$$f'(x) \approx \frac{f(x + \Delta x) - f(x)}{\Delta x}, \quad \Delta x = 0.01$$

 $f(x) \sim \frac{\Delta x}{\Delta x}, \quad \Delta x = 0.0$ $t_k(x) = f'(x_k) \cdot (x - x_k) + f(x_k)$

$$t_k(x) = f'(x_k) \cdot (x - x_k) + f(x_k)$$
$$x_0 = 2.6, \quad x_{n+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

 $f(x) = e^{0.9x} - x^2$

	<i>y</i> (* 10)			
\overline{n}	x_k	$f(x_k)$	$f'(x_k)$	x_{n+1}
0	2.60000	3.62064	4.18396	1.73465
1	1.73465	1.75519	0.82550	-0.39150
2	-0.39150	0.54991	1.41144	-0.78110

$$\begin{array}{l} - \circ -t_0(x) = 4.18396 \cdot (x + 2.6) + 3.62064 \\ - \circ -t_1(x) = 0.8255 \cdot (x + 1.73465) + 1.75519 \\ - \circ -t_2(x) = 1.41144 \cdot (x - 0.3915) + 0.54991 \\ - \circ -t_3(x) = 2.00195 \cdot (x - 0.7811) - 0.1149 \end{array}$$

 $-\circ - t_4(x) = 1.90735 \cdot (x - 0.7237) - 0.0023$