MATH 135	Exan (100 poi		November 21, 2022 12 noon–1:20 p.m.
•Carefully PRINT your full	name:		
•CIRCLE your section:	Section 1 (Tu)	Section 2 (Tu)	Section 3 (Hasselblatt)
Instructions: No books, no are allowed. Except in the tryour steps. Write only in the space prov	rue-false questions	or when instructe	ed otherwise, justify all of
•Please sign the following p I pledge that in this exam I have	0	received assistance	or cheated in any other way.

Signature:

1.	(16	points	s) C	ircle eith	ner True or False. You do not need to justify your choice.
	(a)	True	/	False:	Every continuous function on a closed set has a maximum.
	(b)			False: is not tr	Uniform convergence implies pointwise convergence, but the ue.
	(c)				Suppose $A \subset B \subset \mathbb{R}^n$. If A is closed and B is sequentially compact.
	(d)	True	/	False:	If $A, B \subset \mathbb{R}^n$, then $\operatorname{int} A \cup \operatorname{int} B = \operatorname{int}(A \cup B)$.
	(e)	True	/	False:	If $A, B \subset \mathbb{R}^n$, then $bdA \cup bdB = bd(A \cup B)$.
	(f)			False: s open in	If the sets A_i are open in \mathbb{R}^n for all $i \in \mathbb{N}$, then the intersection \mathbb{R}^n .
	(g)				Let A be a subset of \mathbb{R}^n and let $F \colon A \to \mathbb{R}^m$ be continuous. If A impact, then $F(A)$ is sequentially compact.
	(h)				Let A be a subset of \mathbb{R}^n and let $F \colon A \to \mathbb{R}^m$ be continuous. If A nen $F(A)$ is closed in \mathbb{R}^m .
2.		A =			blanks (no words). You do not need to justify your answer. where $\mathbb Q$ denotes the rationals. Thus, A is the set of irrationals in
	(a)	int.	4 =		
	(b)	bd/	4 =		
	(c)	extA	4 =		
	(d)	cl.	4 =		
	(e)	$\mathbb{R} \setminus A$	4 =		

	Carefully PRINT your full name:
3.	(10 points) Let $A \subset \mathbb{R}^n$.
	(a) State the definition (using sequences) of continuity of a mapping $F: A \to \mathbb{R}^m$ at a point $\mathbf{u} \in A$ and on the whole domain A . $F: A \to \mathbb{R}^m$ is continuous at $u \in A$ if
_	
	$F \colon A \to \mathbb{R}^m$ is continuous on A if
	(b) State the ϵ - δ criterion for uniform continuity of a mapping $F: A \to \mathbb{R}^m$. (Note that it is continuity in (a), but uniform continuity in (b).)

4. (14	points)
(a	State the definition of uniform convergence in \mathbb{R} : Let f_n and f be functions from \mathbb{R} to \mathbb{R} . Then f_n converges uniformly to f on \mathbb{R} if
(b	Let $\{f_n\}$ be a sequence of functions from $\mathbb R$ to $\mathbb R$. Assume that $f_n \to f$ uniformly on $\mathbb R$. Prove using the definition of uniform convergence that $3f_n + 2 \to 3f + 2$ uniformly on $\mathbb R$.

	Carefully PRINT your full name:
5.	(10 points) (a) State the definition of a Cauchy sequence in \mathbb{R} : a sequence $\{x_n\}$ in \mathbb{R} is <i>Cauchy</i> if
	(b) Suppose $ x_{n+k} - x_n < 1/n$ for all $n, k \in \mathbb{N}$. Prove that $\{x_n\}$ converges. (You may use whatever theorem about convergence you think is appropriate.)

6. (10 points)	Determine the radius of convergence of the power series \sum_{k}^{n}	$\sum_{i=1}^{\infty}$	$\frac{kx}{3^k}$	k -
----------------	--	-----------------------	------------------	--------

7. (10 points) Prove that $\sum_{n=1}^{\infty} \frac{1}{x^2 + n^2}$ converges uniformly on \mathbb{R} . (*Hint*. You may assume the p-test: $\sum_{n=1}^{\infty} 1/n^p$ converges for p > 1.)

(Carefully PRINT your full name:			
	, ,			
8. (10 points) Let $A = \{(x, y) \in \mathbb{R}^2$	$x^6 + y^6 = 1$. Pr	ove that A is seque	ntially compact.

9. (10 points) Define