7. előadás

AZ INVERZFÜGGVÉNY- ÉS AZ IMPLICITFÜGGVÉNY-TÉTEL

Az inverzfüggvény-tétel

A valós-valós függvények inverzére vonatkozó deriválási szabály azt mondja ki, hogy ha az I nyílt intervallumon értelmezett, és ott szigorúan monoton és folytonos f függvény egy $a \in I$ pontban differenciálható, és $f'(a) \neq 0$, akkor a létező f^{-1} függvény differenciálható a b = f(a) pontban, és

 $(f^{-1})'(b) = \frac{1}{f'(a)} = \frac{1}{f'(f^{-1}(b))}.$

A fenti állítás kiterjeszthető **az a pont egy környezetére**, ha $f: I \to \mathbb{R}$ folytonosan deriválható az I nyílt intervallumon, és $f'(a) \neq 0$. Ti. a folytonosság miatt $\exists U := K(a)$ környezet, hogy f'(u) > 0 (vagy f'(u) < 0) minden $u \in U$ esetén, ezért f szigorúan monoton és folytonos U-n, továbbá a V := f[U] képhalmaz olyan nyílt intervallum, amely tartalmazza az f(a) pontot, és

- 1. f lokálisan invertálható, azaz $f|_U:U\to V$ függvény bijekció,
- 2. az f^{-1} inverz függvény folytonosan deriválható V-n, és

$$(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}$$
 $(y \in V).$

Többváltozós esetben hasonló állítás érvényes. A tételt nem bizonyítjuk.

- 1. Tétel (Inverzfüggvény-tétel). Legyen $\Omega \subset \mathbb{R}^n$ nyílt halmaz és $f: \Omega \to \mathbb{R}^n$. Tegyük fel, hogy,
 - a) f folytonosan deriválható Ω -n,
 - b) $az \ a \in \Omega \ pontban \ \det f'(a) \neq 0.$

Ekkor

- 1. f lokálisan invertálható az a pontban, azaz vannak olyan $a \in U$ és $f(a) \in V$ nyílt halmazok, hogy az $f|_U : U \to V$ függvény bijekció (következésképpen invertálható),
- 2. $az f^{-1}$ inverz függvény folytonosan deriválható V-n, és

(*)
$$(f^{-1})'(y) = [f'(f^{-1}(y))]^{-1} (y \in V).$$

Megjegyzések.

1. Az inverz függvény létezése a többváltozós esetben *minőségileg bonyolultabb* az egyváltozós esetnél. Ez tehát egy olyan pont, ahol az egyváltozós analógia létezik ugyan, az immár nem elegendő.

1

2. Az f függvény explicit alakjának az ismeretében f^{-1} helyettesítési értékeire általában nincs explicit képlet, viszont (*) alapján a derivált helyettesítési értékei az f' helyettesítési értékeinek felhasználásával már kiszámíthatók.

Az inverzfüggvény-tételnek egyenletrendszerek megoldásával kapcsolatos értelmezés is adható. Legyen $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ és $y = (y_1, y_2, \dots, y_n) \in \mathbb{R}^n$. Jelölje

$$f_i \in \mathbb{R}^n \to \mathbb{R}$$
 $(i = 1, 2, \dots, n)$

az f függvény koordinátafüggvényeit: $f = (f_1, f_2, \dots, f_n) \in \mathbb{R}^n \to \mathbb{R}^n$. Tekintsük az

$$f(x) = y$$

egyenletet. A komponensekre bontott alakba írva kapjuk az n egyenletből álló

$$f_1(x_1, x_2, \dots, x_n) = y_1,$$

 $f_2(x_1, x_2, \dots, x_n) = y_2,$
 \vdots
 $f_n(x_1, x_2, \dots, x_n) = y_n$

egyenletrendszert, ahol az y_1, y_2, \ldots, y_n számokat paramétereknek tekintjük, és x_1, x_2, \ldots, x_n az ismeretlenek.

Legyen $a=(a_1,a_2,\ldots,a_n)\in\mathcal{D}_f$ és $b=(b_1,b_2,\ldots,b_n):=f(a)$. Tegyük fel, hogy f folytonosan deriválható az a pont egyik Ω környezetében, továbbá teljesül a det $f'(a)\neq 0$ feltétel. Ekkor az inverzfüggvény-tétel szerint megadható olyan $b\in V$ paramétertartomány, hogy az egyenletrendszer egyértelműen megoldható az a pont egy U környezetében.

