TD 3 – Modélisation des constantes

1 Booléens

Les booléens peuvent s'exprimer en λ -calcul pur par $TRUE \stackrel{\text{def}}{=} \lambda x. \lambda y. x$ et $FALSE \stackrel{\text{def}}{=} \lambda x. \lambda y. y$. Dans ce modèle, la conditionnelle qui est une fonction ternaire, s'exprime par $COND \stackrel{\text{def}}{=} \lambda c. \lambda v. \lambda f. c \ v \ f.$

- 1. Vérifier que le λ -terme COND se comporte de la bonne façon, c'est-à-dire que pour tout λ -terme E_1 et E_2 , COND TRUE E_1 E_2 se réduit en E_1 et COND FALSE E_1 E_2 se réduit en E_2 .
- 2. En utilisant ce modèle, donner pour chacune des opérations booléennes classique (le "ou", le "et" et le "non" logique) un λ -terme le plus simple possible qui exprime cette opération.

2 Entiers de Church

1. Le mathématicien Alonzo Church a imaginé une façon d'exprimer les entiers dans le λ -calcul pur. Dans ce modèle, 0 est représenté par $\lambda f.\lambda x.x$, 1 est représenté par $\lambda f.\lambda x.f$ x, 2 est représenté par $\lambda f.\lambda x.f$ (f(x)), etc. L'entier n est représenté par le λ -terme $\underline{n} \stackrel{\mathrm{def}}{=} \lambda f.\lambda x.\underbrace{f(f...(f(x)))}_{n \times n}$. Ce modèle permet d'exprimer les fonctions successeurs, addition, multi-

plication et puissance par les λ -termes suivants :

```
SUCC \stackrel{\text{def}}{=} \lambda n.\lambda f.\lambda x.f (n f x)
ADD \stackrel{\text{def}}{=} \lambda n.\lambda m.\lambda f.\lambda x.n f (m f x)
MULT \stackrel{\text{def}}{=} \lambda n.\lambda m.\lambda f.m (n f)
POW \stackrel{\text{def}}{=} \lambda n.\lambda m.m n
```

Tester ce modèle en effectuant les calculs suivants :

- (a) Successeur de 2 : Réduire le λ -terme SUCC 2.
- (b) 3 + 2: Réduire le λ -terme *ADD* 3 2.
- (c) 3×2 : Réduire le λ -terme MULT $\underline{3}$ $\underline{2}$.
- (d) 3^2 : Réduire le λ -terme $POW \underline{3} \underline{2}$.
- 2. On s'intéresse au λ -terme Z défini par : $Z \stackrel{\text{def}}{=} \lambda x.x$ ($\lambda x.\lambda c.c$ FALSE x) ($\lambda x.x$) TRUE
 - (a) Réduire sous forme normale (en utilisant NOR) les λ -termes suivants :
 - i. Z 0
 - ii. Z <u>1</u>
 - iii. Z 2
 - (b) D'après vous, que modélise Z?

3 Couples

- 1. On modélise un couple (a, b) par le λ -terme $\lambda t.t \ a \ b.$
 - (a) Définir un λ -terme PAIR qui modélise la fonction qui, étant donné deux éléments a et b, retourne le couple (a,b).
 - (b) Réduire les expressions (PAIR a b) $\lambda x.\lambda y.x$ et (PAIR a b) $\lambda x.\lambda y.y.$
 - (c) En déduire une définition des λ -termes FST et SND qui modélisent les fonctions d'accès aux éléments d'un couple.

- (d) Modéliser la fonction *CURRY* et son inverse *UNCURRY*. On rappelle que la fonction *CURRY* (resp. *UNCURRY*) permet, pour une fonction à deux arguments, de passer de la forme non curryfiée (resp. curryfiée) à la forme curryfiée (resp. non curryfiée).
- 2. En s'inspirant du modèle pour les couples, on souhaite modéliser les triplet :
 - (a) Définir un λ -terme permettant de modéliser le triplet (a,b,c)
 - (b) Définir un λ -terme TRIPLET qui modélise la fonction qui, étant donné trois éléments a,b et c, retourne le triplet (a,b,c)
 - (c) Définir des λ -termes *ELT1*, *ELT2* et *ELT3* qui modélisent les fonctions d'accès aux éléments d'un triplet.

4 Récursivité

- 1. Le combinateur de point fixe de Turing est défini par : $\Theta \stackrel{\text{def}}{=} (\lambda x. \lambda y. y \ (x \ x \ y)) \ (\lambda x. \lambda y. y \ (x \ x \ y))$. Montrer que pour tout λ -terme H, le λ -terme Θ H se réduit bien en H (Θ H).
- 2. On suppose que les λ -termes COND, ISZERO, PRED modélisent respectivement la conditionnelle, l'égalité à zéro et la fonction prédécesseur. Pour chacune des fonctions suivantes, écrire un λ -terme qui la modélise :
 - (a) factorielle (FAC n)
 - (b) égalité de deux entiers (EG n m)
 - (c) inférieur strict entre deux entiers ($INF \ n \ m$)