ECE569 Module 47

• Convolution – Tiling

Tiled 1D Convolution

- Calculation of adjacent output elements involve shared input elements
 - E.g., N[2] is used in calculation of P[0], P[1], P[2].
 P[3] and P[4] for Mask_Width of width 5
 - load all input elements required by all threads in a block into the shared memory

Output Tiling

Tiled 1D Convolution

- Assume that we want to have each block to calculate TILE_SIZE (T) output elements
 - T + Mask_Width -1 input elements are needed to calculate T output elements

Shared memory

Definition - Input Tiles

Each input tile has all values needed to calculate the corresponding output tile.

Implementation

 Design 1: The size of each thread block matches the size of an output tile

- Design 2: The size of each thread block matches the size of an input tile
 - Some threads will not participate in calculating output elements
 - blockDim.x would be 8 in our example
 - Each thread loads one input element into the shared memory

```
__shared__ float N_ds[TILE_SIZE + MAX_MASK_WIDTH - 1];
```

Reading from Global to Shared Memory

Output tile size (To) is 4, Mask Width (M) is 5

Threads/block= Input tile size (Ti) = To+Mask Width-1 = 8 threads per block

Number of thread blocks = size of N / To= 16/4 = 4

Ns[threadidx.x] = N[index_i]

Write index_i as a function of i, T, and any other thread identifier in the grid

Reading from Global to Shared Memory

P [range]	i [range]	N [range]
Tile0:	Block 0:	
Tile1:	Block 1:	
Tile2:	Block 2:	
Tile3:	Block 3:	

i= threadIdx.x + blockIdx.x*blockDim.x
Output tile size (To) is 4, Input tile size (Ti) is 8, Mask Width (M) is 5
Grid is organized as 4 thread blocks and 8 threads/block
Ns[threadidx.x] = N[index_i]
Write the index_i expression

Loading from Global to Shared Memory

Some threads do not participate in calculating output

```
Block 2
                        12 t3 to t1 t2 t3 to t1 t2/t3 Block 3
if
      output = 0.0f;
      for(j=
          output += M[ ]* Ns[
      P[output i] = output;
```

Memory Accesses

- For a tiled 1D convolution, if the output tile width is 250 elements and mask width is 7 elements, what is the input tile width?
 - -250
 - -254
 - -256
 - **7**

Memory Accesses

- For a tiled 1D convolution, if the output tile width is 250 elements and mask width is 7 elements, what would be the ratio of global memory reduction for generating the output tile by loading the input tile into the shared memory?
 - -250*7/256
 - -256*7/250
 - **7**
 - -250

Next

Project Requirements