CO-1 - Differential Calculus

1. If \emptyset be the angle between the tangent and radius vector at any point on the curve $r = f(\theta)$ then $tan\emptyset$ equals to
a) $\frac{dr}{ds}$ b) $r\frac{d\theta}{ds}$ c) $r\frac{d\theta}{dr}$ d) $\frac{d\theta}{dr}$
2. The angle between the radius vector and tangent for the vector $r = ae^{\theta cot\alpha}$ is
a) $tan\alpha$ b) $cot\alpha$ c) α d) θ
3. The radius of curvature of the curve $y = e^x$ at the point where it crosses the y-axis is
a) $2\sqrt{2}$ b) $\sqrt{2}$ c)2 d) $\frac{\sqrt{2}}{2}$
4)Curvature of a straight line is
a)∞ b)0 c)1 d)none of these
5)If the angle between the radius vector and the tangent is constant then the curve is
a) $r = acos\theta$ b) $r^2 = a^2cos^2\theta$ c) $r = ae^{b\theta}$ d) none of these
6) The curvature of the curve $x = acost$, $y = asint$ is
a) $\frac{\pi}{2}$ b) $\frac{a}{2}$ c) $\frac{\sqrt{\pi}}{2}$ d)a
7) The angle between the radius vector and tangent for the vector $r = a\theta$ is
a) θ b) $\frac{1}{\theta}$ c) r d) $\frac{a}{\theta}$
8) The radius of curvature to the curve $x = at^2$, $y = 2at$ at the origin is
a)2 <i>a</i> b) <i>a</i> c)2 d) $\frac{a}{2}$
9) The derivative of arc for the curve $y = f(x)$ is $\frac{ds}{dx} =$
a) $\sqrt{1 + (\frac{dy}{dx})^2}$ b)1 + $(\frac{dy}{dx})^2$ c) 1 + $(\frac{dx}{dy})^2$ d) $\sqrt{1 + (\frac{dx}{dy})^2}$

10) The derivative of arc for the curve x = f(y) is $\frac{ds}{dy} =$

a)
$$\sqrt{1 + (\frac{dy}{dx})^2}$$
 b) $1 + (\frac{dy}{dx})^2$ c) $1 + (\frac{dx}{dy})^2$ d) $\sqrt{1 + (\frac{dx}{dy})^2}$

11) The radius of curvature for the curve $x = e^t$, $y = e^{-t}$ at t=0 is _____

a)
$$\frac{1}{\sqrt{2}}$$
 b) $\sqrt{2}$ c)2 d) $\frac{1}{2}$

12. The curvature of a function f(x) is zero, which of the following functions could be f(x)?

a)
$$ax + b$$
 b) $ax^2 + bx + c$ c) $sinx$ d) $cosx$

13. The derivative of arc for the curve x = f(t), y = g(t) is $\frac{ds}{dt} =$

$$a)\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2} \qquad b)\frac{dx}{dt} + \frac{dy}{dt} \qquad c)\sqrt{\frac{dx}{dt} + \frac{dy}{dt}} \qquad d)\sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}}$$

14. The curvature of the function $f(x) = x^3 - x + 1$ at x = 1 is _____

a)
$$\frac{6}{5}$$
 b) $\frac{6}{5}$ c) $\frac{6}{5^{3/2}}$ d) $\frac{3}{5^{3/2}}$

15. The derivative of arc for the curve $r = f(\theta)$ is $\frac{ds}{d\theta} =$

a)
$$\sqrt{(r^2 + (\frac{dr}{d\theta})^2)}$$
 b) $\sqrt{(r^2 + (\frac{d\theta}{dr})^2)}$ c) $\sqrt{(1 + r^2(\frac{d\theta}{dr})^2)}$ d) $\sqrt{(1 + r^2(\frac{dr}{d\theta})^2)}$

16. The derivative of arc for the curve $\theta = f(r)$ is $\frac{ds}{dr} =$

a)
$$\sqrt{(r^2 + (\frac{dr}{d\theta})^2)}$$
 b) $\sqrt{(r^2 + ((\frac{d\theta}{dr})^2)}$ c) $\sqrt{(1 + r^2(\frac{d\theta}{dr})^2)}$ d) $\sqrt{(1 + r^2(\frac{dr}{d\theta})^2)}$

