Признаки сходимости рядов

- Задача 1. а) (Признак сравнения Вейерштрасса) Пусть $\sum\limits_{n=1}^{\infty}a_n, \sum\limits_{n=1}^{\infty}b_n$ ряды с неотрицательными членами. Пусть найдётся такой номер k, что при всех $n>k, n\in\mathbb{N}$ будет выполнено неравенство $b_n\geqslant a_n$. Тогда если $\sum\limits_{n=1}^{\infty}b_n$ сходится, то $\sum\limits_{n=1}^{\infty}a_n$ сходится; если $\sum\limits_{n=1}^{\infty}a_n$ расходится, то $\sum\limits_{n=1}^{\infty}b_n$ расходится.
- **б)** (Признак д'Аламбера) Пусть члены ряда $\sum\limits_{n=1}^{\infty}a_n$ положительны, и существует $\lim\limits_{n\to\infty}\frac{a_{n+1}}{a_n}=q$. Если q<1, то ряд сходится, а если q>1, то ряд расходится. Что можно сказать о сходимости, если q=1?
- в) (Признак Коши) Пусть члены ряда $\sum_{n=1}^{\infty} a_n$ неотрицательны, и существует $\lim_{n\to\infty} \sqrt[n]{a_n} = q$. Если q<1, то ряд сходится, а если q>1, то ряд расходится. Что можно сказать о сходимости ряда, если q=1?
- г) Приведите пример сходящегося ряда с положительными членами, к которому применим признак Коши, но не применим признак д'Аламбера. Бывает ли наоборот?

- **Задача 2.** Исследуйте ряды на сходимость: a) $\sum_{n=1}^{\infty} \frac{1}{n^p}$; 6) $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$; B) $\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdot ... \cdot (2n-1)}{2 \cdot 4 \cdot 6 \cdot ... \cdot 2n}$; г) $\sum_{n=1}^{\infty} \frac{n^k}{a^n}$.
- **Задача 3. а)** (*Теорема Лейбница*) Пусть $a_n > 0$ при всех $n \in \mathbb{N}$, и кроме того, $a_1 \geqslant a_2 \geqslant a_3 \geqslant \ldots$, $\lim_{n \to \infty} a_n = 0$. Тогда знакочередующийся ряд $a_1 - a_2 + a_3 - a_4 + a_5 - \dots$ сходится.
- **б)** Верно ли утверждение теоремы без условия монотонности (a_n) ?

Абсолютно и условно сходящиеся ряды

Определение 1. Ряд $\sum_{n=1}^{\infty} a_n$ называется *абсолютно сходящимся*, если сходится ряд $\sum_{n=1}^{\infty} |a_n|$.

Задача 4. Докажите, что абсолютно сходящийся ряд сходится.

Задача 5. Пусть ряд $\sum_{n=1}^{\infty} a_n$ абсолютно сходится. Тогда абсолютно сходится произвольный ряд $\sum_{n=1}^{\infty} b_n$, полученный из него перестановкой слагаемых, причём $\sum\limits_{n=1}^{\infty}b_{n}=\sum\limits_{n=1}^{\infty}a_{n}.$

Определение 2. Ряд $\sum_{n=1}^{\infty} a_n$ называется *условно сходящимся*, если он сходится, но ряд $\sum_{n=1}^{\infty} |a_n|$ расходится.

Задача 6. Пусть ряд $\sum_{n=1}^{\infty} a_n$ сходится условно.

- а) Докажите, что ряд, составленный из его положительных (или отрицательных) членов, расходится.
- **б)** (*Теорема Римана*.) Докажите, что ряд $\sum_{n=1}^{\infty} a_n$ можно превратить перестановкой слагаемых как в расходящийся ряд, так и в сходящийся с произвольной наперёд заданной суммой.

 в) Докажите, что можно так сгруппировать члены ряда $\sum_{n=1}^{\infty} a_n$ (не переставляя их), что ряд станет абсолютно
- \mathbf{r})* Пусть $\sum\limits_{n=1}^{\infty}a_{n}$ ряд, составленный из комплексных чисел, S множество всех перестановок σ натурального ряда, для которых ряд $\sum\limits_{n=1}^{\infty}a_{\sigma(n)}$ сходится. Каким может быть множество $\{\sum\limits_{n=1}^{\infty}a_{\sigma(n)}\mid\sigma\in S\}$?

- **Задача 7.** Пусть s сумма ряда $\sum\limits_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$. Найдите суммы **а)** $1+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\frac{1}{7}-\frac{1}{4}+\frac{1}{9}+\frac{1}{11}-\frac{1}{6}+\ldots$; **б)** $1-\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{6}-\frac{1}{8}+\frac{1}{5}-\frac{1}{10}-\frac{1}{12}+\ldots$. **в)** Переставьте члены ряда $\sum\limits_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ так, чтобы он стал расходящимся.
- **Задача 8.** Существует ли такая последовательность $(a_n), a_n \neq 0$ при $n \in \mathbb{N}$, что ряды $\sum_{n=1}^{\infty} a_n$ и $\sum_{n=1}^{\infty} \frac{1}{n^2 a_n}$ сходятся? Можно ли выбрать такую последовательность из положительных чисел?
- **Задача 9*.** Существует ли такая последовательность (a_n) , что ряд $\sum_{n=1}^{\infty} a_n$ сходится, а ряд $\sum_{n=1}^{\infty} a_n^3$ расходится?
- **Задача 10*.** Пусть функция $f: \mathbb{R} \to \mathbb{R}$ такова, что для любого сходящегося ряда $\sum a_n$ ряд $\sum f(a_n)$ сходится. Докажите, что тогда найдётся такое число $C \in \mathbb{R}$, что f(x) = Cx в некоторой окрестности нуля.