PATENT SPECIFICATION

1.021.400

NO DRAWINGS

1.021.400

Date of Application and filing Complete Specification: May 14, 1964. No. 20193/64.

Application made in France (No. 934,974) on May 15, 1963. Complete Specification Published: March 2, 1966.

C Crown Copyright 1966.

Index at acceptance:—C3 P(6A, 6C14A, 6C20B, 6D1, 6K9, 6T2D, 6T2X, 7A, 7C14A, 7C20B, 7D1A, 1D2A1, 7K9, 7T2D, 7T2X, 9A, 9C14A, 9C20B, 9D1A1, 9K6. 9K7, 9T2D, 9T2X); A5 534

Int. Cl.:-- C 08 f // A 61 k

COMPLETE SPECIFICATION

Polymer Products suitable for use in the Treatment of the Hair and Compositions containing them

We, L'Orrat, a French Body Corporate, of 14 rue Royale, Paris, France, do hereby declare the invention for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement:—

This invention relates to polymeric products useful in cosmetics and in the treatment of the hair, to processes for their preparation and to compositions containing them.

Among the substances at present employed as fixatives or sering agents for hair are derivatives of copolymers of maleic anhydride and an ethylenic monomer such as ethylene. However, these products suffer from the disadvantage that they have little affinity for the keratin which constitutes the hair, so that the hair lacquers containing them do not adhere well and are rapidly removed under the mechanical actions to which the hair is subjected. Consequently, the ests produced with these setting

agents are nor as durable as could be desired.

If has now been found according to the
present invention that certain new derivatives
of maleic anhydride – ethylenic copolymens,
having a chemical structure such that they
have an affinity for keratin, are mors satisfactory for use in hair-sesting agents. These
30 substances also act on the hair as softening
agents which impart to it a greater sliding
power, whereby its appearance is improved
and combing is greatly facilitated.

The new polymeric products of this invention are prepared by a process which comprises reacting a copolymer of maleic anhydride and an ethylenic monomer in which the molar ratio of ethylenic monomer: maleic anhydride is from 1:1 to 1:0.7, with a polyamine having a primary or secondary smine group and

one or more tertiary amine groups.

The copolymer is preferably one derived from ethylene, vinylmethyl ether, vinylethyl,

ether, styrene, a halo-styrene, or a styrene homologue, as the ethylenic monomer, and a 4 polyamine of formula: R,—NH—R,—N—R,

1

where R_i is a hydrogen from or an allyl radical of 1—4 curbon atoms; R_i is an allyl radical of 1—4 curbon atoms; R_i is an allylene radical him, and the curbon atoms R_i is an allylene radical him; a curbon radical him; a redical him; a red

a 120 - e duyense, ½ protypene, 12) - protypene on co 1.4 - buylene radical; and R, is an official of the form of the control of the form of the control of the form of the citylenic monomer is ethylene, vinylmethy either, vinylethyl either, or syrene, and the polyamine has the aforesaid formula, the co-polymer is believed to have the formula:— 60

in which R is hydrogen or a methoxy, ethoxy or a phenyl radical and R, R₂, R₃ and R₄ are as hereinbefore defined.

The polyamine used in the process of the invention can be a primary - tertiary amine, for instance NN – dimethyl - 1,2 – ethylene-diamine, NN – diethyl + 1,2 – ethylene-diamine, NN – diethyl + 1,3 – propylene-diamine, NN – diethyl + 1,3 – propylene-diamine, NN – dipropyl - 1,3 – propylene-diamine, NN – dipropyl - 1,3 – propylene-diamine, NN – methyl - 1,3 – propylene-diamine, N

propylenediamine or N_iN_i dimethyl - 1.4 - butylenediamine; or a secondary terriary amine, for instance N_iN_i - dimethyl - N_i^I - methylenediamine or N_iN_i - dimethyl - N_i^I - N_i^I

methylpropylenediamine.

