Basic RL

Pablo Samuel Castro

A history of RL

In reverse chronological order

2022

ChatGPT

2016-2021

AlphaGo

Stratospheric balloon control

Nuclear plasma control

Chip design

DQN

Stratospheric balloon control
Chip design
ChatGPT

AlphaGo

Nuclear plasma

control

Sutton & Barto (The Book)

DQN
Stratospheric balloon control

AlphaGo
Chip design

Nuclear plasma control
ChatGPT

1979

Sutton & Barto (The Idea)

Sutton & Barto (The Book)

DQN
Stratospheric balloon control

AlphaGo
Chip design

Nuclear plasma control
ChatGPT

1979

DQN
Stratospheric balloon control

AlphaGo
Chip design

Nuclear plasma control
ChatGPT

What is RL?

An illustrative toy example

	\Diamond

Known model: Planning

Known model: Planning

Unknown model: Reinforcement Learning!

Coding exercise 1

- 01 Installs and imports
- 02 Code a shortest-path planner for GridWorld

What is RL?

Formal definitions

We define an MDP:

$$\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$$

We define an MDP:
$$\mathcal{M} = (S, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma)$$

We define an MDP:
$$\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$$

Actions

We define an MDP:

$$\mathcal{M} = \langle \mathcal{S}, \mathcal{A}(\mathcal{P}) \mathcal{R}, \gamma \rangle$$

Transition dynamics

$$\mathcal{P}: \mathcal{S} imes \mathcal{A}
ightarrow \mathcal{S}$$

We define an MDP:

$$\mathcal{M} = \langle \mathcal{S}, \mathcal{A}(\mathcal{P}) \mathcal{R}, \gamma \rangle$$

Transition dynamics

$$\mathcal{P}: \mathcal{S} imes \mathcal{A} o Dist(\mathcal{S})$$

We define an MDP:

$$\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$$

Reward function

$$\mathcal{R}: \mathcal{S} imes \mathcal{A}
ightarrow \mathbb{R}$$

We define an MDP:

$$\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}(\gamma) \rangle$$

Discount factor ("don't wait too long")

We define an MDP: $\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$

A behaviour policy: $\pi: \mathcal{S} \to Dist(\mathcal{A})$

Coding exercise 2

- 01 Complete MDP class for GridWorld
- 02 Create "policy table" to represent π
- 03 Add shortest-path algorithm to use π

We define an MDP: $\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$

A behaviour policy: $\pi:\mathcal{S} o Dist(\mathcal{A})$

$$V^{\pi}(s) = \mathbb{E}_{a \sim \pi(s)} \left[\mathcal{R}(s, a) + \gamma \mathbb{E}_{s' \sim \mathcal{P}(s, a)} V^{\pi}(s') \right]$$

We define an MDP: $\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$

A behaviour policy: $\pi:\mathcal{S} o Dist(\mathcal{A})$

$$V^{\pi}(s) = \mathbb{E}_{a \sim \pi(s)} \left[\mathcal{R}(s,a) + \gamma \mathbb{E}_{s' \sim \mathcal{P}(s,a)} V^{\pi}(s') \right]$$
 One-step reward

We define an MDP: $\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$

A behaviour policy: $\pi:\mathcal{S} o Dist(\mathcal{A})$

$$V^{\pi}(s) = \mathbb{E}_{a \sim \pi(s)} \underbrace{\mathcal{R}(s,a)} + \underbrace{\mathcal{R}(s,a)} V^{\pi}(s')$$
 One-step reward Discounted expected future rewards

We define an MDP: $\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$

A behaviour policy: $\pi: \mathcal{S} o Dist(\mathcal{A})$

$$V^{\pi}(s) = \mathbb{E}_{a \sim \pi(s)} \left[\mathcal{R}(s, a) + \gamma \mathbb{E}_{s' \sim \mathcal{P}(s, a)} V^{\pi}(s') \right]$$

$$V^{\pi}(s) = \sum_{t=0}^{\infty} [\gamma^{t} R(s_{t}, a_{t}) | s_{0} = s, \pi]$$

We define an MDP: $\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$

A behaviour policy: $\pi: \mathcal{S} \to Dist(\mathcal{A})$

with its respective value function:

$$V^{\pi}(s) = \mathbb{E}_{a \sim \pi(s)} \left[\mathcal{R}(s, a) + \gamma \mathbb{E}_{s' \sim \mathcal{P}(s, a)} V^{\pi}(s') \right]$$

we're typically interested in the optimal value function:

$$V^*(s) = \max_{\pi} \sum_{t=0}^{\infty} [\gamma^t R(s_t, a_t) | s_0 = s, \pi]$$

