OMNISCALE GRAVITY — CONSERVATIVE WEAK-FIELD DIFFERENTIAL EXPANSION VIA χ (V4.6)

Christian (Cruz) deWilde and ChatGPT-5 (Thinking & Pro) 2025-08-15

EXECUTIVE SUMMARY

One potential for light and motion, on an operationally flat background. We package the tested, weak-field part of gravity in a scalar–metric language consistent with the published two-page explainer. We use the linear identification

$$\Phi \equiv c^2 \chi$$

so that a single potential Φ governs both orbits and optics. We keep PPN $\gamma=1$ optics and a conservative gravitational-wave sector (speed c, + and \times only, no scalar dipole). Classic tests (light bending, Shapiro delay, gravitational redshift, and Mercury's perihelion) match the usual 1PN formulas when the weak-field metric is taken with $\beta=\gamma=1$. The gravitomagnetic sector is assumed~GR for now and flagged as a deliverable: derive g_{0i} from a single action at 1PN so the frame-dragging gate becomes predictive. Operationally~flat here means we compute observables with the effective weak-field metric on a flat background; we are not claiming a full non-linear geometry in this letter.

ASSUMPTIONS & GUARANTEES

One potential for light and motion, on an operationally flat background. We adopt a single weak–field potential Φ for both dynamics and optics, with the linear identification $\Phi \equiv c^2 \chi$. The assumptions below define the conservative scope used throughout; the guarantees summarize the immediate consequences within this scope.

- 1. (map) $\Phi \equiv c^2 \gamma$.
- 2. **(Newtonian limit & closure)** Test-particle motion obeys $\ddot{\mathbf{x}} = -\nabla \Phi$. The potential Φ is sourced using *either* of the following mathematically equivalent low-g closures, ensuring a curl-free total field $\mathbf{g} = -\nabla \Phi$ even for non-spherical systems:

Closure A (QUMOND-style):
$$\nabla^2 \Phi = \nabla \cdot \left[\nu \left(\frac{g_b}{a_0} \right) \nabla \Phi_b \right], \qquad \nabla^2 \Phi_b = 4\pi G \, \rho_b,$$
 Closure B (effective density):
$$\nabla^2 \Phi = 4\pi G \, (\rho_b + \rho_\chi), \qquad \rho_\chi = \frac{1}{4\pi G} \, \nabla \cdot \left[(\nu - 1) \, \nabla \Phi_b \right].$$

Here $g_b \equiv |\nabla \Phi_b|$, a_0 is the global low-acceleration scale, and $\nu(y_b) = 1/2 \left[1 + \sqrt{1 + 4/y_b}\right]$.

- 3. (weak-field/1PN optics & dynamics) In isotropic gauge we use the printed weak-field/1PN line element with $\beta = \gamma = 1$, securing the standard 1PN formulas for light and orbits.
- 4. (same Φ) A single potential Φ drives both motion and optics (lensing, Shapiro, redshift).

¹ See the explainer's front panel for the same mapping, classical tests, and falsifiers.

- 5. **(GW sector; conservative)** $v_{\rm gw} = c$; + and × polarizations only; no scalar dipole; no kinetic mixing with χ in this baseline.
- 6. **(frame dragging)** Adopt $g_{0i} = -4V_i/c^3$ (Lense–Thirring) for now; we will derive g_{0i} from a single action so the frame-dragging gate becomes predictive.
- 7. **(operationally flat background)** We compute observables with the effective weak-field metric as a bookkeeping device; we do not claim a full non-linear completion in this letter.

Guarantees. With $\beta = \gamma = 1$, classical weak-field and 1PN tests (light bending, Shapiro delay, gravitational redshift, and perihelion advance) match their standard forms. Any deviation in frame dragging, GW speed/polarizations, or Solar-System PPN beyond stated bounds would falsify the present baseline or force changes to items (3)/(6).

