Lineare Algebra II

Skript zur Vorlesung von Prof Fritzsche gesetzt von einem Studierenden...

1 Lineare Abbildungen

Sei $\mathcal K$ ein Körper und V,W $\mathcal K$ -Vektorräume definition: Abbildung $\Phi:V\to W$ heißt

- 1. additiv, falls für $\forall v_2, v_2 \in v$ gilt $\Phi(v_1 + v_2) = \Phi(v_1) + \Phi(v_2)$
- 2. homogen
- 3. \mathcal{K} linear falls $\forall \alpha \in \mathcal{K} \forall v \in V \Phi(\alpha v) = \alpha \Phi(v)$ oder
- 4. epimorphismus falls Φ linear und surjektiv
- 5. homomorphismus falls Φlinear und injektiv
- 6. isomorphismus falls whatever

Die vektorräume V und W heissen isomorph, falls ein isomorphismus $\Phi:V\to W$ existiert.

Im fall V=W wird ein K homomorphismus auch auch endomorphismus genannt genauso wie ein isomorphismus auch antomorphismus.

Beispiel: Sei $\mu \in \mathcal{K}$, und $\Phi: V \to V$ dann ist $\Phi(v) = \mu v$ eine lineare Abbildung dann $\forall v_1, v_2 \in V \forall \alpha \in \mathcal{K}$

$$\Phi(v_1 + v_2) = (v_1 + v_2) = v_1 + v_2 = \Phi(v_1) + \Phi(v_2)$$

$$\Phi(\alpha v_1) = (\alpha v_1) = (\alpha)v_1 = (\alpha)v_1 = \alpha(v_1) = \alpha\Phi(v_1)$$

beispiel mit nullvektor fehlt

beispiel: sei $A\in\mathcal{K}^{Q\times P}$ dann ist $\Phi:\mathcal{K}^Q\to\mathcal{K}^P, \Phi(x)=Ax$ linear denn $\forall x_1,x_2\in\mathcal{K}$

$$\Phi(x_1 + x_2) = A(x_1 + x_2) = Ax_1 + Ax_2 = \Phi(x_1) + \Phi(x_2)$$

$$\Phi(\alpha x_1) = A(\alpha x_1) = \alpha A x_1 = \alpha \Phi(x_1)$$

bemerkung sei $\Phi: V \to W$ dann ist Φ genau dann linear wenn $\forall v_1, v_2 \in V \forall \alpha_1 \alpha_2 \in \mathcal{K}: \Phi(\alpha x_1 + \alpha x_2) =: \Phi(\alpha x_1) + \Phi(\alpha x_2)$ falls Φ linear so gilt $\Phi(\sum \alpha_i V_i) = \sum \Phi \alpha_i V_i \forall n \in \mathcal{N} v_1, ..., v_n \in Valle\alpha_1, ..., \alpha n \in \mathcal{K}$ warum gilt das nicht für $n \to \inf$

Beispiel 1 $V = C[a,b]\mathbb{R}$ -vektorraum aller stetigen funktionen $F:[a,b] \to \mathbb{R} \Rightarrow \Phi: C[a,b] \to \mathbb{R}$ gemäß $\Phi(f):=\int_a^b f(x)dx$ eine lineare Abbildung

Beispiel 2 sei V der \mathbb{R} -Vektorraum aller auf \mathbb{R} definierten beliebig oft differenzierbaren reelwertigen funktionen, dann ist $\Phi(f) = f$ eie lineare Abbildung $V \to W$ linear ist, so : $\forall v_1, v_2 \in V\Phi(v_1 - v_2) = \Phi(v_1) + (-1)v_2) = \Phi(v_1) + (-1)\Phi(v_2) = \Phi(v_1) - \Phi(v_2) \Rightarrow \Phi(-v_2) = -\Phi(v_2)$

Satz 1 Satz 9.1, sei $\Phi V \to W$ linnear und sei U ein unterraum von V, dann ist $\Phi(U) := w \in W | \exists v \in Uw = \Phi(u)$ ein unterraum von W Beweis: ommitted sei $\alpha \in \mathcal{K}$ dann $\alpha w_1 = \alpha \Phi(w_1) = \Phi(\alpha w_1) \in \Phi(U) \Longrightarrow (wegenS9.1)\Phi(U)$ ist Unterraum von W QED

