11. Artificial neural networks and Clustering

Shabana K M

PhD Research Scholar Computer Science and Engineering

IIT Palakkad

5 December 2021

Recap

- Support vector machines
 - soft margin svm
 - the kernel trick
- Boosting
 - AdaBoost
 - Gradient Boosting
- Artificial neural networks
 - layer organization
 - representation power

Feed-forward computation: Example

$$\begin{bmatrix} w_{13} = 2 \\ w_{23} = -3 \\ w_{14} = 1 \\ w_{24} = 4 \end{bmatrix} w_{35} = 2 \\ w_{45} = -1$$

$$f(v) = \begin{cases} 1 & \text{if } v \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

What is the network output if the inputs are $x_1 = 1$ and $x_2 = 0$?

$$a_3 = w_{13} * x1 + w23 * x2$$

$$a_3 = 2 * 1 + -3 * 0 = 2$$

$$a_4 = 1 * 1 + 4 * 0 = 1$$

$$h_3 = f(a_3) = 1$$

$$h_4 = f(a_4) = 1$$

$$a_5 = w_{35} * h_3 + w_{45} * h_4$$

$$a_5 = 2 * 1 + -1 * 1 = 1$$

 $y = f(a_5) = 1$

• The size of the weight matrix would be m x n

Training neural networks: Key Idea

Find weights:

$$w^* = \arg\min_{w} \sum_{i=1}^{N} loss(\hat{y}_i, y_i)$$

where $\hat{y}_i = f(x; w)$ is the output of the neural network

■ Define a loss function, such as:

Squared loss
$$\sum_{i=1}^{N} \frac{1}{2} (\hat{y}_i - y_i)^2$$
 [Regression]
Cross-entropy loss $-\sum_{i=1}^{N} y_i log(\hat{y}_i)$ [Classification]

Use gradient descent

$$w_{t+1} = w_t - \eta \frac{\partial E}{\partial w_t}$$

where η is the learning rate and E is the error/loss

Training neural networks

- Training neural networks is a non-convex optimization problem
 - could run into local minima during training

Training neural networks

- First perform a forward pass
- Update weights with a backward pass

$$f(x,y,z) = (x+y)z$$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want:
$$\frac{\partial f}{\partial x}$$
, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$

Backpropagation: a simple example

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Backpropagation: a simple example

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Backpropagation: a simple example

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Backpropagation: a simple example

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Backpropagation: a simple example

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Goal: minimize the difference between neural network's output and the target output – defined by the loss function $J(\theta)$ $\theta = [\theta_1 \ \theta_2]$

- define the relationship between the cost function and each weight (given by partial derivative)
 - represents the performance change with respect to each parameter
- update these weights in an iterative process using gradient descent

•
$$\frac{\partial J(\theta)}{\partial \theta_1} = ?$$
 • $\frac{\partial J(\theta)}{\partial \theta_2} = ?$

Chain rule:
$$\frac{\partial}{\partial z} f(g(z)) = \frac{\partial f}{\partial g} \frac{\partial g}{\partial z}$$

Applying chain rule to solve for $\frac{\partial J(\theta)}{\partial \theta_2}$

$$\frac{\partial J(\theta)}{\partial \theta_2} = \left(\frac{\partial J(\theta)}{\partial a^{(3)}}\right) \left(\frac{\partial a^{(3)}}{\partial z^{(3)}}\right) \left(\frac{\partial z^{(3)}}{\partial \theta_2}\right)$$

Using a similar logic, we have

$$\frac{\partial J(\theta)}{\partial \theta_1} = \left(\frac{\partial J(\theta)}{\partial a^{(3)}}\right) \left(\frac{\partial a^{(3)}}{\partial z^{(3)}}\right) \left(\frac{\partial z^{(3)}}{\partial a^{(2)}}\right) \left(\frac{\partial a^{(2)}}{\partial z^{(2)}}\right) \left(\frac{\partial z^{(2)}}{\partial \theta_1}\right)$$

$$J(\theta) = \frac{1}{2}((y_1 - a_1^{(3)})^2 + (y_2 - a_2^{(3)})^2)$$

The derivative chain for the blue path is:

$$\Big(\frac{\partial J(\theta)}{\partial \textbf{a}_{1}^{(3)}}\Big)\Big(\frac{\partial \textbf{a}_{1}^{(3)}}{\partial \textbf{z}_{1}^{(3)}}\Big)\Big(\frac{\partial \textbf{z}_{1}^{(3)}}{\partial \textbf{a}_{1}^{(2)}}\Big)\Big(\frac{\partial \textbf{a}_{1}^{(2)}}{\partial \textbf{z}_{1}^{(2)}}\Big)\Big(\frac{\partial \textbf{z}_{1}^{(2)}}{\partial \theta_{11}^{(1)}}\Big)$$

