Tutorial 07 - Polynomial hierarchy and advice

Exercise 1. Kannan's Theorem

A circuit lower bound for the polynomial hierarchy. The aim of this exercise is to show that for each k, there is a language $\mathcal{L}_k \in \Sigma_2^p$ which cannot be computed by circuits of size $O(n^k)$.

- **1.** Show that the result is true if $P/poly \subseteq NP$. Is it equivalent to $P/poly \subseteq NP$?
- **2.** Show that if $NP \subseteq P/poly$, then it is enough to prove the claim for some Σ_i^p , $i \ge 2$, instead of Σ_2^p .
- 3. Show that there are $\leq 3^s s^{2s}$ circuits of size s (inputs are in the circuit size, gates are \land , \lor , \neg , and they are restricted to take at most 2 arguments).
- **4.** Prove that, for sufficiently large n, there are less circuits of size $n^k \lceil \log n \rceil$ than binary words of size n^{k+1} .

Let x^1, \ldots, x^{2^n} be the sequence of all words in $\{0,1\}^n$ ordered lexicographically. Given a binary word $a \in \{0,1\}^{n^{k+1}}$ of size n^{k+1} we define a subset $L_a \subset \{0,1\}^n$ as $x^i \in L_a \iff i \le n^{k+1} \land a_i = 1$.

- **5.** Prove that if $a, b \in \{0, 1\}^{n^{k+1}}$ are distinct, then $L_a \neq L_b$.
- **6.** Prove that, for sufficiently large n, there exists a such that L_a cannot be recognized by a circuit of size $n^k \lceil \log n \rceil$.
- 7. Prove that L_a can be recognized by a circuit of size Kn^{k+2} for some K > 0.

For every n let C_n be the set of circuits of size Kn^{k+2} that recognize functions which cannot be recognized by circuits of size $n^k \lceil \log n \rceil$. The previous parts show that C_n is nonempty for sufficiently large n. For every such n let $C_n \in C_n$ be the circuit whose binary description is the smallest in the lexicographic order of $\{0,1\}^*$. Define \mathcal{L}_k as $x \in \mathcal{L}_k \iff C_{|x|}(x) = 1$.

- **8.** Prove that \mathcal{L}_k belongs to Σ_i^p for some $i \geq 2$ but it cannot be recognized by circuits of size $O(n^k)$. (Note: i = 4 is enough.)
- 9. Conclude (Hint: Use Karp-Lipton Theorem)

Exercise 2. Polynomial Hierarchy

You have seen during the course the quantifier definition of the polynomial hierarchy: $L \in \Sigma_i^p$ if there exists a polytime TM M and a polynomial q such that:

$$x \in L \iff \exists u_1 \in \{0,1\}^{q(|x|)} \forall u_2 \in \{0,1\}^{q(|x|)} \dots Q_i u_i \in \{0,1\}^{q(|x|)} M(x,u_1,u_2,\dots,u_i) = 1.$$

You have also seen an alternative definition using oracles:

$$\begin{cases} \Sigma_0^p &= \mathsf{P} \\ \Sigma_{i+1}^p &= \mathsf{NP}^{\Sigma_i^p} \end{cases}$$

With PH being defined as $\bigcup_{i\geqslant 0} \Sigma_i^p$.

- 1. Prove the equivalence between the quantifier-based definition and the oracle-based definition.
- **2.** Give an oracle-based definition for Π_i^p .
- 3. Show that Σ_i^p is closed under polynomial-time many-one reduction.
- 4. Show that if there exist a PH-complete problem, then the polynomial hierarchy collapses.
- **5.** Show that if $\Sigma_i^p = \Sigma_{i+1}^p$, then $PH = \Sigma_i^p$.
- **6.** Propose a family of problems (S_i) such that S_i is Σ_i^p -complete.

Exercise 3. NP^{NP}

Let MINDNF denote the languages of all tuples (ϕ, k) such that ϕ is a SAT formula in disjunctive normal form, and $k \in \mathbb{N}$ is such that there exists an equivalent formula ϕ' of encoding size $\|\phi'\| \le k$. More formally,

$$\mathsf{MINDNF} = \left\{ (\phi, k) \in \mathsf{DNF} \times \mathbb{N} \colon \exists \phi', \|\phi'\| \leqslant k, \forall x, \phi(x) = \phi'(x) \right\}.$$

Show that $MINDNF \in NP^{NP}$.

Exercise 4. Advice

- **1.** Prove that $NP \subseteq P/\log \text{ implies } P = NP$.
- **2.** Prove that every language $\mathcal{L} \subset \Sigma^*$ belongs to $P/|\Sigma|^n$.
- 3. Show that there exists a *decidable* unary language that does not belong to P. A language $L \subseteq \{0,1\}^*$ is called sparse if there exists a polynomial p such that $|L \cap \{0,1\}^n| \le p(n)$ for all n
- 4. Show that every sparse language is in P/poly