$V_0 = 25 \text{mb}, V_0 = 0, Q = 7.25 \text{mb}, X =$

1. A car is traveling at $25.0 \, m/s$ when the driver hits the brakes causing a constant deceleration of $1.25 \, m/s^2$. How far does the car go while stopping?

		1	<u> </u>	
(a) 750 m	(b) 500 m	(c) $250 m$		(d) 20 m

2. Your physics instructor is driving his 1973, orange-colored Gremlin on Lomas Boulevard. For the first 5 s of his trip, he maintains a constant velocity, but then he notices that there is an upcoming red stoplight so he hits the brakes and has a constant deceleration. Which of the following plots, correctly corresponds to his car's position versus time

graph?

(b) x t

Constant belocity

2 0 = 0

Straight

LINE

Constant deceleration

PARAbola

WHA decreasing

SLOPE, i.r.

3. A grasshopper launches itself from the top of a table that is 1.1 m high with speed 14 m/s and at a 53° angle. How far from the table does the grasshopper land (what horizontal distance) if we ignore air resistance?

(a) $206 m$ (b) $33.3 m$ (c) $20.0 m$ (d) $6.63 m$
7 14m/s Vo = 14m/s at 53°
1.1n Vox=14mls Cos530=8.425mls Vox=14mls sin530=11.18mls
$X = 7$ $X_0 = 0$, $Y_0 = 1.1m$, $Y = 0$
TO FIND & USE /= >6+Vay & - 29+2 = 0=1.1m+11.18m6+-4.94
======================================
=> t=11.18m/s+ \146.5524n/k. = 2.376s or094s
X= X2+Vox+ = (8.425mk)(2.376s) = 20.0m

4. For the grasshopper of the previous problem, which of the following is the correct v_y vs. t graph for its motion?

5. An 80-kg man is riding in an elevator that is accelerating downwards at $2.5 \, m/s^2$. What is the magnitude of his apparent weight?

(c) 584 N (b) 784 N (a) 984 N (d) 200 N

12.5mb=

n=? IF = May => n-Mg = May. Q, = -2.5.62

: . n = Mg+Mg/= M (g+g) = 80kg (9.8ml=25ml)

→ n=80k (7.3~13) = 584N

(a) $11.7 m/s^2$	(b) $7.37 m/s^2$	
(c) $2.96 m/s^2$	(d) $0.639 m/s^2$	7

FORCES: PUP, Mg DOWN, FR to left (FR=MKN)
AND =

MOTION TORIGHT = ay = 0

=> 1) = MQ+Fsin350= (3K)(9.8m/s²)+27Nsin350=44.89N

$$\sum_{k=0}^{\infty} F_{k} = M\alpha_{k}$$
 $\sum_{k=0}^{\infty} A_{k} = A_{k}$

7. A boy rides a sled down an icy (and therefore frictionless) hill whose height above the ground is given by the equation $y = x^2$, where y is in meters when x is in meters. If he starts from rest at x = 1.5 m, how fast will he be going at the bottom?

(a) 5.42 m/s	(b) 6.64 m/s
(c) 11.3 m/s	(d) Not enough information to determine

No FRICTION => $\frac{1}{2} M V_1^2 + M g Y_1 = \frac{1}{2} M V_2^2 + M g Y_2$ $V_1 = 0, Y_1 = (1.5)^2 = 2.25 m$ $V_2 = ?, Y_2 = 0$

:. Mg/1-\frac{1}{2} MV2^2 \Rightarrow V_2 = \lambda 29/1 = \lambda 2(9.8m/s^2)(2.25h)
$$= V_2 = 6.604 \text{m/s}$$

8. A 5.0-kg mass is sliding on a frictionless, horizontal surface going $6.0 \, m/s$ to the right when it hits a wall. If the mass bounces back with a speed of $4.0 \, m/s$ and the bounce time is $0.20 \, s$, what is the magnitude and direction of the average force on the mass?

$\sqrt{(a) 250 N}$ to the left	(b) $250N$ to the right
(c) $50 N$ to the left	(d) $50 N$ to the right

9. A very heavy hook is attached to a massless rope which has been wound around a drum that can rotate about its center. If the hook is released from rest, what direction is the drum's angular velocity?

As Hook FAIIs, & ROPE TURNS DRUM ______
Clockwise. RHR => W= & = into PAge

10. A 45 kg man stands on the edge of a diving board as shown. Two springs, one at A and the other at B, both exert vertical forces that keep the diving board (and man) horizontal and prevent rotation. How much force is the spring at B exerting? Assume the axis of rotation of the diving board is at A.

SU "REAL" FBD OF DIVING BOAD

11. On some alien planet, you find that a 0.34-m long simple pendulum has a period of 0.56 s, what is the acceleration due to gravity on that planet?

				7
(a) $0.106 m/s^2$	(b) $1.08 m/s^2$	(c) $9.8 m/s^2$	(d) $42.8 m/s^2$	/

$$X = A \cos(\omega t + \phi) \Rightarrow X(t = 0) = A \cos \phi \Rightarrow 0 = A \cos \phi$$

$$\Rightarrow Cos \phi = 0 \Rightarrow \phi = \pm \sqrt{2} \text{ rad}$$

$$V=-\omega A \sin(\omega t + \phi) \Rightarrow V_0 = V(t=0) = -\omega A \sin \phi$$
Vo is positive $\Rightarrow S \sin \phi < 0 \Rightarrow \sqrt{\Phi = -\pi/2}$

13. Your starship, The Aimless Wanderer, is in circular orbit around a 4.0×10^5 -m radius, alien planet (which by law you have to call Mongo) with a period of 30.0 minutes. If The Aimless Wanderer's distance from the center of Mongo is 4.5×10^5 m, what is the acceleration due to gravity on the surface of planet Mongo?

T=4.5×105m & radius of orbit

Mn = Mongo's MAS

T=36min x 600 = 18000

: NEED Mongo's MASS
to Find Q, use Period
to Find It.

14. One of the brightest and most observed comets in the past 20 years was the Hale-Bopp comet. (Named in part for Alan Hale who first observed it from his driveway in New Mexico.) Comet Hale-Bopp is on a highly elliptical orbit with eccentricity 0.995. If comet Hale-Bopp starts at aphelion $5.55 \times 10^{13} \, m$ from the sun (mass $1.99 \times 10^{30} \, kg$) with a speed of $99.1 \, m/s$, at what distance will it be and how fast will it be going when it reaches perihelion?

$$ea+fp=a \Rightarrow pfp=a-ea=a(le)$$
 $ea+fp=a \Rightarrow pfp=a-ea=a(le)$

TO FIND a: a + ea = Toe = a(1+e) = To

$$\Rightarrow \alpha = \frac{G}{1+e} = \frac{5.55 \times 10^{13}}{1.995} = 2.782 \times 10^{13}$$

AT APHELION, $L = MVa\Gamma a$, AT PERHELION $L = MVp\Gamma p$ CONSERVATION OF ANXWAR MOMENTUM \Rightarrow MVa $\Gamma a = MVp\Gamma p$ $\Rightarrow Vp = Va\left(\frac{\Gamma a}{\Gamma p}\right) = (99.1 \text{mb})\left(\frac{3552 \times 13}{1.34 \times 10^{11}}\right) = (99.1 \text{mb})(399.28)$