

AP2318

General Description

The AP2318 is a series of ultra low dropout regulators optimized for low voltage applications where transient response and minimum input voltage are critical.

The AP2318 provides current limit and thermal shutdown. Its circuit includes a trimmed bandgap reference to assure output voltage accuracy to be within $\pm 1.5\%$. On-chip thermal shutdown provides protection against any combination of overload and ambient temperatures that would create excessive junction temperatures.

The AP2318 has both fixed and adjustable versions. The 1.3V fixed versions integrate the corresponding resistor divider. The adjustable version can set the output voltage through two external resistors.

The AP2318 is available in the standard DFN-3×3-8 and SOIC-8 packages.

Features

- Wide Operating Voltage Ranges: 2.5V to 12V
- Output Voltage Accuracy: ±1.5%
- On-chip Thermal Shutdown
- ESD: Human Body Model 3kV Machine Model 600V
- Operating Junction Temperature: -40°C to 125°C

Applications

- Notebook
- USB Device
- Add-on Card
- DVD Player
- PC Motherboard

Figure 1. Package Types of AP2318

Pin Configuration

Figure 2. Pin Configuration of AP2318 (Top View)

Functional Block Diagram

Figure 3. Functional Block Diagram of AP2318

AP2318

Pin Description

Pin Number		Pin Name	Function	
DFN-3×3-8	SOIC-8	1 III Ivanic	T unction	
1, 2	3, 4	V _{IN}	Input Voltage	
3, 4	6	V _{OUT}	Output Voltage	
5	7	ADJ/NC	Adjust Voltage/No Connection	
6	8	GND	Ground	
7	1, 5	NC	No connection	
8	2	EN	On/Off control	

Ordering Information

Darlana	Temperature	Part N	umber	Marki	Packing		
Package	Range	Lead Free	Green	Lead Free	Green	Type	
SOIC-8	-40 to 125°C	AP2318M-ADJE1	AP2318M-ADJG1	2318M-ADJE1	2318M-ADJG1	Tube	
		AP2318M-ADJTRE1	AP2318M-ADJTRG1	2318M-ADJE1	2318M-ADJG1	Tape & Reel	
		AP2318M-1.3E1	AP2318M-1.3G1	2318M-1.3E1	2318M-1.3G1	Tube	
		AP2318M-1.3TRE1	AP2318M-1.3TRG1	2318M-1.3E1	2318M-1.3G1	Tape & Reel	
DFN-3×3-8	-40 to 125°C	AP2318DN-ADJTRE1	AP2318DN-ADJTRG1	F9E	В9Е	Tape & Reel	
		AP2318DN-1.3TRE1	AP2318DN-1.3TRG1	F9B	В9В	Tape & Reel	

BCD Semiconductor's Pb-free products, as designated with "E1" suffix in the part number, are RoHS compliant. Products with "G1" suffix are available in green packages.

AP2318

Absolute Maximum Ratings (Note 1)

Parameter	Symbol	Value		Unit	
Input Voltage	V _{IN}	15		V	
Operating Junction Temperature	T_{J}	150		°C	
Storage Temperature Range	T _{STG}	-65 to 150		°C	
Lead Temperature (Soldering, 10sec)	T_{LEAD}	260		°C	
Thormal Pagistanaa (Nota 2)	$\theta_{ m JA}$	SOIC-8	135	°C/W	
Thermal Resistance (Note 2)		DFN-3×3-8	120		
ESD (Human Body Model)	ESD	3000		V	
ESD (Machine Model)	ESD	600		V	

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Note 2: Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when operating the device outside of its operating ratings. The maximum allowable power dissipation is a function of the maximum junction temperature, $T_J(max)$, the junction-to-ambient thermal resistance, θ_{JA} , and the ambient temperature, T_A . The maximum allowable power dissipation at any ambient temperature is calculated using: $P_D(max) = (T_J(max) - T_A)/\theta_{JA}$. Exceeding the maximum allowable power dissipation will result in excessive die temperature, and the regulator will go into thermal shutdown.

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Input Voltage	V _{IN}	2.5	12	V
Enable Voltage	V_{EN}		12	V
Operating Junction Temperature Range	T_{J}	-40	125	°C

