

آزمایشگاه کنترل دیجیتال

تمرين

تكميل مدلسازي موتور و شبيهسازي

۱. در آزمایش دوم مدل موتور DC را به دست آوردیم. مدل به دست آمده از مرتبه ۱ و به شکل زیر است:

$$G_p = \frac{\omega}{V_{in}} = \frac{K}{\tau s + 1} \tag{1}$$

که ω خروجی سرعت (دور بر دقیقه) و V_{in} ولتاژ اعمالی به موتور از طریق سیگنال PWM است. برای کنترل دور و موقعیت موتور باید اجزای مختلف دو دیاگرام بلوکی شکل (۱) را به دست آوریم. در جدول (۱) اجزای مختلف این دو دیاگرام شرح داده شده است:

جدول ۱: اجزای مختلف دیاگرام بلوکی کنترلی

یکای خروجی	یکای ورودی	شکل کلی	شرح	تابع تبديل
ولت	دور بر دقیقه	PID یا Deadbeat	تابع تبدیل کنترلگر دور	G_{cw}
ولت	درجه	PID یا Deadbeat	تابع تبديل كنترلگر موقعيت	G_{cp}
دور بر دقیقه	ولت	$\frac{K_{\omega}}{\tau s+1}$	تابع تبديل مدل موتور	G_p
درجه	دور بر دقیقه	$\frac{K_{\theta}}{s}$	انتگرالگیر	G_i

با انجام آزمایش شناسایی موتور بیشتر بخشهای این دیاگرام معلوم شده و تنها مجهول ضریب K_{θ} است. این ضریب را با استفاده از روابط فیزیکی به دست آورید.

شکل ۱: آ_ دیاگرام بلوکی کنترل دور | ب_ دیاگرام بلوکی کنترل موقعیت

- ۲. به کمک یک نرمافزار شبیه سازی مثل سیمولینک یا SciLab دیاگرام بلوکی شکل (۱ _ آ) را شبیه سازی کنید.
 تذکر مهم: در تمام شبیه سازی ها ناحیه ی مرده ی موتور و سطوح اشباع کنترل کننده را در نظر بگیرید در غیر این صورت نتایج عملی و نظری کاملاً متفاوت خواهد بود.
- دو کنترلکنندهی P و PI برای کنترل پیوسته ی دور طراحی کنید. سپس با در نظر گرفتن دو زمان نمونهبرداری ۲۰ و ۱۰۰ میلی ثانیه کنترلکننده را گسسته کنید و نتایج شبیهسازی را گزارش کنید.
- ۳. دیاگرام بلوکی شکل (۱_ب) را شبیه سازی کنید. تابع تبدیل سیستم را در این حالت و با فرض زمان نمونه برداری Deadbeat و ۱۰۰ میلی ثانیه گسسته کنید. سپس به کمک مطالبی که در درس آموخته اید، سه کنترل کننده ی Deadbeat برای کنترل موقعیت موتور با این سه زمان نمونه برداری طراحی کنید. نتایج شبیه سازی را گزارش کنید.

۴. به پرسشهای زیر پاسخ دهید:

- چرا در سیستمهای دیجیتال معمولاً از کنترلکننده ی PID استفاده نمی شود؟
 - چرا در کنترل موقعیت موتور به کنترلر PI احتیاج نیست؟
- نوع خاصی از کنترلکننده ی PH به نام P+D وجود دارد. چگونه میتوان این کنترلکننده را برای کنترل موقعیت به کار برد و مزیت آن نسبت به PD چیست؟
- کاهش یا افزایش زمان نمونهبرداری چه تاثیری در نحوه ی کنترل موقعیت موتور با کنترلکننده ی Deadbeat دارد؟
 - با پیمودن گامهای زیر رابطهی گسستهی کنترلکنندهی PID را به دست آورید:
 - (آ) رابطهی کلی این کنترلکننده به صورت زیر است:

$$u(t) = K_p e(t) + K_i \int_0^t e(\tau) d\tau + K_d \dot{e}(t) \tag{Y}$$

برای پیادهسازی دیجیتال معمولاً از رابطهی (۲) مشتق می گیرند و سیس آن را گسسته می کنند:

$$\dot{u}(t) = K_p \dot{e}(t) + K_i e(t) + K_d \ddot{e}(t) \tag{7}$$

رابطه (۳) را به روش تقریب تفاضل عقبگرد و به کمک روابط (۴) و (۵) گسسته کنید:

$$\dot{f}(x) \approx \frac{f(x) - f(x - h)}{h}$$
 (4)

$$\ddot{f}(x) \approx \frac{f(x) - 2f(x-h) + f(x-2h)}{h^2} \tag{2}$$

و در نهایت معادلهی تفاضلی مناسب را برای پیادهسازی این کنترلکننده به دست بیاورید.

• ثابت زمانی این سیستم (τ) را در آزمایش شناسایی به دست آوردید. با دانشی که در درس کنترل دیجیتال کسب کردهاید بررسی کنید که زمان نمونه برداری مناسب برای کنترل چنین سیستمی چیست؟