Package 'Rcan'

May 16, 2017

Version 1.3.0	
Title R package to help managing and analysing cancer data	
Date 2016-09-15	
Author Mathieu Laversanne	
Maintainer Mathieu Laversanne < laversannem@iarc.fr>	
Depends R (>= 2.10)	
Description Theses functions are design by the Cancer Surveillance Unit at IARC. The goal is to provide tools for the unit, but also scientist and other fellows using cancer epidemiological data.)-
License GPL (>=2)	
<pre>URL http://timat.org/matR</pre>	
LazyLoad yes	
Imports data.table, stats, ggplot2, grid, scales, grDevices, graphics, utils	
NeedsCompilation no	
R topics documented:	
Rcan-package	2
csu_ageSpecific	3
csu_asr	5
csu_ci5x_mean	8
csu_eapc	0
csu_registry_data_1	1
csu_registry_data_2	12
csu_trend	13
csu_trendCohortPeriod	15
csu_trend_legend	18
Index	20

2 Rcan-package

Rcan-package

R package to help managing and analysing cancer data

Description

Theses functions are design by the Cancer Surveillance Unit at IARC. The goal is to provide tools for the unit, but also scientist and other fellows using cancer epidemiological data.

Author(s)

Mathieu Laversanne

Maintainer: Mathieu Laversanne Laversannem@iarc.fr

References

```
https://www.iarc.fr/en/publications/pdfs-online/epi/sp95/sp95-chap11.pdf
```

See Also

```
csu_ageSpecific csu_asr csu_eapc csu_trend csu_trendCohortPeriod
```

```
data(csu_registry_data_2)
# ASR with standard error with missing age.
df_asr <- csu_asr(csu_registry_data_2,</pre>
                  "age", "cases", "py",
                  group_by = c("registry", "registry_label", "sex", "year", "ethnic" ),
                  var_age_group = c("registry_label"),
                  var_st_err = "st_err")
df_asr[1:4,]
# ASR with standard error with missing age.
readline(prompt="Press [enter] to continue to EAPC")
# EAPC with standard error
df_eapc <- csu_eapc(df_asr,</pre>
"asr", "year",
group_by=c("registry", "registry_label", "sex", "ethnic" ))
df_eapc[1:4,]
# EAPC with standard error
readline(prompt="Press [enter] to continue to age specific graph")
data(csu_registry_data_1)
# plot age specific rate for 1 population.
df_colombia <- csu_registry_data_1[csu_registry_data_1$registry_label=="Colombia, Cali",]</pre>
csu_ageSpecific(df_colombia,
```

csu_ageSpecific 3

```
plot_title = "Colombia, Liver, male")

# plot age specific rate for 1 population, and comparison with CI5X data.
csu_ageSpecific(df_colombia,
plot_title = "Colombia, Liver, male",
CI5_comparison = "Liver")

# plot age specific rate for 4 population, legend at the bottom and comparison with CI5X data.
csu_ageSpecific(csu_registry_data_1,
group_by="registry_label",
legend=csu_trend_legend(position="bottom", nrow = 2),
plot_title = "Liver, male",
CI5_comparison = 7)
```

csu_ageSpecific

csu_ageSpecific

Description

csu_ageSpecific calculate and plot Age-Specific Rate.

Usage

```
csu_ageSpecific(df_data,
var_age="age",
var_cases="cases",
var_py="py",
group_by = NULL,
missing_age = NULL,
db_rate = 100000,
legend = csu_trend_legend(),
CI5_comparison = NULL,
var_rate = "rate",
plot_title = "csu_title",
format_export = NULL)
```

Arguments

df_data	Data (need to be R data.frame format, see example to import csv file).
var_age	Age group variable: (numerical) 18 5-years age-group, 0-4, 5-9, 85+ and an optional missing age. The value can be 1,219, as well as 0,5,85 or other value as long are they are numerical.
var_cases	Number of event (cases, deaths,) variable.
var_py	Population year variable.
group_by	Variable to compare different age specific rate (sex, country, cancer). Only one variable can be chosen.
missing_age	Age value representing the missing age cases.
db_rate	The denominator population. Default is 100000.

4 csu_ageSpecific

```
legend Legend option: see csu_trend_legend.
```

Use only if group_by is not NULL.

