Title: Hyperparameter Setting, Initial Conditions & Iterations

Author: Qian Dong, Wentian Tian, Qitian Ma, Gabriele Carta.

Date: 16/08/2020

Notation

j = 1 year 20-49 j = 2 year 50-64

j = 3 year 65+

Hyperparameter (Feb. 24th 2020 - May 3rd 2020)

1.
$$L_j(t)$$
 lockdown policy $L_j = \left\{egin{array}{ll} 0.6 & j=1,2 \ 1 & j=3 \end{array}
ight.$

NOTE: Based on the policy adopted by the Italian government during the lockdown period, $L_j(t)$ is supposed to be 0.6 for the young and middle group while for the old group, it's set to be 1. θ is taken as set in Acemoglu's paper for now.

2.
$$\{
ho_{i,j}\}_{3*3}$$
 symmetric matrix $ho_{i,j}\in[0,1]$ contact rate between group i and j $ho_{\{i,j\}}=1, orall i, j=1,2,3$

NOTE: The $ho_{\{i,j\}}$ here are also taken from the baseline model set in Acemoglu's paper, which are the same for any inter-group interactions.

3. $lpha \in [1,2]$ index of scale in matching

NOTE: We may compare the results of these two different matching case and then see which one fits better the data. It's very likely that the reality is between 1 and 2.

4. eta infection rate eta=0.134

NOTE: It's set in the baseline model of Acemoglu's paper.

5. θ lockdown efficiency

 $\theta = 0.75$

6. $\iota_j \in [0,1]$ fraction of infected people who need ICU $\iota_j = \sigma ar{\delta}_i^d$

- [0

7. $\kappa_j \in [0,1]$ fraction of recovered agents allowed to work freely

 $\kappa_j = 0$

8. $\gamma_j \in [0,1]$ Non-ICU patients recover rate

 $\gamma_j=1/18$

9. $\sigma=0.0076$ Coefficient of H(t) equation

NOTE: It's taken from the Acemoglu's paper.

10. $\phi_j \in [0,1]$ (conditional) probability that an individual of type j needing ICU care is detected and isolated $\phi_j = 0.1$

11. $au_j \in [0,1]$ the constant probability that an infected individual of type j not needing ICU care becomes isolated $au_j = 0.1$

12. $\bar{\delta}_i^d$ The case fatality rates for the three age groups conditional on infection and ICU services being available.

NOTE: The values are taken from Ferguson et al. (2020) and summarized by Acemoglu.

Determined Parameter

1. $H(t) = \sigma \sum_k \overline{\delta}_k^d I_k(t)$ 2. $\underline{\delta}_j^d = (\overline{\delta}_j^d \gamma)/\iota_j$ 3. $\delta_j^d(t) = \underline{\delta}_j^d \cdot [1 + \lambda H(t)]$ 4. $\delta_j^r(t) = \gamma_j - \delta_j^d(t) \in [0,1]$ ICU patients recover rate 5. $\eta_j = 1 - [\iota_j \phi_j + (1 - \iota_j) \tau_j] \in [0,1]$ rate of infected person fail to be isolated

Initial Condition

1. $POP_{Lom} = 8269281$

NOTE: Here we only consider the population of and above 20 years old considering the age groups we are focusing on.

2. $POP_{Ven} = 4033961$

NOTE: Here we only consider the population of and above 20 years old considering the age groups we are focusing on.

3. $NInfInit_{Lom}=10$

NOTE: Initial infected population in Lombardia, which is the same as assumed in Favero's paper.}

4. $NInfInit_{Ven}=5$

NOTE: Initial infected population in Veneto, which is the same as assumed in Favero's paper.

5.
$$I_j(0) = NInfInit_{Lom} * N_j$$

6.
$$S_{i}(0) = N_{i} * Pop_{Lom} - I_{i}(0)$$

Iteration

$$\begin{split} & \Delta S_{j}(t) = -\Delta I_{j}(t) \\ & \Delta I_{j}(t) = \beta[1 - \theta_{j}L_{j}(t)]S_{j}(t)\sum_{k}\rho_{jk}\eta_{k}I_{k}(t)(1 - \theta_{k}L_{k}(t))/\{\sum_{k}\rho_{jk}[(S_{k}(t) + \eta_{k}I_{k}(t) + (1 - \kappa_{k})R_{k}(t)][1 - \theta_{k}L_{k}(t)] + \kappa_{k}R_{k}(t)\}^{2-\alpha} - \gamma_{j}I_{j} \\ & \Delta D_{j}(t) = \delta_{j}^{d}(t)H_{j}(t) \\ & \Delta R_{j}(t) = \delta_{j}^{r}(t)H_{j}(t) + \gamma_{j}(I_{j}(t) - H_{j}(t)) \end{split}$$