Chapitre 19: Chaîne de Markov

1 Généralités

1.1 Graphe probabiliste

Définition 1 (Graphe probabiliste)

Un graphe probabiliste est un graphe orienté pondéré dans lequel :

- il y a au plus un arc entre chaque couple de sommets,
- les poids sont des réels de l'intervalle]0,1],
- en chaque sommet, la somme des poids des arêtes sortantes vaut 1.

Exemple 1

1. Les graphes suivants sont des graphes probabilistes :

2. Le graphe suivant n'est pas un graphe probabiliste :

Test 1 (Voir solution.)

Compléter le graphe suivant pour en faire un graphe probabiliste.

Définition 2 (Ordre d'un graphe)

On appelle ordre d'un graphe le nombre de sommets de ce graphe.

Remarque 1

Par convention, les sommets d'un graphe d'ordre $n \in \mathbb{N}^*$ seront numérotés de 1 à n.

Définition 3 (Matrice de transition)

Soit G un graphe probabiliste d'ordre $n \in \mathbb{N}^*$. La **matrice de transition** de G est la matrice $M = (m_{i,j})_{1 \le i,j \le n}$ telle que pour tout $i \in [1,n]$ et tout $j \in [1,n]$ le coefficient $m_{i,j}$ est égal au poids de l'arête reliant le sommet $n^{\circ}i$ au sommet $n^{\circ}j$ (avec pour convention que $m_{i,j} = 0$ s'il n'y a pas d'arête reliant le sommet $n^{\circ}i$ au sommet $n^{\circ}i$).

Remarque 2

La matrice de transition d'un graphe d'ordre $n \in \mathbb{N}^*$ est une matrice carrée d'ordre n.

Exemple 2

1. On considère le graphe probabiliste suivant :

2. On considère le graphe suivant :

Test 2 (Voir solution.)

Déterminer la matrice de transition du graphe probabiliste trouvé dans le test 1.

Proposition 1

Soit G un graphe probabiliste d'ordre $n \in \mathbb{N}^*$. La matrice de transition $M = (m_{i,j})_{1 \le i,j \le n}$ de G vérifie les propriétés suivantes :

1. pour tout $(i, j) \in [1, n]^2$, $0 \le m_{i, j} \le 1$;

2. pour tout
$$i \in [1, n]$$
, $\sum_{j=1}^{n} m_{i,j} = 1$.

Une matrice vérifiant ces propriétés est appelée une matrice stochastique.

Remarque 3

On a associé à tout graphe probabiliste une matrice stochastique : sa matrice de transition. Réciproquement, à toute matrice stochastique on peut associer un graphe probabiliste.

Exemple 3

On considère la matrice :

$$\mathbf{M} = \begin{pmatrix} 0.75 & 0.1 & 0.15 \\ 0.4 & 0.4 & 0.2 \\ 0.6 & 0.1 & 0.3 \end{pmatrix}.$$

1. Vérifier que M est une matrice stochastique.

2. Déterminer un graphe G dont M est la matrice de transition.

1.2 Chaîne de Markov (homogène)

Définition 4 (Chaîne de Markov homogène)

Soit $M = (m_{i,j})_{1 \le i,j \le r}$ une matrice stochastique d'ordre $r \in \mathbb{N}^*$ et soit $(X_n)_{n \in \mathbb{N}}$ une suite de variables aléatoires définies sur un même espace probabilisé et à valeurs dans $E = \{1, ..., r\}$.

On dit que $(X_n)_{n\in\mathbb{N}}$ est une **chaîne de Markov** de matrice de transition M si pour tout $n\in\mathbb{N}^*$, pour tout $(i_0,\ldots,i_{n+1})\in\mathbb{E}^{n+2}$ tels que $P(X_0=i_0,\ldots,X_n=i_n)>0$ on a :

$$P_{[X_0=i_0]\cap\cdots\cap[X_n=i_n]}([X_{n+1}=i_{n+1}])=m_{i_n,i_{n+1}}.$$
 (1)

Remarque 4

1. En particulier, pour tout $(i, j) \in E^2$ on a :

$$P_{[X_n=i]}(X_{n+1}=j)=P_{[X_0=i]}(X_1=j)=m_{i,j}.$$

Les coefficients de la matrice de transition sont donc des probabilités conditionnelles.