CI5_comparison Add a dotted line represnting the CI5X for a specific cancer.

Value can be a cancer_label (example: "Liver"), or a cancer_code (example =

7).

See csu_ci5x_mean to get the list of possible values.

var_rate Name of the age specific variable if a dataframe is return.

plot_title Title of the plot.

format_export export the graph in different format:

```
NULL Plot in R studio windows.

"pdf" Export in PDF format.

"tiff" Export in TIFE 300dpi form
```

"tiff" Export in TIFF 300dpi format.
"png" Export in PNG 200dpi format.

"svg" Export in SVG format. Can be edit with https://inkscape.org/fr/.

The filename is the plot_title option.

Details

This function calculate and plot the age specific rate. The group_by option allow to compare different population or cancer. The CI5_comparison option allow to compare with the CI5X and therefore test the quality of the data. If the population data stops before 85+ (75+ for instance), the population data **must** be 0 when the population data is unknown so, the program can detect automatically the last age group (70+,75+,80+ or 85+) for population.

Value

Return a plot and a data. frame.

Author(s)

Mathieu Laversanne

References

```
https://www.iarc.fr/en/publications/pdfs-online/epi/sp95/sp95-chap11.pdf
```

See Also

```
csu_asr csu_eapc csu_trend csu_trendCohortPeriod
```

```
data(csu_registry_data_1)
data(csu_registry_data_2)

# you can import your data from csv file using read.csv:
# mydata <- read.csv("mydata.csv", sep=",")</pre>
```

csu_asr 5

```
# to select only 1 population.
test <- csu_registry_data_1[csu_registry_data_1$registry_label=="Colombia, Cali",]</pre>
# plot age specific rate for 1 population.
csu_ageSpecific(test,
                plot_title = "Colombia, Liver, male")
# plot age specific rate for 1 population, and comparison with CI5X data.
csu_ageSpecific(test,
plot_title = "Colombia, Liver, male",
CI5_comparison = "Liver")
# plot age specific rate for 4 population, legend at the bottom and comparison with CI5X data.
csu_ageSpecific(csu_registry_data_1,
group_by="registry_label",
legend=csu_trend_legend(position="bottom", nrow = 2),
plot_title = "Liver, male",
CI5\_comparison = 7)
# plot age specific rate for 4 population, legend at the right.
csu_ageSpecific(csu_registry_data_1,
group_by="registry_label",
legend=csu_trend_legend(position="right", right_space_margin = 6.5),
plot_title = "Liver, male")
```

csu_asr

 csu_asr

Description

csu_asr calculate Age-Standardized Rate (ASR) and Truncated Age-Stadardized Rate (TASR) across different population (Registry, year, sex...)

Usage

```
csu_asr(df_data,
var_age = "age",
var_cases = "cases",
var_py = "py",
group_by=NULL,
var_age_group=NULL,
missing_age = NULL,
db_rate = 100000,
first_age = 1,
last_age = 18,
pop_base = "SEGI",
var_st_err = NULL,
correction_info = FALSE,
var_asr = "asr",
age_dropped = FALSE)
```

6 csu_asr

Arguments

df_data Data (need to be R data.frame format, see example to import csv file).

var_age Age group variable: (numerical) 18 5-years age-group, 0-4, 5-9, .. 85+ and an

optional missing age.

The value can be 1,2..19, as well as 0,5,..85 or other value as long are they are

numerical.

var_cases Number of event (cases, deaths, ...) variable.

var_py Population year variable.

group_by A vector of variables to compare different ASR (sex, country, cancer ...).

Any variable included in the next option var_age_group must be also include

here.

For example the last age group (70+, 75+, 80+ or 85+) can vary across registries,

or year, but not across sex.

missing_age Age value representing the missing age cases.

If not precise, missing age value will not affect the calculation.

db_rate The denominator population. Default is 100000.

first_age First age group included (for Truncated ASR), must be between 1 and 17. 1

represents 0-4, 2 represents 5-9, ... 5 represente 20-24 etc.

last_age Last age group included (for Truncated ASR), must be between 2 and 18. 2

represents 5-9, ... 5 represente 20-24, ... 18 represents 85+ etc.

