Università di Verona A.A. 2020-21

Machine Learning & Artificial Intelligence

Stima dei parametri: approccio Maximum Likelihood e approccio Bayesiano

Introduzione

- Per creare un classificatore ottimale che utilizzi la regola di decisione Bayesiana è necessario conoscere:
 - \circ Le **probabilità a priori** $P(\omega_i)$
 - \circ Le densità condizionali $p(\mathbf{x} \mid \omega_i)$
- Le performance di un classificatore dipendono <u>fortemente</u> dalla bontà di queste componenti

NON SI HANNO PRATICAMENTE MAI TUTTE QUESTE INFORMAZIONI!

- Più spesso, si hanno unicamente:
 - Una vaga conoscenza del problema, da cui estrarre vaghe probabilità a priori.
 - Alcuni pattern particolarmente rappresentativi, training data, usati per addestrare il classificatore (spesso troppo pochi!)

 La stima delle probabilità a priori di solito non risulta particolarmente difficoltosa.

La stima delle densità condizionali è più complessa.

- Assunto che la conoscenza, benché approssimativa, delle densità a priori non presenta problemi, per quanto riguarda le densità condizionali le problematiche si possono suddividere in:
 - 1. Stimare la funzione sconosciuta $p(\mathbf{x} \mid \omega_i)$
 - 2. Stimare i parametri sconosciuti della funzione conosciuta $p(\mathbf{x} \mid \omega_i)$

Per es., stimare il vettore $\mathbf{\theta}_j = (\mathbf{\mu}_j, \mathbf{\Sigma}_j)$

quando $p(\mathbf{x} \mid \omega_j) \approx N(\boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)$

Stima dei parametri

 Il secondo punto risulta di gran lunga più semplice (sebbene complesso!), e rappresenta un problema classico nella statistica.

- Trasferito nella pattern recognition, un approccio è quello di
 - 1) stimare i parametri dai dati di training
 - 2) usare le stime risultanti come se fossero valori veri
 - 3) utilizzare infine la teoria di decisione Bayesiana per costruire un classificatore

Uno sguardo d'insieme

Stima dei parametri – Probabilità a priori

- Supponiamo di avere un insieme di n dati di training in cui ad ogni pattern è assegnata un'etichetta d'identità (ossia conosco per certo a quale stato ω_i appartiene il pattern k-esimo)
 - problema di learning dei parametri supervisionato
- Allora $P(\omega_i) = \frac{n_i}{n}$
 - dove n_i è il numero di campioni con etichetta ω_i , operazione dimostrabile formalmente
- Questa facile operazione non è di grande utilità, perchè le probabilità a priori, in pratica, non sono così utili, se confrontate alle densità condizionali.

Stima dei parametri – Istanza del problema

- Supponiamo di avere c set di campioni $D_1, D_2, ..., D_c$ tracciati indipendentemente in accordo alla densità $p(x/\omega_j)$, assumendo che $p(x/\omega_i)$ abbia forma parametrica conosciuta
- Il problema di stima dei parametri consiste nello stimare i parametri che definiscono $p(x/\omega_i)$
- Per semplificare il problema, assumiamo inoltre che:
 - o i campioni appartenenti al set D_i non danno informazioni relative ai parametri di $p(x/|\omega_i)$ se $i\neq j$

Stima dei parametri – Due approcci

- Specificatamente, il problema può essere formulato come:
 - o Dato un set di training D= $\{x_1, x_2,, x_n\}$
 - o $p(\mathbf{x}/\omega)$ è determinata da θ , che è un vettore rappresentante i parametri necessari

(p.e.,
$$\theta = (\mu, \Sigma)$$
 se $p(\mathbf{x} \mid \omega) \approx N(\mu, \Sigma)$)

 \circ Vogliamo trovare il migliore θ usando l'insieme di training.

