REGRESSION

USING LINEAR REGRESSION TO PREDICT CONTINUOUS VARIABLE

	ENGINESIZE	CYLINDERS	FUELCONSUMPTION_COMB	CO2EMISSIONS
0	2.0	4	8.5	196
1	2.4	4	9.6	221
2	1.5	4	5.9	136
3	3.5	6	11.1	255
4	3.5	6	10.6	244
5	3.5	6	10.0	230
6	3.5	6	10.1	232
7	3.7	6	11.1	255
8	3.7	6	11.6	267
9	2.4	4	9.2	?

DEPENDENT VS INDEPENDENT VARIABLES

ependent vari	Y: D				
COZEMISSIONS	FUELCONSUMPTION_COMB	CYLINDERS	ENGINESIZE		
196	8.5	4	2.0		
221	9.6	4	2.4		
136	5.9	4	1.5	2	
255	11.1	6	3.5	1	
244	10.6	6	3.5		
230	10.0	6	3.5		
232	10.1	6	3.5		
255	11.1	6	3.7		
267	11.6	6	3.7		
?	9.2	4	2.4		

X: Independent variable

Y:	Dei	pen	de	nt	var	ia	Ы	e
			-			-	-	_

	ENGINESIZE	CYLINDERS	FUELCONSUMPTION_COMB	CO2EMISSIONS
0	2.0	4	8.5	196
1	2.4	4	9.6	221
2	1.5	4	5.9	136
3	3.5	6	11.1	255
4	3.5	6	10.6	244
5	3.5	6	10.0	230
6	3.5	6	10.1	232
7	3.7	6	11.1	255
8	3.7	6	11.6	267
9	2.4	4	9.2	?

X: Independent variable

Y: Dependent variable

	ENGINESIZE	CYLINDERS	FUELCONSUMPTION_COMB	CO2EMISSIONS
0	2.0	4	8.5	196
1	2.4	4	9.6	221
2	1.5	4	5.9	136
3	3.5	6	11.1	258
4	3.5	6	10.6	244
5	3.5	6	10.0	230
6	3.5	6	10.1	232
7	3.7	6	11.1	258
8	3.7	6	11.6	267
9	2.4	4	9.2	?

Continuous Values

REGRESSION TYPE

- SIMPLE LINEAR REGRESSION
 - Predict co2emission vs EngineSize of all cars
 - Independent variable (x): EngineSize
 - Dependent variable (y): co2emission
- MULTIPLE LINEAR REGRESSION
 - Predict co2emission vs EngineSize and Cylinders of all cars
 - Independent variable (x): EngineSize, Cylinders, etc.
 - Dependent variable (y): co2emission

SIMPLE LINEAR REGRESSION

FITTING LINE

$$\hat{\mathbf{y}} = \theta_0 + \theta_1 \mathbf{x}_1$$

θ0 and θ1 are also called the coefficients of the linear equation. Slope and intercept respectively

HOW TO FIND BEST FIT?

Error =
$$y - \hat{y}$$

= 250 - 340
= -90

This means our prediction line is not accurate.

This error is also called the residual error.

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

OBJECTIVE

THE OBJECTIVE OF LINEAR REGRESSION IS TO MINIMIZE THIS MSE
 EQUATION, AND TO MINIMIZE IT, WE SHOULD FIND THE BEST PARAMETERS,
 ΘO AND Θ1

- ACTUALLY, WE HAVE TWO OPTIONS HERE:
- OPTION 1 WE CAN USE A MATHEMATIC APPROACH.
- OPTION 2 WE CAN USE AN OPTIMIZATION APPROACH.

ESTIMATING THE PARAMETERS

$$\theta_0 = 125.74$$

PREDICTING WITH LINEAR REGRESSION

$\hat{y} = \theta_0 + \theta_1 x_1$	CO2EMISSIONS	FUELCONSUMPTION_COMB	CYLINDERS	ENGINESIZE	
	196	8.5	4	2.0	0
$Co2Emission = \theta_0 + \theta_1 EngineSize$	221	9.6	4	2.4	1
Collemination - 125 - 20 Francisco	136	5.9	4	1.5	2
Co2Emission = 125 + 39 EngineS	255	11.1	6	3.5	3
$Co2Emission = 125 + 39 \times 2.4$	244	10.6	6	3.5	1
Co2Emission = 218.6	230	10.0	6	3.5	5
00201111001011	232	10.1	6	3.5	3
	255	11.1	6	3.7	,
	267	11.6	6	3.7	B
	?	9.2	4	2.4	9

REGRESSION TYPE

- Predict co2emission vs EngineSize and Cylinders of all cars
 - Independent variable (x): EngineSize, Cylinders, etc.
 - Dependent variable (y): co2emission

MULTIPLE LINEAR REGRESSION

EXAMPLES OF MLR

- Independent variables effectiveness on prediction
 - Does revision time, test anxiety, lecture attendance and gender have any effect on the exam performance of students?
- Predicting impacts of changes
 - How much does blood pressure go up (or down) for every unit increase (or decrease) in the BMI of a patient?

