Învățare Automată Tema 1 - 2024

1. Explorarea Datelor

a. Analiza echilibrului de clase

```
Dimensiunea x_train: (1536, 18)
Dimensiunea y_train: (1536,)
Dimensiunea x_test: (385, 18)
Dimensiunea y_test: (385,)
```


- b. Vizualizarea datelor
 - i. Atribute numerice:

Valori Statistice

Pentru fiecare atribut numeric au fost calculate urmatoarele:

- Medie
- Abaterea standard
- Abaterea medie absolută
- Valoare minimă
- Valoare maximă
- Diferența de valori maxime și minime
- Mediană

- Abaterea mediană absolută
- Intervalul intercuartil

index	Medie	Abatere Medie abs	Abatere Standard	Min	Max	Max - Min	Media na	Abatere mediana abs	Interval intercuartil
Regular_fiber_diet	3.845	2.848	62.440	1.000	2738.000	2738.0 00	2.387	0.387	1.000
Sedentary_hours_dai ly	3.694	1.134	21.759	2.210	965.580	954.37 0	3.130	0.439	0.870
Age	77.792	40.947	633.312	15.000	19685.00 0	19670. 000	22.830	3.170	6.028
Est_avg_calorie_inta ke	2253.68 8	375.362	434.076	1500.0 00	3000.000	1500.0 00	2253.0 00	380.000	757.000
Main_meals_daily	2.683	0.596	0.779	1.000	4.000	3.000	3.000	0.000	0.341
Height	3.573	3.738	58.098	1.450	1915.000	1913.5 50	1.700	0.070	0.140
Water_daily	2.010	0.470	0.611	1.000	3.000	2.000	2.000	0.445	0.874
Weight	205.637	254.648	3225.654	-1.000	82628.00 0	82629. 000	80.386	24.386	46.205
Physical_activity_le vel	1.010	0.702	0.855	0.000	3.000	3.000	1.000	0.815	1.568
Technology_time_us e	1.345	1.511	29.789	0.000	1306.000	1306.0 00	1.000	1.000	1.000

Observand ca in unele cazuri diferenta dintre medie si mediana este semnificativa, am ales sa elimin valorile outleier-e, realizand apoi grafice de tip Box Plot pentru a arata diferenta distributiei datelor inainte si dupa eliminare.

Se observa imbunatatiri semnificative pentru atributele: Regular_fiber_diet, Age, Height, Weight, Technology_time_use.

ii. Atribute Categorice

Valori unice pentru atributele categorice:

Transportation	5
Diagnostic_in_family_history	2
High_calorie_diet	2
Alcohol	4
Snacks	4
Smoker	2
Calorie_monitoring	2
Gender	2

c. Analize de Covarianta:

Matrice de covarianta

- Ofera informatii despre modul in care doua variabile diferite variaza imreuna.
- Valoare pozitiva -> covariatie pozitiva
- Valoare negativa -> covariatie negativa
- Valori apropiate de 0 -> independente
- Ca interpretate putem lua de exemplu Regular_fiber_diet si Est_avg_calorie_intake, cu cat una creste mai mult cu atat cealalta scade, avand corelatie negativa

index	Transpor tation	Regular_f iber_diet	Diagnostic _in_famil y_history	High_cal orie_diet	Sedentary _hours_d aily	Age	Alcoho l	Est_avg _calorie _intake	Main_m eals_dai ly	Snacks	Height	Smo ker	Water_ daily	Calorie_mo nitoring	Weight	Physical_ activity_l evel	Technolo gy_time _use	Gender	Diagnos tic
Transportation	1.613	0.966	-0.049	-0.030	0.423	8.340	-0.01 6	8.080	-0.049	-0.026	1.200	-0.0 02	0.041	0.009	82.965	0.014	0.585	-0.088	0.031
Regular_fiber_diet	0.966	3898.70 6	0.267	0.162	-2.044	-28.29 9	-0.40 2	-411.1 86	0.098	0.190	-2.76 9	-0.0 28	-0.240	-0.054	-135.811	0.128	-2.234	0.627	2.915
Diagnostic_in_fami ly_history	-0.049	0.267	0.148	0.025	0.095	4.201	0.007	-6.864	0.021	0.031	0.348	0.00 1	0.037	-0.012	27.775	-0.018	0.130	0.019	0.386
High_calorie_diet	-0.030	0.162	0.025	0.103	0.072	2.514	-0.01 4	2.786	-0.002	0.022	0.224	-0.0 03	0.002	-0.012	16.862	-0.029	0.092	0.011	0.155
Sedentary_hours_d aily	0.423	-2.044	0.095	0.072	473.490	-13.08 7	0.376	273.71 8	-0.612	0.063	-0.58 8	-0.0 10	-0.071	-0.024	19.164	-0.476	648.16 7	-0.252	-0.638
Age	8.340	-28.299	4.201	2.514	-13.087	40108 3.883	-5.63 6	-88.78 5	18.485	3.155	-34.9 23	-0.3 43	10.451	-1.016	-2773.86 6	19.992	-22.87 7	10.204	-19.33 6
Alcohol	-0.016	-0.402	0.007	-0.014	0.376	-5.636	0.269	-0.294	-0.030	-0.011	-0.51 0	-0.0 06	-0.031	-0.001	49.098	0.036	0.509	0.003	-0.154
Est_avg_calorie_int ake	8.080	-411.18 6	-6.864	2.786	273.718	-88.78 5	-0.29 4	18842 1.795	-4.574	0.611	-930. 358	-2.6 13	-4.249	-1.236	-20457.2 33	-1.739	371.21 8	-5.736	-32.98 1
Main_meals_daily	-0.049	0.098	0.021	-0.002	-0.612	18.485	-0.03 0	-4.574	0.607	-0.033	0.611	0.00 1	0.032	0.000	-0.381	0.095	-0.845	0.030	0.040

Snacks	-0.026	0.190	0.031	0.022	0.063	3.155	-0.01 1	0.611	-0.033	0.217	0.269	-0.0 04	0.044	-0.011	21.545	-0.010	0.083	0.022	0.301
Height	1.200	-2.769	0.348	0.224	-0.588	-34.92 3	-0.51 0	-930.3 58	0.611	0.269	3375. 396	0.95 8	-1.181	-0.083	-182.428	-0.238	-1.676	0.073	2.671
Smoker	-0.002	-0.028	0.001	-0.003	-0.010	-0.343	-0.00 6	-2.613	0.001	-0.004	0.958	0.02 0	-0.003	0.002	-2.570	0.002	-0.013	0.002	-0.001
Water_daily	0.041	-0.240	0.037	0.002	-0.071	10.451	-0.03 1	-4.249	0.032	0.044	-1.18 1	-0.0 03	0.373	0.002	-28.512	0.089	-0.100	0.035	0.166
Calorie_monitoring	0.009	-0.054	-0.012	-0.012	-0.024	-1.016	-0.00 1	-1.236	0.000	-0.011	-0.08 3	0.00 2	0.002	0.041	-6.560	0.016	-0.031	-0.009	-0.076
Weight	82.965	-135.81 1	27.775	16.862	19.164	-2773. 866	49.09 8	-20457 .233	-0.381	21.545	-182. 428	-2.5 70	-28.51 2	-6.560	1040484 0.733	7.406	-52.87 2	-21.290	113.93 3
Physical_activi ty_level	0.014	0.128	-0.018	-0.029	-0.476	19.992	0.036	-1.739	0.095	-0.010	-0.23 8	0.00 2	0.089	0.016	7.406	0.732	-0.648	0.079	-0.336
Technology_ti me_use	0.585	-2.234	0.130	0.092	648.167	-22.87 7	0.509	371.21 8	-0.845	0.083	-1.67 6	-0.0 13	-0.100	-0.031	-52.872	-0.648	887.44 0	-0.346	-0.873
Gender	-0.088	0.627	0.019	0.011	-0.252	10.204	0.003	-5.736	0.030	0.022	0.073	0.00 2	0.035	-0.009	-21.290	0.079	-0.346	0.250	-0.036
Diagnostic	0.031	2.915	0.386	0.155	-0.638	-19.33 6	-0.15 4	-32.98 1	0.040	0.301	2.671	-0.0 01	0.166	-0.076	113.933	-0.336	-0.873	-0.036	3.936

Matrice de convolutie

Matricea de covarianță nu este standardizată și poate fi dificil de interpretat, deoarece valorile sunt sensibile la scala datelor. Prin urmare, este adesea preferată utilizarea coeficientului de corelație.

- Măsoară direcția și forța relațiilor liniare între variabilele continue
- Valorile sunt standardizate între -1 și 1, unde o valoare apropiată de 1 indică o corelație pozitivă perfectă, o valoare apropiată de -1 indică o corelație negativă perfectă
- O valoare apropiată de 0 indică o corelație slabă sau inexistentă

2. Utilizarea Algoritmilor de învățare automată

Luand in calcul rezultatele de la pasul anterior am ales sa standardizez datele si sa aplic o tehnica de selectare a atributelor (Variance Threshold)

Numărul total de caracteristici: 18

Numărul de caracteristici selectate folosind VarianceThreshold: 15

Numărul de caracteristici selectate folosind SelectPercentile: 12

Caracteristicile eliminate folosind VarianceThreshold: {'High calorie diet', 'Smoker',

'Calorie monitoring'}

Caracteristicile eliminate folosind SelectPercentile: {'Weight', 'Technology_time_use',

'Regular fiber diet', 'Est avg calorie intake', 'Height', 'Sedentary hours daily'}

VarianceThreshold elimina caracteristicile cu variatie mica, cele trei eliminate fiind categorice, au avut etichetele codificate si pe baza variatiei dintre ele au fost eliminate.

SelectPercentile se foloseste de scorurile de importanta a caracteristicilor in functie de o anumita metrica (in cazul de fata f_score)

Acuratete algoritmi folosind hiperparametrii cei mai buni rezultati in urma Grid-Search:

Cea mai buna acuratete o are GradientBoostedTrees

index	Model	Hyperparameters	Accuracy
0	RandomForest	{'max_depth': None, 'max_samples': 1.0, 'n_estimators': 100}	0.912
1	ExtraTrees	{'bootstrap': True, 'max_depth': None, 'max_samples': 1.0, 'n_estimators': 200}	0.888
2	GradientBoostedTrees	{'learning_rate': 0.5, 'max_depth': 5, 'n_estimators': 200}	0.945
3	SVM	{'C': 300, 'kernel': 'rbf'}	0.613

Precizia, Recall-ul si F1-score-ul pentru fiecare clasa in parte encodata in numere:

• Se observa ca valorile maxime sunt intalnite la RandomForest si ExtraTrees pe toate coloanele pentru clasa D6, desi cea mai buna acuratete este la GradientBoostedTrees. Acest lucru inseamna ca desi clasa D6 este clasificata perfect, celelalte clase nu.

index	Model	Class	Precision	Recall	F1
0	RandomForest	0	0.940	0.959	0.949
1	RandomForest	1	0.831	0.891	0.860
2	RandomForest	2	0.885	0.900	0.893
3	RandomForest	3	0.830	0.830	0.830
4	RandomForest	4	0.900	0.844	0.871

5	RandomForest	5	1.000	0.956	0.977
6	RandomForest	6	1.000	1.000	1.000
7	ExtraTrees	0	0.904	0.959	0.931
8	ExtraTrees	1	0.837	0.745	0.788
9	ExtraTrees	2	0.797	0.783	0.790
10	ExtraTrees	3	0.851	0.851	0.851
11	ExtraTrees	4	0.841	0.906	0.872
12	ExtraTrees	5	1.000	0.978	0.989
13	ExtraTrees	6	1.000	1.000	1.000
14	GradientBoostedTrees	0	1.000	0.918	0.957
15	GradientBoostedTrees	1	0.931	0.982	0.956
16	GradientBoostedTrees	2	0.931	0.900	0.915
17	GradientBoostedTrees	3	0.872	0.872	0.872
18	GradientBoostedTrees	4	0.953	0.953	0.953
19	GradientBoostedTrees	5	0.978	0.978	0.978
20	GradientBoostedTrees	6	0.956	1.000	0.977
21	SVM	0	0.621	0.735	0.673
22	SVM	1	0.690	0.364	0.476
23	SVM	2	0.640	0.267	0.376
24	SVM	3	0.677	0.447	0.538
25	SVM	4	0.520	0.609	0.561
26	SVM	5	0.438	0.867	0.582
27	SVM	6	0.833	1.000	0.909

Rezultatele medii pentru scoruri pe fiecare clasa in parte: Clasele cu cele mai bune predictii sunt D0 si D6

Class	Precision Mean	Precision Variance	Recall Mean	Recall Variance	F1 Mean	F1 Variance
D0	0.914	0.030	0.806	0.007	0.855	0.015
D1	0.727	0.009	0.763	0.070	0.735	0.035

D2	0.786	0.044	0.672	0.098	0.714	0.081
D3	0.739	0.027	0.714	0.144	0.701	0.101
D4	0.772	0.080	0.758	0.064	0.765	0.071
D5	0.844	0.069	0.944	0.000	0.871	0.029
D6	0.918	0.011	1.000	0.000	0.955	0.004

Matricele de confuzie pentru cei mai buni parametrii de la fiecare algoritm:

• Dupa cum se observa si dupa acuratete, ExtraTrees este cel mai echilibrat (diagonala cea mai observabila)

		Confu	sion Ma	atrix - R	andom	Forest	
0	51	5	0	2	0	0	0
П	0	52	0	1	1	0	2
bel 2	0	5	37	4	1	1	0
Frue Labe 4 3 2	0	3	1	51	0	0	0
True 4	0	2	2	4	52	0	0
. 2	0	1	0	2	0	51	0
9	0	0	0	0	0	0	54
	0	1	2 Pred	3 licted L	4 abel	5	6

Confusion Matrix - ExtraTrees

	0	50	5	1	2	0	0	0
	П	0	45	2	7	2	0	0
þe	7	0	6	38	1	2	1	0
True Label	m	0	3	2	48	1	1	0
True	4	0	3	1	2	50	2	2
	2	0	1	0	2	0	51	0
	9	0	0	0	0	0	0	54
		0	1	2 Pred	3 licted L	4 abel	5	6

	Со	nfusion	Matrix	- Gradi	ientBoo	stedTre	ees
0	47	8	0	3	0	0	0
-	0	51	2	0	0	0	3
Label	0	3	43	0	2	0	0
. La	0	1	2	51	1	0	0
True 4	0	0	1	2	57	0	0
. 7	0	0	0	3	1	50	0
9	0	0	0	0	0	0	54
	0	1	2 Pred	3 licted L	4 abel	5	6

Confusion Matrix - SVM

0	39	9	7	0	2	1	0
Н	1	33	5	12	4	1	0
bel 2	3	6	25	3	7	3	1
Irue Labe 4 3 2	0	2	7	27	8	8	3
Irue 4	1	4	2	10	32	7	4
. 2	1	1	0	4	2	46	0
9	0	0	0	0	0	0	54
	0	1	2 Pred	3 licted L	4 abel	5	6