AP2318

Electrical Characteristics

Operating Conditions: $2.5 \text{V} \le V_{\text{IN}} \le 12 \text{V}$, $C_{\text{IN}} = 1 \mu \text{F}$, $C_{\text{OUT}} = 2.2 \mu \text{F}$, $T_{\text{J}} = 25^{\circ} \text{C}$, unless otherwise specified. (P \le Maximum Power Dissipation). Limits appearing in **Boldface** type apply over the entire junction temperature range for operation of -40°C to 125°C.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit	
Reference Voltage	V _{REF}	$\begin{array}{l} \text{AP2318-ADJ I}_{\text{OUT}} = 10\text{mA}, V_{\text{IN}} \text{-} V_{\text{OUT}} = 2\text{V}, T_{\text{J}} = 25^{\text{o}}\text{C} \\ 10\text{mA} \leq I_{\text{OUT}} \leq 600\text{mA}, V_{\text{OUT}} + 2\text{V} \leq V_{\text{IN}} \leq 12\text{V} \end{array}$	0.788 0.784	0.800 0.800	0.812 0.816	V	
Output Voltage	V _{OUT}	I_{OUT} =10mA, V_{IN} =2.5V, T_J =25°C 10mA $\leq I_{OUT} \leq$ 600mA, 2.5V $\leq V_{IN} \leq$ 12V	-1.5% -2%		1.5% 2%	V	
Maximum Output Current	I _{OUT} (max)	V _{IN} -V _{OUT} =2V	0.85	1.2		A	
Line Regulation	V _{RLINE}	AP2318-ADJ I_{OUT} =10mA, V_{OUT} +2 V ≤ V_{IN} ≤12 V		1	6	mV	
		$I_{OUT} = 10 \text{mA}, 2.5 \text{V} \le V_{IN} \le 12 \text{V}$		1	6	mV	
Load Regulation	V _{RLOAD}	$\begin{array}{l} AP2318\text{-}ADJ \\ V_{IN} = V_{OUT} + 2V, \ 10mA \le I_{OUT} \le 600mA \end{array}$		1	10	mV	
		V _{IN} =2.5V, 10mA≤I _{OUT} ≤600mA		1	10	mV	
Dropout Voltage	V_{DROP}	$\Delta V_{OUT} (\Delta V_{REF})=1\%$, $I_{OUT}=600$ mA		0.35		V	
Adjust Pin Current	I_{ADJ}			0.05	1	μA	
Minimum Load Current	I _{LOAD} (min)	V _{OUT} +2V≤V _{IN} ≤12V (ADJ only)		1.7	5	mA	
Quiescent Current	I_Q	V _{IN} =V _{OUT} +2V, I _{OUT} =0mA		250		μΑ	
RMS Output Noise (% of V _{OUT})	V _{NOI}	T _A =25°C, 10Hz≤f≤20kHz		0.003		%	
Thermal Shutdown Temperature				150		°C	
Thermal Shutdown Hysteresis				25		°C	
Enable Input Voltage	V _{EN}	Enable logic low			0.8	V	
Enable input voltage		Enable logic high	2.25			, v	
Enable Input Current	I _{EN}	V _{EN} =2.25V		5	15	μΑ	
		$V_{EN}=0.8V$			4	μΑ	
Thermal Resistance,	e, θ _{JC}	DFN-3×3-8		15		0.5	
(Junction to Case)		SOIC-8		24		°C/W	

Typical Performance Characteristics

1.30 AP2318-ADJ V_{OUT}=1.2V R1=3k Ω R2= $6.2k\Omega$ Output Voltage (V) T_=25°C 1.22 V_{IN}=3.2V 1.20 1.18 1.16 1.14 1.12 1.10 Output Current (mA)

Figure 4. Output Voltage vs. Output Current (Conditions: V_{OUT} =0.8V, ADJ Short to GND)

Figure 5. Output Voltage vs. Output Current (Conditions: V_{OUT} =1.2V, R1=3k Ω , R2=6.2k Ω)

Figure 6. Output Voltage vs. Output Current (Conditions: V_{OUT} =0.8V, ADJ Short to GND)

Figure 7. Output Voltage vs. Output Current (Conditions: V_{OUT} =1.2V, R1=3k Ω , R2=6.2k Ω)

1.5 1.4 1.3 1.2 1.1 1.0 Output Voltage (V) AP2318-ADJ 0.9 V_{IN}=3.2V 0.8 V_{OUT}=1.2V 0.7 R1= $3k\Omega$ 0.6 R2=6.2k Ω -T_c=25°C 0.4 0.3 $- T_{c} = -40^{\circ}C$ 0.2 ---T_c=125°C 0.1 0.0 150 300 600 750 1050 1200 1350 1500 450 Output Current (mA)

Figure 8. Output Voltage vs. Output Current (Conditions: V_{OUT} =0.8V, ADJ Short to GND)

Figure 9. Output Voltage vs. Output Current (Conditions: V_{OUT} =1.2V, R1=3k Ω , R2=6.2k Ω)

Figure 10. Output Voltage vs. Input Voltage (Conditions: V_{OUT} =0.8V, ADJ Short to GND)

Figure 11. Output Voltage vs. Input Voltage (Conditions: V_{OUT} =1.2V, R1=3k Ω , R2=6.2k Ω)

1.30 1.28 AP2318-ADJ V_{IN}=3.2V 1.26 V_{OUT}=1.2V 1.24 S R1=3k Ω Output Voltage 1.22 R2=6.2k Ω I_{OUT}=10mA 1.20 1.18 1.16 1.14 1.12 1.10 60 80 Case Temperature (°C)

Figure 12. Output Voltage vs. Case Temperature (Conditions: V_{OUT}=0.8V, ADJ Short to GND)