The process of the present invention may be carried out in the homogeneous phase by using as reaction medium a common solvantic for the starting copolymer, for the polyaminia of and for the polymeric product though, of course, the solvent must not be one which would react with those substances. Suitable solvents are acctune, dioxan and printing

The process can alternatively be carried out in heterogeneous medium by dropping the anhydride copolymer in small portions and with good stirring into an aqueous solution of the

polyamine.

It is preferable to use proportions of copolymer and polyamine such that the primary
and secondary amine groups and the anhydride
functions of the polymer are in equimolecular
proportions. In this way excellent yields,
for example about 80%, can be obtained.
There may be added to the reaction mix-

5 There may be added to the reaction mixture other products which react with the anhydride function, for instance a primary or secondary amine or an atcohol. Where this is done it is recommended, in order that the 0 reaction may take place with a good yield, to add to the mixture of reactants in addition to the primary or secondary, amine or the alcohol a tertiary amine in chemicals equiva-

Jent quantity.

The polymeric products of the process of the present invention can be used as secting agents, for example in solution at concentrations between 0.5% and 6%, especially between 2.5% and 5% weight, in water or 40 in aqueous alcohol. They are also of use in cosmetic gels or creams as thickening

The invention is illustrated by the following Examples.

Example 1

Into 250 cc. of a 2% solution of NN - dimethyl - 1,2 - ethylenediamie in water there
is dropped in small successive portions, and
with vigorous stirring, 8.85 g. of a copolymer
of equimolar proportions of methylvinyl ether
and maleic anhydride, care being taken that
each successive portion of the copolymer is
dropped only when the preceding portion has
been completely dissolved in the amine solution. To the resulting viscous solution there
is added a mixture of equal proportions of
alcohol and ethyl acetate which precipitates a
solid polymeric product.

The product of the reaction may be used as a softening agent by introducing it into a shampoo in a proportion of 0.5% by weight. The shampoo thus treated provides a lather which is particularly soft to the touch and imparts to the hair high gloss and suppleness.

The product of this Example may also be

employed as a thickening agent for cosmetics, preferably in a concentration of about 2% by weight.

Example 2

To 250 cc. of a 10%, solution of NN - 70 diethyl -1.3 - propylene - diamine in acctone are added 250 cc. of an accrone solution containing 9.0% of an elythene - malcie analyticide copolymer (molecular ratio 1:1). It is observed that the reaction starts by itself with evolution of heat, and it is then sufficient to complete it by heating. The solvent is then removed from the resulting solution by evaporation, leaving as residue a polymeric product.

The product obtained may be successfully used as a softening agent for setting lotions by dissolving it in a proportion of 3% by weight in 30% aqueous solution of ethyl alcohol. The resulting solution has a low viscosity if the starting copolymer is itself of low viscosity.

Example 3

To 100 cc, of an aqueous solution containing 6% of M_AN. dimethyl - 1,3 - propylene-qualitatine, 4% of burylamine and 4.2 g of pyridine is added in small quantities 14.3 g, of a copolymer of equimolecular proportions of ethylene and maleic anhydride, care being taken, before each successive portion of copolymer is added, that the preceding portion has been completely dissolved.

The solution thus obtained may be directly employed or the reaction product may be separated by evaporation and washing with alcohol so as to eliminate any unreacted amine. The polymeric product thus obtained may be employed in solution in water or in an aqueous alcohol as a setting lotion. The concentration of polymeric product its such solutions may be, for example, from 2% to 5% by weight, the lotion containing, for example, 25% by weight of alcohol.

Example 4 18 g. of a copolymer resulting from the co- 110 polymerisation of 104 g, of styrene (1 mol) and 88 g, of maleic anhydride (0.9 mol) are reacted with 100 cc. of an aqueous solution containing 10% of N,N - diethylethylene - diamine, the copolymer being added in small 115 successive portions and care being taken to ensure that each successive portion has dissolved before the next portion is added. The solution thus obtained may be employed in combination with the products obtained in 120 accordance with Examples 2 and 3, for the same purposes and in the previously indicated concentrations. For example, it is possible to obtain an excellent setting lotion by introducing into a 20% by weight aqueous solution 125 of ethyl alcohol 0.5% by weight of the product of this Example and 1.5% by weight of the product of Example 3.

