(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2003年11月27日(27.11.2003)

PCT

(10) 国際公開番号 WO 03/097824 A1

(51) 国際特許分類7:

(21) 国際出願番号:

PCT/JP03/06054

C12N 9/12, C12Q 1/48

(22) 国際出願日:

2003年5月15日(15.05.2003)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2002-142232 2002年5月16日(16.05.2002) JP

- (71) 出願人 (米国を除く全ての指定国について): 萬有製薬 株式会社 (BANYU PHARMACEUTICAL CO., LTD.) [JP/JP]; 〒103-8416 東京都 中央区 日本橋本町 2 丁目 2番3号 Tokyo (JP).
- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 鎌田 健司 (KA-MATA, Kenji) [JP/JP]; 〒300-2611 茨城県 つくば市 大 久保3番 萬有製薬株式会社 つくば研究所内 Ibaraki (JP). 長田 安史 (NAGATA, Vasufumi) [JP/JP]; 〒300-2611 茨城県 つくば市 大久保3番 萬有製薬株式会社 つくば研究所内 Ibaraki (JP). 岩間 年治 (IWAMA, Toshiharu) [JP/JP]; 〒300-2611 茨城県 つくば市 大久保3番 萬有製薬株式会社 つくば研究所内 Ibaraki (JP).

- (74) 代理人: 小林浩, 外(KOBAYASHI,Hiroshi et al.); 〒 104-0028 東京都中央区八重洲2丁目8番7号福岡 ビル9階 Tokyo (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: CRYSTAL OF GLUCOKINASE PROTEIN, AND METHOD FOR DRUG DESIGN USING THE CRYSTAL

(54) 発明の名称: グルコキナーゼタンパク質の結晶、及びその結晶を用いたドラッグデザイン方法

(54) 発明の名称: クルコキナーセタンパク質の結晶、及びその結晶を用いたドラックテサイン方法

(57) Abstract: Glucokinase is crystallized, the three-dimensional structure thereof is analyzed, and then a compound to be bonded to glucokinase is designed on the basis of the coordinate for the resulting three-dimensional structure. Specifically, glucokinase is freed of a part of amino acid residues being on the N-terminal side thereof, to thereby crystallize it, and the three-dimensional structure of the resulting crystal is elucidated through the X-ray crystallographic analysis thereof.

(57)要約:本発明は、グルコキナーゼを結晶化し、その三次元構造を解析し、得られる三次元構造座標に基づいて グルコキナーゼに結合する化合物を設計する。 具体的には、グルコキナーゼのN末端側のアミノ酸残基の一部 を欠失させることによってグルコキナーゼを結晶化し、この結晶について×線結晶構造解析によってその三次元構 造を解明することによって達成される。

- 1 -

明細書

グルコキナーゼタンパク質の結晶、及びその結晶を用いたドラッグデザイン方 法

5 技術分野

本発明は、新規なグルコキナーゼタンパク質(以下、「GKタンパク質」ともいう)の結晶、その結晶を用いて得られる三次元構造座標を用いたドラッグデザイン方法などに関する。

10 背景技術

15

グルコキナーゼ(ATP:D-hexose 6-phosphotran sferaze, EC2. 7. 1. 1)は、哺乳類の4種のヘキソキナーゼアイソザイムのうちの一つ(ヘキソキナーゼ IV)である。これらのアイソザイムは同じ反応を触媒するが、グルコースに対する Km 値に差がある。すなわち、

ヘキソキナーゼI、II、IIIの Km 値は 10-6~10-4M であるのに対し、グルコキナーゼともよばれるヘキソキナーゼIVのグルコースに対する Km 値はずっと大きく、約 10-3M である。ヘキソキナーゼは、解糖系の初期段階に関与する酵素であり、グルコースからグルコース 6 リン酸への反応を触媒する。

グルコキナーゼは、主に肝臓と膵臓ベータ細胞に発現が限局しており、それ 5の細胞におけるグルコース代謝の律速段階を制御することで、体全体の糖代 謝に重要な役割を果たしている。肝臓と膵臓ベータ細胞のグルコキナーゼは、 それぞれスプライシングの違いによりN末端の15アミノ酸の配列が異なって いるが、酵素学的性質は同一である。

10年ほど前から、グルコキナーゼは膵臓ベータ細胞や肝臓のグルコースセンサーとして働くという仮説が提唱されている(Garfinkel D, et al: Am J Physiol 247(3Pt2):R527-536, 1984)。最近のグルコキナーゼ遺伝子操作マウスの結果から、実際にグルコキナーゼは全身のグルコース恒常性に重要な役割を担うことが明らかになっている。

グルコキナーゼ遺伝子を破壊したマウスは、生後まもなく糖尿病で死亡する

(Grupe A, et al: Cell 83:69-78.1995)。一方、グルコキナーゼを過剰発現させたマウスは血糖値が低くなる (Ferre T, et al: Proc Natl Acad Sci U S A 93:7225-7230.1996)。グルコース濃度上昇によってグルコキナーゼ活性が上昇すると、膵臓ベータ細胞と肝細胞の反応は異なるが、いずれも血糖を低下させる方向に作用する。膵臓ベータ細胞は、より多くのインスリンを分泌するようになり、肝臓は糖を取り込みグリコーゲンとして貯蔵すると同時に糖放出を低下させる。

このようにグルコキナーゼ酵素活性の変動は、肝臓および膵臓ベータ細胞を介した哺乳類のグルコースホメオスタシスにおいて重要な役割を果たしている。
10 MODY2 (maturity-onset diabetes of the young) と呼ばれる若年に糖尿病を発症する症例においてグルコキナーゼ遺伝子の突然変異が発見され、グルコキナーゼ活性の低下が血糖上昇の原因となっている (Vionnet N, et al: Nature 356:721-722, 1992)。一方グルコキナーゼ活性を上昇させる突然変異をもつ家系も見つかっており、このような人たちは低血糖症状を示す (Glaser B, et al: N Engl J Med 338: 226-230, 1998)。

以上より、グルコキナーゼはヒトにおいてもグルコースセンサーとして働き、グルコース恒常性に重要な役割を果たしている。一方、多くのII型糖尿病患者のグルコキナーゼは変位を受けていないので、グルコキナーゼセンサーシステムを利用した血糖調節は可能と考えられる。グルコキナーゼ活性化物質には膵臓ベータ細胞のインスリン分泌促進作用と肝臓の糖取り込み亢進および糖放出抑制作用が期待できるので、II型糖尿病患者の治療薬として有用と考えられる。

20

近年、膵臓ベータ細胞型グルコキナーゼが、ラット脳、なかでも特に摂食中 25 枢である視床下部腹内側核(Ventromedial hypothala mus, VMH)に限局して発現していることが明らかにされた。VMHの約 2割の神経細胞は、グルコースレスポンシブニューロンと呼ばれ、従来から体 重コントロールに重要な役割を果たすと考えられてきた。ラットの脳内へグル コースを投与すると摂食量が低下するのに対して、グルコース類縁体のグルコ サミンの脳内投与によってグルコース代謝を抑制すると過食となる。電気生理学的実験からグルコースレスポンシブニューロンは生理的なグルコース濃度変化(5-20mM)に呼応して活性化されるがグルコサミン等でグルコース代謝を抑制すると活性抑制が認められる。VMHのグルコース濃度感知システムには膵臓ペータ細胞のインスリン分泌と同様なグルコキナーゼを介したメカニズムが想定されている。従って肝臓、膵臓ベータ細胞に加えVHMのグルコキナーゼ活性化を行う物質には血糖是正効果のみならず、多くのII型糖尿病患者で問題となっている肥満をも是正できる可能性がある。

一方、DIABETES, vol. 48, 1698-1705, September 1999 にはヘキソキナー 10 ゼ I からグルコキナーゼの立体構造を予測した旨が記載されているが、実際に 結晶化はされていないし、実用的なものではなかった。

以上より、グルコキナーゼの三次元立体構造を明らかにし、グルコキナーゼと相互作用する化合物を効率的に見いだすことを可能にすることは、例えば、糖尿病の治療剤、又は予防剤;網膜症、腎症、神経症、虚血性心疾患、動脈硬化等の糖尿病の慢性合併症の治療剤、又は予防剤;肥満の治療剤、又は予防剤の開発に大きな進展をもたらすと考えられる。

15

現在ではタンパク質の活性中心の解析や反応機作の予測といった作業にコンピュータを利用したCARDD (Computer Aided Rational Drug Design)が実用的なレベルで活用されるようになっている。

CARDDによる創薬システムにおいては、ターゲットとなるタンパク質の3次元構造解析データに基づき、タンパク質の活性部位の構造が予測される。そして、その活性部位の構造と結合し得る化合物の候補に関する情報が化合物データベースから取得される。その後、ターゲットとなるタンパク質の活性部位と候補化合物の3次元構造や物理的性質を考慮し、ターゲットとなるタンパク質に結合しうる化合物の候補を選択する。これらの工程が、いわゆるインシリコスクリーニング工程である。

インシリコスクリーニング工程で選択された化合物が、ターゲットとなるタンパク質と結合し、その活性を変化させるかどうかは、実際の試験(ウエット実験)により調べられる。そして、実際にターゲットとなるタンパク質の活性

を変化させる化合物が医薬の有効成分となる。これにより、実験室で無数の化合物を標的タンパク質に一つ一つ作用させて相互作用を確認するという操作を行うことなく、標的タンパク質と相互作用する化合物を効率よく探し出される。インシリコスクリーニングは、ターゲットとなるタンパク質と結合する化合物の候補を大幅に絞ることができるため医薬品開発に有効な手段であるといえる。

CARDDによる創業システムにおいては、ターゲットとなるタンパク質の X線構造解析による3次元構造解析データが重要な情報となる。X線構造解析 による3次元構造解析には、解析試料としてターゲットとなるタンパク質の結 晶が必要である。したがってCARDDによる創薬システムに基づいてGKに 関連する創薬の開発を進めるためには、GKの結晶が必要である。しかしながら、前述のとおりGKは結晶化が困難で、CARDDに必要な情報を与えうるものではなかった。

15 本発明は、上記従来技術の有する課題に鑑みてなされたものであり、グルコキナーゼの結晶を得ること、及び、当該結晶から得られた情報に基づいてグルコキナーゼに結合する化合物を設計することを目的とする。

発明の開示

- 20 上記目的の少なくともひとつ以上は、以下の発明により解決される。
 - [1] 結晶化に用いることを特徴とする、グルコキナーゼタンパク質。
 - [2] 配列番号5に記載のアミノ酸配列からなることを特徴とする、前記 [1]に記載のタンパク質。
- [3] 配列番号5に記載のアミノ酸配列又はそのアミノ酸配列と実質的に 25 同一のアミノ酸配列からなることを特徴とするタンパク質の結晶。
 - [4] 前記タンパク質がグルコキナーゼタンパク質である、前記[3]に記載の結晶。
 - [5] 配列番号5に記載のアミノ酸配列を有するタンパク質の結晶である、 前記[3]に記載の結晶。

- 5 -

[6] 格子定数が、下記式(1)~(4)

a=b=79.9±4オングストローム … (1)

c=322.2±15オングストローム … (2)

 $\alpha = \beta = 90^{\circ}$... (3)

5 $\gamma = 120^{\circ}$... (4)

を満たす、前記[3]に記載の結晶。

- [7] 空間群がP6₅22である、前記[6]に記載の結晶。
- [8] 表1に記載の三次元構造座標データによって特定されるタンパク質の結晶。
- 10 [9] 表1に記載の三次元構造座標データの少なくとも一つのデータを変更した三次元構造座標データにおいて、表1に記載の三次元構造座標データで示されるアミノ酸の主鎖の原子 (Cα原子) と、該Cα原子と対応する前記変更した三次元構造座標データで示されるCα原子との平均二乗偏差が、0.6 オングストローム以下である結晶。
- [10] 化合物結合部位が、配列番号5に示すアミノ酸配列における、チロシン61~セリン69、グルタミン酸96~グルタミン98、イソロイシン159、メチオニン210~チロシン215、ヒスチジン218~グルタミン酸221、メチオニン235、アルギニン250、ロイシン451~リジン459のアミノ酸残基の少なくともひとつによって構成される、[3]~[9]のいずれかに記載の結晶。
 - [11]配列番号5に記載のアミノ酸配列又はそのアミノ酸配列と実質的に同一のアミノ酸配列からなるタンパク質と該タンパク質に結合可能な化合物との複合体を含む結晶。
 - [12] 前記化合物が、式(I)で表される、前記[11]に記載の結晶。

(l)

[式中、R は、ハロゲン原子、-S-(O) p-A、-S-(O) q-B 又は-O -B を示し(ここで、p 及びq は同一又は異なって、 $0\sim2$ の整数を示し、A は置換されていてもよい直鎖の C_1-C_6 アルキル基を示し、B は置換されていてもよい五員環又は六員環のアリール基又はヘテロアリール基を示し、 R^2 は水素原子又はハロゲン原子を示し、

は、アミド基に結合した炭素原子の隣に窒素原子を有する、置換されていても 10 よい単環の又は双環のヘテロアリール基を示す]

 $[1\ 3]$ 前記化合物が、式 (IIIa) \sim 式 (IIIc) で表されるいずれかの化合物である前記 $[1\ 2]$ に記載の結晶。

(Illa)

$$0 = \stackrel{CH_3}{\stackrel{}{\stackrel{}{=}} 0} 0 \qquad 0 \qquad \stackrel{S}{\stackrel{}{\stackrel{}{=}} 0} CH_3$$

$$0 + \stackrel{CH_3}{\stackrel{}{\stackrel{}{=}} 0} 0 \qquad 0 \qquad (IIIc)$$

5

- [14] 配列番号 8 に記載のアミノ酸配列からなることを特徴とする、前記 [1] に記載のタンパク質。
- [15] 配列番号8に記載のアミノ酸配列又はそのアミノ酸配列と実質的に同一のアミノ酸配列からなることを特徴とするタンパク質の結晶。
- 10 [16] 前記タンパク質がグルコキナーゼタンパク質である、前記 [15] に記載の結晶。
 - [17] 配列番号8に記載のアミノ酸配列を有するタンパク質の結晶である、 前記[15]に記載の結晶。
 - [18] 格子定数が、下記式
- 15 a=b=103. 2±5 オングストローム … (5)

c=281.0±7オングストローム … (6)

$$\alpha = \beta = 90^{\circ} \quad \cdots \quad (7)$$

 $\gamma = 120^{\circ}$ ··· (8)

を満たす、前記[15]に記載の結晶。

20 [19] 空間群が P6522 である、前記 [18] に記載の結晶。

- 8 -

[20] 表2に記載の三次元構造座標データによって特定されるタンパク質の結晶。

[21] 表 2 に記載の三次元構造座標データの少なくとも一つのデータを変更した三次元構造座標データにおいて、表 2 に記載の三次元構造座標データで示されるアミノ酸の主鎖の原子(C α 原子)と、該C α 原子と対応する前記変更した三次元構造座標データで示されるC α 原子との平均二乗偏差が、0 . 6 オングストローム以下である結晶。

[22] 配列番号 2 に記載のアミノ酸配列を有するタンパク質のN未端、C 末端のいずれかまたは両方から、 $1\sim50$ 個のアミノ酸残基を欠損したアミノ酸配列を有するタンパク質を製造するタンパク質製造工程と、

前記タンパク質製造工程で得られたタンパク質と結合する化合物と、前記タンパク質製造工程で得られたタンパク質とを反応させるタンパク質反応工程とを含む、

タンパク質及びそのタンパク質と結合する化合物の複合体を含む結晶の製造 15 方法。

[23] タンパク質の結晶を製造する方法であって、

配列番号5に記載のアミノ酸配列又はそのアミノ酸配列と実質的に同一のアミノ酸配列を含みグルコキナーゼ活性を有するタンパク質、及び該タンパク質に結合可能な化合物を用いることを特徴とする、結晶の製造方法。

20 [24] 前記タンパク質に結合可能な化合物が、式(I)で表される化合物 であることを特徴とする、前記[23]に記載のタンパク質の結晶の製造方法。

10

[式中、 R^1 は、 Λ ロゲン原子、-S-(O)p-A、-S-(O)q-B又は<math>-O-Bを示し(ここで、p及びqは同一又は異なって、 $0\sim2$ の整数を示し、Aは置換されていてもよい直鎖の C_1-C_6 アルキル基を示し、Bは置換されていてもよい五員環又は六員環のアリール基又はヘテロアリール基を示し、

5 R²は水素原子又はハロゲン原子を示し、

は、アミド基に結合した炭素原子の隣に窒素原子を有する、置換されていても よい単環の又は双環のヘテロアリール基を示す)

- 10 [25] 共結晶法又はソーキング法による、前記[23]、又は[24]に 記載の結晶の製造方法。
 - [26] タンパク質の立体構造情報に基づいて該タンパク質に結合する化合物の構造をデザインするドラッグデザイン方法であって、

該タンパク質の立体構造情報が、前記[3]~[13]、又は[15]~[2 15 1]のうちのいずれか一項に記載の結晶を解析することによって得られる情報 であることを特徴とする、ドラッグデザイン方法。

[27] 前記立体構造情報に基づいて、前記タンパク質の化合物結合部位を 推測する結合部位推測工程と、

前記結合部位推測工程で推測された化合物結合部位に適合する化合物を、化合 20 物ライブラリより選択する選択工程と、

を含むことを特徴とする、前記 [26] に記載のドラッグデザイン方法。

[28] 前記立体構造情報に基づいて、前記タンパク質の化合物結合部位を 推測する結合部位推測工程と、

前記結合部位推測工程で推測された化合物結合部位に適合する化合物の構造を 25 構築する化合物構造構築工程と、

を含むことを特徴とする、前記[26]に記載のドラッグデザイン方法。

5

10

15

20

[29] 前記立体構造情報に基づいて、前記タンパク質の化合物結合部位を 推測する結合部位推測工程と、

前記結合部位推測工程で推測された化合物結合部位と該化合物結合部位に適合する化合物とが相互作用するように化合物の構造を目視によりデザインするデザイン工程と、

を含むことを特徴とする、前記[26]に記載のドラッグデザイン方法。

- [30] 前記化合物結合部位が、配列番号 5 に示すアミノ酸配列における、チロシン6 1 ~セリン6 9 、グルタミン酸 9 6 ~グルタミン9 8 、イソロイシン1 5 9 、メチオニン2 1 0 ~チロシン2 1 5 、ヒスチジン2 1 8 ~グルタミン酸 2 2 1 、メチオニン2 3 5 、アルギニン2 5 0 、ロイシン4 5 1 ~リジン4 5 9 のアミノ酸残基の少なくともひとつによって構成されている、前記 [2
- 6] ~ [29] のうちのいずれか一項に記載のドラッグデザイン方法。 [31] さらに、前記化合物結合部位に適合すると推定される候補化合物の 生理活性を測定する工程を含む、前記 [26] ~ [30] のいずれか一項に記載のドラッグデザイン方法。
- [32] さらに、前記化合物結合部位に適合すると推定される候補化合物と、配列番号5に記載のアミノ酸配列又はそのアミノ酸配列と実質的に同一のアミノ酸配列を含むタンパク質とを接触させ、その候補化合物が該タンパク質に結合するか否か判定する結合判定工程を含む、前記[26]~[30]のいずれか一項に記載のドラッグデザイン方法。
- [33] 前記 [26] ~ [30] のいずれか一項に記載のドラッグデザイン 方法によって選択された化合物群を化合物アレイとして組み合わせることを含む化合物アレイの製造方法。

25 図面の簡単な説明

図1は、グルコキナーゼの三次元構造を示すリボン図である。

(図1aは、グルコキナーゼ ($\Delta 1-11$)/グルコース/化合物1(式 IIIa の化合物)の構造を示すリボン図である。また、右図は、左図を回転した図である。)

- 11 -

(図1 bは、グルコキナーゼ (Δ 1 - 1 5) 単体の構造を示すリボン図である。また、右図は、左図を回転した図である。)

図 2 は、グルコキナーゼ (Δ 1-1 1) の結合部位に対する化合物 1 (式 IIIa の化合物) の結合様式を示す図である。

5 図 3 は、グルコキナーゼ (Δ 1-1 1) の結合部位の構造を示す図である。

発明を実施するための最良の形態

本明細書において、アミノ酸、ペプチド、蛋白質は下記に示す I UPA C – I UB生化学命名委員会 (CBN) で採用された略号を用いて表される。また、10 特に明示しない限りペプチド及び蛋白質のアミノ酸残基の配列は、左端から右端にかけてN末端からC末端となるように、またN末端が1番になるように表される。

以下、本発明の各実施態様について詳細に説明する。

15 (グルコキナーゼタンパク質)

20

まず、本発明は、結晶化に用いることを特徴とする、グルコキナーゼタンパク質を提供する。グルコキナーゼタンパク質(GKタンパク質)は、上述のように、生体内で極めて重要な糖の代謝に関与している。したがって、GKタンパク質の三次元構造を明らかにし、GKタンパク質の活性部位を解明することによって、GKタンパク質に結合する化合物(すなわち、活性化剤又は阻害剤)を探索することができる。よって、GKタンパク質の三次元構造を明らかにすることは重要である。

タンパク質の3次元構造を明らかにする手法として、X線結晶構造解析が良く知られている。即ち、タンパク質を結晶化し、その結晶に単色化されたX線25 をあて、得られたX線の回折像をもとに、該タンパク質の3次元構造を解明する(Blundell, T. L. 及びJohnson, L. N., PROTEIN CRYSTALLOGRAPHY, 1-565頁, (1976) Academic Press, New York)。GKタンパク質のX線結晶構造解析に供するために、まず、GKタンパク質を結晶化する必要がある。

ここで、本発明の「GKタンパク質」とは、配列番号2に示すアミノ酸配列を有するヒト由来の肝臓型グルコキナーゼと、配列番号2と実質的に同一のアミノ酸配列を含有するタンパク質をいう。ここで当該実質的に同一のアミノ酸配列を含有するタンパク質としては、グルコキナーゼ活性を有するものが好ましい。したがって、本明細書では、GKタンパク質は、ヒト由来の肝臓型グルコキナーゼのみならず、ヒト由来の膵臓型グルコキナーゼ、マウス、ラット、サル等の非ヒト由来GKタンパク質をも含む。本発明では、ヒト肝臓型グルコキナーゼが好ましく用いられる。ヒト由来のグルコキナーゼにおいて、肝臓型と膵臓型ではN末端の15アミノ酸残基が相違する。ここで、「グルコキナーゼ活性」とは、グルコースからグルコース6リン酸への反応を触媒する活性をいう。

10

15

20

25

タンパク質の結晶化が一般的に困難なことは良く知られており、GKタンパ ク質をそのまま結晶化することはできなかった。本発明者らは、種々、試行錯 誤による実験の結果、GKタンパク質のN末端側のアミノ酸を11個、又は1 5個を欠失させることによって、始めてGKタンパク質の結晶化に成功した。 欠失させた領域は、結晶化を試みた際に球状のGKタンパク質分子より突出し、 その結果、結晶内で隣接するGKタンパク質分子との間で立体的な障害となり GKタンパク質が結晶となるのを妨げていたと考えられる。すなわち、本発明 では、アミノ酸配列が既知でありながら結晶化には成功していなかったグルコ キナーゼにおいて、N末端側の11個のアミノ酸残基を欠失させたGKタンパ ク質(配列番号5)、又はN末端側の15個のアミノ酸残基を欠失させたGK タンパク質(配列番号8)を用いることにより、GKタンパク質の結晶を得た。 ただし、欠失させるアミノ酸は、隣接する結晶との間で立体的な障害がなくな る範囲であればその数は限定されない。具体的には、例えば、配列番号2で表 されるアミノ酸配列において、N末端側の1~50個、好ましくは3~30個、 より好ましくは $5\sim25$ 個、さらに好ましくは $8\sim18$ 個、特に好ましくは1 $1\sim 15$ 個のアミノ酸残基を欠失させたアミノ酸配列などが本発明において用 いられる。また、C末端側の $1\sim8$ 個、好ましくは $1\sim7$ 個、より好ましくは 2~6個のアミノ酸残基を欠失させたアミノ酸配列などが本発明において用い

- 13 -

られる。

(グルコキナーゼタンパク質の結晶及びその製造方法)

次に、本発明においては、配列番号5、及び配列番号8に記載のアミノ酸配 列又はそのアミノ酸配列と実質的に同一のアミノ酸配列を含むタンパク質を含 む結晶を提供する。

上述したように、結晶化に供するGKタンパク質としては、配列番号 5、及び/又は配列番号 8 で表されるアミノ酸配列又はそれと実質的に同一のアミノ酸配列を含むタンパク質などが用いられる。

配列番号5、及び/又は配列番号8で表されるアミノ酸配列又はそれと実質 10 的に同一のアミノ酸配列を含むタンパク質(以下、配列番号2で表されるアミ ノ酸配列又はそれと実質的に同一のアミノ酸配列を有するタンパク質と併せて 「GKタンパク質」と略すこともある)は、結晶化が可能であればよく、その アミノ酸配列は特に制限されない。ここで、配列番号5、及び/又は配列番号 8 に記載のアミノ酸配列と実質的に同一のアミノ酸配列を含むタンパク質は、 15 グルコキナーゼ活性を有している必要はなく、ドラッグデザインに必要な情報 を得ることができる結晶構造を有するものであれば、不活性な変異体(例えば、 ATPの結合部位に変異を有することにより不活性化した変異体)であってもよ い。ここで、配列番号2又は5で表されるアミノ酸配列と実質的に同一のアミ ノ酸配列を含むタンパク質としては、配列番号2又は5で表わされるアミノ酸 20 配列と約60%以上、好ましくは約70%以上、さらに好ましくは約80%以 上、なかでも好ましくは約90%以上、最も好ましくは約95%以上の相同性 を有するアミノ酸配列などが挙げられる。また、配列番号2又は5で表される アミノ酸配列と実質的に同一のアミノ酸配列を含むタンパク質として、例えば、

25 配列番号2又は5に記載のアミノ酸配列において1~10個、好ましくは1~ 5個、さらに好ましくは1~3個、さらに好ましくは1~2個のアミノ酸残基 が置換、欠失、付加および/または挿入されたアミノ酸配列が例示される。

GKタンパク質の3次元構造解析は、例えば、次のようにして行う。まず、 タンパク質を精製する。そして、結晶化、X線回折強度データ収集、各回折斑

点の位相決定、電子密度計算、分子モデル作成、構造の精密化などの一連の工程を行う。タンパク質構造解析を行うための主要な設備として、結晶化用インキュベーター、双眼顕微鏡、X線回折計、3次元コンピュータグラフィックス装置などが用いられる。具体的にタンパク質の結晶を作製する実験過程は、タンパク質を大量に(数mg以上が好ましい。)精製する段階、結晶が得られる条件を広く検索する段階、X線解析に適した良質の結晶を得る段階に分けられる。以下、各工程について具体的に説明する。

結晶化に際しては、GKタンパク質を、高純度に精製する。精製方法としては、公知のものが利用でき、例えば、カラムクロマトグラフィー、塩析、遠心 分離などが用いられる。

精製されたGKタンパク質は、結晶化し、X線結晶構造解析のための試料とする。結晶化は、蒸気拡散法や透析法等の公知の方法に基づいて行われる。タンパク質の結晶を得る際に、タンパク質の純度・濃度、温度、pH、使用する沈殿剤濃度等多くの要素を検討する必要がある。結晶化条件の検討は、市販のスクリーニング試薬を使用して広い範囲で行うことができ、1つの条件に $1\sim2$ %濃度のタンパク質溶液を $1\sim2$ μ Lずつ使用して検索することが好ましい。こうして微結晶などが得られた場合には、さらに条件を精密化することが好ましい。

15

なお、GKタンパク質の結晶を得るためには非常に多くの条件を検索しなけれ 20 ばならない。従って、結晶化条件の検討のためにも、タンパク質の大量発現系 を構築することが好ましい。一般にタンパク質のうち、結晶になるものの多く は、溶液状態で単分散であり、多分散のものは大体において結晶化しない。そ こで、GKタンパク質のN末端を順次切除し、得られたタンパク質について、光 散乱装置を用いてタンパク質溶液の単分散性を判定し、試料が結晶化に適して いるかどうかを検討しても良い。

次に、得られたGKタンパク質の結晶を用いて、X線回折強度測定を行う。 最近では、結晶を細い糸の輪などですくって液体窒素温度に急速冷却してその まま低温で測定する方法も利用されている。回折X線の強度測定は、通常、イ メージングプレートなどの2次元検出器によって行う。X線を当てながら結晶 を回転させることで発生する多くの回折線をイメージングプレートに記録し、 記録された回折強度をレーザーを当てることにより読み取る。

次に、重原子ソーキング法や共結晶化法により重原子同型置換体を調製することが好ましい。これを使用して多重同型置換法 (MIR法) によりタンパク質 結晶の位相を決定することができる。重原子を導入する代わりに、複雑な波長のX線による回折強度データに基づいて位相を決定する多波長異常散乱法 (MAD法) も利用できる。類似構造を有する分子が既に解析されている場合には、その分子構造を結晶中にあてはめて初期構造を得ることができ、これをもとにフーリエ合成図を描き、残りの部分の構造を解明して全構造を決定する分 子置換法 (MR法) も知られている。

位相が上記の方法で決定したならば、これより電子密度を求める。この精度は、反射の数(分解能)と使用した反射の精度による。分解能は使用する反射の最小面間隔で表す。この電子密度図から分子モデルを組み立てる。分子モデルを組み立てると原子座標が得られるので、これより構造因子の計算値を求め、

15 この大きさを観測値に近づける最小自乗法により原子パラメータの精密化を行う。このようにしてできるだけ妥当な構造情報を取得する。

本発明においては、配列番号5に示すGKタンパク質の結晶を調製することに成功している(後述の実施例参照)。そしてこのようにして得られたGKタンパク質の結晶は、格子定数が、下記式(1)~(4):

20 a=b=79.9±4オングストローム … (1) c=322.2±15オングストローム … (2) α=β=90° … (3) γ=120° … (4)

を満たすものであった。また、この結晶は、空間群がP6,22であることが解明された。ここで、前記a=bは 79.9 ± 3 オングストロームであることが好ましく、 79.9 ± 2 オングストロームであることがより好ましく、 79.9 ± 1 オングストロームであることがさらに好ましい。また、前記cは 322.2 ± 10 オングストロームであることが好ましく、 322.2 ± 8 オングストロームであることがより好ましく、 322.2 ± 8 オングストロームであることがより好ましく、 322.2 ± 5 オングストロームであることがさらに好ましい。

- 16 - このようにして得られたGKタンパク質結晶の3次元構造座標を表1に示す。

	表1						
	ATOM	1	CB	THR 14	25. 972 -34. 025	76. 567	1. 00 51. 12
5	ATOM.	2	0G1	1 THR 14	27. 398 -34. 012	76. 715	1. 00 51. 49
	ATOM	3	CG2	2 THR 14	25. 626 -34. 173	75. 095	1. 00 49. 96
	ATOM	4	C	THR 14	24. 138 -32. 317	76. 374	1. 00 50. 95
	ATOM	5	0	THR 14	24. 246 -31. 685	75. 330	1. 00 52. 42
	ATOM	6	N	THR 14	25. 108 -32. 861	78. 611	1. 00 51. 41
10	ATOM	7	CA	THR 14	25. 384 -32. 717	77. 154	1. 00 50. 49
	ATOM	8	N	LEU 15.	22. 957 -32. 673	76. 871	1. 00 49. 75
	ATOM	9	CA	LEU 15	21. 733 -32. 307	76. 167	1. 00 49. 25
	ATOM	10	CB	LEU 15	20. 496 -32. 824	76. 904	1. 00 52. 56
	ATOM	11	CG	LEU 15	20. 439 -34. 307	77. 291	1. 00 55. 08
15	ATOM	12	CD 1	LEU 15	21. 186 -34. 524	78. 610	1. 00 53. 67
	ATOM	13	CD2	LEU 15	18. 980 -34. 742	77. 438	1. 00 54. 84
	ATOM	14	C	LEU 15	21. 676 -30. 781	76. 078	1. 00 48. 68
	ATOM	15	0	LEU 15	21. 397 -30. 208	75. 023	1. 00 47. 52
	ATOM	16	N	VAL 16	21. 955 -30. 128	77. 201	1. 00 47. 07
20	MOTA	17	CA	VAL 16	21. 950 -28. 677	77. 265	1. 00 44. 96
	ATOM	18	CB	VAL 16	21. 988 -28. 188	78. 733	1. 00 46. 09
	ATOM	19	CG1	VAL 16	22. 239 -26. 684	78. 784	1. 00 44. 09
	ATOM	20	CG2	VAL 16	20. 670 -28. 523	79. 418	1. 00 45. 38
	ATOM	21	C	VAL 16	23. 142 -28. 097	76. 512	1. 00 43. 58
25	ATOM	22	0	VAL 16	23. 004 -27. 110	75. 790	1. 00 41. 54
	ATOM	23	N	GLU 17	24. 310 -28. 712	76. 672	1. 00 43. 48
	ATOM	24	CA	GLU 17	25. 507 -28. 223	75. 998	1. 00 45. 62
	ATOM	25	CB	GLU 17	26. 759 -28. 931	76. 532	1. 00 46. 30
	ATOM	26	CG	GLU 17	27. 140 -28. 571	77. 984	1. 00 49. 19

- 17 -.

PCT/JP03/06054

ATOM 27 CDGLU 17 27. 467 -27. 087 78. 191 1. 00 50. 74 ATOM 28 OE1 GLU 17 28. 238 -26. 520 77. 386 1.00 50.39 ATOM 29 0E2 GLU 17 26. 966 -26. 488 79. 170 1.00 50.85 ATOM 30 C GLU 17 25. 417 -28. 378 74.479 1. 00 45. 93 5 ATOM 31 0 GLU 17 26. 097 -27. 666 73. 735 1. 00 44. 10 ATOM 32 N **GLN 18** 24. 577 -29. 303 74. 020 1.00 45.41 ATOM 33 CA GLN 18 24. 400 -29. 513 72. 588 1. 00 46. 37 ATOM 34 **GLN 18** CB 23. 643 -30. 818 72. 307 1.00 49.99 ATOM 24. 488 -32. 086 35 CG GLN 18 72. 423 1.00 55.59 ATOM 36 CD GLN 18 23. 701 -33. 352 10 72.088 1. 00 58. 40 ATOM 37 0E1 GLN 18 23. 158 -33. 489 70. 988 1. 00 60. 78 ATOM 38 NE2 GLN 18 23. 638 -34. 280 73. 037 1.00 56.40 ATOM **GLN 18** 39 C 23. 617 -28. 338 72. 014 1.00 44.35 ATOM 40 0 GLN 18 23. 849 -27. 912 70.885 1. 00 43. 20 ATOM 15 41 N ILE 19 22. 677 -27. 821 72. 791 1. 00 41. 97 ATOM 42 CA ILE 19 21. 895 -26. 689 72. 327 1. 00 40. 37 ATOM 43 CB ILE 19 20. 631 -26. 500 73. 193 1. 00 39. 71 MOTA CG2 ILE 19 44 19. 976 -25. 166 72. 894 1. 00 39. 42 ATOM 45 CG1 ILE 19 19. 653 -27. 653 72. 915 1. 00 40. 83 ATOM 46 CD1 ILE 19 20 18. 356 - 27.59973. 719 1.00 38.38 ATOM 47 C **ILE 19** 22. 764 -25. 431 72. 344 1. 00 39. 01 ATOM 48 0 ILE 19 22. 746 -24. 644 71. 394 1. 00 40. 12 LEU 20 ATOM 49 N 23. 550 -25. 267 73. 404 1. 00 35. 38 ATOM 50 CA LEU 20 24. 423 -24. 109 73. 537 1.00 34.35 ATOM 51 LEU 20 CB 25. 026 -24. 050 25 74. 944 1. 00 32. 09 ATOM LEU 20 52 CG 24. 050 -23. 887 76. 106 1. 00 30. 92 ATOM 53 CD1 LEU 20 24. 813 -23. 722 77. 420 1. 00 27. 61 ATOM 54 CD2 LEU 20 23. 171 -22. 689 75. 843 1. 00 29. 31 ATOM 55 C LEU 20 25. 555 **-24**. 135 72. 518 1. 00 34. 62

- 18 -

					10		
	ATOM	I 56	0	LEU 20	26. 066 -23. 087	72. 112	1. 00 34. 19
	ATOM	I 57	N	ALA 21	25. 946 - 25. 336	72. 116	1. 00 33. 16
	ATOM	58	CA	ALA 21	27. 030 -25. 509	71. 163	1. 00 34. 30
	ATOM	59	CB	ALA 21	27. 344 -26. 992	70. 993	1. 00 34. 49
5	ATOM	60	C	ALA 21	26. 696 -24. 886	69. 814	1. 00 35. 20
	ATOM	61	0	ALA 21	27. 587 -24. 619	69. 007	1. 00 35. 57
	ATOM	62	N	GLU 22	25. 412 -24. 652	69. 578	1. 00 36. 75
	ATOM	63	CA	GLU 22	24. 961 -24. 053	68. 329	1. 00 37. 80
	ATOM	64	CB	GLU 22	23. 435 -24. 102	68. 256	1. 00 41. 47
10	ATOM	65	CG	GLU 22	22. 878 -23. 851	66. 867	1. 00 47. 91
	ATOM	66	CD	GLU 22	21. 384 -24. 128	66. 767	1. 00 49. 95
	ATOM	67	0E1	GLU 22	20. 857 -24. 163	65. 630	1. 00 50. 84
	ATOM	68	0E2	GLU 22	20. 741 -24. 307	67. 822	1. 00 50. 26
	ATOM	69	C	GLU 22	25. 444 -22. 605	68. 177	1. 00 37. 38
15	ATOM	70	0	GLU 22	25. 380 -22. 039	67. 088	1. 00 38. 34
	ATOM	71	N	PHE 23	25. 928 -22. 012	69. 268	1. 00 35. 41
	ATOM	72	CA	PHE 23	26. 426 -20. 636	69. 249	1. 00 33. 38
	ATOM	73	CB	PHE 23	26. 224 -19. 962	70. 614	1. 00 31. 59
	ATOM	74	CG	PHE 23	24. 826 -19. 470	70. 843	1. 00 29. 81
20	ATOM	75	CD1	PHE 23	23. 836 -20. 328	71. 310	1. 00 26. 48
	ATOM	76	CD2	PHE 23	24. 489 -18. 151	70. 555	1. 00 28. 79
	ATOM	77	CE 1	PHE 23	22. 520 -19. 882	71. 487	1. 00 29. 30
	ATOM	78	CE2	PHE 23	23. 177 -17. 691	70. 727	1. 00 31. 65
	ATOM	79	CZ	PHE 23	22. 189 -18. 563	71. 195	1. 00 28. 91
25	ATOM	80	C	PHE 23	27. 899 -20. 542	68. 877	1. 00 33. 33
	ATOM	81	0	PHE 23	28. 396 -19. 467	68. 549	1. 00 34. 12
	ATOM	82	N	GLN 24	28. 596 -21. 670	68. 940	1. 00 32. 75
	ATOM	83	CA	GLN 24	30. 016 -21. 716	68. 620	1. 00 32. 56
	ATOM	84	CB	GLN 24	30. 543 -23. 147	68. 778	1. 00 35. 53

- 19 -

				- 19		
	ATOM	85 CG	GLN 24	30. 817 -23. 603	3 70. 210	1. 00 37. 84
	ATOM	86 CD	GLN 24	31. 214 -25. 074	70. 266	1. 00 42. 36
	ATOM	87 OE	I GLN 24	31. 802 -25. 601	69. 320	1. 00 43. 06
	ATOM	88 NE2	2 GLN 24	30. 902 -25. 739	71. 375	1. 00 40. 61
5	ATOM	89 C	GLN 24	30. 335 -21. 233	67. 208	1. 00 31. 93
	ATOM	90 0	GLN 24	29. 508 -21. 320	66. 299	1. 00 30. 32
	ATOM !	91 N	LEU 25	31. 548 -20. 717	67. 043	1. 00 31. 64
	ATOM !	92 CA	LEU 25	32. 029 -20. 257	65. 751	1. 00 31. 85
	ATOM S	93 CB	LEU 25	31. 876 -18. 742	65. 615	1. 00 31. 24
10	ATOM 9	14 CG	LEU 25	30. 441 -18. 211	65. 563	1. 00 29. 93
	ATOM S	5 CD1	LEU 25	30. 436 -16. 690	65. 710	1. 00 28. 63
	ATOM S	6 CD2	LEU 25	29. 801 -18. 640	64. 262	1. 00 27. 61
	ATOM 9	7 C	LEU 25	33. 502 -20. 635	65. 667	1. 00 33. 30
	ATOM 9	8 0	LEU 25	34. 298 -20. 218	66. 502	1. 00 33. 97
15	ATOM 9	9 N	GLN 26	33. 856 -21. 450	64. 679	1. 00 34. 57
	ATOM 10	O CA	GLN 26	35. 244 -21. 860	64. 496	1. 00 36. 87
	ATOM 10	1 CB	GLN 26	35. 330 -23. 053	63. 540	1. 00 40. 20
	ATOM 10		GLN 26	35. 105 -24. 414	64. 182	1. 00 46. 34
	ATOM 10	3 CD	GLN 26	33. 863 -24. 462	65. 041	1. 00 48. 48
20	ATOM 10	4 OE1	GLN 26	33. 918 -24. 229	66. 253	1. 00 49. 27
	ATOM 10	NE2	GLN 26	32. 725 -24. 757	64. 417	1. 00 51. 72
	ATOM 10	G C	GLN 26	36. 024 -20. 688	63. 910	1. 00 36. 49
	ATOM 107	0	GLN 26	35. 430 -19. 735	63. 403	1. 00 35. 76
	ATOM 108	B N	GLU 27	37. 347 -20. 761	63. 981	1. 00 35. 17
25	ATOM 109	CA	GLU 27	38. 181 -19. 705	63. 441	1. 00 37. 77
	ATOM 110	CB	GLU 27	39. 658 -20. 047	63. 627	1. 00 40. 11
	ATOM 111	CG	GLU 27	40. 596 -19. 156	62. 831	1. 00 47. 14
	ATOM 112	CD	GLU 27	41. 754 -18. 639	63. 662	1. 00 52. 56
	ATOM 113	0E1 (GLU 27	41. 507 -17. 808	64. 567	1. 00 54. 72

- 20 -

				. 50		
	ATOM 1	14 OE	2 GLU 27	42. 906 -19. 067	63. 415	1. 00 54. 43
	ATOM 1	15 C	GLU 27	37. 878 -19. 511	61. 961	1. 00 37. 80
	ATOM 1	16 0	GLU 27	37. 915 -18. 392	61. 446	1. 00 37. 09
	ATOM 1	17 N	GLU 28	37. 557 -20. 605	61. 282	1. 00 36. 94
5	ATOM 1	18 CA	GLU 28	37. 261 -20. 535	59. 862	1. 00 36. 18
	ATOM 1	19 CB	GLU 28	37. 175 -21. 939	59. 267	1. 00 37. 83
	ATOM 1	20 CG	GLU 28	37. 826 -22. 039	57. 902	1. 00 41. 72
	ATOM 1	21 CD	GLU 28	39. 154 -21. 287	57. 843	1. 00 44. 57
	ATOM 1	22 OE1	GLU 28	40. 033 -21. 531	58. 706	1. 00 46. 91
10	ATOM 1	23 OE2	GLU 28	39. 313 -20. 446	56. 933	1. 00 44. 10
	ATOM 1	24 C	GLU 28	35. 973 -19. 779	59. 588	1. 00 34. 66
	ATOM 12	25 0	GLU 28	35. 860 -19. 089	58. 575	1. 00 33. 91
	ATOM 12	26 N	ASP 29	34. 994 -19. 926	60. 472	1. 00 32. 44
	ATOM 12	27 CA	ASP 29	33. 738 -19. 219	60. 301	1. 00 32. 41
15	ATOM 12	28 CB	ASP 29	32. 713 -19. 625	61. 370	1. 00 34. 13
	ATOM 12	29 CG	ASP 29	32. 302 -21. 091	61. 285	1. 00 34. 13
	ATOM 13		ASP 29	32. 012 -21. 580	60. 173	1.00 34.03
	ATOM 13	1 OD2	ASP 29	32. 246 -21. 749	62. 347	1. 00 35. 16
	ATOM 13	2 C	ASP 29	34. 054 -17. 728	60. 456	1.00 31.21
20	ATOM 13		ASP 29	33. 542 -16. 895	59. 717	1. 00 29. 93
	ATOM 13	4 N	LEU 30	34. 912 -17. 403	61. 419	1. 00 29. 60
	ATOM 13	5 CA	LEU 30	35. 274 -16. 016	61. 674	1. 00 28. 38
	ATOM 13		LEU 30	36. 101 -15. 901	62. 964	1. 00 23. 67
	ATOM 13	7 CG	LEU 30	35. 435 -16. 298	64. 289	1. 00 23. 54
25	ATOM 13		LEU 30	36. 314 -15. 823	65. 433	1. 00 22. 55
	ATOM 139		LEU 30	34. 038 -15. 674	64. 418	1. 00 24. 55
,	ATOM 140	O C	LEU 30	36. 032 -15. 390	60. 499	1. 00 29. 80
	ATOM 141	1 0	LEU 30	35. 775 -14. 242	60. 139	1. 00 29. 56
	ATOM 142	2 N	LYS 31	36. 963 -16. 131	59. 906	1. 00 29. 13

- 21 -

				41		
	ATOM 143	3 CA	LYS 31	37. 704 -15. 609	58. 770	1. 00 30. 46
	ATOM 144	4 CB	LYS 31	38. 823 -16. 574	58. 365	1. 00 32. 24
	ATOM 145	CG	LYS 31	39. 970 -16. 653	59. 374	1. 00 36. 80
	ATOM 146	CD	LYS 31	41. 091 -17. 577	58. 885	1. 00 40. 49
. 5	ATOM 147	CE	LYS 31	42. 291 -17. 534	59. 829	1. 00 44. 52
	ATOM 148	NZ	LYS 31	43. 443 -18. 369	59. 363	1. 00 47. 22
	ATOM 149	C	LYS 31	36. 746 -15. 391	57. 599	1. 00 31. 28
	ATOM 150	0	LYS 31	36. 918 -14. 464	56. 816	1. 00 32. 79
	ATOM 151	N	LYS 32	35. 730 -16. 243	57. 486	1. 00 30. 96
10	ATOM 152	CA	LYS 32	34. 758 -16. 116	56. 406	1. 00 32. 66
	ATOM 153	CB	LYS 32	33. 868 -17. 364	56. 324	1. 00 32. 27
	ATOM 154	CG	LYS 32	32. 921 -17. 362	55. 135	1. 00 34. 72
	ATOM 155	CD	LYS 32	32. 203 -18. 701	54. 965	1. 00 39. 55
	ATOM 156	CE	LYS 32	31. 272 -18. 678	53. 745	1. 00 42. 65
15	ATOM 157	NZ	LYS 32	30. 699 -20. 026	53. 417	1. 00 42. 72
	ATOM 158	С	LYS 32	33. 890 -14. 868	56. 609	1. 00 32. 63
	ATOM 159	0	LYS 32	33. 607 -14. 140	55. 652	1. 00 32. 25
	ATOM 160	N	VAL 33	33. 463 -14. 629	57. 847	1. 00 30. 17
	ATOM 161	CA	VAL 33	32. 654 -13. 451	58. 149	1. 00 29. 03
20	ATOM 162	CB	VAL 33	32. 154 -13. 460	59. 626	1. 00 30. 49
	ATOM 163	CG1	VAL 33	31. 519 -12. 123	59. 985	1. 00 31. 03
	ATOM 164		VAL 33	31. 130 -14. 562	59. 815	1. 00 32. 03
	ATOM 165	C	VAL 33	33. 538 -12. 226	57. 908	1. 00 26. 62
	ATOM 166	0	VAL 33	33. 091 -11. 237	57. 338	1. 00 22. 25
25		N I	MET 34	34. 802 -12. 321	58. 317	1. 00 25. 50
	ATOM 168	CA 1	MET 34	35. 750 -11. 226	58. 142	1. 00 27. 22
	ATOM 169	CB 1	MET 34	37. 108 -11. 583	58. 748	1. 00 24. 41
	ATOM 170	CG 1	WET 34	38. 150 -10. 512	58. 537	1. 00 26. 32
	ATOM 171	SD N	MET 34	39. 793 -11. 040	59. 074	1. 00 32. 95

- 22 -

	ATOM 172	2 CE MET 34	40. 162 -12. 313	57. 821	1. 00 30. 64
	ATOM 173	3 C MET 34	35. 927 -10. 879	56. 665	1. 00 29. 30
	ATOM 174	4 0 MET 34	35. 850 -9. 717	56. 286	1. 00 29. 01
	ATOM 175	5 N ARG 35	36. 164 -11. 883	55. 827	1.00 30.96
5	ATOM 176	G CA ARG 35	36. 340 -11. 621	54. 403	1. 00 32. 99
	ATOM 177	CB ARG 35	36. 664 -12. 913	53. 641	1. 00 34. 85
	ATOM 178	G ARG 35	37. 948 -13. 585	54. 081	1. 00 38. 82
	ATOM 179	CD ARG 35	38. 377 -14. 682	53. 126	1. 00 43. 22
	ATOM 180	NE ARG 35	38. 963 -15. 791	53. 869	1. 00 47. 35
10	ATOM 181	CZ ARG 35	38. 260 -16. 801	54. 366	1. 00 47. 12
	ATOM 182	NH1 ARG 35	36. 946 -16. 850	54. 186	1. 00 48. 27
	ATOM 183	NH2 ARG 35	38. 868 -17. 746	55. 064	1. 00 50. 91
	ATOM 184	C ARG 35	35. 090 -10. 997	. 53. 797	1. 00 33. 31
	ATOM 185	0 ARG 35	35. 178 -10. 089	52. 966	1. 00 33. 49
15	ATOM 186	N ARG 36	33. 926 -11. 493	54. 206	1. 00 32. 00
	ATOM 187	CA ARG 36	32. 673 -10. 982	53. 675	1. 00 31. 76
	ATOM 188	CB ARG 36	31. 511 -11. 857	54. 158	1. 00 29. 95
	ATOM 189	CG ARG 36	30. 191 -11. 607	53. 441	1. 00 31. 90
	ATOM 190	CD ARG 36	30. 386 -11. 434	51. 929	1. 00 33. 67
20	ATOM 191	NE ARG 36	29. 114 -11. 263	51. 230	1. 00 38. 02
	ATOM 192		28. 229 -12. 238		1. 00 40. 67
	ATOM 193	_	28. 477 -13. 471		1. 00 40. 50
			27. 087 -11. 979	50. 382	1. 00 41. 02
	ATOM 195	C ARG 36	32. 459 -9. 510	54.060	1. 00 31. 54
25	ATOM 196	0 ARG 36	31. 959 -8. 718	53. 260	1. 00 30. 75
	ATOM 197	N MET 37	32. 856 -9. 147	55. 276	1. 00 30. 98
	ATOM 198	CA MET 37	32. 720 -7. 774	55. 742	1. 00 30. 21
	ATOM 199	CB MET 37	33. 134 -7. 663	57. 208	1. 00 27. 60
	ATOM 200	CG MET 37	33. 102 -6. 240	57. 761	1. 00 27. 98

- **2**3 -

	ATOM 201	SD MET	31. 418	-5. 613	57. 981	1. 00 30. 18
	ATOM 202					1. 00 28. 30
	ATOM 203	B C MET :	33. 598	-6. 852	54. 892	1. 00 30. 32
	ATOM: 204	O MET 3	33. 162	-5. 782	54. 479	1. 00 31. 66
5	ATOM 205	N GLN 3	34. 835	-7. 272	54. 642	1. 00 30. 60
	ATOM 206	CA GLN 3	35. 774	-6. 500	53. 829	1. 00 31. 68
	ATOM 207	CB GLN 3	37. 126	-7. 206	53. 750	1. 00 32. 18
	ATOM 208	CG GLN 3	8 38. 051	-6. 918	54. 898	1. 00 36. 36
	ATOM 209	CD GLN 3	8 39. 318	-7. 743	54. 831	1. 00 37. 65
10	ATOM 210	OE1 GLN 3	8 39. 352	-8. 890	55. 275	1. 00 41. 25
	ATOM 211	NE2 GLN 3	8 40. 362	-7. 170	54. 258	1. 00 39. 99
	ATOM 212	C GLN 3	8 35. 241	-6. 33 ⁷	52. 419	1. 00 32. 20
	ATOM 213	0 GLN 3	8 35. 471	-5. 318	51.769	1. 00 32. 83
	ATOM 214					1. 00 31. 94
15						1. 00 33. 33
	ATOM 216					1. 00 34. 32
	ATOM 217		9 33. 757	-9. 105	48. 756	1. 00 41. 05
	ATOM 218	CD LYS 3		-8. 183	47. 799	1. 00 43. 55
	ATOM 219	CE LYS 39				1. 00 47. 30
20	ATOM 220		32. 587			1. 00 48. 42
			32. 774			1. 00 32. 37
			32. 578			
	ATOM 223			-6. 342	51.613	1. 00 31. 82
	ATOM 224			-5. 442	51.632	1. 00 33. 50
25	ATOM 225	CB GLU 40		-5. 831	52. 737	1. 00 34. 39
	ATOM 226			-7. 167	52. 507	1. 00 36. 32
	ATOM 227	CD GLU 40			51. 112	1. 00 38. 53
	ATOM 228		27. 878	-6. 350	50. 660	1. 00 39. 61
	ATOM 229	0E2 GLU 40	28. 770	-8. 342	50. 469	1. 00 38. 22

- 24 -ATOM 230 C GLU 40 31. 309 -4. 009 51. 833 1. 00 33. 20 ATOM 231 0 GLU 40 30. 691 -3.07251. 345 1. 00 33. 12 ATOM 232 MET 41 N 32. 409 -3. 844 52. 556 1. 00 33. 18 ATOM 233 CA MET 41 32. 957 -2.51552. 783 1.00 34.90 5 ATOM 234 CBMET 41 34. 173 -2. 585 53. 706 1. 00 32. 91 ATOM 235 CG MET 41 33.838 -2.92755. 154 1. 00 34. 83 ATOM 236 SD MET 41 35. 327 -2.98756. 170 1.00 34.41 ATOM 237 CE MET 41 35. 747 -1.21656. 267 1.00 36.69 ATOM 238 C MET 41 33. 368 -1.94151.430 1. 00 36. 56 ATOM 239 10 0 MET 41 33. 058 -0.79251. 108 1. 00 34. 98 ATOM 240 N ASP 42 34. 054 -2.75850. 639 1. 00 36. 46 ATOM 241 CA ASP 42 34. 508 -2.34649. 317 1. 00 38. 91 ATOM 242 CBASP 42 35. 318 -3.47048. 674 1. 00 42. 09 ATOM 243 CG ASP 42 36. 130 -2.99947. 490 1. 00 43. 40 15 ATOM 244 OD1 ASP 42 37. 081 -2.21647. 705 1. 00 45. 67 ATOM 245 OD2 ASP 42 35. 817 -3.41146.350 1. 00 42. 51 ATOM 246 C ASP 42 33. 311 -1.99048. 433 1.00 38.61 ATOM 247 0 ASP 42 33. 366 -1.03647. 656 1. 00 39. 03 ATOM 248 N ARG 43 32. 232 -2.76148. 559 1. 00 36. 74 ATOM 249 ARG 43 20 CA 31.012 -2.52447. 788 1. 00 33. 90 ATOM 250 CB ARG 43 30.037 -3.68847. 967 1.00 33.80 ATOM 251 CG ARG 43 30. 324 -4.89047.080 1. 00 34. 68 ATOM 252 CDARG 43 29. 654 **-6.** 163 47.614 1. 00 34. 89 ATOM 253 NE ARG 43 28. 232 -5.99747. 906 1. 00 35. 11 CZ ARG 43 25 ATOM 254 27. 296 -5.72946. 998 1.00 37.42 ATOM 255 NH1 ARG 43 27. 620 -5. 589 45.719 1. 00 39. 98 ATOM 256 NH2 ARG 43 26. 028 -5. 615 47. 366 1.00 36.46 ATOM 257 C ARG 43 30. 313 -1.22948. 193 1.00 34.64 ATOM 258 O ARG 43 29. 712 -0. 550 47. 357 1. 00 35. 89

- 25 --0 892

				20		•
	ATOM 259	N GLY 44	30. 382	-0. 892	49. 475	1. 00 31. 21
	ATOM 260	CA GLY 44	29. 744	0. 318	49. 940	1. 00 31. 87
	ATOM 261	C GLY 44	30. 463	1. 579	49. 490	1. 00 33. 29
	ATOM 262	0 GLY 44	29. 854	2. 645	49. 397	1. 00 31. 49
5	ATOM 263	N LEU 45	31. 756	1. 455	49. 200	1. 00 31. 44
	ATOM 264	CA LEU 45	32. 563	2. 595	48. 778	1. 00 32. 24
	ATOM 265	CB LEU 45	34. 033	2. 358	49. 129	1. 00 27. 43
	ATOM 266	CG LEU 45	34. 415	2. 487	50. 601	1. 00 29. 59
	ATOM 267	CD1 LEU 45	35. 832	1. 992	50. 827	1. 00 30. 31
10	ATOM 268	CD2 LEU 45	34. 281	3. 941	51. 022	1. 00 30. 45
	ATOM 269	C LEU 45	32. 455	2. 933	47. 294	1. 00 33. 00
	ATOM 270	0 LEU 45	32. 537	4. 098	46. 924	1. 00 32. 78
	ATOM 271	N ARG 46	32. 277	1. 911	46. 460	1. 00 34. 18
	ATOM 272	CA ARG 46	32. 179	2. 074	45. 009	1. 00 34. 76
15	ATOM 273	CB ARG 46	32. 320	0. 714	44. 312	1. 00 36. 33
	ATOM 274	CG ARG 46	33. 519	-0. 119	44. 756	1. 00 39. 02
	ATOM 275	CD ARG 46	34. 794	0. 267	44. 035	1. 00 43. 71
	ATOM 276	NE ARG 46	35. 913	-0. 593	44. 431	1. 00 48. 60
	ATOM 277	CZ ARG 46	37. 142	-0. 527	43. 915	1. 00 49. 59
20	ATOM 278	NH1 ARG 46	37. 429	0. 359	42. 969	1. 00 49. 57
	ATOM 279	NH2 ARG 46	38. 091	-1. 344	44. 354	1. 00 50. 09
	ATOM 280	C ARG 46	30. 856	2. 710	44. 587	1. 00 34. 95
	ATOM 281	0 ARG 46	29. 785	2. 361	45. 091	1. 00 32. 49
	ATOM 282	N LEU 47	30. 935	3. 638	43. 644	1. 00 34. 90
25	ATOM 283	CA LEU 47	29. 741	4. 311	43. 162	1. 00 34. 40
	ATOM 284	CB LEU 47	30. 100	5. 297	42. 049	1. 00 34. 27
		CG LEU 47				1. 00 33. 85
	ATOM 286	CD1 LEU 47	28. 445	7. 144	42. 442	1. 00 31. 01
	ATOM 287	CD2 LEU 47	29. 381	6. 741	40. 144	1. 00 31. 08

- 26 -ATOM 288 С LEU 47 28. 727 3. 316 42. 625 1.00 34.52 ATOM 289 LEU 47 0 27. 535 3. 411 42. 922 1. 00 32. 39 ATOM 290 N **GLU 48** 29. 202 2. 353 41. 841 1.00 34.67 ATOM 291 CA GLU 48 28. 301 1. 378 41. 242 1.00 36.59 ATOM 292 5 CBGLU 48 29.010 0. 589 40. 134 1. 00 38. 07 ATOM 293 CG **GLU 48** 30. 205 -0.24840. 562 1. 00 39. 26 ATOM 294 CD **GLU 48** 31. 499 0. 534 40.580 1. 00 40. 85 ATOM 295 0E1 GLU 48 32. 571 -0. 106 40. 497 1.00 44.46 ATOM 296 0E2 GLU 48 31. 454 1.779 40. 682 1.00 38.21 10 ATOM 297 C **GLU 48** 27.600 0.406 42. 188 1. 00 37. 46 ATOM 298 0 **GLU 48** 26. 654 -0.26841. 778 1. 00 37. 82 ATOM 299 N THR 49 28. 037 0. 321 43. 441 1. 00 36. 85 ATOM 300 CA THR 49 27. 371 -0.59144. 370 1.00 36.40 ATOM 301 CB THR 49 28. 212 -1.85544. 645 1.00 34.37 15 ATOM 302 OG1 THR 49 29. 554 -1.48044. 969 1.00 33.33 ATOM 303 CG2 THR 49 28. 215 -2.77043. 437 1. 00 32. 44 ATOM 304 C THR 49 27. 032 0. 037 45. 703 1. 00 38. 54 ATOM 305 0 THR 49 26. 536 -0.64746. 599 1.00 40.86 ATOM 306 N HIS 50 27. 272 1. 335 45. 842 1. 00 38. 89 20 ATOM 307 CA HIS 50 26. 994 1. 990 47. 115 1. 00 41. 74 ATOM 308 HIS 50 CB27. 548 3. 422 47. 130 1.00 44.04 ATOM 309 CG HIS 50 26.666 4. 426 46. 451 1. 00 46. 35 ATOM 310 CD2 HIS 50 25. 795 5. 331 46.959 1. 00 48. 65 ATOM 311 ND1 HIS 50 26.607 4. 565 45.081 1. 00 47. 18 ATOM 312 25 CE1 HIS 50 25. 738 5. 512 44. 772 1. 00 48. 13 ATOM 313 NE2 HIS 50 25. 231 5. 993 45. 894 1. 00 49. 20 ATOM 314 C HIS 50 25. 512 2.030 47. 466 1.00 42.66 ATOM 315 0 HIS 50 25. 153 2. 046 48. 642 1. 00 42. 85 ATOM 316 N **GLU 51** 24. 657 2. 034 46. 447 1. 00 43. 12

- 27 -ATOM 317 CA GLU 51 23. 213 2. 120 46. 645 1. 00 44. 07 ATOM 318 GLU 51 CB 22. 555 2. 574 45. 329 1. 00 44. 83 ATOM 319 GLU 51 CG 21.051 2. 824 45. 399 1. 00 46. 43 ATOM 320 CDGLU 51 20. 531 3. 691 44. 243 1. 00 48. 89 ATOM 321 0E1 GLU 51 20. 822 3. 385 43.064 1. 00 46. 31 ATOM 322 0E2 GLU 51 19.821 4. 683 44. 522 1. 00 50. 83 ATOM 323 C GLU 51 22. 543 0. 848 47. 179 1. 00 44. 27 ATOM 324 GLU 51 0 21.630 0.925 48. 000 1. 00 45. 14 ATOM 325 GLU 52 N 22.991 -0.31746. 723 1. 00 44. 47 10 ATOM 326 GLU 52 CA 22. 422 -1.58547. 178 1. 00 44. 81 ATOM 327 CB GLU 52 22. 199 -2.52145. 988 1. 00 47. 15 ATOM 328 CG GLU 52 23. 485 -2.92045. 264 1. 00 53. 66 ATOM 329 CD GLU 52 -2.16423. 698 43. 951 1. 00 57. 63 ATOM 330 0E1 GLU 52 23. 646 -0.90943. 953 1. 00 55. 90 15 ATOM 331 0E2 GLU 52 23. 925 -2.83542. 917 1. 00 57. 72 ATOM 332 C GLU 52 23. 313 -2.29748. 206 1. 00 42. 49 ATOM 333 0 GLU 52 23. 052 -3.44148. 575 1. 00 43. 45 ATOM 334 N ALA 53 24. 362 -1.62648. 666 1. 00 39. 72 ATOM 335 CA ALA 53 25. 285 -2.22449. 628 1. 00 37. 01 20 ATOM 336 CB ALA 53 26. 589 -1.43849.645 1. 00 35. 23 ATOM 337 ALA 53 C 24. 700 -2.29151.038 1. 00 35. 27 ATOM 338 0 ALA 53 24. 125 -1.32151. 528 1. 00 34. 63 ATOM 339 N SER 54 24. 845 -3. 439 51.689 1. 00 32. 88 ATOM 340 CA **SER 54** 24. 339 -3. 594 53. 052 1. 00 32. 06 25 ATOM 341 CB **SER 54** 24. 397 -5.06253. 476 1. 00 30. 23 ATOM 342 0G SER 54 25. 694 -5.57653. 261 1. 00 35. 67 ATOM 343 C SER 54 25. 188 -2.74153. 990 1. 00 28. 49 ATOM 344 SER 54 0 24. 682 -2.14754. 934 1. 00 29. 57 ATOM 345 N VAL 55 26. 485 -2.68453. 724 1. 00 28. 44

- 28 -

	ATOM 346	CA VAI	55	27. 386	-1. 876	54. 535	1. 00 28. 63
	ATOM 347	CB VAI	55	28. 737	-2. 594	54. 726	1. 00 27. 89
	ATOM 348	CG1 VAI	55	29. 660	-1. 766	55. 599	1. 00 26. 89
	ATOM 349	CG2 VAL	55	28. 497	-3. 957	55. 365	1. 00 27. 94
5	ATOM 350	C VAL	55	27. 559	-0. 551	53. 788	1. 00 29. 80
	ATOM 351	0 VAL	55	28. 367	-0. 430	52. 868	1. 00 28. 14
	ATOM 352	N LYS	56	26. 787	0. 446	54. 205	1. 00 31. 68
	ATOM 353	CA LYS	56	26. 788	1. 750	53. 550	1. 00 30. 06
	ATOM 354	CB LYS	56	25. 727	2. 628	54. 203	1. 00 29. 96
10	ATOM 355	CG LYS	56	24. 312	2. 124	53. 933	1. 00 29. 47
	ATOM 356	CD LYS	56	23. 279	2. 935	54. 689	1. 00 31. 68
	ATOM 357	CE LYS	56	23. 417	2. 767	56. 196	1. 00 30. 78
	ATOM 358	NZ LYS	56	22. 911	1. 428	56. 648	1. 00 36. 66
	ATOM 359	C LYS	56	28. 087	2. 535	53. 374	1. 00 28. 33
15	ATOM 360	0 LYS	5 6	28. 222	3. 256	52. 388	1. 00 30. 83
	ATOM 361	N MET	57	29. 044	2. 410	54. 287	1. 00 25. 97
	ATOM 362	CA MET	57	30. 299	3. 149	54. 137	1. 00 23. 92
	ATOM 363	CB MET	57	31. 098	2. 577	52. 964	1. 00 24. 05
	ATOM 364	CG MET	57	31. 383	1. 078	53. 075	1. 00 27. 54
20	ATOM 365	SD MET	57	32. 303	0. 659	54. 580	1. 00 26. 48
	ATOM 366	CE MET	57	33. 991	1. 127	54. 113	1. 00 21. 76
	ATOM 367	C MET	57	30. 006	4. 643	53. 887	1. 00 26. 44
	ATOM 368	0 MET	57	30. 460	5. 237	52. 903	1. 00 24. 39
		N LEU		29. 250	5. 235	54. 803	1. 00 26. 42
25	ATOM 370	CA LEU		28. 843	6. 630	54. 713	1. 00 26. 83
	ATOM 371	CB LEU	58	27. 684	6. 884	55. 677	1. 00 24. 27
	ATOM 372	CG LEU		26. 440	6. 043	55. 386	1. 00 30. 26
	ATOM 373	CD1 LEU			6. 250	56. 473	1. 00 28. 51
	ATOM 374	CD2 LEU	58	25. 874	6. 430	54. 016	1. 00 31. 10

- 29 -ATOM 375 C LEU 58 29. 932 7. 665 54. 965 1. 00 25. 48 ATOM 376 LEU 58 0 30.495 7. 742 56. 053 1. 00 25. 30 ATOM 377 N PRO 59 30. 242 8. 476 53. 946 1.00 24.56 ATOM 378 CD PRO 59 29. 764 8. 341 52. 557 1. 00 24. 76 ATOM 379 5 CA PRO 59 31. 262 9. 528 54.063 1.00 26.48 ATOM 380 PRO 59 CB 31. 217 10. 196 52. 686 1.00 26.76 ATOM 381 CG PRO 59 30.865 9. 036 51. 769 1.00 26.41 ATOM 382 C PRO 59 30.820 10. 478 55. 190 1.00 26.49 ATOM 383 0 PRO 59 29.656 10.863 55. 239 1.00 28.20 10 ATOM 384 N THR 60 31. 728 10.845 56.092 1. 00 27. 28 ATOM 385 THR 60 CA 31. 372 11. 720 57. 220 1. 00 27. 77 ATOM 386 CB THR 60 31.994 11. 217 58. 544 1.00 24.87 ATOM 387 OG1 THR 60 33. 400 11. 482 58. 536 1. 00 22. 66 ATOM 388 CG2 THR 60 31.767 9. 713 58. 726 1. 00 28. 80 15 ATOM 389 C THR 60 31.800 13. 196 57. 085 1.00 30.72 ATOM 390 0 THR 60 31. 405 14. 041 57.897 1.00 29.67 ATOM 391 N TYR 61 32. 623 13. 485 56. 084 1. 00 30. 13 ATOM 392 CA TYR 61 33. 144 14. 824 55. 844 1. 00 33. 87 ATOM 393 CB TYR 61 32. 005 15. 837 55. 684 1. 00 32. 96 ATOM 394 20 CG TYR 61 31.409 15.730 54. 298 1. 00 35. 37 ATOM 395 CD1 TYR 61 32. 084 16. 251 53. 192 1. 00 36. 43 ATOM 396 CE1 TYR 61 31.621 16.036 51.890 1.00 34.05 ATOM 397 CD2 TYR 61 30. 244 14. 995 54.068 1.00 34.99 ATOM 398 CE2 TYR 61 29. 778 14. 772 52. 768 1.00 33.96 25 ATOM 399 CZ TYR 61 30. 475 15. 294 51.689 1. 00 33. 72 ATOM 400 0HTYR 61 30. 039 15. 064 50. 402 1. 00 37. 69 ATOM 401 C TYR 61 34. 156 15. 264 56. 890 1. 00 34. 78 ATOM 402 0 TYR 61 34. 712 16. 357 56.806 1. 00 34. 09 ATOM 403 N VAL 62 34. 407 14. 407 57.875 1. 00 36, 47

- 30 -

	ATOM 404	4 CA VAL 62	35. 426	14. 713	58. 869	1. 00 37. 40
	ATOM 408	5 CB VAL 62	35. 283	13. 825	60. 116	1. 00 37. 42
	ATOM 406	G CG1 VAL 62	36. 410	14. 107	61. 089	1. 00 32. 97
	ATOM 407	CG2 VAL 62	33. 937	14. 073	60. 774	1. 00 36. 34
5	ATOM 408	C VAL 62	36. 695	14. 335	58. 104	1. 00 41. 04
	ATOM 409	0 VAL 62	36. 944	13. 153	57. 865	1. 00 40. 85
	ATOM 410	N ARG 63	37. 475	15. 331	57. 692	1. 00 43. 48
	ATOM 411	CA ARG 63	38. 682	15. 070	56. 909	1. 00 48. 27
	ATOM 412	CB ARG 63	38. 843	16. 126	55. 814	1. 00 47. 25
10	ATOM 413	CG ARG 63	37. 735	16. 112	54. 783	1. 00 49. 66
	ATOM 414	CD ARG 63	37. 648	17. 447	54.061	1. 00 50. 62
	ATOM 415	NE ARG 63	36. 482	17. 523	53. 185	1. 00 51. 28
	ATOM 416	CZ ARG 63	36. 405	16. 961	51. 982	1. 00 50. 52
	ATOM 417	NH1 ARG 63	37. 430	16. 274	51.492	1. 00 48. 44
15	ATOM 418	NH2 ARG 63	35. 295	17. 089	51. 268	1. 00 49. 50
	ATOM 419	C ARG 63	39. 952	15. 006	57. 728	1. 00 50. 30
	ATOM 420	0 ARG 63	39. 998	15. 478	58.860	1. 00 49. 69
	ATOM 421	N SER 64	40. 987	14. 431	57. 128	1. 00 54. 64
	ATOM 422	CA SER 64	42. 276	14. 280	57. 783	1. 00 60. 87
20	ATOM 423	CB SER 64	43. 315	13. 760	56. 794	1. 00 60. 13
	ATOM 424	OG SER 64	44. 492	13. 381	57. 481	1. 00 62. 83
	ATOM 425	C SER 64	42. 760	15. 583	58. 398	1. 00 65. 69
	ATOM 426					1. 00 65. 99
0.5	ATOM 427			15. 530		1. 00 71. 92
25	ATOM 428	CA THR 65		16. 649	60. 545	1. 00 77. 78
	ATOM 429			16. 194	61. 524	1. 00 78. 35
	ATOM 430			17. 309	62. 317	1. 00 79. 07
	ATOM 431			15. 611		1. 00 79. 19
	ATOM 432	C THR 65	43. 839	17. 925	59. 817	1. 00 80. 90

- 31 -

	ATOM 433	, Λ	THD CC	4E 000	10 100	50 OF 1	4 00 00 00
					•		1. 00 80. 93
	ATOM 434						1. 00 83. 72
	ATOM 435	CD	PRO 66	41. 410	18. 469	59. 372	1. 00 84. 56
	ATOM 436	CA	PRO 66	43. 162	19. 983	58. 661	1. 00 85. 58
5	ATOM 437	CB	PRO 66	41. 871	20. 254	57. 897	1. 00 85. 53
	ATOM 438	CG	PRO 66	40. 827	19. 776	58. 864	1. 00 85. 36
	ATOM 439	C	PRO 66	43. 468	21. 057	59. 710	1. 00 87. 07
	ATOM 440	0	PRO 66	42. 581	21. 812	60. 119	1. 00 87. 87
	ATOM 441	N	GLU 67	44. 726	21. 109	60. 144	1. 00 87. 71
10	ATOM 442	CA	GLU 67	45. 162	22. 055	61. 169	1. 00 87. 66
	ATOM 443	CB	GLU 67	46. 683	22. 238	61. 110	1. 00 88. 42
	ATOM 444	CG	GLU 67	47. 283	22. 824	62. 384	1. 00 89. 15
	ATOM 445	CD	GLU 67	46. 871	22. 058	63. 636	1. 00 89. 71
	ATOM 446	0E1	GLU 67	45. 689	22. 150	64. 037	1. 00 89. 95
15	ATOM 447	0E2	GLU 67	47. 728	21. 359	64. 217	1. 00 89. 51
	ATOM 448	C	GLU 67	44. 463	23. 413	61. 095	1. 00 86. 97
	ATOM 449	0	GLU 67	44. 203	23. 944	60. 013	1. 00 86. 95
	ATOM 450	N	GLY 68	44. 160	23. 962	62. 266	1. 00 85. 72
	ATOM 451	CA	GLY 68	43. 475	25. 237	62. 344	1. 00 83. 56
20	ATOM 452	C	GLY 68	42. 274	25. 073	63. 251	1. 00 82. 01
	ATOM 453	0	GLY 68	41. 136	24. 970	62. 784	1. 00 82. 39
	ATOM 454	N	SER 69	42. 530	25. 038	64. 555	1. 00 79. 39
	ATOM 455	CA	SER 69	41. 469	24. 869	65. 537	1. 00 77. 31
	ATOM 456	CB	SER 69	41. 855	23. 784	66. 542	1. 00 77. 69
25	ATOM 457	0G	SER 69	40. 877	23. 677	67. 561	1. 00 78. 20
	ATOM 458	C	SER 69	41. 118	26. 143	66. 294	1. 00 75. 21
	ATOM 459	0	SER 69	41. 993	26. 857	66. 784	1. 00 74. 23
	ATOM 460	N	GLU 70	39. 822	26. 413	66. 386	1. 00 73. 26
	ATOM 461	CA	GLU 70	39. 328	27. 581	67. 096	1. 00 71. 89

- 32 -

	ATOM 46	ח כם כווו סח	00 004	00 040	00 100	
						1. 00 73. 40
	ATOM 463				66. 297	1. 00 77. 84
	ATOM 464		38. 900		65. 285	1. 00 80. 27
	ATOM 465	5 OE1 GLU 70	38. 763	29. 757	64. 082	1. 00 81. 41
5	ATOM 466	6 OE2 GLU 70	39. 830	30. 801	65. 692	1. 00 81. 33
	ATOM 467	' C GLU 70	39. 107	27. 144	68. 543	1. 00 69. 48
	ATOM 468	3 0 GLU 70	38. 409	26. 163	68. 789	1. 00 69. 73
	ATOM 469	N VAL 71	39. 701	27. 853	69. 499	1. 00 65. 92
	ATOM 470	CA VAL 71	39. 536	27. 490	70. 904	1. 00 62. 64
10	ATOM 471	CB VAL 71	40. 760	27. 909	71. 746	1. 00 61. 59
	ATOM 472	CG1 VAL 71	41. 993	27. 156	71. 275	. 1. 00 61. 91
	ATOM 473	CG2 VAL 71	40. 979	29. 406	71. 642	1. 00 61. 78
	ATOM 474	C VAL 71	38. 278	28. 105	71. 510	1. 00 61. 05
	ATOM 475	0 VAL 71	37. 608	28. 919	70. 877	1. 00 61. 02
15	ATOM 476	N GLY 72	37. 952	27. 700	72. 734	1. 00 59. 60
	ATOM 477	CA GLY 72	36. 769	28. 225	73. 390	1. 00 58. 10
	ATOM 478	C GLY 72	35. 841	27. 169	73. 967	1. 00 57. 74
	ATOM 479	0 GLY 72	36. 178	25. 982	74. 006	1. 00 58. 27
	ATOM 480	N ASP 73	34. 664	27. 607	74. 410	1. 00 55. 55
20	ATOM 481	CA ASP 73	33. 663	26. 724	75. 003	1. 00 54. 21
	ATOM 482	CB ASP 73	32. 973	27. 426	76. 181	1. 00 57. 20
	ATOM 483	CG ASP 73	33. 846	27. 496	77. 424	1. 00 59. 78
	ATOM 484	OD1 ASP 73	35. 046	27. 830	77. 299	1. 00 61. 37
	ATOM 485	OD2 ASP 73	33. 324	27. 225	78. 529	1. 00 60. 87
25	ATOM 486	C ASP 73	32. 599	26. 310	73. 994	1. 00 52. 36
	ATOM 487	0 ASP 73	31. 936	27. 161	73. 406	1. 00 52. 44
	ATOM 488	N PHE 74	32. 424	25. 005	73. 800	1. 00 49. 73
	ATOM 489	CA PHE 74	31. 412	24. 519	72. 866	1. 00 46. 98
	ATOM 490	CB PHE 74	32. 019	23. 571	71. 837	1. 00 46. 41

- 33 -

				00		
	ATOM 491	CG PHE 74	33. 117	24. 179	71. 030	1. 00 47. 09
	ATOM 492	CD1 PHE 74	34. 335	24. 492	71. 618	1. 00 47. 62
	ATOM 493	CD2 PHE 74	32. 930	24. 452	69. 681	1. 00 47. 01
	ATOM 494	CE1 PHE 74	35. 359	25. 071	70. 874	1. 00 49. 47
5	ATOM 495	CE2 PHE 74	33. 943	25. 031	68. 924	1. 00 48. 12
	ATOM 496	CZ PHE 74	35. 161	25. 342	69. 520	1. 00 48. 82
	ATOM 497	C PHE 74	30. 316	23. 783	73. 601	1. 00 45. 68
	ATOM 498	0 PHE 74	30. 485	23. 382	74. 745	1. 00 46. 35
	ATOM 499	N LEU 75	29. 185	23. 615	72. 932	1. 00 45. 12
10	ATOM 500	CA LEU 75	28.064	22. 895	73. 501	1. 00 44. 80
	ATOM 501	CB LEU 75	26. 769	23. 686	73. 333	1. 00 43. 29
	ATOM 502	CG LEU 75	25. 535	23. 023	73. 959	1. 00 45. 05
	ATOM 503	CDI LEU 75	25. 529	23. 278	75. 466	1. 00 41. 53
•	ATOM 504	CD2 LEU 75	24. 259	23. 571	73. 326	1. 00 43. 45
15	ATOM 505	C LEU 75	27. 971	21. 598	72. 708	1. 00 46. 04
	ATOM 506	0 LEU 75	28. 087	21. 611	71. 479	1. 00 46. 97
	ATOM 507	N SER 76	27. 770	20. 484	73. 405	1. 00 45. 48
	ATOM 508	7=11	27. 664	19. 189		
	ATOM 509		28. 837	18. 295	73. 143	1. 00 43. 52
20	ATOM 510	OG SER 76		18. 741	72. 551	1. 00 44. 64
	ATOM 511	C SER 76		18. 469	73. 051	1. 00 41. 60
	ATOM 512	0 SER 76		18. 242	74. 209	1. 00 40. 88
	ATOM 513		25. 617			1. 00 41. 06
		CA LEU 77				1. 00 43. 50
25	ATOM 515			17. 918	71. 225	1. 00 43. 84
	ATOM 516	CG LEU 77		19. 346	71. 401	1. 00 45. 70
		CD1 LEU 77				1. 00 45. 96
		CD2 LEU 77				
	ATOM 519	C LEU 77	24. 662	15. 933	71. 851	1. 00 43. 78

- 34 -

					- 54	_	
	ATOM 520	0 LI	EU 77	25. 529	15. 635	71. 026	1. 00 43. 07
	ATOM 521	N AS	SP 78	23. 946	15. 021	72. 496	1. 00 44. 50
	ATOM 522	CA AS	SP 78	24. 151	13. 604	72. 244	1. 00 44. 82
	ATOM 523	CB AS	SP 78	25. 126	13. 026	73. 271	1. 00 44. 71
5	ATOM 524	CG AS	SP 78	25. 597	11. 628	72. 905	1. 00 45. 55
	ATOM 525	OD1 AS	P 78	24. 738	10. 750	72. 672	1. 00 41. 76
	ATOM 526	OD2 AS	P 78	26. 828	11. 410	72. 853	1. 00 45. 32
	ATOM 527	C AS	P 78	22. 838	12. 829	72. 276	1. 00 44. 74
	ATOM 528	0 AS	P 78	22. 245	12. 633	73. 333	1. 00 45. 25
10	ATOM 529	N LE	U 79	22. 385	12. 398	71. 107	1. 00 45. 72
	ATOM 530	CA LE	U 79	21. 154	11. 630	70. 994	1. 00 47. 25
	ATOM 531	CB LE	U 79	20. 137	12. 351	70. 116	1. 00 45. 37
	ATOM 532	CG LE	U 79	18. 865	11. 530	69. 915	1. 00 43. 65
	ATOM 533	CD1 LE	U 79	18. 067	11. 553	71. 200	1. 00 46. 42
15	ATOM 534	CD2 LE	U 79	18. 045	12. 086	68. 777	1. 00 43. 81
	ATOM 535	C LEI	J 79	21. 491	10. 295	70. 354	1. 00 49. 50
	ATOM 536	0 LE	J 79	22. 073	10. 249	69. 274	1. 00 49. 35
	ATOM 537	N GLY	7 80	21. 123	9. 207	71.016	1. 00 52. 24
	ATOM 538	CA GLY	80	21. 421	7. 902	70. 466	1. 00 56. 31
20	ATOM 539	C GLY	80	20. 965	6. 833	71. 420	1. 00 59. 13
	ATOM 540	0 GLY	80	20. 278	5. 896	71. 027	1. 00 60. 86
	ATOM 541	N GLY	81	21. 360	6. 966	72. 679	1. 00 62. 30
	ATOM 542	CA GLY	81	20. 940	6. 002	73. 674	1. 00 65. 60
	ATOM 543	C GLY	81	19. 551	6. 395	74. 137	1. 00 67. 84
25	ATOM 544	0 GLY	81	18. 936	7. 301	73. 564	1. 00 69. 00
	ATOM 545	N THR	82	19. 047	5. 722	75. 165	1. 00 69. 33
	ATOM 546	CA THR	82	17. 726	6. 037	75. 695	1. 00 70. 36
	ATOM 547	CB THR	82	17. 110	4. 824	76. 418	1. 00 71. 43
	ATOM 548	OG1 THR	82	18. 032	4. 332	77. 398	1. 00 71. 60

- 35 -

				- 35		
	ATOM 549	9 CG2 THR 82	16. 784	3. 716	3 75. 4 20	1. 00 71. 87
	ATOM 550	O C THR 82	17. 846	7. 196	76. 679	1. 00 70. 10
	ATOM 551	1 0 THR 82	16. 933	7. 458	3 77. 464	1. 00 71. 18
	ATOM 552	2 N ASN 83	18. 981	7. 887	76. 625	1. 00 69. 08
5	ATOM 553	B CA ASN 83	19. 232	9. 017	77. 508	1. 00 68. 14
	ATOM 554	CB ASN 83	20. 161	8. 584	78. 646	1. 00 69. 98
	ATOM 555	CG ASN 83	19. 862	9. 300	79. 948	1. 00 70. 80
	ATOM 556	OD1 ASN 83	20. 627	9. 213	80. 909	1. 00 71. 46
	ATOM 557	ND2 ASN 83	18. 739	10. 004	79. 990	1. 00 72. 56
10	ATOM 558	C ASN 83	19. 866	10. 177	76. 738	1. 00 66. 16
	ATOM 559	0 ASN 83	21. 050	10. 136	76. 407	1. 00 66. 52
	ATOM 560	N PHE 84	19. 073	11. 203	76. 447	1. 00 63. 41
	ATOM 561	CA PHE 84	19. 567	12. 375	75. 728	1. 00 60. 93
	ATOM 562	CB PHE 84	18. 398	13. 227	75. 241	1. 00 61. 87
15	ATOM 563	CG PHE 84	18. 817	14. 477	74. 528	1. 00 63. 55
	ATOM 564	CD1 PHE 84	18. 419	15. 724	74. 993	1. 00 63. 38
	ATOM 565	CD2 PHE 84	19. 599	14. 409	73. 381	1. 00 64. 28
	ATOM 566	CE1 PHE 84	18. 793	16. 888	74. 325	1. 00 64. 07
	ATOM 567	CE2 PHE 84	19. 979	15. 568	72. 705	1. 00 65. 31
20	ATOM 568	CZ PHE 84	19. 574	16. 810	73. 179	1. 00 64. 75
	ATOM 569	C PHE 84	20. 442	13. 206	76. 658	1. 00 59. 07
	ATOM 570	0 PHE 84	20. 011	13. 582	77. 744	1. 00 59. 19
	ATOM 571	N ARG 85	21. 665	13. 500	76. 232	1. 00 57. 25
	ATOM 572	CA ARG 85	22. 583	14. 272	77. 064	1. 00 56. 05
25	ATOM 573	CB ARG 85	23. 857	13. 467	77. 344	1. 00 56. 68
	ATOM 574	CG ARG 85	23. 605	12. 044	77. 828	1. 00 58. 78
	ATOM 575	CD ARG 85	24. 896	11. 367	78. 267	1. 00 59. 39
	ATOM 576	NE ARG 85	25. 908	11. 348	77. 213	1. 00 59. 87
	ATOM 577	CZ ARG 85	27. 068	11. 994	77. 282	1. 00 60. 09

- 36 -

				00		
	ATOM 578	8 NH1 ARG 85	27. 366	12. 713	78. 357	1. 00 59. 50
	ATOM 579	9 NH2 ARG 85	27. 931	11. 920	76. 277	1. 00 60. 92
	ATOM 580	O C ARG 85	22. 966	15. 602	76. 433	1. 00 55. 07
	ATOM 581	0 ARG 85	23. 038	15. 725	75. 209	1. 00 54. 93
5	ATOM 582	2 N VAL 86	23. 211	16. 593	77. 288	1. 00 53. 13
	ATOM 583	B CA VAL 86	23. 598	17. 935	76. 861	1. 00 51. 01
	ATOM 584	CB VAL 86	22. 425	18. 939	77. 003	1. 00 51. 19
	ATOM 585	CG1 VAL 86	22. 851	20. 313	76. 509	1. 00 51. 39
	ATOM 586	CG2 VAL 86	21. 216	18. 446	76. 225	1. 00 50. 96
10	ATOM 587	C VAL 86	24. 734	18. 381	77. 767	1. 00 49. 34
	ATOM 588	0 VAL 86	24. 613	18. 316	78. 989	1. 00 48. 07
	ATOM 589	N MET 87	25. 834	18. 835	77. 178	1. 00 49. 52
	ATOM 590	CA MET 87	26. 970	19. 260	77. 981	1. 00 50. 78
	ATOM 591	CB MET 87	27. 864	18. 054	78. 284	1. 00 52. 70
15	ATOM 592	CG MET 87	28. 572	17. 461	77. 072	1. 00 54. 49
	ATOM 593	SD MET 87	29. 005	15. 694	77. 269	1. 00 53. 62
	ATOM 594	CE MET 87	27. 839	14. 951	76.090	1. 00 51. 63
	ATOM 595	C MET 87	27. 800	20. 363	77. 348	1. 00 50. 56
	ATOM 596	0 MET 87	27. 715	20. 616	76. 149	1. 00 50. 18
20	ATOM 597	N LEU 88	28. 605	21. 015	78. 178	1. 00 50. 90
	ATOM 598	CA LEU 88	29. 477	22. 093	77. 739	1. 00 52. 10
	ATOM 599	CB LEU 88	29. 278	23. 325	78. 631	1. 00 53. 23
	ATOM 600	CG LEU 88	30. 087	24. 580	78. 288	1. 00 54. 71
	ATOM 601	CD1 LEU 88	29. 618	25. 140	76. 951	1. 00 54. 33
25	ATOM 602	CD2 LEU 88	29. 920	25. 623	79. 390	1. 00 54. 33
	ATOM 603	C LEU 88	30. 914	21. 600	77. 847	1. 00 52. 33
	ATOM 604	0 LEU 88	31. 311	21. 048	78. 877	1. 00 53. 12
	ATOM 605	N VAL 89	31.693	21. 795	76. 789	1. 00 52. 10
	ATOM 606	CA VAL 89	33. 078	21. 342	76. 788	1. 00 52. 46

- 37 -

			_ J	_
	ATOM: 60	7 CB VAL 89	33. 241 20. 07	2 75. 882 1. 00 50. 52
	ATOM 60	8 CG1 VAL 89	32. 289 20. 14	7 74. 710 1. 00 52. 35
	ATOM 609	9 CG2 VAL 89	34. 674 19. 93	9 75. 388 1. 00 46. 86
	ATOM 610) C VAL 89	34. 049 22. 43	3 76. 357 1. 00 53. 35
5	ATOM 611	0 VAL 89	33. 858 23. 08	1 75. 336 1. 00 54. 69
	ATOM 612	N LYS 90	35. 096 22. 62	5 77. 151 1. 00 55. 22
	ATOM 613	CA LYS 90	36. 100 23. 640	76. 868 1. 00 56. 94
	ATOM 614	CB LYS 90	36. 656 24. 20	5 78. 181 1. 00 57. 66
	ATOM 615	CG LYS 90	37. 642 25. 360	78. 005 1. 00 58. 70
10	ATOM 616	CD LYS 90	38. 140 25. 909	79. 345 1. 00 59. 35
	ATOM 617	CE LYS 90	36. 995 26. 399	80. 226 1. 00 60. 64
	ATOM 618	NZ LYS 90	36. 185 27. 462	79. 568 1. 00 61. 04
	ATOM 619	C LYS 90	37. 237 23. 078	76. 019 1. 00 57. 63
	ATOM 620	0 LYS 90	37. 921 22. 136	76. 417 1. 00 57. 69
15	ATOM 621	N VAL 91	37. 428 23. 670	74. 846 1. 00 58. 29
	ATOM 622	CA VAL 91	38. 473 23. 254	73. 919 1. 00 57. 11
	ATOM 623	CB VAL 91	37. 920 23. 136	72. 480 1. 00 56. 48
	ATOM 624	CG1 VAL 91	39. 010 22. 661	71. 533 1. 00 55. 29
	ATOM 625	CG2 VAL 91	36. 741 22. 183	72. 459 1. 00 55. 52
20	ATOM 626	C VAL 91	39. 598 24. 279	73. 926 1. 00 57. 81
	ATOM 627	0 VAL 91	39. 365 25. 466	73. 710 1. 00 59. 53
	ATOM 628	N GLY 92	40. 817 23. 819	74. 172 1. 00 58. 12
	ATOM 629	CA GLY 92	41. 947 24. 723	74. 200 1. 00 59. 69
	ATOM 630	C GLY 92	43. 047 24. 245	73. 286 1. 00 61. 78
25	ATOM 631	0 GLY 92	42. 821 23. 381	72. 448 1. 00 61. 06
	ATOM 632	N GLU 93	44. 240 24. 803	73. 449 1. 00 65. 18
	ATOM 633	CA GLU 93	45. 373 24. 426	72. 619 1. 00 69. 00
	ATOM 634	CB GLU 93	45. 897 25. 646	71. 866 1. 00 71. 56
	ATOM 635	CG GLU 93	47. 082 25. 344	70. 965 1. 00 75. 20

- 38 ÷

	ATOM 636	6 CD GLU 93	47. 659	26. 591	70. 325	1. 00 78. 28
	ATOM 637	7 OE1 GLU 93	46. 893	27. 326	69. 659	1. 00 80. 05
	ATOM 638	3 0E2 GLU 93	48. 877	26. 834	70. 485	1. 00 79. 21
	ATOM 639	C GLU 93	46. 505	23. 822	73. 437	1. 00 71. 00
5	ATOM 640	0 GLU 93	47. 118	24. 500	74. 263	1. 00 70. 74
	ATOM 641	N GLY 94	46. 784	22. 544	73. 195	1. 00 72. 97
	ATOM 642	CA GLY 94	47. 849	21. 869	73. 916	1. 00 74. 44
	ATOM 643	C GLY 94	49. 078	21. 673	73. 052	1. 00 75. 82
	ATOM 644	0 GLY 94	49. 485	22. 577	72. 315	1. 00 76. 47
10	ATOM 645	N GLU 95	49. 682	20. 496	73. 145	1. 00 75. 73
	ATOM 646	CA GLU 95	50. 859	20. 195	72. 349	1. 00 76. 61
	ATOM 647	CB GLU 95	52. 023	19. 792	73. 249	1. 00 76. 93
	ATOM 648	CG GLU 95	52. 439	20. 891	74. 203	1. 00 78. 31
	ATOM 649	CD GLU 95	53. 614	20. 497	75. 065	1. 00 78. 40
15	ATOM 650	OE1 GLU 95	54. 715	20. 274	74. 514	1. 00 78. 51
	ATOM 651	OE2 GLU 95	53. 432	20. 408	76. 295	1. 00 78. 60
	ATOM 652	C GLU 95	50. 516	19. 071	71. 392	1. 00 76. 91
	ATOM 653	0 GLU 95	49. 833	18. 116	71. 764	1. 00 76. 81
•	ATOM 654	N GLU 96	50. 987	19. 203	70. 155	1. 00 77. 78
20	ATOM 655	CA GLU 96	50. 733	18. 220	69. 105	1. 00 78. 07
	ATOM 656	CB GLU 96	51. 408	16. 881	69. 440	1. 00 81. 32
	ATOM 657	CG GLU 96	52. 943	16. 930	69. 454	1. 00 85. 11
	ATOM 658	CD GLU 96		17. 309	68. 101	1. 00 87. 05
0.5	ATOM 659	OE1 GLU 96		16. 551	67. 124	1. 00 88. 73
25	ATOM 660	0E2 GLU 96	54. 207	18. 365	68. 014	1. 00 87. 56
	ATOM 661	C GLU 96	49. 230	18. 025	68. 919	1. 00 75. 88
	ATOM 662	0 GLU 96	48. 784	17. 039	68. 327	1. 00 75. 92
	ATOM 663	N GLY 97		18. 980	69. 427	1. 00 72. 88
	ATOM 664	CA GLY 97	47. 013	18. 910	69. 309	1. 00 69. 37

- 39 -

					03	_	
	ATOM 669	5 C	GLY 97	46. 296	19. 710	70. 380	1.00 67.02
	ATOM 666	6 O	GLY 97	46. 921	20. 230	71. 305	1. 00 67. 10
	ATOM 667	7 N	GLN 98	44. 978	19. 811	70. 250	1. 00 64. 76
	ATOM 668	B CA	GLN 98	44. 166	20. 543	71. 211	1. 00 62. 45
5	ATOM 669	CB (GLN 98	42. 872	21. 045	70. 562	1. 00 62. 69
	ATOM 670	CG (GLN 98	43. 026	21. 908	69. 315	1. 00 64. 93
	ATOM 671	CD (JLN 98	43. 191	21. 095	68. 046	1. 00 65. 89
	ATOM 672	0E1 (LN 98	44. 299	20. 684	67. 696	1. 00 65. 96
	ATOM 673	NE2 (LN 98	42. 079	20. 847	67. 353	1. 00 65. 22
10	ATOM 674	C (LN 98	43. 781	19. 630	72. 369	1. 00 61. 23
	ATOM 675	0 0	LN 98	43. 880	18. 403	72. 269	1. 00 62. 18
	ATOM 676	N T	RP 99	43. 356	20. 233	73. 473	1. 00 57. 45
	ATOM 677	CA T	RP 99	42. 893	19. 459	74. 611	1. 00 54. 44
	ATOM 678	CB T	RP 99	43. 639	19. 822	75. 904	1. 00 55. 51
15	ATOM 679	CG T	RP 99	43. 770	21. 291	76. 211	1. 00 56. 94
	ATOM 680	CD2 T	RP 99	42. 763	22. 151	76. 756	1. 00 56. 03
	ATOM 681	CE2 T	RP 99	43. 345	23. 426	76. 922	1. 00 57. 25
	ATOM 682	CE3 T	RP 99	41. 422	21. 969	77. 121	1. 00 56. 67
	ATOM 683	CD1 T	RP 99	44. 892	22. 062	76.068	1. 00 56. 29
20	ATOM 684	NE1 TI	RP 99	44. 647	23. 342	76. 495	1. 00 56. 55
	ATOM 685	CZ2 TI	RP 99	42. 635	24. 516	77. 440	1. 00 56. 53
	ATOM 686	CZ3 TF					1. 00 56. 67
		CH2 TR	P 99	41. 322	24. 309	77. 790	1. 00 56. 70
	+						1. 00 52. 04
25	ATOM 689	0 TR	P 99	40. 899	20. 664	74. 089	1. 00 50. 70
	ATOM 690	N SE	R 100	40. 70	4 18.98	1 75. 54	5 1.00 49.57
		CA SE	R 100	39. 27	7 19. 18	6 75. 71	5 1. 00 48. 29
	ATOM 692	CB SE	R 100	38. 50	6 18. 47	5 74. 59	7 1.00 49.26
	ATOM 693	OG SE	R 100	39. 05	5 17. 19	6 74. 31	5 1. 00 47. 27

- 40 -

					- 40 -		
	ATOM 694	1 C	SER 10	38. 860	18. 655	77. 067	1.00 47.91
	ATOM 695	5 0	SER 10	00 39. 569	17. 845	77. 662	1. 00 48. 73
	ATOM 696	i N	VAL 10	1 37. 718	19. 120	77. 558	1.00 47.53
	ATOM 697	CA	VAL 10	1 37. 225	18. 684	78. 852	1. 00 47. 86
5	ATOM 698	CB CB	VAL 10	1 38. 102	19. 233	79. 995	1. 00 47. 92
	ATOM 699	CG1	VAL 10	1 38. 160	20. 747	79. 923	1. 00 49. 02
	ATOM 700	CG2	VAL 10	1 37. 545	18. 783	81. 342	1. 00 47. 98
	ATOM 701	C	VAL 10	1 35. 784	19. 102	79. 101	1. 00 48. 77
	ATOM 702	0	VAL 10	1 35. 391	20. 228	78. 798	1. 00 49. 05
10	ATOM 703	N .	LYS 10	2 35. 004	18. 176	79. 649	1. 00 49. 04
	ATOM 704	CA]	LYS 10	2 33. 607	18. 422	79. 969	1. 00 50. 31
	ATOM 705	CB]	LYS 10	2 32. 875	17. 101	80. 220	1. 00 51. 15
	ATOM 706	CG 1	LYS 10	2 31. 385	17. 263	80. 452	1. 00 52. 57
	ATOM 707	CD 1	LYS 10	30. 835	16. 229	81. 425	1. 00 56. 56
15	ATOM 708	CE I	LYS 102	30. 955	14. 804	80. 908	1. 00 57. 06
	ATOM 709	NZ I	LYS 102	30. 275	13. 804	81. 787	1. 00 58. 08
	ATOM 710	C I	LYS 102	33. 587	19. 254	81. 243	1. 00 51. 12
	ATOM 711	0 1	LYS 102	34. 220	18. 888	82. 234	1. 00 52. 47
	ATOM 712	N I	THR 103	32. 859	20. 366	81. 217	1. 00 51. 40
20	ATOM 713	CA T	THR 103	32. 774	21. 252	82. 373	1. 00 50. 47
	ATOM 714	CB I	THR 103	33. 004	22. 715	81. 965	1. 00 50. 28
	ATOM 715	0G1 T	HR 103	31. 992	23. 113	81. 032	1. 00 51. 29
	ATOM 716	CG2 T	HR 103	34. 368	22. 879	81. 324	1. 00 47. 52
	ATOM 717	C T	HR 103	31. 416	21. 148	83. 048	1. 00 50. 90
25	ATOM 718	0 T	HR 103	31. 329	21. 056	84. 268	1. 00 50. 91
	ATOM 719	N L	YS 104	30. 358	21. 162	82. 247	1. 00 52. 41
	ATOM 720	CA L	YS 104	29. 000	21. 063	82. 770	1. 00 54. 04
	ATOM 721	CB L	YS 104	28. 310	22. 436	82. 714	1. 00. 57. 21
	ATOM 722	CG L	YS 104	28. 823	23. 450	83. 739	1. 00 59. 16

- 41 -

					41		
	ATOM 723	B CD LYS	104	28. 138	24. 809	83. 576	1. 00 62. 54
	ATOM 724	CE LYS	104	28. 398	25. 734	84. 766	1. 00 62. 99
	ATOM 725	NZ LYS	104	27. 798	25. 217	86. 037	1. 00 64. 17
	ATOM 726	C LYS	104	28. 215	20. 047	81. 948	1. 00 53. 79
5	ATOM 727	0 LYS	104	28. 411	19. 941	80. 740	1. 00 53. 53
	ATOM 728	N HIS	105	27. 330	19. 299	82. 600	1. 00 53. 65
	ATOM 729	CA HIS	105	26. 539	18. 295	81. 903	1. 00 55. 05
	ATOM 730	CB HIS	105	27. 316	16. 972	81. 837	1. 00 55. 94
	ATOM 731	CG HIS	105	27. 668	16. 397	83. 176	1. 00 55. 84
10	ATOM 732	CD2 HIS	105	28. 793	16. 501	83. 924	1. 00 55. 19
	ATOM 733	ND1 HIS	105	26. 803	15. 602	83. 897	1. 00 55. 83
	ATOM 734	CE1 HIS	105	27. 380	15. 241	85. 030	1. 00 56. 35
	ATOM 735	NE2 HIS	105	28. 589	15. 773	85. 071	1. 00 55. 64
	ATOM 736	C HIS	105	25. 169	18. 074	82. 534	1. 00 56. 32
15	ATOM 737	0 HIS	105	24. 903	18. 535	83. 640	1. 00 56. 55
	ATOM 738	N GLN	106	24. 302	17. 365	81. 817	1. 00 58. 21
		CA. GLN	106	22. 950	17. 090	82. 289	1. 00 60. 74
	ATOM 740	CB GLN	106	22. 108	18. 367	82. 224	1. 00 61. 97
	ATOM 741		106	20. 775	18. 285	82. 945	1. 00 64. 86
20	ATOM 742	CD GLN	106	20. 928	18. 379	84. 447	1. 00 67. 03
	ATOM 743		106	21. 447	19. 370	84. 969	1. 00 68. 82
	ATOM 744		106	20. 479	17. 348	85. 155	1. 00 67. 41
	ATOM 745	C GLN	106	22. 322	16. 025	81. 396	1. 00 61. 62
	ATOM 746	0 GLN	106	22. 532	16. 027	80. 186	1. 00 62. 03
25	ATOM 747	N MET	107	21. 550	15. 121	81. 990	1. 00 63. 03
	ATOM 748	CA MET	107	20. 900	14. 058	81. 232	1. 00 64. 74
	ATOM 749	CB MET	107	21. 322	12. 688	81. 769	1. 00 66. 23
	ATOM 750	CG MET	107	22. 821	12. 456	81. 786	1. 00 68. 74
	ATOM 751	SD MET	107	23. 248	10. 812	82. 388	1. 00 70. 84

- 42 -

					46 -		
	ATOM 752	CE ME	r 107	23. 427	9. 926	80. 853	1. 00 71. 13
	ATOM 753	C ME	r 107	19. 385	14. 175	81. 313	1. 00 65. 81
	ATOM 754	O MET	T 107	18. 837	14. 489	82. 369	1. 00 65. 52
	ATOM 755	N TYP	108	18. 712	13. 915	80. 196	1. 00 66. 87
5	ATOM 756	CA TYP	108	17. 258	13. 984	80. 143	1. 00 68. 20
	ATOM 757	CB TYF	108	16. 800	15. 167	79. 286	1. 00 67. 20
	ATOM 758	CG TYR	108	17. 436	16. 484	79. 660	1. 00 66. 35
	ATOM 759	CD1 TYR	108	18. 781	16. 731	79. 386	1. 00 65. 95
	ATOM 760	CE1 TYR	108	19. 380	17. 929	79. 746	1. 00 65. 76
10	ATOM 761	CD2 TYR	108	16. 702	17. 477	80. 307	1. 00 66. 24
	ATOM 762	CE2 TYR	108	17. 292	18. 683	80. 674	1. 00 65. 93
	ATOM 763	CZ TYR	108	18. 633	18. 902	80. 391	1. 00 66. 14
	ATOM 764	OH TYR	108	19. 235	20. 083	80. 763	1. 00 64. 27
	ATOM 765	C TYR	108	16. 706	12. 700	79. 549	1. 00 70. 20
15	ATOM 766	0 TYR	108	16. 995	12. 363	78. 404	1. 00 70. 55
	ATOM 767	N SER	109	15. 912	11. 982	80. 331	1. 00 73. 54
	ATOM 768	CA SER	109	15. 322	10. 739	79. 863	1. 00 76. 84
	ATOM 769	CB SER	109	14. 524	10. 082	80. 992	1. 00 77. 63
	ATOM 770	OG SER	109	15. 353	9. 837	82. 120	1. 00 78. 13
20	ATOM 771	C SER	109	14. 419	11. 020	78. 664	1. 00 78. 98
	ATOM 772	0 SER	109	13. 936	12. 138	78. 486	1. 00 78. 51
	ATOM 773		110	14. 198	10. 002	77. 841	1. 00 82. 34
	ATOM 774	CA ILE	110	13. 369	10. 143	76. 651	1. 00 86. 07
	ATOM 775	CB ILE	110	13. 892	9. 249	75. 511	1. 00 86. 28
25	ATOM 776	CG2 ILE	110	13. 092	9. 505	74. 242	1. 00 86. 56
	ATOM 777	CG1 ILE	110	15. 379	9. 529	75. 275	1. 00 86. 19
	ATOM 778	CD1 ILE	110	16. 025	8. 612	74. 258	1. 00 86. 76
	ATOM 779	C ILE	110	11. 916	9. 772	76. 927	1. 00 88. 58
	ATOM 780	0 ILE	110	11. 596	8. 606	77. 152	1. 00 88. 69

