Vv255 Lecture 28

Dr Jing Liu

UM-SJTU Joint Institute

August 3, 2017

1. A line integral of \mathbf{F} in \mathbb{R}^2 over a closed plane curve \mathcal{C} to an integral of a scalar component of $\operatorname{curl} \mathbf{F}$ over the region that is enclosed by \mathcal{C} .

$$\oint_{\mathcal{C}} \mathbf{F} \cdot \mathbf{T} \ ds = \iint_{\mathcal{D}} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \ dA = \iint_{\mathcal{D}} (\operatorname{curl} \mathbf{F}) \cdot \mathbf{e}_z \ dA$$

- ullet Our next goal is to generalize this result to \mathbb{R}^3 , that is, to relate
- 1. A line integral of \mathbf{F} in \mathbb{R}^3 over a closed space curve \mathcal{C} to an integral of a scalar component of $\operatorname{curl} \mathbf{F}$ over the surface \mathcal{S} enclosed by \mathcal{C} .

$$\oint_{\mathcal{C}} \mathbf{F} \cdot \mathbf{T} \ ds = \iint_{\mathcal{S}} (\operatorname{curl} \mathbf{F}) \cdot \mathbf{n} \ dS$$

ullet The surface ${\cal S}$ is enclosed by ${\cal C}$ in the sense that ${\cal C}$ is the only boundary of ${\cal S}$.

2. A line integral of the normal component of \mathbf{F} in \mathbb{R}^2 over a closed curve \mathcal{C} to a double integral of $\operatorname{div} \mathbf{F}$ over the region that is enclosed by \mathcal{C} .

$$\oint_{\mathcal{C}} \mathbf{F} \cdot \mathbf{n} \ ds = \iint_{\mathcal{D}} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} \right) \ dA = \iint_{\mathcal{D}} \operatorname{div} \mathbf{F} \ dA$$

- We wish to generalize this result as well to \mathbb{R}^3 , that is, to relate
- 2. An integral of the normal component of \mathbf{F} in \mathbb{R}^3 over a closed surface \mathcal{S} to a triple integral of div \mathbf{F} over the solid \mathcal{E} that is enclosed by \mathcal{S} .

• The solid or the region \mathcal{E} in \mathbb{R}^3 is enclosed by the closed surface \mathcal{S} in the sense that \mathcal{S} has no curve boundary.

• Recall for a sufficiently smooth velocity field of a type of fluid,

$$\mathbf{V}(x,y,z) = v_x(x,y,z)\mathbf{e}_x + v_y(x,y,z)\mathbf{e}_y + v_z(x,y,z)\mathbf{e}_z$$

we consider the flux of ${\bf V}$ out of a tiny box in the xyz-coordinate system,

• Consider the flux out of such a similar box in terms of surface integrals,

$$\mathcal{B}$$
: $a \le x \le b$, $c \le y \le d$, $e \le z \le f$

 \bullet For \mathcal{S}_1 and $\mathcal{S}_2,$ both oriented outward, the net flux across \mathcal{S}_1 and \mathcal{S}_2

$$\iint_{\mathcal{S}_1} \mathbf{V} \cdot d\mathbf{S} + \iint_{\mathcal{S}_2} \mathbf{V} \cdot d\mathbf{S} = \iint_{\mathcal{D}_1} \mathbf{V} \cdot (-\mathbf{e}_y) \ dA + \iint_{\mathcal{D}_2} \mathbf{V} \cdot \mathbf{e}_y \ dA$$

Q: What is the region \mathcal{D}_1 and \mathcal{D}_2 ?

ullet The region \mathcal{D}_1 and \mathcal{D}_2 are the same by construction,

$$\mathcal{D}_1 = \mathcal{D}_2$$
: $a \le x \le b$, $e \le z \le f$

ullet If we simply use x and y to be the variable of integrations,

$$\begin{split} \iint_{\mathcal{S}_1} \mathbf{V} \cdot d\mathbf{S} + \iint_{\mathcal{S}_2} \mathbf{V} \cdot d\mathbf{S} &= \iint_{\mathcal{D}_1} \mathbf{V} \cdot (-\mathbf{e}_y) \; dA + \iint_{\mathcal{D}_2} \mathbf{V} \cdot \mathbf{e}_y \; dA \\ &= \int_e^f \int_a^b -v_y(x,c,z) \, dx \, dz + \int_e^f \int_a^b v_y(x,d,z) \, dx \, dz \\ &= \int_e^f \int_a^b \left(v_y(x,d,z) - v_y(x,c,z) \right) dx \, dz \end{split}$$

By the fundamental theorem of Calculus,

$$v_y(x, \boldsymbol{d}, z) - v_y(x, \boldsymbol{c}, z) = \int_{c}^{d} \frac{\partial v_y}{\partial y} dy$$

