quando t se torna grande. De fato, esses valores convergem bem depressa, porque $e^{-x^2} \rightarrow 0$ muito rapidamente quando $x \rightarrow \infty$.

TABELA 2

1	$\int_{1}^{\pi} [(1+e^{-t})/x] dx$
2	0,8636306042
5	1,8276735512
10	2,5219648704
100	4,8245541204
1 000	7,1271392134
10 000	9.4297243064

EXEMPLO 10 A integral $\int_{1}^{\infty} \frac{1+e^{-x}}{x} dx$ é divergente pelo Teorema da Comparação porque

$$\frac{1+e^{-x}}{x} > \frac{1}{x}$$

e $\int_{1}^{\infty} (1/x) dx$ é divergente pelo Exemplo 1 [ou por (2) com p = 1].

A Tabela 2 ilustra a divergência da integral do Exemplo 10. Parece que os valores não se aproximam de nenhum número fixado.

EXERCÍCIOS

1. Explique por que cada uma das seguintes integrais é imprópria.

(a)
$$\int_{1}^{\infty} x^{4} e^{-x^{4}} dx$$

(b)
$$\int_{1}^{\pi/2} \sec x \, dx$$

(c)
$$\int_0^2 \frac{x}{x^2 - 5x + 6} dx$$
 (d) $\int_{-\infty}^0 \frac{1}{x^2 + 5} dx$

(d)
$$\int_{-\infty}^{0} \frac{1}{r^2 + 5} dx$$

2. Quais das seguintes integrais é imprópria? Por quê?

(a)
$$\int_0^2 \frac{1}{2x-1} dx$$

(b)
$$\int_0^1 \frac{1}{2r-1} dx$$

(c)
$$\int_{-\infty}^{\infty} \frac{\sin x}{1 + x^2} dx$$

$$(d) \int_1^2 \ln(x-1) \, dx$$

3. Encontre a área sob a curva $y = 1/x^3$ de x = 1 a x = t e calcule-a para t = 10,100 e 1 000. Então, encontre a área total abaixo dessa curva para $x \ge 1$.

4. (a) Trace as funções $f(x) = 1/x^{1,1}$ e $g(x) = 1/x^{0,9}$ nas janelas retangulares [0, 10] por [0, 1] e [0, 100] por [0, 1].

- (b) Encontre as áreas sob os gráficos de f e g de x = 1 a x = t e calcule para $t = 10, 100, 10^4, 10^6, 10^{10} e 10^{20}$.
- (c) Calcule a área total sob cada curva para $x \ge 1$, se ela existir.

5-40 Determine se cada integral é convergente ou divergente. Calcule aquelas que são convergentes.

$$(5.) \int_1^\infty \frac{1}{(3x+1)^2} \, dx$$

$$\int_{-\infty}^{-1} \frac{1}{\sqrt{2-w}} dw$$

8.
$$\int_0^\infty \frac{x}{(x^2+2)^2} \, dx$$

$$9. \quad \int_4^\infty e^{-y/2} \, dy$$

10.
$$\int_{-\infty}^{-1} e^{-2t} dt$$

$$\int_{-\infty}^{\infty} \frac{x}{1+x^2} dx$$

$$(12.) \int_{-\infty}^{\infty} (2-v^4) \, dv$$

$$\int_{-\infty}^{\infty} x e^{-x^2} dx$$

$$14. \int_{1}^{\infty} \frac{e^{-\sqrt{x}}}{\sqrt{x}} dx$$

$$\int_{2\pi}^{\infty} \operatorname{sen} \theta \, d\theta$$

$$\int_{1}^{\infty} \frac{x+1}{x^2+2x} dx$$

19.
$$\int_{-\infty}^{1} xe^{2x} dx$$

$$(21) \int_{1}^{\infty} \frac{\ln x}{x} dx$$

$$23. \int_{-\infty}^{\infty} \frac{x^2}{9 + x^6} dx$$

$$25. \int_{e}^{\infty} \frac{1}{x(\ln x)^3} dx$$

$$\int_0^1 \frac{3}{x^5} dx$$

29.
$$\int_{-2}^{14} \frac{1}{\sqrt[4]{x+2}} dx$$

31.
$$\int_{-2}^{3} \frac{1}{x^4} dx$$

33.
$$\int_0^{33} (x-1)^{-1/5} dx$$

35.
$$\int_0^3 \frac{dx}{x^2 - 6x + 5}$$

$$(37.) \int_{-1}^{0} \frac{e^{1/x}}{x^3} dx$$

39.
$$\int_{0}^{2} z^{2} \ln z \, dz$$

16.
$$\int_{-\infty}^{\pi/2} \sin 2\theta \ d\theta$$

$$\underbrace{18.} \int_0^\infty \frac{dz}{z^2 + 3z + 2}$$

20.
$$\int_{-\infty}^{6} re^{r/3} dr$$

22.
$$\int_{-\infty}^{\infty} x^3 e^{-x^4} dx$$

24.
$$\int_0^\infty \frac{e^x}{e^{2x} + 3} dx$$

26.
$$\int_0^\infty \frac{x \arctan x}{(1+x^2)^2} dx$$

28.
$$\int_{2}^{3} \frac{1}{\sqrt{3-x}} dx$$

30.
$$\int_{6}^{8} \frac{4}{(x-6)^3} dx$$

32.
$$\int_0^1 \frac{dx}{\sqrt{1-x^2}}$$

34.
$$\int_0^1 \frac{1}{4y-1} dy$$

36.
$$\int_{-\pi/2}^{\pi} \operatorname{cossec} x \, dx$$

38.
$$\int_0^1 \frac{e^{1/x}}{x^3} \, dx$$

40.
$$\int_0^1 \frac{\ln x}{\sqrt{x}} dx$$