Gray Cary Ware A Freidenrich LLP

TECHNOLOGY'S LEGAL EDGESM

01-13-00

4365 Executive Drive, Suite 1600, San Diego, CA 92121-2189 Phone 858-677-1400 Fax 858-677-1465 www.graycary.com

> **PATENT** Attorney Docket No. DIVER1240-5 CERTIFICATE OF MAILING BY "EXPRESS MAIL"

> > HEREBY CERTIFY

Box PATENT APPLICATION Assistant Commissioner for Patents Washington, D.C. 20231

Mikhail Bayley (TYPED OR PRINTED NAME OF PERSON MAILING PAPER OR FEE) SIGNATURE OF PERSON MAILING PAPER OR VEE)

DATE OF DEPOSIT January 11, 2000 HEREBY CEI
THAT THIS PAPER OR FEE IS BEING DEPOSITED WITH THE UNITED STATES POSTAL SERVICE "EXPRESS MAIL POST OFFICE TO ADDRESSEE" SERVICE UNDER 37 C.F.R. 1 10 ON THE DATE INDICATED ABOVE AND IS ADDRESSED TO THE ASSISTANT COMMISSIONER FOR PATENTS, WASHINGTON, D.C. 20231

"EXPRESS MAIL" MAILING LABEL NO EL382207872US

Sir:

Transmitted herewith for filing is a continuation of U.S. Application Serial No. 09/069,226, filed April 27, 1998, now pending, and issuing on January 11, 2000 as U.S. Patent No. 6,013,509, herein incorporated by reference, for:

Inventor(s): PATRICK V. WARREN and RONALD V. SWANSON

TRANSAMINASES AND AMINOTRANSFERASES For:

Enclosed are the following papers, including all those required for a filing date under 37 CFR § 1.53(b):

	# of Pages				
Specification	59				
Claims	3				
Abstract	1				
Formal Drawings [# of Sheets]	18				
Combined Declaration and Power of Attorney	[To be filed at a later date]				
Small Entity Declaration	1				
Permission to Use Sequence Listing and Paper Copy	35				
Information Disclosure Statements	2				
Return Postcard					
Filing fee to be charged to Deposit Account No. 07-1895 in amount of <u>zero</u>					

In re of Application of Patrick V. Warren, et al. Filed: Herewith Page 2

This application claims priority under 35 U.S.C. § 120 to U.S. Patent Application No. 09/069,226, filed April 27, 1998 and issued on January 11, 2000 as U.S. Patent No. 6,013,509; which is a continuation of U.S. Patent Application No. 08/599,171, filed February 9, 1996 and issued on September 29, 1999 as U.S. Patent No. 5,814,473, the contents of all of which are all incorporated by reference in their entirety herein.

No payment of the issue fee, abandonment of, or termination of proceeding has occurred in the above-identified prior application.

The payment of the filing fee is to be deferred until the executed Declaration is filed. Do not charge our deposit account.

Amend the specification by inserting after the title on page 1:

This application is a continuation of U.S. Patent Application No. 09/069,226, filed April 27, 1998 and issued on January 11, 2000 as U.S. Patent No. 6,013,509; which is a continuation of U.S. Patent Application No. 08/599,171, filed February 9, 1996 and issued on September 29, 1999 as U.S. Patent No. 5,814,473, the entire contents of which are hereby incorporated herein by reference.

A verified statement claiming small entity status was filed in parent application, Serial No. 09/069,226, filed on April 27, 1998, and such status is still proper.

The prior application is assigned of record to Recombinant Biocalaysis, Inc., on Reel 8051, Frame 0113 on April 26, 1996.

The power of attorney in the prior application is to Lisa A. Haile, Registration No. 38,347.

A copy of the prior application as filed is enclosed, including a copy of a Combined Declaration and Power of Attorney filed in parent application, U.S. Application Serial No. 09/069,226, filed on April 27, 1998.

Permission to Use Sequence Listing of parent priority is enclosed along with paper copy of Sequence Listing.

Information Disclosure Statements filed in the prior application under 37 C.F.R. 1.97 are hereby made of record. Copy of PTO-1449 form is enclosed.

SACRAMENTO

Attorney Docket No.: DIVER1240-5

In re of Application of Patrick V. Warren, et al.

Filed: Herewith

Page 3

Address all future communications to:

Lisa A. Haile, Ph.D.
GRAY CARY WARE & FREIDENRICH LLP
4365 Executive Drive, Suite 1600
San Diego, California 92121-2189

Telephone: 858-677-1456 Facsimile: 858-677-1465

The undersigned states that the enclosed application papers comprise a copy of the prior application as filed.

Respectfully submitted,

Date: Jenuary 11, 2000

Lisa A. Haile, Ph.D.

Attorney for Applicant

Registration No. 38,347 Telephone: 858-677-1456 Facsimile: 858-677-1465

GRAY CARY WARE & FREIDENRICH LLP 4365 Executive Drive, Suite 1600 San Diego, CA 92121-2189

MOCANNED.

APPLICATION

in the name of

Patrick V. Warren and Ronald V. Swanson

of

Diversa

for

TRANSAMINASES AND AMINOTRANSFERASES

Lisa A. Haile, Ph.D. FISH & RICHARDSON P.C. 4225 Executive Square, Suite 1400 La Jolla, CA 92037 (619) 678-5070 voice (619) 678-5099 fax

Attorney Docket: 09010/016002

I hereby certify under 37 CFR 1.10 that this correspondence is being deposited with the United States Postal Service as Express Mail Post Office To Addressee with sufficient postage on the date indicated below and is addressed to the Commissioner of Patents and Trademarks, Washington, D.C. 20231.

name

DATE OF DEPOSIT:

EXPRESS MAIL NO.: EM 153706597 US

TRANSAMINASES AND AMINOTRANSFERASES

This application is a Continuation of U.S. Patent Application No. 08/599,171 filed on February 9, 1996.

This invention relates to newly identified polynucleotides, polypeptides encoded by such polynucleotides, the use of such polynucleotides and polypeptides, as well as the production and isolation of such polynucleotides and polypeptides. More particularly, the polynucleotides and polypeptides of the present invention have been putatively identified as transaminases and/or aminotransferases. Aminotransferases are enzymes that catalyze the transfer of amino groups from α -amino to α -keto acids. They are also called transaminases.

The α -amino groups of the 20 L-amino acids commonly found in proteins are removed during the oxidative degradation of the amino acids. The removal of the α -amino groups, the first step in the catabolism of most of the L-amino acids, is promoted by aminotransferases (or transaminases). In these transamination reactions, the α -amino group is transferred to the α -carbon atom of α -ketoglutarate, leaving behind the corresponding α -keto acid analog of the amino acid. There is no net deamination (*i.e.*, loss of amino groups) in such reactions because the α -ketoglutarate becomes aminated as the α -amino acid is deaminated. The effect of transamination reactions is to collect the amino groups from many different amino acids in the form of only one, namely, L-glutamate. The glutamate channels amino groups either into biosynthetic pathways or into a final sequence of reactions by which nitrogenous waste products are formed and then excreted.

Cells contain several different aminotransferases, many specific for α -ketoglutarate as the amino group acceptor. The aminotransferases differ in their specificity for the other substrate, the L-amino acid that donates the amino group, and

are named for the amino group donor. The reactions catalyzed by the aminotransferases are freely reversible, having an equilibrium constant of about 1.0 ($\Delta G^{0'} \simeq 0 \text{ kJ/mol}$).

Aminotransferases are classic examples of enzymes catalyzing bimolecular pingpong reactions. In such reactions the first substrate must leave the active site before the second substrate can bind. Thus the incoming amino acid binds to the active site, donates its amino group to pyridoxal phosphate, and departs in the form of an α -keto acid. Then the incoming α -keto acid is bound, accepts the amino group from pyridoxamine phosphate, and departs in the form of an amino acid.

The measurement of alanine aminotransferase and aspartate aminotransferase levels in blood serum is an important diagnostic procedure in medicine, used as an indicator of heart damage and to monitor recovery from the damage.

The polynucleotides and polypeptides of the present invention have been identified as transaminases and/or aminotransferases as a result of their enzymatic activity.

In accordance with one aspect of the present invention, there are provided novel enzymes, as well as active fragments, analogs and derivatives thereof.

In accordance with another aspect of the present invention, there are provided isolated nucleic acid molecules encoding the enzymes of the present invention including mRNAs, cDNAs, genomic DNAs as well as active analogs and fragments of such enzymes.

In accordance with another aspect of the present invention there are provided isolated nucleic acid molecules encoding mature polypeptides expressed by the DNA contained in ATCC Deposit No.

In accordance with yet a further aspect of the present invention, there is provided a process for producing such polypeptides by recombinant techniques comprising culturing recombinant prokaryotic and/or eukaryotic host cells, containing a nucleic acid sequence of the present invention, under conditions promoting expression of said enzymes and subsequent recovery of said enzymes.

In accordance with yet a further aspect of the present invention, there is provided a process for utilizing such enzymes, or polynucleotides encoding such enzymes for transferring an amino group from an α -amino acid to an α -keto acid. Most transaminases use L-amino acids as substrates, but as described below, it is also possible to convert the transaminases of the invention to use D-amino acids as substrates, thereby increasing their array of uses to include, for example, manufacture of synthetic pyrethroids and as components of β -lactam antibiotics. The transaminases of the invention are stable at high temperatures and in organic solvents and, thus, are superior for use with L- and/or D-amino acids for production of optically pure chiral compounds used in pharmaceutical, agricultural and other chemical industries.

In accordance with yet a further aspect of the present invention, there are also provided nucleic acid probes comprising nucleic acid molecules of sufficient length to hybridize to a nucleic acid sequence of the present invention.

In accordance with yet a further aspect of the present invention, there is provided a process for utilizing such enzymes, or polynucleotides encoding such enzymes, for *in vitro* purposes related to scientific research, for example, to generate probes for identifying similar sequences which might encode similar enzymes from other organisms by using certain regions, *i.e.*, conserved sequence regions, of the nucleotide sequence.

These and other aspects of the present invention should be apparent to those skilled in the art from the teachings herein.

The following drawings are illustrative of embodiments of the invention and are not meant to limit the scope of the invention as encompassed by the claims.

Figure 1 is an illustration of the full-length DNA (SEQ ID NO:17) and corresponding deduced amino acid sequence (SEQ ID NO:25) of *Aquifex* aspartate transaminase A of the present invention. Sequencing was performed using a 378 automated DNA sequencer (Applied Biosystems, Inc.) for all sequences of the present invention.

Figure 2 is an illustration of the full-length DNA (SEQ ID NO:18) and corresponding deduced amino acid sequence (SEQ ID NO:26) of *Aquifex* aspartate aminotransferase B.

Figure 3 is an illustration of the full-length DNA (SEQ ID NO:19) and corresponding deduced amino acid sequence (SEQ ID NO:27) of *Aquifex* adenosyl-8-amino-7-oxononanoate aminotransferase.

Figure 4 is an illustration of the full-length DNA (SEQ ID NO:20) and corresponding deduced amino acid sequence (SEQ ID NO:28) of *Aquifex* acetylornithine aminotransferase.

Figure 5 is an illustration of the full-length DNA (SEQ ID NO:21) and corresponding deduced amino acid sequence (SEQ ID NO:29) of *Ammonifex degensii* aspartate aminotransferase.

Figure 6 is an illustration of the full-length DNA (SEQ ID NO:22) and corresponding deduced amino acid sequence (SEQ ID NO:30) of *Aquifex* glucosamine:fructose-6-phosphate aminotransferase.

Figure 7 is an illustration of the full-length DNA (SEQ ID NO:23) and corresponding deduced amino acid sequence (SEQ ID NO:31) of *Aquifex* histidinol-phosphate aminotransferase.

Figure 8 is an illustration of the full-length DNA (SEQ ID NO:24) and corresponding deduced amino acid sequence (SEQ ID NO:32) of *Pyrobacullum aerophilum* branched chain aminotransferase.

Figure 9 is a diagramatic illustration of the assay used to assess aminotransferase activity of the proteins using glutamate dehydrogenase.

The term "gene" means the segment of DNA involved in producing a polypeptide chain; it includes regions preceding and following the coding region (leader and trailer) as well as intervening sequences (introns) between individual coding segments (exons).

A coding sequence is "operably linked to" another coding sequence when RNA polymerase will transcribe the two coding sequences into a single mRNA, which is then translated into a single polypeptide having amino acids derived from both coding sequences. The coding sequences need not be contiguous to one another so long as the expressed sequences ultimately process to produce the desired protein.

"Recombinant" enzymes refer to enzymes produced by recombinant DNA techniques; *i.e.*, produced from cells transformed by an exogenous DNA construct encoding the desired enzyme. "Synthetic" enzymes are those prepared by chemical synthesis.

A DNA "coding sequence of" or a "nucleotide sequence encoding" a particular enzyme, is a DNA sequence which is transcribed and translated into an enzyme when placed under the control of appropriate regulatory sequences.

In accordance with an aspect of the present invention, there are provided isolated nucleic acids (polynucleotides) which encode for the mature enzymes having the deduced amino acid sequences of Figures 1-8 (SEQ ID NOS:17-32).

In accordance with another aspect of the present invention, there are provided isolated polynucleotides encoding the enzymes of the present invention. The deposited material is a mixture of genomic clones comprising DNA encoding an enzyme of the present invention. Each genomic clone comprising the respective DNA has been inserted into a pQE vector (Quiagen, Inc., Chatsworth, CA). The deposit has been deposited with the American Type Culture Collection, 12301 Parklawn Drive, Rockville, Maryland 20852, USA, on December 13, 1995 and assigned ATCC Deposit No. _______.

The deposit(s) have been made under the terms of the Budapest Treaty on the International Recognition of the deposit of micro-organisms for purposes of patent procedure. The strains will be irrevocably and without restriction or condition released to the public upon the issuance of a patent. These deposits are provided merely as convenience to those of skill in the art and are not an admission that a deposit would be required under 35 U.S.C. §112. The sequences of the polynucleotides contained in the deposited materials, as well as the amino acid sequences of the polypeptides encoded thereby, are controlling in the event of any conflict with any description of sequences herein. A license may be required to make, use or sell the deposited materials, and no such license is hereby granted.

The polynucleotides of this invention were originally recovered from genomic DNA libraries derived from the following organisms:

Aquifex VF5 is a Eubacteria which was isolated in Vulcano, Italy. It is a gramnegative, rod-shaped, strictly chemolithoautotrophic, marine organism which grows optimally at 85-90°C (T_{max} =95°C) at pH 6.8 in a high salt culture medium with Q as a substrate, and $H_2/CO_2+0.5\%$ O_2 in gas phase.

Ammonifex degensii KC4 is a new Eubacaterial organism isolated in Java, Indonesia. This Gram negative chemolithoautotroph has three respiration systems. The bacterium can utilize nitrate, sulfate, and sulfur. The organism grows optimally at 70° C, and pH 7.0, in a low salt culture medium with 0.2% nitrate as a substrate and H_2/CO_2 in gas phase.

Pyrobaculum aerophilium IM2 is a thermophilic sulfur archaea (Crenarchaeota) isolated in Ischia Maronti, Italy. It is a rod-shaped organism that grows optimally at 100° C at pH 7.0 in a low salt culture medium with nitrate, yeast extract, peptone, and O_2 as substrates and N_2/CO_2 , O_2 in gas phase.

Accordingly, the polynucleotides and enzymes encoded thereby are identified by the organism from which they were isolated, and are sometimes hereinafter referred to as "VF5/ATA" (Figure 1 and SEQ ID NOS:17 and 25), "VF5/AAB" (Figure 2 and SEQ ID NOS:18 and 26), "VF5/A87A" (Figure 3 and SEQ ID NOS:19 and 27), "VF5/AOA" (Figure 4 and SEQ ID NOS:20 and 28), "KC4/AA" (Figure 5 and SEQ ID NOS:21 and 29), "VF5/GF6PA" (Figure 6 and SEQ ID NOS:22 and 30), "VF5/HPA" (Figure 7 and SEQ ID NOS:23 and 31) and "IM2/BCA" (Figure 8 and SEQ ID NOS:24 and 32).

The polynucleotides and polypeptides of the present invention show identity at the nucleotide and protein level to known genes and proteins encoded thereby as shown in Table 1.

Table 1

		Protein	Protein	DNA
	Gene wichosest	imilarity	Identity	Identity
Enzyme	Homology (Organism)	(%)	(%)	(%)

VF5/ATA	Bacillus subtilis	57.5	38.3	50.1
VF5/AAB	Sulfolobus solfataricus	62.5	33.0	50.1
VF5/A87A	Bacillus sphaericus BioA	67.4	42.9	51
VF5/AOA	Bacillus subtilis argD	70.6	48.7	52.0
KC4/AA	Bacillus YM-2 aspC	72.6	52.7	52.0
VF5/GF6PA	Rhizobium Leguminosarum NodM	66.3	47.7	51.0
VF5/HPA	Bacillus subtilis HisH/E.coli HisC (same gene)	55.7	32.6	45.3
IM2/BCA	E.coli iluE	63.7	43.6	49.7

All the clones identified in Table 1 encode polypeptides which have transaminase or aminotransferase activity.

One means for isolating the nucleic acid molecules encoding the enzymes of the present invention is to probe a gene library with a natural or artificially designed probe using art recognized procedures (see, for example: Current Protocols in Molecular Biology, Ausubel F.M. *et al.* (EDS.) Green Publishing Company Assoc. and John Wiley Interscience, New York, 1989, 1992). It is appreciated by one skilled in the art that the polynucleotides of SEQ ID NOS:17-24, or fragments thereof (comprising at least 12 contiguous nucleotides), are particularly useful probes. Other particularly useful probes for this purpose are hybridizable fragments of the sequences of SEQ ID NOS:1-9 (*i.e.*, comprising at least 12 contiguous nucleotides).

With respect to nucleic acid sequences which hybridize to specific nucleic acid sequences disclosed herein, hybridization may be carried out under conditions of reduced stringency, medium stringency or even stringent conditions. As an example of oligonucleotide hybridization, a polymer membrane containing immobilized denatured nucleic acids is first prehybridized for 30 minutes at 45°C in a solution consisting of 0.9

M NaCl, 50 mM NaH₂PO₄, pH 7.0, 5.0 mM Ną EDTA, 0.5% SDS, 10X Denhardt's, and 0.5 mg/mL polyriboadenylic acid. Approximately 2 X 10⁷ cpm (specific activity 4-9 X 10⁸ cpm/ug) of P end-labeled oligonucleotide probe are then added to the solution. After 12-16 hours of incubation, the membrane is washed for 30 minutes at room temperature in 1X SET (150 mM NaCl, 20 mM Tris hydrochloride, pH 7.8, 1 mM Na₂EDTA) containing 0.5% SDS, followed by a 30 minute wash in fresh 1X SET at Tm -10°C (Tm is minus 10°C) for the oligo-nucleotide probe. The membrane is then exposed to auto-radiographic film for detection of hybridization signals.

Stringent conditions means hybridization will occur only if there is at least 90% identity, preferably at least 95% identity and most preferably at least 97% identity between the sequences. See J. Sambrook et al., Molecular Cloning, A Laboratory Manual, 2d Ed., Cold Spring Harbor Laboratory (1989) which is hereby incorporated by reference in its entirety.

As used herein, a first DNA (RNA) sequence is at least 70% and preferably at least 80% identical to another DNA (RNA) sequence if there is at least 70% and preferably at least a 80% or 90% identity, respectively, between the bases of the first sequence and the bases of the another sequence, when properly aligned with each other, for example when aligned by BLASTN.

The present invention relates to polynucleotides which differ from the reference polynucleotide such that the changes are silent changes, for example the change does not or the changes do not alter the amino acid sequence encoded by the polynucleotide. The present invention also relates to nucleotide changes which result in amino acid substitutions, additions, deletions, fusions and truncations in the polypeptide encoded by the reference polynucleotide. In a preferred aspect of the invention these polypeptides retain the same biological action as the polypeptide encoded by the reference polynucleotide.

The polynucleotides of this invention were recovered from genomic gene libraries from the organisms listed in Table 1. Gene libraries were generated in the Lambda ZAP II cloning vector (Stratagene Cloning Systems). Mass excisions were performed on these libraries to generate libraries in the pBluescript phagemid. Libraries were generated and excisions were performed according to the protocols/methods hereinafter described.

The polynucleotides of the present invention may be in the form of RNA or DNA which DNA includes cDNA, genomic DNA, and synthetic DNA. The DNA may be double-stranded or single-stranded, and if single stranded may be the coding strand or non-coding (anti-sense) strand. The coding sequences which encodes the mature enzymes may be identical to the coding sequences shown in Figures 1-8 (SEQ ID NOS:17-24) or may be a different coding sequence which coding sequence, as a result of the redundancy or degeneracy of the genetic code, encodes the same mature enzymes as the DNA of Figures 1-8 (SEQ ID NOS:17-24).

The polynucleotide which encodes for the mature enzyme of Figures 1-8 (SEQ ID NOS:25-32) may include, but is not limited to: only the coding sequence for the mature enzyme; the coding sequence for the mature enzyme and additional coding sequence such as a leader sequence or a proprotein sequence; the coding sequence for the mature enzyme (and optionally additional coding sequence) and non-coding sequence, such as introns or non-coding sequence 5' and/or 3' of the coding sequence for the mature enzyme.

