ZhdanovDS 23122024-170954

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.343	-157.7	12.929	92.5	0.039	67.3	0.326	-63.5
1.3	0.352	-168.2	9.941	85.5	0.048	66.9	0.266	-70.5
1.6	0.362	-175.7	7.985	79.9	0.057	66.1	0.223	-78.0
1.9	0.373	177.7	6.731	75.2	0.066	65.3	0.194	-85.6
2.4	0.378	170.1	5.218	68.9	0.082	63.1	0.168	-98.4
3.0	0.387	162.0	4.150	62.3	0.100	60.3	0.155	-110.9
4.5	0.406	146.0	2.758	47.2	0.145	51.5	0.140	-132.6
6.0	0.422	132.4	2.091	32.7	0.188	41.5	0.106	-159.6
7.5	0.472	117.4	1.674	18.4	0.226	31.0	0.100	147.0

и частоты $f_{\scriptscriptstyle \rm H}=1$ ГГц, $f_{\scriptscriptstyle \rm B}=6$ ГГц.

Найти обратные потери по выходу на $f_{\scriptscriptstyle \rm H}$.

Варианты ОТВЕТА:

- 1) 19.5 дБ
- 2) 9.7 дБ
- 3) 9.7 дБ
- 4) 19.5 дБ

Найти точку (см. рисунок 1), соответствующую коэффициенту отражения от нормированного импеданса $z=2.46+3.83\mathrm{i}$.

Рисунок 1 – Точки s_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной точки.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.1	0.320	-155.5	12.461	91.4	0.040	67.2	0.341	-59.1
1.2	0.323	-159.5	11.379	88.9	0.043	67.1	0.320	-61.2
1.3	0.326	-162.8	10.531	86.9	0.046	67.0	0.302	-62.9
1.4	0.331	-165.9	9.800	85.0	0.049	66.9	0.285	-65.0
1.5	0.332	-169.3	9.118	82.7	0.052	66.6	0.269	-66.6
1.6	0.335	-171.5	8.475	81.1	0.055	66.3	0.256	-68.8
1.7	0.338	-173.9	7.988	79.7	0.058	66.1	0.243	-70.7
1.8	0.342	-176.0	7.561	78.3	0.061	66.0	0.232	-72.8
1.9	0.344	-178.6	7.147	76.2	0.064	65.5	0.222	-74.8
2.0	0.345	179.6	6.714	75.0	0.067	65.1	0.214	-77.1
2.2	0.350	176.3	6.119	72.6	0.073	64.5	0.200	-81.3

и частоты $f_{\rm H}=1.4~\Gamma\Gamma$ ц, $f_{\rm B}=2~\Gamma\Gamma$ ц. **Найти** модуль s_{11} в дБ на частоте $f_{\rm H}$.

Варианты ОТВЕТА:

- 1) -26.2 дБ
- 2) -9.6 дБ
- 3) -10.9 дБ
- 4) 19.8 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		S	22
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.2	0.323	-159.5	11.379	88.9	0.043	67.1	0.320	-61.2
1.3	0.326	-162.8	10.531	86.9	0.046	67.0	0.302	-62.9
1.4	0.331	-165.9	9.800	85.0	0.049	66.9	0.285	-65.0
1.5	0.332	-169.3	9.118	82.7	0.052	66.6	0.269	-66.6
1.6	0.335	-171.5	8.475	81.1	0.055	66.3	0.256	-68.8
1.7	0.338	-173.9	7.988	79.7	0.058	66.1	0.243	-70.7
1.8	0.342	-176.0	7.561	78.3	0.061	66.0	0.232	-72.8
1.9	0.344	-178.6	7.147	76.2	0.064	65.5	0.222	-74.8
2.0	0.345	179.6	6.714	75.0	0.067	65.1	0.214	-77.1
2.2	0.350	176.3	6.119	72.6	0.073	64.5	0.200	-81.3
2.4	0.350	172.9	5.544	69.8	0.079	63.5	0.190	-85.2

и частоты $f_{\rm H}=1.3$ ГГц, $f_{\rm B}=2.2$ ГГц. **Найти** неравномерность усиления в полосе $f_{\rm H}...f_{\rm B},$ используя рисунок 2.

Рисунок 2 – Частотная характеристика усиления

Варианты ОТВЕТА:

- 1) 4.7 дБ
- 2) 0.7 дБ
- 3) 2.4 дБ
- 4) 6.2 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.343	-157.7	12.929	92.5	0.039	67.3	0.326	-63.5
1.5	0.360	-174.0	8.599	81.4	0.054	66.4	0.236	-75.3
2.0	0.372	176.3	6.319	74.0	0.069	64.8	0.186	-88.5
3.0	0.387	162.0	4.150	62.3	0.100	60.3	0.155	-110.9
5.5	0.415	137.5	2.272	37.5	0.174	44.9	0.120	-148.4
8.0	0.497	113.8	1.563	13.8	0.238	27.1	0.125	128.5

Найти точку (см. рисунок 3), соответствующую s_{11} на частоте 3 $\Gamma\Gamma$ ц.

Рисунок 3 – Кривые s_{11} и s_{22}

Варианты ОТВЕТА:

1) A

- 2) B3) C4) D

Задан двухполюсник на рисунке 4, причём R1 = 47.27 Om.

Рисунок 4 – Двухполюсник

Найти полуокружность (см. рисунок 5), описываемую коэффициентом отражения от этого двухполюсника в среде с волновым сопротивлением 50 Ом при изменении частоты от 0 до ∞ .

Рисунок 5 — Полуокружности Γ_i на s-плоскости

В качестве ОТВЕТА указать undexc выбранной полуокружности.