Problem B1 (4) The two rows given can be obtained by applying the following row operations respectively: $-2A_1 + A_3$ and $0.5(3A_1 - A_3)$. Denoting those two rows as B_1 and B_2 , A_2 can be expressed as $2B_1 + 3B_2$. In fact, every subsequent row A_n can be expressed as $nB_1 + (n+1)B_2$.

Problem B3 (3)

(4) There are no normal magic squares for n=2. By the property of magic squares, given $A=\begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix}$ it must be the case that $a_1+a_2=a_1+a_3$. However, this is equivalent to $a_2=a_3$, which violates the constraint that all the elements must be distinct.

$$1 + \dots + 3^2 = \frac{2x_1 + 2x_2 - x_3 + 2x_1 - x_2 + 2x_3}{3} + \frac{-x_1 + 2x_2 + 2x_3 - 2x_1 + x_2 + 4x_3 + x_1 + x_2 + x_3 + 4x_1 + x_2 - 2x_3}{3} + x_1 + x_2 + x_3$$

$$45 = 3x_1 + 3x_2 + 3x_3$$

$$15 = x_1 + x_2 + x_3$$