- 43 -

						40		
	ATOM 78	1 N	PRO	111	11. 016	10. 767	76. 910	1. 00 91. 13
	ATOM 78	2 CD	PRO	111	11. 319	12. 205	76. 811	1. 00 91. 83
	ATOM 78	3 CA	PRO	111	9. 585	10. 562	77. 157	1. 00 93. 32
	ATOM 78	4 CB	PRO	111	9. 015	11. 975	77. 062	1. 00 93. 16
5	ATOM 78	5 CG	PR0	111	10. 147	12. 819	77. 536	1. 00 92. 31
	ATOM 78	3 C	PRO	111	8. 928	9. 613	76. 159	1. 00 95. 40
	ATOM 78'	7 0	PRO	111	9. 466	9. 355	75. 082	1. 00 95. 80
•	ATOM 788	3 N	GLU	112	7. 758	9. 101	76. 529	1. 00 97. 55
	ATOM 789) CA	GLU	112	7. 006	8. 185	75. 679	1. 00 99. 50
10	ATOM 790	CB	GLU	112	5. 816	7. 611	76. 458	1. 00100. 31
	ATOM 791	CG	GLU	112	4. 745	6. 971	75. 589	1. 00101. 76
	ATOM 792	CD	GLU	112	5. 316	5. 989	74. 587	1. 00102. 84
	ATOM 793	0E1	GLU	112	5. 967	5.012	75. 014	1. 00103. 66
	ATOM 794	0E2	GLU	112	5. 113	6. 196	73. 372	1. 00103. 00
15	ATOM 795	C	GLU	112	6. 508	8. 884	74. 418	1. 00100. 37
	ATOM 796	0	GLU	112	6. 914	8. 545	73. 304	1. 00100. 17
	ATOM 797	N	ASP	113	5. 625	9. 859	74. 606	1. 00101. 44
	ATOM 798	CA	ASP	113	5. 056	10.620	73. 499	1. 00102. 05
	ATOM 799		ASP	113	4. 087	11. 680	74. 038	1. 00102. 23
20	ATOM 800	CG	ASP	113	4. 682	12. 494	75. 177	1. 00102. 33
	ATOM 801		ASP	113	4. 961	11. 913	76. 249	1. 00102. 01
	ATOM 802	OD2	ASP	113	4. 870	13. 716	74. 999	1. 00101. 99
	ATOM 803	C	ASP	113	6. 131	11. 282	72. 638	1. 00102. 09
	ATOM 804	0	ASP	113	5. 843	11. 789	71. 553	1. 00101. 96
25	ATOM 805	N	ALA	114	7. 368	11. 273	73. 126	1. 00102. 12
	ATOM 806	CA	ALA	114	8. 484	11. 869	72. 401	1. 00102. 09
	ATOM 807	CB	ALA	114	9. 590	12. 256	73. 377	1. 00101. 76
	ATOM 808	C	ALA	114	9. 022	10. 895	71. 358	1. 00102. 06
	ATOM 809	0	ALA	114	9. 763	11. 282	70. 455	1. 00101. 89

- 44 -ATOM 810 N MET 115 8. 640 9. 630 71. 491 1. 00102. 04 ATOM 811 CA MET 115 9. 081 8. 592 70. 569 1.00102.05 ATOM 812 CB MET 115 9. 466 7. 331 71. 346 1. 00102. 77 ATOM 813 CG MET 115 10. 637 7.509 72. 307 1. 00103. 47 5 ATOM 814 SD MET 115 12. 256 7. 549 71. 502 1. 00104. 26 ATOM 815 CE MET 115 12. 740 5. 824 71.638 1. 00103. 48 ATOM 816 C MET 115 8. 004 8. 253 69. 538 1.00101.77 ATOM 817 0 MET 115 8. 268 8. 275 68. 337 1. 00102. 14 ATOM 818 N THR 116 6. 796 7. 942 70.006 1. 00101. 14 10 ATOM 819 CA THR 116 5. 690 7.590 69. 110 1. 00100. 36 ATOM 820 CB THR 116 4. 517 6. 927 69. 880 1. 00100. 42 ATOM 821 OG1 THR 116 5.004 5.805 70. 625 1.00100.29 ATOM 822 CG2 THR 116 3. 441 6. 441 68. 911 1.00100.05 ATOM 823 C THR 116 5. 150 8.816 68. 379 1.00 99.62 ATOM 824 15 0 THR 116 4. 423 8. 694 1.00 99.72 67. 391 ATOM 825 N GLY 117 5. 510 9. 996 68. 870 1. 00 98. 62 ATOM 826 CA GLY 117 5. 048 11. 224 68. 252 1.00 97.42 ATOM 827 C GLY 117 5. 619 11. 447 66.866 1. 00 96. 48 ATOM 828 0 GLY 117 5. 746 10.511 66.074 1.00 96.38 ATOM 829 20 N THR 118 5. 962 12.696 66. 570 1.00 95.25 ATOM 830 CA THR 118 6. 521 13.050 1.00 93.78 65. 273 ATOM 831 CB THR 118 5. 679 14. 133 64. 578 1. 00 93. 57 ATOM 832 OG1 THR 118 5. 735 15. 343 65. 342 1.00 93.50 ATOM 833 CG2 THR 118 4. 234 13. 685 64. 457 1.00 93.65 25 ATOM 834 C THR 118 7. 936 13. 583 65. 440 1. 00 92. 67 ATOM 835 0 THR 118 8. 335 13. 976 66. 537 1.00 92.39 ATOM 836 N ALA 119 8. 687 13. 593 64. 343 1.00 91.30 ATOM 837 CA ALA 119 10.058 14.084 64. 356 1. 00 90. 00 ATOM 838 CB ALA 119 10. 643 14. 031 62. 956 1.00 89.81

- 45 -

	ATOM 83	9 C	ALA 119	10. 066	3 15. 513	64. 867	1. 00 89. 21
	ATOM 84	0 0	ALA 119				
	ATOM 84	1 N	GLU 120	8. 959	16. 210	64. 636	
	ATOM 842	CA CA	GLU 120	8. 819	17. 593	65. 063	1. 00 87. 61
5	ATOM 848	3 CB	GLU 120	7. 505			
	ATOM 844	l CG	GLU 120	7. 138	17. 763	63. 112	1. 00 86. 31
	ATOM 845	CD	GLU 120	8. 269	17. 956		1. 00 85. 84
	ATOM 846	0E1	GLU 120	8. 884	19. 042	62. 113	1. 00 84. 76
	ATOM 847	0E2	GLU 120	8. 535	17. 020	61. 336	1. 00 85. 71
10	ATOM 848	C	GLU 120	8. 837	17. 658	66. 588	1. 00 86. 71
	ATOM 849		GLU 120	9. 610	18. 412	67. 179	1. 00 86. 71
	ATOM 850	N I	MET 121	7. 980	16. 859	67. 216	1. 00 85. 74
	ATOM 851		MET 121	7. 895	16. 817	68. 671	1. 00 84. 85
	ATOM 852		MET 121	6. 798	15. 842	69. 111	1. 00 84. 04
15	ATOM 853			5. 390	16. 273	68. 740	1. 00 81. 88
	ATOM 854		MET 121	4. 152	15. 078	69. 268	1. 00 80. 83
	ATOM 855		MET 121	3. 772	14. 283	67. 730	1. 00 78. 55
	ATOM 856		MET 121	9. 226	16. 397	69. 286	1. 00 84. 73
				9. 687	17. 003	70. 255	1. 00 84. 87
20	ATOM 858		EU 122			68. 717	1. 00 84. 21
			EU 122				1. 00 83. 20
	ATOM 860		EU 122	11. 711		68. 221	1. 00 83. 29
			EU 122		13. 109	68. 697	1. 00 83. 07
0.5	ATOM 862		EU 122	12. 612	12. 232	69. 885	1. 00 82. 78
25	ATOM 863	CD2 L		13. 533	12. 261	67. 572	1. 00 82. 52
	ATOM 864		EU 122	12. 110	15. 980	69. 448	1. 00 82. 61
	ATOM 865		EU 122	12. 546			1. 00 82. 47
	ATON 866	N PI		12. 467			1. 00 82. 28
	ATOM 867	CA PI	łE 123	13. 414	17. 794	68. 512	1. 00 82. 09

- 46 -

					70		
	ATOM 868	3 CB PHE	123	13. 898	18. 251	67. 136	1. 00 82. 08
	ATOM 869	O CG PHE	123	14. 948	17. 357	66. 547	1. 00 81. 61
	ATOM 870	CD1 PHE	123	14. 616	16. 098	66. 060	1. 00 81. 34
	ATOM 871	CD2 PHE	123	16. 281	17. 756	66. 523	1. 00 81. 33
5	ATOM 872	CE1 PHE	123	15. 594	15. 246	65. 559	1. 00 80. 67
	ATOM 873	CE2 PHE	123	17. 268	16. 912	66. 026	1. 00 81. 58
	ATOM 874	CZ PHE	123	16. 923	15. 653	65. 543	1. 00 81. 33
	ATOM 875	C PHE	123	12. 834	18. 964	69. 288	1. 00 81. 98
	ATOM 876	0 PHE	123	13. 570	19. 838	69. 747	1. 00 81. 74
10	ATOM 877	N ASP	124	11. 512	18. 980	69. 429	1. 00 82. 09
	ATOM 878	CA ASP	124	10. 852	20. 028	70. 195	1. 00 82. 29
	ATOM 879	CB ASP	124	9. 329	19. 909	70. 073	1. 00 81. 96
	ATOM 880	CG ASP	124	8. 731	20. 961	69. 157	1. 00 81. 56
	ATOM 881	OD1 ASP	124	7. 510	20. 897	68. 901	1. 00 81. 25
15	ATOM 882	OD2 ASP	124	9. 477	21. 855	68. 701	1. 00 80. 94
	ATOM 883	C ASP	124	11. 279	19. 808	71. 641	1. 00 82. 22
	ATOM 884	0 ASP	124	11. 819	20. 707	72. 287	1. 00 81. 61
	ATOM 885	N TYR	125	11.047	18. 595	72. 133	1. 00 82. 59
	ATOM 886	CA TYR	125	11. 420	18. 233	73. 494	1. 00 83. 66
20	ATOM 887	CB TYR	125	11. 048	16. 771	73. 767	1. 00 85. 84
	ATOM 888	CG TYR	125	11. 533	16. 240	75. 100	1. 00 88. 74
	ATOM 889	CD1 TYR	125	12. 763	15. 590	75. 209	1. 00 89. 83
	ATOM 890	CE1 TYR	125	13. 222	15. 110	76. 437	1. 00 91. 28
	ATOM 891	CD2 TYR	125	10. 770	16. 399	76. 257	1. 00 90. 41
25	ATOM 892	CE2 TYR	125	11. 221	15. 926	77. 493	1. 00 91. 86
	ATOM 893	CZ TYR	125	12. 448	15. 281	77. 574	1. 00 92. 09
	ATOM 894	OH TYR	125	12. 896	14. 807	78. 789	1. 00 93. 08
	ATOM 895	C TYR	125	12. 917	18. 451	73. 704	1. 00 82. 86
	ATOM 896	0 TYR	125	13. 352	18. 829	74. 792	1. 00 82. 74

- 47 -ATOM 897 N ILE 126 13. 701 18. 215 72. 655 1. 00 81. 74 ATOM 898 CA ILE 126 15. 146 18. 398 72. 727 1. 00 80. 58 ATOM 899 CB ILE 126 15. 824 18.005 71. 397 1. 00 79. 32 ATOM 900 CG2 ILE 126 17. 277 18. 443 71. 398 1. 00 78. 57 ATOM 901 CG1 ILE 126 15. 719 16. 494 71. 194 1. 00 78. 47 ATOM 902 CD1 ILE 126 16.408 15. 993 69. 946 1. 00 78. 42 ATOM 903 C ILE 126 15. 479 19.852 73. 047 1. 00 80. 87 ATOM 904 0 ILE 126 16. 334 20. 133 73. 887 1.00 79.71 ATOM 905 N SER 127 14. 799 20.772 72. 370 1.00 81.80 ATOM 906 CA SER 127 15.018 22. 196 72. 594 1.00 82.44 ATOM 907 CB SER 127 14. 160 23. 021 71.636 1. 00 82. 62 ATOM 908 0G SER 127 14. 559 22. 807 70. 294 1.00 83.20 ATOM 909 C SER 127 14.668 22. 543 74. 034 1. 00 82. 44 ATOM 910 0 SER 127 15. 318 23. 382 74.660 1.00 81.86 ATOM 911 N GLU 128 13.636 21. 884 74. 553 1.00 83.04 ATOM 912 CA $GLU \subset$ 128 13. 202 22. 106 75. 927 1. 00 83. 79 ATOM 913 CB GLU 128 11. 944 21. 289 76. 232 1.00 84.79 ATOM 914 CG GLU 128 11.408 21. 490 77. 645 1. 00 86. 70 ATOM 915 CD GLU 128 10. 425 20. 409 78.061 1.00 88.14 ATOM 916 OE1 GLU 128 9. 408 20. 222 77. 357 1. 00 88. 36 ATOM 917 OE2 GLU 128 10.672 19. 747 79. 094 1.00 88.06 ATOM 918 C GLU 128 14.318 21.686 76.877 1. 00 83. 42 ATOM 919 0 GLU 128 14. 483 22. 261 77. 952 1.00 84.16 ATOM 920 N CYS 129 15. 081 20. 675 76. 475 1. 00 82. 77 ATOM 921 CA CYS 129 16. 177 20. 179 77. 295 1. 00 81. 21 ATOM 922 CBCYS 129 16. 554 18. 760 76.873 1. 00 81. 07 ATOM 923 SG CYS 129 15. 206 17. 569 77. 006 1.00 80.63

5

10

15

20

25

ATOM 924

ATOM 925

C

0

CYS

CYS

129

129

17. 391

18.092

21.089

21. 330

77. 178

78. 160

1. 00 80. 64

1. 00 79. 84

- 48 -

	ATOM 926	N ILE	130	17. 644	21. 591	75. 975	1. 00 80. 16
	ATOM 927	CA ILE	130	18. 782	22. 475	75. 775	1. 00 80. 33
	ATOM 928	CB ILE	130	18. 944	22. 860	74. 298	1. 00 79. 59
	ATOM 929	CG2 ILE	130	20. 253	23. 614	74. 102	1. 00 79. 29
5	ATOM 930	CG1 ILE	130	18. 933	21. 599	73. 436	1. 00 79. 00
	ATOM 931	CD1 ILE	130	19. 069	21. 860	71. 958	1. 00 79. 73
	ATOM 932	C ILE	130	18. 559	23. 735	76. 595	1. 00 80. 49
	ATOM 933	0 ILE	130	19. 475	24. 241	77. 239	1. 00 80. 22
	ATOM 934	N SER	131	17. 326	24. 229	76. 574	1. 00 81. 09
10	ATOM 935	CA SER	131	16. 970	25. 428	77. 320	1. 00 82. 28
	ATOM 936	CB SER	131	15. 525	25. 826	77. 006	1. 00 83. 15
	ATOM 937	OG SER	131	14. 641	24. 736	77. 195	1. 00 82. 88
	ATOM 938	C SER	131	17. 136	25. 195	78. 820	1. 00 82. 33
	ATOM 939	0 SER	131	17. 843	25. 940	79. 501	1. 00 82. 07
15	ATOM 940	N ASP	132	16. 478	24. 155	79. 322	1. 00 82. 42
	ATOM 941	CA ASP	132	16. 540	23. 792	80. 735	1. 00 82. 24
	ATOM 942	CB ASP	132	15. 893	22. 411	80. 934	1. 00 83. 24
	ATOM 943	CG ASP	132	15. 836	21. 981	82. 393	1. 00 83. 66
	ATOM 944		132		20. 963	82. 678	1. 00 83. 28
20	ATOM 945	OD2 ASP	132	16. 458	22. 645	83. 250	1. 00 83. 85
	ATOM 946		132	17. 996	23. 778	81. 200	1. 00 81. 62
	ATOM 947	0 ASP	132	18. 324	24. 293	82. 270	1. 00 82. 12
	ATOM 948	N PHE	133	18. 866	23. 193	80. 383	1. 00 80. 65
	ATOM 949	CA PHE	133	20. 286	23. 118	80. 698	1. 00 79. 47
25	ATOM 950	CB PHE	133	21. 033	22. 331	79. 616	1. 00 77. 80
	ATOM 951	CG PHE	133	22. 528	22. 391	79. 750	1. 00 75. 86
	ATOM 952	CD1 PHE	133	23. 178	21. 695	80. 761	1. 00 75. 50
	ATOM 953	CD2 PHE	133	23. 284	23. 179	78. 889	1. 00 75. 39
	ATOM 954	CE1 PHE	133	24. 562	21. 785	80. 914	1. 00 74. 78

- 49 -

					45 -		
	ATOM 955	CE2 PHE	133	24. 667	23. 275	79. 035	1. 00 74. 59
	ATOM 956	CZ PHE	133	25. 305	22. 578	80. 049	1. 00 74. 18
	ATOM 957	C PHE	133	20. 876	24. 519	80. 786	1. 00 79. 33
	ATOM 958	0 PHE	133	21. 690	24. 810	81. 659	1. 00 79. 06
5	ATOM 959	N LEU	134	20. 459	25. 382	79. 869	1. 00 79. 23
	ATOM 960	CA LEU	134	20. 951	26. 748	79. 828	1. 00 79. 59
	ATOM 961	CB LEU	134	20. 482	27. 412	78. 534	1. 00 79. 43
	ATOM 962	CG LEU	134	21. 043	26. 703	77. 297	1. 00 78. 61
	ATOM 963	CD1 LEU	134	20. 401	27. 247	76. 032	1. 00 78. 47
10	ATOM 964	CD2 LEU	134	22. 554	26. 878	77. 264	1. 00 77. 75
	ATOM 965	C LEU	134	20. 524	27. 565	81. 043	1. 00 79. 41
	ATOM 966	0 LEU	134	21. 324	28. 310	81. 609	1. 00 78. 74
	ATOM 967	N ASP	135	19. 268	27. 423	81. 448	1. 00 80. 16
	ATOM 968	CA ASP	135	18. 780	28. 152	82. 609	1. 00 80. 92
15	ATOM 969	CB ASP	135	17. 271	27. 966	82. 777	1. 00 80. 81
	ATOM 970	CG ASP	135	16. 474	28. 778	81. 783	1. 00 81. 08
	ATOM 971	OD1 ASP	135	16. 801	29. 970	81. 599	1. 00 82. 67
	ATOM 972	OD2 ASP	135	15. 517	28. 234	81. 195	1. 00 81. 12
	ATOM 973	C ASP	135	19. 486	27. 686	83. 872	1. 00 81. 80
20	ATOM 974	0 ASP	135	20. 090	28. 490	84. 578	1. 00 82. 12
	ATOM 975		136	19. 418	26. 384	84. 143	1. 00 82. 43
	ATOM 976	CA LYS	136	20. 041	25. 811	85. 333	1. 00 83. 25
	ATOM 977	CB LYS	136	19. 750	24. 307	85. 418	1. 00 82. 64
	ATOM 978	CG LYS	136	18. 288	23. 970	85. 677	1. 00 82. 57
25	ATOM 979	CD LYS	136	18. 095	22. 487	85. 952	1. 00 82. 49
	ATOM 980	CE LYS	136	16. 630	22. 154	86. 182	1. 00 82. 31
	ATOM 981	NZ LYS	136	16. 053	22. 914	87. 323	1. 00 82. 43
	ATOM 982	C LYS	136	21. 548	26. 044	85. 429	1. 00 84. 12
	ATOM 983	0 LYS	136	22. 185	25. 610	86. 390	1. 00 84. 51

- 50 -

	ATOM	984	N I	IIS	137	22. 119	26. 727	84. 442	1. 00 85. 08
	ATOM	985	CA I	IIS	137	23. 551	27. 010	84. 450	1. 00 86. 27
	ATOM	986	CB I	HIS	137	24. 280	26. 115	83. 438	1. 00 86. 74
	ATOM	987	CG 1	IIS	137	24. 169	24. 649	83. 730	1. 00 87. 04
5	ATOM	988	CD2 F	IIS	137	25. 112	23. 729	84. 047	1. 00 86. 44
	ATOM	989	ND1 H	IIS	137	22. 968	23. 971	83. 708	1. 00 87. 51
	ATOM	990	CE1 H	IIS	137	23. 176	22. 699	83. 999	1. 00 86. 59
	ATOM	991	NE2 H	IS	137	24. 468	22. 526	84. 209	1. 00 86. 35
	ATOM	992	C H	IS	137	23. 820	28. 476	84. 123	1. 00 87. 11
10	ATOM	993 (О Н	IS	137	24. 943	28. 842	83. 776	1. 00 86. 73
	ATOM	994 1	V G	LN	138	22. 784	29. 307	84. 249	1. 00 88. 41
	ATOM	995 (CA G	LN	138	22. 883	30. 736	83. 955	1. 00 89. 43
	ATOM	996 (CB G	LN	138	23. 469	31. 512	85. 140	1. 00 90. 47
	ATOM	997 (CG G	LN	138	22. 654	31. 451	86. 419	1. 00 92. 10
15	ATOM	998 (CD G	LN	138	22. 738	30. 099	87. 095	. 00 93. 09
	ATOM	999 0	E1 G	LN	138	23. 829	29. 598	87. 372 1	. 00 93. 35
•	ATOM	1000	·NE	2 GLN	138	21. 58	4 29. 50	1 87. 371	1. 00 93. 71
	ATOM	1001	C	GLN	138	23. 77	9 30. 93	82. 747	1. 00 89. 90
	ATOM	1002	0	GLN	138	24. 92	2 31. 376	82. 875	1. 00 89. 53
20	ATOM	1003	N	MET	139	23. 262	2 30. 591	81. 573	1.00 89.97
	ATOM	1004	CA	MET	139	24. 046	30. 725	80. 359	1. 00 90. 27
	ATOM	1005	СВ	MET	139	24. 995	5 29. 529	80. 235	1. 00 90. 82
	ATOM	1006	CG	MET	139	26. 314	29. 838	79. 542	1. 00 91. 26
	ATOM	1007	SD	MET	139	27. 526	28. 508	79. 736	1. 00 90. 73
25	ATOM	1008	CE	MET	139	28. 303	28. 974	81. 303	1. 00 91. 08
	ATOM	1009	C	MET	139	23. 137	30. 820	79. 140	1. 00 90. 17
	ATOM	1010	0	MET	139	23. 610	30. 894	78. 006	1. 00 90. 11
	ATOM	1011	N	LYS	140	21. 829	30. 829	79. 380	1. 00 89. 92
	ATOM	1012	CA	LYS	140	20. 851	30. 921	78. 300	1. 00 89. 78

- 51 -

	ATOM	1013	B CE	S LYS	140	19. 434	30. 922	78. 874	1. 00 89. 37
	ATOM	1014	L CO	G LYS	140	18. 357	31. 239	77. 852	1. 00 89. 17
	ATOM	1015	CI	LYS	140	16. 972	31. 055	78. 438	1. 00 89. 06
	ATOM	1016	CE	LYS	140	16. 688	29. 588	78. 675	1. 00 88. 66
5	ATOM	1017	NZ	LYS	140	16. 797	28. 822	77. 406	1. 00 88. 73
	ATOM	1018	C	LYS	140	21. 067	32. 179	77. 466	1. 00 89. 78
	ATOM	1019	0	LYS	140	20. 593	32. 278	76. 334	1. 00 89. 28
	ATOM	1020	N	HIS	141	21. 794	33. 133	78. 037	1. 00 90. 38
	ATOM	1021	CA	HIS	141	22. 082	34. 401	77. 376	1. 00 90. 81
10	ATOM	1022	CB	HIS	141	22. 222	35. 506	78. 427	1. 00 90. 98
	ATOM	1023	CG	HIS	141	23. 294	35. 243	79. 443	1. 00 91. 18
	ATOM	1024	CD	2 HIS	141	24. 520	35. 794	79. 610	1. 00 91. 04
	ATOM	1025	ND	1 HIS	141	23. 163	34. 294	80. 434	1. 00 91. 11
	ATOM	1026	CE.	HIS	141	24. 262	34. 273	81. 168	1. 00 91. 45
15	ATOM	1027	NE2	HIS	141	25. 102	35. 174	80. 688	1. 00 90. 96
	ATOM	1028	C	HIS	141	23. 349	34. 367	76. 516	1. 00 90. 72
	ATOM	1029	0	HIS	141	24. 048	35. 374	76. 399	1. 00 91. 00
	ATOM	1030	N	LYS	142	23. 648	33. 220	75. 912	1. 00 90. 17
	ATOM	1031	CA	LYS	142	24. 845	33. 109	75. 082	1. 00 89. 12
20	ATOM	1032	CB	LYS	142	26. 000	32. 529	75. 908	1. 00 89. 54
	ATOM	1033	CG	LYS	142	26. 424	33. 406	77. 079	1. 00 90. 51
	ATOM	1034	CD	LYS	142	27. 490	32. 730	77. 926	1. 00 91. 91
	ATOM	1035	CE	LYS	142	27. 867	33. 579	79. 131	1. 00 92. 42
	ATOM	1036	NZ	LYS	142	28. 820	32. 863	80. 026	1. 00 92. 34
25	ATOM	1037	C	LYS	142	24. 643	32. 276	73. 815	1. 00 87. 58
	ATOM	1038	0	LYS	142	23. 763	31. 418	73. 749	1. 00 87. 74
	ATOM	1039	N	LYS	143	25. 465	32. 554	72. 808	1. 00 85. 65
	ATOM	1040	CA	LYS	143	25. 414	31. 849	71. 532	1. 00 83. 45
	ATOM	1041	CB	LYS	143	25. 052	32. 819	70. 402	1. 00 83. 10

- 52 -

	ATOM	1042	2 C	G LYS	143	25. 19	9 32. 262	8 68. 988	3 1. 00 82. 55
	MOTA	1043	3 C1) LYS	143	24. 890			
	ATOM	1044	4 CI	E LYS	143	25. 289	32. 922		1. 00 82. 46
	ATOM	1045	N2	Z LYS	143	24. 519	31. 749		
5	ATOM	1046	C	LYS	143	26. 790	31. 252	71. 283	1. 00 82. 32
	ATOM	1047	0	LYS	143	27. 751	31. 974	71. 002	1. 00 82. 33
	ATOM	1048	N	LEU	144	26. 884	29. 932	71. 409	1. 00 79. 90
	ATOM	1049	CA	LEU	144	28. 146	29. 233	71. 198	1. 00 77. 12
	ATOM	1050	CB	LEU	144	28. 653	28. 634	72. 517	1. 00 78. 89
10	ATOM	1051	CG	LEU	144	29. 417	29. 543	73. 491	1. 00 80. 11
	ATOM	1052	CD	1 LEU	144	28. 560	30. 727	73. 924	1. 00 81. 77
	ATOM	1053	CD	2 LEU	144	29. 836	28. 721	74. 698	1. 00 80. 96
	ATOM	1054	С	LEU	144	27. 993	28. 132	70. 156	1. 00 73. 23
	ATOM	1055	0	LEU	144	26. 876	27. 742	69. 810	1. 00 72. 89
15	ATOM	1056	N	PRO	145	29. 119	27. 628	69. 628	1. 00 70. 01
	ATOM	1057	CD	PRO	145	30. 498	28. 104	69. 833	1. 00 68. 83
	ATOM	1058	CA	PR0	145	29. 081	26. 565	68. 621	1. 00 67. 77
	ATOM	1059	CB	PRO	145	30. 555	26. 356	68. 285	1. 00 68. 79
	ATOM	1060	CG	PRO	145	31. 159	27. 706	68. 542	1. 00 69. 21
20	ATOM	1061	С	PRO	145	28. 434	25. 299	69. 181	1. 00 65. 49
	ATOM	1062	0	PRO	145	28. 615	24. 963	70. 351	1. 00 64. 23
	ATOM	1063	N	LEU	146	27. 677	24. 603	68. 340	1. 00 63. 31
	ATOM			LEU	146	27. 007	23. 383	68. 757	1. 00 61. 72
	ATOM	1065	CB	LEU	146	25. 492	23. 532	68. 602	1. 00 62. 15
25	ATOM	1066	CG	LEU	146	24. 678	22. 285	68. 945	1. 00 62. 90
	ATOM	1067		LEU	146	25. 011	21. 842	70. 353	1. 00 64. 57
	ATOM	1068	CD2	LEU	146	23. 194	22. 577	68. 817	1. 00 65. 06
	ATOM	1069	C	LEU	146	27. 473	22. 152	67. 985	1. 00 59. 94
	ATOM	1070	0	LEU	146	27. 342	22. 086	66. 763	1. 00 59. 04

- 53 -

	ATOM	1071	N	GLY	147	28. 028	21. 189	68. 721	1. 00 58. 65
	ATOM	1072	CA	GLY	147	28. 492	19. 939	68. 136	1. 00 54. 15
	ATOM	1073	C	GLY	147	27. 444	18. 891	68. 465	1. 00 49. 71
	ATOM	1074	0	GLY	147	27. 175	18. 628	69. 635	1. 00 50. 70
5	ATOM	1075	N	PHE	148	26. 854	18. 287	67. 440	1. 00 46. 12
	ATOM	1076	CA	PHE	148	25. 795	17. 297	67. 635	1. 00 42. 39
	ATOM	1077	CB	PHE	148	24. 610	17. 675	66. 740	1. 00 39. 68
	ATOM	1078	CG	PHE	148	23. 366	16. 864	66. 977	1. 00 38. 24
	ATOM	1079	CD1	PHE	148	22. 326	16. 901	66. 056	1. 00 36. 04
10	ATOM	1080	CD2	PHE	148	23. 212	16. 102	68. 132	1. 00 36. 13
	ATOM	1081	CE1	PHE	148	21. 148	16. 194	66. 279	1. 00 38. 53
	ATOM	1082	CE2	PHE	148	22. 042	15. 395	68. 365	1. 00 35. 28
	ATOM	1083	CZ	PHE	148	21. 005	15. 440	67. 437	1. 00 37. 48
	ATOM	1084	C	PHE	148	26. 197	15. 840	67. 354	1. 00 41. 67
15	ATOM	1085	0	PHE	148	26. 463	15. 475	66. 205	1. 00 42. 24
	ATOM	1086	N	THR	149	26. 247	15. 013	68. 398	1. 00 40. 23
	ATOM	1087	CA	THR	149	26. 562	13. 593	68. 222	1. 00 36. 30
	ATOM	1088	CB	THR	149	27. 281	13. 001	69. 442	1. 00 36. 36
	ATOM	1089	0G1	THR	149	28. 580	13. 597	69. 560	1. 00 37. 54
20	ATOM	1090	CG2	THR	149	27. 444	11. 492	69. 286	1. 00 37. 01
	ATOM	1091	C	THR	149	25. 212	12. 909	68. 039	1. 00 34. 65
	ATOM	1092	0	THR	149	24. 412	12. 836	68. 967	1. 00 31. 13
	ATOM	1093	N	PHE	150	24. 972	12. 422	66. 825	1. 00 33. 67
	ATOM	1094		PHE	150	23. 714	11. 782	66. 456	1. 00 34. 60
25	ATOM	1095		PHE	150	23. 061	12. 614	65. 336	1. 00 32. 78
	ATOM	1096	CG	PHE	150	21. 739	12. 086	64. 854	1. 00 30. 57
	ATOM	1097	CD1		150	21. 625	11. 513	63. 595	1. 00 30. 43
	ATOM	1098	CD2	PHE	150	20. 598	12. 213	65. 637	1. 00 31. 90
	ATOM	1099	CE1	PHE	150	20. 382	11. 076	63. 115	1. 00 34. 54

- 54 -

	ATOM	1100	CE	2 PHE	150	19. 356	11, 783	65 176	1. 00 30. 63
	ATOM	1101		PHE		19. 241		63. 913	
	ATOM	1102	С	PHE	150	24. 011			
	ATOM	1103	0	PHE	15 0	24. 369	10. 128		-
5	ATOM	1104	N	SER	151	23. 843			
	ATOM	1105	CA	SER	151	24. 129	7. 995		
	ATOM	1106	СВ	SER	151	•	7. 271		
	ATOM	1107	0G	SER	151	25. 111			
	ATOM	1108	C	SER	151	23. 189	7. 228		_
10	ATOM	1109	0	SER	151	22. 537			
	ATOM	1110	N	PHE	152	23. 110	7. 611		
	ATOM	1111	CA	PHE	152	22. 253	6. 902	63. 563	
	ATOM	1112	CB	PHE	152	20. 824	7. 464	63. 570	
	ATOM	1113	CG	PHE	152	20. 149	7. 372	64. 904	1. 00 34. 95
15	ATOM	1114	CD1	PHE	152	20. 278	8. 401	65. 838	1. 00 32. 95
	ATOM	1115	CD2	PHE	152	19. 439	6. 228	65. 256	1. 00 35. 34
	ATOM	1116	CE 1	PHE	152	19. 713	8. 291	67. 108	1. 00 35. 00
	ATOM	1117	CE2	PHE	152	18. 868	6. 102	66. 526	1. 00 35. 79
	ATOM	1118	CZ	PHE	152	19. 005	7. 135	67. 454	1. 00 38. 15
20	ATOM	1119	C	PHE	152	22. 845	7. 010	62. 171	1. 00 31. 95
	ATOM	1120	0	PHE	152	23. 727	7. 831	61. 921	1. 00 31. 72
	ATOM	1121	N	PRO	153	22. 386	6. 164	61. 247	1. 00 32. 44
	ATOM	1122	CD	PRO	153	21. 374	5. 098	61. 343	1. 00 30. 73
	ATOM	1123	CA	PRO	153	22. 942	6. 248	59. 896	1. 00 34. 59
25	ATOM	1124	CB	PRO	153	22. 397	4. 991	59. 225	1. 00 31. 34
	ATOM	1125	CG	PRO	153	21. 072	4. 812	59. 884	1. 00 31. 98
	ATOM	1126	C	PRO	153	22. 507	7. 535	59. 201	1. 00 37. 30
	ATOM	1127	0	PRO	153	21. 310	7. 813	59. 067	1. 00 39. 02
	ATOM	1128	N ·	VAL	154	23. 483	8. 325	58. 770	1. 00 39. 02

- 55 -

	ATOM	1129	CA V	AL 154	23. 187	9. 581	58. 092	1. 00 40. 43
	ATOM	1130			23. 446			1. 00 39. 28
	ATOM	1131	CG1 V	AL 154	23. 191	12. 081		1. 00 41. 18
	ATOM	1132	CG2 V	AL 154	22. 557	10. 727		
5	ATOM	1133	C V	AL 154	24. 023	9. 785	56. 837	1. 00 41. 48
	MOTA	1134	0 V.	AL 154	25. 241	9. 602	56. 861	
	ATOM	1135	N A	RG 155	23. 365	10. 162	55. 743	
	ATOM	1136	CA A	RG 155	24. 072	10. 441	54. 495	1. 00 46. 32
	ATOM	1137	CB AI	RG 155	23. 233	10. 058	53. 280	1. 00 47. 31
10	ATOM	1138	CG AI	RG 155	23. 809	10. 586	51. 968	1. 00 52. 20
	ATOM	1139	CD AI	RG 155	23. 563	9. 614	50. 844	1. 00 55. 56
	ATOM	1140	NE AF	RG 155	24. 419	8. 437	50. 968	1. 00 59. 93
	ATOM	1141	CZ AF	kG 155	24. 068	7. 217	50. 573	1. 00 61. 41
	ATOM	1142	NH1 AR	G 155	22. 874	7. 011	50. 032	1. 00 63. 00
15	ATOM	1143	NH2 AR	G 155	24. 910	6. 203	50. 717	1. 00 63. 35
	ATOM	1144	C AR	G 155	24. 367	11. 934	54. 456	1. 00 46. 23
	ATOM	1145	0 AR	G 155	23. 486	12. 737	54. 166	1. 00 47. 64
	ATOM	1146	N HI	S 156	25. 613	12. 291	54. 754	1. 00 47. 03
	ATOM	1147	CA HI	S 156	26. 046	13. 682	54. 791	1. 00 48. 05
20	ATOM	1148	CB HI	S 156	27. 318	13. 834	55. 632	1. 00 49. 62
	ATOM	1149	CG HI		27. 157	13. 444	57. 066	1. 00 52. 65
	ATOM	1150	CD2 HI	S 156	26. 274	12. 619	57. 676	1. 00 53. 99
	ATOM	1151			27. 990	13. 916	58. 057	1. 00 53. 35
	ATOM	1152	CE1 HIS		27. 625	13. 401	59. 218	1. 00 54. 78
25	ATOM	1153	NE2 HIS	5 156	26. 586	12. 610	59. 014	1. 00 54. 28
	ATOM	1154	C HIS	156	26. 334	14. 317	53. 440	1. 00 48. 30
	ATOM	1155	0 HIS	156	26. 872	13. 677	52. 535	1. 00 47. 38
	ATOM	1156	N GLU	157	25. 969	15. 589	53. 319	1. 00 47. 98
	ATOM	1157	CA GLU	157	26. 256	16. 343	52. 114	1. 00 48. 38

- 56 -

							00		
	ATOM	1158	B CB	GLU	157	25. 113	17. 296	51. 749	1. 00 51. 05
	ATOM	1159	e CG	GLU	157	25. 462	18. 198	50. 558	1. 00 57. 22
	ATOM	1160) CD	GLU	157	24. 422	19. 276	50. 275	1. 00 58. 92
	ATOM	1161	l OE	1 GLU	157	23. 299	18. 931	49. 845	1. 00 60. 91
5	ATOM	1162	2 0E	2 GLU	157	24. 734	20. 471	50. 485	1. 00 60. 69
	ATOM	1163	C	GLU	157	27. 475	17. 138	52. 547	1. 00 45. 12
	ATOM	1164	0	GLU	157	28. 349	17. 457	51. 749	1. 00 43. 91
	ATOM	1165	N	ASP	158	27. 529	17. 427	53. 843	1. 00 43. 85
	ATOM	1166	CA	ASP	158	28. 633	18. 174	54. 416	1. 00 43. 81
10	ATOM	1167	CB	ASP	158	28. 479	19. 654	54. 085	1. 00 46. 74
	ATOM	1168	CG	ASP	158	29. 743	20. 445	54. 349	1. 00 49. 54
	MOTA	1169	0D1	ASP	158	29. 760	21. 651	54. 016	1. 00 53. 34
	ATOM	1170	0D2	ASP	158	30. 716	19. 869	54. 884	1. 00 49. 62
	ATOM	1171	C	ASP	158	28. 671	17. 972	55. 928	1. 00 43. 93
15	ATOM	1172	0	ASP	158	27. 724	17. 447	56. 518	1. 00 43. 97
	ATOM	1173	N	ILE	159	29. 767	18. 399	56. 547	1. 00 43. 75
	ATOM	1174	CA	ILE	159	29. 963	18. 250	57. 983	1. 00 44. 27
	ATOM	1175	CB	ILE	159	31. 248	18. 971	58. 452	1. 00 45. 07
	ATOM	1176	CG2	ILE	159	31. 069	20. 480	58. 354	1. 00 47. 24
20	ATOM	1177	CG1	ILE	159	31. 544	18. 617	59. 907	1. 00 45. 29
	ATOM	1178	CD1	ILE	159	31. 733	17. 140	60. 152	1. 00 48. 99
	ATOM	1179	C	ILE	159	28. 795	18. 744	58. 829	1. 00 44. 47
	ATOM	1180	0	ILE	159	28. 583	18. 254	59. 941	1. 00 44. 15
	ATOM	1181	N	ASP	160	28. 037	19. 709	58. 317	1. 00 44. 10
25	ATOM	1182	CA	ASP	160	26. 904	20. 239	59. 072	1. 00 42. 92
	ATOM	1183	CB	ASP	160	27. 103	21. 734	59. 360	1. 00 44. 13
	ATOM	1184	CG	ĄSP	160	27. 448	22. 533	58. 118	1. 00 45. 52
	ATOM	1185	0D1	ASP	160	28. 258	23. 479	58. 239	1. 00 47. 57
	ATOM	1186	OD2	ASP	160	26. 912	22. 228	57. 031	1. 00 45. 51

- 57 -

						•	J 1 -		
	ATOM	1187	7 C	ASP	160	25. 559	20. 005	58. 410	1. 00 42. 92
	ATOM	1188	3 0	ASP	160	24. 579	20. 691	58. 706	1. 00 44. 48
	ATOM	1189	N	LYS	161	25. 509	19. 026	57. 518	1. 00 41. 57
	ATOM	1190) CA	LYS	161	24. 267	18. 692	56. 838	1. 00 41. 51
5	ATOM	1191	CB	LYS	161	24. 067	19. 597	55. 618	1. 00 41. 19
	ATOM	1192	CG	LYS	161	22. 783	19. 306	54. 863	1. 00 41. 39
	ATOM	1193	CD	LYS	161	22. 687	20. 094	53. 557	1. 00 43. 25
	ATOM	1194	CE	LYS	161	21. 366	19. 809	52. 860	1. 00 40. 06
	ATOM	1195	NZ	LYS	161	21. 335	20. 312	51. 468	1. 00 41. 02
10	ATOM	1196	С	LYS	161	24. 258	17. 224	56. 397	1. 00 41. 66
	ATOM	1197	0	LYS	161	25. 239	16. 725	55. 838	1. 00 39. 36
	ATOM	1198	N	GLY	162	23. 143	16. 546	56. 654	1. 00 40. 90
	ATOM	1199	CA	GLY	162	23. 005	15. 152	56. 276	1. 00 42. 70
	ATOM	1200	C	GLY	162	21.618	14. 645	56. 615	1. 00 43. 15
15	ATOM	1201	0	GLY	162	21.019	15. 085	57. 594	1. 00 43. 59
	ATOM	1202	N	ILE	163	21. 096	13. 722	55. 816	1. 00 43. 93
	ATOM	1203	CA	ILE	163	19. 763	13. 190	56. 068	1. 00 45. 03
	ATOM	1204	CB	ILE	163	18. 958	13. 031	54. 755	1. 00 46. 16
	ATOM	1205	CG2	ILE	163	18. 943	14. 352	53. 985	1. 00 45. 82
20	ATOM	1206	CG1	ILE	163	19. 585	11. 938	53. 889	1. 00 46. 11
	ATOM	1207	CD1	ILE	163	18. 812	11. 638	52. 613	1. 00 48. 51
	ATOM	1208	C	ILE	163	19. 812	11. 833	56. 764	1. 00 46. 49
	ATOM	1209	0	ILE	163	20. 771	11. 074	56. 609	1. 00 45. 36
	ATOM	1210	N	LEU	164	18. 767	11. 545	57. 533	1. 00 47. 21
25	ATOM	1211	CA	LEU	164	18. 649	10. 286	58. 253	1. 00 47. 53
	ATOM	1212	CB	LEU	164	17. 623	10. 414	59. 379	1. 00 47. 11
	ATOM	1213	CG	LEU	164	17. 135	9. 126	60. 049	1. 00 47. 15
	ATOM	1214	CD1	LEU	164	18. 265	8. 469	60. 832	1. 00 45. 45
	ATOM	1215	CD2	LEU	164	15. 981	9. 465	60. 977	1. 00 47. 00

- 58 -

	ATOM	1216	6 C	LEU	164	18. 189		57. 277	1. 00 48. 06
	ATOM	1217	0	LEU	164	17. 137	9. 352		-
	ATOM	1218	N	LEU	165	18. 977	8. 161		
	ATOM	12,19	CA	LEU	165	18. 614	7. 093		
5	ATOM	1220	CB	LEU	165	19. 827	6. 208		
	ATOM	1221	CG	LEU	165	20. 867	6. 978	55. 140	
	ATOM	1222	CD1	LEU	165	22. 128	6. 155	54. 956	
	ATOM	1223	CD2	LEU	165	20. 261	7. 342	53. 786	
	ATOM	1224	C	LEU	165	17. 460	6. 300	56. 814	1. 00 46. 86
10	ATOM	1225	0	LEU	165	16. 497	5. 985	56. 120	1. 00 46. 90
	ATOM	1226	N	ASN	166	17. 562	5. 992		1. 00 46. 60
	ATOM	1227	CA	ASN	166	16. 521	5. 266	58. 817	1. 00 47. 23
	ATOM	1228	CB	ASN	166	16. 282	3. 883	58. 200	1. 00 49. 17
	ATOM	1229	CG	ASN	166	17. 542	3. 053	58. 118	1. 00 50. 36
15	ATOM	1230	0D1	ASN	166	18. 205	2. 997	57. 076	1. 00 50. 62
	ATOM	1231	ND2	ASN	166	17. 888	2. 406	59. 223	1. 00 50. 50
	ATOM	1232	C	ASN	166	16. 913	5. 123	60. 279	1. 00 47. 60
	ATOM	1233	0	ASN	166	18. 096	5. 177	60. 623	T. 00 48. 53
	ATOM	1234	N	TRP	167	15. 916	4. 966	61. 142	1. 00 46. 96
20	ATOM	1235	CA	TRP	167	16. 166	4. 815	62. 571	1. 00 45. 46
	ATOM	1236	CB	TRP	167	14. 890	5. 085	63. 376	1. 00 47. 63
	ATOM	1237	CG	TRP	167	14. 433	6. 519	63. 454	1. 00 49. 15
	ATOM	1238	CD2	TRP	167	15. 093	7. 602	64. 126	1. 00 49. 07
	ATOM	1239	CE2	TRP	167	14. 237	8. 725	64. 050	1. 00 48. 21
25	ATOM	1240	CE3	TRP	167	16. 321	7. 732	64. 787	1. 00 49. 17
	ATOM	1241	CD1	TRP	167	13. 242	7. 022	63. 003	1. 00 49. 03
	ATOM	1242	NE1 1	TRP	167	13. 117	8. 343	63. 361	1. 00 48. 46
	ATOM	1243	CZ2 J	TRP	167	14. 569	9. 962	64. 614	1. 00 47. 68
	ATOM	1244	CZ3]	TRP	167	16. 652	8. 966	65. 348	1. 00 49. 58

- 59 -

						0,	J		
	ATOM	1245	CH	2 TRP	167	15. 777	10. 064	65. 256	1. 00 48. 80
	ATOM	1246	C	TRP	167	16. 647	3. 394	62. 890	1. 00 43. 28
	ATOM	1247	0	TRP	167	16. 425	2. 461	62. 119	1. 00 42. 86
	ATOM	1248	N	THR	168	17. 297	3. 245	64. 038	1. 00 41. 63
5	ATOM	1249	CA	THR	168	17. 796	1. 953	64. 501	1. 00 40. 13
	ATOM	1250	CB	THR	168	19. 275	1. 723	64. 086	1. 00 37. 87
	ATOM	1251	OG.	1 THR	168	20. 082	2. 795	64. 587	1. 00 33. 52
	ATOM	1252	CG	2 THR	168	19. 417	1. 647	62. 566	1. 00 34. 11
	ATOM	1253	C	THR	168	17. 719	1. 943	66. 029	1. 00 41. 33
10	ATOM	1254	0	THR	168	17. 382	2. 953	66. 649	1. 00 41. 41
	ATOM	1255	N	LYS	169	18. 025	0. 799	66. 631	1. 00 42. 06
	ATOM	1256	CA	LYS	169	18. 013	0. 672	68. 083	1. 00 42. 59
	ATOM	1257	CB	LYS	169	19. 077	1. 594	68. 683	1. 00 39. 56
	ATOM	1258	CG	LYS	169	20. 497	1. 209	68. 287	1. 00 36. 24
15	ATOM	1259	CD	LYS	169	21. 528	2. 170	68. 840	1. 00 33. 26
	ATOM	1260	CE	LYS	169	21. 481	3. 514	68. 133	1. 00 30. 26
	ATOM	1261	NZ	LYS	169	22. 589	4. 373	68. 610	1. 00 32. 75
	ATOM	1262	C	LYS	169	16. 661	0. 933	68. 751	1. 00 45. 26
	ATOM	1263	0	LYS	169	16. 598	1. 191	69. 955	1. 00 45. 85
20	ATOM	1264	N	GLY	170	15. 583	0. 881	67. 975	1. 00 47. 46
	ATOM	1265	CA	GLY	170	14. 267	1. 083	68. 555	1. 00 52. 44
	ATOM	1266	C	GLY	170	13. 552	2. 394	68. 295	1. 00 55. 24
	ATOM	1267	0	GLY	170	12. 324	2. 422	68. 275	1. 00 56. 11
	ATOM	1268	N	PHE	171	14. 293	3. 482	68. 118	1. 00 58. 10
25	ATOM	1269	CA	PHE	171	13. 668	4. 777	67. 861	1. 00 61. 86
	ATOM	1270	CB	PHE	171	14. 734	5. 846	67. 613	1. 00 62. 35
	ATOM	1271	CG	PHE	171	15. 449	6. 285	68. 856	1. 00 64. 08
	ATOM	1272	CD1	PHE	171	16.060	5. 354	69. 691	1. 00 66. 00
	ATOM	1273	CD2	PHE	171	15. 511	7. 630	69. 196	1. 00 64. 53

- 60 -

	ATOM	1274	CE	E1 PHE	171	16. 721	5. 760	70 851	1. 00 66. 96
	ATOM	1275		2 PHE	171		8. 046		1. 00 65. 93
	ATOM	1276	CZ	PHE	171	16. 776			
	ATOM	1277	C	РНЕ	171	12. 727			
5	ATOM	1278	0	PHE	171	12. 994		65. 702	
	ATOM	1279	N	LYS	172	11. 620	5. 430		
	ATOM	1280	CA	LYS	172	10. 657	5. 424	65. 633	
	ATOM	1281	СВ	LYS	172	9. 738	4. 197	65. 727	1. 00 70. 16
	ATOM	1282	CG	LYS	172	8. 814	4. 035	64. 517	1. 00 72. 04
10	ATOM	1283	CD	LYS	172	7. 867	2. 842	64. 647	1. 00 73. 43
	ATOM	1284	CE	LYS	172	6. 977	2. 718	63. 406	1. 00 74. 42
	ATOM	1285	NZ	LYS	172	5. 933	1. 655	63. 525	1. 00 73. 62
	ATOM	1286	C	LYS	172	9. 808	6. 688	65. 606	1. 00 69. 18
	ATOM	1287	0	LYS	172	8. 599	6. 642	65. 838	1. 00 70. 01
15	ATOM	1288	N	ALA	173	10. 445	7. 820	65. 332	1. 00 68. 98
	ATOM	1289	CA	ALA	173	9. 734	9. 086	65. 251	1. 00 69. 07
	ATOM	1290	CB	ALA	173	10. 598	10. 210	65. 818	1. 00 68. 41
	ATOM	1291	C	ALA	173	9. 424	9. 339	63. 776	1. 00 69. 07
	ATOM	1292	0	ALA	173	10. 336	9. 471	62. 962	1. 00 69. 61
20	ATOM	1293	N	SER	174	8. 139	9. 394	63. 432	1. 00 69. 06
	ATOM	1294	CA	SER	174	7. 735	9. 620	62. 047	1. 00 68. 32
	ATOM	1295	CB	SER	174	6. 217	9. 491	61. 901	1. 00 69. 02
	ATOM	1296	0G	SER	174	5. 546	10. 503	62. 632	1. 00 68. 18
	ATOM	1297	C	SER	174	8. 173	10. 996	61. 568	1. 00 67. 71
25	ATOM	1298	0	SER	174	8. 410	11. 897	62. 370	1. 00 68. 23
	ATOM	1299	N	GLY	175	8. 288	11. 148	60. 254	1. 00 67. 37
	ATOM	1300	CA	GLY	175	8. 688	12. 424	59. 690	1. 00 67. 08
	ATOM	1301	C	GLY	175	10. 143	12. 787	59. 915	1. 00 66. 86
	ATOM	1302	0	GLY	175	10. 507	13. 962	59. 855	1. 00 67. 38

- 61 -

	ATOM	1303	N	ALA	176	10. 979	11. 786	60. 172	1. 00 66. 42
	ATOM	1304	CA	ALA	176	12. 400	12. 018	60. 401	1. 00 64. 67
•	ATOM	1305	CB	ALA	176	12. 828	11. 360	61. 699	1. 00 64. 11
	ATOM	1306	С	ALA	176	13. 229	11. 475	59. 242	1. 00 64. 02
5	ATOM	1307	0	ALA	176	14. 053	12. 183	58. 667	1. 00 65. 00
	ATOM	1308	N	GLU	177	12. 993	10. 214	58. 903	1. 00 63. 24
•	ATOM	1309	CA	GLU	177	13. 710	9. 544	57. 825	1. 00 63. 08
	ATOM	1310	CB	GLU	177	13. 147	8. 127	57. 639	1. 00 62. 97
	ATOM	1311	CG	GLU	177	13. 315	7. 224	5 8. 8 6 5	1. 00 64. 81
10	ATOM	1312	CD	GLU	177	12. 712	5. 837	58. 682	1. 00 64. 99
	ATOM	1313	0E	GLU	177	12. 948	4. 972	59. 552	1. 00 65. 80
	ATOM	1314	0E2	GLU	177	12. 003	5. 612	57. 677	1. 00 64. 52
	ATOM	1315	C	GLU	177	13. 669	10. 293	56. 491	1. 00 62. 92
	ATOM	1316	0	GLU	177	12. 602	10. 489	55. 908	1. 00 63. 26
15	ATOM	1317	N	GLY	178	14. 838	10. 708	56. 013	1. 00 62. 46
	ATOM	1318	CA	GLY	178	14. 911	11. 406	54. 741	1. 00 61. 36
	ATOM	1319	C	GLY	178	15. 095	12. 911	54. 805	1. 00 60. 52
	ATOM	1320	0	GLY	178	15. 337	13. 539	53. 777	1. 00 61. 73
	ATOM	1321	N	ASN	179	14. 990	13. 498	55. 993	1. 00 59. 84
20	ATOM	1322	CA	ASN	179	15. 139	14. 942	56. 134	1. 00 59. 11
	ATOM	1323	CB	ASN	179	13. 985	15. 512	56. 959	1. 00 59. 72
	ATOM	1324	CG	ASN	179	12. 630	15. 217	56. 342	1. 00 61. 46
	ATOM	1325	OD1	ASN	179	12. 423	15. 416	55. 143	1. 00 61. 86
	ATOM	1326	ND2	ASN	179	11. 696	14. 743	57. 161	1. 00 61. 02
25	ATOM ·	1327	C	ASN	179	16. 463	15. 349	56. 765	1. 00 58. 81
	ATOM	1328	0	ASN	179	17. 108	14. 553	57. 441	1. 00 59. 10
	ATOM	1329	N	ASN	180	16. 860	16. 599	56. 537	1. 00 58. 30
	ATOM	1330	CA	ASN	180	18. 107	17. 130	57. 079	1. 00 57. 96
	ATOM	1331	CB	ASN	180	18. 362	18. 539	56. 539	1. 00 58. 57

- 62 -

						v	u		
	ATOM	1332	CG	ASN	180	19. 693	19. 112	57. 001	1. 00 60. 99
	ATOM	1333	OD.	1 ASN	180	20. 278	18. 647	57. 983	1. 00 60. 88
	ATOM	1334	ND	2 ASN	180	20. 171	20. 139	56. 302	1. 00 60. 74
	ATOM	1335	C	ASN	180	18. 036	17. 183	58. 600	1. 00 57. 30
5	ATOM	1336	0	ASN	180	17. 388	18. 064	59. 162	1. 00 57. 94
	ATOM	1337	N	VAL	181	18. 709	16. 245	59. 261	1. 00 55. 49
	ATOM	1338	CA	VAL	181	18. 716	16. 189	60. 720	1. 00 54. 19
	ATOM	1339	СВ	VAL	181	19. 698	15. 109	61. 229	1. 00 53. 15
	ATOM	1340	CG1	VAL	181	19. 756	15. 121	62. 748	1. 00 50. 90
10	ATOM	1341	CG2	VAL	181	19. 258	13. 742	60. 731	1. 00 51. 33
	ATOM	1342	C	VAL	181	19. 089	17. 534	61. 333	1. 00 54. 31
	ATOM	1343	0	VAL	181	18. 473	17. 979	62. 299	1. 00 53. 21
	ATOM	1344	N	VAL	182	20. 110	18. 174	60. 777	1. 00 56. 27
	ATOM	1345	CA	VAL	182	20. 533	19. 472	61. 271	1. 00 58. 32
15	ATOM	1346	CB	VAL	182	21. 706	20. 033	60. 447	1. 00 58. 42
	ATOM	1347	CG1	VAL	182	22. 135	21. 373	61. 007	1. 00 58. 05
	ATOM	1348	CG2	VAL	182	22. 867	19. 054	60. 460	1. 00 59. 02
	ATOM	1349	С	VAL	182	19. 339	20. 410	61. 125	1. 00 60. 16
	ATOM	1350	0	VAL	182	19. 052	21. 220	62. 008	1. 00 59. 87
20	ATOM	1351	N	GLY	183	18. 640	20. 275	60. 003	1. 00 61. 05
	ATOM	1352	CA	GLY	183	17. 480	21. 103	59. 741	1. 00 63. 47
	ATOM	1353	C	GLY	183	16. 412	20. 967	60. 805	1. 00 64. 68
	ATOM	1354	0	GLY	183	15. 873	21. 966	61. 280	1. 00 64. 59
	ATOM	1355	N	LEU	184	16. 103	19. 733	61. 187	1. 00 65. 39
25	ATOM	1356	CA	LEU	184	15. 091	19. 502	62. 203	1. 00 66. 47
	ATOM	1357	CB	LEU	184	14. 855	18. 005	62. 387	1. 00 66. 17
	ATOM	1358	CG	LEU	184	14. 407	17. 254	61. 132	1. 00 67. 51
	ATOM	1359	CD1	LEU	184	14. 116	15. 805	61. 486	1. 00 66. 63
	ATOM	1360	CD2	LEU	184	13. 168	17. 913	60. 546	1. 00 68. 22

- 63 -

	ATOM	1361	C	LEU	184	15. 502	20. 130	63. 528	1. 00 67. 67
	ATOM	1362	0	LEU	184		20. 570		
	ATOM	1363	N	LEU	185	× .	20. 176		
	ATOM	1364	CA	LEU	185	17. 297	20. 759	65. 031	
5	ATOM	1365	CB	LEU	185	18. 797	20. 501	65. 194	
	ATOM	1366	CG	LEU	185	19. 409	21. 060	66. 482	
	ATOM	1367	CD	1 LEU	185	18. 776	20. 375	67. 676	
	ATOM	1368	CD	2 LEU	185	20. 913	20. 851	66. 486	
	ATOM	1369	C	LEU	185	17. 034	22. 262	65. 058	1. 00 70. 10
10	ATOM	1370	0	LEU	185	16. 422	22. 776	65. 991	1. 00 70. 26
	ATOM	1371	N	ARG	186	17. 505	22. 962	64. 033	1. 00 71. 83
	ATOM	1372	CA	ARG	186	17. 314	24. 403	63. 948	1. 00 73. 78
	ATOM	1373	CB	ARG	186	18. 015	24. 941	62. 700	1. 00 73. 97
	ATOM	1374	CG	ARG	186	19. 533	24. 881	62. 804	1. 00 74. 09
15	ATOM	1375	CD	ARG	186	20. 206	24. 984	61. 448	1. 00 74. 37
	ATOM	1376	NE	ARG	186	21. 662	24. 945	61. 571	1. 00 75. 77
	ATOM	1377	CZ	ARG	186	22. 503	24. 860	60. 543	1. 00 75. 94
	ATOM	1378	NH 1	ARG	186	22. 036	24. 800	59. 303	1. 00 75. 97
	ATOM	1379	NH2	ARG	186	23. 815	24. 841	60. 755	1. 00 75. 99
20	ATOM	1380	C	ARG	186	15. 825	24. 737	63. 927	1. 00 74. 93
	ATOM	1381	0	ARG	186	15. 365	25. 609	64. 665	1. 00 74. 59
	ATOM	1382	N	ASP	187	15. 074	24. 023	63. 095	1. 00 76. 23
	ATOM	1383	CA	ASP	187	13. 632	24. 225	62. 981	1. 00 77. 59
	MOTA	1384	CB	ASP	187	13. 018	23. 128	62. 102	1. 00 75. 83
25	ATOM	1385	CG	ASP	187	13. 203	23. 391	60. 614	1. 00 74. 87
	ATOM	1386	0D1	ASP	187	14. 193	24. 051	60. 234	1. 00 73. 64
	ATOM	1387	OD2	ASP	187	12. 359	22. 924	59. 820	1. 00 74. 33
	ATOM	1388	C	ASP	187	12. 945	24. 236	64. 349	1. 00 79. 78
	ATOM	1389	0	ASP	187	11. 963	24. 952	64. 551	1. 00 80. 50

- 64 -

PCT/JP03/06054

		ATOM	1390) N	ALA	188	13. 46	23. 44	5 65. 286	3 1. 00 81. 21
		ATOM	1391	C.A	A ALA	188	12. 883	3 23. 379	66. 625	5 1. 00 82. 86
		ATOM	1392	C E	B ALA	188	13. 118	3 22. 000	67. 230	1. 00 83. 00
		ATOM	1393	C	ALA	188	13. 477	24. 456	67. 525	1. 00 84. 14
	5	ATOM	1394	0	ALA	188	12. 783	25. 019	68. 376	1. 00 84. 10
		ATOM	1395	N	ILE	189	14. 763	24. 736	67. 338	1. 00 85. 33
		ATOM	1396	CA	ILE	189	15. 445	25. 753	68. 127	1. 00 86. 87
		ATOM	1397	CB	ILE	189	16. 947	25. 819	67. 776	1. 00 86. 40
		ATOM	1398	CG	2 ILE	189	17. 585	27. 049	68. 409	
	10	ATOM	1399	CG	1 ILE	189	17. 641	24. 541	68. 253	
		ATOM	1400	CD	1 ILE	189	19. 136	24: 516	68. 004	1, 00 86, 36
		ATOM	1401	C	ILE	189	14. 812	27. 114	67. 871	1. 00 88. 85
		ATOM	1402	0	ILE	189	14. 802	27. 978	68. 748	1. 00 89. 64
		ATOM	1403	N	LYS	190	14. 278	27. 295	66. 666	1. 00 90. 36
	15	ATOM	1404	CA	LYS	190	13. 638	28. 551	66. 291	1. 00 91. 75
		ATOM	1405	CB	LYS	190	13. 678	28. 729	64. 770	1. 00 92. 26
		ATOM	1406	CG	LYS	190	15. 032	29. 205	64. 234	1. 00 93. 56
		ATOM	1407	CD	LYS	190	16. 174	28. 282	64. 652	1. 00 94. 17
		ATOM	1408	CE	LYS	190	17. 507	28. 722	64. 064	1. 00 94. 42
•	20	ATOM	1409	NZ	LYS	190	18. 605	27. 773	64. 409	1. 00 93. 91
		ATOM	1410	C	LYS	190	12. 202	28. 645	66. 803	1. 00 92. 34
		ATOM	1411	0	LYS	190	11. 612	29. 723	66. 817	1. 00 92. 82
		ATOM	1412	N	ARG	191	11. 639	27. 516	67. 221	1. 00 92. 78
		ATOM	1413	CA	ARG	191	10. 286	27. 502	67. 763	1. 00 93. 41
	25	ATOM	1414	CB	ARG	191	9. 674	26. 108	67. 658	1. 00 93. 77
		ATOM	1415	CG	ARG	191	9. 711	25. 497	66. 275	1. 00 93. 66
		ATOM	1416	CD	ARG	191	9. 530	23. 993	66. 378	1. 00 93. 81
		ATOM	1417	NE	ARG	191	9. 816	23. 310	65. 123	1. 00 93. 99
		ATOM	1418	CZ	ARG	191	10. 012	22. 000	65. 017	1. 00 94. 26

- 65 -

	ATOM	1419) NI	H1 ARG	191	9. 954	4 21. 231	66. 095	1. 00 94. 65
	ATOM	1420) NI	H2 ARG	191	10. 269	9 21. 459		1. 00 94. 96
	ATOM	1421	l C	ARG	191	10. 432	27. 866		
	ATOM	1422	0	ARG	191	9. 526	27. 654	70. 036	
5	ATOM	1423	N	ARG	192	11. 596	28. 408	69. 574	
	ATOM	1424	CA	ARG	192	11. 897	28. 795	70. 943	
	ATOM	1425	CB	ARG	192	13. 049	27. 944	71. 482	
	ATOM	1426	CG	ARG	192	12. 733	26. 469	71. 581	
	ATOM	1427	CD	ARG	192	11. 737	26. 209	72. 689	
10	ATOM	1428	NE	ARG	192	11. 339	24. 808	72. 745	
	ATOM	1429	CZ	ARG	192	10. 624	24. 278	73. 730	
	ATOM	1430	NH	1 ARG	192	10. 230	25. 035	74. 746	1. 00 99. 17
	ATOM	1431	NH	2 ARG	192	10. 300	22. 992	73. 700	1. 00 99. 97
	ATOM	1432	C	ARG	192	12. 273	30. 265	71. 062	1. 00 96. 50
15	ATOM	1433	0	ARG	192	11. 603	31. 035	71. 752	1. 00 96. 60
	ATOM	1434	N	GLY	193	13. 352	30. 652	70. 386	1. 00 96. 89
	ATOM	1435	CA	GLY	193	13. 812	32. 026	70. 465	1. 00 97. 08
	ATOM	1436	C	GLY	193	14. 385	32. 217	71. 855	1. 00 97. 08
	ATOM	1437	0	GLY	193	15. 060	33. 204	72. 147	1. 00 96. 46
20	ATOM	1438	N	ASP	194	14. 104	31. 235	72. 707	1. 00 97. 36
	ATOM	1439	CA	ASP	194	14. 552	31. 205	74. 092	1. 00 97. 35
	ATOM	1440	CB	ASP	194	13. 938	29. 984	74. 789	1. 00 98. 43
	ATOM	1441	CG	ASP	194	13. 764	30. 181	76. 284	1. 00 99. 62
	ATOM	1442	OD1	ASP	194	13. 117	31. 173	76. 683	1. 00100. 29
25	ATOM	1443	OD2	ASP	194	14. 262	29. 338	77. 059	1. 00 99. 87
	ATOM	1444	C	ASP	194	16. 078	31. 122	74. 122	1. 00 96. 90
	ATOM	1445	0	ASP	194	16. 715	31. 471	75. 118	1. 00 97. 50
	ATOM	1446	N	PHE	195	16. 657	30. 655	73. 018	1. 00 95. 62
	ATOM	1447	CA	PHE	195	18. 105	30. 524	72. 896	1. 00 94. 15

- 66 -

	ATOM	1448	3 C)	В РНЕ	195	18. 598	3 29. 309	73. 697	1. 00 94. 86
	ATOM	1449) C	G PHE	195	18. 043			
	ATOM	1450) Cl	O1 PHE	195	18. 560	27. 360		
	ATOM	1451	CI)2 PHE	195	17. 005	27. 369		
5	ATOM	1452	CE	E1 PHE	195	18. 053	26. 136	71. 663	
	ATOM	1453	CF	E2 PHE	195	16. 491	26 . 145	73. 492	
	ATOM	1454	CZ	PHE	195	17. 016	25. 528	72. 364	
	ATOM	1455	C	PHE	195	18. 508	30. 393	71. 430	
	ATOM	1456	0	PHE	195	17. 667	30. 131	70. 569	
10	ATOM	1457	N	GLU	196	19. 793	30. 583	71. 148	1. 00 90. 93
	ATOM	1458	CA	GLU	196	20. 292	30. 486	69. 779	1. 00 89. 04
	ATOM	1459	CB	GLU	196	20. 249	31. 861	69. 102	1. 00 89. 55
	ATOM	1460	CG	GLU	196	18. 846	32. 395	68. 832	1. 00 90. 25
	ATOM	1461	CD	GLU	196	18. 859	33. 771	68. 187	1. 00 90. 61
15	ATOM	1462	0E	1 GLU	196	19. 342	34. 728	68. 830	1. 00 90. 30
	ATOM	1463	0E	2 GLU	196	18. 390	33. 895	67. 035	1. 00 90. 79
	ATOM	1464	C	GLU	196	21. 711	29. 923	69. 694	1. 00 87. 11
	ATOM	1465	0	GLU	196	22. 681	30. 589	70. 066	1. 00 86. 83
	ATOM	1466	N	MET	197	21. 824	28. 692	69. 201	1. 00 84. 23
20	ATOM	1467	CA	MET	197	23. 121	28. 043	69. 045	1. 00 80. 79
	ATOM	1468	CB	MET	197	23. 067	26. 586	69. 524	1. 00 81. 16
	ATOM	1469	CG	MET	197	22. 633	26. 389	70. 967	1. 00 80. 14
	ATOM	1470	SD	MET	197	23. 597	27. 356	72. 135	1. 00 81. 93
	ATOM	1471	CE	MET	197	25. 195	26. 640	71. 968	1. 00 81. 72
25	ATOM	1472	C	MET	197	23. 502	28. 070	67. 568	1. 00 77. 74
	ATOM	1473	0	MET	197	22. 695	28. 436	66. 716	1. 00 76. 30
	ATOM	1474	N	ASP	198	24. 733	27. 672	67. 269	1. 00 75. 73
	ATOM	1475	CA	ASP	198	25. 214	27. 652	65. 894	1. 00 72. 50
	ATOM	1476	CB	ASP	198	26. 297	28. 723	65. 720	1. 00 73. 47

- 67 -

	A TOM	1 477	, 00		400		U		
	ATOM	1477		ASP		26. 573	29. 046	64. 265	1. 00 75. 34
	ATOM	1478		1 ASP	198	27. 407	29. 941	64. 005	1. 00 75. 72
	ATOM	1479	OD	2 ASP	198	25. 954	28. 407	63. 384	1. 00 76. 53
	ATOM	1480	C	ASP	198	25. 769	26. 265	65. 544	1. 00 69. 75
5	ATOM	1481	0	ASP	198	26. 962	26. 005	65.,703	1. 00 69. 48
	ATOM	1482	N	VAL	199	24. 892	25. 383	65. 068	1. 00 66. 43
	ATOM	1483	CA	VAL	199	25. 266	24. 018	64. 697	1. 00 62. 47
	ATOM	1484	CB	VAL	199	24. 055	23. 266	64. 113	1. 00 62. 19
	ATOM	1485	CG	1 VAL	199	24. 426	21. 823	63. 827	1. 00 61. 88
10	ATOM	1486	CG	2 VAL	199	22. 886	23. 340	65. 083	1. 00 61. 21
	ATOM	1487	C	VAL	199	26. 409	23. 986	63. 682	1. 00 60. 44
	ATOM	1488	0	VAL	199	26. 192	24. 135	62. 479	1. 00 59. 37
	ATOM	1489	N	VAL	200	27. 624	23. 774	64. 180	1. 00 58. 00
	ATOM	1490	CA	VAL	200	28. 820	23. 741	63. 341	1. 00 56. 24
15	ATOM	1491	CB	VAL	200	30. 048	24. 278	64. 128	1. 00 57. 42
	ATOM	1492	CG1	VAL	200	31. 326	24. 071	63. 331	1. 00 57. 94
	ATOM	1493	CG2	VAL	200	29. 859	25. 761	64. 433	1. 00 59. 29
	ATOM	1494	C	VAL	200	29. 159	22. 357	62. 785	1. 00 54. 53
	ATOM	1495	0	VAL	200	29. 759	22. 242	61. 715	1. 00 54. 29
20	ATOM	1496	N	ALA	201	28. 779	21. 306	63. 503	1. 00 52. 88
	ATOM	1497	CA	ALA	201	29. 085	19. 953	63. 048	1. 00 49. 83
	ATOM	1498	CB	ALA	201	30. 541	19. 627	63. 349	1. 00 47. 49
	ATOM	1499	C	ALA	201	28. 196	18. 887	63. 654	1. 00 46. 62
	ATOM	1500	0	ALA	201	27. 803	18. 973	64. 810	1. 00 47. 96
25	ATOM	1501	N	MET	202	27. 873	17. 883	62. 851	1. 00 44. 82
	ATOM	1502	CA	MET	202	27. 065	16. 762	63. 309	1. 00 42. 12
	ATOM	1503	CB	MET	202	25. 731	16. 695	62. 567	1. 00 39. 23
	ATOM	1504	CG	MET	202	24. 886	15. 520	63. 014	1. 00 38. 13
	ATOM	1505	SD	MET	202	23. 425	15. 193	62. 026	1. 00 40. 98

- 68 -

						U.	U		
	ATOM	1506	CE	MET	202	24. 134	15. 162	60. 401	1. 00 37. 63
	ATOM	1507	C	MET	202	27. 865	15. 489	63. 027	1. 00 40. 68
	ATOM	1508	0	MET	202	28. 274	15. 251	61. 888	1. 00 38. 74
	ATOM	1509	N	VAL	203	28. 092	14. 679	64. 060	1. 00 39. 90
5	ATOM	1510	CA	VAL	203	28. 851	13. 438	63. 901	1. 00 37. 47
	ATOM	1511	CB	VAL	203	30. 264	13. 549	64. 517	1. 00 36. 73
	ATOM	1512	CG	VAL	203	31. 078	14. 615	63. 796	1. 00 34. 96
	ATOM	1513	CG2	VAL	203	30. 155	13. 852	65. 996	1. 00 37. 90
	ATOM	1514	C	VAL	203	28. 190	12. 199	64. 505	1. 00 37. 09
10	ATOM	1515	0	VAL	203	27. 250	12. 284	65. 309	1. 00 36. 61
	ATOM	1516	N	ASN	204	28. 707	11. 039	64. 101	1. 00 36. 09
	ATOM	1517	CA	ASN	204	28. 228	9. 749	64. 584	1. 00 31. 60
	ATOM	1518	CB	ASN	204	28. 461	8. 695	63. 497	1. 00 32. 07
	ATOM	1519	CG	ASN	204	27. 949	7. 322	63. 888	1. 00 31. 63
15	ATOM	1520	0D1	ASN	204	28. 729	6. 443	64. 250	1. 00 30. 91
	ATOM	1521	ND2	ASN	204	26. 634	7. 135	63. 824	1. 00 28. 99
	ATOM	1522	C	ASN	204	29. 027	9. 454	65. 853	1. 00 28. 81
	ATOM	1523	0	ASN	204	30. 122	9. 990	66. 019	1. 00 30. 24
	ATOM	1524	N	ASP	205	28. 498	8. 639	66. 765	1. 00 27. 90
20	ATOM	1525	CA	ASP	205	29. 240	8. 361	67. 995	1. 00 26. 70
	ATOM	1526	CB	ASP	205	28. 369	7. 627	69. 028	1. 00 27. 65
	ATOM	1527	CG	ASP	205	27. 642	6. 438	68. 455	1. 00 30. 26
	ATOM	1528	0D1	ASP	205	27. 079	5. 655	69. 256	1. 00 28. 60
	ATOM	1529	0D2	ASP	205	27. 623	6. 289	67. 213	1. 00 31. 99
25	ATOM	1530	C	ASP	205	30. 573	7. 630	67. 791	1. 00 26. 87
	ATOM	1531	0	ASP	205	31. 498	7. 810	68. 581	1. 00 27. 79
	ATOM	1532	N	THR	206	30. 686	6. 816	66. 740	1. 00 24. 79
	ATOM	1533	CA	THR	206	31. 951	6. 146	66. 476	1. 00 24. 03
	ATOM	1534	CB	THR	206	31. 886	5. 236	65. 206	1. 00 25. 43

- 69 -

	ATOM	1535	0G	1 THR	206	31. 401	5. 999	64. 089	1. 00 26. 30
	ATOM	1536	CG	2 THR	206	30. 976	4. 032		
	ATOM	1537	С	THR	206	32. 970	7. 258		
	ATOM	1538	0	THR	206	34. 025	7. 326		
5	ATOM	1539	N	VAL	207	32. 632	8. 136		
	ATOM	1540	CA	VAL	207	33. 487	9. 257		
	ATOM	1541	CB	VAL	207	32. 775	10. 133	63. 855	
	ATOM	1542	CG	VAL	207	33. 617	11. 362	63. 521	
	ATOM	1543	CG2	VAL	207	32. 509	9. 299	62. 609	
10	ATOM	1544	C	VAL	207	33. 897	10. 119	66. 126	1. 00 23. 48
	ATOM	1545	0	VAL	207	35. 061	10. 470	66. 279	1. 00 26. 51
	ATOM	1546	N	ALA	208	32. 948	10. 452	66. 989	1. 00 24. 53
	ATOM	1547	CA	ALA	208	33. 262	11. 251	68. 169	1. 00 26. 32
	ATOM	1548	CB	ALA	208	31. 980	11533	68. 958	1. 00 27. 56
15	ATOM	1549	C	ALA	208	34. 287	10. 530	69. 055	1. 00 28. 84
	ATOM	1550	0	ALA	208	35. 247	11. 138	69. 549	1. 00 27. 69
	ATOM	1551	N	THR	209	34. 084	9. 228	69. 258	1. 00 28. 76
	ATOM	1552	CA	THR	209	35. 006	8. 447	70. 075	1. 00 28. 08
	ATOM	1553	CB	THR	209	34. 474	7. 001	70. 271	1. 00 31. 76
20	ATOM	1554	0G1	THR	209	33. 373	7. 027	71. 181	1. 00 33. 12
	ATOM	1555	CG2	THR	209	35. 550	6. 080	70. 818	1. 00 30. 03
	ATOM	1556	C	THR	209	36. 382	8. 414	69. 418	1. 00 26. 73
	ATOM	1557	0	THR	209	37. 399	8. 611	70. 078	1. 00 28. 00
	ATOM	1558	N	MET	210	36. 421	8. 191	68. 110	1. 00 28. 44
25	ATOM	1559	CA	MET	210	37. 703	8. 143	67. 419	1. 00 28. 08
	ATOM	1560	CB	MET	210	37. 516	7. 851	65. 932	1. 00 26. 94
	ATOM	1561	CG	MET	210	38. 842	7. 766	65. 168	1. 00 28. 59
	ATOM	1562	SD	MET	210	38. 643	7. 734	63. 374	1. 00 32. 14
	ATOM	1563	CE	MET	210	38. 216	9. 518	63. 083	1. 00 33. 30

- 70 -

	ATOM	1564	C	MET	210	38. 467	9. 452	67. 578	1. 00 29. 43
	ATOM	1565	0	MET	210	39. 636			1. 00 30. 57
	ATOM	1566	N	ILE	211	37. 799	10. 561	67. 281	1. 00 31. 16
	ATOM	1567	CA	ILE	211	38. 433	11. 873	67. 376	1. 00 30. 57
5	ATOM	1568	CB	ILE	211	37. 418	13. 012	67. 019	1. 00 29. 75
	ATOM	1569	CG	2 ILE	211	38. 086	14. 390	67. 177	1. 00 28. 08
	ATOM	1570	CG	1 ILE	211	36. 928	12. 837	65. 578	1. 00 22. 83
	ATOM	1571	CD	1 ILE	211	38. 021	12. 979	64. 553	
	ATOM	1572	C	ILE	211	39. 014	12. 128	68. 762	1. 00 30. 30
10	ATOM	1573	0	ILE	211	40. 185	12. 489	68. 897	1. 00 31. 89
	ATOM	1574	N	SER	212	38. 203	11. 914	69. 792	1. 00 32. 78
	ATOM	1575	CA	SER	212	38. 639	12. 146	71. 164	1. 00 35. 84
	ATOM	1576	CB	SER	212	37. 499	11. 852	72. 140	1. 00 35. 91
	ATOM	1577	0G	SER	212	37. 317	10. 455	72. 307	1. 00 41. 55
15	ATOM	1578	C	SER	212	39. 864	11. 334	71. 566	1. 00 37. 74
	ATOM	1579	0	SER	212	40. 684	11. 803	72. 354	1. 00 41. 44
	ATOM	1580	N	CYS	213	39. 990	10. 121	71. 040	1. 00 38. 07
	ATOM	1581	CA	CYS	213	41. 132	9. 273	71. 374	1. 00 39. 83
	ATOM	1582	CB	CYS	213	40. 802	7. 799	71. 108	1. 00 38. 31
20	ATOM	1583	SG	CYS	213	39. 513	7. 129	72. 185	1. 00 38. 48
	ATOM	1584	C	CYS	213	42. 372	9. 666	70. 582	1. 00 41. 86
	ATOM	1585	0	CYS	213	43. 503	9. 426	71. 012	1. 00 38. 47
	ATOM	1586	N	TYR	214	42. 149	10. 261	69. 413	1. 00 45. 32
	ATOM	1587	CA	TYR	214	43. 243	10. 701	68. 554	1. 00 45. 02
2 5	ATOM	1588	CB	TYR	214	42. 705	11. 506	67. 370	1. 00 45. 88
	ATOM	1589	CG	TYR	214	43. 798	12. 171	66. 573	1. 00 45. 72
	ATOM	1590	CD1	TYR	214	44. 509	11. 465	65. 608	1. 00 46. 39
	ATOM	1591	CE1	TYR	214	45. 556	12. 061	64. 913	1. 00 47. 16
	ATOM	1592	CD2	TYR	214	44. 160	13. 498	66. 823	1. 00 44. 53

- 71 -

	ATOM	1593	CE2	TYR	214	45. 203	14. 099	66. 134	1. 00 45. 20
	ATOM	1594	CZ	TYR	214	45. 896	13. 375	65. 183	1. 00 46. 22
	ATOM	1595	ОН	TYR	214	46. 942	13. 955	64. 510	1. 00 50. 31
	ATOM	1596	C	TYR	214	44. 226	11. 573	69. 322	1. 00 44. 69
5	ATOM	1597	0	TYR	214	45. 420	11. 296	69. 363	1. 00 44. 40
	ATOM	1598	N	TYR	215	43. 713	12. 635	69. 924	1. 00 45. 92
	ATOM	1599	CA	TYR	215	44. 556	13. 552	70. 667	1. 00 48. 38
	ATOM	1600	CB	TYR	215	43. 713	14. 716	71. 175	1. 00 51. 93
	ATOM	1601	CG	TYR	215	43. 192	15. 545	70. 021	1. 00 57. 70
10	ATOM	1602	CD1	TYR	215	41. 918	15. 330	69. 484	1. 00 58. 41
	ATOM	1603	CE1	TYR	215	41. 478	16. 047	68. 363	1. 00 61. 27
	ATOM	1604	CD2	TYR	215	44. 011	16. 498	69. 413	1. 00 59. 13
	ATOM	1605	CE2	TYR	215	43. 586	17. 214	68. 300	1. 00 61. 22
	ATOM	1606	CZ	TYR	215	42. 325	16. 991	67. 780	1. 00 62. 20
15	ATOM	1607	ОН	TYR	215	41. 928	17. 728	66. 688	1.00 61.67
	ATOM	1608	C	TYR	215	45. 304	12. 871	71. 792	1. 00 48. 87
	ATOM	1609	0	TYR	215	46. 282	13. 407	72. 318	1. 00 49. 38
	ATOM	1610	N	GLU	216	44. 852	11. 672	72. 142	1. 00 47. 69
	ATOM	1611	CA	GLU	216	45. 496	10. 889	73. 181	1. 00 47. 03
20	ATOM	1612	CB	GLU	216	44. 474	9. 979	73. 863	1. 00 49. 83
	ATOM	1613	CG	GLU	216	44. 837	9. 550	75. 270	1. 00 55. 37
	ATOM	1614	CD	GLU	216	44. 998	10. 735	76. 208	1. 00 59. 31
	ATOM	1615	0E1	GLU	216	44. 285	11. 747	76. 012	1. 00 59. 95
	ATOM	1616	0E2	GLU	216	45. 824	10. 649	77. 146	1. 00 60. 13
25	ATOM	1617	С	GLU	216	46. 552	10. 044	72. 477	1. 00 45. 45
	ATOM	1618	0	GLU	216	47. 673	9. 905	72. 958	1. 00 45. 05
	ATOM	1619	N	ASP	217	46. 183	9. 495	71. 321	1. 00 43. 73
	ATOM	1620	CA	ASP	217	47. 074	8. 643	70. 530	1. 00 41. 33
	ATOM	1621	CB	ASP	217	46. 776	7. 171	70. 845	1. 00 40. 13

- 72 -

	•					- 7	2 -		
	ATOM	1622	CG CG	ASP	217	47. 780	6. 208	70. 226	1. 00 39. 76
	ATOM	1623	3 OD	1 ASP	217	48. 461	6. 571	69. 249	1. 00 40. 95
	ATOM	1624	l OD	2 ASP	217	47. 876	5.062	70. 712	1. 00 42. 61
	ATOM	1625	C	ASP	217	46. 852	8. 921	69. 033	1. 00 40. 53
5	ATOM	1626	0	ASP	217	45. 862	8. 474	68. 443	1. 00 37. 20
	ATOM	1627	N	HIS	218	47. 779	9. 657	68. 427	1. 00 41. 94
	ATOM	1628	CA	HIS	218	47. 689	10. 008	67. 007	1. 00 44. 23
	ATOM	1629	CB	HIS	218	48. 912	10. 828	66. 603	1. 00 47. 00
	ATOM	1630	CG	HIS	218	48. 860	12. 244	67. 079	1. 00 51. 95
10	ATOM	1631	CD	2 HIS	218	49. 230	13. 402	66. 483	
	ATOM	1632	ND	HIS	218	48. 371	12. 592	68. 320	1. 00 54. 33
	ATOM	1633	CE	HIS	218	48. 439	13. 903	68. 467	1. 00 55. 83
	ATOM	1634	NE2	HIS	218	48. 957	14. 419	67. 367	1. 00 55. 95
	ATOM	1635	C	HIS	218	47. 528	8. 810	66. 074	1. 00 42. 66
15	ATOM	1636	0	HIS	218	47. 157	8. 963	64. 909	1. 00 42. 00
	ATOM	1637	N	GLN	219	47. 793	7. 620	66. 597	1. 00 41. 40
	ATOM	1638	CA	GLN	219	47. 667	6. 394	65. 820	1. 00 41. 15
	ATOM	1639	CB	GLN	219	48. 592	5. 321	66. 397	1. 00 45. 16
	ATOM	1640	CG	GLN	219	50. 070	5. 611	66. 214	1. 00 49. 72
20	ATOM	1641	CD	GLN	219	50. 566	5. 230	64. 832	1. 00 55. 92
	ATOM	1642	0E1	GLN	219	49. 997	5. 646	63. 813	1. 00 57. 28
	ATOM	1643	NE2	GLN	219	51. 636	4. 429	64. 787	1. 00 57. 32
	ATOM	1644	C	GLN	219	46. 228	5. 869	65. 792	1. 00 37. 41
	ATOM	1645	0	GLN	219	45. 927	4. 904	65. 091	1. 00 37. 06
25	ATOM	1646	N	CYS	220	45. 342	6. 488	66. 562	1. 00 34. 18
	ATOM	1647	CA	CYS	220	43. 955	6. 038	66. 578	1. 00 32. 52
	ATOM	1648	CB	CYS	220 .	43. 199	6. 597	67. 783	1. 00 28. 93
	ATOM	1649	SG	CYS	220	41. 420	6. 288	67. 739	1. 00 31. 90
	ATOM	1650	C	CYS	220	43. 272	6. 474	65. 303	1. 00 32. 01

- 73 -

	ATOM	1651	0	CYS	220	43. 010	7. 664	65. 096	1. 00 32. 91
	ATOM	1652	N	GLU	221	42. 993	5. 505	64. 442	1. 00 29. 12
	ATOM	1653	CA	GLU	221	42. 343		63. 176	
	ATOM	1654	СВ	GLU	221	43. 273	5. 437	62. 009	1. 00 30. 00
5	ATOM	1655	CG	GLU	221	44. 481	6. 366	61. 853	1. 00 35. 29
	ATOM	1656	CD	GLU	221	45. 190	6. 166	60. 515	1. 00 36. 83
	ATOM	1657	0E	1 GLU	221	44. 490	6. 007	59. 498	1. 00 38. 09
	ATOM	1658	0E	2 GLU	221	46. 436	6. 176	60. 465	1. 00 40. 80
	ATOM	1659	C	GLU	221	41. 057	4. 991	63. 059	1. 00 25. 46
10	ATOM	1660	0	GLU	221	40. 513	4. 835	61. 970	1. 00 22. 65
	ATOM	1661	N	VAL	222	40. 569	4. 491	64. 185	1. 00 25. 43
	ATOM	1662	CA	VAL	222	39. 337	3. 703	64. 179	1. 00 25. 45
	ATOM	1663	CB	VAL	222	39. 625	2. 172	64. 189	1. 00 24. 36
	ATOM	1664	CG	VAL	222	38. 318	1. 391	64. 122	1. 00 21. 56
15	ATOM	1665	CG2	VAL	222	40. 533	1. 795	63. 029	1. 00 21. 70
	ATOM	1666	C	VAL	222	38. 527	4. 016	65. 414	1. 00 25. 44
	ATOM	1667	0	VAL	222	39. 076	4. 192	66. 492	1. 00 25. 99
	ATOM	1668	N	GLY	223	37. 217	4. 090	65. 240	1. 00 25. 97
	ATOM	1669	CA	GLY	223	36. 328	4. 347	66. 349	1. 00 25. 83
20	ATOM	1670	С	GLY	223	35. 337	3. 201	66. 340	1. 00 25. 37
	ATOM	1671	0	GLY	223	34. 852	2. 812	65. 273	1. 00 25. 38
	ATOM	1672	N	MET	224	35. 044	2. 647	67. 511	1. 00 24. 88
	ATOM	1673	CA	MET	224	34. 114	1. 527	67. 587	1. 00 25. 47
	ATOM	1674	CB	MET	224	34. 881	0. 187	67. 638	1. 00 22. 66
25	ATOM	1675	CG	MET	224	33. 956	-1.041	67. 634	1. 00 25. 14
	ATOM	1676	SD	MET	224	34. 806	-2. 680	67. 748	1. 00 22. 18
	ATOM	1677	CE	MET	224	35. 380	-2. 594	69. 396	1. 00 16. 01
	ATOM	1678	C	MET	224	33. 177	1. 618	68. 780	1. 00 22. 20
	ATOM	1679	0	MET	224	33. 577	1. 978	69. 881	1. 00 22. 65

- 74 -

	ATOM	1680	N	ILE	225	31. 915	1. 295	68. 543	1. 00 21. 12
	ATOM	1681	CA	ILE	225	30. 936	1. 314	69. 604	1. 00 21. 34
	ATOM	1682	CB	ILE	225	29. 757	2. 295	69. 293	1. 00 25. 85
	ATOM	1683	CG	2 ILE	225	28. 739	2. 268	70. 446	1. 00 25. 47
5	ATOM	1684	CG	1 ILE	225	30. 273	3. 734	69. 107	1. 00 25. 08
	ATOM	1685	CD	1 ILE	225	30. 838	4. 355	70. 382	1. 00 22. 09
	ATOM	1686	C	ILE	225	30. 321	-0. 080	69. 789	1. 00 22. 30
	ATOM	1687	0	ILE	225	29. 885	-0. 712	68. 826	1. 00 24. 03
	ATOM	1688	N	VAL	226	30. 313	-0. 563	71. 025	1. 00 22. 67
10	ATOM	1689	CA	VAL	226	29. 645	-1. 817	71. 341	1.00 21.60
	ATOM	1690	CB	VAL	226	30. 618	-2. 993	71. 634	1. 00 21. 77
	ATOM	1691	CG1	VAL	226	29. 821	-4. 291	71. 718	1. 00 21. 54
	ATOM	1692	CG2	VAL	226	31. 663	-3. 113	70. 541	1. 00 17. 23
	ATOM	1693	C	VAL	226	28. 838	-1. 493	72. 604	1. 00 21. 49
15	ATOM	1694	0	VAL	226	29. 316	-1. 633	73. 723	1. 00 18. 90
	ATOM	1695	N	GLY	227	27. 615	-1. 016	72. 402	1. 00 25. 39
	ATOM	1696	CA	GLY	227	26. 744	-0. 675	73. 518	1. 00 26. 76
	ATOM	1697	C	GLY	227	25. 353	-1. 140	73. 150	1. 00 28. 03
	ATOM	1698	0	GLY ·	227	25. 155	-2. 315	72. 846	1. 00 29. 80
20	ATOM	1699	N	THR	228	24. 384	-0. 235	73. 161	1. 00 27. 62
	ATOM	1700	CA	THR	228	23. 031	-0. 607	72. 788	1. 00 27. 59
	ATOM	1701	CB	THR	228	22. 083	0. 601	72. 911	1. 00 29. 15
	ATOM	1702	0G1	THR	228	21. 937	0. 932	74. 294	1. 00 32. 52
	ATOM	1703	CG2	THR	228	20. 719	0. 291	72. 339	1. 00 28. 08
25	ATOM	1704	C	THR	228	23. 094	-1. 080	71. 345	1. 00 26. 98
	ATOM	1705	0	THR	228	22. 460	-2. 065	70. 960	1. 00 27. 95
	ATOM	1706	N	GLY	229	23. 890	-0. 374	70. 554	1. 00 26. 02
	ATOM	1707	CA	GLY	229	24. 050	-0. 718	69. 154	1. 00 25. 33
	ATOM	1708	C	GLY	229	25. 503	-1. 055	68. 911	1. 00 24. 09

- 75 -

	ATOM	1709	0	GLY	229	26. 312	-1. 004	69. 838	3 1. 00 23. 25
	ATOM	1710	N	CYS	230	25. 850	-1. 395	67. 677	1. 00 24. 12
	ATOM	1711	CA	CYS	230	27. 235	-1. 750	67. 376	1. 00 23. 83
	ATOM	1712	CB	CYS	230	27. 395	-3. 280	67. 425	1. 00 20. 39
5	ATOM	1713	SG	CYS	230	29. 076	-3. 879	67. 182	1. 00 25. 34
	ATOM	1714	C	CYS	230	27. 627	-1. 204	66. 010	1. 00 20. 45
	ATOM	1715	0	CYS	230	26. 919	-1. 406	65. 035	1. 00 20. 28
	ATOM	1716	N	ASN	231	28. 763	-0. 526	65. 935	1. 00 23. 86
	ATOM	1717	CA	ASN	231	29. 196	0. 076	64. 669	1. 00 24. 35
10	ATOM	1718	CB	ASN	231	28. 267	1. 261	64. 355	1. 00 25. 51
	ATOM	1719	CG	ASN	231	28. 598	1. 962	63. 042	1. 00 27. 76
	ATOM	1720	OD:	1 ASN	231	28. 930	1. 331	62. 039	1. 00 24. 60
	ATOM	1721	ND	2 ASN	231	28. 472	3. 288	63. 043	1. 00 30. 91
	ATOM	1722	C	ASN	231	30. 640	0. 553	64. 784	1. 00 23. 81
15	ATOM	1723	0	ASN	231	31. 184	0. 624	65. 885	1. 00 23. 94
	ATOM	1724	N	ALA	232	31. 249	0.885	63. 651	1. 00 22. 70
	ATOM	1725	CA	ALA	232	32. 626	1. 359	63. 636	1. 00 25. 15
	ATOM	1726	CB	ALA	232	33. 580	0. 169	63. 463	1. 00 24. 36
	ATOM	1727	C	ALA	232	32. 867	2. 372	62. 511	1. 00 26. 31
20	ATOM	1728	0	ALA	232	32. 127	2. 416	61. 530	1. 00 28. 47
	ATOM	1729	N	CYS	233	33. 911	3. 176	62. 664	1. 00 24. 88
	ATOM	1730	CA	CYS	233	34. 291	4. 160	61. 653	1. 00 26. 51
	ATOM	1731	CB	CYS	233	33. 899	5. 583	62. 076	1. 00 24. 89
	ATOM	1732	SG	CYS	233	34. 875	6. 224	63. 436	1. 00 25. 76
25	ATOM	1733	C	CYS	233	35. 805	4. 055	61. 555	1. 00 25. 08
	ATOM	1734	0	CYS	233	36. 450	3. 564	62. 480	1. 00 25. 19
	ATOM	1735	N	TYR	234	36. 373	4. 505	60. 442	1. 00 25. 32
	ATOM	1736	CA	TYR	234	37. 820	4. 427	60. 245	1. 00 23. 93
	ATOM	1737	CB	TYR	234	38. 200	3. 020	59. 760	1. 00 20. 70

- 76 -

						•	•		
	ATOM	1738	CG	TYR	234	37. 782	2. 771	58. 328	1. 00 16. 78
	ATOM	1739	CD	1 TYR	234	38. 712	2. 786	57. 302	1. 00 18. 75
	ATOM	1740	CE	1 TYR	234	38. 326	2. 668	55. 975	1. 00 18. 89
	ATOM	1741	CD	2 TYR	234	36. 443	2. 622	57. 990	1. 00 19. 60
5	ATOM	1742	CE	2 TYR	234	36. 043	2. 506	56. 666	1. 00 18. 40
	ATOM	1743	CZ	TYR	234	36. 990	2. 535	55. 665	1. 00 21. 55
	ATOM	1744	ОН	TYR	. 234	36. 603	2. 479	54. 346	1. 00 23. 25
	ATOM	1745	C	TYR	234	38. 254	5. 452	59. 194	1. 00 26. 41
	ATOM	1746	0	TYR	234	37. 436	5. 929	58. 404	1. 00 27. 14
10	ATOM	1747	N	MET	235	39. 543	5. 769	59. 179	1. 00 27. 10
	ATOM	1748	CA	MET	235	40. 094	6. 722	58. 224	1. 00 28. 74
	ATOM	1749	CB	MET	235	41. 383	7. 331	58. 789	1. 00 29. 38
	ATOM	1750	CG	MET	235	41. 169	8. 180	60. 035	1. 00 31. 43
	ATOM	1751	SD	MET	235	39. 947	9. 503	59. 750	1. 00 32. 30
15	ATOM	1752	CE	MET	235	40. 866	10. 535	58. 591	1. 00 34. 11
	ATOM	1753	C	MET	235	40. 374	6.066	56. 869	1. 00 29. 42
	ATOM	1754	0	MET	235	41. 170	5. 134	56. 767	1. 00 30. 49
	ATOM	1755	N	GLU	236	39. 714	6. 565	55. 829	1. 00 31. 08
	ATOM	1756	CA	GLU	236	39. 867	6. 040	54. 476	1. 00 31. 04
20	ATOM	1757	CB	GLU	236	38. 491	5. 743	53. 879	1. 00 31. 57
	ATOM	1758	CG	GLU	236	38. 536	5. 161	52. 474	1. 00 32. 18
	ATOM	1759	CD	GLU	236	39. 330	3. 875	52. 427	1. 00 32. 52
	MOTA	1760	0E1	GLU	236	40. 565	3. 952	52. 273	1. 00 34. 34
	ATOM	1761	0E2	GLU	236	38. 723	2. 789	52. 571	1. 00 30. 79
25	ATOM	1762	C	GLU	236	40. 598	7. 030	53. 574	1. 00 33. 43
	ATOM	1763	0	GLU	236	40. 583	8. 238	53. 818	1.00 29.93
	ATOM	1764	N	GLU	237	41. 240	6. 506	52. 532	1. 00 35. 85
	ATOM	1765	CA	GLU	237	41. 969	7. 333	51. 575	1. 00 37. 83
	ATOM	1766	CB	GLU	237	42. 934	6. 462	50. 764	1. 00 40. 16

- 77 -

							1		
	ATOM	1767	CG	GLU	237	43. 684	5. 426	51. 602	1. 00 43. 86
	ATOM	1768	CD	GLU	237	44. 466	6. 049	52. 743	1. 00 47. 85
	ATOM	1769	, OE	1 GLU	237	44. 806	5. 322	53. 704	1. 00 51. 02
	ATOM	1770	0E	2 GLU	237	44. 747	7. 264	52. 681	1. 00 48. 78
5	ATOM	1771	C	GLU	237	40. 920	7. 969	50. 657	1. 00 37. 87
	ATOM	1772	0	GLU	237	40. 058	7. 268	50. 122	1. 00 38. 29
	ATOM	1773	N	MET	238	40. 987	9. 287	50. 477	1. 00 37. 42
	ATOM	1774	CA	MET	238	40. 009	9. 987	49. 644	1. 00 37. 50
	ATOM	1775	CB	MET	238	40. 375	11. 467	49. 501	1. 00 38. 62
10	ATOM	1776	CG	MET	238	39. 772	12. 355	50. 587	1. 00 40. 32
	ATOM	1777	SD	MET	238	37. 956	12. 144	50. 764	1. 00 42. 83
	ATOM	1778	CE	MET	238	37. 308	13. 116	49. 410	1. 00 44. 06
	ATOM	1779	C	MET	238	39. 796	9. 374	48. 270	1. 00 36. 21
	ATOM	1780	0	MET	238	38. 685	9. 413	47. 740	1. 00 33. 93
15	ATOM	1781	N	GLN	239	40. 848	8. 803	47. 690	1. 00 35. 50
	ATOM	1782	CA	GLN	239	40. 714	8. 184	46. 378	1. 00 36. 82
	ATOM	1783	CB	GLN	239	42. 078	7. 732	45. 846	1. 00 39. 35
	ATOM	1784	CG	GLN	239	42. 839	6. 804	46. 774	1. 00 44. 12
	ATOM	1785	CD	GLN	239	43. 900	7. 534	47. 584	1. 00 49. 18
20	ATOM	1786	0E1	GLN	239	43. 635	8. 580	48. 192	1. 00 49. 88
	ATOM	1787	NE2	GLN	239	45. 111	6. 981	47. 600	1. 00 49. 95
	ATOM	1788	C	GLN	239	39. 762	6. 986	46. 395	1. 00 35. 72
	ATOM	1789	0	GLN	239	39. 276	6. 568	45. 348	1. 00 37. 20
	ATOM	1790	N	ASN	240	39. 503	6. 419	47. 570	1. 00 34. 56
25	ATOM	1791	CA	ASN	240	38. 604	5. 272	47. 648	1. 00 33. 20
	ATOM	1792	CB	ASN	240	39. 118	4. 239	48. 658	1. 00 33. 68
	ATOM	1793	CG	ASN	240	40. 548	3. 802	48. 369	1. 00 34. 24
	ATOM	1794	0D1	ASN	240	40. 963	3. 710	47. 210	1. 00 33. 87
	ATOM	1795	ND2	ASN	240	41. 306	3. 523	49. 424	1. 00 34. 32

- 78 -

	ATOM	1796	C	ASN	240	37. 190	5. 690	48. 011	1. 00	33. 25
	ATOM	1797	0	ASN	240	36. 259	4. 886	47. 936	1. 00	33. 86
	ATOM	1798	N	VAL	241	37. 024	6. 946	48. 414	1. 00	32. 52
	ATOM	1799	CA	VAL	241	35. 702	7. 441	48. 753	1. 00	31. 62
5	ATOM	1800	CB	VAL	241	35. 755	8. 559	49. 811	1. 00	29. 14
	ATOM	1801	CG1	VAL	241	34. 339	8. 948	50. 204	1. 00	31. 00
	ATOM	1802	CG2	VAL	241	36. 530	8. 107	51. 021	1. 00	26. 87
	ATOM	1803	C	VAL	241	35. 102	8. 010	47. 474	1. 00	33. 73
	ATOM	1804	0	VAL	241	35. 048	9. 224	47. 286	1. 00	35. 18
10	ATOM	1805	N	GLU	242	34. 643	7. 132	46. 595	1. 00	33. 33
	ATOM	1806	CA	GLU	242	34. 075	7. 572	45. 324	1. 00	33. 69
	ATOM	1807	CB	GLU	242	33. 788	6. 364	44. 431	1. 00	31. 05
	ATOM	1808	CG	GLU	242	34. 983	5. 457	44. 222	1. 00	33. 00
	ATOM	1809	CD	GLU	242	34. 767	4. 451	43. 115	1. 00	33. 45
15	ATOM	1810	0E1	GLU	242	33. 595	4. 162	42. 776	1. 00	33. 74
	ATOM	1811	OE2	GLU	242	35. 778	3. 940	42. 592	1. 00	35. 96
	ATOM	1812	C	GLU	242	32. 812	8. 437	45. 427	1. 00	34. 45
	ATOM	1813	0	GLU	242	32. 406	9. 061	44. 442	1. 00	32. 92
	ATOM	1814	N	LEU	243	32. 192	8. 471	46. 602	1. 00	33. 82
20	ATOM	1815	CA	LEU	243	30. 982	9. 262	46. 799	1. 00	36. 13
	ATOM	1816	CB	LEU	243	30. 080	8. 598	47. 844	1. 00	3 3. 9 9
	ATOM	1817	CG	LEU	243	29. 168	7. 490	47. 297	1. 00	37. 04
	ATOM	1818	CD1	LEU	243	27. 999	8. 096	46. 545	1. 00	36. 01
	ATOM	1819	CD2	LEU	243	29. 969	6. 560	46. 384	1. 00	36. 49
25	ATOM	1820	C	LEU	243	31. 290	10. 700	47. 199	1. 00	35. 69
	ATOM	1821	0	LEU	243	30. 406	11. 458	47. 585	1. 00	37. 51
	ATOM	1822	N	VAL	244	32. 560	11. 062	47. 117	1. 00	37. 53
	ATOM	1823	CA	VAL	244	32. 992	12. 411	47. 426	1. 00	37. 50
	ATOM	1824	CB	VAL	244	33. 537	12. 547	48. 861	1. 00	36. 7 5

- 79 -

	ATOM	1825	CG1	VAL	244	33. 967	13. 990	49. 109	1. 00 36. 55
	ATOM	1826	CG2	VAL	244	32. 465	12. 160	49. 870	1. 00 37. 02
	ATOM	1827	C	VAL	244	34. 099	12. 727	46. 446	1. 00 39. 75
	ATOM	1828	0	VAL	244	35. 090	12. 003	46. 361	1. 00 39. 55
5	ATOM	1829	N	GLU	245	33. 909	13. 802	45. 688	1. 00 42. 16
	ATOM	1830	CA	GLU	245	34. 880	14. 232	44. 695	1. 00 42. 30
	ATOM	1831	CB	GLU	245	34. 372	15. 487	43. 989	1. 00 45. 34
	ATOM	1832	CG	GLU	245	34. 886	15. 636	42. 576	1. 00 48. 54
	ATOM	1833	CD	GLU	245	34. 377	16. 893	41. 901	1. 00 50. 12
10	ATOM	1834	0E1	GLU	245	33. 192	17. 249	42. 107	1. 00 49. 37
	ATOM	1835	0E2	GLU	245	35. 164	17. 511	41. 152	1. 00 52. 40
	ATOM	1836	C	GLU	245	36. 203	14. 532	45. 378	1. 00 41. 00
	ATOM.	1837	0	GLU	245	36. 230	15. 132	46. 446	1. 00 42. 20
	ATOM	1838	N	GLY	246	37. 297	14. 107	44. 761	1. 00 41. 28
15	ATOM	1839	CA	GLY	246	38. 606	14. 349	45. 336	1. 00 42. 88
	ATOM	1840	C	GLY	246	39. 362	13. 066	45. 618	1. 00 45. 38
	ATOM	1841	0	GLY	246	38. 774	12. 056	45. 997	1. 00 45. 50
	ATOM	1842	N	ASP	247	40. 675	13. 105	45. 443	1. 00 47. 31
	ATOM	1843	CA	ASP	247	41. 509	11. 940	45. 687	1. 00 49. 13
20	ATOM	1844	CB	ASP	247	42. 139	11. 454	44. 384	1. 00 51. 65
	ATOM	1845	CG	ASP	247	41. 131	10. 836	43. 449	1. 00 56. 09
	ATOM	1846	0D1	ASP	247	41.534	10. 410	42. 345	1. 00 58. 83
	ATOM	1847	OD2	ASP	247	39. 936	10. 770	43. 819	1. 00 59. 44
	ATOM	1848	C	ASP	247	42. 611	12. 274	46. 667	1. 00 49. 51
25	ATOM	1849	0	ASP	247	43. 406	11. 415	47. 039	1. 00 49. 57
	ATOM	1850	N	GLU	248	42. 661	13. 531	47. 086	1. 00 50. 49
	ATOM	1851	CA	GLU	248	43. 696	13. 957	48. 011	1. 00 50. 97
	ATOM	1852	CB	GLU	248	44. 198	15. 351	47. 634	1. 00 54. 71
	ATOM	1853	CG	GLU	248	45. 670	15. 391	47. 259	1. 00 62. 15

