

Análisis I - Matemática I - Análisis II (C) - Análisis Matemático I (Q)

Práctica 4: Diferenciación - Aplicaciones - Parte 1

Derivada de una curva - Recta tangente

- 1. Para cada una de las curvas dadas a continuación
 - (a) $\mathbf{r}(t) = (t 2, t^2 + 1), -2 \le t \le 2, t = 1,$
 - (b) $\mathbf{r}(t) = (\sin(t), 2\cos(t)), 0 \le t \le 2\pi, t = \frac{\pi}{4}.$

resolver los siguientes items:

- i. Graficar.
- ii. Calcular la derivada $\mathbf{r}'(t)$.
- iii. Para el valor de t dado, graficar el vector posición $\mathbf{r}(t)$ y el vector tangente $\mathbf{r}'(t)$.
- 2. Para cada una de las siguientes curvas, hallar la ecuación paramétrica de la recta tangente en el punto dado. Graficar la curva y la recta tangente hallada.
 - (a) $x = 1 + 2\sqrt{t}$, y = -t, $0 \le t \le 9$, (3, -1),
 - (b) $x = e^t$, $y = te^t$, $-2 \le t \le 3$, (1,0).
- 3. Para cada una de las siguientes curvas, encontrar el vector tangente unitario en el punto determinado por el valor de t indicado.
 - (a) $\mathbf{r}(t) = (te^{-t}, \tan(t), t^2 + t), t = 0,$
 - (b) $\mathbf{r}(t) = (t^3 + 3t, t^2 + 1, 3t + 4), t = 1.$

Derivadas parciales

4. Para cada una de las siguientes funciones, hallar las derivadas parciales f_x y f_y . Graficar f y, para el punto p indicado, ubicar (p, f(p)) y graficar $\nabla f(p)$.

(a)
$$f(x,y) = x^2y^3$$
, $p = (2,1)$, (b) $f(x,y) = \frac{y}{1+x^2y^2}$, $p = (1,1)$.

- 5. Calcular las derivadas parciales de primer orden de las siguientes funciones.
 - (a) $f(x,y) = x^4 + 2xy + y^3x 1$,
- (b) $f(x,y) = \sin(x)$,
- (c) $f(x, y) = x^2 \sin^2(y)$,

(d) $f(x,y) = xe^{x^2+y^2}$,

(e) $f(x, y, z) = ye^x + z$.

- 6. Sea $f: \mathbb{R}^2 \to \mathbb{R}$ definida por f(x,y) = |x| + |y|.
 - (a) Graficarla en GeoGebra y, a partir de la observación del gráfico, conjeturar sobre la existencia o no de $f_x(0,0)$ y $f_y(0,0)$.
 - (b) Justificar análiticamente las conjeturas hechas en el ítem anterior.
- 7. Calcular las derivadas parciales de segundo orden de las siguientes funciones.

(a)
$$f(x,y) = x^3y^5 + 2x^4y$$
, (b) $f(x,y) = \sin^2(x+y)$,

(b)
$$f(x,y) = \sin^2(x+y)$$

(c)
$$f(x,y) = \sqrt{x^2 + y^2}$$
,

(c)
$$f(x,y) = \sqrt{x^2 + y^2}$$
, (d) $f(x,y) = \frac{xy}{x - y}$.

8. Sea $f: \mathbb{R}^2 \to \mathbb{R}$ definida por

$$f(x,y) = \begin{cases} \frac{x^3y - xy^3}{x^2 + y^2} & \text{si} \quad (x,y) \neq (0,0), \\ 0 & \text{si} \quad (x,y) = (0,0), \end{cases}$$

- (a) Graficarla en GeoGebra.
- (b) Hallar $f_x(x,y)$ y $f_y(x,y)$ para $(x,y) \neq (0,0)$.
- (c) Hallar $f_x(0,0)$ y $f_y(0,0)$.
- (d) Demostrar que $f_{xy}(0,0)=-1$ y $f_{yx}(0,0)=1.$ ¿Contradice esto al Teorema de Clairaut-Schwarz? ¿Por qué? (Sugerencia: graficar en Geo Gebra f_{xy} y f_{yx}).

Plano tangente

9. Para cada una de las siguientes superficies, estudiar la existencia del plano tangente en el punto dado. En caso de que exista, dar la ecuación.

