

University of Applied Sciences FACHBEREICH INGENIEUR- UND NATURWISSEN-SCHAFTEN

Protokoll Analytik

Versuch 1.2

Fällungstitration

Bestimmung des Chloridgehaltes in Leitungswasser (Konduktometrie und Potentiometrie)

Gruppe 2.4 (BCUC4)

Teilnehmer:

Willy Messerschmidt Roman-Luca Zank

Datum der Versuchsdurchführung: 06.07.2020

Abgabedatum: 09.07.2020

Inhaltsverzeichnis

1	Einleitung	2
2	Theorie	2
3	Geräte und Chemikalien	3
4	Durchführung	3
5	Ergebnisse und Berechnungen	5
6	Diskussion	8
7	Fehlerbetrachtung	8
Ar	nhang	9
Literaturverzeichnis		

1 Einleitung

Ein hoher Chloridgehalt im Trink-, sowie Brauchwasser kann aufgrund von Geschmacksbeeinträchtigung bei der Herstellung von Getränken wie Tee oder Kaffee unerwünscht sein. Für eisenhaltige Metalle können zu hohe Chloridgehalte sogar korrosiv wirken. Die Herkunft von erhöhten Chloridgehalten kann in Abwässern, Düngemitteln oder auch Fäkalien liegen. Unter der Voraussetzung, dass das Trinkwasser nicht korrosiv wirken sollte, gilt es, laut Trinkwasserverordnung, einen Grenzwert von 250 $\frac{mg}{L}$ Chlorid einzuhalten.

Im Praktikum wird eine Leitungswasserprobe mittels Argentometrie auf diesen Grenzwert untersucht. Für die Titration werden die Messmethoden der Konduktometrie und Potentiometrie angewandt. Im Protokoll sind dabei verschiedene Methoden für Äquivalenzpunktbestimmung darzustellen.

2 Theorie

Löslichkeitsprodukt

Löslichkeitsprodukt:

$$K_L = c \left(A^{b+} \right)^a \cdot c \left(A^{a-} \right)^b \tag{1}$$

Löslichkeit:

$$L = c(A_m B_n) = \frac{1}{m} \cdot A^{n+} = \frac{1}{n} \cdot B^{m-}$$
 (2)

Allgemein gilt auch:

$$L = \sqrt[m+n]{\frac{K_L}{m^m \cdot n^n}} \tag{3}$$

Nernst'sche Gleichung

$$E = E_0 + \frac{R \cdot T}{z \cdot F} \cdot \ln\left(\frac{c_{\text{ox}}}{c_{\text{red}}}\right) \tag{4}$$

Konduktometrie

Potentiometrie

Biamperometrische und bivoltametrische Indikation

3 Geräte und Chemikalien

Geräte:

- Vollpipetten (V=50 mL & 100 mL)
- Bechergläser
- Rührfisch mit Magnetrührer
- Konduktometer mit Leitfähigkeitselektrode
- pH-Meter mit Silber-Einstabmesskette (MICROPROCESSOR PH 539)
- Elektronische Bürette TITRONIC 97/20

Proben/Chemikalien:

- Leitungswasserprobe
- Destilliertes Wasser
- Silbernitratlösung $\left(c = 0.01 \, \frac{\text{mol}}{\text{L}}\right)$

