The real Bellman-Ford algorithm COMS20010 (Algorithms II)

John Lapinskas, University of Bristol

Bellman-Ford: A reminder

Algorithm: GOODPATH

```
Input : A weighted digraph G = ((V, E), w) with no negative-weight cycles, two vertices s, t \in V(G), and an integer k \ge 0.
```

Output : A shortest walk from s to t in G with at most k edges, or None if none exists.

```
1 begin
2 | if s = t then
3 | Return the empty walk.
4 | else if k = 0 then
5 | Return None.
6 | Write N^+(s) = \{v_1, \dots, v_d\}, where d \ge 1.
7 | Let P_i \leftarrow \text{GOODPATH}(G, v_i, t, k - 1) for all i \in [d].
8 | if P_i = \text{None for all } i \in [d] then
9 | Return None.
Return whichever walk is shortest in \{sv_iP_i: i \in [d], P_i \ne \text{None}\}.
```

Memoised, this takes $O(|V|^3)$ time and space, since we need to store the result of $\Omega(|V|^2)$ function calls.

By making the algorithm iterative and being a little smarter, we can drop this to O(|V||E|) time and O(|V|) space. This is why it's often a good idea to de-memoise!

k 5	и	V	W	X	y	Z
5						
3						
4 3 2						
1						
0						

k ^s	и	V	W	X	у	Z
5						
3						
4 3 2						
1						
0	Ø	Ø	Ø	Ø	Ø	Z

k 5	и	V	W	X	У	Z
5						
4						
3						
2						
1	Ø	Ø	WZ	Ø	уz	Z
0	Ø	Ø	Ø	Ø	Ø	Z

k ^S	и	V	W	X	У	Z
5						
4						
3						
2						
1	Ø	Ø	WZ	\emptyset	уz	Z
0	Ø	Ø	Ø	Ø	Ø	Z

k^{s}	и	V	W	X	У	Z
5						
4						
3						
2						
1	Ø	Ø	WZ	Ø	yz	Z
0	Ø	Ø	Ø	Ø	Ø	Z

k ^s	и	V	W	X	y	Z
5						
4						
3						
2	Ø	VWZ	WZ	xyz	yz	Z
1	Ø	Ø	WZ	Ø	yz	Z
0	Ø	Ø	\emptyset	Ø	Ø	Z

k 5	и	V	W	X	у	Z
5						
4						
3						
2	Ø	VWZ	WZ	xyz	yz	Z
1	Ø	Ø	WZ	Ø	yz	Z
0	Ø	Ø	\emptyset	Ø	Ø	Z

k 5	и	V	W	X	y	Z
5						
4						
3						
2	Ø	VWZ	WZ	xyz	yz	Z
1	Ø	Ø	WZ	Ø	yz	Z
0	Ø	Ø	Ø	Ø	Ø	Z

k 5	и	V	W	Χ	у	Z
5						
4						
3						
2	Ø	VWZ	WZ	xyz	yz	Z
1	Ø	Ø	WZ	Ø	yz	Z
0	Ø	Ø	Ø	Ø	Ø	Z

k 5	и	V	W	X	у	Z
5						
4						
3						
2	Ø	VWZ	WZ	xyz	yz	Z
1	Ø	Ø	WZ	Ø	yz	Z
0	Ø	Ø	Ø	Ø	Ø	Z

>5	и	V	W	Χ	У	Z
5						
4						
3	uxyz	vxyzı	wxyz	xyz	yz	Z
2	Ø	VWZ	WZ	xyz	yz	Z
1	Ø	\emptyset	WZ	Ø	yz	Z
)	Ø	\emptyset	Ø	Ø	Ø	Z

Say we are trying to find shortest paths from every vertex to z.

This is getting ugly. These paths are taking up a lot of space, and we need to recalculate their lengths each time.

Why not just store the first edge of each path, along with its length?

