

UD 3. Nivell físic i nivell d'enllaç. Instal·lació física de la xarxa

UD 3. Nivell físic i nivell d'enllaç. Instal·lació física de la xarxa

Crèdit 1: Instal·lació i manteniment de serveis de xarxes locals. IES Nicolau Copèrnic

Autor: Sergi Tur Badenas

Els mitjans de transmissió

Els mitjans de transmissió són el suport físic que facilita el transport de la informació

- Són un part fonamental de la comunicació de dades
- La qualitat de la transmissió dependrà de les seves característiques físiques, mecàniques, elèctriques i funcionals.
- Poden ser sistemes de cablatge o sistemes sense fils
- Es calcula que aproximadament un 6% del total del cost d'una instal·lació es destina a cables.
- En canvi es calcula que el 70% dels errors de xarxa són produïts per defectes en els cables.

La lley d'Ohm

$$Z(f) = V(f)/I(f)$$

 La resistència (R mesurada en Ohms – Ω -) és l'oposició que troba un senyal elèctric durant el seu recorregut per un mitja de transmissió

Impedància versus resistència

- Tant la resistència, com el voltatge i la intensitat són valors que varien en el temps.
- L'electricitat de les cases és una senyal dinàmica de 220V que varia amb el temps (corrent alterna amb una freqüència de 50hz). Una pila en canvi genera un corrent constant.
- Resistència: valor constant
- Impedància: és la funció que defineix el valor de la impedància segons la freqüència de la senyal que es transporta.

SOME RIGHTS RESERVED

Autor: Sergi Tur Badenas

Exemples de la llei d'Ohm

• Qui té una resistència més gran: un cable de coure o un tros de fusta?

- Coure: 1,6778 x $10^{-8} \Omega^*$ metre= 0'000000016778 Ω^* metre
- Fusta: Entre 10^8 i $10^{14} \Omega^*$ metre (entre 100 milions i 100 milions de milions)
- El voltatge és la diferència de potencia que genera una pila o font elèctrica i la intensitat és la mesura de la quantitat d'electricitat que passa pel cable.
- El contrari de la resistència és la conductivitat

 Els circuits elèctrics són "similars" als circuits hidràulics

Exemples de la llei d'Ohm

- Si una corrent superior a 100mA pot matar una persona (el marge de seguretat és de 30mA), quin voltatge és el màxim possible que se li pot aplicar a una fusta?
 - · Uns 10 milions de volts per a la fusta
- Voltatges molt petits poden matar amb una intensitat alta.
 - · Ep! Tot depèn però de la quantitat de temps, de les mesures dels conductors i de les mesures de seguretat.
 - · La nostra resistència és bàsicament la de l'aigua
- El que mata NO és el voltatge és la intensitat i la quantitat de temps que s'aplica. Algunes descàrregues estàtiques tenen voltatges superiors a l'electricitat de casa però només ens provoquen un formigueig.
- El voltatge en canvi és el que provoca la contracció dels músculs
- Corrent elèctric a la wikipedia

- Per què s'utilitza el coure i no altres metalls com el ferro, la plata o l'or?
 - El coure és el més barat
 - Resistent a la corrosió (no s'oxida fàcilment)
 - Ductilitat. Es poden fer fils molt fins que no es trenquen fàcilment
 - Mal-leabilitat. Es fàcil de donar forma i manipular

r (W·m)	Coeficient de temperatura
1,59 x 10 ⁻⁸	3,8 x 10 ⁻³
1,72 x 10 ⁻⁸	3,9 x 10 ⁻³
2,82 x 10 ⁻⁸	3,9 x 10 ⁻³
5,51 x 10 ⁻⁸	4,5 x 10 ⁻³
6 x 10 ⁻⁸	2 x 10 ⁻³
10 ⁻⁷	5 x 10 ⁻³
2,2 x 10 ⁻⁷	4,3 x 10 ⁻³
4,4 x 10 ⁻⁷	0,000000
4,9 x 10 ⁻⁷	2 x 10 ⁻⁶
10 ⁻⁶	4 x 10 ⁻⁴
3,5 x 10 ⁻⁵	-0,5 x 10 ⁻³
0,45	-4,8 x 10 ⁻²
640	-7,5 x 10 ⁻²
108 - 10 14	
10 ¹⁰ - 10 ¹⁴	
5 x 10 ¹⁴	
10 ¹⁵	
	1,59 x 10 ⁻⁸ 1,72 x 10 ⁻⁸ 2,82 x 10 ⁻⁸ 5,51 x 10 ⁻⁸ 6 x 10 ⁻⁸ 10 ⁻⁷ 2,2 x 10 ⁻⁷ 4,4 x 10 ⁻⁷ 4,9 x 10 ⁻⁷ 10 ⁻⁶ 3,5 x 10 ⁻⁵ 0,45 640 10 ⁸ - 10 ¹⁴ 5 x 10 ¹⁴

Parells de cables

Formats per parells de fils metàl·lics

- Són el mode més simple i econòmic per transmetre l'electricitat
- Quan més gran és la secció del cable més gran és la seva conductivitat elèctrica
- Cal arribar a un compromís entre mida/pes i conductivitat
- La longitud del cable disminueix la seva conductivitat

	Major	Menor
Secció	↑ Conductivitat	↓ Conductivitat
Longitud	↓ Conductivitat	↑ Conductivitat

SOME RIGHTS RESERVED

Autor: Sergi Tur Badenas

Cables parells trenats (twisted pair)

Els cables es creuen per fer-los més resistents a les interferències

- Cada cable porta una senyal contraria a la de l'altre cable.
 D'aquesta manera els camps magnètics s'eliminin mútuament.
 Efecte de cancel·lació.
- La interferència entre cables s'anomena diafonia (crosstalk)
- També es millora la qualitat de la senyal. Cada cable porta una senyal idèntica anomenada senyal mirall. El receptor pot comparar les senyals i eliminar el soroll
- Amb els postes telefònics és fa el mateix

Cable de 4 parells creuats

SOME RIGHTS RESERVED

Autor: Sergi Tur Badenas

Pantalles de protecció

- Els cables de parells trenats es poden classificar segons portin o no una protecció electromagnètica anomenada PANTALLA
 - Cable UTP (Unshielded Twisted Pair): No porta pantalla de protecció.
 - Cable STP (Shielded Twisted Pair): Porten una pantalla de protecció que consisteix en un recobriment metàl·lic (similar al paper de plata)
 - Shield és escut/pantalla de protecció en angles.

Cable UTP vs STP

- El cable UTP és més barat, senzill i fàcil d'instal·lar per què té major flexibilitat.
- El cable STP és menys flexible i a més cal connectar la pantalla a la presa de terra, fet que complica la seva instal·lació.
- El cable STP en canvi és més robust respecte a les interferències. Permet distàncies més llargues.
- Els cables STP poden tenir pantalles a nivell de parells o a nivell del cable sencer

SOME RIGHTS RESERVED

Autor: Sergi Tur Badenas

Sistema americà de mesura de cables

- El diàmetre o secció d'un cable és mesura segons els sistema americà AWG (American Wire Gauge)
 - Sistema numèric
 - 1 AWG=1 polsada
 - 24 AWG= 1/24 polsades
 - Els cables telefònics i de xarxa moderns estan entre 22 i 26 AWG sent el més comú el 24 AWG.
 - Quan més gran és AWG, més petit és el diàmetre del cable.

Classificació per categories

Els cables es classifiquen per categories

- Cada categoria té unes característiques elèctriques diferents (atenuació, impedància, freqüència de treball, etc.)
- Bàsicament, la categoria representa l'ampla de banda del cable

Categoria	Ampla de banda	Estàndard	Observacions	
Cat 1		No reconegut per TIA/EIA	Utilitzat anteriorment en telefonia	
Cat 2	t 2 No reconegut per TIA/EIA		Utilitzat en Token Ring de 4Mbit/s	
Cat 3	10Mhz	TIA/EIA-568-B	Ethernet de 10Mbit/s	
Cat 4	20 Mhz	No reconegut per TIA/EIA	Utilitzat en Token Ring de 16Mbit/s	
Cat 5	100Mhz	No reconegut per TIA/EIA	Ethernet de 100 Mbit/s	
Cat 5e	100Mhz	TIA/EIA-568-B.	E d'enhaced (millorat). Permet Gigabit Ethernet	
Cat 6	250Mhz	<u>TIA/EIA-568-B</u> .	Utilitzat per a Gigabit/Ethernet	
Cat 6a	250Mhz	En fase de definició	Especificació futura per a xarxes 10 Gibagit/s	
Cat 7	600Mhz	ISO/IEC 11801	Encara esta pendent de definir	

Classificació per classes

- Cada classe especifica l'ample de banda obtingut per a distàncies concretes.
 - La longitud màxima dels cables de categoria 5 per a xarxes de 100Mbit/s és de 100m

	Classe A	Classe B	Classe C	Classe D
Ample de banda	100kHz	1MHz	20 Mhz	100Mhz
Categoria 3	2km	500	100	no hi ha
Categoria 4	3km	600	150	no hi ha
Categoria 5	3km	700	160	100

Crèdit 1: Instal·lació i manteniment de serveis de xarxes locals.

IES Nicolau Copèrnic

Cable coaxial

 El cable coaxial és un cable format per dos conductors concèntrics

- Consta de quatre parts
 - D. Nucli conductor de coure
 - C. Aïllant plàstic
 - B. Pantalla de coure trenada
 - A. Coberta exterior
 - Dos parells de cables (nucli i pantalla de coure)
 - Tot i que surt a l'estàndard TIA/EIA-568-B ja gairebé no s'utilitza i s'evita fer instal·lacions a edificis amb cable coaxial.

Cable coaxial

Característiques

- Velocitats: de 10 a 100Mbps
- Cost: Una mica més car que parells de cables RJ-45
- Menys mal·leable que els parells de cable
- Longitud màxima: 185m. Millor que el parell de cables
- Més robust a interferències (pantalla de coure)
- Utilitzat en xarxes Ethernet 10Base2

Usos

- Instal·lacions de TV cable, connexions entre una antena parabòlica i el receptor, cable modem
- Ethernet coaxial (10Base2 i 10Base5)
- Connexions de vídeo (S-Video)

Tipus de cables coaxials

Thicknet. Coaxial gruixut

 Secció més gran. Millor conductivitat. Més pesat i més difícil d'instal·lar

Thinnet

Diàmetre de 0,35m. Utilitzat en xarxes Ethernet

Nom dels cables

- **RG-58**. Thin Ethernet (10BASE2). Impedància de 50 Ω .
- RG-59. Utilitzat en transmissió de vídeo
- RG-8/U. Thicknet Ethernet (10Base5)
- RG-6. Televisió per cable

Sistemes de fibra òptica

La fibra òptica permet la transmissió de senyals lluminoses.

- La fibra òptica és el mitja de transmissió més utilitzat en transmissions llargues, de gran ample de banda i enllaços punt a punt.
- Bàsicament s'utilitza en xarxes WAN o en els backbones (columnes vertebrals) de les xarxes LAN
- Transmissors de fibra òptica
 - La llum normal no és bona per a transmetre senyals (moltes frequencies)
 - · LED o díodes electroluminiscents (Light Emitting Diodes)
 - Més econòmics que els Laser
 - Laser (Light Amplification by Stimulating Emision Radiation)
 - · Millors a distàncies llargues
 - Poden provocar lesions oculars

Autor: Sergi Tur Badenas

Sistemes de fibra òptica

Components

- Nucli de fibra òptica
- Revestiment
- Element intermedi (buffer)
- Element de tracció
- Coberta exterior

Revestimiento Buffer 900 um Revestimiento (cladding) Rayo (cladding) Cubierta exterior Cubierta (coating) (a)

El nucli és l'element que transmet la llum (vidre)

- El revestiment reflexa la llum de manera que evita que la llum surti del cable.
- L'element de tracció esta fet normalment de Kevlar

Sistemes de fibra òptica

Avantatges de la fibra òptica

- Són completament immunes a les interferències electromagnètiques (la llum no es distorsiona per un senyal electromagnètica com la generada per un mòbil). Tampoc generen interferències
- Els seus límits teòrics estan en el 30THz.
- Velocitats de transmissió entre 40 i 160Gbps
- Millor ample de banda i menor atenuació amb la distància.
- Millor seguretat. No és tan fàcil punxar la línia.
- Es poden millorar receptors i emissors sense necessitar de modificar el cablatge
- És més lleugera i resistent a la corrosió que el cable de coure

Inconvenients

- La tecnologia de fibra òptica és més cara
- Més difícil d'instal·lar (personal altament qualificat)

Crèdit 1: Instal·lació i manteniment de serveis de xarxes locals.

IES Nicolau Copèrnic

Sistemes sense fils

Sistemes radioterrestres

- Ones electromagnètics que es propaguen a velocitats properes a les de la llum
 - · Ona curta (velocitats de Mhz): Radio i Televisió
 - Microones (velocitats de Ghz): Telefonia mòbil
 - · Transmissions via satèl·lit: velocitats de fins a 100Ghz
 - Molt car posar un satèl·lit en orbita
 - · Hi ha un retard notable
 - GPS (Global Positioning System)
- Sistemes Wi-FI
 - · IEEE 802.11. Primer sistema WI-FI (1-2 Mbps) per infrarojos
 - · IEEE 802.11a. Del 1999. En la banda dels 2.4Ghz
 - · IEEE 802.11b. Velocitats de 11 Mbps. És la tecnologia més utilitzada. Banda de 2.4GHz saturada (microones, Bluetooth, telèfons sense fils, etc)
 - · IEEE 802.11g. Del 2003. Velocitat màxima de 24.7 Mbps
 - · IEEE 802.11n. És la tecnologia venidera

Organitzacions i Especificacions

- TIA (Telecommunications Industry Association)
 - L'associació de la Industria de Telecomunicacions és una associació d'Estats Units de més de 600 companyies de la industria de telecomunicacions
- EIA (Electronic Industries Alliance)
 - L'aliança de les industries electròniques és una associació de companyies electròniques i de alta tecnologia dels Estats Units. Els seu objectiu es promoure el desenvolupament del mercat i la competitivitat
- L'estàndard TIA/EIA-568-B és que utilitzem per muntar els cables
 - Defineix com a de ser el cablejat de telecomunicacions en un edifici comercial

SOME RIGHTS RESERVED

Autor: Sergi Tur Badenas

TIA/EIA-568-B

- La norma és del IEEE (Institut d'enginyers elèctrics i electrònics)
- La norma especifica que cada estació de treball ha de tenir dos cables
 - Un cable telefònic per a la veu. Cable UTP de dos parells (4 pins). El connector típic és el RJ-11
 - Un cable de xarxa per a les dades
 - · Cable STP de dos parells i 150 Ω (LAN Token Ring)
 - · Cable UTP de 4 parells i 100 Ω (LAN Ethernet)
 - · Cable de fibra òptica (LAN Ethernet)
 - · Cable coaxial

TIA/EIA-568-B

Esquema de connexió de connectors RJ-45

T568A/B RJ45 Wiring

Pin	T568A Pair	T568B Pair	Wire	T568A Color	T568B Color	Pins on plug face (jack is reversed)
1	3	2	tip	white/green stripe	white/orange stripe	
2	3	2	ring	green solid	orange solid	Pin Position
3	2	3	tip	white/orange stripe	white/green stripe	76 -54 -32
4	1	1	ring	blue solid	D blue solid	1-
5	1	1	tip	white/blue stripe	white/blue stripe	
6	2	3	ring	orange solid	green solid	
7	4	4	tip	white/brown stripe	white/brown stripe	
8	4	4	ring	brown solid	brown solid	

Autor: Sergi Tur Badenas

ISO/IEC 11801

Normes ISO/IEC

L'estàndard ISO/IEC 11801 especifica sistemes de cablatge estructurat que és utilitzable per a un ampli rang d'aplicacions.

- International Organization for Standardization (OSI)
- International Electrotechnical Commission (IEC)
- Pensat per cablejat de coure i de fibra òptica.
- Pensat per a l'ús comercial a nivell de múltiples edificis o un campus (optimitzat per a distàncies de 3 i fins a 1 km² d'espai d'oficines).
- Hi ha una versió per entorns SoHo (ISO/IEC 15018)
- ISO/IEC_11801 a la wikipedia

SOME RIGHTS RESERVED

Autor: Sergi Tur Badenas

EN 50288

Un altre estàndard més...

- Aquest és a nivell Europeu
- European Committee for Standardization/ Comité
 Européen de Normalisation (EN)
- És una norma en desús i obsoleta
- Actualment s'utilitzen les versions EN 50289...

Dispositius de connexió de cables. Connectors

Connectors per a comunicacions serie

- La interfície RS-232
 - Utilitzada fa un temps per a ratolins, modems i altres dispositius
- Universal Serial Bus (USB). La interfície serie més utilitzada actualment
- Connectors paral-lels
 - Actualment s'utilitzen poc
 - Connexions a impressores

Crèdit 1: Instal·lació i manteniment de serveis de xarxes locals. IES Nicolau Copèrnic

Connectors cables TP (Twisted Pair)

- RJ-x : Registered Jack
 - · **RJ-11:** Utilitzat en telefònia
 - RJ-45: Utilitzat en xarxes Ethernet
 - Altres: s'utilitzen en telefonia a diferents països o fins i tot com a connectors d'una línia serie RS-232
- IMPORTANT: Per cada categoria de cable hi ha un connector específic. Al fer una instal·lació, la categoria del cable i la del connector han de coincidir.
- També anomenat 8P8C (8 Position 8 Contact). Hi han connectors telefònics amb 6 posicions però
 - només 2 contactes (6P2C)

Autor: Sergi Tur Badenas

Connectors cables coaxials

- Connectors BNC (Bayonet Neill-Concelman): utilitzats ens xarxes Ethernet de coaxial fi.
- La T coaxial implementa la topologia de bus típica de les xarxes coaxials
- Terminador de línia: són uns dispositius especials que es connecten als extrems del bus coaxial per evitar que les senyals rebotin al final de la línia
 - · La resistència del terminador ha de ser la mateixa que la del cable (50Ω o 75Ω típicament)

Connectors de fibra òptica

- Connectors SC (Straight Connection)
- Connectors ST (Straight Tip)
- Els cables de fibra òptica no es poden torçar massa
- Es necessiten eines específiques per a treballar amb la fibra òptica

SOME RIGHTS RESERVED

ST

Autor: Sergi Tur Badenas

- En el cas de les xarxes sense fils no podem parlar de connectors sinó que parlem d'ANTENES de **RADIACIÓ**
 - Els cables que connecten la targeta de xarxa amb l'antena s'anomenen pigtails (cua de porc)

Crèdit 1: Instal·lació i manteniment de serveis de xarxes locals. **IES Nicolau Copèrnic** Autor: Sergi Tur Badenas

La targeta de xarxa és el pont d'enllaç entre el sistema operatiu i el accés al medi de transmissió (ja sigui aquest un cable o un sistema sense fils)

- També anomenada NIC (Network Interface Card) o adaptador de xarxa.
- Dispositiu que treballa als nivell baixos d'OSI (capa 1 física i capa 2 d'enllaç)
- Cada interfície de xarxa té una adreça MAC única
 - La MAC permet adreçar i identificar de forma unívoca les targetes de xarxa
 - · La MAC és un identificador de 48 bits amb dos parts
 - · Id del venedor: 00:00:88
 - Id de la targeta de xarxa: 19:D2:A2

· Cal tenir en compte que hi han targetes de xarxa amb més d'una interfície de xarxa (i per tant amb més d'una MAC)

00:0D:88:19:D2:A2

Primera NIC /sbin/ifconfia HW⊖ddr 00:0D:88:19 eth0 Adreca MAC IP de la NIC 55.0 inet6 addr: fe80::20d:88ff:fe19:d2a2/64 Scope:Link BROADCAST RUNNING MULTICAST MTU: 1500 Metric:1 RX packets:957270 errors:0 dropped:0 overruns:0 frame:0 TX packets:1254234 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:581767799 (554.8 MiB) TX bytes:228519990 (217,9 MiB) Interrupt:11 Base_address:0 Interfície de loopback Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU: 16436 Metric: 1 RX packets:799643 errors:0 dropped:0 overruns:0 frame:0 TX packets:799643 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0

RX bytes:164196675 (156.5 MiB) TX bytes:164196675 (156.5 MiB)

- La ranura d'expansió (slot en anglès) és el connector físic a on es connecta la targeta
- Tipus de ranures de connexió
 - ISA (Industry Standard Architecture)
 - · Creat al 1981. Ja no s'utilitza en sistemes nous
 - PCI (Peripheral Component Interconnect)
 - · El més utilitzat actualment
 - PCI-E: Nou bus PCI
 - PCMCIA: Utilitzat en ordinadors portàtils
 - USB: Només recomanat si no hi ha un altre opció
 - Actualment moltes targetes estan integrades a la placa mare (però continuen utilitzant un BUS PCI)

RJ-45

Fabricants

- Novell
- Intel
- Realtek

WIRELESS PCI NIC

BOOT-ROM

- La ROM de BOOT porta el programa per arrencar des de la targeta de xarxa un sistema
- Moltes targetes o plaques mare la porten integrada a la BIOS
- Algunes targetes de xarxa permeten incorporar una targeta
 CompactFlash

Crèdit 1: Instal·lació i manteniment de serveis de xarxes locals. IES Nicolau Copèrnic

Autor: Sergi Tur Badenas

Paràmetres habituals de la targeta de xarxa

- → IRQ (Interrupt Request): Sol·licitud d'interrupció. Número de la línia d'interrupció que utilitza la NIC per avisar a la CPU que han arribat dades.
- Adreça d'E/S: Espai de memòria que utilitzen la CPU i la targeta de xarxa per comunicar-se
- DMA (Direct Memory Access): S'utilitza poc en targetes modernes
- La configuració dels paràmetres actualment es fa per programari
- Abans algunes configuracions es feien utilitzant jumpers
- Identificació de la targeta de xarxa
 - Venedor: pci.vendor_id (0x11ab)
 - Producte: pci.product_id (0x4320)

Ubuntu

Sistema/Preferències/Informació de maquinari

\$ Ispci | grep Ethernet

02:08.0 Ethernet controller: Marvell Technology Group Ltd. 88E8001 Gigabit Ethernet Controller (rev 13)

 Busqueu els paràmetres comentats anteriorment utilitzant la comanda: \$ sudo Ispci -vvvxxx

SOME RIGHTS RESERVED


```
$ lspci -vvvxxx
02:08.0 Ethernet controller: Marvell Technology Group Ltd. 88E8001 Gigabit
Ethernet Controller (rev 13)
        Subsystem: Holco Enterprise Co, Ltd/Shuttle Computer Unknown device c231
        Control: I/O+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr-
        Stepping- SERR- FastB2B-
        Status: Cap+ 66MHz+ UDF- FastB2B+ ParErr- DEVSEL=medium >TAbort- <TAbort-
        <MAbort- >SERR- <PERR-
        Latency: 32 (5750ns min, 7750ns max), Cache Line Size: 32 bytes
        Interrupt: pin A routed to IRQ 20
        Region 0: Memory at e5020000 (32-bit, non-prefetchable) [size=16K]
        Region 1: I/O ports at d100 [size=256]
        [virtual] Expansion ROM at 50000000 [disabled] [size=128K]
        Capabilities: [48] Power Management version 2
                Flags: PMEClk- DSI- D1+ D2+ AuxCurrent=0mA PME(D0+,D1+,D2+,D3hot
        +, D3cold+)
                Status: DO PME-Enable- DSel=0 DScale=1 PME-
        Capabilities: [50] Vital Product Data
```


- Les targetes de xarxa modernes suporten diferents modes i velocitats
- Auto-negociació: permet a targetes amb diferents velocitats i modes poder establir una comunicació
- Algunes targetes fins i tot detecten quan un cable esta

\$ sudo ethtool eth0

Settings for eth0:

Supported ports: [TP (Twisted Pair)]

Supported link modes: 10baseT/Half 10baseT/Full

100baseT/Half 100baseT/Full 1000baseT/Half 1000baseT/Full

Supports auto-negotiation: Yes

Advertised link modes: 10baseT/Half 10baseT/Full

100baseT/Half 100baseT/Full 1000baseT/Half 1000baseT/Full

Advertised auto-negotiation: Yes

Speed: 100Mb/s Duplex: Full

Port: Twisted Pair

PHYAD: 0

Transceiver: internal Auto-negotiation: on Supports Wake-on: pg

Wake-on: g

Current message level: 0x00000037 (55)

Link detected: yes

creuat i permeten treballar amb aquests tipus de cables

 Link: Índica que la targeta de xarxa esta connectada a un altre dispositiu (switch o targeta de xarxa)

Targetes de xarxa, connexions i cables

Crèdit 1: Instal·lació i manteniment de serveis de xarxes locals. **IES Nicolau Copèrnic** Autor: Sergi Tur Badenas

SOME RIGHTS RESERVED

Wake On LAN

- La majoria de targetes permeten encendre un PC enviant una senyal a la targeta de xarxa
 - Feu una pràctica per parelles
 - Primer cal utilitzar la comanda ethtool, per configurar la màquina que volem que s'encengui des de la targeta de xarxa
 - Amb les comandes wakeonlan o etherwake enviem la senyal per encendre la màquina remota
 - Necessitarem saber la MAC de la targeta de xarxa del PC que volem engegar
 - Guió:
 - · Wake ON LAN

- Ethernet és la tecnologia més utilitzada en xarxes LAN
- Ethernet ha anat evolucionant i adaptant-se a les noves tecnologies
 - Al 1973 les velocitats eren de 3Mbps
 - Actualment es treballa amb velocitats de 10 Gbps
 - Però el protocol és el mateix.

Xarxes Ethernet

Tipus de xarxes Ethernet

Ethernet	Velocitat de transmissió	Tipus de cable	Distància màxima	
10Base5	10 Mbps	Coaxial gruixut	500m	Xarxes bus coaxial. T coaxial
10Base2	10 Mbps	Coaxial	185m Xarxes bus coa T coaxial	
10BaseT	10 Mbps	Parell trenat	100m	Hub o Switch.
10Broad36	10 Mbps	Coaxial		No s'utilitza
100BaseT4	100Mbps	4 parells trenats (categoria 3 UTP)	100m	Half-Duplex (HUB) o Full duplex (switch)
100BaseFX	100Mbps	Fibra òptica	2000m	Sense <u>switchs</u> ni <u>Hubs</u>
100BaseTX	100Mbps	4 parells trenats (categoria 5 UTP)	100m	Half-Duplex (HUB) o Full duplex (switch)
1000BaseT	1Gbps	4 parells trenats (categoria 5e UTP)	100m	Full duplex (switch)
1000BaseSX	1Gbps	Fibra òptica (multimode)	550m	Full duplex (switch)
1000BaseLX	1Gbps	Fibra òptica (monomode)	5000m	Full duplex (switch)

Crèdit 1: Instal·lació i manteniment de serveis de xarxes locals. IES Nicolau Copèrnic

Autor: Sergi Tur Badenas

Xarxes Ethernet

La descripció abreviada consisteix en:

- Un número que indica la velocitat en Mbps
- La paraula BASE que indica que la senyal no esta modulada
- En el cas de xarxes coaxials un número que correspon a la distància (5: 500m 2: 200m)
- Una lletra per indicar el mitja de transmissió (T: cable de parells trenats, F: cable de fibra òptica)

Noms de les diferents tecnologies Ethernet

- Ethernet (10Mbps)
- Fast Ethernet (100Mbps)
- Gigabit Ethernet (1Gbps)
- Ethernet a 10 Gigabits

- Nivell 1 TCP/IP (Nivells físics i d'enllaç (1 i 2) OSI).
- Família d'estàndards IEEE 802:
 - 802.2: Capa LLC (Logical Link Control). Interfície comuna entre el nivell de xarxa i la família de protocols.
 - La resta de protocols defineixen el nivell físic i el subnivell MAC.
 - 802.3 Ethernet
 - · 802.4 Token Ring
 - · 802.11 Wi-FI
 - · 802.15 Bluetooth

NIVELL 3. XARXA

SUB NIVELL LLC

SUB NIVELL MAC

NIVELL 1. FÍSIC

- Nivell LLC (Logical Link control). Compartit per tots els protocols de la família.
 - Lògica de reenviaments
 - Control de flux
 - Comprovació d'errors
- Nivell MAC (Medium Acces Control).
 - Control d'accés a medi compartits (cables en bus, ràdio, etc.)
 - No utilitzat en protocols punt a punt (no hi ha medi compartit)
 - Adreça MAC: Sistema adreçament de nivell 2 equivalent a les adreces IP al nivell 3

Nivell d'enllaç. Protocols MAC

- CSMA/CD: Utilitzat per Ethernet
- Aloha i Aloha ranurat
- Token Ring|Token Bus

- Codificació manchester
- Connectors coaxials i RJ-45

Nivell físic Ethernet

Codificació Manchester

- O lògic: Primer una senyal de -0,85V i després una senyal de +0,85V
- 1 lògic: Primer una senyal de +0,85V i després una senyal de -0,85V
- Canal inactiu: 0V
- És una senyal molt robusta però que consumeix el doble de temps (ample de banda)

Ethernet. Nivell MAC. Conceptes

- Segment de xarxa o domini de col·lisió
 - És una porció de xarxa separada de la resta per un dispositiu de xarxa com:
 - Repetidor
 - Bridge o Switch
 - · Router
 - És un segment lògic de xarxa on els paquets poden col·lisionar al ser enviats a un medi compartit.

Ethernet. Nivell MAC

Algorismes MAC

- Aloha i Aloha Ranurat (desenvolupats per la Universitat de Hawai). S'envia un paquet i si hi ha col·lisió es torna a enviar.
- CSMA/CD (Carrier sense multiple access with collision detection). Detecta si hi ha senyals utilitzant el medi i té un procediment en cas de col·lisió.
- Antics sistemes Ethernet funcionaven amb coaxials en bus físic i lògic.
- Actualment el problema de les col·lisions està més limitat gràcies als switches.
- Torna a ser un tema candent en xarxes wireless (l'aire és un medi compartit).

Nivell LLC

Comprovació d'errors

Codis de paritat simple

Volem enviar la cadena de bits "1110100": 1º Contem el número de uns: 4 uns 2º Si el nombre d'uns és parell afegim un 0. Si és imparell afegim un 1 3º La cadena que enviarem és 11101000

- · El receptor només ha de contar el número de uns per saber si l'enviament és correcta o incorrecta
- Quants errors podem detectar?
- Que podem fer si volem detectar més errors?
- Codis correctors d'errors
- Detecció d'errors a la wikipedia

Trama Ethernet

Preámbulo	SOF	Destino	Origen	Tipo	Datos	FCS
7 bytes	1 byte	6 bytes	6bytes	2 bytes	46 a 1500 bytes	4 bytes

- Preàmbul: 10101010 10101010 10101010 10101010 10101010 10101010 10101010
 - · Indica l'inici de la trama. Sincronització
- ◆ SOF (Start Of Frame): 10101011. També sincronització
- Origen: Adreça MAC origen de la trama
 - · 00:30:1B:B7:CD:B6
- Destí: Adreça MAC destinació de la trama
 - · 00:30:1B:FA:C4:36
- Tipus: Identifica el protocol del nivell de xarxa utilitzat (IP)
- Dades: Contingut de la trama. Dades de nivell 3
- FCS Frame Check Sequence Secuencia de Verificación de Trama): Control d'errors

SOME RIGHTS RESERVED

Autor: Sergi Tur Badenas

Trama Ethernet

- Amb WireShark podem confirmar les parts d'una trama
 - Menú Aplicacions/Internet/Ethereal (as root)

Protocol ARP

- ARP és un protocol a cavall entre el nivell de xarxa i el nivell d'enllaç (MAC)
 - Permet resoldre adreces MAC a partir d'adreces IP.
 - S'utilitza en xarxes LAN (nivell 2) per poder treballar amb adreces IP (nivell 3)

\$ sudo tcpdump

17:51:38.740533 arp who-has 192.168.1.2 tell mygateway1.ar7

17:51:38.740550 arp reply 192.168.1.2 is-at 00:30:1b:b7:cd:b6 (oui Unknown)

