ФЕДЕРАЛЬНОЕ АГЕНТСТВО СВЯЗИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский государственный университет телекоммуникаций им. проф. М. А. Бонч-Бруевича»

Факультет ИКСС Кафедра электроники и схемотехники

Задача №3.2

Расчет параметров транзисторного ключа на МДП-транзисторе

Выполнил: Громов А.А. ,гр. ИКТ-801_____

Проверил: Бочаров Е.И.

Санкт-Петербург

Дано: схема электронного ключа на МДП-транзисторе. Значения элементов схемы и масштабный коэффициент *N* представлены в таблице исходных данных. Семейство выходных характеристик транзистора.

- Требуется:
 - 1. Построить статическую передаточную характеристику ключа.
 - 2. Определить основные параметры ключа: уровни логических нуля U^0 и единицы U^l , логического перепада U_{Π} , минимальные уровни отпирающей и запирающей помех U^0_{Π} и U^l_{Π} , коэффициент помехоустойчивости K_{Π} .
 - 3. Описать принцип работы ключа.

Исходные данные (вариант 6):

Nº	Элементы схемы				Масштабные коэффициен ты		Номера решаемых задач
вар	EK / Ec B	<i>R_к</i> кОм	<i>R</i> ₅ кОм	<i>Rc</i> кОм	N	М	
6	8	-	•	2,2	2	-	2.2

Схема транзисторного ключа на МДП-транзисторе:

Выходные характеристики п-канального МДП-транзистора:

Ход выполнения работы

<u>Пункт 1:</u>

 $R_{\rm C}$ – резистивная нагрузка

Ес – напряжение источника питания

VT – МДП-транзистор

Схема электронного ключа на МДП-транзисторе

<u>Пункт 2:</u>

<u>Пункт 3:</u>

E_C = 8B
R_C = 2,2 кОм

$$\frac{E_C}{R_C} = \frac{8}{2,2 * 10^3} = 3,6$$
мA

Uвх=Uзи	Uвых=Uси
10B	0,2B
9B	0,4B
8B	0,6B
7B	1,2B
6B	2,8B
5B	5,2B
4B	7B
3B	8B

<u>Пункт 4:</u>

$$U_{\text{BX}}^{0} = 0.2 \text{ B}$$
 $U_{\text{BX}}^{1} = 10 \text{ B}$
 $U_{\text{BbIX}}^{0} = 0.2 \text{ B}$
 $U_{\text{BbIX}}^{1} = 10 \text{ B}$
 $U_{\text{HOP}}^{0} = 3 \text{ B}$
 $U_{\text{HOP}}^{0} = 6 \text{ B}$

Передаточная характеристика транзисторного ключа

$$\begin{split} &U_{\Pi} = U_{\text{BbIX}}^1 - U_{\text{BbIX}}^0 = 10 - 0.2 = 9.8 \text{ B} \\ &U_{\Pi}^0 = U_{\Pi\text{OP}}^0 - U_{\text{BX}}^0 = 3 - 0.2 = 2.8 \text{ B} \\ &U_{\Pi}^1 = U_{\text{BX}}^1 - U_{\Pi\text{OP}}^1 = 10 - 6 = 4 \text{ B} \\ &K_{\Pi} = \frac{\min\{U_{\Pi}^0, U_{\Pi}^1\}}{U_{\Pi}} = \frac{\min\{U_{\Pi}^0, U_{\Pi}^1\}}{U_{\Pi}^1 - U_{\Pi}^0} = \frac{2.8}{4 - 2.8} = \frac{2.8}{1.2} = 2.3 \end{split}$$

Пункт 5:

МДП-транзисторы с индуцированным каналом n-типа используют в качестве электронных ключей в ИС. При отсутствии напряжения на затворе (U_{3u} =0) ключ находится в разомкнутом состояний, а при подаче на затвор напряжения, превышающего пороговое напряжения (U_{3u} = $U_{\Pi OP}$) ключ находится в замкнутом состоянии.

Эти 2 состояния ключа соответствуют статическому режиму работы транзистора:

- закрытый ключ режим отсечки канала (i_C=0)
- открытый ключ линейный режим работы (Uвых=Uост)

Для того, чтобы U_{OCT} было невелико ($U_{OCT} < U_{\Pi OP}$), нагрузочный резистор R_C выбирают большим (десятки кОм)

Процесс переключения состояний:

В момент времени t_1 на затвор поступает отпирающий импульс U_{BX} = $E_C > U_{\Pi OP}$ и в транзисторе индуцируется токопроводящий канал, рабочая точка A перемещается в A' (граф. семейства выходных характеристик) и напряжение падает до U_{OCT} (точка B) – ключ переходит в открытый режим.

В момент времени t1 отпирающий импульс выключается и напряжение на затворе оказывается ниже порогового ($U_{\rm BX}=U_{\rm OCT}>U_{\rm ПОР}$), при этом можно считать, что канал

5

почти мгновенно исчезает (ic=0) и рабочая точка перемещается в точку B', а затем и в точку A – ключ запирается.

Электронный ключ выполняет логическую функцию ${\underline{{\bf HE}}}.$