MINIMAL CONSERVATIVE CLOSURE IN LOW-g

OPTION A (BASELINE) — QUMOND-STYLE PDE (CURL-FREE IN GENERAL)

$$\nabla^2 \Phi = \nabla \cdot \left[\nu(g_b/a_0) \, \nabla \Phi_b \right], \qquad \nu(y_b) = 1/2 \left(1 + \sqrt{1 + 4/y_b} \right)$$

Explanation. Solve Poisson for the Newtonian potential Φ_b from baryons ($\nabla^2 \Phi_b = 4\pi G \rho_b$), then apply the field-side enhancement ν and take a divergence. This guarantees a scalar Φ (hence curl-free $\mathbf{g} = -\nabla \Phi$) even for non-spherical systems, making the thin-lens and Fermat formulas safe with the same Φ .

OPTION B (EQUIVALENT) — EFFECTIVE ("PHANTOM") DENSITY

$$\nabla^2 \Phi = 4\pi G (\rho_b + \rho_\chi), \qquad \rho_\chi = \frac{1}{4\pi G} \nabla \cdot [(\nu - 1) \nabla \Phi_b]$$

Explanation. Write the same closure as an effective density ρ_{χ} and solve a standard Poisson equation. This is convenient in Newtonian N-body/Poisson solvers. Options A and B are mathematically equivalent under the same ν .

GLOSSARY (SYMBOLS & TERMS)

Symbol/term	Meaning (plain English)	Units
χ	Scalar expansion map; we identify $\Phi \equiv c^2 \chi$.	dimensionless
Ф	Weak-field potential used for clocks, rulers, light paths, and orbits.	$m^2 s^{-2}$
U	Newtonian sign convention $U \equiv -\Phi$.	$m^2 s^{-2}$
a_0	Global low-acceleration scale in mapping/closure.	$\mathrm{m}\mathrm{s}^{-2}$
α	Coupling linking LOS structure to fractional ${\cal H}_0$ shifts.	dimensionless
W(s)	Survey window along distance s ; W_N is normalized.	_
K(s)	Line-of-sight kernel (near-side or magnitude).	_
H_0	Present-day Hubble constant.	s^{-1}
$\mu(y)$	Source-side interpolation with $y \equiv g/a_0$.	-
$v(y_b)$	Field-side response with $y_b \equiv g_b/a_0$.	40,
$ ho_b, ho_\chi$	Baryonic density; effective ("phantom") density.	$kg m^{-3}$
$\mathbf{g},\mathbf{g}_{b}$	Total acceleration; baryonic acceleration.	$\mathrm{m}\mathrm{s}^{-2}$
\boldsymbol{b}	Impact parameter in lensing.	length
$oldsymbol{ heta}$	Image angle; ψ lensing potential; $ au$ Fermat potential.	angle (arb.)
v_c	Circular speed in rotation curves.	km/s
R, R_d, Σ_0	Cylindrical radius; disk scale length; central surface density.	kpc; kpc; M_{\odot} kpc $^{-2}$

GATE LEDGER	E LEDGER			
Gate	Promise (must hold)	Status now	Clear falsifier	
Rotation curves (RC)	One global acceleration scale a_0 with stellar baryons fits $v_c(r)$ across galaxies; no per-galaxy halo.	Provisional pass. Single global $a_0=1.1\times 10^{-10}\mathrm{m/s^2}$ reproduces disk shapes with photometry-fixed baryons.	Requires galaxy-by-galaxy tuning or systematic failure across a representative set.	
Strong lensing / time delays	Same potential reproduces Einstein radii with GR optics (achromatic bending, $\gamma=1$).	In progress. Next: ellipticity + catalog shear; if a coherent residual remains, test one global high- g taper $\mu_{\rm hi}(g_b/a_0)$.	Needs $\gamma \neq 1$ or extra fields; or per-lens tuning beyond one universal parameter.	
Local H_0 anisotropy & flows	Environment dependence: voids \uparrow , clusters \downarrow ; bulk flows align with $\nabla \chi$; α remains Solar-System safe.	Open gate. Pipeline and joint-fit plan defined; full survey-window run pending.	No correlation at $\lesssim 1$ –2% after systematics; or fitted α violates Solar-System/GW bounds.	
Solar System (optics/dynamics)	Shapiro, light bending, redshift, and 1PN precession match GR when $\beta=\gamma=1$.	Pass in baseline; printed metric with $\beta=\gamma=1.$	Any significant deviation in PPN γ, β or Lense–Thirring beyond current bounds.	
GWs / Pulsars	$v_{\rm gw}=c;+/{ m x}$ only; binary-pulsar phasing matches GR when dipole $pprox 0$.	Pass (conservative sector). No kinetic mixing; scalar dipole suppressed.	Detectable $ v_{\rm gw}-c /c$ or excess dipole radiation.	

