# Introduction to Computer Science Lecture 11: Theory of Computation

#### Tian-Li Yu

Taiwan Evolutionary Intelligence Laboratory (TEIL)
Department of Electrical Engineering
National Taiwan University
tianliyu@cc.ee.ntu.edu.tw

Slides made by Tian-Li Yu, Jie-Wei Wu, and Chu-Yu Hsu

#### Computability

- Well-defined input and output
- Computation of these functions lies beyond any algorithmic system → noncomputable.
- Hold it... but algorithms are defined on some particular primitives, and primitives are defined on some particular machine.
- We need a universal machine to define computation.

## **Turing Machine**



- Alan Turing, 1936
- Finite state automata + infinite R/W tape
  - Finite states.
  - A tape with infinite cells.
  - R/W head moving one cell per time (left/right).
  - Finite alphabet (0,1,\*).

## Incrementing a Value

| Current state | Current cell content | Value to write | Direction to move | New state to<br>enter |
|---------------|----------------------|----------------|-------------------|-----------------------|
| START         | *                    | *              | Left              | ADD                   |
| ADD           | 0                    | 1              | Right             | RETURN                |
| ADD           | 1                    | 0              | Left              | CARRY                 |
| ADD           | *                    | *              | Right             | HALT                  |
| CARRY         | 0                    | 1              | Right             | RETURN                |
| CARRY         | 1                    | 0              | Left              | CARRY                 |
| CARRY         | *                    | 1              | Left              | OVERFLOW              |
| OVERFLOW      | *                    | *              | Right             | RETURN                |
| RETURN        | 0                    | 0              | Right             | RETURN                |
| RETURN        | 1                    | 1              | Right             | RETURN                |
| RETURN        | *                    | *              | No move           | HALT                  |

## **Church-Turing Thesis**

The functions that are computable by a Turing machine are exactly the functions that can be computed by any algorithmic means.

#### Bare Bones Language

- One of the universal programming languages
  - Simple imperative programming languages
  - Rich enough to compute all Turing-computable functions
  - Bare bones → minimal set
- clear name;
- incr name;
- decr name; /\* remains 0 if already 0 !!!\*/
- while name not 0 do; ... end;

#### Examples

```
clear Z;
while X not 0 do;
                            clear Aux;
   clear W:
                            clear Tomorrow;
   while Y not 0 do;
                            while Today not 0
      incr Z;
                            do;
      incr W;
                                incr Aux;
      decr Y;
                                decr Today;
   end;
                            end:
   while W not 0 do;
                            while Aux not 0 do;
       incr Y;
                                incr Today;
       decr W;
                                incr Tomorrow;
    end;
                                decr Aux;
    decr X;
                            end;
end:
```

#### The Halting Problem

- Are all algorithms (functions) computable?
- Input: encoding of a program.
- Output: 1 if the program halts; 0 otherwise.
- Is it possible to write such an algorithm?
  - Suppose S(p) is such an algorithm.
  - S(p) returns 1 if p halts.
  - S(p) returns 0 if p doesn't halt.

1<sup>st</sup> known incomputable problem

## Proof (Short, Conceptual Version)

S(p): The solution to the halting problem

N(p)

- 1. x = S(p)
- 2. while x not 0 do
- 3. **end**

Does N(N) halt?

If N(N) halts  $\rightarrow S(N)$  returns  $1 \rightarrow N(N)$  does not halt

If N(N) doesn't halt  $\rightarrow S(N)$  returns  $0 \rightarrow N(N)$  halts

## Gödel Number & Incomplete Theory

- All Turing machines (computable functions) can be mapped (1-to-1) to natural numbers.
  - The set of Turing machines is countable infinite.
  - The number is called the Gödel number.
- Gödel's incomplete theory (Kurt Gödel, 1931)
  - Later used by Turing.
  - "Any effectively generated theory capable of expressing elementary arithmetic cannot be both consistent and complete.
  - In particular, for any consistent, effectively generated formal theory that proves certain basic arithmetic truths, there is an arithmetical statement that is true, but not provable in the theory."

