Теория чисел (теория)

Владимир Латыпов donrumata03@gmail.com

Vladimir Latypov donrumata03@gmail.com

Содержание

1 Базовые определения	3
1.1 Декодирование	3
1.2 Отношение сигнал-шум	3
1.3 Код	
1.4 Дублирование	
1.5 Теоремы Шеннона	
1.6 Жёсткое vs мягкое декодирование	
1.7 Спектральная эффективность	

1 Базовые определения

Кодер источника — убирает избыточность (например, архиватор или jpeg), может быть с потерями.

Кодер канала — вносит контроллируемую избыточность.

Канал — вероятностная модель передачи данных, определяется $P(Y \mid X)$, где X — данные, непосредственно передающиеся, Y — принимаемые данные на выходе канала.

1.1 Декодирование

- По критерию идеального наблюдателя: минимизация P_e за счёт выбора в каждой точке x, наиболее вероятного при условии y (т.е. $\max_x p(x \mid y)$).
- По максимуму правдоподобия выбор для x области, где его правдоподобие $p(y \mid x)$ выше других x: $\max_x p(y \mid x)$.

При $P(x)=\mathrm{const}$ критерии эквивалентны.

1.2 Отношение сигнал-шум

$$E_s = \alpha^2$$

 $P_{
m noise}\sim \sigma^2=rac{N_0}{2}\,(N_0-{
m c}$ пектральная плотность мощности шума, берём половину, т.к. комплексная часть не интересует)

 $\underline{\text{Ha}}$ символ: $\frac{E_s}{N_0}$

На бит: $\frac{E_b}{N_0}=\frac{E_s}{N_0R}$

Принято измерять в децибелах: $10 \log_{10} \left(rac{E_b}{N_0}
ight)$

Для 2-АМ:
$$P_e = Q\Big(\sqrt{2rac{E_b}{N_0}}\Big)$$

1.3 Кол

Определение 1.3.1 (*Код*) Множество $\mathcal C$ допустимых кодовых последвоательностей алфавита X (на практике — они блоковые)

Определение 1.3.2 (Кодер) Отображение $\mathcal{B}^n \hookrightarrow \mathcal{C}$

Определение 1.3.3 (*Скорость кода*) Отношение длины кодовой и исходной последовательностей

1.4 Дублирование

Если m раз продублировать каждый символ, то $P_e=Q\Big(\sqrt{2m\frac{E_b}{N_0}}\Big)$, но $R=\frac{1}{m}$, т.ч. если смотреть в пересчёте на бит — прироста нет.

1.5 Теоремы Шеннона

Есть трейдофф между скоростью и ошибками.

Теорема 1.5.4 (Прямая теорема Шеннона) Оказывается, что со скоростью, сколь угодно близкой к C, но меньшей C можно достигать сколь угодно малые P_e начиная с некоторой длина блока кода.

Теорема 1.5.5 (Обратная теорема Шеннона) Если R > C, то P_e ограничена снизу.

т.е. теоретический результат идеален. Теорема не конструктивна, но знаем, как достичь. Но:

- декодеры неэффективны
- конкретные (не асимптотические) вероятности ошибок плохие

btw случайные коды реализуют теорему Шеннона;)

Пропускная способность канала —

$$C = \max_{P(x)} I(X;Y)$$

, где $I(X;Y) = H(Y) - H(Y \mid X)$ — определяется через свойства канала.

Источники субоптимальности:

- конечность длины блока
- несовершенство кода
- субоптимальность декодера
- дискретизация выхода канала

1.6 Жёсткое vs мягкое декодирование

Жёсткое — декодер использует жёсткие оценки для каждого символа.

• Тогда АБГШ \rightarrow BSC

Мягкое — декодер использует вероятности для каждого символа/напрямую принятое значение.

1.7 Спектральная эффективность

 $\beta = \frac{R}{W}$ — число бит на Гц ширины спектра.