Pesquisa Operacional / Programação Matemática

Degenerescência.

Evitando ciclagem.

■ O que acontece quando temos soluções degeneradas ?

M

■ base associada ao ponto extremo:

5 variáveis, 3 restrições grau de liberdade: 2

precisamos fixar duas variáveis de folga em zero:

$$I_N=(4,3)$$
 ou $I_N=(4,5)$ ou $I_N=(3,5)$

Exemplo

$$x_1 + x_2 \le 10$$

 $2x_1 + x_2 \le 15$
 $x_1 + 2x_2 \le 15$

(ignoremos os custos relativos) suponha que x_1 entra na base

x_3	1	1	1	0	0	10
\mathbf{x}_1	2	1	0	1	0	15
\mathbf{x}_5	1	2	0	0	1	15
		ı				
		↓				
— X 3►	0	1/2	1	-½	0	5/2
—————————————————————————————————————	0 1	1/2	1 0	-½ 1½	0	5/2 15/2
—————————————————————————————————————		\smile				

X_3	0	1/2	1	_1½	0	5/2 X ₅
\mathbf{x}_1	1	1/2	0	1/2	0	15/2
X_5	0	3/2	0	- ½	1	15/2
						\mathbf{x}_{1} \mathbf{x}_{5}
\mathbf{x}_2	0	1	2	-1	0	5
\mathbf{x}_1	1	0	-1	1	0	5
\mathbf{x}_{5}	0	0	-3	\bigcirc 1	1	0
						Múltiplas bases: mesmo ponto! Alysson M. Costa – ICM X USP

Problema

Há casos em que podemos passar muito tempo pivoteando entre soluções básicas degeneradas!

■ Pior: **CICLAGEM**

Exemplo de ciclagem (Bazaraa)

Regra do menor índice

- O algoritmo simplex converge (não cicla) se "desempatamos" a seleção das variáveis que entram ou saem na base com a regra do menor índice.
- Ex.: Variáveis com custo relativo negativo: x_1 , x_4 , x_5 : variável x_1 (menor índice) é selecionada.
- Ex.: Variáveis que primeiro se anulam: x_2 , x_3 , x_9 : variável x_2 (menor índice) é selecionada.