74HC4053; 74HCT4053

Triple 2-channel analog multiplexer/demultiplexer Rev. 04 — 9 May 2006 Product date

Product data sheet

General description 1.

The 74HC4053; 74HCT4053 is a high-speed Si-gate CMOS device and is pin compatible with the HEF4053B. It is specified in compliance with JEDEC standard no. 7A.

The 74HC4053; 74HCT4053 is triple 2-channel analog multiplexer/demultiplexer with a common enable input (\overline{E}) . Each multiplexer/demultiplexer has two independent inputs/outputs (nY0 and nY1), a common input/output (nZ) and three digital select inputs (Sn).

With E LOW, one of the two switches is selected (low-impedance ON-state) by S1 to S3. With E HIGH, all switches are in the high-impedance OFF-state, independent of S1 to S3.

V_{CC} and GND are the supply voltage pins for the digital control inputs (S1 to S3 and E). The V_{CC} to GND ranges are 2.0 V to 10.0 V for 74HC4053 and 4.5 V to 5.5 V for 74HCT4053. The analog inputs/outputs (nY0 and nY1, and nZ) can swing between V_{CC} as a positive limit and V_{EE} as a negative limit. $V_{CC} - V_{EE}$ may not exceed 10.0 V.

For operation as a digital multiplexer/demultiplexer, V_{EE} is connected to GND (typically ground).

Features 2.

- Low ON resistance:
 - 80 Ω (typical) at $V_{CC} V_{EE} = 4.5 \text{ V}$
 - 70 Ω (typical) at $V_{CC} V_{EE} = 6.0 \text{ V}$
 - 60 Ω (typical) at $V_{CC} V_{EE} = 9.0 \text{ V}$
- Logic level translation:
 - To enable 5 V logic to communicate with ±5 V analog signals
- Typical 'break before make' built in
- Complies with JEDEC standard no. 7A
- ESD protection:
 - HBM EIA/JESD22-A114-C exceeds 2000 V
 - MM EIA/JESD22-A115-A exceeds 200 V
- Multiple package options
- Specified from -40 °C to +85 °C and from -40 °C to +125 °C

3. Applications

- Analog multiplexing and demultiplexing
- Digital multiplexing and demultiplexing
- Signal gating

4. Quick reference data

Table 1: Quick reference data

 $V_{EE} = GND = 0 \ V; \ T_{amb} = 25 \ ^{\circ}C; \ t_r = t_f = 6 \ ns.$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
74HC405	53					
$t_{PZH}, \ t_{PZL}$	turn-ON time	C_L = 15 pF; R_L = 1 k Ω ; V_{CC} = 5 V				
	Ē to V _{os}		-	17	-	ns
	Sn to V _{os}		-	21	-	ns
t_{PHZ} , t_{PLZ}	turn-OFF time	C_L = 15 pF; R_L = 1 k Ω ; V_{CC} = 5 V				
	E to V _{os}		-	18	-	ns
	Sn to V _{os}		-	17	-	ns
Ci	input capacitance		-	3.5	-	pF
Cs	switch capacitance					
	independent I/O (nYn)		-	5	-	pF
	common I/O (nZ)		-	8	-	pF
C_{PD}	power dissipation capacitance	per switch; $V_I = GND$ to V_{CC}	<u>[1]</u> _	36	-	pF
74HCT40	053					
t _{PZH} , t _{PZL}	turn-ON time	C_L = 15 pF; R_L = 1 k Ω ; V_{CC} = 5 V				
	E to V _{os}		-	23	-	ns
	Sn to Vos		-	21	-	ns
t _{PHZ} , t _{PLZ}	turn-OFF time	C_L = 15 pF; R_L = 1 k Ω ; V_{CC} = 5 V				
	Ē to V₀s		-	20	-	ns
	Sn to Vos		-	19	-	ns
Ci	input capacitance		-	3.5	-	pF
Cs	switch capacitance					
	independent I/O (nYn)		-	5	-	pF
	common I/O(nZ)		-	8	-	pF
C _{PD}	power dissipation capacitance	per switch; $V_I = GND$ to $(V_{CC} - 1.5 V)$	[1] -	36	-	pF

^[1] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

 $P_D = C_{PD} \times V_{CC}{}^2 \times f_i + \sum \{(C_L + C_S) \times V_{CC}{}^2 \times f_o\}$ where:

 f_i = input frequency in MHz;

 f_o = output frequency in MHz;

 $\Sigma \{(C_L + C_S) \times V_{CC}^2 \times f_o\} = \text{sum of outputs};$

 C_S = maximum switch capacitance in pF;

 V_{CC} = supply voltage in V.

5. Ordering information

Table 2: Ordering information

Type number	Package							
	Temperature range	Name	Description	Version				
74HC4053								
74HC4053N	–40 °C to +125 °C	DIP16	plastic dual in-line package; 16 leads (300 mil); long body	SOT38-4				
74HC4053D	–40 °C to +125 °C	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1				
74HC4053DB	–40 °C to +125 °C	SSOP16	plastic shrink small outline package; 16 leads; body width 5.3 mm	SOT338-1				
74HC4053PW	–40 °C to +125 °C	TSSOP16	plastic thin shrink small outline package; 16 leads; body width 4.4 mm	SOT403-1				
74HC4053BQ	–40 °C to +125 °C	DHVQFN16	plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 16 terminals; body $2.5\times3.5\times0.85$ mm	SOT763-1				
74HCT4053								
74HCT4053N	–40 °C to +125 °C	DIP16	plastic dual in-line package; 16 leads (300 mil); long body	SOT38-4				
74HCT4053D	–40 °C to +125 °C	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1				
74HCT4053DB	–40 °C to +125 °C	SSOP16	plastic shrink small outline package; 16 leads; body width 5.3 mm	SOT338-1				
74HCT4053PW	–40 °C to +125 °C	TSSOP16	plastic thin shrink small outline package; 16 leads; body width 4.4 mm	SOT403-1				
74HCT4053BQ	–40 °C to +125 °C	DHVQFN16	plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 16 terminals; body $2.5\times3.5\times0.85$ mm	SOT763-1				

6. Functional diagram

74HC_HCT4053_4

7. Pinning information

7.1 Pinning

7.2 Pin description

Table 3: Pin description

Symbol	Pin	Description
2Y1	1	2 independent input/output 1
2Y0	2	2 independent input/output 0
3Y1	3	3 independent input/output 1
3Z	4	3 common input/output
3Y0	5	3 independent input/output 0
Ē	6	enable input (active LOW)
V _{EE}	7	negative supply voltage
GND	8	ground (0 V)
S3	9	select input 3
S2	10	select input 2
S1	11	select input 1
1Y0	12	1 independent input/output 0
1Y1	13	1 independent input/output 1
1Z	14	1 common input/output
2Z	15	2 common input/output
V _{CC}	16	supply voltage

8. Functional description

8.1 Function table

Table 4: Function table [1]

Control		Channel on
Ē	Sn	
L	L	nY0 to nZ
	Н	nY1 to nZ
Н	X	none

^[1] H = HIGH voltage level;

L = LOW voltage level;

X = don't care.

