Exercícios para 2a Avaliação

Entrega Sem prazo Pontos 5 Perguntas 5
Limite de tempo Nenhum Tentativas permitidas Sem limite

Fazer o teste novamente

Histórico de tentativas

	Tentativa	Tempo	Pontuação
MAIS RECENTE	Tentativa 1	55 minutos	4,88 de 5

Enviado 11 mai em 23:24

Correto!

Correto!

Pergunta 2 0,88 / 1 pts

Considere o seguinte grafo:

Uma vez calculados os caminhos mínimos a partir do vértice ${\bf s}$, responda:

- a) A distância mínima até o vértice **a** é 8 e seu precedessor é o vértice b
- b) A distância mínima até o vértice **b** é 5 e seu precedessor é o vértice s
- c) A distância mínima até o vértice **c** é ⁹ e seu precedessor é o vértice ^a
- d) A distância mínima até o vértice **d** é 8 e seu precedessor é o vértice b

Responder 1:

Correto!

8

Responder 2:

Correto!

b

esposta correta

R

Responder 3:

Uma vez calculados os caminhos mínimos a partir do vértice ${\bf s}$, obtém-se a seguinte solução:

Pergunta 3

Considere o seguinte grafo:

Uma vez calculados os caminhos mínimos a partir do vértice ${\bf s}$, responda:

a) A distância mínima até o vértice **a** é 4 e seu precedessor é o vértice s

1 / 1 pts

Correto!

С

esposta correta C

Uma vez calculados os caminhos mínimos a partir do vértice ${\bf s}$, obtém-se a seguinte solução:

Pergunta 4 1 / 1 pts

Considere um grafo direcionado com 4 vértices e que possui a seguinte matriz de distâncias entre os vértices, sendo que o valor ∞ na posição (i, j) da matriz representa a ausência de arco saindo do nó i para o nó j:

0	∞	-4	∞
8	0	6	∞
∞	∞	0	4
∞	-2	∞	0

Caso se utilize o método **Floyd-Warshall** para calcular as distâncias entre todos os vértices desse grafo, obtém-se a seguinte matriz como resultado da 1a iteração:

0	∞	-4	∞
8	0	4	∞
∞	∞	0	4
∞	-2	∞	0

Já para a 2a iteração, o resultado será:

0	∞	-4	∞
8	0	4	∞
∞	∞	0	4
6	-2	2	0

Enquanto que para a 3a iteração, o resultado será:

0	∞	-4	0
8	0	4	8
∞	∞	0	4
6	-2	2	0

Finalmente para a 4a (e última) iteração, obtém-se o seguinte resultado (em X representa um valor omitido):

0	-2	-4	0
8	0	4	8
Х	2	0	4
6	-2	2	0

Forneça o valor correto que foi omitido.

Correto!

10

espostas corretas

10 (com margem: 0)

Na 4^a iteração, o valor de d_{31} será igual ao min $\{d_{31}, d_{34} + d_{41}\}$ = min $\{\infty, 4+6\}$ = 10. Portanto, o valor ausente é igual a 10.

Pergunta 5

1 / 1 pts

Determine o valor do fluxo máximo entre os vértices **s-t** para o seguinte grafo, considerando que os rótulos nos arcos representam as capacidades das arestas:

Correto!

19

espostas corretas 19

19 (com margem: 0)

Uma solução possível que representa o fluxo máximo entre os vértices **s-t** é a seguinte:

