Procesamiento del Lenguaje Natural mediante Redes Neuronales

ECI 2019

Día 2: Word embeddings y redes neuronales multi-capa

Germán Kruszewski Facebook Al Research

Qué somos? (Tiburones!)

¿Cuál es tu disciplina de estudio?

71 responses

Día 2: Word embeddings y redes neuronales multi-capa

- 1. El significado de las palabras
- 2. Redes neuronales multi-capa y backpropagation

3. Elementos prácticos

El significado de una palabra

Dog -

Redes semánticas (Wordnet; Miller, 1995) Semántica denotacional

La hipótesis distribucional

(Harris, 1954)

"You shall know a word by the company it keeps"

- Firth (1957)

Modelos distribucionales del significado

(dimensiones ordenadas en un orden arbitrario)

El contexto es el significado

```
st one-armed professional <baseball> player . Hector Castro (
 is is no one way to run a <baseball> team or a ballet company
  " invariably refers to a <baseball> field . Baseball has oft
 ad out of the park with a <baseball> bat . Itchy and Scratchy
 all " , to the sayings of <br/>
<br/>
star Yoqi Berra : " You
fortune in the 1980s as a <basketball> player , but it is his s
our favorite NBA and NCAA <basketball> team here . . . . Betting
e politicians is a former <basketball> star and another a forme
up was shown a video of a <br/>
<br/>
classed to a shown a video of a sketball and they were asked to
 with livestock or even a <basketball> court in your garage . A
tatorship to the Athenian <democracy > of Summerhill . Institut
ace in royal mail . It is <democracy> versus authoritarianism
 who murdered hundreds of <democracy> activists when they pour
 fully-fledged capitalist <democracy> with its own role to pla
tted to the rule of law , <democracy> and human rights that it
```

El contexto es el significado

```
st one-armed professional <baseball> player . Hector Castro (
 is is no one way to run a <baseball> team or a ballet company
  " invariably refers to a <baseball> field . Baseball has oft
 ad out of the park with a <baseball> bat . Itchy and Scratchy
 all " , to the sayings of <baseball> star Yoqi Berra : " You
fortune in the 1980s as a <br/>
basketball>
player
, but it is his s
our favorite NRA and NCAA <br/>
e politicians is a former <br/>
basketball> team here ... Betting <br/>
basketball> star and another a forme
up was shown a video of a basketball game they were asked to
 with livestock or even a kbasketball> court in your garage . A
tatorship to the Athenian < democracy > of Summerhill . Institut
ace in roval mail . It is <democracy> versus authoritarianism
 who murdered hundreds of | < democracy | activists when they pour
 fully-fledged capitalist < democracy > with its own role to pla
tted to the rule of law , | <democracy | and human rights | that it
```

Matriz de co-ocurrencia

	player	field	court	Athenian	king	the
Baseball	475	350	5	1	115	975
Basketball	485	10	410	1	45	330
Democracy	1	5	2	350	10	375
Monarchy	35	1	4	7	276	1053

Matriz de co-ocurrencia

	player	field	court	Athenian	king	the
Baseball	475	350	5	1	115	975
Basketball	485	10	410	1	45	330
Democracy	1	5	2	350	10	375
Monarchy	35	1	4	7	276	1053

Interpretación geométrica

	player	king
Baseball	475	115
Basketball	485	45
Monarchy	35	276

king

Interpretación geométrica

	player	king
Baseball	475	115
Basketball	485	45
Monarchy	35	276

$$\cos \alpha = \frac{\vec{v}_{love} \cdot \vec{v}_{football}}{\|\vec{v}_{love}\| \|\vec{v}_{football}\|}$$

king

Efecto de las palabras muy frecuentes

	player	field	court	Athenian	king	the
Baseball	475	350	5	1	115	975
Basketball	485	10	410	1	45	330
Democracy	1	5	2	350	10	375
Monarchy	35	1	4	7	276	1053

