

Rodzaj dokumentu:	Zasady oceniania rozwiązań zadań	
Egzamin:	Egzamin maturalny	
Przedmiot:	Matematyka	
Poziom:	Poziom podstawowy	
Formy arkusza:	MMAP-P0-100 (wersje arkusza: A i B), MMAP-P0-200, MMAP-P0-300, MMAP-P0-400, MMAP-P0-600, MMAP-P0-700, MMAP-P0-Q00, MMAP-P0-K00, MMAU-P0-100	
Termin egzaminu:	8 maja 2024 r.	
Data publikacji dokumentu:	28 czerwca 2024 r.	

Uwagi ogólne:

- 1. Akceptowane są wszystkie rozwiązania merytorycznie poprawne i spełniające warunki zadania.
- 2. Jeżeli zdający poprawnie rozwiąże zadanie i otrzyma poprawny wynik, lecz w końcowym zapisie przekształca ten wynik i popełnia przy tym błąd, to może uzyskać maksymalną liczbę punktów.
- 3. Jeżeli zdający popełni błędy rachunkowe, które na żadnym etapie rozwiązania nie upraszczają i nie zmieniają danego zagadnienia, lecz stosuje poprawną metodę i konsekwentnie do popełnionych błędów rachunkowych rozwiązuje zadanie, to może otrzymać co najwyżej (n-1) punktów (gdzie n jest maksymalną możliwą do uzyskania liczbą punktów za dane zadanie).

Zadanie 1. (0-1)

Wymagania egzaminacyjne 2024¹	
Wymaganie ogólne	Wymaganie szczegółowe
II. Wykorzystanie i tworzenie informacji.	Zdający:
1. Interpretowanie i operowanie	I.7) stosuje interpretację geometryczną
informacjami przedstawionymi w tekście,	i algebraiczną wartości bezwzględnej,
zarówno matematycznym, jak	rozwiązuje równania i nierówności typu: []
i popularnonaukowym, a także w formie	$ x+3 \ge 4$.
wykresów, diagramów, tabel.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Wersja A Wersja B B

¹ Rozporządzenie Ministra Edukacji i Nauki z dnia 10 czerwca 2022 r. w sprawie wymagań egzaminacyjnych dla egzaminu maturalnego przeprowadzanego w roku szkolnym 2022/2023 i 2023/2024 (Dz.U. 2022, poz.1246).

Zadanie 2. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymaganie szczegółowe
I. Sprawność rachunkowa.	Zdający:
Wykonywanie obliczeń na liczbach	I.4) stosuje [] prawa działań na potęgach
rzeczywistych, także przy użyciu	[].
kalkulatora, stosowanie praw działań	
matematycznych przy przekształcaniu	
wyrażeń algebraicznych oraz	
wykorzystywanie tych umiejętności przy	
rozwiązywaniu problemów w kontekstach	
rzeczywistych i teoretycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Wersja A Wersja B B C

Zadanie 3. (0-2)

Wymagania egzaminacyjne 2024		
Wymaganie ogólne	Wymaganie szczegółowe	
IV. Rozumowanie i argumentacja.	Zdający:	
1. Przeprowadzanie rozumowań, także	I.2) przeprowadza proste dowody dotyczące	
kilkuetapowych, podawanie argumentów	podzielności liczb całkowitych i reszt	
uzasadniających poprawność rozumowania,	z dzielenia nie trudniejsze niż dowód	
odróżnianie dowodu od przykładu.	podzielności przez 24 iloczynu czterech	
	kolejnych liczb naturalnych.	

Zasady oceniania

- 2 pkt przekształcenie wyrażenia $n^2+(n+1)^2+(n+2)^2$ do postaci $3(n^2+2n+1)+2$ ALBO
 - przekształcenie wyrażenia $n^2+(n+1)^2+(n+2)^2$ do postaci $3n^2+6n+5$ oraz zapisanie, że składniki $3n^2$ oraz 6n są podzielne przez 3, a reszta z dzielenia liczby 5 przez 3 jest równa 2, *ALBO*
 - zapisanie, że n, n+1, n+2, to trzy kolejne liczby całkowite, więc dokładnie jedna z nich jest podzielna przez 3, a dwie pozostałe nie są podzielne przez 3 **oraz** zapisanie, że kwadrat liczby podzielnej przez 3 jest podzielny przez 3, a kwadrat

liczby niepodzielnej przez 3 przy dzieleniu przez 3 daje resztę 1, **oraz** zapisanie wniosku, że reszta z dzielenia przez 3 liczby $n^2 + (n+1)^2 + (n+2)^2$ jest równa 2.

- 1 pkt przekształcenie wyrażenia $n^2+(n+1)^2+(n+2)^2$ do postaci $n^2+n^2+2n+1+n^2+4n+4$ ALBO
 - zapisanie, że n, n+1, n+2, to trzy kolejne liczby naturalne, więc dokładnie jedna z nich jest podzielna przez 3, a dwie pozostałe nie są podzielne przez 3 **oraz** zapisanie, że kwadrat liczby podzielnej przez 3 jest podzielny przez 3, a kwadrat liczby niepodzielnej przez 3 przy dzieleniu przez 3 daje resztę 1.

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Uwagi:

- **1.** Jeżeli zdający sprawdza prawdziwość tezy tylko dla wybranych wartości n, to otrzymuje **0 punktów** za całe rozwiązanie.
- 2. Jeżeli zdający przyjmuje np. n=3k+r, gdzie $k\in\mathbb{N}$ i r jest resztą z dzielenia liczby n przez 3 (lub n=2k+r, gdzie $k\in\mathbb{N}$ i r jest resztą z dzielenia liczby n przez 2), i przeprowadzi pełne rozumowanie dla wszystkich przypadków, to otrzymuje **2 punkty**. Gdy przeprowadzi pełne rozumowanie dla co najmniej połowy przypadków, ale nie przeprowadzi pełnego rozumowania dla wszystkich przypadków, to otrzymuje **1 punkt** za całe rozwiązanie.
- **3.** Jeżeli zdający rozpatruje <u>tylko</u> jeden przypadek n=3k+2, to otrzymuje **0 punktów** za całe rozwiązanie.

Przykładowe pełne rozwiązania

Sposób I

Przekształcamy równoważnie dane wyrażenie

$$n^{2} + (n+1)^{2} + (n+2)^{2} = n^{2} + n^{2} + 2n + 1 + n^{2} + 4n + 4$$
$$= 3n^{2} + 6n + 5 = 3 \cdot (n^{2} + 2n + 1) + 2$$

Ponieważ n jest liczbą naturalną, więc n^2+2n+1 jest liczbą naturalną. Zatem $3\cdot(n^2+2n+1)$ jest wielokrotnością liczby 3. Stąd $3\cdot(n^2+2n+1)+2$ przy dzieleniu przez 3 daje resztę 2. To należało wykazać.

Sposób II

Liczby n, n+1, n+2 to trzy kolejne liczby naturalne, więc dokładnie jedna z nich jest podzielna przez 3, a dwie pozostałe nie są podzielne przez 3.

Kwadrat liczby podzielnej przez 3 jest również podzielny przez 3.

Kwadrat liczby niepodzielnej przez 3 daje przy dzieleniu przez 3 resztę 1.

Zatem suma reszt z dzielenia przez 3 liczby $n^2+(n+1)^2+(n+2)^2$ jest równa 0+1+1=2.

To należało wykazać.

Zadanie 4. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymaganie szczegółowe
I. Sprawność rachunkowa.	Zdający:
Wykonywanie obliczeń na liczbach	I.1) wykonuje działania ([]
rzeczywistych, także przy użyciu	logarytmowanie) w zbiorze liczb
kalkulatora, stosowanie praw działań	rzeczywistych.
matematycznych przy przekształcaniu	
wyrażeń algebraicznych oraz	
wykorzystywanie tych umiejętności przy	
rozwiązywaniu problemów w kontekstach	
rzeczywistych i teoretycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Wersja A Wersja B C B

Zadanie 5. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymaganie szczegółowe
I. Sprawność rachunkowa. Wykonywanie obliczeń na liczbach rzeczywistych, także przy użyciu kalkulatora, stosowanie praw działań matematycznych przy przekształcaniu wyrażeń algebraicznych oraz wykorzystywanie tych umiejętności przy rozwiązywaniu problemów w kontekstach rzeczywistych i teoretycznych.	Zdający: II.1) stosuje wzory skróconego mnożenia na: $(a+b)^2$, $(a-b)^2$, a^2-b^2 .

