튜터 프로필 / 운영계획서 정보통신공학부 1학년 공학수학Ⅱ

튜터	프로필
이재호	안녕하세요! 정보통신공학부 3학년 이재호라고 합니다. 저 또한 공학수학의 어려움을 겪었습니다.하지만, 선배들에게 얻은 자료와 수업을 듣고 얻은 요령을 통해 A+를 받았습니다. 이번 튜터링 활동에 참여해서 좋은 자료와 요령을 공유하고 좋은 성적을 받을 수 있도록 도와드리겠습니다!

학부생 튜터 활동 계획서

Ad	떙	이재호	6) 3	政	정보통신공학부		
क स		2017036192	0) 1	d	3		
활동기간		2021년 9월	1일	- 2021년	12월 7일		
	과목 명 공하수하11						
주차	활동 계획						
1	2차원과 3차원 공간에서의 벡터의 개념을 알아보고, 각 공간에서의 내적과 외적을						
<u> </u>	이해하며 베터의 투성을 공부합니다.						
2	n 차원에서 벡터 공간과 생성 공간의 정의를 이해하고, 그람-슈미트 직교화 과정을						
	학습하며 연습문제와 기출문제로 점검합니다.						
3	행렬의 특성을 학습하고 이를 바탕으로 행렬의 선형 방정식을 이해합니다. 이때 많은						
	부분에서 기초가 되는 가우시안 및 가우스-조던 방법을 적용하여 예제를 풀어보고, 행렬의						
	계수를 통한 선형 시스템을 이해합니다.						
4	행렬식의 정의와 특성을 이해하며 역행렬을 학습합니다. 이쁜 통해 역행렬을 계산하는						
	여러 가지 시스템을 예계 및 연습문제를 통해 풀어봅니다.						
5	크래머 규칙을 학습하여 예제를 풀어봅니다. 또한 많은 부분에서 기초가 되는 고유값과						
	고유벡터의 개념과 증명 및 특성을 이해하며 예와 기출문제를 통해 학습합니다.						
6	행렬의 거듭	제곱을 이해하여 간단하게	문제를 풀	어보고 행렬의	내적을 바탕으로 고유값과		
	고유벡터를 계산하여 직교화 과정을 통해 직교행렬을 이해합니다. 이해를 바탕으로 예제						
	및 연습 문제를 풀어봅니다.						
7	고유값을 바탕으로 스케일링 및 수축 방법을 통해 근사화를 진행하며 연습문제를						
	풀어봅니다. 그리고 대각화의 조전과 LU 인수분해의 알고리즘을 이해하고 그에 대한						
	특성을 적용하여 기출문제를 풀어봅니다. 또한 중간고사 전 오담이 많았던 부분 및						
	이해가 부족한 단원을 바탕으로 복습 및 질의용답 시간을 갖습니다. 충간고사 문제에 관하여 질의용답을 하는 시간을 갖습니다. 선형 미분방정식에 대한						
755							
8	간단한 개념 소개 및 형태에 대해서 학습합니다. 또한 본스키 안 방식을 통해 독립성과						
	종속성을 찾고 일반 해를 예제를 통해 해결해 봅니다. 동차 선형 방정식의 개념을 이해하고 고유값 및 고유벡터를 통하여 반복적인 고유값을						
9	중자 선형						
	0 31-0	계산해보고 2 고유벡터를 통해 대각화를		반복해 봅니다			
10							
	차 선형 시스템에서 미정 계수법과 배개변수 변환법을 통해 해를 찾고 대각화를						
	진행해봅니다. 실수가 많이 나오는 부분이므로 연습 문제와 기출문제를 통해 많이						
11	지고 원스	면임 내적과 속성의 일반화된	제보도록 이		1원 이 분위 개념 이 원자위		
	4m 612				7 7 11.		
12	표미에 크스	나갑니다. 개념 위		100			
					명을 학습해 보도록 합니다. 1.9 시체되도로 하니다		
	또한 기출문제를 통해 증명을 반복해보고 푸리에 급수 수렴을 이해하도록 합니다.						
	푸리에 급수를 복습하고 이를 통해 푸리에 변환의 개념을 이해하고 많은 예제와 연습문제						
	및 기출을 풀어봅니다. 또한 기말고사 전 이해하지 못한 부분을 다시 복습하고 오담이 많았던 단원을 바탕으로 질의응답 시간을 갖습니다.						
	I	많았던 단원을 바팅	으로 질의	응답 시간을 갖	합니다.		