# **Dream Club Loan Payment Prediction**

```
In [1]:
# Import required libs
import seaborn as sb
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
In [2]:
# Read Loan data-set
loan = pd.read_csv("loan_data.csv")
In [3]:
# Check some information related to the imported data-set
loan.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9578 entries, 0 to 9577
Data columns (total 14 columns):
   Column
                      Non-Null Count Dtype
0
   credit.policy
                      9578 non-null
                                      int64
1
   purpose
                      9578 non-null object
                     9578 non-null float64
2 int.rate
   installment
                     9578 non-null float64
                     9578 non-null float64
   log.annual.inc
4
                      9578 non-null float64
5
   fico
                      9578 non-null int64
7 days.with.cr.line 9578 non-null float64
8 revol.bal
                      9578 non-null
                                      int64
    revol.util
                     9578 non-null
                                     float64
10 inq.last.6mths
                     9578 non-null
                                      int64
11 delinq.2yrs
                      9578 non-null
                                      int64
12 pub.rec
                      9578 non-null
                                      int64
                      9578 non-null
13 not.fully.paid
                                      int64
dtypes: float64(6), int64(7), object(1)
memory usage: 1.0+ MB
In [ ]:
```

# Exploring the data-set (EDA) with plots and stats

```
In [4]:
```

```
# Check some information about data
print("""DataFrame Dimensions = {0}
Dataframe Shape = {1}""".format(loan.ndim, loan.shape))
DataFrame Dimensions = 2
Dataframe Shape = (9578, 14)
In [5]:
# Check column set
print(list(loan.columns))
['credit.policy', 'purpose', 'int.rate', 'installment', 'log.annual.inc',
'dti', 'fico', 'days.with.cr.line', 'revol.bal', 'revol.util', 'inq.last.6
mths', 'delinq.2yrs', 'pub.rec', 'not.fully.paid']
In [6]:
# Rename columns to readable values
loan = loan.rename(columns={'credit.policy':'Policy', 'purpose':'Purpose', 'int.rate':
'ROI', 'installment':'Installment',
                             'log.annual.inc':'Income', 'dti':'DTI', 'fico':'FICO', 'day
s.with.cr.line':'CreditLine',
                             revol.bal': 'Balance', 'revol.util': 'Utilization', 'ing.las
t.6mths':'Inquiries',
                             'deling.2yrs':'PastDueCount', 'pub.rec':'PublicRecord', 'no
t.fully.paid':'Default'})
```

#### In [7]:

```
# Make purpose as String and check data-types
loan.Purpose = loan.Purpose.astype('string', copy=False)
loan.dtypes
```

### Out[7]:

Policy int64 Purpose string ROI float64 **Installment** float64 Income float64 DTI float64 **FICO** int64 CreditLine float64 Balance int64 Utilization float64 **Inquiries** int64 PastDueCount int64 PublicRecord int64 Default int64 dtype: object

# In [8]:

```
# Check some samples of the data loan.head(3)
```

# Out[8]:

|   | Policy | Purpose            | ROI    | Installment | Income    | DTI   | FICO | CreditLine  | Balan |
|---|--------|--------------------|--------|-------------|-----------|-------|------|-------------|-------|
| 0 | 1      | debt_consolidation | 0.1189 | 829.10      | 11.350407 | 19.48 | 737  | 5639.958333 | 288   |
| 1 | 1      | credit_card        | 0.1071 | 228.22      | 11.082143 | 14.29 | 707  | 2760.000000 | 336   |
| 2 | 1      | debt_consolidation | 0.1357 | 366.86      | 10.373491 | 11.63 | 682  | 4710.000000 | 35    |
| 4 |        |                    |        |             |           |       |      |             | •     |

# In [9]:

```
# Check and drop duplicates
loan[loan.duplicated()]
# No duplicates found
```

# Out[9]:

```
Policy Purpose ROI Installment Income DTI FICO CreditLine Balance Utilization Inc
```

# In [10]:

```
# Check null values
loan.isnull().sum()
```

# Out[10]:

| Policy       | 0 |
|--------------|---|
| Purpose      | 0 |
| ROI          | 0 |
| Installment  | 0 |
| Income       | 0 |
| DTI          | 0 |
| FICO         | 0 |
| CreditLine   | 0 |
| Balance      | 0 |
| Utilization  | 0 |
| Inquiries    | 0 |
| PastDueCount | 0 |
| PublicRecord | 0 |
| Default      | 0 |
| dtype: int64 |   |

