Работу выполнили Жилин Андрей Игоревич и Зимин Андрей Валерьевич

Подготовка окружения

Импорт необходимых библиотек

```
import math
import pandas as pd
import numpy as np
import datetime
from matplotlib import pyplot as plt
import matplotlib.patches as mpatches

from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
##from mpl_toolkits import mplot3d
##import seaborn as sns
from sklearn.model_selection import train_test_split
```

Чтение Датасета

```
In [6]: df = pd.read_csv("data/iris.csv")
         df.head()
Out[6]:
            sepal_length sepal_width petal_length petal_width
                                                                    variety
         0
                     5.1
                                  3.5
                                                1.4
                                                             0.2 Iris-setosa
         1
                     4.9
                                  3.0
                                                1.4
                                                             0.2 Iris-setosa
                     4.7
                                  3.2
                                                1.3
                                                             0.2 Iris-setosa
```

1 и 2 Задания

4.6

5.0

Текст заданий

Текст заданий

3

1 Следует привести задачу классификации к бинарной. Т.е. рассматриваем ирисы 2-х классов: Setosa и non-Setosa.

0.2 Iris-setosa

0.2 Iris-setosa

2 Из признаков оставляем только 2: sepal length и sepal width.

3.1

3.6

1.5

Небольшие пояснения

Оставляем признаки "sepal_length" и "sepal_width", а также выделяем variety в отдельный dataframe. Класс iris-setosa помечаем 1, остальные классы помечаем -1.

```
In [7]: y = pd.DataFrame()
X = df[["sepal_length", "sepal_width"]].to_numpy() #отбираем нужные признаки
y['variety'] = df["variety"].apply(lambda x: int(x == "Iris-setosa") - int(x != "Iris-setosa")) #функция для 1 и -1
y = y[['variety']].to_numpy() #переводим в питру так как наш градиентный спуск работает с нампаем

print("Матрица признаков объектов:")
print(X[:10])
print("\nМатрица-столбец меток классов:")
print(y[45:55])
```

```
Матрица признаков объектов:
[[5.1 3.5]
 [4.9 3.]
 [4.7 \ 3.2]
 [4.6 \ 3.1]
 [5. 3.6]
 [5.4 3.9]
 [4.6 \ 3.4]
 [5. 3.4]
 [4.4 2.9]
 [4.9 3.1]]
Матрица-столбец меток классов:
[[ 1]
[ 1]
 [ 1]
 [ 1]
 [ 1]
 [-1]
 [-1]
 [-1]
 [-1]
 [-1]]
```

Выводы по первому и второму заданию

Импортировали данные и убедились в их корректности. Данные нам известные и хорошо знакомые.

Подготовка перед выполнением третьего задания

Наш градиентный спуск

Наша реализация градиентного спуска с комментариями, взято из предыдущей лабораторной работы.

```
In [8]: class GradientDescent:
            def __init__(self, train_x, train_y, h = 0.00005, eps=0.1, start_weights=None, logging=False, min_iterations=0, strategy="package"
                np.random.seed(seed)
                #часть за данные
                self.X = train_x #тренировочная выборка
                self.y = train y #целевой признак
                self.strategy = strategy #название стратегии(раскаде, mini-batch или stochastic)
                #метаданные
                self.width = len(train_x[0]) + 1 #ширина тренировочной выборки
                self.height = len(train_x) #высота тренировочной выборки
                #модель
                self.batch_size = batch_size
                self.min_iterations = min_iterations
                self.h = h \# war rpadue + m + or or cnycka h > 0
                self.lambda_ = lambda_ #коэффициент регуляризации
                self.eps = eps #точность градиентного спуска
                self.strategies = {'package': self.step_package, 'mini-batch': self.step_mini_batch, 'stochastic': self.step_mini_batch}
                if strategy == 'stochastic':
                    self.batch_size = 1
                if start_weights is None: #задание стартовых весов
                    self.w = np.full(self.width, 1)
                else:
                    self.w = start_weights
                self.X = np.concatenate((np.ones(self.height).reshape(-1, 1), self.X), axis=1) #фиктивная единица
                self.q = self.calc_q() # инициализируем ошибку
                self.logging = logging #вывод логов в консоль
                self.qs = np.array([]) #величина ошибки
                self.curr_timer = None #текущий таймер
                self.timer = np.array([]) #массив для хранения время итераций
                self.iter_num = 0 #κολυчество итераций
            def start_timer(self): #засечь время
                self.curr_timer = datetime.datetime.now()
            def stop timer(self): #становить и записать время
                self.timer = np.append(self.timer, np.array(datetime.datetime.now() - self.curr_timer))
            def get_time(self): #общее время выполнения программы
                return self.timer.sum()
            def get_times(self): #получить время по шагам
                return self.timer
            def step_package(self): #шаг пакетного градиентного спуска
                self.w = self.w - self.h * self.grad() #вычисляем градиент по пакету и меняем веса
            def step_mini_batch(self): #war стохастического градиентного спуска или mini-batch зависит от размера пакета
                idx = np.random.randint(self.height, size=self.batch_size) # формируем индексы пакета
```

```
self.w = self.w - self.h * self.grad(self.X[idx, :], self.y[idx, :]) #вычисляем градиент по пакету и меняем веса
def grad(self, X = None, y = None): #вычисление градиента по пакету(подходит для mini-batch, package и stochastic)
    if X is None or y is None or np.size(X)==0 or np.size(y)==0:
       X = self.X
       y = self.y
    return (X.T.dot(X.dot(self.w) - y[:, 0]))*(2/self.height)
def fit(self): #запуск градиентного спуска
    q = 2*self.q
    if self.logging:
        print("Величина ошибки на каждом шаге")
    while abs(self.q - q) > self.eps or self.iter_num < self.min_iterations:</pre>
        self.start_timer()
        q = self.q #переприсваеваем значение ошибки
        self.strategies[self.strategy]()
        self.qs = np.append(self.qs, q) #запоминаем значение ошибки
        self.q = self.calc_q() #вычисление значение ошибки после новых весов
        self.iter_num += 1
        self.stop_timer()
        if self.logging:
            print(f"War {self.iter_num}: οωμόκα {round(self.q, int(np.log(1/self.eps)/np.log(10)))};") #ποευ
    if self.logging:
        print(f"Время работы: {self.get_time().microseconds/1000:.02f} мс")
    return self.w
def calc_q(self):
    return np.mean((np.dot(self.X, self.w) - self.y[:, 0]) ** 2) #Вычисление ошибки
def predict(self, X):
   X = np.concatenate((np.ones(len(X)).reshape(-1, 1), X), axis=1) #фиктивная единица
    return np.dot(X, self.w).reshape(-1, 1) #предсказание
```

Наш метод опорных векторов

Реализация нашего метода опорных векторов

Класс метода опорных векторов наследуется от градиентного спуска, так как для оптимизации будет использоваться градиентный спуск. Переопределим градиент, функцию вычисления ошибки и предсказания.

В SVM в качестве оптимальной разделяющей прямой мы принимаем такую разделяющую прямую, которая максимально удалена от отбоих классов (имеет максимальный отступ). Для поиска такой прямой будем использовать функцию потерь Hingle Loss

$$L(w,x,y) = \lambda ||w||_2^2 + \sum_i^n max(0,1-y_i\langle w,x_i
angle)$$

Где λ - коэффициент регуляризации (необязателен). Тогда градиент функции потерь будет иметь вид:

$$abla_w L(y,X,w) = 2\lambda w + \sum_i^n \left\{egin{array}{l} 0,$$
 при $1-y_i\langle w,x_i
angle \leq 0 \ -y_ist x_i,$ при $1-y_i\langle w,x_i
angle > 0 \end{array}
ight.$

```
In [9]: class SupportVectorMachine(GradientDescent):#наследуемся от градиентного спуска
            def grad(self, X = None, y = None): #переопределяем вычисление градиента для нового класса svm
                if X is None or y is None or np.size(X)==0 or np.size(y)==0:
                    X = self.X
                    y = self.y
                # Создаем булеву маску для объектов
                margins = 1 - y[:, 0]
                                       * np.dot(X, self.w)
                mask = margins > 0
                # Вычисляем градиент, используя булеву маску
                grad = -np.sum(y[mask, :] * X[mask], axis=0)
                # Добавляем коэффициент регуляризации
                return 2 * self.lambda_ * self.w + grad
            def calc_q(self): #переопределяем функцию ошибки
                loss_result = self.lambda_*((self.w**2).sum())
                for i in range(self.height):
                    loss_result += max(np.array([0.0]), 1 - self.y[i]*np.dot(self.w, self.X[i, :])) #линейное ядро
                return loss_result
            def predict(self, X): #переопределяем функцию предсказания
                X = np.concatenate((np.ones(len(X)).reshape(-1, 1), X), axis=1) #фиктивная единица
                return np.sign(np.dot(X, self.w).reshape(-1, 1)) #предсказание
```

Наш класс для вычисления метрик

Повторение одних и тех же действий не очень полезно, особенно в программировании, потому необходимые вычисления метрик были вынесены в отдельный класс и будут вызываться как понадобится

Отдельно можно обратить внимание на метод get_hyper_p_2_params, здесь мы получаем уравнение двумерной гиперплоскости выражая

один вес через другой, можно его расширить для больших размерностей, но пока задача для двумерного аффинного пространства

Приведем простой вывод формулы гиперплоскости

```
Гиперплоскость в общем виде w_0+w_1x_1+w_2x_2+\cdots+w_nx_n=0 w_nx_n=-(w_0+w_1x_1+w_2x_2+\cdots+w_{n-1}x_{n-1}) x_n=-\frac{w_0+w_1x_1+w_2x_2+\cdots+w_{n-1}x_{n-1}}{w_n} Теперь x_n можно переобозначить как f(x_1,x_2,\ldots,x_{n-1}) f(x_1,x_2,\ldots,x_{n-1})=-\frac{w_0+w_1x_1+w_2x_2+\cdots+w_{n-1}x_{n-1}}{w_n}
```

Вот мы и получили уравнение гиперплоскости

```
In [10]: class Counter:
             def __init__(self, X_train, X_test, y_train, y_test, model):
                 self.X_train = X_train
                 self.X_test = X_test
                 self.y_train = y_train
                 self.y_test = y_test
                 self.y_pred_train = model.predict(self.X_train)
                 self.y_pred_test = model.predict(self.X_test)
                 self.model = model
             def plot_confusion_matrix(self, y, y_pred, label): #построение матрицы
                 cm = confusion_matrix(y, y_pred)
                 print('Матрица ошибок, полученная методом confusion_matrix\n', cm)
                 ConfusionMatrixDisplay.from_predictions(y, y_pred)
                 plt.title(f'Матрица ошибок для {label}')
                 plt.show()
             def calc_metrics(self, y, y_pred): #расчет всех метрик для классификации
                 acc = accuracy_score(y, y_pred)
                 pre = precision_score(y, y_pred)
                 rec = recall_score(y, y_pred)
                 f1 = f1_score(y, y_pred)
                 print(f"accuracy: {acc:.03f}")
                 print(f"precision: {pre:.03f}")
                 print(f"recall: {rec:.03f}")
                 print(f"f1: {f1:.03f}")
             def try_model(self): #построение confusion matrix и расчет метрик на тестовой и тренировочной выборках
                 self.y_pred_train = self.model.predict(self.X_train)
                 self.y_pred_test = self.model.predict(self.X_test)
                 print("Метрики для тренировочной выборки")
                 self.calc_metrics(self.y_train, self.y_pred_train)
                 print()
                 print('Метрики для тестовой выборки')
                 self.calc_metrics(self.y_test, self.y_pred_test)
                 self.plot_confusion_matrix(self.y_train, self.y_pred_train, 'тренировочной выборки')
                 self.plot_confusion_matrix(self.y_test, self.y_pred_test, 'тестовой')
```

Задание 3

Текст задания

Выполните процедуру классификации 3 раза. В рамках данной процедуры:

- 🖺 Разбейте выборку случайным образом на обучающую (100 объектов) и тестовую.
- Проведите на обучающей выборке обучение с линейной моделью SVM и выведите диаграмму рассеяния классов с линией гиперплоскости разделения.
- 🛍 Приведите формулу разделяющей гиперплоскости.
- [f] Оцените точность классификации на тестовой и обучающей выборках.

