Algebra and geometry

5 вересня 2022 р.

Зміст

Век	торна алгебра	4
1.1	Вектори на прямій, на площині, у просторі	4
1.2		5
1.3		6
1.4	- · · · · · ·	6
1.5		8
1.6		8
1.7		9
1.8		9
1.9		10
1.10		11
		12
		13
		14
Виз	начники і лінійна залежність	15
2.1	Визначники другого і третього порядків	15
2.2		16
2.3	Лінійна залежність векторів	18
Пря	ма на плошині	21
-	·	21
-		23
•		24
		24
-		24
		25
3.0	Troposition from the state of t	25
	1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 1.11 1.12 1.13 Виз 2.1 2.2 2.3	1.1 Вектори на прямій, на площині, у просторі 1.2 Лінійні операції над векторами 1.3 Властивості лінійних операцій, аксіоми векторної алгебри 1.4 Базис на прямій, на площині, у просторі 1.5 Декартів прямокутний базис 1.6 Проекція вектора на вектор (або на вісь) 1.7 Множення векторів. Скалярний добуток двох векторів 1.8 Скалярний добуток в координатах 1.9 Нормування вектора 1.10 Векторний добуток двох векторів 1.11 Векторний добуток двох векторів 1.12 Мішаний добуток трьох векторів 1.13 Мішаний добуток в координатах 1.12 Мішаний добуток в координатах 1.12 Визначники і лінійна залежність 2.1 Визначники другого і третього порядків 2.2 Властивості визначників 2.3 Лінійна залежність векторів 1.4 Різні способи задання ліній на площині 3.1 Різні способи задання ліній на площині 3.3 Неповні рівняння прямої 3.4 Рівняння прямої у відрізках 3.5 Канонічне рівняння

	3.8	Кут між двома прямими	0
	3.9	Умови перпендикулярності і паралельності прямих	7
	3.10	Нормальне рівняння прямої	7
	3.11	Зведення загального рівняння прямої до нормального вигляду 2	8
	3.12	Відхилення і відстань від точки до прямої	9
	3.13	Рівняння пучка (низки) прямих	0
4	$\mathbf{K}\mathbf{p}\mathbf{r}$	ві другого порядку 3	2
	4.1	Канонічне рівняння еліпса	2
	4.2	Канонічне рівняння гіперболи	4
	4.3	Канонічне рівняння параболи	6
	4.4	Ексцентриситет і директриси еліпса і гіперболи	7
	4.5	Рівняння дотичної до кривої другого порядку	9

Розділ 1

Векторна алгебра

1.1 Вектори на прямій, на площині, у просторі

Означення 1.1. Вектор — це направлений відрізок прямої.

Вектор повністю задається довжиною та напрямком. Також вектор можна задати, вказавши його початок і кінець.

$$\overline{q}_{A}^{f}$$
В Вектори позначаються: $\overline{AB}, \overline{a},$ а їх довжини $-|\overline{AB}|, |\overline{a}|.$

Означення 1.2. Два **вектори рівні**, якщо їх довжини і напрямки співпадають.

$$\overline{a}$$
/ \overline{b} / $\overline{a}=\overline{b}\Leftrightarrow \overline{a}\uparrow\uparrow \overline{b}$ (напрямки співпадають) та $|\overline{a}|=|\overline{b}|$ (довжини співпадають).

Означення 1.3. Колінеарні вектори (паралельні вектори) $(\overline{a} \parallel \overline{b})$ — це вектори \overline{a} і \overline{b} , які лежать на одній прямій або на паралельних прямих.

Серед них будемо розрізняти вектори одного напрямку: $\overline{a} \uparrow \uparrow \overline{b}$, та протилежного напрямку: $\overline{a} \uparrow \downarrow \overline{b}$.

Означення 1.4. Нульовий вектор (нуль - вектор) — це вектор нульової довжини, тобто вектор, кінець і початок якого співпадають, $|\overline{0}| = 0$. Буде зручно вважати нульовий вектор вектором довільного напрямку, тобто нульовий вектор є колінеарним будь-якому вектору.

Означення 1.5. Вектор \overline{a}' — протилежний вектор до вектора \overline{a} , якщо $\overline{a}'\uparrow\downarrow\overline{a}$ і $|\overline{a}'|=|\overline{a}|$, тобто $\overline{a}'=-\overline{a}$.

Означення 1.6. Вектори $\overline{a}, \overline{b}, \overline{c}, \dots$ це **компланарні вектори**, якщо вони лежать в одній площині або паралельні одній площині.

1.2 Лінійні операції над векторами

Множення вектора на скаляр

Означення 1.7. Добуток вектора $\overline{a} \neq \overline{0}$ і числа $\alpha \in \mathbb{R}, \ (\alpha \overline{a})$ — це вектор $\overline{b} = \alpha \overline{a},$ який задовольняє такі умови:

- 1) \overline{b} колінеарний вектору \overline{a}
- $2) |\overline{b}| = |\alpha||\overline{a}|$
- 3) $\bar{b} \uparrow \uparrow \bar{a}$ однаково направлені, якщо $\alpha>0$, і $\bar{b} \uparrow \downarrow \bar{a}$ протилежно направлені, якщо $\alpha<0$.

Додавання векторів

Означення 1.8. Сума векторів \overline{a} і \overline{b} , $(\overline{a}+\overline{b})$ — це вектор, який з'єднує початок вектора \overline{a} з кінцем вектора \overline{b} за умови, що вектор \overline{b} відкладено від кінця вектора \overline{a} .

Цей спосіб додавання векторів — це **правило трикутника**.

Два вектори можна додати і за іншим правилом, яке має назву — **правило паралелограма**: сумою двох векторів \bar{a} і \bar{b} , відкладених від спільного початку, є вектор, який збігається з діагоналлю паралелограма, побудованого на векторах \bar{a} і \bar{b} як на сторонах. Початки векторів \bar{a} , \bar{b} та $\bar{a}+\bar{b}$ співпадають.

Використовуючи послідовно правило трикутника, можна побудувати суму скінченної кількості довільних векторів. Якщо кінець останнього вектора співпадає з початком першого, то сумою векторів є нульовий вектор: $\overline{0}$.

Віднімання векторів

Означення 1.9. Різниця векторів \overline{a} і \overline{b} , $(\overline{a}-\overline{b})$ — це вектор \overline{c} , який в сумі з вектором \overline{b} дає вектор \overline{a} , тобто $\overline{b}+\overline{c}=\overline{a}$.

Очевидно, що $\overline{c} = \overline{a} + (-\overline{b})$.

$$\overline{a} - b$$

$$\overline{b}$$

$$\overline{c} = \overline{a} - \overline{b}$$

1.3 Властивості лінійних операцій, аксіоми векторної алгебри

- 1. $(\alpha\beta)\bar{a} = \alpha(\beta\bar{a})$ асоціативність відносно множення на скаляр.
- 2. $\overline{a} + \overline{b} = \overline{b} + \overline{a}$ комутативність додавання.
- 3. $(\overline{a}+\overline{b})+\overline{c}=\overline{a}+(\overline{b}+\overline{c})$ асоціативність додавання.
- 4. $\begin{array}{l} (\alpha+\beta)\overline{a}=\alpha\overline{a}+\beta\overline{a}\\ \overline{a}(\alpha+\beta)=\overline{a}\alpha+\overline{a}\beta \end{array} \right\} -$ дистрибутивність.
- 5. $\exists !\overline{0} : \forall \overline{a} : \overline{a} + \overline{0} = \overline{a}$ існування єдиного нуля.
- 6. $\forall \overline{a} \exists ! \overline{a}' : \overline{a}' + \overline{a} = \overline{0}$ існування протилежного вектора.
- 7. $1 \cdot \overline{a} = \overline{a}$

1.4 Базис на прямій, на площині, у просторі

Розглянемо множину векторів, колінеарних вектору $\overline{a} \neq \overline{0}$. Позначимо її E^1 . Нехай $\overline{a}, \overline{b}, \overline{c} \in E^1$.

Теорема 1.1. $\forall \overline{b} \in E^1 \exists$ дійсне число α таке, що $\overline{b} = \alpha \overline{a}$, причому це представлення едине.

▶ Доведемо єдиність даного представлення методом від супротивного.

Нехай
$$\overline{b} = \tilde{\alpha} \overline{a}$$

Тоді
$$\overline{0}=\overline{b}-\overline{b}=\tilde{\alpha}\overline{a}-\alpha\overline{a}=(\tilde{\alpha}-\alpha)\overline{a}\Rightarrow \tilde{\alpha}-\alpha=0\Rightarrow \tilde{\alpha}=\alpha$$

Вкажемо значення коефіцієнта α .

Якщо
$$\overline{a} \uparrow \uparrow \overline{b}$$
, то $\alpha = \frac{|\overline{b}|}{|\overline{a}|}$.

Дійсно:
$$|\alpha \overline{a}| = \left| \frac{|\overline{b}|}{|\overline{a}|} \right| |\overline{a}| = \frac{|\overline{b}|}{|\overline{a}|} |\overline{a}| = |\overline{b}|, \ \alpha \overline{a} \uparrow \uparrow \overline{b}.$$

Якщо ж $\bar{a}\uparrow\downarrow\bar{b}$, то $\alpha=-\frac{|\bar{b}|}{|\bar{a}|}$ (доведення аналогічне).

Нехай $\overline{a} \not | \overline{b}$ (тому $\overline{a} \neq \overline{0}$, $\overline{b} \neq \overline{0}$). Розглянемо множину векторів, компланарних векторам \overline{a} та \overline{b} , позначимо її E^2 . Нехай \overline{a} , \overline{b} , $\overline{c} \in E^2$.

Теорема 1.2. $\forall \overline{c} \in E^2 \exists ! \ \partial i \ u c h i \ \alpha, \beta, \ maki, \ u o \ \overline{c} = \alpha \overline{a} + \beta \overline{b}.$

▶ Проведемо доведення графічно.

З кінця вектору \bar{c} проведемо дві прямі паралельно векторам \bar{a} і \bar{b} відповідно до перетину з цими векторами чи прямими, на яких вони лежать. Отримали паралелограм, дві сторони якого дорівнюють відповідно $\alpha \bar{a}$ і $\beta \bar{b}$ (за теоремою 1.1). Діагоналлю цього паралелограма є вектор \bar{c} , тобто $\bar{c}=\alpha \bar{a}+\beta \bar{b}$. Єдиність коефіцієнтів α та β випливає з двох умов:

- 1) існує лише одна точка перетину непаралельних прямих,
 - 2) за теоремою 1.1 константи α і β визначаються однозначно.

Нехай E^3 — множина всіх векторів у просторі, причому $\overline{a},\overline{b},\overline{c}$ — некомпланарні $(\overline{a}\neq\overline{0},\overline{b}\neq\overline{0},\overline{c}\neq\overline{0}).$

Теорема 1.3. $\forall \overline{d} \in E^3, \exists ! \ \alpha, \beta, \gamma : \overline{d} = \alpha \overline{a} + \beta \overline{b} + \gamma \overline{c}.$

Із кінця вектора \overline{d} проведемо три площини, паралельні парам векторів $(\overline{b},\overline{c}),\ (\overline{a},\overline{c}),\ (\overline{a},\overline{b}).$ Ці площини перетнуть прямі, на яких лежать $\overline{a},\overline{b},\overline{c}$ в єдиних точках. За теоремою 1.1 отримаємо нові вектори $\alpha\overline{a},\beta\overline{b},\gamma\overline{c},$ а вектор \overline{d} — це діагональ паралелепіпеда, на них побудованого, тобто $\overline{d}=\alpha\overline{a}+\beta\overline{b}+\gamma\overline{c},$ що і треба було довести.