OPERATIONAL DEFINITION OF "SCALE-CASCADE" (TESTABLE)

Let \hat{n} be a line-of-sight unit vector. For nested comoving radii $L_1 < L_2 < \cdots < L_N$, define

$$\mathcal{C}(L_k; \hat{n}) \equiv \langle \hat{n} \cdot \nabla \chi \rangle_{|\mathbf{x}| \leq L_k}.$$

We say the field exhibits coherent scale cascade along \hat{n} on $[L_1, L_N]$ if sign $\mathcal{C}(L_k; \hat{n})$ is the same for all k (within a small tolerance). In our baseline this is operationalized through the near-side kernel below: coherent sign predicts the sign of the local H_0 bias, with voids (positive \mathcal{C}) raising and clusters (negative \mathcal{C}) lowering locally inferred H_0 .

FROM METRIC TO THE H_0 ANSATZ (ONE-PAGE DERIVATION)

Operationally flat disclaimer. In this release we use the weak-field/1PN line element as a bookkeeping device for observables on a flat background; we are not presenting a full non-linear geometry.

Metric. In isotropic gauge the weak-field/1PN line element is

$$ds^{2} = -\left(1 - \frac{2U}{c^{2}} + \frac{2U^{2}}{c^{4}}\right)c^{2}dt^{2} + \left(1 + \frac{2U}{c^{2}}\right)d\mathbf{x}^{2}, \qquad U \equiv -\Phi.$$

Along a null ray the coordinate travel time differs from the Minkowski value by the Shapiro integral, $\Delta t_{\rm Shapiro} \simeq (1 + \gamma)c^{-3}\int U\,d\ell$ with $\gamma=1$, and gravitational redshift calibrates clocks via $\Delta v/v \simeq -\Delta\Phi/c^2$.

LOS functional and normalization. In a distance-ladder estimator that fits $cz \approx H_0 D$ over a finite window with selection W(s), anisotropic structure along the line of sight biases the fitted slope. Linearizing about a homogeneous background and writing $r(s) = \sqrt{b^2 + (s - s_c)^2}$ with $\cos\theta(s) = (s - s_c)/r(s)$, we obtain

$$\frac{\Delta H}{H_0} \approx \alpha \, \bar{I}, \qquad \bar{I} \equiv s_0 \int_0^{r_{\text{max}}} W_N(s) \, \frac{\partial_r \Phi(r(s))}{c^2} \cos \theta(s) \, K(s) \, ds,$$

where $W_{N}(s)\equiv W(s)/\int_{0}^{r_{\mathrm{max}}}W\left(s^{\prime}\right) ds^{\prime}$ is a unit-normalized window. We fix the units by

$$s_0 \equiv 1 \text{ Mpc}$$

so that \bar{I} is dimensionless; alternative choices of s_0 simply rescale α .

Near-side kernel used in calibration plots. The "near-side" kernel employed in our Monte-Carlo calibration is defined explicitly by

$$K_{\text{near}}(s; s_c) \equiv \Theta(s_c - s),$$

with Θ the Heaviside step (1 for positive argument, 0 otherwise). With this choice the sign pattern follows immediately from the $\cos\theta$ projection: over-densities on the near side (clusters) bias the local H_0 estimate low, while underdensities (voids) bias it high. (A magnitude-weighted kernel can be substituted for comparison without changing the formalism.)

STATUS OF α .

In v4.6, α is phenomenological. In a future χ action, α will be fixed by the linear response of χ to large-scale structure (its propagator), projected with the same LOS kernel K(s) used in the estimator.

WEAK-FIELD/1PN TESTS (MATH AND PLAIN ENGLISH)

PRINTED 1PN METRIC (BASELINE).

In isotropic gauge we use the **metric** which corresponds to PPN $\beta = \gamma = 1$ and secures the standard 1PN formulas for light and orbits.

