Software Requirements Specification (SRS) ADC (Analog To Digital Converter)

Authors: Burners Team (Ahmed Salah, Basem Moufreh, Hassan El Gabass , Hazem El Morshedi , Mohamed Safwat).

Customer: NTI

Instructor: Mahmoud Ali, Ahmed Abd El Reheem.

Table Of Content

1 Introduction	2
1.1 Purpose:	2
1.2 Scope	2
1.3 Definitions, Acronyms, and Abbreviations:	2
2 System overview 2	3
2.1 Description	3
2.2 System Context	4
3 Functional Requirements	4
3.1 Configuration:	4
3.2 Synchronous Conversion	4
3.3 Asynchronous Conversion	4
3.4 Multiple conversions	5
4 Non-functional Requirements	5
4.1 Usability:	5
4.2 Reliability:	5
4.2 Dower consumption.	-

1 Introduction

This document contains the Software Requirements Specification (SRS) for the ADC software driver.

- **1.1 Purpose:** The purpose of this document is to define the requirements for the software system that interacts with an ADC (Analog to Digital converter).
- **1.2 Scope** This document covers the functional and non-functional requirements of the ADC software system.

1.3 Definitions, Acronyms, and Abbreviations:

ADC: Analog to Digital Converter.

SAR: Successive approximation register

2 System overview

2.1 Description

An analog-to-digital converter (ADC) is a device that converts an analog signal, such as a voltage or current, into a digital signal. This allows the signal to be processed and stored by a Microprocessor or other digital device.

2.2 System Context

3 Functional Requirements

3.1 Configuration:

To be able to choose the voltage reference and the left hand adjustment and the prescaller.

3.2 Synchronous Conversion

Waiting until the Sensor data is read from a specific channel and the ADC Complete the conversion.

3.3 Asynchronous Conversion

Don't wait until the Sensor data is read from a specific channel and the ADC Complete the conversion and use interrupt to be able to do any required actions.

3.4 Multiple conversions

Being able to perform a multiple conversions from different channels on the ADC.

4 Non-functional Requirements

4.1 Usability:

Define the usability requirements, including user interface guidelines, intuitive navigation, and clear readability.

4.2 Reliability:

It is important that the ADC is reliable and durable for any application.

4.3 Power consumption:

The ADC should consume as little power as possible. Power consumption is typically measured in mill watts (mW).