- Esistono due approcci
 - Stima Maximum-likelihood (ML)
 - Stima di Bayes

Stima dei parametri – Due approcci (2)

Approccio Maximum Likelihood

- o I parametri sono *quantità fissate* ma sconosciute
- La migliore stima dei loro valori è quella che massimizza la probabilità di ottenere i dati di training

Approccio Bayesiano

- o I parametri sono variabili aleatorie aventi determinate probabilità a priori
- Le osservazioni dei dati di training trasformano queste probabilità in probabilità a posteriori modificando la stima dei veri valori dei parametri.
- Aggiungendo campioni di training il risultato è di rifinire meglio la forma delle densità a posteriori, causando un innalzamento di esse in corrispondenza dei veri valori dei parametri (fenomeno di *Bayesian Learning*).
- I risultati dei due approcci, benché proceduralmente diversi, sono qualitativamente simili.

Approccio Maximum Likelihood

In forza dell'ipotesi di partenza del problema, poiché i pattern del set **D** sono i.i.d., abbiamo che:

$$p(\mathbf{D} \mid \mathbf{\theta}) = \prod_{k=1}^{n} p(x_k \mid \mathbf{\theta})$$

- Vista come funzione di θ , $p(\mathbf{D} \mid \boldsymbol{\theta})$ viene chiamata *likelihood di* $\boldsymbol{\theta}$ rispetto al set di campioni \boldsymbol{D} .
- La stima di Maximum Likelihood di θ è, per definizione, il valore $\hat{\theta}$ che massimizza $p(\mathbf{D} \mid \theta)$;
- \blacksquare Ricordiamo l'assunzione che θ è fissato ma sconosciuto

Approccio Maximum Likelihood (2)

Punti di training 1-D assunti generati da <u>una</u> densità gaussiana di varianza fissata ma media sconosciuta

4 delle infinite possibili gaussiane

NB: La likelihood $p(D|\theta)$ è funzione di θ , mentre la densità condizionale $p(x|\theta)$ è funzione di x

Approccio Maximum Likelihood (3)

• Se il numero di parametri da stimare è p, sia $\theta = (\theta_1, ..., \theta_p)^t$ e

$$abla oldsymbol{ heta} = egin{bmatrix} rac{\partial}{\partial heta_1} \ dots \ rac{\partial}{\partial heta_p} \end{bmatrix}$$

- Per scopi analitici risulta più semplice lavorare con il logaritmo della likelihood.
- Definiamo quindi $l(\theta)$ come **funzione di log-likelihood**

$$l(\theta) \equiv \ln p(D \mid \theta) = \sum_{k=1}^{n} \ln p(x_k \mid \theta)$$

Approccio Maximum Likelihood (4)

Lo scopo è di ottenere quindi il vettore

$$\hat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\alpha}} l(\boldsymbol{\theta})$$

 $\hat{\pmb{\theta}} = \arg\max_{\pmb{\theta}} \, l(\pmb{\theta})$ in cui la dipendenza sul data set D è implicita.

Pertanto per ricavare il max:

$$l(\mathbf{\theta}) \equiv \ln p(\mathbf{D} \mid \mathbf{\theta}) = \sum_{k=1}^{n} \ln p(x_k \mid \mathbf{\theta})$$

$$\nabla_{\theta} l(\mathbf{\theta}) = \sum_{k=1}^{n} \nabla_{\theta} \ln p(x_k \mid \mathbf{\theta})$$

da cui vogliamo ottenere $\nabla_{\alpha}l(\mathbf{\theta})=0$

$$\nabla_{\theta} l(\mathbf{\theta}) = 0$$

Approccio Maximum Likelihood (5)

Formalmente, una volta stimato il set di parametri, è necessario controllare che la soluzione trovata sia effettivamente un massimo globale, piuttosto che un massimo locale o un flesso o peggio ancora un punto di minimo.

 Bisogna anche controllare cosa accade ai bordi degli estremi dello spazio dei parametri

Applichiamo ora l'approccio ML ad alcuni casi specifici.

