Picard 小定理简介

定理一览

Thm. (开映射定理) U 为 $\mathbb C$ 上开区域, 非常值函数 $f\in \operatorname{Hol}(U)$, 则 f 为开映射.

Thm. (Bloch 定理) 若 $f \in \operatorname{Hol}(\overline{\mathbb{D}})$ 满足

$$|f'(z)|(1-|z|^2)\in C(\overline{\mathbb{D}}),$$

记 $M=\sup_{z\in\overline{\mathbb{D}}}|f'(z)|(1-|z|^2)$,最大值在z=p处取达,则

$$D(f(p),(3/2-\sqrt{2})M)\subset f(\mathbb{D}).$$

Col. 若 $f \in \operatorname{Hol}(\overline{\mathbb{D}})$ 且 f'(0) = 1, 则 $f(\mathbb{D})$ 包含半径为 $\frac{3}{2} - \sqrt{2}$ 的圆.

Thm. (Ahlfor) 若非常数值的全纯函数 $f \subset \operatorname{Hol}(\overline{\mathbb{D}})$ 满足

$$|f'(z)|(1-|z|^2)\in C(\overline{\mathbb{D}}).$$

记 $|f'(z)|(1-|z|^2)$ 在 $p\in\mathbb{D}$ 处取得最大值 M,则 $f(\mathbb{D})$ 包含一个半径为 $\frac{\sqrt{3}}{4}M$ 的圆盘且 f 与该圆盘建立双全纯映射.

Thm. (Koebe $rac{1}{4}$ 定理) 全纯函数 $f\in\operatorname{Hol}(\overline{\mathbb{D}})$, 则

$$D(f(0), |f'(0)|/4) \subset f(\mathbb{D}).$$

Thm. (Picard 小定理) 若整函数 (\mathbb{C} 上的全纯函数) 在 \mathbb{C} 上的值域略去两个点, 则为常函数.

Thm. (Picard 大定理) 任一全纯函数在其本性奇点的邻域内无穷多次地取到 $\mathbb C$ 中几乎所有数, 至多可能除去一个例外值.

Bloch

Lemma. (弱 Bloch 定理, 将 $|z|^2$ 换做 $|z|^1$) 若非常值全纯函数 $f\subset\operatorname{Hol}(\overline{\mathbb D})$ 满足

$$|f'(z)|(1-|z|)\in C(\overline{\mathbb{D}}).$$

记 |f'(z)|(1-|z|) 在 $p\in\mathbb{D}$ 处取得最大值 M, 则

$$D(f(p),(3/2-\sqrt{2})M)\subset f(\mathbb{D}).$$

Proof. 不失一般性地设 f(0)=0. 置 A(z)=f(z)-zf'(0). 则 $\forall r>|z|$, 均有

$$egin{aligned} |A(z)| & \leq \int_0^1 |f'(zt) - f'(0)| \cdot |z| \mathrm{d}t \ & = \int_0^1 \left| rac{zt}{2\pi i} \oint_{\partial D(a;r)} rac{f'(\zeta) \mathrm{d}\zeta}{\zeta(\zeta - zt)}
ight| \cdot |z| \mathrm{d}t \ & \leq \int_0^1 rac{|zt| \cdot |f'|_{\max_{\partial D(a;r)}}}{r - |zt|} \cdot |z| \mathrm{d}t \ & \leq rac{|z|^2 \cdot |f'|_{\max_{\partial D(a;r)}}}{2(r - |z|)}. \end{aligned}$$

从而
$$|f(z)| \geq |f'(0)| \cdot |z| - rac{|z|^2 \cdot |f'|_{\max_{\partial D(a;r)}}}{2(r-|z|)}.$$
 记 $r_0 = rac{1-|p|}{2}$, 则对 $orall z \in D(p;t)$, $|f'(z)|(1-|z|) \leq M = 2r_0|f'(p)| \leq 2(1-|z|) \cdot |f'(p)|.$