Первая модель(три в одном)

Разбиение выборки на обучающую (мы помним, что объектов 150, потому параметр тестовой части 0.33, чтобы в обучающей было 100)

```
In [11]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=19) #устанавливаем random_state 19, чтобы не
```

Проведите на обучающей выборке обучение с линейной моделью SVM и выведите диаграмму рассеяния классов с линией гиперплоскости разделения.

Мы хотим обучить тремя методами градиентного спуска и их сравнить для проведения дальнейших двух запусков

На первом запуске будем сравнивать пакетный, mini-batch и стохастический, на остальных двух будем запускать только один из них

Пакетный градиентный спуск

```
In [12]: svm = SupportVectorMachine(X_train,y_train, h=0.005, min_iterations=1000) #вызывает пакетный градиентный спуск
         w_{-} = svm.fit() #beca
         print("Уравнение разделяющей гиперплоскости:")
         print(f''\{w_[0]:.03f\}'' + "".join([f'' + \{w_[i]:.03f\} x\{i\}'' for i in range(1, len(w_))]) + " = 0")
```

Уравнение разделяющей гиперплоскости:

 $3.080 + -3.390 \times 1 + 4.837 \times 2 = 0$

Посчитаем метрики

```
In [13]: cntr_svm = Counter(X_train, X_test, y_train, y_test, svm)
         cntr_svm.try_model()
```

Метрики для тренировочной выборки

accuracy: 0.990 precision: 1.000 recall: 0.970 f1: 0.985

Метрики для тестовой выборки

accuracy: 1.000 precision: 1.000 recall: 1.000 f1: 1.000

Матрица ошибок, полученная методом confusion_matrix

[[67 0] [1 32]]

Матрица ошибок для тренировочной выборки

Матрица ошибок, полученная методом confusion_matrix [[33 0] [0 17]]

mini-batch

Всё то же самое для mini batch, но у него поменяем шаг, чтобы не разошелся

```
In [14]: | svm_mini_batch = SupportVectorMachine(X_train, y_train, h=0.005, min_iterations=1000, strategy='mini-batch', batch_size=10)
         w_ = svm_mini_batch.fit() #βeca
         print("Уравнение разделяющей гиперплоскости:")
```

```
print(f''\{w_[0]:.03f\}'' + "".join([f'' + \{w_[i]:.03f\} x\{i\}'' for i in range(1, len(w_))]) + " = 0")
Уравнение разделяющей гиперплоскости:
1.350 + -2.069 \times 1 + 3.040 \times 2 = 0
```

Вновь считаем метрики

```
In [15]: cntr_svm_mini_batch = Counter(X_train, X_test, y_train, y_test, svm_mini_batch)
         cntr_svm_mini_batch.try_model()
```

Метрики для тренировочной выборки

accuracy: 0.990 precision: 1.000 recall: 0.970 f1: 0.985

Метрики для тестовой выборки

accuracy: 1.000 precision: 1.000 recall: 1.000 f1: 1.000

Матрица ошибок, полученная методом confusion_matrix

[[67 0] [1 32]]

Матрица ошибок для тренировочной выборки

Матрица ошибок, полученная методом confusion_matrix [[33 0]

Стохастический градиентный спуск

Остался последний способ, реализованный у нас, это стохастический градиент спуск задаем те же параметры, что и у mini-batch

```
In [16]: | svm_stochastic = SupportVectorMachine(X_train, y_train, h=0.005, min_iterations=1000, strategy='stochastic')
      w_ = svm_stochastic.fit()
      print("Уравнение разделяющей гиперплоскости:")
```

Уравнение разделяющей гиперплоскости:

 $0.895 + -1.027 \times 1 + 1.448 \times 2 = 0$

```
cntr_svm_stochastic.try_model()

Метрики для тренировочной выборки
accuracy: 0.990
precision: 1.000
recall: 0.970
f1: 0.985

Метрики для тестовой выборки
accuracy: 1.000
precision: 1.000
recall: 1.000
f1: 1.000
Матрица ошибок, полученная методом confusion_matrix
[[67 0]
```

In [17]: cntr_svm_stochastic = Counter(X_train, X_test, y_train, y_test, svm_stochastic)

Матрица ошибок для тренировочной выборки

[1 32]]

Матрица ошибок, полученная методом confusion_matrix [[33 0] [0 17]]

Разделяющая гиперплоскость для всех трех

Строим гиперплоскость всех троих способов разделения

```
In [18]: x1 = np.arange(-10, 15, 0.05) x2 = np.arange(-10, 15, 0.05) x2 = np.arange(-10, 15, 0.05) xgrid, ygrid = np.meshgrid(x1, x2) xgrid, ygrid = np.meshgrid(x1, x2) xvm_w = svm.w svm_stochastic_w = svm_stochastic.w svm_mini_batch_w = svm_mini_batch.w svm_mini_batch_w = svm_mini_batch.w svm_z = svm_w[0] + svm_w[2] * xgrid + svm_w[1]*ygrid svm_stochastic_z = svm_stochastic_w[0] + svm_stochastic_w[2] * xgrid + svm_stochastic_w[1]*ygrid svm_mini_batch_z = svm_mini_batch_w[0] + svm_mini_batch_w[2] * xgrid + svm_mini_batch_w[1]*ygrid fig = plt.figure(figsize=(12, 12)) # Oбучающая выборка
```

```
ax = fig.add_subplot(221)
scatter = ax.scatter(X_train[:, 1], X_train[:, 0], c=y_train, cmap="gist_rainbow", marker="o")
plt.contour(x1, x2, svm_z, colors="yellow", levels=[0])
plt.contour(x1, x2, svm_stochastic_z, colors="black", levels=[0])
plt.contour(x1, x2, svm_mini_batch_z, colors="green", levels=[0])
svm_patch = mpatches.Patch(color="yellow", label='Пакетный градиентный спуск')
svm_s_patch = mpatches.Patch(color="black", label='Стохастический градиентный спуск')
svm_m_patch = mpatches.Patch(color="green", label='Mini-batch градиентный спуск')
plt.xlim(0, 5.5)
plt.ylim(3, 8.5)
ax.set_title('Обучающая выборка')
legend1 = ax.legend(*scatter.legend_elements(),
                    loc="upper right", title="Classes")
ax.add_artist(legend1)
ax.legend(handles=[svm_patch, svm_s_patch, svm_m_patch])
#тестовая выборка
ax = fig.add_subplot(222)
scatter = ax.scatter(X_test[:, 1], X_test[:, 0], c=y_test, cmap="gist_rainbow", marker="o")
plt.contour(x1, x2, svm_z, colors="yellow", levels=[0])
plt.contour(x1, x2, svm_stochastic_z, colors="black", levels=[0])
plt.contour(x1, x2, svm_mini_batch_z, colors="green", levels=[0])
svm_patch = mpatches.Patch(color="yellow", label='Пакетный градиентный спуск')
svm_s_patch = mpatches.Patch(color="black", label='Стохастический градиентный спуск')
svm_m_patch = mpatches.Patch(color="green", label='Mini-batch градиентный спуск')
plt.xlim(0, 5.5)
plt.ylim(3, 8.5)
legend1 = ax.legend(*scatter.legend_elements(),
                    loc="upper right", title="Classes")
ax.set_title('Тестовая выборка')
ax.add_artist(legend1)
ax.legend(handles=[svm_patch, svm_s_patch, svm_m_patch])
```

Out[18]: <matplotlib.legend.Legend at 0x212b712b6e0>

Мини-выводы

По итогу метрики accuracy, precision и recall оказались одинаковыми, как следствие этого f0 тоже одинаковые

Визуально кажется, что все-таки пакетный градиентный спуск и mini-batch остается это узнать по функции ошибки

```
In [19]: print(f"SVM c пакетной оптимизацией: {svm.q[0]:.02f}")
print(f"SVM c мини-батч оптимизацией: {svm_mini_batch.q[0]:.02f}")
print(f"SVM c стохастической оптимизацией: {svm_stochastic.q[0]:.02f}")

SVM с пакетной оптимизацией: 2.88
SVM с мини-батч оптимизацией: 6.30
SVM с стохастической оптимизацией: 15.49
```

Вывод по первой модели

У пакетного меньше всего ошибка, дальше будем продолжать работать с ним

Вторая модель(только пакетный)

Новое разбиение для новой модели

```
In [20]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=20)
In [21]: svm_2 = SupportVectorMachine(X_train,y_train, h=0.0005, min_iterations=10000)
svm_2.fit() #Beca
w_ = svm_2.fit()
print("Уравнение разделяющей гиперплоскости:")
print(f"{w_[0]:.03f}" + "".join([f" + {w_[i]:.03f} x{i}" for i in range(1, len(w_))]) + " = 0")

Уравнение разделяющей гиперплоскости:
2.709 + -2.812 x1 + 4.017 x2 = 0
```

Метрики

```
In [22]: cntr_svm_2 = Counter(X_train, X_test, y_train, y_test, svm_2)
cntr_svm_2.try_model()
```

Метрики для тренировочной выборки accuracy: 0.990 precision: 1.000 recall: 0.970 f1: 0.985

Meтрики для тестовой выборки accuracy: 1.000 precision: 1.000

precision: 1.000
recall: 1.000
f1: 1.000

Матрица ошибок, полученная методом confusion_matrix

[[67 0] [1 32]]

Матрица ошибок для тренировочной выборки

Матрица ошибок, полученная методом confusion_matrix [[33 0]

График гиперплоскости

```
In [23]: x1 = np.arange(-10, 15, 0.05)
         x2 = np.arange(-10, 15, 0.05)
         W = SVM_2.W
         xgrid, ygrid = np.meshgrid(x1, x2)
         z = w[0] + w[2] * xgrid + w[1]*ygrid
         # Обучающая выборка
         fig = plt.figure(figsize=(12, 12))
         ax = fig.add_subplot(221)
         plt.contour(x1, x2, z, colors="black", levels=[-1, 0, 1], linewidths=[0.75, 1, 0.75], linestyles=["--", '--'])
         plt.contourf(x1, x2, z, cmap="jet", levels=[-70,-1, 1, 70], linestyles=["--", '-', '--'])
         plt.xlim(0, 5.5)
         plt.ylim(3, 8.5)
         scatter = ax.scatter(X_train[:, 1], X_train[:, 0], c=y_train, cmap="gist_rainbow", marker="o")
         ax.set_title('Обучающая выборка')
         legend1 = ax.legend(*scatter.legend_elements(),
                             loc="upper right", title="Classes")
         ax.add_artist(legend1)
         #тестовая выборка
         ax = fig.add_subplot(222)
         plt.contour(x1, x2, z, colors="black", levels=[-1, 0, 1], linewidths=[0.75, 1, 0.75], linestyles=["--", '--'])
         plt.contourf(x1, x2, z, cmap="jet", levels=[-70,-1, 1, 70], linestyles=["--", '--', '--'])
         plt.xlim(0, 5.5)
         plt.ylim(3, 8.5)
         scatter = ax.scatter(X_test[:, 1], X_test[:, 0], c=y_test, cmap="gist_rainbow", marker="o")
         legend1 = ax.legend(*scatter.legend_elements(),
                             loc="upper right", title="Classes")
         ax.set_title('Тестовая выборка')
         ax.add_artist(legend1)
         plt.show()
```


Получилось достаточно неплохо, однако видно, что неидеально. Есть один объект класса 1, который попал к классу -1. Также есть несколько объектов в margin-зоне.