Maximum Likelihood: caso Gaussiano

- Consideriamo che i campioni siano generati da una popolazione normale multivariata di media μ e covarianza Σ .
- Per semplicità, consideriamo il caso in cui solo la media μ sia sconosciuta. Consideriamo quindi il punto campione \mathbf{x}_k e troviamo:

$$\ln p(\mathbf{x}_k \mid \boldsymbol{\mu}) = -\frac{1}{2} \ln \left[(2\pi)^d \left| \boldsymbol{\Sigma} \right| \right] - \frac{1}{2} (\mathbf{x}_k - \boldsymbol{\mu})^t \boldsymbol{\Sigma}^{-1} (\mathbf{x}_k - \boldsymbol{\mu})$$

$$\nabla_{\boldsymbol{\mu}} \ln p(\mathbf{x}_k \mid \boldsymbol{\mu}) = \boldsymbol{\Sigma}^{-1}(\mathbf{x}_k - \boldsymbol{\mu})$$

Maximum Likelihood: caso Gaussiano (2)

• Identificando θ con μ si deduce che la stima Maximum-Likelihood di μ deve soddisfare la relazione:

$$\sum_{k=1}^{n} \mathbf{\Sigma}^{-1} (\mathbf{x}_k - \hat{\boldsymbol{\mu}}) = 0$$

lacktriangle Moltiplicando per Σ e riorganizzando la somma otteniamo

$$\hat{\mathbf{\mu}} = \frac{1}{n} \sum_{k=1}^{n} \mathbf{x}_{k}$$

che non è altro che la semplice *media* degli esempi di training, altresì indicata con $\hat{\mu}_n$ per indicarne la dipendenza dalla numerosità del training set.

Maximum Likelihood: caso Gaussiano (3)

- Consideriamo ora il caso più tipico in cui la distribuzione Gaussiana abbia media e covarianza ignote.
- Consideriamo prima il caso univariato $\theta = (\theta_1, \theta_2) = (\mu, \sigma^2)$
- Se si prende un singolo punto abbiamo

$$\ln p(x_k \mid \mathbf{\theta}) = -\frac{1}{2} \ln \left[2\pi \theta_2 \right] - \frac{1}{2\theta_2} (x_k - \theta_1)^2$$

la cui derivata è

$$\nabla_{\boldsymbol{\theta}} l = \nabla_{\boldsymbol{\theta}} \ln p(x_k | \boldsymbol{\theta}) = \begin{bmatrix} \frac{1}{\theta_2} (x_k - \theta_1) \\ -\frac{1}{2\theta_2} + \frac{(x_k - \theta_1)^2}{2\theta_2^2} \end{bmatrix}$$

Maximum Likelihood: caso Gaussiano (4)

■ Eguagliando a 0 e considerando tutti i punti si ottiene:

$$\sum_{k=1}^{n} \frac{1}{\theta_{2}} (x_{k} - \hat{\theta}_{1}) = 0 \qquad -\sum_{k=1}^{n} \frac{1}{\hat{\theta}_{2}} + \sum_{k=1}^{n} \frac{(x_{k} - \hat{\theta}_{1})^{2}}{\hat{\theta}_{2}^{2}} = 0$$

dove $\hat{\theta}_1$ e $\hat{\theta}_2$ sono le stime ML per θ_1 e θ_2 .

■ Sostituendo $\hat{\mu} = \hat{\theta}_1$ e $\sigma^2 = \hat{\theta}_2$ si hanno le stime ML di media e varianza

$$\hat{\mu} = \frac{1}{n} \sum_{k=1}^{n} x_k \qquad \hat{\sigma}^2 = \frac{1}{n} \sum_{k=1}^{n} (x_k - \hat{\mu})^2$$

Maximum Likelihood: caso Gaussiano (5)

Il caso multivariato si tratta in maniera analoga con più conti. Il risultato è comunque:

$$\hat{\boldsymbol{\mu}} = \frac{1}{n} \sum_{k=1}^{n} \mathbf{x}_{k} \qquad \qquad \hat{\boldsymbol{\Sigma}} = \frac{1}{n} \sum_{k=1}^{n} (\mathbf{x}_{k} - \hat{\boldsymbol{\mu}}) (\mathbf{x}_{k} - \hat{\boldsymbol{\mu}})^{t}$$

Si noti tuttavia che la stima della covarianza è sbilanciata, i.e., il valore aspettato della varianza campione su tutti i possibili insiemi di dimensione n non è uguale alla vera varianza

$$E\left\{\frac{1}{n}\sum_{i=1}^{n}(x_i-\overline{x})^2\right\} = \frac{n-1}{n}\sigma^2 \neq \sigma^2$$

