CSE3230 Algebra and Cryptography Assignment B

2022-2023

1 Polynomials (2/30)

- (1) $x^4 + x + 1$ is the polynomial (with coefficients in GF(2)) irreducible? What about primitive?
- (2) $x^4 + x^3 + 1$ is the polynomial (with coefficients in GF(2)) irreducible? What about primitive?

2 Diffie-Hellman System (5/30)

Alice and Bob choose (publicly) a prime number p, and a generator g of the cyclic group \mathbb{Z}_p^* .

- (1) How to select the value p? Or how to make a prime test, please give an example?
- (2) Why it is important to set a prime p there?
- (3) How do you check what is the order of an element (generator), based on your example?
- (4) Consider \mathbb{Z}_{31}^* and \mathbb{Z}_{33}^* and for every possible generator, find what is its order.
- (5) Please give an example of Alice and Bob Diffie-Hellman key exchange, based on \mathbb{Z}_{31}^* , and a generator g=3?

3 Rabin Cryptosystem (3/30)

In a Rabin cryptosystem, choose two large distinct prime numbers p and q s.t. $p \equiv q \equiv 3 \mod 4$, and compute n = p * q. A message M can be encrypted by first converting it to a number m < n and computing $c = m^2 \mod n$. To decrypt, we compute the square root of c modulo p and q:

$$m_p = c^{\frac{1}{4}(p+1)} \mod p$$

$$m_q = c^{\frac{1}{4}(q+1)} \bmod q$$

Then, use the extended Euclidean algorithm to find y_p and y_q s.t. $y_p * p + y_q * q = 1$. Finally, use the Chinese remainder theorem to find the four square roots of $c \mod n$:

$$s_1 = (y_p * p * m_q + y_q * q * m_p) \mod n$$

 $s_2 = n - s_1$
 $s_3 = (y_p * p * m_q - y_q * q * m_p) \mod n$
 $s_4 = n - s_3$

One of these solutions is the original plaintext m.

- (1) Why one of the solutions should be the original plaintext, and how many possible solutions we will have?
- (2) Why are the formulas for m_p and m_q correct?
- (3) Consider p = 71 and q = 23. Show key generation, message m = 74 encryption, and message decryption.

4 RSA (3/30)

Let p = 73 and q = 37.

- (1) Show with Fermat primality testing that the numbers are not composite with probability larger than 30%.
- (2) Show key generation for RSA (note that e cannot be equal to 3).
- (3) Show how to encrypt and decrypt message m = 24. For decryption, use Chinese Remainder Theorem to show how calculations can be done in a more efficient way.

5 ElGamal Signature (3/30)

Consider the Elgamal signature scheme with p=47 and generator g=3 for \mathbb{Z}_{47}^* . Moreover, assume that Alice chose the secret value a=113.

- (1) Show the key generation.
- (2) Suppose Alice wants to sign the message x = 109 and chooses k = 103 as a random value. Show how to sign the message and the corresponding signature.
- (3) Please show the verification for the above signature.

6 Fermat Primality Test (3/30)

Please select a number (which could be random 3-digits number) and run the Fermat primality test for the number. Is the number a composite? If not, how many witnesses you have to make that conclusion? Please show detailed steps.

7 Finite Field Representation (4/30)

- Please construct additive and multiplicative representation of a field $GF(2^3)$ using irreducible polynomial $x^3 + x + 1$.
- Please construct a finite field $GF(2^4)$ using polynomial $X^4 + x + 1$.

8 Groups and Cosets (3/30)

Assume G is a cyclic group of order 20 with generator a.

- (1) What are the orders (individually) of a^3 , a^4 , and a^{14} ? Note that the notation a^x refers to the element of a group.
- (2) How many distinct cosets are there of $H = \langle a^5 \rangle$?
- (3) How many distinct cosets are there of $H = \langle a^7 \rangle$?

9 S-box Calculation (4%)

Consider S-box of size 3×3 :

$$F(x) = \frac{(x+1)^2}{x} + b.$$

Note:

$$F(x) = \begin{cases} b & \text{if } x = 0\\ \frac{(x+1)^2}{x} + b & \text{otherwise.} \end{cases}$$

- (1) Show additive, multiplicative, and vector representation of field elements. And show the truth table for this S-Box. Use irreducible polynomial $x^3 + x + 1$ and b = 2.
- (2) What is the nonlinearity based on the calculated Walsh-Hadamard value? Assume this is the maximal value in the Walsh-Hadamard spectrum.