

Probabilidades Variáveis Aleatórias

Variáveis Aleatórias: Introdução

Em Estatística Descritiva aprendemos que as tabelas de frequência são úteis para resumir uma variável de um conjunto de dados. Vejamos abaixo a tabela que resume a variável "Quantidade de Celulares em uma Residência":

Qte de Celulares	0	1	2	3	4	Total
Frequência Relativa ou Probabilidade	10%	40%	30%	15%	5%	100%

Variáveis cuja probabilidade de ocorrência tem caráter aleatório são chamadas de Variáveis Aleatórias.

E existem dois tipos de Variáveis Aleatórias:

- Variáveis Aleatórias Discretas ou Qualitativas
- Variáveis Aleatórias Contínuas

Probabilidades Variáveis Aleatórias Discretas ou Qualitativas

Variáveis Aleatórias Discretas ou Qualitativas

Quando estudamos uma variável aleatória discreta ou qualitativa, podemos representa-la no formato abaixo:

Qte de Celulares	0	1	2	3	4
Probabilidade	10%	40%	30%	15%	5%

Desta forma, se quisermos calcular a probabilidade **P (Qte de Celulares = 3)** basta olhar na tabela e buscar a probabilidade associada ao valor de interesse.

Portanto, P (Qte de Celulares = 3) = 15%.

A função acima, que **atribui uma probabilidade** a cada valor da variável aleatória é chamada de **Função de Probabilidade**.

A notação dessa função é dada por:

$$P(X = x_i) = p(x_i) = p_i \quad \text{ou}$$

 $\begin{array}{c|ccccc} \mathbf{X} & \mathbf{x_1} & \mathbf{x_2} & \mathbf{x_3} \\ \hline \mathbf{P_i} & \mathbf{p_1} & \mathbf{p_2} & \mathbf{p_3} \\ \end{array}$

(Formato algébrico)

(Formato tabular)

Variáveis Aleatórias Discretas ou Qualitativas

Da mesma forma que calculamos a frequência acumulada nas tabelas, podemos também calcular a **probabilidade acumulada** de uma variável aleatória. Veja a seguir:

Qte de Celulares	0	1	2	3	4
Probabilidade	10%	40%	30%	15%	5%
Prob. Acum.	10%	50%	80%	95%	100%

Se quisermos calcular a probabilidade **P** (Qte de Celulares \leq 2), ou seja, a probabilidade de uma residência ter até 2 celulares, basta consultar a Probabilidade Acumulada associada ao valor 2.

Ou seja, P (Qte de Celulares
$$\leq$$
 2) = P (Qte = 0) + P (Qte = 1) + P (Qte = 2) = 10% + 40% + 30% = 80%

A função acima, que **acumula as probabilidades** até um dado valor da variável aleatória é chamada **Função de Distribuição de Probabilidade**.

A notação dessa função é dada por: $F(x) = P(X \leq x)$

Variáveis Aleatórias Discretas ou Qualitativas

Qte de Celulares	0	1	2	3	4
Probabilidade	10%	40%	30%	15%	5%
Prob. Acum.	10%	50%	80%	95%	100%

Assim como calculamos a probabilidade P (Qte de Celulares \leq 2), podemos calcular P (Qte de Celulares > 2), que é a probabilidade da quantidade ser maior que 2.

Podemos calcular de duas maneiras:

• P (Qte de Celulares > 2) = P (Qte = 3) + P (Qte = 4) = 15% + 5% = 20%

Ou podemos calcular sabendo que a probabilidade de todos os eventos é de 100% e que o **evento complementar** é **P** (**Qte de Celulares** ≤ **2**) que calculamos anteriormente:

Dois eventos A e B são complementares se:

- $P(A \cup B) = 100\% e$
 - $P(A \cap B) = 0\%$.
- P (Qte de Celulares > 2) = 100% P (Qte de Celulares ≤ 2) = 100% 80% = 20%

Revisão

Vimos que as Variáveis Aleatórias Discretas ou Qualitativas devem ser utilizadas quando a variável de interesse é discreta ou qualitativa.

Além disso, vimos como podemos calcular a **probabilidade** de ocorrência de um **valor específico**, e da **probabilidade acumulada**.

Probabilidades Distribuição de Probabilidades Uniforme

Variáveis Aleatórias Discretas: Uniforme

Auditores foram chamados para auferir as 60 esferas que fazem parte do sorteio da Mega Sena. Assim, desenvolveram um dispositivo que realizou 60 mil sorteios. O resultado está representado abaixo:

Com base nesse gráfico de frequência absoluta, você acha que a **probabilidade** de alguma das dezenas ser sorteada é **maior** do que de outras?

