0           | 0.0    | 0.0      | 0.0        | 0.0       | 0.0          |   |

25061 rows × 20 columns

```
In [85]: # Encoding
```

In [85]: # Encoding
Basket[Basket > 0] = 1
Basket

| Out[85]: | Product_Category | Accessories | Android | Apparel | Backpacks | Bags | Bottles | Drinkware | Fun | Gift<br>Cards | Google | Headgear | Housewares | Lifestyle | More<br>Bags | N |
|----------|------------------|-------------|---------|---------|-----------|------|---------|-----------|-----|---------------|--------|----------|------------|-----------|--------------|---|
|          | Transaction_ID   |             |         |         |           |      |         |           |     |               |        |          |            |           |              |   |
|          | 16679            | 0.0         | 0.0     | 0.0     | 0.0       | 0.0  | 0.0     | 0.0       | 0.0 | 0.0           | 0.0    | 0.0      | 0.0        | 0.0       | 0.0          |   |
|          | 16680            | 0.0         | 0.0     | 0.0     | 0.0       | 0.0  | 0.0     | 0.0       | 0.0 | 0.0           | 0.0    | 0.0      | 0.0        | 0.0       | 0.0          |   |
|          | 16681            | 0.0         | 0.0     | 0.0     | 0.0       | 0.0  | 0.0     | 0.0       | 0.0 | 0.0           | 0.0    | 0.0      | 0.0        | 0.0       | 0.0          |   |
|          | 16682            | 0.0         | 0.0     | 1.0     | 0.0       | 1.0  | 0.0     | 1.0       | 0.0 | 0.0           | 0.0    | 0.0      | 0.0        | 0.0       | 0.0          |   |
|          | 16684            | 0.0         | 0.0     | 0.0     | 0.0       | 0.0  | 0.0     | 0.0       | 0.0 | 0.0           | 0.0    | 0.0      | 0.0        | 0.0       | 0.0          |   |
|          | •••              |             |         |         |           |      |         |           |     |               |        |          |            |           |              |   |
|          | 48493            | 0.0         | 0.0     | 0.0     | 0.0       | 0.0  | 0.0     | 0.0       | 0.0 | 0.0           | 0.0    | 0.0      | 0.0        | 0.0       | 0.0          |   |
|          | 48494            | 0.0         | 0.0     | 1.0     | 0.0       | 0.0  | 0.0     | 0.0       | 0.0 | 0.0           | 0.0    | 0.0      | 0.0        | 0.0       | 0.0          |   |
|          | 48495            | 0.0         | 0.0     | 0.0     | 0.0       | 0.0  | 0.0     | 0.0       | 0.0 | 0.0           | 0.0    | 0.0      | 0.0        | 0.0       | 0.0          |   |
|          | 48496            | 0.0         | 0.0     | 0.0     | 0.0       | 0.0  | 0.0     | 0.0       | 0.0 | 0.0           | 0.0    | 0.0      | 0.0        | 0.0       | 0.0          |   |
|          | 48497            | 0.0         | 0.0     | 0.0     | 0.0       | 0.0  | 0.0     | 0.0       | 0.0 | 0.0           | 0.0    | 0.0      | 0.0        | 0.0       | 0.0          |   |

25061 rows × 20 columns

```
In [86]: frequent_item=apriori(Basket,min_support=0.03,use_colnames=True)
    rules=association_rules(frequent_item,metric='lift',min_threshold=.05)
```

C:\Users\CHETAN\AppData\Roaming\Python\Python311\site-packages\mlxtend\frequent\_patterns\fpcommon.py:109: DeprecationWarning: Da taFrames with non-bool types result in worse computationalperformance and their support might be discontinued in the future.Plea se use a DataFrame with bool type warnings.warn(

