

V TOMTO SEŠITĚ

|                                                                      |     |
|----------------------------------------------------------------------|-----|
| Náš interview . . . . .                                              | 361 |
| Konference IARU I. oblasti . . . . .                                 | 362 |
| Příkladná iniciativa horaždovických . . . . .                        | 362 |
| Televizory Tesla . . . . .                                           | 363 |
| Jak na to? . . . . .                                                 | 364 |
| Služba radioamatérům - nabídka polovodičových prvků . . . . .        | 365 |
| Mladý konstruktér (jednoduchý měřicí tranzistorů) . . . . .          | 366 |
| Základy nf techniky (Korektory kmitočtové charakteristiky) . . . . . | 368 |
| Examinátor . . . . .                                                 | 370 |
| Stabilizátor síťového napětí . . . . .                               | 372 |
| Stereofonní předzesilovač . . . . .                                  | 374 |
| Stabilizovaný zdroj s MAA501 . . . . .                               | 377 |
| Impulsové proporcionální řízení ss motorkou . . . . .                | 383 |
| Zesilovač pro IV. a V. TV pásmo . . . . .                            | 385 |
| Digitální měřiče tranzistorů . . . . .                               | 387 |
| Měření krátkých světelných záblesků . . . . .                        | 390 |
| Škola amatérského vysílání (Charakteristiky elektronek) . . . . .    | 391 |
| Detektor s Clappovým obvodem . . . . .                               | 393 |
| Tranzistorový transceiver TTR1 . . . . .                             | 394 |
| Soutěže a závody . . . . .                                           | 396 |
| Amatérská televize . . . . .                                         | 397 |
| DX . . . . .                                                         | 398 |
| Četli jsme . . . . .                                                 | 399 |
| Naše předpověď . . . . .                                             | 399 |
| Nezapomeňte, že . . . . .                                            | 400 |
| Inzerce . . . . .                                                    | 400 |

Na str. 379 až 382 jako vyjímatelná příloha „Malý katalog tranzistorů“.

AMATÉRSKÉ RADIO

Vydává FV Svazarmu ve vydavatelství MAGNET, Praha 1, Vladislavova 26, telefon 260651-7. Šéfredaktor: ing. František Smolík, zástupce Luboš Kalousek. Redakční rada: K. Bartoš, V. Brzák, ing. J. Čermák, CSc, J. Dlouhý, K. Donáth, L. Hlinský, ing. L. Hloušek, A. Hofhans, Z. Hradík, ing. J. T. Hyen, ing. J. Jaroš, ing. F. Králík, J. Krčmářík, ZMS, K. Novák, ing. O. Petráček, A. Pospíšil, ing. J. Vackář, CSc, laureát st. ceny KG, J. Ženíšek. Redakce Praha 2, Lublaňská 57, tel. 296930. Ročně vydá 12 čísel. Cena výtisku 5 Kčs, pololetní předplatné 30 Kčs. Rozšířuje PNS, v jednotkách ozbrojených sil vydavatelství MAGNET, administrace Praha 1, Vladislavova 26. Objednávky přijímá každá pošta i doručovatel. Dohledací pošta Praha 07. Objednávky do zahraničí vyřizuje PNS, vývoz tisku, Jindřišská 14, Praha 1. Tiskne Polygrafia 1, n. p., Praha. Inzerci přijímá vydavatelství MAGNET, Vladislavova 26, Praha 1, tel. 260651-7, linka 294. Za původnost příspěvku ručí autor. Redakce rukopisů vrátí, buď-li vyzádán a bude-li připojena frakovaná obálka se zpětnou adresou.

Toto číslo vyšlo 10. října 1972

© Vydavatelství MAGNET, Praha

náš  
interview

s ing. J. Zímou, dlouholetým pracovníkem v oboru integrovaných obvodů z Výzkumného ústavu automatizačních prostředků v Praze, o integrovaných obodech v Československu.

Integrované obvody jsou nejmodernějšími a nejmladšími součástkami současné součástkové základny a v poslední době vytlačují z mnoha oblastí klasické součástky. Kdy se u nás začalo s jejich vývojem?

Vznik a vývoj integrovaných obvodů ve světové elektronice jsme v Československu zatraci poměrně včas. Již v roce 1961 byla ve VÚST A. S. Popova utvořena tříčlenná skupina, jejímž úkolem bylo ze začátku studijně sledovat v zahraniční literatuře výsledky vývoje a provádět vlastní výzkum. Do roku 1964 se pracovní kolektiv rozrostl asi na 30 lidí a v letech 1966-67 se začaly v n. p. Tesla Rožnov, našem monopolním výrobcem polovodičových součástek, vytvářet podmínky pro vlastní vývoj a výrobu integrovaných obvodů. Protože se v té době integrované obvody ve světě již jednoznačně začaly prosazovat i do investiční a průmyslové elektroniky, odpadly pochyby o jejich budoucnosti a v n. p. Tesla Rožnov se přikročilo k vývoji prvního složitějšího lineárního integrovaného obvodu, operačního zesilovače  $\mu$ A709, který se později začal vyrábět pod označením MAA501 až 4.

Jakým způsobem probíhá vývoj integrovaných obvodů a jak jsme na tom ve srovnání s ostatními státy socialistického tábora?

N. p. Tesla Rožnov a ostatní organizace, mající zájem na rychlém vývoji integrovaných obvodů v Československu (VÚAP, VÚMS, VÚST, VÚT ap.), pozorně a pečlivě sledují trend vývoje u největších světových výrobců, jako je např. Texas Instruments, Motorola, Fairchild, Philips, Siemens apod. Z jejich výrobních programů se po dohodě s odběratelskými ústavy a podniky vybírají vhodné a potřebné typy, které se potom zavádějí do vývoje a výroby v n. p. Tesla Rožnov. Je to běžná praxe i mezi západoevropskými a americkými firmami, které od sebe navzájem přejímají „povedené“ typy integrovaných obvodů. Pro kontrolu a popř. studium hotových integrovaných obvodů existují speciální přístroje. Jedním z nich je tzv. „scanning mikroskop“. Tento přístroj umožňuje vysledovat zapojení a vnitřní strukturu hotového integrovaného obvodu a popř. i technologické parametry jeho jednotlivých částí.

Lze říci, že zatím se v n. p. Tesla Rožnov vždy trefili do černého a výbrali světově nejúspěšnější typy integrovaných obvodů. Z ostatních zemí socialistického tábora se integrované obvody vyrábějí v Sovětském svazu, kde existuje mnoho řad číslicových a lineárních obvodů. Tyto řady účelně navazují na světový sortiment. Dále vyrábí integrované obvody Bulharsko a výroba se začíná rozvíjet v NDR. Lze říci, že kromě výrobců v SSSR je n. p. Tesla Rožnov zatím na špičce výroby



Ing. Jiří Zíma

integrovaných obvodů v socialistickém tábore.

Jaké typy z vyráběných integrovaných obvodů byly zatím nejpovedenější, a o kterých se dá říci, že se nepovedly?

K velmi dobrým výrobkům n. p. Tesla Rožnov patří operační zesilovače vyráběné pod označením MAA501 až 4 (ekvivalent obvodu fy Fairchild  $\mu$ A709) a celá řada MH74 (MH84, MH54) číslicových integrovaných obvodů (ekvivalenty řad SN74, SN84, SN54 fy Texas Instruments). Všechny tyto obvody jsou stejně dobré jako jejich zahraniční vzory a snesou srovnání s výrobky spíčkových světových firem.

Jediný obvod, který nesplnil původní očekávání, je integrovaný nf výkonného zesilovače MA0403. Jeho největší nevýhodou je, že potřebuje stabilizované napájecí napětí 18 V, což komplikuje aplikace v televizorech, přijímačích apod. o stabilizátor. Při nižším napájecím napětí popř. při jeho kolísání se mění nastavení zesilovače a mění se symetrie limitace.

Co se chystá nového v sortimentu integrovaných obvodů?

V současné době úspěšně probíhá vývoj operačního zesilovače MAA725 ( $\mu$ A725 fy Fairchild) a napěťového stabilizátoru MAA723 (obdoba  $\mu$ A723 fy Fairchild). Pracuje se na vývoji řady FZ vysokourovňové logiky, která má sloužit pro „pomalejší“ průmyslové aplikace a oproti řadě MH74 má hlavně podstatně větší šumovou imunitu, nastavitelné zpoždění a větší zatížitelnost. Rovněž probíhá vývoj obvodu pro bezkontaktní tlačítko, pracujícího na principu Hallova jevu. Hlavní použití je jako zadávací tlačítko pro číslicové systémy s integrovanými obvody v vazbou TTL. Začíná se pracovat na vývoji rychlé Schottkyho logiky řady MH74S a uvažuje se o vývoji obvodu typu PA436 pro fázové řízení tyristorů a triaků, protože tato oblast aplikací integrovaných obvodů byla zatím dost zanedbávána.

A jaká je dlouhodobější perspektiva dalšího vývoje integrovaných obvodů v Československu?

Vývoj integrovaných obvodů v n. p. Tesla Rožnov se nyní poněkud zpomalil.

lil. Je to způsobeno snahou o zvýšení jakosti a spolehlivosti, což si vyžádalo určité úpravy v pracovním programu výzkumně vývojových kapacit. Za velmi pozitivní jev je možno pokládat to, že n. p. Tesla Rožnov má velmi dobré investiční vybavení, snad nejlepší z podniků Tesla i ZPA. Neboť nutně platí, že pro vývoj moderních přístrojů a zařízení je prvním předpokladem dostupnost moderní součástkové základny. Doufám, že i nadále bude ze strany nadřízených orgánů tento trend v rozvoji naší elektroniky všeestranně podporován, neboť vývoj v elektronice velmi rychle spěje k rozvíjení stále složitějších funkčních integrovaných obvodů a soustav. Např. pro novou generaci počítačů se v zahraničí již vyrábějí velmi rychlé paměti TTL a ECL se zápisem a snímáním s kapacitou 1 024 bitů. S využitím struktur MOS se realizují paměťové soustavy až 8 000 bitů. Pro rozvíjení vývoje a výroby složitých obvodů a soustav je třeba stále obnovovat a doplňovat poměrně rozsáhlý park nákladních zařízení, jejichž ceny na světových trzích dosahují desítek až stovek tisíc dolarů.

Výzkumný ústav automatizačních prostředků, Výzkumný ústav matematických strojů a další organizace, mající zájem na rychlém vývoji integrovaných obvodů, velmi těsně spolupracují s n. p. Tesla Rožnov.

**Rozvoj výroby integrovaných obvodů souvise s dostatkem dostupných informací a jejich uplatnění v praxi, s jejich aplikacemi. Jak je postaráno o tuto stránku a jaké jsou největší překážky?**

Závažným nedostatkem je poměrně malá informovanost o nových výrobcích (nejen v tomto oboru) z Tesly Rožnov. Katalogy vycházejí se značným zpožděním a jsou velmi těžko dostupné. Aplikační zprávy, které Tesla Rožnov vydává, jsou zejména v oblasti lineárních integrovaných obvodů na nízké technické úrovni a jsou v nich mnohdy závažné chyby. Jako příklad bych uvedl zapojení výkonového nízkofrekvenčního zesilovače s operačním zesilovačem μA709. Bylo do aplikačních zpráv převzato z časopisu Radiový konstruktér ročník 1970, č. 6 obr. 89, str. 56, aniž bylo vyzkoušeno a např. zahraniční křemíkové tranzistory byly mechanicky nahrazeny našimi germaniovými tranzistory. Nebylo změněno napájecí napětí a obvod tak, jak je v aplikačních zprávách uveden, nemůže pracovat. Zapojení bylo uvedeno bez udání pramene, i když v RK byl původní zahraniční pramen uveden. Takovéto příklady potom zbytečně snížují věrohodnost publikovaných údajů a odrazují od aplikací, když doporučená a údajně vyzkoušená zapojení nísfungují.

Další značnou překážkou při aplikacích integrovaných obvodů je technická zastaralost a nedostatečný sortiment některých dalších součástek a materiálů, hlavně ovládacích prvků, indikačních prvků, vícevrstvových plošných spojů apod. Např. poměrně neutěšená situace je u dvoustranného cuprexitu a také návrh vícevrstvových plošných spojů není v mnoha ústavech a podnicích na potřebné úrovni.

**Mohli byste na závěr nějak shrnout další perspektivy ve vývoji a výrobě integrovaných obvodů v Československu?**

Přes četné úspěchy, jichž bylo došaženo v rozvoji našich integrovaných obvodů, se domnívám, že k hlavnímu nasazení IO do třetí generace a později čtvrté generace programů finálních výrobů spotřební a investiční elektroniky teprve dojde. Technologie integrovaných obvodů jsou ještě stále v prudkém rozvoji a potrvá ještě nejméně deset let než dojde k vyčerpání technologických možností. Dostupnost moderních levných integrovaných obvodů bude bezpochyby hlavním zdrojem dalšího rozšiřování elektroniky do mnoha oblastí

národního hospodářství a výrazně ovlivní i styl našeho soukromého života. Jak se již ukazuje dnes, použití integrovaných obvodů vede často k podstatným změnám v konstrukci stávajících zařízení a umožňuje řešit zcela nové druhy přístrojů a zařízení, jejichž existence z cenových nebo technických důvodů dosud nebyla možná.

Vzhledem k tomu, že výpočetní technika a automatizace byly do plánu 5. pětiletky zahrnuty jako přední rozvojové programy, bude se u nás v rámci spolupráce s ostatními státy RVHP intenzivně rozvíjet i vývoj a výroba integrovaných obvodů především pro investiční techniku.

*Rozmlouvají: Alek Myslik*

### Konference IARU I. oblasti 1972

Představitelé I. oblasti IARU se sešli na pravidelné konferenci v Scheveninguenu u Haagu v Holandsku ve dnech 15.–19. května 1972. Československá delegace: Václav Brzák, OK1DDK, Dr. Václav Všetečka, OK1ADM, a ing. Zdeněk Prošek, OK1PG, měla za úkol obhájit a prosadit řadu úkolů, které vyhovují našim členům. Jednání probíhalo v kongresovém hotelu Kurhaus. Na konferenci bylo přítomno přes 80 delegátů z 22 členských zemí IARU I. oblasti.

Za vedení IARU byli na konferenci přítomni president R. W. Denniston, W0DX, a J. Huntoon, W1RW, tajemník, za II. oblast IARU A. Pita, XE1CCO.

Jednání bylo zahájeno v pondělí v 10.00 hodin zasedáním pléna konference a přizvaných hostů (představitelů holandských úřadů a mezinárodní organizace ITU).

Další tři dny pokračovalo jednání v komisiach A, B, C. Komise A řešila organizační otázky, předložené návrhy práce na KV a hon na lišku. V komisi B se projednávaly otázky práce na VKV. Komise C kontrolovala a připravila návrh na schválení finančního hospodaření IARU I. oblasti. Komise A vytvořila ještě dvě podkomise, které projednávaly speciální problémy soutěží v honu na lišku a soutěží na KV.

Na pořadu jednání bylo celkem přes 80 návrhů na usnesení a doporučení pro členské organizace:

- výsledky konference ITU o kosmických spojích a koordinace postupu národních radioamatérských organizací v období přípravy dalších světových konferencí ITU;
- kmitočtový plán KV pásem I. oblasti;
- přidělení kmitočtů pro provoz RTTY;
- závody a soutěže v I. oblasti IARU;
- normalizace rozměrů a váhy QSL;
- celosvětový systém majáků na 21 a 28 MHz;
- rozšíření počtu členů výkonného výboru IARU I. oblasti;
- problémy nedostatečné imunity elektronických zařízení vůči elektromagnetickým polím;
- požadavky na příští ME v honu na lišku (MRAS – Budapest);
- posunutí doby závodu VKV z 19.00 SEČ na 17.00 SEČ;
- od 1. 1. 1973 VHF Contest IARU I. oblasti pouze na 2 m;
- doporučena změna názvu QRA čtverec na čtverec QTH s tím, aby země, které vydávají diplomy s názvem QRA, pokračovaly do vyčerpání zásob;
- stanoveny přesné pokyny a technická

doporučení (polarizace antén, kmitočty atd.) pro práci v mikrovlných pásmech;

– v souvislosti s převáděči FM a s radioamatérskou televizí byla doporučena úprava kmitočtového plánu v pásmu 2 m a 70 cm;

– doporučena koordinace zpráv v souvislosti se zvláštními druhy šíření VKV;

– konference vyzala na vědomí zřízení našeho fixního lineárního převáděče na Sněžce;

– rozhodla příští konferenci uspořádat v roce 1975;

– doporučila podpořit výměnu informací mezi Ústředními radiokluby pomocí jejich časopisů atd.

Při vlastním jednání i ve volném čase, kterého bylo velmi málo, byly navázány úzké kontakty s představiteli národních organizací.

Naše delegace velmi úzce spolupracovala s představiteli ZST, především s delegací SSSR.

Po obdržení oficiálních dokumentů a po projednání jednotlivých usnesení a doporučení IARU ve federální radě ÚRK a odborech seznámíme členy Svazarmu s jednotlivými problémy a úkoly.

-bk-

### Příkladná iniciativa horažďovických

Práce s mládeží je v Horažďovicích již tradicí. Již přes šestnáct let tu vychovávají a vedou školní mládež – pionýrského věku – k branné výchově, k získávání znalostí v radiotechnice i provozu. Lze říci, že již řadu let uvádějí prakticky v život Jednotný systém branné výchovy obyvatelstva, neboť má-li tento systém se stát záležitostí každého dospělého občana naší vlasti, pak je nejlepší cestou k tomu, aby si mládež osvojovala branou výchovu již v útlém dětském věku. A po té stránce si příkladně počínají v Horažďovicích zásluhou dlouholetého pionýrského vedoucího, promovaného učitele na 2. ZDŠ Jaroslava Presla, OK1NH, vedoucího operátéra kolektivní stanice OK1KBI.

Vzhledem ke zkušenostem z práce s mládeží uzavřeli smlouvu mezi RK Svazarmu, Místním domem pionýrů, Pionýrskou skupinou Prácheň, OV Svazarmu Klatovy, Státním semenářským statkem a vojenským útvarem na jedné straně a specializovaným pionýrským oddílem na straně druhé. Ve smlouvě se obě strany zavazují vzájemně si pomáhat. Smlouva je výrazem neformální péče o naši mládež, ukázkou jak lze záinteresovat různé organizace na výchově pionýrů.

Proto byl vývořen specializovaný

pionýrský oddíl při pionýrské skupině Prácheň, který má oficiální náplň pionýrského programu rozšířenou o amatérské vysílání, základy radiotechniky a hon na lišku.

V tomto specializovaném oddílu je letos 14 pionýrů ve věku od 11 do 15 let; jsou z Horažďovic a nejbližšího okolí, scházejí se pravidelně v pátek v radio-klubu při MDPM v horažďovickém zámku – zájemci o telegrafii se mohou zúčastňovat výcviku brančů, který je každoročně svěřován kolektivu OK1KBI. Zájemci o techniku začínají se základy radiotechniky a postupným sestavováním jednoduchých přijímačů, ze stavebniček dodaných pro mládež Svařarmem. Každoročně končí výcvik stavbou jednoduchého tranzistorového přijímače. V dalších letech pokračují starší pionýři individuálně, pomáhají mladším a poradí jim při práci, což je i z hlediska bezpečnosti práce výhodné.

Před čtvrt rokem se v kolektivu začalo také s honem na lišku. Mají jednu soupravu a jsou s ní spokojeni. O tento branný sport je mezi mládeží veliký zájem. Ve dnech 1. až 20. července t. r. byli na tábore v Údolí u Nových Hradů – kam byli pozváni KDPM v Českých Budějovicích – měli s sebou transceiver, soupravu pro hon na lišku a vysílali pod značkou OK5KBI.

Každoroční letní soustředění je výsledkem celoroční práce s kolektivem pionýrů a v plánu je s ním počítáno. Nejschopnější z kolektivu se zúčastňují expedice se členy RK po neobsazených nebo neobydlených čtvercích na Šumavě. Z důvodu propagace amatérského vysílání mezi mládeží se zúčastňují spolu s operátory OK1KBI okresních srazů pionýrů.

O volných sobotách organizuje OK1NH také výlety do přírody, kde se provádějí různé branné hry jako hon na lišku a mládež se seznámuje s přírodou. Soudruh Presl dobře ví, že mládež v tomto věku láká romantika a opravdové kamarádství. Snaží se branné prvky našeho sportu zaměřovat tímto směrem.

Nové učební osnovy předmětu branná výchova na ZDŠ by tuto aktivitu jenom uvítaly. Zasvěcený přece ví, jak těžké je vychovat dobrého spojáře zvláště dnes, kdy mládež pionýrského věku má velké množství různých zájmů a možností vyžití. OK1NH je se svými pionýry spokojen, ukazuje jim svoji vysílací stanici i doma. Pionýři znají i jeho zařízení pro pomalou televizi (SSTV), kterou má jako druhá stanice v Československu v provozu. Dobrý vztah pionýrů k němu je mu odměnou. Vychoval již celou řadu dobrých radioamatérů s internacionálním smýšlením.

Z pionýrů ve specializovaném oddílu si zaslouží zmíňku Zdeněk Jurek, který se zároveň stará o kroniku oddílu a je velmi dobrým fotoamatérem, což dokázal na 1. sétkání radioamatérů Svařarmu na Šumavě. Příkladem je také Pavel Zábranský pro svoji klidnou povahu a zvídavost.

Pomoc vojenského útvaru je mimořádná – součtuři zajíšťují na základě smlouvy kolektivu pionýrů dopravu při expedicích i jinak, a tak se příkladně naplňuje družba mezi armádou a mládeží. Při expedicích pomáhají František Balek, OK1IBF a Václav Busta, OK1MWA.

Rodiče mají klidný vztah ke kolektivu pionýrů a pravidelně uvolňují děti na všechny akce, které se pořádají. Vztah a dobrý poměr k nim má i ředitel školy s. Václav Šustr, který ví, že s. Presl je

dlouholetým pionýrským vedoucím a proto mu vychází vstříc a podle možnosti a potřeby ho uvolňuje pro jeho mimoškolní činnost.

Přáli bychom každému vidět práci těchto chlapců, jejich snahu osvojit si co nejvíce; z každého jejich pohybu je vidět soustředěnost, na vše čemu nerozumí se zeptají a už už uvádějí v život to, po čem touží. Učí se mechanickému obrábění, pájení, základům stavby zařízení, aby postupně dovedli postavit i náročné a výkonné přijímače, vysílače, měřicí přístroje apod. A nejen to. Pod vedením pedagoga učí se správnému přístupu k práci, ke kolektivu.

-jg-

4. Rovněž Constant 75 vyšel z téhož typu.

Oba tyto přijímače patří k typům, které TESLA dodává do zahraničí.



### Televizory TESLA

Podle našeho slibu v AR přinášíme malou obrazovou reportáž ze závodu TESLA Orava, na které vidíte několik posledních typů čs. televizních přijímačů. Všechny vycházejí prakticky z osvědčeného přijímače Aramis II. Rozdíly jsou pouze v osazení polovodiči a v úpravách vstupních dílů. Všechny přístroje umožňují příjem na UHF a VHF pásmec v normách OIRT a CCIR s možností nahrávání zvukového doprovodu na magnetofon.

#### 1. Spoleto 4243U.



#### 2. Martino 4245U.

Oba přístroje mají totožné zapojení, používají obrazovku 612QQ44, úhlopříčka 61 cm, spotřeba 130 W ± 6 %. Tranzistorů 16, diod 16, elektronek 6. Kanálový volič KTJ92T s tlačítkovou předvolbou.



#### 3. Přijímač Show 2002 vyšel z výše uvedeného přijímače Spoleto.



5. TV přijímač TESLA 4246U Salermo používá rovněž obrazovku o úhlopříčce 61 cm, má spotřebu 130 W. Počet tranzistorů 18, diod 30, elektronek 6. Kanálový volič ET270 s elektronickou předvolbou. Používá posuvné potenciometry pro ovládání hlasitosti, jasu a kontrastu.



6. Barevný televizní přijímač TESLA-color, jehož sériová výroba měla být zahájena v červenci t. r.

-asf



**PŘIPRAVUJEME  
PRO VÁS**

Elektronika u gramofonů

Elektronické kostky

Základní zapojení operačních  
zesilovačů

## Meracie hroty rýchle a lacno

Vypísané farebné značkovače (fixy) nezahadzujte. Je z nich možné urobiť veľmi pekné meracie hroty. Potrebujete k tomu izolovanú zdierku, 12 cm dlhý 2 mm hrubý medený, pocinovaný drôt, kúskok cínu a spájkovačku. Drôt prispájkujeme jedným koncom na zdierku, druhý koniec prieostrieme do vhodnej špičky. Špičku pocinujeme.

Značkovač opatrnne otvoríme, vyberieme vnútornosť, zdierku s drôtom zasunieme. Zdierka ide väčšinou tesne, takže netreba ani celok zliepať. Celá operácia trvá asi 10 minút.

Jaromír Loub



Meracie hroty zo značkovača

## Vzhľadné dutinové rezonátory amaterskymi prostriedkami

Pri konštrukcii VKV zariadení pre decimetrové vlny potrebujeme zhотовiť dutinové rezonátory, príčom chceme, aby boli presných rozmerov a vzhľadné. Vzhľad týchto zariadení totiž priamo súvisí s ich elektrickými vlastnosťami a funkciou.

Železny pocinovaný plech - často používaný - je len zlou náhradou. Vhodný materiál je mosadzny plech hrúbky 0,3 až 0,4 mm predávaný v modelárskych predajňach. Pre naše použitie má výhodné vlastnosti: je hladký, lesklý, pružný, nebortí sa, možno ho ľahko opracovať a strieblať.

Diely budúceho rezonátora nakreslíme na plech a obrysové čiary pretiahneme ostrým rýsovadlom. Na ostrej hrane stola v mieste rýsieľ plech poprelamujeme. Hrany získaných dielcov vyhľadíme jemným pištokom. Navráťame potrebné diery a dielce posteplíme nejakým zo známych spôsobov. Potom ich vyleštíme a oblepíme papierovou lepiacou páskou (nie izolepou) tak, aby ostali nezalepené okraje asi 2 mm v miestach, kde budú dielce spojené. Nezalepené okraje ocinujeme (izolepou by sa pri cinovaní odliepala a krútila, čím by boli okraje nerovné). Prikladáním jednotlivých dielcov v pravom uhle (za pomocí drevených hranolkov) tiež navzájom spájkujeme. Získaná krambička má ostré pravohľadé hrany a rovné steny. Odlepíme lepiacu pásku a krambičku umyjeme. Pomocou lepiacej pásky spoje sú rovné ako podľa pravítka.

Z použitého materiálu možno týmto postupom zhотовiť výrobky takmer profesionálneho vzhľadu.

Ing. Peter Gengel

## JEDNODUCHÝ MĚŘÍČ KAPACIT

Měříč pracuje na principu měření vý náplasti na kapacitním děliči, složeném ze známých kapacit  $C_1$  a  $C_2$  a z měřené kapacity  $C_x$ . Vysokofrekvenční napětí, přivedené na dělič, je tak veliké, aby při odpojeném kondenzátoru  $C_x$  měla ručka měřicího přístroje plnou výchylku. Po připojení kondenzátoru  $C_x$  se změní napětí na kondenzátoru  $C_2$  o velikost, závislou na kapacitě připojeného kondenzátoru  $C_x$ .

V amatérské praxi vystačí ve většině případů měřicí rozsahy 0 až 100 pF a 0 až 10 nF. Průběh stupnice je obdobný jako při měření odporu Ohmou metodou (u většiny univerzálních přístrojů). V blízkosti nuly, které odpovídá maximální výchylka ručky měřicího přístroje, je stupnice nejvíce zhuštěna.

Schéma měřiče je na obr. 1. Hlavní část zapojení tvoří vysokofrekvenční generátor s tranzistorem  $T_1$ , pracujícím v bázovém zapojení. Laděný obvod generátoru se skládá z kondenzátoru  $C_6$  a cívky  $L_1$ . Kapacitní dělič pro rozsah 0 až 100 pF je složen z kondenzátoru  $C_1$  a z měřeného kondenzátoru  $C_x$ . Pro rozsah 0 až 10 nF je složen z kondenzátorů  $C_1$  až  $C_4$ ,  $C_{11}$  a  $C_x$ . Kondenzátor  $C_5$  nemá na vysokofrekvenční napětí téměř žádný vliv, protože jeho kapacita je podstatně větší než kapacita kondenzátorů děliče.

Vysokofrekvenční napětí ve společném bodě kapacitního děliče se měří diodovým voltmetrem, realizovaným diodou  $D_1$  a měřicím přístrojem s předřadným odporem  $R_1$ . Odpór  $R_1$  volíme tak, aby ručka měřidla měla plnou výchylku při odpojeném  $C_x$  a asi do poloviny odporové dráhy nastaveném potenciometrem  $R_5$ . Odpór  $R_1$  bude asi 20 až 200 k $\Omega$  (pro citlivost měřidla 200 až 50  $\mu$ A). Před každým měřením nastavíme potenciometrem  $R_5$  maximální výchylku ručky měřidla. Cívka  $L_1$  má mít indukčnost 600 až 1 100  $\mu$ H a činitel jakosti 160 až 250. Je proto vhodné navinout ji na ferokartové nebo feritové hrnčíkové jádro. Odbočka na cívce je mezi 30 až 70 % závitů v závislosti na citlivosti použitého měřidla. Transistor  $T_1$  má zesilovací činitel větší než 40 a musí být schopen oscilaci na kmitočtu asi 500 kHz, na kterém generátor pracuje.

Stupnice ocechujeme pomocí známých kapacit přímo v pF. Samozřejmě lze také ponechat původní stupnice a kapacitu určovat ze sestrojeného nomogramu. Při cejchování musí již být celý přístroj definitivně sestaven a umístěn v krytu (skřínce). Ke kontrole ocechování slouží přesný kondenzátor  $C_k$  (100 pF), připojovaný ke vstupním svorkám tlačítka  $T_1$ .

Radio 47/1970

## Upravené krokosvorky

Takto upravené krokosvorky nám slúžia pri zachytení malých súčiastok, ktoré potrebujeme merať. Zadovážime si kovovú časť banánka (aby sa dal spájkovať), na ktorú prispájkujeme skrátenú krokosvorku v uhle 90°. Natáčaním krokosvoriek v zdierkach merača nastavíme akúkoľvek vzdáenosť pre pevné prichytenie akejkoľvek súčiastky.

Dalej nám poslúži takto upravená krokosvorka ako „tretia ruka“, keď potrebujeme pridržať viac súčiastok do jednoho spájkovaného bodu a držať pritom aj spájkovačou aj kúskok cínu!

Jaromír Loub



Upravené krokosvorky

## Teslív transformátor

Teslív transformátor se skládá z primární cívky, z jiskřiče a ze sekundární cívky. Primární cívku tvoří 10 závitů měděného (hliníkového) drátu o  $\varnothing$  5 mm, které ve vzájemné vzdálenosti 7 mm drží čtyři pásky z pertinaxu. V každém z nich je deset dér o  $\varnothing$  5,5 mm. V jednom pásku je ještě díra pro připevnění svorky. Drát navineme na vhodný válec (láhev apod.) o průměru 120 mm a potom ho provlečeme děrami v pertinaxových páscích. Tyto pásky zapustíme a přilepíme nebo jiným způsobem připevníme do základní desky z pertinaxu (nebo z tvrdého dřeva). Na spodní konec cívky našroubujeme jednu svorku jiskřiče, horní konec zkončíme svorkou, přišroubovanou k nejdélešímu pertinaxovému pásku (obr. 1).

Jiskřiče je připevněno na izolační destičce, která dřevěm dlouhými šrouby M3, na něž navlékneme dva porcelánové korálky tak, aby destička byla od základní desky oddálena. Na šrouby je možné navléknout i pertinaxové trubičky (nebo jiné izolační trubičky). Jedna svorka jiskřiče je připojena na začátek primární cívky a opatřena nepohyblivou kuličkou o  $\varnothing$  10 mm, druhou svorkou prochází šroub M3,



Obr. 1. Jednoduchý měříč kondenzátoru



Obr. 1. Teslův transformátor

opatřený kuličkou a izolační rukojetí, aby bylo možné měnit vzdálenost mezi kuličkami.

Sekundární cívka má kostru z pertinaxové trubky o  $\varnothing$  35 mm, délky 245 mm. Trubka je připevněna a ukončena dvěma zátkami, které jsou podle možnosti vysoustruženy ze silonu nebo tvrdého bukového dřeva. Trubka je ovinuta téměř po celé délce drátem

$\varnothing$  0,2 až 0,3 mm, lakovaným nebo izolovaným hedvábím. Jeden konec vinutí je připojen ke svorce, umístěné na okraji základní desky, druhý konec je připojen ke svorce na hlavici.

Mechanické provedení celého transformátoru nebude popisovat, každý si s ním jistě poradí sám. Rozměry není nutno přesně dodržet.

M. Dzuba

#### Transformátory pro tranzistorová zařízení

Sítový transformátor pro tranzistorová zapojení je stále nedostatkou součástkou. Je až zarážející, že oproti bohatému sortimentu sítových transformátorů pro elektronkové přístroje se nevyrábí ani jeden univerzální sítový transformátor se sekundárním napětím mezi 6 až 30 V.

Určitým náhradním řešením je použití transformátorů původně určených k jiným účelům. Dva z nich jsme vyzkoušeli a přinášíme jejich stručný popis.

Výstupní transformátor z některých televizních přijímačů, prodávaný pod označením 9WN676041, je vhodný pro



Transformátor 9WN676041



Transformátor 9WN67610A

menší napájecí napětí. Připojíme-li na jeho primář 220 V, naměříme na sekundáru 6 V střídavého napětí. Po usměrnění a filtraci lze tedy získat 6 až 9 V, (podle odběru). Transformátor vydrží dlouhodobě odběr 1 A. Jeho rozměry jsou 60 x 50 x 40 mm a je vyobrazen na obr. 1. Maloobchodní cena je 8,50 Kčs.

Druhým vhodným transformátorem je transformátor z vertikálních rozkladů televizoru Lotos, prodávaný pod označením 9WN67610A. Po připojení primáru na 220 V naměříme na sekundáru 28 V a můžeme jej trvale zatížit odběrem 1 A bez značného zahřátí. Jeho rozměry jsou 75 x 62 x 55 mm a je na obr. 2. Maloobchodní cena je 17,50 Kčs.

Oba transformátory jsou k dostání ve všech prodejnách pro radioamatéry v Praze.

-ra

#### SLUŽBA RADIOAMATÉRŮM

##### Nabídka polovodičových prvků - výrobků Tesla

|            | Kčs   | Kčs          |       |
|------------|-------|--------------|-------|
| MAA225     | 34,-  | KZ704        | 17,50 |
| MAA245     | 40,-  | KZ706        | 17,50 |
| MAA525     | 35,-  | KZ708        | 17,50 |
| MBA125     | 54,-  | KZ711        | 17,50 |
| MBA225     | 62,-  | KZ714        | 17,50 |
| MHA111     | 46,-  | KZ723        | 12,50 |
| MHC111     | 46,-  | KZ724        | 15,-  |
| MHD111     | 46,-  | KZ752        | 18,-  |
| MHG111     | 46,-  | KZ753        | 18,-  |
| MH7472     | 74,-  | KZ754        | 18,-  |
| MH7400     | 46,-  | KYZ70        | 15,-  |
| MH8400     | 66,-  | KYZ72        | 23,-  |
| MH8474     | 165,- | KYZ73        | 26,-  |
| MH5440     | 92,-  | KYZ78        | 26,-  |
| MH5460     | 92,-  | KYZ79        | 30,-  |
| MH5474     | 250,- | OC30         | 44,-  |
| GA200      | 1,20  | GC507        | 9,-   |
| GA201      | 1,40  | GC508        | 11,-  |
| GA202      | 1,60  | GC511        | 17,-  |
| GA203      | 2,-   | GC512K       | 17,-  |
| GA204      | 2,40  | GC515        | 7,-   |
| GA205      | 1,60  | GC516        | 8,50  |
| GA206 pár. | 1,80  | GC518        | 12,50 |
| GA207      | 0,60  | GC520        | 20,-  |
| GAZ51      | 7,50  | GC521        | 19,-  |
| KA503      | 10,-  | GC521K       | 21,-  |
| 10PN40     | 32,-  | GC522        | 16,-  |
| KA220/05   | 17,-  | GC522K       | 19,-  |
| KA201      | 10,-  | GD619        | 35,-  |
| KA202      | 10,-  | GS504        | 47,-  |
| KY708      | 12,-  | 4NU72        | 38,-  |
| KY711      | 21,-  | 2NU73        | 33,-  |
| KY715      | 19,-  | 4NU73        | 43,-  |
| KY717      | 26,-  | 2NU74        | 82,-  |
| KY718      | 32,-  | 103NU70      | 7,-   |
| KY723      | 7,-   | 103NU70 pár. | 8,25  |
| KR206      | 14,50 | 105NU70      | 7,50  |
| KP502      | 160,- | 106NU70      | 8,50  |
| KT503      | 39,-  | 107NU70      | 12,-  |
| KT711      | 46,-  | 101NU71 pár. | 366,- |
| KT713      | 58,-  | 103NU71      | 12,50 |
| KF167      | 31,-  | 104NU71 pár. | 10,-  |
| KF173      | 28,-  | 104NU71      | 9,-   |
| KF507      | 15,-  | 2NU72 pár.   | 32,-  |
| KF520      | 40,-  | 4NU72 pár.   | 39,-  |
| KF524      | 23,-  | 2NU73 pár.   | 34,-  |
| KS500      | 13,-  | GF504        | 44,-  |
| KSY21      | 28,-  | GF507        | 41,-  |
| KSY63      | 28,-  | GF506        | 28,-  |
| KS262      | 86,-  | GF505        | 34,-  |
| KU601      | 38,-  | GF507R       | 43,-  |
| KU605      | 125,- | GF517        | 24,-  |
| KU606      | 100,- | OC170        | 23,-  |
| KU607      | 140,- | 152NU70      | 11,-  |
| KY701      | 3,60  | 153NU70      | 7,50  |
| KY702      | 4,40  | 154NU70      | 12,50 |
| 2N270      | 9,-   | 155NU70      | 14,-  |
| 4N270      | 9,-   | KF125        | 18,-  |
|            |       | KCZ58        | 190,- |
|            |       | KCZ59        | 115,- |
|            |       | KF124        | 16,50 |

Předložené objednávky vyřizujeme v rámci skladových zásob pro soukromníky na dobitku Závodovou službou TESLA - Moravská 92, Uherský Brod.

# Mladý konstruktér

## Jednoduchý měřič tranzistorů

Karel Novák

Vlastnosti každého tranzistoru jsou dány celou řadou technických údajů – parametrů. I tranzistory stejného typu nemají jednotlivé parametry přesně stejně. Mohou se lišit v určitém stanoveném rozsahu – toleranci. Většinu parametrů tranzistoru lze měřit pouze poměrně složitými měřicími přístroji. Jednoduchým přístrojem nebo měřicím přípravkem lze měřit jen zbytkové proudy  $I_{CBO}$  a  $I_{CEO}$  tranzistoru a stejnosemerný proudový zesilovací činitel  $h_{21E}$  (někdy též  $\beta$ ,  $\alpha_E$ ,  $B$ ). Při poškození tranzistoru se zpravidla změní mimo jiné podstatně i tyto parametry. Pro obecné posouzení kvality tranzistoru stačí tedy v amatérské praxi znát parametry  $I_{CBO}$  a  $h_{21E}$ . Vyhovují-li tyto parametry co do velikosti i časové stálosti, lze s velkou pravděpodobností předpokládat, že budou využovovat i ostatní parametry tranzistoru, dané jeho typem. Kdybychom typ daného tranzistoru neznali, nemůžeme ovšem měřením  $I_{CBO}$ ,  $I_{CEO}$  a  $h_{21E}$  ostatní parametry určit, ani je přibližně odhadnout. V radioamatérské praxi lze však v celé řadě zapojení (zejména méně náročných) velmi dobré použít tranzistory, jejichž typ neznáme a ze základních údajů známe jen  $I_{CBO}$  a  $h_{21E}$  a samozřejmě typ vodivosti (p-n-p, n-p-n). I ten lze zjistit velmi jednoduše.

Tranzistor si můžeme velmi jednoduše znázornit podle obr. 1. Zbytkový proud kolektoru  $I_{CBO}$  je proud tekoucí „diódou“ kolektor-báze v závěrném směru při určitém napětí mezi kolektorem a bází. U tranzistoru typu p-n-p musí být tedy na kolektor připojen záporná, na bázi kladný pól napětí. U tranzistoru typu n-p-n musí být polarita napětí obrácená. U dobrého tranzistoru se proud  $I_{CBO}$  mění se změnou napětí  $U_{CB}$  ve velmi širokých mezích jen velmi nepatrně (obr. 2, křivka 1). Zejména v amatérské praxi stačí proto měřit  $I_{CBO}$  jen při jedné velikosti napětí (zpravidla při 6 V). Měřit pak můžeme ve velmi jednoduchém zapojení (obr. 3). Při měření si musíme být vědomi toho, že zbytkový proud kolektoru je značně závislý na teplotě tranzistoru. U germaniových tranzistorů se proud  $I_{CBO}$  při zvýšení teploty o 8 až 10 °C zhruba zdvojnásobí. Proud  $I_{CBO}$  se proto zpravidla uvádí při teplotě 25 °C. Maximální proud  $I_{CBO}$  můžeme vyhledat v katalogu polovodičových součástek; u germaniových tranzistorů pro malé výkony bývá asi 10 až 20  $\mu$ A, u tranzistorů pro větší výkony bývá úměrně větší. Křemíkové tranzistory mívají zbytkový proud kolektoru podstatně menší než tranzistory germaniové. Tranzistory, které mají proud  $I_{CBO}$  větší než  $I_{CBO\max}$ , uvedený v katalogu, jsou méně kvalitní až špatné. Se zvětšujícím se proudem  $I_{CBO}$  se zvětšuje zpravidla šum tranzistoru, tranzistor

je velkým proudem  $I_{CBO}$  neužítečně zatěžován, na kolektorovém i emitorovém odporu vzniká velký úbytek napětí. Zvětšují-li seplynule proud  $I_{CBO}$  po připojení napětí  $U_{CB}$  nebo kolísá-li (ručička mikroampérmetru se chvěje), je tranzistor vadný. Tranzistory s větším zbytkovým proudem  $I_{CBO}$  můžeme v amatérských podnikáckých použít v obvodech, v nichž nevadí jejich větší šum, a v obvodech, v nichž je v obvodu báze a emitoru zapojen malý činný odpor (v obvodech s transformátorovou vazbou a podobně).

