2 Feladat

December 4, 2024

0 Előkészületek

0.1 Szükséges könyvtárak importálása

```
%reset -f
import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import StandardScaler
import statsmodels.api as sm
from scipy import stats
from statsmodels.stats.outliers_influence import variance_inflation_factor
import numpy as np
import matplotlib.pyplot as plt
```

0.2 Adatok beolvasása

```
# Oszlopok definiálása
cols = ['Y', 'X_1', 'X_2']
# Adatok beolvasása string-ként
with open('data/bead2.csv', 'r') as file:
    lines = file.readlines()
# Az első sor elhagyása (mivel az az oszlopokat tartalmazza)
# Az értékek átalakítása soronként listává
data = [list(map(float, line.strip().strip('"').split(','))) for line in lines[1:
⇔]]
# DataFrame létrehozása
df = pd.DataFrame(data, columns=cols)
# Adatok szétválasztása
X = df[['X_1', 'X_2']] # magyarázó változók
y = df['Y']
                        # eredményváltozó
# Alapvető statisztikák
print("\nAlapvető statisztikák:")
```

```
print(df.describe())
```

Alapvető statisztikák:

```
Y
                                X_2
                      X_1
count 50.000000 50.000000 50.000000
       6.130800 4.994800
                          5.082600
mean
       4.188834
                 2.909244 2.786417
std
       0.000000 0.520000 0.340000
min
25%
       1.335000
                 2.557500 2.612500
50%
      7.915000 4.945000 5.130000
                 7.552500
75%
      10.000000
                           7.927500
max
      10.000000
                 9.900000
                           9.400000
```

1 Becslések

1.1 Az együtthatók pontbecslése

1.1.1 Regressziós együtthatók pontbecslése

```
# Modell illesztése
model = LinearRegression()
model.fit(X, y)

# Együtthatók és tengelymetszet
print("\nRegressziós együtthatók:")
print(f"b_0 (tengelymetszet) = {model.intercept_:.4f}")
print(f"b_1 (küzdőképesség) = {model.coef_[0]:.4f}")
print(f"b_2 (gumimaci pontszám) = {model.coef_[1]:.4f}")
```

```
Regressziós együtthatók:

b_0 (tengelymetszet) = 4.1082

b_1 (küzdőképesség) = 1.0282

b_2 (gumimaci pontszám) = -0.6124
```

1.1.2 Standardizált regressziós együtthatók pontbecslése

```
# Standardizálás
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
y_scaled = scaler.fit_transform(y.values.reshape(-1, 1)).ravel()
# A StandardScaler() 2D adatot vár, ezért y-t átalakítjuk azzá, majd a_\(\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\til\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\te
```

```
# Standardizált együtthatók
print("\nStandardizált regressziós együtthatók:")
print(f"b_1* (küzdőképesség) = {model_scaled.coef_[0]:.4f}")
print(f"b_2* (gumimaci pontszám) = {model_scaled.coef_[1]:.4f}")
```

```
Standardizált regressziós együtthatók:
b_1* (küzdőképesség) = 0.7141
b_2* (gumimaci pontszám) = -0.4074
```

1.1.3 Lineáris modell:

OLS Lineáris regresszió

1.1.4 Eredmények értelmezése

Az együtthatók közvetlenül összehasonlíthatók, mert azonos skálán vannak.

Látható, hogy az X_1 változó hatása erősebb az Y-ra, mint X_2 -é, mert egységnyi változás X_1 változóban 0.7141 egységnyi hatással van Y-ra, míg egységnyi változás X_2 változóban csak 0.4074 hatással van Y-ra.

