第3章

位相的場の理論

この章は [?, Chapter7] および [?] に相当する.この節で登場する多様体は特に断らない限り常に C^∞ 多様体である.また,体 \mathbb{K} と言ったら $\mathbb{K}=\mathbb{R}$, \mathbb{C} , \mathbb{H} のいずれかを指すことにしよう.

3.1 モノイダル圏

まず手始めに、モノイダル圏とストリング図式の準備をする.特に、コボルディズム圏と有限次元 Hilbert 空間の圏がコンパクト対称モノイダル圏であることの直感的な説明をする.

3.1.1 モノイダル圏の定義

定義 3.1: モノイダル圏

モノイダル圏 (monidal category) は、以下の5つのデータからなる:

- 圏 C
- テンソル積 (tensor product) と呼ばれる関手 \otimes : $\mathcal{C} \times \mathcal{C} \longrightarrow \mathcal{C}$
- 単位対象 (unit object) $I \in Ob(\mathcal{C})$
- associator と呼ばれる自然同値

$$\left\{a_{X,\,Y,\,Z}\colon (X\otimes Y)\otimes Z\stackrel{\cong}{\longrightarrow} X\otimes (Y\otimes Z)\right\}_{X,\,Y,\,Z\in\mathrm{Ob}(\mathcal{C})}$$

• left/right unitors と呼ばれる自然同値

$$\left\{l_X \colon I \otimes X \xrightarrow{\cong} X\right\}_{X \in \mathrm{Ob}(\mathcal{X})},$$
$$\left\{r_X \colon X \otimes I \xrightarrow{\cong} X\right\}_{X \in \mathrm{Ob}(\mathcal{X})}$$

これらは $\forall X, Y, Z, W \in Ob(\mathcal{C})$ について以下の 2 つの図式を可換にする:

(triangle diagram)

定義 3.1 は,ストリング図式(string diagram)で理解するのが良い。モノイダル圏の射 $f\colon X\longrightarrow Y,\ f'\colon X'\longrightarrow Y'$ があったら,そのテンソル積 $f\otimes f'\colon X\otimes X'\longrightarrow Y\otimes Y'$ は,ストリング図式上では次のようになる.

また、単位対象 $I \in \mathrm{Ob}(\mathcal{C})$ は空白として表す。 従って例えば射 $f \colon I \longrightarrow X$ は次のようになる:

【例 3.1.1】コボルディズム圏

厳密な構成^aは後回しにして、**コボルディズム圏** (cobordism category) を直感的に導入しよう. 圏 \mathbf{Cob}_{D+1} は、

- D 次元多様体を対象
- D+1 次元のコボルディズム (cobordism) を射

とするような圏のことを言う. D+1 次元のコボルディズム $\mathcal{M}\colon X\longrightarrow Y$ と言うのは,D+1 次元 多様体 \mathcal{M} であって, $\partial\mathcal{M}=X$ II Y となっているようなもの(の微分同相類)のことである:射 $\mathcal{M}\colon X\longrightarrow Y,\ \mathcal{N}\colon Y\longrightarrow Z$ の合成 $\mathcal{N}\circ\mathcal{M}\colon X\longrightarrow Y$ は次の図式が物語る:圏 \mathbf{Cob}_{D+1} は,disjoint union に関してモノイダル圏になる:

 $[^]a$ 例えば, $(B,\,f)$ -structure の定義から始めるコボルディズムの統一的な扱いは [?, CHAPTER 1] などを参照.

【例 3.1.2】有限次元 Hilbert 空間の圏

有限次元 K-Hilbert 空間の圏 Hilb とは,

- 有限次元 K-Hilbert 空間を対象
- 線型写像を射
- 写像の合成を射の合成

に持つような圏のことを言う. Hilb はベクトル空間のテンソル積 $V_1 \otimes V_2$ の上に内積を

$$\langle v_1 \otimes v_2, w_1 \otimes w_2 \rangle := \langle v_1, w_1 \rangle_1 \langle v_2, w_2 \rangle_2$$

と定義することでモノイダル圏になる.

3.1.2 組紐付きモノイダル圏

定義 3.2: 組紐付きモノイダル圏

組紐付きモノイダル圏 (braided monoidal category) とは、以下の 2 つからなる:

- モノイダル圏 C
- 組紐 (braiding) と呼ばれる自然同型

$$\{b_{X,Y}\colon X\otimes Y\xrightarrow{\cong} Y\otimes X\}_{X,Y\in\mathrm{Ob}(\mathcal{C})}$$

これらは $\forall X, Y, Z \in Ob(\mathcal{C})$ について以下の図式を可換にする:

(hexagon diagrams)

$$X \otimes (Y \otimes Z) \xrightarrow{a_{X,Y,Z}^{-1}} (X \otimes Y) \otimes Z \xrightarrow{b_{X,Y} \otimes 1_{Z}} (Y \otimes X) \otimes Z$$

$$\downarrow^{b_{X,Y \otimes Z}} \qquad \qquad \downarrow^{a_{Y,X,Z}}$$

$$(Y \otimes Z) \otimes X \xleftarrow{a_{Y,Z,X}^{-1}} Y \otimes (Z \otimes X) \xleftarrow{1_{X} \otimes b_{X,Z}} Y \otimes (X \otimes Z)$$

$$(X \otimes Y) \otimes Z \xrightarrow{a_{X,Y,Z}} X \otimes (Y \otimes Z) \xrightarrow{1_{X} \otimes b_{Y,Z}} X \otimes (Z \otimes Y)$$

$$\downarrow^{b_{X \otimes Y,Z}} \qquad \qquad \downarrow^{a_{X,Z,Y}^{-1}}$$

$$Z \otimes (X \otimes Y) \xleftarrow{a_{Z,X,Y}} (Z \otimes X) \otimes Y \xleftarrow{b_{X,Z} \otimes 1_{Y}} (X \otimes Z) \otimes Y$$

組紐付きモノイダル圏 $\mathcal C$ であって, $\mathcal C$ の組紐が $b_{X,Y}=b_{Y,X}^{-1}$ を充たすもののことを**対称モノイダル** 圏 (symmetric monoidal category) と呼ぶ.

ストリング図式で組紐を書く場合は次のようにする:

このとき hexagon diagrams はとてもわかりやすくなる:

対称モノイダル圏の条件も一目瞭然である:

【例 3.1.3】Cob_{D+1} の組紐

 \mathbf{Cob}_{D+1} の組紐 $b_{X,Y}\colon X\otimes Y\longrightarrow Y\otimes X$ は、多様体 $(X\times[0,1])\amalg(Y\times[0,1])$ と微分同相であるような D+1 次元多様体のことを言う:図から、 \mathbf{Cob}_{D+1} は対称モノイダル圏である.

【例 3.1.4】Hilb の組紐

Hilb の組紐は

$$b_{X,Y} \colon X \otimes Y \longrightarrow Y \otimes X,$$
$$x \otimes y \longmapsto y \otimes x$$

である.これがベクトル空間の同型写像であることが示される.明らかに $b_{X,Y}=b_{Y,X}^{-1}$ なので **Hilb** は対称モノイダル圏である.

3.1.3 閉圏・コンパクト圏・ダガー圏

圏 C を与える. **Hom 関手** (Hom functor) とは, 関手

$$\operatorname{Hom} \colon \mathcal{C}^{\operatorname{op}} \times \mathcal{C} \longrightarrow \mathbf{Sets}$$

であって

$$(X, Y) \longmapsto \operatorname{Hom}_{\mathcal{C}}(X, Y)$$

$$\Big((f, g) \colon (X', Y) \longrightarrow (X, Y') \Big) \longmapsto \Big(\operatorname{Hom}_{\mathcal{C}}(X, Y) \longrightarrow \operatorname{Hom}_{\mathcal{C}}(X', Y'), \ h \longmapsto g \circ h \circ f \Big)$$

なる対応を与えるもののこと.

定義 3.3: 閉圏

モノイダル圏 C を与える.

• C が左に閉じている (left closed) とは, internal hom functor と呼ばれる関手

$$\multimap : \mathcal{C}^{\mathrm{op}} \times \mathcal{C} \longrightarrow \mathbf{Sets}$$

と, currying と呼ばれる自然同型

$$\left\{c_{X,\,Y,\,Z}\colon \mathrm{Hom}\,(X\otimes Y,\,Z)\xrightarrow{\cong} \mathrm{Hom}\,(X,\,Y\multimap Z)\right\}_{X,\,Y,\,Z\in\mathrm{Ob}(\mathcal{C})}$$

の2つが存在することを言う.

• *C* が**右に閉じている** (right closed) とは, **internal hom functor** と呼ばれる関手と, **currying** と呼ばれる自然同型

$$\left\{c_{X,Y,Z} \colon \operatorname{Hom}\left(X \otimes Y, Z\right) \xrightarrow{\cong} \operatorname{Hom}\left(Y, X \multimap Z\right)\right\}_{X,Y,Z \in \operatorname{Ob}(\mathcal{C})}$$

の2つが存在することを言う.

対称モノイダル圏しか考えないので、以降では右に閉じているかどうかしか気にしないことにする.

