Többszörös lineáris regresszió Outliers, overfitting és egyéb dolgok

Matematikai statisztika 2024. október 28.

Outlierek – Hatásuk a regresszióra

Definíció: Outlier

Az **outlier** egy olyan adatpont, amely jelentősen eltér a többi adatponttól. Az outlierek felismerése fontos, mert jelentős hatást gyakorolhatnak a regressziós modell eredményeire és az illeszkedés minőségére.

Outlierek típusai

- Távoli outlierek: Adatok, amelyek messze helyezkednek el az átlagos értékektől, befolyásolva az átlagot és a szórást.
- Befolyásoló pontok: Adatok, amelyek jelentősen hatnak a regressziós együtthatók becsléseire, így a modell eredményére.

Outlierek azonosítása

Hat mátrix használata outlierekhez

A hat mátrix diagonális elemeit (h_{ii}) használhatjuk annak mérésére, hogy egy adatpont mennyire befolyásolja a regressziós becslést:

$$H = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}X^T$$

- Átlagos hatás: $h_{ii} pprox rac{k+1}{n}$
- Jelentős hatás: $h_{ii} > 2\frac{k+1}{n}$
- Outlier: $h_{ii} \frac{1}{n} \ge 0.5$

További azonosítási módszerek

- Box plot: Az interkvartilis távolság segítségével kimutathatók a szélsőséges értékek.
- Grubbs-teszt: A legszélsőségesebb outlier azonosítására szolgál.

További azonosítási módszerek - Grubbs-teszt döntési folyamata

Grubbs-teszt

A Grubbs-teszt egy statisztikai teszt, amely az adatsor legszélsőségesebb értékének outlierként való azonosítására szolgál. A teszt azt vizsgálja, hogy a legnagyobb vagy legkisebb adatpont szignifikánsan eltér-e a minta többi elemétől.

- Alkalmazás: A Grubbs-teszt különösen hasznos, ha egyetlen kiugró értéket szeretnénk azonosítani egy normál eloszlású adatsorban.
- Számítási mód: A teszt a legnagyobb abszolút értékű különbséget számolja a mintaátlaghoz képest:

$$G=\frac{\max|x_i-\bar{x}|}{s},$$

ahol \bar{x} az adatok átlaga, s pedig a minta szórása.

További azonosítási módszerek - Grubbs-teszt döntési folyamata

Döntési folyamat

A Grubbs-teszt döntési folyamata:

- Nullhipotézis megfogalmazása (H₀): A legszélsőségesebb érték nem kiugró, vagyis nincs szignifikáns eltérés a többi adattól.
- Alternatív hipotézis (H₁): A legszélsőségesebb érték kiugró, és szignifikánsan eltér a többi adattól.
- Szignifikanciaszint (α) kiválasztása: Általában 5
- Kritikus érték meghatározása: A kritikus G_{kritikus} értéket a Grubbs-teszt táblázataiból vagy számítógépes szoftver segítségével határozzuk meg.
- ③ Összehasonlítás és döntés: Ha $G > G_{kritikus}$, akkor elutasítjuk a nullhipotézist, és az értéket kiugrónak tekintjük. Ha $G \le G_{kritikus}$, akkor a nullhipotézist elfogadjuk, és az érték nem kiugró.

Grubbs-teszt előnyei és korlátai

További azonosítási módszerek - Cook-távolság döntési folyamata

Cook-távolság

A Cook-távolság egy diagnosztikai eszköz, amely azt méri, hogy egy-egy adatpont milyen mértékben befolyásolja a regressziós modell illeszkedését. Ezzel a módszerrel megállapítható, mely adatpontok torzíthatják leginkább a modell eredményeit.

• Számítási mód: A Cook-távolság az i-edik adatpont eltávolításának hatását méri a modellre:

$$D_i = \frac{\sum_{j=1}^{n} (y_j - \hat{y}_{j(-i)})^2}{p \cdot MSE},$$

ahol $\hat{y}_{j(-i)}$ a modell jóslata az i-edik adatpont nélkül, p a paraméterek száma, és MSE az átlagos négyzetes hiba.