To calculate ASR for 15-69 years, use: first_age(4), last_age(14).

pop_base Select the standard population:

"SEGI" SEGI world standard population.

"EURO" EURO is the european standard population.

var_st_err Calculate the Standard error and name of the new variable.

correction_info

Logical value. if TRUE compute the variable "correction": percentage of missing

age cases.

var_asr Name of the new variable for the ASR.

age_dropped Only for truncated ASR.

Logical value: if TRUE, considere the age group not used are already dropped

from the data.

First_age and last_age option **must** still be filled.

Details

This function take automatically account the number of age group (last age group can be 70+,75+,80+,85+): If the population data stops before 85+ (75+ for instance), the population data **must** be 0 when the population data is unknown so, the program can detect automatically the last age group (70+,75+,80+ or 85+) for population.

csu_asr 7

Value

Give the list of population with less than 18 age group (last age group: 70+, 75+, 80+). Return a data.frame.

Author(s)

Mathieu Laversanne

References

https://www.iarc.fr/en/publications/pdfs-online/epi/sp95/sp95-chap11.pdf

See Also

csu_ageSpecific csu_eapc csu_trend csu_trendCohortPeriod

```
data(csu_registry_data_1)
data(csu_registry_data_2)
# you can import your data from csv file using read.csv:
# mydata <- read.csv("mydata.csv", sep=",")</pre>
# Age standardized rate (ASR) with no missing age cases.
result <- csu_asr(csu_registry_data_1,</pre>
                  "age", "cases", "py"
                  group_by = c("registry", "registry_label" ),
                  var_age_group = c("registry_label"))
# you can export your result as csv file using write.csv:
# write.csv(result, file="result.csv")
# ASR, with the percentage of correction due to missing age cases.
result <- csu_asr(csu_registry_data_1,</pre>
                  "age", "cases", "py",
                  group_by = c("registry", "registry_label" ),
                  var_age_group = c("registry_label"),
  missing_age = 19,
  correction_info = TRUE)
# ASR and standard error with missing age.
result <- csu_asr(csu_registry_data_2,</pre>
                  "age", "cases", "py",
                  group_by = c("registry", "registry_label", "sex", "year", "ethnic" ),
                  var_age_group = c("registry_label"),
                  var_st_err = "st_err",
  missing_age = 99)
# Truncated ASR, 25-69 years.
result <- csu_asr(csu_registry_data_2,
                  "age", "cases", "py",
                  group_by = c("registry", "registry_label", "sex", "year", "ethnic" ),
                  var_age_group = c("registry_label"),
                  var_st_err = "st_err",
  first_age = 6,
```

8 csu_ci5x_mean

```
last_age = 14,
  missing_age = 99)
# Truncated ASR, 0-15 with denominator population = 1000000.
result <- csu_asr(csu_registry_data_2,</pre>
                  "age", "cases", "py"
                  group_by = c("registry", "registry_label", "sex", "year", "ethnic" ),
                  var_age_group = c("registry_label"),
                  var_st_err = "st_err",
  first_age = 1,
  last_age = 3,
  missing_age = 99,
  db_rate = 1000000)
# ASR with EURO population as reference (instead of SEGI)
result <- csu_asr(csu_registry_data_1,</pre>
                  "age", "cases", "py",
                  group_by = c("registry", "registry_label" ),
                  var_age_group = c("registry_label"),
 missing_age = 19,
                  pop_base = "EURO")
```

csu_ci5x_mean

cancer registry data

Description

CI5 X data, all population grouped.

Usage

```
data("csu_ci5x_mean")
```

Format

A data frame with 522 observations on the following 5 variables.

```
CSU_age_factor age variable from 1 to 18. 1 is 0-4 years, 2 is 5-9, etc..., 17 is 80-84, 18 is 85+.
CSU_C Number of cases (incidence)
CSU_P Population-year: Reference population
ci5_cancer_label cancer label
ci5_cancer_code cancer code
```

