

LinearL2™ **Power MOSFET** w/Extended FBSOA

IXTK60N50L2 IXTX60N50L2

N-Channel Enhancement Mode Avalanche Rated

	F
P D	

= 500V= 60A \leq 100m Ω

Symbol	Test Conditions	Maximum F	Ratings
V _{DSS}	$T_{_{\rm J}}$ = 25°C to 150°C	500	V
V _{DGR}	$T_J = 25$ °C to 150°C, $R_{GS} = 1M\Omega$	500	V
V _{GSS}	Continuous	±30	V
V _{GSM}	Transient	±40	V
I _{D25}	T _c = 25°C	60	A
I _{DM}	$T_{c} = 25^{\circ}C$, pulse width limited by T_{JM}	150	Α
I _A	T _c = 25°C	60	A
E _{as}	T _c = 25°C	3	J
$\overline{P_{D}}$	T _c = 25°C	960	W
T _J		-55+150	°C
T_{JM}		150	°C
T _{stg}		-55+150	°C
T _L	Maximum Lead Temperature for Soldering	g 300	°C
$T_{\mathtt{SOLD}}$	1.6 mm (0.062in.) from Case for 10s	260	°C
M_d	Mounting torque (IXTK)	1.13/10	Nm/lb.in
F _c	Mounting Force (IXTX)	20120 / 4.527	N/Ib
Weight	TO-264 PLUS247	10 6	g g

PLUS247 (IXTX)

G = Gate D = Drain S = Source Tab = Drain

Features

- Designed for linear operation
- International standard packages
- Avalanche rated
- Guaranteed FBSOA at 75°C

Advantages

- Easy to mount
- Space savings
- High power density

Applications

- Solid state circuit breakers
- Soft start controls
- Linear amplifiers
- Programmable loads
- Current regulators

•			aracteristic Valu Typ.		
BV _{DSS}	$V_{GS} = 0V, I_D = 1mA$	500			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 250\mu A$	2.5		4.5	V
I _{GSS}	$V_{GS} = \pm 30V, V_{DS} = 0V$			±200	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$ $T_{J} = 125^{\circ}C$			50 5	μA mA
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 0.5 \bullet I_{D25}, Note 1$			100	mΩ

Symbol $(T_J = 25^\circ)$	°C, u	Test Conditions unless otherwise specified)	Ch Min.	aracteris Typ.	tic Valu	
9 _{fs}		V _{DS} = 10V, I _D = 0.5 • I _{D25} , Note 1	18	25	32	S
C _{iss}	}	V _{GS} = 0V, V _{pS} = 25V, f = 1MHz		24 1325		nF pF
C _{rss}	J	GS / DS /		172		pF
t _{d(on)})	Resistive Switching Times		40		ns
t _r	\	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		40		ns
$\mathbf{t}_{d(off)}$		$R_{\rm g} = 0.5\Omega$ (External)		165		ns
t _f	J	G ,		38		ns
Q _{g(on)})			610		nC
Q _{gs}	}	$V_{gs} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		130		nC
\mathbf{Q}_{gd}	J			365		nC
R _{thJC}					0.13 °	C/W
$\mathbf{R}_{\mathrm{thCS}}$				0.15	۰	C/W

Safe Operating Area Specification

Symbol	Test Conditions	Characteristic Values			
		Min.	Тур.	Max.	
SOA	$V_{DS} = 400V, I_{D} = 1.1A, T_{C} = 75^{\circ}C, tp = 3s$	440		W	

Source-Drain Diode

Symbol	Test Conditions	Characteristic Values			
$(T_J = 25^{\circ}C$, unless otherwise specified)	lin.	Тур.	Max	
Is	$V_{GS} = 0V$			60	Α
I _{SM}	Repetitive, pulse width limited by T_{JM}			240	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0V$, Note 1			1.5	V
t _{rr} I _{RM} Q _{RM}	$\begin{cases} I_F = 60A, -di/dt = 100A/\mu s, \\ V_R = 100V, V_{GS} = 0V \end{cases}$		980 73 35.8		ns A µC

Notes: 1. Pulse test, $t \le 300 \mu s$, duty cycle, $d \le 2\%$.

Dim.	Milli	meter	Inches	
	Min.	Max.	Min.	Max.
Α	4.83	5.21	.190	.205
A,	2.29	2.54	.090	.100
A ₂	1.91	2.16	.075	.085
b	1.14	1.40	.045	.055
b₁	1.91	2.13	.075	.084
b ₂	2.92	3.12	.115	.123
С	0.61	0.80	.024	.031
D	20.80	21.34	.819	.840
Е	15.75	16.13	.620	.635
е	5.45	BSC	.215	BSC
L	19.81	20.32	.780	.800
L1	3.81	4.32	.150	.170
Q	5.59	6.20	.220	0.244
R	4.32	4.83	.170	.190

Fig. 1. Output Characteristics @ $T_J = 25^{\circ}C$

Fig. 2. Extended Output Characteristics @ T_J = 25°C

Fig. 3. Output Characteristics @ T_J = 125°C

Fig. 4. $R_{DS(on)}$ Normalized to I_D = 30A Value vs. Junction Temperature

Fig. 5. $R_{DS(on)}$ Normalized to I_D = 30A Value vs.

Drain Current

Fig. 6. Maximum Drain Current vs.

Case Temperature

 $\ensuremath{\mathsf{IXYS}}$ Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 13. Forward-Bias Safe Operating Area

Fig. 14. Forward-Bias Safe Operating Area $@T_C = 75^{\circ}C$

