Lecture 13

Model Diagnostics

STAT 8020 Statistical Methods II September 18, 2019

Leverag

Studentized & Jackknife Residuals

DFFITS

Non-Constant Variance & Transformation

Whitney Huang Clemson University

Agenda

Model Diagnostics

Leverage

Jackknife Residuals

FFITS

on-Constant ariance &

- Leverage
- Studentized & Jackknife Residuals
- **3 DFFITS**
- 4 Non-Constant Variance & Transformation

Recall in MLR that $\hat{Y} = X(X^TX)^{-1}X^TY = HY$ where H is the hat-matrix

Model Diagnostics

Leverage

itudentized & ackknife Residuals

DFFITS

on-Constant ariance & ransformation

Recall in MLR that $\hat{Y} = X(X^TX)^{-1}X^TY = HY$ where H is the hat-matrix

• The leverage score for the i_{th} observation is defined as:

$$h_i = \boldsymbol{H}_{ii}$$

Model Diagnostics

Leverage

Jackknife Residuals

JEFIIS

on-Constant ariance & ansformation

Recall in MLR that $\hat{Y} = X(X^TX)^{-1}X^TY = HY$ where H is the hat-matrix

• The leverage score for the i_{th} observation is defined as:

$$h_i = \boldsymbol{H}_{ii}$$

Model Diagnostics

Leverage

Jackknife Residuals

JEFIIS

on-Constant ariance & ansformation

Recall in MLR that $\hat{Y} = X(X^TX)^{-1}X^TY = HY$ where H is the hat-matrix

• The leverage score for the i_{th} observation is defined as:

$$h_i = \boldsymbol{H}_{ii}$$

• Can show that $\text{Var}(e_i) = \sigma^2(1 - h_i)$, where $e_i = Y_i - \hat{Y}_i$ is the residual for the i_{th} observation

Leverage

ackknife Residuals

DEFIIS

lon-Constant ariance & ransformation

Recall in MLR that $\hat{Y} = X(X^TX)^{-1}X^TY = HY$ where H is the hat-matrix

• The leverage score for the i_{th} observation is defined as:

$$h_i = \boldsymbol{H}_{ii}$$

• Can show that $\text{Var}(e_i) = \sigma^2(1 - h_i)$, where $e_i = Y_i - \hat{Y}_i$ is the residual for the i_{th} observation

Leverage

ackknife Residuals

DEFIIS

lon-Constant ariance & ransformation

Model Diagnostics CLEMSEN UNIVERSITY

Recall in MLR that $\hat{Y} = X(X^TX)^{-1}X^TY = HY$ where H is the hat-matrix

• The leverage score for the i_{th} observation is defined as:

$$h_i = \boldsymbol{H}_{ii}$$

- Can show that $\text{Var}(e_i) = \sigma^2(1 h_i)$, where $e_i = Y_i \hat{Y}_i$ is the residual for the i_{th} observation
- $\frac{1}{n} \leq h_i \leq 1$, $1 \leq i \leq n$ and $\bar{h}_i = \frac{p}{n} \Rightarrow$ a "rule of thumb" is that leverages of more than $\frac{2p}{n}$ should be looked at more closely

everage

ckknife Residuals

DEFIIS

Von-Constant Variance & Transformation

Leverage Scores of Species $\sim \mathtt{Elev} + \mathtt{Adj}$

Model Diagnostics

Leverage

Studentized &

DEFITS

lon-Constant /ariance & fransformation

Studentized Residuals

DFFITS

Non-Constant
Variance &
Fransformation

- As we have seen ${\rm Var}(e_i)=\sigma^2(1-h_i)$, this suggests the use of $r_i=rac{e_i}{\hat{\sigma}\sqrt{(1-h_i)}}$
 - r_i's are called **studentized residuals**. r_i's are sometimes preferred in residual plots as they have been standardized to have equal variance.
 - \bullet If the model assumptions are correct then ${\rm Var}(r_i)=1$ and ${\rm Corr}(e_i,e_j)$ tends to be small

Studentized Residuals of Species \sim Elev + Adj

Studentized Residuals

Model Diagnostics

Leverage

Studentized &

DEFITS

on-Constant ariance &

Jackknife Residuals

• For a given model, exclude the observation i and recompute $\hat{\beta}_{(i)}$, $\hat{\sigma}_{(i)}$ to obtain $\hat{Y}_{i(i)}$

Model Diagnostics

Leverage

Studentized & Jackknife Residuals

DFFITS

Non-Constant Variance & Transformation

Jackknife Residuals

• For a given model, exclude the observation i and recompute $\hat{\beta}_{(i)}$, $\hat{\sigma}_{(i)}$ to obtain $\hat{Y}_{i(i)}$