Details

This dataset have been created in order to compare age specific rate with the CI5X mean directly on the age specific rate graph. Here is the table of cancer_label and cancer_code available:

```
Code Label
1 Lip, oral cavity
2 Nasopharynx
```

csu_ci5x_mean 9

- 3 Other pharynx
- 4 Oesophagus
- 5 Stomach
- 6 Colorectum
- 7 Liver
- 8 Gallbladder
- 9 Pancreas
- 10 Larynx
- 11 Lung
- 12 Melanoma of skin
- 13 Mesothelioma
- 14 Kaposi sarcoma
- 15 Breast
- 16 Cervix uteri
- 17 Corpus uteri
- 18 Ovary
- 19 Prostate
- 20 Testis
- 21 Kidney
- 22 Bladder
- 23 Brain, nervous system
- 24 Thyroid
- 25 Hodgkin lymphoma
- Non-Hodgkin lymphoma
- 27 Multiple myeloma
- 28 Leukaemia
- 29 All sites but skin

See: csu_ageSpecific

Source

```
http://ci5.iarc.fr/CI5-X/Default.aspx
```

See Also

```
csu_ageSpecific
```

10 csu_eapc

Description

csu_eapc calculate the Estimated Annual Percentage Change (EAPC) of rates during a time period with the Confidence Intervalle (CI) across different population (Registry, year, sex...)

Usage

```
csu_eapc(df_data,
var_rate="asr",
var_year="year",
group_by=NULL,
var_eapc = "eapc")
```

Arguments

df_data	Data (need to be R data.frame format, see example to import csv file).
var_rate	Rate variable. (Standardized or not, incidence, mortality, etc)
var_year	Period variable. (Year, month, etc)
group_by	A vector of variables to compare different EAPC (sex, country, cancer).
var_eapc	Name of the new variable for the EAPC.
	The variable for the CI will be name based on var_eapc + "_" + up/Low.

Details

```
This function use Generalized Linear Model (GLM): glm(rate ~ year, family=poisson(link="log")). We use the poisson family instead of Gaussian, so we can compute EAPC even if the is a rate of 0.
```

Value

Return a dataframe.

Author(s)

Mathieu Laversanne

References

```
http://rht.iconcologia.net/stats/sart/eapc/eapc_method.pdf
```

See Also

```
csu_ageSpecific csu_asr csu_trend csu_trendCohortPeriod
```

csu_registry_data_1 11

Examples

```
csu_registry_data_1 cancer registry data
```

Description

Cancer registry data for liver cancer, males, 2007, 4 registries.

Usage

```
data("csu_registry_data_1")
```

Format

A data frame with 76 observations on the following 5 variables.

```
age age variable from 1 to 19. 1 is 0-4 years, 2 is 5-9, etc..., 17 is 80-84, 18 is 85+, 19 represente missing age.
cases Number of cases (incidence)
py Population-year: Reference population of the registry
registry_label Name of the registry
registry Registry code
```

Details

this 4 registries have been selected for this example as they different number of age group (75+, 80+, 85+) and some have missing age cases.

12 csu_registry_data_2

Source

```
http://ci5.iarc.fr/CI5plus/Default.aspx
```

See Also

```
csu_asr csu_eapc csu_ageSpecific
```

Examples

```
csu_registry_data_2 cancer registry data
```

Description

Cancer registry data for liver cancer

Usage

```
data("csu_registry_data_2")
```

Format

```
A data frame with 125856 observations on the following 8 variables.
```

```
sex sex variable: 1 male, 2 female

year year variable, from 1953 to 2007

age age variable from 0 to 85 with missing age.

0 is 0-4 years, 5 is 5-9, ..., 80 is 80-84, 85 is 85+, 99 represente missing age.

cases Number of cases (incidence)

py Population-year: Reference population of the registry

registry_label Name of the registry (118 populations)

registry Registry code (102 registries)

ethnic ethnic code: white (10), black (30), ..., all(99).
```

csu_trend 13

Source

```
http://ci5.iarc.fr/CI5plus/Default.aspx
```

See Also

```
csu_asr csu_eapc csu_ageSpecific
```

Examples

csu_trend

 csu_trend

Description

csu_trend plot stats over year.

Usage

```
csu_trend(df_data,
var_trend = "asr",
var_year = "year",
group_by = NULL,
logscale = TRUE,
smoothing = 0.3,
legend = csu_trend_legend(),
yaxes_title = "Age standardized rate per 100000",
plot_title = "csu_title",
format_export = NULL)
```

Arguments

df_data Data (need to be R data.frame format, see example to import csv file).

var_trend Statistics variable to be plot on Y axis.

