NPTEL MOOC

PROGRAMMING, DATA STRUCTURES AND ALGORITHMS IN PYTHON

Week 6, Lecture 1

Madhavan Mukund, Chennai Mathematical Institute http://www.cmi.ac.in/~madhavan

Backtracking

- * Systematically search for a solution
- * Build the solution one step at a time
- * If we hit a dead-end
 - * Undo the last step
 - * Try the next option

- * Place 8 queens on a chess board so that none of them attack each other
- * In chess, a queen can move any number of squares along a row column or diagonal

- * Place 8 queens on a chess board so that none of them attack each other
- * In chess, a queen can move any number of squares along a row column or diagonal

- * Place 8 queens on a chess board so that none of them attack each other
- * In chess, a queen can move any number of squares along a row column or diagonal

- * Place 8 queens on a chess board so that none of them attack each other
- * In chess, a queen can move any number of squares along a row column or diagonal

- * Place N queens on an N x N chess board so that none attack each other
- *N = 2, 3 impossible

* Place N queens on an N x N chess board so that none attack each other

*N = 2, 3 impossible

- * Place N queens on an N x N chess board so that none attack each other
- *N = 2, 3 impossible
- *N = 4 is possible

- * Place N queens on an N x N chess board so that none attack each other
- *N = 2, 3 impossible
- *N = 4 is possible
- * And all bigger N as well

- * Clearly, exactly one queen in each row, column
- * Place queens row by row
- * In each row, place a queen in the first available column

- * Clearly, exactly one queen in each row, column
- * Place queens row by row
- * In each row, place a queen in the first available column

- * Clearly, exactly one queen in each row, column
- * Place queens row by row
- * In each row, place a queen in the first available column

- * Clearly, exactly one queen in each row, column
- * Place queens row by row
- * In each row, place a queen in the first available column

- * Clearly, exactly one queen in each row, column
- * Place queens row by row
- * In each row, place a queen in the first available column

- * Clearly, exactly one queen in each row, column
- * Place queens row by row
- * In each row, place a queen in the first available column

- * Clearly, exactly one queen in each row, column
- * Place queens row by row
- * In each row, place a queen in the first available column

- * Clearly, exactly one queen in each row, column
- * Place queens row by row
- * In each row, place a queen in the first available column

- * Clearly, exactly one queen in each row, column
- * Place queens row by row
- * In each row, place a queen in the first available column
- * Can't place a queen in the 8th row!

* Can't place the a queen in the 8th row!

- * Can't place the a queen in the 8th row!
- * Undo 7th queen, no other choice

- * Can't place the a queen in the 8th row!
- * Undo 7th queen, no other choice
- * Undo 6th queen, no other choice

- * Can't place the a queen in the 8th row!
- * Undo 7th queen, no other choice
- * Undo 6th queen, no other choice
- * Undo 5th queen, try next

- * Can't place the a queen in the 8th row!
- * Undo 7th queen, no other choice
- * Undo 6th queen, no other choice
- * Undo 5th queen, try next

Backtracking

- * Keep trying to extend the next solution
- * If we cannot, undo previous move and try again
- * Exhaustively search through all possibilities
- * ... but systematically!

Coding the solution

- * How do we represent the board?
- * n x n grid, number rows and columns from 0 to n-1
 - * board[i][j] == 1 indicates queen at (i,j)
 - * board[i][j] == 0 indicates no queen
- * We know there is only one queen per row
- * Single list board of length n with entries 0 to n-1
 - * board[i] == j:queen in row i, column j, i.e. (i,j)

Overall structure

```
def placequeen(i,board): # Trying row i
  for each c such that (i,c) is available:
    place queen at (i,c) and update board
    if i == n-1:
      return(True) # Last queen has been placed
    else:
      extendsoln = placequeen(i+1,board)
    if extendsoln:
      return(True) # This solution extends fully
    else:
      undo this move and update board
  else:
    return(False) # Row i failed
```

- * Our 1-D and 2-D representations keep track of the queens
- * Need an efficient way to compute which squares are free to place the next queen
- * n x n attack grid
 - * attack[i][j] == 1 if (i,j) is attacked by a queen
 - * attack[i][j] == 0 if (i,j) is currently available
- * How do we undo the effect of placing a queen?
 - * Which attack[i][j] should be reset to 0?

- * Queens are added row by row
- * Number the queens 0 to n-1
- * Record earliest queen that attacks each square
 - * attack[i][j] == k if (i,j) was first attacked by queen k
 - * attack[i][j] == -1 if (i,j) is free
- * Remove queen k reset attack[i][j] == k to -1
 - * All other squares still attacked by earlier queens

- * attack requires n² space
 - * Each update only requires O(n) time
 - * Only need to scan row, column, two diagonals
- * Can we improve our representation to use only O(n) space?

A better representation

- * How many queens attack row i?
- * How many queens attack row j?
- * An individual square (i,j) is attacked by upto 4 queens
 - * Queen on row i and on column j
 - * One queen on each diagonal through (i,j)

* Decreasing diagonal: column - row is invariant

* Decreasing diagonal: column - row is invariant

- * Decreasing diagonal: column row is invariant
- * Increasing diagonal:column + row is invariant

- * Decreasing diagonal: column row is invariant
- * Increasing diagonal:column + row is invariant

- * Decreasing diagonal: column row is invariant
- * Increasing diagonal: column + row is invariant
- * (i,j) is attacked if
 - * row i is attacked
 - * column j is attacked
 - * diagonal j-i is attacked
 - * diagonal j+i is attacked

O(n) representation

- * row[i] == 1 if row i is attacked, 0..N-1
- * col[i] == 1 if column i is attacked, 0..N-1
- * NWtoSE[i] == 1 if NW to SE diagonal i is attacked, -(N-1) to (N-1)
- * SWtoNW[i] == 1 if SW to NE diagonal i is attacked, 0 to 2(N-1)

```
* (i,j) is free if
row[i]==col[j]==NWtoSE[j-i]==SWtoNE[j+i]==0

* Add queen at (i,j)
board[i] = j
```

```
board[i] = j
(row[i],col[j],NWtoSE[j-i],SWtoNE[j+i]) =
(1,1,1,1)
```

* Remove queen at (i,j)

Implementation details

- * Maintain board as nested dictionary
 - * board['queen'][i] = j : Queen located at (i,j)
 - * board['row'][i] = 1: Row i attacked
 - * board['col'][i] = 1: Column i attacked
 - * board['nwtose'][i] = 1:NWtoSW diagonal i
 attacked
 - * board['swtone'][i] = 1:SWtoNE diagonal i
 attacked

Overall structure

```
def placequeen(i,board): # Trying row i
  for each c such that (i,c) is available:
    place queen at (i,c) and update board
    if i == n-1:
      return(True) # Last queen has been placed
    else:
      extendsoln = placequeen(i+1,board)
    if extendsoln:
      return(True) # This solution extends fully
    else:
      undo this move and update board
  else:
    return(False) # Row i failed
```

All solutions?

```
def placequeen(i,board): # Try row i
  for each c such that (i,c) is available:
    place queen at (i,c) and update board
    if i == n-1:
       record solution # Last queen placed
    else:
       extendsoln = placequeen(i+1,board)
    undo this move and update board
```