Quando os resultados de um **fenômeno de caráter aleatório** possuem a **mesma probabilidade de ocorrência**, dizemos que esse fenômeno tem **Distribuição Uniforme**.

Variáveis Aleatórias Discretas: Uniforme

Uma variável aleatória X segue a distribuição Uniforme se a sua função de probabilidade atribuir a mesma probabilidade 1/k para para um dos k valores da variável. Ou seja, sua função é dada por:

$$P(X = x_i) = \frac{1}{k}$$
, sendo $i = 1, 2, 3 ..., k$.

A notação utilizada será $X \sim U(a, b)$, sendo **a** e **b** o menor e o maior valor que a variável pode assumir, respectivamente.

ALEATÓRIO(): gera um número entre 0 e 1.

ALEATÓRIOENTRE(a; b): gera um número inteiro entre a e b.

Revisão

Vimos que a **Distribuição Uniforme** é utilizada quando todos os resultados de uma variável aleatória possuem exatamente a **mesma probabilidade de ocorrerem**.

Probabilidades Distribuição de Probabilidades Binomial

O que você verá nessa aula?

- ☐ Introdução a Variáveis Aleatórias
- Variáveis Aleatórias Discretas ou Qualitativas
 - ☐ Distribuição Uniforme
 - ☐ Distribuição Binomial
- Variáveis Aleatórias Contínuas
 - ☐ Distribuição Normal
- ☐ Outras Distribuições de Probabilidades

Variáveis Aleatórias Discretas: Binomial

Um vendedor recebeu uma lista de **20 potenciais clientes** para oferecer seus produtos. Sabendo que a **probabilidade de vender** para cada um deles é de **5%**, qual é a probabilidade de que ele consiga vender para exatamente 2 clientes?

Combinação

Prob. Vendas: (5%)²

Prob. Não Vendas: (95%)¹⁸

Combinação

Prob. Vendas: (5%)²

Prob. Não Vendas: (95%)¹⁸

$$P(X=2) = {20 \choose 2} 5\%^2 (1 - 5\%)^{20-2} = 18,9\%$$

Variáveis Aleatórias Discretas: Binomial

Uma variável aleatória X segue a distribuição Binomial se o fenômeno que se deseja descrever é o número de sucessos em uma sequência de tentativas. Cada tentativa possui apenas dois resultados possíveis: sucesso ou fracasso, as tentativas são independentes e a probabilidade de sucesso se mantém constante em todas as tentativas.

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n - k}, \text{ sendo } 0 \le k \le n$$

A notação utilizada será $X \sim Bin(n, p)$, sendo:

- **n** o número de tentativas
- **p** a probabilidade de sucesso
- **k** o número de sucessos

Revisão

Vimos que a **Distribuição Binomial** é utilizada quando queremos calcular a probabilidade de obter **k sucessos em n tentativas**.

Probabilidades Distribuição de Probabilidades Poisson

Variáveis Aleatórias Discretas: Poisson

Um analista recebeu a base de dados de uma campanha de Marketing realizada por sua empresa no Google Ads. A base contém a quantidade de cliques em um anúncio, em intervalos de 1 hora, ao longo do período de 12 horas. O Diretor de Marketing te pergunta então qual é a probabilidade de que em 2 dias (de 12 horas cada) o anúncio tenha até 60 cliques?

Hora	Cliques
8 - 9	2
9 - 10	5
10 - 11	2
11 - 12	1
12 - 13	0
13 - 14	3
14 - 15	4
15 - 16	3
16 - 17	4
17 - 18	2
18 - 19	1
19 - 20	3
Total	30

Cliques	Qte Períodos 1 Hora	Freq. Relativa ou Probabilidade
0	1	8,3%
1	2	16,7%
2	3	25,0%
3	3	25,0%
4	2	16,7%
5	1	8,3%
Total	12	100,0%

Informações extraídas:

- Total de Cliques em 12h: 30
- Média de cliques por hora: **2,5**

$$P(X \le 60) = \sum_{k=0}^{60} \frac{e^{-2.5*24} (2.5*24)^k}{k!} = 53.4\%$$

Variáveis Aleatórias Discretas: Poisson

Uma variável aleatória **X** segue a distribuição **Poisson** com parâmetro $\lambda > 0$ se o fenômeno que se deseja descrever é a **quantidade de ocorrências de um evento** em um **intervalo de tempo determinado**.

$$P(X = k) = \frac{e^{-\lambda}\lambda^k}{k!} \text{ sendo } k = 0,1,2,\dots.$$

A notação utilizada será $X \sim Po(\lambda)$

O parâmetro λ é denominado **Taxa de Ocorrência** e representa a **média de ocorrências do evento** em um **intervalo de tempo determinado**.

