微分方程

Didnelpsun

目录

1	一阶微分方程		
	1.1	可分离变量微分方程	1
	1.2	多项式换元	1
	1.3	自然齐次方程	1
	1.4	一阶线性方程	2
	1.5	伯努利方程	2
2	二阶可降阶微分方程		
	2.1	y'' = f(x, y') 型	2
	2.2	y'' = f(y, y') 型	3
3	高阶线性微分方程		
	3.1	常系数齐次线性微分方程	3
	3.2	常系数非齐次线性微分方程	3
4	微分方程概念		
	4.1	已知微分方程的解反求系数	4
	4.2	不解微分方程,利用方程隐含信息	4
5	欧拉方程		4
6	微分方程物理应用		
	6.1	牛顿第二定律	4
	6.2	变化率	4

1 一阶微分方程

1.1 可分离变量微分方程

例题: 求
$$y \sin \frac{x}{2} dx - \cos \frac{x}{2} dy = 0$$
 的通解。

解: $\frac{dy}{dx} = y \tan \frac{x}{2}$, $\frac{dy}{y} = \tan \frac{x}{2} dx$, $\int \frac{dy}{y} = 2 \int \tan \frac{x}{2} d\frac{x}{2}$ 。

解得 $\ln |y| = -\ln \left(\cos \frac{x}{2}\right)^2 + \ln C_1$ (取对数更好解), $|y| = \frac{C_1}{\left(\cos \frac{x}{2}\right)^2}$ 。

 $y = \frac{\pm C_1}{\left(\cos \frac{x}{2}\right)^2}$,令 $C = \pm C_1$,得 $y = \frac{C}{1 + \cos x}$ 。

注意在第一步时将 y 除到分母上,本来 y 为任意常数,变为 $y \neq 0$,所以解得最后 $C \neq 0$,而实际上 y 可以为 0,所以 C 应该为任意常数。

此时解为全部解,为通解加上 y=0 的奇解。

1.2 多项式换元

解: 令 u = x + y + 100, $\frac{\mathrm{d}u}{\mathrm{d}x} = 1 + \frac{\mathrm{d}y}{\mathrm{d}x}$, $\frac{\mathrm{d}y}{\mathrm{d}x} = \sin(x + y + 100)$, $\therefore \frac{\mathrm{d}u}{\mathrm{d}x} = 1 + \sin u$. $\frac{\mathrm{d}u}{1 + \sin u} = \mathrm{d}x$, $\int \frac{\mathrm{d}u}{1 + \sin u} = \int \mathrm{d}x$, $\int \frac{1 - \sin u}{\cos^2 u} \mathrm{d}u = x$. $\int \sec^2 u - \tan u \sec u \, \mathrm{d}u = x$, 即 $\tan u - \sec u = x + C$ 。代回 u = x + y + 100:

通解 $\tan(x + y + 100) - \sec(x + y + 100) = x + C$ 。

例题: 求微分方程 $dy = \sin(x + y + 100) dx$ 的通解。

所有解: $\tan(x+y+100) - \sec(x+y+100) = x+C$, $x+y+100 = 2k\pi - \frac{\pi}{2}$

1.3 自然齐次方程

例题:设 L 是一条平面曲线,其上任意一点 P(x,y) (x>0) 到坐标原点的距离恒等于该点处的切线在 y 轴上的截距,且 L 经过点 $\left(\frac{1}{2},0\right)$,求 L 的方程。

解: (x,y) 到坐标原点的距离为 $\sqrt{x^2+y^2}$ 。

若
$$y = y(x)$$
,则切线为 $Y - y = y'(X - x)$,令 $X = 0$,解得 $Y = y - xy'$ 。
$$\therefore \sqrt{x^2 + y^2} = y - xy', \quad \text{解得 } y' = \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y - \sqrt{x^2 + y^2}}{x} = \frac{y}{x} - \sqrt{1 + \frac{y^2}{x^2}}$$
。
令 $\frac{y}{x} = u$,则 $y = ux$, $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}u}{\mathrm{d}x}x + u$ 。代入 y' :
$$\frac{\mathrm{d}u}{\mathrm{d}x}x + u = u - \sqrt{1 + u^2}, \quad \frac{\mathrm{d}u}{\sqrt{1 + u^2}} = -\frac{\mathrm{d}x}{x}, \quad \int \frac{\mathrm{d}u}{\sqrt{1 + u^2}} = -\int \frac{\mathrm{d}x}{x}$$

$$\therefore \ln(u + \sqrt{1 + u^2}) = -\ln x + \ln C, \quad u + \sqrt{1 + u^2} = \frac{C}{x}$$
。

