3 HUDBA

Co se naučíte

- Přehrát přednastavený zvuk
- Naučíte micro:bit mluvit
- Vytvořit vlastní melodii

Co budete potřebovat

- PC s nainstalovaným editorem mu
- Propojovací USB kabel micro USB koncovkou
- Micro:bit

Toto je verze pro Micro:bit V2. V této verzi již nepotřebujete připojovat externí reproduktory neboť tato verze Micro:bitu obsahuje buzzer a programy tak budou fungovat přímo bet připojování dalšího hardware.

Navíc tato verze obsahuje mikrofon, takže si můžeme vyzkoušet reakci na zvuk, např. Tlesknutí.

POZOR – doporučuji používat editor Thonny a programy pouze spouštět, ale nenahrávat. V této hodině reálně hrozí znečištění třídy hlukem z programů spuštěných ve smyčce. Takto spuštěný program lze kdykoliv přerušit stiskem tlačítka RESET na zadní straně Micro:bitu nebo odpojením Micro:bitu od kabelu.

Pokud použijete editor Mu nebo program nahrajete, pak se po uvolnění tlačítka RESET nebo připojení Micro:bitu opět spustí zvuk.

1.Průvodce hodinou III-1

Studenti si připojí k micro:bitu hardware pro přehrání zvuku a ozvučí tak své projekty.

Co bude v této hodině potřeba:

- PC s editorem mu.
- Micro:bit s USB kabelem
- Pokud je k dispozici, tak dataprojektor
- Prezentaci k této lekci
- Pracovní listy pro studenty

1. krok 5 minut

Rozdejte studentům micro:bity a kabely. Poučte studenty o tom, že při testování zvuku mají používat editor Thonny a programy pouze spouštět a nikoliv nahrávat na Micro:bit. Rovněž je poučte o tom, že programy přeruší stiskem tlačítka RESET.

2. krok 10 minut

Vyzkoušejte přehrávání na připravené melodii. Zapište následující kód, odlaďte a nahrajte do micro:bitu:

```
from microbit import *
import music
music.play(music.FUNK)
```

Na řádku 2 je informace o přidání knihovny pro přehrání zvuku. Na řádku 3 je příkaz pro přehrání přednastavené melodie. Tento zvuk je poměrně dlouhý a poskytuje tak čas nastavit správné připojení výstupu. Pokud nic neslyšíte a myslíte, že je vše zmáčkněte na Micro:bitu Reset.

Seznam připravených melodií je na konci této kapitoly. Podobně jako u přednastavených obrázků jej vhodným způsobem poskytněte studentům.

3. krok 15 minut

Nyní se zkombinuje vše co již žáci znají. Zobrazení obrázku, práce s tlačítky a přehrání melodie:

```
from microbit import *
  import music
  while True:
    if button_a.is_pressed():
        display.show(Image.HAPPY)
        music.play(music.POWER_UP)
    if button_b.is_pressed():
        display.show(Image.SAD)
        music.play(music.POWER_DOWN)
    display.clear()
```

Tomuto příkladu by již žáci měli rozumět. Ověřte.

4. krok 15 minut

Na závěr hodiny vyzkoušíme ještě práci s mikrofonem. Zapište a odlaďte následující program (pouze pro editor Thonny):

```
from microbit import *
while True:
    sleep(1000)
    print(microphone.sound_level())
```

Po spuštění se rozsvítí ikonka mikrofonu a Thonny bude do dolní části po vteřině vypisovat hodnotu hluku v okolí. Hodnoty jsou 0 (ticho) až 255 (maximální hluk). Zabraňte studentské soutěži ve vytvoření co největší hodnoty.

Nyní když umíme odhadnout co vydává jak silný zvuk, můžeme nechat micro:bit reagovat na okolní zvuky např. takto:

```
from microbit import *
display.clear()
while True:
    if microphone.sound_level() > 8:
        display.show(Image.HAPPY)
        sleep(500)
        display.clear()
```

Pokud je úroveň zvuku větší než osm ukáže Micro:bit na displeji smajlík.

Microbit obsahuje dvě proměnné SoundEvent.LOUD a Sound.Event.QUIT. Jejich použití ukazuje následující příklad:

```
from microbit import *
display.clear()
microphone.set_threshold(SoundEvent.LOUD, 10)

while True:
   if microphone.current_event() == SoundEvent.LOUD:
        display.show(Image.HAPPY)
        sleep(500)
        display.clear()
```

Na třetím řádku nastavíme hodnotu proměnné SoundEvent. Každý zvuk s touto a vyšší hodnotou je nyní brán jako hlasitý.

