Sorting Type	e Order	Test Size	Time	Big-O	Big-O Justification	Estimate for 10,000,000 in Seconds
	ascending	500,000 600,000 700,000 800,000 900,000 1,000,000 1,100,000	0.00165211 0.00198357 0.0023145 0.00264589 0.0029813 0.00331666 0.00364023 0.00397527	O(N)	When I added a trend line to my graph, the R^2 was exactly one. Meaing it was a perfect fit. In additon, it can be seen that the time goes up by .0003	0.029992 I used the best fit line and pluged 10,000,000 in for x
Bubble	random	1,200,000 50,000 60,000 70,000 80,000 90,000 100,000 110,000 120,000	12.4322 17.9781 24.4935 32.1399 40.609 49.9707 60.5437 72.2546	O(N^2)	Looking at the graph the X^2 curve can start to be seen. In addition, the trend line had an R^2 of 1.	500009.8779 I used the best fit line and pluged 10,000,000 in for x
	descending	50,000 60,000 70,000 80,000 90,000 100,000 110,000 120,000	12.4154 17.836 24.2723 31.72 40.1407 49.5693 59.9926 71.5542	O(N^2)	Looking at the graph the X^2 curve can start to be seen. In addition, the trend line had an R^2 of 1.	499900.5009 I used the best fit line and pluged 10,000,000 in for x
	ascending	500,000 600,000 700,000 800,000 900,000 1,000,000 1,100,000 1,200,000 50,000	0.00240693 0.00289132 0.00336996 0.00385116 0.00433633 0.00481821 0.00534489 0.00577724 1.74491	O(N)	When I added a trend line to my graph, the R^2 was exactly one. Meaing it was a perfect fit. In additon, it can be seen that the time goes up by .0005 each time	.04998 I used the best fit line and pluged 10,000,000 in for x
Insertion	random	60,000 70,000 80,000 90,000 100,000 110,000 50,000 60,000	2.51427 3.42145 4.44875 5.6254 6.95313 8.39581 9.98897 3.48306 5.02106	O(N^2)	Looking at the graph the X^2 curve can start to be seen. In addition, the trend line had an R^2 of 1.	69999.9874 I used the best fit line and pluged 10,000,000 in for x
	deccending	70,000 80,000	6.82521 8.93423	O(N\^2)	graph the X^2 curve can start	

	uescenung	00.000	44 2702	U(IN-Z)	4. h	00000 4002
	· ·	90,000	11.2782		to be seen. In	99999.4982 I used
		100,000	13.9617		addition, the	the best fit line and
		110,000	16.8681			pluged 10,000,000 in
	ascending	120,000	20.0847	O(N^2)	R^2 of 1.	for x
		50,000	2.63667			
		60,000	3.79725		Looking at the	
		70,000	5.15278		graph the X^2	
		80,000	6.74552		curve can start	
		90,000	8.52107		to be seen. In	100029.8995 I used
		100,000	10.5771		addition, the	the best fit line and
		110,000	12.7256		trend line had an	pluged 10,000,000 in
		120,000	15.1326		R^2 of 1.	for x
		50,000	2.80287			
		60,000	4.03273		Looking at the	
		70,000	5.48163		graph the X^2	
coloction	random	80,000	7.16974	0/N(2)	curve can start	
selection	random	90,000	9.07126	O(N^2)	to be seen. In	1000039.8839 I used
		100,000	11.1925		addition, the	the best fit line and
		110,000	13.5159		trend line had an	pluged 10,000,000 in
		120,000	16.0645		R^2 of 1.	for x
		50,000	2.72311			
	descending	60,000	3.91024		Looking at the	
		70,000	5.32237		graph the X^2	
		80,000	6.95981	- ()	curve can start	
		90,000	8.7856		to be seen. In	100006.9906 I used
		100,000	10.8341		addition, the	the best fit line and
		110,000	13.1121		trend line had an	
		120,000	15.6027		R^2 of 1.	for x
		500,000	0.0486559			
		600,000	0.0566355		This is nlogn because it is very close to being	
		700,000	0.0593768			.8054 I used the best
		800,000	0.0706971		quite because it is	fit line and pluged
	ascending	900,000	0.0831534	O(NlogN)	multiplied by log(n). Thus causing not a good	10,000,000 in for x
		1,000,000	0.0910074		linear fit line. Also this	knowing that the
		1,100,000	0.0979086		makes sense because	actual time would be
		1,200,000	0.104106		log(n) won't affect the graph compared to n.	slightly larger
		500,000	0.104100		graph compared to ii.	Slightly larger
		600,000	0.107096	O(NlogN)	This is nlogn because it	
quick		700,000	0.134573		is very close to being exactly linear, but isn't	1.9882 I used the
		800,000			quite because it is	best fit line and
	random	900,000	0.148976 0.171701		multiplied by log(n).	
					Thus causing not a good linear fit line. Also this	· -
		1,000,000	0.198801		makes sense because	for x knowing that
		1,100,000	0.206702		log(n) won't affect the	the actual time would
		1,200,000	0.230121		graph compared to n.	be slightly larger
		500,000	0.0411105		This is nlogn because it	
		600,000	0.0454013		is very close to being exactly linear, but isn't	00001
		700,000	0.0545364		quita bacques it is	.9862 I used the best

	descending	800,000 900,000 1,000,000 1,100,000 1,200,000	0.0606201 0.0819382 0.0911331 0.098578 0.106144	O(NlogN)	quite because it is multiplied by log(n). Thus causing not a good linear fit line. Also this makes sense because log(n) won't affect the graph compared to n.	fit line and pluged 10,000,000 in for x knowing that the actual time would be slightly larger	
	ascending	500,000 600,000 700,000 800,000 900,000 1,000,000 1,100,000	0.0611842 0.0716825 0.083145 0.0927485 0.104099 0.111122 0.12199 0.134331	O(NlogN)	This is nlogn because it is very close to being exactly linear, but isn't quite because it is multiplied by log(n). Thus causing not a good linear fit line. Also this makes sense because log(n) won't affect the graph compared to n.	1.0106 I used the best fit line and pluged 10,000,000 in for x knowing that the actual time would be slightly larger	
merge	random	500,000 600,000 700,000 800,000 900,000 1,000,000 1,100,000 1,200,000	0.109171 0.1376039 0.157244 0.179712 0.200812 0.223564 0.247549 0.270506	O(NlogN)	This is nlogn because it is very close to being exactly linear, but isn't quite because it is multiplied by log(n). Thus causing not a good linear fit line. Also this makes sense because log(n) won't affect the graph compared to n.	1.9986 I used the best fit line and pluged 10,000,000 in for x knowing that the actual time would be slightly larger	
	descending	500,000 600,000 700,000 800,000 900,000 1,000,000 1,100,000 1,200,000	0.059403 0.0720787 0.0819603 0.0939546 0.10231 0.113991 0.123579 0.135322	O(NlogN)	This is nlogn because it is very close to being exactly linear, but isn't quite because it is multiplied by log(n). Thus causing not a good linear fit line. Also this makes sense because log(n) won't affect the graph compared to n.	1.0074 I used the best fit line and pluged 10,000,000 in for x knowing that the actual time would be slightly larger	


```
Insertion Sort Descending y = 1E-09x^2 - 5E-08x - 0.0018

R<sup>2</sup> = 1
```


