CÁLCULO NUMÉRICO UERJ

Interpolação Polinomial de Lagrange

Rodrigo Madureira rodrigo.madureira@ime.uerj.br IME-UERJ

Sumário

- Introdução
- Forma de Lagrange Interpolação linear
- Forma de Lagrange Interpolação quadrática
- Forma de Lagrange Interpolação cúbica
- Interpolação por polinômio de grau n
- 6 Exemplo
- Bibliografia

Introdução

Suponha que f(x) é uma função contínua com infinitas derivadas.

Interpolar f(x) por um polinômio de grau n, $P_n(x)$, é aproximar f(x) por $P_n(x)$ em (n+1) pontos distintos $(x_0, f(x_0)), (x_1, f(x_1)), \ldots, (x_n, f(x_n))$ tais que:

$$f(x_0) = P_n(x_0),$$

 $f(x_1) = P_n(x_1),$
 \vdots
 $f(x_n) = P_n(x_n),$

onde x_0, x_1, \ldots, x_n , são chamados *nós da interpolação*.

Pode ser provado que este polinômio $P_n(x)$ sempre existe e é único.

Teorema (Existência e unicidade)

Existe um único polinômio $P_n(x)$, de grau n, tal que:

$$P_n(x_k) = f(x_k), k = 0, 1, 2, ..., n$$
, desde que $x_k \neq x_j$, para todo $k \neq j$.

1. Reta (polinômio de grau 1)

Figura: Interpolação - $P_1(x)$

Vamos interpolar f(x) por uma reta $P_1(x)$ em dois pontos: $(x_0, f(x_0)), (x_1, f(x_1)).$

Ou seja, $P_1(x_0) = f(x_0);$ $P_1(x_1) = f(x_1).$

Sabemos que a equação geral da reta é:

$$P_1(x) = ax + b$$

Então, nos nós de interpolação, temos:

$$P_1(x_0) = f(x_0) = ax_0 + b$$
 (1)
 $P_1(x_1) = f(x_1) = ax_1 + b$ (2)

Subtraindo (2) de (1), obtemos o coeficiente angular a da reta $P_1(x)$:

$$f(x_0) - f(x_1) = a(x_0 - x_1) \Rightarrow a = \frac{f(x_0) - f(x_1)}{x_0 - x_1}$$
 (3)

Para achar o coeficiente linear *b*, substituímos (3) na equação (1). Temos em (1),

$$f(x_0) = ax_0 + b \Rightarrow b = f(x_0) - ax_0$$
 (4)

Assim, substituindo o valor de a da equação (3) na equação (4), obtemos:

$$b = f(x_0) - \left(\frac{f(x_0) - f(x_1)}{x_0 - x_1}\right) x_0$$

Desenvolvendo esta equação com $f(x_0)$ e $f(x_1)$ em evidência, obtemos b:

$$b = \left(\frac{-x_1}{x_0 - x_1}\right) f(x_0) + \left(\frac{x_0}{x_0 - x_1}\right) f(x_1)$$
 (5)

Agora, vamos substituir *a* e *b* encontrados em (3) e (5) na equação da reta. Assim, obtemos:

$$P_1(x) = ax + b$$

$$P_1(x) = \left(\frac{f(x_0) - f(x_1)}{x_0 - x_1}\right)x + \left(\frac{-x_1}{x_0 - x_1}\right)f(x_0) + \left(\frac{x_0}{x_0 - x_1}\right)f(x_1)$$

Organizando os termos desta equação com $f(x_0)$ e $f(x_1)$ em evidência, obtemos:

$$P_1(x) = \left(\frac{x - x_1}{x_0 - x_1}\right) f(x_0) + \left(\frac{-x + x_0}{x_0 - x_1}\right) f(x_1)$$

Como $\frac{-x + x_0}{x_0 - x_1} = \frac{x - x_0}{x_1 - x_0}$, podemos reescrever $P_1(x)$ assim:

$$P_1(x) = \left(\frac{x - x_1}{x_0 - x_1}\right) f(x_0) + \left(\frac{x - x_0}{x_1 - x_0}\right) f(x_1)$$

$$P_1(x) = \underbrace{\left(\frac{x - x_1}{x_0 - x_1}\right)}_{L_0(x)} f(x_0) + \underbrace{\left(\frac{x - x_0}{x_1 - x_0}\right)}_{L_1(x)} f(x_1)$$

