Q1. Factorial is the product of all positive integers less than or equal to a given positive integer and denoted by that integer and an exclamation point. Define the factorial in aspects of the following Automata Methods/Languages.

i. Recursive Language

ii. Descriptive Language

• Defining the language {aⁿbⁿ}, n=1,2,3,..., of strings defined over Σ={a,b}

```
Step 1:
```

ab is in {aⁿbⁿ}

Step 2:

if x is in $\{a^nb^n\}$, then axb is in $\{a^nb^n\}$

Step 3:

No strings except those constructed in above, are allowed to be in $\{a^nb^n\}$

Descriptive Language

Example: The language **factorial**, of strings defined over Σ={1,2,3,4,5,6,7,8,9} *i.e.* {1,2,6,24,120,...}

Example: The language FACTORIAL, of strings defined over Σ={a}, as
{a^{n!}: n=1,2,3,...}, can be written as
{a,aa,aaaaaa,...}. It is to be noted that the language FACTORIAL can be defined over any single letter alphabet.

The Language ODD LENGTH defined over $\Sigma = \{a, b\}$, can be written as $L = \{\lambda, a, b, aaa, aab, baa, bab, bbb, ...\}$ Define the following methods/languages on the above given descriptive language.

i. Regular Expression

ii. FA: Transition Diagram

iii. FA: Transition Table

• Now consider another language L, of odd length, defined over $\Sigma = \{a, b\}$, then it's regular expression may be

FA: Transition Diagram

FA Transition Table

OLD STATE	NEW STATE	
	Reading a	Reading b
X	Υ	Υ
Υ	X	X