1 Введение

Движение несжимаемой нелинейно-вязкой жидкости в ограниченной области $\Omega \subset \mathbb{R}^n$, n=2,3, на промежутке времени [0,T] $(T<\infty)$ описывается следующей начально-краевой задачей:

$$\sum_{i=1}^{n} v_i \frac{\partial v}{\partial x_i} - \nu \Delta v + \nabla p = f, \tag{1.1}$$

div
$$v = 0, x \in \Omega, v|_{t=0} = v_0, v|_{\partial\Omega=0}.$$
 (1.2)

Здесь v(x) — вектор-функция скорости частицы жидкости в точке $x \in \Omega$; p — функция давления в жидкости; ν — вязкость жидкости, $\nu > 0$; f — плотность внешних сил, f = f(x);

Для произвольных квадратных матриц $A=(a_{ij})$ и $B=(b_{ij})$ используется символ $A: B=\sum_{i,j=1}^n a_{ij}b_{ij}$. Символ Div M обозначающий дивергенцию тензора $M=(m_{ij})$, т.е. вектор

Div
$$M = (\sum_{j=1}^{n} \frac{\partial m_{1j}}{\partial x_j}, \dots, \sum_{j=1}^{n} \frac{\partial m_{nj}}{\partial x_j}).$$

Данная математическая модель подробно исследовалась в работах профессора В.Г. Литвинова (см. [1]), где приведены естественные ограничения на вязкость рассматриваемой среды через свойства функции $\mu: \mathbb{R}_+ \to \mathbb{R}: \mu(s)$ должна быть определенная при $s \geq 0$ непрерывно дифференцируемая скалярная функция, для которой выполнены неравенства

- a) $0 < c_1 \le \mu(s) \le C_2 < \infty;$
- b) $-s\mu'(s) \le \mu(s)$ при $\mu'(s) < 0$;
- c) $|s\mu'(s)| \le C_3 < \infty$.

Здесь и далее через C_i обозначаются различные константы.

2 Постановка задачи и основные результаты

Сначала введем основные обозначения и вспомогательные утверждения.

Через $L_p(\Omega)$, $1 \leqslant p < \infty$, будем обозначать множество измеримых вектор-функций $\mu: \Omega \to \mathbb{R}^n$, суммируемых с p-ой степенью. Через $W_p^m(\Omega)$, $m \geqslant 1$, $p \geqslant 1$, будем обозначать пространства Соболева. Через $C_0^\infty(\Omega)^n$ обозначим пространство бесконечно-дифференцируемых вектор-функций из Ω в \mathbb{R}^n с компактным носителем в Ω , Обозначим через $\mathcal V$ множество $\{v \in C_0^\infty(\Omega)^n, \ \mathrm{div}\ v = 0\}$, Через H мы обозначим замыкание $\mathcal V$ по норме $L_2(\Omega)$, через V— по норме $W_2^1(\Omega)$.

Введем основное пространство, в котором будут изучаться слабые решения изучаемой задачи:

$$W_1 = \{v : v \in L_2(0, T, V) \cap L_\infty(0, T, H), v' \in L_1(0, T, V^*)\}.$$

Пространство W_1 снабжено нормой $||v||_{W_1}=||v||_{L_2(0,T,V)}+||v||_{L_\infty(0,T,H)}+||v'||_{L_1(0,T,V^*)}.$

Определение 2.1. Слабым решением задачи (1.1)-(1.2) называется функция $v \in V^1$, удовлетворяющая при всех $\varphi \in V^1$ равенству

$$-\sum_{i,j=1}^{n} \int_{\Omega} v_i v_j \frac{\partial \varphi_j}{\partial x_i} dx + \nu \int_{\Omega} \nabla v : \nabla \varphi dx = \langle f, \varphi \rangle, \tag{2.1}$$

начальному условию $v(0) = v_0$.

Здесь и далее $\langle \varphi \rangle = (\frac{\partial v}{\partial t} \varphi)$.

Теорема 2.1. Пусть $f \in V^{-1}$, $v_0 \in H$ и вязкость рассматриваемой среды μ удовлетворяет условиям a)-c). Тогда существует хотя бы одно решение $v_* \in V^1$ начально-краевой задачи (1.1)-(1.2).

3 Операторная трактовка

Дадим операторную трактовку рассматриваемой задачи. Введем операторы при помощи следующих равенств:

$$K: V \to V^*, \ \langle K(v), \varphi \rangle = \int_{\Omega} \sum_{i,j=1}^{n} v_i v_j \frac{\partial \varphi_j}{\partial x_i} dx, \ v \in V, \ \varphi \in V;$$

$$D: V \to V^*, \langle D(v), \varphi \rangle = 2 \int_{\Omega} \mu(I_2(v)) \varepsilon(v) : \varepsilon(\varphi) dx, v \in V, \varphi \in V.$$

Тогда из (2.1) в силу произвольности функции φ получаем следующее операторное уравнение:

$$D(v) - K(v) = f. (3.1)$$

Таким образом, слабое решение начально-краевой задачи (1.1)-(1.2) — это решение $v \in V^1$ операторного уравнения (3.1), удовлетворяющее начальному условию $v|_{t=0} = v_0$.

Отметим некоторые свойства введенных выше операторов.

Лемма 3.1. Отображение $D: L_2(0,T;V) \to L_2(0,T;V^*)$ непрерывно и монотонно.

Доказательство. Покажем непрерывность оператора D. Положив z=v-u и используя теорему Лагранжа на интервале [0,1] для функции

$$f(\delta) = \mu(I_{2}(u + \delta z))\varepsilon(u + \delta z) : \varepsilon(w),$$

$$\langle D(v) - D(u), w \rangle = 2 \int_{\Omega} [\mu(I_{2}(v))\varepsilon(v) - \mu(I_{2}(u))\varepsilon(u)] : \varepsilon(w)dx =$$

$$= 2 \int_{\Omega} \frac{d}{d\delta} [\mu(I_{2}(u + \delta_{0}z))\varepsilon(u + \delta_{0}z)] : \varepsilon(w)dx =$$

$$= 2 \int_{\Omega} \left[\mu(I_{2}(u + \delta_{0}z))\varepsilon(z) + \frac{d}{d\delta} \mu(I_{2}(u + \delta_{0}z))\varepsilon(u + \delta_{0}z) \right] : \varepsilon(w)dx =$$

$$= 2 \int_{\Omega} \left[\mu(I_{2}(u + \delta_{0}z))\varepsilon(z) : \varepsilon(w) +$$

$$+ \frac{\varepsilon(u + \delta_{0}z) : \varepsilon(z)}{(\varepsilon(u + \delta_{0}z)) : \varepsilon(u + \delta_{0}z)} \frac{d\mu(I_{2}(u + \delta_{0}z))}{dI_{2}(u + \delta_{0}z)} \varepsilon(u + \delta_{0}z) : \varepsilon(w) \right] dx =$$

$$= 2 \int_{\Omega} \left[\mu(I_{2}(u + \delta_{0}z))\varepsilon(z) : \varepsilon(w) +$$

$$+ \frac{1}{I_{2}(u + \delta_{0}z)} \frac{d\mu(I_{2}(u + \delta_{0}z))}{dI_{2}(u + \delta_{0}z)} (\varepsilon(u + \delta_{0}z) : \varepsilon(z))(\varepsilon(u + \delta_{0}z) : \varepsilon(w)) \right] dx.$$

Следовательно

$$\begin{aligned} |\langle D(v) - D(u), w \rangle| &\leq 2 \left| \int_{\Omega} \mu(I_{2}(u + \delta_{0}z))\varepsilon(z) : \varepsilon(w)dx \right| + \\ + 2 \left| \int_{\Omega} I_{2}(u + \delta_{0}z) \frac{d\mu(I_{2}(u + \delta_{0}z))}{dI_{2}(u + \delta_{0}z)} I_{2}(z) I_{2}(w)dx \right| &\leq \\ &\leq 2C_{5} \left(\int_{\Omega} I_{2}^{2}(z)dx \right)^{\frac{1}{2}} \left(\int_{\Omega} I_{2}^{2}(w)dx \right)^{\frac{1}{2}} + \\ &+ 2C_{5} \left(\int_{\Omega} I_{2}^{2}(z)dx \right)^{\frac{1}{2}} \left(\int_{\Omega} I_{2}^{2}(w)dx \right)^{\frac{1}{2}} \leq \\ &\leq C_{6} ||z||_{L_{2}(\Omega)} ||w||_{L_{2}(\Omega)} \leq C_{7} ||z||_{V} ||w||_{V}. \end{aligned}$$

