浙江水学

本科实验报告

课程名称:		计算机网络基础			
实验名称:		动态路由协议 OSPF 配置			
姓	名:				
学	院:	信电学院			
系:					
专	业:	电子科学与技术			
学	号:				
指导教师:		陆系群			

2020年12 月8 日

浙江大学实验报告

一、实验目的

- 1. 理解链路状态路由协议的工作原理。
- 2. 理解 OSPF 协议的工作机制。
- 3. 掌握配置和调试 OSPF 协议的方法。

二、 实验内容

- 使用网线连接 PC 和路由器,并配置 PC 和路由器各端口的 IP 地址,让 PC 彼此能够与路由器接口互相 Ping 通;
- 用网线连接多个路由器,并配置互联端口的 IP 地址,使直接连接的 2 个路由器能相互 Ping 通;
- 在 Area 0 的路由器上启用 OSPF 动态路由协议,让各路由器能够互相学习到新的路由信息,进 而使区域内的 PC 能够相互 Ping 通;
- 在 Area 1 的路由器上启用 OSPF 动态路由协议,让区域内和区域间各路由器能够互相学习到新的路由信息;
- 在 Area 2 的路由器上启用 OSPF 动态路由协议,在 NBMA (非广播多路访问) 网络拓扑上配置 OSPF 协议,让区域内和区域间各路由器能够互相学习到新的路由信息;
- 在 Area 3(不与 Area 0 直接连接)的路由器上启用 0SPF 动态路由协议,在边界路由器上建立 虚链路,让 Area 3 的路由器能够学习到新的路由信息,进而使 Area 3 的路由器能够学习到其 他区域的路由信息;
- 在上述各种情况下,观察各路由器上的路由表和 OSPF 运行数据,并验证各 PC 能够相互 Ping 通;
- 断开某些链路,观察 OSPF 事件和路由表变化;
- 在 Area 边界路由器上配置路由聚合。

三、 主要仪器设备

PC 机、路由器、Console 连接线、直联网络线、交叉网络线(如果物理设备不足,可以使用模拟软件)。

四、 操作方法与实验步骤

- 按照拓扑图连接 PC 和路由器,其中 R1-R2 之间采用串口连接,数据链路层协议使用 HDLC; R5、R7、R8 之间采用 Frame Relay 交换机连接(Frame Relay 交换机的配置请参考 GNS3 指南)。
- 设计好 PC 和路由器各端口的 IP 地址、子网掩码。分配地址时请遵循下面的规则:
 - a) Area 0 使用 10.0.0.0/16 的网络地址进行扩展,每个子网分别使用 10.0.0.0/24、10.0.1.0/24、10.0.2.0/24 等子网地址。其中点对点连接的路由器之间的子网使用 10.0.123.240/28 进行扩展,可以最大程度的节约地址,例如使用串行掩码方案,网络地址 部分为 30 位,每个子网刚好有 2 个可用地址(去掉 1 个主机地址部分全 0 的和 1 个主机地址部分全 1 的),可以按如下方式进行分配:

R1-R2 互联接口: 10.0.123.241/30、10.0.123.242/30, 子网地址: 10.0.123.240/30;

R1-R3 互联接口: 10. 0. 123. 245/30、10. 0. 123. 246/30,子网地址: 10. 0. 123. 244/30;依次类推,R2、R3、R4、R6 之间的子网为(只需要 4 个地址): 10. 0. 123. 248/29,去掉全 0 全 1 地址后,还有 6 个地址可用。

b) Area 1、Area 2、Area 3 使用 10. X. 0. 0/16 的网络地址进行扩展,其中 X 为 Area 编号,例 如 Area 1 的 3 个子网分别使用 10. 1. 0. 0/24、10. 1. 1. 0/24、10. 1. 2. 0/24 等子网地址(同一个交换机上的多台路由器的接口属于同一个子网)。

- 配置各 PC 的的默认网关,分别设置为所连路由器的相应端口 IP 地址;
- 配置各路由器互联端口的 IP 地址, 使直连的 2 个路由器能相互 Ping 通;
- 先后给路由器 R1、R2、R3 配置 RIP 协议和 OSPF 协议,比较两者选择的路由差别(RIP 不考虑线路带宽,只考虑经过的路由器个数,OSPF 考虑线路 cost,带宽越大,cost 越小);
- 给 Area 1、Area 2 的路由器配置 OSPF 协议,观察区域间路由信息交换;
- 给 Area 3 的路由器配置 OSPF 协议。由于 Area 3 没有物理上直接与 Area 0 连接,所以需要利用 Area 1 作为中介,在 R4 和 R9 之间为 Area 3 建立一个虚链路。
- 观察各路由器的路由表,查看路由器做出的选择是否符合预期;
- 通过 Ping 检查各 PC 之间的联通性;
- 实时显示路由器之间交换的路由信息事件,理解 OSPF 协议交互过程;
- 断开某些网络连接,查看 OSPF 的数据变化以及路由表的变化,并测试 PC 间的联通性;

RIP相关命令参考

● 在路由器上启用 RIP 协议

Router(config)# router rip

将路由器各接口(子网)加入路由宣告:

Router(config-router)# network <ip_net>

OSPF 相关命令参考

● 给路由器的回环接口配置地址

Router(config)# interface loopback 0

Router(config-if)# ip address <ip> <mask>

● 在路由器上启用 OSPF 协议

Router(config)# router ospf process-id>

● 配置路由器接口(子网)所属 Area ID

Router(config-router)# network <ip net> <mask> area <area-id>

● 查看路由器的 OSPF 数据库 (可以查看 Router ID)

Router# show ip ospf database

● 手工指定 Router ID

Router(config-router)# router-id x. x. x. x

更换 Router ID 需要重启路由器或清除 OSPF 状态才能生效,其中

重启路由器命令:

Router# reload

清除 OSPF 状态命令:

Router# clear ip ospf process

● 观察各路由器的 OSPF 邻居关系,在广播网络中,为减少通信量,会自动选出一个 DR(Designated Router) 和一个 BDR (Backup Designated Router),其他路由器只与 DR、BDR 成为邻接关系。

Router# show ip ospf neighbor detail

● 观察路由器的 OSPF 接口状态 (可以查看 cost 值)

Router# show ip ospf interface

● 打开事件调试,实时显示路由器之间交换的路由信息事件

Router# debug ip ospf events

观察完毕后,可以关闭调试信息显示:

Router# no debug ip ospf events

● 在两个区域边界路由器之间建立虚链路,〈area-id〉填写用于传递数据的区域 ID,〈router ID〉 分别设为对方的 Router ID:

Router(config-router)# area <area-id> virtual-link <router ID>

● 在区域边界路由器上手工进行路由合并:

Router(config-router)# area <area-id> range <ip_net> <mask>

五、 实验数据记录和处理

以下实验记录需结合屏幕截图进行文字标注和描述,图片应大小合适、关键部分清晰可见(本文档中的截图仅用于示例,请更换成你自己的)。记录输入的命令时,直接粘帖文字即可(保留命令前面的提示符,如 R1#)。

1. 参考实验操作方法的说明,设计好每个 PC、路由器各接口的 IP 地址及掩码,并标注在拓扑图上。 设计的拓扑图(参考 GNS3 指南,在 FrameRelay 交换机上配置 R5-R7, R5-R9 之间的数据链路,每路由器 1 个物理端口):

2. 给路由器 R1、R2、R3 各接口配置 IP 地址并激活。配置 PC1、PC2 的 IP 地址和默认网关,测试 PC1 与 R1、PC2 与 R2 的连通性。

R1 配置命令(此处为截图形式,请使用文本形式,下同):

R1#config t

R1(config)#int f0/0

R1(config-if)#ip addr 10.0.0.2 255.255.255.0

R1(config-if)#no shut

R1(config-if)#exit

R1(config)#int f0/1

R1(config-if)#ip addr 10.0.123.245 255.255.255.252

R1(config-if)#no shut

R1(config-if)#exit

R1(config)#int s2/0

R1(config-if)#ip addr 10.0.123.241 255.255.255.252

R1(config-if)#encapsulation hdlc

R1(config-if)#clock rate 128000

R1(config-if)#no shut

R1(config-if)#exit

R1(config)#

R2 配置命令:

R2#config t

R2(config)#int f0/0

R2(config-if)#ip addr 10.0.1.2 255.255.255.0

R2(config-if)#no shut

R2(config-if)#exit

R2(config)#int f1/0

R2(config-if)#ip addr 10.0.123.249 255.255.255.248

R2(config-if)#no shut

R2(config-if)#exit

R2(config)#int s2/0

R2(config-if)#ip addr 10.0.123.242 255.255.255.252

R2(config-if)#encapsulation hdlc

R2(config-if)#no shut

R2(config-if)#exit

R3 配置命令:

R3#config t

R3(config)#int f0/1

 $R3 (config-if) \# ip \ addr \ 10.0.123.246 \ 255.255.255.252$

R3(config-if)#no shut

R3(config-if)#exit

R3(config)#int f1/0

 $R3 (config-if) \# ip \ addr \ 10.0.123.250 \ 255.255.255.248$

R3(config-if)#no shut

R3(config-if)#exit

Ping 测试结果截图

PC1**→**R1:

```
PC-1> ping 10.0.0.2
84 bytes from 10.0.0.2 icmp_seq=1 ttl=255 time=29.320 ms
84 bytes from 10.0.0.2 icmp_seq=2 ttl=255 time=12.149 ms
84 bytes from 10.0.0.2 icmp_seq=3 ttl=255 time=9.098 ms
84 bytes from 10.0.0.2 icmp_seq=4 ttl=255 time=6.626 ms
84 bytes from 10.0.0.2 icmp_seq=5 ttl=255 time=11.620 ms
```

PC2**→**R2:

```
PC-2> ping 10.0.1.2
84 bytes from 10.0.1.2 icmp_seq=1 ttl=255 time=30.292 ms
84 bytes from 10.0.1.2 icmp_seq=2 ttl=255 time=11.028 ms
84 bytes from 10.0.1.2 icmp_seq=3 ttl=255 time=7.169 ms
84 bytes from 10.0.1.2 icmp_seq=4 ttl=255 time=8.303 ms
84 bytes from 10.0.1.2 icmp_seq=5 ttl=255 time=4.539 ms
```

---Part 1: 配置 RIP (用于和 OSPF 进行比较) ---

3. 在 R1、R2、R3 上启用 RIP 动态路由协议,并宣告各接口所在子网地址(版本要设置成 2);

R1 配置命令:

R1(config)#router rip

R1(config-router)#network 10.0.0.0

R1(config-router)#network 10.0.123.240

R1(config-router)#network 10.0.123.244

R1(config-router)#version 2

R2 配置命令:

R2(config)#router rip

R2(config-router)#network 10.0.1.0

R2(config-router)#network 10.0.123.240

R2(config-router)#network 10.0.123.248

R2(config-router)#version 2

R3 配置命令:

R3(config)#router rip

R3(config-router)#network 10.0.123.244

R3(config-router)#network 10.0.123.248

R3(config-router)#version 2

4. 查看 R1、R2、R3 的路由表,跟踪 PC1 到 PC2 的路由;

R1 路由表 (标出到 PC2 子网的路由,下一跳是哪个路由器): 下一跳是 R2

```
RI#show ip route

Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2

i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candidate default, U - per-user static route

o - ODR, P - periodic downloaded static route

Gateway of last resort is not set

10.0.0.0/8 is variably subnetted, 5 subnets, 3 masks

10.0.0.0/24 is directly connected, FastEthernet0/0

R 10.0.1.0/24 [120/1] via 10.0.123.242, 00:00:03, Serial2/0

C 10.0.123.240/30 is directly connected, Serial2/0

C 10.0.123.244/30 is directly connected, FastEthernet0/1

R 10.0.123.248/29 [120/1] via 10.0.123.246, 00:00:05, FastEthernet0/1

[120/1] via 10.0.123.242, 00:00:03, Serial2/0

R1#
```

R2 路由表 (标出到 PC1 子网的路由,下一跳是哪个路由器): 下一跳是 R1

```
R2#show ip route

Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2

i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candidate default, U - per-user static route

O - ODR, P - periodic downloaded static route

Gateway of last resort is not set

10.0.0.0/8 is variably subnetted, 5 subnets, 3 masks

R 10.0.0.0/24 [120/1] via 10.0.123.241, 00:00:18, Serial2/0

C 10.0.1.0/24 is directly connected, FastEthernet0/0

C 10.0.123.240/30 is directly connected, Serial2/0

R 10.0.123.244/30 [120/1] via 10.0.123.250, 00:00:24, FastEthernet1/0

[120/1] via 10.0.123.241, 00:00:18, Serial2/0

C 10.0.123.248/29 is directly connected, FastEthernet1/0
```

R3 路由表:

```
R3#show ip route

Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2

i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candidate default, U - per-user static route

o - ODR, P - periodic downloaded static route

Gateway of last resort is not set

10.0.0.0/8 is variably subnetted, 5 subnets, 3 masks

R 10.0.0.0/24 [120/1] via 10.0.123.245, 00:00:12, FastEthernet0/1

R 10.0.123.240/30 [120/1] via 10.0.123.249, 00:00:08, FastEthernet1/0

[120/1] via 10.0.123.245, 00:00:12, FastEthernet0/1

C 10.0.123.244/30 is directly connected, FastEthernet0/1

10.0.123.248/29 is directly connected, FastEthernet1/0

R3#
```



```
PC-1> trace 10.0.1.1

trace to 10.0.1.1, 8 hops max, press Ctrl+C to stop

1 10.0.0.2 9.531 ms 9.925 ms 10.055 ms

2 10.0.123.242 30.937 ms 30.569 ms 30.068 ms

3 * * *

4 *10.0.1.1 40.559 ms (ICMP type:3, code:3, Destination port unreachable)
```

5. 启用路由器 R1 的 OSPF 动态路由协议,并配置各接口所属区域(为 Area 0),其中进程 ID 请设置为学号的后 2 位(全 0 者往前取值)。

R1 配置命令:

R1(config)#router ospf 68

R1(config-router)#network 10.0.0.0 0.0.255.255 area 0

6. 先给 R2 的回环接口配置 IP 地址。然后再启用路由器 R2 的 OSPF 动态路由协议,设置包括回环接口在内的各接口所属区域(为 Area 0)。

R2 配置命令:

R2(config)#int loopback 0

R2(config-if)#ip addr 10.0.20.1 255.255.255.252

R2(config-if)#exit

R2(config)#router ospf 68

R2(config-router)#network 10.0.0.0 0.0.255.255 area 0

7. 启用路由器 R3 的 OSPF 动态路由协议, 手工指定 Router ID, 并设置各接口所属区域为 Area 0。

R3 配置命令:

R3(config)#router ospf 68

R3(config-router)#router-id 10.0.30.1

R3(config-router)#network 10.0.0.0 0.0.255.255 area 0

8. 查看 OSPF 数据库,并标出各路由器的 Router ID。

R1的OSPF数据库:

从上图可知, R1 的 Router ID 为 10.0.123.245 (取自接口 f0/1 的 IP); 与 R1 连接的有 2 个路由器,其 ID 分别是 10.0.20.1 、 10.0.30.1 , 有 2 条链路,其 ID 分别是 10.0.123.245 、 10.0.123.250 。

R2的OSPF数据库:

从上图可知, R2 的 Router ID 为 10.0.20.1 (取自接口 loopback0 的 IP); 与 R2 连接的有 2 个路由器,其 ID 分别是 10.0.30.1 、 10.0.123.245 , 有 2 条链路,其 ID 分别是 10.0.123.245 、 10.0.123.250 。

R3 的 OSPF 数据库:

```
OSPF Router with ID (10.0.30.1) (Process ID 68)

Router Link States (Area 0)

Link ID ADV Router Age Seq# Checksum Link count 10.0.20.1 10.0.20.1 64 0x80000002 0x003563 5 10.0.30.1 10.0.30.1 63 0x80000003 0x004587 2 10.0.123.245 10.0.123.245 69 0x80000002 0x00B2BB 4

Net Link States (Area 0)

Link ID ADV Router Age Seq# Checksum 10.0.123.245 10.0.123.245 69 0x80000001 0x00DFC1 10.0.123.250 10.0.30.1 63 0x80000001 0x00B4CA R3#
```

从上图可知,R3 的 Router ID 为 10.0.30.1; 与 R3 连接的有 2 个路由器,其 ID 分别是 10.0.20.1、 10.0.123.245 , 有 2 条链路,其 ID 分别是 10.0.123.245 、 10.0.123.250 。

9. 在路由器 R1 上显示 OSPF 接口数据(命令: show ip ospf interface),标记各接口的 cost 值,网络类型,邻接关系及其 Router ID,广播类型的网络再标出 DR (Designed Router)或者 BDR (Backup Designed Router)角色。

R1 的 s2/0: (从图可知, s2/0 连接的网络类型为 <u>POINT TO POINT</u>, Cost= <u>64</u>, 邻居 Router ID= <u>10.0.20.1</u>)

```
RI#sh ip ospf int

Serial2/0 is up, line protocol is up

Internet Address 10.0.123.241/30, Area 0

Process ID 68, Router ID 10.0.123.245, Network Type POINT_TO_POINT,
Transmit Delay is 1 sec, State POINT_TO_POINT

Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5

oob-resync timeout 40

Hello due in 00:00:05

Supports Link-local Signaling (LLS)

Index 3/3, flood queue length 0

Next 0x0(0)/0x0(0)

Last flood scan length is 1, maximum is 1

Last flood scan time is 0 msec, maximum is 0 msec

Neighbor Count is 1, Adiacent neighbor count is 1

Adjacent with neighbor 10.0.20.1

Suppress hello for 0 neighbor(s)
```