Thus, the term "polynucleotide encoding an enzyme (protein)" encompasses a polynucleotide which includes only coding sequence for the enzyme as well as a polynucleotide which includes additional coding and/or non-coding sequence.

The present invention further relates to variants of the hereinabove described polynucleotides which encode for fragments, analogs and derivatives of the enzymes

having the deduced amino acid sequences of Figures 1-8 (SEQ ID NOS:25-32). The variant of the polynucleotide may be a naturally occurring allelic variant of the polynucleotide or a non-naturally occurring variant of the polynucleotide.

Thus, the present invention includes polynucleotides encoding the same mature enzymes as shown in Figures 1-8 (SEQ ID NOS:17-24) as well as variants of such polynucleotides which variants encode for a fragment, derivative or analog of the enzymes of Figures 1-8 (SEQ ID NOS:17-24). Such nucleotide variants include deletion variants, substitution variants and addition or insertion variants.

As hereinabove indicated, the polynucleotides may have a coding sequence which is a naturally occurring allelic variant of the coding sequences shown in Figures 1-8 (SEQ ID NOS:17-24). As known in the art, an allelic variant is an alternate form of a polynucleotide sequence which may have a substitution, deletion or addition of one or more nucleotides, which does not substantially alter the function of the encoded enzyme. Also, using directed and other evolution strategies, one may make very minor changes in DNA sequence which can result in major changes in function.

Fragments of the full length gene of the present invention may be used as hybridization probes for a cDNA or a genomic library to isolate the full length DNA and to isolate other DNAs which have a high sequence similarity to the gene or similar biological activity. Probes of this type preferably have at least 10, preferably at least 15, and even more preferably at least 30 bases and may contain, for example, at least 50 or more bases. The probe may also be used to identify a DNA clone corresponding to a full length transcript and a genomic clone or clones that contain the complete gene including regulatory and promotor regions, exons and introns. An example of a screen comprises isolating the coding region of the gene by using the known DNA sequence to synthesize an oligonucleotide probe. Labeled oligonucleotides having a sequence complementary or identical to that of the gene or portion of the gene sequences of the

present invention are used to screen a library of genomic DNA to determine which members of the library the probe hybridizes to.

It is also appreciated that such probes can be and are preferably labeled with an analytically detectable reagent to facilitate identification of the probe. Useful reagents include but are not limited to radioactivity, fluorescent dyes or enzymes capable of catalyzing the formation of a detectable product. The probes are thus useful to isolate complementary copies of DNA from other sources or to screen such sources for related sequences.

The present invention further relates to polynucleotides which hybridize to the hereinabove-described sequences if there is at least 70%, preferably at least 90%, and more preferably at least 95% identity between the sequences. The present invention particularly relates to polynucleotides which hybridize under stringent conditions to the hereinabove-described polynucleotides. As herein used, the term "stringent conditions" means hybridization will occur only if there is at least 95% and preferably at least 97% identity between the sequences. The polynucleotides which hybridize to the hereinabove described polynucleotides in a preferred embodiment encode enzymes which either retain substantially the same biological function or activity as the mature enzyme encoded by the DNA of Figures 1-8 (SEQ ID NOS:17-24).

Alternatively, the polynucleotide may have at least 15 bases, preferably at least 30 bases, and more preferably at least 50 bases which hybridize to any part of a polynucleotide of the present invention and which has an identity thereto, as hereinabove described, and which may or may not retain activity. For example, such polynucleotides may be employed as probes for the polynucleotides of SEQ ID NOS:17-24, for example, for recovery of the polynucleotide or as a diagnostic probe or as a PCR primer.

Thus, the present invention is directed to polynucleotides having at least a 70% identity, preferably at least 90% identity and more preferably at least a 95% identity to a polynucleotide which encodes the enzymes of SEQ ID NOS:25-32 as well as fragments thereof, which fragments have at least 15 bases, preferably at least 30 bases and most preferably at least 50 bases, which fragments are at least 90% identical, preferably at least 95% identical and most preferably at least 97% identical under stringent conditions to any portion of a polynucleotide of the present invention.

The present invention further relates to enzymes which have the deduced amino acid sequences of Figures 1-8 (SEQ ID NOS:17-24) as well as fragments, analogs and derivatives of such enzyme.

The terms "fragment," "derivative" and "analog" when referring to the enzymes of Figures 1-8 (SEQ ID NOS:25-32) means enzymes which retain essentially the same biological function or activity as such enzymes. Thus, an analog includes a proprotein which can be activated by cleavage of the proprotein portion to produce an active mature enzyme.

The enzymes of the present invention may be a recombinant enzyme, a natural enzyme or a synthetic enzyme, preferably a recombinant enzyme.

The fragment, derivative or analog of the enzymes of Figures 1-8 (SEQ ID NOS:25-32) may be (i) one in which one or more of the amino acid residues are substituted with a conserved or non-conserved amino acid residue (preferably a conserved amino acid residue) and such substituted amino acid residue may or may not be one encoded by the genetic code, or (ii) one in which one or more of the amino acid residues includes a substituent group, or (iii) one in which the mature enzyme is fused with another compound, such as a compound to increase the half-life of the enzyme (for example, polyethylene glycol), or (iv) one in which the additional amino acids are fused to the mature enzyme, such as a leader or secretory sequence or a sequence which is

employed for purification of the mature enzyme or a proprotein sequence. Such fragments, derivatives and analogs are deemed to be within the scope of those skilled in the art from the teachings herein.

The enzymes and polynucleotides of the present invention are preferably provided in an isolated form, and preferably are purified to homogeneity.

The term "isolated" means that the material is removed from its original environment (e.g., the natural environment if it is naturally occurring). For example, a naturally-occurring polynucleotide or enzyme present in a living animal is not isolated, but the same polynucleotide or enzyme, separated from some or all of the coexisting materials in the natural system, is isolated. Such polynucleotides could be part of a vector and/or such polynucleotides or enzymes could be part of a composition, and still be isolated in that such vector or composition is not part of its natural environment.

The enzymes of the present invention include the enzymes of SEQ ID NOS:25-32 (in particular the mature enzyme) as well as enzymes which have at least 70% similarity (preferably at least 70% identity) to the enzymes of SEQ ID NOS:25-32 and more preferably at least 90% similarity (more preferably at least 90% identity) to the enzymes of SEQ ID NOS:25-32 and still more preferably at least 95% similarity (still more preferably at least 95% identity) to the enzymes of SEQ ID NOS:25-32 and also include portions of such enzymes with such portion of the enzyme generally containing at least 30 amino acids and more preferably at least 50 amino acids.

As known in the art "similarity" between two enzymes is determined by comparing the amino acid sequence and its conserved amino acid substitutes of one enzyme to the sequence of a second enzyme.

A variant, *i.e.* a "fragment", "analog" or "derivative" polypeptide, and reference polypeptide may differ in amino acid sequence by one or more substitutions, additions, deletions, fusions and truncations, which may be present in any combination.

Among preferred variants are those that vary from a reference by conservative amino acid substitutions. Such substitutions are those that substitute a given amino acid in a polypeptide by another amino acid of like characteristics. Typically seen as conservative substitutions are the replacements, one for another, among the aliphatic amino acids Ala, Val, Leu and Ile; interchange of the hydroxyl residues Ser and Thr, exchange of the acidic residues Asp and Glu, substitution between the amide residues Asp and Gln, exchange of the basic residues Lys and Arg and replacements among the aromatic residues Phe, Tyr.

Most highly preferred are variants which retain the same biological function and activity as the reference polypeptide from which it varies.

Fragments or portions of the enzymes of the present invention may be employed for producing the corresponding full-length enzyme by peptide synthesis; therefore, the fragments may be employed as intermediates for producing the full-length enzymes. Fragments or portions of the polynucleotides of the present invention may be used to synthesize full-length polynucleotides of the present invention.

The present invention also relates to vectors which include polynucleotides of the present invention, host cells which are genetically engineered with vectors of the invention and the production of enzymes of the invention by recombinant techniques.

Host cells are genetically engineered (transduced or transformed or transfected) with the vectors of this invention which may be, for example, a cloning vector such as an expression vector. The vector may be, for example, in the form of a plasmid, a phage, *etc*. The engineered host cells can be cultured in conventional nutrient media

modified as appropriate for activating promoters, selecting transformants or amplifying the genes of the present invention. The culture conditions, such as temperature, pH and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan.

The polynucleotides of the present invention may be employed for producing enzymes by recombinant techniques. Thus, for example, the polynucleotide may be included in any one of a variety of expression vectors for expressing an enzyme. Such vectors include chromosomal, nonchromosomal and synthetic DNA sequences, *e.g.*, derivatives of SV40; bacterial plasmids; phage DNA; baculovirus; yeast plasmids; vectors derived from combinations of plasmids and phage DNA, viral DNA such as vaccinia, adenovirus, fowl pox virus, and pseudorabies. However, any other vector may be used as long as it is replicable and viable in the host.

The appropriate DNA sequence may be inserted into the vector by a variety of procedures. In general, the DNA sequence is inserted into an appropriate restriction endonuclease site(s) by procedures known in the art. Such procedures and others are deemed to be within the scope of those skilled in the art.

The DNA sequence in the expression vector is operatively linked to an appropriate expression control sequence(s) (promoter) to direct mRNA synthesis. As representative examples of such promoters, there may be mentioned: LTR or SV40 promoter, the *E. coli. lac* or *trp*, the phage lambda P_L promoter and other promoters known to control expression of genes in prokaryotic or eukaryotic cells or their viruses. The expression vector also contains a ribosome binding site for translation initiation and a transcription terminator. The vector may also include appropriate sequences for amplifying expression.

In addition, the expression vectors preferably contain one or more selectable marker genes to provide a phenotypic trait for selection of transformed host cells such

as dihydrofolate reductase or neomycin résistance for eukaryotic cell culture, or such as tetracycline or ampicillin resistance in *E. coli*.

The vector containing the appropriate DNA sequence as hereinabove described, as well as an appropriate promoter or control sequence, may be employed to transform an appropriate host to permit the host to express the protein.

As representative examples of appropriate hosts, there may be mentioned: bacterial cells, such as *E. coli, Streptomyces, Bacillus subtilis*; fungal cells, such as yeast; insect cells such as *Drosophila S2* and *Spodoptera Sf9*; animal cells such as CHO, COS or Bowes melanoma; adenoviruses; plant cells, *etc*. The selection of an appropriate host is deemed to be within the scope of those skilled in the art from the teachings herein.

More particularly, the present invention also includes recombinant constructs comprising one or more of the sequences as broadly described above. The constructs comprise a vector, such as a plasmid or viral vector, into which a sequence of the invention has been inserted, in a forward or reverse orientation. In a preferred aspect of this embodiment, the construct further comprises regulatory sequences, including, for example, a promoter, operably linked to the sequence. Large numbers of suitable vectors and promoters are known to those of skill in the art, and are commercially available. The following vectors are provided by way of example; Bacterial: pQE70, pQE60, pQE-9 (Qiagen), pBluescript II KS, ptrc99a, pKK223-3, pDR540, pRIT2T (Pharmacia); Eukaryotic: pXT1, pSG5 (Stratagene) pSVK3, pBPV, pMSG, pSVL SV40 (Pharmacia). However, any other plasmid or vector may be used as long as they are replicable and viable in the host.

Promoter regions can be selected from any desired gene using CAT (chloramphenical transferase) vectors or other vectors with selectable markers. Two appropriate vectors are pKK232-8 and pCM7. Particular named bacterial promoters

include lacI, lacZ, T3, T7, gpt, lambda P_R, P_L and trp. Eukaryotic promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, LTRs from retrovirus, and mouse metallothionein-I. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art.

In a further embodiment, the present invention relates to host cells containing the above-described constructs. The host cell can be a higher eukaryotic cell, such as a mammalian cell, or a lower eukaryotic cell, such as a yeast cell, or the host cell can be a prokaryotic cell, such as a bacterial cell. Introduction of the construct into the host cell can be effected by calcium phosphate transfection, DEAE-Dextran mediated transfection, or electroporation (Davis, L., Dibner, M., Battey, I., Basic Methods in Molecular Biology, (1986)).

The constructs in host cells can be used in a conventional manner to produce the gene product encoded by the recombinant sequence. Alternatively, the enzymes of the invention can be synthetically produced by conventional peptide synthesizers.

Mature proteins can be expressed in mammalian cells, yeast, bacteria, or other cells under the control of appropriate promoters. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described by Sambrook et al., Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor, N.Y., (1989), the disclosure of which is hereby incorporated by reference.

Transcription of the DNA encoding the enzymes of the present invention by higher eukaryotes is increased by inserting an enhancer sequence into the vector. Enhancers are cis-acting elements of DNA, usually about from 10 to 300 bp that act on a promoter to increase its transcription. Examples include the SV40 enhancer on the late side of the replication origin bp 100 to 270, a cytomegalovirus early promoter enhancer,

the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers.

Generally, recombinant expression vectors will include origins of replication and selectable markers permitting transformation of the host cell, e.g., the ampicillin resistance gene of $E.\ coli$ and $S.\ cerevisiae$ TRP1 gene, and a promoter derived from a highly-expressed gene to direct transcription of a downstream structural sequence. Such promoters can be derived from operons encoding glycolytic enzymes such as 3-phosphoglycerate kinase (PGK), α -factor, acid phosphatase, or heat shock proteins, among others. The heterologous structural sequence is assembled in appropriate phase with translation initiation and termination sequences, and preferably, a leader sequence capable of directing secretion of translated enzyme. Optionally, the heterologous sequence can encode a fusion enzyme including an N-terminal identification peptide imparting desired characteristics, e.g., stabilization or simplified purification of expressed recombinant product.

Useful expression vectors for bacterial use are constructed by inserting a structural DNA sequence encoding a desired protein together with suitable translation initiation and termination signals in operable reading phase with a functional promoter. The vector will comprise one or more phenotypic selectable markers and an origin of replication to ensure maintenance of the vector and to, if desirable, provide amplification within the host. Suitable prokaryotic hosts for transformation include *E. coli, Bacillus subtilis, Salmonella typhimurium* and various species within the genera Pseudomonas, Streptomyces, and Staphylococcus, although others may also be employed as a matter of choice.

As a representative but nonlimiting example, useful expression vectors for bacterial use can comprise a selectable marker and bacterial origin of replication derived from commercially available plasmids comprising genetic elements of the well known cloning vector pBR322 (ATCC 37017). Such commercial vectors include, for example,

pKK223-3 (Pharmacia Fine Chemicals, Uppsala, Sweden) and pGEM1 (Promega Biotec, Madison, WI, USA). These pBR322 "backbone" sections are combined with an appropriate promoter and the structural sequence to be expressed.

Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, the selected promoter is induced by appropriate means (e.g., temperature shift or chemical induction) and cells are cultured for an additional period.

Cells are typically harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract retained for further purification.

Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents, such methods are well known to those skilled in the art.

Various mammalian cell culture systems can also be employed to express recombinant protein. Examples of mammalian expression systems include the COS-7 lines of monkey kidney fibroblasts, described by Gluzman, *Cell*, 23:175 (1981), and other cell lines capable of expressing a compatible vector, for example, the C127, 3T3, CHO, HeLa and BHK cell lines. Mammalian expression vectors will comprise an origin of replication, a suitable promoter and enhancer, and also any necessary ribosome binding sites, polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5' flanking nontranscribed sequences. DNA sequences derived from the SV40 splice, and polyadenylation sites may be used to provide the required nontranscribed genetic elements.

The enzyme can be recovered and purified from recombinant cell cultures by methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic

interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Protein refolding steps can be used, as necessary, in completing configuration of the mature protein. Finally, high performance liquid chromatography (HPLC) can be employed for final purification steps.

The enzymes of the present invention may be a naturally purified product, or a product of chemical synthetic procedures, or produced by recombinant techniques from a prokaryotic or eukaryotic host (for example, by bacterial, yeast, higher plant, insect and mammalian cells in culture). Depending upon the host employed in a recombinant production procedure, the enzymes of the present invention may be glycosylated or may be non-glycosylated. Enzymes of the invention may or may not also include an initial methionine amino acid residue.

Transaminases are a group of key enzymes in the metabolism of amino acids and amino sugars and are found in all organisms from microbes to mammals. In the transamination reaction, an amino group is transferred from an amino acid to an α -keto acid. Pyridoxal phosphate is required as a co-factor to mediate the transfer of the amino group without liberation of ammonia.

Amino acids currently have applications as additives to aminal feed, human nutritional supplements, components in infusion solutions, and synthetic intermediates for manufacture of pharmaceuticals and agricultural products. For example, L-glutamic acid is best known as a flavor enhancer for human food. L-lysine and L-methionine are large volume additives to animal feed and human supplements. L-tryptophan and L-threonine have similar potential applications. L-phenylalanine and L-aspartic acid have very important market potential as key components in the manufacture of the low-calorie sweetener aspartame, and other promising low-calorie sweeteners have compositions containing certain amino acids as well. Infusion solutions require a large range of amino acids including those essential ones in human diets.

Transaminases are highly stereoselective, and most use L-amino acids as substrates. Using the approach disclosed in a commonly assigned, copending provisional application Serial No. 60/008,316, filed on December 7, 1995 and entitled "Combinatorial Enzyme Development," the disclosure of which is incorporated herein by reference in its entirety, one can convert the transaminases of the invention to use D-amino acids as substrates. Such conversion makes possible a broader array of transaminase applications. For instance, D-valine can be used in the manufacture of synthetic pyrethroids. D-phenylglycine and its derivatives can be useful as components of β -lactam antibiotics. Further, the thermostable transaminases have superior stability at higher temperatures and in organic solvents. Thus, they are better suited to utilize either L- and/or D-amino acids for production of optically pure chiral compounds used in pharmaceutical, agricultural, and other chemical manufactures.

There are a number of reasons to employ transaminases in industrial-scale production of amino acids and their derivatives.

- 1) Transaminases can catalyze stereoselective synthesis of D- or L-amino acids from their corresponding α -keto acids. Therefore no L- or D-isomers are produced, and no resolution is required.
- Transaminases have uniformly high catalytic rates, capable of converting up to 400 μ moles of substrates per minute per mg enzyme.
- 3) Many required α -keto acids can be conveniently prepared by chemical synthesis at low cost.
- 4) The capital investment for an immobilized enzyme process using transaminases is much lower than for a large scale fermentation process, and productivity of the bioreactor is often an order of magnitude higher.

5) The technology is generally applicable to a broad range of D- or L-amino acids because transaminases exist with varying specificities. Such broad scope allows a number of different L- or D-amino acids to be produced with the same equipment and often the same biocatalyst.

Antibodies generated against the enzymes corresponding to a sequence of the present invention can be obtained by direct injection of the enzymes into an animal or by administering the enzymes to an animal, preferably a nonhuman. The antibody so obtained will then bind the enzymes itself. In this manner, even a sequence encoding only a fragment of the enzymes can be used to generate antibodies binding the whole native enzymes. Such antibodies can then be used to isolate the enzyme from cells expressing that enzyme.

For preparation of monoclonal antibodies, any technique which provides antibodies produced by continuous cell line cultures can be used. Examples include the hybridoma technique (Kohler and Milstein, *Nature*, 256:495-497, 1975), the trioma technique, the human B-cell hybridoma technique (Kozbor *et al.*, *Immunology Today* 4:72, 1983), and the EBV-hybridoma technique to produce human monoclonal antibodies (Cole *et al.*, in *Monoclonal Antibodies and Cancer Therapy*, Alan R. Liss, Inc., pp. 77-96, 1985).

Techniques described for the production of single chain antibodies (U.S. Patent 4,946,778) can be adapted to produce single chain antibodies to immunogenic enzyme products of this invention. Also, transgenic mice may be used to express humanized antibodies to immunogenic enzyme products of this invention.

Antibodies generated against an enzyme of the present invention may be used in screening for similar enzymes from other organisms and samples. Such screening techniques are known in the art, for example, one such screening assay is described in Sambrook and Maniatis, Molecular Cloning: A Laboratory Manual (2d Ed.), vol.

2:Section 8.49, Cold Spring Harbor Laboratory, 1989, which is hereby incorporated by reference in its entirety.

The present invention will be further described with reference to the following examples; however, it is to be understood that the present invention is not limited to such examples. All parts or amounts, unless otherwise specified, are by weight.

In order to facilitate understanding of the following examples certain frequently occurring methods and/or terms will be described.

"Plasmids" are designated by a lower case "p" preceded and/or followed by capital letters and/or numbers. The starting plasmids herein are either commercially available, publicly available on an unrestricted basis, or can be constructed from available plasmids in accord with published procedures. In addition, equivalent plasmids to those described are known in the art and will be apparent to the ordinarily skilled artisan.

"Digestion" of DNA refers to catalytic cleavage of the DNA with a restriction enzyme that acts only at certain sequences in the DNA. The various restriction enzymes used herein are commercially available and their reaction conditions, cofactors and other requirements were used as would be known to the ordinarily skilled artisan. For analytical purposes, typically 1 μ g of plasmid or DNA fragment is used with about 2 units of enzyme in about 20 μ l of buffer solution. For the purpose of isolating DNA fragments for plasmid construction, typically 5 to 50 μ g of DNA are digested with 20 to 250 units of enzyme in a larger volume. Appropriate buffers and substrate amounts for particular restriction enzymes are specified by the manufacturer. Incubation times of about 1 hour at 37°C are ordinarily used, but may vary in accordance with the supplier's instructions. After digestion the reaction is electrophoresed directly on a polyacrylamide gel to isolate the desired fragment.

