Praktikum Rechnernetze

Protokoll zu Versuch 3 (Router-Betriebssystem Cisco IOS) von Gruppe 1

Jakob Waibel Daniel Hiller Elia Wüstner Felix Pojtinger 2021-10-19

Einführung

Mitwirken

Diese Materialien basieren auf Professor Kiefers "Praktikum Rechnernetze"-Vorlesung der HdM Stuttgart.

Sie haben einen Fehler gefunden oder haben einen Verbesserungsvorschlag? Bitte eröffnen Sie ein Issue auf GitHub (github.com/pojntfx/uni-netpractice-notes):

Lizenz

Dieses Dokument und der enthaltene Quelltext ist freie Kultur bzw. freie Software.

Abbildung 2: Badge der AGPL-3.0-Lizenz

Uni Network Practice Notes (c) 2021 Jakob Waibel, Daniel Hiller, Elia Wüstner, Felix Pojtinger

SPDX-License-Identifier: AGPL-3.0

Konfiguration

Konfiguration

Anders als in der Anleitung beschrieben, haben wir den Versuch mit Ubuntu durchgeführt. Daher im Folgenden eine kleine Anleitung, wie man sich unter Ubuntu mit dem Router verbinden kann.

Zuerst muss man die Anwendung screen installieren.

sudo apt install screen

Bevor man den Router nun einsteckt, kann man mit Hilfe von dmesg feststellen, welche Gerätebezeichnung der Router hat.

sudo dmesg | grep −i tty

Steckt man das Gerät nun ein, sollte man eine Meldung sehen, in welchem eine Device-Bezeichnung zu finden ist. In unserem Fall ttyUSB0.

Abschließend muss man sich nur noch mit der Cisco-Konsole

Konfiguration des Routers, so dass er mittels ping oder telnet von ihrem Rechner erreichbar ist

Um den Router auf die Default-Werte zurückzusetzen, verwenden wir write erase. Zur Sicherheit Laden wir den Router neu mit reload neu.

Router>enable Router#write erase

```
Router>enable
Router#write erase
Erasing the nvram filesystem will remove all configuration files! Continue? [confirm]
[OK]
Erase of nvram: complete
Router#
Nov 2 12:36:16.723: %SYS-7-NV_BLOCK_INIT: Initialized the geometry of nvram
```

Abbildung 3: Entfernen aller besthenden Konfigurationsdateien

Router#reload

Internet-Verbindung unter Einsatz

von NAT

Konfigurieren Sie ihren Router unter Einsatz von NAT so, dass von einem angeschlossenen PC aus eine Internet verbindung moeglich ist.

Konfiguration interface GigabitEthernet 0/1

Interface GigabitEthernet 0/1 ist in unserer Konfiguration das I AN-Interface

```
cisco-gruppel(config)#interface GigabitEthernet 0/1
cisco-gruppel(config-if)#ip address 192.168.1.1 255.255.255.0
cisco-gruppel(config-if)#ip nat inside

Nov 2 13:39:50.107: %LINEPROTO-5-UPDOWN: Line protocol on Interface NVI0, changed state to up
```

Abbildung 14: Konfiguration interface GigabitEthernet 0/1

Konfiguration interface GigabitEthernet 0/0

Interface GigabitEthernet 0/0 ist in unserer Konfiguration das WAN-Interface

Erläutern Sie in der Ausarbeitung die Bedeutung der einzelnen Zeilen der Konfiguration

```
interface GigabitEthernet 0/1 ip address 192.168.1.1 255.255.255.0 ip nat inside
```

interface GigabitEthernet 0/0
ip address 141.6266.161 255.255.255.0
ip nat outside
ip nat pool HDM 141.62.66.161 151.62.66.161 prefix—
ip nat inside source list 8 HDM overload
access—list 8 permit 192.168.1.0 0.0.0.255

interface GigabitEthernet 0/1

In den Interface-Konfigurations-Modus des Interfaces GigabitEthernet 0/1 wechseln, um dieses zu konfigurieren. Dieses

Dokumentieren Sie die Router-Konfiguration und die Routing-Tabelle des Routers und des PCs

```
Die Konfiguration lässt sich mit show running—config anzeigen.
cisco-gruppe1#show running-config
Building configuration . . .
Current configuration: 1483 bytes
  Last configuration change atstname cisco-gruppe1
boot-start-marker
boot-end-marker
```

aaa new—model

Experimentieren Sie mit nachfolgenden Befehlen nach Aufruf einer beliebigen Website und dokumentieren Sie Ihre Ergebnisse

Als Erstes wurde unser Router von unserem Lokalen Computer angepingt.

```
praktikum@rn05:~$ ping 192.168.1.1
PING 192.168.1.1 (192.168.1.1) 56(84) bytes of data.
64 bytes from 192.168.1.1: icmp_seq=1 ttl=255 time=0.412 ms
64 bytes from 192.168.1.1: icmp_seq=2 ttl=255 time=0.579 ms
64 bytes from 192.168.1.1: icmp_seq=3 ttl=255 time=0.509 ms
64 bytes from 192.168.1.1: icmp_seq=4 ttl=255 time=0.365 ms
64 bytes from 192.168.1.1: icmp_seq=5 ttl=255 time=0.436 ms
64 bytes from 192.168.1.1: icmp_seq=6 ttl=255 time=0.415 ms
```

Abbildung 22: Ping an unseren Router

Danach wurde der Router im Rechnernetze-Labor von unserem Router angepingt.

```
cisco-gruppel#ping 141.62.66.250
Type escape sequence to abort.
Sending 5. 100-byte ICMP Echos to 141.62.66.250. timeout is 2 seconds:
```

Internet-Verbindung ohne NAT

Konfigurieren Sie Ihren Router ohne NAT so, dass vom Subnetz ihrer Wahl eine Internet-Verbindung moeglich ist. Richten Sie dabei jeweils zwei Subnetze ein und stellen Sie zusaetzlich sicher, dass beide Subnetze sich gegenseitig erreichen koennen.

Dokumenteiren Sie die Konfiguration und auch die Routing-Tabelle des Routers und des PCs

Konfiguration Access-Liste (nur

wenn die Zeit reicht)

Richten Sie eine Access-Liste ein, sodass TCP und UDP Verbinungen vom Router nur erlaubt werden, sofern Sie von ihrem PC kommen. Versuchen Sie mit einer anderen IP-Adresse ins Internet zu gelangen, so werden TCP/UDP-Verbindungen unterbunden.

Richten Sie eine Access-Liste ein, sodass ICMP Pakete (ping etc.) nur beantwortet werden, wenn sie von einem definierten Laborrechner kommen (141.62.66.x/24, suchen Sie sich einen aus).