Unidad 5: Funciones Álgebra y Geometría Analítica I (R-111) Licenciatura en Ciencias de la Computación

Iker M. Canut 2020

1. Funciones

Dados A y B conjuntos no vacios, una **función** de A en B es una relación de A en B que verifica que cada elemento de A es exactamente una vez primera componente de un par ordenado de la relación. Lo notamos $f:A\to B$. En otras palabras, se tiene que cumplir:

- Para cada $a \in A$ existe $b \in B : (a, b)$ está en la relación.
- No puede haber dos pares (a, b_1) y (a, b_2) con $b_1 \neq b_2$ en la relación.

Podemos escribir f(a) = b para indicar que la **imagen** de $a \in A$ por f es $b \in B$ El **dominio** de la función es A y el **codominio** de la función es B. Si $f: A \to B$ y $A_1 \subseteq A$, $f(A_1) = \{b \in B: f(a) = b, a \in A_1\}$ y decimos que es la imagen de A_1 por f. Si $A_1 = A$, notamos f(A) = Im(f) y ese es el **conjunto imagen** de f.

Decimos que $f: A \to B$ es **inyectiva** si cada elemento de B aparece a lo sumo una vez como segunda componente de los pares ordenados de la relación: $\forall a_1, a_2 \in A, f(a_1) = f(a_2) \Rightarrow a_1 = a_2$

Teorema: Sea $f: A \to B, A_1, A_2 \subseteq A$:

- $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$ \subseteq) $y \in f(A_1 \cup A_2) \Rightarrow \exists x \in A_1 \cup A_2 : f(x) = y \Rightarrow x \in A_1 \lor x \in A_2 \Rightarrow$ $f(x) = y \in f(A_1) \lor f(x) = y \in f(A_2) \therefore y \in f(A_1) \cup f(A_2)$ \supseteq) $y \in f(A_1) \cup f(A_2) \Rightarrow \exists x_1 \in A_1 : f(x_1) = y \lor \exists x_2 \in A_2 : f(x_2) = y$. En cualquier caso $\exists x \in A_1 \cup A_2 : f(x) = y \therefore y \in f(A_1 \cup A_2)$
- $f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$ $\mathbf{D}/\ y \in f(A_1 \cap A_2) \Rightarrow \exists x \in A_1 \cap A_2 : f(x) = y \Rightarrow x \in A_1 \land x \in A_2 \Rightarrow$ $f(x) = y \in f(A_1) \land y \in f(A_2) \Rightarrow y \in f(A_1) \cap f(A_2)$
- Si f es inyectiva, $f(A_1 \cap A_2) = f(A_1) \cap f(A_2)$
 - ⊆) Demostrado en el punto anterior.
 - ⊇) Sea $y \in f(A_1) \cap f(A_2) \Rightarrow \exists x_1 \in A_1 : f(x_1) = y \land \exists x_2 \in A_2 : f(x_2) = y$. Y como f es inyectiva, $x_1 = x_2$. Luego, $\exists x \in A_1 \cap A_2 : f(x) = y : y \in f(A_1 \cap A_2)$

Teorema: Sea $f: A \to B$, $\forall X_1, X_2 \subseteq A$, $[f(X_1 \cap X_2) = f(X_1) \cap f(X_2)] \iff f$ es inyectiva \iff Por el teorema anterior, sabemos que $\forall X_1, X_2 \subseteq A$, $f(X_1 \cap X_2) \subseteq f(X_1) \cap f(X_2)$. Ahora, $y \in [f(X_1) \cap f(X_2)] \Rightarrow y \in f(X_1) \wedge y \in f(X_2) \Rightarrow \exists x_1 \in X_1, x_2 \in X_2 \colon y = f(x_1) \wedge y = f(x_2)$. Luego $f(x_1) = f(x_2)$, y como es inyectiva, $x_1 = x_2 \in X_1 \cap X_2$ i.e $y \in f(X_1 \cap X_2)$ \Rightarrow Sean $x_1, x_2 \in A$: $f(x_1) = f(x_2)$, definimos $X_1 = \{x_1\}$ y $X_2 = \{x_2\}$, luego $f(X_1) \cap f(X_2) = \{f(x_1)\} = \{f(x_2)\}$. Por hipotesis, $f(X_1 \cap X_2) = f(X_1) \cap f(X_2)$, pero si $x_1 \neq x_2, X_1 \cap X_2 = \emptyset$, luego $x_1 = x_2$ demostrando asi la inyectividad.

Sea $f: A \to B, A_1 \subseteq A \subseteq A_2$:

- $f|_{A_1}: A \to B: f|_{A_1}(a) = f(a)$ si $a \in A_1$, es LA **restricción** de f a A_1 .
- $g: A_2 \to B: g(a) = f(a)$ si $a \in A$ es UNA extensión de f a A_2 .