Size separation of the cleaved fragments is performed using 8 percent polyacrylamide gel described by Goeddel et al., Nucleic Acids Res., 8:4057 (1980).

"Oligonucleotides" refers to either a single stranded polydeoxynucleotide or two complementary polydeoxynucleotide strands which may be chemically synthesized. Such synthetic oligonucleotides have no 5' phosphate and thus will not ligate to another oligonucleotide without adding a phosphate with an ATP in the presence of a kinase. A synthetic oligonucleotide will ligate to a fragment that has not been dephosphorylated.

"Ligation" refers to the process of forming phosphodiester bonds between two double stranded nucleic acid fragments (Maniatis, T., et al., Id., p. 146). Unless otherwise provided, ligation may be accomplished using known buffers and conditions with 10 units of T4 DNA ligase ("ligase") per 0.5 μ g of approximately equimolar amounts of the DNA fragments to be ligated.

Unless otherwise stated, transformation was performed as described in Sambrook and Maniatis, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, 1989.

Example 1

Bacterial Expression and Purification of Transaminases and Aminotransferases

DNA encoding the enzymes of the present invention, SEQ ID NOS:25 through 32, were initially amplified from a pBluescript vector containing the DNA by the PCR technique using the primers noted herein. The amplified sequences were then inserted into the respective PQE vector listed beneath the primer sequences, and the enzyme was expressed according to the protocols set forth herein. The genomic DNA has also been used as a template for the PCR amplification, *i.e.*, once a positive clone has been identified and primer sequences determined using the cDNA, it was then possible to return to the genomic DNA and directly amplify the desired sequence(s) there. The 5' and 3' primer sequences and the vector for the respective genes are as follows:

Aquifex Aspartate Transaminase A

aspa501 5' CCGAGAATTCATTAAAGAGGAGAAATTAACTATGATTGAAGACCCTATGGAC (SEQ. ID NO:1)

aspa301 3' CGAAGATCTTTAGCACTTCTCAGGTTC (SEQ. ID NO:2)

vector: pQET1

Aquifex Aspartate Aminotransferase B

aspb501 5' CCGAGAATTCATTAAAGAGGAGAAATTAACTATGGACAGGCTTGAAAAAGTA (SEQ ID NO:3)

aspb301 3' CGGAAGATCTTCAGCTAAGCTTCTCTAAGAA (SEQ ID NO:4)

vector: pQET1

Aquifex Adenosyl-8-amino-7-oxononanoate Aminotransferase

ameth501 5' CCGACAATTGATTAAAGAGGGAGAAATTAACTATGTGGGAATTAGACCCTAAA (SEQ ID NO:5)

ameth301 3' CGGAGGATCCCTACACCTCTTTTTCAAGCT (SEQ ID NO:6)

vector: pQET12

Aquifex Acetylornithine Aminotransferase

aorn 501 5' CCGACAATTGATTAAAGAGGGAGAAATTAACTATGACATACTTAATGAACAAT (SEQ ID NO:7)

aorn 301 3' CGGAAGATCTTTATGAGAAGTCCCTTTCAAG (SEQ ID NO:8)

vector: pQET12

Ammonifex degensii Aspartate Aminotransferase

adasp 501 5' CCGAGAATTCATTAAAGAGGAGAAATTAACTATGCGGAAACTGGCCGAGCGG (SEQ ID NO:9)

adasp 301 3' CGGAGGATCCTTAAAGTGCCGCTTCGATCAA (SEQ ID NO:10)

vector: pQET12

Aguifex Glucosamine: Fructose-6-phosphate Aminotransferase

glut 501 5' CCGACAATTGATTAAAGAGGAGAAATTAACTATGTGCGGGATAGTCGGATAC (SEQ ID NO:11)

glut 301 3' CGGAAGATCTTTATTCCACCGTGACCGTTTT (SEQ ID NO:12)

vector: pQET1

Aquifex Histadine-phosphate Aminotransferase

his 501 5' CCGACAATTGATTAAAGAGGAGAAÁTTAACTATGATACCCCAGAGGATTAAG (SEQ ID NO:13) his 301 3' CGGAAGATCTTTAAAGAGAGCCTTGAAAGGGA (SEQ ID NO:14)

vector: pQET1

Pyrobacullum aerophilum Branched Chain Aminotransferase

bcat 501 5' CCGAGAATTCATTAAAGAGGAGAAATTAACTATGAAGCCGTACGCTAAATAT (SEQ ID NO:15)

bcat 301 3' CGGAAGATCTCTAATACACAGGAGTGATCCA (SEQ ID NO:16)

vector: pQET1

The restriction enzyme sites indicated correspond to the restriction enzyme sites on the bacterial expression vector indicated for the respective gene (Qiagen, Inc. Chatsworth, CA). The pQE vector encodes antibiotic resistance (Amp^r), a bacterial origin of replication (ori), an IPTG-regulatable promoter operator (P/O), a ribosome binding site (RBS), a 6-His tag and restriction enzyme sites.

The pQE vector was digested with the restriction enzymes indicated. The amplified sequences were ligated into the respective pQE vector and inserted in frame with the sequence encoding for the RBS. The ligation mixture was then used to transform the E. coli strain M15/pREP4 (Qiagen, Inc.) by electroporation. M15/pREP4 contains multiple copies of the plasmid pREP4, which expresses the lacI repressor and also confers kanamycin resistance (Kan^r). Transformants were identified by their ability to grow on LB plates and ampicillin/kanamycin resistant colonies were selected. Plasmid DNA was isolated and confirmed by restriction analysis. Clones containing the desired constructs were grown overnight (O/N) in liquid culture in LB media supplemented with both Amp (100 ug/ml) and Kan (25 ug/ml). The O/N culture was used to inoculate a large culture at a ratio of 1:100 to 1:250. The cells were grown to an optical density 600 (O.D.⁶⁰⁰) of between 0.4 and 0.6. IPTG ("Isopropyl-B-D-thiogalacto pyranoside") was then added to a final concentration of 1 mM. IPTG induces by inactivating the lacI repressor, clearing the P/O leading to increased gene expression. Cells were grown an extra 3 to 4 hours. Cells were then harvested by centrifugation.

The primer sequences set out above may also be employed to isolate the target gene from the deposited material by hybridization techniques described above.

Example 2

Isolation of a Selected Clone from the Deposited Genomic Clones

The two oligonucleotide primers corresponding to the gene of interest are used to amplify the gene from the deposited material. A polymerase chain reaction is carried out in 25 µl of reaction mixture with 0.1 µg of the DNA of the gene of interest. The reaction mixture is 1.5-5 mM MgCl₂, 0.01% (w/v) gelatin, 20 µM each of dATP, dCTP, dGTP, dTTP, 25 pmol of each primer and 1.25 Unit of Taq polymerase. Thirty cycles of PCR (denaturation at 94°C for 1 min; annealing at 55°C for 1 min; elongation at 72°C for 1 min) are performed with the Perkin-Elmer Cetus 9600 thermal cycler. The amplified product is analyzed by agarose gel electrophoresis and the DNA band with expected molecular weight is excised and purified. The PCR product is verified to be the gene of interest by subcloning and sequencing the DNA product.

Numerous modifications and variations of the present invention are possible in light of the above teachings and, therefore, within the scope of the appended claims, the invention may be practiced otherwise than as particularly described.

What Is Claimed Is:

- 1. An isolated polynucleotide encoding an enzyme with aminotransferase activity and which is at least 70% identical to a member selected from the group consisting of:
 - a) SEQ ID NOS:25-32;
 - b) SEQ ID NOS:25-32 wherein T can also be U;
 - c) nucleic acid sequences complementary to a) and b); and
 - d) fragments of a), b) or c) that are at least 15 bases in length and that hybridize to DNA which encodes the amino acid sequences of SEQ ID NOS:25-32 under moderate to highly stringent conditions.
- 2. The polynucleotide of claim 1, wherein the polynucleotide is DNA.
- 3. The polynucleotide of claim 1, wherein the polynucleotide is RNA.
- 4. The polynucleotide of claim 2 which encodes the enzyme of SEQ ID NO:25.
- 5. The polynucleotide of claim 2 which encodes the enzyme of SEQ ID NO:26.
- 6. The polynucleotide of claim 2 which encodes the enzyme of SEQ ID NO:27.
- 7. The polynucleotide of claim 2 which encodes the enzyme of SEQ ID NO:28.
- 8. The polynucleotide of claim 2 which encodes the enzyme of SEQ ID NO:29.
- 9. The polynucleotide of claim 2 which encodes the enzyme of SEQ ID NO:30.
- 10. The polynucleotide of claim 2 which encodes the enzyme of SEQ ID NO:31.
- 11. The polynucleotide of claim 2 which encodes the enzyme of SEQ ID NO:32.

- 12. The polynucleotides of claim 1 comprising the sequences as set forth in SEQ ID NOS:17-24.
- 13. A vector comprising the DNA of claim 2.
- 14. A host cell comprising the vector of claim 13.
- 15. An enzyme wherein the enzyme is an aminotransferase and is selected from the group consisting of:
 - a) an enzyme comprising an amino acid sequence that is at least 70% identical to the amino acid sequences set forth in SEQ ID NOS:25-32; and
 - b) an enzyme comprising at least 30 consecutive amino acid residues homologous with an enzyme of a).
- 16. A protein encoding a polypeptide of claim 15.
- 17. A nucleic acid probe comprising an oligonucleotide from about 10 to 50 nucleotides in length and having an area of nucleotides that is at least 70% complementary to a nucleic acid target region of a nucleic acid encoding an amino acid sequence selected from the group consisting of SEQ ID NOS:25-32 and which hybridizes to the nucleic acid target region under moderate to highly stringent conditions to form a detectable target:probe duplex.
- 18. The probe of claim 17, wherein the oligonucleotide is DNA.
- 19. The probe of claim 17, wherein the oligonucleotide comprises a sequence which is at least 90% complementary to the nucleic acid target region.
- 20. The probe of claim 17, wherein the oligonucleotide comprises a sequence which is 95% complementary to the nucleic acid target region.

- 21. The probe of claim 17, wherein the oligonucleotide comprises a sequence which is 100% complementary to the nucleic acid target region.
- 22. The probe of claim 17, wherein the oligonucleotide is 15-50 bases in length.
- 23. The probe of claim 17, wherein the probe further comprises a detectable isotopic label.
- 24. The probe of claim 17, wherein the probe further comprises a detectable non-isotopic label selected from the group consisting of a fluorescent molecule, a chemiluminescent molecule, an enzyme, a cofactor, an enzyme substrate, and a hapten.

The state of the s

ABSTRACT

Thermostable transaminase and aminotransferase enzymes derived from various ammonifex, aquifex and pyrobaculum organisms are disclosed. The enzymes are produced from native or recombinant host cells and can be utilized in the pharmaceutical, agricultural and other industries.

														AGA Arg 15		4	8
CCT Pro	CAG Gln	TAT Tyr	GTC Val 20	TTC Phe	TCT Ser	CTC Leu	GTT Val	AAC Asn 25	GAA Glu	CTC Leu	AAG Lys	TAC Tyr	AAG Lys 30	CTA Leu	AGG Arg	9	6
CGT Arg	GAA Glu	GGC Gly 35	GAA Glu	GAT Asp	GTA Val	GTG Val	GAT Asp 40	CTT Leu	GGT Gly	ATG Met	GGC Gly	AAT Asn 45	CCT Pro	AAC Asn	ATG Met	14	: 4
CCT Pro	CCA Pro 50	GCA Ala	AAG Lys	CAC His	ATA Ile	ATA Ile 55	GAT Asp	AAA Lys	CTC Leu	TGC Cys	GAA Glu 60	GTG Val	GCT Ala	CAA Gln	AAG Lys	19	12
CCG Pro	AAC Asn	GTT Val	CAC His	GGA Gly	TAT Tyr 70	TCT Ser	GCG Ala	TCA Ser	AGG Arg	GGC Gly 75	ATA Ile	CCA Pro	AGA A rg	CTG Leu	AGA Arg 80	24	: O
AAG	GCT Ala	ATA Ile	TGT Cys	AAC Asn 85	TTC Phe	TAC Tyr	GAA Glu	GAA Glu	AGG Arg 90	TAC Tyr	GGA Gly	GTG Val	AAA Lys	CTC Leu 95	GAC Asp	28	8
CCT	GAG Glu	AGG Arg	GAG Glu 100	GCT Ala	ATA Ile	CTA Leu	ACA Thr	ATC Ile 105	GGT Gly	GCA Ala	AAG Lys	GAA Glu	GGG Gly 110	TAT Tyr	TCT Ser	33	6
CAT	TTG Leu	ATG Met 115	CTT Leu	GCG Ala	ATG Met	ATA Ile	TCT Ser 120	CCG Pro	GGT Gly	GAT Asp	ACG Thr	GTA Val 125	ATA Ile	GTT Val	CCT P,ro	3 8	14
AAT Asn	CCC Pro 130	ACC Thr	TAT Tyr	CCT Pro	ATT Ile	CAC His 135	TAT Tyr	TAC Tyr	GCT Ala	CCC Pro	ATA Ile 140	ATT Ile	GCA Ala	GGA Gly	GGG Gly	43	.2
GAA Glu 145	Val	CAC His	TCA Ser	ATA Ile	CCC Pro 150	CTT Leu	AAC Asn	TTC Phe	TCG Ser	GAC Asp 155	GAT Asp	CAA Gln	GAT Asp	CAT His	CAG Gln 160	4 8	30
GAA Glu	GAG Glu	TTT Phe	TTA Leu	AGG Arg 165	AGG Arg	CTT Leu	TAC Tyr	GAG Glu	ATA Ile 170	GTA Val	AAA Lys	ACC Thr	GCG Ala	ATG Met 175	CCA Pro	52	28
AAA Lys	CCC Pro	AAG Lys	GCT Ala 180	GTC Val	GTC Val	ATA Ile	AGC Ser	TTT Phe 185	CCT Pro	CAC His	AAT Asn	CCA Pro	ACG Thr 190	ACC Thr	ATA Ile	57	76
ACG Thr	GTA Val	GAA Glu 195	Lys	GAC Asp	TTT Phe	TTT Phe	AAA Lys 200	GAA Glu	ATA Ile	GTT Val	AAG Lys	TTT Phe 205	GCA Ala	AAG Lys	GAA Glu	62	24
CAC His	GGT Gly 210	Leu	TGG Trp	ATA Ile	ATA Ile	CAC His 215	GAT Asp	TTT Phe	GCG Ala	TAT Tyr	GCG Ala 220	GAT Asp	ATA Ile	GCC Ala	TTT Phe	67	72
GAC Asp 225	Gly	TAC Tyr	AAG Lys	CCC Pro	CCC Pro 230	Ser	ATA Ile	CTC Leu	GAA Glu	ATA Ile 235	Glu	GGT Gly	GCT Ala	AAA Lys	GAC Asp 240	72	20

FIG. 1A

GTT Val	GCG Ala	GTT Val	GAG Glu	CTC Leu 245	TAC Tyr	TCC Ser	ATG Met	TCA Ser	AAG Lys 250	GGC Gly	TTT Phe	TCA Ser	ATG Met	GCG Ala 255	GGC Gly	768
TGG Trp	AGG Arg	GTA Val	GCC Ala 260	TTT Phe	GTC Val	GTT Val	GGA Gly	AAC Asn 265	GAA Glu	ATA Ile	CTC Leu	ATA Ile	AAA Lys 270	AAC Asn	CTT Leu	816
GCA Ala	CAC His	CTC Leu 275	AAA Lys	AGC Ser	TAC Tyr	TTG Leu	GAT Asp 280	TAC Tyr	GGT Gly	ATA Ile	TTT Phe	ACT Thr 285	CCC Pro	ATA Ile	CAG Gln	864
GTG Val	GCC Ala 290	TCT Ser	ATT Ile	ATC Ile	GCA Ala	TTA Leu 295	GAG Glu	AGC Ser	CCC Pro	TAC Tyr	GAA Glu 300	ATC Ile	GTG Val	GAA Glu	AAA Lys	912
ACC Thr 305	GCA Ala	AAG Lys	GTT Val	TAC Tyr	CAA Gln 310	AAA Lys	AGA Arg	AGA Arg	GAC Asp	GTT Val 315	CTG Leu	GTG Val	GAA Glu	GGG Gly	TTA Leu 320	960
AAC Asn	AGG Arg	CTC Leu	GGC Gly	TGG Trp 325	AAA Lys	GTA Val	AAA Lys	AAA Lys	CCT Pro 330	AAG Lys	GCT Ala	ACC Thr	ATG Met	TTC Phe 335	GTC Val	1008
TGG Trp	GCA Ala	AAG Lys	ATT Ile 340	CCC Pro	GAA Glu	TGG Trp	ATA Ile	AAT Asn 345	ATG Met	AAC Asn	TCT Ser	CTG Leu	GAC Asp 350	TTT Phe	TCC Ser	1056
TTG Leu	TTC Phe	CTC Leu 355	CTA Leu	AAA Lys	GAG Glu	GCG Ala	AAG Lys 360	GTT Val	GCG Ala	GTA Val	TCC Ser	CCG Pro 365	GGT Gly	GTG Val	GGC Gly	1104
TTT Phe	GGT Gly 370	CAG Gln	TAC Tyr	GGA Gly	GAG Glu	GGG Gly 375	TAC Tyr	GTA Val	AGG Arg	TTT Phe	GCA Ala 380	CTT Leu	GTA Val	GAA Glu	AAT Asn	1152
GAA Glu 385	CAC His	AGG Arg	ATC Ile	AGA Arg	CAG Gln 390	GCT Ala	ATA Ile	AGG Arg	GGA Gly	ATA Ile 395	AGG Arg	AAA Lys	GCC Ala	TTC Phe	AGA Arg 400	1200
AAA Lys	CTC Leu	CAG Gln	AAG Lys	GAG Glu 405	AGG Arg	AAA Lys	CTT Leu	GAA Glu	CCT Pro 410	GAG Glu	AGA Arg	AGT Ser	GCT Ala 414	TAA End		1245

FIG. 1B

														ATC Ile 15		48
														GGA Gly		96
														CGT Arg		144
														TGG Trp		192
CTC Leu 65	AGG Arg	GAA Glu	AGG Arg	ATA Ile	TCG Ser 70	GAG Glu	TTT Phe	TAC Tyr	AGG Arg	AAA Lys 75	AAG Lys	TAC Tyr	AGC Ser	GTT Val	GAA Glu 80	240
GTT Val	TCT Ser	CCA Pro	GAG Glu	AGA Arg 85	GTC Val	ATC Ile	GTA Val	ACT Thr	ACC Thr 90	GGA Gly	ACT Thr	TCG Ser	GGA Gly	GCG Ala 95	TTT Phe	288
¢тс Leu	GTA Val	GCC Ala	TAC Tyr 100	GCC Ala	GTA Val	ACA Thr	CTA Leu	AAT Asn 105	GCG Ala	GGA Gly	GAG Glu	AAG Lys	ATA Ile 110	ATC Ile	CTC Leu	336
CCA Pro	GAC Asp	CCC Pro 115	TCT Ser	TAC Tyr	CCC Pro	TGT Cys	TAC Tyr 120	AAA Lys	AAC Asn	TTT Phe	GCC Ala	TAC Tyr 125	CTC Leu	TTA Leu	GAC Asp	384
GCT	CAG Gln 130	CCG Pro	GTT Val	TTC Phe	GTA Val	AAC Asn 135	GTT Val	GAC Asp	AAG Lys	GAA Glu	ACG Thr 140	AAT Asn	TAC Tyr	GAA Glu	GTA Val	432
AGG Arg 145	AAA Lys	GAG Glu	ATG Met	ATA Ile	GAA Glu 150	GAC Asp	ATT Ile	GAT Asp	GCG Ala	AAA Lys 155	GCC Ala	CTT Leu	CAC His	ATT Ile	TCC Ser 160	480
TCG Ser	CCT Pro	CAA Gln	AAC Asn	CCT Pro 165	ACG Thr	GGC Gly	ACA Thr	CTC Leu	TAC Tyr 170	TCA Ser	CCT Pro	GAA Glu	ACC Thr	CTG Leu 175	AAG Lys	528
GAA Glu	CTT Leu	GCG Ala	GAG Glu 180	TAC Tyr	TGC Cys	GAA Glu	GAG Glu	AAG Lys 185	GGT Gly	ATG Met	TAC Tyr	TTC Phe	ATA Ile 190	TCC Ser	GAC Asp	576
GAG Glu	ATT Ile	TAC Tyr 195	CAC His	GGA Gly	CTC Leu	GTT Val	TAC Tyr 200	GAA Glu	GGT Gly	AGG Arg	GAG Glu	CAC His 205	ACA Thr	GCA Ala	CTT Leu	624
GAG Glu	TTC Phe 210	TCT Ser	GAC Asp	AGG Arg	GCT Ala	ATT Ile 215	GTC Val	ATA Ile	AAC Asn	GGG Gly	TTT Phe 220	TCT Ser	AAG Lys	TAC Tyr	TTC Phe	672
TGT Cys 225	ATG Met	CCA Pro	GGT Gly	TTC Phe	AGG Arg 230	ATA Ile	GGG Gly	TGG Trp	ATG Met	ATA Ile 235	GTT Val	CCG Pro	GAA Glu	GAA Glu	CTC Leu 240	720