# In [11]:

```
# NULL Values Using Heatmap
sb.heatmap(loan.isna(), cmap='CMRmap', cbar=False)
plt.show()
# The plot shows nothing as there are no missing values
```



# In [12]:

```
# Check that Default is Integer 0/1
print(loan.Default.unique())
```

[0 1]

# In [13]:

```
# Check class balance
print(loan.Default.value_counts())
plt.hist(loan.Default)
plt.show()
# Class is roughly 85/15 split and imbalanced. This indicates a need to be stratified w
hen sampling/splitting
```

80451533

Name: Default, dtype: int64



### In [14]:

```
# Plot of Loans By Purpose
sb.countplot(y=loan.Purpose, hue=loan.Default, palette="Set1")
plt.show()
# Highest Not Paid Defaulters are those who took loan for DEBT_CONSOLDATION and the low
est is for MAJOR_PURCHASE
```



# In [15]:

```
# Get the data ready for modelling. Drop the categorical variable after binarizing
loan = pd.concat([loan, pd.get_dummies(loan.Purpose)], axis=1)
loan = loan.drop('Purpose', axis=1)
loan.iloc[:,13:].tail(3)
```

### Out[15]:

|    | all_other   | credit_card | debt_consolidation | educational | home_improvement | major_purcl |
|----|-------------|-------------|--------------------|-------------|------------------|-------------|
| 95 | <b>75</b> 0 | 0           | 1                  | 0           | 0                | _           |
| 95 | <b>76</b> 0 | 0           | 0                  | 0           | 1                |             |
| 95 | 77 0        | 0           | 1                  | 0           | 0                |             |
| 4  |             |             |                    |             |                  | <b>&gt;</b> |

# In [ ]:

# **Decision Tree Classification using SKLearn**

### In [16]:

```
# Import relevant sklearn libs
from sklearn.model_selection import train_test_split, GridSearchCV, RepeatedStratifiedK
Fold, cross_val_score
from sklearn.preprocessing import StandardScaler, LabelEncoder, OneHotEncoder
from sklearn.tree import DecisionTreeClassifier, plot_tree, export_graphviz
from sklearn.metrics import confusion_matrix, classification_report, accuracy_score, f1
_score, roc_curve, roc_auc_score, auc
```

### In [17]:

```
# Prepare parameters for modelling
y = loan['Default']
X = loan.drop(['Default'], axis=1)

# Stratified Sampling and Splitting
cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=10, random_state=10)
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=2/3, test_size=1/3, stratify=y, random_state=0)

# CrossValidation and GridSearch
param_grid = {'criterion':['gini','entropy'], 'splitter':['best','random'], 'max_depth':[x for x in range(1,6)]}
best_model = GridSearchCV(DecisionTreeClassifier(), param_grid=param_grid, cv=cv).fit(X,y)
print("Best Score : {:.3f}\nBest Params: {}".format(best_model.best_score_, best_model.best_params_))
```

```
Best Score : 0.840
Best Params: {'criterion': 'gini', 'max_depth': 3, 'splitter': 'random'}
```

#### In [18]:

```
# This accuracy clearly is not the indicator of performance as the classes are very imb
alanced (84/16)
# Therefore use a model with class weights
from sklearn.utils.class_weight import compute_class_weight
print('Class Weights:', compute_class_weight(class_weight='balanced', classes=y.unique
().tolist(), y=y))
param_grid={'criterion':['gini','entropy'], 'splitter':['best','random'], 'max_depth':[
1,2,3], 'class_weight':['balanced']}
best_model = GridSearchCV(DecisionTreeClassifier(), param_grid=param_grid, cv=cv).fit(X
,y)
print("Best Score : {:.3f}\nBest Params : {}".format(best_model.best_score_, best_model.best_params_))
```

```
Class Weights: [0.59527657 3.12393999]
Best Score : 0.759
Best Params : {'class_weight': 'balanced', 'criterion': 'entropy', 'max_d epth': 2, 'splitter': 'best'}
```

#### In [19]:

```
# Before building the final model - compare various tree sizes to get the best one
# Check and plot training and prediction accuracies to get the best tree-depth
train_acc = list()
test_acc = list()
n_range = np.arange(1,15,1)
for n,e in enumerate(n_range):
    dt = DecisionTreeClassifier(criterion='entropy', max_depth=e, class_weight='balanced'
,splitter='best').fit(X_train, y_train)
    train_acc.append(dt.score(X_train, y_train))
    test_acc.append(dt.score(X_test, y_test))
    \#print('Depth = \{:<2\}, Train = \{:.5f\}, Test = \{:.5f\}'.format(e, train_acc[n], test_
acc[n])
# Plot the elbow curve to find train/test accuracy convergence and best tree-depth
plt.figure(figsize=(9,6))
plt.plot(n_range, train_acc, marker='o', label="Training Accuracy")
plt.plot(n_range, test_acc, marker='o', label="Prediction Accuracy")
plt.ylabel("Accuracy")
plt.xlabel("Tree-Depth")
plt.xticks(n_range)
plt.yticks(np.linspace(0.4,1,15))
plt.legend()
plt.show()
```



