Tarea 08: Mínimos cuadrados

Pasquel Johann

Tabla de Contenidos

GITHUB	1
CONJUNTO DE EJERCICIOS	1
1. Dado los datos:	1
2. Dado los siguientes datos repetir el ejercicio:	17
3. La siguiente tabla muestra los promedios	28
4. El siguiente conjunto de datos	31

GITHUB

https://github.com/Vladimirjon/MetodosNumericos_PasquelJohann/tree/main/Tarea08

CONJUNTO DE EJERCICIOS

1. Dado los datos:

$\overline{x_i}$	4.0	4.2	4.5	4.7	5.1	5.5	5.9	6.3	6.8	7.1
$\overline{y_i}$	102.56	130.11	113.18	142.05	167.53	195.14	224.87	256.73	299.50	326.72

```
x_i = [4.0, 4.2, 4.5, 4.7, 5.1, 5.5, 5.9, 6.3, 6.8, 7.1]

y_i = [102.56, 130.11, 113.18, 142.05, 167.53, 195.14, 224.87, 256.73, 299.50, 326.72]
```

a. Construya el polinomio por mínimos cuadrados de grado 1 y calcule el error

Dado el polinomio de grado 1 se procede a calcular con:

$$E = \sum_{i=1}^{n} \left[y_i - (a_1 x_i + a_0) \right]^2$$

De la cual se obtendran dos ecuaciones (simplificadas):

$$\sum (y_i-a_1x_i-a_0)=0$$

$$\sum (x_i)(y_i-a_1x_i-a_0)=0$$

Reemplazamos valores y calculamos a_0 y a_1

```
import numpy as np
def min_cuadrados_lineal(x, y):
    Calcula el polinomio de mínimos cuadrados de grado 1 y proporciona resultados con etique
    Parámetros:
        x: Lista o array de valores x_i.
        y: Lista o array de valores y_i.
    Retorna:
        Resultados formateados con a_0, a_1, el error absoluto y el error relativo.
   x = np.array(x)
   y = np.array(y)
    n = len(x)
    sum_x = np.sum(x)
    sum_y = np.sum(y)
    sum_x2 = np.sum(x**2)
    sum_xy = np.sum(x * y)
    # Resolver el sistema de ecuaciones normales
    A = np.array([[n, sum_x], [sum_x, sum_x2]])
    B = np.array([sum_y, sum_xy])
    a0, a1 = np.linalg.solve(A, B)
    # Calcular el polinomio y los errores
    y_pred = a0 + a1 * x
```

```
error_absoluto = np.sum(np.abs(y - y_pred))
error_relativo = np.sum(np.abs((y - y_pred) / y))

return f"a_0 = {a0}, a_1 = {a1}, Error absoluto = {error_absoluto}, Error relativo = {error_absoluto}
```

Resultado

```
resultado = min_cuadrados_lineal(x_i, y_i)
print(resultado)
```

a_0 = -191.57241852647294, a_1 = 71.6102437202353, Error absoluto = 85.18657577738367, Error

Polinomio

$$y = 71.61x - 191.57$$

```
import matplotlib.pyplot as plt
a0, a1 = [float(value.split('=')[1]) for value in resultado.split(',')[:2]]

# Generar valores de x para la línea de regresión
x_line = np.linspace(min(x_i), max(x_i), 100)
y_line = a0 + a1 * x_line

# Graficar los puntos originales y la línea de regresión
plt.scatter(x_i, y_i, color='blue', label='Datos originales')
plt.plot(x_line, y_line, color='red', label='Línea de mínimos cuadrados')
plt.xlabel('x')
plt.ylabel('y')
plt.title('Ajuste por mínimos cuadrados lineal')
plt.legend()
plt.show()
```

Ajuste por mínimos cuadrados lineal

b. Construya el polinomio por mínimos cuadrados de grado 2 y calcule el error Dado el polinomio de grado 2 se procede a calcular con:

$$E = \sum_{i=1}^n \left[y_i - (a_2 x_i^2 + a_1 x_i + a_0) \right]^2$$

De la cual se obtendran tres ecuaciones (simplificadas):

$$\begin{split} & \sum (y_i - a_2 x_i^2 - a_1 x_i - a_0) = 0 \\ & \sum (x_i) (y_i - a_2 x_i^2 - a_1 x_i - a_0) = 0 \\ & \sum (x_i^2) (y_i - a_2 x_i^2 - a_1 x_i - a_0) = 0 \end{split}$$

