Ajtai commitment expansion

Matthew Klein

July 10, 2024

Ajtai Commitments

- Ajtai commitments allow us to commit to a vector of polynomials
- We commit to an a vector $\overrightarrow{x} \in \mathcal{R}^m$ by multiplying it with a random matrix $\mathbf{A} \in \mathcal{R}_a^{\kappa \times \mathbf{m}}$
- $|\overrightarrow{x}||_{\infty} < B$ where B is the norm bound
- lacksquare Output of commitment is $\mathit{cm} := oldsymbol{\mathsf{A}} \cdot \overrightarrow{oldsymbol{ec{\chi}}} oldsymbol{\mathsf{mod}} \, oldsymbol{\mathsf{q}} \in \mathcal{R}^\kappa_{oldsymbol{a}}$
- ▶ This commitment is considered binding because of the assumed hardness of MSIS

Ajtai commitments as a relation

- \blacktriangleright We define relation $\mathcal{R}_{MSIS\infty}^B$ between an ajtati commitment and the \overrightarrow{x}
- $\qquad \mathcal{R}^{B}_{MSIS^{\infty}} := (pp, \, cm \in \mathcal{R}^{\kappa}_{a} \, ; \, \overrightarrow{\chi} \in \mathcal{R}^{m} : (cm = \mathbf{A} \cdot \overrightarrow{\chi} \, \, \mathsf{mod} \, \, \mathbf{q}) \wedge ||\overrightarrow{\chi}||_{\infty} < \mathbf{B})$
- $ightharpoonup pp := (\kappa, m, B, \mathbf{A})$ are the public parameters of the relation
- Public parameters define the 'meta' information of the relation:
 - 1. The size of the vectors and matrices
 - 2. The norm limit of \overrightarrow{x}
 - The random matrix A

$$\overrightarrow{x} \in \mathcal{R}_{q}^{m}$$

- $||\overrightarrow{x}||_{\infty} < B \text{ and } B < \frac{q}{2}$ $\overrightarrow{x} \in \mathcal{R}^m \text{ can be uniquely represented in } \mathcal{R}_q^m$
 - We define $||\overrightarrow{x}||_{linfty} < B$ as the norm after lifting $\overrightarrow{x} \in \mathcal{R}_a^m to \mathcal{R}$
- ► We can rewrite our commitment as

$$\mathcal{R}^{B}_{MSIS^{\infty}} := (pp, \, cm \in \mathcal{R}^{\kappa}_{q} \, ; \, \overrightarrow{x} \in \mathcal{R}^{m}_{q} \, : (cm = \, \mathbf{A} \cdot \overrightarrow{x} \, \, \mathbf{mod} \, \, \mathbf{q}) \wedge ||\overrightarrow{x}||_{\infty} < \mathbf{B})$$

Coefficient Embeddings and Rotational Matrices

- ▶ For $a \in \mathcal{R}_q$, vec(a) reoresents the vectors of coefficients
- ▶ For a vector $\overrightarrow{a} \in \mathcal{R}_a^m$, $vec(\overrightarrow{a}) \in \mathbb{Z}^{m \times d}$ represents the coefficient vectors in \overrightarrow{a}
- $fvec(\overrightarrow{a}) \in \mathbb{Z}^{md}$ is the vector that concatonates the rows of \overrightarrow{a}
- lacksquare $\mathsf{Rot}(\mathbf{a}) := (\mathsf{vec}(\mathbf{a}), \mathsf{vec}(\mathbf{X} \cdot \mathbf{a}), \dots, \mathsf{vec}(\mathbf{X}^{d-1} \cdot \mathbf{a})) \in \mathbb{Z}_q^{d imes d}$
- For a matrix $\mathbf{A} \in \mathbb{R}_q^{\kappa \times m}$, we define the rotation matrix $\mathsf{Rot}(\mathbf{A}) \in \mathbb{Z}_q^{\kappa d \times md}$ as

$$\mathsf{Rot}(\mathbf{A}) := egin{bmatrix} \mathsf{Rot}(\mathbf{A}_{1,1}) & \cdots & \mathsf{Rot}(\mathbf{A}_{1,m}) \ dots & \ddots & dots \ \mathsf{Rot}(\mathbf{A}_{\kappa,1}) & \cdots & \mathsf{Rot}(\mathbf{A}_{\kappa,m}) \end{bmatrix}$$

lacksquare fvec $(\mathbf{A}\mathbf{f})=\mathsf{Rot}(\mathbf{A})$ fvec (\mathbf{f}) for any $\mathbf{A}\in\mathbb{R}_a^{\kappa imes m}$ and $\mathbf{f}\in\mathbb{R}_a^m$.

$$\overrightarrow{x} \in \mathbb{Z}^{\kappa d}$$

- ightharpoonup We can uniquely represent $\overrightarrow{x} \in \mathcal{R}_q^m$ as $\overrightarrow{x} \in \mathbb{Z}^{\kappa d}$ by taking $\mathit{fvec}(\overrightarrow{x})$
- $ightharpoonup \overline{\mathbf{A}} = rot(\mathbf{A})$
- ▶ *cm* is the coefficient embedding of *cm*
- $ightharpoonup \overline{cm} = \overline{\mathbf{A}} \cdot fvec(\overrightarrow{x})$

$$\mathcal{R}^{B}_{MSIS^{\infty}} := (pp, \, \overline{cm} \in \mathbb{Z}^{\kappa d} \, ; \, \overrightarrow{x} \in \mathbb{Z}^{md} : (\overline{cm} = \overline{\mathbf{A}} \cdot \overrightarrow{x} \, mod \, q) \wedge ||\overrightarrow{x}||_{\infty} < B)$$

Representing $||\overrightarrow{x}||_{\infty} < B$ as an hadamard product

lacktriangle To see this see that the biggest coefficient in any of the x matrices is less than B