Leçon 208. Espaces vectoriels normés, applications linéaires continues. Exemples.

1. NOTATION. Dans cette leçon, on considère le corps ${\bf K}$ des réels ou des complexes.

1. Espaces vectoriels normés

1.1. Normes et topologie

- 2. DÉFINITION. Soit E un **K**-espace vectoriel. Une *norme* sur l'espace E est une application $\| \| : E \longrightarrow \mathbf{R}$ vérifiant les points suivants :
 - pour tout vecteur $x \in E$ et tout scalaire $\lambda \in \mathbf{K}$, on a $\|\lambda x\| = |\lambda| \|x\|$;
 - pour tout vecteur $x \in E$, les assertions ||x|| = 0 et x = 0 sont équivalentes;
 - pour tous vecteurs $x, y \in E$, on a $||x + y|| \le ||x|| + ||y||$.

Le couple (E, || ||) est un **K**-espace vectoriel normé

3. EXEMPLE. L'espace $(\mathbf{R}, |\ |)$ est un \mathbf{R} -espace vectoriel normé. Pour un réel $p \geqslant 1$, les espaces \mathbf{K}^n muni de la norme définie par l'égalité

$$||x||_p := \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}, \qquad x := (x_1, \dots, x_p) \in \mathbf{K}^n$$

est un K-espace vectoriel normé.

- 4. EXEMPLE. Soient E un **K**-espace vectoriel de dimension finie et (e_1, \ldots, e_n) une base de ce dernier. Pour un vecteur $x \in E$ qu'on écrit sous la forme $x = \sum_{i=1}^n x_i e_i$ avec $x_i \in \mathbf{K}$, on pose $||x||_{\infty} = \max(|x_1|, \ldots, |x_n|)$. Alors l'application $|| ||_{\infty}$ est une norme sur E.
- 5. EXEMPLE. Soient X un ensemble quelconque et E un espace vectoriel normé. Alors l'ensemble $\mathscr{B}(X,E)$ des fonctions bornées $X\longrightarrow E$ muni de la norme

$$f \longmapsto ||f||_{\infty} \coloneqq \sup_{x \in X} |f(x)|$$

est un espace vectoriel normé.

- 6. Remarque. Un espace vectoriel normé (E, || ||) est un espace métrique pour la distance $(x, y) \in E^2 \longmapsto ||x y||$ et on le munit de la topologie induite par celle-ci.
- 7. PROPOSITION. Soit E un espace vectoriel normé. Pour deux vecteurs $x,y\in E,$ on a $|\|x\|-\|y\||\leqslant \|x+y\|.$
- 8. DÉFINITION. Soit E un espace vectoriel normé, $x \in E$ un vecteur et r > 0 un réel.
 - La $boule\ ouverte$ de centre x et de rayon r est l'ensemble

$$B(x,r) := \{ y \in E \mid ||y - x|| < r \}.$$

- La boule fermée de centre x et de rayon r est l'ensemble

$$\overline{B}(x,r) := \{ y \in E \mid ||y - x|| \leqslant r \}.$$

- La $sph\`ere$ de centre x et de rayon r est l'ensemble

$$S(x,r) := \{ y \in E \mid ||y - x|| = r \}.$$

9. Proposition. Une partie $A \subset E$ est ouverte si et seulement si, pour tout vecteur $x \in A$, il existe un rayon r > 0 tel que $B(x, r) \subset E$.

1.2. Compacité et équivalence des normes

10. APPLICATION. Soient E un espace vectoriel normé compact et $f\colon E\longrightarrow E$ une application vérifiant

$$\forall x, y \in E, \qquad x \neq y \quad \Longrightarrow \quad \|f(x) - f(y)\| < \|x - y\|.$$

Alors elle admet un point fixe.

- 11. Théorème (Bolzano-Weirstrass). Une partie $A \subset E$ est compact si et seulement si, de toute suite de A, on peut extraire une sous-suite convergente dans A.
- 12. DÉFINITION. Une partie $A \subset E$ est bornée s'il existe M > 0 tel que $A \subset B(0, M)$
- 13. EXEMPLE. Les boules et sphères sont bornées.
- 14. THÉORÈME. Toute partie compacte d'un espace vectoriel normé est fermée bornée.
- 15. Contre-exemple. La réciproque est fausse. En effet, considérons l'espace $\mathbf{R}[X]$ muni de la norme

$$a_0 + \cdots + a_n X^n \longmapsto \max(|a_0|, \dots, |a_n|).$$

Alors la boule unité fermée est fermée et bornée, mais elle n'est pas compacte puisque la suite $(X^n)_{n\in\mathbb{N}}$ n'admet aucune sous-suite convergente.

