1 Syllabus covered

display in Binary numbers, Hexadecimal, Sign-magnitude, One's-complement and Two's complement. Conversions between them. 1. Homework 1 and Lectures 08/31 and 09/02. Generate minterms, maxterms, SOP canonical form and POS canonical forms and convert between them 1. Lecture 09/09 ✓ Understand and use the laws and theorems of Boolean Algebra 1. Homework 2 and Lectures 09/16-09/19Perform algebraic simplification using Boolean algebra 1. Homework 2 and Lectures 09/16-09/19 ✓ Simplification using K-maps 1. Homework 2 and 3 and Lectures 09/12-09/14Derive sum of product and product of sums expressions for a combinational circuit 1. Homework 2 and 3 and Lectures 09/12-09/23 ✓ Convert combinational logic to NAND-NAND and NOR-NOR forms 1. Homework 3 and Lecture 09/28 Simplification using Quine-McCluskey method 1. Lecture 09/28 Design combinational circuits for positive and negative logic ☑ Design Hazard-free two level circuits and understand Hazards in multi-level circuits ✓ Compute noise margin of one device Describe how tri-state and open-collector outputs are different from totem-pole outputs. ✓ Different between and limitations of master-slave and edge-triggered flip-flops. □ Compute fan out and noise margin of one device driving the same time \square Know the differences and similarities between PAL, PLA, and ROMs and can use each for logic design ☐ Design combinational circuits using multiplexers and decoders ☐ Analyze a sequential circuit and derive a state-table and a state-graph □ Understand the difference between synchronous and asynchronous inputs ☐ Derive a state graph or state table from a word description of the problem

	Ш	Reduce the number of states in a state table using row reduction and implication tables
		Perform a state assignment using the guideline method
		Implement a design using JK, SR, D or T flip-flops
		Analyse and design both Mealy and Moore sequential circuits with multiple inputs and multiple outputs
		Convert between Mealy and Moore designs
		Partition a system into multiple state machines
1.	.1	Labs
	✓	Use computer tools to enter designs graphically and HDL
		Simulate designs using computer tools
		Use computer tools to program gate arrays logic and debug and test

ECE275 (sample) Midterm 1 Fall 2023

Instructor: Vikas Dhiman (vikas.dhiman@maine.edu)
September 29, 2023

Student Name: Student Email:

2 Instructions

- Time allowed is 50 minutes. (This sample exam might be lengthier than the actual exam.)
- In order to minimize distraction to your fellow students, you may not leave during the last 10 minutes of the examination.
- The examination is closed-book. One 8x11in cheatsheet is allowed.
- Non-programmable calculators are permitted.
- The maximum number of marks is 100, as indicated; the midterm examination amounts 10% toward the final grade.
- Please use a pen or heavy pencil to ensure legibility.
- Please show your work; where appropriate, marks will be awarded for proper and well-reasoned explanations.

Problem 1. Number conversions:

- 1. Use repeated division to convert 230_{10} to octal representation (5 marks).
- 2. What is the value of $19D_{16}$ in base 10 (5 marks).
- 3. A 6-bit two's complement number is 100011₂. Convert it to (signed) decimal (5 marks).
- 4. Represent -23_{10} in two's complement binary notation (5 marks).

Problem 2. Consider the circuit below

By algebraic manipulation, prove or disprove that $Y = \bar{B}\bar{C} + BC$ (10 marks).

Problem 3. Use the following 5-variable K-map for F (A, B, C, D, E), and find a minimal SOP expression for F (15 marks)

DE	C_{00}	01	11	10
00	1			1
01	1	1		1
11		1		
10		1	1	

DE	C_{00}	01	11	10
00		1	1	
01	1	1		1
11		1		
10		1	1	

A=0 A=1

Problem 4. Use bubble-pushing and/or algebra to find an SOP expression for Y in the circuit below. If you use bubble-pushing, draw an equivalent circuit beside the given circuit (5 marks).

Problem 5. Consider the function Y given below.

$$Y(A,B,C,D) = \sum m(0,3,5,7,8,14) + d(2,12,15)$$

- 1. Draw a K-maps to derive a minimum SOP and POS expressions for Y . Indicate all essential prime implicants for Y or \bar{Y} in your K-maps (20 marks).
- 2. Sketch a two-level NOR-NOR circuit for Y. Assume that A, B, C, and D are available in true end complimentary forms (5 marks).
- 3. Write Y in Product of sums (POS) canonical form (5 marks).

Problem 6. Design a minimal SOP circuit to add two two-bit unsigned numbers. Denote the two bits of first number as A_1A_0 and the two bits of second number as B_1B_0 . The result will be a 2-bit sum S_1S_0 and a carry C. Start with filling out the following truth table (3 example rows are provided) and then use K-maps to find minimal SOP for S_1 , S_0 and a single carry bit C_1 (20 marks).

A_1	A_0	B_1	B_0	C_1	S_1	S_0
0	0	0	0			
0	0	0	1			
0	0	1	0			
0	0	1	1			
0	1	0	0			
0	1	0	1	0	1	0
0	1	1	0			
0	1	1	1			
1	0	0	0			
1	0	0	1			
1	0	1	0			
1	0	1	1			
1	1	0	0			
1	1	0	1	1	0	0
1	1	1	0			
1	1	1	1	1	1	0