The derivative chain for the orange path is:

$$\left(\frac{\partial J(\theta)}{\partial a_2^{(3)}}\right) \left(\frac{\partial a_2^{(3)}}{\partial z_2^{(3)}}\right) \left(\frac{\partial z_2^{(3)}}{\partial a_1^{(2)}}\right) \left(\frac{\partial a_1^{(2)}}{\partial z_1^{(2)}}\right) \left(\frac{\partial z_1^{(2)}}{\partial \theta_{11}^{(1)}}\right)$$

Combining these two, we get the total expression for $\frac{\partial J(\theta)}{\partial \theta_{11}^{(1)}}$

$$\frac{\partial J(\theta)}{\partial \theta_{11}^{(1)}} = \left(\frac{\partial J(\theta)}{\partial a_{1}^{(3)}}\right) \left(\frac{\partial a_{1}^{(3)}}{\partial z_{1}^{(3)}}\right) \left(\frac{\partial z_{1}^{(3)}}{\partial a_{1}^{(2)}}\right) \left(\frac{\partial a_{1}^{(2)}}{\partial z_{1}^{(2)}}\right) \left(\frac{\partial z_{1}^{(2)}}{\partial \theta_{11}^{(1)}}\right) + \left(\frac{\partial J(\theta)}{\partial a_{2}^{(3)}}\right) \left(\frac{\partial a_{2}^{(3)}}{\partial z_{2}^{(3)}}\right) \left(\frac{\partial a_{1}^{(2)}}{\partial z_{1}^{(2)}}\right) \left(\frac{\partial z_{1}^{(2)}}{\partial \theta_{11}^{(1)}}\right) + \left(\frac{\partial J(\theta)}{\partial a_{2}^{(3)}}\right) \left(\frac{\partial a_{2}^{(3)}}{\partial z_{1}^{(2)}}\right) \left(\frac{\partial a_{1}^{(2)}}{\partial z_{1}^{(2)}}\right) \left(\frac{\partial z_{1}^{(2)}}{\partial z_{1}^{(2)}}\right) \left(\frac{\partial z_{1}^{(2$$

Limitations of neural networks

- requires large training dataset
- prone to overfitting
- model is not interpretable
- size and structure chosen by trial and error

Clustering

- the organization of unlabeled data into similarity groups called clusters
 - points within each cluster are similar to each other
 - points from different clusters are dissimilar
- unsupervised learning technique
 - no target labels available
- data points are usually in a high-dimensional space and similarity defined using a distance measure
 - Euclidean, cosine, Jaccard, edit distance, etc.
- helps to find intrinsic structures within data

Clustering: Example

Clustering: Applications

- cluster customers based on their purchase histories
- group documents based on their content
- image segmentation partitioning an image into multiple segments

Types of clustering

- Hierarchical find successive clusters using previously established clusters
 - can be top-down or bottom-up
 - 1 Agglomerative: begin with each element as a separate cluster and merge them into successively larger clusters
 - Divisive: begin with the whole dataset and successively break it down into smaller clusters
 - Partitional decomposes a data set into a set of disjoint clusters

 all clusters are determined at once
 - Bayesian generate a posteriori distribution over the collection of all partitions of data

What do we need for clustering

- a distance measure: similarity/dissimilarity measure
- criterion function to evaluate a clustering
 - Intra-cluster cohesion(compactness): measures the closeness of the data points to the cluster centroid
 - Inter-cluster separation(isolation): different cluster centroids should be far away from one another

- number of clusters
 - fixed by the user
 - determined from the dataset based on some criterion
- clustering algorithm

References

- 1 https://cs231n.github.io/neural-networks-1/
- 2 http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture04.pdf
- 3 https://www.cs.toronto.edu/~jlucas/teaching/csc411/lectures/tut5_ handout.pdf
- 4 http://www.mit.edu/~9.54/fall14/slides/Class13.pdf

Thanks Google for the pictures!