



# Optimization in Energy Systems Multi-time Step Optimization & Unit Commitment

Lecturer: Dr. Mengshuo Jia





## **Outline**

- Multi-time Step Optimization
  - Motivation, constraints, example
- Unit Commitment Overview
  - Aim, application, challenge
- Deterministic Unit Commitment
  - Integer variables, constraints, objective, example
- Stochastic Unit Commitment
  - Scenario-based approach
- Solutions Method for Unit Commitment
  - Approximation, solutions, validation & reinforcement





# **Learning Objectives**

- After this lecture, you should be able
  - to formulate and solve a multi-time step optimization problem (with solvers) and discuss the advantage of multi-time step versus single time step
  - to formulate the deterministic unit commitment problems
  - to solve the DC-based deterministic unit commitment problem by programming
  - to understand the idea of stochastic unit commitment problems using the scenario-based approach
  - to understand the idea of solving unit commitment problems in reality





## **Outline**

- Multi-time Step Optimization
  - Motivation, constraints, example
- Unit Commitment Overview
  - Aim, application, challenge
- Deterministic Unit Commitment
  - Integer variables, constraints, objective, example
- Stochastic Unit Commitment
  - Scenario-based approach
- Solutions Method for Unit Commitment
  - Approximation, solutions, validation & reinforcement





# **Multi-time Step Optimization**



Single Step OPF

- Motivation: to consider intertemporal constraints
  - o x(k+1) = f[x(k)], e.g., x(k+1) = Ax(k)
  - Storage charging/discharging behavior
  - Ramp limitations for units



# **Multi-time Step Optimization**

Storage constraints

$$\begin{split} E(k+1) &= E(k) + \eta P_{in}(k) - \frac{1}{\eta} P_{out}(k) & \eta \text{, efficiency rate} < 1 \\ 0 &\leq P_{in}(k) \leq P_{in}^{max}, \quad 0 \leq P_{out}(k) \leq P_{out}^{max}, \\ P_{in}(k) \cdot P_{out}(k) &= 0, & \text{Charging or discharging} \\ E^{min} &\leq E(k) \leq E^{max}, \\ E(K) &= E(0) & \text{Restore the energy level} \end{split}$$

Ramp constraints

$$-P_G^{rmax} \le P_G(k+1) - P_G(k) \le P_G^{rmax}$$

A unit cannot significantly change its output immediately



# **Multi-time Step Optimization**

Multi-time DC OPF with storage

$$\min_{P_G} \sum_{k=1}^{K} \sum_{i=1}^{N_G} (a_i P_{G_i}^2(k) + b_i P_{G_i}(k) + c_i)$$

$$s.t. \ P(k) = B\theta(k), \qquad k = 1, ..., K$$

$$E(k+1) = E(k) + \eta P_{in}(k) - \frac{1}{\eta} P_{out}(k), \qquad k = 0, ..., K-1$$

$$E^{min} \leq E(k) \leq E^{max}, \qquad k = 1, ..., K$$

$$P_G^{min} \leq P_G(k) \leq P_G^{max}, \qquad k = 1, ..., K$$

$$0 \leq P_{in}(k) \leq P_{in}^{max}, \qquad 0 \leq P_{out}(k) \leq P_{out}^{max}, \qquad k = 1, ..., K$$

$$P_{in}(k) \cdot P_{out}(k) = 0, \qquad k = 1, ..., K$$

$$-P_{ij}^{max} \leq P_{ij}(k) \leq P_{ij}^{max}, \qquad k = 1, ..., K$$

$$-P_G^{max} \leq P_G(k+1) - P_G(k) \leq P_G^{max}, \qquad k = 0, ..., K-1$$

$$E(K) = E(0)$$



## **Outline**

- Multi-time Step Optimization
  - Motivation, constraints, example
- Unit Commitment Overview
  - Aim, application, challenge
- Deterministic Unit Commitment
  - Integer variables, constraints, objective, example
- Stochastic Unit Commitment
  - Scenario-based approach
- Solutions Method for Unit Commitment
  - Approximation, solutions, validation & reinforcement





## **Unit Commitment – Overview**

## Aim

## Determine an optimal schedule for each generating unit so that

- the demand for electricity is met,
- minimum cost for the system as a whole,

## subject to

- ramping constraints,
- network constraints,
- minimum uptime/downtime constraints, etc.