- 80 -

	ATOM	1854	CD	GLU	248	46. 067	14. 259	46. 317	1. 00 66. 63
	ATOM	1855	0E1	GLU	248	46. 196	13. 105	46. 788	1. 00 68. 58
	ATOM	1856	0E2	GLU	248	46. 241	14. 520	45. 105	1. 00 68. 21
	ATOM	1857	C	GLU	248	43. 222	13. 955	49. 446	1. 00 47. 90
5	ATOM	1858	0	GLU	248	42. 063	14. 250	49. 726	1. 00 46. 55
	ATOM	1859	N	GLY	249	44. 133	13. 614	50. 351	1. 00 45. 49
	ATOM	1860	CA	GLY	249	43. 799	13. 590	51. 759	1. 00 44. 30
	ATOM	1861	C	GLY	249	43. 138	12. 301	52. 205	1. 00 42. 85
	ATOM	1862	0	GLY	249	43. 257	11. 259	51. 552	1. 00 42. 97
10	ATOM	1863	N	ARG	250	42. 444	12. 380	53. 335	1. 00 41. 43
	ATOM	1864	CA	ARG	250	41. 747	11. 232	53. 897	1. 00 39. 63
	ATOM	1865	CB	ARG	250	42. 625	10. 532	54. 931	1. 00 40. 69
	ATOM	1866	CG	ARG	250	44. 092	10. 454	54. 559	1. 00 43. 91
	ATOM	1867	CD	ARG	250	44. 903	9. 902	55. 714	1. 00 45. 22
15	ATOM	1868	NE	ARG	250	44. 630	8. 487	55. 940	1. 00 45. 43
	ATOM	1869	CZ	ARG	250	45. 040	7. 813	57. 007	1. 00 44. 67
	ATOM	1870	NH1	ARG	250	45. 738	8. 426	57. 954	1. 00 46. 95
	ATOM	1871	NH2	ARG	250	44. 761	6. 524	57. 121	1. 00 46. 99
	ATOM	1872	C	ARG	250	40. 486	11.726	54. 580	1. 00 37. 70
20	ATOM	1873	0	ARG	250	40. 430	12. 865	55. 042	1. 00 37. 51
	ATOM	1874	N	MET	251	39. 473	10. 867	54. 630	1. 00 35. 10
	ATOM	1875	CA	MET	251	38. 216	11. 197	55. 277	1. 00 32. 34
	ATOM	1876	CB	MET	251	37. 137	11. 517	54. 242	1. 00 33. 00
	ATOM	1877	CG	MET	251	35. 803	11. 907	54. 868	1. 00 31. 56
25	ATOM	1878	SD	MET	251	34. 474	12. 160	53. 677	1. 00 37. 84
	ATOM	1879	CE	MET	251	35. 067	13. 715	52. 885	1. 00 32. 92
	ATOM	1880	C	MET	251	37. 764	10. 007	56. 121	1. 00 32. 47
	ATOM	1881	0	MET	251	38. 024	8. 852	55. 777	1. 00 31. 05
	ATOM	1882	N	CYS	252	37. 088	10. 292	57. 229	1. 00 30. 16

- 81 -

	ATOM	1883	CA	CYS	252	36. 595	9. 236	58. 092	1. 00 30. 32
	ATOM	1884	СВ	CYS	252	36. 364	9. 762		
	ATOM	1885	SG	CYS	252	35. 601	8. 557		
	ATOM	1886	C	CYS	252	35. 292	8. 717	57. 511	1. 00 29. 86
5	ATOM	1887	0	CYS	252	34. 422	9. 495	57. 114	1. 00 29. 84
	MOTA	1888	N	VAL	253	35. 170	7. 397	57. 438	1. 00 28. 79
	ATOM	1889	CA	VAL	253	33. 960	6. 776	56. 921	1. 00 27. 69
	ATOM	1890	СВ	VAL	253	34. 291	5. 761	55. 816	1. 00 28. 07
	ATOM	1891	CG1	VAL	253	33. 033	5. 005	55. 405	1. 00 26. 98
10	ATOM	1892	CG2	VAL	253	34. 898	6. 484	54. 624	1. 00 24. 14
	ATOM	1893	C	VAL	253	33. 200	6, 069	58. 038	1. 00 28. 79
	ATOM	1894	0	VAL	253	33. 801	5. 448	58. 922	1. 00 31. 23
	ATOM	1895	N A	ASN	254	31. 879	6. 188	58. 000	1. 00 28. 38
	ATOM	1896	CA A	ASN	254	31. 003	5. 557	58. 976	1. 00 27. 73
15	ATOM	1897	CB A	ASN	254	29. 834	6. 473	59. 328	1. 00 27. 41
	ATOM	1898	CG A	ASN	254	28. 803	5. 779	60. 181	1. 00 31. 67
	ATOM	1899	OD1 A	ASN	254	29. 048	4. 675	60. 677	1. 00 32. 14
	ATOM	1900	ND2 A	ASN	254	27. 643	6. 415	60. 367	1. 00 29. 17
	ATOM	1901	C A	ISN	254	30. 480	4. 295	58. 299	1. 00 27. 41
20	ATOM	1902	0 A	SN	254	29. 575	4. 372	57. 467	1. 00 25. 53
	ATOM	1903	N I	HR	255	31. 049	3. 142	58. 654	1. 00 24. 66
	ATOM	1904	CA T	`HR	255	30. 662	1. 883	58. 016	1. 00 24. 86
	ATOM	1905	CB T	'HR	255	31. 501	0. 665	58. 527	1. 00 23. 42
	ATOM	1906	OG1 T	HR	255	31. 071	0. 310	59. 849	1. 00 23. 50
25	ATOM	1907	CG2 T	HR	255	32. 973	0. 982	58. 558	1. 00 23. 88
	ATOM	1908	C T	HR	255	29. 207	1. 488	58. 195	1. 00 23. 00
	ATOM	1909	0 T	HR	255	28. 589	0. 984	57. 259	1. 00 24. 38
	ATOM	1910	N G	LU	256	28. 673	1. 710	59. 394	1. 00 23. 70
	ATOM	1911	CA G	LU	256	27. 306	1. 305	59. 721	1. 00 26. 37

- 82 -

	ATOM	1912	CB	GLU	256	26. 271	2. 017	58. 838	1. 00 26. 22
	ATOM	1913	CG	GLU	256	25. 974	3. 471	59. 204	
	ATOM	1914	CD	GLU	256	25. 284	3. 644	60. 558	1. 00 31. 10
	ATOM	1915	0E	l GLU	256	24. 489	2. 764	60. 953	1. 00 31. 47
5	ATOM	1916	0E2	C GLU	256	25. 523	4. 682		
	ATOM	1917	C	GLU	256	27. 269	-0. 203	59. 458	1. 00 27. 40
	ATOM	1918	0	GLU	256	26. 369	-0. 713	58. 782	1. 00 26. 71
	ATOM	1919	N	TRP	257	28. 269	-0. 912	59. 982	1. 00 25. 98
	ATOM	1920	CA	TRP	257	28. 335	-2. 356	59. 774	1. 00 24. 56
10	ATOM	1921	CB	TRP	257	29. 714	-2. 928	60. 180	1. 00 21. 05
	ATOM	1922	CG	TRP	257	-30. 100	-2. 891	61. 653	1. 00 17. 51
	ATOM	1923	CD2	TRP	257	31. 429	-3. 026	62. 182	1. 00 16. 19
	ATOM	1924	CE2	TRP	257	31. 320	-3. 077	63. 588	1. 00 14. 42
	ATOM	1925	CE3	TRP	257	32. 705	-3. 112	61. 597	1. 00 16. 23
15	ATOM	1926	CD1	TRP	257	29. 264	-2. 862	62. 733	1. 00 18. 14
	ATOM	1927	NE 1	TRP	257	29. 990	-2. 977	63. 902	1. 00 19. 95
	ATOM	1928	CZ2	TRP	257	32. 435	-3. 214	64. 421	1. 00 17. 46
	ATOM	1929	CZ3	TRP	257	33. 815	-3. 246	62. 424	1. 00 13. 91
	ATOM	1930	CH2	TRP	257	33. 672	-3. 294	63. 822	1. 00 14. 28
20	ATOM	1931	C	TRP	257	27. 218	-3. 091	60. 500	1. 00 24. 58
	ATOM	1932	0	TRP	257	27. 067	-4. 305	60. 352	1. 00 24. 81
	ATOM	1933	N	GLY	258	26. 427	-2. 354	61. 273	1. 00 23. 21
	ATOM	1934	CA	GLY	258	25. 328	-2. 981	61. 982	1. 00 23. 11
	ATOM	1935	C	GLY	258	24. 385	-3. 640	60. 991	1. 00 25. 72
25	ATOM	1936	0	GLY	258	23. 758	-4. 660	61. 285	1. 00 28. 37
	ATOM	1937	N	ALA	259	24. 288	-3. 067	59. 796	1. 00 24. 64
	ATOM	1938	CA	ALA	259	23. 406	-3. 630	58. 789	1. 00 25. 53
	ATOM	1939	CB	ALA	259	22. 866	-2. 519	57. 874	1. 00 25. 11
	ATOM	1940	C	ALA	259	24. 084	-4. 724	57. 961	1. 00 25. 44

- 83 -

	ATOM	1941	. 0	ALA	259	23. 515	-5. 205	56. 985	1. 00 24. 68
	ATOM	1942	N	PHE	260	25. 306	-5. 101	58. 329	1. 00 26. 96
	ATOM	1943	CA	PHE	260	25. 995	-6. 175	57. 614	1. 00 28. 11
	ATOM	1944	CB	PHE	260	27. 359	-6. 440	58. 254	1. 00 30. 88
5	ATOM	1945	CG	PHE	260	28. 127	-7. 569	57. 625	1. 00 33. 87
	ATOM	1946	CD	1 PHE	260	28. 496	-7. 525	56. 286	1. 00 33. 60
	ATOM	1947	CD	2 PHE	260	28. 499	-8. 675	58. 380	1. 00 37. 30
	ATOM	1948	CE	1 PHE	260	29. 220	-8. 564	55. 716	1. 00 33. 58
	ATOM	1949	CE	2 PHE	260	29. 229	-9. 720	57. 808	1. 00 35. 65
10	ATOM	1950	CZ	PHE	260	29. 586	-9. 660	56. 478	1. 00 34. 41
	ATOM	1951	C	PHE	260	25. 080	-7. 388	57. 783	1. 00 28. 87
	ATOM	1952	0	PHE	260	24. 487	-7. 576	58. 849	1. 00 27. 08
	ATOM	1953	N	GLY	261	24. 941	-8. 193	56. 737	1. 00 28. 88
	ATOM	1954	CA	GLY	261	24. 074	-9. 357	5 6 . 826	1. 00 30. 83
15	ATOM	1955	C	GLY	261	22. 664	-9. 092	56. 317	1. 00 32. 15
	ATOM	1956	0	GLY	261	21. 905	-10. 021	56. 043	1. 00 34. 22
	ATOM	1957	N	ASP	262	22. 307	-7. 822	56. 175	1. 00 33. 45
	ATOM	1958	CA	ASP	262	20. 975	-7. 456	55. 701	1. 00 35. 91
	ATOM	1959	CB	ASP	262	20. 761	-5. 948	55. 868	1. 00 35. 78
20	ATOM	1960	CG	ASP	262	20. 674	-5. 541	57. 323	1. 00 35. 93
	ATOM	1961	0D1	ASP	262	20. 903	-6. 415	58. 182	1. 00 37. 70
	ATOM	1962	OD2	ASP	262	20. 382	-4. 364	57. 615	1. 00 35. 14
	ATOM	1963	C	ASP	262	20. 676	-7. 884	54. 262	1. 00 36. 35
	ATOM	1964	0	ASP	262	19. 546	-7. 758	53. 799	1. 00 37. 40
25	ATOM	1965	N	SER	263	21. 685	-8. 380	53. 554	1. 00 37. 07
	ATOM	1966	CA	SER	263	21. 488	-8. 863	52. 189	1. 00 37. 53
	ATOM	1967	CB	SER	263	22. 420	-8. 155	51. 200	1. 00 37. 00
	ATOM	1968	0G	SER	263	22. 028	-6. 815	50. 991	1. 00 38. 85
	ATOM	1969	C	SER	263	21. 770 -	-10. 359	52. 161	1. 00 37. 06

- 84 -

	ATOM	1970	0	SER	263	22. 062 -10. 923	51. 107	1. 00 36. 90
	ATOM	1971	N	GLY	264	21. 697 -10. 988	53. 331	1. 00 36. 97
	ATOM	1972	CA	GLY	264	21. 934 -12. 418	53. 428	1. 00 37. 50
	ATOM	1973	C	GLY	264	23. 370 -12. 857	53. 663	1. 00 38. 59
5	ATOM	1974	0	GLY	264	23. 666 -14. 050	53. 573	1. 00 40. 28
	ATOM	1975	N	GLU	265	24. 263 -11. 915	53. 961	1. 00 37. 52
	ATOM	1976	CA	GLU	265	25. 671 -12. 237	54. 199	1. 00 36. 34
	ATOM	1977	CB	GLU	265	26. 488 -10. 965	54. 438	1. 00 35. 82
	ATOM	1978	CG	GLU	265	26. 535 -9. 976	53. 289	1. 00 38. 57
10	ATOM	1979	CD	GLU	265	25. 270 -9. 148	53. 158	1. 00 39. 55
	ATOM	1980	0E	GLU	265	24. 600 -8. 901	54. 173	1. 00 38. 51
	ATOM	1981	0E2	GLU	265	24. 953 -8. 722	52. 031	1. 00 43. 82
	ATOM	1982	C	GLU	265	25. 906 -13. 171	55. 391	1. 00 36. 38
	ATOM	1983	0	GLU	265	26. 899 -13. 906	55. 425	1. 00 35. 35
15	ATOM	1984	N	LEU	266	24. 996 -13. 140	56. 362	1. 00 34. 63
	ATOM	1985	CA	LEU	266	25. 130 -13. 955	57. 567	1. 00 35. 02
	ATOM	1986	CB	LEU	266	25. 008 -13. 054	58. 803	1. 00 31. 68
	ATOM	1987	CG	LEU	266	26. 017 -11. 914	58. 973	1. 00 33. 35
	ATOM	1988	CD1	LEU	266	25. 555 -10. 975	60. 077	1. 00 32. 52
20	ATOM	1989	CD2	LEU	266	27. 383 -12. 480	59. 294	1. 00 32. 43
	ATOM	1990	C	LEU	266	24. 108 -15. 092	57. 674	1. 00 35. 37
	ATOM	1991	0	LEU	266	24. 047 -15. 779	58. 696	1. 00 35. 21
	ATOM	1992	.N	ASP	267	23. 321 -15. 300	56. 627	1. 00 36. 35
	ATOM	1993	CA	ASP	267	22. 286 -16. 332	56. 643	1. 00 39. 50
25	ATOM	1994	CB	ASP	267	21. 664 -16. 480	55. 248	1. 00 42. 21
	ATOM	1995	CG	ASP	267	20. 666 -15. 369	54. 921	1. 00 45. 43
	ATOM	1996	0D1	ASP	267	20. 205 -15. 320	53. 759	1. 00 48. 41
	ATOM	1997	0D2	ASP	267	20. 332 -14. 554	55. 813	1. 00 45. 57
	ATOM	1998	C	ASP	267	22. 676 -17. 715	57. 171	1. 00 38. 87

- 85 -

	ATOM	1999	0	ASP	267	21. 888 -18. 353	57. 867	1. 00 39. 64
	ATOM	2000	N	GLU	268	23. 879 -18. 179	56. 860	1. 00 38. 72
	ATOM	2001	CA	GLU	268	24. 301 -19. 502	57. 313	1. 00 39. 91
	ATOM	2002	CB	GLU	268	25. 510 -19. 971	56. 495	1. 00 40. 60
5	ATOM	2003	CG	GLU	268	26. 847 -19. 444	56. 976	1. 00 43. 85
	ATOM	2004	CD	GLU	268	27. 969 -19. 710	55. 981	1. 00 47. 64
	ATOM	2005	0E1	GLU	268	28. 013 -19. 017	54. 941	1. 00 49. 73
	ATOM	2006	0E2	GLU	268	28. 802 -20. 612	56. 232	1. 00 48. 40
	ATOM	2007	C	GLU	268	24. 633 -19. 577	58. 807	1. 00 40. 59
10	ATOM	2008	0	GLU	268	24. 790 -20. 667	59. 360	1. 00 41. 43
	ATOM	2009	N	PHE	269	24. 734 -18. 427	59. 462	1. 00 39. 17
	ATOM	2010	CA	PHE	269	25. 070 -18. 402	60. 882	1. 00 37. 75
	ATOM	2011	CB	PHE	269	26. 182 -17. 385	61. 127	1. 00 34. 69
	ATOM	2012	CG	PHE	269	27. 435 -17. 675	60. 369	1. 00 35. 74
15	ATOM	2013	CD1	PHE	269	28. 144 -18. 853	60. 599	1. 00 35. 94
	ATOM	2014	CD2	PHE	269	27. 910 -16. 781	59. 416	1. 00 34. 75
	ATOM	2015	CE1	PHE	269	29. 306 -19. 136	59. 891	1. 00 34. 71
	ATOM	2016	CE2	PHE	269	29. 068 -17. 050	58. 701	1. 00 34. 58
	ATOM	2017	CZ	PHE	269	29. 770 -18. 233	58. 939	1. 00 35. 80
20	ATOM	2018	C	PHE	269	23. 898 -18. 085	61. 793	1. 00 36. 73
	ATOM	2019	0	PHE	269	23. 932 -18. 384	62. 984	1. 00 36. 59
	ATOM	2020	N	LEU	270	22. 861 -17. 480	61. 231	1. 00 37. 18
	ATOM	2021	CA	LEU	270	21. 696 -17. 107	62. 012	1. 00 37. 71
	ATOM	2022	CB	LEU	270	20. 712 -16. 332	61. 135	1. 00 36. 52
25	ATOM	2023	CG	LEU	270	21. 264 -15. 036	60. 521	1. 00 37. 18
	ATOM	2024	CD1	LEU	270	20. 299 -14. 516	59. 466	1. 00 38. 72
	ATOM	2025	CD2	LEU	270	21. 488 -13. 990	61. 604	1. 00 34. 72
	ATOM	2026	C	LEU	270	21. 010 -18. 312	62. 644	1. 00 38. 27
	ATOM	2027	0	LEU	270	20. 794 -19. 333	61. 995	1. 00 39. 49

- 86 -

	ATOM ATOM	2028	N	LEU	271	20. 685 -18. 176	63. 924	1,00 37 92
	ATOM							1. 00 01. 02
	III OIII	* 2029	CA	LEU	271	20. 010 -19. 212	64. 693	1. 00 38. 22
	ATOM	2030	CB	LEU	271	20. 657 -19. 339	66. 078	1. 00 37. 71
	ATOM	2031	CG	LEU	271	21. 897 -20. 220	66. 261	1. 00 38. 14
5	ATOM	2032	CD	1 LEU	271	22. 827 -20. 111	65. 075	1. 00 39. 09
	ATOM	2033	CD	2 LEU	271	22. 596 -19. 830	67. 549	1. 00 35. 73
	ATOM	2034	C	LEU	271	18. 536 -18. 845	64. 855	1. 00 39. 78
	ATOM	2035	0	LEU	271	18. 125 -17. 721	64. 538	1. 00 38. 05
	ATOM	2036	N	GLU	272	17. 751 -19. 794	65. 358	1. 00 39. 69
10	ATOM	2037	CA	GLU	272	16. 322 -19. 590	65. 575	1. 00 41. 03
	ATOM	2038	CB	GLU	272	15. 697 -20. 842	66. 219	1. 00 43. 64
	ATOM	2039	CG	GLU	272	16. 221 -21. 179	67. 627	1. 00 47. 44
	ATOM	2040	CD	GLU	272	15. 685 -22. 509	68. 182	1. 00 49. 81
	ATOM	2041	0E 1	GLU	272	16. 081 -23. 580	67. 666	1. 00 51. 29
15	ATOM	2042	0E2	C GLU	272	14. 869 -22. 484	69. 134	1. 00 47. 60
	ATOM	2043	C	GLU	272	16. 084 -18. 377	66. 466	1. 00 39. 89
	ATOM	2044	0	GLU	272	15. 151 -17. 602	66. 250	1. 00 40. 35
	ATOM	2045	N	TYR	273	16. 944 -18. 208	67. 465	1. 00 38. 65
	ATOM	2046	CA	TYR	273	16. 813 -17. 095	68. 393	1. 00 35. 97
20	ATOM	2047	CB	TYR	273	17. 829 -17. 238	69. 530	1. 00 35. 50
	ATOM	2048	CG	TYR	273	18. 008 -18. 658	70. 009	1. 00 34. 45
	ATOM	2049	CD1	TYR	273	19. 109 -19. 416	69. 611	1. 00 32. 53
	ATOM	2050	CE1	TYR	273	19. 252 -20. 740	70. 017	1. 00 35. 58
	ATOM	2051	CD2	TYR	273	17. 053 -19. 258	70. 830	1. 00 34. 35
25	ATOM	2052	CE2	TYR	273	17. 185 -20. 580	71. 241	1. 00 34. 82
	ATOM	2053	CZ	TYR	273	18. 281 -21. 314	70. 830	1. 00 35. 96
	ATOM	2054	ОН	TYR	273	18. 381 -22. 626	71. 208	1. 00 38. 31
	ATOM	2055	С	TYR	273	17. 021 -15. 763	67. 680	1. 00 35. 11
	ATOM	2056	0	TYR	273	16. 404 -14. 752	68. 031	1. 00 34. 85

- 87 -

					- 01 -		
ATOM	2057	N	ASP	274	17. 888 -15. 763	66. 676	1. 00 36. 47
ATOM	2058	CA	ASP	274	18. 164 -14. 541	6 5. 933	1. 00 36. 65
ATOM	2059	CB	ASP	274	19. 405 -14. 718	65. 059	× 1. 00 32. 36
ATOM	2060	CG	ASP	274	20. 627 -15. 072	65. 869	1. 00 32. 89
ATOM	2061	OD 1	ASP	274	20. 949 -14. 315	66. 810	1. 00 30. 53
ATOM	2062	0D2	ASP	274	21. 265 -16. 104	65. 569	1. 00 32. 08
ATOM	2063	C	ASP	274	16. 968 -14. 165	65. 081	1. 00 37. 27
ATOM	2064	0	ASP	274	16. 571 -13. 001	65. 040	1. 00 37. 20
ATOM	2065	N	ARG	275	16. 380 -15. 148	64. 410	1. 00 39. 32
ATOM	2066	CA	ARG	275	15. 222 -14. 866	63. 574	1. 00 41. 70
ATOM	2067	CB	ARG	275	14. 803 -16. 121	62. 809	1. 00 44. 47
ATOM	2068	CG	ARG	275	15. 908 -16. 666	61. 914	1. 00 49. 05
ATOM	2069	CD	ARG	275	15. 516 -18. 002	61. 303	1. 00 53. 46
ATOM	2070	NE	ARG	275	16. 668 -18. 740	60. 779	1. 00 57. 36
ATOM	2071	CZ	ARG	275	17. 352 -18. 408	59. 685	1. 00 58. 81
ATOM	2072	NH1	ARG	275	18. 383 -19. 148	59. 296	1. 00 60. 43
ATOM	2073	NH2	ARG	275	17. 005 -17. 341	58. 976	1. 00 61. 75
ATOM	2074	C	ARG	275	14. 079 -14. 353	64. 446	1. 00 41. 43
ATOM	2075	0	ARG	275	13. 350 -13. 444	64. 059	1. 00 40. 04
ATOM	2076	N	LEU	276	13. 939 -14. 927	65. 637	1. 00 40. 97
ATOM	2077	CA	LEU	276	12. 888 -14. 507	66. 556	1. 00 42. 14
ATOM	2078	CB	LEU	276	12. 831 -15. 450	67. 761	1. 00 44. 12
ATOM	2079	CG	LEU	276	12. 315 -16. 862	67. 468	1. 00 47. 86
ATOM	2080	CD1	LEU	276	12. 662 -17. 800	68. 618	1. 00 48. 62
ATOM	2081	CD2	LEU	276	10. 808 -16. 808	67. 236	1. 00 47. 43
ATOM	2082	C	LEU	276	13. 094 -13. 072	67. 034	1. 00 40. 87
ATOM	2083	0	LEU	276	12. 152 -12. 281	67. 072	1. 00 41. 20
ATOM	2084	N	VAL	277	14. 322 -12. 740	67. 412	1. 00 39. 68
ATOM	2085	CA	VAL	277	14. 617 -11. 390	67. 876	1. 00 40. 86
	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	ATOM 2058 ATOM 2069 ATOM 2061 ATOM 2062 ATOM 2063 ATOM 2064 ATOM 2065 ATOM 2066 ATOM 2067 ATOM 2068 ATOM 2070 ATOM 2071 ATOM 2072 ATOM 2072 ATOM 2073 ATOM 2074 ATOM 2075 ATOM 2075 ATOM 2076 ATOM 2076 ATOM 2077 ATOM 2077 ATOM 2078 ATOM 2079 ATOM 2080 ATOM 2081 ATOM 2083 ATOM 2084	ATOM 2058 CA ATOM 2059 CB ATOM 2060 CG ATOM 2061 OD1 ATOM 2062 OD2 ATOM 2063 C ATOM 2065 N ATOM 2066 CA ATOM 2067 CB ATOM 2068 CG ATOM 2069 CD ATOM 2070 NE ATOM 2070 NE ATOM 2071 CZ ATOM 2071 CZ ATOM 2072 NH1 ATOM 2073 NH2 ATOM 2074 C ATOM 2074 C ATOM 2075 O ATOM 2076 N ATOM 2076 N ATOM 2077 CA ATOM 2078 CB ATOM 2079 CG ATOM 2080 CD1 ATOM 2080 CD1 ATOM 2081 CD2 ATOM 2082 C ATOM 2083 O ATOM 2083 O ATOM 2084 N	ATOM 2058 CA ASP ATOM 2059 CB ASP ATOM 2060 CG ASP ATOM 2061 OD1 ASP ATOM 2062 OD2 ASP ATOM 2063 C ASP ATOM 2065 N ARG ATOM 2066 CA ARG ATOM 2069 CD ARG ATOM 2070 NE ARG ATOM 2071 CZ ARG ATOM 2072 NH1 ARG ATOM 2073 NH2 ARG ATOM 2074 C ARG ATOM 2074 C ARG ATOM 2074 C ARG ATOM 2075 O ARG ATOM 2076 N LEU ATOM 2077 CA LEU ATOM 2079 CG <th>ATOM 2058 CA ASP 274 ATOM 2059 CB ASP 274 ATOM 2060 CG ASP 274 ATOM 2061 OD1 ASP 274 ATOM 2062 OD2 ASP 274 ATOM 2063 C ASP 274 ATOM 2064 O ASP 274 ATOM 2065 N ARG 275 ATOM 2066 CA ARG 275 ATOM 2068 CG ARG 275 ATOM 2069 CD ARG 275 ATOM 2070 NE ARG 275 ATOM 2071 CZ ARG 275 ATOM 2071 CZ ARG 275 ATOM 2073 NH2 ARG 275 ATOM 2074 C ARG 275 ATOM 20</th> <th>ATOM 2057 N ASP 274 17. 888 -15. 763 ATOM 2058 CA ASP 274 18. 164 -14. 541 ATOM 2059 CB ASP 274 19. 405 -14. 718 ATOM 2060 CG ASP 274 20. 627 -15. 072 ATOM 2061 OD1 ASP 274 20. 949 -14. 315 ATOM 2062 OD2 ASP 274 20. 949 -14. 315 ATOM 2063 C ASP 274 16. 968 -14. 165 ATOM 2063 C ASP 274 16. 968 -14. 165 ATOM 2065 N ARG 275 16. 380 -15. 148 ATOM 2065 N ARG 275 15. 222 -14. 866 ATOM 2066 CA ARG 275 15. 908 -16. 666 ATOM 2068 CG ARG 275 15. 908 -16. 666 ATOM 2070 NE ARG 275 15. 908 -16. 666</th> <th>ATOM 2057 N ASP 274 17. 888 -15. 763 66. 676 ATOM 2058 CA ASP 274 18. 164 -14. 541 65. 933 ATOM 2059 CB ASP 274 19. 405 -14. 718 65. 059 ATOM 2060 CG ASP 274 20. 627 -15. 072 65. 869 ATOM 2061 OD1 ASP 274 20. 949 -14. 315 66. 810 ATOM 2062 OD2 ASP 274 21. 265 -16. 104 65. 569 ATOM 2063 C ASP 274 16. 968 -14. 165 65. 081 ATOM 2064 O ASP 274 16. 968 -14. 165 65. 081 ATOM 2065 N ARG 275 16. 380 -15. 148 64. 410 ATOM 2066 CA ARG 275 15. 222 -14. 866 63. 574 ATOM 2066 CA ARG 275 15. 222 -14. 866 63. 574 ATOM 2067 CB ARG 275 15. 908 -16. 666 61. 914 ATOM 2068 CG ARG 275 15. 908 -16. 666 61. 914 ATOM 2070 NE ARG 275 15. 516 -18. 002 61. 303 ATOM 2071 CZ ARG 275 15. 516 -18. 002 61. 303 ATOM 2072 NH1 ARG 275 18. 383 -19. 148 59. 296 ATOM 2073 NH2 ARG 275 17. 352 -18. 408 59. 685 ATOM 2074 C ARG 275 17. 005 -17. 341 58. 976 ATOM 2075 O ARG 275 13. 350 -13. 444 64. 059 ATOM 2076 N LEU 276 13. 939 -14. 927 65. 637 ATOM 2077 CA LEU 276 12. 888 -14. 507 66. 556 ATOM 2077 CA LEU 276 12. 888 -14. 507 66. 556 ATOM 2079 CG LEU 276 12. 888 -14. 507 66. 556 ATOM 2079 CG LEU 276 12. 888 -14. 507 66. 556 ATOM 2079 CG LEU 276 12. 888 -14. 507 66. 556 ATOM 2080 CD1 LEU 276 12. 888 -14. 507 66. 556 ATOM 2080 CD1 LEU 276 12. 888 -14. 507 66. 556 ATOM 2080 CD1 LEU 276 12. 888 -14. 507 66. 556 ATOM 2080 CD1 LEU 276 12. 888 -14. 507 66. 556 ATOM 2080 CD1 LEU 276 12. 888 -14. 507 66. 556 ATOM 2080 CD1 LEU 276 12. 888 -14. 507 66. 556 ATOM 2080 CD1 LEU 276 12. 888 -14. 507 66. 556 ATOM 2080 CD1 LEU 276 12. 888 -14. 507 66. 556 ATOM 2080 CD1 LEU 276 12. 888 -14. 507 66. 556 ATOM 2080 CD1 LEU 276 12. 888 -14. 507 66. 567 ATOM 2080 CD1 LEU 276 12. 888 -14. 507 66. 567 ATOM 2080 CD1 LEU 276 12. 888 -14. 507 66. 567 ATOM 2080 CD1 LEU 276 12. 888 -14. 507 66. 567 ATOM 2080 CD1 LEU 276 12. 888 -14. 507 66. 567 ATOM 2080 CD1 LEU 276 12. 888 -14. 507 66. 67. 468 ATOM 2080 CD1 LEU 276 12. 888 -14. 507 66. 67. 468 ATOM 2080 CD1 LEU 276 12. 662 -17. 800 68. 618</th>	ATOM 2058 CA ASP 274 ATOM 2059 CB ASP 274 ATOM 2060 CG ASP 274 ATOM 2061 OD1 ASP 274 ATOM 2062 OD2 ASP 274 ATOM 2063 C ASP 274 ATOM 2064 O ASP 274 ATOM 2065 N ARG 275 ATOM 2066 CA ARG 275 ATOM 2068 CG ARG 275 ATOM 2069 CD ARG 275 ATOM 2070 NE ARG 275 ATOM 2071 CZ ARG 275 ATOM 2071 CZ ARG 275 ATOM 2073 NH2 ARG 275 ATOM 2074 C ARG 275 ATOM 20	ATOM 2057 N ASP 274 17. 888 -15. 763 ATOM 2058 CA ASP 274 18. 164 -14. 541 ATOM 2059 CB ASP 274 19. 405 -14. 718 ATOM 2060 CG ASP 274 20. 627 -15. 072 ATOM 2061 OD1 ASP 274 20. 949 -14. 315 ATOM 2062 OD2 ASP 274 20. 949 -14. 315 ATOM 2063 C ASP 274 16. 968 -14. 165 ATOM 2063 C ASP 274 16. 968 -14. 165 ATOM 2065 N ARG 275 16. 380 -15. 148 ATOM 2065 N ARG 275 15. 222 -14. 866 ATOM 2066 CA ARG 275 15. 908 -16. 666 ATOM 2068 CG ARG 275 15. 908 -16. 666 ATOM 2070 NE ARG 275 15. 908 -16. 666	ATOM 2057 N ASP 274 17. 888 -15. 763 66. 676 ATOM 2058 CA ASP 274 18. 164 -14. 541 65. 933 ATOM 2059 CB ASP 274 19. 405 -14. 718 65. 059 ATOM 2060 CG ASP 274 20. 627 -15. 072 65. 869 ATOM 2061 OD1 ASP 274 20. 949 -14. 315 66. 810 ATOM 2062 OD2 ASP 274 21. 265 -16. 104 65. 569 ATOM 2063 C ASP 274 16. 968 -14. 165 65. 081 ATOM 2064 O ASP 274 16. 968 -14. 165 65. 081 ATOM 2065 N ARG 275 16. 380 -15. 148 64. 410 ATOM 2066 CA ARG 275 15. 222 -14. 866 63. 574 ATOM 2066 CA ARG 275 15. 222 -14. 866 63. 574 ATOM 2067 CB ARG 275 15. 908 -16. 666 61. 914 ATOM 2068 CG ARG 275 15. 908 -16. 666 61. 914 ATOM 2070 NE ARG 275 15. 516 -18. 002 61. 303 ATOM 2071 CZ ARG 275 15. 516 -18. 002 61. 303 ATOM 2072 NH1 ARG 275 18. 383 -19. 148 59. 296 ATOM 2073 NH2 ARG 275 17. 352 -18. 408 59. 685 ATOM 2074 C ARG 275 17. 005 -17. 341 58. 976 ATOM 2075 O ARG 275 13. 350 -13. 444 64. 059 ATOM 2076 N LEU 276 13. 939 -14. 927 65. 637 ATOM 2077 CA LEU 276 12. 888 -14. 507 66. 556 ATOM 2077 CA LEU 276 12. 888 -14. 507 66. 556 ATOM 2079 CG LEU 276 12. 888 -14. 507 66. 556 ATOM 2079 CG LEU 276 12. 888 -14. 507 66. 556 ATOM 2079 CG LEU 276 12. 888 -14. 507 66. 556 ATOM 2080 CD1 LEU 276 12. 888 -14. 507 66. 556 ATOM 2080 CD1 LEU 276 12. 888 -14. 507 66. 556 ATOM 2080 CD1 LEU 276 12. 888 -14. 507 66. 556 ATOM 2080 CD1 LEU 276 12. 888 -14. 507 66. 556 ATOM 2080 CD1 LEU 276 12. 888 -14. 507 66. 556 ATOM 2080 CD1 LEU 276 12. 888 -14. 507 66. 556 ATOM 2080 CD1 LEU 276 12. 888 -14. 507 66. 556 ATOM 2080 CD1 LEU 276 12. 888 -14. 507 66. 556 ATOM 2080 CD1 LEU 276 12. 888 -14. 507 66. 556 ATOM 2080 CD1 LEU 276 12. 888 -14. 507 66. 567 ATOM 2080 CD1 LEU 276 12. 888 -14. 507 66. 567 ATOM 2080 CD1 LEU 276 12. 888 -14. 507 66. 567 ATOM 2080 CD1 LEU 276 12. 888 -14. 507 66. 567 ATOM 2080 CD1 LEU 276 12. 888 -14. 507 66. 567 ATOM 2080 CD1 LEU 276 12. 888 -14. 507 66. 67. 468 ATOM 2080 CD1 LEU 276 12. 888 -14. 507 66. 67. 468 ATOM 2080 CD1 LEU 276 12. 662 -17. 800 68. 618

- 88 -

						00		
	ATOM	2086	CB	VAL	277	16. 084 -11. 263	68. 331	1. 00 41. 86
	ATOM	2087	CG1	VAL	277	16. 447 -9. 802	68. 497	1. 00 43. 25
	ATOM	2088	CG2	VAL	277	16. 290 -12. 012	69. 647	1. 00 41. 47
	ATOM	2089	C	VAL	277	14. 363 -10. 381	66. 761	1. 00 40. 10
5	ATOM	2090	0	VAL	277	13. 813 -9. 305	66. 993	1. 00 41. 12
	ATOM	2091	N	ASP	278	14. 767 -10. 738	65. 550	1. 00 39. 42
	ATOM	2092	CA	ASP	278	14. 592 -9. 867	64. 398	1. 00 40. 24
	ATOM	2093	CB	ASP	278	15. 356 -10. 434	63. 195	1. 00 38. 24
	ATOM	2094	CG	ASP	278	15. 179 -9. 598	61. 943	1. 00 40. 23
10	ATOM	2095	OD 1	ASP	278	15. 260 -8. 351	62. 043	1. 00 39. 72
	ATOM	2096	OD2	ASP	278	14. 969 -10. 187	60. 860	1. 00 38. 10
	ATOM	2097	C	ASP	278	13. 120 -9. 669	64. 043	1. 00 41. 19
	ATOM	2098	0	ASP	278	12. 693 -8. 545	63. 791	1. 00 40. 82
	MOTA	2099	N	GLU	279	12. 347 -10. 754	64. 035	1. 00 43. 34
15	ATOM	2100	CA	GLU	279	10. 922 -10. 688	63. 696	1. 00 46. 81
	ATOM	2101	CB	GLU	279	10. 321 -12. 097	63. 627	1. 00 50. 53
	ATOM	2102	CG	GLU	279	10. 870 -12. 965	62. 496	1. 00 56. 10
	ATOM	2103	CD	GLU	279	10. 320 -14. 382	62. 523	1. 00 59. 07
	ATOM	2104	0E1	GLU	279	10. 336 -15. 006	63. 607	1. 00 60. 28
20	ATOM	2105	0E2	GLU	279	9. 880 -14. 876	61. 461	1. 00 60. 79
	ATOM	2106	C	GLU	279	10. 086 -9. 840	64. 652	1. 00 47. 25
	ATOM	2107	0	GLU	279	9. 048 -9. 303	64. 260	1. 00 46. 34
	ATOM	2108	N	SER	280	10. 535 -9. 722	65. 899	1. 00 46. 87
	ATOM	2109	CA	SER	280	9. 809 -8. 948	66. 900	1. 00 47. 53
25	ATOM	2110	CB	SER	280	9. 769 -9. 708	68. 228	1. 00 49. 98
	ATOM	2111	0 G	SER	280	9. 043 -10. 919	68. 093	1. 00 52. 36
	ATOM	2112	C	SER	280	10. 415 -7. 575	67. 129	1. 00 47. 33
	ATOM	2113	0	SER	280	9. 909 -6. 788	67. 936	1. 00 45. 86
	ATOM	2114	N	SER	281	11. 499 -7. 289	66. 416	1. 00 46. 95

- 89 -

	ATOM	2115	CA	SER	281	12. 172	-6. 004	66. 552	1. 00 46. 75
	ATOM	2116	CB	SER	281	13. 581	-6. 081	65. 971	1. 00 47. 24
	ATOM	2117	0G	SER	281	13. 524	-6. 172	64. 559	1. 00 47. 80
	ATOM	2118	C	SER	281	11. 391	-4. 915	65. 824	1. 00 45. 65
5	ATOM	2119	0	SER	281	10. 514	-5. 199	65. 013	1. 00 45. 10
	ATOM	2120	N	ALA	282	11. 723	-3. 667	66. 123	1. 00 45. 75
	ATOM	2121	CA	ALA	282	11. 066	-2. 530	65. 500	1. 00 45. 70
	ATOM	2122	CB	ALA	282	11. 257	-1. 289	66. 354	1. 00 45. 60
	ATOM	2123	C	ALA	282	11. 617	-2. 286	64. 100	1. 00 46. 48
10	ATOM	2124	0	ALA	282	11. 252	-1. 303	63. 449	1. 00 48. 61
	ATOM	2125	N	ASN	283	12. 493	-3. 172	63. 633	1. 00 43. 90
	ATOM	2126	CA	ASN	283	13. 076	-3. 015	62. 306	1. 00 41. 45
	ATOM	2127	CB	ASN	283	14. 300	-2. 092	62. 384	1. 00 40. 08
	ATOM	2128	CG	ASN	283	15. 398	-2. 631	63. 289	1. 00 39. 25
15	ATOM	2129	0D1	ASN	283	15. 136	-3. 308	64. 289	1. 00 37. 65
	ATOM	2130	ND2	ASN	283	16. 641	-2. 310	62. 950	1. 00 37. 96
	ATOM	2131	C	ASN	283	13. 433	-4. 350	61. 655	1. 00 41. 06
	ATOM	2132	0	ASN	283	14. 585	-4. 606	61. 318	1. 00 40. 48
	ATOM	2133	N	PR0	284	12. 423	-5. 211	61. 455	1. 00 40. 23
20	ATOM	2134	CD	PR0	284	11. 013	-4. 898	61. 751	1. 00 40. 75
	ATOM	2135	CA	PR0	284	12. 534	-6. 540	60. 851	1. 00 40. 08.
	ATOM	2136	CB	PR0	284	11. 080	-6. 914	60. 581	1. 00 40. 52
	ATOM	2137	CG	PR0	284	10. 364	-6. 260	61. 712	1. 00 41. 21
	ATOM	2138	C	PR0	284	13. 366	-6. 565	59. 579	1. 00 39. 55
25	ATOM	2139	0	PR0	284	13. 054	-5. 868	58. 617	1. 00 40. 95
	ATOM	2140	N	GLY	285	14. 416	-7. 382	59. 576	1. 00 38. 56
	ATOM	2141	CA	GLY	285	15. 266	-7. 491	58. 407	1. 00 35. 73
	ATOM	2142	C	GLY	285	16. 428	-6. 516	58. 371	1. 00 35. 10
	ATOM	2143	0	GLY	285	17. 288	-6. 624	57. 500	1. 00 36. 22

- 90 -

	ATOM	2144	l N	GLN	286	16. 468	-5. 573	59. 308	1. 00 34. 06
	ATOM	2145	CA.	GLN	286	17. 547	-4. 584	59. 348	1. 00 34. 96
	ATOM	2146	CB	GLN	286	16. 974	-3. 166	59. 321	1. 00 39. 16
	ATOM	2147	CG	GLN	286	16. 189	-2. 825	58. 067	1. 00 45. 72
5	ATOM	2148	CD	GLN	286	15. 698	-1. 384	58. 074	1. 00 51. 15
	ATOM	2149	0E1	GLN	286	14. 816	-1. 018	58. 860	1. 00 52. 21
	ATOM	2150	NE2	GLN	286	16. 276	-0. 555	57. 203	1. 00 50. 85
	ATOM	2151	C	GLN	286	18. 439	-4. 719	60. 573	1. 00 33. 59
	ATOM	2152	0	GLN	286	17. 993	-5. 157	61. 637	1. 00 33. 18
10	ATOM	2153	N	GLN	287	19. 701	-4. 334	60. 408	1. 00 32. 85
	ATOM	2154	CA	GLN	287	20. 691	-4. 375	61. 484	1. 00 32. 45
	ATOM	2155	CB	GLN	287	20. 248	-3. 456	62. 636	1. 00 33. 34
	ATOM	2156	CG	GLN	287	19. 955	-1. 999	62. 251	1. 00 31. 48
	ATOM	2157	CD	GLN	287	21. 188	-1. 259	61. 743	1. 00 31. 78
15	ATOM	2158	0E1	GLN	287	21. 330	-1. 010	60. 544	1. 00 33. 25
	ATOM	2159	NE2	GLN	287	22. 090	-0. 921	62. 652	1. 00 27. 51
	ATOM	2160	C	GLN	287	20. 924	-5. 788	62. 032	1. 00 30. 79
	ATOM	2161	0	GLN	287	21. 120	-5. 957	63. 229	1. 00 29. 31
	ATOM	2162	N	LEU	288	20. 921	-6. 791	61. 158	1. 00 29. 33
20	ATOM	2163	CA	LEU	288	21. 101	-8. 181	61. 585	1. 00 27. 53
	ATOM	2164	CB	LEU	288	20. 940	-9. 129	60. 393	1. 00 28. 13
	ATOM	2165	CG	LEU	288	19. 599	-9. 090	59. 647	1. 00 29. 14
	ATOM	2166	CD1	LEU	288	19. 390	-10. 418	58. 922	1. 00 27. 60
	ATOM	2167	CD2	LEU	288	18. 453	-8. 844	60. 621	1. 00 27. 42
25	ATOM	2168	C	LEU	288	22. 418	-8. 476	62. 297	1. 00 27. 92
	ATOM	2169	0	LEU	288	22. 438	-9. 184	63. 303	1. 00 28. 24
	ATOM	2170	N	TYR	289	23. 520	-7. 946	61. 776	1. 00 27. 17
	ATOM	2171	CA	TYR	289	24. 819	-8. 153	62. 399	1. 00 24. 83
	ATOM	2172	CB	TYR	289	25. 899	-7. 458	61. 583	1. 00 24. 32

- 91 -

	ATOM	2173	CG	TYR	289	27. 303	-7. 575	62. 137	1. 00 21. 26
	ATOM	2174	CD1	TYR	289	27. 951	-8. 814	62. 208	1. 00 20. 00
	ATOM	2175	CE1	TYR	289	29. 281	-8. 909	62. 616	1. 00 18. 43
	ATOM	2176	CD2	TYR	289	28. 013	-6. 441	62. 503	1. 00 18. 12
5	ATOM	2177	CE2	TYR	289	29. 338	-6. 520	62. 918	1. 00 20. 65
	ATOM	2178	CZ	TYR	289	29. 976	-7. 762	62. 966	1. 00 21. 27
	ATOM	2179	ОН	TYR	289	31. 314	-7. 833	63. 326	1. 00 19. 02
	ATOM	2180	C	TYR	289	24. 771	-7. 566	63. 799	1. 00 26. 94
	ATOM	2181	0	TYR	289	25. 221	-8. 175	64. 776	1. 00 27. 95
10	ATOM	2182	N	GLU	290	24. 198	-6. 374	63. 892	1. 00 27. 68
	ATOM	2183	CA	GĻŪ	290	24. 078	-5. 686	65. 165	1. 00 26. 41
	ATOM	2184	CB	GLU	290	23. 484	-4. 309	64. 927	1. 00 26. 55
	ATOM	2185	CG	GLU	290	23. 059	-3. 595	66. 180	1. 00 27. 05
	ATOM	2186	CD	GLU	290	22. 815	-2. 142	65. 913	1. 00 25. 47
15	ATOM	2187	0E1	GLU	290	23. 716	-1. 336	66. 204	1. 00 27. 17
	ATOM	2188	0E2	GLU	290	21. 731	-1. 815	65. 398	1. 00 29. 09
	ATOM	2189	C	GLU	290	23. 218	-6. 463	66. 159	1. 00 26. 59
	ATOM	2190	0	GLU	290	23. 458	-6. 430	67. 371	1. 00 25. 62
	ATOM	2191	N	LYS	291	22. 216	-7. 166	65. 646	1. 00 26. 31
20	ATOM	2192	CA	LYS	291	21. 343	-7. 942	66. 509	1. 00 27. 77
	ATOM	2193	CB	LYS	291	20. 110	-8. 394	65. 722	1. 00 28. 30
	MOTA	2194	CG	LYS	291	19. 096	-7. 263	6 5. 585	1. 00 33. 35
	ATOM	2195	CD	LYS	291	18. 005	-7. 529	64. 555	1. 00 33. 56
	ATOM	2196	CE	LYS	291	17. 038	-6. 330	64. 522	1. 00 36. 46
25	ATOM	2197	NZ	LYS	291	16. 150	-6. 319	63. 327	1. 00 36. 55
	ATOM	2198	C	LYS	291	22. 073	-9. 123	67. 138	1. 00 26. 53
	ATOM	2199	0	LYS	291	21. 584	-9. 736	68. 084	1. 00 27. 81
	ATOM	2200	N	LEU	292	23. 261	-9. 426	66. 628	1. 00 26. 02
	ATOM	2201	CA	LEU	292	24. 043	-10. 523	67. 168	1. 00 25. 35

- 92 -

	ATOM	2202	СВ	LEU	292	24. 922	-11. 140	66. 079	1. 00 25. 16
	ATOM	2203	CG	LEU	292	24. 229	-11. 746	64. 856	1. 00 26. 25
	ATOM	2204	CD	1 LEU	292	25. 274	-12. 190	63. 827	1. 00 23. 09
	ATOM	2205	CD	2 LEU	292	23. 359	-12. 912	65. 297	1. 00 24. 40
5	ATOM	2206	C	LEU	292	24. 942	-10. 030	68. 283	1. 00 25. 18
	ATOM	2207	0	LEU	292	25. 392	-10. 808	69. 120	1. 00 23. 84
	ATOM	2208	N	ILE	293	25. 179	-8. 723	68. 308	1. 00 24. 94
	ATOM	2209	CA	ILE	293	26. 107	-8. 140	69. 267	1. 00 23. 59
	ATOM	2210	CB	ILE	293	27. 259	-7. 468	68. 476	1. 00 24. 66
10	ATOM	2211	CG	2 ILE	293	28. 233	-6. 762	69. 409	1. 00 21. 05
	ATOM	2212	CG	ILE	293	27. 952	-8. 527	67. 618	1. 00 24. 42
	ATOM	2213	CD	ILE	293	28. 715	-7. 965	66. 441	1. 00 25. 64
	ATOM	2214	C	ILE	293	25. 560	-7. 148	70. 278	1. 00 25. 10
	ATOM	2215	0	ILE	293	25. 797	-7. 289	71. 474	1. 00 23. 79
15	ATOM	2216	N	GLY	294	24. 845	-6. 136	69. 781	1. 00 28. 83
	ATOM	2217	CA	GLY	294	24. 302	-5. 071	70. 615	1. 00 26. 73
	ATOM	2218	С	GLY	294	23. 551	-5. 379	71. 898	1. 00 29. 79
	ATOM	2219	0	GLY	294	22. 757	-6. 318	71. 964	1. 00 27. 85
	ATOM	2220	N	GLY	295	23. 794	-4. 553	72. 918	1. 00 30. 56
20	ATOM	2221	CA	GLY	295	23. 136	-4. 722	74. 204	1. 00 33. 01
	ATOM	2222	C	GLY	295	21. 628	-4. 539	74. 144	1. 00 34. 05
	ATOM	2223	0	GLY	295	20. 927	-4. 810	75. 107	1. 00 34. 93
	ATOM	2224	N	LYS	296	21. 124	-4. 058	73. 016	1. 00 35. 19
	ATOM	2225	CA	LYS	296	19. 690	-3. 868	72. 851	1. 00 36. 24
25	ATOM	2226	CB	LYS	296	19. 419	-2. 988	71. 626	1. 00 38. 05
	ATOM	2227	CG	LYS	296	17. 961	-2. 910	71. 181	1. 00 40. 26
	ATOM	2228	CD	LYS	296	17. 122	-2. 093	72. 141	1. 00 43. 32
	ATOM	2229	CE	LYS	296	15. 730	-1.862	71. 579	1. 00 44. 42
	ATOM	2230	NZ	LYS	296	14. 842	-1. 175	72. 562	1. 00 44. 77

- **93** -

						J) –			
	ATOM	2231	C	LYS	296	19. 045	-5. 235	72. 654	1. 00	36. 63
	ATOM	2232	0	LYS	296	17. 867	-5. 420	72. 963	1. 00	38. 56
	ATOM	2233	N	TYR	297	19. 836	-6. 193	72. 168	1. 00	34. 63
	ATOM	2234	CA	TYR	297	19. 346	-7. 539	71. 890	1. 00	33. 22
5	ATOM	2235	CB	TYR	297	19. 487	-7. 810	70. 389	1. 00	34. 65
	ATOM	2236	CG	TYR	297	19. 073	-6. 631	69. 535	1. 00	36. 28
	ATOM	2237	CD1	TYR	297	20. 010	-5. 677	69. 125	1. 00	34. 21
	ATOM	2238	CE1	TYR	297	19. 622	-4. 548	68. 404	1. 00	36. 22
	ATOM	2239	CD2	TYR	297	17. 732	-6. 431	69. 195	1. 00	34. 24
10	ATOM	2240	CE2	TYR	297	17. 330	-5. 305	68. 476	1. 00	35. 71
	ATOM	2241	CZ	TYR	297	18. 280	-4. 368	68. 082	1. 00	37. 38
	ATOM	2242	ОН	TYR	297	17. 887	-3. 258	67. 375	1. 00	35. 33
	ATOM	2243	C	TYR	297	19. 968	-8. 713	72. 670	1. 00	33. 21
	ATOM	2244	0	TYR	297	19. 392	-9. 800	72. 716	1. 00	33. 78
15	ATOM	2245	N	MET	298	21. 126	-8. 504	73. 283	1. 00	31. 19
	ATOM	2246	CA	MET	298	21. 803	-9. 576	74. 005	1. 00	30. 16
	ATOM	2247	CB	MET	298	23. 075	-9. 038	74. 644	1. 00	30. 05
	ATOM	2248	CG	MET	298	23. 957	-10. 104	75. 231	1. 00	26. 86
	ATOM	2249	SD	MET	298	25. 486	-9. 405	75. 850	1. 00	32. 83
20	ATOM	2250	CE	MET	298	26. 409	-9. 201	74. 338	1. 00	29. 59
	ATOM	2251	C	MET	298	20. 963	-10. 296	75. 066	1. 00	31. 27
	ATOM	2252	0	MET	298	20. 882	-11. 529	75. 077	1. 00	29. 78
	ATOM	2253	N	GLY	299	20. 353	-9. 530	75. 963	1. 00	30. 40
	ATOM	2254	CA	GLY	299	19. 534 ·	-10. 132	76. 998	1. 00	31. 32
25	ATOM	2255	C	GLY	299	18. 354	-10. 869	76. 393	1. 00	33. 32
	ATOM	2256	0	GLY	29 9	17. 988 -	-11. 962	76. 831	1. 00	33. 97
	ATOM	2257	N	GLU	300	17. 752 -	-10. 265	75. 377	1. 00	31. 78
	ATOM	2258	CA	GLU	300	16. 617 -	-10. 874	74. 707	1. 00	31. 93
	ATOM	2259	CB	GLU	300	16. 080	-9. 937	73. 621	1. 00	29. 00

- 94 -

	ATOM	2260	CG	GLU	300	14. 877 -10. 486	72. 881	1. 00 32. 60
	ATOM	2261	CD	GLU	300	13. 655 -10. 655	73. 769	1. 00 31. 13
	ATOM	2262	0E1	GLU	300	12. 629 -11. 144	73. 265	1. 00 34. 55
	ATOM	2263	0E2	GLU	300	13. 714 -10. 299	74. 963	1. 00 33. 16
5	ATOM	2264	C	GLU	300	17. 013 -12. 215	74. 092	1. 00 30. 90
	ATOM	2265	0	GLU	300	16. 225 -13. 156	74. 090	1. 00 32. 89
	ATOM	2266	N	LEU	301	18. 234 -12. 301	73. 570	1. 00 31. 16
	ATOM	2267	CA	LEU	301	18. 714 -13. 546	72. 973	1. 00 28. 93
	ATOM	2268	CB	LEU	301	20. 085 -13. 339	72. 325	1. 00 24. 69
10	ATOM	2269	CG	LEU	301	20. 152 -12. 667	70. 952	1. 00 24. 17
	ATOM	2270	CD1	LEU	301	21. 607 -12. 326	70. 628	1. 00 23. 70
	ATOM	2271	CD2	LEU	301	19. 560 -13. 598	69. 886	1. 00 23. 13
	ATOM	2272	C	LEU	301	18. 814 -14. 616	74. 056	1. 00 29. 42
	ATOM	2273	0	LEU	301	18. 408 -15. 761	73. 853	1. 00 32. 03
15	ATOM	2274	N	VAL	302	19. 365 -14. 239	75. 204	1. 00 28. 73
	ATOM	2275	CA	VAL	302	19. 505 -15. 164	76. 317	1. 00 29. 42
	ATOM	2276	CB	VAL	302	20. 265 -14. 510	77. 497	1. 00 26. 51
	ATOM	2277	CG1	VAL	302	20. 172 -15. 395	78. 740	1. 00 25. 63
	ATOM	2278	CG2	VAL	302	21. 731 -14. 301	77. 117	1. 00 25. 98
20	ATOM	2279	C	VAL	302	18. 127 -15. 624	76. 795	1. 00 31. 88
	ATOM	2280	0	VAL	302	17. 934 -16. 795	77. 112	1. 00 32. 71
	ATOM	2281	N	ARG	303	17. 171 -14. 703	76. 835	1. 00 32. 91
	ATOM	2282	CA	ARG	303	15. 818 -15. 039	77. 270	1. 00 36. 08
	ATOM	2283	CB	ARG	303	14. 910 -13. 802	77. 250	1. 00 35. 86
25	ATOM	2284	CG	ARG	303	13. 524 -14. 055	77. 847	1. 00 36. 97
	ATOM	2285	CD	ARG	303	12. 660 -12. 802	77. 833	1. 00 39. 15
	ATOM	2286	NE	ARG	303	12. 105 -12. 529	76. 511	1. 00 41. 95
	ATOM	2287	CZ	ARG	303	11. 090 -13. 197	75. 968	1. 00 43. 84
	ATOM	2288	NH1	ARG	303	10. 502 -14. 182	76. 631	1. 00 42. 47

- 95 -

						00		
	ATOM	2289	NH2	2 ARG	303	10. 666 -12. 885	74. 750	1. 00 43. 86
٠	ATOM	2290	C	ARG	303	15. 215 -16. 110	76. 373	1. 00 36. 97
	ATOM	2291	0	ARG	303	14. 554 -17. 032	76. 851	1. 00 37. 22
	ATOM	2292	N	LEU	304	15. 432 -15. 970	75. 068	1. 00 37. 86
5	ATOM	2293	CA	LEU	304	14. 914 -16. 924	74. 103	1. 00 37. 63
	ATOM	2294	CB	LEU	304	15. 113 -16. 387	72. 687	1. 00 38. 69
	ATOM	2295	CG	LEU	304	13. 944 -15. 590	72. 104	1. 00 40. 35
	ATOM	2296	CD1	LEU	304	13. 486 -14. 516	73. 062	1. 00 40. 85
	ATOM	2297	CD2	LEU	304	14. 378 -14. 986	70. 785	1. 00 42. 07
10	ATOM	2298	C	LEU	304	15. 602 -18. 272	74. 262	1. 00 37. 69
	ATOM	2299	0	LEU	304	14. 978 -19. 324	74. 120	1. 00 38. 84
	ATOM	2300	N	VAL	305	16. 893 -18. 238	74. 558	1. 00 36. 28
	ATOM	2301	CA	VAL	305	17. 647 -19. 466	74. 753	1. 00 34. 31
	ATOM	2302	CB	VAL	305	19. 148 -19. 184	74. 908	1. 00 32. 24
15	ATOM	2303	CG1	VAL	305	19. 868 -20. 438	75. 390	1. 00 28. 85
	ATOM	2304	CG2	VAL	305	19. 717 -18. 713	73. 578	1. 00 29. 80
	ATOM	2305	С	VAL	305	17. 153 -20. 158	76. 012	1. 00 35. 48
	ATOM	2306	0	VAL	305	17. 079 -21. 389	76. 070	1. 00 34. 47
	ATOM	2307	N	LEU	306	16. 820 -19. 362	77. 023	1. 00 34. 14
20	ATOM	2308	CA	LEU	306	16. 328 -19. 921	78. 273	1. 00 35. 52
	ATOM	2309	CB	LEU	306	16. 257 -18. 841	79. 353	1. 00 32. 11
	ATOM	2310	CG	LEU	306	17. 601 -18. 289	79. 829	1. 00 32. 53
	MOTA	2311	CD1	LEU	306	17. 359 -17. 326	80. 964	1. 00 33. 54
	ATOM	2312	CD2	LEU	306	18. 515 -19. 420	80. 287	1. 00 30. 60
25	ATOM	2313	C	LEU	306	14. 948 -20. 532	78. 049	1. 00 37. 53
	ATOM	2314	0	LEU	306	14. 637 -21. 608	78. 566	1. 00 33. 87
	ATOM	2315	N	LEU	307	14. 129 -19. 850	77. 257	1. 00 39. 39
	ATOM	2316	CA	LEU	307	12. 787 -20. 336	76. 971	1. 00 41. 43
	ATOM	2317	CB	LEU	307	12. 011 -19. 296	76. 165	1. 00 40. 84

- 96 -

	ATOM	2318	CG	LEU	307	10. 932 -18. 527	76. 935	1. 00 43. 43
	ATOM	2319	CD1	LEU	307	11. 389 -18. 243	78. 356	1. 00 43. 36
	ATOM	2320	CD2	LEU	307	10. 610 -17. 233	76. 197	1. 00 41. 75
	ATOM	2321	C	LEU	307	12. 802 -21. 674	76. 239	1. 00 42. 39
5	ATOM	2322	0	LEU	307	11. 974 -22. 537	76. 514	1. 00 42. 90
	ATOM	2323	N	ARG	308	13. 729 -21. 860	75. 306	1. 00 42. 02
	ATOM	2324	CA	ARG	308	13. 771 -23. 132	74. 605	1. 00 42. 88
	ATOM	2325	CB	ARG	308	14. 765 -23. 125	73. 445	1. 00 43. 55
	ATOM	2326	CG	ARG	308	14. 891 -24. 514	72. 837	1. 00 47. 00
10	ATOM	2327	CD	ARG	308	15. 908 -24. 626	71. 729	1. 00 49. 25
	ATOM	2328	NE	ARG	308	16. 079 -26. 026	71. 349	1. 00 52. 10
	ATOM	2329	CZ	ARG	308	16. 915 -26. 456	70. 410	1. 00 52. 45
	ATOM	2330	NH 1	ARG	308	17. 663 -25. 591	69. 739	1. 00 54. 77
	ATOM	2331	NH2	ARG	308	17. 016 -27. 756	70. 154	1. 00 51. 73
15	ATOM	2332	C	ARG	308	14. 181 -24. 222	75. 582	1. 00 43. 27
	ATOM	2333	0	ARG	308	13. 654 -25. 333	75. 540	1. 00 42. 09
	ATOM	2334	N	LEU	309	15. 135 -23. 895	76. 452	1. 00 42. 54
	ATOM	2335	CA	LEU	309	15. 627 -24. 837	77. 447	1. 00 42. 29
	ATOM	2336	CB	LEU	309	16. 771 -24. 207	78. 248	1. 00 40. 55
20	ATOM	2337	CG	LEU	309	18. 193 -24. 656	77. 886	1. 00 39. 65
	ATOM	2338	CD1	LEU	309	18. 313 -24. 973	76. 416	1. 00 38. 56
	ATOM	2339	CD2	LEU	309	19. 171 -23. 569	78. 284	1. 00 37. 67
	ATOM	2340	C	LEU	309	14. 515 -25. 302	78. 379	1. 00 42. 66
	ATOM	2341	0	LEU	309	14. 509 -26. 450	78. 818	1. 00 41. 33
25	ATOM	2342	N	VAL	310	13. 570 -24. 416	78. 676	1. 00 44. 27
	ATOM	2343	CA	VAL	310	12. 464 -24. 789	79. 543	1. 00 46. 40
	ATOM	2344	CB	VAL	310	11. 711 -23. 546	80. 111	1. 00 46. 06
	ATOM	2345	CG1	VAL	310	12. 682 -22 . 613	80. 807	1. 00 45. 43
	ATOM	2346	CG2	VAL	310	10. 976 -22. 825	79. 014	1. 00 48. 29

- 97 -

						0,		
	ATOM	2347	C	VAL	310	11. 479 -25. 666	78. 769	1. 00 48. 00
	ATOM	2348	0	VAL	310	10. 952 -26. 638	79. 311	1. 00 47. 71
	ATOM	2349	N	ASP	311	11. 242 -25. 333	77. 501	1. 00 49. 58
	ATOM	2350	CA	ASP	311	10. 313 -26. 104	76. 683	1. 00 52. 37
5	ATOM	2351	CB	ASP	311	9. 978 -25. 365	75. 382	1. 00 54. 70
	ATOM	2352	CG	ASP	311	9. 318 -24. 014	75. 626	1. 00 58. 89
	ATOM	2353	OD1	ASP	311	8. 742 -23. 808	76. 719	1. 00 60. 74
	ATOM	2354	OD2	ASP	311	9. 364 -23. 158	74. 713	1. 00 60. 54
	ATOM	2355	C	ASP	311	10. 872 -27. 485	76. 365	1. 00 52. 35
10	ATOM	2356	0	ASP	311	10. 131 -28. 388	75. 982	1. 00 55. 07
	ATOM	2357	N	GLU	312	12. 180 -27. 642	76. 515	1. 00 51. 23
	ATOM	2358	CA	GLU	312	12. 828 -28. 926	76. 279	1. 00 51. 12
	ATOM	2359	CB	GLU	312	14. 277 -28. 729	75. 834	1. 00 52. 62
	ATOM	2360	CG	GLU	312	14. 445 -28. 141	74. 448	1. 00 57. 13
15	ATOM	2361	CD	GLU	312	14. 187 -29. 153	73. 358	1. 00 58. 40
	ATOM	2362	0E1	GLU	312	14. 831 -30. 222	73. 385	1. 00 59. 31
	ATOM	2363	O E2	GLU	312	13. 346 -28. 879	72. 476	1. 00 60. 41
	ATOM	2364	С	GLU	312	12. 810 -29. 660	77. 611	1. 00 50. 76
	ATOM	2365	0	GLU	312	13. 292 -30. 787	77. 720	1. 00 50. 64
20	ATOM	2366	N	ASN	313	12. 265 -28. 989	78. 624	1. 00 50. 08
	ATOM	2367	CA	ASN	313	12. 154 -29. 533	79. 974	1. 00 51. 37
	ATOM	2368	CB	ASN	313	11. 428 -30. 886	79. 932	1. 00 53. 51
	ATOM	2369	CG	ASN	313	10. 846 -31. 275	81. 271	1. 00 55. 73
	ATOM	2370	OD1	ASN	313	10. 011 -30. 560	81. 824	1. 00 58. 95
25	ATOM	2371	ND2	ASN	313	11. 281 -32. 415	81. 803	1. 00 59. 16
	MOTA	2372	C	ASN	313	13. 524 -29. 693	80. 635	1. 00 50. 00
	ATOM	2373	0	ASN	313	13. 733 -30. 595	81. 447	1. 00 50. 40
	ATOM	2374	N	LEU	314	14. 449 -28. 799	80. 296	1. 00 48. 35
	ATOM	2375	CA	LEU	314	15. 805 -28. 843	80. 835	1. 00 45. 12

- 98 -

						• •		
	ATOM	2376	CB	LEU	314	16. 819 -28. 785	79. 688	1. 00 44. 25
	ATOM	2377	CG	LEU	314	16. 759 -29. 872	78. 611	1. 00 45. 98
	ATOM	2378	CD	1 LEU	314	17. 619 -29. 465	77. 416	1. 00 43. 63
	ATOM	2379	CD2	2 LEU	314	17. 232 -31. 201	79. 196	1. 00 45. 09
5	ATOM	2380	C	LEU	314	16. 119 -27. 724	81. 829	1. 00 43. 38
	ATOM	2381	0	LEU	314	17. 180 -27. 732	82. 449	1. 00 41. 90
	ATOM	2382	N	LEU	315	15. 211 -26. 765	81. 982	1. 00 41. 74
	ATOM	2383	CA	LEU	315	15. 446 -25. 645	82. 899	1. 00 42. 39
	ATOM	2384	CB	LEU	315	15. 907 -24. 407	82. 116	1. 00 40. 17
10	ATOM	2385	CG	LEU	315	17. 243 -23. 721	82. 428	1. 00 39. 81
	ATOM	2386	CD 1	LEU	315	17. 262 -22. 383	81. 689	1. 00 41. 89
	ATOM	2387	CD2	LEU	315	17. 421 -23. 482	83. 920	1. 00 37. 58
	ATOM	2388	C	LEU	315	14. 198 -25. 278	83. 694	1. 00 42. 28
	ATOM	2389	0	LEU	315	13. 103 -25. 214	83. 144	1. 00 40. 83
15	ATOM	2390	N	PHE	316	14. 377 -25. 021	84. 986	1. 00 43. 70
	ATOM	2391	CA	PHE	316	13. 271 -24. 648	85. 863	1. 00 46. 70
	ATOM	2392	CB	PHE	316	12. 717 -23. 278	85. 459	1. 00 47. 06
	ATOM	2393	CG	PHE	316	13. 776 -22. 247	85. 187	1. 00 47. 07
	ATOM	2394	CD1	PHE	316	14. 824 -22. 051	86. 082	1. 00 47. 24
20	ATOM	2395	CD2	PHE	316	13. 722 -21. 467	84. 037	1. 00 47. 25
	ATOM	2396	CE1	PHE	316	15. 803 -21. 094	85. 835	1. 00 46. 12
	ATOM	2397	CE2	PHE	316	14. 695 -20. 507	83. 782	1. 00 47. 70
	MOTA	2398	CZ	PHE	316	15. 738 -20. 321	84. 683	1. 00 47. 68
	ATOM	2399	C	PHE	316	12. 131 -25. 672	85. 857	1. 00 48. 45
25	ATOM	2400	0	PHE	316	10. 960 -25. 306	85. 967	1. 00 48. 86
	ATOM	2401	N	HIS	317	12. 473 -26. 950	85. 725	1. 00 50. 80
	ATOM	2402	CA	HIS	317	11. 469 -28. 009	85. 712	1. 00 53. 83
	ATOM	2403	CB	HIS	317	10. 655 -27. 986	87. 010	1. 00 57. 67
	ATOM	2404	CG	HIS	317	11. 496 -27. 985	88. 246	1. 00 61. 10

- 99 -

	ATOM	2405	CD	2 HIS	317	11. 558 -27. 116	89. 282	1. 00 63. 07
	ATOM	2406		1 HIS		12. 430 -28. 965		
	ATOM	2407	CE	1 HIS	317	13. 032 -28. 699	89. 655	1. 00 64. 77
	ATOM	2408	NE	2 HIS	317	12. 521 -27. 582	90. 144	1. 00 65. 99
5	ATOM	2409	C	HIS	317	10. 521 -27. 859	84. 534	1. 00 53. 57
	ATOM	2410	0	HIS	317	9. 429 -28. 425	84. 537	1. 00 53. 60
	ATOM	2411	N	GLY	318	10. 939 -27. 090		
	ATOM	2412	CA	GLY	318	10. 113 -26. 881	82. 358	1. 00 51. 83
	ATOM	2413	C	GLY	318	8. 940 -25. 958	82. 615	1. 00 51. 72
10	ATOM	2414	0	GLY		7. 939 -25. 999		
	ATOM	2415	N	GLU	319	9. 073 -25. 110	83. 627	1. 00 53. 43
	ATOM	2416	CA	GLU	319	8. 014 -24. 182	83. 996	1. 00 55. 73
	ATOM	2417	CB	GLU	319	7. 510 -24. 544	85. 392	1. 00 58. 85
	ATOM	2418	CG	GLU	319	6. 145 -23. 998	85. 761	1. 00 63. 60
15	ATOM	2419	CD	GLU	319	5. 590 -24. 664	87. 016	1. 00 66. 32
	ATOM	2420	0E1	GLU	319	6. 206 -24. 527	88. 100	1. 00 65. 47
	ATOM	2421	0E2	GLU	319	4. 540 -25. 335	86. 913	1. 00 67. 45
	ATOM	2422	C	GLU	319	8. 538 -22. 748	83. 966	1. 00 55. 18
	ATOM	2423	0	GLU	319	9. 278 -22. 324	84. 851	1. 00 55. 23
20	ATOM	2424	N	ALA	320	8. 145 -22. 006	82. 938	1. 00 55. 14
	ATOM	2425	CA	ALA	320	8. 585 -20. 630	82. 780	1. 00 55. 95
	ATOM	2426	CB	ALA	320	8. 609 -20. 265	81. 304	1. 00 55. 13
	ATOM	2427	C	ALA	320	7. 708 -19. 649	83. 544	1. 00 56. 88
	ATOM	2428	0	ALA	320	6. 487 -19. 789	83. 584	1. 00 58. 58
25	ATOM	2429	N	SER	321	8. 344 -18. 648	84. 141	1. 00 57. 00
	ATOM	2430	CA	SER	321	7. 644 -17. 625	84. 902	1. 00 56. 57
	ATOM	2431	CB	SER	321	8. 649 -16. 808	85. 705	1. 00 56. 74
	ATOM	2432	0G	SER	321	8. 013 -15. 725	86. 349	1. 00 57. 41
	ATOM	2433	C	SER	321	6. 853 -16. 689	83. 995	1. 00 58. 61

- 100 -

						100		
	ATOM	2434	0	SER	321	7. 054 -16. 665	82. 783	1. 00 58. 41
	ATOM	2435	N	GLU	322	5. 955 -15. 914	84. 595	1. 00 60. 41
	ATOM	2436	CA	GLU	322	5. 133 -14. 960	83. 858	1. 00 62. 09
	ATOM	2437	CB	GLU	322	4. 171 -14. 254	84. 819	1. 00 65. 34
5	ATOM	2438	CG	GLU	322	3. 185 -13. 299	84. 165	1. 00 69. 70
	ATOM	2439	CD	GLU	322	2. 075 -14. 020	83. 418	1. 00 73. 68
	MOTA	2440	0E1	GLU	322	1. 379 -14. 851	84. 046	1. 00 74. 78
	ATOM	2441	0E2	GLU	322	1. 896 -13. 751	82. 208	1. 00 75. 02
	ATOM	2442	C	GLU	322	6. 047 -13. 929	83. 204	1. 00 61. 24
10	ATOM	2443	0	GLU	322	5. 913 -13. 612	82. 022	1. 00 60. 81
·	ATOM	2444	N	GLN	323	6. 987 -13. 420	83. 991	1. 00 60. 42
	ATOM	2445	CA	GLN	323	7. 935 -12. 422	83. 521	1. 00 58. 63
	ATOM	2446	CB	GLN	323	8. 729 -11. 863	84. 700	1. 00 59. 77
	ATOM	2447	CG	GLN	323	7. 902 -11. 039	85. 658	1. 00 61. 20
15	MOTA	2448	CD	GLN	323	8. 690 -10. 608	86. 873	1. 00 63. 03
	ATOM	2449	0E1	GLN	323	9. 672 -9. 866	86. 767	1. 00 63. 70
	ATOM	2450	NE2	GLN	323	8. 266 -11. 074	88. 044	1. 00 64. 05
	ATOM	2451	C	GLN	323	8. 904 -12. 955	82. 478	1. 00 56. 96
	ATOM	2452	0	GLN	323	9. 244 -12. 255	81. 526	1. 00 56. 89
20	ATOM	2453	N	LEU	324	9. 351 -14. 190	82. 652	1. 00 53. 93
	ATOM	2454	CA	LEU	324	10. 298 -14. 763	81. 713	1. 00 52. 62
	ATOM	2455	CB	LEU	324	10. 745 -16. 151	82. 180	1. 00 51. 22
	ATOM	2456	CG	LEU	324	11. 830 -16. 826	81. 334	1. 00 50. 58
	ATOM	2457	CD1	LEU	324	13. 076 -15. 952	81. 299	1. 00 49. 50
25	ATOM	2458	CD2	LEU	324	12. 160 -18. 192	81. 909	1. 00 49. 35
	ATOM	2459	C	LEU	324	9. 730 -14. 855	80. 306	1. 00 52. 38
	ATOM	2460	0	LEU	324	10. 485 -14. 870	79. 337	1. 00 51. 83
	ATOM	2461	N	ARG	325	8. 405 -14. 902	80. 193	1. 00 52. 63
	ATOM	2462	CA	ARG	325	7. 759 -15. 015	78. 887	1. 00 53. 00

- 101 -ATOM 2463 CBARG 325 6. 477 -15. 848 79.000 1.00 54.77 ATOM 2464 CG ARG 325 6. 585 -17. 005 79. 985 1. 00 58. 57 ATOM 2465 CDARG 325 6. 013 -18. 330 79.458 1.00 60.34 ATOM 2466 NE ARG 325 6. 881 -18. 961 78. 464 1. 00 62. 28 5 ATOM 2467 CZARG 325 6. 953 -20. 273 78. 249 1. 00 62. 81 ATOM 2468 NH1 ARG 325 6.208 - 21.10978. 963 1.00 62.98 ATOM NH2 ARG 2469 325 7. 769 -20. 752 77. 317 1. 00 62. 50 ATOM 2470 C ARG 325 7. 430 -13. 663 78. 266 1.00 52.20 ATOM 2471 0 ARG 325 6. 835 -13. 595 77. 194 1. 00 51. 65 10 ATOM 2472 N THR 326 7. 820 -12. 589 78. 940 1. 00 51. 52 ATOM 2473 CA THR 326 7.562 - 11.24878. 438 1. 00 53. 54 ATOM 2474 CB THR 326 7. 031 -10. 343 79. 570 1.00 54.40 **ATOM** 2475 OG1 THR 326 8. 068 -10. 120 80. 534 1.00 56.68 ATOM 2476 CG2 THR 326 5. 858 -11. 012 80. 274 1.00 53.00 15 ATOM 2477 C THR 326 8. 853 -10. 655 77. 850 1.00 54.00 ATOM 2478 0 THR 326 9. 891 -10. 626 78. 515 1. 00 53. 48 **ATOM** 2479 N ARG 327 8. 782 -10. 191 76. 604 1.00 54.30 **ATOM** 2480 CA ARG 327 9. 948 - 9.62875. 923 1. 00 55. 25 ATOM 2481 CBARG 3279. 568 - 9.07474. 550 1. 00 58. 73 20 ATOM 2482 CG ARG 327 9. 050 -10. 101 73. 572 1.00 62.94 ATOM 2483 CDARG 327 9. 189 -9. 599 72. 143 1.00 66.63 ATOM 2484 NE ARG 327 8. 462 -10. 454 71. 213 1. 00 70. 25 ATOM 2485 CZ ARG 327 7. 136 -10. 522 71. 154 1. 00 72. 29 ATOM 2486 NH1 ARG 3276.399 - 9.77871. 969 1.00 72.86 ATOM 25 2487 NH2 ARG 327 6.546 - 11.33870. 288 1.00 73.24 ATOM 2488C ARG 327 10. 660 -8. 529 76.688 1.00 53.79 ATOM 24890 ARG 327 10. 027 -7. 690 77. 326 1.00 55.10 ATOM 2490 N GLY 328 11. 986 -8. 535 76. 604 1.00 50.97 ATOM 2491 CA GLY 328 12. 773 -7. 520

77. 276

1. 00 50. 03

- 102 -

	ATOM	2492	C	GLY	328	12. 922 -7. 715	78. 770	1. 00 49. 36
	ATOM	2493	0	GLY	328	13. 622 -6. 942	79. 426	1. 00 49. 68
	ATOM	2494	N	ALA	329	12. 274 -8. 740	79. 315	1. 00 47. 47
	ATOM	2495	CA	ALA	329	12. 354 -9. 007	80. 749	1. 00 46. 93
5	ATOM	2496	CB	ALA	329	11. 468 -10. 184	81. 115	1. 00 48. 23
	ATOM	2497	C	ALA	329	13. 786 -9. 287	81. 173	1. 00 45. 48
	ATOM	2498	0	ALA	329	14. 247 -8. 794	82. 203	1. 00 44. 91
	ATOM	2499	N	PHE	330	14. 490 -10. 088	80. 383	1. 00 43. 75
	ATOM	2500	CA	PHE	330	15. 870 -10. 392	80. 710	1. 00 42. 95
10	ATOM	2501	CB	PHE	330	16. 271 -11. 760	80. 156	1. 00 39. 40
	ATOM	2502	CG	PHE	330	17. 478 -12. 350	80. 829	1. 00 36. 90
	ATOM	2503	CD1	PHE	330	18. 761 -11. 985	80. 436	1. 00 35. 73
	ATOM	2504	CD2	PHE	330	17. 330 -13. 241	81. 893	1. 00 35. 23
	ATOM	2505	CE1	PHE	330	19. 878 -12. 496	81. 093	1. 00 -33. 48
15	ATOM	2506	CE2	PHE	330	18. 443 -13. 759	82. 558	1. 00 31. 61
	ATOM	2507	CZ	PHE	330	19. 716 -13. 387	82. 160	1. 00 33. 39
	ATOM	2 508	C	PHE	330	16. 752 <i>-</i> 9. 292	80. 130	1. 00 43. 51
	ATOM	2509	0	PHE	330	17. 202 <i>-</i> 9. 373	78. 986	1. 00 44. 11
	ATOM	2510	N	GLU	331	16. 962 -8. 254	80. 935	1. 00 43. 95
20	ATOM	2511	CA	GLU	331	17. 777 -7. 099	80. 569	1. 00 43. 11
	ATOM	2512	CB	GLU	331	17. 767 -6. 068	81. 697	1. 00 46. 19
	ATOM	2513	CG	GLU	331	16. 393 -5. 551	82. 092	1. 00 50. 13
	ATOM	2514	CD	GLU	331	16. 458 -4. 651	83. 316	1. 00 53. 54
	ATOM	2515	0E1	GLU	331	17. 324 -3. 745	83. 343	1. 00 55. 03
25	ATOM	2516	0E2	GLU	331	15. 646 -4. 846	84. 247	1. 00 53. 56
	ATOM	2517	C	GLU	331	19. 216 -7. 511	80. 310	1. 00 42. 02
	ATOM	2518	0	GLU	331	19. 742 -8. 411	80. 968	1. 00 42. 05
	ATOM	2519	N	THR	332	19. 855 -6. 830	79. 365	1. 00 39. 23
	ATOM	2520	CA	THR	332	21. 235 -7. 122	79. 017	1. 00 36. 08

- 103 -

	ATOM	2521	l CB	THR	332	21. 713	-6. 200	77. 869	1. 00 36. 47
	ATOM	2522	0G1	THR	332	21. 297	-6. 762	76. 618	1. 00 33. 61
	ATOM	2523	CG2	THR	332	23. 235	-6. 030	77. 884	1. 00 31. 36
	ATOM	2524	C	THR	332	22. 159	-6. 987	80. 219	1. 00 35. 73
5	ATOM	2525	0	THR	332	23. 209	-7. 634	80. 280	1. 00 35. 30
	ATOM	2526	N	ARG	333	21. 782	-6. 151	81. 180	1. 00 34. 21
	ATOM	2527	CA	ARG	333	22. 632	-6. 00 3	82. 353	1. 00 34. 18
	ATOM	2528	CB .	ARG	333	22. 211	-4. 786	83. 193	1. 00 36. 60
	ATOM	2529	CG .	ARG	333	20. 830	-4. 854	83. 835	1. 00 39. 58
10	ATOM	2530	CD A	ARG	333	20. 488	-3. 518	84. 520	1. 00 42. 78
	ATOM	2531	NE A	ARG	333	19. 264	-3. 590	85. 316	1. 00 45. 29
	ATOM	2532	CZ A	ARG	333	19. 205	-4. 039	86. 567	1. 00 47. 32
	ATOM	2533	NH1 A	ARG	333	20. 305	-4. 455	87. 182	1. 00 49. 55
	ATOM	2534	NH2 A	ARG	333	18. 042	-4. 080	87. 205	1. 00 48. 70
15	ATOM	2535	C A	\RG	333	22. 609	-7. 298	83. 181	1. 00 31. 65
	ATOM	2536	0 A	IRG	333	23. 584	-7. 625	83. 863	1. 00 31. 61
	ATOM	2537	N P	HE	334	21. 513	-8. 049	83. 105	1. 00 31. 01
	ATOM	2538	CA P	HE	334	21. 431	-9. 317	83. 835	1. 00 30. 67
	ATOM	2539	CB P	HE	334	20. 048	-9. 967	83. 678	1. 00 30. 39
20	ATOM	2540	CG P	HE	334	18. 923	-9. 210	84. 330	1. 00 30. 58
	ATOM	2541	CD1 P	HE	334	19. 170	-8. 214	85. 269	1. 00 29. 37
	ATOM	2542	CD2 P	HE	334	17. 600	-9. 522	84. 019	1. 00 31. 94
	ATOM	2543	CE1 P	HE	334	18. 113	-7. 539	85. 891	1. 00 31. 67
	ATOM	2544	CE2 P	HE	334	16. 535	-8. 851	84. 636	1. 00 32. 25
25	ATOM	2545	CZ P	HE	334	16. 796	-7. 857	85. 575	1. 00 28. 89
	ATOM	2546	C P	HE	334	22. 496 -	-10. 287	83. 295	1. 00 30. 73
	ATOM	2547	0 PI	HE	334	23. 136 -	-11. 016	84. 064	1. 00 30. 77
	ATOM	2548	N VA	AL	335	22. 685 -	-10. 290	81. 973	1. 00 29. 44
	ATOM	2549	CA VA	AL .	335	23. 672 -	-11. 165	81. 350	1. 00 30. 61

- 104 -

						101		
	ATOM	2550	CB	VAL	335	23. 777 -10. 921	79. 831	1. 00 30. 75
	ATOM	2551	CG1	l VAL	335	24. 774 -11. 898	79. 216	1. 00 32. 48
	ATOM	2552	CG2	2 VAL	335	22. 424 -11. 078	79. 181	1. 00 29. 80
	ATOM	2553	C	VAL	335	25. 041 -10. 904	81. 964	1. 00 31. 64
5	ATOM	2554	0	VAL	335	25. 759 -11. 830	82. 356	1. 00 31. 87
	ATOM	2555	N	SER	336	25. 382 -9. 623	82. 048	1. 00 33. 23
	ATOM	2556	CA	SER	336	26. 655 -9. 173	82. 593	1. 00 32. 42
	ATOM	2557	CB	SER	336	26. 778 -7. 660	82. 384	1. 00 33. 94
	ATOM	2558	0G	SER	336	28. 080 -7. 204	82. 682	1. 00 38. 27
10	ATOM	2559	C	SER	336	26. 793 -9. 524	84. 078	1. 00 32. 82
	ATOM	2560	0	SER	336	27. 863 -9. 917	84. 529	1. 00 33. 76
	ATOM	2561	N	GLN	337	25. 711 -9. 389	84. 839	1. 00 32. 64
	ATOM	2562	CA	GLN	337	25. 753 -9. 715	86. 260	1. 00 34. 83
	ATOM	2563	CB	GLN	337	24. 480 -9. 233	86. 958	1. 00 37. 43
15	ATOM	2564	CG	GLN	337	24. 339 -7. 721	86. 972	1. 00 42. 29
	ATOM	2565	CD	GLN	337	22. 984 -7. 260	87. 471	1. 00 44. 59
	ATOM	2566	0E1	GLN	337	22. 710 -6. 062	87. 525	1. 00 46. 49
	ATOM	2567	NE2	GLN	337	22. 128 -8. 209	87. 835	1. 00 43. 79
	ATOM	2568	C	GLN	337	25. 899 -11. 217	86. 447	1. 00 33. 66
20	ATOM	2569	0	GLN	337	26. 663 -11. 674	87. 297	1. 00 35. 28
	ATOM	2570	N	VAL	338	25. 159 -11. 983	85. 655	1. 00 31. 29
	ATOM	2571	CA	VAL	338	25. 236 -13. 432	85. 743	1. 00 29. 21
	ATOM	2572	CB	VAL	338	24. 326 -14. 102	84. 690	1. 00 28. 27
	ATOM	2573	CG1	VAL	338	24. 687 -15. 571	84. 525	1. 00 27. 17
25	ATOM	2574	CG2	VAL	338	22. 877 -13. 984	85. 129	1. 00 26. 99
	ATOM	2575	C	VAL	338	26. 678 -13. 877	85. 547	1. 00 27. 35
	ATOM	2576	0	VAL	338	27. 176 -14. 722	86. 284	1. 00 26. 69
	ATOM	2577	N	GLU	339	27. 361 -13. 283	84. 576	1. 00 27. 29
	ATOM	2578	CA	GLU	339	28. 747 -13. 657	84. 314	1. 00 27. 15

- 105 -

	ATOM	2579	CB	GLU	339	29. 136 -13. 303	82. 871	1. 00 27. 0	2
	ATOM	2580	CG	GLU	339	28. 404 -14. 185	81. 843	1. 00 30. 7	3
	ATOM	2581	CD	GLU	339	28. 942 -14. 063	80. 425	1. 00 30. 3	3
	ATOM	2582	0E1	GLU	339	30. 121 -14. 414	80. 185	1. 00 34. 7	3
5	ATOM	2583	0E2	GLU	339	28. 179 -13. 619	79. 548	1. 00 29. 5	0
	ATOM	2584	C	GLU	339	29. 749 -13. 085	85. 311	1. 00 26. 9	3
	ATOM	2585	0	GLU	339	30. 940 -13. 345	85. 209	1. 00 27. 6	9
	ATOM	2586	N	SER	340	29. 264 -12. 320	86. 285	1. 00 27. 5	5
	ATOM	2587	CA	SER	340	30. 140 -11. 763	87. 318	1. 00 28. 6	1
10	ATOM	2588	CB	SER	340	29. 741 -10. 323	87. 667	1. 00 29. 4	0
	ATOM	2589	0G	SER	340	29. 800 -9. 485	86. 528	1. 00. 35. 9	7
	ATOM	2590	C	SER	340	30. 029 -12. 615	88. 583	1. 00 27. 9	4
	ATOM	2591	0	SER	340	30. 811 -12. 448	89. 526	1. 00 24. 0	4
	ATOM	2592	N	ASP	341	29. 042 -13. 511	88. 600	1. 00 28. 0	2
15	ATOM	2593	CA	ASP	341	28. 812 -14. 387	89. 748	1. 00 29. 6	6
	ATOM	2594	CB	ASP	341	27. 808 -15. 490	89. 393	1. 00 30. 9	4
	ATOM	2595	CG	ASP	341	27. 296 -16. 227	90. 620	1. 00 33. 1	1
	ATOM	2596	OD1	ASP	341	26. 289 -15. 778	91. 217	1. 00 28. 7	8
	ATOM	2597	OD2	ASP	341	27. 918 -17. 247	90. 991	1. 00 32. 8	2
20	ATOM	2598	C	ASP	341	30. 137 -15. 003	90. 163	1. 00 30. 3	8
	ATOM	2599	0	ASP	341	30. 853 -15. 564	89. 342	1. 00 30. 5	9
	ATOM	2600	N	THR	342	30. 466 -14. 886	91. 443	1. 00 33. 59	9
	ATOM	2601	CA	THR	342	31. 729 -15. 405	91. 953	1. 00 37. 0	1
	ATOM	2602	CB	THR	342	32. 013 -14. 836	93. 350	1. 00 38. 8	1
25	ATOM	2603	0G1	THR	342	31. 012 -15. 304	94. 265	1. 00 43. 90	0
	ATOM	2604	CG2	THR	342	31. 972 -13. 316	93. 317	1. 00 35. 79	9
	ATOM	2605	C	THR	342	31. 780 -16. 929	92. 027	1. 00 37. 87	7
	ATOM	2606	0	THR	342	32. 853 -17. 514	92. 191	1. 00 39. 64	4
	ATOM	2607	N	GLY	343	30. 625 -17. 568	91. 894	1. 00 36. 8	1

- 106 -

	ATOM	2608	CA	GLY	343	30. 578 -19. 018	91. 970	1. 00 39. 26
	ATOM	2609	C	GLY	343	29. 631 -19. 515	93. 053	1. 00 38. 98
	ATOM	2610	0	GLY	. 343	29. 293 -20. 695	93. 090	1. 00 39. 46
	ATOM	2611	N	ASP	344	29. 204 -18. 615	93. 935	1. 00 38. 20
5	ATOM	2612	CA	ASP	344	28. 287 -18. 980	95. 005	1. 00 39. 74
	ATOM	2613	CB	ASP	344	28. 480 -18. 071	96. 231	1. 00 39. 14
	ATOM	2614	CG	ASP	344	28. 267 -16. 595	95. 928	1. 00 41. 19
	ATOM	2615	OD 1	ASP	344	27. 733 -16. 256	94. 848	1. 00 39. 57
	ATOM	2616	0D2	ASP	344	28. 627 -15. 767	96. 794	1. 00 42. 27
10	ATOM	2617	C	ASP	344	26. 842 -18. 926	94. 516	1. 00 40. 25
	ATOM	2618	0	ASP	344	25. 904 -19. 235	95. 257	1. 00 39. 36
	ATOM	2619	N	ARG	345	26. 680 -18. 525	93. 259	1. 00 38. 45
	ATOM	2620	CA	ARG	345	25. 374 -18. 449	92. 618	1. 00 37. 30
	ATOM	2621	CB	ARG	345	24. 738 -19. 847	92. 587	1. 00 37. 49
15	ATOM	2622	CG	ARG	345	25. 657 -20. 935	92. 044	1. 00 38. 81
	ATOM	2623	CD	ARG	345	24. 976 -22. 301	92. 046	1. 00 40. 19
	ATOM	2624	NE	ARG	345	25. 790 -23. 327	91. 397	1. 00 42. 18
	ATOM	2625	CZ	ARG	345	26. 730 -24. 051	91. 999	1. 00 43. 19
	ATOM	2626	NH1	ARG	345	26. 990 -23. 880	93. 288	1. 00 43. 31
20	ATOM	2627	NH2	ARG	345	27. 421 -24. 947	91. 302	1. 00 40. 56
	ATOM	2628	C	ARG	345	24. 397 -17. 456	93. 246	1. 00 37. 06
	ATOM	2629	0	ARG	345	23. 231 -17. 395	92. 837	1. 00 35. 44
	ATOM	2630	N	LYS	346	24. 855 -16. 681	94. 228	1. 00 37. 09
	ATOM	2631	CA	LYS	346	23. 977 -15. 704	94. 876	1. 00 39. 61
25	ATOM	2632	CB	LYS	346	24. 710 -14. 964	96. 005	1. 00 43. 18
	ATOM	2633	CG	LYS	346	25. 084 -15. 826	97. 214	1. 00 47. 92
	ATOM	2634	CD	LYS	346	25. 835 -15. 009	98. 285	1. 00 50. 48
	ATOM	2635	CE	LYS	346	26. 274 -15. 887	99. 466	1. 00 53. 20
	ATOM	2636	NZ	LYS	346	27. 039 -15. 136	100. 520	1. 00 54. 15

- 107 -

						101		
	ATOM	2637	C	LYS	346	23. 467 -14. 690	93. 858	1. 00 39. 25
	ATOM	2638	0	LYS	346	22. 271 -14. 400	93. 795	1. 00 38. 51
	ATOM	2639	N	GLN	347	24. 384 -14. 158	93. 055	1. 00 40. 01
	ATOM	2640	CA	GLN	347	24. 036 -13. 169	92. 037	1. 00 39. 62
5	ATOM	2641	CB	GLN	347	25. 301 -12. 725	91. 290	1. 00 44. 30
	ATOM	2642	CG	GLN	347	25. 117 -11. 507	90. 403	1. 00 50. 12
	ATOM	2643	CD	GLN	347	24. 996 -10. 214	91. 196	1. 00 54. 40
	ATOM	2644	0E1	GLN	347	24. 699 -9. 153	90. 637	1. 00 57. 36
	ATOM	2645	NE2	GLN	347	25. 234 -10. 295	92. 501	1. 00 55. 02
10	ATOM	2646	C	GLN	347	23. 015 -13. 735	91. 046	1. 00 36. 71
	ATOM	2647	0	GLN	3.47	22. 012 -13. 087	90. 732	1. 00 35. 38
	ATOM	2648	N	ILE	348	23. 264 -14. 949	90. 563	1. 00 33. 61
	ATOM	2649	CA	ILE	348	22. 360 -15. 579	89. 610	1. 00 30. 26
	ATOM	2650	CB	ILE	348	22. 946 -16. 906	89. 103	1. 00 31. 09
15	ATOM	2651	CG2	ILE	348	21. 983 -17. 561	88. 102	1. 00 24. 14
	ATOM	2652	CG1	ILE	348	24. 315 -16. 641	88. 467	1. 00 24. 89
	ATOM	2653	CD1	ILE	348	25. 016 -17. 870	87. 989	1. 00 26. 20
	ATOM	2654	C	ILE	348	20. 990 -15. 836	90. 231	1. 00 32. 47
	ATOM	2655	0	ILE	348	19. 946 -15. 578	89. 607	1. 00 28. 48
20	ATOM	2656	N	TYR	349	20. 996 -16. 330	91. 468	1. 00 33. 64
	ATOM	2657	CA	TYR	349	19. 757 -16. 622	92. 173	1. 00 33. 94
	ATOM	2658	CB	TYR	349	20. 023 -17. 189	93. 566	1. 00 35. 19
	ATOM	2659	CG	TYR	349	18. 728 -17. 513	94. 273	1. 00 35. 54
	ATOM	2660	CD1	TYR	349	18. 085 -18. 737	94. 064	1. 00 35. 44
25	ATOM	2661	CE1	TYR	349	16. 847 -19. 009	94. 647	1. 00 35. 96
	ATOM	2662	CD2	TYR	349	18. 100 -16. 569	95. 083	1. 00 34. 28
	ATOM	2663	CE2	TYR	349	16. 860 -16. 833	95. 665	1. 00 34. 50
	ATOM	2664	CZ	TYR	349	16. 242 -18. 053	95. 441	1. 00 34. 82
	ATOM	2665	ОН	TYR	349	15. 007 -18. 305	95. 990	1. 00 39. 44

- 108 -

	ATOM	2666	C	TYR	349	18. 888 -15. 390	92. 339	1. 00	35. 45
	ATOM	2667	0	TYR	349	17. 698 -15. 419	92. 042	1. 00	37. 11
	ATOM	2668	N	ASN	350	19. 475 -14. 312	92. 846	1. 00	37. 18
	ATOM	2669	CA	ASN	350	18. 722 -13. 082	93. 049	1. 00	38. 47
5	ATOM	2670	CB	ASN	350	19. 617 -11. 985	93. 630	1. 00	40. 65
	ATOM	2671	CG	ASN	350	20. 014 -12. 263	95. 065	1. 00	45. 75
	ATOM	2672	0D1	ASN	350	19. 176 -12. 638	95. 893	1. 00	45. 11
	ATOM	2673	ND2	ASN	350	21. 298 -12. 075	95. 373	1. 00	46. 81
	ATOM	2674	C	ASN	350	18. 085 -12. 585	91. 768	1. 00	37. 56
10	ATOM	2675	0	ASN	350	16. 924 -12. 186	91. 769	1. 00	40. 92
	ATOM	2676	N	ILE	351	18. 839 -12. 601	90. 673	1. 00	37. 62
	ATOM	2677	CA	ILE	351	18. 310 -12. 139	89. 395	1. 00	37. 09
	ATOM	2678	CB	ILE	351	19. 401 -12. 130	88. 308	1. 00	38. 11
	ATOM	2679	CG2	ILE	351	18. 771 -11. 955	86. 938	1. 00	37. 56
15	ATOM	2680	CG1	ILE	351	20. 400 -11. 004	88. 588	1. 00	38. 11
	ATOM	2681	CD1	ILE	351	21. 726 -11. 178	87. 879	1. 00	36. 24
	ATOM	2682	C	ILE	351	17. 144 -12. 997	88. 921	1. 00	36. 57
	ATOM	2683	0	ILE	351	16. 120 -12. 474	88. 479	1. 00	38. 22
	ATOM	2684	N	LEU	352	17. 291 -14. 314	89. 012	1. 00	35. 96
20	ATOM	2685	CA	LEU	352	16. 219 -15. 206	88. 577	1. 00	3 6. 28
	ATOM	2686	CB	LEU	352	16. 740 -16. 640	88. 443	1. 00	32. 41
	ATOM	2687	CG	LEU	352	17. 845 -16. 828	87. 395	1. 00	30. 66
	ATOM	2688	CD1	LEU	352	18. 465 -18. 226	87. 496	1. 00	25. 83
	ATOM	2689	CD2	LEU	352	17. 262 -16. 597	86. 025	1. 00	27. 66
25	ATOM	2690	C	LEU	352	15. 039 -15. 156	89. 547	1. 00	37. 27
	ATOM	2691	0	LEU	352	13. 896 -15. 356	89. 145	1. 00	38. 32
	ATOM	2692	N	SER	353	15. 322 -14. 888	90. 819	1. 00	39. 41
	ATOM	2693	CA	SER	353	14. 279 -14. 794	91. 838	1. 00	42. 13
	ATOM	2694	CB	SER	353	14. 893 -14. 708	93. 237	1. 00	43. 72

- 109 **-**

	ATOM	2695	OG	SER	353	13. 883 -14. 546	94. 224	1. 00 48. 17
	ATOM	2696	C	SER	353	13. 431 -13. 557	91. 590	1. 00 43. 61
	ATOM	2697	0	SER	353	12. 229 -13. 552	91. 858	1. 00 42. 99
	ATOM	2698	N	THR	354	14. 066 -12. 506	91. 081	1. 00 44. 80
5	ATOM	2699	CA	THR	354	13. 363 -11. 267	90. 785	1. 00 46. 06
	ATOM	2700	CB	THR	354	14. 356 -10. 122	90. 497	1. 00 47. 48
	ATOM	2701	0G1	THR	354	15. 100 -9. 820	91. 687	1. 00 47. 39
	ATOM	2702	CG2	THR	354	13. 615 -8. 877	90. 034	1. 00 47. 87
	ATOM	2703	C	THR	354	12. 446 -11. 455	89. 579	1. 00 46. 06
10	ATOM	2704	0	THR	354	11. 443 -10. 757	89. 436	1. 00 47. 23
	ATOM	2705	N	LEU	355	12. 788 -12. 406	88. 717	1. 00 46. 03
•	ATOM	2706	CA	LEU	355	11. 983 -12. 679	87. 533	1. 00 46. 26
	ATOM	2707	CB	LEU	355	12. 875 -13. 157	86. 390	1. 00 46. 43
	ATOM	2708	CG	LEU	355	14. 030 -12. 210	86. 063	1. 00 46. 85
15	ATOM	2709	CD1	LEU	355	14. 861 -12. 813	84. 950	1. 00 47. 00
	ATOM	2710	CD2	LEU	355	13. 497 -10. 844	85. 660	1. 00 45. 99
	ATOM	2711	C	LEU	355	10. 908 -13. 722	87. 821	1. 00 46. 88
	ATOM	2712	0	LEU	355	10. 370 -14. 346	86. 902	1. 00 47. 28
	ATOM	2713	N	GLY	356	10. 609 -13. 912	89. 105	1. 00 47. 29
20	ATOM	2714	CA	GLY	356	9. 586 -14. 858	89. 511	1. 00 44. 74
	ATOM	2715	C	GLY	356	9. 959 -16. 321	89. 396	1. 00 44. 45
	ATOM	2716	0	GLY	356	9. 097 -17. 163	89. 146	1. 00 45. 09
	ATOM	2717	N	LEU	357	11. 235 -16. 635	89. 575	1. 00 43. 26
	ATOM	2718	CA	LEU	357	11. 681 -18. 018	89. 485	1. 00 41. 29
25	ATOM	2719	CB	LEU	357	12. 653 -18. 187	88. 310	1. 00 42. 15
	ATOM	2720	CG	LEU	357	12. 171 -17. 833	86. 896	1. 00 41. 21
	ATOM	2721	CD1	LEU	357	13. 366 -17. 781	85. 972	1. 00 39. 61
	ATOM	2722	CD2	LEU	357	11. 153 -18. 849	86. 393	1. 00 39. 50
	ATOM	2723	C	LEU	357	12. 361 -18. 455	90. 780	1. 00 40. 57

- 110 -

	ATOM	2724	0	LEU	357	12. 780 -17. 627	91. 590	1. 00 38. 53
	ATOM	2725	N	ARG	358	12. 448 -19. 766	90. 970	1. 00 39. 68
	ATOM	2726	CA	ARG	358	13. 092 -20. 355	92. 139	1. 00 40. 04
	ATOM	2727	CB	ARG	358	12. 048 -20. 916	93. 112	1. 00 42. 61
5	ATOM	2728	CG	ARG	358	11. 172 -19. 845	93. 760	1. 00 46. 08
	ATOM	2729	CD	ARG	358	12. 019 -18. 871	94. 560	1. 00 49. 74
	ATOM	2730	NE	ARG	358	11. 355 -17. 588	94. 772	1. 00 55. 41
	ATOM	2731	CZ	ARG	358	10. 588 -17. 293	95. 816	1. 00 58. 08
	ATOM	2732	NH1	ARG	358	10. 376 -18. 195	96. 771	1. 00 59. 09
10	ATOM	2733	NH2	ARG	358	10. 035 -16. 087	95. 906	1. 00 58. 98
	ATOM	2734	C	ARG	358	13. 954 -21. 471	91. 576	1. 00 38. 39.
	ATOM	2735	0	ARG	358	13. 569 -22. 641	91. 586	1. 00 37. 47
	ATOM	2736	N	PRO	359	15. 140 -21. 109	91. 065	1. 00 36. 51
	ATOM	2737	CD	PR0	359	15. 664 -19. 728	91. 087	1. 00 36. 88
15	ATOM	2738	CA	PR0	359	16. 123 -22. 006	90. 461	1. 00 34. 17
	ATOM	2739	CB	PR0	359	17. 035 -21. 039	89. 722	1. 00 35. 29
	ATOM	2740	CG	PRO	359	17. 135 -19. 925	90. 703	1. 00 34. 03
	ATOM	2741	C	PR0	359	16. 915 -22. 872	91. 416	1. 00 33. 10
	ATOM	2742	0	PR0	359	17. 140 -22. 520	92. 566	1. 00 31. 20
20	ATOM	2743	N	SER	360	17. 365 -24. 004	90. 899	1. 00 33. 97
	ATOM	2744	CA	SER	360	18. 183 -24. 931	91. 658	1. 00 34. 21
	ATOM	2745	CB	SER	360	17. 912 -26. 363	91. 210	1. 00 34. 53
	MOTA	2746	0G	SER	360	18. 287 -26. 530	89. 851	1. 00 33. 54
	MOTA	2747	C	SER	360	19. 618 -24. 568	91. 307	1. 00 34. 99
25	ATOM	2748	0	SER	360	19. 855 -23. 673	90. 495	1. 00 35. 49
	ATOM	2749	N	THR	361	20. 564 -25. 267	91. 920	1. 00 34. 70
	ATOM	2750	CA	THR	361	21. 977 -25. 048	91. 673	1. 00 36. 89
	ATOM	2751	CB	THR	361	22. 838 -26. 003	92. 535	1. 00 36. 99
	ATOM	2752	0G1	THR	361	22. 828 -25. 558	93. 898	1. 00 38. 93