2.Pracovní list III-1

Naučíte se k micro:bitu připojit sluchátka a přehrát na nich melodii.

Co se naučíte

- Připojit k micro:bitu hardware na výstup zvuku
- Přehrát předpřipravenou melodii a zkombinovat jí se zobrazením obrázku

Co budete potřebovat

- PC s nainstalovaným editorem mu
- Propojovací USB kabel micro USB koncovkou
- Micro:bit

POZOR: Tento text platí pouze pro Micro:bit V2. Pro verzi jedna použijte pracovní list s připojováním externího reproduktoru.

A jděte na to ...

Nahrajte do micro:bitu následující program:

```
from microbit import *
import music
music.play(music.FUNK)
```

Příkaz na řádku 2 zavádí knihovnu pro práci se zvukem a na řádku 3 se přehraje připravený zvuk. Seznam všech připravených melodií vám poskytne vyučující.

Nyní si zkombinujeme vše co už znáte z předchozích hodin. Zobrazení obrázku, stisk tlačítek a přehrání zvuku. Nahrajte následující kód do micro:bitu a vyzkoušejte:

```
from microbit import *
import music
while True:
    if button_a.is_pressed():
        display.show(Image.HAPPY)
        music.play(music.POWER_UP)
    if button_b.is_pressed():
        display.show(Image.SAD)
        music.play(music.POWER_DOWN)
    display.clear()
```

Jaký je význam jednotlivých řádků?

Zkuste si program upravit s jinými obrázky a melodiemi.

Nyní si vyzkoušíme práci s mikrofonem. Zapište a odlaďte následující program (pouze pro editor Thonny):

```
from microbit import *
while True:
    sleep(1000)
    print(microphone.sound_level())
```

Po spuštění se rozsvítí ikonka mikrofonu a Thonny bude do své dolní části po vteřině vypisovat hodnotu hluku v okolí. Hodnoty jsou 0 (ticho) až 255 (maximální hluk). Všimněte si, že mikrofon je poměrně citlivý.

Nyní když umíme odhadnout co vydává jak silný zvuk, můžeme nechat micro:bit reagovat na okolní zvuky např. takto:

```
from microbit import *
display.clear()
while True:
   if microphone.sound_level() > 8:
       display.show(Image.HAPPY)
       sleep(500)
       display.clear()
```

Pokud je úroveň zvuku větší než osm ukáže Micro:bit na displeji smajlík. Experimentujte se změnou úrovně.

Microbit obsahuje dvě proměnné SoundEvent.LOUD a Sound.Event.QUIT. Jejich použití ukazuje následující příklad:

```
from microbit import *
  display.clear()
  microphone.set_threshold(SoundEvent.LOUD, 10)

while True:
    if microphone.current_event() == SoundEvent.LOUD:
        display.show(Image.HAPPY)
        sleep(500)
        display.clear()
```

Na třetím řádku nastavíme hodnotu proměnné SoundEvent. Každý zvuk s touto a vyšší hodnotou je nyní brán jako hlasitý.

Úkol: Vytvořte program, který zajistí, že když je v okolí kldi bude se Micro:bit usmívat, pokud však bude velký hluk, bude Micro:bit mračit. Bude-li úroveň mezi bude displej prázdný. Stanovte si sami úrovně hlasitosti.

3.Průvodce hodinou III-2

Studenti si na micro:bitu připraví vlastní melodii a naučí jej mluvit.

Co bude v této hodině potřeba:

- PC s editorem mu.
- Micro:bit s USB kabelem
- Pokud je k dispozici, tak dataprojektor
- Prezentaci k této lekci
- Pracovní listy pro studenty

1. krok 10 minut

Rozdejte studentům micro:bity. Napište a odlaďte následující program:

```
from microbit import *
  import speech
  speech.say("Hello", speed=100)
```

Na řádku 2 se zavádí knihovna pro hovor a na řádku 3 je zadán příkaz pro mluvení. Zde micro:bit pozdraví. Parametr speed=100 je nepovinný a je možné je vynechat včetně čárky. Defaultní hodnota je 72, ale přijde nám, že při této hodnotě mluví micro:bit příliš rychle. Čím vyšší číslo, tím je řeč pomalejší a naopak.

