Сортировки методом декомпозиции

Метод декомпозиции = "разделяй и властвуй"

Суть: сложная задача разбивается на несколько простых, которые подобры исходной, но имеют меньший объем. Далее подзадачи решаются рекурсивно и полученные решения комбинируются для получения ответа.

Merge sort

72	4	54	10	41	27	54	3	0
----	---	----	----	----	----	----	---	---

3 | 0

Анализ операции слияния MERGE(A, p, q, r) $(n_1) = q - p + 1$ 2 $(n_2 \neq r - q)$ Пусть $L[1...n_1+1]$ и $R[1...n_2+1]$ — новые массивы for i = 1 to n_1 L[i] = A[p+i-1]копирование for j=1 to n_2 R[j] = A[q+j] $L[n_1+1]=\infty$ конец строки, можно $R[n_2+1]=\infty$ проверять как угодно 10 i = 1

запись в исходный массив

упорядоченных данный

11

12

13

14

15

16 17 i = 1

for k = p to r

if $L[i] \leq R[j]$

else A[k] = R[j]

j = j + 1

Оценка времени работы Merge Sort (рекуррентная формула)

Merge-Sort(
$$A,p,r$$
)

1 if $p < r$

2 | $(p+r)/2$ |

3 | Merge-Sort(A,p,q)

4 | Merge-Sort(A,q,q)

5 | Merge-Sort(A,q,q)

7 $(\frac{n}{2})$

6 | Merge-Sort(A,q,q)

7 $(\frac{n}{2})$

8 | Merge-Sort(A,q,q)

9 | Merge-Sort(A,q,q)

1 $(\frac{n}{2})$

2 $(\frac{n}{2})$

2 $(\frac{n}{2})$

3 $(\frac{n}{2})$

4 $(\frac{n}{2})$

5 $(\frac{n}{2})$

6 $(\frac{n}{2})$

6 $(\frac{n}{2})$

7 $(\frac{n}{2})$

7 $(\frac{n}{2})$

8 $(\frac{n}{2})$

9 $(\frac{n}{2})$

9 $(\frac{n}{2})$

9 $(\frac{n}{2})$

1 $(\frac{n}{2})$

1 $(\frac{n}{2})$

1 $(\frac{n}{2})$

1 $(\frac{n}{2})$

1 $(\frac{n}{2})$

1 $(\frac{n}{2})$

2 $(\frac{n}{2})$

1 $(\frac{n}{2})$

1 $(\frac{n}{2})$

2 $(\frac{n}{2})$

1 $(\frac{n}{2})$

1 $(\frac{n}{2})$

2 $(\frac{n}{2})$

1 $(\frac{n}{2})$

2 $(\frac{n}{2})$

1 $(\frac{n}{2})$

2 $(\frac{n}{2})$

2 $(\frac{n}{2})$

3 $(\frac{n}{2})$

4 $(\frac{n}{2})$

2 $(\frac{n}{2})$

3 $(\frac{n}{2})$

4 $(\frac{n}{2})$

5 $(\frac{n}{2})$

6 $(\frac{n}{2})$

6 $(\frac{n}{2})$

7 $(\frac{n}{2})$

7 $(\frac{n}{2})$

8 $(\frac{n}{2})$

9 $(\frac{n}{2})$

$$\frac{1}{100} + \frac{1}{100} + \frac{1}$$

Про устойчивость алгоритмов