1.2 Előrejelzés készítése

```
# Új megfigyelés
X_new = pd.DataFrame({
    'X_1': [85],
    'X_2': [8.5]
})

# Előrejelzés
prediction = model.predict(X_new)

print("\nElőrejelzés eredménye:")
print(f"Input értékek:")
print(f"- Küzdőképesség (X_1) = {X_new['X_1'].values[0]}")
print(f"- Gumimaci pontszám (X_2) = {X_new['X_2'].values[0]}")
print(f"\nBecsült erő (Y) = {prediction[0]:.4f}")
```

```
Előrejelzés eredménye:
Input értékek:
- Küzdőképesség (X_1) = 85
- Gumimaci pontszám (X_2) = 8.5
Becsült erő (Y) = 86.2962
```

1.3 Konfidenciaintervallum az együtthatókra

1.3.1 Kód és eredmény

```
X_sm = sm.add_constant(X)
model_sm = sm.OLS(y, X_sm).fit()

# 95%-os konfidencia intervallumok az együtthatókra
conf_int = model_sm.conf_int(alpha=0.05)
print(model_sm.summary())
print("\n")
print(conf_int)
print("\nEgyütthatók 95%-os konfidencia intervallumai:")
print("-" * 50)
print("b_0 (tengelymetszet):")
print(f"[{conf_int.iloc[0,0]:.4f}, {conf_int.iloc[0,1]:.4f}]")
print("\nb_1 (küzdőképesség):")
print(f"[{conf_int.iloc[1,0]:.4f}, {conf_int.iloc[1,1]:.4f}]")
print("\nb_2 (gumimaci pontszám):")
print(f"[{conf_int.iloc[2,0]:.4f}, {conf_int.iloc[2,1]:.4f}]")
```

OLS Regression Results

Dep. Variabl	 Le:		Y OLS	-	 uared: R-squared:		0.708
Method:		Least Squa	res	•	56.88		
Date:		Wed, 04 Dec 2			(F-statistic)	:	2.81e-13
Time:		13:20:03		Log-Likelihood:			-111.32
No. Observations: Df Residuals:		50 47		AIC:			228.6
				BIC:			234.4
Df Model:			2				
Covariance 7	Гуре:	nonrob	ust				
========	coei	std err			P> t	[0.025	0.975]
const	4.1082	0.912				2.274	5.942
X_1	1.0282	0.114	!	9.041	0.000	0.799	1.257
X_2	-0.6124	0.119	-	5.158	0.000	-0.851	-0.374
Omnibus:		2.	==== 782	Durb:	in-Watson:		1.569
Prob(Omnibus):		0.249		Jarque-Bera (JB):			1.544
Skew:		-0.087		Prob(JB):			0.462
Kurtosis:		2.	157	Cond	. No.		21.6
=========			====	======			=======

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

1.3.2 Eredmények értelmezése

A konfidencia intervallumok jelentése: 95%-os valószínűséggel a valódi együttható értéke a megadott intervallumon belül van. Az intervallum szélessége a becslés pontosságát jelzi (minél szélesebb, annál bizonytalanabb a becslés).

Ha az intervallum nem tartalmazza a 0-t, akkor az adott változó hatása szignifikáns ($\alpha = 0.05$ mellett).

Következtetések: A változók szignifikánsak.

1.4 Előrejelzési intervallum

```
95%-os előrejelzési intervallum: [67.3380, 105.2545]
```

2 Illeszkedésdiagnosztika

2.1 Determinációs együttható (R²) és korrigált R²

2.1.1 Kód és eredmények

```
r2 = model_sm.rsquared
adj_r2 = model_sm.rsquared_adj

print("\nDeterminációs együtthatók:")
print("-" * 50)
print(f"R2 = {r2:.4f}")
print(f"Korrigált R2 = {adj_r2:.4f}")
print(f"Különbség = {(r2-adj_r2):.4f}")
```

Determinációs együtthatók:

```
R^2 = 0.7077
Korrigált R^2 = 0.6952
Különbség = 0.0124
```

2.1.2 Értelmezés

R² (Determinációs együttható):

A determinációs együttható értéke 0.7077, ami a modell által magyarázott variancia arányát mutatja.

Az R² a teljes varianciához viszonyítva fejezi ki a modell által megmagyarázott hányadot.