Третья модель

```
In [24]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=122)
In [25]: | svm_3 = SupportVectorMachine(X_train, y_train, min_iterations=10000)
         w_ = svm_3.fit()
         print("Уравнение разделяющей гиперплоскости:")
         print(f''\{w_{0}:.03f\}'' + "".join([f'' + \{w_{i}:.03f\} x\{i\}'' for i in range(1, len(w_{i}))]) + " = 0")
        Уравнение разделяющей гиперплоскости:
        1.295 + -1.992 \times 1 + 3.053 \times 2 = 0
In [26]: cntr_svm_3 = Counter(X_train, X_test, y_train, y_test, svm_3)
         cntr_svm_3.try_model()
        Метрики для тренировочной выборки
        accuracy: 0.990
        precision: 1.000
        recall: 0.971
        f1: 0.986
        Метрики для тестовой выборки
        accuracy: 1.000
        precision: 1.000
        recall: 1.000
        f1: 1.000
        Матрица ошибок, полученная методом confusion_matrix
         [[65 0]
         [ 1 34]]
            Матрица ошибок для тренировочной выборки
```


Матрица ошибок, полученная методом confusion_matrix [[35 0] [0 15]]


```
In [27]: x1 = np.arange(-10, 15, 0.05)
         x2 = np.arange(-10, 15, 0.05)
         W = SVM_3.W
         xgrid, ygrid = np.meshgrid(x1, x2)
         z = w[0] + w[2] * xgrid + w[1]*ygrid
         # Обучающая выборка
         fig = plt.figure(figsize=(12, 12))
         ax = fig.add_subplot(221)
         plt.contour(x1, x2, z, colors="black", levels=[-1, 0, 1], linewidths=[0.75, 1, 0.75], linestyles=["--", '--'])
         plt.contourf(x1, x2, z, cmap="jet", levels=[-70,-1, 1, 70], linestyles=["--", '-', '--'])
         plt.xlim(0, 5.5)
         plt.ylim(3, 8.5)
         scatter = ax.scatter(X_train[:, 1], X_train[:, 0], c=y_train, cmap="gist_rainbow", marker="o")
         ax.set_title('Обучающая выборка')
         legend1 = ax.legend(*scatter.legend_elements(),
                             loc="upper right", title="Classes")
         ax.add_artist(legend1)
         #тестовая выборка
         ax = fig.add_subplot(222)
         plt.contour(x1, x2, z, colors="black", levels=[-1, 0, 1], linewidths=[0.75, 1, 0.75], linestyles=["--", '--'])
         plt.contourf(x1, x2, z, cmap="jet", levels=[-70,-1, 1, 70], linestyles=["--", '-', '--'])
         plt.xlim(0, 5.5)
         plt.ylim(3, 8.5)
         scatter = ax.scatter(X_test[:, 1], X_test[:, 0], c=y_test, cmap="gist_rainbow", marker="o")
         legend1 = ax.legend(*scatter.legend_elements(),
                            loc="upper right", title="Classes")
         ax.set_title('Тестовая выборка')
         ax.add_artist(legend1)
         plt.show()
```


Похожая картина, но теперь из-за бОльшей ширины margin-зоны в неё попало больше объектов. На результатах классификации это не сказалось (такие у нас данные)

Задание 4

Текст задания

Сравните итоги выполненных ранее трёх попыток обучения. Сделайте выводы.

Пояснения

По итогу независимо от разбиения последний объект никак не получается отделить в обучающей выборке(так получилось, то он попал во всех трех разбиениях в обучающую выборку. Однако на всех тестовых выборках метрики 1. Значит модель не переобучилась и имеет хорошую обобщающую способность.

По итогу можно сказать что выборка линейно неразделима, либо с точки зрения линейной модели слишком сильно пострадает обобщающая способность если подстраиваться под одну точку.

Визуально кажется, что выборка линейна неразделима, но так может показаться из-за масштаба, так что для более корректного вывода следует исследовать сами данные

Если предположить, что тот один объект является выбросом (неверно указан класс при сборе датасета), то классы получатся линейно разделимы и всё хорошо.

Задание 5

Текст задания

Реализуйте задачу классификации с квадратичной функцией SVM на последнем наборе обучающей и тестовой выборок (также диаграммой рассеяния и линией раздела).

Пояснения по поводу svm

Если мы не можем решить задачу линейного разделения в исходном пространстве признаков, то повышаем размерность, предполагая, что в новом пространстве признаков большей размерности задачу линейного разделения удастся решить.

Мы применили к объектам отображение

$$f:R^2 o R^5$$

а именно

$$f(x) = (x_1, x_2, x_1^2, x_2^2, x_1 x_2)$$

```
In [28]: class QuadraSupportVectorMachine(SupportVectorMachine):#наследуемся от градиентного спуска def init_r(self):
    self.width = 6 #переопределим количество признаков
    self.to_new_r() #переведем их в пятимерное пространство
    self.w = np.array([1, 1, 1, 1, 1]) #зададим новые стартовые веса для этого пространства
    def to_new_r(self, X = None): #добавляем переход в пятимерное пространство для данных

flag_ = True
    if X is None:
```

```
flag_ = False X = self.X

X = np.concatenate((np.ones((len(X), 3)), X), axis=1) #фиктивная единица for i in range(len(X)):

X[i, :] = np.array([1, X[i, -1]**2, X[i, -2]**2, X[i, -1], X[i, -2], X[i, -1] * X[i, -2]]) if flag_: return X self.X = X

def predict(self, X): #nepeonpedenenue функции предсказания X = np.concatenate((np.ones(len(X)).reshape(-1, 1), X), axis=1) #фиктивная единица X = self.to_new_r(X) #nepedod в новое пространство данных return np.sign(np.dot(X, self.w).reshape(-1, 1)) #npedcказание
```

Решение

Используем последнее разбиение для обучения новой модели

```
In [29]: qsvm = QuadraSupportVectorMachine(X_train, y_train, h=0.0005, min_iterations=30000) #инициализация метода qsvm.init_r() #для перехода в новое пространство w_ = qsvm.fit() print("Уравнение разделяющей гиперплоскости:") print(f"{w_[0]:.03f}" + "".join([f" + {w_[i]:.03f} x{i}" for i in range(1, len(w_))]) + " = 0")

Уравнение разделяющей гиперплоскости:
1.963 + 0.828 x1 + -1.295 x2 + 2.122 x3 + 3.047 x4 + 0.222 x5 = 0
```

Метрики

[0 35]]

Метрики для тестовой выборки accuracy: 1.000 precision: 1.000 recall: 1.000 f1: 1.000 Maтрица ошибок, полученная методом confusion_matrix [[65 0]

Матрица ошибок для тренировочной выборки

Матрица ошибок, полученная методом confusion_matrix [[35 0] [0 15]]

Линии уровня гиперплоскости

```
In [31]: x1 = np.arange(-10, 15, 0.05)
         x2 = np.arange(-10, 15, 0.05)
         xgrid, ygrid = np.meshgrid(x1, x2)
         W = qsvm.W
         z = w[0] + w[1]*xgrid**2 + w[2]*ygrid**2 + w[3]*xgrid + w[4]*ygrid + w[5]*xgrid*ygrid*
         fig = plt.figure(figsize=(12, 12))
         ax = fig.add_subplot(221)
         plt.contourf(x1, x2, z, cmap="jet", levels=[-75, -60, -45, -30, -15, -1, 0, 1, 15, 30, 40])
         plt.colorbar()
         plt.contour(x1, x2, z, colors="black", levels=[-1, 0, 1], linewidths=[0.75, 1, 0.75], linestyles=["--", '--'])
         scatter = ax.scatter(X_test[:, 1], X_test[:, 0], c=y_test, cmap="gist_rainbow", marker="o")
         ax.set_aspect('equal', adjustable='box')
         ax.set_title('Тестовая выборка')
         plt.xlim(0, 5.5)
         plt.ylim(3, 8.5)
         legend1 = ax.legend(*scatter.legend_elements(),
                             loc="upper right", title="Classes")
         ax.add_artist(legend1)
         legend1 = ax.legend(*scatter.legend_elements(),
                             loc="upper right", title="Classes")
         ax = fig.add_subplot(222)
         plt.contourf(x1, x2, z, cmap="jet", levels=[-75, -60, -45, -30, -15, -1, 0, 1, 15, 30, 40])
         plt.colorbar()
         plt.contour(x1, x2, z, colors="black", levels=[-1, 0, 1], linewidths=[0.75, 1, 0.75], linestyles=["--", '--'])
         scatter = ax.scatter(X_train[:, 1], X_train[:, 0], c=y_train, cmap="gist_rainbow", marker="o")
         plt.xlim(0, 5.5)
         plt.ylim(3, 8.5)
         ax.set_aspect('equal', adjustable='box')
         ax.set_title('Обучающая выборка')
         legend1 = ax.legend(*scatter.legend_elements(),
                             loc="upper right", title="Classes")
         ax.add_artist(legend1)
         plt.show()
```


Выводы по svm с квадратичным ядром

Квадратичное ядро даже смогло описать ту точку с которой не справилась линейная svm. Сложно сказать переобучение это или такая природа предметной области. В самом начале мы удалили два признака, потому какие-то выводы сложно делать исходя из визуальных данных

Задание 6

Текст задания

Сравните точность классификации на тестовой выборке с линейной SVM. Объясните результат.

Решение

Точность классификации отличается, казалось бы, несильно, однако точность 1 и любая меньше 1 - абсолютно разные результаты.

В обобщающей способности линейного классификатора нет сомнений поскольку это самая простая модель, за исключением константной, которая только может быть.

Однако квадратичная могла и сильно подстроиться под ту одну точку, хотя в реальных данных там может оказаться много точек другого класса.

Может оказаться так, что все-таки там природно розовые точки, потому можно сделать вывод, что обе модели хорошо справились со своей задачей

Задание 7

Текст задания

Определите сорт 20 объектов из дополнительной выборки (файл «Dop.csv»). Качество определения сорта проверит преподаватель.

Пояснение перед решением

Для предсказания будем использовать две модели, чтобы визуально посмотреть насколько повлияли "выбросы" на предсказание модели в финальной тестовой выборки(мы не знаем ответы)

Решение

In [32]: df_dop = pd.read_csv("data/Dop.csv") ## чтение ∂атасета
df_dop.head()

Out[32]:		Sepal.L	Sepal.W	Petal.L	Petal.W
	0	6.0	2.9	4.9	1.6
	1	5.2	3.0	2.4	0.5
	2	5.7	2.8	4.5	1.4
	3	5.4	3.4	2.3	0.9
	4	6.7	3.3	5.4	2.0

```
In [33]: y_dop = pd.DataFrame()
X_dop = df_dop[["Sepal.L", "Sepal.W"]].to_numpy() #отбираем нужные признаки
In [34]: y_pred_qsvm_dop = qsvm.predict(X_dop)
y_pred_svm_dop = svm_3.predict(X_dop)
```

Ответы

```
In [35]: ans = pd.DataFrame()
ans["SVM Квадратичное ядро"] = y_pred_qsvm_dop[:, 0] #Ответы по модели с квадратичным ядром
ans["SVM линейное ядро"] = y_pred_svm_dop[:, 0] # Ответы по линейной модели
ans["Совпадение ответов"] = ans["SVM Квадратичное ядро"] == ans["SVM линейное ядро"]
ans
```

Out[35]:	SVM Квадратичное ядро	SVM линейное ядро	Совпадение ответов
	-1.0	-1.0	True
	1 .0	1.0	True
	-1.0	-1.0	True
,	1.0	1.0	True
	-1.0	-1.0	True
	-1.0	-1.0	True
	-1.0	-1.0	True
,	7 -1.0	-1.0	True
	-1.0	-1.0	True
,	9 -1.0	-1.0	True
1	0 -1.0	-1.0	True
1	1 .0	1.0	True
1.	-1.0	1.0	False
1	1.0	1.0	True
1	1.0	1.0	True
1	-1.0	-1.0	True
1	1.0	1.0	True
1	7 -1.0	-1.0	True
1	-1.0	-1.0	True
1	9 -1.0	-1.0	True

Пояснение к ответам

Скорее всего можно сказать, что мы гарантировали точность модели 0.95 на финальной тестовой выборке, поскольку у двух хороших моделей 95 процентов ответов совпали

Визуализация ответов

```
In [36]: x1 = np.arange(-10, 15, 0.05)
         x2 = np.arange(-10, 15, 0.05)
         xgrid, ygrid = np.meshgrid(x1, x2)
         w = qsvm.w
         z = w[0] + w[1]*xgrid**2 + w[2]*ygrid**2 + w[3]*xgrid + w[4]*ygrid + w[5]*xgrid*ygrid
         fig = plt.figure(figsize=(12, 12))
         ax = fig.add_subplot(221)
         plt.contourf(x1, x2, z, cmap="jet", levels=[-75, -60, -45, -30, -15, -1, 0, 1, 15, 30, 40])
         plt.colorbar()
         plt.contour(x1, x2, z, colors="black", levels=[-1, 0, 1], linewidths=[0.75, 1, 0.75], linestyles=["--", '--', '--'])
         scatter = ax.scatter(X_dop[:, 1], X_dop[:, 0], c=y_pred_qsvm_dop, cmap="gist_rainbow", marker="o")
         ax.set_aspect('equal', adjustable='box')
         ax.set_title('SVM с квадратичным ядром')
         plt.xlim(0, 5.5)
         plt.ylim(3, 8.5)
         legend1 = ax.legend(*scatter.legend_elements(),
                             loc="upper right", title="Classes")
         ax.add_artist(legend1)
         ax = fig.add_subplot(222)
         w = svm_3.w
         z = w[0] + w[2] * xgrid + w[1]*ygrid
         plt.contourf(x1, x2, z, cmap="jet", levels=[-75, -60, -45, -30, -15, -1, 0, 1, 15, 30, 40])
         plt.colorbar()
```


Пояснение к визуализации

Можно сказать, что на ответ повлияла та точка, поскольку сильно оттянулась кривая. Однако гипотетическая точность у обоих моделей все равно очень хорошая

Дополнительно

Задание 1

Текст задания

Реализуйте нелинейную SVM с гауссовой или сигмоидальной функцией ядра. Сравните результаты с предыдущими вариантами классификации +3 балла.