Usually for the ASR, but it could be the cumulative risk, or even the number of

cases.

var_year Time variable.

14 csu_trend

group_by Variable to compare different age specific rate (sex, country, cancer ...).
Only one variable can be chosen.

logscale Logical value: if TRUE Y-axis use logscale.

smoothing Apply a smoothing using the R loess function.

. The numerical parameter controls the degree of smoothing.

See option span in loess.

legend option: see csu_trend_legend.

Use only if group_by is not NULL.

yaxes_title Y-axis title. To choose in fonction for the var_trend option.

plot_title Title of the plot.

format_export export the graph in different format:

NULL Plot in R studio windows.

"pdf" Export in PDF format.

"tiff" Export in TIFF 300dpi format.

"png" Export in PNG 200dpi format.

"svg" Export in SVG format. Can be edit with https://inkscape.org/fr/.

The filename is the plot_title option.

Details

This function is design the plot a statistics over time. It has been design for the ASR by year, but can be used for other statistics over time period. The group_by option allow to compare different population or cancer.

Value

Return a plot.

Author(s)

Mathieu Laversanne

See Also

csu_ageSpecific csu_asr csu_eapc csu_trendCohortPeriod

```
data(csu_registry_data_2)
# you can import your data from csv file using read.csv:
# mydata <- read.csv("mydata.csv", sep=",")
# to select only 1 population
test <- csu_registry_data_2[csu_registry_data_2$registry_label=="Colombia, Cali",]
# to change sex variable to factor with label</pre>
```

csu_trendCohortPeriod 15

```
test$sex <- factor(test$sex, levels=c(1,2), labels=c("Male", "Female"))</pre>
# to calculate the asr
df_asr <- csu_asr(test,missing_age = 99,</pre>
                  group_by = c("registry", "registry_label", "year", "sex"),
                  var_age_group = c("registry", "registry_label"))
# plot ASR ove year, by sex.
csu_trend(df_asr, group_by="sex",
                plot_title = "Colombia, Liver")
# plot ASR over year, by sex, with no smoothing.
csu_trend(df_asr, group_by="sex",
  plot_title = "Colombia, Liver",
  smoothing = NULL)
# plot ASR over year, by sex, with high smoothing.
csu_trend(df_asr, group_by="sex",
  plot_title = "Colombia, Liver",
  smoothing = 0.5)
```

csu_trendCohortPeriod csu_trendCohortPeriod

Description

csu_trendCohortPeriod plot cohort period age specific graph.

Usage

```
csu_trendCohortPeriod(
 df_data,
 var_age = "age",
 var_cases="cases",
 var_py="py",
 var_year = "year",
  type = "Cohort",
 missing_age = NULL,
 logscale = TRUE,
 db_rate = 100000,
  first_age = 6,
 last_age = 16,
 year\_group = 5,
 age_dropped=FALSE,
 plot_title = "csu_title",
  format_export = NULL)
```

Arguments

df_data Data (need to be R data.frame format, see example to import csv file).

var_age Age group variable: (numerical) 18 5-years age-group, 0-4, 5-9, .. 85+ and an

optional missing age.

The value can be 1,2..19, as well as 0,5,..85 or other value as long are they are

numerical.

var_cases Number of event (cases, deaths, ...) variable.

var_py Population year variable.

var_year Time variable.
type Type of the plot:

"Cohort" Cohort graph.
"Period" Period graph.

"Both" Cohort Period graph.

missing_age Age value representing the missing age cases.

logscale Logical value: if TRUE Y-axis use logscale.

db_rate The denominator population. Default is 100000.

first_age First age group included, **must** be between 1 and 17. 1 represents 0-4, 2 repre-

sents 5-9, ... 5 represente 20-24 etc.

Default is 6 (25-29 years).

last_age Last age group included, **must** be between 2 and 18. 2 represents 5-9, ... 5 rep-

resente 20-24, ... 18 represents 85+ etc.

Default is 16 (75-79 years).

To plot the age group from 15-19 years until 65-69 years, use: first_age(4), last_age(14)

year_group Usually, data are regrouped in 5 years period.