We define an MDP: $\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$

A behaviour policy: $\pi: \mathcal{S} o Dist(\mathcal{A})$

with its respective value function:

$$V^{\pi}(s) = \mathbb{E}_{a \sim \pi(s)} \left[\mathcal{R}(s, a) + \gamma \mathbb{E}_{s' \sim \mathcal{P}(s, a)} V^{\pi}(s') \right]$$

we're typically interested in the optimal value function:

$$V^*(s) = \max_{a \in A} \left[\mathcal{R}(s, a) + \gamma \mathbb{E}_{s' \sim \mathcal{P}(s, a)} V^*(s') \right]$$

Value functions

$$V^{\pi}(s) = \mathbb{E}_{a \sim \pi(s)} \left[\mathcal{R}(s, a) + \gamma \mathbb{E}_{s' \sim \mathcal{P}(s, a)} V^{\pi}(s') \right]$$

$$Q^{\pi}(s, a) = R(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)}[V^{\pi}(s')]$$

$$V^*(s) = \max_{a \in \mathcal{A}} \left[\mathcal{R}(s, a) + \gamma \mathbb{E}_{s' \sim \mathcal{P}(s, a)} V^*(s') \right]$$

$$Q^*(s, a) = R(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)}[V^*(s')]$$

Behaviour policies

$$V^*(s) = \max_{a \in \mathcal{A}} \left[\mathcal{R}(s, a) + \gamma \mathbb{E}_{s' \sim \mathcal{P}(s, a)} V^*(s') \right]$$

$$Q^*(s, a) = R(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)}[V^*(s')]$$

$$\pi^*(s) = \arg\max_{a \in \mathcal{A}} Q^*(s, a)$$

Behaviour policies

$$V^*(s) = \max_{a \in \mathcal{A}} \left[\mathcal{R}(s, a) + \gamma \mathbb{E}_{s' \sim \mathcal{P}(s, a)} V^*(s') \right]$$

$$Q^*(s, a) = R(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)}[V^*(s')]$$

$$\pi^*(s) = \arg\max_{a \in \mathcal{A}} Q^*(s, a)$$

π^*

Coding exercise 3

- O1 Create SxA table (Q) to encode number of steps to goal (assume goal is known)
- 02 Extract π from Q table
- 03 Modify to include discount factor

How do we find π^* ?

$$V^*(s) = \max_{a \in \mathcal{A}} \left[\mathcal{R}(s, a) + \gamma \mathbb{E}_{s' \sim \mathcal{P}(s, a)} V^*(s') \right]$$

$$V^*(s) = \max_{a \in \mathcal{A}} \left[\mathcal{R}(s, a) + \gamma \mathbb{E}_{s' \sim \mathcal{P}(s, a)} V^*(s') \right]$$
$$V^0(s) = 0$$

$$V^*(s) = \max_{a \in \mathcal{A}} \left[\mathcal{R}(s, a) + \gamma \mathbb{E}_{s' \sim \mathcal{P}(s, a)} V^*(s') \right]$$
$$V^0(s) = 0$$

$$V'(s) = 0$$

$$V'(s) = 0$$

$$V'(s) = \sum_{a \in \mathcal{A}} \left[\mathcal{R}(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}(s, a)(s') V^{0}(s') \right]$$

$$V^{1}(s) = \max_{a \in \mathcal{A}} \left[\mathcal{R}(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}(s, a)(s') V^{0}(s') \right]$$

$$V^*(s) = \max_{a \in \mathcal{A}} \left[\mathcal{R}(s, a) + \gamma \mathbb{E}_{s' \sim \mathcal{P}(s, a)} V^*(s') \right]$$
$$V^0(s) = 0$$
$$V^1(s) = 0$$

$$V(s) = 0$$

$$V^{1}(s) = \max_{a \in \mathcal{A}} \left[\mathcal{R}(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}(s, a)(s') V^{0}(s') \right]$$

$$V^{2}(s) = \max_{a \in \mathcal{A}} \left[\mathcal{R}(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}(s, a)(s') V^{1}(s') \right]$$

$$V^{0}(s) = 0$$

$$V^{1}(s) = \max_{a \in \mathcal{A}} \left[\mathcal{R}(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}(s, a)(s') V^{0}(s') \right]$$

