

General information

Designation

Ochroma spp. (ULD) L

Tradenames

FLEXICORE, CONTOURKORE, PRO-BALSA

Typical uses

Cores for sandwich structures; model building; floatation; insulation; packaging.

Composition overview

Compositional summary

Cellulose/Hemicellulose/Lignin/12%H2O

Radial shrinkage (green to oven-dry)

Tangential shrinkage (green to oven-dry)

Volumetric shrinkage (green to oven-dry)

Cellulose/Hemicellulose/Lignin/12%H2O							
Material family Base material	Natural Wood (tro	al)					
Renewable content	100	, p. o	α.,	%			
Composition detail (polymers and natural materials)							
Wood	100			%			
Price							
Price	* 3.04	-	4.88	USD/lb			
Physical properties							
Density	0.00325	-	0.00397	lb/in^3			
Relative density	0.05	-	0.075				
Cells/volume	8.19e6	-	1.64e7	/in^3			
Anisotropy ratio	10	-	30				
Mechanical properties							
Young's modulus	0.305	-	0.363	10^6 psi			
Yield strength (elastic limit)	* 0.74	-	0.914	ksi			
Tensile strength	1.23	-	1.52	ksi			
Elongation	* 1.09	-	1.34	% strain			
Compressive strength	0.435	-	0.725	ksi			
Compressive stress @ 25% strain	0.725	-	1.09	ksi			
Flexural modulus	0.232	-	0.29	10^6 psi			
Flexural strength (modulus of rupture)	1.39	-	1.71	ksi			
Shear modulus	* 0.0218	-	0.0276	10^6 psi			
Shear strength	* 0.247	-	0.305	ksi			
Bulk modulus	* 0.00435	-	0.0058	10^6 psi			
Poisson's ratio	* 0.35	-	0.4				
Shape factor	5.5						
Hardness - Vickers	* 0.08	-	0.1	HV			
Hardness - Brinell	* 0.508	-	0.624	ksi			
Hardness - Janka	* 18	-	22.5	lbf			
Fatigue strength at 10^7 cycles	* 0.421	-	0.508	ksi			
Mechanical loss coefficient (tan delta)	* 0.0177	-	0.0218				
Densification strain	0.75	-	0.85				
Differential shrinkage (radial)	* 0.02	-	0.03	%			
Differential shrinkage (tangential)	* 0.04	-	0.05	%			
	* ^ ^		_	0.4			

* 3.2

4

6.8

7

4.8

8.3

%

%

%

Balsa (ochroma spp.) (0.09-0.11) (I)

SIEDUPIACK						
Work to maximum strength	* 0.0604	-	0.0737	ft.lbf/in^3		
Impact & fracture properties						
Fracture toughness	0.182	-	0.273	ksi.in^0.5		
Thermal properties						
Glass temperature	171	-	216	°F		
Maximum service temperature	248	-	284	°F		
Minimum service temperature	* -99.4	-	-9.4	°F		
Thermal conductivity	* 0.0347	-		BTU.ft/hr.ft^2.°F		
Specific heat capacity	0.396	-		BTU/lb.°F		
Thermal expansion coefficient	* 1.11	-	6.11	μstrain/°F		
Electrical properties						
Electrical resistivity	* 6e13	-	2e14	µohm.cm		
Dielectric constant (relative permittivity)	* 1.71	-	2.09			
Dissipation factor (dielectric loss tangent)	* 0.011	-	0.013			
Dielectric strength (dielectric breakdown)	125	-	126	V/mil		
Optical properties						
Transparency	Opaque					
	· ·					
Magnetic properties						
Magnetic type	Non-mag	gneti	IC			
Bio-data						
RoHS (EU) compliant grades?	✓					
Food contact	Yes					
Durability						
Water (fresh)	Limited	use				
Water (salt)	Limited	Limited use				
Weak acids	Limited	Limited use				
Strong acids	Unacceptable					
Weak alkalis	Limited use					
Strong alkalis	Unacceptable					
Organic solvents	Acceptable					
Oxidation at 500C	Unacceptable					
UV radiation (sunlight)	Good					
Flammability	Highly flammable					
Primary production energy, CO2 and water						
Embodied energy, primary production	* 4.99e3	-		BTU/lb		
CO2 footprint, primary production	* 0.574	-	0.633	lb/lb		
NOx creation	0.00257	-	0.00284	lb/lb		
SOx creation	0.00656	-	0.00725	lb/lb		
Water usage	* 1.84e4	-	2.03e4	in^3/lb		
Processing energy, CO2 footprint & water						
Coarse machining energy (per unit wt removed)	* 363	_	401	BTU/lb		
Coarse machining CO2 (per unit wt removed)	* 0.0634	_	0.07	lb/lb		
Fine machining energy (per unit wt removed)	* 1.79e3	-	1.98e3	BTU/lb		
Fine machining CO2 (per unit wt removed)	* 0.313	_	0.346	lb/lb		
Grinding energy (per unit wt removed)	* 3.38e3	_	3.74e3	BTU/lb		
Childrig chordy (per drift we removed)	0.0000	_	J. 1 -TGU	D 1 3/10		

Balsa (ochroma spp.) (0.09-0.11) (I)

Grinding CO2 (per unit wt removed)	* 0.59	-	0.652	lb/lb
Recycling and end of life				
Recycle	×			
Recycle fraction in current supply	8.55	-	9.45	%
Downcycle	1			
Combust for energy recovery	1			
Heat of combustion (net)	* 8.49e3	-	9.16e3	BTU/lb
Combustion CO2	* 1.69	-	1.78	lb/lb
Landfill	1			
Biodegrade	✓			
Geo-economic data for principal component				
Principal component	Balsa			
Annual world production	8.98e8	-	9.94e8	ton/yr
Eco-indicators for principal component				
Eco-indicator 95	2.99			millipoints/lb
EPS value	62.7	_	69.3	•

Notes

Warning

All woods have properties which show variation; they depend principally on growth conditions and moisture content.

Links

ProcessUniverse

Reference

Shape