Zbytkový proud kolektoru  $I_{CEO}$  je proud, tekoucí mezi kolektorem a emitem, „diódou“ kolektor – báze v závěrném směru, „diódou“ báze – emitor v propustném směru. Přívod báze je odpojen. Příklad závislosti proudu  $I_{CEO}$  na velikosti napětí  $U_{CE}$  znázorňuje křivka 3 na obr. 2. Proud  $I_{CEO}$  je značně větší než  $I_{CBO}$ , se zvětšujícím se napětím se zvětšuje rychleji a maximální napětí  $U_{CE}$ , při němž již nastává lavinovitý růst proudu a zničení tranzistoru, je značně menší než  $U_{CE\max}$ . Proud  $I_{CEO}$  se zvětšuje se zlepšotou přechodové vrstvy tranzistoru ještě rychleji než proud  $I_{CBO}$ . Velmi přibližně platí, že

$$I_{CEO} = h_{21E} I_{CBO}$$

Proud  $I_{CEO}$  můžeme měřit opět ve velmi jednoduchém zapojení podle obr. 4.

Proudový zesilovací činitel nakrátko  $h_{21E}$  ( $\beta$ ,  $\alpha_E$ ,  $B$ ) udává proudovou zesilovací schopnost tranzistoru v zapojení se společným emitem. Princip jeho měření je na obr. 5. Zdroj napětí  $B$  je připojen mezi kolektor a emitor tranzistoru, přičemž je v závislosti na typu tranzistoru (p-n-p, n-p-n) půlován opět tak, že „diódou“ kolektor – báze protéká proud v závěrném směru a „diódou“ báze – emitor v propustném směru. Pokud je spínač  $S$  rozpojen, je báze odpojena a tranzistoru protéká jen zbytkový proud  $I_{CEO}$ . Sepneme-li spínač  $S$ , protéká „diódou“ báze – emitor proud  $I_B$ . Protože protéká „diódou“ v propustném směru, je jeho velikost dána hlavně velikostí odporu  $R$  („dioda“ báze – emitor má v propustném směru poměrně malý odpor). V důsledku zesilovací schopnosti tranzistoru, dané jeho fyzikálním principem, má proud báze  $I_B$  za následek zvětšení proudu kolektoru  $I_C$  z původní velikosti  $I_{CEO}$  na  $I_C$ . Proudový zesilovací činitel  $h_{21E}$  je dán poměrem přírůstku proudu kolektoru  $I_C$  –  $I_{CEO}$  k proudu báze  $I_B$ :

$$h_{21E} = \frac{I_C - I_{CEO}}{I_B}$$

Vzhledem k tomu, že emitem protéká proud kolektoru  $I_C$  i proud báze  $I_B$ , označujeme toto zapojení tranzistoru jako zapojení se společným emitem. Zesilovací činitel  $h_{21E}$  závisí poměrně značně na napětí  $U_{CE}$  a na proudu kolektoru  $I_C$ . U různých tranzistorů je tato závislost různá. Zesilovací činitel zjištěný popsaným způsobem je tzv. stejnosměrný nebo statický proudový zesilovací činitel nakrátko. Symbolem  $h_{21E}$ ,  $\beta$ ,  $\alpha_E$  se označuje tzv. střídavý nebo dynamický proudový zesilovací činitel nakrátko, který se měří malými střídavými proudy a napětími nízkých kmitočtů v určitém pracovním bodu tranzistoru. Mezi oběma činiteli není velký rozdíl. Zejména v amatérské praxi se k označení proudového zesilovacího činitela nakrátko používá nejčastěji symbol  $\beta$ , bez ohledu



Obr. 1. Zjednodušené znázornění tranzistoru



Obr. 2. Příklad závislosti zbytkových proudu kolektoru  $I_{CBO}$  a  $I_{CEO}$  na napětí



Obr. 3. Zapojení při měření zbytkového proudu kolektoru  $I_{CBO}$



Obr. 4. Zapojení při měření zbytkového proudu kolektoru  $I_{CEO}$



Obr. 5. Zapojení při měření proudového zesilovacího činitela  $h_{21E}$  ( $I_C = I_{CEO} + h_{21E} I_B$ )



Obr. 6. Zapojení měřiče tranzistorů

na to, byl-li změřen metodou statickou nebo dynamickou. Měřicí přístroje pro měření zesilovacího činitele  $\beta$  dynamickou metodou jsou značně složitější než přístroje pro měření statickou metodou.

Schéma zapojení velmi jednoduchého měřiče tranzistorů je na obr. 6. Umožňuje měření zbytkových proudu kolektoru  $I_{CBO}$  a  $I_{CEO}$  a zesilovací činitele  $h_{21B}$  tranzistorů typu p-n-p i n-p-n. Vzhledem k tomu, že v amatérské praxi budeme měřit tranzistorů používat jen občas, je konstruován vlastně jako měřicí přípravek bez vlastního (vestavěného) měřidla a zdroje proudu. Jako měřidlo můžeme používat např. voltampérmetr popsaný v předcházejícím čísle AR. Jako zdroj proudu o napětí 6 V můžeme používat baterie v díře popsané žárovko-slučhátkové zkoušecce, případně jakékoli jiné vhodné baterie o napětí 6 V.

Vnější napájecí zdroj  $B$  a měřidlo  $M$  pro měření tranzistorů typu p-n-p nebo n-p-n lze přepolovat páčkovým přepínačem  $P_1$ . Měřený tranzistor připojujeme na svorky označené  $E$ ,  $B$ ,  $C$ . K přepínání přístroje pro měření jednotlivých parametrů slouží přepínač  $P_2$ . V poloze 1 přepínače  $P_2$  měříme zbytkový proud kolektoru  $I_{CEO}$ . Emitor tranzistoru je odpojen přepínačem  $P_2$ . K bázi tranzistoru je zdroj proudu připojen přes odpor  $R_5$ , jenž slouží k ochraně měřidla  $M$  tehdy, má-li tranzistor zkrat mezi kolektorem a bází. V poloze 2 přepínače  $P_2$  měříme zbytkový proud kolektoru  $I_{CEO}$ . Báze měřeného tranzistoru je nyní odpojena přepínačem  $P_2$ . V polohách 3 až 6 přepínače  $P_2$  měříme proudový zesilovací činitel namátko  $h_{21E}$  v různých pracovních bodech tranzistoru, daných určitým proudem báze  $I_B$ . Proud báze je nastaven podle polohy přepínače  $P_2$  vždy jedním z odporů  $R_1$  až  $R_4$ , které jsou voleny tak, aby při použití zdroje proudu o napětí 6 V byl proud báze 0,01; 0,1; 1; nebo 10 mA. Na stupnici měřidla  $M$  čteme při měření zesilovacího činitelů  $h_{21E}$  součet proudu  $I_C$  a  $I_B$ .

Mechanické provedení přístroje je velmi jednoduché. Skříňku zhotovíme z překližky tloušťky asi 4 mm (podle obr. 7). Jednotlivé díly spojíme tenkými hřebíčky a navíc ještě lepením (Kanaganem, acetonovým lepidlem apod.). Nejprve zhotovíme dvě stejné boční

stěny 1 a dvě stejné stěny 2. Ze všech čtyř stěn sestavíme rám skřínky. Po zaschnutí lepidla zarovnáme všechny stěny a hrany na skelném papíru, položeném na stole. Pak zhotovíme horní panel 3, včetně všech dér. Po jeho spojení s rámem opět zabrousíme všechny hrany. Nakonec vlepíme do skřínky dvě opěrky spodního víka 4 a zhotovíme spodní víko 5, které je odnímatelně připevněno šroubky 6. S výjimkou spodního víka polepíme pak celou skřínnu knihařským plátnem nebo samolepicí tapetou.

Podle obr. 8 zhotovíme pak kontakty pro připojení měřeného tranzistoru. Základní destičku 1 zhotovíme z tvrzeného papíru (pertinaxu) nebo jiného vhodného izolantu tloušťky asi 3 mm. Tři kusy kontaktních pružin 2 zhotovíme z tvrdého bronzového plechu tloušťky asi 0,3 mm. Na základní destičku je přinýtujeme trubkovými nýtky o  $\varnothing$  asi 3 mm. Sestavenou kontaktní destičku přisroubujeme dvěma šroubkami do dřeva.



Obr. 8. Kontakty pro připojení měřeného tranzistoru

Jako  $P_1$  použijeme běžný páčkový dvoupólový přepínač. Jako  $P_2$  použijeme jednokotoučový šestipolohový vlnový přepínač Tesla PN533. Můžeme použít i jakýkoli jiný přepínač  $2 \times 6$  poloh. Podle potřeby musíme však změnit rozměry příslušných děr v horní stěně skřínky přístroje.

Po zamontování přepínačů a zdírek do skřínky propojíme celý měřič. Použijeme k tomu zapojovací vodič o  $\varnothing$  asi 0,5 mm. Odpoory upevníme připájením jejich vývodů na kontakty přepínače. Ke kontaktům pro měřený tranzistor připojíme přívody připájením na krajní nýtky.

Celou mechanickou práci zakončíme zhotovením štítku z kladívkového papíru. Po přilepení na horní stěnu skřínky přelakujeme štítky čírym nitrolakem. Pohled na panel hotového měřiče tranzistorů je na obr. 9: K propojení měřiče s baterií (žárovko-sluchátkovou zkoušeczkou) a voltampérmetrem potřebujeme tři propojovací šňůry dlouhé asi 30 cm, opatřené na obou koncích banánky.

Postup měření tranzistoru je velmi jednoduchý. Před měřením propojíme měřič s napájecím zdrojem (baterií) a voltámpérem. Dbáme přitom na správné půlování. Baterie nesmí být příliš stará, musí mít napětí asi 6 V. Při použití zdroje proudu s odchylkou



Obr. 9. Pohled na panel měřiče tranzistorů

napětím by bylo měření nepřesné, protože proud báze  $I_B$  při měření zesilovacího činitele  $h_{21E}$  je určen vždy jedním z odporů  $R_1$  až  $R_4$  a napětím zdroje. Přepínač  $P_1$  přepneme podle typu měřeného tranzistoru do polohy p-n-p nebo n-p-n, přepínač  $P_2$  do polohy  $I_{CBO}$ . Voltampérmetr přepneme do polohy 10 mA. Pak připojíme měřený tranzistor zasunutím jeho vývodu pod kontaktní pružiny. Miliampérmetr přepneme na rozsah, na němž můžeme nejlépe přečíst proud  $I_{CBO}$ . Je-li mezi kolektorem a bází tranzistoru zkraje, naměříme proud asi 6 mA (je dán odporem  $R_5$ ). Nenaměříme-li žádný proud, je tranzistor vadný – obvod kolektor – báze je uvnitř tranzistoru přerušen. Při měření sledujeme, zda se proud  $I_{CBO}$  v závislosti na čase nezvětšuje, či zda nekolisá (ručička měřidla by kmitala).

Je-li naměřený proud  $I_{CEO}$  v mezích normy (podle katalogu), přepneme voltampérmetr pro jistotu na rozsah 500 mA a přepínač  $P_2$  přepneme do polohy  $I_{CEO}$ . Voltampérmetr pak postupně přepínáme tak, aby výchylka ručky při měření  $I_{CEO}$  byla co největší. Opět pozorujeme, zda se proud  $I_{CEO}$  nezvětšuje v závislosti na čase. Zjistili-li jsme při předcházejícím měření zbytkový proud  $I_{CEO}$  v přijatelných mezích a při měření  $I_{CEO}$  nenaměříme žádný proud, je uvnitř tranzistoru přerušen obvod báze-emitor. Bude-li proud  $I_{CEO}$  stejně velký jako proud  $I_{CBO}$ , je uvnitř tranzistoru zkrat mezi bází a emitorem. Po změření zbytkového proudu kolektoru  $I_{CEO}$  přistoupíme k měření proudového závislosti činitele nakrátko  $h_{21E}$ . Voltampérmetr přepneme opět na rozsah asi 10 mA a přepínač  $P_2$  do polohy  $I_B = 0,01$  mA. Podle potřeby přepneme voltampérmetr zpět na rozsah, na němž můžeme nejlépe přečíst proud  $I_C$ . (Ve skutečnosti měříme součet proudů  $I_C + I_B$ . Vzhledem k tomu, že  $I_B$  je několikanásobně menší než  $I_C$ , považujeme naměřený údaj v praxi za  $I_C$ ). Proudový zesilovací činitel vypočítáme pak ze vzorce:

$$h_{21E} = \frac{I_C - I_{CEO}}{I_B},$$

Protože  $I_B = 0,01$  mA, je počítání velmi jednoduché. Je-li  $I_C = I_{CEO}$  ( $I_{CEO}$  jsme zjistili při předcházejícím měření)

1 mA pak  $h_{21E} = 100$ ,  
 2 mA pak  $h_{21E} = 200$ ,  
 0,5 mA pak  $h_{21E} = 50$ ,  
 atd.

Podle potřeby můžeme dále obdobným způsobem měřit zesilovací činitel



Obr. 7. Skříňka měřiče tranzistorů

při  $I_B = 0,1$ ; 1 nebo 10 mA. Musíme však brát ohled na to, abychom nepřekročili maximální proud kolektoru  $I_{Cmax}$  a maximální kolektorovou ztrátu  $P_{Cmax}$ , dané typem tranzistoru. Oba parametry jsou uvedeny v katalogu. Zejména při  $I_B = 1$  nebo 10 mA můžeme měřit jen tranzistory pro větší výkony.

I když se popis postupu měření zdá po přečtení dost složitý, je ve skutečnosti celé měření velmi jednoduché a rychlé.

Popsaným měřicem tranzistorů lze také zkoušet polovodičové diody. Přepínač  $P_2$  přepneme do polohy  $I_B = 1$  mA, voltampérmetr na rozsah  $I_B$  asi 1 mA. Měřenou diodu připojíme na kontaktní pružiny  $B - E$ , a to libovolně. Na voltampérmetru přečteme proud protékající diodou nejprve v jedné, pak v druhé poloze přepínače  $P_1$ . U ideální diody bychom měli v jedné poloze přepínače  $P_1$  naměřit proud 1 mA

(je dán odporem  $R_3$ ). V druhé poloze přepínače  $P_1$  měli bychom zjistit nulový proud. Ideální dioda by totiž měla mít v propustném směru nulový odpor a v závěrném směru odpor nekonečně velký. Vývody diody přepojujeme změnou polohy přepínače  $P_1$ . Porovnáním skutečných naměřených proudu můžeme posoudit, jak se měřená dioda blíží ideální. Zkušenosť získáme měřením dobré diody stejného typu. Diody pro větší výkony zkoušíme v poloze přepínače  $P_2$  pro  $I_B = 10$  mA.

#### Potřebné součástky

páčkový dvoupolohový přepínač 1 ks  
jednokotoučový přepínač Tesla PN533, šestipolohový 1 ks  
knoflík ve tvaru šipky k přepínači 1 ks  
izolovaná zdiřka 2 ks  
 $R_1$ , vrstvový odpor  $0,56 \text{ M}\Omega/0,1 \text{ W}$   
 $R_2$ , vrstvový odpor  $56 \text{ k}\Omega/0,1 \text{ W}$   
 $R_3$ , vrstvový odpor  $5,6 \text{ k}\Omega/0,1 \text{ W}$   
 $R_4$ , vrstvový odpor  $560 \text{ }\Omega/0,1 \text{ W}$   
 $R_5$ , vrstvový odpor  $1 \text{ k}\Omega/0,1 \text{ W}$

# ZÁKLADY NF TECHNIKY

Ing. Petr Kellner

#### Korektory kmitočtové charakteristiky

Máme-li při výkladu respektovat co nejmenší rozsah nutných znalostí, bude snad nejlépe vyhovovat stručný přehled jednotlivých zapojení, jejich vlastností a přibližného způsobu výpočtu. Nejprve si blíže všimneme pevně nastavených korektorů.

Pevně nastavené korektory se v nízkofrekvenční technice používají jako nejúzavěřejší filtry (např. horní a dolní propusti, filtry k potlačení pilotního kmitočtu, presence filtr atd.) S nejednoduššími horními a dolními propustmi jsme se již setkali v předešlé kapitole. Byly to filtry  $RC$  a  $RL$  se sklonem charakteristiky 6 dB/okt. Pro úplnost si ještě připomeneme, že jejich průběh závisí i na impedanci zdroje signálu a na impedanci, zatěžující filtre na výstupu. Jak plyně z příkladu na obr. 25, mohou  $R_g$  a  $R_z$  ovlivňovat mezní kmitočet i kmitočtový průběh filtru dosti podstatně. Není jisté třeba tento příklad podrobně rozvádět, vědomosti z minulé kapitoly stačí k ověření činnosti propusti. Pro praxi je důležitější, jaké  $R_g$  a  $R_z$  se již nemusí uvažovat (tj. prakticky neovlivní funkci filtru).

Pro propusti  $RC$  a  $RL$  obvykle stačí, aby  $R_g$  byl deset až dvacetkrát menší, než  $R$  (popř.  $X$  na mezním kmitočtu) a aby  $R_z$  byl deset až dvacetkrát větší než  $R$ . Budeme-li tedy konstruovat např. dolní propust se sklonem 12 dB/okt., potom použijeme dva členy  $RC$ . Budou-li prvky prvního člena  $R$  a  $C$ , pak prvky druhého člena budou minimálně  $10R$  a  $0,1C$ , chceme-li, aby oba články měly stejný mezní kmitočet.



Obr. 25. Vliv odporu generátoru  $R_g$  a záležitosti  $R_z$  na parametry dolní propusti  $RC$



Obr. 26. Dolní propust se sklonem 12 dB/okt.



Obr. 27. Filtry LC; dolní propust (a) a horní propust (b)

Sečteme-li graficky kmitočtové charakteristiky, vidíme, že na mezním kmitočtu je pokles 6 dB a výsledný sklon kmitočtové charakteristiky je 12 dB/okt. Zapojení filtru je na obr. 26. Požadujeme-li sklon větší než je 12 dB/okt., použijeme buďto filtr  $LC$  (o němž si ještě povíme), nebo použijeme několik členů  $RC$  či  $RL$ . Vzhledem k podmínce velkého  $R_z$  a malého  $R_g$  však nebývá obvykle možné řadit více členů za sebou (mezi jednotlivými stupni zesilovače se používají nejvýše dvojitě filtry); tedy slouží jako oddělovací stupně s malým výstupním – pro filtr je to  $R_g$  – a velkým vstupním – pro filtr  $R_z$  – odporem).

Většího sklonu kmitočtové charakteristiky než 12 dB/okt. lze dosáhnout bez aktivních prvků pomocí obvodu  $LC$ . Zapojení filtru  $LC$  jako dolní a horní propusti je na obr. 27. Je si třeba uvědomit, že se při realizaci filtru  $LC$  jako horní propusti musí vztít v úvahu požadovaný mezní kmitočet. Chceme-li např. použít horní propust jako filtr proti hluku s mezním kmitočtem 50 až 100 Hz, pak potřebná indukčnost je řádu desítek henry. Cívka s tak velkou indukčností se realizuje dost obtížně. Proto se tento obvod používá obvykle jako dolní propust (např. jako šumový filtr s mezním kmitočtem 5 až 20 kHz).

Pro oba obvody z obr. 27 platí, že mezní kmitočet

$$f_0 = \frac{1}{2\pi\sqrt{LC}}$$



Obr. 28. Charakteristiky dolní propusti  $LC$  v závislosti na činitele jakosti  $Q$

Uvažujeme-li, že odpor  $R_z$  je mnohem větší než  $2\pi f_0 L$  a že odpor  $R$  je vnitřním odporem zdroje signálu  $R_g$  v sérii s odporem vinutí indukčnosti  $L$ , potom činitel jakosti obvodu

$$Q = \frac{\omega L}{R} = \sqrt{\frac{L}{C}} ; \text{ kde } \omega = 2\pi f.$$

Jak je vidět z obr. 28, dosáhne se optimálního průběhu charakteristiky při  $Q = 0,7$  až 1, tedy s obvodem s malou jakostí. V tom případě bývá často nutné doplnit obvod sériovým odporem podle obr. 27.

#### Selektivní filtry

V nízkofrekvenční technice je někdy třeba navrhnut obvod, který by potlačoval nebo zdůrazňoval pouze určitý kmitočet. Obvod k tomuto účelu je značně mnoho a lze se s nimi často setkat v literatuře. Proto uvedeme přehledně vlastnosti těch nejdůležitějších.

#### Rezonanční obvody

Tyto obvody jsou známy spíše z výuky techniky, v nf oblasti se používají zřídka. Na nízkých kmitočtech není obvykle možné dosáhnout velkého činitele jakosti  $Q$ . Uvedeme si souhrnně některé základní vztahy, které platí s dostatečnou přesností pro paralelní (obr. 29a) i sériový (obr. 29b) rezonanční obvod. Odpor  $R$  na obrázku reprezentuje obvykle činný odpor cívky (odpor vinutí). Pro oba obvody platí vztah pro rezonanční kmitočet

$$f_r = \frac{1}{2\pi\sqrt{LC}}$$



Obr. 29. Rezonanční obvody LC paralelní (a) a sériový (b)



Obr. 30. Kmitočtové charakteristiky sériového rezonančního obvodu  $LC$  v závislosti na činitele jakosti  $Q$



Obr. 31. Kmitočtové charakteristiky paralelního rezonančního obvodu LC v závislosti na činiteli jakosti Q

a pro činiteli jakosti

$$Q = \frac{\omega L}{R}.$$

Pro malé Q jsou kmitočtové charakteristiky pro poměrný kmitočet  $\frac{f}{f_0}$  na obr. 30 a 31. Při rezonanci je impedance paralelního i sériového obvodu čistě reálná. Pro konstrukci je reálná velikost této impedance  $Z_r = R_r$ . Pro sériový rezonanční obvod je:

$$R_r = R,$$

tedy přímo rovný ztrátovému odporu. Pro paralelní rezonanční obvod je:

$$R_r = Q \sqrt{\frac{L}{C}} = Q \omega L.$$

### Články RC

Obdobně jako sériový rezonanční obvod se chovají obvody složené pouze z odporů a kondenzátorů. Pro určitý kmitočet se jejich výstupní napětí změní na nulu a v okolí tohoto kmitočtu se rychle zvětšuje. V nízkofrekvenční technice se používají poměrně často, proto se stručně zmíníme o jejich základních vlastnostech. Pro zjednodušení budeme předpokládat, že články jsou napájeny zdroje s velmi malým vnitřním odporem a zatěžovány na výstupu velmi velkým odporem.

Nejčastěji používaným (a také nejstarším) obvodem je Wienův můstek. Jak je vidět z obr. 32, je to vlastně známý můstek pro měření kapacit. Obecně mohou být kapacity  $C_1$  a  $C_2$  a odpory  $R_1$  až  $R_4$  různé, obvykle se však volí  $R_1 = R_2$  a  $C_1 = C_2$ . Předpokládáme-li, že  $R_z \gg \infty$ , můžeme zjistit závislost strmosti potlačení signálů různých kmitočtů na použitých součátcích můstku. Označíme-li si poměry:

$$\frac{R_1}{R_2} = k = p^2 \frac{C_2}{C_1}; \quad \frac{R_3}{R_4} = n; \quad \frac{k}{n} = m,$$

pak pro nás případ ( $R_1 = R_2$ ,  $C_1 = C_2$ ) je  $k = p = 1$ . Na obr. 33 jsou kmitočtové charakteristiky můstku v závislosti na parametru  $m$ . Z obrázku plyne, že největší strmosti se dosáhne při  $m = 2$ . Kmitočet minimálního přenosu můstku vypočítáme ze vztahu

$$f_0 = \frac{1}{2\pi R C},$$



Obr. 32. Wienův můstek

kde  $R = R_1 = R_2$  a  $C = C_1 = C_2$ . Jak je vidět z obr. 32, nemá Wienův můstek společnou ani jednu vstupní nebo výstupní svorku. Proto je ho nutné připojovat alespoň jednou stranou do obvodu symetricky (obr. 34). V tomto případě představuje tranzistor zdroj signálu bez nulové výstupní svorky. Zapojení je shodné s obr. 32 - vstupní odporník zlepšovače (schématicky na obr. 34) je  $R_z$  a obě napájecí větve jsou z hlediska střídavého signálu na stejném potenciálu.

Nevýhodou Wienova můstku (nemá společnou vstupní a výstupní svorku) odstraňují jiné členy  $RC$  - přemostěný článek  $T$  (obr. 35) a dvojitý článek  $T$  (obr. 36). Signál prochází ze vstupu článku na výstup dvěma fázově rozdílnými cestami, čímž se při určitém kmitočtu vzájemně zruší a přenos signálu je nulový nebo alespoň minimální. Pro přemostěný článek  $T$  platí

$$f_0 = \frac{1}{2\pi C \sqrt{R_1 R_2}} \quad (a);$$

$$f_0 = \frac{1}{2\pi R \sqrt{C_1 C_2}} \quad (b).$$



Obr. 33. Kmitočtová charakteristika Wienova můstku



Obr. 34. Připojení Wienova můstku k zesilovači



Obr. 35. Přemostěný článek  $T$

Volbou poměru  $\frac{C_2}{C_1}$  nebo  $\frac{R_1}{R_2}$  lze získat různé potlačení signálu o kmitočtu  $f_0$ . Pak např. pro obr. 35a platí pro  $f = f_0$ , že

$$F = \frac{1}{1 + \frac{R_1}{2R_2}}.$$

Pro obr. 35b platí vzorec analogicky, dosazujeme ovšem  $X_{C1}$  a  $X_{C2}$ , takže výsledný přenos

$$F = \frac{1}{1 + \frac{C_2}{C_1}}.$$



Obr. 36. Článek typu dvojitě  $T$  (někdy též zvaný  $TT$ )



Obr. 37. Kmitočtové charakteristiky článků přemostěně  $T$  (a) a dvojitě  $T$  (b). Pro (a) je  $R_1/R_2 = 100$

Článek typu dvojitě  $T$  se obvykle volí symetrický, tedy  $R_1 = R_2 = 2R_3$  a  $C_1 = C_2 = \frac{1}{2} C_3$ . Potom platí, že

$$f_0 = \frac{1}{2\pi R_1 C_1}.$$

Přenos článku přemostěně  $T$  a dvojitě  $T$  je na obr. 39:

### Korektory pro přenosky

V zásadě lze gramofonové přenosky rozdělit na dva základní typy, výchylkové a rychlostní. Názvy značí úměrnost výstupního napětí přenosky té které veličině záznamu. Zatímco signál z výchylkových přenosků není třeba v zesilovači korigovat (jde o přenosky piezoelektrické, kapacitní, fotoelektrické), neboť jejich výstupní napětí v závislosti na kmitočtu je přibližně stálé, je vzhledem k průběhu stranové rychlosti záznamu (obr. 38) nutné korigovat pro rychlostní přenosky (magnetodynamická, elektrodynamická) charakteristiku předzesilovače tak, aby byla inverzní k záznamové charakteristice. Charakteristika z obr. 38 je určena třemi časovými konstantami

$$\tau_1 = 3180 \mu s, \tau_2 = 318 \mu s, \tau_3 = 75 \mu s.$$



Obr. 38. Kmitočtový průběh rychlostní charakteristiky gramofonového záznamu

Nyní něco pro ty, jimž pojednávám o časové konstantě.

V článku  $RC$  značí časovou konstantu  $\tau$  čas, za který se kondenzátor nabije na 63 % napětí v obvodu, nebo čas, za který se z plného napětí vybije na 37 %. V obvodu  $RC$  totiž platí vztah

$$\tau = RC.$$

Nyní je tedy zřejmé, proč bývají kmitočtové charakteristiky určovány časovými konstantami. Pro jejich realizaci lze navrhovat články  $RC$  přímo tak, aby  $RC = \tau$  – tím je přímo dán mezní kmitočet článku  $RC$ . Komu to nestačí a chtěl by přečíst jen mezní kmitočet  $f$  znát, může si ho lehce spočítat ze vztahu

$$f = \frac{1}{2\pi RC} = \frac{1}{2\pi\tau}.$$

Potom tedy pro charakteristiku z obr. 38, danou časovými konstantami  $\tau_1$  až  $\tau_3$  platí:

$$\begin{aligned} \tau_1 &= 3180 \mu s & f_1 &= 50 \text{ Hz}; \\ \tau_2 &= 318 \mu s & f_2 &= 500 \text{ Hz}; \\ \tau_3 &= 75 \mu s & f_3 &= 2120 \text{ Hz}. \end{aligned}$$

Idealizovaný průběh daný těmito časovými konstantami je v obr. 38 vyznačen čárkovaně.

Kmitočtovou charakteristiku zesilovače lze ovlivnit několika způsoby, nejjednodušší je úprava pasivním čtyřpolém podle obr. 39. Má-li zdroj sig-



Obr. 39. Pasivní čtyřpol ke korekci rychlostní záznamové charakteristiky

nálu vnitřní odpor velmi malý a článek je na výstupu zatížen velmi velkým zatežovacím odporem, platí jednoduché vztahy:

$$C_1 R_2 = \tau_2,$$

$$C_2 R_1 = \frac{\tau_1 \tau_3}{\tau_2},$$

$$C_2 R_2 = \frac{\tau_1 \tau_2 \tau_3}{(\tau_1 - \tau_2)(\tau_2 - \tau_3)}.$$

Protože se tento typ korekce prakticky nepoužívá, nebude výpočty podrobne rozvádět. Jediným druhem korekce, používané v předzesilovači pro magnetodynamickou přenosu, je korekce ve zpětné vazbě. Protože jde o zápornou zpětnou vazbu, je kmitočtový průběh korektoru shodný se záznamovou charakteristikou a výsledný kmitočtový průběh je inverzní. Z mnoha typů korekčních obvodů, popisovaných v nejrůznějších pramezech, si vybereme jeden, který se používá dosti často. Jak je zřejmé z obr. 40, lze obvod rozložit na tři obvody s časovými konstantami  $\tau_1$ ,  $\tau_2$ ,  $\tau_3$ . Z obrázku je dalek zřejmé, že má-li být  $\tau_1 = 10\tau_2$ , musí být  $R_b = 10R_a$ . Proto je také možno pominout konstantu  $R_b C_a$ , která se v celkovém průběhu prakticky neuplatní.

Pro návrh zesilovače musíme známe impedance korektoru na kmitočtu 1 kHz, abychom mohli zjistit zisk zesilovače se zavedenou zpětnou vazbou. Bude



Obr. 40. Zpětnovazební korektor rychlostní záznamové charakteristiky

nás zajímat její absolutní hodnota. Je zřejmé, že se jedná o sériové spojení dvou paralelních článků. Kmitočet 1 kHz není mezním kmitočtem žádného z těchto článků, musíme proto při výpočtu impedance uvažovat i jejich fázový úhel – výpočet je proto poměrně složitý, uvedeme si tedy pouze výsledek: při 1 kHz je absolutní hodnota impedance

$$Z = 0,99 R_a \approx R_a;$$

dále platí:

$$C_a = \frac{75 \cdot 10^{-6}}{R_a} [\text{F}];$$

$$C_b = \frac{318 \cdot 10^{-6}}{R_a} [\text{F}]; \quad R_b = 10R_a [\Omega].$$

### Příklad 3.

Potřebujeme navrhnut zpětnovazební korektor, jehož impedance při 1 kHz (určující zesílení zesilovače) má být 50 kΩ. Časové konstanty a zapojení odpovídají obr. 40. Potom tedy:  $0,99 R_a \approx R_a = 50 \cdot 10^3$ , volíme nejblížší vyráběný odpor 47 kΩ. Potom  $R_b = 10R_a = 470 \text{ k}\Omega$ ,

$$C_a = \frac{75 \cdot 10^{-6}}{47 \cdot 10^3} = 1,59 \cdot 10^{-9} \text{ F},$$

volíme 1 500 pF,

$$C_b = \frac{318 \cdot 10^{-6}}{47 \cdot 10^3} = 7,57 \cdot 10^{-9} \text{ F},$$

volíme 8 200 pF.

Tím je výpočet ukončen.



Dušan Pallay

Zařízení bylo navrženo k rychlému přezkoušení posluchačů před zahájením cvičení (např. dílencké cvičení) tak, aby si vyučující mohl bez ztráty času utvořit představu o přípravě posluchačů na cvičení. Rychlé vyhodnocení mu umožňuje examinátor a jeho děrnoštítkové zaznamenávání jednotlivých odpovědí, na nichž vidí zvládnutí jednotlivých otázek. To mu umožňuje zaměřit výklad na nezvládnutou látku a tak ušetřit čas pro vlastní cvičení. S velkou výhodou se dá použít i na jiných místech v učebně-výchovném procesu, např. při kontrole atd.

Vlastní zařízení bylo navrhováno pro 12 posluchačů s pěti možnostmi odpovědi na jednu otázkou. Dá se upravit na libovolný počet posluchačů a může se měnit i počet možností odpovědi na jednotlivé otázky.

### Popis jednotlivých částí (pro 12 žáků)

U každého posluchače je umístěna tlačítková sada, od které vede sedm drátů k vlastnímu zařízení. Vlastní examinátor (obr. 1) se skládá:

- z drahýzceho obvodu (relé  $RD$  a jeho kontakt  $rd$ ) a pomocného obvodu (spínač-tlačítko  $S_4$  a relé  $RB$ , které svými kontakty  $rb$  spíná relé  $RD$ );
- vyhodnocovacího obvodu (relé  $RV$  a jeho kontakty);
- kódovacího obvodu (přepínač  $P$  a relé  $KI$  až  $KV$ , kterými se nastaví pro každou otázkou správný kód);
- záznamového obvodu, který je tvořen děrovacím elektromagnetem  $MI$  až  $MX$  pro každý posluchače. Záznamový obvod je sestaven do bloku velikosti děrného štítku;
- z pomocného záznamového obvodu, tvořeného třídičem  $T$ , kontakty  $kI$  až  $kV$ , kontaktním polem třídiče  $t_2$ , v jehož obvodu jsou zapojena relé  $DI$  až  $DX$ . Tato relé postupně připojují děrovací elektromagnety každé otázky k vyhodnocení;
- z obvodu pro nastavení výchozí polohy třídiče  $T$  (nastavení první otázky). Tento obvod se skládá z kontaktového pole třídiče  $t_1$ , z mechanického kontaktu třídiče  $t_3$  a spínače (tlačítka)  $S_3$ , jímž nastavujeme výchozí polohy pro záznamový obvod před začátkem zkoušení. Správné nastavení obvodu signalizuje žárovka  $\tilde{Z}_1$ .

Spínač (popř. tlačítko s aretací)  $S_2$ , „Start – stop“ nám umožňuje omezit čas odpovědi. Celé zařízení je napájeno napětím 24 V.

### Cinnost a postup při zkoušení

Vyučující zapne spínač  $S_1$  (obr. 1), tím připojí síťové napětí. Spínač  $S_2$  musí být v poloze „STOP“ (vypnuto). Spínačem  $S_3$  se nastaví výchozí poloha záznamového obvodu, žárovka  $\tilde{Z}_1$  signalizuje správnost nastavení. Dále se nastaví kód pro první otázkou přepínačem  $P$  (pro vysvětlení další činnosti předpokládejme, že je v první pracovní poloze). Relé  $KI$  sepne své kontakty  $kI_1$  až  $kI_{12}$  a  $kI'$ . Kontakt  $kI'$  umožňuje, aby třídič  $T$  udělal první krok a připojil relé  $DI$ , které svými kontakty  $DI_1$  až  $DI_{12}$  připojí elektromagnety  $MI_1$  až  $MI_{12}$  k vyhodnocení (avšak až po sepnutí  $S_2$ ). Vyučující dá spínač  $S_2$  do polohy „START“ (zapnuto) a „nabudí“ sepnutím spínače  $S_4$  relé  $RD$  až  $RDXII$ , které drží v obvodu přes kontakty  $rdI_1$  až  $rdXII_1$  a přes tlačítkovou sadu v klidové poloze. Celé zařízení je připraveno pro přijetí a vyhodnocení první odpovědi posluchače.

Posluchač u tlačítkové sady  $I$  odpoví správně, to znamená, že správně stlačil tlačítko  $I$ ; tím se uzavřel obvod zdroje –  $S_2$  –  $rdI_1$  – vinutí relé  $RD$  – tlačítková sada č.  $I$  a v ní zapnuté  $Tl_1$  –  $kI_1$  – vinutí  $I$ , 2 relé  $RVI$  – druhý pól zdroje. Kontakt  $rvI_1$  připojí vinutí  $5,6$  relé  $RV$  do obvodu zdroje. Zároveň  $RVI$  svým kontaktem  $rvI_2$  připojí plus pól zdroje přes zapnutý kontakt  $dI_1$  na elektromagnet  $MI_1$ , který vyděruje záznam na děrném štítku. Kondenzátor  $C_1$  slouží ke zpoždění  $RD$  o dobu, která je potřebná k zapnutí  $RVI$ . Kondenzátor

Obr. 1. Schéma examinátoru



*CI1* slouží k tomu, aby volba nemohla být vícenásobná (relé *RVI* přitahuje zpožděně).

Posluchač u tlačítkové sady 12 odpoví např. nesprávně, to znamená, že stlačil některé tlačítko mimo  $T_1$  (správná volba). Řekněme, že stlačil tlačítka  $T_3$ , obvod byl stejný jako v předcházejícím případě až po kontakt  $kIII_{12}$ , který není zapnutý, takže se nemůže uzavřít obvod pro relé  $RVXII$ .  $RDXII$  ale zpožděně odpadá, takže nemůže dojít k opakované volbě.

Po skončení odpovědi vrátí vyučující spínač  $S_2$  do polohy „STOP“ a tím je ukončen čas pro odpověď na první otázku. Vyučující může přistoupit k další otázce, všechna činnost zůstává stejná

EVM na pásu

V minském závodě Ordžonikidze bylo dosaženo plné kapacity komplexně mechanizovaného montážního oddělení na skříň elektronického počítacího stroje „Minsk 32“. Dříve se skříň svařovaly. Byly težké a zabíraly mnoho místa. Na závodě zavedli montovanou konstrukci skříní, vybudovali systém pášů a zdvíží. Fyzická práce je při této operaci podstatně snížena. Tato novinka není na závodě jediná. Pozornost zde věnovali kontrole. Není divu. Vždyť při pohledu na otevřené skříň „Minsk 32“ člověk obdivuje desítky tisíc radiosoučástek a kontaktů. A to všechno je v přesně omezeném prostoru. Kolik pozornosti, jaké soustředění je zapotřebí k tomu, aby člověk nepoletěl kontakty, nepřipojil konec drátu jinam než kam patří.

jako u první otázky, záznamový obvod se nenastavuje.

Vyhodnocovací obvod lze zjednodušit, a to tak, že místo záznamového a pomocného záznamového obvodu zapojíme telefonní počítadlo nebo žárovky. Žárovka (nebo počítadlo) je zapojena hned na kontakt  $rvI_1$  a druhým koncem na zem. Tím odpadá pravá strana schématu, tvořená třídičem  $T$ , relé  $DI$  až  $DX$  a děrovacími elektromagnety  $M$ , náročná na stavbu.

## Poznámky ke stavbě

Celkové schéma kromě tlačítkové sady je na obr. 1. Tlačítková sada je na obr. 2. Relé mohou být různá podle

použitého napětí. Podle použitých relé volíme i kapacity kondenzátorů tak, aby byly splněny podmínky pro odpad relé *RD* a sepnutí relé *RV*. Relé *RB* a *DI* až *DX* budeme muset zdvojit, protože asi nesezeneme relé, které by mělo požadovaný počet kontaktů. Velmi výhodně se dá použít pro tento účel kulaté relé Tesla (nový vzor). Možná konstrukce děravacího elektromagnetu je na obr. 3 (1 – organické sklo, 2 – šroub se zapuštěnou hlavou a matkou, 3 – vinutí elektromagnetu, 4 – kostra elektro-.



Obr. 3. Děrovací elektromagnet

magnetu, 5 - volně uložené jádro, 6 - pružina).

Případné dotazy rád zodpovím písemně, popř. i osobně podle možnosti.

Při takovém napětí se člověk rychle unaví a může se dopustit chyb.

„A když už se chybá stane, těžko se hledá,“ říká hlavní inženýr závodu I. K. Postovcev. To se musí v jediné skříní znovu provéřit každý z dvaceti tisíc kontaktů. Kdyby to měl provést jeden člověk, musel by se zabývat jednou skříní mnoho let. A my ji prověřujeme půl hodiny.

Závodní kolektiv vyrobil stanici na automatické prověrování montáže. Pro každou skříň se vypracovává speciální program kontroly. Program se zapíše na děrnou pásku. Automat se za půl hodiny spojí se všemi kontakty. Místa chybných styků se přenášejí na psací stroj zároveň s označením charakteru chyb. Stanice umožňuje zjistit a odstranit všechny chyby montáže ještě před seřízením.

Na závodě rozpracovali systém automatů, které kontrolují seřizování součátek a zařízení EVM. Mají zde také automat na kontrolu buněk počítáče „Minsk 32“. Za 10 až 12 vteřin překontroluje všechny parametry a zvýšil rychlosť kontroly 10 až 15krát. Také přesnost a spolehlivost kontroly je vyšší. Inženýři a dělníci sestrojili kolem 400 různých nástrojů a přístrojů na mechanizaci pracovních kontrolních operací.

