DEVOIR À LA MAISON N°16

- ▶ Le devoir devra être rédigé sur des copies *doubles*.
- ▶ Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- ▶ Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1 -

On note $\mathcal F$ l'ensemblde des fontions définies sur $\mathbb R$ à valeurs dans $\mathbb R$ et $\mathcal L$ la partie de $\mathcal F$ formée des fonctions lipschitziennes sur $\mathbb R$. On rappelle qu'une fonction ϕ est lipschitziennes sur $\mathbb R$ s'il existe $K \in \mathbb R_+$ tel que

$$\forall (x, y) \in \mathbb{R}^2, |\varphi(x) - \varphi(y)| \leq K|x - y|$$

L'objectif de ce problème est de déterminer les fonctions $F \in \mathcal{L}$ telles que

$$\forall x \in \mathbb{R}, \ F(x) - \lambda F(x + a) = f(x)$$
 (*)

où f est une fonction de \mathcal{L} donnée et où a et λ sont deux réels non nuls donnés.

Partie I - Questions préliminaires

- **1.** Montrer qu'une fonction constante sur \mathbb{R} appartient à \mathcal{L} .
- **2.** Montrer que cos et sin appartiennent à \mathcal{L} .
- **3.** Montrer que \mathcal{L} est un sous-espace vectoriel de \mathcal{F} .
- **4.** Soit $\phi \in \mathcal{L}$. Montrer qu'il existe deux réels positifs A et B tels que

$$\forall t \in \mathbb{R}, |\varphi(t)| \leq A|t| + B$$

- **5.** Soit q un complexe de module strictement inférieur à 1.
 - a. On sait qu'alors la série $\sum_{n\in\mathbb{N}}q^n$ converge. Rappeler sa somme.
 - **b.** Montrer que la série $\sum_{n\in\mathbb{N}} nq^n$ converge.
- **6.** On suppose dans cette question $|\lambda| < 1$.
 - a. On fixe $x \in \mathbb{R}$. Justifier que la série $\sum_{n \in \mathbb{N}} \lambda^n e^{i(x+n\alpha)}$ converge et déterminer sa somme.
 - **b.** Montrer que les séries $\sum_{n \in \mathbb{N}} \lambda^n \cos(x + n\alpha)$ et $\sum_{n \in \mathbb{N}} \lambda^n \sin(x + n\alpha)$ convergent et que

$$\sum_{n=0}^{+\infty} \lambda^n \cos(x + n\alpha) = \frac{\cos x - \lambda \cos(x - \alpha)}{1 - 2\lambda \cos \alpha + \lambda^2}$$

$$\sum_{n=0}^{+\infty} \lambda^n \sin(x + n\alpha) = \frac{\sin x - \lambda \sin(x - \alpha)}{1 - 2\lambda \cos \alpha + \lambda^2}$$

Partie II – Etude de (*) lorsque f est nulle et $|\lambda| \neq 1$

On suppose dans cette partie que f est nulle sur \mathbb{R} et $|\lambda| \neq 1$.

1. Soit $F \in \mathcal{F}$ vérifiant (*). Montrer que pour tout $x \in \mathbb{R}$ et tout $n \in \mathbb{N}$

$$F(x) = \lambda^{n}F(x + na)$$

$$F(x) = \lambda^{-n}F(x - na)$$

2. On suppose maintenant que $F \in \mathcal{L}$. Montrer à l'aide de la question **I.4** que F est nulle sur \mathbb{R} . On pourra distinguer les cas $|\lambda| < 1$ et $|\lambda| > 1$.

Partie III – Etude de (*) **lorsque** $|\lambda| \neq 1$

- 1. Montrer à l'aide de la question II.2 que l'équation (\star) admet au plus une solution dans \mathcal{L} .
- **2.** On suppose dans cette question $|\lambda| < 1$.
 - a. On fixe $x \in \mathbb{R}$. Montrer à l'aide de la question I.4 que la série $\sum_{n \in \mathbb{N}} \lambda^n f(x + n\alpha)$ converge absolument. On pose alors $F_0(x) = \sum_{n=0}^{+\infty} \lambda^n f(x+n\alpha).$
 - **b.** Montrer que $F_0 \in \mathcal{L}$.
 - **c.** Montrer que F_0 est l'unique solution de (\star) appartenant à \mathcal{L} .
 - **d.** Déterminer l'unique solution de (\star) appartenant à \mathcal{L} lorsque f est la fonction constante égale à 1.
 - **e.** A l'aide de la question **I.6.b**, déterminer l'unique solution de (\star) appartenant à \mathcal{L} lorsque f est la fonction cos ou la fonction sin.
- 3. On suppose dans cette question $|\lambda| > 1$.
 - **a.** On fixe $x\in\mathbb{R}$. Justifier brièvement que la série $\sum_{\mathfrak{n}\in\mathbb{N}^*}\lambda^{-\mathfrak{n}}f(x-\mathfrak{n}\mathfrak{a})$ converge absolument. On pose

alors
$$F_0(x) = -\sum_{n=1}^{+\infty} \lambda^{-n} f(x - n\alpha)$$
.

b. Montrer que F_0 est l'unique solution de (\star) appartenant à \mathcal{L} .