- 111 -

	A TOM	9759	CCO	מנות	0.01	04 000 00 041	00 000	1 00 00 04
	ATOM	2753		THR	361	24. 260 -26. 041		1. 00 38. 24
	ATOM	2754	С	THR	361	22. 303 -25. 291	90. 201	1. 00 37. 14
	ATOM	2755	0	THR	361	23. 142 -24. 606 ^o	89. 616	1. 00 37. 81
	ATOM	2756	N	THR	362	21. 635 -26. 273	89. 612	1. 00 35. 92
5	ATOM	2757	CA	THR	362	21. 865 -26. 614	88. 223	1. 00 34. 91
	ATOM	2758	CB	THR	362	21. 369 -28. 037	87. 914	1. 00 36. 12
	ATOM	2759	0G1	THR	362	19. 969 -28. 117	88. 199	1. 00 40. 45
	ATOM	2760	CG2	THR	362	22. 113 -29. 063	88. 771	1. 00 34. 62
	ATOM	2761	C	THR	362	21. 181 -25. 626	87. 292	1. 00 33. 53
10	ATOM	2762	0	THR	362	21. 684 -25. 360	86. 205	1. 00 33. 46
	ATOM	2763	N	ASP	363	20. 034 -25. 091	87. 698	1. 00 31. 06
	ATOM	2764	CA	ASP	363	19. 355 -24. 115	86. 860	1. 00 32. 46
	ATOM	2765	CB	ASP	363	18. 018 -23. 690	87. 468	1. 00 34. 45
	ATOM	2766	CG	ASP	363	16. 964 -24. 783	87. 409	1. 00 37. 91
15	ATOM	2767	OD 1	ASP	363	16. 889 -25. 504	86. 388	1. 00 38. 99
	ATOM	2768	OD2	ASP	363	16. 194 -24. 907	88. 385	1. 00 38. 23
	ATOM	2769	C	ASP	363	20. 254 -22. 878	86. 718	1. 00 32. 88
	ATOM	2770	0	ASP	363	20. 419 -22. 331	85. 629	1. 00 30. 65
	ATOM	2771	N	CYS	364	20. 833 -22. 451	87. 836	1. 00 33. 86
20	ATOM	2772	CA	CYS	364	21. 712 -21. 292	87. 860	1. 00 32. 22
	ATOM	2773	CB	CYS	364	22. 186 -21. 015	89. 289	1. 00 31. 35
	ATOM	2774	SG	CYS	364	20. 915 -20. 338	90. 389	1. 00 31. 77
	ATOM	2775	C	CYS	364	22. 914 -21. 493	86. 950	1. 00 30. 91
	ATOM	2776	0	CYS	364	23. 207 -20. 645	86. 119	1. 00 30. 71
25	ATOM	2777	N	ASP	365	23. 608 -22. 614	87. 107	1. 00 31. 25
	ATOM	2778	CA	ASP	365	24. 774 -22. 894	86. 280	1. 00 32. 00
	ATOM	2779	CB	ASP	365	25. 389 -24. 243	86. 659	1. 00 32. 78
	ATOM	2780	CG	ASP	365	26. 037 -24. 211	88. 023	1. 00 35. 48
	ATOM	2781	0D1	ASP	3 6 5	26. 017 -23. 127	88. 650	1. 00 37. 01

- 112 -

						112		
	ATOM	2782	OD	2 ASP	365	26. 564 -25. 251	88. 466	1. 00 35. 21
	ATOM	2783	C	ASP	365	24. 405 -22. 886	84. 810	1. 00 30. 41
	ATOM	2784	0	ASP	365	25. 166 -22. 407	83. 966	1. 00 31. 73
	ATOM	2785	N	ILE	366	23. 225 -23. 408	84. 514	1. 00 29. 17
5	ATOM	2786	CA	ILE	366	22. 739 -23. 462	83. 148	1. 00 30. 58
	ATOM	2787	CB	ILE	366	21. 456 -24. 318	83. 058	1. 00 30. 61
	ATOM	2788	CG2	ILE	366	20. 779 -24. 118	81. 712	1. 00 28. 15
	ATOM	2789	CG1	ILE	366	21. 808 -25. 797	83. 261	1. 00 33. 09
	ATOM	2790	CD1	ILE	366	20. 577 -26. 702	83. 405	1. 00 32. 69
10	ATOM	2791	C	ILE	366	22. 462 -22. 066	82. 576	1. 00 29. 08
	ATOM	2792	0	ILE	366	22. 729 -21. 815	81. 405	1. 00 28. 78
	ATOM	2793	N	VAL	367	21. 906 -21. 170	83. 386	1. 00 27. 52
	ATOM	2794	CA	VAL	367	21. 632 -19. 817	82. 910	1. 00 27. 71
	ATOM	2795	CB	VAL	367	20. 803 -19. 021	83. 943	1. 00 26. 66
15	ATOM	2796	CG1	VAL	367	20. 812 -17. 531	83. 609	1. 00 24. 57
	ATOM	2797	CG2	VAL	367	19. 373 -19. 535	83. 928	1. 00 26. 09
	ATOM	2798	C	VAL	367	22. 979 -19. 143	82. 643	1. 00 28. 05
	ATOM	2799	0	VAL	367	23. 144 -18. 409	81. 670	1. 00 28. 53
	ATOM	2800	N	ARG	368	23. 940 -19. 436	83. 508	1. 00 27. 74
20	ATOM	2801	CA	ARG	368	25. 300 -18. 927	83. 386	1. 00 30. 76
	ATOM	2802	CB	ARG	368	26. 172 -19. 575	84. 458	1. 00 31. 66
	ATOM	2803	CG	ARG	368	27. 023 -18. 648	85. 269	1. 00 38. 26
	ATOM	2804	CD	ARG	368	28. 312 -18. 282	84. 579	1. 00 41. 00
	ATOM	2805	NE	ARG	368	29. 272 -17. 763	85. 547	1. 00 43. 72
25	ATOM	2806	CZ	ARG	368	30. 397 -17. 135	85. 226	1. 00 46. 75
	ATOM	2807	NH1	ARG	368	30. 710 -16. 938	83. 954	1. 00 48. 06
	ATOM	2808	NH2	ARG	368	31. 212 -16. 708	86. 179	1. 00 47. 96
	ATOM	2809	C	ARG	368	25. 841 -19. 317	82. 003	1. 00 30. 63
	ATOM	2810	0	ARG	368	26. 343 -18. 469	81. 256	1. 00 27. 84

- 113 -

	ATOM	2811	N	ARG	369	25. 735 -20. 606	81. 677	1. 00 27. 70
	ATOM	2812	CA	ARG	369	26. 228 -21. 115	80. 399	1. 00 28. 24
	ATOM	2813	CB	ARG	369	26. 077 -22. 645	80. 327	1. 00 26. 69
	ATOM	2814	CG	ARG	369	27. 044 -23. 429	81. 224	1. 00 29. 04
5	ATOM	2815	CD	ARG	369	28. 506 -23. 228	80. 815	1. 00 31. 91
	ATOM	2816	NE	ARG	369	28. 752 -23. 683	79. 445	1. 00 35. 74
	ATOM	2817	CZ	ARG	369	29. 117 -22. 892	78. 439	1. 00 36. 75
	ATOM	2818	NH 1	ARG	369	29. 291 -21. 590	78. 638	1. 00 36. 65
	ATOM	2819	NH2	ARG	369	29. 291 -23. 400	77. 225	1. 00 36. 11
10	ATOM	2820	C	ARG	369	25. 528 -20. 472	79. 208	1. 00 27. 14
	ATOM	2821	0 .	ARG	369	26. 160 -20. 188	78. 189	1. 00 28. 06
	MOTA	2822	N	ALA	370	24. 224 -20. 252	79. 327	1. 00 25. 64
	ATOM	2823	CA	ALA	370	23. 480 -19. 634	78. 238	1. 00 25. 08
	ATOM	2824	CB	ALA	370	21. 991 -19. 587	78. 574	1. 00 25. 47
15	ATOM	2825	C	ALA	370	24. 015 -18. 218	78. 006	1. 00 25. 14
	ATOM	2826	0	ALA	370	24. 196 -17. 793	76. 870	1. 00 25. 23
	ATOM	2827	N	CYS	371	24. 268 -17. 491	79. 087	1. 00 24. 15
	ATOM	2828	CA	CYS	371	24. 785 -16. 135	78. 965	1. 00 25. 09
	ATOM	2829	CB	CYS	371	24. 855 -15. 467	80. 338	1. 00 22. 74
20	ATOM	2830	SG	CYS	371	23. 239 -15. 076	81. 033	1. 00 25. 40
	ATOM	2831	C	CYS	371	26. 161 -16. 127	78. 300	1. 00 24. 93
	ATOM	2832	0	CYS	371	26. 392 -15. 358	77. 367	1. 00 25. 49
	ATOM	2833	N	GLU	372	27. 062 -16. 991	78. 765	1. 00 24. 70
	ATOM	2834	CA	GLU	372	28. 411 -17. 073	78. 207	1. 00 26. 69
25	ATOM	2835	CB	GLU	372	29. 247 -18. 105	78. 975	1. 00 27. 07
	ATOM	2836	CG	GLU	372	29. 232 -17. 890	80. 481	1. 00 32. 77
	ATOM	2837	CD	GLU	372	30. 016 -18. 945	81. 243	1. 00 33. 87
	ATOM	2838	0E1	GLU	372	29. 905 -20. 139	80. 892	1. 00 36. 95
	ATOM	2839	0E2	GLU	372	30. 733 -18. 583	82. 200	1. 00 35. 18

- 114 -

	ATOM	2840	C	GLU	372	28. 418 -17. 420	76. 718	1. 00 27. 23
	ATOM	2841	0	GLU	372	29. 259 -16. 922	75. 966	1. 00 29. 09
	ATOM	2842	N	SER	373	27. 489 -18. 273	76. 296	1. 00 25. 93
	ATOM	2843	CA	SER	373	27. 403 -18. 664	74. 894	1. 00 27. 07
5	ATOM	2844	CB	SER	373	26. 393 -19. 803	74. 718	1. 00 25. 93
	ATOM	2845	0G	SER	373	26. 784 -20. 951	75. 457	1. 00 32. 56
	ATOM	2846	C	SER	373	26. 988 -17. 471	74. 034	1. 00 25. 31
	ATOM	2847	0	SER	373	27. 585 -17. 207	72. 998	1. 00 24. 49
	ATOM	2848	N	VAL	374	25. 962 -16. 754	74. 475	1. 00 25. 87
10	ATOM	2849	CA	VAL	374	25. 473 -15. 596	73. 743	1. 00 25. 12
	ATOM	2850	CB	VAL	374	24. 139 -15. 103	74. 319	1. 00 26. 07
	ATOM	2851	CG1	VAL	374	23. 754 -13. 766	73. 682	1. 00 29. 29
	ATOM	2852	CG2	VAL	374	23. 055 -16. 127	74. 061	1. 00 25. 56
	ATOM	2853	C	VAL	374	26. 465 -14. 429	73.,742	1. 00 24. 54
15	ATOM	2854	0	VAL	374	26. 657 -13. 792	72. 714	1. 00 25. 64
	ATOM	2855	N	SER	375	27. 094 -14. 144	74. 878	1. 00 21. 70
	ATOM	2856	CA	SER	375	28. 029 -13. 034	74. 922	1. 00 23. 89
	ATOM	2857	CB	SER	375	28. 298 -12. 585	76. 365	1. 00 23. 28
	ATOM	2858	0G	SER	375	28. 986 -13. 565	77. 120	1. 00 29. 71
20	ATOM	2859	C	SER	375	29. 324 -13. 391	74. 210	1. 00 24. 77
	ATOM	2860	0	SER	375	29. 873 -12. 560	73. 490	1. 00 23. 61
	ATOM	2861	N	THR	376	29. 805 -14. 623	74. 386	1. 00 23. 54
	ATOM	2862	CA	THR	376	31. 029 -15. 052	73. 707	1. 00 23. 38
	ATOM	2863	CB	THR	376	31. 444 -16. 501	74. 096	1. 00 23. 76
25	ATOM	2864	0G1	THR	376	31. 874 -16. 527	75. 458	1. 00 26. 36
	ATOM	2865	CG2	THR	376	32. 594 -16. 987	73. 222	1. 00 21. 48
	ATOM	2866	C	THR	376	30. 859 -14. 996	72. 189	1. 00 22. 33
	ATOM	2867	0	THR	376	31. 810 -14. 694	71. 465	1. 00 23. 88
	ATOM	2868	N	ARG	377	29. 660 -15. 293	71. 695	1. 00 20. 80

- 115 -

	ATOM	2869) CA	ARG	377	29. 452 -15. 239	70 252	1 00 21 46
	ATOM	2870			377			
	ATOM	2871			377	27. 958 -15. 875		
	ATOM	2872			377			
5	ATOM	2873			377	26. 601 -16. 377		
·	ATOM	2874				25. 491 -15. 558		
	ATOM	2875			377	24. 255 -15. 637		
				1 ARG	377	23. 973 -16. 492		
	ATOM	2876		2 ARG	377	23. 294 -14. 877		1. 00 26. 96
	ATOM	2877		ARG	377	29. 439 -13. 773		1. 00 21. 55
10	ATOM	2878		ARG	377	29. 856 -13. 462	68. 670	1. 00 20. 80
	ATOM	2879	N	ALA	378	28. 951 -12. 879	70. 639	1. 00 19. 46
	ATOM	2880	CA	ALA	378	28. 927 -11. 463	70. 302	1. 00 21. 17
	ATOM	2881	CB	ALA	378	28. 239 -10. 653	71. 412	1. 00 20. 68
	ATOM	2882	C	ALA	378	30. 374 -11. 015	70. 151	1. 00 20. 18
15	ATOM	2883	0	ALA	378	30. 747 -10. 420	69. 145	1. 00 20. 36
	ATOM	2884	N	ALA	379	31. 191 -11. 326	71. 153	1. 00 19. 41
	ATOM	2885	CA	ALA	379	32. 600 -10. 950	71. 138	1. 00 20. 64
	ATOM	2886	CB	ALA	379	33. 296 -11. 515	72. 371	1. 00 20. 04
	ATOM	2887	C	ALA	379	33. 332 -11. 405	69. 869	1. 00 22. 79
20	ATOM	2888	0	ALA	379	34. 054 -10. 620	69. 234	1. 00 21. 82
	ATOM	2889	N	HIS	380	33. 139 -12. 666	69. 489	1. 00 22. 45
	ATOM	2890	CA	HIS	380	33. 803 -13. 208	68. 305	1. 00 22. 78
	ATOM	2891	CB	HIS	380	33. 726 -14. 745	68. 314	1. 00 22. 80
	ATOM	2892	CG	HIS	380	34. 584 -15. 384	69. 364	1. 00 26. 52
25	ATOM	2893	CD2	HIS	380	35. 557 -14. 870	70. 152	1. 00 27. 81
	ATOM	2894	ND1	HIS	380	34. 499 -16. 720	69. 687	1. 00 28. 99
	ATOM	2895	CE1	HIS	380	35. 383 -17. 002	70. 627	1. 00 28. 15
	ATOM	2896	NE2	HIS	380		70. 927	1. 00 28. 70
	ATOM	2897	C	HIS	380	33. 242 -12. 657		1. 00 22. 38

- 116 -

	ATOM	2898	0	HIS	380	33. 988 -13	2. 368	66. 073	1. 00 20. 71
	ATOM	2899	N	MET	381	31. 926 -13	2. 524	66. 915	1. 00 23. 83
	ATOM	2900	CA	MET	381	31. 285 -12	2. 018	65. 713	1. 00 26. 66
	ATOM	2901	CB	MET	381	29. 760 -12	2. 086	65. 899	1. 00 29. 06
5	ATOM	2902	CG	MET	381	28. 926 -12	2. 031	64. 622	1. 00 34. 34
	ATOM	2903	SD	MET	381	29. 456 -13	3. 157	63. 312	1. 00 33. 69
	ATOM	2904	CE	MET	381	28. 228 -14	1. 472	63. 429	1. 00 34. 64
	ATOM	2905	C	MET	381	31. 781 -10). 580	65. 509	1. 00 27. 50
	ATOM	2906	0	MET	381	32. 153 -10). 188	64. 406	1. 00 26. 70
10	ATOM	2907	N	CYS	382	31. 830 -9	9. 813	66. 595	1. 00 26. 32
	ATOM	2908	CA	CYS	382	32. 302 -8	3. 441	66. 536	1. 00 24. 87
	ATOM	2909	CB	CYS	382	32. 102 -7	7. 769	67. 896	1. 00 26. 05
	ATOM	2910	SG	CYS	382	32. 389 -5	5. 962	67. 931	1. 00 26. 70
	ATOM	2911	C	CYS	382	33. 785 -8	3. 355	66. 122	1. 00 24. 60
15	ATOM	2912	0	CYS	382	34. 187 -7	'. 457	65. 360	1. 00 19. 92
	ATOM	2913	N	SER	383	34. 590 -9	288	66. 623	1. 00 22. 62
	ATOM	2914	CA	·SER	383	36. 017 -9	. 302	66. 327	1. 00 22. 35
	ATOM	2915	CB	SER	383	36. 716 -10	. 439	67. 096	1. 00 23. 03
	ATOM	2916	0G	SER	383	36. 361 -11	. 712	66. 571	1. 00 24. 25
20	ATOM	2917	C	SER	383	36. 272 -9	. 463	64. 834	1. 00 23. 77
	ATOM	2918	0	SER	383	37. 202 -8	. 875	64. 288	1. 00 24. 79
	ATOM	2919	N	ALA	384	35. 448 -10	. 269	64. 173	1. 00 24. 03
	ATOM	2920	CA	ALA	384	35. 612 -10	. 480	62. 743	1. 00 25. 52
	ATOM	2921	CB	ALA	384	34. 649 -11	. 552	62. 256	1. 00 22. 05
25	ATOM	2922	C	ALA	384	35. 369 -9	. 182	61. 980	1. 00 25. 61
	ATOM	2923	0	ALA	384	35. 990 -8	. 942	60. 947	1. 00 25. 37
	ATOM	2924	N	GLY	385	34. 450 -8	. 360	62. 490	1. 00 25. 67
	ATOM	2925	CA	GLY	385	34. 134 -7	. 098	61. 842	1. 00 23. 86
	ATOM	2926	C	GLY	385	35. 289 -6	. 128	61. 944	1. 00 20. 99

- 117 -

	ATOM	2927	0	GLY	385	35. 702	-5. 531	60. 960	1. 00 22. 47
	ATOM	2928	N	LEU	386	35. 811	-5. 962	63. 148	1. 00 22. 82
	ATOM	2929	CA	LEU	386	36. 937	-5. 065	63. 364	1. 00 25. 33
	ATOM	2930	CB	LEU	386	37. <u>2</u> 59	-4. 971	64. 850	1. 00 23. 48
5	ATOM	2931	CG	LEU	386	37. 800	-3. 658	65. 425	1. 00 27. 75
	ATOM	2932	CD	1 LEU	386	38. 641	-4. 007	66. 641	1. 00 26. 18
	ATOM	2933	CD	2 LEU	386	38. 621	-2. 865	64. 428	1. 00 25. 52
	ATOM	2934	C	LEU	386	38. 172	-5. 584	62. 616	1. 00 26. 01
	ATOM	2935	0	LEU	386	38. 953	-4. 794	62. 067	1. 00 26. 60
10	ATOM	2936	N	ALA	387	38. 356	-6. 904	62. 601	1. 00 23. 95
	ATOM	2937	CA	ALA	387	39. 509	-7. 482	61. 902	1. 00 24. 13
	ATOM	2938	CB	ALA	387	39. 585	-8. 989	62. 135	1. 00 20. 59
	ATOM	2939	C	ALA	387	39. 405	-7. 181	60. 411	1. 00 24. 07
	ATOM	2940	0	ALA	387	40. 419	-6. 990	59. 730	1. 00 22. 59
15	ATOM	2941	N	GLY	388	38. 175	-7. 141	59. 904	1. 00 24. 30
	ATOM	2942	CA	GLY	388	37. 975	-6. 838	58. 497	1. 00 24. 40
	ATOM	2943	C	GLY	388	38. 380	-5. 398	58. 203	1. 00 25. 62
	ATOM	2944	0	GLY	388	39. 048	-5. 114	57. 205	1. 00 25. 24
	ATOM	2945	N	VAL	389	37. 974	-4. 488	59. 084	1. 00 25. 15
20	ATOM	2946	CA	VAL	389	38. 294	-3. 072	58. 950	1. 00 23. 08
	ATOM	2947	CB	VAL	389	37. 581	-2. 259	60. 057	1. 00 21. 38
	ATOM	2948	CG1	VAL	389	38. 083	-0. 820	60. 076	1. 00 21. 90
	ATOM	2949	CG2	VAL	389	36. 078	-2. 303	59. 819	1. 00 20. 64
	ATOM	2950	C	VAL	389	39. 802	-2. 858	59. 034	1. 00 24. 13
25	ATOM	2951	0	VAL	389	40. 402	-2. 198	58. 178	1. 00 25. 99
	ATOM	2952	N	ILE	390	40. 424	-3. 429	60. 054	1. 00 24. 21
	ATOM	2953	CA	ILE	390	41. 866	-3. 289	60. 209	1. 00 25. 31
	ATOM	2954	CB	ILE	390	42. 317	-3. 883	61. 576	1. 00 25. 21
	ATOM	2955	CG2	ILE	390	43. 831	-3. 962	61.661	1. 00 27. 92

- 118 -

	ATOM	2956	CG	1 ILE	390	41. 778	-2. 993	62. 708	1. 00 26. 03
	ATOM	2957	CD	1 ILE	390	42. 091	-3. 476	64. 094	1. 00 27. 41
	ATOM	2958	C	ILE	390	42. 668	-3. 899	59. 040	1. 00 26. 27
	ATOM	2959	0	ILE	390	43. 622	-3. 287	58. 563	1. 00 25. 08
5	ATOM	2960	N	ASN	391	42. 286	-5. 082	58. 561	1. 00 27. 72
	ATOM	2961	CA	ASN	391	43. 026	-5. 689	57. 448	1. 00 29. 87
	ATOM	2962	CB	ASN	391	42. 649	-7. 162	57. 250	1. 00 27. 74
	ATOM	2963	CG	ASN	391	43. 147	-8. 044	58. 375	1. 00 29. 54
	ATOM	2964	OD 1	I ASN	391	44. 216	-7. 804	58. 939	1. 00 28. 68
10	ATOM	2965	ND2	2 ASN	391	42. 383	-9. 079	58. 699	1. 00 26. 84
	ATOM	2966	C	ASN	391	42. 805	-4. 930	56. 144	1. 00 31. 14
	ATOM	2967	0	ASN	391	43. 688	-4. 903	55. 281	1. 00 29. 49
	ATOM	2968	N	ARG	392	41. 627	-4. 331	55. 991	1. 00 31. 07
	ATOM	2969	CA	ARG	392	41. 358	-3. 553	54. 795	1. 00 33. 43
15	ATOM	2970	CB	ARG	392	39. 921	-3. 018	54. 780	1. 00 35. 04
	ATOM	2971	CG	ARG	392	39. 597	-2. 307	53. 483	1. 00 35. 84
	ATOM	2972	CD	ARG	392	38. 614	-1. 173	53. 650	1. 00 37. 18
	ATOM	2973	NE	ARG	392	38. 804	-0. 186	52. 589	1. 00 35. 89
	ATOM	2974	CZ	ARG	392	38. 518	-0. 390	51. 309	1. 00 36. 67
20	ATOM	2975	NH1	ARG	392	38. 006	-1. 550	50. 911	1. 00 38. 42
	ATOM	2976	NH2	ARG	392	38. 788	0. 553	50. 417	1. 00 37. 33
	ATOM	2977	C	ARG	392	42. 335	-2. 377	54. 831	1. 00 33. 73
	ATOM	2978	0	ARG	392	43. 028	-2. 107	53. 858	1. 00 34. 52
	ATOM	2979	N	MET	393	42. 396	-1. 691	55. 967	1. 00 34. 05
25	ATOM	2980	CA	MET	393	43. 298	-0. 554	56. 126	1. 00 35. 93
	ATOM	2981	CB	MET	393	43. 119	0. 073	57. 517	1. 00 32. 21
	ATOM	2982	CG	MET	393	41. 801	0. 834	57. 692	1. 00 28. 72
	ATOM	2983	SD	MET	393	41. 530	1. 348	59. 400	1. 00 27. 28
	ATOM	2984	CE	MET	393	42. 652	2. 753	59. 533	1. 00 24. 26

- 119 -

	ATOM	2985	c C	MET	393	44. 751	-0. 979	55. 947	1. 00 39. 48
	ATOM	2986	0	MET	393	45. 579	-0. 216	55. 448	1. 00 39. 63
	ATOM	2987	N	ARG	394	45. 049	-2. 205	56. 364	1. 00 43. 20
	ATOM	2988	CA	ARG	394	46. 391	-2. 766	56. 277	1. 00 45. 79
5	ATOM	2989	CB	ARG	394	46. 381	-4. 180	56. 870	1. 00 49. 86
	ATOM	2990	CG	ARG	394	47. 670	-4. 595	57. 551	1. 00 53. 76
	ATOM	2991	CD	ARG	394	48. 587	-5. 335	56. 612	1. 00 56. 09
	ATOM	2992	NE	ARG	394	49. 896	-5. 554	57. 217	1. 00 60. 36
	ATOM	2993	CZ	ARG	394	50. 797	-4. 596	57. 411	1. 00 60. 35
10	ATOM	2994	NH	ARG	394	50. 528	-3. 353		
	ATOM	2995	NH2	2 ARG	394	51. 964	-4. 878	57. 978	1. 00 60. 51
	ATOM	2996	C	ARG	394	46. 912	-2. 792	54. 835	1. 00 46. 90
	ATOM	2997	0	ARG	394	48. 117	-2. 697	54. 606	1. 00 44. 95
	ATOM	2998	N	GLU	395	46. 005	-2. 906	53. 869	1. 00 48. 68
15	ATOM	2999	CA	GLU	395	46. 387	-2. 943	52. 459	1. 00 52. 84
	ATOM	3000	CB	GLU	395	45. 165	-3. 275	51. 590	1. 00 54. 51
	ATOM	3001	CG	GLU	395	44. 388	-4. 508	52. 051	1. 00 60. 85
	ATOM	3002	CD	GLU	395	43. 310	-4. 952	51.061	1. 00 64. 84
	ATOM	3003	0E1	GLU	395	42. 485	-4. 105	50. 642	1. 00 65. 83
20	ATOM	3004	0E2	GLU	395	43. 286	-6. 155	50. 708	1. 00 66. 43
	ATOM	3005	C	GLU	395	47. 008	-1. 621	51. 991	1. 00 54. 64
	ATOM	3006	0	GLU	395	47. 791	-1. 594	51. 039	1. 00 53. 71
	ATOM	3007	N	SER	396	46.660	-0. 528	52. 666	1. 00 56. 54
	ATOM	3008	CA	SER	396	47. 179	0. 794	52. 313	1. 00 58. 22
25	ATOM	3009	CB	SER	396	46. 037	1. 808	52. 266	1. 00 57. 21
	ATOM	3010	0G	SER	396	44. 980	1. 340	51. 448	1. 00 59. 52
	ATOM	3011	C	SER	396	48. 221	1. 268	53. 318	1. 00 60. 22
	ATOM	3012	0	SER	396	48. 394	2. 468	53. 527	1. 00 60. 38
	ATOM	3013	N	ARG	397	48. 915	0. 324	53. 941	1. 00 62. 22

- 120 -

	ATOM	3014	CA	ARG	397	49. 924	0. 663	54. 933	1. 00 64. 67
	ATOM	3015	CB	ARG	397	49. 430	0. 260	56. 324	1. 00 65. 24
	ATOM	3016	CG	ARG	397	49. 798	1. 218	57. 444	1. 00 67. 16
	ATOM	3017	CD	ARG	397	49. 178	2. 596	57. 244	1. 00 68. 03
5	ATOM	3018	NE	ARG	397	48. 803	3. 208	58. 516	1. 00 69. 13
	ATOM	3019	CZ	ARG	397	47. 681	2. 933	59. 178	1. 00 70. 58
	ATOM	3020	NH	1 ARG	397	46. 813	2. 059	58. 687	1. 00 71. 37
	ATOM	3021	NH	2 ARG	397	47. 429	3. 521	60. 340	1. 00 70. 29
	ATOM	3022	C	ARG	397	51. 222	-0. 063	54. 611	1. 00 65. 54
10	ATOM	3023	0	ARG	397	51. 416	-1. 215	54. 998	1. 00 66. 75
	ATOM	3024	N	SER	398	52. 106	0. 621	53. 894	1. 00 66. 86
	ATOM	3025	CA	SER	398	53. 388	0. 052	53. 508	1. 00 67. 48
	ATOM	3026	CB	SER	398	53. 980	0. 832	52. 331	1. 00 67. 48
	ATOM	3027	0G	SER	398	53. 155	0. 725	51. 181	1. 00 66. 93
15	ATOM	3028	C	SER	398	54. 358	0. 063	54. 679	1. 00 68. 36
	ATOM	3029	0	SER	398	55. 036	1. 063	54. 934	1. 00 69. 35
	ATOM	3030	N	GLU	399	54. 413	-1. 059	55. 388	1. 00 67. 90
	ATOM	3031	CA	GLU	399	55. 297	-1. 206	56. 533	1. 00 68. 16
	ATOM	3032	CB	GLU	399	55. 002	-0. 126	57. 564	1. 00 68. 95
20	ATOM	3033	CG	GLU	399	53. 540	0. 020	57. 889	1. 00 71. 05
	ATOM	3034	CD	GLU	399	53. 261	1. 318	58. 598	1. 00 71. 37
	ATOM	3035	0E1	GLU	399	53. 871	1. 545	59. 662	1. 00 72. 25
	ATOM	3036	0E2	GLU	399	52. 443	2. 111	58. 089	1. 00 71. 32
	ATOM	3037	C	GLU	399	55. 167	-2. 581	57. 168	1. 00 67. 57
25	ATOM	3038	0	GLU	399	54. 078	-3. 155	57. 232	1. 00 67. 34
	ATOM	3039	N	ASP	400	56. 301	-3. 091	57. 635	1. 00 66. 86
	ATOM	3040	CA	ASP	400	56. 397	-4. 400	58. 265	1. 00 65. 75
	ATOM	3041	CB	ASP	400	57. 739	-4. 507	58. 989	1. 00 68. 55
	ATOM	3042	CG	ASP	400	58. 892	-3. 961	58. 157	1. 00 71. 49

- 121 -

							. .		
	ATOM	3043	OD:	l ASP	400	59. 015	-4. 356	56. 976	1. 00 72. 29
	ATOM	3044	OD	2 ASP	400	59. 675	-3. 136	58. 682	1. 00 72. 38
	ATOM	3045	C	ASP	400	55. 247	-4. 676	59. 233	1. 00 63. 41
	ATOM	3046	0	ASP	400	54. 385	-5. 514	58. 962	1. 00 63. 27
5	ATOM	3047	N	VAL	401	55. 241	-3. 973	60. 361	1. 00 59. 50
	ATOM	3048	CA	VAL	401	54. 193	-4. 138	61. 360	1. 00 55. 59
	ATOM	3049	CB	VAL	401	54. 789	-4. 439	62. 757	1. 00 55. 81
	ATOM	3050	CG1	VAL	401	53. 698	-4. 375	63. 818	1. 00 54. 69
	ATOM	3051	CG2	VAL	401	55. 442	-5. 817	62. 757	1. 00 54. 18
10	ATOM	3052	C	VAL	401	53. 345	-2. 876	61. 454	1. 00 53. 78
	ATOM	3053	0	VAL	401	53. 841	-1. 807	61. 820	1. 00 53. 39
	ATOM	3054	N	MET	402	52. 065	-2. 991	61. 114	1. 00 50. 91
	ATOM	3055	CA	MET	402	51. 190	-1. 834	61. 194	1. 00 47. 59
	ATOM	3056	CB	MET	402	49. 992	-1. 958	60. 250	1. 00 46. 98
15	ATOM	3057	CG	MET	402	49. 043	-0. 768	60. 387	1. 00 47. 22
	ATOM	3058	SD	MET	402	47. 505	-0. 874	59. 461	1. 00 48. 69
	ATOM	3059	CE	MET	402	46. 622	-2. 099	60. 439	1. 00 48. 15
	ATOM	3060	C	MET	402	50. 670	-1. 643	62. 605	1. 00 44. 98
	ATOM	3061	0	MET	402	49. 945	-2. 483	63. 134	1. 00 43. 92
20	ATOM	3062	N	ARG	403	51. 054	-0. 533	63. 219	1. 00 43. 27
	ATOM	3063	CA	ARG	403	50. 587	-0. 229	64. 556	1. 00 41. 71
	ATOM	3064	CB	ARG	403	51.673	0. 484	65. 350	1. 00 45. 65
	ATOM	3065	CG	ARG	403	52. 903	-0. 356	65. 596	1. 00 52. 20
	ATOM	3066	CD	ARG	403	53. 973	0. 474	66. 262	1. 00 57. 99
25	ATOM	3067	NE	ARG	403	55. 137	-0. 324	66. 630	1. 00 65. 47
	ATOM	3068	CZ	ARG	403	56. 251	0. 184	67. 149	1. 00 68. 76
	ATOM	3069	NH1	ARG	403	56. 349	1. 493	67. 357	1. 00 69. 34
	ATOM	3070	NH2	ARG	403	57. 265	-0. 615	67. 468	1. 00 69. 59
	ATOM	3071	C	ARG	403	49. 388	0. 685	64. 372	1. 00 37. 99

- 122 -

						1.	4 <i>6</i>		
	ATOM	3072	0	ARG	403	49. 471	1. 692	63. 679	1. 00 37. 13
	ATOM	3073	N	ILE	404	48. 267	0. 322	64. 975	1. 00 34. 39
	ATOM	3074	CA	ILE	404	47. 069	1. 129	64. 854	1. 00 31. 53
	ATOM	3075	CB	ILE	404	46. 161	0. 577	63. 735	1. 00 33. 38
5	ATOM	3076	CG2	2 ILE	404	45. 681	-0. 829	64. 096	1. 00 32. 57
	ATOM	3077	CG	ILE	404	44. 987	1. 524	63. 500	1. 00 35. 77
	ATOM	3078	CD1	ILE	404	44. 144	1. 153	62. 300	1. 00 38. 45
	ATOM	3079	C	ILE	404	46. 322	1. 152	66. 179	1. 00 28. 96
	ATOM	3080	0	ILE	404	46. 393	0. 204	66. 956	1. 00 29. 35
10	ATOM	3081	N	THR	405	45. 632	2. 250	66. 453	1. 00 28. 84
	ATOM	3082	CA	THR	405	44. 874	2. 359	67. 693	1. 00 27. 84
	ATOM	3083	CB	THR	405	45. 323	3. 558	68. 535	1. 00 26. 65
	ATOM	3084	0G1	THR	405	46. 663	3. 335	68. 990	1. 00 30. 48
	ATOM	3085	CG2	THR	405	44. 428	3. 715	69. 749	1. 00 27. 32
15	ATOM	3086	C	THR	405	43. 387	2. 460	67. 408	1. 00 27. 13
	ATOM	3087	0	THR	405	42. 964	3. 127	66. 462	1. 00 24. 36
	ATOM	3088	N	VAL	406	42. 604	1. 786	68. 245	1. 00 25. 61
	ATOM	3089	CA	VAL	406	41. 160	1. 737	68. 107	1. 00 23. 67
	ATOM	3090	CB	VAL	406	40. 705	0. 244	67. 973	1. 00 23. 64
20	ATOM	3091	CG1	VAL	406	39. 189	0. 138	67. 798	1. 00 24. 19
	ATOM	3092	CG2	VAL	406	41. 405	-0. 399	66. 783	1. 00 21. 36
	ATOM	3093	C	VAL	406	40. 493	2. 392	69. 320	1. 00 26. 21
	ATOM	3094	0	VAL	406	40. 763	2. 018	70. 469	1. 00 26. 86
	ATOM	3095	N	GLY	407	39. 644	3. 389	69. 072	1. 00 25. 61
25	ATOM	3096	CA	GLY	407	38. 943	4. 044	70. 168	1. 00 23. 09
	ATOM	3097	C .	GLY	407	37. 645	3. 285	70. 387	1. 00 21. 77
	ATOM	3098	0	GLY	407	36. 919	3. 011	69. 426	1. 00 23. 17
	ATOM	3099	N	VAL	408	37. 334	2. 943	71. 632	1. 00 20. 52
	ATOM	3100	CA	VAL	408	36. 128	2. 167	71. 907	1. 00 21. 51

- 123 -

	ATOM	3101	CB	VAL	408	36. 500	0. 684	72. 252	1. 00 23. 04
	ATOM	3102	CG	1 VAL	408	35. 237	-0. 176	72. 351	1. 00 19. 52
	ATOM	3103	CG	2 VAL	408	37. 436	0. 121	71. 201	1. 00 20. 49
	ATOM	3104	C	VAL	408	35. 282	2. 704	73. 060	1. 00 23. 66
5	ATOM	3105	0	VAL	408	35. 814	3. 223	74. 045	1. 00 23. 60
	ATOM	3106	N	ASP	409	33. 963	2. 580	72. 923	1. 00 24. 58
	ATOM	3107	CA	ASP	409	33. 040	2. 992	73. 975	1. 00 26. 70
	ATOM	3108	CB	ASP	409	32. 612	4. 455	73. 803	1. 00 30. 78
	ATOM	3109	CG	ASP	409	31. 909	4. 998	75. 041	1. 00 31. 51
10	ATOM	3110	OD.	1 ASP	409	32. 322	4. 625	76. 156	1. 00 31. 70
	ATOM	3111	OD	2 ASP	409	30. 955	5. 794	74. 910	1. 00 35. 70
	ATOM	3112	C	ASP	409	31. 824	2. 083	73. 898	1. 00 25. 68
	ATOM	3113	0	ASP	409	31. 639	1. 396	72. 901	1. 00 27. 99
	ATOM	3114	N	GLY	410	30. 999	2. 079	74. 943	1. 00 28. 67
15	ATOM	3115	CA	GLY	410	29. 807	1. 233	74. 964	1. 00 29. 54
	ATOM	3116	C	GLY	410	29. 755	0. 355	76. 212	1. 00 30. 09
	ATOM	3117	Ò	GLY	410	30. 787	-0. 138	76. 657	1. 00 28. 57
	ATOM	3118	N	SER	411	28. 560	0. 150	76. 767	1. 00 30. 89
	ATOM	3119	CA	SER	411	28. 392	-0. 649	77. 983	1. 00 32. 71
20	ATOM	3120	CB	SER	411	26. 941	-0. 554	78. 490	1. 00 32. 88
	ATOM	3121	0G	SER	411	26. 011	-0. 884	77. 473	1. 00 36. 82
	ATOM	3122	C	SER	411	28. 804	-2. 121	77. 840	1. 00 31. 25
	ATOM	3123	0	SER	411	29. 480	-2.661	78. 712	1. 00 29. 96
	ATOM	3124	N	VAL	412	28. 398	-2. 768	76. 754	1. 00 29. 78
25	ATOM	3125	CA	VAL	412	28. 780	-4. 158	76. 535	1. 00 28. 59
	ATOM	3126	CB	VAL	412	28. 264	-4. 665	75. 174	1. 00 29. 68
	ATOM	3127	CG1	VAL	412	28. 772	-6. 088	74. 908	1. 00 27. 25
	ATOM	3128	CG2	VAL	412	26. 739	-4. 642	75. 173	1. 00 29. 93
	ATOM	3129	C	VAL	412	30. 307	-4. 320	76. 584	1. 00 29. 24

- 124 -

	ATOM	3130	0	VAL	412	30. 831	-5. 145	77. 340	1. 00 28. 78
	ATOM	3131	N	TYR	413	31. 023	3. 522	75. 796	1. 00 27. 57
	ATOM	3132	C.	YYR	413	32. 482	-3. 602	75. 763	1. 00 24. 60
	ATOM	3133	CI	3 TYR	413	33. 049	-2. 730	74. 645	1. 00 19. 87
5	ATOM	3134	CO	TYR	413	34. 568	-2. 710	74. 587	1. 00 20. 22
	ATOM	3135	CI	1 TYR	413	35. 270	-3. 566	73. 735	1. 00 21. 52
	ATOM	3136	CE	1 TYR	413	36. 667	-3. 519	73. 655	1. 00 19. 93
	ATOM	3137	CD	2 TYR	413	35. 300	-1. 819	75. 363	1. 00 14. 63
	ATOM	3138	CE	2 TYR	413	36. 690	-1. 770	75. 294	1. 00 17. 31
10	ATOM	3139	CZ	TYR	413	37. 364	-2. 616	74. 439	1. 00 19. 92
	ATOM	3140	ОН	TYR	413	38. 737	-2. 547	74. 362	1. 00 23. 08
	ATOM	3141	C	TYR	413	33. 151	-3. 193	77. 072	1. 00 26. 48
	ATOM	3142	0	TYR	413	34. 085	-3. 849	77. 534	1. 00 26. 86
	ATOM	3143	N	LYS	414	32. 690	-2. 108	77. 669	1. 00 26. 13
15	ATOM	3144	CA	LYS	414	33. 309	-1. 640	78. 902	1. 00 29. 80
	ATOM	3145	CB	LYS	414	33. 001	-0. 147	79. 117	1. 00 29. 42
	ATOM	3146	CG	LYS	414	33. 882	0.802	78. 302	1. 00 32. 94
	ATOM	3147	CD	LYS	414	33. 558	2. 275	78. 559	1. 00 34. 12
	ATOM	3148	CE	LYS	414	34. 553	3. 179	77. 833	1. 00 36. 09
20	ATOM	3149	NZ	LYS	414	34. 170	4. 626	77. 859	1. 00 35. 28
	ATOM	3150	C	LYS	414	32. 966	-2. 400	80. 181	1. 00 29. 74
	ATOM	3151	0	LYS	414	33. 850	-2. 677	80. 988	1. 00 28. 77
	ATOM	3152	N	LEU	415	31.696	-2. 749	80. 357	1. 00 30. 99
	ATOM	3153	CA	LEU	415	31. 255	-3. 395	81. 591	1. 00 34. 39
25	ATOM	3154	CB	LEU	415	29. 942	-2. 738	82. 041	1. 00 34. 94
	ATOM	3155	CG	LEU	415	29. 964	-1. 195	82. 012	1. 00 38. 17
	ATOM	3156	CD1	LEU	415	28. 610	-0. 647	82. 469	1. 00 38. 59
	ATOM	3157	CD2	LEU	415	31. 080	-0. 660	82. 901	1. 00 34. 42
	ATOM	3158	C	LEU	415	31. 113	-4. 923	81. 657	1. 00 34. 46

- 125 -

	ATOM	3159	0	LEU	415	31. 202	-5. 493	82. 741	1. 00 33. 89
	ATOM	3160	N	HIS	416	30. 886	-5. 586	80. 531	1. 00 34. 56
	ATOM	3161	CA	HIS	416		-7. 041		1. 00 36. 94
	ATOM	3162	CB	HIS	416	30. 394	-7. 572		
5	ATOM	3163	CG	HIS	416	29. 811	-8. 949	79. 192	1. 00 44. 04
	ATOM	3164	CD	2 HIS	416	28. 536	-9. 375	79. 038	
	ATOM	3165	ND	1 HIS	416	30. 573	-10. 080	79. 402	
	ATOM	3166	CE	1 HIS	416		-11. 144		
	ATOM	3167	NE:	2 HIS	416		-10. 744		
10	ATOM	3168	C	HIS	416		-7. 673		
	ATOM	3169	0	HIS	416	33. 103	-7. 483	80. 471	
	ATOM	3170	N	PRO	417	31. 973	-8. 445	82. 153	1. 00 33. 55
	ATOM	3171	CD	PRO	417	30. 727	-8. 999	82. 700	1. 00 32. 04
	ATOM	3172	CA	PRO	417	33. 134	-9. 109	82. 757	1. 00 33. 47
15	ATOM	3173	CB	PR0	417	32. 504	-10. 219	83. 614	1. 00 31. 67
	ATOM	3174	CG	PR0	417	31. 142	-10. 410	83. 016	1. 00 32. 88
	ATOM	3175	C	PRO	417	34. 252	-9. 628	81. 849	1. 00 32. 70
	ATOM	3176	0	PRO	417	35. 428	-9. 411	82. 146	1. 00 36. 28
	ATOM	3177	N	SER	418	33. 929	-10. 302	80. 752	1. 00 29. 70
20	ATOM	3178	CA	SER	418	35. 015 -	-10. 808	79. 915	1. 00 28. 37
	ATOM	3179	CB	SER	418	35. 215 -	-12. 314	80. 163	1. 00 30. 65
	ATOM	3180	0G	SER	418	35. 798 -	-12. 555	81. 439	1. 00 35. 61
	ATOM	3181	C	SER	418	34. 895 -	-10. 560	78. 418	1. 00 25. 27
	ATOM	3182	0	SER	418	35. 730 -	-11. 028	77. 648	1. 00 23. 69
25	ATOM	3183	N	PHE	419	33. 856	-9. 846	78. 004	1. 00 21. 86
	ATOM	3184	CA	PHE	419	33. 673	-9. 543	76. 587	1. 00 24. 13
	ATOM	3185	CB	PHE	419	32. 551	-8. 522	76. 407	1. 00 22. 03
	ATOM	3186	CG	PHE	419	32. 270	-8. 187	74. 978	1. 00 24. 42
	ATOM	3187	CD1	PHE	419	31. 273	-8. 860	74. 276	1. 00 23. 32

- 126 -

	ATOM	3188	CD	2 PHE	419	33. 033	-7. 231	74. 312	1. 00 22. 16
	ATOM	3189	CE	1 PHE	419	31. 038	-8. 593	72. 932	1. 00 23. 49
	ATOM	3190	CE2	2 PHE	419	32. 808	-6. 961	72. 967	1. 00 25. 91
	ATOM	3191	CZ	PHE	419	31. 806	-7. 645	72. 275	1. 00 24. 70
5	ATOM	3192	C	PHE	419	34. 961	-8. 965	76. 000	1. 00 24. 09
	ATOM	3193	0	PHE	419	35. 491	-9. 455	75. 009	1. 00 26. 51
	ATOM	3194	N	LYS	420	35. 432	-7. 899	76. 628	1. 00 25. 00
	ATOM	3195	CA	LYS	420	36. 641	-7. 179	76. 238	1. 00 26. 79
	ATOM	3196	CB	LYS	420	36. 984	-6. 207	77. 370	1. 00 28. 35
10	ATOM	3197	CG	LYS	420	38. 241	-5. 396	77. 229	1. 00 30. 04
	ATOM	3198	CD	LYS	420	38. 433	-4. 537	78. 497	1. 00 33. 98
·	ATOM	3199	CE	LYS	420	37. 170	-3. 740	78. 832	1. 00 31. 09
	ATOM	3200	NZ	LYS	420	37. 322	-2. 923	80. 067	1. 00 36. 69
	ATOM	3201	C	LYS	420	37. 819	-8. 118	75. 968	1. 00 25. 76
15	ATOM	3202	0	LYS	420	38. 446	-8. 064	74. 911	1. 00 25. 94
	ATOM	3203	N	GLU	421	38. 111	-8. 961	76. 951	1. 00 24. 13
	ATOM	3204	CA	GLU	421	39. 195	-9. 929	76. 887	1. 00 26. 26
	ATOM	3205	CB	GLU	421	39. 204 -	-10. 781	78. 155	1. 00 32. 38
	ATOM	3206	CG	GLU	421	39. 547 -	-10. 043	79. 417	1. 00 38. 45
20	ATOM	3207	CD	GLU	421	38. 700	-8. 798	79. 664	1. 00 41. 54
	ATOM	3208	0E1	GLU	421	37. 458	-8. 844	79. 501	1. 00 42. 17
	ATOM	3209	0E2	GLU	421	39. 300	-7. 767	80. 053	1. 00 42. 62
	ATOM	3210	C	GLU	421	39. 075 -	-10. 864	75. 699	1. 00 24. 57
	ATOM	3211	0	GLU	421	40. 017 -	-11. 023	74. 930	1. 00 25. 86
25	ATOM	3212	N	ARG	422	37. 921 -	11. 509	75. 576	1. 00 24. 00
	ATOM	3213	CA	ARG	422	37. 682 -	12. 439	74. 480	1. 00 26. 01
	ATOM	3214	CB	ARG	422	36. 284 -	13. 063	74. 610	1. 00 27. 36
	ATOM	3215	CG	ARG	422	36. 076 -	13. 878	75. 887	1. 00 31. 58
	ATOM	3216	CD	ARG	422	34. 600 -	14. 053	76. 188	1. 00 35. 39

- 127 -

	ATOM	3217	NE	ARG	422	34. 390	-14. 834	77. 397	1. 00 40. 58
	ATOM	3218	CZ	ARG	422	33. 232	-14. 911	78. 046	1. 00 44. 53
	MOTA	3219	NH1	ARG	422	32. 171	-14, 243	77. 596	1. 00 41. 79
	ATOM	3220	NH2	ARG	422	33. 141	-15. 651	79. 150	1. 00 41. 67
5	ATOM	3221	C	ARG	422	37. 794	-11. 691	73. 160	1. 00 24. 48
	ATOM	3222	0	ARG	422	38. 439	-12. 148	72. 221	1. 00 22. 97
	ATOM	3223	N	PHE	423	37. 153	-10. 531	73. 094	1. 00 24. 48
	ATOM	3224	CA	PHE	423	37. 189	-9. 737	71. 879	1. 00 22. 97
	ATOM	3225	CB	PHE	423	36. 403	-8. 442	72. 089	1. 00 24. 98
10	ATOM	3226	CG	PHE	423	36. 494	-7. 484	70. 939	1. 00 25. 21
	ATOM	3227	CD1	PHE	423	37. 468	-6. 490	70. 926	1. 00 25. 04
	ATOM	3228	CD2	PHE	423	35. 618	-7. 584	69. 861	1. 00 23. 47
	ATOM	3229	CE1	PHE	423	37. 5 6 8	-5. 607	69. 857	1. 00 24. 77
	ATOM	3230	CE2	PHE	423	35. 710	<i>-</i> 6. 708	68. 784	1. 00 25. 48
15	ATOM	3231	CZ	PHE	423	36. 684	-5. 715	68. 780	1. 00 24. 31
	ATOM	3232	C	PHE	423	38. 629	-9. 442	71. 456	1. 00 21. 03
	ATOM	3233	0	PHE	423	38. 989	-9. 680	70. 308	1. 00 19. 38
	ATOM	3234	N	HIS	424	39. 454	-8. 952	72. 381	1. 00 20. 46
	ATOM	3235	CA	HIS	424	40. 846	-8. 631	72. 054	1. 00 23. 40
20	ATOM	3236	CB	HIS	424	41. 602	-8. 128	73. 293	1. 00 24. 89
	ATOM	3237	CG	HIS	424	41. 133	-6.803	73. 808	1. 00 25. 28
	ATOM	3238	CD2	HIS	424	40. 391	-5. 828	73. 230	1. 00 24. 67
	ATOM	3239	ND1	HIS	424	41. 419	-6. 361	75. 083	1. 00 25. 18
	ATOM	3240	CE1	HIS	424	40. 869	-5. 174	75. 269	1. 00 22. 64
25	ATOM	3241	NE2	HIS	424	40. 239	-4. 829	74. 161	1. 00 24. 12
	ATOM	3242	C	HIS	424	41. 604	-9. 834	71. 486	1. 00 24. 51
	ATOM	3243	0	HIS	424	42. 239	-9. 741	70. 432	1. 00 23. 58
	ATOM	3244	N	ALA	425	41. 540	-10. 962	72. 191	1. 00 24. 51
	ATOM	3245	CA	ALA	425	42. 242	-12. 164	71. 746	1. 00 26. 94

- 128 -

						120		
	ATOM	3246	CB	ALA	425	42. 068 -13. 306	72. 774	1. 00 27. 10
	ATOM	3247	C	ALA	425	41. 759 -12. 605	70. 370	1. 00 25. 71
	ATOM	3248	0	ALA	425	42. 559 -12. 937	69. 505	1. 00 27. 02
	ATOM	3249	N	SER	426	40. 453 -12. 600	70. 151	1. 00 24. 30
5	ATOM	3250	CA	SER	426	39. 967 -13. 003	68. 850	1. 00 23. 93
	ATOM	3251	CB	SER	426	38. 450 -13. 142	68. 863	1. 00 20. 85
	ATOM	3252	0G	SER	426	38. 007 -13. 582	67. 596	1. 00 21. 86
	ATOM	3253	C	SER	426	40. 394 -12. 039	67. 743	1. 00 25. 72
	MOTA	3254	0	SER	426	40. 760 -12. 483	66. 660	1. 00 25. 40
10	ATOM	3255	N	VAL	427	40. 363 -10. 727	68. 007	1. 00 27. 03
	ATOM	3256	CA	VAL	427	40. 761 -9. 750	66. 983	1. 00 27. 43
	ATOM	3257	CB	VAL	427	40. 591 -8. 269	67. 450	1. 00 28. 91
	ATOM	3258	CG1	VAL	427	40. 999 -7. 323	66. 314	1. 00 29. 57
	ATOM	3259	CG2	VAL	427	39. 150 -7. 990	67. 852	1. 00 27. 73
15	ATOM	3260	C	VAL	427	42. 226 -9. 919	66. 601	1. 00 28. 67
	ATOM	3261	0	VAL	427	42. 582 -9. 858	65. 424	1. 00 27. 30
	ATOM	3262	N	ARG	428	43. 076 -10. 119	67. 603	1. 00 28. 43
	ATOM	3263	CA	ARG	428	44. 498 -10. 281	67. 350	1. 00 31. 91
	ATOM	3264	CB	ARG	428	45. 273 -10. 231	68. 670	1. 00 31. 80
20	ATOM	3265	CG	ARG	428	45. 449 -8. 793	69. 130	1. 00 31. 90
	ATOM	3266	CD	ARG	428	45. 662 -8. 639	70. 617	1. 00 34. 40
	ATOM	3267	NE	ARG	428	45. 867 -7. 231	70. 971	1. 00 34. 78
	ATOM	3268	CZ	ARG	428	45. 668 -6. 728	72. 186	1. 00 38. 69
	ATOM	3269	NH1	ARG	428	45. 251 -7. 516	73. 172	1. 00 38. 56
25	ATOM	3270	NH2	ARG	428	45. 901 -5. 442	72. 424	1. 00 39. 08
	ATOM	3271	C	ARG	428	44. 797 -11. 548	66. 572	1. 00 33. 56
	ATOM	3272	0	ARG	428	45. 694 -11. 558	65. 731	1. 00 32. 81
	ATOM	3273	N	ARG	429	44. 037 -12. 609	66. 837	1. 00 34. 25
	ATOM	3274	CA	ARG	429	44. 224 -13. 859	66. 115	1. 00 33. 42

- 129 -

						143		
	ATOM	3275	CB	ARG	429	43. 252 -14. 941	66. 601	1. 00 36. 36
	ATOM	3276	CG	ARG	429	43. 756 -15. 769	67. 760	1. 00 43. 73
	ATOM	3277	CD	ARG	429	42. 930 -17. 038	67. 939	1. 00 47. 67
	ATOM	3278	NE	ARG	429	41. 561 -16. 789	68. 398	1. 00 51. 58
5	ATOM	3279	CZ	ARG	429	41. 222 -16. 467	69. 646	1. 00 51. 70
	ATOM	3280	NH1	ARG	429	42. 154 -16. 345	70. 585	1. 00 50. 85
	ATOM	3281	NH2	ARG	429	39. 945 -16. 288	69. 962	1. 00 49. 95
	ATOM	3282	C	ARG	429	43. 960 -13. 618	64. 639	1. 00 32. 81
	ATOM	3283	0	ARG	429	44. 610 -14. 215	63. 783	1. 00 32. 29
10	ATOM	3284	N	LEU	430	43. 001 -12. 741	64. 345	1. 00 30. 18
	ATOM	3285	CA	LEU	430	42. 623 -12. 455	62. 965	1. 00 29. 19
	ATOM	3286	CB	LEU	430	41. 132 -12. 109	62. 904	1. 00 29. 15
	ATOM	3287	CG	LEU	430	40. 173 -13. 164	63. 453	1. 00 31. 83
	ATOM	3288	CD1	LEU	430	38. 746 -12. 629	63. 437	1. 00 28. 32
15	ATOM	3289	CD2	LEU	430	40. 281 -14. 441	62. 613	1. 00 32. 03
	ATOM	3290	C	LEU	430	43. 407 -11. 355	62. 251	1. 00 27. 64
	ATOM	3291	0	LEU	430	43. 244 -11. 151	61. 048	1. 00 28. 08
	ATOM	3292	N	THR	431	44. 261 -10. 645	62. 966	1. 00 28. 04
	ATOM	3293	CA	THR	431	44. 988 -9. 567	62. 326	1. 00 31. 15
20	ATOM	3294	CB	THR	431	44. 569 -8. 201	62. 934	1. 00 30. 03
	ATOM	3295	0G1	THR	431	44. 666 -8. 254	64. 363	1. 00 31. 84
	ATOM	3296	CG2	THR	431	43. 137 -7. 879	62. 561	1. 00 26. 93
	ATOM	3297	C	THR	431	46. 507 -9. 719	62. 367	1. 00 34. 65
	ATOM	3298	0	THR	431	47. 190 -9. 015	63. 101	1. 00 34. 08
25	ATOM	3299	N	PRO	432	47. 049 -10. 655	61. 566	1. 00 37. 36
	ATOM	3300	CD	PR0	432	46. 296 -11. 603	60. 726	1. 00 37. 91
	ATOM	3301	CA	PR0	432	48. 489 -10. 923	61. 484	1. 00 38. 59
	ATOM	3302	CB	PRO	432	48. 572 -12. 080	60. 487	1. 00 38. 98
	ATOM	3303	CG	PR0	432	47. 245 -12. 758	60. 630	1. 00 40. 10

- 130 -

						4 (0.0		
	ATOM	3304	С	PR0	432	49. 224	-9. 689	60. 969	1. 00 39. 65
	ATOM	3305	0	PRO	432	48. 712	-8. 968	60. 113	1. 00 39. 80
	ATOM	3306	N	SER	433	50. 420	-9. 461	61. 495	1. 00 39. 94
	ATOM	3307	CA	SER	433	51. 254	-8. 326	61. 112	1. 00 42. 47
5	ATOM	3308	CB	SER	433	51. 467	-8. 280	59. 586	1. 00 44. 12
	ATOM	3309	0G	SER	433	50. 363	-7. 707	58. 898	1. 00 48. 10
	ATOM	3310	C	SER	433	50. 687	-6. 996	61. 598	1. 00 42. 26
	ATOM	3311	0	SER	433	51. 085	-5. 932	61. 121	1. 00 42. 50
	ATOM	3312	N	CYS	434	49. 756	-7. 053	62. 544	1. 00 40. 68
10	ATOM	3313	CA	CYS	434	49. 184	-5. 831	63. 092	1. 00 40. 64
	ATOM	3314	CB	CYS	434	47. 679	-5. 735	62. 826	1. 00 39. 36
	ATOM	3315	SG	CYS	434	47. 196	-5. 674	61. 111	1. 00 39. 36
	ATOM	3316	C	CYS	434	49. 398	-5. 789	64. 590	1. 00 40. 17
	ATOM	3317	0	CYS	434	49. 258	-6. 801	65. 281	1. 00 40. 51
15	ATOM	3318	N	GLU	435	49. 743	-4. 609	65. 081	1. 00 38. 91
	ATOM	3319	CA	GLU	435	49. 945	-4. 388	66. 504	1. 00 39. 30
	ATOM	3320	CB	GLU	435	51. 302	-3. 733	66. 738	1. 00 42. 29
	ATOM	3321	CG	GLU	435	51. 779	-3. 766	68. 162	1. 00 49. 24
	ATOM	3322	CD	GLU	435	53. 072	-2. 993	68. 340	1. 00 53. 77
20	ATOM	3323	0E1	GLU	435	54. 106	-3. 421	67. 781	1. 00 56. 24
	ATOM	3324	0E2	GLU	435	53. 047	-1. 950	69. 032	1. 00 54. 88
	ATOM	3325	C	GLU	435	48. 801	-3. 430	66. 839	1. 00 37. 06
	ATOM	3326	0	GLU	435	48. 866	-2. 241	66. 532	1. 00 34. 30
	ATOM	3327	N	ILE	436	47. 749	-3. 971	67. 449	1. 00 36. 39
25	ATOM	3328	CA	ILE	436	46. 552	-3. 203	67. 786	1. 00 34. 47
	ATOM	3329	CB	ILE	436	45. 280	-4. 040	67. 508	1. 00 34. 15
	ATOM	3330	CG2	ILE	436	44. 024	-3. 166	67. 639	1. 00 33. 64
	ATOM	3331	CG1	ILE	436	45. 357	-4. 633	66. 100	1. 00 36.06
	ATOM	3332	CD1	ILE	436	44. 166	-5. 487	65. 719	1. 00 36. 35

- 131 -

	ATOM	3333	C	ILE	436	46. 492	-2. 717	69. 228	1. 00	34. 50
	ATOM	3334	0	ILE	436	46. 612	-3. 506	70. 164	1. 00	35. 88
	ATOM	3335	N	THR	437	46. 308	-1. 411	69. 405	1. 00	32. 66
	ATOM	3336	CA	THR	437	46. 196	-0. 837	70. 741	1. 00	30. 32
5	ATOM	3337	CB	THR	437	47. 134	0. 370	70. 930	1. 00	29. 83
	ATOM	3338	0G1	THR	437	48. 496	-0.060	70. 833	1. 00	33. 74
	ATOM	3339	CG2	THR	437	46. 925	0. 996	72. 294	1. 00	28. 96
	ATOM	3340	C	THR	437	44. 759	-0. 377	70. 949	1. 00	29. 92
	ATOM	3341	0	THR	437	44. 177	0. 293	70. 090	1. 00	28. 24
10	ATOM	3342	N	PHE	438	44. 179	-0. 750	72. 083	1. 00	29. 43
	ATOM	3343	CA	PHE	438	42. 807	-0. 359	72. 390	1. 00	29. 35
	ATOM	3344	CB	PHE	438	41. 991	-1. 567	72. 853	1. 00	27. 92
	ATOM	3345	CG	PHE	438	41. 794	-2. 614	71. 789	1. 00	27. 95
	ATOM	3346	CD1	PHE	438	42. 695	-3.661	71. 648	1. 00	27. 90
15	ATOM	3347	CD2	PHE	438	40. 703	-2. 549	70. 930	1. 00	24. 76
	ATOM	3348	CE1	PHE	438	42. 505	-4. 634	70. 662	1. 00	29. 21
	ATOM	3349	CE2	PHE	438	40. 506	-3. 505	69. 950	1. 00	28. 87
	ATOM	3350	CZ	PHE	438	41. 408	-4. 554	69. 814	1. 00	28. 70
	ATOM	3351	C	PHE	438	42. 772	0.712	73. 467	1. 00	30. 41
20	ATOM	3352	0	PHE	438	43. 469	0.601	74. 474	1. 00	30. 53
	ATOM	3353	N	ILE	439	41. 968	1. 752	73. 250	1. 00	30. 35
	ATOM	3354	CA	ILE	439	41. 839	2. 832	74. 220	1. 00	31. 89
	ATOM	3355	CB	ILE	439	42. 544	4. 124	73. 751	1. 00	33. 03
	ATOM	3356	CG2	ILE	439	42. 233	5. 269	74. 721	1. 00	36. 00
25	ATOM	3357	CG1	ILE	439	44. 053	3. 916	73. 704	1. 00	33. 82
	ATOM	3358	CD1	ILE	439	44. 818	5. 165	73. 296	1. 00	36. 93
	ATOM	3359	C	ILE	439	40. 373	3. 158	74. 420	1. 00	32. 85
	ATOM	3360	0	ILE	439	39. 603	3. 157	73. 467	1. 00	33. 09
	ATOM	3361	N	GLU	440	39. 991	3. 442	75. 659	1. 00	35. 09

- 132 -

							-		
	ATOM	3362	CA	GLU	440	38. 608	3. 789	75. 956	1. 00 39. 34
	ATOM	3363	CB	GLU	440	38. 133	3. 041	77. 199	1. 00 37. 95
	ATOM	3364	CG	GLU	440	38. 213	1. 526	77. 038	1. 00 39. 96
	ATOM	3365	CD	GLU	440	37. 837	0. 773	78. 298	1. 00 40. 82
5	ATOM	3366	0 E1	GLU	440	38. 058	-0. 456	78. 340	1. 00 41. 23
	ATOM	3367	0E2	2 GLU	440	37. 318	1. 403	79. 245	1. 00 41. 08
	ATOM	3368	C	GLU	440	38. 495	5. 298	76. 156	1. 00 41. 28
	ATOM	3369	0	GLU	440	39. 356	5. 918	76. 769	1. 00 42. 10
	ATOM	3370	N	SER	441	37. 431	5. 886	75. 627	1. 00 43. 99
10	ATOM	3371	CA	SER	441	37. 231	7. 327	75. 738	1. 00 48. 53
	ATOM	3372	CB	SER	441	36. 390	7. 823	74. 550	1. 00 47. 96
	ATOM	3373	OG	SER	441	35. 196	7. 066	74. 390	1. 00 48. 42
	ATOM	3374	C	SER	441	36. 577	7. 752	77. 051	1. 00 50. 20
	ATOM	3375	0	SER	441	35. 654	7. 087	77. 531	1. 00 51. 01
15	ATOM	3376	N	GLU	442	37. 060	8. 852	77. 634	1. 00 53. 24
	ATOM	3377	CA	GLU	442	36. 490	9. 359	78. 885	1. 00 55. 51
	ATOM	3378	CB	GLU	442	37. 362	10. 454	79. 507	1. 00 60. 16
	MOTA	3379	CG	GLU	442	36. 822	10. 936	80. 859	1. 00 65. 44
	ATOM	3380	CD	GLU	442	37. 596	12. 107	81. 450	1. 00 69. 63
20	ATOM	3381	0E1	GLU	442	38. 824	11. 984	81. 667	1. 00 71. 27
	ATOM	3382	0E2	GLU	442	36. 965	13. 155	81. 709	1. 00 72. 91
	ATOM	3383	C	GLU	442	35. 118	9. 938	78. 579	1. 00 54. 68
	ATOM	3384	0	GLU	442	34. 104	9. 495	79. 126	1. 00 56. 30
	ATOM	3385	N	GLU	443	35. 094	10. 942	77. 714	1. 00 51. 73
25	ATOM	3386	CA	GLU	443	33. 840	11. 555	77. 307	1. 00 51. 12
	ATOM	3387	CB	GLU	443	33. 706	12. 960	77. 888	1. 00 51. 77
	ATOM	3388	CG	GLU	443	32. 561	13. 086	78. 869	1. 00 49. 05
	ATOM	3389	CD	GLU	443	31. 202	12. 812	78. 239	1. 00 48. 41
	ATOM	3390	0E1	GLU	443	30. 245	12. 572	79. 006	1. 00 48. 06

- 133 -

						10	00		
	ATOM	3391	0E2	GLU	443	31. 084	12. 842	76. 990	1. 00 44. 46
	ATOM	3392	C	GLU	443	33. 851	11. 614	75. 793	1. 00 50. 48
	ATOM	3393	0	GLU	443	33. 624	12. 662	75. 191	1. 00 50. 61
	ATOM	3394	N	GLY	444	34. 131	10. 458	75. 199	1. 00 49. 69
5	ATOM	3395	CA	GLY	444	34. 213	10. 321	73. 760	1. 00 46. 29
	ATOM	3396	C	GLY	444	33. 300	11. 190	72. 928	1. 00 45. 39
	ATOM	3397	0	GLY	444	33. 786	12. 031	72. 181	1. 00 44. 10
	ATOM	3398	N	SER	445	31. 990	10. 996	73. 052	1. 00 44. 40
	ATOM	3399	CA	SER	445	31. 035	11. 765	72. 263	1. 00 45. 82
10	ATOM	3400	CB	SER	445	29. 614	11. 258	72. 505	1. 00 43. 70
	ATOM	3401	0G	SER	445	29. 248	11. 396	73. 860	1. 00 51. 13
	ATOM	3402	C	SER	445	31. 108	13. 265	72. 523	1. 00 45. 79
	ATOM	3403	0	SER	445	31. 381	14. 043	71. 607	1. 00 46. 62
	ATOM	3404	N	GLY	446	30. 867	13. 666	73. 766	1. 00 45. 46
15	ATOM	3405	CA	GLY	446	30. 924	15. 075	74. 112	1. 00 44. 61
	ATOM	3406	C	GLY	446	32. 176	15. 778	73. 615	1. 00 44. 65
	ATOM	3407	0	GLY	446	32. 085	16. 754	72. 872	1. 00 45. 17
	ATOM	3408	N	ARG .	447	33. 344	15. 286	74. 024	1. 00 44. 10
	ATOM	3409	CA	ARG	447	34. 615	15. 878	73. 615	1. 00 44. 23
20	ATOM	3410	CB	ARG	447	35. 765	15. 244	74. 396	1. 00 44. 71
	ATOM	3411	CG	ARG	447	36. 079	15. 917	75. 720	1. 00 46. 63
	ATOM	3412	CD	ARG	447	36. 405	14. 896	76. 794	1. 00 48. 87
	ATOM	3413	NE	ARG	447	37. 226	13. 804	76. 286	1. 00 53. 97
	ATOM	3414	CZ	ARG.	447	38. 507	13. 915	75. 956	1. 00 55. 65
25	ATOM	3415	NH1	ARG	447	39. 130	15. 076	76. 085	1. 00 56. 71
	ATOM	3416	NH2	ARG	447	39. 161	12. 862	75. 486	1. 00 58. 00
	ATOM	3417	C	ARG	447	34. 891	15. 739	72. 122	1. 00 45. 53
	ATOM	3418	0	ARG	447	35. 506	16. 617	71. 508	1. 00 45. 95
	ATOM	3419	N	GLY	448	34. 444	14. 630	71. 543	1. 00 45. 12

- 134 -

						10	-		
	ATOM	3420	CA	GLY	448	34. 667	14. 395	70. 129	1. 00 43. 75
	ATOM	3421	C	GLY	448	33. 915	15. 390	69. 275	1. 00 44. 42
	ATOM	3422	0	GLY	448	34. 497	16. 033	68. 401	1. 00 43. 25
	ATOM	3423	N	ALA	449	32. 617	15. 508	69. 530	1. 00 44. 33
5	ATOM	3424	CA	ALA	449	31. 764	16. 435	68. 798	1. 00 46. 02
	ATOM	3425	CB	ALA	449	30. 349	16. 393	69. 362	1. 00 44. 02
	ATOM	3426	C	ALA	449	32. 334	17. 852	68. 901	1. 00 47. 27
	ATOM	3427	0	ALA	449	32. 388	18. 585	67. 910	1. 00 46. 99
	ATOM	3428	N	ALA	450	32. 771	18. 226	70. 100	1. 00 47. 32
10	ATOM	3429	CA	ALA	450	33. 337	19. 549	70. 320	1. 00 48. 93
	ATOM	3430	CB	ALA	450	33. 590	19. 771	71. 803	1. 00 48. 70
	ATOM	3431	C	ALA	450	34. 630	19. 752	69. 537	1. 00 49. 10
	ATOM	3432	0	ALA	450	34. 795	20. 770	68. 864	1. 00 51. 55
•	ATOM	3433	N	LEU	451	35. 546	18. 792	69. 625	1. 00 47. 13
15	ATOM	3434	CA	LEU	451	36. 828	18. 889	68. 923	1. 00 46. 08
	ATOM	3435	CB	LEU	451	37. 693	17. 661	69. 226	1. 00 43. 72
	ATOM	3436	CG	LEU	451	38. 376	17. 636	70. 598	1. 00 44. 07
	ATOM	3437	CD1	LEU	451	38. 798	16. 218	70. 955	1. 00 41. 74
	ATOM	3438	CD2	LEU	451	39. 577	18. 574	70. 574	1. 00 40. 23
20	ATOM	3439	C	LEU	451	36. 672	19. 055	67. 410	1. 00 45. 46
	ATOM	3440	0	LEU	451	37. 495	19. 708	66. 760	1. 00 46. 36
	ATOM	3441	N	VAL	452	35. 618	18. 465	66. 857	1. 00 43. 95
	ATOM	3442	CA	VAL	452	35. 348	18. 552	65. 428	1. 00 44. 38
	ATOM	3443	CB	VAL	452	34. 426	17. 376	64. 959	1. 00 43. 85
25	ATOM	3444	CG1	VAL	452	33. 998	17. 576	63. 513	1. 00 41. 59
	ATOM	3445	CG2	VAL	452	35. 169	16. 040	65. 087	1. 00 40. 86
	ATOM	3446	C	VAL	452	34. 687	19. 905	65. 125	1. 00 45. 31
	ATOM	3447	0	VAL	452	34. 881	20. 482	64. 056	1. 00 42. 97
	ATOM	3448	N	SER	453	33. 912	20. 411	66. 077	1. 00 46. 60

- 135 -

	MOTA	3449	CA	SER	453	33. 253	21. 693	65. 900	1. 00 49. 07
	ATOM	3450	СВ	SER	453	32. 204	21. 902	66. 986	1. 00 47. 21
	ATOM	3451	0G	SER	453	31. 146	20. 972	66. 845	1. 00 44. 37
	ATOM	3452	C	SER	453	34. 293	22. 806	65. 951	1. 00 51. 53
5	ATOM	3453	0	SER	453	34. 150	23. 820	65. 281	1. 00 52. 56
	ATOM	3454	N	ALA	454	35. 352	22. 593	66. 728	1. 00 54. 40
	ATOM	3455	CA	ALA	454	36. 430	23. 567	66. 881	1. 00 56. 39
	ATOM	3456	CB	ALA	454	37. 336	23. 158	68. 031	1. 00 55. 74
	ATOM	3457	С	ALA	454	37. 259	23. 751	65. 614	1. 00 58. 75
10	ATOM	3458	0	ALA	454	37. 863	24. 807	65. 408	1. 00 59. 45
	ATOM	3459	N	VAL	455	37. 310	22. 719	64. 779	1. 00 60. 29
	ATOM	3460	CA	VAL	455	38. 063	22. 796	63. 535	1. 00 61. 78
	ATOM	3461	CB	VAL	455	38. 603	21. 416	63. 112	1. 00 61. 44
	ATOM	3462	CG1	VAL	455	39. 090	21. 464	61. 672	1. 00 60. 81
15	ATOM	3463	CG2	VAL	455	39. 737	21. 005	64. 031	1. 00 60. 68
	ATOM	3464	C	VAL	455	37. 152	23. 330	62. 442	1. 00 63. 56
	ATOM	3465	0	VAL	455	37. 550	24. 176	61. 643	1. 00 63. 25
	ATOM	3466	N	ALA	456	35. 921	22. 835	62. 416	1. 00 65. 38
	ATOM	3467	CA	ALA	456	34. 959	23. 275	61. 422	1. 00 69. 39
20	ATOM	3468	CB	ALA	456	33. 751	22. 354	61. 423	1. 00 68. 17
	ATOM	3469	C	ALA	456	34. 522	24. 709	61.710	1. 00 73. 10
	ATOM	3470	0	ALA	456	33. 975	25. 382	60. 837	1. 00 73. 04
	ATOM	3471	N	CYS	457	34. 771	25. 170	62. 935	1. 00 77. 06
	ATOM	3472	CA	CYS	457	34. 390	26. 521	63. 341	1. 00 81. 01
25	ATOM	3473	CB	CYS	457	34. 192	26. 599	64. 856	1. 00 80. 51
	ATOM	3474	SG	CYS	457	33. 478	28. 151	65. 432	1. 00 81. 75
	ATOM	3475	C	CYS	457	35. 420	27. 554	62. 916	1. 00 83. 65
	ATOM	3476	0	CYS	457	35. 312	28. 726	63. 275	1. 00 85. 11
	ATOM	3477	N	LYS	458	36. 430	27. 118	62. 172	1. 00 86. 29

- 136 -

	4.77.03.7	0.4=0					00		
	ATOM	3478	CA	LYS	458	37. 441	28. 041	61. 683	1. 00 89. 14
	ATOM	3479	CB	LYS	458	38. 843	27. 441	61. 803	1. 00 88. 60
	ATOM	3480	CG	LYS	458	39. 932	28. 486	61. 632	1. 00 89. 51
	ATOM	3481	CD	LYS	458	41. 276	27. 992	62. 130	1. 00 89. 70
5	ATOM	3482	CE	LYS	458	42. 257	29. 146	62. 269	1. 00 89. 22
	ATOM	3483	NZ	LYS	458	41. 718	30. 194	63. 180	1. 00 88. 81
	ATOM	3484	C	LYS	458	37. 096	28. 310	60. 232	1. 00 91. 26
	ATOM	3485	0	LYS	458	37. 936	28. 733	59. 438	1. 00 91. 56
	ATOM	3486	N	LYS	459	35. 834	28. 043	59. 901	1. 00 93. 94
10	ATOM	3487	CA	LYS	459	35. 302	28. 240	58. 548	1. 00 96. 28
	ATOM	3488	CB	LYS	459	35. 323	26. 923	57. 765	1. 00 96. 25
	ATOM	3489	CG	LYS	459	36. 719	26. 409	57. 421	1. 00 96. 30
	ATOM	3490	CD	LYS	459	37. 458	27. 348	56. 475	1. 00 96. 73
	ATOM	3491	CE	LYS	459	38. 833	26. 801	56. 111	1. 00 97. 12
15	ATOM	3492	NZ	LYS	459	39. 577	27. 717	55. 197	1. 00 97. 75
	ATOM	3493	C	LYS	459	33. 863	28. 759	58. 624	1. 00 97. 78
	ATOM	3494	0	LYS	459	33. 417	29. 516	57. 758	1. 00 98. 11
	ATOM	3495	N	ALA	460	33. 153	28. 327	59. 666	1. 00 99. 29
	ATOM	3496	CA	ALA	460	31. 778	28. 738	59. 916	1. 00100. 54
20	ATOM	3497	CB	ALA	460	31. 028	27. 644	60. 681	1. 00100. 58
	ATOM	3498	C	ALA	460	31. 765	30. 042	60. 719	1. 00101. 56
	ATOM	3499	0	ALA	460	30. 755	30. 750	60. 777	1. 00101. 79
	ATOM	3500	N	CYS	461	32. 899	30. 360	61. 338	1. 00102. 59
	ATOM	3501	CA	CYS	461	33. 033	31. 572	62. 156	1. 00103. 00
25	ATOM	3502	CB	CYS	461	33. 145	31. 169	63. 624	1. 00103. 05
	ATOM	3503	SG	CYS	461	33. 354	32. 536	64. 774	1. 00103. 32
	ATOM	3504	C	CYS	461	34. 265	32. 367	61. 753	1. 00103. 21
	ATOM	3505	0	CYS	461	34. 788	33. 098	62. 620	1. 00103. 54
	ATOM	3506	OXT	CYS	461	34. 665	32. 248	60. 578	1. 00103. 24

- 137 -

							•		
	TER 35	507 (CYS	461					
	ATOM	3508	C1	GLC	500	23. 469	1. 767	65. 521	1. 00 30. 82
	ATOM	3509	C2	GLC	500	23. 418	3. 122	64. 706	1. 00 29. 40
	ATOM	3510	C3	GLC	500	24. 837	3. 619	64. 445	1. 00 29. 78
5	ATOM	3511	C4	GLC	500	25. 496	3. 860	65. 778	1. 00 28. 77
	ATOM	3512	C5	GLC	500	25. 529	2. 514	66. 593	1. 00 27. 72
	ATOM	3513	C6	GLC	500	26. 162	2. 717	67. 936	1. 00 26. 98
	ATOM	3514	01	GLC	500	24. 127	0. 765	64. 857	1. 00 36. 62
	ATOM	3515	02	GLC	500	22. 756	2. 872	63. 483	1. 00 32. 75
10	ATOM	3516	03	GLC	500	24. 786	4. 837	63. 698	1. 00 29. 31
	ATOM	3517	04	GLC	500	26. 853	4. 253	65. 639	1. 00 29. 10
	ATOM	3518	05	GLC	500	24. 152	2. 040	66. 770	1. 00 29. 59
	MOTA	3519	06	GLC	500	25. 517	3. 687	68. 814	1. 00 30. 98
	TER 35	20 G	LC	500					
15	ATOM	3521	S1	CP1	501	36. 312	19. 051	60. 824	1. 00 50. 83
	ATOM	3522	C2	CP1	501	35. 720	19. 405	59. 240	1.00 49.96
	ATOM	3523	C3	CP1	501	36. 398	18. 662	58. 318	1. 00 49. 96
	ATOM	3524	N4	CP1	501	37. 363	17. 829	58. 827	1. 00 49. 99
	ATOM	3525	C5	CP1	501	37. 429	17. 932	60. 162	1. 00 49. 39
20	ATOM	3526	N6	CP1	501	38. 317	17. 183	60. 878	1. 00 48. 07
	ATOM	3527	C7	CP1	501	38. 575	17. 220	62. 294	1. 00 46. 71
	ATOM	3528	80	CP1	501	37. 968	18. 001	63. 039	1. 00 47. 48
	ATOM	3529	C9	CP1	501	40. 386	16. 405	64. 107	1. 00 46. 71
	ATOM	3530	C10	CP1	501	39. 620	16. 253	62. 884	1. 00 47. 34
25	ATOM	3531	C11	CP1	501	39. 831	15. 053	62. 110	1. 00 46. 39
	ATOM	3532	C12	CP1	501	40. 749	14. 066	62. 520	1. 00 46. 34
	ATOM	3533	C13	CP1	501	41. 496	14. 237	63. 722	1. 00 47. 57
	ATOM	3534	F	CP1	501	42. 392	13. 310	64. 155	1. 00 48. 24
	ATOM	3535	C15	CP1	501	41. 306	15. 404	64. 502	1. 00 46. 98

- 138 -

						1	00		
	ATOM	3536	S16	6 CP1	501	40. 907	12. 638	61. 485	1. 00 44. 61
	ATOM	3537	N17	7 CP1	501	42. 782	10.864	62. 327	1. 00 40. 11
	ATOM	3538	C18	CP1	501	42. 525	11. 942	61. 488	1. 00 41. 49
	ATOM	3539	N19	CP1	501	43. 528	12. 436	60. 686	1. 00 42. 95
5	ATOM	3540	C20	CP1	501	44. 549	11. 571	61.054	1. 00 43. 00
	ATOM	3541	C21	CP1	501	44. 116	10. 651	62. 014	1. 00 39. 24
	ATOM	3542	C22	CP1	501	41. 894	10. 152	63. 276	1. 00 32. 83
	ATOM	3543	N23	CP1	501	40. 279	17. 465	64. 913	1. 00 46. 10
	TER 3	544	CP1	501		JJ.	IJ		
10	ATOM	3545	NA+1	NA1	600	36. 903	10. 609	46. 484	1. 00 48. 71
	ATOM	3546	0	НОН	601	20. 332	-23. 624	70. 208	1. 00 45. 57
	ATOM	3547	0	НОН	602	18. 766	-22. 456	65. 630	1. 00 41. 87
	ATOM	3548	0	НОН	603	13. 471	-20. 599	70. 297	1. 00 45. 83
	ATOM	3549	0	НОН	604	11. 104	-30. 408	72. 307	1. 00 48. 61
15	ATOM	3550	0	НОН	605	6.606	-26. 352	79. 319	1. 00 59. 47
	ATOM	3551	0	НОН	606	15. 315	-28. 400	85. 522	1. 00 48. 85
	ATOM	3552	0	НОН	607	18. 765	-29. 705	82. 807	1. 00 55. 60
	ATOM	3553	0	НОН	608	27. 649	-22. 465	84. 914	1. 00 39. 29
	ATOM	3554	0 .	НОН	609	28. 890	-18. 936	88. 942	1. 00 38. 24
20	ATOM	3555	0	НОН	610	31. 397	-19. 437	88. 300	1. 00 44. 33
	ATOM	3556	0	НОН	611	33. 495	-12. 487	88. 943	1. 00 40. 63
	ATOM	3557	0	НОН	612	28. 110	-14. 193	93. 119	1. 00 37. 41
	ATOM	3558	0	НОН	613	22. 501	-9. 921	93. 883	1. 00 55. 62
	ATOM	3559	0	НОН	614	18. 084	-9. 259	91. 966	1. 00 48. 69
25	ATOM	3560	0	НОН	615	19. 985	-7. 585	89. 518	1. 00 54. 30
	ATOM	3561	0	НОН	616	18. 162	-4. 982	77. 583	1. 00 42. 44
	ATOM	3562	0	НОН	617	15. 728	-5. 792	77. 752	1. 00 49. 61
	ATOM	3563	0	НОН	618	17. 869	-7. 338	75. 263	1. 00 52. 43
	ATOM	3564	0	НОН	619	14. 631	-9. 827	77. 339	1. 00 27. 38

- 139 -

							•		
	ATOM	3565	0	НОН	620	14. 305	-5. 926	69. 446	1. 00 38. 14
	ATOM	3566	0	НОН	621	13. 616	-3. 087	68. 452	1. 00 51. 29
	ATOM	3567	0	НОН	622	15. 537	-2. 602	66. 865	1. 00 35. 42
	ATOM	3568	0	НОН	623	18. 821	-1. 831	65. 405	1. 00 31. 67
5	ATOM	3569	0	НОН	624	17. 261	0. 174	60. 996	1. 00 34. 87
	ATOM	3570	0	НОН	625	18. 895	-0. 653	58. 995	1. 00 41. 82
	ATOM	3571	0	НОН	626	20. 053	-2. 478	55. 373	1. 00 35. 91
	ATOM	3572	0	НОН	627	22. 217	-1. 019	55. 062	1. 00 36. 64
	ATOM	3573	0	НОН	628	25. 137	-0. 153	56. 470	1. 00 24. 69
10	ATOM	3574	0	НОН	629	22. 562	1. 498	59. 774	1. 00 31. 68
	ATOM	3575	0	НОН	630	24. 912	0. 122	62. 135	1. 00 25. 12
	ATOM	3576	0	НОН	631	25. 071	2. 179	71. 129	1. 00 26. 49
	ATOM	3577	0	НОН	632	27. 157	5. 888	71. 903	1. 00 41. 05
	ATOM	3578	0	НОН	633	29. 481	7. 227	73. 290	1. 00 47. 52
15	ATOM	3579	0	НОН	634	31. 223	8. 383	71. 417	1. 00 44. 33
	ATOM	3580	0	НОН	635	32. 517	7. 788	77. 983	1. 00 44. 30
	ATOM	3581	0	НОН	636	35. 945	15. 748	80. 298	1. 00 32. 85
	ATOM	3582	0	НОН	637	41. 395	13. 522	74. 250	1. 00 52. 40
	ATOM	3583	0	НОН	638	41. 454	16. 603	73. 492	1. 00 35. 38
20	ATOM	3584	0	НОН	639	44. 238	18. 657	64. 621	1. 00 57. 41
	ATOM	3585	0	НОН	640	48. 524	12. 679	62. 857	1. 00 55. 80
	ATOM	3586	0	НОН	641	50. 088	10. 035	69. 707	1. 00 37. 86
	ATOM	3587	0	НОН	642	47. 834	4. 897	73. 654	1. 00 43. 91
	ATOM	3588	0	НОН	643	47. 658	2. 456	75. 515	1. 00 46. 89
25	ATOM	3589	0	НОН	644	45. 862	0. 872	75. 793	1. 00 36. 22
	ATOM	3590	0	НОН	645	42. 167	-0. 401	77. 407	1. 00 46. 09
	ATOM	3591	0	НОН	646	39. 939	-1.664	76. 818	1. 00 28. 80
	ATOM	3592	0	НОН	647	41. 804	2. 590	77. 672	1. 00 30. 06
	ATOM	3593	0	НОН	648	35. 946	-0. 230	81. 704	1. 00 44. 47

- 140 -

						140		
	ATOM		1 0	НОН	649	35. 692 -3. 832	84. 533	1. 00 48. 68
	ATOM	3595	0	НОН	650	35. 503 <i>-</i> 5. 648	82. 602	1. 00 39. 36
	ATOM	3596	0	НОН	651	34. 249 -6. 282	78. 743	1. 00 28. 80
	ATOM	3597	0	НОН	652	41. 570 -6. 014	79. 114	1. 00 41. 31
5	ATOM	3598	0	НОН	653	42. 725 -8. 259	76. 851	1. 00 34. 12
	ATOM	3599	0	НОН	654	42. 400 -10. 619	75. 649	1. 00 32. 12
	ATOM	3600	0	НОН	655	44. 745 -10. 112	73. 414	1. 00 30. 95
	ATOM	3601	0	НОН	656	44. 977 -6. 287	75. 709	1. 00 54. 82
	ATOM	3602	0	НОН	657	49. 536 -3. 896	71. 639	1. 00 46. 68
10	ATOM	3603	0	НОН	658	47. 500 -6. 424	68. 659	1. 00 37. 00
	ATOM	3604	0	НОН	659	46. 887 -8. 289	65. 948	1. 00 35. 73
	ATOM	3605	0	НОН	660	45. 007 -14. 004	70. 403	1. 00 31. 53
	ATOM	3606	0	НОН	661	44. 785 -16. 666	70. 958	1. 00 39. 67
	ATOM	3607	0	НОН	662	39. 546 -15. 899	74. 666	1. 00 38. 86
15	ATOM	3608	0	НОН	663	38. 539 -14. 985	72. 232	1. 00 34. 80
	ATOM	3609	0	НОН	664	38. 252 -17. 032	68. 208	1. 00 47. 76
	ATOM	3610	0	НОН	665	39. 836 -15. 454	66. 437	1. 00 38. 55
	ATOM	3611	0	НОН	666	36. 975 -19. 549	67. 636	1. 00 43. 12
	ATOM	3612	0	НОН	667	37. 200 -20. 262	70. 388	1. 00 51. 64
20	ATOM	3613	0	НОН	668	33. 328 -20. 695	70. 543	1. 00 49. 91
	ATOM	3614	0	НОН	669	32. 877 -18. 716	69. 209	1. 00 30. 69
	ATOM	3615	0	НОН	670	30. 463 -18. 228	69. 770	1. 00 29. 35
	ATOM	3616	0	НОН	671	29. 403 -18. 862	72. 028	1. 00 29. 94
	ATOM	3617	0	НОН	672	31. 677 -19. 876	75. 929	1. 00 57. 83
25	ATOM	3618	0	НОН	673	32. 105 -15. 120	81. 811	1. 00 56. 36
	ATOM	3619	0	НОН	674	25. 408 -13. 262	70. 399	1. 00 19. 73
	ATOM	3620	0	НОН	675	20. 199 -11. 770	66. 567	1. 00 31. 95
	ATOM	3621	0	НОН	676	20. 589 -11. 169	63. 684	1. 00 28. 18
	ATOM	3622	0	НОН	677	18. 416 -12. 169	62. 695	1. 00 34. 73

- 141 -

	ATOM	3623	0	НОН	678	18. 037	-12. 657	56. 097	1. 00 62. 31
	ATOM	3624	0	НОН	679				1. 00 49. 61
	ATOM	3625	0	НОН	680	17. 485			
	ATOM	3626	0	НОН	681	22. 370	-12. 555	56. 733	1. 00 27. 53
5	ATOM	3627	0	НОН	682	21. 048 -	-16. 039	51. 265	1. 00 53. 09
	ATOM	3628	0	НОН	683	25. 649	-8. 890	49. 620	1. 00 43. 30
	ATOM	3629	0	НОН	684	25. 472	-5. 908	50. 031	1. 00 43. 23
	ATOM	3630	0	НОН	685	27. 841	-3. 633	51. 119	1. 00 34. 64
	ATOM	3631	0	НОН	686	23. 209	1. 359	50. 792	1. 00 44. 06
10	ATOM	3632	0	НОН	687	26. 198	3. 711	50. 151	1. 00 38. 65
	ATOM	3633	0	НОН	688	27. 728	6. 416	50. 494	1. 00 39. 66
	ATOM	3634	0	НОН	689	30. 171	5. 238	50. 152	1. 00 36. 90
	ATOM	3635	0	НОН	690	32. 248	6. 334	48. 750	1. 00 33. 36
	ATOM	3636	0	НОН	691	36. 665	2. 495	46. 196	1. 00 32. 68
15	ATOM	3637	0	НОН	692	37. 821	0. 573	47. 634	1. 00 47. 42
	ATOM	3638	0	НОН	693	42. 794	0. 201	52. 097	1. 00 44. 65
	ATOM	3639	0	НОН	694	41. 559	1. 725	53. 810	1. 00 38. 52
	ATOM	3640	0	НОН	695	43. 105	3, 662	55. 242	1. 00 34. 89
	ATOM	3641	0	НОН	696	45. 510	2. 836	56. 086	1. 00 40. 92
20	ATOM	3642	0	НОН	697	50. 206	2. 510	60. 598	1. 00 45. 86
	ATOM	3643	0	НОН	698	52. 258	1. 308	61. 720	1. 00 45. 43
	ATOM	3644	0	НОН	699	48. 954	1. 961	67. 618	1. 00 35. 43
	ATOM	3645	0	НОН	700	49. 694	-0. 399	68. 442	1. 00 39. 38
	ATOM	3646	0	НОН	701	40.015	-5. 106	51. 960	1. 00 36. 49
25	ATOM	3647	0	НОН	702	34. 048 -1	12. 903	50. 839	1. 00 37. 87
	ATOM	3648	0	НОН	703	33. 190 -1	14. 541	52. 882	1. 00 51. 09
	ATOM	3649	0	НОН	704	34. 961 -1	16. 254	52. 067	1. 00 35. 42
	ATOM	3650	0	НОН	705	30. 397 -1	5. 105	52. 902	1. 00 39. 69
	ATOM	3651	0	НОН	706	31. 770 -2	0. 985	57. 467	1. 00 48. 16

- 142 -

						•			
	ATOM	3652	0	НОН	707	37. 192	-19. 637	55. 8 66	1. 00 46. 43
	ATOM	3653	0	НОН	708	38. 187	-23. 567	61. 924	1. 00 40. 92
	ATOM	3654	0	НОН	709	38. 470	-23. 126	65. 456	1. 00 45. 43
٠	MOTA	3655	0	НОН	710	30. 533	-23. 844	62. 578	1. 00 37. 90
5	ATOM	3656	0	НОН	711	26. 515	-21. 678	62. 544	1. 00 39. 08
	ATOM	3657	0	НОН	712	27. 242	-20. 400	65. 671	1. 00 33. 60
	ATOM	3658	0	НОН	713	25. 907	-18. 116	65. 171	1. 00 24. 64
	ATOM	3659	0	НОН	714	28. 226	-26. 567	74. 622	1. 00 44. 93
	ATOM	3660	0	НОН	715	31. 091	-28. 151	73. 632	1. 00 39. 43
10	ATOM	3661	0	НОН	716	28. 020	-32. 685	74. 512	1. 00 48. 35
	ATOM	3662	0	НОН	717	28. 401	-36. 363	77. 956	1. 00 47. 24
	ATOM	3663	0	НОН	718	26. 796	-22. 733	95. 375	1. 00 34. 50
	ATOM	3664	0	НОН	719	23. 506	-18. 729	96. 532	1. 00 46. 50
	ATOM	3665	0	НОН	720	7. 193	-13. 392	87. 134	1. 00 48. 33
15	ATOM	3666	0	НОН	721	23. 769	-2. 393	77. 130	1. 00 39. 79
	ATOM	3667	0	НОН	722	21. 538	6. 141	76. 432	1. 00 52. 58
	ATOM	3668	0	НОН	723	26. 038	13. 552	80. 579	1. 00 47. 60
	ATOM	3669	0	НОН	724	25. 460	9. 823	62. 329	1. 00 33. 10
	ATOM	3670	0	НОН	725	27. 321	10. 443	60. 403	1. 00 39. 23
20	ATOM	3671	0	НОН	726	26. 658	8. 602	58. 871	1. 00 32. 16
	ATOM	3672	0	НОН	727	29. 670	11. 059	61. 417	1. 00 24. 95
	ATOM	3673	0	НОН	728	30. 585	13. 937	60. 932	1. 00 41. 90
	ATOM	3674	0	НОН	729	34. 591	18. 790	55. 094	1. 00 40. 47
	ATOM	3675	0	НОН	730	34. 117	19. 353	52. 182	1. 00 54. 62
25	ATOM	3676	0	НОН	731	31. 428	16. 535	48. 224	1. 00 37. 06
	ATOM	3677	0	НОН	732	31. 432	15. 488	46. 047	1. 00 33. 85
	ATOM	3678	0	НОН	733	27. 660	11. 291	51. 289	1. 00 40. 74
	ATOM	3679	0	НОН	734	27. 629	10. 029	53. 857	1. 00 30. 56
	ATOM	3680	0	НОН	735	22. 996	7. 311	45. 724	1. 00 57. 65

	- 143	_		
_	T00		000	

	ATOM	3681	0	НОН	736	25. 532	2. 038	43. 263	1. 00 34. 43
	ATOM	3682	0	НОН	737	33. 508	3. 221	40. 211	1. 00 45. 05
	ATOM	3683	0	НОН	738	35. 525	1. 426	41. 242	1. 00 44. 71
	ATOM	3684	0	НОН	739	37. 227	9. 576	44. 352	1. 00 31. 96
5	ATOM	3685	0	НОН	740	39. 858	15. 804	52. 237	1. 00 43. 41
	ATOM	3686	0	НОН	741	42. 053	15. 415	53. 940	1. 00 47. 39
	ATOM	3687	0	НОН	742	32. 200	24. 148	58. 683	1. 00 45. 42
	ATOM	3688	0	НОН	743	28. 016	21. 804	51. 201	1. 00 44. 12
	ATOM	3689	0	НОН	744	22. 797	26. 498	63. 763	1. 00 53. 69
10	ATOM	3690	0	НОН	745	10. 552	26. 073	62. 119	1. 00 43. 13
	ATOM	3691	0	НОН	746	11. 190	7. 673	68. 338	1. 00 57. 06
	ATOM	3692	0	НОН	747	20. 818	-3. 881	51. 225	1. 00 56. 55
	ATOM	3693	0	НОН	748	29. 885	-6. 633	43. 981	1. 00 46. 17
	ATOM	3694	0	НОН	749	40. 811	30. 945	68. 309	1. 00 45. 88
15	TER	3695		НОН					

なお、表1は、当業者によって慣用されているプロテイン・データ・バンク の表記方法に準拠して作成されている。表1中、GLCはグルコース分子を表 し、CP1は式IIIaで表される化合物を表し、HOHは水分子を表す。

また、本発明においては、配列番号8に示すGKタンパク質の結晶を調製することに成功している(後述の実施例参照)。そしてこのようにして得られたGKタンパク質の結晶は、格子定数が、下記式(5)~(8):

25
$$a=b=103. 2\pm 5$$
 オングストローム … (5) $c=281. 0\pm 7$ オングストローム … (6) $\alpha=\beta=90^\circ$ … (7) $\gamma=120^\circ$ … (8)

を満たすものであった。また、この結晶は、空間群が $P6_522$ であることが

- 144 -

解明された。ここで、前記 a=b は 103.2 ± 3 オングストロームであることが好ましく、 103.2 ± 1 オングストロームであることがより好ましく、 103.2 ± 1 オングストロームであることがさらに好ましい。また、前記 c は 281.0 ± 6 オングストロームであることが好ましく、 281.0 ± 4 オングストロームであることが好ましく、 281.0 ± 4 オングストロームであることがより好ましく、 281.0 ± 2 オングストロームであることがさらに好ましい。このようにして得られた GK タンパク質結晶の 3 次元構造座標を表 2 に示す。

	表 2								
	ATOM	1	СВ	MET	15	54. 150	5. 972	67. 103	1. 00 55. 10
10	ATOM	2	CG	MET	15	55. 594	5. 943	67. 591	1. 00 55. 46
	ATOM	3	SD	MET	15	56. 013	4, 505	68. 603	1. 00 52. 92
	ATOM	4	CE	MET	15	56. 517	5. 326	70. 108	1. 00 51. 73
	ATOM	5	C	MET	15	52. 357	4. 955	65. 669	1. 00 56. 87
	ATOM	6	0	MET	15	52. 057	4. 609	64. 524	1. 00 57. 60
15	ATOM	7	N	MET	15	54. 770	4. 766	65. 028	1. 00 55. 00
	ATOM	8	CA	MET	15	53. 800	4. 813	66. 167	1. 00 56. 04
	ATOM	9	N	VAL	16	51. 468	5. 456	66. 525	1. 00 55. 58
	ATOM	10	CA	VAL	16	50. 065	5. 625	66. 154	1. 00 52. 87
	ATOM	11	CB	VAL	16	49. 141	4. 862	67. 129	1. 00 49. 32
20	ATOM	12	CG1	VAL	16	47. 696	5. 016	66. 716	1. 00 48. 26
	ATOM	13	CG2	VAL	16	49. 508	3. 394	67. 126	1. 00 47. 28
	ATOM	14	C	VAL	16	49. 666	7. 097	66. 085	1. 00 53. 26
	ATOM	15	0	VAL	16	49. 218	7. 563	65. 040	1. 00 52. 32
	ATOM	16	N	GLU	17	49. 845	7. 828	67. 182	1. 00 56. 12
25	ATOM	17	CA	GLU	17	49. 511	9. 253	67. 210	1. 00 59. 41
	ATOM	18	CB	GLU	17	50. 102	9. 921	68. 456	1. 00 63. 35
	ATOM	19	CG	GLU	17	49. 063	10. 373	69. 484	1. 00 68. 69
	ATOM	20	CD	GLU	17	48. 174	11. 525	69. 004	1. 00 72. 00
	ATOM	21	0E1	GLU	17	47. 314	11. 964	69. 805	1, 00 74, 22

- 145 -

							. •			
	ATOM	22	0E2	GLU	17	48. 328	11. 992	67. 847	1. 00	72. 36
	ATOM	23	C	GLU	17	50 . 035	9. 963	65. 967	1. 00	59. 05
	ATOM	24	0	GLU	17	49. 521	11. 011	65. 566	1. 00	57. 70
	ATOM	25	N	GLN	18	51.070	9. 389	65. 367	1. 00	60. 75
5	ATOM	26	CA	GLN	18	51.661	9. 960	64. 170	1. 00	61. 70
	ATOM	27	CB	GLN	18	53. 038	9. 329	63. 895	1. 00	66. 55
	ATOM	28	CG	GLN	18	54. 001	9. 219	65. 110	1. 00	72. 22
	ATOM	29	CD	GLN	18	54. 509	10. 566	65. 654	1. 00	75. 87
	ATOM	30	0E1	GLN	18	55. 317	10. 605	66. 595	1. 00	75. 55
10	ATOM	31	NE2	GLN	18	54. 037	11. 669	65. 067	1. 00	77. 63
	ATOM	32	C	GLN	18	50. 709	9. 682	63.004	1. 00	59. 33
	ATOM	33	0	GLN	18	50. 322	10.601	62. 287	1. 00	59. 09
	ATOM	34	N	ILE	19	50. 321	8. 418	62. 832	1. 00	55. 64
	ATOM	35	CA	ILE	19	49. 416	8. 029	61. 747	1. 00	53. 41
15	ATOM	36	CB	ILE	19	49. 113	6. 529	61. 778	1. 00	52. 34
	ATOM	37	CG2	ILE	19	47. 964	6. 211	60. 832	1. 00	50.69
	ATOM	38	CG1	ILE	19	50. 374	5. 754	61. 389	1. 00	52. 73
	ATOM	39	CD1	ILE	19	50. 186	4. 256	61. 274	1. 00	53. 73
	ATOM	40	C	ILE	19	48. 088	8. 774	61.741	1. 00	53. 03
20	ATOM	41	0	ILE	19	47. 791	9. 528	60. 812	1. 00	52. 86
	ATOM	42	N	LEU	20	47. 279	8. 548	62. 766	1. 00	52. 38
	ATOM	43	CA	LEU	20	45. 997	9. 228	62. 861	1. 00	51. 95
	ATOM	44	CB	LEU	20	45. 336	8. 937	64. 195	1. 00	50. 70
	ATOM	45	CG	LEU	20	44. 563	7. 632	64. 212	1. 00	51.65
25	ATOM	46	CD1	LEU	20	45. 450	6. 454	63. 803	1. 00	51.77
	ATOM	47	CD2	LEU	20	44. 010	7. 463	65. 599	1. 00	51.02
	ATOM	48	C	LEU	20	46. 158	10. 723	62. 727	1. 00	52. 33
	ATOM	49	0	LEU	20	45. 204	11. 427	62. 401	1. 00	54. 11
	ATOM	50	N	ALA	21	47. 366	11. 207	62. 990	1. 00	51.49

- 146 -

	ATOM	51	CA	ALA	21	47. 643	12. 628	62. 907	1. 00 49. 87
	ATOM	52	CB	ALA	21	49. 066	12. 899	63. 342	1. 00 50. 58
	ATOM	53	C	ALA	21	47. 414	13. 133	61. 491	1. 00 48. 63
	ATOM	54	0	ALA	21	47. 090	14. 301	61. 286	1. 00 47. 74
5	ATOM	55	N	GLU	22	47. 571	12. 243	60. 517	1. 00 47. 60
	ATOM	56	CA	GLU	22	47. 383	12. 605	59. 121	1. 00 48. 69
	ATOM	57	CB	GLU	22	47. 818	11. 457	58. 215	1. 00 51. 49
	ATOM	58	CG	GLU	22	49. 282	11. 520	57. 838	1. 00 59. 47
	ATOM	59	CD	GLU	22	49. 738	10. 335	57. 003	1. 00 64. 78
10	ATOM	60	0E1	GLU	22	50. 896	10. 369	56. 519	1. 00 66. 47
	ATOM	61	0E2	GLU	22	48. 948	9. 373	56. 839	1. 00 68. 05
	ATOM	62	С	GLU	22	45. 954	12. 999	58. 794	1. 00 48. 26
	ATOM	63	0	GLU	22	45. 683	13. 538	57. 721	1. 00 48. 86
	ATOM	64	N	PHE	23	45. 036	12. 733	59. 715	1. 00 47. 14
15	ATOM	65	CA	PHE	23	43. 641	13. 076	59. 490	1. 00 45. 51
	ATOM	66	CB	PHE	23	42. 722	12. 045	60. 147	1. 00 41. 36
	ATOM	67	CG	PHE.	23	42. 544	10. 783	59. 347	1. 00 37. 96
	ATOM	68	CD1	PHE	23	43. 208	9. 613	59. 697	1. 00 35. 23
	ATOM	69	CD2	PHE	23	41. 687	10. 758	58. 255	1. 00 37. 67
20	ATOM	70	CE1	PHE	23	43. 016	8. 435	58. 968	1. 00 32. 67
	ATOM	71	CE2	PHE	23	41. 492	9. 583	57. 523	1. 00 37. 15
	ATOM	72	CZ	PHE	23	42. 158	8. 423	57. 883	1. 00 33. 48
	ATOM	73	C	PHE	23	43. 310	14. 468	60. 013	1. 00 47. 24
	ATOM	74	0	PHE	23	42. 227	14. 993	59. 767	1. 00 46. 34
25	ATOM	75	N	GLN	24	44. 245	15. 068	60. 735	1. 00 50. 44
	ATOM	76	CA	GLN	24	44. 028	16. 400	61. 279	1. 00 55. 06
	ATOM	77	CB	GLN		45. 306	16: 882	61. 979	1. 00 59. 10
	ATOM	78	CG	GLN		45. 715	16. 023	63. 168	1. 00 62. 03
	ATOM	79	CD	GLN	24	44. 686	16. 075	64. 277	1. 00 65. 56