Automatizace kontroly je pouze částí úsilí o mechanizaci výroby. Výpočetní stroje se zde v SSSR vyrábějí pásově.

Díky úsilí racionalizátorů a vynálezců na závodě jsou mechanizovány a automatizovány i takové pochody, jako galvanoplastika a náter strojových součástek.

## Ze zpráv Československo-sovětské obchodní komory

# Stabilizátor síťového napětí

Ing. Miroslav Arendáš, Ing. Milan Ručka

V místech, kde není zokruhována světelná síť (zejména v chatových oblastech) se často stává, že se ve špičce zmenší sílové napětí až pod 200 V. Televizor, který většinou v tuto dobu zapírá, námě, špatně funguje, obraz je labilní atd. Stojíme před otázkou, jak si pomoci. Popisovaný stabilizátor je určen právě pro případ, kdy se sílové napětí zmenšuje až na 160 V a spotřebič vyžaduje napájet napětí v rozsahu 200 až 240 V.

## Princip zapojení

Princip je jednoduchý. Zmenší-li se sílové napětí pod 205 V, připojí se jedna odbočka autotransformátoru (obr. 1) a výstupní napětí  $U_2 = U_1 + U_3$ ; zmenší-li se  $U_1$  ještě pod 190 V, připojí se další odbočka a výsledné napětí  $U_2 = U_1 + U_3 + U_4$ . Pokud je vstupní napětí  $U_1$  v mezech 160 až 240 V, je výsledné napětí  $U_2$  vždy v požadovaném rozsahu 200 až 240 V. Pochopitelně se nemusíme spokojit jen se dvěma odbočkami, a s uvedenými úrovněmi přepnouti.

## Popis funkce

Celkové schéma je na obr. 1. Napětí  $U_1$  přivádíme přes diodu  $D_1$  na dělič složený z odporů  $R_1, R_2, R_3, R_4$  ( $R_6, R_7, R_8, R_9$ ). Tímto děličem se nastavuje úroveň napětí, při němž se spne relé  $Re_1$  ( $Re_2$ ). Je třeba, aby relé  $Re_1$  sepnulo při  $U_1 = 190$  až 192 V a  $Re_2$  při  $U_1 = 205$  až 207 V, jak je patrné z grafu na obr. 3.

Relé musí spínat a rozpínat velice ostře. Není možné, aby vznikal neurčitý stav, při němž by přitáhlo pouze částečně. Okamžik sepnutí je určen napětím  $U_{BO}$  diody diac  $D_4$  ( $D_5$ ). Kondenzátor  $C_6$  ( $C_5$ ) je nabité na maximální velikost napětí  $U_1$ . V případě, že na odporu  $R_5$  ( $R_{10}$ ), tedy na výstupu děliče, je větší napětí než je  $U_{BO}$  diody diac, sepnutí tyristoru  $T_1$  ( $T_2$ ) a kondenzátor  $C_6$  ( $C_5$ ) se vybije přes vinutí relé  $Re_1$  ( $Re_2$ ). Tím je zaručeno ostré přitažení kotvy. Relé potom dobře drží i při menším jednocestném usměrnění napětí  $U_1$ . Kapacita kondenzátoru  $C_6$

( $C_5$ ) má být co největší; horní hranice kapacity je však určena podmírkou, že při sepnutém tyristoru se musí vybit celý náboj kondenzátoru přes odpor vinutí relé až k nule, aby tyristor spolehlivě rozepnul.

Relé rozepne při nižší úrovni napětí než sepnulo (obr. 3). Rozdíl asi až 4 až 5 V vznikne proto, že rozpojovací kontakty relé změní poměry ve vstupním děliči připojením odporu  $R_3$  ( $R_8$ ). Tato hysteréza je nutná v případě, že se vstupní sílové napětí ustálí náhodou blízko meze sepnutí. Bez hysterézy by jakákoli krátkodobá porucha znamenala přepnutí relé, případně jeho kmitání.

Dioda diac svoji tepelnou stálostí zaručuje tepelnou stabilitu celého zapojení. Zároveň určuje svým ostrým kolenem na charakteristice mez sepnutí i rozepnutí tyristoru. Tyristor se spíná každou půlperiodu. Ostrá spínací hrana při jeho sepnutí obsahuje množství harmonických kmitů vysokých kmitočtů, které je třeba odfiltrovat. Jako účinný filtr působí člen  $RC$ , připojený paralelně k tyristoru ( $C_3, R_{11}, C_4, R_{12}$ ) a zhášecí diody  $D_6$  a  $D_7$ , které zkraťují indukované napětí, vznikající při rozpínání obvodu v vinutí (indukčností) relé. Důležitým odrušovacím článkem je člen  $LC$ , složený z odrušovací tlumivky  $T_1$  a kondenzátoru  $C_1$  a  $C_2$ .  $T_1$  je „Odrušovací prostředek“, vyráběný v n. p. Tesle Lanškroun. Má dvě magneticky symetrická vinutí o indukčnosti  $2 \times 2,5 \text{ mH}$ , jmenovitý proud  $1 \text{ A}$ . Tlumivka se skládá ze dvou feritových jader o průřezu  $5 \times 2,5 \text{ mm}$  typu E, přiložených k sobě bez mezery.

Výbrali jsme **AR**\*



Obr. 2. Zjednodušené schéma stabilizátoru síťového napětí s použitím relé 24 V



Obr. 3. Graf závislosti výstupního a vstupního napětí stabilizátoru

Pro ty, kteří si chtějí stabilizátor sami navrhnout, protože mají k dispozici jiné součástky, nebo si chtějí nějakým způsobem popisovanou konstrukci vylepšit, uvádíme krátký výpočet s úvahou, jak je nutno jednotlivé prvky dimenzovat.

Charakteristika diody diac s vysvětlením její funkce byla v AR 3/1972. Tesla Rožnov, n. p., závod Piešťany, nyní vyrábí tři typy diod, které se od sebe liší pouze napětím  $U_{BO}$ :

KR205 má  $U_{BO} = 26 \pm 4 \text{ V}$ , KR206

$32 \pm 4 \text{ V}$ , KR207  $38 \pm 4 \text{ V}$ .

Pro okamžik sepnutí relé platí: poměr  $U_1/U_{BO}$  se musí rovnat poměru  $R_1$  a části odporu  $R_2$  k paralelní kombinaci zbytku  $R_2$  a  $R_4$ . Velikost  $R_1$  je zvolena,  $U_{BO}$  je určeno typem diody diac,  $U_1$  je napětí v síti v okamžiku sepnutí relé. Děličem protéká proud (s rezervou ve výpočtu pro sinusový proud):

$$I = \frac{U_1}{R_1 + R_2} = \frac{220}{10\,000 + 2\,700} = 17 \text{ mA.}$$

$R_1, R_6$  má tepelnou ztrátu:

$$P = I^2 R_1 = (1,7 \cdot 10^{-2})^2 \cdot 10\,000 = 2,89 \text{ W;}$$

totéž pro  $R_2, R_7$

$$P = I^2 R_2 = (1,7 \cdot 10^{-2})^2 \cdot 2\,700 = 0,8 \text{ W.}$$

Dobře tepelně dimenzovaný musí být odpor  $R_1$  ( $R_6$ ) (min. 3 W). Byl použit odpor 10 W TR 511, 10 k $\Omega$  (málo se zahřívá). Je to výhodné zejména vzhledem k dlouhodobé stabilitě. Také odpor  $R_2$  ( $R_7$ ) je několikanásobně předimenzován.  $R_3$  a  $R_4$  ( $R_8$  a  $R_9$ ) mohou být jakéhokoli typu, tepelná ztráta na nich je nepatrná. Funkce kondenzátoru  $C_6$  ( $C_5$ ) byla již objasněna a jeho kapa-



Obr. 1. Celkové schéma stabilizátoru síťového napětí

citu je nejlépe vyzkoušet.  $D_1$  může být jakákoli dioda, která má závěrné napětí větší než 350 V a je určena pro proud v propustném směru alespoň 40 mA.  $D_2$  a  $D_3$  musí být diody s větším závěrným napětím než 700 V.  $D_6$  a  $D_7$  musí mít závěrné napětí větší než 350 V, všechny čtyři diody by měly mít povolený proud v propustném směru alespoň 0,5 A. Tyristory  $T_1$ ,  $T_2$  postačí (bez chlazení) na zatížení 1 A se závěrným napětím alespoň 350 V. Vyhovují tyristory KT504 a KT505. Odrušovací kondenzátory  $C_1$ ,  $C_2$ ,  $C_3$ ,  $C_4$  musí být dimenzovány alespoň na napětí 350 V. Odpor  $R_{11}$  a  $R_{12}$  ochraňuje tyristor před proudem, vznikajícím výběžením  $C_3$  a  $C_4$  přes tyristor v okamžiku sepnutí.

Transformátor  $T_{11}$  se navrhuje tak, aby bylo možno zatěžovat vinutí  $L_2$  a  $L_3$  proudem, který teče do spotřebiče. Je-li maximální proud zátěže

$$I = \frac{P}{U} = \frac{200}{220} \doteq 0,9 \text{ A}, \text{ je zatížení sekundárních vinutí}$$

$$P_{L2, L3} = IU = 0,9 \cdot 40 = 36 \text{ W}$$

$$P_{L4} = IU \doteq 0,05 \cdot 8 \doteq 0,4 \text{ W}$$

Počítáme-li se ztrátami asi 10 %, je potřebný výkon transformátoru pro spotřebič 200 W minimálně 40 W.

Pro ty, kteří chtějí použít levnější polovodičové prvky s menšími závěrnými napětími, uvádíme schéma podobného stabilizátoru na obr. 2. Schéma není kompletní, chybí přepínací kontakty, síťový přívod, filtrační členy atd. Je použit stejný transformátor. Vlastnosti a funkce jsou stejné. Práh sepnutí tyristorů je určen referenčním napětím dáným Zenerovou diodou. U druhého relé je úroveň zvýšena o napětí na dvou křemíkových diodách KA501. Toto zapojení má řadu nevýhod. Zenerovu diodu musíme vybrat podle napětí tak, aby meze sepnutí obou relé měly správnou úroveň. Hysteréze mezi sepnutím a rozepnutím relé není pevně určena – nastavuje se automaticky prahem sepnutí a rozepnutí tyristoru. Další velkou nevýhodou je tepelná nestabilita mezi sepnutí relé. Je dáná nestabilitou minimálního spouštěcího proudu tyristoru. V uvedeném zapojení při změně teploty o  $10^\circ\text{C}$  se změní meze sepnutí asi o 8 V vstupního napětí.

#### Seřízení a uvedení do provozu

K tomu, abychom se přesvědčili o správné funkci a nastavili body sepnutí, musíme na vstupu stabilizátoru měnit střídavé napětí ( $U_1$ ) v rozsahu 150 až 240 V. Ideální je použít regulační transformátor, v nejhorším případě vystačíme se síťovým transformátorem s několika odbočkami, na sekundární straně napětí měníme pak hrubě změnou odboček skokem a jemně proměnným reostatem v primárním vinutí. V tomto případě nesmíme ovšem připojit na výstup stabilizátoru zátěž.

Vstupní napětí  $U_1$  pomalu zvětšujeme a kontrolujeme voltmetrem, zvětšujeme-li se úměrně napětí na kondenzátorech  $C_5$  a  $C_6$ . Zkontrolujeme, jsou-li zapojeny správně všechny kontakty obou relé. Není-li sepnuto žádné relé, je výstupní napětí rovno součtu napětí  $U_1 + U_3 + U_4$ . Stlačíme-li kotvu relé  $R_{11}$  rukou, musí se výstupní napětí zmenšit o  $U_4$ , přitlačíme-li ještě kotvu  $R_{12}$ , je  $U_1 = U_2$ . Dále zkontrolujeme správné spínání tyristorů. Přivedeme-li na bázi tyristoru kladné napětí (záporný pól zdroje umístíme na společný bod  $R_3$ ,  $T_1$ ,  $C_6$ ,



Obr. 4. Uspořádání stabilizátoru

$C_3$ ), nejlépe z ploché baterie přes žárovku nebo omezovací odpory, musí tyristor sepnout příslušné relé. Při odpojení napětí musí relé opět odpadnout. Je-li na výstupu z děliče kladné napětí, které se mění úměrně se změnou napětí  $U_1$ , nastavíme  $U_1$  na 190 V, což má být práh sepnutí  $R_{11}$ . Odbočku na  $R_2$  posuneme tak, aby tyristor  $T_1$  sepnul a relé přitáhlo. Jelikož odbočka na  $R_2$  je hrubý nastavovací prvek, nastavíme práh sepnutí jemně odpovídající trimrem  $R_4$ . Zkontrolujeme, je-li mezi sepnutím a rozepnutím rozdíl 4 až 5 V, případně upravíme velikost  $R_3$ . Stejným způsobem nastavíme mez sepnutí  $R_{12}$ , pouze úroveň posuneme na 205 až 210 V.

Nyní je již celý stabilizátor připraven k provozu. Jeho funkci zkontrolujeme tak, že vyneseme do grafu závislost  $U_2 = f(U_1)$  tak, jak je na obr. 3. Správnou funkci odrušovacích členů poznáme až po připojení televizoru nebo rozhlasového přijímače.

#### Mechanická konstrukce a zapojení

Mechanické uspořádání je patrné z fotografií (obr. 4). Součástky jsou upevněny na tzv. pájecím žebříčku. Stabilizátor je jako celek umístěn ve skřínce podle obr. 5. Při zapojování a montáži si je třeba uvědomit, že na všech součástkách je síťové napětí. Doporučujeme pečlivost a dodržování předpisů ČSN při instalaci. Zejména je nutno uzemnit kostru stabilizátoru na primární ochranný vodič. Výstup ze stabilizátoru je třeba zapojit na zásuvku, v níž propojíme ochranný zemní vodič s kostrou stabilizátoru a tím s ochranným vodičem, přívodní šňůry zeleným vodičem. Fázi, obvykle černý drát, vedené přes spínač na pojistku. Na výstupní zásuvce musíme dodržet správné umístění fáze a nulového vodiče. Umístění je na keramice zásuvky obvykle vyznačeno – při pohledu zpředu má být fáze vlevo, nulový vývod vpravo a zemní kolík nahore.

#### Závěr

Než se pustíme do stavby stabilizátoru, je třeba znát charakter nestabilit síťového napětí, které chceme vyrovnat.

Popsaný stabilizátor se hodí pro místa, kde je trvalý, nebo dlouhodobější pokles napětí v síti. Při uvádění do chodu jsou součástky spojeny se sítí; pozor na úraz el. proudem!

#### Rozpis materiálu (obr. 1)

##### Kondenzátory

|                      |                                  |       |
|----------------------|----------------------------------|-------|
| $C_1, C_2, C_3, C_4$ | $0,22 \mu\text{F}/400 \text{ V}$ | TC193 |
| $C_5, C_6$           | $1 \mu\text{F}/400 \text{ V}$    | TC481 |

##### Odpory

|                  |                       |                   |
|------------------|-----------------------|-------------------|
| $R_1, R_8$       | $10 \text{ k}\Omega$  | TR511             |
| $R_2, R_7$       | $2,7 \text{ k}\Omega$ | TR626, s odbočkou |
| $R_3, R_9$       | $33 \Omega$           | TR112             |
| $R_4, R_5$       | $47 \text{ k}\Omega$  | TR017             |
| $R_6, R_{10}$    | $33 \Omega$           | TR505             |
| $R_{11}, R_{12}$ | $33 \Omega$           | TR505             |

##### Polovodičové součástky

|                 |                                                                |
|-----------------|----------------------------------------------------------------|
| $D_1, D_2, D_3$ | KY705 (KY725, 36NP75, 46NP75, postačí i KY130/900, KY130/1000) |
| $D_4, D_5$      | KR205, (KR206, KR207)                                          |
| $D_6, D_7$      | KY704 (KY705, KY724, KY725, 35NP75, 45NP75, 36NP75, 46NP75)    |
| $T_1, T_2$      | KT505 (KT504)                                                  |

##### Relé

|                  |                                          |
|------------------|------------------------------------------|
| $R_{13}, R_{14}$ | relé RP92 220 V/50 Hz (RP90 220 V/50 Hz) |
|------------------|------------------------------------------|

##### Ostatní součásti

|       |                                                                                                                                                                                                                                                                        |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $T_1$ | jádro EI 32 x 32, 5,7 z/V, $L_1$ – 1 120 z drátu o $\varnothing 0,35 \text{ mm}$ , 220 V; $L_2$ 110 z drátu o $\varnothing 0,8 \text{ mm}$ , 20 V; $L_3$ – 110 z drátu o $\varnothing 0,8 \text{ mm}$ , 20 V; $L_4$ – 44 z drátu o $\varnothing 0,8 \text{ mm}$ , 8 V. |
| $T_2$ | odrušovací tlumivka WN 68209, Tesla Lanškroun                                                                                                                                                                                                                          |
| $P_0$ | pojistkové pouzdro na trubici, pojistka 1 A                                                                                                                                                                                                                            |
| $S$   | síťový spínač                                                                                                                                                                                                                                                          |
| $Z$   | zárovka 6 V/50 mA + objímka a signální skličko (možno i 6 V/300 mA)                                                                                                                                                                                                    |

síťová šňůra, zásuvka, 4 ks gumové nožičky, držadlo.



Obr. 5. Základní mechanické díly stabilizátoru

# Stereofonní niedzesilovac

Josef Zíd

V článku je stavební návod na stereofonní předzesilovač jednoduché konstrukce, určený pro zesilovače Hi-Fi většího výkonu. Předzesilovač se skládá ze dvou funkčních celků: korekčního zesilovače pro magnetodynamickou přenosku a ovládacího zesilovače. Na vstup ovládacího zesilovače se přivádějí přes přepínač vstupní signály větší úrovni (tuner, magnetofon) a signál z korekčního zesilovače. Tuto konceptu předzesilovače používá většina světových výrobců zesilovačů, neboť má ve srovnání s univerzálním předzesilovačem několik podstatných předností; především možnost získat lepší poměr signál/šum pro vstupní signály větší úrovni. K vobě vstupu zesilovače postačí jednoduchý dvoupolový přepínač, který přepíná signály srovnatelné úrovni. Též je vyloučena možnost rozkmitání celého zesilovače během přepínání. Uvedená koncepte předzesilovače vyžaduje větší počet tranzistorů - to je však vyváženo použitím levnéjšího přepínače.

## Základní údaje

*Jmenovité výstupní napětí:* 500 mV

*Vstupní napětí:*  
magnetodynamická  
přenoska 5 mV/1 kHz,  
tuner, magnetofon 100 mV.

*Vstupní  
impedance:*  
magnetodynamická  
přenoska 50 k $\Omega$ /1 kHz,  
tuner, magnetofon 20 k $\Omega$ .

**Úlumové zkreslení**  
v pásmu 20 Hz až  
20 kHz:  $< 1 \text{ dB}$ .

**Korekce kmitočtové charakteristiky:**  
hloubky  $\pm 15 \text{ dB/20 Hz}$ ,  
výšky  $\pm 15 \text{ dB/20 kHz}$ .

### *Regulace vývážení kanálů:*

### **Popis zapojení**

Schéma jednoho kanálu stereofonního předzesilovače je na obr. 1, odpovídající součástky druhého kanálu mají index o 100 vyšší.

Korekční zesilovač pro magnetodynamickou přenosku je dvoustupňový s tranzistory  $T_1$  a  $T_2$ . Požadované kmitočtové

charakteristiky zisku se dosáhne zpětnovazebním obyodem  $R_3, R_7, R_8, C_4, C_5$ . Napěťové zesílení signálu o kmitočtu 1 kHz bylo zvoleno 20. Průběh kmitočtové charakteristiky zisku korekčního zesílovače a srovnání s charakteristikou podle normy RIAA je na obr. 2. Od-



Obr. 2. Průběh zisku korekčního zesilovače v závislosti na kmitočtu

jíž v AR uvedeny [1]. Potenciometrem  $P_2$  se regulují hloubky a potenciometrem  $P_3$  výšky. Zesílení kanálů se vyvážuje tandemovým potenciometrem  $P_4$ , který je zapojen tak, že při zvětšování zesílení jednoho kanálu zmenšuje zesílení druhého kanálu a naopak, rozsah regulace zesílení je od maxima do nuly. Napěťové zesílení ovládacího zesilovače je při rovném kmitočtovém průběhu určeno přibližně poměrem odporů  $R_{14}$  a  $R_{13}$  a polohou regulátoru vyvážení (při běžci regulátoru ve střední poloze je přibližně 5).

Potenciometrem  $P_1$  se reguluje hlasitost, přepínač  $P_1$  slouží k volbě vstupu zesilovače.  $S_1$  je přepínač mono/stereo, oddělovací odpor  $R_{10}$  zamezuje při monofonním provozu zatížení výstupu jednoho kanálu korekčního zesilovače vnitřní impedance druhého kanálu. Výstupní napětí pro magnetofon se odebírá přes odpor  $R_9$  z přepínače  $P_1$  (asi 0,2 mV na 1 k $\Omega$  vstupní impedance magnetofonu).

Stereofonní předzesilovač je navržen pro napájecí napětí přibližně 25 V a odebírá proud asi 10 mA. Toto napětí je možno získat na Zenerových diodách  $D_1$  a  $D_2$ , připojených přes srážecí odpory  $R_{21}$  na napájecí zdroj výkonové části zesilovače. Použití Zenerových diod ke stabilizaci a filtraci napájecího napětí předzesilovače je výhodné z hlediska malého rozměru (ve srovnání s filtrováním kondenzátory). Při vypuštění  $D_1$  a  $D_2$  je třeba zvětšit kapacitu elektrolytických kondenzátorů  $C_6$  a  $C_7$  na 1 000  $\mu$ F, neboť předzesilovač má při maximální hlasitosti a při zdůraznění hloubek značný zisk (ze vstu-

## Konstrukce předzesilovače

Při návrhu konstrukčního řešení předzesilovače jsem vycházel ze skutečnosti, že zatím nejsou dostupné jak přepínače do plošných spojů, tak logaritmické potenciometry se zaručeným souběhem odporových drah. Proto jsou  $P_1$  a  $S_1$  spolu s potenciometrem  $P_1$  umístěny na subpanelu mimo spojové desky korekčního a ovládacího zesilovače. Toto řešení umožňuje použít dostupné součástky. Např. pro přepínač vstupů je vhodný otočný miniaturní přepínač nového typu WK 533 37 za 44 Kčs, který je dvoupólový a má (podle nařízení zarážky) 2 až 12 poloh, nebo starší typ 6 AK 533 01 s 2 až 8 polohami. Pro přepínač mono/stereo je nejjednodušší použít běžný siťový jednopólový páčkový spínač 2 A/250 V nebo dvoupólový spínač či přepínač 4 A/250 V a v předním panelu zesilovače vyříznout otvor pro páčku. Regulátor hlasitosti je možno řešit různě. Není-li přísný požadavek na souběh regulace hlasitosti kanálů, využij typ TP 283. V opačném případě je třeba udělat regulátor hlasitosti z přepínače (stupňovitý) nebo se pokusit sehnat tandemový potenciometr TP 289 se zaručeným souběhem a s odbočkou (prý se již přestal vyrábět).

Součástky obou kanálů korekčního zesilovače jsou umístěny na desce o rozměru  $90 \times 60$  mm (obr. 3ab). Kondenzátor  $C_8$  je společný pro oba kanály. Pro vyhovující odstup signál/



Obr. 1. Schéma zapojení jednoho kanálu stereofonního předzesilovače

a  $T_4$  s Williamsonovým korektorem. Jeho princip a vlastnosti včetně průběhu korekce kmitočtové charakteristiky byly



Obr. 3. Rozmístění součástek na desce s plošnými spoji korekčního zesilovače (a) a deska, osazená součástkami (b) Smaragd F51



Obr. 4. Rozmístění součástek na desce s plošnými spoji ovládacího zesilovače (a) a deska, osazená součástkami (b) ( $P_4 = R_4$ ,  $P_{104} = R_{104}$ ) Smaragd F52

/hluk je třeba desku korekčního zesilovače stínit, alespoň ze strany spojů.

Rozmístění součástek ovládacího zesilovače na desce  $90 \times 120$  mm je na obr. 4a, b. Kovové kryty tandemových potenciometrů jsou navzájem spojeny vodičem, propojeným do bodu „j“.

Přepínače a regulátor hlasitosti je výhodné umístit na subpanelu blízko sebe (např. podle obr. 5) a subpanel umístit poblíž desek korekčního a ovládacího zesilovače, aby se uvedené součástky a vývody desek mohly propojit krátkými a tedy nestíněnými vodiči.



Jedna z možností rozmístění funkčních celků předzesilovače je na obr. 6. Při tomto uspořádání je dálé výhodné zhotovit subpanel z cuprextitu a zvolit ho jako společný zemnící bod předzesilovače. Do tohoto bodu jsou připojeny co nejkratšími vodiči vývody „e“, „h“ desek korekčního a ovládacího zesilovače, anoda diody  $D_2$ , zem napájecí, uzemněné vývody regulátoru hlasitosti a výstupu předzesilovače, stínění vstupních vodičů, kryty vstupních konektorů a šasi. V subpanelu z cuprextitu podle obr. 5 je proto třeba vyvrtat několik dír pro zemnící vodiče.

Vývody vstupních konektorů a přepínače vstupů jsou propojeny stíněnými kablíky: vnitřní vodiče se připojí přímo na vývody přepínače a stínění do společného zemnícího bodu (na subpanel). Použití otočného přepínače a jeho umístění mimo spojovací desky není tedy nevýhodné, neboť ve zvolené konstrukci předzesilovače je počet pájecích bodů u přepínače shodný s počtem vodičů přicházejících od vstupu a je tedy v podstatě jedno, zda jsou vstupní vodiče připojeny na desku s plošnými spoji nebo přímo na přepínač. K přepínači vstupu jsou připojeny též odpory  $R_9$  a  $R_{109}$  pro magnetofon. Odpory  $R_{10}$  a  $R_{110}$  mohou sloužit jako „spojuvací vodiče“ mezi  $P_1$  a  $S_1$ .



Obr. 6. Rozmístění funkčních celků předzesilovače



Obr. 7. Korekční obvod pro připojení krystalové přenosky VK 311

Odpory  $R_{20}$ ,  $R_{21}$  a diody  $D_1$ ,  $D_2$  lze umístit volně nebo přímo v napájecí výkonové části zesilovače, případně je možno pro tyto součástky zhotovit desku s plošnými spoji na části subpanelu s přepínači. Odpor  $R_{21}$  zvolíme ták, aby i při plném vybuzení výkonových zesilovačů protékal diodami  $D_1$  a  $D_2$  proud 5 mA.

Zkušenější amatéři si mohou zvolit i jinou konstrukci předzesilovače a jeho ovládací prvky rozmiřit podle vlastního návrhu. První dva zesilovací stupně ovládacího zesilovače lze totiž „přidat“ na desku s plošnými spoji korekčního zesilovače (též shodné zapojení).

Korekční zesilovač lze též upravit na zesilovač s rovným kmitočtovým průběhem zesílení pro signály s malou úrovní (radio, mikrofon). Je třeba vypustit  $R_8$ ,  $C_4$ ,  $C_5$  a  $R_7$  zvolit podle požadovaného zesílení. Výstupní signál tohoto zesilovače se přivádí na přepínač vstupu. Při  $R_7 = 10 \text{ k}\Omega$  je pak napěťové zesílení 20, což odpovídá výstupnímu napětí zesilovače 5 mV. Na desce s plošnými spoji korekčního zesilovače jsou i díry pro odpory, zapojený paralelně ke vstupu, jímž lze popř. zmenšit výstupní impedance.

#### Připojení krystalové přenosky

Krystalová přenoska se dá připojit na vstup korekčního zesilovače přes korekční obvod, jehož návrh je podrobne uveden v [2]. Na obr. 7 je zapojení korekčního obvodu a vypočtené údaje jeho součástek pro krystalovou přenosku VK 311 s kapacitou asi 2 200 pF. V případě použití přenosky s odlišnou kapacitou je třeba údaje součástek přepracovat.

Druhým řešením je výnechat korekční zesilovač a připojit krystalovou přenosku na vstup oddělovacího stupně se výstupní impedancí alespoň  $1 \text{ M}\Omega$ , jehož výstupní signál se přivádí na



Obr. 8. Zapojení jednoho kanálu oddělovacího stupně



Obr. 9. Rozmístění součástek na desce s plošnými spoji oddělovacího stupně (Smaragd F53) (C18 má mít správnou polaritu)

přepínač vstupu. Schéma jednoho kanálu oddělovacího stupně je na obr. 8. Tranzistor  $T_5$  je zapojen jako emitorový sledovač. Obvod napájení báze  $T_5$  je řešen tak, aby jeho součástky nezmenšovaly vstupní impedance. Napěťové zesílení oddělovacího stupně je přibližně jedna. U vzorku oddělovacího stupně bylo dosaženo (při tomto jednoduchém zapojení) vstupní impedance asi  $1,5 \text{ M}\Omega$ .

Součástky obou kanálů oddělovacího stupně jsou umístěny na desce podle obr. 9. Protože se oddělovací stupeň připojuje k ostatním obvodům předzesilovače stejně jako korekční zesilovač (vývody obou desek jsou shodné umístěny obr. 3 a obr. 9), je i pro lepší přehlednost označení vývodů obou desek stejně. Oddělovací stupeň se napájí přes srážecí odpory  $R_{27}$  ( $3,3 \text{ k}\Omega$ ) zapojený mezi přívod „c“ a katodu  $D_1$ .

Popisované řešení stereofonního předzesilovače vychází z dvoyletíčkých zkušeností autora s uvedeným zapojením, které bylo úspěšně použito ve stereofonním zesilovači  $2 \times 20 \text{ W}$ .

#### Seznam elektrických součástek

##### Odpory

|                                                    |
|----------------------------------------------------|
| Všechny odpory jsou typu TR112a, $R_{21}$ viz text |
| $R_{21}$ , $R_{101}$ 4,7 k $\Omega$                |
| $R_{22}$ , $R_{102}$ 0,12 M $\Omega$               |
| $R_{23}$ , $R_{103}$ 470 $\Omega$ , 5 %            |
| $R_{24}$ , $R_{104}$ 56 k $\Omega$ , 5 %           |
| $R_{25}$ , $R_{105}$ 4,7 k $\Omega$                |
| $R_{26}$ , $R_{106}$ 470 $\Omega$                  |
| $R_{27}$ , $R_{107}$ 0,12 M $\Omega$ , 5 %         |
| $R_{28}$ , $R_{108}$ 15 k $\Omega$ , 5 %           |
| $R_{29}$ , $R_{109}$ 0,47 M $\Omega$               |
| $R_{121}$ , $R_{122}$ 2,2 k $\Omega$               |
| $R_{123}$ , $R_{124}$ 0,27 M $\Omega$              |
| $R_{125}$ , $R_{126}$ 0,12 M $\Omega$              |
| $R_{127}$ , $R_{128}$ 820 $\Omega$ , 5 %           |
| $R_{129}$ , $R_{123}$ 8,2 k $\Omega$ , 5 %         |
| $R_{130}$ , $R_{125}$ 3,9 k $\Omega$               |
| $R_{131}$ , $R_{126}$ 390 $\Omega$                 |
| $R_{132}$ , $R_{127}$ 3,3 k $\Omega$ , 5 %         |
| $R_{133}$ , $R_{128}$ 3,3 k $\Omega$ , 5 %         |
| $R_{134}$ , $R_{129}$ 270 $\Omega$ , 5 %           |
| $R_{135}$ , $R_{121}$ 3,3 k $\Omega$               |
| $R_{21}$ viz text                                  |
| $R_{22}$ , $R_{122}$ 82 k $\Omega$                 |
| $R_{23}$ , $R_{123}$ 0,18 M $\Omega$               |
| $R_{24}$ , $R_{124}$ 56 k $\Omega$                 |
| $R_{25}$ , $R_{125}$ 4,7 k $\Omega$                |
| $R_{26}$ , $R_{126}$ 6,8 k $\Omega$                |

##### Potenciometry

|                                                                       |
|-----------------------------------------------------------------------|
| $P_{11}$ , $P_{101}$ 25 k $\Omega$ , logaritm., viz text              |
| $P_2$ + $P_{102}$ 0,1 M $\Omega$ , lineární, TP283                    |
| $P_3$ + $P_{103}$ , $P_4$ + $P_{104}$ 10 k $\Omega$ , lineární, TP283 |

##### Kondenzátory

|                                                                       |
|-----------------------------------------------------------------------|
| $C_{15}$ , $C_{101}$ 5 $\mu\text{F}$ , TE 984                         |
| $C_{22}$ , $C_{102}$ , $C_{15}$ , $C_{109}$ 20 $\mu\text{F}$ , TE 984 |
| $C_{23}$ , $C_{103}$ , $C_{16}$ , $C_{110}$ 20 $\mu\text{F}$ , TE 981 |
| $C_{24}$ , $C_{104}$ 22 nF, 5 %, TC 181                               |
| $C_{25}$ , $C_{105}$ 6,8 nF, 5 %, TC 281                              |
| $C_1$ , $C_{106}$ 200 $\mu\text{F}$ , TE 984                          |
| $C_2$ , $C_{107}$ 50 $\mu\text{F}$ , TE 986                           |
| $C_3$ , $C_{108}$ 5 $\mu\text{F}$ , TE 984                            |

|                                                                 |
|-----------------------------------------------------------------|
| $C_{11}$ , $C_{112}$ , $C_{113}$ , $C_{114}$ 47 nF, 5 %, TC 180 |
| $C_{12}$ , $C_{115}$ , $C_{116}$ , $C_{117}$ 33 nF, 5 %, TC 181 |
| $C_{13}$ , $C_{118}$ 0,22 $\mu\text{F}$ , TC 180                |
| $C_{14}$ , $C_{119}$ 10 $\mu\text{F}$ , TE 984                  |
| $C_{15}$ , $C_{120}$ 20 $\mu\text{F}$ , TE 984                  |
| $C_{16}$ , $C_{121}$ 200 $\mu\text{F}$ , TE 984                 |

##### Položidlovací součástky

|                                         |
|-----------------------------------------|
| $T_1$ až $T_{104}$ KC508 (KC509, KC507) |
| $D_1$ , $D_2$ KZZ76, KZ724              |

#### Literatura

[1] Žid, J.: Hi-Fi zesilovač 6 W. AR č. 8/72.  
[2] Frybort, M.: Přizpůsobení krystalových přenosok k zesilovači. H & Z č. 8/68.

\* \* \*

Fotorel CQY13, sdružující galliumarzenidovou luminiscenční diodu a křemíkový fototranzistor n-p-n v jednom pouzdru, vyvinula firma Valvo pro spínaci účely v obvodech, kde je nutná úplná izolace obou obvodů. Napěťová pevnost mezi výstupním obvodem svítící diody a výstupním obvodem fototranzistoru je větší než 420 V, izolační odpor  $10^{10} \Omega$ . Prvek má velkou přenosovou účinnost (poměr proudu kolektoru tranzistoru k proudu diody); při napětí kolektoru 10 V a proudu 2 mA prům. 0,2, min. 0,1. Napětí na diodě při předním proudu 30 mA je prům. 1,4, max. 1,6 V. Ztrátový výkon je 60 mW. Fototranzistor má max. napětí kolektor-emitor 30 V, dobu náběhu a dobu výstupního signálu prům. 3  $\mu\text{s}$ . Zatěžovat jej lze proudem kolektoru max. 30 mA, ztrátovým výkonem 70 mW. Vazební kapacita mezi výstupem a výstupem prvku je 2 pF. Oba systémy prvku jsou zapouzdřeny v kovovém pouzdru TO-12 se čtyřmi drátovými vývody. Provozní teplota okolí prvku smí být v mezích  $-55$  až  $+125^\circ\text{C}$ . Sž

Podle podkladů Valvo

\* \* \*

Jak uvádí zpráva v americkém časopise Electronics č. 18/1971, podařilo se firmě Fairchild vyvinout galliumarzenidový polem řízený tranzistor MES-FET s mezním kmitočtem 30 GHz!! Hradlo tohoto tranzistoru je izolováno Schottkyho přechodem (odtud Metall-Semiconductor). Tranzistor má na kmitočtu 8 GHz výkonový zisk 8 dB, na kmitočtu 16 GHz zisk 4 dB. Jeho šum 3, dB na kmitočtu 4 GHz je přibližně poloviční oproti křemíkovým planárním tranzistorům.

Sž

# Stabilizovaný zdroj **MAA 501**

Jiří Zuska

Výhody sítového napájecího zdroje k napájení vývojových konstrukcí jsou všeobecně uznávány a každý konstruktér dá jistě přednost napájení z dobrého stabilizovaného zdroje před napájením z různých typů článků. Podstatnou výhodou je přede vším možnost plynule nastavit výstupní napětí, které umožňuje mimo jiné zjistit funkci a chování určitého zapojení při změnách napájecího napětí. Důležitým ukazatelem kvality napájecího zdroje (obecně) je jeho výstupní (vnitřní) odpor a stabilita výstupního napětí – také toto srovnání je pro kvalitní stabilizovaný zdroj příznivé. Závažným argumentem při posuzování zdrojů je i ekonomický efekt. Kolik stojí 1 kWh ze sítě je každému známo (podle druhu sazby). Málokdo si však uvědomuje, že např. 1 kWh z plochých baterií stojí přibližně 1 000 Kčs. Výkonom snad mohou sítovému zdroji konkurovat pouze akumulátory, ty však mají řadu nevýhod (jsou drahé, těžké a vyžadují pečlivou obsluhu a ošetřování).

Obvyklým a velmi užitečným doplňkem síťového zdroje je elektronická pojistka, která buď omezí výstupní proud na předem zvolenou velikost, nebo při překročení určitého odběru proudu zdroj vypne. Pojistka však neslouží pouze k ochraně zdroje před nepřípustným zatížením, ale chrání před zničením i napájené zařízení. Z vlastní zkušenosti mohu říci, že se pojistka brzo „zaplatí“ záchráněnými polovodičovými součástkami.

Z uvedeného vyplývá, že pravděpodobně jedinou výhodou článků je nezávislost na elektrovodné síti, což zhruba omezuje oblast pro jejich aplikaci. Výhodné vlastnosti síťových stabilizovaných napájecích zdrojů způsobily, že se zdroje staly oblíbeným námětem amatérských konstrukcí, často uveřejněných na stránkách AR i RK.

V tomto článku je popsána konstrukce zdroje, který se svými vlastnostmi řadí mezi kvalitnější přístroje toho druhu, i když je jeho zapojení jednoduché a snadno reproducovatelné.

## Princip zapojení a návrh konstrukce

Jádrem zdroje je regulovatelný stabilizátor (obr. 1), zakončený proudovým boosterem. Stabilizátor je doplněn dvěma napájecími obvody, elektronickou pojistkou a obvody pro indikaci výstupního napětí a proudu.

Zesilovačem regulační odchylky (základní součást, určující spolu s referenčním zdrojem hlavní parametry zdroje) je monolitický diferenciální operační zesilovač MAA501, na jehož vstupech se porovnávají dvě napětí. Na neinvertující vstup se přivádí referenční napětí  $U_{ref}$ , což je určitá část (její velikost závisí na nastavení bezečce potenciometru  $P_1$ ) normálového napětí  $U_n$ , stabilizovaného Zenerovou diodou s malým teplotním součinitelem. Vzorek výstupního napěti se přivádí na invertující vstup operačního zesilovače (zpětná vazba, musí být záporná, přenos proudrodového boosteru je kladný). Má-li být regulační smyčka v rovnováze, musí být rozdíl napětí přivedených na oba vstupy nulový; tato podmínka platí v kterékoli poloze  $P_1$ . Podmínku rovnováhy můžeme využít rovnici

$$U_{\text{výst}} = U_{\text{ref}} \frac{R_1 + R_2}{R_2}, \text{ v krajním bodě}$$

$$U_{\text{výst max}} = U_n \frac{R_1 + R_2}{R_s} .$$

|                      |                                                                                            |
|----------------------|--------------------------------------------------------------------------------------------|
| napětí (sum):        | asi 2 mV.                                                                                  |
| Teplotní drift výst. |                                                                                            |
| napětí:              | asi 4 mV/°C.                                                                               |
| Osazení:             | MAA501, KF508,<br>KF517, KU607,<br>KT501, KZZ71,<br>6 × KZ724,<br>4 × KY703,<br>4 × KA501. |
| Rozměry skřínky:     | 250 × 165 × 75 mm.                                                                         |
| Váha:                | asi 4 kg.                                                                                  |



Obr. 1. Zjednodušené (funkční) schéma zapojení zdroje



součástkami [1]. Výstupní parametry zdroje jsou omezeny pouze vlastnostmi koncového regulačního prvků.

Pro pochopení principu regulace je třeba objasnit činnost proudového boosteru. Bázě  $T_1$  je napájena ze zdroje konstantního proudu. Proud ze zdroje je větší než proud, potřebný k vybuzení boosteru při maximálním požadovaném výstupním proudu. Aby však byla regulační smyčka v rovnováze, musí operační zesilovač „odsávat“ ze zdroje konstantního proudu přebytečný proud tak, aby buzení koncového tranzistoru odpovídalo nastavenému napětí a velikosti zátěže.

Zenerovy diody, zapojené v sérii s výstupem zesilovače, posunují ss úroveň a umožňují využít celého napěťového rozsahu MAA501 k regulaci.

V obvodu proudového boosteru je zapojena elektronická pojistka s tyristorem. Proud záťže se uzavírá přes  $R_{13}$ ,  $T_2$ ,  $R_z$  a  $R_{poj}$ . Úbytkem napětí na  $R_{poj}$  dochází výpustě proudu.

$$I \doteq 0.6 \text{ až } 0.7 R_{\text{mol}}$$

k sepnutí tyristoru, který zkratuje buzení  $T_2$  na zem. Důsledkem toho je okamžitý pokles výstupního napětí až téměř k nule.