## Halting Problem: 1<sup>st</sup> Incomputable

- Is the following function computable?
  - x and i are integers.

#### Procedure g(i)

1. **if** 
$$h(i, i) == 0$$

- 2. return
- 3. **else**
- loop forever

$$h(x, i) = \begin{cases} 1, & \text{if program } x \text{ halts on input } i \\ 0, & \text{otherwise} \end{cases}$$

Let g's Gödel number be e

- Diagonalization proof
  - $h(e, e) = 0 \rightarrow g$  doesn't halts on  $e \rightarrow$  but g actually halts.
  - $h(e,e) = 1 \rightarrow g$  halts on  $e \rightarrow$  but g actually doesn't halts.

## Diagonalization Proof

| h(x,i)  |   | Procedure x |   |   |   |   |  |
|---------|---|-------------|---|---|---|---|--|
|         |   | 1           | 2 | 3 | 4 | 5 |  |
|         | 1 | 1           | 0 | 1 | 0 | 1 |  |
|         | 2 | 1           | 1 | 0 | 0 | 0 |  |
| Input i | 3 | 0           | 0 | 0 | 1 | 1 |  |
|         | 4 | 1           | 1 | 0 | 1 | 0 |  |
|         | 5 | 0           | 0 | 1 | 1 | 0 |  |

| h(i,i)                    | 1 | 1 | 0 | 1 | 0 |
|---------------------------|---|---|---|---|---|
| g(i): halt:1, otherwise:0 | 0 | 0 | 1 | 0 | 1 |

Invert the diagonal. So g can not be any procedure x.

#### Complexity Classes

- Developed by Cook & Karp in early 70.
- The class  $\mathcal{P}$ : class of problems that can be solved in polynomial time in the size of input.
  - Problems in  $\mathcal{P}$  is considered tractable.
  - Closed under addition, multiplication, composition, complement, etc. (closure property).
- The class NP (Nondeterministic Polynomial)
  - Polynomial time in the size of input on a nondeterministic Turing machine (nondeterministic finite state automata + infinite tape)

#### $\mathcal P$ vs. $\mathcal N\mathcal P$

- Finding max  $\rightarrow \Theta(n)$
- Sorting  $\rightarrow \Theta(n \log n)$
- Traveling salesman problem (TSP)  $\rightarrow \Theta(n^n)$ ?





#### Traveling Salesman Problem

- Traveling salesman problem (TSP)
  - Instance: A set of *n* cities, distance between each pair of cities, and a bound *B*.
  - Question: Is there a route that starts and ends at a given city, visits every city exactly once, and has total distance ≤ B?
- TSP  $\in \mathcal{NP}$ ?
  - Guess a tour, verify if it visits every city exactly once, returns to the start, and total distance ≤ *B*.
- co-TSP
  - Are all tours that start and end at a given city, visit every city exactly once, and have total distance > B?

#### Subset Sum Problem

- Subset sum problem (SSP)
  - Given a finite set of integers, is there a non-empty subset which sums to 0?
- SSP  $\in \mathcal{NP}$ ?
  - Guess a set (certificate), verify if it is a subset and sums to 0.
- co-SSP
  - Yes/No → No/Yes
  - Does every non-empty subset have a nonzero sum?

#### Properties of $\mathcal{NP}$

- All problems in  $\mathcal{P}$  are also in  $\mathcal{NP}$ .
  - $\mathcal{P} \subset \mathcal{NP}$
  - $\mathcal{P} = \mathcal{NP}$ ? No one knows yet. A 7-million dollar question.
- Solutions to problems in NP can be verified in polynomial time in the size of input.
- $\mathcal{NP}$  is not known to be closed under complement.
  - co- $\mathcal{NP}$
  - $x \in \text{co-}\mathcal{NP}$  iff "complement of x"  $\in \mathcal{NP}$



#### $\mathcal{NP}$ , co- $\mathcal{NP}$ , and $\mathcal{P}$

• All these are possible.



