E720-XD 多天线模块工作协议

1. 模块工作流程

步骤	执行动作					
01	命令帧:	设置多天线工作逻辑				
02	命令帧:	再发读标签指令启动读标签				
03	命令帧:	停止则发停止读标签指令				

2. 指令简介

2.1. 天线设置指令帧格式

2.1.1 指令由帧头、帧类型、指令代码、指令长度、指令参数、校验码和帧尾组成,均为十六进制表示。例如:

Header	Туре	Command	PL	Option	ANT	Checksum	End
ВВ	00	1B	00 NN	01	01	MM	7E

帧头 Header:0xBB帧类型 Type:0x00指令代码 Command:0x1B指令长度 PL:0x00NN设置参数 Option:0x01天线端口号 ANT:0x01校验位 Checksum:0xMM帧尾 End:0x7E

1) 指令参数长度 PL: PL 长度= Option 字节位数 + ANT 字节位数;

2)设置参数 Option:

Option = 01 时,指定某一天线工作,当前天线立即切换到某个指定的天线工作,对标签的读写操作或者单次盘点;

Option = 02 时,多个天线一起工作,可设置天线切换间隔,多个天线连续盘点标签。

3)天线端口号 ANT:

当 Option = 01 时·状态为指定某一天线工作·则 ANT=01(天线 1) / 02(天线 2) / 03(天线 3) /04 (天线 4) · 即 ANT 等于一个字节;

当 Option = 02 时,为多天线工作,则 ANT=01 (代表天线 1 读卡次数 1 次) / 02 (代表天线 1 读卡次数 2 次) / 03 (代表天线 1 读卡次数 3 次) / 04 (代表天线 1 读卡次数 4 次) ,即 ANT 等于四个字节,第一位为第一天线,第三位为第三天线,第三位为第三天线,第四位为第四天线,而字节数代表该天线的读卡次数 (最大为 FF),设置后将一直工作;【如果是 E720-2D 双天线模块,则为两个字节】

4) 校验位 Checksum: 从帧类型 Type 到最后一个指令参数 ANT 的累加和。

2.1.2 响应帧定义 (无响应则设置失败)

Header	Туре	Command	PL(MSB)	Parameter	Checksum	End
ВВ	01	1B	00 01	00	1D	7E

指令举例:

1)需要单次读取标签 EPC 卡号或者写标签,该标签在天线 2 上,此时天线需要配置为:

发: BB 00 1B 00 02 01 02 20 7E 回: BB 01 1B 00 01 00 1D 7E

2) 连续盘点使用天线 $1 \cdot 2 \cdot 3 \cdot 4 \cdot$ 天线 1 盘点 5 次 (设置 05) 、天线 2 盘点 8 次 (设置 08) 、天线 3 盘点 255 次 (设置 FF) · 天线盘点 4 次 (设置 04) · 此时天线需要配置为:

发: BB 00 1B 00 05 02 05 08 FF 04 32 7E

回: BB 01 1B 00 01 00 1D 7E

【如果某一天线不使用,则次数设置为00】

2.2. 天线获取指令帧格式

2.2.3 获取定义指令

Header	Туре	Command	PL	Option	Checksum	End
ВВ	00	1C	00 01	01/02	1C	7E

帧类型 Type: 0x00 指令代码 Command: 0x1C 指令长度 PL: 0x0001 设置参数 **Option**: 0x01/02 校验位 **Checksum**: 0x1C

2.2.4 获取天线定义指令

Header	Туре	Command	PL	Option	ANT	Checksum	End
ВВ	00	1C	00 01	01/02	NN	1C	7E

帧类型 Type: 0x00 指令代码 Command: 0x1C 指令长度 PL: 0x0001 设置参数 **Option**: 0x01/02 天线号 ANT: 0xNN 校验位 Checksum: 0x1C

参数 Option:

Option = 01 时,获取当前天线指向的天线号;