Figure 13. Output Voltage vs. Case Temperature (Conditions: V_{OUT} =1.2V, R1=3k Ω , R2=6.2k Ω)

Figure 14. Supply Voltage vs. Input Voltage (Conditions: V_{OUT}=0.8V, ADJ Short to GND)

Figure 15. Supply Voltage vs. Input Voltage (Conditions: V_{OUT} =1.2V, R1=3k Ω , R2=6.2k Ω)

340 AP2318-ADJ 336 V_{IN}=3.2V 332 V_{OUT}=1.2V 328 R1=3kΩ Supply Current (µA) R2=6.2kΩ No Load 316 312 308 304 300 100 120 -40 -20 0 80 40 60 Case Temperature (°C)

Figure 16. Supply Current vs. Case Temperature (Conditions: V_{OUT}=0.8V, ADJ Short to GND)

Figure 17. Supply current vs. Case Temperature (Conditions: V_{OUT} =1.2V, R1=3k Ω , R2=6.2k Ω)

Figure 18. Supply Current vs. Output Current (Conditions: V_{OUT}=0.8V, ADJ Short to GND)

Figure 19. Supply Current vs. Output Current (Conditions: V_{OUT} =1.2V, R1=3k Ω , R2=6.2k Ω)

Typical Performance Characteristics (Continued)

18 16 Supply Current (mA) AP2318-ADJ V_{OUT}=1.2V R1=3kΩ R2=6.2kΩ T_c=25°C V_{IN}=3.2V V_{IN}=2.5V --- V_{IN}=12V 150 300 450 600 750 900 1050 1200 1350 1500 Output Current (mA)

20

Figure 20. Supply Current vs. Output Current (Conditions: V_{OUT}=0.8V, ADJ Short to GND)

Figure 21. Supply Current vs. Output Current (Conditions: V_{OUT} =1.2V, R1=3k Ω , R2=6.2k Ω)

Figure 22. Load Transient Response (Conditions: V_{IN}=2.5V, V_{OUT}=1.3V, I_{OUT}=1mA to 300mA, C_{IN} =1 μ F, C_{OUT} =2.2 μ F)

Figure 23. Load Transient Response (Conditions: V_{IN}=2.5V, V_{OUT}=1.8V, I_{OUT}=1mA to 600mA, $C_{IN}=1\mu F, C_{OUT}=2.2\mu F)$

Figure 24. Line Transient Response (Conditions: V_{IN}=2.5V to 5V, V_{OUT}=0.8V, I_{OUT}=10mA, C_{IN} =0 μ F, C_{OUT} =2.2 μ F)

 $\label{eq:conditions} Figure 25. Line Transient Response \\ (Conditions: V_{IN}=2.5V to 10V, V_{OUT}=0.8V, I_{OUT}=10mA, \\ C_{IN}=0\mu\text{F}, C_{OUT}=2.2\mu\text{F}) \\$

Figure 26. PSRR vs. Frequency

Figure 27. PSRR vs. Frequency

Figure 28. Power Dissipation vs. Ambient Temperature (Conditions: V_{OUT} =1.2V, R1=3k Ω , R2=6.2k Ω)

Figure 29. Output Voltage vs. Enable Input Voltage (Conditions: V_{OUT} =1.2V, R1=3k Ω , R2=6.2k Ω)

Typical Applications

Figure 30. Typical Applications of AP2318 ADJ Version, V_{OUT} =0.8*(R1+R2)/R2

Figure 31. Typical Applications of AP2318 Fixed 1.3V Version, V_{OUT} =1.3V

Mechanical Dimensions

SOIC-8 Unit: mm(inch)

Note: Eject hole, oriented hole and mold mark is optional.

AP2318

Mechanical Dimensions (Continued)

DFN-3x3-8

Unit: mm(inch)

BCD Semiconductor Manufacturing Limited

http://www.bcdsemi.com

IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

MAIN SITE

- Headquarters

BCD Semiconductor Manufacturing Limited

No. 1600, Zi Xing Road, Shanghai ZiZhu Science-based Industrial Park, 200241, China Tel: +86-21-24162266, Fax: +86-21-24162277

REGIONAL SALES OFFICE

Shenzhen Office

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd., Shenzhen Office Unit A Room 1203, Skyworth Bldg., Gaoxin Ave.1.S., Nanshan District, Shenzhen,

China Tel: +86-755-8826 7951 Fax: +86-755-8826 7865

- Wafer Fab

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd. 800 Yi Shan Road, Shanghai 200233, China Tel: +86-21-6485 1491, Fax: +86-21-5450 0008

Taiwan Office

BCD Semiconductor (Taiwan) Company Limited 4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei,

Taiwan Tel: +886-2-2656 2808 Fax: +886-2-2656 2806

USA Office BCD Semiconductor Corp. 30920 Huntwood Ave. Hayward, CA 94544, USA Tel: +1-510-324-2988 Fax: +1-510-324-2788