Model Diagnostics

Leverage

Studentized &

DFFITS

Non-Constant Variance & Transformation

DFFITS

Non-Constant /ariance & Fransformation

• For a given model, exclude the observation i and recompute $\hat{\beta}_{(i)}$, $\hat{\sigma}_{(i)}$ to obtain $\hat{Y}_{i(i)}$

• The observation i is an outlier if $\hat{Y}_{i(i)} - Y_i$ is "large"

DFFITS

Non-Constant /ariance & Fransformation

• For a given model, exclude the observation i and recompute $\hat{\beta}_{(i)}$, $\hat{\sigma}_{(i)}$ to obtain $\hat{Y}_{i(i)}$

• The observation i is an outlier if $\hat{Y}_{i(i)} - Y_i$ is "large"

on-Constant ariance & ransformation

- For a given model, exclude the observation i and recompute $\hat{\beta}_{(i)}$, $\hat{\sigma}_{(i)}$ to obtain $\hat{Y}_{i(i)}$
- The observation i is an outlier if $\hat{Y}_{i(i)} Y_i$ is "large"
- $\bullet \ \, \mathsf{Can} \ \, \mathsf{show} \ \, \mathsf{Var}(\hat{Y}_{i(i)} Y_i) = \sigma^2 \left(1 + \boldsymbol{x}_i^T (\boldsymbol{X}_{(i)}^T \boldsymbol{X}_i)^{-1} \boldsymbol{x}_i \right)$

on-Constant ariance & ransformation

- For a given model, exclude the observation i and recompute $\hat{\beta}_{(i)}$, $\hat{\sigma}_{(i)}$ to obtain $\hat{Y}_{i(i)}$
- The observation i is an outlier if $\hat{Y}_{i(i)} Y_i$ is "large"
- $\bullet \ \, \mathsf{Can} \ \, \mathsf{show} \ \, \mathsf{Var}(\hat{Y}_{i(i)} Y_i) = \sigma^2 \left(1 + \boldsymbol{x}_i^T (\boldsymbol{X}_{(i)}^T \boldsymbol{X}_i)^{-1} \boldsymbol{x}_i \right)$

Variance & Fransformation

- For a given model, exclude the observation i and recompute $\hat{\beta}_{(i)}$, $\hat{\sigma}_{(i)}$ to obtain $\hat{Y}_{i(i)}$
- The observation i is an outlier if $\hat{Y}_{i(i)} Y_i$ is "large"
- $\bullet \ \, \mathsf{Can} \ \, \mathsf{show} \ \, \mathsf{Var}(\hat{Y}_{i(i)} Y_i) = \sigma^2 \left(1 + \boldsymbol{x}_i^T (\boldsymbol{X}_{(i)}^T \boldsymbol{X}_i)^{-1} \boldsymbol{x}_i \right)$
- Define the jackknife residuals as

$$t_i = \frac{\hat{Y}_{i(i)} - Y_i}{\sqrt{\hat{\sigma}^2 \left(1 + \boldsymbol{x}_i^T (\boldsymbol{X}_{(i)}^T \boldsymbol{X}_i)^{-1} \boldsymbol{x}_i\right)}}$$

which are distributed as a t_{n-p} if the model is correct and $\varepsilon \sim \mathrm{N}(\mathbf{0}, \sigma^2 \mathbf{I})$

Jackknife Residuals of Species $\sim \mathtt{Elev} + \mathtt{Adj}$

Jacknife Residuals

Model Diagnostics

Leverage

Studentized &

DEFITS

Non-Constant
Variance &

DFFITS

Non-Constant Variance & Fransformation

DFFITS

- \bullet Difference between the fitted values \hat{Y}_i and the predicted values $\hat{Y}_{i(i)}$
- $\qquad \text{DFFITS}_i = \frac{\hat{Y}_i \hat{Y}_{i(i)}}{\sqrt{\text{MSE}_{(i)} h_i}}$
- Concern if absolute value greater than 1 for small data sets, or greater than $2\sqrt{p/n}$ for large data sets

DFFITS of Species \sim **Elev** + **Adj**

Observation

Model Diagnostics

Leverage

Studentized &

DEFITS

Non-Constant Variance & Transformation

Residual Plot of Species \sim Elev + Adj

Model Diagnostics

CLEMS#N UNIVERSITY

Leverage

tudentized &

DEFITS

Non-Constant Variance & Transformation

Residuals

Residual Plot After Square Root Transformation

Model Diagnostics

Non-Constant