代入
$$\frac{y}{x} + \sqrt{1 + \frac{y^2}{x^2}} = \frac{C}{x}$$
, $y + \sqrt{x^2 + y^2} = C$ 。

1.4 一阶线性方程

形如
$$\frac{\mathrm{d}y}{\mathrm{d}x} + P(x)y = Q(x)$$
。

例题: 求微分方程 $y'+1=e^{-y}\sin x$ 的通解。

解: 已知对 $e^{-y}\sin x$ 无法处理, 所以必然需要对其转换, $e^{y}y' + e^{y} = \sin x$ 。

$$(e^y)' + e^y = \sin x$$
, $\Leftrightarrow e^y = u$, $u' + u = \sin x$, $P(x) = 1$, $Q(x) = \sin x$.

 $e^y = u = e^{-\int \mathrm{d}x} (\int e^{\int \mathrm{d}x} \sin x \, \mathrm{d}x + C) = e^{-x} (\int e^x \sin x \, \mathrm{d}x + C),$ 积分再现表格解出 $\int e^x \sin x \, \mathrm{d}x$: $= e^{-x} \left(\frac{1}{2} e^x (\sin x - \cos x) + C \right)$ 。

1.5 伯努利方程

形如
$$\frac{\mathrm{d}y}{\mathrm{d}x} + P(x)y = Q(x)y^n$$
。

例题: 求 $y dx = (1 + x \ln y) x dy (y > 0)$ 的通解。

解:将导数放到一边: $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y}{(1+x\ln y)x}$,这个算式无法处理。

而颠倒
$$\frac{\mathrm{d}x}{\mathrm{d}y} = \frac{(1+x\ln y)x}{y} = \frac{1}{y}x + \frac{\ln y}{y}x^2$$
。

凑伯努利方程: $x' + P(x)x = Q(x)x^n$: $x' - \frac{1}{y}x = \frac{\ln y}{y}x^2$ 。 $P(x) = -\frac{1}{y}$

$$Q(x) = \frac{\ln y}{y}.$$

乘 x^{-2} 降阶: $x^{-2}x' - \frac{1}{y}x^{-1} = \frac{\ln y}{y}$ 。 令 $z = x^{-1}$, $\frac{\mathrm{d}z}{\mathrm{d}y} = -\frac{1}{x^2}\frac{\mathrm{d}x}{\mathrm{d}y}$ 。 代入方程: $-\frac{\mathrm{d}z}{\mathrm{d}y} - \frac{1}{y}z = \frac{\ln y}{y}, \quad \frac{\mathrm{d}z}{\mathrm{d}y} + \frac{1}{y}z = -\frac{\ln y}{y}, \quad \text{利用公式:}$ $z = e^{-\int \frac{1}{y}\mathrm{d}y} \left(\int e^{\int \frac{1}{y}\mathrm{d}y} \cdot \left(\frac{\ln y}{y} \right) + C \right) = \frac{1}{y} (-\int \ln y \, \mathrm{d}y + C) = \frac{1}{y} (-y(\ln y - y))$

$$(1) + C) = -\ln y + 1 + \frac{C}{y} \circ$$
$$\therefore x = \frac{y}{-y \ln y + y + C} \circ$$

2 二阶可降阶微分方程

2.1 y'' = f(x, y') 型

例题: 求 $y'' = \frac{2xy'}{1+x^2}$ 的通解。

解:
$$\Leftrightarrow y' = p$$
, $p' = \frac{2xp}{1+x^2}$, $\frac{dp}{dx} = \frac{2xp}{1+x^2}$, $\frac{dp}{p} = \frac{2x}{1+x^2}$, $\int \frac{dp}{p} = \int \frac{2x}{1+x^2}$.

$$\ln |p| = \ln(1+x^2) + \ln C_1, \quad p = \pm C_1(1+x^2) = C_2(1+x^2),$$

$$y' = C(1+x^2), \quad \therefore y = C_2\left(x + \frac{x^3}{3} + x\right) + C_0$$

2.2 y'' = f(y, y') 型

3 高阶线性微分方程

3.1 常系数齐次线性微分方程

3.2 常系数非齐次线性微分方程

先将常系数非齐次线性微分方程变为常系数齐次线性微分方程求解,然后 加上非齐次方程的一个特解,就是非齐次方程的一个通解。

例题: 求 $y'' - 4y' + 4y = 3xe^{2x}$ 的通解。

解:变为常系数齐次线性微分方程:y'' - 4y' + 4y。

写出特征方程: $\lambda^2 - 4\lambda + 4 = 0$,从而 $(\lambda - 2)^2 = 0$, $\lambda_1 = \lambda_2 = 2$ 。