### Popis zapojení

Při stavbě zdroje jsem použil dva síťové transformátory (obr. 2). Jeden napájí obvody boosteru (a tedy i záťez), druhý operační zesilovač. Zdá se, že toto původně nouzové řešení má určitou výhodu, neboť se při tomto zapojení nemínil napájecí napětí operačního zesilovače ani při velkých změnách zátěže. S vědomím značné citlivosti operačních zesilovačů MAA501 na změny napájecího napětí (hlavně nesymetrické) příkládám z hlediska stability výstupního napětí tomuto řešení velký význam [2].

Napájecí proudového boosteru se skládá z můstkového usměřovače a vyhlazovacího kondenzátoru o velké kapacitě. Přepínačem  $P_1$  je možno usměřovač připojit na odbocku sekundárního vinutí  $T_1$ , čímž výkonově odlehčíme koncový tranzistor, především při malém odporu zátěže. Napájecí napětí pro operační zesilovač se opět usměřuje můstkovým usměřovačem; vzhledem k tomu, že sekundární vinutí malého transformátoru je souměrné, získáváme napětí obojí polarity symetrické vzhledem k uzemněnému středu vinutí. K napájení operačních zesilovačů (zapojených ve složitějších sítích) se v praxi používají poměrně složité dvojitě stabilizátory, v tomto případě to však považuji za "neekonomické. Je však třeba pro stabilizaci  $+22$  V vybrat diody tak, aby bylo napájecí napětí pro MAA501 symetrické; ze stejného hlediska by měly být vybírány i diody, zapojené v sérii



Obr. 2. Zapojení sílového napáječe stabilizovaného zdroje

s výstupem zosilovače. Požadavky na diodu, stabilizující porovnávací normálové napětí jsou evidentní – volíme typ, u něhož je teplotní součinitel Zenerova napětí nejmenší [3]. Kdo má možnost diody proměnit a vybrat, může dosáhnout vynikající stability výstupního napětí při změnách teploty. Rezerva je též v možnosti kompenzovat kladný teplotní součinitel (u diod se Zenerovým napětím větším než asi 7 V) záporným teplotním součinitelem diody, zapojené v propustném směru.

Je třeba upozornit na to, že jsem u operačního zosilovače překročil maximální napájecí napětí, udávané výrobcem [2]. Je však známou skutečností, že katalogové údaje MAA501 lze ve většině případů překročit, což mohu doložit zkušenostmi z přetěžovacích zkoušek a naprostou bezporuchovým dvouletým provozem popisovaného stabilizovaného zdroje.

Zdroj konstantního proudu (tranzistor  $T_8$ ) je navržen tak, aby proud nezávisel příliš na zosilovacím činiteli použitého tranzistoru. Odpor  $R_{12}$  v kolektoru  $T_1$  omezuje proud sepnutým tyristorem na velikost, která je větší než přídřínný proud tyristoru [3], ale přitom neohroží  $T_1$ . Pojistka se vybavuje (po odstranění příčiny přetížení) přerušením proudu tyristorem rozpiacím tlačítkem. Máme-li k dispozici tlačítko spínací, zapojíme je paralelně k tyristoru. Na ochraně koncového tranzistoru se při přímých zkratech podílí též odpor v jeho kolektoru, který omezí proudovou špičku, vznikající jako reakce stabilizátoru na zkrat dříve, než pojistka zdroj vypne.

Důležitým prvkem stabilizovaného zdroje je potenciometr  $P_1$  k nastavení výstupního napětí. Nejvhodnějším typem by byl např. potenciometr Aripot (možnost jemného nastavení, stabilita), v nouz však vyhoví i běžné typy potenciometrů.

Stabilní celé zpětnovazební smyčky zajišťují standardní kompenzační prvky operačního zosilovače [2] spolu s kondenzátory  $C_1$  a  $C_2$ .

Měřidlem proudu je miliampérmetr se základním rozsahem 60 mA. K přepínání rozsahů používám speciální páčkový přepínač; při střední (neutrální) poloze přepínače má měřidlo základní rozsah, v krajních polohách jsou rozsahy 300 mA a 1,5 A. Zároveň s am-



Obr. 3. Zapojení stabilizovaného zdroje

pérmetrem se přepínají různé pojistky, která vypíná vždy, když je ručka měřidla mýrně „za rohem“ (zdroj se vypne při odběru 0,08; 0,35 a 2 A). Zároveň neuvádím odpor bočníků ampérmetru a pojistky, neboť ty závisí na použitém měřidle a odstupňování vypínačů proudů pojistky. Při použití otočného přepínače lze použít pojistku s větším počtem jemněji odstupňovaných rozsahů.

Voltmetr měří výstupní napětí v jednom rozsahu. Praxe mi potvrdila, že investice do dvou měřidel je výhodná, neboť současná kontrola napětí i proudu poskytuje pohotovou a přehlednou informaci o poměrech v napájeném zařízení. Jinou možností je použít desetiottákový potenciometr Aripot ( $P_1$ ) a určovat výstupní napětí vhodnou stupnicí pod knoflíkem potenciometru.

### Součástky

Všechny součástky jsou dostupné ve specializovaných prodejnách Tesla nebo Domácí potřeby. Ve vzorku přístroje byly sice použity některé drobné součástky zahraničního původu (především k „vylepšení“ vzhledu) – zdůrazňují však, že je lze ve všech případech nahradit součástkami tuzemskými, aniž by došlo ke zhoršení vlastností přístroje.

Závěrem je nutná ještě zmínka o odporech  $R_1$  a  $R_2$  – je třeba použít dostatečně stabilní typy, které svými vlastnostmi nezpůsobí zhoršení parametrů zdroje. Vhodné jsou např. odpory řady TR 161 až 164, které mají zaručený malý teplotní součinitel [4]. Odpory lze případně i navinout drátem z kvalitního odporového materiálu, např. z manganičního drátu.

### Mechanická konstrukce

Mechanické provedení popisovaných přístrojů vždy do značné míry závisí na možnostech toho či kterého konstruktéra. Přesto nabízím čtenáři možnost napodobení, protože jsem se snažil, aby mechanických dílů bylo co nejméně a aby byly zhotovitelné s minimálním vybavením. Konstrukce a způsob montáže jsou patrné z fotografií. Na dno skřínky (na jeho vzhledu zahnuté okraje) se přišroubují panely (přední a zadní). Nahoře jsou panely rozepřeny distančními tyčinkami, což přispívá ke značné pevnosti a tuhosti konstrukce. Na předním panelu jsou měřidla, ovládací prvky a zdvojené výstupní zdírky, na zadním panelu je z vnějšku přišroubováno



a)



b)

Obr. 4. Hotový zdroj bez krytu (a), pohled shora (b)-

ván hliníkový chladič koncového tranzistoru, který je chemicky načerněn [5]. Na dno skřínky je upevněn kondenzátor 5 000  $\mu$ F, oba transformátory a deska s plošnými spoji.

Nepovažuji za účelné uvádět podrobné výkresy mechanických dílů, protože jejich rozměry jsou závislé na velikosti použitých transformátorů a všech prvků, umístěných na čelním panelu. Hotový zdroj je na obr. 4a, b.

### Stavba a oživení

Pozornou prací při stavbě splníme základní předpoklad k úspěchu. Kromě předběžné kontroly jakosti součástek doporučuji před zapojením tranzistorů proměnit napájecí napětí. Operační zosilovač zapojíme do obvodu až naposledy (nejlépe do objímky). Po propojení všech obvodů přístroje a kontrole zapojení přikročíme ke zkouškám. Počítáme s tím, že se při zapnutí zdroje musí nabít kondenzátor  $C_{11}$  připojený paralelně k výstupu, což má za následek „vypadnutí“ pojistky. Je tedy nutné po zapnutí zdroje nastartovat příslušným tlačítkem. Kdo vyžaduje rychlejší funkci pojistky, může  $C_{11}$  zmenšit, nebo jej připojit přes další páčkový přepínač, umožňující jeho odpojování v případě potřeby. Proměřením para-

| Typ    | Druh | Použití | $U_{CE}$ [V] | $I_C$ [mA] | $h_{21E}$<br>$h_{31E}^*$ | $f_T$<br>$f_{x*}$ [MHz] | $T_a$<br>$T_c$ [°C] | $P_{tot}$<br>$P_{C*}$<br>max [mW] | $U_{CB}$<br>max [V] | $U_{CE}$<br>max [V] | $I_C$<br>max [mA] | $T_j$ max [°C]<br><sup>1</sup> | Pouzdro | Výrobce | Patice | Náhrada<br>TESLA | Rozdíly |       |       |          | Spín. Vl. |
|--------|------|---------|--------------|------------|--------------------------|-------------------------|---------------------|-----------------------------------|---------------------|---------------------|-------------------|--------------------------------|---------|---------|--------|------------------|---------|-------|-------|----------|-----------|
|        |      |         |              |            |                          |                         |                     |                                   |                     |                     |                   |                                |         |         |        |                  | $P_C$   | $U_C$ | $f_T$ | $h_{21}$ |           |
| PG1341 | SPn  | VF, NFv | 5 A          | 40—120     | 60                       | 100c                    | 40 W                | 70                                | 50                  | 10 A                | 200               | TO-61                          | Pir     | 2       | KU606  | =                | =       | >     | <     | /\       |           |
| PG1342 | SPn  | VF, NFv | 5 A          | 40—120     | 60                       | 100c                    | 40 W                | 80                                | 70                  | 10 A                | 200               | TO-61                          | Pir     | 2       | KU606  | =                | =       | >     | <     | /\       |           |
| PG1343 | SPn  | VF, NFv | 5 A          | 40—120     | 60                       | 100c                    | 40 W                | 120                               | 100                 | 10 A                | 200               | TO-61                          | Pir     | 2       | KU606  | =                | =       | =     | =     | /\       |           |
| PG1344 | SPn  | VF, NFv | 5 A          | 100—300    | 60                       | 100c                    | 40 W                | 70                                | 50                  | 10 A                | 200               | TO-61                          | Pir     | 2       | —      | —                | —       | —     | —     |          |           |
| PG1345 | SPn  | VF, NFv | 5 A          | 100—300    | 60                       | 100c                    | 40 W                | 80                                | 70                  | 10 A                | 200               | TO-61                          | Pir     | 2       | —      | —                | —       | —     | —     |          |           |
| PG1346 | SPn  | VF, NFv | 5 A          | 100—300    | 60                       | 100c                    | 40 W                | 120                               | 100                 | 10 A                | 200               | TO-61                          | Pir     | 2       | —      | —                | —       | —     | —     |          |           |
| PG1346 | SPn  | VF, NFv | 5 A          | 20—60      | 60                       | 100c                    | 40 W                | 80                                | 50                  | 10 A                | 200               | TO-61                          | Pir     | 2       | KU606  | =                | =       | =     | =     | =        |           |
| PG1361 | SPn  | VF, NFv | 5 A          | 40—120     | 60                       | 100c                    | 40 W                | 80                                | 50                  | 10 A                | 200               | TO-61                          | Pir     | 2       | KU606  | =                | =       | =     | =     | =        |           |
| PG1362 | SPn  | VF, NFv | 5 A          | 20—60      | 60                       | 100c                    | 40 W                | 120                               | 70                  | 10 A                | 200               | TO-61                          | Pir     | 2       | KU606  | =                | =       | =     | =     | =        |           |
| PG1363 | SPn  | VF, NFv | 5 A          | 40—120     | 60                       | 100c                    | 40 W                | 120                               | 70                  | 10 A                | 200               | TO-61                          | Pir     | 2       | KU606  | =                | =       | =     | =     | =        |           |
| PG1364 | SPn  | VF, NFv | 5 A          | 20—60      | 60                       | 100c                    | 40 W                | 120                               | 100                 | 10 A                | 200               | TO-61                          | Pir     | 2       | KU606  | =                | =       | =     | =     | =        |           |
| PG1365 | SPn  | VF, NFv | 5 A          | 40—120     | 60                       | 100c                    | 40 W                | 120                               | 100                 | 10 A                | 200               | TO-61                          | Pir     | 2       | KU606  | =                | =       | =     | =     | =        |           |
| PG1366 | SPn  | VF, NFv | 5 A          | 100—300    | 60                       | 100c                    | 40 W                | 120                               | 100                 | 10 A                | 200               | TO-61                          | Pir     | 2       | —      | —                | —       | —     | —     |          |           |
| PG1367 | SPn  | VF, NFv | 5 A          | 20—60      | 60                       | 100c                    | 40 W                | 70                                | 50                  | 200                 | TO-61             | Pir                            | 2       | KU606   | =      | =                | =       | =     | =     |          |           |
| PG1368 | SPn  | VF, NFv | 5 A          | 20—60      | 60                       | 100c                    | 40 W                | 80                                | 70                  | 200                 | TO-61             | Pir                            | 2       | KU606   | =      | =                | =       | =     | =     |          |           |
| PG1369 | SPn  | VF, NFv | 5 A          | 20—60      | 60                       | 100c                    | 40 W                | 120                               | 100                 | 200                 | TO-61             | Pir                            | 2       | KU606   | =      | =                | =       | =     | =     |          |           |
| PG1370 | SPn  | VF, NFv | 5 A          | 40—120     | 60                       | 100c                    | 40 W                | 70                                | 50                  | 200                 | TO-61             | Pir                            | 2       | KU606   | =      | =                | =       | =     | =     |          |           |
| PG1371 | SPn  | VF, NFv | 5 A          | 40—120     | 60                       | 100c                    | 40 W                | 80                                | 70                  | 200                 | TO-61             | Pir                            | 2       | KU606   | =      | =                | =       | =     | =     |          |           |
| PG1372 | SPn  | VF, NFv | 5 A          | 40—120     | 60                       | 100c                    | 40 W                | 120                               | 100                 | 200                 | TO-61             | Pir                            | 2       | KU606   | =      | =                | =       | =     | =     |          |           |
| PG1373 | SPn  | VF, NFv | 5 A          | 100—300    | 60                       | 100c                    | 40 W                | 70                                | 50                  | 200                 | TO-61             | Pir                            | 2       | —       | —      | —                | —       | —     |       |          |           |
| PG1374 | SPn  | VF, NFv | 5 A          | 100—300    | 60                       | 100c                    | 40 W                | 80                                | 70                  | 200                 | TO-61             | Pir                            | 2       | —       | —      | —                | —       | —     |       |          |           |
| PG1375 | SPn  | VF, NFv | 5 A          | 100—300    | 60                       | 100c                    | 40 W                | 120                               | 100                 | 200                 | TO-61             | Pir                            | 2       | —       | —      | —                | —       | —     |       |          |           |
| PG1380 | SPn  | VF, NFv | 5 A          | 20—60      | 60                       | 100c                    | 65 W                | 80                                | 50                  | 10 A                | 200               | TO-3                           | Pir     | 31      | KU606  | <                | <       | <     | <     | <        |           |
| PG1381 | SPn  | VF, NFv | 5 A          | 40—120     | 60                       | 100c                    | 65 W                | 80                                | 50                  | 10 A                | 200               | TO-3                           | Pir     | 31      | KU606  | <                | <       | <     | <     | <        |           |
| PG1382 | SPn  | VF, NFv | 5 A          | 20—60      | 60                       | 100c                    | 65 W                | 120                               | 70                  | 10 A                | 200               | TO-3                           | Pir     | 31      | KU606  | <                | <       | <     | <     | <        |           |
| PG1383 | SPn  | VF, NFv | 5 A          | 40—120     | 60                       | 100c                    | 65 W                | 120                               | 70                  | 10 A                | 200               | TO-3                           | Pir     | 31      | KU606  | <                | <       | <     | <     | <        |           |
| PG1384 | SPn  | VF, NFv | 5 A          | 20—60      | 60                       | 100c                    | 65 W                | 120                               | 100                 | 10 A                | 200               | TO-3                           | Pir     | 31      | KU606  | <                | <       | <     | <     | <        |           |
| PG1385 | SPn  | VF, NFv | 5 A          | 40—120     | 60                       | 100c                    | 65 W                | 120                               | 100                 | 10 A                | 200               | TO-3                           | Pir     | 31      | KU606  | <                | <       | <     | <     | <        |           |
| PG1386 | SPn  | VF, NFv | 5 A          | 100—300    | 60                       | 100c                    | 65 W                | 120                               | 100                 | 10 A                | 200               | TO-3                           | Pir     | 31      | —      | —                | —       | —     | —     |          |           |
| PG1387 | SPn  | VF, NFv | 5 A          | 20—60      | 60                       | 100c                    | 65 W                | 70                                | 50                  | 10 A                | 200               | TO-3                           | Pir     | 31      | KU606  | <                | <       | <     | <     | <        |           |
| PG1388 | SPn  | VF, NFv | 5 A          | 20—60      | 60                       | 100c                    | 65 W                | 80                                | 70                  | 10 A                | 200               | TO-3                           | Pir     | 31      | KU606  | <                | <       | <     | <     | <        |           |
| PG1389 | SPn  | VF, NFv | 5 A          | 20—60      | 60                       | 100c                    | 65 W                | 120                               | 100                 | 10 A                | 200               | TO-3                           | Pir     | 31      | KU606  | <                | <       | <     | <     | <        |           |
| PG1390 | SPn  | VF, NFv | 5 A          | 40—120     | 60                       | 100c                    | 65 W                | 70                                | 50                  | 10 A                | 200               | TO-3                           | Pir     | 31      | KU606  | <                | <       | <     | <     | <        |           |
| PG1391 | SPn  | VF, NFv | 5 A          | 40—120     | 60                       | 100c                    | 65 W                | 80                                | 70                  | 10 A                | 200               | TO-3                           | Pir     | 31      | KU606  | <                | <       | <     | <     | <        |           |
| PG1392 | SPn  | VF, NFv | 5 A          | 40—120     | 60                       | 100c                    | 65 W                | 120                               | 100                 | 10 A                | 200               | TO-3                           | Pir     | 31      | KU606  | <                | <       | <     | <     | <        |           |
| PG1393 | SPn  | VF, NFv | 5 A          | 100—300    | 60                       | 100c                    | 65 W                | 70                                | 50                  | 10 A                | 200               | TO-3                           | Pir     | 31      | —      | —                | —       | —     | —     |          |           |
| PG1394 | SPn  | VF, NFv | 5 A          | 100—300    | 60                       | 100c                    | 65 W                | 80                                | 70                  | 10 A                | 200               | TO-3                           | Pir     | 31      | —      | —                | —       | —     | —     |          |           |
| PG1395 | SPn  | VF, NFv | 5 A          | 100—300    | 60                       | 100c                    | 65 W                | 120                               | 100                 | 10 A                | 200               | TO-3                           | 3ir     | 21      | —      | —                | —       | —     | —     |          |           |
| PG1400 | SPn  | VF, NFv | 10 A         | 40—120     | 40                       | 100c                    | 65 W                | 60                                | 30                  | 20 A                | 200               | TO-61                          | Pir     | 2       | —      | —                | —       | —     | —     |          |           |
| PG1401 | SPn  | VF, NFv | 10 A         | 40—120     | 40                       | 100c                    | 65 W                | 80                                | 50                  | 20 A                | 200               | TO-61                          | Pir     | 2       | —      | —                | —       | —     | —     |          |           |
| PG1402 | SPn  | VF, NFv | 10 A         | 40—120     | 40                       | 100c                    | 65 W                | 100                               | 70                  | 20 A                | 200               | TO-61                          | Pir     | 2       | —      | —                | —       | —     | —     |          |           |
| PG1403 | SPn  | VF, NFv | 10 A         | 40—120     | 40                       | 100c                    | 65 W                | 100                               | 90                  | 20 A                | 200               | TO-61                          | Pir     | 2       | —      | —                | —       | —     | —     |          |           |
| PG1404 | SPn  | VF, NFv | 10 A         | 20—60      | 40                       | 100c                    | 65 W                | 60                                | 30                  | 20 A                | 200               | TO-61                          | Pir     | 2       | —      | —                | —       | —     | —     |          |           |
| PG1405 | SPn  | VF, NFv | 10 A         | 20—60      | 40                       | 100c                    | 65 W                | 80                                | 50                  | 20 A                | 200               | TO-61                          | Pir     | 2       | —      | —                | —       | —     | —     |          |           |
| PG1406 | SPn  | VF, NFv | 10 A         | 20—60      | 40                       | 100c                    | 65 W                | 100                               | 70                  | 20 A                | 200               | TO-61                          | Pir     | 2       | —      | —                | —       | —     | —     |          |           |
| PG1407 | SPn  | VF, NFv | 10 A         | 20—60      | 40                       | 100c                    | 65 W                | 100                               | 90                  | 20 A                | 200               | TO-61                          | Pir     | 2       | —      | —                | —       | —     | —     |          |           |
| PG1408 | SPn  | VF, NFv | 10 A         | 100—300    | 40                       | 100c                    | 65 W                | 60                                | 30                  | 20 A                | 200               | TO-61                          | Pir     | 2       | —      | —                | —       | —     | —     |          |           |
| PG1409 | SPn  | VF, NFv | 10 A         | 100—300    | 40                       | 100c                    | 65 W                | 80                                | 50                  | 20 A                | 200               | TO-61                          | Pir     | 2       | —      | —                | —       | —     | —     |          |           |
| PG1410 | SPn  | VF, NFv | 10 A         | 100—300    | 40                       | 100c                    | 65 W                | 100                               | 70                  | 20 A                | 200               | TO-61                          | Pir     | 2       | —      | —                | —       | —     | —     |          |           |
| PG1411 | SPn  | VF, NFv | 10 A         | 100—300    | 40                       | 100c                    | 65 W                | 100                               | 90                  | 20 A                | 200               | TO-61                          | Pir     | 2       | —      | —                | —       | —     | —     |          |           |
| PG1412 | SPn  | VF, NFv | 10 A         | 20—60      | 40                       | 100c                    | 65 W                | 60                                | 30                  | 20 A                | 200               | TO-61                          | Pir     | 2       | —      | —                | —       | —     | —     |          |           |
| PG1413 | SPn  | VF, NFv | 10 A         | 20—60      | 40                       | 100c                    | 65 W                | 80                                | 50                  | 20 A                | 200               | TO-61                          | Pir     | 2       | —      | —                | —       | —     | —     |          |           |
| PG1414 | SPn  | VF, NFv | 10 A         | 20—60      | 40                       | 100c                    | 65 W                | 100                               | 70                  | 20 A                | 200               | TO-61                          | Pir     | 2       | —      | —                | —       | —     | —     |          |           |
| PG1415 | SPn  | VF, NFv | 10 A         | 20—60      | 40                       | 100c                    | 65 W                | 100                               | 90                  | 20 A                | 200               | TO-61                          | Pir     | 2       | —      | —                | —       | —     | —     |          |           |
| PG1416 | SPn  | VF, NFv | 10 A         | 40—120     | 40                       | 100c                    | 65 W                | 60                                | 30                  | 20 A                | 200               | TO-61                          | Pir     | 2       | —      | —                | —       | —     | —     |          |           |
| PG1417 | SPn  | VF, NFv | 10 A         | 40—120     | 40                       | 100c                    | 65 W                | 80                                | 50                  | 20 A                | 200               | TO-61                          | Pir     | 2       | —      | —                | —       | —     | —     |          |           |
| PG1418 | SPn  | VF, NFv | 10 A         | 40—120     | 40                       | 100c                    | 65 W                | 100                               | 70                  | 20 A                | 200               | TO-61                          | Pir     | 2       | —      | —                | —       | —     | —     |          |           |
| PG1419 | SPn  | VF, NFv | 10 A         | 40—120     | 40                       | 100c                    | 65 W                | 100                               | 90                  | 200                 | TO-61             | Pir                            | 2       | —       | —      | —                | —       | —     |       |          |           |
| PG1420 | SPn  | VF, NFv | 10 A         | 100—300    | 40                       | 100c                    | 65 W                | 60                                | 30                  | 200                 | TO-61             | Pir                            | 2       | —       | —      | —                | —       | —     |       |          |           |
| PG1421 | SPn  | VF, NFv | 10 A         | 100—300    | 40                       | 100c                    | 65 W                | 80                                | 50                  | 200                 | TO-61             | Pir                            | 2       | —       | —      | —                | —       | —     |       |          |           |
| PG1422 | SPn  | VF, NFv | 10 A         | 100—300    | 40                       | 100c                    | 65 W                | 100                               | 70                  | 200                 | TO-61             | Pir                            | 2       | —       | —      | —                | —       | —     |       |          |           |
| PG1423 | SPn  | VF, NFv | 10 A         | 100—300    | 40                       | 100c                    | 65 W                | 100                               | 90                  | 200                 | TO-61             | Pir                            | 2       | —       | —      | —                | —       | —     |       |          |           |

| Typ    | Druh | Použití | $U_{CE}$ [V] | $I_C$ [mA] | $h_{21E}$<br>$h_{21e}^*$ | $f_T$<br>$f_{\alpha^*}$ [MHz] | $T_a$<br>$T_c$ [°C] | $P_{tot}$<br>$P_{C^*}$ max [mW] | $U_{CB}$ max [V] | $U_{CB}$ max [V] | $I_C$ max [mA] | $T_J$ max [°C] | Pouzdro | Výrobce | Patice | Náhrada TESLA | Rozdíly |       |       |          |                     |     |
|--------|------|---------|--------------|------------|--------------------------|-------------------------------|---------------------|---------------------------------|------------------|------------------|----------------|----------------|---------|---------|--------|---------------|---------|-------|-------|----------|---------------------|-----|
|        |      |         |              |            |                          |                               |                     |                                 |                  |                  |                |                |         |         |        |               | $P_C$   | $U_C$ | $f_T$ | $h_{21}$ | $Sj\ln. \text{vl.}$ | $F$ |
| PG1433 | SPn  | NF, VFv |              | 10 A       | 40—120                   | 40                            | 100c                | 65 W                            | 100              | 90               | 20 A           | 200            | TO-61   | Pir     | 2      | —             | —       | —     | —     | —        | —                   | —   |
| PG1434 | SPn  | NF, VFv |              | 10 A       | 20—60                    | 40                            | 100c                | 65 W                            | 60               | 30               | 20 A           | 200            | TO-61   | Pir     | 2      | —             | —       | —     | —     | —        | —                   | —   |
| PG1435 | SPn  | NF, VFv |              | 10 A       | 20—60                    | 40                            | 100c                | 65 W                            | 80               | 50               | 20 A           | 200            | TO-61   | Pir     | 2      | —             | —       | —     | —     | —        | —                   | —   |
| PG1436 | SPn  | NF, VFv |              | 10 A       | 20—60                    | 40                            | 100c                | 65 W                            | 100              | 70               | 20 A           | 200            | TO-61   | Pir     | 2      | —             | —       | —     | —     | —        | —                   | —   |
| PG1437 | SPn  | NF, VFv |              | 10 A       | 20—60                    | 40                            | 100c                | 65 W                            | 100              | 90               | 20 A           | 200            | TO-61   | Pir     | 2      | —             | —       | —     | —     | —        | —                   | —   |
| PG1438 | SPn  | NF, VFv |              | 10 A       | 100—300                  | 40                            | 100c                | 65 W                            | 60               | 30               | 20 A           | 200            | TO-61   | Pir     | 2      | —             | —       | —     | —     | —        | —                   | —   |
| PG1439 | SPn  | NF, VFv |              | 10 A       | 100—300                  | 40                            | 100c                | 65 W                            | 80               | 50               | 20 A           | 200            | TO-61   | Pir     | 2      | —             | —       | —     | —     | —        | —                   | —   |
| PG1440 | SPn  | NF, VFv |              | 10 A       | 100—300                  | 40                            | 100c                | 65 W                            | 100              | 70               | 20 A           | 200            | TO-61   | Pir     | 2      | —             | —       | —     | —     | —        | —                   | —   |
| PG1441 | SPn  | NF, VFv |              | 10 A       | 100—300                  | 40                            | 100c                | 65 W                            | 100              | 90               | 20 A           | 200            | TO-61   | Pir     | 2      | —             | —       | —     | —     | —        | —                   | —   |
| PG1442 | SPn  | VF, NFv |              | 10 A       | 20—60                    | 40                            | 100c                | 65 W                            | 60               | 30               | 20 A           | 200            | TO-61   | Pir     | 2      | —             | —       | —     | —     | —        | —                   | —   |
| PG1443 | SPn  | VF, NFv |              | 10 A       | 20—60                    | 40                            | 100c                | 65 W                            | 80               | 50               | 20 A           | 200            | TO-61   | Pir     | 2      | —             | —       | —     | —     | —        | —                   | —   |
| PG1444 | SPn  | VF, NFv |              | 10 A       | 20—60                    | 40                            | 100c                | 65 W                            | 100              | 70               | 20 A           | 200            | TO-61   | Pir     | 2      | —             | —       | —     | —     | —        | —                   | —   |
| PG1445 | SPn  | VF, NFv |              | 10 A       | 20—60                    | 40                            | 100c                | 65 W                            | 100              | 90               | 20 A           | 200            | TO-61   | Pir     | 2      | —             | —       | —     | —     | —        | —                   | —   |
| PG1446 | SPn  | VF, NFv |              | 10 A       | 40—120                   | 40                            | 100c                | 65 W                            | 60               | 30               | 20 A           | 200            | TO-61   | Pir     | 2      | —             | —       | —     | —     | —        | —                   | —   |
| PG1447 | SPn  | VF, NFv |              | 10 A       | 40—120                   | 40                            | 100c                | 65 W                            | 80               | 50               | 20 A           | 200            | TO-61   | Pir     | 2      | —             | —       | —     | —     | —        | —                   | —   |
| PG1448 | SPn  | VF, NFv |              | 10 A       | 40—120                   | 40                            | 100c                | 65 W                            | 100              | 70               | 20 A           | 200            | TO-61   | Pir     | 2      | —             | —       | —     | —     | —        | —                   | —   |
| PG1449 | SPn  | VF, NFv |              | 10 A       | 40—120                   | 40                            | 100c                | 65 W                            | 100              | 90               | 20 A           | 200            | TO-61   | Pir     | 2      | —             | —       | —     | —     | —        | —                   | —   |
| PG1450 | SPn  | VF, NFv |              | 10 A       | 100—300                  | 40                            | 100c                | 65 W                            | 60               | 30               | 20 A           | 200            | TO-61   | Pir     | 2      | —             | —       | —     | —     | —        | —                   | —   |
| PG1451 | SPn  | VF, NFv |              | 10 A       | 100—300                  | 40                            | 100c                | 65 W                            | 80               | 50               | 20 A           | 200            | TO-61   | Pir     | 2      | —             | —       | —     | —     | —        | —                   | —   |
| PG1452 | SPn  | VF, NFv |              | 10 A       | 100—300                  | 40                            | 100c                | 65 W                            | 100              | 70               | 20 A           | 200            | TO-61   | Pir     | 2      | —             | —       | —     | —     | —        | —                   | —   |
| PG1453 | SPn  | VF, NFv |              | 10 A       | 100—300                  | 40                            | 100c                | 65 W                            | 100              | 90               | 20 A           | 200            | TO-61   | Pir     | 2      | —             | —       | —     | —     | —        | —                   | —   |
| PG1465 | SPn  | VF, NFv |              | 10 A       | 40—120                   | 40                            | 100c                | 100 W                           | 100              | 90               | 20 A           | 200            | TO-63   | Pir     | 2      | —             | —       | —     | —     | —        | —                   | —   |
| PG1466 | SPn  | VF, NFv |              | 10 A       | 20—60                    | 40                            | 100c                | 100 W                           | 60               | 30               | 20 A           | 200            | TO-63   | Pir     | 2      | —             | —       | —     | —     | —        | —                   | —   |
| PG1467 | SPn  | VF, NFv |              | 10 A       | 20—60                    | 40                            | 100c                | 100 W                           | 80               | 50               | 20 A           | 200            | TO-63   | Pir     | 2      | —             | —       | —     | —     | —        | —                   | —   |
| PG1468 | SPn  | VF, NFv |              | 10 A       | 20—60                    | 40                            | 100c                | 100 W                           | 100              | 70               | 20 A           | 200            | TO-63   | Pir     | 2      | —             | —       | —     | —     | —        | —                   | —   |
| PG1469 | SPn  | VF, NFv |              | 10 A       | 20—60                    | 40                            | 100c                | 100 W                           | 100              | 90               | 20 A           | 200            | TO-63   | Pir     | 2      | —             | —       | —     | —     | —        | —                   | —   |
| PG1470 | SPn  | VF, NFv |              | 10 A       | 100—300                  | 40                            | 100c                | 100 W                           | 60               | 30               | 20 A           | 200            | TO-63   | Pir     | 2      | —             | —       | —     | —     | —        | —                   | —   |
| PG1471 | SPn  | VF, NFv |              | 10 A       | 100—300                  | 40                            | 100c                | 100 W                           | 80               | 50               | 20 A           | 200            | TO-63   | Pir     | 2      | —             | —       | —     | —     | —        | —                   | —   |
| PG1472 | SPn  | VF, NFv |              | 10 A       | 100—300                  | 40                            | 100c                | 100 W                           | 100              | 70               | 20 A           | 200            | TO-63   | Pir     | 2      | —             | —       | —     | —     | —        | —                   | —   |
| PG1473 | SPn  | VF, NFv |              | 10 A       | 100—300                  | 40                            | 100c                | 100 W                           | 100              | 90               | 20 A           | 200            | TO-63   | Pir     | 2      | —             | —       | —     | —     | —        | —                   | —   |
| PG1474 | SPn  | VF, NFv |              | 10 A       | 20—60                    | 40                            | 100c                | 100 W                           | 60               | 30               | 20 A           | 200            | TO-63   | Pir     | 2      | —             | —       | —     | —     | —        | —                   | —   |
| PG1475 | SPn  | VF, NFv |              | 10 A       | 20—60                    | 40                            | 100c                | 100 W                           | 80               | 50               | 20 A           | 200            | TO-63   | Pir     | 2      | —             | —       | —     | —     | —        | —                   | —   |
| PG1476 | SPn  | VF, NFv |              | 10 A       | 20—60                    | 40                            | 100c                | 100 W                           | 100              | 70               | 20 A           | 200            | TO-63   | Pir     | 2      | —             | —       | —     | —     | —        | —                   | —   |
| PG1477 | SPn  | VF, NFv |              | 10 A       | 20—60                    | 40                            | 100c                | 100 W                           | 100              | 90               | 20 A           | 200            | TO-63   | Pir     | 2      | —             | —       | —     | —     | —        | —                   | —   |
| PG1478 | SPn  | VF, NFv |              | 10 A       | 40—120                   | 40                            | 100c                | 100 W                           | 60               | 30               | 20 A           | 200            | TO-63   | Pir     | 2      | —             | —       | —     | —     | —        | —                   | —   |
| PG1479 | SPn  | VF, NFv |              | 10 A       | 40—120                   | 40                            | 100c                | 100 W                           | 80               | 50               | 20 A           | 200            | TO-63   | Pir     | 2      | —             | —       | —     | —     | —        | —                   | —   |
| PG1480 | SPn  | VF, NFv |              | 10 A       | 40—120                   | 40                            | 100c                | 100 W                           | 100              | 70               | 20 A           | 200            | TO-63   | Pir     | 2      | —             | —       | —     | —     | —        | —                   | —   |
| PG1481 | SPn  | VF, NFv |              | 10 A       | 40—120                   | 40                            | 100c                | 100 W                           | 100              | 90               | 20 A           | 200            | TO-63   | Pir     | 2      | —             | —       | —     | —     | —        | —                   | —   |
| PG1482 | SPn  | VF, NFv |              | 10 A       | 100—300                  | 40                            | 100c                | 100 W                           | 60               | 30               | 20 A           | 200            | TO-63   | Pir     | 2      | —             | —       | —     | —     | —        | —                   | —   |
| PG1483 | SPn  | VF, NFv |              | 10 A       | 100—300                  | 40                            | 100c                | 100 W                           | 80               | 50               | 20 A           | 200            | TO-63   | Pir     | 2      | —             | —       | —     | —     | —        | —                   | —   |
| PG1484 | SPn  | VF, NFv |              | 10 A       | 100—300                  | 40                            | 100c                | 100 W                           | 100              | 70               | 20 A           | 200            | TO-63   | Pir     | 2      | —             | —       | —     | —     | —        | —                   | —   |
| PG1485 | SPn  | VF, NFv |              | 10 A       | 100—300                  | 40                            | 100c                | 100 W                           | 100              | 90               | 20 A           | 200            | TO-63   | Pir     | 2      | —             | —       | —     | —     | —        | —                   | —   |
| PG1500 | SPn  | VF, NFv |              | 10 A       | 40—120                   | 40                            | 100c                | 100 W                           | 60               | 30               | 20 A           | 200            | TO-3    | Pir     | 31     | —             | —       | —     | —     | —        | —                   | —   |
| PG1501 | SPn  | VF, NFv |              | 10 A       | 40—120                   | 40                            | 100c                | 100 W                           | 80               | 50               | 20 A           | 200            | TO-3    | Pir     | 31     | —             | —       | —     | —     | —        | —                   | —   |
| PG1502 | SPn  | VF, NFv |              | 10 A       | 40—120                   | 40                            | 100c                | 100 W                           | 100              | 70               | 20 A           | 200            | TO-3    | Pir     | 31     | —             | —       | —     | —     | —        | —                   | —   |
| PG1503 | SPn  | VF, NFv |              | 10 A       | 40—120                   | 40                            | 100c                | 100 W                           | 100              | 90               | 20 A           | 200            | TO-3    | Pir     | 31     | —             | —       | —     | —     | —        | —                   | —   |
| PG1504 | SPn  | VF, NFv |              | 10 A       | 20—60                    | 40                            | 100c                | 100 W                           | 60               | 30               | 20 A           | 200            | TO-3    | Pir     | 31     | —             | —       | —     | —     | —        | —                   | —   |
| PG1505 | SPn  | VF, NFv |              | 10 A       | 20—60                    | 40                            | 100c                | 100 W                           | 80               | 50               | 20 A           | 200            | TO-3    | Pir     | 31     | —             | —       | —     | —     | —        | —                   | —   |
| PG1506 | SPn  | VF, NFv |              | 10 A       | 20—60                    | 40                            | 100c                | 100 W                           | 100              | 70               | 20 A           | 200            | TO-3    | Pir     | 31     | —             | —       | —     | —     | —        | —                   | —   |
| PG1507 | SPn  | VF, NFv |              | 10 A       | 20—60                    | 40                            | 100c                | 100 W                           | 100              | 90               | 20 A           | 200            | TO-3    | Pir     | 31     | —             | —       | —     | —     | —        | —                   | —   |
| PG1508 | SPn  | VF, NFv |              | 10 A       | 100—300                  | 40                            | 100c                | 100 W                           | 60               | 30               | 20 A           | 200            | TO-3    | Pir     | 31     | —             | —       | —     | —     | —        | —                   | —   |
| PG1509 | SPn  | VF, NFv |              | 10 A       | 100—300                  | 40                            | 100c                | 100 W                           | 80               | 50               | 20 A           | 200            | TO-3    | Pir     | 31     | —             | —       | —     | —     | —        | —                   | —   |
| PG1510 | SPn  | VF, NFv |              | 10 A       | 100—300                  | 40                            | 100c                | 100 W                           | 100              | 70               | 20 A           | 200            | TO-3    | Pir     | 31     | —             | —       | —     | —     | —        | —                   | —   |
| PG1511 | SPn  | VF, NFv |              | 10 A       | 100—300                  | 40                            | 100c                | 100 W                           | 100              | 90               | 20 A           | 200            | TO-3    | Pir     | 31     | —             | —       | —     | —     | —        | —                   | —   |
| PG1512 | SPn  | VF, NFv |              | 10 A       | 20—60                    | 40                            | 100c                | 100 W                           | 60               | 30               | 20 A           | 200            | TO-3    | Pir     | 31     | —             | —       | —     | —     | —        | —                   | —   |
| PG1513 | SPn  | VF, NFv |              | 10 A       | 20—60                    | 40                            | 100c                | 100 W                           | 80               | 50               | 20 A           | 200            | TO-3    | Pir     | 31     | —             | —       | —     | —     | —        | —                   | —   |
| PG1514 | SPn  | VF, NFv |              | 10 A       | 20—60                    | 40                            | 100c                | 100 W                           | 100              | 70               | 20 A           | 200            | TO-3    | Pir     | 31     | —             | —       | —     | —     | —        | —                   | —   |
| PG1515 | SPn  | VF, NFv |              | 10 A       | 20—60                    | 40                            | 100c                | 100 W                           | 100              | 90               | 20 A           | 200            | TO-3    | Pir     | 31     |               |         |       |       |          |                     |     |