 $V^*(s) = \max_{a \in \mathcal{A}} \left[\mathcal{R}(s, a) + \gamma \mathbb{E}_{s' \sim \mathcal{P}(s, a)} V^*(s') \right]$

$$a \in \mathcal{A} \left[\begin{array}{c} \sum_{s' \in \mathcal{S}} \\ V^2(s) = \max \left[\mathcal{R}(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}(s, a)(s') V^1(s') \right] \end{array} \right]$$

$$V^{2}(s) = \max_{a \in \mathcal{A}} \left[\mathcal{R}(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}(s, a)(s') V^{1}(s') \right]$$

$$V^{2}(s) = \max_{a \in \mathcal{A}} \left[\mathcal{R}(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}(s, a)(s') V^{1}(s') \right]$$

$$V^*(s) = \max_{a \in \mathcal{A}} \left[\mathcal{R}(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}(s, a)(s') V^*(s') \right]$$

 $V^*(s) = \max_{a \in \mathcal{A}} \left[\mathcal{R}(s, a) + \gamma \mathbb{E}_{s' \sim \mathcal{P}(s, a)} V^*(s') \right]$

 $V^{1}(s) = \max_{a \in \mathcal{A}} \left[\mathcal{R}(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}(s, a)(s') V^{0}(s') \right]$

 $V^{2}(s) = \max_{a \in \mathcal{A}} \left[\mathcal{R}(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}(s, a)(s') V^{1}(s') \right]$

$$V^{0}(s) = 0$$

$$V^{1}(s) = \max_{a \in \mathcal{A}} \left[\mathcal{R}(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}(s, a)(s') V^{0}(s') \right]$$

$$V^{2}(s) = \max_{a \in \mathcal{A}} \left[\mathcal{R}(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}(s, a)(s') V^{1}(s') \right]$$

 $V^*(s) = \max_{a \in \mathcal{A}} \left[\mathcal{R}(s, a) + \gamma \mathbb{E}_{s' \sim \mathcal{P}(s, a)} V^*(s') \right]$

$$V^*(s) = \max_{a \in \mathcal{A}} \left[\mathcal{R}(s, a) + \bigcap_{s' \in \mathcal{S}} \mathcal{P}(s, a)(s') V^*(s') \right]$$

$$\mathbf{r}^{1}(\cdot)$$

$$V^0(s) = 0$$

$$V^{1}(s) = \max_{a \in \mathcal{A}} \left[\mathcal{R}(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}(s, a)(s') V^{0}(s') \right]$$

$$a \in \mathcal{A}$$
 [\max

$$V^{2}(s) = \max_{a \in \mathcal{A}} \left[\mathcal{R}(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}(s, a)(s') V^{1}(s') \right]$$

$$(s')V^*(s')$$

$$V^*(s) = \max_{a \in \mathcal{A}} \left[\mathcal{R}(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}(s, a)(s') V^*(s') \right]$$

Bellman backup

$$V^{0}(s) = 0$$

$$V^{1}(s) = \max_{a \in \mathcal{A}} \left[\mathcal{R}(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}(s, a)(s') V^{0}(s') \right]$$

$$V^{2}(s) = \max_{a \in \mathcal{A}} \left[\mathcal{R}(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}(s, a)(s') V^{1}(s') \right]$$

$$\vdots$$

$$V^{*}(s) = \max_{a \in \mathcal{A}} \left[\mathcal{R}(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}(s, a)(s') V^{*}(s') \right]$$

$$T(V)(s) = \max_{a \in \mathcal{A}} \left[R(s, a) + \gamma \mathbb{E}_{s' \sim \mathcal{P}(s, a)} V(s') \right]$$

$$T(V)(s) = \max_{a \in \mathcal{A}} \left[R(s, a) + \gamma \mathbb{E}_{s' \sim \mathcal{P}(s, a)} V(s') \right]$$
$$\|V - V'\|_{\infty} = \max_{s \in \mathcal{S}} |V(s) - V'(s)|$$

$$T(V)(s) = \max_{a \in \mathcal{A}} \left[R(s, a) + \gamma \mathbb{E}_{s' \sim \mathcal{P}(s, a)} V(s') \right]$$
$$\|V - V'\|_{\infty} = \max_{s \in \mathcal{S}} |V(s) - V'(s)|$$

$$||T(V) - T(V')||_{\infty} \le \gamma ||V - V'||_{\infty}$$

$$T(V)(s) = \max_{a \in \mathcal{A}} \left[R(s, a) + \gamma \mathbb{E}_{s' \sim \mathcal{P}(s, a)} V(s') \right]$$
$$\|V - V'\|_{\infty} = \max_{s \in \mathcal{S}} |V(s) - V'(s)|$$

$$||T(V) - T(V')||_{\infty} \le \gamma ||V - V'||_{\infty}$$

Since $\|\cdot\|_{\infty}$ is a complete metric space, by Banach's fixed point theorem, **T** converges to a fixed point:

$$T(V^*) = V^*$$

$$V^0 \to V^*$$

$$V^{0} \to V^{*}$$

$$Q^{*}(s, a) = \mathcal{R}(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}(s, a)(s')V^{*}(s')$$

$$V^{0} \to V^{*}$$

$$Q^{*}(s, a) = \mathcal{R}(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}(s, a)(s')V^{*}(s')$$

$$\pi^{*}(s) = \arg \max_{a \in \mathcal{A}} Q^{*}(s, a)$$

- 1. Initialize **Q** arbitrarily (e.g. set to 0 for each state **s** and action **a**)
- 2. While **Q** is changing:

$$Q(s,a) = \mathcal{R}(s,a) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}(s,a)(s') \max_{a' \in \mathcal{A}} Q(s',a')$$

3. For every state **s**:

$$\pi(s) = \arg\max_{a \in \mathcal{A}} Q^*(s, a)$$

4. Return π

Coding exercise 4

- 01 Code up value iteration to compute Q*
- 02 Extract V* from Q*
- 03 Extract π* from Q*
- 04 Visualize V*

$$V^0 \to V^*$$

$$Q^*(s,a) = \mathcal{R}(s,a) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}(s,a)(s')V^*(s')$$

$$\pi^*(s) = \arg\max_{a \in \mathcal{A}} Q^*(s,a)$$
 If this is what we're after... Isn't this kind of indirect?

Policy Iteration

- 1. Initialize π arbitrarily (e.g. for each state s, pick a random action a)
- 2. While π is changing:

$$Q(s, a) = \mathcal{R}(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}(s, a)(s')Q(s', \pi(s'))$$

$$\pi(s) = \arg\max_{a \in \mathcal{A}} Q(s, a)$$

3. Return π

Coding exercise 5

- 01 Code up policy iteration
- O2 Compare performance with value iteration

But there's a problem

We're assuming we know

- ullet the full state space $\,{\cal S}\,$
- ullet the reward function $\,{\cal R}\,$
- ullet the transition dynamics ${\cal P}$

Unknown model: Reinforcement Learning!

Temporal differences

- Let's say we have some estimate of Q-values
- And now let's say we observe s,a o s',r
- The **temporal difference** is:

$$r + \gamma \max_{a' \in \mathcal{A}} Q(s', a') - Q(s, a)$$

Temporal differences

- Let's say we have some estimate of Q-values
- And now let's say we observe s,a o s',r
- The **temporal difference** is:

$$r + \gamma \max_{a' \in \mathcal{A}} Q(s', a') - Q(s, a)$$
Bellman backup

Temporal differences

- Let's say we have some estimate of Q-values
- And now let's say we observe s,a o s',r

Current estimate

The temporal difference is:

Q-learning

- Initialize Q and π, pick a start state s
- 2. While learning
 - a. Pick **a** according to π
 - b. Send **a** to the environment and receive **s**' and **r**
 - c. Compute TD-error:

$$\delta = r + \gamma \max_{a' \in \mathcal{A}} Q(s', a') - Q(s, a)$$

d. Update the estimates for Q:

$$Q(s,a) = Q(s,a) + \alpha\delta$$

e.
$$\pi(s) = \arg\max_{a \in \mathcal{A}} Q(s, a)$$

f. Update **s** = **s**'

Coding exercise 6

- 01 Code up Q-learning
- O2 Test it! Did it work? If not, why not?

Exploration

Exploration: ε -greedy

- With probability 1ε :
 - \circ Select the action according to π
- With probability ε :
 - Select a random action

Q-learning

- 1. Initialize **Q** and π , pick a start state **s**
- 2. While learning
 - a. Pick **a** according to π
 - b. Send **a** to the environment and receive **s**' and **r**
 - c. Compute TD-error:

$$\delta = r + \gamma \max_{a' \in \mathcal{A}} Q(s', a') - Q(s, a)$$

d. Update the estimates for Q:

$$Q(s,a) = Q(s,a) + \alpha\delta$$

e.
$$\pi(s) = \arg\max_{a \in \mathcal{A}} Q(s, a)$$

f. Update **s** = **s**'

Q-learning

- 1. Initialize **Q** and π , pick a start state **s**
- 2. While learning
 - a. Pick a according to π (plus any exploration strategy)
 - b. Send a to the environment and receive s' and r
 - c. Compute TD-error:

$$\delta = r + \gamma \max_{a' \in \mathcal{A}} Q(s', a') - Q(s, a)$$

d. Update the estimates for Q:

$$Q(s,a) = Q(s,a) + \alpha\delta$$

e.
$$\pi(s) = \arg\max_{a \in \mathcal{A}} Q(s, a)$$

f. Update s = s'

Coding exercise 7

- 01 Modify Q-learning to include ε -greedy exploration
- **O2** Try different values of ε , what happens?