Maximum-Likelihood: altri casi

Esistono, oltre alla densità Gaussiana, anche altre famiglie di densità che costituiscono altrettante famiglie di parametri:

• Distribuzione esponenziale
$$p(x \mid \theta) = \begin{cases} \theta e^{-\theta x} & x \ge 0 \\ 0 & \text{altrimenti} \end{cases}$$

o Distribuzione uniforme $p(x \mid \theta) = \begin{cases} 1/\theta & 0 \le x \le \theta \\ 0 & \text{altrimenti} \end{cases}$

Distribuzione di Bernoulli multivariata

Maximum-Likelihood – Modello d'errore

 In generale, se i modelli parametrici sono validi, il classificatore maximum-likelihood fornisce risultati eccellenti.

- Invece, se si usano famiglie parametriche scorrette, il classificatore produce forti errori
 - Questo accade anche se è nota la famiglia parametrica da usare, per esempio se si stima all'interno di una distribuzione gaussiana come parametro una varianza troppo larga.

Maximum-Likelihood – Modello d'errore (2)

 Di fatto manca un modello d'errore che dia un valore di confidenza o affidabilità alla parametrizzazione ottenuta.

- Inoltre, per applicare la stima di Maximum-Likelihood, tutti i dati di training devono essere disponibili
 - Se vogliamo utilizzare <u>nuovi</u> dati di training, è necessario ricalcolare la procedura di stima Maximum-Likelihood.

Stima di Bayes

• A differenza dell'approccio ML, in cui supponiamo θ come fissato ma sconosciuto, *l'approccio di stima Bayesiana* dei parametri considera θ come una variabile aleatoria.

In questo caso il set di dati di training D ci permette di convertire una distribuzione a priori $p(\theta)$ su questa variabile in una densità di probabilità a posteriori $p(\theta|D)$

$$p(\theta) \implies p(\theta | D)$$

 Data la difficoltà dell'argomento, è necessario un passo indietro al concetto di classificazione Bayesiana

Approccio di stima Bayesiano – Idea centrale

- Il calcolo delle densità a posteriori $P(\omega_i|x)$ sta alla base della classificazione Bayesiana
- Per creare un classificatore ottimale che utilizzi la regola di decisione Bayesiana è necessario conoscere:
 - $_{\circ}$ Le **probabilità a priori** $P(\omega_{\mathsf{i}})$
 - Le densità condizionali $p(x | \omega_i)$
- Quando queste quantità sono sconosciute, bisogna ricorrere a tutte le <u>informazioni</u> a disposizione.

Approccio di stima Bayesiano – Idea centrale (2)

- Parte di queste *informazioni* può essere derivante da:
 - 1. Conoscenza a priori
 - Forma funzionale delle densità sconosciute
 - Intervallo dei valori dei parametri sconosciuti
 - 2. Training set
 - Sia **D** il set totale di campioni: il nostro compito si trasforma così nella stima di $P(\omega_i|x,D)$

 Da queste probabilità possiamo ottenere il classificatore Bayesiano.

Approccio di stima Bayesiano – Idea centrale (3)

■ Dato il set di training *D*, la formula di Bayes diventa:

$$P(\omega_i \mid \mathbf{x}, D) = \frac{p(\mathbf{x} \mid \omega_i, D)P(\omega_i \mid D)}{\sum_{j=1}^{c} p(\mathbf{x} \mid \omega_j, D)P(\omega_j \mid D)}$$

- Assunzioni:
 - \circ Ragionevolmente, $P(\omega_i \mid D) \Rightarrow P(\omega_i)$
 - o Dato il caso di learning supervisionato il set D è partizionato in c set di campioni $D_1, D_2, ..., D_c$ con i campioni in D_i appartenenti a ω_i
 - ∘ I campioni appartenenti al set D_i non danno informazioni sui parametri di $p(\mathbf{x}|\ \omega_i, D)$ se i ≠ j.

