定理 2.21 设 $A \neq \emptyset$, $R_1, R_2 \subset A \times A$, 则下列各式成立:

- (1) $r(R_1 \cup R_2) = r(R_1) \cup r(R_2)$;
- (2) $s(R_1 \cup R_2) = s(R_1) \cup s(R_2);$
- (3) $t(R_1) \cup t(R_2) \subseteq t(R_1 \cup R_2)$.

定理 2.22 设 $R \subseteq A \times A$ 且 $A \neq \emptyset$, 则

$$r(R) = R \cup I_A$$
.

定理 2.23 设 $R \subseteq A \times A$ 且 $A \neq \emptyset$, 则

$$s(R) = R \cup R^{-1}.$$

定理 2.24 设 $R \subseteq A \times A$ 且 $A \neq \emptyset$, 则

$$t(R) = R \cup R^2 \cup \cdots$$
.

推论 设 A 为非空且为有穷集合, $R \subseteq A \times A$,则存在自然数 l,使得

$$t(R) = R \cup R^2 \cup \dots \cup R^l.$$

定理 2.25 设 $R \subseteq A \times A$ 且 $A \neq \emptyset$, 则

- (1) 若 R 是自反的,则 s(R) 和 t(R) 也是自反的;
- (2) 若 R 是对称的,则 r(R) 和 t(R) 也是对称的;
- (3) 若 R 是传递的,则 r(R) 也是传递的.

定理 2.26 设 $R \subseteq A \times A \land A \neq \emptyset$, 则

- (1) rs(R) = sr(R);
- (2) rt(R) = tr(R);
- (3) $st(R) \subseteq ts(R)$.

定理 2.27 设 R 是非空集合 A 上的等价关系,对于任意的 $x,y \in A$,下面各式成立:

(1) $[x]_R \neq \emptyset \perp [x]_R \subseteq A$;

- (2) 若 $\langle x, y \rangle \in R$,则 $[x]_R = [y]_R$;
- (3) 若 $\langle x, y \rangle \notin R$, 则 $[x]_R \cap [y]_R = \emptyset$;
- (4) $\cup \{[x]_R \mid x \in A\} = A$.

定理 2.28 设 A 为一个非空集合.

- (1) 设R为A上的任意一个等价关系,则A关于R的商集A/R为A的一个划分;
- (2) 设 Ø 为 A 上的任意一个划分,令 $R_{\mathscr{A}}=\{\langle x,y\rangle\mid x,y\in A\wedge x,y$ 属于 Ø 的同一个划分块},则 $R_{\mathscr{A}}$ 是为 A 上的等价关系.

定理 2.29 设 \leq 为非空集合 A 上的偏序关系, \leq 为 A 上的拟序关系. 则

- (1) ≺是反对称的;
- (2) $\leq -I_A$ 为 A 上的拟序关系;
- (3) $\prec \cup I_A$ 为 A 上的偏序关系.

定理 2.30 设 \prec 为非空集合 A 上的拟序关系,则 $\forall x,y \in A$,

- (1) $x \prec y, x = y, y \prec x$, 三式中至多有一式成立;
- (2) 若 $(x \prec y \lor x = y) \land (y \prec x \lor x = y)$,则 x = y.

定理 2.31 设 $\langle A, \preccurlyeq \rangle$ 为一个偏序集, 若 A 中最长链的长度为 n, 则

- (1) A中存在极大元;
- (2) A存在 n个划分块的划分,每个划分块都是反链.