

DANA 4810 CO2 Emissions in cars

Objective

1. Build a linear regression model to predict a car's CO2 Emissions (grams / Km). The model will be built by using the "Fuel consumption ratings" dataset from the Government of Canada.

https://open.canada.ca/data/en/dataset/98f1a129f628-4ce4-b24d-6f16bf24dd64#wb-auto-6

Stages

01

EDA

04

Reduced model

02

Stepwise

05

Results

03

All possible subsets

06

Conclusion

•

EDA

No	Pr. 1	Pr. 2	Pr. 3	Pr. 4	Pr. 5	Pr. 6	Pr. 7	Pr. 8	Pr. 9	Pr. 10	Resp. 1
Variable	YEAR	BRAND	MODEL	CLASS	ENGINE	CYLINDERS	TRANSMISSION	GEARS	FUEL	COMSUMPTION	EMISSIONS
Туре	Numerical	Categorical	Categorical	Categorical	Numerical	Numerical	Categorical nominal	Numerical	Categorical	Numerical -	Numerical -
	discrete	nominal	nominal	nominal	discrete	discrete	Categorical Horninal	discrete	nominal	continuos	continuos
Unique Values	28	55	4185	17	64	9	5	5	5		
Range	1995 to 2022	-	-	-	0.8 to 8.4	2 to 16	-	1 to 10	-	8.7 to 26.1	128 to 418
Units / Categories		-	-	-			Automatic Automated Manual Automatic Shift Continuous Variable 5. Manual	ntomated Manual Automatic Shift ntinuous Variable		(Liter/100Km)	(g/Km)

Train data Length:	20,860	80%				
Test data Length:	5,215	20%				
Total:	26,075	100%				

EDA-Numerical

EDA-Categorical: Fuel

EDA-Categorical: Transmission

All Possible Subsets

	Compoundi	Cylinders	Engine	Gears	Years	Fuel	Fuel	Fuel	Fuel	Trans	Trans	Trans	Trans
	Consumption					E	NG	Р	R	Α	AS	cv	М
1	*												
2	*					*							
3	*					*	*						
4	*					*		*	*				
5	*					*	*	*	*				
6	*				*	*	*	*	*				*
7	*			*	*	*	*	*	*				*
8	*			*	*	*	*	*	*			*	*
9	*			*	*	*	*	*	*			*	*
10	*		*	*	*	*	*	*	*			*	*
11	*			*	*	*	*	*	*	*	*	*	*
12	*		*	*	*	*	*	*	*	*	*	*	*
13	*	*	*	*	*	*	*	*	*	*	*	*	*

Stepwise

Model Without Interaction

```
lm(formula = EMISSIONS ~ CONSUMPTION + FUEL + YEAR + GEARS +
    TRANSMISSION + ENGINE, data = co2_train)
Residuals:
    Min
            10 Median
                                   Max
-66.466 -1.263 -0.129 1.010 52.920
Coefficients:
                               Estimate Std. Error t value Pr(>|t|)
(Intercept)
                             -1.760e+02 1.370e+01 -12.842 < 2e-16 ***
CONSUMPTION
                              2.290e+01 2.121e-02 1079.869 < 2e-16 ***
FUELEtanol
                             -1.505e+02 3.328e-01 -452.104 < 2e-16 ***
FUELNaturalGas
                             -1.027e+02 8.577e-01 -119.732 < 2e-16 ***
FUELPremium
                             -3.447e+01 2.705e-01 -127.417 < 2e-16 ***
FUELRegular
                             -3.397e+01 2.701e-01 -125.755 < 2e-16 ***
YEAR
                              1.044e-01 6.866e-03 15.203 < 2e-16 ***
GEARS
                              6.526e-01 3.623e-02
                                                    18.010 < 2e-16 ***
TRANSMISSIONAutomatic
                             -5.499e-01 1.801e-01
                                                    -3.053 0.002269 **
TRANSMISSIONAutomaticSShift -6.007e-01 1.745e-01
                                                    -3.442 0.000579 ***
TRANSMISSIONContinuosVariable 1.637e+00 2.933e-01
                                                     5.580 2.44e-08 ***
TRANSMISSIONManual
                             -9.164e-01 1.824e-01
                                                   -5.025 5.07e-07 ***
ENGINE
                             -9.683e-02 4.252e-02
                                                    -2.277 0.022785 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.647 on 20847 degrees of freedom
 (1 observation deleted due to missingness)
Multiple R-squared: 0.9946, Adjusted R-squared: 0.9945
F-statistic: 3.171e+05 on 12 and 20847 DF, p-value: < 2.2e-16
```