Следовательно, $||D(v) - D(u)||_{V^*} \le C_7 ||v - u||_V$. Таким образом, оператор $D: V \to V^*$ непрепывен. Последнее неравенство выполнено почти для всех $t \in (0,T)$, возведем его в квадрат и проинтегрируем по t от 0 до T, получим

$$\int_{0}^{T} ||D(v) - D(u)||_{V^*}^2 dx \le C_7 \int_{0}^{T} ||v - u||_{V}^2 dx.$$

Так как $||v-u||_V \in L_2(0,T)$, то $||D(v)-D(u)||_{V^*} \in L_2(0,T)$ и, следовательно, $D(v)-D(u) \in L_2(0,T;V^*)$. Из последней оценки следует требуемое неравенство:

$$||D(v) - D(u)||_{L_2(0,T;V^*)} \le C_7 ||v - u||_{L_2(0,T;V)}.$$

Теперь покажем монотонность оператора D(v). Здесь также применим

теорему Лагранжа к той же функции, что и выше.

$$\langle D(v) - D(u), v - u \rangle = 2 \int_{\Omega} \left[\mu(I_2(v))\varepsilon(v) - \mu(I_2(u))\varepsilon(u) \right] : \varepsilon(v - u)dx =$$

$$= 2 \int_{\Omega} \frac{d}{d\delta} \left[\mu(I_2(v + \delta_0 z))\varepsilon(v + \delta_0 z) \right] : \varepsilon(z)dx =$$

$$= 2 \int_{\Omega} \left[\mu(I_2(v + \delta_0 z))\varepsilon(z) + \frac{d}{d\delta} \mu(I_2(v + \delta_0 z))\varepsilon(v + \delta_0 z) \right] : \varepsilon(z)dx =$$

$$= 2 \int_{\Omega} \left[\mu(I_2(v + \delta_0 z))\varepsilon(z) : \varepsilon(z) +$$

$$+ \frac{d}{d\delta} \mu((\varepsilon(v + \delta_0 z) : \varepsilon(v + \delta_0 z))^{\frac{1}{2}})\varepsilon(v + \delta_0 z) : \varepsilon(z) \right] dx =$$

$$= 2 \int_{\Omega} \left[\mu(I_2(v + \delta_0 z))\varepsilon(z) : \varepsilon(z) +$$

$$+ \frac{\varepsilon(v + \delta_0 z) : \varepsilon(z)}{(\varepsilon(v + \delta_0 z)) : \varepsilon(v + \delta_0 z)} \frac{d\mu(I_2(v + \delta_0 z))}{dI_2(v + \delta_0 z)} \varepsilon(v + \delta_0 z) : \varepsilon(z) \right] dx =$$

$$= 2 \int_{\Omega} \left[\mu(I_2(v + \delta_0 z))\varepsilon(z) : \varepsilon(z) +$$

$$+ \frac{1}{I_2(v + \delta_0 z)} \frac{d\mu(I_2(v + \delta_0 z))}{dI_2(v + \delta_0 z)} (\varepsilon(v + \delta_0 z) : \varepsilon(z))^2 \right] dx.$$

Если $\frac{d\mu(s)}{ds} \geq 0$, тогда подынтегральная функция больше либо равна нулю. Следовательно

$$\langle D(u) - D(v), u - v \rangle \ge 0.$$

Если $\frac{d\mu(s)}{ds} \leq 0$, используя $s\frac{d\mu(s)}{ds} \geq -\mu(s)$, получим требуемое неравенство:

$$2\int_{\Omega} \left[\mu(I_{2}(v+\delta_{0}z))\varepsilon(z) : \varepsilon(z) + \frac{1}{I_{2}(v+\delta_{0}z)} \frac{d\mu(I_{2}(v+\delta_{0}z))}{dI_{2}(v+\delta_{0}z)} (\varepsilon(v+\delta_{0}z) : \varepsilon(z))^{2} \right] dx \ge$$

