+
$$m$$
 tasks: $\{t_j\}_{j \in T} \mid T = \{1,2,...,m\}$
+ $categorize \rightarrow relational$ task
+ $Supervised$ $\begin{cases} Train: \{x^{(i)} \rightarrow \{y^{(i)}\}_{j \in T}\} \end{cases}$
+ $Relational$ $\begin{cases} Train: \{(x^{(i)}, \{y^{(i)}\}_{j \in Taux}^{(i)}) \rightarrow \{y^{(i)}\}_{j \in Tax}^{(i)}\} \end{cases}$
 $\begin{cases} Train: \{(x^{(i)}, \{y^{(i)}\}_{j \in Taux}^{(i)}) \rightarrow \{y^{(i)}\}_{j \in Tax}^{(i)}\} \end{cases}$
 $\begin{cases} Test: \{(x^{(i)}, \{y^{(i)}\}_{j \in Taux}^{(i)}) \rightarrow \{y^{(i)}\}_{j \in Tax}^{(i)}\} \end{cases}$
 $\begin{cases} Test: \{x^{(i)}, \{y^{(i)}\}_{j \in Taux}^{(i)}\} \rightarrow \{y^{(i)}\}_{j \in Tax}^{(i)}\} \end{cases}$
 $\begin{cases} Test: \{x^{(i)}, \{y^{(i)}\}_{j \in Taux}^{(i)}\} \rightarrow \{y^{(i)}\}_{j \in Tax}^{(i)}\} \end{cases}$
 $\begin{cases} Test: \{x^{(i)}, \{y^{(i)}\}_{j \in Taux}^{(i)}\} \rightarrow \{y^{(i)}\}_{j \in Tax}^{(i)}\} \end{cases}$

+ Meta

$$\rightarrow$$
 Train: $S = \{(x^{(i)}, \{y_j^{(i)}\}_{j \in T_S})\} \Rightarrow Q = \{x^{(i)} \rightarrow \{y_j^{(i)}\}_{j \in T_S}\}$
 \rightarrow Test: $S = \{(x^{(i)}, \{y_j^{(i)}\}_{j \in T_U})\} \Rightarrow Q = \{x^{(i)} \rightarrow \{y_j^{(i)}\}_{j \in T_U}\}$
 \rightarrow unseen.

+ Relational Meta:

 $\Rightarrow T \rightarrow \emptyset$

Metalink:

The below the probability of the probab

Initialize Nodes

+ Z⁽ⁱ⁾ = f₀(xⁱ) = h;

+ h;^(o) = w; \ node embeddings \\
+ W; | j \in Tu \ \ init with w; = 1 \\

Metalink generalize to unseen tasks.

Edges (predict)

Edge predictor $\langle f_{\phi} \rangle$: $h_{v}^{(A)} = AGG^{(A)}(\{MSG^{(A)}(f_{u}^{(A-1)}), u \in N_{G}(v)\}, h_{v}^{(A)})$ $\langle h_{i} | h_{v} \in 2 \text{ dissert graphs} \rangle | \qquad \langle L-GNN \text{ layers} \rangle$ $\hat{y}_{i}^{(i)} = MLP(ConCaT(f_{i}^{(i)}, f_{i}^{(i)}))$

h (1) = U (1) CONCAT (Mean ({Relu(W (4) & (1-1)), u ∈ N(v)}), f(1-1))

trainable / Vingo loss	trainable	// 3/'	h into loss
+ 2 types of nodes: data + Different MSG passing /	Vol / tasks V4.		
+ Diggenent MSG passing /	add edge jeatures	→ msg compu	itation
	0 0	trainable/al	lows $y_r \rightarrow MSF$
$f_{v}^{(4)} = U^{(4)} ConCat(Mean()k$	Pelu(W _{1/2} EV), · Su	+ 0 (d) (w),	$u \in N(\sigma)$
$\int_{V}^{(4)} = U^{(4)} CoNCAT (Mean (k) k)$ $2 sets of params [1: data]$ $0: task$	→ task → data		\$ (1-1)
+ Each time -> sample ru	en batch -> nen	gnaph G=	$\{V, E\}$
	ν	= {Vd, V+}	
+ Edge: each data point all Ttasks (lipan	tite Z.	= {Vd, V+} 1 = batch > j Met	1: 0→T
· ·		1= Mer	tatask=
+ backwards:		in	+ tasks?
J → Compare legits < e	edge pried> \	$\begin{cases} y_j & \text{if } j \in T_c \end{cases}$	-(i) Taux
* skip the rea * goal - oniente	l'édge prudiction		
* goal-oniente		1 V Seen 70	
		Seen	Tasks Nas Pa bels
		L.	abels

Algorithm 1 MetaLink Training in Relational Meta Setting

```
Require: Dataset \mathcal{D}_{train} = \{(\mathbf{x}, y)\}. A parameterized embedding function f_{\theta}. Last layer weights for
      each task \mathbf{w}_i. A parameterized heterogeneous GNN f_{\phi}. Number of GNN layers L.
          S, Q \leftarrow \text{SampleMiniBatch}(\mathcal{D}_{\text{train}}) \longrightarrow \text{New set} = \text{new graph}
\{\mathbf{z}\} \leftarrow f_{\theta}(\mathbf{x}) \text{ for } \mathbf{x} \in (S, Q)
  1: for each iteration do
 2:
 3:
           V_d^{(0)} = \{\mathbf{h}_i^{(0)} \leftarrow \mathbf{z} \text{ for } \mathbf{z} \in \{\mathbf{z}\}\}
 4:
                                                                                                            ▶ Initialize data nodes
           V_t^{(0)} = \{\mathbf{h}_i^{(0)} \leftarrow \mathbf{1} \text{ if meta else } \mathbf{w}_j \text{ for each } \mathbf{w}_j\}
 5:
                                                                                                            ▶ Initialize edges
 6:
 7:
 8:
 9:
           Backward (Criterion(logits, \{\{y_j^{(i)}\}_{j \in T_s^{(i)} \setminus T_{\text{anx}}^{(i)}}\} \in Q))
10:
```