Implicit függvények (egyenletek megoldása)

Legyen $f \in \mathbb{R}^2 \to \mathbb{R}$ olyan függvény, amelyre

$$H := \left\{ (x, y) \in \mathbb{R}^2 \mid f(x, y) = 0 \right\} \neq \emptyset$$

teljesül. Szeretnénk kifejezni az y változót az x változóból, azaz egy olyan $\varphi \in \mathbb{R} \to \mathbb{R}$ függvényt találni, hogy $y = \varphi(x)$ ekvivalens legyen az f(x, y) = 0 egyenlettel.

A fenti problémának gyakran nincs megoldása ilyen általános formában. Tudjuk pl., hogy az $x^2+y^2-1=0$ egyenlet megoldásai az origó középpontú egység sugarú kör pontjai, és nincs olyan valós-valós függvény, amelynek grafikonja teljes kört alkot. Ezért az eredeti problémának egy "lokális" változatával foglalkozunk, nevezetesen olyan $\varphi:I\to\mathbb{R}$ nyílt intervallum értelmezett függvényt keresünk, amire

$$f(x, \varphi(x)) = 0 \qquad (x \in I)$$

teljesül. Ekkor azt mondjuk, hogy φ az f(x,y)=0 egyenletnek egy **implicit megoldása**.

Nézzük újra az

$$f(x,y) := x^2 + y^2 - 1$$
 $((x,y) \in \mathbb{R}^2)$

függvényből származó $x^2+y^2-1=0$ egyenletet! Ha C(a,b) olyan pont, hogy f(a,b)=0 és b>0, akkor $\exists I\ni a$ nyílt halmaz, hogy

$$\varphi(x) = \sqrt{1 - x^2} \qquad (x \in I)$$

implicit megoldása lesz az egyenletnek, illetve ha b < 0, akkor

$$\varphi(x) = -\sqrt{1 - x^2} \qquad (x \in I)$$

implicit megoldása lesz az egyenletnek. Azonban nincs olyan implicit megoldás, amely az A(-1,0) vagy a B(1,0) ponton menne át, azaz ha b=0.

Vegyük észre, hogy $\partial_2 f(x,y) = 2y \implies \partial_2 f(A) = \partial_2 f(B) = 0$, de a többi C pontban (ahol $\exists \varphi$) igaz, hogy $\partial_2 f(C) \neq 0$.

- 2. Tétel (Egyváltozós implicitfüggvény-tétel). Legyen $\Omega \subset \mathbb{R}^2$ nyílt halmaz és $f:\Omega \to \mathbb{R}$. Tegyük fel, hogy
 - a) f folytonosan deriválható Ω -n,
 - b) $az(a,b) \in \Omega$ points f(a,b) = 0 és $\partial_2 f(a,b) \neq 0$.

Ekkor

- 1. van olyan U := K(a) környezet és $b \in V$ nyílt halmaz \mathbb{R} -ben, hogy minden $x \in U$ ponthoz létezik egyetlen $\varphi(x) \in V$, amelyre $f(x, \varphi(x)) = 0$ teljesül,
- 2. az így definiált $\varphi: U \to V$ függvény folytonosan deriválható U-n és

(**)
$$\varphi'(x) = -\frac{\partial_1 f(x, \varphi(x))}{\partial_2 f(x, \varphi(x))} \qquad (x \in U).$$

Megjegyzés. Világos, hogy $\varphi(a) = b$. A φ függvényt az $f(x, \varphi(x)) = 0$ $(x \in U)$ egyenlőség "implicit" (= nem kifejtett, burkolt, rejtett) módon definiálja. Innen származik a tétel neve.

- 3. Tétel (Implicitfüggvény-tétel az általános esetben). Legyenek $\Omega_1 \subset \mathbb{R}^{n_1}$ és $\Omega_2 \subset \mathbb{R}^{n_2}$ nyílt halmazok $(n_1, n_2 \in \mathbb{N}^+)$, illetve $f: \Omega_1 \times \Omega_2 \to \mathbb{R}^{n_2}$. Tegyük fel, hogy,
 - a) f folytonosan deriválható az $\Omega_1 \times \Omega_2$ halmazon,
 - b) $az(a,b) \in \Omega_1 \times \Omega_2$ point f(a,b) = 0 és $\det \partial_2 f(a,b) \neq 0$.

