Belief Propagation

What is Belief Propagation (BP)?

BP is a specific instance of a general class of methods that exist for **approximate inference** in Bayes Nets (**variational methods**).

Simplified Bayes Net is the key idea of BP. Simplification yields faster/tractable inference at the cost of accuracy.

An Example & Motivation

2-SAT problem as a Bayes Net.

Try applying Junction Tree Algorithm and ...

An Example & Motivation (contd.)

...and Junction Tree Algorithm yields:

Defeats purpose of Bayes Net and so ...

Accuracy Sacrifice = Possible Solution (Belief Propagation)

... Belief Propagation (BP) to the rescue

Two main steps:

- (1) Simplified Graph Construction
- (2) Message Passing until convergence

Simplification? So what?

Caveat: BP may not converge.

Good News : Seems to work well in practice.

Simplified Graph Construction

We will build a "clique" graph similar to Junction Tree Algorithm, but ...

... without triangulation, and ...

... need to have a "home" for all CPTs

The simplified graph is ...

Simplified Graph Construction (contd.)

Simplified Graph: Separators need to be specified. Second simplification is that the connecting arc need not have all the separator variables. By doing this we get ...

Simplified Graph Construction (contd.)

Here all separator variables are specified. This is a specific flavor of BP called **Loopy Belief Propagation** (LBP).

Loops are allowed in LBP.

Now we need to do ...

Message Passing

Pass messages, just as in Junction Tree Algorithm.

Messages are nothing but CPTs marginalized down to the separator variable(s).

Graphical Models

- Diagrams
 - Nodes: random variables
 - <u>Edges</u>: statistical dependencies among random variables
- Advantages:
 - Better visualization
 - conditional independence properties
 - new models design
 - 2. Factorization

Graphical Models types

- Directed
 - causal relationships
 - e.g. Bayesian networks
- Undirected
 - no constraints imposed on causality of events ("weak dependencies")
 - Markov Random Fields (MRFs)

Example MRF Application: Image Denoising

<u>Original image</u>

(Binary)

Noisy image

e.g. 10% of noise

 Question: How can we retrieve the original image given the noisy one?

MRF formulation

Nodes

- For each pixel i,
 - x_i: latent variable (value in original image)
 - y_i: observed variable (value in noisy image)
 - $\rightarrow x_i, y_i \in \{0,1\}$

MRF formulation

Edges

- x_i,y_i of each pixel i correlated
 - local evidence function φ(x_i,y_i)
 - E.g. $\phi(x_i, y_i) = 0.9$ (if $x_i = y_i$) and $\phi(x_i, y_i) = 0.1$ otherwise (10% noise)
- Neighboring pixels, similar value
 - compatibility function $\psi(x_i, x_i)$

MRF formulation

$$P(x_1, x_2, ..., x_n) = (1/Z) \prod_{(ij)} \psi(x_i, x_j) \prod_i \phi(x_i, y_i)$$

Question: What are the marginal distributions for x_i, i = 1, ...,n?

Belief Propagation

 Goal: compute marginals of the latent nodes of underlying graphical model

Attributes:

- iterative algorithm
- message passing between neighboring latent variables nodes
- Question: Can it also be applied to directed graphs?
- Answer: Yes, but here we will apply it to MRFs

Belief Propagation Algorithm

- 1) Select random neighboring latent nodes x_i, x_i
- 2) Send message m_{i→i} from x_i to x_i

- 3) Update belief about marginal distribution at node x_i
- 4) Go to step 1, until convergence
 - How is convergence defined?

Step 2: Message Passing

Message m_{i→j} from x_i to x_j: what node x_i thinks about the marginal distribution of x_i

$$m_{i\rightarrow j}(x_j) = \sum_{(x_i)} \phi(x_i, y_i) \psi(x_i, x_j) \prod_{k \in N(i)\setminus j} m_{k\rightarrow i}(x_i)$$

Messages initially uniformly distributed

Step 3: Belief Update

Belief b(x_j): what node x_j thinks its marginal distribution is

$$b(x_j) = k \phi(x_j, y_j) \prod_{q \in N(j)} m_{q \to j}(x_j)$$

Belief Propagation Algorithm

- 1) Select random neighboring latent nodes x_i, x_i
- Send message m_{i→j} from x_i to x_j

- 3) Update belief about marginal distribution at node x_i
- 4) Go to step 1, until convergence

Example

- Compute belief at node 1.

Fig. 12 (Yedidia et al.)

$$b_1(x_1) = k\phi_1(x_1)m_{21}(x_1)$$
 $b_1(x_1) = k\phi_1(x_1)\sum_{x_2}\psi_{12}(x_1,x_2)\phi_2(x_2)m_{32}(x_2)m_{42}(x_2)$ $b_1(x_1) = k\phi_1(x_1)\sum_{x_2}\psi_{12}(x_1,x_2)\phi_2(x_2)\sum_{x_3}\phi_3(x_3)\psi_{23}(x_2,x_3)\sum_{x_4}\phi_4(x_4)\psi_{24}(x_2,x_4)$ 3/1/2008