- 147 -

	ATOM	80	0E	i GLi	V 24	44. 653	15. 207	65. 156	1. 00 66. 95
	ATOM	81	NE	2 GLM	V 24	43. 834	17. 103	64. 245	1. 00 65. 89
	ATOM	82	C	GLN	V 24	43. 644	17. 359	60. 149	1. 00 56. 09
	ATOM	83	0	GLN	V 24	43. 892	17. 073	58. 979	1. 00 57. 63
5	ATOM	84	N	LEU	J 25	43. 016	18. 476	60. 504	1. 00 55. 99
	ATOM	85	CA	LEU	J 25	42. 616	19. 501	59. 540	1. 00 55. 27
	ATOM	86	CB	LEU	J 25	41. 303	19. 128	58. 841	1. 00 54. 71
	ATOM	87	CG	LEU	25	41. 325	17. 896	57. 922	1. 00 53. 30
	ATOM	88	CD	1 LEU	25	39. 928	17. 618	57. 419	1. 00 53. 18
10	ATOM	89	CD	2 LEU	25	42. 264	18. 113	56. 755	1. 00 51. 55
	ATOM	90	С	LEU	25	42. 444	20. 786	60. 336	1. 00 56. 31
	ATOM ·	91	0	LEU	25	41. 377	21. 061	60. 889	1. 00 55. 85
	ATOM	92	N	GLN	26	43. 519	21. 563	60. 399	1. 00 58. 22
	ATOM	93	CA	GLN	26	43. 527	22. 807	61. 153	1. 00 58. 31
15	ATOM	94	CB	GLN	26	44. 980	23. 280	61. 361	1. 00 63. 03
	ATOM	95	CG	GLN	26	45. 118	24. 480	62. 313	1. 00 69. 87
	ATOM	96	CD	GLN	26	46. 490	25. 161	62. 245	1. 00 73. 70
	ATOM	97	0E 1	GLN	26	47. 009	25. 446	61. 158	1. 00 74. 68
	ATOM	98	NE2	GLN	26	47. 067	25. 446	63. 411	1. 00 74. 99
20	ATOM	99	C	GLN	26	42. 702	23. 903	60. 485	1. 00 55. 29
	ATOM	100	0	GLN	26	42. 358	23. 811	59. 308	1. 00 51. 30
	ATOM	101	N	GLU	27	42. 389	24. 931	61. 267	1. 00 55. 08
	ATOM	102	CA	GLU	27	41. 617	26. 083	60. 824	1. 00 55. 66
	ATOM	103	CB	GLU	27	41. 940	27. 280	61. 709	1. 00 57. 13
25	ATOM	104	CG	GLU	27	41. 029	28. 469	61. 523	1. 00 59. 64
	ATOM	105	CD	GLU	27	39. 694	28. 272	62. 208	1. 00 62. 00
	ATOM	106		GLU		39. 685	27. 840	63. 382	1. 00 62. 44
	ATOM	107	0E2	GLU	27	38. 653	28. 559	61. 581	1. 00 64. 27
	ATOM	108	C	GLU	27	41. 905	26. 454	59. 380	1. 00 55. 70

- 148 -

						.	10			
	ATOM	109	0	GLU	27	41. 025	26. 416	58. 531	1. 00	56. 30
	ATOM	110	N	GLU	28	43. 147	26. 828	59. 113	1. 00	56. 74
	ATOM	111	CA	GLU	28	43. 571	27. 208	57. 770	1. 00	58. 34
	ATOM	112	CB	GLU	28	45. 102	27. 226	57. 714	1. 00	63. 94
5	ATOM	113	CG	GLU	28	45. 704	28. 026	56. 573	1. 00	70. 36
	ATOM	114	CD	GLU	28	45. 615	29. 524	56. 806	1. 00	74. 74
	ATOM	115	0E1	GLIJ	28	46. 245	30. 289	56. 040	1. 00	77. 18
	ATOM	116	0E2	GLU	28	44. 912	29. 938	57. 755	1. 00	77. 44
	ATOM	117	C	GLU	28	43. 032	26. 231	56. 721	1. 00	5 6. 56
10	ATOM	118	0 ·	GLU	28	42. 375	26. 641	55. 764	1. 00	54. 38
	ATOM	119	N	ASP	29	43. 316	24. 942	56. 921	1. 00	55. 20
	ATOM	120	CA	ASP	29	42. 893	23. 869	56. 015	1. 00	53. 13
	ATOM	121	CB	ASP	29	43. 106	22. 499	56. 667	1. 00	56. 36
	ATOM	122	CG	ASP	29	44. 570	22. 116	56. 758	1. 00	59. 69
15	ATOM	123	OD 1	ASP	29	45. 263	22. 198	55. 717	1. 00	61. 07
	ATOM	124	OD2	ASP	29	45. 021	21. 727	57. 863	1. 00	60. 92
	ATOM	125	C	ASP	29	41. 439	23. 995	55. 607	1. 00	49. 74
	ATOM	126	0	ASP	29	41. 100	23. 924	54. 424	1. 00	47. 81
	ATOM	127	N	LEU	30	40. 579	24. 156	56.603	1. 00	46. 04
20	ATOM	128	CA	LEU	30	39. 167	24. 309	56. 344	1. 00	43. 06
	ATOM	129	CB	LEU	30	38. 393	24. 491	57. 649	1. 00	39. 08
	ATOM	130	CG	LEU	30	38. 026	23. 218	58. 404	1. 00	36. 61
	ATOM	131	CD1	LEU	30	39. 280	22. 441	58. 75 6	1. 00	37. 28
	ATOM	132	CD2	LEU	30	37. 233	23. 576	59. 642	1. 00	35. 29
25	ATOM	133	C	LEU	30	38. 948	25. 516	55. 452	1. 00	44. 18
	ATOM	134	0	LEU	30	38. 410	25. 388	54. 354	1. 00	45. 60
	ATOM	135	N	LYS	31	39. 381	26. 685	55. 920	1. 00	44. 63
	ATOM	136	CA	LYS	31	39. 206	27. 927	55. 170	1. 00	43. 67
	ATOM	137	CB	LYS	31	40. 136	29. 020	55. 695	1. 00	45. 23

- 149 -

	ATOM	138	CG	LYS	31	39. 968	29. 361	57. 165	1. 00 46. 98
	ATOM	139	CD	LYS	31	38. 743	30. 221	57. 440	1. 00 45. 54
	ATOM	140	CE	LYS	31	38. 695	30. 675	58. 915	1. 00 45. 82
	ATOM	141	NZ	LYS	31	39. 836	31. 545	59. 387	1. 00 42. 73
5	ATOM	142	C	LYS	31	39. 483	27. 725	53. 697	1. 00 42. 23
	ATOM	143	0	LYS	31	38. 759	28. 241	52. 855	1. 00 41. 29
	ATOM	144	N	LYS	32	40. 535	26. 976	53. 385	1. 00 41. 79
	ATOM	145	CA	LYS	32	40. 877	26. 737	51. 994	1. 00 43. 47
	ATOM	146	CB	LYS	32	42. 171	25. 928	51. 888	1. 00 45. 16
10	ATOM	147	CG	LYS	32	42. 811	25. 974	50. 499	1. 00 50. 49
	ATOM	148	CD	LYS	32	44. 302	25. 565	50. 510	1. 00 54. 48
	ATOM	149	CE	LYS	32	44. 505	24. 086	50. 900	1. 00 57. 45
	ATOM	150	NZ	LYS	32	45. 934	23. 610	51. 002	1. 00 56. 65
	ATOM	151	C	LYS	32	39. 740	25. 995	51. 308	1. 00 43. 99
15	ATOM	152	0	LYS	32	39. 260	26. 407	50. 246	1. 00 43. 34
	ATOM	153	N	VAL	33	39. 306	24. 901	51. 925	1. 00 43. 47
	ATOM	154	CA	VAL	33	38. 218	24. 100	51. 382	1. 00 40. 87
	ATOM	155	CB	VAL	33	37. 895	22. 927	52. 310	1. 00 40. 53
	ATOM	156	CG1	VAL	33	36. 977	21. 939	51. 604	1. 00 40. 20
20	ATOM	157	CG2	VAL	33	39. 183	22. 248	52. 729	1. 00 40. 29
	ATOM	158	C	VAL	33	36. 994	24. 981	51. 226	1. 00 39. 39
	ATOM	159	0	VAL	33	36. 370	25. 011	50. 165	1. 00 37. 22
	ATOM	160	N	MET	34	36. 675	25. 707	52. 290	1. 00 39. 46
	ATOM	161	CA	MET	34	,35 . 539	26. 609	52. 288	1. 00 42. 17
25	ATOM	162	CB	MET	34	35. 515	27. 460	53. 555	1. 00 43. 81
	ATOM	163	CG	MET	34	34. 259	28. 305	53. 656	1. 00 48. 81
	ATOM	164	SD	MET	34	34. 302	29. 606	54. 908	1. 00 56. 60
	ATOM	165	CE	MET	34	34. 576	31. 074	53. 859	1. 00 55. 54
	ATOM	166	C	MET	34	35. 612	27. 535	51. 086	1. 00 43. 35

- 150 -

	ATOM	167	0	MET	34	34. 626	27. 735	50. 383	1. 00 43. 86
	ATOM	168	N	ARG	35	36. 785	28. 104	50. 847	1. 00 44. 90
	ATOM	169	CA	ARG	35	36. 938	29. 015	49. 729	1. 00 45. 60
	ATOM	170	CB	ARG	35	38. 286	29. 727	49. 815	1. 00 49. 40
5	ATOM	171	CG	ARG	35	38. 459	30. 563	51. 075	1. 00 53. 81
	ATOM	172	CD	ARG	35	38. 231	32. 052	50. 851	1. 00 57. 78
	ATOM	173	NE	ARG	35	38. 483	32. 807	52. 077	1. 00 63. 20
	ATOM	174	CZ	ARG	35	39. 587	32. 696	52. 820	1. 00 65. 30
	ATOM	175	NH	1 ARG	35	40. 557	31. 854	52. 466	1. 00 64. 80
10	ATOM	176	NH	2 ARG	3 5	39. 720	33. 425	53. 925	1. 00 66. 89
	ATOM	177	C	ARG	35	36. 814	28, 262	48. 418	1. 00 44. 08
	ATOM	178	0	ARG	35	35. 977	28. 605	47. 586	1. 00 43. 75
	ATOM	179	N	ARG	36	37. 633	27. 227	48. 245	1. 00 43. 43
	ATOM	180	CA	ARG	36	37. 612	26. 418	47. 026	1. 00 43. 94
15	ATOM	181	CB	ARG	36	38. 547	25. 212	47. 174	1. 00 44. 76
	ATOM	182	CG	ARG	36	40. 020	25. 580	47. 244	1. 00 44. 66
	ATOM	183	CD	ARG	36	40. 898	24. 392	47. 617	1. 00 44. 20
	ATOM	184	NE	ARG	36	41. 728	23. 919	46. 512	1. 00 44. 66
	ATOM	185	CZ	ARG	36	42. 890	23. 292	46. 678	1. 00 45. 10
20	ATOM	186	NH1	ARG	36	43. 350	23. 075	47. 900	1. 00 44. 34
	ATOM	187	NH2	ARG	3 6	43. 590	22. 870	45. 631	1. 00 45. 47
	ATOM	188	C	ARG	36	36. 202	25. 941	46. 660	1. 00 43. 73
	ATOM	189	0	ARG	36	35. 921	25. 645	45. 497	1. 00 43. 31
	ATOM	190	N	MET	37	35. 324	25. 851	47. 656	1. 00 42. 87
25	ATOM	191	CA	MET	37	33. 946	25. 440	47. 413	1. 00 41. 30
	ATOM	192	CB	MET	37	33. 222	25. 136	48. 726	1. 00 43. 30
	ATOM	193	CG	MET 3	37	31. 782	24. 636	48. 556	1. 00 45. 16
	ATOM	194	SD	MET :	37	31. 646	22. 826	48. 280	1. 00 52. 61
	ATOM	195	CE	MET 3	37	31. 892	22. 708	46. 492	1. 00 46. 47

- 151 -

	ATOM	196	6 C	MET	37	33. 249	26. 603	46. 723	1. 00 39. 52
	ATOM	197	0	MET	37	32. 702	26. 458	45. 635	1. 00 39. 06
	ATOM	198	3 N	GLN :	38	33. 275	27. 767	47. 359	1. 00 37. 22
	ATOM	199	CA	GLN 3	38	32. 637	28. 927	46. 776	1. 00 35. 67
5	ATOM	200	CB	GLN 3	38	32. 874	30. 155	47. 643	1. 00 36. 29
	ATOM	201	CG	GLN 3	38	32. 128	30. 122	48. 950	1. 00 37. 44
	ATOM	202	CD	GLN 3	38	32. 689	31. 108	49. 950	1. 00 41. 99
	ATOM	203	0E	1 GLN 3	38	33. 841	30. 992	50. 376	1. 00 44. 33
	ATOM	204	NE	2 GLN 3	38	31. 880	32. 091	50. 331	1. 00 44. 58
10	ATOM	205	C	GLN 3	38	33. 184	29. 155	45. 382	1. 00 35. 21
	ATOM	206	0	GLN 3	38	32. 454	29. 557	44. 486	1. 00 34. 82
	ATOM	207	N	LYS 3	39	34. 467	28. 884	45. 188	1. 00 36. 41
	ATOM	208	CA	LYS 3	19	35. 069	29. 081	43. 875	1. 00 38. 60
	ATOM	209	CB	LYS 3	9	36. 560	28. 708	43. 888	1. 00 42. 47
15	ATOM	210	CG	LYS 3	9	37. 395	29. 263	42. 714	1. 00 45. 02
	ATOM	211	CD	LYS 3	9	37. 638	30. 775	42. 861	1. 00 49. 54
	ATOM	212	CE	LYS 3	9	38. 523	31. 365	41. 752	1. 00 51. 65
	ATOM	213	NZ	LYS 39	9	38. 621	32. 865	41. 821	1. 00 53. 58
	ATOM	214	С	LYS 39	9	34. 339	28. 196	42. 884	1. 00 38. 31
20	ATOM	215	0	LYS 39	9	34. 229	28. 534	41.710	1. 00 40. 28
	ATOM	216	N	GLU 40	0	33. 827	27. 066	43. 369	1. 00 37. 21
	ATOM	217	CA	GLU 40)	33. 117	26. 107	42. 525	1. 00 34. 69
	ATOM	218	CB	GLU 40		33. 329	24. 705	43.072	1. 00 32. 80
	ATOM	219	CG	GLU 40		34. 742	24. 245	42. 900	1. 00 33. 53
25	ATOM	220	CD	GLU 40		35. 164	24. 348	41. 459	1. 00 36. 48
	ATOM	221		GLU 40		34. 318	24. 044	40. 589	1. 00 39. 36
	ATOM	222		GLU 40		36. 326	24. 720	41. 187	1. 00 37. 18
	ATOM	223	С	GLU 40		31. 632	26. 387	42. 375	1. 00 34. 48
	ATOM	224	0	GLU 40		31. 040	26. 110	41. 332	1. 00 32. 30

- 152 -

	ATOM	225	N	ME	141	31. 030	26. 928	43. 425	1. 00 35. 61
	ATOM	226	CA	MET	141	29. 621	27. 256	43. 373	1. 00 39. 30
	ATOM	227	CB	MET	41	29. 155	27. 852	44. 692	1. 00 39. 16
	ATOM	228	CG	MET	41	29. 146	26. 910	45. 867	1. 00 40. 71
5	ATOM	229	SD	MEI	41	27. 930	27. 569	47. 040	1. 00 46. 34
	ATOM	230	CE	ME1	41	28. 978	28. 338	48. 243	1. 00 46. 54
	ATOM	231	C	MET	41	29. 336	28. 258	42. 251	1. 00 42. 24
	ATOM	232	0	MET	41	28. 358	28. 113	41. 517	1. 00 44. 97
	ATOM	233	N	ASP	42	30. 173	29. 284	42. 118	1. 00 43. 47
10	ATOM	234	CA	ASP	42	29. 952	30. 274	41. 069	1. 00 42. 69
	ATOM	235	CB	ASP	42	30. 848	31. 497	41. 249	1. 00 44. 70
	ATOM	236	CG	ASP	42	30. 548	32. 254	42. 523	1. 00 49. 63
	ATOM	237	0D 1	ASP	42	31. 352	32. 128	43. 477	1. 00 52. 14
•	ATOM	238	0D2	ASP	42	29. 510	32. 968	42. 572	1. 00 49. 66
15	ATOM	239	C	ASP	42	30. 248	29. 641	39. 739	1. 00 41. 40
	ATOM	240	0	ASP	42	29. 550	29. 880	38. 759	1. 00 41. 06
	ATOM	241	N	ARG	43	31. 289	28. 826	39. 707	1. 00 39. 70
	ATOM	242	CA	ARG	43	31.668	28. 171	38. 477	1. 00 39. 99
	ATOM	243	CB	ARG	43	32. 835	27. 227	38. 739	1. 00 43. 98
20	ATOM	244	CG	ARG	43	33. 329	26. 482	37. 516	1. 00 49. 72
	ATOM	245	CD	ARG	43	34. 636	25. 777	37. 831	1. 00 55. 67
	ATOM	246	NE	ARG	43	34. 962	24. 746	36. 854	1. 00 62. 98
	ATOM	247	CZ	ARG	43	36. 062	24. 002	36. 899	1. 00 67. 95
	ATOM	248	NH 1	ARG	43	36. 950	24. 178	37. 877	1. 00 69. 41
25	ATOM	249	NH2	ARG	43	36. 269	23. 075	35. 969	1. 00 70. 32
	ATOM	250	C	ARG	43	30. 488	27. 417	37. 881	1. 00 38. 35
	ATOM	251	0	ARG	43	30. 253	27. 493	36. 677	1. 00 38. 07
	ATOM	252	N	GLY	44	29. 739	26. 709	38. 728	1. 00 36. 44
	ATOM	253	CA	GLY	44	28. 592	25. 938	38. 262	1. 00 32. 80

- 153 -

	ATOM	254	C	GLY	44	27.	344	26.	772	38	062	1. 0	0	31.	71
	ATOM	255	0	GLY	44	26.	483	26.	448	37.	251	1. 0	0	30.	43
	ATOM	256	N	LEU	45	27.	258	27.	854	38.	820	1. 0	0	31.	23
	ATOM	257	CA	LEU	45	26.	144	28.	774	38.	761	1. 0	0	31.	72
5	ATOM	258	CB	LEU	45	26.	168	29.	638	40.	010	1. 0	0	30.	96
	ATOM	259	CG	LEU	45	25.	063	29.	363	41.	013	1. 0	0	34.	38
	ATOM	260	CD1	LEU	45	25.	346	30.	066	42.	334	1. 0	0	34.	74
	ATOM	261	CD2	LEU	45	23.	750	29.	849	40.	413	1. 0	0	37.	12
	ATOM	262	C	LEU	45	26.	204	29.	666	37.	517	1. 0	0	33.	39
10	ATOM	263	0	LEU	45	25.	184	30.	211	37.	086	1. 0	0	34.	01
	ATOM	264	N	ARG	46	27.	402	29.	813	36.	955	1. 0	0	34.	39
	ATOM	265	CA	ARG	46	27.	628	30.	651	35.	774	1. 0	0	37.	39
	ATOM	266	CB	ARG	46	29.	092	31.	140	35.	744	1. 0	0	42 .	80
	ATOM	267	CG	ARG	46	29.	463	32.	067	34.	562	1. 0	0	48.	17
15	ATOM	268	CD	ARG	46	30.	951	32.	487	34.	546	1. 0	0	49.	35
	ATOM	269	NE	ARG	46	31.	250	33.	400	33.	441	1. 0	0	54.	04
	ATOM	270	CZ	ARG	46	30.	599	34.	542	33.	216	1. 00	0	57.	98
	ATOM	271	NH1	ARG	46	29.	608	34.	915	34.	019	1. 00)	56.	34
	ATOM	272	NH2	ARG	46	30.	936	35.	316	32.	187	1. 00) !	59.	91
20	ATOM	273	C	ARG	46	27.	301	29.	920	34.	477	1. 00) ;	37.	53
	ATOM	274	0	ARG	46	27.	773	28.	804	34.	243	1. 00) ;	38.	11
	ATOM	275	N	LEU	47	26.	515	30.	573	33.	623	1. 00) ;	36. 4	42
	ATOM	276	CA	LEU	47	26.	089	29.	993	32.	350	1. 00) ;	35. 8	32
	ATOM	277	CB	LEU	47	25.	151	30.	957	31.	617	1. 00) 3	31. 4	1 5
25	ATOM	278	CG	LEU -	47	24.	771	30.	548	30.	196	1. 00) 2	29. 6	38
	ATOM	279	CD1	LEU -	47	24.	031	29.	240	30.	230	1. 00) 2	28. 9)3
	ATOM	280	CD2	LEU -	47	23.	929	31.	322	29.	559	1. 00) 2	8. 8	33
	ATOM	281	C	LEU -	47	27.	223	29. 5	578	31.	418	1. 00) 3	37. 1	4
	ATOM	282	0	LEU 4	47	27.	152	28. 5	534	30.	764	1. 00) 3	6. 4	11

- 154 -

						1	04		
	ATOM	283	N	GLU	48	28. 272	30. 383	31. 347	1. 00 39. 28
	ATOM	284	CA	GLU	48	29. 371	30. 034	30. 462	1. 00 42. 38
	ATOM	285	CB	GLU	48	30. 448	31. 126	30. 473	1. 00 43. 91
	ATOM	286	CG	GLU	48	30. 126	32. 354	29. 631	1. 00 46. 02
5	ATOM	287	CD	GLU	48	29. 022	33. 215	30. 221	1. 00 48. 71
	ATOM	288	0E1	GLU	48	28. 581	34. 157	29. 524	1. 00 48. 10
	ATOM	289	0E2	GLU	48	28. 600	32. 959	31. 375	1. 00 49. 31
	ATOM	290	C	GLU	48	30. 005	28. 691	30. 809	1. 00 43. 42
	ATOM	291	0	GLU	48	30. 593	28. 045	29. 939	1. 00 43. 61
10	ATOM	292	N	THR	49	29. 873	28. 262	32. 066	1. 00 44. 28
	ATOM	293	CA	THR	49	30. 484	26. 999	32. 508	1. 00 46. 81
	ATOM	294	CB	THR	49	31. 761	27. 267	33. 366	1. 00 47. 70
	ATOM	295	0G1	THR	49	31. 477	28. 265	34. 356	1. 00 45. 18
	ATOM	296	CG2	THR	49	32. 921	27. 739	32. 486	1. 00 48. 17
15	ATOM	297	C	THR	49	29. 595	26. 024	33. 293	1. 00 46. 50
	ATOM	298	0	THR	49	30. 043	24. 932	33. 683	1. 00 45. 72
	ATOM	299	N	HIS	50	28. 340	26. 405	33. 508	1. 00 44. 18
	ATOM	300	CA	HIS	50	27. 416	25. 565	34. 262	1. 00 41. 93
	ATOM	301	CB	HIS	50	25. 980	26. 129	34. 190	1. 00 38. 83
20	ATOM	302	CG	HIS	50	25. 217	25. 754	32. 953	1. 00 35. 50
	ATOM	303	CD2	HIS	50	23. 950	25. 304	32. 795	1. 00 33. 70
	ATOM	304	ND1	HIS	50	25. 730	25. 894	31. 682	1. 00 36. 24
	ATOM	305	CE1	HIS	50	24. 812	25. 550	30. 796	1. 00 33. 56
	ATOM	306	NE2	HIS	50	23. 722	25. 189	31. 446	1. 00 32. 06
25	ATOM	307	C	HIS	50	27. 447	24. 117	33. 804	1. 00 41. 73
	ATOM	308	0	HIS	50	27. 144	23. 212	34. 572	1. 00 41. 14
	ATOM	309	N	GLU	51	27. 848	23. 883	32. 566	1. 00 42. 00
	ATOM	310	CA	GLU	51	27. 863	22. 519	32. 103	1. 00 45. 79
	ATOM	311	CB	GLU	51	27. 573	22. 463	30. 617	1. 00 46. 76

- 155 -

	ATOM	312	CG	GLU	51	27. 523	21. 048	30, 100	1. 00 50. 98
	ATOM	313	CD			26. 521			1. 00 53. 94
	ATOM	314	0E1	GLU	51	25. 313	21. 082		
	ATOM	315			51		20. 560		
5	ATOM	316	C	GLU	51	29. 139	21. 757	32. 402	1. 00 48. 17
	ATOM	317	0	GLU	51	29. 094	20. 657	32. 953	1. 00 49. 35
	ATOM	318	N	GLU	52	30. 276	22. 331		1. 00 50. 75
	ATOM	319	CA	GLU	52	31. 565	21. 681		
	ATOM	320	CB	GLU	52	32. 633	22. 321	31. 352	1. 00 56. 66
10	ATOM	321	CG	GLU	52	32. 768	23. 854	31. 476	1. 00 63. 81
	ATOM	322	CD	GLU	52	33. 420	24. 528	30. 253	1. 00 67. 84
	ATOM	323	0E1	GLU	52	33. 601	25. 770	30. 278	1. 00 68. 83
	ATOM	324	0E2	GLU	52	33. 742	23. 826	29. 266	1. 00 70. 00
	ATOM	325	C	GLU	52	31. 982	21. 760	33. 738	1. 00 49. 95
15	ATOM	326	0	GLU	52	33. 013	21. 215	34. 132	1. 00 47. 47
	ATOM	327	N	ALA	53	31. 162	22. 429	34. 548	1. 00 48. 46
	ATOM	328	CA	ALA	53	31. 449	22. 594	35. 972	1. 00 47. 88
	ATOM	329	CB	ALA	53	30. 418	23. 510	36. 615	1. 00 47. 30
	ATOM	330	C	ALA	53	31. 510	21. 278	36. 731	1. 00 46. 84
20	ATOM	331	0	ALA	53	31. 287	20. 206	36. 172	1. 00 48. 51
	ATOM	332	N	SER	54	31. 816	21. 353	38. 016	1. 00 44. 67
	ATOM	333	CA	SER	54	31. 895	20. 133	38. 792	1. 00 42. 38
	ATOM	334	CB	SER	54	33. 201	20. 090	39. 581	1. 00 44. 26
	ATOM	335	0G	SER	54	33. 290	18. 883	40. 316	1. 00 45. 49
25	ATOM	336	C	SER	54	30. 712	20. 059	39. 734	1. 00 39. 72
	ATOM	337	0	SER	54	30. 058	19. 028	39. 841	1. 00 41. 09
	ATOM	338	N	VAL	55	30. 440	21. 165	40. 411	1. 00 34. 77
	ATOM	339	CA	VAĻ	55	29. 326	21. 239	41. 343	1. 00 30. 58
	ATOM	340	СВ	VAL	55	29. 682	22. 186	42. 498	1. 00 28. 73

- 156 -

							, 0		
	ATOM	341	CG	l VAL	55	28. 480	22. 433	43. 383	1. 00 30. 75
	ATOM	342	CG2	VAL	55	30. 814	21. 596	43. 297	1. 00 25. 80
	ATOM	343	C	VAL	55	28. 094	21. 760	40. 597	1. 00 30. 28
	ATOM	344	0	VAL	55	27. 704	22. 920	40. 745	1. 00 32. 16
5	ATOM	345	N	LYS	56	27. 482	20. 887	39. 803	1. 00 26. 82
	ATOM	346	CA	LYS	56	26. 323	21. 235	38. 986	1. 00 21. 66
	ATOM	347	CB	LYS	56	25. 362	20. 046	38. 891	1. 00 26. 53
	ATOM	348	CG	LYS	56	25. 936	18. 737	38. 337	1. 00 29. 32
	ATOM	349	CD	LYS	56	26. 311	18. 836	36. 875	1. 00 29. 86
10	ATOM	350	CE	LYS	56	27. 609	19. 592	36. 698	1. 00 29. 73
	ATOM	351	NZ	LYS	56	27. 932	19. 759	35. 259	1. 00 32. 80
	ATOM	352	C	LYS	56	25. 520	22. 470	39. 374	1. 00 17. 56
	ATOM	353	0	LYS	56	25. 133	23. 236	38. 498	1. 00 15. 95
	ATOM	354	N	MET	57	25. 257	22. 660	40. 665	1. 00 14. 30
15	ATOM	355	CA	MET	57	24. 462	23. 803	41. 128	1. 00 12. 73
	ATOM	356	CB	MET	57	25. 277	25. 089	41. 059	1. 00 9. 92
	ATOM	357	CG	MET	57	26. 515	25. 090	41. 930	1. 00 6. 47
	ATOM	358	SD	MET	57	26. 219	25. 164	43. 694	1. 00 8. 00
	ATOM	359	CE	MET	57	25. 523	26. 842	43. 905	1. 00 1. 00
20	ATOM	360	C	MET	57	23. 207	23. 953	40. 270	1. 00 14. 05
	ATOM	361	0	MET	57	23. 000	24. 972	39. 610	1. 00 12. 36
	ATOM	362	N	LEU	58	22. 371	22. 923	40. 290	1. 00 17. 80
	ATOM	363	CA	LEU	58	21. 154	22. 914	39. 498	1. 00 19. 02
	ATOM	364	CB	LEU	58	20. 710	21. 466	39. 245	1. 00 18. 03
25	ATOM	365	CG	LEU	58	21. 726	20. 444	38. 720	1. 00 16. 28
	ATOM	366	CD1	LEU	58	21. 193	19. 068	39. 021	1. 00 20. 44
	ATOM	367	CD2	LEU	58	21. 999	20. 608	37. 233	1. 00 15. 03
	ATOM	368	C	LEU	58	20. 005	23. 696	40. 134	1. 00 20. 20
	ATOM	369	0	LEU	58	19. 752	23. 602	41. 340	1. 00 19. 91

- 157 -

	ATOM	370 N	N PRO 59	19. 31	6 24. 507	39. 320	1. 00 20. 57
	ATOM	371 (CD PRO 59	19. 850			1. 00 20. 39
	ATOM	372 C	PRO 59	18. 17			1. 00 22. 50
	ATOM	373 C	B PRO 59				1. 00 22. 07
5	ATOM	374 C	G PRO 59	19. 306		37. 906	
	ATOM	375 C	PRO 59	16. 975	24. 437	40. 010	
	ATOM	376 0	PRO 59	16. 698	23. 504	39. 264	
	ATOM	377 N	THR 60	16. 258			
	ATOM	378 C	A THR 60	15. 133	23. 871	41. 469	
10	ATOM	379 C)	B THR 60	15. 097	23. 607	42. 964	1. 00 22. 35
	ATOM	380 00	G1 THR 60	14. 823			1. 00 24. 53
	ATOM	381 C	G2 THR 60	16. 408			
	ATOM	382 C	THR 60	13. 815	24. 516	41. 160	1. 00 20. 21
	ATOM	383 O	THR 60	12. 793			1. 00 24. 18
15	ATOM	384 N	TYR 61	13. 839		40. 973	
	ATOM	385 CA	TYR 61	12. 628	26. 595	40. 715	1. 00 20. 03
	ATOM	386 CB	TYR 61	11. 955	26. 172	39. 427	1. 00 13. 50
	ATOM	387 CG	TYR 61	12. 581	26. 830	38. 234	1. 00 13. 18
	ATOM	388 CD	1 TYR 61	12. 028	27. 983	37. 666	1. 00 8. 00
20	ATOM	389 CE	1 TYR 61	12. 596	28. 551	36. 536	1. 00 4. 24
	ATOM	390 CD	2 TYR 61	13. 725	26. 281	37. 647	1. 00 14. 04
	ATOM	391 CE	2 TYR 61	14. 296	26. 843	36. 529	1. 00 10. 05
	ATOM	392 CZ	TYR 61	13. 730	27. 963	35. 976	1. 00 5. 80
	ATOM	393 OH	TYR 61	14. 307	28. 423	34. 828	1. 00 4. 54
25	ATOM	394 C	TYR 61	11. 620	26. 572	41. 833	1. 00 21. 95
	ATOM	395 0	TYR 61	10. 437	26. 816	41. 609	1. 00 22. 47
	ATOM	396 N	VAL 62	12. 102	26. 293	43. 037	1. 00 24. 47
	ATOM	397 CA	VAL 62	11. 265	26. 288	44. 218	1. 00 29. 86
	ATOM	398 CB	VAL 62	11.750	25. 231	45. 207	1. 00 28. 92

- 158 -

	ATOM	399	CG	1 VAI	62	10. 780	25. 091	46. 370	1. 00 28. 30
	ATOM	400	CG	2 VAI	62	11. 909	23. 926	44. 480	1. 00 28. 58
	ATOM	401	C	VAI	62	11. 494	27. 680	44. 786	1. 00 34. 67
	ATOM	402	0	VAL	62	11. 584	27. 879	45. 993	1. 00 39. 01
5	ATOM	403	N	ARG	63	11. 589	28. 638	43. 874	1. 00 38. 40
	ATOM	404	CA	ARG	63	11. 847	30. 038	44. 182	1. 00 41. 10
	ATOM	405	CB	ARG	63	12. 041	30. 804	42. 874	1. 00 42. 02
	ATOM	406	CG	ARG	63	10. 794	30. 798	41. 996	1. 00 44. 76
	ATOM	407	CD	ARG	63	11. 072	31. 197	40. 550	1. 00 46. 61
10	ATOM	408	NE	ARG	63	9. 827	31. 366	39. 804	1. 00 48. 56
	ATOM	409	CZ	ARG	63	8. 972	30. 381	39. 541	1. 00 50. 39
	ATOM	410	NH I	l ARG	63	9. 225	29. 145	39. 955	1. 00 50. 83
	ATOM	411	NH2	2 ARG	63	7. 854	30. 635	38. 875	1. 00 51. 11
	ATOM	412	C	ARG	63	10. 788	30. 751	45. 004	1. 00 42. 71
15	ATOM	413	0	ARG	63	9. 790	30. 167	45. 424	1. 00 41. 58
	ATOM	414	N	SER	64	11. 047	32. 036	45. 224	1. 00 46. 12
	ATOM	415	CA	SER	64	10. 155	32. 922	45. 954	1. 00 49. 96
	ATOM	416	CB	SER	64	10. 400	32. 826	47. 454	1. 00 50. 57
	ATOM	417	0G	SER	64	9. 374	33. 507	48. 157	1. 00 53. 70
20	ATOM	418	C	SER	64	10. 435	34. 340	45. 458	1. 00 51. 04
	ATOM	419	0	SER	64	11. 300	35. 047	45. 985	1. 00 50. 38
	ATOM	420	N	THR	65	9. 690	34. 728	44. 425	1. 00 53. 23
	ATOM	421	CA	THR	65	9. 827	36. 031	43. 791	1. 00 54. 89
	ATOM	422	CB	THR	6 5	10. 151	35. 871	42. 281	1. 00 56. 21
25	ATOM	423	0G1			9. 094	35. 158	41. 622	1. 00 55. 23
	ATOM	424	CG2	THR	65	11. 461	35. 112	42. 103	1. 00 56. 71
	ATOM	425	C	THR		8, 582	36. 911	43. 939	1. 00 56. 01
	ATOM	426	0	THR		7. 503	36. 430	44. 291	1. 00 56. 26
	ATOM	427	N	PRO	66	8. 728	38. 222	43. 676	1. 00 56. 49

- 159 **-**

						10			
	ATOM	428	CD	PRO	66	10. 019	38. 866	43. 377	1. 00 56. 96
	ATOM	429	CA	PRO	66	7. 666	39. 228	43. 758	1. 00 56. 28
	ATOM	430	CB	PRO	66	8. 369	40. 502	43. 313	1. 00 57. 08
	ATOM	431	CG	PR0	66	9. 759	40. 287	43786	1. 00 58. 08
5	ATOM	432	C	PRO	66	6. 487	38. 901	42. 864	1. 00 56. 75
	ATOM	433	0	PRO	66	5. 477	39. 604	42. 874	1. 00 57. 23
	ATOM	434	N	GLU	67	6. 631	37. 849	42. 072	1. 00 56. 42
	ATOM	435	CA	GLU	67	5. 540	37. 445	41. 193	1. 00 56. 82
	ATOM	436	CB	GLU	67	6. 048	36. 487	40. 115	1. 00 61. 19
10	ATOM	437	CG	GLU	67	6. 421	35. 108	40. 637	1. 00 66. 99
	ATOM	438	, CD	GLU	67	7. 123	34. 261	39. 594	1. 00 69. 61
	ATOM	439	0E1	GLU	67	8. 253	34. 618	39. 201	1. 00 70. 19
	ATOM	440	0E2	GLU	67	6. 541	33. 241	39. 168	1. 00 70. 18
	ATOM	441	C	GLU	67	4. 406	36. 803	41. 984	1. 00 54. 30
15	ATOM	442	0	GLU	67	3. 241	36. 940	41. 633	1. 00 54. 25
	ATOM	443	N	GLY	68	4. 753	36. 116	43. 076	1. 00 50. 50
	ATOM	444	CA	. GLY	68	3. 741	35. 478	43. 901	1. 00 45. 77
	ATOM	445	C	GLY	68	4. 166	34. 087	44. 316	1. 00 43. 04
	ATOM	446	0	GLY	68	3. 626	33. 503	45. 259	1. 00 40. 69
20	ATOM	447	N	SER	69	5. 154	33. 564	43. 599	1. 00 42. 30
	ATOM	448	CA	SER	69	5. 690	32. 230	43. 845	1. 00 41. 02
	ATOM	449	CB	SER	69	6. 769	31. 902	42. 804	1. 00 41. 03
	ATOM	450	0G	SER	69	6. 438	32. 404	41. 517	1. 00 42. 34
	ATOM	451	C	SER	69	6. 301	32. 126	45. 240	1. 00 39. 68
25	ATOM	452	0	SER	69	7. 163	32. 920	45. 607	1. 00 38. 89
	ATOM	453	N	GLU	70	5. 857	31. 143	46. 014	1. 00 39. 96
	ATOM .	454	CA	GLU	70	6. 388	30. 942	47. 355	1. 00 40. 53
	ATOM	455	CB	GLU	70	5. 26 5	31. 074	48. 391	1. 00 44. 80
	ATOM	456	CG	GLU	70	4. 675	32. 483	48. 492	1. 00 52. 74

- 160 -

	ATOM	457	CD G	LU 70	5. 705	33. 554	48. 900	1. 00 58. 55
	ATOM	458	0E1 G	LU 70	5. 362	34. 763	48. 866	1. 00 59. 55
	ATOM	459	0E2 G	LU 70	6. 852	33. 192	49. 258	1. 00 60. 30
	ATOM	460	C G	LU 70	7. 075	29. 583	47. 483	1. 00 38. 65
5	ATOM	461	0 G	LU 70	6. 807	28. 660	46. 704	1. 00 37. 89
	ATOM	462	N V	AL 71	7. 962	29. 459	48. 466	1. 00 35. 96
	ATOM	463	CA V	AL 71	8. 670	28. 207	48. 653	1. 00 34. 46
	ATOM	464	CB V	AL 71	9. 723	28. 319	49. 755	1. 00 33. 00
	ATOM	465	CG1 V	AL 71	10. 236	26. 949	50. 120	1. 00 33. 91
10	ATOM	466	CG2 V	AL 71	10. 885	29. 152	49. 249	1. 00 32. 56
	ATOM	467	C V	AL 71	7. 730	27. 042	48. 931	1. 00 34. 75
	ATOM	468	0 V	L 71	7. 851	25. 985	48. 310	1. 00 37. 23
	ATOM	469	N GI	Y 72	6. 783	27. 219	49. 841	1. 00 33. 37
	ATOM	470	CA GI	Y 72	5. 842	26. 139	50. 105	1. 00 32. 39
15	ATOM	471	C GI	Y 72	5. 066	25. 644	48. 879	1. 00 31. 10
	ATOM	472	0 GI	Y 72	4. 631	24. 493	48. 859	1. 00 28. 98
	ATOM	473	N AS	P 73	4. 878	26. 503	47. 870	1. 00 31. 05
	ATOM	474	CA AS	P 73	4. 156	26. 129	46. 650	1. 00 31. 14
	ATOM	475	CB AS	P 73	4. 389	27. 147	45. 532	1. 00 34. 00
20	ATOM	476	CG AS	P 73	3. 759	28. 491	45. 817	1. 00 38. 43
	ATOM	477	OD1 AS	P 73	3. 758	29. 355	44. 907	1. 00 41. 88
	ATOM	478	OD2 AS	P 73	3. 262	28. 690	46. 945	1. 00 41. 23
	ATOM	479	C AS	P 73	4. 675	24. 785	46. 189	1. 00 30. 89
	ATOM	480	0 AS	P 73	5. 875	24. 544	46. 256	1. 00 32. 81
25	ATOM	481	N PH	E 74	3. 796	23. 921	45. 694	1. 00 28. 84
	ATOM	482	CA PHI	E 74	4. 233	22. 595	45. 271	1. 00 27. 21
	ATOM	483		E 74	4. 728	21. 834	46. 502	1. 00 26. 13
	ATOM	484	CG PHI	E 74	5. 407	20. 551	46. 185	1. 00 25. 61
	ATOM	485	CD1 PHI	74	6. 641	20. 546	45. 547	1. 00 29. 29

- 161 -

	ATOM	486	CD2	PHE	74	4. 805	19. 344	46. 496	1. 00	24. 94
	ATOM	487	CE1	PHE	74	7. 259	19. 354	45. 213	1. 00	31. 36
	ATOM	488	CE2	PHE	74	5. 408	18. 149	46. 168	1. 00	27. 38
	ATOM	489	CZ	PHE	74	6. 640	18. 149	45. 527	1. 00	30. 18
5	ATOM	490	C	PHE	74	3. 080	21. 837	44. 604	1. 00	27. 31
	ATOM	491	0	PHE	74	1. 912	22. 034	44. 951	1. 00	28. 04
	ATOM	492	N	LEU	75	3. 402	20. 965	43. 654	1. 00	23. 99
	ATOM	493	CA	LEU	75	2. 370	20. 214	42. 958	1. 00	20. 00
	ATOM	494	CB	LEU	75	2. 222	20. 725	41. 534	1. 00	19. 88
10	ATOM	495	CG	LEU	75	0.868	20. 487	40. 865	1. 00	21. 27
	ATOM	496	CD1	LEU	75	1. 083	20. 282	39. 354	1. 00	19. 58
	ATOM	497	CD2	LEU	75	0. 190	19. 279	41. 474	1. 00	18. 85
	ATOM	498	C	LEU	75	2. 755	18. 758	42. 911	1. 00	18. 82
	ATOM	499	0	LEU	75	3. 587	18. 369	42. 102	1. 00	19. 49
15	ATOM	500	N	SER	76	2. 143	17. 957	43. 774	1. 00	21. 08
	ATOM	501	CA	SER	76	2. 434	16. 530	43. 834	1. 00	22. 49
	ATOM	502	CB	SER	76	2. 333	16. 001	45. 261	1. 00	22. 74
	ATOM	503	0G	SER	76	2. 591	14. 612	45. 292	1. 00	20. 37
	ATOM	504	C	SER	76	1. 507	15. 720	42. 967	1. 00	23. 58
20	ATOM	505	0	SER	76	0. 309	15. 980	42. 866	1. 00	23. 06
	ATOM	506	N	LEU	77	2. 064	14. 686	42. 378	1. 00	25. 35
	ATOM	507	CA	LEU	77	1. 280	13. 862	41. 509	1. 00	27. 55
	ATOM	508	CB	LEU	77	1. 758	14. 122	40. 089	1. 00	29. 38
	ATOM	509	CG	LEU	77	1. 176	13. 275	38. 980	1. 00	32. 75
25	ATOM	510	CD1	LEU	77	-0. 334	13. 434	38. 974	1. 00	34. 55
	ATOM	511	CD2	LEU	77	1. 796	13. 695	37. 661	1. 00	32. 83
	ATOM	512	C	LEU	77	1. 445	12. 402	41. 913	1. 00	28. 86
	ATOM	513	0	LEU	77	2. 527	11. 826	41. 760	1. 00	26. 84
	ATOM	514	N	ASP	78	0. 386	11. 811	42. 465	1. 00	29. 41

- 162 -ATOM 515 CA ASP 78 0. 457 10. 407 42. 865 1. 00 30. 41 ATOM 516 CB ASP 78 -0.15010. 186 44. 255 1. 00 31. 87 ATOM 517 CG ASP 78 -0.2868. 702 44.606 1. 00 33. 99 ATOM OD1 ASP 78 518 -1.0257. 993 43.894 1. 00 35. 38 ATOM OD2 ASP 78 5 519 0.338 8. 241 45.586 1. 00 33. 31 ATOM 520 С ASP 78 -0.2709. 530 41.860 1. 00 29. 41 ATOM 521 0 ASP 78 -1.4849. 587 41. 732 1. 00 29. 74 ATOM 522 N LEU 79 0. 472 8. 710 41. 143 1. 00 27. 93 **ATOM** 523 CA LEU 79 -0.1697.858 40. 184 1. 00 28. 08 10 ATOM 524 CB LEU 79 0.323 8. 173 38. 781 1. 00 25. 78 ATOM 525 CG LEU 79 1.676 7. 627 38. 371 1. 00 24. 57 ATOM CD1 LEU 79 526 1. 845 7.871 36. 904 1. 00 25. 82 ATOM CD2 LEU 79 527 2. 779 8. 274 39. 166 1. 00 26. 37 ATOM 528 C LEU 79 6. 420 0. 114 40. 548 1. 00 31. 25 ATOM 529 0 LEU 79 1. 265 6.017 1.00 32.14 40. 712 ATOM 530 **GLY 80** N -0. 955 5. 652 40.699 1.00 34.99 ATOM 531 CA GLY 80 4. 259 -0. 812 41.056 1. 00 38. 29 ATOM 532 C GLY 80 -2.0883. 499 1. 00 40. 81 40. 776 ATOM 533 0 **GLY 80** -3.1003. 686 41. 452 1. 00 40. 77 ATOM 534 N GLY 81 -2.0382. 642 39. 765 1. 00 43. 19 ATOM 535 CA GLY 81 -3.1971.850 39. 422 1. 00 45. 84 **ATOM** 536 C **GLY 81** -3.9362. 428 38. 244 1. 00 49. 22 ATOM 5370 **GLY 81** -3.3282.825 37. 241 1. 00 49. 20 ATOM 538N THR 82 -5.2602. 465 38. 365 1. 00 51. 93 **ATOM** 539 CA THR 82 -6. 117 3.003 37. 312 1.00 54.41

-7.344

-6.908

-8. 043

-6.584

2. 090

0.727

2.473

4. 382

37.060

36. 952

35. 752

37. 759

1. 00 56. 74

1. 00 60. 43

1. 00 58. 23

1. 00 52. 48

15

20

25

ATOM

ATOM

ATOM

ATOM

540

541

542

543 C

CB

THR 82

THR 82

0G1 THR 82

CG2 THR 82

- 163 -

						• `	, ,		
	ATOM	544	0	THR	82	-7. 308	5. 077	37. 046	1. 00 52. 21
	ATOM	545	N	ASN	83	-6. 148	4. 778	38. 946	1. 00 50. 63
	ATOM	546	CA	ASN	83	-6. 523	6. 071	39. 466	1. 00 50. 52
	ATOM	547	CB	ASN	83	-7. 574	5. 911	40. 568	1. 00 53. 97
5	ATOM	548	CG	ASN	83	-8. 955	5. 560	40. 020	1. 00 58. 88
	ATOM	549	OD1	ASN	83	-9. 508	6. 290	39. 190	1. 00 60. 51
	ATOM	550	ND2	ASN	83	-9. 521	4. 444	40. 489	1. 00 60. 30
	ATOM	551	C	ASN	83	-5. 338	6. 861	39. 997	1. 00 48. 79
	ATOM	552	0	ASN	83	-4. 682	6. 442	40. 956	1. 00 48. 09
10	ATOM	553	N	PHE	84	-5. 068	8. 003	39. 356	1. 00 45. 51
	ATOM	554	CA	PHE	84	-3. 995	8. 907	39. 772	1. 00 40. 32
	ATOM	555	CB	PHE	84	-2. 998	9. 145	38. 644	1. 00 39. 20
	ATOM	556	CG	PHE	84	-3. 436	10. 175	37. 652	1. 00 39. 52
	ATOM	557	CD1	PHE	84	-4. 096	9. 802	36. 494	1. 00 40. 87
15	ATOM	558	CD2	PHE	84	-3. 159	11. 524	37. 860	1. 00 39. 69
	ATOM	559	CE1	PHE	84	-4. 479	10. 758	35. 549	1. 00 41. 79
	ATOM	560	CE2	PHE	84	-3. 540	12. 490	36. 922	1. 00 40. 16
	ATOM	561	CZ	PHE	84	-4. 198	12. 105	35. 762	1. 00 40. 38
	ATOM	562	C	PHE	84	-4. 604	10. 246	40. 176	1. 00 37. 84
20	ATOM	563	0	PHE	84	-5. 405	10. 806	39. 439	1. 00 37. 11
	ATOM	564	N	ARG	85	-4. 216	10. 762	41. 338	1. 00 36. 37
	ATOM	565	CA	ARG	85	-4. 738	12. 032	41. 840	1. 00 35. 14
	ATOM	566	CB	ARG	85	-5. 496	11. 779	43. 136	1. 00 39. 80
	ATOM	567	CG	ARG	85	-4. 888	10. 677	43. 970	1. 00 47. 71
25	ATOM	568	CD	ARG	85	-5. 948	9. 964	44. 805	1. 00 55. 73
	ATOM	569	NE	ARG	85	-5. 391	8. 801	45. 493	1. 00 62. 76
	ATOM	570	CZ	ARG	85	-4. 799	7. 772	44. 883	1. 00 65. 65
	ATOM	571	NH1	ARG	85	-4. 684	7. 749	43. 557	1. 00 63. 79
	ATOM	572	NH2	ARG	85	-4. 314	6. 765	45. 605	1. 00 66. 67

- 164 -

						10	7			
	ATOM	573	C	ARG	85	-3.664	13. 088	42. 075	1. 00	32. 14
	ATOM	574	0	ARG	85	-2. 561	12. 772	42. 522	1. 00	32. 77
	ATOM	575	N	VAL	86	-3. 977	14. 345	41. 778	1. 00	27. 45
	ATOM	576	CA	VAL	86	-2. 997	15. 405	41. 983	1. 00	26. 49
5	ATOM	577	CB	VAL	86	-2. 975	16. 400	40. 821	1.00	24. 77
	ATOM	578	CG1	VAL	86	-3. 033	15. 655	39. 510	1. 00	26. 70
	ATOM	579	CG2	VAL	86	-4. 109	17. 373	40. 948	1. 00	24. 73
	ATOM	580	C	VAL	86	-3. 292	16. 177	43. 257	1. 00	26.66
	ATOM	581	0	VAL	86	-4. 401	16. 121	43. 779	1. 00	28.06
10	ATOM	582	N	MET	87	-2. 289	16. 888	43. 757	1. 00	26. 93
	ATOM	583	CA	MET	87	-2. 427	17. 677	44. 973	1. 00	25. 08
	ATOM	584	CB	MET	87	-1. 748	16. 979	46. 138	1. 00	25. 05
	ATOM	585	CG	MET	87	-1. 674	17. 833	47. 375	1. 00	24. 83
	ATOM	586	SD	MET	87	-0. 509	17. 090	48. 503	1. 00	30. 68
15	ATOM	587	CE	MET	87	-1. 544	16. 749	49. 894	1. 00	29. 41
	ATOM	588	C	MET	87	-1. 768	19. 021	44. 774	1. 00	24. 52
	ATOM	589	0	MET	87	-0. 638	19. 097	44. 298	1. 00	27. 12
	ATOM	590	N	LEU	88	-2. 455	20. 087	45. 146	1. 00	22. 16
	ATOM	591	CA	LEU	88	-1. 872	21. 398	44. 975	1. 00	20. 70
20	ATOM	592	CB	LEU	88	-2. 825	22. 309	44. 230	1. 00	20. 34
	ATOM	593	CG	LEU	88	-2. 178	23. 663	43. 991	1. 00	23. 49
	ATOM	594	CD1	LEU	88	-0.806	23. 470	43. 354	1. 00	24. 39
	ATOM	595	CD2	LEU	88	-3. 078	24. 493	43. 094	1. 00	25. 91
	ATOM	596	C	LEU	88	-1. 535	22. 021	46. 301	1. 00	19. 94
25	ATOM	597	0	LEU	88	-2. 225	21. 794	47. 282	1. 00	21. 18
	ATOM	598	N	VAL	89	-0. 463	22. 799	46. 343	1. 00	20. 16
	ATOM	599	CA	VAL	89 .	-0. 082	23. 462	47. 580	1. 00	21. 15
	ATOM	600	CB	VAL	89	0. 984	22. 676	48. 357	1. 00	14. 95
	ATOM	601	CG1	VAL	89	1. 292	23. 385	49. 657	1. 00	7. 73

ATOM

ATOM

629

630

CD

GLU 93

0E1 GLU 93

0. 218

-0.877

39. 120

39. 688

53. 795

54. 018

1.00 84.34

1.00 84.71

- 165 -**ATOM** 602 CG2 VAL 89 0. 515 21. 268 48, 609 1. 00 10. 59 ATOM 603 C **VAL 89** 0. 491 24. 829 47. 254 1. 00 27. 10 ATOM 604 0 VAL 89 1. 410 24. 939 46.442 1. 00 27. 22 ATOM LYS 90 605 N -0.06625. 866 47.875 1.00 33.21 5 ATOM 606 CA LYS 90 0.401 27. 235 47. 671 1.00 40.01 ATOM 607 CBLYS 90 27.962 -0. 443 46.604 1. 00 41. 03 **ATOM** 608 CG LYS 90 -1.94127.979 46.850 1. 00 47. 19 ATOM CD 609 LYS 90 -2.74928. 454 45. 622 1. 00 52. 33 ATOM CE 610 LYS 90 -4.27428. 393 45. 899 1. 00 55. 73 **ATOM** 10 611 NZ LYS 90 -5.16128. 724 44. 731 1. 00 56. 02 ATOM 612 C LYS 90 0. 384 28.009 48.981 1.00 43.61 **ATOM** 613 0 LYS 90 -0.57727. 943 49. 747 1. 00 44. 04 **ATOM** 614 N VAL 91 1.469 28. 728 49. 241 1. 00 47. 88 ATOM 615 CA VAL 91 1. 587 29.513 50.458 1. 00 51. 82 15 ATOM 616 CB VAL 91 3.059 29. 780 50. 788 1. 00 51. 29 ATOM 617 CG1 VAL 91 3. 160 30. 748 51. 947 1. 00 54. 88 ATOM 618 CG2 VAL 91 3. 749 28. 479 51. 137 1. 00 48. 18 ATOM 619 C VAL 91 0.849 30. 846 50. 355 1. 00 55. 01 ATOM 620 0 VAL 91 0. 994 31. 569 49. 369 1. 00 54. 57 20 ATOM 621 N GLY 92 0.060 31. 157 51. 382 1.00 59.16 ATOM 622CA **GLY 92** -0.69632. 396 51.401 1. 00 64. 58 **ATOM** 623C GLY 92 -0.30533. 297 52. 558 1.00 68.39 ATOM 624 0 **GLY 92** 0.637 32. 992 53. 295 1. 00 66. 92 ATOM 625 N **GLU 93** -1.02534. 410 52. 712 1. 00 73. 13 25 ATOM 626 CA GLU 93 -0.75135. 351 53. 792 1. 00 78. 27 ATOM 627 **GLU 93** CB -0.62336. 780 53. 248 1.00 79.11 ATOM 628 CG GLU 93 0. 334 37.635 54.077 1.00 82.44

- 166 -

	ATOM	631	0E2 G	LU 93	1. 228	39. 718	53. 359	1. 00 85. 45
	ATOM	632	C G	LU 93	-1. 813	35. 309	54. 904	1. 00 80. 72
	ATOM	633	0 G1	LU 93	-1.469	35. 340	5 6 . 086	1. 00 81. 42
	ATOM	634	N GI	Y 94	-3. 093	35. 240	54. 536	1. 00 83. 03
5	ATOM	635	CA GI	Y 94	-4. 153	35. 182	55. 538	1. 00 85. 37
	ATOM	636	C GI	Y 94	-4. 867	36. 502	55. 792	1. 00 87. 51
	ATOM	637	0 GI	Y 94	-4. 356	37. 562	55. 430	1. 00 88. 65
	ATOM	638	N GL	U 95	-6. 041	36. 447	56. 427	1. 00 88. 43
	ATOM	639	CA GL	U 95	-6. 831	37. 653	56. 716	1. 00 88. 66
10	ATOM	640	CB GL	U 95	-8. 192	37. 281	57. 328	1. 00 89. 61
	ATOM	641	CG GL	U 95	-9. 077	36. 406	56. 448	1. 00 90. 41
	ATOM	642	CD GL	U 95	-8. 620	34. 958	56. 408	1. 00 91. 01
	ATOM	643 (OE1 GL	U 95	-9. 089	34. 211	55. 523	1. 00 90. 26
	ATOM	644 (OE2 GL	U 95	-7. 800	34. 565	57. 266	1. 00 91. 81
15	ATOM	645 (C GL	U 95	-6. 115	38. 625	57. 652	1. 00 88. 62
	ATOM	646 () GL	U 95	-6. 576	39. 748	57. 868	1. 00 88. 29
	ATOM	647 N	V GL	J 96	-4. 991	38. 182	58. 208	1. 00 89. 03
	ATOM	648 (CA GLI	J 96	-4. 200	38. 995	59. 124	1. 00 88. 80
	ATOM	649 C	B GLI	J 96	-4. 065	38. 282	60. 476	1. 00 88. 55
20	ATOM	650 C	G GLU	J 96	-5. 368	38. 155	61. 268	1. 00 89. 59
	ATOM			96	-6. 400	37. 262	60. 593	1. 00 90. 56
	ATOM		E1 GLU		-6. 163	36. 040	60. 481	1. 00 90. 53
	ATOM		E2 GLU		-7. 452	37. 785	60. 172	1. 00 90. 67
	ATOM	654 C		96	-2. 810	39. 327	58. 519	1. 00 88. 40
25	ATOM	655 0	_	96	-2. 097	40. 166	59. 052	1. 00 89. 12
	ATOM	656 N			-2. 431	38. 700	57. 404	1. 00 86. 87
	ATOM	657 CA			-1. 133	38. 917	56. 789	1. 00 85. 05
	ATOM	658 C	GLY		-0. 161	37. 976	57. 494	1. 00 84. 17
	ATOM	659 0	GLY	97	1. 044	38. 179	57. 605	1. 00 83. 49

- 167 -ATOM 660 N **GLN 98** -0. 820 36. 901 57. 977 1. 00 83. 07 **ATOM** GLN 98 661 CA -0.25335. 810 58. 769 1.00 82.28 ATOM 662 CBGLN 98 34.825 -1.34659. 250 1.00 82.41 ATOM 663 CG GLN 98 -2.64735. 462 59. 699 1.00 83.61 5 ATOM CD GLN 98 664 -3.74034. 427 60.007 1. 00 84. 16 ATOM 665 0E1 GLN 98 33. 239 -3.60659. 714 1.00 84.01 ATOM NE2 GLN 98 666 -4. 905 34. 685 60. 592 1.00 84.46 ATOM 667 C GLN 98 0. 735 34. 981 58. 011 1.00 81.85 ATOM GLN 98 668 0 1. 955 35. 200 57. 956 1. 00 83. 51 10 ATOM 669 N TRP 99 0. 118 33. 962 57. 470 1. 00 79. 05 ATOM 670 CA TRP 99 32. 914 0. 703 56. 706 1. 00 75. 85 ATOM 671 CBTRP 99 1. 993 32. 398 57. 308 1.00 73.88 **ATOM** 672 CG TRP 99 2.968 31.780 56. 325 1. 00 71. 82 ATOM 673 CD2 TRP 99 3. 211 30.386 56.075 1.00 70.49 15 ATOM 674 CE2 TRP 99 4. 222 30. 308 55. 123 1.00 69.72 ATOM 675 CE3 TRP 99 2. 671 29. 200 56. 550 1. 00 69. 52 ATOM 676 CD1 TRP 99 3. 832 32. 464 55. 525 1.00 71.99 ATOM 677 NE1 TRP 99 4. 598 31. 589 54. 790 1. 00 71. 07 ATOM 678 CZ2 TRP 99 4. 692 29. 089 54. 624 1. 00 67. 81 ATOM 20 679 CZ3 TRP 99 3. 136 27. 984 56. 080 1. 00 67. 31 ATOM 680 CH2 TRP 99 4. 151 27. 945 55. 111 1. 00 67. 77 ATOM 681 C TRP 99 -0.24731. 793 56. 673 1. 00 74. 58 **ATOM** 682 0 TRP 99 -1.06031. 567 57. 556 1. 00 75. 00 ATOM 683 N **SER 100** -0.09031. 087 55. 647 1. 00 72. 11 25 **ATOM** 684 CA SER 100 -0.94829.999 55. 517 1. 00 68. 48 **ATOM** 685 CBSER 100 -2.37630.466 55. 232 1. 00 68. 40 ATOM 686 0GSER 100 -2.46731. 128 53. 985 1.00 68.76 ATOM 687 C **SER 100** -0. 522 29. 152 54. 382 1. 00 66. 28 ATOM 688 0 **SER 100** 0. 405 29. 473 53. 632 1. 00 65. 13

- 168 -ATOM VAL 101 689 N -1.22528. 028 54. 291 1.00 64.27 ATOM VAL 101 690 CA -0.98227. 030 53. 262 1.00 62.66 **ATOM** 691 CB VAL 101 0.090 26.023 53.715 1. 00 62. 98 ATOM 692 CG1 VAL 101 1.493 26. 554 53. 459 1.00 66.77 CG2 VAL 101 ATOM 693 -0.0755 25. 688 55. 198 1. 00 63. 17 ATOM 694 C VAL 101 -2.21926. 243 52. 878 1.00 60.88 **ATOM** 695 VAL 101 0 -2.56125. 258 53. 530 1. 00 60. 62 ATOM 696 N LYS 102 -2.88026.671 51.810 1. 00 58. 24 ATOM 697 CA LYS 102 -4.06625. 981 51. 337 1. 00 56. 12 ATOM 698 CB LYS 102 -4. 887 26.880 10 50.410 1.00 57.06 LYS 102 ATOM 699 CG -5.88427. 806 51. 111 1. 00 60. 55 ATOM 700 CDLYS 102 -7.05627. 038 51.748 1.00 63.17 ATOM CE LYS 102 -8. 282 701 27. 944 52.036 1.00 64.70 ATOM LYS 102 702 NZ -8.02129. 150 52. 899 1. 00 63. 52 15 ATOM 703 C LYS 102 -3.67724.710 50. 596 1.00 54.04 ATOM 704 0 LYS 102 -2.59924. 609 50.007 1. 00 52. 35 ATOM 705 N THR 103 -4.57623, 738 50. 631 1. 00 52. 24 THR 103 ATOM 706 CA -4.34522. 474 49. 972 1.00 49.72 **ATOM** 707 CBTHR 103 -4.13921. 385 51.010 1. 00 49. 49 20 ATOM 708 OG1 THR 103 -3.39920. 316 50. 422 1. 00 53. 11 ATOM 709 CG2 THR 103 -5.47520.861 51. 517 1.00 48.32 C ATOM 710 THR 103 -5.56322. 158 49. 106 1. 00 49. 61 ATOM 22. 435 711 0 THR 103 -6.69349. 507 1. 00 50. 24 ATOM 712 N LYS 104 -5.33021. 587 47. 924 1.00 48.56 ATOM 713 CA LYS 104 -6.40425 21. 251 46. 983 1. 00 48. 50 ATOM 714 CB LYS 104 -6.46922. 298 45. 864 1.00 49.98 ATOM LYS 104 715 CG -6.75323. 737 46. 313 1. 00 56. 05 ATOM CD LYS 104 716 -8. 195 23. 932 46. 814 1.00 60.38

-8. 456

25. 383

47. 254

1. 00 62. 32

ATOM

717 CE LYS 104

- 169 -ATOM 718 NZ LYS 104 -9.84525. 649 47. 761 1.00 61.31 ATOM C LYS 104 719 -6.22419. 878 46. 332 1.00 48.13 ATOM 720 0 LYS 104 -5. 286 19.685 45. 563 1.00 49.60 ATOM HIS 105 721 N -7.12718. 936 46.606 1.00 47.57 ATOM 722 5 CA HIS 105 -7. 023 17. 601 46. 010 1. 00 47. 23 ATOM 723 CBHIS 105 -7.16516. 529 47.074 1. 00 47. 40 ATOM 724 CG HIS 105 -6.24116. 709 48. 228 1.00 49.37 ATOM 725 CD2 HIS 105 -5.09816.066 48. 563 1. 00 49. 55 ATOM ND1 HIS 105 726 -6.45917. 648 49. 212 1. 00 50. 43 CE1 HIS 105 10 ATOM 727-5.49317. 571 50. 110 1. 00 51. 38 ATOM NE2 HIS 105 728 -4.65516. 619 49.740 1. 00 50. 58 ATOM C 729HIS 105 -8.03017. 304 44. 907 1.00 46.39 ATOM 730 0 HIS 105 -9. 195 17.692 44. 985 1.00 49.62 ATOM -7.575731 N GLN 106 16.580 43. 894 1.00 42.98 **ATOM** 15 732 CAGLN 106 -8.41916. 226 42. 771 1.00 40.44 **ATOM** GLN 106 733 CB -8.28417. 285 41. 685 1. 00 40. 41 ATOM CG 734GLN 106 -9.54617. 548 40. 908 1.00 40.59 ATOM 735 CD GLN 106 -10.42816. 324 40.813 1.00 40.54 ATOM 736 OE1 GLN 106 -11.06115. 927 41. 795 1. 00 39. 16 ATOM 20 737 NE2 GLN 106 -10.47515. 712 39. 631 1.00 40.06 ATOM 738 C **GLN 106** -7.94014. 878 42. 249 1.00 40.70 ATOM 739 0 GLN 106 -6.74514. 699 42. 012 1.00 41.69 **ATOM** 740 N MET 107 -8.86713. 937 42.066 1.00 41.01 ATOM 741 CA MET 107 -8.53212. 588 41. 599 1. 00 40. 17 25 ATOM 742 CB MET 107 -9.08311. 551 42. 588 1. 00 42. 07 ATOM 743 CG MET 107 -8.77210.094 42. 249 1.00 44.67 ATOM 744 SD MET 107 -10.1859. 202 41.551 1.00 50.71 ATOM 745 CE MET 107 -10.6888.056 42. 927 1. 00 43. 37 ATOM 746 C **MET 107** -9.05912. 294 40. 204 1. 00 38. 93

- 170 **-**

					170	_			
ATOM	747	0	MET	107	-10. 264	12. 285	39. 979	1. 00	41. 30
ATOM	748	N	TYR	108	-8. 161	12. 044	39. 264	1. 00	37. 96
ATOM	749	CA	TYR	108	-8. 588	11. 750	37. 907	1. 00	38. 48
ATOM	750	CB	TYR	108	-7. 670	12. 454	36. 900	1. 00	35. 63
ATOM	751	CG	TYR	108	-7. 732	13. 972	36. 977	1. 00	35. 18
ATOM	752	CD1	TYR	108	-7. 492	14. 645	38. 180	1. 00	37. 21
ATOM	753	CE1	TYR	108	-7. 550	16. 047	38. 268	1. 00	34. 81
ATOM	754	CD2	TYR	108	-8. 031	14. 735	35. 857	1. 00	34. 14
ATOM	755	CE2	TYR	108	-8. 092	16. 134	35. 931	1. 00	35. 09
ATOM	75 6	CZ	TYR	108	-7. 852	16. 783	37. 139	1. 00	35. 25
ATOM	757	ОН	TYR	108	-7. 937	18. 158	37. 211	1. 00	33. 27
ATOM	758	C	TYR	108	-8. 583	10. 241	37. 689	1. 00	40. 17
ATOM	759	0	TYR	108	-7. 817	9. 514	38. 325	1. 00	38. 04
ATOM	760	N	SER	109	-9. 469	9. 765	36. 818	1. 00	42. 63
ATOM	761	CA	SER	109	-9. 524	8. 341	36. 530	1. 00	44. 60
ATOM	762	CB	SER	109	-10. 929	7. 787	36. 736	1. 00	43. 05
ATOM	763	0G	SER	109	-10. 926	6. 385	36. 522	1. 00	41 . 6 6
ATOM	764	C	SER	109	-9. 090	8. 106	35. 097	1. 00	46. 74
ATOM	765	0	SER	109	-9. 531	8. 799	34. 182	1. 00	44. 65
ATOM	766	N	ILE	110	-8. 217	7. 120	34. 918	1. 00	50. 31
ATOM	767	CA	ILE	110	-7. 686	6. 782	33. 608	1. 00	55. 29
ATOM	768	CB	ILE	110	-6. 326	6.060	33. 731	1. 00	54. 32
ATOM	769	CG2	ILE	110	-5. 690	5. 932	32. 364	1. 00	56. 16
ATOM	770	CG1	ILE	110	-5. 373	6. 844	34. 626	1. 00	53. 30
ATOM	771	CD1	ILE	110	-4. 067	6. 117	34. 869	1. 00	51. 57
ATOM	772	C	ILE	110	-8. 621	5. 882	32. 799	1. 00	59. 70
ATOM	773	0	ILE	110	-8. 906	4. 749	33. 199	1. 00	58. 82
ATOM	774	N	PRO	111	-9. 114	6. 381	31. 650	1. 00	64. 10
ATOM	775	CD	PRO	111	-8. 972	7. 759	31. 142	1. 00	64. 05
	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	ATOM 748 ATOM 749 ATOM 750 ATOM 751 ATOM 751 ATOM 752 ATOM 753 ATOM 754 ATOM 755 ATOM 756 ATOM 757 ATOM 758 ATOM 760 ATOM 761 ATOM 761 ATOM 763 ATOM 763 ATOM 764 ATOM 765 ATOM 765 ATOM 766 ATOM 767 ATOM 767 ATOM 768 ATOM 767 ATOM 770 ATOM 771 ATOM 772 ATOM 773 ATOM 773	ATOM 748 N ATOM 749 CA ATOM 750 CB ATOM 751 CG ATOM 752 CD1 ATOM 753 CE1 ATOM 755 CE2 ATOM 756 CZ ATOM 757 OH ATOM 758 C ATOM 759 O ATOM 760 N ATOM 761 CA ATOM 762 CB ATOM 763 OG ATOM 764 C ATOM 765 O ATOM 766 N ATOM 766 N ATOM 767 CA ATOM 769 CG2 ATOM 770 CG1 ATOM 771 CD1 ATOM 772 C ATOM 773 O ATOM 773 O ATOM 774 N	ATOM 748 N TYR ATOM 749 CA TYR ATOM 750 CB TYR ATOM 751 CG TYR ATOM 752 CD1 TYR ATOM 753 CE1 TYR ATOM 755 CE2 TYR ATOM 756 CZ TYR ATOM 757 OH TYR ATOM 758 C TYR ATOM 759 O TYR ATOM 760 N SER ATOM 760 N SER ATOM 761 CA SER ATOM 762 CB SER ATOM 763 OG SER ATOM 764 C SER ATOM 765 O SER ATOM 766 N ILE ATOM 767 CA ILE ATOM 768 CB ILE ATOM 769 CG2 ILE ATOM 769 CG2 ILE ATOM 770 CG1 ILE ATOM 771 CD1 ILE ATOM 772 C ILE ATOM 773 O ILE ATOM 773 O ILE ATOM 774 N PRO	ATOM 748 N TYR 108 ATOM 749 CA TYR 108 ATOM 750 CB TYR 108 ATOM 751 CG TYR 108 ATOM 752 CD1 TYR 108 ATOM 753 CE1 TYR 108 ATOM 754 CD2 TYR 108 ATOM 755 CE2 TYR 108 ATOM 756 CZ TYR 108 ATOM 757 OH TYR 108 ATOM 758 C TYR 108 ATOM 759 O TYR 108 ATOM 760 N SER 109 ATOM 761 CA SER 109 ATOM 762 CB SER 109 ATOM 763 OG SER 109 ATOM 764 C SER 109 ATOM 766 N ILE 110 ATOM 767 CA ILE 110 ATOM 768 CB ILE 110 ATOM 769 CG2 ILE 110 ATOM 770 CG1 ILE 110 ATOM 771 CD1 ILE 110 ATOM 772 C ILE 110 ATOM 773 O ILE 110 ATOM 773 O ILE 110	ATOM 747 O MET 107 -10. 264 ATOM 748 N TYR 108 -8. 161 ATOM 749 CA TYR 108 -8. 588 ATOM 750 CB TYR 108 -7. 670 ATOM 751 CG TYR 108 -7. 732 ATOM 752 CD1 TYR 108 -7. 550 ATOM 753 CE1 TYR 108 -7. 550 ATOM 754 CD2 TYR 108 -8. 092 ATOM 755 CE2 TYR 108 -8. 092 ATOM 756 CZ TYR 108 -7. 852 ATOM 757 OH TYR 108 -7. 852 ATOM 758 C TYR 108 -7. 853 ATOM 759 O TYR 108 -8. 583 ATOM 760 N SER 109 -9. 469 ATOM 761 CA SER 109 -9. 524 ATOM 763 OG SER 109 -10. 929 ATOM 764 C SER 109 -9. 524 ATOM 765 O SER 109 -9. 531 ATOM 766 N ILE 110 -8. 217 ATOM 767 CA ILE 110 -7. 686 ATOM 768 CB ILE 110 -6. 326 ATOM 769 CG2 ILE 110 -5. 690 ATOM 761 CD1 ILE 110 -4. 067 ATOM 770 CG1 ILE 110 -8. 621 ATOM 771 CD1 ILE 110 -8. 621 ATOM 773 O ILE 110 -8. 906 ATOM 773 O ILE 110 -8. 906	ATOM 748 N TYR 108 -8. 161 12. 044 ATOM 749 CA TYR 108 -8. 588 11. 750 ATOM 750 CB TYR 108 -7. 670 12. 454 ATOM 751 CG TYR 108 -7. 732 13. 972 ATOM 752 CD1 TYR 108 -7. 492 14. 645 ATOM 753 CE1 TYR 108 -7. 550 16. 047 ATOM 754 CD2 TYR 108 -8. 031 14. 735 ATOM 755 CE2 TYR 108 -8. 092 16. 134 ATOM 756 CZ TYR 108 -7. 852 16. 783 ATOM 757 OH TYR 108 -7. 852 16. 783 ATOM 758 C TYR 108 -8. 583 10. 241 ATOM 759 O TYR 108 -8. 583 10. 241 ATOM 760 N SER 109 -9. 469 9. 765 ATOM 761 CA SER 109 -9. 524 8. 341 ATOM 762 CB SER 109 -10. 926 6. 385 ATOM 763 OG SER 109 -10. 926 6. 385 ATOM 764 C SER 109 -9. 531 8. 799 ATOM 766 N ILE 110 -8. 217 7. 120 ATOM 766 CG ILE 110 -7. 686 6. 782 ATOM 769 CG2 ILE 110 -5. 690 5. 932 ATOM 769 CG2 ILE 110 -5. 690 5. 932 ATOM 770 CG1 ILE 110 -5. 373 6. 844 ATOM 771 CD1 ILE 110 -8. 621 5. 882 ATOM 773 O ILE 110 -8. 906 4. 749 ATOM 773 O ILE 110 -8. 906 4. 749 ATOM 773 O ILE 110 -8. 906 4. 749 ATOM 773 O ILE 110 -8. 906 4. 749 ATOM 773 O ILE 110 -8. 906 4. 749	ATOM 748 N TYR 108	ATOM 747 0 MET 107 -10. 264 12. 285 39. 979 1. 00 ATOM 748 N TYR 108 -8. 161 12. 044 39. 264 1. 00 ATOM 749 CA TYR 108 -8. 588 11. 750 37. 907 1. 00 ATOM 750 CB TYR 108 -7. 670 12. 454 36. 900 1. 00 ATOM 751 CG TYR 108 -7. 670 12. 454 36. 900 1. 00 ATOM 752 CD1 TYR 108 -7. 492 14. 645 38. 180 1. 00 ATOM 753 CE1 TYR 108 -7. 550 16. 047 38. 268 1. 00 ATOM 755 CE2 TYR 108 -8. 031 14. 735 35. 857 1. 00 ATOM 755 CE2 TYR 108 -8. 092 16. 134 35. 931 1. 00 ATOM 756 CZ TYR 108 -7. 852 16. 783 37. 139 1. 00 ATOM 757 OH TYR 108 -7. 852 16. 783 37. 139 1. 00 ATOM 758 C TYR 108 -8. 583 10. 241 37. 689 1. 00 ATOM 759 O TYR 108 -8. 583 10. 241 37. 689 1. 00 ATOM 760 N SER 109 -9. 469 9. 765 36. 818 1. 00 ATOM 761 CA SER 109 -9. 524 8. 341 36. 530 1. 00 ATOM 762 CB SER 109 -10. 929 7. 787 36. 736 1. 00 ATOM 763 OG SER 109 -9. 524 8. 341 36. 530 1. 00 ATOM 764 C SER 109 -9. 524 8. 341 36. 530 1. 00 ATOM 765 O SER 109 -9. 531 8. 799 34. 182 1. 00 ATOM 766 N ILE 110 -8. 217 7. 120 34. 918 1. 00 ATOM 767 CA ILE 110 -8. 217 7. 120 34. 918 1. 00 ATOM 769 CG2 ILE 110 -5. 690 5. 932 32. 364 1. 00 ATOM 769 CG2 ILE 110 -5. 690 5. 932 32. 364 1. 00 ATOM 770 CG1 ILE 110 -5. 373 6. 844 34. 626 1. 00 ATOM 771 CD1 ILE 110 -8. 217 7. 120 34. 918 1. 00 ATOM 772 C ILE 110 -5. 690 5. 932 32. 364 1. 00 ATOM 773 O ILE 110 -8. 621 5. 882 32. 799 1. 00 ATOM 773 O ILE 110 -8. 621 5. 882 32. 799 1. 00 ATOM 773 N PRO 111 -9. 114 6. 381 31. 650 1. 00

- 171 -ATOM 776 CA PRO 111 -10.0125. 608 30. 788 1. 00 68. 40 ATOM 777 CB PRO 111 -10.1186.484 29. 547 1. 00 67. 29 ATOM 778 CG PRO 111 -10.1057.860 30. 144 1. 00 63. 88 ATOM 779 C PRO 111 -9. 416 4. 231 30. 494 1. 00 72. 88 PRO 111 ATOM 780 0 5 -8.1954.065 30. 506 1. 00 73. 72 ATOM 781 N GLU 112 -10.2803. 250 30. 239 1. 00 77. 60 ATOM 782 CA GLU 112 -9.8451.879 29. 958 1. 00 80. 79 ATOM 783 CB GLU 112 -11.0720.968 29. 798 1.00 82.29 ATOM 784 CG GLU 112 -10.74829. 524 -0. 498 1. 00 83. 62 10 ATOM 785 CD GLU 112 -11. 896 -1.24728. 851 1.00 85.04 0E1 GLU 112 ATOM 786 -11.697-2.42328. 470 1. 00 85. 60 ATOM 787 0E2 GLU 112 -12.995-0.66528.700 1. 00 85. 42 **ATOM** 788 C GLU 112 -8.9711.806 28. 702 1. 00 82. 21 **ATOM** 789 0 GLU 112 -7.9361. 137 28.693 1. 00 82. 17 ATOM 790 15 N ASP 113 -9.3942.501 27.649 1.00 83.97 **ATOM** 791 CA ASP 113 -8.6602. 522 26. 385 1. 00 85. 79 **ATOM** 792 CB ASP 113 -9.5063. 221 25. 302 1. 00 86. 45 ATOM 793 CG ASP 113 -9.96125.712 4. 624 1. 00 87. 32 ATOM OD1 ASP 113 794 -10.65526. 748 4. 756 1. 00 86. 75 ATOM OD2 ASP 113 20 795 -9.6295. 595 24. 991 1. 00 87. 18 ATOM 796 C ASP 113 -7.2973. 215 26. 533 1. 00 86. 44 ATOM 797 0 ASP 113 -6.4673. 195 25. 617 1. 00 86. 35 ATOM 798 N ALA 114 -7.0753. 813 27. 701 1. 00 86. 34 ATOM **79**9 CA ALA 114 -5.8374. 533 28.000 1. 00 85. 22 **ATOM** 25 800 CB ALA 114 -6.1745. 904 28. 585 1.00 84.46 ATOM 801 C ALA 114 -4.92828.963 3. 768 1. 00 83. 67 ATOM 802 0 ALA 114 -3.7163.692 28.762 1.00 83.48 ATOM 803 N MET 115 -5.5283. 212 30. 012 1.00 81.79 ATOM 804 CA MET 115 -4. 802 2. 457 31. 023 1. 00 78. 70

- 172 -ATOM 805 CB MET 115 -5. 776 2.050 32. 135 1. 00 81. 16 ATOM 806 CG MET 115 -5. 148 1.863 33. 503 1. 00 84. 52 ATOM 807 SD MET 115 -3.9780.492 33. 553 1. 00 90. 44 ATOM 808 CE MET 115 -5.060-0.89134. 119 1. 00 88. 49 5 **ATOM** 809 C MET 115 -4.1451. 224 30. 391 1. 00 76. 27 ATOM 810 0 MET 115 -3.0660.809 30.813 1. 00 74. 47 ATOM 811 N THR 116 -4.796₹ 0. 658 29. 372 1. 00 74. 50 ATOM 812 CA THR 116 -4. 282 -0.51828. 666 1. 00 72. 46 ATOM . 813 CBTHR 116 -5.399-1.52428. 309 1. 00 72. 22 10 ATOM 814 OG1 THR 116 -6.200-0.99327. 244 1. 00 71. 17 ATOM 815 CG2 THR 116 -6.275-1.80529. 516 . 1. 00 71. 94 ATOM 816 C THR 116 -3.62127. 356 -0. 110 1. 00 71. 75 ATOM 817 0 THR 116 -3.562-0.89926. 412 1. 00 71. 39 ATOM 818 N GLY 117 -3.14227. 301 1. 131 1.00 71.09 ATOM 819 15 CA GLY 117 -2.47726. 110 1. 639 1. 00 68. 62 **ATOM** 820 C GLY 117 -0.9611. 651 26. 260 1. 00 66. 70 ATOM 821 0 GLY 117 -0.3840. 702 26. 798 1. 00 67. 20 ATOM 822 N THR 118 -0. 313 2. 716 25. 783 1.00 63.05 ATOM 823 $\mathsf{C}\mathsf{A}$ THR 118 1. 142 2. 844 25. 876 1. 00 59. 92 20 ATOM 824 CBTHR 118 1. 796 3. 020 24. 502 1. 00 59. 06 ATOM OG1 THR 118 825 1. 013 23.718 3.926 1. 00 57. 88 ATOM 826 CG2 THR 118 1. 917 23. 794 1. 688 1. 00 59. 21 **ATOM** 827 C THR 118 1. 548 4. 038 26. 721 1. 00 58. 97 **ATOM** 828 0 THR 118 0.764 4. 971 26. 912 1. 00 58. 11 **ATOM** 25 829 N ALA 119 2. 782 4. 001 27. 218 1.00 56.72 **ATOM** 830 CA ALA 119 3. 313 5. 071 28. 052 1. 00 52. 86 . ATOM 831 CB ALA 119 4. 807 4. 938 28. 177 1. 00 51. 30 ATOM 832 C ALA 119 2. 972 6. 399 - 27. 421 1. 00 51. 58 **ATOM** 833 0 ALA 119 2. 456 7. 301 28. 080 1. 00 52. 70

- 173 -ATOM 834 N GLU 120 3. 260 6. 502 26. 131 1.00 48.02 ATOM 835 CA **GLU 120** 2.994 7. 716 25. 386 1. 00 46. 07 ATOM 836 CBGLU 120 3. 194 7. 471 23.894 1. 00.49. 10 ATOM 837 CG GLU 120 4. 210 6. 381 23. 550 1. 00 52. 89 ATOM 5 838 CD GLU 120 5. 630 6. 736 23. 945 1. 00 53. 64 0E1 GLU 120 ATOM 839 5.962 6.621 25. 141 1. 00 55. 30 0E2 GLU 120 ATOM 840 6.411 7. 139 23.057 1. 00 52. 83 ATOM 841 C GLU 120 1. 557 8. 140 25. 630 1. 00 44. 27 ATOM 842 0 **GLU 120** 1. 295 9. 257 26. 070 1. 00 44. 84 ATOM 10 843 N MET 121 0.627 7. 235 25. 351 1. 00 41. 37 ATOM 844 CA MET 121 -0.7917. 525 25. 513 1. 00 38. 57 **ATOM** 845 CB MET 121 -1.6266. 358 24.. 990 1. 00 41. 30 ATOM 846 CG MET 121 -1.7216. 328 23. 479 1. 00 46. 24 ATOM 847 SD MET 121 -2.4834.835 22.838 1. 00 50. 88 ATOM 15 848 CE MET 121 -3.9084.669 23. 961 1. 00 50. 02 ATOM 849 C MET 121 -1.1907.820 26. 937 1.00 34.60 ATOM 850 0 MET 121 -1.9108. 780 27. 204 1. 00 31. 69 **ATOM** 851 N LEU 122 -0.7196. 985 27. 852 1. 00 32. 63 **ATOM** 852 CA LEU 122 -1.0517. 141 29. 263 1. 00 30. 24 ATOM 20 853 CB LEU 122 -0.25630. 108 6. 140 1. 00 27. 33 ATOM 854 CG LEU 122 -0. 778 5. 923 31. 533 1. 00 21. 99 ATOM 855 CD1 LEU 122 -0.2794.601 32. 031 1. 00 22. 53 ATOM 856 CD2 LEU 122 -0.3667. 034 32. 456 1. 00 17. 78 ATOM 857 C LEU 122 -0.7598. 551 29. 746 1. 00 28. 67 ATOM 25 858 0 LEU 122 -1.6199. 228 30. 326 1. 00 25. 21 ATOM PHE 123 859 N 0.469 8. 987 29. 502 1. 00 26. 83 **ATOM** 860 CA PHE 123 0.871 10.306 29. 929 1. 00 25. 29 **ATOM** 861 CBPHE 123 2. 387 10.398 29. 908 1. 00 20. 22 ATOM 862 CG PHE 123 3.015 9. 772 31. 112 1.00 15.51

- 174 -ATOM CD1 PHE 123 863 3. 538 8.494 31.064 1. 00 12. 96 ATOM 864 CD2 PHE 123 3. 028 10. 457 32. 328 1. 00 13. 35 ATOM 865 CE1 PHE 123 4.067 7.910 32. 217 1. 00 12. 87 ATOM 866 CE2 PHE 123 3. 552 9.879 33. 484 1. 00 9. 69 **ATOM** 5 867 czPHE 123 4.072 8. 609 33. 432 1.00 9.56 ATOM PHE 123 868 C 0. 202 11. 432 29. 157 1. 00 26. 20 ATOM 869 0 PHE 123 -0.10212. 489 29. 722 1.00 26.61 ATOM 870 N ASP 124 -0.05311. 207 27. 875 1. 00 24. 47 ATOM 871 CA ASP 124 -0.75012. 210 27.090 1. 00 23. 14 ATOM 10 872 CB ASP 124 -1.22811.614 25. 785 1. 00 24. 52 ATOM 873 CG ASP 124 -0.17811. 628 24. 747 1. 00 27. 01 **ATOM** 874 OD1 ASP 124 -0.37610. 955 23. 715 1. 00 26. 39 **ATOM** 875 OD2 ASP 124 0.839 24.968 12. 325 1. 00 29. 23 **ATOM** 876 C ASP 124 -1.96712.650 27.875 1.00 21.89 15 ATOM 877 0 ASP 124 -2.36113. 815 27. 841 1. 00 20. 01 ATOM 878 N TYR 125 -2.56211. 688 28. 574 1. 00 20. 84 ATOM 879 CA TYR 125 -3.74929. 371 11. 943 1. 00 20. 51 ATOM 880 CB TYR 125 -4.41410.619 29. 792 1. 00 20. 43 ATOM 881 CG TYR 125 -5.79610. 794 30. 394 1. 00 22. 84 ATOM 20 882 CD1 TYR 125 -6.08310. 358 31. 692 1. 00 23. 51 ATOM 883 CE1 TYR 125 -7. 345 10. 584 32. 268 1. 00 31. 08 ATOM 884 CD2 TYR 125 -6.80311. 451 29. 678 1. 00 26. 43 ATOM 885 CE2 TYR 125 -8.06411.685 30. 232 1.00 31.61 **ATOM** 886 CZ TYR 125 -8.33611. 255 31. 528 1.00 34.64 **ATOM** 25 887 OH TYR 125 -9.58511. 520 32.073 1. 00 38. 10 ATOM 888 C TYR 125 -3.38212. 752 30.605 1.00 19.11 **ATOM** 889 0 TYR 125 -3.90413. 848 30. 824 1.00 16.08 **ATOM** 890 N ILE 126 -2.46512. 212 31. 399 1. 00 17. 91 ATOM 891 CA ILE 126 -2.04912. 879 32. 615 1. 00 17. 82

- 175 -**ATOM** 892 CBILE 126 -0.81912. 236 33. 203 1. 00 19. 82 ATOM 893 CG2 ILE 126 -0.48912. 905 34. 538 1. 00 18. 77 ATOM CG1 ILE 126 894 -1.05510. 732 33. 331 1.00 21.27 ATOM 895 CD1 ILE 126 0.045 9. 984 34.062 1. 00 23. 92 ATOM 896 C ILE 126 5 -1.71714. 313 32. 325 1.00 18.09 ATOM 897 0 ILE 126 -1.99115. 205 33. 123 1. 00 16. 68 ATOM 898 N SER 127 -1.10814. 532 31. 172 1. 00 19. 12 ATOM 899 CA SER 127 -0.74715. 877 30. 789 1.00 20.96 **ATOM** 900 CB SER 127 -0.05715. 857 29. 432 1. 00 19. 89 10 ATOM 901 0G SER 127 0.569 17. 100 29. 190 1. 00 22. 20 **ATOM** 902 C SER 127 -2.01116. 742 30. 746 1. 00 21. 92 ATOM 903 0 SER 127 -2.17717. 658 31. 551 1.00 20.25 ATOM 904 N GLU 128 -2.90216. 431 29. 813 1. 00 23. 87 ATOM 905 CA GLU 128 -4.15217. 161 29.670 1. 00 26. 98 ATOM 15 906 CB GLU 128 -5. 111 16. 353 28. 802 1.00 33.10 **ATOM** 907 CG GLU 128 -6.47116. 990 28. 544 1.00 39.51 ATOM 908 CD GLU 128 -7.28016. 175 27. 544 1. 00 44. 52 **ATOM** 909 OE1 GLU 128 -7.21116. 481 26. 327 1.00 46.11 ATOM 0E2 GLU 128 910 -7.96315. 218 27. 980 1. 00 43. 93 20 **ATOM** 911 C GLU 128 -4.79717. 431 31. 020 1. 00 26. 55 ATOM 912 0 GLU 128 -5.17718. 561 31. 334 1. 00 26. 16 **ATOM** 913 N CYS 129 -4.92916. 384 31. 820 1. 00 26. 36 **ATOM** 914 CA CYS 129 -5.53216. 535 33. 130 1. 00 26. 47 ATOM 915 CB CYS 129 -5.45215. 219 33. 893 1. 00 28. 39 25 ATOM 916 SG CYS 129 -6.45013. 922 33. 126 1. 00 37. 58 ATOM 917 C CYS 129 -4.85317. 636 33. 914 1. 00 25. 00 ATOM 918 0 CYS 129 -5.51518. 561 34. 372 1.00 24.97 ATOM 919 N ILE 130 -3.53217. 536 34. 059 1.00 24.74 ATOM 920 CA ILE 130 -2.76318. 536 34. 793 1. 00 21. 55

- 176 -**ATOM** 921 CB ILE 130 **-1.** 245 18. 255 34. 709 1. 00 17. 55 **ATOM** 922 CG2 ILE 130 -0.45819. 404 35. 304 1. 00 15. 00 ATOM 923 CG1 ILE 130 -0.91516. 984 35. 490 1. 00 16. 42 ATOM CD1 ILE 130 9240. 574 16. 713 35. 623 1. 00 18. 34 ILE 130 ATOM 925C -3.07019. 910 34. 219 1. 00 23. 54 **ATOM** 926 0 ILE 130 -3.57220. 780 34. 926 1. 00 21. 27 ATOM 927N SER 131 -2.78532. 933 20. 091 1. 00 26. 25 ATOM 928 CA SER 131 -3.04821. 353 32. 270 1.00 28.50 ATOM 929 CBSER 131 -3.01121. 186 30.764 1. 00 28. 76 10 **ATOM** 930 0GSER 131 -3.85622. 154 30. 164 1. 00 32. 87 ATOM 931 C SER 131 -4.41721. 851 32. 661 1. 00 31. 48 ATOM 9320 SER 131 -4.58623. 002 33. 057 1. 00 33. 67 ATOM 933 N ASP 132 -5. 411 20.986 32. 546 1. 00 34. 56 ATOM 934 ASP 132 CA -6.75321. 397 32.908 1.00 39.04 15 ATOM 935 CBASP 132 -7. 735 20. 248 32. 694 1. 00 44. 84 **ATOM** 936 CG ASP 132 -9.16520. 650 32. 987 1. 00 50. 51 ATOM 937 OD1 ASP 132 -9.76421. 347 32. 131 1. 00 53. 56 ATOM 938 OD2 ASP 132 -9.67420. 283 34. 078 1. 00 52. 37 **ATOM** 939 C ASP 132 -6.79021. 843 34. 376 1. 00 38. 23 **ATOM** ASP 132 20 940 0 -7. 160 22. 982 34. 677 1. 00 36. 81 ATOM 941 N PHE 133 -6.39420. 932 35. 270 1. 00 36. 88 ATOM 942 CA PHE 133 -6.37221. 170 36. 713 1.00 34.85 ATOM PHE 133 943 CB -5. 604 20.060 37. 433 1. 00 33. 59 ATOM 944 CG PHE 133 -5.34320. 362 38. 878 1. 00 34. 77 25 ATOM 945 CD1 PHE 133 -6.39620. 547 39.760 1. 00 35. 58 ATOM 946 CD2 PHE 133 -4.04320. 523 39. 348 1. 00 37. 81 ATOM CE1 PHE 133 947 -6. 159 20.896 41.091 1.00 37.66 CE2 PHE 133 ATOM 948 **-3.** 792 20. 872 40.678 1.00 38.00 **ATOM** 949 CZ PHE 133 -4.85021. 059 41. 548 1. 00 38. 85

- 177 -**ATOM** 950 C PHE 133 -5. 755 22. 503 37. 094 1. 00 34. 28 ATOM 951 0 PHE 133 **-6.** 274 23. 226 37. 947 1. 00 33. 97 ATOM 952 N LEU 134 **-4.** 622 22. 813 36. 482 1. 00 33. 97 ATOM 953 CA LEU 134 -3.95824. 070 **36**. 766 1.00 31.79 ATOM 5 954 CB LEU 134 -2.59024. 109 36.089 1. 00 24. 12 ATOM CG LEU 134 955 -1.61823.026 36. 545 1.00 16.64 CD1 LEU 134 ATOM 956 -0.368 23. 101 35. 705 1.00 15.98 CD2 LEU 134 ATOM 957 -1.30523. 184 38. 014 1.00 10.77 ATOM 958 C LEU 134 -4.85525. 176 36. 234 1. 00 34. 44 10 ATOM 959 0 LEU 134 -5. 111 26. 163 36. 920 1. 00 34. 41 ATOM 960 N ASP 135 · -5.36524. 999 35. 022 1. 00 37. 26 ATOM 961 CA ASP 135 -6.23026. 014 34. 454 1. 00 42. 65 ATOM 962 CB ASP 135 -6.81525. 565 33. 121 1.00 46.76 ATOM 963 CG ASP 135 -7. 707 26. 629 32. 509 1. 00 52. 18 15 ATOM OD1 ASP 135 964 -8. 659 26. 271 31. 772 1. 00 53. 75 ATOM OD2 ASP 135 965 -7.44327. 829 32. 772 1. 00 52. 70 ATOM 966 C ASP 135 -7. 386 26. 381 35. 383 1. 00 43. 96 ATOM 9670 ASP 135 -7.64327. 563 35.619 1.00 44.98 ATOM 968 N LYS 136 -8. 084 25. 368 35. 894 1.00 44.30 20 **ATOM** 969 CA LYS 136 -9.22525. 578 36. 780 1.00 44.56 ATOM 970 CB LYS 136 -9. 889 24. 237 37. 124 1. 00 46. 76 ATOM 971 CG LYS 136 -11.19524. 350 37. 941 1. 00 52. 67 ATOM 972 CD LYS 136 -11.91022. 981 38. 128 1. 00 55. 98 ATOM 973 CE LYS 136 -13.36723. 120 38.628 1. 00 55. 25 25 ATOM 974 NZ LYS 136 -14.10621.817 38. 719 1. 00 51. 28 ATOM 975 C LYS 136 -8.86226. 306 38.069 1. 00 44. 85 **ATOM** 976 0 LYS 136 -9.73026. 894 38. 717 1. 00 45. 87 ATOM 977 N HIS 137 -7.58626. 273 38. 444 1. 00 44. 25 ATOM HIS 137 978 CA -7.14926. 937 39. 670 1. 00 43. 21

- 178 -ATOM HIS 137 979 CB**-6.** 434 **25.** 937 40. 585 1. 00 44. 13 ATOM 980 CG HIS 137 -7. 344 24. 915 41. 199 1.00 45.24 **ATOM** CD2 HIS 137 981 -7. 676 24. 680 42. 492 1. 00 45. 35 ATOM 982 ND1 HIS 137 -8.04223. 991 40. 452 1.00 45.45 **ATOM** 983 CE1 HIS 137 5 -8.76423. 231 41. 257 1. 00 45. 40 **ATOM** 984 NE2 HIS 137 -8.56023. 629 42. 500 1. 00 44. 34 **ATOM** 985 C HIS 137 -6.24228. 132 39. 400 1.00 41.96 ATOM 986 0 HIS 137 -5.59228. 649 40.307 1. 00 40. 24 ATOM 987 N GLN 138 -6.21728. 577 38. 151 1. 00 42. 87 **ATOM** 10 988 CAGLN 138 -5.39029. 706 37. 766 1. 00 44. 93 ATOM 989 CBGLN 138 -5.94930. 993 38. 373 1. 00 47. 58 ATOM 990 CG GLN 138 -7.25831. 448 37. 749 1. 00 51. 96 ATOM 991 CD GLN 138 -7.41632. 966 37. 766 1. 00 55. 20 ATOM 992 OE1 GLN 138 -6.68033. 698 37. 088 1. 00 56. 05 ATOM NE2 GLN 138 15 993 -8.37533. 445 38. 546 1. 00 55. 44 ATOM 994C GLN 138 -3.92129. 537 38. 162 1. 00 44. 67 ATOM 9950 GLN 138 -3.31630. 437 38. 747 1. 00 45. 78 ATOM 996 N MET 139 -3.35028. 383 37. 836 1. 00 41. 86 ATOM 997 CA MET 139 -1.95128. 109 38. 138 1. 00 38. 60 **ATOM** 20 998 CB MET 139 39. 236 -1.84627. 062 1. 00 39. 19 **ATOM** 999 MET 139 CG -2.04827. 660 40.604 1. 00 41. 24 ATOM 1000 SD MET 139 -0.85928. 992 40. 852 1. 00 47. 65 ATOM 1001 CE MET 139 0.308 28. 217 42.007 1. 00 44. 32 **ATOM** 1002 C- MET 139 -1.23227. 653 36. 881 1. 00 36. 60 ATOM 1003 25 0 MET 139 -0.31626.823 36. 910 1. 00 35. 29 ATOM LYS 140 1004 N -1.65928. 237 35. 771 1. 00 34. 23 ATOM 1005 CA LYS 140 -1.10127. 921 34. 477 1. 00 32. 15 ATOM 1006 CBLYS 140 -2. 198 28.062 33. 417 1.00 31.04 ATOM 1007 CG LYS 140 -1.97027. 293 32. 116 1.00 31.48

- 179 -ATOM 1008 CD LYS 140 -2. 184 25. 780 32. 275 1. 00 32. 43 **ATOM** CE 1009 LYS 140 **-2**. 112 25. 015 30. 925 1. 00 30. 89 **ATOM** 1010 NZLYS 140 25. 130 -0.81130. 168 1. 00 29. 56 ATOM 1011 C LYS 140 0.085 28.834 34. 161 1.00 31.02 **ATOM** 1012 5 0 LYS 140 0.047 30. 045 34. 412 1.00 29.99 ATOM 1013 N HIS 141 1. 143 28. 228 33. 627 1. 00 31. 35 **ATOM** 1014 CA HIS 141 2. 353 28.940 33. 244 1. 00 30. 03 ATOM 1015 CB HIS 141 1. 989 32. 385 30. 145 1. 00 30. 05 **ATOM** 1016 CG HIS 141 1.001 29.836 31. 305 1.00 31.15 10 ATOM 1017 CD2 HIS 141 -0. 132 30. 473 30. 927 1.00 30.91 **ATOM** ND1 HIS 141 1. 148 1018 28. 769 30. 448 1.00 33.49 ATOM 1019 CE1 HIS 141 0. 147 28.763 29. 584 1. 00 35. 03 **ATOM** 1020 NE2 HIS 141 -0.64329. 787 29.853 1. 00 32. 67 **ATOM** 1021 C HIS 141 3. 138 29.396 34. 460 1.00 29.17 15 **ATOM** 1022 0 HIS 141 4. 211 29.983 34. 341 1. 00 28. 17 ATOM 1023 N 2.601 LYS 142 29. 108 35. 635 1.00 28.81 ATOM 1024 CA LYS 142 3. 248 29.505 1.00 29.17 36. 869 ATOM 1025 CBLYS 142 2. 317 29. 240 38. 065 1.00 33.65 **ATOM** 1026 CG LYS 142 0. 986 30. 042 38. 072 1.00 39.35 ATOM 20 1027 CD LYS 142 1. 194 31. 561 38. 214 1. 00 42. 74 **ATOM** 1028 CE LYS 142 -0. 122 32. 360 38. 170 1.00 45.49 **ATOM** 1029 NZ LYS 142 0. 110 33. 844 38. 325 1.00 46.19 ATOM 1030 C LYS 142 4. 575 28. 785 37.075 1. 00 26. 49 **ATOM** 1031 0 LYS 142 5. 340 29. 138 37.966 1. 00 26. 10 **ATOM** 25 1032 N LYS 143 4.862 27. 784 36. 254 1. 00 24. 58 ATOM 1033 CA LYS 143 6. 106 27. 042 36. 416 1. 00 22. 67 LYS 143 ATOM 1034 CB 7. 258 27. 847 35.836 1. 00 21. 51 ATOM 1035 LYS 143 CG 8. 533 27. 071 35. 737 1. 00 22. 59 **ATOM** 1036 CD LYS 143 9. 319 27. 510 34. 516 1. 00 25. 81

.

