Machine Learning

Chapter 4 Artificial Neural Network (ANN)

4.1 Introduction

- ANN provide a robust approach to approximating real-valued, discrete-valued, and vector-valued functions
 - For certain types of problem, such as learning to interpret complex real-world sensor data, ANN are very effective

• BP Algorithm has proven successful in many practical problems

4.1.1 Biological Motivation

- The biological learning system is built of very complex webs of interconnected neurons.
 - The human brain is a densely interconnected network (10^{11} neurons, each connected to 10^4 others)
 - Neuron activity is typically excited or inhibited through connections to other neurons.
- The information-processing abilities of biological neural systems
 - The neuron switching times is slow compared to computer speed.
 Yet humans are able to quickly make complex decisions (why?)
 - highly parallel computation based on distributed representations
- ANN system is designed to capture such abilities

- In fact, ANN are loosely motivated by biological neural systems
- Two groups of researchers in ANN
 - Using ANNs to study and model biological learning processes
 - Obtaining highly effective machine learning algorithms, independent of whether these algorithms mirror biological processes
- Within this book our interest fits the latter group

4.2 Neural Network Representations

- ALVINN (Pomerleau 1993)
 - Automatically driving
 - The input : 30x32 image
 - the lines entering the node from below are its inputs.
 - Hidden units
 - their output is available only within the network and is not available as part of the network output.
 - Output units
 - Each output unit corresponds to a particular steering direction, and the output values determine the driving action

Camera image

30x32 weights into one out of four hidden unit

30 outputs for steering

4 hidden units

30x32 pixels as inputs

- The network structure of ALVINN
 - The individual units are interconnected in layers that form a directed acyclic graph.
- Types of structures of ANN
 - Acyclic or cyclic
 - Directed or undirected
- We focus on the BP Network
 - structure : a directed graph, possible containing cycles.
 - Learning: choosing a weight value for each edge in the network

4.3 Appropriate Problems For Neural Network Learning

- Problem with the following characteristics
 - Instances are represented by many attribute-value pairs
 - more symbolic representations, high dimensions
 - The target function : discrete-valued, real-valued, or a vector
 - The training examples may contain errors
 - noisy, complex sensor data.(Cameras, microphones)

- Fast evaluation of the learned target function may be required
- Long training times are acceptable
- The ability of humans to understand the learned target function is not important

• BP is the most commonly used ANN learning technique

The Organization of the rest of this chapter

- Learning algorithms for training single units
- Several designs for the primitive units
 - perceptron
 - linear unit
 - sigmoid unit
- BP algorithm
- Several general issues
 - The representational capabilities of ANNs
 - Nature of the hypothesis space search
 - Overfitting problems
 - Alternatives to the BP algorithm
- A detailed example

4.4 Perceptron

• Linear threshold unit (LTU)

2003.1

• Perceptron function

$$o(\vec{x}) = \operatorname{sgn}(\vec{w} \cdot \vec{x})$$

$$\operatorname{sgn}(y) = \begin{cases} 1 & y > 0 \\ -1 & otherwise \end{cases}$$

• Hypotheses space in perceptron learning

$$H = {\{\vec{w} \mid \vec{w} \in R^{n+1}\}}$$

4.4.1 Representational Power of Perceptrons

- Perceptron can be viewed as a hyperplane decision surface in n-dimensional space of instances
 - Positive instances lying on one side of the hyperplane
 - Negative instances lying on the other side
- The equation for this decision hyperplane

$$\vec{w} \cdot \vec{x} = 0$$

• Linearly separable sets

- Representational Power of a single perceptron.
 - Boolean functions : m-of-n functions (and or)
 - AND OR NAND NOR
 - Functions that are not linearly separable (e.g. Xor) are not representable

Decision Surface of a Perceptron

- And (x_1,x_2) choose weights $w_0=-1.5$, $w_1=1$, $w_2=1$
- Xor are not representable

- Representational Power of Networks of threshold units
 - representing a rich variety of functions
 - Every boolean function can be represented by some network of perceptrons only two level deep
 - One way
 - Representing the Boolean function in disjunctive normal form
 - $(x_1 \wedge x_2 \wedge x_3) \vee (x_3 \wedge x_4 \wedge x_5)$

4.4.2 The Perceptron Training Rule

- Understanding how to learn the weights for a single perceptron
- The learning problem
 - determining a weight vector that causes the perceptron to produce the correct 1 or -1 for training examples
- Learning algorithms
 - Perceptron training rule
 - The delta rule
 - Both converge to an acceptable weight vector .
 - the base for multi-layer network learning algorithm.

