Discussion5 Answer

1. Shift-Reduce Parsing the Lambda Calculus.

We'll look again at the lambda calculus grammar:

```
expr: var
| '(' 'λ' var '.' expr ')'
| '(' expr expr ')';
var : ID;
```

(a) Is this grammar LL(1)?

Answer. No. FIRST(expr2) and FIRST(expr3) both contain '('.

(b) We'll now use the following LR(1) parsing table to parse some strings with this grammar.

0								
	()	•	ID	λ	\$	var	expr
0	s1			s2			s4	s3
1	s1			s2	s5		s4	s6
2	r4	r4	r4	r4	r4	r4		
3						s7		
4	r1	r1	r1	r1	r1	r1		
5				s2			s8	
6	s1			s2			s4	s9
7	ACC	ACC	ACC	ACC	ACC	ACC		
8			s10					
9		s11						
10	s1			s2			s4	s12
11	r3	r3	r3	r3	r3	r3		
12		s13						
13	r2	r2	r2	r2	r2	r2		

Here's how we use this parsing table:

- Maintain a stack of states. Initialize it with state 0.
- Use the state on top of the parse stack and the lookahead symbol to find the corresponding action in the parse table.

- If the action is a shift to a new state, push the new state onto the stack and advance the input.
- If the action is a reduce that reduces k symbols, pop k symbols off the stack. If we reduced to a rule A, consult the "A" entry in the state now at the top of the stack.
- If the action is ACC, then we have succeeded.

Use the parsing table above to parse the following:

i. (xx)

Answer.

Iteration	States on stack	Input	Actions
1	0	• (x x) \$	s1
2	0 1	(• x x) \$	s2
3	$0\ 1\ 2$	(x• x) \$	r4
4	0 1 4	$(var \bullet x)$ \$	r1
5	0 1 6	$(expr \bullet x)$ \$	s2
6	$0\ 1\ 6\ 2$	$(\text{ expr } x \bullet) \$$	r4
7	$0\ 1\ 6\ 4$	$(expr var \bullet)$ \$	r1
8	$0\ 1\ 6\ 9$	(expr expr •)\$	s11
9	$0\ 1\ 6\ 9\ 11$	$(expr expr) \bullet \$$	r3
10	0 3	$\exp r \bullet \$$	s7
11	0 3 7	$\exp \$ \bullet$	ACC

ii. $(\lambda x.x)$

Answer.

Iteration	States on stack	Input	Actions
1	0	• (\(\lambda \) x . x) \$	s1
2	0 1	$(\bullet \lambda x. x)$ \$	s5
3	0 1 5	$(\lambda \bullet x \cdot x)$ \$	s2
4	$0\ 1\ 5\ 2$	$(\lambda x \bullet . x)$ \$	r4
5	$0\ 1\ 5\ 8$	$(\lambda \text{ var} \bullet . x)$ \$	s10
6	$0\ 1\ 5\ 8\ 10$	$(\lambda \text{ var } \cdot \bullet \text{ x }) \$$	s2
7	$0\ 1\ 5\ 8\ 10\ 2$	$(\lambda \text{ var . } \mathbf{x} \bullet) \$$	r4
8	$0\ 1\ 5\ 8\ 10\ 4$	$(\lambda \text{ var . var } \bullet) \$$	r1
9	$0\ 1\ 5\ 8\ 10\ 12$	$(\lambda \text{ var . expr} \bullet)$ \$	s13
10	0 1 5 8 10 12 13	$(\lambda \text{ var . expr }) \bullet \$$	r2
11	0 3	$\exp \bullet \$$	s7
12	0 3 7	$\exp \$ \bullet$	ACC

iii. $(x(\lambda x.x))$

Answer.

Iteration	States on stack	Input	Actions
1	0	• (x (λ x . x)) \$	s1
2	0 1	$(\bullet x (\lambda x . x)) $ \$	s2
3	0 1 2	$(\mathbf{x} \bullet (\lambda \mathbf{x} \cdot \mathbf{x})) \$$	r4
4	0 1 4	$(var \bullet (\lambda x . x)) $ \$	r1
5	0 1 6	$(\exp (\lambda x \cdot x)) $ \$	s1
6	0 1 6 1	$(expr (\bullet \lambda x . x)) $ \$	s5
7	$0\ 1\ 6\ 1\ 5$	$(expr (\lambda \bullet x . x)) $ \$	s2
8	$0\ 1\ 6\ 1\ 5\ 2$	$(expr (\lambda x \bullet . x)) $ \$	r4
9	$0\ 1\ 6\ 1\ 5\ 8$	$(\exp((\lambda \operatorname{var} \bullet . x)) $ \$	s10
10	$0\ 1\ 6\ 1\ 5\ 8\ 10$	$(\exp((\lambda \operatorname{var} \cdot \bullet x)) $ \$	s2
11	$0\ 1\ 6\ 1\ 5\ 8\ 10\ 2$	$(\exp((\lambda \operatorname{var} .x \bullet)) $ \$	r4
12	$0\ 1\ 6\ 1\ 5\ 8\ 10\ 4$	$(\exp(\lambda \operatorname{var} \cdot \operatorname{var} \bullet)) $ \$	r1
13	$0\ 1\ 6\ 1\ 5\ 8\ 10\ 12$	$(\exp(\lambda \operatorname{var} \cdot \operatorname{expr} \bullet)) $ \$	s13
14	0 1 6 1 5 8 10 12 13	(expr (λ var . expr)•) \$	r2
15	0 1 6 9	(expr expr •)\$	s11
16	0 1 6 9 11	$(expr expr) \bullet $ \$	r3
17	0 3	expr • \$	s7
18	0 3 7	$\exp \$ \bullet$	ACC

(c) Is this grammar LR(0)?

Answer. Yes. There is no need for a lookahead to disambiguate a shift versus reduce, nor to disambiguate between two reduces.

2. Altering the Lambda Calculus.

Suppose we want to add an optional extension that allows raising a var to a power. We define the grammar as

(a) Is this grammar LR(0)?

Answer. Nope. We don't know whether to reduce 'var' until we check for '^'. It is LR(1).

(b) Which state in the parsing table would we need to modify to parse this grammar? **Answer.** We would need to add an extra case for shifting on the lookahead symbol '^' in State 4.

3. Stack in Shift-Reduce Parsing.

Suppose it is given that shift-reduce parsing is equivalent to finding the rightmost derivation in reverse. Prove that during shift-reduce parsing, we can only reduce the topmost items in the stack (i.e. we don't need to worry about reducing something in the middle; hence the usage of a stack is justified).

Answer. Suppose the state of the stack is given by $\alpha\beta\gamma$, where the Greek letters are strings of 0 or more symbols and capital Roman letters are non-terminal symbols. Suppose we want to reduce β using the rule $B \to \beta$ when it is not at the top of the stack (i.e. $\gamma \neq \epsilon$). Then γ can be either 1) a string of terminals, or 2) $\gamma = \gamma' A \gamma''$, where A is a non-terminal. In Case 1, we could have reduced β before shifting the terminal symbols in γ , since the terminals in γ don't help in matching the right hand side of a rule. Case 2 is problematic, because shift-reduce parsing finds the rightmost derivation in reverse order, but

(input)
$$\iff \alpha\beta\gamma'A\gamma'' \iff S$$

is not a rightmost derivation if we reduce β using the rule $B \to \beta$. Consequently, in both cases, a reduction in the middle of the stack cannot occur, and we can only reduce the topmost items in the stack.