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Wersja A Wersja B B D

Zadanie 6. (0-1)

Wymagania egzaminacyjne 2024		
Wymaganie ogólne	Wymaganie szczegółowe	
III. Wykorzystanie i interpretowanie reprezentacji.1. Stosowanie obiektów matematycznych i operowanie nimi, interpretowanie pojęć matematycznych.	Zdający: III.3) rozwiązuje nierówności liniowe z jedną niewiadomą.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Wersja A Wersja B D D

Zadanie 7. (0-1)

Wymagania egzaminacyjne 2024		
Wymaganie ogólne	Wymaganie szczegółowe	
III. Wykorzystanie i interpretowanie	Zdający:	
reprezentacji.	III.6) rozwiązuje równania wymierne postaci	
Stosowanie obiektów matematycznych i operowanie nimi, interpretowanie pojęć	$\frac{V(x)}{W(x)} = 0$, gdzie wielomiany $V(x)$ i $W(x)$	
matematycznych.	są zapisane w postaci iloczynowej.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Wersja A Wersja B

В

Zadanie 8. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	II.2) [] mnoży wielomiany jednej i wielu
1. Stosowanie obiektów matematycznych	zmiennych.
i operowanie nimi, interpretowanie pojęć	III.5) rozwiązuje równania wielomianowe
matematycznych.	postaci $W(x) = 0$ dla wielomianów [],
	które dają się doprowadzić do postaci
	iloczynowej metodą wyłączania wspólnego
	czynnika przed nawias [].

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepełna lub niepoprawna albo brak odpowiedzi.

Rozwiązanie

Wersja A Wersja B FP

Zadanie 9. (0-3)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymaganie szczegółowe
IV. Rozumowanie i argumentacja.	Zdający:
4. Stosowanie i tworzenie strategii przy	III.5) rozwiązuje równania wielomianowe
rozwiązywaniu zadań, również w sytuacjach	postaci $W(x) = 0$ dla wielomianów []
nietypowych.	takich, które dają się doprowadzić do
	postaci iloczynowej [] metodą
	grupowania.

Zasady oceniania

- 3 pkt poprawna metoda rozwiązania równania i obliczenie wszystkich rozwiązań równania: $(-\sqrt{3}), \sqrt{3}, 2.$
- 2 pkt przekształcenie lewej strony równania do postaci iloczynu wielomianów stopnia co najwyżej drugiego **oraz** rozwiązanie jednego z równań wynikającego z tego rozkładu, np.:

$$(x-2)(x^2-3) = 0$$
 i $x = 2$,
 $(x-2)(x^2-3) = 0$ i $x = -\sqrt{3}$ oraz $x = \sqrt{3}$
ALBO

– przekształcenie równania $x^3 - 2x^2 - 3x + 6 = 0$ do postaci alternatywy dwóch równań: kwadratowego i liniowego **oraz** rozwiązanie jednego z nich:

$$(x-2=0, x^2-3=0)$$
 oraz $x=2,$ $(x-2=0, x^2-3=0)$ oraz $(x=-\sqrt{3}, x=\sqrt{3}),$

- rozłożenie wielomianu $W(x)=x^3-2x^2-3x+6$ na czynniki liniowe: $W(x)=(x-2)(x-\sqrt{3})(x+\sqrt{3}),$ ALBO
- przekształcenie równania $x^3-2x^2-3x+6=0$ do postaci alternatywy trzech równań liniowych: $(x-2=0,\ x-\sqrt{3}=0,\ x+\sqrt{3}=0),$ *ALBO*
- obliczenie jednego z pierwiastków wielomianu $W(x) = x^3 2x^2 3x + 6$ oraz poprawne podzielenie wielomianu W przez odpowiedni dwumian, np. x = 2 i $(x^3 2x^2 3x + 6)$: $(x 2) = x^2 3$.
- 1 pkt zapisanie wielomianu $W(x)=x^3-2x^2-3x+6\,$ w postaci iloczynu wielomianów stopnia co najwyżej drugiego, np. $W(x)=(x-2)(x^2-3)$ *ALBO*
 - przekształcenie równania $x^3-2x^2-3x+6=0$ do postaci alternatywy dwóch równań: $(x-2=0,\ x^2-3=0),$ *ALBO*

- przekształcenie równania $x^3-2x^2-3x+6=0$ do postaci $x^2(x-2)-3(x-2)=0$ lub do postaci $x^2(x-2)=3(x-2)$ oraz zapisanie rozwiązania x=2, *ALBO*
- zapisanie jednego z rozwiązań równania $x^3 2x^2 3x + 6 = 0$ oraz zapisanie sprawdzenia, że ta liczba spełnia to równanie.

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Uwagi:

- **1.** Jeżeli zdający zapisze tylko trzy poprawne rozwiązania równania, to otrzymuje **1 punkt** za całe rozwiązanie.
- **2.** Jeżeli zdający uzyska trzy poprawne pierwiastki wielomianu, lecz traktuje równanie jako nierówność (podaje zbiór rozwiązań w postaci przedziału / sumy przedziałów), to otrzymuje **2 punkty** za całe rozwiązanie.
- **3.** Jeżeli przy przekształcaniu lewej strony równania do postaci iloczynu zdający zapisuje czynnik (x-2) z wykładnikiem 2, to może otrzymać co najwyżej **2 punkty** za całe rozwiązanie (**1 punkt** za rozwiązanie równania $(x-2)^2=0$ i **1 punkt** za rozwiązanie równania $x^2-3=0$).
- **4.** Jeżeli zdający zamiast równania $(x-2)(x^2-3)=0$ zapisze $(x-2)\pm(x^2-3)=0$, ale z dalszego rozwiązania wynika, że traktuje lewą stronę równania jak iloczyn i rozwiąże zadanie do końca, to może otrzymać co najwyżej **2 punkty** za całe rozwiązanie (**1 punkt** za rozwiązanie równania x-2=0 i **1 punkt** za rozwiązanie równania $x^2-3=0$).
- **5.** Jeżeli zdający przy przekształcaniu równania do postaci $(x-2)(x^2-3)=0$ popełni bład i zapisze:

$$x^{2}(x+2) - 3(x-2) = 0$$
 lub
$$x^{2}(x-2) + 3(x-2) = 0$$
 lub
$$x^{2}(x-2) - 3(x+2) = 0$$
 lub
$$x(x^{2}+3) - 2(x^{2}-3) = 0$$
 lub
$$x(x^{2}-3) + 2(x^{2}-3) = 0$$
 lub
$$x(x^{2}-3) - 2(x^{2}+3) = 0$$
 a następnie:

- **5.1.** zapisze równanie $(x-2)(x^2-3)=0$ lub poprawną alternatywę (x-2=0) lub $x^2-3=0$) i konsekwentnie rozwiąże zadanie do końca, to otrzymuje co najwyżej **2 punkty** za całe rozwiązanie (**1 punkt** za rozwiązanie równania x-2=0 i **1 punkt** za rozwiązanie równania $x^2-3=0$).
- **5.2.** zapisze równanie $(x-2)(x^2+3)=0$ lub błędną alternatywę (x-2=0) lub $x^2+3=0$) i zapisze rozwiązanie x=2, to otrzymuje **1 punkt** za całe rozwiązanie.
- **5.3.** zapisze równanie $(x+2)(x^2-3)=0$ lub błędną alternatywę

$$(x+2=0 \text{ lub } x^2-3=0)$$
 i zapisze oba rozwiązania równania $x^2-3=0$: $x=-\sqrt{3}$ oraz $x=\sqrt{3}$, to otrzymuje **1 punkt** za całe rozwiązanie.

- **5.4.** zapisze błędne równanie (w którym jedna ze stron jest równa 0, a druga jest iloczynem wielomianów stopni dodatnich), inne niż w uwagach 5.2 oraz 5.3, np. $(x-2)(x+2)(x^2\pm 3)=0$ lub błędną alternatywę inną niż w uwagach 5.2 oraz 5.3, np. (x-2=0) lub x+2=0 lub $x^2\pm 3=0$, to otrzymuje **0 punktów** za całe rozwiązanie.
- **6.** Jeżeli zdający, przekształcając równanie $x^3 2x^2 3x + 6 = 0$, popełni jeden błąd (który nie jest błędem znaku) albo dwa błędy znaku i otrzyma równanie trzeciego stopnia, które ma trzy rozwiązania rzeczywiste, oraz konsekwentnie rozwiąże zadanie do końca, to otrzymuje **1 punkt** za całe rozwiązanie.
- 7. Jeżeli zdający dzieli obustronnie równanie $x^2(x-2)=3(x-2)$ przez dwumian (x-2) z podaniem odpowiedniego założenia i uzyska tylko dwa poprawne rozwiązania $x=\sqrt{3}$ oraz $x=-\sqrt{3}$, to otrzymuje **2 punkty** za całe rozwiązanie, a jeżeli uzyska tylko jedno z tych rozwiązań, to otrzymuje **1 punkt** za całe rozwiązanie.
- **8.** Jeżeli zdający dzieli obustronnie równanie $x^2(x-2)=3(x-2)$ przez dwumian (x-2) bez podania odpowiedniego założenia i uzyska tylko dwa poprawne rozwiązania $x=\sqrt{3}$ oraz $x=-\sqrt{3}$, to otrzymuje **1 punkt** za całe rozwiązanie, a jeżeli uzyska tylko jedno z tych rozwiązań, to otrzymuje **0 punktów** za całe rozwiązanie.