9. Limiting values

Table 5: Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to $V_{EE} = GND$ (ground = 0 V). [1]

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-0.5	+11.0	V
I _{IK}	input clamping current	$V_{I} < -0.5 \text{ V or } V_{I} > V_{CC} + 0.5 \text{ V}$	-	±20	mA
I _{SK}	switch clamping current	$V_S < -0.5 \text{ V or } V_S > V_{CC} + 0.5 \text{ V}$	-	±20	mA

74HC_HCT4053_4

 Table 5:
 Limiting values ...continued

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to $V_{EE} = GND$ (ground = 0 V). [1]

Symbol	Parameter	Conditions	Min	Max	Unit
Is	switch current	$-0.5 \text{ V} < \text{V}_{\text{S}} < \text{V}_{\text{CC}} + 0.5 \text{ V}$	-	±25	mA
I _{EE}	negative supply current		-	-20	mA
I _{CC}	quiescent supply current		-	50	mA
I_{GND}	ground current		-	-50	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to + } 125 ^{\circ}\text{C}$			
	DIP16 package		[2] _	750	mW
	SO16 package		[3]	500	mW
	SSOP16 package		[4] _	500	mW
	TSSOP16 package		[4] _	500	mW
	DHVQFN16 package		[5] _	500	mW
P _S	power dissipation per switch		-	100	mW

^[1] To avoid drawing V_{CC} current out of terminals nZ, when switch current flows in terminals nYn, the voltage drop across the bidirectional switch must not exceed 0.4 V. If the switch current flows into terminals nZ, no V_{CC} current will flow out of terminals nYn. In this case there is no limit for the voltage drop across the switch, but the voltages at nYn and nZ may not exceed V_{CC} or V_{EE}.

- [2] For DIP16 package: Ptot derates linearly with 12 mW/K above 70 °C.
- [3] For SO16 package: Ptot derates linearly with 8 mW/K above 70 °C.
- [4] For SSOP16 and TSSOP16 packages: P_{tot} derates linearly with 5.5 mW/K above 60 °C.
- [5] For DHVQFN16 packages: P_{tot} derates linearly with 4.5 mW/K above 60 °C.

10. Recommended operating conditions

Table 6: Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
74HC405	3					
ΔV_{CC}	supply voltage difference	see Figure 7				
	V _{CC} – GND		2.0	5.0	10.0	V
	V _{CC} – V _{EE}		2.0	5.0	10.0	V
VI	input voltage		GND	-	V _{CC}	V
Vs	switch voltage		V _{EE}	-	V _{CC}	V
T _{amb}	ambient temperature		-40	+25	+125	°C
t _r , t _f	input rise and fall times	$V_{CC} = 2.0 \text{ V}$	-	6.0	1000	ns
		V _{CC} = 4.5 V	-	6.0	500	ns
		$V_{CC} = 6.0 \text{ V}$	-	6.0	400	ns
		V _{CC} = 10.0 V	-	6.0	250	ns
74HCT40	53					
ΔV_{CC}	supply voltage difference	see Figure 7				
	V _{CC} – GND		4.5	5.0	5.5	V
	$V_{CC} - V_{EE}$		2.0	5.0	10.0	V

74HC_HCT4053_4

 Table 6:
 Recommended operating conditions ...continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VI	input voltage		GND	-	V_{CC}	V
Vs	switch voltage		V_{EE}	-	V_{CC}	V
T _{amb}	ambient temperature		-40	+25	+125	°C
t _r , t _f	input rise and fall times	$V_{CC} = 4.5 \text{ V}$	-	6.0	500	ns

11. Static characteristics

Table 7: R_{ON} resistance per switch 74HC4053 and 74HCT4053

For test circuit see Figure 8.

 V_{is} is the input voltage at a nYn or nZ terminal, whichever is assigned as an input.

 V_{os} is the output voltage at a nYn or nZ terminal, whichever is assigned as an output.

74HC4053 supply voltages: V_{CC} – GND or V_{CC} – V_{EE} = 2.0 V, 4.5 V, 6.0 V and 9.0 V.

74HCT4053 supply voltages: V_{CC} – GND = 4.5 V or 5.5 V; V_{CC} – V_{EE} = 2.0 V, 4.5 V, 6.0 V and 9.0 V.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit			
$T_{amb} = 25$	T _{amb} = 25 °C								
R _{ON(peak)}	ON resistance (peak)	$V_{is} = V_{CC}$ to V_{EE} ; $V_I = V_{IH}$ or V_{IL}							
		$V_{CC} = 2.0 \text{ V}; V_{EE} = 0 \text{ V}; I_{S} = 100 \mu\text{A}$	<u>[1]</u> _	-	-	Ω			
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}; I_{S} = 1000 \mu\text{A}$	-	100	180	Ω			
		$V_{CC} = 6.0 \text{ V}; V_{EE} = 0 \text{ V}; I_{S} = 1000 \mu\text{A}$	-	90	160	Ω			
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}; I_{S} = 1000 \mu\text{A}$	-	70	130	Ω			

