Question Number	Answer		Mark
17(a)	Vector velocities at the two positions as part of a triangle and third side		
, ,	identified as Δv	(1)	
	• Small angle, so $\Delta v/v \approx \theta \approx \sin \theta$		
	Or Small angle, so arc $AB \approx \text{chord } AB$	(1)	
	Or Small angle, so $s/r = \theta \approx \sin \theta$		
	• Use of $\theta / t = \omega$ and $v = r\omega$	(1)	
	Or Use of similar triangles and $\theta = s/r$ and $s/t = v$	(1)	_
	• Use of acceleration $a = \Delta v/t$	(1)	5
	• Suitable algebra to show $a = v^2/r$		
	Example of derivation		
	$ \frac{\nu_{\rm B}}{-\nu_{\rm A}} $		
	Small angle, so $\Delta v/v \approx \theta \approx \sin \theta$		
	$\theta / t = \omega$		
	So $\theta = \omega t$		
	But $v = r\omega$		
	So $\theta = vt/r$		
	$\Delta v/v \approx \theta$		
	So $vt/r = \Delta v/v$		
	$a = \Delta v/t = v^2/r$		
17(b)(i)	• Idea that vertical component of lift force equals weight of aeroplane	(1)	
	Vertical component of resultant force is zero, so aeroplane does not	(1)	
	accelerate vertically	(1) (1)	
	Or Vertical component of resultant force is zero so it would remain flying	(1)	
	horizontally		
	 Horizontal component of lift force acts as centripetal force Or Resultant force on aeroplane is horizontal and acts as centripetal force 		
	Or Horizontal component of lift force acts at 90° to motion	(1)	4
	• So it follows a circular path (dependent on MP3)	()	
17(b)(ii)	• Use of $W = mg$	(1)	
	• Use of $L\cos\theta = mg$	(1)	
	• Use of $L\sin\theta = mv^2/r$	(1)	
	• Radius = 3.2×10^5 m	(1)	4
	Example of calculation		
	$W = 4.1 \times 10^5 \times 9.81 = 4.02 \times 10^6 \mathrm{N}$		
	$L\cos 5.2^{\circ} = 4.02 \times 10^{6} \mathrm{N}$		
	$L = 4.04 \times 10^6 \mathrm{N}$		
	$mv^2 / r = 4.04 \times 10^6 \text{N} \times \sin 5.2^\circ = 3.66 \times 10^5 \text{N}$		
	$3.66 \times 10^5 \mathrm{N} = 4.1 \times 10^5 \times 530^2 / r$		
	$r = 3.15 \times 10^5 \text{ m}$		12
	Total for question 17		13