Efecto de las palabras muy frecuentes

Efecto de las palabras muy frecuentes

	player	field	court	Athenian	king	the
Baseball	475	350	5	1	115	975
Basketball	485	10	410	1	45	330
Democracy	1	5	2	350	10	375
Monarchy	35	1	4	7	276	1053

$$PPMI(w, c) = \max\left(\log \frac{P(w, c)}{P(w, *)P(*, c)}, 0\right)$$

Positive Punctual Mutual Information

	player	field	court	Athenian	king	the
Baseball	475	350	5	1	115	975
Basketball	485	10	410	1	45	330
Democracy	1	5	2	350	10	375
Monarchy	35	1	4	7	276	1053

$$\frac{P(w,c)}{P(w,*)P(*,c)}$$

	player	field	court	Athenian	king	the
Baseball	475	350	5	1	115	975
Basketball	485	10	410	1	45	330
Democracy	1	5	2	350	10	375
Monarchy	35	1	4	7	276	1053

$$\frac{P(\text{baseball}, \text{player})}{P(\text{baseball}, *)P(*, \text{player})}$$

	player	field	court	Athenian	king	the
Baseball	475	350	5	1	115	975
Basketball	485	10	410	1	45	330
Democracy	1	5	2	350	10	375
Monarchy	35	1	4	7	276	1053

$$\log \frac{P(\text{baseball}, \text{player})}{P(\text{baseball}, *)P(*, \text{player})}$$

	player	field	court	Athenian	king	the
Baseball	475	350	5	1	115	975
Basketball	485	10	410	1	45	330
Democracy	1	5	2	350	10	375
Monarchy	35	1	4	7	276	1053

$$PPMI(w, c) = \max \left(\log \frac{P(\text{baseball}, \text{player})}{P(\text{baseball}, *)P(*, \text{player})}, 0 \right)$$

	player	field	court	Athenian	king	the
Baseball	475	350	5	1	115	975
Basketball	485	10	410	1	45	330
Democracy	1	5	2	350	10	375
Monarchy	35	1	4	7	276	1053

P(baseball, player)

	player	field	court	Athenian	king	the
Baseball	475	350	5	1	115	975
Basketball	485	10	410	1	45	330
Democracy	1	5	2	350	10	375
Monarchy	35	1	4	7	276	1053

	player	field	court	Athenian	king	the
Baseball	475	350	5	1	115	975
Basketball	485	10	410	1	45	330
Democracy	1	5	2	350	10	375
Monarchy	35	1	4	7	276	1053

	player	field	court	Athenian	king	the
Baseball	0.38	0.97	0	0	0	0
Basketball	0.21	0	0.94	0	0	0.03
Democracy	0	0	0	1.93	0	0
Monarchy	0	0	0	0	1.86	0.01

$$PPMI(w, c) = \max \left(\log \frac{P(\text{baseball}, \text{player})}{P(\text{baseball}, *)P(*, \text{player})}, 0 \right)$$

	player	field	court	Athenian	king	the	 	
Baseball	0.38	0.97	0	0	0	0		
Basketball	0.21	0	0.94	0	0	0.03		
Democracy	0	0	0	1.93	0	0		
Monarchy	0	0	0	0	1.86	0.01		
				<u> </u>				

¡Un montón! (10k – 100k)

Descomposición en valores singulares

Descomposición en valores singulares (SVD).

Vectores de palabras y vectores de contextos

Representaciones semánticas distribuídas basadas en conteo

	U	1	2	3	4	5
Baseball	0.2	-1	-0.1	0	-0.4	0.2
Basketball (0.1	0.1	-0/5	0.2	-0.1	0.1
Democracy -	-0.5	-0.4	9	0.2	0.1	-0.5
Monarchy (0.3	-0.1	0.2	-0.2	0	0.3

Dimensiones abstractas representando algún tipo de contexto (p. ej. "jugador", "deportista", "árbitro", ...)

Representaciones distribuídas basadas en conteo

- Ventajas:
 - ¡Rápido!
- Desventajas:
 - No está claro qué estamos optimizando.
 - Necesidad de mantener explícitamente en memoria la matriz de coocurrencia.