定義 3.4: 双対

モノイダル圏 $\mathcal C$ およびその任意の対象 $X, X^* \in \mathrm{Ob}(\mathcal C)$ を与える. X^* が X の**右双対** (right dual) であり、かつ X が X^* の**左双対** (left dual) であるとは、

• unit と呼ばれる射

$$i_X \colon I \longrightarrow X^* \otimes X$$

• counit と呼ばれる射

$$e_X \colon X \otimes X^* \longrightarrow I$$

が存在して以下の図式を可換にすることを言う:

(zig-zag equations)

$$I \otimes X^* \xrightarrow{i_X \otimes 1_{X^*}} (X^* \otimes X) \otimes X^*$$

$$\downarrow^{a_{X^*, X, X^*}}$$

$$\downarrow^{a_{X^*, X, X^*}}$$

$$\downarrow^{1_{X^*} \otimes e_X}$$

$$X^* \leftrightarrow X^* \otimes I$$

双対のストリング図式は、単に矢印を逆にすれば良い:

このとき zig-zag equations が本当にジグザグしていることがわかる:

定義 3.5: コンパクト圏

モノイダル圏 C は、 $\forall X \in Ob(C)$ が左・右双対を持つとき**コンパクト** (compact) であると言われる.

【例 3.1.5】Cob の unit と counit

 \mathbf{Cob}_{D+1} における $X \in \mathrm{Ob}(\mathbf{Cob}_{D+1})$ の双対とは、向き付けを逆にした D 次元多様体 X のことである。特に \mathbf{Cob}_3 における unit, counit はそれぞれ U 字管とそれを逆さにしたもののような見た目をしている:

internal hom functor を $X \multimap Y \coloneqq X^* \otimes Y$ とすれば、図から \mathbf{Cob}_3 が閉圏であることを直接確認 できる.

【例 3.1.6】Hilb の unit と counit

Hilb において $I=\mathbb{C}$ である. 従って、 $X\in \mathrm{Ob}(\mathbf{Hilb})$ の双対とは双対ベクトル空間 $\mathrm{Hom}_{\mathbb{C}}(X,\mathbb{C})$ のことである. ブラ空間のことだと言っても良い. 特に、自然な同型 $X^*\otimes Y\cong \mathrm{Hom}_{\mathbb{C}}(X,Y)$ を使うと X の unit は

$$i_X \colon I \longrightarrow X^* \otimes X,$$

 $c \longmapsto c \operatorname{id}_X$

で、counit は

$$e_X \colon X \otimes X^* \longrightarrow I,$$

 $x \otimes f \longmapsto f(x)$

であることがわかる. internal hom functor を $X \multimap Y \coloneqq X^* \otimes Y \cong \operatorname{Hom}_{\mathbb{C}}(X,Y)$ とすれば **Hilb** が閉圏であることを直接確認できる.

実は、コンパクト圏は自動的に閉圏になる. これは

$$X \multimap Y := X^* \otimes Y$$

として internal hom functor を定義することで確認できる.

定義 3.6: ダガー圏

圏 C が**ダガー圏** (dagger category) であるとは、関手

$$\dagger \colon \mathcal{C} \longrightarrow \mathcal{C}^{\mathrm{op}}$$

が存在して以下を充たすことを言う:

- $(1) \ \forall X \in \mathrm{Ob}(\mathcal{C})$ に対して $X^{\dagger} = X$ を充たす.
- (2) \mathcal{C} の任意の射 $f: X \longrightarrow Y$ に対して $(f^{\dagger})^{\dagger} = f$ を充たす.

【例 3.1.7】Cob の dagger

 \mathbf{Cob}_{D+1} における $\mathcal{M}\colon X\longrightarrow Y$ のダガーは、上下を逆にしてから \mathcal{M} の連結成分毎に向きを逆にすることで得られる.

【例 3.1.8】Hilb の dagger

Hilb における $f: X \longrightarrow Y$ のダガーは、 $\forall \phi \in X, \forall \psi \in Y$ に対して

$$\langle f^{\dagger}(\psi), \phi \rangle := \langle \psi, f(\phi) \rangle$$

とすることで定義される.

3.1.4 モノイダル関手

モノイダル関手とは、ざっくり言うとモノイダル圏の構造を保存するような関手のことである:

定義 3.7: モノイダル関手

2つのモノイダル圏 C, D の間の関手

$$F: \mathcal{C} \longrightarrow \mathcal{D}$$

が lax monoidal functor であるとは,

射

$$\varepsilon\colon I_{\mathcal{D}}\longrightarrow F(I_{\mathcal{C}})$$

• 自然変換

$$\{\mu_{X,Y} \colon F(X) \otimes_{\mathcal{D}} F(Y) \longrightarrow F(X \otimes_{\mathcal{C}} Y)\}_{X,Y \in Ob(\mathcal{C})}$$

があって、 $\forall X, Y, Z \in \mathrm{Ob}(\mathcal{C})$ に対して以下の図式が可換になること:

(associatibity)

$$\begin{array}{c} (F(X) \otimes_{\mathcal{D}} F(Y)) \otimes_{\mathcal{D}} F(Z) \xrightarrow{a_{F(X), F(Y), F(Z)}} F(X) \otimes_{\mathcal{D}} (F(Y) \otimes_{\mathcal{D}} F(Z)) \\ \downarrow^{1_{F(X)} \otimes \mu_{Y, Z}} \\ F(X \otimes_{\mathcal{C}} Y) \otimes_{\mathcal{D}} F(Z) & F(X) \otimes_{\mathcal{D}} F(Y \otimes_{\mathcal{C}} Z) \\ \downarrow^{\mu_{X, Y} \otimes_{\mathcal{C}} Z} & \downarrow^{\mu_{X, Y} \otimes_{\mathcal{C}} Z} \\ F((X \otimes_{\mathcal{C}} Y) \otimes_{\mathcal{C}} Z) & \xrightarrow{F(a_{X, Y, Z}^{\mathcal{C}})} F(X \otimes_{\mathcal{C}} (Y \otimes_{\mathcal{C}} Z)) \end{array}$$

(unitality)

$$I_{\mathcal{D}} \otimes_{\mathcal{D}} F(X) \xrightarrow{\varepsilon \otimes 1_{F(X)}} F(I_{\mathcal{C}}) \otimes_{\mathcal{D}} F(X)$$

$$\downarrow^{l_{F(X)}} \qquad \qquad \downarrow^{\mu_{I_{\mathcal{C}}, X}}$$

$$F(X) \longleftarrow F(l_{X}^{c}) \qquad F(I_{\mathcal{C}} \otimes_{\mathcal{C}} X)$$

$$F(X) \otimes_{\mathcal{D}} I_{\mathcal{D}} \xrightarrow{1_{F(X)} \otimes \varepsilon} F(X) \otimes_{\mathcal{D}} F(I_{\mathcal{C}})$$

$$\downarrow r_{F(X)}^{\mathcal{D}} \qquad \qquad \downarrow \mu_{X, I_{\mathcal{C}}}$$

$$F(X) \longleftarrow F(r_X^{\mathcal{C}}) \qquad \qquad F(X \otimes_{\mathcal{C}} I_{\mathcal{C}})$$

- lax monoidal functor F の ε と $\mu_{X,Y}$ が全て同型射ならば, F は strong monoidal functor と呼ばれる.
- lax monoidal functor F の ε と $\mu_{X,Y}$ が全て恒等射ならば, F は strict monoidal functor と呼ばれる.

3.2 TQFT の定義

位相的場の理論 (Topological Quantum Field Theory; TQFT) の枠組みをトップダウンに導入する.

3.2.1 Atiyah の公理系

まず,全ての出発点として Atiyah の公理系 [?] というものがある:

公理 3.1: Atiyah の公理系(若干簡略版)

体 \mathbb{K} 上の a , D 次元の**位相的場の理論** (Topological Quantum Field Theory; TQFT) とは、以下の 2 つのデータからなる:

- (1) 向き付けられた (oriented) D 次元の閉多様体 (closed manifold) Σ に対応づけられた 有限次元 \mathbb{K} -ベクトル空間 $V(\Sigma)$
- (2) 向き付けられた D+1 次元の境界付き多様体 M に対応づけられたベクトル $Z(M) \in V(\partial M)$ これらのデータは以下の条件を充たす:

(TQFT-1)

Z は向きを保つ微分同相写像について**関手的** (functorial) に振る舞う.

(TQFT-2)

Z は**対合的** (involutory) である.

(TQFT-3)

Z は**モノイダル的** (multiplicative b) である.

- a 原論文 [?] では環としていて、ベクトル空間の代わりに環上の有限生成加群を扱っている。 今回は Hilbert 空間しか考えないので体 $\mathbb K$ としておいた.
- b 「乗法的」というと語弊がありそうなのでモノイダル的と言った.
- [?] に倣って公理の意味を精査していく.

(TQFT-1)

この公理は2つの要請を持つ:

- (1) D 次元閉多様体 Σ , Σ' , Σ'' の間の向きを保つ微分同相写像 $f\colon \Sigma \longrightarrow \Sigma'$, $g\colon \Sigma' \longrightarrow \Sigma''$ に対して, $V(f)\colon V(\Sigma) \longrightarrow V(\Sigma')$ はベクトル空間の同型写像で, $V(g\circ f)=V(g)\circ V(f)$ が成り立つ.
- (2) 向きを保つ微分同相写像 $f\colon \Sigma \longrightarrow \Sigma'$ が, D+1 次元多様体 M,M' であって $\Sigma = \partial M, \Sigma' = \partial M'$ を充たすものの上に $f\colon M \longrightarrow M'$ と拡張される場合に V(f)(Z(M)) = Z(M') を充たす.