WHAT THE METRIC IS SAYING (PLAIN ENGLISH).

The first bracket multiplies clock time: near mass (U < 0), clocks tick a bit slower. The second bracket multiplies spatial distances: rulers are stretched a tiny amount. On our *operationally flat* background, these are small calibration factors rather than a geometric curvature claim in this release. Together they reproduce familiar weak-field effects.

NEWTONIAN MECHANICS (GEODESIC ACTION).

Math.
$$S = -m \int d\tau, d\tau^2 = -ds^2/c^2$$
. For $v \ll c, L \approx 1/2 mv^2 - m\Phi \Rightarrow \ddot{\mathbf{x}} = -\nabla\Phi$.

Plain English. The action says "nature prefers the path that makes [kinetic energy – potential energy] small." Varying it gives Newton's law: things roll downhill in Φ .

GRAVITATIONAL REDSHIFT.

Math.
$$d\tau \approx (1 + \Phi/c^2)dt \Rightarrow \Delta v/v \approx -(\Phi_B - \Phi_A)/c^2$$
.

Plain English. Clocks deeper in the potential (closer to mass) tick a little slower, so signals from down low lose a touch of frequency as they climb out.

LIGHT BENDING (POINT MASS).

Math.
$$\Delta\theta = \frac{4GM}{c^2h}$$
 for a point mass (with $\gamma = 1$).

Plain English. A gentle calibration gradient near mass changes how null rays advance; with $\gamma=1$ we retain GR's achromatic bending.

SHAPIRO TIME DELAY.

Math.
$$\Delta t_{\rm Shapiro} = (1 + \gamma) \frac{GM}{c^3} \ln \frac{4r_E r_R}{b^2}$$
 with $\gamma = 1$.

Plain English. Signals skimming past mass take a tiny bit longer because the calibration factor is slightly larger there.

MERCURY'S PERIHELION (1PN).

Math. With
$$\beta=\gamma=1$$
, $\Delta\varpi=rac{6\pi GM}{a(1-e^2)c^2}$.

Plain English. The ellipse advances because calibration shifts are slightly stronger near the Sun, giving the orbit a forward nudge each lap.

5

FRAME DRAGGING (STATUS)

We currently assume the GR gravitomagnetic sector $g_{0i}=-4V_i/c^3$ (Lense–Thirring); we plan to derive g_{0i} from a single action so this gate becomes predictive. Until then, the frame-dragging test is a sanity check rather than a prediction.

LENSING AND TIME DELAYS FROM ONE POTENTIAL (SANITY CHECK)

We keep a single weak-field potential Φ for both light and motion (PPN $\gamma=1$). For an axisymmetric lens the thin-lens deflection at impact parameter R can be written as

$$\alpha(R) = \frac{2}{c^2} \int_{-\infty}^{\infty} \frac{\partial \Phi}{\partial R} dz$$
 or $\alpha(R) = \frac{4G M_{\rm 2D}(< R)}{c^2 R}$,

where $M_{\rm 2D}(< R)$ is the projected mass inside R. In our numerical checks we use the first expression so that any low-acceleration mapping that modifies $\partial_r \Phi$ automatically carries over to lensing. Fermat potentials for time delays use the same Φ .

One-potential time delays (schematic). Sources/assumptions: Toy Fermat potential with baryons-only, GR+NFW, and χ -DM (Closure A/B). The shared Φ deepens minima when strengthened by a low-acceleration mapping.

Elliptical mass + external shear (Fermat contours; schematic). Sources/assumptions: Elliptical toy potential (softened) plus a weak external shear rotated by 30° . The same Φ governs time-delay surfaces and dynamics; optics keep $\gamma=1$.

SOLAR-SYSTEM SAFETY: NUMBERS AND CROSS-WALK

For the Sun and the simple χ -DM mapping used in disk fits, the fractional acceleration deviation $\delta g \equiv |g_{\rm mod} - g_N|/g_N$ scales roughly like a_0/g_N in the high-acceleration regime. Using $a_0 = 1.1 \times 10^{-10}$ m/s² we obtain the values in the following table.

