

Sumário

- 1. Bibliografia
- 2. Estabelecendo Relações
- 3. Relações Binárias
- 4. Funções

Bibliografia

Bibliografia da Aula 02

Livro texto: Fundamentos da Matemática Elementar: 1 (Click para baixar)

Estabelecendo Relações

Atividade 1

- a) Sabendo que a passagem de ônibus custa *R*\$3, 25, para ir e voltar do trabalho quanto uma pessoa pagaria por dia ao utilizar o transporte? E em uma semana? E em um mês?
- b) Seja P o número de passagens ao mês e de G o gasto mensal com transporte.
 - i) Existe uma relação entre o número de passagens ao mês e o gasto mensal com transporte. Qual é a expressão matemática que represente essa relação?
 - ii) Quais são os possíveis valores para a variável P? Qual conjunto numérico descreve bem esses possíveis valores?
 - iii) Dá para indicar qual o menor valor para G? E o maior?

Atividade 2

- a) Vamos formar triângulos com arestas em comum.
 - i) Quantas arestas são necessárias para formar 1 triângulo?
 - ii) Quantas arestas são necessárias para formar 2 triângulos?
 - iii) Quantas arestas são necessárias para formar 4 triângulos?
- b) Existe uma relação entre o número necessário de arestas A e a quantidade de triângulos T que se quer formar? Qual é a expressão matemática que represente essa relação?
- c) Quantas arestas são necessárias para formar 15 triângulos?

Pares Ordenados

- ► Chama-se par todo conjunto formado por dois elementos: $\{1, 2\}$, $\{3, -1\}$, $\{a, b\}$.
- ► Em linguagem de conjuntos, $\{1,2\} = \{2,1\}$. Ou seja, a ordem em que os elementos são apresentados não importa.
- ► Em alguma situações, há a necessidade de distinguir dois pares pela ordem dos elementos.

Pares Ordenados

▶ Por exemplo, ao resolvermos o sistema de equações

$$x + y = 3$$

$$x - y = 1$$

$$x=2$$
 e $y=1$ é solução, ao passo que $x=1$ e $y=2$ não o é:

x = 2 e y = 1	x = 1 e y = 2
x + y = 2 + 1 = 3	x + y = 1 + 2 = 3
x-y=2-1=1	x-y=1-2=-1

Pares Ordenados

- Portanto, não podemos descrever tal solução na forma de um par qualquer: $\{1,2\} = \{2,1\}.$
- Por causa disso, dizemos que a solução é o **par ordenado** (x,y) = (2,1), onde o primeiro elemento refere-se à incógnita x e o segundo refere-se à incógnita y.
- Observação:

$$(a,b)=(c,d)\Longleftrightarrow a=c\ e\ b=d.$$

Produto Cartesiano

▶ O produto cartesiano $A \times B$ é o conjunto de todos os pares ordenados (a, b), tais que $a \in A$ e $b \in B$; ou seja,

$$A \times B = \{(a,b) | a \in A \in b \in B\}.$$

Neste curso, usaremos o produto cartesiano $\mathbb{R} \times \mathbb{R}$, o **plano cartesiano**. Ele pode ser identificado através da seguinte construção:

- i) Uma cópia da reta real, na horizontal, onde é feita a escolha de um ponto para representar o número 0, e os números positivos são colocados à direita, enquanto os negativos à esquerda do 0. Geralmente, denotamos esta reta por **eixo** *x* ou **eixo das abscissas**.
- ii) Uma cópia da reta real, na vertical, onde é feita a escolha de um ponto para representar o número 0, e os números positivos são colocados acima, enquanto os negativos abaixo do 0. Geralmente, denotamos esta reta por eixo y ou eixo das ordenadas.
- iii) Intersecta as duas retas, fazendo os pontos 0 das duas se encontrarem, de modo que as duas sejam perpendiculares entre si.

Chama-se **origem** do plano cartesiano, o ponto O = (0, 0).

O pontos $A = (-\pi, 0.5)$ e $B = (\sqrt{2}, -1)$ no plano cartesiano:

Exemplo 2

Usando o Geogebra, escreva alguns pares ordenados (P,G), da Atividade 1. Use o arquivo Problema_Passagem.

Exemplo 3

Usando o Geogebra, escreva alguns pares ordenados (T,A), da Atividade 2. Use o arquivo Problema_Triangulo.

Relações Binárias

Definição

Dados dois conjuntos A e B, chama-se **relação binária de** A **em** B todo subconjunto R de $A \times B$.

Exemplo 4

Sejam $A = \{1, 2, 3, 4, 5\}$ e $B = \{1, 2, 3, 4\}$.

- a) Descreva $A \times B$.
- b) Quais são os elementos da relação $R_1 = \{(x, y) | x < y\}$, de A em B?
- c) Quais são os elementos da relação $R_2 = \{(x,y) \mid y = x+2\}$, de A em B?

Definição

Exemplo 5

Sejam $A = \{x \in \mathbb{R} \mid 1 \le x \le 3\} \text{ e } B = \{x \in \mathbb{R} \mid 1 \le x \le 2\}.$

- a) Descreva alguns elementos de $A \times B$.
- b) Descreva $A \times B$.
- c) Quais são os elementos da relação $R = \{(x, y) \in A \times B \mid y = x\}$?