Sea $f: A \to B, B_1 \subseteq B$, la **preimagen** de B_1 por medio de f, notada como $f^{-1}(B_1)$ es el conjunto:

$$f^{-1}(B_1) = \{x \in A : f(x) \in B_1\}$$

Teorema: Sea $f: A \to B, B_1, B_2 \subseteq B$

- $f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$ $x \in f^{-1}(B_1 \cup B_2) \iff f(x) \in B_1 \cup B_2 \iff f(x) \in B_1 \vee f(x) \in B_2 \iff$ $x \in f^{-1}(B_1) \vee x \in f^{-1}(B_2) \iff x \in f^{-1}(B_1) \cup f^{-1}(B_2)$
- $f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$ $x \in f^{-1}(B_1 \cap B_2) \iff f(x) \in B_1 \cap B_2 \iff f(x) \in B_1 \wedge f(x) \in B_2 \iff$ $x \in f^{-1}(B_1) \wedge x \in f^{-1}(B_2) \iff x \in f^{-1}(B_1) \cap f^{-1}(B_2)$
- $f^{-1}(\overline{B_1}) = \overline{f^{-1}(B_1)}$ $a \in f^{-1}(\overline{B_1}) \iff f(a) \in \overline{B_1} \iff \neg(f(a) \in B_1) \iff \neg(a \in f^{-1}(B_1)) \iff a \in \overline{f^{-1}(B_1)}$

Diremos que $f: A \to B$ es survectiva si cada elemento de B aparece al menos una vez como segunda componente de los pares ordenados de la relación: f(A) = Im(f) = B. Es decir:

Dado
$$y \in B, \exists x \in A : f(x) = y$$

Sea $f: A \to B, A_1 \subseteq A$

- Si f es inyectiva, entonces $f_{|A_1}$ es inyectiva. $\mathbf{D}/$ Suponiendo que $f_{|A_1}$ no es inyectiva, luego $\exists x_1, x_2 \in A_1 : f(x_1) = f(x_2)$, con $x_1 \neq x_2$. Pero $x_1, x_2 \in A$ y A no sería inyectiva $\therefore f_{|A_1}$ es inyectiva.
- Si $f_{|A_1}$ es inyectiva, f no necesariamente es inyectiva, puesto que puede existir algun x que no pertenezca a A_1 , cuya imagen coinicida con alguna imagen de otra x perteneciente a A_1 . Por ejemplo $A = [-2, 2], A_1 = [0, 2]$ y $f(x) = x^2$
- Si f es survectiva, entonces $f_{|A_1}$ no necesariamente es survectiva, puesto que al restringir el dominio, se puede dejar fuera alguna x que era la única que obtenía cierta imagen. Por ejemplo, $A = [0, 4], A_1 = [1, 3]$ y f(x) = x
- Si $f_{|A_1}$ es suryectiva, entonces f es suryectiva, puesto que todo elemento de B, tiene una preimagen que pertenece a A_1 , ergo pertenece a A, puesto que $A_1 \subseteq A$

Luego, una función es biyectiva si es invectiva y survectiva.

Corolario: Sea $f: A \to B, g: C \to D$, definimos $h: A \times C \to B \times D$ por h(a, c) = (f(a), g(b)). Luego, h es biyectiva $\iff f \setminus g$ son biyectivas.

- \Rightarrow) Se demuestra para f, g es análogo. Sabemos que:
 - $\forall (a_1, c_1), (a_2, c_2) \in A \times C, h(a_1, c_1) = h(a_2, c_2) \Rightarrow (a_1, c_1) = (a_2, c_2) \Rightarrow a_1 = a_2 \land c_1 = c_2$ (1)

$$- \forall (b,d) \in B \times D, \ \exists (a,c) \in A \times C : h(a,c) = (b,d)$$
(2)