## with the decision variables, i.e.,

- generators' outputs
- generators' on/off status





## **Unit Commitment – Overview**

## Aim

## Determine an optimal schedule for each generating unit so that

- the demand for electricity is met,
- minimum cost for the system as a whole,

## subject to

- ramping constraints,
- network constraints,
- minimum uptime/downtime constraints, etc.

## with the decision variables, i.e.,

- generators' outputs --- continuous variable
- generators' on/off status --- (integer) binary variable, 1: on, 0: off.





## **Unit Commitment – Overview**

Application

#### For those with markets:

- Standard tool for clearing electricity markets
- Particularly day-ahead markets

#### For those without markets:

- Determine the day-ahead commitments and dispatches
- Challenge
  - Mixed-integer nonlinear optimization problem
  - Generally large-scale and nonconvex

## Important but challenging





## **Outline**

- Multi-time Step Optimization
  - Motivation, constraints, example
- Unit Commitment Overview
  - Aim, application, challenge
- Deterministic Unit Commitment
  - Integer variables, constraints, objective, example
- Stochastic Unit Commitment
  - Scenario-based approach
- Solutions Method for Unit Commitment
  - Approximation, solutions, validation & reinforcement





## **Outline**

- Multi-time Step Optimization
  - Motivation, constraints, example
- Unit Commitment Overview
  - Aim, application, challenge
- Deterministic Unit Commitment
  - Integer variables, constraints, objective, example
- Stochastic Unit Commitment
  - Scenario-based approach
- Solutions Method for Unit Commitment
  - Approximation, solutions, validation & reinforcement





Deterministic

No uncertainty is considered here

- Variables (Unit j at Time t)
  - Generators' outputs, continuous
    - o  $p_i(t)$ , power generated
  - Generators' status, binary
    - o  $v_i(t)$ , on/off status
    - o  $y_j(t)$ , when starts up
    - o  $z_j(t)$ , when shuts down





- Binary Decision Variables (Unit j at Time t)
  - $v_i(t)$ , on/off status
  - $y_i(t)$ , when starts up
  - $z_i(t)$ , when shuts down





- Binary Decision Variables (Unit j at Time t)
  - $v_i(t)$ , is 1 if unit j is on in time period t, o/w 0
  - $y_j(t)$ , is 1 if unit j starts up at the beginning of time period t, o/w 0
  - $z_i(t)$ , is 1 if unit j shuts down at the beginning of time period t, o/w 0

#### Easier to

- ensure that unit j cannot start up and shut down at the same time
- describe the ramping constraints
- describe uptime and downtime constraints
- describe the cost for starting up or shutting down
- 0 ...



- Binary Decision Variables (Unit j at Time t)
  - $v_i(t)$ , is 1 if unit j is on in time period t, o/w 0
  - $y_i(t)$ , is 1 if unit j starts up at the beginning of time period t, o/w 0
  - $z_j(t)$ , is 1 if unit j shuts down at the beginning of time period t, o/w 0
- Logical Coherence between Binary Variables

$$v_j(t-1) - v_j(t) + y_j(t) - z_j(t) = 0$$
  $y_j(t) + z_j(t) \le 1$ 

- Ensure that  $y_j(t)$  and  $z_j(t)$  take appropriate values when unit j starts up or shuts down
- E.g.,  $v_j(0) = 1$  and  $v_j(1) = 0$ 
  - $y_j(1) z_j(1) = -1$ , only if  $y_j(1) = 0$  and  $z_j(1) = 1$  (Hint: binary)