等价地, $|f'(z)| \leq 2|f'(p)|$. 今置 A(z)=f(z)-(z-p)f'(p)-f(p), 不妨设 f(p)=0, 则对任意 $z\in D(p;r_0)$ 均有

$$\begin{split} |A(z)| & \leq \int_0^1 |f'(tz + (1-t)p) - f'(p)| \cdot |z - p| \mathrm{d}t \\ & = \int_0^1 \left| \frac{(z-p)t}{2\pi i} \oint_{\partial D(p;r_0)} \frac{f'(\zeta) \mathrm{d}\zeta}{(\zeta - p)(\zeta - zt - (1-t)p)} \right| \cdot |z - p| \mathrm{d}t \\ & \leq \int_0^1 \frac{|z - p| \cdot t \cdot |f'|_{\max_{\partial D(p;r_0)}}}{r_0 - |zt|} \cdot |z - p| \mathrm{d}t \\ & \leq \frac{|z - p|^2 \cdot |f'|_{\max_{\partial D(p;r_0)}}}{2(r_0 - |z - p|)} \\ & \leq \frac{|z - p|^2 \cdot |f'(p)|}{2(r_0 - |z - p|)}, \end{split}$$

以及

$$|A(z)| \geq |f'(p)| \cdot |z-p| - |f(z)|.$$

故

$$egin{aligned} \sup_{0 \leq r \leq r_0} \inf_{|z-t| = r} |f(z)| &\geq \sup_{|z-p| \in [0,r_0)} \left(|z-p| - rac{|z-p|^2}{r_0 - |z-p|}
ight) |f'(p)| \ &= \sup_{|z-p| \in [0,r_0)} \left[3r_0 - \left(2(r_0 - |z-p|) + rac{r_0^2}{r_0 - |r_0 - r|}
ight)
ight] \cdot |f'(p)| \ &= (3 - 2\sqrt{2}) r_0 |f'(p)|, \quad |z-p| = (1 - \sqrt{2}^{-1}) r_0 \ &= (3/2 - \sqrt{2}) (1 - |p|) |f'(p)| \ &= (3/2 - \sqrt{2}) M \end{aligned}$$

Thm. (Bloch 定理) 若 $f \in \operatorname{Hol}(\overline{\mathbb{D}})$ 满足

$$|f'(z)|(1-|z|^2)\in C(\overline{\mathbb{D}}),$$

记 $M = \sup_{z \in \overline{\mathbb{D}}} |f'(z)| (1 - |z|^2)$, 最大值在 z = p 处取达, 则

$$D(f(p),(3/2-\sqrt{2})M)\subset f(\mathbb{D}).$$

Proof. 对满足 Bloch 定理弱性质之解f, 下从族 $\mathcal{F}:=\{f\circ \varphi\mid \varphi\in \operatorname{Aut}(\mathbb{D})\}$ 寻找解.

由于
$$\varphi$$
 具有一般形式 $\varphi(z)=rac{z-z_0}{1-z\overline{z_0}}\cdot e^{i heta}$, 其中 $|arphi'(0)|=1-|z_0|^2$. 因此

$$|h'(0)| = |f'(\omega)| \cdot (1 - |\omega|^2), \quad \omega = -z_0 e^{i\theta}.$$

不妨设 $f'(\omega) \cdot (1-|\omega|^2)$ 在 $\omega=q$ 时取得最大值 M, 今置

$$F(z) = f\left(rac{q-z}{1-z\overline{q}}
ight), \quad (F:0\mapsto f(q)).$$

因此对任意 $r \in (0,1)$ 均有

$$\max_{|z| \le r} |F'(z)| \le \max_{|z| \le r} rac{M}{1 - |z|^2} = rac{M}{1 - r^2}.$$

故 $\max_{z\in\mathbb{D}}|F'(z)|(1-|z|^2)\leq M$. 注意到 $\max_{z\in D(0;\sqrt{2}/2)}|F'(z)|\leq 2|F'(0)|$, 参考若形式之证明令 $A_0(z)=F(z)-zF'(0)$. 故 $F(D(0,\sqrt{2}/2))$ 包圆盘 $D(F(0),(3/2-\sqrt{2})M)$. 注意到 $F(\mathbb{D})$ 与 $f(\mathbb{D})$ 有相同的相. 因此

$$D(f(q), (3/2 - \sqrt{2})M) \subset f(\mathbb{D}).$$

Def. 定义 Bloch 函数族如下

$$\mathcal{B}:=\{f\in \operatorname{Hol}(\mathbb{D})\mid \sup_{z\in \mathbb{D}}|f'(z)|\cdot (1-|z|^2)<\infty\}.$$

Prop. \mathcal{B} 关于如下范数完备

$$\|f\|:=f(0)+\sup_{z\in\mathbb{D}}|f'(z)|(1-|z|^2)\quadigg(\leq 2\sup_{z\in\mathbb{D}}|f(z)|igg).$$

