TSTER I pierwsze zadanie projektowe

Dla układu regulacji o powyższej strukturze wybrać czas próbkowania T_p oraz dobrać tak transmitancję regulatora dyskretnego R(z), aby otrzymać układ regulacji spełniający następujące wymagania:

- uchyby położeniowy i prędkościowy w stanie ustalonym są najmniejsze z możliwych do osiągnięcia,
- wymuszenia r o maksymalnej prędkości r1 i maksymalnym przyspieszeniu r2 są przenoszone z uchybem nie większym niż ε ,
- odpowiedź układu regulacji na skok jednostkowy charakteryzuje się małą oscylacyjnością i niezbyt dużym czasem ustalania, co jest związane z przyjętą przez projektanta maksymalną wielkością piku rezonansowego M_p układu zamkniętego,
- moduł sterowanie *u* nie przekracza rozsądnej granicy.

Projekt powinien przedstawiać co najmniej

- transmitancję i równanie różnicowe wybranego regulatora,
- charakterystyki częstotliwościowe transmitancji:

$$G(j\omega)$$
, $HG^*(j\omega)$, $HG^*(jv)$,
 $L^*(jv) = R^*(jv)HG^*(jv)$,

- charakterystykę Nyquista zaprojektowanego układu otwartego,
- przyjętą przez projektanta maksymalną wielkością piku rezonansowego M_p układu zamkniętego,
- charakterystykę amplitudową funkcji wrażliwości $|S^*(j\omega)|$ oraz charakterystykę amplitudową dopełniającej funkcji wrażliwości (transmitancji układu zamkniętego) $|T^*(j\omega)|$, charakterystykę amplitudową funkcji wrażliwości sterowania $|R^*(j\omega)|$, zaprojektowanego systemu pokazujące, że spełniono postawione wymagania w dziedzinie częstotliwościowej,
- odpowiedzi układu regulacji na:
 - * skok jednostkowy,
 - * skok jednostkowy o amplitudzie $(r1)^2/r2$,
 - * wymuszenie harmoniczne

$$t \mapsto r(t) = \frac{(r1)^2}{r2} \sin(\frac{r2}{r1}t),$$

- * wymuszenie o trapezoidalnym przebiegu prędkości i prędkości maksymalnej równej r1 oraz przyspieszeniu maksymalnym równym r2,
- * sterowanie wywołane powyższym wymuszeniem pokazujące, że spełniono wymagania w dziedzinie czasowej.