## **Empirical Methods for Policy Evaluation**

Matteo Bobba

Toulouse School of Economics (TSE)

TSE PhD Program (MRes) Fall 2025

#### Difference-in-Differences and Event Studies (5 Classes)

- Two-way fixed effect regressions
  - DID ≠ TWFE
  - Event Study regressions
  - Heterogeneity-robust DID estimators
- Application
  - A quick recap on job search models
  - ⇒ Informality, job search, and schooling investments (Bobba et al, IER 2022)

# $\mathsf{DID} \neq \mathsf{TWFE}$

#### Groups and Time Periods

- ullet We consider observations that can be divided into G groups and T periods
- $\bullet$  For every  $(g,t) \in \{1,...,G\} \times \{1,...,T\} \colon = \mathsf{nb}$  of obs in group g at period t
  - ⇒ For simplicity, we assume hereafter balanced panel of groups:

For all 
$$(g,t) \in \{1,...,G\} \times \{1,...,T\}, N_{g,t} > 0$$

- Panel/repeated cross-section data set where groups are, e.g.
  - ⇒ Individuals, firms, counties, etc.
  - ⇒ Cross-section dataset where cohort of birth plays the role of time
  - $\Rightarrow$  One may have  $N_{g,t}=1$ , e.g. b/c group=individual or a firm



#### Treatment and Design

- $D_{g,t} \in \mathbb{R}^+$ : treatment of group g and at period t
- $\Rightarrow$  Staggered adoption design:  $D_{g,t}$  increases only once, constant otherwise
  - In some cases the treatment may vary across individuals within a group
    - Fuzzy DID, not considered here
- $\Rightarrow$  We assume that  $D_{q,t}$  is constant within g

#### Potential Outcomes, SUTVA, and Covariates

- Let  $(d_1,...,d_T)$  denote a treatment trajectory
- Corresponding potential outcomes:  $Y_{g,t}(d_1,...,d_T)$
- Then observed outcome:  $Y_{g,t} = Y_{g,t}(D_{g,1},...,D_{g,T})$
- ⇒ We maintain the usual SUTVA:

$$(Y_{g,1}(d_1,...,d_T),...,Y_{g,T}(d_1,...,d_T)) \coprod (D_{g',t'})_{g'\neq g,t'=1,...,T}, \forall (g,t,d_1,...,d_T)$$

• For any variable  $X_{q,t}$ , let  $\boldsymbol{X}_q = (X_{q,1},...,X_{q,T})$  and  $\boldsymbol{X} = (\boldsymbol{X}_1,...,\boldsymbol{X}_G)$ .



#### The Pervasiveness of Two-way Fixed Effect Regressions

⇒ Researchers often consider two-way fixed effects (TWFE) models of the kind:

$$Y_{g,t} = \alpha_g + \gamma_t + \beta_{fe} D_{g,t} + \epsilon_{g,t}.$$

- 26 out of the 100 most cited 2015-2019 AER papers estimate TWFE
- Also commonly used in other social sciences
- Other popular method: event-study regressions=dynamic version of TWFE

#### TWFE Parameters

- ullet  $\widehat{eta}_{fe}=$  OLS coeff. of  $D_{g,t}$  in a reg. of  $Y_{g,t}$  on group FEs, time FEs and  $D_{g,t}$
- $oldsymbol{\widehat{eta}_{fd}}=$  OLS coeff. of  $D_{q,t}-D_{q,t-1}$  in a reg. of  $Y_{g,t}-Y_{g,t-1}$  on time FEs and  $D_{a,t}-D_{a,t-1}$
- ullet  $\widehat{eta}_{f_e}^X$ , when include covariates  $X_{g,t}$  in the regression
- $\Rightarrow$  We first focus on  $\beta_{fe}$ , but we will extend the results to  $\beta_{fd}$  and  $\beta_{fe}^{X}$

#### The Simplest Setup, 2x2 Case

- ullet Two groups  $g \in \{s,n\}$  and two time periods  $t \in \{1,2\}$
- ullet  $D_{g,t} \in \{0,1\}$ , such that  $D_{s,1} = D_{n,1} = 0$ ,  $D_{s,2} = 1$ , and  $D_{n,2} = 0$
- ullet  $Y_{q,t}$  is the observed outcome in location g at period t
- ullet  $Y_{g,t}(0),Y_{g,t}(1)$  are potential outcomes without and with treatment

### The Parallel (//) Trend Assumption

In the absence of treatment, same average outcome evolution across groups

$$\mathbb{E}[Y_{s,2}(0) - Y_{s,1}(0)] = \mathbb{E}[Y_{n,2}(0) - Y_{n,1}(0)]$$

ullet Weaker than imposing that s and n have same untreated-outcome levels

$$\mathbb{E}[Y_{s,t}(0)] = \mathbb{E}[Y_{n,t}(0)]$$
 for all  $t$ 

Also weaker than imposing no variation in average untreated outcomes

$$\mathbb{E}[Y_{g,2}(0)] = \mathbb{E}[Y_{g,1}(0)]$$
 for all  $g$ 

⇒ Appeal of // trends: has testable implications (no pre-trends)



#### Illustration of Parallel-trends



#### In the Simplest Set-up, TWFE = DID

• Under // trends, DID is unbiased for the ATE in location s at period 2

$$\begin{split} \mathbb{E}(DID) &= \mathbb{E}[Y_{s,2} - Y_{s,1} - (Y_{n,2} - Y_{n,1})] \\ &= \mathbb{E}[Y_{s,2}(1) - Y_{s,1}(0) - (Y_{n,2}(0) - Y_{n,1}(0))] \\ &= \mathbb{E}[Y_{s,2}(1) - Y_{s,2}(0)] + \mathbb{E}[Y_{s,2}(0) - Y_{s,1}(0)] - \mathbb{E}[Y_{n,2}(0) - Y_{n,1}(0)] \\ &= \mathbb{E}[Y_{s,2}(1) - Y_{s,2}(0)] \end{split}$$

• This result extends beyond the 2x2 case as long as

$$D_{q,t} = 1\{t > T_0\}D_q$$
, with  $T_0 \ge 1, D_q \in \{0,1\}$ 

⇒ The before-after diff is combined with the treated-control diff



#### Additive Separability of TWFE

Static case

$$D_{g,t} \in R^+ \text{and for all } (g,t,d_1,...,d_T), Y_{g,t}(d_1,...,d_T) = Y_{g,t}(d_t)$$

- Parallel trends: for all  $t \geq 2$ ,  $E[Y_{g,t}(0) Y_{g,t-1}(0)] = \gamma_t$
- It follows that:  $E[Y_{g,t}(0)-Y_{g,1}(0)]=\gamma_t$ , and let  $\alpha_g=E[Y_{g,1}(0)]$
- $\Rightarrow$  Then,  $E[Y_{q,t}(0)] = E[Y_{q,1}(0)] + E[Y_{q,t}(0) Y_{q,1}(0)] = \alpha_q + \gamma_t$



#### Parameter of Interest

Average treatment response

$$\Delta^{TR} = \frac{1}{\sum_{g,t} D_{g,t}} \sum_{g,t} (Y_{g,t}(D_{g,t}) - Y_{g,t}(0))$$

- Then, let  $\delta^{TR} = E[\Delta^{TR}]$ . With a binary D,  $\delta^{TR} = \mathsf{ATT}$
- Analogously, in (g, t):

$$\Delta_{g,t} = \frac{1}{D_{g,t}} \left[ Y_{g,t}(D_{g,t}) - Y_{g,t}(0) \right] \text{ if } D_{g,t} \neq 0$$

Then:

$$\delta^{TR} = E\left[\sum_{(g,t):D_{g,t}>0} W_{g,t} \Delta_{g,t}\right], \quad \text{with } W_{g,t} = \frac{D_{g,t}}{\sum_{(g,t):D_{g,t}>0} D_{g,t}}$$



