Number System

 A number system is a collection of various symbols which are called digits

Two types of number systems are:

- Non-positional Number Systems
- Positional Number Systems

Non-positional Number System

Characteristics

- Use symbols such as I for 1, II for 2, III for 3 etc
- Each symbol represents the same value regardless of its position in the number
- The symbols are simply added to find out the value of a particular number

Difficulty

It is difficult to perform arithmetic with such a number system

Positional Number System

Characteristics

- Use only a few symbols called digits
- These symbols represent different values depending on the position they occupy in the number
- The value of each digit is determined by:
 - 1. The digit itself
 - 2. The position of the digit in the number
 - 3. The base of the number system (Base = total number of digits in the number system)
- The maximum value of a single digit is always equal to one less than the value of the base

Positional Number System

 There are four Positional Number Systems: Binary, Decimal, Octal and Hexadecimal

Binary	
0000	
0001	
0010	
0011	
0100	
0101	
0110	
0111	
1000	
1001	
1010	
1011	
1100	
1101	
1110	
1111	

Decimal	Octal	Hexadecimal
00	0	0
01	1	1
02	2	2
03	3	3
04	4	4
05	5	5
06	6	6
07	7	7
08	10	8
09	11	9
10	12	A
11	13	В
12	14	C
13	15	D
14	16	E
15	17	F
05 06 07 08 09 10 11 12 13	11 12 13 14 15 16	7 8 9 A B C D E

Binary Number System

Characteristics:

- Has only 2 symbols or digits (0 and 1). Hence its base = 2
- The maximum value of a single digit is 1 (one less than the value of the base)
- Each position of a digit represents a specific power of the base (2)
- This number system is used in computers

$$10101_{2} = (1 \times 2^{4}) + (0 \times 2^{3}) + (1 \times 2^{2}) + (0 \times 2^{1}) \times (1 \times 2^{0})$$

$$= 16 + 0 + 4 + 0 + 1$$

$$= 21_{10}$$

Decimal Number System

Characteristics:

- Has 10 symbols or digits (0, 1, 2, 3, 4, 5, 6, 7,8, 9). Hence, its base = 10
- The maximum value of a single digit is 9 (one less than the value of the base)
- Each position of a digit represents a specific power of the base (10)
- We use this number system in our day-to-day life

$$2586_{10} = (2 \times 10^{3}) + (5 \times 10^{2}) + (8 \times 10^{1}) + (6 \times 10^{0})$$
$$= 2000 + 500 + 80 + 6$$

Octal Number System

Characteristics:

- Has total 8 symbols or digits (0, 1, 2, 3, 4, 5, 6, 7). Hence, its base = 8
- The maximum value of a single digit is 7 (one less than the value of the base)
- Each position of a digit represents a specific power of the base (8)
- Since there are only 8 digits, 3 bits $(2^3 = 8)$ are sufficient to represent any octal number in binary

$$2057_8 = (2 \times 8^3) + (0 \times 8^2) + (5 \times 8^1) + (7 \times 8^0)$$
$$= 1024 + 0 + 40 + 7$$
$$= 1071_{10}$$

Hexadecimal Number System

Characteristics:

- Has total 16 symbols or digits (0, 1, 2, 3, 4, 5, 6, 7,8, 9, A, B, C, D, E, F). Hence its base = 16
- The symbols A, B, C, D, E and F represent the decimal values 10, 11, 12, 13, 14 and 15 respectively
- The maximum value of a single digit is 15 (one less than the value of the base)
- Each position of a digit represents a specific power of the base (16)
- Since there are only 16 digits, 4 bits ($2^4 = 16$) are sufficient to represent any hexadecimal number in binary **Example**

$$1AF_{16} = (1 \times 16^{2}) + (A \times 16^{1}) + (F \times 16^{0})$$

= $1 \times 256 + 10 \times 16 + 15 \times 1$
= $256 + 160 + 15$
= 431_{10}

Decimal to Binary

Here is an example of using repeated division to convert 1792 decimal to binary:

Decimal Number	Operation	Quotient	Remainder
1792	÷ 2 =	896	0
896	÷ 2 =	448	0
448	÷ 2 =	224	0
224	÷ 2 =	112	0
112	÷ 2 =	56	0
56	÷ 2 =	28	0
28	÷ 2 =	14	0
14	÷ 2 =	7	0
7	÷ 2 =	3	1
3	÷ 2 =	1	1
1	÷ 2 =	0	1
0	done.		

