Задача 3-1.

Дан ϵ -НКА A и строка T. Необходимо найти самую длинную подстроку T, которую допускает A.

В первой строке входа — числа n, m и k — количество состояний, количество переходов и количество терминальных состояний автомата A. Состояния автомата нумеруются от 0 до n-1, начальное состояние имеет номер 0. В следующей строке k различных чисел от 0 до n-1 — номера терминальных состояний A. В следующих m строках заданы переходы автомата. Переход задается тройкой "a b c", означающей, что из состояния номер a по символу b (в качестве которого может выступать либо маленькая латинская буква, либо символ \$, заменяющий собой ϵ) есть переход в состояние номер c. В последней строке входного файла — строка T. Ограничения: $1 \le k \le n \le 1\,000$, $0 \le m \le 10\,000$, $1 \le |T| \le 1\,000$.

Выведите самую длинную непустую подстроку T, которую допускает A. Если таких подстрок несколько, выберите ту, которая раньше начинается в строке T. Если такой подстроки не существует, выведите сообщение No solution.

Сложность вашего решения не должна превосходить O((m+n)|T|).

Пример входа	Пример выхода
7 6 2	abc
2 6	
0 a 1	
1 b 2	
0 \$ 3	
3 a 4	
4 b 5	
5 c 6	
xabcd	
2 1 1	No solution
1	
0 x 1	
abc	

Задача 3-2.

Bam предлагается реализовать операцию преобразования BWT (Burrows-Wheeler Transform, см. en.wikipedia.org/wiki/Burrows-Wheeler_transform)

Дана непустая строка α , состоящая из строчных латинских букв. Длина n строки не превосходит 100 000. Преобразование осуществляется следующим образом:

- рассматриваются все циклические сдвиги α (всего n строк),
- сдвиги сортируются в лексикографическом порядке и записываются в виде символьной матрицы M размера $n \times n$,
- ullet результатом объявляется строка, получающаяся чтением (сверху вниз) последнего столбца матрицы M.

Например, если $\alpha = ababc$, то получится следующая матрица:

$$M = \left(egin{array}{ll} {
m a} \ {
m b} \ {
m a} \ {
m b} \ {
m c} \ {
m a} \ {
m b} \ {
m c} \ {
m a} \ {
m b} \ {
m c} \ {
m a} \ {
m b} \ {
m c} \ {
m a} \ {
m b} \ {
m c} \ {
m a} \ {
m b} \ {
m a} \ {
m b} \ {
m c} \ {
m a} \ {
m b} \ {
m a} \ {
m b} \ {
m c} \ {
m a} \ {
m b} \ {
m a} \ {
m b} \ {
m c} \ {
m a} \ {
m b} \ {
m a} \ {
m b} \ {
m c} \ {
m a} \ {
m b} \ {
m a} \ {
m b} \ {
m c} \ {
m a} \ {
m b} \ {
m c} \ {
m a} \ {
m b} \ {
m c} \ {
m$$

Итак, ответом будет строка сваав.

Выведите единственную строку — результат преобразования строки α .

Пример входа	Пример выхода
ababc	cbaab
a	a
aaaaa	aaaaa
abcde	eabcd

Задача 3-3.

Дана строка S. Необходимо найти количество ее различных непустых подстрок. Подстроки считаются одинаковыми, если они совпадают, как отдельно взятые строки.

В единственной строке входна — строка S длины не более $100\,000$, состоящая из строчных латинских букв.

Выведите число различных подстрок S.

Пример входа	Пример выхода
abc	6
aba	5
aaa	3

Задача 3-4.

Вам предлагается реализовать алгоритм, схожий с тем, что применяется в методах сжатия LZ (http://en.wikipedia.org/wiki/LZ77_(algorithm)).

Вам дана строка α , состоящая из строчных латинских букв. Необходимо для каждой позиции i в строке α найти наибольшую по длине подстроку β , начинающуюся в позиции i в α , которая также ранее встречается в строке α . Иными словами, нужно найти наибольшую длину $l_i \geq 0$, для которой найдется позиция i' < i, такая что $\alpha[i'..i'+l_i-1]=\alpha[i..i+l_i-1]$.

На входе задана единственная строка α .

Выведите n чисел l_i (где n — длина α), по одному в строке. $1 \le n \le 100~000$.

«Алгоритмы и структуры данных поиска» (версия от 25 марта 2013 г.)

Пример входа	Пример выхода
ababaab	0
	0
	3
	2
	1
	2
	1
aaaaa	0
	4
	3
	2
	1