Approccio di stima Bayesiano – Idea centrale (4)

- Queste assunzioni portano a due conseguenze:
 - 1. Possiamo lavorare con ogni classe indipendentemente, ossia

$$P(\omega_{i} \mid \mathbf{x}, D) = \frac{p(\mathbf{x} \mid \omega_{i}, D)P(\omega_{i} \mid D)}{\sum_{j=1}^{c} p(\mathbf{x} \mid \omega_{j}, D)P(\omega_{j} \mid D)}$$

$$P(\omega_{i} \mid \mathbf{x}, D) = \frac{p(\mathbf{x} \mid \omega_{i}, D_{i})P(\omega_{i})}{\sum_{j=1}^{c} p(\mathbf{x} \mid \omega_{j}, D_{j})P(\omega_{j})}$$

Approccio di stima Bayesiano – Idea centrale (5)

2. Poiché ogni classe può essere trattata indipendentemente, si possono evitare le distinzioni tra le classi e semplificare la notazione riducendola a c diverse istanze dello stesso problema, ossia:

Si usa un set di campioni D, estratti secondo la distribuzione sconosciuta $p(\mathbf{x})$, per determinare $p(\mathbf{x}|D)$

Approccio di stima Bayesiano – Idea centrale (6)

- In pratica il processo di learning Bayesiano stima un modello implicitamente, ossia non restituisce un vettore di parametri θ visibile, ma una distribuzione su di esso, data dal training set disponibile.
- Il fatto che $p(\mathbf{x})$ sia ignoto ma con forma parametrica nota si esprime dicendo che $p(\mathbf{x}|\mathbf{\theta})$ è completamente noto.
- Si preferisce quindi scrivere $p(\mathbf{x}|\mathbf{D})$ anzichè $p(\mathbf{x}|\mathbf{\theta})$ perché è più significativo, benchè un modello sottostante esista (difatti il termine $p(\mathbf{x}|\mathbf{\theta})$ comparirà più avanti).
- Ogni informazione si abbia prima di osservare i campioni si assume sia contenuta nella densità a priori $p(\theta)$ nota.
- Le osservazioni convertono il prior $p(\theta)$ in una distribuzione a posteriori $p(\theta|D)$ che sperabilmente assume un massimo in corrispondenza del valore vero di θ .

Distribuzione dei parametri

Ingredienti:

```
\circ p(\mathbf{x}): sconosciuta, ma di forma parametrica nota;
```

 \circ θ : *vettore dei parametri,* sconosciuto;

 $\circ p(\mathbf{x}|\mathbf{\theta})$: completamente conosciuta (essendo la forma parametrica $p(\mathbf{x})$);

 $\circ p(\theta)$: ogni informazione <u>a priori</u> di osservare determinati campioni.

L'osservazione dei campioni converte questa distribuzione in una ...

o $p(\theta|D)$: ... probabilità <u>a posteriori</u>, presumibilmente centrata attorno ai veri valori di θ .

Distribuzione dei parametri (2)

• Quello che stiamo facendo è effettivamente osservare come effettivamente viene ottenuta $p(\mathbf{x}|\mathbf{D})$ tramite l'ausilio di un modello di parametri implicito $\boldsymbol{\theta}$.

- Stiamo cioè esplicitando il calcolo di $p(\mathbf{x}|\mathbf{D})$, per stimare $p(\mathbf{x})$, convertendo il problema di stima di una densità di probabilità a quello di stima di un vettore di parametri.
 - o Ragionevolmente, abbiamo

$$p(\mathbf{x} \mid D) = \int p(\mathbf{x}, \boldsymbol{\theta} \mid D) d\boldsymbol{\theta}$$

dove l'integrazione si estende su tutto lo spazio dei parametri

Distribuzione dei parametri (3)

• Quindi
$$p(\mathbf{x} \mid D) = \int p(\mathbf{x}, \boldsymbol{\theta} \mid D) d\boldsymbol{\theta}$$

$$= \int p(\mathbf{x} \mid \boldsymbol{\theta}, D) p(\boldsymbol{\theta} \mid D) d\boldsymbol{\theta}$$

