Семинар по теме "Интегралы с малым параметром"

8 февраля 2023 г.

Задача 1

Найдём асимптотики интеграла при $x\gg 1$ и $x\ll 1$:

$$I(x) = \int_0^x \frac{1 - \cos t}{t} dt$$

Решение

Подынтегральная функция аналитична в нуле, поэтому при $x \ll 1$ можно просто разложить $\cos t$ в ряд Тейлора; имеем:

$$I(x) \approx \int_{0}^{x} \frac{t^{2}/2}{t} dt = \frac{1}{4}x^{2}$$

При $x\gg 1$, для интеграла важна вся область интегрирования; это связано с тем, что при $x\to\infty$ этот интеграл расходится. Для выделения ведущей асимптотики можно воспользоваться трюком. Во-первых, поведение функции в нуле аналитично, поэтому интеграл можно представить в виде:

$$I(x) = \int_{0}^{1} \frac{1 - \cos t}{t} dt + \int_{1}^{x} \frac{1 - \cos t}{t} dt$$

Поскольку на области интегрирования $\cos x$ успевает осциллировать много раз, во втором слагаемом мы можем его выбросить (известно, что $\int_0^\infty \frac{\sin x}{x} dx$ сходится и равен $\frac{\pi}{2}$, поэтому при выбрасывании косинуса мы потеряем некую константу ~ 1). Вовторых, поскольку подынтегральная функция аналитична в нуле, то первое слагаемое тоже даст число ~ 1 . Таким образом формально можно записать:

$$I(x) = \int_{1}^{x} \frac{dt}{t} + O(1) \approx \ln x$$

На фоне большого слагаемого $\ln x \gg 1$ (при $x \gg 1$), выброшенные константы порядка единицы являются малой добавкой. Это называется взятием интеграла с логарифмической точностью. Точное вычисление асимптотики дает ответ $\ln x + C + o(1)$, где $C \approx 0.577$ - постоянная Эйлера-Маскерони.

Задача 2

Найдём асимптотики интеграла при $a\gg b$ и $a\ll b$:

$$I(a,b) = \int_0^\infty \frac{\exp(-x/a)}{\sqrt{x(x+b)}} dx$$

Решение

Обезразмерим интеграл, введя переменную $t = \frac{x}{a}$:

$$I(a,b) \equiv I\left(\frac{b}{a}\right) = \int_0^\infty \frac{e^{-t}}{\sqrt{t\left(t + \frac{b}{a}\right)}} dt$$

Случай $b\gg a$ Из-за экспоненты, подыинтегральное выражение быстро затухает на масштабах $t\sim 1$ вблизи нуля. Поэтому в существенной области интегрирования $t\ll \frac{b}{a}$ и в знаменателе можно выбросить t на фоне большого члена $\frac{b}{a}$. Имеем:

$$I\left(\frac{b}{a}\right) \approx \sqrt{\frac{a}{b}} \int_0^\infty \frac{e^{-t}}{\sqrt{t}} dt = \sqrt{\frac{\pi a}{b}}$$

Заменой $t=z^2$ мы свели интеграл к известному интегралу Пуассона.

Случай $b \ll a$ Тут экспонента тоже затухает очень быстро на масштабах ~ 1 . Однако, если выбросить $\frac{b}{a}$ в знаменателе, мы получим расходящийся интеграл - около нуля экспонента ведет себя примерно как 1, и подынтегральная функция имеет асимптотику $\sim \int_0^{\dots} \frac{1}{t} dt$, то есть расходится логарифмически. Поэтому тут существенная область интегрирования теперь - вблизи нуля. Интеграл можно переписать как:

$$I\left(\frac{b}{a}\right) = \int_0^1 \frac{e^{-t}}{\sqrt{t\left(t + \frac{b}{a}\right)}} dt + \int_1^\infty \dots$$

Второе слагаемое - сходящийся интеграл, который из-за экспоненты - число порядка 1 (формально можно оценить как $I_2 < \int_1^\infty e^{-t} dt = \frac{1}{e} \sim 1$); на фоне большого первого слагаемого его можно выбросить. Далее, поскольку, как было уже сказано, существенная область интегрирования лежит около нуля, экспоненту можно положить равной 1. Имеем:

$$I\left(\frac{b}{a}\right) \approx \int_0^1 \frac{1}{\sqrt{t\left(t + \frac{b}{a}\right)}} dt$$

Этот интеграл уже можно просто взять. Введем замену $t=z^2$:

$$I\left(\frac{b}{a}\right) \approx \int_0^1 \frac{2zdz}{\sqrt{z^2 \left(z^2 + \frac{b}{a}\right)}} = 2\int_0^1 \frac{dz}{\sqrt{z^2 + \frac{b}{a}}}$$

Теперь введем замену $z = \sqrt{\frac{b}{a}} \sinh u$; тогда $z^2 + \frac{b}{a} = \frac{b}{a} \left(\sinh^2 u + 1 \right) = \frac{b}{a} \cosh^2 u$:

$$I\left(\frac{b}{a}\right) \approx 2 \int_0^{\operatorname{arcsinh}\sqrt{\frac{a}{b}}} \frac{\sqrt{\frac{b}{a}} \cosh u du}{\sqrt{\frac{b}{a}} \cosh u} = 2 \operatorname{arcsinh}\sqrt{\frac{a}{b}}$$

Для гиперболического арксинуса есть известное выражение через элементарные функции $\arcsin hx = \ln(a + \sqrt{a^2 + 1})$. Значит:

$$I\left(\frac{b}{a}\right) \approx 2\ln\left(\sqrt{\frac{a}{b}} + \sqrt{\frac{a}{b} + 1}\right) \approx \ln\frac{a}{b} \gg 1$$

(тут мы выбросили малые константные члены на фоне большой основной логариф-мической асимптотики).

Задача 3

Найдём асимптотики интеграла при $a \ll b$ и $a \gg b$:

$$I(a,b) = \int_0^\infty \frac{\sin(\frac{x}{a})}{x(x^2 + b^2)} dx$$

Решение

Обезразмерим интеграл, введя переменную $t = \frac{x}{a}$:

$$I(a,b) = \int_0^\infty \frac{\sin t}{at(a^2t^2 + b^2)} a dt = \frac{1}{a^2} \int_0^\infty \frac{\sin t}{t\left(t^2 + \frac{b^2}{a^2}\right)} dt \equiv \frac{1}{a^2} I\left(\frac{b}{a}\right)$$

Случай $a\gg b$ Если выбросить $\frac{b^2}{a^2}\ll 1$ по сравнению с t в знаменателе, то мы получим расходящийся интеграл (в нуле как $\sim \int_0^{\cdots} \frac{dt}{t^2}$). Из этого можно заключить, что основная область, где интеграл набирается - вблизи нуля. Поэтому $\sin t$ можно разложить; имеем:

$$I\left(\frac{b}{a}\right) \approx \int_0^\infty \frac{dt}{t^2 + \left(\frac{b}{a}\right)^2} = \frac{a}{b} \arctan\left(\frac{b}{a}t\right)\Big|_0^\infty = \frac{\pi a}{2b} \Rightarrow I(a,b) = \frac{\pi}{2ab}$$

Случай $a \ll b$ Поскольку интеграл от функции $\frac{\sin t}{t}$ набирается на масштабах ~ 1 (из-за осциллирующего синуса), то в знаменателе можно выбросить t^2 на фоне $\frac{b^2}{a^2} \gg 1$. Имеем:

$$I\left(\frac{b}{a}\right) \approx \int_0^\infty \frac{\sin x}{x \frac{b^2}{a^2}} dx = \frac{\pi}{2} \cdot \frac{a^2}{b^2} \Rightarrow I(a, b) \approx \frac{\pi}{2b^2}$$

Оценка рядов

В некоторых случаях можно с хорошей точностью оценить ряд при помощи формулы:

$$\sum_{n=a}^{b} f(n) \approx \int_{a}^{b} dn f(n) + \frac{1}{2} (f(a) + f(b))$$

Эта формула работает в случае

$$\frac{|f(n) - f(n-1)|}{|f(n)|} \ll 1$$

и имеет простой смысл приближённого интегрирования методом трапеций. Условие применимости формулы - не что иное, как требование малости относительной ошибки метода трапеций при подсчёте площади под графиком f(n). Иначе это требование можно записать как $f'(n) \ll f(n)$ для любого $a \geq n \leq b$.

Таким образом, эта формула даёт способ оценки ряда с медленно меняющимися членами. В противоположном случае быстроменяющихся членов ряда обычно можно выделить существенные члены и их просуммировать. Этому посвящено упражнение №4.

Задачи для домашнего решения

Упражнение 1

Пусть a, b > 0. Найдите асимптотическое выражение для следующего интеграла:

$$I(a,b) = \int_0^\infty e^{-ax} \frac{\sin^2 bx}{x^2} dx$$

при а) $a\gg b$ и б) $a\ll b$ (здесь и далее можно ограничиться главным порядком малости и все параметры считать положительными).

Упражнение 2

Найдите асимптотическое выражение для следующего интеграла:

$$\int_0^\infty \frac{1}{x^2 + a^2} \frac{1}{(x-1)^2 + b^2} dx$$

при а) $a \ll 1$, $b \sim 1$ и б) $a = b \gg 1$.

Упражнение 3

Найдите асимптотическое выражение для следующего интеграла:

$$I(a,b) = \int_0^\infty \frac{x}{x^2 + a^2} (1 - \tanh bx) dx$$

При $b \ll 1$ и $a \ll 1$.

Упражнение 4

Приближенно вычислите сумму

$$S(a,b) = \sum_{n=0}^{\infty} n^a e^{-bn}$$

при а) $a\sim 1$ и $b\ll 1$, б) $b\gg \frac{a}{b}\gg 1$.

Задача 1

Найдите асимптотическое выражение для следующего иниеграла:

$$I(a) = \int_0^\infty \frac{1}{xa^2 + (1 - x^2)^2} dx$$

при a) $1 \gg a$, б) $1 \ll a$.

Задача 2

Найдите асимптотическое выражение для следующего интеграла:

$$I(n,a,b) = \int_0^a \frac{x^n}{e^{x/b} - 1} dx$$

при а) $b \gg a$ и б) $n \gg 1$, $nb \ll a$.