F9.2 sei $\Phi V \to W$ eine linneare Abbildung, dann ist das bild Im Φ ein unterraum von W beweis wende s9.1 für U=V an dim(Im Φ) \leq /dimW man nennt die dimension des Bildes Im Φ den Rang von Φ

Satz 2 satz 9.3 sei $\Phi V \to W$ eine linneare Abbildung, des weiteren sei Uein unterrraum von W dann ist das vollständige Urbild

$$\Phi(\tilde{U}) = v \in V : \Phi(v) \in \tilde{U}$$

 $von \ \tilde{U} \ unter \ \Phi \ ein \ unterraum \ von \ V$

Beispiel 3 beispiel $0_n \in \tilde{U} \Rightarrow \Phi(0_v) = O_w \in \tilde{U} \Rightarrow 0_v \in \Phi(\tilde{U}) \Rightarrow \Phi(\tilde{U}) \neq \emptyset$ $sei \ v_1, v_2 \in \Phi(\tilde{U}) \Rightarrow \Phi(v_1), \Phi(v_2) \in \tilde{U} \Rightarrow \Phi(v_1 + v_2) = \Phi(v_1) + \Phi(v_2) \in \tilde{U}) \Rightarrow$ $v_1 + v_2 \in \Phi(\tilde{U}) \ sei \ \alpha \in \mathcal{K} \Rightarrow \Phi(\alpha v_1) = \alpha \Phi(v_1) \in \tilde{U} \Rightarrow \alpha v_1 \in \Phi(tildeU) \Rightarrow$ $\Phi(\tilde{U}) \ ist \ unterraum \ vonVqed$

F9.4 sei $\Phi V \to W$ eine linneare Abbildung, dann ist der Kern von Φ dh. die Menge $\mathcal{K}er\Phi := v \in V : \Phi(v) = 0_w$ ein unterraum von V beweis wende S9.3 für $\tilde{U} = 0_w$ an bemerkung sei $\Phi V \to W$ linnear falls $v_1, v_2 \in V$ derart dass $\Phi v_1 = \Phi v_2, so\Phi(v_1 - v_2) = \Phi(v_1) - \Phi(v_2) = 0_w$, dh. $v_1 - v_2 \in \mathcal{K}er\Phi$ beweis: falls $\mathcal{K}er\Phi = 0v$ so folgt aus vorrausgehendem beweis die injektivität von Φ falls umgekehrt Φ als injektiv vorrausgesetzt wird folg aus $\Phi 0_v = 0_w$ unmittelbar $\mathcal{K}er\Phi = 0_v$.

```
Beispiel 4 Sei A \in \mathcal{K}P \times Q. für \Phi : \mathcal{K}^q \to \mathcal{K}^P gemäß \Phi(x) := Ax gelten, dann \operatorname{Im} \Phi = \Phi(x) : x \in \mathcal{K}^q = Ax : x \in \mathcal{K}^q = \mathcal{A} und \operatorname{Ker} \Phi = x \in \mathcal{K}^q : \Phi(x)0_px_1 = x \in \mathcal{K}^q : Ax = 0_px_1 = \mathcal{A}
```