- In 2002, a survey of 100 researchers
  - 61 think No, 9 think Yes, 22 uncertain, 8 think impossible to prove.

#### $\mathcal{NP}$ -Completeness

- The class  $\mathcal{NP}$ -complete ( $\mathcal{NPC}$ )
  - Intuitively, if any  $\mathcal{NPC}$  problem can be solved in polynomial time  $\Rightarrow$  All problems in  $\mathcal{NP}$  can be solved in polynomial time.



#### NPC

- Intuitively,  $\mathcal{NPC}$  are problems that are the most difficult ones in  $\mathcal{NP}$ .
- How do we define "difficulty" when we don't know their complexity?
- Key: reduction

#### Polynomial-Time Reduction

- Motivation:
  - Let L<sub>1</sub> and L<sub>2</sub> be two decision problems. Suppose algorithm A<sub>2</sub> can solve L<sub>2</sub>. Can we use A<sub>2</sub> to solve L<sub>1</sub>?
- Polynomial-time reduction f from  $L_1$  to  $L_2$ :  $L_1 \leq_{\mathcal{P}} L_2$ 
  - x is an "yes" input for  $L_1$  iff f(x) is an yes input for  $L_2$ .
  - f is  $\mathcal{P}$ -time computable.
  - $L_1$  is  $\mathcal{P}$ -time reducible to  $L_2$
  - L2 is at least as hard as L1
  - f is reduction function.



#### Significance of Reduction

- $L_1 \leq_{\varphi} L_2$  implies
  - $\exists \mathcal{P}$ -time algorithm for  $L_2 \to \exists \mathcal{P}$ -time algorithm for  $L_1$   $(L_2 \in \mathcal{P} \to L_1 \in \mathcal{P})$
  - No  $\mathcal{P}$ -time algorithm for  $L_1 \to \text{no } \mathcal{P}$ -time algorithm for  $L_2$   $(L_1 \notin \mathcal{P} \to L_2 \notin \mathcal{P})$



•  $\leq_{\mathcal{P}}$  is transitive, i.e.,  $L_1 \leq_{\mathcal{P}} L_2 \& L_2 \leq_{\mathcal{P}} L_3 \Rightarrow L_1 \leq_{\mathcal{P}} L_3$ 

#### Definition of NPC, NP-Hard

- $L \in \mathcal{NPC}$  iff
  - $L \in \mathcal{NP}$  and  $\forall L' \in \mathcal{NP}, L' \leq_{p} L$
- $L \in \mathcal{NP}$ -hard iff
  - $\forall L' \in \mathcal{NP}, L' \leq_P L$
- To prove a problem is  $\mathcal{NPC}$ , we need one very first  $\mathcal{NPC}$  problem and then use  $\mathcal{P}$ -reduction
- Now, it's easily seen that the optimization version of a  $\mathcal{NPC}$  problem is  $\mathcal{NP}$ -hard.

#### Proving $\mathcal{NP}$ -Completeness

- Five steps for proving that L is NPC:
  - Prove  $L \in \mathcal{NP}$ .
  - Choose a known  $\mathcal{NPC}$  problem L'.
  - Construct a reduction f transforming every instance of L' to an instance of L.
  - Prove that  $x \in L'$  if  $f(x) \in L$  for all x.
  - Prove that f is polynomial-time computable.



#### 1<sup>st</sup> NPC Problem

- Circuit-SAT (Stephen Cook, 1971)
  - Probably the 1<sup>st</sup>. He proved 21  $\mathcal{NPC}$  problems in the same paper.
  - Instance: A combinational circuit C composed of AND, OR, and NOT gates.
  - Question: Is there an assignment of Boolean values to the inputs that makes the output of *C* to be 1?
- Satisfiability (SAT) (Stephen Cook, 1971)
  - Determining if the variables of a given Boolean formula can be assigned in such a way as to make the formula evaluate to TRUE.