- 180 -1.00 28.01 ATOM 1037 CE LYS 143 10. 455 26. 542 34. 240 ATOM 1038 NZ LYS 143 11. 140 26. 828 32. 959 1.00 27.25 ATOM 1039 C LYS 143 6. 383 26. 732 37. 896 1. 00 22. 14 ATOM 1040 0 LYS 143 7. 133 27. 459 38. 556 1. 00 21. 99 5.766 38. 401 ATOM 1041 N LEU 144 25. 655 1. 00 20. 81 5 39. 797 ATOM 1042 CA LEU 144 5.910 25. 214 1.00 16.90 LEU 144 4. 577 40. 567 1.00 16.78 ATOM 1043 CB25. 351 ATOM 1044 CG LEU 144 3. 208 24. 956 39. 983 1. 00 18. 43 2. 148 ATOM 1045 CD1 LEU 144 24. 915 41. 074 1. 00 17. 60 **ATOM** 2.795 38.929 10 1046 CD2 LEU 144 25.960 1.00 19.20 ATOM 1047 C LEU 144. 6. 432 23. 781 39. 933 1.00 15.80 6. 265 39. 032 ATOM 1048 0 LEU 144 22. 958 1. 00 12. 24 **ATOM** 7.078 41.076 1049 N PRO 145 23. 478 1. 00 16. 26 **ATOM** PRO 145 7. 227 42. 172 1050 CD 24. 446 1. 00 15. 64 ATOM 1051 PRO 145 7. 678 22. 196 41. 467 1. 00 14. 17 15 CA ATOM 1052 CB PRO 145 8.079 22. 427 42. 923 1. 00 18. 10 ATOM PRO 145 42.963 1053 CG 8. 378 23.860 1.00 17.14 ATOM C 41. 357 1054 PRO 145 6. 707 21.050 1. 00 12. 75 ATOM 1055 5. 580 41.852 0 PRO 145 21. 141 1. 00 12. 27 ATOM 1056 LEU 146 7. 160 19.957 40.758 1. 00 10. 29 20 N **ATOM** 1057 CA LEU 146 6. 290 18. 804 40. 560 1. 00 11. 21 ATOM 1058 CB LEU 146 6. 156 18. 539 39.075 1.00 7.24 **ATOM** 1059 CG LEU 146 5. 160 17. 439 38. 824 1.00 3.01 ATOM CD1 LEU 146 3.817 17.832 39. 389 1060 1. 00 1.00 **ATOM** 1061 CD2 LEU 146 5.083 17. 215 37. 342 1.00 3.06 25 ATOM C LEU 146 6.696 17. 502 41. 233 1. 00 12. 36 1062 **ATOM** LEU 146 7.629 40.790 1. 00 15. 11 1063 0 16.851 ATOM 1064 N **GLY 147** 5. 972 17. 086 42. 262 1. 00 14. 72 ATOM 1065 CA GLY 147 6. 333 15. 851 42. 937 1. 00 17. 81

- 181 -

ATOM 1066 C **GLY 147** 5. 716 14. 586 42. 371 1. 00 18. 51 **GLY 147** ATOM 1067 0 4. 689 14. 644 41. 704 1. 00 20. 85 ATOM 1068 N PHE 148 6.342 13. 440 42. 631 1. 00 19. 28 ATOM 1069 CA PHE 148 5. 825 12. 167 42. 142 1. 00 20. 55 PHE 148 ATOM 1070 CB 6. 707 11. 635 41. 023 1. 00 16. 36 5 ATOM 1071 CG PHE 148 6. 593 12. 409 39. 759 1. 00 17. 72 CD1 PHE 148 **ATOM** 1072 6.792 13. 779 39. 753 1.00 17.99 ATOM 1073 CD2 PHE 148 6. 298 11. 769 38. 560 1. 00 21. 10 ATOM 1074 CE1 PHE 148 6.695 14. 509 38. 570 1. 00 22. 37 ATOM CE2 PHE 148 10 1075 6. 198 12. 494 37. 362 1. 00 22. 82 ATOM 1076 CZPHE 148 6.398 13. 864 37. 366 1. 00 21. 67 ATOM 1077 C PHE 148 5. 712 11. 104 43. 222 1. 00 22. 75 ATOM 1078 0 PHE 148 6.691 10. 783 43. 885 1. 00 24. 66 ATOM 1079 N THR 149 4. 513 10. 562 43. 403 1. 00 24. 45 15 ATOM 1080 CA THR 149 4. 312 9. 514 44. 387 1. 00 24. 75 ATOM 9. 917 45. 497 1081 CB THR 149 3. 365 1. 00 23. 76 ATOM 1082 0G1 THR 149 2. 757 11. 175 45. 192 1. 00 25. 51 ATOM 1083 CG2 THR 149 4. 107 9.989 46. 786 1. 00 22. 63 ATOM 1084 C THR 149 3. 705 8. 306 43. 715 1. 00 27. 38 **ATOM** 1085 0 3.093 42.647 20 THR 149 8. 405 1. 00 24. 58 **ATOM** 1086 N PHE 150 3.857 44. 361 7. 160 1. 00 30. 07 ATOM 1087 CA PHE 150 3. 327 5. 936 43.811 1. 00 32. 54 ATOM 1088 CB PHE 150 4. 455 43. 215 5. 120 1. 00 29. 97 ATOM 1089 CG PHE 150 5. 172 5. 820 42. 119 1. 00 27. 55 ATOM 25 1090 CD1 PHE 150 6. 134 6.770 42. 397 1. 00 27. 41 ATOM CD2 PHE 150 1091 4.850 5. 561 40.798 1. 00 27. 56 ATOM 1092 CE1 PHE 150 6.770 41.366 7. 447 1. 00 28. 61 ATOM 1093 CE2 PHE 150 5. 481 6. 231 39. 762 1. 00 26. 86 ATOM 1094 CZ PHE 150 6. 437 7. 177 40.045 1. 00 27. 37

- 182 -ATOM 1095 C PHE 150 2. 561 5.093 44. 808 1. 00 35. 78 **ATOM** 1096 0 PHE 150 3.095 4. 695 45.845 1. 00 36. 93 ATOM 1097 N SER 151 1. 305 4.813 44. 467 1.00 38.60 ATOM 1098 CA SER 151 0.420 4.006 45. 295 1.00 40.51 5 ATOM 1099 CBSER 151 -0.8304.802 45. 641 1. 00 41. 51 ATOM 1100 OG SER 151 -1.5075. 159 44. 453 1. 00 47. 40 ATOM 1101 C SER 151 0.038 2. 736 44. 533 1. 00 41. 75 ATOM 1102 0 SER 151 0.069 2. 696 43. 301 1.00 40.78 ATOM 1103 N PHE 152 -0.3361. 704 45. 278 1. 00 43. 86 10 ATOM 1104 CA PHE 152 -0.6840.421 44. 687 1.00 45.76 ATOM 1105 CB PHE 152 0. 465 -0.55744. 965 1. 00 51. 67 ATOM 1106 CG PHE 152 0. 429 -1.80844. 133 1. 00 57. 82 ATOM 1107 CD1 PHE 152 0.597 -1.74942. 751 1.00 59.39 ATOM 1108 CD2 PHE 152 0. 256 -3.05644. 739 1. 00 60. 37 15 **ATOM** 1109 CE1 PHE 152 0. 598 -2.91541. 979 1. 00 61. 23 **ATOM** 1110 CE2 PHE 152 0. 254 -4.23243. 978 1.00 61.76 **ATOM** 1111 CZ PHE 152 0. 426 -4.16142. 593 1.00 61.46 ATOM 1112 C PHE 152 -2.007-0. 134 45. 238 1. 00 43. 74 ATOM 1113 0 PHE 152 -2.137-0.38246. 437 1.00 43.01 20 ATOM 1114 N PRO 153 -3.005-0. 322 44. 359 1.00 40.65 ATOM 1115 CD PRO 153 -2.9930. 179 42. 979 1. 00 39. 35 ATOM 1116 CA PRO 153 -4.330-0.84444. 685 1.00 38.88 ATOM 1117 CB PRO 153 -5.045-0.80343. 352 1. 00 36. 16 ATOM 1118 CG PRO 153 -4. 454 0.359 42. 711 1.00 37.38 25 ATOM 1119 C PRO 153 -4.235-2.25545. 192 1.00 41.30 ATOM 1120 0 PRO 153 -3.481-3.05744.657 1. 00 42. 17 ATOM 1121 N VAL 154 **-5.** 013 **-2.** 565 46. 215 1. 00 45. 30 ATOM 1122 CA VAL 154 -5. 016 -3.90546. 767 1. 00 49. 50 ATOM 1123 CB VAL 154 **-4.** 124 **-3.** 989 47. 990 1. 00 45. 75

- 183 -ATOM 1124 CGI VAL 154 -4. 297 *-*5. 331 48. 638 1. 00 45. 79 ATOM 1125 CG2 VAL 154 -2.684 -3.772 47.5941. 00 44. 88 ATOM 1126 C VAL 154 -6. 432 -4. 268 47. 181 1. 00 55. 51 ATOM 1127 0 VAL 154 -6. 963 -3. 683 48. 119 1. 00 58. 30 5 ATOM 1128 N ARG 155 -7.042-5. 232 46. 495 1. 00 61. 06 **ATOM** 1129 CA ARG 155 -8. 413 -5. 643 46. 812 1. 00 67. 71 ATOM 1130 CB ARG 155 -8. 812 -6. 847 45. 956 1.00 71.43 ATOM 1131 CG ARG 155 -9.033-6.50144. 501 1. 00 76. 11 ATOM 1132 CD ARG 155 -9.094**-7.** 736 43. 621 1. 00 78. 73 10 ATOM 1133 NE ARG 155 -9.292-7.352 42.226 1. 00 81. 59 ATOM 1134 CZ ARG 155 -9.138-8.16841. 190 1.00 82.83 **ATOM** 1135 NH1 ARG 155 -8.778-9. 432 41. 386 1.00 83.55 **ATOM** 1136 NH2 ARG 155 -9.340-7. 717 39.956 1. 00 82. 01 ATOM 1137 C ARG 155 -8.639-5.96548. 291 1.00 70.15 ATOM 15 1138 0 ARG 155 -7.689-6.25549. 022 1. 00 71. 24 ATOM 1139 N HIS 156 -9.903-5.92348. 720 1. 00 71. 23 ATOM 1140 CA HIS 156 -10.26550. 117 -6. 184 1. 00 72. 30 ATOM 1141 CB HIS 156 -5.769-11.72450. 365 1. 00 73. 82 ATOM 1142 CG HIS 156 -12.049-5.50651. 808 1. 00 76. 32 20 ATOM 1143 CD2 HIS 156 -11.335 -5.72252. 941 1. 00 76. 70 ATOM -13. 243 -4. 944 52. 211 1144 ND1 HIS 156 1. 00 76. 54 **ATOM** -13. 251 -4. 823 1145 CE1 HIS 156 53. 527 1. 00 76. 16 **ATOM** NE2 HIS 156 1146 -12.106-5. 288 53. 994 1. 00 77. 55 ATOM 1147 C HIS 156 -10.063-7.64550. 522 1. 00 72. 42 25 **ATOM** 1148 0 HIS 156 **-9.** 196 -7. 957 51. 345 1. 00 71. 15 **ATOM** ASN 180 1149 N 11.816 6. 551 32. 482 1. 00 43. 22 ATOM 1150 CA ASN 180 11. 492 7. 278 33. 706 1. 00 42. 73 ATOM CB ASN 180 1151 12. 677 8. 168 34. 155 1. 00 46. 67 ATOM 1152 CG ASN 180 13. 189 9.094 33. 052 1. 00 50. 13

- 184 -OD1 ASN 180 ATOM 1153 14. 152 8. 777 32. 336 1. 00 51. 24 **ATOM** ND2 ASN 180 1154 12. 547 10. 250 32. 915 1. 00 51. 73 **ATOM** 1155 С ASN 180 10. 228 33. 523 8. 110 1. 00 38. 44 **ATOM** 1156 0 ASN 180 9. 941 32. 431 8.600 1. 00 36. 40 **ATOM** 1157 VAL 181 9. 473 5 N 8. 257 34. 603 1. 00 34. 02 **ATOM** 1158 CA VAL 181 8. 218 8. 995 34. 577 1. 00 31. 37 **ATOM** 1159 CB VAL 181 7. 498 8.874 35. 957 1. 00 34. 84 ATOM 1160 CG1 VAL 181 6.091 9. 484 35. 909 1.00 32.59 ATOM CG2 VAL 181 1161 7. 414 7. 405 36. 353 1. 00 38. 00 10 ATOM 1162 C VAL 181 8. 426 10. 458 34. 221 1. 00 26. 36 ATOM 7.882 1163 0 VAL 181 10.964 33. 237 1. 00 23. 28 ATOM 1164 N VAL 182 9. 228 11. 131 35. 030 1.00 23.56 ATOM VAL 182 9. 518 1. 00 18. 23 1165 CA 12. 538 34. 826 ATOM 10.702 1166 CBVAL 182 12. 958 35. 716 1. 00 14. 26 35. 426 15 ATOM 1167 CG1 VAL 182 11. 905 12. 084 1. 00 14. 73 **ATOM** 1168 CG2 VAL 182 11.001 35. 508 14. 403 1. 00 11. 08 **ATOM** 1169 C VAL 182 9.773 12. 882 33. 352 1. 00 15. 36 ATOM 1170 0 VAL 182 9. 330 13. 924 32. 875 1. 00 15. 32 **ATOM** 1171 N GLY 183 10. 467 12. 009 32. 632 1. 00 13. 34 **ATOM** 20 1172 CA GLY 183 10.713 31. 228 12. 267 1. 00 12. 56 **ATOM** C 1173 GLY 183 9. 458 30. 382 12. 098 1. 00 13. 06 **ATOM** 1174 0 GLY 183 9. 104 29.601 12. 978 1. 00 12. 05 **ATOM** 8.772 1175 N LEU 184 10. 971 30. 540 1. 00 15. 78 **ATOM** 1176 CA LEU 184 7. 549 10. 708 29. 777 1. 00 15. 21 25 ATOM 1177 CBLEU 184 6.858 9. 435 30. 295 1. 00 16. 78 ATOM 1178 CG LEU 184 7.613 8. 108 30. 075 1. 00 15. 45 ATOM 1179 CD1 LEU 184 7. 037 7. 023 30. 951 1. 00 10. 71 ATOM 1180 CD2 LEU 184 7. 548 7. 708 28.608 1.00 16.62 LEU 184 ATOM 1181 C 6. 601 11. 894 29. 863 1. 00 13. 07

- 185 -ATOM 1182 0 LEU 184 6.041 12. 311 28. 855 1.00 13.90 ATOM 1183 N LEU 185 6. 430 12. 436 31.064 1.00 11.99 ATOM 1184 CA LEU 185 5. 571 13. 600 31. 250 1. 00 12. 43 ATOM 1185 CBLEU 185 5. 524 13. 997 32. 729 1. 00 13. 27 ATOM 5 1186 CG LEU 185 4. 630 15. 191 33. 080 1. 00 11. 52 ATOM CD1 LEU 185 1187 3. 256 14. 936 32. 515 1. 00 10. 60 ATOM 1188 CD2 LEU 185 4. 553 15. 395 34. 600 1. 00 12. 16 ATOM 1189 C LEU 185 6.077 14. 788 30. 419 1. 00 12. 48 **ATOM** 1190 0 LEU 185 5. 289 15. 488 29. 784 1. 00 9. 22 ATOM 1191 10 N ARG 186 7. 388 15.020 30. 428 1. 00 13. 24 ATOM 1192 CA ARG 186 7. 946 16. 123 29. 661 1. 00 14. 83 ATOM 1193 CB ARG 186 9. 478 16. 135 29. 727 1.00 14.69 ATOM 1194 CG ARG 186 10. 112 17. 274 30. 526 1. 00 18. 47 ATOM 1195 CDARG 186 11. 633 17.063 30.663 1. 00 25. 71 15 ATOM 1196 NE ARG 186 12. 325 18.069 31. 484 1. 00 37. 62 ATOM 1197 CZARG 186 12. 048 18. 357 32. 764 1. 00 42. 54 **ATOM** 1198 NH1 ARG 186 11. 070 17. 721 33.407 1. 00 43. 86 ATOM 1199 NH2 ARG 186 12. 762 19. 277 33. 414 1. 00 39. 97 ATOM 1200 C ARG 186 7. 510 15. 968 28. 220 1. 00 16. 38 20 **ATOM** 1201 0 ARG 186 6.857 16. 851 27. 673 1.00 17.00 ATOM 1202 N ASP 187 7.850 14. 832 27. 616 1. 00 19. 34 **ATOM** 1203 CA ASP 187 7.519 14. 579 26. 214 1.00 24.04 ATOM 1204 CB ASP 187 7. 799 13. 123 25.822 1. 00 30. 35 ATOM 1205 CG ASP 187 9. 226 12. 696 26. 123 1. 00 37. 33 ATOM 25 1206 OD1 ASP 187 9.479 12. 216 27. 251 1. 00 40. 99 ATOM 1207 OD2 ASP 187 10.096 12. 845 25. 234 1. 00 40. 65 ATOM 1208 C ASP 187 6.069 14. 889 25. 912 1. 00 23. 78 ATOM 1209 0 ASP 187 5. 756 15. 541 24. 909 1. 00 25. 37 ATOM 1210 N ALA 188 5. 185 14. 413 26. 780 1. 00 20. 98

- 186 -ATOM 1211 CA ALA 188 3. 761 14. 634 26. 603 1. 00 17. 11 ATOM 1212 CB ALA 188 2.996 13. 943 27. 722 1.00 19.70 **ATOM** 1213 C ALA 188 3. 475 16. 130 26.600 1. 00 14. 48 **ATOM** 1214 0 ALA 188 2. 911 16.660 25. 646 1. 00 11. 69 5 ATOM 1215 N ILE 189 3.873 16. 801 27. 677 1. 00 13. 32 ATOM 1216 CA ILE 189 3.682 18. 239 27. 817 1.00 13.84 **ATOM** 1217 CB ILE 189 4. 422 18. 754 29.056 1. 00 12. 34 ATOM 1218 CG2 ILE 189 4. 368 20. 266 29. 118 1.00 13.98 ATOM 1219 CG1 ILE 189 3.776 18. 153 30. 302 1. 00 14. 10 10 ATOM 1220 CD1 ILE 189 4. 455 18. 530 31. 595 1. 00 14. 04 **ATOM** 1221 C ILE 189 4, 223 18. 928 26. 575 1. 00 15. 60. **ATOM** 1222 0 ILE 189 3. 634 19. 888 26.058 1. 00 14. 87 ATOM 1223 N LYS 190 5. 351 18. 408 26. 103 1. 00 16. 13 ATOM 1224 CA LYS 190 6.010 18. 913 24. 918 1. 00 16. 34 15 ATOM 1225 CBLYS 190 7. 361 18. 211 24. 737 1. 00 18. 43 ATOM 1226 CG LYS 190 8.503 19.081 24. 175 1. 00 24. 32 ATOM 1227 CDLYS 190 8. 539 19. 154 22. 631 1. 00 28. 76 **ATOM** 1228 LYS 190 CE 9.830 19. 841 22. 125 1. 00 30. 07 **ATOM** 1229 NZ LYS 190 10.060 19. 788 20. 642 1. 00 27. 01 20 ATOM 1230 C LYS 190 5. 101 18. 652 23. 718 1. 00 16. 41 ATOM 1231 0 LYS 190 4. 786 19. 575 22. 981 1. 00 17. 80 ATOM 1232 N ARG 191 4.656 17. 413 23. 529 1.00 14.92 ATOM 1233 CA ARG 191 3.798 17. 107 22. 386 1. 00 15. 62 ATOM 1234 CB ARG 191 3. 241 15. 684 22. 491 1. 00 19. 10 ATOM 25 1235 CG ARG 191 4.071 14. 622 21. 775 1. 00 20. 57 ATOM 1236 CD ARG 191 3. 634 13. 221 22. 156 1. 00 19. 26 ATOM 1237 ARG 191 NE 3. 950 12. 925 23. 547 1. 00 23. 45 ATOM 1238 CZARG 191 3. 732 11. 747 24. 119 1. 00 28. 59 ATOM 1239 NH1 ARG 191 3. 194 10. 767 23. 406 1. 00 32. 19

						- 18'	7 –		
	ATOM	1240	NH2	ARG	191	4. 062	11. 537	25. 391	1. 00 29. 84
	ATOM	1241	C	ARG	191	2. 652	18. 086	22. 207	1. 00 15. 44
	ATOM	1242	0	ARG	191	2. 383	18. 513	21. 098	1. 00 15. 17
	ATOM	1243	N	ARG	192	1. 980	18. 441	23. 295	1. 00 17. 09
5	ATOM	1244	CA	ARG	192	0. 853	19. 372	23. 253	1. 00 19. 02
	ATOM	1245	CB	ARG	192	0. 588	19. 885	24. 647	1. 00 17. 94
	ATOM	1246	CG	ARG	192	0. 579	18. 785	25. 635	1. 00 20. 35
	ATOM	1247	CD	ARG	192	-0. 812	18. 328	25. 855	1. 00 22. 03
	ATOM	1248	NE	ARG	192	-1. 565	19. 332	26. 586	1. 00 27. 30
10	ATOM	1249	CZ .	ARG	192	-2. 824	19. 164	26. 954	1. 00 32. 13
	ATOM	1250	NH1.	ARG	192	-3. 437	18. 028	26. 639	1. 00 34. 51
	ATOM	1251	NH2	ARG	192	-3. 465	20. 115	27. 631	1. 00 33. 64
	ATOM	1252	C	ARG	192	1. 010	20. 572	22. 321	1. 00 22. 21
	ATOM	1253	0 1	ARG	192	0. 017	21. 184	21. 937	1. 00 24. 03
15	ATOM	1254	N (GLY	193	2. 245	20. 923	21. 975	1. 00 24. 28
	ATOM	1255	CA (GLY	193	2. 472	22. 052	21. 088	1. 00 25. 59
	ATOM	1256	C (GLY	193	2. 351	23. 417	21. 750	1. 00 27. 55
	ATOM	1257	0 (GLY	193	2. 734	24. 437	21. 163	1. 00 26. 53
	ATOM	1258	N A	ISP	194	1. 836	23. 434	22. 981	1. 00 28. 09
20	ATOM	1259	CA A	SP	194	1. 634	24. 678	23. 725	1. 00 28, 74
	ATOM	1260	CB A	SP	194	0. 349	24. 597	24. 548	1. 00 32. 11
	ATOM	1261	CG A	SP	194	-0. 873	24. 329	23. 692	1. 00 36. 60
	ATOM	1262	OD1 A	SP	194	-1. 053	25. 025	22. 668	1. 00 38. 48
	ATOM	1263	OD2 A	SP	194	-1. 659	23. 424	24. 046	1. 00 40. 23
25	ATOM	1264	C A	SP :	194	2. 774	25. 089	24. 641	1. 00 27. 04
	ATOM	1265	0 A	SP	194	3. 815	24. 439	24. 689	1. 00 26. 55
	ATOM	1266	N P	HE 1	195	2. 565	26. 181	25. 370	1. 00 25. 47
	ATOM	1267	CA P	HE 1	95	3. 582	26. 691	26. 274	1. 00 25. 41
	ATOM	1268	CB P	HE 1	95	3. 083	27. 932	27. 016	1. 00 27. 05

- 188 -ATOM 1269 CG PHE 195 3. 156 29. 192 26. 201 1. 00 28. 43 **ATOM** 1270 CD1 PHE 195 2. 032 29. 686 25.550 1. 00 31. 56 CD2 PHE 195 ATOM 1271 4. 353 29. 880 26.067 1. 00 29. 11 **ATOM** 1272 CE1 PHE 195 2. 097 30. 852 24. 771 1. 00 30. 45 5 ATOM 1273 CE2 PHE 195 4. 426 25. 290 31. 046 1. 00 30. 62 **ATOM** 1274 CZPHE 195 3. 294 31. 528 24. 644 1. 00 29. 47 ATOM 1275 C PHE 195 4. 024 25. 642 27. 267 1. 00 24. 15 ATOM 1276 PHE 195 0 3. 214 25. 083 28. 000 1. 00 25. 61 ATOM 1277 N **GLU 196** 5. 324 25. 385 27. 280 1. 00 22. 49 10 ATOM 1278 CA GLU 196 5.897 24. 394 28. 166 1. 00 23. 12 **ATOM** 1279 CBGLU 196 27. 499 7. 117 23. 754 1. 00 21. 72 1280 ATOM CG **GLU 196** 6. 942 23. 418 26. 020 1. 00 22. 22 1281 ATOM CD GLU 196 8. 121 22. 629 25. 477 1.00 24.60 ATOM 1282 0E1 GLU 196 8. 336 22.601 24. 241 1.00 23.54 15 ATOM 1283 0E2 GLU 196 8.839 22. 026 26. 301 1. 00 26. 49 **ATOM** 1284 C GLU 196 6. 314 25.066 29. 466 1. 00 24. 25 ATOM 1285 0 GLU 196 7.467 24. 966 29.882 1. 00 26. 05 ATOM 1286 N MET 197 5. 376 25. 729 30. 126 1. 00 25. 12 **ATOM** 1287 CA MET 197 5.711 26. 444 31. 352 1. 00 27. 52 20 **ATOM** 1288 CB MET 197 5.546 27. 942 31.096 1. 00 29. 51 ATOM 1289 CG MET 197 6.758 28. 782 31.466 1. 00 33. 61 ATOM 1290 SD MET 197 7. 208 29. 992 30. 181 1. 00 35. 72 ATOM 1291 CE MET 197 5.967 31. 256 30.466 1. 00 37. 45 ATOM 1292 C MET 197 4.906 26. 045 32. 583 1. 00 27. 47 25 ATOM 1293 0 MET 197 4. 921 26. 749 33. 597 1.00 25.63 **ATOM** 1294 N ASP 198 4. 230 32. 502 24. 903 1. 00 27. 57 ATOM 1295 CA ASP 198 3. 384 24. 430 33. 598 1. 00 26. 12 ATOM 1296 CB ASP 198 2. 462 23. 298 33. 110 1. 00 29. 89 ATOM 1297 CG ASP 198 1. 326 23. 796 32. 232 1. 00 31. 76

- 189 -**ATOM** 1298 OD1 ASP 198 0. 736 24. 840 32. 590 1. 00 30. 59 ATOM 1299 OD2 ASP 198 1. 023 23. 135 31. 203 1. 00 32. 71 ATOM 1300 C ASP 198 4. 110 23. 959 34. 853 1. 00 22. 26 **ATOM** 1301 0 ASP 198 3.960 24. 551 35. 923 1.00 18.00 5 ATOM 1302 N VAL 199 4. 873 22. 878 34. 717 1. 00 19. 81 ATOM 1303 CA VAL 199 5. 605 22. 301 35. 841 1. 00 18. 78 ATOM 1304 CB VAL 199 5. 133 20. 852 36. 115 1.00 16.48 ATOM 1305 CG1 VAL 199 3. 736 20. 859 36. 696 1. 00 19. 07 **ATOM** 1306 CG2 VAL 199 5. 150 20. 042 34. 823 1. 00 10. 86 ATOM 10 1307 C VAL 199 7. 121 22. 267 35. 648 1. 00 20. 19 ATOM 1308 0 VAL 199 7. 665 22. 752 34.655 1.00 21.16 ATOM 1309 N VAL 200 7. 798 21. 695 36. 629 1. 00 20. 40 ATOM 1310 CA VAL 200 9. 237 21. 547 36. 594 1. 00 22. 39 ATOM 1311 CBVAL 200 9. 975 22. 834 37. 007 1. 00 24. 84 15 ATOM 1312 CG1 VAL 200 9. 331 23. 406 38. 255 1. 00 31. 58 ATOM 1313 CG2 VAL 200 11.465 22. 539 37. 266 1.00 21.54 ATOM 1314 C VAL 200 9. 502 20. 457 37. 598 1.00 23.06 ATOM 1315 0 VAL 200 9. 039 20. 501 38. 755 1. 00 22. 26 ATOM 1316 N ALA 201 10. 229 19. 460 37. 120 1. 00 23. 03 20 ATOM 1317 CA ALA 201 10.569 18. 300 37. 907 1. 00 22. 74 ATOM 1318 CB ALA 201 11. 460 17. 418 37. 112 1. 00 23. 66 ATOM 1319 C ALA 201 11. 236 18. 646 39. 209 1. 00 24. 47 **ATOM** 1320 0 ALA 201 12.045 19. 564 39. 285 1. 00 27. 55 ATOM 1321 N MET 202 10.872 17. 914 40. 244 1. 00 25. 96 25 ATOM 1322 CA MET 202 11. 479 18. 106 41. 547 1. 00 27. 52 ATOM 1323 CBMET 202 10.720 19. 124 42. 386 1. 00 27. 45 ATOM 1324 CG MET 202 11. 516 19. 580 43. 597 1. 00 27. 56 ATOM 1325 SD MET 202 11. 967 18. 244 44. 740 1. 00 28. 85 ATOM 1326 CE MET 202 10. 732 18. 486 46. 045 1. 00 23. 74

- 190 -ATOM 1327 C MET 202 11. 436 16. 752 1. 00 28. 79 42. 219 ATOM 1328 0 MET 202 10. 377 16. 290 42. 653 1. 00 25. 51 ATOM 1329 N VAL 203 16. 118 12. 600 42. 293 1. 00 29. 76 ATOM 1330 CA VAL 203 12.695 14. 802 42. 883 1. 00 28. 97 ATOM 1331 CBVAL 203 12. 943 13. 727 41. 813 1. 00 25. 86

5

15

20

ATOM 1332 CG1 VAL 203 11.936 13.870 40. 681 1. 00 22. 02 CG2 VAL 203 ATOM 1333 14. 361 13. 831 41. 310 1. 00 23. 30 **ATOM** 1334 C VAL 203 13.815 14. 713 43. 890 1. 00 31. 36 ATOM 1335 0 VAL 203 13. 934 13. 713 44. 585 1. 00 34. 93

10 ATOM 1336 N ASN 204 14. 638 15. 745 43. 987 1. 00 32. 12 ATOM 1337 CA ASN 204 15. 741 15. 674 44. 929 1.00 33.37 ATOM 1338 CBASN 204 16.667 16.867 44. 736 1. 00 36. 19

ATOM 1339 CG ASN 204 18. 052 16.601 45. 260 1. 00 39. 20 ATOM

1340 OD1 ASN 204 18. 847 15. 905 44.621 1.00 41.71 ATOM ND2 ASN 204 1341 18. 349 17. 133 46. 440 1. 00 39. 72

ATOM 1342 С ASN 204 15. 220 15. 625 46. 363 1. 00 32. 02

ATOM 13**4**3 **0** ASN 204 14. 382 16. 439 46. 751 1. 00 28. 87

ATOM 1344 N ASP 205 15. 705 14. 665 47. 149 1. 00 31. 97

ATOM 1345 $\mathsf{C}\mathsf{A}$ ASP 205 15. 245 14. 538 48. 541 1. 00 33. 94 ATOM 1346 CBASP 205 15. 792 13. 266

ATOM 1347 CG ASP 205 15. 163 12. 017 48. 642 1. 00 31. 18

49. 197

1. 00 32. 38

ATOM 1348

OD1 ASP 205 15. 386 10. 935 49. 217 1.00 31.15

ATOM 1349 OD2 ASP 205 14. 450 12. 118 47. 625 1. 00 28. 42

ATOM 1350 C ASP 205 15. 626 15. 722 49. 414 1.00 33.64

25 ATOM 1351 ASP 205 0 14. 909 16. 080 50. 356 1. 00 33. 83

ATOM 1352 N THR 206 16.770 16. 313 49.092 1. 00 31. 15

ATOM 1353 CA THR 206 17. 290 17. 449 49. 826 1. 00 25. 09

ATOM 1354 CB THR 206 18. 646 17. 825 49. 278 1. 00 25. 45

ATOM 1355 OG1 THR 206 19. 423 16. 630 49. 123 1. 00 24. 81

- 191 -9. 350 18

	ATOM	1356	CG2	THR	206	19. 350	18. 769	50. 232	1. 00	26. 26
	ATOM	1357	C	THR	206	16. 347	18. 634	49. 734	1. 00	20. 16
	ATOM	1358	0	THR	206	15. 923	19. 184	50. 755	1. 00	17. 86
	ATOM	1359	N	VAL	207	16. 009	19. 016	48. 510	1. 00	12. 86
5	ATOM	1360	CA	VAL	207	15. 106	20. 133	48. 308	1. 00	9. 27
	ATOM	1361	CB	VAL	207	14. 582	20. 164	46. 867	1. 00	5. 21
	ATOM	1362	CG1	VAL	207	13. 555	21. 243	46. 720	1. 00	1. 26
	ATOM	1363	CG2	VAL	207	15. 714	20. 397	45. 910	1. 00	4. 57
	ATOM	1364	C	VAL	207	13. 917	19. 992	49. 255	1. 00	11. 72
10	ATOM	1365	0	VAL	207	13. 584	20. 909	50. 016	1. 00	9. 00
	ATOM	1366	N	ALA	208	13. 291	18. 819	49. 212	1. 00	14. 04
	ATOM	1367	CA	ALA	208	12. 122	18. 523	50. 041	1. 00	14. 67
	ATOM	1368	СВ	ALA	208	11. 598	17. 148	49. 702	1. 00	14. 60
	ATOM	1369	C	ALA	208	12. 422	18. 615	51. 537	1. 00	15. 41
15	ATOM	1370	0	ALA	208	11. 514	18. 770	52. 362	1. 00	14. 28
	ATOM	1371	N	THR	209	13. 699	18. 498	51.879	1. 00	13. 94
	ATOM	1372	CA	THR	209	14. 123	18. 591	53. 261	1. 00	13. 05
	ATOM	1373	CB	THR	209	15. 567	18. 237	53. 423	1. 00	11.66
	ATOM	1374	0G1	THR	209	15. 887	17. 177	52. 525	1. 00	12. 70
20	ATOM	1375	CG2	THR	209	15. 833	17. 807	54. 846	1. 00	7. 92
	ATOM	1376	C	THR	209	14. 007	20. 041	53. 626	1. 00	14. 97
	ATOM	1377	0	THR	209	13. 554	20. 401	54. 714	1. 00	14. 80
	ATOM	1378	N	MET	210	14. 447	20. 885	52. 707	1. 00	15. 34
	ATOM	1379	CA	MET	210	14. 363	22. 298	52. 965	1. 00	16. 36
25	ATOM	1380	CB	MET	210	15. 043	23. 091	51.845	1. 00	19. 89
	ATOM	1381	CG	MET	210	15. 119	24. 592	52. 103	1. 00	23. 82
	ATOM	1382	SD	MET	210	15. 258	25. 542	50. 561	1. 00	29. 33
	ATOM	1383	CE	MET	210	13. 547	25. 995	50. 325	1. 00	27. 80
	ATOM	1384	C	MET	210	12. 864	22. 592	53. 031	1. 00	14. 33

- 192 -ATOM 1385 0 MET 210 12. 332 22. 896 54. 102 1. 00 15. 04 ATOM 1386 N ILE 211 12. 180 22. 452 51. 898 1. 00 11. 15 **ATOM** 1387 CA ILE 211 10. 743 22. 708 51. 831 1.00 9.09 ATOM 1388 CB ILE 211 10. 157 22. 122 50. 566 1. 00 5. 39 5 ATOM 1389 CG2 ILE 211 8. 748 22.693 50. 337 1.00 3. 22 ATOM 1390 CG1 ILE 211 11. 111 22. 412 49.412 1.00 2. 02 ATOM 1391 CD1 ILE 211 10. 580 22. 065 48. 067 1. 00 1.00 ATOM 1392 C ILE 211 9. 987 22. 129 53. 022 1. 00 10. 92 ATOM 1393 0 ILE 211 9. 117 22. 781 53.605 1. 00 7. 92 10 ATOM 1394 SER 212 N 10. 319 20. 891 53. 364 1. 00 12. 74 ATOM 1395 CA SER 212 9. 701 20. 254 54. 489 1. 00 15. 18 ATOM 1396 CB SER 212 10.300 18. 880 54. 704 1. 00 12. 84 **ATOM** 1397 0GSER 212 10. 216 18. 533 56.078 1. 00 19. 56 **ATOM** 1398 C SER 212 9. 918 21. 101 55. 736 1. 00 19. 90 15 **ATOM** 1399 0 SER 212 8.969 21. 432 56. 435 1. 00 21. 30 ATOM 1400 N CYS 213 11. 161 21. 476 56.016 1. 00 24. 22 ATOM 1401 CA CYS 213 11. 432 22. 259 57. 219 1. 00 28. 52 ATOM CYS 213 1402 CB 12. 934 22. 367 57. 464 1.00 30.65 ATOM 1403 SG CYS 213 13. 713 20. 766 57.805 1. 00 39. 09 ATOM 20 1404 C CYS 213 10. 822 23. 637 57. 168 1. 00 29. 40 **ATOM** 1405 CYS 213 0 10. 366 24. 150 58. 186° 1. 00 30. 64 **ATOM** 1406 TYR 214 N 10.816 24. 229 55.981 1. 00 29. 50 ATOM 1407 CA TYR 214 10. 243 25. 548 55. 788 1. 00 29. 27 **ATOM** 1408 CB TYR 214 10. 168 25. 846 54. 292 1. 00 31. 33 **ATOM** 25 1409 CG TYR 214 9.637 27. 212 53. 985 1. 00 33. 15 ATOM 1410 CD1 TYR 214 10. 182 28. 328 54. 594 1. 00 36. 28 ATOM 1411 CE1 TYR 214 9. 694 29. 592 54. 341 1. 00 39. 73 ATOM 1412 CD2 TYR 214 8. 582 27. 390 53. 100 1. 00 35. 23 ATOM 1413 CE2 TYR 214 8. 080 28. 656 52. 833 1. 00 39. 38

- 193 -

ATOM 1414 CZ TYR 214 8. 644 29. 758 53. 463 1. 00 41. 11 ATOM 0HTYR 214 1415 8. 168 31. 034 53. 241 1. 00 43. 33 ATOM TYR 214 1416 С 8. 848 25. 649 56. 429 1. 00 28. 57 ATOM 1417 0 TYR 214 8. 561 26. 578 57. 185 1. 00 27. 99 ATOM 1418 N TYR 215 7.986 5 24. 685 56. 136 1. 00 27. 91 **ATOM** 1419 6.642 CA TYR 215 56. 691 24. 685 1. 00 27. 12 **ATOM** 1420 CB TYR 215 5. 922 23. 403 56. 309 1.00 21.95 **ATOM** 1421 CG TYR 215 5. 723 23. 235 54. 829 1. 00 18. 06 **ATOM** 1422 CD1 TYR 215 6.064 54. 197 22. 048 1. 00 17. 25 10 ATOM 1423 CE1 TYR 215 5. 835 21.867 52. 841 1. 00 17. 47 ATOM 1424 CD2 TYR 215 5. 152 24. 246 54.065 1. 00 16. 51 ATOM 1425 CE2 TYR 215 4. 917 24. 075 52. 711 1. 00 15. 51 **ATOM** TYR 215 1426 CZ5. 257 22. 882 52. 109 1. 00 17. 82 ATOM 1427 0HTYR 215 4. 979 22. 681 50. 785 1. 00 20. 98 ATOM 1428 C TYR 215 15 6. 658 24. 810 58. 201 1. 00 30. 19 ATOM 1429 TYR 215 0 5. 780 25. 438 58. 778 1. 00 31. 10 ATOM 1430 N GLU 216 7. 640 24. 197 58.850 1. 00 35. 15 ATOM 1431 CA GLU 216 7. 725 24. 278 60. 306 1. 00 41. 19 ATOM 1432 CB GLU 216 8. 560 23. 132 60.876 1. 00 44. 10 20 ATOM 1433 CG GLU 216 7.877 60.887 1.00 52.19 21. 767 ATOM 1434 CD GLU 216 6. 579 61. 685 21. 749 1. 00 54. 93 ATOM OE1 GLU 216 1435 6. 491 22. 481 62. 702 1. 00 55. 44 ATOM 1436 OE2 GLU 216 5.658 20. 988 61. 296 1.00 56.26 ATOM 1437 C GLU 216 8. 369 25. 591 60.707 1.00 43.33 ATOM 25 1438 0 GLU 216 7. 787 26. 385 61. 449 1.00 44.64 ASP 217 ATOM 1439 9. 583 N 25. 802 60. 209 1. 00 44. 35 ATOM 1440 CA ASP 217 10. 357 27. 007 60. 489 1. 00 44. 65 ATOM ASP 217 1441 CB11. 734 26. 623 61. 033 1. 00 47. 71 **ATOM** CG ASP 217 1442 12. 667 27. 806 61. 136 1. 00 50. 46

- 194 -**ATOM** 1443 OD1 ASP 217 13. 252 28. 205 60. 106 1. 00 51. 95 ATOM 1444 OD2 ASP 217 12. 804 28. 346 62. 252 1. 00 54. 06 ATOM 1445 C ASP 217 10. 514 27. 820 59. 215 1. 00 43. 04 ATOM 1446 0 ASP 217 11. 372 27. 527 58. 385 1.00 44.60 **ATOM** 1447 N 5 HIS 218 9. 691 28. 848 59. 059 1. 00 41. 00 **ATOM** 1448 CA HIS 218 9. 750 29. 671 57. 862 1. 00 39. 42 ATOM 1449 CBHIS 218 8. 569 30.630 57.826 1. 00 40. 46 ATOM 1450 CG HIS 218 7. 261 29. 960 58. 083 1. 00 44. 54 **ATOM** 1451 CD2 HIS 218 6. 652 28. 930 57. 450 1. 00 45. 30 **ATOM** 10 1452 ND1 HIS 218 6.449 **30. 290** 59. 147 1. 00 47. 09 ATOM: 1453 CE1 HIS 218 5. 397 29. 492 59. 161 1.00 45.61 ATOM 1454 NE2 HIS 218 5.497 28. 657 58. 142 1.00 46.44 ATOM 1455 C HIS 218 11.036 30. 452 57. 759 1. 00 37. 69 ATOM 1456 0 HIS 218 11. 120 31. 381 56. 974 1. 00 37. 21 15 ATOM 1457 N GLN 219 12. 041 30.076 58. 537 1. 00 37. 38 ATOM 1458 CA GLN 219 13. 312 30. 779 58. 494 1. 00 38. 18 ATOM 1459 CBGLN 219 13. 727 31. 186 59.910 1. 00 41. 72 ATOM 1460 14. 577 CG GLN 219 32. 451 60.011 1. 00 48. 69 ATOM 1461 CD GLN 219 13. 836 33. 718 59. 546 1. 00 55. 14 20 ATOM 1462 OE1 GLN 219 12.665 33. 945 59. 908 1. 00 55. 89 ATOM 1463 NE2 GLN 219 14. 523 34. 555 58. 751 1. 00 55. 41 ATOM 1464 C GLN 219 14. 348 29. 846 57. 886 1. 00 36. 85 ATOM 1465 0 GLN 219 15. 508 30. 200 57. 735 1. 00 37. 28 ATOM 1466 CYS 220 N 13. 912 28. 647 57. 535 1. 00 36. 02 25 ATOM 1467 CA CYS 220 14. 790 27. 646 56. 950 1. 00 37. 10 **ATOM** 1468 CBCYS 220 14. 103 26. 286 57.043 1. 00 38. 40 **ATOM** CYS 220 1469 SG 15.067 24. 916 56. 396 1. 00 44. 24 ATOM 1470 C CYS 220 15. 106 27. 970 55. 486 1. 00 37. 48 **ATOM** 1471 0 CYS 220 14. 193 28. 081 54. 672 1. 00 40. 52

- 195 -ATOM 1472 N GLU 221 16. 382 28. 123 55. 137 1. 00 36. 17 ATOM 1473 CA GLU 221 16. 742 28. 428 53. 746 1. 00 35. 58 ATOM 1474 CB GLU 221 17. 116 29. 911 53. 591 1. 00 38. 60 ATOM 1475 CG GLU 221 15. 921 30. 878 53. 645 1. 00 42. 48 ATOM 1476 CD GLU 221 5 16. 325 32. 347 53. 760 1. 00 42. 62 ATOM 1477 OE1 GLU 221 17. 120 32. 815 52. 909 1. 00 42. 89 OE2 GLU 221 ATOM 1478 15.835 33. 024 54. 700 1.00 40.36 ATOM 1479 C GLU 221 17. 896 27. 566 53. 260 1. 00 33. 89 **ATOM** 1480 0 GLU 221 18. 498 27. 826 52. 217 1. 00 32. 29 ATOM 1481 N 10 VAL 222 18. 199 26. 525 54. 018 1. 00 32. 57 ATOM 1482 CA VAL 222 19. 286 25. 654 53. 645 1. 00 31. 01 **ATOM** 1483 CB VAL 222 20. 548 26. 041 54. 376 1. 00 29. 59 ATOM 1484 CG1 VAL 222 21. 673 25. 102 53. 995 1. 00 29. 07 ATOM 1485 CG2 VAL 222 20. 895 27. 465 54. 043 1. 00 30. 00 15 ATOM 1486 C VAL 222 18. 983 24. 214 53. 966 1. 00 31. 75 ATOM 1487 0 VAL 222 18.872 23. 846 55. 132 1. 00 33. 50 ATOM 1488 N GLY 223 18. 858 23. 400 52. 925 1. 00 31. 02 ATOM 1489 CA GLY 223 18. 575 21. 994 53. 119 1. 00 28. 49 **ATOM** 1490 C GLY 223 19. 847 21. 184 53. 026 1. 00 26. 21 20 ATOM 1491 0 GLY 223 20. 757 21. 528 52. 267 1. 00 25. 39 ATOM 1492 N MET 224 19. 911 20. 098 53. 786 1. 00 24. 93 ATOM 1493 CA MET 224 21. 101 19. 267 53. 774 1. 00 24. 66 ATOM 1494 CB MET 224 22. 164 19. 958 54. 623 1. 00 26. 07 **ATOM** 1495 CG MET 224 23. 584 19. 535 54. 358 1. 00 26. 25 ATOM 25 1496 SD MET 224 24. 664 20. 375 55. 525 1. 00 28. 76 **ATOM** 1497 CE MET 224 24. 493 19. 328 56. 939 1. 00 27. 46 **ATOM** 1498 C MET 224 20.867 17. 819 54. 253 1. 00 23. 62 ATOM 1499 0 MET 224 20. 243 17. 581 55. 294 1. 00 21. 62 ATOM 1500 N ILE 225 21. 389 16. 867 53. 478 1. 00 21. 96

- 196 -

	ATOM	1501	CA	ILE	225	21. 265	15. 434	53. 764	1. 00 21. 80
	ATOM	1502	СВ	ILE	225	20. 514	14. 706	52. 662	1. 00 23. 26
	ATOM	1503	CG	2 ILE	225	20. 389	13. 242	53. 026	1. 00 22. 57
	ATOM	1504	CG	1 ILE	225	19. 142	15. 332	52. 463	1. 00 26. 22
5	ATOM	1505	CD	1 ILE	225	18. 270	15. 229	53. 688	1. 00 30. 06
	ATOM	1506	C	ILE	225	22. 595	14. 702	53. 904	1. 00 21. 76
	ATOM	1507	0	ILE	225	23. 204	14. 299	52. 909	1. 00 20. 84
	ATOM	1508	N	VAL	226	23. 008	14. 492	55. 146	1. 00 22. 14
	ATOM	1509	CA	VAL :	226	24. 263	13. 824	55. 454	1. 00 22. 07
10	ATOM	1510	CB	VAL :	226	25. 031	14. 613	56. 514	1. 00 22. 20
	ATOM	1511	CG ₁	VAL :	226	26. 321	13. 905	56. 872	1. 00 20. 57
	ATOM	1512	CG2	VAL 2	226	25. 283	16. 016	56. 005	1. 00 22. 66
	ATOM	1513	C	VAL 2	226	24. 060	12. 411	55. 972	1. 00 22. 96
	ATOM	1514	0	VAL 2	226	24. 032	12. 172	57. 183	1. 00 23. 79
15	ATOM	1515	N	GLY 2	227	23. 924	11. 470	55. 054	1. 00 23. 08
	ATOM	1516	CA	GLY 2	227	23. 738	10. 094	55. 459	1. 00 25. 20
	ATOM	1517	C	GLY 2	227	24. 623	9. 207	54. 621	1. 00 25. 79
	ATOM	1518	0	GLY 2	227	25. 820	9. 447	54. 501	1. 00 26. 18
	ATOM	1519	N	THR 2	228	24. 039	8. 181	54. 026	1. 00 27. 28
20	ATOM	1520	CA	THR 2	228	24. 822	7. 291	53. 200	1. 00 29. 44
	ATOM	1521	CB	THR 2	228	23. 900	6. 356	52. 413	1. 00 28. 91
	ATOM	1522	0G1	THR 2	228	24. 691	5. 441	51. 650	1. 00 27. 54
	ATOM	1523	CG2	THR 2	28	22. 983	7. 159	51. 496	1. 00 30. 69
	ATOM	1524	С	THR 2	28	25. 705	8. 139	52. 267	1. 00 30. 87
25	ATOM	1525	0	THR 2	28	26. 878	7. 834	52. 072	1. 00 32. 00
	ATOM	1526	N	GLY 2	29	25. 140	9. 216	51. 723	1. 00 31. 23
	ATOM	1527	CA	GLY 2	29	25. 888	10. 111	50. 855	1. 00 30. 25
	ATOM	1528	C	GLY 2	29	25. 716	11. 501	51. 434	1. 00 32. 12
	ATOM	1529	0	GLY 2	29	25. 139	11. 632	52. 518	1. 00 33. 23

- 197 -**ATOM** 1530 CYS 230 N 26. 208 12. 535 50. 749 1. 00 31. 95 **ATOM** CYS 230 1531 CA 26. 057 13. 909 51. 247 1. 00 31. 05 ATOM 1532 CB CYS 230 27. 344 14. 417 51.891 1. 00 31. 11 ATOM 1533 SG CYS 230 27. 145 16.090 52. 562 1. 00 40. 64 **ATOM** C 5 1534 CYS 230 25. 650 14. 909 50. 183 1.00 29.04 ATOM 1535 0 CYS 230 26. 202 14. 913 49. 087 1. 00 30. 85 ATOM ASN 231 1536 N 24. 701 15. 775 50. 513 1. 00 26. 12 ATOM 1537 CA ASN 231 24. 267 16. 773 49. 554 1. 00 26. 17 **ATOM** 1538 CBASN 231 23. 380 16. 130 48. 505 1. 00 24. 13 10 **ATOM** 1539 CG ASN 231 23. 146 47. 341 17. 030 1. 00 24. 98 ATOM 1540 OD1 ASN 231 22. 505 18. 064 47. 463 1. 00 24. 73 ND2 ASN 231 ATOM 1541 23.684 16. 656 46. 196 1. 00 29. 51 ATOM 1542 C 23. 529 1. 00 27. 77 ASN 231 17. 927 50. 213 ATOM 1543 0 ASN 231 22. 929 51. 275 17. 757 1. 00 28. 70 ATOM ALA 232 15 1544 N 23. 569 19. 103 49. 587 1. 00 27. 44 ATOM ALA 232 1.00 26.70 1545 CA 22. 890 20. 258 50. 158 ATOM 1546 CB ALA 232 23. 806 20. 963 51. 113 1.00 26.89 ATOM 1547 C ALA 232 22. 366 21. 245 49. 144 1. 00 26. 61 ATOM 1548 0 ALA 232 22. 693 21. 184 47. 963 1. 00 26. 44 ATOM 20 1549 N CYS 233 21. 537 22. 161 49.617 1.00 27.04 ATOM 1550 CA CYS 233 20. 976 23. 172 48. 743 1. 00 31. 21 ATOM 1551 CB CYS 233 19.676 22. 666 48. 127 1. 00 31. 60 ATOM 1552 SG CYS 233 18. 376 22. 446 49. 348 1. 00 35. 31 ATOM 1553 C CYS 233 20. 708 24. 408 49. 589 1.00 31.98 ATOM 25 1554 0 CYS 233 20. 596 24. 303 50.809 1.00 32.62 ATOM 1555 N TYR 234 20. 621 25. 572 48. 949 1. 00 30. 70 ATOM 1556 CA TYR 234 20. 366 49.660 26. 822 1.00 30.60 ATOM 1557 CB TYR 234 21. 684 27. 524 50. 026 1. 00 29. 53 ATOM 1558 CG TYR 234 22. 464 28. 011 48. 829 1. 00 27. 41

ø

- 198 -ATOM CD1 TYR 234 1. 00 25. 56 1559 22. 363 29. 327 48. 393 **ATOM** CE1 TYR 234 1560 22. 981 29. 739 47. 217 1. 00 25. 47 CD2 TYR 234 **ATOM** 1561 23. 218 27. 121 48.061 1.00 28.10 ATOM CE2 TYR 234 23.838 27. 524 46.882 1.00 26.39 1562 5 ATOM 1563 CZ TYR 234 23. 707 28. 830 46. 462 1. 00 25. 77 ATOM 1564 OH TYR 234 24. 240 45. 253 1. 00 27. 36 29. 201 ATOM 1565 C TYR 234 19.531 48. 797 27. 742 1. 00 32. 10 **ATOM** 1566 0 TYR 234 19. 211 27. 411 47.657 1. 00 32. 79 ATOM 1567 N MET 235 19. 184 28. 897 49. 357 1. 00 34. 08 **ATOM** 10 1568 CA MET 235 18. 380 29. 908 48. 679 1. 00 34. 57 **ATOM** 1569 CBMET 235 17. 492 30.617 49.697 1.00 34.74 ATOM 1570 CG MET 235 16. 489 29.699 50. 305 1.00 34.74 ATOM 1571 SD MET 235 15. 575 28. 985 48. 959 1. 00 35. 81 ATOM 1572 CE MET 235 14. 171 30.092 48. 917 1.00 34.50 ATOM 1573 C MET 235 19.270 30.933 15 48. 009 1.00 35.41 ATOM 1574 0 MET 235 19. 631 31.930 48. 625 1. 00 37. 55 **ATOM** 1575 N GLU 236 19. 626 30. 702 46. 753 1. 00 35. 58 ATOM 1576 CA **GLU 236** 20. 487 31.643 46.049 1.00 36.59 ATOM CBGLU 236 1577 21. 168 30. 949 44. 869 1. 00 38. 16 ATOM **GLU 236** 1578 CG 22. 051 31.861 44.051 1.00 39.44 20 **ATOM** 1579 CDGLU 236 23. 107 32. 542 44. 890 1.00 41.44 ATOM OE1 GLU 236 1580 24. 116 31. 891 45. 240 1. 00 40. 65 **ATOM** 1581 OE2 GLU 236 22. 918 33. 735 45. 208 1. 00 42. 03 ATOM 1582 C GLU 236 19.679 32. 838 45. 564 1. 00 37. 02 ATOM 1583 0 GLU 236 18. 452 32.810 45. 580 1.00 38.00 25 ATOM 1584 N GLU 237 20. 354 33. 898 45. 149 1. 00 38. 75 **ATOM** 19.634 1585 CA GLU 237 35.062 44.668 1. 00 41. 18 **ATOM** 1586 CB GLU 237 20. 482 36. 317 44. 830 1.00 39.63 ATOM 1587 CG GLU 237 20. 912 36. 579 46. 258 1.00 36.10

- 199 -37. 022 1. 00 35. 20 19. 764 47. 131 ATOM 1588 CD **GLU 237** OE1 GLU 237 37. 971 46. 726 1.00 34.49 **ATOM** 1589 19.056 0E2 GLU 237 36. 434 48. 221 1. 00 33. 72 1590 19.574 **ATOM** 1591 **GLU 237** 19.307 34. 836 43. 206 1. 00 43. 71 ATOM C 1. 00 43. 65 1592 20. 143 34. 351 42. 437 5 ATOM 0 GLU 237 18.078 35. 172 42. 832 1. 00 45. 47 ATOM 1593 N MET 238 17.625 35. 013 41. 457 1. 00 47. 13 **ATOM** CA MET 238 1594 ATOM 1595 CBMET 238 16. 275 35. 705 41. 275 1. 00 47. 10 34. 875 41. 721 1. 00 46. 82 ATOM 1596 CG MET 238 15. 094 14. 773 33. 548 40.554 1. 00 45. 37 ATOM 1597 SD MET 238 10 39. 412 1. 00 46. 47 MET 238 13. 564 34. 332 ATOM 1598 CE ATOM 1599 C MET 238 18.629 35. 589 40.466 1. 00 48. 34 35.061 39. 371 1. 00 49. 97 ATOM 1600 MET 238 18. 814 0 40.868 1.00 48.44 ATOM 1601 N GLN 239 19. 280 36. 672 ATOM GLN 239 20. 252 37. 344 40. 026 1. 00 49. 76 1602 CA 15 20. 398 38. 794 40. 491 1.00 54.00 ATOM 1603 CB GLN 239 GLN 239 20.375 38. 963 42. 007 1.00 58.66 ATOM 1604 CG ATOM 1605 CD GLN 239 20.056 40. 394 42. 447 1. 00 63. 23 ATOM 1606 OE1 GLN 239 19.660 40. 624 43. 593 1. 00 65. 75 NE2 GLN 239 20. 233 41. 359 41. 540 1. 00 63. 23 ATOM 1607 20 21.612 36. 665 40. 011 1. 00 48. 87 ATOM 1608 C GLN 239 1. 00 49. 50 22. 611 37. 295 39. 687 ATOM 1609 0 GLN 239 1. 00 47. 67 21.656 35. 384 40. 354 ATOM 1610 N ASN 240 ATOM 22. 926 34.660 40. 379 1.00 47.01 1611 CA ASN 240 1.00 47.66 23. 301 34. 278 41. 809 ATOM 1612 CB ASN 240 25 ATOM ASN 240 24. 101 35. 347 42. 518 1. 00 45. 71 1613 CG 36.328 43. 021 1. 00 43. 88 **ATOM** OD1 ASN 240 23. 553 1614 1. 00 46. 64 **ATOM** 1615 ND2 ASN 240 25. 414 35. 159 42. 561

ATOM

1616 C

ASN 240

22. 861

33. 393

39. 550

1. 00 46. 58

- 200 -ATOM 1617 0 ASN 240 23. 888 32. 840 39. 137 1. 00 46. 44 ATOM 1618 N VAL 241 21.643 32. 919 39. 340 1.00 44.69 ATOM 1619 CA VAL 241 21. 426 31.717 38. 564 1. 00 43. 22 ATOM 1620 31.056 CB VAL 241 20. 103 38. 948 1. 00 43. 93 5 ATOM 1621 CG1 VAL 241 20.071 29. 643 38. 412 1. 00 44. 87 ATOM 1622 CG2 VAL 241 19. 922 31.091 40. 456 1. 00 40. 98 **ATOM** 1623 C VAL 241 21. 358 32. 182 37. 126 1. 00 41. 83 **ATOM** 1624 0 VAL 241 20. 351 32. 739 36. 685 1. 00 42. 56 ATOM 1625 N **GLU 242** 22.433 31. 974 36. 386 1. 00 39. 79 10 **ATOM** 1626 CA GLU 242 22.426 32. 440 35.017 1. 00 38. 35 ATOM 1627 CB GLU 242 23. 841 32. 438 34. 435 1. 00 41. 38 **ATOM** 1628 CG GLU 242 24. 874 33. 080 35. 345 1. 00 43. 21 **ATOM** 1629 GLU 242 CD 26.062 33. 639 34. 588 1. 00 46. 65 ATOM 1630 0E1 GLU 242 26.489 33. 026 33. 581 1. 00 46. 29 ATOM 1631 0E2 GLU 242 15 26. 581 34. 694 35. 014 1. 00 49. 23 ATOM 1632 C **GLU 242** 21. 495 31. 626 34. 144 1. 00 34. 71 ATOM 1633 0 GLU 242 21. 135 33.054 32. 057 1. 00 33. 08 ATOM 1634 N LEU 243 21. 085 30. 456 34. 612 1. 00 31. 90 ATOM 1635 **CA LEU 243** 20. 194 29. 652 33. 794 1. 00 30. 72 20 ATOM 1636 CBLEU 243 20. 125 28. 214 34. 285 1. 00 29. 40 ATOM 1637 CG LEU 243 21. 244 27. 279 33. 833 1. 00 28. 38 ATOM 1638 CD1 LEU 243 21. 264 27. 192 32. 321 1. 00 23. 84 ATOM 1639 CD2 LEU 243 22.570 27. 786 34. 381 1.00 31.28 ATOM 1640 C LEU 243 18. 799 30. 222 33. 763 1. 00 31. 18 25 ATOM 1641 0 LEU 243 18. 143 30. 153 32. 729 1. 00 32. 86 ATOM 1642 N VAL 244 18. 350 30. 779 34. 887 1. 00 30. 11 ATOM 1643 CA VAL 244 17.011 31. 361 34. 979 1. 00 30. 23

ATOM

ATOM

1644

1645

CB

VAL 244

CG1 VAL 244

16. 549

15. 085

31. 527

31. 981 36. 444

36. 432

1. 00 31. 77

1. 00 31. 84

- 201 -ATOM 1646 CG2 VAL 244 16. 748 30. 234 37. 213 1. 00 31. 59 **ATOM** 1647 C VAL 244 16. 955 32. 746 34. 361 1. 00 30. 94 17. 919 33. 499 **ATOM** 1648 0 VAL 244 34. 458 1. 00 31. 77 ATOM 1649 N **GLU 245** 15. 819 33. 083 33. 753 1. 00 32. 44 ATOM 1650 CA GLU 245 15. 625 5 34. 389 33. 125 1. 00 36. 05 ATOM 1651 CB GLU 245 14. 384 34. 384 32. 237 1. 00 35. 98 ATOM 1652 CG GLU 245 14. 542 35. 203 30. 981 1. 00 38. 72 ATOM 1653 CD GLU 245 15. 357 34. 449 29. 959 1. 00 41. 52 **ATOM** 1654 0E1 GLU 245 15. 957 33. 428 30. 356 1. 00 40. 02 10 ATOM 1655 0E2 GLU 245 15. 402 34. 859 28. 776 1.00 43.26 ATOM 1656 C GLU 245 15. 453 35. 511 34. 149 1.00 39.49 **ATOM** 1657 0 GLU 245 15. 995 36.603 33. 978 1.00 39.69 **ATOM** 1658 N **GLY 246** 14. 676 35. 239 35. 197 1. 00 42. 62 ATOM **GLY 246** 1659 CA 14. 417 36. 228 36. 233 1.00 44.14 ATOM 15 1660 C **GLY 246** 15.642 36. 762 36. 953 1. 00 44. 54 ATOM 1661 0 **GLY 246** 16.720 36. 163 36. 906 1. 00 43. 59 ATOM 1662 N ASP 247 15. 476 37.896 37. 627 1. 00 44. 51 ATOM 1663 CA ASP 247 16. 582 38. 500 38. 345 1. 00 45. 26 ATOM 1664 CB ASP 247 17. 179 39. 654 37. 540 1. 00 48. 06 20 ATOM 1665 CG ASP 247 18. 102 39. 173 36. 436 1. 00 52. 60 ATOM 1666 OD1 ASP 247 19.016 38. 376 36. 744 1. 00 54. 76 **ATOM** OD2 ASP 247 1667 17. 923 39. 584 35. 265 1. 00 54. 15 ATOM 1668 C ASP 247 16. 213 38. 993 39. 720 1.00 44.83 **ATOM** 1669 0 ASP 247 17.087 39. 306 40. 518 1.00 45.80 25 **ATOM** 1670 N GLU 248 14. 930 39.064 40.022 1. 00 44. 56 ATOM 1671 CA GLU 248 14. 561 39. 546 41.336 1. 00 45. 70 ATOM 1672 CB GLU 248 13.610 40. 727 41. 206 1. 00 50. 66

ATOM

ATOM

1673 CG

1674 CD

GLU 248

GLU 248

o

12. 441

40. 458

11. 394 41. 556

40. 298

40. 355

1. 00 60. 84

1. 00 67. 29

- 202 -ATOM 1675 0E1 GLU 248 10. 742 41. 702 41. 414 1.00 69.90 **ATOM** 1676 0E2 GLU 248 11. 223 42. 273 39. 340 1. 00 71. 41 **ATOM** 1677 C **GLU 248** 13. 952 38. 482 42. 224 1.00 43.15 ATOM 1678 0 GLU 248 12. 986 37. 827 41. 855 1. 00 42. 29 **ATOM** 1679 14. 530 38. 315 43. 404 5 N GLY 249 1. 00 42. 35 ATOM 1680 CA GLY 249 14. 023 37. 327 44. 330 1. 00 42. 91 ATOM 1681 C 15.044 36. 247 44. 625 **GLY 249** 1.00 43.93 **ATOM** 1682 0 GLY 249 16. 177 36. 294 44. 145 1. 00 43. 62 **ATOM** 14.644 1683 N ARG 250 35. 267 45. 427 1. 00 43. 38 ATOM 10 1684 CA ARG 250 15. 526 34. 160 45. 781 1.00 41.04 ATOM 1685 CB ARG 250 15. 819 34. 207 47. 293 1. 00 42. 27 **ATOM** 14. 745 48. 114 1686 CG ARG 250 34. 934 1. 00 46. 82 **ATOM** 1687 CD ARG 250 15. 139 35. 142 49. 584 1.00 51.21 **ATOM** 49.730 1688 NE ARG 250 16. 425 35. 828 1.00 55.52 **ATOM** CZARG 250 50.855 15 1689 16.864 36. 394 1. 00 55. 63 **ATOM** NH1 ARG 250 16. 121 36. 375 51.956 1. 00 55. 05 1690 **ATOM** NH2 ARG 250 1691 18.063 36. 962 50.885 1.00 54.32 **ATOM** 1692 C ARG 250 14. 905 32. 812 45. 359 1. 00 38. 25 **ATOM** 1693 0 ARG 250 13. 681 32. 640 45. 394 1.00 37.44 ATOM 1694 N MET 251 15. 760 31.880 44. 932 1.00 33.58 20 **ATOM** 1695 CA MET 251 15. 352 30. 543 44. 492 1.00 29.34 **ATOM** 1696 CB MET 251 15. 326 30. 471 42. 966 1.00 24.54 **ATOM** 1697 CG MET 251 15. 180 29.069 42. 379 1. 00 17. 89 ATOM 14.994 1698 SD MET 251 29.090 40. 552 1.00 18.23 ATOM MET 251 40.075 1.00 12.48 25 1699 CE 16. 329 28. 087 1.00 30.48 **ATOM** 1700 C MET 251 45.004 16. 316 29. 481 **ATOM** 1701 0 MET 251 17. 529 29.640 44. 895 1. 00 31. 49 **ATOM** 1702 N CYS 252 15. 775 28. 392 45. 546 1. 00 29. 56

ATOM

1703

CA

CYS 252

16. 599

27. 298

46. 059

1. 00 26. 54

- 203 -CYS 252 1. 00 27. 29 1704 CB 15. 710 26. 185 46. 612 ATOM **ATOM** 1705 SG CYS 252 16. 613 24. 659 46. 927 1. 00 29. 14 1706 C CYS 252 17. 492 26. 704 44. 975 1. 00 23. 38 **ATOM** ATOM 1707 0 CYS 252 17. 104 26. 639 43. 816 1. 00 22. 79 26. 268 45. 349 1. 00 20. 80 1708 N VAL 253 18. 688 5 ATOM ATOM 1709 CA VAL 253 19.584 25. 660 44. 377 1. 00 20. 25 20.740 26. 583 43. 969 1. 00 19. 02 ATOM 1710 CBVAL 253 ATOM 1711 CG1 VAL 253 21. 623 25. 881 42. 936 1. 00 15. 42 43. 411 **ATOM** 1712 CG2 VAL 253 20. 198 27. 866 1. 00 19. 77 24. 374 44.900 1. 00 22. 35 10 ATOM 1713 C VAL 253 20. 191 ATOM 1714 0 VAL 253 20. 705 24. 305 46. 023 1. 00 22. 21 20. 127 23. 352 44.060 1. 00 24. 23 ATOM 1715 N ASN 254 ASN 254 20.661 22. 045 44. 390 1. 00 22. 10 ATOM 1716 CA ATOM 1717 CBASN 254 19.860 20. 975 43. 647 1. 00 21. 49 1. 00 22. 93 ATOM 1718 CG ASN 254 20. 479 19. 604 43. 747 15 19. 232 ATOM 1719 OD1 ASN 254 21.074 44. 764 1. 00 20. 03 20. 325 18.827 42. 687 1. 00 26. 40 **ATOM** 1720 ND2 ASN 254 22. 124 22. 046 43. 975 1. 00 19. 26 ATOM 1721 С ASN 254 1722 0 22. 454 22. 155 42. 795 1. 00 15. 88 ATOM ASN 254 **ATOM** 1723 N THR 255 23.001 21. 949 44. 961 1. 00 15. 23 20 **ATOM** 1724 THR 255 24. 428 21. 962 44. 691 1. 00 15. 03 CA ATOM 1725 CBTHR 255 25. 193 22. 217 45. 944 1. 00 13. 56 1726 OG1 THR 255 25. 035 21. 087 46. 808 1. 00 14. 56 ATOM CG2 THR 255 23. 458 ATOM 1727 24. 670 46. 617 1. 00 14. 18 1728 THR 255 24. 957 20.665 44. 127 1. 00 15. 21 25 ATOM C 1729 THR 255 25. 675 20. 647 43. 126 1. 00 12. 07 ATOM 0 GLU 256 24. 594 19. 570 44. 777 1. 00 18. 83 ATOM 1730 N ATOM 1731 CA GLU 256 25.076 18. 268 44. 355 1. 00 22. 28 1732 24. 795 18. 025 42. 876 1. 00 25. 93 ATOM CB GLU 256

- 204 -

ATOM 1733 CG GLU 256 23. 377 18. 345 42. 454 1.00 31.90 **ATOM** 1734 CD GLU 256 22. 500 17. 121 42. 336 1.00 34.74 **ATOM** OE1 GLU 256 1735 22. 191 16. 510 43. 386 1. 00 36. 97 ATOM 1736 0E2 GLU 256 22. 122 16. 777 41. 188 1. 00 35. 26 5 ATOM 1737 C GLU 256 26. 562 18. 402 44. 559 1. 00 21. 32 ATOM 1738 0 GLU 256 27. 359 18. 032 43. 701 1. 00 23. 09 ATOM 1739 N TRP 257 26. 931 18. 966 45. 699 1. 00 17. 36 ATOM 1740 CA TRP 257 28. 327 19. 141 45. 985 1.00 14.83 **ATOM** 1741 CB TRP 257 28. 514 20. 074 47. 176 1.00 11.59 10 ATOM 1742 CG TRP 257 28.038 19. 561 48. 478 1.00 8.69 **ATOM** CD2 TRP 257 1743 27. 830 20. 332 49.676 1.00 9.05 ATOM 1744 CE2 TRP 257 27. 562 19. 410 50. 715 1.00 7.00 ATOM 1745 CE3 TRP 257 27. 845 21. 703 49. 964 1. 00 7. 18 ATOM 1746 CD1 TRP 257 27. 881 18. 265 48. 827 1. 00 7. 58 **ATOM** 15 NE1 TRP 257 1747 27. 602 18. 163 **50.** 172 1.00 7. 99 ATOM CZ2 TRP 257 1748 27. 325 19. 818 52. 038 1. 00 4. 73 ATOM 1749 CZ3 TRP 257 27. 605 22. 108 51. 280 1. 00 7. 12 **ATOM** 1750 CH2 TRP 257 27. 346 21. 164 52. 300 1. 00 5. 47 ATOM 1751 C TRP 257 29.033 17. 813 46. 224 1. 00 17. 81 20 ATOM 1752 0 TRP 257 30. 221 17. 776 46. 523 1.00 19.44 ATOM 1753 N GLY 258 28. 318 16. 708 46.099 1. 00 21. 88 **ATOM** 1754 CA GLY 258 15. 444 28. 991 46. 303 1. 00 23. 25 ATOM 1755 C GLY 258 30. 137 15. 303 45. 316 1. 00 23. 01 ATOM 1756 0 GLY 258 31. 133 14. 629 45. 600 1. 00 21. 92 25 ATOM 1757 N ALA 259 29. 997 15. 943 44. 156 1. 00 23. 11 **ATOM** 1758 CA ALA 259 31. 015 15. 863 43, 113 1. 00 27. 74 ATOM 1759 CB ALA 259 30. 400 16. 139 41. 766 1. 00 27. 03 ATOM 1760 С ALA 259 32. 176 16. 806 43. 335 1. 00 30. 23 **ATOM** 1761 0 ALA 259 33. 178 16. 748 42. 622 1. 00 32. 12

- 205 -

	ATOM	1762	N	PHE	260	32. 041	17. 680	44. 320	1. 00 32. 43
	ATOM	1763	CA	PHE	260	33. 093	18. 627	44. 611	1. 00 36. 43
	ATOM	1764	CB	PHE	260	32. 804	19. 343	45. 924	1. 00 39. 42
	ATOM	1765	CG	PHE	260	33. 932	20. 206	46. 411	1. 00 43. 92
5	ATOM	1766	CD1	PHE	260	34. 660	21. 003	45. 534	1. 00 46. 49
	ATOM	1767	CD2	PHE	260	34. 232	20. 263	47. 765	1. 00 45. 64
	ATOM	1768	CE1	PHE	260	35. 672	21. 835	46. 002	1. 00 47. 73
	ATOM	1769	CE2	PHE	260	35. 242	21. 093	48. 242	1. 00 46. 62
	ATOM	1770	CZ	PHE	260	35. 958	21. 882	47. 360	1. 00 47. 27
10	ATOM	1771	C	PHE	260	34. 412	17. 897	44. 695	1. 00 39. 39
	ATOM	1772	0	PHE	260	34. 495	16. 800	45. 243	1. 00 40. 20
	ATOM	1773	N	GLY	261	35. 441	18. 511	44. 127	1. 00 41. 71
	ATOM	1774	CA	GLY	261	36. 753	17. 911	44. 152	1. 00 43. 62
	ATOM	1775	C	GLY	261	36. 967	16. 857	43. 090	1.00 44.99
15	ATOM	1776	0	GLY	261	38. 049	16. 282	43. 015	1. 00 47. 22
	ATOM	1777	N	ASP	262	35. 961	16. 578	42. 270	1. 00 46. 06
	ATOM	1778	CA	ASP	262	36. 143	15. 574	41. 229	1. 00 47. 68
	ATOM	1779	CB	ASP	262	34. 800	15. 197	40. 602	1. 00 50. 82
	ATOM	1780	CG	ASP	262	34. 024	14. 187	41. 445	1. 00 53. 64
20	ATOM	1781	OD1	ASP	262	32. 815	13. 996	41. 191	1.00 54.63
	ATOM	1782	OD2	ASP	262	34. 624	13. 578	42. 356	1. 00 54. 71
	ATOM	1783	C	ASP	262	37. 089	16. 129	40. 177	1. 00 47. 19
	ATOM	1784	0	ASP	262	37. 539	15. 400	39. 292	1. 00 47. 09
	ATOM	1785	N	SER	263	37. 380	17. 427	40. 298	1. 00 46. 38
25	ATOM	1786	CA	SER	263	38. 289	18. 147	39. 401	1. 00 44. 53
	ATOM	1787	CB	SER	263	37. 651	19. 445	38. 903	1. 00 43. 57
	ATOM	1788	0G	SER	263	36. 341	19. 246	38. 415	1. 00 43. 79
	ATOM	1789	C	SER	263	39. 552	18. 513	40. 174	1. 00 43. 93
	ATOM	1790	0	SER	263	40.061	19. 632	40. 059	1. 00 44. 40

- 206 -40. 039 40.979 1. 00 43. 71 **ATOM** 1791 N GLY 264 17. 577 1.00 42.64 **GLY 264** 41. 235 17. 825 41.762 ATOM 1792 CA 41. 133 18. 889 42.845 1. 00 40. 75 **ATOM** 1793 C GLY 264 ATOM 1794 0 **GLY 264** 42.052 19. 012 43. 648 1. 00 42. 90 1.00 38.43 1795 GLU 265 40.040 19. 647 42. 887 5 **ATOM** N 39.881 20. 700 43. 893 1.00 37.42 **ATOM** 1796 CA GLU 265 43.907 1. 00 39. 11 GLU 265 38. 437 21. 227 ATOM 1797 CB GLU 265 37. 986 21. 928 42. 632 1. 00 40. 76 ATOM 1798 CGGLU 265 37. 198 21. 023 41. 701 1. 00 43. 56 ATOM 1799 CDOE1 GLU 265 36. 904 21. 461 40.565 1. 00 45. 26 ATOM 1800 10 1.00 42.42 OE2 GLU 265 36.863 19.883 42.099 ATOM 1801 **ATOM** 1802 C GLU 265 40. 266 20. 299 45. 321 1. 00 36. 38 40.410 21. 160 46. 185 1.00 33.59 ATOM 1803 0 GLU 265 LEU 266 40. 425 19.004 45. 573 1.00 37.71 ATOM 1804 N 46. 912 ATOM 1805 CA LEU 266 40. 783 18. 534 1. 00 40. 56 15 39. 597 17. 831 47. 567 1. 00 40. 03 ATOM 1806 CB LEU 266 ATOM CG LEU 266 38. 371 18. 631 48.001 1. 00 40. 79 1807 CD1 LEU 266 37. 234 17. 673 48. 259 1. 00 40. 27 ATOM 1808 ATOM 1809 CD2 LEU 266 38. 677 19. 432 49. 253 1. 00 41. 81 41.949 17. 563 46.880 1. 00 43. 51 ATOM 1810 C LEU 266 20 42. 363 47. 919 1. 00 43. 63 ATOM 1811 0 LEU 266 17. 045 ATOM ASP 267 42. 475 17. 324 45. 682 1. 00 47. 00 1812 N 45.480 1. 00 48. 18 ATOM ASP 267 43. 584 16. 393 1813 CA ATOM 1814 CB ASP 267 44. 222 16. 622 44.097 1. 00 50. 89 ATOM 1815 CG ASP 267 44. 982 15. 391 43. 584 1. 00 54. 98 25 ATOM 1816 OD1 ASP 267 45. 239 15. 317 42.360 1. 00 56. 65 OD2 ASP 267 45. 328 14. 499 44. 398 1. 00 55. 43 **ATOM** 1817 ASP 267 46.571 1. 00 46. 46 **ATOM** 1818 C 44. 659 16. 440 ASP 267 46.960 1. 00 45. 37 ATOM 1819 0 45. 205 15. 397

- 207 -ATOM 1820 N GLU 268 44. 957 17. 630 47. 084 1. 00 44. 63 **ATOM** GLU 268 1821 CA 45. 990 17. 721 48. 109 1. 00 44. 67 ATOM 1822 CBGLU 268 46.805 47. 956 19. 024 1.00 44.68 ATOM 1823 CG GLU 268 46. 508 20. 163 48. 934 1. 00 43. 60 5 ATOM 1824 CD GLU 268 45. 234 48. 613 20. 915 1. 00 43. 53 ATOM 1825 0E1 GLU 268 45. 020 21. 258 47. 423 1. 00 42. 43 ATOM 1826 0E2 GLU 268 44. 461 49. 561 21. 174 1. 00 40. 84 **ATOM** 1827 C GLU 268 45. 457 17. 569 49. 528 1. 00 43. 45 **ATOM GLU 268** 1828 0 46. 102 50.499 17. 961 1. 00 46. 29 ATOM 1829 PHE 269 10 N 44. 286 49.656 16. 971 1. 00 38. 78 ATOM 1830 CA PHE 269 43. 729 16. 785 50. 974 1.00 33.75 ATOM PHE 269 1831 CB 42. 480 17. 614 51. 135 1. 00 33. 69 ATOM 1832 CG PHE 269 42. 733 51.639 18. 990 1. 00 34. 75 CD1 PHE 269 ATOM 1833 43. 435 19. 193 52. 822 1. 00 36. 51 15 ATOM 1834 CD2 PHE 269 42. 161 51.001 20. 079 1. 00 34. 78 ATOM 1835 CE1 PHE 269 43. 548 20. 469 53. 365 1. 00 37. 39 ATOM CE2 PHE 269 1836 42. 266 21. 354 51. 532 1. 00 35. 15 ATOM 1837 CZPHE 269 42. 955 21. 551 52. 717 1. 00 37. 68 15. 343 51. 225 ATOM 1838 C PHE 269 43. 405 1. 00 32. 83 20 ATOM 1839 0 PHE 269 43. 206 14. 952 52. 365 1. 00 31. 85 ATOM 1840 N LEU 270 43. 355 14. 555 50. 157 1.00 33.85 **ATOM** 1841 CA LEU 270 43. 046 13. 130 50. 259 1. 00 34. 53 ATOM LEU 270 1842 CB 42. 712 48. 884 12. 553 1. 00 35. 63 ATOM 1843 CG LEU 270 41. 326 12. 857 48. 321 1. 00 37. 61 ATOM CD1 LEU 270 25 1844 41. 323 14. 293 47.842 1. 00 35. 85 ATOM CD2 LEU 270 1845 40.966 11. 878 47. 177 1. 00 37. 50 ATOM 1846 C LEU 270 44. 172 50.845 12. 298 1. 00 33. 68 ATOM 1847 0 LEU 270 45. 334 12.640 50.695 1.00 35.64 **ATOM** 1848 N LEU 271 43. 829 11. 200 51. 507 1. 00 33. 66

- 208 -ATOM CA LEU 271 44.850 1849 10. 324 52. 059 1. 00 34. 55 LEU 271 **ATOM** 1850 CB 44. 610 10. 032 53. 519 1. 00 30. 63 CG LEU 271 ATOM 1851 44. 870 11. 238 54. 383 1. 00 29. 49 CD1 LEU 271 ATOM 1852 43.855 12. 324 54. 075 1. 00 27. 82 ATOM 1853 CD2 LEU 271 44.783 10. 798 55. 824 5 1. 00 31. 04 ATOM 1854 C LEU 271 44.884 9.010 51. 324 1. 00 37. 04 ATOM 1855 0 LEU 271 44.009 8. 715 50. 513 1. 00 36. 79 ATOM 1856 N GLU 272 45.890 8. 209 51. 638 1. 00 40. 66 ATOM 1857 CA GLU 272 46.052 6. 927 50.989 1. 00 44. 99 10 ATOM 1858 CB GLU 272 47. 256 6. 182 51. 590 1. 00 51. 18 ATOM 1859 CG GLU 272 47. 124 5. 781 53. 0.75 1. 00 58. 46 ATOM 1860 CDGLU 272 48. 371 5.077 53. 641 1. 00 62. 56 ATOM 0E1 GLU 272 1861 49. 393 5. 772 53. 876 1. 00 64. 96 ATOM 0E2 GLU 272 53. 849 1862 48. 325 3. 835 1. 00 61. 73 ATOM 15 1863 C GLU 272 44. 789 6.080 51. 092 1. 00 44. 62 ATOM 1864 0 GLU 272 44. 377 50. 116 5. 452 1. 00 44. 50 ATOM 1865 N TYR 273 44. 163 6.079 52. 266 1. 00 43. 42 ATOM 1866 CA TYR 273 42. 955 5. 284 52. 486 1. 00 40. 23 ATOM 1867 CB TYR 273 42. 537 53. 958 5. 377 1. 00 38. 82 20 ATOM 1868 CG TYR 273 43.709 54. 923 5. 401 1. 00 36. 38 ATOM 1869 CD1 TYR 273 44. 126 6.602 55. 505 1. 00 35. 57 ATOM CE1 TYR 273 1870 45. 210 6.647 56. 380 1. 00 34. 95 ATOM 1871 CD2 TYR 273 44. 413 4. 231 55. 243 1.00 35.34 ATOM CE2 TYR 273 1872 45. 509 4. 264 56. 122 1.00 34.05 25 ATOM 1873 CZ TYR 273 45. 897 5. 481 56. 685 1. 00 34. 66 TYR 273 ATOM 1874 OH 46.966 5. 556 57. 550 1. 00 33. 77 ATOM 1875 C TYR 273 41.826 5. 749 51. 567 1.00 38.50 ATOM 1876 0 TYR 273 50. 804 41. 264 4. 967 1. 00 35. 21 ATOM 1877 N ASP 274 51. 638 1. 00 38. 17 41. 507 7. 030

- 209 -50. 796 1.00 40.03 **ATOM** ASP 274 40. 473 7. 579 1878 CA 1.00 41.17 **ATOM** 1879 CBASP 274 40. 470 9.083 50. 929 CG ASP 274 40. 252 9. 512 52. 341 1. 00 43. 77 **ATOM** 1880 1.00 46.59 ATOM 1881 OD1 ASP 274 39. 123 9. 327 52. 839 52. 958 1.00 44.41 OD2 ASP 274 41. 212 10.010 ATOM 1882 5 ATOM 1883 C ASP 274 40.740 7. 200 49. 359 1.00 40.92 39.819 48. 595 1.00 41.41 **ATOM** 1884 ASP 274 6. 937 0 ATOM 1885 N ARG 275 42. 007 7. 160 48. 984 1. 00 42. 93 47. 613 1. 00 45. 81 ARG 275 42. 333 6.819 ATOM 1886 CA 47.365 1.00 49.53 ATOM 1887 CB ARG 275 43.831 6. 993 10 ARG 275 44. 191 7.563 45. 995 1. 00 53. 24 ATOM 1888 CG 45. 886 1. 00 58. 85 ATOM 1889 CD ARG 275 45. 702 7. 772 46. 933 1. 00 62. 67 ATOM ARG 275 46. 213 8. 663 1890 NE 47.876 1. 00 62. 82 **ATOM** CZARG 275 47.088 8. 308 1891 NH1 ARG 275 47. 922 1. 00 61. 28 ATOM 1892 47. 571 7.068 15 9. 201 48. 777 1.00 61.64 ATOM 1893 NH2 ARG 275 47. 476 47. 316 ATOM 1894 C ARG 275 41.901 5.390 1.00 46.01 46. 382 1.00 45.19 ATOM 1895 0 ARG 275 41. 134 5. 160 1896 48. 113 1.00 47.51 **ATOM** N LEU 276 42. 382 4. 437 47. 922 1.00 48.68 **ATOM** LEU 276 42. 026 3. 030 20 1897 CA 49. 134 1.00 45.63 **ATOM** 1898 CBLEU 276 42. 460 2. 197 43. 971 1. 999 49. 287 1. 00 43. 28 **ATOM** 1899 CG LEU 276 ATOM 44. 418 2.379 50.686 1. 00 42. 53 1900 CD1 LEU 276 48. 994 ATOM 1901 CD2 LEU 276 44. 321 0.557 1. 00 42. 97 1.00 51.24 ATOM 1902 C LEU 276 40. 520 2. 915 47. 718 25 46.891 1. 00 52. 38 ATOM 1903 0 LEU 276 40.050 2. 133 VAL 277 39.772 3. 710 48. 475 1. 00 53. 11 ATOM 1904 N 3. 722 48. 372 1.00 54.05 ATOM 1905 CA VAL 277 38. 321 4. 640 49. 423 1. 00 52. 84 ATOM 1906 CB VAL 277 37. 703

- 210 -ATOM 1907 CG1 VAL 277 36. 210 1. 00 52. 71 4. 682 49. 249 CG2 VAL 277 ATOM 1908 38.069 4. 156 50.804 1.00 54.87 ATOM 1909 C VAL 277 37. 906 4. 231 46. 999 1. 00 55. 80 ATOM 1910 0 VAL 277 37. 381 3. 474 46. 185 1. 00 57. 15 1911 N ASP 278 1.00 56.71 ATOM 38. 146 5. 518 46. 754 5 ATOM 1912 CA ASP 278 37.804 6. 146 45. 481 1.00 57.65 ATOM 1913 CB ASP 278 38. 479 7. 514 45. 353 1. 00 59. 73 CG ASP 278 ATOM 1914 38. 243 8. 163 43. 989 1. 00 61. 93 ATOM 1915 OD1 ASP 278 38.990 9. 110 43.642 1. 00 61. 47 10 ATOM 1916 OD2 ASP 278 37. 308 7. 733 43. 273 1. 00 62. 11 ATOM 1917 C ASP 278 38. 263 5. 281 44. 328 1. 00 58. 14 ATOM 1918 0 ASP 278 37.645 5. 271 43. 266 1. 00 58. 75 ATOM 1919 N **GLU 279** 39.358 4. 563 44. 538 1. 00 58. 33 GLU 279 43. 498 1. 00 59. 14 ATOM 1920 CA 39. 900 3. 710 15 ATOM 1921 CB GLU 279 41. 437 3. 808 43. 477 1.00 60.99 ATOM 1922 CG GLU 279 43. 178 41. 978 5. 219 1. 00 61. 92 ATOM 1923 CDGLU 279 43.497 43. 014 5. 276 1. 00 60. 92 ATOM 1924 0E1 GLU 279 44. 219 43. 953 4.874 1. 00 60. 85 MOTA 0E2 GLU 279 1925 43.965 5.733 41. 946 1.00 58.99 ATOM 1926 GLU 279 39. 467 43.664 20 C 2. 261 1.00 58.04 ATOM 1927 0 GLU 279 40. 196 1. 346 43. 298 1. 00 59. 38 1928 SER 280 ATOM N 38. 283 44. 219 2. 044 1. 00 57. 21 ATOM 1929 CA SER 280 37. 798 44.390 0.679 1. 00 56. 55 ATOM 1930 CB SER 280 38. 283 0.091 45.719 1.00 56.66 ATOM 1931 0G SER 280 38. 015 -1.29845. 774 25 1. 00 54. 41 ATOM 1932 C SER 280 36. 282 44. 334 0.671 1. 00 55. 29 ATOM 1933 0 SER 280 35. 640 -0.37144. 472 1.00 53.68 ATOM SER 281 1934 N 35. 725 1.854 44. 113 1.00 54.58 ATOM 1935 CA SER 281 34. 288 2. 038 44. 020 1. 00 55. 36

- 211 -ATOM 1936 CB SER 281 33. 919 3. 451 44. 464 1. 00 56. 89 ATOM 1937 0G SER 281 34. 565 4. 415 43. 649 1. 00 56. 89 ATOM 1938 C SER: 281 33. 843 1. 832 42. 584 1. 00 54. 80 ATOM 1939 0 SER 281 34. 652 1. 905 41.664 1. 00 55. 85 5 ATOM 1940 N ALA 282 32. 553 1. 587 42. 389 1.00 53.75 ATOM 1941 CA ALA 282 32.025 1. 379 41.050 1. 00 52. 42 ATOM 1942 CB ALA 282 30. 626 0.809 41. 133 1. 00 52. 26 **ATOM** 1943 C ALA 282 32. 012 2. 679 40. 250 1. 00 51. 83 ATOM 1944 0 ALA 282 31.632 2.685 39.081 1. 00 52. 27 **ATOM** 10 1945 N ASN 283 32. 441 3. 772 40.879 1.00 50.19 ATOM 1946 CA ASN 283 32. 465 40. 239 5. 089 1. 00 47. 37 **ATOM** 1947 CB ASN 283 31. 338 5. 945 40.790 1. 00 47. 04 ATOM ASN 283 1948 CG 31. 482 6. 191 42. 276 1. 00 47. 38 ATOM 1949 OD1 ASN 283 31. 584 5. 255 43. 068 1. 00 46. 86 **ATOM** 15 ND2 ASN 283 1950 31. 497 7. 455 42.662 1.00 49.96 ATOM 1951 C ASN 283 33. 777 5. 806 40. 513 1.00 46.64 **ATOM** 1952 0 ASN 283 33. 783 6. 894 41. 081 1. 00 48. 74 **ATOM** 1953 N PRO 284 34. 905 5. 214 40. 110 1. 00 45. 15 ATOM 1954 PRO 284 CD 35. 028 3. 896 39. 462 1.00 44.41 ATOM 20 1955 CA PRO 284 36. 227 5. 814 40. 327 1. 00 43. 24 ATOM 1956 CB PRO 284 37. 151 4. 855 39. 583 1.00 44.66 ATOM 1957 CG PRO 284 36. 459 3. 532 39. 756 1. 00 44. 93 ATOM 1958 C PRO 284 36. 389 7. 267 39.856 1.00 41.14 ATOM 1959 0 PRO 284 35. 978 7. 624 38. 755 1. 00 40. 17 25 ATOM 1960 N GLY 285 36. 994 8.099 40.695 1. 00 39. 45 ATOM 1961 CA GLY 285 37. 208 9. 484 40. 321 1. 00 40. 34 ATOM 1962 C **GLY 285** 35. 964 10. 343 40. 401 1. 00 42. 06 ATOM 1963 0 **GLY 285** 36. 035 11.576 40. 367 1. 00 43. 11 ATOM 1964 N GLN 286 34. 811 9.699 40. 510 1. 00 42. 34

- 212 -ATOM 1965 CA GLN 286 33. 555 10. 427 40.601 1. 00 41. 88 ATOM 1966 GLN 286 CB 32. 490 9. 717 39. 758 1. 00 44. 97 ATOM 1967 CG GLN 286 31. 973 10. 544 38. 588 1. 00 49. 89 ATOM 1968 CD GLN 286 31. 043 39. 043 11.668 1. 00 54. 72 1969 0E1 GLN 286 ATOM 29. 911 11. 419 39. 483 1. 00 56. 09 5 ATOM 1970 NE2 GLN 286 31. 519 12. 911 38. 950 1. 00 54. 20 ATOM 1971 C GLN 286 33. 113 10. 541 42.063 1. 00 40. 59 ATOM 1972 0 GLN 286 33. 396 9.660 42.879 1. 00 39. 39 ATOM 1973 N GLN 287 32. 445 11. 648 42. 389 1. 00 39. 59 ATOM 1974 CA GLN 287 10 31. 939 11. 913 43. 741 1. 00 38. 06 ATOM 1975 CB GLN 287 30.770 44.053 10. 969 1. 00 37. 29 ATOM 1976 CG GLN 287 29. 732 42. 939 10.837 1. 00 35. 04 ATOM 1977 CD GLN 287 28. 912 12. 100 42. 736 1. 00 33. 74 ATOM 1978 OE1 GLN 287 28. 906 12. 692 41.647 1. 00 28. 89 1979 NE2 GLN 287 15 ATOM 28. 204 12. 514 43. 786 1. 00 31. 49 ATOM C 1980 GLN 287 33. 015 44. 820 11. 744 1. 00 37. 30 ATOM 1981 0 GLN 287 32. 958 45. 624 10. 813 1. 00 37. 53 ATOM 1982 N LEU 288 33. 990 12. 643 44. 856 1.00 34.03 ATOM 1983 CA LEU 288 35. 051 12. 516 45. 844 1. 00 29. 84 20 ATOM 1984 CB LEU 288 36. 351 13. 071 45. 293 1.00 30.50 ATOM 1985 CG LEU 288 37. 285 11. 960 44. 819 1. 00 32. 69 **ATOM** 1986 CD1 LEU 288 36. 645 11. 102 43. 728 1. 00 31. 90 **ATOM** 1987 CD2 LEU 288 38. 546 12. 611 44. 323 1. 00 36. 00 ATOM 1988 C LEU 288 34. 729 13. 180 47. 156 1. 00 26. 53 25 ATOM 1989 0 LEU 288 34. 991 12. 627 48. 218 1. 00 26. 76 **ATOM** 1990 N TYR 289 34. 172 14. 374 47. 086 1. 00 23. 58 **ATOM** 1991 CA TYR 289 33. 809 15.074 48. 292 1. 00 22. 36 ATOM 1992 CB TYR 289 33. 086 16. 365 47. 939 1. 00 20. 16 ATOM 1993 CG TYR 289 32. 716 17. 186 49. 136 1. 00 18. 61

- 213 -

	ATOM	1994	CD1	TYR	289	33. 660	17. 486	50. 105	1. 00	18. 65
	ATOM	1995	CE1	TYR	289	33. 347	18. 269	51. 195	1. 00	18. 34
	ATOM	1996	CD2	TYR	289	31. 433	17. 693	49. 288	1. 00	18. 91
	AŢOM	1997	CE2	TYR	289	31. 105	18. 484	50. 378	1. 00	18. 97
5	ATOM	1998	CZ	TYR	289	32. 073	18. 768	51. 327	1. 00	20. 15
	ATOM	1999	0H	TYR	289	31. 788	19. 565	52. 408	1. 00	22. 93
	ATOM	2000	C	TYR	289	32. 894	14. 165	49. 105	1. 00	25. 30
	ATOM	2001	0	TYR	289	32. 991	14. 106	50. 337	1. 00	24. 21
	ATOM	2002	N	GLU	290	32. 005	13. 448	48. 411	1. 00	27. 35
10	ATOM	2003	CA	GLU	290	31. 071	12. 532	49. 084	1. 00	26. 68
	ATOM	2004	CB	GLU	290	30. 081	11. 904	48. 090	1. 00	26. 17
	ATOM	2005	CG	GLU	290	28. 614	12. 216	48. 413	1. 00	25. 68
	ATOM	2006	CD	GLU	290	27. 617	11. 404	47. 591	1. 00	26. 93
	ATOM	2007	0E1	GLU	290	27. 735	11. 363	46. 337	1. 00	22. 27
15	ATOM	2008	0E2	GLU	290	26. 702	10. 815	48. 215	1. 00	27. 37
	ATOM	2009	C	GLU	290	31. 838	11. 425	49. 781	1. 00	25. 75
	ATOM	2010	0	GLU	290	31. 649	11. 193	50. 974	1. 00	26. 23
	ATOM	2011	N	LYS	291	32. 706	10. 756	49. 024	1. 00	24. 16
	ATOM	2012	CA	LYS	291	33. 526	9. 666	49. 538	1. 00	24. 45
20	ATOM	2013	CB	LYS	291	34. 342	9. 063	48. 408	1. 00	24. 19
	ATOM	2014	CG	LYS	291	33. 506	8. 383	47. 354	1. 00	28. 37
	ATOM	2015	CD	LYS	291	34. 322	8. 162	46. 094	1. 00	31. 52
	ATOM	2016	CE	LYS	291	33. 533	7. 434	45. 030	1. 00	31. 16
	ATOM	2017	NZ	LYS	291	34. 367	7. 299	43. 813	1. 00	33. 55
25	ATOM	2018	C	LYS	291	34. 460	10. 143	50. 636	1. 00	24. 99
	ATOM	2019	0	LYS	291	35. 488	9. 522	50. 918	1. 00	25. 78
	ATOM	2020	N	LEU	292	34. 095	11. 254	51. 255	1. 00	24. 20
	ATOM	2021	CA	LEU	292	34. 894	11. 809	52. 318	1. 00	25. 20
	ATOM	2022	CB	LEU	292	35. 544	13. 106	51. 843	1. 00	25. 62

- 214 -ATOM 2023 CG LEU 292 36. 904 13. 450 52. 464 1.00 26.59 ATOM 2024 CD1 LEU 292 37. 935 12. 396 52. 035 1. 00 26. 37 **ATOM** CD2 LEU 292 2025 37. 343 14. 853 52. 025 1.00 24.08 **ATOM** 2026 C LEU 292 33. 999 12.063 53. 528 1. 00 26. 58 ATOM 2027 LEU 292 0 34. 431 54.671 5 11. 924 1.00 27.91 ATOM 2028 ILE 293 N 32. 744 12. 421 53. 272 1. 00 27. 03 ATOM 2029 CA ILE 293 31. 783 54. 342 12. 689 1.00 26.01 ATOM 2030 CB ILE 293 30. 948 13. 956 54.019 1. 00 26. 42 **ATOM** CG2 ILE 293 2031 30. 184 14. 431 55. 247 1. 00 25. 08 ATOM CG1 ILE 293 10 2032 31.866 53. 573 15. 085 1. 00 24. 53 CD1 ILE 293 ATOM 2033 31. 131 16. 366 53. 336 1. 00 23. 77 ATOM 2034 C ILE 293 30. 827 54. 489 11. 503 1.00 24.65 ATOM 2035 0 ILE 293 30. 681 55. 565 10. 919 1. 00 23. 84 **ATOM** 2036 N **GLY 294** 30. 197 53. 374 11. 159 1. 00 24. 02 **ATOM** GLY 294 15 2037 CA 29. 237 10.073 53. 325 1. 00 25. 49 ATOM 2038 С **GLY 294** 29. 454 54. 142 8. 815 1.00 24.75 ATOM 2039 0 GLY 294 30. 427 53. 953 8.079 1. 00 26. 25 ATOM 2040 N GLY 295 28. 517 8. 556 55.044 1.00 22.54 ATOM 2041 CA GLY 295 28. 607 7. 369 55. 851 1. 00 22. 80 2042 C ATOM 20 GLY 295 28. 530 6. 125 54. 986 1. 00 25. 08 ATOM 2043 0 **GLY 295** 28. 252 5. 047 55. 497 1. 00 27. 80 **ATOM** 2044 N LYS 296 28.748 6. 238 53.680 1. 00 25. 43 ATOM LYS 296 2045 CA 28. 696 5. 039 52. 849 1.00 25.87 ATOM 2046 CB LYS 296 28. 313 5. 354 51.411 1.00 27.04 **ATOM** 2047 CG LYS 296 25 28. 036 4.096 50. 587 1. 00 30. 40 ATOM 2048 CD LYS 296 29. 249 3. 562 49.842 1. 00 30. 20 **ATOM** CE LYS 296 2049 28. 954 2. 204 49. 176 1. 00 32. 59 **ATOM** NZ 2050 LYS 296 29. 015 1. 038 50. 135 1. 00 32. 31 ATOM 2051 C LYS 296 30.044 52. 828 4. 364 1. 00 28. 34

- 215 -ATOM 2052 0 LYS 296 30. 158 3. 185 52. 507 1. 00 29. 08 ATOM 2053 N TYR 297 31.075 53. 163 5. 122 1. 00 29. 56 ATOM 2054 CA TYR 297 32. 414 4. 582 53. 147 1. 00 29. 25 **ATOM** CBTYR 297 2055 33. 208 5. 230 52. 022 1. 00 30. 07 ATOM 2056 CG TYR 297 32. 620 50.650 5 5. 025 1. 00 30. 84 ATOM 2057 CD1 TYR 297 32.023 49.960 6.082 1. 00 32. 45 31. 544 ATOM 2058 CE1 TYR 297 5. 915 48.665 1. 00 35. 21 CD2 TYR 297 ATOM 2059 32. 715 3. 789 50. 015 1. 00 30. 51 ATOM CE2 TYR 297 2060 32. 244 48. 724 3. 604 1. 00 34. 82 ATOM 2061 CZTYR 297 31.661 10 48.049 4. 673 1. 00 37. 82 ATOM 2062 0HTYR 297 31. 219 4. 504 46. 753 1. 00 41. 74 ATOM 2063 C TYR 297 33. 097 4. 842 54. 465 1. 00 27. 53 ATOM TYR 297 2064 0 34. 174 4. 312 54. 731 1. 00 28. 35 ATOM MET 298 32. 464 2065 N 5.665 55. 288 1.00 24.45 ATOM 15 2066 CA MET 298 33. 025 6.000 56. 580 1. 00 23. 96 ATOM 2067 CB MET 298 31. 959 57. 454 6.652 1.00 21.69 ATOM 2068 MET 298 CG 32. 436 58.850 6. 992 1. 00 20. 73 ATOM 2069 SD MET 298 31. 288 8. 100 59. 701 1. 00 20. 68 ATOM 2070 CE MET 298 58. 620 31. 435 9. 523 1. 00 18. 32 20 ATOM 2071 C MET 298 33. 579 4. 750 57. 254 1. 00 24. 25 ATOM 2072 0 MET 298 34. 776 4.656 57. 529 1.00 24.74 **ATOM** GLY 299 2073 N 32. 707 3. 779 57. 494 1. 00 26. 72 **ATOM** 2074 CA **GLY 299** 33. 135 2. 552 58. 135 1. 00 25. 77 ATOM 2075 GLY 299 C 34. 301 1.906 57. 424 1. 00 25. 50 25 ATOM 2076 0 GLY 299 35. 162 1. 331 58.076 1.00 26.16 **ATOM** 2077 **GLU 300** N 34. 325 2.004 56.095 1. 00 25. 37 ATOM 2078 CA **GLU 300** 35. 389 55. 282 1.418 1. 00 24. 57 ATOM 2079 CB GLU 300 35. 057 1. 551 53. 800 1. 00 24. 05 ATOM CG **GLU 300** 2080 36. 066 0.859 52. 905 1. 00 24. 66

- 216 -ATOM **GLU 300** 36. 018 -0. 662 53. 004 1. 00 24. 52 2081 CDATOM 0E1 GLU 300 1.00 24.02 2082 35. 581 -1.19554. 054 0E2 GLU 300 -1.31952.026 1.00 22.70 **ATOM** 2083 36. 438 ATOM 2084 C **GLU 300** 36. 734 2.082 55. 550 1. 00 25. 31 ATOM 2085 0 GLU 300 37.769 1. 408 55. 663 1. 00 22. 71 5 ATOM 36.712 55. 622 1. 00 26. 47 2086 N LEU 301 3. 409 37.919 1.00 26.65 ATOM 2087 CA LEU 301 4. 174 55. 900 ATOM 2088 CBLEU 301 37.600 5. 676 55. 992 1. 00 26. 57 ATOM LEU 301 37. 165 54. 701 1. 00 26. 02 2089 CG 6. 395 ATOM 2090 CD1 LEU 301 36.684 7. 784 55. 047 1.00 27.06 10 CD2 LEU 301 53. 701 1. 00 25. 38 ATOM 2091 38. 312 6. 474 ATOM 2092 C LEU 301 38. 452 3. 648 57. 226 1. 00 26. 23 1.00 26.97 LEU 301 39.594 57. 313 **ATOM** 2093 0 3. 209 VAL 302 37.623 58. 259 1. 00 26. 05 **ATOM** 2094 N 3. 670 ATOM 2095 CA VAL 302 38.068 3. 154 59. 542 1. 00 27. 56 15 **ATOM** 2096 CBVAL 302 36. 911 3. 034 60. 524 1. 00 28. 13 **ATOM** 2097 CG1 VAL 302 37. 354 2. 285 61. 777 1. 00 26. 62 ATOM 2098 CG2 VAL 302 36. 433 4. 424 60.882 1. 00 30. 95 **ATOM** 2099 C VAL 302 38. 723 1. 786 59. 386 1. 00 27. 42 **ATOM** 2100 0 VAL 302 39. 765 1. 529 59. 977 1. 00 29. 00 20 ATOM 2101 N ARG 303 38. 127 0.906 58. 593 1. 00 25. 04 38. 723 1. 00 25. 12 ATOM ARG 303 -0.39558. 417 2102 CA ATOM 2103 CB ARG 303 37.906 -1.25457. 475 1. 00 26. 51 ATOM ARG 303 38. 587 -2.55857. 126 1. 00 28. 11 2104 CG ATOM 2105 ARG 303 37.609 -3.52056. 490 1. 00 31. 77 25 CD ATOM 2106 NE ARG 303 38. 260 -4.45655. 583 1. 00 32. 46 ARG 303 54. 296 1.00 34.64 ATOM 2107 cz38. 483 -4.215NH1 ARG 303 1.00 33.51 ATOM 2108 38. 103 -3.05953. 759 **ATOM** NH2 ARG 303 39. 082 53. 546 1. 00 35. 80 2109 -5. 136

- 217 -ATOM 2110 C ARG 303 40. 111 -0. 242 57. 854 1.00 27.77 ATOM 2111 0 ARG 303 41.073 -0.78858. 401 1.00 30.47 ATOM 2112 N LEU 304 40. 236 0.495 56. 754 1.00 27.67 ATOM 2113 CA LEU 304 41. 562 0.674 56. 147 1.00 24.93 ATOM 2114 CB LEU 304 54. 865 41. 464 1. 526 1. 00 22. 51 ATOM 2115 CG LEU 304 40.640 0.902 53. 718 1. 00 19. 14 **ATOM** 2116 CD1 LEU 304 40. 386 52. 675 1. 957 1. 00 19. 15 ATOM 2117 CD2 LEU 304 41. 352 -0. 295 53. 105 1. 00 14. 45 ATOM 2118 C LEU 304 42. 523 1. 290 57. 168 1. 00 21. 35 ATOM 2119 0 LEU 304 10 43. 584 0.736 57. 432 1. 00 20. 90 ATOM 2120 N VAL 305 42. 142 2. 406 57. 770 1. 00 17. 52 ATOM 2121 CA VAL 305 43.003 58. 758 3. 011 1. 00 17. 43 ATOM 2122 CB VAL 305 42. 316 59. 423 4. 162 1.00 14.40 ATOM 2123 CG1 VAL 305 43. 154 60.583 4.673 1.00 14.53 15 ATOM 2124 CG2 VAL 305 42. 095 5. 240 58. 408 1. 00 14. 33 ATOM 2125 C VAL 305 43. 400 2.010 59. 829 1.00 20.92 ATOM 2126 0 VAL 305 44. 497 2.071 60. 387 1.00 22.69 ATOM 2127 N LEU 306 42. 502 60.126 1.00 24.02 1. 085 **ATOM** 2128 CA LEU 306 42. 783 0.081 61. 144 1.00 26.64 ATOM 2129 CB LEU 306 61.594 20 41. 481 -0.5851.00 27.02 ATOM 2130 CG LEU 306 63.087 41. 154 -0. 563 1.00 27.64 ATOM 2131 CD1 LEU 306 63. 592 41. 094 0.873 1.00 27.51 ATOM 2132 CD2 LEU 306 39. 826 -1. 267 63. 311 1.00 28.07 ATOM 2133 C LEU 306 43. 721 -0.96560.566 1. 00 27. 73 ATOM 2134 0 LEU 306 25 44. 745 -1.30361. 157 1.00 26.86 ATOM 2135 N LEU 307 43. 360 -1.46759.394 1.00 28.77 ATOM LEU 307 2136 CA 44. 156 -2. 478 58. 733 1. 00 32. 47 LEU 307 ATOM 2137 CB -2.89343. 465 57. 437 1.00 29.90 **ATOM** LEU 307 2138 CG 43. 477 -4. 392 57. 130 1. 00 29. 19

- 218 -**ATOM** 2139 CD1 LEU 307 43. 104 -5. 210 58. 361 1. 00 28. 38 ATOM 2140 CD2 LEU 307 42. 495 -4. 648 56. 015 1. 00 29. 88 ATOM 2141 C LEU 307 45. 553 -1.91658. 466 1. 00 35. 49 **ATOM** 2142 0 LEU 307 46. 542 -2.64558. 394 1. 00 36. 50 ATOM 2143 ARG 308 45. 622 5 N -0.60258. 332 1. 00 38. 03 **ATOM** CA ARG 308 2144 46.882 0.080 58. 101 1. 00 41. 29 ATOM 2145 CBARG 308 46.603 1. 580 57. 936 1. 00 47. 88 **ATOM** 2146 CG ARG 308 47. 706 2. 544 58. 368 1. 00 54. 88 **ATOM** 2147 CD ARG 308 48.819 2. 693 57. 338 1. 00 60. 14 ATOM 2148 NE ARG 308 49.524 3. 958 10 57. 540 1. 00 65. 47 ATOM ARG 308 2149 CZ50. 523 4. 401 56. 784 1. 00 67. 54 **ATOM** 2150 NH1 ARG 308 50. 954 3. 673 55. 757 1. 00 68. 57 **ATOM** 2151 NH2 ARG 308 51.074 5. 584 57. 046 1. 00 66. 83 ATOM 2152 C ARG 308 47. 783 -0.18259. 301 1. 00 40. 42 15 ATOM 2153 0 ARG 308 48. 889 -0.694 59. 159 1. 00 40. 04 **ATOM** 2154 N LEU 309 47. 287 0. 152 60. 487 1. 00 39. 27 ATOM 2155 LEU 309 CA 48. 043 -0.02761. 717 1. 00 38. 92 ATOM 2156 CB LEU 309 47. 224 62. 895 0. 484 1. 00 33. 74 **ATOM** 2157 CG LEU 309 46.852 1. 958 62. 854 1.00 30.26 20 ATOM 2158 CD1 LEU 309 45. 453 2. 121 63. 368 1. 00 30. 84 ATOM 2159 CD2 LEU 309 47.819 2.766 63. 683 1. 00 27. 57 ATOM 2160 C LEU 309 48. 461 -1.47361. 984 1. 00 41. 92 ATOM 2161 LEU 309 0 49. 600 -1.74162. 364 1. 00 42. 73 ATOM 2162 N VAL 310 47. 541 -2.40661. 788 1. 00 44. 59 ATOM 25 2163 CA VAL 310 47. 829 -3.81162. 039 1. 00 46. 67 ATOM 2164 CB VAL 310 46.606 -4.65161. 798 1.00 46.95 ATOM 2165 CG1 VAL 310 45. 419 -4.00662. 479 1. 00 49. 54 ATOM 2166 CG2 VAL 310 46. 368 -4.77960. 312 1. 00 47. 77 ATOM 2167 C VAL 310 48. 929 -4. 321 61. 139 1. 00 47. 55

