

Vietnam National University HCMC

International University

EE053IU

Digital Logic Design

Lecture 14: Data Processing and Control

INSTRUCTOR: Dr. Vuong Quoc Bao

1. The Computer System

- Acquire information from data sources.
- Process information by interpreting, evaluating, manipulating, converting, formatting, or otherwise working with acquired data
- Provide information in a meaningful form to data recipients.

FIGURE 14-1 Basic computer block diagram.

FIGURE 14–2 Basic block diagram of a typical computer system including common peripherals. The computer itself is shown in the gray block.

2. Practical Computer System Considerations

FIGURE 14-3 Block diagram of a practical computer system.

Shared Signal Lines

FIGURE 14-4 Logic devices with tri-state outputs.

System Timing

FIGURE 14-7 A wait-state generator programmed for one wait state.

Signal Loading and Buffering

FIGURE 14-5 Buffers are used to prevent overloading of driving device.

Device Selection

FIGURE 14-6 Address decoding for the purpose of device selection.

EXAMPLE 14-1

For the wait-state generator in Figure 14-8, how many waits states will be generated when the device is selected?

FIGURE 14-8

Solution

The initial pattern loaded into the shift register is 11101111₂. This shifted pattern for each clock and the corresponding number of wait states are

Clock 1 (0 wait states): 11110111₂

Clock 2 (1 wait state): 11111011₂

Clock 3 (2 wait states): 111111101₂

Clock 4 (3 wait states): 111111110₂

On the fourth clock after Device select goes LOW, the most significant bit of the SEROUT line for the shift register goes LOW. This causes the Ready output to go LOW, terminating the bus cycle. Therefore, the wait-state generator inserts three wait states.

3. The Processor: Basic Operation

FIGURE 14–9 Elements of a microprocessor (CPU).

Control bus

to ALU and other units

FIGURE 14-10 Basic model of a simplified processor.

The Fetch/Execute Cycle

- During the fetch phase, an instruction is read from the memory and decoded by the instruction decoder.
- During the execute phase, the processor carries out the sequence of operations called for by the instruction. As soon as one instruction has been executed, the processor returns to the fetch phase to get the next instruction from the memory.

FIGURE 14-11 The fetch/execute cycle of a processor.

Pipelining

A technique where the microprocessor begins executing the next instruction in a program before the previous instruction has been completed is called pipelining.

¹st instruction Stage 2 of Stage 3 of Stage 1 of execution idle execution idle execution 2nd instruction 1st instruction Stage 3 of Stage 1 of Stage 2 of execution idle execution execution 3rd instruction 2nd instruction 1st instruction First Stage 1 of Stage 2 of Stage 3 of instruction complete execution execution execution 2nd instruction 3rd instruction 4th instruction Stage 2 of Stage 3 of Stage 1 of execution execution execution

(b) Pipelined execution of a program showing three stages

FIGURE 14–12 Illustration of pipelining.

 ⁽a) Nonpipelined execution of a program showing three stages of execution

Processor Elements

FIGURE 14–13 Example of the ALU adding two operands.

The Processor and the Memory

FIGURE 14-14 A processor and memory.

The Read Operation

- Address 5₁₀ is placed on address bus and followed by the read signal.
- (2) Contents of address 5₁₀ in memory is placed on data bus and stored in data register.

FIGURE 14-15 Illustration of the read operation.

The Write Operation

- Address 5₁₀ is placed on address bus and followed by the read signal.
- (2) Contents of address 5₁₀ in memory is placed on data bus and stored in data register.

FIGURE 14-15 Illustration of the read operation.

4. The Processor: Addressing Modes

Inherent Addressing

- Address code (6₁₀) is placed on address bus.
- 2 Data are placed on data bus and stored in data register by the read signal.
- Instruction is decoded.
- 4 Timing/Control unit stops processor operation.

FIGURE 14–17 Fetch/execute cycle for the wait (WAI) instruction. This illustrates inherent addressing.

Immediate Addressing

FIGURE 14–18 Illustration of immediate addressing. The process steps are numbered in sequence, and the cycle operations are color-coded.

Direct Addressing

FIGURE 14-19 Illustration of direct addressing.

Indexed Addressing

FIGURE 14-20 Illustration of indexed addressing.

5. The Processor: Special Operations

Interrupts and Exceptions

FIGURE 14-22 Basic concept of CPU polling peripheral devices.

Direct Memory Access (DMA)

(a) Data transfer handled by the CPU

(b) Data transfer handled by the DMA controller

FIGURE 14-24 Illustration of DMA vs CPU data transfer.

Direct Memory Access (DMA)

FIGURE 14-25 Block diagram of a typical computer.

6. Operating Systems and Hardware

The operating system (OS) of a computer is a special program that establishes the environment in which application programs operate. The operating system provides the functional interface between application programs in the system, called processes, and the computer hardware.

Total time

FIGURE 14-26 Simplified model of processor multitasking.

FIGURE 14–27 Multitasked multiprocessing in a multicore processor.

7. Programming

FIGURE 14-28 Hierarchy of programming languages relative to computer hardware.

7. Programming

FIGURE 14-29 Assembly to machine conversion using an assembler.

FIGURE 14-31 Machine independence of a program written in a high-level language.

8. Microcontrollers and Embedded Systems

FIGURE 14-34 Simplified microcontroller block diagram.

8. Microcontrollers and Embedded Systems

FIGURE 14-35 Microcontroller block diagram for programmable calculator.

8. Microcontrollers and Embedded Systems

FIGURE 14-36 Basic block diagram for a robotics system.

9. System on Chip (SoC)

A system on chip (SoC) is an integrated circuit that combines all components of a computer or other electronic system on a single chip. The SoC offers reduced manufacturing costs and smaller system configurations; Package sizes can be smaller than a dime.

FIGURE 14–37 A typical SoC ball-grid package. The bottom of the package with the BG contacts is shown. (a) Boris Sosnovyy/Shutterstock (b) Eldad Carin/Shutterstock.

FIGURE 14–38 Generic block diagram of a typical SoC.

Vietnam National University HCMC

International University

THE END

Lecture 14: Data Processing and Control

INSTRUCTOR: Dr. Vuong Quoc Bao