Зауваження. Базисом у множині E^1 може слугувати довільний ненульовий вектор, базисом у E^2 – впорядкована пара неколінеарних векторів, а в E^3 — впорядкована трійка некомпланарних векторів. Вектору \overline{b} було поставлено у відповідність число α ; вектору \overline{c} – числа α і β ; вектору \overline{d} – числа α,β,γ . Ці числа називаються — коефіцієнти розкладу векторів $\overline{b},\overline{c},\overline{d}$ за базисами $\overline{a};\ \overline{a},\overline{b};\ \overline{a},\overline{b},\overline{c}$ просторів E^1,E^2 і E^3 відповідно.

Означення 1.10. Коефіцієнти розкладу вектора \overline{a} за базисом $\overline{a}_1, \overline{a}_2, \dots$ — це числа $\alpha_1, \alpha_2, \dots \in \mathbb{R}$, такі, що $\overline{a} = \alpha_1 \overline{a}_1 + \alpha_2 \overline{a}_2 + \dots$

1.5 Декартів прямокутний базис

Означення 1.11. Впорядкована трійка некомпланарних векторів $(\bar{a}, \bar{b}, \bar{c})$ називається правою (**права трійка векторів**), якщо з кінця вектора \bar{c} поворот від \bar{a} до \bar{b} , менший за 180° , тобто відбувається проти годинникової стрілки.

Означення 1.12. Трійка векторів $\bar{i}, \bar{j}, \bar{k}$ утворює декартів правий прямокутний базис, якщо:

- 1. $\overline{i} \perp \overline{j}, \overline{j} \perp \overline{k}, \overline{k} \perp \overline{i}$
- 2. $|\overline{i}| = |\overline{j}| = |\overline{k}| = 1$
- $3. \ \overline{i}, \overline{j}, \overline{k}$ права трійка

1.6 Проекція вектора на вектор (або на вісь)

Нехай задано $\overline{a} \neq \overline{0}$.

Означення 1.13. Проекція вектора \overline{AB} на вектор \overline{a} називається довжина відрізка A'B' між основами перпендикулярів, опущених з точок A та B на вектор \overline{a} (або напряму, на якій він лежить):

$$\mathrm{пр}_{\overline{a}}\overline{AB} = \left\{ \begin{array}{l} |\overline{A'B'}|, \text{ якщо } \overline{A'B'} \uparrow \uparrow \overline{a} \\ -|\overline{A'B'}|, \text{ якщо } \overline{A'B'} \uparrow \downarrow \overline{a} \end{array} \right.$$

Властивості проекції:

- 1. $\operatorname{пp}_{\overline{a}}\alpha\overline{b} = \alpha\operatorname{пp}_{\overline{a}}\overline{b}$
- 2. $\operatorname{пp}_{\overline{a}}(\overline{a} + \overline{b}) = \operatorname{пp}_{\overline{a}}\overline{a} + \operatorname{пp}_{\overline{a}}\overline{b}$

1.7 Множення векторів. Скалярний добуток двох векторів

Означення 1.14. Скалярний добуток векторів \overline{a} і \overline{b} (позначається $\overline{a} \cdot \overline{b}$, $\overline{a}\overline{b}$ чи $(\overline{a},\overline{b}))$ — це число, яке дорівнює добутку довжин цих векторів на косинус кута між ними: $(\overline{a},\overline{b})=|\overline{a}||\overline{b}|\cos\varphi$, де $\varphi=\widehat{(\overline{a},\overline{b})}$.

Алгебраїчні властивості скалярного добутку:

1. $(\overline{a}, \overline{b}) = (\overline{b}, \overline{a})$ — комутативність.

$$\left. \begin{array}{l} (\alpha \overline{a}, \overline{b}) = \alpha(\overline{a}, \overline{b}) = (\overline{a}, \alpha \overline{b}) \\ 2. \quad (\overline{a} + \overline{a}', \overline{b}) = (\overline{a}, \overline{b}) + (\overline{a}', \overline{b}) \\ (\overline{a}, \overline{b} + \overline{b}') = (\overline{a}, \overline{b}) + (\overline{a}, \overline{b}') \end{array} \right\} - \text{лінійність}.$$

Геометричні властивості скалярного добутку:

- 1. $(\overline{a}, \overline{b}) = 0 \Leftrightarrow \overline{a} \perp \overline{b}$.
- 2. $(\overline{a}, \overline{a}) = |\overline{a}|^2 \Rightarrow |\overline{a}| = \sqrt{(\overline{a}, \overline{a})}$.

1.8 Скалярний добуток в координатах

Нехай $\{\overline{e}_1,\overline{e}_2,\overline{e}_3\}$ – це фіксований базис в просторі $E^3,\,\overline{x},\overline{y}\in E^3.$ Тоді:

$$\overline{x} = x_1 \overline{e}_1 + x_2 \overline{e}_2 + x_3 \overline{e}_3$$
$$\overline{y} = y_1 \overline{e}_1 + y_2 \overline{e}_2 + y_3 \overline{e}_3$$

Обчислимо скалярний добуток цих векторів:

$$\begin{split} &(\overline{x},\overline{y}) = (x_1\overline{e}_1 + x_2\overline{e}_2 + x_3\overline{e}_3,\overline{y}) = (x_1\overline{e}_1,\overline{y}) + (x_2\overline{e}_2,\overline{y}) + (x_3\overline{e}_3,\overline{y}) = \\ &x_1(\overline{e}_1,y_1\overline{e}_1 + y_2\overline{e}_2 + y_3\overline{e}_3) + x_2(\overline{e}_2,y_1\overline{e}_1 + y_2\overline{e}_2 + y_3\overline{e}_3) + x_3(\overline{e}_3,y_1\overline{e}_1 + y_2\overline{e}_2 + y_3\overline{e}_3) = \\ &x_1y_1(\overline{e}_1,\overline{e}_1) + x_1y_2(\overline{e}_1,\overline{e}_2) + x_1y_3(\overline{e}_1,\overline{e}_3) + x_2y_1(\overline{e}_2,\overline{e}_1) + x_2y_2(\overline{e}_2,\overline{e}_2) + x_2y_3(\overline{e}_2,\overline{e}_3) + \\ &x_3y_1(\overline{e}_3,\overline{e}_1) + x_3y_2(\overline{e}_3,\overline{e}_2) + x_3y_3(\overline{e}_3,\overline{e}_3) = x_1y_1(\overline{e}_1,\overline{e}_1) + (x_1y_2 + x_2y_1)(\overline{e}_1,\overline{e}_2) + \\ &(x_1y_3 + x_3y_1)(\overline{e}_1,\overline{e}_3) + x_2y_2(\overline{e}_2,\overline{e}_2) + (x_2y_3 + x_3y_2)(\overline{e}_2,\overline{e}_3) + x_3y_3(\overline{e}_3,\overline{e}_3). \end{split}$$

У частковому випадку, коли $\overline{e}_1=\overline{i}, \overline{e}_2=\overline{j}, \overline{e}_3=\overline{k}$, маємо: $(\overline{e}_1,\overline{e}_2)=(\overline{e}_2,\overline{e}_3)=(\overline{e}_3,\overline{e}_1), (\overline{e}_i,\overline{e}_j)=1$, де i=1,2,3.

$$(\overline{x},\overline{y})=x_1y_1+x_2y_2+x_3y_3$$
 Якщо $\overline{a}=(x,y,z),$ то $|\overline{a}|=\sqrt{(\overline{a},\overline{a})}=\sqrt{x^2+y^2+z^2}.$

1.9 Нормування вектора

Означення 1.15. Нехай $\overline{a} \neq \overline{0}$. **Орт-вектор** вектора \overline{a} — це вектор \overline{a}_o , такий, що $\overline{a}_o \uparrow \uparrow \overline{a}$ і $|\overline{a}_o| = 1$.

Означення 1.16. Нормування вектора \overline{a} — це процес отримання ортвектора $\overline{a}_o, \ \overline{a}_o = \frac{1}{|\overline{a}|}\overline{a}$

Якщо $\overline{a} = (x, y, z)$, то

$$\overline{a}_o = \left(\frac{x}{\sqrt{x^2 + y^2 + z^2}}, \frac{y}{\sqrt{x^2 + y^2 + z^2}}, \frac{z}{\sqrt{x^2 + y^2 + z^2}}\right).$$

Геометричний сенс координат орт-вектора \overline{a}_o у декартовій системі координат: $\overline{a}_o = (\cos \alpha, \cos \beta, \cos \gamma)$ де, $\alpha = (\overline{a}, \overrightarrow{OX}) = (\overline{a}_o, \overrightarrow{OX}), \beta = (\overline{a}, \overrightarrow{OY}) = (\overline{a}_o, \overrightarrow{OY}), \gamma = (\overline{a}_o, \overrightarrow{OZ}) = (\overline{a}_o, \overrightarrow{OZ}).$

Означення 1.17. Косинуси кутів, які утворює вектор (або його орт) з осями координат — це **напрямні косинуси**.

Знайдемо косинус кута α :

$$\cos \alpha = \frac{(\overline{a}, \overline{i})}{|\overline{a}||\overline{i}|} = \frac{x}{\sqrt{x^2 + y^2 + z^2}}$$

Твердження 1.1. $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$.

Формула для довжини проекції вектора:

$$x = |\overline{a}| \cos \alpha = \pi p_{\overline{i}} \overline{a}$$

1.10 Векторний добуток двох векторів

Означення 1.18. Векторний добуток векторів \overline{a} і \overline{b} $[\overline{a},\overline{b}]$ — це вектор \overline{c} , що задовольняє умови:

- 1. $\overline{c} \perp \overline{a}$, $\overline{c} \perp \overline{b}$
- 2. $|\overline{a}| = |\overline{a}||\overline{b}|\sin\varphi, \ \varphi = (\widehat{\overline{a}}, \overline{b})$
- $3. \ \overline{a}, \overline{b}, \overline{c}$ права трійка

Зауваження. Оскільки $\overline{c} \perp \overline{a}, \ \overline{c} \perp \overline{b}, \ \text{то} \ \overline{c}$ перпендикулярний площині векторів \overline{a} і \overline{b} .

Алгебраїчні властивості векторного добутку:

- 1) $[\overline{a}, \overline{b}] = -[\overline{b}, \overline{a}]$
 - 2) $[\alpha \overline{a}, \overline{b}] = \alpha [\overline{a}, \overline{b}] = [\overline{a}, \alpha \overline{b}]$
 - 3) $[\overline{a} + \overline{b}, \overline{c}] = [\overline{a}, \overline{c}] + [\overline{b}, \overline{c}]$
 - 4) $[\overline{a}, \overline{b} + \overline{c}] = [\overline{a}, \overline{b}] + [\overline{a}, \overline{c}]$

Доведення:

▶ 1) Нехай $[\overline{a},\overline{b}]=\overline{c},\ [\overline{b},\overline{a}]=\overline{d}.$ Тоді: $\overline{c}\perp\overline{a}$ і $\overline{c}\perp\overline{b},\ \overline{d}\perp\overline{b}$ і $\overline{d}\perp\overline{a}$, тобто вектори \overline{c} і \overline{d} перпендикулярні до площини, в якій лежать вектори \overline{a} і \overline{b} , отже, $\overline{c}\parallel\overline{d}$.

$$|\overline{c}|=|\overline{a}||\overline{b}|\sinarphi=|\overline{d}|,$$
 де $arphi=(\overline{a},\overline{b}).$

 $\overline{a},\,\overline{b},\,\overline{c}$ — права трійка; $\overline{b},\,\overline{a},\,\overline{d}$ — також права трійка $\Rightarrow \overline{a},\,\overline{b},\,\overline{d}$ — ліва трійка, тому вектори \overline{c} та \overline{d} протилежно направлені.

Отже, вектори \bar{c} та \bar{d} колінеарні, мають однакову довжину та протилежно направлені. Тому $\bar{c}=-\bar{d}$.

2) Якщо $\alpha=0$ або $\overline{a}\parallel \overline{b}$, то рівності очевидні: $[\alpha \overline{a},\overline{b}]=\alpha[\overline{a},\overline{b}]=\overline{0}$. Нехай $\alpha<0,\,[\overline{a},\overline{b}]=\overline{c},\,\varphi=(\widehat{a},\overline{b}),\,[\alpha\overline{a},\overline{b}]=\overline{d}$. Тоді:

$$|\alpha \overline{c}| = |\alpha[\overline{a}, \overline{b}]| = |\alpha||[\overline{a}, \overline{b}]| = -\alpha|\overline{a}||\overline{b}|\sin\varphi.$$

$$|[\alpha \overline{a}, \overline{b}]| = |\alpha \overline{a}||\overline{b}||\sin(\alpha \overline{a}, \overline{b}) = |\alpha||\overline{a}||\overline{b}||\sin(\pi - \varphi) = -\alpha|\overline{a}||\overline{b}||\sin\varphi.$$

 $\bar{c}\perp$ площині, в якій лежать \bar{a} і $\bar{b}\Rightarrow \bar{c}\perp$ площині, в якій лежать $\alpha \bar{a}$ і \bar{b} .

 \overline{d} \perp площині, в якій лежать $\alpha \overline{a}$ і \overline{b} , отже, $\overline{c} \parallel \overline{d}$.

 $\overline{a}, \overline{b}, \overline{c}$ — права трійка $\alpha \overline{a}, \overline{b}, \overline{c}$ — ліва трійка, $\overline{a}, \overline{b}, \alpha \overline{c}$ — ліва трійка.

 $\alpha\overline{a},\,\overline{b},\,\overline{d}$ — права трійка $\overline{a},\,\overline{b},\,\overline{d}$ — ліва трійка; отже, вектори $\alpha\overline{c}$ та \overline{d} . однаково направлені.

Враховуючи однакову довжину векторів $\alpha \overline{c}$ та \overline{d} , маємо $\alpha \overline{c} = \overline{d}$ або $[\alpha \overline{a}, \overline{b}] = \alpha [\overline{a}, \overline{b}].$

3), 4) — очевидно.

Геометричні властивості векторного добутку:

- 1) $[\overline{a}, \overline{b}] = \overline{0} \Leftrightarrow \overline{a} \parallel \overline{b}$
- 2) $|[\overline{a},\overline{b}]|=S_{\sqrt[]{a}\overline{b}},$ де $S_{\sqrt[]{a}\overline{b}}$ площа паралелограма, побудованого на векторах \overline{a} та \overline{b} , як на сторонах

Доведення:

- ▶ 1) $|[\overline{a}, \overline{b}]| = |\overline{a}||\overline{b}|\sin \varphi = 0 \Rightarrow \overline{a} = \overline{0}$ або $\overline{b} = \overline{0}$, або $\sin \varphi = 0 \Rightarrow \overline{a} \parallel \overline{b}$. Якщо $\overline{a} \parallel \overline{b}$, то $\sin \varphi = 0$, і $|[\overline{a}, \overline{b}]| = 0 \Rightarrow [\overline{a}, \overline{b}] = \overline{0}$.
 - $2)\ |[\overline{a},\overline{b}]|=|\overline{a}||\overline{b}|\sin\varphi=|\overline{a}|h=S_{\lozenge\overline{a}\overline{b}}.$

Твердження 1.2. $[\overline{a}, \overline{a}] = 0.$

1.11 Векторний добуток в координатах

Нехай в просторі E^3 зафіксовано базис $\{\bar{i},\bar{j},\bar{k}\},\,\bar{x},\bar{y}\in E^3,$ тоді

$$\overline{x} = x_1 \overline{i} + y_1 \overline{j} + z_1 \overline{k}$$

$$\overline{y} = x_2\overline{i} + y_2\overline{j} + z_2\overline{k}$$

Знайдемо координати вектору $[\overline{x}, \overline{y}].$

Зауважимо, що $[\overline{i},\overline{j}]=\overline{k},\,[\overline{j},\overline{\overline{k}}]=\overline{i},\,[\overline{k},\overline{i}]=\overline{j}.$ Тоді:

 $\begin{array}{l} [\overline{i},\overline{j}] = [x_1\overline{i} + y_1\overline{j} + z_1\overline{k}, x_2\overline{i} + y_2\overline{j} + z_2\overline{k}] = x_1x_2[\overline{i},\overline{i}] + x_1y_2[\overline{i},\overline{j}] + x_1z_2[\overline{i},\overline{k}] + y_1x_2[\overline{j},\overline{i}] + y_1y_2[\overline{j},\overline{j}] + y_1z_2[\overline{j},\overline{k}] + z_1x_2[\overline{k},\overline{i}] + z_1y_2[\overline{k},\overline{j}] + z_1z_2[\overline{k},\overline{k}] = (x_1y_2 - x_2y_1)[\overline{i},\overline{j}] + (x_1z_2 - x_2z_1)[\overline{i},\overline{k}] + (y_1z_2 - y_2z_1)[\overline{j},\overline{k}] = (x_1y_2 - x_2y_1)\overline{k} + (x_1z_2 - x_2z_1)\overline{j} + (y_1z_2 - y_2z_1)\overline{i} = (y_1z_2 - y_2z_1)\overline{i} + (x_1y_2 - x_2y_1)\overline{k}. \end{array}$

Задача 1.1. Знайти площу трикутника з вершинами A(3,0,-1), B(-2,4,1), C(2,1,-3).

$$P$$
озв'язання. $S=\frac{1}{2}|[\overline{AB},\overline{AC}]|.$ Оскільки $\overline{AB}=(-5,4,2),\overline{AC}=(-1,1,-2),$ то $[\overline{AB},\overline{AC}]=-10\overline{i}-12\overline{j}-\overline{k}.$ Тоді $|[\overline{AB},\overline{AC}]|=\sqrt{(-10)^2+(-12)^2+(-1)^2}=\sqrt{100+144+1}=\sqrt{245},$ і $S=\frac{1}{2}\sqrt{245}$

1.12 Мішаний добуток трьох векторів

Означення 1.19. Мішаний добуток векторів $\overline{a}, \overline{b}, \overline{c}$ — це скалярний добуток \overline{a} з векторним добутком векторів \overline{b} і \overline{c} , тобто $\overline{a}\overline{b}\overline{c}=(\overline{a}, [\overline{b}, \overline{c}]).$

Теорема 1.4. Мішаний добуток векторів $\bar{a}, \bar{b}, \bar{c}$ дорівнює об'єму паралелепіпеда V_{nap} , побудованого на цих векторах, якщо вони складають праву трійку і дорівнює $-V_{nap}$, якщо $\bar{a}, \bar{b}, \bar{c}$ — ліва трійка:

$$\overline{a}\overline{b}\overline{c}=\left\{egin{array}{ll} V_{nap}, & \mbox{ якщо }\overline{a},\overline{b},\overline{c}-\mbox{ права трійка} \ -V_{nap}, & \mbox{ якщо }\overline{a},\overline{b},\overline{c}-\mbox{ ліва трійка} \end{array}
ight.$$

ightharpoonup Розглянемо випадок, коли $\overline{a}, \overline{b}, \overline{c}$ — права трійка.

Нехай $[\overline{b},\overline{c}]=\overline{d}$. Тоді $\overline{b},\,\overline{c},\,\overline{d}$ — права трійка. Позначимо $\varphi=\widehat{(\overline{a},\overline{d})}.$

Тоді $\overline{a}\overline{b}\overline{c}=(\overline{a},[\overline{b},\overline{c}])=(\overline{a},\overline{d})=|\overline{a}||\overline{d}|\cos\varphi=S_{\Diamond\overline{c}\overline{b}}|\overline{a}|\cos\varphi=S_{\Diamond\overline{c}\overline{b}}h=V_{\text{пар}},$ оскільки висота паралеленінеда $h=|\overline{a}|\sin\left(\frac{\pi}{2}-\varphi\right)=|\overline{a}|\cos\varphi$. У випадку, коли $\overline{a},\overline{b},\overline{c}$ — ліва трійка, доведення аналогічне.

Алгебраїчні властивості:

1.
$$\overline{a}\overline{b}\overline{c} = \overline{c}\overline{a}\overline{b} = \overline{b}\overline{c}\overline{a} = -\overline{b}\overline{a}\overline{c} = -\overline{c}\overline{b}\overline{a} = -\overline{a}\overline{c}\overline{b}$$

2.
$$(\alpha \overline{a})\overline{b}\overline{c} = \alpha \overline{a}\overline{b}\overline{c} = \overline{a}(\alpha \overline{b})\overline{c} = \overline{a}\overline{b}(\alpha \overline{c})$$

 $(\overline{a} + \overline{a}')\overline{b}\overline{c} = \overline{a}\overline{b}\overline{c} + \overline{a}'\overline{b}\overline{c}$

3.
$$\overline{a}(\overline{b} + \overline{b}')\overline{c} = \overline{a}\overline{b}\overline{c} + \overline{a}\overline{b}'\overline{c}$$

 $\overline{a}\overline{b}(\overline{c} + \overline{c}') = \overline{a}\overline{b}\overline{c} + \overline{a}\overline{b}\overline{c}'$

Доведення:

- ▶ 1) випливає з того факту, що при циклічній перестановці векторів їх орієнтація не змінюється. А якщо в трійці векторів деякі два з них поміняти місцями, то її орієнтація змінюється.
- 2) випливає з лінійності скалярного і векторного добутків відносно множення на скаляр.

3)
$$(\overline{a} + \overline{a}')\overline{b}\overline{c} = (\overline{a} + \overline{a}', [\overline{b}, \overline{c}]) = (\overline{a}, [\overline{b}, \overline{c}]) + (\overline{a}', [\overline{b}, \overline{c}]) = \overline{a}\overline{b}\overline{c} + \overline{a}'\overline{b}\overline{c}$$

$$\overline{a}(\overline{b} + \overline{b}')\overline{c} = (\overline{b} + \overline{b}')\overline{c}\overline{a} = \overline{b}\overline{c}\overline{a} + \overline{b}'\overline{c}\overline{a} = \overline{a}\overline{b}\overline{c} + \overline{a}\overline{b}'\overline{c}.$$
And $\overline{a}(\overline{b} + \overline{b}')\overline{a} = (\overline{a}, [\overline{b} + \overline{b}', \overline{c}]) = (\overline{a}, [\overline{b}, \overline{c}] + [\overline{b}', \overline{c}]).$

Ця рівність справедлива $\forall \overline{a}$. Тому $[\overline{b} + \overline{b}', \overline{c}] = [\overline{b}, \overline{c}] + [\overline{b}', \overline{c}]$, що доводить властивість 3 векторного добутку.

Твердження 1.3. $\overline{a}\overline{b}\overline{c}=(\overline{a},[\overline{b},\overline{c}])=([\overline{a},\overline{b}],\overline{c}).$

1.13 Мішаний добуток в координатах

Нехай в просторі E^3 зафіксовано базис $\{\overline{i},\overline{j},\overline{k}\}$ і задано три вектори:

$$\overline{a} = (a_1, a_2, a_3), \ \overline{b} = (b_1, b_2, b_3), \ \overline{c} = (c_1, c_2, c_3).$$

Тоді $[\overline{b},\overline{c}]=(b_2c_3-b_3c_2)\overline{i}-(b_1c_3-b_3c_1)\overline{j}+(b_1c_2-b_2c_1)\overline{k}$ та $\overline{a}\overline{b}\overline{c}=(\overline{a},[\overline{b},\overline{c}])=a_1(b_2c_3-b_3c_2)-a_2(b_1c_3-b_3c_1)+a_3(b_1c_2-b_2c_1)=a_1b_2c_3-a_1b_3c_2-a_2b_1c_3+a_2b_3c_1+a_3b_1c_2-a_3b_2c_1.$

Задача 1.2. Чи можуть вектори $\overline{e}_1=(1,-1,0),$ $\overline{e}_2=(2,0,-2),$ $\overline{e}_3=(3,1,6)$ слугувати базисом в просторі E^3 ?

Pозв'язання. Якщо $\overline{e}_1,\overline{e}_2,\overline{e}_3$ — базис, то вони некомпланарні і об'єм паралелепіпеда, на них побудованого, не дорівнює нулю. Тобто, $\overline{e}_1\overline{e}_2\overline{e}_3 \neq 0$. Знайдемо мішаний добуток $\overline{e}_1\overline{e}_2\overline{e}_3$: $\overline{e}_1\overline{e}_2\overline{e}_3=0+0+6+0+2+12=20\neq 0$. Це означає, що дані вектори можуть слугувати базисом в E^3 .

Розділ 2

Визначники і лінійна залежність

2.1 Визначники другого і третього порядків

Означення 2.1. Матриця A, **розміром** $m \times n$ — це прямокутна таблицю чисел з m рядків та n стовпчиків:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}.$$

Позначають матриці і в такий спосіб: $A = (a_{ij})_{i=1,\dots,m,\ j=1,\dots,n},$ де a_{ij} — це елемент матриці, що стоїть в i-му рядку та j-му стовпчику.

Нехай A – квадратна матриця другого порядку (тобто 2×2).

Означення 2.2. Визначник матриці (детермінант матриці) A другого порядку — це число, яке знаходиться за формулою:

$$\det A = |A| = \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix} = x_1 y_2 - x_2 y_1$$

Означення **2.3.** Визначник матриці (детермінант матриці) *А* третього порядку — це число, яке знаходиться за формулою (правило "зірочки"):

$$\det A = |A| = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix} = x_1 y_2 z_3 + x_3 y_1 z_2 + x_2 y_3 z_1 - x_3 y_2 z_1 - x_2 y_1 z_3 - x_1 y_3 z_2$$

Ця формула нам вже відома, адже саме так ми шукали мішаний добуток векторів $\overline{a}, \overline{b}, \overline{c}$, які в базисі $\{\overline{i}, \overline{j}, \overline{k}\}$ мають координати $\overline{a} = (x_1, y_1, z_1), \overline{b} = (x_2, y_2, z_2), \overline{c} = (x_3, y_3, z_3)$

2.2 Властивості визначників

Усі властивості будемо формулювати і доводити для визначників 3-го порядку. Але, як ми побачимо пізніше, усі наведені властивості будуть виконуватися і для визначників довільного порядку.

Нехай A квадратна матриця третього порядку, тоді $\det A = \overline{a}\overline{b}\overline{c}$, де $\overline{a} = (x_1,y_1,z_1), \overline{b} = (x_2,y_2,z_2), \overline{c} = (x_3,y_3,z_3).$

Означення 2.4. Транспонована матриця — це матриця A^T , отримана шляхом транспонування (транспоновки) елементів матриці A, тобто стовпчики і рядки, міняються місцями: $A^T = (a_{ij}^T)$, де $a_{ij}^T = a_{ji}$.

Нехай
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
.

Означення 2.5. Мінор M_{ij} , **елемента** a_{ij} — це визначник матриці, яка отримана з матриці А викреслюванням i-го рядка та j-го стовичика.

Наприклад:
$$M_{23}=\begin{vmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{vmatrix}=a_{11}a_{32}-a_{12}a_{31}.$$

Означення 2.6. Алгебраїчне доповнення елемента a_{ij} — це добуток $A_{ij}=(-1)^{i+j}M_{ij}.$

Властивості визначників:

1) При транспонуванні матриці значення її визначника не зміниться:

$$\det A = \det A^T$$

▶ Доведення випливає безпосередньо з правила "зірочки"

$$\det A^T = \begin{vmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{vmatrix} = x_1 y_2 z_3 + x_3 y_1 z_2 + x_2 y_3 z_1 - x_3 y_2 z_1 - x_2 y_1 z_3 - x_1 y_3 z_2 = x_1 y_2 z_3 + x_2 y_3 z_1 - x_2 y_1 z_3 - x_1 y_3 z_2 = x_1 y_2 z_3 + x_2 y_3 z_1 - x_2 y_1 z_3 - x_1 y_3 z_2 = x_1 y_2 z_3 + x_2 y_3 z_1 - x_2 y_1 z_3 - x_1 y_3 z_2 = x_1 y_2 z_3 + x_2 y_3 z_1 - x_2 y_1 z_3 - x_1 y_3 z_2 = x_1 y_2 z_3 + x_2 y_1 z_3 - x_1 y_2 z_3 + x_1 y_2 z_3 - x_1 y_2 z_3 + x_1 y_1 z_3 - x_1$$

 $\det A$

Ця властивість урівнює в "правах" стовпчики і рядки. Тому далі всі властивості будемо формулювати для рядків.

2) Знак визначника змінюється, якщо будь-які два рядки поміняти місцями:

$$D(\overline{a},\overline{b},\overline{c}) = -D(\overline{b},\overline{a},\overline{c}) = -D(\overline{a},\overline{c},\overline{b}) = -D(\overline{c},\overline{b},\overline{a})$$

3) Спільний множник можна винести з довільного рядка за визначник:

$$D(\alpha \overline{a}, \overline{b}, \overline{c}) = D(\overline{a}, \alpha \overline{b}, \overline{c}) = D(\overline{a}, \overline{b}, \alpha \overline{c}) = \alpha D(\overline{a}, \overline{b}, \overline{c})$$

- 4) $D(\overline{a} + \overline{a}', \overline{b}, \overline{c}) = D(\alpha \overline{a}, \overline{b}, \overline{c}) + D(\alpha \overline{a}', \overline{b}, \overline{c})$
- 5) Визначник, рядки якого пропорційні, дорівнює нулю:

$$D(\overline{a}, \alpha \overline{a}, \overline{c}) = 0$$

6) Визначник, який має два однакових рядки, дорівнює нулю:

$$D(\overline{a}, \overline{a}, \overline{c}) = 0$$

7) Визначник матриці з нульовим рядком дорівнює нулю:

$$D(\overline{a}, \overline{0}, \overline{c}) = 0$$

8) Визначник не змінюється, якщо до якогось його рядка додати лінійну комбінацію інших рядків:

$$D(\overline{a}, \overline{b}, \overline{c} + \alpha \overline{a} + \beta \overline{b}) = D(\overline{a}, \overline{b}, \overline{c})$$

9) Визначник матриці A дорівнює сумі добутків елементів будь-якого рядка на їх алгебраїчні доповнення.

Наприклад: $\det A = a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13}$.

Будемо казати, що в цьому прикладі ми розклали визначник за першим рядком.

 $\sum_{i=1}^{3} a_{1i} A_{1i} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} = a_{11} (a_{22} a_{33} - a_{23} a_{32}) - a_{12} (a_{21} a_{33} - a_{23} a_{31}) + a_{13} (a_{21} a_{32} - a_{22} a_{31}) = a_{11} a_{22} a_{33} - a_{11} a_{23} a_{32} - a_{12} a_{21} a_{33} + a_{12} a_{23} a_{31} + a_{13} a_{21} a_{32} - a_{11} a_{22} a_{31} = \det A.$

Задача 2.1. З'ясувати, чи можуть вектори $\overline{a}=(2,-1,2), \overline{b}=(1,2,-3), \overline{c}=(3,-4,7)$ утворювати базис у просторі E^3 ?

Pозв'язання. Вектори $\bar{a}, \bar{b}, \bar{c}$ будуть утворювати базис, якщо вони некомпланарні. Тобто об'єм паралелепіпеда, на них побудованого, не повинен дорівнювати нулю. Знайдемо мішаний добуток даних векторів:

$$\overline{a}, \overline{b}, \overline{c} = d(\overline{a}, \overline{b}, \overline{c}) = \begin{vmatrix} 2 & -1 & 2 \\ 1 & 2 & -3 \\ 3 & -4 & 7 \end{vmatrix} = \begin{vmatrix} 0 & -1 & 0 \\ 5 & 2 & 1 \\ -5 & -4 & -1 \end{vmatrix} = -(-1) \begin{vmatrix} 5 & 1 \\ -5 & -1 \end{vmatrix} = 0$$

Для обчислення цього визначника ми спочатку 2-й стовпчик помножили на 2 і додали його до 1-го та 3-го стовпчиків, а потім скористались властивістю 9. Таким чином, об'єм паралелепіпеда, побудованого на векторах \bar{a}, \bar{b} і \bar{c} дорівнює нулю, тобто ці вектори лежать в одній площині і слугувати базисом не можуть.

2.3 Лінійна залежність векторів

Розглянемо систему векторів $\overline{a}_1, \overline{a}_2, ..., \overline{a}_n$.

Означення 2.7. Лінійна комбінація векторів — це вираз $\alpha_1 \overline{a}_1 + \alpha_2 \overline{a}_1 + \dots + \alpha_n \overline{a}_n$, де $\alpha_i \in \mathbb{R}$.

Означення 2.8. Лінійна комбінація векторів $\overline{a}_1, \overline{a}_2, ..., \overline{a}_n$ — це тривіальна лінійна комбінація, якщо всі $\alpha_i = 0$, і це нетривіальна лінійна комбінація, в протилежному випадку.

Означення 2.9. Лінійно залежні вектори $\overline{a}_1, \overline{a}_2, ..., \overline{a}_n$ є такими ,якщо існують такі числа $\alpha_1, \alpha_2, ..., \alpha_n$ що виконується рівність $\alpha_1 \overline{a}_1 + \alpha_2 \overline{a}_2 + ... + \alpha_n \overline{a}_n = \overline{0}$, причому $|\alpha_1| + |\alpha_2| + ... + |\alpha_n| \neq 0$.

Означення 2.10. Лінійно незалежні вектори — це вектори $\overline{a}_1, \overline{a}_2, ..., \overline{a}_n,$ такі, що їх лінійна комбінація дорівнює нулю лише за умови, коли всі $\alpha_i = 0$.

Інакше кажучи, вектори $\overline{a}_1, \overline{a}_2, ..., \overline{a}_n$ є лінійно незалежними, якщо ніяка їх нетривіальна лінійна комбінація не дорівнює нульовому вектору.

Властивості:

Твердження 2.1. Вектори $\overline{a}_1, \overline{a}_2, ..., \overline{a}_n$ – лінійно залежні тоді і тільки тоді, коли хоча б один з них лінійно виражається через інші.

