Парето-ранжирование с предпочтениеми на признаках

Панченко Святослав

Московский Физико-Технический Институт Факультет Прикладной Математики и Информатики Кафедра интеллектуальных систем

> Москва, 2021 г.

Построение рейтинга продуктов питания

Задача

Построить рейтинг для совокупности различных продуктов питания. Каждый вид еды характеризуется набором числовых признаков калорийность, цена, содержание белков, жиров, углеводов (в расчёте на 100г) и набором экспертных оценок качества.

Требования к модели построения рейтинга

- устойчивость относительно добавления новых объектов;
- полный порядок на объектах;
- учёт пропусков в значениях признаков и экспертных оценок.

Идея

Строить рейтинг предлагается с помощью Парето-ранжирования с предпочтениями на признаках.

Постановка

Выборка

$$\mathfrak{D}=\{\mathsf{x}_i\},\ i\in\mathcal{I}=\{1,...,m\},$$
 $\mathsf{x}=[\chi_1,...,\chi_j,...,\chi_d],\ j\in\mathcal{J}=\{1,...,d\},$ $\chi_j\in\mathbb{L}_j=\{\mathit{I}_1,...,\mathit{I}_{k_j}\}$ — частично упорядоченное множество.

Задача

Построить интегральный индикатор y для заданного множества объектов \mathfrak{D} .

Вспомогательные определения

Определение *п*-отношения

Мы говорим, что объект $\mathbf{x}_i = [x_{i1},...,x_{id}]$ *п-доминирует* объект $\mathbf{x}_j = [x_{j1},...,x_{jd}],$

или
$$x_i \succ_n x_j$$
,

если $x_{ik} \succeq x_{jk}$ для всех k = 1, ..., d, но $x_i \neq x_j$.

Определение \tilde{n} -отношения

Мы говорим, что объект $x_i = [x_{i1},...,x_{ir},...,x_{it},...,x_{id}]$ \tilde{n} -доминирует объект x_j с предпочтением на признаках $r \succ t$,

если
$$x_i \succ_n x_j$$
,

или
$$x_i^{tr} \succ_n x_j$$
,

где $\mathbf{x}_i^{tr} = [x_{i1},...,x_{it},...,x_{ir},...,x_{id}]$ - вспомогательный объект с измененным порядком следования признаков r и t.

Парето-оптимальный фронт

Набор объектов x_i , $i \in \mathcal{I}$, называется Парето-оптимальным фронтом POF_n , если для любого $x_i \in POF_n$ не существует объекта x, который бы его доминировал: $x \succ_n x_i$ (или $x \succ_{\tilde{n}} x_i$).

Парето-оптимальный фронт и его зона доминирования для пары точек в случае отсутствия и присутствия предпочтения на признаках

Парето-ранжирование

Комбинирование рейтингов

Проблема

Построение рейтинга указанным методом в пространстве высокой размерности приводит к выделению очень небольшого числа фронтов, поскольку объекты, как правило, несравнимы между собой.

Подзадача

Предложить способ комбинирования рейтингов. В качестве комбинируемых рейтингов могут выступать промежуточные рейтинги или оценки экспертов.

Идея

Позиции в промежуточных рейтингах рассматриваются в качестве нового признакового описания для построения нового рейтинга. Промежуточные рейтинги формируются на основе разбиения множества признаков на подмножества.

Слияние рейтингов на основе Парето-ранжирования

Предположим, что построены два промежуточных рейтинга φ_1 и φ_2 . В таком случае каждому объекту х соответствуют его позиции в этих рейтингах:

$$y_i = \varphi_i(x), i = 1, 2.$$

Тогда вектор $[y_1,y_2]^{\mathsf{T}}$ выступает в роли нового признакового описания объекта х; на основе совокупности таких описаний строится новый рейтинг.

Слияние рейтингов на основе Парето-ранжирования, иллюстрация

Выделенные подмножества признаков

Исходное множество признаков разбито на смысловые группы, для каждой из которых строится отдельный рейтинг. Группы упорядочены по убыванию предпочтения для построения итогового рейтинга.

- Экспертные оценки 14 признаков (на момент составления рейтинга):
 - заполнение пропусков медианой;
- Соотношение калорийность-цена 2 признака:
 - сравнение по цене происходит по принципу "чем меньше, тем лучше";
 - показатель цены считаем важнее.
- Соотношение белки-жиры-углеводы 3 признака:
 - сравнение по показателю содержания жиров происходит по принципу "чем меньше, тем лучше";
 - показатель содержания жиров считаем наименее важным.

Проблема 1: размерность

Вместо построения Парето-ранжирования на основе совокупности экспертных оценок предлагается использовать аггрегированную оценку - медиану Кемени.

Медиана Кемени

Пусть имеется k ранжирований на n объектах, заданных своими матрицами попарных предпочтений $A_u = ||a_{i,j}^{(u)}||_{i,j=1}^n$, u=1,...,k, $a_{i,j} \in \{-1,0,1\}$ для всех i,j=1,...,n. Медиана Кемени - это ранжирование, задаваемое матрицей, наименее удалённой от остальных:

$$A^* = \arg\min \sum_{u=1}^k d(A, A_u) = \arg\min \sum_{u=1}^k \sum_{i,j=1}^n |a_{i,j} - a_{i,j}^{(u)}|$$

Статистические предположения о данных:

Для i.i.d. ранжирований $A_1,...,A_k$ справедливо, что медиана Кемени $A^* \stackrel{p}{\to} \mathbb{E} A_u$ при $k \to \infty.$

Проблема 2: полный порядок

Итоги

Сравнение полученного рейтинга со средним

Литература

- Medvednikova M. M., Kuznetsov M. P., Strijov V. V. (2015)
 'Ordinal classification using Pareto fronts', Expert Systems with Applications.
- Mironenkov A.A. (2019) 'Hierarchical Pareto Classification of the Russian Regions by the Population's Quality of Life Indicators', Economic and Social Changes: Facts, Trends, Forecast.
- С.Д. Двоенко, Д.О. Пшеничный, А.В. Попов (2017) 'Групповое Ранжирование на Основе Медианы Кемени с Метрическими Свойствами', Известия ТулГУ, Технические науки, Вып. 10.