BROUILLON - NEWTON, BERNOULLI, LEIBNIZ, FIBONACCI ET BELL

CHRISTOPHE BAL

Document, avec son source L^AT_EX , disponible sur la page https://github.com/bc-writings/bc-public-docs/tree/main/drafts.

Mentions « légales »

Ce document est mis à disposition selon les termes de la licence Creative Commons "Attribution – Pas d'utilisation commerciale – Partage dans les mêmes conditions 4.0 International".

Table des matières

1.	Des identités bien connues	2
2.	La loi binomiale révèle	2
2.1.	. De l'utilité des arbres	2
2.2.	. Droit au binôme de Newton	3
2.3.	. Leibniz sans effort	4
2.4.	. Une petite astuce pour Fibonacci	4
2.5.	. Même son de cloche pour Bell	5

Date: 2 Avril 2025 - 3 Avril 2025.

2

1. Des identités bien connues

Les formules suivantes intriguent par leur ressemblance. Bien qu'elles appartiennent à des domaines distincts, leur similitude n'est pas le fruit du hasard. À travers deux démonstrations adoptant des approches différentes, nous révélerons les liens combinatoires qui unissent ces objets en apparence indépendants.

- Formule du binôme de Newton : $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$.
- Formule de dérivation de Leibniz : $(fg)^{(n)}(x) = \sum_{k=0}^{n} {n \choose k} f^{(k)}(x) g^{(n-k)}(x)$.
- Loi binomiale : $P(X = j) = \sum_{k=0}^{n} {n \choose k} p^k (1-p)^{n-k} \delta_{jk}$, même s'il est d'usage de juste écrire $P(X = j) = {n \choose j} p^j (1-p)^{n-j}$.
- Une identité portant sur la suite de Fibonacci : $F_{2n} = \sum_{k=0}^{n} {n \choose k} F_k$.
- Une formule similaire avec des coefficients binomiaux : $\binom{2n}{n} = \sum_{k=0}^{n} \binom{n}{k} \binom{n}{k}$.
- Une équation liant les nombres de Bell : $B_{n+1} = \sum_{k=0}^{n} \binom{n}{k} B_k$ où B_s est le nombre de façons de partitionner un ensemble de s éléments en sous-ensembles non vides : par exemple, $B_3 = 5$, car l'ensemble $\{a, b, c\}$ admet les partitions $\{a\} \cup \{b\} \cup \{c\}, \{a, b, c\}, \{a\} \cup \{b, c\}, \{b\} \cup \{a, c\} \text{ et } \{c\} \cup \{a, b\}.$

2. La loi binomiale révèle...

2.1. De l'utilité des arbres. Lorsque l'on présente la loi binomiale, il est courant d'utiliser un arbre de probabilité comme le suivant où S désigne un succès et E un échec, un succès ayant une probabilité p de se réaliser (ici nous avons un niveau de profondeur de 3).

Dans la version générale à n niveaux de cet arbre, $\binom{n}{k}$ est le nombre de chemins avec exactement k succès. Notant X la variable aléatoire comptant le nombre de succès, ainsi que q=p-1, il est immédiat que $P(X=j)=\binom{n}{j}p^jq^{n-j}$, soit de façon équivalente $P(X=j)=\sum_{k=0}^{n}\binom{n}{k}p^kq^{n-k}\delta_{jk}$.

^{1.} δ_{jk} est le symbole de Kronecker valant 1 si j=k, et 0 sinon, tandis que X désigne la variable aléatoire comptant le nombre de succès d'un schéma de Bernoulli de paramètre (n;p).

^{2.} Nous n'utiliserons pas dans ce document la formule factorielle de $\binom{n}{k}$.

Nous pouvons calculer les probabilités aux feuilles de l'arbre via le mini-arbre de calcul \mathcal{T}_c suivant dans lequel un choix de chemin vers le bas, soit un déplacement vers un succès, implique de multiplier la valeur p^iq^j par p, et sinon de multiplier par q.

Si l'on part de la racine de la valeur 1 pour construire un arbre binaire complet via les règles de calcul de \mathcal{T}_c , nous retrouvons $P(X=j) = \sum_{k=0}^{n} \binom{n}{k} p^k q^{n-k} \delta_{jk}$ de façon combinatoire, voir cidessous, mais surtout via une méthode généralisable à d'autres contextes comme nous allons le constater.

2.2. Droit au binôme de Newton. XXXX

$$(x+y)^k < y(x+y)^{k-1}$$
$$x(x+y)^{k-1}$$

YYY

$$x^{a}y^{b}(x+y)^{k} < x^{a+1}y^{b}(x+y)^{k-1}$$
$$x^{a}y^{b+1}(x+y)^{k-1}$$

2.3. Leibniz sans effort. XXXX

YYY

$$f^{(a)}g^{(b)} < f^{(a+1)}g^{(b)} f^{(a)}g^{(b+1)}$$

YYY

2.4. Une petite astuce pour Fibonacci. XXXX

$$F_k < F_{k-1}$$

YYY

2.5. Les coefficients binomiaux imitent Fibonacci. XXXX

$$\binom{n}{k} < \binom{\binom{n-1}{k-1}}{\binom{n-1}{k}}$$

YYY

$$F_{k-a\cdot 1-b\cdot 2} < F_{k-a\cdot 1-(b+1)\cdot 2}$$

YYY

2.6. Bell sonne la fin du jeu. XXXX