Przykładowe pełne rozwiązania

Sposób I

Przekształcamy równanie równoważnie i stosujemy metodę grupowania wyrazów:

$$x^{3} - 2x^{2} - 3x + 6 = 0$$

$$x^{2}(x - 2) - 3(x - 2) = 0$$

$$(x - 2)(x^{2} - 3) = 0$$

$$(x - 2)(x - \sqrt{3})(x + \sqrt{3}) = 0$$

$$x - 2 = 0 \quad \text{lub} \quad x - \sqrt{3} = 0 \quad \text{lub} \quad x + \sqrt{3} = 0$$

$$x = 2 \quad \text{lub} \quad x = \sqrt{3} \quad \text{lub} \quad x = -\sqrt{3}$$

Rozwiązaniami równania są liczby: $(-\sqrt{3})$, $\sqrt{3}$, 2.

Sposób II

Przekształcamy równanie równoważnie i stosujemy metodę grupowania wyrazów:

$$x^{3} - 2x^{2} - 3x + 6 = 0$$
$$x(x^{2} - 3) - 2(x^{2} - 3) = 0$$
$$(x - 2)(x^{2} - 3) = 0$$

$$(x-2)(x-\sqrt{3})(x+\sqrt{3}) = 0$$

 $x-2=0$ lub $x-\sqrt{3}=0$ lub $x+\sqrt{3}=0$
 $x=2$ lub $x=\sqrt{3}$ lub $x=-\sqrt{3}$

Rozwiązaniami równania są liczby: $\left(-\sqrt{3}\right),\ \sqrt{3},\ 2.$

Sposób III

Obliczamy W(2) = 0 i stwierdzamy, że liczba 2 jest pierwiastkiem wielomianu $W(x) = x^3 - 2x^2 - 3x + 6$.

Zatem wielomian W jest podzielny przez dwumian (x-2). Dzielimy wielomian W przez dwumian (x-2) i otrzymujemy

$$(x^3 - 2x^2 - 3x + 6)$$
: $(x - 2) = x^2 - 3$

Zatem
$$W(x) = (x-2)(x^2-3) = (x-2)(x-\sqrt{3})(x+\sqrt{3})$$
.

Obliczamy pierwiastki wielomianu W(x):

$$(x-2)(x-\sqrt{3})(x+\sqrt{3}) = 0$$

 $x-2=0$ lub $x-\sqrt{3}=0$ lub $x+\sqrt{3}=0$
 $x=2$ lub $x=\sqrt{3}$ lub $x=-\sqrt{3}$

Rozwiązaniami równania są liczby: $(-\sqrt{3})$, $\sqrt{3}$, 2.

Zadanie 10. (0-1)

Wymagania egzaminacyjne 2024		
Wymaganie ogólne	Wymaganie szczegółowe	
III. Wykorzystanie i interpretowanie reprezentacji.2. Dobieranie i tworzenie modeli matematycznych przy rozwiązywaniu problemów praktycznych i teoretycznych.	Zdający: IV.2) stosuje układy równań do rozwiązywania zadań tekstowych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt - odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Wersja A Wersja B A D

Zadanie 11. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymaganie szczegółowe
II. Wykorzystanie i tworzenie informacji.	Zdający:
Interpretowanie i operowanie	IV.1) rozwiązuje układy równań liniowych
informacjami przedstawionymi w tekście,	z dwiema niewiadomymi, podaje
zarówno matematycznym, jak	interpretację geometryczną układów []
i popularnonaukowym, a także w formie wykresów, diagramów, tabel.	sprzecznych.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Wersja A Wersja B

A C

Zadanie 12. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie reprezentacji.1. Stosowanie obiektów matematycznych i operowanie nimi, interpretowanie pojęć matematycznych.	Zdający: V.5) interpretuje współczynniki występujące we wzorze funkcji liniowej.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Wersja A Wersja B

D B

Zadanie 13. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne Wymaganie szczegółowe	
III. Wykorzystanie i interpretowanie reprezentacji.1. Stosowanie obiektów matematycznych i operowanie nimi, interpretowanie pojęć matematycznych.	Zdający: V.6) wyznacza wzór funkcji liniowej na podstawie informacji o jej wykresie lub o jej własnościach.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Wersja A Wersja B D A

Zadanie 14.1. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne Wymaganie szczegółow	
II. Wykorzystanie i tworzenie informacji.	Zdający:
1. Interpretowanie i operowanie	V.4) odczytuje z wykresu funkcji: []
informacjami przedstawionymi w tekście,	przedziały, w których funkcja przyjmuje
zarówno matematycznym, jak	wartości większe (nie mniejsze) lub
i popularnonaukowym, a także w formie	mniejsze (nie większe) od danej liczby [].
wykresów, diagramów, tabel.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

[-2, 4]

Kryteria uwzględniające specyficzne trudności w uczeniu się matematyki

Jeśli zdający pomyli porządek liczb na osi liczbowej, np. zapisze zbiór rozwiązań nierówności w postaci [4,-2], to otrzymuje **1 punkt**.

Zadanie 14.2. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymaganie szczegółowe
II. Wykorzystanie i tworzenie informacji.	Zdający:
2. Używanie języka matematycznego do	V.9) wyznacza wzór funkcji kwadratowej na
tworzenia tekstów matematycznych, w tym	podstawie informacji o tej funkcji lub o jej
do opisu prowadzonych rozumowań	wykresie.
i uzasadniania wniosków, a także do	
przedstawiania danych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Wersja A Wersja B

B

Zadanie 14.3. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne Wymaganie szczegółowe	
II. Wykorzystanie i tworzenie informacji.	Zdający:
Interpretowanie i operowanie	V.3) odczytuje i interpretuje wartości funkcji
informacjami przedstawionymi w tekście,	określonych za pomocą [] wykresów [].
zarówno matematycznym, jak	
i popularnonaukowym, a także w formie	
wykresów, diagramów, tabel.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Wersja A Wersja B A C

Zadanie 14.4. (0-2)

Wymaganie szczegółowe
dający: f(x) na podstawie wykresu funkcji f(x) szkicuje wykresy funkcji f(x-a), $f(x)$
'.1 =

Zasady oceniania

2 pkt – dwie poprawne odpowiedzi.

1 pkt – jedna poprawna odpowiedź.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Wersja A	Wersja B
A	Α
E	E

Zadanie 15. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne Wymaganie szczegółowe	
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	VI.1) oblicza wyrazy ciągu określonego
1. Stosowanie obiektów matematycznych	wzorem ogólnym.
i operowanie nimi, interpretowanie pojęć	
matematycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepełna lub niepoprawna albo brak odpowiedzi.

Rozwiązanie

Wersja A Wersja B PF PF

Zadanie 16. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie reprezentacji. 2. Dobieranie i tworzenie modeli	Zdający: VI.2) w prostych przypadkach bada, czy ciąg jest rosnący, czy malejący;
matematycznych przy rozwiązywaniu problemów praktycznych i teoretycznych.	VI.6) wykorzystuje własności ciągów [] geometrycznych, do rozwiązywania zadań [].

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepełna lub niepoprawna albo brak odpowiedzi.

Rozwiązanie

Wersja A Wersja B B2 A2

Zadanie 17. (0-2)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymaganie szczegółowe
IV. Rozumowanie i argumentacja.4. Stosowanie i tworzenie strategii przy rozwiązywaniu zadań, również w sytuacjach nietypowych.	Zdający: VI.4) stosuje wzór na <i>n</i> -ty wyraz i na sumę <i>n</i> początkowych wyrazów ciągu arytmetycznego.

Zasady oceniania

2 pkt – zastosowanie poprawnej metody i obliczenie różnicy ciągu: r = -2.

1 pkt – zapisanie układu równań pozwalającego obliczyć r, np.:

$$-1 = a_1 + 2r \quad \text{oraz} \quad -165 = \frac{2a_1 + 14r}{2} \cdot 15,$$

$$-1 = a_1 + 2r \quad \text{oraz} \quad a_{15} = a_1 + 14r \quad \text{oraz} \quad -165 = \frac{a_1 + a_{15}}{2} \cdot 15,$$

$$a_3 = -1 \quad \text{oraz} \quad -165 = \frac{(a_3 - 2r) + (a_3 + 12r)}{2} \cdot 15$$

– zapisanie równania z jedną niewiadomą r, np.:

$$\frac{(-1-2r)+(-1-r)+(-1)+(-1+r)+...+(-1+12r)=-165}{\frac{2(-1-2r)+14r}{2}\cdot 15=-165},$$

$$\frac{(-1-2r)+(-1+12r)}{2}\cdot 15=-165,$$

ALBO

– obliczenie ósmego wyrazu ciągu (a_n) z wykorzystaniem własności ciągu arytmetycznego: $a_8=-11$ (dla sposobów IV oraz V), ALBO

- zapisanie kolejnych piętnastu początkowych wyrazów ciągu (a_n) : 3, 1, -1, -3, -5, -7, -9, -11, -13, -15, -17, -19, -21, -23, -25.

