Deep Learning

Connectionism: AI by Mimicking the Human Brain

Perceptron (Rosenblatt 1958)

First try to emulate the functionality of a neuron

- Parameters: weights (w), bias (b)
- Threshold activation
- Binar/real-valued input, binary output

Multilayer Perceptron

 A single perceptron is not very useful, but you can combine many of them in layers in a "fully connected" network

Multilayer Perceptron

- First "artifical neural network", popular in the 1980s
- Somewhat limited in complexity by threshold activation (see next slide)
- Successful in classification and regression; it was shown that a MLP can approximate any mathematical function (Cybenko's theorem)

Activation Functions

More complexity using other activation

functions:

Training: Stochastic Gradient Descent

Follow the gradient to the minimum loss:

$$\vec{p}_{i+1} = \vec{p}_i - \alpha \nabla_p L(y, y')$$

- Stochastic: consider only part of the data sample at a time
- Biggest problem: calculate gradients in weight space

Backpropagation (Rumelhart et al. 1986)

Make use of chain rule of calculus:

$$f(x)=y,g(y)=z; \frac{dg}{dx}=\frac{dg}{dy}\frac{dy}{dx}$$

Account for all possible paths: summation

The Age of Shallow Learning (1980s - early 2000s)

- Feature selection + shallow learning more successful because:
 - Limited computational power
 - Limited data
- MLPs were superseded by much simpler Support Vector Machines and other models
- Mostly theoretical progress in Neural Networks

The Age of Deep Learning (2010+)

- No feature selection + deep learning:
 - Computation is cheap (GPUs)
 - Data is plenty (internet)

 ImageNet object recognition challenge: 14M images 20k different classes

AlexNet

AlexNet

- Similar framework to LeCun'98 but:
 - Bigger model (7 hidden layers, 650,000 units, 60,000,000 params)
 - More data (10⁶ vs. 10³ images)
 - GPU implementation (50x speedup over CPU)
 - · Trained on two GPUs for a week

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012

Convolutional Neural Networks

Convolutional layers

Require equidistant data: images!

Convolutional Neural Network

- New regularization tools:
 - Max pooling: only keep max value from input
 - Dropout: skip random units
- Convolution provides translational invariance
- Example: MNIST handwritten digits

Recurrent Neural Network

 Serial input data; predict next input value (e.g., language or time-series data)

Example: DeepL translator

Decoder-Encoder Networks (Autoencoders)

 Transform input data into code space and then try to replicate the original data as good as possible

Idea: learn efficient representation of input data

Generative Adversarial Networks

- Learn input data distribution to generate new data
- Example: celebrity images
- Example: NVIDIA GauGAN
- Example: Deep Fakes

Other Cool Stuff

- MuseNet
- Neural Transfer
- Adversarial Attacks