# TÍCH HỢP LIME VỚI DEEP KNOWLEDGE TRACING ĐỂ CẢI THIỆN TÍNH MINH BẠCH TRONG DỰ ĐOÁN HỌC TẬP

Nguyễn Ngọc Quỳnh Giao 230201040

#### Tóm tắt

- Lóp: CS2205.CH181
- Link Github: https://github.com/giaonnq18uit/CS2205.CH181
- Link YouTube video: https://youtu.be/hle9s7iW900
- Ánh + Họ và Tên: Nguyễn Ngọc Quỳnh Giao



#### Giới thiệu

- Giáo dục trực tuyến, hay học trực tuyến (e-learning) ngày càng phổ biến.
- Deep Knowledge Tracing (DKT) [1] ra đời nhằm mô hình hóa quá trình học tập và dự
  đoán hiệu suất của học viên
  - => Đạt hiệu quả cao, **nhưng** tính minh bạch thấp => **Hộp đen**

Đề xuất: **Tích hợp LIME (Local Interpretable Model-agnostic Explanations)** [2] **với DKT** 



Hình 1. Mô hình Quy trình tích hợp LIME với DKT

INPUT: dữ liệu học tập của học viên

OUTPUT: các giải thích trực quan về các dự đoán

#### Mục tiêu

- Phát triển hệ thống tích hợp LIME với DKT để cung cấp giải thích các dự đoán của DKT
- Đánh giá hiệu quả của hệ thống này trong việc cải thiện tính minh bạch và hiểu biết về các dự đoán học tập
- Kiểm tra tác động của giải thích này đối với quá trình giảng dạy và học tập

## Nội dung và Phương pháp

 Thu thập dữ liệu học tập từ các hệ thống học trực tuyến gồm có các đặc trưng: lịch sử bài kiểm tra, điểm số, thời gian làm bài,...

| 1  | order_id | assignmen | user_id | assistmen | problem_id | original | correct | attempt_c | ms_first_re |
|----|----------|-----------|---------|-----------|------------|----------|---------|-----------|-------------|
| 2  | 20224085 | 232368    | 73963   | 42904     | 76429      | 0        | 0       | 3         | 106016      |
| 3  | 20224095 | 232368    | 73963   | 42904     | 76430      | 0        | 1       | 1         | 194187      |
| 4  | 20224113 | 232368    | 73963   | 42904     | 76431      | 0        | 1       | 1         | 12734       |
| 5  | 20224123 | 232368    | 73963   | 42904     | 76432      | 0        | 1       | 1         | 333484      |
| 6  | 20224142 | 232368    | 73963   | 42904     | 76433      | 0        | 0       | 2         | 52828       |
| 7  | 20224159 | 232368    | 73963   | 42904     | 76434      | 0        | 0       | 3         | 54047       |
| 8  | 20224180 | 232368    | 73963   | 42893     | 76339      | 1        | 0       | 1         | 193531      |
| 9  | 20224183 | 232368    | 73963   | 42893     | 76340      | 0        | 0       | 2         | 4282        |
| 10 | 20224187 | 232368    | 73963   | 42893     | 76341      | 0        | 1       | 1         | 12578       |

Hình 2. Dữ liệu trích xuất từ bộ 2009-2010 ASSISTment Data<sup>1</sup>

- Phát triển mô hình Deep Knowledge Tracing DKT dựa trên các nghiên cứu hiện có,
  điều chỉnh các tham số mô hình để đạt hiệu suất tốt nhất
- Triển khai LIME: tích hợp LIME vào mô hình DKT để tạo các giải thích cho từng dự đoán; phát triển giao diện để hiển thị các giải thích của LIME cho giáo viên và học viên

<sup>&</sup>lt;sup>1</sup>https://sites.google.com/site/assistmentsdata/home/2009-2010-assistment-data

## Nội dung và Phương pháp

- Xác định các tiêu chí đánh giá => Phát triển các câu hỏi khảo sát và phỏng vấn để thu thập phản hồi từ người dùng về tính minh bạch và hữu ích của LIME
- Thu thập và phân tích phản hồi: sử dụng các phương pháp định tính và định lượng để đánh giá hiệu quả của hệ thống; so sánh kết quả với mô hình DKT không tích hợp LIME
- Đo lường tác động của giải thích đến giảng dạy và học tập: thu thập dữ liệu trước và sau can thiệp, sử dụng các phương pháp thống kê để phân tích sự thay đổi và tác động của giải thích

# Kết quả dự kiến

- Hệ thống DKT được tích hợp với LIME, **có khả năng đưa ra các dự đoán** về trạng thái kiến thức của học viên, cung cấp các giải thích cục bộ cho những dự đoán này
- Đạt được sự cải thiện đáng kể trong hiểu biết của người dùng về các dự đoán học tập
- Thu thập phản hồi liên tục từ giáo viên và học viên để tinh chỉnh, cải tiến hệ thống. => Đề xuất các hướng phát triển và tối ưu hệ thống dựa trên phản hồi và kết quả thực nghiệm nhằm nâng cao hiệu quả giảng dạy, học tập

#### Tài liệu tham khảo

- [1] Chris Piech, Jonathan Bassen, Jonathan Huang, Surya Ganguli, Mehran Sahami,
  Leonidas J. Guibas, Jascha Sohl-Dickstein: Deep Knowledge Tracing. NIPS 2015:
  505-513
- [2] Marco Túlio Ribeiro, Sameer Singh, Carlos Guestrin: "Why Should I Trust You?":
  Explaining the Predictions of Any Classifier. HLT-NAACL Demos 2016: 97-101