Capítulo 1

Mecánica lagrangiana

1.1 Principio de los trabajos virtuales

Las ecuaciones de Newton para un sistema de N partículas,

$$m_i \boldsymbol{a}_i = \boldsymbol{F}_i^a + \boldsymbol{F}_i^v$$

dan cuenta de que sobre cada partícula actúan, en principio, fuerzas externas aplicadas ${\pmb F}^a_i$ y fuerzas de vínculo ${\pmb F}^v_i$. Expresando la aceleración en función de la derivada temporal del momento ${\dot {\pmb p}}_i = m_i {\pmb a}_i$ resulta

$$\dot{\boldsymbol{p}}_i - \boldsymbol{F}_i^a - \boldsymbol{F}_i^v = 0,$$

y entonces, multiplicando cada término por un desplazamiento virtual $\delta \boldsymbol{x}_i$ se tiene

$$\sum_{i}^{N}\left(\dot{\boldsymbol{p}}_{i}-\boldsymbol{F}_{i}^{a}-\boldsymbol{F}_{i}^{v}\right)\cdot\delta\boldsymbol{x}_{i}=0.\label{eq:equation:equation:equation}$$

Si hacemos estos desplazamientos *compatibles* con los vínculos nos quedamos con

$$\sum_{i}^{N} (\dot{\boldsymbol{p}}_{i} - \boldsymbol{F}_{i}^{a}) \cdot \delta \boldsymbol{x}_{i} = 0, \tag{1.1}$$

puesto que las fuerzas de vínculo son siempre perpendiculares a los desplazamientos virtuales, es decir

$$F_i^v \perp \delta x_i$$
.

Esto es sumamente sketchi, debemos leer la carpeta de la cursada y luego la teoría.

Explicar qué es este principio y qué es un desplazamiento virtual.

La expresión (1.1) es el llamado *Principio de los Trabajos Virtuales*, y dada la independencia admitida en los desplazamientos virtuales δx_i , se sigue que la sumatoria en (1.1) es nula porque cada término es nulo, es decir

$$\dot{\boldsymbol{p}}_i - \boldsymbol{F}_i^a = 0 \quad \forall i$$

Relación vínculos y desplazamientos: El hecho de que la fuerza de vínculo sea perpendicular a los desplazamientos puede verse a partir de que la ecuación de vínculo en un sistema toma la forma

¿Y esta magia? Hay que aclarar realmente que sea así como se dice que es.

$$f(\boldsymbol{x}_{i}) - K = 0$$

luego, derivando implícitamente cada ecuación y sumando (si se nos permite un pequeño abuso de notación)

$$\sum_{i}^{N} \frac{\partial f}{\partial \boldsymbol{x}_{i}} d\boldsymbol{x}_{i} = 0$$

pero esto no es otra cosa que

$$\nabla f \cdot \boldsymbol{\delta x} = 0$$

donde debemos entender al gradiente y al vector $\boldsymbol{\delta x}$ como N dimensionales.

1.2 Construcción del lagrangiano

Consideremos un sistema de N partículas, k ecuaciones de vínculo

$$f_1(\boldsymbol{x}_1,\boldsymbol{x}_2,...,\boldsymbol{x}_n,t)=K_1$$

$$f_k(\boldsymbol{x}_1,\boldsymbol{x}_2,...,\boldsymbol{x}_n,t)=K_k$$

y por ende 3N-k grados de libertad (suponiendo que nos hallamos en 3 dimensiones).

Tenemos N relaciones del tipo

$$\mathbf{x}_i = \mathbf{x}_i(q_1, q_2, ..., q_{3N-k}, t)$$
 (2.1)

que significa que la posición de la partícula i-ésima depende en principio de las 3N-k coordenadas generalizadas y del tiempo. Una variación tendrá la forma

$$\delta oldsymbol{x}_i = \sum_{j=1}^{3N-k} \left(rac{\partial oldsymbol{x}_i}{\partial q_j}
ight) \delta q_j + rac{\partial oldsymbol{x}_i}{\partial t} \delta t$$

y suponiéndola un desplazamiento virtual el último término se anula puesto que $\delta t=0$ en ese caso y entonces

$$\delta oldsymbol{x}_i = \sum_{j=1}^{3N-k} \left(rac{\partial oldsymbol{x}_i}{\partial q_j}
ight) \delta q_j.$$

Por otro lado, del principio de los trabajos virtuales (1.1) es

$$\sum_{i}^{N} \dot{\boldsymbol{p}}_{i} \cdot \delta \boldsymbol{x}_{i} - \sum_{i}^{N} \boldsymbol{F}_{i}^{a} \cdot \delta \boldsymbol{x}_{i} = 0$$

y se puede reescribir el primer término como

$$\dot{\boldsymbol{p}}_i \cdot \delta \boldsymbol{x}_i = m_i \frac{d\boldsymbol{v}_i}{dt} \cdot \sum_{i=1}^{3N-k} \left(\frac{\partial \boldsymbol{x}_i}{\partial q_j} \right) \delta q_j,$$

resultando

$$\sum_{i}^{N} m_{i} \frac{d\mathbf{v}_{i}}{dt} \cdot \sum_{i=1}^{3N-k} \left(\frac{\partial \mathbf{x}_{i}}{\partial q_{j}} \right) \delta q_{j} - \sum_{i}^{N} \mathbf{F}_{i}^{a} \cdot \delta \mathbf{x}_{i} = 0$$
 (2.2)

La idea ahora es reescribir todo en términos más convenientes, para que aparezca un término multiplicado a una variación arbitraria. De esta manera quedará una sumatoria de un sumando multiplicado por una variación igualada a cero. No cabe otra posibilidad que el sumando sea nulo para cada índice de la suma.

Escrito muy mal este texto. La idea es clara, no obstante: hay que purificarla

Consideremos en primer lugar la derivada total del producto siguiente

$$\frac{d}{dt}\left(m_i \pmb{v}_i \cdot \frac{\partial \pmb{x}_i}{\partial q_j}\right) = m_i \frac{d \pmb{v}_i}{dt} \cdot \frac{\partial \pmb{x}_i}{\partial q_j} + m_i \pmb{v}_i \cdot \frac{d}{dt}\left(\frac{\partial \pmb{x}_i}{\partial q_j}\right),$$

y en segundo lugar la velocidad de cada partícula, que proviene de la derivada total de cada ecuación (2.1) y resulta

$$oldsymbol{v}_i = rac{doldsymbol{x}_i}{dt} = \sum_{j=1}^{3N-k} \left(rac{\partial oldsymbol{x}_i}{\partial q_j}
ight) \dot{q}_j + rac{\partial oldsymbol{x}_i}{\partial t}.$$

A partir de esta última es claro ver que la derivada de la velocidad de la partícula i-ésima respecto a la coordenada l-ésima es

$$\frac{\partial \mathbf{v}_i}{\partial \dot{q}_i} = \frac{\partial \mathbf{x}_i}{\partial q_i}.\tag{2.3}$$

La ecuación de la velocidad se puede derivar otra vez, con respecto a q_l , obteniéndose

$$\frac{\partial \boldsymbol{v}_i}{\partial q_l} = \frac{\partial}{\partial q_l} \left(\frac{d\boldsymbol{x}_i}{dt} \right) = \sum_{i=1}^{3N-k} \frac{\partial^2 \boldsymbol{x}_i}{\partial q_l \partial q_j} \dot{q}_j + \frac{\partial^2 \boldsymbol{x}_i}{\partial q_l \partial t},$$

Una manera menmotécnica de recordar esto es con el siguiente esquema:

$$\frac{\partial \boldsymbol{v}_i}{\partial \dot{q}_l} = \frac{\partial \boldsymbol{x}_i/\partial t}{\partial q_l/\partial t} = \frac{\partial \boldsymbol{x}_i}{\partial q_l}.$$

y se puede ver que invirtiendo el orden de derivación, esto significa que

$$\frac{\partial \mathbf{v}_i}{\partial q_l} = \frac{d}{dt} \left(\frac{\partial \mathbf{x}_i}{\partial q_l} \right).$$

Volviendo ahora a (2.2) y usando los resultados recientes tenemos

$$\sum_{i}^{N}\sum_{j=1}^{3N-k}\left[\frac{d}{dt}\left(m_{i}\boldsymbol{v}_{i}\frac{\partial\boldsymbol{x}_{i}}{\partial q_{j}}\right)-m_{i}\boldsymbol{v}_{i}\frac{d}{dt}\left(\frac{\partial\boldsymbol{x}_{i}}{\partial q_{j}}\right)\right]\delta q_{j}-\sum_{i}^{N}\boldsymbol{F}_{i}^{a}\cdot\delta\boldsymbol{x}_{i}=0$$

donde modificaremos el corchete expresando derivadas con respecto a la posición x en términos de derivadas con respecto a la velocidad v, de manera que

 $\left[\frac{d}{dt}\left(m_i \boldsymbol{v}_i \frac{\partial \boldsymbol{v}_i}{\partial \dot{q}_j}\right) - m_i \boldsymbol{v}_i \frac{\partial \boldsymbol{v}_i}{\partial q_j}\right]$

y usando el trick usual

$$\boldsymbol{v}\frac{\partial \boldsymbol{v}}{\partial q} = \frac{1}{2} \frac{\partial \boldsymbol{v}^2}{\partial q}$$

resulta

$$\left\{\frac{d}{dt}\left[\frac{\partial}{\partial \dot{q}_{i}}\left(\frac{m_{i}}{2}\boldsymbol{v}_{i}^{2}\right)\right]-\frac{\partial}{\partial q_{i}}\left(\frac{m_{i}}{2}\boldsymbol{v}_{i}^{2}\right)\right\}$$

Es hora ya de introducir la sumatoria en i hacia el interior del corchete, y la ecuación original es ahora

$$\sum_{j=1}^{3N-k} \left\{ \frac{d}{dt} \left[\frac{\partial}{\partial \dot{q}_j} \left(\sum_i^N \frac{m_i}{2} \boldsymbol{v}_i^2 \right) \right] - \frac{\partial}{\partial q_j} \left(\sum_i^N \frac{m_i}{2} \boldsymbol{v}_i^2 \right) \right\} \delta q_j - \sum_i^N \boldsymbol{F}_i^a \cdot \delta \boldsymbol{x}_i = 0$$

y dentro de los paréntesis ha aparecido la energía cinética T. La sumatoria en j no era otra cosa que la suma de las derivadas de los momentos, y entonces

$$\sum_{i}^{N} \dot{\boldsymbol{p}}_{i} \cdot \delta \boldsymbol{x}_{i} = \sum_{i=1}^{3N-k} \left\{ \frac{d}{dt} \left[\frac{\partial T}{\partial \dot{q}_{i}} \right] - \frac{\partial T}{\partial q_{j}} \right\} \delta q_{j} = \sum_{i}^{N} \boldsymbol{F}_{i}^{a} \cdot \delta \boldsymbol{x}_{i}.$$

Escribiendo la variación δx en términos de δq a través de

$$\delta \boldsymbol{x}_i = \sum_{j=1}^{3N-k} \frac{\partial \boldsymbol{x}_i}{\partial q_j} \delta q_j$$

se llega a

$$\sum_{j=1}^{3N-k} \sum_{i}^{N} \left(\boldsymbol{F}_{i}^{a} \cdot \frac{\partial \boldsymbol{x}_{i}}{\partial q_{j}} \right) \, \delta q_{j} = \sum_{j=1}^{3N-k} \sum_{i}^{N} Q_{j} \, \delta q_{j}$$

El hecho de que se pueda sacar fuera la derivada temporal y pasar adentro la derivada con respecto a la coordenada generalizada q puede verse haciendo la cuenta de manera explícita.