Model With Interaction

```
lm(formula = EMISSIONS ~ CONSUMPTION + FUEL + YEAR + GEARS +
    TRANSMISSION + ENGINE + CONSUMPTION * FUEL, data = co2_train)
Residuals:
    Min
              10 Median
                                        Max
-27.8000 -1.0654 -0.1144
                            0.8556 25.5270
Coefficients:
                               Estimate Std. Error t value Pr(>|t|)
(Intercept)
                             -3.649e+02 5.366e+00 -68.001 < 2e-16 ***
CONSUMPTION
                              2.731e+01 3.664e-02 745.552 < 2e-16 ***
FUELEtanol
                              1.796e+00 5.045e-01
                                                     3.561 0.00037 ***
FUELNatural Gas
                             -3.525e+00 1.923e+00
                                                    -1.833 0.06684 .
FUELPremium
                              7.998e-01 3.580e-01
                                                     2.234 0.02547 *
FUELRegular
                              1.545e+00 3.539e-01
                                                     4.365 1.28e-05 ***
YEAR
                              1.795e-01 2.683e-03
                                                    66.908 < 2e-16 ***
GEARS
                              3.585e-01 1.411e-02
                                                    25.412 < 2e-16 ***
TRANSMISSIONAutomatic
                             -2.992e-01 7.011e-02
                                                    -4.268 1.98e-05 ***
TRANSMISSIONAutomaticSShift
                            -5.441e-01 6.782e-02
                                                    -8.023 1.08e-15 ***
TRANSMISSIONContinuosVariable 1.283e+00 1.140e-01
                                                    11.252 < 2e-16 ***
TRANSMTSSTONManual
                             -4.416e-01 7.087e-02
                                                    -6.231 4.73e-10 ***
ENGINE
                             -4.993e-01 1.661e-02 -30.071 < 2e-16 ***
CONSUMPTION: FUELEtanol
                             -1.104e+01 4.192e-02 -263.476 < 2e-16 ***
CONSUMPTION: FUELNaturalGas
                             -7.839e+00 1.166e-01 -67.240 < 2e-16 ***
CONSUMPTION: FUELPremium
                             -3.924e+00 3.670e-02 -106.900 < 2e-16 ***
CONSUMPTION: FUELRegular
                             -3.952e+00 3.641e-02 -108.533 < 2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '. '0.1 ' '1
Residual standard error: 1.805 on 20843 degrees of freedom
 (1 observation deleted due to missingness)
Multiple R-squared: 0.9992, Adjusted R-squared: 0.9992
F-statistic: 1.583e+06 on 16 and 20843 DF, p-value: < 2.2e-16
```


Reduced Model With Interaction

Based on the observation of the results in the "All possible subsets" and the EDA, a reduced model is appropriate:

EMISSIONS ~ CONSUMPTION + FUEL + CONSUMPTION * FUEL

```
lm(formula = `CO2 EMISSIONS (q/km)` ~ `COMB (L/100 km)` + FuelType2 +
   FuelType2 * 'COMB (L/100 km)', data = train2)
Residuals:
            10 Median
   Min
-65.704 -1.458 -1.097 0.997 28.539
Coefficients:
                            Estimate Std. Error t value Pr(>|t|)
(Intercept)
                            -0.39809
                                       0.47463 -0.839
                                                          0.402
`COMB (L/100 km)`
                            26.98672
                                       0.04831 558.632 <2e-16 ***
FuelType2E
                                       0.68314 2.015 0.044 *
                            1.37627
FuelType2G
                            1.15665
                                       0.48034 2.408 0.016 *
FuelType2N
                             1.46427
                                       2.78467
                                                 0.526
                                                          0.599
`COMB (L/100 km)`:FuelType2E -10.92621
                                       0.05630 -194.072 <2e-16 ***
`COMB (L/100 km)`:FuelType2G -3.93953
                                       0.04874 -80.828 <2e-16 ***
`COMB (L/100 km)`:FuelType2N -8.14635
                                       0.16427 -49.590
                                                         <2e-16 ***
```

Accuracy Test In Training Data Results

```
"R Squared: 0.998445138435789"

"Adjusted R Squared: 0.998444616444952"

"AIC Score: 97238.827549705"

"MSE Score: 6.19235906016588"
```

Tested Against Test Data:

MSE on test data: 6.350973 RMSE on test data: 2.520114 R-squared on test data: 0.9983957

Results in test data

Stepwise model

Stepwise model with interaction

Reduced model with interaction

RMSE: 4.76 RMSE: 1.90 RMSE: 2.52

Conclusion

Variables such as engine, cylinders and consumption are really correlated to emissions

The type of fuel is the variable the determine how steep is the line of prediction

Thanks!

Do you have any questions?