FIG. 2A

_														GCC Ala 255		768
														TAT Tyr		816
GAG Glu																864
GAA Glu	CTG Leu 290	AAA Lys	AAA Lys	CTC Leu	TTC Phe	AAG Lys 295	ATA Ile	GAC Asp	GCG Ala	AAA Lys	CCT Pro 300	CAG Gln	GGA Gly	GCT Ala	TTT Phe	912
TAC Tyr 305																960
GCT	TTA Leu	AAA Lys	CTT Leu	TTA Leu 325	AGG Arg	GAG Glu	GCG Ala	AGG Arg	GTG Val 330	GCG Ala	GTA Val	ACG Thr	CCC Pro	GGG Gly 335	GTG Val	1008
GAC Asp	TTT Phe	GGA Gly	AAA Lys 340	AAC Asn	AAA Lys	ACG Thr	AAG Lys	GAG Glu 345	TAT Tyr	ATA Ile	AGG Arg	TTT Phe	GCT Ala 350	TAT Tyr	ACG Thr	1056
														AAG Lys		1104
			CTT Leu													1122

FIG. 2B

ATG . Met				GAC Asp 5												48
				TTT Phe												96
				CGC Arg												144
			_	GAT Asp	-									_	_	192
				Lys												240
GTA Val																288
CTT Leu	GCA Ala	AAG Lys	AAG Lys 100	CTT Leu	GTA Val	GAA Glu	ATT Ile	TCT Ser 105	CCT Pro	GAA Glu	GGA Gly	TTA Leu	AAC Asn 110	AAG Lys	GTC Val	336
TTT Phe	TAC Tyr	TCC Ser 115	GAA Glu	GAC Asp	GGT Gly	GCG Ala	GAA Glu 120	GCA Ala	GTA Val	GAG Glu	ATA Ile	GCG Ala 125	ATA Ile	AAG Lys	ATG Mét	384
GCT	TAT Tyr 130	CAC His	TAC Tyr	TGG Trp	AAG Lys	AAC Asn 135	AAG Lys	GGA Gly	GTT Val	AAA Lys	GGG Gly 140	AAA Lys	AAC Asn	GTT Val	TTC Phe	432
ATA Ile 145	ACG Thr	CTT Leu	TCC Ser	GAA Glu	GCC Ala 150	TAC Tyr	CAC His	GGG Gly	GAT Asp	ACT Thr 155	GTA Val	GGA Gly	GCG Ala	GTT Val	AGC Ser 160	480
GTA Val	GGG Gly	GGT Gly	ATA Ile	GAA Glu 165	CTC Leu	TTC Phe	CAC His	GGA Gly	ACT Thr 170	TAT Tyr	AAA Lys	GAT Asp	CTC Leu	CTT Leu 175	TTC Phe	528
	-	_		CTC Leu					_					_	_	576
				CCT Pro												624
				TCG Ser												672
				GCC Ala												720

FIG. 3A

AAA Lys	GGC Gly	GTA Val	AGG Arg	GAG Glu 245	CTT Leu	ACG Thr	AAG Lys	AAA Lys	TAC Tyr 250	Asp	ACT Thr	TTA Leu	ATG Met	ATA Ile 255	GTT Val	768
GAC Asp	GAG Glu	GTT Val	GCC Ala 260	ACG Thr	GGA Gly	TTT Phe	GGC Gly	AGG Arg 265	Thr	GGA Gly	ACG Thr	ATG Met	TTT Phe 270	TAC Tyr	TGT Cys	816
GAG Glu	CAG Gln	GAA Glu 275	GGA Gly	GTC Val	AGT Ser	CCG Pro	GAC Asp 280	TTT Phe	ATG Met	TGT Cys	CTA Leu	GGT Gly 285	AAG Lys	GGT Gly	ATA Ile	864
ACC Thr	GGA Gly 290	GGG Gly	TAC Tyr	CTC Leu	CCG Pro	CTT Leu 295	GCT Ala	GCG Ala	ACA Thr	CTC Leu	ACA Thr 300	ACG Thr	GAC Asp	GAG Glu	GTG Val	912
TTC Phe 305	AAT Asn	GCC Ala	TTT Phe	TTA Leu	GGT Gly 310	GAG Glu	TTC Phe	GGG Gly	GAG Glu	GCA Ala 315	AAG Lys	CAC His	TTT Phe	TAC Tyr	CAC His 320	960
GGG		ACC Thr														1008
AAC Asn																1056
AAG Lys																1104
		GGA Gly														1152
		GAC Asp														1200
		AAG Lys														1245
		GGA Gly														1293
GAC Asp						Ile										1341
Leu		AAA Lys														1359

FIG. 3B

ATG Met	ACA Thr	TAC Tyr	TTA Leu	ATG Met 5	AAC Asn	AAT Asn	TAC Tyr	GCA Ala	AGG Arg 10	TTG Leu	CCC Pro	GTA Val	AAG Lys	TTT Phe 15	GTA Val	48
AGG Arg	GGA Gly	AAA Lys	GGT Gly 20	GTT Val	TAC Tyr	CTG Leu	TAC Tyr	GAT Asp 25	GAG Glu	GAA Glu	GGA Gly	AAG Lys	GAG Glu 30	TAT Tyr	CTT Leu	96
GAC Asp	TTT Phe	GTC Val 35	TCC Ser	GGT Gly	ATA Ile	GGC Gly	GTC Val 40	AAC Asn	TCC Ser	CTC Leu	GGT Gly	CAC His 45	GCT Ala	TAC Tyr	CCA Pro	144
													CTC Leu			192
													CAC His			240
GTA Val																288
ACG																336
GAT Asp																384
CAC													CCA Pro			432
													GCA Ala			480
													ACC Thr			528
ATA Ile	ATT Ile	ATT Ile	GAA Glu 180	GTT Val	ATA Ile	CAA Gln	GGA Gly	GAG Glu 185	GGC Gly	GGA Gly	GTA Val	AAC Asn	GAG Glu 190	GCG Ala	AGT Ser	576
													AAA Lys			624
CTC Leu	TTA Leu 210	ATT Ile	ATA Ile	GAC Asp	GAA Glu	GTG Val 215	CAA Gln	ACG Thr	GGA Gly	ATA Ile	GGA Gly 220	AGG Arg	ACC Thr	GGG Gly	GAA Glu	672
													ATT Ile			720

FIG. 4A

GCG Ala	AAG Lys	GGA Gly	CTC Leu	GGA Gly 245	GGA Gly	GGT Gly	GTG Val	CCA Pro	ATA Ile 250	GGT Gly	GCC Ala	ATC Ile	CTT Leu	GCA Ala 255	AGG Arg	768
GAA Glu																816
														GAT Asp		864
														TTC Phe		912
GAA Glu 305														GGA Gly		960
														CTC Leu 335		1008
GCT Ala		-			_											1032

FIG. 4B

ATG Met	CGG Arg	AAA Lys	CTG Leu	GCC Ala 5	GAG Glu	CGG Arg	GCG Ala	CAG Gln	AAA Lys 10	CTG Leu	AGC Ser	CCC Pro	TCT Ser	CCC Pro 15	ACC Thr	48
	TCG Ser															96
	ATC Ile															144
_	AAG Lys 50															192
	CCG Pro															240
CTT																288
TCC																336
GAC Asp	CCG Pro	GGG Gly 115	GAC Asp	GAG Glu	GTG Val	ATA Ile	ATC Ile 120	CCC Pro	GTC Val	CCC Pro	TAC Tyr	TGG Trp 125	ACT Thr	TCC Ser	TAT Tyr	384
CCG Pro	GAG Glu 130															432
TCT Ser 145	CCC Pro	GAG Glu	AAC Asn	GAC Asp	TTC Phe 150	AAG Lys	CTC Leu	AGG Arg	CCG Pro	GAA Glu 155	GAT Asp	CTA Leu	CGT Arg	GCG Ala	GCT Ala 160	480
	ACC Thr															528
ACA Thr	GGC Gly	ACC Thr	GTT Val 180	TAC Tyr	CGC Arg	CGG Arg	GAG Glu	GAA Glu 185	CTT Leu	ATC Ile	GGC Gly	TTA Leu	GCG Ala 190	GAG Glu	GTA Val	576
	CTG Leu															624
	ATC Ile 210															672
	GTC Val															720

FIG. 5A

GCC Ala	ATG Met	ACC Thr	GGT Gly	TGG Trp 245	CGC Arg	ATA Ile	GGT Gly	TAT Tyr	GCT Ala 250	GCC Ala	GCT Ala	CCC Pro	CGG Arg	CCG Pro 255	ATA Ile		768
GCC Ala	CAG Gln	GCC Ala	ATG Met 260	ACC Thr	AAC Asn	CTC Leu	CAA Gln	AGC Ser 265	CAC His	AGT Ser	ACC Thr	TCT Ser	AAC Asn 270	CCC Pro	ACT Thr		816
TCC Ser	GTA Val	GCC Ala 275	CAG Gln	GCG Ala	GCG Ala	GCG Ala	CTG Leu 280	GCC Ala	GCT Ala	CTG Leu	AAG Lys	GGG Gly 285	CCA Pro	CAA Gln	GAG Glu		864
												CGG Arg					912
TGG Trp 305	CAG Gln	TAC Tyr	CTA Leu	AAC Asn	TCC Ser 310	TTA Leu	CCC Pro	GGA Gly	GTG Val	CGC Arg 315	TGC Cys	CCC Pro	AAA Lys	CCT Pro	TTA Leu 320		960
GGG Gly	GCC Ala	TTT Phe	TAC Tyr	GTC Val 325	TTT Phe	CCA Pro	GAA Glu	GTT Val	GAG Glu 330	CGG Arg	GCT Ala	TTT Phe	GGG Gly	CCG Pro 335	CCG Pro	1	800
												GCC Ala 3				1	056
												GCC Ala 365				1	104
												GAA Glu				1:	152
				Arg								GCA Ala				1:	197

FIG. 5B

l j

FIG. 6A

GTT Val	TCT Ser	GCG Ala	GAA Glu	AAG Lys 245	GGT Gly	GGT Gly	TTT Phe	AAA Lys	CAC His 250	TTC Phe	ATG Met	CTA Leu	AAA Lys	GAG Glu 255	ATA Ile	7	768
						ATA Ile									TCA Ser	٤	316
															TTA Leu	ε	364
						TCT Ser 295										9	912
						GGT Gly										S	60
						GTT Val										10	80
1. 2						GAG Glu										10	56
TCC Ser																11	.04
GGA Gly						GAG Glu 375										11	.52
						GCG Ala										12	00
						TCG Ser									AAT Asn	12	48
CTA Leu	ATA Ile	AGA Arg	CTC Leu 420	CTT Leu	GAA Glu	AAG Lys	GTT Val	CCA Pro 425	TCA Ser	CTC Leu	GTT Val	GAA Glu	CAA Gln 430	ACA Thr	CTG Leu	12	96
						GAG Glu										13	44
						GGA Gly 455										13	92
						AAA Lys										14	40
						AAG Lys										148	88

FIG. 6B

AAC Asn	ATG Met	CCG Pro	GTT Val 500	GTG Val	GTA Val	ATC Ile	GCA Ala	CCG Pro 505	AAA Lys	GAC Asp	AGG Arg	GTT Val	TAC Tyr 510	GAG Glu	AAG Lys	1536
														GTT Val		1584
														GAG Glu		1632
														TTG Leu		1680
														CTG Leu 575		1728
														GTG Val	GAA Glu	1776
TAA																1779

FIG. 6C

ATG Met	ATA Ile	CCC	CAG Gln	AGG Arg 5	ATT Ile	AAG Lys	GAA Glu	CTT Leu	GAA Glu 10	GCT Ala	TAC Tyr	AAG Lys	ACG Thr	GAG Glu 15	GTC Val		48
ACT Thr	CCC Pro	GCC Ala	TCC Ser 20	GTC Val	AGG Arg	CTT Leu	TCC Ser	TCT Ser 25	Asn	GAA Glu	TTC Phe	CCC Pro	TAC Tyr 30	Asp	TTT Phe		96
CCC Pro	GAG Glu	GAG Glu 35	ATA Ile	AAA Lys	CAA Gln	AGG Arg	GCC Ala 40	TTA Leu	GAA Glu	GAA Glu	TTA Leu	AAA Lys 45	AAG Lys	GTT Val	CCC Pro		144
TTG Leu	AAC Asn 50	AAA Lys	TAC Tyr	CCA Pro	GAC Asp	CCC Pro 55	GAA Glu	GCG Ala	AAA Lys	GAG Glu	TTA Leu 60	Lys	GCG Ala	GTT Val	CTT Leu		192
GCG Ala 65	GAT Asp	TTT Phe	TTC Phe	GGC Gly	GTT Val 70	AAG Lys	GAA Glu	GAA Glu	AAT Asn	TTA Leu 75	GTT Val	CTC Leu	GGT Gly	AAC Asn	GGT Gly 80		240
₹CG Ser																	288
: 3		GTT Val															336
GCG		GTT Val 115															384
TTT Phe		ATA Ile															432
		CTC Leu														. '	480
		AGG Arg															528
		GAC Asp															576
		CTC Leu 195															624
ATC Ile	GGT Gly 210	ATG Met	GCG Ala	AGT Sęr	TTA Leu	AGG Arg 215	GTA Val	GGG Gly	ATT Ile	TTA Leu	ATA Ile 220	GGG Gly	AAG Lys	GGG Gly	GAA Glu		672
		TCA Ser				Lys											720

FIG. 7A

								GAA Glu 255	768
CTA Leu									816
GAC Asp									864
AAC Asn									912
GAG Glu 305			 -	-					960
								GAA Glu 335	1008
								TCA Ser	1056
	CTT Leu								1065

FIG. 7B

ATG Met	Lys LAG	CCG Pro	TAC Tyr	GCT Ala 5	Lys	TAT Tyr	ATC	TGG	CTT Leu 10	Asp	GGC	AGA Arg	ATA Ile	CTI Leu 15	Lys Lys	48
TGG Trp	GAA Glu	GAC Asp	GCG Ala 20	Lys	ATA	CAC His	GTG Val	TTG Leu 25	Thr	CAC His	GCG Ala	CTT Leu	CAC His	Tyr	GGA Gly	96
ACC Thr	TCT	ATA Ile 35	Phe	GAG Glu	GGA Gly	ATA Ile	AGA Arg 40	Gly	TAT	TGG Trp	AAC Asn	GGC Gly 45	qaA '	TAA naA	TTG Leu	144
CTC Leu	GTC Val 50	Phe	AGG Arg	TTA Leu	GAA Glu	GAA Glu 55	CAC His	ATC Ile	GAC Asp	CGC Arg	ATG Met 60	Tyr	AGA Arg	TCG Ser	GCT Ala	192
AAG Lys 65	ATA Ile	CTA Leu	GGC	ATA Ile	AAT Asn 70	ATT Ile	CCG Pro	TAT Tyr	ACA Thr	AGA Arg 75	GAG Glu	GAA Glu	GTC Val	CGC Arg	CAA Gln 80	240
GCT	GTA Val	CTA Leu	GAG Glu	ACC Thr 85	ATA Ile	AAG Lys	GCT Ala	AAT Asn	AAC Asn 90	TTC Phe	CGA Arg	GAG Glu	GAT Asp	GTC Val 95	TAC Tyr	288
			GTG Val 100												ATA Ile	336
.29			GAA Glu												AAA Lýs	384
			CCC Pro													432
			ACA Thr													 480
			GTA Val													528
			TTA Leu 180													576
			TTC Phe													624
CAC His	GAA Glu 210	TCT Ser	ATC Ile	CTC Leu	GAG Glu	GGA Gly 215	ATT Ile	ACG Thr	AGG Arg	GAT Asp	ACG Thr 220	GTA Val	ATA Ile	AAG Lys	CTC Leu	672
AGC Ser 225	GGG Gly	GAT Asp	GTGʻ Val	GGA Gly	CTT Leu 230	CGG Arg	GTG Val	GAG Glu	GAA Glu	AAG Lys 235	CCT Pro	ATT Ile	ACG Thr	AGG Arg	GAG Glu 240	720
								_	_							

FIG. 8A

i:=																
														GCA Ala 255		768
														GGC Gly		816
														GTC Val		864
AGA	GGC	AAA	GTA	GAG	AAA	TAC	TTA	AAT	TGG	ATC	ACT	CCT	GTG	TAT	TAG	912
Arg			Val		Lys	_	Leu		_	Ile	Thr	Pro	Val	Tyr	End	

FIG. 8B

FIG. 9

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name.

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

TRANSAMINASES AND AMINOTRANSFERASES

-	is attached hereto or $[X]$ was filed on f applicable).	February 9, 1996 as Application Serial No. 08/599	,171 and was amended on
I hereby state that I have revie referred to above.	wed and understand the contents of the	above identified specification, including the claims, as	amended by any amendment
I acknowledge the duty to dis Regulations, Section 1.56(a).	close information which is material to	the patentability of this application in accordance with	h Title 37, Code of Federal
	below any foreign application for paten	ode, Section 119 of any foreign application(s) for patent of the form of the transfer of the foreign and the foreign and the foreign and the foreign and the foreign application (s) for patent of the foreign application (s) for interest of the foreign application (s) foreign applicati	
•			Priority Claimed
			Yes No
(Number)	(Country)	(Day/Month/Year Filed)	
(Application Serial No.)	(Filing Date)		ding tented, pending, abandoned)
	(Fining Date)	(Status - pa	ented, pending, abandoned)
(Application Serial No.)	(Filing Date)	(Status - pa	tented, pending, abandoned)
connected therewith: John N. (Reg. No. 31,778); Charles J. (Reg. No. 36,134). Address Becker Farm Road, Roseland I hereby declare that all stater true; and further that these s	Bain (Reg. No. 18,651); John G. Gilfil Herron (Reg. No. 28,019); William Squ correspondence and telephone calls to 6 NJ 07068 - (201) 994-1700. Thents made herein of my own knowledge tatements were made with the knowledge to the United Section 1001 of Title 18 of the United.	the this application and to transact all business in the Islan, III (Reg. No. 22,746); Elliot M. Olstein (Reg. No. ire (Reg. No. 25,378); Kenneth S. Weitzman (Reg No. 3 Charles J. Herron c/o Carella, Byrne, Bain, Gilfillan, Ge are true and that all statements made on information dge that willful false statements and the like so mad States Code and that such willful false statements may j	. 24,025); Raymond J. Lillie 6,306); and Gregory Ferraro Cecchi, Stewart & Olstein, 6 and belief are believed to be are punishable by fine or
Full name of inventor: Patric Inventor's signature: Patric Residence: 3507 Sheffield Av Post Office Address: same	enue, Philadelphia, PA 19163	Date: 5/11/962 Citizenship: United States 40 5/11/96	
Full name of inventor: Ronal	d V. Swanson	. , '	
Inventor's signature:	Ad C. James	Date: 3/12/96	······································
Residence: 309 No. Lemon St.	eet, Apt. A, Media, PA 19063 Cit	izenship: United States	
Post Office Address: same			

Docket No. 331400-38

SEQUENCE LISTING

(1)	GENERAL INFORMATION:
(i)	APPLICANTS:
	WARREN, Patrick V.
	SWANSON, Ronald V.
(ii)	TITLE OF INVENTION:
	TRANSAMINASES AND AMINOTRANSFERASES
(iii)	NUMBER OF SEQUENCES: 32
(iv)	CORRESPONDENCE ADDRESS:
	 (A) ADDRESSEE: Fish and Richardson P.C. (B) STREET: 4225 Executive Square, Suite 1400 (C) CITY: La Jolla (D) STATE: California (E) COUNTRY: USA (F) ZIP: 92037
(v)	COMPUTER READABLE FORM: (A) MEDIUM TYPE: 3.5 INCH DISKETTE (B) COMPUTER: IBM PS/2 (C) OPERATING SYSTEM: MS-DOS (D) SOFTWARE: WORD PERFECT 5.1
(vi)	CURRENT APPLICATION DATA: (A) APPLICATION NUMBER: Unassigned (B) FILING DATE: Concurrently (C) CLASSIFICATION: Unassigned
(vii)	PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: 08/599,171 (B) FILING DATE: 2/9/96 (C) CLASSIFICATION:
(viii)	ATTORNEY/AGENT INFORMATION: (A) NAME: Lisa A. Haile, Ph.D. (B) REGISTRATION NUMBER: 38,347 (C) REFERENCE/DOCKET NUMBER: 09010/016002
(ix)	TELECOMMUNICATION INFORMATION: (A) TELEPHONE: 619-678-5070 (B) TELEFAX: 619-678-5099
(2)	INFORMATION FOR SEQ ID NO:1:
	(i) SEQUENCE CHARACTERISTICS (A) LENGTH: 52 NUCLEOTIDES (B) TYPE: NUCLEIC ACID (C) STRANDEDNESS: SINGLE (D) TOPOLOGY: LINEAR
	(ii) MOLECULE TYPE: cDNA
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