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Uwagi:

- **1.** Jeżeli zdający myli ciąg arytmetyczny z geometrycznym, to otrzymuje **0 punktów** za całe rozwiązanie, o ile nie nabył prawa do innej liczby punktów.
- **2.** Jeżeli zdający zapisze tylko r=-2, to otrzymuje **1 punkt** za całe rozwiązanie.
- **3.** Jeżeli zdający błędnie interpretuje liczbę (-165) jako piętnasty wyraz ciągu, to otrzymuje **0 punktów** za całe rozwiązanie.

Przykładowe pełne rozwiązania

Sposób I

Korzystamy ze wzorów na n-ty wyraz i sumę n początkowych wyrazów ciągu arytmetycznego i otrzymujemy układ równań

$$\begin{cases} -1 = a_1 + 2r \\ -165 = \frac{2a_1 + 14r}{2} \cdot 15 \end{cases}$$

Przekształcając ten układ równoważnie, otrzymujemy

$$\begin{cases} -1 = a_1 + 2r \\ -11 = a_1 + 7r \end{cases}$$

Odejmując stronami równania układu, otrzymujemy

$$10 = -5r$$

$$r = -2$$

Różnica ciągu jest równa (-2).

Sposób II

Suma kolejnych piętnastu początkowych wyrazów ciągu arytmetycznego jest równa (-165), zatem

$$a_1 + a_2 + a_3 + \dots + a_{15} = -165$$

$$(a_3 - 2r) + (a_3 - r) + a_3 + (a_3 + r) + (a_3 + 2r) + \dots + (a_3 + 12r) = -165$$

$$15a_3 + (-2r - r + 0 + r + 2r + 3r + \dots + 12r) = -165$$

Egzamin maturalny z matematyki na poziomie podstawowym – termin główny 2024 r.

gdzie $a_3=-1$, a suma piętnastu liczb $(-2r-r+0+r+2r+3r+\ldots+12r)$ jest równa

$$\frac{-2r+12r}{2} \cdot 15 = 75r$$

Zatem

$$15 \cdot (-1) + 75r = -165$$
$$75r = -150$$
$$r = -2$$

Różnica ciągu jest równa (-2).

Sposób III

Suma kolejnych piętnastu początkowych wyrazów ciągu arytmetycznego jest równa (-165), zatem

$$\frac{a_1 + a_{15}}{2} \cdot 15 = -165$$

$$a_1 + a_{15} = -22$$

$$(a_3 - 2r) + (a_3 + 12r) = -22$$

$$2a_3 + 10r = -22$$

Stąd i z tego, że $a_3 = -1$, otrzymujemy

$$2 \cdot (-1) + 10r = -22$$

Zatem

$$10r = -20$$
$$r = -2$$

Różnica ciągu jest równa (-2).

Sposób IV

Suma kolejnych piętnastu początkowych wyrazów ciągu arytmetycznego jest równa (-165), zatem

$$a_1 + a_2 + a_3 + \dots + a_{15} = -165$$

$$(a_8 - 7r) + (a_8 - 6r) + \dots + a_8 + \dots + (a_8 + 6r) + (a_8 + 7r) = -165$$

$$15a_8 = -165$$

$$a_8 = \frac{-165}{15} = -11$$

Korzystamy z własności ciągu arytmetycznego i otrzymujemy

$$a_8 = a_3 + 5r$$
$$-11 = -1 + 5r$$
$$r = -2$$

Różnica ciągu jest równa (-2).

Sposób V

Korzystamy z własności ciągu arytmetycznego i otrzymujemy równania:

$$a_8 = \frac{a_7 + a_9}{2}$$

$$a_8 = \frac{a_6 + a_{10}}{2}$$

$$a_8 = \frac{a_5 + a_{11}}{2}$$

$$a_8 = \frac{a_4 + a_{12}}{2}$$

$$a_8 = \frac{a_3 + a_{13}}{2}$$

$$a_8 = \frac{a_2 + a_{14}}{2}$$

$$a_8 = \frac{a_1 + a_{15}}{2}$$

Zatem

$$a_1 + a_2 + \dots + a_{14} + a_{15} = (a_1 + a_{15}) + (a_2 + a_{14}) + \dots + (a_7 + a_9) + a_8 =$$

= $15a_8 = -165$

Stąd $a_8 = -11$. Ponieważ

$$a_8 = a_3 + 5r$$

więc otrzymujemy

$$-11 = -1 + 5r$$
$$r = -2$$

Różnica ciągu jest równa (-2).

Zadanie 18. (0-2)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymagania szczegółowe
II. Wykorzystanie i tworzenie informacji.	Zdający:
1. Interpretowanie i operowanie	VII.1) wykorzystuje definicje funkcji []
informacjami przedstawionymi w tekście,	tangens dla kątów od 0° do 180° [];
zarówno matematycznym, jak	VII.2) korzysta z wzorów
i popularnonaukowym, a także w formie wykresów, diagramów, tabel.	$\sin^2 \alpha + \cos^2 \alpha = 1$, $\operatorname{tg} \alpha = \frac{\sin \alpha}{\cos \alpha}$.

Zasady oceniania

2 pkt – wybranie dwóch odpowiedzi, z których obie są poprawne.

1 pkt – wybranie jednej lub dwóch odpowiedzi, z których jedna jest poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Wersja A Wersja B BF CF

Zadanie 19. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymaganie szczegółowe
IV. Rozumowanie i argumentacja.	Zdający:
4. Stosowanie i tworzenie strategii przy	VII.2) korzysta z wzorów
rozwiązywaniu zadań, również w sytuacjach nietypowych.	$\sin^2 \alpha + \cos^2 \alpha = 1$, $\operatorname{tg} \alpha = \frac{\sin \alpha}{\cos \alpha}$.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Wersja A Wersja B A

Zadanie 20. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne Wymaganie szczegółowe	
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	VIII.7) stosuje twierdzenia: []
1. Stosowanie obiektów matematycznych	o dwusiecznej kąta [].
i operowanie nimi, interpretowanie pojęć	
matematycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Wersja A Wersja B

В

Zadanie 21. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymaganie szczegółowe
II. Wykorzystanie i tworzenie informacji.	Zdający:
Interpretowanie i operowanie	VIII.11) stosuje funkcje trygonometryczne
informacjami przedstawionymi w tekście,	do wyznaczania długości odcinków
zarówno matematycznym, jak	w figurach płaskich oraz obliczania pól figur.
i popularnonaukowym, a także w formie	
wykresów, diagramów, tabel.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Wersja A Wersja B D B

Zadanie 22. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymaganie szczegółowe
IV. Rozumowanie i argumentacja.	Zdający:
1. Przeprowadzanie rozumowań, także	VIII.5) stosuje własności kątów wpisanych
kilkuetapowych, podawanie argumentów	i środkowych.
uzasadniających poprawność rozumowania,	
odróżnianie dowodu od przykładu.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Wersja A Wersja B C D

Zadanie 23. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	IX.2) posługuje się równaniem prostej na
1. Stosowanie obiektów matematycznych	płaszczyźnie w postaci kierunkowej, w tym
i operowanie nimi, interpretowanie pojęć	wyznacza równanie prostej o zadanych
matematycznych.	własnościach (takich jak na przykład []
, ,	prostopadłość do innej prostej []).

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Wersja A Wersja B A C

Zadanie 24. (0-2)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymaganie szczegółowe
IV. Rozumowanie i argumentacja.4. Stosowanie i tworzenie strategii przy rozwiązywaniu zadań, również w sytuacjach nietypowych.	Zdający: IX.3) oblicza odległość dwóch punktów w układzie współrzędnych.

Zasady oceniania

2 pkt – zastosowanie poprawnej metody i obliczenie długości boku BC: $|BC| = \sqrt{52}$.