So e.g. d(u, z) = 8, via the path uvwxyz.

So e.g. d(u, z) = 8, via the path uvwxyz.

We only actually use the k=0 row of the table in calculating the k=1 row, which we only use in calculating the k=2 row...

So e.g. d(u, z) = 8, via the path uvwxyz.

We only actually use the k=0 row of the table in calculating the k=1 row, which we only use in calculating the k=2 row...

Let's free the memory after we're done with it. Now we use O(|V|) space!

So e.g. d(u, z) = 8, via the path uvwxyz.

We can be even more cunning, and store only the current row.

So when we try and retrieve the value from our table for s = v, k = 3 (say), we might get the value for s = v, k = 4 instead if we already updated it. But this is OK — in fact, it means we sometimes find shorter paths faster!

Here's what this looks like in practice:

Here's what this looks like in practice:

Here's what this looks like in practice:

Here's what this looks like in practice:

Update to k = 2.

Here's what this looks like in practice:

Update to k = 2.

Here's what this looks like in practice:

Update to k = 3.

Here's what this looks like in practice:

Here's what this looks like in practice:

Update to k = 4.

Here's what this looks like in practice:

Update to k = 5.

Here's what this looks like in practice:

Now let's put this in pseudocode...

The real Bellman-Ford algorithm

```
Algorithm: BellmanFord
                 : A weighted digraph G = ((V, E), w) with no negative-weight cycles and vertices
   Input
                    s, t \in V(G).
                 : A shortest path from s to t, or None if none exists.
   Output
1 begin
          Let \operatorname{dist}[v] \leftarrow \infty for all v \in V \setminus t, \operatorname{dist}[t] \leftarrow 0.
         Let edge[v] \leftarrow None for all v \in V.
         for i = 1 \text{ to } |V| - 1 \text{ do }
                for u in V do
                      for v in N^+(u) do
                      if \operatorname{dist}[u] > w(u, v) + \operatorname{dist}[v] then 
\[ \dist[u] \leftarrow w(u, v) + \dist[v] \text{ and } \edge[u] \leftarrow (u, v).
          v \leftarrow s. while v \neq t do
                If edge[v] = None, return None.
                Else writing edge[v] = (v, w), output (v, w) and set v \leftarrow w.
```

This now takes $O(|V|\sum_{u\in V} d^+(u)) = O(|V||E|)$ time, by the handshaking lemma, and O(|V|) space. Using edge, you can also output every other shortest path to t in $O(|V|^2)$ time.

11

Bellman-Ford as described gives you all shortest paths to a sink.

You can also adapt it to give you all shortest paths from a source, like Dijkstra. (See problem sheet.)

Bellman-Ford as described gives you all shortest paths to a sink.

You can also adapt it to give you all shortest paths from a source, like Dijkstra. (See problem sheet.)

What if you want shortest paths from all sources to all sinks, though?

Bellman-Ford as described gives you all shortest paths to a sink.

You can also adapt it to give you all shortest paths from a source, like Dijkstra. (See problem sheet.)

What if you want shortest paths from **all** sources to **all** sinks, though? Repeatedly applying Dijkstra gives you $O(|V||E|\log|V|)$ time for non-negative edge weights.

You can match this running time even with negative edge weights using **Johnson's algorithm**.

Bellman-Ford as described gives you all shortest paths to a sink.

You can also adapt it to give you all shortest paths from a source, like Dijkstra. (See problem sheet.)

What if you want shortest paths from **all** sources to **all** sinks, though? Repeatedly applying Dijkstra gives you $O(|V||E|\log|V|)$ time for non-negative edge weights.

You can match this running time even with negative edge weights using **Johnson's algorithm**.

Also, a lot of the time you're not working blind — you have some idea of "which direction is best", e.g. if you're pathfinding in a video game. In this case you should use a heuristic-guided algorithm like **A*** search, which often runs much faster than Dijkstra or Bellman-Ford.