 V_{is} is the input voltage at a nYn or nZ terminal, whichever is assigned as an input. V_{os} is the output voltage at a nYn or nZ terminal, whichever is assigned as an output. 74HC4053 supply voltages: V_{CC} – GND or V_{CC} – V_{EE} = 2.0 V, 4.5 V, 6.0 V and 9.0 V. 74HCT4053 supply voltages: V_{CC} – GND = 4.5 V or 5.5 V; V_{CC} – V_{EE} = 2.0 V, 4.5 V, 6.0 V and 9.0 V.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _{ON(rail)}	ON resistance (rail)	$V_{is} = V_{EE}$; $V_I = V_{IH}$ or V_{IL}				
		V_{CC} = 2.0 V; V_{EE} = 0 V; I_{S} = 100 μA	[1] -	150	-	Ω
		V_{CC} = 4.5 V; V_{EE} = 0 V; I_{S} = 1000 μA	-	80	140	Ω
		V_{CC} = 6.0 V; V_{EE} = 0 V; I_{S} = 1000 μA	-	70	120	Ω
		V_{CC} = 4.5 V; V_{EE} = -4.5 V; I_{S} = 1000 μA	-	60	105	Ω
		$V_{is} = V_{CC}$; $V_I = V_{IH}$ or V_{IL}				
		V_{CC} = 2.0 V; V_{EE} = 0 V; I_{S} = 100 μA	[1] -	150	-	Ω
		V_{CC} = 4.5 V; V_{EE} = 0 V; I_{S} = 1000 μA	-	90	160	Ω
		V_{CC} = 6.0 V; V_{EE} = 0 V; I_{S} = 1000 μA	-	80	140	Ω
		V_{CC} = 4.5 V; V_{EE} = -4.5 V; I_{S} = 1000 μA	-	65	120	Ω
ΔR_{ON}	ON resistance	$V_{is} = V_{CC}$ to V_{EE} ; $V_I = V_{IH}$ or V_{IL}				
	mismatch between	$V_{CC} = 2.0 \text{ V}; V_{EE} = 0 \text{ V}$	[1] -	-	-	Ω
	channels	$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}$	-	9	-	Ω
		$V_{CC} = 6.0 \text{ V}; V_{EE} = 0 \text{ V}$	-	8	-	Ω
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	6	-	Ω
T _{amb} = -4	0 °C to +85 °C					
R _{ON(peak)}	ON resistance (peak)	$V_{is} = V_{CC}$ to V_{EE} ; $V_I = V_{IH}$ or V_{IL}				
		V_{CC} = 2.0 V; V_{EE} = 0 V; I_{S} = 100 μA	[1] -	-	-	Ω
		V_{CC} = 4.5 V; V_{EE} = 0 V; I_{S} = 1000 μA	-	-	225	Ω
		V_{CC} = 6.0 V; V_{EE} = 0 V; I_{S} = 1000 μA	-	-	200	Ω
		V_{CC} = 4.5 V; V_{EE} = -4.5 V; I_{S} = 1000 μA	-	-	165	Ω
R _{ON(rail)}	ON resistance (rail)	$V_{is} = V_{EE}$; $V_I = V_{IH}$ or V_{IL}				
		V_{CC} = 2.0 V; V_{EE} = 0 V; I_{S} = 100 μA	[1] -	-	-	Ω
		V_{CC} = 4.5 V; V_{EE} = 0 V; I_{S} = 1000 μA	-	-	175	Ω
		V_{CC} = 6.0 V; V_{EE} = 0 V; I_{S} = 1000 μA	-	-	150	Ω
		V_{CC} = 4.5 V; V_{EE} = -4.5 V; I_{S} = 1000 μA	-	-	130	Ω
		$V_{is} = V_{CC}$; $V_I = V_{IH}$ or V_{IL}				
		V_{CC} = 2.0 V; V_{EE} = 0 V; I_{S} = 100 μA	<u>[1]</u> -	-	-	Ω
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}; I_S = 1000 \mu\text{A}$	-	-	200	Ω
		V_{CC} = 6.0 V; V_{EE} = 0 V; I_{S} = 1000 μA	-	-	175	Ω
		V_{CC} = 4.5 V; V_{EE} = -4.5 V; I_{S} = 1000 μA	-	-	150	Ω
T _{amb} = -4	0 °C to +125 °C					
R _{ON(peak)}	ON resistance (peak)	$V_{is} = V_{CC}$ to V_{EE} ; $V_I = V_{IH}$ or V_{IL}				
		V_{CC} = 2.0 V; V_{EE} = 0 V; I_{S} = 100 μA	[1] -	-	-	Ω
		V_{CC} = 4.5 V; V_{EE} = 0 V; I_{S} = 1000 μA	-	-	270	Ω
		V_{CC} = 6.0 V; V_{EE} = 0 V; I_{S} = 1000 μA	-	-	240	Ω
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}; I_{S} = 1000 \mu\text{A}$	-	-	195	Ω

74HC_HCT4053_4

 V_{is} is the input voltage at a nYn or nZ terminal, whichever is assigned as an input. V_{os} is the output voltage at a nYn or nZ terminal, whichever is assigned as an output. 74HC4053 supply voltages: V_{CC} – GND or V_{CC} – V_{EE} = 2.0 V, 4.5 V, 6.0 V and 9.0 V. 74HCT4053 supply voltages: V_{CC} – GND = 4.5 V or 5.5 V; V_{CC} – V_{EE} = 2.0 V, 4.5 V, 6.0 V and 9.0 V.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _{ON(rail)}	ON resistance (rail)	$V_{is} = V_{EE}$; $V_I = V_{IH}$ or V_{IL}				
		V_{CC} = 2.0 V; V_{EE} = 0 V; I_{S} = 100 μA	[1] _	-	-	Ω
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}; I_{S} = 1000 \mu\text{A}$	-	-	210	Ω
		V_{CC} = 6.0 V; V_{EE} = 0 V; I_{S} = 1000 μA	-	-	180	Ω
		V_{CC} = 4.5 V; V_{EE} = –4.5 V; I_{S} = 1000 μA	-	-	160	Ω
		$V_{is} = V_{CC}$; $V_I = V_{IH}$ or V_{IL}				
		V_{CC} = 2.0 V; V_{EE} = 0 V; I_{S} = 100 μA	[1] -	-	-	Ω
		V_{CC} = 4.5 V; V_{EE} = 0 V; I_{S} = 1000 μA	-	-	240	Ω
		V_{CC} = 6.0 V; V_{EE} = 0 V; I_{S} = 1000 μA	-	-	210	Ω
		V_{CC} = 4.5 V; V_{EE} = -4.5 V; I_{S} = 1000 μA	-	-	180	Ω

[1] At supply voltages ($V_{CC} - V_{EE}$) approaching 2.0 V the analog switch ON resistance becomes extremely non-linear. Therefore, it is recommended that these devices be used to transmit digital signals only, when using these supply voltages.

