smart vacuum cleaner

មាតិកា

- តួរនាទី
- មូលហេតុដែលបង្កើត/ទស្សនវិស័យ
- សម្ភារៈ និងការចំណាយ
- ដំណើរការនៃការបង្កើត
 - បង្គំរូបរាង និងតួឡាន
 - បង្គំខ្សែនិងគ្រឿងអេឡិចត្រូនិច
 - o ការបញ្ចូលកូដដើម្បីគ្រប់គ្រងលើ Motor Driver
- បញ្ហាដែលយើងបានដោះស្រាយ និង បញ្ហាគួរតែប្រុងប្រយ័ត្ន
- សម្ភារៈ និងការចំណាយ
- ដំណើរការនៃការបង្កើត
- Timeline
- សរុបសេចក្តី

GROUP:

1

ឃ្យើប ឃុនសាន្ត

M87

សឃ ទិត

សារិ តិមហុង

សុខជីននី

សាំង សេងថាឃ

លឹម លក្ខណ៍សុធន

សាឃសត្តិសុវឌ្ឍនៈ

សារិ គីមហុង Build Up, Bugged, Warning

សុខ ជីននី Materials Management

លឹមលក្ខណ៍សុធន Assitant

សាំង សេងថាយBuild Up, 3D drawing

យៀប ឈុនសាន្ត

Code Installation

សយទិត Assitant

សាយ សក្តិសុវឌ្ឍនៈ

Presentation Slide | Design

មូលហេតុដែលបង្កើត/ទស្សនវិស័យ

- (M87) គឺជាឧ្ទបករណ៍ម្យ៉ាងដែលអាចអនុញ្ញាតអោយអ្នកប្រើប្រាស់អាចបញ្ជាវា បានតាមរយ:ទូរស័ព្ទ ហើយវាមានសមត្ថតាពអាចបូមយកធូលី និងកំទិចកំទិត្តចៗ បានៗ
- ដោយការមើលឃើញថា សម្រាមមានគ្រប់ទីកន្លែង ប្រសិនបើយើងមិនសំអាត ប៉ុន្តែពេលខ្លះខ្ចិលមិនចង់សំអាតគិតថាហត់ ហើយដៃច្រើនកាន់តែទូរស័ព្ទ ទើប ពួក យើងបង្កើតប្រតេទនេះដែលអាចបញ្ហារតាមទូរស័ព្ទបាន

សម្ភារៈ និងការចំណាយ

Name	Amount	Price	
Aduino Uno board+11.Aduino USB CABLE TYPE A/B 1M	1	\$	8.50
Gear Motors	4	\$	1.00
Switch	1	\$	0.20
L293D Motor Driver Shield	1	\$	2.00
Bluetooth Module	1	\$	5.00
Jumper Wire	1 Set	\$	0.70
Wheel	4	\$	0.50
Lithim-ion battery cell	1 Set	\$	2.00
electrical wire	1 Set	\$	0.20
Grand Total		\$	24.60

PHNOM PENH, TOUL KORK, RUPP

សម្ភារៈ នៃបង្គុំតួរឡាន

ជ័របៀករ៉ង

ពួកយើងបានទិញវាមកពីកន្លែងលក់គ្រឿងសំណង់នៅ ម្ដុំជិតផ្ទះ ក្បែរផ្សារ

- បន្ទះក្ដារដែលបានប្រើប្រាស់៖ ៤ សន្លឹក
- ក្នុងបង្គុំតួរនៃឡាន ត្រូវបានប្រើ ២ ពណ៏
 - Pink
 - Blue

BATTER

ពួកឃើងបានប្រើប្រាស់ថ្មរ ដែល១គ្រប់ មានថាមពល 3.7 v ហើយឃើងបានប្រើចំនួន៣ គ្រប់ (បង្គជាខ្មែង)

MOTOR DRIVER

ពួកឃើងបានប្រើប្រាស់ Motor driver Shield ដើម្បីត្រប់ត្រង ឃើការបញ្ហារ Motor ទាំង៤ ជៀសជាង ការគ្រប់គ្រង់ដោឃ ផ្លាប់ទៅលើ Arduino តែ ម្តង!

BLUETOOTH MODULE

ក្នុងដំណាក់កាលនេះ យើងបាន ត្តាប់ Bluetooth Module ទៅនឹង Motor driver shield ដើម្បីគ្រប់គ្រងពីចំងាយតាម