(TQFT-2)

 Σ の向きを逆にして得られる D 次元閉多様体を Σ^* と書く *1 とき, $V(\Sigma^*) = V(\Sigma)^*$ を充たす *2 .

(TQFT-3)

この公理は5つの要請を持つ:

(1) D 次元閉多様体 Σ_1 , Σ_2 に対して

$$V(\Sigma_1 \coprod \Sigma_2) = V(\Sigma_1) \otimes V(\Sigma_2)$$

が成り立つこと.

(2) D+1 次元多様体 M, M_1 , M_2 に対して $\partial M_1 = \Sigma_1 \coprod \Sigma_3$, $\partial M_2 = \Sigma_2 \coprod \Sigma_3^*$, $M = M_1 \cup_{\Sigma_3} M_2$ が 成り立つならば、

$$Z(M) = \langle Z(M_1)|Z(M_2)\rangle$$

ただし,

 $\langle | \rangle : V(\partial M_1) \otimes V(\partial M_2) = V(\Sigma_1) \otimes V(\Sigma_3) \otimes V(\Sigma_3)^* \otimes V(\Sigma_2) \longrightarrow V(\partial M) = V(\Sigma_1) \otimes V(\Sigma_2),$

$$|\psi_1\rangle \otimes |\psi_3\rangle \otimes \langle \varphi_3| \otimes |\psi_2\rangle \longmapsto \langle \varphi_3|\psi_3\rangle |\psi_1\rangle \otimes |\psi_2\rangle$$

である.

$$Z(M) = Z(M_1) \otimes Z(M_2)$$

(4) (1) から*3,

$$V(\emptyset) = \mathbb{K}$$

(5) (3) から *4 ,

$$Z(\emptyset) = 1$$

今や別の同値な定義ができる. D+1 次元多様体 M の境界 ∂M を

$$\partial M = \Sigma_1^* \amalg \Sigma_2$$

 $^{^{*1}}$ 【例 $\mathbf{3.1.5}$ 】の意味で,圏 \mathbf{Cob}_{D+1} における $\Sigma \in \mathrm{Ob}(\mathbf{Cob}_{D+1})$ の双対となっている.

 $^{^{*2}}$ $V(\Sigma)$ が有限次元なので、 $V(\Sigma)^*$ はブラ空間と見做せる.

^{*3} \mathbf{Cob}_{D+1} の単位対象は \emptyset なので $\emptyset = \emptyset \coprod \emptyset$. よって (1) から $V(\emptyset) = V(\emptyset) \otimes V(\emptyset)$. これを充たすのは $V(\emptyset) = 0$, \mathbb{K} (モノイダル圏 $\mathbf{Vec}_{\mathbb{K}}$ の単位対象は \mathbb{K} である) のどちらかしかないので、非自明な方を採用する.

 $^{^{*4}}$ $\emptyset=\emptyset$ \coprod \emptyset なので (3) から $Z(\emptyset)=Z(\emptyset)\otimes Z(\emptyset)$. これを充たす $V(\emptyset)=\mathbb{K}$ の元は 0,1 しかないので,非自明な方を採用する.

と分解すると*5, **(TQFT-3)**-(1) より $Z(M) \in V(\partial M) = Z(\Sigma_1)^* \otimes Z(\Sigma_2) \cong \operatorname{Hom}_{\mathbb{K}} \big(Z(\Sigma_1), \, Z(\Sigma_2) \big)$ が言えるので,Z(M) を線型写像 $Z(M) \colon V(\Sigma_1) \longrightarrow V(\Sigma_2)$ と同一視できるのである.**(TQFT-1)** もあわせると,結局これまで $V, \, Z$ と書いていたものは strong monoidal functor

$$Z \colon \mathbf{Cob}_{D+1} \longrightarrow \mathbf{Vec}_{\mathbb{K}}$$

の1つに集約することができる.

定義 3.8: TQFT の定義

D 次元の**位相的場の理論** (Topological Quantum Field Theory; TQFT) とは、コボルディズム圏からある対称モノイダル圏 \mathcal{D} への strict monoidal functor^a

$$Z \colon \mathbf{Cob}_{D+1} \longrightarrow \mathcal{D}$$

のこと.

興味があるのは $\mathcal{D} = \mathbf{Vec}_{\mathbb{K}}$, \mathbf{Hilb} の場合なので、以下では \mathbf{TQFT} と言ったら \mathbf{strict} monoidal functor

$$Z \colon \mathbf{Cob}_{D+1} \longrightarrow \mathbf{Vec}_{\mathbb{K}}, \, \mathbf{Hilb}$$

を指すことにしよう.

3.3 一般化対称性

エニオンのフュージョン則を議論する前に少し寄り道をして,[?],[?] に倣って**一般化対称性**(generalized symmetry)*6 の話をする.この節では自然単位系を使う.時空を表す D+1 次元多様体を M と書き,M の チャートの座標関数を (x^0, x^1, \ldots, x^D) =: (t, \boldsymbol{x}) と書く.特に D 次元多様体 Σ を使って $M = \Sigma \times \mathbb{R}$ または $\Sigma \times S^1$ と書ける場合は $x^0 =: t$ で \mathbb{R} または S^1 成分のチャート(時間)を表すことにし, Σ のことを時間一定面と呼ぶ.M として Minkowski 時空を考える場合,Minkowski 計量としては $[\eta_{\mu\nu}] := (-1, +1, \ldots, +1)$ を用いる.Minkowski 計量でない一般の計量テンソルは $g := g_{\mu\nu} \operatorname{d} x^\mu \otimes \operatorname{d} x^\nu \in \Gamma(T^*M \otimes T^*M)$ と表記し,共役計量テンソルを $g^{\mu\nu}\partial_\mu \otimes \partial_\nu \in \Gamma(TM \otimes TM)$ と表記する.

 \mathcal{M} に計量 $g_{\mu\nu}$ が与えられたとき、音楽同型 (musical isomorphism) を

$$\flat \colon \mathfrak{X}(\mathcal{M}) \longrightarrow \Omega^{1}(\mathcal{M}), \ X^{\mu} \partial_{\mu} \longmapsto g_{\mu\nu} X^{\nu} \, \mathrm{d}x^{\mu} ,
\sharp \colon \Omega^{1}(\mathcal{M}) \longrightarrow \mathfrak{X}(\mathcal{M}), \ \omega_{\mu} \, \mathrm{d}x^{\mu} \longmapsto g^{\mu\nu} \omega_{\nu} \partial_{\mu}$$

で定義する. Hodge star は

$$\star \colon \Omega^{p}(\mathcal{M}) \longrightarrow \Omega^{D+1-p},$$

$$dx^{\mu_{1}} \wedge \dots \wedge dx^{\mu_{p}} \longmapsto \frac{1}{(D+1-p)!} g^{\mu_{1}\nu_{1}} \dots g^{\mu_{p}\nu_{p}} \epsilon_{\nu_{1} \dots \nu_{p} \mu_{p+1} \dots \mu_{D+1}} dx^{\mu_{p+1}} \wedge \dots \wedge dx^{\mu_{D+1}}$$

a strong monoidal functor とする場合もある (例えば https://ncatlab.org/nlab/show/cobordism) ようだが, 原 論文 [?] では strict monoidal functor になっていた.

^{*5} どちらか一方が ∅ になっても良い

^{*6} 高次対称性 (higher form symmetry) と呼ばれることもある.

を線型に拡張することで定義される. 特に不変体積要素を

$$d^{D+1}x := \star 1 = \sqrt{|g|} dx^1 \wedge \dots \wedge dx^{D+1}$$

と定義する.

