

UNIVERSITAS SUMATERA UTARA FAKULTAS ILMU KOMPUTER DAN TEKNOLOGI INFORMASI

PROGRAM STUDI S1 TEKNOLOGI INFORMASI

Jalan Alumni No. 3 Gedung C, Kampus USU Padang Bulan, Medan 20155 Telepon/Fax: 061-8210077 | Email: tek.informasi@usu.ac.id | Laman: http://it.usu.ac.id

FORM PENGAJUAN JUDUL Nama : Kevin Tulus Ricardo Silitonga **NIM** : 201402051 Dosen Judul diajukan oleh* Mahasiswa 1. Data Science and Intelligent System Bidang Ilmu (tulis dua bidang) 2. Computer Graphics and Vision Uji Kelayakan Judul** Ditolak Diterima Hasil Uji Kelayakan Judul: Calon Dosen Pembimbing I: Sarah Purnamawati S.T., M.Sc Paraf Calon Dosen Pembimbing I (Jika judul dari dosen maka dosen tersebut berhak menjadi pembimbing I)

Medan, 5 April 2024 Ka. Laboratorium Penelitian,

Calon Dosen Pembimbing II: Ivan Jaya, S.Si., M.Kom.

^{*} Centang salah satu atau keduanya

UNIVERSITAS SUMATERA UTARA FAKULTAS ILMU KOMPUTER DAN TEKNOLOGI INFORMASI

PROGRAM STUDI S1 TEKNOLOGI INFORMASI

Jalan Alumni No. 3 Gedung C, Kampus USU Padang Bulan, Medan 20155 Telepon/Fax: 061-8210077 | Email: tek.informasi@usu.ac.id | Laman: http://it.usu.ac.id

RINGKASAN JUDUL YANG DIAJUKAN

*Semua kolom di bawah ini diisi oleh mahasiswa yang sudah mendapat judul

*Semua kolom di bawah i Judul / Topik Skripsi	ini diisi oleh mahasiswa yang sudah mendapat judul Klasifikasi Bencana Kekeringan di Jawa Timur Menggunakan Citra Satelit		
January Topin Dittipol	Landsat 8 Dengan Metode Random Forest		
	Lanusat o Dengan Metode Kandom Forest		
Latar Belakang dan	Latar Belakang		
Penelitian Terdahulu	Latar berakang		
	Definisi kekeringan secara luas adalah kurangnya curah hujan dalam jangka waktu		
	yang lama, biasanya satu musim atau lebih, yang mengakibatkan kekurangan air untuk		
	beberapa aktivitas, kelompok, atau sektor lingkungan (UN/ISDR & (UNISDR), 2007).		
	Bencana kekeringan dapat terjadi dikarenakan curah hujan yang sangat rendah, periode		
	panjang tanpa hujan, atau kombinasi faktor-faktor seperti tingkat penguapan yang tinggi		
	dan kondisi tanah yang kering. Kekeringan dapat mengakibatkan penurunan drastis dalam		
	ketersediaan air, baik untuk konsumsi manusia, pertanian, industri, maupun keperluan		
	ekologi.		
	Citra satelit merupakan salah satu teknologi paling penting dalam pemantauan dan		
	pemetaan bumi dari jarak jauh. Citra satelit adalah gambar atau rekaman visual dari		
	permukaan Bumi yang diambil oleh satelit buatan manusia yang mengorbit bumi. Citra-		
	citra ini dihasilkan oleh sensor optik yang terpasang pada satelit, yang mampu mendeteksi		
	cahaya yang dipantulkan atau dipancarkan oleh permukaan bumi dalam berbagai panjang		
	gelombang, mulai dari sinar tampak hingga inframerah. Citra-citra satelit bisa digunakan		
	untuk berbagai tujuan, mulai dari pemetaan dan pemantauan lingkungan, analisis		
	perubahan lahan, pemantauan cuaca, hingga keperluan militer dan komersial.		
	Penelitian sebelumnya yang berjudul Analisis Data Citra Landsat 8 OLI Sebagai		
	Indeks Prediksi Kekeringan Menggunakan Machine Learning di Wilayah Kabupaten		
	Boyolali dan Purworejo (Prasetyo et al., 2019). Dengan menggunakan dataset Landsat 8		
	yang dimasukan ke dalam Machine Learning yang menggunakan metode XGBoost dan		
	Random Forest. Hasil penelitian menunjukan nilai akurasi 0.8286 dan Nilai Kappa 0.6477		
	dari metode XGBoost dan nilai akurasi 0.6857 dan Nilai Kappa 0.3699 dari metode		
	Random Forest.		
	Penelitian lainnya dengan judul <i>Identifikasi Kekeringan Lahan Kabupaten</i>		
	Lamongan Berdasarkan Citra Satelit (Noraini et al., 2022). Penelitian ini menggunakan		
	dataset Landsat 8 yang diolah menggunakan algoritma NDWI dan NDVI untuk		
	mendapatkan nilai indeks NDDI. Hasil penelitian ini menunjukkan kekeringan lahan di		
	menonputati intu mocko 1922. Hasii penentun ini menunjukkun kekeringan lahan ui		