- 1 pkt zapisanie współrzędnych punktu C: C = (14,8) *ALBO*
 - zapisanie współrzędnych punktu D: D = (2,12), ALBO
 - zapisanie współrzędnych środka S boku AB: S = (4,4) oraz zapisanie równości |BC| = 2|PS|, ALBO
 - zapisanie równości $\overrightarrow{CB} = 2 \cdot \overrightarrow{PA} + \overrightarrow{AB}$ oraz obliczenie współrzędnych wektorów \overrightarrow{PA} i \overrightarrow{AB} : $\overrightarrow{PA} = [-8, -1]$ oraz $\overrightarrow{AB} = [12, -4]$, *ALBO*
 - obliczenie długości odcinków AB, AP oraz BP i cosinusa kąta α oraz cosinusa kąta $(180^\circ-\alpha)$, gdzie $\alpha=|\not APB|$: $|AB|=4\sqrt{10}$ oraz $|AP|=\sqrt{65}$, oraz $|BP|=\sqrt{41}$, oraz $\cos\alpha=-\frac{27}{\sqrt{65}\cdot\sqrt{41}}$, oraz $\cos(180^\circ-\alpha)=\frac{27}{\sqrt{65}\cdot\sqrt{41}}$.

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metode, albo brak rozwiązania.

Uwagi:

- 1. Jeżeli zdający korzysta z punktów kratowych oraz błędnie zaznaczy w układzie współrzędnych co najmniej jeden z punktów A, B, C, P i na tej podstawie oblicza długość odcinka BC, to otrzymuje 0 punktów za całe rozwiązanie (o ile nie nabył praw do innej punktacji).
- **2.** Jeżeli zdający korzysta z punktów kratowych oraz poprawnie zaznaczy w układzie współrzędnych punkty A, B, C, P, lecz błędnie odczyta współrzędne jednego z tych punktów, i na tej podstawie oblicza długość odcinka BC, to otrzymuje **1 punkt** za całe rozwiązanie.
- **3.** Jeżeli zdający obliczy długość odcinka *BC*, korzystając z przybliżonych wartości funkcji trygonometrycznych, to może otrzymać co najwyżej **1 punkt** za całe rozwiązanie.

Przykładowe pełne rozwiązania

Sposób I

Punkt P jest środkiem przekątnej AC. Ze wzoru na współrzędne środka odcinka otrzymujemy

$$\frac{-2 + x_c}{2} = 6$$
 oraz $\frac{6 + y_c}{2} = 7$

Zatem C = (14, 8).

Obliczamy długość odcinka BC:

$$|BC| = \sqrt{(14-10)^2 + (8-2)^2} = \sqrt{16+36} = \sqrt{52} = 2\sqrt{13}$$

Sposób II

Punkt P jest środkiem przekątnej BD. Ze wzoru na współrzędne środka odcinka otrzymujemy

$$\frac{10 + x_d}{2} = 6$$
 oraz $\frac{2 + y_d}{2} = 7$

Zatem D = (2, 12).

Obliczamy długość odcinka BC:

$$|BC| = |AD| = \sqrt{(2+2)^2 + (12-6)^2} = \sqrt{16+36} = \sqrt{52} = 2\sqrt{13}$$

Sposób III

Obliczamy współrzędne punktu S środka odcinka AB:

$$S = \left(\frac{-2+10}{2}, \frac{6+2}{2}\right)$$
$$S = (4,4)$$

Obliczamy długość odcinka BC:

$$|BC| = 2|PS| = 2\sqrt{(4-6)^2 + (4-7)^2} = 2\sqrt{4+9} = 2\sqrt{13}$$

Zadanie 25.1. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne Wymaganie szcze	
II. Wykorzystanie i tworzenie informacji.	Zdający:
1. Interpretowanie i operowanie	X.4) oblicza [] pola powierzchni
informacjami przedstawionymi w tekście,	graniastosłupów [].
zarówno matematycznym, jak	
i popularnonaukowym, a także w formie	
wykresów, diagramów, tabel.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Wersja A Wersja B

C

Zadanie 25.2. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymaganie szczegółowe
II. Wykorzystanie i tworzenie informacji.	Zdający:
1. Interpretowanie i operowanie	X.2) posługuje się pojęciem kąta między
informacjami przedstawionymi w tekście,	prostą a płaszczyzną.
zarówno matematycznym, jak	
i popularnonaukowym, a także w formie	
wykresów, diagramów, tabel.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Wersja A Wersja B D D

Zadanie 26. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne Wymaganie szczegółowe	
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	X.5) wykorzystuje zależność między
2. Dobieranie i tworzenie modeli	objętościami graniastosłupów oraz
matematycznych przy rozwiązywaniu	ostrosłupów podobnych.
problemów praktycznych i teoretycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

4

Zadanie 27. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	XI.2) zlicza obiekty, stosując reguły
2. Dobieranie i tworzenie modeli	mnożenia [].
matematycznych przy rozwiązywaniu	
problemów praktycznych i teoretycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Wersja A	Wersja B
C	D

Zadanie 28. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymaganie szczegółowe
IV. Rozumowanie i argumentacja. 2. Dostrzeganie regularności, podobieństw oraz analogii, formułowanie wniosków na ich podstawie i uzasadnianie ich poprawności.	Zdający: XII.2) oblicza średnią arytmetyczną [].

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Wersja A Wersja B

A

Zadanie 29. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymaganie szczegółowe
I. Sprawność rachunkowa.	Zdający:
Wykonywanie obliczeń na liczbach	XII.2) [] znajduje medianę [].
rzeczywistych, także przy użyciu	
kalkulatora, stosowanie praw działań	
matematycznych przy przekształcaniu	
wyrażeń algebraicznych oraz	
wykorzystywanie tych umiejętności przy	
rozwiązywaniu problemów w kontekstach	
rzeczywistych i teoretycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Wersja A Wersja B

C B

Zadanie 30. (0-2)

Wymagania egzaminacyjne 2024			
Wymaganie ogólne	Wymaganie szczegółowe		
III. Wykorzystanie i interpretowanie reprezentacji.	Zdający: XII.1) oblicza prawdopodobieństwo		
Dobieranie i tworzenie modeli matematycznych przy rozwiązywaniu problemów praktycznych i teoretycznych.	w modelu klasycznym.		

Zasady oceniania

- 2 pkt zastosowanie poprawnej metody obliczenia prawdopodobieństwa zdarzenia A i uzyskanie poprawnego wyniku: $P(A)=\frac{13}{25}$.
- 1 pkt wypisanie wszystkich zdarzeń elementarnych lub obliczenie/podanie liczby tych zdarzeń: $|\Omega|=5\cdot 5$ lub sporządzenie tabeli o 25 polach odpowiadających zdarzeniom elementarnym, z których co najmniej jedno pole jest wypełnione, lub sporządzenie pełnego drzewa stochastycznego ALBO
 - wypisanie (lub zaznaczenie w tabeli) wszystkich zdarzeń elementarnych sprzyjających zdarzeniu A i niewypisanie żadnego niewłaściwego,
 ALBO
 - podanie liczby wszystkich zdarzeń elementarnych sprzyjających zdarzeniu A: |A|=13, o ile nie zostały zliczone błędne pary, ALBO
 - sporządzenie fragmentu drzewa stochastycznego, które zawiera wszystkie gałęzie sprzyjające zdarzeniu A oraz zapisanie prawdopodobieństwa na co najmniej jednym odcinku każdego z etapów doświadczenia, ALBO
 - podanie prawdopodobieństwa jednoelementowego zdarzenia (elementarnego): $\frac{1}{25}$,
 - zapisanie tylko $P(A) = \frac{13}{25}$.

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Uwagi:

- **1.** Jeżeli zdający zapisuje tylko liczby 13 lub 25 i z rozwiązania nie wynika znaczenie tych liczb, to otrzymuje **0 punktów** za całe rozwiązanie.
- 2. Jeżeli zdający rozważa losowanie bez zwracania, to otrzymuje 0 punktów.

Przykładowe pełne rozwiązania

Sposób I

Zdarzeniami elementarnymi są wszystkie uporządkowane pary liczb (x, y), gdzie $x, y \in \{5, 6, 7, 8, 9\}$.

Liczbę wszystkich zdarzeń elementarnych obliczamy, korzystając z reguły mnożenia. Moc zbioru $\,\Omega\,$ jest równa $\,5\cdot 5=25.$

Liczbę wszystkich zdarzeń elementarnych sprzyjających zdarzeniu A obliczamy, korzystając z reguły mnożenia i reguły dodawania. Suma dwóch liczb naturalnych jest liczbą parzystą, gdy sumujemy dwie liczby parzyste lub dwie liczby nieparzyste. Stąd moc zbioru A jest równa $3 \cdot 3 + 2 \cdot 2 = 13$.

Zatem prawdopodobieństwo zdarzenia A jest równe $\frac{13}{25}$.

Sposób II

W tabeli literą A zaznaczamy zdarzenia elementarne sprzyjające zdarzeniu A (pary liczb, których suma jest liczbą parzystą).

	5	6	7	8	9
5	A		A		A
6		A		A	
7	A		A		A
8		A		A	
9	A		A		A

Moc zbioru Ω jest równa 25.