 \mathcal{M} の p 次元部分多様体* 7 $\mathcal{N} \subset \mathcal{M}$ 上で p-形式 $\omega \in \Omega^p(\mathcal{M})$ を積分する場合,包含写像 $\iota \colon \mathcal{N} \hookrightarrow \mathcal{M}$ による引き戻し $\iota^* \colon \Omega^p(\mathcal{M}) \longrightarrow \Omega^p(\mathcal{N})$ を用いて

$$\int_{\mathcal{N}} \omega \coloneqq \int_{\mathcal{N}} \iota^* \omega$$

と定義する. このとき、Poincaré 双対を考えることで

$$\int_{\mathcal{N}} \omega = \int_{\mathcal{M}} \omega \wedge \delta(\mathcal{N})$$

を充たす $\delta(\mathcal{N}) \in \Omega^{D+1-p}(\mathcal{M})$ (デルタ関数 p-形式と呼ぶ)の存在がわかる*8. さて、 $\mathcal{N} = \partial \mathcal{M}^{(p+1)}$ の場合を考える. $\forall \omega \in \Omega^p(\mathcal{M})$ に対して Stokes の定理から

$$\int_{\mathcal{M}} \omega \wedge \delta(\partial \mathcal{M}^{(p+1)}) = \int_{\partial \mathcal{M}^{(p+1)}} \omega = \int_{\mathcal{M}^{(p+1)}} d\omega = \int_{\mathcal{M}} d\omega \wedge \delta(\mathcal{M}^{(p+1)})$$

$$= \int_{\mathcal{M}} d(\omega \wedge \delta(\mathcal{M}^{(p+1)})) + (-1)^{p+1} \int_{\mathcal{M}} \omega \wedge d(\delta(\mathcal{M}^{(p+1)}))$$

$$= (-1)^{p+1} \int_{\mathcal{M}} \omega \wedge d(\delta(\mathcal{M}^{(p+1)}))$$

がわかるので.

$$d\delta(\mathcal{M}^{(p+1)}) = (-1)^{p+1}\delta(\partial\mathcal{M}^{(p+1)})$$

が成り立つ. p 次元部分多様体 $\mathcal{M}^{(p)}$ と D+1-p 次元部分多様体 $\mathcal{M}^{(D+1-p)}$ に対して,これらの向きを考慮した**交点数**を

$$\mathrm{I}(\mathcal{M}^{(p)},\,\mathcal{M}^{(D+1-p)}) \coloneqq \int_{\mathcal{M}} \delta(\mathcal{M}^{(p)}) \wedge \delta(\mathcal{M}^{(D+1-p)})$$

で定義する. $\mathcal{C}^{(p-1)} = \partial \mathcal{M}^{(p)}$ を充たす $\mathcal{C}^{(p-1)}$ と $\mathcal{M}^{(D+1-p)}$ の絡み数は

$$\operatorname{Link}(\mathcal{C}^{(p-1)}, \mathcal{M}^{(p)}) := \operatorname{I}(\mathcal{M}^{(p)}, \mathcal{M}^{(D+1-p)})$$

と定義される.

3.3.1 通常の対称性

N 成分の場 *0 φ : $\mathcal{M} \longrightarrow \mathbb{K}^N, \ x \longmapsto \left(\varphi_{i}(x) \right)_{1 \leq i \leq N}$ は,あるベクトル東 $\mathbb{K}^N \hookrightarrow E \xrightarrow{\pi} \mathcal{M}$ の切断と理解する.場の変換性はベクトル東の変換関数に由来する.

^{*7} コンパクトかつ向き付け可能だとしておけば問題が起こりにくい.

^{*8} 厳密な扱いは [?, p.270] を参照. ここでは雑に扱う.

^{*9} 場 φ の成分を表す添字として a, b, c, \ldots を使う.

局所的な場のラグランジアン密度 $\mathcal{L}(\varphi_a(x), \partial_\mu \varphi_a(x))$ を持つ古典系を考える. この系の作用は

$$S[\varphi] := \int_{\mathcal{M}} d^{D+1}x \, \mathcal{L}(\varphi_a(x), \, \partial_{\mu} \varphi_a(x))$$

と書かれる. 場に関する作用の変分とは、勝手な「微小」切断 $\delta\psi\in\Gamma(E)$ による場の微小変換

$$\mathcal{T}_{\delta\varphi}\colon \Gamma(E) \longrightarrow \Gamma(E), \ \varphi \longmapsto \varphi + \delta\psi$$

を用いて

$$\delta_{\delta\psi}S[\varphi] := S[\mathcal{T}_{\delta\psi}(\varphi)] - S[\varphi]$$

と定義される. 顕には Stokes の定理を使って

$$\delta_{\delta\psi}S[\varphi] = \int_{\mathcal{M}} d^{D+1}x \left(\frac{\partial \mathcal{L}}{\partial \varphi_{a}(x)} \delta\psi_{a}(x) + \frac{\partial \mathcal{L}}{\partial \left(\partial_{\mu}\varphi_{a}(x)\right)} \partial_{\mu} \left(\delta\psi_{a}(x)\right) \right)$$

$$= \int_{\partial \mathcal{M}} \star \flat \left(\frac{\partial \mathcal{L}}{\partial \left(\partial_{\mu}\varphi_{a}(x)\right)} \delta\psi_{a}(x) \right) + \int_{\mathcal{M}} d^{D+1}x \left(\frac{\partial \mathcal{L}}{\partial \varphi_{a}(x)} - \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial \left(\partial_{\mu}\varphi_{a}(x)\right)} \right) \right) \delta\psi_{a}(x)$$

$$(3.3.1)$$

と書けるが、境界条件 $\partial \mathcal{M} = \emptyset$ または $\delta \psi|_{\partial \mathcal{M}} = 0$ を要請して第 1 項を落とすのが普通である.

最小作用の原理とは、古典論で実現される場の配位(このような場の配位は on shell であると呼ばれる) $\varphi_{\mathrm{on\,shell}}\in\Gamma(E)$ に対して、

$$\forall \delta \psi, \ \delta_{\delta \psi} S[\varphi_{\text{on shell}}] = 0 \tag{3.3.2}$$

を要請するものである. (3.3.1) から, on shell な場 $\varphi_{\text{on shell}} \in \Gamma(E)$ が充たすべき方程式として Euler-Lagrange 方程式

$$1 \le \forall i \le N, \ \forall x \in \mathcal{M}, \ \left[\frac{\partial \mathcal{L}}{\partial \varphi_a(x)} - \partial_\mu \left(\frac{\partial \mathcal{L}}{\partial \left(\partial_\mu \varphi_a(x) \right)} \right) \right|_{\varphi_{\text{on shell}}(x), \ \partial_\mu \varphi_{\text{on shell}}(x)} = 0 \tag{3.3.3}$$

が得られるのだった. 煩雑なので以後 \mathcal{L} の引数は適宜省略する.

対称性変換とは、場の間の変換

$$\mathcal{T}\colon \Gamma(E)\longrightarrow \Gamma(E)$$

であって作用を不変にするもののことである. つまり、最小作用の原理 (3.3.2) とは異なり φ ではなく T が

$$\forall \varphi \in \Gamma(E), \ \delta_{\mathcal{T}}S[\varphi] = 0 \tag{3.3.4}$$

によって定義される. ここに $\delta_T S[\varphi] \coloneqq S[\mathcal{T}(\varphi)] - S[\varphi]$ とおいた. 定義 (3.3.4) は off shell な場も考慮していることに注意すべきである. 特に対称性変換 \mathcal{T} が大域的な微小パラメータ ε および $\partial_0 \varphi$ に陽に依存しない*10

^{*10} この仮定は(3.3.7)の導出で使うだけ(実はもっと条件を弱めることもできる)なので、Noetherの定理の導出には必要ない。

 $h \in \Gamma(E)$ を用いて $\mathcal{T}(\varphi) = \mathcal{T}_{\varepsilon h}(\varphi)$ と書かれる場合を考えよう.

$$\begin{split} 0 &= \delta_{\mathcal{T}} S[\varphi] = \int_{\mathcal{M}} \mathrm{d}^{D+1} x \left(\frac{\partial \mathcal{L}}{\partial \varphi_{a}(x)} \varepsilon h_{a}(x) + \frac{\partial \mathcal{L}}{\partial \left(\partial_{\mu} \varphi_{a}(x)\right)} \partial_{\mu} \left(\varepsilon h_{a}(x) \right) \right) \\ &= \varepsilon \int_{\mathcal{M}} \mathrm{d}^{D+1} x \left(\frac{\partial \mathcal{L}}{\partial \varphi_{a}(x)} - \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial \left(\partial_{\mu} \varphi_{a}(x)\right)} \right) \right) h_{a}(x) \\ &+ \varepsilon \int_{\mathcal{M}} \mathrm{d}^{D+1} x \left(\partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial \left(\partial_{\mu} \varphi_{a}(x)\right)} \right) h_{a}(x) + \frac{\partial \mathcal{L}}{\partial \left(\partial_{\mu} \varphi_{a}(x)\right)} \partial_{\mu} \left(h_{a}(x) \right) \right) \\ &= \varepsilon \int_{\mathcal{M}} \mathrm{d}^{D+1} x \left(\frac{\partial \mathcal{L}}{\partial \varphi_{a}(x)} - \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial \left(\partial_{\mu} \varphi_{a}(x)\right)} \right) \right) h_{a}(x) \\ &+ \varepsilon \int_{\mathcal{M}} \mathrm{d}^{D+1} x \, \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial \left(\partial_{\mu} \varphi_{a}(x)\right)} h_{a}(x) \right) \end{split}$$

が成り立つ. i.e. Noether カレントを D+1 個の $X^{\mu}|_{\partial \mathcal{M}}=0$ を充たす C^{∞} 関数 X^{μ} を用いて

$$j^{\mu}(x) := \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \varphi_{a}(x))} h_{a}(x) - X^{\mu}(x)$$
(3.3.5)

で定義すると、これが on shell とは限らない任意の $\varphi \in \Gamma(E)$ に対して

$$\partial_{\mu} j^{\mu}(x) = -\left[\frac{\partial \mathcal{L}}{\partial \varphi_{a}(x)} - \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial \left(\partial_{\mu} \varphi_{a}(x)\right)}\right)\right|_{\varphi(x), \, \partial_{\mu} \varphi(x)} h_{a}(x)$$

を充たすことが分かった.特にon shell な任意の $\varphi_{\text{on shell}} \in \Gamma(E)$ に対しては (3.3.3) からカレント (3.3.5) の保存則

$$\partial_{\mu} j^{\mu}(x) = 0 \tag{3.3.6}$$

が成り立つ. このように、対称性変換が存在するとそれに対応して<u>on shell な</u>保存則 (3.3.6) を充たすカレントが存在する (**Noether の定理**).

