Problèmes de flot maximum

Auteur: Julien David

Remerciements

Ce cours est basé sur celui d'Anthony Labarre, enseignant-chercheur à l'Université Gustave-Eiffel, qui a eu la gentillesse de me laisser utiliser ses supports de cours pour préparer celui-ci.

Problème de flot maximum

Problème On souhaite télécharger un fichier volumineux depuis un serveur distant ► Il existe de multiples chemins entre nous et le serveur. ► Entre chaque serveur, la bande passante n'est pas forcément la même. La question est donc: quelle est la vitesse maximale à laquelle on peut télécharger le fichier?

Contexte: les graphes orientés et pondérés

Definition

Graphe orienté pondéré

Un graphe orienté pondéré est un triplet G=(V,A,c) tel que

- ► *V* est l'ensemble des sommets,
- $\blacktriangleright \ A \subseteq V \times V$ est l'ensemble des arcs du graphe, i.e. un ensemble de couples de sommets.
- ▶ l'application $c: A \mapsto \mathbb{R}$ associe à chaque arc du graphe sa capacité.

Source et Puit

Application

Remarque

ViaMichelin, GoogleMaps, Waze

Lorsque vous utilisez un de ces logiciels:

- ▶ on parle de **poids** et non de **capacité** des arcs.
- ▶ il calcule le chemin de poids minimal d'une source à une destination.
- le graphe est **dynamique**, les poids sur les arcs varient dans le temps.

Application

Mais ce n'est pas le sujet d'aujourd'hui.

Réseau de flots

Réseau de flots

Flot: définition

Definition

Flot

Un flot dans un réseau de flot G=(V,A,c) est une fonction $f:V\times V\mapsto \mathbb{R}$ satisfaisant les deux propriétés suivantes:

- **1. Contrainte de capacité**: $\forall u, v \in V$, $0 \le f(u, v) \le c(u, v)$
- 2. Conservation des flots: $\forall u \in V \setminus \{s, p\}$, $\sum_{v \in V} f(u, v) = \sum_{v \in V} f(v, u)$

Flot: exemple

Pour chaque arc, le flot est noté en bleu et la capacité en noir.

Flot: contrainte de capacité

Contrainte de capacité: $\forall u, v \in V$, $0 \le f(u, v) \le c(u, v)$ Le flot d'un arc est toujours inférieur ou égal à la capacité de l'arc.

9/65

Flot: conservation des flots

Conservation des flots: $\forall u \in V \setminus \{s,p\}$, $\sum_{v \in V} f(u,v) = \sum_{v \in V} f(v,u)$ Le flot total entrant dans chaque sommet est égal au flot total en sortie.

Arc saturé

Definition Arc saturé par un flot Soit un réseau de flot G=(V,A,c) muni d'un flot f. On dit qu'un arc $(u,v)\in A$ est **saturé** par le flot f si f(u,v)=c(u,v).

Arcs saturés: exemple

Flot: valeur

Definition Valeur d'un flot Soit un réseau de flot G=(V,A,c), une soit

Soit un réseau de flot G=(V,A,c), une source $s\in V$ et un puits $p\in V.$ La valeur d'un flot f est

$$|f| = \sum_{v \in V} f(s, v) - f(v, s)$$

Flot: valeur

Definition

Valeur d'un flot

Soit un réseau de flot G=(V,A,c), une source $s\in V$ et un puits $p\in V.$ La valeur d'un flot f est

$$|f| = \sum_{v \in V} f(s, v) - f(v, s)$$

Remarque

Compliqué pour rien?

La partie -f(v,s) peut sembler inutile pour le moment puisque le sommet s n'a pas d'arc entrant, mais prendra du sens par la suite.

Flot: contrainte de capacité

$$|f| = \sum_{v \in V} f(s, v) - f(v, s) = 11 + 8 - 0 = 19$$

Problème de flot: version formelle

Explication L'idée générale

- ► On construit le flot maximal en partant d'un flot nul et en l'augmentant progressivement.
- ► On augmente le flot le long d'un chemin, un chemin à la fois.
- ► Un tel chemin est appelé chemin augmentant.
- ▶ si le flot change, la capacité des arcs du réseau peut-être modifiée. On parle de capacité résiduelle.