4 Durchführung

Der Versuch begann mit dem Einschalten der elektronischen Bürette und des Leitfähigkeitsmessgerätes. Es wurde ohne Temperaturkorrektur durch das Messgerät gearbeitet. Die Messsonde wurde mit destilliertem Wasser gespült und in das Stativ eingespannt. Die Einstellungen an der elektronischen Bürette wurden beibehalten. An dieser Stelle wurden mittels einer Vollpipette exakt 100 mL der WasserProbe abgemessen und zusammen mit einem Rührfisch in ein Becherglas mit einem Volumen von 125 mL eingefüllt. Das becherglas wurde auf dem Magnetrührer platziert und die Elektrode herabgesenkt bis selbige ausreichend in die Lösung eingetaucht war. Es ist wichtig dass über dem Rührfisch genügend Raum bleibt um die Sonde gut eintauchen zu können. Das Drücken der Start-Taste an der elektronischen Bürette startet die Zugabe der 0,01 molaren Silbernitratlösung. Diese wird durch die automatische Bürette alle 15 Sekunden in Portionen von 0,5 mL zugegeben bis ein Gesamtvolumen von 20 mL eingebracht wurde. Nach dem Einspritzen der Silbernitratlösung wurde immer 10 Sekunden gewartet, bis der Messwert vom Messgerät abgelesen wurde. Dieser Ablauf wurde 3 mal wiederholt, wobei für jede neue Wasserprobe ein frisches Becherglas genutzt wurde. Dann erfolgte der Wechsel von Sonde und Messgerät. Die Leitfähigkeitssonde wurde gespült und wieder in destilliertes Wasser getaucht, während die Silber-Silberchlorid-Elektrode als Einstabmesskette in das Stativ eingespannt wurde. Das Leitfähigkeitsmessgerät wurde aus- und das pH-Meter zur Messung der Potentialdifferenz eingeschaltet. Für die Potentiometrische Indikation wurden je nur 50 mL Wasserprobe abgemessen. Da die Elektrode nicht vom rotierenden Rührfisch getroffen werden darf und die Silberelektrode doch bis über das innenliegende Diaphragma eingetauch sein muss, wurden auch entsprechend kleinere Bechergläser genutzt. Aus den vorangegangenen konduktometrischen Messungen konnte geschlossen werden, das der Äquivalenzpunkt bei etwa 3,5 mL Silbernitratlösung zu erwarten war. Die insgesamt zutitrierte Menge wurde daher an der elektronischen Bürette von den zuvor 20 mL, auf 10 mL herabgesetzt. Dies geht mit einer großen Zeitersparnis und Einsparung von Chemikalien einher. Wiederum wurden die Werte nach 10 Sekunden abgelesen und notiert. Auch diesmal wurde eine Dreifachbestimmung vorgenommen.

Nach Abschluss der Messungen wurden alle silberhaltigen Abfälle in einen Sammelbehälter entsorgt und die Geräte abgewaschen. Die Silberelektrode wurde wie die Leitfähikeitssonde auch in ein Becherglas mit destilliertem Wasser gehangen um dem Austrocknen vorzubeugen.

Eine Bestimmung des Korrekturfaktors musste aus Zeitgründen entfallen.

5 Ergebnisse und Berechnungen

Abb. 1: Leitfähigkeiten in Abhängigkeit der Maßlösungszugabe

Abb. 2: Spannungen in Abhängigkeit der Maßlösungszugabe

Tab. 1: Geradengleichungen der Messreihen 1 bis 3 für die Konduktometrie

	Reaktionsgerade (links)	$\ddot{\mathbf{U}}$ berschussgerade (rechts)	R_1^2	$oldsymbol{R}_2^2$	Äquivalenzvolumen
Messreihe 1	$\kappa_{11} = -5,186 \cdot V + 544,817$	$\kappa_{12} = 13,928 \cdot V + 409,343$	0,999	1,000	$7{,}137\mathrm{mL}$
Messreihe 2	$\kappa_{21} = -5,071 \cdot V + 545,483$	$\kappa_{22} = 14,077 \cdot V + 410,221$	0,999	1,000	$7{,}113\mathrm{mL}$
Messreihe 3	$\kappa_{31} = -4,957 \cdot V + 542,750$	$\kappa_{32} = 14,129 \cdot V + 407,993$	0,999	1,000	$7{,}110\mathrm{mL}$

Berechnung des Äquivalenzvolumens über Konduktometrie:

Es werden die jeweiligen Regressionsgeraden gleichgesetzt und nach den Volumina umgestellt. Die Regressionsgeraden finden sich in der Tabelle 1. Das Äquivalenzvolumen bezieht sich auf 100 mL Probe.

$$\kappa_{11} = \kappa_{12}
m_{11} \cdot V_{\text{äq}} + n_{11} = m_{12} \cdot V_{\text{äq}} + n_{12}
V_{\text{äq}} = \frac{n_{12} - n_{11}}{m_{11} - m_{12}} \cdot f_{\text{korr}}
V_{\text{äq}} = \frac{409,343 \frac{\mu S}{\text{cm}} - 544,817 \frac{\mu S}{\text{cm}}}{-5,186 \frac{\mu S}{\text{cm} \cdot \text{mL}} - 13,928 \frac{\mu S}{\text{cm} \cdot \text{mL}}} \cdot 1,007
= 7,137 \text{ mL}$$
(5)

Berechnung des Äquivalenzvolumens über Potentiometrie nach Kolthoff-Hahn: Das Äquivalenzvolumen bezieht sich auf 50 mL Probe.

$$V_{\text{äq}} = \left(V' + \frac{\Delta V \cdot (\Delta E_{\text{max}} - E_{\text{vor}})}{2 \cdot \Delta E_{\text{max}} - \Delta E_{\text{vor}} + \Delta E_{\text{nach}}}\right) \cdot f_{\text{korr}}$$

$$= \left(3.5 \,\text{mL} + \frac{0.5 \,\text{mL} \cdot (56 \,\text{mV} - 25 \,\text{mV})}{2 \cdot 56 \,\text{mV} - 25 \,\text{mV} + 25 \,\text{mV}}\right) \cdot 1,007$$

$$= 3,664 \,\text{mL}$$
(6)

