AMENDMENTS TO THE CLAIMS

Claims 1-31 (Canceled).

32. (Previously Presented) A method of forming a capacitor in a semiconductor device, said method comprising:

forming a bottom conducting layer, wherein said bottom conducting layer forms a bottom electrode;

forming a dielectric layer over the bottom conducting layer, and annealing said dielectric layer with a first anneal process;

forming a top electrode with a top conducting layer over the annealed dielectric layer, wherein said top conducting layer is formed of a material selected from the group consisting of Platinum Rhodium (PtRh), Platinum Iridium (PtIr), Ruthenium Oxide (RuO₂), Rhodium Oxide (RhO₂), Chromium Oxide (CrO₂), Molybdenum Oxide (MoO₂), Rhemium Oxide (ReO₃), Iridium Oxide (IrO₂), Titanium Oxides (TiO₁ or TiO₂), Vanadium Oxides (VO₁ or VO₂), and Niobium Oxides (NbO₁ or NbO₂); and

annealing the top electrode with a second anneal process using an oxidizing gas anneal, said oxidizing gas anneal performed between 10 seconds to about 30 minutes.

- 33. (Original) A method of forming a capacitor of claim 32, wherein said capacitor is formed over a conductive plug, said method further comprising depositing an oxygen barrier over said conductive plug prior to forming the bottom conducting layer.
- 34. (Original) A method of forming a capacitor of claim 32, said method further comprising: annealing the dielectric layer after it is formed.
- 35. (Original) A method of forming a capacitor of claim 32, wherein said bottom conducting layer is formed of a material selected from the noble metal group.

- 36. (Original) A method of forming a capacitor of claim 32, wherein said bottom conducting layer is formed of a metal.
- 37. (Original) A method of forming a capacitor of claim 32, wherein said bottom conducting layer is formed of a metal alloy.
- 38. (Original) A method of forming a capacitor of claim 32, wherein said bottom conducting layer is formed of a conducting metal oxide.
- 39. (Original) A method of forming a capacitor of claim 32, wherein said bottom conducting layer is formed of a metal nitride.
- 40. (Original) A method of forming a capacitor of claim 32, wherein said bottom conducting layer is formed of a material selected from the group consisting of: Platinum (Pt), Platinum Rhodium (PtRh), Platinum Iridium (PtIr), Ruthenium, Ruthenium Oxide (RuO₂), Rhodium Oxide (RhO₂), Chromium Oxide (CrO₂), Molybdenum Oxide (MoO₂), Rhemium Oxide (ReO₃), Iridium Oxide (IrO₂), Titanium Oxides (TiO₁ or TiO₂), Vanadium Oxides (VO₁ or VO₂), Niobium Oxides (NbO₁ or NbO₂), and Tungsten Nitride (WNx, WN or W₂N).
- 41. (Original) A method of forming a capacitor of claim 40, wherein said bottom conducting layer is formed of a material selected from the group consisting of: Platinum (Pt), Platinum Rhodium (PtRh), Platinum Iridium (PtIr), and Tungsten Nitride (WNx, WN or W₂N).
- 42. (Original) A method of forming a capacitor of claim 32, wherein said dielectric layer is a dielectric metal oxide layer.
- 43. (Original) A method of forming a capacitor of claim 32, wherein said dielectric layer has a dielectric constant between 7 and 300.
- 44. (Original) A method of forming a capacitor of claim 32, wherein said dielectric layer is formed of a material selected from the group consisting of: Tantalum Oxide, Tantalum Pentoxide (Ta₂O₅), Barium Strontium Titanate (BST), Aluminum Oxide (A1₂O₃), Zirconium Oxide (ZrO₂), Praseodymium Oxide (PrO₂), Tungsten Oxide (WO₃), Niobium Pentoxide

(Nb₂O₅), Strontium Bismuth Tantalate (SBT), Hafnium Oxide (HfO₂), Hafnium Silicate, Lanthanum Oxide (La₂O₃), Yttrium Oxide (Y₂O₃), and Zirconium Silicate.

