

Discover relation: DL, in-DL/Other Utilizes the relation for specific tasks

Unify information representation Combine results from different modalities

Multimodality

 Unify/convert materials in different modalities into a uniformed encoding.

Convert image into texts

Convert images and text into trees.

Translation of different languages

. . .

Combine results from different modality
 Get activity from images and category of the text and combine the two to predict its popularity

Multimodality

Uniform encoding:

- There are some work that turn a picture into a sentence. We may try that on Pinterest data.
- Try to describe a picture with more sophisticated methods objects in it, colorful or not, in-door or not, activities, etc.

Combined result:

- Classify pictures according to Pinterest category
- Combine the picture classification result with the text classification results.

Schedule:

- Test combined result first and see whether it work.
- Try to build converting algorithms.
- Test different uniform encoding later.

Cross Domain Ming

Direct relations

Two domains share common data points — eBay-Amazon, Instagram-Facebook

We have some extra information compared to single domain.

Details

Indirect relations

Two domains that share same feature — forums and blogs, twitter and Facebook

We may treat the data with the same feature as a same data point and apply both classifiers or any other operations on the data and gain the link

Details

Other relations

Any other relations. Hard to formalize but have vast topics to explore. One example may be <u>here</u>.

Direct/Indirect Relations

Output of classifier 1

- Maximize P(class) when classifying domain 1
- Similar trick can be applied in indirect relations, except class 1 in the table contains all the data points that is classified to class 1 by classifier 1
- Or we may apply to EM algorithm to estimate the CPD

	class 1	class 2	
Class 1		$\frac{class2 \cap Class1}{class2 \cup Class1}$	
Class 2	$\frac{class1 \cap Class2}{class1 \cup Class2}$	$\frac{class2 \cap Class2}{class2 \cup Class2}$	

Direct/Indirect Relations

Scaling Issue:

- The CPD table increases fast when the number of classes increases. (n^m if there are both n classes in m domains)
- To reduce the computational cost, we only consider top k classes in the CPD. (The cost reduces to k^m .)

Schedule:

- Construct a data set where two domains are directly related and their classes are highly related.
- Test the proposal. Hope it will work.
- If it works, find more data set and test the how result is affected by the class relations.
- Expand to indirectly related data sets. See whether EM is needed and whether EM will help.

Other Relations

Users in Twitter CS229 food.com

Common latent topics T1 T2 T3 T4 T5

Pages in Facebook Stanford CS Food Network

- Try to find a common set of latent topics that composes topics in two domains.
- The relation between the two domain is the latent common topics.
- For a new user in twitter who links his Facebook account, we can recommend users in twitter that have similar composition with the pages he followed in Facebook.
- But, how do we match the topics? Is any direct/indirect link a must?

Questions

- What data sources do we have?
- How are they formatted originally?
- Is there any topics that are already chosen? Is the proposed ones fit?
- What are the interested tasks? More tasks, more possible solutions.
- Any other people in this field? Previous works?