UNIVERSITAS SUMATERA UTARA FAKULTAS ILMU KOMPUTER DAN TEKNOLOGI INFORMASI

PROGRAM STUDI S1 TEKNOLOGI INFORMASI

Jalan Alumni No. 3 Gedung C, Kampus USU Padang Bulan, Medan 20155 Telepon/Fax: 061-8210077 | Email: tek.informasi@usu.ac.id | Laman: http://it.usu.ac.id

Kabupaten Lamongan didominasi sebesar 62,14% atau 1.097,087 Km2 dengan tingkat klasifikasi kekeringan berat dari seluruh total area.

Pada penelitian *Klasifikasi Tutupan Lahan Pada Citra Sentinel-2 Kabupaten Kuningan Dengan NDVI Dan Algoritme Random Forest* (Marlina, 2022). Citra satelit yang digunakan adalah citra satelit sentinel-2. Klasifikasi tutupan lahan yang diterapkan pada penelitian ini terdiri dari empat kelas yaitu badan air, bangunan, lahan kosong, pertanian, dan vegetasi. Hasil overall accuracy pada algoritma random forest bernilai 91,39% dan nilai kappa 0,88.

Penelitian lainnya judul *Satellite imagery and machine learning for aridity disaster classification using vegetation indices* (Prasetyo et al., 2020). Dengan menggunakan citra satelit Landsat 8, Penelitian ini mencoba memprediksi bencana kekeringan provinsi Jawa Tengah menggunakan K-Nearest Neighbour (K-NN), Random Forest (RF), dan Support Vector Machine (SVM). Data satelit dipreprocessing untuk menghasilkan NDVI, SAVI, VHI, TCI, dan VCI kemudian dibagi 70% training data dan 30% testing data. Dari penelitian ini ditemukan hasil akurasi K-Nearest Neighbour sebesar 92.03%, akurasi Support Vector Machine sebesar 96% dan Random Forest sebesar 91%.

Penelitian sebelumnya yang berjudul *Drought Monitoring using MODIS derived indices and Google Earth Engine Platform* (Samet AKSOY et al., 2019). Dengan menggunakan dataset yang didapat dari MODIS sensor, diolah untuk mendapatkan Normalized Difference Drought Index (NDDI), Vegetation Health Index (VHI), dan Normalized Multi-Band Drought Index (NMDI). Hasil penelitian ini menunjukkan bahwa Ketepatan peta kondisi kekeringan NMDI lebih rendah dibandingkan dengan peta indeks lainnya dan Peta VHI menunjukkan peta kondisi kekeringan yang lebih baik dibandingkan dengan VCI.

Penelitian Terdahulu

No.	Penulis	Tahun	Metode	Keterangan
1.	Prasetyo, et.	2019	XGBoost dan	Memprediksi risiko bencana
	al.		Random	kekeringan menggunakan metode
			Forest	XGBoost dan Random Forest dan
				dataset dari satelit Landsat 8. Hasil
				penelitian menunjukan nilai akurasi
				0.8286 dari metode XGBoost dan