Zdarzeń sprzyjających wylosowaniu liczb, których suma jest parzysta, jest 13.

Zatem prawdopodobieństwo zdarzenia A jest równe $\frac{13}{25}$.

Sposób III (drzewo stochastyczne)

Rysujemy drzewo stochastyczne rozważanego doświadczenia.

Prawdopodobieństwo zdarzenia A jest równe

$$P(A) = \frac{2}{5} \cdot \frac{2}{5} + \frac{3}{5} \cdot \frac{3}{5} = \frac{13}{25}$$

Zadanie 31. (0-4)

Wymagania egzaminacyjne 2024			
Wymaganie ogólne	Wymaganie szczegółowe		
III. Wykorzystanie i interpretowanie reprezentacji.2. Dobieranie i tworzenie modeli matematycznych przy rozwiązywaniu problemów praktycznych i teoretycznych.	Zdający: XIII) rozwiązuje zadania optymalizacyjne w sytuacjach dających się opisać funkcją kwadratową.		

Zasady oceniania dla sposobów I–V

- 4 pkt poprawna metoda obliczenia obu wymiarów prostokąta oraz podanie poprawnego wyniku: x=4.5 m oraz y=3 m.
- 3 pkt zapisanie poprawnego wzoru na sumę pół trzech prostokątów jako funkcji zmiennej $\,x\,$ oraz obliczenie argumentu, dla którego ta funkcja przyjmuje wartość największą: $\,x=4.5\,$ m $\,ALBO\,$

– zapisanie poprawnego wzoru na sumę pół trzech prostokątów jako funkcji zmiennej $\,y\,$ oraz obliczenie argumentu, dla którego ta funkcja przyjmuje wartość największą: $\,y=3\,$ m,

ALBO

– zapisanie poprawnego wzoru na pole jednego prostokąta jako funkcji zmiennej $\,x\,$ oraz obliczenie argumentu, dla którego ta funkcja przyjmuje wartość największą: $\,x=4,5\,$ m,

ALBO

- zapisanie poprawnego wzoru na pole jednego prostokąta jako funkcji zmiennej y oraz obliczenie argumentu, dla którego ta funkcja przyjmuje wartość największą: y=3 m.
- 2 pkt zapisanie poprawnego wzoru na sumę pół trzech prostokątów w zależności od jednej zmiennej, np.: $P(x)=3x\left(6-\frac{2}{3}x\right),\ P(x)=x(18-2x),\ P(y)=3\left(9-\frac{3}{2}y\right)y$ ALBO
 - zapisanie poprawnego wzoru na pole jednego prostokąta w zależności od jednej zmiennej, np.: $P(x) = x \left(6 \frac{2}{3}x\right), \ P(y) = \left(9 \frac{3}{2}y\right)y.$
- 1 pkt zapisanie poprawnego związku między wymiarami jednego wybiegu a całkowitą długością siatki, np. 4x + 6y = 36.

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Uwagi:

- 1. Jeżeli zdający przyjmie P = kxy, gdzie k > 0 i k ≠ 1, i k ≠ 3, ale nie zapisze, że dla przyjętej wartości współczynnika k pole P osiąga wartość największą wtedy i tylko wtedy, gdy największą wartość osiąga iloczyn xy, to może otrzymać co najwyżej
 3 punkty (za zapisanie warunku początkowego, za obliczenie wymiaru x oraz obliczenie wymiaru y adekwatnie do obranego sposobu rozwiązania).
- **2.** Jeżeli zdający zapisze błędną zależność między wymiarami jednego wybiegu a całkowitą długością siatki, ale jest ona postaci ax + by = 36, gdzie $a, b \in \{2, 3, 4, 5, 6\}$, i rozwiąże zadanie konsekwentnie do końca, to może otrzymać co najwyżej **3 punkty** za całe rozwiązanie (za konsekwentne: wyznaczenie wzoru funkcji pola, obliczenie wymiaru x oraz obliczenie wymiaru y, adekwatnie do obranego sposobu rozwiązania).
- 3. Jeżeli zdający zapisze poprawnie warunek początkowy 4x + 6y = 36, a następnie sumę pól trzech prostokątów (lub pole jednego prostokąta) jako funkcję P jednej zmiennej i otrzyma wartość pierwszej współrzędnej wierzchołka paraboli zawierającej wykres funkcji P, która leży poza właściwą dziedziną funkcji P, to może otrzymać co najwyżej $\bf 2$ punkty za całe rozwiązanie (za zapisanie warunku początkowego i wzoru na sumę pól lub pole jednego prostokąta).
 - Jeżeli natomiast zdający zapisze błędny warunek początkowy, ale taki jak wymieniony w uwadze 2., a następnie konsekwentnie do tego warunku wyznaczy sumę pól trzech prostokątów (lub pole jednego prostokąta) jako funkcję P jednej zmiennej i otrzyma wartość pierwszej współrzędnej wierzchołka paraboli zawierającej wykres funkcji P, która

- leży poza dziedziną odpowiadającą wyznaczonej przez zdającego funkcji P, to może otrzymać co najwyżej **1 punkt** za całe rozwiązanie (za wyznaczenie wzoru funkcji P).
- **4.** Jeżeli zdający zapisze sumę pół trzech prostokątów (lub pole jednego prostokąta) jako funkcję *P* jednej zmiennej, a następnie obliczy wartości tej funkcji dla pierwszej współrzędnej wierzchołka i dwóch argumentów leżących symetrycznie względem pierwszej współrzędnej wierzchołka, i nie odwoła się do własności wykresu funkcji kwadratowej, to otrzymuje co najwyżej **3 punkty** za całe rozwiązanie.
- 5. Jeżeli zdający nie zapisze sumy pól trzech prostokątów (lub jednego prostokąta) jako funkcji jednej zmiennej, a jedynie oblicza wartości pola dla wybranych par liczb x oraz y i na tej podstawie wskazuje największą wartość pola, to za całe rozwiązanie otrzymuje 0 punktów, o ile nie nabył prawa do innej liczby punktów.
- **6.** Jeżeli zdający oblicza największą wartość funkcji *P*, korzystając z rachunku różniczkowego, i nie uzasadni, że w punkcie będącym miejscem zerowym pochodnej funkcji *P* jest największa wartość funkcji *P*, to może otrzymać co najwyżej **3 punkty** za całe rozwiązanie.
 - Za poprawne uzasadnienie, że w punkcie będącym miejscem zerowym pochodnej funkcji P jest największa wartość funkcji P, można uznać sytuację, gdy zdający bada znak pochodnej (np. szkicując wykres funkcji, która w ten sam sposób jak pochodna zmienia znak, i zaznaczając na rysunku, np. znakami "+" i "-", znak pochodnej) **oraz**:
 - -opisuje (słownie lub graficznie np. przy użyciu strzałek) monotoniczność funkcji $\,P\,$ LUB
 - zapisuje, że dla wyznaczonego miejsca zerowego pochodnej, funkcja $\,P\,\,$ ma maksimum lokalne i jest to jednocześnie jej największa wartość, LUB
 - zapisuje, że dla wyznaczonego miejsca zerowego pochodnej, funkcja P ma maksimum lokalne i jest to jedyne ekstremum tej funkcji.

Zasady oceniania dla sposobu VI

- 4 pkt poprawna metoda obliczenia obu wymiarów prostokąta oraz podanie poprawnego wyniku: x = 4,5 m oraz y = 3 m.
- 3 pkt zapisanie, że spośród prostokątów o danym obwodzie największe pole ma kwadrat oraz zapisanie układu równań $\begin{cases} 4x+6y=36 \\ 2x=3y \end{cases}$ oraz obliczenie x=4,5 m *ALBO*
 - zapisanie, że spośród prostokątów o danym obwodzie największe pole ma kwadrat oraz zapisanie układu równań $\begin{cases} 4x+6y=36 \\ 2x=3y \end{cases}$ oraz obliczenie y=3 m.
- 2 pkt zapisanie, że spośród prostokątów o danym obwodzie największe pole ma kwadrat oraz zapisanie układu równań $\begin{cases} 4x+6y=36\\ 2x=3y \end{cases}$
- 1 pkt zapisanie związku między wymiarami prostokąta, np. 4x + 6y = 36.
- 0 pkt rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Przykładowe pełne rozwiązania

Sposób I

Przyjmijmy oznaczenia jak na rysunku w zadaniu. Długość siatki użytej do wykonania ogrodzenia – po uwzględnieniu warunków zadania – można zapisać równaniem

$$4x + 6y = 36$$

Stąd wyznaczamy y: $y = 6 - \frac{2}{3}x$.

Z warunków zadania wynika, że

$$x > 0$$
 i $y > 0$

Niech P oznacza sumę pól podstaw trzech wybiegów.