Logical Coherence between Binary Variables

$$v_j(t-1) - v_j(t) + y_j(t) - z_j(t) = 0$$
  $y_j(t) + z_j(t) \le 1$ 

- Ensure that  $y_j(t)$  and  $z_j(t)$  take appropriate values when unit j starts up or shuts down
- E.g., for a longer period

|                  | t=0 | t=1 | t=2 | t=3 | t=4 | t=5 |
|------------------|-----|-----|-----|-----|-----|-----|
| Status $(v_j)$   | 0   | 0   | 1   | 1   | 0   | 0   |
| Startup $(y_j)$  | 0   | 0   | 1   | 0   | 0   | 0   |
| Shutdown $(z_j)$ | 0   | 0   | 0   | 0   | 1   | 0   |



## **Outline**

- Multi-time Step Optimization
  - Motivation, constraints, example
- Unit Commitment Overview
  - Aim, application, challenge
- Deterministic Unit Commitment
  - Integer variables, constraints, objective, example
- Stochastic Unit Commitment
  - Scenario-based approach
- Solutions Method for Unit Commitment
  - Approximation, solutions, validation & reinforcement



- Ramping Constraints
  - In the Continuous OPF Problem:
    - $\circ$  Ramp-up:  $p_j(t) p_j(t-1) \leq R_j^{\mathrm{U}}$
    - o Ramp-down:  $p_j(t-1) p_j(t) \leq R_j^{\mathrm{D}}$
    - o  $R_i^U$ : maximum ramp-up rate of unit j
    - o  $R_i^D$ : maximum ramp-down rate of unit j
  - In the UC Problem:
    - $\circ$  Ramp-up:  $p_j(t) p_j(t-1) \leq R_j^{\mathrm{U}} \, v_j(t-1) + S_j^{\mathrm{U}} \, y_j(t)$
    - o Ramp-down:  $p_j(t-1) p_j(t) \leq R_j^{\mathrm{D}} \, v_j(t) + S_j^{\mathrm{D}} \, z_j(t)$
    - $\circ$   $S_i^U$ : maximum start-up rate of unit j
    - o  $S_i^D$ : maximum shut-down rate of unit j



- Ramping Constraints
  - Ramp-up Constraint in UC

$$p_j(t) - p_j(t-1) \le R_j^{U} v_j(t-1) + S_j^{U} y_j(t)$$

- o If  $v_j(t-1) = 1$ 
  - Unit j is on at (t-1), i.e.,  $y_j(t) = 0$  must hold
  - Because unit j cannot be turned on again
  - Hence:  $p_j(t) p_j(t-1) \le R_j^{\mathrm{U}}$
- $\circ \quad \mathsf{lf} \ y_j(t) = 1$ 
  - Unit j starts up at t, then  $v_j(t-1) = 0$  must hold
  - Because unit j cannot be turned on again
  - Hence:  $p_j(t) p_j(t-1) \le S_j^U$



- Ramping Constraints
  - Ramp-down Constraint in UC

$$p_j(t-1) - p_j(t) \le R_j^{\mathrm{D}} v_j(t) + S_j^{\mathrm{D}} z_j(t)$$

- $\circ \quad \text{If } v_j(t) = 1$ 
  - Unit j is on at t, i.e.,  $z_j(t) = 0$  must hold
  - Because unit j is still on at t
  - Hence:  $p_j(t-1) p_j(t) \le R_j^D$
- $\circ \quad \mathsf{lf} \ z_j(t) = 1$ 
  - Unit j shuts down at t, then  $v_j(t) = 0$  must hold
  - Because unit j is already off at t
  - Hence:  $p_j(t-1) p_j(t) \leq S_j^D$



- Ramping Constraints
  - Assumption
    - ramp-up rate = start-up rate;
    - ramp-down rate = shut-down rate

$$p_{j}(t) - p_{j}(t-1) \leq R_{j}^{U} v_{j}(t-1) + S_{j}^{U} y_{j}(t)$$

$$p_{j}(t-1) - p_{j}(t) \leq R_{j}^{D} v_{j}(t) + S_{j}^{D} z_{j}(t)$$

$$R_{j}^{U} = S_{j}^{U} \qquad \qquad R_{j}^{D} = S_{j}^{D}$$

$$p_{j}(t) - p_{j}(t-1) \leq R_{j}^{U} [v_{j}(t-1) + y_{j}(t)]$$

$$p_{j}(t-1) - p_{j}(t) \leq R_{j}^{D} [v_{j} + z(t)]$$





- Ramping Constraints
  - Special Case for t = 1

o Up : 
$$p_j(t) - p_j(t-1) \le R_j^U [v_j(t-1) + y_j(t)]$$

- o Down:  $p_j(t-1) p_j(t) \le R_j^D[v_j + z(t)]$
- $p_j(0) = p_j^{ini}$  and  $v_j(0) = v_j^{ini}$  are parameters i/o variables
- o To distinguish:

$$\begin{array}{lll} & - & p_{j}(t) - p_{j}^{ini} \leq R_{j}^{U} \big[ v_{j}^{ini} + y_{j}(t) \big], & \forall j, & t = 1 \\ & - & p_{j}(t) - p_{j}(t-1) \leq R_{i}^{U} \big[ v_{j}(t-1) + y_{j}(t) \big], & \forall j, & \forall t > 1 \end{array}$$

$$\begin{array}{lll} & - & p_{j}^{ini} - p_{j}(t) \leq R_{j}^{D} \big[ v_{j} + z(t) \big], & \forall j, \ t = 1 \\ & - & p_{j}(t-1) - p_{j}(t) \leq R_{j}^{D} \big[ v_{j} + z(t) \big], & \forall j, \ \forall t > 1 \end{array}$$





- Uptime/downtime Constraints
  - Description: a unit cannot be turned on or off arbitrarily
    - o If unit j starts up at time period k
      - Then it must stay "on" for  $T_j^U$  time periods (including the time period k itself) => uptime constraint
    - $\circ$  If unit j shuts down at time period k
      - then it must stay "off" for  $T_j^D$  time periods (including the time period k itself) => downtime constraint





Uptime constraint

$$\sum_{k=t-T_j^{\mathrm{U}}+1,\ k\geq 1}^t y_j(k) \leq v_j(t)$$

- If unit j starts up at time period k
  - O Then it must stay "on" for  $T_j^U$  time periods (including the time period k itself)
- o How it works?





Uptime constraint





Uptime constraint

$$\sum_{k=t-T_j^{\mathrm{U}}+1,\ k\geq 1}^t y_j(k) \leq v_j(t)$$

$$\downarrow$$

$$\Sigma_j^U \leq v_j(t)$$

$$k$$
 ... ...  $t-4$   $t-3$   $t-2$   $t-1$   $t$ 
 $y_{j}=1$   $y_{j}=0$   $y_{j}=0$   $y_{j}=0$   $y_{j}=0$   $y_{j}=0$   $y_{j}=0$ 
 $v_{j}=1$   $v_{j}=1$   $v_{j}=1$   $v_{j}=1$   $v_{j}=1$   $v_{j}=1$ 

o If unit j starts up at time period k, it must stay "on" for  $T_j^U$  time periods (including the time period k itself)

Unit j starts up at time period k

$$\circ \Rightarrow y_j(k) = 1$$

$$\circ \Rightarrow v_i(k) = 1$$

$$\circ \Rightarrow \Sigma_i^U \geq 1$$

$$\circ$$
  $\Sigma_i^U > 1 \text{ or } \Sigma_i^U = 1?$ 

$$\circ \quad \mathsf{lf} \ \Sigma_i^U > 1$$

o Maximal 
$$v_i(t)$$
 is 1

o 
$$\Sigma_i^U > 1 = v_i(t)_{max}$$
, contradictory!

$$\circ \Rightarrow \Sigma_i^U = 1$$

$$\circ \quad \Sigma_j^U = 1$$

$$\circ \quad \Rightarrow y_j(t), y_j(t-1), \dots, y_j(k+1) = 0$$

$$\circ \quad \Sigma_i^U \leq v_j(t) \text{ and } \Sigma_i^U = 1$$

$$\circ \Rightarrow v_j(t) = 1$$

o If 
$$v_j(m) = 0$$
,  $m \in [k+1, t-1]$ ?

$$o \Rightarrow y_i(n) = 1, \exists n \in [m+1, t]$$

o But 
$$y_i(t), y_i(t-1), ..., y_i(k+1) = 0$$

$$o \Rightarrow v_i(t-1), \dots, v_i(k+1) = 1$$



Downtime constraint

$$v_j(t) + \sum_{k=t-T_j^{D}+1, k \ge 1}^{t} z_j(k) \le 1$$

- o If unit j shuts down at time period k
  - o then it must stay "off" for  $T_j^D$  time periods (including the time period k itself)
- O How it works?





Downtime constraint

$$v_j(t) + \sum_{k=t-T_j^{D}+1, k \ge 1}^{t} z_j(k) \le 1$$







## Downtime constraint

$$egin{aligned} v_j(t) + \sum_{k=t-T_j^{\mathrm{D}}+1, \ k \geq 1}^t z_j(k) \leq 1 \ & iggrup v_j(t) + \Sigma_j^D \leq 1 \end{aligned}$$

o If unit j shuts down at time period k, it must stay "off" for  $T_j^D$  time periods (including the time period k itself)

$$\circ$$
 Unit *j* shuts down at time period  $k$ 

$$\circ \Rightarrow z_i(k) = 1$$

$$\circ \Rightarrow v_i(k) = 0$$

$$\circ \Rightarrow \Sigma_i^D \geq 1$$

$$\circ \quad \Sigma_i^D > 1 \text{ or } \Sigma_i^D = 1?$$

$$\circ \quad \mathsf{lf} \ \Sigma_i^D > 1$$

o Minimal 
$$v_i(t)$$
 is 0

o 
$$v_i(t)_{min} + \Sigma_i^D > 1$$
, contradictory!

$$\circ \Rightarrow \Sigma_i^D = 1$$

$$\circ \quad \Sigma_j^D = 1$$

$$\circ$$
  $z_i(k) = 1$  and  $\Sigma_i^D = 1$ 

$$\circ \quad v_j(t) + \Sigma_j^D \le 1 \text{ and } \Sigma_j^D = 1$$

$$\circ \Rightarrow v_i(t) = 0$$

$$o If v_j(m) = 1, m \in [k+1, t-1]?$$

$$\circ$$
  $\Rightarrow z_i(n) = 1, \exists n \in [m+1, t]$ 

o But 
$$z_i(t), z_i(t-1), ..., z_i(k+1) = 0!$$

$$o \Rightarrow v_i(t-1), \dots, v_i(k+1) = 0$$



- Generation Constraints
  - In the Continuous OPF Problem:
    - Upper limit:  $p_j(t) \le \overline{p}_j$
    - Lower limit:  $p_j \le p_j(t)$
  - In the UC Problem:
    - Upper limit:  $p_j(t) \le \overline{p}_i v_j(t)$
    - Lower limit:  $\underline{p}_j v_j(t) \le p_j(t)$
    - Still linear





- Objective Function
  - In the Continuous OPF Problem:

$$\min_{\Xi} \quad \sum_{t \in T} \sum_{j \in J} \left[ c_j(p_j(t)) \right]$$

- o  $c_i(p_i(t))$  represents the generation cost of unit j at time t
- In the UC Problem:

$$\min_{\Xi} \sum_{t \in T} \sum_{j \in J} \left( c_j(p_j(t)) + c_j^{\mathrm{U}} y_j(t) + c_j^D z_j(t) \right)$$

- $c_j^U$  is a constant cost for starting up unit j
- $\circ$   $c_i^D$  is a constant cost for shutting down unit j





## Example: DC-based UC



## **Outline**

- Multi-time Step Optimization
  - Motivation, constraints, example
- Unit Commitment Overview
  - Aim, application, challenge
- Deterministic Unit Commitment
  - Integer variables, constraints, objective, example
- Stochastic Unit Commitment
  - Scenario-based approach
- Solutions Method for Unit Commitment
  - Approximation, solutions, validation & reinforcement





## **Stochastic Unit Commitment**

- Uncertainty
  - Stochastic sources
  - Most notably wind and solar generation
  - Demand, yet can be assumed to be deterministic (as in this lecture)
- Modelling
  - Stochastic (Scenario-based) optimization
  - Chance-constrained optimization
  - Robust optimization
  - Distributionally robust optimization





- Uncertainty
  - Stochastic sources
  - Most notably wind and solar generation
  - Demand, yet can be assumed to be deterministic (as in this lecture)
- Modelling
  - Stochastic (Scenario-based) optimization for UC problems
    - Uncertainties from wind power generators
  - Chance-constrained optimization
  - Robust optimization
  - Distributionally robust optimization



- Stochastic UC Formulation
  - Two-stage stochastic programming problem
  - First stage
    - Make decisions in advance, e.g., day-ahead UC
    - Uncertainties have not been realized
    - Assume renewable generators are dispatchable
      - Like conventional generators
    - Similar to a deterministic UC problem
      - Difference: introduce reserve variables  $r_i^+(t)$ ,  $r_i^-(t)$





- Stochastic UC Formulation
  - Two-stage stochastic programming problem
  - Second stage
    - To make decisions in "real-time"
      - Uncertainties => realizations, e.g., wind power realizations
    - Adjust the first stage decisions after observing the realizations
      - Reserve deployment variables  $p_{i\omega}^+(t)$ ,  $p_{i\omega}^-(t)$
      - Wind power spillage variables  $w_{j\omega}^{spil}(t)$
      - Load shedding variables  $l_{\omega}^{shed}(t)$





- Stochastic UC Formulation
  - Two-stage stochastic programming problem
  - Second stage
    - To make decisions in "real-time"
      - Uncertainties => realizations, e.g., wind power realizations
    - Adjust the first stage decisions after observing the realizations
    - In fact, no realizations have been seen => one day ahead
      - Assume a set of realizations of wind power generations
      - A realization => a scenario
    - Do adjustment for each scenario





- Stochastic UC Formulation
  - Two-stage stochastic programming problem
  - Combine the first and second stage together
    - The decisions made in the first stage can satisfy all possible scenarios in the second stage
      - Conventional generators' status
      - Conventional generators' output
      - Conventional generators' reserves provided





- First Stage
  - Variables
    - $w_i(t)$ , power generated by wind power unit i at time t
    - $\circ r_i^+(t)$ , upward reserve provided by conventional unit i at time t
    - $\circ$   $r_i^-(t)$ , downward reserve provided by conventional unit i at time t
    - o Reserve:
      - Amount of additional capacity available beyond the actual power output
      - Typically used to provide a buffer
        - In cases of, e.g., unexpected increases/decreases in renewable generations





- First Stage
  - Variables
    - $w_i(t)$ , power generated by wind power unit i at time t
    - o  $r_i^+(t)$ , upward reserve provided by conventional unit i at time t
    - $\circ$   $r_i^-(t)$ , downward reserve provided by conventional unit i at time t
    - o  $p_i(t), v_i(t), y_i(t), z_i(t)$ 
      - Active power generation of unit i at time t
      - Commitment variables of unit i at time t





## First Stage

Main Constraints

o 
$$y_i(t) - z_i(t) = v_i(t) - v_i(t-1), \forall i, t$$

$$y_i(t) + z_i(t) \le 1, \forall i, t$$

$$o p_i(t) + r_i^+(t) \le \overline{p}_i v_i(t), \forall i, t$$

$$o \underline{p_i}v_i(t) \leq p_i(t) - r_i^-(t), \forall i, t$$

**Power Balance** 

**Commitment Status** 

**Commitment Status** 

Generation upper limit

Generation lower limit





- First Stage
  - Other Constraints

$$v_i(t), y_i(t), z_i(t) \in \{0, 1\}, \forall i, t, t$$

Binary restriction

$$0 \le w_j(t) \le \overline{w}_j, \, \forall j, t$$

Wind power bounds

- Omit uptime/downtime, ramping, network constraints
- Objective

- Minimize the overall cost of
  - Generation, start up, shut down
  - Providing upward reserve and downward reserve





- Second Stage
  - Scenario
    - $\circ$  Use index  $\omega$  to denote scenario  $\omega$
    - Ouse  $w_{j\omega}^*(t)$  to denote the realization of the output of wind power unit j in scenario ω at time t --- parameter
  - Introduce new Variables for adjustments
    - o  $p_{i\omega}^+(t)$ ,  $p_{i\omega}^-(t)$ , upward/downward reserve deployments from conventional unit i at time t under scenario  $\omega$
    - o  $w_{j\omega}^{spil}(t)$ , power spillage from wind power unit j at time t under scenario  $\omega$
    - o  $l_{\omega}^{shed}(t)$ , overall load shedding at time t under scenario  $\omega$



## Second Stage

- Why there is a need for adjustment?
  - $\circ$  Scheduled output from the first stage:  $w_i(t)$
  - O Realized output from scenario ω:  $w_{i\omega}^*(t)$
  - O Deviation:  $\sum_{j} \left[ w_{j\omega}^{*}(t) w_{j}(t) \right]$  --- aim to eliminate the deviation
- Adjustment Method
  - $\sum_{i} [p_{i\omega}^{+}(t) p_{i\omega}^{-}(t)]$  , the regulation provided by all conv. units
  - $\sum_{i} \left[ -w_{i\omega}^{spil}(t) \right]$ , the spillage provided by all wind power units
  - $l_{\omega}^{shed}(t)$ , the load shedding provided by the overall load
- Aim



## Second Stage

#### Constraints

$$\circ \quad \sum_{j} \left[ w_{j\omega}^{*}(t) - w_{j}(t) - w_{j\omega}^{spil}(t) \right] + \sum_{i} \left[ p_{i\omega}^{+}(t) - p_{i\omega}^{-}(t) \right] + l_{\omega}^{shed}(t) = 0 \; , \; \forall t, \omega$$

$$0 \le p_{i\omega}^+(t) \le r_i^+(t)$$
,  $\forall i, t, \omega$ . Recall  $r_i^+(t)$  is from the first stage

o 
$$0 \le p_{i\omega}^-(t) \le r_i^-(t)$$
,  $\forall i, t, \omega$ . Recall  $r_i^-(t)$  is from the first stage

$$0 \le l_{\omega}^{shed}(t) \le L_t, \ \forall t, \omega$$

$$0 \le w_{j\omega}^{spil}(t) \le w_{j\omega}^*(t), \ \forall j, t, \omega$$



- Second Stage
  - Objective

$$\circ \mathbb{E}\left\{\sum_{t}\left(\sum_{i}\left[c_{i}\left(p_{i\omega}^{+}(t)-p_{i\omega}^{-}(t)\right)\right]+c^{shed}l_{\omega}^{shed}(t)\right)\mid\forall\omega\right\}$$

- Minimize the expectation of the regulation cost of
  - Reserve deployments, load shedding, for each scenario
  - Wind power is for free, i.e., spillage has no cost
- $\circ$  Assume  $\pi_{\omega}$  is the probability of scenario  $\omega$  --- known
- $\circ \quad \mathbb{E}\{\cdot \mid \forall \omega\} = \sum_{\omega} \pi_{\omega} \ \sum_{t} \left( \sum_{i} \left[ c_{i} \left( p_{i\omega}^{+}(t) p_{i\omega}^{-}(t) \right) \right] + c^{shed} l_{\omega}^{shed}(t) \right)$