In [87]: rules.head()

| Out[87]: |    | antecedents | consequents  | antecedent support | consequent support | support  | confidence | lift     | leverage | conviction | zhangs_metric |
|----------|----|-------------|--------------|--------------------|--------------------|----------|------------|----------|----------|------------|---------------|
|          | 0  | (Apparel)   | (Drinkware)  | 0.324369           | 0.100714           | 0.045010 | 0.138762   | 1.377784 | 0.012342 | 1.044179   | 0.405838      |
|          | 1  | (Drinkware) | (Apparel)    | 0.100714           | 0.324369           | 0.045010 | 0.446910   | 1.377784 | 0.012342 | 1.221557   | 0.304905      |
|          | 2  | (Apparel)   | (Lifestyle)  | 0.324369           | 0.068313           | 0.033079 | 0.101981   | 1.492836 | 0.010921 | 1.037491   | 0.488630      |
|          | 3  | (Lifestyle) | (Apparel)    | 0.068313           | 0.324369           | 0.033079 | 0.484229   | 1.492836 | 0.010921 | 1.309945   | 0.354340      |
|          | 4  | (Apparel)   | (Office)     | 0.324369           | 0.140697           | 0.062128 | 0.191536   | 1.361343 | 0.016491 | 1.062884   | 0.392864      |
|          |    |             |              |                    |                    |          |            |          |          |            |               |
| In [88]: | fr | equent_item | ['itemsets'] |                    |                    |          |            |          |          |            |               |
| Out[88]: | 0  |             | (Apparel     | 1)                 |                    |          |            |          |          |            |               |

```
Out[88]:
         1
                              (Bags)
                         (Drinkware)
          3
                         (Lifestyle)
                              (Nest)
                          (Nest-USA)
          5
          6
                            (Office)
          7
                (Apparel, Drinkware)
          8
                (Apparel, Lifestyle)
          9
                   (Apparel, Office)
          10
                 (Office, Drinkware)
          11
                 (Office, Lifestyle)
         Name: itemsets, dtype: object
```

#### Customers are buying the following product categories together:

- Apparel and Drinkware
- Lifestyle and Apparel
- Apparel and Office
- Office and Drinkware
- Lifestyle and Office

# **Customer Lifetime Value (CLTV):**

```
In [90]: max_date=final2['Transaction_Date'].max()
    df=final2.groupby('CustomerID').agg(
```

```
{'Transaction_Date':lambda x:(max_date-x.min()).days,
    'Transaction_ID':lambda x: len(x),
    'Quantity': lambda x: x.sum(),
    'Invoice Value': lambda x: x.sum()})
df.head()
```

#### Out [90]: Transaction\_Date Transaction\_ID Quantity Invoice Value

#### CustomerID

| 12346 | 107 | 2  | 3   | 174.98   |
|-------|-----|----|-----|----------|
| 12347 | 282 | 60 | 342 | 12090.30 |
| 12348 | 192 | 23 | 209 | 1501.90  |
| 12350 | 17  | 17 | 21  | 1183.72  |
| 12356 | 107 | 36 | 56  | 1753.42  |

```
In [91]: df.columns=['age','No_of_tran','Quantity','total_revenue']
    df=df[df['Quantity']>0]
    df.head()
```

#### Out[91]: age No\_of\_tran Quantity total\_revenue

#### CustomerID

| 12346 | 107 | 2  | 3   | 174.98   |
|-------|-----|----|-----|----------|
| 12347 | 282 | 60 | 342 | 12090.30 |
| 12348 | 192 | 23 | 209 | 1501.90  |
| 12350 | 17  | 17 | 21  | 1183.72  |
| 12356 | 107 | 36 | 56  | 1753.42  |

```
age No of tran Quantity total revenue
Out[92]:
                                                               AVO
          CustomerID
              12346 107
                                 2
                                          3
                                                   174.98
                                                          87.490000
              12347 282
                                60
                                        342
                                                 12090.30 201.505000
              12348 192
                                23
                                        209
                                                  1501.90
                                                          65.300000
                    17
              12350
                                         21
                                                  1183.72
                                                          69.630588
                                 17
                                         56
              12356 107
                                 36
                                                  1753.42 48.706111
          pruchase fre=sum(df['No of tran'])/len(df)
In [93]:
          pruchase_fre
          36.05177111716621
Out[93]:
In [94]:
          #repeat rate
          repeat_rate = round(df[df['No_of_tran'] > 1].shape[0]/df.shape[0],2)
          repeat rate
          0.96
Out[94]:
          # chrun rate
In [95]:
          churn rate = 1-repeat rate
          churn rate
          0.040000000000000036
Out[95]:
In [96]:
          df['Profit Margin'] = df['total revenue']*0.1
          df.head()
```

```
Out[96]: age No_of_tran Quantity total_revenue AVO Profit_Margin
         CustomerID
              12346 107
                                 2
                                         3
                                                  174.98
                                                         87.490000
                                                                         17.498
              12347 282
                                60
                                        342
                                                12090.30 201.505000
                                                                       1209.030
              12348 192
                                23
                                        209
                                                 1501.90 65.300000
                                                                        150.190
                    17
              12350
                                17
                                                 1183.72 69.630588
                                                                        118.372
                                         21
              12356 107
                                36
                                         56
                                                 1753.42 48.706111
                                                                        175.342
         df['CLTV'] = round(((df['AVO']*pruchase fre)/churn rate)*0.10,2)
In [97]:
          df.head()
Out[97]:
                    age No_of_tran Quantity total_revenue AVO Profit_Margin
                                                                                  CLTV
         CustomerID
              12346 107
                                 2
                                         3
                                                  174.98 87.490000
                                                                         17.498
                                                                                7885.42
              12347 282
                                        342
                                                12090.30 201.505000
                                                                       1209.030 18161.53
              12348 192
                                23
                                        209
                                                 1501.90 65.300000
                                                                                5885.45
                                                                        150.190
              12350 17
                                17
                                         21
                                                 1183.72 69.630588
                                                                        118.372
                                                                                6275.77
                                36
              12356 107
                                         56
                                                 1753.42 48.706111
                                                                        175.342 4389.85
In [98]:
         cltv=df.sort values('CLTV', ascending = False).head(10)
```