Radius	$oldsymbol{\delta g}$ (baseline mapping)	Comment
1 AU	~ 2 × 10 ⁻⁸	Deep in high- g regime; essentially Newtonian/GR.
10 AU	$\sim 2 \times 10^{-6}$	Well within standard navigation tolerances.
100 AU	$\sim 2 \times 10^{-4}$	Outer-heliospheric scale; for future ephemeris cross-checks.

Solar-System safety. Sources/assumptions: Sun as a monopole; χ -DM mapping applied to the Newtonian field. Shown is the fractional deviation $|g_{\rm mod}-g_N|/g_N$ vs r.

MONTE-CARLO CALIBRATION: KERNEL, WINDOW, AND PER-lpha RESULTS

We use the near-side, gauge-safe LOS functional so that $\Delta H/H_0 = \alpha \bar{I}$. The window W(s) is normalized; magnitude-kernel rows are included for comparison.

Environment & kernel	median(I)	$\mathbf{p_{16}}$	$\mathbf{p_{84}}$
Cluster — near-side	-1.885×10^{-6}	-3.370×10^{-6}	-1.353×10^{-6}
Void — near-side	$+6.292 \times 10^{-7}$	$+1.226 \times 10^{-7}$	$+4.498 \times 10^{-6}$
Cluster — magnitude	$+3.770 \times 10^{-6}$	$+2.685 \times 10^{-6}$	$+6.804 \times 10^{-6}$
Void — magnitude	$+1.564 \times 10^{-6}$	$+4.091 \times 10^{-7}$	$+9.660 \times 10^{-6}$

Median anisotropy $|median(\Delta H/H_0)|$ vs α (near-side kernel). Sources/assumptions: synthetic Monte Carlo using a unit-normalized window; Linear scaling with α is evident.

NOTATION STANDARDIZATION & ν - μ TABLE

We use χ -DM for the low-acceleration mapping with one global a_0 .

The interpolating/fade-out function is denoted $\mu(\cdot)$; any future high-g taper will be written as $\mu_{\rm hi}(g_b/a_0)$ (not ν).

Symbol	Meaning	Baseline form
$\mu(y)$	source-side interpolation with $y\equiv g/a_0$	$\mu(y) = \frac{y}{1+y}$
$v(y_b)$	field-side response with $y_b \equiv g_b/a_0$	$\nu(y_b) = \frac{1}{2} \left(1 + \sqrt{1 + \frac{4}{y_b}} \right)$

RELATED WORK (BRIEF, NON-EXHAUSTIVE)

Expansion-based or emergent-gravity intuitions have appeared before, notably in work by Erik Verlinde (entropic/emergent gravity) and Mark McCutcheon (expansion-based ideas). There are also modified-gravity frameworks such as MOND/TeVeS, MOG, and f(R). The present letter is conservative: it keeps GR's tested optics ($\gamma = 1$), enforces one shared Φ for motion and lensing/time delays, and states falsifiers upfront.²

ACKNOWLEDGEMENTS

We thank early readers and colleagues; maintainers of open-source tools; and the ephemeris, precision clock, gravitational-wave, and large-scale-structure communities whose public results constrain our safe-regime choices. We thank OpenAI for the wizardry behind ChatGPT. We are grateful to **Zé Ayala**, **Robert Ryan**, **Joon Yun**, and **Mariano Muñoz** for inspiring conversations, and we thank the human author's family for their endless support and encouragement. Any errors remain our own.

APPENDIX A: EXPONENTIAL-DISK ROTATION CURVE (FORMULA)

For a thin exponential disk with surface density $\Sigma(R) = \Sigma_0 e^{-R/R_d}$ and $\Sigma_0 = M_d/(2\pi R_d^2)$, the circular speed is

$$v_c^2(R) = 4\pi G \Sigma_0 R_d y^2 [I_0(y) K_0(y) - I_1(y) K_1(y)], \qquad y \equiv \frac{R}{2R_d}$$

with modified Bessel functions I_n and K_n .

Exponential-disk rotation curve. Sources used: GR baryons only (Poisson); GR+NFW (baryons+NFW); χ -DM \equiv baryons + effective ρ_{χ} (Closure A/B). Styles: GR+NFW (blue solid), χ -DM (red solid), GR baryons only (black dashed, overlaid).