El \mathcal{L} es función del conjunto

 $(\{q_i\}, \{\dot{q}_i\}, t).$

siendo Q_j la fuerza generalizada. Entonces

$$\sum_{j=1}^{3N-k} \left\{ \frac{d}{dt} \left[\frac{\partial T}{\partial \dot{q}_j} \right] - \frac{\partial T}{\partial q_j} - Q_j \right\} \delta q_j = 0 \tag{2.4}$$

Si suponemos que las fuerzas son conservativas, provienen de un potencial, entonces

$$\pmb{F}_i^a = -\frac{\partial V(\{\pmb{x}_j\})}{\partial \pmb{x}_i}$$

y expresando la fuerza Q_j en términos del potencial V

$$Q_j = \pmb{F}_i^a \cdot \frac{\partial \pmb{x}_i}{\partial q_j} = -\frac{\partial V}{\partial \pmb{x}_i} \cdot \frac{\partial \pmb{x}_i}{\partial q_j} = -\frac{\partial V}{\partial q_j},$$

que reemplazado en la ecuación

$$\sum_{j=1}^{3N-k} \left\{ \frac{d}{dt} \left[\frac{\partial T}{\partial \dot{q}_j} \right] - \frac{\partial}{\partial q_j} \left(T - V \right) \right\} \delta q_j = 0.$$

Dado que $V=V(\pmb{x}_1,...,\pmb{x}_N)=V(\{q_j\})$ (no depende de las velocidades generalizadas \dot{q}_i) se puede escribir

$$\sum_{j=1}^{3N-k} \left\{ \frac{d}{dt} \left[\frac{\partial}{\partial \dot{q}_j} \left(T - V \right) \right] - \frac{\partial}{\partial q_j} \left(T - V \right) \right\} \delta q_j = 0.$$

y definiendo al lagrangiano $\mathcal L$ como

$$\mathcal{L} \equiv T - V$$

se arriba a

$$\sum_{j=1}^{3N-k} \left\lceil \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_j} \right) - \frac{\partial \mathcal{L}}{\partial q_j} \right\rceil \delta q_j = 0.$$

Si existieran fuerzas que no provienen de un potencial (no conservativas) entonces

$$Q_j + Q_j^{NC} = -\frac{\partial V}{\partial q_j} + Q_j^{NC},$$

y las ecuaciones adquieren un término extra

$$\sum_{j=1}^{3N-k} \left[\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_j} \right) - \frac{\partial \mathcal{L}}{\partial q_j} - Q_j^{NC} \right] \delta q_j = 0.$$

Como esto vale para todo grado de libertad j, puesto que las variaciones son independientes, llegamos a

$$\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_j} \right) - \frac{\partial \mathcal{L}}{\partial q_j} = Q_j^{NC}$$

que son las ecuaciones de Euler-Lagrange con presencia de fuerzas no conservativas. Este es el resultado más importante del capítulo.

No sé si es la primera vez que aparecen. De serlo habría que remarcarlo como es debido, tal vez recuadrar

1.2.1 Algunos ejemplos del lagrangiano

EJEMPLO 2.1 Aro acelerado

Supongamos un aro horizontal en una mesa sin rozamiento. Tiene un único grado de libertad. El vínculo es

$$(x-1/2 at^2)^2 + (y-y_0)^2 = \ell^2$$

y las posiciones instantáneas de la masa m

$$x = \frac{1}{2}at^2 - \ell\cos(\varphi) \qquad y = y_0 + \ell\sin(\varphi)$$

Es conveniente utilizar el ángulo φ como coordenada generalizada. Pero φ está solidaria al aro. Eso no es un problema siempre que el $\mathcal L$ esté medido en un sistema inercial.

En este caso no hay potencial pero como φ es una coordenada vista en un sistema no inercial, aparecerán las fuerzas ficticias asociadas al movimiento. Serán

$$\dot{x} = at + \ell \sin(\varphi) \dot{\varphi} \qquad \dot{y} = \ell \cos(\varphi) \dot{vp}$$

y luego

$$\mathcal{L}=T=\frac{1}{2}m(\dot{x}^2+\dot{y}^2)=\frac{1}{2}m(a^2t^2+2at\ell\sin(\varphi)\dot{\varphi}+\ell^2\dot{\varphi}^2)$$

Las ecuaciones de Euler-Lagrange serán

$$\frac{d}{dt}\left(\frac{\partial\mathcal{L}}{\partial\dot{\varphi}}\right)-\frac{\partial\mathcal{L}}{\partial\varphi}=m\ell^2\ddot{\varphi}+mat\ell\sin(\varphi)=0$$

lo cual resulta en la ecuación de movimiento

$$\ddot{\varphi} = -\frac{at}{\ell}\sin(\varphi)$$

que es una ecuación que da oscilaciones, como la de un péndulo. Estas oscilaciones están causadas, claramente, por la aceleración a.

1.3 Invariancia del lagrangiano ante adición de una derivada total

En el ejemplo visto del sistema mecánico del aro acelerado parece que existía alguna relación entre dos lagrangianos que conducían a iguales ecuaciones de movimiento. Veamos ahora el origen de esa relación.

Falta ilustración del aro y sistema coordenado.

La T del $\mathcal L$ es la vistda desde un sistema INERCIAL siempre; en todo caso leugo aparecen las fuerzas ficticias necesarias. ESTO HAY QUE ESTUDIARLO Y ENTENDERLO.

El lagrangiano se dedujo de las ecuaciones de Newton, entonces debemos calcular T,V de un sistema inercial. Acá no se entiende si lo que se hace en la carpeta está bien o no, en el sentido de que parece que al usar una coordenada que no es inercial estamos calculando T no inercial.? Link con el ejemplo del aro acelerado!!

Dado un lagrangiano $\mathcal{L}=\mathcal{L}(\dot{q}_i,q_i,t)$ nos construimos otro \mathcal{L}' sumándole al anterior la derivada total de una función arbitraria de las coordenadas y del tiempo $F=F(q_i,t)$, de modo que

$$\mathcal{L}'(\dot{q}_i,q_i,t) = \mathcal{L}(\dot{q}_i,q_i,t) + \frac{dF}{dt}(q_i,t).$$

Las ecuaciones de Euler-Lagrange

$$\frac{d}{dt} \left(\frac{\partial \mathcal{L}'}{\partial \dot{q}_j} \right) - \frac{\partial \mathcal{L}'}{\partial q_j} = 0$$

para este nuevo lagrangiano resultan en

$$\frac{d}{dt} \left(\frac{\partial \mathcal{L}'}{\partial \dot{q}_j} \right) - \frac{\partial \mathcal{L}'}{\partial q_j} = \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_j} \right) - \frac{\partial \mathcal{L}}{\partial q_j} + \frac{d}{dt} \left(\frac{\partial}{\partial \dot{q}_i} \left[\frac{dF}{dt} \right] \right) - \frac{\partial}{\partial q_j} \left[\frac{dF}{dt} \right] = 0$$
(3.1)

donde aparecen las ecuaciones correspondientes al lagrangiano \mathcal{L} más los dos términos del renglón inferior. Veremos que estos se cancelan exactamente por un argumento similar al encontrado en la ecuación (2.3) en la sección anterior.

Para ello es necesario expresar la derivada total de F,

$$\frac{dF}{dt} = \sum_{i}^{3N-k} \left(\frac{\partial F}{\partial q_i}\right) \dot{q}_i + \frac{\partial F}{\partial t}$$

y ver que

$$\frac{\partial}{\partial \dot{q}_j} \left[\frac{dF}{dt} \right] = \frac{\partial F}{\partial q_j} \qquad \qquad \frac{\partial}{\partial q_j} \left[\frac{dF}{dt} \right] = \frac{\partial^2 F}{\partial q_j^2} \dot{q}_j + \frac{\partial^2 F}{\partial q_j \partial t}$$

Usando explícitamente estos resultados en los términos extra de (3.1), se llega a que

$$\begin{split} \frac{d}{dt} \left(\frac{\partial}{\partial \dot{q}_j} \left[\frac{dF}{dt} \right] \right) - \frac{\partial}{\partial q_j} \left[\frac{dF}{dt} \right] &= \frac{d}{dt} \left(\frac{\partial F}{\partial q_j} \right) - \frac{\partial}{\partial q_j} \left(\frac{dF}{dt} \right) = \\ \left\{ \frac{\partial^2 F}{\partial {q_j}^2} \, \dot{q}_j + \frac{\partial^2 F}{\partial t \partial q_j} \right\} - \left\{ \frac{\partial^2 F}{\partial {q_j}^2} \dot{q}_j + \frac{\partial^2 F}{\partial q_j \partial t} \right\} &= \frac{\partial^2 F}{\partial t \partial q_j} - \frac{\partial^2 F}{\partial q_j \partial t} = 0 \end{split}$$

donde la obtención del cero responde a que hemos aceptado que las derivadas cruzadas de F son idénticas. Para ello basta con admitir que F sea de clase C^2 (derivadas segundas continuas).

Finalmente hemos comprobado que las ecuaciones de Euler Lagrange no se modifican si añadimos al lagrangiano la derivada total respecto del tiempo de una función de (q_i,t) . O sea que podríamos construir infinitos lagrangianos diferentes por el añadido de una derivada total y todos ellos llevan a las mismas ecuaciones de movimiento.

1.4 Momentos conjugados y coordenadas cíclicas

Dado un lagrangiano $\mathcal{L}=\mathcal{L}(q_i,\dot{q}_i,t)$ se define el momento canónicamente conjugado a q_i como

$$p_j \equiv \frac{\partial \mathcal{L}}{\partial \dot{q}_j},\tag{4.1}$$

y entonces

$$\dot{p}_j = \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_j} \right) \equiv Q_j,$$

que es la fuerza generalizada en el grado de libertad j.

Sea ahora un lagrangiano que no depende explícitamente de la coordenada k, es decir

$$\mathcal{L} = \mathcal{L}(q_1, ..., q_{k-1}, q_{k+1}, ..., q_n, \dot{q}_1, ... \dot{q}_n, t),$$

entonces será

$$\frac{\partial \mathcal{L}}{\partial q_k} = 0$$

y como consecuencia las ecuaciones de Euler-Lagrange en la coordenada k-ésima resultan

$$\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_k} \right) = \dot{p}_k = Q_k = 0$$

de manera que no existe fuerza generalizada en el grado de libertad k y como es $\dot{p}_k=0$, se conserva el momento p_k canónicamente conjugado a q_k . En estos casos se dice que la coordenada q_k que no aparece en el lagrangiano, es una coordenada cíclica.