In [99]:

cltv

| Out[99]: |            | age | No_of_tran | Quantity | total_revenue | AVO        | Profit_Margin | CLTV     |
|----------|------------|-----|------------|----------|---------------|------------|---------------|----------|
|          | CustomerID |     |            |          |               |            |               |          |
|          | 13929      | 109 | 3          | 157      | 2213.20       | 737.733333 | 221.320       | 66491.48 |
|          | 15070      | 346 | 1          | 103      | 541.15        | 541.150000 | 54.115        | 48773.54 |
|          | 13531      | 268 | 15         | 199      | 6995.54       | 466.369333 | 699.554       | 42033.60 |
|          | 15845      | 152 | 13         | 373      | 5155.75       | 396.596154 | 515.575       | 35744.98 |
|          | 15351      | 323 | 53         | 2160     | 19496.50      | 367.858491 | 1949.650      | 33154.88 |
|          | 16553      | 270 | 18         | 265      | 6307.05       | 350.391667 | 630.705       | 31580.60 |
|          | 15380      | 256 | 1          | 7        | 349.44        | 349.440000 | 34.944        | 31494.83 |
|          | 14457      | 20  | 4          | 106      | 1347.49       | 336.872500 | 134.749       | 30362.13 |
|          | 13113      | 271 | 62         | 2494     | 20767.65      | 334.962097 | 2076.765      | 30189.94 |
|          | 12935      | 76  | 27         | 49       | 9013.22       | 333.822963 | 901.322       | 30087.27 |

# **Cohort Analysis**

| Out[118]: |       | CustomerID | Transaction_ID | Transaction_Date | Product_SKU    | Product_Category | Quantity | Avg_Price | Delivery_Charges | Coupon_Status | Mont |
|-----------|-------|------------|----------------|------------------|----------------|------------------|----------|-----------|------------------|---------------|------|
|           | 52919 | 14410      | 48493          | 2019-12-31       | GGOENEBB078899 | Nest-USA         | 1        | 121.30    | 6.50             | Clicked       | De   |
|           | 52920 | 14410      | 48494          | 2019-12-31       | GGOEGAEB091117 | Apparel          | 1        | 48.92     | 6.50             | Used          | De   |
|           | 52921 | 14410      | 48495          | 2019-12-31       | GGOENEBQ084699 | Nest-USA         | 1        | 151.88    | 6.50             | Used          | De   |
|           | 52922 | 14600      | 48496          | 2019-12-31       | GGOENEBQ079199 | Nest-USA         | 5        | 80.52     | 6.50             | Clicked       | De   |
|           | 52923 | 14600      | 48497          | 2019-12-31       | GGOENEBQ079099 | Nest-USA         | 4        | 80.52     | 19.99            | Clicked       | De   |
| 4         |       |            |                |                  |                |                  |          |           |                  |               | •    |