Ekkor

- 1. létezik a-nak olyan $U := K(a) \subset \Omega_1$ környezet és $b \in V \subset \Omega_2$ nyílt halmaz, hogy minden $x \in U$ ponthoz létezik egyetlen $\varphi(x) \in V$, amelyre $f(x, \varphi(x)) = 0 \in \mathbb{R}^{n_2}$,
- 2. az így definiált $\varphi: U \to V$ függvény folytonosan deriválható U-n és

$$\varphi'(x) = -\left[\partial_2 f(x, \varphi(x))\right]^{-1} \cdot \partial_1 f(x, \varphi(x)) \qquad (x \in U).$$

Megjegyzés. A tételben $\partial_2 f(a,b)$ jelöli az f függvény második változócsoport szerinti parciális deriváltját az (a,b) pontban. Ez az alábbi módon definiált $n_2 \times n_2$ -típusú mátrix:

$$\partial_2 f(a,b) := \left(\mathbb{R}^{n_2} \supset \Omega_2 \ni y \mapsto f(a,y) \in \mathbb{R}^{n_2}\right)'_{y=b} \in \mathbb{R}^{n_2 \times n_2}.$$

A $\partial_1 f(a,b)$ derivált definíciója hasonló.

A tételnek egyenletrendszerek *megoldhatóságával* kapcsolatos értelmezés is adható.

Tegyük fel, hogy $n_1, n_2 \in \mathbb{N}$, $x = (x_1, x_2, \dots, x_{n_1}) \in \mathbb{R}^{n_1}$, $y = (y_1, y_2, \dots, y_{n_2}) \in \mathbb{R}^{n_2}$, illetve $f = (f_1, f_2, \dots, f_{n_2}) \in \mathbb{R}^{n_1} \times \mathbb{R}^{n_2} \to \mathbb{R}^{n_2}$.

Tekintsük az f(x,y) = 0 egyenletrendszert, amelyet komponensekre bontott alakban így írhatunk fel:

$$f_1(x_1, x_2, \dots, x_{n_1}; y_1, y_2, \dots, y_{n_2}) = 0,$$

$$f_2(x_1, x_2, \dots, x_{n_1}; y_1, y_2, \dots, y_{n_2}) = 0,$$

$$\vdots$$

$$f_{n_2}(x_1, x_2, \dots, x_{n_1}; y_1, y_2, \dots, y_{n_2}) = 0.$$

Itt az $y_1, y_2, \ldots, y_{n_2}$ számok az ismeretlenek és $x_1, x_2, \ldots, x_{n_1}$ a paraméterek. Feltesszük, hogy ismerjük ennek egy megoldását, azaz tudjuk, hogy az $a=(a_1,a_2,\ldots,a_{n_1})$ paraméter esetén $b=(b_1,b_2,\ldots,b_{n_2})$ egy megoldás, vagyis f(a,b)=0. A fenti egyenletrendszerből szeretnénk kifejezni az y_1,y_2,\ldots,y_{n_2} ismeretleneket az x_1,x_2,\ldots,x_{n_1} paraméterek függvényében. A 2. Tétel szerint ez minden a-hoz közeli x esetén megtehető, ha f folytonosan deriválható és $\partial_2 f(a,b) \neq 0$; a megoldások egyértelműek és x-nek folytonosan deriválható függvényei.

$\mathbb{R}^2 \to \mathbb{R}$ TÍPUSÚ FÜGGVÉNYEK FELTÉTELES SZÉLSŐÉRTÉKEI

Vannak olyan problémák, ahol egy $f \in \mathbb{R}^2 \to \mathbb{R}$ függvény szélsőértékét kell keresni, de csak bizonyos egyenletet kielégítő pontok jöhetnek számításba.

1. Példa: Keressük meg az x+2y-4=0 egyenletű egyenesnek azt a pontját, amely legközelebb van az origótól!

A probléma a következő módon modellezhető:

Keressük meg az

$$f(x,y) := x^2 + y^2$$
 $((x,y) \in \mathbb{R}^2)$

függvény minimumát a

$$H_g := \left\{ (x, y) \in \mathbb{R}^2 \mid g(x, y) = 0 \right\}$$

halmazon, ahol

$$g(x,y) := x + 2y - 4 \quad ((x,y) \in \mathbb{R}^2).$$

2. Példa: Határozzuk meg az egységsugarú körbe írt téglalapok között a maximális területű téglalapot!

A probléma a következő módon modellezhető:

Legyen $U := (0, +\infty) \times (0, +\infty)$. Keressük meg az

$$f(x,y) := 4xy \qquad ((x,y) \in U)$$

függvény maximumát a

$$H_g := \left\{ (x, y) \in U \mid g(x, y) = 0 \right\}$$

halmazon, ahol

$$g(x,y) := x^2 + y^2 - 1$$
 $((x,y) \in U)$.

Általános feladat: Adott

- $U \subset \mathbb{R}^2$ nyílt halmaz,
- $f: U \to \mathbb{R}$ (célfüggvény) és
- $g: U \to \mathbb{R}$ (feltételfüggvény).