Explication L'idée générale

- ► On construit le flot maximal en partant d'un flot nul et en l'augmentant progressivement.
- ▶ On augmente le flot le long d'un chemin, un chemin à la fois.
- ► Un tel chemin est appelé **chemin augmentant**.
- ▶ si le flot change, la capacité des arcs du réseau peut-être modifiée. On parle de capacité résiduelle.
- si la capacité des arcs change, le réseau change également. On parle de réseau résiduel.

Idée (incomplète) de réseau résiduel

A 3 5 F

Réseau muni d'un flot

Réseau résiduel (incomplet)

Idée (incomplète) de réseau résiduel

Réseau muni d'un flot

Problème: le flot actuel n'est pas maximum, or il n'existe plus de chemin de A à F. On a perdu la trace des flots précédement utilisés, qui ne peuvent plus être redirigés.

Réseau résiduel (incomplet)

Flot: capacité résiduelle

Definition

Capacité résiduelle

Soit un réseau de flot G=(V,A,c) muni d'un flot f.

La fonction $c_f:A\times A\mapsto \mathbb{R}$ appelée capacité résiduelle est définie comme suit. Pour tout couple de sommet $u,v\in A$:

$$c_f(u,v) = \begin{cases} c(u,v) - f(u,v), \text{ si } (u,v) \in A \\ f(u,v), \text{ si } (v,u) \in A \\ 0, \text{ sinon} \end{cases}$$

Flot: capacité résiduelle

Definition

Capacité résiduelle

Soit un réseau de flot G=(V,A,c) muni d'un flot f.

La fonction $c_f: A \times A \mapsto \mathbb{R}$ appelée capacité résiduelle est définie comme suit. Pour tout couple de sommet $u, v \in A$:

$$c_f(u,v) = \begin{cases} c(u,v) - f(u,v), \text{ si } (u,v) \in A \\ f(u,v), \text{ si } (v,u) \in A \\ 0, \text{ sinon} \end{cases}$$

Remarque

Apparition

Un couple (u,v) peut donc avoir une capacité résiduelle même si $(u,v) \notin A$.

Réseau résiduel

Definition

Réseau résiduel

Soit un réseau de flot G=(V,A,c) muni d'un flot f.

On définit $G_f = (V, A_f, c_f)$, le <u>réseau résiduel</u> de G muni de f, tel que:

- ightharpoonup V est l'ensemble des sommets de G.
- $ightharpoonup c_f$ est la capacité résiduelle de G muni de f.
- $ightharpoonup A_F$ est l'ensemble d'arêtes défini comme suit:

$$A_f = \{(u, v) \in V \times V \mid c_f(u, v) > 0\}$$

Réseau résiduel: exemple

Réseau résiduel de ${\cal G}$ muni de f.

Chemin augmentant

Soit un réseau résiduel $G_f=(V,A_f,c_f)$, une source $s\in V$ et un puits $p\in V$. Un chemin augmentant est un chemin simple P de S à t dans G_f .

^achaque sommet est visité au plus une fois

Chemin P = ((A, C), (C, D), (D, F))

Capacité d'un chemin augmentant

Definition Capacité d'un chemin augmentant

Soit un réseau résiduel $G_f=(V,A_f,c_f)$, et un chemin augmentant P de s à t. La capacité du chemin P, notée $c_f(P)$, est égale à

$$c_f(P) = min_{(u,v) \in P} c_f(u,v)$$

soit la capacité résiduelle minimale des arcs de P.