Запишем задачу оптимизации для SMO Эта постановка была взята отсюда 46 страница

$$rac{1}{2}\sum_{i=1}^n\sum_{j=1}^m y_iY_jlpha_ilpha_jK(x_i,X_j)-\sum_{i=1}^mlpha_i o min_lpha$$

Где $K(x_i,x_j)$ - функция ядра

Гауссовское ядро (RBF ядро):

$$K(\mathbf{x_i}, \mathbf{x_j}) = e^{-rac{\|\mathbf{x_i} - \mathbf{x_j}\|^2}{2\sigma^2}}, \quad \mathbf{x_i}, \mathbf{x_j} \in \mathbb{R}^d, \, \sigma > 0,$$
 или $K(\mathbf{x_i}, \mathbf{x_j}) = e^{-\lambda \|\mathbf{x_i} - \mathbf{x_j}\|^2}, \quad \mathbf{x_i}, \mathbf{x_j} \in \mathbb{R}^d, \, \lambda > 0$

Где σ и λ — это ширина ядра. В первом случае, чем меньше значение σ , тем меньше значение под экспонентой и тем более чувствительно ядро к изменениям. Во втором, наоборот, чем больше значение λ , тем более чувствительно. Источник: Интуитивное понимание пространств и ядер в машинном обучении

Решение

Для решения этой задачи воспользуемся литературой SMO 9 страница вывод, 12 страница итоговые формулы

Тут происходит очень сложная математика, которую тяжеловато объяснить, но мы вроде разобрались.

Есть проблема что Гауссово ядро не представимо в виде конечномерного спрямляющего пространства, если его расписать в ряд Тейлора, мы получим бесконечномерное пространство. Мы решили апроксимировать гауссово ядро, используя разложение в ряд Тейлора с остаточным членом (ограничились размерностью порядка n).

Для квадратичного ядра, даже необязательно расписывать во формуле Тейлора, так как это полином легко свести

In [37]: class GaussSVM(SupportVectorMachine):

test_svm.init_r(5)

Ещё был другой вариант развития событий - не использовать спремляющее пространство, а использовать только лишь функцию ядра, которая вычислит необходимое нам произведение в бесконечномерном пространстве для признаков из исходного пространства. Идея очень хорошая, однако, возникает проблема оптимизации, потому что градиентный спуск здесь уже ничем не поможет.

Формально, задача, поставленная выше - задача квадратичного программирования. Мы нашли метод SMO - Sequential minimal optimization, который позволяет эффективно данную задачу решить, однако он достаточно сложный для понимания и реализации. Мы хотели его реализовать, но нам, к сожалению, не хватило на это времени.

Источник: John C. Platt; Sequential Minimal Optimization A Fast Algorithm for Training Support Vector Machines Статья 1998 года на английском языке

```
def init_r(self, n):
                     self.width = n*n #переопределим количество признаков
                     self.to_new_r() #nepe6edem их в пятимерное пространство
                     self.w = np.ones(n*n)#зададим новые стартовые веса для этого пространства
             def to new r(self, X = None): #добавляем переход в пятимерное пространство для данных
                 flag_ = True
                 if X is None:
                     flag_ = False
                     X = self.X
                 print(X)
                 x1 = X[:, 1]
                 x2 = X[:, 2]
                 C = np.zeros((X.shape[0],self.width))
                 new_x1 = np.zeros((int(self.width**(1/2)), x1.shape[0]))
                 new_x2 = np.zeros((int(self.width**(1/2)), x1.shape[0]))
                 for x in range(int(self.width**(1/2))):
                     new_x1[x] = -(1 - x1)**(2*x)/math.factorial(x)
                     new_x2[x] = -(1 - x2)**(2*x)/math.factorial(x)
                 for i in range(int(self.width**(1/2))):
                     for j in range(int(self.width**(1/2))):
                         C[:, i * int(self.width**(1/2)) + j] = new_x1.T[:, i] * new_x2.T[:, j]
                 if flag_:
                     return C
                 self.X = C
             def predict(self, X): #переопределение функции предсказания
                 X = np.concatenate((np.ones(len(X)).reshape(-1, 1), X), axis=1) #фиктивная единица
                 X = self.to_new_r(X) #nepeBod в новое пространство данных
                 return np.sign(np.dot(X, self.w).reshape(-1, 1)) #предсказание
In [38]: from sklearn import preprocessing
         scaler = preprocessing.MinMaxScaler()
         X_scaled = scaler.fit_transform(X)
         X_scaled_train, X_scaled_test, y_train, y_test = train_test_split(X_scaled, y, random_state=0)
In [39]: | test_svm = GaussSVM(X_scaled_train, y_train, h=0.0005, min_iterations=500)
```

```
0.4444444 0.41666667]
[[1.
             0.41666667 0.25
[1.
             0.69444444 0.41666667]
[1.
[1.
             0.11111111 0.5
             0.72222222 0.45833333]
[1.
[1.
             0.19444444 0.625
             0.30555556 0.70833333]
[1.
             0.19444444 0.
[1.
 [1.
             0.61111111 0.41666667]
[1.
             0.66666667 0.54166667]
 [1.
             0.47222222 0.08333333]
 [1.
             0.66666667 0.20833333]
             0.36111111 0.20833333]
 [1.
[1.
             0.94444444 0.41666667]
[1.
             0.55555556 0.54166667]
             0.33333333 0.16666667]
[1.
[1.
             0.55555556 0.29166667]
             0.55555556 0.3333333331
[1.
             0.16666667 0.20833333]
 [1.
             0.55555556 0.20833333]
[1.
 [1.
             0.75
                        0.5
             0.61111111 0.41666667]
[1.
[1.
             0.47222222 0.583333331
             0.13888889 0.45833333]
[1.
[1.
             0.41666667 0.29166667]
             0.36111111 0.29166667]
[1.
             0.36111111 0.375
 [1.
 [1.
             0.33333333 0.20833333]
[1.
                        0.41666667]
 [1.
             0.80555556 0.5
             0.27777778 0.70833333]
 [1.
 [1.
                        0.41666667]
 [1.
             0.58333333 0.29166667]
[1.
             0.38888889 0.41666667]
             0.30555556 0.58333333]
[1.
             0.38888889 1.
[1.
             0.72222222 0.45833333]
[1.
 [1.
             0.08333333 0.45833333]
             0.4444444 0.41666667]
[1.
[1.
             0.2222222 0.20833333]
             0.08333333 0.583333333]
[1.
             0.52777778 0.083333333]
 [1.
[1.
             0.80555556 0.66666667]
[1.
             0.38888889 0.375
[1.
             0.13888889 0.41666667]
             0.77777778 0.41666667]
[1.
 [1.
             0.72222222 0.5
 [1.
             0.61111111 0.41666667]
             0.58333333 0.333333333]
 [1.
             0.2222222 0.75
 [1.
             0.13888889 0.58333333]
[1.
 [1.
             0.61111111 0.5
[1.
             0.66666667 0.54166667]
[1.
             0.05555556 0.125
             0.52777778 0.58333333]
[1.
             0.16666667 0.41666667]
[1.
[1.
             0.38888889 0.20833333]
[1.
             0.72222222 0.45833333]
 [1.
             0.02777778 0.5
 [1.
             0.19444444 0.66666667]
 [1.
             0.80555556 0.41666667]
[1.
             0.2222222 0.625
             0.02777778 0.41666667]
[1.
             0.30555556 0.79166667]
[1.
             0.33333333 0.125
[1.
             0.69444444 0.5
 [1.
 [1.
             0.91666667 0.41666667]
             0.2222222 0.625
 [1.
             0.16666667 0.45833333]
 [1.
             0.25
                    0.583333331
 [1.
             0.38888889 0.333333333]
 [1.
 [1.
             0.63888889 0.41666667]
             0.19444444 0.5
 [1.
             0.22222222 0.54166667]
 [1.
             0.58333333 0.375
[1.
             0.30555556 0.58333333]
[1.
[1.
             0.94444444 0.25
[1.
             0.16666667 0.16666667]
             1.
                   0.75
[1.
[1.
             0.66666667 0.45833333]
             0.25 0.875
[1.
[1.
             0.47222222 0.41666667]
             0.41666667 0.83333333]
[1.
             0.94444444 0.33333333]
[1.
             0.2222222 0.75
[1.
[1.
             0.11111111 0.5
             0.86111111 0.33333333]
[1.
             0.19444444 0.54166667]
[1.
[1.
             0.55555556 0.58333333]
             0.38888889 0.33333333]
[1.
[1.
             0.41666667 0.29166667]
             0.38888889 0.25
[1.
[1.
             0.58333333 0.5
[1.
             0.66666667 0.41666667]
             0.55555556 0.20833333]
[1.
```

[1.

0.66666667 0.41666667]

```
[1.
                       0.41666667 0.29166667]
          [1.
                       0.22222222 0.58333333]
                       0.63888889 0.375
          [1.
          [1.
                       0.36111111 0.41666667]
                       0.44444444 0.5
          [1.
                       0.55555556 0.125
          [1.
          [1.
                       0.33333333 0.625
                       0.22222222 0.70833333]
          [1.
                       0.16666667 0.45833333]
          [1.
                       0.55555556 0.375
          [1.
          [1.
                       0.41666667 0.29166667]
          [1.
                       0.94444444 0.75
                       0.08333333 0.5
          [1.
                                              ]]
In [40]: test_svm.fit()
                             , -2.156125 , -0.0791477 , 0.75839291, 0.95748102,
Out[40]: array([-0.975
                   2.42424113, 0.17927104, 0.5970671, 0.89719135, 0.98050506, 1.82609038, 0.91833883, 0.91529159, 0.97509192, 0.99494552,
                   1.22737557, \quad 1.0063809 \ , \quad 0.98742866, \quad 0.99563211, \quad 0.99905624,
                   1.04358082, 1.00391296, 0.9985805, 0.99939269, 0.99986095])
          Видим, что размерность растёт с квадратичной скоростью
```

0.19444444 0.41666667]

0.33333333 0.16666667]
0.66666667 0.45833333]

test_svm_cntr.try_model()

In [41]: test_svm_cntr = Counter(X_scaled_train, X_scaled_test, y_train, y_test, test_svm)

[1. [1.