- 219 -ATOM 2168 0 VAL 310 49. 488 -5. 392 61. 374 1. 00 48. 66 ATOM 2169 N ASP 311 49. 217 60.093 -3.5591. 00 48. 93 ATOM 2170 CA ASP 311 50. 262 -3.92759. 160 1. 00 52. 04 **ATOM** 2171 CB ASP 311 49. 993 -3.29857. 793 1. 00 57. 14 ATOM 2172 CG ASP 311 5 48. 752 -3.86957. 135 1. 00 61. 79 **ATOM** 2173 OD1 ASP 311 48. 348 -3.37756.054 1. 00 63. 59 **ATOM** 2174 OD2 ASP 311 48. 180 -4. 819 57. 713 1. 00 63. 98 ATOM 2175 C ASP 311 51.618 -3.49059. 698 1. 00 51. 94 **ATOM** 2176 0 ASP 311 52. 580 -4.25659. 653 1. 00 53. 89 10 **ATOM** 2177 N GLU 312 51. 702 -2. 267 60. 212 1. 00 49. 51 ATOM 2178 CA GLU 312 **52.** 961 *−*1. 785 60. 762 1. 00 47. 68 **ATOM** 2179 CB GLU 312 53. 071 -0. 272 60. 632 1. 00 48. 44 ATOM 2180 CG GLU 312 52.900 0. 221 59. 216 1. 00 51. 79 ATOM 2181 CD GLU 312 53. 122 1. 713 59. 084 1. 00 53. 56 ATOM 2182 OE1 GLU 312 15 52. 698 2. 280 58. 047 1. 00 49. 90 ATOM 2183 0E2 GLU 312 53. 725 2. 309 60.013 1. 00 56. 82 ATOM 2184 C GLU 312 62. 222 53. 075 **−2.** 172 1. 00 46. 11 ATOM 2185 0 GLU 312 53. 514 -1.37763. 049 1. 00 46. 75 **ATOM** 2186 N ASN 313 52. 666 -3.39762. 527 1. 00 45. 02 20 ATOM 2187 CA ASN 313 52. 720 -3.93863.879 1. 00 44. 64 ATOM 2188 CBASN 313 54. 100 -4.55064. 119 1. 00 43. 84 **ATOM** 2189 CG ASN 313 54. 028 -5. 860 64. 863 1. 00 45. 16 ATOM 2190 OD1 ASN 313 53. 377 65. 906 -5.9651. 00 43. 79 ATOM 2191 ND2 ASN 313 54. 701 -6.87564. 333 1. 00 46. 05 25 ATOM 2192 C ASN 313 52. 408 -2.92164. 991 1. 00 44. 49 ATOM 2193 0 ASN 313 53. 303 -2.50965. 728 1. 00 45. 19 ATOM 2194 N LEU 314 51. 142 -2.53065. 126 1. 00 43. 02 ATOM 2195 CA LEU 314 50. 743 -1.56366. 159 1. 00 40. 80 ATOM 2196 CB LEU 314 50. 639 -0. 167 65. 549 1. 00 34. 97

- 220 -CG LEU 314 0.499 ATOM 2197 51. 940 1.00 29.58 65. 127 51.698 ATOM 2198 CD1 LEU 314 1. 453 63. 981 1. 00 28. 94 ATOM 2199 CD2 LEU 314 52. 516 1. 212 66. 311 1. 00 28. 16 ATOM 2200 C LEU 314 49. 396 -1.92466. 777 1. 00 42. 38 2201 0 LEU 314 ATOM 49.026 -1.42267. 848 1.00 39.73 ATOM 2202 N LEU 315 48. 689 -2.81266.078 1. 00 44. 49 ATOM 2203 CA LEU 315 -3.26847. 352 66. 439 1. 00 45. 22 ATOM 2204 CBLEU 315 46. 354 -2. 695 65. 445 1. 00 43. 49 **ATOM** 2205 CG LEU 315 45. 121 -2.06366. 045 1. 00 43. 28 ATOM 2206 10 CD1 LEU 315 44. 055 -1.97664.972 1. 00 43. 01 ATOM 2207 CD2 LEU 315 44. 643 -2.90767. 209 1. 00 46. 13 ATOM 2208 C LEU 315 47. 214 -4. 781 66. 407 1. 00 46. 34 ATOM 2209 0 LEU 315 47. 828 -5. 439 65. 577 1.00 47.74 ATOM 2210 N PHE 316 46. 380 67. 292 -5. 318 1. 00 48. 50 15 ATOM 2211 CA PHE 316 46. 125 -6.76067. 369 1. 00 50. 80 ATOM CB2212 PHE 316 45. 054 -7.18666. 347 1. 00 48. 89 ATOM CG 2213 PHE 316 43. 829 -6.31266. 331 1. 00 46. 47 **ATOM** 2214 CD1 PHE 316 43. 163 -5.99967. 508 1. 00 45. 93 **ATOM** CD2 PHE 316 65. 134 2215 43. 350 -5.7911. 00 44. 48 20 ATOM 2216 CE1 PHE 316 42. 043 -5.18367. 491 1. 00 44. 57 ATOM 2217 CE2 PHE 316 42. 229 -4.97465. 109 1. 00 43. 59 ATOM 2218 CZ PHE 316 41. 577 -4.66966. 290 1.00 44.05 ATOM PHE 316 2219 C 47. 371 -7.60567. 124 1.00 53.06 ATOM 2220 0 PHE 316 47. 342 -8.52166. 299 1.00 54.62 25 ATOM 2221 N HIS 317 48. 456 -7.30467. 835 1. 00 54. 60 **ATOM** HIS 317 2222 CA 49. 710 -8.04667. 691 1. 00 55. 95 ATOM 2223 CB HIS 317 49. 676 -9.30168. 569 1. 00 54. 90

ATOM

ATOM

2224

2225

CG

HIS 317

CD2 HIS 317

49. 708

49. 686 -9. 823

-9.004

70. 034

71. 113

1. 00 55. 21

1. 00 55. 22

- 221 -ATOM 2226 ND1 HIS 317 49. 778 -7. 718 70. 528 1. 00 54. 55 ATOM 2227 CE1 HIS 317 49. 798 -7. 756 71. 848 1. 00 55. 21 NE2 HIS 317 **ATOM** 2228 72. 229 49. 744 -9.0201. 00 56. 90 ATOM 2229 C HIS 317 66. 240 50.004 -8.4261. 00 58. 27 HIS 317 5 ATOM · 2230 **0** 50. 521 **-9.** 514 65. 950 1. 00 58. 90 1. 00 59. 86 ATOM 2231 N GLY 318 49. 665 **-7.** 513 65. 335 **ATOM** 2232 CA GLY 318 -7. 734 63. 921 49. 881 1. 00 60. 72 2233 C -9.02263. 379 **ATOM** GLY 318 49. 290 1. 00 62. 25 **ATOM** 2234 0 GLY 318 50. 031 -9. 956 63. 080 1. 00 63. 75 ATOM 2235 N GLU 319 63. 277 10 47. 962 -9. 087 1. 00 62. 86 ATOM 2236 CA GLU 319 47. 277 -10. 257 62. 716 1. 00 62. 72 ATOM 2237 CB GLU 319 47. 663 -11. 545 63. 439 1. 00 66. 93 **ATOM** 2238 CG GLU 319 47. 437 -12. 784 62. 575 1. 00 73. 23 **ATOM** CD GLU 319 2239 47. 862 -14. 068 63. 262 1. 00 78. 58 ATOM 2240 0E1 GLU 319 49. 020 -14. 129 63. 745 15 1. 00 80. 57 ATOM 0E2 GLU 319 2241 47. 043 -15. 019 63. 310 1. 00 81. 49 ATOM 2242 C GLU 319 45. 765 -10. 097 62. 739 1. 00 59. 42 ATOM 2243 0 GLU 319 63. 735 45. 098 -10. 387 1. 00 57. 03 **ATOM** 2244 N ALA 320 61.604 45. 246 -9. 643 1. 00 55. 74 20 **ATOM** 2245 CA ALA 320 43. 828 -9. 394 61. 414 1. 00 54. 02 **ATOM** 2246 CB ALA 320 43. 657 -8. 357 60. 338 1. 00 52. 55 ATOM 2247 C ALA 320 61.043 43. 052 -10. 650 1. 00 54. 49 ATOM 2248 0 ALA 320 43. 620 -11. 565 60. 457 1. 00 55. 61 ATOM 2249 N SER 321 41. 762 -10. 698 61. 388 1. 00 55. 01 **ATOM** 2250 CA SER 321 40. 924 -11. 856 61.050 25 1. 00 55. 90 ATOM 2251 CBSER 321 39. 649 -11. 911 61. 895 1. 00 56. 08 **ATOM** 2252 OG SER 321 38.814 - 12.97561. 445 1. 00 53. 96 ATOM 2253 C SER 321 40. 513 -11. 780 59. 589 1. 00 55. 49 **ATOM** 2254 0 SER 321 40. 367 -10. 689 59. 041 1. 00 54. 92

- 222 -ATOM 2255 N GLU 322 40. 292 -12. 933 58. 967 1. 00 54. 84 ATOM 2256 CA GLU 322 39. 917 -12. 951 57. 563 1. 00 56. 14 **ATOM** 2257 CB**GLU 322** 39. 646 -14. 382 57. 092 1. 00 58. 38 ATOM 2258 CG GLU 322 40. 173 -14. 697 55. 681 1. 00 63. 26 ATOM 2259 CD GLU 322 5 41. 712 -14. 670 55. 574 1. 00 66. 36 ATOM 2260 0E1 GLU 322 42. 296 -13. 571 55. 432 1. 00 66. 15 2261 OE2 GLU 322 ATOM 42. 339 -15. 754 55. 637 1. 00 66. 78 ATOM 2262 C GLU 322 38. 685 -12. 085 57. 354 1. 00 55. 71 ATOM 2263 0 **GLU 322** 38. 343 -11. 727 56. 227 1. 00 54. 93 10 ATOM 2264 N GLN 323 38. 027 -11. 740 58. 454 1. 00 55. 82 ATOM 2265 CA GLN 323 36. 838 -10. 904 58. 393 1. 00 55. 20 ATOM 2266 CB GLN 323 35. 995 -11. 101 59. 659 1. 00 57. 22 ATOM 2267 CG GLN 323 35. 737 -12. 571 59. 983 1. 00 60. 42 **ATOM** 2268 CD GLN 323 34. 801 -12. 778 61. 164 1. 00 62. 11 ATOM 15 2269 0E1 GLN 323 34. 596 -13. 909 61. 612 1. 00 63. 58 2270 NE2 GLN 323 ATOM 34. 223 -11. 690 61. 668 1. 00 61. 37 ATOM 2271 C GLN 323 37. 259 *−*9. 445 58. 249 1. 00 53. 59 ATOM 2272 0 GLN 323 36. 963 -8. 800 57. 242 1. 00 53. 27 ATOM 2273 N LEU 324 37. 973 -8. 936 59. 248 1. 00 50. 98 ATOM 2274 CA 20 LEU 324 38. 430 -7. 553 59. 224 1. 00 48. 40 ATOM 2275 CB LEU 324 39. 396 -7. 294 60. 378 1. 00 46. 63 ATOM 2276 CG LEU 324 39. 956 -5. 876 60. 498 1. 00 44. 87 ATOM 2277CD1 LEU 324 38. 846 -4. 837 60.390 1. 00 44. 21 ATOM 2278 CD2 LEU 324 40.671 -5.75861. 827 1. 00 43. 22 ATOM 25 2279 C LEU 324 39. 115 -7.22457. 911 1. 00 47. 25 ATOM 2280 **0** LEU 324 39. 181 -6.06557. 505 1. 00 44. 86 ATOM 2281 N ARG 325 39. 627 -8.25357. 252 1. 00 48. 35 ATOM 2282 CA ARG 325 40. 309 -8.05755. 988 1. 00 50. 22

ATOM

2283 CB

ARG 325

55. 839

1. 00 53. 47

41. 473 -9. 055

- 223 -

						220	,			
	ATOM	2284	CG	ARG	325	42. 580	-8. 896	56. 894	1. 00	57. 97
	ATOM	2285	CD	ARG	325	43. 660	-9. 986	56. 808	1. 00	61. 92
	ATOM	2286	NE	ARG	325	44. 564	-9. 957	57. 966	1. 00	67. 95
	ATOM	2287	CZ	ARG	325	45. 535	-10. 844	58. 206	1. 00	70. 27
5	ATOM	2288	NH1	ARG	325	45. 753	-11. 854	57. 371	1. 00	69. 69
	ATOM	2289	NH2	ARG	325	46. 290	-10. 725	59. 293	1. 00	70. 39
	ATOM	2290	C	ARG	325	39. 320	-8. 224	54. 850	1. 00	48. 80
	ATOM	2291	0	ARG	325	39. 617	-8. 859	53. 847	1. 00	50. 46
	ATOM	2292	N	THR	326	38. 131	-7. 663	54. 999	1. 00	46. 54
10	ATOM	2293	CA	THR	326	37. 162	-7. 783	53. 929	1. 00	45. 13
	ATOM	2294	CB	THR	326	36. 108	-8. 810	54. 264	1. 00	44. 85
	ATOM	2295	0G1	THR	326	36. 749	-10.061	54. 546	1. 00	44. 98
	ATOM	2296	CG2	THR	326	35. 160	-8. 973	53. 092	1. 00	43. 46
	ATOM	2297	C	THR	326	36. 500	-6. 453	53. 687	1. 00	44. 79
15	ATOM	2298	0	THR	326	36. 256	-5. 705	54. 626	1. 00	45. 01
	ATOM	2299	N	ARG	327	36. 216	-6. 143	52. 430	1. 00	45. 02
	ATOM	2300	CA	ARG	327	35. 590	-4. 866	52. 136	1. 00	45. 97
	ATOM	2301	CB	ARG	327	35. 476	-4. 655	50. 623	1. 00	48. 63
	ATOM	2302	CG	ARG	327	34. 961	-3. 283	50. 229	1. 00	53. 97
20	ATOM	2303	CD	ARG	327	34. 975	-3. 072	48. 722	1. 00	58. 44
	ATOM	2304	NE	ARG	327	33. 747	-2. 410	48. 282	1. 00	66. 14
	ATOM	2305	CZ	ARG	327	33. 387	-1. 178	48. 648	1. 00	69. 53
	ATOM	2306	NH1	ARG	327	34. 167	-0. 471	49. 458	1. 00	69. 84
	ATOM	2307	NH2	ARG	327	32. 242	-0. 652	48. 220	1. 00	68. 29
25	ATOM	2308	C	ARG	327	34. 217	-4. 790	52. 794	1. 00	44. 69
	ATOM	2309	0	ARG	327	33. 486	-5. 784	52. 861	1. 00	44. 55
	ATOM	2310	N	GLY	328	33. 888	-3. 605	53. 302	1. 00	42. 14 ·
	ATOM	2311	CA	GLY	328	32. 606	-3. 394	53. 952	1. 00	37. 48
	ATOM	2312	C	GLY	328	32. 480	-4. 007	55. 334	1. 00	33. 00

- 224 -ATOM 2313 0 GLY 328 31. 693 -3. 532 1. 00 32. 88 56. 148 **ATOM** 2314 N ALA 329 33. 258 -5. 049 55. 601 1. 00 29. 02 **ATOM** CA ALA 329 33. 227 -5.74356. 885 1. 00 26. 22 2315 ATOM 2316 CB ALA 329 34. 452 -6.62357. 028 1. 00 28. 65 ATOM 2317 C ALA 329 33. 092 -4.86158. 115 1. 00 24. 38 5 2318 **ATOM** 0 ALA 329 32. 490 -5.27659. 097 1.00 26.43 ATOM PHE 330 2319 N 33. 663 -3.66358. 091 1. 00 21. 81 ATOM 2320 CA PHE 330 33. 547 -2.77659. 242 1. 00 18. 07 ATOM PHE 330 2321 CB34. 887 -2.13759. 558 1.00 13.90 ATOM 2322 PHE 330 34. 913 60.862 10 CG -1.4041. 00 12. 45 ATOM 2323 CD1 PHE 330 34. 460 -0.09660. 961 1. 00 12. 64 CD2 PHE 330 1. 00 12. 73 ATOM 2324 35. 436 -2.00961. 995 ATOM 2325 CE1 PHE 330 34. 535 62. 188 0.605 1. 00 12. 83 ATOM 2326 CE2 PHE 330 35. 515 -1.31563. 221 1. 00 11. 49 ATOM 2327 CZPHE 330 35. 066 -0.00863. 315 15 1.00 8.96 1. 00 17. 48 ATOM 2328 C PHE 330 32. 528 -1.71658. 886 2329 ATOM 0 PHE 330 32. 855 -0.70258. 273 1.00 17.97 ATOM 2330 N GLU 331 59. 275 31. 288 -1.9761. 00 16. 36 ATOM GLU 331 30. 149 58. 998 2331 CA -1.1051. 00 18. 14 ATOM 2332 CBGLU 331 28. 865 -1.88959. 308 1. 00 22. 08 20 ATOM 2333 CG GLU 331 28. 790 -3.22658. 546 1. 00 26. 82 ATOM 2334 CD GLU 331 28. 183 -4.38259. 346 1. 00 28. 86 ATOM OE1 GLU 331 2335 28. 381 -5. 552 58. 931 1. 00 28. 12 ATOM 0E2 GLU 331 2336 27. 509 -4.12960. 371 1. 00 30. 16 ATOM 2337 C GLU 331 30. 126 25 0. 248 59. 719 1.00 16.36 30.596 ATOM 2338 0 GLU 331 0.380 60. 849 1. 00 16. 97 ATOM THR 332 2339 N 29. 583 1. 263 59.060 1.00 14.04 ATOM 2340 CA THR 332 29. 494 2. 568 59. 695 1. 00 14. 47 ATOM 2341 CB THR 332 28. 747 3. 562 58. 825 1. 00 10. 93

- 225 -OG1 THR 332 29. 473 57. 611 6. 57 ATOM 2342 3. 751 1.00 ATOM CG2 THR 332 28. 597 4.890 59. 550 1.00 6.34 2343 THR 332 2. 382 60.994 1. 00 18. 42 ATOM 2344 C 28. 725 ATOM 2345 0 THR 332 29. 125 2.872 62. 052 1. 00 17. 70 1.671 60. 892 1. 00 21. 79 ATOM 2346 N ARG 333 27. 609 5 ATOM 2347 CA ARG 333 26. 783 1. 346 62.040 1. 00 24. 44 61.764 1.00 28.62 ATOM CBARG 333 26.095 0.001 2348 ATOM 2349 CG ARG 333 25. 291 -0.59062. 910 1. 00 34. 65 ARG 333 24. 308 -1.66462. 401 1. 00 39. 87 ATOM 2350 CD ATOM 2351 NE ARG 333 24.953 -2.88761. 910 1. 00 43. 42 10 CZARG 333 25. 198 -3.96962. 653 1. 00 46. 01 ATOM 2352 ATOM 2353 NH1 ARG 333 24. 852 -3.99263. 940 1. 00 45. 10 NH2 ARG 333 25. 791 -5.03062. 104 1. 00 43. 75 ATOM 2354 63. 323 **ATOM** C ARG 333 27.638 1. 271 1. 00 24. 88 2355 1. 803 64. 358 ATOM 2356 0 ARG 333 27. 242 1. 00 24. 00 15 0.635 63. 232 1. 00 23. 97 ATOM 2357 N PHE 334 28. 818 **ATOM** 2358 CA PHE 334 29.740 0. 458 64. 371 1. 00 19. 64 PHE 334 -0.50964. 033 ATOM 2359 CB30. 877 1. 00 20. 52 -1.81363. 468 1. 00 24. 74 ATOM 2360 CG PHE 334 30. 420 CD1 PHE 334 -2.57464. 121 1. 00 25. 94 ATOM 2361 29. 469 20 CD2 PHE 334 -2.27962. 262 ATOM 2362 30. 938 1. 00 26. 47 CE1 PHE 334 29. 039 -3.78063. 575 1. 00 28. 43 ATOM 2363 CE2 PHE 334 30. 514 -3.48361. 711 1. 00 24. 74 ATOM 2364 ATOM 2365 CZPHE 334 29. 565 **-4**. 233 62. 365 1. 00 26. 41 ATOM 2366 C PHE 334 30. 382 1. 739 64. 842 1. 00 16. 52 25 ATOM 2367 0 PHE 334 30. 434 2. 020 66.039 1. 00 16. 16 **ATOM** VAL 335 30.907 2. 509 63. 905 1. 00 13. 20 2368 N ATOM VAL 335 31. 546 3. 752 64. 284 1. 00 11. 36 2369 CA 1.00 8.08 ATOM 2370 CB VAL 335 31. 877 4. 565 63. 033

63. 402

1. 00 8. 71

- 226 ATOM 2371 CG1 VAL 335 32.113 6.003
ATOM 2372 CG2 VAL 335 33.082 3.979
ATOM 2373 C VAL 335 30.653 4.558

ATOM 3.979 62. 358 1.00 1.00 ATOM 2373 C VAL 335 30.653 4.558 65. 249 1.00 13.02 ATOM 2374 0 VAL 335 31. 126 5.066 66. 264 1.00 10.40 1. 00 16. 23 ATOM SER 336 29. 359 4.640 64. 934 2375 N 5 ATOM 2376 CA SER 336 28. 365 5. 372 65. 740 1. 00 18. 55 ATOM 5.350 65.039 2377 CB SER 336 27.017 1. 00 19. 92 ATOM 2378 0GSER 336 26. 611 3. 999 64. 866 1.00 25.40 ATOM 2379 C 28. 162 4. 766 SER 336 67. 118 1. 00 17. 99 **ATOM** 2380 0 SER 336 27.896 5.465 10 68. 100 1.00 14.64 ATOM 2381 N GLN 337 28. 239 3. 445 67. 159 1.00 19.48 ATOM 2382 CA GLN 337 28.061 2.719 68. 394 1. 00 21. 39 ATOM 2383 CB **GLN 337** 27. 995 1. 223 68. 123 1. 00 21. 42 ATOM 2384 CG GLN 337 26.829 0.800 67. 264 1. 00 23. 07 15 ATOM 2385 CDGLN 337 26. 920 -0.65466. 895 1.00 24.96 ATOM 0E1 GLN 337 2386 27. 243 -1.49667. 735 1. 00 28. 83 ATOM NE2 GLN 337 2387 26. 633 -0.96665. 638 1. 00 24. 29 ATOM 2388 C GLN 337 29. 260 3. 011 69. 240 1. 00 20. 91 ATOM 2389 0 29. 205 2.963 GLN 337 70. 464 1. 00 23. 32 ATOM 2390 N VAL 338 30. 362 3. 317 68. 584 1. 00 20. 52 20 ATOM 2391 CA VAL 338 31. 559 3. 589 69. 337 1. 00 21. 67 ATOM 2392 CB VAL 338 32.812 3. 470 68. 443 1. 00 20. 93 ATOM 2393 CG1 VAL 338 34.065 3.624 69. 279 1. 00 19. 79 ATOM 2394 CG2 VAL 338 32.811 2. 126 67. 739 1. 00 16. 69 ATOM 2395 C VAL 338 31. 480 4. 973 69. 977 1. 00 23. 61 25 ATOM 2396 0 VAL 338 31. 385 5.079 71. 203 1. 00 21. 96 ATOM 2397 N GLU 339 31.486 6.020 69. 146 1. 00 25. 05 ATOM 2398 CA GLU 339 31. 455 7.406 69. 620 1. 00 26. 21

ATOM

2399 CB

GLU 339

31.460

8. 402

68. 440

1. 00 26. 37

- 227 -67. 282 1. 00 31. 63 ATOM 2400 CG GLU 339 30. 515 8. 082 30. 287 **ATOM** 2401 CD **GLU 339** 9. 267 66.311 1. 00 36. 86 0E1 GLU 339 66.663 1.00 37.19 **ATOM** 2402 29. 542 10. 219 ATOM 2403 0E2 GLU 339 30.850 9. 243 65. 187 1. 00 37. 90 C GLU 339 30. 299 70. 541 1. 00 26. 44 ATOM 2404 7. 735 5 ATOM 2405 0 GLU 339 30. 423 8. 613 71.396 1.00 27.55 70.380 ATOM 2406 N SER 340 29. 189 7.017 1. 00 26. 30 ATOM 2407 CA SER 340 27. 987 7. 246 71. 181 1. 00 25. 08 1.00 23.68 70.717 ATOM 2408 CBSER 340 26.861 6. 322 ATOM **SER 340** 27. 191 70.957 1.00 23.58 10 2409 0G4.970 ATOM 2410 C SER 340 28. 211 7.065 72. 676 1. 00 26. 02 **ATOM** 2411 0 SER 340 27. 415 7. 539 73. 488 1. 00 26. 83 **ATOM** 2412 ASP 341 29. 294 6.380 73. 033 1. 00 27. 41 N ATOM ASP 341 29.630 74. 434 1. 00 27. 85 2413 CA6. 143 ATOM CBASP 341 28. 939 4. 885 74. 953 1. 00 27. 41 15 2414 ATOM 2415 CG ASP 341 29. 253 4. 621 76. 410 1. 00 26. 49 ATOM OD1 ASP 341 77. 107 1. 00 26. 07 2416 29. 628 5. 591 ATOM OD2 ASP 341 29. 117 76. 862 1. 00 25. 64 2417 3. 463 ATOM C ASP 341 31. 128 6.008 74. 672 1. 00 28. 59 2418 ATOM 2419 0 ASP 341 31.757 5. 049 74. 229 1. 00 30. 06 20 ATOM 2420 N THR 342 31.688 6. 965 75. 398 1. 00 27. 34 1.00 26.74 ATOM 2421 CA THR 342 33. 105 6. 953 75. 694 1. 00 26. 75 ATOM 2422 CBTHR 342 33.681 8. 348 75. 553 1.00 25.10 ATOM 2423 OG1 THR 342 33.072 9. 217 76. 511 74. 171 1. 00 29. 29 ATOM 2424 CG2 THR 342 33. 387 8.881 25 ATOM 2425 C THR 342 33. 292 6. 477 77. 114 1. 00 27. 84 **ATOM** 2426 THR 342 34. 365 6.625 77.692 1. 00 27. 29 0 ATOM 2427 N GLY 343 32. 223 5. 908 77.662 1. 00 30. 32 ATOM 2428 CA GLY 343 32. 234 5. 398 79. 020 1. 00 31. 31

- 228 -

1. 00 32. 13 32. 970 79. 178 ATOM 2429 GLY 343 4. 083 C **ATOM** 2430 0 **GLY 343** 33. 765 3. 944 80. 105 1. 00 34. 00 32. 712 78. 304 1. 00 31. 93 ATOM 2431 N ASP 344 3. 114 ATOM 2432 CA ASP 344 33. 400 1. 836 78. 411 1. 00 34. 25 1. 00 38. 13 ASP 344 79. 267 CB32. 592 0.857 5 ATOM 2433 78. 744 ATOM 2434 CG ASP 344 31. 205 0.646 1. 00 43. 49 ATOM OD1 ASP 344 30. 399 -0.02979. 426 1. 00 47. 59 2435 ATOM 2436 OD2 ASP 344 30. 923 1. 159 77. 643 1. 00 46. 67 ASP 344 33. 744 1. 196 77. 075 1. 00 33. 85 ATOM 2437 C ASP 344 1.681 76.015 10 ATOM 2438 0 33. 354 1. 00 32. 12 ATOM 2439 N ARG 345 34. 490 0.098 77. 148 1. 00 34. 54 CA ARG 345 -0.62675. 968 1. 00 35. 60 ATOM 2440 34. 935 -1. 278 76. 233 1. 00 35. 33 **ATOM** 2441 CB ARG 345 36. 297 ARG 345 76.864 1. 00 35. 88 **ATOM** 2442 CG 37. 339 -0.370ARG 345 38. 729 -1.00676. 879 1. 00 35. 19 15 ATOM 2443 CD **ATOM** 2444 NE ARG 345 39. 507 -0.59778. 054 1. 00 36. 95 CZ78. 275 ATOM 2445 ARG 345 39. 984 0. 629 1. 00 36. 97 ATOM NH1 ARG 345 39. 780 1. 605 77. 396 1. 00 36. 40 2446 **ATOM** NH2 ARG 345 40. 654 0.885 79. 394 1. 00 36. 46 2447 **ATOM** C ARG 345 33. 961 -1.71675. 551 1. 00 36. 31 20 2448 ATOM 34. 080 -2.28074. 461 1. 00 37. 64 2449 0 ARG 345 ATOM 2450 N LYS 346 33. 004 -2.02076. 420 1. 00 35. 01 ATOM 2451 CA LYS 346 32. 050 -3.08176. 134 1. 00 33. 81 LYS 346 77. 041 ATOM 2452 CB30. 824 -2.9751. 00 33. 64 -4.22376. 985 ATOM 2453 CG LYS 346 29. 942 1. 00 33. 85 25 77. 186 **ATOM** 2454 CD LYS 346 30. 759 -5.5051. 00 31. 48 76. 542 ATOM 2455 CE LYS 346 30.061 -6.6991. 00 32. 39 ATOM 2456 NZ LYS 346 30. 855 -7. 968 76. 542 1.00 30.01 **ATOM** 2457 C LYS 346 31. 613 -3. 093 . 74. 684 1. 00 33. 18

- 229 -ATOM 2458 0 LYS 346 31. 746 -4. 101 73. 995 1. 00 31. 98 **ATOM** 2459 N GLN 347 31. 101 -1. 967 74. 214 1. 00 33. 36 72.839 **ATOM** 2460 CA GLN 347 30. 662 -1. 887 1. 00 34. 32 ATOM 2461 CB GLN 347 30. 014 -0. 530 72. 589 1. 00 37. 17 CG GLN 347 28. 510 -0. 578 72. 703 1. 00 39. 97 ATOM 2462 5 ATOM 2463 CD GLN 347 27. 905 -1.43671.611 1. 00 43. 97 ATOM 2464 0E1 GLN 347 28. 219 -2.62671. 491 1. 00 43. 88 ATOM 2465 NE2 GLN 347 27. 039 -0.83570. 799 1. 00 46. 46 ATOM 2466 C GLN 347 31. 799 `-2. 144 71. 844 1. 00 34. 27 ATOM 2467 0 GLN 347 31. 630 -2.92270. 902 1. 00 35. 29 10 ATOM 2468 ILE 348 32. 952 -1.50272.054 N 1. 00 31. 49 ATOM 2469 CA ILE 348 34. 109 -1.67971. 165 1. 00 25. 43 ATOM 2470 CBILE 348 35. 309 -0.82671.614 1. 00 21. 01 CG2 ILE 348 70.540 ATOM 2471 36. 369 -0.8261.00 15.50 2472 CG1 ILE 348 34. 852 71.875 1. 00 22. 27 15 ATOM 0.606 ATOM 2473 CD1 ILE 348 35. 914 1. 509 72. 462 1. 00 24. 55 **ATOM** 2474 C ILE 348 34. 524 -3.13971. 211 1.00 24.70 2475 0 70. 182 ATOM ILE 348 34. 793 -3.7631. 00 23. 36 72. 421 ATOM 2476 N TYR 349 34. 560 -3.6811. 00 23. 30 **ATOM** 72. 597 2477 CA TYR 349 34. 933 -5.0611. 00 23. 65 20 ATOM TYR 349 74.047 2478 CB 34. 727 -5. 491 1. 00 25. 21 **ATOM** CG TYR 349 34. 779 -6.98974. 221 2479 1. 00 31. 27 **ATOM** CD1 TYR 349 35. 990 -7.66574. 333 2480 1. 00 33. 98 ATOM 2481 CE1 TYR 349 36. 028 -9.06274. 435 1.00 36.98 25 ATOM 2482 CD2 TYR 349 33. 607 -7.74074. 216 1. 00 34. 38 CE2 TYR 349 ATOM 2483 33. 628 -9. 125 74. 312 1. 00 36. 69 **ATOM** 2484 CZ TYR 349 34. 837 -9.78674. 421 1.00 37.89 ATOM 2485 0H TYR 349 74. 512 1. 00 37. 12 34. 834 -11. 165 ATOM 2486 C TYR 349 34. 105 -5. 945 71. 676 1. 00 23. 47

- 230 -**ATOM** 2487 0 TYR 349 34. 654 -6. 602 70. 794 1. 00 21. 02 ATOM 2488 N ASN 350 32. 783 -5. 934 71.872 1. 00 25. 29 ATOM 2489 CA ASN 350 31. 850 -6. 766 71. 091 1. 00 25. 07 **ATOM** 2490 CB ASN 350 30. 379 -6. 500 71. 482 1. 00 23. 90 **ATOM** 2491 CG ASN 350 5 30. 069 -6. 844 72. 941 1. 00 25. 09 ATOM 2492 OD1 ASN 350 30. 413 -7. 924 73. 440 1. 00 22. 84 **ATOM** 2493 ND2 ASN 350 29. 398 -5. 923 73. 626 1. 00 25. 65 **ATOM** 2494 C ASN 350 31. 982 -6. 620 69. 580 1. 00 25. 25 ATOM 2495 0 ASN 350 31. 994 -7. 619 68.859 1. 00 25. 84 **ATOM** 2496 10 N ILE 351 32. 068 -5. 392 69. 083 1. 00 25. 43 **ATOM** 2497 CA ILE 351 32. 195 -5. 227 67. 642 1. 00 25. 64 ATOM 2498 CB ILE 351 32. 388 -3. 745 67. 248 1.00 24.60 ATOM 2499 CG2 ILE 351 32. 282 -3. 600 65. 743 1. 00 23. 69 ATOM 2500 CG1 ILE 351 31. 305 -2. 882 1. 00 22. 24 67. 903 **ATOM** 15 2501 CD1 ILE 351 31. 357 -1. 431 67. 509 1. 00 19. 88 **ATOM** 2502 C ILE 351 33. 415 -6.04767. 224 1. 00 26. 73 ATOM 2503 0 ILE 351 33. 282 -7.04766. 517 1. 00 25. 71 ATOM 2504 N LEU 352 34. 592 -5. 629 67. 695 1. 00 27. 08 ATOM 2505 CA LEU 352 35. 847 -6. 312 67. 397 1. 00 27. 36 ATOM 20 2506 CB LEU 352 36. 994 -5. 700 68. 206 1. 00 24. 45 **ATOM** 2507 CG LEU 352 37. 295 -4. 208 68. 090 1. 00 23. 84 **ATOM** 2508 CD1 LEU 352 38. 464 -3. 838 68. 995 1. 00 21. 54 -3.872ATOM 2509 CD2 LEU 352 37.620 66.660 1.00 23.96 ATOM 2510 C LEU 352 35. 746 -7. 798 67. 737 1. 00 29. 42 **ATOM** LEU 352 25 2511 0 36. 045 -8. 670 66. 912 1. 00 29. 43 ATOM 2512 N SER 353 35. 336 -8. 087 68. 965 1. 00 30. 73 ATOM 2513 CA SER 353 **35.** 206 −9. 468 69. 398 1. 00 32. 72 ATOM 2514 CB SER 353 34. 408 -9. 531 70. 711 1. 00 32. 86 **ATOM** 2515 OG SER 353 34. 187 -10. 870 71. 126 1. 00 35. 10

- 231 -1. 00 33. 76 SER 353 34. 513 -10. 277 68. 295 ATOM 2516 C **SER 353 ATOM** 2517 0 35. 123 -11. 149 67. 670 1. 00 34. 42 68. 035 **ATOM** 2518 N THR 354 33. 252 -9. 941 1. 00 34. 17 **ATOM** 2519 CA THR 354 32. 437 -10. 621 67. 031 1. 00 32. 96 2520 CBTHR 354 30. 999 -10. 073 67. 076 1. 00 33. 01 ATOM 2521 OG1 THR 354 30. 120 -10. 980 66. 408 1. 00 32. 52 ATOM 2522 CG2 THR 354 30. 922 -8. 702 66. 411 1. 00 34. 65 ATOM ATOM 2523 C THR 354 33. 007 -10. 503 65. 608 1. 00 32. 28 64. 646 ATOM 2524 0 THR 354 32. 444 -11. 038 1. 00 30. 58 **ATOM** 2525 N LEU 355 34. 137 -9. 807 65. 497 1. 00 31. 47 34. 832 -9. 612 64. 227 ATOM 2526 CA LEU 355 1.00 30.67 **ATOM** 2527 CB LEU 355 35. 488 -8. 239 64. 187 1. 00 28. 42 CG LEU 355 34. 780 -7. 240 63. 293 1. 00 27. 13 ATOM 2528 ATOM CD1 LEU 355 35. 387 -5. 874 63. 487 1. 00 26. 09 2529 ATOM 2530 CD2 LEU 355 34. 898 -7. 698 61.859 1. 00 27. 39 ATOM 2531 C LEU 355 35. 905 -10. 668 64. 061 1. 00 31. 14 ATOM 2532 0 LEU 355 36. 573 -10. 735 63. 033 1. 00 30. 59 ATOM 2533 N GLY 356 36. 074 -11. 484 65. 091 1. 00 32. 64 ATOM 2534 CA GLY 356 37. 068 -12. 530 65. 030 1. 00 35. 49 ATOM 2535 C **GLY 356** 38. 435 -12. 074 65. 493 1. 00 37. 44 ATOM 2536 **0 GLY 356** 39. 443 -12. 492 64. 930 1. 00 37. 31 66. 516 ATOM 2537 N LEU 357 38. 471 -11. 222 1. 00 39. 40 39. 729 -10. 717 67. 057 ATOM 2538 CA LEU 357 1. 00 41. 85

5 10 15 20 ATOM 2539 CB LEU 357 39. 898 -9. 239 66. 705 1. 00 41. 35 ATOM 2540 CG LEU 357 39. 816 -8. 876 65. 218 1. 00 43. 17 25 **ATOM** 2541 CD1 LEU 357 39. 953 -7. 375 65.064 1. 00 42. 98 ATOM 2542 CD2 LEU 357 40. 904 -9. 585 64. 428 1.00 43.93 **ATOM** 2543 C LEU 357 39. 759 -10. 888 68. 571 1.00 44.59 ATOM 2544 **0** LEU 357 38. 750 -11. 247 69. 176 1.00 45.94

						996	ì			
	ATOM	2545	N	ARG	Չ 5	- 232	-10. 643	60 178	1 00	46. 55
	ATOM	2546	CA	ARG			-10. 752	70. 632		48. 12
	ATOM	2547	CB	ARG			-11. 819	70. 994		52. 19
	ATOM	2548	CG	ARG			-13. 258	70. 839		61. 21
5	ATOM	2549	CD	ARG	358		-13. 768	72. 064		68. 48
	ATOM	2550	NE	ARG	358	39. 519	-13. 206	72. 184	1. 00	74. 00
	ATOM	2551	CZ	ARG	358	38. 629	-13. 577	73. 104	1. 00	75. 57
	ATOM	2552	NH1	ARG	358	38. 935	-14. 517	73. 998	1. 00	75. 58
	ATOM	2553	NH2	ARG	358	37. 431	-13.005	73. 131	1. 00	74. 54
10	ATOM	2554	C	ARG	358	41. 558	-9. 418	71. 174	1. 00	46. 76
	ATOM	2555	0	ARG	358	42. 702	-9. 284	71. 580	1. 00	49. 52
	ATOM	2556	N	PRO	359	40. 679	-8. 412	71, 197	1. 00	45. 33
	ATOM	2557	CD	PRO	359	39. 271	-8. 532	70. 791	1. 00	45. 90
	ATOM	2558	CA	PRO	359	40. 956	-7. 056	71. 677	1. 00	44. 06
15	ATOM	2559	CB	PRO	359	39. 565	-6. 449	71. 784	1. 00	45. 14
	ATOM	2560	CG	PRO	359	38. 865	-7. 086	70. 643	1. 00	46. 70
	ATOM	2561	C	PRO	359	41. 725	-6. 936	72. 986	1. 00	42. 11
	ATOM	2562	0	PR0	359	41. 662	-7. 797	73. 860	1. 00	42. 98
	ATOM	2563	N	SER	360	42. 449	-5. 840	73. 118	1. 00	38. 55
20	ATOM	2564	CA	SER	360	43. 209	-5. 608	74. 321	1. 00	35. 42
	ATOM	2565	CB	SER	360	44. 701	-5. 624	74. 014	1. 00	38. 45
	ATOM	2566	0G	SER	360	45. 100	-4. 379	73. 453	1. 00	37. 32
	ATOM	2567	C	SER	360	42. 847	-4. 234	74. 818	1. 00	33. 26
	ATOM	2568	0	SER	360	42. 530	-3. 345	74. 028	1. 00	30. 55
25	ATOM	2569	N	THR	361	42. 907	-4. 060	76. 128	1. 00	31. 87
	ATOM	2570	CA	THR	361	42. 625	-2. 771	76. 721	1. 00	33. 02
	ATOM	2571	СВ	THR	361	43. 285	-2. 646	78. 083	1. 00	32. 00
	ATOM	2572	0G1	THR	361	42. 697	-3. 593	78. 981	1. 00	31. 30
	ATOM	2573	CG2	THR	361	43. 135	-1. 223	78. 618	1. 00	28. 90

- 233 -

						200				
	ATOM	2574	C	THR	361	43. 162	-1. 637	75. 853	1. 00	35. 59
	ATOM	2575	0	THR	361	42. 600	-0. 545	75. 837	1. 00	37. 16
	ATOM	2576	N	THR	362	44. 253	-1. 879	75. 135	1. 00	37. 62
	ATOM	2577	CA	THR	362	44. 812	-0. 819	74. 303	1. 00	37. 63
5	ATOM	2578	CB	THR	362	46. 341	-0. 949	74. 156	1. 00	38. 04
	ATOM	2579	0G1	THR	362	46. 950	-0. 981	75. 453	1. 00	37. 77
	ATOM	2580	CG2	THR	362	46. 890	0. 242	73. 395	1. 00	37. 49
	ATOM	2581	C	THR	362	44. 183	-0. 839	72. 928	1. 00	36. 67
	ATOM	2582	0	THR	362	43. 758	0. 194	72. 416	1. 00	34. 48
10	ATOM	2583	N	ASP	363	44. 132	-2. 032	72. 345	1. 00	37. 88
	ATOM	2584	CA	ASP	363	43, 555	-2. 246	71. 024	1. 00	40. 18
	ATOM	2585	CB	ASP	363	43. 238	-3. 729	70. 842	1. 00	42. 13
	ATOM	2586	CG	ASP	363	44. 477	-4. 557	70. 666	1. 00	45. 73
	ATOM	2587	OD1	ASP	363	44. 433	-5. 779	70. 932	1. 00	49. 54
15	ATOM	2588	OD2	ASP	363	45. 500	-3. 976	70. 247	1. 00	46. 04
	ATOM	2589	C	ASP	363	42. 289	-1. 429	70. 841	1. 00	40. 28
	ATOM	2590	0	ASP	363	42. 070	-0.801	69. 802	1. 00	38. 03
	ATOM	2591	N	CYS	364	41. 455	-1. 449	71. 871	1. 00	41. 60
	ATOM	2592	CA	CYS	364	40. 197	-0. 724	71. 849	1. 00	41. 33
20	ATOM	2593	CB	CYS	364	39. 426	-1. 036	73. 131	1. 00	41.81
	ATOM	2594	SG.	CYS	364	39. 078	-2. 818	73. 225	1. 00	41. 98
	ATOM	2595	C	CYS	364	40. 447	0. 766	71. 685	1. 00	39. 78
	ATOM	2596	0	CYS	364	39. 991	1. 382	70. 721	1. 00	37. 44
	ATOM	2597	N	ASP	365	41. 194	1. 333	72. 622	1. 00	38. 65
25	ATOM	2598	CA	ASP	365	41. 525	2. 744	72. 580	1. 00	37. 87
	ATOM	2599	CB	ASP	365	42. 498	3.060	73. 709	1. 00	39. 53
	ATOM	2600	CG	ASP	365	42. 073	2. 424	75. 014	1. 00	42. 28
	ATOM	2601	OD1	ASP	365	40. 887	2. 000	75. 096	1. 00	43. 06
	ATOM	2602	OD2	ASP	365	42. 908	2. 355	75. 949	1. 00	41. 82

- 234 -ATOM 2603 ASP 365 C 42. 123 3. 092 71. 220 1. 00 35. 70 ATOM 2604 0 ASP 365 41.887 4. 173 70.682 1. 00 35. 49 ATOM 2605 N ILE 366 42. 895 2. 175 70.655 1. 00 32. 72 ATOM 2606 ILE 366 CA 43. 469 2. 428 69. 347 1. 00 31. 21 ATOM CBILE 366 5 2607 44. 345 68.891 1. 241 1. 00 30. 98 **ATOM** CG2 ILE 366 2608 44. 878 67. 482 1. 488 1. 00 30. 08 ATOM 2609 CG1 ILE 366 45. 472 1. 010 69. 907 1. 00 30. 05 **ATOM** 2610 CD1 ILE 366 46. 426 2. 165 70.071 1. 00 26. 19 ATOM 2611 C ILE 366 42. 292 2. 622 68. 384 1. 00 30. 65 10 ATOM 2612 0 ILE 366 42. 140 3.686 67.790 1. 00 29. 65 ATOM 2613 N VAL 367 41. 451 1. 598 68. 255 1. 00 29. 81 ATOM 2614 CA VAL 367 40. 287 1. 665 67. 378 1. 00 27. 24 **ATOM** 2615 CBVAL 367 39. 397 0.424 67. 541 1. 00 26. 77 ATOM CG1 VAL 367 66.630 2616 38. 193 0.520 1. 00 25. 16 ATOM 2617 CG2 VAL 367 15 40. 190 -0.81767. 220 1. 00 27. 90 **ATOM** 2618 C VAL 367 39. 453 2. 910 67.657 1. 00 26. 82 2619 ATOM 0 VAL 367 39.061 66. 727 3. 606 1. 00 27. 16 **ATOM** 2620 N ARG 368 39. 171 68. 927 3. 191 1. 00 25. 49 ATOM 2621 CA ARG 368 38. 398 4. 380 69. 266 1. 00 24. 26 20 ATOM 2622 CB ARG 368 38. 431 4. 644 70. 772 1. 00 23. 73 ATOM 2623 CG ARG 368 37. 765 5. 951 71. 217 1. 00 26. 32 **ATOM** 2624 CDARG 368 36. 239 5. 948 71.033 1.00 32.00 **ATOM** 2625 NE ARG 368 35. 542 71.926 5.015 1. 00 33. 36 ATOM 2626 CZARG 368 35. 558 5. 096 73. 253 1. 00 33. 30 25 ATOM 2627 NH1 ARG 368 36. 237 73. 843 6.069 1. 00 36. 87 ATOM NH2 ARG 368 2628 34. 904 73.990 4. 209 1. 00 30. 08 ATOM 2629 C ARG 368 39.034 5. 545 68. 539 1. 00 25. 24 ATOM 2630 0 ARG 368 38. 403 67. 700 6. 175 1. 00 26. 08 **ATOM** 2631 N ARG 369 40. 299 5. 808 68. 844 1. 00 26. 69

- 235 -**ATOM** 2632 CA ARG 369 41.022 6.905 68. 226 1.00 28.80 **ATOM** ARG 369 2633 CB 42.500 6. 842 68. 619 1. 00 33. 81 ATOM 2634 CG ARG 369 42. 992 8. 041 69. 421 1. 00 41. 54 ATOM 2635 CD ARG 369 44. 246 8.666 68. 797 1. 00 47. 78 5 ATOM 2636 NE ARG 369 44.827 9.709 69.642 1. 00 53. 83 ATOM 2637 CZARG 369 45. 436 9.479 70.803 1. 00 57. 34 ATOM 2638 NH1 ARG 369 45. 547 8. 234 71. 256 1. 00 57. 39 ATOM 2639 NH2 ARG 369 45.925 10. 492 71. 517 1. 00 58. 51 ATOM 2640 C ARG 369 40.888 6.941 66.704 1.00 27.66 10 ATOM 2641 0 ARG 369 40.898 8. 017 66. 116 1. 00 27. 35 ATOM 2642 N ALA 370 40.760 5. 778 66.071 1. 00 28. 23 ATOM 2643 CA ALA 370 40.622 5. 699 64. 613 1. 00 29. 69 ATOM 2644 CB ALA 370 40.779 4. 264 64. 144 1. 00 27. 18 ATOM 2645 C ALA 370 39. 266 6. 218 64. 184 1. 00 32. 49 **ATOM** 2646 0 15 ALA 370 39. 155 7.084 63. 313 1. 00 33. 37 ATOM 2647 N CYS 371 38. 229 5.663 64. 797 1. 00 35. 80 **ATOM** 2648 CA CYS 371 36.860 6.053 64. 500 1.00 37.09 **ATOM** 2649 CBCYS 371 35. 892 5. 310 65. 427 1. 00 37. 67 ATOM 2650 SG CYS 371 35. 709 3. 539 65.052 1. 00 43. 56 20 ATOM 2651 C ·CYS 371 36. 692 7. 555 64.663 1.00 36.66 **ATOM** 2652 0 CYS 371 36. 237 8. 231 63.746 1. 00 36. 14 ATOM 2653 N **GLU 372** 37.079 8.065 65.829 1. 00 36. 70 ATOM 2654 CA GLU 372 36.962 9.482 66. 140 1.00 37.83 ATOM 2655 CB GLU 372 37. 440 9. 741 67. 569 1. 00 41. 72 25 ATOM **GLU 372** 2656 CG 37. 405 11. 202 67.993 1. 00 50. 44 ATOM 2657 CD GLU 372 38.615 11. 981 67.504 1. 00 56. 78 ATOM 0E1 GLU 372 2658 39. 747 11.656 67.940 1. 00 60. 05 **ATOM** 2659 0E2 GLU 372 38. 437 12. 914 66. 685 1. 00 59. 31

ATOM

2660

C

GLU 372

37. 736

10. 344 65. 163

1. 00 36. 14

-236 -ATOM GLU 372 2661 0 37. 280 11. 410 64. 745 1.00 34.24 ATOM 2662 N SER 373 38. 917 9. 890 64. 793 1.00 37.31 ATOM 2663 CA SER 373 10. 662 63. 856 39. 703 1.00 39.48 ATOM 2664 CB SER 373 41. 095 10. 040 63. 694 1.00 40.54 ATOM 2665 OG 5 SER 373 41. 014 8. 697 63. 253 1.00 41.31 ATOM 2666 C SER 373 38. 966 10. 713 62. 516 1. 00 38. 54 ATOM 2667 0 SER 373 38. 778 11. 790 61. 953 1. 00 39. 30 ATOM 2668 N VAL 374 38. 528 9. 552 62. 029 1. 00 35. 74 ATOM 2669 CA VAL 374 37. 817 9. 462 60. 755 1. 00 34. 53 **ATOM** 10 2670 CBVAL 374 37. 519 7. 987 60.388 1. 00 33. 30 ATOM 2671 CG1 VAL 374 36.688 7. 897 59. 119 1.00 30.40 ATOM 2672 CG2 VAL 374 38. 811 7. 257 60. 186 1. 00 34. 78 ATOM 2673 C VAL 374 36. 512 10. 250 60. 736 1. 00 35. 17 ATOM 2674 0 VAL 374 36. 253 11.010 59. 797 1.00 34.51 ATOM 15 2675 N SER 375 35. 700 10.080 61. 775 1. 00 35. 24 ATOM 2676 CA SER 375 34. 416 10. 768 61.866 1. 00 34. 91 ATOM 2677 CB **SER 375** 33. 641 10. 312 63. 103 1. 00 35. 91 ATOM 2678 OG SER 375 33. 802 11. 230 64. 178 1. 00 37. 28 **ATOM** 2679 C SER 375 34. 585 12. 272 61. 933 1. 00 34. 67 **ATOM** 2680 0 SER 375 33. 865 13.010 61.266 20 1. 00 35. 17 ATOM 2681 N THR 376 35. 534 12. 725 62. 743 1. 00 34. 00 ATOM 2682 CA THR 376 35. 768 14. 150 62. 889 1. 00 35. 55 **ATOM** 2683 CB THR 376 36. 827 14. 421 63.954 1.00 38.06 **ATOM** 2684 OG1 THR 376 36. 461 13. 739 65. 158 1. 00 40. 51 CG2 THR 376 **ATOM** 25 2685 36. 926 15. 923 64. 239 1. 00 38. 22 **ATOM** THR 376 2686 C 36. 208 14. 788 61.583 1.00 34.80 **ATOM** THR 376 2687 0 35. 794 15. 901 61. 241 1. 00 32. 23 ATOM 2688 N ARG 377 37. 049 14.078 60.848 1. 00 36. 51 **ATOM** 2689 CA ARG 377 37. 523 14. 601 59. 581 1. 00 38. 20

- 237 -ATOM 2690 CBARG 377 38. 535 13. 640 58. 956 1. 00 41. 90 **ATOM** 2691 ARG 377 CG 39. 417 14. 271 57. 892 1. 00 43. 83 **ATOM** 2692 CDARG 377 38. 735 14. 280 56. 551 1. 00 46. 24 ATOM 2693 NE ARG 377 38. 467 12. 921 56.074 1. 00 50. 02 ATOM 2694 CZARG 377 39. 400 12. 058 55. 679 1. 00. 48. 89 5 ATOM 2695 NH1 ARG 377 40.681 12. 405 55. 700 1. 00 47. 77 ATOM 2696 NH2 ARG 377 39.050 10.849 55. 256 1. 00 48. 65 ATOM 2697 C ARG 377 36. 311 14. 759 58. 688 1. 00 37. 15 **ATOM** 2698 0 ARG 377 36. 163 1. 00 37. 23 15. 780 58. 016 10 ATOM 2699 N ALA 378 35. 445 13. 744 58.706 1. 00 36. 43 ATOM 2700 CA ALA 378 34. 212 13. 732 57.920 1. 00 35. 58. ATOM 2701 CB ALA 378 33. 470 12. 430 58. 130 1. 00 35. 75 **ATOM** 2702 C ALA 378 33. 314 58. 304 14. 897 1. 00 34. 75 **ATOM** 2703 0 ALA 378 32.675 15. 507 57. 451 1. 00 34. 63 ATOM 2704 N ALA 379 15 33. 249 15. 204 59. 590 1. 00 34. 17 ATOM 2705 CA ALA 379 32. 427 16. 317 60.009 1. 00 34. 54 **ATOM** 2706 CB ALA 379 32. 281 16. 340 61. 515 1. 00 32. 43 ATOM 2707 C ALA 379 59. 519 33. 073 17. 607 1. 00 35. 95 ATOM 2708 0 ALA 379 32.465 18. 358 58. 761 1. 00 38. 27 ATOM 2709 N HIS 380 20 34. 314 17. 856 59. 925 1. 00 35. 13 ATOM 2710 HIS 380 34.994 59. 526 CA 19. 083 1. 00 34. 04 ATOM 2711 CB HIS 380 36. 448 19. 031 59.968 1. 00 37. 01 61. 430 ATOM 2712 CG HIS 380 36. 628 19. 284 1. 00 42. 02 **ATOM** CD2 HIS 380 2713 35. 734 19. 637 62. 385 1. 00 43. 27 ND1 HIS 380 25 ATOM 2714 37.852 19. 206 62.058 1.00 44.66 CE1 HIS 380 ATOM 2715 37. 704 63. 339 19. 500 1.00 46.06 **ATOM** 2716 NE2 HIS 380 36. 429 19. 766 63. 562 1. 00 44. 63 ATOM HIS 380 2717 C 34. 894 19. 405 58. 045 1. 00 32. 37

ATOM

2718 0

HIS 380

34. 581

20. 536

57. 671

1. 00 29. 98

- 238 -

							•			
	ATOM	2719	N	MET	381	35. 154	18. 417	57. 197	1. 00	30. 55
	ATOM	2720	CA	MET	381	35. 055	18. 640	55. 764	1. 00	30. 35
	ATOM	2721	CB	MET	381	35. 383	17. 365	54. 992	1. 00	28. 41
	ATOM	2722	CG	MET	381	36. 852	17. 181	54. 767	1. 00	28. 31
5	ATOM	2723	SD	MET	381	37. 505	18. 684	54. 017	1. 00	31. 73
	ATOM	2724	CE	MET	381	38. 142	18. 070	52. 446	1. 00	30. 02
	ATOM	2725	C	MET	381	33. 647	19. 101	55. 415	1. 00	32. 29
	ATOM	2726	0	MET	381	33. 453	19. 930	54. 527	1. 00	32. 42
	ATOM	2727	N	CYS	382	32. 660	18. 566	56. 124	1. 00	33. 02
10	ATOM	2728	CA	CYS	382	31. 279	18. 942	55. 869	1. 00	33. 44
	ATOM	2729	CB	CYS	382	30. 323	18. 012	56. 625	1. 00	33. 78
	ATOM	2730	SG	CYS	382	28. 582	18. 152	56. 124	1. 00	40. 21
	ATOM	2731	C	CYS	382	31. 087	20. 387	56. 316	1. 00	33. 02
	ATOM	2732	0	CYS	382	30. 566	21. 218	55. 563	1. 00	32. 71
15	ATOM	2733	N	SER	383	31. 528	20. 686	57. 537	1. 00	33. 57
	ATOM	2734	CA	SER	383	31. 418	22. 037	58. 097	1. 00	33. 39
	ATOM	2735	CB	SER	383	32. 232	22. 159	59. 392	1. 00	32. 88
	ATOM	2736	0G	SER	383	33. 605	21. 877	59. 176	1. 00	31. 29
	ATOM	2737	C	SER	383	31. 935	23. 042	57. 085	1. 00	32. 50
20	ATOM	2738	0	SER	383	31. 314	24. 073	56. 832	1. 00	32. 64
	ATOM	2739	N	ALA	384	33. 082	22. 729	56. 501	1. 00	30. 75
	ATOM	2740	CA	ALA	384	33. 663	23. 607	55. 510	1. 00	29.62
	ATOM	2741	CB	ALA	384	34. 787	22. 885	54. 789	1. 00	29. 04
	ATOM	2742	C	ALA	384	32. 604	24. 095	54. 509	1. 00	29. 94
25	ATOM	2743	0	ALA	384	32. 211	25. 259	54. 544	1. 00	28. 35
	ATOM	2744	N	GLY	385	32. 141	23. 193	53. 639	1. 00	31. 38
	ATOM	2745	CA	GLY	385	31. 149	23. 525	52. 621	1. 00	30. 00
	ATOM	2746	C	GLY	385	29. 870	24. 198	53. 090	1. 00	30. 54
	ATOM	2747	0	GLY	385	29. 522	25. 285	52. 613	1. 00	28. 88

- 239 -ATOM 2748 N LEU 386 29. 151 23. 559 54. 010 1. 00 29. 58 **ATOM** 2749 CA LEU 386 27. 917 24. 148 54. 522 1. 00 28. 86 23. 374 ATOM 2750 CBLEU 386 27. 410 55. 749 1. 00 25. 55 ATOM 2751 CG LEU 386 23. 824 26. 141 56. 493 1. 00 21. 28 **ATOM** 5 2752 CD1 LEU 386 26. 504 24. 768 57.605 1. 00 18. 56 **ATOM** 2753 CD2 LEU 386 25. 157 55. 533 24. 456 1. 00 17. 77 ATOM 2754 C LEU 386 28. 199 25. 595 54. 898 1.00 30.29 **ATOM** 2755 0 LEU 386 27. 344 26. 458 54. 728 1. 00 30. 86 **ATOM** 2756 ALA 387 N 29. 413 25. 846 55. 393 1. 00 32. 40 ATOM 2757 ALA 387 10 CA 29.851 27. 184 55. 799 1.00 32.84 ATOM 2758 CBALA 387 31. 181 27. 101 56. 536 1. 00 31. 99 C ATOM 2759 ALA 387 29. 991 28. 098 54. 585 1. 00 34. 20 ATOM 2760 0 ALA 387 29.509 54. 588 29. 235 1. 00 34. 34 ATOM 2761 N GLY 388 30.663 27. 597 53. 553 1. 00 34. 88 15 **ATOM** 2762 CA GLY 388 30. 831 28. 378 52. 344 1. 00 35. 13 **ATOM** 2763 C 28. 833 GLY 388 29. 467 51.867 1. 00 35. 42 ATOM 2764 0 **GLY 388** 29. 257 30.005 51. 545 1. 00 36. 39 ATOM 2765 N VAL 389 28. 524 27. 898 51.839 1. 00 34. 42 ATOM 2766 CA VAL 389 27. 167 28. 202 51.402 1. 00 32. 28 20 ATOM 2767 CBVAL 389 26. 266 26. 949 51. 487 1. 00 31. 56 ATOM 2768 CG1 VAL 389 24. 856 27. 285 51.027 1. 00 28. 68 ATOM 2769 CG2 VAL 389 26. 853 25. 836 50. 638 1. 00 28. 05 **ATOM** 2770 C VAL 389 26. 579 29. 307 52. 273 1. 00 30. 86 ATOM 2771 0 VAL 389 26.072 30. 304 51.762 1.00 26.91 **ATOM** 2772 N ILE 390 26.665 25 29. 115 53. 586 1.00 31.06 **ATOM** 2773 CA ILE 390 26.146 30. 073 54. 548 1.00 34.83 **ATOM** CB ILE 390 2774 26. 262 29. 538 56.001 1. 00 32. 76 ATOM 2775 CG2 ILE 390 25.733 30. 562 56. 996 1. 00 31. 45 ATOM CG1 ILE 390 2776 25. 425 28. 274 56. 154 1. 00 32. 06

- 240 -CD1 ILE 390 ATOM 2777 25. 311 27. 804 57. 572 1. 00 31. 73 ATOM 2778 С ILE 390 26. 858 31. 415 54. 444 1. 00 39. 01 ATOM 2779 0 ILE 390 26. 209 32. 465 54. 370 1. 00 42. 11 ATOM 2780 N ASN 391 28. 186 31. 398 54. 437 1. 00 41. 07 ASN 391 28. 921 32. 652 54. 326 1. 00 42. 97 ATOM 2781 CA 5 ATOM 2782 CB ASN 391 30. 430 32. 386 54. 290 1. 00 47. 00 55.678 ATOM CGASN 391 31.061 32. 452 1. 00 51. 32 2783 ATOM 2784 OD1 ASN 391 32. 205 32. 029 55. 878 1. 00 51. 98 ND2 ASN 391 30. 312 32. 996 56. 646 1. 00 51. 87 ATOM 2785 ATOM 2786 C ASN 391 28. 459 33. 377 53.070 1. 00 42. 59 10 ATOM 2787 0 ASN 391 27. 927 34. 488 53. 141 1.00 40.64 ATOM 2788 N ARG 392 28. 638 32. 723 51. 928 1. 00 43. 30 2789 ARG 392 28. 237 33. 277 50. 644 1. 00 45. 75 ATOM CA ATOM 2790 CB ARG 392 28. 328 32. 182 49.571 1. 00 48. 20 27.020 31. 811 48. 892 15 ATOM 2791 CG ARG 392 1. 00 54. 22 ATOM 2792 CD ARG 392 26. 803 32. 578 47. 590 1. 00 59. 36 ATOM 2793 NE ARG 392 27. 491 31. 984 46. 437 1. 00 66. 46 ARG 392 1. 00 69. 91 ATOM 2794 CZ28. 794 32. 098 46. 156 NH1 ARG 392 ATOM 2795 29. 613 32. 793 46. 941 1. 00 69. 61 NH2 ARG 392 45.063 ATOM 2796 29. 279 31. 524 1. 00 70. 50 20 C 26.822 50. 711 ATOM 2797 ARG 392 33. 854 1. 00 45. 30 ATOM 2798 0 26. 474 34. 777 49. 973 1. 00 44. 35 ARG 392 2799 N MET 393 26.009 33. 316 51.607 1. 00 47. 21 ATOM ATOM 2800 CA MET 393 24.640 33. 785 51.739 1. 00 50. 87 ATOM 2801 CBMET 393 23. 761 32. 687 52.346 1. 00 49. 84 25 **ATOM** 2802 CG MET 393 23. 427 31. 551 51. 389 1. 00 45. 97 ATOM 2803 SD MET 393 22. 244 30. 416 52. 096 1. 00 42. 67 ATOM 2804 CE MET 393 20.761 31. 465 52. 244 1. 00 42. 67 ATOM 2805 C MET 393 24. 559 35. 046 52. 581 1. 00 54. 43

- 241 -2806 0 MET 393 ATOM 23. 631 35. 851 52. 443 1. 00 53. 85 ATOM 2807 N ARG 394 25. 528 35. 208 53. 469 1.00 59.09 **ATOM** 2808 CA ARG 394 25. 568 54. 314 36. 386 1. 00 64. 57 ATOM 2809 CB ARG 394 26.624 36. 224 55. 404 1.00 65.91 CG ARG 394 26.830 37, 477 56. 228 5 ATOM 2810 1. 00 67. 95 ARG 394 37. 364 57. 130 ATOM 2811 CD28. 048 1. 00 69. 02 2812 NE ATOM ARG 394 28. 499 38. 673 57. 600 1. 00 68. 97 ATOM 2813 CZARG 394 27.776 39. 494 58. 357 1. 00 69. 21 ATOM 2814 NH1 ARG 394 26. 553 39. 151 58. 743 1. 00 70. 35 ATOM 2815 NH2 ARG 394 28. 281 40. 662 58. 732 10 1. 00 68. 24 ATOM 2816 C ARG 394 25. 952 37. 537 53.404 1.00 67.94 ATOM 2817 0 ARG 394 25. 306 38. 588 53. 391 1. 00 67. 14 ATOM 2818 N GLU 395 27. 012 37. 313 52. 633 1. 00 72. 08 ATOM 2819 GLU 395 27.513 38. 314 51. 707 CA 1.00 77.04 ATOM 2820 CBGLU 395 28. 578 37. 691 50. 784 1.00 78.09 15 ATOM 2821 CG GLU 395 29. 425 38. 685 49. 955 1. 00 81. 99 ATOM 2822 CDGLU 395 30. 402 39. 533 50. 789 1.00 84.19 ATOM 2823 0E1 GLU 395 29.949 40. 442 51. 526 1.00 83.64 ATOM 2824 0E2 GLU 395 31. 631 39. 290 50. 702 1. 00 84. 22 ATOM 2825 C 26.340 50.898 20 GLU 395 38. 873 1. 00 79. 30 ATOM 2826 0 26. 250 50.683 GLU 395 40. 078 1. 00 81. 15 **ATOM** 2827 N SER 396 25. 423 38. 007 50. 481 1.00 81.59 38. 451 49. 696 ATOM 2828 CA SER 396 24. 276 1. 00 83. 40 ATOM 2829 CBSER 396 23. 379 37. 264 49. 366 1. 00 84. 05 48.716 25 ATOM 2830 0G SER 396 24. 123 36. 252 1. 00 86. 28 ATOM 2831 C SER 396 23.462 39. 526 50.406 1. 00 84. 36 ATOM 2832 0 SER 396 40.708 50.092 23. 578 1.00 84.49 ATOM 2833 N ARG 397 22.639 39. 118 51. 362 1. 00 86. 41 ATOM 2834 CA ARG 397 21. 812 40. 070 52. 090 1. 00 88. 71

- 242 -1.00 89.74 ARG 397 20. 682 39. 335 52. 816 ATOM 2835 CBARG 397 19. 579 40. 241 53. 346 1. 00 90. 87 ATOM 2836 CG 39. 776 54. 713 1.00 91.04 **ATOM** 2837 CDARG 397 19.096 ATOM 2838 NE ARG 397 20. 021 40. 158 55. 782 1. 00 89. 87 CZARG 397 19. 905 39. 766 57. 047 1. 00 89. 80 5 ATOM 2839 NH1 ARG 397 18. 906 38. 971 57. 409 1. 00 91. 15 ATOM 2840 57. 955 NH2 ARG 397 20.779 40. 174 1. 00 87. 97 ATOM 2841 ATOM 2842 C ARG 397 22. 653 40. 847 53. 102 1. 00 89. 74 54. 305 1.00 90.41 ARG 397 22. 585 40. 588 ATOM 2843 0 ATOM 2844 N SER 398 23. 448 41. 795 52. 614 1. 00 90. 58 10 ATOM SER 398 24. 288 42. 602 53. 492 1.00 91.09 2845 CA 1.00 91.14 24. 903 43. 782 52. 718 ATOM 2846 CB SER 398 SER 398 25. 845 43. 347 51. 747 1. 00 89. 49 ATOM 2847 OG 54. 677 **SER 398** 23. 470 43. 129 1. 00 91. 27 **ATOM** 2848 C 54. 496 1.00 91.10 ATOM 2849 0 SER 398 22. 458 43. 810 15 42. 786 55. 887 1. 00 91. 43 ATOM 2850 N GLU 399 23. 904 ATOM 2851 CA GLU 399 23. 238 43. 233 57. 108 1. 00 90. 89 57. 183 ATOM 2852 CB GLU 399 21. 799 42. 705 1. 00 91. 87 20.969 43. 349 58. 298 1. 00 93. 31 ATOM 2853 CG GLU 399 ATOM CDGLU 399 20. 726 44. 836 58.064 1. 00 94. 22 2854 20 ATOM 0E1 GLU 399 20. 270 45. 533 58. 999 1.00 93.53 2855 1.00 94.80 ATOM 2856 OE2 GLU 399 20. 986 45. 307 56. 936 2857 C GLU 399 24. 013 42. 774 58. 339 1. 00 89. 25 ATOM 58. 236 **ATOM** 2858 0 GLU 399 24. 987 42. 029 1. 00 88. 96 1. 00 87. 38 2859 N ATOM ASP 400 23. 570 43. 226 59. 502 25 1. 00 85. 70 60. 754 **ATOM** 2860 CA ASP 400 24. 214 42. 883 2861 CB ASP 400 23. 332 43. 352 61. 915 1. 00 88. 35 ATOM 2862 CG ASP 400 22. 861 44. 795 61. 743 1. 00 90. 64 ATOM OD1 ASP 400 22. 059 45. 055 60.817 1. 00 91. 42 ATOM 2863

- 243 -2864 OD2 ASP 400 23. 297 45. 671 62. 524 1. 00 91. 68 ATOM ATOM 2865 C ASP 400 24. 496 60.853 1.00 82.94 41. 385 ATOM 2866 0 ASP 400 25. 506 40.900 60. 346 1. 00 82. 03 ATOM 2867 N VAL 401 23. 593 40. 658 61. 502 1. 00 79. 90 VAL 401 23. 738 39. 219 61. 682 1. 00 75. 91 ATOM 2868 CA 5 **ATOM** 2869 $^{\mathrm{CB}}$ VAL 401 23. 607 38. 841 63. 153 1. 00 74. 20 **ATOM** 2870 CG1 VAL 401 24.803 39. 343 63. 927 1. 00 73. 12 ATOM 2871 CG2 VAL 401 22. 314 39. 430 63. 710 1. 00 72. 79 2872 C VAL 401 22.662 38. 458 60. 925 1.00 74.63 ATOM **ATOM** 2873 0 VAL 401 21.489 38. 846 60. 942 1. 00 75. 56 10 ATOM 2874 N MET 402 23.063 37. 365 60. 278 1. 00 70. 61 ATOM 2875 CA MET 402 22. 130 36. 539 59. 521 1. 00 65. 65 **ATOM** 2876 CB MET 402 22.818 35. 887 58. 325 1. 00 62. 74 ATOM 2877 CG MET 402 21.897 34. 958 57. 543 1. 00 56. 61 ATOM MET 402 22. 543 34. 551 55. 906 15 2878 SD 1. 00 52. 49 ATOM 2879 CE MET 402 23. 857 33. 399 56. 323 1. 00 49. 76 ATOM 2880 C MET 402 21. 532 35. 450 60. 381 1. 00 65. 00 1. 00 65. 18 ATOM 2881 0 MET 402 22. 222 34. 513 60. 781 ATOM 2882 N ARG 403 20. 241 35. 575 60. 657 1. 00 63. 62 ATOM 20 2883 CA ARG 403 19. 535 34. 593 61. 462 1. 00 61. 57 ATOM 2884 CB 62. 262 ARG 403 18. 418 35. 275 1. 00 64. 83 **ATOM** 2885 CG ARG 403 18. 856 36. 547 62. 987 1. 00 70. 01 17. 691 37. 205 63. 724 ATOM 2886 CD ARG 403 1. 00 75. 36 **ATOM** 2887 NE ARG 403 17. 412 36. 582 65.018 1. 00 80. 50 25 ATOM 2888 CZ ARG 403 16. 305 36. 788 65. 731 1. 00 83. 41 ATOM 2889 NH1 ARG 403 15. 358 37. 603 65. 277 1. 00 84. 55 **ATOM** NH2 ARG 403 2890 16. 147 36. 187 66. 907 1. 00 83. 64 ATOM 2891 C ARG 403 18. 946 33. 560 60. 504 1. 00 57. 99 **ATOM** 2892 0 17. 775 ARG 403 33. 639 60. 135 1. 00 58. 57

- 244 -60.091 1. 00 52. 97 19. 762 32. 597 ATOM 2893 N ILE 404 31. 570 59. 170 1. 00 49. 14 ATOM 2894 CA ILE 404 19. 301 20. 293 31. 412 57. 999 1. 00 47. 44 ATOM 2895 CB ILE 404 2896 CG2 ILE 404 21.538 30.680 58. 458 1. 00 43. 94 ATOM CG1 ILE 404 19.629 30.649 56. 854 1. 00 48. 45 5 ATOM 2897 30. 559 55. 598 1. 00 48. 95 ATOM 2898 CD1 ILE 404 20. 477 30. 222 59.879 1. 00 48. 34 C ILE 404 19. 126 ATOM 2899 19. 771 29.967 60.897 1.00 48.83 ATOM 2900 0 ILE 404 18. 236 29. 380 59. 346 1. 00 46. 42 ATOM 2901 N THR 405 17. 956 28. 043 59.892 1. 00 42. 37 **ATOM** 2902 CA THR 405 10 60. 222 1.00 41.93 THR 405 16. 451 27. 838 **ATOM** 2903 CB**ATOM** 2904 0G1 THR 405 16. 010 28. 839 61. 145 1. 00 43. 89 16. 227 26. 475 60.849 1. 00 38. 85 **ATOM** 2905 CG2 THR 405 18. 332 26.990 58.857 1. 00 39. 95 **ATOM** 2906 C THR 405 18. 178 1. 00 38. 97 ATOM 2907 0 THR 405 27. 204 57. 653 15 18. 809 25. 844 59. 324 1. 00 38. 10 ATOM 2908 N VAL 406 19. 195 24. 776 58. 414 1.00 36.64 ATOM 2909 CA VAL 406 1. 00 35. 12 2910 / CB VAL 406 20.686 24. 442 58. 563 ATOM ATOM CG1 VAL 406 21.069 23. 342 57.600 1. 00 35. 29 2911 25. 672 58. 303 1. 00 35. 40 ATOM 2912 CG2 VAL 406 21. 515 20 18. 390 23. 499 58. 635 1. 00 35. 83 ATOM 2913 C VAL 406 23.058 59. 765 1.00 37.06 ATOM 2914 0 VAL 406 18. 214 1.00 34.50 17. 895 22. 915 57. 549 ATOM 2915 N **GLY 407 ATOM GLY 407** 17. 143 21.680 57. 653 1. 00 32. 79 2916 CA **GLY 407** 18.074 20. 522 57. 353 1. 00 32. 90 ATOM 2917 C 25 ATOM GLY 407 18. 704 20.467 56. 294 1. 00 33. 85 2918 0 1. 00 31. 27 58. 279 **ATOM** VAL 408 18. 177 19. 585 2919 N ATOM 2920 CA **VAL 408** 19.064 18. 466 58. 054 1. 00 29. 57

ATOM

2921

CB

VAL 408

20. 199 18. 491 59. 042

1.00 29.66

- 245 -17. 767 58. 468 1. 00 31. 77 **ATOM** 2922 CG1 VAL 408 21. 390 1.00 29.91 19. 916 59. 412 ATOM 2923 CG2 VAL 408 20. 515 18.366 17. 135 58. 206 1. 00 29. 58 ATOM 2924 C VAL 408 17. 392 17.015 58.942 1.00 28.54 2925 VAL 408 ATOM 0 16. 131 57. 509 1. 00 30. 15 ATOM 2926 N ASP 409 18.878 5 14. 789 57. 598 1.00 31.95 ASP 409 18. 324 ATOM 2927 CA 14.635 56.674 1.00 35.66 CBASP 409 17. 109 **ATOM** 2928 ASP 409 16.455 13. 252 **56**. 775 1. 00 40. 01 **ATOM** 2929 CG 1.00 40.26 15. 613 12. 928 55. 898 **ATOM** 2930 OD1 ASP 409 16. 773 12. 499 57. 728 1.00 39.33 **ATOM** 2931 OD2 ASP 409 10 19. 415 13.824 57. 180 1.00 31.91 ATOM 2932 C ASP 409 **ATOM** 2933 0 ASP 409 20. 352 14. 208 56. 484 1. 00 32. 39 12. 574 57. 607 1.00 31.09 2934 19. 300 ATOM N GLY 410 57. 233 1.00 29.56 **ATOM** 2935 CA GLY 410 20. 299 11. 593 20.703 10.704 58. 385 1. 00 29. 32 ATOM 2936 C GLY 410 15 1. 00 28. 27 20. 510 11. 041 59. 558 ATOM 2937 0 GLY 410 1. 00 28. 24 21. 282 9. 559 58. 053 **ATOM** 2938 N SER 411 21. 699 8. 631 59. 086 1. 00 27. 52 **ATOM** 2939 CA SER 411 ATOM 2940 CB SER 411 22. 018 7. 253 58. 481 1. 00 29. 46 23.016 7. 316 57. 471 1.00 31.64 ATOM 2941 0GSER 411 20 59.863 1.00 25.78 22. 895 9. 160 ATOM 2942 C SER 411 1. 00 25. 89 22. 909 61.090 ATOM 2943 0 SER 411 9. 113 1. 00 23. 18 23. 890 9. 687 59. 161 ATOM 2944 N VAL 412 25. 076 10. 185 59. 839 1. 00 21. 25 ATOM 2945 CA VAL 412 26. 099 10.669 58. 841 1. 00 20. 56 ATOM 2946 CBVAL 412 25 27. 372 11. 084 59. 564 1. 00 17. 73 ATOM 2947 CG1 VAL 412 57. 857 1. 00 20. 59 26. 378 9. 552 ATOM 2948 CG2 VAL 412 1.00 20.44 **ATOM** 2949 C VAL 412 24. 769 11. 300 60. 818

ATOM

2950 0

VAL 412

25. 182

11. 262

61. 983

1. 00 21. 51

- 246 -ATOM 2951 N TYR 413 24. 033 12. 288 60. 340 1. 00 16. 42 ATOM 2952 TYR 413 23.659 13. 409 61. 171 1. 00 16. 41 CA ATOM 2953 CBTYR 413 23. 095 14. 526 60. 288 1. 00 16. 40 61.051 ATOM 2954 CG TYR 413 22. 700 15. 762 1. 00 14. 37 5 ATOM 2955 CD1 TYR 413 23. 645 16. 707 61. 434 1. 00 13. 43 62. 226 1. 00 13. 93 ATOM 2956 CE1 TYR 413 23. 296 17. 789 ATOM 2957 CD2 TYR 413 21. 401 15. 939 61. 470 1. 00 13. 10 **ATOM** CE2 TYR 413 17.007 62. 256 1. 00 15. 82 2958 21. 049 ATOM 2959 CZ TYR 413 21. 994 17. 927 62. 638 1. 00 14. 65 TYR 413 21. 620 18. 948 63. 475 1. 00 16. 02 ATOM 2960 OH 10 ATOM TYR 413 22. 626 13.007 62. 233 1. 00 17. 41 2961 C ATOM TYR 413 22. 364 13. 758 63. 172 1. 00 18. 36 2962 0 1. 00 18. 12 22. 035 62. 103 ATOM 2963 N LYS 414 11.826 ATOM 2964 CA LYS 414 21.033 11. 426 63.083 1.00 19.00 ATOM LYS 414 19.706 11. 130 62. 384 1. 00 19. 22 2965 CB 15 1. 00 18. 92 ATOM 2966 CG LYS 414 18. 962 12. 358 61. 894 61. 314 1. 00 21. 36 ATOM 2967 CD LYS 414 17. 615 11. 965 2968 13. 181 1. 00 25. 08 ATOM CE LYS 414 16.829 60. 855 1.00 28.46 ATOM 2969 NZ LYS 414 15. 567 12. 829 60. 132 ATOM 63. 975 1. 00 20. 50 2970 C LYS 414 21. 400 10. 249 20 ATOM 2971 0 LYS 414 20.637 9. 883 64. 871 1. 00 21. 27 ATOM 2972 N LEU 415 22. 565 9.655 63. 753 1. 00 22. 22 **ATOM** 2973 CA LEU 415 22. 958 8. 511 64. 565 1. 00 23. 27 63. 784 **ATOM** 2974 CB LEU 415 22.679 7. 218 1. 00 21. 47 63. 313 1.00 17.45 ATOM 2975 CG LEU 415 21. 234 6. 978 25 CD1 LEU 415 21. 158 62. 545 1.00 16.66 ATOM 2976 5. 672 **ATOM** CD2 LEU 415 20. 293 64. 498 1.00 14.44 2977 6.954 1.00 25.05 ATOM 2978 C LEU 415 24. 418 8. 566 65. 033

ATOM

2979 0

LEU 415

24. 921

7. 625

65. 657

1. 00 26. 05

- 247 -ATOM 2980 N HIS 416 25. 095 9. 673 64. 736 1.00 24.04 ATOM 2981 HIS 416 CA 26. 481 9.852 65. 147 1.00 22.40 ATOM 2982 CBHIS 416 27. 365 9. 997 63. 922 1. 00 23. 29 ATOM 2983 CG HIS 416 27. 383 8. 774 63.069 1. 00 25. 75 ATOM 5 2984 CD2 HIS 416 28. 392 62. 729 7. 937 1. 00 27. 82 ATOM 2985 ND1 HIS 416 26. 241 62.506 8. 248 1. 00 26. 69 ATOM 2986 CE1 HIS 416 26. 545 7. 138 61.857 1.00 28.69 ATOM NE2 HIS 416 2987 27. 844 6. 926 61. 977 1. 00 28. 20 ATOM 2988 C HIS 416 26. 577 11. 080 66. 027 1. 00 21. 63 ATOM 10 2989 HIS 416 26. 808 12. 184 65. 558 1. 00 22. 44 **ATOM** 2990 N PRO 417 26. 386 10.898 67. 331 1. 00 21. 25 **ATOM** 2991 CD PRO 417 26. 126 9. 627 68. 015 1. 00 22. 18 ATOM 2992 CA PRO 417 26. 440 11. 991 68. 297 1. 00 22. 07 ATOM 2993 CB PRO 417 26. 447 11. 258 69. 627 1. 00 21. 52 15 ATOM 2994 CG PRO 417 25. 565 10. 108 69. 340 1. 00 23. 41 ATOM 2995 C PRO 417 27. 655 12. 874 68. 113 1. 00 22. 46 ATOM 2996 0 PRO 417 27. 519 14. 076 67. 878 1. 00 22. 18 **ATOM** 2997 N SER 418 28. 835 12. 262 68. 221 1. 00 20. 96 ATOM 2998 CA SER 418 30. 105 12. 959 68.064 1. 00 18. 32 ATOM 20 2999 CB SER 418 31. 264 11.962 68.076 1. 00 20. 88 **ATOM** 3000 0G SER 418 32. 419 12. 512 67.460 1. 00 24. 12 ATOM 3001 C SER 418 30.099 13. 720 66. 757 1. 00 15. 71 ATOM 30020 SER 418 30. 269 14. 935 66. 742 1. 00 16. 10 ATOM 3003 N PHE 419 29. 905 13. 010 65. 656 1. 00 11. 39 25 **ATOM** 3004 CA PHE 419 29. 864 13. 683 64. 379 1. 00 10. 22 ATOM 3005 CBPHE 419 12. 789 29. 243 63. 335 1. 00 5. 53 ATOM 3006 CG PHE 419 29. 035 13. 468 62.034 1.00 1.42 ATOM CD1 PHE 419 3007 29. 814 13. 137 60. 942 1. 00 3. 13 ATOM 3008 CD2 PHE 419 28. 080 14. 449 61. 893 1.00 1.00

- 248 -ATOM 3009 CE1 PHE 419 29. 648 13. 773 59. 712 1.00 1. 47 1.00 2.68 CE2 PHE 419 27. 909 15. 088 60.670 **ATOM** 3010 ATOM CZPHE 419 28.699 14. 746 59. 575 1.00 1.00 3011 14.965 64. 472 1. 00 12. 48 **ATOM** 3012 C PHE 419 29. 037 ATOM 3013 0 PHE 419 29. 520 16. 048 64. 156 1. 00 12. 11 5 14. 838 64. 900 1. 00 15. 88 ATOM 3014 N LYS 420 27. 785 64. 994 1.00 20.63 **ATOM** 3015 CA LYS 420 26. 917 16.000 25. 525 65. 522 1. 00 21. 26 ATOM CBLYS 420 15. 610 3016 65. 361 1. 00 22. 35 ATOM 3017 CG LYS 420 24. 470 16. 730 LYS 420 23. 045 16. 288 65. 686 1. 00 22. 81 ATOM 3018 CD10 LYS 420 22. 942 15. 740 67. 102 1. 00 25. 24 ATOM 3019 CE LYS 420 21.616 15. 092 67. 350 1. 00 27. 51 ATOM 3020 NZ1.00 24.04 65.866 ATOM 3021 C LYS 420 27. 505 17. 099 ATOM 3022 LYS 420 27. 533 18. 260 65.465 1. 00 23. 74 0 27.978 67.053 **ATOM** 3023 N GLU 421 16. 733 1. 00 29. 67 15 ATOM 3024 CA GLU 421 28.550 17. 701 67. 999 1.00 34.96 ATOM GLU 421 29. 075 16. 972 69. 244 1. 00 36. 76 3025 CB70.480 ATOM GLU 421 29. 292 17. 843 1. 00 40. 52 3026 CG 29. 895 71. 638 ATOM 3027 CDGLU 421 17. 047 1. 00 43. 55 0E1 GLU 421 30. 981 16. 467 71. 445 1. 00 47. 03 ATOM 3028 20 29. 294 ATOM 3029 0E2 GLU 421 16.990 72. 734 1. 00 43. 28 ATOM 3030 C GLU 421 29. 680 18. 512 67. 369 1. 00 36. 40 ATOM 3031 0 GLU 421 29. 689 19. 745 67. 442 1. 00 38. 37 **ATOM** ARG 422 30. 629 17. 816 66. 751 1. 00 35. 66 3032 N 31. 755 18. 477 66. 124 1. 00 35. 13 25 ATOM 3033 CA ARG 422 32. 801 17. 449 65. 684 1. 00 38. 76 ATOM 3034 CBARG 422 **ATOM** 33. 277 16. 525 66. 811 1. 00 46. 51 3035 CG ARG 422 **ATOM** 3036 CD ARG 422 33. 915 17. 286 67. 980 1. 00 51. 67 **ATOM** 3037 NE ARG 422 35. 322 17. 578 67. 732 1. 00 57. 41

- 249 -

	ATOM	3038	CZ	ARG	422	36. 269	16. 649	67. 625	1. 00 60. 70
	ATOM	3039	NH1	ARG	422	35. 956	15. 364	67. 749	1. 00 60. 82
	ATOM	3040	NH2	ARG	422	37. 529	17. 002	67. 380	1. 00 61. 68
	ATOM	3041	C	ARG	422	31. 256	19. 278	64. 942	1. 00 33. 47
5	ATOM	3042	0	ARG	422	31. 585	20. 450	64. 803	1. 00 35. 28
	ATOM	3043	N	PHE	423	30. 446	18. 654	64. 096	1. 00 32. 46
	ATOM	3044	CA	PHE	423	29. 901	19. 348	62. 930	1. 00 30. 30
	MOTA	3045	CB	PHE	423	28. 949	18. 423	62. 165	1. 00 27. 32
	ATOM	3046	CG	PHE	423	28. 188	19. 106	61.063	1. 00 23. 75
10	ATOM	3047	CD1	PHE	423	26. 891	19. 552	61. 270	1. 00 22. 33
	ATOM	3048	CD2	PHE	423	28. 765	19. 293	59. 814	1. 00 23. 98
	ATOM	3049	CE1	PHE	423	26. 178	20. 169	60. 245	1. 00 22. 83
	ATOM	3050	CE2	PHE	423	28. 061	19. 909	58. 784	1. 00 22. 46
	ATOM	3051	CZ	PHE	423	26. 769	20. 347	59. 001	1. 00 22. 73
15	ATOM	3052	C	PHE	423	29. 185	20. 663	63. 280	1. 00 29. 75
	ATOM	3053	0	PHE	423	29. 328	21. 652	62. 568	1. 00 27. 58
	ATOM	3054	N	HIS	424	28. 415	20. 694	64. 363	1. 00 30. 19
	ATOM	3055	CA	HIS	424	27. 743	21. 936	64. 692	1. 00 32. 48
	ATOM	3056	CB	HIS	424	26. 754	21. 760	65. 835	1. 00 32. 75
20	ATOM	3057	CG	HIS	424	25. 412	21. 279	65. 387	1. 00 31. 94
	ATOM	3058	CD2	HIS	424	24. 980	20. 860	64. 176	1. 00 29. 85
	ATOM	3059	ND1	HIS	424	24. 341	21. 147	66. 243	1. 00 32. 28
	ATOM	3060	CE 1	HIS	424	23. 308	20. 661	65. 580	1. 00 30. 67
	ATOM	3061	NE2	HIS	424	23. 670	20. 477	64. 323	1. 00 30. 19
25	ATOM	3062	C	HIS	424	28. 737	23. 011	65. 048	1. 00 35. 15
	MOTA	3063	0	HIS	424	28. 689	24. 102	64. 487	1. 00 36. 91
	ATOM	3064	N	ALA	425	29. 636	22. 711	65. 979	1. 00 36. 32
	ATOM	3065	CA	ALA	425	30. 652	23. 675	66. 395	1. 00 36. 74
	ATOM	3066	CB	ALA	425	31. 542	23. 058	67. 444	1. 00 35. 43

- 250 -C - ALA 425 31. 492 24. 149 65. 201 1. 00 37. 82 ATOM 3067 **ATOM** 64. 809 1. 00 38. 66 3068 0 ALA 425 31. 420 25. 316 64. 617 ATOM 3069 SER 426 32. 274 23. 243 1. 00 37. 75 N **ATOM** 3070 CA SER 426 33. 113 23. 576 63. 466 1.00 37.83 SER 426 33. 602 22. 289 62. 782 1. 00 38. 67 5 ATOM 3071 CB 22. 560 61.667 ATOM 3072 0G SER 426 34. 440 1.00 37.85 **ATOM** 3073 C SER 426 32. 390 24. 461 62. 445 1. 00 37. 21 ATOM 3074 0 SER 426 33. 025 25. 151 61.657 1. 00 37. 08 62. 450 ATOM 3075 N VAL 427 31. 064 24. 443 1. 00 37. 84 ATOM 3076 CA VAL 427 30. 321 25. 269 61. 510 1. 00 38. 87 10 28. 935 61. 194 **ATOM** 3077 CBVAL 427 24. 667 1. 00 39. 38 ATOM 3078 CG1 VAL 427 28. 000 25. 744 60. 633 1. 00 37. 50 CG2 VAL 427 29. 092 23. 534 60. 188 ATOM 3079 1. 00 36. 83 30. 138 62.090 ATOM 3080 C VAL 427 26.655 1.00 39.54 ATOM 3081 0 VAL 427 30. 578 27. 639 61. 512 1. 00 40. 58 15 ATOM 3082 N ARG 428 29. 483 26. 724 63. 238 1. 00 40. 14 ATOM 3083 CA ARG 428 29. 247 27. 993 63. 897 1. 00 42. 86 65. 258 ATOM 3084 CBARG 428 28. 603 27. 739 1. 00 42. 72 ATOM 3085 CG ARG 428 27. 288 26. 982 65. 186 1. 00 43. 31 26. 044 66. 378 1. 00 46. 03 20 ATOM 3086 CD ARG 428 27. 139 ATOM NE ARG 428 25. 802 25. 461 66. 485 1. 00 47. 83 3087 66. 648 ATOM 3088 CZARG 428 24. 690 26. 173 1. 00 48. 39 1.00 47.35 66. 716 ATOM 3089 NH1 ARG 428 24. 757 27. 499 ATOM 3090 NH2 ARG 428 23. 516 25. 559 66. 756 1. 00 47. 34 ATOM 3091 C ARG 428 30. 561 28. 768 64.064 1.00 44.67 25 **ATOM** 3092 0 ARG 428 30. 577 30.001 64.060 1. 00 45. 05 64. 195 1. 00 45. 77 ATOM 3093 N ARG 429 31.663 28. 037 ATOM 3094 CA ARG 429 32. 972 28. 652 64. 378 1. 00 46. 48 CB ATOM 3095 ARG 429 33. 849 27. 738 65. 244 1. 00 52. 63

- 251 -3096 ATOM CG ARG 429 33. 260 27. 471 66. 648 1.00 59.36 **ATOM** 3097 CD ARG 429 33. 828 26. 199 67. 328 1. 00 64. 53 **ATOM** 3098 NE ARG 429 35. 247 26. 286 67. 677 1. 00 66. 23 ATOM 3099 CZ ARG 429 35.963 25. 274 68. 159 1.00 66.80 NH1 ARG 429 ATOM 3100 35. 398 24. 083 5 68. 357 1.00 66.02 ATOM 3101 NH2 ARG 429 37. 249 25. 455 68. 435 1. 00 68. 38 3102 ATOM С ARG 429 33. 657 28. 954 63. 049 1. 00 44. 06 ATOM 3103 0 ARG 429 34. 885 28. 943 62. 954 1.00 43.92 ATOM 3104 N LEU 430 32. 847 29. 221 62. 029 1. 00 41. 46 10 **ATOM** 3105 CA LEU 430 33. 333 29. 551 60. 692 1. 00 40. 12 ATOM 3106 CBLEU 430 33. 495 28. 300 59. 830 1. 00 35. 57 ATOM 3107 CG LEU 430 34. 755 27. 468 60. 042 1.00 34.48 **ATOM** 3108 CD1 LEU 430 34. 764 26. 279 59. 101 1. 00 32. 77 **ATOM** 3109 CD2 LEU 430 35. 965 28. 332 59.806 1. 00 33. 57 ATOM 15 3110 C LEU 430 32. 332 30. 468 60.029 1. 00 42. 10 **ATOM** 3111 0 32. 503 LEU 430 30. 868 58. 880 1. 00 42. 67 **ATOM** 3112 N THR 431 31. 280 30. 797 60.763 1.00 44.70 ATOM THR 431 60. 239 3113 CA30. 238 31. 658 1. 00 48. 98 **ATOM** 3114 CBTHR 431 28. 923 30. 928 60.113 1. 00 49. 80 ATOM OG1 THR 431 20 3115 28. 533 30. 463 61.410 1. 00 50. 69 **ATOM** CG2 THR 431 3116 29. 048 29. 758 59. 159 1. 00 51. 11 **ATOM** 3117 C THR 431 29. 999 32. 820 61. 174 1.00 51.66 ATOM 3118 THR 431 0 28. 986 32. 868 61.881 1. 00 52. 07 ATOM 3119 N PRO 432 30. 935 33. 774 61. 190 1. 00 52. 95 **ATOM** 3120 25 $^{\rm CD}$ PRO 432 32. 179 33. 719 60. 403 1.00 51.90 ATOM 3121 CA PRO 432 30.886 34. 980 62. 020 1. 00 52. 47 **ATOM** 3122 CB PRO 432 32. 135 35. 733 61. 587 1.00 54.48 ATOM 3123 CG PRO 432 33. 073 34. 623 61. 176 1. 00 54. 21

ATOM

3124 C

PRO 432

29. 620

35. 783

61. 739

1. 00 52. 15

- 252 -3125 0 ATOM PRO 432 29. 257 35. 981 60. 582 1.00 49.70 ATOM 3126 SER 433 28. 955 N 36. 243 62. 793 1. 00 53. 82 ATOM 3127 CA SER 433 27. 734 37. 042 62.652 1. 00 57. 56 ATOM 3128 CB SER 433 28. 055 38. 372 61. 952 1.00 59.89 3129 5 ATOM 0GSER 433 28. 537 38. 176 60.633 1. 00 62. 34 ATOM 3130 C SER 433 26. 570 36. 340 61. 926 1. 00 57. 57 ATOM 3131 0 SER 433 25. 907 36. 923 61.056 1. 00 57. 63 ATOM 3132 N CYS 434 26. 327 35. 088 62.306 1.00 56.67 ATOM 3133 CA CYS 434 25. 256 61. 738 34. 275 1. 00 54. 67 10 **ATOM** 3134 CB CYS 434 25. 805 33. 375 60. 634 1. 00 54. 21 ATOM 3135 SG CYS 434 26. 729 34. 213 59. 354 1. 00 55. 95 ATOM 3136 C CYS 434 24.657 33. 390 62. 832 1. 00 54. 71 ATOM 3137 0 CYS 434 25. 381 32. 663 63. 513 1. 00 54. 74 **ATOM** 3138 N GLU 435 23. 344 33. 454 63.011 1. 00 54. 63 ATOM 15 3139 CA GLU 435 22. 681 32. 621 64.009 1. 00 54. 57 ATOM 3140 CBGLU 435 21. 529 33. 383 64. 681 1. 00 59. 73 ATOM 3141 CG GLU 435 21. 927 34. 615 65. 511 1. 00 64. 17 ATOM 3142 CD GLU 435 20.717 35. 479 65. 902 1. 00 67. 96 ATOM 3143 0E1 GLU 435 20. 905 36. 554 66. 521 1. 00 68. 24 20 ATOM 3144 0E2 GLU 435 19. 574 35. 079 65. 584 1. 00 69. 98 ATOM 3145 C GLU 435 22. 134 31. 378 63. 289 1. 00 51. 70 ATOM 3146 0 GLU 435 21.058 62. 685 31. 412 1. 00 51. 14 ATOM 3147 N ILE 436 22.889 30. 288 63. 350 1. 00 47. 61 ILE 436 ATOM 3148 CA 22. 497 29. 046 62. 702 1. 00 43. 09 ATOM 25 3149 CB ILE 436 23. 719 28. 331 62. 118 1. 00 38. 65 **ATOM** 3150 CG2 ILE 436 23. 278 27. 138 61.300 1. 00 38. 13 **ATOM** 3151 CG1 ILE 436 24. 502 29. 286 61. 234 1.00 34.79 **ATOM** 3152 CD1 ILE 436 25. 768 28. 686 60.710 1.00 34.08

ATOM

3153 C

ILE 436

21. 798

28. 088

63. 664 1. 00 42. 96

- 253 -

ATOM 3154 0 ILE 436 22. 403 27. 608 **64**. 621 1. 00 43. 46 ATOM 3155 N THR 437 20. 521 27. 821 63. 402 1.00 41.73 ATOM 3156 CA THR 437 19. 724 26. 910 64. 218 1.00 39.10 ATOM 3157 CB THR 437 18. 384 27. 553 64. 638 1.00 37.86 0G1 THR 437 5 ATOM 3158 18. 182 28. 763 63.899 1. 00 37. 22 ATOM. 3159 CG2 THR 437 18. 370 27. 856 66. 130 1.00 37.07 ATOM 3160 C THR 437 19. 430 63.380 25. 672 1.00 38.74 ATOM 3161 0 THR 437 18. 979 25. 784 62. 238 1.00 39.10 **ATOM** 3162 N PHE 438 19.696 63.936 24. 494 1. 00 36. 24 **ATOM** 10 3163 CA PHE 438 19. 449 23. 257 63.210 1. 00 33. 18 ATOM 3164 CB PHE 438 20. 556 22. 256 63. 491 1. 00 30. 88 ATOM 3165 CG PHE 438 21. 905 22. 742 63.093 1. 00 32. 48 ATOM 3166 CD1 PHE 438 22. 597 23. 652 63.887 1. 00 31. 95 ATOM 3167 CD2 PHE 438 22. 489 22. 301 61.913 1. 00 32. 85 15 ATOM 3168 CE1 PHE 438 23. 857 24. 118 63. 507 1. 00 31. 30 ATOM 3169 CE2 PHE 438 23. 745 22. 758 61.522 1. 00 32. 28 ATOM CZ PHE 438 3170 24. 432 23.668 62. 320 1.00 31.80 ATOM 3171 C PHE 438 22. 648 18. 102 63. 563 1. 00 33. 15 ATOM 3172 0 PHE 438 17.662 22. 729 64. 705 1. 00 '34. 90 20 ATOM 3173 N ILE 439 22. 049 17. 450 62. 570 1.00 31.06 3174 ATOM CA ILE 439 16. 150 21. 412 62. 738 1. 00 28. 59 **ATOM** 3175 CB ILE 439 15. 010 22. 347 62. 321 1. 00 26. 74 ATOM 3176 CG2 ILE 439 15. 268 22. 879 60. 937 1. 00 27. 91 ATOM 3177 CG1 ILE 439 13. 683 21. 591 62. 312 1. 00 27. 91 25 ATOM 3178 CD1 ILE 439 12. 545 22. 406 61.776 1.00 26.70 **ATOM** 3179 C ILE 439 16. 113 20. 190 61.837 1. 00 29. 76 ATOM 3180 ILE 439 0 16. 208 20. 310 60.618 1. 00 29. 55 ATOM GLU 440 3181 N 15. 977 19. 014 62. 434 1. 00 30. 76 ATOM 3182 CA GLU 440 15. 934 17. 781 61. 666 1. 00 32. 34

- 254 -

ATOM 3183 CBGLU 440 16. 028 16. 592 62. 609 1. 00 34. 09 ATOM GLU 440 3184 CG 17. 272 16. 583 63. 458 1. 00 38. 93 ATOM 3185 CDGLU 440 17. 339 15. 367 64. 353 1. 00 43. 10 ATOM 3186 0E1 GLU 440 16. 378 15. 162 65. 131 1. 00 44. 22 ATOM 0E2 GLU 440 5 3187 18. 346 14. 623 64. 277 1. 00 44. 99 ATOM 3188 60.854 C GLU 440 14. 648 17. 687 1. 00 33. 11 ATOM 3189 0 GLU 440 13. 703 18. 445 61.086 1. 00 31. 25 ATOM 3190 N SER 441 14. 613 16. 764 59. 896 1. 00 34. 70 ATOM 3191 CA SER 441 13. 416 16. 587 59. 086 1. 00 37. 07 **ATOM** 3192 CB SER 441 13. 738 15. 904 57. 761 10 1. 00 34. 79 ATOM 1.00 34.61 3193 0G SER 441 14. 159 14. 579 57. 988 ATOM 3194 C SER 441 12. 452 15. 724 59. 889 1. 00 40. 43 ATOM 3195 0 SER 441 12.866 14. 964 60.773 1. 00 38. 99 ATOM 3196 N GLU 442 11. 168 15. 855 59. 571 1. 00 43. 31 15 ATOM 3197 CA GLU 442 10.099 15. 135 60. 254 1. 00 45. 59 ATOM 3198 CB GLU 442 8. 764 59. 724 15. 638 1. 00 46. 37 ATOM 3199 CG GLU 442 7. 575 15. 244 60. 549 1. 00 49. 47 ATOM 3200 CD GLU 442 6.653 16. 421 60. 794 1. 00 52. 25 ATOM 3201 OE1 GLU 442 5. 425 16. 199 60. 895 1. 00 52. 44 ATOM 0E2 GLU 442 20 3202 7. 160 17. 568 60.894 1. 00 53. 16 ATOM 3203 С GLU 442 10. 165 13. 607 60. 174 1. 00 47. 69 ATOM 3204 10.828 0 GLU 442 13. 035 59. 314 1. 00 47. 21 **ATOM** 3205 **GLU 443** 9.435 N 12. 964 61.076 1. 00 50. 15 ATOM 3206 CA GLU 443 9. 382 11. 508 61. 210 1. 00 52. 79 25 ATOM 3207 CB GLU 443 8. 911 11. 204 62. 623 1. 00 55. 86 ATOM 3208 CG GLU 443 9.468 12. 183 63. 635 1.00 61.71 ATOM 3209 CDGLU 443 10. 948 11. 962 63. 877 1. 00 66. 19 ATOM 3210 OE1 GLU 443 11. 689 11. 746 62. 886 1. 00 68. 22 ATOM 0E2 GLU 443 3211 11. 365 12.006 65. 058 1.00 67.57

- 255 -3212 C GLU 443 10. 711 1. 00 53. 03 ATOM 8. 521 60. 218 ATOM 3213 0 10.999 60.025 GLU 443 7. 344 1. 00 54. 82 59. 593 ATOM 3214 N **GLY 444** 9. 116 9. 702 1. 00 52. 26 ATOM 3215 CA GLY 444 8. 373 8.861 58.667 1. 00 52. 32 3216 C 7.966 9. 389 57. 302 1. 00 53. 07 5 ATOM **GLY 444 ATOM** 6.767 57.003 3217 0 **GLY 444** 9. 460 1. 00 52. 97 ATOM 8.961 56. 483 3218 N SER 445 9. 750 1. 00 52. 71 **ATOM** SER 445 8.760 10. 239 55. 104 1. 00 50. 05 3219 CA ATOM 3220 CB SER 445 7.836 11. 464 55. 084 1. 00 51. 01 ATOM 3221 OG SER 445 6. 487 11. 084 55. 318 1.00 46.84 10 ATOM 3222 C SER 445 10.076 10. 545 54. 356 1. 00 46. 51 ATOM 3223 0 SER 445 11. 123 10. 710 54. 976 1. 00 45. 30 3224 N **GLY 446** 10.013 10.603 53. 026 1. 00 43. 17 MOTA ATOM 11. 207 52. 235 1.00 40.08 3225 CA **GLY 446** 10. 842 ATOM 3226 C GLY 446 11. 199 12. 057 51. 330 1. 00 39. 05 15 51.803 ATOM 3227 0 GLY 446 11. 414 13. 164 1. 00 42. 74 ATOM 3228 N ARG 447 10.940 11.873 50.039 1.00 37.60 49.098 ATOM 3229 CA ARG 447 10. 956 13.000 1. 00 37. 46 ATOM 3230 CB ARG 447 11. 549 12. 546 47. 747 1. 00 45. 51 ATOM 10. 793 11. 401 47.014 1. 00 53. 91 20 3231 CG ARG 447 ATOM 3232 CD 11. 521 45. 743 1. 00 58. 18 ARG 447 10. 902 45. 975 ATOM 3233 NE ARG 447 12. 939 10. 598 1. 00 63. 62 46.769 **ATOM** 3234 CZ ARG 447 13. 399 9. 623 1. 00 66. 02 ATOM 3235 NH1 ARG 447 12.560 8. 825 47. 425 1. 00 67. 97 25 ATOM 3236 NH2 ARG 447 14. 711 9. 447 46. 924 1. 00 69. 08 ATOM 3237 C ARG 447 9.642 13. 737 48.848 1. 00 32. 93 **ATOM** 9. 122 49.741 1.00 29.46 3238 0 ARG 447 14. 416 ATOM 3239 N GLY 448 9. 150 13. 625 47.607 1. 00 30. 52 3240 CA 1. 00 26. 03 ATOM 7. 902 14. 245 47. 202 GLY 448

- 256 -3241 C **GLY 448** 6. 845 1. 00 25. 25 ATOM 13. 828 48. 200 **ATOM** 3242 0 GLY 448 5. 752 48. 244 1.00 24.59 14. 378 **ATOM** 3243 N 49.018 ALA 449 7. 186 12. 840 1.00 23.74 CA ALA 449 6. 282 50.035 **ATOM** 3244 12. 362 1. 00 20. 54 CB ALA 449 5 ATOM 3245 6. 611 10. 917 50. 410 1. 00 18. 12 **ATOM** 3246 C ALA 449 6. 340 13. 251 51. 282 1. 00 22. 37 **ATOM** 3247 0 **ALA 449** 5. 307 13. 782 51.693 1.00 22.56 3248 N ALA 450 7.524 13. 443 51.881 1. 00 22. 28 ATOM 7.605 ATOM 3249 CA ALA 450 14. 261 53. 088 1. 00 20. 98 ATOM 3250 CB ALA 450 9.056 14. 432 53. 535 1.00 9.63 10 ATOM 3251 C ALA 450 6. 937 15. 594 52.872 1. 00 20. 66 ATOM 3252 0 ALA 450 6. 417 16. 168 53. 826 1. 00 19. 81 ATOM 3253 N LEU 451 6.943 16. 109 51. 702 1.00 19.91 ATOM 3254 CA LEU 451 6. 279 17. 379 51.602 1. 00 22. 22 ATOM 3255 CBLEU 451 6.586 18. 056 50. 279 1.00 26.74 15 6.089 ATOM 3256 CG LEU 451 19. 496 50. 144 1. 00 34. 07 ATOM CD1 LEU 451 6.894 51.040 3257 20. 425 1. 00 37. 55 **ATOM** CD2 LEU 451 6. 160 48.696 3258 19. 955 1. 00 36. 19 ATOM 3259 C LEU 451 4. 774 17. 157 51.686 1. 00 23. 24 **ATOM** 3260 0 4. 136 17. 474 52. 699 20 LEU 451 1. 00 21. 18 **ATOM** 3261 N VAL 452 4. 212 16. 613 50. 608 1. 00 26. 44 **ATOM** 3262 2. 798 50. 557 CA VAL 452 16. 405 1. 00 26. 90 **ATOM** 3263 CB VAL 452 2. 454 15. 179 49.666 1. 00 28. 65 **ATOM** 3264 CG1 VAL 452 3. 082 15. 353 48. 300 1. 00 26. 01 **ATOM** 3265 CG2 VAL 452 2. 933 50. 313 25 13. 886 1. 00 31. 22 **ATOM** 3266 C VAL 452 2. 217 16. 308 51. 935 1. 00 26. 69 16.878 **ATOM** 3267 0 VAL 452 1. 181 52. 234 1. 00 24. 86 **ATOM** 3268 N SER 453 2.880 15. 579 52. 769 1. 00 26. 07 ATOM 3269 CA SER 453 2. 377 15. 346 54. 125 1. 00 26. 79

- 257 -ATOM 3270 CBSER 453 3. 058 14. 127 54. 756 1. 00 28. 88 1. 00 37. 16 SER 453 2. 553 13. 881 56. 057 **ATOM** 3271 0G 1.00 26.82 ATOM 3272 C SER 453 2.571 16. 558 55. 028 1.00 26.28 1.658 17. 301 55. 377 **ATOM** 3273 0 SER 453 1.00 26.83 ATOM 3274 N ALA 454 3. 831 16. 701 55. 389 5 1. 00 23. 37 4. 250 17. 807 56. 177 **ATOM** 3275 CA ALA 454 1.00 17.54 5. 719 18. 128 55. 937 **ATOM** 3276 CB ALA 454 3.381 19.002 55.866 1. 00 21. 80 3277 C ALA 454 **ATOM** 56. 714 1. 00 21. 02 **ATOM** 3278 0 ALA 454 3. 194 19. 883 1. 00 21. 59 2. 848 19. 044 54. 656 ATOM 3279 N VAL 455 10 1.00 25.32 2.020 20. 156 54. 281 ATOM 3280 CA VAL 455 2. 313 20. 557 52. 841 1. 00 28. 03 ATOM 3281 CB VAL 455 1.676 19. 583 51.871 1. 00 29. 06 3282 CG1 VAL 455 ATOM **ATOM** 3283 CG2 VAL 455 1.813 21.961 52. 577 1. 00 29. 98 0. 528 19.890 54. 469 1. 00 27. 69 **ATOM** 3284 C VAL 455 15 -0.20220. 783 54. 911 1. 00 28. 10 ATOM 3285 0 VAL 455 0.061 18.681 54. 142 1.00 30.51 ATOM 3286 N ALA 456 1.00 31.54 -1.36718. 349 54. 318 ATOM 3287 CA ALA 456 CB-1.66616. 937 53. 836 1. 00 25. 20 ATOM 3288 ALA 456 55. 797 1. 00 31. 77 3289 C ALA 456 -1.70218. 505 ATOM 20 -2.85356. 176 1. 00 33. 11 **ATOM** 3290 0 **ALA 456** 18. 713 -0.67356. 625 1. 00 31. 33 ATOM 3291 N CYS 457 18. 384 -0.84318. 538 58. 049 1. 00 33. 33 ATOM 3292 CA CYS 457 0. 262 17.815 58. 811 1. 00 36. 53 **ATOM** 3293 CB CYS 457 1.040 16. 448 57.890 1.00 44.65 **ATOM** 3294 SG CYS 457 25 1.00 34.59 CYS 457 -0.90319. 990 58. 438 ATOM 3295 C -1.74559. 237 1.00 34.67 ATOM 3296 CYS 457 20. 391 0 1. 00 37. 14 ATOM 3297 N LYS 458 0.005 20. 779 57. 881 0.060 58. 190 1. 00 38. 61 ATOM 3298 CA LYS 458 22. 199

-258 -1. 00 37. 21 ATOM 3299CB LYS 458 1. 363 22. 799 57.669 LYS 458 22. 474 58. 538 1. 00 37. 81 ATOM 3300 CG 2. 573 1. 00 38. 84 LYS 458 23. 206 59.874 ATOM 3301 CD 2. 501 CE LYS 458 3.820 23. 143 60.639 1.00 38.18 ATOM 3302 1. 00 36. 51 5 ATOM 3303 NZ LYS 458 3. 812 24. 023 61.851 ATOM C LYS 458 -1.12822. 920 57. 596 1. 00 40. 24 3304 -1.37757. 898 1.00 39.64 ATOM 3305 0 LYS 458 24. 079 **ATOM** -1.86922. 223 56.752 1.00 43.69 3306 N LYS 459 -3.03656. 147 ATOM 3307 CA LYS 459 22. 820 1. 00 50. 66 54. 747 1.00 55.88 **ATOM** 3308 CBLYS 459 -3.24222. 248 10 -4.65754. 183 1.00 63.64 ATOM 3309 CG LYS 459 22. 405 ATOM 3310 CDLYS 459 -5.03723. 850 53.856 1. 00 66. 97 53. 226 1. 00 68. 86 **ATOM** 3311 CE LYS 459 -6.43123. 941 23.519 54. 152 ATOM 3312 NZ LYS 459 -7.5311. 00 71. 25 1. 00 52. 41 ATOM 3313 C LYS 459 -4.26222. 562 57.018 15 -5. 132 23. 425 57. 132 1. 00 51. 90 ATOM 3314 0 LYS 459 **ATOM** -4.32221.380 57.634 1. 00 54. 96 3315 N ALA 460 **ATOM** CA ALA 460 20.997 58. 495 1. 00 57. 72 3316 -5. 449 1.00 54.90 ATOM 3317 CB ALA 460 -5. 201 19. 620 59. 111 59. 596 1.00 60.41 ATOM 3318 C ALA 460 -5.73622. 018 20 -6.77360. 261 1.00 60.54 **ATOM** 3319 0 ALA 460 21. 950 CYS 461 59.776 ATOM N -4. 815 22. 965 1. 00 63. 50 3320 **ATOM** -4.96160.776 1.00 66.18 3321 CA CYS 461 24. 022 ATOM 3322 CBCYS 461 -3.58024. 489 61. 252 1. 00 67. 98 ATOM 3323 SG CYS 461 -3.60426. 041 62. 185 1. 00 75. 61 25 ATOM 3324 C CYS 461 -5.72725. 217 60. 200 1. 00 65. 92 0 CYS 461 -6.94025. 348 60.490 1.00 65.70 **ATOM** 3325 OXT CYS 461 1. 00 65. 20 ATOM 3326 -5.09926. 001 59. 454 3327 S **S04** 600 7. 477 54. 655 1. 00 35. 04 ATOM 20. 241

						- 259 -			
	ATOM	3328	01	S04	600	19. 370	7. 951	53. 56 6	1. 00 33. 14
	ATOM	3329	02	S04	600	20. 343	8. 532	55. 683	1. 00 32. 80
	ATOM	3330	03	S04	600	19. 690	6. 249	55. 260	1. 00 33. 32
	ATOM	3331	04	S04	600	21. 572	7. 178	54. 108	1. 00 33. 97
5	ATOM	3332	S	S04	601	22. 953	22. 471	69. 199	1. 00 77. 32
	ATOM	3333	01	S04	601	21. 971	21. 759	68. 356	1. 00 76. 19
	ATOM	3334	02	S04	601	22. 411	23. 803	69. 553	1. 00 77. 48
	ATOM	3335	03	S04	601	23. 205	21. 698	70. 433	1. 00 77. 23
	ATOM	3336	04	S04	601	24. 224	22. 628	68. 461	1. 00 77. 19
10	ATOM	3337	NA+1	NA1	602	17. 158	10. 244	54. 280	1. 00 10. 17
	ATOM	3338	0H2	НОН	603	19. 770	14. 543	47. 159	1. 00 1. 00
	ATOM	3340	0H2	НОН	604	20. 723	24. 387	67. 178	1. 00 17. 94
	ATOM	3341	0H2	НОН	605	10. 880	33. 802	37. 628	1. 00 1. 00
	ATOM	3342	0H2	НОН	606	22. 743	28. 762	37. 147	1. 00 31. 78
15	ATOM	3343	0H2	НОН	607	38. 906	1. 328	74. 611	1. 00 37. 76
	ATOM	3344	0H2	НОН	608	1. 237	30. 510	46. 162	1. 00 32. 40
	ATOM	3345	0H2	НОН	609	34. 702	-1. 731	56. 455	1. 00 62. 03
	END								

20 なお、表2は、当業者によって慣用されているプロテイン・データ・バンク の表記方法に準拠して作成されている。表2中、HOHは水分子を表す。

本発明においては、配列番号 5、及び/又は配列番号 8 と実質的に同一のアミノ酸配列を有し、グルコキナーゼ活性を有するタンパク質の結晶は本発明の 25 範囲内である。そのような結晶としては、例えば、表 1、及び/又は表 2 に記載の三次元構造座標データの少なくとも一つのデータを変更した三次元構造座標データにおいて、表 1、及び/又は表 2 に記載の三次元構造座標データで示されるアミノ酸の主鎖の原子 (C α 原子) と、該C α 原子と対応する前記変更した三次元構造座標データで示される C α 原子との平均二乗偏差が、0.