EJEMPLO 4.1 Potencial central en un plano

Sea un potencial central V(r) en el plano. El lagrangiano de una partícula de masa m sometida al mismo, y en las convenientes coordenadas polares (r,φ) es

$$\mathcal{L} = \frac{1}{2} m (\, \dot{r}^2 + r^2 \dot{\varphi}^2) - V(r). \label{eq:loss}$$

Luego, las ecuaciones de Euler-Lagrange serán, en r,

$$\frac{d}{dt}\left(\frac{\partial\mathcal{L}}{\partial\dot{r}}\right) - \frac{\partial\mathcal{L}}{\partial r} = m\ddot{r} - m\dot{\varphi}^2r + \frac{dV}{dr} = 0$$

y en φ

$$\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{\varphi}} \right) = mr^2 \ddot{\varphi} = 0.$$

En esta última debemos notar que $\partial \mathcal{L}/\partial \varphi = 0$ y esto significa que φ es cíclica. Entonces se conserva el momento canónicamente conjugado a φ puesto que verifica

$$\dot{p}_{\varphi} = mr^2 \ddot{\varphi} = 0$$

lo cual lleva a que $mr^2\dot{arphi}$ es una constante para este sistema. La moraleja es que la existencia de una coordenada cíclica permite ahorrarnos una integración. Esto, por supuesto, para este problema no es otra cosa que la conservación del momento angular [?].

1.5 Momentos canónicamente conjugados y traslaciones rígidas

Consideremos un sistema de partículas que sufre una traslación rígida infinitesimal. Esta traslación se lleva a cabo a través de un desplazamiento en la coordenada q y de magnitud δq en la dirección dada por el versor \hat{n} .

En efecto, para el sistema de N partículas, la traslación rígida implica

$$q \longrightarrow q + \delta q$$
 $\mathbf{x}_i \longrightarrow \mathbf{x}_i + \delta q \,\hat{n}$

La Figura 5.1 representa la situación.

Luego, suponiendo una energía cinética de tipo T_2 , el momento canónicamente conjugado p (en la coordenada q –cuyo subíndice omitimos–) es

[¿se sabe esto a esta altura?]

$$p = \frac{\partial T}{\partial \dot{q}} = \frac{1}{2} \sum_{i}^{N} m_{i} \left(\frac{\partial \boldsymbol{v}_{i}^{2}}{\partial \dot{q}} \right) = \sum_{i}^{N} m_{i} \boldsymbol{v}_{i} \cdot \frac{\partial \boldsymbol{v}_{i}}{\partial \dot{q}}$$

La forma de la traslación rígida implica que

$$\frac{\partial \boldsymbol{v}_i}{\partial \dot{q}} = \frac{\partial \boldsymbol{x}_i}{\partial q} = \lim_{\delta q \to 0} \frac{\boldsymbol{x}_i + \delta q \, \hat{\boldsymbol{n}} - \boldsymbol{x}_i}{\delta q} = \hat{\boldsymbol{n}}.$$

de modo que

$$p = \sum_{i}^{N} m_{i} \boldsymbol{v}_{i} \cdot \hat{\boldsymbol{n}} = \left(\sum_{i}^{N} m_{i} \boldsymbol{v}_{i}\right) \cdot \hat{\boldsymbol{n}} = \boldsymbol{P} \cdot \hat{\boldsymbol{n}} = P_{\hat{\boldsymbol{n}}}$$

Hemos arribado al resultado de que el momento canónicamente conjugado correspondiente a la coordenada generalizada asociada a la traslación rígida es la proyección del momento total en la dirección de ésta.

Hablar de vectores al cuadrado. Nota de cómo se manipula: uso $dv_i^2 = 2v_i dv_i \; \mathbf{y}$

Recodemos que

$$oldsymbol{v}_i = \dot{q}_j rac{\partial oldsymbol{x}_i}{\partial q_j} - rac{\partial oldsymbol{x}_i}{\partial t}$$

Figura 5.1

Para el ejemplo trivial de la partícula libre, $T=1/2 \ m(\dot{x}^2+\dot{y}^2+\dot{z}^2)$, se Este ejemplo suma algo? tiene $p_x = mv_x$ si la traslación es en la dirección \hat{x} .

Para las fuerzas generalizadas, equivalentemente se tiene

$$Q = \sum_{i}^{N} \boldsymbol{F}_{i}^{a} \cdot rac{\partial \boldsymbol{x}_{i}}{\partial q} = \left(\sum_{i}^{N} \boldsymbol{F}_{i}^{a}\right) \cdot \hat{n} = \boldsymbol{F} \cdot \hat{n},$$

la fuerza generalizada es la proyección de las fuerzas aplicadas en la dirección dada por \hat{n} .

La ecuación para la fuerza generalizada Q_i era

$$Q_j = \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_j} \right) - \frac{\partial T}{\partial q_j}.$$

Aún en el caso de que T dependa de q_j la traslación rígida implica que $\partial T/\partial q_j=$ 0 porque es sumar un vector constante a la posición, luego $dx_i/dt = d(x_i)$ a)/dt para todo a constante. Entonces, para la coordenada q asociada a la traslación en \hat{n} se tiene

$$Q = \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}} \right) = \frac{dP_{\hat{n}}}{dt},$$

de tal manera que si en \hat{n} no hay fuerza Q tendremos $dP_{\hat{n}}/dt=0$, es decir $P_{\hat{n}}$ conservado.

1.6 Momentos canónicamente conjugados y rotaciones rígidas

Ahora consideraremos un sistema de partículas que sufre una rotación rígida infinitesimal. Esta se materializa a través de un desplazamiento angular en

Revisar porque esto no estaba tan claro. Supongo que la idea es ver que aún con presencia de T_1 esto sigue valiendo

Acá la cosa es que la traslación es una cosa que sufre el sistema pero no es dinámica. Es una construcción nuestra, como un cambio de sistema de referencia.

la coordenada q de magnitud δq . La dirección y sentido, para cada posición \boldsymbol{x}_i vienen dadas por el producto vectorial $\hat{n} \times \boldsymbol{x}_i$.

Para un sistema de N partículas, la rotación rígida implica

Esta coordenada q es especial en el sentido en que representa una rotación.

$$q \longrightarrow q + \delta q |\boldsymbol{x}| \sin \alpha_i \qquad \boldsymbol{x}_i \longrightarrow \boldsymbol{x}_i + \delta q \, \hat{n} \times \boldsymbol{x}_i$$

La Figura 6.2 representa la situación, donde por razones de claridad se muestran solamente dos partículas.

Figura 6.2

El momento canónicamente conjugado en la coordenada angular q será

$$p = \frac{\partial T}{\partial \dot{q}} = \sum_{i}^{N} m_{i} \boldsymbol{v}_{i} \cdot \frac{\partial \boldsymbol{v}_{i}}{\partial \dot{q}} = \sum_{i}^{N} m_{i} \boldsymbol{v}_{i} \cdot \hat{\boldsymbol{n}} \times \boldsymbol{x}_{i} = \sum_{i}^{N} m_{i} \boldsymbol{v}_{i} \cdot (\hat{\boldsymbol{n}} \times \boldsymbol{x}_{i})$$

donde hemos utilizado el hecho de que

$$\frac{\partial \boldsymbol{v}_i}{\partial \dot{q}} = \frac{\partial \boldsymbol{x}_i}{\partial q} = \lim_{\delta q \to 0} \frac{\boldsymbol{x}_i + \delta q (\hat{n} \times \boldsymbol{x}_i) - \boldsymbol{r}_i}{\delta q} = \hat{n} \times \boldsymbol{x}_i.$$

El sumando se puede reescribir (usando $A\cdot(B\times C)=B\cdot(C\times A)$) para que aparezca explícitamente la forma buscada,

$$p = \sum_{i}^{N} m_{i} \boldsymbol{v}_{i} \cdot (\hat{\boldsymbol{n}} \times \boldsymbol{x}_{i}) = \sum_{i}^{N} \hat{\boldsymbol{n}} \cdot (\boldsymbol{x}_{i} \times m_{i} \boldsymbol{v}_{i}) = \sum_{i}^{N} \hat{\boldsymbol{n}} \cdot \boldsymbol{l}_{i} = \hat{\boldsymbol{n}} \cdot \sum_{i}^{N} \boldsymbol{l}_{i} = \hat{\boldsymbol{n}} \cdot \boldsymbol{L}$$

que significa

$$p = \hat{n} \cdot \boldsymbol{L} = L_{\hat{n}}$$

el momento canónicamente conjugado en la dirección \hat{n} es el momento angular total del sistema proyectado en esa dirección. La fuerza generalizada será

$$Q = \sum_{i}^{N} \boldsymbol{F}_{i}^{a} \cdot \frac{\partial \boldsymbol{x}_{i}}{\partial q} = \sum_{i}^{N} \boldsymbol{F}_{i}^{a} \cdot (\hat{\boldsymbol{n}} \times \boldsymbol{x}_{i}) = \hat{\boldsymbol{n}} \cdot \left(\sum_{i}^{N} \boldsymbol{x}_{i} \times \boldsymbol{F}_{i}^{a}\right) = \hat{\boldsymbol{n}} \cdot \sum_{i}^{N} \boldsymbol{\tau}_{i} = \hat{\boldsymbol{n}} \cdot \boldsymbol{T},$$

i.e. la componente del torque en la dirección \hat{n} .

Asimismo, si la coordenada implica una rotación rígida entonces $\partial T/\partial q=0$ debido a que la energía cinética T es un escalar y es por ende invariante ante rotaciones (un vector rotado cambia su dirección pero no su módulo). Luego

$$Q = \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}} \right) = \frac{dL_{\hat{n}}}{dt} = T_{\hat{n}}.$$

Tal vez un ejemplo 2D ayude a aclarar un poco este tema.

Todo este análisis (traslaciones y rotaciones rígidas) vale si el potencial V no depende de la velocidad; en caso contrario cambia la forma de los momentos canónicos. En efecto, en este caso es

$$p = \frac{\partial \mathcal{L}}{\partial \dot{q}} = \frac{\partial (T-V)}{\partial \dot{q}}$$

Volviendo al ejemplo de la partícula de masa m y carga q en un campo electromagnético se tendrá

$$p = mv_{\hat{n}} + \frac{q}{c} \mathbf{A} \cdot \hat{n},$$

es decir que aparece un término extra con el potencial vector respecto del caso en que la partícula está libre.