Isso significa que podemos construir uma base para $P_1(x)$ formada pelos polinômios

$$L_0(x), L_1(x)$$

$$P_1(x) = \underbrace{\left(\frac{x - x_1}{x_0 - x_1}\right)}_{L_0(x)} f(x_0) + \underbrace{\left(\frac{x - x_0}{x_1 - x_0}\right)}_{L_1(x)} f(x_1)$$

Isso significa que podemos construir uma base para $P_1(x)$ formada pelos polinômios

$$L_0(x) = \frac{1}{x_0 - x_1}, L_1(x) = \frac{1}{x_1 - x_1}$$

$$P_1(x) = \underbrace{\left(\frac{x - x_1}{x_0 - x_1}\right)}_{L_0(x)} f(x_0) + \underbrace{\left(\frac{x - x_0}{x_1 - x_0}\right)}_{L_1(x)} f(x_1)$$

Isso significa que podemos construir uma base para $P_1(x)$ formada pelos polinômios

$$L_0(x) = \frac{1}{x_0 - x_1}, L_1(x) = \frac{1}{x_1 - x_0}$$

$$P_{1}(x) = \underbrace{\left(\frac{x - x_{1}}{x_{0} - x_{1}}\right)}_{L_{0}(x)} f(x_{0}) + \underbrace{\left(\frac{x - x_{0}}{x_{1} - x_{0}}\right)}_{L_{1}(x)} f(x_{1})$$

Isso significa que podemos construir uma base para $P_1(x)$ formada pelos polinômios

$$L_0(x) = \frac{x - x_1}{x_0 - x_1}, L_1(x) = \frac{x - x_0}{x_1 - x_0},$$

que são polinômios de Lagrange de grau 1.

Portanto, o polinômio interpolador de Lagrange de grau 1 será dado por:

$$P_1(x) = L_0(x)f(x_0) + L_1(x)f(x_1)$$

com $L_0(x)$ e $L_1(x)$ definidos acima

$$P_{1}(x) = \underbrace{\left(\frac{x - x_{1}}{x_{0} - x_{1}}\right)}_{L_{0}(x)} f(x_{0}) + \underbrace{\left(\frac{x - x_{0}}{x_{1} - x_{0}}\right)}_{L_{1}(x)} f(x_{1})$$

Isso significa que podemos construir uma base para $P_1(x)$ formada pelos polinômios

$$L_0(x) = \frac{x - x_1}{x_0 - x_1}, L_1(x) = \frac{x - x_0}{x_1 - x_0},$$

que são polinômios de Lagrange de grau 1.

Portanto, o polinômio interpolador de Lagrange de grau 1 será dado por:

$$P_1(x) = L_0(x)f(x_0) + L_1(x)f(x_1)$$

com $L_0(x)$ e $L_1(x)$ definidos acima.

Note que

$$L_0(x_0) = 1, L_0(x_1) = 0,$$

 $L_1(x_0) = 0, L_1(x_1) = 1.$

Assim,

$$P_1(x_0) = \underbrace{L_0(x_0)}_{1} f(x_0) + \underbrace{L_1(x_0)}_{1} f(x_1) = f(x_0),$$

$$P_1(x_1) = L_0(x_1)T(x_0) + \underbrace{L_1(x_1)}_{1} f(x_1) = f(x_1).$$

Então, $P_1(x)$ é o único polinômio de grau 1 que passa por $(x_0, f(x_0))$ e $(x_1, f(x_1))$.

2. Parábola (polinômio de grau 2)

Agora, queremos interpolar f(x) por um polinômio de grau 2, $P_2(x)$.