▶ 1) Нехай $\overline{a}_1, \overline{a}_2, ..., \overline{a}_n$ — це лінійно залежні вектори. Тоді $\alpha_1 \overline{a}_1 + ... + \alpha_i \overline{a}_i + ... + \alpha_n \overline{a}_n = \overline{0}$ та $\alpha_i \neq 0$ для деякого i . Звідси випливає, що $\overline{a}_i = -\frac{1}{\alpha_i}(\alpha_1 \overline{a}_1 + ... + \alpha_n \overline{a}_n)$

 $\ldots + \alpha_{i-1}\overline{a}_{i-1} + \alpha_{i+1}\overline{a}_{i+1} + \ldots + \alpha_n\overline{a}_n$), тобто вектор \overline{a}_i лінійно виражається через інші вектори системи.

2) Нехай $\overline{a}_i = \beta_1 \overline{a}_1 + ... + \beta i - 1 \overline{a}_{i-1} + \beta i + 1 \overline{a}_{i+1} + ... + \beta_n \overline{a}_n$) для деякого i. Тоді $\beta_1 \overline{a}_1 + ... + \beta_{i-1} \overline{a}_{i-1} + (-1) \overline{a}_i + \beta_{i+1} \overline{a}_{i+1} + ... + \beta_n \overline{a}_n = \overline{0}$, тобто отримано нульову лінійну комбінацію, в якій коефіцієнт при векторі і а є ненульовим.

Твердження 2.2. Якщо один з векторів $\overline{a}_1, \overline{a}_2, ..., \overline{a}_n$ є нульовим, то система цих векторів є лінійно залежною.

▶ Припустимо, що $\overline{a}_1 = \overline{0}$. Тоді очевидно, що $1\overline{a}_1 + 0\overline{a}_2 + ... + 0\overline{a}_n = \overline{0}$, тобто за означенням дана система векторів є лінійно залежною ($\alpha_1 = 1 \neq 0$).

Твердження 2.3. Якщо серед векторів $\overline{a}_1, \overline{a}_2, ..., \overline{a}_n$ є два однакових, то система векторів є лінійно залежною.

▶ Доведення є очевидним.

Твердження 2.4. Якщо серед n векторів існує k лінійно залежних векторів, то і всі n векторів e лінійно залежними.

▶ Розглянемо лінійну комбінацію даних n векторів $\alpha_1 \overline{a}_1 + ... + \alpha_k \overline{a}_k + 0 \overline{a}_{k+1} + ... + 0 \overline{a}_n = \overline{0}$, при умові, що $\alpha_1 \overline{a}_1 + ... + \alpha_k \overline{a}_k = \overline{0}$ і константи $\alpha_1, \alpha_2, ..., \alpha_{n-1}$ не всі рівні нулю. Ця комбінація є нетривіальною, що і доводить потрібний факт.

Твердження 2.5. Якщо вектор \bar{a} лінійно виражається через лінійно незалежні вектори $\bar{a}_1, \bar{a}_2, ..., \bar{a}_n$, то таке представлення єдине.

• (від супротивного). Припустимо, що вектор \overline{a} лінійно виражається через дані вектори не єдиним чином, тобто $\overline{a} = \alpha_1 \overline{a}_1 + \alpha_2 \overline{a}_2 + ... + \alpha_n \overline{a}_n$ і $\overline{a} = \beta_1 \overline{a}_1 + \beta_2 \overline{a}_2 + ... + \beta_n \overline{a}_n$. Віднявши другу рівність від першої, маємо: $\overline{0} = (\alpha_1 - \beta_1) \overline{a}_1 + (\alpha_2 - \beta_2) \overline{a}_2 + ... + (\alpha_n - \beta_n) \overline{a}_n$. Оскільки $\overline{a}_1, \overline{a}_2, ..., \overline{a}_n$ є лінійно незалежними, то $\alpha_1 = \beta_1, \alpha_2 = \beta_2, ..., \alpha_n = \beta_n$, що суперечить припущенню про неєдиність представлення вектора \overline{a} .

Твердження 2.6. Довільна підсистема лінійно незалежних векторів \bar{a}_1 , \bar{a}_2 , ..., \bar{a}_n є лінійно незалежною.

▶ Застосуємо метод від супротивного. Нехай існує підсистема $\overline{a}_1, \overline{a}_2, ..., \overline{a}_n, k < n$, лінійно залежних векторів. Це означає, що $\alpha_1\overline{a}_1 + \alpha_2\overline{a}_2 + ... + \alpha_k\overline{a}_k = \overline{0}$, причому $|\alpha_1| + |\alpha_2| + ... + |\alpha_k| \neq 0$. Додамо до обох частин рівності нуль-вектор: $0\overline{a}_{k+1} + ... + 0\overline{a}_n$. В результаті отримаємо: $\alpha_1\overline{a}_1 + \alpha_2\overline{a}_2 + ... + \alpha_k\overline{a}_k + 0\overline{a}_{k+1} + ... + 0\overline{a}_n = \overline{0}$ і $|\alpha_1| + |\alpha_2| + ... + |\alpha_k| \neq 0$. Це означає лінійну залежність векторів $\overline{a}_1, \overline{a}_2, ..., \overline{a}_n$, що протирічить припущенню. Отже, підсистема $\overline{a}_1, \overline{a}_2, ..., \overline{a}_n$, є лінійно незалежною.

Твердження 2.7. Якщо після доповнення системи $\overline{a}_1, \overline{a}_2, ..., \overline{a}_n$ лінійно незалежних векторів вектором \overline{a} , отримали лінійно залежну систему, то вектор \overline{a} лінійно виражається через вектори $\overline{a}_1, \overline{a}_2, ..., \overline{a}_n$.

▶ Оскільки вектори $\overline{a}_1, \overline{a}_2, ..., \overline{a}_n, \overline{a}$ є лінійно залежними, то існують такі константи $\alpha_1, \alpha_2, ..., \alpha_n, \alpha_{n+1}$, не всі рівні нулю, що

$$\alpha_1 \overline{a}_1 + \alpha_2 \overline{a}_2 + \dots + \alpha_n \overline{a}_n + \alpha_{n+1} \overline{a} = \overline{0}.$$
 (*)

При цьому саме $\alpha_{n+1}\neq 0$. Доведемо цей факт методом від супротивного. Якщо $\alpha_{n+1}=0$, то $\alpha_{n+1}\overline{a}=\overline{0}$ і $\alpha_1\overline{a}_1+\alpha_2\overline{a}_2+...+\alpha_n\overline{a}_n=\overline{0}$, причому серед чисел $\alpha_1,\alpha_2,...,\alpha_n$ існують ненульові. Але в цьому випадку вектори $\overline{a}_1,\overline{a}_2,...,\overline{a}_n$ є лінійно залежними, що суперечить умові твердження. Отже, $\alpha_{n+1}\neq 0$, тому з рівності (*) випливає, що $\overline{a}=\left(-\frac{\alpha_1}{\alpha_{n+1}}\right)\overline{a}_1+...+\left(-\frac{\alpha_n}{\alpha_{n+1}}\right)\overline{a}_n$.

Геометричний сенс лінійної залежності

Твердження 2.8. Два вектори \overline{a} i \overline{b} ϵ лінійно залежними тоді i тільки тоді, коли $\overline{a} \parallel \overline{b}$.

Твердження 2.9. Три вектори $\overline{a}, \overline{b}, \overline{c}$ є лінійно залежними тоді і тільки тоді, коли $\overline{a}, \overline{b}, \overline{c}$ є компланарними.

Твердження 2.10. Довільні чотири вектори $\bar{a}, \bar{b}, \bar{c}, \bar{d} \in E^3$ є завжди лінійно залежними.

Розділ 3

Пряма на площині

3.1 Різні способи задання ліній на площині

Одним із найважливіших завдань аналітичної геометрії є представлення лінії на площині за допомогою рівняння, що зв'язує координати кожної точки цієї лінії. Нехай маємо на площині P декартову прямокутну систему координат та деяку лінію L.

Означення 3.1. Рівняння лінії L — це рівняння F(x,y)=0, якому задовольняють координати x та y кожної точки цієї лінії.

Інакше кажучи, лінія — це геометричне місце точок, координати яких задовольняють рівняння. Лінію L можна задавати таким чином.

- 1) **Неявний спосіб:** F(x,y)=0. Функція y від x (чи x від y) задана неявно. Приклад: $x^2+y^2=R^2$ рівняння кола радіуса R з центром у початку координат.
- 2) **Явний спосіб:** y = f(x). Функція y від x задана явно. Для побудови графіка цієї функції складається таблиця значень x та f(x), ці пари точок позначаються на площині та з'єднуються плавною лінією. Приклад: $y = \pm \sqrt{R^2 x^2}$.

3) Параметричне представлення:
$$\left\{ \begin{array}{l} x=x(t)\\ y=y(t) \end{array} \right., t\in D.$$

Щоб побудувати графік такої функції треба скласти таблицю для x(t) і y(t) для однакових значень параметра t , що пробігає числову множину D . Виключення з двох рівнянь параметра t приводить до неявного способу задання даної лінії L. Приклад: $\left\{ \begin{array}{l} x = R\cos t \\ y = R\sin t \end{array} \right., t \in [0,2\pi].$

Приклади графіків параметричних функцій:

Приклад 1: циклоїда
$$\left\{ \begin{array}{l} x=a(t-\sin t)\\ y=a(1-\cos t) \end{array} \right., t\in [-\infty,+\infty], a>0.$$

Таку лінію описує фіксована точка кола радіуса a, що котиться по всій осі Ox. Очевидно, що $y \in [0, 2a]$, а y = 0 при $1 - \cos t = 0 \Rightarrow \cos t = 1 \Rightarrow t = 0, \pm 2\pi, \pm 4\pi$.

Приклад 2: астроїда $\left\{ \begin{array}{l} x=a\cos^3t \\ y=a\sin^3t \end{array} \right., t\in [0,2\pi].$

Запишемо рівняння астроїди в неявному вигляді:
$$\frac{(x)^{2/3}}{(a)^{2/3}} + \left(\frac{y}{a}\right)^{2/3} = \cos^2 t + \sin^2 t = 1$$
$$\Rightarrow x^{2/3} + y^{2/3} = a^{2/3}.$$

- 4) Представлення лінії у полярній системі координат. На площині задана полярна система координат, якщо задано:
 - 1. точка *О* полюс;
 - 2. полярна вісь ρ промінь, що виходить з точки O.

Тоді положення будь-якої точки M на площині визначається парою чисел (ρ, φ) , де полярний радіус $\rho \geqslant 0$ — довжина вектора \overline{OM} , а полярний кут φ це кут між віссю ρ і OM, який відраховується проти годинникової стрілки. Якщо точка M має декартові координати (x,y) і цій парі чисел відповідає пара (ρ,φ) , то ця відповідність буде взаємно однозначною, якщо $\varphi \in [0, 2\pi]$

або $\varphi \in [-\pi, \pi]$. Легко вивести наступні співвідношення (перехід від полярної системи координат до декартової, і навпаки):

$$\begin{cases} x = \rho \cos \varphi \\ y = \rho \sin \varphi \end{cases}$$
 (3.1)

$$\begin{cases} \rho = \sqrt{x^2 + y^2} \\ \cos \varphi = \frac{x}{\sqrt{x^2 + y^2}} \\ \sin \varphi = \frac{y}{\sqrt{x^2 + y^2}} \end{cases}$$
(3.2)

Приклад: Лемніската Бернуллі $(x^2 + y^2)^2 = a^2(x^2 - y^2), a > 0.$

3 формул 3.2 випливає, що $\rho^4=a^2\rho^2(\cos^2\varphi-\sin^2\varphi)$, тобто $\rho^2=a\cos 2\varphi$ або $\rho=\sqrt{a\cos 2\varphi}$. Область визначення: $\cos 2\varphi\geqslant 0$, тобто $\varphi\in\left[-\frac{\pi}{4},\frac{\pi}{4}\right]\cup\left[\frac{3\pi}{4},\frac{5\pi}{4}\right]$.