#### Circuit-SAT $\leq_{\mathcal{P}}$ SAT



$$\varphi = x_{10} \wedge (x_4 \leftrightarrow \neg x_3) \wedge (x_5 \leftrightarrow (x_1 \vee x_2)) \wedge (x_6 \leftrightarrow \neg x_4) \\ \wedge (x_7 \leftrightarrow (x_1 \wedge x_2 \wedge x_4)) \wedge (x_8 \leftrightarrow (x_5 \vee x_6)) \\ \wedge (x_9 \leftrightarrow (x_6 \vee x_7)) \wedge (x_{10} \leftrightarrow (x_7 \wedge x_8 \wedge x_9))$$

- **1** SAT ∈  $\mathcal{NPC}$
- 2 Circuit C is satisfiable iff  $\varphi$  is satisfiable
- **3**  $\varphi$  is  $\mathcal{P}$ -time constructible and maps every instance.

#### Clique

- A clique in G is a complete subgraph of G.
- The clique problem
  - Instance: G = (V, E) and a positive integer  $k \le |V|$ .
  - Question: Is there a clique  $V' \subseteq V$  of size  $\geq k$ ?
- Clique  $\in \mathcal{NP}$ 
  - Can be verified in  $O(k^2)$  time.



#### $3SAT \leq_{\mathcal{P}} Clique$

- Let  $\varphi = C_1 \wedge C_2 \wedge ... \wedge C_k$  be a Boolean formula in 3-CNF with k clauses.
- For each  $C_r = (l_1^r \vee l_2^r \vee l_3^r)$ , introduce a triple of vertices  $v_1^r, v_2^r, v_3^r$  in V.
- Build an edge between  $v_i^r$ ,  $v_i^s$  if both of the following hold:
  - $v_i^r$ ,  $v_i^s$  are in different triples  $(r \neq s)$
  - $I_i^r$  is not the negation of  $I_i^s$
- Claim: G can be computed from  $\varphi$  in  $\mathcal{P}$ -time.

#### Reduction Example

$$\varphi = (x_1 \vee \neg x_2 \vee \neg x_3) \wedge (\neg x_1 \vee x_2 \vee x_3) \wedge (x_1 \vee x_2 \vee x_3)$$



$$C_2 = \neg x_1 \lor x_2 \lor x_3$$

$$C_3 = x_1 \lor x_2 \lor x_3$$

#### $\varphi$ Satisfiable $\Leftrightarrow$ G Has a k-Clique

- $\varphi$  satisfiable  $\Rightarrow$  each  $C_r$  contains at least one  $I_i^r = 1$  and each such literal corresponds to a vertex  $v_i^r$ .
- Picking a "true" literal from each  $C_r$  forms a set of V' of k vertices.
- For any two vertices  $v_i^r, v_j^s \in V', r \neq s, l_i^r = l_j^s = 1$  and thus  $l_i^r, l_j^s$  cannot be complements.  $\Rightarrow$  edge  $(v_i^r, v_i^s) \in E$ .



## Coping with $\mathcal{NP}$ -Complete/-Hard

- Approximation algorithms:
  - Guarantee to be "not-too-bad."
- Pseudo-polynomial time algorithms:
  - e.g., DP for the 0-1 Knapsack problem.
- Probabilistic algorithms:
  - Assume some probabilistic distribution of the instances.
- Randomized algorithms/heuristics:
  - Make use of a randomizer/heuristic:
  - No guarantee of performance.
  - Simulated annealing, genetic algorithms, etc.
- $\mathcal{EXP}$ -algorithms/branch & bound/exhaustive:
  - Feasible only when the problem is small.