Crypto avancée: TD 1

- Exercice 1. Problèmes de calcul et problèmes de décision
 - a) Le problème de calcul du log discret prend en entrée deux éléments α et y de \mathbb{F}_p^* , et exige en sortie un élément x de \mathbb{F}_p^* tel que $\alpha^x = y$.

 Donner un problème de décision associé, et estimer le nombre d'appels au problème de décision nécessaire pour obtenir une solution au problème de calcul.
 - b) Une coloration d'un graphe en k couleurs est une partition des sommets du graphe en k parties, chacune coloriée d'une seule couleur, de telle sorte que deux sommets adjacents soient coloriés par des couleurs différentes.
 Ramener, d'une manière raisonnable, la recherche d'une k-coloration d'un graphe à un problème de décision.
- Exercice 2. Discuter l'appartenance à NP des problèmes suivants :
 - a) I: un ensemble d'entiers $\{x_1, \ldots, x_k\}$, un entier z
 - Q : exite-t-il un sous-ensemble $\{y_1,\ldots,y_\ell\}\subset\{x_1,\ldots,x_k\}$ tel que

$$\sum y_i = z ?$$

- **b)** I : une machine reconnaissant en temps polynomial l'appartenance à un langage L, deux mots s et t de L de même longueur
 - Q : existe-t-il une suite s_1, \ldots, s_n de mots de L de même longueur, avec $s_1 = s, s_n = t$, et telle que pour tout i, les mots s_i et s_{i+1} diffèrent d'une seule lettre?
- Exercice 3.
 - a) Montrer que la classe P est close par réunion et concaténation, Ceci veut dire que
 - Si L et L' sont deux langages dans P alors le langage $L \cup L'$ est dans P
 - Si L et L' sont dans P alors $L \circ L' = \{xx', x \in L, x' \in L'\}$ est dans P.
 - b) Montrer que si L et L' sont dans NP, alors $L \cup L'$, $L \circ L'$ le sont aussi.
 - c) Montrer que si L est dans NP alors L^* l'est aussi.
- Exercice 4.
 - a) Le problème suivant est-il dans NP?

- I : un entier n

- Q : n est-il composé (non-premier)?

b) Le problème suivant est-il dans NP?

- I : un entier n

- Q : n est-il premier ?

On pourra se rappeler le théorème de Lucas : n est premier si et seulement s'il existe un entier a tel que $a^{n-1} = 1 \mod n$ et si pour tout diviseur premier q de n-1, $a^{(n-1)/q} \neq 1 \mod n$.

- Exercice 5.

a) La formule booléenne suivante est-elle satisfaisable?

$$(x \lor y) \land (x \lor \overline{y}) \land (\overline{x} \lor y) \land (\overline{x} \lor \overline{y})$$

b) Montrer que la formule booléenne $x \vee y$ est réalisée (vaut 1) si et seulement si la formule

$$(x \lor y \lor z) \land ((x \lor y \lor \overline{z}))$$

l'est.

c) Montrer que la formule $x_1 \vee x_2 \vee x_3 \vee x_4$ est réalisée si et seulement s'il existe une valeur de y qui réalise

$$(x_1 \lor x_2 \lor y) \land (x_3 \lor x_4 \lor \overline{y}).$$

d) Exhiber une transformation polynomiale f de SAT vers 3-SAT.

– EXERCICE 6. Une fonction booléenne est une fonction $f:\{0,1\}^n \to \{0,1\}$. Elle peut être représentée par une table, par exemple :

x_1	x_2	x_3	$\int f$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

Un *circuit* de calcul est un graphe orienté, dont les sommets sont étiquetés par un des termes $0, 1, \vee, \wedge, \neg, \mathbf{x}_1, \dots, x_n$, «sortie». De plus,

– Les sommets étiquetés $0, 1, x_i$ ont 0 comme degré rentrant.

- Les sommets étiquetés ¬ ont 1 comme degré rentrant.

– Les sommet étiquetés \vee, \wedge ont 2 comme degré rentrant.

- Il y a un unique sommet étique té «sortie», il a 1 comme degré rentrant, et 0 comme degré sortant.
 - a) Écrire un circuit qui calcule la fonction f donnée par la table ci-dessus.
 - b) Donner une procédure qui construit, à partir d'une table définissant une fonction booléenne f, un circuit calculant f. Que peut-on dire de la taille du circuit?