1.7 Energía cinética de un sistema

Resulta útil disponer de la energía cinética de un sistema en función de coordenadas generalizadas. Para un sistema de N partículas, es

$$T = \frac{1}{2} \sum_{i}^{N} m_i |\boldsymbol{v}_i|^2$$

donde las posiciones de cada una de ellas se pueden expresar en términos de k coordenadas generalizadas

$$\boldsymbol{x}_i = \boldsymbol{x}_i(q_1, q_2, ..., q_k, t)$$

y sus respectivas velocidades serán

$$oldsymbol{v}_i = \sum_{j}^k rac{\partial oldsymbol{x}_i}{\partial q_j} \, \dot{q}_j + rac{\partial oldsymbol{x}_i}{\partial t}.$$

Luego, utilizando el hecho de que $|oldsymbol{v}_i|^2 = oldsymbol{v}_i \cdot oldsymbol{v}_i$, se tiene

$$T = \frac{1}{2} \sum_{i}^{N} m_{i} \left(\sum_{j=1}^{k} \frac{\partial \boldsymbol{x}_{i}}{\partial q_{j}} \dot{q}_{j} + \frac{\partial \boldsymbol{x}_{i}}{\partial t} \right) \cdot \left(\sum_{s=1}^{k} \frac{\partial \boldsymbol{x}_{i}}{\partial q_{s}} \dot{q}_{s} + \frac{\partial \boldsymbol{x}_{i}}{\partial t} \right) \tag{7.1}$$

y expandiendo el producto resulta

$$T = \frac{1}{2} \sum_{i}^{N} m_{i} \left[\sum_{j}^{k} \sum_{s}^{k} \frac{\partial \boldsymbol{x}_{i}}{\partial q_{j}} \cdot \frac{\partial \boldsymbol{x}_{i}}{\partial q_{s}} \dot{q}_{s} \dot{q}_{j} + 2 \frac{\partial \boldsymbol{x}_{i}}{\partial t} \cdot \sum_{j}^{k} \frac{\partial \boldsymbol{x}_{i}}{\partial q_{j}} \dot{q}_{j} + \left| \frac{\partial \boldsymbol{x}_{i}}{\partial t} \right|^{2} \right],$$

la cual se puede separar en tres contribuciones

$$T = T_2 + T_1 + T_0$$

con las siguientes formas:

$$\begin{split} T_2 &= \frac{1}{2} \sum_j^k \sum_s^k \left(\sum_i^N m_i \frac{\partial \boldsymbol{x}_i}{\partial q_j} \cdot \frac{\partial \boldsymbol{x}_i}{\partial q_s} \right) \dot{q}_j \dot{q}_s \\ T_1 &= \sum_j^k \left(\sum_i^N m_i \frac{\partial \boldsymbol{x}_i}{\partial t} \cdot \frac{\partial \boldsymbol{x}_i}{\partial q_j} \right) \dot{q}_j \\ T_0 &= \frac{1}{2} \sum_i^N m_i \left| \frac{\partial \boldsymbol{x}_i}{\partial t} \right|^2, \end{split}$$

donde se ha alterado el orden de los signos \sum para enfatizar el hecho de que las cantidades entre paréntesis pueden asociarse a una matriz y un vector de acuerdo con

$$\begin{split} a_{js}(q_1,...,q_k,t) &\equiv \sum_i^N m_i \frac{\partial \pmb{x}_i}{\partial q_j} \cdot \frac{\partial \pmb{x}_i}{\partial q_s} \\ b_j(q_1,...,q_k,t) &\equiv \sum_i^N m_i \frac{\partial \pmb{x}_i}{\partial q_s} \cdot \frac{\partial \pmb{x}_i}{\partial t} \end{split}$$

Entonces

$$T_2 = \frac{1}{2} \sum_j^k \sum_s^k a_{js} \, \dot{q}_s \dot{q}_j, \qquad T_1 = \sum_j^k b_j \, \dot{q}_j, \qquad T_0 = \frac{1}{2} \sum_i^N m_i \left| \frac{\partial \boldsymbol{x}_i}{\partial t} \right|^2$$

La derivada con respecto al tiempo de la posición es la d/dt no la parcial.

Este chapter es básicamente un desarrollo formal, habría que bajar con alguna aplicación práctica.

Sacarle espacio al cdot

son, respectivamente, contribuciones cuadráticas, lineales o de orden cero con respecto a las velocidades generalizadas \dot{q} .

Para una particula libre será

$$T = T_2$$

es decir que solamente es cuadrática en las velocidades. Para una partícula sometida a vínculos en general, en términos de las coordenadas generalizadas, se tendrán las tres clases de cinética.

En coordenadas esféricas la energía de una partícula libre es

$$T_2 = \frac{1}{2} m \left(\dot{r}^2 + r^2 \dot{\theta}^2 + r^2 \sin \theta \dot{\varphi}^2 \right). \label{eq:T2}$$

Si las coordenadas generalizadas son las coordenadas r, θ, φ se identifica

$$T_2 = \frac{1}{2} m \left(a_r(r,\theta,\varphi) \dot{r}^2 + a_\theta(r,\theta,\varphi) \dot{\theta}^2 + a_\phi(r,\theta,\varphi) \dot{\varphi}^2 \right).$$

1.8 Energía cinética de un sistema de partículas

La energía de un sistema de partículas es

$$\begin{split} T &= \frac{1}{2} \sum_{i}^{N} m_{i} \pmb{v}_{i}^{2} = \frac{1}{2} \sum_{i}^{N} m_{i} \left(\dot{\pmb{R}} + \dot{\pmb{r}}_{i}' \right)^{2} = \\ &\frac{1}{2} \sum_{i}^{N} m_{i} \pmb{V}_{cm}^{2} + \frac{1}{2} \sum_{i}^{N} m_{i} \pmb{V}_{i}'^{2} + \frac{1}{2} \sum_{i}^{N} 2 m_{i} \pmb{V}_{cm} \cdot \pmb{r}_{i}' \end{split}$$

y veremos ahora que el último término es nulo ya que son vectores perpendiculares. Para ello notemos que

$$M\boldsymbol{R}_{cm} = \sum_{i}^{N} m_{i} \boldsymbol{r}_{i} = \sum_{i}^{N} m_{i} (\boldsymbol{R}_{i} + \boldsymbol{r}_{i}')$$

$$0 = \sum_{i}^{N} m_{i} \boldsymbol{r}_{i}'$$

y también

$$0 = \sum_{\cdot}^{N} m_i \boldsymbol{v}_i'$$

Figura 8.3 Sistema de partículas

de modo que

$$0 = \sum_{i}^{N} m_i \mathbf{V}_{cm} \cdot \mathbf{r}_i'.$$

Finalmente

$$T^{tot} = T^{cm} + T^{tot}_{cm}$$

Esto hay que revisarlo, derivo ambos miembros? Vincular con la figura.

1.9 Trabajo en un sistema de partículas

Empezamos desde

$$W = W^{ext} + W^{int}$$

donde el trabajo externo puede escribirse

Quiero un ℓ en bold, no me gusta el s.

$$W^{ext} = \sum_{i}^{N} \int_{1}^{2} \boldsymbol{F}_{i}^{e} \cdot d\boldsymbol{s}$$
 (9.1)

La no dependencia del camino para la integral que da (9.1) requiere que

$$\label{eq:final_problem} \boldsymbol{F}_{i}^{e} = \boldsymbol{F}_{i}^{e}(\boldsymbol{r}_{i}) \qquad \nabla_{r_{i}} \times \boldsymbol{F}_{i}^{e} = 0$$

y entonces puedo inducir la existencia de una función potencial para las fuerzas externas,

barra resizeable ya.

$$W^{ext} = -\sum_{i}^{N} \Delta V_{i} \big]_{1}^{2}$$

Por otro lado,

$$W_c^{int} = \int_1^2 \sum_{\substack{j \ j
eq i}}^N oldsymbol{F}_{ij}^e \cdot doldsymbol{s}_i$$

$$\sum_{i}^{N}W_{i}^{int} = W^{int} = \sum_{\substack{j\\i\neq j}}^{N}\int_{1}^{2}\sum_{\substack{j\\j\neq i}}^{N}\boldsymbol{F}_{ij}^{e}\cdot d\boldsymbol{s}_{i}$$

1.10 Lagrangiano cíclico en el tiempo

Empezando desde la derivada total con respecto al tiempo del lagrangiano,

$$\frac{d}{dt}\left(\mathcal{L}(q,\dot{q},t)\right) = \frac{\partial\mathcal{L}}{\partial q}\dot{q} + \frac{\partial\mathcal{L}}{\partial \dot{q}}\ddot{q} + \frac{\partial\mathcal{L}}{\partial t} \tag{10.1}$$

y usando la derivada total del término

$$\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}} \dot{q} \right) = \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}} \right) \dot{q} + \frac{\partial \mathcal{L}}{\partial \dot{q}} \ddot{q},$$

se puede expresar (10.1) sin derivadas segundas explícitas \ddot{q} de suerte que

$$\frac{d}{dt}\left(\mathcal{L}(q,\dot{q},t)\right) = \frac{\partial\mathcal{L}}{\partial q}\dot{q} + \frac{d}{dt}\left(\frac{\partial\mathcal{L}}{\partial\dot{q}}\dot{q}\right) - \frac{d}{dt}\left(\frac{\partial\mathcal{L}}{\partial\dot{q}}\right)\dot{q} + \frac{\partial\mathcal{L}}{\partial t}$$

la cual, acomodando un poco los términos, resulta en

$$\frac{d}{dt}\left(\mathcal{L}(q,\dot{q},t)\right) = \left[\frac{\partial\mathcal{L}}{\partial q} - \frac{d}{dt}\left(\frac{\partial\mathcal{L}}{\partial \dot{q}}\right)\right]\dot{q} + \frac{d}{dt}\left(\frac{\partial\mathcal{L}}{\partial \dot{q}}\dot{q}\right) + \frac{\partial\mathcal{L}}{\partial t}.$$

Como el corchete son las ecuaciones de Euler-Lagrange y además $\partial \mathcal{L}/\partial \dot{q} \equiv p$ se tiene

$$\frac{d}{dt}\left(\mathcal{L}(q,\dot{q},t)\right) = \frac{d}{dt}\left(p\:\dot{q}\right) + \frac{\partial\mathcal{L}}{\partial t},$$

o bien.

$$\frac{d}{dt} \left(p \, \dot{q} - \mathcal{L} \right) = -\frac{\partial \mathcal{L}}{\partial t}.$$

Definiendo al operador hamiltoniano \mathcal{H} como

$$\mathcal{H} \equiv p \, \dot{q} - \mathcal{L} \tag{10.2}$$

resulta que

$$\frac{d\mathcal{H}}{dt} = -\frac{\partial \mathcal{L}}{\partial t} \tag{10.3}$$

El hamiltoniano es un operador tal que su variación temporal total depende de la variación temporal explícita del lagrangiano. Entonces, si el lagrangiano no depende explícitamente del tiempo se tiene que $\mathcal{H}=\mathcal{H}_0$, el hamiltoniano se conserva.

Por otra parte, si se cumple que :

No sé en qué momento se ha definido el hamiltoniano, H=T+V, deberíamos referirlo y tenerlo en cuenta.

 $^{^1}$ Notemos en la ecuación (10.3) que la derivada $\partial \mathcal{L}/\partial t$ refiere a la aparición explícita de t; de este modo el hecho de que sea $\partial \mathcal{L}/\partial t = 0$ significa que el \mathcal{H} se conserva pero no que \mathcal{L} se conserva. Esto último requeriría $d\mathcal{L}/dt = 0$.