6 オングストローム以下である結晶が挙げられる。原子の位置を表す座標の数値が異なっても、構造座標に含まれる対応する原子の位置を重ね合わせることができる二つの構造座標は、同一の三次元構造を表すものである。

5 なお、表1、及び/又は表2に記載のGKタンパク質の三次元構造座標は、ドラッグデザインのための重要な情報であり、必要に応じて、コンピュータ読み取り可能な記憶媒体に保存され、コンピュータでこの情報を処理してドラッグデザインを行う。したがって、本発明の別の態様によれば、コンピュータを、表1、及び/又は表2に記載のアミノ酸残基の三次元座標を記憶する三次元座標記憶手段として機能させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体が提供される。

また、本発明の別の態様によれば、コンピュータを、表1、及び/又は表2に記載のアミノ酸残基の三次元座標に関する情報を記憶した三次元座標記憶手段と、前記三次元座標を用いて配列番号5、及び/又は配列番号8で表されるアミノ酸配列を有するタンパク質の化合物結合部位を推測する結合部位推測手段と、タンパク質と結合する化合物の種類と、当該化合物の三次元構造に関する情報を記憶した結合化合物記憶手段と、少なくとも、前記結合部位推測手段によって推測された配列番号5、及び/又は配列番号8で表されるアミノ酸配列を有するタンパク質の化合物結合部位の三次元構造に関する情報と、前記結合化合物記憶手段に記憶された化合物の三次元構造に関する情報と、前記結合化合物記憶手段に記憶された化合物の三次元構造に関する情報とを用いて前記配列表の配列番号1で表されるアミノ酸配列を有するタンパク質の化合物結合部位に適合する化合物の候補を選択する結合化合物候補選択手段、として機能させるプログラムを記録したコンピュータ読み取り可能な記録媒体が提供される。さらに、本発明の別の態様によれば、上記各手段を備えるコンピュータも提供される。

15

20

25

(GKタンパク質とそれに結合する化合物との複合体の結晶) 次に、本発明の別の態様によれば、配列番号5、又は配列番号8に記載のア

ミノ酸配列又はそのアミノ酸配列と実質的に同一のアミノ酸配列を含むタンパク質と該タンパク質に結合可能な化合物との複合体を含む結晶及びその製造方法が提供される。

GKタンパク質と結合する化合物が得られた場合は、まず、GKタンパク質とその化合物を、例えば、水溶液中で混合し、複合体を形成する。このような複合体の結晶は、共結晶法、ソーキング法などの公知の共結晶の製造方法が用いられる。結晶化条件、結晶化方法については、上述した方法が参照される。

GKタンパク質と結合する化合物は、例えば、上記式(I)で表される化合物群から選択される。

10 ここで、上記式(I)のハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子などが例示され、これらの中でも塩素原子が好ましい。

15

20 ルオキシ基、N-アリールスルホニルアミノ基、アリールスルファモイル基、N-アリールカルパモイル基、アロイル基、アロキシ基、 C_2-C_6 アルカノイル基、 $N-C_2-C_6$ アルカノイルアミノ基、 C_1-C_6 アルキルチオ基、 $N-C_1-C_6$ アルキルスルファモイル基、N, N-ジー C_1-C_6 アルキルスルファモイル基、 C_1-C_6 アルキルスルファモイル基、 C_1-C_6 アルキルスルホニル基、

25 N-C₁-C₆アルキルスルホニルアミノ基、C₁-C₆アルコキシ基、C₁-C₆アルコキシカルボニル基又はC₁-C₆アルキルアミノ基を示す)などが挙げられる。ここで用いられる好ましい置換基は、アミノ基、カルバモイル基、カルバモイルアミノ基、カルバモイルオキシ基、カルボキシル基、シアノ基、スルファモイル基、トリフルオロメチル基、ハロゲン原子、ヒドロキシ基、ホルミ

- 262 -

ル基、直鎖のC₁-C₆アルキル基などが例示される。

ここで、「炭化水素基」は、炭素数1乃至6の直鎖のアルキル基を示すか、 又は該アルキル基を構成する炭素原子のうち、1又は2の、好ましくは1の炭 素原子が窒素原子、硫黄原子又は酸素原子で置き換わっていてもよいか、及び /又は該炭素数1乃至6の直鎖のアルキル基中の炭素原子同士が二重結合又は 三重結合で結合されていてもよい基である。該二重結合又は三重結合の数は、 1又は2であることが好ましく、1であることがより好ましい。

該炭化水素基としては、具体的には、メチル基、エチル基、プロピル基若しくはイソプロピル基、ブチル基又は下記式

CH₃

20

で表される基であることが好ましい。より好ましい炭化水素基は、メチル基、 エチル基、プロピル基、イソプロピル基又は下記式

- 263 -

で表される基である。

好ましいAとしては (p=0 の場合)、例えば、次の基が挙げられる。

5

好ましいBとしては、例えば、次の基が挙げられる。

10

- 264 -

式 (II) で示されるヘテロアリール基としては、例えば、次の複素環基が を挙げられる。

- 265 -

なお、特に好ましい化合物は、上述した式(IIIa)〜式(IIIc)で表される いずれかの化合物である。

本発明の化合物(I)は、公知の反応手段を用いるか、或いは公知の方法に従って容易に製造することができる。なお、本発明の一般式(I)の化合物は、通常の液相における合成のみならず、近年発達の目覚しい例えばコンビナトリアル合成法やパラレル合成法等の固相を用いた合成によっても製造することができる。好ましくは例えば以下の方法により製造することができる。

10

$$R^1$$
 $N-C$ α $N \alpha$ R^1 $N-C$ α $N \alpha$ N

[式中、各配号は前配定義に同じ]

(工程1)

本工程は、カルボン酸化合物(1)又はその反応性誘導体と前記式(2)で 5 表される置換されていてもよい単環の、又は双環のヘテロアリール基を有する アミノ化合物又はその塩とを反応させて、化合物(3)を製造する方法である。 本反応は文献記載の方法(例えば、ペプチド合成の基礎と実験、泉屋信夫他、 丸善、1983年、コンプリヘンシブ オーガニック シンセシス (Comp rehensive Organic Synthesis)、第6巻、Pe 10 rgamon Press社、1991年、等)、それに準じた方法又はこれ らと常法とを組み合わせることにより、通常のアミド形成反応を行えばよく、 即ち、当業者に周知の縮合剤を用いて行うか、或いは、当業者に利用可能なエ ステル活性化方法、混合酸無水物法、酸クロリド法、カルボジイミド法等によ り行うことができる。このようなアミド形成試薬としては、例えば塩化チオニ 15 ル、N, N-ジシクロヘキシルカルボジイミド、1-メチル-2-ブロモピリ ジニウムアイオダイド、N, N'ーカルボニルジイミダゾール、ジフェニルフ ォスフォリルクロリド、ジフェニルフォスフォリルアジド、N, N'ージスク

シニミジルカルボネート、 N, N'ージスクシニミジルオキザレート、1ーエチルー3ー(3ージメチルアミノプロピル)カルボジイミド塩酸塩、クロロギ酸エチル、クロロギ酸イソブチル又はベンゾトリアゾー1ーリルーオキシートリス(ジメチルアミノ)フォスフォニウムへキサフルオロフォスフェイト等が挙げられ、中でも例えば塩化チオニル、N, Nージシクロへキシルカルボジイミド又はベンゾトリアゾー1ーリルーオキシートリス(ジメチルアミノ)フォスフォニウムへキサフルオロフォスフェイト等が好適である。またアミド形成反応においては、上記アミド形成試薬と共に塩基、縮合補助剤を用いてもよい。

用いられる塩基としては、例えばトリメチルアミン、トリエチルアミン、N, Nージイソプロピルエチルアミン、Nーメチルモルホリン、Nーメチルピロリジン、Nーメチルピペリジン、N, Nージメチルアニリン、1, 8ージアザビシクロ[5.4.0]ウンデカー7ーエン(DBU)、1, 5ーアザビシクロ[4.3.0]ノナー5ーエン(DBN)等の第3級脂肪族アミン;例えばピリジン、4ージメチルアミノピリジン、ピコリン、ルチジン、キノリン又はイソキノリン等の芳香族アミン等が挙げられ、中でも例えば第3級脂肪族アミン等が好ましく、特に例えばトリエチルアミン又はN, Nージイソプロピルエチルアミン等が好適である。

用いられる縮合補助剤としては、例えばN-ヒドロキシベンゾトリアゾール 20 水和物、N-ヒドロキシスクシンイミド、N-ヒドロキシ-5-ノルボルネン -2,3-ジカルボキシイミド又は3-ヒドロキシ-3,4-ジヒドロ-4-オキソ-1,2,3-ベンゾトリアゾール等が挙げられ、中でも例えばN-ヒドロキシベンゾトリアゾール等が好適である。

用いられるアミノ化合物(2)の量は、用いられる化合物及び溶媒の種類その他の反応条件により異なるが、通常カルボン酸化合物(1)又はその反応性誘導体1当量に対して、0.02乃至50当量、好ましくは0.2乃至2当量である。ここにおいて、反応性誘導体としては、通常有機化学の分野において用いられる、例えば活性エステル誘導体、活性アミド誘導体等が挙げられる。

用いられるアミド形成試薬の量は、用いられる化合物及び溶媒の種類その他

の反応条件により異なるが、通常カルボン酸化合物(1)又はその反応性誘導体1当量に対して、1乃至50当量、好ましくは1乃至5当量である。

用いられる縮合補助剤の量は、用いられる化合物及び溶媒の種類その他の反応条件により異なるが、通常カルボン酸化合物(1)又はその反応性誘導体1 当量に対して、1万至50当量、好ましくは1万至5当量である。

用いられる塩基の量は、用いられる化合物及び溶媒の種類その他の反応条件 により異なるが、通常1万至50当量、好ましくは3万至5当量である。

本工程において用いられる反応溶媒としては、例えば不活性有機溶媒であり、反応に支障のない限り、特に限定されないが、具体的には、例えば塩化メチレン、クロロホルム、1,2ージクロロエタン、トリクロロエタン、N,Nージメチルホルムアミド、酢酸エチルエステル、酢酸メチルエステル、アセトニトリル、ベンゼン、キシレン、トルエン、1,4ージオキサン、テトラヒドロフラン、ジメトキシエタン又はそれらの混合溶媒が挙げられるが、好適な反応温度確保の点から、特に例えば塩化メチレン、クロロホルム、1,2ージクロロエタン、アセトニトリル又はN,Nージメチルホルムアミド等が好適である。

反応温度は、-100℃乃至溶媒の沸点温度、好ましくは0乃至30℃である。

反応時間は、0.5乃至96時間、好ましくは3乃至24時間である。

本工程1で用いられる塩基、アミド形成試薬、縮合補助剤は、一種又はそれ 20 以上組み合わせて使用することができる。

化合物(3)が保護基を有している場合には、適宜当該保護基を除去することが可能である。当該補助基の除去は、文献記載の方法(プロテクティブ グループス イン オーガニック シンセシス(Protective Groupsin Organic Synthesis)、T. W. Green著、第2版、John Wiley&Sons社、1991年、等)、それに準じた方法又はこれらと常法とを組み合わせることにより行うことができる。

25

このようにして得られる化合物(3)は、公知の分離精製手段、例えば濃縮、減圧濃縮、結晶化、溶媒抽出、再沈殿、クロマトグラフィー等により単離精製するか又は単離精製することなく次工程に付すことができる。

(工程2)

本工程は、上記工程1で得られたアミド化合物(3)と化合物(4)とを反応させることにより化合物(5)を製造する方法である。

本反応においては、反応系中に必要に応じて塩基を加えてもよい。用いられ 5 る化合物(4)としては、好ましくはフェノール誘導体又はチオール誘導体が 好ましい。該フェノール誘導体又はチオール誘導体としては、例えばフェノー ル、チオフェノール、チオイミダゾール、チオトリアゾール等が挙げられる。 用いられる化合物(4)の量は、用いられる化合物及び溶媒の種類その他の反 応条件により異なるが、通常アミノ誘導体(3)1当量に対して、2乃至50 10 当量、好ましくは2乃至5当量である。用いられる塩基としては、例えばトリ メチルアミン、トリエチルアミン、N、N-ジイソプロピルエチルアミン、N ーメチルモルホリン、Nーメチルピロリジン、Nーメチルピペリジン、N, N ージメチルアニリン、1,8-ジアザビシクロ[5.4.0]ウンデカー7-エン (DBU) 、1, 5-アザビシクロ [4.3.0] ノナー5-エン (DB 15 N) 等の第3級脂肪族アミン;例えばピリジン、4-ジメチルアミノピリジン、 ピコリン、ルチジン、キノリン又はイソキノリン等の芳香族アミン;例えば金 属カリウム、金属ナトリウム、金属リチウム等のアルカリ金属;例えば水素化 ナトリウム、水素化カリウム等のアルカリ金属水素化物;例えばブチルリチウ ム等のアルカリ金属アルキル化物:例えばカリウムーtertープチラート、 20 ナトリウムエチラート又はナトリウムメチラート等のアルカリ金属アルコキシ ド:例えば水酸化カリウム、水酸化ナトリウム等のアルカリ金属水酸化物;例 えば炭酸カリウム等のアルカリ金属炭酸塩等が挙げられ、中でも例えば第3級 脂肪族アミン、アルカリ金属水素化物又はアルカリ金属炭酸塩が好ましく、特 に例えばトリエチルアミン、N, N-ジイソプロピルエチルアミン、水素化ナ 25

用いられる当該塩基の量は、用いられる化合物及び溶媒の種類その他の反応 条件により異なるが、アミド化合物(3)1当量に対して通常0乃至50当量、 好ましくは2乃至10当量である。該塩基は、必要に応じて一種又は2種以上

トリウム又は炭酸カリウムが好適である。

用いることができる。

用いられる不活性有機溶媒としては、反応に支障のないものであれば、特に限定されないが、具体的には、例えば塩化メチレン、クロロホルム、1,2-ジクロロエタン、トリクロロエタン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、酢酸エチルエステル、酢酸メチルエステル、アセトニトリル、ベンゼン、キシレン、水、トルエン、1,4-ジオキサン、テトラヒドロフラン又はこれらの混合溶媒等が挙げられる。

このようにして得られる化合物(5)は、公知の分離精製手段、例えば濃縮、 減圧濃縮、結晶化、溶媒抽出、再沈殿、クロマトグラフィー等により単離精製 することができる。

(工程3)

10

本工程は化合物(5)を還元して、本発明で用いる化合物(I)を製造する方法である。本工程において用いられる還元反応は、当業者に周知の方法が用いられる。本工程においてもちいられる還元反応としては、具体的には、例えば(1)水素、蟻酸、蟻酸アンモニウム、ヒドラジン水和物とパラジウム、白金、ニッケル触媒を用いる接触還元法、(2)塩酸、塩化アンモニウムと鉄を用いる環元法、(3)メタノールと塩化スズを用いる還元法等が挙げられる。

上記還元反応において用いられる還元剤の量は、用いられる化合物及び溶媒 20 の種類その他の反応条件により異なるが、化合物(5)1当量に対して通常1 乃至50当量、好ましくは2乃至20当量である。

用いられる反応溶媒としては、反応に支障のない限り、特に限定されないが、例えばジクロロメタン、クロロホルム等のハロゲン化炭化水素類、例えばジエチルエーテル、tertーブチルメチルエーテル、テトラヒドロフラン等のエーテル類、例えばN,Nージメチルホルムアミド、N,Nージメチルアセトアミド等のアミド類、例えばジメチルスルホキシド等のスルホキシド類、例えばアセトニトリル等のニトリル類、例えばメタノール、エタノール、プロパノール等のアルコール類、例えばベンゼン、トルエン、キシレン等の芳香族炭化水素類、水或いはこれらの混合溶媒を用いることができる。

反応温度及び反応時間は特に限定されないが、-10乃至100℃程度、好ましくは0乃至50℃程度の反応温度で1乃至20時間程度、好ましくは1乃至5時間程度反応を行う。

このようにして得られる本発明で用いる化合物 (I) は、公知の分離精製手段、例えば濃縮、減圧濃縮、結晶化、溶媒抽出、再沈殿、クロマトグラフィー等により単離精製するか又は単離精製することなく、次工程に付すことができる。

上記各工程の化合物は、各置換基上に保護基を有していてもよい。当該保護基は、各工程において適宜、公知の方法これに準じた方法、又はこれらと常法とを組み合わせた方法により除去することができる。除去の態様は、化合物、反応の種類その他の反応条件により、適宜の除去反応が可能であるが、個別に各保護基を除去する場合、各保護基を同時に除去する場合等が考えられ、当業者が適宜選択可能である。当該保護基としては、例えばヒドロキシ基の保護基、アミノ基の保護基、カルボキシル基の保護基、アルデヒドの保護基、ケト基の保護基等が挙げられる。また、当該保護基の除去順序は、特に限定されるものではない。

10

15

20

ヒドロキシ基の保護基としては、例えばtertーブチルジメチルシリル基、 tertーブチルジフェニルシリル基等の低級アルキルシリル基、例えばメト キシメチル基、2-メトキシエトキシメチル基等の低級アルコキシメチル基、 例えばベンジル基、p-メトキシベンジル基等のアラルキル基、例えばホルミ ル基、アセチル基等のアシル基等が挙げられ、これらのうち、特にtertー プチルジメチルシリル基、アセチル基等が好ましい。

アミノ基の保護基としては、例えばベンジル基、pーニトロベンジル基等のアラルキル基、例えばホルミル基、アセチル基等のアシル基、例えばエトキシカルボニル基、tertーブトキシカルボニル基等の低級アルコキシカルボニル基、例えばベンジルオキシカルボニル基、pーニトロベンジルオキシカルボニル基等のアラルキルオキシカルボニル基等が挙げられ、これらのうち、特にニトロベンジル基、tertーブトキシカルボニル基、ベンジルオキシカルボニル基等が好ましい。

カルボキシル基の保護基としては、例えばメチル基、エチル基、tertーブチル基等の低級アルキル基、例えばベンジル基、p-メトキシベンジル基等のアラルキル基等が挙げられ、これらのうち、特にメチル基、エチル基、tertーブチル基、ベンジル基等が好ましい。

5 ケト基の保護基としては、例えばジメチルケタール基、1,3-ジオキシラン基、1,3-ジオキソラン基、1,3-ジチアン基、1,3-ジチオラン基等が挙げられ、これらのうち、ジメチルケタール基、1,3-ジオキソラン基等がより好ましい。

アルデヒド基の保護基としては、例えば、ジメチルアセタール基、1,3-10 ジオキシラン基、1,3-ジオキソラン基、1,3-ジチアン基、1,3-ジチアン基、1,3-ジオチオラン基等が挙げられ、これらのうちジメチルアセタール基、1,3-ジオキソラン基等がより好ましい。

本発明で用いる化合物を製造するに当たっては、反応を効率よく進行させる ために、官能基に保護基を導入する場合もある。これらの保護基の導入は、当 業者に適宜選択可能であり、当該保護基の除去は、前記記載のプロテクティブ グループス イン オーガニックシンセシス等の方法、これに準じた方法又は これらと常法とを組み合わせることにより行うことができる。なお、保護基の 除去の順序についても、当業者が適宜選択可能である。

15

このようにして得られる化合物(I)は、公知の分離精製手段、例えば濃縮、 20 減圧濃縮、結晶化、再沈殿、溶媒抽出、クロマトグラフィー等により単離精製 するか又は単離精製することなく次工程に付すことができる。

また、本発明で用いる化合物である(I)は、下記の工程によっても製造することができる。

[式中各記号は前記定義に同じ]

10

上記工程4、工程5及び工程6については、試薬の量、反応溶媒、反応温度 5 等その他の反応条件は、前記工程2、工程1及び工程3と同様にして行うこと ができる。

R²に保護基が必要な場合には、前記記載のプロテクティブグループス インオーガニックシンセシス等の方法、それに準じた方法又はこれらと常法とを組み合わせることにより、当業者が保護基を適宜選択することによって行うことができる。

このようにして得られる化合物(6)、(5')は、公知の分離精製手段、 例えば濃縮、減圧濃縮、結晶化、再沈殿、溶媒抽出等により単離精製するか、 又は単離精製することなく次工程に付すことができる。

本発明で用いる化合物(I)は、公知の分離精製手段、例えば濃縮、減圧濃 15 縮、結晶化、再沈殿、溶媒抽出等により単離精製することができる。

上記工程1乃至6において、保護基の除去は、当該保護基の種類及び化合物の安定性により異なるが、前記記載のプロテクティブ グループス イン オーガニック シンセシス ((Protective Groups in O

rganic Synthesis)、T. W. Green著 第2版、John Wiley&Sons社、1991年、等)、それに準じた方法又はこれらと常法とを組み合わせることにより行うことができる。例えば酸又は塩基を用いる加溶媒分解、水素化金属錯体等を用いる化学的還元又はパラジウム炭素触媒、ラネーニッケル等を用いる接触還元等により行うことができる。

本発明によって提供されるベンズアミド化合物は、薬学的に許容される塩として存在することができる。当該塩は、常法に従って製造することができる。 具体的には、上記化合物(I)が、当該分子内に例えばアミノ基、ピリジル基等に由来する塩基性基を有している場合には、当該化合物を酸で処理することにより、相当する薬学的に許容される塩に変換することができる。

10

15

20

25

当該酸付加塩としては、例えば塩酸塩、フッ化水素酸塩、臭化水素酸塩、ヨウ化水素酸塩等のハロゲン化水素酸塩;硝酸塩、過塩素酸塩、硫酸塩、燐酸塩、炭酸塩等の無機酸塩;メタンスルホン酸塩、トリフルオロメタンスルホン酸塩、エタンスルホン酸塩等の低級アルキルスルホン酸塩;ベンゼンスルホン酸塩、

pートルエンスルホン酸塩等のアリールスルホン酸塩;フマル酸塩、コハク酸塩、クエン酸塩、酒石酸塩、シュウ酸塩、マレイン酸塩等の有機酸塩;及びグルタミン酸塩、アスパラギン酸塩等のアミノ酸等の有機酸である酸付加塩を挙げることができる。また、本発明の化合物が酸性基を当該基内に有している場合、例えばカルボキシル基等を有している場合には、当該化合物を塩基で処理することによっても、相当する薬学的に許容される塩に変換することができる。当該塩基付加塩としては、例えば例えばナトリウム、カリウム等のアルカリ金属塩、カルシウム、マグネシウム等のアルカリ土類金属塩、アンモニウム塩、グアニジン、トリエチルアミン、ジシクロヘキシルアミン等の有機塩基による塩が挙げられる。さらに本発明の化合物は、遊離化合物又はその塩の任意の水和物又は溶媒和物として存在してもよい。

本発明においては、実施例の記載にて詳述するように、配列番号5に示すアミノ酸配列を有するGKタンパク質と上記式(IIIa)~式(IIIc)との化合物の複合体の結晶が得られている。これらの、結晶の3次元構造座標を解析することによって、配列番号5で示すGKタンパク質においては、化合物結合部位

が、チロシン61~セリン69、グルタミン酸96~グルタミン98、イソロイシン159、メチオニン210~チロシン215、ヒスチジン218~グルタミン酸221、メチオニン235、アルギニン250、ロイシン451~リジン459のアミノ酸残基から構成されることが解明されている。

5

10

15

20

なお、本発明の別の態様によれば、配列番号2に記載のアミノ酸配列を有するタンパク質から、上述のようにN末端側、および/またはC末端側の所定の数のアミノ酸残基を欠損したアミノ酸配列を有するタンパク質を製造するタンパク質製造工程と、前記タンパク質製造工程で得られたタンパク質と結合する化合物と、前記タンパク質製造工程で得られたタンパク質とを反応させる工程とを含む、タンパク質及びそのタンパク質と結合する化合物の複合体を含む結晶を製造する方法が提供される。

上記タンパク質製造工程において製造されるタンパク質としては、結晶内で 隣接するGKタンパク質との間で立体的な障害がなくなる範囲であればその数 は限定されない。具体的には、例えば、配列番号2で表されるアミノ酸配列に おいて、N末端側の1~50個、好ましくは3~30個、より好ましくは5~ 25個、さらに好ましくは8~18個、特に好ましくは11~15個のアミノ 酸残基を欠失させたアミノ酸配列などが挙げられる。また、C末端側の1~8 個、好ましくは1~7個、より好ましくは2~6個のアミノ酸残基を欠失させ たアミノ酸配列などが挙げられる。

(3次元構造座標を用いるドラッグデザイン方法)

上記のようにして得られる本発明のGKタンパク質の3次元構造は、CARDD (Computer Aided Rational Drug Design)による創薬システムのための重要な情報である。このGKタンパク質の活性中心、及びアロステリック部位を明らかにし、その部位に適合し、GKタンパク質と相互作用することにより、GKタンパク質を阻害、または活性化する物質を検索することは、GKタンパク質をターゲットとする創薬開発の重要なステップである。

すなわち、本発明の別の熊様によれば、タンパク質の立体構造情報に基づい

て該タンパク質に結合する化合物の構造をデザインするドラッグデザイン方法であって、該タンパク質の立体構造情報が、上述のようにして得られる結晶を解析することによって得られる情報であることを特徴とする、ドラッグデザイン方法が提供される。このようなドラッグデザイン方法としては、エネルギー計算、若しくはこれに類似する活性予測値、又はファルマコフォアを用いてドラッグデザインする手法と、コンピュータグラフィックスの技術を用いて視覚的にドラッグデザインをする手法がある。

エネルギー計算、若しくはこれに類する活性予測値、又はファルマコフォアを用いる手法による方法としては、(1)上述したようにして得られる立体構造情報に基づいて、上記タンパク質の化合物結合部位を推測する結合部位推測工程と、前記結合部位推測工程で推測された化合物結合部位に適合する化合物を、化合物ライブラリより選択する選択工程とを含むことを特徴とするドラッグデザイン方法、(2)前記立体構造情報に基づいて、前記タンパク質の化合物結合部位を推測する結合部位推測工程と、前記結合部位推測工程で推測された化合物結合部位に適合する化合物の構造を構築する化合物構造構築工程とを含むことを特徴とする、ドラッグデザイン方法などが例示される。

10

15

20

25

上記タンパク質の化合物結合部位を推測する方法としては、例えば、化合物との共結晶においてリガンドが結合している部位をコンピュータのディスプレイ上で目視で確認して特定する方法の他、リガンドが結合していない状態で解かれたタンパク質結晶構造に対してリガンドが結合しそうな部位を推定して特定する方法が挙げられる。いずれの方法においても公知の方法や市販のコンピュータソフトウエアを用いることができる。前者の方法においては、例えば、InsightII (Accelrys Inc.)、SYBYL (Tripos Inc.)、MOE (Chemical Computing Group)等のソフトウエアを用いることができる。一方、後者の方法においては、例えば、Cavity search: an algorithm for the isolation and display of cavity-like binding regions. (Journal of Computer-Aided Molecular Design. 4(4):337-54, 1990)等の公知の手法を用いることができ、SiteID (Tripos Inc.)等のソフトウエアを用いて実施することができる。

タンパク質における化合物との結合部位が推測できたら、その推測された結

合部位に適合し得る化合物を選択する。この化合物候補を選択する方法としては、既存の化合物ライブラリからの化合物の構造情報を入手して、そのライブラリ中の化合物の構造情報と上記のようにして推測された結合部位の構造情報とを比較することによって、結合可能化合物候補を選択する。

5 より具体的には、配列番号 5 に示すアミノ酸配列のアミノ酸残基(チロシン 61~セリン 69、グルタミン酸 96~グルタミン 98、イソロイシン 159、メチオ ニン 210~チロシン 215、ヒスチジン 218~グルタミン酸 221、メチオニン 235、アルギニン 250、ロイシン 4・5 1~リジン 4 5 9) から 1 つないしは 2 つ以上 の残基もしくは複合体中のリガンドの官能基から形成される水素結合性または 10 疎水性などのファルマコフォアと、蛋白構造またはその一部の側鎖の配向を改変させた構造から作成される蛋白表面を検索条件として、化合物ライブラリより各化合物の配座、配向を網羅的に探索しながら条件を満たすかどうかを判断して選択する。

他の代替方法として、化合物ライブラリより各化合物の配座、配向を網羅的に探索しながら、アミノ酸残基(チロシン 61~セリン 69、グルタミン酸 96~グルタミン 98、イソロイシン 159、メチオニン 210~チロシン 215、ヒスチジン 218~グルタミン酸 221、メチオニン 235、アルギニン 250、ロイシン 4 5 1~リジン 4 5 9)から構成されるリガンド結合部位の構造またはその一部の側鎖の配向を改変させた構造に対して候補化合物をバーチャルでドッキングさせ、アミノ酸残基(チロシン 61~セリン 69、グルタミン酸 96~グルタミン 98、イソロイシン 159、メチオニン 210~チロシン 215、ヒスチジン 218~グルタミン酸 221、メチオニン 235、アルギニン 250、ロイシン 4 5 1~リジン 4 5 9)から 1 つないしは 2 つ以上の残基と 4 オングストローム以下で近接した相互作用を形成したものを選択したり、エネルギー評価関数を用いた選択を行う。

25 一方、候補化合物は、上記のようにして推測された結合部位の構造情報に基づいて結合可能化合物を設計することによっても選択することができる。より 具体的には、配列番号 5 に示すアミノ酸配列のアミノ酸残基(チロシン 61~セリン 69、グルタミン酸 96~グルタミン 98、イソロイシン 159、メチオニン 210~チロシン 215、ヒスチジン 218~グルタミン酸 221、メチオニン 235、ア

ルギニン 250、ロイシン4 5 1~リジン4 5 9)から構成される化合物結合部位の構造またはその一部の側鎖の配向を改変させた構造に対して、1つないしは2つ以上の残基と相互作用するように各種原子種、官能基を種々つなぎ合わせて化合物構造を構築する。この方法としては、メチル、エチル等の化学基を活性部位に並べて適合する化合物を探す方法と、原子を活性部位にコンピュータプログラムを用いて結合させていく方法とが知られている。

なお、コンピュータによるエネルギー評価による方法では、例えば分子力場 計算を用いて化合物と、GKタンパク質との結合のエネルギーを求める方法が 挙げられる。その計算をデータベースの中の各化合物に適用し、安定に結合で きる化合物候補を、ライブラリ化合物の中から求める。Insight II のLudiなどコンピュータプログラムによっては、蛋白質分子において相互 作用するアミノ酸残基の3次元構造座標を与えると、自動的に結合可能な化合 物の候補を選択し出力するものもあり、好適に利用することができる。

10

25

また、分子の3次元構造に基づくドラッグデザインについては、医薬品の開発・第7巻「分子設計」(廣川書店)をはじめとして数多くの文献が知られている。具体的には、第一にFlexiDock、FlexX等のフレキシブルリガンドバインディングシミュレーションソフトウエアを用いて、低分子(分子量1000以下)化合物のライブラリ(たとえば約150000種)をコンピュータでスクリーニングすることができる。このライブラリ内の化学物質はCONCORD等のプログラムで3次元構造を構築し、活性部位に適合する化合物を選択することができる。

一方、目視的によりドラッグデザインする方法としては、前記立体構造情報に基づいて、前記タンパク質の化合物結合部位を推測する結合部位推測工程と、前記結合部位推測工程で推測された化合物結合部位と該化合物結合部位に適合する化合物とが相互作用するように化合物の構造を目視によりデザインするデザイン工程とを含むことを特徴とする、ドラッグデザイン方法が挙げられる。例えば、配列番号5に示すアミノ酸配列のアミノ酸残基(チロシン61~セリン69、グルタミン酸96~グルタミン98、イソロイシン159、メチオニン210~チロシン215、ヒスチジン218~グルタミン酸221、メチオニン235、アルギ

ニン 250、ロイシン 4 5 1 ~ リジン 4 5 9)から構成されるリガンド結合部位 の構造またはその一部の側鎖の配向を改変させた構造に対して、これらの残基 のうち 1 つないしは 2 つ以上の残基と相互作用するように目視による構造構築、もしくは構造改変を行う。

具体的には、視覚的方法では、まずコンピュータの画面上にGKタンパク質 5 とそれに結合する化合物との複合体の結晶の構造を、得られた構造座標に従っ て表示する。そして、コンピュータ上で化学的相互作用を考慮しながら、ライ ブラリ中にある化合物とGKタンパク質との結合可能性を順次検討する。ここ で考慮すべき化学的相互作用は静電相互作用、疎水性相互作用、水素結合、フ ァンデルワールス相互作用などである。すなわち、該化合物の3次元空間での 10 構造が、その官能基群においてカルボキシル基、ニトロ基、ハロゲン基などの 陰性電荷を帯びやすい基が、GKタンパク質のリジン、アルギニン、ヒスチジ ンといった正電荷を持つアミノ酸残基に相互作用するように、アミノ基、イミ ノ基、グアニジル基などの陽性電荷を帯びやすい基が、GKタンパク質のグル タミン酸、アスパラギン酸といった負電荷を持つアミノ酸残基に相互作用する 15 ように、脂肪族基や芳香族基といった疎水性の官能基が、アラニン、ロイシン、 イソロイシン、バリン、プロリン、フェニルアラニン、トリプトファン及びメー チオニンといった疎水性のアミノ酸残基と相互作用するように、水酸基、アミ ド基などの水素結合に関与する基が、GKタンパク質の主鎖や側鎖部分と水素 結合ができるように、更には、該化合物とGKタンパク質の結合において立体 20 的な障害が生じないように、また、更には、空隙部分がなるべくできないよう に空隙部分が充填され、ファンデルワールス相互作用が大きくなるようになど、 相互作用に好ましい構造になっているかを総合的に考慮する。このように、静 電相互作用、疎水性相互作用、ファンデルワールス相互作用、水素結合などの 因子を、コンピュータ画面上で視覚的に総合的に考慮して、最終的に候補化合 25 物がGKタンパク質に結合し得るか否かの判断を行う。

このように目視によって化合物候補を選択するプログラムとしては、 Insight II や MOE 等のシミュレーションプログラムが例示される。 G K タンパク質と相互作用する化合物の有力候補を挙げるために、候補化合物と G K タ

ンパク質と接触させ、GKタンパク質の活性を測定する。有力候補化合物を実際にGKタンパク質と混合し、結晶化し適合するかどうかを検討する。更に適合した複合物を有機合成を用いて修飾することにより、より望ましい構造とする。

- 5 なお、視覚的手法と、エネルギーを考慮した手法は、適宜組合わせて用いることもできる。そのようなコンピュータソフトウエアとしては、FlexiDock (Tripos Inc.)、FlexX (Tripos Inc.)、SYBYL (Tripos Inc.)、Insight II (Accelrys Inc.)、MOE (Chemical Computing Group Inc.) などが挙げられる。
- 10 なお、本発明においては、上述したドラッグデザイン方法によって選択された化合物を実際に合成し、これらの化合物群を化合物アレイ(又は化合物ライブラリ)として提供することができる。このような化合物アレイを利用すれば、ハイスループットスクリーニングの技術などを用いて、一度に大量の候補化合物をアッセイすることができるので、グルコキナーゼの活性化剤又は阻害剤を効率良くスクリーニングすることができる。

(本発明の方法によって得られる化合物及びそれを含む治療剤)

20

上記のドラッグデザイン方法によって設計される化合物は、グルコキナーゼ と結合する能力を有するので、グルコキナーゼの活性化化合物又はグルコキナ ーゼ阻害化合物として用いることができる。また、このような化合物を含有す る治療剤又は医薬組成物は、グルコキナーゼ活性が関与する疾患の治療剤(例 えば、糖尿病治療剤)として有効に用いることができる。

上記医薬組成物は、本発明のグルコキナーゼと結合する化合物を有効成分として、その薬学的有効量を、適当な薬学的に許容される担体ないし希釈剤と共に含有する。上記医薬組成物(医薬製剤)に利用できる薬学的に許容できる担体としては、製剤の使用形態に応じて通常使用される、充填剤、増量剤、結合剤、付湿剤、崩壊剤、表面活性剤、滑沢剤などの希釈剤或は賦形剤などが例示される。これらの担体は、得られる製剤の投与単位形態に応じて適宜選択使用される。

本発明の医薬組成物の投与単位形態としては、各種の形態が治療目的に応じ て選択でき、その代表的なものとしては、錠剤、丸剤、散剤、粉末剤、顆粒剤、 カプセル剤などの固体投与形態や、溶液、懸濁剤、乳剤、シロップ、エリキシ ルなどの液剤投与形態が含まれ、これらは更に投与経路に応じて経口剤、非経 口剤、経鼻剤、経膣剤、坐剤、舌下剤、軟膏剤などに分類され、それぞれ通常 5 の方法に従い、調合、成形、調製することができる。例えば、錠剤の形態に成 形するに際しては、上記製剤担体として例えば乳糖、白糖、塩化ナトリウム、 ブドウ糖、尿素、デンプン、炭酸カルシウム、カオリン、結晶セルロース、ケ イ酸、リン酸カリウムなどの賦形剤、水、エタノール、プロパノール、単シロ ップ、ブドウ糖液、デンプン液、ゼラチン溶液、カルボキシメチルセルロース、 10 ヒドロキシプロピルセルロース、メチルセルロース、ポリビニルピロリドンな どの結合剤、カルボキシメチルセルロースナトリウム、カルボキシメチルセル ロースカルシウム、低置換度ヒドロキシプロピルセルロース、乾燥デンプン、 アルギン酸ナトリウム、カンテン末、ラミナラン末、炭酸水素ナトリウム、炭 酸カルシウムなどの崩壊剤、ポリオキシエチレンソルビタン脂肪酸エステル類、 15 ラウリル硫酸ナトリウム、ステアリン酸モノグリセリドなどの界面活性剤、白 糖、ステアリン、カカオバター、水素添加油などの崩壊抑制剤、第4級アンモ ニウム塩基、ラウリル硫酸ナトリウムなどの吸収促進剤、グリセリン、デンプ ンなどの保湿剤、デンプン、乳糖、カオリン、ベントナイト、コロイド状ケイ 酸などの吸着剤、精製タルク、ステアリン酸塩、ホウ酸末、ポリエチレングリ 20 コールなどの滑沢剤などを使用できる。更に錠剤は必要に応じ通常の剤皮を施 した錠剤、例えば糖衣錠、ゼラチン被包錠、腸溶被錠、フィルムコーティング 錠とすることができ、また二重錠ないしは多層錠とすることもできる。

丸剤の形態に成形するに際しては、製剤担体として例えばブドウ糖、乳糖、 25 デンプン、カカオ脂、硬化植物油、カオリン、タルクなどの賦形剤、アラビア ゴム末、トラガント末、ゼラチン、エタノールなどの結合剤、ラミナラン、カ ンテンなどの崩壊剤などを使用できる。

カプセル剤は、常法に従い通常本発明の有効成分を上記で例示した各種の製剤担体と混合して硬質ゼラチンカプセル、軟質カプセルなどに充填して調整さ

れる。

経口投与用液体投与形態は、慣用される不活性希釈剤、例えば水、を含む医薬的に許容される溶液、エマルジョン、懸濁液、シロップ、エリキシルなどを包含し、更に湿潤剤、乳剤、懸濁剤などの助剤を含ませることができ、これらは常法に従い調製される。

非経口投与用の液体投与形態、例えば滅菌水性乃至非水性溶液、エマルジョン、懸濁液などへの調製に際しては、希釈剤として例えば水、エチルアルコール、プロピレングリコール、ポリエチレングリコール、エトキシ化イソステアリルアルコール、ポリオキシエチレンルアルコール、ポリオキシ化イソステアリルアルコール、ポリオキシエチレンソルビタン脂肪酸エステル及びオリーブ油などの植物油などを使用でき、また注入可能な有機エステル類、例えばオレイン酸エチルなどを配合できる。これらには更に通常の溶解補助剤、緩衝剤、湿潤剤、乳化剤、懸濁剤、保存剤、分散剤などを添加することもできる。 滅菌は、例えばバクテリア保留フィルターを通過させる濾過操作、殺菌剤の配合、照射処理及び加熱処理などにより実施できる。また、これらは使用直前に滅菌水や適当な滅菌可能媒体に溶解することのできる滅菌固体組成物形態に調製することもできる。

坐剤や膣投与用製剤の形態に成形するに際しては、製剤担体として、例えばポリエチレングリコール、カカオ脂、高級アルコール、高級アルコールのエステル類、ゼラチン及び半合成グリセライドなどを使用できる。

20 ペースト、クリーム、ゲルなどの軟膏剤の形態に成形するに際しては、希釈剤として、例えば白色ワセリン、パラフイン、グリセリン、セルロース誘導体、プロピレングリコール、ポリエチレングリコール、シリコン、ベントナイト及びオリーブ油などの植物油などを使用できる。

経鼻又は舌下投与用組成物は、周知の標準賦形剤を用いて、常法に従い調製 25 することができる。

尚、本発明薬剤中には、必要に応じて着色剤、保存剤、香料、風味剤、甘味 剤などや他の医薬品などを含有させることもできる。

上記医薬製剤中に含有されるべき有効成分の量及びその投与量は、特に限定されず、所望の治療効果、投与法、治療期間、患者の年齢、性別その他の条件

- 283 -

などに応じて広範囲より適宜選択される。一般的には、投与量は、通常、1日当り体重60kg当0、約0. 01mg ~ 100 mg、好ましくは約1mg ~ 100 mgとするのがよく、1日に1~数回に分けて投与することができる。

5 本明細書の配列表の配列番号は、以下の配列を示す。

〔配列番号:1〕

ヒト由来肝臓型グルコキナーゼをコードするDNAの塩基配列を示す。

〔配列番号:2〕

ヒト由来肝臓型グルコキナーゼのアミノ酸配列を示す。

10 〔配列番号:3〕

ヒト由来 β 細胞グルコキナーゼのアミノ酸配列を示す。

〔配列番号:4〕

ヒト由来肝臓型グルコキナーゼのN末端側のアミノ酸残基11個を欠失させたタンパク質をコードするDNAの塩基配列を示す。

15 〔配列番号:5〕

ヒト由来肝臓型グルコキナーゼのN末端側のアミノ酸残基11個を欠失させたタンパク質のアミノ酸配列を示す。

〔配列番号:6〕

以下の実施例1におけるPCR反応で使用した、プライマー1の塩基配列を 20 示す。

〔配列番号:7〕

以下の実施例1におけるPCR反応で使用した、プライマー2の塩基配列を示す。

〔配列番号:8〕

25 ヒト由来肝臓型グルコキナーゼのN末端側のアミノ酸残基15個を欠失させたタンパク質のアミノ酸配列を示す。

〔配列番号:9〕

以下の実施例6におけるPCR反応で使用した、プライマーの塩基配列を示す。

[配列番号:10]

以下の実施例6におけるPCR反応で使用した、プライマーの塩基配列を示す。

5 (実施例)

10

以下、本発明を、実施例を用いて具体的に説明する。

(変異型酵素の精製方法)

Human グルコキナーゼには、プロモーターの違いよって肝臓型と膵臓型が存在し、N 末端の 15 残基が異なる。三次元構造解析を目的に結晶化を行うために、この部分の一部あるいはすべてを欠損した変異型酵素を以下の方法で作成した。

pCR2. 1 (INTROGEN 社製) 上にクローニングされた Human 肝臓型グルコキナーゼの cDNA と 2 種のプライマーセット

- 5'-gtcacaaggagccagaagcttatggccttgactctggtag-3'(配列番号6) 及び 15 5'-gaagccccacgacattgttcccttctgc-3 (配列番号7)の組み合わせ、ならびに、
 - 5' ccaggcccagacagcctatggtagagcagatcc- 3'、 (配列番号9) 及び
 - 5' -gaagccccacgacattgttcccttctgc 3' (配列番号10)

を用いて PCR 反応を行った。得られた PCR 産物の Hind III、ClaI 断片を pFLAG・CTC ベクター (Eastman Kodak) の Hind III, Eco RI 部位にクローニングされていた肝臓型 GK の Hind III - Cla I 領域と置換することで、肝臓型 GK の $1\sim11$ 残基を欠損する変異型 GK (Δ 1-1 1)、及び $1\sim15$ 残基を欠損する変異型 GK (Δ 1-1 1)、及び $1\sim15$ 残基を欠損する変異型 GK (Δ 1-1 5)をコードする cDNA を得た。得られた cDNA の配列を確認した後、これらのベクターを発現ベクターとし、大腸菌 DH5 α 株(宝 酒造社製)を形質変換した。

形質変換体を LB 培地で 600nm の吸収が 0.8 になるまで 37 $^{\circ}$ で培養した後、終濃度が 0.4mM になるようにイソプロピルー1-チオー β -D-ガラクシド (和光純薬社製)を加え、25 $^{\circ}$ で 16 時間、タンパク質の生産誘導を行った。

培養された大腸菌を遠心機で収集し、以下の成分を含む緩衝液(50 mM リン酸カリ(Potassium Phosphate) pH7.5, 50mM NaCl, 2 mM DTT, 0.5 mM Pefabloc SC (関東化学社製)、a proteinase inhibitor mixture (Roche 社製)) に懸濁した。

5 収集した大腸菌は、超音波破砕法によって破砕し、可溶化画分を上記の緩衝液に対して透析した後、HiTrapQカラム(アマシャム社製)により精製した。 HiTrapQカラムより塩化カリウムのグラジエントにより溶出されたGK画分を希釈により塩濃度50mMに希釈した。

希釈された GK 画分を論文 (Preparative Biochemistry, 20 (2), 163-178 (1990)) に示されている方法で作製した Glucosamin Sepharose カラムにより精製した。 GK 画分を Glucosamin Sepharose カラムに吸着させ 100mM 塩化ナトリウムで不純物を除いた後、1M のグルコースにより溶出させた。

溶出された GK 画分は、MonoQ10/10 カラムにより精製した。MonoQ10/10 カラム (アマシャム社製) より塩化ナトリウムのグラジエントにより溶出された GK 画分を、移動層として 50mM Tris-Cl pH7. 2, 50mM NaCl 緩衝液を用いて、Superdex200 カラム (アマシャム社製) により精製した。

(結晶化方法)

10

25

(変異型 $GK(\Delta 1-11)$ /グルコース/化合物複合体の結晶)

20 変異型 $GK(\Delta 1-11)$ /グルコース/化合物複合体の結晶は、以下に示す蒸気拡散の手法を用いて得た。なお、変異型 $GK(\Delta 1-11)$ は、配列番号 5 で表されるアミノ酸配列を有するグルコキナーゼを意味する。

すなわち、高純度に精製された変異型 GK を濃縮し、最終的に 10mg/m1 程度の変異型 GK の溶液 (25 mM Tris-Cl, 50 mM NaCl, 5 mM TCEP) とした。これに最終濃度 20mM のグルコース、及び最終濃度 0.3 mM の GK を活性化する下記化合物1 (式 IIIa の化合物)を加え、結晶化に用いた。タンパク質溶液 1~5 μ1 に結晶化溶液として 28~30% PEG 1500、0.1 M Hepes - NaOH (pH6.6)を等量加えて混合した溶液を 0.5~1ml の結晶化溶液を入れた密閉容器に、両溶液が触れ合わないように収め、20℃で静置した。およそ 3 日~1 ヶ月の静置の

後に、試料溶液中に最大 $0.4 \text{ mm} \times 0.4 \text{ mm} \times 0.7 \text{ mm}$ 程度の結晶が得られた(実施例 1)。

さらに上記の方法で得られた結晶を下記化合物 2 (式III b で表される化合物) が0.3 mMの濃度で含まれるようにして、28~30% PEG 1500、0.1 M Hepes - NaOH (pH6.6) 溶液に 3~7日程度浸透することによって、下記化合物 2 と上記変異型GKの複合体結晶を得た(実施例 2)。

化合物1

10 化合物 2

また、前記化合物1に代えて化合物3 (式 III c で表される化合物)を用いた以外は、実施例1と同様にして結晶化を試みた結果、それぞれ実施例1と同様な結晶が得られた(実施例3)。

化合物3

- 287 -

$$0 = \stackrel{\mathsf{CH}_3}{=} 0 \qquad 0 \qquad \stackrel{\mathsf{S}}{=} 0 \qquad \mathsf{CH}_3 \qquad \mathsf{CH}_3$$

10

15

20

25

得られた結晶を10%のグリセロールを加えた結晶化溶液に浸し、続いて液体窒素中で急速に凍結した。シンクロトロン施設 KEK-PF の BL6B において振動法により、凍結した結晶の X 線回折データを 100 K 窒素気流中で収集した。得られた回折像から、DENZO/SCALEPACK(HKL 社製)を用いて回折強度を数値化し、結晶構造因子を求めた。この段階で結晶は六方晶系で空間群は $P6_522$ あるいは $P6_122$ を有し、結晶の単位格子は、a=b=79.9 オングストローム、c=322.2 オングストローム、 $\alpha=\beta=90$ °、 $\gamma=120$ ° であるとわかった。

得られた構造因子と Human ヘキソキナーゼ タイプ1の3次元構造座標を用いて分子置換法を行い構造を解析した。計算には8オングストロームから4オングストロームの分解能のデータを用い、CCP4 (Council for the Central laboratory of the Research Councils) の Amore プログラムにより行った。計算により得られた構造の R 因子は、53.7%であり、結晶の空間群は $P6_522$ で非対称単位に変異型 GK 一分子を含むことが分かった。この構造と構造因子から電子密度マップを得て、プログラム 0 (Dat-ONO 社製) を用いて変異型グルコキナーゼの構造を決定した。

次に CNX(Accelrys Inc.)を用いてアミノ酸の位置の精密化を行い、プログラム 0 を用いてアミノ酸残基の同定を行った。この操作を繰り返し行い、変異型グルコキナーゼのスレオニン 14 からシステイン 461 までの 448 アミノ酸残基の構造座標、1分子のグルコース分子、1分子の化合物 A、1個のナトリウムイオン、及び 149 個の水分子を同定し構造座標を決定した。最終的に決定された構造の正確さの指標とされる R 因子は、30 オングストロームから 2.3 オングストロームの分解能のデータに対して R=23.2%であり、構造の精密化の段階で計算に用いなかったデータに対する R 因子 (Rfree) は 27.4%であった。

ラマチャンドラン・プロットで確認したところ許容されない構造を持ったアミノ酸残基はなかった。

決定された変異型グルコキナーゼの構造は、アイソザイムであるヘキソキナーゼの構造と似たものであったが、グルコキナーゼを活性化する化合物1(式IIIaの化合物)の結合している部位の構造は異なっていた。この構造の相違は、現在の計算化学の能力で予想できうるものでなく、今回の構造解析により、この部位がアクティベーターの結合部位であること、そしてその詳細な立体構造が初めて明らかとなった。図1 a は、ここで解明されたグルコキナーゼの三次元構造を示すリボン図である。図1 a に示されるように、新規に見つかったアクティベーター結合部位は、ラージドメインとスモールドメインの間に位置しており、基質であるグルコースが結合しているグルコキナーゼの活性中心から、約20オングストローム離れていた。アクティベーター結合部位を構成しているグルコキナーゼのアミノ酸残基は以下のとおりであった。チロシン61~セリン69、グルタミン酸96~グルタミン98、イソロイシン159、メチオニン210~チロシン215、ヒスチジン218~グルタミン酸221、メチオニン235、アルギニン250、ロイシン451~リジン459。

10

15

また、この結合部位に対する化合物1 (式 IIIa の化合物)の結合様式を図2に、グルコキナーゼの結合部位の構造を図3に示す。チアゾール環は、バリン62、バリン452、バリン455のそれぞれのアミノ酸側鎖の分子とファンデルワールス接触をしており、またチアゾール環上の窒素原子がアルギニン63の主鎖の窒素原子と水素結合をしていた。化合物1上のアミドの窒素原子は、アルギニン63の主鎖の酸素原子と水素結合をしていた。化合物1のベンゼン環部分はイソロイシン211とファンデルワールス接触をしており、ベンゼン環に置換したフッ素原子はチロシン214の側鎖とファンデルワールス接触をしていた。化合物1のアニリン構造は、チロシン215の側鎖の酸素原子と水素結合を形成していた。硫黄を介してベンゼン環と結合しているイミダゾール環部分は、メチオニン210、メチオニン235、チロシン214のアミノ酸側鎖部分とファンデルワールス接触をしていた。ラージドメインとスモールドメインを結んでいる、セリン64~セリン69の部分は、溶液に露出した構造をしており、化合物

1は、この部分が形作るアーチ状構造の下部に結合していた(図3)。

(実施例4:ドラッグデザインの実施例)

ソフトウエア UNITY (トライポス社製) を用い、Arg63 の主鎖 NH, COからそれぞれ発生させた水素結合アクセプター、水素結合ドナーのファルマコフォアと、複合体を形成するリガンドのアニリン部分のフェニル基に相当する空間に形成された疎水性のファルマコフォア、および蛋白の構造を元に作成した蛋白表面を検索条件としてライブラリ化合物をスクリーニングし、下記化合物 4、及び化合物 5 が得られ、アッセイを行ったところ、それぞれ 7 8 0 %、および 5 6 0 %の活性が認められた。なお活性が 7 8 0 %とは、グルコキナーゼの活性をコントロールを 1 0 0 %としたときに、これらの化合物によって 7 8 0 %まで増強されたことを示す (グルコース 2.5M 及びリガンド 10 μ M を使用)。

化合物 4

10

15

化合物5

活性:560%

20 (実施例5)

(変異型 GK (Δ1-15) の結晶)

変異型 $GK(\Delta 1-15)$ (配列番号 8 で表されるアミノ酸配列を有するグルコキナーゼ) の単体の結晶は、以下に示す蒸気拡散の手法を用いて得た。

すなわち、高純度に精製された変異型 GK を濃縮し、最終的に 10mg/ml 程度の変異型 GK の溶液 (25 mM Tris-Cl pH7.2, 50 mM NaCl, 5 mM TCEP) とした。 タンパク質溶液 1~5 μ 1 に結晶化溶液 (1.5 ~ 1.6 M 硫酸アンモニウム、50mM NaCl、0.1 M Bicine NaOH (pH8.7)) を等量加えて混合した溶液を 0.5~1ml の結晶化溶液が入った密閉容器に、両溶液が触れ合わないように収め、20℃で静置した。およそ 3 日~1 ヶ月の静置の後に、試料溶液中に最大 0.07mm×0.5mm 程度の大きさの結晶が得られた。

次に、得られた構造因子をもちいて分子置換法を行い、構造を解析した。立体構造のモデルとして、変異型 GK(Δ 1-1 1) / グルコース/化合物複合体結晶により決定されたグルコキナーゼの各ドメインの 3 次元構造座標をそれぞれ別々に用いた。計算は、 $8\sim4$ オングストロームの分解能のデータを用いて、CCP4 (Council for the Central laboratory of the Research Councils) の Amore プログラムにより行った。結晶の空間群は $P6_522$ であり、非対称単位に変異型 GK(Δ 1-1 5) 一分子を含むことが分かった。この構造と構造因子から電子密度マップを得て、プログラム 0 (Dat-0NO 社製)を用いて変異型 0GK(01 01 01 02 単体の構造を決定した。

次に、CNX(モレキュラーシミュレーション社製)を用いてアミノ酸の位置 の精密化を行い、プログラム 0 を用いてアミノ酸残基の同定を行った。この操作を繰り返し行い、変異型グルコキナーゼのメチオニン 15 からヒスチジン 156 とアスパラギン 180 からシステイン 461 までの 424 アミノ酸残基の構造座標、2 分子の硫酸イオン、1 個のナトリウムイオン、及び7 個の水分子を同定 し構造座標を決定した。最終的に決定された構造の正確さの指標とされる R 因

子は、50~3.4 オングストロームの分解能のデータに対して R=23.8%であり、 構造の精密化の段階で計算に用いなかったデータに対する R 因子 (Rfree) は 30.6%であった。ラマチャンドラン・プロットで確認したところ、許容されな い構造を持ったアミノ酸残基はなかった。

図1a及び図1bに、それぞれグルコキナーゼ(Δ 1-11)/グルコース/化 5 合物1の構造を示すリボン図、及びグルコキナーゼ (Δ 1-15) 単体の構造を 示すリボン図を示す。なお、右図は、左図を回転した図である。決定された変 異型 GK (Δ1-15) 単体の構造においてラージドメイン及びスモールドメ インの主要部分の構造は、変異型 GK (Δ1-11) /グルコース/化合物複 合体結晶により決定されたグルコキナーゼにおけるそれぞれの構造と似たもの 10 であったが、2つのドメインの相対位置が大きく異なっていた。変異型 GK(Δ 1-15)単体構造においてスモールドメインの主要部分は、変異型 GK(Δ 1-11) /グルコース/化合物複合体構造におけるスモールドメインの位置 からおよそ 99 度回転していた。また、グルコキナーゼの C 末端領域に位置し 変異型 GK (Δ1-11) /グルコース/化合物複合体構造においてはスモー 15 ルドメインを構成していたα13ヘリックスは、変異型 GK(Δ1-15)単 体構造においてはもはやスモールドメインを構成せず、両ドメイン間に位置し ていた。さらに、変異型 $GK(\Delta 1 - 11)$ / グルコース/化合物複合体構造 における基質グルコースの結合部位及び活性化剤結合部位はどちらも2つのド メイン間に存在していたため、新たに決定した構造ではそれらの部位の構造は 20 大きく変化していた。変異型 GK (Δ1-15) 単体構造では酵素活性に重要 な役割を果たすアミノ酸残基が活性部位を形成しておらず、今回解析した変異 型 $GK(\Delta 1-15)$ 単体の構造は、グルコキナーゼの不活性状態の構造であ った。また、変異型 GK (Δ1-15) 単体の構造において活性化剤結合部位 は、完全に消失していた。変異型 $GK(\Delta 1 - 11)$ /グルコース/化合物複 25 合体構造および変異型 $GK(\Delta 1 - 15)$ 単体構造により観測されたグルコキ ナーゼの構造変化(約99度のドメインの回転)は、今まで知られていたヘキソ キナーゼの構造変化(約12度のドメインの回転)と比較してはるかに大きな

- 292 -

ものであり、現在の計算化学の能力で予想でき得るものではなく、今回の構造 解析により初めて明らかとなったものである。

また、不活性型である変異型 $GK(\Delta 1-15)$ 単体構造への構造変化を阻害する目的として、変異型 $GK(\Delta 1-11)$ /グルコース/化合物複合体構造で示された化合物結合部位に結合する化合物を設計することにより、グルコキナーゼの活性化剤を設計できることが明らかとなった。

産業上の利用可能性

以上説明したように、本発明によれば、従来は結晶化が困難であったグルコキナーゼタンパク質の結晶を得ることができた。この結晶の構造を解析することによって得られる三次元構造座標は、グルコキナーゼに結合する化合物を設計するために好適に用いることができる。また、このようにして設計される化合物は、グルコキナーゼに結合するので、グルコキナーゼ活性化剤又は阻害剤として、グルコキナーゼ活性が関与する疾患の治療剤(例えば、糖尿病治療15 剤)として用いることができる。

- 293 -

請求の範囲

- 1. 結晶化に用いることを特徴とする、グルコキナーゼタンパク質。
- 2. 配列番号5に記載のアミノ酸配列からなることを特徴とする、請求項1
- 5 に記載のタンパク質。
 - 3. 配列番号5に記載のアミノ酸配列又はそのアミノ酸配列と実質的に同一のアミノ酸配列からなることを特徴とするタンパク質の結晶。
 - 4. 前記タンパク質がグルコキナーゼタンパク質である、請求項3に記載の結晶。
- 10 5. 配列番号5に記載のアミノ酸配列を有するタンパク質の結晶である、請求項3に記載の結晶。
 - 6. 格子定数が、下記式(1)~(4):
 a=b=79.9±4オングストローム …(1)
 c=322.2±15オングストローム …(2)
- 15 $\alpha = \beta = 90^{\circ}$ ··· (3) $\gamma = 120^{\circ}$ ··· (4)

瞐.

20

25

を満たす、請求項3に記載の結晶。

- 7. 空間群がP6,22である、請求項6に記載の結晶。
- 8. 表1に記載の三次元構造座標データによって特定されるタンパク質の結
- 9. 表1に記載の三次元構造座標データの少なくとも一つのデータを変更した三次元構造座標データにおいて、表1に記載の三次元構造座標データで示されるアミノ酸の主鎖の原子(Cα原子)と、該Cα原子と対応する前記変更した三次元構造座標データで示されるCα原子との平均二乗偏差が、0.6オングストローム以下である結晶。
- 10. 化合物結合部位が、配列番号5に示すアミノ酸配列における、チロシン61~セリン69、グルタミン酸96~グルタミン98、イソロイシン159、メチオニン210~チロシン215、ヒスチジン218~グルタミン酸2

21、メチオニン235、アルギニン250、ロイシン451~リジン459

- 294 -

のアミノ酸残基の少なくともひとつによって構成されている、請求項3~9の いずれかに記載の結晶。

- 11. 配列番号5に記載のアミノ酸配列又はそのアミノ酸配列と実質的に同一のアミノ酸配列からなるタンパク質と該タンパク質に結合可能な化合物との複合体を含む結晶。
 - 12. 前記化合物が、式(I)で表される、請求項11に記載の結晶。

$$\begin{array}{c|c}
R^1 & C & C \\
R^2 & NH_2 & N
\end{array}$$

(1)

[式中、 R^1 は、ハロゲン原子、-S-(O)p-A、-S-(O)q-B又は-O10 -Bを示し(ここで、p及びqは同一又は異なって、 $0\sim2$ の整数を示し、Aは置換されていてもよい直鎖の C_1-C_6 アルキル基を示し、Bは置換されていてもよい五員環又は六員環のアリール基又はヘテロアリール基を示し、 R^2 は水素原子又はハロゲン原子を示し、

(11)

15

は、アミド基に結合した炭素原子の隣に窒素原子を有する、置換されていても よい単環の又は双環のヘテロアリール基を示す)

13. 前記化合物が、式 (IIIa) \sim 式 (IIIc) で表されるいずれかの化合物である請求項12に記載の結晶。

$$0 = \stackrel{CH_3}{\stackrel{}{=} 0} 0 \qquad 0 \qquad \stackrel{S}{\stackrel{}{=} 0} CH_3$$

$$0 = \stackrel{CH_3}{\stackrel{}{=} 0} \qquad 0 \qquad \stackrel{CH_3}{\stackrel{}{=} 0} \qquad (IIIc)$$

14. 配列番号8に記載のアミノ酸配列からなることを特徴とする、請求項1に記載のタンパク質。

15. 配列番号8に記載のアミノ酸配列又はそのアミノ酸配列と実質的に同 10 一のアミノ酸配列からなることを特徴とするタンパク質の結晶。

16. 前記タンパク質がグルコキナーゼタンパク質である、請求項15に記載の結晶。

17. 配列番号8に記載のアミノ酸配列を有するタンパク質の結晶である、請求項15に記載の結晶。

15 18. 格子定数が、下記式

5

a=b=103.2±5 オングストローム … (5)

c=281.0±7オングストローム … (6)

 $\alpha = \beta = 90^{\circ} \quad \cdots \quad (7)$

- 296 -

 $\gamma = 120^{\circ} \quad \cdots \quad (8)$

を満たす、請求項15に記載の結晶。

- 19. 空間群が P6,22 である、請求項18 に記載の結晶。
- 20. 表2に記載の三次元構造座標データによって特定されるタンパク質の 結晶。
 - 21. 表 2 に記載の三次元構造座標データの少なくとも一つのデータを変更した三次元構造座標データにおいて、表 2 に記載の三次元構造座標データで示されるアミノ酸の主鎖の原子($C \alpha$ 原子)と、該 $C \alpha$ 原子と対応する前記変更した三次元構造座標データで示される $C \alpha$ 原子との平均二乗偏差が、O. 6 オングストローム以下である結晶。
 - 22. 配列番号 2 に記載のアミノ酸配列を有するタンパク質のN 末端、C 末端のいずれかまたは両方から、 $1\sim5$ 0 個のアミノ酸残基を欠損したアミノ酸配列を有するタンパク質を製造するタンパク質製造工程と、

前記タンパク質製造工程で得られたタンパク質と結合する化合物と、前記タ 15 ンパク質製造工程で得られたタンパク質とを反応させるタンパク質反応工程と を含む、

タンパク質及びそのタンパク質と結合する化合物の複合体を含む結晶の製造 方法。

- 23. タンパク質の結晶を製造する方法であって、
- 20 配列番号 5 に記載のアミノ酸配列又はそのアミノ酸配列と実質的に同一のアミノ酸配列を含みグルコキナーゼ活性を有するタンパク質、及び該タンパク質に結合可能な化合物を用いることを特徴とする、結晶の製造方法。
 - 24. 前記タンパク質に結合可能な化合物が、式(I)で表される化合物であることを特徴とする、請求項23に記載のタンパク質の結晶の製造方法。

10

$$\begin{array}{c|c}
R^1 & & C \\
R^2 & & H & N \\
NH_2 & & N
\end{array}$$

(1)

[式中、 R^1 は、Nロゲン原子、-S-(O)p-A、-S-(O)q-B又は-O-Bを示し(ここで、p及びqは同一又は異なって、 $0\sim2$ の整数を示し、Aは置換されていてもよい直鎖の C_1-C_6 アルキル基を示し、Bは置換されていてもよい五員環又は六員環のアリール基又はヘテロアリール基を示し、 R^2 は水素原子又はNロゲン原子を示し、

は、アミド基に結合した炭素原子の隣に窒素原子を有する、置換されていても 10 よい単環の又は双環のヘテロアリール基を示す)

- 25. 共結晶法又はソーキング法による、請求項23、又は請求項24に記載の結晶の製造方法。
- 26. タンパク質の立体構造情報に基づいて該タンパク質に結合する化合物 の構造をデザインするドラッグデザイン方法であって、
- 15 該タンパク質の立体構造情報が、請求項3~13、請求項15~21のうちのいずれか一項に記載の結晶を解析することによって得られる情報であることを特徴とする、ドラッグデザイン方法。
 - 27. 前記立体構造情報に基づいて、前記タンパク質の化合物結合部位を推 測する結合部位推測工程と、
- 20 前記結合部位推測工程で推測された化合物結合部位に適合する化合物を、化合

物ライブラリより選択する選択工程と、

を含むことを特徴とする、請求項26に記載のドラッグデザイン方法。

- 28. 前記立体構造情報に基づいて、前記タンパク質の化合物結合部位を推測する結合部位推測工程と、
- 5 前記結合部位推測工程で推測された化合物結合部位に適合する化合物の構造を 構築する化合物構造構築工程と、

を含むことを特徴とする、請求項26に記載のドラッグデザイン方法。

- 29. 前記立体構造情報に基づいて、前記タンパク質の化合物結合部位を推測する結合部位推測工程と、
- 10 前記結合部位推測工程で推測された化合物結合部位と該化合物結合部位に適合 する化合物とが相互作用するように化合物の構造を目視によりデザインするデザイン工程と、

を含むことを特徴とする、請求項26に記載のドラッグデザイン方法。

- 30. 前記化合物結合部位が、配列番号5に示すアミノ酸配列における、チロシン61~セリン69、グルタミン酸96~グルタミン98、イソロイシン159、メチオニン210~チロシン215、ヒスチジン218~グルタミン酸221、メチオニン235、アルギニン250、ロイシン451~リジン459のアミノ酸残基の少なくともひとつによって構成されている、請求項26~29のうちのいずれか一項に記載のドラッグデザイン方法。
- 20 31. さらに、前記化合物結合部位に適合すると推定される候補化合物の生理活性を測定する工程を含む、請求項26~30のいずれか一項に記載のドラッグデザイン方法。
- 32. さらに、前記化合物結合部位に適合すると推定される候補化合物と、 配列番号5に記載のアミノ酸配列又はそのアミノ酸配列と実質的に同一のアミ ノ酸配列を含むタンパク質とを接触させ、その候補化合物が該タンパク質に結 合するか否か判定する結合判定工程を含む、請求項26~30のいずれか一項 に記載のドラッグデザイン方法。
 - 33. 請求項26~30のいずれか一項に記載のドラッグデザイン方法によって選択された化合物群を化合物アレイとして組み合わせることを含む化合物

WO 03/097824

- 299 -

PCT/JP03/06054

アレイの製造方法。

5

図1

2/3

図2

3/3

図3

1/15 SEQUENCE LISTING

- <110> Banyu Pharmaceutical Co., Ltd.
- <120> Crystal of Glucokinase Protein and Drug Desing Method Using Thereof
- <130> P03-0064PCT

<140>

<141>

<150> JP2002-142232

<151> 2002-05-16

<160> 10

<170> PatentIn Ver. 2.1

⟨210⟩ 1

<211> 1401

<212> DNA

<213> Homo sapiens

<400> 1

atggcgatgg atgtcacaag gaggaggac cagacagcct tgactctggt agagcagatc 60 ctggcagagt tccagctgca ggaggaggac ctgaagaagg tgatgagacg gatgcagaag 120 gagatggacc gcggcctgag gctggagacc catgaagagg ccagtgtgaa gatgctgccc 180 acctacgtgc gctcacccc agaaggctca gaagtcgggg acttcctct cctggacctg 240 ggtggcacta acttcagggt gatgctggtg aaggtgggag aaggtgagga ggggcagtgg 300 agcgtgaaga ccaaacacca gatgtactcc atcccgagg acgccatgac gggcactgct 360 gagatgctct tcgactacat ctctgagtgc atctccgact tcctggacaa gcatcagatg 420 aaacacaaga agctgccct gggcttcacc ttctcttc ctgtgaggac agaagggaac 540 aatgtcgtgg ggcttctgg agacgctatc aaacggagag gggactttga aatggatgt 600 gtggcaatgg tgaatgaca ggtggccacg atgatctct gctactaca agaccatca 660

2/15

tgcgaggtcg gcatgatcgt gggcacggc tgcaatgcct gctacatgga ggagatgcag 720
aatgtggagc tggtggaggg ggacgaggc cgcatgtgcg tcaataccga gtggggcgcc 780
ttcggggact ccggcagct ggacgagttc ctgctggagt atgaccgcct ggtggacgag 840
agctctgcaa accccggtca gcagctgtat gagaagctca taggtggcaa gtacatgggc 900
gagctggtgc ggcttgtgct gctcaggctc gtggacgaaa acctgctctt ccacggggag 960
gcctccgagc agctgcgcac acgcggagcc ttcgagacg gcttcgtgtc gcaggtggag 1020
agcgacacgg gcgaccgcaa gcagatctac aacatcctga gcacgctggg gctgcgaccc 1080
tcgaccaccg actgcgacat cgtgcgccgc gcctgcgaga gcgtgtctac gcgcgtgcg 1140
cacatgtgct cggcggggct ggcggcgtc atcaaccgca tgcgcgagag ccgcagcgag 1200
gacgtaatgc gcatcactgt gggcgtggat ggctccgtgt acaagctgca ccccagcttc 1260
aaggagcggt tccatgccag cgtgcgcagg ctgacgccca gctgcgagat caccttcatc 1320
gagtcggagg agggcagtg ccggggcgc gccctggtct cggcggtggc ctgtaagaag 1380
gcctgtatgc tgggccagtg a

<210> 2

<211> 466

<212> PRT

<213≻ Homo sapiens

<400> 2

Met Ala Met Asp Val Thr Arg Ser Gln Ala Gln Thr Ala Leu Thr Leu 1 5 10 15

Val Glu Gln Ile Leu Ala Glu Phe Gln Leu Gln Glu Glu Asp Leu Lys 20 25 30

Lys Val Met Arg Arg Met Gln Lys Glu Met Asp Arg Gly Leu Arg Leu 35 40 45

Glu Thr His Glu Glu Ala Ser Val Lys Met Leu Pro Thr Tyr Val Arg 50 55 60

Ser Thr Pro Glu Gly Ser Glu Val Gly Asp Phe Leu Ser Leu Asp Leu 65 70 75 80

								3/1	15						
Gly	Gly	Thr	Asn	Phe 85	Arg	Val	Met			Lys	Val	Gly	Glu	Gly 95	Glu
Glu	Gly	Gln	Trp 100	Ser	Val	Lys	Thr	Lys 105	His	Gln	Met	Tyr	Ser 110	Ile	Pro
Glu	Asp	Ala 115	Met	Thr	Gly	Thr	Ala 120	Glu	Met	Leu	Phe	Asp 125	Tyr	Ile	Ser
Glu	Cys 130	Ile	Ser	Asp	Phe	Leu 135	Asp	Lys	His	Gln	Met 140	Lys	His	Lys	Lys
Leu 145	Pro	Leu	Gly	Phe	Thr 150	Phe	Ser	Phe	Pro	Val 155	Arg	His	Glu	Asp	Ile 160
Asp	Lys	Gly	Ile	Leu 165	Leu	Asn	Trp	Thr	Lys 170	Gly	Phe	Lys	Ala	Ser 175	Gly
Ala	Glu	Gly	Asn 180	Asn	Val	Val	Gly	Leu 185	Leu	Arg	Asp	Ala	Ile 190	Lys	Arg
Arg	Gly	Asp 195	Phe	Glu	Met	Asp	Val 200	Val	Ala	Met	Val	Asn 205	Asp	Thr	Val
Ala	Thr 210	Met	Ile	Ser	Cys		Tyr				Gln 220		Glu	Val	Gly
Met 225	Ile	Val	Gly	Thr	Gly 230	Cys	Asn	Ala	Cys	Tyr 235	Met	Glu	Glu	Met	Gln 240
Asn	Val	Glu	Leu	Val 245	Glu	Gly	Asp	Glu	Gly 250	Arg	Met	Cys	Val	Asn 255	Thr

Glu Trp Gly Ala Phe Gly Asp Ser Gly Glu Leu Asp Glu Phe Leu Leu

265

270

260

4/15

Glu Tyr Asp Arg Leu Val Asp Glu Ser Ser Ala Asn Pro Gly Gln Gln 275 280 285

- Leu Tyr Glu Lys Leu Ile Gly Gly Lys Tyr Met Gly Glu Leu Val Arg 290 295 300
- Leu Val Leu Leu Arg Leu Val Asp Glu Asn Leu Leu Phe His Gly Glu 305 310 315 320
- Ala Ser Glu Gln Leu Arg Thr Arg Gly Ala Phe Glu Thr Arg Phe Val 325 330 335
- Ser Gln Val Glu Ser Asp Thr Gly Asp Arg Lys Gln Ile Tyr Asn Ile 340 345 350
- Leu Ser Thr Leu Gly Leu Arg Pro Ser Thr Thr Asp Cys Asp Ile Val 355 360 365
- Arg Arg Ala Cys Glu Ser Val Ser Thr Arg Ala Ala His Met Cys Ser 370 375 380
- Ala Gly Leu Ala Gly Val Ile Asn Arg Met Arg Glu Ser Arg Ser Glu 385 390 395 400
- Asp Val Met Arg Ile Thr Val Gly Val Asp Gly Ser Val Tyr Lys Leu 405 410 415
- His Pro Ser Phe Lys Glu Arg Phe His Ala Ser Val Arg Arg Leu Thr 420 425 430
- Pro Ser Cys Glu Ile Thr Phe Ile Glu Ser Glu Glu Gly Ser Gly Arg 435 440 445
- Gly Ala Ala Leu Val Ser Ala Val Ala Cys Lys Lys Ala Cys Met Leu 450 455 460

5/15

Gly Gln

465

⟨210⟩ 3

<211> 465

<212> PRT

<213> Homo sapiens

<400> 3

Met Leu Asp Asp Arg Ala Arg Met Glu Ala Ala Lys Lys Glu Lys Val 1 5 10 15

Glu Gln Ile Leu Ala Glu Phe Gln Leu Gln Glu Glu Asp Leu Lys Lys 20 25 30

Val Met Arg Arg Met Gln Lys Glu Met Asp Arg Gly Leu Arg Leu Glu 35 40 45

Thr His Glu Glu Ala Ser Val Lys Met Leu Pro Thr Tyr Val Arg Ser 50 55 60

Thr Pro Glu Gly Ser Glu Val Gly Asp Phe Leu Ser Leu Asp Leu Gly 65 70 75 80 .

Gly Thr Asn Phe Arg Val Met Leu Val Lys Val Gly Glu Glu Glu 85 90 95

Gly Gln Trp Ser Val Lys Thr Lys His Gln Met Tyr Ser Ile Pro Glu 100 105 110

Asp Ala Met Thr Gly Thr Ala Glu Met Leu Phe Asp Tyr Ile Ser Glu 115 120 125

Cys Ile Ser Asp Phe Leu Asp Lys His Gln Met Lys His Lys Leu 130 135 140

6/15

Pro 145	Leu	Gly	Phe	Thr	Phe 150	Ser	Phe	Pro	Val	Arg 155	His	Glu	Asp	Ile	Asp 160
Lys	Gly	Ile	Leu	Leu 165	Asn	Trp	Thr	Lys	Gly 170	Phe	Lys	Ala	Ser	Gly 175	Ala
Glu	Gly	Asn	Asn 180	Val	Val	Gly	Leu	Leu 185	Arg	Asp	Ala	Ile	Lys 190	Arg	Arg
Gly	Asp	Phe 195	Glu	Met	Asp	Val	Val 200	Ala	Met	Val	Asn	Asp 205	Thr	Val	Ala
Thr	Met 210	Ile	Ser	Cys	Tyr	Tyr 215	Glu	Asp	His	Gln	Cys 220	Glu	Val	Gly	Met
Ile 225	Val	Gly	Thr	Gly	Cys 230	Asn	Ala	Cys	Tyr	Me t 235	Glu	Glu	Met	Gln	Asn 240
Val	Glu	Leu	Val	Glu 245	Gly	Asp	Glu	Gly	Arg 250	Met	Cys	Val	Asn	Thr 255	Glu
Trp	Gly	Ala	Phe 260	Gly	Asp	Ser	Gly	Glu 265	Leu	Asp	Glu	Phe	Leu 270	Leu	Glu
Tyr	Asp	Arg 275	Leu	Val	Asp	Glu	Ser 280	Ser	Ala	Asn	Pro	Gly 285	Gln	Gln	Leu
Tyr	Glu 290	Lys	Leu	Ile	Gly	Gly 295	Lys	Tyr	Met	Gly	G1u 300	Leu	Val	Arg	Leu
Val 305	Leu	Leu	Arg	Leu	Val 310	Asp	Glu	Asn	Leu	Leu 315	Phe	His	Gly	Glu	Ala 320
Ser	Glu	Gln	Leu	Arg 325	Thr	Arg	Gly	Ala	Phe 330	Glu	Thr	Arg	Phe	Val 335	Ser

7/15

Gln Val Glu Ser Asp Thr Gly Asp Arg Lys Gln Ile Tyr Asn Ile Leu 340 345 350

Ser Thr Leu Gly Leu Arg Pro Ser Thr Thr Asp Cys Asp Ile Val Arg 355 360 365

Arg Ala Cys Glu Ser Val Ser Thr Arg Ala Ala His Met Cys Ser Ala 370 375 380

Gly Leu Ala Gly Val Ile Asn Arg Met Arg Glu Ser Arg Ser Glu Asp 385 390 395 400

Val Met Arg Ile Thr Val Gly Val Asp Gly Ser Val Tyr Lys Leu His
405 410 415

Pro Ser Phe Lys Glu Arg Phe His Ala Ser Val Arg Arg Leu Thr Pro 420 425 430

Ser Cys Glu Ile Thr Phe Ile Glu Ser Glu Glu Gly Ser Gly Arg Gly
435 440 445

Ala Ala Leu Val Ser Ala Val Ala Cys Lys Lys Ala Cys Met Leu Gly
450 455 460

Gln

465

⟨210⟩ 4

<211> 1368

<212> DNA

<213> Homo sapiens

(400) 4

atggccttga ctctggtaga gcagatcctg gcagagttcc agctgcagga ggaggacctg 60

8/15

aagaaggtga tgagacggat gcagaaggag atggaccgcg gcctgaggct ggagacccat 120 gaagaggcca gtgtgaagat gctgcccacc tacgtgcgct ccaccccaga aggctcagaa 180 gtcggggact tcctctcct ggacctggt ggcactaact tcagggtgat gctggtgaag 240 gtgggagaag gtgaggagg gcagtggagc gtgaagacca aacaccagat gtactccatc 300 cccgaggacg ccatgaccgg cactgctgag atgetetteg actacatete tgagtgcate 360 teegactice tggacaagea teagatgaaa cacaagaage tgeecetggg etteacette 420 tectitects tgaggeacga agacategat aagggeatee tieteaacts gaccaaggge 480 ttcaaggcct caggagcaga agggaacaat gtcgtggggc ttctgcgaga cgctatcaaa 540 cggagagggg actitgaaat ggatgtggtg gcaatggtga atgacacggt ggccacgatg 600 atctcctgct actacgaaga ccatcagtgc gaggtcggca tgatcgtggg cacgggctgc 660 aatgeetget acatggagga gatgeagaat gtggagetgg tggaggggga cgagggeecge 720 atgtgcgtca ataccgagtg gggcgccttc ggggactccg gcgagctgga cgagttcctg 780 ctggagtatg accgcctggt ggacgagagc tctgcaaacc ccggtcagca gctgtatgag 840 aagctcatag gtggcaagta catgggcgag ctggtgcggc ttgtgctgct caggctcgtg 900 gacgaaaacc tgctcttcca cggggaggcc tccgagcagc tgcgcacacg cggagccttc 960 gagacgcgct tcgtgtcgca ggtggagagc gacacgggcg accgcaagca gatctacaac 1020 tgcgagagcg tgtctacgcg cgctgcgcac atgtgctcgg cggggctggc gggcgtcatc 1140 aaccgcatgc gcgagagccg cagcgaggac gtaatgcgca tcactgtggg cgtggatggc 1200 teegtgtaca agetgeacce cagetteaag gageggttee atgecagegt gegeaggetg 1260 acgcccagct gcgagatcac cttcatcgag tcggaggagg gcagtggccg gggcgcggcc 1320 1368 ctggtctcgg cggtggcctg taagaaggcc tgtatgctgg gccagtga

<210> 5<211> 455

<212> PRT

<213> Homo sapiens

⟨400⟩ 5

Met Ala Leu Thr Leu Val Glu Gln Ile Leu Ala Glu Phe Gln Leu Gln
1 5 10 15

Glu Glu Asp Leu Lys Lys Val Met Arg Arg Met Gln Lys Glu Met Asp 20 25 30

9/15

- Arg Gly Leu Arg Leu Glu Thr His Glu Glu Ala Ser Val Lys Met Leu 35 40 45
- Pro Thr Tyr Val Arg Ser Thr Pro Glu Gly Ser Glu Val Gly Asp Phe 50 55 60
- Leu Ser Leu Asp Leu Gly Gly Thr Asn Phe Arg Val Met Leu Val Lys 65 70 75 80
- Val Gly Glu Gly Glu Gly Gln Trp Ser Val Lys Thr Lys His Gln 85 90 95
- Met Tyr Ser Ile Pro Glu Asp Ala Met Thr Gly Thr Ala Glu Met Leu 100 105 110
- Phe Asp Tyr Ile Ser Glu Cys Ile Ser Asp Phe Leu Asp Lys His Gln 115 120 125
- Met Lys His Lys Lys Leu Pro Leu Gly Phe Thr Phe Ser Phe Pro Val 130 135 140
- Arg His Glu Asp Ile Asp Lys Gly Ile Leu Leu Asn Trp Thr Lys Gly 145 150 155 160
- Phe Lys Ala Ser Gly Ala Glu Gly Asn Asn Val Val Gly Leu Leu Arg 165 170 175
- Asp Ala Ile Lys Arg Arg Gly Asp Phe Glu Met Asp Val Val Ala Met 180 185 190
- Val Asn Asp Thr Val Ala Thr Met Ile Ser Cys Tyr Tyr Glu Asp His 195 200 205
- Gin Cys Glu Val Gly Met IIe Val Gly Thr Gly Cys Asn Ala Cys Tyr 210 215 220

								10/	15						
Met 225	Glu	Glu	Met	Gln	Asn 230	Val	G1u	Leu	Val	G1u 235	Gly	Asp	Glu	Gly	Arg 240
Met	Cys	Val	Asn	Thr 245	Glu	Trp	G1y	Ala	Phe 250	Gly	Asp	Ser	Gly	G1u 255	Leu
Asp	Glu	Phe	Leu 260	Leu	Glu	Tyr	Asp	Arg 265	Leu	Val	Asp	Glu	Ser 270	Ser	Ala
Asn	Pro	Gly 275	Gln	Gln	Leu	Tyr	G1u 280	Lys	Leu	Ile	Gly	Gly 285	Lys	Tyr	Met
Gly	G1u 290	Leu	Val	Arg	Leu	Val 295		Leu	Arg	Leu	Val 300	Asp	Glu	Asn	Leu
Leu 305	Phe	His	Gly	Glu	Ala 310	Ser	Glu	Gln	Leu	Arg 315	Thr	Arg	Gly	Ala	Phe 320
Glu	Thr	Arg	Phe	Va 1 325	Ser	Gln	Val	Glu	Ser 330	Asp	Thr	Gly	Asp	Arg 335	Lys
Gln	Ile	Tyr	Asn 340	Ile	Leu	Ser	Thr	Leu 345	Gly	Leu	Arg	Pro	Ser 350	Thr	Thr
Asp	Cys	Asp 355			Arg							Ser 365	Thr	Arg	Ala
Ala	His 370	Met	Cys		Ala		Leu	Ala	Gly	Val	Ile 380	Asn	Arg	Met	Arg
G1u 385	Ser	Arg	Ser	Glu	Asp 390	Val	Met	Arg	Ile	Thr 395	Val	Gly	Val	Asp	Gly 400

Ser Val Tyr Lys Leu His Pro Ser Phe Lys Glu Arg Phe His Ala Ser

410

405

415

11/15

Val Arg Arg Leu Thr Pro Ser Cys Glu Ile Thr Phe Ile Glu Ser Glu 420 425 430

Glu Gly Ser Gly Arg Gly Ala Ala Leu Val Ser Ala Val Ala Cys Lys 435 440 445

Lys Ala Cys Met Leu Gly Gln 450 455

⟨210⟩ 6

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Primer

<400> 6

gtcacaagga gccagaagct tatggcctga ctctggtag

39

<210> 7

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Primer

<400> 7

gaagececae gacattgtte cettetge

28

<210> 8

<211> 451

12/15

•	<21	25	PRT
	\ \ \ I	4/	1 1/1

<213 Homo sapiens

⟨400⟩ 8

Met Val Glu Gln Ile Leu Ala Glu Phe Gln Leu Gln Glu Glu Asp Leu I 5 10 15

Lys Lys Val Met Arg Arg Met Gln Lys Glu Met Asp Arg Gly Leu Arg 20 25 30

Leu Glu Thr His Glu Glu Ala Ser Val Lys Met Leu Pro Thr Tyr Val
35 40 45

Arg Ser Thr Pro Glu Gly Ser Glu Val Gly Asp Phe Leu Ser Leu Asp 50 55 60

Leu Gly Gly Thr Asn Phe Arg Val Met Leu Val Lys Val Gly Glu Gly 65 70 75 80

Glu Glu Gly Gln Trp Ser Val Lys Thr Lys His Gln Met Tyr Ser IIe 85 90 95

Pro Glu Asp Ala Met Thr Gly Thr Ala Glu Met Leu Phe Asp Tyr Ile 100 105 110

Ser Glu Cys Ile Ser Asp Phe Leu Asp Lys His Gln Met Lys His Lys 115 120 125

Lys Leu Pro Leu Gly Phe Thr Phe Ser Phe Pro Val Arg His Glu Asp 130 135 140

Ile Asp Lys Gly Ile Leu Leu Asn Trp Thr Lys Gly Phe Lys Ala Ser 145 150 155 160

Gly Ala Glu Gly Asn Asn Val Val Gly Leu Leu Arg Asp Ala Ile Lys 165 170 175

13/15

Arg	Arg	Gly	Asp 180	Phe	Glu	Met	Asp	Val 185		Ala	Met	Val	Asn 190		Thr
Val	Ala	Thr 195	Met	Ile	Ser	Cys	Tyr 200		Glu	Asp	His	Gln 205		Glu	Val
Gly	Met 210	He	Val	Gly	Thr	Gly 215	Cys	Asn	Ala	Cys	Tyr 220		Glu	Glu	Met
G1n 225	Asn	Val	Glu	Leu	Val 230	Glu	Gly	Asp	Glu	Gly 235	Arg	Met	Cys	Val	Asn 240
Thr	Glu	Trp	Gly	Ala 245	Phe	Gly	Asp	Ser	Gly 250	Glu	Leu	Asp	Glu	Phe 255	Leu
Leu	Glu	Tyr	Asp 260	Arg	Leu	Val	Asp	Glu 265	Ser	Ser	Ala	Asn	Pro 270	Gly	Gln
Gln	Leu	Tyr 275	Glu	Lys	Leu	Ile	G1y 280	Gly	Lys	Tyr	Met	Gly 285	Glu	Leu	Val
Arg	Leu 290	Val	Leu	Leu	Arg	Leu 295	Val	Asp	Glu	Asn	Leu 300	Leu	Phe	His	Gly
G1u 305	Ala	Ser	Glu	Gln	Leu 310	Arg	Thr	Arg	Gly	Ala 315	Phe	G1u	Thr	Arg	Phe 320
/al	Ser	Gln	Va1	Glu 325	Ser	Asp	Thr	Gly	Asp 330	Arg	Lys	GIn	He	Tyr 335	Asn
le	Leu	Ser	Thr 340	Leu	Gly	Leu	Arg	Pro 345	Ser	Thr	Thr	Asp	Cys 350	Asp	Ile
/al	Arg	Arg 355	Ala	Cys	G1u	Ser	Val 360	Ser	Thr	Arg	Ala	Ala 365	His	Met	Cys

14/15

Ser Ala Gly Leu Ala Gly Val Ile Asn Arg Met Arg Glu Ser Arg Ser 370 375 380

Glu Asp Val Met Arg Ile Thr Val Gly Val Asp Gly Ser Val Tyr Lys 385 390 395 400

Leu His Pro Ser Phe Lys Glu Arg Phe His Ala Ser Val Arg Arg Leu 405 410 415

Thr Pro Ser Cys Glu IIe Thr Phe IIe Glu Ser Glu Glu Gly Ser Gly 420 425 430

Arg Gly Ala Ala Leu Val Ser Ala Val Ala Cys Lys Lys Ala Cys Met 435 440 445

Leu Gly Gln 450

<210> 9

<211> 38

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Primer

⟨400⟩ 9

ccaggcccag acagccaagc ttatggtaga gcagatcc

38

<210> 10

⟨211⟩ 28

<212> DNA

<213> Artificial Sequence

15/15

⟨220⟩

<223> Description of Artificial Sequence:Primer

<400> 10

gaagececac gacattgtte cettetge

28

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP03/06054

	SIFICATION OF SUBJECT MATTER						
Int.	Cl ⁷ C12N9/12, C12Q1/48						
According t	According to International Patent Classification (IPC) or to both national classification and IPC						
	S SEARCHED						
Minimum d	locumentation searched (classification system followed	by classification symbols)					
TUC.	C17 C12N9/12, C12Q1/48		٧				
Documentat	tion searched other than minimum documentation to the	e extent that such documents are i	ncluded in the fields searched				
Di 1							
	data base consulted during the international search (nam STN) , BIOSIS (DIALOG) , WPI (DIALO		ible, search terms used)				
	ssProt/PIR/Genbank/EMBL/DDBJ/Ge						
		<u>-</u>					
C. DOCU	MENTS CONSIDERED TO BE RELEVANT						
		· cat towns	The state of the Article Art.				
Category*	Citation of document, with indication, where ap		s Relevant to claim No.				
<u>X</u> A	TANIZAWA, Y. et al., Human L.		$\frac{1}{2-25}$				
A	Gene: Cloning and Sequence De Alternatively Spliced cDNAs,						
	USA., 1991, Vol.88, pages 729		•				
_							
A	MAHALINGAM B. et al., Structu		1-25				
	glucokinase in complex with glucose and ATP., Diabetes, 1999, Vol.48, pages 1698 to 1705						
		7 1090 60 1703					
A	WILLSON M. et al., Yeast hexo		1-25				
	designed from the 3-D enzyme						
	J. Enzyme Inhib., 1997, Vol.1 to 121	12, No.2, pages 101					
.							
			<u></u>				
Furthe	er documents are listed in the continuation of Box C.	See patent family annex.					
	categories of cited documents: ent defining the general state of the art which is not		er the international filing date or ct with the application but cited to				
conside	red to be of particular relevance	understand the principle or th	eory underlying the invention				
date	document but published on or after the international filing		nce; the claimed invention cannot be considered to involve an inventive				
	ent which may throw doubts on priority claim(s) or which is e establish the publication date of another citation or other	step when the document is tal					
special	reason (as specified)	considered to involve an inver	ntive step when the document is				
means	document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such						
"P" docume	ent published prior to the international filing date but later e priority date claimed	"&" document member of the sam					
Date of the a	actual completion of the international search	Date of mailing of the internation	nal search report				
12 J	une, 2003 (12.06.03)	24 June, 2003	(24.06.03)				
	nailing address of the ISA/	Authorized officer					
Japa	nese Patent Office						
Facsimile No	0	Telephone No.					

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP03/06054

Box I Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X Claims Nos.: 26 to 33 because they relate to subject matter not required to be searched by this Authority, namely: Inventions according to said claims relate to subject matters not required to be searched by this Authority in accordance with PCT Article 17 (2) (a) and PCT Rule 39.1. (see extra sheet for details)
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 3 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP03/06054

Continuation of Box No.I-1 of continuation of first sheet(1)

"Method for drug design" according to the present invention relates to the design of a compound to be bonded to a protein, on the basis of the information on the three-dimensional structure of the protein. The design according to the present invention involves the work of the inventor to estimate a suitable compound by his mental acts, and such work is considered to correspond to the performance of purely mental acts.

1	属する分野の分類(国際特許分類(IPC)) 2N9/12, C12Q1/48		
	<u> </u>		
調査を行った	最小限資料(国際特許分類(IPC))		
Int. Cl' Cl	2N9/12, C12Q1/48		
]			
·			· · · · · · · · · · · · · · · · · · ·
最小限資料以	外の資料で調査を行った分野に含まれるもの		
ĺ			
ì			
TERRITORIES A MARIE			
国際調査で使/	用した電子データベース(データベースの名称 OSIS(DIALOG), WPI(DIALOG)	、調査に使用した用語)	
	IR/Genbank/EMBL/DDBJ/GeneSeg		
Swissriot/r	Tr/ Genbank/ EMBL/ DDBJ/ GeneSed		
く問事や	こしかんとんッチキ		
<u>C.</u> 関連する	ると認められる文献		
カテゴリー*	11円立動を 及び一切の依託が関連する	したは、スの印本よっかデュサー	関連する
	引用文献名 及び一部の箇所が関連する	とさは、その関連する箇所の表示	請求の範囲の番号
$\frac{X}{A}$	TANIZAWA Y. Tanizawa, et al., Hur	man Liver Glucokinase Gene:	1
A	Cloning and Sequence Determination	on of Two Alternatively	$\overline{2-25}$
	Spliced cDNAs		2 20
	Proc. Natl. Acad. Sci. USA., 1991, Vo	1 00 7004 7007	
	1100. Nati. Acad. Sci. USA., 1991, V	or. 66, p. 1294-1291	
ļ			
A	MAHALINGAM B. et al., Structural	model of human glucokinase	1-25
	in complex with glucose and ATP.		
	Diabetes, 1999, Vol. 48, p1698-170)5	
		Francis	
区欄の続き	らにも文献が列挙されている。	□ パテントファミリーに関する別	紙を参照。
	n.d. = _111		
* 引用文献の	フルテコリー 車のある文献ではなく、一般的技術水準を示す	の日の後に公表された文献	
「A」 特に関連	型のある文献ではなく、一般的技術水準を示す	「丁」国際出願日又は優先日後に公表さ	
_	頂日前の出願または特許であるが、国際出願日	出願と矛盾するものではなく、多の理解のために引用される。	e明の原理又は理論
	公表されたもの	の理解のために引用するもの	le sale when the control of the cont
	E張に疑義を提起する文献又は他の文献の発行	「X」特に関連のある文献であって、当 の新規性又は進歩性がないと考え	
	は他の特別な理由を確立するために引用する	「Y」特に関連のある文献であって、当	
	里由を付す)	上の文献との、当業者にとって自	日的人脈と他の1以
	ころ開示、使用、展示等に言及する文献	よって進歩性がないと考えられる	はよの
	百日前で、かつ優先権の主張の基礎となる出願	「&」同一パテントファミリー文献	1000
		- C. M - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -	
国際調査を完了	『した日	国際調査報告の発送日 24 06 0:	~;.
	12.06.03	国際調査報告の発送日 24.06.03	ا
			
	0名称及びあて先	特許庁審査官(権限のある職員)	48 3037
	国特許庁 (ISA/JP)	鈴木 恵理子 印	
	4便番号100-8915		·
東京都	『千代田区霞が関三丁目 4番 3 号	電話番号 03-3581-1101	内線 3488
			3

C (続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	WILLSON M. et al., Yeast hexokinase inhibitors designed from the 3-D enzyme structure reboilding. J. Enzyme Inhib., 1997, Vol. 12, No. 2, p. 101-121	1-25
·		
		-

	請求の範囲の一部の調査ができないときの意見(第1ページの2の続き)
法第8条	除3項(PCT17条(2)(a))の規定により、この国際調査報告は次の理由により請求の範囲の一部について作
成しなか	った。
1. 🗵	請求の範囲 <u>26-33</u> は、この国際調査機関が調査をすることを要しない対象に係るものである。 つまり、
	当該請求の範囲に記載された発明は、PCT17条(2)(a)(i)及びPCT規則39.1(i i i)の規定により、この国際調査機関が調査することを要しない対象に係るものである。 (詳細は「特別ページ」を参照されたい)
2.	請求の範囲 は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。 つまり、
з. 🗌	請求の範囲 は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に 従って記載されていない。
第Ⅱ欄	発明の単一性が欠如しているときの意見(第1ページの3の続き)
	べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。
1.	出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求 の範囲について作成した。
2.	追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の納付を求めなかった。
3. 🗌	出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。 .
4.	出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。
追加調査	E手数料の異議の申立てに関する注意] 追加調査手数料の納付と共に出願人から異議申立てがあった。] 追加調査手数料の納付と共に出願人から異議申立てがなかった。

『第1ページの続葉 (1) 「第I欄1.」』の続き

本願発明に係る「ドラッグデザイン方法」は、タンパク質の立体構造情報に基づいて該タンパク質に結合する化合物の構造をデザインすることであるが、発明者がその精神活動によって適切な化合物を推測する行為を包含しており、これは純粋に精神的な行為の遂行に相当すると認められる。