Keressük az f függvény szélsőértékeit a

$$H_g := \left\{ (x, y) \in U \mid g(x, y) = 0 \right\}$$

halmazon, azaz határozzuk meg az $f|_{H_q}$ függvény szélsőértékeit!

A problémát az alábbi ábrákon szemléltetjük:

1. Definíció. Legyen $U \subset \mathbb{R}^2$ nyílt halmaz. Tegyük fel, hogy $f,g:U \to \mathbb{R}$ adott függvények és

$$a \in H_g := \{(x, y) \in U \mid g(x, y) = 0\} \neq \emptyset.$$

Azt mondjuk, hogy az f függvénynek a g = 0 feltétel mellett az a pontban

• feltételes abszolút maximuma van, ha

$$\forall x \in H_q \colon f(x) \le f(a),$$

• feltételes lokális maximuma van, ha

$$\exists K(a) \subset U, \ \forall x \in K(a) \cap H_g \colon f(x) \le f(a).$$

A minimummal kapcsolatban hasonló fogalmakat kapunk, ha a fentiekben a \leq egyenlőtlenség helyett \geq -t írunk. A korábbiakkal összhangban használjuk f(a)-ra a feltételes abszolút (lokális) maximum (minimum), illetve szélsőérték, továbbá a-ra a feltételes abszolút (lokális) maximumhely (minimumhely), illetve szélsőértékhely elnevezést is.

Megjegyzés. Az $f|_{H_g} \in \mathbb{R}^2 \to \mathbb{R}$ függvény lokális szélsőértékeire nem alkalmazhatók az előző előadáson megfogalmazott tételek, hiszen a $H_g \subset \mathbb{R}^2$ halmaznak nincsenek belső pontjai. Másrészt, mivel U nyílt halmaz és $H_g \subset U$, így minden feltételes abszolút szélsőértékhely egyben feltételes lokális szélsőértékhely is.

5

- 4. Tétel (Szükséges feltétel a feltételes lokális szélsőértékre). Tegyük fel, hogy
 - a) $U \subset \mathbb{R}^2$ nyîlt halmaz és az $f, g: U \to \mathbb{R}$ függvényeknek léteznek a parciális deriváltjaik, és ezek folytonosak az U halmazon $(f, g \in C^1(U))$,
 - b) $az(x_0, y_0) \in U$ pontban az f függvénynek a g = 0 feltételre vonatkozóan feltételes lokális szélsőértéke van,
 - c) $g'(x_0, y_0) = (\partial_1 g(x_0, y_0) \ \partial_2 g(x_0, y_0)) \neq (0 \ 0).$

Ekkor van olyan $\lambda \in \mathbb{R}$ valós szám (ezt **Lagrange-szorzónak** szokás nevezni), hogy az

$$\mathcal{L}(x,y) := f(x,y) + \lambda g(x,y) \qquad ((x,y) \in U)$$

Lagrange-függvénynek (x_0, y_0) stacionárius pontja, azaz

$$\mathcal{L}'(x_0, y_0) = (\partial_x \mathcal{L}(x_0, y_0) \quad \partial_y \mathcal{L}(x_0, y_0)) = (0 \quad 0).$$

 $\mathcal{L}'(x_0, y_0) = \begin{pmatrix} 0 & 0 \end{pmatrix}$ csak szükséges, de nem elégséges feltétel a feltételes lokális szélsőértékre.

- 5. Tétel (A feltételes lokális szélsőértékre vonatkozó másodrendű elégséges feltétel). Tegyük fel, hogy
 - a) $U \subset \mathbb{R}^2$ nyílt halmaz és az $f, g: U \to \mathbb{R}$ függvényeknek léteznek a másodrendű parciális deriváltjaik és ezek folytonosak az U halmazon $(f, g \in C^2(U))$,
 - b) $az(x_0, y_0) \in U$ pontban a $\lambda_0 \in \mathbb{R}$ számmal teljesül a szükséges feltétel.

Tekintsük ezzel a λ_0 számmal az

$$\mathcal{L}(x,y) := f(x,y) + \lambda_0 g(x,y) \qquad ((x,y) \in U)$$

Lagrange-függvényt. Legyen

$$D(x_0, y_0; \lambda_0) := \det \begin{pmatrix} 0 & \partial_1 g(x_0, y_0) & \partial_2 g(x_0, y_0) \\ \partial_1 g(x_0, y_0) & \partial_{11} \mathcal{L}(x_0, y_0) & \partial_{12} \mathcal{L}(x_0, y_0) \\ \partial_2 g(x_0, y_0) & \partial_{21} \mathcal{L}(x_0, y_0) & \partial_{22} \mathcal{L}(x_0, y_0) \end{pmatrix}.$$

Ekkor,

- $D(x_0, y_0; \lambda_0) > 0 \implies (x_0, y_0)$ feltételes lokális maximumhely,
- $D(x_0, y_0; \lambda_0) < 0 \implies (x_0, y_0)$ feltételes lokális **minimumhely**.