17. The radius of curvature for the curve y = f(x) is $\rho =$ _____

a)
$$\frac{(1+y_2^2)^{3/2}}{y_1}$$
 b) $\frac{(1+y_1^2)^{3/2}}{y_2}$ c) $\frac{(1+y_1^2)^{2/3}}{y_2}$ d) $\frac{(1-y_1^2)^{3/2}}{y_2}$

18) The radius of curvature for the curve x = f(t), y = g(t) is $\rho =$ _____

a)
$$\frac{(x'^2+y'^2)^{3/2}}{x'y''+y'x''}$$
 b) $\frac{(x'^2-y'^2)^{3/2}}{x'y''-y'x''}$ c) $\frac{(x'^2+y'^2)^{2/3}}{x'y''-y'x''}$ d) $\frac{(x'^2+y'^2)^{3/2}}{x'y''-y'x''}$

19) The radius of curvature for the curve $r = f(\theta)$ is $\rho =$

$$\mathrm{a)}\,\frac{(r^2+{r_1}^2)^{3/2}}{r^2+2{r_1}^2-r{r_2}} \qquad \mathrm{b)}\frac{(r^2+{r_1}^2)^{3/2}}{r^2-2{r_1}^2-r{r_2}} \qquad \mathrm{c)}\frac{(r^2-{r_1}^2)^{3/2}}{r^2+2{r_1}^2-r{r_2}} \qquad \mathrm{d)}\frac{(r^2+{r_1}^2)^{2/3}}{r^2+2{r_1}^2-r{r_2}}$$

- 20) If the curvature of a curve increases then, the radius of curvature
- a)increases b)decreases c)constant d)none of these
- 21) For the curve in polar form $\sqrt{\frac{r}{a}} = \sec(\theta/2)$ the value of $\frac{ds}{d\theta}$ is ______
- a) $rsec\theta$ b) $rsec(\theta/2)$ c) $rsec2\theta$ d) $rcosec(\theta/2)$
- 22) The angle between the radius vector $r = a(1 \cos\theta)$ and tangent to the vector is $\emptyset =$
- a) $\frac{\theta}{2}$ b) θ c)0 d) $\frac{\pi}{2}$
- 23. For the polar curve $r = f(\theta)$, the relation between θ and coordinates (x,y) is ______
- a) $tan\theta = \frac{x}{y}$ b) $1 + sin\theta = \frac{y}{x}$ c) $1 + sec^2\theta = \frac{y^2}{x^2}$ d) $1 + cos\theta = \frac{x}{y}$
- 24. For the curve $alog(\sec(\frac{x}{a}))$ the value of $\frac{ds}{dx}$ is_____
- a)cosØ b)secØ c) tanØ d)cotØ
- 25. If the parametric equation of the curve is given by $x = ae^t sint$ and $y = ae^t cost$ then $\frac{ds}{dt}$
- a) ae^t b) $2ae^t$ c) $\sqrt{3}ae^t$ d) $\sqrt{2}ae^t$
- 26) For the curve $y = x^2$ the value of $\frac{ds}{dx}$ at the point (1,1) is _____
- a) $\sqrt{5}$ b)5 c) $\sqrt{4}$ d)4
- 27) For the curve $r\theta = a$, $\frac{ds}{dr} =$
- a) $\sqrt{1-\theta^2}$ b) $\sqrt{1+\theta^2}$ c) $\sqrt{(1+\theta)^2}$ d) $\sqrt{(1-\theta)^2}$
- 28) For the curve = $a(1 \cos\theta)$, $\frac{ds}{d\theta}$ is _____
- a) $2a\cos\frac{\theta}{2}$ b) $2a\sin\frac{\theta}{2}$ c) $\sqrt{2}a\sin\frac{\theta}{2}$ d) $\sqrt{2}a\cos\frac{\theta}{2}$
- 29) For the curve $x^2 = y^3$, $\frac{ds}{dy}$ is _____
- a) $\sqrt{1 \frac{9y}{4a}}$ b) $\sqrt{1 + \frac{9y}{4a}}$ c) $\sqrt{1 \frac{9x}{4a}}$ d) $\sqrt{1 + \frac{9x}{4a}}$
- 30) The radius of curvature of the curve $y = x^2$ at the point (0,1) is _____

```
a)2 b) 1 c)1/2 d)1/4
```

