CSCI567 Machine Learning (Spring 2021)

Sirisha Rambhatla

University of Southern California

Jan 27, 2021

Logistics

aniation

Outline

- 1 Logistics
- 2 Review of Last Lecture
- 3 Linear regression with nonlinear basis
- 4 Overfitting and preventing overfitting

• The schedule of lectures is available at https://sirisharambhatla.com/CSCI567/index.html

Outline

Logistics

Review of Last Lecture

3 Linear regression with nonlinear basis

4 Overfitting and preventing overfitting

3 /

4 / 28

2 / 28

Outline

- 1 Logistics
- Review of Last Lecture
- 3 Linear regression with nonlinear basis
- 4 Overfitting and preventing overfitting

5 / 2

Review of Last Lecture

Least square solution

$$egin{aligned} oldsymbol{w}^* &= \operatornamewithlimits{argmin}_{oldsymbol{w}} \operatorname{RSS}(oldsymbol{w}) \ &= \operatornamewithlimits{argmin}_{oldsymbol{w}} \|oldsymbol{X} oldsymbol{w} - oldsymbol{y}\|_2^2 \ &= oldsymbol{(X^{\mathrm{T}} X)}^{-1} oldsymbol{X^{\mathrm{T}} y} \end{aligned} \qquad egin{aligned} oldsymbol{X} &= \left(egin{aligned} oldsymbol{x}_1^{\mathrm{T}} \ oldsymbol{x}_2^{\mathrm{T}} \ \vdots \ oldsymbol{x}_{\mathsf{N}} \end{array}
ight), \quad oldsymbol{y} &= \left(egin{aligned} y_1 \ y_2 \ \vdots \ y_{\mathsf{N}} \end{array}
ight) \end{aligned}$$

Two approaches to find the minimum:

- find stationary points by setting gradient = 0
- "complete the square"

Regression

Predicting a continuous outcome variable using past observations

• temperature, amount of rainfall, house price, etc.

Key difference from classification

- continuous vs discrete
- measure *prediction errors* differently.
- lead to quite different learning algorithms.

Linear Regression: regression with <u>linear models</u>: $f(x) = w^{\mathrm{T}}x$

Linear regression with nonlinear basis

Outline

- Logistics
- 2 Review of Last Lecture
- 3 Linear regression with nonlinear basis
- 4 Overfitting and preventing overfitting

6 / 28

Linear regression with nonlinear basis

What if linear model is not a good fit?

Example: a straight line is a bad fit for the following data

9 / 28

Linear regression with nonlinear basis

Regression with nonlinear basis

Model: $f(x) = w^{\mathrm{T}} \phi(x)$ where $w \in \mathbb{R}^M$

Objective:

$$RSS(\boldsymbol{w}) = \sum_{n} (\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_n) - y_n)^2$$

Similar least square solution:

$$m{w}^* = \left(m{\Phi}^{ ext{T}}m{\Phi}
ight)^{-1}m{\Phi}^{ ext{T}}m{y} \quad ext{where} \quad m{\Phi} = \left(egin{array}{c} m{\phi}(m{x}_1)^{ ext{T}} \ m{\phi}(m{x}_2)^{ ext{T}} \ dots \ m{\phi}(m{x}_N)^{ ext{T}} \end{array}
ight) \in \mathbb{R}^{N imes M}$$

Solution: nonlinearly transformed features

1. Use a nonlinear mapping

$$oldsymbol{\phi}(oldsymbol{x}):oldsymbol{x}\in\mathbb{R}^D
ightarrowoldsymbol{z}\in\mathbb{R}^M$$

to transform the data to a more complicated feature space

2. Then apply linear regression (hope: linear model is a better fit for the new feature space).

10 / 28

Linear regression with nonlinear basis

Example

Polynomial basis functions for D=1

$$\phi(x) = \begin{bmatrix} 1 \\ x \\ x^2 \\ \vdots \\ x^M \end{bmatrix} \Rightarrow f(x) = w_0 + \sum_{m=1}^M w_m x^m$$

Learning a linear model in the new space

= learning an M-degree polynomial model in the original space

Linear regression with nonlinear basis

Example

Fitting a noisy sine function with a polynomial (M = 0, 1, or 3):

13 / 28

Overfitting and preventing overfitting

Outline

- Logistics
- 2 Review of Last Lecture
- 3 Linear regression with nonlinear basis
- Overfitting and preventing overfitting

Why nonlinear?

