

Documento de Casos de Uso Core-MUSA

Universidade Estadual de Feira de Santana

Build 3

Histórico de Revisões

Date	Descrição	Autor(s)
08/10/2014	Concepção do documento	bezourokq;wsbittencourt;fmbboaventura;
13/10/2014	Build 2: Novo modelo de caso de uso	wsbittencourt;jadsonfirmo;fmbboaventura;
16/10/2014	Build 3: Novo modelo de caso de uso	wsbittencourt;
20/10/2014	Adição caso de uso LW e SW	• kelvincarmo;
23/10/2014	Revisão	• jadsonfirmo;
29/10/2014	Inclusão Casos de Uso: JPC	• di3goleite;
29/10/2014	Inclusão Casos de Uso: RET e NOP	• mtcastro;
30/10/2014	Refatoração do documento	• di3goleite;
30/10/2014	Inclusão Casos de Uso: HALT	• mtcastro;
30/10/2014	Refatoração dos fluxos e tamanho das Imagens	Odivio Caio;
12/12/2014	Adição dos novos casos de uso	• Odivio Caio;

SUMÁRIO

1	Intr	Introdução		
	1.1	Objetivo	3	
	1.2	Visão Geral do Documento	3	
	1.3	Representação Simbólica	3	
	1.4	Definições, Acrônimos e Abreviações	4	
2	Ato	res do Sistema	4	
3	Cas	os de Usos	4	
	3.1	[UC 001] Execução de instruções	4	
		3.1.1 Fluxo Principal de Eventos	5	
	3.2	[UC 002] Instruções Lógicas e Aritméticas	5	
		3.2.1 Fluxo Principal de Eventos	6	
	3.3	[UC 003] Desvios	6	
		3.3.1 Fluxo Principal de Eventos	7	
	3.4	[UC 004] Leitura e Escrita no BR	7	
		3.4.1 Fluxo Principal de Eventos	8	
	3.5	[UC 005] Imediatos do tipo aritmético e lógico	8	
		3.5.1 Fluxo Principal de Eventos	8	

1. Introdução

Este documento tem como objetivo a especificação dos casos de uso do projeto Core Musa (concepção de um processador simples de propósito geral). O documento detalha cada caso de uso indicando os atores, os eventos (ações) e as condições de cada caso, além dos diagramas de casos de uso.

1.1. Objetivo

1.2. Visão Geral do Documento

- Sessão 2: Lista todos os possíveis atores do sistema.
- Sessão 3: Relata a lista dos casos de uso do projeto.

1.3. Representação Simbólica

A Figura 1 ilustra a simbologia utilizada para representar operações que devem ser realizadas pelo sistema. A Figura 2 apresenta os modelos de ilustração utilizados para representar os Atores do sistema. Um ator, dentro do escopo desta descrição, pode ser identificado como um módulo *top level*, ou como um elemento de entrada e saída (botões, sensores, *displays*, etc).

Figura 1: Exemplo de Caso de Uso.

A simbologia usual para representação de um Ator é apresentada na Figura 2a, no entanto, para representar módulos incorporados, utiliza-se as representações ilustradas nas Figuras 2b e 2c, definidas por convenção. Este elemento, em geral, está associado aos módulos do sistema, ou IP cores de terceiros incorporados ao mesmo. Esta simbologia foi divida, com o objetivo de representar instâncias únicas (Figura 2c), ou múltiplas (Figura 2b) de um determinado componente.

Figura 2: Simbologia utilizada na implementação dos Casos de Uso.

O projetista responsável por interpretar os diagramas não deve confundir-se no momento de analisar as simbologias de atores. A representação alternativa, não implica que o módulo será instanciado no subsistema em questão, mas sim que os recursos providos por este *core* são necessários para garantir o seu funcionamento.

1.4. Definições, Acrônimos e Abreviações

Termo	Descrição
UC	Caso de Uso
ULA	Unidade Lógica e Aritmética
NFR	Requisito Não Funcional
FR	Requisito Funcional
BR	Banco de Registradores
PC	Program Counter

2. Atores do Sistema

Controlador - Unidade que controla a execução das operações.

ULA - Unidade Lógica e Aritmética.

3. Casos de Usos

Esta sessão apresenta o conjunto de UC realizados para a implementação do projeto *Core* MUSA (Núcleo de processamento de instruções do processador de propósito geral MUSA). As sessões a seguir foram divididas e nomeada utilizando a nomenclatura abreviada [UC (NÚMERO DO UC)] seguido de uma breve descrição em forma de título.

3.1. [UC 001] Execução de instruções

O controlador deve ser capaz de decodificar a instrução e operá-la no sistema.

Atores

Controlador.

Pré-condições

- Endereço apotado por PC ser válido;
- instrução possuir um OPCODE válido;

Pós-condições

• Execução da Instrução.

Diagrama de Caso de Uso

3.1.1. Fluxo Principal de Eventos

P1. Controlador faz a decodificação do opcode da instrução recebida;

3.2. [UC 002] Instruções Lógicas e Aritméticas.

A ULA é responsável por efetuar as operações Logicas e Aritiméticas.

Atores

ULA.

Pré-condições

- Atender aos requisitos funcionais [FR03 a FR10];
- Endereço(s) do(s) registradores serem válidos;

Pós-condições

• Ter como saida o Valor resultante e a Flag, caso ocorra.

Diagrama de Caso de Uso

3.2.1. Fluxo Principal de Eventos

- P1. Realização da ação referente ao Function recebido;
- P2. Flags são disparadas, caso seja necessário;
- P3. Apresentação do resultado;

3.3. [UC 003] Desvios

O processador tem a capacidade de desviar do fluxo normal de execução.

Atores

Controlador.

Pré-condições

• Endereço do saltor ser válido;

Pós-condições

• Modificação do PC.

Diagrama de Caso de Uso

Controlador

3.3.1. Fluxo Principal de Eventos

P1. Controlador executa a escrita no PC;

3.4. [UC 004] Leitura e Escrita no BR

O processador tem a capacidade de efetuar a leitura ou escrita de um valor de 32 bits no Banco de Registradores.

Atores

Controlador.

Pré-condições

- Sinais de Controle;
- Endereço(s) do(s) registrador(s);

Pós-condições

• Saidas de 32 bits.

Diagrama de Caso de Uso

3.4.1. Fluxo Principal de Eventos

- P1. Controlador executa a leitura ou a escrita no Banco de Registradores;
- P2. O modulo BR identifica os endereços e apresenta as saidas;

3.5. [UC 005] Imediatos do tipo aritmético e lógico

O sistema tem a capacidade de enviar valores imediatos para ULA.

Atores

Controlador.

ULA.

Pré-condições

• Sinais de Controle;

Pós-condições

• Saidas de 35 bits.

Diagrama de Caso de Uso

3.5.1. Fluxo Principal de Eventos

- P1. Realização da ação referente ao Function recebido;
- P2. Valor imediato recebido é estendido;
- P3. Flags são disparadas, caso seja necessário;
- P4. Apresentação do resultado;