3.2 Пряма на площині

Нехай дано пряму L.

Означення 3.2. Нормальний вектор прямої L — це довільний ненульовий вектор \overline{n} , перпендикулярний прямій L.

 $\overline{n} \perp L; \overline{n} \neq \overline{0}$ — нормальний вектор прямої. Зауважимо, що нормальних векторів існує безліч — з точністю до ненульової константи.

Нехай задано точку $M_0(x_0,y_0)$. Складемо рівняння прямої, що проходить через точку $M_0(x_0,y_0)$ перпендикулярно до вектора $\overline{n}(A,B)$.

Для довільної точки M(x,y) шуканої прямої вектор $\overline{M_0M}=(x-x_0,y-y_0)$ є перпендикулярним вектору \overline{n} : $\overline{M_0M}\perp \overline{n}$, тобто $(\overline{M_0M},\overline{n})=0$. Отримали: $A(x-x_0)+B(y-y_0)=0$ — рівняння прямої через точку $M_0(x_0,y_0)$ та нормальний вектор $\overline{n}(A,B)$.

Побудуємо загальне рівняння прямої. Розкривши дужки, маємо $Ax+By-(Ax_0+By_0)=0$, де A і $B\neq 0$ одночасно. Позначивши $C=-(Ax_0+By_0)$, отримуємо

Ax + By + C = 0 — загальний вигляд прямої.

3.3 Неповні рівняння прямої

Означення 3.3. Загальне рівняння Ax + By + C = 0 — це повне рівняння прямої, якщо всі його коефіцієнти $A \neq 0, B \neq 0, C \neq 0$ (тобто $ABC \neq 0$). Якщо ж хоча б один коефіцієнт дорівнює нулю, то це неповне рівняння прямої.

Розглянемо можливі випадки неповних рівнянь.

1.
$$C = 0; L : Ax + By = 0$$
 — пряма L проходить через точку $O(0,0)$.

2.
$$B = 0; L : Ax + C = 0; \overline{n}(A, 0) \perp Oy, L \parallel Oy$$
.

3.
$$A = 0$$
; $L : By + C = 0$; $\overline{n}(0, B) \perp Ox$, $L \parallel Ox$.

4.
$$B = 0, C = 0; L : Ax = 0$$
 — пряма L співпадає з віссю Oy .

5.
$$A = 0, C = 0; L : By = 0$$
 — пряма L співпадає з віссю Ox .

3.4 Рівняння прямої у відрізках

Розглянемо повне рівняння прямої L: Ax + By + C = 0, де $ABC \neq 0$.

Позначимо $a=-\frac{C}{A}, b=-\frac{C}{B}.$ Тоді маємо рівняння прямої "у відрізках":

$$\frac{x}{a} + \frac{y}{b} = 1$$

Геометричний зміст чисел a і b: вони дорівнюють величинам відрізків, які відсікає пряма L на осях Ox та Oy відповідно.

3.5 Канонічне рівняння

Означення 3.4. Напрямний вектор прямої L — це довільний ненульовий вектор $q \neq \overline{0}$, що паралельний прямій L.

Нехай задано точку $M_0(x_0,y_0)$. Складемо рівняння прямої, що проходить через точку $M_0(x_0,y_0)$ паралельно до вектора $\overline{q}(l,m)$ (напрямний вектор). Якщо M(x,y) — це довільна точка шуканої прямої, то вектор $\overline{M_0M}$ має координати $(x-x_0,y-y_0)$ і $\overline{M_0M}\parallel \overline{q}$, тобто координати цих векторів пропорційні. В результаті маємо **канонічне рівняння**

$$\frac{x - x_0}{l} = \frac{y - y_0}{m}$$

- рівняння прямої L через точку і напрямний вектор.

3.6 Параметричне рівняння прямої

Нехай $\overline{q}(l,m)$ — це напрямний вектор прямої L і $M_0(x_0,y_0)\in L$. У канонічному рівнянні даної прямої введемо параметр: $t=\frac{x-x_0}{l}=\frac{y-y_0}{m}, t\in (-\infty;+\infty)$. Толі

$$\begin{cases} x = lt + x_0 \\ y = mt + y_0 \end{cases}$$

параметричне рівняння прямої.

3.7 Рівняння прямої з кутовим коефіцієнтом

Розглянемо довільну пряму $L \not\parallel Ox$. Нехай α — це кут нахилу L до осі Ox (якщо $L \parallel Ox$, то $\alpha = 0$), β — це кут між прямою L та віссю Oy, $\overline{q}(l,m)$ — це напрямний вектор прямої L, \overline{q}_0 — це його орт-вектор. Тоді $\overline{q}_0 = (\cos\alpha,\cos\beta) = (\cos\alpha,\sin\alpha)$ (при цьому враховано, що $\alpha + \beta = \frac{\pi}{2}$).

У цьому випадку канонічне рівняння прямої L буде мати вигляд:

$$\frac{x - x_0}{\cos \alpha} = \frac{y - y_0}{\sin \alpha}$$

Звідси $y-y_0=\operatorname{tg}\alpha(x-x_0)$. Якщо позначити $k=\operatorname{tg}\alpha$ — кутовий коефіцієнт, то отримаємо рівняння прямої з кутовим коефіцієнтом: $y-y_0=k(x-x_0)$,

що проходить через точку $M_0(x_0, y_0)$. Останнє рівняння можна переписати у вигляді:

$$y = kx + b$$
,

де $b = y_0 - kx_0$ — величина відрізка, який відсікає L на осі Oy.

3.8 Кут між двома прямими

Кут між двома прямими дорівнює меншому з кутів між їх нормальними або напрямними векторами. Розглянемо три випадки.

1. Прямі задано загальними рівняннями:

$$L_1: A_1x + B_1y + C_1 = 0, \overline{n}_1(A_1, B_1);$$

$$L_2: A_2x + B_2y + C_2 = 0, \overline{n}_2(A_2, B_2);$$

$$\cos(\widehat{L_1, L_2}) = \cos(\widehat{\overline{n}_1, \overline{n}_2}) = \frac{|A_1A_2 + B_1B_2|}{\sqrt{A_1^2 + B_1^2}\sqrt{A_2^2 + B_2^2}}.$$

2. Прямі задано у канонічному вигляді:

$$\begin{split} L_1: \frac{x-x_1}{l_1} &= \frac{y-y_1}{m_1}, \overline{q}_1(l_1, m_1); \\ L_2: \frac{x-x_2}{l_2} &= \frac{y-y_2}{m_2}, \overline{q}_2(l_2, m_2); \\ \cos(\widehat{L_1, L_2}) &= \cos(\widehat{\overline{q}_1, \overline{q}_2}) &= \frac{|l_1 l_2 + m_1 m_2|}{\sqrt{l_1^2 + m_1^2} \sqrt{l_2^2 + m_2^2}}. \end{split}$$

3. Прямі задано рівняннями з кутовими коефіцієнтами:

$$L_1: y = k_1 x + b_1, k_1 = \operatorname{tg} \alpha_1; L_2: y = k_2 x + b_2, k_2 = \operatorname{tg} \alpha_2; \operatorname{tg}(\widehat{L_1, L_2}) = \operatorname{tg}(\alpha_2 - \alpha_1) = \left| \frac{\operatorname{tg} \alpha_2 - \operatorname{tg} \alpha_1}{1 + \operatorname{tg} \alpha_1 \operatorname{tg} \alpha_2} \right| = \frac{k_2 - k_1}{1 + k_1 k_2}.$$

3.9 Умови перпендикулярності і паралельності прямих

Паралельність або перпендикулярність двох прямих рівнозначна паралельності або перпендикулярності нормальних або напрямних векторів. Тому відповідно до вигляду рівнянь, якими задані прямі (див. пункти 1-3 попереднього розділу), маємо:

Умови паралельності $L_1 \parallel L_2$:

- 1. $\overline{n}_1 \parallel \overline{n}_2$ as $\frac{A_1}{A_2} = \frac{B_1}{B_2}$;
- 2. $\overline{q}_1 \parallel \overline{q}_2$ as $\frac{l_1}{l_2} = \frac{m_1}{m_2}$;
- 3. $k_1 = k_2$.

Умови перпендикулярності $L_1 \perp L_2$:

- 1. $\overline{n}_1 \perp \overline{n}_2$ and $A_1 A_2 + B_1 B_2 = 0$;
- 2. $\overline{q}_1 \perp \overline{q}_2$ and $l_1 l_2 + m_1 m_2 = 0$;
- 3. $k_1k_2 = -1$.

3.10 Нормальне рівняння прямої

Нехай L — пряма, що не проходить через початок координат. Проведемо нормальний вектор \overline{n} так:

- 1. його початок в точці (0,0), а кінець лежить на прямій;
- 2. $|\overline{n}| = p > 0$ (такий вектор єдиний!).
- 3. Кут α це кут між віссю OX і \overline{n} , який відраховується проти годинникової стрілки.

Нехай точка $M(x,y)\in L$. Тоді $\overline{OM}(x,y)$ — це її радіус-вектор, \overline{n}_0 — це ортвектор нормального вектора \overline{n} : $\overline{n}_0=(\cos\alpha,\cos\beta)=(\cos\alpha,\sin\alpha)$. При цьому враховано, що $\alpha+\beta=\frac{\pi}{2}$.

Мають місце наступні співвідношення:

$$p = |OP| = \operatorname{np}_{\overline{n}} \overline{OM} = \operatorname{np}_{\overline{n}_0} \overline{OM} = |OM| \operatorname{cos}(\widehat{n_0}, \overline{OM}) = |OM| \frac{(\overline{n_0}, \overline{OM})}{|\overline{n_0}| |\overline{OM}|} = \frac{(\overline{n_0}, \overline{OM})}{|\overline{n_0}|} = x \operatorname{cos} \alpha + y \operatorname{sin} \alpha.$$

Отримали рівняння $x\cos\alpha + y\sin\alpha = 0$, — це **нормальне рівняння прямої** L, де p — це відстань від початку координат до прямої L.

3.11Зведення загального рівняння прямої до нормального вигляду

Розглянемо загальне рівняння прямої L: Ax + By + C = 0, та нормальне рівняння цієї прямої: $x \cos \alpha + y \sin \alpha - p = 0$.

Для того, щоб рівняння були рівносильними, достатньо, щоб їх коефіцієнти були пропорційними: $\frac{\cos\alpha}{A}=\frac{\sin\alpha}{b}=\frac{-p}{C}=\mu$, де μ — це **нормуючий множник**. Тоді $\cos\alpha=\mu A,\sin\alpha=\mu B,-p=\mu C$. Звідси визначимо μ :

$$\mu^{2}(A^{2} + B^{2}) = \cos^{2}\alpha + \sin^{2}\alpha = 1 \Rightarrow \mu = \frac{1}{+\sqrt{A^{2} + B^{2}}}.$$

Знак μ визначається рівністю $\mu C = -p$. Оскільки $p \ge 0$, то знак нормуючого множника μ є протилежним до знаку C. Отже, **нормальне рівняння прямої** L буде мати вигляд

$$\mu(Ax+By+C)=0,$$
 де $\mu=\frac{-\mathrm{sign}C}{\sqrt{A^2+B^2}}$ — нормуючий множник.
 Приклад 3.1. Звести рівняння прямої $L:3x-4y+25=0$ до нормального

виду.

