·、图的表示
1、邻接矩阵Adjacency
2、邻接表
上、广度优先遍历BFS
1、连通图FIFO三染色
2色尝试
三染色白灰黑
拓展性
正确性
2、不连通图
3、最短路径
、深度优先搜索DFS
迭代
递归
不连通
不连通 递归三染色建树
递归三染色建树
递归三染色建树 初始化结点
递归三染色建树 初始化结点 深搜建树
递归三染色建树 初始化结点 深搜建树 美妙性质

4、点颜色推断边

四、拓扑排序

判断无环

算法1

算法2:

五、强连通分量

分量图--有向无环图DAG

图转置

Tarjan's SCC算法

定位Ci的root ri

关联矩阵incidence matrix

有向图directed graph: the edge j leave/enter vertice i

联通无圈图connected acyclic graph

点vertice

度degree

一、图的表示

1 G=(V,E) |V|=n |E|=m

1、邻接矩阵Adjacency

稠密图常用, 小图常用

需要快速判断相邻时, 最短路径算法时

优势:每个记录项只需要1的空间

• 无向图:

对称, 主对角线为零

空间n*(n-1) /2

有向图

空间nn

- 1 判断相邻: 快
- 2 找任意邻居:慢
- 3 枚举enumerate所有邻居:慢

2、邻接表

稀疏图常用: m < < nn, 边很少

鲁棒性高robust

• 无向图

所有边出现两次,所以链表长度和为2m

• 有向图

所有链表长度和为m

空间Θ (n+m)

- 1 判断相邻: 快
- 2 判断x, y邻居: 慢
- 3 枚举enumerate所有邻居: 快

二、广度优先遍历BFS

按与source的距离,一层一层来

1、连通图--FIFO三染色

2色尝试

dist计算距离

循环从队列头拿出元素:访问,遍历邻居加距离

```
BFSSkeleton(G,s):
for (each u in V)
   u.dist=INF, u.visited=false
s.dist = 0
Q.enque(s)
while (!Q.empty())
   u = Q.dequeue()
   u.visited = true
   for (each edge (u,v) in E)
        if (!v.visited)
        v.dist = u.dist+1
        O.engue(v)
```

漏洞:结点的两个邻居都访问过时,此结点会被重复添加到Q

三染色--白灰黑

光visited不够,还需要一个discovered (灰)

```
1 白: 不在队列
2 灰: 放到了队尾,但未访问
3 黑: 已变成队头,被拿出访问
```

```
1 BFS(G,s):
2 for (each u in V)
  u.c=WHITE, u.d=INF, u.p=NIL
4 s.c=GRAY, s.d=0, s.p=NIL
5 FIFOQueue Q
6 Q.enque(s)
7 while (!Q.empty())
  u = Q.dequeue()
   u.c = BLACK
9
   for (each edge (u,v) in E)
10
     if (v.c == WHITE)
11
       v \cdot c = GRAY
12
       v.d = u.d+1
13
       v \cdot p = u
14
      Q.enque(v)
15
```

拓展性

```
      1 u.c = BLACK访问结点时刻,可拓展;

      2 此句可移到最后面

      3 v.c = GRAY第一次发现结点时刻,可拓展
```

时间Θ (n+m)

while执行n次

for执行2m次

• 不是连通图, 要写成O (n+m)

正确性

● 法一:对距离k归纳,证明BFS访问的——对应联通的点

• 法二:循环不变式: Q中永远是灰点集合

2、不连通图

```
1 BFS(G):
2 for (each u in V)
    u.c = WHITE, u.d = INF, u.p = NIL
  for (each u in V)
    if (u.c == WHITE)//此处循环判断新连通分支
       u.c = GRAY, u.d = 0, u.p = NIL
      Q.enque(u)
      while (!Q.empty())
8
        v = Q.dequeue()
        v.c = BLACK
10
        for (each edge (v,w) in E)
          if (w.c == WHITE)
12
            W \cdot C = GRAY
13
            w.d = v.d+1
14
             w.p = v
15
             Q.enque(w)
16
```

3、最短路径

BFS可以找出最短路径

• 相邻点的路径长度关系

引理 22.1 给定 G=(V,E) ,G 为一个有向图或无向图,设 $s\in V$ 为任意结点,则对于任意 边 $(u,v)\in E$, $\delta(s,v)\leq \delta(s,u)+1$ 。

三、深度优先搜索DFS

访问邻居直到stuck 回退直到有未访问邻居

两次处理结点机会:白变灰,灰变黑 这些机会可用于统计已有结点数

迭代

深搜和栈惺惺相惜 push时不访问,pop时才访问 你添加点的样子像一个BFS

递归

深搜和递归简直绝配

```
1 DFSSkeleton(G,s):
2 s.visited = true
3 for (each edge (s,v) in E)
4  if (!v.visited)
5 DFSSkelecton(G,v)
```

不连通

```
1 DFSAll(G):
2 for (each node u)
3    u.visited = false
4 for (each node u)
5    if (u.visited == false)
6    DFSSkeleton(G,u)
```

递归--三染色建树

```
1 白:未调用DFSSkeleton(G,u)
2 灰:调用中DFSSkeleton(G,u)
3 黑: DFSSkeleton(G,u)已返回
```