Reemplazamos valores y calculamos a_0 , a_1 y a_2

```
import numpy as np
def min_cuadrados_cuadratico(x, y):
    Calcula el polinomio de mínimos cuadrados de grado 2 y proporciona resultados con etique
   Parámetros:
       x: Lista o array de valores x_i.
        y: Lista o array de valores y_i.
    Retorna:
        Resultados formateados con a_0, a_1, a_2, el error absoluto y el error relativo.
   x = np.array(x)
   y = np.array(y)
   n = len(x)
    sum_x = np.sum(x)
   sum_y = np.sum(y)
   sum_x2 = np.sum(x**2)
   sum_x3 = np.sum(x**3)
   sum_x4 = np.sum(x**4)
   sum_xy = np.sum(x * y)
   sum_x2y = np.sum(x**2 * y)
    A = np.array([
        [n, sum_x, sum_x2],
        [sum_x, sum_x2, sum_x3],
        [sum_x2, sum_x3, sum_x4]
    ])
    B = np.array([sum_y, sum_xy, sum_x2y])
   a0, a1, a2 = np.linalg.solve(A, B)
   y_pred = a0 + a1 * x + a2 * x**2
   error_absoluto = np.sum(np.abs(y - y_pred))
    error_relativo = np.sum(np.abs((y - y_pred) / y))
    return a0, a1, a2, error_absoluto, error_relativo
```

Resultado

```
a0, a1, a2, error_absoluto, error_relativo = min_cuadrados_cuadratico(x_i, y_i) print(f"a_0 = {a0:.4f}, a_1 = {a1:.4f}, a_2 = {a2:.4f}, Error absoluto = {error_absoluto:.4f}
```

 $a_0 = 51.0008$, $a_1 = -19.3086$, $a_2 = 8.2171$, Error absoluto = 43.1587, Error relativo = 0.332

Polinomio

$$y = 8.22x^2 - 19.31x + 51$$

```
import matplotlib.pyplot as plt

# Graficar los datos originales y el polinomio ajustado
plt.scatter(x_i, y_i, color='blue', label='Datos originales')
x_range = np.linspace(min(x_i), max(x_i), 100)
y_range = a0 + a1 * x_range + a2 * x_range**2
plt.plot(x_range, y_range, color='red', label='Polinomio ajustado de grado 2')
plt.xlabel('x')
plt.ylabel('y')
plt.title('Ajuste por mínimos cuadrados de grado 2')
plt.legend()
plt.show()
```

Ajuste por mínimos cuadrados de grado 2

c. Construya el polinomio por mínimos cuadrados de grado 3 y calcule el error Dado el polinomio de grado 3 se procede a calcular con:

$$E = \sum_{i=1}^{n} \left[y_i - (a_3 x_i^3 + a_2 x_i^2 + a_1 x_i + a_0) \right]^2$$

De la cual se obtendran cuatro ecuaciones (simplificadas):

$$\begin{split} &\sum (y_i - a_3 x_i^3 - a_2 x_i^2 - a_1 x_i - a_0) = 0 \\ &\sum (x_i) (y_i - a_3 x_i^3 - a_2 x_i^2 - a_1 x_i - a_0) = 0 \\ &\sum (x_i^2) (y_i - a_3 x_i^3 - a_2 x_i^2 - a_1 x_i - a_0) = 0 \\ &\sum (x_i^3) (y_i - a_3 x_i^3 - a_2 x_i^2 - a_1 x_i - a_0) = 0 \end{split}$$