2

```
Bemerkung: sei U, V und W\mathcal{K}-Vektoräume sowie \Psi: U \to V, \Phi: U \to V
 lineare abbildung, dann ist auch \Phi \dot{\Psi}: U \to V eine lineare abbildung, denn
 \forall u1, u2 \in U, \alpha1, \alpha2in\mathcal{K} \ \Phi \Psi(\alpha_1u_1\alpha_2u_2) = \Phi(\Psi(\alpha_1u_1\alpha_2u_2)) = \Phi(\Psi(\alpha_1u_1)\Psi(\alpha_2u_2)) = \Phi(\Psi(\alpha_1u_1\alpha_2u_2)) = \Phi(\Psi(\alpha_1u_1\alpha_2u_2u_2)
 \alpha_1 \phi(\Psi(u1)) S 9.6 seien VundW\mathcal{K}-vektorräume, wobei 1 \leq q < \inf für
 q = \dim V erfüllt sei des weiteren seien v_1, v_2, ..., v_n eine basis von V wobei
 w_1, w_2, ..., w_n \in W dann gibt es genau eine lieare abbildung \Phi: v \to w_1, w_2, ..., w_n \in W
 Wmit\phi(v_i)=w_i für jedes iin\mathbb{Z} diese lineare abbildung \Phi erfüllt Im\Phi=
 span(w_1, w_2, ..., w_n). beweis: sei x \in V, \Rightarrow \exists ! folge (\alpha_j)_{j=1}^k aus \mathcal{K} mit
 x = \sum_{j=1}^{k} \alpha_j v_j
 \Rightarrow ( satz9.1)\phi(x) =
 \phi \sum_{j=1}^{q} \alpha_{j} v_{j} = \sum_{j=1}^{q} \phi(\alpha_{j} v_{j}) \Rightarrow wenn (1)

\Phi(x) \sum_{j=1}^{q} \phi(\alpha_{j} w_{j}) \Rightarrow falls \phi \text{ eine lineare abbildung mit (1) so eindeutig}
 bestimmt existens: Def \phi: V \to W derart dass jedem x \in V wie oben mit
 seiner Basisdarstellung zugeordnet wird: \Phi(x) := \sum_{j=1}^{q} \phi(\alpha_j w_j) Nachweis
von (1): \forall kin\mathbb{Z}_{1,q}: v_k = \sum_{j=1}^q \delta_{jk}v_i (3) \Rightarrow \forall k \in

mathbbZ_{1,q}\phi(v_k) = \sum_{j=1}^q \delta_{jk}w_i = w_k \Rightarrow (1) erfüllt nachweis der linearität

von \Phi: seien x, y \in V sowie \alpha, \beta \in \mathcal{K} :\Rightarrow \exists!(\alpha_i)_{j=1}^q aus \mathcal{K} mit (2) und
 y = \sum_{j=1}^{k} \beta_j w_j (5)
\Rightarrow \alpha x + \beta y = \alpha \sum_{j=1}^{k} \alpha_j v_j + \sum_{j=1}^{k} \beta_j w_j = \sum_{j=1}^{k} \alpha \alpha_j + \beta \beta_j = \Phi(\alpha x + \beta y)
= \sum_{j=1}^{k} \alpha \alpha_j + \beta \beta_j w_i =
\alpha \sum_{j=1}^{k} \alpha_j v_j + \beta \sum_{j=1}^{k} \beta_j w_j = \alpha \Phi(x) + \beta \Phi(y)
 \forall x \in V\Phi(x) := \sum_{j=1}^{q} \phi(\alpha_j w_j) \in \operatorname{span}'(w1, ..., wq) \Rightarrow im\Phi \le 0
 SPAN'(w1,...,wq) (6)
 sei umgekehrt w \in \text{span}'(w1,...,wq)§ vorgegeben \Rightarrow \exists \gamma_1,...,\gamma_q \in \mathcal{K} : w =
\Rightarrow w = \sum_{j=1}^{q} \beta_j \Phi(v_i) = \phi(\sum_{j=1}^{k} \beta_j v_j) \in Im\Phi\Rightarrow \operatorname{span}'(w_1, ..., w_q) \subseteq \operatorname{Im} \Phi
 F9.7 seien V und W\mathcal{K}- VR wobei 1 \leq \dim V < +\inf, sei r \in \mathbb{N} sowie
 v_1, v_2, ..., v_r \in V und w_1, w_2, ..., w_r \in W sei vorrausgesetz dass v_1, ..., v_r linear
 unabhängig, dann gibt es mindestens eine lineare abbildung \Phi: V \to W,
 mit \Phi(v_j) = W_j \forall j \in \mathcal{N}_{1,r} beweis: Nach Basisergänzungssatz r \leq q im Fall
```

r=q wende s 9.6 an. im fall r< q können nach Basisergänzungssatz vektoren $v_r+1,...,v_q\in V$ derart ergänzt werden, dass $v_1,...,v_r,v_r+1,...,v_q$ eine basis von V ist und wir können S 9.6 anwenden QED

Bemerkung 1 aus dem beweis von folgerung 9.7 ist ersichtlich, dass im fall dass r < q und $W \neq 0_w$ die lineare abbildung nicht eindeutig bestimmt ist

Lemma 1 seien V und W K VR sowie $\Phi : v \to W$ eine lineare abbildung, dann gilt dim Im $\Phi \leq \dim V$.