| Typ    | Druh | Použití | $U_{CE}$ [V] | $I_C$ [mA] | $\frac{h_{21E}}{h_{21e^*}}$ | $f_T$ [MHz] | $\frac{f_{\alpha^*}}{f_{\alpha}}$ [MHz] | $T_a$ [°C] | $P_{tot}$ max [mW] | $U_{CE}$ max [V] | $U_{CE}$ max [V] | $I_C$ max [mA] | $T_J$ max [°C] | Pouzdro | Výrobce | Patice | Náhrada TESLA | Rozdíly |       |       |          |              |
|--------|------|---------|--------------|------------|-----------------------------|-------------|-----------------------------------------|------------|--------------------|------------------|------------------|----------------|----------------|---------|---------|--------|---------------|---------|-------|-------|----------|--------------|
|        |      |         |              |            |                             |             |                                         |            |                    |                  |                  |                |                |         |         |        |               | $P_C$   | $U_C$ | $f_T$ | $h_{21}$ | $S_{pin, V}$ |
| PG1523 | SPn  | VF, NFv |              | 10 A       | 100—300                     | 40          | 100c                                    | 100 W      | 100                | 90               | 20 A             | 200            | TO-3           | Pir     | 31      |        |               |         |       |       |          |              |
| PG1530 | SPn  | VF, NFv |              | 50 A       | >5                          | 10          | 100c                                    | 200 W      | 100                | 80               | 50 A             | 200            | TO-114         | Pir     | 2       |        |               |         |       |       |          |              |
| PG2001 | SPp  | VF, NFv | 5            | 500        | 50—150                      | >50         | 100c                                    | 4 W        | 80                 | 60               | 2 A              | 200            | TO-46          | Pir     | 2       |        |               |         |       |       |          |              |
| PG2002 | SPp  | VF, NFv | 5            | 500        | 50—150                      | >50         | 100c                                    | 4 W        | 100                | 80               | 2 A              | 200            | TO-46          | Pir     | 2       |        |               |         |       |       |          |              |
| PG2003 | SPp  | VF, NFv | 5            | 500        | 50—150                      | >50         | 100c                                    | 4 W        | 120                | 100              | 2 A              | 200            | TO-46          | Pir     | 2       |        |               |         |       |       |          |              |
| PG2004 | SPp  | VF, NFv | v            | 500        | 50—150                      | >50         | 100c                                    | 4 W        | 150                | 140              | 2 A              | 200            | TO-46          | Pir     | 2       |        |               |         |       |       |          |              |
| PG2005 | SPp  | VF, NFv | 5            | 500        | 50—150                      | >50         | 100c                                    | 4 W        | 170                | 160              | 2 A              | 200            | TO-46          | Pir     | 2       |        |               |         |       |       |          |              |
| PG2006 | SPp  | VF, NFv | 5            | 500        | 30—90                       | 90          | 100c                                    | 4 W        | 80                 | 60               | 2 A              | 200            | TO-46          | Pir     | 2       |        |               |         |       |       |          |              |
| PG2007 | SPp  | VF, NFv | 5            | 500        | 30—90                       | 90          | 100c                                    | 4 W        | 100                | 80               | 2 A              | 200            | TO-46          | Pir     | 2       |        |               |         |       |       |          |              |
| PG2008 | SPp  | VF, NFv | 5            | 500        | 30—90                       | 90          | 100c                                    | 4 W        | 120                | 100              | 2 A              | 200            | TO-46          | Pir     | 2       |        |               |         |       |       |          |              |
| PG2009 | SPp  | VF, NFv | 5            | 500        | 30—90                       | 90          | 100c                                    | 4 W        | 140                | 120              | 2 A              | 200            | TO-46          | Pir     | 2       |        |               |         |       |       |          |              |
| PG2010 | SPp  | VF, NFv | 5            | 500        | 30—90                       | 90          | 100c                                    | 4 W        | 150                | 140              | 2 A              | 200            | TO-46          | Pir     | 2       |        |               |         |       |       |          |              |
| PG2011 | SPp  | VF, NFv | 5            | 500        | 30—90                       | 90          | 100c                                    | 4 W        | 170                | 160              | 2 A              | 200            | TO-46          | Pir     | 2       |        |               |         |       |       |          |              |
| PG2012 | SPp  | VF, NFv | 5            | 500        | 100—300                     | 90          | 100c                                    | 4 W        | 80                 | 60               | 2 A              | 200            | TO-46          | Pir     | 2       |        |               |         |       |       |          |              |
| PG2013 | SPp  | VF, NFv | 5            | 500        | 100—300                     | 90          | 100c                                    | 4 W        | 100                | 80               | 2 A              | 200            | TO-46          | Pir     | 2       |        |               |         |       |       |          |              |
| PG2014 | SPp  | VF, NFv | 5            | 500        | 100—300                     | 90          | 100c                                    | 4 W        | 120                | 100              | 2 A              | 200            | TO-46          | Pir     | 2       |        |               |         |       |       |          |              |
| PG2015 | SPp  | VF, NFv | 5            | 500        | 100—300                     | 90          | 100c                                    | 4 W        | 140                | 120              | 2 A              | 200            | TO-46          | Pir     | 2       |        |               |         |       |       |          |              |
| PG2016 | SPp  | VF, NFv | 5            | 500        | 100—300                     | 90          | 100c                                    | 4 W        | 150                | 140              | 2 A              | 200            | TO-46          | Pir     | 2       |        |               |         |       |       |          |              |
| PG2017 | SPp  | VF, NFv | 5            | 500        | 100—300                     | 90          | 100c                                    | 4 W        | 170                | 160              | 2 A              | 200            | TO-46          | Pir     | 2       |        |               |         |       |       |          |              |
| PG2018 | SPp  | VF, NFv | 5            | 500        | 30—90                       | 90          | 100c                                    | 4 W        | 80                 | 60               | 2 A              | 200            | TO-46          | Pir     | 2       |        |               |         |       |       |          |              |
| PG2019 | SPp  | VF, NFv | 5            | 500        | 30—90                       | 90          | 100c                                    | 4 W        | 100                | 80               | 2 A              | 200            | TO-46          | Pir     | 2       |        |               |         |       |       |          |              |
| PG2020 | SPp  | VF, NFv | 5            | 500        | 30—90                       | 90          | 100c                                    | 4 W        | 120                | 100              | 2 A              | 200            | TO-46          | Pir     | 2       |        |               |         |       |       |          |              |
| PG2021 | SPp  | VF, NFv | 5            | 500        | 30—90                       | 90          | 100c                                    | 4 W        | 140                | 120              | 2 A              | 200            | TO-46          | Pir     | 2       |        |               |         |       |       |          |              |
| PG2022 | SPp  | VF, NFv | 5            | 500        | 30—90                       | 90          | 100c                                    | 4 W        | 150                | 140              | 2 A              | 200            | TO-46          | Pir     | 2       |        |               |         |       |       |          |              |
| PG2023 | SPp  | VF, NFv | 5            | 500        | 30—90                       | 90          | 100c                                    | 4 W        | 170                | 160              | 2 A              | 200            | TO-46          | Pir     | 2       |        |               |         |       |       |          |              |
| PG2024 | SPp  | VF, NFv | 5            | 500        | 50—150                      | 90          | 100c                                    | 4 W        | 80                 | 60               | 2 A              | 200            | TO-46          | Pir     | 2       |        |               |         |       |       |          |              |
| PG2025 | SPp  | VF, NFv | 5            | 500        | 50—150                      | 90          | 100c                                    | 4 W        | 100                | 80               | 2 A              | 200            | TO-46          | Pir     | 2       |        |               |         |       |       |          |              |
| PG2026 | SPp  | VF, NFv | 5            | 500        | 50—150                      | 90          | 100c                                    | 4 W        | 120                | 100              | 2 A              | 200            | TO-46          | Pir     | 2       |        |               |         |       |       |          |              |
| PG2027 | SPp  | VF, NFv | 5            | 500        | 50—150                      | 90          | 100c                                    | 4 W        | 140                | 120              | 2 A              | 200            | TO-46          | Pir     | 2       |        |               |         |       |       |          |              |
| PG2028 | SPp  | VF, NFv | 5            | 500        | 50—150                      | 90          | 100c                                    | 4 W        | 150                | 140              | 2 A              | 200            | TO-46          | Pir     | 2       |        |               |         |       |       |          |              |
| PG2029 | SPp  | VF, NFv | 5            | 500        | 50—150                      | 90          | 100c                                    | 4 W        | 170                | 160              | 2 A              | 200            | TO-46          | Pir     | 2       |        |               |         |       |       |          |              |
| PG2030 | SPp  | VF, NFv | 5            | 500        | 100—300                     | 90          | 100c                                    | 4 W        | 80                 | 60               | 2 A              | 200            | TO-46          | Pir     | 2       |        |               |         |       |       |          |              |
| PG2031 | SPp  | VF, NFv | 5            | 500        | 100—300                     | 90          | 100c                                    | 4 W        | 100                | 80               | 2 A              | 200            | TO-46          | Pir     | 2       |        |               |         |       |       |          |              |
| PG2032 | SPp  | VF, NFv | 5            | 500        | 100—300                     | 90          | 100c                                    | 4 W        | 120                | 100              | 2 A              | 200            | TO-46          | Pir     | 2       |        |               |         |       |       |          |              |
| PG2033 | SPp  | VF, NFv | 5            | 500        | 100—300                     | 90          | 100c                                    | 4 W        | 140                | 120              | 2 A              | 200            | TO-46          | Pir     | 2       |        |               |         |       |       |          |              |
| PG2034 | SPp  | VF, NFv | 5            | 500        | 100—300                     | 90          | 100c                                    | 4 W        | 150                | 140              | 2 A              | 200            | TO-46          | Pir     | 2       |        |               |         |       |       |          |              |
| PG2035 | SPp  | VF, NFv | 5            | 500        | 100—300                     | 90          | 100c                                    | 4 W        | 170                | 160              | 2 A              | 200            | TO-46          | Pir     | 2       |        |               |         |       |       |          |              |
| PG2036 | SPp  | VF, NFv | 5            | 500        | 50—150                      | 90          | 100c                                    | 4 W        | 140                | 120              | 2 A              | 200            | TO-46          | Pir     | 2       |        |               |         |       |       |          |              |
| PG2050 | SPp  | VF, NFv | 5            | 500        | 50—150                      | 90          | 100c                                    | 5 W        | 80                 | 60               | 2 A              | 200            | TO-5           | Pir     | 2       |        |               |         |       |       |          |              |
| PG2051 | SPp  | VF, NFv | 5            | 500        | 50—150                      | 90          | 100c                                    | 5 W        | 100                | 80               | 2 A              | 200            | TO-5           | Pir     | 2       |        |               |         |       |       |          |              |
| PG2052 | SPp  | VF, NFv | 5            | 500        | 50—150                      | 90          | 100c                                    | 5 W        | 120                | 100              | 2 A              | 200            | TO-5           | Pir     | 2       |        |               |         |       |       |          |              |
| PG2053 | SPp  | VF, NFv | 5            | 500        | 50—150                      | 90          | 100c                                    | 5 W        | 150                | 140              | 2 A              | 200            | TO-5           | Pir     | 2       |        |               |         |       |       |          |              |
| PG2054 | SPp  | VF, NFv | 5            | 500        | 50—150                      | 90          | 100c                                    | 5 W        | 170                | 160              | 2 A              | 200            | TO-5           | Pir     | 2       |        |               |         |       |       |          |              |
| PG2055 | SPp  | VF, NFv | 5            | 500        | 30—90                       | 90          | 100c                                    | 5 W        | 80                 | 60               | 2 A              | 200            | TO-5           | Pir     | 2       |        |               |         |       |       |          |              |
| PG2056 | SPp  | VF, NFv | 5            | 500        | 30—90                       | 90          | 100c                                    | 5 W        | 100                | 80               | 2 A              | 200            | TO-5           | Pir     | 2       |        |               |         |       |       |          |              |
| PG2057 | SPp  | VF, NFv | 5            | 500        | 30—90                       | 90          | 100c                                    | 5 W        | 120                | 100              | 2 A              | 200            | TO-5           | Pir     | 2       |        |               |         |       |       |          |              |
| PG2058 | SPp  | VF, NFv | 5            | 500        | 30—90                       | 90          | 100c                                    | 5 W        | 140                | 120              | 2 A              | 200            | TO-5           | Pir     | 2       |        |               |         |       |       |          |              |
| PG2059 | SPp  | VF, NFv | 5            | 500        | 30—90                       | 90          | 100c                                    | 5 W        | 150                | 140              | 2 A              | 200            | TO-5           | Pir     | 2       |        |               |         |       |       |          |              |
| PG2060 | SPp  | VF, NFv | 5            | 500        | 30—90                       | 90          | 100c                                    | 5 W        | 170                | 160              | 2 A              | 200            | TO-5           | Pir     | 2       |        |               |         |       |       |          |              |
| PG2061 | SPp  | VF, NFv | 5            | 500        | 100—300                     | 90          | 100c                                    | 5 W        | 80                 | 60               | 2 A              | 200            | TO-5           | Pir     | 2       |        |               |         |       |       |          |              |
| PG2062 | SPp  | VF, NFv | 5            | 500        | 100—300                     | 90          | 100c                                    | 5 W        | 100                | 80               | 2 A              | 200            | TO-5           | Pir     | 2       |        |               |         |       |       |          |              |
| PG2063 | SPp  | VF, NFv | 5            | 500        | 100—300                     | 90          | 100c                                    | 5 W        | 120                | 100              | 2 A              | 200            | TO-5           | Pir     | 2       |        |               |         |       |       |          |              |
| PG2064 | SPp  | VF, NFv | 5            | 500        | 100—300                     | 90          | 100c                                    | 5 W        | 140                | 120              | 2 A              | 200            | TO-5           | Pir     | 2       |        |               |         |       |       |          |              |
| PG2065 | SPp  | VF, NFv | 5            | 500        | 100—300                     | 90          | 100c                                    | 5 W        | 150                | 140              | 2 A              | 200            | TO-5           | Pir     | 2       |        |               |         |       |       |          |              |
| PG2066 | SPp  | VF, NFv | 5            | 500        | 100—300                     | 90          | 100c                                    | 5 W        | 170                | 160              | 2 A              | 200            | TO-5           | Pir     | 2       |        |               |         |       |       |          |              |
| PG2067 | SPp  | VF, NFv | 5            | 500        | 30—90                       | 90          | 100c                                    | 5 W        | 80                 | 60               | 2 A              | 200            | TO-5           | Pir     | 2       |        |               |         |       |       |          |              |
| PG2068 | SPp  | VF, NFv | 5            | 500        | 30—90                       | 90          | 100c                                    | 5 W        | 100                | 80               | 2 A              | 200            | TO-5           | Pir     | 2       |        |               |         |       |       |          |              |
| PG2069 | SPp  | VF, NFv | 5            | 500        | 30—90                       | 90          | 100c                                    | 5 W        | 120                | 100              | 2 A              | 200            | TO-5           | Pir     | 2       |        |               |         |       |       |          |              |
| PG2070 | SPp  | VF, NFv | 5            | 500        | 30—90                       | 90          | 100c                                    | 5 W        | 140                | 120              | 2 A              | 200            | TO-5           | Pir     | 2       |        |               |         |       |       |          |              |
| PG2071 | SPp  | VF, NFv | 5            | 500        | 30—90                       | 90          | 100c                                    | 5 W        | 150                | 140              | 2 A              | 200            | TO-5           | Pir     | 2       |        |               |         |       |       |          |              |
| PG2072 | SPp  | VF, NFv | 5            | 500        | 30—90                       | 90          | 100c                                    | 5 W        | 170                | 160              | 2 A              | 200            | TO-5           | Pir     | 2       |        |               |         |       |       |          |              |
| PG2073 | SPp  | VF, NFv | 5            | 500        | 50—150                      | 90          | 100c                                    | 5 W        | 80                 | 60               | 2 A              | 200            | TO-5           | Pir     | 2       |        |               |         |       |       |          |              |
| PG2074 | SPp  | VF, NFv | 5            | 500        | 50—150                      | 90          | 100c                                    | 5 W        | 100                | 80               | 2 A              | 200            | TO-5           | Pir     | 2       |        |               |         |       | </    |          |              |

| Typ    | Druh | Použití | $U_{CE}$ [V] | $I_C$ [mA] | $h_{21E}$<br>$h_{21E}^*$ | $f_T$<br>$f_{z*}$ [MHz] | $T_a$<br>$T_c$ [°C] | $P_{tot}$<br>$P_{C*}$ max [mW] | $U_{CB}$ max [V] | $U_{CEB}$ max [V] | $I_C$ max [mA] | $T_j$ max [°C] | Pouzdro | Výrobce | Patic | Náhrada<br>TESLA | Rozdíly |       |       |          |       |     |
|--------|------|---------|--------------|------------|--------------------------|-------------------------|---------------------|--------------------------------|------------------|-------------------|----------------|----------------|---------|---------|-------|------------------|---------|-------|-------|----------|-------|-----|
|        |      |         |              |            |                          |                         |                     |                                |                  |                   |                |                |         |         |       |                  | $P_C$   | $U_C$ | $f_T$ | $h_{21}$ | $Spf$ | $W$ |
| PG2077 | SPp  | VF, NFv | 5            | 500        | 50—150                   | 90                      | 100c                | 5 W                            | 150              | 140               | 2 A            | 200            | TO-5    | Pir     | 2     |                  |         |       |       |          |       |     |
| PG2078 | SPp  | VF, NFv | 5            | 500        | 50—150                   | 90                      | 100c                | 5 W                            | 170              | 160               | 2 A            | 200            | TO-5    | Pir     | 2     |                  |         |       |       |          |       |     |
| PG2079 | SPp  | VF, NFv | 5            | 500        | 100—300                  | 90                      | 100c                | 5 W                            | 80               | 60                | 2 A            | 200            | TO-5    | Pir     | 2     |                  |         |       |       |          |       |     |
| PG2080 | SPp  | VF, NFv | 5            | 500        | 100—300                  | 90                      | 100c                | 5 W                            | 100              | 80                | 2 A            | 200            | TO-5    | Pir     | 2     |                  |         |       |       |          |       |     |
| PG1081 | SPp  | VF, NFv | 5            | 500        | 100—300                  | 90                      | 100c                | 5 W                            | 120              | 100               | 2 A            | 200            | TO-5    | Pir     | 2     |                  |         |       |       |          |       |     |
| PG2082 | SPp  | VF, NFv | 5            | 500        | 100—300                  | 90                      | 100c                | 5 W                            | 140              | 120               | 2 A            | 200            | TO-5    | Pir     | 2     |                  |         |       |       |          |       |     |
| PG2083 | SPp  | VF, NFv | 5            | 500        | 100—300                  | 90                      | 100c                | 5 W                            | 150              | 140               | 2 A            | 200            | TO-5    | Pir     | 2     |                  |         |       |       |          |       |     |
| PG2084 | SPp  | VF, NFv | 5            | 500        | 100—300                  | 90                      | 100c                | 5 W                            | 170              | 160               | 2 A            | 200            | TO-5    | Pir     | 2     |                  |         |       |       |          |       |     |
| PG2085 | SPp  | VF, NFv | 5            | 500        | 50—150                   | 90                      | 100c                | 5 W                            | 140              | 120               | 2 A            | 200            | TO-5    | Pir     | 2     |                  |         |       |       |          |       |     |
| PG2101 | SPp  | VF, NFv | 5            | 500        | 50—150                   | 90                      | 100c                | 16 W                           | 80               | 60                | 2 A            | 200            | TO-66   | Pir     | 31    |                  |         |       |       |          |       |     |
| PG2102 | SPp  | VF, NFv | 5            | 500        | 50—150                   | 90                      | 100c                | 16 W                           | 100              | 80                | 2 A            | 200            | TO-66   | Pir     | 31    |                  |         |       |       |          |       |     |
| PG2103 | SPp  | VF, NFv | 5            | 500        | 50—150                   | 90                      | 100c                | 16 W                           | 120              | 100               | 2 A            | 200            | TO-66   | Pir     | 31    |                  |         |       |       |          |       |     |
| PG2104 | SPp  | VF, NFv | 5            | 500        | 50—150                   | 90                      | 100c                | 16 W                           | 150              | 140               | 2 A            | 200            | TO-66   | Pir     | 31    |                  |         |       |       |          |       |     |
| PG2105 | SPp  | VF, NFv | 5            | 500        | 50—150                   | 90                      | 100c                | 16 W                           | 170              | 160               | 2 A            | 200            | TO-66   | Pir     | 31    |                  |         |       |       |          |       |     |
| PG2106 | SPp  | VF, NFv | 5            | 500        | 30—90                    | 90                      | 100c                | 16 W                           | 80               | 60                | 2 A            | 200            | TO-66   | Pir     | 31    |                  |         |       |       |          |       |     |
| PG2107 | SPp  | VF, NFv | 5            | 500        | 30—90                    | 90                      | 100c                | 16 W                           | 100              | 80                | 2 A            | 200            | TO-66   | Pir     | 31    |                  |         |       |       |          |       |     |
| PG2108 | SPp  | VF, NFv | 5            | 500        | 30—90                    | 90                      | 100c                | 16 W                           | 120              | 100               | 2 A            | 200            | TO-66   | Pir     | 31    |                  |         |       |       |          |       |     |
| PG2109 | SPp  | VF, NFv | 5            | 500        | 30—90                    | 90                      | 100c                | 16 W                           | 140              | 120               | 2 A            | 200            | TO-66   | Pir     | 31    |                  |         |       |       |          |       |     |
| PG2110 | SPp  | VF, NFv | 5            | 500        | 30—90                    | 90                      | 100c                | 16 W                           | 150              | 140               | 2 A            | 200            | TO-66   | Pir     | 31    |                  |         |       |       |          |       |     |
| PG2111 | SPp  | VF, NFv | 5            | 500        | 30—90                    | 90                      | 100c                | 16 W                           | 170              | 160               | 2 A            | 200            | TO-66   | Pir     | 31    |                  |         |       |       |          |       |     |
| PG2112 | SPp  | VF, NFv | 5            | 500        | 100—300                  | 90                      | 100c                | 16 W                           | 80               | 60                | 2 A            | 200            | TO-66   | Pir     | 31    |                  |         |       |       |          |       |     |
| PG2113 | SPp  | VF, NFv | 5            | 500        | 100—300                  | 90                      | 100c                | 16 W                           | 100              | 80                | 2 A            | 200            | TO-66   | Pir     | 31    |                  |         |       |       |          |       |     |
| PG2114 | SPp  | VF, NFv | 5            | 500        | 100—300                  | 90                      | 100c                | 16 W                           | 120              | 100               | 2 A            | 200            | TO-66   | Pir     | 31    |                  |         |       |       |          |       |     |
| PG2115 | SPp  | VF, NFv | 5            | 500        | 100—300                  | 90                      | 100c                | 16 W                           | 140              | 120               | 2 A            | 200            | TO-66   | Pir     | 31    |                  |         |       |       |          |       |     |
| PG2116 | SPp  | VF, NFv | 5            | 500        | 100—300                  | 90                      | 100c                | 16 W                           | 150              | 140               | 2 A            | 200            | TO-66   | Pir     | 31    |                  |         |       |       |          |       |     |
| PG2117 | SPp  | VF, NFv | 5            | 500        | 100—300                  | 90                      | 100c                | 16 W                           | 170              | 160               | 2 A            | 200            | TO-66   | Pir     | 31    |                  |         |       |       |          |       |     |
| PG2118 | SPp  | VF, NFv | 5            | 500        | 30—90                    | 90                      | 100c                | 16 W                           | 80               | 60                | 2 A            | 200            | TO-66   | Pir     | 31    |                  |         |       |       |          |       |     |
| PG2119 | SPp  | VF, NFv | 5            | 500        | 30—90                    | 90                      | 100c                | 16 W                           | 100              | 80                | 2 A            | 200            | TO-66   | Pir     | 31    |                  |         |       |       |          |       |     |
| PG2120 | SPp  | VF, NFv | 5            | 500        | 30—90                    | 90                      | 100c                | 16 W                           | 120              | 100               | 2 A            | 200            | TO-66   | Pir     | 31    |                  |         |       |       |          |       |     |
| PG2121 | SPp  | VF, NFv | 5            | 500        | 30—90                    | 90                      | 100c                | 16 W                           | 140              | 120               | 2 A            | 200            | TO-66   | Pir     | 31    |                  |         |       |       |          |       |     |
| PG2122 | SPp  | VF, NFv | 5            | 500        | 30—90                    | 90                      | 100c                | 16 W                           | 150              | 140               | 2 A            | 200            | TO-66   | Pir     | 31    |                  |         |       |       |          |       |     |
| PG2123 | SPp  | VF, NFv | 5            | 500        | 30—90                    | 90                      | 100c                | 16 W                           | 170              | 160               | 2 A            | 200            | TO-66   | Pir     | 31    |                  |         |       |       |          |       |     |
| PG2124 | SPp  | VF, NFv | 5            | 500        | 50—150                   | 90                      | 100c                | 16 W                           | 170              | 160               | 2 A            | 200            | TO-66   | Pir     | 31    |                  |         |       |       |          |       |     |
| PG2125 | SPp  | VF, NFv | 5            | 500        | 50—150                   | 90                      | 100c                | 16 W                           | 80               | 60                | 2 A            | 200            | TO-66   | Pir     | 31    |                  |         |       |       |          |       |     |
| PG2126 | SPp  | VF, NFv | 5            | 500        | 50—150                   | 90                      | 100c                | 16 W                           | 100              | 80                | 2 A            | 200            | TO-66   | Pir     | 31    |                  |         |       |       |          |       |     |
| PG2127 | SPp  | VF, NFv | 5            | 500        | 50—150                   | 90                      | 100c                | 16 W                           | 120              | 100               | 2 A            | 200            | TO-66   | Pir     | 31    |                  |         |       |       |          |       |     |
| PG2128 | SPp  | VF, NFv | 5            | 500        | 50—150                   | 90                      | 100c                | 16 W                           | 140              | 120               | 2 A            | 200            | TO-66   | Pir     | 31    |                  |         |       |       |          |       |     |
| PG2129 | SPp  | VF, NFv | 5            | 500        | 50—150                   | 90                      | 100c                | 16 W                           | 150              | 140               | 2 A            | 200            | TO-66   | Pir     | 31    |                  |         |       |       |          |       |     |
| PG2130 | SPp  | VF, NFv | 5            | 500        | 100—300                  | 90                      | 100c                | 16 W                           | 80               | 60                | 2 A            | 200            | TO-66   | Pir     | 31    |                  |         |       |       |          |       |     |
| PG2131 | SPp  | VF, NFv | 5            | 500        | 100—300                  | 90                      | 100c                | 16 W                           | 100              | 80                | 2 A            | 200            | TO-66   | Pir     | 31    |                  |         |       |       |          |       |     |
| PG2132 | SPp  | VF, NFv | 5            | 500        | 100—300                  | 90                      | 100c                | 16 W                           | 120              | 100               | 2 A            | 200            | TO-66   | Pir     | 31    |                  |         |       |       |          |       |     |
| PG2133 | SPp  | VF, NFv | 5            | 500        | 100—300                  | 90                      | 100c                | 16 W                           | 140              | 120               | 2 A            | 200            | TO-66   | Pir     | 31    |                  |         |       |       |          |       |     |
| PG2134 | SPp  | VF, NFv | 5            | 500        | 100—300                  | 90                      | 100c                | 16 W                           | 150              | 140               | 2 A            | 200            | TO-66   | Pir     | 31    |                  |         |       |       |          |       |     |
| PG2135 | SPp  | VF, NFv | 5            | 500        | 100—300                  | 90                      | 100c                | 16 W                           | 170              | 160               | 2 A            | 200            | TO-66   | Pir     | 31    |                  |         |       |       |          |       |     |
| PG2136 | SPp  | VF, NFv | 5            | 500        | 50—150                   | 90                      | 100c                | 16 W                           | 140              | 120               | 2 A            | 200            | TO-66   | Pir     | 31    |                  |         |       |       |          |       |     |
| PG2150 | SPp  | VF, NFv | 2            | 1 A        | 40—120                   | 80                      | 100c                | 5 W                            | 120              | 100               | 5 A            | 200            | TO-5    | Pir     | 2     |                  |         |       |       |          |       |     |
| PG2151 | SPp  | VF, NFv | 2            | 1 A        | 20—60                    | 80                      | 100c                | 5 W                            | 80               | 60                | 5 A            | 200            | TO-5    | Pir     | 2     |                  |         |       |       |          |       |     |
| PG2152 | SPp  | VF, NFv | 2            | 1 A        | 20—60                    | 80                      | 100c                | 5 W                            | 100              | 80                | 5 A            | 200            | TO-5    | Pir     | 2     |                  |         |       |       |          |       |     |
| PG2153 | SPp  | VF, NFv | 2            | 1 A        | 20—60                    | 80                      | 100c                | 5 W                            | 120              | 100               | 5 A            | 200            | TO-5    | Pir     | 2     |                  |         |       |       |          |       |     |
| PG2154 | SPp  | VF, NFv | 2            | 1 A        | 100—300                  | 80                      | 100c                | 5 W                            | 80               | 60                | 5 A            | 200            | TO-5    | Pir     | 2     |                  |         |       |       |          |       |     |
| PG2155 | SPp  | VF, NFv | 2            | 1 A        | 100—300                  | 80                      | 100c                | 5 W                            | 100              | 80                | 5 A            | 200            | TO-5    | Pir     | 2     |                  |         |       |       |          |       |     |
| PG2156 | SPp  | VF, NFv | 2            | 1 A        | 100—300                  | 80                      | 100c                | 5 W                            | 120              | 100               | 5 A            | 200            | TO-5    | Pir     | 2     |                  |         |       |       |          |       |     |
| PG2157 | SPp  | VF, NFv | 2            | 1 A        | 20—60                    | 80                      | 100c                | 5 W                            | 80               | 60                | 5 A            | 200            | TO-5    | Pir     | 2     |                  |         |       |       |          |       |     |
| PG2158 | SPp  | VF, NFv | 2            | 1 A        | 20—60                    | 80                      | 100c                | 5 W                            | 100              | 80                | 5 A            | 200            | TO-5    | Pir     | 2     |                  |         |       |       |          |       |     |
| PG2159 | SPp  | VF, NFv | 2            | 1 A        | 20—60                    | 80                      | 100c                | 5 W                            | 120              | 100               | 5 A            | 200            | TO-5    | Pir     | 2     |                  |         |       |       |          |       |     |
| PG2160 | SPp  | VF, NFv | 2            | 1 A        | 40—120                   | 80                      | 100c                | 5 W                            | 80               | 60                | 5 A            | 200            | TO-5    | Pir     | 2     |                  |         |       |       |          |       |     |
| PG2161 | SPp  | VF, NFv | 2            | 1 A        | 40—120                   | 80                      | 100c                | 5 W                            | 100              | 80                | 5 A            | 200            | TO-5    | Pir     | 2     |                  |         |       |       |          |       |     |
| PG2162 | SPp  | VF, NFv | 2            | 1 A        | 40—120                   | 80                      | 100c                | 5 W                            | 120              | 100               | 5 A            | 200            | TO-5    | Pir     | 2     |                  |         |       |       |          |       |     |
| PG2163 | SPp  | VF, NFv | 2            | 1 A        | 100—300                  | 80                      | 100c                | 5 W                            | 80               | 60                | 5 A            | 200            | TO-5    | Pir     | 2     |                  |         |       |       |          |       |     |
| PG2164 | SPp  | VF, NFv | 2            | 1 A        | 100—300                  | 80                      | 100c                | 5 W                            | 100              | 80                | 5 A            | 200            | TO-5    | Pir     | 2     |                  |         |       |       |          |       |     |
| PG2165 | SPp  | VF, NFv | 2            | 1 A        | 100—300                  | 80                      | 100c                | 5 W                            | 120              | 100               | 5 A            | 200            | TO-5    | Pir     | 2     |                  |         |       |       |          |       |     |
| PG2166 | SPp  | VF, NFv | 2            | 1 A        | 40—120                   | 80                      | 100c                | 5 W                            | 70               | 50                | 5 A            | 200            | TO-5    | Pir     | 2     |                  |         |       |       |          |       |     |
| PG2167 | SPp  | VF, NFv | 2            | 1 A        | 40—120                   | 80                      | 100c                | 5 W                            | 90               |                   |                |                |         |         |       |                  |         |       |       |          |       |     |



Obr. 5. Základní zapojení stabilizátoru s operačním zesilovačem pro zdroj konstantního napětí (a) a konstantního proudu (b)

metrů zdroje a jejich případnou úpravou je stavba zdroje skončena.

### Závěr

V závěru článku bych chtěl shrnout vliv nejdůležitějších součástek zdroje na jeho vlastnosti. Chci tím upozornit znovu na značnou variabilitu popisované konstrukce a usnadnit zájemcům úpravu parametrů podle speciálních potřeb.

1. Rozsah výstupního napětí – asi 40 V – je u této konstrukce omezen napájecím napětím operačního zesilovače a nedoporučuji uvedené napětí příliš překračovat. Pro větší rozsah je třeba v obvodech proudového boosteru použít tranzistor v zapojení se společným emitorem (napěťové zesilující) a změnit zapojení vstupu operačního zesilovače, protože booster má záporný přenos.

2. Rozsah výstupního proudu je omezen parametry koncového tranzistoru a zdroje, napájecího proudový booster. Zdvojením  $T_2$  bylo možno po úpravě napájení dosáhnout podstatně většího výstupního proudu, bylo by však nutné zvětšit též proudové buzení  $T_2$  zařazením dalšího tranzistoru (sledovače).

3. Zapojení stabilizátoru jako zdroje konstantního proudu je podobné zdroji napětí, změna je pouze ve způsobu snímání vzorku výstupní větnosti (obr. 5).

4. Výstupní odpor je dán zesílením ve smyčce zpětné vazby – pro zdroj napětí se blíží k nule, pro zdroj proudu se blíží  $\infty$ .

5. Stabilita výstupní větnosti (napětí, popř. proudu) je (uvažujeme-li ideální zesilovač) ovlivněna pouze stabilitou referenčního napětí a odporu  $R_1$  a  $R_2$  (popř.  $R_N$ ). Požadavky na ideální zesilovač jsou v tomto případě použitím MAA501 splněny se zanedbatelnými ústupky.

Závěrem je možno konstatovat, že kvalita zdroje s operačním zesilovačem je při vhodné konstrukci (která neznehodnotí vlastnosti operačního zesilovače) nedostížná ani podstatně složitějšími zapojeními s diskrétními součástkami.

### Literatura

- [1] Dostál, J.: Operační zesilovač, zdroje, omezovače, boostery. ST 12/1969 str. 366.
- [2] Technická zpráva Tesla Rožnov: Operační zesilovač MAA501.
- [3] Konstrukční katalog polovodičových diod a tyristorů, IIIA. Tesla Rožnov.
- [4] Součástky pro elektroniku. Katalog Tesla Lánskroun.
- [5] Kolektiv: Chemie pro každého. SNTL: Praha 1969.
- [6] Dostál, J., VÚMS Praha: osobní informace.



Obr. 3. Astabilní multivibrátor s výstupním napětím pravoúhlého průběhu se zaoblenou nábežnou hranou

ten však volime s ohledem na zátěž a na druh spínacího prvku.

Spínač  $S$  můžeme nahradit tranzistorem nebo tyristorem a ty pak řídit signálem z generátoru impulsů s řiditelným poměrem  $t_1/t_2$ . Dostaneme tak bezkontaktní variantu zapojení.

Jednotka na obr. 2 je navržena pro sériový stejnosměrný motorek 24 V/120 W, který je napájen akumulátory. Jednotku je možno přizpůsobit pro různá napětí a proudy a používat ji k nejrůznějším účelům. Výhodou je jednoduché zapojení a plynulá bezztrátová regulace.

### Technické údaje

Napájecí napětí: 24 V, ss.

Výstupní proud: 10 A max.

Výstupní napětí: 24 V.

Rozsah změny napětí: 0 až 24 V plynule. Pracovní kmitočet: podle kapacit kondenzátorů  $C_1$ ,  $C_2$ .

### Popis zapojení

Tranzistory  $T_1$  a  $T_2$  tvoří astabilní multivibrátor s plynule měnitelným kličovacím poměrem výstupního napětí obdélníkovitého průběhu (potenciometrem  $P$ ) při stálém kmitočtu. Napětí obdélníkovitého průběhu se přivádí na zesilovač s tranzistory  $T_3$ ,  $T_4$  a  $T_5$ , jež ovládá zátěž (v našem případě ss motorek).

Astabilní multivibrátor je periodický přepínač – generátor pravoúhlých impulsů (obr. 3). Předpokládejme, že se  $T_1$  právě otevřel. Napětí na kolektoru  $T_1$  se změnilo též na nulu a dochází k vybíjení kondenzátoru  $C_1$  přes odpor  $R_3$ . Mezi bází a emitorem tranzistoru  $T_2$  je napětí kondenzátoru  $C_1$ , které uzavře

Obr. 2. Regulační jednotka pro motorek 24 V/120 W (kontakty  $S_1$  a  $S_2$  mají být sepnuty)



## Impulsové proporcionální řízení ss motorku

Ing. Jan Blažek

Pro řízení výkonu od nuly do maxima existuje mnoho způsobů zapojení, které lze s ohledem na ztráty energie rozdělit na zapojení a) se ztrátami energie, b) bezztrátovou.

U zařízení napájených z baterií nebo z akumulátorů se snažíme ztráty, vznikající při kmitání, omezit co nejvíce. Tento požadavek vede ke komplikovanému přepínání zátěží nebo ke speciálním druhům (např. elektromotory) zátěží.

Pro řízení stejnosměrných elektromotorů je výhodné použít plynulou regulaci napětí od nuly do maxima. Jelikož transformace stejnosměrného napětí není jednoduchou záležitostí, dosahuje se stejného účinku impulsovou regulací.

Zjednodušené zapojení je na obr. 1a, na němž je sériový motor připojen k baterii přes spínač  $S$ . Bude-li obvod spínán signálem s konstantním kmitočtem tak, že poměr doby sepnutí  $t_1$  a doby rozepnutí  $t_2$  bude možno plynule měnit, dostaneme plynulou (proporcionální) regulaci rychlosti otáčení. (Např. pro kmitočet spínání 1 Hz a pro poměr  $t_1/t_2 = 1/9$  viz obr. 1b, pro poměr 9/1 viz obr. 1c.)

Z obr. 1 vidíme, že střední napětí  $U_s$  závisí na poměru doby otevření a zavření  $t_1/t_2$  spínače  $S$  při konstantním napětí baterie a nezávisí na kmitočtu;



Obr. 1. Základní zapojení při impulsním řízení rychlosti otáčení motorku (a); průběhy napětí  $U_M$  a středního napětí  $U_s$  na motorku (b, c)

tranzistor  $T_2$ . Jakmile se kondenzátor  $C_1$  vybije natolik, že už nestačí „udržet“ tranzistor  $T_2$  v nevodivém stavu, tranzistor se otevře, neboť přechodem bázem-emitor protéká proud, určený odporom  $R_3$ . Tranzistor  $T_2$  vede a kondenzátor  $C_2$  se vybije přes odpor  $R_2$  a tím se uzavře



Obr. 4. Astabilní multivibrátor s výstupním napětím přesně pravoúhlého průběhu

Obr. 8. Zapojení regulátoru, nahradí-li se  $T_4$  a  $T_5$  křemíkovými tranzistory n-p-n



Obr. 5. Náhradní schéma motorku, řízeného napěťovými impulsy

tranzistor  $T_1$ . Kondenzátor  $C_2$  se totiž během doby uzavření  $T_2$  nabil přes odpor  $R_4$ .

Tranzistor  $T_1$  je uzavřen,  $T_2$  otevřen a kondenzátor  $C_1$  se nabíjí, kondenzátor  $C_2$  vybijí. Když se kondenzátor  $C_1$  vybije natolik, že „neudrží“ tranzistor  $T_1$  v nevodivém stavu, dochází k okamžitému otevření tranzistoru  $T_1$  a uzavření  $T_2$ . Tento cyklus se opakuje.

Doba vodivosti  $t_1$  tranzistoru  $T_1$  závisí na kapacitě kondenzátoru  $C_1$  a odporu  $R_3$ . Doba vodivosti  $t_2$  tranzistoru  $T_2$  závisí na kapacitě kondenzátoru  $C_2$  a odporu  $R_2$ . Protože odpory  $R_2$  a  $R_3$  protéká proud, který musí uvést do saturace tranzistory  $T_1$  a  $T_2$ , volíme jejich velikost s ohledem na zesilovační čí-

nitel a na maximálně přípustný proud emitorů použitých tranzistorů ( $R_2 \leq R_1\beta(T_1)$ ;  $R_3 \leq R_4\beta(T_2)$ ;  $I_E = I_C + I_B$ ).

Součet dob  $t_1 + t_2$  udává opakovací kmitočet. Poměr  $t_1/t_2$  lze měnit odlišnou velikostí odporu  $R_2$  a  $R_3$  a kapacit kondenzátorů  $C_1$  a  $C_2$ . Vhodnou volbou těchto součástek můžeme měnit poměr  $t_1/t_2$  až do 1:100 i-vice.

Zapojení na obr. 3 nedává výstupní napětí přesně pravoúhlého průběhu. Jakmile tranzistor  $T_2$  přejde do nevodivého stavu, nabíjí se kondenzátor  $C_2$  přes odpor  $R_4$ , čímž se čelo impulsu zaoblí. V případě, kde by tento tvar impulsu vadil, použije se zapojení podle obr. 4. Rozdíl proti zapojení na obr. 3 je v rozdělení odporu  $R_4$  na odpory  $R_5$ ,  $R_6$  a v přidání diody  $D$ , která brání, aby se kondenzátor  $C_2$  nabil přes odpor  $R_6$  v okamžiku uzavření tranzistoru  $T_2$ . Při vodivém tranzistoru  $T_2$  se dioda  $D$  neuplatní a proud tekoucí tranzistorem  $T_2$  je stejný, jako v původním zapojení ( $R_5 = R_6 = 2R_4$ ).

Máximální odpor  $R_1$  a  $R_4$  ( $R_5$ ,  $R_6$ ) volíme podle zbytkového proudu tranzistorů  $T_1$ ,  $T_2$  tak, aby i při nejvyšší teplotě byl kolektorový proud tranzistoru několikanásobně větší, než jejich zbytkový proud. Minimální odpor  $R_1$  a  $R_4$  je dán maximálním přípustným proudem kolektorů použitých tranzistorů.

Použitím potenciometru  $P$ , zapojeného místo odporu  $R_2$ ,  $R_3$  (obr. 2), lze ovlivňovat poměr  $t_1/t_2$  plynule a bez podstatného vlivu na kmitočet.

