Problem Set 17: 代数系统引论

提交截止时间: 5月6日10:00

Problem 1

设S为n元集,问

- (1) 集合 S 上可以定义多少个不同的二元运算?
- (2) 其中有多少个二元运算是可交换的?
- (3) 其中有多少个二元运算是幂等的?
- (4) 其中有多少个二元运算是既不可交换又不幂等的?

Problem 2

设 $A = \{0, 1\}, S = A^A$,

- (1) 试列出 S 中的所有元素;
- (2) 给出 S 上函数复合运算的运算表,并指出单位元、零元和每一个可逆元素的逆元.

Problem 3

设 $A = \{a, b, c\}, a, b, c \in \mathbb{R}$, 能否确定 a, b, c 的值使得

- (1) A 对普通加法封闭?
- (2) A 对普通乘法封闭?

Problem 4

判断下列集合对所给的二元运算是否封闭, 并说明理由.

(1) 非零整数集合 ℤ* 和普通的除法运算.

- (2) 全体 $n \times n$ 实可逆矩阵集合关于矩阵加法和乘法运算, 其中 $n \ge 2$.
- (3) 正实数集合 \mathbb{R}^+ 和 \circ 运算, 其中 \circ 运算定义为:

$$\forall a, b \in \mathbb{R}^+, a \circ b = ab - a - b$$

(4) $\mathbb{S} = \{x | x = \ln n, n \in \mathbb{Z}^+\}$ 关于普通的加法和乘法运算.

Problem 5

 \mathbb{R} 为实数集, 定义以下 4 个函数 f_1, f_2, f_3, f_4 . $\forall x, y \in \mathbb{R}$ 有

$$f_1((x,y)) = x \cdot y,$$
 $f_2((x,y)) = x - y,$
 $f_3((x,y)) = \max(x,y),$ $f_4((x,y)) = |x - y|.$

- (1) 判断上述二元运算是否为可交换, 可结合, 幂等的.
- (2) 求上述二元运算的单位元, 零元以及每一个可逆元素的逆元.
- (3) 设 $A = \{a, b\}$, 试给出 A 上一个不可交换, 也不可结合的二元运算.

Problem 6

设 $S = \{1, 2, ..., 10\}$, 问下面定义的运算能否与 S 构成代数系统 $\langle S, * \rangle$? 如果能, 则说明 * 运算是否满足交换律、结合律, 并给出单位元和零元.

- (1) $x * y = \gcd(x, y), \gcd(x, y)$ 是 x 与 y 的最大公约数.
- (2) x * y = lcm(x, y), lcm(x, y) 是 x 与 y 的最小公倍数.
- $(3) x * y = \max(x, y).$
- (4) x * y = 质数 p 的个数, 其中 $x \le p \le y$.

Problem 7

判断集合 $A = \{x \mid x \in \mathbb{N} \land x \in \mathbb{N} \land x \in \mathbb{N} \}$ 能否构成代数系统 $V = \langle \mathbb{N}, + \rangle$ 的子代数, 并说明理由.

(本题请参考并自学教材【屈婉玲】pp.174-175 关于子代数的部分)

Problem 8

设集合 $A = \{a, b, c, d\}$ 上的一个二元运算。 如下表所示:

(1) 说明运算是否可结合? 为什么?

0	a	b	c	d
a	a	b	c	d
b	b	a	d	d
c	c	d	a	d
d	d	d	d	d

(2) 求单位元与零元.

Problem 9

设集合 $A=\{a,b,c\}$, \circ 是 A 上的二元运算,在 $V=\langle A,\circ\rangle$ 的运算表中,除了 $a\circ b=a$ 以外,其 余运算结果都等于 b. 试给出 $V=\langle A,\circ\rangle$ 的两个非恒等映射的自同态.

(自同态: 如果映射 f 是 V 到 V 的,则称 f 为自同态.)