[1.

```
0.4444444 0.41666667]
[[1.
             0.41666667 0.25
[1.
             0.69444444 0.41666667]
[1.
[1.
             0.11111111 0.5
             0.72222222 0.45833333]
[1.
[1.
             0.19444444 0.625
             0.30555556 0.70833333]
[1.
             0.19444444 0.
[1.
 [1.
             0.61111111 0.41666667]
[1.
             0.66666667 0.54166667]
 [1.
             0.47222222 0.08333333]
 [1.
             0.66666667 0.20833333]
             0.36111111 0.20833333]
 [1.
[1.
             0.94444444 0.41666667]
[1.
             0.55555556 0.54166667]
             0.33333333 0.16666667]
[1.
[1.
             0.55555556 0.29166667]
             0.55555556 0.3333333331
[1.
             0.16666667 0.20833333]
 [1.
             0.55555556 0.20833333]
[1.
 [1.
             0.75
                        0.5
             0.61111111 0.41666667]
[1.
[1.
             0.47222222 0.583333331
             0.13888889 0.45833333]
[1.
[1.
             0.41666667 0.29166667]
             0.36111111 0.29166667]
[1.
             0.36111111 0.375
 [1.
 [1.
             0.33333333 0.20833333]
[1.
                        0.41666667]
 [1.
             0.80555556 0.5
             0.27777778 0.70833333]
 [1.
 [1.
                        0.41666667]
 [1.
             0.58333333 0.29166667]
[1.
             0.38888889 0.41666667]
             0.30555556 0.58333333]
[1.
             0.38888889 1.
[1.
             0.72222222 0.45833333]
[1.
 [1.
             0.08333333 0.45833333]
             0.4444444 0.41666667]
[1.
[1.
             0.2222222 0.20833333]
             0.08333333 0.583333333]
[1.
             0.52777778 0.083333333]
 [1.
[1.
             0.80555556 0.66666667]
[1.
             0.38888889 0.375
[1.
             0.13888889 0.41666667]
             0.77777778 0.41666667]
[1.
 [1.
             0.72222222 0.5
 [1.
             0.61111111 0.41666667]
             0.58333333 0.333333333]
 [1.
             0.2222222 0.75
 [1.
             0.13888889 0.58333333]
[1.
 [1.
             0.61111111 0.5
[1.
             0.66666667 0.54166667]
[1.
             0.05555556 0.125
             0.52777778 0.58333333]
[1.
             0.16666667 0.41666667]
[1.
[1.
             0.38888889 0.20833333]
[1.
             0.72222222 0.45833333]
 [1.
             0.02777778 0.5
 [1.
             0.19444444 0.66666667]
 [1.
             0.80555556 0.41666667]
[1.
             0.2222222 0.625
             0.02777778 0.41666667]
[1.
             0.30555556 0.79166667]
[1.
             0.33333333 0.125
[1.
             0.69444444 0.5
 [1.
 [1.
             0.91666667 0.41666667]
             0.2222222 0.625
 [1.
             0.16666667 0.45833333]
 [1.
             0.25
                    0.583333331
 [1.
             0.38888889 0.333333333]
 [1.
 [1.
             0.63888889 0.41666667]
             0.19444444 0.5
 [1.
             0.22222222 0.54166667]
 [1.
             0.58333333 0.375
[1.
             0.30555556 0.58333333]
[1.
[1.
             0.94444444 0.25
[1.
             0.16666667 0.16666667]
             1.
                   0.75
[1.
[1.
             0.66666667 0.45833333]
             0.25 0.875
[1.
[1.
             0.47222222 0.41666667]
             0.41666667 0.83333333]
[1.
             0.94444444 0.33333333]
[1.
             0.2222222 0.75
[1.
[1.
             0.11111111 0.5
             0.86111111 0.33333333]
[1.
             0.19444444 0.54166667]
[1.
[1.
             0.55555556 0.58333333]
             0.38888889 0.33333333]
[1.
[1.
             0.41666667 0.29166667]
             0.38888889 0.25
[1.
[1.
             0.58333333 0.5
[1.
             0.66666667 0.41666667]
             0.55555556 0.20833333]
[1.
```

[1.

0.66666667 0.41666667]

```
[1.
             0.19444444 0.41666667]
 [1.
             0.33333333 0.16666667]
 [1.
             0.66666667 0.45833333]
 [1.
             0.41666667 0.29166667]
             0.2222222 0.583333331
 [1.
             0.63888889 0.375
 [1.
             0.36111111 0.41666667]
 [1.
             0.44444444 0.5
 [1.
 [1.
             0.55555556 0.125
 [1.
             0.33333333 0.625
 [1.
             0.2222222 0.70833333]
 [1.
             0.16666667 0.45833333]
             0.55555556 0.375
 [1.
 [1.
             0.41666667 0.29166667]
 [1.
             0.94444444 0.75
             0.08333333 0.5
 [1.
                                   ]]
             0.41666667 0.33333333]
[[1.
             0.47222222 0.083333331
 [1.
             0.33333333 0.91666667]
 [1.
             0.83333333 0.375
 [1.
             0.19444444 0.58333333]
 [1.
 [1.
             0.55555556 0.54166667]
 [1.
             0.19444444 0.625
 [1.
             0.66666667 0.45833333]
             0.69444444 0.333333333]
 [1.
 [1.
                        0.33333333]
             0.5
 [1.
             0.5
                        0.25
 [1.
             0.58333333 0.5
 [1.
                        0.33333333]
             0.5
 [1.
             0.61111111 0.33333333]
                        0.375
 [1.
             0.5
             0.16666667 0.45833333]
 [1.
 [1.
             0.47222222 0.375
 [1.
             0.33333333 0.25
             0.13888889 0.41666667]
 [1.
             0.30555556 0.79166667]
 [1.
             0.36111111 0.33333333]
 [1.
 [1.
             0.36111111 0.41666667]
             0.13888889 0.58333333]
 [1.
 [1.
             0.02777778 0.375
             0.52777778 0.33333333]
 [1.
 [1.
             0.08333333 0.66666667]
 [1.
             0.2222222 0.75
 [1.
             0.52777778 0.375
 [1.
             0.19444444 0.125
             0.19444444 0.58333333]
 [1.
 [1.
             0.58333333 0.45833333]
 [1.
             0.30555556 0.41666667]
 [1.
             0.25
                        0.625
 [1.
             0.5
                        0.41666667]
             0.58333333 0.33333333]
 [1.
             0.25
 [1.
                        0.29166667]
 [1.
             0.38888889 0.75
 [1.
             0.47222222 0.29166667]]
             0.44444444 0.41666667]
[[1.
             0.41666667 0.25
 [1.
 [1.
             0.69444444 0.41666667]
 [1.
             0.11111111 0.5
 [1.
             0.72222222 0.45833333]
             0.19444444 0.625
 [1.
 [1.
             0.30555556 0.70833333]
 [1.
             0.19444444 0.
             0.61111111 0.41666667]
 [1.
 [1.
             0.66666667 0.54166667]
             0.47222222 0.08333333]
 [1.
             0.66666667 0.20833333]
 [1.
 [1.
             0.36111111 0.20833333]
             0.94444444 0.41666667]
 [1.
             0.55555556 0.54166667]
 [1.
             0.3333333 0.16666667]
 [1.
             0.55555556 0.29166667]
 [1.
 [1.
             0.55555556 0.333333333]
             0.16666667 0.20833333]
 [1.
             0.55555556 0.20833333]
 [1.
             0.75
 [1.
                       0.5
             0.61111111 0.41666667]
 [1.
 [1.
             0.47222222 0.58333333]
 [1.
             0.13888889 0.45833333]
 [1.
             0.41666667 0.29166667]
             0.36111111 0.29166667]
 [1.
             0.36111111 0.375
 [1.
[1.
             0.33333333 0.20833333]
[1.
                        0.41666667]
             0.80555556 0.5
 [1.
             0.27777778 0.70833333]
 [1.
 [1.
                   0.41666667]
 [1.
             0.58333333 0.29166667]
             0.38888889 0.41666667]
 [1.
 [1.
             0.30555556 0.58333333]
             0.38888889 1.
 [1.
 [1.
             0.72222222 0.45833333]
[1.
             0.08333333 0.45833333]
             0.44444444 0.41666667]
[1.
             0.2222222 0.20833333]
[1.
             0.08333333 0.58333333]
 [1.
```

[1.

0.52777778 0.08333333]

```
[1.
             0.80555556 0.66666667]
             0.38888889 0.375
[1.
             0.13888889 0.41666667]
[1.
[1.
             0.77777778 0.41666667]
             0.72222222 0.5
[1.
             0.61111111 0.41666667]
[1.
             0.58333333 0.33333333]
[1.
             0.2222222 0.75
[1.
[1.
             0.13888889 0.58333333]
             0.61111111 0.5
[1.
[1.
             0.66666667 0.54166667]
[1.
             0.05555556 0.125
             0.52777778 0.58333333]
[1.
[1.
             0.16666667 0.41666667]
[1.
             0.38888889 0.20833333]
             0.72222222 0.45833333]
[1.
             0.02777778 0.5
[1.
[1.
             0.19444444 0.66666667]
             0.80555556 0.41666667]
[1.
             0.2222222 0.625
[1.
             0.02777778 0.41666667]
[1.
             0.30555556 0.79166667]
[1.
[1.
             0.33333333 0.125
             0.69444444 0.5
[1.
[1.
             0.91666667 0.41666667]
             0.2222222 0.625
[1.
             0.16666667 0.45833333]
[1.
[1.
             0.25
                        0.58333333]
[1.
             0.38888889 0.33333333]
[1.
             0.63888889 0.41666667]
             0.19444444 0.5
[1.
             0.2222222 0.54166667]
[1.
[1.
             0.58333333 0.375
[1.
             0.30555556 0.58333333]
             0.94444444 0.25
[1.
             0.16666667 0.16666667]
[1.
[1.
             1.
                        0.75
[1.
             0.66666667 0.45833333]
[1.
             0.25
                        0.875
[1.
             0.47222222 0.41666667]
             0.41666667 0.83333333]
[1.
[1.
             0.94444444 0.333333333]
[1.
             0.2222222 0.75
             0.11111111 0.5
[1.
[1.
             0.86111111 0.33333333]
             0.19444444 0.54166667]
[1.
[1.
             0.55555556 0.583333333]
[1.
             0.38888889 0.333333333]
[1.
             0.41666667 0.29166667]
             0.38888889 0.25
[1.
             0.58333333 0.5
[1.
[1.
             0.66666667 0.41666667]
[1.
             0.55555556 0.20833333]
[1.
             0.66666667 0.41666667]
             0.19444444 0.41666667]
[1.
             0.33333333 0.16666667]
[1.
[1.
             0.66666667 0.45833333]
[1.
             0.41666667 0.29166667]
[1.
             0.2222222 0.58333333]
             0.63888889 0.375
[1.
[1.
             0.36111111 0.41666667]
             0.4444444 0.5
[1.
             0.55555556 0.125
[1.
[1.
             0.33333333 0.625
             0.22222222 0.70833333]
[1.
             0.16666667 0.45833333]
[1.
[1.
             0.55555556 0.375
             0.41666667 0.29166667]
[1.
             0.9444444 0.75
[1.
             0.08333333 0.5
[1.
                                   ]]
             0.41666667 0.333333333
[[1.
 [1.
             0.47222222 0.08333333]
[1.
             0.33333333 0.91666667]
             0.83333333 0.375
[1.
             0.19444444 0.58333333]
[1.
             0.55555556 0.54166667]
[1.
[1.
             0.19444444 0.625
[1.
             0.66666667 0.45833333]
[1.
             0.69444444 0.333333333]
             0.5
[1.
                        0.33333333]
             0.5
                        0.25
[1.
[1.
             0.58333333 0.5
                                  1
[1.
                        0.33333333]
             0.61111111 0.33333333]
[1.
                  0.375
[1.
[1.
             0.16666667 0.45833333]
[1.
             0.47222222 0.375
             0.33333333 0.25
[1.
[1.
             0.13888889 0.41666667]
             0.30555556 0.79166667]
[1.
[1.
             0.36111111 0.33333333]
             0.36111111 0.41666667]
[1.
[1.
             0.13888889 0.58333333]
[1.
             0.02777778 0.375
             0.52777778 0.333333333]
[1.
[1.
             0.08333333 0.66666667]
```

```
[1.
             0.2222222 0.75
 [1.
             0.52777778 0.375
             0.19444444 0.125
 [1.
 [1.
             0.19444444 0.58333333]
 [1.
             0.58333333 0.45833333]
 [1.
             0.30555556 0.41666667]
 [1.
             0.25
                        0.625
             0.5
                        0.41666667]
 [1.
             0.58333333 0.33333333]
 [1.
 [1.
                        0.29166667]
 [1.
             0.38888889 0.75
             0.47222222 0.29166667]]
[1.
Метрики для тренировочной выборки
accuracy: 0.973
```

precision: 0.947 recall: 0.973 f1: 0.960

Метрики для тестовой выборки

accuracy: 0.974 precision: 1.000 recall: 0.923 f1: 0.960

Матрица ошибок, полученная методом confusion_matrix

[[73 2] [1 36]]

Матрица ошибок для тренировочной выборки

Матрица ошибок, полученная методом confusion_matrix [[25 0]

