

Stochastic optimization

Stochastic optimization methods overview and their application in large-scale problems

Сон Андрей, БПМИ142

abson@edu.hse.ru

Национальный исследовательский университет «Высшая школа экономики»

14 марта 2017 г.

Gradient descent variants

- 1. (Batch) gradient descent $\theta_{i+1} = \theta_i \eta \cdot \nabla_{\theta} J(\theta)$
- 2. Stochastic («online») gradient descent $\theta_{i+1} = \theta_i \eta \cdot \nabla_{\theta} J(\theta; \mathbf{x}^{(i)}, \mathbf{y}^{(i)})$
- 3. Mini-batch gradient descent $\theta_{i+1} = \theta_i \eta \cdot \nabla_{\theta} J(\theta; \mathbf{x}^{(i;i+n)}; \mathbf{y}^{(i;i+n)})$

Pros/cons and challenges of SGD

- fast speed (esp. with sparse data) and posibility of «online» use
- high variance causes heavy fluctuation
- proper choice of learning rate
- · non-convex to optimization

Momentum(heavy-ball) method

David E. Rumelhart, Geoffrey E. Hinton, & Ronald J. Williams, (1986), doi:10.1038/323533a0

SGD without momentum

$$\begin{cases} v_t = \gamma v_{t-1} + \eta \cdot \nabla_{\theta} J(\theta) \\ \theta_{t+1} = \theta_t - v_t \end{cases}$$

 γ – momentum term, usually set to 0.9 or a similar value (0.995, 0.999) ($\gamma < 1$).

Nesterov accelerated gradient (AGM)

Nesterov, Y. (1983), A method for unconstrained convex minimization problem with the rate of convergence $o(1/k^2)$. Doklady ANSSSR

$$\begin{cases} v_t = \gamma v_{t-1} + \eta \cdot \nabla_{\theta} J(\theta - \gamma v_{t-1}) \\ \theta_{t+1} = \theta_t - v_t \end{cases}$$

step

Высшая школа экономики 14 марта 2017 г.

6/34

Convergence of AGM

Theorem (Nesterov)

$$f(x_k) - f(x^*) \le \frac{2L||x_1 - x^*||^2}{k^2}$$

 $^{\rm 1}$ Convergence rate ${\it O}(1/{\it k}^2)$ is optimal for first-order methods, link

Mathematical formulation and intuition

- Ilya Sutskever, (2013), Training Reccurent Neural Networks, Ph.D. Thesis, link
- Yoshua Bengio, Nicolas Boulanger-Lewandowski and Razvan Pascanu, (2012), Advances in optimizing recurrent networks, arXiv:1212.0901v2

Reducing constant factor

 Optimized gradient method (OGM) — D. Kim, J. A. Fessler, Optimized first-order methods for smooth convex minimization, (2016), doi:10.1007/s10107-015-0949-3

¹Nesteroy lecture

Nesterov accelerated gradient (AGM)

task	$0_{(SGD)}$	0.9N	0.99N	0.995N		0.9M	0.99M	0.995M	0.999M	SGD_C	HF^{\dagger}	HF*
Curves	0.48	0.16	0.096	0.091	0.074	0.15	0.10	0.10	0.10	0.16	0.058	0.11
Mnist	2.1	1.0	0.73	0.75	0.80	1.0	0.77	0.84	0.90	0.9	0.69	1.40
Faces	36.4	14.2	8.5	7.8	7.7	15.3	8.7	8.3	9.3	NA	7.5	12.0

problem	biases	0	0.9N	0.98N	0.995N	0.9M	0.98M	0.995M
add $T = 80$	0.82	0.39	0.02	0.21	0.00025	0.43	0.62	0.036
mul T = 80	0.84	0.48	0.36	0.22	0.0013	0.029	0.025	0.37
mem-5 $T = 200$	2.5	1.27	1.02	0.96	0.63	1.12	1.09	0.92
mem-20 $T = 80$	8.0	5.37	2.77	0.0144	0.00005	1.75	0.0017	0.053

Learning rate adaptation

8/34

- Step decay reduce the learning rate by some factor every few epochs
- Bold driver if the error decreased, increase α by small proportion (1-5%), otherwise descrease sharply (typcially by 50%)
- Exponential decay $\alpha_{\bf k}=\alpha_0{\rm e}^{-\beta{\bf k}}$, α_0,β hyperparametres
- Annealing schedule $\alpha_{\it k}=rac{lpha_0}{1+eta{\it k}}$, $lpha_0,eta$ hyperparametres

Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive Subgradient Methods for Online Learning and Stochastic Optimization, link

Per-parameter update:

$$\begin{split} g_{k,i} &= \nabla_{\theta} J(\theta_i) \\ \theta_{k+1,i} &= \theta_{k,i} - \frac{\eta}{\sqrt{\textit{G}_{k,ii} + \epsilon}} \cdot g_{k,i}, \\ \textit{G} &\in \mathbb{R}^{d \times d} - \text{diag. matrix of sum of squares } \nabla_{\theta} J(\theta_i) \text{ up to k step} \end{split}$$

Vectorized implementation:

$$\theta_{k+1} = \theta_k - \frac{\eta}{\sqrt{G_t + \epsilon}} \odot g_k$$

Высшая школа экономики 14 марта 2017 г.