Értéke 0 és 1 közé esik, ahol 0 esetén a modell semmit nem magyaráz, 1 esetén tökéletes az illeszkedés. Az $R^2 = 1$ - (SSE/SST) képlettel számolható, ahol SSE a hiba szórásnégyzetösszeg, SST a teljes szórásnégyzetösszeg.

Korrigált R2:

A korrigált \mathbbm{R}^2 értéke 0.6952, ami figyelembe veszi a magyarázó változók számát is.

A korrigált $R^2 = 1 - (1-R^2)^*(n-1)/(n-k-1)$ képlettel számolható, ahol n a mintaelemszám (jelen esetben 50), k a magyarázó változók száma (jelen esetben 2).

Ez a mutató bünteti a felesleges magyarázó változók bevonását.

Értéke mindig kisebb vagy egyenlő, mint az R².

A két mutató jelentősége:

Az R^2 érték sosem csökken új változó bevonásakor, akkor sem, ha az valójában nem javít a modellen. A korrigált R^2 ezzel szemben csökkenhet, ha nem hasznos változót vonunk be a modellbe.

Modellek összehasonlítására ezért a korrigált R² alkalmasabb. Ha nagy a különbség a két érték között, az felesleges változók jelenlétére utalhat.

Értékelés:

A kapott $R^2 = 0.7077$ azt jelenti, hogy modellünk a variancia 70.77%-át magyarázza meg. A korrigált $R^2 = 0.6952$ érték a modell tényleges magyarázó erejét mutatja.

3 Modelldiagnosztika

3.1 Modelldiagnosztikai tesztek

3.1.1 Kód és eredmények

```
# F-próba statisztikái
f_stat = model_sm.fvalue
f_pvalue = model_sm.f_pvalue
df_reg = 2  # magyarázó változók száma
df_res = len(df) - df_reg - 1
f_crit = stats.f.ppf(0.95, df_reg, df_res)

print(f"F-statisztika: {f_stat:.4f}")
print(f"p-érték: {f_pvalue}")
print(f"Kritikus érték (F0.95({df_reg}, {df_res})): {f_crit:.4f}")
```

F-statisztika: 56.8848 p-érték: 2.808718819001525e-13 Kritikus érték (F0.95(2,47)): 3.1951

3.1.2 Értelmezés

Hipotézisek:

 H_0 : A modell nem magyarázza az eredményváltozó varianciáját $(X_1 = X_2 = 0)$ H_1 : A modell szignifikánsan magyarázza az eredményváltozó varianciáját $(X_1 \neq 0$ és/vagy $X_2 \neq 0)$ Szignifikanciaszint: $\alpha = 0.05$

F-próba eredménye:

F-statisztika értéke: 56.8848 p-érték: 2.808718819001525e-13 Kritikus érték (F0.95(2,47)): 3.1951

Döntés:

Az F-próba p-értéke (2.808718819001525e-13) kisebb, mint $\alpha=0.05$, ezért elvetjük a nullhipotézist 95%-os konfidenciaszinten.

Következtetés:

A kapott eredmények alapján a modellünk szignifikáns $\alpha = 0.05$ szignifikanciaszint mellett.

Ez azt jelenti, hogy a küzdőképesség és gumimaci pontszám együttesen magyarázzák szignifikánsan a mesehős erejét.

A modell alkalmas előrejelzésre és további elemzésre.

Az eredmény összhangban van a korábban számolt R² értékkel.

A teszt jelentősége:

Az F-próba a modell egészének magyarázó erejét vizsgálja.

Azt teszteli, hogy a magyarázó változók együttesen szignifikáns hatással vannak-e az eredményváltozóra.

Az F-próba a determinációs együttható nullától való eltérését vizsgálja.

A teszt a regressziós modell gyakorlati használhatóságáról ad információt.