In [119...
#create a column index with the minimum invoice date aka first time customer was acquired
data['Cohort Month'] = data.groupby('CustomerID')['InvoiceMonth'].transform('min')
data.head(30)

Out[119]:

|    | CustomerID | Transaction_ID | Transaction_Date | Product_SKU    | Product_Category | Quantity | Avg_Price | Delivery_Charges | Coupon_Status | Month |
|----|------------|----------------|------------------|----------------|------------------|----------|-----------|------------------|---------------|-------|
| 0  | 17850      | 16679          | 2019-01-01       | GGOENEBJ079499 | Nest-USA         | 1        | 153.71    | 6.50             | Used          | Jan   |
| 1  | 17850      | 16680          | 2019-01-01       | GGOENEBJ079499 | Nest-USA         | 1        | 153.71    | 6.50             | Used          | Jan   |
| 2  | 17850      | 16681          | 2019-01-01       | GGOEGFKQ020399 | Office           | 1        | 2.05      | 6.50             | Used          | Jan   |
| 3  | 17850      | 16682          | 2019-01-01       | GGOEGAAB010516 | Apparel          | 5        | 17.53     | 6.50             | Not Used      | Jan   |
| 4  | 17850      | 16682          | 2019-01-01       | GGOEGBJL013999 | Bags             | 1        | 16.50     | 6.50             | Used          | Jan   |
| 5  | 17850      | 16682          | 2019-01-01       | GGOEGBMJ013399 | Bags             | 15       | 5.15      | 6.50             | Used          | Jan   |
| 6  | 17850      | 16682          | 2019-01-01       | GGOEGDHC018299 | Drinkware        | 15       | 3.08      | 6.50             | Not Used      | Jan   |
| 7  | 17850      | 16682          | 2019-01-01       | GGOEGDHG014499 | Drinkware        | 15       | 10.31     | 6.50             | Clicked       | Jan   |
| 8  | 17850      | 16682          | 2019-01-01       | GGOEGDWC020199 | Drinkware        | 5        | 9.27      | 6.50             | Used          | Jan   |
| 9  | 13047      | 16682          | 2019-01-01       | GGOEGGOA017399 | Office           | 52       | 0.98      | 6.50             | Used          | Jan   |
| 10 | 13047      | 16682          | 2019-01-01       | GGOEGOFH020299 | Office           | 31       | 1.99      | 6.50             | Clicked       | Jan   |
| 11 | 13047      | 16682          | 2019-01-01       | GGOEGOXQ016399 | Office           | 31       | 1.99      | 6.50             | Clicked       | Jan   |
| 12 | 13047      | 16682          | 2019-01-01       | GGOEYAAB031816 | Apparel          | 5        | 17.53     | 6.50             | Used          | Jan   |
| 13 | 13047      | 16684          | 2019-01-01       | GGOENEBQ078999 | Nest-USA         | 2        | 122.77    | 6.50             | Clicked       | Jan   |
| 14 | 13047      | 16684          | 2019-01-01       | GGOENEBQ079199 | Nest-USA         | 1        | 81.50     | 6.50             | Used          | Jan   |