### In [20]:

```
# Build the final model with the above result, criterion does not matter for this data-
set
model_dt = DecisionTreeClassifier(criterion='entropy',splitter='best',class_weight='bal
anced',max_depth=3).fit(X_train, y_train)
y_pred = model_dt.predict(X_test)
y_pred_prob = model_dt.predict_proba(X_test)[:,1]

print("Training Accuracy : {:.3f}".format(model_dt.score(X_train, y_train)))
print("Testing Accuracy : {:.3f}".format(model_dt.score(X_test, y_test)))
print('Prediction Accuracy:', round(accuracy_score(y_test, y_pred), 3))
print("Average CV Accuracy: %.3f" % cross_val_score(model_dt, X, y, cv=cv).mean())
```

Training Accuracy : 0.736
Testing Accuracy : 0.727
Prediction Accuracy: 0.727
Average CV Accuracy: 0.718

### In [21]:

```
# Plot the decision tree path
plt.figure(figsize=(16,8))
plot_tree(model_dt, feature_names=X.columns, filled=True, rounded=True, class_names=['N
    ot Paid','Fully Paid'])
plt.show()
```



# In [22]:

```
# We can also check the feature importances. From this we can see that Policy is the mo
st important feature.
plt.figure(figsize=(15,5))
features = X.columns.shape[0]
plt.bar(range(features), model_dt.feature_importances_)
plt.xticks(np.arange(features), X, rotation=90)
plt.ylabel("Importance Score", size=15)
plt.xlabel("Features", size=15)
plt.show()
```



```
In [23]:
```

```
# In-fact the best model also happens to be a Decision-Stump (depth=1) with a matching
accuracy.
# The stump is based on feature 'Policy' and as also seen from the elbow plot, depth 1,
2,3 have similar accuracies
# Using Occam's Razor prinicple, it can be said that for the data-set, decision-stump b
ased on Policy is the best model
import graphviz
model = DecisionTreeClassifier(criterion='entropy',max_depth=1,class_weight='balanced',
splitter='best').fit(X_train, y_train)
graphviz.Source(export_graphviz(model, feature_names=X.columns, filled=True, class_name
s=['Not Paid','Fully Paid']))
```

### Out[23]:



### In [ ]:

# **Evaluate Model Performance**

### In [24]:

```
# Create another model to compare performance without class weights
# Comparatively, balanced weight model performs a lot better (better precision and reca
ll for both 0/1 outputs)
model = DecisionTreeClassifier(criterion='entropy', splitter='best', max_depth=3).fit(X
_train, y_train)
y_pred1 = model.predict(X_test)
classes=['Not Paid', 'Fully Paid']
plt.figure(figsize=(16,6))
plt.subplot(121)
sb.heatmap(np.rot90(confusion_matrix(y_test,y_pred1),2).T,annot=True,fmt='d',xticklabel
s=classes,yticklabels=classes,cbar=False)
plt.xlabel('Actual', size=15)
plt.ylabel('Predicted', size=15)
plt.title('Confusion Matrix', size=15)
plt.subplot(122)
sb.heatmap(np.rot90(confusion_matrix(y_test, y_pred),2).T,annot=True,fmt='d',xticklabel
s=classes,yticklabels=classes,cbar=False)
plt.xlabel('Actual', size=15)
plt.ylabel('Predicted', size=15)
plt.title('Confusion Matrix', size=15)
plt.show()
```



# In [25]:

```
# Print full classification report showing precision, recall, etc.
print('\033[1m\033[4m' + 'Report for Decision Tree Classifier\n' + '\033[0m')
print(classification_report(y_test, y_pred, digits=3, target_names=classes))
```

### Report for Decision Tree Classifier

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| Not Paid     | 0.874     | 0.789  | 0.829    | 2682    |
| Fully Paid   | 0.266     | 0.401  | 0.320    | 511     |
| accuracy     |           |        | 0.727    | 3193    |
| macro avg    | 0.570     | 0.595  | 0.575    | 3193    |
| weighted avg | 0.776     | 0.727  | 0.748    | 3193    |
| macro avg    |           |        | 0.575    | 3       |