- 16. PROPOSITION. Les parties compactes de l'espace \mathbb{R}^n muni de la norme $\| \|_{\infty}$ pour la base canonique sont les parties fermés et bornés de \mathbb{R}^n .
- 17. DÉFINITION. Deux normes N_1 et N_2 sur l'espace E sont équivalentes s'il existe deux réels $\alpha, \beta > 0$ tels que

$$\forall x \in E, \qquad \alpha N_1(x) \leqslant N_2(x) \leqslant \beta N_1(x).$$

- 18. Théorème. Dans un espace vectoriel normé de dimension finie, toutes les normes sont équivalentes.
- 19. CONTRE-EXEMPLE. La réciproque est fausse. Les normes

$$f \longmapsto \int_0^1 f(t) dt$$
 et $f \longmapsto \sup_{t \in [0,1]} |f(t)|$

ne sont pas équivalentes sur l'espace $\mathscr{C}([0,1],\mathbf{R})$: on considère des fonctions « triangles ».

- 20. COROLLAIRE. Les parties compactes d'un espace vectoriel normé de dimension finie sont les parties fermées bornées.
- 21. COROLLAIRE. Tout sous-espace vectoriel de dimension finie d'un espace vectoriel normé est fermé.
- 22. Théorème (Riesz). Un espace vectoriel normé est de dimension finie si et seulement si sa boule unité fermée est compacte.

2. Applications linéaires continues

2.1. Définitions, caractérisation et exemples

23. DÉFINITION. Une application linéaire continue entre deux espaces vectoriels normés E et F est une application continue $f \colon E \longrightarrow F$ vérifiant

$$\forall x, y \in E, \ \forall \lambda \in \mathbf{K}, \qquad f(x + \lambda y) = f(x) + \lambda f(y).$$

On note $\mathcal{L}_{c}(E,F)$ l'ensemble des applications linéaires continues de E dans F.

24. Proposition. Soit E un espace vectoriel normé. Alors les applications

$$(x,y) \in E^2 \longmapsto x+y, \qquad (\lambda,x) \in \mathbf{K} \times E \longmapsto \lambda x \qquad \text{et} \qquad x \in E \longmapsto \|x\|$$
 sont continues.

- 25. Théorème. Soit $f\colon E\longrightarrow F$ une application linéaire. Alors les assertions suivantes sont équivalentes :
 - la fonction f est continue sur l'espace E:
 - elle est continue au point 0;
 - elle est bornée sur la boule unité fermée :
 - elle est bornée sur la sphère unité;
 - il existe un réel M > 0 tel que ||f(x)|| ≤ M ||x|| pour tout vecteur x ∈ E;
 - elle est lipschitzienne;
 - elle est uniformément continue.
- 26. Exemple. L'application linéaire

$$\varphi \colon f \in \mathscr{C}([0,1],\mathbf{R}) \longmapsto \int_0^1 f(t) \, \mathrm{d}t$$

est continue lorsque l'on munit l'espace $\mathscr{C}([0,1],\mathbf{R})$ de la norme infinie.

27. Contre-exemple. L'application linéaire

$$f \in \mathscr{C}([0,1], \mathbf{R}) \longmapsto f(0)$$

n'est pas continue sur l'espace $\mathscr{C}([0,1],\mathbf{R})$ muni de la norme $||f||_1 := \int_0^1 |f|$.

- 28. Théorème. On suppose que l'espace E est de dimension finie. Alors toute application linéaire $E \longrightarrow F$ est continue.
- 29. DÉFINITION. Pour toute application $f \in \mathcal{L}_{c}(E,F)$, on définit sa norme subordonnée comme la quantité

$$|||f||| := \sup_{x \neq 0} \frac{||f(x)||}{||x||} = \sup_{||x|| = 1} ||f(x)||.$$

L'application ||| ||| est une norme sur l'espace $\mathscr{L}_{c}(E, F)$.

- 30. Proposition. Soient E, F et G trois espaces vectoriels normés.
 - Pour toute application $f \in \mathcal{L}_{c}(E, F)$, on a

$$\forall x \in E, \quad ||f(x)|| \le |||f||| ||x||.$$

– Pour toutes applications $f\in \mathscr{L}_{\mathrm{c}}(E,F)$ et $g\in \mathscr{L}_{\mathrm{c}}(F,G),$ on a

$$|||g \circ f||| \leq |||g||| |||f|||.$$

- 31. EXEMPLE. La norme subordonnée de l'application φ du point 26 vaut $|||\varphi|||_{\infty} = 1$.
- 2.2. Le cas des formes linéaires : le théorème de Hahn-Banach
- 32. NOTATION. Dans cette sous-section, on considère un ${\bf R}$ -espace vectoriel E.
- 33. Proposition. Une forme linéaire $\varphi \in E^*$ est continue si et seulement si son noyau $\operatorname{Ker} \varphi$ est fermé dans E.
- 34. DÉFINITION. Le dual topologique de l'espace E est l'ensemble E' des formes linéaires continues sur E.
- 35. THÉORÈME (Hahn-Banach, forme analytique). Soit $p: E \longrightarrow \mathbf{R}$ une semi-norme.