### $\beta_{fe} = \text{weighted sum of ATEs under } / / \text{ trends}$

- ullet Let  $\epsilon_{fe,g,t}=$  resid. of the reg. of  $D_{g,t}$  on a constant, group FEs, and time FEs
- It can be shown that:

$$\beta_{fe} = E \left[ \sum_{(g,t):D_{g,t}>0} W_{fe,g,t} \Delta_{g,t} \right]$$

- $\bullet \ W_{fe,g,t} = \frac{D_{g,t}\epsilon_{fe,g,t}}{\sum_{(g,t):D_{g,t}>0} D_{g,t}\epsilon_{fe,g,t}}$
- In general,  $\beta_{fe} \neq \delta^{TR}$  because  $W_{fe,g,t} \neq W_{g,t}$
- $\Rightarrow$  We may have  $W_{fe,g,t} < 0$ : if  $\epsilon_{fe,g,t} < 0$  while  $D_{g,t} > 0$
- $\Rightarrow E\left[\widehat{\beta}_{fe}\right] \text{ may be } <0 \text{ even if } Y_{g,t}(d)>Y_{g,t}(0) \text{ for all } (g,t) \text{ and } d>0$

## Characterizing (g,t) cells weighted negatively by $\beta_{fe}$

- Let  $D_{g,.}$  =average treat. rate of g and  $D_{.,t}$  =average treat. rate at t
- ullet Under // trends,  $W_{fe,g,t}$  is decreasing with  $D_{g,.}$  and  $D_{.,t}$
- $\beta_{fe}$  more likely to assign negative weight to:
  - ⇒ Periods with many vs few treated groups
  - ⇒ Groups treated for many vs few periods
- ullet In staggered adoption designs  $(D_{g,t} \geq D_{g,t-1})$ ,  $W_{fe,g,t} < 0$  more likely
  - In the last periods and for groups adopting the treatment earlier
  - ⇒ Remove negative weights by removing always treated groups



## Forbidden Comparison 1: Switchers Vs. Always Treated

- ullet D binary and design staggered:  $\widehat{eta}_{fe}=$  weighted avg of two types of DIDs:
  - ullet  $DID_1$ : comparing s from untreated to treated to n untreated at both dates
  - $DID_2$ : comparing switching group s to group a treated at both dates.
- $\Rightarrow$  Negative weights in  $\beta_{fe}$  originate from the second type of DIDs

#### Forbidden Comparison 1: An Example

• Group e treated at t=2, group  $\ell$  treated at t=3. Then:

$$\widehat{\beta}_{fe} = \frac{1}{2} \times \underbrace{DID_{e-\ell}^{1-2}}_{DID_1} + \frac{1}{2} \times \underbrace{DID_{\ell-e}^{2-3}}_{DID_2}$$

At periods 2 and 3, e's outcome = treated potential outcome, so

$$Y_{e,3} - Y_{e,2} = Y_{e,3}(1) - Y_{e,2}(1) = Y_{e,3}(0) + \Delta_{e,3} - (Y_{e,2}(0) + \Delta_{e,2}).$$

ullet On the other hand, group  $\ell$  only treated at period 3, so

$$Y_{\ell,3} - Y_{\ell,2} = Y_{\ell,3}(0) + \Delta_{\ell,3} - Y_{\ell,2}(0)$$



## Forbidden Comparison 1: An Example (continued)

$$\Rightarrow E\left[DID_{\ell-e}^{2-3}\right] = E\left[Y_{\ell,3} - Y_{\ell,2} - (Y_{e,3} - Y_{e,2})\right] = E\left[\Delta_{\ell,3} + \Delta_{e,2} - \Delta_{e,3}\right]$$

- Note: if  $\Delta_{e,2} = \Delta_{e,3}$ ,  $E[DID_{\ell-e}^{2-3}] = E[\Delta_{\ell,3}]$
- More generally, if  $\Delta_{a,t} = \Delta_{a,t'}$ ,  $W_{fe,a,t} \geq 0$ . But restrictive!
- Note:

$$Y_{g,t}(0) - Y_{g,t-1}(0) = Y_{g,t}(1) - Y_{g,t-1}(1) \iff \Delta_{g,t} = \Delta_{g,t-1}$$

• This assumption is actually equivalent to time-invariant treat. effects



#### Forbidden Comparison 1: Graphical Illustration



## Forbidden Comparison 2: Switching more vs Switching less

- Suppose the treatment D is not binary
- $\bullet$   $\widehat{\beta}_{fe} =$  (group m whose D increases more) (group  $\ell$  whose D increases less)
- ullet In fact, with two groups m and  $\ell$  and two periods,

$$\widehat{\beta}_{fe} = \frac{Y_{m,2} - Y_{m,1} - (Y_{\ell,2} - Y_{\ell,1})}{D_{m,2} - D_{m,1} - (D_{\ell,2} - D_{\ell,1})}$$

⇒ This "Wald-DID" estimator may not estimate convex combination of effects



#### Forbidden Comparison 2: An Example

- $\bullet$  Assume m goes from 0 to 2 units of treatment while  $\ell$  goes from 0 to 1
- $\Rightarrow$  Denominator of the Wald-DID is 2-0-(1-0)=1
  - $\bullet$  Potential outcomes:  $Y_{m,t}(d) = Y_{m,t}(0) + \delta_m d$  and  $Y_{\ell,t}(d) = Y_{m,t}(0) + \delta_\ell d$
  - Then:

$$E\left[\widehat{\beta}_{fe}\right] = E\left[Y_{m,2} - Y_{m,1} - (Y_{\ell,2} - Y_{\ell,1})\right]$$

$$= E\left[Y_{m,2}(0) + 2\delta_m - Y_{m,1}(0) - (Y_{\ell,2}(0) + \delta_\ell - Y_{\ell,1}(0))\right]$$

$$= E\left[Y_{m,2}(0) - Y_{m,1}(0)\right] - E\left[Y_{\ell,2}(0) - Y_{\ell,1}(0)\right] + 2\delta_m - \delta_\ell$$

$$= 2\delta_m - \delta_\ell$$



### Forbidden Comparison 2: Graphical Illustration



#### Extensions

- ullet This logic extends to  $eta_{fd}$ , but with different weights  $W_{fd,g,t}$
- $\Rightarrow$  If  $\beta_{fd} \neq \beta_{fe}$ , we reject homogeneous TE under // trends
  - With covariates, we modify the // trends by assuming that for some  $\lambda$ ,

$$\begin{split} &E[Y_{g,t}(0) - Y_{g,t-1}(0) - (X_{g,t} - X_{g,t-1})'\lambda | \boldsymbol{D}_g, \boldsymbol{X}_g] \\ = &E[Y_{g,t}(0) - Y_{g,t-1}(0) - (X_{g,t} - X_{g,t-1})'\lambda], \end{split}$$

- ullet Let  $\epsilon^X_{fe,g,t}=$  resid. of reg. of  $D_{g,t}$  on a const., group FEs, time FEs and  $X_{g,t}$
- $\bullet$  Then, same result as above but with  $\epsilon^X_{fe,g,t}$  instead of  $\epsilon_{fe,g,t}$  in  $W_{fe,g,t}.$

4 □ ト 4 □ ト 4 亘 ト 4 亘 ・ り 9 ○ ○

#### Software Implementations

- ullet bacondecomp computes DIDs and their corresponding weights entering in  $\widehat{\beta}_{fe}$
- ullet twowayfeweights computes the weights  $W_{fe,g,t}$  and  $W_{fd,g,t}$ , with/o X
  - $\Rightarrow$  Worst-case scenario of std dev on  $\Delta_{g,t}$  (weights are max corr. with TE)
  - $\Rightarrow$  Correlation between weights and proxies of  $\Delta_{g,t}$