R1 的 f0/1: (f0/1 连接的网络类型为<u>BROADCAST</u>, Cost=<u>10</u>, 邻居 Router ID=<u>10.0.30.1</u>, DR 的 Router ID 是 10.0.123.245 ,接口 IP 是 10.0.123.245 ,BDR 的 Router ID 是 10.0.30.1 ,接口 IP 是 10.0.123.246)

```
FastEthernet0/1 is up, line protocol is up
Internet Address 10.0.123.245/30, Area 0
Process ID 68, Router ID 10.0.123.245, Network Type BROADCAST, Cost: 10
Transmit Delay is 1 sec, State DR, Priority 1
Designated Router (ID) 10.0.123.245, Interface address 10.0.123.245
Backup Designated router (ID) 10.0.30.1, Interface address 10.0.123.246
Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
oob-resync timeout 40
Hello due in 00:00:09
Supports Link-local Signaling (LLS)
Index 2/2, flood queue length 0
Next 0x0(0)/0x0(0)
Last flood scan length is 2, maximum is 2
Last flood scan time is 0 msec, maximum is 0 msec
Neighbor Count is 1, Adjacent neighbor count is 1
Adjacent with neighbor 10.0.30.1 (Backup Designated Router)
Suppress hello for 0 neighbor(s)
```

R1的f0/0:(f0/1连接的网络类型为<u>BROADCAST</u>,Cost=<u>10</u>,DR的Router ID是 10.0.123.245,接口IP是 10.0.0.2_)

```
FastEthernet0/0 is up, line protocol is up
Internet Address 10.0.0.2/24, Area 0
Process ID 68, Router ID 10.0.123.245, Network Type BROADCAST, Cost: 10
Transmit Delay is 1 sec, State DR, Priority 1

Designated Router (ID) 10.0.123.245, Interface address 10.0.0.2
No backup designated router on this network

Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
oob-resync timeout 40
Hello due in 00:00:07

Supports Link-local Signaling (LLS)
Index 1/1, flood queue length 0
Next 0x0(0)/0x0(0)
Last flood scan length is 0, maximum is 0
Last flood scan time is 0 msec, maximum is 0 msec
Neighbor Count is 0, Adjacent neighbor count is 0
Suppress hello for 0 neighbor(s)
```

10. 查看 R1、R2、R3 的路由表,与 RIP 比较,OSPF 所选择的路由有何不同,谁的优先级高? 跟踪 PC1 到 PC2 的路由。

R1 路由表: (从图可知,对于 PC2 的网络,OSPF 选择的下一跳 IP 地址是 <u>10.0.123.246</u>,由于 OSPF 的路由管理距离为 110,比 RIP 的管理距离 120 优先级更高,所以把之前 RIP 选择的路由替换了)

```
R1#sh ip route

Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2

i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candidate default, U - per-user static route

O - ODR, P - periodic downloaded static route

Gateway of last resort is not set

10.0.0.0/8 is variably subnetted, 7 subnets, 4 masks

C 10.0.0.0/24 is directly connected, FastEthernet0/0

O 10.0.1.0/24 [110/21] via 10.0.123.246, 00:19:55, FastEthernet0/1

R 10.0.20.0/30 [120/1] via 10.0.123.242, 00:00:02, Serial2/0

O 10.0.123.240/30 is directly connected, Serial2/0

C 10.0.123.244/30 is directly connected, FastEthernet0/1

O 10.0.123.248/29 [110/11] via 10.0.123.246, 00:19:56, FastEthernet0/1

R1#
```

R2 路由表: (从图可知,对于 PC1 的网络,OSPF 选择的下一跳 IP 地址是 10.0.123.250)

```
R2#sh ip route

Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2

i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candidate default, U - per-user static route

O - ODR, P - periodic downloaded static route

Gateway of last resort is not set

10.0.0.0/8 is variably subnetted, 6 subnets, 3 masks

0 10.0.0.0/24 [110/21] via 10.0.123.250, 00:22:57, FastEthernet1/0

C 10.0.1.0/24 is directly connected, FastEthernet0/0

C 10.0.20.0/30 is directly connected, Loopback0

C 10.0.123.240/30 is directly connected, Serial2/0

O 10.0.123.244/30 [110/11] via 10.0.123.250, 00:22:57, FastEthernet1/0

C 10.0.123.248/29 is directly connected, FastEthernet1/0
```

R3 路由表:

PC1→PC2 的路由跟踪: (经过的路由器顺序是<u>R1</u>、<u>R3</u>、<u>R2</u>

```
PC-1> trace 10.0.1.1

trace to 10.0.1.1, 8 hops max, press Ctrl+C to stop

1 10.0.0.2 9.053 ms 8.407 ms 9.684 ms

2 10.0.123.246 29.518 ms 29.017 ms 29.479 ms

3 10.0.123.249 51.105 ms 50.650 ms 51.045 ms

4 **10.0.1.1 33.504 ms (ICMP type:3, code:3, Destination port unreachable)
```

11. 断开 R1 和 R3 的接口(在 R1 或 R3 上 shutdown 该接口),再次显示 R1 的路由表,标记到达 PC2 所在子 网的下一跳。

R1 的路由表:

```
R1#sh ip route

Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2

i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candidate default, U - per-user static route

O - ODR, P - periodic downloaded static route

Gateway of last resort is not set

10.0.0.0/8 is variably subnetted, 7 subnets, 4 masks

10.0.0.0/24 is directly connected, FastEthernet0/0

0 10.0.1.0/24 [110/74] via 10.0.123.242, 00:00:25, Serial2/0

R 10.0.20.0/30 [120/1] via 10.0.123.242, 00:00:25, Serial2/0

0 10.0.123.240/30 is directly connected, Serial2/0

R 10.0.123.244/30 [120/2] via 10.0.123.242, 00:00:00, Serial2/0

0 10.0.123.248/29 [110/65] via 10.0.123.242, 00:00:25, Serial2/0

R1#
```

12. 保存 R1 配置后(在 R1 上输入命令: write)重启路由器(右键菜单 reload),查看 R1 的 Router ID 是否 发生变化,变成了<u>10.0.123.241</u>,取自<u>s2/0</u>接口的 IP 地址。原因是由于接口 f0/1 断开了,故其

上的 IP 地址也暂时不可用,OSPF 于是选择了另一个可用 IP 地址作为 Router ID,而原来的 Router ID 也未消失,看上去是来自另一台不存在的路由器。而 R2 配置了回环接口,OSPF 会优先选择不会断开的回环接口的 IP 地址作为 Router ID,就不会出现上述情况。

R1 的 OSPF 数据库:

13. 在 R1 上打开 OSPF 事件调试 (命令: debug ip ospf events), 然后重新连接 R1 和 R3 的接口 (在 R1 或 R3 上 no shutdown 该接口), 等与 R3 的邻居关系为 Full 后关闭 debug, 最后查看邻居关系。

R1 和 R3 重新建立邻接关系的事件记录:(从图可知,邻接关系建立经历了 5 个状态,分别是 ____state_INIT__、___state_

2WAY state EXSTART state EXCHANGE state FULL

```
'Mar 1 00:04:05.171: OSFF: Rcv hello from 10.0.30.1 area 0 from FastEthernet0/1 10.0.123.246
'Mar 1 00:04:05.171: OSFF: Backup seen Event before WAIT timer on FastEthernet0/1 |
'Mar 1 00:04:05.175: OSFF: Backup seen Event before WAIT timer on FastEthernet0/1 |
'Mar 1 00:04:05.175: OSFF: DBX/BDR election on FastEthernet0/1 |
'Mar 1 00:04:05.175: OSFF: Elect BDR 10.0.123.241 |
'Mar 1 00:04:05.179: OSFF: Send DBD to 10.0.30.1 |
'Mar 1 00:04:05.179: OSFF: Send DBD to 10.0.30.1 |
'Mar 1 00:04:05.179: OSFF: Send DBD to 10.0.30.1 |
'Mar 1 00:04:05.179: OSFF: Send immediate hello to nbr 10.0.30.1, src address 10.0.123.246, on FastEthernet0/1 |
'Mar 1 00:04:05.183: OSFF: Send hello to 10.0.123.246 area 0 on FastEthernet0/1 from 10.0.123.245 |
'Mar 1 00:04:05.183: OSFF: End of hello processing |
'Mar 1 00:04:05.133: OSFF: End of hello processing |
'Mar 1 00:04:07.127: %LINK-3-UPDOWN: Interface FastEthernet0/1, changed state to up |
'Mar 1 00:04:07.267: OSFF: End of hello processing |
'Mar 1 00:04:07.263: OSFF: End of hello processing |
'Mar 1 00:04:07.559: OSFF: End of hello processing |
'Mar 1 00:04:07.559: OSFF: End of hello processing |
'Mar 1 00:04:07.559: OSFF: End of hello processing |
'Mar 1 00:04:07.559: OSFF: End of hello processing |
'Mar 1 00:04:07.559: OSFF: End of hello processing |
'Mar 1 00:04:07.559: OSFF: End of hello processing |
'Mar 1 00:04:07.559: OSFF: End of hello processing |
'Mar 1 00:04:07.559: OSFF: End of hello processing |
'Mar 1 00:04:07.559: OSFF: End of hello processing |
'Mar 1 00:04:07.559: OSFF: End of hello processing |
'Mar 1 00:04:07.559: OSFF: End of hello processing |
'Mar 1 00:04:07.559: OSFF: End of hello processing |
'Mar 1 00:04:07.559: OSFF: End of hello processing |
'Mar 1 00:04:07.559: OSFF: End of hello processing |
'Mar 1 00:04:07.559: OSFF: End of hello processing |
'
```

