

Politecnico di Milano Fisica Sperimentale I

a.a. 2014-2015 - Scuola di Ingegneria Industriale e Informatica

I Appello - 29/06/2015

Giustificare le risposte e scrivere in modo chiaro e leggibile. Sostituire i valori numerici solo alla fine, dopo aver ricavato le espressioni letterali. Scrivere in stampatello nome, cognome, matricola e firmare ogni foglio.

- 1. Un carico formato da due slitte di massa m_1 =25 Kg e m_2 =10 Kg, collegate da una fune, viene trainato sul piano orizzontale mediante una fune collegata ad m_2 ed inclinata di un angolo θ =30° rispetto all'orizzontale. I coefficienti di attrito statico e dinamico tra le masse e il piano sono μ_s = 0.3 e μ_d = 0.1.
 - a. Quanto vale il valore minimo della forza F affinché il sistema si metta in moto?
 - b. Quanto vale in tale condizione la tensione della fune di collegamento tra le due masse?
 - Si supponga ora che il sistema sia messo in moto con una forza pari a quella trovata al punto a:
 - c. Si determini il modulo delle forze di attrito agenti su m₁ e m₂ e l'accelerazione con la quale si muove il sistema.
 - d. Quanto vale il lavoro dissipato per effetto dell'attrito dopo t = 10 s?

 $[F_{min}=102 \text{ N}; T=73.57 \text{ N}; a=1.7 \text{ m/s}^2; W=2.5 \text{ kJ}]$

- 2. Un pendolo è composto da un'asta rigida di lunghezza L=1 m di massa $m_{\rm asta}=1$ Kg. Un estremo dell'asta è incernierato ad un punto fisso, mentre all'altro estremo è collegata una massa M=1 Kg. Partendo da fermo da una posizione nella quale forma un angolo $\theta=45^{\circ}$ con la verticale, quando si trova nel punto più basso della sua traiettoria viene colpito in maniera totalmente anelastica da un proiettile di massa $m_p=100$ g, che si conficca nel punto medio dell'asta. Determinare:
 - a. la velocità angolare del pendolo un istante prima dell'urto.
 - b. la velocità del proiettile affinché in seguito all' urto il pendolo si fermi;
 - c. l'impulso, in modulo direzione e verso, fornito dalla cerniera durante l'urto;
 - d. l'energia meccanica persa durante l'urto.

 $[\omega = 2,56 \text{ rad/s}; v_p = 68 \text{ m/s}; \Delta P = -2.96 \text{ Ns}; E_{diss} = 235,6 \text{ J}]$

3. Si consideri il carrello mostrato in figura, ottenuto congiungendo due cilindri omogenei di massa m_1 e m_2 e raggio R mediante una sbarra omogenea rigida di lunghezza L e massa m_A . I cilindri sono liberi di ruotare attorno al proprio asse. Il carrello è disposto su di un piano inclinato scabro con coefficiente di attrito statico μ_s e durante la discesa i due cilindri rotolano senza strisciare. Si determinino $[I=1/2\ mr^2]$:

 m_1,R

 m_1

- a. la reazione vincolare che il piano esercita su ognuno dei due cilindri;
- b. l'accelerazione del centro di massa a_{cm};
- c. il minimo valore del coefficiente μ_s che permette ad entrambi i cilindri di rotolare senza strisciare.

 $[N_1=(m_1+1/2m_A)g\cos\alpha; N_2=(m_2+1/2m_A)g\cos\alpha; a_{cm}=(m_1+m_2+m_A)g\sin\alpha/(3/2m_1+3/2m_2+m_A); Fatt_{1,2}<\mu_s N_{1,2}]$

- 4. In un contenitore adiabatico a pareti rigide sono poste $n_1 = 2$ mol di O_2 e $n_2 = 4$ mol di He, nello stato iniziale p_0, V_0, T_0 . Il gas subisce una espansione per mezzo di un pistone che lo porta ad una pressione finale $p_1 = p_0/5$. Determinare volume finale V_1 , temperatura finale T_1 , variazione di energia interna ΔU del gas e la corrispondente variazione di entropia ΔS
 - a. nel caso in cui l'espansione sia libera;
 - b. nel caso in cui l'espansione avvenga contro una pressione esterna costante $p_{\text{ext}} = p_0/5$. In tale caso si esprima ΔU in funzione della temperatura iniziale T_0 .

[Espansione libera V_{fin} =5V0; ΔS = 80.24 J/K; Espansione adiabatica irreversibile T_{fin} =0.71 T_0 ; ΔU = -26.5 T_0 J =-W; ΔS =31.86 J/K]