Suma pól podstaw trzech wybiegów jest równa polu prostokąta o bokach długości x oraz 3y. Zatem

$$P = 3xy$$

Sumę pól podstaw trzech wybiegów zapisujemy jako funkcję jednej zmiennej x. W tym celu podstawiamy $y=6-\frac{2}{3}x$ i otrzymujemy

$$P(x) = 3x \left(6 - \frac{2}{3}x\right) = -2x^2 + 18x$$

Wyznaczamy dziedzinę funkcji P. Wykorzystamy związek między wymiarami x i y oraz wykorzystamy warunki, jakie te wymiary spełniają

$$y = 6 - \frac{2}{3}x > 0$$
 oraz $x > 0$

Zatem

$$x < 9$$
 oraz $x > 0$

Zmienna x może przyjmować wartości z przedziału (0,9).

Wykresem funkcji *P* jest fragment paraboli skierowanej ramionami do dołu. Obliczamy pierwszą współrzędną wierzchołka paraboli:

$$p = -\frac{18}{2 \cdot (-2)} = 4.5 \in (0,9)$$

Zatem funkcja *P* przyjmuje wartość największą dla argumentu 4,5.

Obliczamy drugi wymiar, dla którego suma pól podstaw trzech wybiegów jest największa

$$y = 6 - \frac{2}{3} \cdot 4.5 = 3$$

Suma pól podstaw trzech wybiegów jest największa, gdy: x = 4.5 m oraz y = 3 m.

Sposób II

Przyjmijmy oznaczenia jak na rysunku w zadaniu. Długość siatki użytej do wykonania ogrodzenia – po uwzględnieniu warunków zadania – można zapisać równaniem

$$4x + 6y = 36$$

Stąd wyznaczamy x: $x = 9 - \frac{3}{2}y$.

Z warunków zadania wynika, że

$$x > 0$$
 i $y > 0$

Niech P oznacza sumę pól podstaw trzech wybiegów.

Suma pól podstaw trzech wybiegów jest równa polu prostokąta o bokach długości x oraz 3y. Zatem

$$P = 3xy$$

Sumę pól podstaw trzech wybiegów zapisujemy jako funkcję jednej zmiennej y. W tym celu podstawiamy $x=9-\frac{3}{2}y$ i otrzymujemy

$$P(y) = 3\left(9 - \frac{3}{2}y\right)y = -\frac{9}{2}y(y - 6)$$

Wyznaczamy dziedzinę funkcji P. Wykorzystamy związek między wymiarami x i y oraz wykorzystamy warunki, jakie te wymiary spełniają

$$x = 9 - \frac{3}{2}y > 0$$
 oraz $y > 0$

Zatem

$$y < 6$$
 oraz $y > 0$

Zmienna y może przyjmować wartości z przedziału (0,6).

Wykresem funkcji *P* jest fragment paraboli skierowanej ramionami do dołu. Pierwsza współrzędna wierzchołka paraboli jest średnią arytmetyczną pierwiastków równania:

$$-\frac{9}{2}y(y-6) = 0$$

Zatem pierwsza współrzędna wierzchołka paraboli jest równa

$$p = \frac{0+6}{2} = 3 \in (0,6)$$

Zatem funkcja *P* przyjmuje wartość największą dla argumentu 3.

Obliczamy drugi wymiar, dla którego suma pól podstaw trzech wybiegów jest największa:

$$x = 9 - \frac{3}{2} \cdot 3 = 4,5$$

Suma pól podstaw trzech wybiegów jest największa, gdy: x = 4.5 m oraz y = 3 m.

Sposób III

Przyjmijmy oznaczenia jak na rysunku w zadaniu. Niech z oznacza łączną szerokość trzech wybiegów. Wtedy z=3y.

Długość siatki użytej do wykonanie ogrodzenia – po uwzględnieniu warunków zadania – można zapisać równaniem

$$4x + 2z = 36$$

Stąd wyznaczamy z: z = 18 - 2x.

Z warunków zadania wynika, że

$$x > 0$$
 i $z > 0$

Niech P oznacza sumę pól podstaw trzech wybiegów.

Suma pól podstaw trzech wybiegów jest równa polu prostokąta o bokach długości x oraz z. Zatem

$$P = xz$$

Sumę pól podstaw trzech wybiegów zapisujemy jako funkcję jednej zmiennej x. W tym celu podstawiamy z=18-2x i otrzymujemy

$$P(x) = x(18 - 2x) = -2x^2 + 18x$$

Wyznaczamy dziedzinę funkcji P. Wykorzystamy związek między wymiarami x i z oraz wykorzystamy warunki, jakie te wymiary spełniają

$$z = 18 - 2x > 0$$
 oraz $x > 0$

Zatem

$$x < 9$$
 oraz $x > 0$

Zmienna x może przyjmować wartości z przedziału (0,9).

Wykresem funkcji P jest fragment paraboli skierowanej ramionami do dołu. Obliczamy pierwszą współrzędną wierzchołka paraboli:

$$p = -\frac{18}{2 \cdot (-2)} = 4.5 \in (0,9)$$

Zatem funkcja *P* przyjmuje wartość największą dla argumentu 4,5.

Obliczamy drugi wymiar, dla którego suma pól podstaw trzech wybiegów jest największa:

$$z = 18 - 2 \cdot 4,5 = 18 - 9 = 9$$

$$y = \frac{z}{3} = \frac{9}{3} = 3$$

Suma pól podstaw trzech wybiegów jest największa, gdy x = 4.5 m oraz y = 3 m.

Sposób IV

Przyjmijmy oznaczenia jak na rysunku w zadaniu. Długość siatki użytej do wykonania ogrodzenia – po uwzględnieniu warunków zadania – można zapisać równaniem

$$4x + 6y = 36$$

Stąd wyznaczamy y: $y = 6 - \frac{2}{3}x$.

Z warunków zadania wynika, że

$$x > 0$$
 i $y > 0$

Niech P oznacza sumę pól podstaw trzech wybiegów.

Suma pól podstaw trzech wybiegów jest równa polu prostokąta o bokach długości x oraz 3y. Zatem

$$P = 3xy$$

Sumę pól podstaw trzech wybiegów zapisujemy jako funkcję jednej zmiennej x. W tym celu podstawiamy $y=6-\frac{2}{3}x$ i otrzymujemy

$$P(x) = 3x \left(6 - \frac{2}{3}x\right) = 2x(9 - x)$$

Wyznaczamy dziedzinę funkcji P. Wykorzystamy związek między wymiarami x i y oraz wykorzystamy warunki, jakie te wymiary spełniają

$$y = 6 - \frac{2}{3}x > 0$$
 oraz $x > 0$

Zatem

$$x < 9$$
 oraz $x > 0$

Zmienna x może przyjmować wartości z przedziału (0,9).

Z nierówności między średnią geometryczną i średnią arytmetyczną dla liczb dodatnich x i (9-x) otrzymujemy

$$\sqrt{x(9-x)} \le \frac{x+9-x}{2}$$

$$\sqrt{x(9-x)} \le 4.5$$

Stąd

$$x(9-x) \le 20,25$$

przy czym równość zachodzi tylko wtedy, gdy x = 9 - x, czyli dla x = 4,5. Zatem funkcja P przyjmuje wartość największą dla argumentu 4,5.

Obliczamy drugi wymiar, dla którego suma pól podstaw trzech wybiegów jest największa:

$$y = 6 - \frac{2}{3} \cdot 4,5 = 3$$

Suma pól podstaw trzech wybiegów jest największa, gdy: x = 4.5 m oraz y = 3 m.

Sposób V

Przyjmijmy oznaczenia jak na rysunku w zadaniu. Długość siatki użytej do wykonania ogrodzenia – po uwzględnieniu warunków zadania – można zapisać równaniem

$$4x + 6y = 36$$

Stąd wyznaczamy y: $y = 6 - \frac{2}{3}x$.

Z warunków zadania wynika, że

$$x > 0$$
 i $y > 0$

Niech P oznacza sumę pól podstaw trzech wybiegów.

Suma pól podstaw trzech wybiegów jest równa polu prostokąta o bokach długości x oraz 3y. Zatem

$$P = 3xy$$

Sumę pól podstaw trzech wybiegów zapisujemy jako funkcję jednej zmiennej x. W tym celu podstawiamy $y=6-\frac{2}{3}x$ i otrzymujemy

$$P(x) = 3x \left(6 - \frac{2}{3}x\right) = -2x^2 + 18x$$

Wyznaczamy dziedzinę funkcji P. Wykorzystamy związek między wymiarami x i y oraz wykorzystamy warunki, jakie te wymiary spełniają

$$y = 6 - \frac{2}{3}x > 0$$
 oraz $x > 0$

Zatem

$$x < 9$$
 oraz $x > 0$

Zmienna x może przyjmować wartości z przedziału (0,9).