R1 的 OSPF 邻居详细信息:

```
Neighbor 10.0.20.1, interface address 10.0.123.242

In the area 0 via interface Serial2/0
Neighbor priority is 0, State is FULL, 6 state changes
DR is 0.0.0.0 BDR is 0.0.0.0
Options is 0x12 in Hello (E-bit L-bit)
Options is 0x52 in DBD (E-bit L-bit o-bit)
LLS Options is 0x1 (LR)
Dead timer due in 00:00:37
Neighbor is up for 00:16:54
Index 1/1, retransmission queue length 0, number of retransmission 0
First 0x0(0)/0x0(0) Next 0x0(0)/0x0(0)
Last retransmission scan length is 0, maximum is 0
Last retransmission scan time is 0 msec, maximum is 0 msec
Neighbor 10.0.30.1, interface address 10.0.123.246
In the area 0 via interface FastEthernet0/1
Neighbor priority is 1, State is FULL, 6 state changes
DR is 10.0.123.246 BDR is 10.0.123.245
Options is 0x12 in Hello (E-bit L-bit )
Options is 0x52 in DBD (E-bit L-bit 0-bit)
LLS Options is 0x1 (LR)
Dead timer due in 00:00:37
Neighbor is up for 00:12:55
Index 2/2, retransmission queue length 0, number of retransmission 0
First 0x0(0)/0x0(0) Next 0x0(0)/0x0(0)
Last retransmission scan length is 0, maximum is 0
Last retransmission scan time is 0 msec, maximum is 0 msec
```

14. 给 R4、R6 的回环接口、f0/0 接口配置 IP 地址并激活,启用 OSPF 协议,接口均属于 Area 0。过一会儿查看 R4 和 R6 的邻居信息(由于 R2、R3、R4、R6 在同一个广播网络中,四台路由器并不会都成为邻接关系,而是选出 DR、BDR,然后各路由器与 DR、BDR 进行路由信息交换)。

R4 配置命令:

R4(config)#int f0/0

R4(config-if)#ip addr 10.0.123.251 255.255.255.248

R4(config-if)#no shut

R4(config-if)#exit

R4(config)#int loopback 0

R4(config-if)#ip addr 10.0.40.1 255.255.255.252

R4(config-if)#exit

R4(config)#router ospf 68

R4(config-router)#network 10.0.0.0 0.0.255.255 area 0

R4(config-router)#exit

R6 配置命令:

R6(config)#int f0/0

R6(config-if)#ip addr 10.0.123.252 255.255.255.248

R6(config-if)#no shut

R6(config-if)#exit

R6(config)#int loopback 0

R6(config-if)#ip addr 10.0.60.1 255.255.255.252

R6(config-if)#exit

R6(config)#router ospf 68

R6(config-router)#network 10.0.0.0 0.0.255.255 area 0

R4 上查看邻居关系(与 R6 是邻居,但不建立邻接关系,重启后可能会变化):

R6 上查看邻居关系(与 R4 是邻居,但不建立邻接关系,重启后可能会变化):

---Part 3: 配置多域 OSPF---

15. 给 R4 的 f0/1 接口、R5 的回环接口、f0/1 和 f0/0 接口配置 IP 地址、激活端口,并启用 OSPF 协议,各接口均属于 Area 1。配置 PC3 的 IP 地址和默认路由。过一会儿,查看 R2、R5 上的路由表,标出区域间路由(IA),测试 PC3 与 PC1 的连通性。

R4 配置命令(替换成文本形式):

R4(config)#int f0/1

R4(config-if)#ip addr 10.1.0.1 255.255.255.0

R4(config-if)#no shut

R4(config-if)#exit

R4(config)#router ospf 68

R4(config-router)#net 10.1.0.0 0.0.255.255 area 1

R4(config-router)#exit

R5 配置命令:

```
R5 (config) #interface f0/1

R5 (config-if) # _ ip addr 10.1.0.2 255.255.255.0

R5 (config-if) # _ no shut

R5 (config) #interface f0/0

R5 (config-if) # _ ip addr 10.1.1.2 255.255.255.0

R5 (config-if) # _ no shut

R5 (config) #interface loopback 0

R5 (config-if) # _ ip addr 10.1.50.1 255.255.255.252

R5 (config) # _ router ospf 68

R5 (config-router) # _ net 10.1.0.0 0.0.255.255 area 1
```

PC3 配置命令:

PC-3> ip 10.1.1.1/24 10.1.1.2

Checking for duplicate address...

PC1: 10.1.1.1 255.255.255.0 gateway 10.1.1.2

R2 的路由表: 目标为 Area 1 中的子网的下一跳 IP 地址均为 10.0.123.251 , 从 f1/0 接口发出。

R5 的路由表: 目标为 Area 0 中的子网的下一跳 IP 地址均为 10.1.0.1 ,从 f0/1 接口发出。

```
10.0.0.0/8 is variably subnetted, 11 subnets, 4 masks

10.1.1.0/24 is directly connected, FastEthernet0/0

IA 10.0.0.0/24 [110/40] via 10.1.0.1, 00:08:41, FastEthernet0/1

10.1.0.0/24 is directly connected, FastEthernet0/1

IA 10.0.1.0/24 [110/30] via 10.1.0.1, 00:08:41, FastEthernet0/1

IA 10.0.20.1/32 [110/21] via 10.1.0.1, 00:08:41, FastEthernet0/1

IA 10.0.40.1/32 [110/11] via 10.1.0.1, 00:08:41, FastEthernet0/1

IA 10.0.60.1/32 [110/21] via 10.1.0.1, 00:08:42, FastEthernet0/1

C 10.1.50.0/30 is directly connected, Loopback0

IA 10.0.123.240/30 [110/84] via 10.1.0.1, 00:08:42, FastEthernet0/1

OIA 10.0.123.244/30 [110/30] via 10.1.0.1, 00:08:42, FastEthernet0/1

OIA 10.0.123.248/29 [110/20] via 10.1.0.1, 00:08:42, FastEthernet0/1

R5#
```

PC3→PC1 的连通性:

```
PC-3> ping 10.0.0.1

10.0.0.1 icmp_seq=1 timeout

84 bytes from 10.0.0.1 icmp_seq=2 ttl=60 time=75.765 ms

84 bytes from 10.0.0.1 icmp_seq=3 ttl=60 time=81.807 ms

84 bytes from 10.0.0.1 icmp_seq=4 ttl=60 time=72.419 ms

84 bytes from 10.0.0.1 icmp_seq=5 ttl=60 time=56.196 ms
```

16. 分别在 R2、R4、R5 上显示 OSPF 数据库信息, 关注是否出现其他 Area 的信息。

R2: 没有 Area 1 的具体信息,但是该区域的子网地址 <u>10.1.0.0</u> 、<u>10.1.1.0</u> 、<u>10.1.50.1</u> 由路由器 <u>10.0.40.1</u> 汇聚后以区域间链路的形式进行通告。

R5: 没有 Area 0 的具体信息,但是该区域的子网地址全部由路由器 10.0.40.1 汇聚后以区域间链路的形式进行通告。

```
R5#sh ip ospf database
Link ID
                ADV Router
                                             Seq#
                                                        Checksum Link count
                                Age
                                             0x80000002 0x00BAED 1
                                             0x80000002 0x00F12B 3
                Net Link States (Area 1)
                                             Seq#
                                 Age
                                             Seq#
                                                        Checksum
                                             0x80000001 0x00BA27
                                             0x80000001 0x004B9F
                                             0x80000001 0x00641A
R5#
```

R4: 有 Area 1 和 Area 0 的具体信息,由于 R4 是区域边界路由器(ABR),所以对区域内的链路进行了汇聚,然后以区域间路由的形式向其他区域进行链路状态通告(LSA),其中:

向 Area 0 通告的属于 Area 1 的链路有 <u>10.1.0.0</u> 、 <u>10.1.1.0</u> 、 <u>10.1.50.1</u> ;

向 Area 1 通告的属于 Area 0 的链路有 <u>10.0.0.0</u> 、 <u>10.0.1.0</u> 、<u>10.0.20.1</u> 、 <u>10.0.40.1</u> 、

<u>10.0.60.1</u> , <u>10.0.123.240</u> , <u>10.0.123.244</u> , <u>10.0.123.248</u> 。

R4#sh ip ospf	database				
0:	SPF Router with II	(10.0.40.1)	(Process ID 68)		
	Router Link Sta	tes (Area 0)			
Link ID	ADV Router	Age	Seq# Checksum Link cou	nt	
10.0.20.1	10.0.20.1	1592	0x80000002 0x009105 5		
10.0.30.1	10.0.30.1	1591	0x80000003 0x005971 2		
10.0.40.1	10.0.40.1	1596	0x80000002 0x00A2D6 2		
10.0.60.1	10.0.60.1 10.0.123.245	1597 1597	0x80000002 0x000538 2 0x80000002 0x00B2BB 4		
10.0.123.245	10.0.123.245	1597	0X80000002 0X00B2BB 4		
	Net Link States	(Area 0)			
Link ID	ADV Router	Age	Seg# Checksum		
10.0.123.245	10.0.123.245	1597	0x80000001 0x00DFC1		
10.0.123.252	10.0.60.1	1592	0x80000002 0x008328		
	Summary Net Lir	ik States (Ar	ea 0)		
Link ID	ADV Router	Age	Seq# Checksum		
10.1.0.0	10.0.40.1	1631	0x80000001 0x00E50F		
10.1.1.0	10.0.40.1	1591	0x80000001 0x003FAA		
10.1.50.1	10.0.40.1	1591	0x80000001 0x00BD03		
h	Router Link Sta	tes (Area 1)			
Link ID	ADW Bouton	7.00	Sea# Checksum Link cou		
10.0.40.1	ADV Router 10.0.40.1	Age 1598	Seq# Checksum Link cou 0x80000002 0x00BAED 1	nt	
10.1.50.1	10.1.50.1	1601	0x80000002 0x00F12B 3		
10.1.50.1	10.1.50.1	1001	0X00000002 0X00F12B 3		
	Net Link States	(Area 1)			
Link ID	ADV Router	Age	Seg# Checksum		
10.1.0.2	10.1.50.1	1601	0x80000001 0x00D7A5		
	Summary Net Lir	y States (Ar	93 1)		
w. 111 (577)	Junuary Net Hi	ik Deades (Al	54 17		
Link ID	ADV Router	Age	Seq# Checksum		
10.0.0.0	10.0.40.1	1587	0x80000001 0x00BA27		
10.0.1.0	10.0.40.1	1588	0x80000001 0x004B9F		
10.0.20.1	10.0.40.1	1588	0x80000001 0x0015CA		
10.0.40.1	10.0.40.1	1638	0x80000001 0x00D302		
10.0.60.1 10.0.123.240	10.0.40.1 10.0.40.1	1598 1588	0x80000001 0x005B5C 0x80000001 0x00AAA1		
10.0.123.244	10.0.40.1	1588	0x80000001 0x00AAA1 0x80000001 0x00641A		
10.0.123.244	10.0.40.1	1639	0x80000001 0x00041A		
R4#	10.0.10.1	1000	SAUGOOOL GAOODICO		

- 17. 分别在 R1、R5 上查看区域边界路由器(ABR)信息(命令: show ip ospf border-routers)
 - R1: 当前已知的区域 0 内的 ABR 的 IP 地址为 10.0.40.1 , 下一跳 IP 地址为 10.0.23.246 。

```
R1#sh ip ospf border-routers

OSPF Process 68 internal Routing Table

Codes: i - Intra-area route, I - Inter-area route

i 10.0.40.1 [11] via 10.0.123.246, FastEthernet0/1, ABR, Area 0, SPF 3

R1#
```

R5: 当前已知的区域 1 内的 ABR 的 IP 地址为 10.0.40.1 , 下一跳 IP 地址为 10.1.0.1 。

```
R5#sh ip ospf border-routers

OSPF Process 68 internal Routing Table

Codes: i - Intra-area route, I - Inter-area route

i 10.0.40.1 [10] via 10.1.0.1, FastEthernet0/1, ABR, Area 1, SPF 2

R5#
```

18. 给 R6 的 f0/1、R8 的各接口配置 IP 地址并激活,启用 OSPF 协议,各接口均属于 Area 2。配置 PC4 的 IP 地址和默认路由。过一会,查看 R8 上的路由表,标出 Area 1 的区域间路由,测试 PC4 与 PC1、PC3 的连通性。

R6 配置命令:

R6(config)#interface f0/1
R6(config-if)# __ip addr 10.2.0.1 255.255.255.0
R6(config-if)# __no shut
R6(config)# __router ospf 68
R6(config-router)# __net 10.2.0.0 0.0.255.255 area 2

R8 配置命令:

R8(config)#interface f0/1
R8(config-if)# <u>ip addr 10.2.0.2 255.255.255.0</u>
R8(config-if)# <u>no shut</u>
R8(config)#interface f0/0
R8(config-if)# <u>ip addr 10.2.2.2 255.255.255.0</u>
R8(config-if)# <u>no shut</u>
R8(config-if)# <u>no shut</u>
R8(config)#interface f1/0
R8(config-if)# <u>ip addr 10.2.1.2 255.255.255.0</u>
R8(config-if)# <u>no shut</u>
R8(config-if)# <u>no shut</u>
R8(config-if)# <u>no shut</u>
R8(config-if)# <u>ip addr 10.2.80.1 255.255.255.255.252</u>
R8(config-if)# <u>ip addr 10.2.80.1 255.255.255.255.252</u>
R8(config-router)# <u>net 10.2.0.0 0.0.255.255 area 2</u>

R8 的路由表: 如图所示,区域间路由包含了 Area 1 和 Area 0 的地址, 其中 Area 1 的子网地址有<u>10.1.1.0/24</u>、

PC4→PC1 的连通性:

```
PC-4> ping 10.0.0.1

10.0.0.1 icmp_seq=1 timeout

84 bytes from 10.0.0.1 icmp_seq=2 ttl=60 time=61.982 ms

84 bytes from 10.0.0.1 icmp_seq=3 ttl=60 time=82.048 ms

84 bytes from 10.0.0.1 icmp_seq=4 ttl=60 time=56.903 ms

84 bytes from 10.0.0.1 icmp_seq=5 ttl=60 time=70.566 ms
```

PC4→PC3 的连通性:

```
PC-4> ping 10.1.1.1

10.1.1.1 icmp_seq=1 timeout

84 bytes from 10.1.1.1 icmp_seq=2 ttl=60 time=70.962 ms

84 bytes from 10.1.1.1 icmp_seq=3 ttl=60 time=75.530 ms

84 bytes from 10.1.1.1 icmp_seq=4 ttl=60 time=66.452 ms

84 bytes from 10.1.1.1 icmp_seq=5 ttl=60 time=68.021 ms
```

19. 如果之前未配置 Frame Relay 数据链路,请在此时进行配置(参考 GNS3 指南)。

FR 交换机的虚链路配置表截图:

20. 给 R5 的 s2/0 接口配置封装协议为 Frame Relay (命令: encapsulation frame-relay,由于 GNS3 自带的 FR 交换机只支持 ANSI 模式,而路由器默认的是 Cisco,所以需再加一句 frame-relay lmi-type ANSI)并

激活,然后创建 2 个子接口,配置其 IP 地址、接口 DLCI(命令: frame-relay interface-dlci 〈dlci〉,dlci 值等于 Frame Relay 交换机上定义的数据链路相关 DLCI 值),最后配置 R5 的 s2/0 接口属于 Area 1。

R5 配置命令:

R5#config t

R5(config)#int s2/0

R5(config-if)#encapsulation frame-relay

R5(config-if)#frame-relay lmi-type ANSI

R5(config-if)#no shut

R5(config-if)#exit

R5(config)#int s2/0.1 multipoint

R5(config-subif)#ip addr 10.1.2.5 255.255.255.0

R5(config-subif)#frame-relay interface-dlci 101

R5(config-fr-dlci)#exit

R5(config-subif)#exit

R5(config)#int s2/0.2 multipoint

R5(config-subif)#ip addr 10.1.2.6 255.255.255.0

R5(config-subif)#frame-relay interface-dlci 102

R5(config-fr-dlci)#exit

R5(config-subif)#exit

 $R5 (config) \# router\ ospf\ 68$

R5(config-router)#net 10.1.0.0 0.0.255.255 area 1

R5(config-router)#exit

R5(config)#exit

21. 给 R7 的各接口配置 IP 地址、激活,其中回环接口和 f0/0 接口属于 Area 2, s2/0 接口属于 Area 1,配置 s2/0 封装协议为 Frame Relay, DLCI 值设为 Frame Relay 交换机上 R5-R7 之间数据链路的相关 DLCI 值。