រេឃៈ Bluetooth

GLEAN SPINNER

ពួកយើងបានបង្កើតវាពីសម្ដា: ដែលមាន ជ័រ កម្ទេចអំបោស ឆ្អឹងអាវធ្វើជាស្នូល

TRASH CONTAINER

ពួកឃើងបានបង្កើតវាដោយ ជីវ បន្ទះក្កាវ និងប្រើកាវធ្វើជា ការបិតត្តាប់

GODE UPLOADING

ពួកឃើងបានប្រើប្រាស់ AFMotor Library ដើម្បី ធ្វើការបញ្ហាទៅលើ Ardunio និងManual Control តាមរយៈ Bluetooth


```
. .
    #include <AFMotor.h>
    #include <SoftwareSerial.h>
    SoftwareSerial bluetoothSerial(9, 10); // RX, TX
    AF_DCMotor motor1(1, MOTOR12_1KHZ);
    AF_DCMotor motor2(2, MOTOR12_1KHZ);
    AF_DCMotor motor3(3, MOTOR34_1KHZ);
    AF_DCMotor motor4(4, MOTOR34_1KHZ);
    char command;
    void setup()
      bluetoothSerial.begin(9600); //Set the baud rate to your Bluetooth module.
    void loop() {
      if (bluetoothSerial.available() > 0) {
        command = bluetoothSerial.read();
       Stop(); //initialize with motors stoped
        switch (command) {
         case 'F':
           forward();
           break;
          case 'B':
           back();
           break;
          case 'L':
           left();
           break;
          case 'R':
           right();
           break;
```



```
void forward()
      motor1.setSpeed(255); //Define maximum velocity
      motor1.run(FORWARD); //rotate the motor clockwise
      motor2.setSpeed(255); //Define maximum velocity
      motor2.run(FORWARD); //rotate the motor clockwise
      motor3.setSpeed(255); //Define maximum velocity
      motor3.run(FORWARD); //rotate the motor clockwise
      motor4.setSpeed(255); //Define maximum velocity
      motor4.run(FORWARD); //rotate the motor clockwise
    void back()
      motor1.setSpeed(255); //Define maximum velocity
      motor1.run(BACKWARD); //rotate the motor anti-clockwise
      motor2.setSpeed(255); //Define maximum velocity
      motor2.run(BACKWARD); //rotate the motor anti-clockwise
      motor3.setSpeed(255); //Define maximum velocity
      motor3.run(BACKWARD); //rotate the motor anti-clockwise
      motor4.setSpeed(255); //Define maximum velocity
      motor4.run(BACKWARD); //rotate the motor anti-clockwise
    void left()
      motor1.setSpeed(255); //Define maximum velocity
      motor1.run(BACKWARD); //rotate the motor anti-clockwise
      motor2.setSpeed(255); //Define maximum velocity
      motor2.run(BACKWARD); //rotate the motor anti-clockwise
      motor3.setSpeed(255); //Define maximum velocity
      motor3.run(FORWARD); //rotate the motor clockwise
      motor4.setSpeed(255); //Define maximum velocity
      motor4.run(FORWARD); //rotate the motor clockwise
```



```
void right()
      motor1.setSpeed(255); //Define maximum velocity
      motor1.run(FORWARD); //rotate the motor clockwise
      motor2.setSpeed(255); //Define maximum velocity
      motor2.run(FORWARD); //rotate the motor clockwise
      motor3.setSpeed(255); //Define maximum velocity
      motor3.run(BACKWARD); //rotate the motor anti-clockwise
      motor4.setSpeed(255); //Define maximum velocity
      motor4.run(BACKWARD); //rotate the motor anti-clockwise
    void Stop()
      motor1.setSpeed(∅); //Define minimum velocity
      motor1.run(RELEASE); //stop the motor when release the button
      motor2.setSpeed(∅); //Define minimum velocity
      motor2.run(RELEASE); //rotate the motor clockwise
      motor3.setSpeed(∅); //Define minimum velocity
      motor3.run(RELEASE); //stop the motor when release the button
      motor4.setSpeed(∅); //Define minimum velocity
      motor4.run(RELEASE); //stop the motor when release the button
24 }
```


Arduino Bluetooth Control

broxcode · Tools

▶ Installed

Arduino bluetooth controller

Giumig Apps • Tools

4.2 ★ 7.6 MB ¥ 500K+

Arduino Bluetooth Controller

Ioannis Tzanellis . Education

3.8 ★ 1.4 MB ¥ 100K+

Arduino Bluetooth RC Car

Andi.Co · Education

4.0 ★ 3.9 MB ¥ 500K+

Arduino Bluetooth Controller - All in One

MyValley® • Tools

4.2 ★ 5.0 MB ¥ 50K+

បញ្ហាដែលយើងបានដោះស្រាយ និង បញ្ហាគួរតែប្រុងប្រយ័ត្ន

CODE PROCESS

- Forgot Bluetooth Code
- First Experience with the code language
- use other library and coding the wheel for the wrong turn
- separate board before uploading the code
- Always research before doing on our own

BUILD UP PROCESS

- Waste Time For Plastic Printer
- Less Tools and Materials
- New Experience with Board
- Do before research lead us to almost broke a board
- Right Measurement of the Car Board (Plastic)

TEAM PHOTOGRAPH

Timeline - Midterm

ការស្វែងរកឧបករណ៍

សម្រាប់ការស្វែងរកទិញឧបករណ៍ អេឡិចត្រូនិកត្រូវចំណាយពេល ១ ថ្ងៃ

ការផ្គុំតួខ្លួន និងតគ្រឿង អេឡិចត្រូនិច

សម្រាប់ការវាស់វែង គូស កាត់
បិតជ័របៀករ៉ង និងធ្វើការផ្គុំវា
បញ្ចូលគ្នាត្រូវចំណាយពេល ៤
ថ្ងៃ។ ចំពោះការតគ្រឿងអេឡិចត្រូ
និចចូលគ្នាត្រូវការប្រើរយៈ ៣
ថ្ងៃ។

ការផ្គុំរវាងតួខ្លួន និង គ្រឿងអេឡិចត្រូនិច

សម្រាប់ការផ្គុំរវាងតួខ្លួន និងគ្រឿង អេឡិចត្រូនិចបញ្ចូលគ្នាដើម្បី បង្កើតបានជារូបរាងឡានមួយគឺ ប្រើរយៈពេល ២ ថ្ងៃ

ការបញ្ចូល Code

សម្រាប់ការបញ្ចូល Code គឺត្រូវ ការប្រើពេល ១ ថ្ងៃ

FiNAL PROJECT UPDATE


```
#include <AFMotor.h>
#include <SoftwareSerial.h>
SoftwareSerial bluetoothSerial(9, 10); // RX, TX
AF_DCMotor motor1(1, MOTOR12_1KHZ);
AF_DCMotor motor2(2, MOTOR12_1KHZ);
AF_DCMotor motor3(3, MOTOR34_1KHZ);
AF_DCMotor motor4(4, MOTOR34_1KHZ);
char command;
const int relayPin = A0;
void setup()
  bluetoothSerial.begin(9600); //Set the baud rate to your Bluetooth module.
void loop() {
  if (bluetoothSerial.available() > 0) {
    command = bluetoothSerial.read();
    Stop(); //initialize with motors stoped
    switch (command) {
     case 'F':
        forward();
        break;
      case 'B':
        back();
        break;
      case 'L':
        left();
        break;
      case 'R':
        right();
        break;
    if (command == 'w'){
     digitalWrite(relayPin, HIGH);
    }else if(command == 'W'){
     pinMode(relayPin, OUTPUT);
      digitalWrite(relayPin, LOW);
```


Water Battle Cap

Planetary Gear Brushed Motor N60

RELAY MODULE

ឃើងប្រើប្រាស់ដើម្បីគ្រប់គ្រងអគ្គិសនឹ ដែលបានបញ្ជូនទៅកាន់ខ្ទបករណ៍ សម្អាតសំរាមនឹងជៀសវាងកាប្រើប្រាស់ ត្លើងអគ្គិសន៏ច្រើន

FRONT GLEAN SPINNER

ឃើងប្រើប្រាស់ដើម្បីតាស់សំរាមដែល នៅតាមកន្លុកកន្លាតឲមកចិកណ្ដាល ដែលផ្ដល់តាពងាយស្រួលដល់ការ សម្អាតឲបានកាន់តែស្អាតជាងមុន

Timeline - Final

ការផ្គុំតួខ្លួន និងត គ្រឿងអេឡិចត្រូនិច

សម្រាប់ការវាស់វែង គូស កាត់ បិទជ័របៀករ៉ង និងធ្វើការផ្គុំវា បញ្ចូលគ្នាជាមួយគ្រឿងអេឡិច ត្រូនិចដែលបានតរួច ត្រូវការ ច្រើរយៈ ១ ថ្ងៃ។ ការបញ្ចូល Code

សម្រាប់ការបញ្ចូល Code គឺ ត្រូវការប្រើពេល ១ ថ្ងៃ

សរុបសេចក្តី

ការងាររបស់យើងមានសកម្មភាពច្រើន នៅក្នុងនោះយើងបានចំណាយពេលធ្វើទៅលើ ការស្វែងយល់អំពី Electronic Components ច្រើនជាងគេ។ បើមើលទៅលើដំណើរការវិញ វាមិនមានបញ្ហាអ្វីគួរឲ្យចោតសួរនោះទេ តែចំពោះ Performance វិញ វានៅមានកម្រិត។ ម្យ៉ាងទៀត អ្វីដែលគ្រប់គ្នាអាចជៀសវាងបានអំឡុងពេលធ្វើ គឺអ្នកទាំងអស់គ្នាគួរតែជៀស វាងការប្រើរបស់ដែលមិនមានការវាស់វែងច្បាស់លាស់ ត្បិតតែវាអស់ការចំណាយថវិការតិច តែ Performance ក៏វាមិនល្អទៅតាមនោះដែរ។

យ៉ាងណាមិញ ការងារមួយនេះបានបង្រៀនយើងជាច្រើន ដូចជាការស្រាវជ្រាវ ការ សហការគ្នា និងជាពិសេសគឺចេះពិភាក្សាគ្នា សាមគ្គីគ្នាដើម្បីសម្រេចនូវគោលដៅរួមមួយ។