Definição

Exemplo 6

Sejam $A = \{x \in \mathbb{R} \mid 1 < x < 3\} \text{ e } B = \{x \in \mathbb{R} \mid 1 \le x \le 2\}.$

- a) Descreva alguns elementos de $A \times B$.
- b) Descreva $A \times B$.
- c) Qual a diferença entre esse cartesiano e o cartesiano gerado no Exemplo 5?

Formulário Avaliativo

Responda ao Fomulário Avaliativo 1 desta aula.

Funções

Considere os conjuntos $A = \{0, 1, 2, 3\}$ e $B = \{-1, 0, 1, 2, 3\}$.

- ▶ Verifique se a relação binária $R = \{(x,y) \in A \times B \mid y = x+1\}$ satisfaz às seguintes propriedades:
 - a) Todo elemento $x \in A$ participa de algum par em R?
 - b) Cada elemento $x \in A$ participa de apenas um único par em R?

Considere os conjuntos $A = \{0, 1, 2, 3\}$ e $B = \{-1, 0, 1, 2, 3\}$.

- ▶ Verifique se a relação binária $R = \{(x, y) \in A \times B \mid y = x + 1\}$ satisfaz às seguintes propriedades:
 - a) Todo elemento $x \in A$ participa de algum par em R?
 - b) Cada elemento $x \in A$ participa de apenas um único par em R?

Considere os conjuntos $A = \{0, 1, 2, 3\}$ e $B = \{-1, 0, 1, 2, 3\}$.

- ▶ Verifique se a relação binária $R = \{(x, y) \in A \times B \mid y = x + 1\}$ satisfaz às seguintes propriedades:
 - a) Todo elemento $x \in A$ participa de algum par em R?
 - b) Cada elemento $x \in A$ participa de apenas um único par em R?

► A relação *R* não é uma função de *A* em *B*.

- ▶ Verifique se a relação binária $S = \{(x,y) \in A \times B \mid y^2 = x^2\}$ satisfaz às seguintes propriedades:
 - a) Todo elemento $x \in A$ participa de algum par em S?
 - b) Cada elemento $x \in A$ participa de apenas um único par em S?

- ▶ Verifique se a relação binária $S = \{(x,y) \in A \times B \mid y^2 = x^2\}$ satisfaz às seguintes propriedades:
 - a) Todo elemento $x \in A$ participa de algum par em S?
 - b) Cada elemento $x \in A$ participa de apenas um único par em S?

- ▶ Verifique se a relação binária $S = \{(x,y) \in A \times B \mid y^2 = x^2\}$ satisfaz às seguintes propriedades:
 - a) Todo elemento $x \in A$ participa de algum par em S?
 - b) Cada elemento $x \in A$ participa de apenas um único par em S?

► A relação S não é uma função de A em B.

- ▶ Verifique se a relação binária $T = \{(x, y) \in A \times B \mid y = x\}$ satisfaz às seguintes propriedades:
 - a) Todo elemento $x \in A$ participa de algum par em T?
 - b) Cada elemento $x \in A$ participa de apenas um único par em T?

- ▶ Verifique se a relação binária $T = \{(x, y) \in A \times B \mid y = x\}$ satisfaz às seguintes propriedades:
 - a) Todo elemento $x \in A$ participa de algum par em T?
 - b) Cada elemento $x \in A$ participa de apenas um único par em T?

- ▶ Verifique se a relação binária $T = \{(x, y) \in A \times B \mid y = x\}$ satisfaz às seguintes propriedades:
 - a) Todo elemento $x \in A$ participa de algum par em T?
 - b) Cada elemento $x \in A$ participa de apenas um único par em T?

► A relação *T* é uma função de *A* em *B*.

- ▶ Verifique se a relação binária $V = \{(x,y) \in A \times B \mid y = (x-1)^2 1\}$ satisfaz às seguintes propriedades:
 - a) Todo elemento $x \in A$ participa de algum par em T?
 - b) Cada elemento $x \in A$ participa de apenas um único par em T?

- a) Todo elemento $x \in A$ participa de algum par em T?
- b) Cada elemento $x \in A$ participa de apenas um único par em T?

- ▶ Verifique se a relação binária $V = \{(x,y) \in A \times B \mid y = (x-1)^2 1\}$ satisfaz às seguintes propriedades:
 - a) Todo elemento $x \in A$ participa de algum par em T?
 - b) Cada elemento $x \in A$ participa de apenas um único par em T?

► A relação *V* é uma função de *A* em *B*.

- ▶ Verifique se a relação binária $W = \{(x, y) \in A \times B \mid y = 2\}$ satisfaz às seguintes propriedades:
 - a) Todo elemento $x \in A$ participa de algum par em W?
 - b) Cada elemento $x \in A$ participa de apenas um único par em W?

- ▶ Verifique se a relação binária $W = \{(x, y) \in A \times B \mid y = 2\}$ satisfaz às seguintes propriedades:
 - a) Todo elemento $x \in A$ participa de algum par em W?
 - b) Cada elemento $x \in A$ participa de apenas um único par em W?

- ▶ Verifique se a relação binária $W = \{(x, y) \in A \times B \mid y = 2\}$ satisfaz às seguintes propriedades:
 - a) Todo elemento $x \in A$ participa de algum par em W?
 - b) Cada elemento $x \in A$ participa de apenas um único par em W?

► A relação *W* é uma função de *A* em *B*.