|    | CustomerID | Transaction_ID | Transaction_Date | Product_SKU    | Product_Category | Quantity | Avg_Price | Delivery_Charges | Coupon_Status | Month |
|----|------------|----------------|------------------|----------------|------------------|----------|-----------|------------------|---------------|-------|
| 15 | 13047      | 16685          | 2019-01-01       | GGOEGAAR010714 | Apparel          | 1        | 14.02     | 6.50             | Used          | Jan   |
| 16 | 13047      | 16685          | 2019-01-01       | GGOEGAEQ027913 | Apparel          | 1        | 14.02     | 6.50             | Clicked       | Jan   |
| 17 | 13047      | 16685          | 2019-01-01       | GGOEGDWR015799 | Drinkware        | 1        | 10.72     | 6.50             | Not Used      | Jan   |
| 18 | 13047      | 16687          | 2019-01-01       | GGOEGFQB013799 | Lifestyle        | 1        | 9.27      | 6.50             | Clicked       | Jan   |
| 19 | 13047      | 16687          | 2019-01-01       | GGOEGGOA017399 | Office           | 3        | 1.02      | 6.50             | Used          | Jan   |
| 20 | 13047      | 16687          | 2019-01-01       | GGOEGOAQ012899 | Office           | 1        | 2.58      | 6.50             | Not Used      | Jan   |
| 21 | 13047      | 16687          | 2019-01-01       | GGOEGOAR021999 | Office           | 3        | 1.55      | 6.50             | Clicked       | Jan   |
| 22 | 13047      | 16687          | 2019-01-01       | GGOEGOBG023599 | Office           | 1        | 3.08      | 6.50             | Used          | Jan   |
| 23 | 13047      | 16687          | 2019-01-01       | GGOEGOLC013299 | Office           | 1        | 6.18      | 6.50             | Clicked       | Jan   |
| 24 | 13047      | 16688          | 2019-01-01       | GGOENEBB078899 | Nest-USA         | 1        | 122.77    | 6.50             | Used          | Jan   |
| 25 | 13047      | 16689          | 2019-01-01       | GGOENEBJ079499 | Nest-USA         | 1        | 153.71    | 6.50             | Used          | Jan   |
| 26 | 12583      | 16692          | 2019-01-01       | GGOEAFKQ020599 | Office           | 1        | 2.47      | 102.79           | Used          | Jan   |
| 27 | 12583      | 16692          | 2019-01-01       | GGOEGDHC015299 | Drinkware        | 26       | 8.72      | 102.79           | Clicked       | Jan   |
| 28 | 12583      | 16692          | 2019-01-01       | GGOEGFKQ020399 | Office           | 1        | 1.64      | 102.79           | Clicked       | Jan   |
| 29 | 12583      | 16692          | 2019-01-01       | GGOEYFKQ020699 | Office           | 1        | 1.64      | 102.79           | Clicked       | Jan   |

```
def get_date_elements(df, column):
In [121...
              day = df[column].dt.day
              month = df[column].dt.month
              year = df[column].dt.year
              return day, month, year
          # get date elements for our cohort and invoice columns
In [122...
          __,Invoice_month,Invoice_year = get_date_elements(data,'InvoiceMonth')
          _,Cohort_month,Cohort_year = get_date_elements(data,'Cohort Month')
          Cohort_year[:10]
In [123...
               2019
Out[123]:
               2019
               2019
               2019
          3
               2019
               2019
               2019
          7
               2019
          8
               2019
               2019
          Name: Cohort Month, dtype: int32
          data.head()
In [124...
```

| Out[124]: |    | CustomerID  | Transaction_ID | Transaction_Date | Product_SKU    | Product_Category | Quantity | Avg_Price | Delivery_Charges | Coupon_Status | Month | Cı |
|-----------|----|-------------|----------------|------------------|----------------|------------------|----------|-----------|------------------|---------------|-------|----|
|           | 0  | 17850       | 16679          | 2019-01-01       | GGOENEBJ079499 | Nest-USA         | 1        | 153.71    | 6.5              | Used          | Jan   |    |
|           | 1  | 17850       | 16680          | 2019-01-01       | GGOENEBJ079499 | Nest-USA         | 1        | 153.71    | 6.5              | Used          | Jan   |    |
|           | 2  | 17850       | 16681          | 2019-01-01       | GGOEGFKQ020399 | Office           | 1        | 2.05      | 6.5              | Used          | Jan   |    |
|           | 3  | 17850       | 16682          | 2019-01-01       | GGOEGAAB010516 | Apparel          | 5        | 17.53     | 6.5              | Not Used      | Jan   |    |
|           | 4  | 17850       | 16682          | 2019-01-01       | GGOEGBJL013999 | Bags             | 1        | 16.50     | 6.5              | Used          | Jan   |    |
| 4         |    |             |                |                  |                |                  |          |           |                  |               |       | •  |
| Tn [125   | #0 | reate index | ,              |                  |                |                  |          |           |                  |               |       |    |

```
In [125... #create index
    year_diff = Invoice_year -Cohort_year
    month_diff = Invoice_month - Cohort_month
    data['CohortIndex'] = year_diff*12+month_diff+1
    data.tail()
```

| _      |       |  |
|--------|-------|--|
| $\cap$ | [125] |  |
| Out    | エムノ   |  |