Chemin P = ((A,C),(C,D),(D,F)) Capacité $c_f(P) = \mathbf{4}$

Flot d'un chemin augmentant

Definition H Flot d'un chemin augmentant

Soit un réseau résiduel $G_f=(V,A_f,c_f)$, et un chemin augmentant P de s à t. Le flot associé au chemin P, noté f_P , est donné par:

$$f_P(u,v) = egin{cases} c_f(P), \ \mathsf{si} \ (u,v) \in P \\ 0, \ \mathsf{sinon} \end{cases}$$

Augmentation d'un flot

Réseau résiduel associé

Augmentation d'un flot

Réseau résiduel

Flot du chemin augmentant sur le réseau résiduel.

Augmentation d'un flot

Réseau résiduel

Flot du chemin augmentant sur le réseau résiduel.

Augmentation d'un flot

Réseau résiduel

Flot du chemin augmentant sur le réseau résiduel.

Flot augmenté

Augmenter le flot sur (C,D) signifie en réalité le diminuer sur (D,C)

Méthode de Ford-Fulkerson: Algorithme

Algorithme: FordFulkerson(G)

```
\label{eq:continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous
```

Augmentation d'un flot

Algorithme : augmenterFlot(f, P)

```
\label{eq:problem} \begin{split} & \textbf{Entrées}: \text{ un flot } f, \text{ un chemin } P \\ & \textbf{Sortie} \quad : \text{ un flot augmenté} \\ & capacite\_min \leftarrow \min\{c(u,v) \mid (u,v) \in P\}; \\ & \textbf{pour tous les } \underbrace{(u,v) \in f}_{\textbf{alors}} \text{ alors} \\ & \boxed{ \begin{array}{c} \textbf{si } (u,v) \in f \text{ alors} \\ \hline f(u,v) \leftarrow f(u,v) + capacite\_min; \\ \textbf{fin} \\ \textbf{sinon} \\ & \boxed{ \begin{array}{c} f(v,u) \leftarrow f(v,u) - capacite\_min; \\ \textbf{fin} \\ \textbf{fin} \\ \textbf{fin} \\ \textbf{return } f; \\ \end{matrix} \end{split}}
```

Augmentation d'un flot

Algorithme : augmenterFlot(f, P)

Mise à jour du réseau résiduel

```
\begin{array}{l} \text{Entr\'ees}: \text{Un r\'eseau r\'esiduel } G_f = (V, A_f, c_f), \text{ un chemin } P, \text{ un flot } f_P \\ \text{Sortie} : \text{Un r\'eseau r\'esiduel } G_f \mod \text{ifie} \\ \text{pour tous les } \underbrace{(u,v) \in P}_{\text{faire}} \text{ alors} \\ c_f(u,v) \leftarrow c_f(u,v) - f_P(u,v); \\ \text{si } c_f(u,v) = 0 \text{ alors} \\ \hline A_f = A_f \setminus \{(u,v)\}; \\ \text{fin} \\ \text{si } c_f(v,u) = 0 \text{ alors} \\ \hline A_f = A_f \cup \{(v,u)\}; \\ \text{fin} \\ c_f(v,u) \leftarrow f_P(u,v); \\ \text{fin} \\ \text{return } G_f = (V,A_f,c_f); \end{array}
```

Mise à jour du réseau résiduel

$\textbf{Algorithme}: mettre A Jour Residuel (G, G_f, P, flot)$

```
\begin{array}{l} \text{Entr\'ees}: \text{Un r\'eseau r\'esiduel } G_f = (V, A_f, c_f), \text{ un chemin } P, \text{ un flot } f_P \\ \text{Sortie} : \text{Un r\'eseau r\'esiduel } G_f \mod \text{ifi\'e} \\ \text{pour tous les } \underbrace{(u,v) \in P}_{faire} = \underbrace{c_f(u,v) \leftarrow c_f(u,v) - f_P(u,v)}_{c_f(u,v) = 0} \text{ alors} \\ & A_f = A_f \setminus \{(u,v)\}; \\ \text{fin} & \text{si } \underbrace{c_f(v,u) = 0}_{A_f = A_f} \cup \{(v,u)\}; \\ & \text{fin} & \\ & c_f(v,u) \leftarrow f_P(u,v); \\ \end{array}
```

return $G_f = (V, A_f, c_f)$;

Méthode de Ford-Fulkerson

Problème

Détail manquant

La méthode de Ford-Fulkerson ne précise pas comment trouver les chemins augmentant.