- Inyectividad: Es decir, Sean $a_1, a_2 \in A : f(a_1) = f(a_2) \Rightarrow a_1 = a_2$? Sabemos que $f(a_1) = f(a_2)$ y también (1). Por lo que tenemos que tomar un c fijo, y trabajando con los pares $(f(a_1), g(c)), (f(a_2), g(c)),$ sabemos que $f(a_1) = f(a_2) \land g(c) = g(c)$. Luego, $(f(a_1), g(c)) = (f(a_2), g(c)) \Rightarrow h(a_2, c) = h(a_1, c) \Rightarrow (a_1, c) = (a_2, c) \Rightarrow a_1 = a_2$
- Suryectividad: Sea $b \in B$, $\exists a \in A : f(a) = b$? Considerando un $c \in C$ fijo, y el par $(b, g(c)) \in B \times D$, por **(2)** $\exists (a, c) \in A \times C : h(a, c) = (b, g(c))$. Por definición de h, $h(a, c) = (f(a), g(c)) = (b, g(c)) \Rightarrow \exists a \in A : f(a) = b$
- \Leftarrow) Sabemos que f y g son biyectivas, hay que demostrar que h también lo es.
 - Inyectividad: Sean $(a_1, c_1), (a_2, c_2) \in A \times C$, entonces $h(a_1, c_1) = h(a_2, c_2) \Rightarrow$ $\Rightarrow (f(a_1), g(c_1)) = (f(a_2), g(c_2)) \Rightarrow f(a_1) = f(a_2) \land g(c_1) = g(c_2)$ y como f y g son inyectivas, entonces $a_1 = a_2 \land c_1 = c_2 \Rightarrow (a_1, c_1) = (a_2, c_2) \therefore h$ es inyectiva
 - Suryectividad: Sea $(b,d) \in B \times D \Rightarrow b \in B \land d \in D$, y como f y g son suryectivas, entonces $\exists a \in A : f(a) = b \land \exists c \in C : g(c) = d \Rightarrow (f(a), g(c)) = (b, d)$. Es decir, $\exists (a, c) \in A \times C : h(a, c) = (b, d)$. \therefore h es suryectiva.

Sean f y g dos funciones, tales que $Im(f) \cap Dom(g) \neq \emptyset$, se define la **composición** de g con f, y se lo nota $g \circ f$, a la función con dominio: $Dom(g \circ f) = \{x \in Dom(f) : f(x) \in Dom(g)\}$ y tal que

$$(g \circ f)(x) = g(f(x)), \forall x \in Dom(g \circ f)$$

Bajo la condición $Im(f) \cap Dom(g) \neq \emptyset$ decimos que la composición de g con f es posible ya que su dominio es no vacio. Además, hay funciones para las cuales $(g \circ f)$ esta bien definida, pero $(f \circ g)$ no lo está. También pueden existir y ser distintas. Por lo tanto, no es conmutativa.

Proposición: La composición de funciones es asociativa, es decir,
$$(h \circ g) \circ f = h \circ (g \circ f)$$

 $\mathbf{D}/(h \circ g) \circ f(x) = (h \circ g)(f(x)) = h(g(f(x))) = h(g \circ f(x)) = h \circ (g \circ f)(x), \quad \forall x \in Dom(f)$

Sea $f: A \to A$, la composición $(f \circ f)$ es posible y se nota f^2 . Recursivamente, $f^n = (f \circ f^{n-1})$

Teorema: Si
$$f: A \to B$$
 y $g: B \to C$ sonx inyectivas, entonces $(g \circ f): A \to C$ es inyectiva. $\mathbf{D}/(a_1, a_2) \in A$, $(g \circ f)(a_1) = (g \circ f)(a_2) \Rightarrow g(f(a_1)) = g(f(a_1)) \Rightarrow f(a_1) = f(a_2) \Rightarrow a_1 = a_2$

Teorema: Si $f: A \to B$ y $g: B \to C$ son survectivas, entonces $(g \circ f): A \to C$ es survectivas. **D**/ Dado $c \in C$ sabemos que existe $b \in B: g(b) = c$. Dado ese mismo b, sabemos que existe $a \in A: f(a) = b$. Dado $c \in C \exists a \in A: g(f(a)) = g(b) = c$ i.e es survectiva.

Una función $f: A \to B$ es **inversible** si existe $g: B \to A: (g \circ f) = id_A$ y $(f \circ g) = id_B$ Luego, si f es inversible, entonces g también lo es.

Teorema: $f: A \to B$ es inversible y $g: B \to A$ es una inversa de f, entonces es unica. **D**/ Supongamos $g: B \to A$ y $h: B \to A$ / $(f \circ h) = id_B$, $(f \circ g) = id_B$, $(g \circ f) = id_A$, $(h \circ f) = id_A$, luego: $h = h \circ id_B = h \circ (f \circ g) = (h \circ f) \circ g = id_A \circ g = g$

Teorema: f es inversible \iff f es bivectiva.

 \Rightarrow) $f(a_1) = f(a_2) \Rightarrow f^{-1}(a_1) = f^{-1}(a_2) \Rightarrow a_1 = a_2$

Como $f(a) = b \iff a = f^{-1}(b)$, y sabemos que existe f^{-1} para todo $b \in B$, $\Rightarrow f^{-1}(b) \in A$ \subseteq Como f es suryectiva, defino $g: B \to A$ de manera tal que a cada elemento de B le asigna $a \in A/f(a) = b$ Por la inyectividad, g es función, es decir, si $g(b) = a_1 \land g(b) = a_2$ con $a_1 \neq a_2$, sería porque $f(a_1) = f(a_2)$, contradiciendo la inyectividad de f. Luego, es inversible.