Reemplazamos valores y calculamos a_0 , a_1 , a_2 y a_3

```
import numpy as np
def min_cuadrados_cubico(x, y):
    Calcula el polinomio de mínimos cuadrados de grado 3 y proporciona resultados con etique
   Parámetros:
       x: Lista o array de valores x_i.
        y: Lista o array de valores y_i.
   Retorna:
        Resultados formateados con a_0, a_1, a_2, a_3, el error absoluto y el error relativo
   x = np.array(x)
   y = np.array(y)
   n = len(x)
   sum_x = np.sum(x)
   sum_y = np.sum(y)
   sum_x2 = np.sum(x**2)
   sum_x3 = np.sum(x**3)
   sum_x4 = np.sum(x**4)
   sum_x5 = np.sum(x**5)
   sum_x6 = np.sum(x**6)
   sum_xy = np.sum(x * y)
   sum_x2y = np.sum(x**2 * y)
   sum_x3y = np.sum(x**3 * y)
    A = np.array([
        [n, sum_x, sum_x2, sum_x3],
        [sum_x, sum_x2, sum_x3, sum_x4],
        [sum_x2, sum_x3, sum_x4, sum_x5],
        [sum_x3, sum_x4, sum_x5, sum_x6]
   B = np.array([sum_y, sum_xy, sum_x2y, sum_x3y])
   a0, a1, a2, a3 = np.linalg.solve(A, B)
   y_pred = a0 + a1 * x + a2 * x**2 + a3 * x**3
   error_absoluto = np.sum(np.abs(y - y_pred))
    error_relativo = np.sum(np.abs((y - y_pred) / y))
```

```
return a0, a1, a2, a3, error_absoluto, error_relativo
```

Resultado

```
a0, a1, a2, a3, error_absoluto, error_relativo = min_cuadrados_cubico(x_i, y_i)
print(f"a_0 = {a0:.4f}, a_1 = {a1:.4f}, a_2 = {a2:.4f}, a_3 = {a3:.4f}, Error absoluto = {error_a0 = 469.1633, a_1 = -254.8748, a_2 = 51.5610, a_3 = -2.6068, Error absoluto = 46.4278, Error_a0 = 46.4278, Er
```

Polinomio

$$y = -2.61x^3 + 51.56x^2 - 254.87x + 469.16$$

```
import matplotlib.pyplot as plt

# Graficar los datos originales y el polinomio ajustado
plt.scatter(x_i, y_i, color='blue', label='Datos originales')
x_range = np.linspace(min(x_i), max(x_i), 100)
y_range = a0 + a1 * x_range + a2 * x_range**2 + a3 * x_range**3
plt.plot(x_range, y_range, color='red', label='Polinomio ajustado de grado 3')
plt.xlabel('x')
plt.ylabel('y')
plt.title('Ajuste por mínimos cuadrados de grado 3')
plt.legend()
plt.show()
```

Ajuste por mínimos cuadrados de grado 3

d. Construya el polinomio por mínimos cuadrados de la forma be^{ax} y calcule el error

Se procede a calcular con:

$$E = \sum_{i=1}^n (y_i - be^{ax_i})^2$$

De la cual se obtendran dos ecuaciones (simplificadas):

$$\sum (y_i - be^{ax_i})(e^{ax_i}) = 0$$

$$\sum (y_i - be^{ax_i})(-bx_ie^{ax_i}) = 0$$

Reemplazamos valores y calculamos a y b

from scipy.optimize import curve_fit
import numpy as np

```
def min_cuadrados_exponencial(x, y):
    11 11 11
    Calcula el ajuste exponencial de mínimos cuadrados para el modelo y = b * e^(a * x).
   Parámetros:
       x: Lista o array de valores x_i.
        y: Lista o array de valores y_i.
   Retorna:
        Resultados formateados con b, a, el error absoluto y el error relativo.
   x = np.array(x)
   y = np.array(y)
   # Valores iniciales para b y a
   params_iniciales = [1, 0.1]
   # Ajustar el modelo usando curve_fit
   params_opt, params_cov = curve_fit(modelo_exponencial, x, y, p0=params_iniciales)
   b, a = params_opt
    # Calcular el modelo ajustado y los errores
   y_pred = modelo_exponencial(x, b, a)
    error_absoluto = np.sum(np.abs(y - y_pred))
    error_relativo = np.sum(np.abs((y - y_pred) / y))
   return b, a, error_absoluto, error_relativo
```