ここで、 $\mathcal{M} = \Sigma \times \mathbb{R}$ と書ける場合を考える. このとき Noether チャージを

$$Q(t) \coloneqq \int_{\Sigma} \mathrm{d}^D x \, j^0(t, \, \boldsymbol{x})$$

と定義すると、保存則 (3.3.6) から $\partial \Sigma = \emptyset$ または $j^{\mu}|_{\partial \Sigma} = 0$ を要請すれば

$$\frac{\mathrm{d}Q(t)}{\mathrm{d}t} = -\int_{\Sigma} \mathrm{d}^D x \, \partial_i j^i(t, \, \boldsymbol{x}) = 0$$

となって時間に依存しないことがわかる. さらに, $\pi^b(x)\coloneqq \frac{\partial \mathcal{L}}{\partial (\partial_0 \varphi_b(x))}$ とおくと

$$Q = \int_{\Sigma} d^{D}x \left(\pi^{a}(x) h_{a}(x) - X^{\mu}(x) \right)$$

であるから、Poisson 括弧が

$$\begin{split} \left\{ \varphi_a(x), \, Q \right\}_{\mathrm{P}} &= \int_{\mathcal{M}} \mathrm{d}^{D+1} y \left(\frac{\partial \varphi_a(x)}{\partial \varphi_b(y)} \frac{\partial Q}{\partial \pi^b(y)} - \frac{\partial \varphi_a(x)}{\partial \pi^b(y)} \frac{\partial Q}{\partial \varphi_b(y)} \right) \\ &= \int_{\mathcal{M}} \mathrm{d}^{D+1} y \left(\delta^b_a \delta^{D+1}(x-y) \int_{\Sigma} \mathrm{d}^D z \, \delta^c_b \delta^D(z-y) h_c(z) - 0 \right) \\ &= h_a(x) \end{split}$$

と求まる. つまり,Q は対称性変換 $\mathcal{T}_{\varepsilon h}$ の無限小生成子 *11 である. 従って,正準量子化を行うと

$$\left[-\mathrm{i}\hat{Q},\hat{\varphi}_a(x)\right] = h_a(x) \tag{3.3.7}$$

となる.

【例 3.3.1】D+1 次元自由フェルミオン系

時空 \mathcal{M} を Minkowski 時空,場をスピン東 $\mathbb{C}^4 \hookrightarrow S \xrightarrow{\pi} \mathcal{M}$ の切断 $\psi \in \Gamma(S)$ とする(Dirac 場).作用はガンマ行列 γ^μ ,Dirac 共役 $\overline{\psi} := \mathrm{i} \psi^\dagger \gamma^0$ を用いて

$$S[\psi] = -\int_{\mathcal{M}} d^{D+1}x \,\overline{\psi}(x) (\gamma^{\mu} \partial_{\mu} + m) \psi(x)$$

と書かれる. Euler-Lagrange 方程式 (3.3.3) は, $\overline{\psi}$, ψ に関する変分によってそれぞれ

$$(\gamma^{\mu}\partial_{\mu} + m)\psi = 0,$$
$$\partial_{\mu}\overline{\psi}\gamma^{\mu} - m\overline{\psi} = 0$$

となる. この系の対称性変換は、例えば $e^{\mathrm{i}\theta}\in\mathrm{U}(1)$ による

$$\mathcal{T} \colon \Gamma(S) \longrightarrow \Gamma(S), \ \psi \longmapsto e^{\mathrm{i}\theta} \psi$$

がある. $\mathcal T$ を生成する無限小変換は $e^{\mathrm{i}\theta}$ の Taylor 展開より $\mathcal T_{\mathrm{i}\theta\psi}\colon \psi\longmapsto \psi+\mathrm{i}\theta\psi$ である. つまり, 先ほどの議論で登場した $h\in\Gamma(S)$ は今回の場合 $\mathrm{i}\psi$ に相当する. よって対称性変換 $\mathcal T$ に対応する Noether カレント (3.3.5) は

$$j^{\mu}(x) = \frac{\partial \mathcal{L}}{\partial \partial_{\mu} \psi} i\psi = -i\overline{\psi}\gamma^{\mu}\psi \tag{3.3.8}$$

と求まる. $\mathcal{M} = \mathbb{R}^D \times \mathbb{R}$ であるから, Noether チャージは

$$Q = -i \int_{\mathbb{R}^D} d^D x \, \overline{\psi}(x) \gamma^0 \psi(x)$$

であり、正準量子化すると (3.3.7) より

$$\left[\mathrm{i}\hat{Q},\hat{\psi}(x)\right] = -\mathrm{i}\hat{\psi}(x)$$

が成り立つ. ここから有限変換 T に戻すには、指数写像を用いれば良い. こうして

$$\exp\left(\mathrm{i}\theta\hat{Q}\right)\hat{\psi}(x)\exp\left(-\mathrm{i}\theta\hat{Q}\right) = e^{-\mathrm{i}\theta}\hat{\psi}(x) \tag{3.3.9}$$

だと分かった. ここで $[\mathbf{?},\,\mathrm{p.6}]$ に倣って $g\coloneqq e^{\mathrm{i}\theta},\,R_g\coloneqq e^{-\mathrm{i}\theta},\,\hat{U}_g(\mathbb{R}^D)\coloneqq \exp\Bigl(\mathrm{i}\theta\hat{Q}\Bigr)$ とおく.

- $U_q(\mathbb{R}^D)$ を \mathcal{M} の D 次元部分多様体 \mathbb{R}^D に付随する**対称性演算子**
- $\hat{\psi}$ を荷電物体 (charged object)

と呼ぼう. $\forall q, q' \in U(1)$ に対して、対称性演算子は群のように振る舞う:

$$\hat{U}_g(\mathbb{R}^D)\hat{U}_{g'}(\mathbb{R}^D) = \hat{U}_{gg'}(\mathbb{R}^D)$$

^{*11} Hamilton フローの意味である

時間一定面を $\mathbb{R}^D\subset \mathcal{M}$ にとったのは,正準量子化により (3.3.7) を導くためであった.しかるに,時間一定面を任意の D 次元部分多様体 $\mathcal{M}^{(D)}\subset \mathcal{M}$ にとれるのではないかと期待される.積分領域が複雑になるので微分形式を使うと見通しが良い.

$$\star j := \star \flat (j^{\mu} \partial_{\mu})$$

とおこう. このとき

$$d \star j = \partial_{\mu} j^{\mu} d^{D+1} x \tag{3.3.10}$$

が成り立つので、Noether カレントの保存則 (3.3.6) は単に $d \star j = 0$ と書ける. Noether チャージは

$$Q = \int_{\mathcal{M}^{(D)}} \star j = \int_{\mathcal{M}} \star j \wedge \delta(\mathcal{M}^{(D)})$$

である. $\mathcal{M}^{(D)} \longrightarrow \mathcal{M}^{(D)} + \delta \mathcal{M}^{(D)} \le \delta \mathcal{M}^{(D)} = \partial X^{(D+1)}$ なる時間一定面の変形を考えると,Q の変化は保存則から

$$\delta Q = \int_{\delta M^{(D)}} \star j = \int_{X^{(D)}} d \star j = 0$$

だと分かった. i.e.

$$\hat{U}_{e^{\mathrm{i}\theta}}(\mathcal{M}^{(D)}) = \hat{U}_{e^{\mathrm{i}\theta}}(\mathcal{M}^{(D)} + \delta\mathcal{M}^{(D)})$$

である. この意味で対称性演算子は**トポロジカル演算子**とも呼ばれる. しかし,M 上に荷電物体が存在しているときは (3.3.9) に注意しなくてはいけない.

