Espaces Vectoriels de Dimension finie Dépendance linéaire dans \mathbb{K}^n MPSI 2

1 Structure d'espace vectoriel de \mathbb{K}^n

Définition 1.0.1

Soit n un entier non nul.

$$\mathbb{K}^n = \{(x_1, \dots, x_n), \forall i \in [1, n], x_i \in \mathbb{K}\}\$$

Soient X et Y deux éléments de \mathbb{K}^n , soit λ un élément de \mathbb{K} .

On pose:

- $X + Y = (x_1 + y_1, \dots, x_n + y_n)$
- $\lambda \cdot X = (\lambda \times x_1, \dots, \lambda \times x_n)$

Propriété 1.0.1

 \mathbb{K}^n est un \mathbb{K}_{EV} .

Application de la définition et des axiomes.

2 Système linéaire d'équations

Définition 2.0.2

On dit que deux systèmes sont équivalents si ils ont le même ensemble de solutions.

Définition 2.0.3

On appelle opérations permises toute transformation sur les lignes telle que le système obtenu soit équivalent au système initial.