- Reverse the remainders, we get 11100000000
- $(1792)_{10} = (11100000000)_2$

Decimal to Octal

Here is an example of using repeated division to convert 1792 decimal to octal:

Decimal Number	Operation	Quotient	Remainder
1792	÷ 8 =	224	0
224	÷ 8 =	28	0
28	÷ 8 =	3	4
3	÷ 8 =	0	3
0	done.		

- Reverse the remainders, we get 3400
- $(1792)_{10} = (3400)_8$

- Decimal to Hexadecimal
- Here is an example of using repeated division to convert 1792 decimal to hexadecimal:

Decimal NumberOperationQuotientRemainder1792 \div 16 =1120112 \div 16 =707 \div 16 =07

done.

- Reverse the remainders, we get 700
- $(1792)_{10} = (700)_{16}$

 The only addition to the algorithm when converting from decimal to hexadecimal is that a table must be used to obtain the hexadecimal digit if the remainder is greater than decimal 9.

Decimal:	0	1	2	3	4	5	6	7
Hexadecimal:	0	1	2	3	4	5	6	7
Decimal:	8	9	10	11	12	13	14	15
Hexadecimal:	8	9	Α	В	С	D	Е	F

For example, 590 decimal converted to hex is:

Decimal Number	Operation	Quotient	Remainder	Hexadecimal Result
590	÷ 16 =	36	14	E
36	÷ 16 =	2	4	4
2	÷ 16 =	0	2	2
0	done.			

- Reverse the remainders, we get 24E
- $(590)_{10} = (24E)_{16}$

Conversion from other to decimal number system

Example

```
10101_2 = (1 \times 2^4) + (0 \times 2^3) + (1 \times 2^2) + (0 \times 2^1) \times (1 \times 2^0)= 16 + 0 + 4 + 0 + 1= 21_{10}
```

Example

$$2057_8 = (2 \times 8^3) + (0 \times 8^2) + (5 \times 8^1) + (7 \times 8^0)$$
$$= 1024 + 0 + 40 + 7$$
$$= 1071_{10}$$

$$1AF_{16} = (1 \times 16^{2}) + (A \times 16^{1}) + (F \times 16^{0})$$

= $1 \times 256 + 10 \times 16 + 15 \times 1$
= $256 + 160 + 15$
= 431_{10}

Conversion from Binary to Octal

- Step 1 Divide the binary digits into groups of three (starting from the right).
- Step 2 Convert each group of three binary digits to one octal digit.
- Example

Binary Number – 10101₂

Calculating Octal Equivalent -

Step	Binary Number	Octal Number
1.	10101 ₂	010 101
2.	10101 ₂	2 ₈ 5 ₈
3.	10101 ₂	25 ₈

Binary Number – 10101_2 = Octal Number – 25_8

Conversion from Octal to Binary

- Step 1 Convert each octal digit to a 3 digit binary number (the octal digits may be treated as decimal for this conversion).
- Step 2 Combine all the resulting binary groups (of 3 digits each) into a single binary number.
- Example

Binary Number – 10101₂

Calculating Octal Equivalent –

Step	Octal Number	Binary Number
1.	25 ₈	2 ₁₀ 5 ₁₀
2.	25 ₈	010 ₂ 101 ₂
3.	25 ₈	010101 ₂

Octal Number – 25_8 = Binary Number – 10101_2

Conversion from Binary to Hexadecimal

- Step 1 Divide the binary digits into groups of four (starting from the right).
- Step 2 Convert each group of four binary digits to one hexadecimal symbol.
- Example