Koebe $\frac{1}{4}$ 定理

Lemma. (Grönwall) 若函数 $g(z)=z+\sum_{n\geq 0}b_nz^{-n}$ 在单位圆盘外单叶, 则

$$\sum_{n\geq 1} n|b_n|^2 \leq 1.$$

Proof. 对 r>1, 取围道 $C_r:=\{g(z):|z|=r\}$, 取 E_r 为 C_r 所围的紧集. 其面积为

$$egin{aligned} A(E_r) &= \int_{E_r} \mathrm{d}A = rac{1}{2i} \int_{C_r} \overline{\omega} \mathrm{d}\omega = rac{1}{2i} \int_{C_r} (\overline{g} \cdot g')(z) \mathrm{d}z \ &= rac{1}{2} \int_0^{2\pi} \left(r e^{-i heta} + \sum_{n \geq 0} \overline{b_n} r^{-n} e^{in heta}
ight) \cdot \left(1 - \sum_{m \geq 0} m b_m r^{-m-1} e^{-i(m+1) heta}
ight) r e^{i heta} \mathrm{d} heta \ &= \pi \left(r^2 - \sum_{n \geq 1} n |b_n|^2 r^{-2n}
ight) \ &\stackrel{r o 1^+}{\longrightarrow} \pi \left(1 - \sum_{n \geq 1} n |b_n|^2
ight). \end{aligned}$$

注意到 $|b_1| \leq \sum_{n \geq 1} n |b_n|^2 \leq 1$ 取等时 $|b_1| = 1$. 此时 $g(z) = z + b_0 + rac{b_1}{z}$.

Def. (Schlicht函数) 记 \mathcal{S} 为所有Schlicht函数之集合. 任取 $f \in \mathcal{S}$, 有

- $f \in \operatorname{Hol}(\mathbb{D})$, 且 $f \in \mathbb{D}$ 上为单射 (故为单叶映射),
- f(0) = 0, $\exists f'(0) = 1$.

Prop. $f(z)=z+\sum_{\geq 2}c_nz^n$ 为 $f\in\mathcal{S}$ 之一般形式.

Def. (Koebe函数) Koebe 函数为

$$f(z) = \frac{z}{(1-z)^2} = \sum_{n \ge 1} nz^n.$$

Def. 可通过旋转 Koebe 函数得到广义 Koebe 函数

$$f_{lpha}(z)=rac{z}{(1-lpha z)^2},\quad |lpha|=1.$$

Prop. 广义 Koebe 函数为 Schlicht函数.

Lemma. (Bieberbach) 对函数 $f(z)=z+\sum_{n\geq 2}a_nz^n\in\mathcal{S}$, $|a_2|\leq 2$ 若且仅若f为 Koebe 函数.

Proof. 构造平方根变换(取其中一叶即可)

$$g(z) = rac{1}{f(z^{-2})^{-1/2}} = z - rac{a_2}{2} \cdot rac{1}{z} + \cdots.$$

取等时 $g(z)=z-rac{lpha}{z}$, 此处 |lpha|=1.

回推得 $f(w)=rac{z}{(1-lpha z)^2}=f_lpha(w)$ 为 Koebe 旋转函数.

Thm. (Koebe $rac{1}{4}$ 定理) 全纯函数 $f\in \mathrm{Hol}(\overline{\mathbb{D}})$, 则

$$D(f(0), |f'(0)|/4) \subset f(\mathbb{D}).$$

 $extit{Proof.}$ 不妨取 $f(z)=z+\sum_{n\geq 2}a_nz^n\in\mathcal{S}$. 由于 $f(\mathbb{D})$ 非全空间, 任意取 $\omega\in\mathbb{C}\setminus f(\mathbb{D})$. 考虑单叶映射

$$h_{\omega}(z)=rac{1}{f(z)}-rac{1}{\omega}=rac{\omega f(z)}{\omega-f(z)}=z+(a_2+\omega^{-1})z^2+\cdots.$$

根据 Bieberbach 之引理, $|\omega^{-1}| \leq |a_2| + |a_2 + \omega^{-1}| \leq 2+2$, 故 $|\omega| \geq 4$. 由于 $\omega \in \mathbb{C} \setminus f(\mathbb{D})$ 之任意性, $f(\mathbb{D})$ 包含半径为 1/4 之圆盘.

