1989 -	conductive	p-type	GaN	films	were
	produced	, 01) = 0		1,43
and this	conductive produced escalated	The re	seare	lin	GaN

Alz Ga, N / GaN heterostructure FETs were developed by 1994

	GaN	Sic	Diamoso	Si	GaAs	InP
Eg	3.44	3.26	5.45	1.12	1.43	1.35
Eke. breakdown vol MV/cm	3	3	10	0.3	0.4	0.5
Saturated Vel. of electrons	2.5×10 cm/s	2×107 cm/s	2.7x107 cm/s	1	- 2/M	100 4450-
Thermal conduction W/cm. K		3.7-4.5	22	1.5	0.5	0.7
Dielectrii const.	9	10.1	5.5	11.8	12.8	12.5
nobility	900	700	4800	1500	8500	5400

Dielectric const in around 20% lower that gives an advantage over Se/GaAs That GaN device may have 20% larger area for the same impedence. Larger area enables the device to generate large current.

Therefore GaN is suitable for pewave power in output.

but mobility inth aeronal conductivity and electron breakdown voltage - cookiner makes The suitabily for high power/high freq device where GaN takes over,