時間一定面の変形をするので,量子化を経路積分で行う方が見通しが良い.経路積分では,任意の観測可能量 $\hat{\mathcal{O}}$ の期待値が

$$\left\langle \hat{\mathcal{O}} \right\rangle = \int [\mathrm{d}\psi] e^{\mathrm{i}S[\psi]} \mathcal{O}$$

と計算される. 今, 勝手な場の演算子 $\mathcal{O}(z)$ に対して

$$\left\langle \hat{\psi}(y)\hat{\mathcal{O}}(z)\right\rangle = \int [\mathrm{d}\psi]e^{\mathrm{i}S[\psi]}\psi(y)\mathcal{O}(z)$$

を計算しよう. 荷電物体 $\hat{\psi}(y)$ を囲むような時間一定面 $\mathcal{M}^{(D)}\subset\mathcal{M}^{\text{w/}}y\in\mathcal{M}^{(D)},z\notin\mathcal{M}^{(D)}$ をとり, D+1 次元部分多様体 $\mathcal{M}^{(D+1)}\subset\mathbb{M}$ であって $\mathcal{M}^{(D)}=\partial\mathcal{M}^{(D+1)}$ を充たすようなものをとる. そして局所的な場の $\mathrm{U}(1)$ 変換

$$\mathcal{T} \colon \Gamma(S) \longrightarrow \Gamma(S), \psi \longmapsto \left(x \mapsto e^{i\theta(x)} \psi \right)$$

$$^{\text{w/}} \theta(x) = \begin{cases} \theta, & x \in \mathcal{M}^{(D)}, \\ 0, & x \notin \mathcal{M}^{(D)} \end{cases}$$

を行う. すると、Noether カレントの表式 (3.3.8) を用いて

$$S[\mathcal{T}(\psi)] - S[\psi] = -\int_{\mathcal{M}} d^{D+1}x \, \mathrm{i}\overline{\psi}(x)\gamma^{\mu}\psi(x)\partial_{\mu}\theta(x)$$

$$= \int_{\mathcal{M}} d^{D+1}x \, \mathrm{i}\partial_{\mu} (\overline{\psi}(x)\gamma^{\mu}\psi(x))\theta(x)$$

$$= -\int_{\mathcal{M}} d^{D+1}x \, \partial_{\mu}j^{\mu}(x)\theta(x)$$

$$= -\theta \int_{\mathcal{M}^{D+1}} d \star j$$

$$= -\theta \int_{\mathcal{M}^{D}} \star j$$

であることがわかる. つまり,変換Tの下で

$$\left\langle \hat{\psi}(y)\hat{\mathcal{O}}(z)\right\rangle = \int [\mathrm{d}\psi]e^{\mathrm{i}S[\psi]}\exp\left(-\mathrm{i}\theta\int_{\mathcal{M}^D}\star j\right)e^{\mathrm{i}\theta}\psi(y)\mathcal{O}(z)$$

と計算される.

$$\left\langle R_g \hat{\psi}(y) \hat{\mathcal{O}}(z) \right\rangle = \int [\mathrm{d}\psi] e^{\mathrm{i}S[\psi]} U_g(\mathcal{M}^{(D)}) \psi(y) \mathcal{O}(z) \tag{3.3.11}$$

と言うことである.

3.3.2 高次対称性

【例 3.3.1】は,荷電物体が 0 次元に分布していた.これを p 次元に分布した物体に置き換えることで p-form symmetry の概念が得られる [?, p.10]:

定義 3.9: p-form symmetry

D+1 次元の場の量子論が群 G による p-form symmetry を持つとは、時空 \mathcal{M} の任意の D-p 次元 部分多様体 $\mathcal{M}^{(D-p)} \subset \mathcal{M}$ および $\forall g \in G$ に対して**対称性演算子 (トポロジカル演算子)** (topological operator) $U_q(\mathcal{M}^{(D-p)})$ が存在して以下を充たすことを言う:

- $U_g(\mathcal{M}^{(D-p)})$ は任意の p 次元部分多様体 $\mathcal{C}^{(p)} \subset \mathcal{M}$ の台を持つ**荷電物体(演算子)**(charged object, operator) $V(\mathcal{C}^{(p)})$ に作用する.
- $\forall g, g' \in G$ に対して群の規則 (group law)

$$U_q(\mathcal{M}^{(D-p)})U_{q'}(\mathcal{M}^{(D-p)}) = U_{qq'}(\mathcal{M}^{(D-p)})$$

が成り立つ.

• 任意の p 次元部分多様体 $\mathcal{C}^{(p)}\subset \mathcal{M}$ に対して、それに「絡む」十分小さな D-p-球 $S^{D-p}\subset \mathcal{M}$ に対して、(3.3.11) と同じく経路積分の期待値の意味で

$$U_g(S^{D-p})V(\mathcal{C}^{(p)}) = R_g\big(V(\mathcal{C}^{(p)})\big)$$

が成り立つ. ただし $R: G \longrightarrow GL(\{荷電物体\})$ は群 G の表現である.

【例 3.3.2】3+1 次元 U(1) ゲージ理論

物質場のない U(1) ゲージ理論を考える. ゲージ場を局所接続形式 a $a=a_\mu\,\mathrm{d} x^\mu\in\Omega^1(\mathcal{M};\,\mathfrak{u}(1))$ として与え、場の強さを $f:=\mathrm{d} a$ とおく. $f=f_{\mu\nu}\,\mathrm{d} x^\mu\wedge\mathrm{d} x^\nu$ と成分表示すると $f_{\mu\nu}=\partial_\mu a_\nu-\partial_\nu a_\mu$ となる.

作用は

$$S[a] = -\frac{1}{2e^2} \int_{\mathcal{M}} d^4x \, f \wedge \star f = -\frac{1}{4e^2} \int_{\mathcal{M}} d^4x \, f_{\mu\nu} f^{\mu\nu}$$

と書かれる. $\delta a \in \Omega^1(\mathcal{M}; \mathfrak{u}(1))$ を用いた作用の変分は

$$\delta_{\delta a} S[a] = -\frac{1}{e^2} \int_{\mathcal{M}} d(\delta a) \wedge \star f$$
$$= -\frac{1}{e^2} \int_{\mathcal{M}} d(\delta a \wedge \star f) - \frac{1}{e^2} \int_{\mathcal{M}} \delta a \wedge d \star f$$

なので、Euler-Lagrange 方程式と Bianchi 恒等式から

$$d \star f = 0,$$
$$df = 0$$

が言える(Maxwell 方程式). これをカレントの保存則と見做して,任意の 3-1=2 次元<u>閉</u>部分多様 体 $\mathcal{M}^{(2)}\subset\mathcal{M}$ 上のトポロジカル演算子を

$$U^{\mathcal{E}}_{e^{\mathrm{i}\theta}}(\mathcal{M}^{(2)}) \coloneqq \exp\left(\mathrm{i}\theta \int_{\mathcal{M}^{(2)}} \frac{\star f}{e^2}\right)$$
$$U^{\mathcal{M}}_{e^{\mathrm{i}\theta}}(\mathcal{M}^{(2)}) \coloneqq \exp\left(\mathrm{i}\theta \int_{\mathcal{M}^{(2)}} \frac{f}{2\pi}\right)$$

と定義しよう. $U^{\mathrm{E}}{}_{e^{\mathrm{i} heta}}(\mathcal{M}^{(2)})$ が作用する荷電物体は Wilson loop

$$W(\mathcal{C}^{(1)}) := \exp\left(\mathrm{i} \int_{\mathcal{C}^{(1)}} a\right)$$

である. このことを示そう.

簡単のため $S \coloneqq \mathcal{M}^{(2)}, C \coloneqq \mathcal{C}^{(1)}$ と略記する. 今, 絡み数が

$$\operatorname{Link}(S, C) = \int_{\mathcal{M}} \delta(C) \wedge \delta(V) = 1$$

となるように $C, V, S = \partial V$ をとる. ゲージ場の変換

$$\mathcal{T}: a \longmapsto a + \theta \delta(V)$$

の下で場の強さは $f \mapsto f + \theta \operatorname{d}(\delta(V)) = f - \theta \delta(S)$ となり、作用は^b

$$S[\mathcal{T}(a)] - S[a] = -\frac{1}{2e^2} \int_{\mathcal{M}} (f - \theta \delta(S)) \wedge \star (f - \theta \delta(S)) - S[a]$$

$$= \frac{\theta}{2e^2} \int_{\mathcal{M}} (\delta(S) \wedge \star f + f \wedge \star \delta(S) - \theta \delta(S) \wedge \star \delta(S))$$

$$= \frac{\theta}{e^2} \int_{\mathcal{M}} (\delta(S) \wedge \star f - \theta \delta(S) \wedge \star \delta(S))$$

$$= \theta \int_{S} \frac{\star f}{e^2} - \frac{\theta^2}{2e^2} \int_{S} \delta(S)$$

と変換する. 一方、Wilson ループは

$$\begin{split} W(C) &\longmapsto \exp\left(\mathrm{i} \int_C (a + \theta \delta(V))\right) \\ &= \exp\left(\mathrm{i} \int_C a + \mathrm{i} \theta \int_{\mathcal{M}} \delta(V) \wedge \delta(C)\right) \\ &= \exp\left(\mathrm{i} \int_C a - \mathrm{i} \theta \ \mathrm{Link}(S, \, C)\right) \\ &= e^{-\mathrm{i} \theta} \exp\left(\mathrm{i} \int_C a\right) \end{split}$$

と変換するのでで、

$$\langle W(C)\mathcal{O}\rangle = \int [\mathrm{d}a] e^{\mathrm{i}S[a]} U^{\mathrm{E}}{}_{e^{\mathrm{i}\theta}}(S) e^{-\mathrm{i}\theta} W(C) O$$

i.e.

$$\left\langle e^{\mathrm{i}\theta}W(C)\mathcal{O}\right\rangle = \int [\mathrm{d}a]e^{\mathrm{i}S[a]}U^{\mathrm{E}}{}_{e^{\mathrm{i}\theta}}(S)W(C)\mathcal{O}$$

が分かった.