Pozor micro:bit mluví pouze anglicky a je tedy nutné použít anglickou transkripci. Např. "Josef" je třeba napsat jako "Yoseph" atd. A pozor určitě nepoužívejte české znaky.

Řekněte studentům, ať zkusí naučit micro:bit říkat jejich jméno a příjmení (bez háčků a čárek).

2. krok 20 minut

Pak je nechte napsat a odladit následující program, který přehraje melodii ovčáci čtveráci. V tomto případě je možné pro zmenšení počtu chyb tento program vhodným způsobem studentům vysdílet. Melodie je poměrně primitivní, pokud máte mezi studenty hudebníky, určitě jí upraví:

Datová struktura nota je **seznam**, který by již měli studenti znát. Zkuste se jich zeptat.

Význam jednotlivých tónů je: C4:4 znamená nota C ve čtvrté oktávě (0 – nejnižší, 8 – nejvyšší) o délce 4. Nota R znamená pauzu (rest). Příkaz music.play(nota) pak daný záznam přehraje.

3. krok 15 minut

Vyzvěte studenty ať si sestaví vlastní melodii nebo ať naprogramují přehrání nějaké známé melodie.

Doporučení

Touto hodinou končí úvodní část seznamování s micro:bitem. Nyní se nabízí možnost zadání nějaké samostatné nebo týmové práce.

Navrhujeme, abyste nyní studentům zadali po dvojicích (nebo i větších skupinách) následující úlohu: Vytvořte pomocí dvou nebo tří micro:bitů animaci s melodií. Jeden micro:bit se bude starat o animaci a druhý k tomu bude hrát melodii. Popřípadě na třetím micro:bitu může probíhat nějaký hovor. Upozorněte studenty, že je třeba se nějak synchronizovat, např. současně stisknout tlačítka na obou micro:bitech. Později se studenti naučí též synchronizaci pomocí rádia, která by byla vhodnější, ale zatím jí nemůžete použít.

PRACOVNÍ LIST III-2

Naučíte se na micro:bitu přehrát vlastní melodii a naučíte jej mluvit.

Co se naučíte

- Naučíte micro:bit mluvit
- Naeditovat vlastní melodii pomocí not a přehrát jí.

Co budete potřebovat

- PC s nainstalovaným editorem mu
- Propojovací USB kabel micro USB koncovkou
- Micro:bit

A jděte na to ...

Napište a odlaďte následující program:

```
from microbit import *
import speech
speech.say("Hello", speed=100)
```

Na řádku 2 se zavádí knihovna pro hovor a na řádku 4 je zadán příkaz pro mluvení. Zde micro:bit pozdraví. Parametr speed=100 je nepovinný a je možné je vynechat včetně čárky. (Defaultní hodnota je 72, ale při této hodnotě mluví micro:bit příliš rychle. Čím vyšší číslo, tím je řeč pomalejší a naopak.)

Pozor micro:bit mluví pouze anglicky a je tak nutno použít anglickou transkripci. Např. "Josef" je třeba napsat jako "Yoseph" atd. A samozřejmě nelze použít české znaky.

Zkuste naučit micro:bit říkat své jméno a příjmení (bez háčků a čárek).

Přeložte a odlaďte následující program:

Program by měl hrát melodii "Ovčáci čtveráci". Pokud máte hudební sluch a vyznáte se v notách, můžete melodii zkusit upravit. Význam jednotlivých tónů je: C4:4 znamená nota C ve čtvrté oktávě (0 – nejnižší, 8 – nejvyšší) o délce 4. Nota R znamená pauzu (rest). Příkaz music.play (nota) pak daný záznam přehraje.

Otázka: Co je za strukturu nota?

Zkuste si naprogramovat vlastní melodii nebo nějakou známou skladbu.

PRŮVODCE TEORIÍ

Připojení audio výstupu

Micro:bit V2 má nově buzzer, který umí vybzučet jednoduché melodie a mikrofon, který umožňuje reagovat na hladinu zvuku v okolí, případně na akustické signály.