#### Example: Effect of Newspapers on Electoral Turnout

- Gentzkow et al. (AER, 2011) use US county data on presidential elections
- ullet Reg change in turnout in g on change in # newspapers + state-year FE
- One could also estimate the FE regression

|                        | $\widehat{eta}$             | % of $< 0$ | $Sum\;of<0$ |
|------------------------|-----------------------------|------------|-------------|
| Regression             | (s.e.)                      | weights    | weights     |
| $\widehat{\beta}_{fe}$ | -0.0011                     | 40.1%      | -0.53       |
| $\widehat{eta}_{fd}$   | 0.0011) $0.0026$ $(0.0009)$ | 45.7%      | -1.43       |

 $\Rightarrow$  Under // trends, we reject the null hypothesis that  $\Delta_{g,t} = \Delta \ \forall (g,t)$ 

## **Event Study Regressions**

#### Main Assumptions

- Assuming past treatments do not affect current outcomes is restrictive
- ullet We now generalize the previous set-up as follows ( $oldsymbol{0}_t$  =vector of t zeros)
- Univariate, dynamic framework w/o anticipation,  $D_{q,t} \in \mathbb{R}^+$ :

$$Y_{g,t}(d_1,...,d_T) = Y_{g,t}(d_1,...,d_t)$$

// trends, v2

$$\Rightarrow \ \forall g \ \text{and} \ t \geq 2, \ E[Y_{g,t}(\mathbf{0}_t) - Y_{g,t-1}(\mathbf{0}_{t-1}) | \mathcal{\textbf{\emph{D}}}_g] = E[Y_{g,t}(\mathbf{0}_t) - Y_{g,t-1}(\mathbf{0}_{t-1})]$$

$$\Rightarrow$$
 For all  $t \geq 2$ ,  $E[Y_{q,t}(\mathbf{0}_t) - Y_{q,t-1}(\mathbf{0}_{t-1})] = \gamma_t$ 



#### Staggered Design: Notation and Parameters

- Staggered treatment:  $D_{g,t} = 1\{t \geq F_g\}, F_g = \text{period when } g \text{ becomes treated}$
- ullet Exclude always treated here and let  $F_g=T+1$  if never treated
- Let  $\mathbf{1}_t$  be a vector of t ones and define:

$$\begin{split} &\Delta_g(\ell) = Y_{g,F_g+\ell}(\mathbf{0}_{F_g-1},\mathbf{1}_{\ell+1}) - Y_{g,F_g+\ell}(\mathbf{0}_{F_g+\ell}), \\ &\Delta(\ell) = \frac{1}{N \leq (T-\ell)} \sum_{g:F_g+\ell \leq T} \Delta_g(\ell) \end{split}$$

where  $N_{\leq}(t) = \operatorname{card}\{g : F_g \leq t\}$ 

- $\Rightarrow \Delta_g(\ell)$ : effect for g of having received the treatment for  $\ell+1$  periods
- $\Rightarrow \Delta(\ell)$ : effect of having received the treatment for  $\ell+1$  periods

4 D > 4 D > 4 E > 4 E > E 9 9 0

#### Staggered design: ES Regressions

- $\bullet$  Regression of  $Y_{g,t}$  on group and time FEs, and  $(1\{F_g=t-\ell\})_{\ell=-K,\dots,L,l\neq -1}$
- When  $t \ell > T$ , we set  $1\{F_g = t \ell\} = 0$
- $\Rightarrow$  For  $\ell \geq 0$ ,  $\beta_{\ell}$  is supposed to estimate  $\Delta(\ell)$
- $\Rightarrow$  For  $\ell \leq -2$ ,  $\beta_{\ell} =$  placebo used to check // trends

#### An Aside: "Basic" Problems with ES Regressions

Let us consider the fully-dynamic specification where

$$K = \overline{K} := \max_{g: F_g \leq T} F_g - 1, \quad L = \overline{L} := T - \min_g F_g$$

- If all groups are eventually treated, then:
- $\bullet \ (\beta_\ell)_{\ell=-\overline{K},...,\overline{L},\ell\neq -1} \ \text{not sep. identified from} \ (\beta_\ell+\kappa(\ell+1))_{\ell=-\overline{K},...,\overline{L},\ell\neq -1}$

$$\begin{array}{ll} \Rightarrow & \mathsf{Proof:} & \sum_{\substack{\ell = -\overline{K} \\ \ell \neq -1}}^{\overline{L}} 1\{F_g = t - \ell\}(\ell+1) = \sum_{\substack{\ell = -\overline{K} \\ \ell \neq -1}}^{\overline{L}} 1\{F_g = t - \ell\}(\ell+1) \\ &= (t+1-F_g) \sum_{\substack{\ell = -\overline{K} \\ \ell \neq -\overline{K}}}^{\overline{L}} 1\{F_g = t - \ell\} \\ &= \underbrace{t+1}_{\mathsf{enter in time FE}} \underbrace{-F_g}_{\mathsf{enter in group FE}} \end{array}$$

4□ > 4□ > 4 = > 4 = > = 900

#### An Aside: "Basic" Problems with ES Regressions

- ⇒ The fully-dynamic specification requires never treated groups
  - Otw some placebo coeffs should be removed, or dyn. effects be restricted
  - ullet In the latter case, a common practice is to choose  $L < \overline{L}$
  - But even if TE are homogenous, this makes sense only if

$$Y_{g,F_g+\ell}(\mathbf{0}_{F_g-1},\mathbf{1}_{\ell+1}) = Y_{g,F_g+\ell}(\mathbf{0}_{F_g})$$
 for  $\ell > L$ .

• More natural to assume that TE stabilize:

$$\Delta_q(\ell) = \Delta_q(L) (= \Delta(L)), \text{ for } \ell > L$$



#### Decomposition Result for ES Regressions

- $\epsilon_{g,t}$ : res. of  $1\{F_g=t-\ell\}$  on group/time FEs and  $(1\{F_g=t-\ell'\})_{\ell'=-K,..,\overline{L}}$
- $\bullet$  Define  $W_{g,\ell,\ell'} = \frac{\epsilon_{g,F_g+\ell'}}{\sum_g \epsilon_{g,F_g+\ell}}, \forall (\ell,\ell')$
- ullet Suppose that  $D_{g,t}$  is binary and design is staggered. Then, for  $\ell=0,...,\overline{L}$ ,

$$E\left[\widehat{\beta}_{\ell}\right] = E\left[ \underbrace{\sum_{g} W_{g,\ell,\ell} \Delta_g(\ell)}_{\text{sum of effect of } \ell+1 \text{ treat. periods}} + \underbrace{\sum_{\ell' \neq \ell} \sum_{g} W_{g,\ell,\ell'} \Delta_g(\ell')}_{\text{sum of effects of } \ell'+1 \text{ treat periods}} \right]$$

•  $\sum_{g} W_{g,\ell,\ell} = 1$  and  $\sum_{g} W_{g,\ell,\ell'} = 0 \ \forall \ell, \ell' \neq \ell$ 



#### ES Even Less Robust to Heterog. TE than Static TWFE

- ullet As in the static case,  $W_{g,\ell,\ell}$  may be <0
- $\Rightarrow$   $\widehat{eta}_{\ell}$  contaminated by effects of  $\ell'+1$  treatment periods
- $\Rightarrow$   $\Delta_g(\ell)=\Delta_{g'}(\ell)\ \forall g,g'$  not sufficient for  $\widehat{eta}_\ell$  to be unbiased. We also need

$$\Delta_g(\ell') = \Delta_g(\ell') \ \forall \ell' \neq \ell$$



#### Origin: Again, Forbidden Comparisons

- ullet As in the static case,  $\widehat{eta}_\ell$  can still be written as a linear combination of DID
- But in some of these DIDs:
  - ullet The control group has been treated for  $\ell' 
    eq \ell$  period at baseline/endline
  - If  $\ell>0$ , the treated group has been treated for  $\ell'>0$  period at the baseline
  - ullet The treated group has been treated for  $\ell' < \ell$  period at the endline
- ⇒ Contamination bias

