Interpolation and Polynomial Approximation Chapter 3 - Numerical Analysis (Burden et al.)

Prof. Ana Isabel Castillo

Julho 2025

Introdução

Objetivo

Explorar métodos de interpolação e aproximação polinomial do Capítulo 3, com 10 exercícios resolvidos e links para respostas em vídeo.

- Métodos: Lagrange, Newton, Splines.
- Aproximação e erros.
- Aplicação prática com exemplos.

Métodos-Chave

Tópicos Principais

- Lagrange: Polinômio interpolador direto.
- Newton: Diferenças divididas.
- Splines: Interpolação em pedaços.
- Foco em precisão e suavidade.

Exercício 1: Interpolação de Lagrange

Enunciado

Encontre o polinômio de Lagrange para f(x) nos pontos (0,1),(1,2),(2,1).

Solução

-
$$L_0(x) = \frac{(x-1)(x-2)}{(0-1)(0-2)}$$
, etc. - Polinômio: $P(x) = 1 - x + x^2/2$.

Figure: Interpolação de Lagrange

Exercício 2: Diferenças Divididas de Newton

Enunciado

Use Newton com (0,1),(1,3),(2,9) para interpolar.

Solução

- Diferenças: f[0,1] = 2, f[1,2] = 6, f[0,1,2] = 4. - P(x) = 1 + 2x + 4x(x - 1).

Figure: Diferenças divididas de Newton

Coeficientes de Newton: [1 2 2] Polinômio em x,= 1,5; 5,500000

Exercício 3: Avaliação de Lagrange

Enunciado

Avalie P(0.5) com (0,0), (1,1), (2,4).

Solução

- $P(0.5) \approx 0.25$ usando pesos de Lagrange.

Figure: Avaliação de Lagrange em x = 0.5

Valor de P(0.5) = 0.250000

Exercício 4: Newton com 4 Pontos

Enunciado

Interpole (0,1), (1,2), (2,1), (3,0) com Newton.

Solução

- Diferenças até 3° ordem, $P(x) = 1 + x - x^2 + x^3/6$.

Figure: Interpolação de Newton com 4 Pontos

Coeficientes de Newton: [1 1 -1 0] Polinômio em x = 1.5: 1.750000

Exercício 5: Erro de Interpolação

Enunciado

Estime o erro de $P_2(x)$ para $f(x) = e^x$ em [0,1] com 3 pontos equiespaçados.

Solução

- Erro $pprox rac{M_3}{3!}h^3$, onde M_3 é máximo de f'''(x).

Figure: Erro de Interpolação para e^x

Erro aproximado em x = 0.75: 0.020833 Valor real: 2.117000 Valor interpolado: 2.130897

Exercício 6: Lagrange com Função

Enunciado

Interpole $f(x) = \sin x$ em $(0,0), (\pi/2,1), (\pi,0)$.

Solução

$$-P(x) = \sin(0)L_0 + \sin(\pi/2)L_1 + \sin(\pi)L_2.$$

Figure: Interpolação de Lagrange para sin(x)

Polinômio em x = /4: 0.750000

Exercício 7: Newton com Erro

Enunciado

Use Newton para (0,1),(1,0),(2,1) e estime o erro em x=0.5.

Solução

- $P(x) = 1 - x + x^2$, erro pequeno por proximidade.

Figure: Interpolação de Newton com Erro

Valor interpolado em x = 0.5: 0.250000 Erro aproximado: 0.333333

Exercício 8: Splines Lineares

Enunciado

Construa um spline linear para (0,1),(1,2),(2,1).

Solução

- Segmentos: $s_0(x) = x + 1$, $s_1(x) = -x + 2$.

Figure: Splines Lineares

Spline em x = 0: 1.000000 (esperado: 1) Spline em x = 1: 2.000000 (esperado: 2) Spline em x = 2: 1.000000_{\odot} (esperado: 1) $_{\odot}$

Exercício 9: Splines Cúbicos

Enunciado

Faça um spline cúbico natural para (0,0),(1,1),(2,0).

Solução

- Resolve sistema com s''(0) = s''(2) = 0, forma cúbica por pedaço.

Figure: Splines Cúbicos Naturais

Spline em x=0: 0.000000 (esperado: 0) Spline em x=1: 1.000000 (esperado: 1) Spline em x=2: 0.000000 (esperado: 0)

Exercício 10: Aproximação de Erro

Enunciado

Compare o erro de Lagrange e Newton para $f(x) = x^3$ em (0,0),(1,1),(2,8) em x=0.5.

Solução

- Ambos dão $P(x) = x^3$, erro zero por ser exata.

Figure: Aproximação de Erro: Lagrange vs Newton

Valor real em x = 0.5: 0.125000 Lagrange em x = 0.5: -0.250000, Erro: 0.375000 Newton em x = 0.5: -0.250000, Erro: 0.375000

Conclusão

Resumo

- Capítulo 3 domina interpolação e aproximação.
- Exercícios mostram aplicação prática.
- códigos em python que solidificam o aprendizado.
- Agradeço pela atenção! Perguntas?