Přehrávání připravených melodií

MicroPython obsahuje asi dvacet předem připravených melodií, jejichž seznam najdete v dokumentaci. Ukázka použití je v následujícím příkladu:

```
from microbit import *
import music
music.play(music.FUNK)
```

Všimněte si, že na řádku 2 je nutné zavést knihovnu pro přehrávání hudby. Samotný příkaz pro přehrání melodie je pak na řádku 3.

Seznam všech připravených melodií naleznete v příloze B nebo na stránkách dokumentace MicroPythonu pro micro:bit.

Připravené melodie lze dobře kombinovat s připravenými obrázky, jak ukazuje další příklad:

```
from microbit import *
import music
while True:
    if button_a.is_pressed():
        display.show(Image.HAPPY)
        music.play(music.POWER_UP)
    if button_b.is_pressed():
        display.show(Image.SAD)
        music.play(music.POWER_DOWN)
    display.clear()
```

Význam jednotlivých příkazů už by vám měl být jasný a proto neuvádíme žádný další popis.

Mikrofon

Zapište a odlaďte následující program (pouze pro editor Thonny):

```
from microbit import *
while True:
    sleep(1000)
    print(microphone.sound_level())
```

Po spuštění se rozsvítí ikonka mikrofonu a Thonny bude do dolní části po vteřině vypisovat hodnotu hluku v okolí. Hodnoty jsou 0 (ticho) až 255 (maximální hluk).

Nyní když umímte odhadnout co vydává jak silný zvuk, můžete nechat micro:bit reagovat na okolní zvuky např. takto:

```
from microbit import *
display.clear()
while True:
   if microphone.sound_level() > 8:
       display.show(Image.HAPPY)
       sleep(500)
       display.clear()
```

Pokud je úroveň zvuku větší než osm ukáže Micro:bit na displeji smajlík.

Microbit obsahuje dvě proměnné SoundEvent.LOUD a Sound.Event.QUIT. Jejich použití ilustruje následující příklad:

```
from microbit import *
display.clear()
microphone.set_threshold(SoundEvent.LOUD, 10)

while True:
   if microphone.current_event() == SoundEvent.LOUD:
        display.show(Image.HAPPY)
        sleep(500)
        display.clear()
```

Na třetím řádku nastavíme hodnotu proměnné SoundEvent. Každý zvuk s touto a vyšší hodnotou je nyní brán jako hlasitý.

Micro:bit mluví

Microbit umí i mluvit. Naneštěstí pro nás pouze anglicky. Knihovna pro mluvení je navíc zatím označena jako vývojová, takže se můžete potkat s chybami. Mluvení je velmi jednoduché:

```
from microbit import *
import speech
speech.say("Hello", speed=100)
```

Na řádku 2 se zavádí knihovna pro hovor a na řádku 3 je zadán příkaz pro mluvení. Zde micro:bit pozdraví. Parametr speed=100 je nepovinný. Defaultní hodnota je 72, ale přijde nám, že při této hodnotě mluví micro:bit příliš rychle. Čím vyšší číslo, tím je řeč pomalejší a naopak. Nezapomeňte pro slova použít anglickou transkripci např. "Yoseph" pro Josef.

Dokumentace doporučuje zapojit pro hovor sluchátka (repráky) mezi porty 0 a 1 (a ne 0 a GND jako u hudby). A skutečně zvuk je v tomto případě silnější a čistší než mezi 0 a GND.

Přehrání not

Micro:bit dovede přehrát noty. Následující program přehraje melodii "Ovčáci, čtveráci". Zápis programu trochu připomíná vytváření animovaných obrázků.

Struktura seznam (list) nota je vlastně zápis jednotlivých tónů. Např. C4:4 znamená nota C ve čtvrté oktávě (0 – nejnižší, 8 – nejvyšší) o délce 4. Nota R znamená pauzu (rest). Příkaz music.play(nota) pak daný záznam přehraje.

PŘÍLOHA - SEZNAM PŘIPRAVENÝCH MELODIÍ

- music.DADADADUM
- music.ENTERTAINER
- music.PRELUDE
- music.ODE
- music.NYAN
- music.RINGTONE
- music.FUNK
- music.BLUES
- music.BIRTHDAY
- music.WEDDING
- music.FUNERAL
- music.PUNCHLINE
- music.PYTHON
- music.BADDY
- music.CHASE
- music.BA DING
- music.WAWAWAWAA
- music.JUMP_UP
- music.JUMP_DOWN
- music.POWER_UP
- music.POWER_DOWN