- Los vínculos no dependen del tiempo
- El potencial no depende de las velocidades generalizadas,

entonces el hamiltoniano es la energía, es decir

$$\mathcal{H} = E = T + V. \tag{10.4}$$

La condición de que los vínculos no dependan del tiempo tiene como consecuencia que la energía cinética sea una función cuadrática en las velocidades generalizadas. Entonces la condición (10.4) se puede expresar en términos de las energías cinéticas y potenciales como

$$T = T_2$$
 $V \neq V(\dot{q})$

Asimismo, la condición de energía constante $E=E_0$ se cumplirá si el Esto se debiera haber visto trabajo de las fuerzas no conservativas es nulo, $W^{\rm nc}=0$.

antes en algún momento, y convendría recordarlo aquí.

EJEMPLO 10.1 Bola rotante engarzada en alambre

Una barra gira sobre un mesa sin rozamiento en torno a un punto fijo O con velocidad angular constante ω . Esta barra tiene enhebrada una bola de masa m que puede deslizarse libremente a lo largo de la misma, como se ilustra esquemáticamente en la figura 10.4.

Figura 10.4 Problema de la barra que gira con una masa m enhebrada.

Claramente la bola seguirá, con respecto a un sistema de coordenadas polar (ρ, φ) con origen en el punto O, una trayectoria como la esquematizada por la curva verde.

En este problema no hay potencial y el lagrangiano, que es T, será

$$\mathcal{L} = \frac{1}{2}(\dot{\rho}^2 + \rho^2\omega^2)$$

El hamiltoniano es

$$\mathcal{H} = \frac{1}{2}(\dot{\rho}^2 - \rho^2 \omega^2). \tag{10.5}$$

Luego, como el lagrangiano no depende explícitamente del tiempo entonces el hamiltoniano dado por la (10.5) se conserva. No obstante, el hamiltoniano no es la energía puesto que la energía cinética T tiene la forma $T=T_2+T_0$, que proviene del hecho de que la fuerza de vínculo (que tendrá dirección angular en este caso) dependerá del tiempo. La energía no se conserva, claramente hay trabajo de la fuerza de vínculo, que es una fuerza no conservativa.

La conservación del hamiltoniano dependerá de las coordenadas generalizadas elegidas. Podría pensarse que el $\mathcal H$ es la energía vista en un sistema no inercial [?]. La energía siempre es la medida en un sistema inercial. Además, cuando se conserve lo será desde cualquier sistema de coordenadas inercial elegido.

1.11 Energía cinética y el hamiltoniano

Dado que la energía cinética tiene la forma general

$$T = \underbrace{\frac{1}{2} \sum_{i}^{N} m_i \left(\frac{\partial \boldsymbol{r}_i}{\partial t}\right)^2}_{T_0} + \underbrace{\sum_{j}^{3n-k} b_j(q_1,...,q_{3N-k},t) \dot{q}_j}_{T_1} + \underbrace{\frac{1}{2} \sum_{j}^{3n-k} \sum_{s}^{3n-k} a_{js}(q_1,...,q_{3N-k},t) \dot{q}_s \dot{q}_j}_{T_2}$$

entonces se sigue que

$$E = T_0 + T_1 + T_2 + V (11.1)$$

y como

$$p_i = \frac{\partial \mathcal{L}}{\partial \dot{q}_i} = T_1 + 2T_2$$

es

$$\mathcal{H} = \sum_{i}^{N} p_{i} \dot{q}_{i} - (T_{0} + T_{1} + T_{2} - V) = 2T_{2} + T_{1} - T_{0} - T_{1} - T_{2} + V = T_{2} - T_{0} + V$$

pero como E es (11.1) se tendrá

$$E = H \iff 2T_0 + T1 = 0$$

y un solución de este sistema es, por supuesto, $T_0=T_1=0$

1.12 Principio de acción mínima

El estado de un sistema mecánico de N grados de libertad en un dado instante de tiempo t puede asociarse a un vector de componentes $\{q_i\}$ viviendo en un espacio N-dimensional de coordenadas generalizadas. La evolución entre dos puntos en ese espacio, de $\{q_i(t_a)\}$ a $\{q_i(t_b)\}$ por ejemplo, se realiza por un trayecto continuo entre esos dos puntos, que es la trayectoria del sistema.

En principio cualquier trayecto entre dos puntos es posible porque eso depende de la física a la cual está sometido el sistema, no obstante existe un principio que permite saber cuál es la trayectoria que seguirá.

Figura 12.5 Trayectoria de un sistema mecánico $\{q_i\}$ entre dos puntos del espacio N-dimensional de coordenadas generalizadas.

Considerando el lagrangiano $\mathcal{L}=T-V$ y la siguiente integral (la acción S) entre los puntos $\{q_i(t_a)\}$ y $\{q_i(t_b)\}$,

$$S = \int_{t_0}^{t_b} \mathcal{L}(q_1(t,q_2(t),...,\dot{q}_1(t),\dot{q}_2(t),...,t)) \ dt$$

se tiene que la trayectoria real entre estos dos puntos es tal que la integral S toma su valor mínimo.

Dicho de otra manera, esto significa que S como funcional dependiendo de $\{q_i\}, \{\dot{q}_i\}$ deberá tener un valor mínimo (o ser estacionaria) al especializarse en la trayectoria real. Esto es análogo a lo que sucede en cálculo; en el mínimo de una función (de una o varias variables) la derivada se anula. El concepto equivalente en funcionales como S es el de variación nula.

La idea es construir una *variación* arbitraria respecto de la trayectoria real $\{q_i\}$ y forzar a que esa variación se anule para obtener un condición sobre las $\{q_i\}$ (para funciones esa condición era que el gradiente se anule).

Si me sitúo en la trayectoria verdadera, es decir el conjunto $\{q_i(t)\}$, una variación arbitraria de la misma tendrá la forma

$$q_i(t) \to q_i(t) + \delta q_i(t)$$
 $i = 1, 2, ...$ (12.1)

donde cada coordenada q variará de acuerdo con su correspondiente desplazamiento δq . La variación se hace en un intervalo de tiempo arbitrario $[t_a,t_b]$ y con extremos fijos,

$$\delta q(t_a) = 0 \qquad \qquad \delta q(t_b) = 0, \tag{12.2} \label{eq:deltaq}$$

lo que significa que los puntos de partida y llegada en el espacio de fases son los mismos.

Habría que justificar cuál es el significado de esto y porqué es así.

Figura 12.6 El principio de acción mínima

Asimismo se pedirá que todas las trayectorias empleen el mismo tiempo de manera que la variación se hará en algún tiempo fijo intermedio $t_a < t < t_b$. O sea que $\delta t = 0$.

Una representación unidimensional (una única q) puede verse en la Figura 12.6. La trayectoria real sería la curva q(t) en color rojo, mientras que la curva verde sería una trayectoria variada a través de δq . Los extremos fijos (12.2) implican que la variación es nula allí, y entonces las curvas comienzan y terminan en el mismo punto.

El hecho de considerar una variación a tiempo fijo t_j implica que nos situaremos arbitrariamente en ese instante y variaremos las trayectorias $\{q_i\}$ congeladas en ese instante arbitrario. Por supuesto, el resultado debería valer para cualquier instante intermedio considerado.

La idea es determinar las condiciones que se necesitan para

$$\frac{\delta S}{\delta q_i} = 0.$$

Para ello comenzamos tomando una variación de S que pasa dentro de la integral como

$$\delta S = \int \left[\mathcal{L}(q_i + \delta q_i, \dot{q}_i + \delta \dot{q}_i, t) - \mathcal{L}(q_i, \dot{q}_i, t) \right] dt$$

y donde vemos explícitamente que es a tiempo fijo.

La variación de la integral puede escribirse

$$\delta S = \int_{t_a}^{t_b} \sum_{i}^{N} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_i} \delta \dot{q}_i + \frac{\partial \mathcal{L}}{\partial q_i} \delta q_i \right) dt,$$

Cuán sketchi es todo esto!! Mucho para aclarar. Tal vez se justifique un minicurso de variacional como apéndice. y como será útil tener todo en función de las variaciones δq_i , es conveniente expresar las variaciones $\delta \dot{q}_i$ en términos de una derivada total a través de

$$\frac{d}{dt}\left(\frac{\partial\mathcal{L}}{\partial\dot{q}_{i}}\delta q_{i}\right) = \frac{d}{dt}\left(\frac{\partial\mathcal{L}}{\partial\dot{q}_{i}}\right)\delta q_{i} + \frac{\partial\mathcal{L}}{\partial\dot{q}_{i}}\delta\dot{q}_{i},$$

resultando en

$$\delta S = \int_{t_a}^{t_b} \sum_{i}^{N} \left[\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_i} \delta q_i \right) - \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_i} \right) \delta q_i + \frac{\partial \mathcal{L}}{\partial q_i} \delta q_i \right] dt,$$

que se puede separar en dos términos

$$\delta S = \int_{t_a}^{t_b} \sum_{i}^{N} \left[\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_i} \delta q_i \right) \right] dt + \int_{t_a}^{t_b} \sum_{i}^{N} \left[\frac{\partial \mathcal{L}}{\partial q_i} - \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_i} \right) \right] \delta q_i \, dt,$$

Pero el primer término es una derivada total y por el teorema fundamental del cálculo,

$$\int_{t_a}^{t_b} \sum_{i}^{N} \left[\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_i} \delta q_i \right) \right] dt = \sum_{i}^{N} \left. \frac{\partial \mathcal{L}}{\partial \dot{q}_i} \delta q_i \right|_{t_a}^{t_b}$$
(12.3)

y es nulo porque $\delta q_i=0$ en los extremos para toda coordenada i (las variaciones son nulas en los extremos). Decimos que este es un término de superficie. Entonces la condición

$$\delta S = \sum_{i}^{N} \int_{t}^{t_{b}} \left[\frac{\partial \mathcal{L}}{\partial q_{i}} - \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \right) \right] \delta q_{i} dt = 0$$

se verificará por el cumplimiento de las ecuaciones de Euler-Lagrange²

$$\sum_{i}^{N} \left[\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \right) - \frac{\partial \mathcal{L}}{\partial q_{i}} \right] = 0.$$

Se puede ver que

$$\delta S = 0 \quad \iff \quad \sum_{i}^{N} \left[\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \right) - \frac{\partial \mathcal{L}}{\partial q_{i}} \right] = 0.$$

Luego, si se hace $\mathcal{L}' = \mathcal{L} + df/dt$ (ambos lagrangianos difieren en una derivada total con respecto al tiempo) la trayectoria que minimiza \mathcal{L}' es la que misma que minimiza \mathcal{L} por la condición dada por (12.3).

La moraleja es que si los lagrangianos difieren en una derivada total del tiempo obtenemos la misma física.

 $^{^2}$ Como las variaciones δq_i son arbitrarias e independientes la anulación de la ecuación δS requiere la anulación de cada uno de los i=1,2,...N corchetes en los integrandos.