További azonosítási módszerek - Cook-távolság döntési folyamata

Döntési folyamat

A Cook-távolság alapján a döntési folyamat a következő:

- Küszöbérték meghatározása: Általánosan elfogadott küszöbérték Cook-távolság > 4/n, ahol n az adatpontok száma.
- Adatpontok elemzése: Minden adatpont Cook-távolságát kiszámoljuk, és összevetjük a küszöbértékkel.
- Ontés:
 - Ha $D_i > 4/n$, akkor az i-edik adatpont jelentős befolyást gyakorol a modellre, és külön figvelmet igénvel.
 - Ha $D_i \le 4/n$, akkor az *i*-edik adatpont nem gyakorol jelentős hatást a modell illeszkedésére.

Cook-távolság előnyei

A Cook-távolság lehetővé teszi, hogy azonosítsuk a modellre legnagyobb befolyással bíró adatokat, és segít felismerni azokat a pontokat, amelyek esetlegesen torzíthatják a modell illeszkedését

Outlierek kezelése

Outlierek hatása és kezelési lehetőségek

Az outlierek kezelésekor el kell dönteni, hogy az adatpont valóban hibás vagy extrém, de érvényes érték. A kezelési lehetőségek közé tartozik:

- Eltávolítás: Ha az outlier hibás adat, az eltávolítása szükséges lehet.
- Transzformációk: Logaritmus vagy más nemlineáris transzformáció csökkentheti az outlierek hatását, különösen hosszú farkú eloszlások esetén.
- Súlyozott regresszió: Jelentős hatású outlierek kisebb súlyt kaphatnak a modellben.

Outlierek figyelmen kívül hagyásának kockázatai

Az outlierek elhanyagolása torzíthatja a modell eredményeit és ronthatja az általánosíthatóságot. Az outlierek forrásának vizsgálata fontos ahhoz, hogy megállapítsuk, valós jelenségeket vagy hibás adatokat tükröznek.

Overfitting jelensége

Mi az Overfitting?

Az **overfitting** akkor fordul elő, amikor a modell túlzottan illeszkedik a tanulási adathalmazra, de csökkent az általánosíthatósága, így nem teljesít jól új, ismeretlen adatokon.

Miért probléma az Overfitting?

Az overfitting miatt a modell érzékennyé válik az adathalmazban lévő véletlenszerű zajokra és mintázatokra, amelyek nem tükrözik az alapvető összefüggéseket.

Overfitting felismerése - Tanulási és teszthiba összehasonlítása

Tanulási és teszthiba fogalma

Az overfitting felismerésének egyik alapvető módszere a tanulási (train) és a teszthiba (test error) összehasonlítása. Ezt gyakran az **RMSE** (gyök négyzetes középérték) mutatóval mérjük.

• RMSE a tanulási adathalmazon: Az RMSE (Root Mean Squared Error) kiszámításával megmérjük a modell illeszkedésének hibáját a tanulási adatokon.

$$\mathsf{RMSE}_{\mathsf{train}} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

 RMSE a teszt adathalmazon: Ugyanezt a hibamértéket a teszt adathalmazon is kiszámítjuk, hogy megvizsgáljuk, hogyan teljesít a modell új adatokon.

$$\mathsf{RMSE}_{\mathsf{test}} = \sqrt{\frac{1}{m} \sum_{j=1}^{m} (y_j - \hat{y}_j)^2}$$

Az Overfitting elkerülése

Rendszeresítés (Regularizáció)

- Ridge regresszió: Büntetési tagot adunk a modellhez, ami csökkenti az együtthatók nagyságát, mérsékelve a modell komplexitását.
- Lasso regresszió: A Ridge regresszióhoz hasonlóan működik, de az abszolút értékek minimalizálásával akár nullára is csökkentheti bizonyos együtthatókat, egyszerűsítve a modellt.

Keresztvalidáció

A modell kiértékelése különböző adathalmazokon történik. A keresztvalidáció során a modellt új részhalmazokon teszteljük, hogy lássuk, hogyan teljesít idegen adatokon.

