Критерии дисперсионного анализа в R

Критерий Уилкоксона-Манна-Уитни (независимые выборки) и критерий ранговых знаков Уилкоксона (связные выборки)

Параметры

для критерия Уилкоксона-Манна-Уитни

- х и у -- выборки, могут быть разной длины;
- mu -- смещение, соответствующее основной гипотезе (обычно 0). Предполагается, что распределения выборок отличаются сдвигом mu;
- paired = FALSE -- выборки независимые;

для критерия ранговых знаков Уилкоксона

• х -- выборка разностей;

или

- х и у выборки одинаковой длины, используются только разности;
- mu -- смещение, соответствующее основной гипотезе (обычно 0). Предполагается, что распределение выборки разностей (x или x-y) симметрично относительно mu;
- paired = TRUE -- выборки связные;

Общие параметры

- alternative -- тип альтернативной гипотезы (двусторонняя, односторонняя);
- correct -- следует ли применять коррекцию при аппроксимации нормальным распределением;
- exact -- использовать ли точные вычисления или же асимптотические:
- conf.int -- строить ли доверительный интервал;
- conf.level -- уровень доверия доверительного интервала;
- formula -- формула в виде lhs ~ rhs, где lhs -- числовой признак, a rhs -- фактор с двумя уровнями (бинарная переменная). Выборки получаются разделением числового признака по значению фактора;
- data -- данные (матрица или таблица);
- na.action -- функция, указывающая что делать с пропусками в данных.

Возвращают:

- statistic -- статистика критерия;
- parameter -- параметр распределения;
- p.value -- p-value критерия;
- estimate -- оценка параметра сдвига (только если conf.int = TRUE);
- conf.int -- доверительный интервал параметра сдвига (только если conf.int = TRUE).

Примеры:

In [1]:

```
1  x <- c(1, 2, 3, 4, 5)
2  y <- c(6, 7, 8, 9)
3  wilcox.test(x, y, conf.int = TRUE, conf.level = 0.90)</pre>
```

Wilcoxon rank sum test

In [2]:

```
1  x <- c(1, 2, 3, 4, 5)
2  y <- c(10, 9, 8, 7, 6)
3  wilcox.test(x, y, paired = TRUE, conf.int = TRUE, conf.level = 0.90)</pre>
```

Wilcoxon signed rank test

Датасет mtcars встроенв R

In [3]:

1 head(mtcars)

	mpg	cyl	disp	hp	drat	wt	qsec	VS	am	gear	carb	
Mazda RX4	21.0	6	160	110	3.90	2.620	16.46	0	1	4	4	
Mazda RX4 Wag	21.0	6	160	110	3.90	2.875	17.02	0	1	4	4	
Datsun 710	22.8	4	108	93	3.85	2.320	18.61	1	1	4	1	
Hornet 4 Drive	21.4	6	258	110	3.08	3.215	19.44	1	0	3	1	
Hornet Sportabout	18.7	8	360	175	3.15	3.440	17.02	0	0	3	2	
Valiant	18.1	6	225	105	2.76	3.460	20.22	1	0	3	1	

Величина am -- бинарный фактор. По нему любой столбец можно разбить на две независимые выборки. Вызов фукнции выглядит так:

```
In [4]:
```

```
wilcox.test(mpg ~ am, data = mtcars, conf.int = TRUE, conf.level = 0.90)
Warning message in wilcox.test.default(x = c(21.4, 18.7, 18.1, 14.3, 2
4.4, 22.8, :
    "cannot compute exact p-value with ties"Warning message in wilcox.tes
    t.default(x = c(21.4, 18.7, 18.1, 14.3, 24.4, 22.8, :
    "cannot compute exact confidence intervals with ties"

    Wilcoxon rank sum test with continuity correction

data: mpg by am
    W = 42, p-value = 0.001871
    alternative hypothesis: true location shift is not equal to 0
    percent confidence interval:
```

Критерий знаков (связные выборки)

-6.799963

-10.999924 -3.600056

difference in location

sample estimates:

Параметры

х -- вектор длины 2: количество единиц, количество нулей;

или

- х и n -- количество единиц, размер выборки;
- р -- вероятность единицы (обычно 0.5);
- alternative -- тип альтернативной гипотезы (двусторонняя, односторонняя);
- conf.level -- уровень доверия доверительного интервала;

Возвращают:

- statistic -- число единиц;
- parameter -- число наблюдений;
- p.value -- p-value критерия;
- estimate -- оценка вероятности единицы;
- conf.int -- доверительный интервал вероятности единицы.

Примеры:

```
In [5]:
```

```
binom.test(5, 18)
```

Exact binomial test

Критерий Колмогорова (критерии согласия) и критерий Смирнова (критерии однородности)

```
ks.test(x, y, ..., alternative = c("two.sided", "less", "greater"), exact =
NULL, tol=1e-8, simulate.p.value=FALSE, B=2000)
```

Параметры

для критерия Колмогорова

- х -- выборка;
- у -- функция распределения или ее название;

для критерия Смирнова

• т х и у -- выборки, могут быть разной длины;

Общие параметры

- alternative -- тип альтернативной гипотезы (двусторонняя, односторонняя);
- correct -- следует ли применять коррекцию при аппроксимации нормальным распределением;
- exact -- использовать ли точные вычисления или же асимптотические.

Возвращают:

- statistic -- статистика критерия;
- p.value -- p-value критерия.

Примеры:

In [6]:

```
1 x <- c(1, 2, 3, 4, 5)
2 y <- c(6, 7, 8, 9)
3 ks.test(x, y)
```

Two-sample Kolmogorov-Smirnov test

data: x and y
D = 1, p-value = 0.01587
alternative hypothesis: two-sided

In [7]:

```
1 ks.test(x, 'pnorm')
```

One-sample Kolmogorov-Smirnov test

data: x
D = 0.84134, p-value = 0.000201
alternative hypothesis: two-sided

Прикладная статистика и анализ данных, 2019

Никита Волков

https://mipt-stats.gitlab.io/ (https://mipt-stats.gitlab.io/)