طراحي الگوريتمها

بهار ۱۴۰۰

مدرس: مسعود صديقين

تقسيم و غلبه

یادآوری جلسه چهارم

در جلسه قبل یک روش تقسیم و حل برای مساله پوش محدب به این شکل ارائه کردیم. : ابتدا فرض کنیم P_x مجموعه نقاط P مرتبشده بر حسب x باشد که با یک مرتبسازی در زمان $O(n \log n)$ به دست می آید.

- - ۲. به طور بازگشتی پوش محدب نقاط L و R را مییابیم و به ترتیب آنها را C_R و مینامیم.
- ۳. دو پوش محدب C_L و C_L را ترکیب میکنیم. برای این کار باید مطابق شکل یالهای بین مماس بالایی و پایینی را حذف کنیم. برای به دست آوردن این دو مماس T راه حل زیر را پیشنهاد کردیم:

- (آ) تمام جفت راسهای روی پوش محدب چپ و راست را چک می کنیم که در زمان $O(n^{\mathsf{r}})$ قابل انجام است $O(n^{\mathsf{r}})$ جفت به همراه زمان $O(n^{\mathsf{r}})$ برای چک کردن هر جفت).
- (ب) بهبود ۱: هر یال بین دو راس پوش محدب را تنها با ۴ نقطه (۲ نقطه مجاور دو سر یال) چک کنیم که این زمان چک کردن را به $\mathcal{O}(1)$ بهبود میدهد.
 - (ج) بهبود Υ : برای به دست آوردن مماس بالایی و پایینی تنها $\mathcal{O}(n)$ جفت را مطابق شکل چک کنیم.

Algorithm 1: Convex hull

Data:

a: rightmost point of C_L

b: rightmost point of C_R

1 while \overrightarrow{ab} is not the upper tangent of C_L , C_R do

پوش محدب نهایی به صورت زیر خواهد بود:

همچنین زمان اجرا از رابطه با رابطه بازگشتی $T(n) = \mathbf{Y} T(\frac{n}{7}) + \mathcal{O}(n)$ به دست می آید که برابر $\mathcal{O}(n \log n)$ است.