AdaGrad (adaptive gradient algorithm)

10/34

Pros/cons and challenges

- Well-suited for dealing with sparse data
- No need to manually tune the learning rate. Most implementations use a default value of 0.01.
- Accumulation of the squared gradients in the denominator causes the learning rate to shrink

AdaGrad (adaptive gradient algorithm)

Application/Benchmarks

Since it is well-suited for dealing with sparse data, the most frequest application include NLP and image recognition

- Recognize cats in Youtube videos, wired article
- GloVe word embeddings Pennington, J., Socher, R., & Manning, C. D. (2014).
 Glove: Global Vectors for Word Representation, doi:10.3115²

	SGD	MOMENTUM	ADAGRAD
$\epsilon = 1e^0$	2.26%	89.68%	43.76%
$\epsilon = 1e^{-1}$	2.51%	2.03%	2.82%
$\epsilon = 1e^{-2}$	7.02%	2.68%	1.79%
$\epsilon = 1e^{-3}$	17.01%	6.98%	5.21%
$\epsilon = 1e^{-4}$	58.10%	16.98%	12.59%

²GloVe overwiew in comparison with w2v — link

AdaDelta

Zeiler, M. D. (2012). ADADELTA: An Adaptive Learning Rate Method,

Resticting evaluating sum of squared gradient to fixed size n and compute it with exponentially weighted moving average.

$$\begin{split} & E[g^2]_k = \gamma E[g^2]_{k-1} + (1-\gamma)g_t^2 \\ & \theta_{k+1} = \theta_k - \frac{\eta}{\sqrt{E[g^2]_k + \epsilon}} g_k = \theta_k - \frac{\eta}{\text{RMS}[g]_k} g_k \end{split}$$

13 / 34

• no need to set a default learning rate:

$$\begin{split} \Delta\theta_{\textit{k}} &= -\frac{\eta}{\textit{RMS}[g]_{\textit{k}}} g_{\textit{k}} \\ \textit{E}[\Delta\theta^2]_{\textit{k}} &= \gamma \textit{E}[\Delta\theta^2]_{\textit{k}-1} + (1-\gamma)\Delta\theta_{\textit{k}}^2 \\ \textit{RMS}[\Delta\theta]_{\textit{k}} &= \sqrt{\textit{E}[\Delta\theta^2]_{\textit{k}} + \epsilon} \\ \Delta\theta_{\textit{k}} &= -\frac{\textit{RMS}[\Delta\theta]_{\textit{k}-1}}{\textit{RMS}[g]_{\textit{k}}} g_{\textit{k}} \end{split}$$

$$\theta_{k+1} = \theta_k + \Delta \theta_k$$

Combining with Nesterov momentum (Ilya Sutskever, 2012)

AdaDelta

	$\rho = 0.9$	$\rho = 0.95$	$\rho = 0.99$
$\epsilon = 1e^{-2}$	2.59%	2.58%	2.32%
$\epsilon = 1e^{-4}$	2.05%	1.99%	2.28%
$\epsilon = 1e^{-6}$	1.90%	1.83%	2.05%
$\epsilon = 1e^{-8}$	2.29%	2.13%	2.00%

RMSprop (Root Mean Square Propagation)

16/34

Geoff Hinton, Coursera class Lecture 6c (Unpublished), link

Technically, it's AdaDelta with parametres $\gamma=0.9, \eta=0.001$

$$\begin{split} \mathbf{E}[\mathbf{g}^2]_k &= 0.9\mathbf{E}[\mathbf{g}^2]_{k-1} + 0.1g_k^2 \\ \theta_{k+1} &= \theta_k - \frac{\eta}{\sqrt{\mathbf{E}[\mathbf{g}^2]_t + \epsilon}} \mathbf{g}_t \end{split}$$

Adam (Adaptive Moment Estimation)

Kingma, D. P., & Ba, J. L. (2014) Adam: A Method for Stochastic Optimization, arXiv:1412.6980

$$m_{k} = \beta_{1} m_{k-1} + (1 - \beta_{1}) g_{k}, \ \hat{m}_{k} = \frac{m_{t}}{1 - \beta_{1}^{k}}$$

$$v_{k} = \beta_{2} v_{k-1} + (1 - \beta_{2}) g_{k}^{2}, \ \hat{v}_{k} = \frac{v_{k}}{1 - \beta_{2}^{k}}$$

$$\theta_{k+1} = \theta_{k} - \frac{\eta}{\sqrt{\hat{v}_{k} + \epsilon}} \hat{m}_{k}$$

Proposed hyperparametres — $\beta_1=0.9, \beta_2=0.999, \epsilon=1 \emph{e}-8$

Adam (Adaptive Moment Estimation)

