Formação Livre em Ciência de Dados Aula 3 | Módulo Básico II

João Pedro Passos Pereira

Roteiro Aula 3

- 1. Parte 1:
 - a. Conceitos básicos em Ciência de Dados II;
 - b. Lógica II;
- 2. Parte 2:
 - a. Estatística Descritiva I.

Parte 1

(1) Conceitos básicos em CIência de Dados II

Conceitos básicos (1)

Algoritmo

"Um algoritmo é uma série de instruções que se dá a um computador para que ele solucione algum problema proposto (...). Essas instruções podem ser simples, como retirar todos os caracteres especiais de um número de telefone, ou mais complexas, como prever o número de vendas que um representante irá fazer em determinado período no futuro."

Conceitos básicos (2)

Data Visualization

"A visualização de dados é o processo de traduzir grandes conjuntos de dados e métricas em tabelas, gráficos e outros recursos visuais. A representação visual de dados resultante torna mais fácil identificar compartilhar tendências em tempo real, outliers e insights sobre novos as informações representadas nos dados."

Conceitos básicos (3)

Big Data

"Big data é a área do conhecimento que estuda como <u>tratar</u>, <u>analisar</u> e <u>obter informações</u> a partir de **conjuntos de dados grandes demais para serem analisados por sistemas tradicionais.**"

Conceitos básicos (4)

Business Intelligence (BI)

"Inteligência de negócios refere-se ao processo de <u>coleta</u>, <u>organização</u>, <u>análise</u>, <u>compartilhamento</u> e <u>monitoramento de informações</u> que oferecem **suporte a gestão de negócios.**"

Conceitos básicos (5)

Cloud Computing

"Computação em nuvem é um termo coloquial para a disponibilidade sob demanda de recursos do sistema de computador, especialmente armazenamento de dados e capacidade de computação, sem o gerenciamento ativo direto do utilizador."

Conceitos básicos (6)

Data Lake

"Um data lake ("lago de dados" em português) é um repositório para armazenamento de dados, que na maioria das vezes não são estruturados ou estão em seu estado natural (não tratados)."

Conceitos básicos (7)

Data Transformation

"Transformação de dados é o processo de **conversão de formato**, **estrutura ou valores de dados**. Esse processo pode ser realizado antes ou depois da chegada dos dados em um base de dados"

Conceitos básicos (8)

Engenheiro de Dados

"O engenheiro de dados é responsável por implementar mecanismos que façam a coleta, armazenamento e transformação de dados, para que estes, ao serem disponibilizados ao usuário final, sejam usáveis."

Troca/Disputa

Conceitos básicos (9)

Data Warehouse

"O data warehouse é um local usado para armazenar grandes quantidades de dados do negócio e suportar atividades de análise e business intelligence. Ele se diferencia do data lake nos seguintes aspectos:

Data Warehouse

Conceitos iniciais (10)

ETL ELT "A sigla ELT significa "Extract, Load, Transform", ou em "A sigla ETL significa "Extract, Transform, Load", português "Extrair, Carregar, Transformar", e refere-se ao ou em português "Extrair, Transformar, Carregar", e processo usado para replicar dados de uma fonte em uma refere-se também ao processo usado para replicar base de dados. No ELT, os dados são extraídos da fonte, dados de uma fonte em um destino. Em carregados no seu destino e só então transformados." contrapartida ao ELT, os dados são extraídos e carregados no destino somente após realizada a transformação neles."

ETL vs ELT

Conceitos básicos (11)

Machine Learning

"Machine Learning, ou aprendizagem de máquina, é um processo em que um computador usa um algoritmo para entender um conjunto de dados, e com base nesse entendimento fazer previsões ou tomar decisões."

```
document.getElementByld(
253
       function updatePhotoDescription()
            if (descriptions.length > (page * 5) + (cumentimage)
                document.getElementByld(
   360
          function updateAllmages() {
    261
                var i = 1;
    262
                while (i < 10) {
                    var elementld = 'foto' + i;
     264
                    var elementldBig = 'biglmage' + i;
                     if (page * 9 + i - 1 < photos.length)
                        document.getElementByld( elementId ) sec =
                         document.getElementByld( elementldBig ) *** **
       267
        268
                          document.getElementByld( elementId ) src = %
                        else {
        269
         270
```

(2) Lógica II

Observação inicial - Alternativa à Lógica Clássica

O que é Lógica Fuzzy?

Exemplo:

Quando uma pessoa é considerada gorda?

O quadrado lógico

Exemplo

Wargs = w

Se todos Wargs são Twerps e nenhum dos Twerps são Gollums, então nenhum dos Gollums são definitivamente Wargs?

```
Twerps = t
Gollums = g

w C t
t/C g
logo
g/C W (verdade)

-
C = CONTIDO
/C = NÃO CONTIDO
```

Parte 2

(3) Estatística Descritiva I

Estatística descritiva

"A estatística descritiva é um ramo da estatística que aplica várias técnicas para descrever e sumarizar um conjunto de dados. Diferencia-se da estatística inferencial, ou estatística indutiva, pelo objetivo: organizar, sumarizar dados ao invés de usar os dados em aprendizado sobre a população."

Estatística descritiva - Métodos

Os dois principais:

- Tabelas de frequência;
- Gráficos.

Métodos acessórios:

- Medidas de tendência central;
- Medidas de dispersão;
- Medidas de distribuição dos dados (assimetria, curtose, boxplot);
- Estatísticas de resumo;
- Estatísticas de tendência.

Tabelas de frequência

- É uma das formas de sumarizar um conjunto de dados. E a mais utilizada;
- Consiste em obter uma representação tabular ou gráfica baseada nas frequências com que os dados aparecem dentro do conjunto de dados utilizado, de modo a observar tendências básicas e possíveis caminhos iniciais de análise;
- Para cada tipo de variável, um jeito diferente de realizar uma distribuição de frequências.
 - Para variáveis quantitativas discretas, utiliza-se a tabela de frequências simples.
 - Para variáveis quantitativas contínuas, utiliza-se a tabela de classes de frequência.
- Na tabela de frequências simples é realizada uma simples contagem de cada valor individual que aparece nos dados e a contabilidade de quantas vezes tal valor aparece.
- Já na tabela de classes de frequência você separa os dados em intervalos e agrupa os dados dentro de cada intervalo.

Tabelas de frequência - Casos

Variável discreta -	Tabela	de Freq	[u ẽncia	simples
---------------------	---------------	---------	-----------------	---------

Variável contínua - Tabela de Classes de Frequência

xi = variável na posição i

fi = quantas vezes (frequência/ contagem) o valor x na posição i aparece

ex: idades de crianças (primeira coluna) X quantas vezes as idades aparecem (segunas coluna)

x _i	f _i
0	8
1	5
2	5
3	2

Classe	Intervalo de classe	f _j
1	2 4	4
2	4 6	12
3	6 8	10
4	8 10	4

Tabelas de frequência - Pontos importantes

- No caso do cálculo da distribuição de frequência para variáveis discretas, temos um cálculo muito simples, basta realizar a contagem.
- Mas para o caso de variáveis contínuas, como definir as classes? Como definir o limite superior e o limite inferior de cada uma das classes? Como classificar por classes valores que estão em regiões limites? O que mais podemos extrair? Quais os problemas podemos enfrentar?
- Mais adiante vamos entender melhor tais questões, antes, vamos estudar em detalhes as medidas fundamentais da estatística: medidas de posição e medidas de dispersão dos dados.

Medidas de posição

Média Aritmética Simples

"É a soma das observações observações dividida dividida pelo número de observações. Seus valores valores tendem a se localizar em um ponto central dentro de um conjunto conjunto de dados. É a medida de posição mais utilizada"

$$\bar{X} - \frac{\sum x_i}{n}$$

Média Ponderada

"Nos cálculos envolvendo média aritmética simples, simples, todas as ocorrências têm exatamente a mesma importância ou o mesmo peso. No entanto, existem casos onde as ocorrências têm importância relativa diferente. Nestes casos, o cálculo da média deve levar em conta esta importância relativa ou peso relativo."

$$\bar{X}_p = \frac{X_1 \cdot p_1 + X_2 \cdot p_2 + \dots + X_n \cdot p_n}{p_1 + p_2 + \dots + p_n} = \frac{\sum_{i=1}^n X_i \cdot p_i}{\sum_{i=1}^n p_i}$$

Mediana

"Ocupa a posição posição central de uma série de observações ordenadas, ou seja, é o valor que divide os dados em duas partes iguais (isto é, em duas partes de 50% cada).

$$Me=16$$

$$11 - 12 - 13 - 16 - 17 - 20 - 25 - 26$$

$$Me = (16+17)/2 = 16.5$$

Medidas de posição

Moda	Quartis / Decis / Percentis
É o valor mais frequente em um conjunto de dados. 1. Amodal: nenhum valor se repete mais que outros; 2. Unimodal: Um valor se repete mais do que outros; 3. Bimodal: dois valores se repetem mais; 4. Multimodal: dois valores que se repetem a mesma quantidade de vezes Usada em variáveis qualitativas	 Quartis: dividem o conjunto de dados em 4 (quatro) partes iguais; Decis: dividem o conjunto de dados em 10 (dez) partes iguais; Percentis: dividem o conjunto de dados em 100 (cem) partes iguais; q2 = d5 = p50 = mediana

Observações importantes

- i) As três turmas possuem a mesma média.
- ii) As notas estão distribuídas sob diferentes formas.
- iii) A média resume o conjunto de dados apenas posição central.
- iv) A média não fornece informações sobre a variabilidade dos dados.

Amplitude Total (AT)

"Verifica que a amplitude como medida de dispersão é limitada. Essa medida só depende dos valores valores extremos, ou seja, não é afetada pela dispersão dos valores internos"

AT = Maior valor - Menor valor

Desvio médio

"O desvio médio é uma medida de "VARIABILIDADE ABSOLUTA". Ela mede a variabilidade do conjunto em termos de desvios em relação à média aritmética. É uma quantidade sempre não negativa e expressa na mesma unidade de medida da variável."

$$DM = \frac{\sum |X_i - \bar{X}|}{n}$$

Pouco usada.

Variância

"Mede a variabilidade do conjunto conjunto em termos de desvios quadrados quadrados em relação relação à média aritmética."

$$S^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{n-1}$$

Desvio padrão

É a raiz quadrada da variância. Mede o desvio em termos reais (na mesma medida que os dados coletados).

Desvio Padrão =
$$\sqrt{Variância}$$
 (Raiz quadrada da Variância).

Coeficiente de variação

É uma medida de "VARIABILIDADE RELATIVA", útil para comparar a variabilidade de observações com diferentes unidades de medida. É definida por:

$$CV = \frac{S}{\overline{X}} \times 100$$

VALORES	MÉDIA	D.P.	C.V.
1 - 2 - 3	2	1	50 %
100 - 200 - 300	200	100	50 %
101 - 102 - 103	102	1	1 %

Observações sobre "n"

Amostra	População
Assume-se variância maior e desvio padrão maior, portanto usa-se n-1 (n -1 graus de liberdade)	Assume-se variância e desvio padrão normalizados, portanto usa-se n.

Contatos

Meus links úteis

Instagram: @j0pewd2

Site: https://joaopedropereira.com.br

E-mail: contato@joaopedropereira.com.br

Linkedin: https://linkedin.com/in/joaopedrowd/