Problem Set #1

[To be discussed in class... not required!]

- 1. Write the following numbers in scientific notation:
 - a) 32000.0
 - b) 0.000451
 - c) 17.862
 - d) 437.2×10^6
- 2. Do the following calculations on your (scientific) pocket calculator:
 - a) $(1.7 \times 10^6) \times (1.38 \times 10^{-16})$
 - b) $\frac{28.0}{6.02 \times 10^{23}}$
 - c) $(3.4 \times 10^{-15})^3$
 - d) $4\pi(6.36 \times 10^6)^2$
 - e) $\frac{(6.67 \times 10^{-11})(0.5)(0.3)}{(3.0 \times 10^{-2})^2}$
- **3.** Unit conversion. Express:
 - a) A furlong (220 yards) in meters $\,$
 - b) A fortnight (2 weeks) in seconds
 - c) 65 $\frac{\text{mi}}{\text{hr}}$ in $\frac{\text{km}}{\text{hr}}$
 - d) 65 $\frac{\text{mi}}{\text{hr}}$ in $\frac{\text{m}}{\text{s}}$
- **4.** When Voyager 2 was at Neptune, it was roughly 4.3×10^{12} m from the Earth.
 - a) How many miles is this?
- b) How long did it take for its signals to reach us? (These signals travel at the speed of light, $2.998 \times 10^8 \frac{m}{s}$.)
- **5.** The planet Saturn has a mass of 5.69×10^{26} kg and a radius of 5.8×10^7 m. What is its (average) density? How does this compare with the density of water? (This indicates that Saturn is made of something other than rocks!)

$$1 \text{ mi} = 1.609 \text{ km}$$
 $1 \text{ in} = 2.54 \text{ cm}$ $1 \text{ kg} = 10^3 \text{ g}$ $1 \text{ km} = 10^3 \text{ m}$ $1 \text{ m} = 10^2 \text{ cm}$ $1 \text{ light} - \text{year} = 9.46 \times 10^{15} \text{ m}$ $1 \text{ hr} = 3600 \text{ s}$ $1 \text{ yr} = 365.25 \text{ day}$