Satz 3 S9.9 seien V und WK-Vektorräume wobei $\dim V < \inf$, sowie $\Phi : V \to W$ eine lineare abbildung dann gilt $\dim(\operatorname{Im} \Phi + \operatorname{danngilt} \dim(\operatorname{Ker} \Phi) = \dim V$

Definition: seien V und $W\mathcal{K}$ -Vektorräume sowie $\Phi: V \to W$ eine lineare abbildung dann heißt $Rang_K$ von $\Phi:=\dim(\operatorname{Im}\Phi)$ der Rang von Φ Satz 9.10 seien V und $W\mathcal{K}$ -Vektorräume sowie $\Phi: V \to W$ eine lineare abbildung (a) falls Φ injektiv, so ist die Umkehrbildung $\Phi^{-1}: \operatorname{Im}\Phi \to V$ ebenfalls linear (b) im fall dass dim $V=\dim W < \inf$ gilt, sind folgenda Aussagen äquivalent: 1 Φ ist bijektiv 11 Φ ist injektiv 111 Φ ist surjektiv

wiederholung: koordinaten abbildung siehe Algebra 1

Bemerkung 2 betrachten wir die natürliche basis $B:=(e_1^{(q)},e_1^{(q)},...,e_q^{(q)}))$ des \mathcal{K}^q gilt für jede wahl von $x=(x_1,x_2,...,x_q)^T\in\mathcal{K}^q$ die Beziehung $\Omega(x)=x$ wegen $x=\sum_{j=1}^q x_j e_j^{(q)}$ das folgende Theorem ist grob gesagt die grundlage dafür, dass das rechnen in (nicht trivialen) endlich dimensionalen \mathcal{K} -Vektorräumen auf das renchen in \mathcal{K}^q zurückgeführt weden kann, wobei q die dimension des urbildvektorraumes der linearen abbildung darstellt.

S9.11 sein $q \in \mathbb{N}$ sowie V ein \mathcal{K} VR mit dim V = q bezeichne $(v_1, ..., v_q)$ eine basis von V dann ist die Koordinatenabbildung $\Omega_B : V \to \mathcal{K}^q$ bezüglich der geordneten Basis B ein isomorphismus insbesondere sind V und \mathcal{K}^q isomorphismus die gemäß S9.6 durch die bedingung $\Phi_B(e_j^{(q)}) = vj \forall j \in \mathbb{Z}_q$ eindeutig bestimmte lineare abbildung $\Phi_B : \mathcal{K}^q \to V$

3 beweis 9.11

wir zeigen zundächst, dass $\Omega_B: V \to \mathcal{K}^q$ bijektiv ist

•
$$\Omega_B$$
ist surjektiv, denn : ist $\begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_q \end{pmatrix} \in K^q$ beliebig, so erfüllt $\curvearrowleft := \sum_{j=1}^q \alpha_j \gtrsim_j$ dann ist

$$\omega_b(\curvearrowleft = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_q \end{pmatrix})$$

• $Omega_B$ ist injektiv, denn Seien $\curvearrowleft, \curvearrowright \in V$ beliebig, mit $\Omega_B(\curvearrowright) = \Omega_B(\curvearrowright)$ mit $\alpha_j := (e_j^(q))^T \Omega_B(\curvearrowright), j = 1, 2, ..., q$, gilst also

$$\begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_q \end{pmatrix}$$

$$= \Omega_B(\curvearrowleft) = \Omega_B(\curvearrowright)$$

$$\Rightarrow \curvearrowleft = \sum_{j=1}^q \alpha_j \gtrsim_j = \curvearrowright$$

 $\Rightarrow \Omega_B$ ist bijektiv

• Ω_B ist \mathcal{K} -linear denn seien $\curvearrowleft, \curvearrowright \in V$ und $\lambda, \mu \in \mathcal{K}$ Mit $\alpha_j := (e_j^(q))^T \Omega_B(\curvearrowright)$ und $\beta_j := (e_j^(q))^T \Omega_B(\curvearrowright), j = 1, 2, ..., q$ gilt, dann

$$\Omega_B(\curvearrowleft = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_q \end{pmatrix} \quad \Omega_B(\curvearrowright = \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_q \end{pmatrix}$$

sowie

nach satz 9.6 gibt es genau dann eine lineare abbildung wenn $\Phi_B:\mathcal{K}^q\to V$, it $\phi_B(e_j^(q))$

4 lemma 9.12

seien $q \in \mathbb{N}$ und $V, W\mathcal{K}$ -Vektorräume, wobei dim v = q gelten weiter sei $v_1, ..., v_q$ eine basis vom V und $\Phi: V \to W$ eine lineare Abbildung, dann gelten:

- a) Im $\Phi = span(\Phi(v_1), ..., \Phi(v_2))$ insbesondere ist Φ genau dann surjektiv wenn $\Phi(v_1), ..., \Phi(v_q)$ ein ein erzeugendensystem von W ist.
- b) Φ ist ganau dann injektiv, wenn $\Phi(v_1),...,\Phi(v_q)$ lin unabhängig sind
- c) Φ ist ganau dann bijektiv, wenn $\Phi(v_1),...,\Phi(v_q)$ eine basisi von W ist

5 beweis(im seminar)

6 satz9.13

seien $V, W\mathcal{K}$ -Vektorräume mit dim $V < \inf$ dann sind V und W genau dann isomorph wenn dim $V = \dim W$ gilt.

6.1 beweis im seminar, 5pkt

6.2 lemma 9.14

seine $p, q \in \mathbb{N}$ sowie $\phi : \mathcal{K}^q \to \mathcal{K}^p$ eine lineare abbildung, dann gibt es genau dann eine Matrix $\mathbb{A} \in \mathcal{K}^{p \times q}$ mit $\Phi(x) = Ax$ für alle $x \in \mathcal{K}^q$, nämlich $A = (\Phi(e_1^{(q)}), ..., \Phi(e_q^{(q)}))$

6.3 beweis

Sei $B:=(\Phi(e_1^(q)),...,\Phi(e_q^(q)))$. nach Bsp ist $\Psi:\mathcal{K}^q\to\mathcal{K}^p$ gemäß $\Psi(x):=Bx$ eine lin. abb. für alle j=1,2,...,q gilt $\Phi(e_j^(q))=B(e_j^(q))=\Psi(e_j^(q))$ $\Rightarrow (s9.6)$ $\Phi=\Psi\Rightarrow A=B$ ist eine matrix aus $\mathcal{K}^{p\times q}$ mit 1 für alle $x\in\mathcal{K}^q$ sei nun $A\in\mathcal{K}^{p\times q}$ beliebig mit (1) für alle $xin\mathcal{K}^q$

$$\Rightarrow A = A * I_q = A(e_1^{(q)}), ..., (e_q^{(q)}) = (Ae_1^{(q)}), ..., A(e_q^{(q)})$$

$$= (1)$$

$$(\Phi e_1^{(q)}), ..., \phi(e_q^{(q)})$$

qed Im fall von lemma 9.14 ist die Unterscheidungvon ,lin abb $\phi: \mathcal{K}^q \to \mathcal{K}^p$ und matritzen aus $\mathcal{K}^p \times q$ also nicht wesentlich . eine solchen zusammenhang zwischen linearen abbildungen und matrizen gibt es jedoch nuc in den Standardräumen .

7 Satz9.15

seinen $p, q \in \mathbb{N}$ sowie V und W \mathcal{K} Vektorraum mit dim V = qund dim W = p weiter sie $B = (v_1, ..., v_q)$ eine (geordnete) basis von V ist und $C = (w_1, ..., w_p)$ eine (geordnete) basis von W ist sowie $\Phi : V \to W$ eine lineare abbildung a) es gibt eine matrix $A = (\alpha_{jk})_{j=1,...,qk=1,...,p} \in \mathcal{K}^{p\times q}$ mit $\phi(v_k) = \sum_j = 1^p \alpha_{jk} w_j$ für alle k = 1, ..., q, nämlich $A = (\omega_C(\Phi(v_1), ..., \omega_C(\Phi(v_q)))$ wobei $\Omega_C : W \to \mathcal{K}^p$ die koordinatenabbildung bezüglich der basis C in W ist b) Es gibt genau eine matrix $\tilde{A} \in \mathcal{K}^{p\times q}$ mit $\Omega_C(\Phi(v)) = \tilde{A}_{\Omega_B}(v)$ für alle vinV (3) nämlich $\tilde{A} = A$ beweis: a) für jedes k = 1, ..., q besitzt der Vektor $\Phi(v_k)$ aus W gemäß lemma 3.6 eine eindeutige Darstellung $\Phi(v_k) = \lambda_1^{(k)} w_1, ..., \lambda_p^{(k)} w_p$ bezüglich der Basis C in W Mit $\lambda_{jk} := \lambda_j^{(k)}, j = 1, ..., q$ folgt $(1) \Rightarrow A \in \mathcal{K}^{p\times q}$ mit (1) existiert und ist eindeutig bestimmt. Für alle k = 1, ..., q folgt ais (1)