Resultado

```
b, a, error_absoluto, error_relativo = min_cuadrados_exponencial(x_i, y_i)
print(f"b = {b:.4f}, a = {a:.4f}, Error absoluto = {error_absoluto:.4f}, Error relativo = {error_absoluto:.4f}, Error relativo = {error_absoluto:.4f}
```

Polinomio

$$y = 26.84e^{0.355x}$$

```
import matplotlib.pyplot as plt

# Graficar los datos originales y el modelo ajustado
plt.scatter(x_i, y_i, color='blue', label='Datos originales')
x_range = np.linspace(min(x_i), max(x_i), 100)
y_range = b * np.exp(a * x_range)
plt.plot(x_range, y_range, color='red', label='Modelo ajustado y = b * e^(a * x)')
plt.xlabel('x')
plt.ylabel('y')
plt.title('Ajuste exponencial por mínimos cuadrados')
plt.legend()
plt.show()
```

Ajuste exponencial por mínimos cuadrados

e. Construya el polinomio por mínimos cuadrados de la forma bx^a y calcule el error

Se procede a calcular con:

$$E = \sum_{i=1}^{n} (y_i - bx_i^a)^2$$

De la cual se obtendran dos ecuaciones (simplificadas):

$$\sum (y_i - bx_i^a)(x_i^a) = 0$$

$$\sum (y_i - bx_i^a)[-b(ln(x_i))x_i^a] = 0$$

Reemplazamos valores y calculamos $a \neq b$

from scipy.optimize import curve_fit
import numpy as np

```
def min_cuadrados_potencial(x, y):
   Calcula el ajuste potencial de mínimos cuadrados para el modelo y = b * x^a.
   Parámetros:
       x: Lista o array de valores x_i.
       y: Lista o array de valores y i.
   Retorna:
       Resultados formateados con b, a, el error absoluto y el error relativo.
   x = np.array(x)
   y = np.array(y)
   # Valores iniciales para b y a
   params_iniciales = [1, 1]
   # Ajustar el modelo usando curve_fit
   params_opt, params_cov = curve_fit(modelo_potencial, x, y, p0=params_iniciales)
   b, a = params_opt
   # Calcular el modelo ajustado y los errores
   y_pred = modelo_potencial(x, b, a)
   error_absoluto = np.sum(np.abs(y - y_pred))
   error_relativo = np.sum(np.abs((y - y_pred) / y))
   return b, a, error_absoluto, error_relativo
```

Resultado

```
b, a, error_absoluto, error_relativo = min_cuadrados_potencial(x_i, y_i)
print(f"b = {b:.4f}, a = {a:.4f}, Error absoluto = {error_absoluto:.4f}, Error relativo = {error_absoluto:.4f}, Error b = 6.2840, a = 2.0152, Error absoluto = 35.2021, Error relativo = 0.2855
```

Polinomio

$$y = 6,284x^{2,015}$$

```
import matplotlib.pyplot as plt

# Graficar los datos originales y el modelo ajustado
plt.scatter(x_i, y_i, color='blue', label='Datos originales')
x_range = np.linspace(min(x_i), max(x_i), 100)
y_range = b * x_range**a
plt.plot(x_range, y_range, color='red', label='Modelo ajustado y = b * x^a')
plt.xlabel('x')
plt.ylabel('y')
plt.title('Ajuste potencial por mínimos cuadrados')
plt.legend()
plt.show()
```