Wyznaczamy pochodną funkcji P: P'(x) = -4x + 18 dla $x \in (0,9)$ Obliczamy miejsce zerowe pochodnej funkcji P:

$$P'(x) = 0$$
$$-4x + 18 = 0$$
$$x = 4.5 \in (0.9)$$

Badamy znak pochodnej:

$$P'(x) > 0$$
 dla $x \in (0, 4\frac{1}{2})$

$$P'(x) < 0 \text{ dla } x \in \left(4\frac{1}{2}, 9\right)$$

Zatem funkcja P jest rosnąca w przedziale $\left(0,4\frac{1}{2}\right]$ oraz malejąca w przedziale $\left[4\frac{1}{2},9\right)$. Stąd dla x=4,5 funkcja P osiąga wartość największą.

Obliczamy drugi wymiar, dla którego suma pól podstaw trzech wybiegów jest największa:

Egzamin maturalny z matematyki na poziomie podstawowym – termin główny 2024 r.

$$y = 6 - \frac{2}{3} \cdot 4.5 = 3$$

Suma pól podstaw trzech wybiegów jest największa, gdy: x = 4.5 m oraz y = 3 m.

Sposób VI

Rozważmy prostokąt o bokach długości 2x oraz 3y (jak na rysunku poniżej).

Obwód tego prostokąta jest równy długości siatki użytej do wykonania ogrodzenia wybiegów. Zatem obwód tego prostokąta jest równy 4x + 6y = 36.

Ze wszystkich prostokątów o danym obwodzie największe pole ma kwadrat.

Zatem pole rozważanego prostokąta będzie największe, gdy 2x = 3y.

Rozwiązujemy układ równań

$$\begin{cases} 4x + 6y = 36 \\ 2x = 3y \end{cases}$$

i otrzymujemy

$$\begin{cases} x = 4.5 \\ y = 3 \end{cases}$$

Pole tego prostokąta jest największe, gdy x = 4.5 oraz y = 3.

Pole tego prostokąta jest dwa razy większe od sumy pól podstaw trzech wybiegów. Stąd suma pól podstaw trzech wybiegów jest największa, gdy x = 4,5 m oraz y = 3 m.

Ocena prac osób ze stwierdzoną dyskalkulią

Obowiązują zasady oceniania stosowane przy sprawdzaniu prac zdających bez stwierdzonej dyskalkulii z dodatkowym uwzględnieniem:

- I. **ogólnych zasad oceniania** zadań otwartych w przypadku arkuszy osób ze stwierdzoną dyskalkulią (punkty 1.–12.);
- II. dodatkowych **szczegółowych zasad oceniania** zadań otwartych w przypadku arkuszy osób ze stwierdzoną dyskalkulią egzamin maturalny z matematyki, poziom podstawowy, termin główny 2024.

Ogólne zasady oceniania zadań otwartych w przypadku arkuszy osób ze stwierdzoną dyskalkulią

- 1. Nie należy traktować jako błędy merytoryczne pomyłek, wynikających z:
 - błędnego przepisania
 - przestawienia cyfr
 - zapisania innej cyfry, ale o podobnym wyglądzie
 - przestawienia położenia przecinka
 - przestawienia położenia znaku liczby.
- 2. W przypadku błędów, wynikających ze zmiany znaku liczby, należy w każdym zadaniu oddzielnie przeanalizować, czy zdający opanował inne umiejętności, poza umiejętnościami rachunkowymi, oceniane w zadaniu. W przypadku opanowania badanych umiejętności zdający powinien otrzymać przynajmniej 1 punkt.
- 3. We wszystkich zadaniach otwartych, w których wskazano poprawną metodę rozwiązania, części lub całości zadania, zdającemu należy przyznać przynajmniej 1 punkt, zgodnie z kryteriami do poszczególnych zadań.
- 4. Jeśli zdający przedstawia nieprecyzyjne zapisy, na przykład pomija nawiasy lub zapisuje nawiasy w niewłaściwych miejscach, ale przeprowadza poprawne rozumowanie lub stosuje właściwą strategię, to może otrzymać przynajmniej 1 punkt za rozwiązanie zadania.
- 5. W przypadku zadania wymagającego wyznaczenia pierwiastków trójmianu kwadratowego zdający może otrzymać 1 punkt, jeżeli przedstawi poprawną metodę wyznaczania pierwiastków trójmianu kwadratowego, przy podanych w treści zadania wartościach liczbowych.
- 6. W przypadku zadania wymagającego rozwiązania nierówności kwadratowej zdający może otrzymać 1 punkt, jeżeli stosuje poprawny algorytm rozwiązywania nierówności kwadratowej, przy podanych w treści zadania wartościach liczbowych.
- 7. W przypadku zadania wymagającego stosowania własności funkcji kwadratowej zdający może otrzymać 1 punkt za wykorzystanie konkretnych własności funkcji kwadratowej, istotnych przy poszukiwaniu rozwiązania.

- 8. W przypadku zadania wymagającego zastosowania własności ciągów arytmetycznych lub geometrycznych zdający może otrzymać 1 punkt, jeżeli przedstawi wykorzystanie takiej własności ciągu, która umożliwia znalezienie rozwiązania zadania.
- 9. W przypadku zadania wymagającego analizowania figur geometrycznych na płaszczyźnie kartezjańskiej zdający może otrzymać punkty, jeżeli przy poszukiwaniu rozwiązania przedstawi poprawne rozumowanie, wykorzystujące własności figur geometrycznych lub zapisze zależności, pozwalające rozwiązać zadanie.
- 10. W przypadku zadania z rachunku prawdopodobieństwa zdający może otrzymać przynajmniej 1 punkt, jeśli przy wyznaczaniu liczby zdarzeń elementarnych sprzyjających rozważanemu zdarzeniu przyjmuje określoną regularność lub podaje prawidłową metodę wyznaczenia tej liczby zdarzeń elementarnych.
- 11. W przypadku zadania z geometrii zdający może otrzymać przynajmniej 1 punkt, jeżeli podaje poprawną metodę wyznaczenia długości odcinka potrzebnej do znalezienia rozwiązania.
- 12. W przypadku zadania wymagającego przeprowadzenia dowodu (z zakresu algebry lub geometrii), jeśli w przedstawionym rozwiązaniu zdający powoła się na własność, która wyznacza istotny postęp, prowadzący do przeprowadzenia dowodu, to może otrzymać 1 punkt.
- II. <u>Dodatkowe **szczegółowe zasady oceniania** zadań otwartych w przypadku arkuszy osób ze stwierdzoną dyskalkulią</u>

Zadanie 3.

- 1 pkt zastosowanie wzoru skróconego mnożenia do wyrażenia $\,(n+1)^2\,$ ALBO
 - zastosowanie wzoru skróconego mnożenia do wyrażenia $(n+2)^2$, ALBO
 - przekształcenie wyrażenia $(n+1)^2$ do postaci $n^2+n+n+1$, *AI BO*
 - przekształcenie wyrażenia $(n+2)^2$ do postaci $n^2+2n+2n+4$.

Zadanie 9.

- 1 pkt przekształcenie wielomianu $x^3 2x^2 3x + 6$ do postaci $x^2(x-2) 3(x-2)$ lub $x(x^2-3) 2(x^2-3)$
 - zapisanie jednego z rozwiązań równania $x^3 2x^2 3x + 6 = 0$.

Zadanie 14.1.

Stosuje się zasady oceniania arkusza standardowego.

Zadanie 17.

1 pkt – zapisanie równania z dwiema niewiadomymi, gdzie jedną z niewiadomych jest różnica ciągu arytmetycznego, np.: $-1=a_1+2r, -165=\frac{2a_1+14r}{2}\cdot 15$.

Zadanie 24.

- 1 pkt poprawne zaznaczenie w kartezjańskim układzie współrzędnych punktu *C* AI BO
 - poprawne zaznaczenie w kartezjańskim układzie współrzędnych punktu D, ALBO
 - zapisanie współrzędnych środka S boku AB: S=(4,4).

Zadanie 26.

Stosuje się zasady oceniania arkusza standardowego.

Zadanie 30.

1 pkt – zapisanie jedynie liczby 25 (należy traktować to jako wyznaczenie liczby wszystkich zdarzeń elementarnych).

Uwagi:

- 1. W ocenie rozwiązania tego zadania (dla zdających z dyskalkulią) <u>nie stosuje się</u> uwagi 1. ze standardowych zasad oceniania.
- 2. Jeżeli zdający poprawnie wypisze/zaznaczy wszystkie zdarzenia elementarne sprzyjające zdarzeniu A, lecz popełni błąd w ich zliczeniu (np. |A|=12) i konsekwentnie zapisze wynik (np. $\frac{12}{25}$), to otrzymuje **2 punkty**.

Zadanie 31.

1 pkt – zapisanie x = 4.5 oraz y = 3.