Neste caso, devemos interpolar f(x) por $P_2(x)$ em três pontos:

$$(x_0, f(x_0)), (x_1, f(x_1)), (x_2, f(x_2)).$$

Ou seja,

$$P_2(x_0)=f(x_0);$$

$$P_2(x_1) = f(x_1);$$

$$P_2(x_2)=f(x_2).$$

Figura: Interpolação - $P_2(x)$

Aplicando raciocínio análogo ao que foi feito na reta, temos que

$$P_2(x) = L_0(x)f(x_0) + L_1(x)f(x_1) + L_2(x)f(x_2),$$

onde agora $L_0(x)$, $L_1(x)$, $L_2(x)$ formam uma **base de Lagrange de grau 2** e são definidos por:

$$L_0(x) = \frac{1}{(x_0 -)(x_0 -)};$$

$$L_1(x) = \frac{1}{(x_1 -)(x_1 -)};$$

$$L_2(x) = \frac{1}{(x_2-)(x_2-)}$$
.

Aplicando raciocínio análogo ao que foi feito na reta, temos que

$$P_2(x) = L_0(x)f(x_0) + L_1(x)f(x_1) + L_2(x)f(x_2),$$

onde agora $L_0(x)$, $L_1(x)$, $L_2(x)$ formam uma **base de Lagrange de grau 2** e são definidos por:

$$L_0(x) = \frac{1}{(x_0 - x_1)(x_0 - x_2)};$$

$$L_1(x) = \frac{1}{(x_1 - x_0)(x_1 - x_2)};$$

$$L_2(x) = \frac{1}{(x_2 - x_0)(x_2 - x_1)}$$
.

Aplicando raciocínio análogo ao que foi feito na reta, temos que

$$P_2(x) = L_0(x)f(x_0) + L_1(x)f(x_1) + L_2(x)f(x_2),$$

onde agora $L_0(x)$, $L_1(x)$, $L_2(x)$ formam uma **base de Lagrange de grau 2** e são definidos por:

$$L_0(x) = \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)};$$

$$L_1(x) = \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)};$$

$$L_2(x) = \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)}.$$

Note que

$$L_0(x_0) = 1, L_0(x_1) = 0, L_0(x_2) = 0,$$

$$L_1(x_0) = 0$$
, $L_1(x_1) = 1$, $L_1(x_2) = 0$, $L_2(x_0) = 0$, $L_2(x_1) = 0$, $L_2(x_2) = 1$.

Assim.

$$P_2(x_0) = \underbrace{L_0(x_0)}_{1} f(x_0) + \underbrace{L_1(x_0)}_{1} f(x_1) + \underbrace{L_2(x_0)}_{1} f(x_2) = f(x_0),$$

$$P_2(x_1) = \underline{L}_0(x_1) \overline{f}(x_0) + \underbrace{L_1(x_1)}_{1} f(x_1) + \underline{L}_2(x_1) \overline{f}(x_2) = f(x_1),$$

$$P_2(x_2) = \mathcal{L}_{\theta}(x_2) \overline{f}(x_0) + \mathcal{L}_{1}(x_2) \overline{f}(x_1) + \underbrace{\mathcal{L}_{2}(x_2)}_{1} f(x_2) = f(x_2).$$

Então, $P_2(x)$ é o único polinômio de grau 2 que passa por $(x_0, f(x_0))$, $(x_1, f(x_1)), (x_2, f(x_2))$.

3. Polinômio de grau 3

Agora, queremos interpolar f(x) por um polinômio de grau 3, $P_3(x)$.

Neste caso, devemos interpolar f(x) por $P_3(x)$ em quatro pontos:

$$(x_0, f(x_0)), (x_1, f(x_1)), (x_2, f(x_2)), (x_3, f(x_3)).$$

Ou seja,

$$P_3(x_0) = f(x_0);$$

 $P_3(x_1) = f(x_1);$
 $P_3(x_2) = f(x_2);$

Aplicando raciocínio análogo ao que foi feito nos casos anteriores, temos que

$$P_3(x) = L_0(x)f(x_0) + L_1(x)f(x_1) + L_2(x)f(x_2) + L_3(x)f(x_3),$$

onde agora $L_0(x)$, $L_1(x)$, $L_2(x)$, $L_3(x)$ formam uma base de Lagrange de grau 3 e são definidos por:

$$L_0(x) = \frac{1}{(x_0 -)(x_0 -)(x_0 -)};$$

$$L_1(x) = \frac{1}{(x_1 -)(x_1 -)(x_1 -)};$$

$$L_2(x) = \frac{1}{(x_2-)(x_2-)(x_2-)};$$

$$L_3(x) = \frac{1}{(x_3-)(x_3-)(x_3-)}$$
.

