

Overview

Introduction

Method

Algorithm

Evaluation

Conclusion & Further work

Introduction

- ♦ Task: Recover 3D human poses and shapes from one monocular RGB image
- Previous Approaches:
 - ♦ Model based
 - ♦ 3D Keypoint based

Introduction - Model Based Method

Drawback: Hard to learn the mapping from pixels to abstract statistical parameters.

Introduction – 3D Keypoint Based Method

Drawback: The keypoint estimation can be unrealistic.

Introduction - Hybrid Method

Method - Inverse Kinematics

* Find pose parameters to align body mesh templates with keypoint estimation.

$$R = IK(P,T)$$

Method - Decomposition and Hybrid IK

- ♦ Twist: longitudinal rotation estimated by neural networks
- ♦ Swing: In plane rotation analytical solution

Algorithm - Naïve HybrIK

 $R_{pa(k),k} = R_{pa(k),k}^{sw} \cdot R_{pa(k),k}^{tw}$

Algorithm 1: Naive HybrIK

Input: P, T, Φ Output: R

- 1 Determine R_0 ;
- 2 for k along the kinematic tree do

$$\begin{array}{c|c} \mathbf{3} & \vec{p_k} \leftarrow R_{\mathtt{pa}(k)}^{-1}(p_k - p_{\mathtt{pa}(k)}); \\ \mathbf{4} & \vec{t_k} \leftarrow (t_k - t_{\mathtt{pa}(k)}); \\ \mathbf{5} & R_{\mathtt{pa}(k),k}^{sw} \leftarrow \mathcal{D}^{sw}(\vec{p_k}, \vec{t_k}); \\ \mathbf{6} & R_{\mathtt{pa}(k),k}^{tw} \leftarrow \mathcal{D}^{tw}(\vec{t_k}, \phi_k); \\ \mathbf{7} & R_{\mathtt{pa}(k),k} \leftarrow R_{\mathtt{pa}(k),k}^{sw} R_{\mathtt{pa}(k),k}^{tw}; \end{array}$$

Algorithm - Naïve IK

- ♦ Problem:
 - ♦ Bone Length Inconsistency
 - ♦ Reconstruction Error is Accumulated

Algorithm - Adaptive IK

Algorithm 2: Adaptive HybrIK

```
Input: P, T, \Phi
Output: R

1 Determine R_0;
2 for k along the k
```

2 for k along the kinematic tree do

```
\begin{array}{ll} \mathbf{3} & q_{\mathtt{pa}(k)} \leftarrow R_{\mathtt{pa}(k)}(t_{\mathtt{pa}(k)} - t_{\mathtt{pa}^{2}(k)}) + q_{\mathtt{pa}^{2}(k)}; \\ \mathbf{4} & \vec{p}_{k} \leftarrow R_{\mathtt{pa}(k)}^{-1}(p_{k} - q_{\mathtt{pa}(k)}); \\ \mathbf{5} & \vec{t}_{k} \leftarrow (t_{k} - t_{\mathtt{pa}(k)}); \\ \mathbf{6} & R_{\mathtt{pa}(k),k}^{sw} \leftarrow \mathcal{D}^{sw}(\vec{p}_{k}, \vec{t}_{k}); \\ R_{\mathtt{pa}(k),k}^{tw} \leftarrow \mathcal{D}^{tw}(\vec{t}_{k}, \phi_{k}); \\ R_{\mathtt{pa}(k),k}^{tw} \leftarrow \mathcal{D}^{tw}(\vec{t}_{k}, \phi_{k}); \\ \mathbf{8} & R_{\mathtt{pa}(k),k} \leftarrow R_{\mathtt{pa}(k),k}^{sw} R_{\mathtt{pa}(k),k}^{tw}; \end{array}
```

Algorithm - Our Algorithm

- ♦ The adaptive algorithm is heuristic not guarantee to minimize reconstruction errors.
- \diamond We propose λ adaptive:
 - \diamond Use some point in the middle: $\lambda p_1 + (1 \lambda)q_1$

Evaluation – Qualitative Results

 $\lambda = 0.5$

 $\lambda = 1.0$

Evaluation – Qualitative Results

Conclusion & Next Steps

- ♦ Conclusion So Far:
 - \diamond Hypothesis: $\lambda = 0$: Accurate directions; $\lambda = 1$: Accurate position
 - \diamond Finding: Visual differences are negligible when tuning λ
- ♦ Next Steps:
 - ♦ Larger Scale Quantitative Evaluations are Needed.
 - \diamond Comparison of Reconstruction Error Under different λ
 - \diamond Robustness Under different λ

Q & A