トポロジカル演算子を 2 次元閉部分多様体上で定義したが,境界を持つ場合,i.e. $C\coloneqq\partial\mathcal{M}^{(2)}_C\neq\emptyset$ の場合はどうなるのか.

$$H_{\theta}(\mathcal{M}_{C}^{(2)}) := \exp\left(\mathrm{i}\theta \int_{\mathcal{M}_{C}^{(2)}} \frac{\star f}{e^{2}}\right)$$

を考える.境界を共有するもう1つの2次元部分多様体 $\mathcal{N}_C^{(2)}$ を持ってくると

$$H_{\theta}(\mathcal{M}_{C}^{(2)})H_{\theta}(\mathcal{N}_{C}^{(2)})^{-1} = \exp\left(\mathrm{i}\theta \oint_{\mathcal{M}_{C}^{(2)} \cup_{C} \left(-\mathcal{N}_{C}^{(2)}\right)} \frac{\star f}{e^{2}}\right)$$

これは $\theta \in 2\pi\mathbb{Z}$ のとき C にしかよらない.このことから, $U^{\mathrm{M}}_{e^{\mathrm{i}\eta}}(\mathcal{M}_{C}^{(2)})$ が作用する荷電物体('t **Hooft ループ**)を Hodge dual なゲージ場 d $b \coloneqq \frac{2\pi}{e^2} \star f$ によって

$$H_n(C) := \exp\left(\mathrm{i} n \int_C b\right)$$

と定義できる.

3.3.3 対称性の自発的破れ

 $[^]a$ 厳密には $\mathcal M$ の開集合上の $\mathfrak u(1)$ -値 1 形式

 $^{^{}b}$ $\omega \wedge \star \eta = \eta \wedge \star \omega$ に注意.

 $[^]c$ トポロジカル演算子を $\exp\left[\mathrm{i} heta\left(\int_S rac{\star f}{e^2} - rac{ heta^2}{2e^2} \int_S \delta(S)
ight)
ight]$ と再定義した.

まずは通常の対称性 (0-form symmetry) の場合を考える. 系が Lie 群 G で特徴付けられる 0-form symmetry を持つ場合を考えよう. このとき,無限小な対称性変換は Lie 代数 $\mathfrak g$ の基底 $T_A \in \mathfrak g$ を用いて* $^{12}\mathcal T_{\varepsilon^AT_A}$ と書けるので* 13 ,Noether の定理より on shell な保存則 (3.3.10) を充たす dim G 個の Noether カレント (3.3.5) j_A ($A=1,\ldots,\dim G$) が存在し,それに付随して dim G 個の保存電荷 $Q_A(\mathcal M^{(D)})=\int_{\mathcal M^{(D)}}\star j_A$ が存在して対称性変換の無限小生成子 (3.3.7) となるのだった.

さて、Noether の定理によって特徴付けられる対称性は必ずしも系の基底状態 $|0\rangle$ の対称性にならない. i.e. 形式的には

- (1) $1 \le \forall A \le \dim G, \ \hat{Q}_A |0\rangle = 0$
- (2) $1 \le \exists A \le \dim G, \ \hat{Q}_A |0\rangle \ne 0$

の 2 つの場合*¹⁴があり得る. (1) の場合,系は対称性を実現している,または系は **Wigner 相** (Wigner phase) にあると言い,(2) の場合,系の対称性が**自発的に破れた**,または系は **Nambu-Goldstone 相** (Nambu-Goldstone phase) にあると言う [?, p.1]. 0-form symmetry の言葉に翻訳すると,**対称性の自発的破れ** (spontaneous symmetry breaking; SSB) とは,0-form symmetry を特徴付ける Lie 群 G がその部分群 $H \subset G$ に縮小していることを指す*¹⁵. SSB を特徴付けるには,上述のように素朴には $\hat{Q}_A |0\rangle \neq 0$ を充たす $1 \leq A \leq \dim G$ が存在するかどうかを確認すれば良いように見えるが, $\langle 0|\hat{Q}_A\hat{Q}_A|0\rangle \propto \int_{\mathcal{M}^{(D)}} *1$ なので*¹⁶ 熱力学極限において $\hat{Q}_A |0\rangle$ は定義できない.そこで,代わりにある局所演算子(i.e. compactly supported な演算子) $\hat{\mathcal{O}}(x)$ が存在して

$$\langle 0|\left[i\hat{Q}_A,\hat{\mathcal{O}}(x)\right]|0\rangle \neq 0$$
 (3.3.12)

を充たすことと特徴付ける. (3.3.12) の左辺を系の秩序変数 (order parameter) と呼ぶ.

では、相対論的な系における Nambu-Goldstone の定理から出発しよう.

定理 3.1: Nambu-Goldstone (相対論的)

考えている系が Lie 群 G で特徴付けられる 0-form symmetry を持ち,さらに

- (1) 並進対称性と Lorentz 共変性を持ち,
- (2) 部分群 $H \subset G$ に対称性が自発的に破れている

とする. このとき, 系は線形分散を持つ零質量の独立な励起 (\mathbf{NG} モード) をちょうど $\dim G - \dim H$ 個持つ.

定理 3.1 の条件 (1) は NG モードが互いに独立であり,かつ必ず線形分散を持つことの証明に使うのだが,かなりややこし 1^{*17} ので,ここでは NG モードが存在することだけの証明の概略を述べるに留める.

 $^{*^{12}}$ 苦肉の策だが、Lie 代数の添字を A, B, C, \ldots とする.

 $^{^{*13}}$ 場がベクトル束の切断として定式化されている場合,これは厳密には G の(ファイバーに作用する)表現の微分表現を考えていることになる.今の場合,物理の慣習に従って G は線型 Lie 群で,かつファイバーへの作用は基本表現だと思っているのでさほど問題にはならない.

^{*14} もしくは, $U_q(\mathcal{M}^{(D)})|0\rangle = |0\rangle$ としても良い.

 $^{^{*15}}$ 考えている場が構造群 G を持つファイバー束として定式化されている場合, SSB は数学的には**構造群の収縮** (reduction of structure group) として定式化できる.

 $^{^{*16}}$ Fabri - Picasso の定理 $\cite{Picasso}$

^{*17} 例えば [?, p.7] に漸近場を使った議論が載っている

証明 系は場 $\varphi \in \Gamma(E)$ からなるとし、この系の作用を $S[\varphi]$ と書く.Green 関数の生成汎函数を

$$Z[J] = e^{iW[J]} := \langle 0 | \mathcal{T} \exp\left(i \int_{\mathcal{M}} d^{D+1}x J(x) \varphi(x)\right) | 0 \rangle$$
$$= \frac{\int [d\varphi] \exp\left(S[\varphi] + \int_{\mathcal{M}} d^{D+1}x J(x) \varphi(x)\right)}{\int [d\varphi] \exp S[\varphi]}$$

と定義し, 有効作用を

$$\Gamma[\psi] := W[J] - \int_{\mathcal{M}} d^{D+1}x J(x)\psi(x)$$

と定義する. ただし

$$\psi(x) := \frac{\delta W[J]}{\delta J(x)} = \frac{\langle 0 | \mathcal{T} \{ \hat{\varphi}(x) \exp\left(i \int_{\mathcal{M}} d^{D+1} x J(x) \varphi(x)\right) \} | 0 \rangle}{\langle 0 | \mathcal{T} \{ \exp\left(i \int_{\mathcal{M}} d^{D+1} x J(x) \varphi(x)\right) \} | 0 \rangle}$$

とおいた. さらに有効ポテンシャルを

$$V(\varphi) := -\frac{\Gamma[\varphi]|_{\varphi = \text{const.}}}{\int_{\mathcal{M}} d^{D+1} x}$$

と定義する. QFT の一般論から、場の演算子の真空期待値 $\varphi_0 \coloneqq \langle 0|\hat{\varphi}(x)|0\rangle$ に対して $\varphi_0 = \operatorname{argmin} V(\varphi)$ であることが知られている.

簡単のため G が線型 Lie 群で,系の対称性変換が $\mathcal{T}_{\mathrm{i}\varepsilon^A T_A \varphi}$ $(A=1,\ldots,\dim G)$ と書ける場合を考える。 (3.3.7) を思い出すと,このとき

$$\left[i\hat{Q}^A, \hat{\varphi}(x)\right] = iT_A\hat{\varphi}(x)$$

が成り立つ. $\Gamma[\varphi]$, $V[\varphi]$ もこの変換の下で不変なので

$$V(\varphi + i\varepsilon^{A}T_{A}\varphi) = V(\varphi)$$

$$\Rightarrow \frac{\partial V(\varphi)}{\partial \varphi_{a}}T_{Aab}\varphi_{b} = 0$$

$$\Rightarrow \frac{\partial^{2}V(\varphi)}{\partial \varphi_{a}\partial \varphi_{b}}T_{Abc}\varphi_{c} + \frac{\partial V(\varphi)}{\partial \varphi_{b}}T_{Aba} = 0$$
(3.3.13)

ここで条件 (2) から

$$\langle 0| \left[i\hat{Q_A}, \hat{\varphi}(x) \right] |0\rangle = iT_A \langle 0|\hat{\varphi}(x)|0\rangle \begin{cases} = 0, & T_A \in \mathfrak{h}, \\ \neq 0, & T_A \notin \mathfrak{h} \end{cases}$$

が成り立つので、 $v\coloneqq\langle 0|\hat{\varphi}(x)|0\rangle$ とおくと、(3.3.13) より破れた対称性に対応する任意の $1\leq A\leq\dim G$ に対して

$$v \neq 0 \text{ in } \frac{\partial^2 V(\varphi)}{\partial \varphi_a \partial \varphi_b} \Big|_{\varphi = v} T_A v = 0$$
 (3.3.14)

が成り立たねばならない.ところで、真空期待値が 0 になる場を $\tilde{\varphi}(x) := \varphi(x) - v$ で定義すると

$$V(\varphi) = V(v) + \frac{1}{2} \left. \frac{\partial^2 V(\varphi)}{\partial \varphi_a \partial \varphi_b} \right|_{\varphi = v} \tilde{\varphi}_a \tilde{\varphi}_b + \mathcal{O}(\tilde{\varphi}^3)$$

となるから、行列 $\left[\left. \frac{\partial^2 V(\varphi)}{\partial \varphi_a \partial \varphi_b} \right|_{\varphi=v} \right]_{1 \leq a, b \leq \dim G}$ を対角化した固有値が粒子の質量の 2 乗を与える.従って (3.3.14) から、 $T_A \notin \mathfrak{h}$ ならば $T_A v$ がこの行列の固有値 0 に対応する固有ベクトル,i.e. ゼロ質量の NG 粒子であることが分かった.