$$\geq 2\int_{\Omega} \left[\mu(I_{2}(v+\delta_{0}z))\varepsilon(z) : \varepsilon(z) + \frac{I_{2}(v+\delta_{0}z)}{I_{2}^{2}(v+\delta_{0}z)} \frac{d\mu(I_{2}(v+\delta_{0}z))}{dI_{2}(v+\delta_{0}z)} I_{2}^{2}(v+\delta_{0}z) I_{2}^{2}(z) \right] dx \ge$$

$$\geq 2\int_{\Omega} \left[\mu(I_{2}(v+\delta_{0}z))\varepsilon(z) : \varepsilon(z) + I_{2}(v+\delta_{0}z) \frac{d\mu(I_{2}(v+\delta_{0}z))}{dI_{2}(v+\delta_{0}z)} I_{2}^{2}(z) \right] dx \ge$$

$$\geq 2\int_{\Omega} \left[\mu(I_{2}(v+\delta_{0}z))\varepsilon(z) : \varepsilon(z) + \mu(I_{2}(v+\delta_{0}z)) I_{2}^{2}(z) \right] dx \ge 0,$$

что и завершает доказательство данной леммы.

4 Аппроксимационная задача

Рассмотрим оператор $K_{\delta}(v)$, аппроксимирующий оператор K(v):

$$K_{\delta}: V \to V^*, \ \langle K_{\delta}(v), \varphi \rangle = \int_{\Omega} \sum_{i,j=1}^{n} \frac{v_i v_j}{1 + \delta |v|^2} \frac{\delta \varphi_j}{\delta x_i} dx, \ v \in V, \varphi \in V.$$

Здесь $|v|^2 = \sum_{i=1}^n v_i v_i$ и δ — положительная константа.

Рассмотрим аппроксимационную задачу, заменяя в операторном уравнении (3.1) оператор K(v) на оператор $K_{\delta}(v)$. По аналогии определения слабого решения исходной задачи, дадим определение слабого решения аппроксимационной задачи. Для этого введем пространство

$$W = \{v : v \in L_2(0, T; V), v' \in L_2(0, T; V^*)\}$$

с нормой $||v||_W = ||v||_{L_2(0,T;V)} + ||v'||_{L_2(0,T;V^*)}$.

Определение 4.1. Пара функций $(v, f) \in W \times L_2(0, T; V^*)$ называется слабым решением аппроксимационной задачи с обратной связью, если она

удовлетворяет операторному равенству

$$v'(t) + D(v) - K_{\delta}(v) = f,$$
 (4.1)

начальному условию $v(0) = v_0$ и условию обратной связи

$$f \in \Psi(v). \tag{4.2}$$

Приведем свойства аппроксимационного оператора $K_{\delta}(v)$, доказанные в монографии [14]:

Лемма 4.1. 1. Для любого $\delta > 0$ отображение $K_{\delta} : L_2(0,T;V) \to L_2(0,T;V^*)$ корректно определена, непрерывно и справедлива оценка

$$||K_{\delta}(v)||_{L_{2}(0,T;V^{*})} \le \frac{C_{8}}{\delta}.$$
 (4.3)

c некоторой константой C_8 , не зависящей от v.

- 2. Для любого $\delta > 0$ отображение $K_{\delta} : W \to L_2(0,T;V^*)$ вполне непрерывно.
- 3. Для любого $\delta > 0$ справедлива оценка

$$||K_{\delta}(v)||_{L_1(0,T;V^*)} \le 9|v||_{L_2(0,T;V)}^2$$

c некоторой константой C_9 , не зависящей от v и δ .