Option = 02 时,获取多天线的天线号选择;

2.3 读标签指令帧格式

2.3.1 读卡命令

Header	Туре	Command	PL(MSB)	PL(LSB)	Reserved	CNT(MSB)	CNT(LSB)
ВВ	00	27	00	03	22	FF	FF
Checksum	End						
4A	7E						

帧类型 Type: 0x00 指令代码 Command: 0x27 指令参数长度 PL: 0x0003 保留位 Reserved: 0x22 轮询次数 CNT: 0xFFFF 校验位 Checksum: 0x4A

校验位 Checksum 为从帧类型 Type 到最后一个指令参数 Parameter 累加和·并只取累加和最低一个字节(LSB)。

2.3.2 有标签应答定义

多次轮询 Inventory 指令响应帧与单词轮询 Inventory 响应帧格式一样,如下:

Header	Type	Command	PL(MSB)	PL(LSB)	RSSI	PC(MSB)	PC(LSB)
ВВ	02	22	00	12	C9	34	00
EPC(MSB)							
30	75	1F	EB	70	5C	59	04
			EPC(LSB)	CRC	ANT	Checksum	End
E3	D5	0D	70	3A 76	01	EF	7E

帧类型 Type: 0x02 指令代码 Command: 0x22 指令参数长度 PL: 0x0012

RSSI: 0xC9 (标签信号强度)

PC: 0x3400 (无需解析,标签自带)

EPC: 0x30751FEB705C5904E3D50D70(标签卡号)

ANT: 0x01 (天线号)

CRC: 0x3A76 校验位 Checksum: 0xEF

2.3.3 无标签应答定义

如果没有收到标签返回或者返回数据 CRC 校验错误,将返回错误代码 0x15,如下:

Header	Туре	Command	PL(MSB)	PL(LSB)	Parameter	Checksum	End
ВВ	01	FF	00	01	15	16	7E

帧类型 Type: 0x01 指令代码 Command: 0xFF 指令参数长度 PL: 0x01 指令参数 Parameter: 0x15 校验位 Checksum: 0x16

2.3.4 停止读标签定义

可以立即停止读标签操作,如下:

Header	Type	Command	PL(MSB)	PL(LSB)	Checksum	End
ВВ	00	28	00	00	28	7E

帧类型 Type:0x00指令代码 Command:0x28指令参数长度 PL:0x00000校验位 Checksum:0x28

【更多介绍请看 E720 模块通讯协议指令说明手册】

3. Demo 软件操作实例

3.1 设置天线

3.2 读标签

四天线模块参考实例

四天线设置 1234 天线连续盘点: BB 00 1B 00 05 02 01 01 01 01 26 7E

设置天线 1 连续盘点: BB 00 1B 00 05 02 FF 00 00 00 21 7E

设置天线 2 连续盘点: BB 00 1B 00 05 02 00 FF 00 00 21 7E

设置天线 3 连续盘点: BB 00 1B 00 05 02 00 00 FF 00 21 7E

设置天线 4 连续盘点: BB 00 1B 00 05 02 00 00 00 FF 21 7E

设置天线 1 对标签读写或单次读标签: BB 00 1B 00 02 01 01 1F 7E 【双天线相同指令】

设置天线 2 对标签读写或单次读标签: BB 00 1B 00 02 01 02 20 7E 【双天线相同指令】

设置天线 3 对标签的读写操作或者单次读标签: BB 00 1B 00 02 01 03 21 7E

设置天线 4 对标签的读写操作或者单次读标签: BB 00 1B 00 02 01 04 22 7E

双天线设置 12 天线连续盘点: BB 00 1B 00 03 02 01 01 22 7E

双天线设置天线 1 连续盘点: BB 00 1B 00 03 02 FF 00 1F 7E

双天线设置天线 2 连续盘点: BB 00 1B 00 03 02 00 FF 1F 7E