Can I use a fancy linear feature map?

$$oldsymbol{\phi}(oldsymbol{x}) = \left[egin{array}{c} x_1 - x_2 \\ 3x_4 - x_3 \\ 2x_1 + x_4 + x_5 \\ dots \end{array}
ight] = oldsymbol{A} oldsymbol{x} \quad ext{for some } oldsymbol{A} \in \mathbb{R}^{\mathsf{M} imes \mathsf{D}}$$

No, it basically does nothing since

$$\min_{\boldsymbol{w} \in \mathbb{R}^{\mathsf{M}}} \sum_{n} \left(\boldsymbol{w}^{\mathsf{T}} \boldsymbol{A} \boldsymbol{x}_{n} - y_{n} \right)^{2} = \min_{\boldsymbol{w}' \in \mathsf{Im}(\boldsymbol{A}^{\mathsf{T}}) \subset \mathbb{R}^{\mathsf{D}}} \sum_{n} \left(\boldsymbol{w}'^{\mathsf{T}} \boldsymbol{x}_{n} - y_{n} \right)^{2}$$

We will see more nonlinear mappings soon.

14 / 28

Overfitting and preventing overfitting

Should we use a very complicated mapping?

Ex: fitting a noisy sine function with a polynomial:

Overfitting and preventing overfitting

Underfitting and Overfitting

 $M \leq 2$ is *underfitting* the data

- large training error
- large test error

 $M \geq 9$ is *overfitting* the data

- small training error
- large test error

More complicated models ⇒ larger gap between training and test error

How to prevent overfitting?

17 / 28

-- /

Overfitting and preventing overfitting

Method 2: control the model complexity

For polynomial basis, the degree M clearly controls the complexity

 \bullet use cross-validation to pick hyper-parameter M

When M or in general Φ is fixed, are there still other ways to control complexity?

Method 1: use more training data

The more, the merrier

More data ⇒ smaller gap between training and test error

10 / 20

Overfitting and preventing overfitting

Magnitude of weights

Least square solution for the polynomial example:

	M=0	M = 1	M = 3	M = 9
$\overline{w_0}$	0.19	0.82	0.31	0.35
w_1		-1.27	7.99	232.37
w_2			-25.43	-5321.83
w_3			17.37	48568.31
w_4				-231639.30
w_5				640042.26
w_6				-1061800.52
w_7				1042400.18
w_8				-557682.99
w_9				125201.43

Intuitively, large weights ⇒ more complex model

n / no

when we increase regularization coefficient λ

How to make w small?

Regularized linear regression: new objective

$$\mathcal{E}(\boldsymbol{w}) = \text{RSS}(\boldsymbol{w}) + \lambda R(\boldsymbol{w})$$

Goal: find $w^* = \operatorname{argmin}_w \mathcal{E}(w)$

- ullet $R: \mathbb{R}^{\mathsf{D}} o \mathbb{R}^+$ is the *regularizer*
 - ullet measure how complex the model $oldsymbol{w}$ is
 - common choices: $\|\boldsymbol{w}\|_2^2$, $\|\boldsymbol{w}\|_1$, etc.
- $\lambda > 0$ is the regularization coefficient
 - $\lambda = 0$, no regularization
 - $\lambda \to +\infty$, $\boldsymbol{w} \to \operatorname{argmin}_{\boldsymbol{w}} R(\boldsymbol{w})$
 - i.e. control trade-off between training error and complexity