Prop. Koebe $\frac{1}{4}$ 定理中的 1/4 为最佳系数.

Proof. Koebe 函数 $f(z)=rac{z}{(1-z)^2}$ 将 $\mathbb D$ 映射作 $\mathbb C\setminus[-\infty,1/4]$. 因此, 存在 f 使得

$$D(f(0),|f'(0)|(1/4+\varepsilon)) \not\subset f(\mathbb{D})$$

对一切 $\varepsilon > 0$ 成立.

Picard 小定理

Thm. (Picard 小定理) 若整函数的值域在 \mathbb{C} 上略去两个点,则为常函数.

Proof. 下采用反证法证明 Picard 小定理. 不失一般性地, 设整函数 f 在 $\mathbb C$ 上取值略过 ± 1 , 则函数 $1-f^2$ 无零点, 从而存在整函数 g 使得 $g^2=1-f^2$.

注意到 (f+ig)(f-ig)=1, 故存在整函数 F 使得 $f+ig=e^{i\pi F}$. 于是

$$f=rac{1}{2}(e^{iF}+e^{-iF})=\cos\pi F.$$

而注意到 F 略去 $\{\pm 1\}$ 两点, 故

$$\exists \varphi \in \operatorname{Hol}(\mathbb{C}) ext{ s.t. } f = \cos(\pi \cos(\pi \varphi)).$$

对上述 arphi, $arphi(\mathbb{C})$ 不包含某一半径之圆盘. 从而与 Bloch's 定理或 Koebe $\frac{1}{4}$ 定理矛盾.

$$A := \mathbb{Z} + \{ \pm i \pi^{-1} \log(n + \sqrt{n^2 - 1}) \}.$$

不难验证 $g(\mathbb{C})\cap A=\emptyset$. 注意到 A 中各点与纵向最近点相隔距离 1 且与横向最近点相隔距离不超过 $2\pi^{-1}\log(2+\sqrt{3})$. 是以 A 所能容纳圆盘之半径之最大值有限, 导出矛盾. Picard小定理得证.

Prop. \mathbb{C} 上的亚纯函数若略去三个取值,则为常函数.

思考题

Ex1. 如何从 Bloch 定理或 Koebe $\frac{1}{4}$ 定理得出以下推论

$$f \in H(\mathbb{C}) \implies \forall r > 0, \exists x_0 \text{ s.t. } D(x_0, r) \subset f(\mathbb{C}).$$

Ex2. 证明 Picard 小定理之等价形式

$$f,g\in H(\mathbb{C}) \text{ and } 1=e^f+e^g\Rightarrow f,g \text{ are constant.}$$

Ex3. 探索 $f \in H(\mathbb{C})$ 在 \mathbb{C} 上取至所有值之充要条件.

Hint: 考虑 $f = p \cdot e^g$, 这里p为多项式函数.

Ex4. (不动点定理) 设 $f \in H(\mathbb{C})$, 则 $f \circ f$ 在 \mathbb{C} 上有不动点, 反之 f为平移变换.

Hint: 设
$$f\circ f$$
无不动点, 考虑 $g(z)=rac{f(f(z))-z}{f(z)-z}.$

Ex5. (2020年丘成桐数学竞赛分析部分) 对 $\forall n \geq 3$, 若整函数 f 与 g 满足 $f^n + g^n = 1$, 则 f 与 g 为常函数.

Hint: 本题解法较易, 与费马最后定理无关. 数学 Riemann 曲面相关知识者会认为这是到水题.

Ex6. (上一题加强形式) 若将全纯改至亚纯, 则 f = q 的所有pole(s)——对应.

Ex7. 证明: 存在 \mathbb{C} 上非常值亚纯函数 f, q 使得 $f^3 + q^3 = 1$.

Hint: 请回忆

$$(\wp'(z))^2 - 4\wp^3(z) + 60G_4\wp(z) + 140G_6 = 0.$$

以此验证

$$\left(\frac{\Gamma(1/3)^6}{8\pi^2} + \frac{\pi\wp'(z)}{\sqrt{3}\Gamma(1/3)^3}\right)^3 + \left(\frac{\Gamma(1/3)^6}{8\pi^2} - \frac{\pi\wp'(z)}{\sqrt{3}\Gamma(1/3)^3}\right)^3 = \wp^3(z).$$