1.13 Aplicaciones del principio de acción mínima

$$S = \int (T - V_0) dt$$

donde el lagrangiano es con $V=V_0$ constante (un lagrangiano sujeto a potencial constante). La integral de acción da una medida de la longitud de la órbita (el espacio recorrido). Para una partícula sujeta a V=0

$$S = \frac{1}{2} \int m v_0^2 dt = \frac{1}{2} m v_0^2 (t - t_0)$$

de manera que $v_0(t-t_0)$ representa la distancia d recorrida, y es

$$S = \frac{1}{2}mv_0d$$

Comentario sobre el cálculo de las variaciones

$$I = \int f\left(x, \frac{dx}{dt}, t\right) dt$$

entonces I es extremo si

$$\frac{d}{dt} \left(\frac{\partial f}{\partial [dx/dt]} \right) - \frac{\partial f}{\partial x} = 0$$

También podemos encontrar esta notación, dependiendo del tipo de problema,

$$I = \int f\left(y, \frac{dy}{dx}, x\right) dx$$

1.13.1 Minimización del camino entre dos puntos

2 die -Vo

Figura 13.7

Esta idea debe estar en el suplemento matemático que le dedicaremos a variacional

Esto lo clavo por acá, después reacomodarlo

El τ es fijo. Este problema no es como el del billar porque la velocidad no es constante [?].

$$I = \int_{1}^{2} \mathcal{L} \, dt$$

pero se puede descomponer en $I=I_1+I_2;$ es decir un lagrangiano para cada medio, luego

$$I = \frac{1}{2} m v_1^2 \int_0^{t_i} dt + (\frac{1}{2} m v_2^2 + V_0) \int_{t_i}^{t_f} dt,$$

que al integrar da

$$I = \frac{1}{2} m v_1^2 t_i + \frac{1}{2} m v_2^2 (t_f - t_i) + V_0 (t_f - t_i). \label{eq:interpolation}$$

Las condiciones geométricas del problema (ver Figura) implican que

$$v_1 t_i = \ell_1(x) \qquad \qquad v_2(t_f - t_i) = \ell_2(x)$$

siendo ℓ_i longitudes que dependen de x. Esto permite expresar los tiempos t en términos de la distancia x sobre la frontera. Entonces se obtiene la acción I en términos de posiciones y velocidades, i.e.

$$I = I(v_1,v_2,x) = \frac{1}{2} m v_1 \ell_1(x) + \frac{1}{2} m v_2 \ell_2(x) + \frac{V_0}{V_2} \ell_2(x).$$

Luego, como todo sucede a τ fijo (
 $t_f=\tau)$ se debe tener el siguiente vínculo

$$\tau = \frac{\ell_1(x)}{v_1} + \frac{\ell_2(x)}{v_2}.$$

Entonces, diferenciando implícitamente el vínculo y la integral ${\cal I}$ obtenemos, respectivamente,

$$\begin{split} d\tau &= 0 = \left(\frac{1}{v_1}\frac{d\ell_1}{dx} + \frac{1}{v_2}\frac{d\ell_2}{dx}\right)dx - \frac{\ell_1}{v_1^2}dv_1 - \frac{\ell_2}{v_2^2}dv_2 \\ dI &= \left(\frac{v_1}{2}\frac{d\ell_1}{dx} + \frac{v_2}{2}\frac{d\ell_2}{dx} + \frac{V_0}{v_2}\frac{d\ell_2}{dx}\right)dx + \frac{\ell_1}{2}dv_1 + \left(\frac{\ell_2}{2} - \frac{V_0\ell_2}{v_2^2}\right)dv_2 = 0 \end{split}$$

En esta última ecuación, si fuesen independientes los diferenciales dx, dv_1, dv_2 entonces sería nulo cada paréntesis. Como no es el caso empleamos multiplicadores de Lagrange,

$$d\tau = \lambda \left(\frac{1}{v_1}\frac{d\ell_1}{dx} + \frac{1}{v_2}\frac{d\ell_2}{dx}\right)dx - \lambda \frac{\ell_1}{v_1^2}dv_1 - \lambda \frac{\ell_2}{v_2^2}dv_2$$

y combinando

$$\left(\frac{v_1}{2} \frac{d\ell_1}{dx} + \frac{v_2}{2} \frac{d\ell_2}{dx} + \frac{V_0}{v_2} \frac{d\ell_2}{dx} - \lambda \left[\frac{1}{v_1} \frac{d\ell_1}{dx} + \frac{1}{v_2} \frac{d\ell_2}{dx} \right] \right) dx + \\ \left(\frac{\ell_1}{2} + \lambda \frac{\ell_1}{v_1^2} \right) dv_1 + \left(\frac{\ell_2}{2} - \frac{V_0 \ell_2}{v_2^2} + \lambda \frac{\ell_2}{v_2^2} \right) dv_2.$$

Ahora se puede igualar a cero cada paréntesis porque consideramos independientes v_1 y v_2 . Entonces, se tienen

$$\lambda = -\frac{1}{2}v_1^2 \qquad \qquad \lambda = -\frac{1}{2}v_2^2 + V_0$$

de manera que ha resultado la conservación de la energía

$$\frac{1}{2}v_1^2 = \frac{1}{2}v_2^2 - V_0$$

Reemplazando en la anterior expresión, se llega a

$$\begin{split} v_1\frac{d\ell_1}{dx} + v_2\frac{d\ell_2}{dx} &= 0.\\ \ell_1 &= \sqrt{Y_0^2 + x^2} \qquad \ell_2 = \sqrt{Y_f^2 + (L-x)^2}\\ \frac{d\ell_1}{dx} &= \sin(\alpha_1) \qquad \frac{d\ell_2}{dx} &= -\sin(\alpha_2) \end{split}$$

de modo que

$$v_1\sin(\alpha_1) = v_2\sin(\alpha_2),$$

que es la conclusión de la ley de Snell. Entonces podemos establecer un parangón entre mecánica clásica y óptica geométrica.

1.14 Multiplicadores de Lagrange

El principio variacional de Hamilton nos dice que la trayectoria real que sigue un sistema es la que extremiza la acción

$$S = \int_{t_i}^{t_f} \mathcal{L}\left(q_i[t], \dot{q}_i[t], t\right) dt.$$

Esa condición de extremo, conducía directamente a las ecuaciones de Euler-Lagrange, es decir

$$\delta S = 0 \quad \Leftrightarrow \quad \int \sum_{j=1}^{N} \left[\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{j}} \right) - \frac{\partial \mathcal{L}}{\partial q_{j}} \right] \delta q_{j} \, dt = 0 \tag{14.1}$$

Habría que tomarse medio minuto para chequear: consistencia de la notación con respecto a los límites en estas integrales de acción, definir extremización, ver si la implicancia es un sí y sólo sí o no, etc.

Figura 13.8

donde δq_j eran desplazamientos independientes y esta condición significaba que el corchete debía ser nulo para todo grado de libertad j.

Pero puede suceder (en el caso de vínculos no-holónomos, por ejemplo) que no se pueda despejar alguna q_i y entonces no todos los δq_i son independientes.

Si se tienen s ecuaciones de vínculo no holónomos [¿cómo es un vínculo no-holónomo? o es que se deriva una ecuación de vínculo usual??]

$$\sum_{\ell}^{N} a_{\ell}^{k}(q_{i}, t)\dot{q}_{\ell} + b^{k}(q_{i}, t) = 0 \qquad \qquad k = 1, 2, ..., s$$

donde ℓ suma en los grados de libertad. Multiplicando por δt puede verse que no son independientes,

$$\sum_{\ell}^N a_\ell^k(q_i,t) \delta q_\ell + b^k(q_i,t) \delta t = 0.$$

Si ahora las δq_{ℓ} son variaciones a t fijo, entonces se cumple

$$\sum_{\ell}^{N} a_{\ell}^{k}(q_{i}, t) \delta q_{\ell} = 0,$$

expresión que puede intregrarse con respecto al tiempo y sumar sobre todas las ecuaciones de vínculo,

$$\sum_k^s \int_{t_i}^{t_f} \lambda^k \sum_\ell^N a_\ell^k(q_i, t) \delta q_\ell \, dt = 0.$$

El cero de esta última ecuación puede restarse del otro cero dado por la integral (14.1), suma de N-s ecuaciones con δq_ℓ independientes [¿checar esto?]

con para construirnos de esa manera la ecuación

$$\int \sum_{j=1}^{N-s} \left\{ \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_j} \right) - \frac{\partial \mathcal{L}}{\partial q_j} - \sum_k^s \lambda^k a_j^k(q_i,t) \right\} \delta q_j \, dt = 0$$

y se tienen N-s ecuaciones

$$\frac{d}{dt}\left(\frac{\partial\mathcal{L}}{\partial\dot{q}_{j}}\right)-\frac{\partial\mathcal{L}}{\partial q_{j}}=\sum_{k}^{s}\lambda^{k}a_{j}^{k}(q_{i},t),$$

y s ecuaciones

$$\sum_{\ell}^{N} a_{\ell}^{k}(q_{i}, t)\dot{q}_{\ell} + b^{k}(q_{i}, t) = 0. \tag{14.2}$$

El parámetro λ^k es la fuerza de vínculo asociada al vínculo que no se pudo despejar. Es un multiplicador de Lagrange.

Los vínculos holónomos se pueden escribir también en la forma (14.2). Un vínculo holónomo está representado por una ecuación del tipo

$$f(x_1, x_2, ..., x_N, t) = cte.$$

de manera que para desplazamientos virtuales (donde $\delta t=0$) la derivada temporal de esta ecuación implica³

$$\sum_i \nabla_i f \cdot \delta \boldsymbol{x}_i = 0$$

y esta ecuación es precisamente de la forma $\sum_{\ell} a_{\ell}^k \delta q_{\ell}.$

EJEMPLO 14.1 Resolución de sistema holónomo

Consideramos un cilindro rodando sin deslizar.

Los vínculos son relaciones entre velocidades que se pueden intergrar. De la soga:

$$\dot{x}_1 + \dot{\alpha}a = \dot{x}_2$$

por el rozamiento sobre el piso:

$$\dot{\alpha}a=\dot{x}_1$$

$$\begin{split} \Delta x_1 + a \Delta \alpha &= \Delta x_2 \\ \delta x_1 + a \delta \alpha - \delta x_2 &= 0 \\ \end{split} \qquad \begin{aligned} \Delta \alpha a &= \Delta x_1 \\ \delta x_1 - a \delta \alpha &= 0 \end{aligned}$$

El lagrangiano es

$$\mathcal{L} = \frac{1}{2}m\dot{x}_2^2 + \frac{1}{2}M\dot{x}_1^2 + \frac{1}{2}I\dot{\alpha}^2 + mgx_2$$

Falta entender bien principio trabajos virtuales y despl
virtual ($\delta t=0$)

Aclarar mil cosas: rueda un poco (máximo $\alpha=pi/2$). ¿Es una aproximación sólo válida para ángulos pequeños? El caso exacto es mucho quilombo? Sirve para algo?

Lo de los δ pide para ser explicado y entendido.