Получилось не хуже, чем в прошлых разах

```
In [42]: x1 = np.arange(-10, 10, 0.05)
         x2 = np.arange(-10, 10, 0.05)
         xgrid, ygrid = np.meshgrid(x1, x2)
         wid = test_svm.width
         w = test_svm.w
```

```
C = np.zeros(( x1.shape[0], x1.shape[0], test_svm.width))
new_x1 = np.zeros((int(wid**(1/2)), x1.shape[0], x1.shape[0]))
new_x2 = np.zeros(( int(wid**(1/2)), x1.shape[0], x1.shape[0]))
for x in range(int(wid**(1/2))):
   new_x1[x] = -(1 - xgrid)**(2*x)/math.factorial(x)
   new_x2[x] = -(1 - ygrid)**(2*x)/math.factorial(x)
for i in range(int(wid**(1/2))):
   for j in range(int(wid**(1/2))):
       C[: , :, i * int(wid**(1/2)) + j] = new_x1.T[:, :, i] * new_x2.T[:, :, j]
z = np.ones((C.shape[0], C.shape[1]))
for i in range(C.shape[0]):
   for j in range(C.shape[1]):
        z[i, j] = (C[i, j, :]*w).sum()
fig = plt.figure(figsize=(12, 12))
ax = fig.add_subplot(221)
plt.xlim(-1, 2)
plt.ylim(-1, 2)
plt.contourf(x1, x2, z, cmap="jet", levels=[-75, -60, -45, -30, -15, -1, 0, 1, 15, 30, 40])
plt.colorbar()
plt.contour(x1, x2, z, colors="black", levels=[-1, 0, 1], linewidths=[0.75, 1, 0.75], linestyles=["--", '--'])
scatter = ax.scatter(X_scaled_test[:, 1], X_scaled_test[:, 0], c=y_test, cmap="gist_rainbow", marker="o")
ax.set_aspect('equal', adjustable='box')
ax.set_title('Тестовая выборка')
legend1 = ax.legend(*scatter.legend_elements(),
                    loc="upper right", title="Classes")
ax.add_artist(legend1)
legend1 = ax.legend(*scatter.legend_elements(),
                    loc="upper right", title="Classes")
ax = fig.add_subplot(222)
plt.contourf(x1, x2, z, cmap="jet", levels=[-75, -60, -45, -30, -15, -1, 0, 1, 15, 30, 40])
plt.colorbar()
plt.contour(x1, x2, z, colors="black", levels=[-1, 0, 1], linewidths=[0.75, 1, 0.75], linestyles=["--", '--', '--'])
scatter = ax.scatter(X_scaled_train[:, 1], X_scaled_train[:, 0], c=y_train, cmap="gist_rainbow", marker="o")
plt.xlim(-1, 2)
plt.ylim(-1, 2)
ax.set_aspect('equal', adjustable='box')
ax.set_title('Обучающая выборка')
legend1 = ax.legend(*scatter.legend_elements(),
                   loc="upper right", title="Classes")
ax.add_artist(legend1)
ax = fig.add_subplot(223)
ax.set_aspect('equal', adjustable='box')
plt.contourf(x1, x2, z, cmap="jet")
plt.colorbar()
plt.contour(x1, x2, z, colors="black", levels=[-1, 0, 1], linewidths=[0.75, 1, 0.75], linestyles=["--", '--'])
plt.show()
```


Получилось достаточно интересное ядро. На самом деле вряд ли можно его назвать гауссовым, скорее это апроксимация гауссова ядра с помошью полиномиального ядра. Выглядит красиво. На этих данных модель скорее переобучилась - слишком хорошо подстроилась под исходные точки, однако, для более сложных и запутанных распределений данных такое едро будет работать заметно лучше чем линейное или квадратичное.

```
In [43]: ax = plt.axes(projection ='3d')
    ax.plot3D(xgrid, ygrid, z, 'green')
    ax.set_title('3D')
    ax.set_xlim(-1, 2)
    ax.set_ylim(-1, 2)
    ax.set_zlim(-1, 2)
    plt.show()
```


Тут хотели вывести трёхмерный график. Вероятно мы просчитались - но где?

Задание 2

Текст задания

Найдите датасет с 50+ объектами с 2-мя числовыми признаками (или сгенерируйте датасет программно с интерпретацией признаков с 100+ объектами), для которого линейная классификация SVM достаточно проблемна, а квадратичная даёт качественные результаты. Покажите это практическими расчётами +2 балла.

Пояснения

Нарисуем две окружности с одним центром, но разными радиусами, тогда svm с квадратичным ядром разделит две выборки, а линейное не сможет

```
In [44]: from sklearn.datasets import make_circles
In [45]: X_blob, y_blob = make_circles(
             n_samples=150, factor=0.5, noise=0.05, random_state=170
In [46]: y_blob = pd.DataFrame(y_blob)
         y_blob.head()
Out[46]:
         0 0
         1 1
         2 1
         3 0
         4 0
         Сгенерировали датасет
In [47]: y_blob[0] = y_blob[0].apply(lambda x: x - int(x == 0))
In [48]: y_blob = y_blob[0].to_numpy().reshape(-1, 1)
In [49]: fig = plt.figure(figsize=(12, 12))
         ax = fig.add_subplot(221)
         scatter = ax.scatter(X_blob[:, 1], X_blob[:, 0], c=y_blob, cmap="gist_rainbow", marker="o")
          1.0
          0.5
          0.0
         -0.5
        -1.0
                -1.0
                                                        0.5
                             -0.5
                                           0.0
                                                                    1.0
```

```
Получилось вот такое интересное распределение
```

```
In [50]: X_blob_train, X_blob_test, y_blob_train, y_blob_test = train_test_split(X_blob, y_blob, test_size=0.33, random_state=19)
In [51]: blob_svm = SupportVectorMachine(X_blob_train, y_blob_train, h=0.0005, min_iterations=1000, logging=False)
blob_svm.fit()
print()
```

```
In [52]: blob_qsvm = QuadraSupportVectorMachine(X_blob_train, y_blob_train, h=0.0005, min_iterations=1000)
blob_qsvm.fit()
print()
```

```
In [53]: x1 = np.arange(-10, 15, 0.05)
         x2 = np.arange(-10, 15, 0.05)
         w = blob_svm.w
         xgrid, ygrid = np.meshgrid(x1, x2)
         z = w[0] + w[2] * xgrid + w[1]*ygrid
         # Обучающая выборка
         fig = plt.figure(figsize=(12, 12))
         ax = fig.add_subplot(223)
         plt.contour(x1, x2, z, colors="black", levels=[-1, 0, 1], linewidths=[0.75, 1, 0.75], linestyles=["--", '--', '--'])
         plt.contourf(x1, x2, z, cmap="jet", levels=[-70,-1, 1, 70], linestyles=["--", '-', '--'])
         plt.colorbar()
         scatter = ax.scatter(X_blob_test[:, 1], X_blob_test[:, 0], c=y_blob_test, cmap="gist_rainbow", marker="o")
         plt.xlim(-1.5, 1.5)
         plt.ylim(-1.5, 2.5)
         ax.set_aspect('equal', adjustable='box')
         ax.set_title('Линейное SVM, тестовая выборка')
         legend1 = ax.legend(*scatter.legend_elements(),
                             loc="upper right", title="Classes")
         ax.add_artist(legend1)
         ax = fig.add_subplot(221)
         plt.contour(x1, x2, z, colors="black", levels=[-1, 0, 1], linewidths=[0.75, 1, 0.75], linestyles=["--", '--'])
         plt.contourf(x1, x2, z, cmap="jet", levels=[-70,-1, 1, 70], linestyles=["--", '--', '--'])
         plt.colorbar()
         scatter = ax.scatter(X_blob_train[:, 1], X_blob_train[:, 0], c=y_blob_train, cmap="gist_rainbow", marker="o")
         plt.xlim(-1.5, 1.5)
         plt.ylim(-1.5, 2.5)
         ax.set_aspect('equal', adjustable='box')
         ax.set_title('Линейное SVM, обучающая выборка')
         legend1 = ax.legend(*scatter.legend_elements(),
                             loc="upper right", title="Classes")
         ax.add_artist(legend1)
         w = blob_qsvm.w
         z = w[0] + w[1]*xgrid**2 + w[2]*ygrid**2 + w[3]*xgrid + w[4]*ygrid + w[5]*xgrid*ygrid*
         ax = fig.add_subplot(222)
         plt.contourf(x1, x2, z, cmap="jet", levels=[-75, -60, -45, -30, -15, -1, 0, 1, 15, 30, 40])
         plt.colorbar()
         plt.contour(x1, x2, z, colors="black", levels=[-1, 0, 1], linewidths=[0.75, 1, 0.75], linestyles=["--", '--'])
         scatter = ax.scatter(X_blob_train[:, 1], X_blob_train[:, 0], c=y_blob_train, cmap="gist_rainbow", marker="o")
         ax.set_aspect('equal', adjustable='box')
         ax.set_title('Квадратичное SVM, обучающая выборка')
         plt.xlim(-1.5, 1.5)
         plt.ylim(-1.5, 2.5)
         legend1 = ax.legend(*scatter.legend_elements(),
                             loc="upper right", title="Classes")
         ax.add_artist(legend1)
         legend1 = ax.legend(*scatter.legend_elements(),
                             loc="upper right", title="Classes")
         ax = fig.add_subplot(224)
         plt.contour(x1, x2, z, colors="black", levels=[-1, 0, 1], linewidths=[0.75, 1, 0.75], linestyles=["--", '--', '--'])
         plt.contourf(x1, x2, z, cmap="jet", levels=[-75, -60, -45, -30, -15, -1, 0, 1, 15, 30, 40], linestyles=["--", '-', '--'])
         plt.colorbar()
         scatter = ax.scatter(X_blob_test[:, 1], X_blob_test[:, 0], c=y_blob_test, cmap="gist_rainbow", marker="o")
         plt.xlim(-1.5, 1.5)
         plt.ylim(-1.5, 2.5)
         ax.set_aspect('equal', adjustable='box')
         ax.set_title('Квадратичное SVM, тестовая выборка')
         legend1 = ax.legend(*scatter.legend_elements(),
                             loc="upper right", title="Classes")
         ax.add_artist(legend1)
```

IndexError: index 3 is out of bounds for axis 0 with size 3

Как мы видим, квадратичное ядро справилось с классификацией на ура, а вот линейное нам тут не поможет. В модели с квадратичным ядром оптимальное разбиение, а также такая # 1 и 2 Задания

3 задание дополнительное

1 и 2 задания

Текст заданий

- 1 Следует привести задачу классификации к бинарной. Т.е. рассматриваем ирисы 2-х классов: Setosa и non-Setosa.
- 2 Из признаков оставляем только 2: sepal length и sepal width.

Небольшие пояснения

Оставляем признаки "sepal_length" и "petal_length", а также выделяем variety в отдельный dataframe. Класс iris-virginica помечаем 1, остальные классы помечаем -1.

```
In [65]: | y = pd.DataFrame()
         X = df[["sepal_length", "sepal_width"]].to_numpy() #отбираем нужные признаки
         y['variety'] = df["variety"].apply(lambda x: int(x == "Iris-virginica") - int(x != "Iris-virginica")) #функция для 1 и -1
         y = y[['variety']].to_numpy() #переводим в питру так как наш градиентный спуск работает с нампаем
In [66]: print("Матрица признаков объектов:")
         print(X[:10])
         print("\nМатрица-столбец меток классов:")
         print(y[45:55])
        Матрица признаков объектов:
        [[5.1 3.5]
         [4.9 3.]
         [4.7 \ 3.2]
         [4.6 \ 3.1]
         [5. 3.6]
         [5.4 3.9]
         [4.6 \ 3.4]
         [5. 3.4]
         [4.4 \ 2.9]
         [4.9 3.1]]
        Матрица-столбец меток классов:
        [[-1]
         [-1]
         [-1]
         [-1]
         [-1]
         [-1]
         [-1]
         [-1]
         [-1]
         [-1]]
```

Выводы по первому и второму заданию

Импортировали данные и убедились в их корректности. Данные нам известные и хорошо знакомые.

Задание 3

Текст задания

Выполните процедуру классификации 3 раза. В рамках данной процедуры:

- Разбейте выборку случайным образом на обучающую (100 объектов) и тестовую.
- [15] Проведите на обучающей выборке обучение с линейной моделью SVM и выведите диаграмму рассеяния классов с линией гиперплоскости разделения.
- Приведите формулу разделяющей гиперплоскости.
- 🗓 Оцените точность классификации на тестовой и обучающей выборках.

