3.1 Languages: relational algebra

- Introduction
- Relational algebra operations
 - Union
 - Renaming
 - Intersection
 - Difference
 - Cartesian product
 - Selection
 - Projection
 - Combination (join)
- Relational algebra sequence of operations

Introduction

- The data manipulation languages (DML) can be classified as:
 - Languages based on relational algebra
 - Languages based on relational calculus (e.g.: SQL)

But most of them use elements from both lines (SQL also incorpores elements from algebra).

• Relational calculus: Has its basis in the predicate calculations
Declarative What?

• Relational algebra: Has its basis in the set theory

(remember that the relations are sets) Procedimental How?

- Interest of relational algebra:
 - Helps to understand which querying functionalities must provide a relational language
 - The current standard version of SQL incorporates relational algebra operations
 - The DBMS process and optimize the queries based on relational algebra (remember that algebra is procedimental and, for example, SQL is declarative)

SQL: WHAT?

Operations of the relational algebra

• 1st classif.: Set operations

Union

Intersection

Difference

Cartesian product

Operations specifically relational

Selection

Projection

Combination (join)

Renaming

• 2nd classif.: Primitive operations

Union

Difference

Cartesian product

Selection Projection Renaming Non-primitive operations

Intersection

Combination (join)

• 3rd classif.: Binary operations

Union

Intersection

Difference

Cartesian product Combination (join) Unary operations

Selection Projection Renaming

• **Relational closure**: Both the operands and the result of a relational algebra operation are relations

Ex: $T = R \cup S$

Example

MODULE-CN(module, avg-surface)

B6 10 B2 20

OFFICE(module-dp, num-dp, superfície)

 B6
 25
 10

 B6
 27
 10

 B2
 25
 15

 B2
 30
 25

ADM-PERSONNEL(<u>num-per</u>, name, surname, module, num)

100 Joan Soler B6 25
 150 Clara Bellsolà B6 25

LAB-PERSONNEL(<u>num-per</u>, name, surname, module, num)

Clara Bellsolà 150 B6 25 110 Núria Nogué 25 B2 27 200 Jordi Moles **B6** Roig 230 Pere NULL NULL {module-dp} is a foreign key referencing MODULE-CN

{module, num} is a foreign key referencing OFFICE

{module, num} is a foreign key referencing OFFICE

Union

R =ADM-PERSONNEL ∪ LAB-PERSONNEL

R(num-per,	name,	surname	e, mod	ule, num)
100	Joan	Soler	B6	25
150	Clara	Bellsolà	B6	25
110	Núria	Nogué	B2	25
200	Jordi	Moles	B6	27
230	Pere	Roig	NULL	NULL

There are not repeated tuples!!!

- The schema attributes of the resulting relation $T \cup S$ are the same attributes of the T schema or S schema.
- The **body** of the resulting relation $T \cup S$ is the set of tuples belonging to the body of T, belonging to the body of S, or belonging to both of them
- To make the union between two relations, T and S must be compatible relations.
- In the case where the attributes from T and S have different names, we need to rename the attributes from one of the relations so that the relations will be compatible.

Compatible relationships

- Some relational algebra operations, such as the union, only make sense when applied to compatible relations (with "similar" tuples)
- Example: we can make the union

ADM-PERSONNEL U LAB PERSONNEL

because the tuples from both relations are similar. However, there is no point in making the union

ADM-PERSONNEL ∪ OFFICES

- Two relations T and S are compatible if:
 - They have schemas with an identic attribute set, and the domains for each pair of attributes are the same in T and in S.

Example:

ADM-PERSONNEL and ADM-PERSONNEL are clearly compatible:

Renaming

R =DOC-PERSONNEL {module-dp -> module, num-dp -> num}

R(num-per, name, surname, module, num)
400 Jaume Cases Omega 119
500 Pau Pou B6 123

- The **schema attributes** of the resulting relation is the same as the initial relation except the attributes names that have been renamed.
- The **body** of the resulting relation does not change.

B6

B2

B6

25

25

27

NULL

Intersection

R = ADM-PERSONNEL ∩ LAB-PERSONNEL

R(num-per, name, surname, module, num) 150 Clara Bellsolà B6 25

- The schema attributes of the resultint relationship $T \cap S$ are the same attributes of the T schema or the S schema.
- The **body** of the relations resulting of $T \cap S$ is the set of tuples belonging to the body of both relations
- To make the intersections between two relations, T and S must be compatible relationships
- In the case where the attributes from T and S do have different names, we need to rename the attributes from one of the relationships so that the relations will be compatible

Difference

R(num-per, nom, cognom, modul, num)

Soler

Joan

100

• The **schema attributes** of the resultint relation T – S are the same attributes of the T schema or the S schema.

B6

- The **body** of the relation resulting of T S is the set of tuples belonging to the body of T but not to the body of S.
- To make the difference between two relationships, T and S must be **compatible** relations.
- In the case where T and S have different attribute names, we need to rename the attributes from one of the relationships so that the relations will be compatible

Cartesian product

- The **schema attributes** of the resulting relation T × S are all the attributes from T plus all the attributes from S.
- If T and S have attributes with the same name, previously we will need to rename one of the two relations to avoid the ambiguity.
- The **body** of the resulting relation from $T \times S$ is the set of all the tuples of the form $\langle v_1, v_2, ..., v_n, w_1, w_2, ..., w_m \rangle$ where $\langle v_1, v_2, ..., v_n \rangle$ belongs to the body of T and $\langle w_1, w_2, ..., w_m \rangle$ belongs to the body of S.
- To make the cartesian product of two relations T and S, T and S must not be **compatible** relations.