(a)
$$z = 3y^2 - 2x^2 + x$$
, $(2, -1, -3)$,

(b)
$$z = \sqrt{xy}$$
, $(1, 1, 1)$,

(c)
$$z = xe^{xy}$$
, $(2, 0, 2)$.

- 10. Graficar en Geo Gebra la superficie $z=x^2+xy+3y^2$ y su plano tangente en (1,1,5).
- 11. Estudiar la diferenciabilidad de las siguientes funciones en el punto dado.

(a)
$$f(x,y) = 1 + x \ln(xy - 5)$$
 en $(2,3)$,

(b)
$$f(x,y) = \begin{cases} \frac{x^2y}{x^2 + y^2} & \text{si } (x,y) \neq (0,0), \\ 0 & \text{si } (x,y) = (0,0), \end{cases}$$
 en $(0,0)$

12. Sea $f \colon \mathbb{R}^2 \to \mathbb{R}$ una función diferenciable tal que f(2,5) = 6, $f_x(2,5) = 1$ y $f_y(2,5) = 1$ -1. Estimar el valor de f(2.2, 4.9).

13. Estudiar la continuidad, existencia de derivadas parciales y diferenciabilidad de las siguientes funciones en el origen. En caso de que exista, dar la ecuación del plano tangente al gráfico de f en el origen.

(a)
$$f(x,y,z) = \sqrt{|xyz|}$$
,
(b) $f(x,y) = \begin{cases} \frac{x^4 - y^4}{x^2 + y^2} & \text{si } (x,y) \neq (0,0), \\ 0 & \text{si } (x,y) = (0,0), \end{cases}$
(c) $f(x,y) = \begin{cases} \frac{x^2}{x^2 + y^2} \sin\left(\frac{1}{\sqrt{x^2 + y^2}}\right) & \text{si } (x,y) \neq (0,0), \\ 0 & \text{si } (x,y) = (0,0). \end{cases}$

Regla de la cadena

14. Utilizar la regla de la cadena para calcular la derivada de la composición $f \circ \mathbf{r}$ en cada uno de los siguientes casos.

(a)
$$f(x,y) = x^2 + y^2 + xy$$
, $\mathbf{r}(t) = (\sin t, e^t)$,

(b)
$$f(x,y) = \cos(x+4y)$$
, $\mathbf{r}(t) = (5t^4, 1/t)$,

(c)
$$f(x,y) = \sqrt{1 + x^2 + y^2}$$
, $\mathbf{r}(t) = (\ln t, \cos t)$.

15. Si
$$z = f(x, y), x = g(t), y = h(t)$$
 y se sabe que

$$g(3) = 2, \quad h(3) = 7,$$

 $g'(3) = 5, \quad h'(3) = -4,$
 $f_x(2,7) = 6, \quad f_y(2,7) = -8.$

Determinar dz/dt cuando t=3.

16. Utilizar la regla de la cadena para calcular $\partial z/\partial s$ y $\partial z/\partial t$ en cada uno de los siguientes casos.

(a)
$$z = x^2 y^3$$
, $x = s \cos(t)$, $y = s \sin(t)$,

(b)
$$z = \sin(x)\cos(y), x = st^2, y = s^2t,$$

(c)
$$z = e^{x+2y}$$
, $x = s/t$, $y = t/s$.

17. Utilizando un diagrama de árbol, escribir la regla de la cadena para las derivadas parciales indicadas. Suponer que todas las funciones son diferenciables.

(a)
$$z = f(x, y), x = x(r, s, t), y = y(r, s, t), \frac{\partial z}{\partial r}, \frac{\partial z}{\partial s}, \frac{\partial z}{\partial t}$$

(b)
$$w = f(x, y, z), x = x(r, s), y = y(r, s), z = z(r, s), \frac{\partial w}{\partial r}, \frac{\partial w}{\partial s}.$$

18. Utilizar la regla de la cadena para calcular las derivadas parciales indicadas en el punto dado en cada uno de los siguientes casos.

(a)
$$z = x^4 + x^2y$$
, $x = s + 2t - u$, $y = stu^2$, $\frac{\partial z}{\partial s}$, $\frac{\partial z}{\partial t}$, $\frac{\partial z}{\partial u}$ en $(s, t, u) = (4, 2, 1)$,

(b)
$$w = xy + yz + zx$$
, $x = r\cos(\theta)$, $y = r\sin(\theta)$, $z = r\theta$, $\frac{\partial w}{\partial r}$, $\frac{\partial w}{\partial \theta}$ en $(r, \theta) = (2, \frac{\pi}{2})$.