Making the substitution, and converting the iterated integral to a triple

$$v_{y}(x, d, z) - v_{y}(x, c, z) = \int_{c}^{d} \frac{\partial v_{y}}{\partial y} dy$$

$$\implies \iint_{\mathcal{S}_{1}} \mathbf{V} \cdot d\mathbf{S} + \iint_{\mathcal{S}_{2}} \mathbf{V} \cdot d\mathbf{S} = \int_{e}^{f} \int_{a}^{b} \left(v_{y}(x, d, z) - v_{y}(x, c, z) \right) dx dz$$

$$= \int_{e}^{f} \int_{c}^{d} \int_{a}^{b} \frac{\partial v_{y}}{\partial y} dx dy dz$$

$$= \iiint_{\mathcal{B}} \frac{\partial v_{y}}{\partial y} dV$$

• Similarly, we can obtain the flux across the remaining four faces

$$\iint_{\mathcal{S}_3} \mathbf{V} \cdot d\mathbf{S} + \iint_{\mathcal{S}_4} \mathbf{V} \cdot d\mathbf{S} = \iiint_{\mathcal{B}} \frac{\partial v_x}{\partial x} \ dV$$
$$\iint_{\mathcal{S}_5} \mathbf{V} \cdot d\mathbf{S} + \iint_{\mathcal{S}_6} \mathbf{V} \cdot d\mathbf{S} = \iiint_{\mathcal{B}} \frac{\partial v_z}{\partial z} \ dV$$

ullet Hence the net outward flux across the surface ${\mathcal S}$ of the box ${\mathcal B}$ is given by

$$\iint_{\mathcal{S}} \mathbf{V} \cdot d\mathbf{S} = \iiint_{\mathcal{B}} \left(\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z} \right) \ dV = \iiint_{\mathcal{B}} \operatorname{div} \mathbf{V} \ dV$$

ullet This result is also true for any sufficiently smooth vector field ${f F}$ acting on any region ${\cal E}$ enclosed by a piecewise smooth oriented closed surface.

ullet The proof can be extended to non-rectangular region ${\mathcal E}$ by considering

$$x = x(u, v, w),$$
 $y = y(u, v, w),$ $z = z(u, v, w)$

The Divergence Theorem

Let $\mathcal S$ be a piecewise smooth closed surface with outward orientation and $\mathcal E$ be a region in $\mathbb R^3$ that is enclosed by $\mathcal S$. Suppose $\mathbf F$ is a vector field with a continuous partial derivatives in an open region containing $\mathcal E$, then

$$\iint_{\mathcal{S}} \mathbf{F} \cdot \mathbf{n} \ dS = \iiint_{\mathcal{E}} \operatorname{div} \mathbf{F} \ dV$$

where n is the outward unit normal vector of S.

• Roughly speaking, it relates the flux integral of a vector field across a closed surface $\mathcal S$ to an integral of its divergence in the enclosed region $\partial \mathcal S$

The normal form of Green's theorem

The divergence theorem

• The theorem can serve as a bridge between surface and triple integral.

Exercise

(a) Use the divergence theorem to calculate the surface integral

$$\iint_{\mathcal{S}} \mathbf{F} \cdot d\mathbf{S},$$

where ${\cal S}$ is the surface of the box with vertices $(\pm 1, \pm 2, \pm 3)$ and

$$\mathbf{F}(x,y,z) = x^2 z^3 \mathbf{e}_x + 2xyz^3 \mathbf{e}_y + xz^4 \mathbf{e}_z$$

(b) Use the divergence theorem to evaluate

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S},$$

where S is the top half of the sphere $x^2 + y^2 + z^2 = 1$, and

$$\mathbf{F}(x, y, z) = z^2 x \mathbf{e}_x + (y^3/3 + \tan z) \mathbf{e}_y + (x^2 z + y^2) \mathbf{e}_z$$

• If we bring the density at t and position (x, y, z) into consideration,

$$\rho(x, y, z, t)$$

• Applying the divergence theorem to the vector field,

$$\mathbf{F} = \rho \mathbf{V}$$

ullet The total mass flux out of the region ${\mathcal E}$ at t is given by the triple integral

$$\iint_{\mathcal{S}} \mathbf{F} \cdot \mathbf{n} \ dS = \iiint_{\mathcal{E}} \operatorname{div} \mathbf{F} \ dV$$

ullet However, this flux must equal the rate of change of mass in the region ${\cal E}$, i.e.

$$\iint_{\mathcal{S}} \mathbf{F} \cdot \mathbf{n} \ dS = -\frac{\partial}{\partial t} \iiint_{\mathcal{E}} \rho \ dV = -\iiint_{\mathcal{E}} \frac{\partial \rho}{\partial t} \ dV$$

the minus sign is for the fact we are measuring net mass loss due to outflow.

Thus equating the two expressions of the total mass flux,

$$\iiint_{\mathcal{E}} \operatorname{div} \mathbf{F} \ dV = -\iiint_{\mathcal{E}} \frac{\partial \rho}{\partial t} \ dV \implies \iiint_{\mathcal{E}} \left(\operatorname{div} \mathbf{F} + \frac{\partial \rho}{\partial t} \right) \ dV$$

• The domain is arbitrary, so this can only happen if the integrand vanishes,

$$\operatorname{div} \mathbf{F} + \frac{\partial \rho}{\partial t} = 0$$

For a steady state fluid flow,

$$\operatorname{div}(\rho \mathbf{V}) + \frac{\partial \rho}{\partial t} = 0 \implies \rho \operatorname{div} \mathbf{V} = 0 \implies \operatorname{div} \mathbf{V} = 0 \implies \operatorname{Incompressible}$$
 and the net fluid flux through \mathcal{S} must be zero,

$$\iint_{\mathcal{S}} \mathbf{V} \cdot d\mathbf{S} = \iiint_{\mathcal{S}} \operatorname{div} \mathbf{V} \ dV = 0$$