WHAT WE CLAÎM IS:—

1. A process for the preparation of polymeric 130

1,021,400

products subtable for use in setting agents for human hair, which comprises reacting a copolymer of maleic anhydride and an ethylenic monomer, in which the molar ratio of ethylenic monomer maleic anhydride is from 1:1 to 1:07, with a polyamine having a primary or secondary amine group and one or more tentiary amine groups.

A process according to claim 1, in which
 the poly-amine has the formula: —

 R_1 —NH— R_4 —N— R_3

R.

where R₁ is a hydrogen atom or an alkyl radical of 1—4 carbon atoms; R₂ is an alkyl radical of 1—4 carbon atoms; R₃ is an 15 alkylene radical having 2 to 6 carbon atoms; and R₃ is an alkyl radical of 1—4 carbon atoms or a radical of the formula

—R₄—N—(R₂)₂₂ where R₄ and R₂ have the values given above. 3. A process according to claim 1 or 2, in which the ethylenic monomer of the co-polymer is ethylene, vinylmethyl ether, vinylethyl ether, styrene, a halo-styrene, or a styrene

homologue.

4. A process according to claim 2 or 3, in which the copolymer is one which has been prepared by the copolymerisation of the monomers in substantially equimolar proportions,

5. A process according to claim 2, 3 or 4, in which R, is a 1,2 - ethylene, 1,2 - propylene, 1,3 - propylene or 1,4 - butylene radical.

 Å process according to any of the preceding claims, in which the polyamine is NNdimethyl - 1.2 - ethylenediamine, NN - dimethyl - 1,3 - propylenediamine, NN - diethyl - 1,3 - propylenediamine, NN - dipropyl - 1,3 - propylenediamine, N - propyl-N - methyl - 1,3 - propylenediamine, N - propyl-N - methyl - 1,3 - propylenediamine, N - propylenediamine

40 N,N - dimethyl - 1,4 - butylene - diamine. 7. A process according to any of claims 1 to 5, in which the polyamine is N,N - dimethyl-N¹ - methylethylenedamine or N,N - dimethyl - N¹ - methylpropylenediamine.

8. A process according to any of the preceding claims, in which the copolymer and

polyamine are used in amounts such that they contain respectively substantially equimolar proportions of anhydride rings and primary or secondary amine groups.

9. A process according to any of the preceding claims, in which a primary or secondary amine or an alcohol which will react with the anhydride function of the copolymer is present in the reaction mixture.

10. A process according to any of the preceding claims, in which the reaction is carried out in the homogeneous phase in a common solvent for the starting copolymer, for the amine and for the polymeric product resulting from the reaction.

 A process according to claim 10, in which the reaction medium is acetone, dioxan or pyridine.

12. A process according to any of claims 65 1 to 9, in which the reaction is carried out in a heterogeneous medium, the copolymer being added in small portions to an aqueous solution of the amine.

 A process according to claim 1, substantially as described herein.

14. Polymeric products suitable for use in compositions for treatment of the human hair, when obtained by the process of any of the preceding claims.

15. A composition for treating human hair, which comprises a solution of from 0.5% to 6% by weight of a compound claimed in claim 14 dissolved in water or in an aqueous

alcoholic solution.

16. A composition according to claim 15, in which the amount of the said compound is from 2 to 5% by weight.

17. A cosmetic composition in the form of a gel or cream, which contains as a thickening 8 agent a product claimed in claim 14.

18. A method of treating human hair, which comprises applying to the hair a product claimed in claim 14 or a composition claimed in claim 15 or 16.

J. A. KEMP & CO., Chartered Patent Agents, 14 South Square, Gray's Inn, London, W.C.1.

Leamington Spa: Printed for Her Majesty's Stationery Office, by the Courier Press (Leamington) Ltd.—1966. Published by The Patent Office, 25 Southampton Buildings, London, W.C.2, from which copies may be obtained.