Poichè, per ipotesi, la selezione di x è indipendente dai campioni di training D, dato θ ,

$$p(\mathbf{x} \mid D) = \int p(\mathbf{x} \mid \mathbf{\theta}) p(\mathbf{\theta} \mid D) d\mathbf{\theta}$$

Pertanto la distribuzione $p(\mathbf{x})$ è completamente conosciuta quando conosco il vettore dei parametri $\boldsymbol{\theta}$

Distribuzione dei parametri (4)

- L'equazione precedente lega esplicitamente la densità condizionale $p(\mathbf{x}|\mathbf{D})$ alla densità a posteriori $p(\boldsymbol{\theta}|\mathbf{D})$ tramite il vettore sconosciuto di parametri $\boldsymbol{\theta}$.
- Se $p(\theta|D)$ si concentra fortemente su un valore, otteniamo una stima $\widehat{\boldsymbol{\theta}}$ del vettore più probabile, quindi

$$p(\mathbf{x}|\mathbf{D}) \approx p(\mathbf{x} \mid \hat{\mathbf{\Theta}})$$

• Ma questo approccio permette di tenere conto dell'effetto di tutti gli altri modelli, descritti dal valore della funzione integrale, per tutti i possibili modelli.

$$p(\mathbf{x} \mid D) = \int p(\mathbf{x} \mid \mathbf{\theta}) p(\mathbf{\theta} \mid D) d\mathbf{\theta}$$

Esempio: caso Gaussiano

Utilizziamo le tecniche di stima Bayesiana per calcolare la densità a posteriori $p(\theta|D)$ e la densità $p(\mathbf{x}|D)$ per il caso in cui

$$p(\mathbf{x} \mid \mathbf{\theta}) \equiv p(\mathbf{x} \mid \mathbf{\mu}) \approx N(\mathbf{\mu}, \mathbf{\Sigma})$$

CASO UNIVARIATO:

$$p(\mathbf{x} \mid \boldsymbol{\mu}) \equiv p(x \mid \mu) \approx N(\mu, \sigma^2)$$

Prior coniugato

 $p(\mathbf{x} \mid \boldsymbol{\mu}) \equiv p(x \mid \mu) \approx N(\mu, \sigma^2)$ L'unica quantità sconosciuta è la media μ $p(\mu) \approx N(\mu_0, \sigma_0^2)$ La conoscenza a priori su μ , espressa da un densità di cui media e varianza sono noti La conoscenza a priori su μ , espressa da una

In pratica μ_0 rappresenta la migliore scelta iniziale per il parametro μ , con σ_0^2 che ne misura l'incertezza.

Esempio: caso Gaussiano (2)

A questo punto estraiamo μ da $N(\mu_0, \sigma_0^2)$

Esso diventa il vero valore del parametro e determina completamente la densità per x.

Supponiamo di avere n campioni di training $D = \{x_1, x_2, ..., x_n\}$ e calcoliamo

Densità riprodotta
$$p(\mu \mid D) = \frac{p(D \mid \mu)p(\mu)}{\int p(D \mid \mu)p(\mu)d\mu}$$
$$= \alpha \prod_{k=1}^{n} p(x_k \mid \mu)p(\mu)$$

dove α è un fattore di normalizzazione dipendente da D.

Esempio: caso Gaussiano (3)

L'equazione mostra come l'osservazione del set di esempi di training influenzi la nostra idea sul vero valore di μ ; <u>essa relaziona la densità a priori $p(\mu)$ con la densità a posteriori $p(\mu|D)$.</u>

Svolgendo i calcoli, ci si accorge che, grazie al prior normale, $p(\mu/D)$ risulta anch'esso normale, modificandosi in dipendenza del numero di campioni che formano il training set, evolvendosi in impulso di Dirac per $n \to \infty$ (fenomeno di <u>Learning Bayesiano</u>).