Ajuste potencial por mínimos cuadrados

1.1 Comparación de resultados

```
import matplotlib.pyplot as plt
import numpy as np

# Valores para graficar las funciones
x_range = np.linspace(min(x_i), max(x_i), 500)

# Funciones
y_lineal = 71.61 * x_range - 191.57
y_cuadratica = 8.22 * x_range**2 - 19.31 * x_range + 51
y_cubica = -2.613 * x_range**3 + 51.56 * x_range**2 - 254.87 * x_range + 469.16
y_exponencial = 28.84 * np.exp(0.355 * x_range)
y_potencial = 6.284 * x_range**2.015

# Graficar
```

```
plt.figure(figsize=(10, 6))
plt.scatter(x_i, y_i, color='black', label='Datos originales')
plt.plot(x_range, y_lineal, label=r'$y = 71.61x - 191.57$', color='red')
plt.plot(x_range, y_cuadratica, label=r'$y = 8.22x^2 - 19.31x + 51$', color='blue')
plt.plot(x_range, y_cubica, label=r'$y = -2.613x^3 + 51.56x^2 - 254.87x + 469.16$', color='g
plt.plot(x_range, y_exponencial, label=r'$y = 28.84e^{0.355x}$', color='orange')
plt.plot(x_range, y_potencial, label=r'$y = 6.284x^{2.015}$', color='purple')

plt.xlabel('x')
plt.ylabel('y')
plt.title('Ajuste de diferentes modelos')
plt.legend()
plt.grid()
plt.show()
```


2. Dado los siguientes datos repetir el ejercicio:

x_i	0.2	0.3	0.6	0.9	1.1	1.3	1.4	1.6
$\overline{y_i}$	0.050446	0.098426	0.33277	0.72660	1.0972	1.5697	1.8487	2.5015

$$x_i^2 = [0.2, 0.3, 0.6, 0.9, 1.1, 1.3, 1.4, 1.6]$$

 $y_i^2 = [0.050446, 0.098426, 0.33277, 0.72660, 1.0972, 1.5697, 1.8487, 2.5015]$

a. Construya el polinomio por mínimos cuadrados de grado 1 y calcule el error

Dado el polinomio de grado 1 se procede a calcular con:

$$E = \sum_{i=1}^{n} \left[y_i - (a_1 x_i + a_0) \right]^2$$

De la cual se obtendran dos ecuaciones (simplificadas):

$$\sum \left(y_i - a_1 x_i - a_0\right) = 0$$

$$\sum (x_i)(y_i - a_1 x_i - a_0) = 0$$

Reemplazamos valores y calculamos a_0 y a_1

Resultado

```
resultado = min_cuadrados_lineal(x_i2, y_i2)
print(resultado)
```

 $a_0 = -0.5124568240000005$, $a_1 = 1.6655400800000004$, Error absoluto = 1.439018032, Error relatives

Polinomio

$$y = 1.665x - 0.512$$

```
import matplotlib.pyplot as plt
a0, a1 = [float(value.split('=')[1]) for value in resultado.split(',')[:2]]
# Generar valores de x para la línea de regresión
x_line = np.linspace(min(x_i2), max(x_i2), 100)
```

```
y_line = a0 + a1 * x_line

# Graficar los puntos originales y la línea de regresión
plt.scatter(x_i2, y_i2, color='blue', label='Datos originales')
plt.plot(x_line, y_line, color='red', label='Línea de mínimos cuadrados')
plt.xlabel('x')
plt.ylabel('y')
plt.title('Ajuste por mínimos cuadrados lineal')
plt.legend()
plt.show()
```


b. Construya el polinomio por mínimos cuadrados de grado 2 y calcule el error Dado el polinomio de grado 2 se procede a calcular con:

$$E = \sum_{i=1}^{n} \left[y_i - (a_2 x_i^2 + a_1 x_i + a_0) \right]^2$$

De la cual se obtendran tres ecuaciones (simplificadas):

$$\begin{split} & \sum (y_i - a_2 x_i^2 - a_1 x_i - a_0) = 0 \\ & \sum (x_i) (y_i - a_2 x_i^2 - a_1 x_i - a_0) = 0 \\ & \sum (x_i^2) (y_i - a_2 x_i^2 - a_1 x_i - a_0) = 0 \end{split}$$

a0, a1, a2, error_absoluto, error_relativo = min_cuadrados_cuadratico(x_i2, y_i2)

Reemplazamos valores y calculamos a_0 , a_1 y a_2

Resultado

```
print(f"a_0 = {a0:.4f}, a_1 = {a1:.4f}, a_2 = {a2:.4f}, Error absoluto = {error_absoluto:.4f}
```

 $a_0 = 0.0851$, $a_1 = -0.3114$, $a_2 = 1.1294$, Error absoluto = 0.1262, Error relativo = 0.5336