- ► Il est donc possible de construire plusieurs algorithmes à l'aide de cette méthode.
- ► Sa complexité va dépendre de l'algorithme qui permet de trouver un chemin augmentant et de combien de fois il faudra trouver un chemin augmentant
- ► Mais il faut également montrer que cette méthode calcule bien un flot maximum

On va faire 2×10^6 chemins augmentants pour un graphe de $5~{\rm arcs}\,\dots$

L'_{1972} approche d'Edmonds-Karp

L'approche d'Edmonds-Karp

Explication L'approche d'Edmonds-Karp Edmonds et Karp proposent un méthode pour trouver un chemin augmentant.

Il s'agit d'un simple parcours en largeur permettant de trouver un plus court chemin de s à tNous avons vu cet algorithme en L3 et connaissons déjà sa complexité: $\Theta(|A|)$

Construction d'un chemin augmentant: algorithmes

```
Algorithme : cheminAugmentant(G_f) =
(V, A_f, c_f)
Entrées: Un réseau résiduel G_f = (V, A_f, c_f), deux sommets s et p
Sortie : un chemin augmenté P
f \leftarrow File(s):
parent \leftarrow Tableau initialisé à None;
parent[s] = s;
tant que f n'est pas vide et top(f) \neq p faire
     (f, u) \leftarrow defiler(f);
     pour tous les v voisins de u faire
           si parent[v] == None alors
                 parent[v] \leftarrow u;
                  f \leftarrow enfiler(f, v):
/* On reconstruit le chemin */
chemin ← []:
v \leftarrow p:
tant que v \neq s faire
     Ajouter (parent[v], v) au début de chemin;
     v \leftarrow parent[v]:
return chemin;
```

Construction d'un chemin augmentant: algorithmes

```
Algorithme : cheminAugmentant(G_f) =
(V, A_f, c_f)
Entrées: Un réseau résiduel G_f = (V, A_f, c_f), deux sommets s et p
Sortie : un chemin augmenté P
f \leftarrow File(s):
parent \leftarrow Tableau initialisé à None;
parent[s] = s;
tant que f n'est pas vide et top(f) \neq p faire
      (f, u) \leftarrow defiler(f);
      pour tous les v voisins de u faire
            si pare \overline{nt[v]} == None alors
                  parent[v] \leftarrow u:
                  f \leftarrow enfiler(f, v):
/* On reconstruit le chemin */
chemin ← []:
v \leftarrow p:
tant que v \neq s faire
      Ajouter (parent[v], v) au début de chemin;
      v \leftarrow parent[v]:
```

return chemin;

Plus de chemin possible de A vers D.

On a trouvé le flot max en ajoutant seulement 2 chemins.

Pourquoi ça marche?

L'idée

Explication

- ➤ On veut montrer que, lorsqu'un graphe résiduel ne contient plus de chemin augmentant de la source vers le puits, alors on a atteint un flot maximum.
- ▶ Pour cela, on va passer par une notion intermédiaire: les coupes.

Coupe

Definition

Coupe

Soit un réseau de flot G=(V,A,c) muni d'une source s et un puits p. Une coupe (S,P) est une partition de V en deux sous-ensembles tels que

- $ightharpoonup s \in S$
- $ightharpoonup p \in P$

Coupe: exemple

Coupe et flot

On veut relier la notion de coupe à la notion de flot.

On va donc définir:

- ► le flot associé à une coupe
- ► la capacité d'une coupe

et montrer les liens entre flots, coupes et graphes résiduels.

Flot associé à une coupe

Definition

Flot associé à une coupe

Soit un réseau de flot G=(V,A,c) muni d'une source s, d'un puits p et d'une coupe (S,P). Le flot associé à la coupe (S,P) est le flot circulant entre les arcs entre en S et P

$$f(S,P) = \sum_{u \in S} \sum_{v \in P} f(u,v) - \sum_{u \in S} \sum_{v \in P} f(v,u)$$

Coupe: exemple

$$f(S,P) = \sum_{u \in S} \sum_{v \in P} f(u,v) - \sum_{u \in S} \sum_{v \in P} f(v,u) = 12 + 11 - 4 = 19$$

Flot associé à une coupe

Remarque Flot associé à une coupe Soit un réseau de flot G = (V, A, c) muni d'une source s, d'un puits p d'un flot f. ightharpoonup pour tout $S \subseteq V$, on a f(S,S) = 0, \blacktriangleright pour tout $S, P \subseteq V$, on a f(S, P) = -f(P, S)

Flot associé à une coupe

Remarque

Flot associé à une coupe

Soit un réseau de flot G=(V,A,c) muni d'une source s, d'un puits p d'un flot f.

- ightharpoonup pour tout $S\subseteq V$, on a f(S,S)=0,
- ightharpoonup pour tout $S,P\subseteq V$, on a f(S,P)=-f(P,S)

Le principe de conservation des flots:

$$\forall u \in V \setminus \{s, p\}, \sum_{v \in V} f(u, v) = \sum_{v \in V} f(v, u)$$

Lemme

Soit un réseau de flot G=(V,A,c) muni d'un flot f et d'une coupe (S,P). On a

$$|f| = f(S, P)$$

autrement dit, la valeur du flot f est égale au flot associé toute coupe.

Coupe: exemple

$$f(S,P) = \sum_{u \in S} \sum_{v \in P} f(u,v) - \sum_{u \in S} \sum_{v \in P} f(v,u) = 12 + 11 - 4 = 19$$

Coupe: exemple

$$f(S,P) = \sum_{u \in S} \sum_{v \in P} f(u,v) - \sum_{u \in S} \sum_{v \in P} f(v,u) = 12 + 7 + 4 - 4 = 19$$

Lemme

Soit un réseau de flot G=(V,A,c) muni d'un flot f et d'une coupe (S,P). On a

$$|f| = f(S, P)$$

autrement dit, la valeur du flot f est égale au flot associé toute coupe.

Lemme

Soit un réseau de flot G=(V,A,c) muni d'un flot f et d'une coupe (S,P). On a

$$|f| = f(S, P)$$

autrement dit, la valeur du flot f est égale au flot associé toute coupe.

Explication |

L'idée de la preuve

Formule de la valeur d'un flot

$$|f| = \sum_{v \in V} f(s, v) - f(v, s)$$

Valeur des flots allant de la source à un sommet v moins la valeur des flots allant de sommets v à la source.

Lemme

Soit un réseau de flot G=(V,A,c) muni d'un flot f et d'une coupe (S,T). On a

$$|f| = f(S, T)$$

autrement dit, la valeur du flot f est égale au flot associé toute coupe.

Explication H

L'idée de la preuve

Flot associé à une coupe

$$f(S,P) = \sum_{u \in S} \sum_{v \in P} f(u,v) - \sum_{u \in S} \sum_{v \in P} f(v,u)$$

Valeur du flot partant du sommet S, vers le puits, moins la valeur du flot allant du puits à la source.

Capacité d'une coupe

Definition Capacité d'une coupe

Soit un réseau de flot G=(V,A,c) muni d'une source s, d'un puits p et d'une coupe (S,P). La capacité de la coupe (S,P) est la somme des capacités des arcs de S vers T

$$c(S, P) = \sum_{u \in S} \sum_{v \in P} c(u, v)$$

Soit un réseau de flot G=(V,A,c). Pour tout flot f et toute coupe V=(S,P) on a $|f| \leq c(S,P)$

Lemme

Soit un réseau de flot G = (V, A, c).

Pour tout flot f et toute coupe V=(S,P) on a

$$|f| \le c(S, P)$$

$$|f| = f(S,T) \tag{Lemme précédent}$$

$$= \sum_{u \in S} \sum_{v \in P} f(u,v) - \sum_{u \in S} \sum_{v \in P} f(v,u) \tag{Définition du flot associé à une coupe}$$

$$\leq \sum_{u \in S} \sum_{v \in P} f(u,v) \leq \sum_{u \in S} \sum_{v \in P} c(u,v)$$

$$= c(S,P) \tag{Définition de la capacité d'une coupe}$$

Coupe-Min

Definition \vdash Coupe minimum

Soit un réseau de flot G=(V,A,c) muni d'une source s, d'un puits p et d'une coupe (S,P). La coupe (S,P) est **minimum** si pour toute coupe (S',P') de G, on a

$$c(S, P) \le c(S', P')$$

Une coupe min indique donc la capacité minimum à retirer du graphe afin qu'il n'y ait plus de chemin de s à p.

- ▶ Soit un réseau de flot G = (V, A, c) muni d'un flot f et d'un graphe résiduel G_f .
- ▶ Soit une coupe $V = (S, V \setminus S)$ où S est l'ensemble des sommets accessible depuis S dans G_f .
- \blacktriangleright Si G_f ne contient pas de chemin augmentant, alors $(S,V\setminus S)$ est une coupe minimum.
- ▶ Si G_f ne contient pas de chemin augmentant, les seuls arcs entre S et $V \setminus S$ vont de $V \setminus S$ à S.

- ▶ Soit un réseau de flot G = (V, A, c) muni d'un flot f et d'un graphe résiduel G_f .
- ▶ Soit une coupe $V = (S, V \setminus S)$ où S est l'ensemble des sommets accessible depuis S dans G_f .
- ▶ Si G_f ne contient pas de chemin augmentant, alors $(S, V \setminus S)$ est une coupe minimum.

- ▶ Soit un réseau de flot G = (V, A, c) muni d'un flot f et d'un graphe résiduel G_f .
- ▶ Soit une coupe $V = (S, V \setminus S)$ où S est l'ensemble des sommets accessible depuis S dans G_f .
- ▶ Si G_f ne contient pas de chemin augmentant, alors $(S, V \setminus S)$ est une coupe minimum.
- ▶ Cas (a) Pour tout arc (v, u) de $V \setminus S$ à S dans G, on a f(v, u) = 0 (sinon (u,v) est dans G_f , mais on vient de dire que c'est impossible)

- ▶ Soit un réseau de flot G = (V, A, c) muni d'un flot f et d'un graphe résiduel G_f .
- ▶ Soit une coupe $V = (S, V \setminus S)$ où S est l'ensemble des sommets accessible depuis S dans G_f .
- ▶ Si G_f ne contient pas de chemin augmentant, alors $(S, V \setminus S)$ est une coupe minimum.
- ▶ Cas (b) Pour tout arc (u, v) de S à $V \setminus S$ dans G, on a f(v, u) = c(u, v) (sinon (u, v) est dans G_f , mais on vient de dire que c'est impossible)

Coupe-min

- ▶ Cas (a) Pour tout arc (v, u) de $V \setminus S$ à S dans G_f , on a f(v, u) = 0 (sinon (u,v) est dans G_f , mais on vient de dire que c'est impossible)
- ▶ Cas (b) Pour tout arc (u,v) de S à $V\setminus S$, on a f(v,u)=c(u,v) (sinon (u,v) est dans G_f , mais on vient de dire que c'est impossible)

Coupe-min

- ▶ Cas (a) Pour tout arc (v, u) de $V \setminus S$ à S dans G_f , on a f(v, u) = 0 (sinon (u,v) est dans G_f , mais on vient de dire que c'est impossible)
- ▶ Cas (b) Pour tout arc (u,v) de S à $V\setminus S$, on a f(v,u)=c(u,v) (sinon (u,v) est dans G_f , mais on vient de dire que c'est impossible)

$$|f|=f(S,T) \qquad \qquad \text{(Lemme précédent)}$$

$$=\sum_{u\in S}\sum_{v\in P}f(u,v)-\sum_{u\in S}\sum_{v\in P}f(v,u) \qquad \qquad \text{(Définition du flot associé à une coupe)}$$

$$=\sum_{u\in S}\sum_{v\in P}f(u,v) \qquad \qquad Cas(a)$$

$$=\sum_{u\in S}\sum_{v\in P}c(u,v) \qquad \qquad Cas(b)$$

$$=c(S,P) \qquad \qquad \text{(Définition de la capacité d'une coupe)}$$

On a donc |f|=c(S,P), ce qui, d'après le Lemme précédent, est la valeur minimum car $|f|\leq c(S,P)$.

Théorème

max-flow min-cut (Ford-Fulkerson 1954)

Soit un réseau de flot G=(V,A,c) muni d'une source s, d'un puits p et d'un flot f. Les propositions suivantes sont équivalentes:

- 1. f est un flot maximum,
- 2. le réseau résiduel G_f ne contient pas de chemin augmentant,
- **3.** il existe une coupe (S, P) pour G telle que |f| = c(S, P).

Soit un réseau de flot G=(V,A,c) muni d'une source s, d'un puits p et d'un flot f. Les propositions suivantes sont équivalentes: 1. f est un flot maximum, 2. le réseau résiduel G_f ne contient pas de chemin augmentant, 3. il existe une coupe (S,P) pour G telle que |f|=c(S,P).

 $lackbox{(1\Longrightarrow2)}: \ \ {
m si}\ G_f$ contensit un chemin augmentant, alors il sersit possible d'augmenter le flot, qui ne sersit pas maximum.

Théorème max-flow min-cut (Ford-Fulkerson 1954)

Soit un réseau de flot G=(V,A,c) muni d'une source s, d'un puits p et d'un flot f. Les propositions suivantes sont équivalentes:

- **1.** f est un flot maximum,
- 2. le réseau résiduel G_f ne contient pas de chemin augmentant,
- **3.** il existe une coupe (S,T) pour G telle que |f|=c(S,T).
- $(2 \Longrightarrow 3)$: si G_F ne contient pas de chemin augmentant, alors on peut obtenir une coupe min en prennant S comme étant l'ensemble des sommets que l'on peut atteindre depuis s.

Théorème max-flow min-cut (Ford-Fulkerson 1954)

Soit un réseau de flot G=(V,A,c) muni d'une source s, d'un puits p et d'un flot f. Les propositions suivantes sont équivalentes:

- 1. f est un flot maximum,
- 2. le réseau résiduel G_f ne contient pas de chemin augmentant,
- **3.** il existe une coupe (S,T) pour G telle que |f|=c(S,T).
- ▶ $(3 \Longrightarrow 1)$: on sait grâce au dernier Lemme, que la valeur de tout flot f est inférieure à c(S,T). S'il existe une coupe telle que |f|=c(S,T) alors le flot est maximum.

Complexité de Ford-Fulkerson avec la méthode d'Edmonds-Karp

Lemme

Dans un réseau de flot G=(V,A,c), le nombre maximum de chemins augmentant découvert par la méthode de Edmonds-Karp est $\mathcal{O}(|V|\times |A|)$.

Explication

L'idée est la suivante:

- ► A chaque fois que l'on calcule un chemin augmentant, une arête du graphe est saturée. La distance entre la source et cet arc saturé augmente.^a
- \blacktriangleright Sur un chemin augmentant, la distance entre la source et un arc saturé est au plus |V|
- lacktriangle chaque arc de A peut donc être saturé au plus |V| fois.

^apreuve par l'absurde

Complexité de Ford-Fulkerson avec la méthode d'Edmonds-Karp

Algorithme de Dinitz

Théorème 1970

Dinitz est en réalité le premier à décrire l'algorithme de Edmonds-Karp, mais en Russie, avant la chute du rideau de fer. Il décrit ensuite une amélioration en $\mathcal{O}(|V|^2 \times |A|)$

Mise en pratique

Appliquons l'algorithme sur l'exemple suivant:

On indiquera un flot maximum et une coupe minimum.