

Figure 1

BEST AVAILABLE COPY

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

Figure 13

Figure 14

	t1	t2	t3	t4	t5	t6	t7	t8	t9
p1	d1,1	d1,2	d1,3	d1,4	d1,5	d1,6	d1,7	d1,8	d1,9
p2	d2,1	d2,2	d2,3	d2,4	d2,5	d2,6	d2,7	d2,8	d2,9
p3	d3,1	d3,2	d3,3	d3,4	d3,5	d3,6	d3,7	d3,8	d3,9
p4	d4,1	d4,2	d4,3	d4,4	d4,5	d4,6	d4,7	d4,8	d4,9

38

Figure 15

Figure 16

Figure 17

Figure 18

	p	q	r	a	x	a	b	c	s	t	v	q	...
a	-1	-1	-1	2	1	2	1	0	-1	-1	-1	-1	
x	-1	-2	-2	1	4	3	2	1	0	-1	-2	-2	
b	-1	-2	-3	0	3	2	5	4	3	2	1	0	
a	-1	-2	-3	-1	2	1	4	3	2	1	0	-1	
c	-1	-2	-3	-2	1	0	3	6	5	4	3	2	
s	-1	-2	-3	-3	0	-1	2	5	<u>8</u>	7	6	5	

Figure 19

Figure 20

Figure 21

Figure 22

Figure 23

Figure 24

Figure 25

Figure 26

Figure 27

Fig. 28

Figure 29

Figure 30

Figure 31

Figure 32

Figure 33

Figure 34

Figure 35

Figure 36

Figure 37

Figure 38

Figure 39(b)

Figure 40

Figure 41

Figure 42

Figure 43

$$\emptyset = \frac{2\pi}{W}, W = \text{Total Number of Wedges}$$

PRIOR ART

Figure 44(a)

Figure 44(b)

Figure 45

Figure 46

K	13	12	11	10	9	8	7	6	5	4	3	2	1
2^k	4096	2048	1024	512	256	128	64	32	16	8	4	2	1
0	0	1	0	0	1	1	1	0	0	0	1	0	0
No	No	Yes	No	No	Yes	Yes	Yes	No	No	Yes	No	No	No

The segment sizes for a file size of 2500 bytes will be 2048 bytes , 256 bytes , 128 bytes , 64 bytes, and 4 bytes

Binary representation of file size F = 2500 bytes

Should a segment size of 2^i be requested?

Figure 47(a)Minimum Segment Size is 2^m , wherein m is 10

K	13	12	11	10	9	8	7	6	5	4	3	2	1
2^k	4096	2048	1024	512	256	128	64	32	16	8	4	2	1
0	0	1	0	0	1	1	1	0	0	0	1	0	0
0	0	1	0	1	0	0	0	0	0	0	0	0	0
No	No	Yes	No	No	No	No	No	No	No	No	No	No	No

Binary representation of file size F = 2500 bytes

Should a segment size of 2^i be requested?

** Because there is at least one bit F_i in F equal to one, wherein i is less than m, R is selected as a minimum value greater than F for which each bit N_{m-1} through N₁ is equal to zero.

The segment sizes for a file size of 2500 bytes will be 2048 bytes and 512 bytes if the minimum segment size is 512 bytes

R**

Figure 47(b)

Wasted storage due to internal fragmentation.

Figure 48

Total number of segments in the file system.

Figure 49

Figure 50

Number of segments per file.

Minimum Segment Size

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADING TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.