Iris flower classification

In [1]: # importing the libraries
 import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns

In [2]: iris = pd.read_csv('IRIS.csv')

In [3]: iris

Out[3]:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa
145	6.7	3.0	5.2	2.3	Iris-virginica
146	6.3	2.5	5.0	1.9	Iris-virginica
147	6.5	3.0	5.2	2.0	Iris-virginica
148	6.2	3.4	5.4	2.3	Iris-virginica
149	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 5 columns

In [4]: iris.head()

Out[4]:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

```
In [5]:
          iris.tail()
 Out[5]:
                sepal_length sepal_width petal_length petal_width
                                                                   species
           145
                        6.7
                                    3.0
                                                 5.2
                                                            2.3 Iris-virginica
           146
                        6.3
                                    2.5
                                                 5.0
                                                            1.9
                                                                Iris-virginica
           147
                                                                Iris-virginica
                        6.5
                                    3.0
                                                 5.2
                                                            2.0
           148
                        6.2
                                    3.4
                                                 5.4
                                                            2.3
                                                                Iris-virginica
           149
                        5.9
                                                               Iris-virginica
                                    3.0
                                                 5.1
                                                            1.8
 In [6]: iris.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 150 entries, 0 to 149
          Data columns (total 5 columns):
            #
                Column
                                Non-Null Count
                                                  Dtype
                ____
                                -----
           0
                sepal_length 150 non-null
                                                  float64
            1
                                150 non-null
                                                  float64
                sepal_width
            2
                petal_length 150 non-null
                                                  float64
            3
                petal_width
                                150 non-null
                                                  float64
            4
                species
                                150 non-null
                                                  object
          dtypes: float64(4), object(1)
          memory usage: 6.0+ KB
In [47]: iris.shape
Out[47]: (150, 5)
In [48]: iris.size
Out[48]: 750
In [49]: iris.columns
Out[49]: Index(['sepal_length', 'sepal_width', 'petal_length', 'petal_width',
                   'species'],
                 dtype='object')
In [50]:
          iris.describe()
Out[50]:
                  sepal length sepal width petal length petal width
                    150.000000
                               150.000000
                                            150.000000
                                                       150.000000
           count
                     5.843333
                                 3.054000
                                              3.758667
                                                         1.198667
           mean
             std
                     0.828066
                                 0.433594
                                              1.764420
                                                         0.763161
             min
                     4.300000
                                 2.000000
                                              1.000000
                                                         0.100000
             25%
                     5.100000
                                 2.800000
                                              1.600000
                                                         0.300000
             50%
                     5.800000
                                 3.000000
                                              4.350000
                                                         1.300000
             75%
                     6.400000
                                 3.300000
                                              5.100000
                                                         1.800000
                                             6.900000
```

7.900000

max

4.400000

2.500000

```
In [51]: iris.keys()
Out[51]: Index(['sepal_length', 'sepal_width', 'petal_length', 'petal_width',
                 'species'],
               dtype='object')
In [52]: iris['species']
Out[52]: 0
                    Iris-setosa
         1
                    Iris-setosa
         2
                    Iris-setosa
         3
                   Iris-setosa
         4
                    Iris-setosa
         145
                Iris-virginica
         146
                Iris-virginica
         147
                Iris-virginica
         148
                Iris-virginica
         149
                Iris-virginica
         Name: species, Length: 150, dtype: object
In [53]: | iris['species'].value_counts()
Out[53]: species
         Iris-setosa
                             50
         Iris-versicolor
                             50
         Iris-virginica
                             50
         Name: count, dtype: int64
```

Preprocessing

```
In [54]: iris.isnull().sum()

Out[54]: sepal_length  0
    sepal_width  0
    petal_length  0
    petal_width  0
    species  0
    dtype: int64
```

Data Visualization

```
In [55]: plt.figure(figsize=(10,6))
    iris['sepal_length'].hist()
    iris['sepal_width'].hist()
    iris['petal_length'].hist()
    iris['petal_width'].hist()
    iris['species'].hist()
```

Out[55]: <AxesSubplot:>


```
In [56]: cols = [ 'sepal_length', 'sepal_width', 'petal_length', 'petal_width']
         species='species'
         n_rows = 2
         n cols = 2
         # The subplot grid and the figure size of each graph
         # This returns a Figure (fig) and an Axes Object (axs)
         fig, axs = plt.subplots(n_rows, n_cols, figsize=(n_cols*7,n_rows*5))
         for r in range(0,n_rows):
             for c in range(0,n_cols):
                 i = r*n_cols+ c #index to go through the number of columns
                 ax = axs[r][c] #Show where to position each subplot
                 sns.countplot(x=cols[i], hue=species, data=iris, ax=ax)
                 ax.set_title(cols[i])
                 ax.legend(title=species, loc='upper right')
         plt.tight_layout()
                             #tight_layout
```



```
In [57]: # scatter plot
    # Assuming DataFrame 'iris' with columns 'species', 'sepal_height', and 'se,
    colors = ['red', 'green', 'orange']
    species = ['Iris-setosa', 'Iris-versicolor', 'Iris-virginica']

for i in range(3):
    x = iris[iris['species'] == species[i]]
    plt.scatter(x['sepal_length'], x['sepal_width'], c=colors[i], label=spe

plt.xlabel('Sepal length')
    plt.ylabel('Sepal Width')
    plt.legend()
    plt.show()
```



```
In [61]: counts = (986, 450, 240)
    species = ('Iris-setosa ', 'Iris-versicolor', 'Iris-virginica' )
    index = np.arange(len(species))
    plt.bar(index, counts, color=['red','blue','orange'])
    plt.title('Bar plot of different types of species')
    plt.xlabel('species')
    plt.ylabel('Frequency')
    plt.show()
```


correaltion matrix

```
In [90]: iris.corr= pd.get_dummies(iris, columns=['species'], drop_first=True)
#corr_matrix= iris.corr
#corr_matrix()
iris.corr
```

Out[90]:

	sepal_length	sepal_width	petal_length	petal_width	species_Iris- versicolor	species_Iris- virginica
0	5.1	3.5	1.4	0.2	False	False
1	4.9	3.0	1.4	0.2	False	False
2	4.7	3.2	1.3	0.2	False	False
3	4.6	3.1	1.5	0.2	False	False
4	5.0	3.6	1.4	0.2	False	False
145	6.7	3.0	5.2	2.3	False	True
146	6.3	2.5	5.0	1.9	False	True
147	6.5	3.0	5.2	2.0	False	True
148	6.2	3.4	5.4	2.3	False	True
149	5.9	3.0	5.1	1.8	False	True

150 rows × 6 columns

In [100]:

```
numeric_columns = iris.select_dtypes(include=['number']) # Select only num
correlation_matrix = numeric_columns.corr()
print(correlation_matrix)
```

	sepal_length	sepal_width	petal_length	petal_width
sepal_length	1.000000	-0.109369	0.871754	0.817954
sepal_width	-0.109369	1.000000	-0.420516	-0.356544
petal_length	0.871754	-0.420516	1.000000	0.962757
petal_width	0.817954	-0.356544	0.962757	1.000000

```
In [105]: #visualizing the correalation
    numeric_columns = iris.select_dtypes(include=['number']) # Select only num
    correlation_matrix = numeric_columns.corr()

# Create a heatmap of the correlation matrix
    plt.figure(figsize=(10, 7))
    sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', center=0)

plt.title('Correlation Heatmap')
    plt.show()
```


Label encoder

```
In [112]: from sklearn.preprocessing import LabelEncoder
          # Create an instance of LabelEncoder
          la = LabelEncoder()
           # Transform the 'species' column
           iris['species'] = la.fit_transform(iris['species'])
           iris.head()
Out[112]:
              sepal_length sepal_width petal_length petal_width species
           0
                      5.1
                                 3.5
                                            1.4
                                                       0.2
                                                                0
                                                       0.2
            1
                      4.9
                                 3.0
                                            1.4
                                                                0
                                                      0.2
           2
                                                                0
                      4.7
                                 3.2
                                            1.3
            3
                      4.6
                                 3.1
                                            1.5
                                                       0.2
                                                                0
            4
                      5.0
                                 3.6
                                            1.4
                                                       0.2
                                                                0
In [115]: | from sklearn.model_selection import train_test_split
          x= iris.drop(columns=['species'])
          y= iris['species']
          x_train, x_test, y_train, y_test= train_test_split(x, y, test_size=0.20)
In [117]: print(x_train)
                sepal_length sepal_width petal_length petal_width
           15
                         5.7
                                       4.4
                                                      1.5
                                                                   0.4
           142
                         5.8
                                       2.7
                                                      5.1
                                                                   1.9
           89
                         5.5
                                       2.5
                                                      4.0
                                                                   1.3
           141
                         6.9
                                       3.1
                                                      5.1
                                                                   2.3
           106
                         4.9
                                       2.5
                                                      4.5
                                                                   1.7
           . .
                         . . .
                                       . . .
                                                      . . .
                                                                    . . .
           128
                         6.4
                                       2.8
                                                      5.6
                                                                   2.1
           51
                         6.4
                                       3.2
                                                      4.5
                                                                   1.5
           114
                         5.8
                                       2.8
                                                      5.1
                                                                   2.4
           18
                         5.7
                                       3.8
                                                     1.7
                                                                   0.3
           82
                         5.8
                                       2.7
                                                      3.9
                                                                   1.2
           [120 rows x 4 columns]
In [119]: from sklearn.linear_model import LogisticRegression
          model=LogisticRegression()
In [121]: | print("Accuracy of a model:", model.score(x_train, y_train))
           Accuracy of a model: 0.966666666666667
In [122]: |print("Accuracy of a testing model:", model.score(x_test, y_test))
```

Accuracy of a testing model: 0.9333333333333333