Formalmente si giunge alle seguenti formule:

Esempio: caso Gaussiano (4)

$$p(\mu \mid D) = \frac{p(D \mid \mu)p(\mu)}{\int p(D \mid \mu)p(\mu)d\mu} = \frac{1}{\sqrt{2\pi}\sigma_n} \exp\{-\frac{(\mu - \mu_n)^2}{2\sigma_n^2}\}$$

dove
$$\mu_n = \frac{n\sigma_0^2}{n\sigma_0^2 + \sigma^2} \left(\frac{1}{n} \sum_{k=1}^n x_k \right) + \frac{\sigma^2}{n\sigma_0^2 + \sigma^2} \mu_0$$

$$\sigma_n^2 = \frac{\sigma_0^2 \sigma^2}{n\sigma_0^2 + \sigma^2}$$

 μ_n rappresenta la nostra migliore scelta per μ dopo aver osservato n campioni.

 σ_n^2 misura l'incertezza della nostra scelta.

Esempio: caso Gaussiano (5)

Esempio: caso Gaussiano (6)

A questo punto, avendo ottenuto una densità a posteriori per la media, $p(\mu|D)$, quello che rimane è ottenere la densità condizionale p(x|D), che in notazione esatta, ricordiamo, è $p(x/\omega_i, D_i)$. Quindi:

$$p(x|\mathcal{D}) = \int p(x|\mu) p(\mu|\mathcal{D}) d\mu$$

$$= \int \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right] \frac{1}{\sqrt{2\pi}\sigma_n} \exp\left[-\frac{1}{2} \left(\frac{\mu-\mu_n}{\sigma_n}\right)^2\right] d\mu$$

$$= \frac{1}{2\pi\sigma\sigma_n} \exp\left[-\frac{1}{2} \frac{(x-\mu_n)^2}{\sigma^2+\sigma_n^2}\right] f(\sigma,\sigma_n), \tag{36}$$

Esempio: caso Gaussiano (7)

$$f(\sigma, \sigma_n) = \int \exp \left[-\frac{1}{2} \frac{\sigma^2 + \sigma_n^2}{\sigma^2 \sigma_n^2} \left(\mu - \frac{\sigma_n^2 x + \sigma^2 \mu_n}{\sigma^2 + \sigma_n^2} \right)^2 \right] d\mu.$$

Osservando l'equazione 36, si nota che

$$p(x \mid D) \approx N(\mu_n, \sigma^2 + \sigma_n^2)$$

Se confrontiamo la densità condizionale p(x|D), con la sua forma parametrica $p(x|\mu) \approx N(\mu, \sigma^2)$ osserviamo che la media condizionale è trattata come se fosse la vera media, e la varianza nota è proporzionale al grado di incertezza corrente.

Esempio: caso Gaussiano (8)

Concludendo, la densità p(x/D) ottenuta è la densità condizionale desiderata

$$P(\omega_i \mid \mathbf{x}, D) = \frac{p(\mathbf{x} \mid \omega_i, D)P(\omega_i)}{\sum_{j=1}^{c} p(\mathbf{x} \mid \omega_j, D)P(\omega_j)}$$

che assieme ai prior $P(\omega_{\rm i})$ produce le informazioni desiderate per il design del classificatore, al contrario dell'approccio ML che restituisce solo le stime puntuali $\hat{\mu}$ e $\hat{\sigma}^2$

Stima dei parametri Bayesiana: teoria generale

Riassumendo ed estendendole al caso generale, le formule principali viste sono:

$$p(\mathbf{x} \mid D) = \int p(\mathbf{x} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta} \mid D) d\boldsymbol{\theta}$$

$$p(\mu \mid D) = \frac{p(D \mid \mu) p(\mu)}{\int p(D \mid \mu) p(\mu) d\mu} = \int \frac{p(D \mid \boldsymbol{\theta}) p(\boldsymbol{\theta})}{\int p(D \mid \boldsymbol{\theta}) p(\boldsymbol{\theta}) d\boldsymbol{\theta}} \neq p(\boldsymbol{\theta} \mid D)$$

$$p(D \mid \boldsymbol{\theta}) = \prod_{k=1}^{n} p(\mathbf{x}_{k} \mid \boldsymbol{\theta})$$

Si noti la somiglianza con l'approccio ML, con la differenza che qui non si cerca il max puntuale $\hat{\mathbf{h}}$