Polinomio

$$y = 1.129x^2 - 0.311x + 0.085$$

```
import matplotlib.pyplot as plt

# Graficar los datos originales y el polinomio ajustado
plt.scatter(x_i2, y_i2, color='blue', label='Datos originales')
x_range = np.linspace(min(x_i2), max(x_i2), 100)
y_range = a0 + a1 * x_range + a2 * x_range**2
plt.plot(x_range, y_range, color='red', label='Polinomio ajustado de grado 2')
plt.xlabel('x')
plt.ylabel('y')
plt.title('Ajuste por mínimos cuadrados de grado 2')
plt.legend()
plt.show()
```

Ajuste por mínimos cuadrados de grado 2

c. Construya el polinomio por mínimos cuadrados de grado 3 y calcule el error Dado el polinomio de grado 3 se procede a calcular con:

$$E = \sum_{i=1}^{n} \left[y_i - (a_3 x_i^3 + a_2 x_i^2 + a_1 x_i + a_0) \right]^2$$

De la cual se obtendran cuatro ecuaciones (simplificadas):

$$\begin{split} &\sum (y_i - a_3 x_i^3 - a_2 x_i^2 - a_1 x_i - a_0) = 0 \\ &\sum (x_i) (y_i - a_3 x_i^3 - a_2 x_i^2 - a_1 x_i - a_0) = 0 \\ &\sum (x_i^2) (y_i - a_3 x_i^3 - a_2 x_i^2 - a_1 x_i - a_0) = 0 \\ &\sum (x_i^3) (y_i - a_3 x_i^3 - a_2 x_i^2 - a_1 x_i - a_0) = 0 \end{split}$$

Reemplazamos valores y calculamos a_0 , a_1 , a_2 y a_3

Resultado

```
a0, a1, a2, a3, error_absoluto, error_relativo = min_cuadrados_cubico(x_i2, y_i2) print(f"a_0 = {a0:.4f}, a_1 = {a1:.4f}, a_2 = {a2:.4f}, a_3 = {a3:.4f}, Error absoluto = {error_absoluto}
```

 $a_0 = -0.0184$, $a_1 = 0.2484$, $a_2 = 0.4029$, $a_3 = 0.2662$, Error absoluto = 0.0061, Error relative

Polinomio

$$y = 0,266x^3 + 0,402x^2 + 0,248x - 0,018$$

```
import matplotlib.pyplot as plt

# Graficar los datos originales y el polinomio ajustado
plt.scatter(x_i2, y_i2, color='blue', label='Datos originales')
x_range = np.linspace(min(x_i2), max(x_i2), 100)
y_range = a0 + a1 * x_range + a2 * x_range**2 + a3 * x_range**3
plt.plot(x_range, y_range, color='red', label='Polinomio ajustado de grado 3')
plt.xlabel('x')
plt.ylabel('y')
plt.title('Ajuste por mínimos cuadrados de grado 3')
plt.legend()
plt.show()
```


d. Construya el polinomio por mínimos cuadrados de la forma be^{ax} y calcule el error

Se procede a calcular con:

$$E = \sum_{i=1}^{n} (y_i - be^{ax_i})^2$$

De la cual se obtendran dos ecuaciones (simplificadas):

$$\sum (y_i - be^{ax_i})(e^{ax_i}) = 0$$

$$\sum (y_i - be^{ax_i})(-bx_ie^{ax_i}) = 0$$

Reemplazamos valores y calculamos a y b

Resultado

```
b, a, error_absoluto, error_relativo = min_cuadrados_exponencial(x_i2, y_i2)
print(f"b = {b:.4f}, a = {a:.4f}, Error absoluto = {error_absoluto:.4f}, Error relativo = {error_absoluto:.4f}
```

b = 0.1326, a = 1.8583, Error absoluto = 0.6773, Error relativo = 4.5973

Polinomio

$$y = 0,132e^{1,858x}$$

```
import matplotlib.pyplot as plt

# Graficar los datos originales y el modelo ajustado
plt.scatter(x_i2, y_i2, color='blue', label='Datos originales')
x_range = np.linspace(min(x_i2), max(x_i2), 100)
y_range = b * np.exp(a * x_range)
plt.plot(x_range, y_range, color='red', label='Modelo ajustado y = b * e^(a * x)')
plt.xlabel('x')
plt.ylabel('y')
plt.title('Ajuste exponencial por mínimos cuadrados')
plt.legend()
plt.show()
```