|       | CustomerID | Transaction_ID | Transaction_Date | Product_SKU    | Product_Category | Quantity | Avg_Price | Delivery_Charges | Coupon_Status | Mont |
|-------|------------|----------------|------------------|----------------|------------------|----------|-----------|------------------|---------------|------|
| 52919 | 14410      | 48493          | 2019-12-31       | GGOENEBB078899 | Nest-USA         | 1        | 121.30    | 6.50             | Clicked       | De   |
| 52920 | 14410      | 48494          | 2019-12-31       | GGOEGAEB091117 | Apparel          | 1        | 48.92     | 6.50             | Used          | De   |
| 52921 | 14410      | 48495          | 2019-12-31       | GGOENEBQ084699 | Nest-USA         | 1        | 151.88    | 6.50             | Used          | De   |
| 52922 | 14600      | 48496          | 2019-12-31       | GGOENEBQ079199 | Nest-USA         | 5        | 80.52     | 6.50             | Clicked       | De   |
| 52923 | 14600      | 48497          | 2019-12-31       | GGOENEBQ079099 | Nest-USA         | 4        | 80.52     | 19.99            | Clicked       | De   |

5 rows × 21 columns

In [126...

#count the customer ID by grouping by Cohort Month and Cohort Index
cohort\_data = data.groupby(['Cohort Month','CohortIndex'])['CustomerID'].apply(pd.Series.nunique).reset\_index()
cohort\_data

| Out[126]: |     | <b>Cohort Month</b> | CohortIndex | CustomerID |
|-----------|-----|---------------------|-------------|------------|
|           | 0   | 2019-01-01          | 1           | 215        |
|           | 1   | 2019-01-01          | 2           | 13         |
|           | 2   | 2019-01-01          | 3           | 24         |
|           | 3   | 2019-01-01          | 4           | 34         |
|           | 4   | 2019-01-01          | 5           | 23         |
|           | ••• |                     |             |            |
|           | 73  | 2019-10-01          | 2           | 6          |
|           | 74  | 2019-10-01          | 3           | 4          |
|           | 75  | 2019-11-01          | 1           | 68         |
|           | 76  | 2019-11-01          | 2           | 7          |
|           | 77  | 2019-12-01          | 1           | 106        |

78 rows × 3 columns

```
In [127... # create a pivot table
    cohort_table = cohort_data.pivot(index='Cohort Month', columns=['CohortIndex'],values='CustomerID')
    cohort_table
```

| Out[127]: | CohortIndex         | 1     | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   |
|-----------|---------------------|-------|------|------|------|------|------|------|------|------|------|------|------|
|           | <b>Cohort Month</b> |       |      |      |      |      |      |      |      |      |      |      |      |
|           | 2019-01-01          | 215.0 | 13.0 | 24.0 | 34.0 | 23.0 | 44.0 | 35.0 | 47.0 | 23.0 | 28.0 | 20.0 | 34.0 |
|           | 2019-02-01          | 96.0  | 7.0  | 9.0  | 16.0 | 17.0 | 22.0 | 19.0 | 15.0 | 12.0 | 11.0 | 16.0 | NaN  |
|           | 2019-03-01          | 177.0 | 18.0 | 35.0 | 25.0 | 32.0 | 33.0 | 22.0 | 22.0 | 15.0 | 19.0 | NaN  | NaN  |
|           | 2019-04-01          | 163.0 | 14.0 | 24.0 | 24.0 | 18.0 | 15.0 | 10.0 | 16.0 | 12.0 | NaN  | NaN  | NaN  |
|           | 2019-05-01          | 112.0 | 12.0 | 9.0  | 13.0 | 10.0 | 13.0 | 14.0 | 8.0  | NaN  | NaN  | NaN  | NaN  |
|           | 2019-06-01          | 137.0 | 20.0 | 22.0 | 12.0 | 11.0 | 14.0 | 11.0 | NaN  | NaN  | NaN  | NaN  | NaN  |
|           | 2019-07-01          | 94.0  | 13.0 | 4.0  | 6.0  | 11.0 | 9.0  | NaN  | NaN  | NaN  | NaN  | NaN  | NaN  |
|           | 2019-08-01          | 135.0 | 14.0 | 15.0 | 10.0 | 8.0  | NaN  |
|           | 2019-09-01          | 78.0  | 6.0  | 3.0  | 2.0  | NaN  |
|           | 2019-10-01          | 87.0  | 6.0  | 4.0  | NaN  |
|           | 2019-11-01          | 68.0  | 7.0  | NaN  |
|           | 2019-12-01          | 106.0 | NaN  |