Representaciones distribuídas basadas en predicción

- Asumimos un corpus de texto $T = [w_1, w_2, ..., w_{|T|}]$
- Observamos cada palabra w_i
- Por cada palabra w_i observamos las palabras que aparecen a no más de c (tamaño de ventana) posiciones de distancia.

... life, the universe and everything
$$w_i$$
 (= universe) $C_i = [w_{i-c}, ..., w_{i-1}, w_{i+1}, ..., w_{i+c}]$ (= [life, the, and, everything])

 Usamos la palabra central y el contexto en un problema de clasificación.

Representaciones distribuídas basadas en predicción

CBOW

• El objetivo de CBOW es predecir w_i a partir de C_i , o equivalentemente maximizar $P(w_i \mid C_i)$.

$$L = -\sum_{i=1}^{|T|} \log P(w_i|C_i)$$

CBOW

 Representamos el contexto como un bag of word embeddings:

$$h = \frac{1}{|C_i|} \sum_{w \in C_i} V_w$$

$$P(w_i|C_i) = \frac{\exp(\mathbf{V'}_{w_i} \cdot \mathbf{h})}{\sum_{w=1}^{N} \exp(\mathbf{V'}_{w} \cdot \mathbf{h})}$$

Skip-Gram

• El objetivo de Skip-gram es predecir cada $w_j \in C_i$ a partir de w_i , o equivalentemente maximizar $P(w_j | w_i)$.

$$L = -\sum_{i=1}^{|T|} \sum_{\substack{j=i-c\\j\neq i}}^{i+c} \log P(w_j|w_i)$$

Skip-Gram

Skip-Gram con Negative Sampling

• Aproximamos $P(w_i|w_i)$ usando N clasificadores binarios (uno por cada contexto):

$$f_j(w_i) = \sigma\left(V_{w_i} \cdot V'_{w_j}\right)$$

• De modo que podemos escribir:

$$P(w_j|w_i) \approx f_j(w_i) \prod_{k \neq j} (1 - f_k(w_i))$$

• Luego, el conjunto de contextos "negativos" puede ser aproximado por un subconjunto de K palabras vocabulario tomado al azar $C_n = \{w_1, w_2, ..., w_K : w_i \sim P_c\}, w_i \notin C_n$:

$$P(w_j|w_i) \approx f_j(w_i) \prod_{k \in C_n} (1 - f_k(w_i))$$

Skip-Gram con Negative Sampling

• Reemplazando la aproximación de la probabilidad en

$$L = -\sum_{i=1}^{|T|} \sum_{\substack{j=i-c\\j\neq i}}^{i+c} \log P(w_j|w_i)$$

Nos queda:

$$L = -\sum_{i=1}^{|T|} \sum_{\substack{j=i-c\\j\neq i}}^{i+c} \left(\log \sigma \left(V_{w_i} \cdot V'_{w_j} \right) - \sum_{k \in C_n} \log \sigma \left(V_{w_i} \cdot V'_{k} \right) \right)$$

Trucos bajo el capot

• La probabilidad de elegir una palabra para el conjunto de contextos negativos depende de una distribución de unigramas suavizada $\left(\alpha = \frac{3}{4}\right)$:

$$P_{c}(w) = \frac{\#(w)^{\alpha}}{\sum_{w'} \#(w')^{\alpha}}$$

• Las palabras del corpus son descartadas con probabilidad (parámetro $t=10^{-5}$):

$$P_{\rm disc} = 1 - \sqrt{\frac{t}{\#(w)}}$$

Entrenamiento de SGNS

•
$$L_{ij} = -\log \sigma \left(V_{w_i} \cdot V'_{w_j} \right) + \sum_{k \in C_n} \log \sigma \left(V_{w_i} \cdot V'_k \right)$$

• Entrenamiento por SGD:

$$V_{t} = V_{t-1} - \eta \sum_{\substack{j=i-c\\j\neq i}}^{t+c} \frac{\partial L_{ij}}{\partial V}$$

$$V'_{t} = V'_{t-1} - \eta \sum_{\substack{j=i-c\\j\neq i}}^{i+c} \frac{\partial L_{ij}}{\partial V'}$$