 $V_{is} = 0 V to (V_{CC} - V_{EE}).$

- (1) $V_{CC} = 4.5 \text{ V}$
- (2) $V_{CC} = 6 V$
- (3) $V_{CC} = 9 V$

Fig 9. Typical R_{ON} as a function of input voltage V_{is}

At recommended operating conditions; voltages are referenced to GND (ground = 0 V). V_{is} is the input voltage at a nYn or nZ terminal, whichever is assigned as an input. V_{os} is the output voltage at a nYn or nZ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = 25	°C					
V _{IH}	HIGH-state input voltage	V _{CC} = 2.0 V	1.5	1.2	-	V
		V _{CC} = 4.5 V	3.15	2.4	-	V
		V _{CC} = 6.0 V	4.2	3.2	-	V
		V _{CC} = 9.0 V	6.3	4.7	-	V
V _{IL}	LOW-state input voltage	V _{CC} = 2.0 V	-	8.0	0.5	V
		V _{CC} = 4.5 V	-	2.1	1.35	V
		V _{CC} = 6.0 V	-	2.8	1.8	V
		V _{CC} = 9.0 V	-	4.3	2.7	V
I _{LI}	input leakage current	$V_I = V_{CC}$ or GND; $V_{EE} = 0 \text{ V}$				
		V _{CC} = 6.0 V	-	-	±0.1	μΑ
		V _{CC} = 10.0 V	-	-	±0.2	μΑ
I _{S(OFF)}	OFF-state leakage current	V_{CC} = 10.0 V; V_I = V_{IH} or V_{IL} ; V_{EE} = 0 V; $ V_S $ = V_{CC} - V_{EE} ; see Figure 10				
		per channel	-	-	±0.1	μΑ
		all channels	-	-	±0.1	μΑ
I _{S(ON)}	ON-state leakage current	V_{CC} = 10.0 V; V_I = V_{IH} or V_{IL} ; V_{EE} = 0 V; $ V_S $ = V_{CC} - V_{EE} ; see Figure 11	-	-	±0.1	μΑ
I _{CC}	quiescent supply current	$V_{is} = V_{EE}$ or V_{CC} ; $V_{os} = V_{CC}$ or V_{EE} ; $V_{I} = V_{CC}$ or GND; $V_{EE} = 0$ V				
		V _{CC} = 6.0 V	-	-	8.0	μΑ
		V _{CC} = 10.0 V	-	-	16.0	μΑ
C _i	input capacitance		-	3.5	-	pF
Cs	switch capacitance					
	independent I/O (nYn)		-	5	-	pF
	common I/O (nZ)		-	8	-	pF
T _{amb} = -4	0 °C to +85 °C					
V _{IH}	HIGH-state input voltage	V _{CC} = 2.0 V	1.5	-	-	V
		V _{CC} = 4.5 V	3.15	-	-	V
		V _{CC} = 6.0 V	4.2	-	-	V
		V _{CC} = 9.0 V	6.3	-	-	V
V _{IL}	LOW-state input voltage	V _{CC} = 2.0 V	-	-	0.5	V
		V _{CC} = 4.5 V	-	-	1.35	V
		V _{CC} = 6.0 V	-	-	1.8	V
		V _{CC} = 9.0 V	-	-	2.7	V
I _{LI}	input leakage current	$V_I = V_{CC}$ or GND; $V_{EE} = 0 \text{ V}$				
	-	V _{CC} = 6.0 V	-	-	±1.0	μΑ
		V _{CC} = 10.0 V	-	-	±2.0	μA

74HC_HCT4053_4

At recommended operating conditions; voltages are referenced to GND (ground = 0 V). V_{is} is the input voltage at a nYn or nZ terminal, whichever is assigned as an input. V_{os} is the output voltage at a nYn or nZ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{S(OFF)}	OFF-state leakage current	$V_{CC} = 10.0 \text{ V}; V_I = V_{IH} \text{ or } V_{IL}; V_{EE} = 0 \text{ V}; $ $ V_S = V_{CC} - V_{EE}; \text{ see } \frac{\text{Figure } 10}{\text{Figure } 10}$				
		per channel	-	-	±1.0	μΑ
		all channels	-	-	±1.0	μΑ
I _{S(ON)}	ON-state leakage current	$V_{CC} = 10.0 \text{ V}; V_{I} = V_{IH} \text{ or } V_{IL}; V_{EE} = 0 \text{ V};$ $ V_{S} = V_{CC} - V_{EE}; \text{ see } \frac{\text{Figure } 11}{\text{Figure } 11}$	-	-	±1.0	μΑ
I _{CC}	quiescent supply current	$V_{is} = V_{EE}$ or V_{CC} ; $V_{os} = V_{CC}$ or V_{EE} ; $V_{I} = V_{CC}$ or GND; $V_{EE} = 0$ V				
		V _{CC} = 6.0 V	-	-	80.0	μΑ
		V _{CC} = 10.0 V	-	-	160.0	μΑ
T _{amb} = -4	0 °C to +125 °C					
V _{IH}	HIGH-state input voltage	V _{CC} = 2.0 V	1.5	-	-	V
		V _{CC} = 4.5 V	3.15	-	-	V
		V _{CC} = 6.0 V	4.2	-	-	V
		V _{CC} = 9.0 V	6.3	-	-	V
V _{IL}	_	V _{CC} = 2.0 V	-	-	0.5	V
		V _{CC} = 4.5 V	-	-	1.35	V
		V _{CC} = 6.0 V	-	-	1.8	V
		V _{CC} = 9.0 V	-	-	2.7	V
ILI	input leakage current	$V_I = V_{CC}$ or GND; $V_{EE} = 0 \text{ V}$				
		V _{CC} = 6.0 V	-	-	±1.0	μΑ
		V _{CC} = 10.0 V	-	-	±2.0	μΑ
I _{S(OFF)}	OFF-state leakage current	$V_{CC} = 10.0 \text{ V}; V_{I} = V_{IH} \text{ or } V_{IL}; V_{EE} = 0 \text{ V};$ $ V_{S} = V_{CC} - V_{EE}; \text{ see } \frac{\text{Figure } 10}{\text{Figure } 10}$				
		per channel	-	-	±1.0	μΑ
		all channels	-	-	±1.0	μΑ
I _{S(ON)}	ON-state leakage current	$V_{CC} = 10.0 \text{ V}; V_I = V_{IH} \text{ or } V_{IL}; V_{EE} = 0 \text{ V}; V_{SI} = V_{CC} - V_{EE}; \text{ see } \frac{\text{Figure } 11}{\text{Figure } 11}$	-	-	±1.0	μΑ
I _{CC}	quiescent supply current	$V_{is} = V_{EE} \text{ or } V_{CC}; V_{os} = V_{CC} \text{ or } V_{EE};$ $V_{I} = V_{CC} \text{ or GND}; V_{EE} = 0 \text{ V}$				
		V _{CC} = 6.0 V	-	-	160.0	μΑ
		V _{CC} = 10.0 V	-	-	320.0	μΑ

Table 9: Static characteristics 74HCT4053

Voltages are referenced to GND (ground = 0 V).

 V_{is} is the input voltage at a nYn or nZ terminal, whichever is assigned as an input.

 V_{os} is the output voltage at a nYn or nZ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$T_{amb} = 25$	°C					
V_{IH}	HIGH-state input voltage	V _{CC} = 4.5 V to 5.5 V	2.0	1.6	-	μΑ
V_{IL}	LOW-state input voltage	V _{CC} = 4.5 V to 5.5 V	-	1.2	0.8	μΑ

74HC_HCT4053_4

Voltages are referenced to GND (ground = 0 V).