18/34

Adam (Adaptive Moment Estimation)

19/34

Visualization of algorithms

20/34

SGD optimization on loss surface contours SGD optimization on saddle point

Parallelizing and distributing SGD

- Hogwild! Feng Niu, Benjamin Recht, Christopher Re, Stephen J. Wright. (2011).
 HOGWILD!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent arXiv:1106.5730
- DistBelief(Downpour SGD)/Tensorflow NIPS2012, Google Research Blog

Downpour SGD

22/34

Downpour SGD

Elastic Averaging SGD (EASGD)

24/34

Yann LeCun. (2015) Deep learning with Elastic Averaging SGD, arXiv:1412.6651

Idea: inventing auxiliary «center variables» for «exploration»

$$\begin{split} \theta_{i,k+1} &= \theta_k^i - \eta \Big(\nabla_{\theta} J(\theta; \mathbf{x}^{(i)}) + \rho(\mathbf{x}_{i,k+1} - \widetilde{\mathbf{x}}_k) \Big) \\ \widetilde{\mathbf{x}}_{k+1} &= \widetilde{\mathbf{x}}_t + \eta \sum_{i=1}^p \rho \Big(\mathbf{x}_k^{(i)} - \widetilde{\mathbf{x}}_k \Big) \end{split}$$

$$\alpha = \eta \rho, \quad \beta = p\alpha$$

$$\theta_{i,k+1} = \theta_k^i - \eta \nabla_{\theta} J(\theta; \mathbf{x}^{(i)}) - \alpha(\mathbf{x}_{i,k+1} - \widetilde{\mathbf{x}}_k)$$

$$\widetilde{\mathbf{x}}_{k+1} = (1 - \beta)\widetilde{\mathbf{x}}_t + \beta \left(\frac{1}{p} \sum_{i=1}^p \widetilde{\mathbf{x}}_k^{(i)}\right)$$

Elastic Averaging SGD (EASGD)

25 / 34

Aditional possible tweaks

 Shuffling and Curriculum Learning — Bengio, Y., Louradour, J., Collobert, R., & Weston, J. (2009). Curriculum learning, doi:10.1145/1553374.1553380, link Idea: Sort examples by «difficulty», not shuffling

Curriculum learning

Curriculum learning

28/34

Wojciech Zaremba, Ilya Sutskever. (2014) Learning to Execute, arXiv:1410.4615

Aditional possible tweaks

29/34

Batch normalization, loffe, S., & Szegedy, C. (2015). Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, arXiv:1502.03167v3

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ , β Output: $\{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad // \text{mini-batch mean}$ $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad // \text{mini-batch variance}$ $\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad // \text{normalize}$ $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad // \text{scale and shift}$

Batch normalization

Accelerating BN Networks

- Increase learning rate
- Remove Dropout
- Accelerate the laerning rate decay
- Thorough shuffling of training examples

Batch normalization

31/34

Aditional possible tweaks

32/34

Gradient noise, Neelakantan, A., Vilnis, L., Le, Q. V., Sutskever, I., Kaiser, L., Kurach, K., & Martens, J. (2015). Adding Gradient Noise Improves Learning for Very Deep Networks arXiv:1511.06807

$$g_{k,i} = g_{k,i} + \mathcal{N}(0, \sigma_k^2)$$
 $\sigma_k^2 = \frac{\eta}{(1+k)^{\gamma}}$

Setting	Best Test Accuracy	Average Test Accuracy
No Noise	89.9%	43.1%
With Noise	96.7%	52.7%
No Noise + Dropout	11.3%	10.8%

$\begin{tabular}{lll} Experiment 2: Simple Init, Gradient Clipping Threshold = 100\\ No Noise & 90.0\% & 46.3\% \end{tabular}$

Experiment 5. Simple mit, Gradient Chipping Threshold = 10			
No Noise	95.7%	51.6%	
With Noise	97.0%	53.6%	

	Experiment 4: Good Init (Sussillo & Abbott, 2014) + Gradient Clipping Threshold = 10				
	No Noise		92.1%		
ĺ	With Noise	97.5%	92.2%		

| Experiment 5: Good Init (He et al., 2015) + Gradient Clipping Threshold = 10 | No Noise | 97.4% | 91.7% | 91.7% | 91.7%

Experiment 6: Bad Init (Zero Init) + Gradient Clipping Threshold = 10					
No Noise	11.4%	10.1%			
With Noise	94.5%	49.7%			

Resources

33 / 34

References

1. S. Ruder, (2016), An overview of gradient descent optimization algoritms, arXiv:1609.04747v1 or blog post

For detailed information

- L'eon Bottou, Frank E. Curtis†, Jorge Noceda, (2016) Optimization Methods for Large-Scale Machine Learning, arXiv:1606.04838v1
- 2. Optimization I lecture (Youtube)

Спасибо за внимание!

34/34

Stochastic optimization

Сон Андрей, БПМИ142

abson@edu.hse.ru

Национальный исследовательский университет «Высшая школа экономики»

14 марта 2017 г.