DISTR.POISSON (k; λ ; FALSO): calcula a probabilidade para X = kDISTR.POISSON (k; λ ; VERDADEIRO): calcula a probabilidade para $X \le k$ DAO ESTEVAN LEONCIO DA SILVA BARBOSA - jestevan12@gmail.com - CPF: 134.982.877-70

Revisão

Vimos que a **Distribuição Poisson** é utilizada quando queremos calcular a probabilidade de obter uma certa **quantidade de eventos** em um determinado **espaço de tempo**.

Probabilidades Variáveis Aleatórias Contínuas

Variáveis Aleatórias Contínuas

E se tivermos uma Variável Aleatória Contínua? Como fazemos para calcular a probabilidade de ocorrência de um evento?

Exemplo: Uma fábrica que produz peças de plástico, para avaliar a qualidade de sua produção, realizou diversas **medições do comprimento** das peças ao longo do mês. Os resultados são apresentados abaixo:

Comprimento (cm)	Frequência relativa ou Probabilidade
0,80 a 1,05	0,1%
1,05 a 1,30	2,2%
1,30 a 1,55	20,4%
1,55 a 1,80	46,5%
1,80 a 2,05	26,9%
2,05 a 2,30	3,9%
2,30 a 2,55	0,1%
TOTAL	100,0%

Variáveis Aleatórias Contínuas

As peças com comprimento inferior a **1,24cm** ou superior a **2,11cm** são consideradas defeituosas pois estão fora da especificação e não poderão ser aproveitadas.

Como podemos calcular a **probabilidade** de uma peça fabricada ser **defeituosa** utilizando a **tabela de frequências**?

Comprimento (cm)	Frequência relativa ou Probabilidade
0,80 a 1,05	0,1%
1,05 a 1,30	2,2%
1,30 a 1,55	20,4%
1,55 a 1,80	46,5%
1,80 a 2,05	26,9%
2,05 a 2,30	3,9%
2,30 a 2,55	0,1%
TOTAL	100,0%

Quando analisamos uma Variável Aleatória Contínua, a tabela de frequências não é o método mais adequado, pois ela não permite obter as probabilidades em intervalos diferentes daqueles existentes na tabela.

Variáveis Aleatórias Contínuas

As peças com comprimento inferior a **1,24cm** ou superior a **2,11cm** são consideradas defeituosas pois estão fora da especificação e não poderão ser aproveitadas.

Como podemos calcular a **probabilidade** de uma peça fabricada ser **defeituosa** utilizando a **tabela de frequências**?

Neste caso, utilizamos as **funções de probabilidades contínuas** mais adequadas para calcular as probabilidades desejadas.

Revisão

Vimos que as Variáveis Aleatórias Contínuas devem ser utilizadas quando a variável de interesse é contínua.

Também vimos que nesse caso, calcular as probabilidades a partir da tabela de frequências não é a melhor forma, devemos utilizar as **funções de probabilidades contínuas**, que veremos a seguir.

Probabilidades Distribuição de Probabilidades Normal

Variáveis Aleatórias Contínuas: Normal

Uma fábrica que produz peças de plástico, precisa calcular a **probabilidade de uma peça fabricada ser defeituosa**. As peças com comprimento inferior a **1,24cm** ou superior a **2,11cm** são consideradas defeituosas pois estão fora da especificação e não poderão ser aproveitadas.

O que podemos extrair de **informações** deste **histograma**?

- 1. Distribuição simétrica
- Concentração de valores na posição central
- 3. Densidade tende a zero para valores muito baixos ou valores muito altos
- 4. Formato de "sino"

Conclusão: A distribuição **Normal** parece ser adequada

Variáveis Aleatórias Contínuas: Normal

Tendo definido a distribuição **Normal** como mais adequada, o 2º passo é calcular as **medidas resumo Média** e **Desvio Padrão** para podermos utilizar sua **função de probabilidade**.

Medida Resumo	Média	Desvio Padrão
Comprimento (cm)	1,70	0,20

No 3º e último passo utilizamos a função de probabilidade para calcular a probabilidade de uma peça fabricada ser defeituosa:

$$P(Defeituosa) = P(X < 1,24) + P(X > 2,11)$$

Variáveis Aleatórias Contínuas: Normal

Logo, considerando que:

- A distribuição Normal é adequada
- A média amostral é igual a 1,70cm
- O desvio padrão amostral é igual a 0,20cm

A probabilidade de uma peça fabricada ser defeituosa é de 3,1%.

