Отчет по лабораторной работе №12

Дисциплина: Имитационное моделирование

Лобанова Полина Иннокентьевна

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выводы	13
Список литературы		14

Список иллюстраций

3.1	Начальный граф	7
3.2	Декларации	8
3.3	Добавление промежуточных состояний	8
3.4	Декларации	9
3.5	Модель простого протокола передачи данных	9
3.6	Отчёт о пространстве состояний	10
3.7	Отчёт о пространстве состояний	11
3.8	Отчёт о пространстве состояний	11
3.9	Граф пространства состояний	12

Список таблиц

1 Цель работы

Выполнить пример моделирования простого протокола передачи данных.

2 Задание

Рассмотрим ненадёжную сеть передачи данных, состоящую из источника, получателя. Перед отправкой очередной порции данных источник должен получить от получателя подтверждение о доставке предыдущей порции данных. Считаем, что пакет состоит из номера пакета и строковых данных. Передавать будем сообщение «Modelling and Analysis by Means of Coloured Petry Nets», разбитое по 8 символов.

3 Выполнение лабораторной работы

1. Построила модель с помощью CPNTools. Основные состояния: источник (Send), получатель (Receiver). Действия (переходы): отправить пакет (Send Packet), отправить подтверждение (Send ACK). Промежуточное состояние: следующий посылаемый пакет (NextSend).

Рис. 3.1: Начальный граф

2. Задала декларации модели.

```
▼Declarations
    ► Standard declarations
    ▼colset INT = int;
    ▼colset DATA = string;
    ▼colset INTxDATA = product INT * DATA;
    ▼var n, k: INT;
    ▼var p, str: DATA;
    ▼val stop = "########";
```

Рис. 3.2: Декларации

3. Расставила на графе типы, начальные значения и значения дуг. Задала промежуточные состояния (A, B с типом INTxDATA, C, D с типом INTxDATA) для переходов: передать пакет Transmit Packet, передать подтверждение Transmit ACK. Добавила переход получения пакета (Receive Packet) и состояние NextRec, задала вспомогательные состояния SP и SA.

Рис. 3.3: Добавление промежуточных состояний

5. Задала декларации.

```
▼colset Ten0 = int with 0..10;
▼colset Ten1 = int with 0..10;
▼var s: Ten0;
▼var r: Ten1;
▼fun Ok(s:Ten0, r:Ten1)=(r<=s);</pre>
```

Рис. 3.4: Декларации

Рис. 3.5: Модель простого протокола передачи данных

6. Вычислила пространство состояний. Сформировала отчёт о пространстве состояний и проанализировала его.

Рис. 3.6: Отчёт о пространстве состояний

Рис. 3.7: Отчёт о пространстве состояний

```
Dead Transition Instances
None

Live Transition Instances
None

Fairness Properties

labl2'Receive Packet 1 No Fairness
labl2'Send ACK 1 No Fairness
labl2'Send Packet 1 Impartial
labl2'Transmit_ACK 1 No Fairness
labl2'Transmit_ACK 1 No Fairness
labl2'Transmit_ACK 1 Impartial
labl2'Transmit_Packet 1
Impartial
```

Рис. 3.8: Отчёт о пространстве состояний

7. Построила граф пространства состояний.

Рис. 3.9: Граф пространства состояний

4 Выводы

Я выполнила пример моделирования простого протокола передачи данных.

Список литературы