Példa - Keresztvalidáció

AIC – Akaike Information Criterion alapjai

AIC célja

Az AIC a modellek összehasonlítását segíti az illeszkedés és a komplexitás figyelembevételével. Célja a legjobb előrejelzési képességgel rendelkező, de nem túlzottan bonyolult modell kiválasztása.

AIC képlete

Az AIC-t a következő képlet határozza meg:

$$AIC = 2k - 2\ln(L),$$

ahol.

- k: a modell paramétereinek száma,
- L: a modell maximális likelihood értéke.

AIC - Értelmezés és használat

AIC interpretációja

Az AIC értéke minél kisebb, annál jobb a modell illeszkedése az adatokra, figyelembe véve a komplexitást is. Az AIC összehasonlítható különböző modellek között, de csak azonos adathalmazra illesztett modellek esetén.

Miért fontos a modell komplexitása?

A túlzottan komplex modell jól illeszkedik a tanulási adathalmazra, de rosszul teljesíthet új adatokon (overfitting). Az AIC bünteti a túl sok paramétert, így elősegíti a generalizálhatóbb modell kiválasztását.

AIC - Példa alkalmazás

Példa - Két modell összehasonlítása

Tegyük fel, hogy van két modellünk:

- Modell A: Egyszerűbb modell kevesebb paraméterrel,
- Modell B: Összetettebb modell több paraméterrel.

AIC számítása mindkét modell esetén

Mindkét modellre kiszámítjuk az AIC-t, és összehasonlítjuk az értékeket. Az alacsonyabb AIC-értékkel rendelkező modellt választjuk, mivel az nagyobb valószínűséggel generalizálható jobban.

BIC – Bayesian Information Criterion alapjai

BIC célja

A BIC is a modellek összehasonlítására szolgál, de nagyobb hangsúlyt fektet a modell komplexitásának korlátozására, mint az AIC. A BIC segítségével a modellek valószínűségi bizonyíték alapján értékelhetők.

BIC képlete

A BIC képlete:

$$BIC = k \ln(n) - 2 \ln(L),$$

ahol:

- k: a modell paramétereinek száma,
- n: a megfigyelések száma,
- L: a modell maximális likelihood értéke.

BIC - Értelmezés és használat

BIC interpretációja

Az AIC-hez hasonlóan a BIC kisebb értéke jobb illeszkedést jelez. Ugyanakkor a BIC szigorúbb a modell komplexitásával, ezért nagyobb adathalmaz esetén a BIC nagyobb büntetést ad a paraméterek számának növekedésekor.

A BIC használata előnyben részesíti az egyszerűbb modelleket

Mivel a BIC büntetése a minta méretétől függ, nagyobb mintaszám esetén a BIC hajlamos az egyszerűbb modelleket választani. Ez azzal jár, hogy kisebb modellekkel is megfelelő predikciót biztosít.

BIC - Példa alkalmazás

Példa - Több modell közül a legjobb kiválasztása

Tegyük fel, hogy három modellünk van, különböző paraméterszámmal. Mindegyik modellre kiszámítjuk a BIC értéket, és az alacsonyabb BIC értékkel rendelkezőt választjuk.

BIC és minta méretének kapcsolata

Nagyobb minták esetén a BIC erősebben bünteti a túlkomplikált modelleket, míg kisebb minták esetén kevésbé szigorú. Így a BIC inkább a nagy mintaszámú elemzések során hasznos.

AIC és BIC összehasonlítása

Különbségek az AIC és BIC között

- AIC: A modell illeszkedésére és a paraméterek számára figyel, célja az előrejelzési pontosság maximalizálása.
- BIC: Nagyobb büntetést alkalmaz a paraméterekre, célja a valószínűségi alapú modell választása, különösen nagy minták esetén.

AIC és BIC – Előnyök és hátrányok

AIC előnyei és hátrányai

- Előny: Hatékony az előrejelzési pontosság maximalizálásában.
- Hátrány: Hajlamos lehet túlzottan bonyolult modelleket választani, mivel kevésbé bünteti a paraméterszámot.