Для дальнейшего исследования введем новые операторы:

$$L: W \to L_2(0, T; V^*) \times H,$$
 $L(v) = (v' + D(v), v|_{t=0});$
 $K_{\delta}: W \subset L_2(0, T; V) \to L_2(0, T; V^*) \times H,$ $K_{\delta}(v) = (K_{\delta}(v), 0);$
 $\Psi: W \to L_2(0, T; V^*) \times H,$ $\Psi(v) = (\Psi(v), v_0)$

и запишем аппроксимационную задачу в более компактном виде:

$$\boldsymbol{L}(v) - \boldsymbol{K}_{\delta}(v) \in \boldsymbol{\Psi}(v). \tag{4.4}$$

Исследуем свойства оператора $oldsymbol{L}.$

Лемма 4.2. Нелинейное отображение $L: W \to L_2(0,T;V^*) \times H$, корректно определено, обратимо и справедлива оценка

$$||v||_W \le C_{10}||\boldsymbol{L}(v)||_{L_2(0,T;V^*)\times H},\tag{4.5}$$

для любых $v \in W$ и некоторой константы C_{10} . Обратный оператор $\boldsymbol{L}^{-1}: L_2(0,T;V^*) \times H \to W$ непрерывен u

$$||\boldsymbol{L}^{-1}(f,v_0)||_W \le C_{11}(||v_0||_H + ||f||_{L_2(0,T;V^*)}).$$

Доказательство. Оператор взятия производной непрерывен, это следует из определения пространства W, оператор D(v) непрерывен по доказанному выше. Так как вложение $W \subset C([0,T],H)$ непрерывно (см. [13]), то оператор взятия следа функции $v|_{t=0}$ корректно определен и непрерывен, а следовательно, корректно определен и непрерывен оператор \boldsymbol{L} .

Докажем оценку (4.5). Для $v\in W$ обозначим ${m L}(v)=(\hat f,\hat v_0)$. При каждом фиксированном $t\in [0,T]$ применим функционалы $v'+D(v)=\hat f$ к функции $v(t)\in V$

$$\langle v'(t), v(t) \rangle + \langle D(v), v(t) \rangle = \langle \hat{f}(t), v(t) \rangle.$$

Так как

$$\langle v'(t), v(t) \rangle = \frac{1}{2} \frac{d}{dt} ||v(t)||_{H}^{2};$$

$$\langle \hat{f}(t), v(t) \rangle_{V} \leq ||\hat{f}(t)||_{V^{*}} ||v(t)||_{V};$$

$$\langle D(v), v(t) \rangle =$$

$$= 2 \int_{\Omega} \mu(I_{2}(v)) \varepsilon(v) : \varepsilon(v) dx \geq 2C_{12} \int_{\Omega} \varepsilon(v) : \varepsilon(v) dx \geq C_{12} ||v||_{V}^{2}.$$

Последнее неравенство выполнено в силу первого неравенства Корна (см. [15], Часть 1, Пункт 12).

Проинтегрируем полученное неравенство по переменной t на отрезке [0,t]. Используя начальное условие для функции v(t) и неравенство Коши

 $a\cdot b \leq rac{arepsilon}{2}a^2 + rac{1}{2arepsilon}b^2(orall arepsilon,a,b>0),$ приходим к оценке:

$$\frac{1}{2}||v(t)||_{H}^{2} - \frac{1}{2}||\hat{v}^{0}||_{H}^{2} + C_{12} \int_{0}^{t} ||v(\tau)||_{V}^{2} d\tau \leq \\
\leq \frac{1}{2\varepsilon} \int_{0}^{t} ||\hat{f}(t)||_{V^{*}}^{2} d\tau + \frac{\varepsilon}{2} \int_{0}^{t} ||v(\tau)||_{V}^{2} d\tau$$

теперь выбирая $\varepsilon = C_{12}$, получаем

$$\frac{1}{2}||v(t)||_{H}^{2} + \frac{1}{2}C_{12}\int_{0}^{t}||v(\tau)||_{V}^{2}d\tau \leq \frac{1}{2}||\hat{v}^{0}||_{H}^{2} + \frac{1}{2C_{12}}\int_{0}^{t}||\hat{f}(t)||_{V^{*}}^{2}d\tau,$$

умножим обе части неравенства на 2 и вычислим максимум по $t \in [0,T],$ получим

$$\max_{t \in [0,T]} ||v(t)||_H^2 + C_{12}||v||_{L_2(0,T;V)}^2 \le ||\hat{v}^0||_H^2 + \frac{1}{C_{12}}||\hat{f}||_{L_2(0,T;V^*)}^2$$

Используя неравенсво $(a+b)^2 \leq 2(a^2+b^2), \ a,b>0,$ отсюда нетрудно получить итоговую оценку

$$\max_{t \in [0,T]} ||v(t)||_H + ||v||_{L_2(0,T;V)} \le C_{13}(||\hat{v}^0||_H + ||\hat{f}||_{L_2(0,T;V^*)})$$

с некоторой константой C_{13} .