- 19. Sea T(x,y) la temperatura (en grado celsius) en un punto (x,y). Un insecto se arrastra de tal modo que su posición después de t segundos está dada por $x=\sqrt{1+t}$, $y=2+\frac{1}{3}t$, donde x e y se miden en centímetros. La función temperatura satisface $T_x(2,3)=4$ y $T_y(2,3)=3$. ¿Qué tan rápido se eleva la temperatura del insecto en su trayectoria después de 3 segundos?
- 20. Sea z = f(x y) con $f: \mathbb{R} \to \mathbb{R}$ una función derivable. Demostrar que

$$\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 0.$$

- 21. Sean z = f(x, y) con f una función C^2 , $x = r^2 + s^2$ e y = 2rs. Determinar $\partial^2 z/\partial r \partial s$ en función de las derivadas parciales de f.
- 22. Calcular la matriz diferencial DF(x,y) para cada una de las siguientes funciones $F: \mathbb{R}^2 \to \mathbb{R}^2$.

(a)
$$F(x,y) = (x^3y^5, 2x^4y)$$

(b)
$$F(x,y) = (\sin^2(x+y), e^{2x+y})$$

23. Este ejercicio guiado propone incorporar una interpretación geométrica de la matriz diferencial DF para funciones $F: \mathbb{R}^2 \to \mathbb{R}^2$.

Considerar la función $F: \mathbb{R}^2 \to \mathbb{R}^2$ definida como

$$F(r,\theta) = (r\cos(\theta), r\sin(\theta)) = (x(r,\theta), y(r,\theta))$$

- (a) Dibujar la región rectangular $R = \{(r, \theta) : 2 \le r \le 3, \frac{\pi}{4} \le \theta \le \frac{3\pi}{8}\}$ en el plano (r, θ) y dibujar la región transformada F(R) en el plano (x, y). Sugerencia: transformar los puntos de los lados de la región rectangular R (notar que F(R) no es un paralelogramo).
- (b) Calcular la matriz diferencial de $DF(r,\theta)$ para todo punto $(r,\theta) \in \mathbb{R}^2$.
- (c) Considerar la transformación lineal dada por la matriz $A = DF(2, \frac{\pi}{4})$ y los vectores $v_1 = (1,0)$ y $v_2 = (0, \frac{\pi}{8})$. Llamamos \tilde{R} al rectángulo generado por v_1 y v_2 en el plano (r,θ) . Calcular $w_1 = Av_1$, $w_2 = Av_2$ y dibujar el paralelogramo generado por w_1 y w_2 en el plano (x,y). Esto es $A(\tilde{R})$.
- (d) Dibujar la región $F(2, \frac{\pi}{4}) + A(\tilde{R})$. Observar que la matriz diferencial da una aproximación lineal de la transformación F cerca del punto $(2, \frac{\pi}{4})$. Dibujar con GeoGebra.

- (d) Implementar en GeoGebra usando sliders una versión general de este ejercicio para un rectángulo inicial arbitrario de la forma $R = \{(r, \theta) : 0 \le r_0 \le r \le r_1, 0 \le \theta_0 \le \theta \le \theta_1\}$ en el plano (r, θ) .
- 24. Sean $F(x,y)=(x^2+y,y^2-x),$ G(x,y)=(y,-x). Calcular $D(G\circ F)_{(1,-1)}$ y mostrar que es igual al producto de las matrices $DG_{(0,0)}$ $DF_{(1,-1)}$.
- 25. Si $f(x) = x + e^x$, mostrar que f es estrictamente creciente y calcular $(f^{-1})'(1)$.
- 26. Se
a $F:\mathbb{R}^2\to\mathbb{R}^2$ biyectiva, de clase C^1 con invers
a $C^1.$ Sabiendo que F(0,0)=(1,3),y que

$$DF_{(0,0)} = \left(\begin{array}{cc} 1 & -2 \\ 0 & 3 \end{array}\right)$$

calcular $(DF^{-1})_{(1,3)}$, la matriz diferencial de la función inversa en (1,3).