一方,定理 3.1 の Lorentz 共変性の条件 (1) を外すと話はややこしくなる。まず,波数の小さいところにおいて分散関係が奇数冪であるような NG モードを Type-II と呼ぶ [?]. そして

- 破れた対称性の個数を $N_{\mathrm{BG}}\coloneqq \dim G \dim H$
- NG モードの総数を N_{NGB}
- Type-I, Type-II の個数をそれぞれ $N_{\rm I}, N_{\rm II}$

とおこう. [?] による結果は以下の通りである:

定理 3.2: Nielsen-Chadha

$$N_{\rm I} + 2N_{\rm II} \ge N_{\rm BG}$$

さらに、[?] によって以下が示された:

定理 3.3: Watanabe-Murayama

 $\Omega\coloneqq\int_{\Sigma}\mathrm{d}^Dx$ とおき, $ho_{AB}\coloneqq\lim_{\Omega\to\infty}rac{-\mathrm{i}}{\Omega}\left\langle 0|[Q_A,Q_B]|0
ight
angle$ と定義する.このとき以下が成り立つ:

$$N_{\mathrm{BG}} - N_{\mathrm{NGB}} = \frac{1}{2} \operatorname{rank} \rho$$

証明

3.3.4 高次対称性の自発的破れ

0 次対称性の場合と同様に,p 次対称性の自発的破れを議論することができる.この場合,秩序変数はある適当な関数(系によって異なる) $A(\mathcal{C}^{(p)})$ を使って

$$\lim_{\mathcal{C}^{(p)} \to \infty} \left\langle U_g(\mathcal{M}^{(D-p)}) A(\mathcal{C}^{(p)}) V(\mathcal{C}^{(p)}) \right\rangle = \lim_{\mathcal{C}^{(p)} \to \infty} \left\langle A(\mathcal{C}^{(p)}) R_g(V(\mathcal{C}^{(p)})) \right\rangle \neq 0 \tag{3.3.15}$$

とすれば良い. ここに, $\mathcal{C}^{(p)} \to \infty$ は $\mathcal{C}^{(p)} \subset \mathcal{M}$ の「面積」 $\operatorname{Area}(\mathcal{C}^{(p)}) := \min \left\{ \operatorname{vol}(\mathcal{M}^{(p+1)}) \mid \partial \mathcal{M}^{(p+1)} = \mathcal{C}^{(p)} \right\}$ を大きくとる極限を意味する. この極限における荷電物体の真空期待値の典型的な振る舞いは

$$\langle V(\mathcal{C}^{(p)}) \rangle \sim \begin{cases} e^{-\sigma \operatorname{Area}(\mathcal{C}^{(p)})}, & \text{unbroken} \\ e^{-\mu \operatorname{len}(\mathcal{C}^{(p)})}, & \text{broken} \end{cases}$$

というもので、このとき $\lim_{\mathcal{C}^{(p)}\to\infty} f(\mathcal{C}^{(p)}) = \sigma \operatorname{Area}(\mathcal{C}^{(p)})$ なる関数 $f(\mathcal{C}^{(p)})$ を使って $A(\mathcal{C}^{(p)}) \coloneqq e^{+f(\mathcal{C}^{(p)})}$ と定めることで (??) が得られる. (3.3.15) は、非対角長距離秩序 (Off Diagonal Long Range Order; ODLRO) の一般化だと見做せる*18

演算子形式ではどうなるのだろうか? (3.3.12) の素朴な一般化は

$$\left\langle \left[i\hat{Q}(\mathcal{M}^{(D-p)}), V(\mathcal{C}^{(p)}) \right] \right\rangle$$

であるが、これは $\mathcal{M}^{(D-p)}$, $\mathcal{C}^{(p)}$ が共に閉多様体だと微妙なところがある.

[?, p.5-6] に倣って,系が並進対称性を持つ場合にギャップレスな励起が存在することをざっと確認しよう.演算子形式で議論するので,時間一定面 $\mathcal{M}^{(D)} \subset \mathcal{M}$ を 1 つ固定し,微妙なことが起こらないように $\mathcal{M}^{(D-p)} \subset \mathcal{M}^{(D)}$ が境界を持つとする.保存則 $\mathrm{d} \star j = 0$ を充たすカレント $\star j$ および $\underline{\mathcal{M}^{(D)}}$ に関するデルタ関数形式 $\delta^D(\mathcal{M}^{(D-p)})$ を使って $Q(\mathcal{M}^{(D-p)}) = \int_{\mathcal{M}^{(D)}} \star j \wedge \delta^D(\mathcal{M}^{(D-p)})$ と書ける.並進対称性から $\langle 0|\star \hat{j} \wedge \delta^D(\mathcal{M}^{(D-p)})(x)|n \rangle = e^{\mathrm{i} p_n \cdot x} \langle 0|\star \hat{j} \wedge \delta^D(\mathcal{M}^{(D-p)})(0)|n \rangle$ が成り立つので

$$\left\langle \left[i\hat{Q}(\mathcal{M}^{(D-p)}), V(\mathcal{C}^{(p)}) \right] \right\rangle
= i \sum_{n} (2\pi)^{D} \delta^{D}(\mathbf{p}) \left(\langle 0 | \star \hat{j} \wedge \delta^{D}(\mathcal{M}^{(D-p)})(0) | n \rangle \langle n | V(\mathcal{C}^{p}) | 0 \rangle e^{-iE_{n}x^{0}} \right.
\left. - \langle 0 | V(\mathcal{C}^{p}) | n \rangle \langle n | \star \hat{j} \wedge \delta^{D}(\mathcal{M}^{(D-p)})(0) | 0 \rangle e^{iE_{n}x^{0}} \right)$$

が言える.一方で左辺を $x^0=t$ 方向に微分すると,保存則および Stokes の定理から

$$\begin{split} \partial_0 \left\langle \left[i\hat{Q}(\mathcal{M}^{(D-p)}), V(\mathcal{C}^{(p)}) \right] \right\rangle &= \int_{\mathcal{M}^{(D-p)}} \left\langle \left[\partial_0 \star j, V(\mathcal{C}^{(p)}) \right] \right\rangle \\ &= - \int_{\partial \mathcal{M}^{(D-p)} \subset \partial \mathcal{M}^{(D)}} \left\langle \left[\star_{\mathcal{M}^{(D)}} j, V(\mathcal{C}^{(p)}) \right] \right\rangle \end{split}$$

となる. 次元を数えることでいつでも $\mathcal{C}^{(p)}\cap\partial\mathcal{M}^{(D-p)}=\emptyset$ にできることがわかるので結局右辺は 0 だとわかる。 よってもし $\left\langle \left[\mathrm{i}\hat{Q}(\mathcal{M}^{(D-p)}),V(\mathcal{C}^{(p)})\right]\right
angle \neq 0$ ならば $\pmb{p}=0$ のときに $E_n=0$ となるような n が存在する.

3.3.5 高次対称性の Coleman-Mermin-Wagner の定理

通常の Coleman-Mermin-Wagner の定理は,連続的 0 次対称性が 1+1 次元以下では自発的に破れないことを主張する.これは p 次対称性に拡張することができる:

定理 3.4: 高次対称性についての Coleman-Mermin-Wagner の定理

D+1 次元時空において、Lie 群 G で特徴付けられる $p \ge D-1$ 次対称性は自発的に破れない.

^{*18} というのは、通常の ODLRO は $\lim_{|x-y|\to\infty}\langle\hat{\varphi}(x)\hat{\varphi}(y)\rangle\neq 0$ となるものだが、これを点 $x,y\in\mathcal{M}$ を結ぶ線分 $\mathcal{C}^{(1)}\subset\mathcal{M}$ を使って $\lim_{\partial\mathcal{C}^{(1)}\to\infty}\langle\hat{\varphi}(\partial\mathcal{C}^{(1)})\rangle\neq 0$ と書ける.

<u>証明</u> [?, text]