Selection

R = OFFICE (module-dp= 'B2' AND surface>16)

- T(C) denotes the selection of T with the condition C, being C the selection condition
- The condition C is composed by one or more comparisons of the form:

$$Ai \theta Vj \text{ or } Ai \theta Aj$$

where Ai and Aj are attributes of the relation T, Vj is a constant value, and θ is a comparison operator (=, <>, <, <= , >, >=). The comparisons have to be interrelated by one of the logical operators AND (\wedge), OR (\vee).

- The **schema attributes** of the resultint relation T(C), are the same attributes of the T schema.
- The body of T(C) is the set of tuples that belong to the body of T that satisfy the condition C.

Projection

operations are sets.

- $T[A_i, A_j, ..., A_k]$ denotes the projection of T over $\{A_i, A_j, ..., A_k\}$, being $\{A_i, A_j, ..., A_k\}$ a subset of the attributes of the relation T schema.
- The **schema attributes** of the resulting relationship $T[A_i, A_j, ..., A_k]$, are the attributes $\{A_i, A_j, ..., A_k\}$
- The **body** of the resultint relationship $T[A_i, A_j, ..., A_k]$ is the subset of all the tuples with the form $\langle t.A_i, t.A_j, ..., t.A_k \rangle$ where t is a tuple that belongs to the body of T and where $t.A_p$ denotes the value for the attribute A_p from the tuple t.

OFFICE(module-dp,	num-dp,	surface)
B6	25	10
B6	27	10
B2	25	15
B2	30	25

B2	20	B2	30	25	
B2	20	B2	25	15	
В6	10	B6	27	10	
В6	10	B6	25	10	
R(module	, avg-surfac	e, module-dp	o, num-dp	o, surtace))

R = MODUL-ECN[module=module-dp, avg-surface<=surface]OFFICE

R(module, avg-surface, module-dp, num-dp, surface)						
В6	10	B6	25	10		
B6	10	B6	27	10		
B2	20	B2	30	25		

- T[B]S denotes the combination of T and S with the condition B
- The **condition B** of a combination **T [B] S** is composed by one or more comparisons with the form:

$$A_i \theta A_i$$

where A_i is an attribute of the relation, T, A_j is an attribute of the relation S, θ is a comparison operator $(=, \neq, <, \leq, >, \geq)$ and it matches that A_i and A_j have the same domain.

• The different conditions in a combination or join are separated by commas.

Combination (join)

R = MODULE-CN[module=module-dp, avg-surface<=surface]OFFICE

R(module,	avg-surfa	ace, module-d	p, num-	dp, surface)
В6	10	B6	25	10
В6	10	B6	27	10
B2	20	B2	30	25

- The **schema attributes** of the relation resulting of T[B]S are all the attributes of T and all the attributes of S.
- If T and S have some identical attribute name, previously we will need to rename one of the two relations to avoid the ambiguity.
- The **body** of the resulting relation T[B]S is the set of tuples belonging to the extension of the cartesian product T×S that match all the comparisons that form the combination condition B.

Combination (join): Types of "joins"

- "θ-join": The "join" is also called "θ-join"
- "Equi-join": Particular case of "join" where all the comarisons of the condition have the operator

'= '.

```
ADM-PERSONNEL(per-num, name, surname, module, num)
100 Joan Soler B6 25
150 Clara Bellsolà B6 25
```

OFFICE(module-d	p, num-dp	, surface)
B6	25	10
B6	27	10
B2	25	15
B2	30	25

R = ADM-PERSONNEL[module=module-dp, num=num-dp]OFFICE

R(num-per, name,	, surname,	module,	num,	module-dp,	num-	dp, surface)
100 Joan	Soler	B6	25	B6	25	10
150 Clara	Bellsolà	B6	25	B6	25	10

• "Natural join": Variant of the "equi-join" without all the unnecessary attributes. We denote it using

*. The difference with the "equi-join" is that in the natural join schema, the second attribute of each comparison does not appear anymore in the resulting schema.

ADM-PERSONNEL(per-num, name, surname, module, num) 100 Joan Soler B6 25 150 Clara Bellsolà B6 25

•	OFFICE(m	odule	-dp, num-dp	, surface)
		B6	25	10
		B6	27	10
		B2	25	15
		B2	30	25

R = ADM-PERSONNEL[module*module-dp, num*num-dp]OFFICE

R(num-per,	name,	surname,	module,	num,	surface)
100	Joan	Soler	B6	25	10
150	Clara	Bellsolà	B6	25	10

Combination (join): implicit "Natural join"

- The **implicit "natural join"**: Variant of the "natural-join" where we do not specify the condition of the combination and therefore we assume (by deafult) that the combination condition corresponds to the one of a "natural join", where all the pairs of attributes with the same name on both relations are matched.
- T * S denotes the implicit "natural join" of T and S.

Sequences of operations of relational algebra

Example: Get the offices (module and number) from the modules that have an average surface bigger than 15.

MODULE-CN(module, a	vg-surface)	
B6	10	
B2	20	

OFFICE(module-dp	, num-dp	o, surface)
B6	25	10
B6	27	10
B2	25	15
B2	30	25

A =MODULE-CN(avg-surface >15)

B = A{module -> module-dp}

C = OFFICE * B

R = C[module-dp, num-dp]

- The **queries** of a relational DB may be expressed in terms of relation algebra **sequences of operations**.
- The sequences of operations allow us to define a relation that contains exactly what we want to query.