R7 配置命令:

```
R7(config)#interface f0/0
R7(config-if)# <u>ip addr 10.2.2.1 255.255.255.0</u>
R7(config-if)# <u>no shut</u>
R7(config)#interface s2/0
R7(config-if)# <u>ip addr 10.1.2.1 255.255.255.0</u> (IP 地址)
R7(config-if)# <u>encapsulation frame-relay</u> (封装协议)
R7(config-if)# <u>frame-relay lmi-type ANSI</u> (LMI)
R7(config-if)# <u>frame-relay interface-dlci 202</u> (DLCI)
R7(config-if)# <u>no shut</u> (激活)
R7(config-if)# <u>int loopback 0</u>
R7(config-if)# <u>int loopback 0</u>
```

```
R7(config)# <u>ip addr 10.2.70.1 255.255.255.255</u>
R7(config-router)# <u>net 10.2.0.0 0.0.255.255 area 2</u>
R7(config-router)# <u>net 10.1.0.0 0.0.255.255 area 1</u>
```

在 R7 上查看 Frame Relay 映射 (命令: show frame-relay map):

```
R7#sh frame-relay map
Serial2/0 (up): ip 10.1.2.5 dlci 202(0xCA,0x30A0), dynamic,
broadcast,, status defined, active
R7#
```

在 R5 上查看 Frame Relay 映射 (命令: show frame-relay map):

```
R5#sh frame-relay map
Serial2/0.1 (up): ip 10.1.2.1 dlci 101(0x65,0x1850), dynamic,
broadcast,, status defined, active
R5#
```

在 R7 上测试到 R5 的连通性(由于 R5-R7 采用的是点对点 Frame Relay 连接,只有 R5 的 1 个子接口地址可以通):

```
R7#ping 10.1.2.5

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 10.1.2.5, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 4/10/20 ms
R7#ping 10.1.2.6

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 10.1.2.6, timeout is 2 seconds:
....
Success rate is 0 percent (0/5)
R7#
```

只有一个子接口可以通

22. 给 R9 的各接口配置 IP 地址、激活,其中回环接口和 f0/1 接口属于 Area 3, s2/0 接口属于 Area 1,配置 s2/0 封装协议为 Frame Relay, DLCI 值设为 Frame Relay 交换机上 R5-R9 之间数据链路的相关 DLCI 值。

R9 配置命令:

```
R9(config)#interface f0/1
R9(config-if)# <u>ip addr 10.3.1.3 255.255.255.0</u>
R9(config-if)# <u>no shut</u>
R9(config)#interface s2/0
R9(config-if)# <u>ip addr 10.1.2.3 255.255.255.0</u> (IP 地址)
R9(config-if)# <u>encapsulation frame-relay</u> (封装协议)
R9(config-if)# <u>frame-relay lmi-type ANSI</u> (LMI)
R9(config-if)# <u>frame-relay interface-dlci 203</u> (DLCI)
R9(config-if)# <u>no shut</u> (激活)
```

```
R9(config)#interface loopback 0
R9(config-if)# <u>ip addr 10.3.90.1 255.255.255.255</u>
R9(config)# <u>router ospf 68</u>
R9(config-router)# <u>net 10.3.0.0 0.0.255.255 area 3</u>
R9(config-router)# <u>net 10.1.0.0 0.0.255.255 area 1</u>
```

在 R9 上查看 Frame Relay 映射 (命令: show frame-relay map):

```
R9#sh frame-relay map
Serial2/0 (up): ip 10.1.2.6 dlci 203(0xCB,0x30B0), dynamic,
broadcast,, status defined, active
R9#
```

在 R9 上测试到 R5 的连通性(由于 R5-R9 采用的是点对点 Frame Relay 连接,只有 R5 的 1 个子接口地址可以通。如果在 R5 上测试,需要加上参数 source s2/0 指定接口):

```
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 10.1.2.5, timeout is 2 seconds:
....
Success rate is 0 percent (0/5)
R9#ping 10.1.2.6

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 10.1.2.6, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 8/14/24 ms
R9#
```

在 R9 上测试到 R7 的连通性 (R5、R7、R9 通过帧中继交换机连接的形式称为非广播式多路访问,虽然路由器在同一个 IP 子网,但由于数据链路不是广播式的,所以在没有建立点对点数据链路的情况下,是不能通信的):

```
R9#ping 10.1.2.1

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 10.1.2.1, timeout is 2 seconds:
....

Success rate is 0 percent (0/5)

R9#
```

23. 分别在 R5、R7、R9 上查看 OSPF 邻居关系(此时 OSPF 认为当前链路属于广播式,需要先竞选出 DR, 而实际网络为非广播式的,因此三者之间的邻居关系暂时不能建立)

在 R5 上查看邻居关系:

```
R5#sh ip ospf neighbor

Neighbor ID Pri State Dead Time Address Interface

10.0.40.1 1 FULL/BDR 00:00:36 10.1.0.1 FastEthernet0/1
R5#
```

在 R7 上查看邻居关系:

```
R7#sh ip ospf neighbor

Neighbor ID Pri State Dead Time Address Interface
10.2.80.1 1 FULL/DR 00:00:34 10.2.2.2 FastEthernet0/0
R7#
```

在 R9 上查看邻居关系:

```
R9#sh ip ospf neighbor
R9#
```

24. 分别在 R5、R7、R9 上配置 s2/0 的接口为点对多点的网络类型 (命令: ip ospf network point-to-mulitpoint), 然后再次查看邻居关系:

R5 配置命令:

```
R5(config)#interface s2/0.1
R5(config-subif)# __ip ospf net point-to-multipoint
R5(config)#interface s2/0.2
R5(config-subif)# __ip ospf net point-to-multipoint

R7配置命令:
R7(config)#interface s2/0
R7(config-if)# __ip ospf net point-to-multipoint

R9配置命令:
R9(config)#interface s2/0
R9(config)#interface s2/0
R9(config)#interface s2/0
```

在 R5 上查看邻居关系:

Neighbor ID	Pri	State	Dead Time	Address	Interface
10.3.90.1		FULL/ -	00:01:31	10.1.2.3	Serial2/0.2
10.2.70.1		FULL/ -	00:01:56	10.1.2.1	Serial2/0.1
10.0.40.1		FULL/BDR	00:00:33	10.1.0.1	FastEthernet0/1
R5#					

在 R7 上查看邻居关系:

R7#sh ip ospf neighbor							
Neighbor ID 10.1.50.1 10.2.80.1 R7#	Pri 0 1	State FULL/ - FULL/DR	Dead Time 00:01:32 00:00:36	Address 10.1.2.5 10.2.2.2	Interface Serial2/0 FastEthernet0/0		

在 R9 上查看邻居关系:

```
R9#sh ip ospf neighbor

Neighbor ID Pri State Dead Time Address Interface
10.1.50.1 0 FULL/ - 00:01:45 10.1.2.6 Serial2/0
R9#
```

25. 分别在 R5、R8、R7 上查看 OSPF 数据库(命令: show ip ospf database), 观察 Summary Net Link 部分, 你发现了什么现象?

R5 的 OSPF 数据库: 观察得知, Area 1 所有的的聚合路由都是由区域边界路由器(ABR) 10.0.40.1 宣告的, 而 R7 作为 Area 1 和 Area 2 的 ABR, 却没有向 Area 1 宣告 Area 2 的路由信息,是因为所有的 Area 都只和 Area 0 进行路由信息交换。

D5#ch in cenf o	latabase						
R5#sh ip ospf database							
OSI	PF Router with II	(10.1.50.1)	(Process I	D 68)			
	Router Link States (Area 1)						
Link ID 10.0.40.1 10.1.50.1 10.2.70.1 10.3.90.1	10.1.50.1 10.2.70.1	Age 1860 308 368 423	0x80000006 0x8000000C 0x80000002	Checksum Link count 0x00B2F1 1 0x0063EC 7 0x00885A 2 0x005361 2			
	Net Link States	(Area 1)					
Link ID 10.1.0.2	ADV Router 10.1.50.1	Age 1908	Seq# 0x80000005				
	Summary Net Link States (Area 1)						
Link ID	ADV Router	Age	Seq#	Checksum			
10.0.0.0	10.0.40.1	1860	0x80000005				
10.0.1.0	10.0.40.1	1860	0x80000005				
10.0.20.1			0x80000005				
10.0.40.1			0x80000005				
10.0.60.1	10.0.40.1 10.0.40.1		0x80000005				
10.0.123.240			0x80000005				
		1863 1863	0x80000005 0x80000005				
10.0.123.246	10.0.40.1 10.0.40.1	1365	0x80000003	The state of the s			
10.2.1.0	10.0.40.1	345	0x80000004				
10.2.1.0		345	0x80000003				
10.2.70.1		1793	0x800000001				
10.2.80.1	10.0.40.1	347	0x80000003				
R5#							

