Universidad de Sonora

Evaluación - No.2

Autor: Raúl Montes Profesor: Dr. Carlos Lizárraga

26 de abril de 2017

Procedimiento

La evaluación consistió en encontrar los ciclos solares a partir de los datos de manchas solares del periodo que va de 1749 a la fecha, el cual se obtuvo del sitió de NASA.

Comenzamos con el archivo tipo txt. de la NASA el cual primero se limpió usando Emacs, y después usando Python para eliminar los datos irrelevantes y solo quedarnos con los necesarios, los cuales son la fecha (en formato decimal de año y mes) y el número de manchas. Con lo cual se obtuvó la siguiente gráfica:

Después usamos la transformada discreta de Fourier para encontrar los modos principales, así como la frecuencia del ciclo principal.

Transoformadas de Fourier

Preguntas

- 1. ¿Encuentras un solo ciclo principal o un conjunto de ciclos con frecuencia cercana?
 - R: Se puede encontrar un conjunto de frecuencias muy cercanas.
- 2. ¿Cuál sería el promedio del conjunto de frecuencias?
 - R: De acuerdo a las dos principales frecuencias del ciclo reelevante es: $10.5365\,$
- 3. ¿Que otros ciclos relevantes encuentras?

#	Amplitud (manchas)	Frecuencia (meses ⁻¹)	Periodo (años)
1	6.12023079759	0.000311235605353	267.75
2	5.8132246436	0.000622471210707	133.875
3	11.3995918066	0.00093370681606	89.25
4	7.64140606831	0.00124494242141	66.9375
5	6.86795255526	0.00155617802677	53.55
18	5.12470451341	0.00560224089636	14.875
19	6.53244749257	0.00591347650171	14.0921052632
22	6.25368739689	0.00684718331777	12.1704545455
23	11.3390760528	0.00715841892312	11.6413043478
24	19.9936166043	0.00746965452848	11.15625
25	17.7099160016	0.00778089013383	10.71
26	6.78145430273	0.00809212573918	10.2980769231
27	15.4540189405	0.00840336134454	9.91666666667
28	5.36620029563	0.00871459694989	9.5625
29	7.06077096319	0.00902583255524	9.23275862069
30	6.45420328858	0.0093370681606	8.925
32	5.27672091961	0.0099595393713	8.3671875
33	7.31412294874	0.0102707749767	8.11363636364
49	5.08635154383	0.0152505446623	5.46428571429

4. ¿Cómo crees que es posible predecir el número de manchas?

Usando los modos obtenidos anteriormente, podemos hacer una serie de Fourier que nos permita recrear una gráfica continua, y de esa manera permita conocer el numero de manchas (aproximado) en cualquier tiempo. Es decir, a partir de las regularidades que presentan los datos podemos conocer el estado aproximado del sistema en un cierto tiempo.