Stima dei parametri Bayesiana: teoria generale (2)

- Vi sono ancora questioni da chiarire:
 - Difficoltà di esplicitare le formule viste
 - o Convergenza di $p(\mathbf{x}|\mathbf{D})$ a $p(\mathbf{x})$;
- Convergenza: supponiamo $D^n = \{x_1, ..., x_n\}, n > 1$:

$$p(\mathbf{D}^{n} \mid \mathbf{\theta}) = p(\mathbf{x}_{n} \mid \mathbf{\theta}) p(\mathbf{D}^{n-1} \mid \mathbf{\theta})$$

$$p(\mathbf{\theta} \mid D) = \frac{p(D \mid \mathbf{\theta}) p(\mathbf{\theta})}{\int p(D \mid \mathbf{\theta}) p(\mathbf{\theta}) d\mathbf{\theta}}$$
Metodo on line di Bayesian learning
$$p(\mathbf{\theta} \mid D^{n}) = \frac{p(\mathbf{x}_{n} \mid \mathbf{\theta}) p(\mathbf{\theta} \mid D^{n-1})}{\int p(\mathbf{x}_{n} \mid \mathbf{\theta}) p(\mathbf{\theta} \mid D^{n-1}) d\mathbf{\theta}}$$
Assumendo che
$$p(\mathbf{\theta} \mid D^{0}) = p(\mathbf{\theta})$$

Approccio Bayesiano – Conclusioni

Per concludere, estendendo la notazione alle varie classi ω_i e corrispondenti training set D_i , il design di un classificatore Bayesiano tramite stima dei parametri con approccio Bayesiano risulta sottostare alle seguenti formule:

$$p(\theta \mid D_i, \omega_i) = \frac{p(D_i \mid \theta, \omega_i) p(\theta \mid \omega_i)}{\int p(D_i \mid \theta, \omega_i) p(\theta \mid \omega_i) d\theta}$$

$$= \frac{\prod_{k=1}^{n_i} p(x_{i,k} \mid \theta) p(\theta \mid \omega_i)}{\int \prod_{k=1}^{n_i} p(x_{i,k} \mid \theta) p(\theta \mid \omega_i) d\theta}$$

Approccio Bayesiano – Conclusioni (2)

• Sia $D_i^n = \{x_{i,1},...,x_{i,n}\}$

$$p(\theta \mid D_i^n, \omega_i) = \frac{\prod_{k=1}^{n_i} p(x_{i,k} \mid \theta, \omega_i) \ p(\theta \mid \omega_i)}{\int \prod_{k=1}^{n_i} p(x_{i,k} \mid \theta, \omega_i) \ p(\theta \mid \omega_i) d\theta}$$
$$= \frac{p(x_{i,n_i} \mid \theta) p(\theta \mid D_i^{n-1}, \omega_i)}{\int p(x_{i,n_i} \mid \theta) p(\theta \mid D_i^{n-1}, \omega_i) d\theta}$$

Approccio Bayesiano – Conclusioni (3)

- Il classificatore minimum error rate risulta
 - o Decidi ω_i se $P(\omega_i|x) \ge P(\omega_i|x)$, per j=1,...,c

$$P(\omega_{i} \mid x, D_{i}) = \frac{p(x \mid \omega_{i}, D_{i})P(\omega_{i})}{p(x \mid D_{i})}$$

$$p(x \mid \omega_{i}, D_{i}) = \int p(x, \theta \mid \omega_{i}, D_{i})d\theta$$

$$= \int p(x \mid \theta)p(\theta \mid \omega_{i}, D_{i})d\theta$$

Confronto stime ML – Bayesiana

• ML restituisce una stima puntuale $\hat{\theta}$, l'approccio Bayesiano una distribuzione su θ .

- Le stime risultano equivalenti per training set di cardinalità infinita
 - \circ Al limite, $p(\theta/D)$ converge ad una funzione delta di Dirac
- Praticamente, gli approcci sono differenti per vari motivi:
 - Complessità computazionale
 - Interpretabilità
 - Affidabilità delle informazioni a priori
 - o Compromesso tra accuratezza della stima e varianza