Machine Learning in Computational Biology (Fall 2023)

Assignment #2

Deadline: 23:59:59 17th November, 2023 (Delayed submission is not allowed for any reason)

Purpose: to enhance the learning outcomes for the topics in "**Features Encoding and Investigation**" and "**Protein Sequence Analysis**".

After the removal of homologous sequences in both positive and negative dataset using CD-Hit, in order to carry out a binary classification between ubiquitination and non-ubiquitination sites, please accomplish the tasks described as follows.

1. [Amino acid composition] (20 points)

Amino acid composition (AAC) is a common method used to transform protein sequences into 20-dimensional numeric vectors. As you learned from Chapter 2 in this class, please calculate AAC for each sequences in both positive and negative datasets; then, the comparison of AAC between positive (ubiquitination) and negative data (non-ubiquitination) can be displayed as the histogram shown below.

Please provide the histogram plot of AAC based on your training dataset using CD-Hit with 50% similarity.

2. [Sequence log and TwoSampleLogo] (20 points)

2.1 In order to observe the position-specific AAC for protein ubiquitination sites, the **WebLogo** tool can be utilized to create **frequency** and **entropy plots** of sequence logos for visualizing the potential amino acid motifs surrounding the modification sites (centered as position 0). Please provide the **frequency** and **entropy plots** of sequence logos on both positive and negative datasets.

2.2 In order to investigate the difference of position-specific AAC between ubiquitination and non-ubiquitination sites, please use the **TwoSampleLogo** to visualize potential amino acid motifs surrounding the modification sites as shown below.

3. [Positional Weighted Matrix] (60 points)

3.1 Please create the positional weighted matrix (PWM) for both positive and negative datasets, as shown below.

	-	-												
P	os. 🛭	-6 ₽	-5 ¢	-4 0	-3 +	-2 +	-1 0	0 +	+1 0	+2 .	+3 .	+4 .	+5 .	+6 .
	A @	0.23	0.01	0.11	0.01	0.08	0.09	0 .	0.01	0.01	0.01	0.04	0.05	0.04
	R .	0.14	0.02	0.02	0.02	0.1	0 0	0 0	0 0	0 0	0 0	0.03	0 @	0.02
	N a	0.07	0.01	0.08	0.04	0.02	0.02	0 0	0.01	0.02	0.01	0 0	0.04	0.02
	D ø	0.08	0.25	0.1	0.24	0.13	0.58	0 +	0.13	0.16		0.15	0.35	0.07
	C .	0 0	0 .	0 .	0 0	0.01	0 0	0 +	0 .	0 0	0 0	0 0	0.01	0.03
	G ₽	0.01	0.03 @	0.17	0.02	0.02	0.01	0 0	0.15 ↔	0.27	0.04	0.01	0.02	0.13
	E٠	0.12	0.2	0.18	0.17	0.14	0.09	0 42	0.09	0.07	0.09	0.12	0.07	0.05
	Q.	0.03	0.01 @	0.02	0.18	0.17 ₽	0.01 ₽	0 0	0.02	0.08	0.02	0.09	0.04	0.02
	Нø	0.01	0.08	0.01	0.07 -	0.02	0.02	0 0	0 0	0.03	0.01	0.02	0.03	0.02
	Ιφ	0.02	0.09	0 0	0.02	0.02	0.09 ₽	0 4	0.08	0.01	0.02	0.02	0 0	0.01
	L .	0.05	0.02	0.04	0.02	0.05	0.01	0 +	0.01	0.02	0.04	0.04	0.04	0.01
	K ₽	0.02	0.03	0 .	0 0	0 0	0 0	0 +	0.01	0 0	0.02	0.02	0.04	0.08
]	M₊	0.03	0.02 0	0.03	0 0	0 0	0 0	0 43	0.08	0.01	0.13	0.28	0 0	0.01
	F٠	0.02	0.02 @	0.02	0.04	0.02	0.01 ₽	0 4	0.01	0.02	0.02	0 0	0.13	0.28
	P 🔑	0.05	0.03 .	0.02	0.01	0.04 ₽	0 .	0 4	0.05	0.02	0.03	0.05	0.04	0.07
	S .	0.05	0.04	0.09	0.03	0 🕫	0.01 ₽	0 4	0.02	0.02	0.03	0.02	0.03	0.04
	T .	0.02	0.04	0.05	0.05	0.04	0 🕫	0 4	0.25 ₽	0.02	0.08	0.01	0.03	0.05
,	W .	0.01	0 .	0 0	0 .	0 .	0 .	0 +	0 .	0.11	0.28	0 0	0.01	0 0
	Y .	0 0	0.07	0.03	0.05	0.1	0.07	1 0	0.05	0.11	0.05	0.05	0.04	0.01
	V .	0.02	0.02 0	0.01	0 0	0.02	0 0	0 0	0.02	0.01	0.01	0.02	0 0	0.02 0

- 3.2 Please compare the PWM of positive dataset to that of negative dataset to identify the significantly differential represented amino acids in each position.
- 3.3 Can we use the PWM to be a predictive model for the prediction of ubiquitination sites? Explain why or why not?