Aplicando raciocínio análogo ao que foi feito nos casos anteriores, temos que

$$P_3(x) = L_0(x)f(x_0) + L_1(x)f(x_1) + L_2(x)f(x_2) + L_3(x)f(x_3),$$

onde agora $L_0(x)$, $L_1(x)$, $L_2(x)$, $L_3(x)$ formam uma base de Lagrange de grau 3 e são definidos por:

$$L_0(x) = \frac{1}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3)};$$

$$L_1(x) = \frac{1}{(x_1 - x_0)(x_1 - x_2)(x_1 - x_3)};$$

$$L_2(x) = \frac{1}{(x_2 - x_0)(x_2 - x_1)(x_2 - x_3)};$$

$$L_3(x) = \frac{1}{(x_3 - x_0)(x_3 - x_1)(x_3 - x_2)}$$

Aplicando raciocínio análogo ao que foi feito nos casos anteriores, temos que

$$P_3(x) = L_0(x)f(x_0) + L_1(x)f(x_1) + L_2(x)f(x_2) + L_3(x)f(x_3),$$

onde agora $L_0(x)$, $L_1(x)$, $L_2(x)$, $L_3(x)$ formam uma base de Lagrange de grau 3 e são definidos por:

$$L_0(x) = \frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)};$$

$$L_1(x) = \frac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)};$$

$$L_2(x) = \frac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)};$$

$$L_3(x) = \frac{(x - x_0)(x - x_1)(x - x_2)}{(x_3 - x_0)(x_3 - x_1)(x_3 - x_2)}.$$

Note que

$$L_0(x_0) = 1$$
, $L_0(x_1) = 0$, $L_0(x_2) = 0$, $L_0(x_3) = 0$, $L_1(x_0) = 0$, $L_1(x_1) = 1$, $L_1(x_2) = 0$, $L_1(x_3) = 0$, $L_2(x_0) = 0$, $L_2(x_1) = 0$, $L_2(x_2) = 1$, $L_2(x_3) = 0$, $L_3(x_0) = 0$, $L_3(x_1) = 0$, $L_3(x_2) = 0$, $L_3(x_3) = 1$.

Assim,

$$P_{3}(x_{0}) = \underbrace{L_{0}(x_{0})}_{1} f(x_{0}) + \underbrace{L_{1}(x_{0})}_{1} f(x_{1}) + \underbrace{L_{2}(x_{0})}_{1} f(x_{2}) + \underbrace{L_{3}(x_{0})}_{1} f(x_{3}) = f(x_{0}),$$

$$P_{3}(x_{1}) = \underbrace{L_{0}(x_{1})}_{1} f(x_{0}) + \underbrace{L_{1}(x_{1})}_{1} f(x_{1}) + \underbrace{L_{2}(x_{1})}_{1} f(x_{2}) + \underbrace{L_{3}(x_{1})}_{1} f(x_{3}) = f(x_{1}),$$

$$P_{3}(x_{2}) = \underbrace{L_{0}(x_{2})}_{1} f(x_{0}) + \underbrace{L_{1}(x_{2})}_{1} f(x_{1}) + \underbrace{L_{2}(x_{2})}_{1} f(x_{2}) + \underbrace{L_{3}(x_{2})}_{1} f(x_{3}) = f(x_{2}).$$

$$P_{3}(x_{3}) = \underbrace{L_{0}(x_{3})}_{1} f(x_{0}) + \underbrace{L_{1}(x_{3})}_{1} f(x_{1}) + \underbrace{L_{2}(x_{3})}_{1} f(x_{2}) + \underbrace{L_{3}(x_{3})}_{1} f(x_{3}) = f(x_{3}).$$

Então, $P_3(x)$ é o único polinômio de grau 3 que passa por $(x_0, f(x_0))$, $(x_1, f(x_1))$, $(x_2, f(x_2))$, $(x_3, f(x_3))$.

Forma de Lagrange - Interpolação por polinômio de grau *n*

Caso geral - Construção de $P_n(x)$

Figura: Interpolação - $P_n(x)$

Agora, queremos interpolar f(x) por um polinômio de grau $n \ge 1$, $P_n(x)$.