- 45. (Original) A method of forming a capacitor of claim 44, wherein said dielectric layer is formed of a material selected from the group consisting of: Tantalum Oxide, Tantalum Pentoxide (Ta₂O₅), Barium Strontium Titanate (BST), Strontium Bismuth Tantalate (BST), Aluminum Oxide (A1₂O₃), Zirconium Oxide (ZrO₂) and Hafnium Oxide (HfO₂).
- 46. (Original) A method of forming a capacitor of claim 45, wherein said dielectric layer is Tantalum Oxide and is crystalline or amorphous material.
- 47. (Previously Presented) A method of forming a capacitor of claim 45, wherein said dielectric layer is an amorphous dielectric layer which is heated to a temperature above 200 degrees Celsius to change said dielectric layer from an amorphous material to a crystalline material.
 - 48. (cancelled)
 - 49. (cancelled)
 - 50. (cancelled)
 - 51. (Canceled)
 - 52. (cancelled)
- 53. (Previously Presented) A method of forming a capacitor of claim 32, wherein said bottom and top conducting layers are formed of a material selected from the group consisting of: Platinum Rhodium (PtRh), or Platinum Indium (PtIr) and said dielectric layer is a layer of Tantalum Oxide.
- 54. (Previously Presented) A method of forming a capacitor of claim 32, wherein said bottom and top conducting layers are formed of a material selected from the group

consisting of: Platinum Rhodium (PtRh), or Platinum Iridium (PtIr) and said dielectric layer is a layer of Barium Strontium Titanate (BST) or Strontium Bismuth Tantalate (SBT).

- 55. (Previously Presented) A method of forming a capacitor of claim 32, wherein said top conducting layers are formed of a material selected from the group consisting of Platinum Rhodium (PtRh), or Platinum Iridium (PtIr) and, said bottom conducting layer is a layer of Tungsten Nitride (WNx, WN or W₂N) layer, and said dielectric layer is a layer of Aluminum Oxide (A1₂O₃).
 - 56. (Canceled).
- 57. (Previously Presented) A method of forming a capacitor of claim 32, wherein said annealing is performed with a material selected from the group consisting of: Oxygen (O_2) , Ozone (O_3) , Nitrous Oxide (N_2O) , Nitric Oxide (NO), and water vapor (H_2O) .
- 58. (Original) A method of forming a capacitor of claim 57, wherein said annealing is performed with a gas mixture containing at least one element selected from the group consisting: Oxygen (O₂), Ozone (O₃), Nitrous Oxide (N₂O), Nitric Oxide (NO), and water vapor (H₂O).
- 59. (Previously Presented) A method of forming a capacitor of claim 32, wherein said annealing is a plasma enhanced annealing.
- 60. (Original) A method of forming a capacitor of claim 59, wherein said annealing is a remote plasma enhanced annealing.
- 61. (Previously Presented) A method of forming a capacitor of claim 32, wherein said annealing is an ultraviolet light enhanced annealing.
- 62. (Original) A method of forming a capacitor of claim 32, wherein said annealing is performed at a temperature between 300 and 800 degrees Celsius.
- 63. (Original) A method of forming a capacitor of claim 62, wherein said annealing is performed at a temperature between 400 and 750 degrees Celsius.

Docket No.: M4065.0210/P210-A

64. (Canceled).

65. (currently amended) A method of forming a capacitor of claim [[64]] 62, wherein said annealing is performed at a pressure between 2 and 660 Torr.

Claims 66-67 (Canceled).

68. (Previously Presented) A method of forming a capacitor of claim 32, wherein said annealing is performed in the presence of an oxygen gas with a flow rate between 0.01 and 10 liters per second.

Claims 69-96 (Canceled).

97. (Previously Presented) A method of forming a capacitor in a semiconductor device, said method comprising:

forming a bottom electrode;

forming a dielectric layer over the bottom electrode;

forming a top electrode over said dielectric layer; and

annealing said top electrode with an oxidizing gas anneal at a temperature greater than 400°C.

98. (Previously Presented) A method of forming a capacitor in a semiconductor device, said method comprising:

forming a bottom electrode;

forming a dielectric layer over the bottom electrode;

annealing the dielectric layer with a first oxidizing gas anneal for about 10 seconds to about 60 minutes, at a temperature from about 300 to about 800°C;

Docket No.: M4065.0210/P210-A

forming a top electrode over said annealed dielectric layer; and annealing said top electrode with a second oxidizing gas anneal for about 10 seconds to about 60 minutes, at a temperature from about 300 to about 800°C.