Розв'язання. Знайдемо нормуючий множник:

$$\mu=-\frac{1}{\sqrt{3^2+(-4)^2}}.$$
 Тоді $-\frac{3}{5}x+\frac{4}{5}y-5=0$ — нормальне рівняння L , де $\cos\alpha=-\frac{3}{5},\sin\alpha=\frac{4}{5},p=5$ — довжина перпендикуляра, опущеного з точки О на цю пряму.

3.12 Відхилення і відстань від точки до прямої

Нехай задано пряму L , точку $M_0(x_0,y_0)\not\in L$, відстань від якої до даної прямої дорівнює $d=\rho(M_0,L)>0$. Точка O(0,0) — це початок координат.

Нехай пряма L задається нормальним рівнянням: $x\cos\alpha + y\sin\alpha - p = 0.$

Означення 3.5. Відхилення точки M_0 від прямої L- це число

 $\delta_{M_0,L}\left\{ egin{array}{l} d,$ якщо точки M_0 і O лежать по різні сторони прямої; -d, якщо точки M_0 і O лежать по один бік від прямої.

Обчислимо відхилення $\delta_{M_0,L}$. Для цього через точку M_0 проведемо пряму L', паралельну L. Побудуємо $OD \perp L'$. Тоді рівняння L' має вигляд:

$$x\cos\alpha + y\sin\alpha - p - \delta_{M_0,L} = 0.$$

Але координати точки $M_0(x_0,y_0)$ задовольняють це рівняння, тому $x_0\cos\alpha+y_0\sin\alpha-p-\delta_{M_0,L}=0.$

Таким чином, відхилення точки M_0 від прямої L обчислюється за формулою:

$$\delta_{M_0,L} = x_0 \cos \alpha + y_0 \sin \alpha - p$$

(для того, щоб знайти відхилення точки M_0 від прямої L, потрібно підставити координати цієї точки в нормальне рівняння даної прямої).

Відстань від точки $M_0(x_0, y_0) \not\in L$ до прямої L обчислюється таким чином:

$$d = |\delta_{M_0,L}| = |x_0 \cos \alpha + y_0 \sin \alpha - p|$$

Якщо ж пряма задається загальним рівнянням, то

$$d = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}$$

.

Задача 3.1. З'ясувати, в якому куті (гострому чи тупому), утвореному при перетині прямих L_1 та L_2 , знаходиться точка $M_0(-2,2)$, якщо $L_1:2x-y+2=0$, $L_2:4x+y-4=0$. В яких кутах (суміжних чи вертикальних) знаходяться точка M_0 та початок координат O(0,0)?

Pоз 6'язання. З'ясуємо, який кут (гострий чи тупий) утворюють орти нормальних векторів прямих L_1 та L_2 . Спочатку запишемо рівняння даних прямих у нормальному вигляді:

$$L_1: -\frac{1}{\sqrt{5}}(2x - y + 2) = 0; \quad \overline{n}_1^0 = -\frac{1}{\sqrt{5}}(2, -1) = \frac{1}{\sqrt{5}}(-2, 1);$$

$$L_1: \frac{1}{\sqrt{17}}(4x + y - 4) = 0; \quad \overline{n}_2^0 = \frac{1}{\sqrt{17}}(4, 1);$$

Оскільки скалярний добуток

$$(\overline{n}_1^0, \overline{n}_2^0) = \frac{1}{\sqrt{5}\sqrt{17}}(-8+1) < 0,$$

то кут AOB між векторами \overline{n}_1^0 та \overline{n}_2^0 — тупий. У чотирикутнику $AOBC \ \angle A$ та $\angle B$ — прямі, $\angle AOB$ x — тупий, тому $\angle ACB$ — гострий.

Отже, початок координат O(0,0) знаходиться в гострому куті, утвореному при перетині прямих L_1 та L_2 .

Знайдемо відхилення точки $M_0(-2,2)$ від даних прямих.

$$\delta_{M_0,L_1} = -\frac{1}{\sqrt{5}}(-4-2+2) = \frac{4}{\sqrt{5}} > 0;$$

$$\delta_{M_0,L_2} = \frac{1}{\sqrt{17}}(-8+2-4) = -\frac{10}{\sqrt{17}} < 0;$$

$$\bullet M_0$$
 Дві прямі, що перетинаються, ділять площину на чотири обла-

Дві прямі, що перетинаються, ділять площину на чотири області. На рисунку зображено знаки відхилень точок, які лежать в кожній з чотирьох областей, при умові, що початок координат O(0,0) знаходиться в гострому куті.

Враховуючи знаки відхилень точки M_0 від даних прямих, робимо висновок, що точка M_0 лежить в тупому куті, утвореному при перетині прямих L_1 та L_2 . Точки O(0,0) та M_0 лежать в суміжних кутах.

3.13 Рівняння пучка (низки) прямих

Означення 3.6. Пучок прямих (низка прямих) на площині з центром у даній точці— це сукупність прямих, що проходить через цю точку.

Якщо задана точка $M_0(x_0,y_0)$, то рівняння $A(x-x_0)+B(y-y_0)=0$ при змінних коефіцієнтах A і B, а також рівняння $y-y_0=k(x-x_0)$ при змінному k є рівняннями пучка (низки) прямих з центром у точці M_0 .

Пучок прямих можна задати довільними двома прямими, які перетинаються у точці M_0 :

$$L_1: A_1x + B_1y + C_1 = 0,$$

 $L_2: A_2x + B_2y + C_2 = 0.$

Рівняння пучка прямих із центром у точці M_0 можна записати, не визначаючи координат M_0 :

$$A_1x + B_1y + C_1 + \lambda(A_2x + B_2y + C_2) = 0.$$

Щоб із пучка прямих виділити певну пряму, потрібно задати додаткову умову для знаходження параметра λ , що відповідає шуканій прямій.

Розділ 4

Криві другого порядку

Загальне рівняння кривої другого порядку має такий вигляд:

$$Ax^2 + By^2 + Cxy + Dx + Ey + F = 0$$

При різних значеннях коефіцієнтів можемо отримати вироджені випадки: прямі, точки, криві лінії. Ми ж будемо розглядати невироджені випадки кривих другого порядку — еліпс, гіперболу, параболу.

4.1 Канонічне рівняння еліпса

Означення 4.1. Еліпсом називається геометричне місце точок площини таких, що сума відстаней від кожної з яких до двох фіксованих точок (фокусів) ϵ величина стала.

Отже, маємо два фокуси F_1 і F_2 , відстань між ними $|F_1F_2|=2c$. Нехай M – довільна точка еліпса. Відрізки $r_1=|F_1M|$ та $r_2=|F_2M|$ називаються фокальними радіусами точки M.

За означенням еліпса: $r_1 + r_2 = 2a$.

3 трикутника F_1MF_2 маємо: $|F_1M|+|F_2M|>|F_1F_2|$, тобто 2a>2c, або a>c.

Побудуємо декартову систему координат. Нехай вісь OX пройде через фокуси F_1 і F_2 ,а вісь OY — через середину відрізка F_1F_2 . Відповідно до вибраної системи координат фокуси будуть мати такі координати: $F_1(-c,0), F_2(c,0)$.

Оскільки точка M — це довільна точка еліпса, то вона має координати (x,y). Тоді

$$r_1 = |F_1M| = \sqrt{(x+c)^2 + y^2}, r_2 = |F_2M| = \sqrt{(x-c)^2 + y^2}.$$

Враховуючи умову $r_1 + r_2 = 2a$, маємо рівняння еліпса:

$$\sqrt{(x+c)^2 + y^2} + \sqrt{(x-c)^2 + y^2} = 2a.$$

Піднесемо до квадрату обидві частини рівняння:

$$(x+c)^{2} + y^{2} + (x-c)^{2} + y^{2} + 2\sqrt{((x+c)^{2} + y^{2})((x-c)^{2} + y^{2})} = 4a^{2}.$$

Перегрупувавши доданки, маємо:

$$x^{2} + 2xc + c^{2} + y^{2} + x^{2} - 2xc + c^{2} + y^{2} - 4a^{2} =$$

$$= -2\sqrt{((x^2+y^2+c^2)+2xc)((x^2+y^2+c^2)-2xc)}.$$

Виконавши елементарні перетворення, отримаємо:

$$\sqrt{(x^2+y^2+c^2)^2-4x^2c^2} = 2a^2 - (x^2+y^2+c^2).$$

Знову піднесемо до квадрату та отримаємо:

$$(x^2 + y^2 + c^2)^2 - 4x^2c^2 = (x^2 + y^2 + c^2)^2 + 4a^4 - 4a^2(x^2 + y^2 + c^2).$$

або

$$x^{2}(a^{2} - c^{2}) + y^{2}a^{2} = a^{4} - a^{2}c^{2}.$$

Позначивши $b^2=a^2-c^2$ (оскільки a>c), маємо: $x^2b^2+y^2a^2=a^2b^2$. Поділивши обидві частини цієї рівності на a^2b^2 , отримуємо **канонічне рівняння еліпса**:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$

Дослідимо форму еліпса. З отриманого рівняння випливає, що для всіх точок еліпса $x^2 \leqslant a^2$, $y^2 \leqslant b^2$, або $|x| \leqslant a$, $|y| \leqslant b$, тобто це означає, що всі точки еліпса знаходяться всередині прямокутника, сторони якого паралельні осям координат і мають довжини 2a та 2b, де a — це велика пів-

вісь, b — мала піввісь (a > b). Кожна точка (a, 0), (-a, 0), (0, b), (0, -b), в якій еліпс перетинає осі координат, — це полюс еліпса (або вершина еліпса). Якщо довільні значення (x, y), задовольняють канонічне рівняння еліпса, то очевидно, що значення (-x, y), (x, -y), (-x, -y) теж будуть задовольняти рівняння еліпса. Це означає, що координатні осі, кожна з них — це вісь симетрії, а точка O(0, 0) — центр симетрії еліпса.

4.2 Канонічне рівняння гіперболи

Означення 4.2. Гіпербола — це геометричне місце точок площини, для яких модуль різниці відстаней від двох фіксованих точок (фокусів) є сталою величиною.