Для того, чтобы оценить $||v'||_{L_2(0,T;V^*)}$, воспользуемся равенством $v'=-D(v)+\hat{f}$, оценкой $||D(v)||_{L_2(0,T;V^*)}\leq C_{14}||v||_{L_2(0,T;V)}$ и полученной выше оценкой

$$||v'||_{L_2(0,T;V^*)} \le ||\hat{f}||_{L_2(0,T;V^*)} + ||D(v)||_{L_2(0,T;V^*)} \le$$

$$\le ||\hat{f}||_{L_2(0,T;V^*)} + C_{14}||v||_{L_2(0,T;V)} \le C_{15}||\hat{v}^0||_H + ||\hat{f}||_{L_2(0,T;V^*)}).$$

Таким образом, мы получаем требуемую оценку

$$||v||_{W} = ||v||_{L_{2}(0,T;V)} + ||v'||_{L_{2}(0,T;V^{*})} \le$$

$$\le C_{15} \left(||\hat{v}_{0}||_{H} + ||\hat{f}||_{L_{2}(0,T;V^{*})} \right) = C_{15} ||\boldsymbol{L}(v)||_{L_{2}(0,T;V^{*}) \times H}$$

с некоторой константой C_{15} .

Для доказательства обратимости отображения \boldsymbol{L} достаточно применить теорему (см [16], Глава 4, Теорема 1.1). Так как, оператор $D:V\to V^*$ непрерывен и монотонен, то все условия теоремы выполнены. Применение теоремы показывает, что для каждого (\hat{f},\hat{v}_0) существует решение $v\in L_2(0,T;V)$, а следовательно, $v\in W$. Таким образом, оператор \boldsymbol{L} обратим. Переписывая оценку (4.5) в виде

$$||\boldsymbol{L}^{-1}(\hat{f}, \hat{v}_0)||_W \le C_{10}(||\hat{v}^0||_H + ||\hat{f}||_{L_2(0,T;V^*)})$$

получаем, что оператор \boldsymbol{L}^{-1} непрерывен.

Из последней леммы следует, что изучение операторного включения (4.4) эквивалентно исследованию задачи о неподвижной точке следующего включения:

$$v \in F(v), \tag{4.6}$$

где $F:W\to W$ и определен:

$$F(v) = \mathbf{L}^{-1}(\mathbf{K}_{\delta}(v) + \mathbf{\Psi}(v)).$$

5 Разрешимость аппроксимационной задачи

Теорема 5.1. Операторное включение (4.6) имеет хотя бы одно решение $v \in W$.

Доказательство. Для доказательства данной теоремы рассмотрим семейство аппроксимационных задач:

$$v' + D(v) - \lambda K_{\delta}(v) \in \lambda \Psi(v), \ \lambda \in [0, 1], \tag{5.1}$$

или в компактной форме:

$$v \in G(v), \tag{5.2}$$

где $G(v)={m L}^{-1}(\lambda{m K}_\delta(v)+\lambda{m \Psi}(v))$. Заметим, что данное семейство совпадает с изучаемой задачей (4.6) при $\lambda=1$.

Покажем, что определена топологическая степень $\deg(G, \bar{B}_R, 0)$ (см. [17])

для многозначного отображения G на шаре $\bar{B}_R \subset W$ достаточно большого радиуса R и отлична от нуля.

