Name: Sidharth Banerjee

ID : 1001622703 Date: 09/26/2019

CSE 4309 – HW 03

Task 1

Degree = 1, Lambda = 0	Degree = 1, Lambda 1	Degree = 2, Lambda = 0	Degree = 2, Lambda = 1
w0 = -8.2007	w0 = -8.0392	w0 = 13.7235	w0 = 12.8034
w1 = 0.0810	w1 = 0.0809	w1 = 0.0670	w1 = 0.0677
w2 = -0.0867	w2 = -0.0871	w2 = -0.0001	w2 = -0.0001
w3 = -0.0936	w3 = -0.0937	w3 = -0.1481	w3 = -0.1409
w4 = 0.1021	w4 = 0.1016	w4 = 0.0010	w4 = 0.0010
w5 = 0.1581	w5 = 0.1579	w5 = -0.0348	w5 = -0.0336
w6 = 0.1108	w6 = 0.1107	w6 = 0.0001	w6 = 0.0001
w7 = -0.0995	w7 = -0.0995	w7 = -0.8114	w7 = -0.8032
w8 = -0.1322	w8 = -0.1324	w8 = 0.0056	w8 = 0.0055
w9 = 0.1186	w9 = 0.1185	w9 = 0.0856	w9 = 0.0877
w10 = 0.1615	w10 = 0.1614	w10 = -0.0003	w10 = -0.0003
w11 = -0.1337	w11 = -0.1338	w11 = 0.4622	w11 = 0.4647
w12 = -0.6561	w12 = -0.6562	w12 = -0.0027	w12 = -0.0027
w13 = 0.0895	w13 = 0.0894	w13 = 0.1399	w13 = 0.1404
w14 = 1.3469	w14 = 1.3465	w14 = -0.0021	w14 = -0.0021
w15 = -0.0338	w15 = -0.0340	w15 = -0.1173	w15 = -0.1133
		w16 = 0.0015	w16 = 0.0014
		w17 = 0.0648	w17 = 0.0665
		w18 = 0.0004	w18 = 0.0004
		w19 = 0.1138	w19 = 0.1138
		w20 = -0.0010	w20 = -0.0010
		w21 = -0.1320	w21 = -0.1310
		w22 = 0.0002	w22 = 0.0002
		w23 = -0.3783	w23 = -0.3796
		w24 = -0.0031	w24 = -0.0031
		w25 = 0.0021	w25 = 0.0037
		w26 = 0.0007	w26 = 0.0006
		w27 = 0.9531	w27 = 0.9540
		w28 = 0.0045	w28 = 0.0045
		w29 = -0.0503	w29 = -0.0495
		w30 = 0.0003	w30 = 0.0003
ID= 3498,	ID= 3498,	ID= 3498,	ID= 3498,
output= 5.43,	output= 5.43,	output= 2.47,	output= 2.48 ,
target value= 0.00,	target value= 0.00,	target value= 0.00,	target value= 0.00,
squared error=29.4481	squared error=29.4710	squared error=6.1035	squared error=6.1588
^	_	•	

Task 2

$$w = (\lambda I + \Phi^{\mathsf{T}} \cdot \Phi)^{-1} \cdot \Phi^{\mathsf{T}} \cdot \mathsf{t}$$

$$\varphi(x) = x$$

$$t = \begin{bmatrix} 9.6 \\ 4.2 \\ 2.2 \end{bmatrix} \qquad \Phi = \begin{bmatrix} 1 & 5.3 \\ 1 & 7.1 \\ 1 & 6.4 \end{bmatrix} \qquad \Phi^{\mathsf{T}} = \begin{bmatrix} 1 & 1 & 1 \\ 5.3 & 7.1 & 6.4 \end{bmatrix}$$

$$\Phi^{\mathsf{T}} = \begin{bmatrix} 1 & 1 & 1 \\ 5.3 & 7.1 & 6.4 \end{bmatrix}$$

$$\Phi^{\mathsf{T}} \cdot \mathsf{t} = \begin{bmatrix} 16 \\ 95 \end{bmatrix}$$

$$\Phi^{\mathsf{T}} \cdot \Phi = \begin{bmatrix} 3 & 20 \\ 20 & 119.5 \end{bmatrix}$$

$$w = \begin{pmatrix} 3 + \lambda & 20 \\ 20 & 119.5 + \lambda \end{pmatrix}^{-1} \cdot \begin{bmatrix} 16 \\ 95 \end{bmatrix}$$

Since $\lambda \to \infty$, and while taking inverse of the matrix we must divide the matrix by its discriminant, $1/\infty -> 0$. Therefore $w -> \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

This is true because as the λ value decreases, the polynomial starts underfitting the data and will look flat.

Task 3

	f1(x) = 3.1x + 4.2	f2(x) = 2.4x – 1.5
x1 = 5.3	21.56	11.22
x2 = 7.1	26.21	15.54
x3 = 6.4	24.04	13.86

$$E1(x) = 0.5 * [(9.6 - 21.56)^2 + (4.2 - 26.21)^2 + (2.2 - 24.04)^2] = 552.2$$

$$E2(x) = 0.5 * [(9.6 - 11.22)^2 + (4.2 - 15.54)^2 + (2.2 - 13.86)^2] = 133.58$$

According to sum-of-squares criterion, f2(x) = 2.4x - 1.5 is a better solution because it minimizes the sum of squares which means it is a closer fit to our data line.