Stejnosměrný zesilovač (obr. 2) je tvořen předzesilovačem  $T_3$  a tranzistorem  $T_4$ ,  $T_5$  v Darlingtonové zapojení se společným emitorem. Odpor  $R_5$  musí při otevřeném tranzistoru  $T_3$  zajistit dokonalou saturaci  $T_4$ ,  $T_5$  i pro rozběhový proud motorku, který je několikanásobně větší než jmenovitý proud. Dioda  $D_2$  a odpor  $R_6$ ,  $R_7$  zajišťují dokonalé uzavření tranzistorů  $T_4$ ,  $T_5$ . Dioda  $D_3$  chrání tranzistory  $T_4$ ,  $T_5$  proti přepěti, které vzniká pře-rušováním proudu motorku. Na obr. 5 je náhradní schéma motorku, řízeného impulsním napětím. Náhradní schéma tvoří činný odpor  $R$  v sérii s indukčností  $L$  a se zdrojem protieletromotorické síly  $E$ . V okamžiku impulsu se zvětší proud zátěži exponenciálně s časovou konstantou  $\tau = L/R$ . Po ukončení řídícího impulsu v obvodu báze skončí i proudový impuls v obvodu kolektoru, což má za následek zvětšení napětí na tranzistoru, případně i zničení tranzistoru. Tomuto jevu zabráni dioda, zapojená paralelně k zátěži. Dioda je při impulsu v nevodivém stavu a při ukončení impulsu jí teče proud vyvolaný indukovaným napětím (vlastní indukci). Pro čisté činné zátěže diodu  $D_2$  nepoužíváme.

Při návrzích zesilovače pro větší proudy je možno zapojit koncové tranzistory paralelně (obr. 6). Je nutno za-

jistit jejich dobré otevření a uzavření a rozdělení proudů jednotlivými tranzistory odpory v emitorech nebo v bázích. Při použití většího napájecího napětí se řadí tranzistory do série (obr. 7).

Je nutno mít na zřeteli, že ztráty na koncovém tranzistoru závisí na strnosti čel impulsů, na kmitočtu napěti obdělníkovitého průběhu a na dokonalosti otevření a uzavření tranzistoru.

Rozpínací kontakty  $S_1$ ,  $S_2$  (obr. 2) u potenciometru  $P$  slouží k úplnému otevření nebo uzavření výstupu v krajních polohách potenciometru  $P$ . Je-li potenciometr  $P$  nastaven tak, že je v bázi tranzistoru  $T_2$  zařazen jen odpor  $R_2$ , pak není na výstupu jednotky maximální napájecí napětí. Rozpojením kontaktu  $S_1$  je tranzistor  $T_1$  stále uzavřen a  $T_2$  otevřen a tím je také na zátěži plné napájecí napětí, zmenšené jen o úbytek napětí na diodě  $D_2$  a tranzistoru  $T_5$  (obr. 2). Natočením běžce potenciometru  $P$  na opačnou stranu je rozpojen kontakt  $S_2$ , tranzistor  $T_2$  je uzavřen a na výstupu je nulové napětí.

Zapojení je jednoduché a k oživení celé jednotky postačí např. Avomet. Při použití tranzistorů opačné vodivosti je nutno přepolovat zdroj, změnit polaritu diod a elektrolytických kondenzátorů. Při použití křemíkových tranzistorů ( $T_4$ ,  $T_5$ ) lze jednotku zapojit např. podle obr. 8.

Konstrukční provedení neuvádím, neboť konstrukce jednotky bude u každého zájemce odlišná s ohledem na dostupnost součástek. Na součástky se nekladou zvláštní nároky a jednotka pracuje i při osázení jinými typy tranzistorů. Je nutné zajistit dostatečné chlazení tranzistoru  $T_5$ .

#### Seznam součástek

Zapojení na obr. 2

| Tranzistory           |                               |
|-----------------------|-------------------------------|
| $T_1$ , $T_2$ , $T_3$ | KF508                         |
| $T_4$                 | OC30 (OC27, OC26, 2 až 5NU72) |
| $T_5$                 | 2 až 7NU74                    |

#### Diody

|               |       |
|---------------|-------|
| $D_1$         | KA501 |
| $D_2$ , $D_3$ | KY708 |

#### Odpory

|               |                         |
|---------------|-------------------------|
| $R_1$         | WK 650 53, 1 k $\Omega$ |
| $R_2$         | WK 650 53, 1 k $\Omega$ |
| $R_3$ , $R_4$ | WK 650 53, 510 $\Omega$ |
| $R_5$         | TR 636, 120 $\Omega$    |
| $R_6$         | TR 636, 1 k $\Omega$    |
| $R_7$         | TR 636, 82 $\Omega$     |

#### Kondenzátory

|               |                     |
|---------------|---------------------|
| $C_1$ , $C_2$ | TC 161, 0,1 $\mu$ F |
|---------------|---------------------|

#### Ostatní součástky

|             |             |
|-------------|-------------|
| Žárovka     | 24 V/0,05 A |
| Pojistka Po | 10 A        |

Spinač S 10 A

Potenciometr 25 k $\Omega$

\* \* \*

Všechn 400 hodin, které byly instalovány v olympijském areálu, bylo řízeno časovým normálem, který pro bavorský rozhlas zhodnotila fa Rohde a Schwarz. Celé zařízení pro signály normálového času pracuje již 25 let zcela bezchybně.

-Mi-



Obr. 6. Zesilovač pro větší proudy



Obr. 7. Uspořádání při větším napájecím napětí





Obr. 3. K výpočtu rozměrů výstupního obvodu

Sériovou kapacitu  $C_s$  bude tvořit skleněný doladovací kondenzátor 4,5 pF s paralelním kondenzátorem 8,2 pF.

Výslednou ladící kapacitu obdržíme po dosazení  $C_s$  do vztahu pro  $C_{\max}$  a  $C_{\min}$

$$C_{\max} = \frac{15C_s}{15 + C_s} = \frac{15 \cdot 10}{15 + 10} = 6 \text{ pF}$$

$$C_{\min} = \frac{2,7 \cdot 10}{2,7 + 10} = 2,12 \text{ pF.}$$

Výsledek výpočtu je poněkud nepřesný, neboť nezahrnuje vliv a velikost parazitních kapacit.

Pro kontrolu zjistíme poměr výsledných ladících kapacit

$$\frac{C_{\max}}{C_{\min}} = \frac{6}{2,12} \doteq 3.$$

#### Výpočet rozměrů výstupního obvodu

Výstupní laděný obvod bude tvořen souosým vedením, zatiženým na začátku generátorem o kapacitě  $C$  (obr. 3). Volíme-li délku vedení tak, aby působila jako induktance  $j\omega C$ , je možno uvést tuto induktanci s kapacitancí  $\frac{1}{j\omega C}$  do rezonance. Rezonance nastane, je-li

$$\frac{1}{j\omega C} = jZ_0 \operatorname{tg} \frac{2\pi l}{\lambda};$$

délka vedení bude tedy

$$l = \frac{\lambda}{2} \operatorname{arctg} \frac{1}{Z_0 \omega C}.$$

Tento vztah platí i tehdy, je-li na konci uzavřeného vedení buzeno generátorem, který má vlastní kapacitu  $C$ . Délka  $l$  je ve všech případech kratší než  $\lambda/4$ .

#### Výpočet optimálních rozměrů rezonančního obvodu

Před výpočtem délky vedení rezonančního obvodu určíme, při jakých rozměrech souosého vedení bude mít rezonanční obvod minimální útlum (maximální jakost). Útlum souosého vedení je různý pro různé rozměry vedení, jen pro jednu kombinaci poměru rozměrů je však minimální. Efektivní odpor souosého vedení je dán vztahem (obr. 4).

$$R [\Omega/\text{km}] = 1,325 \sqrt{f} \left( \frac{1}{a} + \frac{1}{b} \right).$$

Indukčnost a kapacita souosého vedení je dáná vztahy

$$L [\text{H/m}] = \frac{1}{2\pi} \ln \frac{b}{a},$$



Obr. 4. Souosé vedení (je-li dielektrikem vzdich, je  $\epsilon_r = \mu_r = 1$ )

$$C [\text{F/m}] = \frac{2\pi}{\ln \frac{b}{a}}.$$

Konstanta tlumení je dáná vztahem

$$\beta = \frac{R}{2} \sqrt{\frac{C}{L}}.$$

Dosadíme do vztahu pro konstantu tlumení za  $R$ ,  $L$ ,  $C$ . Po úpravě a dosazení dostaneme vztah pro konstantu tlumení, závislou pouze na rozměrech vedení

$$\beta = \frac{1,325}{2} \sqrt{f} \left( \frac{1}{a} + \frac{1}{b} \right) \sqrt{\frac{\frac{2\pi}{\ln \frac{b}{a}}}{\frac{2\pi}{\ln \frac{b}{a}}}} = 4,15 \sqrt{f} \left( \frac{1}{a} + \frac{1}{b} \right) \frac{1}{\ln \frac{b}{a}} \quad (1).$$

Po úpravě vztahu (1) obdržíme

$$\beta = \frac{1}{b} 4,15 \sqrt{f} \frac{\frac{b}{a} + 1}{\ln \frac{b}{a}}.$$

Poměr  $b/a$  označíme  $x$  a dosadíme

$$\beta = \frac{4,15}{b} \sqrt{f} \frac{x + 1}{\ln x}.$$

Pro tento vztah musíme nalézt takové  $x$ , při němž  $\beta$  bude nejmenší: první derivaci  $\beta$  položíme rovnu nule

$$\frac{d\beta}{dx} = \frac{4,15}{b} \sqrt{f} \frac{d}{dx} \left( \frac{x + 1}{\ln x} \right) = -\frac{1}{\ln^2 x} \frac{1}{x} (x + 1) + \frac{1}{\ln x}.$$

Po úpravě obdržíme rovnici:

$$x \ln x - x - 1 = 0 = \beta' \quad (2).$$

Rovnici vyřešíme graficky. Vypočítáme několik hodnot  $\beta'$  tak, aby alespoň jedna velikost  $\beta'$  byla kladná nebo záporná:

- pro  $x = 1$   $\beta' = -2$ ,
- pro  $x = 2$   $\beta' = -1,62$ ,
- pro  $x = 3$   $\beta' = -0,73$ ,
- pro  $x = 4$   $\beta' = 0,52$ .

Údaje získáme dosazením hodnoty  $x$  do rovnice (2) a jejím numerickým výpočtem. Výsledky zaneseme do grafu a řešením rovnice (2) je ta hodnota  $x$ , při níž se protne  $f(\beta')$  s osou  $x$  (obr. 5). Dosadíme-li do rovnice (2)  $x = 3,6$ , musí být levá strana rovnice rovna



Obr. 5. Graf k určení optimálního poměru  $b/a$  souosého vedení podle obr. 4

nule

$$3,6 \ln 3,6 - 3,6 - 1 = 3,6 \cdot 1,28 - 3,6 - 1 = 0;$$

současně tento výsledek určuje poměr  $b/a$ , při němž má vedení minimální útlum.

Při tomto poměru rozměrů vedení vypočítáme příslušnou impedanci vedení. Platí vztah

$$Z = \sqrt{\frac{L}{C}}.$$

Dosadíme za  $L$ ,  $C$

$$Z = \sqrt{\frac{\frac{\mu \ln \frac{b}{a}}{2\pi}}{\frac{2\pi \epsilon}{2\pi \epsilon}}} = \frac{1}{2\pi} \sqrt{\frac{\mu}{\epsilon}} \ln \frac{b}{a} \quad (3).$$

Dále platí:

$$\epsilon = \epsilon_r \epsilon_0 \quad \mu = \mu_r \mu_0.$$

Pro vzduchové dielektrikum je  $\epsilon_r = 1$ , permeabilita  $\mu_r = 1$ . Permitivita vakuua  $\epsilon_0 = 8,854 \cdot 10^{-12} \text{ F/m}$ , permeabilita vakuua je  $\mu_0 = 12,6 \cdot 10^{-7} \text{ H/m}$ .

Po dosazení  $\epsilon$  a  $\mu$  do (3) je

$$Z = \frac{1}{2\pi} \frac{\mu_0}{\epsilon_0} \ln \frac{b}{a} = \frac{1}{2\pi} \sqrt{\frac{12,6 \cdot 10^{-7}}{8,854 \cdot 10^{-12}}} \ln 3,6 = 60 \ln 3,6 = 77 \Omega.$$

Tento výsledek potvrzuje i ta skutečnost, že souosé kably mívají většinou impedanci kolem 75  $\Omega$ .

#### Výpočet délky souosého vedení

K tomuto výpočtu potřebujeme tyto údaje:  $Z = 77 \Omega$  (optimální impedančce, vypočítaná pro nejmenší útlum),  $C = 2,12 \text{ pF}$  (minimální ladící kapacita výstupního obvodu),  $c_0 = 3,10^8 \text{ m/s}$  (rychlosť světla),  $f = 790 \text{ MHz}$  (horní hranice přijímaného pásma),  $\omega = 2\pi f = 4,95 \cdot 10^9 \text{ m/s}$  (po dosazení nejvyššího kmitočtu přijímaného pásma). Tyto údaje dosadíme do vzorce pro délku  $l$  souosého vedení. Tento vzorec si před výpočtem upravíme tak, že za  $\lambda$  dosadíme  $c_0/f$

$$l = \frac{c_0}{\omega} \operatorname{arctg} \frac{1}{Z \omega C} = \frac{3 \cdot 10^8}{4,95 \cdot 10^9 \cdot 2,12 \cdot 10^{-12}} = \operatorname{arctg} \frac{1}{77 \cdot 4,95 \cdot 10^9 \cdot 2,12 \cdot 10^{-12}} = 55 \text{ mm.}$$

Délka souosého vedení pro horní konec pásma je tedy asi 55 mm. Pro kontrolu vypočítáme i délku vedení pro dolní hranice přijímaného pásma. K tomuto výpočtu potřebujeme tyto údaje:  $Z = 77 \Omega$  (optimální impedance souosého vedení),  $C = 6 \text{ pF}$  (maximální ladící kapacita výstupního obvodu),  $c_0 = 3 \cdot 10^8 \text{ m/s}$  (rychlosť světla),  $f = 470 \text{ MHz}$  (dolní hranice přijímaného pásma),  $\omega = 2\pi f = 2,95 \cdot 10^9 \text{ m/s}$  (spodní úhlový kmitočet přijímaného pásma).

$$l = \frac{c_0}{\omega} \operatorname{arctg} \frac{1}{Z \omega C} = \frac{3 \cdot 10^8}{2,95 \cdot 10^9 \cdot 6 \cdot 10^{-12}} = 55 \text{ mm.}$$

Souosé vedení výstupního obvodu bude tedy dlouhé 55 mm.

Délka výstupního rezonančního obvodu zahrnuje i délku ladící diody. Délka vlastní tyče  $L_3$  bude tedy o délku diody kratší. Tyč je stejná jako tyč ve vstupním obvodu. I způsob pájení je stejný, horní konec tyče není však připájen ke kondenzátoru, ale k ladící diodě BA141. Tyč má na svém horním konci připájen oddělovací kondenzátor  $C_4$ , který je získán a připájen stejným způsobem jako kondenzátor  $C_3$ .

Ladicí diodu pájíme opatrně, při tiskneme ji na ocínovaný konec tyče a počkáme až cín ztuhne. Vývod diody držíme v pinzetě hned za sklem diody. Stejným způsobem připájíme diodu i ke kondenzátoru  $C_2$ . Výstupní laděný obvod je vysokofrekvenčně oddělen odporom  $R_8$  a tlumivkou  $Tl_3$ , shodnou s ostatními tlumivkami. Odpor  $R_3$  současně chrání diodu před zničením při přepolování napájecího napětí. Ladicí napětí +2 až +28 V je blokováno průchodkovým kondenzátorem  $C_7$  (600 až 2 200 pF). Výstupní smyčka je konstrukčně shodná se vstupní smyčkou zesilovače.

#### Mechanická konstrukce

Skříň zesilovače je z cuprexitu tloušťky 1,5 mm. Střední přepážka je ze stejného cuprexitu s oboustrannou fólií. Střední přepážku lze nahradit měděným plechem. Díry v bočnicích zesilovače mají rozměry podle použitých skleněných průchodek. Díry pro průchodkové kondenzátory rovněž vyrábíme podle použitého typu. Před sestavením krabice zesilovače jednotlivé díly vyleštíme a případně postříbříme. Stýčné hrany bočnic, základní desky a přepážky ocínujeme do výšky 2 mm. Celou krabici zesilovače spájíme dohromady tak, aby spoj byl plynulý, aby obsahoval co nejméně cínu a byl co nejúžší. Ještě před sestavením krabice vpájíme do bočnic skleněné průchody, sloužící pro vstupní a výstupní přívody.

Spájenou krabici zabrousíme na skelném papíru do roviny, aby dobře dosedlo víko zesilovače. Pak do zesilovače vpájíme ostatní součástky. Při pájení destičkových kondenzátorů dbáme na to, aby na fólii příšlo hodně cínu, jinak se fólie v místě pájení vypaří; fólie kondenzátoru musíme rychle zalít címem. Dotyk pájkou s malým množstvím cínu má za následek vypaření fólie a tím znehodnocení kondenzátoru. Každý kondenzátor pájíme pouze jednou, to znamená, že na druhý polep kondenzátoru  $C_3$  připájíme současně jak tlumivku, tak i vývod báze tranzistoru. (Nejlépe tak, že přívody přináhne k  $C_3$  a přelijeme címem). Do rohů zesilovače připájíme malé maticy, které budou sloužit k přichycení víka.

#### Zdroj zesilovače

Zdroj zesilovače musí dodávat napětí jak pro tranzistor, tak i pro ladici diodu. Napětí je stabilizováno dvěma diodami 7NZ70 (obr. 6). Protože zdroj je velmi málo zatížen, může Zenerovými diodami těži proud tak malý, aby pracovní bod diod byl asi o 6 až 7 mA nad ohýbem charakteristiky. Obvykle výhovní proud asi 20 mA (je určen odporem  $R$ ). Při nastavování zdroje postupujeme

tak, že odpor  $R$  nahradíme trimrem 1 k $\Omega$ , do série s diodami zapojíme miliampérmetr s rozsahem 60 mA a trimrem nastavíme proud 20 mA. Nastavený odpor trimru změříme a trimr nahradíme pevným odporem (0,25 až 0,5 W).

Stabilizované napětí 15 V pro tranzistor získáme na jedné diodě. Stabilizované napětí 2 až 28 V slouží k ladění zesilovače. Horní mez +28 V nastavíme odporem  $R_H$  (1 k $\Omega$ ) při maximálním napětí na běžci potenciometru. Dolní mez +2 V nastavíme odporem  $R_D$  (1 k $\Omega$ ) při minimálním napětí na běžci potenciometru. Změnou napětí na kapacitní diodě se mění její kapacita v opačném poměru. To znamená, že při napětí +28 V je rezonanční kapacita nejmenší a tudíž zesilujeme horní mez pásmo (790 MHz), při napětí +2 V je rezonanční kapacita největší a zesilujeme proto dolní mez pásmo (470 MHz)..

#### Uvedení do chodu a nastavení zesilovače

Po kontrole zapojení zkонтrolujeme, zda zdroj dává napětí správné velikosti a polarity. Napětí pro tranzistor může být v mezích 14 až 16 V. Napětí pro ladici diodu musí být regulovatelné od +2 do +28 V. K zesilovači připojíme zem a +15 V. Odpor  $R_2$  nahradí-

me trimrem 50 k $\Omega$  a nastavíme proud kolektoru na 4 až 5 mA. Nyní zkontrolujeme ladící obvod diody. Přes miliampérmetr (na rozsahu 3 mA) připojíme ladící napětí. Potenciometrem  $R_L$  nastavíme největší napětí. Miliampérmetr nesmí ukázat žádný proud (diódou teče pouze zbytkový proud, při +28 V maximálně 0,1  $\mu$ A). Teče-li diodou proud řádu miliampér, je dioda zapojena opačně. Při nesprávném zapojení se diodou nic nestane, neboť ji chrání odpor  $R_3$  (propustí proud maximálně 5 mA).

Nyní můžeme zesilovač připojit k televizi či konvertoru. Na televizním přijímači vyladíme vysílač na horním kraji pásm a laděním zesilovače jej vyladíme na nejlepší kvalitu zvuku i obrazu. Nejlépe vyhoví vysílač na konci pásm (790 MHz). Laděním zesilovače musíme vysílač „přejet“ to znamená, že musíme nalézt nejlepší obraz i zvuk, který se dalším laděním zhorší – toho dosáhneme zvětšením nebo zmenšením kapacity kondenzátoru  $C_2$ . Stejně postupujeme na spodní hranici pásm. Pak vyladíme libovolný slabý vysílač a kondenzátorem  $C_1$  jej nastavíme na nejlepší kvalitu obrazu i zvuku. Jsou-li veškeré televizní signály přibližně stejně úrovně, naladíme kondenzátor na střed přijímaného pásm. Zesilovač nastavujeme s přišroubovaným víkem.

## Digitální měřítko tranzistorů

Ke kontrole stavu tranzistorů se běžně používají zkoušecí nebo měřítko tranzistorů. Zatímco zkoušecí mohou hodnotit pouze stav přechodů nebo zesilovací schopnost tranzistorů, mohou měřítko spojít i různé parametry tranzistoru, např.  $h_{FE}$ , zbytkové proudy  $I_{CO}$  nebo jiné parametry. Zkoušecí bývají jednoduché, měřítko však obvykle vyžaduje pracné nastavování.

Ze snahy o zjednodušení a zrychlení měření vznikla konstrukce měřiců popsaných v článku. Splňují požadavky běžné kontroly tranzistoru před jeho zapojením do obvodu. Zachovávají si jednoduchost zkoušecí, přičemž však mohou po předchozí funkční kontrole měřit přibližně i velikost stejnospěrného zesilovacího činitele  $B$ . Oba měřítko nepoužívají měříci přístroj. U prvního se k měření činitele  $B$  používá oceňovaná stupnice potenciometru, na níž se čte při rozsvícení indikační žárovky. U druhého se k indikaci používá žárovkové tablo. Jedna z devíti žárovek se při měření rozsvítí a označí tak rozsah, do něhož „spadá“ velikost činitele  $B$  měřeného tranzistoru. Oba měřítko jsou vhodné především k měření křemíkových tranzistorů. Indikační obvod je osazen lineárním integrovaným obvodem MAA125.

#### Popis měřicí metody činitele $B$

Zapojení, jímž lze měřit velikost zesilovacího činitele  $B$ , je na obr. 1. Měřený tranzistor je zapojen ke zdroji kolektového proudu přes kolektorový a emitorový odpory. Oba jsou stejně velikosti, takže při měření tranzistoru opačně vodivosti postačí pouze zaměnit vývody kolektoru a emitoru. Ze symetrického děliče se vede proud do báze přes proměnný odpór  $R_3$ . Dělič je symetrický proto, aby při daném nastavení  $R_3$  tekl do báze stejný proud při obou vodivostech měřeného tranzistoru. Na běžec



Obr. 6. Zdroj k zesilovači. Odpor  $R$  volime tak, aby diodami tekl proud asi 20 mA. Odporem  $R_H$  nastavíme maximální napětí 28 V. Odporem  $R_D$  nastavíme minimální napětí 2 V



Obr. 1. Princip měření činitele  $\beta$



Obr. 2. Pracovní charakteristika indikačního obvodu

lektorový proud. Je-li proud báze úměrný především nastavení proměnného odporu

$$I_B \sim R_b \text{ je } I_B \approx \frac{I_{C1}}{B};$$

je-li  $I_{C1} = \text{konst}$   
je i

$$B \sim k_1 R_b,$$

kde  $k_1$  je konstanta, závislá na napětí na odporu báze  $R_b$  a proudu  $I_{C1}$ .

Za těchto podmínek lze měřit činitele  $B$  měřením odporu, nastaveného na  $R_3$  ( $R_b$ ). Prakticky to znamená, že lze přímo cejchovat stupnice proměnného odporu v údajích činitele  $B$ . K ocejchování je třeba znát funkční závislost odporu  $R_b$  na velikosti činitele  $B$ . Při určování této závislosti je třeba uvažovat jednak vznik záporné zpětné vazby na emitorovém odporu měřeného tranzistoru, a jednak velikosti napětí báze-emitor měřeného tranzistoru. Dospějeme pak k závislosti:

$$R_b = B \frac{\frac{U_z}{2} - U_{BE} - U_{r1}}{I_{C1}},$$

kde  $U_z$  je napětí napájající dělič (5,8 V),  $U_{BE} = 0,3$  V pro tranzistory Ge a 0,6 V pro tranzistory Si a  $U_{r1} = 0,65$  V je „otevřací“ napětí indikačního obvodu.

Uvážíme-li, že měříme převážně křemíkové tranzistory a zvolíme-li  $I_{C1} = 10$  mA, zjednoduší se potom vztah na:

$$R_b = 0,16B \quad [\text{k}\Omega; -].$$

Pro praktické použití by nebylo vhodné nastavit  $I_{C1} = I_{C2}$ . Nastavíme proto  $I_{C2} > I_{C1}$  podle potřeby až po ocejchování.

Tento způsob měření má několik výhod. Hlavní výhodou je, že odpadá nutnost nastavování pracovního bodu tranzistoru. Zesilovací činitel se měří při relativně velkém kolektorovém proudu. Tím se vyloučí nelineární závislost činitele  $B$  na kolektorovém proudu, i podíl zbytkového proudu u germaniových tranzistorů. V zapojení podle obr. 1 se měří vlastně střední hodnota činitele  $B$  v oblasti od 0 do 10 mA. Měření prokázala, že rozdíl mezi zesilovacím činitelům



Obr. 4. Zapojení měřicího tranzistoru, varianta „A“

lem, měřeným střídavým napětím a v zapojení podle obr. 1 je zanedbatelný.

#### Zapojení indikačního obvodu

Indikační obvod původní konstrukce je na obr. 3. Zapojení je osazeno  $IO$ , MAA125, a tranzistorem  $T_1$ , KC508, je jednoduché a snadno reproducovatelné. Zárovka se spíná bez hystereze a zakmitávání.

Obvod MAA125 se otevírá při napětí asi 0,65 V mezi vývody 1 a 2 (toto napětí je nezávislé na typu  $IO$ ) a rozsvítí se indikační žárovka. Proudové „zpoždění“ vypnutí indikátoru je určeno nastavením děliče. Při dosažení  $U_{BE} = -0,6$  V na tranzistoru  $T_1$  se totiž zkratuje napětí, otevřející  $IO$ , a ten se uzavře. Obě přepínací úrovně je možno nastavit, úroveň při otevření  $IO_1$  není však třeba většinou nastavovat. Kondenzátor  $C_1$  zabrání zakmitávání při přepínání. S uvedenými součástkami spíná indikátor při proudu 10 mA a výpíná při 10 až 50 mA.

#### Funkční kontrola měřeného tranzistoru

Před měřením tranzistoru se kontroluje, zda nemají zkrat elektrody C-E, zda nemá velký zbytkový proud a zda je schopný zesilovat. Zkrat se určí tak, že se báze měřeného tranzistoru odpojí. Indikační obvod se při přepnutí přepínače  $P_{2a}$  změní na prahový spínač. Spínací proud je asi 2 mA. Tak lze i u Ge tranzistorů indikovat kromě zkratu i případný velký zbytkový proud.

Při funkční kontrole je zapojen obvod opět jako prahový spínač. Do báze se přivede proud 1,3 mA přes omezovací odpory. Je-li tranzistor v pořádku, pak musí obvodem kolektoru těci proud větší než 2 mA. Je-li tranzistor v pořádku, rozsvítí se indikační žárovka. Úprava zapojení pro funkční kontrolu

tranzistoru je zřejmá z obr. 4 a 5. V zapojení na obr. 4 se jako  $P_{2a}$  využívá spínače potenciometru. V zapojení na obr. 5 je použito volné „patro“ přepínače  $P_{2a}$ .

#### Zapojení „A“

Zapojení jednoduchého měřicího tranzistoru s jednou indikační žárovkou je na obr. 4. Zapojení je prakticky stejné jako zapojení, popisované při výkladu principu měřicí metody. K měření činitele  $B$  se používá ocejchovaný proměnný odpór. Údaj činitele  $B$  se čte na stupnici při rozsvícení indikační žárovky. Rozsah měření činitele  $B$  je 10 až 1 000. Použije-li se jako proměnný odpór logaritmický potenciometr, odpovídá každé dekádě činitele  $B$  stejný úhel pootočení běžeče potenciometru. Je tedy možné měřit tranzistory s malým  $B$  se stejnou přesností, jako s velkým  $B$ .

Stupnice se cejchuje ohmmetrem, který je schopen měřit odpor v rozsahu 1 k $\Omega$  až 1 M $\Omega$ . V nouzi je možné použít i voltampérhou metodu. Při cejchování zapojíme ohmmetr mezi začátek dráhy potenciometru a běžec. Jednotlivým činitelům  $B$  odpovídají tyto odpory:

| $B$   | $R_7$ [k $\Omega$ ] |
|-------|---------------------|
| 10    | 1,6                 |
| 20    | 3,16                |
| 50    | 7,9                 |
| 100   | 16                  |
| 200   | 31,6                |
| 500   | 79                  |
| 1 000 | 160                 |

Údaje vycházejí ze vztahu

$$R_7 = 0,16B \quad [\text{k}\Omega; -].$$

Toto cejchování platí samozřejmě pouze pro odpory a napětí podle obr. 4



Obr. 5. Digitální měřicí tranzistor  
(Kontakty od 3. do 11. polohy u  $P_{2a}$  mají být spojeny)

(např. při jiném Zenerově napětí je nutno přepracovat vztah mezi činitelem  $B$  a odporem  $R_b$  (zde  $R_7$ ) podle úplného vzorce uvedeného na začátku článku). Po cejchování stupnice nasuneme do svorek libovolný proměnný tranzistor. Přepínač  $P_1$  přepneme do polohy, odpovídající polaritě měřeného tranzistoru.  $P_1$  nastavíme na doraz k zápornému pólu zdroje. Je-li tranzistor dobrý, pak se rozsvítí žárovka (je-li  $R_7$  v poloze, odpovídající menšímu činiteli  $B$ , než jaký má měřený tranzistor). Při rovnosti obou údajů žárovka zhasne. Pootáčením  $P_1$  potom nastavíme indikační obvod tak, aby žárovka svítila pouze v rozsahu okolo skutečného činitela  $B$ . Je nutno volit kompromis mezi přesností a pohodlností měření. Je-li indikační obvod nastaven tak, že se žárovka rozsvítí pouze v úzké oblasti, může se stát, že by se při rychlém otáčení běžce  $R_7$  rozsvícení mohlo přehlédnout.

Při vypnutém spínači potenciometru je odpojená báze měřeného tranzistoru. a citlivost indikačního obvodu se zvětší na  $I_{C1} = 2$  mA. Indikační obvod funguje jako prahový spínač. Tehdy je možno kontrolovat, zda tranzistor nemá zkrat kolektor-emitor nebo zda nemá velký zbytkový proud. Funkční kontrola tranzistoru je vyneschána, neboť se činitel  $B$  (v tomto zapojení) měří spojité.

Deska s plošnými spoji indikátoru je na obr. 6. Ostatní součástky jsou umístěny mimo desku.

#### Zapojení „B“

Zapojení „B“ se od zapojení „A“ poněkud liší. Zatímco v zapojení „A“ bylo možné měřit velikost činitela  $B$  spojité, je v zapojení „B“ možné zařadit tranzistor do určitého rozsahu  $B$ . Rozsah je celkem devět. Dolní hranice měřícího rozsahu je vždy 1,6krát menší než horní hranice. Zvolíme-li čtyři rozsahy činitela  $B$  na dekádu, dostaneme rozsahy měření  $B$

|            |               |
|------------|---------------|
| 16 až 25,  | 100 až 160,   |
| 25 až 40,  | 160 až 250,   |
| 40 až 63,  | 250 až 400,   |
| 63 až 100, | 400 až 630,   |
|            | 630 až 1 000. |

Každý rozsah vyžaduje samostatný odpor v přívodu k bázi a samostatnou indikační žárovku. Žárovky jsou umístěny v řadě vedle sebe na světelném tablu. Po rozsvícení je vždy čitelný měřicí rozsah. V tomto případě jde tedy vlastně o jakousi digitální indikaci nebo digitální měření zesilovacího činitela  $B$ . Indikační obvod je nastaven tak, aby se žárovky rozsvítily tehdy, je-li činitel  $B$  tranzistoru na dolní hranici měřicího rozsahu a zhasnaly při měření tranzistoru se zesilovacím činitelem  $B$  na horní hranici měřicího rozsahu. Z praktických důvodů je vhodné nastavit hranice spínání indikačního obvodu tak, aby se dosáhlo mírného překryvání rozsahů. Je pak možné klást menší nároky na přesnost odporů v bázi měřeného tranzistoru.



Obr. 6. Deska s plošnými spoji Smaragd F54

storu. Je-li činitel  $B$  na hranici dvou rozsahů, je jeho velikost indikována rozsvícením indikačních žárovek ve dvou po sobě následujících rozsazích.

Pro praktickou konstrukci je přístroj poněkud obtížnější než přístroj z obr. 4. Indikační obvod je na desce podle obr. 6. Konstrukce celého přístroje je zřejmá z fotografií (obr. 7 a 8). Bázové odpory jsou umístěny přímo na přepínači rozsahů. Na čelní stěně je umístěno 11 indikačních žárovek v řadě vedle sebe. Před žárovkami je na průsvitném papíře stupnice a označení žárovek pro funkční zkoušky tranzistoru. Vpravo je v přístroji umístěn sítový zdroj. Objimka pro měřený tranzistor je umístěna uprostřed na čelním panelu. Po levé straně je přepínač polarity napětí pro měřený tranzistor a po pravé straně je síťový spínač.

Při měření neznámého tranzistoru přepínačem měříme postupně z levé krajní polohy do pravé krajní polohy. V pravé levé krajní poloze  $P_2$  se žárovka rozsvítí tehdy, má-li tranzistor zkrat kolektor-emitor nebo je-li špatná polarita napájecího napětí. Svítí-li indikační žárovka v obou polohách  $P_2$ , je tranzistor vadný.

V další poloze je možné kontrolovat, zda je tranzistor schopen zesilovat. V kladném případě se rozsvítí druhá indikační žárovka. V dalších polohách  $P_2$  je možné při postupném přepínání zjistit přibližnou velikost proudového zesilovacího činitela  $B$ . Velikost zesilovacího činitela je indikována rozsvícením indikační žárovky příslušného rozsahu  $B$ . Pro úplnost je nutné dodat, že toto zapojení měříce umožňuje měřit velikost zesilovacího činitela i v inverzním zapojení, tj. v zapojení, kdy kolektor a emitor měřeného tranzistoru jsou vzájemně zaměněny. Měření v tomto zapojení je možné po přepnutí přepínače do obrácené polarity. Velikost činitela  $B$  však bývá až desetkrát menší a nemusí být proto v použitých rozsazích indikována.

Cejchování přístroje spočívá v nastavení  $P_1$ . Pro ocejchování je nutné mít k dispozici tranzistor se zesilovacím činitelem na některé hranici použitých rozsahů. U popisovaného zapojení tedy např. s  $B = 16, 25, 40$  atd. Takový tranzistor způsobí rozsvícení žárovek ve dvou po sobě následujících rozsazích  $B$ . Má-li tedy měřený tranzistor  $B = 63$ , rozsvítí se žárovka na rozsahu 40 až 63 a 63 až 100. Rozsvícení žárovky na rozsahu 63 až 100 je dán volbou celkového odporu mezi vývody 1–2 integrovaného obvodu. Při přepnutí na rozsah 40 až 63 je však třeba nastavit indikační obvod trimrem  $P_1$  tak, aby se žárovka na tomto rozsahu právě rozsvítovala. Nastavení horního rozsahu se tím samozřejmě nemění. Tranzistory s činitelem  $B$  uvnitř některého z použitých rozsahů budou indikovány rozsvícením žárovky tohoto rozsahu. Po nastavení trimru jsou již nastaveny všechny rozsahy.

#### Závěr

Obě popisovaná zapojení měřiců vznikla ze snahy o usnadnění a zrychlení běžného měření tranzistorů. Tato výhoda bude jistě převažovat i nad poměrně malou pořizovací cenou. Měřic v zapojení „B“ se vyplatí především při častém měření většího množství tranzistorů.

#### Rozpiska součástí

##### Zapojení „A“ i „B“

###### Odpory

|              |                                        |
|--------------|----------------------------------------|
| $R_1, R_2$   | 100 $\Omega$ , 0,125 W                 |
| $R_3$        | 470 $\Omega$ , 0,125 W                 |
| $R_4$        | 68 $\Omega$ , 0,125 W                  |
| $R_5$        | 2,2 k $\Omega$ , 0,125 W               |
| $R_6, (R_b)$ | viz text                               |
| $R_7$        | 15 $\Omega$ , 0,5 W                    |
| $P_1$        | odporový trimr 470, popř. 100 $\Omega$ |

###### Kondenzátory

|       |                                                                    |
|-------|--------------------------------------------------------------------|
| $C_1$ | 10 nF/40 V, keramický, přívody zkrátit na 10 mm a pájet na objimku |
| $C_2$ | 200 $\mu$ F/6 V                                                    |
| $C_3$ | 1 000 $\mu$ F/15 V                                                 |



Obr. 7. Vnější vzhled přístroje



Obr. 8. Vnitřní uspořádání přístroje z obr. 5

|                                                         |                      |
|---------------------------------------------------------|----------------------|
| <i>Položení</i>                                         | <i>1NZ70 (5,8 V)</i> |
| <i>D<sub>1</sub></i>                                    | <i>KY701</i>         |
| <i>T<sub>1</sub></i>                                    | <i>KC508</i>         |
| <i>IO<sub>1</sub></i>                                   | <i>MAA125</i>        |
| <i>Z<sub>1</sub></i> až <i>Z<sub>11</sub></i> , zárovky | <i>6 V/50 mA</i>     |

| Zapojení "B"                 |
|------------------------------|
| $R_6$ 470 $\Omega$ , 0,125 W |
| $R_9$ 1,6 k $\Omega$         |
| $R_{10}$ 2,5 k $\Omega$      |
| $R_{11}$ 3,9 k $\Omega$      |
| $R_{12}$ 6,3 k $\Omega$      |
| $R_{13}$ 10 k $\Omega$       |
| $R_{14}$ 16 k $\Omega$       |
| $R_{15}$ 25 k $\Omega$       |
| $R_{16}$ 39 k $\Omega$       |
| $R_{17}$ 63 k $\Omega$       |
| $R_{18}$ 100 k $\Omega$      |

## Měření krátkých světelných záblesků

Chceme-li měřit velmi krátké světlé záblesky s větší přesností, neobejdeme se bez nákladného čítače. Ale kdo z amatérů má v současné době digitální čítač? Tak se hledají jiné cesty, jiné metody. Jde především o měření expoziční doby fotografických závěrek, o určení intenzity fotografické výbojky nebo jiného krátkodobého záblesku apod.

Přístroje tohoto druhu jsme měli možnost vidět na výstavě Interkamera - švýcarský přístroj změřil expoziční dobu uzávérky aparátu a výsledek ukázal na stupnici. Japonský přírůční expozimetr přímo ukázal na měřidle směrné číslo fotografického blesku po jeho odpálení. Bohužel se mi nepodařilo podívat se těmto opravdu zajímavým přístrojům, na „střeva“, v zahraniční literatuře jsou však popsány různé podobné přístroje, které to umí také. Uvedené přístroje nejsou komplikované, největší potíž je s cejchováním. Jsou v podstatě dvě cesty: buď cejchovat pomocí přesného čítače a jiných drahých laboratorních přístrojů, nebo zkusmo srovnáváním známých veličin a výsledky zaznamenávat buď na stupnici měřicího přístroje, nebo v tabulce.

Pro přesné výsledky měření je důležité, aby postupy měření byly vždy stejné (např. žárovka v krytu podle obr. 1 bude vždy stejná, její vzdálenost od objektivu konstantní, a sonda bude umístěna v krytu přesně v rovině filmu). Pro měření blesků platí, obdobně: stejná vzdálenost a stejně prostředí (měřit můžeme záblesk kolmo nebo odraz).

A nyní k otázce sondy. V zásadě je možné použít všechny druhy fotoelektrických prvků, tj. fotodiody, foto-tranzistory nebo fotoodpory. U po- psaných zařízení měl vyzkoušel všechny druhy, jako nejvýhodnější se jevily foto-tranzistory KPT 01.

Světlocitlivý prvek umístíme do vhodné černé trubičky do hloubky 3 až 5 cm, aby okolní světlo nemohlo dopadnout na citlivou plošku. Je výhodné použít i optickou soustavu. Křemíkový fototranzistor KP101 je již opatřen optikou a katalog n. p. Tesla ho uvádí jako křemíkovou fotonku pro spinaci účely. Kolektor KP101 je označen tečkou.



Obr. 1. Konstrukční uspořádání při měření



Obr. 3. Jednodušší přístroj k měření krátkých světelných záblesků

s malým zbytkovým proudem - z dosažitelných typů to jsou tantalové kondenzátory. Pro delší osvětlovací časy budou zařazeny kondenzátory s větším

Obr. 2. Zařízení k měření krátkých světelných záblesků



Zařízení na obr. 2 může sloužit k uvedeným účelům. Při osvětlení čidla ( $T_1$ ) se otevřou tranzistory  $T_2$  i  $T_3$ , přičemž proud, určený polohou přepínače  $P_1$ , protéká  $T_3$ . Kondenzátor  $C_1$  se za krátkou dobu nabije na určité napětí, které je úměrné době osvětlení  $T_1$ . Napětí na kondenzátoru se vybíjí velmi pomalu (časová konstanta je asi 10 vteřin) a tento čas stačí k přečtení údaje. Odpovorový trimr  $R_9$  a dioda  $D_1$  kompenzují úbytek napětí na  $T_4$  a  $T_5$ . Před každým měřením zkratujeme kondenzátor  $C_1$  tlačítkem  $T_1$ , aby neměl žádné napětí. Přepínač  $P_1$  připojuje v poloze I na emitor  $T_3$  malé odpory, čímž zabezpečí rychlejší nabítí kondenzátoru – proto slouží k měření kratších časů. Poloha II s většími odpory slouží k prodloužení nabíjecí doby kondenzátoru, proto ji použijeme při relativně déle trvajících záblescích nebo delších expozičních dobách. Stejného jevu by bylo možné dosáhnout i bez použití přepínače, v tom případě by však bylo třeba zmenšovat citlivost měřidla.