Soient $G \subset E$ un sous-espace vectoriel et $g \in G^*$ une forme linéaire telle que

$$\forall x \in G, \qquad g(x) \leqslant p(x).$$

Alors il existe une forme linéaire $f \in E^*$ qui prolonge la forme linéaire g et qui vérifie $\forall x \in E, \qquad f(x) \leq p(x).$

- 36. COROLLAIRE. Soient $G \subset E$ un sous-espace vectoriel et $g \in G'$ une forme linéaire continue. Alors il existe une forme linéaire continue $f \in E'$ qui prolonge la forme linéaire g et qui vérifie |||f||| = |||g|||.
- 37. DÉFINITION. Un hyperplan est un ensemble de la forme $\{f = \alpha\} := f^{-1}(\{\alpha\})$ pour une forme linéaire $f \in E^*$ et un réel $\alpha \in \mathbf{R}$. On dit qu'il sépare au sens large deux parties $A, B \subset E$ si

$$\forall x \in A, \quad f(x) \leqslant \alpha \quad \text{et} \quad \forall x \in B, \quad f(x) \geqslant \alpha.$$

On dit qu'il les sépare au sens strict s'il existe un réel $\varepsilon > 0$ tel que

$$\forall x \in A, \quad f(x) \leqslant \alpha - \varepsilon \quad \text{et} \quad \forall x \in B, \quad f(x) \geqslant \alpha + \varepsilon.$$

- 38. Théorème (Hahn-Banach, première forme géométrique). Soient $A, B \subset E$ deux parties convexes, non vides et disjoints. On suppose que la partie A est ouverte. Alors il existe un hyperplan fermé qui sépare les parties A et B au sens large.
- 39. COROLLAIRE (Hahn-Banach, seconde forme géométrique). Soient $A, B \subset E$ deux parties convexes, non vides et disjoints. On suppose que la partie A est fermée et que la partie B est compacte. Alors il existe un hyperplan fermé qui sépare les parties A et B au sens strict.
- 40. APPLICATION. On munit l'espace \mathbf{R}^n de sa structure euclidienne canonique puis l'espace $\mathcal{M}_n(\mathbf{R})$ de la norme subordonnée associée. Alors l'enveloppe convexe du groupe $O_n(\mathbf{R})$ est la boule unité fermée de l'espace $\mathcal{M}_n(\mathbf{R})$.

3. Des espaces particuliers

3.1. Les espaces de Banach

- 41. DÉFINITION. Un espace de Banach est un espace vectoriel normé complet.
- 42. EXEMPLE. Tout espace vectoriel normé de dimension finie est de Banach.
- 43. THÉORÈME (Riesz-Fischer). Pour tout $p \ge 1$, l'espace ($L^p(\mathbf{R}^d)$, $|| ||_p$) est complet.
- 44. Proposition. Dans un espace de Banach E, toute série absolument convergente de E converge dans E.
- 45. COROLLAIRE. Soient E et F deux espaces de Banach et $T \in \mathcal{L}(E,F)$ une application linéaire continue. On suppose qu'elle est presque surjective, c'est-à-dire qu'il existe deux réels $\alpha \in [0,1[$ et C>0 tels que

$$\forall y \in F$$
, $||y|| \leqslant 1 \implies \exists x \in E, ||y - Tx|| \leqslant \alpha \text{ et } ||x|| \leqslant C$.

Alors elle est surjective et, plus précisément, on a

$$\forall y \in F$$
, $||y|| \leqslant 1 \implies \exists x \in E, \ y = Tx \text{ et } ||x|| \leqslant \frac{C}{1-\alpha}$.

46. Théorème (*Tietze*). Soient X un espace métrique et $Y \subset X$ une partie fermée. Alors toute application continue $g_0 \colon Y \longrightarrow \mathbf{R}$ se prolonge en une application continue $f_0 \colon X \longrightarrow \mathbf{R}$.

47. Théorème (Baire). Soit E un espace de Banach.

– Soit $(O_n)_{n\in\mathbb{N}}$ une suite d'ouverts denses. Alors l'intersection $\bigcap_{n\in\mathbb{N}} O_n$ est dense.

