Physics 245 Homework #5

Nathan Solomon

November 3, 2024

Problem 0.1.

$$\exp\left(\frac{iH_0t}{\hbar}\right)a\exp\left(-\frac{iH_0t}{\hbar}\right) = \exp\left(\frac{iH_0t}{\hbar}\right)\left(\exp\left(-\frac{iH_0t}{\hbar}\right)a + \left[a,\exp\left(-i\omega t\left(a^{\dagger}a + \frac{1}{2}\right)\right)\right]\right)$$
$$= a + \exp\left(i\omega t a^{\dagger}a\right) \cdot \sum_{n=0}^{\infty} \left[a, \frac{(-i\omega t a^{\dagger}a)^n}{n!}\right]$$

Problem 0.2.

See the jupyter notebook below.

Problem 0.3.

notebook

November 3, 2024

```
[3]: import qutip as qt import matplotlib.pyplot as plt import numpy as np
```

```
[50]: # Problem 2
      N = 10
      m = 1
      omega = 2 * np.pi
      hbar = 1
      def coherent state(alpha):
          return qt.displace(N, alpha) * qt.basis(N, 0)
      a = qt.destroy(N)
      x = np.sqrt(hbar / 2 / m / omega) * (a + a.dag())
      p = (-1j) * np.sqrt(hbar * m * omega / 2) * (a - a.dag())
      for alpha in [1, 1j, 1+1j]:
          Psi = coherent_state(alpha)
          expected_x = qt.expect(x, Psi)
          expected_p = qt.expect(p, Psi)
          plt.scatter(expected_x, expected_p)
          plt.annotate(f"$\\mathcal {{ D }} ({alpha})| 0 \\rangle$", [expected_x,__
       ⇔expected_p])
      # Don't call plt.show() yet, because we want to see how these states change in_{f L}
       \hookrightarrow time
      def U(t):
          return (-1j * omega * t * (a.dag() * a + qt.qeye(N) / 2.)).expm()
      for alpha in [1, 1j, 1+1j]:
          expected_x = []
          expected_p = []
          for t in np.linspace(0, 0.2, 20):
              Psi = U(t) * coherent_state(alpha)
              expected_x.append(qt.expect(x, Psi))
              expected_p.append(qt.expect(p, Psi))
          plt.plot(expected_x, expected_p)
      plt.xlabel("Expected position")
```

```
plt.ylabel("Expected momentum")
plt.show()
```


[]:

Phys 245 Quantum Computation Homework 5

1. [30] Filling in the details. In class, we derived the displacement operator by first transforming the driven harmonic oscillator Hamiltonian, $H=\hbar\omega\left(\hat{a}^{\dagger}\hat{a}+\frac{1}{2}\right)+\hbar\beta\sin(\omega t+\phi)(\hat{a}+\hat{a}^{\dagger})$ into the interaction picture with respect to the bare harmonic oscillator Hamiltonian, $H_o=\hbar\omega\left(\hat{a}^{\dagger}\hat{a}+\frac{1}{2}\right)$. Prove the following identities which we used in class:

a. [15]
$$e^{\frac{iH_0t}{h}} \hat{a} e^{-\frac{iH_0t}{h}} = \hat{a} e^{-\iota\omega t}$$

b. [15] $e^{\frac{iH_0t}{h}} \hat{a}^{\dagger} e^{-\frac{\iota H_0t}{h}} = \hat{a}^{\dagger} e^{\iota\omega t}$

- 2. [40] Displacement operator via QuTip. For this problem, use QuTip to make a coherent state via the displacement operator (it's a built-in operator) acting on the vacuum state as $|\alpha\rangle = \widehat{D}(\alpha)|0\rangle$.
 - a. [15] Plot the expectation value of position and momentum in the (x,p) plan for the following states:

i.
$$\alpha = 1$$

ii. $\alpha = i$
iii. $\alpha = 1 + i$

b. [25] Now, define a Python function that that takes time, t, as its input and returns the time evolution operator a time t for the Hamiltonian $H_o = \hbar\omega\left(\hat{a}^{\dagger}\hat{a} + \frac{1}{2}\right)$. Use that function to calculate $|\alpha(t)\rangle = \hat{U}(t)|\alpha\rangle$ for various times during the oscillation period of the oscillator. Plot the expectation value of position and momentum in the (x,p) plane for the following states (you can choose m = 1 and $\omega = 2\pi$ for simplicity):

```
i. \alpha = 1
ii. \alpha = i
iii. \alpha = 1 + i
```

- 3. [40] "Ramsey" spectroscopy with a QHO?! Suppose at t = 0 a vacuum state is displaced by a displacement oscillator with $\alpha=1$. Then after a variable time t_w a second displacement operator with $\alpha=-1$ is applied. For m = 1 kg, $\omega=2\pi$ rad/s do the following (HINT: For this problem I recommend using QuTiP and the time evolution operator you constructed in Prob. 2.)
 - a. [20] Plot the probability of being in the vacuum state as a function of t_w .
 - b. [10] Fix t_w = 0.5 and make a plot of the oscillator's evolution as a function of time. Make sure to include the effects of the displacement operator, however, you may assume the displacements happen instantaneously.
 - c. [10] Fix $t_w = 1$ and make a plot of the oscillator's evolution as a function of time. Make sure to include the effects of the displacement operator, however, you may assume the displacements happen instantaneously.

4.	No more Harmonio	problems. COscillators	Just	study	for	the	midterm	on	Friday!	lt	will	cover	Qubits	and