Admitere UPB Algebra_Analiza_Ma_2022-07-18 Varianta A

1. Fie sistemul $\begin{cases} mx+y-z=1\\ x+y-z=2 \end{cases}$, unde m este un parametru real. Pentru câte valori $m\in\mathbb{Z}$ sistemul are soluție -x+y+z=0

unică (x_0, y_0, z_0) , cu componentele numere întregi? (9 pct.)

- a) 4; b) 3; c) 1; d) o infinitate; e) 2; f) 5.
- 2. Fie $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 + x^2$. Să se calculeze f'(1). (9 pct.) a) 4; b) 3; c) 0; d) 2; e) 5; f) 7.
- 3. Ecuația $2^{2x+1} = 8$ are soluția: (9 pct.) a) x = -1; b) x = 2; c) x = 1; d) x = 0; e) x = 3; f) x = -2.
- 4. Determinantul matricei $A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$ este: (9 pct.) a) 3; b) 6; c) 1; d) 5; e) 4; f) 0.
- 5. Fie $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \int_0^1 |x-t| dt$. Să se calculeze $I = \int_{-1}^2 f(x) dx$. (9 pct.)

a)
$$I = \frac{11}{2}$$
; b) $I = \frac{8}{5}$; c) $I = \frac{4}{3}$; d) $I = \frac{1}{2}$; e) $I = \frac{1}{5}$; f) $I = \frac{7}{3}$.

- 6. Fie $(a_n)_{n\geq 1}$ o progresie aritmetică astfel ca $a_2=3$ și $a_3=5$. Să se calculeze a_4 . (9 pct.) a) 8; b) 11; c) 9; d) 6; e) 7; f) 10.
- 7. Să se afle valorile parametrului real m astfel încât ecuația $x^2 + 1 = me^{-\frac{1}{x}}$ să aibă trei soluții reale distincte. (9 pct.)

a)
$$m > 2e$$
; b) $m \in (1,e)$; c) $m \in (1,e^2)$; d) $m \in (e,2e)$; e) $m < 2e$; f) $m \in (0,1)$.

8. Să se rezolve ecuația $\sqrt{x+1} + x = 5$. (9 pct.)

a)
$$x = 0$$
; b) $x = 5$; c) $x = -1$; d) $x = 4$; e) $x = 7$; f) $x = 3$.

9. Mulțimea soluțiilor reale ale ecuației $x^2 - 11x + 18 = 0$ este: (9 pct.)

a)
$$\{1,4\}$$
; b) $\{3,6\}$; c) $\{2,9\}$; d) $\{1,3\}$; e) $\{0,1\}$; f) $\{2,7\}$.

10. Fie $f: \mathbb{N}^* \to \mathbb{R}$, $f(n) = n + \left[\frac{2022}{n}\right]$, unde prin [x] notăm partea întreagă a numărului real x. Pentru câte valori $n \in \mathbb{N}^*$, funcția f își atinge cea mai mică valoare? (9 pct.)