3.2 Változók szignifikanciájának tesztelése

3.2.1 Kód és eredmények

```
# Kritikus érték meghatározása (kétoldali próba)
df_res = len(df) - df_reg - 1
t_crit = stats.t.ppf(0.975, df_res) # 0.975 a kétoldali próba miatt

print("\nKritikus érték:")
print(f"t_krit = ±{t_crit:.4f} (szabadságfok = {df_res})")
print("\nEgyütthatók tesztjei:")
print(model_sm.summary().tables[1])
```

```
Kritikus érték:
t_krit = ±2.0117 (szabadságfok = 47)
```

Együtthatók tesztjei:

	coef	std err	t	P> t	[0.025	0.975]
const	4.1082	0.912	4.506	0.000	2.274	5.942
X_1	1.0282	0.114	9.041	0.000	0.799	1.257
X_2	-0.6124	0.119	-5.158	0.000	-0.851	-0.374

3.2.2 Értelmezés

Hipotézispárok:

```
Tengelymetszet (b_0): H_0: b_0 = 0
```

 $H_1: b_0 \neq 0$

```
Küzdőképesség (b_1):
H_0: b_1 = 0
H_1: b_1 \neq 0
Gumimaci pontszám (b_2):
H_0: b_2 = 0
H_1: b_2 \neq 0
Eredmények:
Tengelymetszet (b_0):
|t-\text{\'ert\'ek}| = 4.506 > 2.0117 \text{ (t krit)}
Döntés: 5%-os szignifikanciaszinten elvetjük H_0-t
Küzdőképesség (b_1):
|t-\text{\'ert\'ek}| = 9.041 > 2.0117 \text{ (t krit)}
Döntés: 5%-os szignifikanciaszinten elvetjük H_0-t
Gumimaci pontszám (b_2):
|t-\text{\'ert\'ek}| = 5.158 > 2.0117 \text{ (t krit)}
Döntés: 5%-os szignifikanciaszinten elvetjük H_0-t
```

Következtetések:

A t-próba kritikus értéke ± 2.0117 (47 szabadságfok mellett, 5%-os szignifikanciaszinten).

A tengelymetszet $|\mathbf{t}|=4.506$ értéke meghaladja a kritikus értéket, ami azt jelenti, hogy amikor mindkét magyarázó változó 0, akkor a várható Y érték (4.1082) szignifikánsan különbözik nullától. A küzdőképesség $|\mathbf{t}|=9.041$ értéke jelentősen meghaladja a kritikus értéket, tehát erős szignifikáns hatást mutat.

A gumimaci pontszám $|\mathbf{t}|=5.158$ értéke szintén meghaladja a kritikus értéket, így ez a hatás is szignifikáns.

Mindhárom változó esetében elvetjük a nullhipotézist, ami azt jelenti, hogy mindegyik hatása szignifikáns.

3.3 Multikollinearitás vizsgálata

3.3.1 Kód és eredmények

```
VIF értékek:
Változó VIF
```

```
0 X_1 2.273206
1 X_2 2.273206
```

3.3.2 Értelmezés

Döntési szabály:

```
VIF > 5: erős multikollinearitás
VIF > 10: súlyos multikollinearitás
VIF \approx 1: nincs multikollinearitás
```

VIF érték:

A VIF érték: 2.273206

A VIF érték azt mutatja, hogy egy változó mennyire magyarázható a többi magyarázó változóval. VIF = $1/(1-R^2)$, ahol R^2 az adott változónak a többi magyarázó változóval vett determinációs együtthatója.

A kapott VIF értékek alapján nincs jelentős multikollinearitás a modellben.

Miért probléma a multikollinearitás?

A multikollinearitás növeli az együtthatók standard hibáját. Bizonytalanabbá teszi a paraméterek becslését. Nehézzé teszi az egyes változók egyedi hatásának elkülönítését. Instabillá teheti a modellt: kis változás az adatokban nagy változást okozhat az együtthatókban.