$\ln \lambda = -\infty \quad \ln \lambda$

The effect of λ

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
$\overline{w_0}$	0.35	0.35	0.13
w_1	232.37	4.74	-0.05
w_2	-5321.83	-0.77	-0.06
w_3	48568.31	-31.97	-0.06
w_4	-231639.30	-3.89	-0.03
w_5	640042.26	55.28	-0.02
w_6	-1061800.52	41.32	-0.01
w_7	1042400.18	-45.95	-0.00
w_8	-557682.99	-91.53	0.00
w_9	125201.43	72.68	0.01

20

Overfitting and preventing overfitting

The trade-off

when we increase regularization coefficient λ

21 / 28

Overfitting and preventing overfitting

How to solve the new objective?

Simple for $R(\boldsymbol{w}) = \|\boldsymbol{w}\|_2^2$:

$$\mathcal{E}(\boldsymbol{w}) = \text{RSS}(\boldsymbol{w}) + \lambda \|\boldsymbol{w}\|_{2}^{2} = \|\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{y}\|_{2}^{2} + \lambda \|\boldsymbol{w}\|_{2}^{2}$$
$$\nabla \mathcal{E}(\boldsymbol{w}) = 2(\boldsymbol{\Phi}^{T}\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{\Phi}^{T}\boldsymbol{y}) + 2\lambda \boldsymbol{w} = 0$$
$$\Rightarrow (\boldsymbol{\Phi}^{T}\boldsymbol{\Phi} + \lambda \boldsymbol{I}) \boldsymbol{w} = \boldsymbol{\Phi}^{T}\boldsymbol{y}$$
$$\Rightarrow \boldsymbol{w}^{*} = (\boldsymbol{\Phi}^{T}\boldsymbol{\Phi} + \lambda \boldsymbol{I})^{-1} \boldsymbol{\Phi}^{T}\boldsymbol{y}$$

Note the same form as in the fix when X^TX is not invertible!

For other regularizers, as long as it's **convex**, standard optimization algorithms can be applied.

Overfitting and preventing overfitting

Summary

Equivalent form

Regularization is also sometimes formulated as

$$\underset{\boldsymbol{w}}{\operatorname{argmin}} \operatorname{RSS}(w) \quad \text{ subject to } R(\boldsymbol{w}) \leq \beta$$

where β is some hyper-parameter.

Finding the solution becomes a *constrained optimization problem*.

Choosing either λ or β can be done by cross-validation.

$\boldsymbol{w}^* = \left(\boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{\Phi} + \lambda \boldsymbol{I}\right)^{-1}\boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{y}$

Important to understand the derivation than remembering the formula

Overfitting: small training error but large test error

Preventing Overfitting: more data + regularization

25 / 28

Overfitting and preventing overfitting

Recall the question

Typical steps of developing a machine learning system:

- Collect data, split into training, development, and test sets.
- Train a model with a machine learning algorithm. Most often we apply cross-validation to tune hyper-parameters.
- Evaluate using the test data and report performance.
- Use the model to predict future/make decisions.

How to do the *red part* exactly?

Overfitting and preventing overfitting

General idea to derive ML algorithms

- 1. Pick a set of models \mathcal{F}
 - ullet e.g. $\mathcal{F} = \{f(oldsymbol{x}) = oldsymbol{w}^{\mathrm{T}} oldsymbol{x} \mid oldsymbol{w} \in \mathbb{R}^{\mathsf{D}}\}$
 - ullet e.g. $\mathcal{F} = \{f(oldsymbol{x}) = oldsymbol{w}^{\mathrm{T}} oldsymbol{\Phi}(oldsymbol{x}) \mid oldsymbol{w} \in \mathbb{R}^{\mathsf{M}} \}$
- 2. Define **error/loss** L(y', y)
- 3. Find empirical risk minimizer (ERM):

$$f^* = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{n=1}^{N} L(f(x_n), y_n)$$

or regularized empirical risk minimizer:

$$f^* = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{n=1}^{N} L(f(x_n), y_n) + \lambda R(f)$$

ML becomes optimization