OQHERIC et expérimentation en maths/informatique

Voici une petite production pédagogique retranscrivant sous la forme canonique « OQHERIC » une expérience élémentaire que j'ai faite.

C'est un exemple permettant d'alimenter bienveillamment comment démarcher en maths et/ou¹ informatique pour aussi (re)trouver des résultats par la démarche expérimentale.

Observation 1:

En lisant page 62 du n°18 du « le monde est mathématique » sur les nombres remarquables, j'ai été interloqué sur le passage suivant :

« Le 1233

Ce nombre est intéressant car il est égal à 12²+33², c'est-à-dire la somme des carrés de ses deux premiers et deux derniers chiffres. Un autre exemple d'un nombre qui a cette propriété est 8833=88²+33² ».

Question 1:

Est-ce vrai?

Hypothèse 1:

Vu la source cela ne peut être que vrai!

Expérience(s) 1:

A l'aide d'une machine à calculer, je calcule le calcul suivant : 12*12+33*33. Pour le plaisir² et la rigueur³ j'effectue aussi 88*88+33*33.

Résultat 1:

1233 et 8833.

Interprétation 1:

L'hypothèse est bonne!

Conclusion 1 et Observation 2 :

Il existe deux nombres tel que i*i+j*j=i*100+j comme évoqué dans le livre : 1233 et 8833.

Question 2 : Existe-t-il d'autres nombres de ce type ?

Hypothèse 2 : Bien sûr ! Enfin, pourquoi pas, ça serait sympa. La formulation le laisse entendre et l'auteur nous laisse chercher les autres !

Expérience 2 :

Comme on ne peut pas faire tous les calculs à la main, je code un *script/programme/logiciel* qui teste <u>toutes</u> les combinaisons possibles :

- avec i et j compris entre 1 et 99 pour vérifier qu'il n'en manque pas,
- mais aussi pour i et j compris entre 100 et 999, 1000 et 9999, 10000 et 99999.

³ Scientifique et non économique!

¹ On pourrait se contenter d'un Ou logique

² Je suis toujours émerveillé de vérifier ce genre de résonnement trouvé dans des livres, magasines... et de trouver l'astuce pour refaire l'expérience quand elles sont plus compliquées que ce simple calcul.

Dispositif en langage python

Il teste de façon brutale, en force, toutes les combinaisons i et j et n'affiche que les couples valides.

```
for i in range (bornemoins,borneplus):
for j in range (bornemoins, borneplus):
   if((i*i+j*j)==(i*(borneplus+1)+j)):
     print (i , j)
```

NB : Je n'ai copié ici que la partie importante du script. Il faut y ajouter la définition des « bornesmoins » (10,100,1000,10000) et « bornesplus » (99,999,9999,9999) et quelques améliorations pour rendre l'interface sympa et commenter mon code.

Résultats 1 :

Les trois premiers solutions sont soudain solvé :

12-33

88-33

10-100

990-100

558-2353

9412-2353

Pour le 4ème test je laisse tourner l'ordinateur durant la nuit. En effet il n'y a que 100.000*100.000 ou 10.000.000.000 combinaisons à tester.

Au petit matin, avant le café du petit déj, j'ai r-allumé l'écran de l'ordinateur pour contempler :

17650 38125

25840 43776

74160 43776

82350 38125

99010 9901

Interprétation 2:

- J'ai des résultats qui s'écrivent à l'écran, ce dispositif expérimental fonctionne génialement!
- Avec le premier test j'ai vérifié que j'ai le même nombre de résultat que le livre. Le script à priori donne tous les résultats et est valide.
- J'ai des résultats pour les intervalles supérieurs, que je suppose complets vu l'interprétation cidessus.
- Le tout dernier résultat est troublant mais valide si on le lit 09901.

Conclusion 2:

Il existe un certains nombre limité de nombre du type i*i+j*j=i+1*10^m (m= 100, 1000, 10000, 100000 selon i et j). Il y en a 11. Et je les ai calculé!⁴

⁴ On a les petites fiertés que l'on veut!

(Observations et Questions) 3 et plus

- Que se passe-t-il si on met au cube au lieu du carré i*i*i+j*j*j= i*1000+j⁵?
- Est ce valable pour des nombres plus grand encore ?
- Peut-on les calculer sans tester toutes les combinaisons possibles ?
- 99010 et 09901 sont anagramme
- Il y a des répétions dans les couples . Elles vont par 2 : 33, 100, 2353...

Expérience 3

Aller sur internet.

Résultats 3

http://www.recreomath.qc.ca/dict_narcissique_n.htm http://mathafou.free.fr/pba/sol019b.html

⁵ Le résultat est assez étrange