 V_{is} is the input voltage at a nYn or nZ terminal, whichever is assigned as an input.

 V_{os} is the output voltage at a nYn or nZ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
ILI	input leakage current	$V_{CC} = 5.5 \text{ V}; V_{EE} = 0 \text{ V}; V_{I} = V_{CC} \text{ or GND}$	-	-	±0.1	μΑ
I _{S(OFF)}	OFF-state leakage current	$V_{CC} = 10.0 \text{ V}; V_I = V_{IH} \text{ or } V_{IL}; V_{EE} = 0 \text{ V};$ $ V_S = V_{CC} - V_{EE}; \text{ see } \frac{\text{Figure } 10}{\text{Figure } 10}$				
		per channel	-	-	±0.1	μΑ
		all channels	-	-	±0.1	μΑ
I _{S(ON)}	ON-state leakage current	$V_{CC} = 10.0 \text{ V}; V_I = V_{IH} \text{ or } V_{IL}; V_{EE} = 0 \text{ V};$ $ V_S = V_{CC} - V_{EE}; \text{ see } \frac{\text{Figure } 11}{\text{Figure } 11}$	-	-	±0.1	μΑ
I _{CC}	quiescent supply current	$V_I = V_{CC}$ or GND; $V_{is} = V_{EE}$ or V_{CC} ; $V_{os} = V_{CC}$ or V_{EE}				
		V _{CC} = 5.5 V; V _{EE} = 0 V	-	-	8.0	μΑ
		$V_{CC} = 5.0 \text{ V}; V_{EE} = -5.0 \text{ V}$	-	-	16.0	μΑ
ΔI_{CC}	additional quiescent supply current	per input pin; V_{CC} = 4.5 V to 5.5 V; V_{EE} = 0 V; V_{I} = V_{CC} - 2.1 V; other inputs at V_{CC} or GND	-	50	180	μΑ
Ci	input capacitance		-	3.5	-	pF
Cs	switch capacitance					
	independent I/O (nYn)		-	5	-	pF
	common I/O (nZ)		-	8	-	pF
$T_{amb} = -4$	0 °C to +85 °C					
V _{IH}	HIGH-state input voltage	V _{CC} = 4.5 V to 5.5 V	2.0	-	-	μΑ
V_{IL}	LOW-state input voltage	V _{CC} = 4.5 V to 5.5 V	-	-	8.0	μΑ
ILI	input leakage current	V_{CC} = 5.5 V; V_{EE} = 0 V; V_{I} = V_{CC} or GND	-	-	±1.0	μΑ
I _{S(OFF)}	OFF-state leakage current	$V_{CC} = 10.0 \text{ V}; V_I = V_{IH} \text{ or } V_{IL}; V_{EE} = 0 \text{ V};$ $ V_S = V_{CC} - V_{EE}; \text{ see } \frac{\text{Figure } 10}{\text{Figure } 10}$				
		per channel	-	-	±1.0	μΑ
		all channels	-	-	±1.0	μΑ
I _{S(ON)}	ON-state leakage current	$V_{CC} = 10.0 \text{ V}; V_I = V_{IH} \text{ or } V_{IL}; V_{EE} = 0 \text{ V};$ $ V_S = V_{CC} - V_{EE}; \text{ see } \frac{\text{Figure } 11}{\text{Figure } 11}$	-	-	±1.0	μΑ
I _{CC}	quiescent supply current	$V_I = V_{CC}$ or GND; $V_{is} = V_{EE}$ or V_{CC} ; $V_{os} = V_{CC}$ or V_{EE}				
		V _{CC} = 5.5 V; V _{EE} = 0 V	-	-	80.0	μΑ
		$V_{CC} = 5.0 \text{ V}; V_{EE} = -5.0 \text{ V}$	-	-	160.0	μΑ
ΔI_{CC}	additional quiescent supply current	per input pin; V_{CC} = 4.5 V to 5.5 V; V_{EE} = 0 V; V_{I} = V_{CC} - 2.1 V; other inputs at V_{CC} or GND	-	-	225	μА
$T_{amb} = -4$	0 °C to +125 °C					
V_{IH}	HIGH-state input voltage	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	2.0	-	-	μΑ
V_{IL}	LOW-state input voltage	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	-	-	8.0	μΑ
I _{LI}	input leakage current	V_{CC} = 5.5 V; V_{EE} = 0 V; V_{I} = V_{CC} or GND	-	-	±1.0	μΑ

Voltages are referenced to GND (ground = 0 V).

 V_{is} is the input voltage at a nYn or nZ terminal, whichever is assigned as an input.

 V_{os} is the output voltage at a nYn or nZ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{S(OFF)}	OFF-state leakage current	$V_{CC} = 10.0 \text{ V}; V_I = V_{IH} \text{ or } V_{IL}; V_{EE} = 0 \text{ V};$ $ V_S = V_{CC} - V_{EE}; \text{ see } \frac{\text{Figure } 10}{\text{Figure } 10}$				
		per channel	-	-	±1.0	μΑ
		all channels	-	-	±1.0	μΑ
I _{S(ON)}	ON-state leakage current	$V_{CC} = 10.0 \text{ V}; V_I = V_{IH} \text{ or } V_{IL}; V_{EE} = 0 \text{ V};$ $ V_S = V_{CC} - V_{EE}; \text{ see } \frac{\text{Figure } 11}{\text{Figure } 11}$	-	-	±1.0	μΑ
I _{CC}	quiescent supply current	$V_I = V_{CC}$ or GND; $V_{is} = V_{EE}$ or V_{CC} ; $V_{os} = V_{CC}$ or V_{EE}				
		V _{CC} = 5.5 V; V _{EE} = 0 V	-	-	160.0	μΑ
		$V_{CC} = 5.0 \text{ V}; V_{EE} = -5.0 \text{ V}$	-	-	320.0	μΑ
ΔI_{CC}	additional quiescent supply current	per input pin; V_{CC} = 4.5 V to 5.5 V; V_{EE} = 0 V; V_{I} = V_{CC} - 2.1 V; other inputs at V_{CC} or GND	-	-	245	μΑ

Fig 10. Test circuit for measuring OFF-state leakage

Fig 11. Test circuit for measuring ON-state leakage current

12. Dynamic characteristics

Table 10: Dynamic characteristics type 74HC4053

Voltages are referenced to GND (ground = 0 V); $t_r = t_f = 6$ ns; $C_L = 50$ pF unless otherwise specified; for test circuit see Figure 14.