Первая модель(три в одном)

Разбиение выборки на обучающую (мы помним, что объектов 150, потому параметр тестовой части 0.33, чтобы в обучающей было 100)

```
In [67]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=19) #устанавливаем random_state 19, чтовы не
```

Проведите на обучающей выборке обучение с линейной моделью SVM и выведите диаграмму рассеяния классов с линией гиперплоскости разделения. Мы хотим обучить тремя методами градиентного спуска и их сравнить для проведения дальнейших двух запусков

На первом запуске будем сравнивать пакетный, mini-batch и стохастический, на остальных двух будем запускать только один из них

Пакетный градиентный спуск

```
In [68]: svm = SupportVectorMachine(X_train,y_train, h=0.005, min_iterations=1000) #бызывает пакетный градиентный спуск w_ = svm.fit() #веса print("Уравнение разделяющей гиперплоскости:") print(f"{w_[0]:.03f}" + "".join([f" + {w_[i]:.03f} x{i}" for i in range(1, len(w_))]) + " = 0")

Уравнение разделяющей гиперплоскости: -15.000 + 3.961 x1 + -4.761 x2 = 0

Посчитаем метрики
```

```
In [69]: cntr_svm = Counter(X_train, X_test, y_train, y_test, svm)
cntr_svm.try_model()
```

Метрики для тренировочной выборки accuracy: 0.710 precision: 1.000

precision: 1.0 recall: 0.121 f1: 0.216

Метрики для тестовой выборки

accuracy: 0.700 precision: 1.000 recall: 0.118 f1: 0.211 Матрица ошибок, полученная методом confusion_matrix [[67 0] [29 4]]

Матрица ошибок для тренировочной выборки

Матрица ошибок, полученная методом confusion_matrix [[33 0] [15 2]]

Матрица ошибок для тестовой

mini-batch

Всё то же самое для mini batch, но у него поменяем шаг, чтобы не разошелся

```
In [70]: svm_mini_batch = SupportVectorMachine(X_train, y_train, h=0.005, min_iterations=1000, strategy='mini-batch', batch_size=10)
w_ = svm_mini_batch.fit() #веса
print("Уравнение разделяющей гиперплоскости:")
print(f"{w_[0]:.03f}" + "".join([f" + {w_[i]:.03f} x{i}" for i in range(1, len(w_))]) + " = 0")
```

Уравнение разделяющей гиперплоскости: -1.060 + 0.989 x1 + -1.721 x2 = 0

Вновь считаем метрики

Метрики для тренировочной выборки accuracy: 0.720

precision: 0.556 recall: 0.758 f1: 0.641

Метрики для тестовой выборки

accuracy: 0.700 precision: 0.556 recall: 0.588 f1: 0.571 Матрица ошибок, полученная методом confusion_matrix [[47 20] [8 25]]

Матрица ошибок, полученная методом confusion_matrix [[25 8] [7 10]]

Матрица ошибок для тестовой

Стохастический градиентный спуск

Остался последний способ, реализованный у нас, это стохастический градиент спуск задаем те же параметры, что и у mini-batch

```
In [72]: svm_stochastic = SupportVectorMachine(X_train, y_train, h=0.005, min_iterations=1000, strategy='stochastic')
         w_ = svm_stochastic.fit()
         print("Уравнение разделяющей гиперплоскости:")
         print(f''\{w_{0}:.03f\}'' + "".join([f'' + \{w_{i}:.03f\} x\{i\}'' for i in range(1, len(w_{i}))]) + " = 0")
        Уравнение разделяющей гиперплоскости:
```

Метрики для стохастического

 $0.475 + 0.118 \times 1 + -0.660 \times 2 = 0$

```
In [73]: cntr_svm_stochastic = Counter(X_train, X_test, y_train, y_test, svm_stochastic)
         cntr_svm_stochastic.try_model()
```

Метрики для тренировочной выборки accuracy: 0.670 precision: 0.000 recall: 0.000 f1: 0.000

Метрики для тестовой выборки

accuracy: 0.660 precision: 0.000 recall: 0.000 f1: 0.000 Матрица ошибок, полученная методом confusion_matrix [[67 0] [33 0]]

C:\Users\Andrey\PycharmProjects\pythonProject\.venv\Lib\site-packages\sklearn\metrics_classification.py:1531: UndefinedMetricWarnin g: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavio

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))

C:\Users\Andrey\PycharmProjects\pythonProject\.venv\Lib\site-packages\sklearn\metrics\ classification.py:1531: UndefinedMetricWarnin g: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavio

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))

Матрица ошибок для тренировочной выборки

Матрица ошибок, полученная методом confusion_matrix [[33 0] [17 0]]

Матрица ошибок для тестовой

Разделяющая гиперплоскость для всех трех

Строим гиперплоскость всех троих способов разделения

```
In [75]: x1 = np.arange(-10, 15, 0.05)
         x2 = np.arange(-10, 15, 0.05)
         xgrid, ygrid = np.meshgrid(x1, x2)
         svm_w = svm_w
         svm_stochastic_w = svm_stochastic.w
         svm_mini_batch_w = svm_mini_batch.w
         svm_z = svm_w[0] + svm_w[2] * xgrid + svm_w[1]*ygrid
```

```
svm_stochastic_z = svm_stochastic_w[0] + svm_stochastic_w[2] * xgrid + svm_stochastic_w[1]*ygrid
svm_mini_batch_z = svm_mini_batch_w[0] + svm_mini_batch_w[2] * xgrid + svm_mini_batch_w[1]*ygrid
fig = plt.figure(figsize=(12, 12))
# Обучающая выборка
ax = fig.add_subplot(221)
scatter = ax.scatter(X_train[:, 1], X_train[:, 0], c=y_train, cmap="gist_rainbow", marker="o")
plt.contour(x1, x2, svm_z, colors="yellow", levels=[0])
plt.contour(x1, x2, svm_stochastic_z, colors="black", levels=[0])
plt.contour(x1, x2, svm_mini_batch_z, colors="green", levels=[0])
svm_patch = mpatches.Patch(color="yellow", label='Пакетный градиентный спуск')
svm_s_patch = mpatches.Patch(color="black", label='Стохастический градиентный спуск')
svm_m_patch = mpatches.Patch(color="green", label='Mini-batch градиентный спуск')
plt.xlim(0, 5.5)
plt.ylim(3, 8.5)
ax.set_title('Обучающая выборка')
legend1 = ax.legend(*scatter.legend_elements(),
                    loc="upper right", title="Classes")
ax.add artist(legend1)
ax.legend(handles=[svm_patch, svm_s_patch, svm_m_patch])
#тестовая выборка
ax = fig.add_subplot(222)
scatter = ax.scatter(X_test[:, 1], X_test[:, 0], c=y_test, cmap="gist_rainbow", marker="o")
plt.contour(x1, x2, svm_z, colors="yellow", levels=[0])
plt.contour(x1, x2, svm_stochastic_z, colors="black", levels=[0])
plt.contour(x1, x2, svm_mini_batch_z, colors="green", levels=[0])
svm_patch = mpatches.Patch(color="yellow", label='Пакетный градиентный спуск')
svm_s_patch = mpatches.Patch(color="black", label='Стохастический градиентный спуск')
svm_m_patch = mpatches.Patch(color="green", label='Mini-batch градиентный спуск')
plt.xlim(0, 5.5)
plt.ylim(3, 8.5)
legend1 = ax.legend(*scatter.legend_elements(),
                    loc="upper right", title="Classes")
ax.set_title('Тестовая выборка')
ax.add_artist(legend1)
ax.legend(handles=[svm_patch, svm_s_patch, svm_m_patch])
```

Out[75]: <matplotlib.legend.Legend at 0x212bc5020c0>

Мини-выводы

По итогу видно, что стохастический оказался худшим, а mini-batch показал лучшие метрики чем пакетный, это странно скорее всего повлиял случайный подсчет градиента, однако теперь для сравнения с остальными будем использовать его, ниже даже можно увидеть что стохастический с меньшей ошибкой оказался хуже пакетного по нашим метрикам

```
In [76]: print(f"SVM c пакетной оптимизацией: {svm.q[0]:.02f}")
    print(f"SVM c мини-батч оптимизацией: {svm_mini_batch.q[0]:.02f}")
    print(f"SVM c стохастической оптимизацией: {svm_stochastic.q[0]:.02f}")
```

SVM с пакетной оптимизацией: 130.92 SVM с мини-батч оптимизацией: 60.82 SVM с стохастической оптимизацией: 69.47

Вторая модель(только пакетный)

Новое разбиение для новой модели

```
In [79]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=20, )
         svm_2 = SupportVectorMachine(X_train,y_train, h=0.0005, min_iterations=10000, strategy='mini-batch', batch_size=10)
         svm_2.fit() #βeca
         W_= svm_2.fit()
In [80]: print("Уравнение разделяющей гиперплоскости:")
         print(f''\{w_[0]:.03f\}'' + "".join([f'' + \{w_[i]:.03f\} x\{i\}'' for i in range(1, len(w_))]) + " = 0")
        Уравнение разделяющей гиперплоскости:
        -1.584 + 0.928 \times 1 + -1.266 \times 2 = 0
In [81]: ### Метрики
         cntr_svm_2 = Counter(X_train, X_test, y_train, y_test, svm_2)
         cntr_svm_2.try_model()
```

Метрики для тренировочной выборки

accuracy: 0.710 precision: 0.550 recall: 0.943 f1: 0.695

Метрики для тестовой выборки

accuracy: 0.720 precision: 0.519 recall: 0.933 f1: 0.667 Матрица ошибок, полученная методом confusion_matrix [[38 27] [2 33]]

Матрица ошибок для тренировочной выборки

Матрица ошибок, полученная методом confusion_matrix [[22 13] [1 14]]


```
In [82]: ### График гиперплоскости
         x1 = np.arange(-10, 15, 0.05)
         x2 = np.arange(-10, 15, 0.05)
         w = svm_2.w
         xgrid, ygrid = np.meshgrid(x1, x2)
         z = w[0] + w[2] * xgrid + w[1]*ygrid
         # Обучающая выборка
         fig = plt.figure(figsize=(12, 12))
         ax = fig.add_subplot(221)
         plt.contour(x1, x2, z, colors="black", levels=[-1, 0, 1], linewidths=[0.75, 1, 0.75], linestyles=["--", '--'])
         plt.contourf(x1, x2, z, cmap="jet", levels=[-70,-1, 1, 70], linestyles=["--", '--', '---'])
         plt.xlim(0, 5.5)
         plt.ylim(3, 8.5)
         scatter = ax.scatter(X_train[:, 1], X_train[:, 0], c=y_train, cmap="gist_rainbow", marker="o")
         ax.set_title('Обучающая выборка')
         legend1 = ax.legend(*scatter.legend_elements(),
                             loc="upper right", title="Classes")
         ax.add_artist(legend1)
         #тестовая выборка
         ax = fig.add_subplot(222)
         plt.contour(x1, x2, z, colors="black", levels=[-1, 0, 1], linewidths=[0.75, 1, 0.75], linestyles=["--", '--'])
         plt.contourf(x1, x2, z, cmap="jet", levels=[-70,-1, 1, 70], linestyles=["--", '--', '---'])
         plt.xlim(0, 5.5)
         plt.ylim(3, 8.5)
         scatter = ax.scatter(X_test[:, 1], X_test[:, 0], c=y_test, cmap="gist_rainbow", marker="o")
         legend1 = ax.legend(*scatter.legend_elements(),
                             loc="upper right", title="Classes")
         ax.set_title('Тестовая выборка')
         ax.add_artist(legend1)
         plt.show()
```


По итогу все равно модель не сильно хорошая, рандомит только так из-за того что выборка линейно неразделима

Третья модель

Уравнение разделяющей гиперплоскости: 0.464 + 0.027 x1 + -0.519 x2 = 0

```
In [87]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=122)
    svm_3 = SupportVectorMachine(X_train, y_train, min_iterations=10000, strategy='mini-batch', batch_size=10)
    w_ = svm_3.fit()

In [88]: print("Уравнение разделяющей гиперплоскости:")
    print(f"{w_[0]:.03f}" + "".join([f" + {w_[i]:.03f} x{i}" for i in range(1, len(w_))]) + " = 0")
```

```
In [89]: cntr_svm_3 = Counter(X_train, X_test, y_train, y_test, svm_3) cntr_svm_3.try_model()

Метрики для тренировочной выборки accuracy: 0.670 precision: 0.000 recall: 0.000 f1: 0.000
```

Метрики для тестовой выборки accuracy: 0.660 precision: 0.000 recall: 0.000 f1: 0.000 Maтрица ошибок, полученная методом confusion_matrix [[67 0] [33 0]]

C:\Users\Andrey\PycharmProjects\pythonProject\.venv\Lib\site-packages\sklearn\metrics_classification.py:1531: UndefinedMetricWarnin g: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavio r.