Přístroj je napájen stabilizovaným napětím přímo ze sítě, proto věnujeme zvýšenou pozornost bezpečnosti před nebezpečným dotykem.

Obdobné, avšak poněkud jednodušší zařízení je na obr. 3. V podstatě pracuje na stejném principu jako zařízení na obr. 2, jen indikace je vyřešena odlišným způsobem. Během osvětlení  $T_1$  se nabije jeden z kondenzátorů  $C_1$  až  $C_3$  a na tomto kondenzátoru měříme napětí. Bylo by výhodné použít kondenzátory

. kapacitou, pro kratší časy s menší kapacitou. Protože napětí na kondenzátoch je úměrné době osvětlení, poměr kapacit kondenzátorů určuje také poměr osvětlovacích časů. Měřidlo má rozsah na plnou výchylku asi 10 V (podle toho, jaké napětí stabilizuje  $D_3$ ). Diody  $D_1$  a  $D_2$  slouží ke zpomalení vybijení kondenzátorů, které ztrácejí náboj jen vlastními ztrátami. Na místě  $T_2$  a  $T_3$  je v zásadě možné použít i germaniové typy,  $T_4$  by měl však být křemíkový tranzistor.

## Literatura

Electronic engineering, duben 1971.  
Toute l'Électronique, prosinec 1969.

• • •

Speciální barevný papír, na němž lze současně zaznamenat až tři snímané průběhy u vícekanálového osciloskopu se světelným paprskem v různých barvách, vyvinuli pracovníci Státního výzkumného ústavu fotochemického průmyslu v Leningradě. Fotografický papír obsahuje dvě na sobě uložené fotocitlivé vrstvy s rozdílnou citlivostí. Odlišný záznam snímaných průběhů je nutný tehdy, když se a překrývají-li se snímané křivky. Ze záznamu na novém papíru je pak snadné určit, která křivka přísluší snímanému kanálu. Záznamy mají dobu života několik let.

*Podle MIA*

# ŠKOLA amatérského vysílání

## Charakteristiky elektronek

V jednom z předcházejících odstavců jsme se zběžně seznámili s třídami zesičovaců. K lepšímu pochopení budou následující odstavce věnovány charakteristikám elektronek.

Prozatím necháme elektronku, pro jednoduchost triodu, pracovat vždy jen v oblasti záporného napětí na řidící mřížce (takže neteče mřížkový proud). Spojime-li nyní mřížku s katodou, proud roste se změnou anodového napětí obdobně jako u diody. Přivedeme-li na mřížku záporné napětí, bude anodový proud při stejném anodovém napětí menší. Měříme-li opět závislost anodového proudu na anodovém napětí, dostáváme podobnou křivku jako pro nulové napětí na mřížce, jenže posunutou vpravo. Pro různá napětí řidící mřížky dostáváme skupinu křivek, kterým říkáme anodové charakteristiky (obr. 1).



Obr. 1. Anodové charakteristiky elektronky

Změříme-li obdobným způsobem závislost anodového proudu na napětí řidící mřížky při stálém anodovém napětí, dostaneme mřížkové charakteristiky (obr. 2).



Obr. 2. Mřížkové charakteristiky elektronky

## Mřížkové charakteristiky

Úvahy o činnosti elektronek jsou mnohem názornější, znázorníme-li si děje v grafických závislostech jednotlivých veličin na charakteristikách. Názornější bývá mřížková charakteristika. Anodová však dává lepší přehled o pochodech v elektronce i o jejích charakteristických veličinách.

Pro jednoduchost budeme uvažovat zesilovač třídy A. Napětí řidící mřížky se tedy musí pohybovat mezi bodem zániku anodového proudu a mezi bodem, kdy začíná teči mřížkový proud. Obvykle zesilujeme střídavé napětí, které probíhá podle sinusovky. Aby kladná půlvlna nevyvolala mřížkový proud, posuneme klidový pracovní bod do středu přímkové části mřížkové charakteristiky přivedeným záporným napětím, tzv. předpětím.

Na obr. 3 je znázorněno zesilování střídavého napětí o periodě  $T$ . Ke kaž-



Obr. 3. Zesilení střídavého napětí

dé okamžité hodnotě napětí na mřížce můžeme z charakteristiky zjistit příslušný anodový proud. Postupným časově rozvinutým zobrazením jednotlivých bodů napětí na mřížce dostaneme obraz anodového proudu. Vidíme tedy, že změny budicího napětí vyvolávají změny anodového proudu, jejichž časový průběh je zcela obdobný jako průběh změn napětí na řidící mřížce.

## Charakteristické veličiny elektronek

Zvěříme-li u elektronky záporné mřížkové předpětí o 1 V, zmenší se anodový proud o několik mA. Číslo, které udává o kolik mA se změní anodový proud při změně napětí řidící mřížky o 1 V, se nazývá strmost; označuje se  $S$ . Z mřížkové charakteristiky vidíme, že při velkém záporném předpětí je strmost malá a postupně roste.

Podíváme-li se na anodovou charakteristiku, vidíme, že s rostoucím anodovým napětím roste i anodový proud. Můžeme tedy definovat i vnitřní odpor elektronky  $R_i$  (v k $\Omega$ ) jako změnu napětí potřebnou ke zvětšení anodového proudu o 1 mA. Při malém anodovém proudu je ke zvětšení proudu zapotřebí větší změny anodového napětí než při větším proudu. Vnitřní odpor elektronky je tedy při malých anodových proudech větší, než při větším proudu. Máme-li dvě mřížkové charakteristiky, vypočteme vnitřní odpor elektronky, dělme-li rozdíl anodových napětí mezi oběma charakteristikami rozdílem proudu pro totéž mřížkové předpětí (obr. 4).

Z anodových charakteristik je možno zjistit, o kolik voltů musíme změnit anodové napětí, změní-li se mřížkové napětí o 1 V, aby elektronku tekl stejný proud. Toto číslo nazýváme zesilovacím činitelem elektronky a označujeme je  $\mu$  (obr. 5).



Obr. 4. Zjištění charakteristických veličin elektronky z mřížkových charakteristik



Obr. 5. Zjištění charakteristických veličin elektronky z anodových charakteristik

Pro základní veličiny elektronek platí jednoduchá rovnice (zvaná Barkhauzenova):

$$\mu = S R_i$$

Zesilovací činitel se rovná součinu strmosti a vnitřního odporu.

## Anodové charakteristiky

Jak již bylo uvedeno v předcházejících odstavcích, dostáváme pro různá napětí řidící mřížky křivky, které znázorňují závislost anodového proudu na anodovém napětí. Velmi jednoduše můžeme zjistit zesilovací činitel jako vzdálenost dvou sousedních charakteristik ve voltech při odstupu mřížkového napětí o 1 V. Svislá vzdálenost dvou anodových charakteristik je strmost. Čím prudší je vzestup proudu v závislosti na anodovém napětí, tím menší je vnitřní odpor.

Nyní si ozfějme, jak se budou veličiny měnit, zařadíme-li do anodového obvodu odpor. Při velkém mřížkovém předpětí klesne anodový proud až na nulu a na anodě je takové napětí, jaké dává anodový zdroj. Na odporu nevzniká žádná ztráta. V druhém případě, kdy na elektronce je nulové napětí, teče elektronkou proud rovný napětí zdroje dělenému odporem zařazeným v anodě. V tomto případě elektronka nezesiluje.

Pracovní čára v anodových charakteristikách je tedy jednoduchá přímka, kterou lze snadno přenést i do mřížkových charakteristik. Vidíme na ní, o kolik voltů se změní anodové napětí, změní-li se napětí mřížky o 1 V; tj. napěťové zesilení (obr. 6).



Obr. 6. Zakreslení pracovního odporu a určení zesilení z anodových charakteristik

Jakými zásadami se řídíme při stavbě výkonových výf zesilovačů?

Výkonové zesilovače pracují se vstupním a výstupním obvodem, laděným na stejný pracovní kmitočet. Proto, i když vazba mezi oběma obvody je potlačena na minimum, zesilovač může oscilovat. Konstrukce a zapojení mřížkového a anodového obvodu musí být takové, aby bylo zabráněno nežádoucí vzájemné vazbě. Doporučuje se úplné stínění mezi vstupním a výstupním obvodem. Všechny vysokofrekvenční spoje je nutno dělat co nejkratší a zvláště



Obr. 7. Indikátor vysokofrekvenčního napětí

pozornost je nutno věnovat výf uzemnění anodového a mřížkového rezonančního obvodu na katodu elektronky. Nejlepší způsob je, když přívod od katody k zemi a anodový obvod jsou na stejně straně šasi nebo jiného stříšení. „Zivý“ přívod od mřížkového obvodu je vhodné k objímce protahnout otvorem ve stříšení. Je-li uzemněn ladicí nebo blokovací kondenzátor, není třeba zpětný vodič ke katodě. Zde nedochází k vazbě mezi obvody si můžeme ověřit tak, že zapojíme budici stupeň, mřížkový obvod naladíme do rezonančního stavu a na anodový obvod navážeme vysokofrekvenční indikátor (obr. 7). Zesilovač elektronky máme výjmutu z objímky. Výstupní obvod naladíme na maximální výklyku indikátoru. Úprava uspořádání obvodů (případně stříšení) ukáže, může-li být vzájemná vazba obvodů ještě zmenšena.

#### Neutralizační obvody u vícemřížkových elektronek

Kapacita anoda - řídící mřížka je u elektronek se stříškou zmenšena na zlomky pikofaradu. Avšak výkonová citlivost těchto elektronek je tak velká, že i nepatrná zpětná vazba způsobí vznik oscilací. Aby byl zesilovač stabilní, je zpravidla nutno zatížit mřížkový obvod nebo zesilovač neutralizovat. Na obr. 8 je schéma mřížkového neutralizačního obvodu. Obvod se



Obr. 8. Mřížkový neutralizační obvod  
 $C_1$  - mřížkový blokovací kondenzátor 1 nF  
 sítový nebo keramický  
 $C_2$  - neutralizační kondenzátor, 2 až 10 pF

neutralizuje nastavením neutralizačního kondenzátoru  $C_2$ .

Platí:  $C_2 : C_1 = C_{ga} : C_{gk}$ ,  
 kde  $C_{ga}$  je kapacita mřížka - anoda a  
 $C_{gk}$  kapacita mřížka - katoda.

Kapacita mřížka - katoda musí zahrnovat i kapacitu spojů, kapacitu statoru ladicího kondenzátoru vzhledem k zemi, případně u kapacitně vázaných stupňů i výstupní kapacitu budici elektronky.

#### Jak nastavíme neutralizaci

Ke správnému nastavení neutralizace jsou nejvhodnější dvě metody. Pracujeme-li elektronku bez mřížkového proudu, musíme použít citlivý výstupní indikátor. V případě mřížkového proudu může být jeho indikace použita k nastavení neutralizace. Použijeme-li výstupní indikátor, musíme odpojit stejněmerně napětí od stříšky mřížky a anody. Použijeme-li indikace podle mřížkového proudu, stačí odpojit napětí

od stříšky mřížky. Její napětí musí být nulové.

Úkolem neutralizačního pochodu je zmenšení budicího napětí, přiváděného prostřednictvím kapacity mřížky - anoda na výstupní obvod, na minimum. Toho dosáhneme přesným nastavením neutralizačního kondenzátoru. Indikátor při správně neutralizovaném zesilovači ukazuje minimum.

V případě čtení na indikátoru mřížkového proudu má mít ladění nezatíženého anodového obvodu minimální vliv na změny proudu. Při neutralizaci podle mřížkového proudu postupujeme takto:

Odpojíme napětí stříšky mřížky, žhavíme elektronku a vybudíme ji, až teče mřížkový proud. Pak ladicí anodový obvod zesilovače, až dosáhneme změny mřížkového proudu. Nyní se změnou neutralizačního kondenzátoru snažíme dosáhnout takového stavu, kdy se mřížkový proud nemění. Tehdy je zesilovač neutralizován. Tento způsob neutralizace není zcela přesný. Má však tu výhodu, že jím můžeme nalézt rezonanci anodového okruhu bez anodového proudu a zesilovač přibližně neutralizovat. Definitivně nastavíme zesilovač v provozním stavu do bodu, kde současně dostaneme minimum anodového proudu a maximum proudu první i druhé mřížky.

Zvětšení mřížkového proudu při ladění anodového okruhu k vyšším kmitočtům signalizuje, že je neutralizační kondenzátor příliš malý. Je-li neutralizační kondenzátor velký, zvětší se mřížkový proud u nižších kmitočtů. Při přesné neutralizovaném zesilovači se zmenší mřížkový proud na obou stranách od rezonance.

V některých případech nemusí být neutralizační obvod použit, např. zmenšíme-li zatěžovací impedanci mřížkového obvodu. Mřížku zapojíme buď na obduku cívky, nebo můžeme zapojit odpor mezi mřížku a katodu. To ovšem vyžaduje zvýšení nároků na předcházející budici stupeň (větší výkon, větší potlačení harmonických kmitočtů).

#### Parazitní oscilace na VKV

Ve většině vysokofrekvenčních výkonových zesilovačů mohou vznikat oscilace v rozsahu VKV. Chceme-li zjistit, zda zesilovač kmitá, zkratujeme mřížkovou cívku a odpojíme anodovou zátěž. Potom při různých kapacitách vstupního kondenzátoru prolaďujeme anodový obvod. Změna mřížkového nebo anodového proudu indikuje oscilace. Tento stav může být potvrzen vlnoměrem, naladěním na kmitočet oscilací. Oscilace lze potlačit cívku o čtyřech až pěti závitech bezindukčním odporu 100 Ω/1 W v anodovém přívodu elektronky.

#### Parazitní oscilace na nižších kmitočtech

Stínění obvodů u vysílačích tetrod nebo pentod je dostatečné, aby zabránilo vzniku oscilací na nižších kmitočtech. Použití vysokofrekvenčních tlumivk v mřížkovém i anodovém obvodu může u triodových zesilovačů způsobit vznik oscilací v rozsahu středních nebo dlouhých vln. Proto je vhodné v mřížkovém obvodu používat pouze odpor o okolo 100 Ω.

#### Ladicí obvody a vazby u vysokofrekvenčních výkonových zesilovačů

Vysokofrekvenční zesilovač zesílí přiváděné budicí napětí. Je však třeba správně volit ladicí obvody a navázání

na anténu, abychom bez potíží dopravili s co největší účinností energii do zátěže, aníž by přitom docházelo k přetížení elektronky. Záteži rozumíme budoucí vedení k anténě, nebo i mřížkový obvod dalšího zesilovače. Na jeho ladicí obvodu mají vliv protichůdné faktory. Potlačení harmonických kmitočtů vyžaduje obvody s co největším  $Q$ . Přenos v širším pásmu vyžaduje naopak menší  $Q$  a těž výstupní ztráty v ladicích indukčnostech jsou menší při menším  $Q$ .

Všechny tyto požadavky vedou k volbě  $Q$  v rozmezí 10 až 20. Větší  $Q$  by způsobilo snížení účinnosti a potíže při navázání zátěže. Z diagramu na obr. 9 lze jednoduše stanovit potřebnou kapacitu pro ladicí obvod s  $Q = 10$ . Zjištěná hodnota zahrnuje i výstupní kapacitu elektronky, kapacitu spojů, případně i vstupní kapacitu, následuje-li další kapacitně vázany zesilovač.



Obr. 9. Diagram pro stanovení ladicí kapacity obvodu s  $Q = 10$

\* \* \*

Čtyři typy mikrominiaturních tantalových kondenzátorů ve válcovém nebo hranatém plastickém pouzdru uvedly na trh výrobce Sprague. Typy 182D a 183D jsou určeny pro provoz v teplotním rozsahu -55 až +125 °C, zatímco typy 188D a 189D pro provoz v mezihodnotách -55 až +85 °C. Při vnitřních rozměrech několika milimetrů se dodávají se jmenovitou kapacitou 1 nF až 220 μF pro napětí 2 až 50 V, tolerance kapacity je ±5 % nebo větší.

Spolehlivé, hermeticky těsné elektrolytické kondenzátory pro použití v průmyslové a letecké elektronice dodává Sprague pod označením 640D. Jsou určeny pro trvalý provoz při teplotě okolo -55 až ±125 °C, jejich kapacita je až 20 000 μF při napětí 6 V, popř. 160 μF při napětí 500 V. Sž

Podle podkladů Sprague

#### Využívame cuprexitové zvyšky

Z cuprexitových zvyškov nastríhame 5mm pásky, tieto napílime krízom pomocou listu z pilky na kov a pásky spájkujeme do vhodných tvarov univerzálních zapojovacích dostiček. Súčiastky umiestníme buď zo strany medenej fólie, alebo zo strany druhé. Vtedy môžeme vývody prestrčiť medzerami medzi jednotlivými páskami.

Aby boli pásky estetické, môžeme si na ich prepilovanie zhovotí šablónu vo forme hrebeňa, ktorého drážky nám slúžia ako vedenie pilky.

Jaromír Loub



# DETEKTOR S CLAPPOVÝM OBVODEM

Dr. Ivan Šolc

Clappový oscilátor a jeho modifikace jsou známé již téměř 30 let. Dosud se však neužívá výhod tohoto uspořádání v ladicích obvodech přijímačů. Proto zde přináším několik zkušeností v tomto směru.

Clappový oscilátor vznikl ze snahy vytvořit ladicné krystalové oscilátory. Protože nelze měnit v širších mezech součásti náhradního schématu daného výbrusu, nahradil Clapp výbrus přímo elektrickými prvky jeho náhradního obvodu, ovšem jen v dostupných mezech. Tím se alespoň přiblížil žádanému ideálu, stoupla kmitočtová stabilita díky vysokému  $Q$ , oscilátor je ladicný. Podrobnosti jsou dostatečně známé a zameříme se tedy přímo na naš problém.

Nic totiž nebrání přímému použití Clappovy myšlenky třeba pro mřížkovou detekci, jak je uvedeno na obr. 2. Srovnajme nejdříve obr. 1 a 2. Kmitočet Clappova oscilátoru je v podstatě určen indukčností  $L$  a sériovou kapacitou  $C_s$ , která je mnohonásobně menší než výsledná kapacita kondenzátorů  $C_{1P}$  a  $C_{2P}$ . Podle Thomsonova vztahu pro



Obr. 1. Clappový oscilátor

rezonanční kmitočet se snažíme, aby bylo žádaného kmitočtu dosaženo při co největší indukčnosti  $L$  a při minimální kapacitě  $C_s$ . Současně dbáme, aby kapacity  $C_{1P}$  a  $C_{2P}$  byly co možno velké, čímž snížíme vliv změn vnitřní kapacity elektronky na kmitočet. Obvod na obr. 2 připomíná na první pohled známé tříbodové zapojení. Skutečně tomu tak je, jen hodnoty součástek jsou zásadně jiné. Kapacita  $C_1$  představuje vlastní kapacitu cívky (která je podstatně nevyhnutelná i v zapojení na obr. 1). Kapacita  $C_2$  odpovídá sériové kapacitě  $C_s$  zapojení na obr. 1. Kapacita  $C_3$  představuje výslednou kapacitu  $C_{1P}$  a  $C_{2P}$  zapojení podle obr. 1. Pro splnění podmínky kladné zpětné vazby bylo v obr. 2 použita odbočka na cívce místo kapacitního děliče, což však není podstatný rozdíl. Zpětná vazba se řídí potenciometrem 200 kΩ.

Zjistěme nyní rozdíl mezi klasickým tříbodovým zapojením a zapojením podle obr. 2. Protože jsou kapacity  $C_1$  a  $C_2$  velmi malé, je nutno použít pro žádaný kmitočet velkou indukčnost  $L$ , která pak mívá dvojnásobný až pětinásobný počet závitů než obvykle. Předpokládejme např., že počet závitů bude trojnásobný. Indukčnost je tedy asi 9krát větší, zatímco odpor vinutí se zvětší jen třikrát. Podle známého vztahu pro výpočet činitele jakosti  $Q$ :

$$Q = \frac{\omega L}{R} \quad (1)$$



Obr. 2. Úprava Clappova obvodu pro zpětnovazební mřížkový detektor

Činitel jakosti se zvětší třikrát proti běžné úpravě. Protože však do ztrátového odporu  $R$  musíme zahrnout i další obvody, jejichž uspořádání zůstane stejné, zvětší se  $Q$  více než třikrát. Zisk se projeví výrazně i při zavedené kladné zpětné vazbě a je podstatný dokonce i při nasazené vazbě, protože obvod je od elektronky dostatečně odělen, takže jeho tlumení je jen malé.

Pokud se týká kmitočtové stability, musíme sledovat vliv změn vnitřní kapacity elektronky, která je připojena paralelně ke kapacitě  $C_3$ . Výsledná účinná kapacita  $C$ , připojená paralelně k cívce, je podle obr. 2 dána vzorcem:

$$C = C_1 + \frac{C_2 C_3}{C_2 + C_3} \quad (2)$$

Diferenciaci vzorce (2) zjistíme, jaký vliv na změnu výsledné kapacity  $\Delta C$  má změna  $C_3$ :

$$\Delta C = \left( \frac{C_2}{C_2 + C_3} \right)^2 \Delta C_3 \quad (3)$$

Rezonanční kmitočet  $f$  ladicího obvodu je dán Thomsonovým vzorcem:

$$f = \frac{1}{2\pi \sqrt{LC}} \quad (4)$$

kde  $C$  je efektivní kapacita podle vzorce (2). Označíme dále indexem  $t$  prvky příslušející běžnému tříbodovému zapo-

jení a indexem  $c$  odpovídající prvky podle obr. 2. Pro poměr indukčností zavedeme označení  $A$ :

$$A = \frac{L_c}{L_t} \quad A > 1 \quad (5)$$

Derivací rovnice (4) vyjádříme změnu kmitočtu  $\Delta f$  závislou na změně efektivní kapacity  $\Delta C$ :

$$\Delta f = \frac{-\Delta C}{4\pi \sqrt{LC^3}} \quad (6)$$

Konečně zavedeme označení  $P$  pro poměr změny kmitočtu zapojení tříbodového a zapojení podle obr. 2:

$$P = \frac{(\Delta f)_c}{(\Delta f)_t} = \frac{(\Delta C)_c}{(\Delta C)_t} A \quad (7)$$

Zavedením rovnice (3):

$$P = A \left( \frac{C_{2c} C_{2t} + C_{2c} C_{3t}}{C_{2c} C_{2t} + C_{3c} C_{2t}} \right)^2 \quad (8)$$

Volba kapacit ve vzorci (8) není náhodná, musí splňovat podmínu zachování kmitočtu podle (4), kterou můžeme psát takto:

$$\frac{C_{1t} C_{2t} + C_{1t} C_{3t} + C_{3t} C_{3t}}{C_{2t} + C_{3t}} = A \frac{C_{1c} C_{2c} + C_{1c} C_{3c} + C_{2c} C_{3c}}{C_{2c} + C_{3c}} \quad (9)$$

Poslední, málo přehledné vzorce, zjednodušíme podle obvyklých případů, kdy  $C_{3t} = 0$ . Pak je:

$$P \doteq A \left( \frac{C_{2c}}{C_{2c} + C_{3c}} \right)^2 \quad (8a)$$

Pro velmi malé kapacity  $C_{1c}$  dále platí zjednodušený vztah:

$$C_{1t} = A \frac{C_{2c} C_{3c}}{C_{2c} + C_{3c}} \quad (9a)$$

Dosazením do (8a) pak plyne

$$P \doteq \frac{1}{A} \left( \frac{C_{1t}}{C_{3c}} \right)^2 \quad (10)$$

Užijeme-li tedy v zapojení podle obr. 2 stejně kapacity  $C_{3c}$ , jako by měla ladicí kapacita  $C_{1t}$ , vychází pro poměrný vzrůst stability přímo poměr indukčností, což pro dříve uvažovaný případ vychází 9krát výhodněji pro obvod podle obr. 2. Při tom uvažovaný konkrétní příklad není zdaleka krajní možností.

Správnost uvedených úvah byla vy-



Obr. 3. Schéma jednoduchého superhetu s Clappovým ladicím obvodem v detekčním stupni

zkoušena na jednoduchém přijímači i na superhetu. V prvním případě bylo zapojení upraveno podle obr. 2, přičemž kondenzátor  $C_2$  byl hrnčkový trimr 30 pF, jímž lze nastavit kmitočet do žádaného rozsahu,  $C_3$  měl kapacitu pokusně 10 až 100 pF,  $C_1$  pak byl zapojen jako velmi malý ladící kondenzátor kapacity asi 5 pF. Tato úprava je obdobná Šeilerovu oscilátoru a je pro nás případ velmi výhodná, protože se při ladění nemění amplituda kmitů a současně se vyloučí bručení, které je těžko odstranitelné, je-li zapojen  $C_2$  na dolní konec čívky jako v obr. 1a. Byla použita elektronka ECC85, její druhá

polovina sloužila jako výstup z zesilovače. Zapojení bylo doplněno ještě dalším výstupem a vyzkoušeno na amatérských pásmech. Vzrůst selektivity byl výrazný na všech pásmech, na 1,8 MHz a 3,5 MHz bylo možné odhadnout účinnou šířku rezonanční křivky při nasazené vazbě asi na 1 kHz. Na vyšších pásmech je šířka větší, ale vzrůst selektivity i citlivosti je rovněž nápadný. V superhetu bylo uspořádáno podle obr. 2 použito jako mřížkový detektor pracující přibližně na mf kmitočtu 1,2 MHz (schéma na obr. 3). Takto upravený přijímač překvapil svou selektivitou (single signál) i citlivostí.

otvorov pre priskrutkovanie pocínať, aby sa docielil lepší spoj. Na zem vždy zapájame rotor kondenzátora. U niektorých kondenzátorov treba čiastočne zbrúsiť hlávku skrutky na uholníku ladiaceho mechanizmu, aby sa neopieraťa na montážny uholník „e“. Otočný kondenzátor v kolektorm obvode PA stupňa je priletovaný na plošné spoje pomocou štyroch drôtov o priemere 1 mm. Dva drôty sa priskrutkujú na čela kondenzátora a ďalšie dva sa prieletujú. Pred montážou treba z kondenzátora odrezat pomocnú ladiacu osku. Kondenzátor prieletujeme na pevno až po namontovaní celej dosky do šasi, aby sa docielila správna plocha ladiacej osky. Ladiaci kondenzátor  $C_{108}$  je priskrutkovaný na montážnom panelu „b“ dvomi skrutkami. Medzi panel a kondenzátor treba navliecť na skrutky dištančné podložky o výške asi 1 ÷ 2 mm. Budiaci tranzistor  $T_{23}$  je priskrutkovaný na tieniaci plech „i“ a koncový  $T_{24}$  na tieniaci plech „j“. Tranzistory sú odizolované od kostrov silíkovými fóliami. Pre dobrý odvod tepla je slúža natretá z oboch strán silikonovou vazelinou. Kryštálový filter je priletovaný pomocou troch drôtikov na plošné spoje. Prípojné body na plošných spojoch sú volené tak, aby sa na ne dal pripojiť i továrensky filter XE9-A, alebo XF9-B.

Po namontovaní všetkých troch častí do šasi doporučujem okrem priskrutkovania každú dosku aspoň v štyroch miestach prieletovať ku nosným uholníkom. Pri celej mechanickej zostave dbáme hlavne na elektrickú stabilitu a mechanickú pevnosť. Nesmieme zabúdať ani na estetickú úroveň povrchovej úpravy.

#### Popis prijímacej časti A

Signál z antény sa privádzá cez kontakt anténneho relé na potenciometer  $P_1$  cez bod 11 na výzobné vinutie  $L_2$ . Diódy  $D_1$  a  $D_2$  slúžia ako obmedzovač amplitúdy. Pomocou rezonančných obvodov  $L_3$ ,  $C_5$  a  $L_4$ ,  $C_6$  sa vyberajú potrebné signály na výstup z predzesilňovača. Obvody sa dolaďajú pomocou kapacitných diód potenciometrom  $P_3$ . Pri použití ka-

# Transistorový transceiver

## TTR - 1

William Capek, OK3CEN

#### Celkový popis konštrukcie

Transceiver obsahuje 24 tranzistorov a 19 diód. Je vystaván do plechovej skrinky zo zosilňovača MUSIC 15, výroby Vráble. Celé zariadenie je montované technikou plošných spojov na troch doskách. Každá doska tvorí samostatný celok. Doska A je časť přijímača, doska B je časť budíka a doska C časť vysielača i VFO. Budič i VFO pracujú pri prijmu i pri vysielaní. Takto zostava má tú výhodu, že každý diel možno samostatne zmontoval a hrubo nastaviť. Taktiež je možné použiť každý diel samostatne do iného zariadenia. Telieska cievok sú zapájané svojimi špičkami priamo na plošné spoje. U väčších cievok musíme pájať špičky zmačknut kombináčkami do okrúhla, aby sa vmetli do otvorov na plošných spojov. Aby kryty spadli až po plošné spoje, treba v nich zväčšiť otvory pre kostríčky, ktoré majú na konci menší priemer. Všetky kryty sú propevnené zaletovaním na zemniciacu

plošinu plošných spojov. Pomocou letovacej pasty na Al prieletujeme na každý kryt jeden drôtik o priemere 0,8 mm. Na kryt od VFO cievky prieletujeme dva drôtiky pre lepšiu mechanickú stabilitu. Drôtiky z krytov prieletujeme na plošné spoje až po úplnom zladení zariadenia a uvedení do prevádzky. Do tej doby ich len mierne zahneme. Pre otrosavou spoľahlivosť doporučujeme vložiť do krytov tenký izolačný papier. Použité relé sú typu LUN na 12 V. Vyrába ich Mikrotechna Uh. Hradište, alebo sa dovážajú od firmy Siemens. Montáž relé je prevedená priskrutkováním priamo na plošné spoje bez objímk pre zníženie prechodových odporov. Montáž ladiaceho kondenzátora pre VFO je prevedená priskrutkováním na plošné spoje. Jeden otvor so závitom na jeho kostre súhlasí s otvorom na plošných spojoch. Kondenzátor treba pripevniť najprv jednou skrutkou a pri správnej polohe označiť ďalšie dva otvory. Pred priskrutkováním kondenzátora natrvalo treba plošné spoje okolo



Obr. 1. Prijímací časť transceiveru

pacitných diód KA201, alebo KA202 treba zapojiť do série s potenciometrom odpor, nakoľko by bolo rozladenie príliš veľké. Odpor vždy zapájame z potenciometra na zem. Pri použití diód KA204 treba zapojiť vždy dve paralelne pre ich malú kapacitu. Potenciometer potom zapojíme priamo + a -. Vf napätie z kolektoru  $T_1$  sa privádzza cez kondenzátor  $C_{11}$  na tretí ladený obvod. Z vinutia  $L_7$  cez kondenzátor  $C_{12}$  sa privádzza požadovaný vf signál na bázu zmiešavača. Do tohto bodu je privádzaný aj signál z VFO. Filter zložený z kondenzátorov  $C_{14}$ ,  $C_{15}$  a  $C_{16}$  a cievok  $L_8$  a  $L_9$  slúžia pre potlačenie prípadných harmonických kmitočtov z VFO. Ak však nie sú batétné parazitné prijmy filter, môžeme vyniechať a signál z VFO priviedieme sez kondenzátorom  $C_{17}$  na bázu  $T_2$ . V tranzistore sa obidva signály zmiešajú. Obvod v kolektore zmiešavača je naložený na mf kmitočet – podľa kryštálového filtra. Z vinutia  $L_{11}$  sa odoberá signál na nízkej impedancii a viedie do väzobného vinutia v balančnom modulátore. Signál prechádza cez budič a na kryštálovom filtro sa získá potrebná selektivita. Vyfiltrovaný signál je z budiča privedený na bázu tranzistora  $T_3$  cez kondenzátor  $C_{21}$ . Posledné dva mf stupne sú zapojené v kaskóde. V kolektore tranzistora  $T_4$  je ladený obvod na mf kmitočet. Cez vinutie  $L_{13}$  je budený tranzistor  $T_5$  ďalšieho stupňa. V kolektore tranzistora  $T_6$  je opäť ladený obvod na mf kmitočet. Z vinutia  $L_{15}$  sa odoberá mf signál na product-detektor, ktorý tvoria diódy  $D_8$  a  $D_9$ . Cez kondenzátor  $C_{32}$  sa privádzza signál z BFO. Kondenzátor  $C_{33}$  a odpor  $R_{26}$  slúžia na odfiltrovanie vf zložky na demodulovanom signálu. Nf signál je privádzaný na potenciometer  $P_2$ . Z jeho bežca sa odoberá potrebné veľký signál na bázu tranzistora  $T_7$ , slúžiaceho ako nf predzosilňovač. Z kolektoru tohto stupňa je budená báza  $T_8$ , cez kondenzátor  $C_{39}$ . Tranzistor  $T_8$  budi dvojicu konkých tranzistorov  $T_9$  a  $T_{10}$ . Kondenzátor  $C_{34}$  a  $C_{40}$  slúžia na potlačenie vysokých tónov. Pracovný bod komplementárnej dvojice musíme vždy nastaviť odporom  $R_{38}$  tak, aby bol kľudový prúd tranzistorov okolo 5 mA. Na výstup prijímača zapojime reproduktor o  $Z > 4 \Omega$ . Môžeme tu však pripojiť i sluchátka. Tranzistor  $T_{11}$  má v podstate tri funkcie. Slúži ako zosilňovač pre S-meter, AVC a vf indikátor ladenia vysielača. Pro prvej funkcií sa mf signál z obvodu  $C_{28}$ ,  $L_{14}$  privádzza cez kondenzátor  $C_{30}$  na usmernenovac zložený z diód  $D_8$  a  $D_7$ . Tým, že sa privádzza na bázu  $T_{11}$  kladné usmernené napätie zodpovedajúce sile prijímaného signálu, tranzistor sa otvára. V jeho emitorovom obvode je zapojený merací prístroj, ktorý zaznamená výchylku podľa sily signálu. Z kolektoru tohto tranzistora sú napájané báze tranzistorov  $T_1$ ,  $T_2$ ,  $T_3$  a  $T_5$ . Podľa toho, ako sa tranzistor otvára, znižuje sa na jeho kolektore kladné napätie. To sa prejaví znižením kladného napäcia na bázach tranzistorov napájaných z tohto uzlu a tým i znižením ich zosilnenia. Časová konštantá AVC je určená kapacitou  $C_{37}$ . Zapojením diódy  $D_{19}$  paralelne k meraciemu prístroju sa zabráni jeho prebudeniu „za roh“ pri obzvlášť silných signáloch. Pri signáloch asi do S 8 sa dióda takmer neuplatňuje. Pri vyšších signáloch sa však tranzistor  $T_{11}$  príliš otvára a dióda začne pracovať ako bočník ku S-metru. To napomáha ešte väčšiemu zniženiu kladného napäcia



Obr. 2. Budič

na kolektore  $T_{11}$  a tým i značnému zniženiu zosilnenia vf stupňov. Podotýkam, že stupnica S-metra je vplyvom diódy  $D_{19}$  na konci značne nelineárna. Merací prístroj prakticky nezájde „za roh“. Pri vysielači tranzistor  $T_{11}$  dostáva kladné napätie z diódy  $D_{18}$  cez odpor  $R_{101}$  a odpor  $R_{25}$  odpovedajúce veľkosti vf napäcia na výstupu vysielača. Merací prístroj automaticky s prepnutia ukazuje silu prijímaného signálu a pri vysielači veľkosť napäcia na výstupu.

#### Popis budiča B

Tranzistor  $T_{12}$  pracuje ako kryštálový oscilátor nosného kmitočtu. Nosný kmitočet sa privádzza z kolektoru  $T_{12}$  cez kondenzátor  $C_{49}$  na pracovný odpor  $R_{54}$  a bežec trimra  $R_{56}$ . Z emitora  $T_{12}$  sa odoberá vf signál pre product-detektor prijímača. Bod 16 sa pri prijmu uzemňuje kontaktom b 1. Trimry  $R_{56}$  a  $C_{56}$  slúžia na potlačenie nosného kmitočtu a využívanie balančného modulátora. Tranzistor  $T_{13}$  je budený z vinutia  $L_{18}$  cez kondenzátor  $C_{59}$ . Pri vysielači je vinutie  $L_{18}$  budené z rezonančného obvodu  $L_{16}$ ,  $C_{58}$  a pri prijmu zo zmiešavača prijímača cez vinutia  $L_{17}$ . Tranzistor  $T_{13}$  pracuje ako neladený vf zosilňovač. Z kolektoru sa privádzza mf kmitočet na kryštálový filter, kde sa potlačí ne-

žiaduce postranné pásmo. Takto spracovaný signál sa viedie cez kondenzátor  $C_{55}$  na bázu  $T_{14}$ . Pri vysielači sa odoberá signál z emitoru a pri prijmu z kolektoru  $T_{14}$ . Modulátor je dvojstupňový s priamu väzbou. Z mikrofónu o  $Z < 2 \text{ k}\Omega$  sa privádzza nf signál cez potenciometer  $P_4$  a kapacitu  $C_{51}$  na bázu  $T_{15}$ . Kondenzátor  $C_{50}$  slúži na zvedenie náindukovaného nf napäcia. Z kolektoru  $T_{15}$  je budený do báze  $T_{16}$ . Z jeho kolektoru je vf signál privádzaný cez kapacitu  $C_{54}$  na balančný modulátor. Kondenzátor  $C_{53}$  slúži na vytvorenie elektrického stredu balančného modulátora, pre nosný kmitočet. Kondenzátorom  $C_{55}$  sa filtriuje napájacie napätie modulátora.

Pracovný bod modulátora možno meniť odporom  $R_{44}$ . Na tejto doske je namontovaný aj RC-generátor kmitočtu 1 kHz s tranzistorom  $T_{17}$ . Tranzistor je klúčovaný medzi zemou a bodom 15. Slúži pre vyladenie vysielača a pre telegrafné prevádzku. Signál sa odoberá z kolektoru  $T_{17}$  cez kondenzátor  $C_{72}$  a odpor  $R_{74}$  na bod 14 a ďalej cez odpor  $R_{101}$  na potenciometer  $P_4$ . Kondenzátor  $C_{73}$  slúži na potlačenie harmonických kmitočtov. Pri tomto spôsobe telegrafnej prevádzky by som chcel po dotknúť, že ak RC generátor neobsahuje harmonické kmitočty je vysielačný produkt totožný s moduláciou A 1.



Obr. 3. Vysielač časť transceiveru

### Popis vysielačej časti C

Tranzistor  $T_{18}$  pracuje ako oscilátor v trojbodovom zapojení. Toto zapojenie má pomerne dobré vlastnosti: Báza  $T_{18}$  je budená cez malou kapacitu, takže zmeny parametrov tranzistora vplyvom výkyvu napájacieho napätia, či teploty majú malý vplyv na posun kmitočtu. Druhá výhoda je v tom, že na oscilačnom obvode je nakmitané

veľké vf napäťie, takže oscilátor málo podľa kmitočtovej modulácií vplyvom cudzích vf napätií, napríklad zo stupňa PA. Vf napätie sa odoberá z odporového děliča  $R_{77}$  a  $R_{78}$ , cez kondenzátor  $C_{60}$  na bázu  $T_{19}$ , aby sa zmenšila možnosť strhávania kmitočtu vplyvom zmeny zasažovacieho odporu.

(Pokračovanie)



Rubriku vede B. nil Kubel, OKIAUH

### Oblastní přebor juniorů

Dá se fíci, že 17. červen vejde do historie našeho liškařského sportu. V ten den se totiž uskuteční vůbec první oblastní přebor juniorů v honu na lišku. Když se v loňském roce přípravovaly soutěže juniorů a mládeže, počítalo se s tím, že vítězové okresních přeborů v kategorii juniorů a mládeže postoupí do oblastního přeboru. Plán však byl zmenšen, oblastní přebor se pořádal jen pro juniory a jeho účastníků nominovalo písmeno odbor honu na lišku CRA.

I. oblastní přebor uspořádal radioklub OK2KOS při stanici mladých techniků v Ostravě-Porubě, který se v poslední době věnuje intenzivně práci s mladými liškaři. Závod se uskuteční asi 10 km od Ostravy v zcela zalesněném a poměrně členitém terénu. Závodilo se, tak jako při jiných závodech mládeže, pouze v pásmu 3,5 MHz 28 startujících odkávala trať s ideální vzdáleností 4,6 km, na kterou byl limit 120 min.

Nedopatřením byli na tento oblastní přebor povázaní nejen závodníci z Moravy, pro které byl přebor původně určen, ale z celé ČSR, a tak se na startu sešla velice silná konkurenční a na trati byl sváden urputný boj. V konečném umístění se projevilo, kteří závodníci mají za sebou více různých závodů a tím mají více zkušeností.

Pořadatelé odvedly velký kus práce a připravili soutěž tak, že by snesla nejprisnejší měřítká jak po stránce ubytování a stravování účastníků, tak i organizaci závodu. Hon na lišku zapustil v Ostravě hluboké kořeny a v tomto hornickém městě vyrůsají mladí a nadějní závodníci. Jak sami pořadatelé ujistovali, oblastní přebor juniorů nebude dlouho posledním závodem, který byl v Ostravě v honu na lišku pořádán. Jestli budou ke každému závodu přistupovat s takovou odpovědností jako k tomuto, jsou schopni dobre připravit jakoukoli soutěž.

Druhý oblastní přebor juniorů, který byl určen pro mladé závodníky z Čech, se uskuteční o týden později v Teplických horách u Benešova. Nejúspěšnější závodníci z obou přeborů se utkají letos v říjnu v Jihlavě, kde budou soutěžit o titul mistra České socialistické republiky.

### Výsledková listina

oblastního přeboru juniorů v honu na lišku, pořádaného dne 17. 6. 1972.

Pořadatel: MěV Svatováru ČSR, Ostrava.