CCGAGA	ATTC ATTAAAGAGG AGAAATTAAC TATGATTGAA GACCCTATGG AC	52
(2)	INFORMATION FOR SEQ ID NO:2:	
	(i) SEQUENCE CHARACTERISTICS (A) LENGTH: 31 NUCLEOTIDES (B) TYPE: NUCLEIC ACID (C) STRANDEDNESS: SINGLE (D) TOPOLOGY: LINEAR	
	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:	
CGGAAG	GATCT TTAAGCACTT CTCTCAGGTT C	31
(2)	INFORMATION FOR SEQ ID NO:3:	
	(i) SEQUENCE CHARACTERISTICS (A) LENGTH: 52 NUCLEOTIDES (B) TYPE: NUCLEIC ACID (C) STRANDEDNESS: SINGLE (D) TOPOLOGY: LINEAR	
	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:	
CCGAGA	AATTC ATTAAAGAGG AGAAATTAAC TATGGACAGG CTTGAAAAAG TA	52
(2)	INFORMATION FOR SEQ ID NO:4:	
	(i) SEQUENCE CHARACTERISTICS (A) LENGTH: 31 NUCLEOTIDES (B) TYPE: NUCLEIC ACID (C) STRANDEDNESS: SINGLE (D) TOPOLOGY: LINEAR	
	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:	
CGGAA	GATCT TCAGCTAAGC TTCTCTAAGA A	31
(2)	INFORMATION FOR SEQ ID NO:5:	
	 (i) SEQUENCE CHARACTERISTICS (A) LENGTH: 52 NUCLEOTIDES (B) TYPE: NUCLEIC ACID (C) STRANDEDNESS: SINGLE (D) TOPOLOGY: LINEAR 	
	(ii) MOLECULE TYPE: cDNA	

(xi)

52

SEQUENCE DESCRIPTION: SEQ ID NO:5:

CCGACAATTG ATTAAAGAGG AGAAATTAAC TATGTGGGAA TTAGACCCTA AA

		,
	40 00	1
١	=	1
	ì	1
:	11 11 11	-
:	:	į.
		Ė
:	4	Him
	:	Sound
	=	Page
;	ş	il in
:	,	j:ş
•	2	į
	4.5	; i
	÷	/ =
		i
	ž	::
;	** ** **	Sud deal
	ē	F
٠	3	i e

(2)	:	INFORMATION FOR SEQ ID NO:6:	
		(i) SEQUENCE CHARACTERISTICS (A) LENGTH: 31 NUCLEOTIDES (B) TYPE: NUCLEIC ACID (C) STRANDEDNESS: SINGLE (D) TOPOLOGY: LINEAR	
		(ii) MOLECULE TYPE: cDNA	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:	
CGGI	AGGAT	CC CTACACCTGT TTTTCAAGCT C	31
(2)	:	INFORMATION FOR SEQ ID NO:7:	
		(i) SEQUENCE CHARACTERISTICS (A) LENGTH: 52 NUCLEOTIDES (B) TYPE: NUCLEIC ACID (C) STRANDEDNESS: SINGLE (D) TOPOLOGY: LINEAR	
		(ii) MOLECULE TYPE: cDNA	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:	
CCG2	ACAAT	TG ATTAAAGAGG AGAAATTAAC TATGACATAC TTAATGAACA AT	52
(2)		INFORMATION FOR SEQ ID NO:8:	
	(i)	SEQUENCE CHARACTERISTICS (A) LENGTH: 31 NUCLEOTIDES (B) TYPE: NUCLEIC ACID (C) STRANDEDNESS: SINGLE (D) TOPOLOGY: LINEAR	
	(ii)	MOLECULE TYPE: cDNA	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:8:	
CGG	AAGAT	CT TTATGAGAAG TCCCTTTCAA G	31
(2)		INFORMATION FOR SEQ ID NO:9:	
	(i)	SEQUENCE CHARACTERISTICS (A) LENGTH: 52 NUCLEOTIDES (B) TYPE: NUCLEIC ACID (C) STRANDEDNESS: SINGLE (D) TOPOLOGY: LINEAR	
	(ii)	MOLECULE TYPE: cDNA	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:9:	
CCG.	AGAAT	TTC ATTAAAGAGG AGAAATTAAC TATGCGGAAA CTGGCCGAGC GG	52

(2) INFORMATION FOR SEQ ID NO:10:

(1)	SEQUENCE CHARACTERISTICS (A) LENGTH: 31 NUCLEOTIDES (B) TYPE: NUCLEIC ACID (C) STRANDEDNESS: SINGLE (D) TOPOLOGY: LINEAR	
(ii) MOLECULE TYPE: cDNA	
(x:	i) SEQUENCE DESCRIPTION: SEQ ID NO:10:	
CGGAGG	ATCC TTAAAGTGCC GCTTCGATCA A	31
(2) (i)	INFORMATION FOR SEQ ID NO:11: SEQUENCE CHARACTERISTICS (A) LENGTH: 52 NUCLEOTIDES (B) TYPE: NUCLEIC ACID (C) STRANDEDNESS: SINGLE (D) TOPOLOGY: LINEAR	
(i:	i) MOLECULE TYPE: cDNA	
(x:	i) SEQUENCE DESCRIPTION: SEQ ID NO:11:	
CCGACA	ATTG ATTAAAGAGG AGAAATTAAC TATGTGCGGG ATAGTCGGAT AC	52
(2) (i	INFORMATION FOR SEQ ID NO:12:) SEQUENCE CHARACTERISTICS (A) LENGTH: 31 NUCLEOTIDES (B) TYPE: NUCLEIC ACID (C) STRANDEDNESS: SINGLE (D) TOPOLOGY: LINEAR	
(i	i) MOLECULE TYPE: cDNA	
(x	i) SEQUENCE DESCRIPTION: SEQ ID NO:12:	
CGGAAC	SATCT TTATTCCACC GTGACCGTTT T	31
(2) (i	INFORMATION FOR SEQ ID NO:13:) SEQUENCE CHARACTERISTICS (A) LENGTH: 52 NUCLEOTIDES (B) TYPE: NUCLEIC ACID (C) STRANDEDNESS: SINGLE (D) TOPOLOGY: LINEAR	
(i	i) MOLECULE TYPE: cDNA	
(x	i) SEQUENCE DESCRIPTION: SEQ ID NO:13:	
CCGAC	AATTG ATTAAAGAGG AGAAATTAAC TATGATACCC CAGAGGATTA AG	52
(2) (i	INFORMATION FOR SEQ ID NO:14:) SEQUENCE CHARACTERISTICS (A) LENGTH: 31 NUCLEOTIDES (B) TYPE: NUCLEIC ACID (C) STRANDEDNESS: SINGLE (D) TOPOLOGY: LINEAR	

-	÷	Harman Marie
1	÷	The state of
:	=	ķz
	2	1000
	5.2	Ä
:	į	1
******	,	it:
	;	
	2	
::::	**	
	=	
	ž	Ü
	0.00	į.
	:	The state of
****	:	

	(ii)	MOLECULE TYPE: cDNA	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:14:	
CGG	AAGAT	CT TTAAAGAGAG CTTGAAAGGG A	31
(2)		INFORMATION FOR SEQ ID NO:15: SEQUENCE CHARACTERISTICS (A) LENGTH: 52 NUCLEOTIDES (B) TYPE: NUCLEIC ACID (C) STRANDEDNESS: SINGLE (D) TOPOLOGY: LINEAR	
	(ii)	MOLECULE TYPE: cDNA	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:15:	
CCG	AGAAT	TC ATTAAAGAGG AGAAATTAAC TATGAAGCCG TACGCTAAAT AT	52
(2)	(i)	INFORMATION FOR SEQ ID NO:16: SEQUENCE CHARACTERISTICS (A) LENGTH: 31 NUCLEOTIDES (B) TYPE: NUCLEIC ACID (C) STRANDEDNESS: SINGLE (D) TOPOLOGY: LINEAR	
	(ii)	MOLECULE TYPE: cDNA	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:16:	
CGG.	AAGAI	CT CTAATACACA GGAGTGATCC A	31
(2)	(i)	INFORMATION FOR SEQ ID NO:17: SEQUENCE CHARACTERISTICS (A) LENGTH: 1245 NUCLEOTIDES (B) TYPE: NUCLEIC ACID (C) STRANDEDNESS: SINGLE (D) TOPOLOGY: LINEAR	
	(ii)	MOLECULE TYPE: GENOMIC DNA	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:17:	
		GAA GAC CCT ATG GAC TGG GCT TTT CCG AGG ATA AAG AGA CTG Glu Asp Pro Met Asp Trp Ala Phe Pro Arg Ile Lys Arg Leu 5 10 15	48
		TAT GTC TCT CTC GTT AAC GAA CTC AAG TAC AAG CTA AGG Tyr Val Phe Ser Leu Val Asn Glu Leu Lys Tyr Lys Leu Arg 20 25 30	96
		GGC GAA GAT GTA GTG GAT CTT GGT ATG GGC AAT CCT AAC ATG Gly Glu Asp Val Val Asp Leu Gly Met Gly Asn Pro Asn Met 35 40 45	144
		GCA AAG CAC ATA ATA GAT AAA CTC TGC GAA GTG GCT CAA AAG Ala Lys His Ile Ile Asp Lys Leu Cys Glu Val Ala Gln Lys 55 60	192

				GGA Gly												240
				AAC Asn 85												288
CCT Pro	GAG Glu	AGG Arg	GAG Glu 100	GCT Ala	ATA Ile	CTA Leu	ACA Thr	ATC Ile 105	GGT Gly	GCA Ala	AAG Lys	GAA Glu	GGG Gly 110	TAT Tyr	TCT Ser	336
CAT His	TTG Leu	ATG Met 115	CTT Leu	GCG Ala	ATG Met	ATA Ile	TCT Ser 120	CCG Pro	GGT Gly	GAT Asp	ACG Thr	GTA Val 125	ATA Ile	GTT Val	CCT Pro	384
AAT Asn	CCC Pro 130	Thr	Tyr	CCT Pro	ATT Ile	CAC His 135	TAT Tyr	TAC Tyr	GCT Ala	CCC Pro	ATA Ile 140	ATT Ile	GCA Ala	GGA Gly	GGG Gly	432
					~~~			<b></b>	maa	<b>~</b>	G 3 m	<i>(</i> , ), )	03.55	C3.D	G A G	400
GAA Glu 145	GTT Val	CAC	TCA Ser	ATA Ile	Pro 150	Leu	AAC Asn	Phe	Ser	Asp 155	Asp	Gln	Asp	His	Gln 160	480
GAA Glu	GAG Glu	TTT Phe	TTA Leu	AGG Arg 165	AGG Arg	CTT Leu	TAC Tyr	GAG Glu	ATA Ile 170	GTA Val	AAA Lys	ACC Thr	GCG Ala	ATG Met 175	CCA Pro	528
AAA Lys	CCC Pro	AAG Lys	GCT Ala 180	GTC Val	GTC Val	ATA Ile	AGC Ser	TTT Phe 185	CCT Pro	CAC His	AAT Asn	CCA Pro	ACG Thr 190	ACC Thr	ATA Ile	576
ACG Thr	GTA Val	GAA Glu 195	AAG Lys	GAC Asp	TTT Phe	TTT Phe	AAA Lys 200	GAA Glu	ATA Ile	GTT Val	AAG Lys	TTT Phe 205	GCA Ala	AAG Lys	GAA Glu	624
CAC His	GGT Gly 210	CTC Leu	TGG Trp	ATA Ile	ATA Ile	CAC His 215	GAT Asp	TTT Phe	GCG Ala	TAT Tyr	GCG Ala 220	GAT Asp	ATA Ile	GCC Ala	TTT Phe	672
Asp	Glv	Tvr	Lvs	CCC Pro	Pro	Ser	Ile	Leu	Glu	Ile	Glu	Gly	Ala	Lys	Asp	720
GTT Val	GCG Ala	GTT Val	GAG Glu	CTC Leu 245	TAC Tyr	TCC Ser	ATG Met	TCA Ser	AAG Lys 250	GGC Gly	TTT Phe	TCA Ser	ATG Met	GCG Ala 255	GGC Gly	768
TGG Trp	AGG Arg	GTA Val	GCC Ala 260		GTC Val	GTT Val	GGA Gly	AAC Asn 265	GAA Glu	ATA Ile	CTC Leu	ATA Ile	AAA Lys 270	AAC Asn	CTT Leu	816
GCA Ala	CAC	CTC Leu 275	Lys	AGC Ser	TAC Tyr	TTG Leu	GAT Asp 280	TAC Tyr	GGT Gly	ATA Ile	TTT Phe	ACT Thr 285	Pro	ATA Ile	CAG Gln	864
		Ser					Glu					Ile			AAA Lys	912
ACC	GCA	. AAG	GTT	TAC	CAA	AAA	AGA	AGA	GAC	GTT	CTG	GTG	GAA	GGG	TTA	960

305	Ala	цуз	vai	Tyr	Gln 310	Lys	Arg	Arg	Asp	Val 315	Leu	Val	Glu	Gly	Leu 320	
									CCT Pro 330							1008
TGG Trp	GCA Ala	AAG Lys	ATT Ile 340	CCC	GAA Glu	TGG Trp	ATA Ile	AAT Asn 345	ATG Met	AAC Asn	TCT Ser	CTG Leu	GAC Asp 350	TTT	TCC Ser	1056
									GCG Ala							1104
									AGG Arg							1152
GAA Glu 385	CAC His	AGG Arg	ATC I,ke	AGA Arg	CAG Gln 390	GCT Ala	ATA Ile	AGG Arg	GGA Gly	ATA Ile 395	AGG Arg	AAA Lys	GCC Ala	TTC Phe	AGA Arg 400	1200
									CCT Pro 410							1245
(2)	(i)	SEQ (A) (B) (C)	UENC LEN TYP STF	E CH IGTH: E:	NUCI EDNES	TERI 22 N EIC	STIC UCLE ACII SINC	S OTIE								
	(ii)	MOI	ÆCUI	E TY	PE:	GEN	OMIC	DNA	7							
	(vi)					DETA										
3 mg									ID N			1 mg	~~ m		O	40
	GAC	AGG	CTT	GAA	AAA	GTA	TCA	CCC	ID N TTC Phe 10	ATA	GTA					48
Met	GAC Asp	AGG Arg GCC Ala	CTT Leu CAG Gln	GAA Glu 5 AAG Lys	AAA Lys TAC Tyr	GTA Val GAA Glu	TCA Ser GAC Asp	CCC Pro GTA Val	TTC Phe	ATA Ile CAC His	GTA Val ATG Met	Met GAG Glu	Asp ATA Ile	Ile 15 GGA Gly	Leu GAG	48 96
Met GCT Ala CCC	GAC Asp CAG Gln	AGG Arg GCC Ala	CTT Leu CAG Gln 20	GAA Glu 5 AAG Lys	AAA Lys TAC Tyr	GTA Val GAA Glu	TCA Ser GAC Asp	CCC Pro GTA Val 25	TTC Phe 10 GTA Val	ATA Ile CAC His	GTA Val ATG Met	Met GAG Glu CTG	ASP ATA Ile 30 GAA	Ile 15 GGA Gly CGT	GAG Glu	
Met GCT Ala CCC Pro	GAC Asp CAG Gln GAT Asp	AGG Arg GCC Ala TTA Leu 35	CTT Leu CAG Gln 20 GAA Glu	GAA Glu 5 AAG Lys CCG Pro	AAA Lys TAC Tyr TCT Ser	GTA Val GAA Glu CCC Pro	TCA Ser GAC Asp AAG Lys 40	CCC Pro GTA Val 25 GTA Val	TTC Phe 10 GTA Val	ATA Ile CAC His GAA Glu	GTA Val ATG Met GCT Ala	GAG Glu CTG Leu 45	ASP ATA Ile 30 GAA Glu CTC	Ile 15 GGA Gly CGT Arg	GAG Glu GCG Ala	96
Met GCT Ala CCC Pro GTG Val CTC	GAC Asp CAG Gln GAT Asp AAG Lys 50	AGG Arg GCC Ala TTA Leu 35 GAA Glu	CTT Leu CAG Gln 20 GAA Glu AAG Lys	GAA Glu 5 AAG Lys CCG Pro ACG Thr	AAA Lys TAC Tyr TCT Ser TTC Phe	GTA Val GAA Glu CCC Pro TTC Phe 55	TCA Ser GAC Asp AAG Lys 40 TAC Tyr	CCC Pro GTA Val 25 GTA Val ACC Thr	TTC Phe 10 CTA Val ATG Met CCT	ATA Ile CAC His GAA Glu GCT Ala	GTA Val ATG Met GCT Ala CTG Leu 60	GAG Glu CTG Leu 45 GGA Gly TAC	ASP  ATA Ile 30  GAA Glu  CTC Leu  AGC	Ile 15 GGA Gly CGT Arg TGG Trp	GAG Glu GCG Ala GAA Glu GAA	96 144
Met GCT Ala CCC Pro GTG Val CTC Leu 65 GTT	GAC Asp CAG Gln GAT Asp AAG Lys 50 AGG Arg	AGG Arg GCC Ala TTA Leu 35 GAA Glu GAA Glu	CTT Leu CAG Gln 20 GAA Glu AAG Lys AGG Arg	GAA Glu 5 AAG Lys CCG Pro ACG Thr	AAA Lys TAC Tyr TCT Ser TTC Phe	GTA Val GAA Glu CCC Pro TTC Phe 55 GAG Glu	TCA Ser GAC Asp AAG Lys 40 TAC Tyr TTT Phe	CCC Pro GTA Val 25 GTA Val ACC Thr TAC Tyr	TTC Phe 10 GTA Val ATG Met CCT Pro	ATA Ile CAC His GAA Glu GCT Ala AAA Lys 75	GTA Val ATG Met GCT Ala CTG Leu 60 AAG Lys	GAG Glu CTG Leu 45 GGA Gly TAC Tyr .	ASP  ATA Ile 30  GAA Glu  CTC Leu  AGC Ser	Ile 15 GGA Gly CGT Arg TGG Trp GTT Val	GAG Glu  GCG Ala  GAA Glu  GAA Glu  80  TTT	96 144 192

								4		•						
Leu	Val	Ala	Tyr 100	Ala	Val	Thr	Leu	Asn 105	Ala	Gly	Glu	Lys	Ile 110	Ile	Leu	
				TAC Tyr												384
				TTC Phe												432
				ATA Ile												480
				CCT Pro 165												528
GAA Glu	CTT Leu	GCG Ala	GAG Glu 180	TAC Tyr	TGC Cys	GAA Glu	GAG Glu	AAG Lys 185	GGT Gly	ATG Met	TAC Tyr	TTC Phe	ATA Ile 190	TCC Ser	GAC Asp	576
GAG Glu	ATT Ile	TAC Tyr 195	CAC His	GGA Gly	CTC Leu	GTT Val	TAC Tyr 200	GAA Glu	GGT Gly	AGG Arg	GAG Glu	CAC His	ACA Thr	GCA Ala	CTT Leu	624
GAG Glu	TTC Phe 210	TCT	GAC Asp	AGG Arg	GCT Ala	ATT Ile 215	GTC	ATA Ile	AAC Asn	GGG Gly	TTT Phe 220	TCT	AAG Lys	TAC Tyr	TTC Phe	672
				TTC Phe												720
GTG Val	AGA Arg	AAG Lys	GCG Ala	GAA Glu 245	ATA Ile	GTA Val	ATT Ile	CAG Gln	AAC Asn 250	GTA Val	TTT Phe	ATA Ile	TCT Ser	GCC Ala 255	CCG Pro	768
ACG Thr	CTC Leu	AGT Ser	CAG Gln 260	TAC Tyr	GCC Ala	GCC Ala	CTT Leu	GAG Glu 265	GCT Ala	TTT Phe	GAT Asp	TAC Tyr	GAG Glu 270	TAT Tyr	TTG Leu	816
GAG Glu	AAG Lys	GTA Val 275	Arg	AAA Lys	ACC Thr	TTT Phe	GAA Glu 280	GAG Glu	AGG Arg	AGG Arg	AAC Asn	TTC Phe 285	CTT Leu	TAT Tyr	GGG Gly	864
GAA Glu	CTG Leu 290	Lys	AAA Lys	CTC Leu	TTC Phe	AAG Lys 295	ATA Ile	GAC Asp	GCG Ala	AAA Lys	CCT Pro 300	CAG Gln	GGA Gly	GCT Ala	TTT Phe	912
				AAC Asn		Ser										960
GCT Ala	TTA Leu	AAA Lys	CTT Leu	TTA Leu 325	Arg	GAG Glu	GCG Ala	AGG Arg	GTG Val 330	GCG Ala	GTA Val	ACG Thr	CCC Pro	GGG Gly 335	GTG Val	1008
				Asn					Tyr						ACG Thr	1056