BIC előnyei és hátrányai

- Előny: Nagy minták esetén szigorúbban szabályozza a modell komplexitását.
- Hátrány: Hajlamos az egyszerűbb modellek választására, ami kisebb minták esetén túlzott egyszerűsítést okozhat.

AIC és BIC – Használati javaslatok

Mikor használjuk az AIC-t?

Az AIC javasolt, ha a cél az előrejelzés pontosságának maximalizálása, és a modell összetettsége kevésbé fontos. Általában kisebb mintaszám esetén vagy prediktív modellekhez ideális.

Mikor használjuk a BIC-t?

A BIC előnyös, ha a modell komplexitásának csökkentése a cél, például nagy mintaszám esetén, ahol a valószínűségi alapú modellkiválasztás relevánsabb.

Kombinált használat

AIC és BIC együttes használata segíthet a megfelelő modell kiválasztásában, különösen akkor, ha több modell is szóba jöhet az adathalmaz alapján.

Interakciós hatások a regressziós modellekben

Mit jelent az interakciós hatás?

Az interakciós hatás akkor fordul elő, amikor két vagy több független változó közötti kölcsönhatás befolyásolja a célváltozót. Ilyen esetekben egy változó hatása a célváltozóra függhet egy másik változó jelenlététől vagy értékétől.

- Alapgondolat: Az interakció hatása azt jelenti, hogy a független változók nemcsak önmagukban, hanem együtt is befolyásolják a célváltozót.
- Matematikai kifejezés: Az interakciós hatásokat az alábbi módon lehet beépíteni a regressziós modellbe:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 (X_1 \cdot X_2) + \varepsilon,$$

ahol a β_3 együttható azt méri, hogy a X_1 és X_2 közötti interakció milyen hatással van a Y célváltozóra.

Interakciós hatások vizsgálatának fontossága

Az interakciók felismerése és modellezése javíthatja a regressziós modell pontosságát, mivel figyelembe veszi, hogyan változnak a független változók hatásai más változók

Példa interakciós hatásra - Életkor és munkaórák hatása a stressz szintjére

Példa felállítása

Tegyük fel, hogy egy vállalatnál vizsgáljuk a dolgozók stressz szintjét (Y), amelyet befolyásolhat a dolgozó **életkora** (X_1) és a **munkaórák száma** (X_2).

- Alaphatások: Feltételezhetjük, hogy a stressz szintje önmagában növekszik a munkaórák számával (X_2) és csökken az életkorral (X_1), mivel az idősebb dolgozók gyakran jobban kezelik a stresszt.
- Interakciós hatás: Az életkor és a munkaórák kölcsönhatása is befolyásolhatja a stressz szintjét. Például a fiatalabb dolgozóknál a hosszabb munkaórák nagyobb stresszt okozhatnak, mint az idősebb dolgozóknál.

Interakciós modell felírása

Az interakciós hatást figyelembe vevő modell:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 (X_1 \cdot X_2) + \varepsilon,$$

ahol a β_3 együttható mérése jelzi, hogy az életkor és munkaórák kölcsönhatása miként

Interakciós hatások vizsgálata és értelmezése - Eredmények

Az interakciós együttható értelmezése

A regressziós modell futtatása után megkapjuk az interakciós együtthatót (β_3), amely segít eldönteni, hogy a független változók kölcsönhatása jelentős hatással van-e a célváltozóra.

- Pozitív interakciós hatás ($\beta_3 > 0$): Az életkor növelheti a munkaórák hatását a stresszre. Például, ha a stressz növekedése munkaóránként nagyobb az idősebb dolgozóknál, ez pozitív interakciós hatásra utalhat.
- Negatív interakciós hatás ($\beta_3 < 0$): Az életkor csökkenti a munkaórák hatását a stresszre. Például, ha a fiatalabb dolgozóknál a munkaórák jobban növelik a stresszt, akkor a negatív β_3 azt jelzi, hogy az életkor mérsékli ezt a hatást.

Az interakciós hatás jelentőségének ellenőrzése

A modellben az interakciós hatás szignifikanciáját statisztikai teszttel is ellenőrizhetjük. Ha az interakciós együttható szignifikáns, akkor az interakció valóban befolyásolja a célváltozót.