$$\begin{pmatrix} \alpha_{1k} \\ \alpha_{2k} \\ \vdots \\ \alpha_{pk} \end{pmatrix} = \begin{pmatrix} \lambda_1^{(k)} \\ \vdots \\ \lambda(k)_p \end{pmatrix} = \Phi(v_k)$$

also (2) b) sei v in V beliebig Mit $\beta_k := (e_k^q)^T \Omega_B(v) k = 1, ..., q$ ist

$$\begin{pmatrix} \beta_1 \\ \vdots \\ \beta_q \end{pmatrix}$$

 $=\omega_B(v)$ dann haben wir $v=\sum_j=1^p\beta_kv_k$ und wegen der linearität von Φ und (1) somit $\Phi(v)=\sum_j=1^p\beta_k\Phi(v_k)=(1)\sum_j=1^p\beta_k\sum_j=1^p\alpha_{jk}(w_j)=\sum_j=1^p\beta_k(\sum_j=1^p\alpha_{jk}\beta_k)w_j\Rightarrow$

$$\Omega_C(\phi(v)) = \begin{pmatrix} \sum_{j=1}^p \alpha_{1k} \beta_k \\ \vdots \\ \sum_{j=1}^p \alpha_{1k} \beta_k \end{pmatrix} = \begin{pmatrix} \alpha_{11} & \dots & \alpha_{1q} \\ \dots & \ddots & h \dots \\ \alpha_{p1} & \dots & \alpha_{pq} \end{pmatrix} \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_q \end{pmatrix} = A\Omega_B(v).$$

 $\Rightarrow \tilde{A} := A$ erfüllt (3) sei nun $\tilde{A} \in \mathcal{K}^{p \times q}$ beliebig mit (3) für alle k = 1, ..., q ist wegen $v_k = \sum \delta_{jk} v_k = 0v_1 + ... + 1v_k + ... + 0v_q$ zunächst

$$\omega_B(v_k) = \begin{pmatrix} 0 \\ \vdots \\ 1_k \\ \vdots \\ 0 \end{pmatrix} = e_k^{(q)}$$

und wegen (3) folglich

 $(4) \Rightarrow$

$$\Omega_C(\phi(v_K)) = \tilde{A}\Omega_B(v_k) = \tilde{A}e_k^{\dagger}q) = ktespaltevom\tilde{A}$$

$$\tilde{A} = \tilde{A}I_q = \tilde{A}(e_1^(q)),...,(e_q^(q)) = (\tilde{A}e_1^(q)),...,\tilde{A}(e_q^(q)) = (\Phi e_1^(q)),...,\phi(e_q^(q)) = A$$

bemerkung 8

es liegen die situation von satz 9.15 vor dann heißt die durch (2) gegebene Matrix $A \in \mathcal{K}^{p \times q}$ die darstellungsmatrix der lin abb $\Phi : V \to W$ bzw der geordneten basen B und C für A wird dann $\Phi_{B,C}$ geschrieben Kennt man die matrix $\Phi_{B,C}$ so lässt sich gemäß (3) dann $\Phi(v)$ für jedes $v \in B$ wie folgt berechnen: ist $v = \sum \beta_k v_k$ die darstellung vom v bzw B so bildet man $(\beta_1,...,\beta_q)$ und erhält $\Phi(v)$ gemäß $\sum \gamma_j w_j$. $\Phi:V\to W,B:=(v_1,...,v_q),C=$

 $(w_1, ..., w_p) \ \Omega_C[\Phi(v)] = \underset{B,C}{\lneq} \Omega_B(v) \ \forall v$ $inV \ \text{betrachten} \ M_{\underset{B,C}{\lneq} B,C} : \mathcal{K}^q \to \mathcal{K}^p \ \text{gemäß} \ M_{\underset{B,C}{<code-block>} B,C}(x) = \underset{B,C}{\thickspace} (x) \ \text{Diagramm:}$ $V \longrightarrow^{\Phi} W$ $q:= \dim V \ p:= \dim W \ \Omega_B \downarrow \qquad \uparrow \Omega_C \ B.: \ \text{Im spezialfall} \ V = K^q$ $\mathcal{K}^q \longrightarrow^{M_{\underset{B,C}{\thickspace}} B,C} \coprod$ </code>

und $W=K^p$ sowie $B:=(e_1^{(q)},e_1^{(q)},...,e_q^{(q)})$ und $C:=(e_1^{(p)},e_1^{(p)},...,e_p^{(p)})$ ist $\leqq_{B,C}$ gerade die in 9.14 beschriebene Matrix A welche $\Phi(x)=A(x)$ $\forall x\in\mathcal{K}^q$ erfüllt (vgl bemerkung vor theorem 9.10)