UNIVERSITAS SUMATERA UTARA FAKULTAS ILMU KOMPUTER DAN TEKNOLOGI INFORMASI

PROGRAM STUDI S1 TEKNOLOGI INFORMASI

Jalan Alumni No. 3 Gedung C, Kampus USU Padang Bulan, Medan 20155 Telepon/Fax: 061-8210077 | Email: tek.informasi@usu.ac.id | Laman: http://it.usu.ac.id

				nilai akurasi 0.6857 dari metode
				Random Forest.
2.	Noraini, et. al.	2022	Normalized	Mengidentifikasi lahan kekeringan
			Difference	menggunakan dataset satelit
			Index Water,	Landsat 8. Dataset diolah untuk
			Normalized	mendapatkan NDWI, NDVI,
			Difference	NDDI. Hasil penelitian ini
			Index	menunjukkan kekeringan lahan di
			Vegetation	Kabupaten Lamongan didominasi
			dan	sebesar 62,14% atau 1.097,087
			Normalized	Km2 dengan tingkat klasifikasi
			Difference	kekeringan berat dari seluruh total
			Drought	area.
			Indeks	
3.	Dwi Marlina.	2022	Random	Penelitian ini melakukan klasifikasi
			Forest	tutupan lahan menggunakan citra
				satelit Landsat 8. Dengan
				menggunakan Algoritma Random
				Forest, data di bagi ke dalam empat
				klasifikasi. Hasil overall accuracy
				pada algoritma random forest
				bernilai 91,39% dan nilai kappa
				0,88.
4.	Prasetyo, et.	20202	K-Nearest	Memprediksi bencana kekeringan
	al.		Neighbor,	provinsi Jawa Tengah
			Random	menggunakan K-Nearest
			Forest,	Neighbour (K-NN), Random Forest
			Support	(RF), dan Support Vector Machine
			Vector	(SVM). Data satelit
			Machine	dipreprocessing kemudian dibagi
				70% training data dan 30% testing
				data. Dari penelitian ini ditemukan
				2 di penendan ini ditemakan

UNIVERSITAS SUMATERA UTARA FAKULTAS ILMU KOMPUTER DAN TEKNOLOGI INFORMASI

PROGRAM STUDI S1 TEKNOLOGI INFORMASI

Jalan Alumni No. 3 Gedung C, Kampus USU Padang Bulan, Medan 20155 Telepon/Fax: 061-8210077 | Email: tek.informasi@usu.ac.id | Laman: http://it.usu.ac.id

			hasil akurasi K-Nearest Neighbour
			sebesar 92.03%, akurasi Support
			Vector Machine sebesar 96% dan
			Random Forest sebesar 91%.
	5. Aksoy, et. al. 2019	Normalized	Penelitian ini memonitor kondisi
		Difference	kekeringan yang terjadi di Turki
		Drought	dalam periode dua puluh tahun
		Index,	menggunakan citra satelit MODIS.
		Vegetation	Data citra satelit MODIS diolah
		Health Index	untuk mendapatkan NDDI, VHI
		dan	dan NMDI. Hasil penelitian ini
		Normalized	menunjukkan bahwa Ketepatan
		Multi-Band	peta kondisi kekeringan NMDI
		Drought Index	lebih rendah dibandingkan dengan
			peta indeks lainnya dan Peta VHI
			menunjukkan peta kondisi
			kekeringan yang lebih baik
			dibandingkan dengan VCI.
Rumusan Masalah	Dangana Irakaningan mamunaka	n hanaana yana n	ambaritan damadi karluwanguya air
Kumusan wasalan	Bencana kekeringan merupakan bencana yang memberikan dampak berkurangnya air		
	bersih, merusak tanaman pangan dan hancurnya ekosistem lingkungan yang terjadi di area		
	yang sangat luas dalam waktu yang sangat lama. Oleh karena itu diperlukan pemantauan		
	pola kekeringan sehingga dapat memberikan informasi yang tepat kepada masyarakat dan		
	pihak berwenang untuk mengurangi kerugian dengan mengantisipasi kekeringan dan memitigasi dampak sosial, ekonomi, dan lingkungan yang diakibatkan oleh bencana		
	kekeringan.		