Megjegyzés. A feltételes szélsőértékek vizsgálatára alkalmazható módszer kitalálója Joseph Louis Lagrange (1736–1813) francia matematikus. Ezért a szóban forgó módszert Lagrangeszorzók (vagy Lagrange-féle multiplikátorok) módszerének nevezzük.

A módszer alkalmazása:

1. Ellenőrizzük az $f,g \in C^1(U)$ feltételt, és nézzük meg melyik $(x,y) \in H_g$ pontok esetén teljesül a g'(x,y)=0 egyenlőség! Ezekre a pontokra a módszer nem alkalmazható.

2. Képezzük az

$$\mathcal{L}(x,y) := f(x,y) + \lambda g(x,y) \qquad ((x,y) \in U)$$

Lagrange függvényt!

3. Az x, y, λ ismeretlenekre megoldjuk az alábbi egyenletrendszert:

$$\partial_x \mathcal{L}(x,y) = \partial_x f(x,y) + \lambda \partial_x g(x,y) = 0,$$

$$\partial_y \mathcal{L}(x,y) = \partial_y f(x,y) + \lambda \partial_y g(x,y) = 0,$$

$$g(x,y) = 0.$$

Csak az így kapott (x_0, y_0) stacionárius pontok lehetnek feltételes lokális szélsőértékhelyek.

4. Ha $f, g \in C^2(U)$, akkor minden lehetséges (x_0, y_0) stacionárius pontban a hozzájuk tartozó λ_0 -val képezzük a $D(x_0, y_0; \lambda_0)$ determinánst, és az így kapott érték előjele alapján (ha nem nulla) eldöntjük, hogy az (x_0, y_0) pont feltételes lokális maximum- vagy minimumhely.

Megjegyzések.

1. A fentiekben két változó és egy egyenlőségi feltétel mellett vizsgáltuk a feltételes szélsőérték-problémát. Az eredmények kiterjeszthetők arra az esetre is, amikor az f célfüggvény n-változós $(2 < n \in \mathbb{N})$, és ekkor az egyetlen g = 0 feltétel helyett akár több $g_1 = 0$, $g_2 = 0, \ldots, g_m = 0$ egyenlőségi feltételt is előírhatunk, ahol $1 \le m < n$. Ekkor a Lagrangefüggvény

$$\mathcal{L}(x,y) := f(x,y) + \sum_{k=1}^{m} \lambda_k g_k(x,y) \qquad ((x,y) \in U).$$

Ham>1,akkor több λ szorzó szerepel a Lagrange-függvényben, ami igazolja a "Lagrange-szorzók" elnevezésben szereplő többes számot.

- 2. A gyakorlat felvet számos olyan szélsőérték-problémát, amelyekben a változókra tett korlátozó feltételek nem egyenlőségekkel, hanem egyenlőtlenségekkel adottak. Az ilyen típusú problémákat (*lineáris*) programozási feladatoknak hívják. Vizsgálatukhoz nem csak az analízis, hanem a lineáris algebra eszköztárát is fel kell használni.
- 3. Ha a szükséges feltétel bizonyításában szereplő $\varphi:U^*\to\mathbb{R}$ implicit függvényt meg tudjuk határozni, és a teljes H_q halmaz pontjaiban az f függvény értékei kifejezhetők a

$$h(x) := f \Big(x, \varphi(x) \Big) \qquad (x \in U^*)$$

valós-valós függvénnyel, akkor a kétváltozós függvényekre vonatkozó feltételes szélsőérték-probléma visszavezethető a h egyváltozós függvény (feltétel nélküli) szélsőérték-problémájára.

4. A *feltételes abszolút szélsőértékhelyek* megkeresése egy "egyszerűbb" feladathoz vezethet, ha a

$$H_g := \left\{ (x, y) \in U \mid g(x, y) = 0 \right\}$$

halmaz korlátos és zárt. Ebben az esetben a Weierstrass-tétel garantálja a feltételes abszolút szélsőértékhelyek létezését, amelyek a Lagrange-függvény stacionárius pontjai lesznek. Így "kevés számú" stacionárius pont esetében elegendő a függvényértékük összehasonlításával eldönteni, hogy közülük melyik a feltételes abszolút maximum és minimum.