. The numerical parameter controls the size of the group.

age_dropped Only if some age grouped are missing in the data. Logical value: if TRUE, con-

sidere the age group not used are already dropped from the data.

First_age and last_age option **must** still be filled.

plot_title Title of the plot.

format_export export the graph in different format:

NULL Plot in R studio windows.

"pdf" Export in PDF format.

"tiff" Export in TIFF 300dpi format.
"png" Export in PNG 200dpi format.

"svg" Export in SVG format. Can be edit with https://inkscape.org/fr/.

The filename is the plot_title option.

Details

This function is design the plot a the age-specific cohort and period plot. The type option allow to choose between the 3 different graphics: "Cohort", "Period", or "Both". Please note than the cohort plot and the period plot can be superimposed if the first_age is too low.

csu_trendCohortPeriod 17

Value

Return a plot.

Author(s)

Mathieu Laversanne

See Also

```
csu_asr csu_eapc csu_ageSpecific csu_trend
```

```
data(csu_registry_data_2)
# you can import your data from csv file using read.csv:
# mydata <- read.csv("mydata.csv", sep=",")</pre>
# to select only 1 population
test <- csu_registry_data_2[csu_registry_data_2$registry == 84020,]</pre>
test <- test[test$sex==1,]</pre>
# plot cohort graph from 25-29 years until 75-79 years.
csu_trendCohortPeriod(df_data=test,
                         missing_age =99,
                         plot_title = "USA, Liver, males")
# plot Period graph from 0-5 until 85+.
csu_trendCohortPeriod(df_data=test,
                        missing_age =99,
                         plot_title = "USA, Liver, males",
type="Period",
first_age=1,
last_age=18)
# plot Cohort-Period graph from 30-64 years until 70-74 years.
{\tt csu\_trendCohortPeriod(df\_data=test,}
                        missing_age =99,
                         plot_title = "USA, Liver, males",
type="Both",
first_age=7,
last_age=15)
# plot Cohort-Period graph from 30-64 years until 70-74 years with Y axis normal scale.
{\tt csu\_trendCohortPeriod(df\_data=test,}
                        missing_age =99,
                         plot_title = "USA, Liver, males",
type="Both",
first_age=7,
last_age=15,
logscale=FALSE)
# plot Cohort graph from 25-29 years until 75-79 years, with data grouped in 2 years period.
csu_trendCohortPeriod(df_data=test,
```

18 csu_trend_legend

```
missing_age =99,
plot_title = "USA, Liver, males",
type="Cohort",
year_group = 2)
```

csu_trend_legend

csu_trend_legend

Description

csu_trend_legend legend option use in Rcan package for trends.

Usage

```
csu_trend_legend(title=NULL, position="bottom",nrow=1, right_space_margin=1)
```

Arguments

title Title of the legend. (only if position = "bottom").

position Position of the legend:

"bottom" The legend is place at the bottom of the graph. use with option nrow.

"right" The legend is place at the right of each trend. use with option right_space_margin.

nrow Number of row of the legend (only if position = "bottom").

right_space_margin

If the position = "right", the right margin need to be enough big, to contain the text legend. value should be between 1 and 10 depending the size of the text legend.

Details

This function return a list for the trend graphics of the package Rcan

Value

Return a structured list.

Author(s)

Mathieu Laversanne

See Also

```
csu_ageSpecific
```

csu_trend_legend 19

Index

```
*Topic datasets
    csu_ci5x_mean, 8
    csu_registry_data_1, 11
    csu_registry_data_2, 12
*Topic package
    Rcan-package, 2
csu_ageSpecific, 2, 3, 7, 9, 10, 12-14, 17, 18
csu_asr, 2, 4, 5, 10, 12–14, 17
csu_ci5x_mean, 4, 8
csu_eapc, 2, 4, 7, 10, 12–14, 17
csu_registry_data_1, 11
csu\_registry\_data\_2, 12
csu_trend, 2, 4, 7, 10, 13, 17
csu_trend_legend, 4, 14, 18
\texttt{csu\_trendCohortPeriod}, 2, 4, 7, 10, 14, 15
loess, 14
Rcan (Rcan-package), 2
Rcan-package, 2
```