Berechnung des Chloridgehaltes:

$$\beta_{\text{Cl}} = \frac{V_{\text{äq}} \cdot f_{\text{st\"och}}}{V_{\text{Probe}}}$$

$$\beta_{\text{Cl,1,kondukt.}} = \frac{7,137 \,\text{mL} \cdot 0,354 \,53 \,\frac{\text{mg}}{\text{mL}}}{100 \,\text{mL}}$$

$$= \underline{25,304 \,\frac{\text{mg}}{\text{mL}}} \tag{7}$$

Berechnung des Mittelwertes:

$$\bar{x} = \frac{\sum_{n=1}^{N} x_n}{N} \tag{8}$$

$$\bar{x} = \frac{25,304 \frac{\text{mg}}{\text{L}} + 25,219 \frac{\text{mg}}{\text{L}} + 25,206 \frac{\text{mg}}{\text{L}}}{3}$$

$$= 25,243 \frac{\text{mg}}{\text{L}}$$
(9)

Tab. 2: Zusammengefasste Äquivalenzvolumina und Chloridgehalte der Konduktometrie und der Potentiometrie

	Konduk	tometrie	Potentiometrie			
	V _{äq} in [mL]	$\beta_{\rm Cl}$ in $\left[\frac{\rm mg}{\rm L}\right]$	V _{äq} in [mL]	$\beta_{\rm Cl} \ { m in} \ \left[{ m mg \over L} ight]$		
Messreihe 1	7,137	25,304	3,664	25,979		
Messreihe 2	7,113	$25,\!219$	3,646	$25,\!855$		
Messreihe 3	7,110	$25,\!206$	3,659	25,943		
Mittelwert	7,120	25,243	3,656	25,926		

Berechnung der Standardabweichung:

$$s = \sqrt{\frac{\sum_{n=1}^{N} (x_n - \bar{x})^2}{N - 1}}$$
 (10)

$$s = \sqrt{\frac{(25,304 \frac{\text{mg}}{\text{L}} - 25,243 \frac{\text{mg}}{\text{L}})^2 + (25,219 \frac{\text{mg}}{\text{L}} - 25,243 \frac{\text{mg}}{\text{L}})^2 + (25,206 \frac{\text{mg}}{\text{L}} - 25,243 \frac{\text{mg}}{\text{L}})^2}{2}}$$

$$= 5,335 \cdot 10^{-2} \frac{\text{mg}}{\text{L}}$$
(11)

Berechnung des Vertrauensintervalls:

$$conf(\bar{x}) = \bar{x} \pm \frac{t}{\sqrt{N}} \cdot s$$
 (12)

$$conf(\bar{x}) = 25,243 \frac{\text{mg}}{\text{L}} \pm \frac{2,920}{\sqrt{3}} \cdot 5,335 \cdot 10^{-2} \frac{\text{mg}}{\text{L}}$$
$$= 25,243 \frac{\text{mg}}{\text{L}} \pm 8,994 \cdot 10^{-2} \frac{\text{mg}}{\text{L}}$$
(13)

Grenzwerttest:

$$t_{\text{emp}} = \frac{\bar{x} - x_{\text{Grenz}}}{s} \cdot \sqrt{N}$$

$$= \frac{25,243 \frac{\text{mg}}{\text{L}} - 250 \frac{\text{mg}}{\text{L}}}{5,335 \cdot 10^{-2} \frac{\text{mg}}{\text{L}}} \cdot \sqrt{3}$$

$$= -7,297 \cdot 10^{3}$$
(14)

$$t_{\rm emp} < -t_{\rm crit}$$

$$-7.297 \cdot 10^3 < -2.920$$
 wahre Aussage

6 Diskussion

Aus den Daten der konduktometrischen Indikation konnten die Reaktions- und Überschussgerade (siehe Abb. 1) mit einem Bestimmtheitsmaß von mindestens 0,999 (vgl. Tab. 1) erhalten werden. Deren Schnittpunkt erlaubt, durch Fällung des Lotes auf die Abzisse, das Ablesen des verbrauchten Volumens an Maßlösung. In diesem Falle wurde das Äquivalenzvolumen aber berechnet (vgl. (5)). Es ergibt sich dafür im Mittel 7,120 mL für 100 mL der Wasserprobe.