In [130... #cohort table for %
 new\_cohort\_table = cohort\_table.divide(cohort\_table.iloc[:,0],axis=0)
 new\_cohort\_table

| Out[130]: | CohortIndex         | 1   | 2        | 3        | 4        | 5        | 6        | 7        | 8        | 9        | 10       | 11       | 12      |
|-----------|---------------------|-----|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|---------|
|           | <b>Cohort Month</b> |     |          |          |          |          |          |          |          |          |          |          |         |
|           | January 2019        | 1.0 | 0.060465 | 0.111628 | 0.158140 | 0.106977 | 0.204651 | 0.162791 | 0.218605 | 0.106977 | 0.130233 | 0.093023 | 0.15814 |
|           | February 2019       | 1.0 | 0.072917 | 0.093750 | 0.166667 | 0.177083 | 0.229167 | 0.197917 | 0.156250 | 0.125000 | 0.114583 | 0.166667 | NaN     |
|           | March 2019          | 1.0 | 0.101695 | 0.197740 | 0.141243 | 0.180791 | 0.186441 | 0.124294 | 0.124294 | 0.084746 | 0.107345 | NaN      | NaN     |
|           | April 2019          | 1.0 | 0.085890 | 0.147239 | 0.147239 | 0.110429 | 0.092025 | 0.061350 | 0.098160 | 0.073620 | NaN      | NaN      | NaN     |
|           | May 2019            | 1.0 | 0.107143 | 0.080357 | 0.116071 | 0.089286 | 0.116071 | 0.125000 | 0.071429 | NaN      | NaN      | NaN      | NaN     |
|           | June 2019           | 1.0 | 0.145985 | 0.160584 | 0.087591 | 0.080292 | 0.102190 | 0.080292 | NaN      | NaN      | NaN      | NaN      | NaN     |
|           | July 2019           | 1.0 | 0.138298 | 0.042553 | 0.063830 | 0.117021 | 0.095745 | NaN      | NaN      | NaN      | NaN      | NaN      | NaN     |
|           | August 2019         | 1.0 | 0.103704 | 0.111111 | 0.074074 | 0.059259 | NaN      | NaN      | NaN      | NaN      | NaN      | NaN      | NaN     |
|           | September 2019      | 1.0 | 0.076923 | 0.038462 | 0.025641 | NaN      | NaN     |
|           | October 2019        | 1.0 | 0.068966 | 0.045977 | NaN      | NaN     |
|           | November 2019       | 1.0 | 0.102941 | NaN      | NaN     |
|           | December 2019       | 1.0 | NaN      | NaN     |

```
In [134... #final chart
    plt.figure(figsize=(21,10))
    sns.heatmap(new_cohort_table,annot=True,fmt='.0%',cmap='Blues')
    plt.show()
```



# **Insights**

- Among the categories, Apparel (34%) and Nest-USA (24%) contributed to the most sales.
- A majority (66%) of customers preferred one particular quantity.
- Coupon usage was recorded at 34%.
- August saw the highest sales compared to other months.
- The most popular coupon was 'sale20' used at 33.69%.
- Females made up a larger portion of the customers than males.

- Chicago and California had the most sales compared to other locations.
- The product GGOEGGOA017399 has the highest number of purchases
- The retention rate is high in July, August, and September
- The majority of offline spending is between 2500 and 3500.
- Most of the online spending is between 1258 and 435.

# **Recommendations:**

## 1. Focus Marketing on Top Categories:

- Since Apparel and Nest-USA contribute significantly to sales, prioritize marketing efforts and promotions for these categories.
- Consider special campaigns or exclusive deals to boost their sales further.

### 2. Geographic Focus on Chicago and California:

- With Chicago and California leading in sales, allocate more resources to these regions.
- This could include targeted advertising, pop-up stores, or special events to further engage customers in these locations.

#### 3. Retention Strategies for Key Months:

- With high retention rates in July, August, and September, implement loyalty programs, special offers, or exclusive content during these months to maintain and increase retention.
- Encourage repeat purchases by providing incentives for returning customers.

| In []:  |  |
|---------|--|
| In [ ]: |  |
| In [ ]: |  |