Protocol ARP

Exercici

Consultem la taula ARP

```
$ arp
Address HWtype HWaddress Flags Mask Iface
mygateway1.ar7 ether 00:15:E9:CA:34:A5 C eth0
```

 Executem alguna comanda que obligui a fer un broadcast de la xarxa (utilitzar totes les IPs)

```
$ ping 192.168.1.255 -b
$ sudo nmap 192.168.1.1-255
```

 Tornem a consultar la taula ARP i podrem comprovar com ja tenim assignades les adreces MAC a IPs de tots els PCs de la xarxa

Instal-lació d'una xarxa

Fora de l'àmbit domestic la instal·lació d'un sistema de cablejat per a una empresa, exigeix l'elaboració d'un projecte d'instal·lació

- El projecte ha de tenir unes fases i un flux de treball i ha tenir en compte
 - Els recursos disponibles/necessaris per a la instal·lació
 - Els procediments
 - El calendari d'execució
 - Els costos
 - La documentació del projecte
- Qüestions a tenir en compte
 - Assegurar-se bé de les mesures dels cables abans de tallar
 - Utilitzar les eines i les proteccions adequades
 - S'ha de ser net i cal assegurar-se de no espatllar les infraestructures existents

SOME RIGHTS RESERVED

Autor: Sergi Tur Badenas

Instal·lació d'una xarxa

Normatives de treball segur

- No treballar amb dispositius encesos
- Utilitzar els instruments de mesura adequats
- Connectar a terra tots els equipaments de la xarxa
- Localitzar les línies elèctriques i altre fonts de soroll elèctric (motors, fonts d'interferència) abans d'iniciar la instal·lació
- La instal·lació elèctrica la de fer personal qualificat i autoritzat per a fer aquests tipus d'instal·lacions

Instal·lació d'una xarxa

Flux de treball

Crèdit 1: Instal·lació i manteniment de serveis de xarxes locals. IES Nicolau Copèrnic

Autor: Sergi Tur Badenas

Instal·lació d'una xarxa

Elements de la instal·lació

- Armaris
- Canal-letas
- Terres o sostres falsos
- Components de la instal·lació elèctrica.
 - · SAI (Sistema d'alimentació sense interrupcions)
- Patch Panel
- Latiguillos RJ-45
- Rosetes RJ-45
- Etiquetatge, brides i macarrons termoretràctils

Cablatge Estructurat

El cablatge estructura és la infraestructura de cablatge per a un edifici o campus que esta formada per un conjunt de subsistemes més petits i estandaritzats

- Subsistemes de cablatge estructurat
 - Habitació o espai d'entrada de serveis: és el punt d'entrada dels serveis de telecomunicacions a l'edifici.
 - Centre de Processament de Dades (CPD): és l'espai on hi han les màquines que donen servei a l'interior de l'edifici (servidors i altres serveis de telecomunicacions).
 - Espai o habitacions de telecomunicacions: és l'espai on els dispositius de dades i telecomunicacions connecten el subsistema de cablatge horitzontal amb el sistema de cablatge vertical.

Cablatge Estructurat

- Cablatge vertical (backbone): Connecta entre si els subsistemes entrance facilities, equipment rooms and telecommunications rooms.
- Cablatge Horitzontal: Cablatge de planta que uneix les habitacions de telecomunicacions amb els connectors fixes de les estacions de treball
- Components de connexió a les estacions de treballa: són els dispositius de connexió que connecten les estacions de treball dels usuaris finals de la xarxa amb el subsistema de cablatge horitzontal.
- Hi han diferents estàndards que especifiquen com s'ha de fer aquest cablatge depenent si es tracta d'un CPD, d'una oficina o d'un edifici d'apartaments.

Reconeixement 3.0 Unported

Sou lliure de:

copiar, distribuir i comunicar públicament l'obra

fer-ne obres derivades

Amb les condicions següents:

Reconeixement. Heu de reconèixer els crèdits de l'obra de la manera especificada per l'autor o el llicenciador (però no d'una manera que suggereixi que us donen suport o rebeu suport per l'ús que feu l'obra).

- Quan reutilitzeu o distribuïu l'obra, heu de deixar ben clar els termes de la llicència de l'obra.
- Alguna d'aquestes condicions pot no aplicar-se si obteniu el permís del titular dels drets d'autor.
- No hi ha res en aquesta llicència que menyscabi o restringeixi els drets morals de l'autor.

Advertiment 🗖

Els drets derivats d'usos legítims o altres limitacions reconegudes per llei no queden afectats per l'anterior Això és un resum fàcilment llegible del text legal (la llicència completa).

http://creativecommons.org/licenses/by/3.0/deed.ca

Crèdit 1: Instal·lació i manteniment de serveis de xarxes locals. **IES Nicolau Copèrnic**

Autor: Sergi Tur Badenas