 V_{is} is the input voltage at a nYn or nZ terminal, whichever is assigned as an input.

 V_{os} is the output voltage at a nYn or nZ terminal, whichever is assigned as an output.

Symbo	ol Parameter	Conditions	Min	Тур	Max	Unit	
T _{amb} =	T _{amb} = 25 °C						
t _{PHL} ,	propagation delay V _{is} to V _{os}	$R_L = \infty \Omega$; see Figure 12					
t _{PLH}	ı	V _{CC} = 2.0 V; V _{EE} = 0 V	-	15	60	ns	
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	5	12	ns	
		$V_{CC} = 6.0 \text{ V}; V_{EE} = 0 \text{ V}$	-	4	10	ns	
		$V_{CC} = 4.5 \text{ V}; V_{FF} = -4.5 \text{ V}$	-	4	8	ns	

74HC_HCT4053_4

 $\overline{V_{is}}$ is the input voltage at a nYn or nZ terminal, whichever is assigned as an input. V_{os} is the output voltage at a nYn or nZ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{PZH} ,	turn-ON time	$R_L = 1 \text{ k}\Omega$; see Figure 13				
t_{PZL}	Ē to V₀s	$V_{CC} = 2.0 \text{ V}; V_{EE} = 0 \text{ V}$	-	60	220	ns
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	20	44	ns
		$V_{CC} = 6.0 \text{ V}; V_{EE} = 0 \text{ V}$	-	16	37	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	15	31	ns
		$V_{CC} = 5 \text{ V}; V_{EE} = 0 \text{ V}; C_L = 15 \text{ pF}$	-	17	-	ns
	Sn to V _{os}	$V_{CC} = 2.0 \text{ V}; V_{EE} = 0 \text{ V}$	-	75	220	ns
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	25	44	ns
		V _{CC} = 6.0 V; V _{EE} = 0 V	-	20	37	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	15	31	ns
		$V_{CC} = 5 \text{ V}; V_{EE} = 0 \text{ V}; C_L = 15 \text{ pF}$	-	21	-	ns
t _{PHZ} ,	turn-OFF time	$R_L = 1 \text{ k}\Omega$; see Figure 13				
t_{PLZ}	Ē to V₀s	$V_{CC} = 2.0 \text{ V}; V_{EE} = 0 \text{ V}$	-	63	210	ns
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	21	42	ns
		$V_{CC} = 6.0 \text{ V}; V_{EE} = 0 \text{ V}$	-	17	36	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	15	29	ns
		V _{CC} = 5 V; C _L = 15 pF	-	18	-	ns
	Sn to V _{os}	$V_{CC} = 2.0 \text{ V}; V_{EE} = 0 \text{ V}$	-	60	210	ns
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	20	42	ns
		V _{CC} = 6.0 V; V _{EE} = 0 V	-	16	36	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	15	29	ns
		V _{CC} = 5 V; C _L = 15 pF	-	17	-	ns
C_{PD}	power dissipation capacitance	per switch; $V_I = GND$ to V_{CC}	<u>[1]</u> -	36	-	pF
T _{amb} = -	40 °C to +85 °C					
t _{PHL} ,	propagation delay V _{is} to V _{os}	$R_L = \infty \Omega$; see Figure 12				
t _{PLH}		$V_{CC} = 2.0 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	75	ns
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	-	15	ns
		V _{CC} = 6.0 V; V _{EE} = 0 V	-	-	13	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	-	10	ns

 $\overline{V_{is}}$ is the input voltage at a nYn or nZ terminal, whichever is assigned as an input.

 V_{os} is the output voltage at a nYn or nZ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
PZH,	turn-ON time	$R_L = 1 \text{ k}\Omega$; see Figure 13				
PZL	Ē to V₀s	$V_{CC} = 2.0 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	275	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	55	ns
		$V_{CC} = 6.0 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	47	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	-	39	ns
	Sn to V _{os}	$V_{CC} = 2.0 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	275	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	55	ns
		$V_{CC} = 6.0 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	47	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	-	39	ns
PHZ,	turn-OFF time	$R_L = 1 \text{ k}\Omega$; see Figure 13				
t _{PLZ}	Ē to V₀s	$V_{CC} = 2.0 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	265	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	53	ns
		$V_{CC} = 6.0 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	45	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	-	36	ns
	Sn to V _{os}	$V_{CC} = 2.0 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	265	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	53	ns
		$V_{CC} = 6.0 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	45	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	-	36	ns
amb = -	40 °C to +125 °C					
PHL,	propagation delay V _{is} to V _{os}	$R_L = \infty \Omega$; see Figure 12				
PLH		$V_{CC} = 2.0 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	90	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	18	ns
		$V_{CC} = 6.0 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	15	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	-	12	ns
PZH,	turn-ON time	$R_L = 1 \text{ k}\Omega$; see Figure 13				
PZL	Ē to V₀s	$V_{CC} = 2.0 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	330	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	66	ns
		$V_{CC} = 6.0 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	56	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	-	47	ns
	Sn to V _{os}	$V_{CC} = 2.0 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	330	ns
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	-	66	ns
		V _{CC} = 6.0 V; V _{EE} = 0 V	-	-	56	ns

Product data sheet

 $\overline{V_{is}}$ is the input voltage at a nYn or nZ terminal, whichever is assigned as an input.

 V_{os} is the output voltage at a nYn or nZ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{PHZ} , t _{PLZ}	turn-OFF time	$R_L = 1 \text{ k}\Omega; \text{ see } \frac{\text{Figure } 13}{\text{Figure } 13}$				
	Ē to V₀s	$V_{CC} = 2.0 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	315	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	63	ns
		$V_{CC} = 6.0 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	54	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	-	44	ns
	Sn to V _{os}	$V_{CC} = 2.0 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	315	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	63	ns
		$V_{CC} = 6.0 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	54	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	-	44	ns

[1] C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum \{(C_L + C_S) \times V_{CC}^2 \times f_o\} \text{ where: }$

 f_i = input frequency in MHz;

f_o = output frequency in MHz;

 $\Sigma \{(C_L + C_S) \times V_{CC}^2 \times f_o\} = \text{sum of outputs};$

C_L = output load capacitance in pF;

C_S = maximum switch capacitance in pF;

 V_{CC} = supply voltage in V.

Table 11: Dynamic characteristics type 74HCT4053

Voltages are referenced to GND (ground = 0 V); $t_r = t_f = 6$ ns; $C_L = 50$ pF unless otherwise specified; for test circuit see Figure 14.

 $\overline{V_{is}}$ is the input voltage at a nYn or nZ terminal, whichever is assigned as an input.