3.4 Hibatagok vizsgálata

3.4.1 Kód és eredmények

```
# Reziduálisok kiszámítása
residuals = model_sm.resid

# 1. Várható érték vizsgálata
resid_mean = np.mean(residuals)
resid_std = np.std(residuals, ddof=len(X_sm.columns))
t_stat = resid_mean / (resid_std/np.sqrt(len(residuals)))
p_value_mean = 2 * stats.t.cdf(-abs(t_stat), len(residuals)-1)

# 2. Normalitás vizsgálata (Shapiro-Wilk teszt)
shapiro_stat, shapiro_p = stats.shapiro(residuals)

# 3. Függetlenség vizsgálata (Durbin-Watson teszt)
dw_stat = sm.stats.stattools.durbin_watson(residuals)

# 4. Homoszkedaszticitás vizsgálata (Breusch-Pagan teszt)
bp_test = sm.stats.diagnostic.het_breuschpagan(residuals, X_sm)

# 5. Variancia becslése
```

```
variance = np.var(residuals, ddof=len(X_sm.columns))
print("\nHibatagok vizsgálata:")
print("-" * 50)
print("\nVárható érték vizsgálata:")
print(f"Atlag (varhato ertek becslese): {resid_mean}")
print(f"t-statisztika: {t_stat}")
print(f"p-érték: {p_value_mean}")
print("\nNormalitás vizsgálata (Shapiro-Wilk):")
print(f"Teszt statisztika: {shapiro_stat:.4f}")
print(f"p-érték: {shapiro_p:.4f}")
print("\nFüggetlenség vizsgálata (Durbin-Watson):")
print(f"DW statisztika: {dw_stat:.4f}")
print("\nHomoszkedaszticitás vizsgálata (Breusch-Pagan):")
print(f"Teszt statisztika: {bp_test[0]:.4f}")
print(f"p-érték: {bp_test[1]:.4f}")
print("\nVariancia becslése:")
print(f"Becsült variancia: {variance:.4f}")
plt.figure(figsize=(10, 6))
stats.probplot(residuals, dist="norm", plot=plt)
plt.title('Q-Q Plot a normalitás vizsgálatához')
plt.show()
Hibatagok vizsgálata:
Várható érték vizsgálata:
```

Variancia becslése:

Becsült variancia: 5.3478

3.4.2 Értelmezés

Várható érték vizsgálata:

 H_0 : $E(\varepsilon) = 0$ H_1 : $E(\varepsilon) \neq 0$

t-statisztika értéke: -1.3036e-15

p-érték: 1.0000

Döntés: 1.0000 > 0.05, tehát nem vetjük el H_0 -t

A lineáris regresszióban, ha a modell tartalmaz konstans tagot (interceptet), akkor a reziduálisok összege nulla lesz, és így az átlaguk is nulla, ezért ez nem túlzottan meglepő.

Normalitás vizsgálata (Shapiro-Wilk teszt):

 H_0 : A hibatagok normális eloszlásúak

 H_1 : A hibatagok nem normális eloszlásúak

Teszt statisztika: 0.9779

p-érték: 0.4678

Döntés: 0.4678 > 0.05, tehát nem vetjük el H_0 -t

Függetlenség vizsgálata (Durbin-Watson teszt):

 H_0 : A hibatagok függetlenek H_1 : A hibatagok autokorreláltak

DW statisztika: 1.5689

Kritikus értékek 5%-os szinten: dL = 1.46, dU = 1.63 (DW táblázatból:

https://www3.nd.edu/~wevans1/econ30331/durbin watson tables.pdf)

Döntés: 1.5689 beleesik az [1.46, 1.63] intervallumba, így nem tudunk egyértelmű döntést hozni

Homoszkedaszticitás vizsgálata (Breusch-Pagan teszt):

 H_0 : A hibatagok homoszkedasztikusak H_1 : A hibatagok heteroszkedasztikusak

Teszt statisztika: 1.3786

p-érték: 0.5019

Döntés: 0.5019 > 0.05, tehát nem vetjük el H_0 -t

Variancia becslése:

A hibatagok becsült varianciája: 5.3478

A variancia a reziduálisok szóródását méri a regressziós egyenes körül.

Összefoglaló értékelés:

A várható érték feltétel teljesül.

A normalitás feltétele teljesül.

A függetlenség feltételéről nem tudunk egyértelmű döntést hozni.

A homoszkedaszticitás feltétele teljesül (a szórás állandó).