Ginwidth=

D.M. T4

November 13, 2019

- 1. Determine the truth value of the following universal statements. If a statement is false, suggest a counterexample for the statement.
 - (a) $\forall x \in \{1, 2, 3, 5, 11\}, x$ is prime.
 - i. False. 1 is not a prime number because it only have 1 divisor.
 - (b) $\forall x \in \{0, 2, 6, 12, 36, 48, 52\}$, x is non-negative AND even.
 - i. True
 - (c) $\forall x \in \mathbb{Z}$, the square of x is positive.
 - i. False, 0 is neither positive nor negative.
 - (d) $\forall a \in \mathbb{Z}, \frac{(a-1)}{a}$ is not integer.
 - i. False, a = 1

$$\frac{(1-1)}{1} = \frac{0}{1} = 0$$

- ii. 0 is an integer
- (e) $\forall x, y \in R, \sqrt{x+y} = \sqrt{x} + \sqrt{y}$
 - i. False, x = 1, y = 1

$$RHS = \sqrt{1+1}$$
$$= \sqrt{2}$$

$$LHS = \sqrt{1} + \sqrt{1}$$
$$= 1 + 1$$
$$= 2$$
$$\neq RHS$$

- (f) \forall prime x, x^3 is odd.
 - i. False, 2 is a prime number, $2^3 = 8$ is even.
- 2. Let $D = \{-48, -14, -8, 0, 1, 3, 16, 23, 26, 32, 36\}$. Determine which of the following statements are true and which are false. Provide counterexamples for those statements that are false.

- (a) $\forall x \in D$, if x is odd, then x > 0
 - i. True
- (b) $\forall x \in D$, if x is less than 0, then x is even
 - i. True
- (c) $\forall x \in D$, if x is even then x < 0.
 - i. False, x = 26
- (d) $\forall x \in D$, if the ones digit of x is 2, then the tens digit is 3 or 4.
 - i. True
- (e) $\forall x \in D$, if the ones digit of x is 6, then the tens digit is 1 or 2.
 - i. False, x = 36
- 3. Rewrite each of the following statements in the two forms " $\forall x$, if-then" and " \forall __x, __" (without using if-then).
 - (a) The sum of any even integer is even.
 - i. $\forall x, y \in \mathbb{Z}$, if x and y are even, then x + y is even.
 - ii. \forall even x, y, x + y is even.
 - (b) All polynomial functions are continuous.
 - i. $\forall x \in \text{functions}$, if x is polynomial, then x is continuous.
 - ii. \forall polynomial functions x, x is continuous.
 - (c) No integer is a factor of 4.
 - i. $\forall x \in \mathbb{R}$, if x is integer, then x is not a factor of 4.
 - ii. \forall integer x, x is not a factor of 4.
- 4. Determine the truth value of the following existential statements. Prove or disprove the statements.
 - (a) $\exists x \in \{1, 2, 3, 5, 11\}$ such that x is prime and even.
 - (b) $\exists x \in \{2, 4, 8, 16, 32\}$ such that x is not divisible by 2
 - (c) $\exists x \in \mathbb{Z}^-$, such that x equals its square.
 - (d) $\exists x \in Z^+$ such that $4x^2 1 = 0$.
- 5. Consider the following statement

$$\exists x \in R \text{ such that } x^2 = 2$$

Which of the following are equivalent ways of expressing this statement?

- (a) If x is a real number, then $x^2 = 2$.
 - i. Not equivalent. $3^2 \neq 2$
- (b) Some real number has square 2.

- i. Equivalent. $(\sqrt{2})^2 = 2$
- (c) Some real numbers have square 2.
 - i. Equivalent. $\left(-\sqrt{2}\right)^2=2$ and $\left(\sqrt{2}\right)^2=2$
- (d) The number x has square 2, for some real number x.
 - i. Equivaent. $(\sqrt{2})^2 = 2$
- (e) The square of each real number is 2.
 - i. Not equivalent. $0^2 \neq 2$
- (f) There is at least one real number whose square is 2.
 - i. Equivalent $(\sqrt{2})^2 = 2$
- 6. Rewrite the following statements in the two forms " \exists _x such that __" and " \exists x such that ___ and ___".
 - (a) Some exercises have answers.
 - i. \exists answers x such that x have answers.
 - ii. $\exists x$ such that x is exercise and x has answers.
 - (b) Some questions are easy.
 - i. \exists questions x such that x is easy
 - ii. $\exists x$ such that x is a question and x is easy.
 - (c) There exists an even integer divisible by 4.
 - i. \exists even integer x such that x is divisible by 4.
 - ii. $\exists x$ such that x is an even integer and x is divisible by 4.
 - (d) Some people are rich but unhappy.
 - i. \exists people x such that x is rich but x is unhappy.
 - ii. $\exists x$ such that x is a rich people and x is unhappy.