 V_{os} is the output voltage at a nYn or nZ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$T_{amb} = 2$	5 °C					
t _{PHL} ,	propagation delay V_{is} to V_{os}	V_{CC} = 4.5 V; R_L = $\infty \Omega$; see Figure 12				
t _{PLH}		V _{EE} = 0 V	-	5	12	ns
		V _{EE} = -4.5 V	-	4	8	ns
t _{PZH} ,	turn-ON time	$R_L = 1 \text{ k}\Omega$; see Figure 13				
t_{PZL}	Ē to V₀s	$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}$	-	27	48	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	16	34	ns
		V _{CC} = 5 V; V _{EE} = 0 V; C _L = 15 pF	-	23	-	ns
	Sn to Vos	$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}$	-	25	48	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	16	34	ns
		V _{CC} = 5 V; V _{EE} = 0 V; C _L = 15 pF	-	21	-	ns

 $\overline{V_{is}}$ is the input voltage at a nYn or nZ terminal, whichever is assigned as an input. V_{as} is the output voltage at a nYn or nZ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{PHZ} ,	turn-OFF time	$R_L = 1 \text{ k}\Omega$; see Figure 13				
t_{PLZ}	Ē to V₀s	$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}$	-	24	44	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	15	31	ns
		V _{CC} = 5 V; V _{EE} = 0 V; C _L = 15 pF	-	20	-	ns
	Sn to V _{os}	$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}$	-	22	44	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	15	31	ns
		V _{CC} = 5 V; V _{EE} = 0 V; C _L = 15 pF	-	19	-	ns
C_{PD}	power dissipation capacitance	per switch; $V_I = GND$ to $(V_{CC} - 1.5 V)$	[1] -	36	-	pF
T _{amb} = -	40 °C to +85 °C					
t _{PHL} ,	propagation delay V_{is} to V_{os}	V_{CC} = 4.5 V; R_L = $\infty \Omega$; see Figure 12				
t _{PLH}		V _{EE} = 0 V	-	-	15	ns
		V _{EE} = -4.5 V	-	-	10	ns
t _{PZH} ,	turn-ON time	$V_{CC} = 4.5 \text{ V}; R_L = 1 \text{ k}\Omega; \text{ see } \frac{\text{Figure } 13}{\text{ Figure } 13}$				
t _{PZL}	Ē to V₀s	V _{EE} = 0 V	-	-	60	ns
		V _{EE} = -4.5 V	-	-	43	ns
	Sn to V _{os}	V _{EE} = 0 V	-	-	60	ns
		V _{EE} = -4.5 V	-	-	43	ns
t _{PHZ} ,	turn-OFF time	$V_{CC} = 4.5 \text{ V}; R_L = 1 \text{ k}\Omega; \text{ see } \frac{\text{Figure } 13}{\text{ Figure } 13}$				
t_{PLZ}	Ē to V₀s	V _{EE} = 0 V	-	-	55	ns
		V _{EE} = -4.5 V	-	-	39	ns
	Sn to V _{os}	V _{EE} = 0 V	-	-	55	ns
		V _{EE} = -4.5 V	-	-	39	ns
T _{amb} = -	40 °C to +125 °C					
t _{PHL} ,	propagation delay V _{is} to V _{os}	V_{CC} = 4.5 V; R_L = $\infty \Omega$; see Figure 12				
t _{PLH}		$V_{EE} = 0 V$	-	-	18	ns
		$V_{EE} = -4.5 \text{ V}$	-	-	12	ns
t _{PZH} ,	turn-ON time	$V_{CC} = 4.5 \text{ V}; R_L = 1 \text{ k}\Omega; \text{ see } \frac{\text{Figure } 13}{\text{ Figure } 13}$				
t _{PZL}	\overline{E} to V_{os}	V _{EE} = 0 V	-	-	72	ns
		V _{EE} = -4.5 V	-	-	51	ns
	Sn to Vos	V _{EE} = 0 V	-	-	72	ns
		V _{EE} = -4.5 V	-	-	51	ns

 $\overline{V_{is}}$ is the input voltage at a nYn or nZ terminal, whichever is assigned as an input.

 V_{os} is the output voltage at a nYn or nZ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{PHZ} , t _{PLZ}	turn-OFF time	$V_{CC} = 4.5 \text{ V}; R_L = 1 \text{ k}\Omega; \text{ see } \frac{\text{Figure } 13}{\text{Figure } 13}$				
	\overline{E} to V_{os}	V _{EE} = 0 V	-	-	66	ns
		V _{EE} = -4.5 V	-	-	47	ns
	Sn to V _{os}	V _{EE} = 0 V	-	-	66	ns
		V _{EE} = -4.5 V	-	-	47	ns

[1] C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum \{(C_L + C_S) \times V_{CC}^2 \times f_o\} \text{ where: }$

 f_i = input frequency in MHz;

f_o = output frequency in MHz;

 $\Sigma \{(C_L + C_S) \times V_{CC}^2 \times f_0\} = \text{sum of outputs};$

C_L = output load capacitance in pF;

C_S = maximum switch capacitance in pF;

V_{CC} = supply voltage in V.

13. Waveforms

Table 12: Measurement points

Туре	Input	
	V _M	
74HC4053	0.5V _{CC}	
74HCT4053	1.3 V	

R_L = Load resistor.

S1 = Test selection switch.

Fig 14. Load circuitry for switching times

Table 13: Test data

Test	Input				Load	Load				
	VI	Vis	t _r , t _f		C _L	R _L				
			at f _{max}	other						
t _{PHL} , t _{PLH}	<u>[1]</u>	pulse	< 2 ns	6 ns	15 pF, 50 pF	1 kΩ	open			
t_{PZH},t_{PHZ}	<u>[1]</u>	V_{CC}	< 2 ns	6 ns	15 pF, 50 pF	1 kΩ	V_{EE}			
t_{PZL},t_{PLZ}	<u>[1]</u>	V_{EE}	< 2 ns	6 ns	15 pF, 50 pF	1 kΩ	V_{CC}			

[1] V_I values:

a) For 74HC4053: $V_1 = V_{CC}$.

b) For 74HCT4053: $V_1 = 3 \text{ V}$.