² Consistency with our published 2-page explainer is intentional: same mapping $\Phi \equiv c^2 \chi$, same classic tests and falsifiers.

APPENDIX B: HERNQUIST LENS — DEFLECTION FROM ONE POTENTIAL

Consider a spherical Hernquist profile with total baryonic mass M and scale a. The baryonic gravitational acceleration is

$$g_b(r) = \frac{GM}{(r+a)^2}.$$

With the baseline low-g mapping (" χ -DM") we use

$$g(r) = \frac{1}{2} \left[g_b(r) + \sqrt{g_b(r)^2 + 4 g_b(r) a_0} \right],$$

and define the potential by $\partial_r \Phi = g(r)$. For an axisymmetric thin lens with cylindrical impact parameter R the deflection can be written in either of two equivalent one-potential forms,

$$\alpha(R) = \frac{2}{c^2} \int_{-\infty}^{\infty} \frac{\partial \Phi}{\partial R}(R, z) dz = \frac{2}{c^2} \int_{-\infty}^{\infty} g(r) \frac{R}{r} dz, \qquad r \equiv \sqrt{R^2 + z^2}.$$

Implementation note. In our code we evaluate the z-integral numerically (adaptive quadrature) using the $\partial_R \Phi$ form above; this keeps motion and optics tied to the same Φ by construction. The expression reduces to the standard projected-mass result when $g \to g_b$ (baryons only). For GR+NFW comparisons we use

$$g(r) = g_b(r) + g_{NFW}(r), \qquad g_{NFW}(r) = \frac{G M_{NFW}(< r)}{r^2},$$

with the usual M_{200} and concentration parameters defining $M_{
m NFW}(< r)$.

Strong-lensing deflection for a Hernquist baryonic lens. Sources used: Baryons-only (Poisson), GR+NFW (baryons+NFW), χ -DM \equiv baryons + effective ρ_{χ} (Closure A/B). Optics keep $\gamma=1$ with the same Φ for light and motion.

Einstein-radius proxy vs a_0 (monotonic). Definition: ratio $\alpha_{\chi {
m DM}}/\alpha_{
m Newton}$ at fixed b=5 kpc. Larger a_0 increases the deflection in the low-acceleration regime.

APPENDIX C: SHAPIRO DELAY GEOMETRY (NEAR-CONJUNCTION LIMIT)

For emitter/receiver distances $r_{\!\scriptscriptstyle E}, r_{\!\scriptscriptstyle R}$ from a point mass M and impact parameter $b \ll r_{\!\scriptscriptstyle E}, r_{\!\scriptscriptstyle R}$,

$$\Delta t_{\rm Shapiro} = (1+\gamma) \frac{GM}{c^3} \ln \frac{4r_E r_R}{b^2} + \mathcal{O}\left(\frac{b}{r_{E,R}}\right).$$

Shapiro delay (Earth \rightarrow Mars, one-way). Sources/assumptions: point-mass Sun, $\gamma=1$ (GR optics) vs a $\gamma=0$ reference. The $\gamma=1$ curve is plotted first; the dashed $\gamma=0$ reference is overlaid last.

APPENDIX D: χ -DM MAPPING AND CLOSURES (A & B EXPLAINED)

We use the common one-parameter family with $\mu(y)=y/(1+y)$, where $y=g/a_0$ and g is the total acceleration. The source-side closure $g_b=\mu(g/a_0)\,g$ gives the closed form

$$g = \frac{1}{2} \left[g_b + \sqrt{g_b^2 + 4g_b a_0} \right],$$

used in the spherical/axially symmetric checks in this letter. For general geometries, the mapping is implemented via: **Option A (QUMOND-style PDE).** Solve $\nabla^2 \Phi_b = 4\pi G \rho_b$, then compute $\nabla^2 \Phi = \nabla \cdot [\nu(g_b/a_0)\nabla \Phi_b]$. **Option B (effective density).** Define $\rho_{\chi} = (4\pi G)^{-1}\nabla \cdot [(\nu-1)\nabla \Phi_b]$ and solve $\nabla^2 \Phi = 4\pi G(\rho_b + \rho_{\chi})$. Either route yields a scalar, curl-free field with the same Φ used for motion and optics.