Binary Number – 10101₂

Calculating Octal Equivalent -

Step	Binary Number	Hexadecimal Number
1.	10101 ₂	0001 0101
2.	10101 ₂	1 ₁₀ 5 ₁₀
3.	10101 ₂	15 ₁₆

Binary Number – 10101_2 = Hexadecimal Number – 15_{16}

Conversion from Hexadecimal to Binary

- Step 1 Convert each hexadecimal digit to a 4 digit binary number (the hexadecimal digits may be treated as decimal for this conversion).
- Step 2 Combine all the resulting binary groups (of 4 digits each) into a single binary number.
- Example

Binary Number – 10101₂

Calculating Octal Equivalent -

Step	Hexadecimal Number	Binary Number
1.	15 ₁₆	1 ₁₀ 5 ₁₀
2.	15 ₁₆	0001 ₂ 0101 ₂
3.	15 ₁₆	000101012

Hexadecimal Number – 15₁₆ = Binary Number – 10101₂

Octal to Hexadecimal

- When converting from octal to hexadecimal, it is often easier to first convert the octal number into binary and then from binary into hexadecimal.
- For example, to convert 345 octal into hex:(from the previous example)
- Octal =345Binary =011 100 101

Drop any leading zeros or pad with leading zeros to get groups of four binary digits (bits):

Binary 011100101 = 1110 0101

Then, look up the groups in a table to convert to hexadecimal digits.

Binary =1110 0101 Hexadecimal =E5= E5 hex

Binary	
0000	
0001	
0010	
0011	
0100	
0101	
0110	
0111	
1000	
1001	
1010	
1011	
1100	
1101	
1110	
1111	

Decimal	Octal	Hexadecimal
00	0	0
01	1	1
02	2	2
03	2 3 4 5 6	3
04	4	4
05	5	4 5 6
06	6	6
07	7	7
08	10	8
09	11	8
10	12	A
11	13	В
12	14	C
13	15	D
14	16	E
15	17	F

Binary	
0000	
0001	
0010	
0011	
0100	
0101	
0110	
0111	
1000	
1001	
1010	
1011	
1100	
1101	
1110	
1111	

Decimal	Octal	Hexadecimal
00	0	0
01	1	1
02	2	2
03	2 3 4 5 6 7	3
04	4	3 4 5 6
05	5	5
06	6	6
07	7	7
08	10	8
09	11	9
10	12	A
11	13	В
12	14	C
13	15	D
14	16	E
15	17	F

Hexadecimal to Octal

- When converting from hexadecimal to octal, it is often easier to first convert the hexadecimal number into binary and then from binary into octal.
- For example, to convert A2DE hex into octal:
- Hexadecimal =A 2 D E
- Binary = 1010 0010 1101 1110 = 1010001011011110
- Add leading zeros or remove leading zeros to group into sets of three binary digits.
- Then, look up each group in a table:

Binary	000	001	010	011	100	101	110	111
Octal	0	1	2	3	4	5	6	7

Binary =001010001011011110 Octal =121336

Data Representation

- Computer uses a fixed number of bits to represent a piece of data, which could be a number, a character, or others
- A n-bit storage location can represent up to 2ⁿ distinct entities
- For example, a 3-bit memory location can hold one of these eight binary patterns: 000, 001, 010, 011, 100, 101, 110, or 111
- Hence, it can represent at most 8 distinct entities. You could use them to represent:
 - Numbers 0 to 7
 - Characters 'A' to 'H'
 - 8 kinds of fruits like apple, orange, banana
 - or 8 kinds of animals like lion, tiger, etc.