- 2. Une chaîne de Markov peut s'interpréter comme une marche aléatoire sur le graphe probabiliste associé à sa matrice de transition. La variable n représente le temps et la relation 1 signifie alors que la probabilité d'aller au sommet i_{n+1} à l'instant n+1 sachant qu'on a visité les sommets i_0, \ldots, i_{n+1} vaut $m_{i_n, i_{n+1}}$. En particulier, la position future (à l'instant n+1) ne dépend que de la position présente (à l'instant n) et pas des positions passées (aux instants $0, \ldots, n-1$).
- 3. Plus généralement, une chaîne de Markov $(X_n)_{n\in\mathbb{N}}$ modélise l'évolution d'une grandeur aléatoire au cours du temps n et la relation 1 signifie que le futur (l'état X_{n+1} à l'instant n+1) ne dépend du passé (les états $X_0,...,X_n$) que par le présent (l'état X_n à l'instant n).

3

4. Les coefficients de la matrice de transition sont appelées **les probabilités de transition** pour passer d'un état à un autre.

Exemple 4

On considère le graphe probabiliste suivant sur lequel un crabe se déplace aléatoirement :

- à l'instant initial n = 0, il se situe sur le sommet 1;
- il passe d'un sommet à un autre en suivant une arête orientée avec une probabilité égale au poids de cette arête.

Pour tout $n \in \mathbb{N}$, on note X_n la variable aléatoire qui donne le numéro du sommet sur lequel le crabe se trouve à l'instant n.

1. Déterminer la loi de X_0 et de X_1 .

2	Justifier que $(X_n)_{n\in\mathbb{N}}$	aat una abaîna da	Moulcorr of de	átauminau aa	matriaa da t	tuanaitian
_	INSTITUTE (Androck	i esi une chaine de	viarkov er de	eierminer sa i	marnce de i	ransiiion
	Jastinoi que (IIII) IIEI	j cot and chame ac	mantor of ac	cterminer our	inatifice ac t	.i aiioitioii.

Proposition 2

Soit $(X_n)_{n\in\mathbb{N}}$ une chaîne de Markov de matrice de transition $M=(m_{i,j})_{1\leqslant i,j\leqslant r}$. Alors pour tout $n\in\mathbb{N}^*$, pour tout $(i_0,\ldots,i_{n+1})\in \mathbb{E}^{n+2}$ tels que $P(X_0=i_0,\ldots,X_n=i_n)>0$:

$$P(X_0 = i_0, ..., X_n = i_n) = P(X_0 = i_0) \prod_{k=0}^{n-1} m_{i_k, i_{k+1}}.$$

Démonstration: Soient $(X_n)_{n\in\mathbb{N}}$ une chaîne de Markov de matrice de transition $M=(m_{i,j})_{1\leqslant i,j\leqslant r},\ n\in\mathbb{N}^*$ et $(i_0,\ldots,i_{n+1})\in\mathbb{E}^{n+2}$ tels que $P(X_0=i_0,\ldots,X_n=i_n)>0$.

Exemple 5

On reprend l'exemple précédent de la marche aléatoire sur un graphe.

Test 3 (Voir solution.)

Aramis le chat répartit son temps entre ses trois occupations préférées : dormir, manger et jouer. Au début de la journée, il dort puis il change d'activité toutes les heures de la façon suivante :

- Si, à l'heure n, il est en train de manger, alors il va dormir l'heure suivante avec probabilité 0.3 et jouer avec probabilité 0.7.
- Si, à l'heure n, il est en train de dormir, alors à l'heure n + 1 il continue de dormir avec probabilité 0.4, il va manger avec probabilité 0.3 et il va jouer avec probabilité 0.3.
- Si, à l'heure n, il est en train de jouer, il va manger l'heure suivante avec probabilité 0.4 et il va dormir avec probabilité 0.6.

