Application of TDMI on Analyzing Neural Data(II)

Kyle Chen

May 23

Review about last talk

Definition of entropy and (time-delayed) mutual information

$$I(X;Y,\tau) = I(X_t;Y_{t+\tau}) = \sum_{x \in X_t} \sum_{y \in Y_{t+\tau}} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$$

TDMI between Gaussian random variables

$$\begin{cases} X_n = \alpha X_{n-1} + \varepsilon_n \\ Y_n = \beta Y_{n-1} + \xi X_{n-1} + \eta_n \end{cases} \qquad \text{for } \alpha < 1, \beta < 1 \text{ and } n \gg 1:$$

$$I(X,Y) = -\frac{1}{2}log(1-\rho^2) \qquad \rho(\xi)^2 = \begin{cases} \frac{\xi^2}{(1-\alpha^2)^2 + \xi^2(1+\alpha^2)} & \alpha = \beta \\ \frac{\xi^2(1-\beta^2)}{(1-\alpha\beta)^2(1-\alpha^2) + \xi^2(1-(\alpha\beta)^2)} & \alpha \neq \beta \end{cases}$$

TDMI analysis in two-neuron system

- Mutual information estimation scheme
- Fake signal in in-directed connected neural pairs

Outline

Mutual information estimation

Deviation of numerically calculated MI value away from true (theoretical) value

TDMI implies neuronal connecting pattern in networks:

- The difference of magnitude of TDMI signal between different neuronal pairs
- Fake signal in in-directed connected neural pairs

Numerical demo of TDMI analysis between spike train and local field potential

Mutual Information Estimation

$$I_{true}(X;Y) = \iint\limits_{x,y} f(x,y) \log \frac{f(x,y)}{f(x)f(y)} dxdy$$

$$I_{est}(X;Y) = \sum\limits_{x_i \in X} \sum\limits_{y_j \in Y} P(x_i,y_j) \log \frac{P(x_i,y_j)}{P(x_i)p(y_j)}$$

$$Approximation$$

$$I_{true}(X;Y) = \sum\limits_{x_i} \sum\limits_{y_i} \int\limits_{x_i} f(x_i^c, y_j^c) \log \frac{f(x_i^c, y_j^c)}{f(x_i^c)f(y_j^c)} \Delta x \Delta y$$

For Gaussian case:
$$\Delta I = I_{true} - I_{est} = \sum_{x_i} \sum_{y_j} P(x_i, y_j) \left(\frac{df_x}{dx} c_i + \frac{df_y}{dy} c_j\right) + O(h^3)$$

For spike-LFP case:
$$\Delta I = \boxed{h^2 \left[\sum_{x_i}^{\{0,1\}} \sum_{y_j} \frac{\partial f_{xy}}{\partial y} \bigg|_{x=x_i} c_{ij} log \frac{P(x_i, y_j)}{P(x_i)P(y_j)} + \sum_{x_i}^{\{0,1\}} P(x_i, y_j) \left(\frac{\partial f_{xy}}{\partial y} \bigg|_{x=x_i} c_{ij} - \frac{df_y}{dy} \hat{c}_{ij} \right) \right] + O(h^3)}$$

Mutual Information Estimation

R = 0.99431e-5 data square fitting 3.5 3.0 Deviation(l_true - l_obs) 1.0 0.5 0.0 0.8 1.0 0.2 0.4 0.6 1e-2 Binsize

Gaussian case

Spike-LFP case

TDMI implies neuronal connecting pattern in networks

Previously: two neuron

Now: 100 neuron in a network

Network consisting 100 I&F neurons

Conductance-based Integrate-and-fire model:

$$C\frac{dv}{dt} = -g_l(v - \epsilon_l) - g_Q(v - \epsilon_Q) \qquad Q \in \{e, i\}$$

$$g_Q = S_Q \sum_{j,t \ge t_j} \exp(-\frac{t - t_j}{\tau_Q})$$

Network Setups

- 100 excitatory neurons
- Connectivity probability(p):
 Randomly connected by 20%
- Homogeneous Poisson input rate(ν):
 1.3 kHz
- Poisson strength(f):

5e-3 (Roughly 0.5mV EPSP for 15mV subthreshold range of voltage)

Refractory period = 2ms
Time constant of g = 2ms
Time delay of synaptic interactions = 0 ms

Normal case

0.0—8 —6 —4 —2 0 2 4 6 8 Delay Time(ms)		
Parameters	Values	
L	1e7	
Recording rate	2 /ms	
Binsize of LFP	0.03	
Effective #bins	6-7	
S	2e-3 (0.2mV)	

Neuronal Interaction layout

TDMI estimation with threshold scheme

Strong interaction case

Parameters	Values
L	1e7
Recording rate	2 /ms
Threshold	0.1
Effective #bins	2
S	2e-3 (0.2mV)

Weak interaction case

Parameters	Values
L	1e7
Recording rate	2 /ms
Threshold	0.1
Effective #bins	2
S	2e-4 (0.02mV)

Spike triggered average

$$S = 2e-3 (0.2mV)$$

S = 2e-4 (0.02mV)

Strong interaction case

		— mi_shuffle
0.8	FVL	
nation 90		
Mutual information		
Mutc 0.2		
0.0		
	8 -6 -4 -2 0 2 Delay Time(ms)	4 6
1.8	_{le-6} linear scale	
2.0		— mi

Parameters	Values
L	1e7
Recording rate	2 /ms
Threshold	0.0264
Effective #bins	2
S	2e-3 (0.2mV)

Weak interaction case

4.0		— mi — mi_shuffle
3.5		
1.0 Iti		
Wutual information		
Ju 2.0		
Muta 1.5	/ / / / / / / / /	
0.5	Delay Time(ms)	4 6 8
2.0 le-7	linear scale	— mi

linear scale

Parameters	Values
L	1e7
Recording rate	2 /ms
Threshold	0.018
Effective #bins	2
S	2e-4 (0.02mV)

Three-neuron system

Poisson Rate	1.5 kHz
S	0.005
F	0.005
Binsize	0.03
L	1e7

1to2 1to3

High-order neuronal pathway

Numerical demo of TDMI analysis between spike train and local field potential

Numerical demo of TDMI analysis between spike train and local field potential

Questions to be answered

$$I(X; Y_1 + Y_2) \longleftrightarrow I(X; Y_1) + I(X; Y_2)$$

$$0$$

$$1$$

$$1(X; Y) \longleftrightarrow I(X; F(Y) + G(Y))$$

$$0$$

$$2$$

$$3$$

Summary

Mutual information estimation

The error in MI estimation is quadratically proportional to the binning size h in LFP's histogram.

TDMI implies neuronal connecting pattern in networks:

- Direct connection can be inferred by the order of magnitude of maximum MI between neuronal pairs
- Inversely direct connection can be inferred if the amount of data is sufficiently large.

Numerical demo of TDMI analysis between spike train and local field potential