 $^{^3}$ Recordemos que para desplazamientos virtuales el término $\partial f/\partial t$ no aparece por estar multiplicado a $\delta t=0.$

donde los dos términos centrales en el rhs son la cinética del cuerpo rígido. Ahora hacemos

$$\lambda^{1}(\delta x_{1} + a\delta\alpha - \delta x_{2}) = 0 \qquad \qquad \lambda^{2}(\delta x_{1} - a\delta\alpha) = 0$$

donde deberíamos obtener λ^1 tensión y λ^2 fuerza de rozamiento. Luego,

$$\begin{array}{ll} m\ddot{x}_1 &= (\lambda^1 1 + \lambda^2 1) \\ m\ddot{x}_2 &= mg + \lambda^1 (-1) \\ I\ddot{\alpha} &= (\lambda^1 a - \lambda^2 a) \end{array}$$

Escribiendo las ecuaciones de Newton para este problema resulta en

$$\begin{array}{ll} m\ddot{x}_1 & = T - F_{\rm roz} \\ m\ddot{x}_2 & = mg - T \\ I\ddot{\alpha} & = Ta + F_{\rm roz} a \end{array}$$

de manera que identificamos naturalmente a

$$\lambda^1 = T$$
 $\lambda^2 = -F_{roz}$

Entonces, para el caso de vínculo holónomos tendremos $a_\ell^k(q_i,t) = \nabla_i f^k \cdot \delta \pmb{x}_i$ de modo que

$$\frac{d}{dt}\left(\frac{\partial \mathcal{L}}{\partial \dot{q}_j}\right) - \frac{\partial \mathcal{L}}{\partial q_j} = \sum_k^s \lambda^k \, \frac{\partial f^k}{\partial q_j}$$

Pero sabemos [sí?] que cuando existe fuerza generalizada (no proveniente de un potencial) se tenía

$$\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_i} \right) - \frac{\partial \mathcal{L}}{\partial q_i} = Q_j, \qquad Q_j = \sum_{i}^{N} \mathbf{F}_i^a \cdot \frac{\partial \mathbf{x}_i}{\partial q_i}$$

e igualando los miembros derechos de (1.14) y (1.14)

$$\sum_{i}^{N} \boldsymbol{F}_{i}^{a} \cdot \frac{\partial \boldsymbol{x}_{i}}{\partial q_{j}} = \sum_{k}^{s} \lambda^{k} \, \frac{\partial f^{k}}{\partial q_{j}}$$

se arriba a que

$$\lambda^k = \mathbf{F}_i^a$$

de manera que λ^k son las fuerzas de vínculo asociadas a los vínculos que no se pudieron retirar (no despejados en las ecuaciones [?]). Si los vínculos son holónomos (pero no quise despejar) entonces son las fuerzas de vínculo.

La moraleja es que si no puedo despejar en función de coordenadas independientes sí o sí necesito introducir multiplicadores de Lagrange.

Hay que escribir bien la conversión de ∇f^k hacia $\partial f^k/\partial q_j$. Parece una boludez, pero tal vez no sea así.

Acá hay temas con los índices y con lo que se suma. Parece no ser la misma cosa.

Más sobre el asunto de vínculos

comparando vemos que

$$Q_j = \sum \lambda^k a_j^k(q_j,t)$$
 vínculos no holónomos

$$Q_j = \sum \lambda^k \nabla_j f^k \cdot \delta r_j$$
 vínculos holónomos

En el caso de vínculos holónomos

$$g(\boldsymbol{r}_1,...,\boldsymbol{r}_n,t)=0$$

donde no quise despejar en función de $q_q, ..., q_n$ resulta que

$$Q_j^{\delta q_j} = \sum_i^N \lambda(\nabla_i f^k \cdot \delta \pmb{r}_i)$$

donde $\delta \boldsymbol{r}_i$ es un desplazamiento virtual de la partícula. Vamos a reescribir este término,

$$\sum_{i}^{N} \frac{\partial g^{k}}{\partial \boldsymbol{r}_{i}} \delta \boldsymbol{r}_{i} = 0$$

$$\nabla_i f^k \cdot \delta \boldsymbol{r}_i = \sum_i \frac{\partial g^k}{\partial \boldsymbol{r}_i} \frac{\partial \boldsymbol{r}_i}{\partial q_j} \delta q_j$$

$$Q_{j}^{\delta q_{j}} = \lambda \sum_{k} \frac{\partial g^{k}}{\partial \boldsymbol{r}_{i}} \sum_{j} \frac{\partial \boldsymbol{r}_{i}}{\partial q_{j}} \delta q_{j}$$

luego como

$$a_j^k \equiv \frac{\partial g^k}{\partial \boldsymbol{r}}$$

se sigue que los λ^k son las fuerzas de vínculo.

En el caso de vínculos no holónomos λ^k son las fuerzas de vínculo asociadas a los vínculos no retirados.

$$\begin{split} Q_{j}\delta q_{j} &= \sum \lambda^{k}(\nabla_{i}g^{k}\cdot\delta\boldsymbol{r}_{i})\\ Q_{j} &= \sum_{k}\lambda^{k}\frac{\partial g^{k}}{\partial\boldsymbol{r}_{i}}\frac{\partial\boldsymbol{r}_{i}}{\partial q_{j}}\\ Q_{j} &= \sum_{k}\lambda^{k}\frac{\partial g^{k}}{\partial q_{i}} \end{split}$$

entonces $\lambda^k = F^v$.

Hay que revisar bien esta sección y meter algún ejemplo esclarecedor.

El supraíndice con δq_j va sobre el igual en realidad.

Figura 14.9 Moneda que rueda libremente por un plano. Intercambié ejes 2 y 3 respecto del dibujo anterior.

Como extra escribamos que para cada grado de libertad j

$$\frac{\partial \mathcal{L}}{\partial q_j} - \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_j} \right) - \sum_k^s \lambda^k a_j^k \equiv 0$$

donde δq_i son ahora independientes.

$$Q_j = \sum_{i}^{N} F_i^a \frac{\partial \boldsymbol{r}_i}{\partial q_j}.$$

EJEMPLO 14.2 Moneda rodando por un plano

Consideramos una moneda que rueda libremente por un plano (no sujeta a potencial). Situraemos un sistema de ejes sobre la moneda, que etiquetaremos 123 y otro fijo fuera de la misma xyz.

$$V_{cm} = -\Omega \times \mathbf{r} = -(\dot{\phi}\hat{2} + \dot{\psi}\hat{3}) \times (-a\hat{2})$$
$$\dot{x}\hat{x} + \dot{y}\hat{y} = -a\dot{\psi}\hat{1}$$

siendo los vínculos

$$z_{cm}-a=0 \qquad \theta=\pi/2 \qquad |{\pmb V}_{cm}|=a\dot{\psi}$$

de tal modo que son dos grados de libertad. El lagrangiano puede escribirse como

$$\mathcal{L} = T = \frac{1}{2} m a^2 \dot{\psi}^2 + \frac{1}{2} I_2^2 \dot{\phi}^2 + \frac{1}{2} I_3^2 \dot{\psi}^2.$$

Como los vínculos dependen de la velocidad, resulta

$$\dot{y} = a\dot{\psi}\cos(\psi)\sin(\phi) = a\sin(\phi)\dot{\psi}$$
$$\dot{x} = a\dot{\psi}\cos(\psi)\cos(\phi) = a\cos(\phi)\dot{\psi}$$

de tal manera que

$$\dot{y} - a\sin(\phi)\dot{\psi} = 0 \qquad \dot{x} - a\cos(\phi)\dot{\psi} = 0$$

No entiendo/recuerdo lo que quise decir con la expresión bajar los ejes. Calculo que se relaciona con la proyección de los ejes 123 en xyz. Confirmarlo. y luego esto equivale a

$$\lambda_1(dy-a\sin(\phi)d\psi)=0 \qquad \lambda_2(dx-a\cos(\phi)d\psi)=0$$

y finalmente

$$\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_i} \right) - \frac{\partial \mathcal{L}}{\partial q_i} = \lambda_i \nabla_i f \cdot \delta \boldsymbol{r}_i$$

Podemos escribir

$$\begin{split} m\ddot{x} &= \lambda_1 \qquad m\ddot{x} = ma\frac{d}{dt}(\cos(\phi)\dot{\psi}) \\ m\ddot{x} &= ma(-\sin(\phi)\dot{\phi}\dot{\psi} + \cos(\phi)\ddot{\psi}) \\ m\ddot{y} &= \lambda_2 \\ I_2\ddot{\phi} &= 0 \qquad I_3\ddot{\psi} = -\lambda_2 a\sin(\phi) - \lambda_1 a\cos(\phi) \\ \hat{1} &= \cos(\psi)[\sin(\phi)\hat{y} + \cos(\phi)\hat{x}] \end{split}$$

1.14.1 Soluciones aproximadas

Puedo tomar un subconjunto pequeño de funciones y restringirme a buscar cua es la mejor función de ese conjunto en el sentido de extremar I:

$$I=\int_{t_i}^{t_f}\mathcal{L}(q_1,...,q_n,\dot{q}_1,...,\dot{q}_n,t)\;dt,$$

donde el subconjunto de las funciones $q_1,q_2,...,q_n$ las tomo de algún subconjunto en particular. Por ejemplo,

$$q_1^f = a_0 + a_1 t_f + \dots$$
 $q_1^i = a_0 + a_1 t_i + \dots$

1.14.2 Oscilador armónico

Considero un oscilador armónico en una dimensión.

$$\mathcal{L} = \frac{1}{2}m\dot{x}^2 - \frac{1}{2}k\dot{x}^2$$

Quiero resolver de manera aproximada el oscilador armónico y ver que está bien. Si considero $n \to \infty$ tengo infinitos parámetros y puedo parametrizar cualquier curva que una los puntos inicial y final.

 $I = \int_{t_i}^{t_f} \mathcal{L}(x, \dot{x}) \ dt$

Parto el intervalo y considero una partición de N cachos.

$$\Delta t N = t_i - t_f$$

comments del gráfico: toda curva que comunica los dos puntos la descompongo en poligonales. Columnas de partición

Figura 14.10

donde $\Delta t \to 0$ y $N \to \infty$. Luego la versión discreta de la integral es

$$I \approx \sum_{i=1}^{N-1} \left(\frac{1}{2} m \frac{(x_{i+1}-x_i)^2}{\Delta t^2} - \frac{1}{2} k x_i^2\right) \Delta t$$

Tomamos la derivada

$$\frac{\partial I}{\partial x_j} = \left(m\frac{(x_j-x_{j-1})}{\Delta t^2} - m\frac{(x_{j+1}-x_j)}{\Delta t^2}\right)\Delta t - kx_j\Delta t$$

e igualándola a cero,

$$\frac{m}{\Delta t^2}(-2x_j + x_{j-1} + x_{j+1}) + kx_j = 0$$

que se puede escribir como

$$\frac{m}{\Delta t} \left(\frac{x_{j+1} - x_j}{\Delta t} - \frac{x_j - x_{j-1}}{\Delta t} \right) + k x_j = 0$$

y que en el límite continuo va a

$$m\ddot{x} - kx = 0.$$

1.15 Potenciales dependientes de la velocidad

Hasta el momento se consideró que el potencial V dependía únicamente de la posición y resultaba eso en una fuerza generalizada [la llamé así?]

$$Q_j = -\frac{\partial V}{\partial q_j}$$

Creo que se puede usar que uno conoce diferencias finitas algo. El final parece no estar muy claro en la carpeta. Hacer la cuenta a mano bien. para la cual el $\mathcal{L} \equiv T - V$ cumplía las ecuaciones de Euler Lagrange

$$\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_j} \right) - \frac{\partial \mathcal{L}}{\partial q_j} = 0.$$
 (15.1)

Si en cambio se tiene un potencial dependiente, además, de la velocidad,

$$U = U(q_1,...,q_2,\dot{q}_1,...,\dot{q}_n,t)$$

y se requiere que sigan valiendo las ecuaciones (15.1) para $\mathcal{L}\equiv T-U$, necesitaremos evidentemente

$$Q_{j} = \frac{d}{dt} \left(\frac{\partial U}{\partial \dot{q}_{j}} \right) - \frac{\partial U}{\partial q_{j}},$$

una fuerza generalizada que depende de posiciones y velocidades.