Perceptron Learning Rule

```
\begin{split} w_i &= w_i + \Delta w_i \\ \Delta w_i &= \eta \ (t - o) \ x_i \\ t &= c(x) : \text{the target value} \\ o : \text{the perceptron output} \\ \eta : \text{a small constant (e.g. 0.1), called } \textit{learning rate} \end{split}
```

- If the output is correct (t=o), w_i are not changed
- If the output is incorrect (t≠o), w_i are changed such that the output of the perceptron for the new weights is *closer* to t.
- Converge condition of the learning algorithm
 - the training data is linearly separable
 - η is sufficiently small

- Convergence is assured (Minskey & Papert 1969)
 - Provided the training examples are linearly separable and provided a sufficiently small η
 - If the data are not linearly separable, Convergence is not assured

4.4.3 Gradient Descent and the Delta Rule

- Delta Rule overcome the difficulty of the perceptron rule
 - if the training example are not linearly separable, the delta rule converges toward a best-fit approximation to the target concept
- The key idea behind the delta rule
 - using gradient descent to search H to find the weights that best fit the training examples

- Understanding Delta rule
 - Task of Delta rule: training an unthresholded perceptron

$$o(\vec{x}) = \vec{w} \cdot \vec{x}$$

 Specify a measure for the training error of a hypothesis (weight vector)

$$E(\vec{w}) = \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$

- Finding hypothesis \vec{w} that minimizes E
 - that Chapter 6 provides a Bayesian justification for choosing this particular definition of E, under certain conditions the hypothesis that minimizes E is also the most probable hypothesis in H given the training data

4.4.3.1 Visualizing The Hypothesis Space

- Figure 4-4
 - Hypothesis space H is w1,w2 plane. For linear units this error surface has a single global minimum

- Gradient descent search
 - determines a weight vector that minimizes E
 - starting with an arbitrary initial weight vector w
 - w is altered in the direction that produces the steepest decent along the error surface
 - repeatedly modifying w at each step until the global minimum error is reached

4.4.3.2 Derivation of The Gradient Descent Rule

- How can we find the direction of steepest descent?
 - computing the derivative of E with respect to each component of the vector \vec{w} , written $\nabla E(\vec{w})$
 - The gradient specifies the direction that produces the steepest increase in E.
 - the negative of this vector therefore gives the direction of steepest decrease
- Training rule for gradient descent

$$\vec{w} \leftarrow \vec{w} + \Delta \vec{w}$$

where

$$\Delta \vec{w} = -\eta \nabla E(\vec{w})$$

Gradient Descent

$$D = \{ <(1,1), 1 >, <(-1,-1), 1 >, <(1,-1), -1 >, <(-1,1), -1 > \}$$

Gradient:

$$\nabla E[w] = [\partial E/\partial w_1, \dots \partial E/\partial w_n]$$

$$\Delta w = -\eta \nabla E[w]$$

$$\begin{split} \Delta w_i &= -\eta \ \partial E / \partial w_i \\ &= -\eta \ \partial \left(1/2 \sum_d (t_d - o_d)^2 \right) / \partial w_i \end{split}$$

=
$$-\eta 1/2\Sigma_d \partial ((t_d-o_d)^2)/\partial w_i$$

=
$$-\eta 1/2\Sigma_d \partial ((t_d-o_d)^2) / \partial o_d^* (\partial o_d / \partial w_i)$$

$$= \eta \sum_{d} (t_d - o_d)(x_{id})$$

$$o_d = \sum_{d} w_i x_{id}$$

Gradient Descent

Gradient-Descent(*training_examples*, η)