Pámo 80-m, limit 120 min., ideální vzdálenost 4 600 m.

prof. jméno okres výsl. čas poč. 1 dos. VT b

1. Josef Koranda Rokyčany 56,15 4 II 15
2. Miroslav Kubík Litoměřice 57,25 4 I
3. Otakar Kazík Nový Jičín 67,05 4 II 10
4. Antonín Výstík Ostrava 69,20 4 II 8
5. Karel Javorka Nový Jičín 71,45 4 I 6

J. Ondroušek



Stav k 10. 8. 1972

CW/FONE

I.  
OK1FF  
OK3MM

332 (333)  
329 (330)

|        |           |
|--------|-----------|
| OK1ZL  | 115 (115) |
| OK1FBV | 112 (128) |
| OK1XN  | 111 (139) |
| OK1LM  | 110 (130) |
| OK1AAW | 108 (146) |
| OK3ALE | 98 (127)  |
| OK1US  | 98 (123)  |
| OK1AWQ | 88 (88)   |
| OK1AVU | 87 (107)  |
| OK1AKL | 85 (100)  |
| OK2QX  | 82 (113)  |
| OK1DWZ | 67 (90)   |
| OK1VO  | 65 (87)   |
| OK2BIQ | 65 (72)   |
| OK1DVK | 64 (100)  |
| OK1AKU | 53 (53)   |
| OK2KNP | 51 (65)   |
| OK2BMS | 50 (50)   |

CW  
L.

OK1FF 331 (333)  
OK1SV 320 (336)  
OK3MM 311 (313)

II.

|        |           |
|--------|-----------|
| OK1ADM | 294 (295) |
| OK1KUL | 267 (287) |
| OK3IR  | 245 (254) |
| OK2QX  | 240 (244) |
| OK1AKQ | 239 (285) |
| OK1TA  | 236 (243) |
| OK1AHZ | 231 (242) |
| OK1AII | 231 (235) |
| OK1PRL | 230 (240) |
| OK3QO  | 224 (243) |
| OK2BBJ | 221 (232) |
| OK1AMI | 219 (245) |
| OK2BRR | 210 (252) |
| OK2DB  | 204 (208) |
| OK2OQ  | 196 (201) |
| OK2BIP | 191 (197) |
| OK2BMH | 190 (218) |
| OK2BCJ | 188 (210) |
| OK2KMB | 185 (191) |
| OK2BIX | 182 (213) |
| OK1EG  | 180 (180) |
| OK1BMW | 169 (181) |
| OK2BKV | 166 (205) |
| OK3EE  | 166 (174) |
| OK1PG  | 165 (192) |
| OK2BNZ | 165 (182) |
| OK3CAU | 164 (175) |
| OK1KQ  | 163 (163) |
| OK2BMP | 158 (176) |
| OK1FAK | 157 (180) |
| OK1DH  | 155 (182) |
| OK3JV  | 154 (172) |
| OK1KYS | 153 (174) |
| OK1CJ  | 150 (178) |

III.

|        |           |
|--------|-----------|
| OK1AKU | 144 (160) |
| OK1AWQ | 139 (139) |
| OK1MSP | 130 (150) |
| OK1KZ  | 130 (140) |
| OK1WX  | 130 (130) |
| OK2KNP | 128 (138) |
| OK3KWK | 126 (141) |
| OK2BDE | 122 (149) |
| OK1VO  | 115 (132) |
| OK1KZD | 115 (130) |
| OK1NH  | 115 (125) |
| OK1ATZ | 112 (135) |
| OK1DBM | 112 (132) |
| OK3CIS | 111 (137) |
| OK1KPR | 109 (109) |
| OK2BSA | 105 (120) |
| OK1CAM | 102 (141) |
| OK3ALE | 100 (142) |
| OK1DVK | 97 (131)  |
| OK1FON | 94 (127)  |
| OK3LW  | 93 (114)  |
| OK2ALC | 88 (116)  |
| OK1KCF | 88 (90)   |
| OK2BEU | 83 (111)  |
| OK2KVI | 83 (99)   |
| OK2BEF | 80 (96)   |
| OK1FAV | 80 (95)   |
| OK1PCL | 80 (90)   |
| OK1KHG | 80 (85)   |
| OK1AFX | 79 (93)   |
| OK1APS | 76 (98)   |
| OK1DIM | 74 (105)  |
| OK1ADT | 73 (90)   |
| OK1AOZ | 65 (91)   |
| OK1ASG | 62 (74)   |
| OK1ZK  | 54 (63)   |
| OK2SBV | 53 (67)   |
| OK1AIJ | 52 (60)   |

RP

|            |           |
|------------|-----------|
| OK2 - 4857 | 318 (325) |
|            |           |
|            |           |
|            |           |
|            |           |

FONE

L.

OK1ADM 319 (319)  
OK1ADP 307 (309)

II.

OK1IMP 276 (281)

OK1AWZ 222 (231)

OK1JKM 220 (221)

OK1AHZ 213 (227)

OK1VK 210 (215)

OK1AHV 208 (263)

OK1BY 205 (207)

OK1MPP 204 (251)

OK2DB 194 (200)

OK2BGT 189 (205)

OK1SV 183 (209)

OK1NH 182 (206)

OK1PV 177 (185)

OK1AGQ 174 (181)

OK3EA 174 (180)

OK1TA 158 (211)

III.

OK3EE 143 (162)

OK2BEN 138 (145)

OK2QR 129 (178)

OK1KCP 126 (171)

OK1KDC 119 (157)

OK1IMG 116 (130)

OK1IQ 116 (116)

OK1 - 7417

OK1 - 6701

OK1 - 10896

OK1 - 15835

OK2 - 21118

OK2 - 20240

279 (314)

271 (301)

250 (291)

213 (240)

153 (251)

151 (151)

### III.

|             |           |
|-------------|-----------|
| OK2 - 5385  | 144 (248) |
| OK2 - 17762 | 127 (145) |
| OK1 - 17323 | 104 (165) |
| OK2 - 9329  | 103 (175) |
| OK1 - 17728 | 79 (148)  |
| OK1 - 18550 | 69 (162)  |
| OK1 - 17358 | 68 (150)  |
| OK1 - 18556 | 65 (90)   |
| OK1 - 18549 | 64 (64)   |
| OK2 - 16350 | 59 (98)   |
| OK1 - 18438 | 55 (120)  |
| OK1 - 18583 | 52 (185)  |

Prajem Vám všetko najlepšie a v jesenných podmienkach vela pekných spojení.

Váš OK1IQ



Rubriku vede ing. M. Prosteký, OK1MP

### Změny v soutěžích od 15. července do 15. srpna 1972

„S6S“

Za telegrafní spojení získaly diplomy číslo 4653 až 4697 (pásmo doplňovací známky je uvedeno v závorce) stanice:  
YU1NQQ, YU1QBM (14), YU2CBM (14,21), YU1NTJ, YU1AEP, YU2RIM (14), UK2GBY (14), UX5NA (14), UA0VF (14), UL7GAC (14), UQ2MU (14), UC2RV (14), UKOCAE (14), UL7SJ (14), UA0HB (14), UK5UAN (14), UP2BX (14), UV3FE (14), UT5LH (7), UA0OJ (14), UA0AAC (14), UA9FAR (14), UW9DF (14), UX5SO (21), UA3ABD (14), UK2PAR (14), UQ2LP (14), UA4OZ (14), UY5LX (14), UH8AW (14), UA6KJA (28), UQ2KBP (14), HA8KQX (14), HA5BH (14), CT1OI, ZP5CE (14), FE4FF (14) SP2BF (14), HA1SN, HA3NA (14), K1AGB (3,5-7-14-21-28), OK1ANS (14), OK1FAM (14), OK3TBG, OK1AOJ (14).

Za telefonní spojení byly vydány diplomy číslo 1102 až 1115: OK1AEZ (14), OK2BHJ, JH3CIQ (21), CN8GG (14), LU3CA (7), JA3BUB (21), I3LSA, JA2WTY (21), UA6PG (28), UK9AAA (14), UR2ED (28), UA2AAU (28), UA3HE (14), JY6FC (14).

Doplňovací známky získaly UB5RS (21) k diplomu CW č. 3667 a OK1NH (28) k diplomu 2 × SSB č. 726.

„ZMT“

Za uplynulé období bylo vydáno 39 diplomů, a to č. 2922 až 2960, stanicim:  
UV9BT, Čeljabinsk, UA1IF, Leningrad, UK9FER, Perm, UA4NY, Kirov, UA1CR, Leningrad,

UW9BS, Čeljabinsk, UM8BA, Frunze, UA1HT, Leningrad, RA4HHD, Kujbyšev, UL7PAF, Kraganda, UV3UW, Ivanovo, UV3FE, Moskva, UA1AJ, Leningrad, UV3ED, Moskva, RA9OCQ, Novosibirsk, UA6HBC, Pjatigorsk, UBSMAH, Voršilovgrad, UR2RX, Tallinn, UK9AAA, Čeljabinsk, UA3ABD, Moskva, UW0IX, Magadan, UY5EW, Donětsk, UA4LD, Uljanovsk, UR2PZ, Tartu, UF6DL, Tbilisi, UA3CU, Moskva, UW3TR, Gorki, UY5PR, Lvov, UA3UAC, Ivanovo, UA3RDO, Tambov, UW9SA, Oremburg, UA3WAH, Kursk, UA4NAO, Kirovskij, HA7PQ, W3ZUH, State College, F9MD, Vilejuij, SP2BF, Gdyně, OH5PX, Kuivala, OK2PAM, Hranice.

„P-ZMT“

Byly uděleny diplomy číslo 1430 až 1444:  
UP2-038-175, Kaunas, UV5-068-161, Lvov, UA4-133-273, Kujbyšev, UA3-142-210, Noginsk, UB5-073-3, Donětsk, UV5-068-210, Lvov, UA9-165-312, Čeljabinsk, UB5-077-377, Charkov, UA9-167-134, Orenburg, UD6-001-135, Baku, UA6-087-60, Nalčik, UA3-121-143, Voroněž, UB5-059-104, Voršilovgrad, DL-12275/ISWL, Köln, OK1-25322, Česká Skalice.

„100-OK“

Dalších 27 stanic získalo základní diplom 100-OK. Jsou to:  
(č. 2861 až 2887) UV3IO, UW3EH, UA1ZX, UA0LJ, UW9SA, UW0BA, UK9SAO, UB5MV, YU5CEF, YU4ABV, YU3TFC, HA5YAN, HA1KT, HA5KD, JY6FC, WA2CCR, K1AGB, OK3TXT (706. OK), SM6EUC, OK1AVY (707. OK), OK3KMW (708. OK), OK2SVK (709. OK), OK1ONA (710. OK), OL4AQA (711. OK), OK2PCV (712. OK), HA4KYH, HA3KNA.

„200-OK“

Doplňovací známku za spojení s 200 československými stanicemi získali:  
č. 334 UW3IO k základnímu diplomu č. 2861, č. 335 OK1AVY k č. 2880, č. 336 HA4KYH k č. 2886 a č. 337 HA3KNA k č. 2887.

„300-OK“

QSL předložili a doplňující známku získali:  
č. 161 OK1AVY k diplomu č. 2880, č. 162 HA4KYH k č. 2886, č. 163 HA3KNA k č. 2887 a č. 164 OK1JJB.

„400-OK“

Byly vydány dvě doplňovací známky za spojení s 400 československými stanicemi:  
č. 92 HA3KNA k diplomu č. 2887 a č. 93 OL1AOH k č. 2736.

„OK-SSB Award“

Diplomy za spojení s československými stanicemi na SSB získali:  
č. 166 UP2FA, T. Lázowski, Vilnius, č. 167 UD6BR, S. Shusterman, Baku, č. 168, UW3EH, A. Senkov, Moskva, č. 169 UR2RX, R. Laidsalu, Tallinn, č. 170 UB5VL, J. Manyko, č. 171

OK1AHJ, J. Brožovský, Přibram, č. 172 OK2BKR, J. Sláma, Velká Bíteš, č. 173 OK1ONA, radioklub Teplice, č. 174 OK1MG, A. Kříž, Kladno, č. 175 OK1DMM M. Mikovič, Mariánské Lázně, č. 176 OK1AEH, E. Hlom, Praha.

„P-75-P“

V uplynulém období bylo vydáno pět základních diplomů:

č. 437 UA7VY, Čeboksary (60 zón), č. 438 UQ2IL, Riga, č. 439 UQ2AN, Riga (60 zón), č. 440 UV3GE, Moskva, č. 441 OK1AEZ, Chomutov (60 zón).

Doplňovací známku za spojení s 60 zónami získal UA0FD. Posluchačský diplom č. 4 získal OK1-7417, Z. Frýda z Teplic.

„KV QRA 150“

Bylo uděleno 8 diplomů s čísly 228 až 235 stanicím:

OK3LL, I. Jankovič, Nitra, OK3TBK, A. Sobotka, Hlohové, OK3TAM, O. Šuba, Komárov, OK2BMQ, A. Černohorský, Opava, OK3TCY, S. Mucha, Topolčany, OK1IAO, J. Šroub, Stod, OK3KHE, radioklub Martin, OK2PLT, A. Kotulán, Brno.

„KV QRA 250“

Doplňovací známku č. 41 získal OK1JSE, J. Sedláček z Teplic.

„P-100 OK“

Byly uděleny čtyři diplomy: č. 585 UA3-151-18, č. 586 UA3-122-56, č. 587 UC2-007-5, č. 588 UB5-068-66.

„P-300 OK“

OK1-15683 předložil listky od 300 československých stanic z pásmu 160 metrů a získal doplňovací známku č. 13.

„RP-OK-DX“

II. třída

Diplom číslo 219 byl udělen OK1-18550, L. Čuchalovi z České Skalice.

Upozornění: QSL listky z diplomů se vracejí normální poštou. Pokud si žadatel přeje zaslání doporučeně, musí si k žádosti přiložit 4 Kč v platných poštovních známkách.

100 OK

1. Diplom je pro československé stanice vydáván za spojení v pásmu 160 metrů po 1. lednu 1954.
2. Základní diplom je vydáván za spojení s 100 různými OK (OL) stanicemi.
3. Doplňovací známky jsou vydávány za 200, 300, 400 a 500 potvrzených OK (OL) stanic.
4. Za stejných podmínek je diplom vydáván pro posluchače pod názvem P-100 OK.

OK-SSB Award

1. Diplom je pro československé stanice vydáván za spojení se 100 OK stanic.
2. Platí pouze potvrzená 2 × SSB spojení po 1. lednu 1969.



Rubriku vede F. Smola, OK1OO, Podbořany 113, okr. Louňov

### Výsledky „2nd World Wide SSTV Contest“

| Značka    | Země | Kontinentu QSO | Bodů  |
|-----------|------|----------------|-------|
| 1. W9NTP  | 80   | 40             | 63    |
| 2. PA0LAM | 75   | 60             | 50    |
| 3. VE3GMM | 85   | 40             | 51    |
| 4. I6CGE  | 80   | 50             | 38    |
| 5. W4MS   | 60   | 30             | 53    |
|           |      |                | 4 770 |

následují: G5ZT, F6AXT, W5PPP, I2KBW, K9BTU, F9XY, 15BNT, I5CW, SM0BUO, I1ROL a dalších 22 stanic.

Absolutním vítězem se tedy stal Don Miller - W9NTP. Je to velmi známý OM – publicista SSTV. Z Evropy se velmi pekelně umisťili ZSSTV, PA0LAM, G5ZT, F6AXT, SM0BUO a mnoho italských stanic.

W8IEK má potvrzeno 44 zemí SSTV, W4MS má potvrzeno 40 zemí SSTV. Oba ze všech kontinentů. OK1GW pracoval s 25 zeměmi, OK1NH pracoval s 15 zeměmi.

Populární G5ZT uveřejnil v „73“-Magazine propagační článek o SSTV, kde v červencovém čísle vysvětluje princip SSTV, spolu s fotografiemi přijatých obrázků.

Letní měsíce a dovolená aktivitu SSTV-stns omezily. S nastávajícím podzimem však lze doufat v oživení.

V předcházejících rubrikách jsem věnoval pozornost novinkám v SSTV v zahraničí. Dnes zase něco z domova. OK3CJA, Ivan z B. Bystrice, mi zaslal velice zajímavé zapojení, které zabraňuje spuštění rozkladu náhodným impulsem. To je hlavně důležité pro vertikální rozklad – poněvadž

Obr. 1. Blokové schéma zapojení, zlepšující činnost rozkladu



Obr. 2. Podrobnější schéma blokování



konstanta MKO (3+4) je dána kondenzátorem.

Celkové detailní schéma blokování je na obr. 3 a 4. Tiský spoj pro obvody hradel, řídící logiku a rozklady bude uveřejněn v příštím čísle.

Autor – OK3CJA – jistě rád zodpoví dotazy k tomuto tématu.



Obr. 3. Detailní schéma blokování

nebudeme již dlouho čekat. Potom snad též bude konečně opět zveřejněn nový platný seznam zemí DXCC.

Expedice na ostrov Mellish se uskutečnila, jak jsme již oznámili, koncem července t. r., pro Evropu a tedy i pro nás s malým úspěchem. Expedice nebyla dobrě vybavena směrovkami, zamířila se zřejmě opět na americké USA, kterých udělala z celk. počtu 8 800 spojení plných 90 %. Zatím je známo, že z OK navázaly perfektní spojení pouze 3 naše stanice.

Potvrzuje se, že expedice na ostrov Clipperton, iž několikrát oznamovala, se nebude konat, neboť francouzské úřady zcela jednoznačně oznámily, že nikomu povolení k vstupu na ostrov nevýdají.

**PY0DVG a PY0ZAA** byly známkou expedice několika Brazilek na ostrov Trinidad do Sul. Expedice nebyla nijak propagována, a pracovala necelé dva dny, zejména na 160 a 80 m v pásmu CW, později i SSB na vyšších pásmech. Pravděpodobně šlo o expedici zaměřenou pouze na pásmo 160 m, kterou si zamítliv u zavřeným kruhem čitelů tohoto pásmu, neboť sám PY0DVG, vedoucí expedice, je jeho horlivým obyvatellem. QSL se zasílají na jeho domovskou značku.

Martii, OH2BH, potvrzuje, že letos na expedici určitě vyděje, ale jistá je pouze jeho návštěva v ZD3 a to v termínu SSB-CQ-DX Contestu, a snad navštíví ještě některé západoafrické země, pokud tam obdrží koncesi. Expedice na Sandwich, případně Bouvet je zcela nejistá, a přijde v úvahu možná v roce 1973, nebo i později!

Don, WA5ZMY, byl na expedici na St. Martin, odkud se ozýval delší dobu jako /FS7 a oznamoval, že pokračuje na své expedici směrem na ostrov Aaves, kde měl používat značku YV0CCA. Expedice je však pozdržena, a do uzávěrky naší rubriky se tam ještě neobjevil.

Z ostrova Kos v souostroví Dodekanésos pracoval expedičně SV1GA. Ostrov patří v DXCC stejně jako Rhodos k Dodekanésu, není to nová země.

Z ostrova Salina pracovala italská expedice pod značkou IICGK/ID9 a rovněž platí pouze do WPX. Ostrov leží poblíž Sicilie, a expedice tam byla počátkem srpna asi tyden.

Nepríznivá zpráva došla i o expedicích, připravovaných do Iráku, který je již po delší řadu letů absolutně nedostupný na amatérských pásmech. Oficiálně bylo oznámeno, že příslušná úřední místa v YI nevýdají žádosti o ciziny koncesi.

Expedici do okolí města Sokolovo v SSSR, míst prvních společných bojů sovětské a naší armády, uspořádaly Charkovská oblastní federace radiosportu a Muzeum sovětsko-české přátelství ve dnech 14. až 20. srpna t. r. Expedice pracovala pod značkou UK5LAN/P pouze telegraficky na všech pásmech. Pokud jste s ní navázali spojení, obdržíte pamětní QSL spolu se spec. odznakem. Je škoda, že zprávu o této expedici nám zaslali UT5CY a UY5DV tak pozdě, že jsme ji mohli rozšířit včas pouze na pásmech.

Posud nepotvrzená zpráva z cizích bulletinů praví, že UR2AR připravuje novou expedici na Zemi Franze Josefa, opět výhradně SSB a má používat opět značku UK1ZFI. Má pracovat na všech pásmech.

#### Zprávy ze světa

Ostrov Pitcairn, VR6, není t. č. obsazen žádnou amatérskou stanici, neboť Tom, VR6TC, je na Novém Zélandu a jak oznámuje, v brzké době se na ostrov nevrátí.

Ze základny Molodžnoj v Antarktidě pracuje nyní telegraficky stanice UA1KAE/1. Používá kmitočtu 21 047 kHz. QTH má v pásmu č. 69 pro diplom P75P.

VK9ZB pracuje stabilně z ostrova Wallis, dosud velmi závácně země DXCC, a to s výborným signálem na kmitočtu 14 200 kHz SSB. Stanice patří k meteorologické službě na ostrově a posádka se tam má zdržet ještě nejméně půl roku. Nějak špatně jím to však poslouchá.

Dozvídám se, že expedice na ostrov Mellish, VK9JW, není dosud oficiálně uznána za novou zemí DXCC, ač VK3JW tvrdil, že má totou povolení již v kapse. Je však pravděpodobné, že uznána bude.

Operátor stanice FB8ZA na New Amsterdam Isl. oznámil, že zůstane na ostrově 10 měsíců. QSL manažera mu dělá F6BFA.

A51TY v Butanu oznámil, že je již opět QRV a to každý pondělí a čtvrtek od 17.00 GMT na kmitočtu 14 195 kHz SSB. Zřejmě mu již někdo jeho zařízení opravil.

Ke změně prefixu dochází u MP4M (sultánat of Oman), kde ITU přidělila značky od A4A do A4Z. Poznamenejte si!

C21TL na ostrově Nauru pracuje převážně SSB v okolí kmitočtu 14 190 až 14 187 kHz kolem 11.00 až 12.30 GMT. Dne 28. 8. 1972 pracoval pod značkou C29TL ze skautského jamboree.

Po celý červenec pracovala expedice DL z Korsiky pod značkami F0AHY/FC a F0AFV/FC na všech pásmech CW i SSB. QSL via DJ0UP.

V Luxemburku se nyní používají tyto prefixy; LX1 jsou normální tamní koncesionáři, LX2 nebo



Obr. 4. Detailní schéma blokování

OK1WAB, Václav Nemrava, jel letošní Polní den z kóty Křeč (HJ45F), vysoké 660 m a vzdálené 20 km východně od Táboru. Závodil ve II. kategorii - 1 W, sít na 145 MHz s anténu 2 x 10 elementů Yagi. Udeřil 32 spojení, nejdéle měl na vzdálenost 110 km. Počasí bylo bezvadné.



Antenni soustava pro 145 a 430 MHz (vlevo) a zařízení OK1WAB v autě (nahoře) - další příklad toho, jak lze s jednoduchými prostředky dosáhnout dobrých výkonů



Rubriku vede ing. V. Šrđinko, OK1SV, pošt. schránka 46, Hlinsko v Čechách

#### DX - expedice

V současné době nápadně poklesl počet expedic, zejména větších a nákladnějších, resp. všechny plánované expedice jako na Minerva Reef, Spratley apod. jsou odloženy. Vše z jednoduchého důvodu, čeká se na definitivní vyjádření ARRL o novém, definitivním uspořádání seznamu zemí DXCC. Jak známo, počet zemí má být stabilizován a některé země budou zřejmě zrušeny, jiné možná uznány. Na vyhlášení tohoto nového uspořádání

stanice /LX jsou cizinci v rámci reciprocity koncesi, LX3 se zatím dlouho nepoužívá, LX9 jsou stanice klubovní a jediná oficiální stanice LX0 je spojů a to LX0PTT.

**VR4EE na Solomon. Isl.** je velmi činný a pracuje často v okolí kmitočtu 21 290 až 21 300 kHz SSB, nebo 21 210 kHz. Na kmitočtu 14 197 kHz má v 09.00 GMT skedy s IIPLN. IIPLN sestavuje seznamy stanic (pořadníky) na kmitočtu 14 197 kHz o hodinu dříve, tedy od 19.00 GMT. Bohužel spoluhráče s tímto clearingmanem se nedáří, a obvykle ze 40 zapsaných značek se uskuteční pouze 1–2 spojení, a neukázněnosti ostatních stanic se další spojení neuskuteční.

**5W1AL**, Jim se vrátil ze svého pobytu na Niue Island, odkud pracoval jako ZK2DX, na Samou, odkud již odejel domů (WB6CZB).

**Zona WAZ č. 23** je nyní dobrě zastoupená na pásmech. Pracují tam např. JT1AA na 14 015 kHz CW a hlavně Jirka, JT0AE, kterého však dosud dělalo jen málo našich stanic. Jirka je již na SSB a používá kmitočty 14 222 nebo 14 300 kHz a bývá QRV kolem 16.00 GMT.

**BV2A**, klubovní stanice na Taiwanu, používá krystal 14 023 kHz a pracuje vždy v pátek od 12.00 do 16.00 GMT. QSL žádá přímo.

**Nové prefixy** se objevují v Japonsku, kde zřejmě z nedostatku volných značek začali vydávat již prefixy JE1 a JF1, z nichž již některé najdete SSB na pásmu 21 MHz.

**ZS2MI**, klubovní stanice na ostrově Marion, se konečně zase objevuje na DX-pásmech. Dlouhou dobu pracovala pouze na 80 m pásmu. Nyní pracuje na kmitočtu 14 196 kHz SSB – slyšena v 06.40 GMT, často i na 14 225 kHz kolem 12.00 GMT, a pracuje i telegraficky na kmitočtu 14 044 kHz ve stejné době.

**Lovcům diplomu WPX:** v poslední době se objevily tyto prefixy: HD8IG byla krátkodobá expedice K5LGL na Galapagos Isl., dále 7X7G na 21 251 kHz SSB (od 1. července do 30. září) jsou dále v činnosti značky 7X7B, C, D, F, G, H, J, K, L, M, P, S, V, Y! 8P6CSJ/4 pracovala v době skautského jamboree z Barbadosu a v témže čase i sta-

nice IA5TAD, IA5BZT a IA5DU z Tuscan Archipelago.

**QSL-informace** z posledních dnů: C31BC via F9IE, C31FA via G3TVY, EI0DMF via EI2I ET3USF via K3ZNJ, FK8AU via I1PQ, FM0ATD via W2BP, HB0LL via DJ8ZB, HB0XJA via W4WF, HB0XJK via DJ2BW, HB0XJL dleto, HB0XJQ via K3SSC, HB0XUD via ON4QV, HW5U1TV via F9OE, IH9LAW via IT9GAI, IM0CRW via DK5JA, JD1YAA via JAIWU, JD1YAC via JA1YNE, KB6CU via K3RLY, KC4USV via K2BPP, TG9YN via DL8DF, TJ1BF via WB2WOU, TU4AB via WB2AQC, UPOL 19 via UW3HY, XQ2ON via CE2PN, XQ8AA via CE8AA, 9H3D via SM7DXX, YJ8BD via F6AEB. Do dnešní rubriky přispěli: OK2BRR, OK1ADM, OK2RZ, OKITA, OK2SFS, OK3MM, OK3BH, OKIAWQ, OKIKZ, z posluchačů zejména OK1-18549, OK1-7417, OK1-25322, OK1-15615, OK2-18649, OK3-26180, OK1-18550 a OK1-18649. Děkujeme všem a žádáme o další spolupráci s naší rubrikou. Pište i další dopisovatelé. Zprávy zasílejte pravidelně vždy do osmého v měsíci na adresu: Ing. Vladimír Srdík, pošt. schránka 46, Hlinsko v Čechách.



**Funkamatér (NDR), č. 7/1972**

Nové výrobky a využití zařízení RFT – Polovodičový průmysl NDR s vysoké moderními výrobky – Nf zosilovač bez výstupního transformátoru – Nf zosilovač s 500 mW výkonu – Dimenzování tranzistorových stereofonních zosilovačů (2) – Budíci zařízení s moderními prvky – Jednoduchý generátor AM k nastavování mf obvodů –

Pokusy s operačním zosilovačem – Problemy při příjmu barevných televizních signálů (3) – Funkční model ke stanovení číslicových informačních vazeb – Přijímač pro hon na lišku v pásmu 80 m – Jak pracuje měřicí stojatých vln – Směšovací VFO pro 145 MHz – Tranzistorový krátkovlnný vysílač SSB.

**Funkamatér (NDR), č. 8/1972**

Číslicové elektronky s tekutými krystaly – Stavební návod na výkonný autopřijímač – Ladičkový konvertor UHF – Dimenzování tranzistorových stereofonních zosilovačů (3) – Jednoduchý v generátor – Elektronické spinaci hodiny se dvěma časovači – Stabilní multivibrátor s tyristory

– Problemy při příjmu barevných televizních signálů (4) – Přijímač pro dálkové ovládání – Měřicí stojatých vln na plošném spoji – Funkční model ke stanovení číslicových informačních vazeb – Pokyny k hospodárnému použití primárních galvanických článků – Poznámky k půlvlnným usměrňovačům – Jaký způsob modulace na VKV – Krátkovlnný přijímač s tranzistory typu MOS-FET německé výroby – Umlíčovač poruch, který funguje – Tranzistorový krátkovlnný vysílač SSB (2).

**Radiotechnika (MLR), č. 8/1972**

Tranzistorový zosilovač 25 W – Triac (szisztror) – Základy radiotechniky, sací měřicí – Krystalový filtr 9 MHz v zařízení SSB – Krystal v radioamatérské praxi – Zajímavá zahraniční zapojení – Barevný televizní přijímač Videoton – TV servis – Úprava TV přijímače z rozmeru diagonálního obrazovky 43 cm na 61 cm – Tranzistorový zosilovač 50 W – Akustická, měření reproduktérských soustav – Praktická zapojení s integrovanými obvodami – Číslicová technika – Ladění obvodů – Přijímač Sanyo 6C-337.

**Radioamatér (Jug.), č. 6/1972**

Zapojení integrovaného obvodu TAA293 – Měřicí kapacity s přímým odečítáním – Násobiče napětí – Zámeňa neznámého tranzistoru – Barevný televizní přijímač (6) – Detektor úzkopásmové kmitočtové modulace – Komprezor dynamiky – Rubriky.



na listopad 1972

Rubriku vede  
dr. J. Mrázek,  
OK1GM

(Čas v GMT)



Stále se zkracují den a prodlužují se noci způsobují v ionosféře sezónní změny, které nejsou bez vlivu na dálkové šifrování krátkých vln. Relativně dobré DX podmínky, které byly očekávány v říjnu, se sice ještě přenesly do první poloviny listopadu, avšak současně se začnou zhoršovat. Bude to jednak tím, že denní maximum elektronové koncentrace vrstvy F2 nebude mít nad Evropou dlouhé trvání, takže DX podmínky na nejvyšších krátkovlnných pásmech v klidných dnech sice ještě budou, ale jejich časové trvání bude stále kratší a kratší. Tak se nám bude – zejména odpoledne a k večeru – často stávat, že navázané spojení nedokončíme, protože „řidnoucí“ ionosféra přestane na vlny na dané cestě odrážet. Protože neustále klesají noční hodnoty kritického kmitočtu

vrstvy F2, začne se ve větší míře vyskytovat i pásmo ticha, nepřijemné zvláště večer a ve druhé polovině noci v pásmech 2 a 3,5 MHz. Jeho maximum očekáváme jednak kolem 18.30 hod. SEČ, jednak od 4.30 do 6.30 ráno. Nebude sice ještě tak výrazné a tak pravidelné jako v prosinci a v lednu, avšak tento průvodce zimních měsíců se během listopadu aspoň v některých dnech zcela určitě již ohláší.

Prodružující se noc bude způsobovat i velmi rychlý přechod „denní“ ionosféry na ionosféru „noční“, tj. rychlé a stále časněji večerní uzavírání pásem 28, 21 a dokonce i 14 MHz. V noční době bude často možný jen provoz na pásmech 7, 3,5 a 1,8 MHz, naštěstí s poměrně stálými DX možnostmi zejména ve druhé polovině noci a brzy ráno.

Na osmdesát metrů přestanou být v tuto dobu americké stanice raritou a dokonce i v veteráních hodinách – přes číly, evropský provoz – bude možno zažít nejedno překvapení z neosvětlené části Země. K ránu se začnou výrazně zlepšovat DX podmínky do severních oblastí Jižní Ameriky, zato však dřívější občasné krátké podmínky ve směru na Nový Zéland těsně po východu Slunce budou poněkud horší. Výraznější mimořádná vrstva E se vyskytovat nebude, stejně tak i hladina bouřkových poruch bude minimální.

# Neopomeneňte, že

V LISTOPADU 1972

se konají tyto soutěže a závody (čas v GMT):

| Datum, čas                   | Závod                           |
|------------------------------|---------------------------------|
| 3. až. 6. 11.<br>23.00—06.00 | IARS-CHC-FHC-HTH QSO Party      |
| 4. a 5. 11.<br>00.30—00.30   | Trillium Weekend Contest        |
| 4. a 5. 11.<br>18.00—18.00   | RSGB 7MHz DX Contest, část fone |
| 6. 11.<br>19.00—20.00        | TEST 160                        |
| 11. a 12. 11.<br>18.00—04.00 | All OE Contest 160 m            |
| 11. a 12. 11.<br>21.00—02.00 | RSGB Second 1,8 MHz Contest     |
| 12. 11.<br>00.00—24.00       | OK DX Contest                   |
| 17. 11.<br>19.00—20.00       | TEST 160                        |
| 25. a 26. 11.<br>00.00—24.00 | CQ WW DX Contest, část CW       |

Radio, televizija, elektronika (BLR), č. 6/1972

Zpětná vazba v některých - Malý světelný signálátor - Řešení mnohokálových televizních zesilovačů - Elektronická TV reprekce - Vysoké napětí pro obrazovku barevného TVP násobením nízkého napětí - Barevná obrazovka „Trinitron“ - Výkonové nízkofrekvenční tranzistorové zesilovače - Barevná hudba - Polem řízené tranzistory s PN přechodem - Tónový generátor RC - Relé s vysokým vstupním odporem - Kasákový zesilovač s LC obvodem - Časový spinač.

Funktechnik (NSR), č. 13/1972

Elektrotechnické normy a předpisy - Hi-Fi tuner „regis 510“ - Navigační systém „Omega“ - Gunnovy prvky a Schottkyho diody - Zkreslení modulace v reproduktorech - DARC evropské setkání 1972 ve Wolfsburgu - QTH čtverec (jeho význam pro radioamatéry - Otáčkomér pro externí použití - Multivibrátor v teorii a praxi.

Funktechnik (NSR), č. 14/1972

Vývojové tendenze sčítovacích techniky - Ultra-aktivní dálkové ovládání barevného televizoru „PAL color 782 Supersonic“ - Zahájení provozu přijímacího zařízení 12 GHz sítě pošty NSR - Získání signálů pilových průběhů z pravodůlých v elektronických varhanách - Phona muzeum v St. Georgen - Moderní technika magneticky některých materiálů a jejich praktický význam - QTH čtverec a jeho význam pro radioamatéry (2) - Univerzální číslicový měřicí přístroj s automatickou volbou rozsahu - Casovač s nastaviteľnou délkou a periodou impulsů - Multivibrátor v teorii a praxi.



5,5 MHz, 6,5 MHz (á 30), 30 kHz, 10 kHz (á 70), AR 1953—65 viaz. (á 50), různé merací přístroje, polovodiče, transformátory, relé a pod. Ing. P. Klavita, Hodžova 1928/8, Trenčín, tf. 5867.

Krokové voliče 3 ram. 2 ks (á 100), polar relé (30), relé RP 100 na 42 V (á 15), citl. telef. relé (á 10), telef. číselnice 2 ks (á 30), AR ročník 58—69, obrazovka 351QP44 (50), trans. jádra z křem. plechů EI, M, měř. transf. proudu SM od 15 do 300 A (200), ampérmetr DHR5, 5A (100), mikroampérmetr DHR5, 100  $\mu$ A (120), milivoltmetr MP80, 60 mV (100) Karel Vávra, Brumov 921, okr. Gottwaldov.

Avomet II (850) a Icomet (700). J. Vašíček, Družstevní 1375, Velké Meziříčí.

Elektronik GU32 2 ks 200 Kčs. GU50 1 ks 50 Kčs. Petr Čelka, RA 1131. Kostelec n. Orl., okr. Rychnov n. Kněžnou.

Hopt tuner VHF 350 Kčs, UHF 300 Kčs. Antonín Glumbík, Fučíkova 1012, Ostrava 8. Tranz. můstik RLC 10 nepoužitý (1000), A. Kubáň, Sp. Stará Ves, okr. Poprad.

Krystaly 468, 776, 1 000 kHz (á 30) gram. chass. Ziphona NDR poloautom. (150), VKV díl Melodia BLR (80) 2 ks repro Tarantella Jug. (á 30). Pirkl, Kišňovská 14, Praha 10.

Ramík P 1101, Shure M 71, motorek SMZ 375/R-12 V, elektronika (HaZ 10/71), trafo, skříň a kompl. talíř 2,5 kg (RK 4/69) - vše nové - 2 400 Kčs. Pavel Haupt, p. s. 363, Praha 1. 6B32, RFG5 (3), RC5C, 6N8S, 1F33 (5), 6F32, EB11, EF12 (9), tlf. počítadlo, tlum. 4H (15), jádra CaM (5÷20), buzák (40), cívka, soupr. Rondo (50), RaC (0,2+2). J. Hájek, Černá 7, Praha 1.

Nové 1. Jakost: Valvo AF139 (50,80), AF139 Bü. (35), GF507 (29), OC170 (16), 156NU70spec. (12), KSY62A, 62B, 71 (19, 21, 29), BC214C, 154C (78), BC149N, 169B (15), KC507, 508, 509, 510 (13, 12, 14, 45), KS500 (9), KF167, 173/25, 23, KF503, 504, 507, 508 (13, 22, 11, 17), KFY34, 46 (26, 33), KF517, 517A, 517B (19, 22, 26), MA3005 (110), MAA125, 145, 325, 504 (29, 28, 40, 68), KFZ51 (89), KCZ58 (100), KT505 (39), GC511K/521K/33, cuprexcart 14 x 28 cm (7), DHR8-20 a 100mA (77), nf milivoltm. Rohde Schwarz 10 mV-30 V (20) 250 kHz-oprava (210) J. Pecka, Wintrová 21, Praha-Bubeneč.

Kopii grama Thorens TD124 II (2 800), tišt. spojí na TW30G (á 50) Lab. A-metr 6-12-24 A (190), tranz. - $\Omega$ -metr (580), DHR8 250 V~ (70),  $\Omega$ -metr (120). Čisl. výbojky ZM1020 a patice (á 110). Trans. KF506, 7, 8 (á 14), MA 3005 (á 100), MH7400, 7420, 7430, 7440, 7460 (á 28), GD607/617 (60), 102NU71 a KA502 (á 2,50). Koupím volžku Schure V15-II apod. Hi-Fi tuner CCIR a mikro AKG-D1000, D190E a pod. Stanislav Kalous, Nuselská 70, Praha 4, tel. 420836.

## INZERCE

První tučný rádce Kčs 20,40, další Kčs 10,20. Příslušnou částku poukážte na účet č. 300-036 SBCS Praha, správa 611 pro Vydavatelství MAGNET, inzerce AR, Praha 1, Vladislavova 26. Uzávěrka 6 týdnů před uveřejněním, tj. 14. v měsíci. Neopomenejte uvést prodejní cenu, jinak inzerát neuveřejníme.

## PRODEJ

Europphon RDG 3000 ital. stereo. gramoradio úplně nové v záruce (3 800 Kčs) nebo vyměním za kvalitní gramofon. P. Otradovský, Šmetanova 56, C. Budějovice.

Tuner Grundig RTV 370, výst. 2 x 10 W + 2 ks repro skříňky o obsahu 51+VKV konvertor pro převod OIRT a CCIR za 9 000 Kčs v bezvadném stavu. M. Kobeda, Tř. Sov. arm. 997, okr. Přerov. Tuner 66-77 MHz FM podle HaZ 1967, zdroj, zesilovač 2 x OC30, reproskřín (1400), RX US-P 175 Kc-12Mc, schéma (900), Oscil. s LB 8 (600). Vl. Sigmund, Tichého 9, Brno.

RX-UKWE (200), TX-10WSc (100), letecký RX 1,5—2 MHz (300), Univ. mer. přístroj UM 4 (700), Icomet (600), lab. přístroj 1% 6-rozsah. 6mA-6A =, 60 A-60mA =, 1,2V-600V =, 2,4V-600V, 2mA-500mA, (á 500), KC518 (á 6), GC507 (á 4), GC508 (á 5), KY710 (á 20), Relé LUN 12 a 24V (á 40), kryštály 1 000 kHz, 27,12 MHz,

DU 10 (nebo DU 20) pouze bezvadný stav. Z. Koutenský, Blanická 1303, Vlašim.

RC gen. BM 365 i vadný a LC měřič BM 366. Dále spálený Avomet I nebo II, příp. jen pouzdro s přepínací. J. Vašíček, Družstevní 1375, Velké Meziříčí.

Celotranz. TRCV na 80 m nebo elektr. TRCV all band, TX nebo TRCV na pásmo 2 m, tranz. kříž. trap. W3D7Z (pár) nebo kompl. seřízenou anténu. P. O. Box 31, Třešť, o. Jihlava.

Kompl. mech. mřf. B-4 až 42 bez zesilovačů. Uveďte stav a cenu. J. Biliš, Přibor, Místecká 1109, okr. N. Jičín.

## VÝMĚNA

Starší hrající televizor Oravan + starší hrající radio + rozhlas po dráte za RC-1 soupravu. J. Illner, ul. 5. května 214, Terezín.

# Pražské speciální prodejny RÁDIOAMATÉR

nabízejí svým návštěvníkům nejen velký výběr všeho, co potřebují ke své práci, ale také návody

## „POKUSY S TRANZISTORY“

určené především pro radiokonstruktéry a začátečníky.

Na poříčí 44

Žitná 7

Diamant, Václavské nám. 3  
Melodie, Jindřišská 5



DOMÁCI POTŘEBY PRAHA