SÉQUENCE 1 : Suites Arithmétiques

Exercice 1

Une suite étant donnée, calculer le terme demandé.

- 1. Soit (u_n) une suite définie pour tout entier $n \in \mathbb{N}$ par $u_n = 5n 8$. Calculer u_0 .
- 2. Soit (u_n) une suite définie pour tout entier $n \in \mathbb{N}$ par $u_n = \frac{-2n-3}{4n+7}$. Calculer u_8 .
- 3. Soit (u_n) une suite définie pour tout entier $n \in \mathbb{N}$ par $u_n = -4n^2 5n + 3$. Calculer u_5 .
- 4. Soit (u_n) une suite définie pour tout entier $n \in \mathbb{N}$ par $u_n = \frac{-2n-2}{3n+6}$. Calculer u_4 .

Exercice 2

Une suite étant donnée, calculer le terme demandé.

- 1. Soit (u_n) une suite définie par $u_0 = 9$ et pour tout entier $n \in \mathbb{N}$ par $u_{n+1} = u_n \times 3$. Calculer u_4 .
- 2. Soit (u_n) une suite définie par $u_0 = 5$ et pour tout entier $n \in \mathbb{N}$ par $u_{n+1} = 5u_n 2$. Calculer u_6 .
- 3. Soit (u_n) une suite définie par $u_0 = 7$ et pour tout entier $n \in \mathbb{N}$ par $u_{n+1} = u_n 10$. Calculer u_9 .
- 4. Soit (u_n) une suite définie par $u_0 = -5$ et pour tout entier $n \in \mathbb{N}$ par $u_{n+1} = -5 + u_n^2$. Calculer u_3 .

Exercice 3

Pour préparer une course, un athlète décide de s'entraîner de façon progressive.

Il commence son entraı̂nement au jour 0 par un petit footing d'une longueur de $3~000~\mathrm{m}$.

Au jour 1, il court 3 150 m. Au jour 2, il court 3300 m puis ainsi de suite en parcourant chaque jour 150 m de plus que la veille.

On note u_n la distance parcourue au jour n d'entraînement.

- 1. Calculer u_3 et u_4 .
- 2. Quelle est la nature de la suite (u_n) ? Or donnera son premier terme et sa raison.
- 3. Exprimer u_{n+1} en fonction de u_n .
- 4. Exprimer u_n en fonction de n.

Exercice 4

Déterminer l'expression, en fonction de n, de la suite arithmétique définie par

1.
$$\begin{cases} u_0 = 7 \\ u_{n+1} = u_n - 4 \end{cases}$$

2.
$$\begin{cases} u_1 = 5 \\ u_{n+1} = u_n + 3 \end{cases}$$

3.
$$\begin{cases} u_4 = 35 \\ u_{n+1} = u_n + 7 \end{cases}$$