On s'intéresse ici à l'évolution du comportement d'Aramis. On numérote les activités de 1 à 3 (1 :« Dormir », 2 :« Manger », 3 :« Jouer ») et, pour tout $n \in \mathbb{N}$, on appelle X_n la variable aléatoire égale à l'état du chat à l'instant n.

- 1. Justifier que $(X_n)_{n\in\mathbb{N}}$ est une chaîne de Markov.
- 2. Déterminer sa matrice de transition et le graphe probabiliste associé.
- 3. Calculer $P(X_0 = 1, X_1 = 1, X_2 = 3, X_3 = 2)$.

2 États d'une chaîne de Markov

2.1 États

Si $(X_n)_{n\in\mathbb{N}}$ est une chaîne de Markov de matrice de transition M, les coefficients de M sont des **probabilités conditionnelles** qui représentent la probabilité de passer d'une valeur à une autre.

Dans ce paragraphe, on va chercher à comprendre comment ces probabilités de transition permettent de déterminer la loi de X_n .

Définition 5 (État d'une chaîne de Markov)

Soit $(X_n)_{n\in\mathbb{N}}$ une chaîne de Markov de matrice de transition $M\in\mathcal{M}_r(\mathbb{R})$. Pour tout $n\in\mathbb{N}$, on appelle n-ième état de la chaîne de Markov $(X_n)_{n\in\mathbb{N}}$ la matrice ligne V_n définie par :

$$V_n = (P(X_n = 1) \dots P(X_n = r)).$$

Remarque 5

Le *n*-ième état de la chaîne de Markov $(X_n)_{n\in\mathbb{N}}$ donne donc la loi de X_n .

Proposition 3

Soit $(X_n)_{n\in\mathbb{N}}$ une chaîne de Markov de matrice de transition $M\in\mathcal{M}_r(\mathbb{R})$. Si on note $M=(m_{i,j})_{1\leqslant i,j\leqslant r}$ on a pour tout $n\in\mathbb{N}^*$:

$$\forall j \in [1, r], \quad \mathrm{P}(\mathrm{X}_n = j) = \sum_{i=1}^r m_{i,j} \mathrm{P}(\mathrm{X}_{n-1} = i).$$

Autrement dit:

$$\forall n \in \mathbb{N}^*, \quad V_n = V_{n-1}M.$$

Démonstration: Soit $(X_n)_{n\in\mathbb{N}}$ une chaîne de Markov de matrice de transition $M \in \mathcal{M}_r(\mathbb{R})$ et notons $M = (m_{i,j})_{1\leqslant i,j\leqslant r}$. Soient $n\in\mathbb{N}^*$ et $j\in[1,r]$. Comme X_{n-1} est à valeurs dans [1,r], la famille $([X_{n-1}=i])_{i\in[1,r]}$ forme une système complet d'événements. D'après la formule des probabilités totales, on obtient :

$$P(X_n = j) = \sum_{i=1}^r P_{[X_{n-1} = i]}(X_n = j)P(X_{n-1} = i) = \sum_{i=1}^r m_{i,j}P(X_{n-1} = i).$$

Ainsi:

$$\forall j \in [\![1,r]\!], \quad \mathrm{P}(\mathrm{X}_n=j) = \sum_{i=1}^r m_{i,j} \mathrm{P}(\mathrm{X}_{n-1}=i).$$

La relation matricielle en découle par définition du produit matriciel.

Corollaire 1

Soit $(X_n)_{n\in\mathbb{N}}$ une chaîne de Markov de matrice de transition $M\in\mathcal{M}_r(\mathbb{R})$. Pour tout $n\in\mathbb{N}$ on a :

$$V_n = V_0 M^n$$
.