Нехай F_1 і F_2 — фокуси, відстань між якими $|F_1F_2|=2c$, M — довільна точка гіперболи, r_1 та r_2 — це фокальні радіуси точки M. Згідно з означенням гіперболи $|r_1-r_2|=2a$. З трикутника F_1MF_2 маємо: 2a<2c, тобто a< c. Побудову декартової системи координат і подальші викладки здійснюємо так само, як і при виведенні рівняння еліпса:

$$F_1(-c,0), F_2(c,0), M(x,y),$$

$$r_1 = \sqrt{(x+c)^2 + y^2}, r_2 = \sqrt{(x-c)^2 + y^2},$$

$$|r_1 - r_2| = 2a,$$

$$|\sqrt{(x+c)^2 + y^2} - \sqrt{(x-c)^2 + y^2}| - 2a,$$

$$(x^2 + y^2 + c^2) + 2xc + (x^2 + y^2 + c^2) - 2xc - 2xc$$

$$-2\sqrt{((x^2+y^2+c^2)+2xc)((x^2+y^2+c^2)-2xc)} = 4a^2,$$

$$(x^2+y^2+c^2)-2a^2 = \sqrt{v^2-4x^2c^2},$$

$$(x^2+y^2+c^2)-4a^2(x^2+y^2+c^2)+4a^4 = (x^2+y^2+c^2)^2-4x^2c^2,$$

$$x^2c^2-x^2a^2-y^2a^2 = a^2c^2-a^4,$$

$$x^2(c^2-a^2)-y^2a^2 = a^2(c^2-a^2).$$

Позначимо $B^2C^2 - A^2$ (враховуючи, що c > a). Тоді

$$x^2b^2 - y^2a^2 = a^2b^2.$$

В результаті перетворень отримали канонічне рівняння гіперболи:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

З отриманого рівняння випливає, що

$$x^2 = a^2 \left(1 + \frac{y^2}{b^2} \right) \Rightarrow x \leqslant -a \text{ afo } x \geqslant a.$$

Аналогічно,

$$y^2 = b^2 \left(\frac{x^2}{a^2} - 1\right) \Rightarrow y = \pm \frac{b}{a} \sqrt{x^2 - a^2} \Rightarrow y \in (-\infty; +\infty).$$

Тобто гіпербола є необмеженою кривою, яка складається з двох гілок, які є симетричними відносно осі OY і лежать праворуч від прямої x=a та ліворуч від прямої x=-a.

Координатні осі — це осі симетрії, точка O — центр симетрії гіперболи. Асимптотами гіперболи ϵ прямі $y=\pm \frac{b}{-}x$.

Доведемо це для гілки гіперболи, що лежить у першій чверті:

$$\frac{y^2}{b^2} = \frac{x^2}{a^2} - 1 \Rightarrow y = \frac{b}{a} \sqrt{x^2 - a^2},$$

тобто

$$\lim_{x \to +\infty} \frac{\frac{b}{a} \sqrt{x^2 - a^2}}{\frac{b}{a} x} = \lim_{x \to +\infty} \sqrt{1 - \frac{a^2}{x^2}} = 1.$$

Це означає, що чисельник наближається до знаменника, тобто крива при $x\to +\infty$ наближається до своєї асимптоти. Для трьох інших чвертей викладки аналогічні.

4.3 Канонічне рівняння параболи

Означення 4.3. Парабола — це геометричне місце точок площини, кожна з яких однаково віддалена від фіксованої точки (фокуса) і від даної прямої (директриси).

Відстань від фокуса F до директриси D позначимо p. Нехай M — довільна точка параболи. Тоді r = |FM| — фокальний радіус точки M.

C d M ном: вісь OX проходить через фокус F перпенди кулярно директрисі D, а вісь OY — через середину відстані від F до D. Тоді $M(x,y), \ F(\frac{p}{2},0), \ d = \rho(M,D) = |MC| = x + \frac{p}{2},$ а фокальний радіус $r = |FM| = \sqrt{(x - \frac{p}{2})^2 + y^2}.$ Декартову систему координат будуємо таким чи-

За означенням d = r, тобто

$$x + \frac{p}{2} = \sqrt{(x - \frac{p}{2})^2 + y^2} \Rightarrow x^2 + xp + \frac{p^2}{4} = x^2 - xp + \frac{p^2}{4} + y^2.$$

Отримали **канонічне рівняння параболи**: y =2px, де p — параметр, p > 0. Очевидно, що $x \ge 0$. Отже, парабола розташована праворуч від осі ОУ. З отриманого рівняння випливає, що для довільного значення x існує два протилежні значення $y: y = \pm \sqrt{2px}$, а це означає, що парабола симетрична відносно осі OX (осі параболи). Парабола проходить через точку O(0,0), яка називається її вершиною. Якщо $x \to +\infty$, то $y \to +\infty$, що означає, що вітки параболи простягаються в нескінченність.

4.4 Ексцентриситет і директриси еліпса і гіперболи

Означення 4.4. Величина $\varepsilon=\frac{c}{a}$ — це ексцентриситет еліпса і ексцентриситет гіперболи.

Для еліпса $\varepsilon=\frac{c}{a}=\frac{\sqrt{a^2-b^2}}{a}=\sqrt{1-\frac{b^2}{a^2}},$ тому $\varepsilon\in[0;1).$ Якщо $\varepsilon=0,$ то це означає, що a=b і c=0, тобто фокуси еліпса збігаються, і еліпс перетворюється в коло. Ексцентриситет характеризує форму даної кривої. Чим більше $\varepsilon,$ тим більше еліпс "сплющується" по осі ОУ.

Для гіперболи $\varepsilon=\frac{c}{a}=\frac{\sqrt{a^2+b^2}}{a}=\sqrt{1+\frac{b^2}{a^2}},$ тобто $\varepsilon\in(1;+\infty).$ Із зростанням ε гілки гіперболи "розпрямлюються".

Означення 4.5. Директриса еліпса (директриса гіперболи) — це дві прямі, які перпендикулярні фокальній осі (тобто до осі, на якій розміщені фокуси) і знаходяться на відстані $\frac{a}{\varepsilon}$ від центра кривої.

У вибраній системі координат директриси еліпса та гіперболи паралельні осі OY і не перетинають самі криві. Отже, рівняння директрис D_1 і D_2 для цих двох кривих мають вигляд: $x=\pm\frac{a}{\varepsilon}$ або $x=\pm\frac{a^2}{\varepsilon}$.

Для еліпса $a>c\Rightarrow \frac{a}{c}>1$, тому $\frac{a^2}{c}=\frac{aa}{c}>a$ (враховано, що $\varepsilon=\frac{c}{a}$ і $0\leqslant \varepsilon<1$). Це означає, що директриси еліпса лежать поза його межами.

Аналогічно для гіперболи $a < c \Rightarrow \frac{a}{c} < 1$ і $\frac{a^2}{c} = \frac{aa}{c} < a$, тобто директриси гіперболи знаходяться між її гілками.

Для доведення теореми про зв'язок між поняттями ексцентриситет і директриса розв'яжемо наступну задачу.

Задача 4.1. Довести, що фокальні радіуси r_1 і r_2 довільної точки еліпса мають вигляд: $r_1=a+\varepsilon x,\ r_2=a-\varepsilon x.$

Розв'язання. Нехай точка M(x,y) — довільна точка еліпса. Тоді її координати задовольняють канонічне рівняння еліпса $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$. Звідси $y^2=b^2(1-\frac{x^2}{a^2})$ або $y^2=\frac{b^2}{a^2}(a^2-x^2)$. Знайдемо фокальний радіус r_1 :

$$r_1 = |F_1 M| = \sqrt{(x+c)^2 + y^2} = \sqrt{x^2 + 2xc + c^2 + \frac{b^2}{a^2}(a^2 - x^2)} =$$

$$=\sqrt{x^2+2xc+c^2+\frac{a^2-c^2}{a^2}(a^2-x^2)}=\sqrt{x^2+2xc+c^2+(1-\frac{c^2}{a^2})(a^2-x^2)}=$$

$$\sqrt{a^2+2xc+\frac{c^2}{a^2}x^2}=\sqrt{(a+\frac{c}{a}x)^2}=|a+\frac{c}{a}x|=|a+\varepsilon x|.$$

Знайдемо знак виразу $a+\varepsilon x$. Оскільки $\frac{c}{a}<1$ і $|x|\leqslant a$, то $|\frac{c}{a}x|< a$. Тому $a+\frac{c}{a}x>0$, тобто $a+\varepsilon x>0$ і $r_1=a+\varepsilon x$, що і треба було довести. Фокальний радіус r_2 знаходиться аналогічно.

Зауважимо, що для гіперболи аналогічними міркуваннями можна отримати: $r_1 = \varepsilon x + a, \, r_2 = \varepsilon x - a.$

Теорема 4.1. Якщо $M(x,y) - \partial$ овільна точка еліпса чи гіперболи, r_1 і $r_2 - ii$ фокальні радіуси, $\rho(M,D_1)$ і $\rho(M,D_2) -$ відстані від точки M до відповідної директриси, то має місце співвідношення:

$$\frac{r_1}{\rho(M, D_1)} = \frac{r_2}{\rho(M, D_2)} = \varepsilon$$

▶ (проведемо для еліпса):

$$\begin{split} &\frac{r_1}{\rho(M,D_1)} = \frac{r_1}{d_1} = \frac{a+\varepsilon x}{x+\frac{a}{\varepsilon}} = \varepsilon \frac{a+\varepsilon x}{\varepsilon x+a} = \varepsilon, \\ &\frac{r_2}{\rho(M,D_2)} = \frac{r_2}{d_2} = \frac{a-\varepsilon x}{x-\frac{a}{\varepsilon}} = \varepsilon \frac{a-\varepsilon x}{\varepsilon x-a} = \varepsilon, \end{split}$$

Зауваження. Для довільної точки параболи $\frac{r}{d} = 1$, тобто $\epsilon = 1$.

4.5 Рівняння дотичної до кривої другого порядку

Побудуємо рівняння дотичної до еліпса $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ в точці $M_0(x_0,y_0)$. Нехай $y_0\neq 0$, тобто точка M_0 не співпадає ні з однією з вершин еліпса $A_1(-a,0)$ та $A_2(a,0)$. У цьому випадку рівняння $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ неявно задає функцію y=y(x), -a< x< a, графік якої проходить через точку $M_0(x_0,y_0)$ і співпадає з верхньою (при $y_0>0$) чи нижньою (при $y_0<0$) половиною еліпса.

Скористаємось відомим із шкільного курсу рівнянням дотичної до графіка функції y = f(x) в точці з абсцисою x_0 , яке має вигляд: $y = y_0 + f'(x_0)(x - x_0)$.

Якщо продиференціювати за x тотожність $\frac{x^2}{a^2} + \frac{y^2(x)}{b^2} = 1$, то отримаємо рівняння

$$\frac{2x}{a^2} + \frac{2yy'(x)}{b^2} = 0,$$
afo

$$b^2x + a^2yy'(x) = 0,$$

$$y'(x) = -\frac{b^2x}{a^2y}.$$

Якщо підставити значення $y'(x_0) = -\frac{b^2x_0}{a^2y_0}$ у рівняння дотичної, то отримаємо рівняння:

$$y = y_0 - \frac{b^2 x_0}{a^2 y_0} (x - x_0).$$

Виконаємо нескладні перетворення:

$$y = y_0 - \frac{b^2 x_0 x}{a^2 y_0} + \frac{b^2 x_0^2}{a^2 y_0}, a^2 y_0 y = a^2 y_0^2 - b^2 x_0 x + b^2 x_0^2.$$

Якщо поділити обидві частини рівняння на a^2b^2 та врахувати те, що $\frac{x_0^2}{a^2}+\frac{y_0^2}{b^2}=1$ (точка $M_0(x_0,y_0)$ лежить на еліпсі), то отримаємо:

$$\frac{y_0y}{b^2} = \frac{y_0^2}{b^2} - \frac{x_0x}{a^2} + \frac{x_0^2}{a^2}.$$

Звідси рівняння дотичної до еліпса в точці $M_0(x_0,y_0)$ має вигляд:

$$\frac{x_0x}{a^2} + \frac{y_0y}{b^2} = 1.$$

Аналогічно можна вивести рівняння дотичної, проведеної до гіперболи та параболи в точці $M_0(x_0,y_0)$, відповідно:

$$\frac{x_0 x}{a^2} - \frac{y_0 y}{b^2} = 1,$$

$$yy_0 = p(x + x_0).$$