			GAA Glu													1104
3	•	355				•	360	•			J	365	•	-		
			CTT Leu													1122
(2)	(i)	SEC (A) (B) (C)	ORMA UENC LEN TYP STR TOP	E CH IGTH: E: LANDE	ARAC 13 NUCL DNES	TERI 59 N EIC	STIC UCLE ACIE SING	S OTID								
	(ii)	MOL	JECUI	Έ ΤΥ	PE:	GEN	OMIC	DNA								
		-	UENC					_								
			TTA Leu													48
			CCA Pro 20													96
			GAA Glu													144
			ATA Ile													192
			CCT Pro													240
			ACA Thr													288
CTT Leu	GCA Ala	AAG Lys	AAG Lys 100	CTT Leu	GTA Val	GAA Glu	ATT Ile	TCT Ser 105	CCT Pro	GAA Glu	GGA Gly	TTA Leu	AAC Asn 110	AAG Lys	GTC Val	336
			GAA Glu													384
			TAC Tyr													432
			TCC Ser			Tyr										480
			ATA Ile							Tyr						528

AAG Lys	ACT Thr	ATA Ile	AAA Lys 180	CTC Leu	CCA Pro	TCT Ser	Pro	TAC Tyr 185	CTG Leu	TAC Tyr	TGC Cys	AAG Lys	GAA Glu 190	AAG Lys	TAC Tyr	576
GGG Gly	GAA Glu	CTC Leu 195	TGC Cys	CCT Pro	GAG Glu	TGC Cys	ACG Thr 200	GCA Ala	GAT Asp	TTA Leu	TTA Leu	AAA Lys 205	CAA Gln	CTG Leu	GAA Glu	624
GAT Asp	ATC Ile 210	CTG Leu	AAG Lys	TCG Ser	CGG Arg	GAA Glu 215	GAT Asp	ATC Ile	GTT Val	GCG Ala	GTC Val 220	ATT Ile	ATG Met	GAA Glu	GCG Ala	672
GGA Gly 225	ATT Ile	CAG Gln	GCA Ala	GCC Ala	GCG Ala 230	GGA Gly	ATG Met	CTC Leu	CCC Pro	TTC Phe 235	CCT Pro	CCG Pro	GGA Gly	TTT Phe	TTG Leu 240	720
AAA Lys	GGC Gly	GTA Val	AGG Arg	GAG Glu 245	CTT Leu	ACG Thr	AAG Lys	AAA Lys	TAC Tyr 250	GAC Asp	ACT Thr	TTA Leu	ATG Met	ATA Ile 255	GTT Val	768
GAC Asp	GAG Glu	GTT Val	GCC Ala 260	ACG Thr	GGA Gly	TTT Phe	GGC Gly	AGG Arg 265	ACG Thr	GGA Gly	ACG Thr	ATG Met	TTT Phe 270	TAC Tyr	TGT Cys	816
GAG Glu	CAG Gln	GAA Glu 275	GGA Gly	GTC Val	AGT Ser	CCG Pro	GAC Asp 280	TTT Phe	ATG Met	TGT Cys	CTA Leu	GGT Gly 285	AAG Lys	GGT Gly	ATA Ile	864
ACC Thr	GGA Gly 290	GGG Gly	TAC Tyr	CTC Leu	CCG Pro	CTT Leu 295	GCT Ala	GCG Ala	ACA Thr	CTC Leu	ACA Thr 300	ACG Thr	GAC Asp	GAG Glu	GTG Val	912
TTC Phe 305	AAT Asn	GCC Ala	TTT Phe	TTA Leu	GGT Gly 310	GAG Glu	TTC Phe	GGG Gly	GAG Glu	GCA Ala 315	AAG Lys	CAC His	TTT Phe	TAC Tyr	CAC His 320	960
GGG Gly	CAC His	ACC Thr	TAC Tyr	ACT Thr 325	GGA Gly	AAT Asn	AAC Asn	CTC Leu	GCC Ala 330	TGT Cys	TCC Ser	GTT Val	GCA Ala	CTC Leu 335	GCA Ala	1008
AAC Asn	TTA Leu	GAA Glu	GTT Val 340	Phe	GAG Glu	GAA Glu	GAA Glu	AGA Arg 345	Thr	TTA Leu	GAG Glu	AAG Lys	CTC Leu 350	Gln	CCA Pro	1056
AAG Lys	ATA Ile	AAG Lys 355	Leu	TTA Leu	AAG Lys	GAA Glu	AGG Arg 360	CTT Leu	CAG Gln	GAG Glu	TTC Phe	TGG Trp 365	GAA Glu	CTC Leu	AAG Lys	1104
CAC His	GTT Val 370	Gly	GAT Asp	GTT Val	AGA Arg	CAG Gln 375	Leu	GGT Gly	TTT Phe	ATG Met	GCT Ala 380	. Gly	ATA Ile	GAG Glu	CTG Leu	1152
GTG Val 385	Lys	GAC Asp	AAA Lys	GAA Glu	AAG Lys 390	Gly	GAA Glu	CCT Pro	TTC Phe	CCT Pro	Tyr	GGT Gly	GAA Glu	AGG Arg	ACG Thr 400	1200
GGA Gly	TTT Phe	AAC Lys	GTC Val	GCT Ala	Tyr	: AAG : Lys	TGC Cys	AGG Arg	GAA Glu 410	ı Lys	GGG Gly	GTG Val	TTT Phe	TTG Leu 415	AGA Arg	1245
CCC Pro	CTC Lev	C GG/ 1 Gly	A GAC	GTT Val	ATC Met	GTA Val	TTG Leu	ATO Met	ATC Met	CCI Pro	CTI Lev	GTA ı Val	ATA Ile	GAG Glu	GAA Glu	1293

GAC GAA ATG AAC TAC GTT ATT GAT ACA CTT AAA TGG GCA ATT AAA GAG 1341 Asp Glu Met Asn Tyr Val Ile Asp Thr Leu Lys Trp Ala Ile Lys Glu 440 1359 CTT GAA AAA GAG GTG TAG Leu Glu Lys Glu Val End INFORMATION FOR SEQ ID NO:20: (2) (i) SEQUENCE CHARACTERISTICS (A) LENGTH: 1032 NUCLEOTIDES (B) TYPE: NUCLEIC ACID (C) STRANDEDNESS: SINGLE (D) TOPOLOGY: LINEAR (ii) MOLECULE TYPE: GENOMIC DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20: ATG ACA TAC TTA ATG AAC AAT TAC GCA AGG TTG CCC GTA AAG TTT GTA Met Thr Tyr Leu Met Asn Asn Tyr Ala Arg Leu Pro Val Lys Phe Val AGG GGA AAA GGT GTT TAC CTG TAC GAT GAG GAA GGA AAG GAG TAT CTT 96 Arg Gly Lys Gly Val Tyr Leu Tyr Asp Glu Glu Gly Lys Glu Tyr Leu GAC TTT GTC TCC GGT ATA GGC GTC AAC TCC CTC GGT CAC GCT TAC CCA 144 Asp Phe Val Ser Gly Ile Gly Val Asn Ser Leu Gly His Ala Tyr Pro 192 AAA CTC ACA GAA GCT CTA AAA GAA CAG GTT GAG AAA CTC CTC CAC GTT Lys Leu Thr Glu Ala Leu Lys Glu Gln Val Glu Lys Leu Leu His Val TCA AAT CTT TAC GAA AAC CCG TGG CAG GAA GAA CTG GCT CAC AAA CTT 240 Ser Asn Leu Tyr Glu Asn Pro Trp Gln Glu Glu Leu Ala His Lys Leu 75 GTA AAA CAC TTC TGG ACA GAA GGG AAG GTA TTT TTC GCA AAC AGC GGA 288 Val Lys His Phe Trp Thr Glu Gly Lys Val Phe Phe Ala Asn Ser Gly ACG GAA AGT GTA GAG GCG GCT ATA AAG CTC GCA AGG AAG TAC TGG AGG 336 Thr Glu Ser Val Glu Ala Ala Ile Lys Leu Ala Arg Lys Tyr Trp Arg 105 GAT AAA GGA AAG AAC AAG TGG AAG TTT ATA TCC TTT GAA AAC TCT TTC 384 Asp Lys Gly Lys Asn Lys Trp Lys Phe Ile Ser Phe Glu Asn Ser Phe 120 125 CAC GGG AGA ACC TAC GGT AGC CTC TCC GCA ACG GGA CAG CCA AAG TTC 432 His Gly Arg Thr Tyr Gly Ser Leu Ser Ala Thr Gly Gln Pro Lys Phe 135 CAC AAA GGC TTT GAA CCT CTA GTT CCT GGA TTT TCT TAC GCA AAG CTG 480 His Lys Gly Phe Glu Pro Leu Val Pro Gly Phe Ser Tyr Ala Lys Leu AAC GAT ATA GAC AGC GTT TAC AAA CTC CTA GAC GAG GAA ACC GCG GGG

425

420

430

Asn	Asp	Ile	Asp	Ser 165	Val	Tyr	Lys	Leu	Leu 170	Asp	Glu	Glu	Thr	Ala 175	Gly	
														GCG Ala		576
GAG Glu	GAT Asp	TTT Phe 195	CTA Leu	AGT Ser	AAA Lys	CTC Leu	CAG Gln 200	GAA Glu	ATT Ile	TGT Cys	AAA Lys	GAA Glu 205	AAA Lys	GAT Asp	GTG Val	624
														GGG Gly		672
TTC Phe 225	TAC Tyr	GCA Ala	TAT Tyr	CAA Gln	CAC His 230	TTC Phe	AAT Asn	CTA Leu	AAA Lys	CCG Pro 235	GAC Asp	GTA Val	ATT Ile	GCG Ala	CTT Leu 240	720
GCG Ala	AAG Lys	GGA- Gly	CTC Leu	GGA Gly 245	GGA Gly	GGT Gly	GTG Val	CCA Pro	ATA Ile 250	GGT Gly	GCC Ala	ATC Ile	CTT Leu	GCA Ala 255	AGG Arg	768
GAA Glu	GAA Glu	GTG Val	GCC Ala 260	CAG Gln	AGC Ser	TTT Phe	ACT Thr	CCC Pro 265	GGC Gly	TCC Ser	CAC His	GGC Gly	TCT Ser 270	ACC Thr	TTC Phe	816
GGA Gly	GGA Gly	AAC Asn 275	CCC Pro	TTA Leu	GCC Ala	TGC Cys	AGG Arg 280	GCG Ala	GGA Gly	ACA Thr	GTG Val	GTA Val 285	GTA Val	GAT Asp	GAA Glu	864
GTT Val	GAA Glu 290	AAA Lys	CTC Leu	CTG Leu	CCT Pro	CAC His 295	GTA Val	AGG Arg	GAA Glu	GTG Val	GGG Gly 300	AAT Asn	TAC Tyr	TTC Phe	AAA Lys	912
GAA Glu 305	AAA Lys	CTG Leu	AAG Lys	GAA Glu	CTC Leu 310	GGC Gly	AAA Lys	GGA Gly	AAG Lys	GTA Val 315	AAG Lys	GGA Gly	AGA Arg	GGA Gly	TTG Leu 320	960
ATG Met	CTC Leu	GGT Gly	CTT Leu	GAA Glu 325	CTT Leu	GAA Glu	AGA Arg	GAG Glu	TGT Cys 330	AAA Lys	GAT Asp	TAC Tyr	GTT Val	CTC Leu 335	AAG Lys	1008
				GAC Asp	_											1032
(2)	(i)	SE( (A (B (C	QUENC ) LEI ) TY: ) ST:	ATION CE CINGTH PE: RAND	HARA : 1 NUC EDNE	CTER: 197   LEIC	ISTIC NUCL ACII SINC	CS EOTI D								
	(ii)	) MO	LECU	LE T	YPE:	GE	NOMI	C DN	A							
	(xi)	) SE	QUEN	CE DI	ESCR:	IPTI	: MC	SEQ	ID I	NO:2	1:					

48

ATG CGG AAA CTG GCC GAG CGG GCG CAG AAA CTG AGC CCC TCT CCC ACC Met Arg Lys Leu Ala Glu Arg Ala Gln Lys Leu Ser Pro Ser Pro Thr 5

CTC Leu	TCG Ser	GTG Val	GAC Asp 20	ACC Thr	AAG Lys	GCC Ala	AAG Lys	GAG Glu 25	ČTT Leu	TTG Leu	CGG Arg	CAG Gln	GGG Gly 30	GAA Glu	AGG Arg	96
GTC Val	ATC Ile	AAT Asn 35	TTC Phe	GGG Gly	GCG Ala	GGG Gly	GAG Glu 40	CCG Pro	GAC Asp	TTC Phe	GAT Asp	ACA Thr 45	CCG Pro	GAA Glu	CAC His	144
ATC Ile	AAG Lys 50	GAA Glu	GCG Ala	GCG Ala	AAG Lys	CGA Arg 55	GCT Ala	TTA Leu	GAT Asp	CAG Gln	GGC Gly 60	TTC Phe	ACC Thr	AAG Lys	TAC Tyr	192
ACG Thr 65	CCG Pro	GTG Val	GCT Ala	GGG Gly	ATC Ile 70	TTA Leu	CCT Pro	CTT Leu	CGG Arg	GAG Glu 75	GCC Ala	ATA Ile	TGC Cys	GAG Glu	AAG Lys 80	240
CTT Leu	TAC Tyr	CGC Arg	GAC Asp	AAT Asn 85	CAA Gln	CTG Leu	GAA Glu	TAC Tyr	AGC Ser 90	CCG Pro	AAT Asn	GAG Glu	ATC Ile	GTG Val 95	GTC Val	288
TCC Ser	TGT Cys	GGC Gly	GCC Ala 100	AAG Lys	CAT His	TCT Ser	ATT Ile	TTC Phe 105	AAC Asn	GCT Ala	CTG Leu	CAG Gln	GTC Val 110	CTC Leu	CTG Leu	336
GAC Asp	CCG Pro	GGG Gly 115	GAC Asp	GAG Glu	GTG Val	ATA Ile	ATC Ile 120	CCC Pro	GTC Val	CCC Pro	TAC Tyr	TGG Trp 125	ACT Thr	TCC Ser	TAT Tyr	384
CCG Pro	GAG Glu 130	Gln	GTG Val	AAG Lys	CTG Leu	GCG Ala 135	GGA Gly	GGG Gly	GTG Val	CCG Pro	GTT Val 140	TTC Phe	GTC Val	CCC Pro	ACC Thr	432
TCT Ser 145	Pro	GAG Glu	AAC Asn	GAC Asp	TTC Phe 150	Lys	CTC Leu	AGG Arg	CCG Pro	GAA Glu 155	GAT Asp	CTA Leu	CGT Arg	GCG Ala	GCT Ala 160	480
GTA Val	ACC Thr	CCG Pro	CGC Arg	ACC Thr 165	Arg	CTT Leu	TTG Leu	ATC Ile	CTC Leu 170	. Asn	TCC	CCG Pro	GCC Ala	AAC Asn 175	CCC Pro	528
ACA Thr	GGC	ACC Thr	GTT Val	. Tyr	CGC Arg	CGG Arg	GAG Glu	GAA Glu 185	Leu	'ATC	GGC Gly	TTA Leu	GCG Ala 190	GAG Glu	GTA Val	576
GCC Ala	CTC Lev	GAC Glu 195	ı Ala	GAC Asp	CTA Leu	TGG Trp	ATC Ile 200	Leu	TCG Ser	GAC Asp	GAG Glu	ATC Ile 205	Tyr	GAA Glu	AAG Lys	624
CTG Lev	ATC 1 116 210	e Tyi	C GAC	GGG Gly	ATG Met	GAG Glu 215	ι His	GTG Val	AGC Ser	ATA	GCC Ala 220	Ala	CTC Leu	GAC Asp	CCG Pro	672
GA0 Glu 225	ı Val	C AAZ L Ly:	A AAG S Ly:	G CGC	C ACC g Thr 230	r Ile	GTG Val	GTA Val	A AA( Asi	C GGT n Gly 235	7 Val	TCC L Ser	AAG Lys	GCT Ala	TAC Tyr 240	720
GC0 Ala	ATO	G AC	C GG r Gl	r TG0 y Trj 24!	o Arg	C ATA	A GGT e Gly	TAT	GC: Ala 250	a Ala	C GCT a Ala	r cco	C CGG Arg	CCC Pro 255	ATA Ile	768
GC0 Ala	C CAG	G GC n Al	C AT	G AC	C AAG	CTC	C CAF	A AGO	C CAC	C AG: s Se:	r AC	C TC	r AAC r Asr	CCC Pro	ACT Thr	816

265 , 270 260

TCC GTA GCC CAG GCG GCG GCG CTG GCC GCT CTG AAG GGG CCA CAA GAG 864 Ser Val Ala Gln Ala Ala Ala Leu Ala Ala Leu Lys Gly Pro Gln Glu 280 275

CCG GTG GAG AAC ATG CGC CGG GCT TTT CAA AAG CGG CGG GAT TTC ATC 912 Pro Val Glu Asn Met Arg Arg Ala Phe Gln Lys Arg Arg Asp Phe Ile 295 300

960 TGG CAG TAC CTA AAC TCC TTA CCC GGA GTG CGC TGC CCC AAA CCT TTA Trp Gln Tyr Leu Asn Ser Leu Pro Gly Val Arg Cys Pro Lys Pro Leu 315 310

GGG GCC TTT TAC GTC TTT CCA GAA GTT GAG CGG GCT TTT GGG CCG CCG 1008 Gly Ala Phe Tyr Val Phe Pro Glu Val Glu Arg Ala Phe Gly Pro Pro

1056 TCT AAA AGG ACG GGA AAT ACT ACC GCT AGC GAC CTG GCC CTT TTC CTC Ser Lys Arg-Thr Gly Asn Thr Thr Ala Ser Asp Leu Ala Leu Phe Leu 340 345

CTG GAA GAG ATA AAA GTG GCC ACC GTG GCT GGG GCT GCC TTT GGG GAC 1104 Leu Glu Glu Ile Lys Val Ala Thr Val Ala Gly Ala Ala Phe Gly Asp 360

GAT CGC TAC CTG CGC TTT TCC TAC GCC CTG CGG CTG GAA GAT ATC GAA 1152 Asp Arg Tyr Leu Arg Phe Ser Tyr Ala Leu Arg Leu Glu Asp Ile Glu 375

GAG GGG ATG CAA CGG TTT AAA GAA TTG ATC GAA GCG GCA CTT TAA 1197 Glu Gly Met Gln Arg Phe Lys Glu Leu Ile Glu Ala Ala Leu End 390 395

INFORMATION FOR SEQ ID NO:22: (2)

- (i) SEQUENCE CHARACTERISTICS
  - (A) LENGTH: 1779 NUCLEOTIDES
  - (B) TYPE: NUCLEIC ACID
  - (C) STRANDEDNESS: SINGLE
  - (D) TOPOLOGY: LINEAR
  - (ii) MOLECULE TYPE: GENOMIC DNA
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

ATG	TGC	GGG	ATA	GTC	GGA	TAC	GTA	GGG	AGG	GAT	TTA	GCC	CTT	CCT	ATA	48
Met	Cys	Gly	Ile	Val	Gly	Tyr	Val	Gly	Arg	Asp	Leu	Ala	Leu	Pro	Ile	
	_	_		5				•	10					15		

GTC CTC GGA GCT CTT GAG AGA CTC GAA TAC AGG GGT TAC GAC TCC GCG 96 Val Leu Gly Ala Leu Glu Arg Leu Glu Tyr Arg Gly Tyr Asp Ser Ala

GGA GTT GCC CTT ATA GAA GAC GGG AAA CTC ATA GTT GAA AAG AAG AAG 144 Gly Val Ala Leu Ile Glu Asp Gly Lys Leu Ile Val Glu Lys Lys 40

GGA AAG ATA AGG GAA CTC GTT AAA GCG CTA TGG GGA AAG GAT TAC AAG 192 Gly Lys Ile Arg Glu Leu Val Lys Ala Leu Trp Gly Lys Asp Tyr Lys 50

