Teammates: Junru Wang, Yifan Meng

HW-3	Fin 500				
Question 1	$U = D_1 + D_2 + D_3 + D_4$				
	$D_{1} = 0.25 \times (0.055 - 0.0525) \times 100 = 0.06168$				
1-1-1	1+0.25 Fo(0,0.25)				
	$D_2 = 0.25 \times (0.055 - \frac{1}{6}(0.25, 0.5) \times 100 = 0.03652$				
	1+0.5 [.10,0.5)				
	$D_{4} = 0.25 \times (0.055 - \frac{1}{6}(0.5, 0.75)) \times 100 - \frac{0.0125}{1.040425} = 0.0120$ $D_{4} = 0.25 \times (0.055 - \frac{1}{6}(0.75, 1)) \times 100$				
	(1+0.25x0.0530)(1+0.25x0.0530) (1+0.25x0.0545) (1+0.25 to.75,1)				
	(1, 02)[(0,12,1)				
	Add 1 basis point to fo (0.75,1), equals 5.56%				
	$U_{+} = D.06168 + 0.03652 + 0.01201 - 0.014214 = 0.095995$ million USD				
	$D_{4} = -0.0045 \times 100 / 0.05446 = -0.014214$				
	1.054513				
	Mīnus I basīs point, equals 5.54%				
	$D_4' = -0.0094868$				
	$()_{-} = D_1 + D_2 + D_3 + D_4$				
	DV - U+ - U- D4 -0.014214 +0.0094768				
	$\frac{\partial U}{\partial f_0(0.75,1)} \sim \frac{U_4 - U_7}{2 \times 0.00001} = \frac{D_4 - D_4'}{0.0002} = \frac{-0.014214 + 0.0094768}{0.0002} = -23.686$				
Question?	a) Based on expectation hypothesis, tous(0.25, 0.5) = folias, 0.5)				
	$f_{0.35}(0.5, 0.75) = f_{0}(0.5, 0.75) = 0.05$ = 0.05.5				
	$f_{0.25}(0.75,1) = f_{0}(0.75,1) = 0.0475$				
	b) $t_{0.5}(0.5,0.75) = f_{0}(0.5,0.75) = 0.05$ $t_{0.7}(0.75,1) = f_{0}(0.75,1)$				
	$f_{05}(0.75, 1) = f_{0}(0.75, 1) = 0.0475$ = 0.0475				
	7.3				

uestion 3 (Luenberger 4.13 or 4.15	')				
irst calculate the PV and quasi-modif	fied duration of the stream	of cash flows, following the approach in Table 4.4 on	p. 94 of Luer	berger:	
Year	Spot	Discount factor	Cash Flow	PV	-PV'
1	7.67%	0.92876	500	464.381908	431.30111
2	8.27%	0.85307	900	767.761333	1418.2340
3	8.81%	0.77624	600	465.741373	1284.0953
4	9.31%	0.70042	500	350.211519	1281.5351
5	9.75%	0.62803	100	62.8025612	286.11645
6	10.16%	0.55957	100	55.9572595	304.77810
7	10.52%	0.49649	100	49.6493842	314.46406
8	10.85%	0.43865	50	21.9323125	158.28461
Total:				2,238.44	5478.8094
Quasi-Modified Duration:					2.4476
he prices and durations of the 12-year	ar and 5-year bond are prov	rided in Table 4.4 on p. 94 of Luenberger:			
	Price	Quasi-Modified Duration			
12-year bond:	65.95	7.07			
5-year bond:	101.66	3.8			
	x1:	-14.0374			
0.1.: 6.4.0		31.1254			
Solutions for x1, x2:	x2:	31.1234			
Solutions for x1, x2: Check that values match:	x2:	31.1234			

Question 4

Yield Curve

Parameters

1 arannecers	
a 0	0.062301798
a1	0.005734129
a2	0.001521117
a3	-0.00073538
a4	6.57E-05
Sum of	
squared	
pricing errors	0.0046

CE TRO	
Question 5	$\frac{dv}{dt} = -100(T-t_0)e^{-t(t_0,T)(T-t_0)}$
	$\frac{d^2U}{dt^2} = 00(T-t_0)^2 e^{-H(t_0,T)(T-t_0)} \implies Convexity = (T-t_0)^2$
	Therefore, the convexity of bonds increase by the 7-to, which means it's increasing with the remaining periods' decreasing.
	it's increasing with the remaining periods' decreasing.
_	The second secon
Question 6	(a) $D=10$, $\Delta \Gamma = 2\%$, $\frac{\Delta P}{P} = -D \times \Delta \Gamma = -0.2$
	$\frac{(b) \Delta p}{p} = -D \cdot p + \frac{1}{2} C \cdot (\Delta r)^{2} = -l0 \times 2\% + \frac{1}{2} \frac{1}{2} \times 0.02 \times l00$
	$C = t^2 = 0.02^2$ $C = \frac{1}{V(\tau)}$ $\frac{d^2V(\tau)}{d\tau^2} = \tau^2 = 100$
	$d\tau^2 = c$
· ·	$\frac{\Delta P}{P} = -0.2 + 0.02 = -0.18$

Question 7							
						Dollar	Dollar
Bonds	Maturity	Rate	Value	Duration	Convexity	Duration	Convexity
5-year:	5	0.015	927.743486	5.000	25	4638.71743	23193.5872
10-year	10	0.030	740.818221	10.000	100	7408.18221	74081.8221
20-year	20	0.035	496.585304	20.000	400	9931.70608	198634.122
solutions:	$n_5 =$	-1.0647					
	n ₂₀ =	-0.2486					
check:	duration=	0.000					
	convexity=	0.000					
	target=	0.00000					