Reproducing Kernel Hilbert Space

Hilbert Space & RKHS

- Hilbert space : a complete linear space where inner product between functions is defined.
- Reproducing Kernel Hilbert space on domain $\mathcal X$: Hilbert space where the evaluation functional $L_x(f)=f(x)$ is bounded
 - functional is bounded if there exists a constant M such that $|L(f)| \leq M||f||, \ \forall f \in \mathcal{H}$
- Riesz Representation Theorem

For every bounded linear functional L on a hillbert space \mathcal{H} , there exist a unique $\xi_L \in \mathcal{H}$ such that $L(f) = \langle \xi_L, f \rangle, \forall f \in \mathcal{H}$. ξ_L is called the representer of L

- ightarrow This means that every evaluation functional in RKHS have its own representator!!
- There exist $\xi_x \in \mathcal{H}$, the representer of $L_x(\cdot)$, such that $\langle \xi_x, f \rangle = f(x), \forall f \in \mathcal{H}$
- Define $K(x,t)=\xi_x(t)$, called the **reproducing kernel** (RK) which is bivariate function.
 - \rightarrow We can take this kernel as the representer of point x in any other function in $\mathcal{H}!!$

Properties of RK

• nonnegative definite (= semi positive definite): for every n which is finite, and every $x_1,\cdots,x_n\in\mathcal{X}$, and every $a_1,\cdots,a_n\in\mathbb{R}$

$$\sum_{i=1}^n \sum_{j=1}^n a_i a_j K(x_i,x_j) \geq 0$$

which means that matrix composed of outcomes of $K(x_i,x_j)$ is always n.n.d

$$a'Ka > 0, \forall a$$

• RK is non-negative

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j K(x_i, x_j) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j \langle K(x_i, \cdot), K(x_j, \cdot) \rangle$$

$$= \left\langle a_i \sum_{i=1}^{n} K(x_i, \cdot), \sum_{j=1}^{n} a_j K(x_j, \cdot) \right\rangle$$

$$= \left\| \sum_{i=1}^{n} K(x_i, \cdot) \right\|^2 \ge 0$$

- The Moore- Anronszajn Theroem
 - \circ For every RKHS $\mathcal H$ of functions on $\mathcal X$, there corresponds a unique RK K(s,t)
 - \circ Conversely, for every n.n.d function K(s,t) on \mathcal{X} , there corresponds a unique RKHS \mathcal{H}_K
 - ightarrow Reproducing Kernel and RKHS has one to one correspondence.

Construct RKHS by function decomposition

- Constructing RKHS by Anronszaijn Theorem
 - 1. Make space of functions which has form of $f(x) = \sum_m lpha_m K(x,y_m)$
 - 2. Define inner product by $\langle K(x,\cdot),K(y,\cdot)
 angle = K(x,y)$
 - 3. Complete that space
- Mercer-Hilbert-Schmidt Theorem (Eigen-expansion of kernel)

Mercer Kernel: a n.n.d function on $\mathcal{X} \times \mathcal{X}$ which satisfy

$$\int_{\mathcal{X}}\int_{\mathcal{X}}K^{2}(x,y)dxdy<\infty$$

this condition is trivial when ${\mathcal X}$ is compact

ullet Mercer Kernel can be decomposed with continuous orthonormal eigenfunctions in L_2 and eigen value

$$K(x,y) = \sum_{i=1}^{\infty} \gamma_i \phi_i(x) \phi_i(y)$$

- L_2 inner product of two univariate function (ϕ_i,ϕ_j) is defined as $\int \phi_i(x)\phi_j(x)dx=\delta_{ij}$
- It follows that

1.

$$\int_{\mathcal{X}} \int_{\mathcal{X}} K^{2}(x,y) dx dy = \sum_{i} \sum_{j} \gamma_{i} \gamma_{j} \int \phi_{i}(x) \phi_{j}(x) dx \int \phi_{i}(y) \phi_{j}(y) dy = \sum_{i} \gamma_{i}^{2} < \infty$$
 (1)

2.

- ightarrow Because of These two properties, mercer kernel is RK in \mathcal{H}_K
- ullet $f\in \mathcal{H}_K$ has form (by Anronszaijn thm 1)

$$egin{aligned} f(x) &= \sum_m lpha_m K(x,y_m) \ &= \sum_m \sum_i lpha_m \gamma_i \phi_i(x) \phi_i(y_m) \ &= \sum_i \sum_m lpha_m \phi_i(y_m) \gamma_i \phi_i(x) \ &= \sum_i c_i \phi_i(x) \end{aligned}$$
 where $c_i = \gamma_i \sum_m lpha_m \phi_i(y_m) \ &= \sum_m lpha_m \gamma_i \phi_i(y_m) \ &= \sum_m lpha_m (K(x,y_m),\phi_i(x)) \ &= (\sum_m lpha_m K(x,y_m),\phi_i(x)) \ &= (f,\phi_i(x)) \end{aligned}$

• $\langle K(x,\cdot),f\rangle_{\mathcal{H}_K}=f(x)$ implies $\langle K(x,\cdot),\phi_j\rangle_{\mathcal{H}_K}=\sum_i\gamma_i\phi_i(x)\langle\phi_i,\phi_j\rangle_{\mathcal{H}_K}=\phi_j(x)$ \to by these properties, **Inner product of** \mathcal{H}_K can be expressed as

$$egin{aligned} (\phi_k,\phi_j) &= \left(\phi_k,\sum_i \gamma_i\phi_i\left\langle\phi_i,\phi_j
ight
angle\ &= \sum_i \gamma_i\langle\phi_k,\phi_i
ight
angle\langle\phi_i,\phi_j
angle\ &= \sum_i \gamma_i\left\langle\phi_i,\phi_j
ight
angle\int\phi_k(x)\phi_i(x)dx\ &= \gamma_k\left\langle\phi_k,\phi_j
ight
angle\ &\therefore \left\langle\phi_k,\phi_j
ight
angle_{\mathcal{H}_K} &= rac{(\phi_k,\phi_j)}{\gamma_k} \end{aligned}$$

$$egin{aligned} \therefore \langle f,g
angle_{\mathcal{H}_K} &= \left\langle \sum_i^\infty c_i \phi_i(x), \sum_j^\infty d_j \phi_j(x)
ight
angle \\ &= \left\langle \sum_i (f,\phi_i) \phi_i(x), \sum_j (g,\phi_j) \phi_j(x)
ight
angle \\ &= \sum_i rac{(f,\phi_i)(g,\phi_i)}{\gamma_i} \quad \because ext{basis functions are orthonormal} \\ &= \sum_i rac{c_i d_i}{\gamma_i} \end{aligned}$$

and finite norm constraint becomes

$$\|f\|^2 = \sum_i^\infty rac{c_i^2}{\gamma_i} < \infty$$

• Then is $K(x,\cdot)\in \mathcal{H}_K$??

$$K(x,\cdot) = \sum_i \gamma_i \phi_i(x) \phi_i(\cdot) = \sum_i c_i \phi_i(\cdot)$$
 and $\|K(x,\cdot)\|^2 = \sum_i rac{\gamma_i^2 \phi_i(x)^2}{\gamma_i} = \sum_i \gamma_i \phi_i(x) \phi_i(x) = K(x,x) < \infty$ $\therefore K(x,\cdot) \in \mathcal{H}_K$

ullet Inner product between RK and f

$$egin{aligned} \langle K(x,\cdot),f
angle &= \sum_i rac{\gamma_i\phi_i(x)c_i}{\gamma_i} \ &= \sum_i c_i\phi_i(x) = f(x) \end{aligned}$$

Reproducing property

$$egin{aligned} \langle K(x,\cdot),K(y,\cdot)
angle &= \sum_i rac{\gamma_i^2\phi_i(x)\phi_i(y)}{\gamma_i} \ &= \sum_i \gamma_i\phi_i(x)\phi_i(y) = K(x,y) \end{aligned}$$

or it can be shown by definition of RK

$$K(y,\cdot)\in \mathcal{H}_k \ \therefore \langle K(x,\cdot),f
angle = f(x) = K(y,x) = K(x,y)$$

Split of Hilbert space

- If two Hilbert spaces \mathcal{H}_0 and \mathcal{H}_1 equipped with inner product respectively have the only common element {0}, then we define the tensorsum Hilbert space $\mathcal{H} = \{f = f_0 + f_1 : f_0 \in \mathcal{H}_0, f_1 \in \mathcal{H}_1\} \text{ with inner product } \langle \cdot, \cdot \rangle = \langle \cdot, \cdot \rangle_0 + \langle \cdot, \cdot \rangle_1 \text{ and write } \mathcal{H} = \mathcal{H}_0 \oplus \mathcal{H}_1$
- Sum of two n.n.d functions defined on the same domain is n.n.d
- If K_0 is RK for \mathcal{H}_0 and K_1 is RK for \mathcal{H}_1 with $\mathcal{H}_0\cap\mathcal{H}_1=\{0\}$, then $K=K_0+K_1$ is RK for $\mathcal{H}=\mathcal{H}_0\oplus\mathcal{H}_1$
- If an n.n.d function K in decomposed into two orthogonal n.n.d functions K_0 and K_1 , then $\mathcal{H}=\mathcal{H}_0\oplus\mathcal{H}_1$, where $\mathcal{H}_0,\mathcal{H}_1$ are RKHS corrsponding to K_0,K_1 Because of one to one correspondence of RK and RKHS,
 - ightarrow We can use each of function space as block like ANONA

Regularization Problems Using RKHS

- we want to use norm of RKHS as penalty
- ullet First variational problem with $J[f] = \|f\|_{\mathcal{H}_K}^2$

$$\min_{f \in \mathcal{H}_K} \left[\sum_{i=1}^N L(y_i, f(x_i)) + \lambda \|f\|_{\mathcal{H}_K}^2
ight]$$

• The solution is finite dimension and has the form of $f(x) = \sum_i^N \alpha_i K(x_i,x)$ where x_i is observed pts.

 \rightarrow We can change infinite dimension problems into finite dimension problems with N dimension

pf)

for any functions $\tilde{g}\in\mathcal{H}_k$ can be decomposed as g+p where $g(x)=\sum_i^N \alpha_i K(x_i,x)$ and $\rho(x)\perp K(x_i,x), \forall i=1,\cdots,N$. Then $\rho(x_i)=< K(x_i,x), \rho(x)>=0$

Thus,
$$\tilde{g}(x_i)=g(x_i)$$
 and

$$J[\widetilde{g}] = \|\widetilde{g}\|_{\mathcal{H}_K}^2 = \langle g + \rho, g + \rho \rangle = \|g\|^2 + \|\rho\|^2 \ge \|g\|^2 = J[g]$$

equality holds when $\|\rho\|^2=0$ \to we can find this regardless of loss function!!

• We can change problem as

$$\min_{\alpha}[L(y,K\alpha) + \lambda \alpha' K\alpha]$$

where
$$K = \{K(x_i, x_j)\}$$

ullet Second variational problam with $J[f]=\|P_1f\|_{\mathcal{H}_1}^2$ where P_1 is projection onto \mathcal{H}_1

$$\min_{f \in \mathcal{H}_K} \left[\sum_{i=1}^N L(y_i, f(x_i)) + \lambda \|P_1 f\|_{\mathcal{H}_1}^2
ight]$$

• The solution is finite dimensional and has the form of $f(x)=\sum_{j=1}^m eta_j \psi_j(x) + \sum_i^N lpha_i K_1(x_i,x)$

• We can change problem as

$$\min_{lpha,eta}[L(y,Teta+K_1lpha)+\lambdalpha'K_1lpha]$$

where
$$T=\{\psi_j(x_i)\}, K_1=\{K_1(x_i,x_j)\}$$

ullet By using this, We can penalize only the sunset of \mathcal{H}_k