UNIVERSITAS SUMATERA UTARA FAKULTAS ILMU KOMPUTER DAN TEKNOLOGI INFORMASI

PROGRAM STUDI S1 TEKNOLOGI INFORMASI

Jalan Alumni No. 3 Gedung C, Kampus USU Padang Bulan, Medan 20155 Telepon/Fax: 061-8210077 | Email: tek.informasi@usu.ac.id | Laman: http://it.usu.ac.id

Metodologi Citra Landsat 8 Kombinasi Data Preprocessin Data Training Random Forest Koreksi NDVI Atmosferik ٧HI Koreksi Geometrik dan Radiometrik Data Testing Learned Model TCI Filtering (date, AOI) VCI Ekstraksi Data SAVI Peta Wilayah Kekeringan

Penelitian ini melewati beberapa tahapan dalam pemrosesan berdasarkan metode yang digunakan. Tahap pertama dimulai dengan mengumpulkan citra satelit yang kana digunakan pada penelitian ini. Setelah data telah terkumpul, data tersebut masuk ke dalam tahap preprosesing. Pada tahap ini dilakukan koreksi atmosferik yang menghapus pengaruh atmosferik, koreksi geometrik dan radiometrik yang bertujuan mencocokan posisi citra dengan koordinat geografi dan koreksi dasar citra yang dilakukan untuk menghilangkan noise akibat dari distorsi cahaya matahari, *filtering* untuk menentukan untuk menentukan tanggal citra satelit diambil beserta area yang diteliti (*Area of Interest*), dan ekstraksi data band yang akan digunakan. Tahap selanjutnya adalah kombinasi band untuk mendapat indeks NDVI, VHI, TCI, VCI, SAVI. Setelah itu data training akan dilatih dengan metode Random Forest dan menghasilkan learning model. Kemudian data diklasifikasi menjadi tiga kategori bencana kekeringan. Dan terakhir perhitungan akurasi hasil dan menghasilkan output peta bencana kekeringan yang sudah diklasifikasi.

UNIVERSITAS SUMATERA UTARA FAKULTAS ILMU KOMPUTER DAN TEKNOLOGI INFORMASI

PROGRAM STUDI S1 TEKNOLOGI INFORMASI

Jalan Alumni No. 3 Gedung C, Kampus USU Padang Bulan, Medan 20155 Telepon/Fax: 061-8210077 | Email: tek.informasi@usu.ac.id | Laman: http://it.usu.ac.id

Referensi	Marlina, D. (2022). Klasifikasi Tutupan Lahan pada Citra Sentinel-2 Kabupaten
	Kuningan dengan NDVI dan Algoritme Random Forest. STRING (Satuan Tulisan
	Riset Dan Inovasi Teknologi), 7(1), 41. https://doi.org/10.30998/string.v7i1.12948
	Noraini, A., Tjahjadi, M. E., & Sudiasa, I. N. (2022). Identifikasi Kekeringan Lahan
	Kabupaten Lamongan Berdasarkan Citra Satelit. <i>Buletin Poltanesa</i> , 23(1), 335–
	340. https://doi.org/10.51967/tanesa.v23i1.958
	Prasetyo, S. Y. J., Christianto, Y. B., & Hartomo, K. D. (2019). Analisis Data Citra
	Landsat 8 OLI Sebagai Indeks Prediksi Kekeringan Menggunakan Machine
	Learning di Wilayah Kabupaten Boyolali dan Purworejo. Indonesian Journal of
	Modeling and Computing, 2(2), 25–36.
	https://ejournal.uksw.edu/icm/article/view/2954
	Prasetyo, S. Y. J., Hartomo, K. D., Paseleng, M. C., Chandra, D. W., & Winarko, E.
	(2020). Satellite imagery and machine learning for aridity disaster classification
	using vegetation indices. Bulletin of Electrical Engineering and Informatics, 9(3),
	1149–1158. https://doi.org/10.11591/eei.v9i3.1916
	Samet AKSOY, Ozge GORUCU, & Elif SERTEL. (2019). 2019 the Eighth International
	Conference on Agro-Geoinformatics: July 16-19, Istanbul, Turkey. 8th
	International Conference on Agro-Geoinformatics (Agro-Geoinformatics), 1–6.
	UN/ISDR, & (UNISDR), U. N. secretariat of the I. S. for D. R. (2007). <i>Drought Risk</i>
	Reduction, Framework and Practices, Contributing to the Implementation of the
	Hyogo Framework for Action, Preliminary Version, May 2007. May, 97.

Medan, 5 April 2024 Mahasiswa yang mengajukan,

(Kevin Tulus Ricardo Silitonga)

NIM. 201402051