- Soit $(F_n)_{n\in\mathbb{N}}$ une suite de fermés d'intérieur vide. Alors l'union $\bigcup_{n\in\mathbb{N}} O_n$ est d'intérieur vide.

48. APPLICATION. L'ensemble des fonctions continues et nulles parties dérivables sur [0,1] est dense dans l'ensemble des fonctions continues sur [0,1].

49. THÉORÈME (Banach-Steinhaus). Soient E et F deux espaces de Banach et $(T_i)_{i\in I}$ une famille de $\mathcal{L}_{c}(E,F)$. On suppose que

$$\forall x \in E, \qquad \sup_{i \in I} ||T_i x|| < +\infty.$$

Alors

$$\sup_{i\in I}|||T_i|||<+\infty.$$

50. APPLICATION. Il existe une fonction continue 2π -périodique qui n'est pas égal à la somme de sa série de Fourier.

51. Théorème (de l'application ouverte). Soient E et F deux espaces de Banach et $T \in \mathcal{L}_{c}(E,F)$ une application surjective. Alors il existe un réel c>0 tel que

$$T(B_E(0,1)) \supset B_F(0,c).$$

52. COROLLAIRE (théorème d'isomorphisme de Banach). Soient E et F deux espaces de Banach et $T \in \mathcal{L}_{c}(E,F)$ une application bijective. Alors son inverse T^{-1} est continue.

53. THÉORÈME (du graphe fermé). Soient E et F deux espaces de Banach et $T \in \mathcal{L}(E,F)$ une application telle que son graphe soit fermé dans $E \times F$. Alors l'application T est continue.

3.2. Les espaces de Hilbert

54. DÉFINITION. Un espace de Hilbert réel est un espace vectoriel muni d'un produit scalaire ou hermitien \langle , \rangle telle que la norme $x \longmapsto \langle x, x \rangle^{1/2}$ le rende complet.

55. EXEMPLE. L'espace $L^2(\mathbf{R}^d)$ muni du produit scalaire

$$(f,g) \longmapsto \int_{\mathbf{R}^d} f(x) \overline{g(x)} \, \mathrm{d}x$$

est un espace de Hilbert.

56. Théorème (de projection sur un convexe fermé). Soit H un espace de Hilbert. Soit $C \subset H$ un convexe fermé non vide. Alors pour tout vecteur $x \in H$, il existe un unique vecteur $p_C(x) \in C$ tel que

$$d(x, C) = ||x - p_C(x)||.$$

De plus, le point $p_C(x)$ est caractérisé par les conditions

$$p_C(x) \in C$$
,

$$\forall z \in C$$
, $\operatorname{Re}\langle z - p_C(x), x - p_C(x) \rangle \leqslant 0$.

57. APPLICATION (moindres carrés). On considère n points $(x_i, y_i) \in \mathbf{R}^2$ tels que les réels x_i ne soit pas tous égaux. Alors il existe des réels $\lambda, \mu \in \mathbf{R}$ qui rendent minimale la quantité

$$\sum_{i=1}^{n} (\lambda x_i + \mu - y_i)^2.$$

58. Théorème (de représentation de Riesz). Soient H un espace de Hilbert et $\varphi \in H'$ une forme linéaire continue. Alors il existe un unique vecteur $u \in H$ tel que

$$\forall x \in H, \qquad \varphi(x) = \langle x, u \rangle.$$

59. Proposition. Soient H un espace de Hilbert et $u \in \mathcal{L}_{c}(H)$ un endomorphisme continu. Alors il existe une unique application $u^* \colon H \longrightarrow H$ telle que

$$\forall x, y \in H, \qquad \langle u(x), y \rangle = \langle x, u^*(y) \rangle.$$

De plus, cette application u^* est linéaire et continue; elle vérifie $(u^*)^* = u$.

Vincent Beck, Jérôme Malick et Gabriel Peyré. Objectif Agrégation. 2e édition. H&K, 2005. [1]

Haïm Brézis. Analyse fonctionnelle. 2º tirage. Masson, 1983.

^[3] [4] [5] [6] Xavier Gourdon. Analyse. 2e édition. Ellipses, 2008.

Bertrand HAUCHECORNE. Les contre-exemples en mathématiques. 2e édition. Ellipses, 2007.

Lucas ISENMANN et Timothée PECATTE. L'oral à l'agrégation de mathématiques. Ellipses, 2017.

Hervé Queffélec et Claude Zuily. Analyse pour l'agrégation. 5e édition. Dunod, 2020.