初始化结点

初始颜色白, 父节点为空 遍历调用建树操作

```
1 DFSAll(G):
2 for (each node u)
3    u.color = WHITE, u.parent = NIL
4 for (each node u)
5    if (u.color == WHITE)
6    DFS(G,u)
```

深搜建树

```
1 DFS(G,s):
2 s.color = GRAY
3 for (each edge (s,v) in E)
4    if (v.color == WHITE)
5     v.parent = s
6    DFS(G,v)
7 s.color = BLACK//深搜特点: 变黑之前,孩子一定全黑
```

美妙性质

1、边的分类

1 树边

2 后向边: 指向祖先 3 前向边: 指向后代

4 横向边: 其余的: 兄弟、不同树之间

2、括号化定理

• 用时间戳画出的括号匹配

• 覆盖性质

- 区间[u,d,u,f]和区间[v,d,v,f]完全分离,在深度优先森林中,结点u不是结点v的后代,结点v也不是结点u的后代。
- 区间[u,d,u,f]完全包含在区间[v,d,v,f]内,在深度优先树中,结点 u 是结点 v 的 ϵ 代
- 区间[v,d,v,f]完全包含在区间[u,d,u,f]内,在深度优先树中,结点v是结点u的后代。
- v是u的后代当且仅当u.d < v.d < v.f < u.f

3、白色路径定理

• v是u的后代当且仅当发现u (u.d) 时,存在一条由u到v的白色路径

4、点颜色推断边

• 有向图

第一次探索边 (u, v) 时

- 2 v灰: 后向边
- 3 v黑: 前向边, 横向边
- 无向图

只有树边、后向边

四、拓扑排序

Directed Acyclic Graphs (DAG)

有向无圈图DAG的线性排序 有圈,做不到 可能很多种

判断无环

• 有向图无环《==》深搜无后向边

证明用白色路径

• (u, v) 则DFS中u.f>v.f

算法1

- DFS, 计算finish time
- 结点finish时加到list表头
- 无back edge则成功

算法2:

- 找到一个源点并删除,删除所有出边 找到一个source,输出并删除后,必有新的source出现
- 重复直到空
- 源点source: 入度为0

可当作第一个结点 max finish time 必是

汇点sink: 出度为1
 min finish time 必是

• 每个DAG至少有一个源点和汇点

五、强连通分量

strongly connected components (SCC)

有向图点集的子集,此子集内任意u,v,存在u->v,v->u 双向路径才算联通

分量图--有向无环图DAG

component graph

• G^C=(V^C,E^C)

分量之间单向相连,一定可以表示

• 深搜实际是以拓扑排序次序访问分量图结点

这里D和GHIJKL都属于sinkSCC

• 存在 (vi,vj)∈E^C 说明存在(u,v)∈E满足u∈Ci and v∈Cj

• d (U) f (U): 结点集合U中最早发现时间、最晚完成时间

图转置

• 方向相反,SCC不变

在GR中max finish time的是source

Lemma: for any edge $(u, v) \in E(G^R)$, if $u \in C_i$ and $v \in C_j$, then $\max_{u \in C_i} \{u, f\} > \max_{v \in C_j} \{v, f\}$.

Tarjan's SCC算法

• 调用的时候这样写

Find strongly connected components C_1, C_2, \dots, C_k and component graph $G^C = (V^C, E^C)$ with tarjan's SCC algorithm in linear time;

For each SCC C_i , let r_i be its root. If we push a node to a stack when it is discovered when DFS returns from r_i , all nodes above r_i in the stack are in C_i .

- First node in C_2 (root of C_2)
- Some nodes in C_2
- First node in C_3 (root of C_3)
- Some nodes in C_3
- First nodes in C_5 (root of C_5)
- All other nodes in C₅ (C₅ is a sink SCC)
- All other nodes in C_3 (C_3 becomes a sink SCC by then)
- Some nodes in C₂
- First nodes in C_4 (root of C_4)
- All other nodes in C₄ (C₄ is a sink SCC)
- All other nodes in C_2 (C_2 becomes a sink SCC by then)
- First node in C_1 (root of C_1)
- All other nodes in C_1 (C_1 becomes a sink SCC by then)
- sink SCC: 从这里出发的,一定能回来,因为这个SCC没有出度

这里C4和C5都属于sinkSCC

当DFS开始遍历C3中所有其他结点时, C3变成sinkSCC

定位Ci的root ri

- Cv: v所在的SCC
- low (v):Cv中min发现时间
- v是root《==》low (v)=v.d

```
1 Tarjan(G):
2 time = 0
3 Let S be a stack
4 for (each node v)
5  v.root = NIL
6  v.visited = false
7 for (each node v)
8  if (!v.visited)
9  TarjanDFS(v)
```

```
1 TarjanDFS(v):
v.visited = true, time = time+1
3 v.d = time, v.low = v.d
4 S.push(v)
5 for (each edge (v,w))
   if (!w.visited) // tree edge
    TarjanDFS(w)
7
     v.low = min(v.low, w.low)
    else if (w.root == NIL) // non tree edge in C_v
9
     v.low = min(v.low, w.d)
10
  if (v.low == v.d)
11
    repeat
12
     w = S.pop(), w.root = v
13
   until (w==v)
14
```