

- θ [°]
- $\Delta\theta$ [°]
- δ [°]
 - [-]
 - $[\mu]$
 - $[\mu]$
 - $[\mu]$

- Γ [–]
- Γ [-]
- Γ [-]
- Γ [-]

$$\delta = \frac{\circ}{\circ}$$

[] [] ν [-]

$$= \pi \sigma \frac{+}{-\nu}$$

$$= -\nu$$

$$\sigma = \frac{-\nu}{-\nu} \varepsilon$$

$$\Delta = |\Delta - \Delta|$$

$$\Delta = |\Delta - \Delta|$$

$$\beta = \begin{pmatrix} \cdot \\ - \\ \cdot \end{pmatrix}$$

$$\Delta = (\beta)\Delta + (\beta)\Delta\Delta_{\theta} = -(\beta)\Delta + (\beta)\Delta$$

$$= (\beta) + (\beta)_{\theta} = - (\beta) + (\beta)$$

$$= \frac{\Delta}{\delta} = \frac{\theta \Delta_{\theta}}{\delta} = . \leftrightarrow \Delta = \delta$$

$$\sigma\delta = .^{\circ}$$

$$\delta = .^{\circ}$$

Normalized total energy release rate $\frac{G_{PSF}}{E}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with Abaqus built-in J-Integral post-processing routine (*CONTOUR INTEGRAL)

$$\delta = .^{\circ}$$

Normalized energy release rate $\frac{G_{-1}}{G_{0}}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based VCCT post-processing routine

 $\delta = .^{\circ}_{\text{Normalized energy release rate} \frac{G_{+}}{G_{+}} \text{ as function of crack angular semi-aperture } \Delta \theta, \text{ calculated with in-house force-based VCCT and Abaqus built-in 3-Integral ("CONTOUR INTEGRAL) post-processing routines}$

$$\sigma\delta = .^{\circ}$$

$$\delta = .^{\circ}$$

Normalized total energy release rate $\frac{G_{PSF}}{C}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with Abaqus built-in J-Integral post-processing routine (*CONTOUR INTEGRAL)

$$\delta = .^{\circ}$$

Normalized energy release rate $\frac{G_{i+1}}{G_0}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based VCCT post-processing routine

 $\delta=.^\circ$ Normalized energy release rate $\frac{a_0}{G}$ as function of crack angular semi-uperture $\Delta\theta$, calculated with in-house force-based VCCT and Abaque built-in J-Integral (*CONTOUR INTEGRAL) post-processing routines

$$\sigma\delta = .^{\circ}$$

$$\delta = .^{\circ}$$

$$\delta = .^{\circ}$$

Normalized total energy release rate $\frac{G_{GR}}{C}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with Abaqus built-in J-Integral post-processing routine (*CONTOUR INTEGRAL)

$$\delta = .^{\circ}$$

Normalized energy release rate $\frac{G_{(+)}}{G_0}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based VCCT post-processing routine

$$\delta=.^\circ$$

Normalized energy release rate $\frac{G_{cl}}{G_c}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based VCCT and Abaqus built-in J-Integral (*CONTOUR INTEGRAL) post-processing routines

$$\sigma\delta = .^{\circ}$$

$$\delta = .^{\circ}$$

$$\delta = .^{\circ}$$

Normalized total energy release rate $\frac{G_{CR}}{G_{CR}}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with Abaqus built-in J-Integral post-processing routine (*CONTOUR INTEGRAL)

$$\delta = .^{\circ}$$

Normalized energy release rate $\frac{G_{(1)}}{G_0}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based VCCT post-processing routine

$$\delta=.^\circ$$

Normalized energy release rate $\frac{G_c}{G_c}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based VCCT and Abaqus built-in J-Integral (*CONTOUR INTEGRAL) post-processing routines

$$\sigma\delta = .^{\circ}$$

$$\delta = .^{\circ}$$

Normalized total energy release rate $\frac{Grow}{G_t}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with Abaqus built-in J-Integral post-processing routine (*CONTOUR INTEGRAL)

$$\delta = .^{\circ}$$

Normalized energy release rate $\frac{G_{(-)}}{G_0}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based VCCT post-processing routine

 $\delta=\cdot^\circ$ Normalized energy release rate $\frac{\alpha_0}{G^2}$ as function of crack angular semi-sperture $\Delta\theta$, calculated with in-house force-based VCCT and Abaqus built-in 3-Integral (*CONTOUR INTEGRAL) post-processing routines

$$\sigma\delta = .^{\circ}$$

$$\delta = .^{\circ}$$

Normalized total energy release rate $\frac{G_{TOT}}{C_0}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with Abaqus built-in J-Integral post-processing routine (*CONTOUR INTEGRAL)

 $\delta = .^{\circ}$

Normalized energy release rate $\frac{G_{(-)}}{G_0}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based VCCT post-processing routine

$$\delta=.^\circ$$

Normalized energy release rate $\frac{G_{ij}}{C}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based VCCT and Abaqus built-in J-Integral (*CONTOUR INTEGRAL) post-processing routines

$$\sigma\delta = .^{\circ}$$

$$\delta = .^{\circ}$$

Normalized total energy release rate $\frac{Grow}{Gc}$ as function of crack angular semi-aperture Δθ, calculated with Abaqus built-in J-Integral post-processing routine (*CONTOUR INTEGRAL)

$$\delta = .^{\circ}$$

Normalized energy release rate $\frac{G_{-1}}{G_{-}}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based VCCT post-processing routine

$$\delta=.^\circ$$

Normalized energy release rate $\frac{G_{ij}}{G}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based VCCT and Abaqus built-in J-Integral (*CONTOUR INTEGRAL) post-processing routines

$$\sigma\delta = .^{\circ}$$

$$\delta = .^{\circ}$$

Normalized total energy release rate $\frac{G_{COC}}{E_0}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with Abaqus built-in J-Integral post-processing routine (*CONTOUR INTEGRAL)

$$\delta = .^{\circ}$$

Normalized energy release rate $\frac{G_{-1}}{G_{-}}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based VCCT post-processing routine

$$\delta = .^{\circ}$$

Normalized energy release rate $\frac{G_{i,j}}{G_{i,j}}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based VCCT and Abaqus built-in J-Integral (*CONTOUR INTEGRAL) post-processing routines

$$\delta = 0.0$$

Normalized energy release rate $\frac{G_{12}^2}{4\pi}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the fiber side of the interface

$$\delta = .^{\circ}$$

Normalized energy release rate $\frac{G_1}{G_2}$ as function of crack angular semi-aperture Δθ, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the fiber side of the interface

$$\delta = .^{\circ}$$

Normalized energy release rate $\frac{G_1}{G_2}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the fiber side of the interface

 $(...)\delta=.$ Germalized energy release rate $\frac{G_{11}}{G_{12}}$ as function of crack angular sumi-operture $\Delta\theta$, cubalated with in home force-based and stress-based VCCT post-processing routines with stresses extracted on the filter side of the interface

$$\delta=.^\circ$$

O = . Normalized energy release rate $\frac{G_1}{G_2}$ as function of crack angular semi-sperture Δθ, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the matrix side of the inter-

$$\delta=.^\circ$$

Normalized energy release rate $\frac{G_{cl}}{G}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the matrix side of the interf

$$\delta=.^\circ$$

Normalized energy release rate $\frac{G_{ij}}{G_{ij}}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the matrix side of the interface.

 $(...)\delta=.$ Symmalized energy release rate $\frac{g_{ij}}{g_{ij}}$ as function of crack angular semi-spectury $\Delta\theta$, calculated with in-bosse force-based and stress-based VCCT post-processing routines with stresses extracted on the matrix side of the interface

$$\sigma\delta = .^{\circ}$$

$$\delta = .^{\circ}$$

$$\delta = .^{\circ}$$

Normalized energy release rate $\frac{G_{(1)}}{G_0}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based VCCT post-processing routine

Normalized energy release rate $\frac{G}{L}$ as function of crack angular semi-aperture $\Delta\theta$, $VF_f = 7.9 \cdot 10^{-5}$, $\frac{L}{L} \sim 100$ calculated with in-house force-based VCCT post-processing routine

Error of of normalized energy release rate with respect to BEM results $\Delta \frac{G_G}{G_G} = \frac{G_G}{G_G}|_{EEM} - \frac{G_G}{G_G}|_{EEM}$ as function of crack angular semi-aperture $\Delta \theta$, $VF_f = 7.9 \cdot 10^{-5}$, $\frac{1}{R_f} \sim 100$ calculated with in-house force-based VCCT post-

Normalized energy release rate GH as function of crack angular semi-aperture $\Delta\theta$, $VF_f = 7.9 \cdot 10^{-5}$, $\frac{t}{R_c} \sim 100$ calculated with in-house force-based VCCT post-processing routine

Error of of normalized energy release rate with respect to BEM results $\Delta \frac{G_0}{G_0} = \frac{G_0}{G_0}|_{REM}$ as function of crack angular semi-aperture $\Delta \theta$, $VF_f = 7.9 \cdot 10^{-5}$, $\frac{L}{R_0} \sim 100$ calculated with in-house force-based VCCT post-1

Normalized energy release rate $\frac{G_f + G_f}{G_0}$ as function of crack angular semi-aperture $\Delta \theta$, $VF_f = 7.9 \cdot 10^{-5}$, $\frac{f_0}{E_0} \sim 100$ calculated with in-house force-based VCCT post-processing routine

Error of of normalized energy release rate with respect to BEM results, $\Delta \frac{G_1G_2}{G_0} = \frac{G_1G_2G_2}{G_0} \frac{G_2G_2G_2}{|_{EBM}} = \frac{G_1G_0G_2}{G_0}|_{EBM}$ as function of crack angular semi-aperture $\Delta \theta$, $VF_f = 7.9 \cdot 10^{-5}$, $\frac{I_0}{H_0} \sim 100$ calculated with in-house force-based V

