

Compute mean and variance from the **population** of size
$$N$$
:

Population $u = F(X) = \frac{\sum X}{2}$

Population
$$\mu = E[X] = \frac{\sum X}{N}$$
 $\sigma^2 = E[X^2] - \mu^2$ Mean Population $\sigma^2 = E[(X - \mu)^2] = \frac{\sum (X - \mu)^2}{N}$ or $\frac{\sum X^2 - (\sum X)^2}{N}$

Variance
$$O = E[(X - \mu)^n] = N$$
 Of N Estimate mean and variance from a **sample** of size n :

Estimate mean and variance from a sample of size
$$n$$
:

Sample Mean $\bar{x} = \frac{\sum X}{n}$

Sample Mean
$$\bar{x} = \frac{\sum X}{n}$$

Sample Variance $s^2 = \frac{\sum (X - \bar{x})^2}{(n-1)}$ or $\frac{\sum X^2 - \frac{(\sum X)^2}{n}}{n-1}$

Sample Variance
$$s^2 = \frac{\sum (X - \bar{X})^2}{n-1}$$
 or $\frac{\sum X^2 - \frac{(\sum X)^2}{n}}{n-1}$ (Why n-1?

if this is
$$h$$
 $S^2 = \frac{\sum (x - \bar{x})^2}{h} = \frac{1}{h} \left(\sum x^2 - \frac{(\sum x)^2}{h} \right)^2$

for unbiased estimates be equal to
$$\sigma^2$$

equal to
$$e^2$$

$$E[S^2] = \sum_{n} \left(\sum_{n} \chi^2 \right)$$

be equal to
$$\sigma^2$$

$$E[S^2] = \sum_{n} \left[\frac{1}{n} \left(\frac{N}{n} \right) \right]$$

for unbiased estimate, we expect the mean of
$$s^2$$
 to be equal to σ^2

 $E[S^{2}] = \sum_{n} \left[\sum_{n} \left(\sum_{j=1}^{n} \chi^{2} - \left(\sum_{j=1}^{n} \chi^{2} \right) \right) \right] \qquad (f = \sum_{j=1}^{n} \chi^{2} + \mu_{j}^{2})$

 $= \frac{1}{n} \left(\sum_{n} \left[\left(\sum_{i} X^{2} \right)^{2} \right] - \frac{E\left[\left(\sum_{i} X^{2} \right)^{2} \right]}{n} \right) = \frac{1}{n} \left(\sum_{i} \sum_{j} \sum_{i} \sum_{j} \sum_{i} \sum_{j} \sum_{j} \sum_{i} \sum_{j} \sum_{j} \sum_{i} \sum_{j} \sum_{j} \sum_{i} \sum_{j} \sum_{i} \sum_{j} \sum_{j} \sum_{i} \sum_{j} \sum_{j} \sum_{j} \sum_{j} \sum_{j} \sum_{j} \sum_{i} \sum_{j} \sum_{i} \sum_{j} \sum_{j} \sum_{i} \sum_{j} \sum_{j} \sum_{i} \sum_{j} \sum_{j} \sum_{i} \sum_{j} \sum_{j} \sum_{j} \sum_{j} \sum_{i} \sum_{j} \sum_{j}$

constant

$$= \frac{1}{n} \left(n \sigma^{2} + n \mu^{2} - \frac{n \sigma^{2} + (n \mu)^{2}}{n} \right)$$

$$= \frac{1}{n} \left(n \sigma^{2} + n \mu^{2} - \sigma^{2} - n \mu^{2} \right) = \frac{1}{n} \left(n - 1 \right) \sigma^{2}$$

something about this becoming biased? idk

 $E[S^{2}] = I \left(n\sigma^{2} + n\mu^{2} - \frac{\sum Var[x] + \sum E[x]^{2}}{n} \right)$

linear transformation of variable Variance sum law I linear combo of 2 independent variables if t = 5x + 10y aufference d

mean = $S(\bar{x}) + 10(\bar{y})$ aufference d varian a = 502 7.7.7