Entrenamiento de SGNS

$$\frac{\partial L_{ij}}{\partial V_{w_i}} = \left(\sigma\left(V'_{w_j} \cdot V_{w_i}\right) - 1\right) V'_{w_j} + \sum_{k \in C_n} \sigma(V'_{w_k} \cdot V_{w_i}) V'_{w_k}
\frac{\partial L_{ij}}{\partial V'_{w_j}} = \left(\sigma\left(V'_{w_j} \cdot V_{w_i}\right) - 1\right) V_{w_i}
\frac{\partial L_{ij}}{\partial V'_{w_k \in N_C}} = \sigma\left(V'_{w_j} \cdot V_{w_i}\right) V_{w_i}$$

Dependency-based word-embeddings

Levy and Goldberg (2014)

Evaluación Juicios de similitud

• Comparando los juicios de similitud entre palabras provistos por humanos con aquellos de los modelos (coseno).

- Datasets:
 - WordSim353
 - MEN
 - Rare Words
 - SimLex

money	cash	9.15
Maradona	football	8.62
love	sex	6.77
smart	stupid	5.81
governor	interview	3.25
king	cabbage	0.23

• Figura de mérito: spearman r.

Evaluación Analogías

- Semánticas: hombre/mujer como rey/?
- Sintácticas: caminando/caminó como nadando/?
- Figura de mérito: accuracy

Evaluación Resolución de Analogías

Versión aditiva :

$$\operatorname{argmax}_{w \in W - \{\text{hombre,mujer,rey}\}} \cos \left(v_w, v_{\text{mujer}} - v_{\text{hombre}} + v_{\text{rey}}\right)$$

• Versión multiplicativa:

$$\underset{\text{argmax}_{w \in W - \{\text{hombre,mujer,rey}\}}}{\operatorname{cos}\left(v_{w}, v_{\text{mujer}}\right) + \operatorname{cos}(v_{w}, v_{\text{rey}})} \frac{\operatorname{cos}\left(v_{w}, v_{\text{hombre}}\right) + \operatorname{cos}\left(v_{w}, v_{\text{hombre}}\right)}{\operatorname{cos}\left(v_{w}, v_{\text{hombre}}\right)}$$

pig:oink :: raven:nevermore

- pig : oink :: raven : nevermore
- pig : oink :: roadrunner : beep beep
- pig : oink :: bro : wassup
- pig : oink :: Homer Simpson : D'oh
- pig : oink :: Donald Trump : YOU'RE FIRED

https://graceavery.com/word2vec-fish-music-bass/

Aplicación de las representaciones semánticas distribuídas

Finetunning

- Cuando puedo entrenar los embeddings en mi tarea:
 - Tengo muchos datos
 - No hay palabras en el vocabulario de evaluación que no estén en el vocabulario de entrenamiento
- Si alguna de esas condiciones no se cumplen, mejor dejarlos donde están.

Día 2: Word embeddings y redes neuronales multi-capa

1. El significado de las palabras

2. Redes neuronales multi-capa y backpropagation

3. Elementos prácticos

Problemas en el PLN: Natural Language Inference (NLI)

 S_a : Una tortuga marina está cazando peces

 \Rightarrow

 S_b : Una tortuga está buscando comida

 S_a : Una tortuga marina está cazando peces

t

 S_b : Unos peces están cazando una tortuga.