El ejemplo canónico de una tal fuerza es la fuerza de Lorentz, que es la que sufre una partícula de carga q en presencia de un campo electromagnético dado por campos E, B y cuya forma es

$$\mathbf{F} = q\mathbf{E} + \frac{q}{c}(\mathbf{v} \times \mathbf{B}) \tag{15.2}$$

Esta fuerza (15.2) puede expresarse en términos de dos potenciales. Para ello es necesario recurrir a las relaciones que verifican los campos $\boldsymbol{E}, \boldsymbol{B}$ y que están dadas por las ecuaciones de Maxwell, cuyo esquema se presenta en la siguiente tabla.

$$\nabla \cdot \mathbf{E} = 4\pi\rho \qquad \nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} \qquad \nabla \times \mathbf{B} = \frac{4\pi}{c} \mathbf{J} + \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t}$$

Dado que la divergencia de $m{B}$ es nula, entonces existe un potencial vector $m{A}$ tal que

$$\nabla \times \boldsymbol{A} = \boldsymbol{B}.$$

Entonces, la ley de Faraday resulta

$$\nabla \times \boldsymbol{E} = -\frac{1}{c}\frac{\partial}{\partial t}\left(\nabla \times \boldsymbol{A}\right)$$

o bien

$$\nabla \times \left(\boldsymbol{E} + \frac{1}{c} \frac{\partial \boldsymbol{A}}{\partial t} \right) = 0$$

La cantidad entre paréntesis es de rotor nulo y entonces se puede escribir

$$m{E} + rac{1}{c} rac{\partial m{A}}{\partial t} = -\nabla \varphi(m{x}, t)$$

de manera que los campos B, E pueden expresarse en términos de una función escalar φ y un campo vectorial A como

$$\boldsymbol{B} = \nabla \times \boldsymbol{A}$$
 $\boldsymbol{E} = -\nabla \varphi - \frac{1}{c} \frac{\partial \boldsymbol{A}}{\partial t}.$

Entonces, en términos de estos potenciales (15.2) resulta

$$\mathbf{F} = -q\nabla\varphi - \frac{q}{c}\frac{\partial\mathbf{A}}{\partial t} + \frac{q}{c}\mathbf{v}\times\nabla\times\mathbf{A}.$$

Supongamos, para simplificar el razonamiento, que es ${\pmb F} = F_x \hat x$ y veamos que

$$F_x = -q \frac{\partial \varphi}{\partial x} - \frac{q}{c} \frac{\partial A_x}{\partial t} + \frac{q}{c} \left(v_y [\nabla \times \mathbf{A}]_z - v_z [\nabla \times \mathbf{A}]_y \right)$$

se puede escribir

$$F_x = \frac{d}{dt} \left(\frac{\partial U}{\partial v_x} \right) - \frac{\partial U}{\partial x}.$$

Desarrollando explícitamente el rotor se tiene

$$\left(v_y[\nabla\times\boldsymbol{A}]_z-v_z[\nabla\times\boldsymbol{A}]_y\right)=v_y\frac{\partial A_y}{\partial x}-v_y\frac{\partial A_x}{\partial y}-v_z\frac{\partial A_x}{\partial z}+v_z\frac{\partial A_z}{\partial x}+v_x\frac{\partial A_x}{\partial x}-v_x\frac{\partial A_x}{\partial x}$$

donde se ha sumado y restado la conveniente combinación $v_x\partial_x A_x$. Dado que las velocidades y las posiciones son variables independientes (se verifica $\partial_a v_b=0$ para cualquier combinación a,b=x,y,z) se puede filtrar la velocidad dentro de las derivadas para reescribir

$$v_x \frac{\partial A_x}{\partial x} + v_y \frac{\partial A_y}{\partial x} + v_z \frac{\partial A_z}{\partial x} = \frac{\partial}{\partial x} (v_x A_x + v_y A_y + v_z A_z) = \frac{\partial}{\partial x} (\boldsymbol{v} \cdot \boldsymbol{A})$$

Los tres términos restantes en derivadas respecto de A_x no son otra cosa que una derivada total,

$$-\frac{q}{c}\left(\frac{\partial A_x}{\partial t}-v_x\frac{\partial A_x}{\partial x}-v_y\frac{\partial A_x}{\partial y}-v_z\frac{\partial A_x}{\partial z}\right)=-\frac{q}{c}\left(\frac{\partial A_x}{\partial t}-\boldsymbol{v}\cdot\nabla(A_x)\right)=-\frac{q}{c}\frac{dA_x}{dt}$$

Luego, se fuerza la aparición de una derivada con respecto a la velocidad (para obtener una expresión en consonancia con la buscada) del siguiente modo

$$A_x = \frac{\partial}{\partial v_x}(v_x A_x + v_y A_y + v_z A_z) = \frac{\partial}{\partial v_x}(\boldsymbol{v} \cdot \boldsymbol{A}),$$

y juntando todo resulta

$$F_x = -\frac{\partial}{\partial x} \left(q \boldsymbol{\varphi} - \frac{q}{c} \boldsymbol{v} \cdot \boldsymbol{A} \right) + \frac{d}{dt} \left(\frac{\partial}{\partial v_x} \left(-\frac{q}{c} \boldsymbol{v} \cdot \boldsymbol{A} \right) \right).$$

Como $\varphi = \varphi(x,t)$, se la puede incluir dentro de la derivada con respecto a la velocidad obteniendo finalmente el resultado buscado

$$F_x = -\frac{\partial U}{\partial x} + \frac{d}{dt} \left(\frac{\partial U}{\partial v_x} \right),$$

donde

$$U = q\varphi - \frac{q}{c}\boldsymbol{v} \cdot \boldsymbol{A}.$$

Se puede demostrar directamente la fórmula anterior desde la expresión vectorial de F utilizando su equivalente indicial, es decir a partir de

$$F_i = -q \partial_i \varphi - \frac{q}{c} \; \partial_t A_i + \frac{q}{c} \; \epsilon_{ilm} v_l \epsilon_{mjk} \partial_j A_k$$

que es la coordenada i-ésima de la fuerza F. Utilizando las propiedades del símbolo de Levi-Civita se tiene

$$F_i = -q \partial_i \varphi + \frac{q}{c} \left[-\partial_t A_i + (\delta_{ij} \delta_{lk} - \delta_{ik} \delta_{lj}) v_l \partial_j A_k \right]$$

y, tras colapsar las deltas, y reordenar términos

$$F_i = -q\partial_i\varphi + \frac{q}{c}\left[-\partial_tA_i - v_j\partial_jA_i + v_k\partial_iA_k\right].$$

Como el campo de velocidad v no depende explícitamente de x se puede introducir v_k a través de la derivada ∂_i . Además los dos primeros términos del corchete representan la derivada total de A_i de manera que tenemos

$$F_{i}=-q\partial_{i}\varphi+\frac{q}{c}\left[-\frac{d}{dt}\left(A_{i}\right)+\partial_{i}(v_{k}A_{k})\right],\label{eq:final_fit}$$

o bien

$$F_i = -\partial_i \left[q\varphi - \frac{q}{c} (v_k A_k) \right] - \frac{d}{dt} \left(\frac{q}{c} A_i \right).$$

Se puede hacer aparecer explícitamente lo faltante dentro de la derivada total notando que se puede escribir de manera absolutamente general

$$\frac{q}{c}A_i = \frac{\partial}{\partial v_i}(-q\varphi + \frac{q}{c}v_kA_k)$$

Mucho para tener en cuenta: resumen previo de notación indicial, resumen de classical field theory. Aclarar que posición y velocidad son independientes. dado que φ y \boldsymbol{A} son funciones de la posición y el tiempo solamente. Luego,

$$F_i = -\partial_i \left[q\varphi - \frac{q}{c}(v_k A_k) \right] + \frac{d}{dt} \left[\frac{\partial}{\partial v_i} (q\varphi - \frac{q}{c} v_k A_k) \right]$$

y esto significa que el potencial completo es

$$U(\boldsymbol{x},\boldsymbol{v},t) = q \, \varphi(\boldsymbol{x},t) - \frac{q}{c} \, \boldsymbol{v} \cdot \boldsymbol{A}(\boldsymbol{x},t).$$

En el ejemplo de la fuerza de Lorentz se desprecia el campo generado por la misma partícula que se mueve. Es decir, que el campo externo no es afectado por el movimiento de la partícula. Una formulación lagrangiana que lo tuviera en cuenta debería considerar un \mathcal{L}_p para la partícula.

1.16 Cambio de gauge en potenciales

Según se vio en la sección anterior, en el caso del electromagnetismo tenemos un potencial U que depende de la posición y la velocidad de una manera muy especial. Además el potencial escalar φ usual en la electrostática fue necesario definir un potencial vector \boldsymbol{A} que estaba vinculado con el campo magnético \boldsymbol{B} a través de : $\nabla \times \boldsymbol{A} = \boldsymbol{B}$.

Solamente se le pide al campo \boldsymbol{A} que su rotor sea \boldsymbol{B} y esto no lo determina por completo. En particular si se define

$$\mathbf{A}' = \mathbf{A} + \nabla f$$

un nuevo potencial A' que difiere del original por el añadido del gradiente de una función escalar, las ecuaciones de movimiento no se ven alteradas. En efecto, la divergencia del campo magnético B es

$$\nabla \cdot \mathbf{B} = \nabla \cdot (\nabla \times \mathbf{A}') = \nabla \cdot (\nabla \times \mathbf{A}) + \nabla \cdot (\nabla \times \nabla f) = 0$$

donde el cero se logra porque cada uno de los dos miembros es cero por separado. Asimismo, como el rotor de un gradiente es nulo, el rotor de \boldsymbol{B} no se ve alterado:

$$\nabla \times \boldsymbol{B} = \nabla \times (\nabla \times \boldsymbol{A}') = \nabla \times (\nabla \times \boldsymbol{A}) + \nabla \times (\nabla \times \nabla f) = \nabla \times (\nabla \times \boldsymbol{A}).$$

Luego, hay un grado de libertad extra en la determinación del A que es esta función escalar f, y que se suele expresar dando la divergencia de A. En efecto,

$$\nabla \cdot \mathbf{A}' = \nabla \cdot \mathbf{A} + \nabla^2 f.$$

La divergencia de A se puede elegir entonces arbitrariamente y esto es lo que se conoce como la *libertad de gauge*[?] o el cambio de *gauge* del potencial. Descansa en el hecho de que las ecuaciones de movimiento son, por supuesto, independientes del gauge elegido.

Chequear esta mini subsección.