PREDICTING WITH MLR

 $Co2 Em = \theta_0 + \theta_1 Engine size + \theta_2 Cylinders + ...$

$$\hat{y} = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

$$\hat{y} = \theta^T X$$

$$\theta^T {=} \left[\theta_0, \theta_1, \theta_2, \dots \right]$$

$$X = \begin{bmatrix} 1 \\ x_1 \\ x_2 \\ \dots \end{bmatrix}$$

	ENGINESIZE	CYLINDERS	FUELCONSUMPTION_COMB	CO2EMISSIONS
0	2.0	4	8.5	196
1	2.4	4	9.6	221
2	1.5	4	5.9	136
3	3.5	6	11.1	255
4	3.5	6	10.6	244
5	3.5	6	10.0	230
6	3.5	6	10.1	232
7	3.7	6	11.1	255
8	3.7	6	11.6	267
9	2.4	4	9.2	?

• How to estimate θ ?

- Ordinary Least Squares
 - Linear algebra operations
 - Takes a long time for large datasets (10K+ rows)
- An optimization algorithm
 - Gradient Descent
 - Proper approach if you have a very large dataset

PREDICTING VALUES

	ENGINESIZE	CYLINDERS	FUELCONSUMPTION_COMB	CO2EMISSIONS	θ^T = [125, 6.2, 14,]
0	2.0	4	8.5	196	$\hat{y} = 125 + 6.2x_1 + 14x_2 +$
1	2.4	4	9.6	221	
2	1.5	4	5.9	13	Co2Em = 125 + 6.2EngSize + 14Cylinders +
3	3.5	6	11.1	25	doublin 120 Colubrigotae (Co)
4	3.5	6	10.6	244	C-0F 40F - C 0 44
5	3.5	6	10.0	230	$Co2Em = 125 + 6.2 \times 2.4 + 14 \times 4 +$
6	3.5	6	10.1	232	
7	3.7	6	11.1	255	Co2Em = 214.1
8	3.7	6	11.6	267	
9	2.4	4	9.2	?	

Q & A

- How to determine whether to use simple or multiple linear regression?
 - How many independent variables should you use?
 - Should the independent variable be continuous?
 - What are the linear relationships between the dependent variable and the independent variables?

NON-LINEAR REGRESSION

	Year	Value
0	1960	5.918412e+10
1	1961	4.955705e+10
2	1962	4.668518e+10
3	1963	5.009730e+10
4	1964	5.906225e+10
5	1965	6.970915e+10
6	1966	7.587943e+10
7	1967	7.205703e+10
8	1968	6.999350e+10
9	1969	7.871882e+10

NON-LINEAR REGRESSION

- To model non-linear relationship between the dependent variable and a set of independent variables
- ŷ must be a non-linear function of the parameters θ, not necessarily the features x

$$\hat{y} = \theta_0 + \theta_2^2 x$$

$$\hat{y} = \theta_0 + \theta_1 \theta_2^x$$

$$\hat{y} = \log(\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3)$$

$$\hat{y} = \frac{\theta_0}{1 + \theta_1^{(x - \theta_2)}}$$

LINEAR VS NON LINEAR REGRESSION

- How can I know if a problem is linear or non-linear in an easy way?
 - Inspect visually

It's best to plot bivariate plots of output variables with each input variable.

Also, you can calculate the correlation coefficient between independent and dependent variables, <u>and if for all variables it is 0.7</u> or higher there is a linear tendency

- How should I model my data, if it displays non-linear on a scatter plot?
 - Polynomial regression
 - Non-linear regression model
 - Transform your data

POLYNOMIAL VS NON-LINEAR REGRESSION

POLYNOMIAL REGRESSION FITS A CURVE LINE TO YOUR DATA. A SIMPLE EXAMPLE OF A POLYNOMIAL WITH A
DEGEE OF 3 CAN BE SHOWN AS:

$$y-hat=b_0+b_1x^1+b_2x^2+b_3x^3$$
3rd degree polynomial regression

Where BO is the intercept or bias unit and B1 to B3 are the slopes of each independent value of variable X.

It sure looks like a feature set for a multiple linear regression right? Just like the one below, Yes, it does. Indeed a polynomial regression is a special case of multiple linear regression, with the main idea of 'how do you select your features?'.

$$y - hat = b_0 + b_1 x_1^1 + b_2 x_2^2 + b_3 x_3^3$$

3rd degree multiple linear regression 3 variables

WHERE B0 is the intercept or bias unit and B1 to B3 are the slopes of each independent variable x1 to x3

COMMON TYPES OF NON-LINEAR REGRESSION

• Before we go on, let's briefly look at linear regression. It is of the equation:

$$Y = B\mathbf{0} + B\mathbf{1}X\mathbf{1}$$

Linear regression models a relationship between a dependent variable γ and the independent variable χ . This relationship has a degree of 1.

1. CUBIC

- A CUBIC FUNCTION IS OF THE FORM: Y_HAT IS EQUAL TO INTERCEPT PLUS VARIABLE X RAISED TO THE THIRD POWER PLUS X RAISED TO THE SECOND POWER AND SO ON. IT COULD ALSO BE IN REVERSE FROM 1ST POWER TO 3RD POWER
- THE GRAPH OF THIS FUNCTION IS NOT A STRAIGHT LINE OVER THE 2D PLANE.
- LET'S PLOT ONE, BUT FIRST, TAKE A LOOK AT THE CUBIC EQUATION BELOW.

$$y-hat=b_0+1(x^3)+1(x^2)+1(x^1)$$

Cubic Regression Equation

y_hat = intercept + x raised to power 3 + x raised to power 2 + x ...

SAMPLE CUBIC REGRESSION CHART

2. QUADRATIC

• A QUADRATIC FUNCTION IS OF THE EQUATION: Y_HAT IS EQUAL TO VARIABLE X MULTIPLIED BY VARIABLE X OR RAISED TO THE POWER OF 2.

$$Y - hat = X^2$$

Quadratic Regression Equation

y_hat = X squared

SAMPLE QUADRATIC REGRESSION CHART

3. EXPONENTIAL

• AN EXPONENTIAL FUNCTION WITH BASE *C* IS DEFINED AS *Y-HAT* IS EQUAL TO *INTERCEPT* PLUS *SLOPE* MULTIPLIED BY A CONSTANT(*C*) WHICH IS RAISED TO THE POWER OF VARIABLE *X*. SEE EXPRESSION BELOW.

$$Y = a + bc^X$$

Exponential Regression Function

where b = 0, c > 0 = 1, x is a variable and a real number and c is also a constant.

EXPONENTIAL MIGHT SEEM A BIT CONFUSING, BUT PLOTTING IT IS PRETTY STRAIGHT FORWARD.

SAMPLE EXPONENTIAL REGRESSION CHART

- SIMPLY APPLY THE *NUMPY.EXP()* FUNCTION AND PASS VARIABLE X AS ITS ARGUMENT IN THIS FORM: $Y_HAT = NP.EXP(X)$.
- THEN PLOT VARIABLE X ON THE X-AXIS AND VARIABLE Y ON THE Y-AXIS.

4. LOGARITHMIC

- IN LOGARITHMIC FUNCTION, Y_HAT IS A RESULT OF APPLYING A LOGARITHMIC MAP ON VARIABLE X.
- IT IS ONE OF THE SIMPLEST EXPRESSIONS OF A LOGARITHMIC FUNCTION.

$$y - hat = \log(X)$$

Logarithmic Regression Equation

SAMPLE LOGARITHMIC REGRESSION CHART

5. SIGMOIDAL / LOGISTIC

- LOGISTIC REGRESSION IS A VARIATION OF LINEAR REGRESSION, USEFUL WHEN THE OBSERVED DEPENDENT VARIABLE Y, IS A CATEGORICAL VARIABLE.
- IT FITS A SPECIAL S-SHAPED CURVE BY TAKING THE LINEAR REGRESSION AND TRANSFORMING THE NUMERIC ESTIMATES INTO A PROBABILITY SCORE, USING THE SIGMOID FUNCTION.

$$\hat{Y}=rac{1}{1+e^{eta_1(X-eta_2)}}$$

Logistic Regression Equation

β1 controls the curves steepness, **β2** controls the curve on the x-axis.

SAMPLE LOGISTIC REGRESSION CHART

REMEMBER,

IT IS IMPORTANT TO PICK A
REGRESSION MODEL THAT FITS THE
DATA SET THE BEST.