从而 y 齐次方程的通解为 $(C_1 + C_2 x)e^{2x}$ 。

根据特解的设置方法,设 $y^* = e^{2x}(ax+b)x^2$ 。

代回二阶方程, $a = \frac{1}{2}$,b = 0。通解为 $(C_1 + C_2 x)e^{2x} + \frac{1}{2}x^3 e^{2x}$ 。

例题: 微分方程 $y'' - 4y' + 3y = e^x \cos x + xe^{3x}$ 的通解。

解: 首先常系数齐次线性微分方程: y'' - 4y' + 3y = 0。

特征方程为 $\lambda^2 - 4\lambda + 3 = 0$,解得特征值为 $\lambda_1 = 1$, $\lambda_2 = 3$ 。

所以该齐次方程的通解: $y = C_1 e^x + C_2 e^{3x}$ 。

然后求特解, 首先求后面 $f_2(x) = xe^{3x}$ 的特解 y_2^* 。

根据公式因为 α 为单特征根,即 $\aleph=3=\lambda_2\neq\lambda_1$,所以 $y_2^*=e^{3x}(ax+b)x$ 。

然后是求 $f_1(x) = e^x \cos x$ 的特解 y_1^* 。

其中 $P_m(x) = 1$, $P_n(x) = 0$, l = 0。 所以设 $P_m(x) = A$, $P_n(x) = B$ 。

对 k,自由项中 $\alpha = \beta = 1$,得到 $1 \pm i$ 。又 $1 \pm i \neq \lambda_1 = 1 \neq \lambda_2 = 3$,k = 0。

最后 $y_1^* = e^x (A\cos x + B\sin x)$ 。 通解为 $y = C_1 e^x + C_2 e^{3x} + e^x (A\cos x + B\sin x) + e^{3x} (ax + b)x$ 。

4 微分方程概念

对于有些方程并不需要求解后才能解决问题。

4.1 已知微分方程的解反求系数

例题: 设 y_1, y_2 为一阶非齐次线性微分方程 y' + p(x)y = q(x) 的两个特解,若常数 λ, μ 使得 $\lambda y_1 + \mu y_2$ 是该方程的解, $\lambda y_1 - \mu y_2$ 是该方程对应的齐次方程的解,则 ()。

$$A.\lambda = \frac{1}{2}, \mu = \frac{1}{2} \qquad B.\lambda = -\frac{1}{2}, \mu = -\frac{1}{2} \qquad C.\frac{2}{3}, \mu = \frac{1}{3} \qquad \lambda = \frac{2}{3}, \mu = \frac{2}{3}$$

4.2 不解微分方程,利用方程隐含信息

 $F(y,y',y'',\cdots,y^{(n)})=0$ 反映了未知函数及其各阶导数之间的关系。

例题: 设 y = f(x) 是方程 y'' - 2y' + 4y = 0 的一个解,若 $f(x_0) > 0$,且 $f'(x_0) = 0$,则函数 f(x) 在点 $x_0()$ 。

A. 取得最大值 B. 取得最小值 C. 某个邻域内单调增加 D. 某个邻域内单调减少

解: 因为 y = f(x) 是方程 y'' - 2y' + 4y = 0 的一个解,所以直接代入 x_0 : $y''(x_0) - 2y'(x_0) + 4y(x_0) = 0$ 。又 $f'(x_0) = 0$ 。

 $y''(x_0) = -4y(x_0) < 0$, 所以该点为极大值点。

5 欧拉方程

6 微分方程物理应用

6.1 牛顿第二定律

$$F = ma$$
, 物体质量 m , 力 f , 加速度 $a = \frac{\mathrm{d}^x}{\mathrm{d}t^2} = \frac{\mathrm{d}v}{\mathrm{d}t} = \frac{\mathrm{d}v}{\mathrm{d}x} \frac{\mathrm{d}x}{\mathrm{d}t} = v \frac{\mathrm{d}v}{\mathrm{d}x}$ 。

6.2 变化率

考的可能性较大,提法多为 t 时刻某量 y 对 t 的变化率与 t 时刻某量成正比。

如冷却定律,k 时刻物体温度 T(t) 对时间的变化率与 t 时刻物体与介质的温差 $T-T_0$ 成正比,应写为 $\frac{\mathrm{d}T}{\mathrm{d}t}=-k(x-x_0)$ 。