Data Representation

Multiples of Bytes				
Unit (Symbol)	Value (SI)	Value (Binary)		
Kilobyte (kB)	10 ³	210		
Megabyte (MB)	10 ⁶	2 ²⁰		
Gigabyte (GB)	10 ⁹	2 ³⁰		
Terabyte (TB)	10 ¹²	2 ⁴⁰		
Petabyte (PB)	10 ¹⁵	2 ⁵⁰		
Exabyte (EB)	10 ¹⁸	2 ⁶⁰		
Zettabyte (ZB)	10 ²¹	2 ⁷⁰		
Yottabyte (YB)	10 ²⁴	2 ⁸⁰		

Memory Units

Data Representation: Signed and Unsigned

 Integers, for example, can be represented in 8-bit, 16-bit, 32bit or 64-bit

- Besides bit-lengths, there are two representation schemes for integers:
 - Unsigned Integers: can represent zero and positive integers
 - Signed Integers: can represent zero, positive and negative integers

Data Representation: Unsigned

- Unsigned integers can represent zero and positive integers, but not negative integers.
- The value of an unsigned integer is interpreted as "the magnitude of its underlying binary pattern".

All the bits are used for representing only Magnitude

Example 1:

Suppose n=8 and

binary pattern is 0100 0001 (Binary)

Value of this unsigned integer is:

 $1 \times 2^0 + 1 \times 2^6 = 65$ (Decimal)

Example 2:

Suppose n=16 and

binary pattern is **0001 0000 0000 1000** (Binary)

Value of this unsigned integer is:

$$1 \times 2^3 + 1 \times 2^12 = 4104$$
 (Decimal)

Data Representation: Unsigned

An n-bit pattern can represent 2ⁿ distinct integers. An n-bit unsigned integer can represent integers from 0 to (2ⁿ)-1, as tabulated below:

n	Minimum	Maximum
8	0	(2^8)-1 (=255)
16	0	(2^16)-1 (=65,535)
32	0	(2^32)-1 (=4,294,967,295)
64	0	(2^64)-1 (=18,446,744,073,709,551,615)

 An 8-bit unsigned integer has a range of 0 to 255 Maximum value = 255
128+64+32+16+8+4+2+1 = 255

128	64	32	16	8	4	2	1
1	1	1	1	1	1	1	1

■ Minimum value = 0

128	64	32	16	8	4	2	1
0	0	0	0	0	0	0	0

Data Representation: Signed

- The Most-significant Bit (MSB) is the sign bit, with value of 0 representing positive integer and 1 representing negative integer.
- The remaining n-1 bits represents the magnitude (absolute value) of the integer.
- The absolute value of the integer is interpreted as "the magnitude of the (n-1)-bit binary pattern".

Positive Signed Binary Numbers

Negative Signed Binary Numbers

Data Representation: Signed

Example 1:

Suppose n=8 and binary representation is **0 100 0001B**

Sign bit is $0 \Rightarrow$ positive

Absolute value is $100\ 0001B = 65D$

Hence, the integer is +65D

Example 2:

Suppose n=8 and binary representation is 1 000 0001B

Sign bit is $1 \Rightarrow$ negative

Absolute value is $000\ 0001B = 1D$

Hence, the integer is -1D

Example 3:

Suppose n=8 and binary representation is **0 000 0000B**

Sign bit is $0 \Rightarrow$ positive

Absolute value is 000 0000B = 0D

Hence, the integer is +0D

Example 4:

Suppose n=8 and binary representation is 1 000 0000B

Sign bit is $1 \Rightarrow$ negative

Absolute value is 000 0000B = 0D

Hence, the integer is -0D

Data Representation: Signed

Sign-Magnitude Representation

The drawbacks of sign-magnitude representation are:

- 1. There are two representations (0000 0000B and 1000 0000B) for the number zero, which could lead to inefficiency and confusion.
- 1. Positive and negative integers need to be processed separately.

Complement of a number

 Complements are used in the digital computers in order to simplify the subtraction operation and for the logical manipulations

Binary system complements

As the binary system has base r = 2. So the two types of complements for the binary system are 2's complement and 1's complement

1's complement

The 1's complement of a number is found by changing all 1's to 0's and all 0's to 1's. Example of 1's Complement is as follows:

Complement of a number

2's complement

- The 2's complement of binary number is obtained by adding 1 to the Least Significant Bit (LSB) of 1's complement of the number.
- 2's complement = 1's complement + 1
- Example of 2's Complement is as follows:

