Redshift Prediction Using AWS Tools:

A Complete Serverless Solution for Scalable Al Inference

Team 2
Zach Holland
Devlin Bridges

Project Overview

Challenge

Build a production-ready distributed ML system that can scale efficiently while minimizing costs

Solution

End-to-end serverless infrastructure using AWS Step Functions, Lambda, and ECS with comprehensive performance optimization

Five Step Implementation

- **01.** Distributed Workflow Engine
- **02.** Container Orchestration
- **03.** Al Model Integration
- **04.** Serverless Inference at Scale
- **05.** Production Optimization

1. Distributed Workflow Engine

- AWS Step Functions with 6-step architecture
- 20 performance configurations tested
- Map State parallelization across multiple Lambda workers
- Real-time monitoring with CloudWatch integration

- Best performance: World Size 4, Batch
 Size 128 (71.42 records/s)
- All 20 test scenarios: 100% success rate
- Execution time: 5-7 seconds consistently

2. Container Orchestration

- ECS Fargate deployment for rendezvous server
- Route 53 DNS configuration for service discovery
- Lambda FMI performance analysis with detailed metrics

Performance Highlights

- Average throughput: 11.9 records/s
- Memory efficiency: 88MB average usage
- Cost efficiency: \$0.00001052 average per batch

3. Al Model Integration

- Vision Transformer for astronomy redshift prediction
- Comprehensive batch optimization (1-128 batch sizes)
- R² = 0.97+ prediction accuracy maintained

Optimization Results:

- Fastest execution: 6.73s (batch size 128)
- Memory usage: Consistent across all batch sizes
- Model accuracy: Stable across all configurations

4. Serverless Inference at Scale

- 17 test scenarios across different configurations
- Real AWS Lambda execution with timing measurements
- Distributed dataset processing (small/medium/large)

Breakthrough Performance:

- **5.16x** average speedup vs. local execution
- 99.1% cost reduction
- 99.5% memory reduction
- Parallel efficiency up to 100% (single worker)

5. Production Optimization

- Systematic parameter tuning (World Size, Batch Size, Data Chunks)
- 87.5% additional cost savings through optimization
- A/B testing configurations for production deployment

Final Optimized Configuration:

- Workers: 65 (vs. 130 baseline 50% reduction)
- Batch Size: 64 (vs. 128 baseline 50% reduction)
- Chunk Size: 50MB (vs. 100MB baseline 50% reduction)
- Total Cost: \$0.3008 (vs. \$2.4064 baseline)

Relevance/Significance

1. Astronomy & Astrophysics Research

- Galaxy surveys can use your optimized serverless pipeline for processing massive redshift catalogs
- Real-time telescope data processing for surveys like LSST, Euclid, or Roman Space Telescope
- Collaborative research where multiple institutions need cost-effective access to ML inference

2. Distributed ML Infrastructure

- Template for serverless ML pipelines your Step Functions + Lambda architecture is reusable
- Cost optimization methodology applies to any distributed ML workload
- Performance benchmarking framework for comparing local vs cloud inference

3. AWS/Cloud Architecture Community

- Best practices for Step Functions orchestration with 6-step architecture we developed
- Lambda optimization patterns for memory-intensive ML workloads
- Cost modeling framework for estimating serverless ML costs

Potential Enhancements

Performance:

- Auto-scaling intelligence Dynamic worker allocation based on dataset characteristics and real-time demand
- GPU acceleration support Integration with Lambda GPU instances for larger Vision Transformer models

Expanded Functionality:

- Multi-model support Extend beyond redshift prediction to galaxy classification, supernova detection, and other astronomical tasks
- Real-time processing pipeline Stream processing for live telescope data feeds with priority queuing

Simplifications:

- One-click deployment Infrastructure-as-Code templates for instant setup across research institutions
- Simplified configuration Smart defaults and guided setup wizard for non-technical astronomers

Advanced Optimization:

- Bayesian parameter optimization Replace grid search with intelligent hyperparameter tuning for faster convergence
- Multi-objective optimization Balance cost, speed, and prediction accuracy simultaneously