- Stochastic UC Problem
  - Objective
    - Objective of the 1<sup>st</sup> stage + Objective of the 2<sup>nd</sup> stage
  - Constraints
    - Union of the constraints in the 1<sup>st</sup> and 2<sup>nd</sup> stages
  - Variables
    - Union of the variables in the 1<sup>st</sup> and 2<sup>nd</sup> stages
    - However, only some variables in the 1<sup>st</sup> stage will be outputted
      - Conventional generators' status
      - Conventional generators' output
      - Conventional generators' reserves provided





- Drawbacks
  - Assume explicit knowledge of the probability distribution of the uncertainties.
    - Estimated empirically
    - Data-driven
    - Simulation-driven
    - Impact the quality of the results
  - As the number of scenarios increases, the optimization problem become larger and more challenging
    - Large scale => Solvers may fail even for mixed integer linear programming





#### **Outline**

- Multi-time Step Optimization
  - Motivation, constraints, example
- Unit Commitment Overview
  - Aim, application, challenge
- Deterministic Unit Commitment
  - Integer variables, constraints, objective, example
- Stochastic Unit Commitment
  - Scenario-based approach
- Solutions Method for Unit Commitment
  - Approximation, solutions, validation & reinforcement











- Approximation
  - AC-based UC
    - Mixed integer nonlinear programming (MINLP) --- challenging
  - DC approximation => DC-based UC
    - Mixed integer linear programming (MILP) --- Solvable
    - However, large scale => still challenging
      - Keep the number of scenarios in stochastic UC small
      - Research for scenario and/or scale reduction
    - Most common approximation method
  - Question => how to solve an MILP problem?





- Solve
  - State-of-the-art Solvers
    - E.g., Gurobi, CPLEX, AMPL, GAMS => Enough for this lecture
    - The common method to solve UC on a day-ahead basis
  - Algorithms Inside
    - General principles: divide-and-conquer
      - Recursively partitions the feasible region
      - => Find integer (binary) solutions
    - Typical algorithm: branch-and-bound (BnB)
      - Most (mixed) integer optimization solvers use some form of branch-and-bound algorithm



- Solve
  - Branch-and-bound algorithm: basic idea
    - Relaxation
      - General MILP: remove integer restrictions, i.e.,  $x \in \mathbb{R}$
      - 0/1 MILP: replace 0/1 restrictions with  $0 \le x \le 1$
    - Branch/divide/add constraints with relaxation
      - General MILP:  $x \le N$  and  $x \ge N + 1 \Rightarrow$  two subproblems
        - E.g., Min f(x), s.t.  $g(x) \le 0$ . If  $x^* = 5.4$ , then
        - Add  $x \le 5$  to  $g(x) \le 0$ , resolve, see if  $x^* = 5$ , or 4, ...
        - Add  $x \ge 6$  to  $g(x) \le 0$ , resolve, see if  $x^* = 6$ , or 7, ...
      - 0/1 MILP: x = 0 and  $x = 1 \Rightarrow$  two subproblems





- Validation & Reinforcement
  - DC-based UC Result
    - Optimal solution for the approximated problem
    - May not even feasible for the original AC-based problem
  - Check & Add Constraints
    - Input the DC-based UC solutions into AC power flow equations
      - Violations of transmission flows and/or bus voltages?
      - If so, add additional constraints to the DC-based UC
      - Re-solve & re-validation & re-reinforcement





# **Summary**

- Multi-time Step Optimization
  - Motivation, ramping constraints, storage constraints, receding horizon
- Unit Commitment Overview
  - Aim, application, challenge
- Deterministic Unit Commitment
  - Integer variables, logic constraints, ramping constraints, uptime/downtime constraints, generation Constraints, objectives
- Stochastic Unit Commitment
  - Scenarios, additional variables and constraints, two-stage formulations
- Solutions Method for Unit Commitment
  - Approximation, solutions (BnB), validation & reinforcement