$$P(Defeituosa) = P(X < 1,24) + P(X > 2,11) = 3,1\%$$

Variáveis Aleatórias Contínuas: Normal

Uma variável aleatória contínua **X** segue a distribuição **Normal** com parâmetros μ e σ^2 se sua **Função Densidade de Probabilidade** é dada por:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

A notação utilizada será $X \sim N(\mu, \sigma^2)$ sendo:

- μ a média da variável X
- σ^2 a variância da variável X

DIST.NORM.N (x; μ ; σ ; **FALSO**): calcula a densidade de probabilidade para X = x **DIST.NORM.N** (x; μ ; σ ; **VERDADEIRO**): calcula a probabilidade para $X \le x$ ESTEVAN LEONCIO DA SIL VA BARBOSA - jestevan 12@gmail com - CPF: 134 982 877-70

Variáveis Aleatórias Contínuas: Normal

Algumas propriedades da Função de Densidade Normal são facilmente verificadas no seu gráfico. Veja:

$$X \sim N(\mu, \sigma^2)$$

Propriedade 1: O valor máximo de f(x) é no ponto $x = \mu$.

Variáveis Aleatórias Contínuas: Normal

Algumas propriedades da Função de Densidade Normal são facilmente verificadas no seu gráfico. Veja:

$$X \sim N(\mu, \sigma^2)$$

Propriedade 2: f(x) tende a 0 quando x tende ao mais infinito e ao menos infinito.

Variáveis Aleatórias Contínuas: Normal

Algumas propriedades da Função de Densidade Normal são facilmente verificadas no seu gráfico. Veja:

$$X \sim N(\mu, \sigma^2)$$

Propriedade 3: f(x) é simétrica em relação à μ .

Revisão

Vimos que a **Distribuição Normal** pode ser utilizada sempre que o **histograma possuir o formato de sino**.

Ela é a mais famosa e mais utilizada das distribuições de probabilidade porque diversos fenômenos na natureza apresentam uma **Distribuição Normal**, como altura, peso, pressão sanguínea, erros e tantos outros.

Probabilidades Outras Distribuições de Probabilidades

Outras Distribuições de Probabilidades

Existem diversas outras distribuições de probabilidades utilizadas para calcular a probabilidade dos eventos de interesse em inúmeras situações. Neste quadro resumo mostramos as principais:

Variável Aleatória	Distribuição	Principais aplicações práticas	Link
Discreta	Uniforme	Sorteios de números aleatórios.	https://pt.wikipedia.org/wiki/Distribuição uniforme
Discreta	Bernoulli e Binomial	Taxa de sucesso em qualquer tipo de processo. Ex.: Vendas, Medicina, Controle de Qualidade etc.	https://pt.wikipedia.org/wiki/Distribuição binomial
Discreta	Poisson	Contagens diversas: Marketing, Chamadas em um Call Center, veículos em um Pedágio etc.	https://pt.wikipedia.org/wiki/Distribuição_de_Poisson
Discreta	Geométrico	Estudo de cinemática da Física de objetos.	https://pt.wikipedia.org/wiki/Distribuição_geométrica
Discreta	Hipergeométrico	Cálculo da aceitação de lotes em fábricas.	https://pt.wikipedia.org/wiki/Distribuição_hipergeométrica
Contínua	Normal	Pesquisa, Ciências Socias, Física, Medicina, Agricultura, Engenharia, Finanças etc.	https://pt.wikipedia.org/wiki/Distribuição_normal
Contínua	Gama	Contagens em um processo. Ex.: Necessidade dos consumidores.	https://pt.wikipedia.org/wiki/Distribuição gama
Contínua	Qui Quadrado	Teoria de Qualidade do Ajuste	https://pt.wikipedia.org/wiki/Qui-quadrado
Contínua	Exponencial	Tempo até ocorrer um próximo evento	https://pt.wikipedia.org/wiki/Distribuição_exponencial
Contínua	t-Student	Estimação de média populacional com amostra pequena (menor que 30) e variância desconhecida.	https://pt.wikipedia.org/wiki/Distribuição_t_de_Student
Contínua EVAN LEONCIO DA S	F de Fisher	Análise da Variância entre grupos	https://pt.wikipedia.org/wiki/Distribuição F de Fisher- Snedecor

JOAO ES

Revisão Geral

Nesta última seção aprendemos o que são **Variáveis Aleatórias**, e seus tipos **discretos** e **contínuos**. Vimos também algumas **distribuições de probabilidade** mais utilizadas em problemas do dia-a-dia, como a **Uniforme**, **Binomial** e **Normal**.

Nas próximas seções, nossa meta é extrapolar os resultados das análises que já aprendemos a fazer: estudaremos sobre Inferência Estatística e como extrapolar os resultados obtidos a partir de uma amostra para a população!