Если $v \in W$ — решение одного из уравнений (5.1), то в силу оценок (4.3) и 4.5) и условий $\Psi 1 - \Psi 4$ имеем

$$||v||_{W} \leq C_{11}||(\boldsymbol{K}_{\delta}(v) + (f, v_{0}))||_{L_{2}(0,T;V^{*}) \times H} \leq$$

$$\leq C_{11}||(\boldsymbol{K}_{\delta}(v))||_{L_{2}(0,T;V^{*})} + ||f||_{L_{2}(0,T;V^{*})} + ||v_{0}||_{H} \leq C_{11}\left(\frac{C_{8}}{\delta} + C_{16} + ||v_{0}||_{H}\right).$$

Выберем $R > C_{11}(\frac{C_8}{\delta} + C_{16} + ||v_0||_H)$, тогда ни одно решение включения (5.2) не принадлежит границе шара $B_R \subset W$. Поэтому отображение $G: W \times [0,1] \to W$ определяет гомотопию многозначных отображений на B_R . Следовательно, топологическая степень $deg(G, \bar{B}_R, 0)$ определена для каждого значения $\lambda \in [0,1]$ и в силу свойства гомотопической инвариантности степени имеем

$$deg(G, \bar{B}_R, 0) = deg(F, \bar{B}_R, 0) = deg(I, \bar{B}_R, 0) = 1.$$

так как $0 \in B_R$. Отличие от нуля степени отображения F обеспечивает существование решения операторного включения (4.6), а, следовательно, существование решения включения (4.4) и аппроксимационной задачи. \square

Теорема 5.2. Для любого решения $v_{\delta} \in W$, $\delta > 0$, операторного включения (4.6) справедливы оценки

$$\max_{t \in [0,T]} ||v_{\delta}(t)||_{H} + ||v_{\delta}||_{L_{2}(0,T;V)} \le C_{17}(||f||_{L_{2}(0,T;V^{*})} + ||v_{\delta_{0}}||_{H}), \tag{5.3}$$

$$||v_{\delta}'||_{L_1(0,T;V^*)} \le C_{18}(1+||f||_{L_2(0,T;V^*)}+||v_{\delta_0}||_H)^2, \tag{5.4}$$

c константами C_{17} и C_{18} , не зависящими от δ .

Доказательство. Пусть $v_{\delta} \in W$ решение операторного включения (4.6), существующего по предыдущей теореме для некоторого $\delta > 0$. Повторяя рассуждения доказательства оценки (4.5) и используя тот факт, что $\langle K_{\delta}(v_{\delta}(t)), v_{\delta}(t) \rangle = 0$ для всех $t \in [0, T]$, отсюда нетрудно получить требуе-

мую оценку:

$$\max_{t \in [0,T]} ||v_{\delta}(t)||_{H} + ||v_{\delta}||_{L_{2}(0,T;V)} \le C_{17}(||f||_{L_{2}(0,T;V^{*})} + ||v_{\delta_{0}}||_{H}).$$

Для того, чтобы оценить $||v_\delta'||_{L_1(0,T;V^*)}$, воспользуемся равенством $v_\delta'=-D(v_\delta)+K_\delta(v_\delta)+f$. Отсюда

$$||v_{\delta}'||_{L_1(0,T;V^*)} \le ||D(v_{\delta})||_{L_1(0,T;V^*)} + ||K_{\delta}(v_{\delta})||_{L_1(0,T;V^*)} + ||f||_{L_1(0,T;V^*)}.$$
(5.5)

Используя непрерывность вложения $L_2(0,T;V^*)\subset L_1(0,T;V^*)$, с помощью неравенства Коши и оценки $||D(v_\delta)||_{L_1(0,T;V^*)}\leq C_{14}||v_\delta||_{L_2(0,T;V)}$ получим

$$||D(v_{\delta})||_{L_{1}(0,T;V^{*})} \leq C_{14}||D(v_{\delta})||_{L_{2}(0,T;V^{*})} \leq C_{19}||v_{\delta}||_{L_{2}(0,T;V)},$$
$$||f||_{L_{1}(0,T;V^{*})} \leq \sqrt{T}||f||_{L_{2}(0,T;V^{*})}.$$

Кроме того, для $||K_{\delta}(v_{\delta})||_{L_{1}(0,T;V^{*})}$ имеет оценку:

$$||K_{\delta}(v_{\delta})||_{L_{1}(0,T;V^{*})} \leq C_{20}||v_{\delta}||_{L_{2}(0,T;V)}^{2}.$$

