Half-hour Examination #5 - 30 minutes Closed Book, one 8.5x11" page of notes (double-sided)

NAME		Pilot ID: w	SCORE/ 20
SHORT ANSWER	_	n +2 pts. for a correct answer, 0 pts. you feel it is necessary.	for a wrong answer.
Problem #1 [1	0]		
left, with the		t shift register is xBEEF ₁₆ . The register being the sequence: 010 ₂ . What a	
	<u>*</u>	be used to represent the concept of a DUT changing the value of R0 itself	
_	Fill in the blanks) A(n) 10 anal device consisting of no	6 x 8 ROM can be used to imple more than inputs and	ement the functionality of any outputs.
	ow much data is available i vide this capacity in BYTES	n a ROM device with a 16-bit add	ress and an 8-bit output-word?
(e) [2 pts.] Ho	ow many 2k x 4 ROM chips	would be necessary in order to con	struct a 16k x 16 ROM?

Half-hour Examination #5 - 30 minutes Closed Book, one 8.5x11" page of notes (double-sided)

Problem #2 [2]

A ROM is used to implement the functionality of a two-to-one, two-line MUX, as shown below. Describe the contents of the ROM for the addresses listed below. When S = 0, Z = A; when S = 1, Z = B.

ADDR	D1	D0
x00		
x01		
x0D		
x19		

Problem #3 [3]

What is the count sequence for the counter shown below? Assume initial state of x0. Show your work! For this counter: LOAD: when 1, load from D (if count = 0) or decrement (if count = 1); DATA: value to load into counter; COUNT: when 1, counter increments (decrements if load = 1); OUT: current value of counter; CARRY: 1 if at maximum count (minimum count if decrementing).

4x4 ROM Contents

ADDR	DATA
0	x36
1	x03
2	x2C
3	x29

ANSWER: Values of Out[3:0] in hex, one box per clock tick (the final value in this sequence should be a value that has previously appeared; this implies a repeat back to the previous occurrence)

		<u> </u>	 ,					
COUNT	vO							
SEQUENCE:	ΛU							

Half-hour Examination #5 - 30 minutes Closed Book, one 8.5x11" page of notes (double-sided)

Problem #4 [2]

Answer the following question(s) to the best of your ability in the time available.

Use any combinational functionality that you wish to cause the 4-bit binary counter shown below (details in problem #3) to count the sequence below:

x0	x1	x9	хA	x0 (Repeat)
AU	A1	1	/\/ \	Λυ (Ιτοροαί)

Problem #5 [3]

Provide a logic diagram for a datapath with a 1-bit control input S, an 32-bit input IN, an 32-bit output OUT, and two registers R0 and R1 that is capable of the following RTL functionality:

S: $R0 \leftarrow IN$, $OUT \leftarrow IN$ S': $R1 \leftarrow R0$, $OUT \leftarrow R1$

Half-hour Examination #5 - 30 minutes Closed Book, one 8.5x11" page of notes (double-sided)

IONOR CODE: Before the end of the examination, please sign: In recognition of and in the spirit of the Wright State University policies of academic honesty, I certify that I have neither given nor received unpermitted aid in this examination. Name (Printed):
In recognition of and in the spirit of the Wright State University policies of academic honesty, I certify that I have neither given nor received unpermitted aid in this examination.
In recognition of and in the spirit of the Wright State University policies of academic honesty, I certify that I have neither given nor received unpermitted aid in this examination.
In recognition of and in the spirit of the Wright State University policies of academic honesty, I certify that I have neither given nor received unpermitted aid in this examination.
In recognition of and in the spirit of the Wright State University policies of academic honesty, I certify that I have neither given nor received unpermitted aid in this examination.
In recognition of and in the spirit of the Wright State University policies of academic honesty, I certify that I have neither given nor received unpermitted aid in this examination.
Name (Printed):
Signature: