WS23/24: Numerische Mathematik Übungszettel 2

- 1. Gegeben ein Gleitkommasystem mit darstellbaren Zahlen \mathcal{F} (inklusive 0), in dem die Addition $+_*$ und Multiplikation \cdot_* definiert sind durch $z_1 +_* z_1 = \operatorname{fp}(z_1 + z_2)$ und $z_1 \cdot_* z_1 = \operatorname{fp}(z_1 \cdot z_2)$, wobei fp : $\mathbb{R} \mapsto \mathcal{F}$ die übliche Rundungsregel ist. Diskutieren Sie, welche Körpereigenschaften $(\mathcal{F}, +_*, \cdot_*)$ noch bzw. nicht hat. Geben Sie gegebenfalls Gegenbeispiele in einem Gleitkommasystem Ihrer Wahl.
- 2. Sie wollen $y=(a+b)\cdot c$ in einem Gleitkommasystem mit $\beta=10$ und t=5 berechnen (Exponenten beliebig klein bzw. groß).
 - (a) Vergleichen Sie folgende Algorithmen bzgl Ihrer Fehlerverstärkung:

A1: Schritt 1: Berechne $\eta = a + b$, Schritt 2: Berechne $y_1 = \eta \cdot c$.

A2: Schritt 1: Berechne $\eta_1=a\cdot c$, Schritt 2: Berechne $\eta_2=b\cdot c$, Schritt 3: Berechne $y_2=\eta_1+\eta_2$

Wie hängen die relativen Fehler im Output von den (unvermeidlichen) Rundungsfehlern in jedem Schritt ab?

- (b) Wenden Sie Ihre Analyse auf folgende Zahlen an: a=0.1, b=-0.099992 und c=90421. Ermitteln Sie die relativen Fehler in jedem Schritt und im Gesamtergebnis und erklären Sie Ihre Beobachtungen.
- (c) (P) Schreiben Sie ein Programm, welches Ihre Rechnung in (b) automatisiert: Verwenden Sie die Werte von a und c wie in (b), aber verwenden Sie für b viele (zB 1000) Werte zwischen -0.5 und 0.5, jeweils auf 5 signifikante Stellen gerundet. Ihr Programm soll dann:
 - y_1 und y_2 wie in (a) berechnen (mit Runden in jedem Schritt).
 - ullet Die relativen Fehler im Ergebnis ermitteln und als Funktion von b plotten.
 - Plotten Sie außerdem die theoretischen Fehlerschranken aus (a) und diskutieren Sie das Verhalten.

Anmerkungen 1: Um eine Zahl x auf n signifikante Stellen zu Runden können Sie folgenden Code verwenden:

round(x, -int(math.floor(math.log10(abs(x)))) + (n - 1))

Anmerkungen 2: Hier nehmen wir an, dass alle anderen Rundungsfehler, die innerhalb des Binärsystems mit double precision entstehen vernachlässigbar sind.

- 3. For a differentiable, scalar function $f:I\subset\mathbb{R}\mapsto\mathbb{R}$ and two inputs x and $x+\Delta x$ with Δx (very) small, we want to understand the relationship between the relative error in input and the relative error in output.
 - (a) The relative condition number of f at x is defined as

$$c_{\mathsf{f}} = \left| \frac{xf'(x)}{f(x)} \right|.$$

Find a justification why this number is a good measure of how the relative error in input relates to the relative error in output.

1

- (b) Determine the relative condition numbers of $f_1(x) = e^x$ and $f_2(x) = \sin(x)$ and discuss your findings.
- 4. Finden Sie je ein Beispiel (Gleichung und Skizze) für reelle, stetige Funktionen definiert auf [0,1] mit (i) keiner, (ii) genau einer, (iii) genau zwei und (iv) genau drei Nullstellen in [0,1]. Diskutieren Sie, welche der Funktionen die Voraussetzungen vom Thm 1.1. erfüllen und was man daraus lernt.
- 5. Es sei $f(x) = \frac{1}{x} x^2$ definiert auf $I = [\frac{1}{2}, 2]$.
 - (i) Beweisen Sie, dass f eine Nullstelle in I besitzt.
 - (ii) Basierend auf f, finden Sie zwei Funktionen $g_1(x)$ und $g_2(x)$ definiert auf I, deren jeweiliger Fixpunkt den Nullstellen von f entspricht. Wählen Sie g_1 und g_2 so, dass nur eine die Voraussetzungen des Brouwer'schen Fixpunktsatzes erfüllt.
 - (iii) Skizzieren Sie alle drei Funktionen.
- 6. We attempt to find all solutions to f(x) = 0, where $f(x) = e^x 3x 1$.
 - (i) Sketch y = f(x) for $-1 \le x \le 3$. How many solutions does f(x) = 0 have?
 - (ii) We now look at the fixed point problem x = g(x) with $g(x) = \ln(3x+1)$. Show that this is equivalent to finding the roots of f.
 - (iii) Plot or sketch y=g(x) and y=x in one plot and find (graphically) two starting values that give a different series behaviour.