Подставляя полученные оценки в неравенство (5.5) и используя оценку (5.3), получим:

$$||v_{\delta}'||_{L_{1}(0,T;V^{*})} \leq C_{19}||v_{\delta}||_{L_{2}(0,T;V)} + C_{20}||v_{\delta}||_{L_{2}(0,T;V)}^{2} + \sqrt{T}||f||_{L_{2}(0,T;V^{*})} \leq C_{21}(1+||f||_{L_{2}(0,T;V^{*})} + ||v_{\delta_{0}}||_{H})^{2}.$$

6 Доказательство теоремы 2.1

Прежде чем переходить к доказательству теоремы 2.1 о существовании слабых решений исходной задачи, сформулируем утверждение о предельном переходе для оператора K_{δ} .

Лемма 6.1. Если последовательность $\{v_l\}_{l=1}^{\infty}, v_l \in L_2(0,T;V)$ удовлетво-

ряет условиям:

$$v_l
ightharpoonup v_*$$
 слабо в $L_2(0,T;V),$ $v_l
ightharpoonup v_*$ почти всюду $Q_T,$ $v_l
ightharpoonup v_*$ сильно в $L_2(Q_T),$

тогда

$$K_{\delta}(v_l) \to K(v_*)$$
 в смысле распределений при $l \to \infty, \ \delta \to 0.$

Доказательство данной леммы можно найти в [14] (Глава 5, Лемма 5.3). Итак, докажем теорему 2.1 о существование решений задачи управления с обратной связью (1.1) - (1.2), (??).

Возьмем произвольную последовательность положительных чисел $\{\delta_l\}_{l=1}^{\infty}$, $\delta_l \to 0$. Для каждого δ_l известно, что соответствующая аппроксимационная задача (4.6) имеет, по крайней мере, одно решение $v_l \in W$.

Из оценки (5.3) следует, что $\{v_l\}$ ограничена по норме $||\cdot||_{L_2(0,T;V)}$ и $||\cdot||_{L_\infty(0,T;H)}$, а из оценки (5.4) последовательность $\{v_l'\}$ ограничена по норме пространства $L_1(0,T;V^*)$. Тогда, не уменьшая общности рассуждений, будем полагать что:

$$v_l
ightharpoonup v_*$$
 слабо в $L_2(0,T;V),$ $v_l
ightharpoonup *_-$ слабо в $L_\infty(0,T;H),$ $v_l
ightharpoonup v_*$ сильно в $L_2(Q_T),$ $v_l
ightharpoonup v_*$ сильно в $Q_T,$ $v_l'
ightharpoonup v_*'$ в смысле распределений.

Так как оператор D слабо непрерывен, то будем полагать, что $D(v_i)
ightharpoonup D(v_*)$ слабо в $L_2(0,T;V^*)$, а следовательно, в смысле распределений со значениями в V^* . В силу леммы 6.1 выполнена следующая сходимость:

$$K_{\delta_l}(v_l) o K(v_*)$$
 в смысле распределений.

Принимая во внимание оценки (5.3), (5.4) и условия $\Psi 1 - \Psi 4$, без ограничения общности можем предположить, что существует $f_* \in L_2(0,T;V^*)$ такое, что $f_l \to f_* \in \Psi(v_*)$ при $l \to \infty$.

Таким образом, переходя в каждом из членов равенства

$$v_l' + D(v_l) - K_{\delta_l}(v_l) = f_l \in \Psi(v_l)$$

к пределу при $l \to \infty$, получим, что предельные функции (v_*, f_*) удовлетворяют равенству

$$v'_* + D(v_*) - K_{\delta_l}(v_*) = f_* \in \Psi(v_*)$$

а также переходя в начальном условии $v_l(0)=v_0$ к пределу при $l\to\infty$, получим что v_* удовлетворяет начальному условию $v_*(0)=v_0$.

Следовательно, (v_*,f_*) — слабое решение задачи управления с обратной связью (1.1) — (1.2), (??). Заметим, что так как $v_* \in L_2(0,T;V) \cap L_\infty(0,T;H)$, то из равенства (3.1) следует, что $v_*' \in L_1(0,T;V^*)$.