Teorema: $f: A \to B, g: B \to C$ son inversibles, entonces $(g \circ f)$ es inversible y $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$. **D**/ Como la composición de funciones biyectivas es biyectiva, $g \circ f$ es inversible. Resta verificar que la inversa es $f^{-1} \circ g^{-1}$:

Tiesta verificar que la fiversa es
$$f \circ g$$
.
$$(f^{-1} \circ g^{-1}) \circ (g \circ f) = f^{-1} \circ (g^{-1}) \circ g) \circ f = f^{-1} \circ id_B \circ f = (f^{-1} \circ id_B) \circ f = f^{-1} \circ f = id_A$$
 Análogamente, $(g \circ f) \circ (f^{-1} \circ g^{-1}) = id_B$

La preimagen SIEMPRE existe y es un conjunto. La función inversa (si existe) es una función.

Teorema: Sea $f: A \to B$, A y B finites, |A| = |B|, son equivalentes:

- (i) f es inversible (ii) f es inversible
- \mathbf{D}/\mathbf{Y} a sabemos que $(i) \wedge (ii) \iff (iii)$, falta probar que $(i) \iff (ii)$. Vamos por el absurdo:
- Supongamos que no es inyectiva y que vale (ii), entonces $\exists a_1 \neq a_2/f(a_1) = f(a_2)$, con lo cual |A| > |f(A)| = |B|, teniendo así una contradicción.
- Suponiendo que no es suryectiva y que vale (i), entonces |f(A)| < |B| = |A|s, pero como es inyectiva, $|A| \le |f(A)|$, teniendo asi otra contradicción.

Luego,
$$(i) \iff (ii) \iff (iii)$$
, demostrando asi el teorema.

2. Operaciones

Dados A y B no vacios, una función $f: A \times A \to B$ es una **operación binaria** en A. Si además, $Im(f) \subseteq A$, la operación es **cerrada** en A.

Una función $g:A\to A$ es una **operación monaria** (unaria) en A.

Dada $f: A \times A \to B$, operación binaria en A,

- f es conmutativa si $f(a_1, a_2) = f(a_2, a_1), \forall (a_1, a_2) \in A \times A$.
- Si f es cerrada, entonces f es asociativa si $f(f(a,b),c) = f(a,f(b,c)), \forall a,b,c \in A$.

Podemos notar $f(a,b) = a \otimes b$, y estas propiedadades son mas amigables: Por ejemplo la asociatividad sería: $(a \otimes b) \otimes c = a \otimes (b \otimes c)$.

Luego, dado $f: A \times A \to A$, decimos que tiene **neutro** si existe $a_0 \in A$ tal que

$$f(a, a_0) = f(a_0, a) = a, \forall a \in A$$

Es decir,

$$a \otimes a_0 = a_0 \otimes a = a$$

Teorema: Si $f: A \times A \rightarrow A$ tiene neutro, éste es único.

D/ Sea $f(a,b) = a \otimes b$ y sean $x,y \in A$ elementos neutros, entonces $a \otimes x = x \otimes a = a = a \otimes y = y \otimes a$.

$$\left. \begin{array}{l} x \in A, y \text{ neutro } \Rightarrow x \otimes y = y \otimes x = x \\ y \in A, x \text{ neutro } \Rightarrow x \otimes y = y \otimes x = y \end{array} \right\} \Rightarrow x = y$$

Dada $f: A \times A \to A$, si f posee neutro $x \in A$, decimos que la operación posee inversos si

$$\forall a \in A \exists a' : f(a, a') = f(a', a) = x$$

Teorema: Si $f: A \times A \to A$ es una operación asociativa, con elemento neutro $x \in A$ que posee inversos, entonces cada elemento posee un único inverso.

D/ Supongamos que $a \in A$ posee 2 elementos inversos a_1 y a_2 , y notemos $f(a,b) = a \otimes b$, entonces: $a_1 = a_1 \otimes x = a_1 \otimes (a \otimes a_2) = (a_1 \otimes a) \otimes a_2 = x \otimes a_2 = a_2$

Sea $A = B = \mathbb{R}$, se define $\Pi_A(D)$ y $\Pi_B(D)$ como las funciones proyección de la primer y segunda componente de un par ordenado, $D \subseteq A \times B$. Es decir, $\Pi_A(D) : D \to A : \Pi_A(a,b) = a$.