31. Rolle's theorem can be applied to f(x) = x 2 in the interval

```
i) [1 2] ii) [0 1] iii) [-1 1] iv) none of these
```

- 32. The value of c got by applying Rolle's theorem to $f(x) = \sin x e \ x \ (0 \le x \le \pi)$ is
- i) $\pi/2$ ii) $\pi/4$ iii) $\pi/3$ iv) none of these
- 33. If f(x) is differentiable for all $x \in (-\infty, \infty)$ and if x = a and x = b(b > a) are two distinct real roots of f(x) = 0 then there exists
- i) at least one value of $x \in [a \ b]$ such that $f \ 0 \ (x) = 0$
- ii) at least one value of $x \in [-\infty \ a]$ such that $f \circ (x) = 0$
- iii) at least one value of $x \in [b \infty]$ such that f(0) = 0
- iv) none of these
- 34. If g(x) is differentiable for all $x \in (-\infty, \infty)$, g(a) = g(b) and if f(x) = g(x) + (x/2/2) then there exists
- i) at least one fixed point of f 0 (x) in [a b]
- ii) exactly one fixed point of f 0 (x) in [a b]
- iii) no fixed point of f 0 (x) in [a b]
- iv) none of these
- 35. If $f: R \to R$ is everywhere differentiable function such that f(0) = f(1) = f(2) then there exists
- i) at least two values of $x \in [0 \ 2]$ such that $f \circ (x) = 0$
- ii) exactly two values of $x \in [0 \ 2]$ such that $f \circ (x) = 0$
- iii) at most two values of $x \in [0 \ 2]$ such that $f \circ (x) = 0$
- iv) none of these
- 36. If $f: R \to R$ is such that it is differentiable in [1 3], continuous in [2 4] and f(1) = f(2) = f(3) = f(4) then there exists
- i) at least one value of $x \in (3.4)$ such that f(0.4) = 0
- ii) at least two values of $x \in (1 \ 3)$ such that $f \circ (x) = 0$
- iii) at least two values of $x \in (2.4)$ such that f(0)(x) = 0

- iv) none of these
- 37. If $f: R \to R$ is such that it is differentiable in [1 2], continuous in [3 4] and f(1) = f(2) = f(3) = f(4) then there exists
- i) at least one value of $x \in (1 \ 4)$ such that $f \circ (x) = 0$
- ii) at least three values of $x \in (1.4)$ such that f(0.x) = 0
- iii) at least two values of $x \in (1.4)$ such that f(0.x) = 0
- iv) none of these
- 38. If g(x) is everywhere differentiable function such that g(a) = g(b) = 0 and if f(x) = g(x) + x then there exists
- i) at least one value of $x \in (a b)$ such that $f \circ (x) = 1$
- ii)at least one value of $x \in (a b)$ such that $g \circ (x) = 3$
- iii) at least one value of $x \in (a \ b)$ such that $f \circ (x) = g \circ (x)$
- iv) none of these
- 39. If f(x) is everywhere differentiable function such that f(0) = 1, f(1) = 3 and if f(2) = 5 then there exists
- i) at least two values of $x \in (0.3)$ such that f(0.x) = 2
- ii) exactly two values of $x \in (0.3)$ such that f(0.0) = 2
- iii) at most two values of $x \in (0.3)$ such that f(0.0) = 2
- iv) none of these
- 40. If $f: R \to R$ is such that it is differentiable in [2 4], continuous in [3 5] and f(2) = 5, f(3) = 10, f(4) = 16 and f(5) = 25 then there exists
- i) at least one value of $x \in [4 5]$ such that f 0 (x) = 5
- ii) at least one value of $x \in [2\ 3]$ such that f(0)(x) = 5
- iii)at least one value of $x \in [3 \ 4]$ such that $f \circ (x) = 5$
- iv) none of these
- 41. If $f: R \to R$ is differentiable in [1 3] and if f(1) = 4, f(2) = 7, f(3) = 10 and f(4) = 13 then there exists i) at least two values of $x \in [1 4]$ such that f(0) = 3
- ii) at least three values of $x \in [1 \ 4]$ such that $f \circ (x) = 3$
- iii)at most one value of $x \in [1 \ 4]$ such that $f \circ (x) = 3$