R8 的 OSPF 数据库: 观察得知, Area 2 所有的的聚合路由都是由区域边界路由器(ABR) 10.0.60.1 宣告的, 而 R7 作为 Area 1 和 Area 2 的 ABR, 也没有向 Area 2 宣告 Area 1 的路由信息,。

R8#sh ip ospf database							
OSF	F Router with II	(Process ID 68)					
	Router Link States (Area 2)						
Link ID	ADV Router	Age	Seq#	Checksum	Link o	count	
10.0.60.1	10.0.60.1	747	0x80000005	0x005527			
10.2.70.1	10.2.70.1	253	0x80000003	0x00EB12			
10.2.80.1	10.2.80.1	218	0x80000005	0x00F495	4		
	Net Link States	(Area 2)					
Link ID	ADV Router	Age		Checksum			
10.2.0.1	10.0.60.1	747	0x80000003				
10.2.2.2	10.2.80.1	218	0x80000002	0x008F8B			
	Summary Net Lir	nk States (Ar	ea 2)				
12							
Link ID	ADV Router	Age	Seq#	Checksum			
10.0.0.0	10.0.60.1	1738	0x80000004	0x0028A2			
10.0.1.0	10.0.60.1	1738	0x80000004	0x00B81B			
10.0.20.1	10.0.60.1	1738	0x80000004				
10.0.40.1	10.0.60.1	1738	0x80000004				
10.0.60.1	10.0.60.1	1738	0x80000004	0x006446			
10.0.123.240		1739	0x80000004				
10.0.123.244		1739	0x80000004				
10.0.123.248	10.0.60.1	1739	0x80000004	0x002D44			
10.1.0.0	10.0.60.1	1741	0x80000004				
10.1.1.0	10.0.60.1	1741	0x80000004	0x0011B7			
10.1.2.1	10.0.60.1	694	0x80000001	0x002073			
10.1.2.3	10.0.60.1	667	0x80000001	0x000C85			
10.1.2.5	10.0.60.1	694	0x80000001				
10.1.2.6	10.0.60.1	667	0x80000001	0x006B63			
10.1.50.1	10.0.60.1	1742	0x80000004	0x008F10			
R8#							

R7 的 OSPF 数据库: 观察得知, Area 1 所有的的聚合路由都是由区域边界路由器(ABR) 10.0.40.1 宣告的,

Area 2 所有的的聚合路由都是由区域边界路由器(ABR) 10.0.60.1 宣告的。

```
Checksum
                                                         0x80000006 0x00B02C
                                                         0x80000006 0x00C907
10.0.123.240
10.0.123.244
                                                        0x80000006 0x005A1F
10.2.2.0
10.2.70.1
                                                         Seq# Checksum L
0x80000005 0x005527 1
                                                                        Checksum Link count
                                                         0x80000005 0x00F495 4
                    Net Link States (Area 2)
                                         Age
1264
10.2.0.1
10.2.2.2
                                                         0x80000002 0x008F8B
                    Summary Net Link States (Area 2)
                    10.0.60.1
10.0.123.240
10.0.123.244
10.0.123.248
                                         254
254
                                                         0x80000005 0x00CF96
10.1.2.1
10.1.2.3
                                                         0x80000005 0x008D11
```

26. 在 R8 上查看去往 PC3 所在网络的路由信息(命令: show ip route <ip network>)

R8 的路由信息:观察得知,前往子网 10.1.1.0 的下一跳 IP 地址是 10.2.0.1 ,是路由器 R6。

```
R8#sh ip route 10.1.1.0

Routing entry for 10.1.1.0/24

Known via "ospf 68", distance 110, metric 40, type inter area
Last update from 10.2.0.1 on FastEthernet0/1, 00:47:30 ago
Routing Descriptor Blocks:

* 10.2.0.1, from 10.0.60.1, 00:47:30 ago, via FastEthernet0/1
Route metric is 40, traffic share count is 1
```

27. 断开路由器 R6 的 f0/0 接口 (命令: shutdown), 等候片刻, 在 R8 上再次查看路由信息:

```
R8#sh ip route 10.1.1.0
& Subnet not in table
R8#
```

看看 R7 有没有 PC3 的路由信息: 观察得知,前往子网<u>10.1.1.0</u>的路由是存在的,但是由于 Area 2 和 Area 1 不直接交换路由信息, R7 没有向 Area 2 宣告路由的存在。

```
R7#sh ip route 10.1.1.0

Routing entry for 10.1.1.0/24

Known via "ospf 68", distance 110, metric 74, type intra area Last update from 10.1.2.5 on Serial2/0, 00:27:34 ago
Routing Descriptor Blocks:

* 10.1.2.5, from 10.1.50.1, 00:27:34 ago, via Serial2/0

Route metric is 74, traffic share count is 1
```

重新打开 R6 的 f0/0 接口,稍候再次查看 R8 的路由信息是否恢复。

```
R8#sh ip route 10.1.1.0

Routing entry for 10.1.1.0/24

Known via "ospf 68", distance 110, metric 40, type inter area Last update from 10.2.0.1 on FastEthernet0/1, 00:00:19 ago Routing Descriptor Blocks:

* 10.2.0.1, from 10.0.60.1, 00:00:19 ago, via FastEthernet0/1 Route metric is 40, traffic share count is 1

R8#
```

恢复

28. 给 R10 的 f0/0、f0/1 接口配置 IP 地址并激活,启用 OSPF 协议,各接口均属于 Area 3。配置 PC5 的 IP 地址和默认路由。过一会,查看 R10 上的路由表和 OSPF 数据库。

R10 配置命令:

```
R8(config)#interface f0/1

R8(config-if)# ip addr 10.3.1.2 255.255.255.0

R8(config-if)# no shut

R8(config-if)# ip addr 10.3.2.2 255.255.255.0

R8(config-if)# ip addr 10.3.2.2 255.255.255.0

R8(config-if)# no shut

R8(config)#interface loopback 0

R8(config-if)# ip addr 10.3.100.1 255.255.255.252

R8(config)# router ospf 68

R8(config-router)# net 10.3.0.0 0.0.255.255 area 3
```

R10 的 OSPF 数据库: 观察可知,数据库中没有其他 Area 的信息,因为 Area 3 和 Area 1 不直接交换信息

```
R10#sh ip ospf database

OSPF Router with ID (10.3.100.1) (Process ID 68)

Router Link States (Area 3)

Link ID ADV Router Age Seq# Checksum Link count 10.3.90.1 10.3.90.1 87 0x80000003 0x007348 2 10.3.100.1 10.3.100.1 81 0x80000002 0x001462 3

Net Link States (Area 3)

Link ID ADV Router Age Seq# Checksum 10.3.1.3 10.3.90.1 86 0x80000001 0x002EB7 R10#
```

R10 的路由表:观察可知,路由表中没有其他 Area 的信息,因为 OSPF 数据库中缺乏相关数据。

```
R10#sh ip route

Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2

i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candidate default, U - per-user static route

O - ODR, P - periodic downloaded static route

Gateway of last resort is not set

10.0.0.0/8 is variably subnetted, 4 subnets, 3 masks

C 10.3.1.0/24 is directly connected, FastEthernet0/1

C 10.3.2.0/24 is directly connected, FastEthernet0/0

O 10.3.90.1/32 [110/11] via 10.3.1.3, 00:02:46, FastEthernet0/1

C 10.3.100.0/30 is directly connected, Loopback0

R10#
```

29. 在 Area 1 上的两个边界路由器 R9、R4 之间为 Area 3 和 Area 0 创建虚链路(命令: area 〈area-id〉 virtual-link RID),这样 Area 3 就能和 Area 0 进行路由信息交换了。其中,area-id 写 1,RID 写对方的 Router ID,稍候查看虚链路建立情况(命令: show ip ospf virtual-links)和邻居信息(命令: show ip ospf neighbor)。

R4 配置命令:

```
R4(config)# router ospf 68
R4(config-router)# area 1 virtual-link 10.3.90.1
```

R9 配置命令:

```
R9(config)# router ospf 68
R9(config-router)# area 1 virtual-link 10.0.40.1
```

