algos	table				lates DC	
	non trié	trié 1	non trée	hiée ?	non trice	triée 1
ve Access (s, k) (valeur du kè élé. de s.	0(1)	0(a)	0(A) =0(n)	O(k) = O(n)	O(k) =0(n)	O(k) =0(n)
pe Search (5, v) (position de v dans s)	0(n)	Ollogn)	O(n)	0(n)	O(n)	0 (n)
luser + (s, v) (insère v dans 5)	0(1)	0(1)	0(1)	0(1)	O(1)	0(n)
Delete (s, p) (supprime la val. à) (la position p	0(1)	0(n)	O(u)	O(n)	0(1)	O(1)
v ← min (s) v ← max (s)	0(1)	0(1)	6(u)	0(1)	0(n)	0(1)
pesucc(s, p)	0(n)	9 (A) 9 (A)	0(n)	0(1)	0 (n) 0 (n)	0(1)
pe pred(s, p)	0(n)	0(1)	(O(n)	(O(n)	0 (u)	0(1)

TRI	PIRE	MOYEN	MIEUX	En général	Tri Stable	Tri "en place"
SelectSort	0(2)	0(n2)	O(n2)	9(n2)	NON	001
Insert Sort	0(u2)	0 (n2)	O(n)	0 (n2)	OUI	
Merge Sort	O(nlogn)	O(nlog n)	O(ulog n)	O(alog n)	001	NON
Heap Sort	O(nlogn)			O(nlog n)	NON	OUI = 100150. mém. O(log n) à ause de la récursion
QuickSort	Ø(n2)	O(nlagn)	O(nlogn)	O(n2)	NoN	OUI + si il est optimisé
Intro Sort	O(nlogn)	O(nlogn)	O(nlog n)	O(nlog n)	NON	001
Counting Sort	0(n)	0(n)	0(n)	0(n)	001	001
					1	

ALGO

http://www.lrde.epita.fr/nadl/ens/algo/

-> LUNDI

* O(f(n)) = {q(n) | I = ER+ , I = ER+ , Ino EN

∀n ≥ no, c₁ f(n) ≤ g(n) ≤ ∈z f(n) }

g(n) est asymptotiquement équivalent à f(n)

 \Rightarrow $O(f(n)) = \{g(n) \mid \exists c_2 \in \mathbb{R}^{+n}, \exists n_0 \in \mathbb{N} \}$ $\forall n \geqslant n_0, \quad g(n) \leq c_2 f(n) \}$

g(n) est asymptotiquement dominée par f(n).

g(n) domine asymptotiquement f(n).

* 0(f(n)) C O (f(n)) 0(f(n)) C SZ (f(n)) 0(f(n)) N SZ (f(n))
0(f(n))

$$\lim_{n \to +\infty} \frac{f(n)}{g(n)} = 0 \iff f(n) = 0 (g(n))$$
 $\iff f(n) = 0 (g(n))$
 $\iff f(n) = 0 (g(n))$
 $\iff f(n) = \infty (g(n))$
 $\iff f(n) = G(g(n))$
 $\iff f(n) = G(g(n))$
 $\iff g(n) = 0 (f(n))$
 $\iff g(n) \neq O(f(n))$
 $\iff f(n) = G(g(n))$
 $\iff f(n) = G(g(n))$
 $\iff f(n) = G(g(n))$
 $\iff f(n) = G(g(n))$
 $\iff f(n) = G(g(n))$

Théorème général: pour les équations de complexité vécursives de type:
$$\begin{cases} T(n) = a T(n/b) + f(n) & \text{avec } a \ge 1, \\ T(1) = O(n) & b \ge 1, \end{cases}$$

Trois cas sont considérés:

1) si
$$f(n) = O(n^{\log_8 a} - E)$$
 avec $E > O$.

alors $T(n) = O(n^{\log_8 a})$

2) si
$$f(n) = O(n^{\log_b a})$$
 aloss $T(n) = O(n^{\log_b a} \log_a n)$
3) si $f(n) = \Omega(n^{\log_b a} + E)$ avec $E > O$

3) si
$$f(n)= \Omega(n^{1/8}b^{2/4}E)$$
 avec $E>0$
et si de plus il existe $c<1$ tq. $af(n/b) \le cf(n)$
alors $T(n)=O(f(n))$