Objetivo: entrenar un clasificador

$$\hat{y}(S_a, S_b) = \begin{cases} 1, & si S_a \Rightarrow S_b \\ 0, & si S_a \neq S_b \end{cases}$$

NLI con clasificador lineal

NLI con clasificador lineal

Función de activación sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Por ejemplo:

$$\boldsymbol{h} = \sigma(\boldsymbol{W}_1 \boldsymbol{x})$$

 x_1 **y** x_2 con valores grandes predicen sol

 x_1 **ó** x_2 con valores grandes predice sol

 x_1 y x_2 **no** tienen valores grandes predice sol

 x_1 y x_2 **no** tienen valores grandes predice sol

 x_1 **ó** x_2 con valores grandes, pero no ambos predice sol

 h_1 : x_1 y x_2 con valores grandes predicen lluvia h_2 : x_1 y x_2 con valores pequeños predicen lluvia

 h_1 y h_2 con valores pequeños predicen sol

Clasificador no lineal

Ni x_1 y x_2 tienen ambos valores grandes (h_1) Ni x_1 y x_2 tienen ambos valores pequeños (h_2)

Red neuronal de una capa

$$h = \sigma(W_1 x)$$

$$\hat{y} = \operatorname{softmax}(W_2 h)$$

- Puede representar cualquier función¹.
- Pero puede requerir un número exponencialmente grande de unidades en h.

¹ http://neuralnetworksanddeeplearning.com/chap4.html

Extendiendo a varias capas

$$h_1 = \sigma(W_1 x)$$

$$\boldsymbol{h}_2 = \sigma(\boldsymbol{W}_2 \boldsymbol{h}_1)$$

$$\boldsymbol{h}_3 = \sigma(\boldsymbol{W}_3 \boldsymbol{h}_2)$$

$$\hat{y} = \operatorname{softmax}(W_4 h_3)$$

Overfitting

Balance entre overfitting y underfitting

Entrenamiento por GD

 Los parámetros de la red se ajustan para minimizar el error

Grafo de cómputo

Backpropagation

 Recorre el grafo de cómputo en dirección inversa.

 Calcula el gradiente del error con respecto a cada cálculo intermedio y cada parámetro.

Backpropagation en el grafo de cómputo

Backpropagation en la suma

Backpropagation en la multiplicación

$$y = x_1 * x_2$$

Backpropagation en la transformación lineal

Backpropagation en la transformación lineal

$$\frac{\partial L}{\partial W_{ij}} = \frac{\partial L}{\partial y_i} \frac{\partial y_i}{\partial W_{ij}}$$

$$\frac{\partial L}{\partial W} = \frac{\partial L}{\partial y} x^{1}$$

$$\frac{\partial L}{\partial x_j} = \sum_{i} \frac{\partial L}{\partial y_i} \frac{\partial y_i}{\partial x_j}$$

$$\frac{\partial L}{\partial x_j} = \mathbf{W}_{\cdot j}^{\mathsf{T}} \frac{\partial L}{\partial \mathbf{y}}$$

$$\frac{\partial L}{\partial x} = W^{\mathsf{T}} \frac{\partial L}{\partial y}$$

$$y = Wx$$

Ejemplo

credito: stanford

Frameworks con grafos de cómputo dinámicos

PyTorch, Chainer, Theano, DyNet son algunos ejemplos.

```
import torch
x = torch.tensor(3.0, requires_grad=True)
y = torch.tensor(-4.0, requires_grad=True)
z = torch.tensor(2.0, requires_grad=True)
w = torch.tensor(0.0, requires_grad=True)
 = ((x * y) + (torch.max(z, w)))* 2
r.backward() # backpropagation
print("∂r/∂x", x.grad) # ∂r/∂x tensor(-8.)
print("ðr/ðy", y.grad) # ðr/ðy tensor(6.)
print("ðr/ðz", z.grad) # ðr/ðz tensor(2.)
print("ðr/ðw", w.grad) # ðr/ðw tensor(0.)
```

Funciones de activación

- La función de activación f se aplicada componente a componente.
- Para obtener el gradiente, se multiplica la derivada f' componente a componente.

$$\sigma(x) = \frac{1}{1 + \exp(-x)}$$

$$\sigma'(x) = \sigma(x)(1 - \sigma(x))$$
10 sigmoid
0.8
0.6
0.4
0.2 derivatives $\approx 0 \leftarrow$
0.0 \rightarrow derivatives ≈ 0

2.5

5.0

7.5

10.0

Vanishing gradient

http://neuralnetworksanddeeplearning.com/chap5.html

Procesamiento del Lenguaje Natural mediante Redes I

Conexiones residuales

$$\tanh(x) = \frac{\exp(x) - \exp(-x)}{\exp(x) + \exp(-x)} = 2\sigma(x) - 1$$
$$\tanh'(x) = 1 - \tanh(x)^2$$

Procesamiento del creditoje datamackeriante Redes Neuronales

$$ReLU(x) = \max(x, 0)$$

$$ReLU'(x) = \begin{cases} 1, & \text{si } x > 0 \\ 0, & \text{si } x < 0 \end{cases}$$

$$LeakyReLU(x) = max(x, 0.01)$$

LeakyReLU'(
$$x$$
) =
$$\begin{cases} 1, & \text{si } x > 0 \\ 0.01, & \text{si } x < 0 \end{cases}$$

crédito: datahacker.rs

Día 2: Word embeddings y redes neuronales multi-capa

- 1. El significado de las palabras
- 2. Redes neuronales multi-capa y backpropagation
- 3. Elementos prácticos

Tecnicas de regularización Early stopping

• Medimos la función de error en el set de <u>validación</u> después cada epoch. Si comienza a crecer, paramos.

Técnicas de regularización L1/L2

• Pedimos que el valor de los parámetros de la red sea pequeño, agregando un término de penalización a la función objetivo.

$$J(\Theta) = L(\hat{y}_{\Theta}, y) + \lambda \Omega(\Theta)$$

- L2: $\Omega(\Theta) = \|\Theta\|_2$
- L1: $\Omega(\Theta) = \|\Theta\|_1$
- Elastic Net: $\Omega(\Theta) = \lambda_1 \|\Theta\|_1 + \lambda_2 \|\Theta\|_2$

Tecnicas de regularización Dropout

• Se aplica sobre una matriz de pesos W.

• En cada aplicación de la red, con probabilidad p, se descarta temporalmente el peso W_{ij} .

Inicialización de los parámetros

• Es importante inicializar los parámetros en un buen punto.

Li et al. (2018)

Xavier initialization (Golorot and Bengio, 2010)

$$\Theta_i \sim U\left[-\frac{\sqrt{6}}{\sqrt{d_{in}+d_{out}}}, \frac{\sqrt{6}}{\sqrt{d_{in}+d_{out}}}\right]$$

Inicialización de los parámetros

• Es importante inicializar los parámetros en un buen punto.

• Keiming initialization (He et al., 2015):

$$\Theta_i \sim \mathcal{N}\left(0, \frac{2}{\sqrt{d_{in}}}\right)$$

Restarts y ensembles

Distintas inicializaciones llevan a soluciones distintas

- Podemos entrenar varios modelos empezando de puntos distintos (random seed) y:
 - Quedarnos con el que funciona mejor en validación (Útil en aplicaciones prácticas. Con ojo en research)
 - Usar la predicción promedio (ensemble).

Entrenamiento de una red neuronal en una precaria imagen

Resumen

- Podemos aprovechar grandes cantidades de texto para producir representaciones semánticas de las palabras.
- Aplicamos estas representaciones en una red neuronal aplicada a una tarea específica, ya sea como representaciones fijas o como punto de partida.
- Una red neuronal se construye como **composición de funciones** (generalmente involucrando transformaciones lineales y funciones de activación)
- Backpropagation calcula los gradientes. SGD actualiza los parámetros.
- Feedback Día 2: https://forms.gle/cPG2mAgQrcCtVwa98

Referencias

- Word2vec explained: https://arxiv.org/pdf/1411.2738.pdf
- Derivation of Backpropagation: https://www.cs.swarthmore.edu/~meeden/cs81/s10/BackPropDeriv.pdf.
- Bottou et al. (2012) Stochastic gradient descent tricks: https://cilvr.cs.nyu.edu/diglib/lsml/bottou-sgd-tricks-2012.pdf
- LeCun et al. (1998) Efficient Backprop http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
- Mikolov et al. (2013) Efficient estimation of word representations in vector space: https://arxiv.org/pdf/1301.3781