				ATA Ile												240
				GCC Ala 85												288
GTA Val	GTT Val	CAC His	AAC Asn 100	GGG Gly	ATA Ile	ATA Ile	GAA Glu	AAC Asn 105	TAC Tyr	TTA Leu	GAA Glu	CTA Leu	AAA Lys 110	GAG Glu	GAA Glu	336
CTA Leu	AAG Lys	AAG Lys 115	GAA Glu	GGT Gly	GTA Val	AAG Lys	TTC Phe 120	AGG Arg	TCC Ser	GAA Glu	ACA Thr	GAC Asp 125	ACA Thr	GAA Glu	GTT Val	384
ATA Ile	GCC Ala 130	CAC His	CTC Leu	ATA Ile	GCG Ala	AAG Lys 135	AAC Asn	TAC Tyr	AGG Arg	GGG Gly	GAC Asp 140	TTA Leu	CTG Leu	GAG Glu	GCC Ala	432
GTT Val 145	TTA Leu	AAA Lys	ACC Thr	GTA Val	AAG Lys 150	AAA Lys	TTA Leu	AAG Lys	GGT Gly	GCT Ala 155	TTT Phe	GCC Ala	TTT Phe	GCG Ala	GTT Val 160	480
ATA Ile	ACG Thr	GTT Val	CAC His	GAA Glu 165	CCA Pro	AAC Asn	AGA Arg	CTA Leu	ATA Ile 170	GGA Gly	GTG Val	AAG Lys	CAG Gln	GGG Gly 175	AGT Ser	528
CCT Pro	TTA Leu	ATC Ile	GTC Val 180	GGA Gly	CTC Leu	GGA Gly	GAA Glu	GGA Gly 185	GAA Glu	AAC Asn	TTC Phe	CTC Leu	GCT Ala 190	TCA Ser	GAT Asp	576
ATT Ile	CCC Pro	GCA Ala 195	ATA Ile	CTT Leu	CCT Pro	TAC Tyr	ACG Thr 200	AAA Lys	AAG Lys	ATT Ile	ATT Ile	GTT Val 205	CTT Leu	GAT Asp	GAC Asp	624
GGG Gly	GAA Glu 210	ATA Ile	GCG Ala	GAC Asp	CTG Leu	ACT Thr 215	CCC Pro	GAC Asp	ACT Thr	GTG Val	AAC Asn 220	ATT	TAC Tyr	AAC Asn	TTT Phe	672
GAG Glu 225	Gly	GAG Glu	CCC Pro	GTT Val	TCA Ser 230	Lys	GAA Glu	GTA Val	ATG Met	ATT Ile 235	Thr	CCC Pro	TGG Trp	GAT Asp	CTT Leu 240	720
GTT Val	TCT Ser	GCG Ala	GAA Glu	AAG Lys 245	GGT Gly	GGT Gly	TTT Phe	AAA Lys	CAC His 250	Phe	ATG Met	CTA Leu	AAA Lys	GAG Glu 255	ATA Ile	768
TAC Tyr	GAA Glu	CAG Gln	CCC Pro 260	AAA Lys	GCC Ala	ATA Ile	AAC Asn	GAC Asp 265	ACA Thr	CTC Leu	AAG Lys	GGT Gly	TTC Phe 270	CTC Leu	TCA Ser	816
ACC Thr	GAA Glu	GAC Asp 275	Ala	ATA Ile	CCC	TTT Phe	AAG Lys 280	Leu	AAA Lys	GAC Asp	TTC	AGA Arg 285	Arg	GTT Val	TTA Leu	864
ATA Ile	ATA 11e 290	Ala	TGC Cys	GGG Gly	ACC Thr	TCT Ser 295	Tyr	CAC His	GCG Ala	GGC Gly	TTC Phe 300	. Val	GGA Gly	AAG Lys	TAC Tyr	912
TGC Trp	ATA Ile	GAG Glu	AGA Arg	TTT Phe	GCA Ala	GGT Gly	GTI Val	CCC Pro	ACA Thr	GAG Glu	GTA Val	ATT . Ile	TAC Tyr	GCT Ala	TCG Ser	960

320 310 315 305 GAA TTC AGG TAT GCG GAC GTT CCC GTT TCG GAC AAG GAT ATC GTT ATC 1008 Glu Phe Arg Tyr Ala Asp Val Pro Val Ser Asp Lys Asp Ile Val Ile GGA ATT TCC CAG TCA GGA GAG ACC GCT GAC ACA AAG TTT GCC CTT CAG 1056 Gly Ile Ser Gln Ser Gly Glu Thr Ala Asp Thr Lys Phe Ala Leu Gln TCC GCA AAG GAA AAG GGA GCC TTT ACC GTG GGA CTC GTA AAC GTA GTG 1104 Ser Ala Lys Glu Lys Gly Ala Phe Thr Val Gly Leu Val Asn Val Val 360 GGA AGT GCC ATA GAC AGG GAG TCG GAC TTT TCC CTT CAC ACA CAT GCG 1152 Gly Ser Ala Ile Asp Arg Glu Ser Asp Phe Ser Leu His Thr His Ala 380 375 GGA CCC GAA ATA GGC GTG GCG GCT ACA AAG ACC TTC ACC GCA CAG TTC 1200 Gly Pro Glu Ile Gly Val Ala Ala Thr Lys Thr Phe Thr Ala Gln Phe ACC GCA CTC TAC GCC CTT TCG GTA AGG GAA AGT GAG GAG AGG GAA AAT 1248 Thr Ala Leu Tyr Ala Leu Ser Val Arg Glu Ser Glu Glu Arg Glu Asn CTA ATA AGA CTC CTT GAA AAG GTT CCA TCA CTC GTT GAA CAA ACA CTG 1296 Leu Ile Arg Leu Leu Glu Lys Val Pro Ser Leu Val Glu Gln Thr Leu 425 1344 AAC ACC GCA GAA GAA GTG GAG AAG GTA GCG GAA AAG TAC ATG AAA AAG Asn Thr Ala Glu Glu Val Glu Lys Val Ala Glu Lys Tyr Met Lys Lys 440 435 AAA AAC ATG CTT TAC CTC GGA AGG TAC TTA AAT TAC CCC ATA GCG CTG 1392 Lys Asn Met Leu Tyr Leu Gly Arg Tyr Leu Asn Tyr Pro Ile Ala Leu 455 GAG GGA GCT CTT AAA CTT AAA GAA ATT TCT TAC ATA CAC GCG GAA GGT 1440 Glu Gly Ala Leu Lys Leu Lys Glu Ile Ser Tyr Ile His Ala Glu Gly 470 480 TAT CCC GCA GGG GAG ATG AAG CAC GGT CCC ATA GCC CTC ATA GAC GAA 1488 Tyr Pro Ala Gly Glu Met Lys His Gly Pro Ile Ala Leu Ile Asp Glu 485 490 AAC ATG CCG GTT GTG GTA ATC GCA CCG AAA GAC AGG GTT TAC GAG AAG 1536 Asn Met Pro Val Val Val Ile Ala Pro Lys Asp Arg Val Tyr Glu Lys 1584 ATA CTC TCA AAC GTA GAA GAG GTT CTC GCA AGA AAG GGA AGG GTT ATT Ile Leu Ser Asn Val Glu Glu Val Leu Ala Arg Lys Gly Arg Val Ile TCT GTA GGC TTT AAA GGA GAC GAA ACT CTC AAA AGC AAA TCC GAG AGC 1632 Ser Val Gly Phe Lys Gly Asp Glu Thr Leu Lys Ser Lys Ser Glu Ser 535 530 GTT ATG GAA ATC CCG AAG GCA GAA GAA CCG ATA ACT CCT TTC TTG ACG 1680 Val Met Glu Ile Pro Lys Ala Glu Glu Pro Ile Thr Pro Phe Leu Thr 560 555 545 GTA ATA CCC CTG CAA CTC TTT GCC TAC TTT ATA GCG AGC AAA CTG GGA 1728 Val Ile Pro Leu Gln Leu Phe Ala Tyr Phe Ile Ala Ser Lys Leu Gly

580 570 575 565 CTG GAT GTG GAT CAG CCG AGA AAT CTC GCC AAA ACG GTC ACG GTG GAA 1776 Leu Asp Val Asp Gln Pro Arg Asn Leu Ala Lys Thr Val Thr Val Glu 585 1779 TAA End INFORMATION FOR SEQ ID NO:23: SEQUENCE CHARACTERISTICS (i) (A) LENGTH: 1065 NUCLEOTIDES (B) TYPE: NUCLEIC ACID (C) STRANDEDNESS: SINGLE (D) TOPOLOGY: LINEAR (ii) MOLECULE TYPE: GENOMIC DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23: ATG ATA CCC CAG AGG ATT AAG GAA CTT GAA GCT TAC AAG ACG GAG GTC 4.8 Met Ile Pro Gln Arg Ile Lys Glu Leu Glu Ala Tyr Lys Thr Glu Val 10 ACT CCC GCC TCC GTC AGG CTT TCC TCT AAC GAA TTC CCC TAC GAC TTT 96 Thr Pro Ala Ser Val Arg Leu Ser Ser Asn Glu Phe Pro Tyr Asp Phe 144 CCC GAG GAG ATA AAA CAA AGG GCC TTA GAA GAA TTA AAA AAG GTT CCC Pro Glu Glu Ile Lys Gln Arg Ala Leu Glu Glu Leu Lys Lys Val Pro 40 TTG AAC AAA TAC CCA GAC CCC GAA GCG AAA GAG TTA AAA GCG GTT CTT 192 Leu Asn Lys Tyr Pro Asp Pro Glu Ala Lys Glu Leu Lys Ala Val Leu GCG GAT TTT TTC GGC GTT AAG GAA GAA AAT TTA GTT CTC GGT AAC GGT 240 Ala Asp Phe Phe Gly Val Lys Glu Glu Asn Leu Val Leu Gly Asn Gly TCG GAC GAA CTC ATA TAC TAC CTC TCA ATA GCT ATA GGT GAA CTT TAC 288 Ser Asp Glu Leu Ile Tyr Tyr Leu Ser Ile Ala Ile Gly Glu Leu Tyr 90 ATA CCC GTT TAC ATA CCT GTT CCC ACC TTT CCC ATG TAC GAG ATA AGT 336 Ile Pro Val Tyr Ile Pro Val Pro Thr Phe Pro Met Tyr Glu Ile Ser 100 GCG AAA GTT CTC GGA AGA CCC CTC GTA AAG GTT CAA CTG GAC GAA AAC 384 Ala Lys Val Leu Gly Arg Pro Leu Val Lys Val Gln Leu Asp Glu Asn TTT GAT ATA GAC TTA GAA AGA AGT ATT GAA TTA ATA GAG AAA GAA AAA 432 Phe Asp Ile Asp Leu Glu Arg Ser Ile Glu Leu Ile Glu Lys Glu Lys 135 130 CCC GTT CTC GGG TAC TTT GCT TAC CCA AAC AAC CCC ACG GGA AAC CTC Pro Val Leu Gly Tyr Phe Ala Tyr Pro Asn Asn Pro Thr Gly Asn Leu 528 TTT TCC AGG GGA AAG ATT GAG GAG ATA AGA AAC AGG GGT GTT TTC TGT

Phe Ser Arg Gly Lys Ile Glu Glu Ile Arg Asn Arg Gly Val Phe Cys

170 175 165

					GCC Ala												576
GA As	AC sp	GCG Ala	CTC Leu 195	AAA Lys	AGG Arg	GAA Glu	GAT Asp	ACG Thr 200	GTA Val	GTT Val	TTG Leu	AGG Arg	ACA Thr 205	CTT Leu	TCA Ser	AAA Lys	624
ra Il	Le	GGT Gly 210	ATG Met	GCG Ala	AGT Ser	TTA Leu	AGG Arg 215	GTA Val	GGG Gly	ATT Ile	TTA Leu	ATA Ile 220	GGG Gly	AAG Lys	GGG Gly	GAA Glu	672
I	rc le 25	GTC Val	TCA Ser	GAA Glu	ATT Ile	AAC Asn 230	Lys	GTG Val	AGA Arg	CTC Leu	CCC Pro 235	TTC Phe	AAC Asn	GTG Val	ACC Thr	TAC Tyr 240	720
C( Pi	CC ro	TCT Ser	CAG Gln	GTG Väl	ATG Met 245	GCA Ala	AAA Lys	GTT Val	CTC Leu	CTC Leu 250	ACG Thr	GAG Glu	GGA Gly	AGA Arg	GAA Glu 255	TTC Phe	768
C'. Le	ΓA eu	ATG Met	GAA Glu	AAG Lys 260	ATA Ile	CAG Gln	GAG Glu	GTT Val	GTA Val 265	ACA Thr	GAG Glu	CGA Arg	GAA Glu	AGG Arg 270	ATG Met	TAC Tyr	816
G/A	AC sp	GAA Glu	ATG Met 275	Lys	AAA Lys	ATA Ile	GAA Glu	GGA Gly 280	GTT Val	GAG Glu	GTT Val	TTT Phe	CCG Pro 285	AGT Ser	AAG Lys	GCT Ala	864
A:	AC sn	TTC Phe 290	TTG Leu	CTT Leu	TTC Phe	AGA Arg	ACG Thr 295	CCT Pro	TAC Tyr	CCC Pro	GCC Ala	CAC His 300	GAG Glu	GTT Val	TAT Tyr	CAG Gln	912
G	AG lu 05	CTA Leu	CTG Leu	AAA Lys	AGG Arg	GAT Asp 310	GTC Val	CTC Leu	GTC Val	AGG Arg	AAC Asn 315	GTA Val	TCT Ser	TAC Tyr	ATG Met	GAA Glu 320	960
G G	GA ly	CTC Leu	CAA Gln	AAG Lys	TGC Cys 325	Leu	AGG Arg	GTA Val	AGC Ser	GTA Val 330	Gly	AAA Lys	CCG Pro	GAA Glu	GAA Glu 335	AAC Asn	1008
A A	AC .sn	AAG Lys	TTT Phe	CTG Leu 340	Glu	GCA Ala	CTG Leu	GAG Glu	GAG Glu 345	Ser	ATA Ile	AAA Lys	TCC Ser	CTT Leu 350	Ser	AGC Ser	1056
-			TAA End														1065

- INFORMATION FOR SEQ ID NO:24: (2)
  - SEQUENCE CHARACTERISTICS
    - (A) LENGTH: 912 NUCLEOTIDES
      (B) TYPE: NUCLEIC ACID
      (C) STRANDEDNESS: SINGLE

    - (D) TOPOLOGY: LINEAR
  - (ii) MOLECULE TYPE: GENOMIC DNA
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

ATG AAG CCG TAC GCT AAA TAT ATC TGG CTT GAC GGC AGA ATA CTT AAG

48

Met	Lys	Pro	Tyr	Ala 5	Lys	Tyr	Ile	Trp	Leu 10	Asp	Gly	Arg	Ile	Leu 15	Lys	
									ACT Thr							96
									TAT Tyr							144
									GAC Asp							192
									ACA Thr							240
									AAC Asn 90							288
									CAG Gln							336
									ATT Ile							384
TAC Tyr	CTC Leu 130	TCG Ser	CCC Pro	AAC Asn	GGC Gly	ATT Ile 135	AAG Lys	GCA Ala	ACG Thr	ATT Ile	GTA Val 140	AGC Ser	TGG Trp	CGT Arg	AGA Arg	432
									GCA Ala							480
GTA Val	AAC Asn	TCT Ser	GTA Val	CTT Leu 165	GCG Ala	CTT Leu	GTA Val	GAG Glu	GCT Ala 170	AGA Arg	AGC Ser	AGG Arg	GGA Gly	TTT Phe 175	GAC Asp	528
GAG Glu	GCT Ala	TTA Leu	TTA Leu 180	ATG Met	GAC Asp	GTT Val	AAC Asn	GGT Gly 185	TAT Tyr	GTT Val	GTT Val	GAG Glu	GGT Gly 190	TCT Ser	GGA Gly	576
									AGG Arg							624
									AGG Arg							672
	Gly								GAA Glu							720
															GAG Glu	768

			GTG Val 260													816
			ATT Ile													864
AGA	GGC	AAA	GTA	GAG	AAA	TAC	TTA	AAT	TGG	ATC	ACT	CCT	GTG	TAT	TAG	912
Arg	Gly 290	Lys	Val	Glu	Lys	Tyr 295	Leu	Asn	Trp	Ile	Thr 300	Pro	Val	Tyr	End	

- (2) INFORMATION FOR SEQ ID NO:25:
  - (i) SEQUENCE CHARACTERISTICS
    - (A) LENGTH: 414 AMINO ACIDS
    - (B) TYPE: AMINO ACID
    - (D) TOPOLOGY: LINEAR
  - (ii) MOLECULE TYPE: PROTEIN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

Met Ile Glu Asp Pro Met Asp Trp Ala Phe Pro Arg Ile Lys Arg Leu Pro Gln Tyr Val Phe Ser Leu Val Asn Glu Leu Lys Tyr Lys Leu Arg Arg Glu Gly Glu Asp Val Val Asp Leu Gly Met Gly Asn Pro Asn Met Pro Pro Ala Lys His Ile Ile Asp Lys Leu Cys Glu Val Ala Gln Lys Pro Asn Val His Gly Tyr Ser Ala Ser Arg Gly Ile Pro Arg Leu Arg 65 70 75 80 Lys Ala Ile Cys Asn Phe Tyr Glu Glu Arg Tyr Gly Val Lys Leu Asp Pro Glu Arg Glu Ala Ile Leu Thr Ile Gly Ala Lys Glu Gly Tyr Ser His Leu Met Leu Ala Met Ile Ser Pro Gly Asp Thr Val Ile Val Pro Asn Pro Thr Tyr Pro Ile His Tyr Tyr Ala Pro Ile Ile Ala Gly Gly Glu Val His Ser Ile Pro Leu Asn Phe Ser Asp Asp Gln Asp His Gln Glu Glu Phe Leu Arg Arg Leu Tyr Glu Ile Val Lys Thr Ala Met Pro Lys Pro Lys Ala Val Val Ile Ser Phe Pro His Asn Pro Thr Thr Ile 180 185 190 Thr Val Glu Lys Asp Phe Phe Lys Glu Ile Val Lys Phe Ala Lys Glu

200

205

His Gly Leu Trp Ile Ile His Asp Phe Ala Tyr Ala Asp Ile Ala Phe 210 215 220

Asp Gly Tyr Lys Pro Pro Ser Ile Leu Glu Ile Glu Gly Ala Lys Asp 225 230 235

Val Ala Val Glu Leu Tyr Ser Met Ser Lys Gly Phe Ser Met Ala Gly 245 250 255

Trp Arg Val Ala Phe Val Val Gly Asn Glu Ile Leu Ile Lys Asn Leu 260 265 270

Ala His Leu Lys Ser Tyr Leu Asp Tyr Gly Ile Phe Thr Pro Ile Gln 275 280 285

Val Ala Ser Ile Ile Ala Leu Glu Ser Pro Tyr Glu Ile Val Glu Lys 290 295 300

Thr Ala Lys Val Tyr Gln Lys Arg Arg Asp Val Leu Val Glu Gly Leu 305 310 315 320

Asn Arg Leu Gly Trp Lys Val Lys Lys Pro Lys Ala Thr Met Phe Val 325 330 335

Trp Ala Lys Ile Pro Glu Trp Ile Asn Met Asn Ser Leu Asp Phe Ser 340 345 350

Leu Phe Leu Leu Lys Glu Ala Lys Val Ala Val Ser Pro Gly Val Gly 355 360 365

Phe Gly Gln Tyr Gly Glu Gly Tyr Val Arg Phe Ala Leu Val Glu Asn 370 375 380

Glu His Arg Ile Arg Gln Ala Ile Arg Gly Ile Arg Lys Ala Phe Arg 385 390 395

Lys Leu Gln Lys Glu Arg Lys Leu Glu Pro Glu Arg Ser Ala End 405 410 414

- (2) INFORMATION FOR SEQ ID NO:26:
  - (i) SEQUENCE CHARACTERISTICS
    - (A) LENGTH: 373 AMINO ACIDS
    - (B) TYPE: AMINO ACID
    - (D) TOPOLOGY: LINEAR
  - (ii) MOLECULE TYPE: PROTEIN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

Met Asp Arg Leu Glu Lys Val Ser Pro Phe Ile Val Met Asp Ile Leu
5 10 15

Ala Gln Ala Gln Lys Tyr Glu Asp Val Val His Met Glu Ile Gly Glu 20 25 30

Pro Asp Leu Glu Pro Ser Pro Lys Val Met Glu Ala Leu Glu Arg Ala 35 40 45

Val Lys Glu Lys Thr Phe Phe Tyr Thr Pro Ala Leu Gly Leu Trp Glu
50 55 60

Leu Arg Glu Arg Ile Ser Glu Phe Tyr Arg Lys Lys Tyr Ser Val Glu

 65
 70
 75
 80

Val Ser Pro Glu Arg Val Ile Val Thr Thr Gly Thr Ser Gly Ala Phe
85 90 95

Leu Val Ala Tyr Ala Val Thr Leu Asn Ala Gly Glu Lys Ile Ile Leu 100 105 110

Ala Gln Pro Val Phe Val Asn Val Asp Lys Glu Thr Asn Tyr Glu Val 130 135 140

Arg Lys Glu Met Ile Glu Asp Ile Asp Ala Lys Ala Leu His Ile Ser 145 150 155 160

Ser Pro Gln Asn Pro Thr Gly Thr Leu Tyr Ser Pro Glu Thr Leu Lys
165
170
175

Glu Leu Ala Glu Tyr Cys Glu Glu Lys Gly Met Tyr Phe Ile Ser Asp 180 185 190

Glu Ile Tyr His Gly Leu Val Tyr Glu Gly Arg Glu His Thr Ala Leu 195 200 205

Glu Phe Ser Asp Arg Ala Ile Val Ile Asn Gly Phe Ser Lys Tyr Phe 210 220

Cys Met Pro Gly Phe Arg Ile Gly Trp Met Ile Val Pro Glu Glu Leu 225 230 235

Val Arg Lys Ala Glu Ile Val Ile Gln Asn Val Phe Ile Ser Ala Pro 245 250 255

Thr Leu Ser Gln Tyr Ala Ala Leu Glu Ala Phe Asp Tyr Glu Tyr Leu 260 265 270

Glu Lys Val Arg Lys Thr Phe Glu Glu Arg Arg Asn Phe Leu Tyr Gly 275 280 285

Glu Leu Lys Lys Leu Phe Lys Ile Asp Ala Lys Pro Gln Gly Ala Phe 290 295 300

Tyr Val Trp Ala Asn Ile Ser Asp Tyr Ser Thr Asp Ser Tyr Glu Phe 305 310 315 320

Ala Leu Lys Leu Arg Glu Ala Arg Val Ala Val Thr Pro Gly Val 325 330 335

Asp Phe Gly Lys Asn Lys Thr Lys Glu Tyr Ile Arg Phe Ala Tyr Thr 340 345 350

Arg Lys Ile Glu Glu Leu Lys Glu Gly Val Glu Arg Ile Lys Lys Phe 355 360 365

Leu Glu Lys Leu Ser 370

- (2) INFORMATION FOR SEQ ID NO:27:
  - (i) SEQUENCE CHARACTERISTICS
    - (A) LENGTH: 453 AMINO ACIDS
    - (B) TYPE: AMINO ACID
    - (D) TOPOLOGY: LINEAR
  - (ii) MOLECULE TYPE: PROTEIN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