### A Simple Example

- ullet Consider a design with G=2, T=3, K=0
  - Group 1 treated at t=2
  - $\bullet \ \ {\rm Group} \ 2 \ {\rm treated} \ {\rm at} \ t=3 \\$
- Then, some algebra shows that:

$$\widehat{\beta}_1 = \underbrace{Y_{1,3} - Y_{1,2} - (Y_{2,3} - Y_{2,2})}_{DID_1} + 2\underbrace{[Y_{1,2} - Y_{1,1} - (Y_{2,2} - Y_{2,1})]}_{DID_2}$$

## A Simple Example (cont'd)

• In  $DID_1$ , control group g=2 treated for 1 period at t=3 and g=1 also treated for 1 period at t=2. Then,

$$E[DID_1] = E[\Delta_1(1) - (\Delta_1(0) + \Delta_2(0))].$$

•  $DID_2$  identifies the effect of having been treated for 1 rather than 2 periods:

$$E[DID_2] = E[\Delta_1(0)]$$

 $\Rightarrow$  We obtain  $E[\widehat{\beta}_1] = E[\Delta_1(1) + (\Delta_1(0) - \Delta_2(0))]$ 



#### Software Implementations

eventstudyweights Stata package computes weights in decomposition:

```
eventstudyweights {rel_time_list}, absorb(i.groupid i.timeid) cohort(first_treatment) rel_time(ry), with rel_time_list=list of the 1\{F_g=t-l\}, first_treatment=F_g (missing if never treated), and ry=timeid - first treatment
```

Can easily include covariates

### Heterogeneity-robust DID estimators

### Robust DIDs (Static Case)

- Avoid making the forbidden comparisons leveraged by TWFE:
  - ⇒ Never compare switcher to switcher: only compare switcher to stayer
  - ⇒ Never compare a switcher to a stayer with a different baseline treatment
- ullet Depends on whether groups' outcome at t only depends on treatment at t
- If yes, we can consider each pair of consecutive time periods independently
  - $\Rightarrow t-1$  to t switchers: groups whose treatment changes from t-1 to t
  - $\Rightarrow t-1$  to t stayers: groups whose treatment does not change from t-1 to t, with same t-1 treatment as switchers

## Robust DIDs (Dynamic Case)

- in more general case, we need to control for groups' full treatment history
  - $\Rightarrow$  t-1 to t first-time switchers: treat changes for the first time from t-1 to t
  - $\Rightarrow 1$  to  $t+\ell$  stayers: treat does not change from 1 to  $t+\ell$ , with same t-1 treatment as switchers
- Allowing for dynamic effects may lead to less precise and interpretable effects

#### Parameters of interest

- Suppose first that D is binary
- Let us define

$$S = \{(g,t) : t \ge 2, \ D_{g,t} \ne D_{g,t-1}, \ \exists g' : \ D_{g',t} = D_{g',t-1} = D_{g,t-1}\}$$

- $N_S = \operatorname{card}(\mathcal{S})$
- ⇒ Then, ATE for matchable switchers is

$$\delta^{S} = E \left[ \frac{1}{N_{S}} \sum_{(g,t) \in \mathcal{S}} Y_{g,t}(1) - Y_{g,t}(0) \right]$$

# Assumptions for identifying $\delta^S$

ullet  $\delta^S$  can be unbiasedly estimated under the following // trends conditions

$$\Rightarrow E[Y_{g,t}(0) - Y_{g,t-1}(0)|\mathbf{D}_g] = E[Y_{g,t}(0) - Y_{g,t-1}(0)] = \gamma_{0,t}$$

$$\Rightarrow E[Y_{g,t}(1) - Y_{g,t-1}(1)|\mathbf{D}_g] = E[Y_{g,t}(1) - Y_{g,t-1}(1)] = \gamma_{1,t}$$

• Usual // trends on  $Y_{q,t}(0)$  sufficient if we focus on switchers in

$$S_+ = \{(g,t) : t \ge 2, D_{g,t} = 1 > D_{g,t-1} = 0, \exists g' : D_{g',t} = D_{g',t-1} = 0\}$$

ullet Weaker exogeneity assumption sufficient to consistently estimate  $\delta^S$ :

$$E[Y_{g,t}(0) - Y_{g,t-1}(0)|D_{g,1}, ..., D_{g,t}] = E[Y_{g,t}(0) - Y_{g,t-1}(0)]$$

• Allows for possibility that  $Y_{g,t}(0) - Y_{g,t-1}(0)$  affects  $D_{g,t+1}$  etc.

4 D > 4 P > 4 E > 4 E > E 990

## Weighted averages of DIDs identify $\delta^S$

- For all  $t \in \{1, ..., T\}$  and d = 0, 1, let
  - $N_{+,t} = \operatorname{card} \ \{g: D_{g,t} > D_{g,t-1}\} \ \operatorname{and} \ N_{-,t} = \operatorname{card} \ \{g: D_{g,t} < D_{g,t-1}\}$
  - $\bullet \ N_{=d,t} = {\rm card} \ \{g: D_{g,t} = D_{g,t-1} = d\}$
  - $DID_{+,t} = \sum_{g:D_{g,t}>D_{g,t-1}} \frac{1}{N_{+,t}} (Y_{g,t} Y_{g,t-1}) \sum_{g:D_{g,t}=D_{g,t-1}=0} \frac{1}{N_{=0,t}} (Y_{g,t} Y_{g,t-1})$
  - $\begin{array}{l} \bullet \ DID_{-,t} = \\ \sum_{g:D_g,t=D_g,t-1=1} \frac{1}{N=1,t} \left( Y_{g,t} Y_{g,t-1} \right) \sum_{g:D_g,t < D_g,t-1} \frac{1}{N_{-,t}} \left( Y_{g,t} Y_{g,t-1} \right) \end{aligned}$
- Then

$$E[DIDM] = E\left[\sum_{t=2}^{T} \frac{N_{+,t}}{N_S} DID_{+,t} + \frac{N_{-,t}}{N_S} DID_{-,t}\right] = \delta^S$$



#### Intuition for DIDM

- $DID_{+,t}$ :  $\Delta Y$  between those treated between t-1 and t, and untreated
- $\Rightarrow$  Under // trends on Y(0), it identifies TE in groups switching into treatment
- $\Rightarrow$  Under // trends on Y(1),  $DID_{-,t}$  identifies TE for switchers out of treat
  - Finally, DIDM is a weighted average of those DID estimands

#### Placebo Estimators

- ⇒ Focus on groups that are stayers one period before switchers switch
  - ullet Compare switchers' and stayers'  $\Delta Y$ , one period before switchers switch
  - Also compare switchers and stayers 2, 3 periods etc. before switchers switch

### Controlling for Time-varying Covariates

Rationale: // trends only hold if we account for change in covariates

$$E(Y_{g,t}(d) - Y_{g,t-1}(d)|\boldsymbol{D}_g, \boldsymbol{X}_g) = \gamma_{d,t} + (X_{g,t} - X_{g,t-1})'\lambda_d \quad \forall d \in \mathcal{D}$$

- Special case is group-specific linear trends  $X_{g,t} = (1\{g=2\} \times t,..,1\{g=G\} \times t)$
- Let  $\epsilon_{g,t}(d)$  residual of the reg. of  $Y_{g,t}-Y_{g,t-1}$  on period FEs and  $X_{g,t}-X_{g,t-1}$  for (g,t) s.t.  $D_{g,t}=D_{g,t-1}=d\in\mathcal{D}$
- ullet Define  $DIDM^X$  as DIDM, but using  $\epsilon_{g,t}(D_{g,t-1})$  instead of  $Y_{g,t}-Y_{g,t-1}$
- Separate reg. for each  $d \in \mathcal{D}$ , estimated in sample of d-stayers

