

Unit 12

——Design Sequential Circuits with Flip Flops 张彦航

School of Computer Science Zhangyanhang@hit.edu.cn

利用触发器设计同步时序逻辑

利用触发器设计同步时序逻辑的方法

- (1) 根据需求 → 获得原始状态图、状态表
- (2) 最小化状态图、状态表
- (3) 状态编码(分配)→ 获得状态转移表
- (4) 状态转移表 触发器特征 → 触发器激励
- (5) 卡诺图化简 → ∫ 激励(输入)函数表达式 输出函数表达式
- (6) 电路实现 (7) 检查无关项

例: 利用JK触发器设计110序列检测器

1. 获得原始状态图和原始状态表

(1) 状态设定

S₀——初始状态,表示收到1位数据:"0"

S₁──表示收到1位数据: "1"

S₂——表示收到2位数据: "11"

S₃——表示收到3位数据: "110",此时输出标志 Z=1.

(2) 分析状态转换情况

(3) 原始状态图(Mealy型)

(4) 原始状态表

现态	Q ⁿ⁺¹ / Z				
Qn	X=0	X=1			
S ₀	S ₀ /0	S ₁ / 0			
S ₁	S ₀ / 0	S ₂ /0			
S ₂	S ₃ /1	S ₂ / 0			
S ₃	S ₀ /0	S ₁ /0			

2. 状态化简

现态	Q ⁿ⁺¹ / Z				
Qn	X=0	X=1			
S _o	S ₀ / 0	S ₁ / 0	√		
S ₁	S ₀ / 0	S ₂ /0			
S ₂	S ₃ /1	S ₂ / 0			
S ₃	S ₀ /0	S ₁ /0	√		

	现态	Q ⁿ⁺¹ / Z						
	Qn	X=0	X=1					
	S ₀	S ₀ /0	S ₁ / 0					
>	S ₁	S ₀ / 0	S ₂ / 0					
	S ₂	S ₀ / 1	S ₂ / 0					

3. 状态分配

使用 2个JK触发器

 y_2y_1 $S_0 \longrightarrow 00$ $S_1 \longrightarrow 10$ $S_2 \longrightarrow 11$

4. 状态转换真值表

输入	现	态	次态			触》	输出		
X	Y ₂ n	Y ₁ ⁿ	Y ₂ n+1	Y ₁ n+1	J ₂	K ₂	J ₁	k ₁	Z
0	0	0	0	0	0	X	0	X	0
0	1	0	0	0	X	1	X	1	1
0	1	0	0	1	X	1	0	X	0
1	0	1	0	1	1	X	0	X	0
1	1	1	1	0	X	0	X	0	0
11	1	1	1	0	Х	0	1	Χ	0
0	0	X	Х	X	X	X	X	X	X
1	0	X	Х	X	X	X	X	X	Х

4. 状态转换真值表

输入	现	态	次态			输出			
X	Y ₂ n	Y ₁ ⁿ	Y ₂ n+1	Y ₁ n+1	J ₂	K_2	J_1	\mathbf{k}_{1}	Z
0	0	0	0	0	0	Χ	0	Х	0
0	1	0	0	0	Х	1	X	1	1
0	1	0	0	1	Х	1	0	X	0
1	0	1	0	1	1	X	0	X	0
1	1	1	1	0	Х	0	X	0	0
1	1	1	1	0	Х	0	1	Χ	0
0	0	Χ	Х	Χ	Х	Χ	Χ	Χ	Х
1	0	X	Х	Χ	X	Χ	X	Χ	Х

$$K_1 = \overline{X}$$

 $Z = \overline{X}Y_1^n$

6. 电路实现

$$K_2 = \overline{X}$$

7. 检查无关项

$$\begin{cases} J_{1} = XY_{2}^{n} \\ K_{1} = \overline{X} \\ J_{2} = X \\ K_{2} = \overline{X} \end{cases} \Rightarrow \begin{cases} Y_{1}^{n+1} = XY_{2}^{n} \overline{Y_{1}}^{n} + XY_{1}^{n} \\ = X(Y_{1}^{n} + Y_{2}^{n}) \\ Y_{2}^{n+1} = X\overline{Y_{2}}^{n} + XY_{2}^{n} \\ = X \end{cases}$$

电路可以自启动

利用触发器设计同步时序逻辑的方法

- (1) 根据需求 → 获得原始状态图、状态表
- (2) 最小化状态图、状态表
- (3) 状态编码(分配)→ 获得状态转移表
- (4) 状态转移表 → 触发器激励 触发器特征 → 無发器激励
- (5) 卡诺图化简 → ∫ 激励(输入)函数表达式 输出函数表达式
- (6) 电路实现 (7) 检查无关项