Aus den Daten der potentiometrischen Indikation wurde der Äquivalenzpunkt durch das numerische Verfahren nach Kolthoff-Hahn bestimmt (vgl. Gl. (6)). Für das Probenvolumen von 50 mL wurde ein mittleres Äquivalenzvolumen von Die Messdaten sind in Abb. 2 graphisch aufbereitet. Es fällt auf, dass die Messpunkte im unteren Bereich etwas weiter streuen. Die Ursache dafür wird beim Messgerät vermutet, da die relative Abweichung um einen konstanten Messfehler sich bei niedrigen Potentialen deutlich stärker auswirkt. Die drei Messreihen liegen sowohl bei der Konduktometrie als auch bei der Potentiometrie sehr nah bei einander. Die Messungen sind daher äußerst Präzise und wiederholgenau.

7 Fehlerbetrachtung

Anhang

Tab. 3: Messwerte Konduktometrie

Mess	reihe 1	Mess	reihe 2	Messreihe 3		
0.0	545	0,0	545	0.0	543	
0,5	543	0,5	544	0,5	541	
1,0	540	1,0	541	1,0	538	
1,5	537	1,5	538	1,5	535	
$^{1,0}_{2,0}$	534	2,0	535	2,0	533	
$^{2,0}_{2,5}$	532	2,5	533	2,5	530	
3,0	529	3,0	530	3,0	528	
3,5	526	3,5	527	3,5	525	
$^{3,0}_{4,0}$	524	4,0	525	4,0	520	
4,5	521	4.5	522	4,5	520	
5,0	518	5,0	520	5,0	518	
5,5	516	5,5	517	5,5	515	
6,0	514	6,0	515	6,0	513	
6,5	511	6,5	513	6,5	511	
7,0	510	7,0	511	7,0	509	
7,5	512	7,5	514	7,5	512	
8,0	518	8,0	520	8,0	519	
8,5	526	8,5	528	8,5	526	
9,0	533	9,0	535	9,0	534	
9,5	540	9.5	543	9,5	541	
10,0	548	10,0	551	10,0	549	
10,5	555	10,5	558	10,5	556	
11,0	563	11,0	565	11,0	564	
11,5	570	11,5	573	11,5	571	
12,0	577	12,0	580	12,0	579	
12,5	585	12,5	587	12,5	586	
13,0	592	13,0	595	13,0	593	
13,5	599	13,5	602	13,5	600	
14,0	606	14,0	609	14,0	607	
14,5	613	14,5	616	14,5	614	
15,0	620	15,0	623	15,0	621	
15,5	626	15,5	630	15,5	628	
16,0	633	16,0	636	16,0	635	
16,5	640	16,5	643	16,5	642	
17,0	647	17,0	650	17,0	649	
17,5	653	17,5	657	17,5	655	
18,0	660	18,0	663	18,0	662	
18,5	666	18,5	670	18,5	669	
19,0	673	19,0	676	19,0	675	
19,5	679	19,5	683	19,5	682	
20,0	685	20,0	689	20,0	688	

Tab. 4: Messwerte Konduktometrie

Mogg	roihon 1	ΔE_1		$\frac{\text{weree } \mathbf{R} \mathbf{o} \mathbf{n}}{\mathbf{reihen } 2}$	ΔE_2		reihen 3	ΔE_3
Messreihen 1		ΔE_1			ΔE_2			ΔE_3
0,0	174	-	0,0	186	-	0,0	186	-
0,5	182	8	0,5	189	3	0,5	189	3
1,0	187	5	1,0	194	5	1,0	193	4
1,5	192	5	1,5	199	5	1,5	198	5
2,0	199	7	2,0	205	6	2,0	204	6
2,5	207	8	2,5	215	10	2,5	213	9
3,0	220	13	3,0	228	13	3,0	226	13
3,5	245	25	3,5	256	28	3,5	251	25
4,0	301	56	4,0	307	51	4,0	304	53
$4,\!5$	326	25	4,5	328	21	4,5	328	24
5,0	339	13	5,0	340	12	5,0	340	12
$5,\!5$	347	8	5,5	348	8	5,5	347	7
6,0	354	7	6,0	354	6	6,0	353	6
6,5	358	4	6,5	358	4	6,5	358	5
7,0	362	4	7,0	362	4	7,0	361	3
7,5	366	4	7,5	365	3	7,5	365	4
8,0	369	3	8,0	368	3	8,0	367	2
8,5	371	2	8,5	371	3	8,5	370	3
9,0	374	3	9,0	373	2	9,0	372	2
9,5	375	1	9,5	375	2	9,5	374	2
10,0	377	2	10,0	377	2	10,0	376	2

Literatur