Remarque 6

- 1. Ainsi, pour tout $n \in \mathbb{N}$, la loi de X_n est entièrement caractérisée par la matrice de transition et l'état initial V_0 .
- 2. Déterminer les états successifs d'une chaîne de Markov revient donc à calculer les puissances de la matrice de transition. On pourra donc essayer de la diagonaliser...

Exemple 6

On reprend l'exemple de la marche aléatoire partant du sommet 1 sur le graphe suivant :

Déterminons V2.

2.2 États stables

Définition 6 (État stable)

Soit $(X_n)_{n\in\mathbb{N}}$ une chaîne de Markov de matrice de transition $M\in\mathcal{M}_r(\mathbb{R})$ et soit $V\in\mathcal{M}_{1,r}(\mathbb{R})$. On dit que V est un **état stable** de $(X_n)_{n\in\mathbb{N}}$ si :

- 1. les coefficients de V sont positifs et leur somme vaut 1;
- 2. V = VM.

Remarque 7

Si l'état initial V_0 d'une chaîne de Markov est stable alors elle ne change pas d'état :

$$\forall n \in \mathbb{N}, \quad V_n = V_0.$$

6

En d'autres termes, les variables X_n suivent toutes la même loi. On dit que $(X_n)_{n\in\mathbb{N}}$ est **stationnaire**.

Proposition 4

Soit $(X_n)_{n\in\mathbb{N}}$ une chaîne de Markov de matrice de transition $M\in\mathcal{M}_r(\mathbb{R})$. Si V est un état stable alors tV est un vecteur propre de tM pour la valeur propre 1.

Remarque 8

Attention, tout vecteur propre de t M pour la valeur propre 1 ne fournit pas nécessairement un état stable. En effet, un état stable défini une loi de probabilité : ses coefficients doivent être positifs et de somme égale à 1.

Proposition 5

Soit $(X_n)_{n\in\mathbb{N}}$ une chaîne de Markov de matrice de transition $M\in\mathcal{M}_r(\mathbb{R})$. Alors $(X_n)_{n\in\mathbb{N}}$ possède (au moins) un état stable.

Remarque 9

Sous certaines hypothèses supplémentaires, l'état stable est unique et la suite $(X_n)_{n\in\mathbb{N}}$ converge en loi vers cet état stable.

Exemple 7

On reprend l'exemple de la chaîne de Markov $(X_n)_{n\in\mathbb{N}}$ dont le graphe est :

Déterminons les états stables.						

Test 4 (Voir solution.)

Déterminer les états stables de la chaîne de Markov du test 3.

3 Exemple des graphes à deux états

On considère le graphe à deux états suivant, où p et q sont des réels de]0,1[.

	p
	1
1-p	(2) $1-q$
	q

La matrice de transition M est :
On considère une chaîne de Markov $(X_n)_{n\in\mathbb{N}}$ de matrice de transition M.
$lacktriangle$ Déterminer le sous-espace propre de ${}^t M$ associé à la valeur propre 1.
► En déduire que $(X_n)_{n\in\mathbb{N}}$ possède un unique état stable que l'on précisera.
▶ Déterminer le spectre de M et en déduire que M est diagonalisable.
► En déduire que $(X_n)_{n\in\mathbb{N}}$ converge en loi vers l'unique état stable.

4 Objectifs

- 1. Savoir reconnaître un graphe probabiliste.
- 2. Savoir déterminer la matrice de transition d'un graphe probabiliste.
- 3. Étant donné une matrice stochastique, savoir construire un graphe probabiliste dont c'est la matrice de transition.
- 4. Savoir reconnaître une situation modélisée par une chaîne de Markov.
- 5. Savoir déterminer les états successifs d'une chaîne de Markov.
- 6. Savoir déterminer des états stables d'une chaîne de Markov.