Lemma 2 seine $p,qn \in \mathbb{N}$ sowie V und WK-Vektorraum mit dim V=qund dim W = p des weiteren sei $B := (v_1, ..., v_q)$ eine basisi von V und $C:=(w_1,...,w_p)$ eine basis von W Für jedes $A\in\mathbb{C}$ gibt es genau dann eine lineare abbildung $\Phi: v \to W$ mit $\leq_{B,C} = A$

Beweis 1 sei $\Phi: V \to W$ gemä $\beta \Phi(v) := \sum_{j=1}^{p} (e_j^{(p)})^T A \Omega_B(v) w_j$ (1) definiert $\Rightarrow \forall v, v' \in V: \Phi(v+v') = (1) \sum_{j=1}^{p} (e_j^{(p)})^T A \Omega_B(v+v') w_j = \dots = \Phi(v) + \Phi(v'); \forall \alpha \in K: \Phi(\alpha v) = (1) \sum_{j=1}^{p} (e_j^{(p)})^T A \Omega_B(\alpha v +) w_j = \alpha \Phi(v) \Rightarrow \Phi$ linear $\forall v \in V \Omega_C[\Phi(v)] = (1) \begin{pmatrix} (e_1^{(q)})^T A \Omega_B(v) \\ \vdots \\ e_1^{(q)})^T A \Omega_B(v) \end{pmatrix} = \begin{pmatrix} (e_1^{(q)})^T \\ \vdots \\ e_1^{(q)})^T A \end{pmatrix} A \Omega_B(v) = \begin{pmatrix} (e_1^{(q)})^T A \Omega_B(v) \\ \vdots \\ e_1^{(q)})^T A \Omega_B(v) \end{pmatrix}$

$$linear \ \forall v \in V\Omega_C[\Phi(v)] = {}^{(1)} \begin{pmatrix} (e_1^{(q)})^T A \Omega_B(v) \\ \vdots \\ e_1^{(q)})^T A \Omega_B(v) \end{pmatrix} = \begin{pmatrix} (e_1^{(q)})^T \\ \vdots \\ e_1^{(q)})^T A \end{pmatrix} A \Omega_B(v) = {}^{(1)} \begin{pmatrix} (e_1^{(q)})^T A \Omega_B(v) \\ \vdots \\ e_1^{(q)})^T A \end{pmatrix} A \Omega_B(v) = {}^{(1)} \begin{pmatrix} (e_1^{(q)})^T A \Omega_B(v) \\ \vdots \\ e_1^{(q)})^T A \Omega_B(v) \end{pmatrix}$$

 $I_pA\Omega_B(v) \Rightarrow^{thm9.15} \nleq_{B,C} \Rightarrow existent \ eindeutigkeitsnachweis: \ sei \ \Psi: V \rightarrow$ W eine beliebige lineare abbildung mit $\geq_{B,C} = A \ \forall kin\mathbb{Z}_{1...q} : \Omega_C[\Phi(v_k)] =$

$$\underset{\Rightarrow}{\underset{\Rightarrow}} B,C\omega_B(v) = Ae_k^{(q)} = \underset{\Rightarrow}{\underset{\Rightarrow}} B,Ce_k^{(q)} = \underset{\Rightarrow}{\underset{\Rightarrow}} B,C\Omega_B(v_k) = (S9.15)\Omega_C(\Phi(v_k)) \Rightarrow (9.6)\Phi = \Psi \ QeD$$

Satz 4

siein V und Wk Vektorraum dann ist die menke $HOM_K(V,W)$ aller K homomorphisen von V unc W ein interraum des K Vektorraum abb(v,W) aller abbildungen von V nach W beweis : übung $V*:=HOM_K(V,W)$ neannt werden nt man bektorraum vn v dessen elemente linearformen von V gen

Satz 5 seien p, qinNsowieVundWKVektorraum mit <math>dimV = Q und dimW = p daes weiteren seien $B := (v_1, ..., v_q)$ eine basis von V und $C := (w_1, ..., w_p)$ eine basis von W dann ist $\mathcal{M}_{B,C} : Hom_K(V,W) \to \mathcal{K}^p xq$ gemä $\beta \Phi \to g_{B,C}$ ein isomorp hismusv von K Vektorraumäumen beweis übung

Satz 6 seien $r, p, qin\mathbb{N}$ sowie U, V, WK-Vektorraum mit $\dim U = r, \dim V = q$, $\dim W = p$ des weiteren seien $B_V := (v_1, ..., v_q)$ eine basis von V und $B_W := (w_1, ..., w_p)$ eine basis von W weiterhin seine $\Psi : U \to V\Phi : V \to W$ lineare abbildung dann ist $\chi := \Phi \circ \Psi$ eine lineare abb mit darstellungsmatrix χ_{B_U, B_W} die gleichung $\chi_{B_U, B_W} = \underset{}{\leq} B_{U, B_W} \dots \underset{}{} \dots \underset{}{} \underset{}{} \underset{}{} \underset{}{} \underset{}{} \underset{}{} \underset{}{} \underset{}{}} \underset{}{} \underset{}{} \underset{}{} \underset{}{} \underset{}{} \underset{}{} \underset{}{} \underset{}{} \underset{}{}} \underset{}{} \underset{}{} \underset{}{} \underset{}{} \underset{}{} \underset{}{}} \underset{}{} \underset{}{} \underset{}{} \underset{}{} \underset{}{} \underset{}{} \underset{}{} \underset{}{} \underset{}{} \underset{}{}} \underset{}{} \underset{}{} \underset{}{} \underset{}{} \underset{}{} \underset{}{} \underset{}{} \underset{}{} \underset{}{}} \underset{}{} \underset{}{}$

Beweis 2 nach bem vor 9.6 ist χ neine lineare abb nach 9.15 $\Omega_{B_W(\Phi(v))} =$ $\leq_{B_U,B_W} \Omega_{B_V(v)} \forall v \in V \ (1) \ \forall l \in \mathbb{Z}_{1,..,r} : \Psi(v_l) \in V$ $\Rightarrow \omega_{B_W[\chi(u_l)]} = \Omega_{B_W[\Phi(\psi(v_l))]} = \leq_{B_V,B_W} \geq_{B_U,B_V} e_l^{(r)} \forall l \in \mathbb{Z}_{1,l}(3) \chi_{B_U,B_W} =$ $\chi_{B_U,B_W} I_r = \chi_{B_U,B_W} (e_1^{(r)},...,e_r^{(r)}) = (\chi_{B_U,B_W} e_1^{(r)},...,\chi_{B_U,B_W} e_r^{(r)}) (\leq_{B_V,B_W} \geq_{B_U,B_V} e_1^{(r)},...,\leq_{B_V,B_W} \geq_{B_U,B_V} e_r^{(r)})$ $\leq_{B_V,B_W} \geq_{B_U,B_V} e_1^{(r)},...,e_r^{(r)}) = \leq_{B_V,B_W} \geq_{B_U,B_V} QED$

Lemma 3 seine $q \in N$ sowie V ein K-Vektorraum mit dimV = q des weiteren seien $B := (v_1, ..., v_q)$ und $B' := (v'_1, ..., v'_q)$ basen von V weiterhin sei Φ eine lineare abbildung . dann ist ϕ genau dann bijektiv, wenn $\nleq_{B,B'}$ invertierbar ist. in diesem fall ist $(\nleq_{B,B'})^{-1}$ gerade die darstellungsmatrix der $(\text{gemä}\beta \text{ s } 9.10)$ abbildung Φ -1 bezüglich der basis B undB'

beweis: übungsaufgabe

Lemma 4 seine $q \in \mathbb{N}$ und V einK-Vektorraum mit $\dim V = q$ Des Weiteren seien $B' := (v'_1, ..., v'_q)$ eine basis von V sowie $v_1, ..., v_q \in V$ bezeichne $\Gamma := (\gamma_{jk})_{j,k=1,...,q}$ die eindeutig bestimmte kompexe qxq matrix, für die $v_k = \sum_{j=1}^q \gamma_{jk} v'j$ für jedes $k \in \mathbb{Z}_{1,q}$ gilt dann ist $B := (v_1, ..., v_q)$ eine basis von V wenn Γ invertierbar ist.