- iv) none of these
- 42. The value of c got by applying Lagrange's mean value theorem to the function f(x) = x 2 in [0 4] is i) 1 ii) 2 iii) 3 iv) none of these 3
- 43. Lagrange's mean value theorem can be applied to the function f(x) = |x| in the interval
- i) $\begin{bmatrix} -1 & 1 \end{bmatrix}$ ii) $\begin{bmatrix} -2 & 1 \end{bmatrix}$ iii) $\begin{bmatrix} 1 & 2 \end{bmatrix}$ iv) none of these
- 44. The value of c got by applying Cauchy's mean value theorem for the functions f(x) = e x and g(x) = e x in [0 1] is
- i) 1/2 ii) 2/3 iii) 1/3 iv) none of these
- 45. Cauchy's mean value theorem can be applied to the functions $f(x) = x \cdot 3 2x \cdot 2$ and $g(x) = x \cdot 2$ in the interval
- i) [-1 1] ii) [-2 1] iii) [2 3] iv) none of these
- 46. If f, g : $R \rightarrow R$ are everywhere differentiable functions such that f 0 (x) 6= 0 in (a b), f(a) = g(a) and f(b) = g(b) then there exists
- i) at least one value of $x \in [a \ b]$ such that $f \ 0 \ (x) = g \ 0 \ (x)$
- ii) at most one value of $x \in [a \ b]$ such that $f \circ (x) = g \circ (x)$
- iii) no value of $x \in [a b]$ such that $f \circ (x) = g \circ (x)$
- iv) none of these
- 47. If f, g: R \rightarrow R are functions such that f(n) = g(n) for all $n \in \mathbb{N}$, f 0 (x) exists in [1 4] and g 0 (x) > 0 in [2 5] then there exists
- i) at least one value of $x \in [1 \ 5]$ such that $f \circ (x) = g \circ (x)$
- ii) at most one value of $x \in [1 \ 5]$ such that $f \circ (x) = g \circ (x)$
- iii) no value of $x \in [1 5]$ such that f 0 (x) = g 0 (x)
- iv) none of these
- 48. If $f: [1 \ 4] \rightarrow R$ is a differentiable function and if f(2) = f(3) then
- i) f(c) = 0 for some $c \in (1 \ 4)$ ii) f(c) = 0 for some $c \in (1 \ 2)$
- iii) f(c) = 0 for some $c \in (3.4)$ iv) none of these
- 49. If $f: [0 5] \rightarrow R$ is a differentiable function then
- i) f(c) = f(2) f(1) for some $c \in (1 \ 2)$
- ii) f(c) = f(3) f(1) for some $c \in (1 \ 3)$

iii)
$$f(c) = f(4) - f(1)$$
 for some $c \in (1 \ 4)$

iv) none of these

50. If f, g: $[0\ 3] \to R$ are differentiable functions such that g 0 (x) \ge 0 in (1 2) then 4

i) f (c) /g (c) =
$$(f(2) - f(1))/(g(2) - g(1))$$
 for some $c \in (1 \ 2)$

ii)(f (c)/g (c) =
$$(f(3) - f(2))/(g(3) - g(2))$$
 for some $c \in (2 3)$

iii)
$$f(c)/g(c) = (f(1) - f(0))/(g(1) - g(0))$$
 for some $c \in (0, 1)$

iv) none of these

Answer: 1) c 2)c 3)a 4)b 5)c 6)a 7) a 8)b 9) a 10)d 11)b 12)a 13)d

14)d 15)a 16) c 17)b 18)d 19)a 20)b 21)b 22)a 23)c 24)d 25)d 26)a 27)b 28) b 29)b 30) c 31) iii 32) ii 33) i 34) i 35) i 36) ii 37) i 38)i 39)i 40) ii 41) i 42) ii 43) iii 44) i 45) iii 46) i 47) i 48) i 49) i 50) iv