查看 R4 虚链路: 观察得知, R4 通过区域<u>1</u>的接口<u>f0/1</u>与 R9(RID 是<u>10.3.90.1</u>)建立了虚链路, 使用的 Cost 值为<u>74</u>。

```
R4#sh ip ospf virtual-links
Virtual Link OSPF_VLO to router
Run as demand circuit
DoNotAge LSA allowed.
Transit area 1, via interface FastEthernetO/1, Cost of using 74
Transmit Delay is 1 sec, State POINT_TO_POINT,
Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
Hello due in 00:00:07
Adjacency State FULL (Hello suppressed)
Index 4/5, retransmission queue length 0, number of retransmission 0
First 0x0(0)/0x0(0) Next 0x0(0)/0x0(0)
Last retransmission scan length is 0, maximum is 0
Last retransmission scan time is 0 msec, maximum is 0 msec
R4#
```

查看 R9 虚链路: 观察得知, R9 通过区域 1_的接口__s2/0__与 R4(RID 是 10.0.40.1_)建立了虚链路, 使用的 Cost 值为__74_。

```
R9#sh ip ospf virtual-links
Virtual Link OSPF_VLO to router 10.0.40.1 is up
Run as demand circuit
DoNotAge LSA allowed.

Transit area 1, via interface Serial2/0, Cost of using 74
Transmit Delay is 1 sec, State POINT_TO_POINT,
Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
Hello due in 00:00:06
Adjacency State FULL (Hello suppressed)
Index 1/3, retransmission queue length 0, number of retransmission 0
First 0x0(0)/0x0(0) Next 0x0(0)/0x0(0)
Last retransmission scan length is 0, maximum is 0
Last retransmission scan time is 0 msec, maximum is 0 msec
R9#
```

查看 R4 邻居信息: 观察得知, R4 通过接口 OSPF VL0 与 R9 (RID 是 10.3.90.1) 建立了邻接关系。

查看 R9 邻居信息: 观察得知, R9 通过接口 <u>OSPF VL0</u> 与 R4 (RID 是 <u>10.0.40.1</u>) 建立了邻接关系。

30. 再次显示 R10 的路由表和 OSPF 数据库,标出 PC1、PC2、PC3 所在的子网相关记录。 R10 的路由表:

R10 的 OSPF 数据库:观察得知,所有其他区域路由信息均由区域边界路由器 10.3.90.1 宣告。

```
R10#sh ip ospf database
                Router Link States (Area 3)
                                             0x800000004 0x007445 2
                                             0x80000002 0x001462 3
                                             Seq#
                                                        Checksum
                Summary Net Link States (Area 3)
Link ID
                ADV Router
                                            0x80000001 0x004313
                                            0x80000001 0x002FD9
                                            0x80000001 0x00F08E
                                            0x80000001 0x00443E
                                             0x80000001 0x0064F0
                                             0x80000001 0x00ACBB
R10#
```

31. 在 R9 上手工合并 Area 0 上的子网路由(命令: area 0 range <ip net > <mask >, 其中 ip_net 写成 10.0.0.0,

mask 写成 255.255.0.0,表示 10.0.x.x 这些网络都在 area 0 上),然后显示 R9 和 R10 的路由表,看看所指定的子网是否合并了路由

R9的路由表:标出合并的那条路由,这条路由采用了特殊的接口_Null0_作为下一跳。

```
10.0.0.0/8 is variably subnetted, 25 subnets, 5 masks

10.3.1.0/24 is directly connected, FastEthernet0/1

0 IA 10.2.0.0/24 [110/94] via 10.1.2.6, 00:01:03, Serial2/0

10.1.2.1/32 [110/128] via 10.1.2.6, 00:01:03, Serial2/0

0 IA 10.2.1.0/24 [110/95] via 10.1.2.6, 00:01:03, Serial2/0

C 10.1.2.0/24 is directly connected, Serial2/0

0 IA 10.2.2.0/24 [110/104] via 10.1.2.6, 00:01:03, Serial2/0

0 10.1.1.0/24 [110/74] via 10.1.2.6, 00:01:03, Serial2/0

0 10.1.1.0/24 [110/74] via 10.1.2.6, 00:01:03, Serial2/0

0 10.0.0.0/24 [110/104] via 10.1.2.6, 00:01:04, Serial2/0

0 10.0.0.0/24 [110/104] via 10.1.2.6, 00:01:04, Serial2/0

10.1.0.0/24 [110/74] via 10.3.1.2, 00:01:04, FastEthernet0/1

0 10.1.0.0/24 [110/74] via 10.1.2.6, 00:01:04, Serial2/0

0 10.1.0.1.0/24 [110/74] via 10.1.2.6, 00:01:04, Serial2/0

0 10.1.2.5/32 [110/64] via 10.1.2.6, 00:01:04, Serial2/0

0 10.1.2.6/32 [110/64] via 10.1.2.6, 00:01:07, Serial2/0

0 10.0.20.1/32 [110/85] via 10.1.2.6, 00:01:07, Serial2/0

0 10.0.40.1/32 [110/75] via 10.1.2.6, 00:01:07, Serial2/0

0 10.1.50.1/32 [110/65] via 10.1.2.6, 00:01:07, Serial2/0

0 10.1.50.1/32 [110/65] via 10.1.2.6, 00:01:09, Serial2/0

0 IA 10.2.70.1/32 [110/105] via 10.1.2.6, 00:01:09, Serial2/0

0 IA 10.2.80.1/32 [110/95] via 10.1.2.6, 00:01:10, FastEthernet0/1

0 10.0.123.244/30 [110/148] via 10.1.2.6, 00:01:11, Serial2/0

0 10.0.123.244/30 [110/94] via 10.1.2.6, 00:01:11, Serial2/0

0 10.0.123.244/30 [110/94] via 10.1.2.6, 00:01:11, Serial2/0
```

R10的路由表:标出合并的那条路由,这条路由下一跳的 IP 地址是 10.3.1.3 ,是路由器 R9 的接口。

32. 整理各路由器的当前运行配置,选择与本实验相关的内容记录在文本文件中,每个设备一个文件,分别命名为 R1.txt、R2.txt 等,随实验报告一起打包上传。

六、 实验结果与分析

根据你观察到的实验数据和对实验原理的理解,分别解答以下问题:

- 在一个网络中各路由器的 OSPF 进程号是否一定要相同?一个路由器上可以配置多个 进程号吗?
 - 答:不一定要相同。可以配置多个进程号,但是不同的进程之间是相互独立的,通过不同的进程学习到的路由也不会相互传递。
- 未手工指定 Router ID 时,如果没有给回环接口配置 IP 地址,会从哪一个接口选取地址作为 Router ID? 如果给回环接口配置了 IP 地址,又会从哪一个接口选取地址作为 Router ID?
 - 答:未手工指定 Router ID 时,如果没有给回环接口配置 IP 地址,路由器上活动的接口中最高 IP 地址将成为 Router ID;如果给回环接口配置了 IP 地址,则选择 Loopback接口地址中最大的作为 Router ID。
- 如果 Router ID 对应的接口 down 了,路由器会自动重新选择另一个接口地址作为新的 Router ID 吗?

答: 会

- 宣告网络属于哪个 area 的命令中, 网络地址后面的参数是子网掩码吗? 为什么要写成 0.0.255.255, 而不是 255.255.0.0?
 - 答:不是子网掩码,是通配符掩码(反向掩码)。因为 OSPF 使用反向掩码,0 代表完全 匹配,1 代表不需匹配。
- 是不是所有其他 Area 上的路由器都只和 Area 0 上的路由器进行路由信息交换?虚链路的作用是什么?
 - 答: 是, 虚链路的作用是把没有直接物理连接到主干的区域连接到主干区域。

为什么要在区域边界路由器上进行路由合并?

答:缩小路由表,便于管理。

七、讨论、心得

在完成本实验后,你可能会有很多待解答的问题,你可以把它们记在这里,接下来的学习中,你也许会逐渐得到答案的,同时也可以让老师了解到你有哪些困惑,老师在课堂可以安排针对性地解惑。等到课程结束后,你再回头看看这些问题时你或许会有不同的见解:

1、不是特别理解 OSPF 的 Net Link States 的路由信息, 感觉跟拓扑图对应怪怪的。

在实验过程中你可能会遇到的困难,并得到了宝贵的经验教训,请把它们记录下来,提供给其他人参考吧:

- 1、R1 的 f0/1 shutdown 之后再 no shut, 忘记 write 了,做到后面 R1 的 Router ID 还是 10.0.123.241,然 后就重新 shutdown 和 no shut,但是 Router ID 还是不对,Reload 也没用,最后关了 GNS3 再打开才对。
- 2、做实验要一气呵成,跟着实验步骤,别忘记 write,基本不会有大问题。虽然做到后面脑子都糊涂了,但是借助 CSDN 还是能够理解不少概念的,就是 OSPF 的相关知识真的好多,有点消化不了。

你对本实验安排有哪些更好的建议呢?欢迎献计献策:

量太大了,跟上一次的实验部分内容重复,感觉应该在上一次实验的基础上增加内容,用同一个GNS3project。也就是一次大实验的内容分几次完成。