Ajuste exponencial por mínimos cuadrados

e. Construya el polinomio por mínimos cuadrados de la forma bx^a y calcule el error

Se procede a calcular con:

$$E = \sum_{i=1}^{n} (y_i - bx_i^a)^2$$

De la cual se obtendran dos ecuaciones (simplificadas):

$$\sum (y_i - bx_i^a)(x_i^a) = 0$$

$$\sum (y_i - bx_i^a)[-b(ln(x_i))x_i^a] = 0$$

Reemplazamos valores y calculamos a y b

Resultado

```
b, a, error_absoluto, error_relativo = min_cuadrados_potencial(x_i2, y_i2) print(f"b = {b:.4f}, a = {a:.4f}, Error absoluto = {error_absoluto:.4f}, Error relativo = {error
```

b = 0.9055, a = 2.1428, Error absoluto = 0.1537, Error relativo = 0.8677

Polinomio

$$y = 0.905x^{2.143}$$

```
import matplotlib.pyplot as plt

# Graficar los datos originales y el modelo ajustado
plt.scatter(x_i2, y_i2, color='blue', label='Datos originales')
x_range = np.linspace(min(x_i2), max(x_i2), 100)
y_range = b * x_range**a
plt.plot(x_range, y_range, color='red', label='Modelo ajustado y = b * x^a')
plt.xlabel('x')
plt.ylabel('y')
plt.title('Ajuste potencial por mínimos cuadrados')
plt.legend()
plt.show()
```


2.1 Comparación de resultados

```
# Funciones nuevas basadas en las ecuaciones proporcionadas
y_lineal_nueva = 1.665 * x_range - 0.512
y_cuadratica_nueva = 1.129 * x_range**2 - 0.311 * x_range + 0.085
y_cubica_nueva = 0.266 * x_range**3 + 0.402 * x_range**2 + 0.248 * x_range - 0.018
y_exponencial_nueva = 0.132 * np.exp(1.858 * x_range)
y_potencial_nueva = 0.905 * x_range**2.143

# Graficar
plt.figure(figsize=(10, 6))
plt.scatter(x_i2, y_i2, color='black', label='Datos originales')
plt.plot(x_range, y_lineal_nueva, label=r'$y = 1.665x - 0.512$', color='red')
plt.plot(x_range, y_cuadratica_nueva, label=r'$y = 1.129x^2 - 0.311x + 0.085$', color='blue'
plt.plot(x_range, y_cubica_nueva, label=r'$y = 0.266x^3 + 0.402x^2 + 0.248x - 0.018$', color='plt.plot(x_range, y_exponencial_nueva, label=r'$y = 0.132e^{1.858x}, color='orange')
plt.plot(x_range, y_potencial_nueva, label=r'$y = 0.905x^{2.143}$', color='purple')
```

```
# Personalización
plt.xlabel('x')
plt.ylabel('y')
plt.title('Ajuste de diferentes modelos (Nuevas ecuaciones)')
plt.legend()
plt.grid()

# Mostrar gráfica
plt.show()
```


3. La siguiente tabla muestra los promedios

De los puntos del colegio de 20 especialistas en matemáticas y ciencias computacionales, junto con las calificaciones que recibieron estos estudiantes en la parte de matemáticas de la prueba ACT (Programa de Pruebas de Colegios Americanos) mientras estaban en secundaria. Grafique estos datos y encuentre la ecuación de la recta por mínimos cuadrados para estos datos.