4□ > 4□ > 4□ > 4□ > 4□ > □
9

### Software Implementation

- R and Stata command: did\_multiplegt
  - Options to relax the standard // trends
  - Control for time-varying, time-invariant covariates, or linear time trends
  - Flexibly specifies the number of placebos to be estimated

## Example (continued): Gentzkov et al. (AER, 2011)

Table: Estimates of the effect of one additional newspaper on turnout

|                                                     | Estimate | Standard error | N      |
|-----------------------------------------------------|----------|----------------|--------|
| $\frac{\widehat{\beta}_{fd}}{\widehat{\beta}_{fe}}$ | 0.0026   | 0.0009         | 15,627 |
| $\widehat{eta}_{fe}$                                | -0.0011  | 0.0011         | 16,872 |
| DIDM                                                | 0.0043   | 0.0014         | 16,872 |
| DIDM Placebo                                        | -0.0009  | 0.0016         | 13,221 |

 $\Rightarrow$  DIDM is 66% larger (t-stat=1.77) than  $\widehat{eta}_{fd}$  and opposite sign to  $\widehat{eta}_{fe}$ 

#### Allowing for dynamic effects: potential outcome notation

- We maintain previous assumption of no anticipation effects
- $\Rightarrow$  Potential outcomes  $Y_{g,t}(d_1,...,d_t)$  do not depend on future treatments
  - $\mathbf{0}_k$ : vector of k zeros,  $\mathbf{1}_k$ : vector of k ones
  - ullet  $Y_{g,t}(\mathbf{0}_k,\mathbf{1}_{t-k})$ : g at t if untreated from 1 to k and treated from k+1 to t

46 / 88

#### Parameters of interest

- Binary staggered design:  $D_{g,t} = 1\{t \ge F_g\}$
- $\Rightarrow$  ATE of cohort getting treated from c to c+l, i.e. for l+1 periods

$$\delta(c,\ell) = E\left[\frac{1}{N_{=}(c)} \sum_{g:F_g=c} \left(Y_{g,c+\ell}(\mathbf{0}_{c-1}, \mathbf{1}_{\ell+1}) - Y_{g,c+\ell}(\mathbf{0}_{c+\ell})\right) \middle| \boldsymbol{D}\right]$$

- Where  $N_{=}(c) = \operatorname{card}\{g : F_g = c\}$
- ullet ATE across cohorts  $\ell+1$  periods after they started receiving treat

$$\delta(\ell) = E\left[\frac{1}{\sum_{c=2}^{T-\ell} N_{=}(c)} \sum_{c=2}^{T-\ell} N_{=}(c)\delta(c,\ell) \middle| \boldsymbol{D}\right]$$



#### DID estimators using never-treated groups

• To estimate  $\delta(c,\ell)$ 

$$\widehat{\delta}_1(c,\ell) = \frac{1}{N_{=}(c)} \sum_{g: F_g = c} \left( Y_{g,c+\ell} - Y_{g,c-1} \right) - \frac{1}{N_{=}(T+1)} \sum_{g: F_g = T+1} \left( Y_{g,c+\ell} - Y_{g,c-1} \right)$$

- Recall that  $\{g: F_q = T + 1\} = \text{never-treated groups}$
- $\Rightarrow$   $\widehat{\delta}_1(c,\ell)$ :  $\Delta Y$  between c-1 and  $c+\ell$  in cohort c and in never-treated groups
  - Then let

$$\hat{\delta}_{1}(\ell) = \frac{1}{\sum_{c=2}^{T-\ell} N_{-}(c)} \sum_{c=2}^{T-\ell} N_{-}(c) \hat{\delta}_{1}(c,\ell)$$



### DID estimators using other control groups

If no never-treated groups, use instead the last treated/not-yet-treated groups

$$\widehat{\delta}_2(c,\ell) = \frac{1}{N_{=}(c)} \sum_{g: F_g = c} \left( Y_{g,c+\ell} - Y_{g,c-1} \right) - \frac{1}{N_{>}(c+\ell)} \sum_{g: F_g > c+\ell} \left( Y_{g,c+\ell} - Y_{g,c-1} \right)$$

- $N_{>}(c+\ell)=\mathrm{card}\{g:F_g>c+\ell\}$ . Define  $\widehat{\delta}_2(\ell)$  accordingly
- There are more not-yet-treated groups than never-treated groups
- $\Rightarrow$   $\widehat{\delta}_2(c,l)$  possibly more precise than  $\widehat{\delta}_1(c,\ell)$ 
  - Also, never-treated groups may be very different from other groups
- $\Rightarrow$  // trends may not hold when only never treated used as controls



### Software Implementation

• The csdid (Stata) and did (R) commands. Syntax: csdid outcome, time(timeid) gvar(cohort) where cohort=  $F_g$  (=0 for never treated)

The eventstudyinteract Stata command. Syntax:
 eventstudyinteract outcome {rel\_time\_list}, absorb(i.groupid i.timeid) cohort(first\_treatment) control\_cohort(controlgroup)

## A Quick Recap on Job Search Models

### The Optimal Stopping Model

ullet Risk neutral individual in discrete time with preferences in t=0 given by

$$\sum_{t=0}^{\infty} \beta^t c_t, \quad \beta \in (0,1)$$

- ullet Start as unemployed, with consumption equal to b
- Jobs sampled sequentially. Each job is for life and identical except for wage
- $\bullet$  Wages are drawn from an exogenous stationary distribution F(w)
- $\Rightarrow$  Given draw  $w_t \in W$  agent decides whether to take it or continue searching

51 / 88

### **Dynamic Programming Formulation**

ullet Value function for the agent when he has sampled a job of  $w\in W$  is

$$V(w) = \max\left\{\frac{w}{1-\beta}, \beta V + b\right\}$$

where V is the continuation value of not accepting a job:

$$V = \int_{\omega \in \Omega} V(\omega) dF(\omega)$$

⇒ Combine these two equations and get:

$$V(w) = \max \left\{ \frac{w}{1-\beta}, b + \beta \int_{\omega \in \Omega} V(\omega) dF(\omega) \right\}$$



### Reservation Wage

- ullet V(w) is non-decreasing, decision rule has a reservation value property
- Reservation wage is given by

$$\frac{w^*}{1-\beta} = b + \beta \int_{\omega \in \Omega} V(\omega) dF(\omega)$$

- $\Rightarrow$  Decision rule:  $\forall w < w^\star$ ,  $V(w) = \frac{w^\star}{1-\beta}$  and  $\forall w \geq w^\star$ ,  $V(w) = \frac{w}{1-\beta}$ 
  - Therefore, reservation wage can be written as

$$\frac{w^{\star}}{1-\beta} = b + \beta \left[ \frac{w^{\star} F(w^{\star})}{1-\beta} + \int_{w > w^{\star}} \frac{w}{1-\beta} dF(w) \right]$$



### Reservation Wage

 $\bullet$  Since  $\frac{w^\star}{1-\beta}=\int_{w< w^\star}\frac{w^\star}{1-\beta}dF(w)+\int_{w\geq w^\star}\frac{w^\star}{1-\beta}dF(w)$ 

$$w^{\star} = b + \frac{\beta}{1 - \beta} \left[ \int_{w \ge w^{\star}} (w - w^{\star}) dF(w) \right]$$



#### Taking the Model to the Data

- $\bullet$  For a random sample of N workers we observe  $\{\tilde{t}_u(i), w(i)\}_{i=1}^N$
- Job offers/termination arrive at random times with density between offers

$$q_u(t_u) = \lambda \exp(-\lambda t_u), \lambda > 0$$
  

$$q_e(t_e) = \eta \exp(-\eta t_e), \eta > 0$$

Reservation wage in continuous time

$$w^* = b + \frac{\lambda}{\rho + \eta} \int_{w^*} (w - w^*) dF(w)$$

 $\Rightarrow$  It is easy to show that  $\partial w^{\star}/\partial \eta < 0, \partial w^{\star}/\partial \rho < 0, \partial w^{\star}/\partial \lambda > 0$ 



### Simulating Labor Market Data

#### Hypothetical early labor market career

| Event number | State | Time of event | Duration draw | Match value |
|--------------|-------|---------------|---------------|-------------|
| 1            | И     | 0.891         | 0.891         | 6.243       |
| 2            | U     | 3.168         | 2.277         | 4.329       |
| 3            | U     | 15.554        | 12.386        | 3.871       |
| 4            | U     | 15.558        | 0.004         | 10.918      |
| 5            | E     | 38.921        | 23.363        | _           |
| 6            | U     | 44.236        | 5.315         | 7.891       |
| 7            | U     | 56.793        | 12.557        | 12.119      |
| 8            | E     | 157.421       | 100.628       | _           |
| 9            | U     | 164.772       | 7.351         | 10.145      |
| 10           | E     | 322.510       | 157.738       | _           |
| :            | ÷     | :             |               | :           |

#### Steady-state Proportions

The probability that an individual is unemployed is

$$p(u) = \frac{\mathbb{E}(t_u)}{\mathbb{E}(t_e) + \mathbb{E}(t_u)} = \frac{[\lambda \tilde{F}(w^*)]^{-1}}{\eta^{-1} + [\lambda \tilde{F}(w^*)]^{-1}}$$
$$= \frac{\eta}{\eta + \lambda \tilde{F}(w^*)}$$

And conversely

$$p(e) = 1 - p(u) = \frac{\lambda \tilde{F}(w^*)}{\eta + \lambda \tilde{F}(w^*)}$$

### Offered and Accepted Wages

Optimal decision rule ⇒ truncation in the accepted wage distribution

$$g(w) = \frac{f(w)}{\tilde{F}(w^*)}, w \ge w^*$$

ullet This density is well defined: integrates to 1 and non-negative for all  $w \geq w^\star$ 

58 / 88

#### Likelihood Contributions

The likelihood of an ongoing unemployment spell is

$$L(t_u, u) = f_u(t_u)p(u) = \lambda \tilde{F}(w^*) \exp[-\lambda \tilde{F}(w^*)t_u] \times \frac{\eta}{\eta + \lambda \tilde{F}(w^*)}$$

ullet The likelihood of employed and earning a wage w is

$$L(w,e) = \frac{f(w)}{\tilde{F}(w^{\star})} \times \frac{\lambda \tilde{F}(w^{\star})}{\eta + \lambda \tilde{F}(w^{\star})} = \frac{\lambda f(w)}{\eta + \lambda \tilde{F}(w^{\star})}$$

#### Likelihood Function

ullet The likelihood function for a random sample of N individuals is then

$$L(w_1, ..., w_{N_e}, t_1, ..., t_{N_u}) = \prod_{i \in e} \left[ \frac{\lambda f(w(i))}{\eta + \lambda \tilde{F}(w^*)} \right] \times \prod_{i \in u} \left[ \frac{\eta \lambda \tilde{F}(w^*) \exp[-\lambda \tilde{F}(w^*) t_u(i)]}{\eta + \lambda \tilde{F}(w^*)} \right]$$

And the associated log-likelihood is

$$\ln L = -N \ln[\eta + \lambda \tilde{F}(w^*)] + N \ln \lambda + \sum_{i \in e} \ln[f(w(i))] +$$
$$+ N_u \ln[\tilde{F}(w^*)] + N_u \ln(\eta) - \lambda \tilde{F}(w^*) \sum_{i \in u} t_u(i)$$

#### Identification

- ullet The primitive parameters that explicitly enter in  $\ln L$  are  $\lambda,\eta$  and F
- ullet Parameters b and ho only enter through  $w^\star$
- Equilibrium object  $w^*$  is part of the support of F
- ⇒ This feature generates a non-standard likelihood function

61/88

### Flinn and Heckman (1982)

Estimate the reservation wage as the minimum accepted wage

$$\hat{w}^{\star} = \min(w_1, ..., w_{N_e})$$

- ⇒ Order statistics are super-consistent (i.e. converge at rate N)
- 2 Maximize log likelihood with respect to  $\lambda, \eta$  and  $\mu$  conditional on  $\hat{w}^*$
- $\Rightarrow F(w) \text{ needs to be recoverable: } F(w|w \geq \hat{w}^\star) = \frac{F(w) F(w^\star)}{\bar{F}(w^\star)}, \forall w \geq \hat{w}^\star$
- $\ \, \ \, \ \,$  Plug estimated parameters into equation for  $w^\star$  and solve for either b or  $\rho$
- $\Rightarrow$  Usually fix  $\rho$  and recover the value of b



62 / 88

Informality, job search, and schooling investments

### Bobba, Flabbi and Levy (IER, 2022)

- An equilibrium search model where:
  - Search frictions generate mobility between formal and informal jobs
  - Match productivity and bargaining generate overlapping wage distributions
  - ⇒ Both ingredients generates a mix of formal and informal jobs in equilibrium
- One long-term "cost of informality": Under-investment in education
  - Same features that create informality may also distort returns to schooling
  - ⇒ Trade-off between welfare in the labor market and pre-market HK

#### Context: Labor Markets in Latin America

- More than half of the labor force is in the informal sector
  - Workers not contributing to and not covered by the social security system
  - ⇒ Informal employees and (most of the) self-employed
- Neither a segmented or a competitive labor market
  - Individuals transit back and forth between formal and informal jobs
  - Wage/productivity distributions overlap
  - Mix of formality status within the same firm
- Informal workers gained access to non-contributory social programs

#### The Model Environment

- Timing
  - Schooling decision
  - Searching status decision
- Labor Market States
  - Unemployed
  - Self-employed
  - Informal Employee
  - Formal Employee

65 / 88

### Schooling Decision

- Irrevocable decision about schooling level  $h \in \{0,1\}$
- Individual-specific heterogeneity
  - costs  $\kappa \sim T(\kappa)$
  - opportunity cost PDV of participating in LMK as h=0
- $\Rightarrow$  Only agents with  $\kappa < \kappa^{\star}(y)$  will acquire h = 1
  - All labor market parameters are allowed to be schooling-specific

### Searching-status Decision

- Irrevocable decision  $s \in \{0, 1\}$ :
  - Self-employed (s=1)
  - Unemployed (s=0)
- ullet Search for a job in both states but receive offers at different rates:  $\gamma_h < \lambda_h$
- Self-employment income  $y \sim R(y|h)$
- $\Rightarrow$  Only agents with  $y \geq y^{\star}(h)$  search while also working as self-employed

### Labor Market Dynamics

| State               | PDV          | Shock                          | Flow Utility                              |
|---------------------|--------------|--------------------------------|-------------------------------------------|
| Workers:            |              |                                |                                           |
| Unemployed          | U(h)         | $\lambda_h$                    | $\xi_h + eta_{0,h} B_0$                   |
| Self-Employed       | S(y,h)       | $\gamma_h$                     | $y+eta_{0,h}B_0$                          |
| Informal Employee   | $E_0[w,y,h]$ | $\eta_h, \chi_h$               | $w_0(x;y,h) + \beta_{0,h} B_0$            |
| Formal Employee     | $E_1[w,y,h]$ | $\eta_h, \chi_h$               | $w_1(x;y,h) + \beta_{1,h}B_1[w_1(x;y,h)]$ |
| Firms:              |              |                                |                                           |
| Vacancy             | V[h]         | $\zeta_h$                      | $ u_h$                                    |
| Filled Informal Job | $F_0[x,y,h]$ | $\eta_h, {\color{cyan}\chi_h}$ | $x - w_0(x; y, h)$                        |
| Filled Formal Job   | $F_1[x,y,h]$ | $\eta_h, \chi_h$               | $x - (1+t)w_1(x;y,h)$                     |

- $\Rightarrow$  Match-specific productivity:  $x \sim G(x|h)$
- $\Rightarrow$  One-shot penalty for firms hiring illegally:  $c_h w_0(x; y, h)$
- $\Rightarrow$  Matching function determines  $\{\lambda_h, \gamma_h, \zeta_h\}$ :  $m_h = (u_h + \psi_h s_h)^{\iota_h} (v_h)^{1-\iota_h}$

### Labor Market Institutions and Wage Determination

- Non-wage workers' flow value:
  - ullet formal employee  $=eta_{1,h}B_1[w_1(x;y,h)]=eta_{1,h}[ au tw_1(x;y,h)+b_1]$
  - informal employee  $= \beta_{0,h} B_0$
  - $\Rightarrow$   $b_1$  generates spillovers within and between schooling levels
- Nash-bargaining wage schedules (under free-entry of firms) are:

$$w_0(x; y, h) = \frac{\alpha_h}{1 + \chi_h c_h} x + (1 - \alpha_h) [\rho Q(y, h) - \beta_{0,h} B_0]$$

$$w_1(x; y, h) = \frac{\alpha_h}{1 + t} x + \frac{(1 - \alpha_h)}{1 + \beta_{1,h} \tau t} [\rho Q(y, h) - \beta_{1,h} b_1]$$

 $\Rightarrow Q(y,h) \equiv \max\{S(y,h),U(h)\}$ 



### Equilibrium Representation



### **Empirical Implications**

- ⇒ Main stylized facts of informal labor markets are replicated in equilibrium:
  - A mixture of formal and informal jobs is realized
  - Pormal employees have on average higher wages than informal employees
  - But their accepted wage distributions overlap
  - Informal employees and self-employed have different labor market dynamics
  - Firms hire formal or informal workers at different points in time
  - 6 Workers transit over time between different formality status

#### **Data Sources**

- Mexico's Labor Force Survey (ENOE) in 2005
  - Nonagricultural, full-time, male, private-sector workers
  - $\Rightarrow$  Secondary-school between the ages of 25 and 55 who reside in urban areas
    - ullet  $w \equiv$  Hourly wages as employee, main job after labor contributions
    - $\bullet \ y \equiv$  Hourly labor income as self-employed, without paid employees
    - ullet f=1 if employee is contributing to the social-security fund; =0 otherwise
    - $\bullet \ h=1 \ {\rm if} \ {\rm Upper} \ {\rm secondary} \ {\rm completed} = 0 \ {\rm if} \ {\rm Lower} \ {\rm secondary} \ {\rm completed}$
- Aggregate labor shares for Mexico in 2005
  - Total compensations per employee as percentage of GDP
- Vacancy rates for 2005
  - Good coverage of vacancy posting in urban areas
  - ⇒ Detailed information on the schooling level required for the job



#### Identification: Search-Matching-Bargaining Parameters

- G(x|h): Has to be "recoverable"
  - $\Rightarrow$  We assume lognormal with parameters  $\{\mu_{x,h},\sigma_{x,h}\}$
- ullet  $\lambda_h, \gamma_h, \eta_h$ : stationarity + optimal decision rules identify mobility rates from
  - ⇒ Transitions
  - ⇒ Steady state distributions over labor market states
- $\rho, \xi_h$ : Use Q(y,h) to obtain their joint identification
- Nash Bargaining coefficient:  $\alpha_1 = \alpha_0 = \alpha$ 
  - $\Rightarrow$  Use labor shares  $(w_f(x;y,h)/x)$



### Identification: Matching Function + Demand Side

•  $\{\psi_h, \iota_h\}$ : use vacancy rate and define mkt tightness  $\omega_h \equiv \frac{v_h}{u_h + \psi_h s_h}$ , so that

$$\psi_h = \frac{\gamma_h}{\lambda_h}$$

$$\iota_h = \frac{\ln \omega_h - \ln \lambda_h}{\ln \omega_h}$$

- Then, back out the demand side parameters
  - $\zeta_h = \omega_h^{-\iota_h}$
  - ullet  $\nu_h$ : use firm's value function and impose free entry

### Identification: Informality Parameters ( $\beta_1$ and $c_h$ )

- ullet Different transition rates out of formal jobs and informal jobs identify  $\chi_h$
- Overlap between formal and informal accepted wage distributions

$$w_0(\tilde{x}(y,h);y,h) - w_1(\tilde{x}(y,h);y,h) > 0$$

- $\Rightarrow$  Given x, formal employees receive higher non-wage benefits
- $\Rightarrow$   $eta_1$  and  $c_h$  alter location and overlap of accepted wage distributions
  - ullet Variation in y is useful variation to separately identify the parameters

# Identification: Informality Parameters $(\beta_0)$

- ullet The identification of  $eta_0$  requires the use of additional information
- We exploit staggered entry of the Seguro Popular (SP) program in 2005



 $\Rightarrow$  In terms of our model, SP  $\approx \uparrow$  in  $B_0$  by 25%

### Identification: Informality Parameters ( $\beta_0$ , cont'd)

- Variation in  $B_0$  identify  $\beta_0$  if uncorrelated with changes in model primitives
- ⇒ Labor market outcomes pre-policy (2002) seem balanced

|                       | Hourly Wages (log) |          |         | Labor Market Proportions |          |         |         |
|-----------------------|--------------------|----------|---------|--------------------------|----------|---------|---------|
|                       | Formal             | Informal | Self    | Formal                   | Informal | Self    | Unempl  |
|                       |                    |          |         |                          |          |         |         |
| SP in $2005 (1=yes)$  | -0.041             | 0.048    | -0.035  | -0.034                   | 0.035    | -0.004  | 0.003   |
|                       | (0.036)            | (0.055)  | (0.062) | (0.026)                  | (0.019)  | (0.014) | (0.006) |
| Complete Sec. (1=yes) | 0.218              | 0.288    | 0.092   | 0.061                    | -0.036   | -0.029  | 0.003   |
|                       | (0.017)            | (0.032)  | (0.033) | (0.011)                  | (0.008)  | (0.008) | (0.003) |
| Number of Obs.        | 7865               | 5474     | 2777    | 16458                    | 16458    | 16458   | 16458   |

### Identification: Self-employment and Schooling Parameters

- R(y|h): Identified by observed self-employment earnings, once we assume a recoverable primitive distribution
  - $\Rightarrow$  We assume lognormal with parameters  $\{\mu_{y,h},\sigma_{y,h}\}$
- ullet  $T(\kappa)$ : The threshold crossing decision rule allows for the identification of one parameter from the proportions of individuals in the two schooling levels

$$\frac{1}{n}\sum_{i=1}^{n}h_{i} = \int_{y}T(\kappa^{*}(y))dR(y|0)$$

 $\Rightarrow$  We assume a negative exponential with parameters  $\delta$ 

### Identification: Unobserved Ability Types

- Type is known to the individual but unobserved in the data
- We denote each type with k and its proportion in the population with  $\pi_k$

$$x|k = a_k^G x$$
$$y|k = a_k^R y$$
$$\kappa|k = a_k^T \kappa$$

- ⇒ Duration dependence in unemployment identifies these parameters
  - Hazard rates at three and six months for both schooling levels
  - Assume K=2
    - type k=1 normalized to  $a_1^T=a_1^R=a_1^G=1$
    - type k = 2 exhibiting  $a_2^T < 1; a_2^R > 1; a_2^G > 1$



### Estimation in Two Steps

- $\bullet \ \, \text{For} \,\, s \in \{0,1\} \,\, \text{and} \,\, \mathsf{SP} \in \{0,1\}, \,\, \mathsf{we} \,\, \mathsf{match} \,\, \mathsf{the} \,\, \mathsf{following} \,\, \mathsf{moments} \,\,$ 
  - Proportions of individuals in each labor market state
  - Accepted wage distributions of formal and informal employees
    - ⇒ Mean and SD: overall and by quintiles
    - $\Rightarrow$  Overlap: % of formal empl. for each quintile of the informal wage distribution
  - Accepted earnings distributions of self-employed
    - ⇒ Mean and SD
  - Transitions between LMK states (yearly)
  - Hazard rates out of unemployment (at 3 and 6 months)
  - Labor Shares
- Estimate demand-side parameters using vacancy rates



### Parameter Estimates (selected coeffs)

|                                   |         | 0              | High Schooling: $h = 1$ |            |  |  |
|-----------------------------------|---------|----------------|-------------------------|------------|--|--|
|                                   | Coeff.  | Std. Error     | Coeff.                  | Std. Error |  |  |
|                                   |         |                |                         |            |  |  |
|                                   | Search  | n, Matching, a | and Barga               | ining      |  |  |
| $\lambda_h$                       | 0.4679  | 0.0035         | 0.5167                  | 0.0098     |  |  |
| $\gamma_h$                        | 0.0349  | 0.0042         | 0.0306                  | 0.0014     |  |  |
| $\eta_h$                          | 0.0326  | 0.0007         | 0.0190                  | 0.0052     |  |  |
| $\mu_{x,h}$                       | 2.7616  | 0.0367         | 2.6749                  | 0.0382     |  |  |
| $\sigma_{x,h}$                    | 0.6243  | 0.0132         | 0.7970                  | 0.0038     |  |  |
| $\mu_{y,h}$                       | 1.6718  | 0.0188         | 1.9497                  | 0.0763     |  |  |
| $\sigma_{y,h}$                    | 0.7754  | 0.0028         | 0.8027                  | 0.0258     |  |  |
| $\xi_h$                           | -103.46 | 1.6661         | -158.05                 | 4.6038     |  |  |
| $\alpha$                          | 0.5630  | 0.0169         | 0.5630                  | 0.0169     |  |  |
| Preferences and Informality       |         |                |                         |            |  |  |
| $\beta_{1,h}$                     | 0.7949  | 0.0044         | 0.6091                  | 0.0043     |  |  |
| $\beta_{0,h}$                     | 0.9862  | 0.0038         | 0.9807                  | 0.0015     |  |  |
| $\chi_h$                          | 0.0079  | 0.0004         | 0.0113                  | 0.0008     |  |  |
| $c_h$                             | 12.882  | 0.7045         | 16.574                  | 1.3932     |  |  |
| Matching Function and Demand Side |         |                |                         |            |  |  |
| $\psi_h$                          | 0.0745  | 0.0088         | 0.0592                  | 0.0034     |  |  |
| $\iota_h$                         | 0.7321  | 0.0253         | 0.7281                  | 0.0184     |  |  |
| $\zeta_h$                         | 7.9718  | 1.6278         | 5.8569                  | 0.8742     |  |  |
| $\nu_h$                           | -496.01 | 288.80         | -773.80                 | 111.34     |  |  |

### Returns to Schooling

|                                                                         | Ability:           | Low   | High  |
|-------------------------------------------------------------------------|--------------------|-------|-------|
|                                                                         |                    | k = 1 | k = 2 |
| PDV of Labor Market Sear                                                | ch:                |       |       |
| $\int_{y} Q(y,h) dR(y h)$                                               |                    | 0.309 | 0.278 |
| J                                                                       |                    |       |       |
| Average Accepted Wages:                                                 |                    |       |       |
| $\overline{F \colon E_h \left[ w_1 \mid \tilde{x}(y,h) \leq x \right]}$ |                    | 0.479 | 0.435 |
| I: $E_h[w_0 \mid x_0^*(y,h) \le x <$                                    | $\tilde{x}(y,h)$ ] | 0.281 | 0.296 |
|                                                                         |                    |       |       |
| Average Offered Wages:                                                  |                    |       |       |
| $\overline{F \colon E_h \left[ w_1 \mid y < y^*(h) \right]}$            |                    | 0.213 | 0.210 |
| F: $E_h[w_1   y \ge y^*(h)]$                                            |                    | 0.213 | 0.204 |
| I: $E_h[w_0 \mid y < y^*(h)]$                                           |                    | 0.133 | 0.134 |
| I: $E_h[w_0 \mid y \geq y^*(h)]$                                        |                    | 0.142 | 0.136 |
|                                                                         |                    |       |       |

### Out-of-Sample Model Validation

• Estimate the effect of  $\uparrow B_0$  using SP roll-out one year later (2006)

$$y_{i,q} = \theta d_{m(i),q} + \vartheta h_i + \varrho_{m(i)} + \varphi_q + \epsilon_{i,q}$$

- $\bullet$  Predict change in LMK outcomes with  $B_0^{\rm 2006}$  using estimated model
- Estimate TWFE-DID specifications on both actual and simulated data

#### Out-of-Sample Model Validation



### Counterfactual 1: The Equilibrium Effects of Informality

| Model:                    | Firms can only offer a formal contract |           |               |                              |  |  |
|---------------------------|----------------------------------------|-----------|---------------|------------------------------|--|--|
| Specifications:           | Baseline                               | Exogenous | Exogenous     | Hosios-like                  |  |  |
|                           | Model                                  | Schooling | Contact Rates | Condition $(\alpha = \iota)$ |  |  |
| Flow Welfare:             |                                        |           |               |                              |  |  |
| Total                     | -0.0596                                | -0.0750   | -0.0020       | 0.0478                       |  |  |
| Workers                   | -0.0460                                | -0.0599   | 0.0166        | 0.0570                       |  |  |
| Firms                     | -0.2821                                | -0.3219   | -0.3055       | -0.1589                      |  |  |
| Labor Market Proportions: |                                        |           |               |                              |  |  |
| Unemployed                | 0.0213                                 | 0.0636    | 0.0019        | -0.0459                      |  |  |
| Self-employed             | 0.3353                                 | 0.3526    | 0.3625        | 0.2329                       |  |  |
| Formal Employees          | 0.0275                                 | -0.0146   | -0.0376       | 0.0076                       |  |  |
| Schooling Outcomes:       |                                        |           |               |                              |  |  |
| % HS Completed            | 0.1029                                 | _         | 0.0781        | 0.1501                       |  |  |
| % High Ability in HS      | 0.0538                                 | _         | 0.0569        | 0.0628                       |  |  |

 $\operatorname{Note}$ : Relative changes wrt the benchmark model. Hosios increases  $\alpha$  from 0.56 to 0.73.

75.75.75

# Counterfactual 2: Changes in Payroll Tax Rate (t)



- Composition effects over schooling/ability explain no impact on informality
- $\bullet$  Balanced-budget policy with  $\tau=0\to 10\%$  increase in high-school completion

### Main Takeways from the Estimated Model

- Returns to schooling are substantial
- Informality is welfare improving but:
  - Significantly more so for firms than workers
  - Reduces human capital accumulation (hold-up problem)
- Payroll tax rate has a non-intuitive impact on equilibrium outcomes
  - Informality rate not a good indicator for policy
  - Redistributive forces within the formal system are key

#### DID ⇔ Economic Model

- Relevant institutional features are included in the model in a tractable way
- These parameters are hard to separately identify using labor market data
- The staggered roll-out of the policy provides additional variation to:
  - ⇒ Identify the (average) valuation of non-contributory benefits
  - $\Rightarrow$  Validate the model on a different time period by simulating one-step ahead