Neste caso, devemos interpolar f(x) por $P_n(x)$ em (n + 1) pontos:

$$(x_0, f(x_0)), (x_1, f(x_1)), \ldots, (x_n, f(x_n)).$$

Ou seja,

$$P_n(x_0) = f(x_0);$$

 $P_n(x_1) = f(x_1);$
 \vdots
 $P_n(x_n) = f(x_n). \quad \exists x \in \mathbb{R}$

Interpolação por polinômio de grau n

Aplicando raciocínio análogo ao que foi feito na reta, temos que

$$P_n(x) = L_0(x)f(x_0) + L_1(x)f(x_1) + \ldots + L_n(x)f(x_n),$$

onde definimos $L_k(x)$ por:

$$L_k(x) = \frac{(x - x_0)(x - x_1) \dots (x - x_{k-1})(x - x_{k+1}) \dots (x_k - x_n)}{(x_k - x_0)(x_k - x_1) \dots (x_k - x_{k-1})(x_k - x_{k+1}) \dots (x_k - x_n)} = \prod_{i=0, i \neq k}^{n} \frac{x - x_i}{x_k - x_i}$$

Note que

$$L_k(x_i) = \begin{cases} 0 & \text{se } i \neq k, \\ 1 & \text{se } i = k. \end{cases}$$

Assim,

$$P_n(x_i) = L_0(x_i) \overline{f}(x_0) + L_1(x_i) \overline{f}(x_1) + \ldots + L_n(x_i) \overline{f}(x_n) + \ldots + L_n(x_i) \overline{f}(x_n) = f(x_i),$$
para todo $i = 0, 1, 2, \ldots, n$.

Exemplo

Dada a tabela:

X	0	0.1	0.2	0.3	0.4	0.5
f(x)	1	1.1052	1.2214	1.3499	1.4918	1.6487

Obter f(0.2749) usando interpolação quadrática de Lagrange.

O exercício pede para achar uma aproximação $f(0.2749) \approx P_2(0.2749)$.

Devemos escolher três pontos da tabela x_0 , x_1 , x_2 tais que x_0 esteja mais próximo de 0.2749 e seja menor que 0.2749.

Neste exemplo, $x_0 = 0.2$, $x_1 = 0.3$, $x_2 = 0.4$.

Exemplo

A base de Lagrange será formada pelos seguintes polinômios de grau 2:

$$L_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} = \frac{(x - 0.3)(x - 0.4)}{(0.2 - 0.3)(0.2 - 0.4)}$$

$$\Rightarrow L_0(0.2749) = \frac{(0.2749 - 0.3)(0.2749 - 0.4)}{(0.2 - 0.3)(0.2 - 0.4)}$$

$$L_1(x) = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} = \frac{(x - 0.2)(x - 0.4)}{(0.3 - 0.2)(0.3 - 0.4)}$$

$$\Rightarrow L_1(0.2749) = \frac{(0.2749 - 0.2)(0.2749 - 0.4)}{(0.3 - 0.2)(0.3 - 0.4)}$$

$$L_2(x) = \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} = \frac{(x - 0.2)(x - 0.3)}{(0.4 - 0.2)(0.4 - 0.3)}$$

$$\Rightarrow L_2(0.2749) = \frac{(0.2749 - 0.2)(0.2749 - 0.3)}{(0.4 - 0.2)(0.4 - 0.3)}$$

Exemplo

Pela interpolação de Lagrange de grau 2, sabemos que:

$$f(x) \approx P_2(x) = L_0(x)f(x_0) + L_1(x)f(x_1) + L_2(x)f(x_2).$$

Assim, com x = 0.2749 e os nós de interpolação $x_0 = 0.2$, $x_1 = 0.3$, $x_2 = 0.4$, obtemos a seguinte aproximação $f(0.2749) \approx P_2(0.2749)$:

$$P_2(0.2749) = L_0(0.2749)f(0.2) + L_1(0.2749)f(0.3) + L_2(0.2749)f(0.4)$$

$$P_2(0.2749) = 1.3165.$$

Exercício 1: Obter f(0.2749) usando **interpolação cúbica**.

Exercício 2: Quais são os nós de interpolação que devem ser usados para obter f(0.2749) usando **interpolação de quarta ordem**?

Referências I