Puntuación ACT	Promedio de puntos	Puntuación ACT	Promedio de puntos
28	3.84	29	3.75
25	3.21	28	3.65
28	3.23	27	3.87
27	3.63	29	3.75
28	3.75	21	1.66
33	3.20	28	3.12
28	3.41	28	2.96
29	3.38	26	2.92
23	3.53	30	3.10
27	2.03	24	2.81

$$x_ACT = [28, 25, 28, 27, 28, 33, 29, 23, 29, 27, 29, 28, 27, 21, 28, 28, 26, 30, 24]$$

 $y_ACT = [3.84, 3.21, 3.23, 3.63, 3.75, 3.20, 3.41, 3.38, 3.53, 2.03, 3.75, 3.65, 3.87, 1.66,$

Dado el polinomio de grado 1 se procede a calcular con:

$$E = \sum_{i=1}^{n} \left[y_i - (a_1 x_i + a_0) \right]^2$$

De la cual se obtendran dos ecuaciones (simplificadas):

$$\sum (y_i-a_1x_i-a_0)=0$$

$$\sum (x_i)(y_i-a_1x_i-a_0)=0$$

Reemplazamos valores y calculamos a_0 y a_1

Resultado

```
resultado = min_cuadrados_lineal(x_ACT, y_ACT)
print(resultado)
```

 $a_0 = 0.41300906842540025$, $a_1 = 0.10270816158285213$, Error absoluto = 7.701162407254738, Error absoluto = 7.701162407254788

Polinomio

$$y = 0.1027x + 0.413$$

```
import matplotlib.pyplot as plt
a0, a1 = [float(value.split('=')[1]) for value in resultado.split(',')[:2]]

# Generar valores de x para la línea de regresión
x_line = np.linspace(min(x_ACT), max(x_ACT), 100)
y_line = a0 + a1 * x_line

# Graficar los puntos originales y la línea de regresión
plt.scatter(x_ACT, y_ACT, color='blue', label='Datos originales')
plt.plot(x_line, y_line, color='red', label='Línea de mínimos cuadrados')
plt.xlabel('x')
plt.ylabel('y')
plt.title('Ajuste por mínimos cuadrados lineal')
plt.legend()
plt.show()
```


4. El siguiente conjunto de datos

Presentado al Subcomité Antimonopolio del Senado, muestra las características comparativas de supervivencia durante un choque de automóviles de diferentes clases. Encuentre la recta por mínimos cuadrados que aproxima estos datos (la tabla muestra el porcentaje de vehículos que participaron en un accidente en los que la lesión más grave fue fatal o seria).

	Tipo	Peso promedio	Porcentaje de presentación
1	Regular lujoso doméstico	4800 lb	3.1
2	Regular intermedio doméstico	3700 lb	4.0
3	Regular económico doméstico	3400 lb	5.2
4	Compacto domnómico doméstico	2800 lb	6.4
5	Compacto extranjero	1900 lb	9.6

```
x_peso = [4800, 3700, 3400, 2800, 1900]
y_porcentaje = [3.1, 4.0, 5.2, 6.4, 9.6]
```

Dado el polinomio de grado 1 se procede a calcular con:

$$E = \sum_{i=1}^{n} \left[y_i - (a_1 x_i + a_0) \right]^2$$

De la cual se obtendran dos ecuaciones (simplificadas):

$$\sum (y_i-a_1x_i-a_0)=0$$

$$\sum (x_i)(y_i-a_1x_i-a_0)=0$$

Reemplazamos valores y calculamos a_0 y a_1

Resultado

```
resultado = min_cuadrados_lineal(x_peso, y_porcentaje)
print(resultado)
```

 $a_0 = 13.146499567847908$, $a_1 = -0.002254969749351779$, Error absoluto = 3.0305963699222143,

Polinomio

$$y = -0.00225x + 13.14649$$

```
import matplotlib.pyplot as plt
a0, a1 = [float(value.split('=')[1]) for value in resultado.split(',')[:2]]

# Generar valores de x para la línea de regresión
x_line = np.linspace(min(x_peso), max(x_peso), 100)
y_line = a0 + a1 * x_line

# Graficar los puntos originales y la línea de regresión
plt.scatter(x_peso, y_porcentaje, color='blue', label='Datos originales')
plt.plot(x_line, y_line, color='red', label='Línea de mínimos cuadrados')
plt.xlabel('x')
plt.ylabel('y')
plt.title('Ajuste por mínimos cuadrados lineal')
plt.legend()
plt.show()
```

Ajuste por mínimos cuadrados lineal