- Each training example is a pair of the form $\langle (x1,...xn),t \rangle$ where (x1,...,xn) is the vector of input values, and t is the target output value, η is the learning rate (e.g. 0.1)
- Initialize each wi to some small random value
- Until the termination condition is met, Do
 - Initialize each Δwi to zero
 - For each <(x1,...xn),t> in training_examples Do
 - Input the instance (x1,...,xn) to the linear unit and compute the output o
 - For each linear unit weight wi Do
 - $-\Delta wi = \Delta wi + \eta$ (t-o) xi
 - For each linear unit weight wi Do
 - wi=wi+∆wi

Convergence is assured

- Because the error surface contain only a single global minimum, this algorithm will converge to a weight vector \vec{W} with minimum error, regardless of whether the training examples are linearly separable, given a sufficiently small learning rate

One common modification to the algorithm

 gradually reducing the value of learning rate as the number of gradient descent steps grows

4.4.3.3 Stochastic Approximation to Gradient Descent

- Gradient descent is an important general paradigm for learning.
 - Used for searching through a larger or infinite H
 - H should satisfy the following conditions
 - H contains continuously parameterized hypotheses
 - The error can be differentiated with respect to these hypothesis parameters
- The key practical difficulties in applying gradient descent
 - Converging speed is slow
 - If there are multiple local minimum in the error surface, then there is no guarantee that the procedure will find the global minimum

- Stochastic gradient(incremental gradient descent)
 - Approximate this gradient descent search by updating weights incrementally, following the calculation of the error for each individual example
 - The modified training rule on table 4.1

Stochastic gradient(*training_examples*, η)

- Each training example is a pair of the form $\langle (x1,...xn),t \rangle$ where (x1,...,xn) is the vector of input values, and t is the target output value, η is the learning rate (e.g. 0.1)
- Initialize each wi to some small random value
- Until the termination condition is met, Do
 - Initialize each Δwi to zero
 - For each <(x1,...xn),t> in training_examples Do
 - Input the instance (x1,...,xn) to the linear unit and compute the output o
 - $\Delta wi = \Delta wi + \eta$ (t-o) xi
 - wi=wi+∆wi

- Understanding Stochastic gradient
 - Create a distinct error function for each individual training example d

$$E_{\rm d}(\vec{w}) = \frac{1}{2}(t_d - o_d)^2$$

- The sequence of these weight updates, when iterated over all training examples, provides a reasonable approximation to the gradient of the original error function
 - $\Delta wi = \Delta wi + \eta$ (t-o) xi
- SGD approximates true GD arbitrarily closely
 - When the learning rate sufficiently small,

ML-ANN Dr. Ding Yuxin

- The key difference between standard gradient descent and stochastic gradient descent
 - See page94 (three points)
 - Number of training samples
 - Step size per weight update
 - Chance for escaping local minima
- Both stochastic and standard gradient descent methods are commonly used in practice

- Delta rule are also called LMS rule, Adaline rule, Windrow-Hoff rule
- The difference between Delta rule equation (4.10) and the perceptron training rule in equation (4.4.2) (Same?)
 - $-\Delta wi = \eta (t-o) xi$
- Delta can also be used to train thresholded perceptron units
 - If the unthresholded output o can be trained to fit these values perfectly, then the threshold output o' will fit them as well
 - Even when the target values cannot be fit perfectly, the thresholded o' value will correctly fit the target value whenever the linear unit output o has the correct sign
- Delta rule will learn weights that minimize the error in the linear unit output o, these weights will not necessarily minimize the error in the thresholded output o'

4.4.4 Remarks

- Key difference between the perceptron rule and delta rule
 - Perceptron rule update weights based on the error in the thresholded perceptron output
 - Delta rule updates weights based on the error in the unthresholded linear combination inputs
- Difference in convergence properties
 - Perceptron rule converges after a finite number of iterations to a h, provided the training examples are linearly separable
 - Delta rule converges only toward the minimum error h, possible requiring unbounded time, regardless of whether the training data are linearly separable

- A third algorithm for learning the weight vector is linear programming
 - Linear programming is a general, efficient method for solving sets of linear inequalities
 - This approach is valid only when the training examples are linearly separable
 - This approach can't scale to training multilayer networks. In contrast, the gradient descent approach can be easily extended to multilayer network