14. Additional dynamic characteristics

Table 14: Additional dynamic characteristics 74HC4053 and 74HCT4053

 $GND = 0 \ V; \ T_{amb} = 25 \ ^{\circ}C.$

 V_{is} is the input voltage at an nYn or nZ terminal, whichever is assigned as an input. V_{os} is the output voltage at an nYn or nZ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
d _{sin}	sine wave distortion	$R_L = 10 \text{ k}\Omega$; $C_L = 50 \text{ pF}$; see Figure 15				
		f _i = 1 kHz				
		$V_{CC} = 2.25 \text{ V}; V_{EE} = -2.25 \text{ V}; V_{is} = 4.0 \text{ V} \text{ (p-p)}$	-	0.04	-	%
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}; V_{is} = 8.0 \text{ V (p-p)}$	-	0.02	-	%
		f _i = 10 kHz				
		$V_{CC} = 2.25 \text{ V}; V_{EE} = -2.25 \text{ V}; V_{is} = 4.0 \text{ V} \text{ (p-p)}$	-	0.12	-	%
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}; V_{is} = 8.0 \text{ V (p-p)}$	-	0.06	-	%
$\alpha_{(OFF)(ft)}$	OFF-state feed-through	$R_L = 600 \Omega$; $C_L = 50 pF$; $f_i = 1 MHz$; see Figure 16	[1]			
	attenuation	$V_{CC} = 2.25 \text{ V}; V_{EE} = -2.25 \text{ V}$	-	-50	-	dB
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	-50	-	dB
$V_{ct(sw-sw)}$	crosstalk between switches	R_L = 600 Ω ; C_L = 50 pF; f_i = 1 MHz; see Figure 17	[1]			
		$V_{CC} = 2.25 \text{ V}; V_{EE} = -2.25 \text{ V}$	-	-60	-	dB
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	-60	-	dB
$V_{ct(d-sw)}$	crosstalk between digital inputs and	V_{CC} = 4.5 V; R _L = 600 kΩ; C _L = 50 pF; f _i = 1 MHz; see Figure 18	[2]			
	switch	V _{EE} = 0 V	-	110	-	mV
		$V_{EE} = -4.5 \text{ V}$	-	220	-	mV
f _(-3dB)	–3 dB frequency	$R_L = 50 \Omega$; $C_L = 10 pF$; see Figure 19	[3]			
	response	$V_{CC} = 2.25 \text{ V}; V_{EE} = -2.25 \text{ V}$	-	160	-	MHz
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	170	-	MHz

- [1] Adjust input voltage V_{is} to 0 dBm level (0 dBm = 1 mW into 600 Ω).
- [2] Control input \overline{E} or Sn, with square-wave between V_{CC} and GND.
- [3] Adjust input voltage V_{is} to 0 dBm level at V_{os} for 1 MHz (0 dBm = 1 mW into 50 Ω).

74HC_HCT4053_4

a. Feed-through as function of the frequency

b. Test circuit

Fig 16. Typical switch OFF signal feed-through as a function of frequency

15. Package outline

DIP16: plastic dual in-line package; 16 leads (300 mil)

SOT38-4

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	b ₂	С	D ⁽¹⁾	E ⁽¹⁾	е	e ₁	L	ME	Мн	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.30	0.53 0.38	1.25 0.85	0.36 0.23	19.50 18.55	6.48 6.20	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	0.76
inches	0.17	0.02	0.13	0.068 0.051	0.021 0.015	0.049 0.033	0.014 0.009	0.77 0.73	0.26 0.24	0.1	0.3	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.03

Note

1. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.

OUTLINE		EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE
SOT38-4					95-01-14 03-02-13

Fig 20. Package outline SOT38-4 (DIP16)

74HC_HCT4053_4

SOT109-1

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT109-1	076E07	MS-012				99-12-27 03-02-19

Fig 21. Package outline SOT109-1 (SO16)

74HC_HCT4053_4

SOT338-1

ι	JNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
	mm	2	0.21 0.05	1.80 1.65	0.25	0.38 0.25	0.20 0.09	6.4 6.0	5.4 5.2	0.65	7.9 7.6	1.25	1.03 0.63	0.9 0.7	0.2	0.13	0.1	1.00 0.55	8° 0°

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE
SOT338-1		MO-150			99-12-27 03-02-19

Fig 22. Package outline SOT338-1 (SSOP16)

74HC_HCT4053_4

SOT403-1

 						-,												
UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	Q	v	w	у	z ⁽¹⁾	θ
mm	1.1	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	5.1 4.9	4.5 4.3	0.65	6.6 6.2	1	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.40 0.06	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT403-1		MO-153				99-12-27 03-02-18

Fig 23. Package outline SOT403-1 (TSSOP16)

74HC_HCT4053_4

DHVQFN16: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 16 terminals; body 2.5 x 3.5 x 0.85 mm SOT763-1

Fig 24. Package outline SOT763-1 (DHVQFN16)

74HC_HCT4053_4

16. Abbreviations

Table 15: Abbreviations

Acronym	Description
CMOS	Complementary Metal Oxide Semiconductor
НВМ	Human Body Model
ESD	ElectroStatic Discharge
MM	Machine Model
DUT	Device Under Test

17. Revision history

Table 16: Revision history

Document ID	Release date	Data sheet status	Change notice	Doc. number	Supersedes
74HC_HCT4053_4	20060509	Product data sheet	-	-	74HC_HCT4053_3
Modifications:		"Ordering information": s the package for types	· •	•	vrong order and
74HC_HCT4053_3	20060315	Product data sheet	-	-	74HC_HCT4053_ CNV_2
Modifications:		t of this data sheet has nation standard of Philip	•	• •	e new presentation
		e numbers 74HC4053B 'Ordering information", S			
74HC_HCT4053_CNV_2	19901201	Product specification	-	-	-

18. Data sheet status

Level	Data sheet status [1]	Product status [2] [3]	Definition
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

- [1] Please consult the most recently issued data sheet before initiating or completing a design
- [2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
- [3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

19. Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

20. Disclaimers

Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors

customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

21. Trademarks

Notice — All referenced brands, product names, service names and trademarks are the property of their respective owners.

22. Contact information

For additional information, please visit: http://www.semiconductors.philips.com
For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com

Philips Semiconductors

74HC4053; 74HCT4053

Triple 2-channel analog multiplexer/demultiplexer

23. Contents

1	General description	1
2	Features	1
3	Applications	2
4	Quick reference data	2
5	Ordering information	3
6	Functional diagram	4
7	Pinning information	5
7.1	Pinning	
7.2	Pin description	6
8	Functional description	
8.1	Function table	6
9	Limiting values	6
10	Recommended operating conditions	7
11	Static characteristics	8
12	Dynamic characteristics	4
13	Waveforms	9
14	Additional dynamic characteristics	22
15	Package outline	26
16	Abbreviations 3	31
17	Revision history 3	31
18	Data sheet status	32
19	Definitions 3	32
20	Disclaimers 3	32
21	Trademarks 3	32
22	Contact information 3	32

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Date of release: 9 May 2006 Document number: 74HC_HCT4053_4