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))

C:\Users\Andrey\PycharmProjects\pythonProject\.venv\Lib\site-packages\sklearn\metrics_classification.py:1531: UndefinedMetricWarnin g: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavio

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))

Матрица ошибок для тренировочной выборки

Матрица ошибок, полученная методом confusion_matrix [[33 0]


```
In [91]: x1 = np.arange(-10, 15, 0.05)  
x2 = np.arange(-10, 15, 0.05)  
w = svm_3.w  
xgrid, ygrid = np.meshgrid(x1, x2)  
z = w[0] + w[2] * xgrid + w[1]*ygrid  
# Οδυναιοιμαπ δωδορκα  
fig = plt.figure(figsize=(12, 12))
```

```
ax = fig.add_subplot(221)
plt.contour(x1, x2, z, colors="black", levels=[-1, 0, 1], linewidths=[0.75, 1, 0.75], linestyles=["--", '--'])
plt.contourf(x1, x2, z, cmap="jet", levels=[-70,-1, 1, 70], linestyles=["--", '-', '--'])
plt.xlim(0, 5.5)
plt.ylim(3, 8.5)
scatter = ax.scatter(X_train[:, 1], X_train[:, 0], c=y_train, cmap="gist_rainbow", marker="o")
ax.set_title('Обучающая выборка')
legend1 = ax.legend(*scatter.legend_elements(),
                    loc="upper right", title="Classes")
ax.add_artist(legend1)
#тестовая выборка
ax = fig.add_subplot(222)
plt.contour(x1, x2, z, colors="black", levels=[-1, 0, 1], linewidths=[0.75, 1, 0.75], linestyles=["--", '--'])
plt.contourf(x1, x2, z, cmap="jet", levels=[-70,-1, 1, 70], linestyles=["--", '-', '--'])
plt.xlim(0, 5.5)
plt.ylim(3, 8.5)
scatter = ax.scatter(X_test[:, 1], X_test[:, 0], c=y_test, cmap="gist_rainbow", marker="o")
legend1 = ax.legend(*scatter.legend_elements(),
                   loc="upper right", title="Classes")
ax.set title('Тестовая выборка')
ax.add_artist(legend1)
plt.show()
```


Из-за линейной неразделимости выборки модель решила, стать константной, что ж это ее выбор мы не в праве ее осуждать за это

Задание 4

Текст задания

Сравните итоги выполненных ранее трёх попыток обучения. Сделайте выводы.

Пояснения

По итогу везде получилось так, что модель обучалось случайно не имея каких-то конкретных закономерностей связано с тем что выборка линейно неразделима, так что мы теоретически не можем получить хорошие метрики

Задание 5

Текст задания

Реализуйте задачу классификации с квадратичной функцией SVM на последнем наборе обучающей и тестовой выборок (также диаграммой рассеяния и линией раздела).

Решение

Используем последнее разбиение для обучения новой модели

```
In [92]: qsvm = QuadraSupportVectorMachine(X_train, y_train, h=0.0005, min_iterations=30000) #инициализация метода
         qsvm.init_r() #для перехода в новое пространство
         w_ = qsvm.fit()
In [93]: print("Уравнение разделяющей гиперплоскости:")
```

Уравнение разделяющей гиперплоскости: $-3.469 + -9.299 \times 1 + 0.009 \times 2 + -5.291 \times 3 + -14.619 \times 4 + 10.656 \times 5 = 0$

Метрики

```
In [94]: cntr_qsvm = Counter(X_train, X_test, y_train, y_test, qsvm)
         cntr_qsvm.try_model()
```

Метрики для тренировочной выборки

accuracy: 0.820 precision: 0.683 recall: 0.848 f1: 0.757

Метрики для тестовой выборки

accuracy: 0.800 precision: 0.667 recall: 0.824 f1: 0.737

Матрица ошибок, полученная методом confusion_matrix

[[54 13] [5 28]]

Матрица ошибок для тренировочной выборки

Матрица ошибок, полученная методом confusion_matrix [[26 7] [3 14]]


```
x1 = np.arange(-15, 20, 0.05)
In [106...
          x2 = np.arange(-15, 20, 0.05)
          xgrid, ygrid = np.meshgrid(x1, x2)
          w = qsvm.w
          z = w[0] + w[1]*xgrid**2 + w[2]*ygrid**2 + w[3]*xgrid + w[4]*ygrid + w[5]*xgrid*ygrid*
          fig = plt.figure(figsize=(12, 12))
          ax = fig.add_subplot(221)
          plt.contourf(x1, x2, z, cmap="jet", levels=[-120, -75, -60, -45, -30, -15, -1, 0, 1, 15, 30, 40, 80])
          plt.colorbar()
          plt.contour(x1, x2, z, colors="black", levels=[-1, 0, 1], linewidths=[0.75, 1, 0.75], linestyles=["--", '--', '--'])
          scatter = ax.scatter(X_test[:, 1], X_test[:, 0], c=y_test, cmap="gist_rainbow", marker="o")
          ax.set_aspect('equal', adjustable='box')
          ax.set_title('Тестовая выборка')
          plt.xlim(1, 4.5)
          plt.ylim(4, 8.5)
          legend1 = ax.legend(*scatter.legend_elements(),
                              loc="upper right", title="Classes")
          ax.add_artist(legend1)
          legend1 = ax.legend(*scatter.legend_elements(),
                              loc="upper right", title="Classes")
          ax = fig.add_subplot(222)
          plt.contourf(x1, x2, z, cmap="jet", levels=[-130, -75, -60, -45, -30, -15, -1, 0, 1, 15, 30, 40, 80])
          plt.colorbar()
          plt.contour(x1, x2, z, colors="black", levels=[-1, 0, 1], linewidths=[0.75, 1, 0.75], linestyles=["--", '--'])
          scatter = ax.scatter(X_train[:, 1], X_train[:, 0], c=y_train, cmap="gist_rainbow", marker="o")
          plt.xlim(1, 4.5)
          plt.ylim(4, 8.5)
          ax.set_aspect('equal', adjustable='box')
          ax.set_title('Обучающая выборка')
          legend1 = ax.legend(*scatter.legend_elements(),
                              loc="upper right", title="Classes")
          ax.add_artist(legend1)
          plt.show()
```


Выводы по svm с квадратичным ядром

Намного лучше справляется с задачей обобщения, и даже метрики неплохие, можно сделать вывод, что модель не так уж плоха и с помощью нее уже можно выполнить седьмое задание

Задание 6

Текст задания

Сравните точность классификации на тестовой выборке с линейной SVM. Объясните результат.

Решение

Точность классификации отличается, казалось бы, несильно, однако точность 1 и любая меньше 1 - абсолютно разные результаты.

В обобщающей способности линейного классификатора нет сомнений поскольку это самая простая модель, за исключением константной, которая только может быть.

Однако квадратичная могла и сильно подстроиться под ту одну точку, хотя в реальных данных там может оказаться много точек другого класса.

Может оказаться так, что все-таки там природно розовые точки, потому можно сделать вывод, что обе модели хорошо справились со своей задачей

Задание 7

Текст задания

Определите сорт 20 объектов из дополнительной выборки (файл «Dop.csv»). Качество определения сорта проверит преподаватель.

```
In [107... y_dop = pd.DataFrame()
X_dop = df_dop[["Sepal.L", "Petal.L"]].to_numpy() #отбираем нужные признаки

y_pred_qsvm_dop = qsvm.predict(X_dop)
y_pred_svm_dop = svm_3.predict(X_dop)

In [108... y_pred_qsvm_dop = qsvm.predict(X_dop)
y_pred_svm_dop = svm_3.predict(X_dop)
```

Ответы

Out[109...

```
In [109... ans = pd.DataFrame() ans["SVM Квадратичное ядро"] = y_pred_qsvm_dop[:, 0] #Омбемы по модели с квадратичным ядром ans["SVM линейное ядро"] = y_pred_svm_dop[:, 0] # Омбемы по линейной модели ans["Совпадение ответов"] = ans["SVM Квадратичное ядро"] == ans["SVM линейное ядро"] ans
```

	SVM Квадратичное ядро	SVM линеиное ядро	Совпадение ответов
0	-1.0	-1.0	True
1	-1.0	-1.0	True
2	-1.0	-1.0	True
3	-1.0	-1.0	True
4	-1.0	-1.0	True
5	-1.0	-1.0	True
6	-1.0	-1.0	True
7	-1.0	-1.0	True
8	-1.0	-1.0	True
9	-1.0	-1.0	True
0	-1.0	-1.0	True
1	-1.0	-1.0	True
2	-1.0	-1.0	True
3	-1.0	-1.0	True
14	-1.0	-1.0	True
15	-1.0	-1.0	True
16	-1.0	-1.0	True
17	-1.0	-1.0	True
18	-1.0	-1.0	True
19	-1.0	-1.0	True

SVM Квадратичное ядро SVM линейное ядро Совпадение ответов

Пояснение к ответам

Неожиданные результаты более-менее интепретируемая модель и константная сошлись в едином мнении

```
In [112... ## Визуализация ответов
x1 = np.arange(-10, 15, 0.05)
x2 = np.arange(-10, 15, 0.05)

xgrid, ygrid = np.meshgrid(x1, x2)

w = qsvm.w
z = w[0] + w[1] * xgrid ** 2 + w[2] * ygrid ** 2 + w[3] * xgrid + w[4] * ygrid + w[5] * xgrid * ygrid

fig = plt.figure(figsize=(12, 12))
```

```
ax = fig.add_subplot(221)
plt.contourf(x1, x2, z, cmap="jet", levels=[-75, -60, -45, -30, -15, -1, 0, 1, 15, 30, 40])
plt.contour(x1, x2, z, colors="black", levels=[-1, 0, 1], linewidths=[0.75, 1, 0.75], linestyles=["--", '--', '--'])
scatter = ax.scatter(X_dop[:, 1], X_dop[:, 0], c=y_pred_qsvm_dop, cmap="gist_rainbow", marker="o")
ax.set_aspect('equal', adjustable='box')
ax.set_title('SVM с квадратичным ядром')
plt.xlim(0, 5.5)
plt.ylim(3, 8.5)
legend1 = ax.legend(*scatter.legend_elements(),
                    loc="upper right", title="Classes")
ax.add_artist(legend1)
ax = fig.add_subplot(222)
w = svm_3.w
z = w[0] + w[2] * xgrid + w[1] * ygrid
plt.contourf(x1, x2, z, cmap="jet", levels=[-75, -60, -45, -30, -15, -1, 0, 1, 15, 30, 40])
plt.colorbar()
plt.contour(x1, x2, z, colors="black", levels=[-1, 0, 1], linewidths=[0.75, 1, 0.75], linestyles=["--", '--'])
scatter = ax.scatter(X_dop[:, 1], X_dop[:, 0], c=y_pred_svm_dop, cmap="gist_rainbow", marker="o")
plt.xlim(0, 5.5)
plt.ylim(3, 8.5)
ax.set_aspect('equal', adjustable='box')
ax.set_title('SVM с линейным ядром')
legend1 = ax.legend(*scatter.legend_elements(),
                    loc="upper right", title="Classes")
ax.add_artist(legend1)
print(z.shape)
plt.show()
(500, 500)
```


Модели сошлись к единому мнению, константная и квадратичная. Среди них нет virginica. По факту у квадратичной модели есть четкое обоснование и интерпретация, в то время как у линейной своя философия

Финальный вывод для 3 задания

Понятно почему так произошло, из-за линейной неразделимости выборки. Используя квадратичное ядро нам удалось избежать проблем связанных с этим, конечно из-за наложения классов друг на друга невозможно описать линию разделения между ними

Самый финальный вывод

Нам удалось изучить SVM и его ядра, а так же посмотреть его поведение в различных ситуациях. Понять математику ядер и функции потерь. Адаптировать SVM для градиентного спуска.

Конец