Met Trp Glu Leu Asp Pro Lys Thr Leu Glu Lys Trp Asp Lys Glu Tyr 10 15

Phe Trp His Pro Phe Thr Gln Met Lys Val Tyr Arg Glu Glu Glu Asn 20 25 30

Leu Ile Phe Glu Arg Gly Glu Gly Val Tyr Leu Trp Asp Ile Tyr Gly 35 40 45

Arg Lys Tyr Iie Asp Ala Ile Ser Ser Leu Trp Cys Asn Val His Gly 50 60

His Asn His Pro Lys Leu Asn Asn Ala Val Met Lys Gln Leu Cys Lys 65 70 75 80

Val Ala His Thr Thr Thr Leu Gly Ser Ser Asn Val Pro Ala Ile Leu 85 90 95

Leu Ala Lys Lys Leu Val Glu Ile Ser Pro Glu Gly Leu Asn Lys Val 100 105 110

Phe Tyr Ser Glu Asp Gly Ala Glu Ala Val Glu Ile Ala Ile Lys Met 115 120 125

Ala Tyr His Tyr Trp Lys Asn Lys Gly Val Lys Gly Lys Asn Val Phe 130 135 140

Ile Thr Leu Ser Glu Ala Tyr His Gly Asp Thr Val Gly Ala Val Ser 145 150 155 160

Val Gly Gly Ile Glu Leu Phe His Gly Thr Tyr Lys Asp Leu Leu Phe 165 170 175

Lys Thr Ile Lys Leu Pro Ser Pro Tyr Leu Tyr Cys Lys Glu Lys Tyr 180 185 190

Gly Glu Leu Cys Pro Glu Cys Thr Ala Asp Leu Leu Lys Gln Leu Glu 195 200 205

Asp Ile Leu Lys Ser Arg Glu Asp Ile Val Ala Val Ile Met Glu Ala 210 215 220

Gly Ile Gln Ala Ala Ala Gly Met Leu Pro Phe Pro Pro Gly Phe Leu 225 230 235

Lys Gly Val Arg Glu Leu Thr Lys Lys Tyr Asp Thr Leu Met Ile Val 245 250 250

Asp Glu Val Ala Thr Gly Phe Gly Arg Thr Gly Thr Met Phe Tyr Cys 260 265 270

Glu Gln Glu Gly Val Ser Pro Asp Phe Met Cys Leu Gly Lys Gly Ile 275 280 285

Thr Gly Gly Tyr Leu Pro Leu Ala Ala Thr Leu Thr Thr Asp Glu Val 290 295 300

Phe Asn Ala Phe Leu Gly Glu Phe Gly Glu Ala Lys His Phe Tyr His 305 310 315 320

Gly His Thr Tyr Thr Gly Asn Asn Leu Ala Cys Ser Val Ala Leu Ala 325 330 335

Asn Leu Glu Val Phe Glu Glu Glu Arg Thr Leu Glu Lys Leu Gln Pro 340 345 350

Lys Ile Lys Leu Lys Glu Arg Leu Gln Glu Phe Trp Glu Leu Lys 355 360 365

His Val Gly Asp Val Arg Gln Leu Gly Phe Met Ala Gly Ile Glu Leu 370 375 380

Val Lys Asp Lys Glu Lys Gly Glu Pro Phe Pro Tyr Gly Glu Arg Thr 385 390 395 400

Gly Phe Lys Val Ala Tyr Lys Cys Arg Glu Lys Gly Val Phe Leu Arg 405 410 415

Pro Leu Gly Asp Val Met Val Leu Met Met Pro Leu Val Ile Glu Glu 420 425 430

Asp Glu Met Asn Tyr Val Ile Asp Thr Leu Lys Trp Ala Ile Lys Glu 435 440 445

Leu Glu Lys Glu Val 450

- (2) INFORMATION FOR SEQ ID NO:28:
  - (i) SEQUENCE CHARACTERISTICS
    - (A) LENGTH: 343 AMINO ACIDS
    - (B) TYPE: AMINO ACID
    - (D) TOPOLOGY: LINEAR
  - (ii) MOLECULE TYPE: PROTEIN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

Met Thr Tyr Leu Met Asn Asn Tyr Ala Arg Leu Pro Val Lys Phe Val
5 10 15

Arg Gly Lys Gly Val Tyr Leu Tyr Asp Glu Glu Gly Lys Glu Tyr Leu 20 25 30

Asp Phe Val Ser Gly Ile Gly Val Asn Ser Leu Gly His Ala Tyr Pro 35 40 45

Lys Leu Thr Glu Ala Leu Lys Glu Gln Val Glu Lys Leu Leu His Val 50 55 60

Ser Asn Leu Tyr Glu Asn Pro Trp Gln Glu Glu Leu Ala His Lys Leu 65 70 75 80

Val Lys His Phe Trp Thr Glu Gly Lys Val Phe Phe Ala Asn Ser Gly Thr Glu Ser Val Glu Ala Ala Ile Lys Leu Ala Arg Lys Tyr Trp Arg Asp Lys Gly Lys Asn Lys Trp Lys Phe Ile Ser Phe Glu Asn Ser Phe His Gly Arg Thr Tyr Gly Ser Leu Ser Ala Thr Gly Gln Pro Lys Phe 135 His Lys Gly Phe Glu Pro Leu Val Pro Gly Phe Ser Tyr Ala Lys Leu Asn Asp Ile Asp Ser Val Tyr Lys Leu Leu Asp Glu Glu Thr Ala Gly Ile Ile Glu Val Ile Gln Gly Glu Gly Val Asn Glu Ala Ser Glu Asp Phe Leu Ser Lys Leu Gln Glu Ile Cys Lys Glu Lys Asp Val Leu Leu Ile Ile Asp Glu Val Gln Thr Gly Ile Gly Arg Thr Gly Glu Phe Tyr Ala Tyr Gln His Phe Asn Leu Lys Pro Asp Val Ile Ala Leu Ala Lys Gly Leu Gly Gly Gly Val Pro Ile Gly Ala Ile Leu Ala Arg Glu Glu Val Ala Gln Ser Phe Thr Pro Gly Ser His Gly Ser Thr Phe Gly Gly Asn Pro Leu Ala Cys Arg Ala Gly Thr Val Val Val Asp Glu Val Glu Lys Leu Leu Pro His Val Arg Glu Val Gly Asn Tyr Phe Lys 295 Glu Lys Leu Lys Glu Leu Gly Lys Gly Lys Val Lys Gly Arg Gly Leu Met Leu Gly Leu Glu Leu Glu Arg Glu Cys Lys Asp Tyr Val Leu Lys 330

Ala Leu Glu Arg Asp Phe Ser 340

- (2) INFORMATION FOR SEQ ID NO:29:
  - (i) SEQUENCE CHARACTERISTICS
    - (A) LENGTH: 398 AMINO ACIDS
    - (B) TYPE: AMINO ACID
    - (D) TOPOLOGY: LINEAR
  - (ii) MOLECULE TYPE: PROTEIN

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

Met Arg Lys Leu Ala Glu Arg Ala Gln Lys Leu Ser Pro Ser Pro Thr Leu Ser Val Asp Thr Lys Ala Lys Glu Leu Leu Arg Gln Gly Glu Arg Val Ile Asn Phe Gly Ala Gly Glu Pro Asp Phe Asp Thr Pro Glu His Ile Lys Glu Ala Ala Lys Arg Ala Leu Asp Gln Gly Phe Thr Lys Tyr Thr Pro Val Ala Gly Ile Leu Pro Leu Arg Glu Ala Ile Cys Glu Lys Leu Tyr Arg Asp Asn Gln Leu Glu Tyr Ser Pro Asn Glu Ile Val Val Ser Cys Gly Ala Lys His Ser Ile Phe Asn Ala Leu Gln Val Leu Leu Asp Pro Gly Asp Glu Val Ile Ile Pro Val Pro Tyr Trp Thr Ser Tyr Pro Glu Gln Val Lys Leu Ala Gly Gly Val Pro Val Phe Val Pro Thr 135 Ser Pro Glu Asn Asp Phe Lys Leu Arg Pro Glu Asp Leu Arg Ala Ala 150 Val Thr Pro Arg Thr Arg Leu Leu Ile Leu Asn Ser Pro Ala Asn Pro Thr Gly Thr Val Tyr Arg Arg Glu Glu Leu Ile Gly Leu Ala Glu Val Ala Leu Glu Ala Asp Leu Trp Ile Leu Ser Asp Glu Ile Tyr Glu Lys Leu Ile Tyr Asp Gly Met Glu His Val Ser Ile Ala Ala Leu Asp Pro Glu Val Lys Lys Arg Thr Ile Val Val Asn Gly Val Ser Lys Ala Tyr Ala Met Thr Gly Trp Arg Ile Gly Tyr Ala Ala Ala Pro Arg Pro Ile Ala Gln Ala Met Thr Asn Leu Gln Ser His Ser Thr Ser Asn Pro Thr 265 Ser Val Ala Gln Ala Ala Ala Leu Ala Ala Leu Lys Gly Pro Gln Glu 280 Pro Val Glu Asn Met Arg Arg Ala Phe Gln Lys Arg Arg Asp Phe Ile Trp Gln Tyr Leu Asn Ser Leu Pro Gly Val Arg Cys Pro Lys Pro Leu 315

Gly Ala Phe Tyr Val Phe Pro Glu Val Glu Arg Ala Phe Gly Pro Pro

Ser Lys Arg Thr Gly Asn Thr Thr Ala Ser Asp Leu Ala Leu Phe Leu 340 345 350

Leu Glu Glu Ile Lys Val Ala Thr Val Ala Gly Ala Ala Phe Gly Asp 355 360 365

Asp Arg Tyr Leu Arg Phe Ser Tyr Ala Leu Arg Leu Glu Asp Ile Glu 370 375 380

Glu Gly Met Gln Arg Phe Lys Glu Leu Ile Glu Ala Ala Leu 385 390 395

- (2) INFORMATION FOR SEQ ID NO:30:
  - (i) SEQUENCE CHARACTERISTICS
    - (A) LENGTH: 592 AMINO ACIDS
    - (B) TYPE: AMINO ACID
    - (D) TOPOLOGY: LINEAR
  - (ii) MOLECULE TYPE: PROTEIN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

Met Cys Gly Ile Val Gly Tyr Val Gly Arg Asp Leu Ala Leu Pro Ile
5 10 15

Val Leu Gly Ala Leu Glu Arg Leu Glu Tyr Arg Gly Tyr Asp Ser Ala 20 25 30

Gly Val Ala Leu Ile Glu Asp Gly Lys Leu Ile Val Glu Lys Lys 40 45

Gly Lys Ile Arg Glu Leu Val Lys Ala Leu Trp Gly Lys Asp Tyr Lys 50 60

Ala Lys Thr Gly Ile Gly His Thr Arg Trp Ala Thr His Gly Lys Pro 65 70 75 80

Thr Asp Glu Asn Ala His Pro His Thr Asp Glu Lys Gly Glu Phe Ala 85 90 95

Val Val His Asn Gly Ile Ile Glu Asn Tyr Leu Glu Leu Lys Glu Glu
100 105 110

Leu Lys Lys Glu Gly Val Lys Phe Arg Ser Glu Thr Asp Thr Glu Val 115 120 125

Ile Ala His Leu Ile Ala Lys Asn Tyr Arg Gly Asp Leu Leu Glu Ala 130 135 140

Val Leu Lys Thr Val Lys Lys Leu Lys Gly Ala Phe Ala Phe Ala Val 145 150 155

Ile Thr Val His Glu Pro Asn Arg Leu Ile Gly Val Lys Gln Gly Ser 165 170 175

Pro Leu Ile Val Gly Leu Gly Glu Gly Glu Asn Phe Leu Ala Ser Asp 180 185 190 Ile Pro Ala Ile Leu Pro Tyr Thr Lys Lys Ile Ile Val Leu Asp Asp 200 Gly Glu Ile Ala Asp Leu Thr Pro Asp Thr Val Asn Ile Tyr Asn Phe Glu Gly Glu Pro Val Ser Lys Glu Val Met Ile Thr Pro Trp Asp Leu Val Ser Ala Glu Lys Gly Gly Phe Lys His Phe Met Leu Lys Glu Ile Tyr Glu Gln Pro Lys Ala Ile Asn Asp Thr Leu Lys Gly Phe Leu Ser Thr Glu Asp Ala Ile Pro Phe Lys Leu Lys Asp Phe Arg Arg Val Leu Ile Ile Ala Cýs Gly Thr Ser Tyr His Ala Gly Phe Val Gly Lys Tyr Trp Ile Glu Arg Phe Ala Gly Val Pro Thr Glu Val Ile Tyr Ala Ser Glu Phe Arg Tyr Ala Asp Val Pro Val Ser Asp Lys Asp Ile Val Ile Gly Ile Ser Gln Ser Gly Glu Thr Ala Asp Thr Lys Phe Ala Leu Gln Ser Ala Lys Glu Lys Gly Ala Phe Thr Val Gly Leu Val Asn Val Val Gly Ser Ala Ile Asp Arg Glu Ser Asp Phe Ser Leu His Thr His Ala 375 380 Gly Pro Glu Ile Gly Val Ala Ala Thr Lys Thr Phe Thr Ala Gln Phe 390 Thr Ala Leu Tyr Ala Leu Ser Val Arg Glu Ser Glu Glu Arg Glu Asn 410 Leu Ile Arg Leu Leu Glu Lys Val Pro Ser Leu Val Glu Gln Thr Leu 425 Asn Thr Ala Glu Glu Val Glu Lys Val Ala Glu Lys Tyr Met Lys Lys Lys Asn Met Leu Tyr Leu Gly Arg Tyr Leu Asn Tyr Pro Ile Ala Leu Glu Gly Ala Leu Lys Leu Lys Glu Ile Ser Tyr Ile His Ala Glu Gly Tyr Pro Ala Gly Glu Met Lys His Gly Pro Ile Ala Leu Ile Asp Glu Asn Met Pro Val Val Val Ile Ala Pro Lys Asp Arg Val Tyr Glu Lys

505

500

Ile Leu Ser Asn Val Glu Glu Val Leu Ala Arg Lys Gly Arg Val Ile

Ser Val Gly Phe Lys Gly Asp Glu Thr Leu Lys Ser Lys Ser Glu Ser

Val Met Glu Ile Pro Lys Ala Glu Glu Pro Ile Thr Pro Phe Leu Thr 550

Val Ile Pro Leu Gln Leu Phe Ala Tyr Phe Ile Ala Ser Lys Leu Gly

Leu Asp Val Asp Gln Pro Arg Asn Leu Ala Lys Thr Val Thr Val Glu 580 585

- INFORMATION FOR SEQ ID NO:31:
  - (i) SEQUENCE CHARACTERISTICS
    - (A) LENGTH: 354 AMINO ACIDS
    - (B) PYPE: AMINO ACID
      (D) TOPOLOGY: LINEAR
  - (ii) MOLECULE TYPE: PROTEIN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

Met Ile Pro Gln Arg Ile Lys Glu Leu Glu Ala Tyr Lys Thr Glu Val

Thr Pro Ala Ser Val Arg Leu Ser Ser Asn Glu Phe Pro Tyr Asp Phe

Pro Glu Glu Ile Lys Gln Arg Ala Leu Glu Glu Leu Lys Lys Val Pro

Leu Asn Lys Tyr Pro Asp Pro Glu Ala Lys Glu Leu Lys Ala Val Leu

Ala Asp Phe Phe Gly Val Lys Glu Glu Asn Leu Val Leu Gly Asn Gly

Ser Asp Glu Leu Ile Tyr Tyr Leu Ser Ile Ala Ile Gly Glu Leu Tyr

Ile Pro Val Tyr Ile Pro Val Pro Thr Phe Pro Met Tyr Glu Ile Ser

Ala Lys Val Leu Gly Arg Pro Leu Val Lys Val Gln Leu Asp Glu Asn

Phe Asp Ile Asp Leu Glu Arg Ser Ile Glu Leu Ile Glu Lys Glu Lys

Pro Val Leu Gly Tyr Phe Ala Tyr Pro Asn Asn Pro Thr Gly Asn Leu

Phe Ser Arg Gly Lys Ile Glu Glu Ile Arg Asn Arg Gly Val Phe Cys

Val Ile Asp Glu Ala Tyr Tyr His Tyr Ser Gly Glu Thr Phe Leu Glu 185

Asp Ala Leu Lys Arg Glu Asp Thr Val Val Leu Arg Thr Leu Ser Lys
195 200 205

Ile Gly Met Ala Ser Leu Arg Val Gly Ile Leu Ile Gly Lys Gly Glu 210 215 220

Ile Val Ser Glu Ile Asn Lys Val Arg Leu Pro Phe Asn Val Thr Tyr 225 230 235 240

Pro Ser Gln Val Met Ala Lys Val Leu Leu Thr Glu Gly Arg Glu Phe 245 250 255

Leu Met Glu Lys Ile Gln Glu Val Val Thr Glu Arg Glu Arg Met Tyr 260 265 270

Asp Glu Met Lys Lys Ile Glu Gly Val Glu Val Phe Pro Ser Lys Ala 275 280 285

Asn Phe Leu Leu Phe Arg Thr Pro Tyr Pro Ala His Glu Val Tyr Gln 290 295 300

Glu Leu Leu Lys Arg Asp Val Leu Val Arg Asn Val Ser Tyr Met Glu 305 310 315 320

Gly Leu Gln Lys Cys Leu Arg Val Ser Val Gly Lys Pro Glu Glu Asn 325 330 335

Asn Lys Phe Leu Glu Ala Leu Glu Glu Ser Ile Lys Ser Leu Ser Ser 340 345 350

Ser Leu

- (2) INFORMATION FOR SEQ ID NO:32:
  - (i) SEQUENCE CHARACTERISTICS
    - (A) LENGTH: 303 AMINO ACIDS
    - (B) TYPE: AMINO ACID
    - (D) TOPOLOGY: LINEAR
  - (ii) MOLECULE TYPE: PROTEIN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

Met Lys Pro Tyr Ala Lys Tyr Ile Trp Leu Asp Gly Arg Ile Leu Lys
5 10 15

Trp Glu Asp Ala Lys Ile His Val Leu Thr His Ala Leu His Tyr Gly
20 25 30

Thr Ser Ile Phe Glu Gly Ile Arg Gly Tyr Trp Asn Gly Asp Asn Leu
35 40

Leu Val Phe Arg Leu Glu Glu His Ile Asp Arg Met Tyr Arg Ser Ala
50 55 60

Lys Ile Leu Gly Ile Asn Ile Pro Tyr Thr Arg Glu Glu Val Arg Gln 65 70 75 80

Ala Val Leu Glu Thr Ile Lys Ala Asn Asn Phe Arg Glu Asp Val Tyr 85 90 95

- Ile Arg Pro Val Ala Phe Val Ala Ser Gln Thr Val Thr Leu Asp Ile
  100 105 110
- Arg Asn Leu Glu Val Ser Leu Ala Val Ile Val Phe Pro Phe Gly Lys 115 120 125
- Tyr Leu Ser Pro Asn Gly Ile Lys Ala Thr Ile Val Ser Trp Arg Arg 130 135 140
- Val His Asn Thr Met Leu Pro Val Met Ala Lys Ile Gly Gly Ile Tyr 145 150 155 160
- Val Asn Ser Val Leu Ala Leu Val Glu Ala Arg Ser Arg Gly Phe Asp 165 170 175
- Glu Ala Leu Leu Met Asp Val Asn Gly Tyr Val Val Glu Gly Ser Gly
  180 185 190
- Glu Asn Ile Phe Ile Val Arg Gly Gly Arg Leu Phe Thr Pro Pro Val 195  $^{\circ}$  200 205
- His Glu Ser Ile Leu Glu Gly Ile Thr Arg Asp Thr Val Ile Lys Leu 210 215 220
- Ser Gly Asp Val Gly Leu Arg Val Glu Glu Lys Pro Ile Thr Arg Glu 225 230 235 240
- Glu Val Tyr Thr Ala Asp Glu Val Phe Leu Val Gly Thr Ala Ala Glu 245 250 255
- Ile Thr Pro Val Val Glu Val Asp Gly Arg Thr Ile Gly Thr Gly Lys 260 265 270
- Pro Gly Pro Ile Thr Thr Lys Ile Ala Glu Leu Tyr Ser Asn Val Val 275 280 285
- Arg Gly Lys Val Glu Lys Tyr Leu Asn Trp Ile Thr Pro Val Tyr 290 295 300