III B. Tech II Semester Supplementary Examinations, November - 2018 DIGITAL COMMUNICATIONS

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

- 2. Answering the question in **Part-A** is compulsory
- 3. Answer any THREE Questions from Part-B

PART -A

1	a) b)	Define quantization noise. Draw the BASK waveform for the data 1 0 1 1 1 0 1 0 1, using bipolar signaling.	[3M] [4M]	
	c)	Give the expression for minimum probability of error of a matched filter.	[3M]	
	d)	Define i) Information ii) Information rate.	[4M]	
	e)	What is the tradeoff between bandwidth and SNR.	[4M]	
	f)	List different types of channel codes.	[4M]	
PART -B				
2	a)	Find a signal $g(t)$ that is band-limited to B Hz and whose samples are $g(0) = 1$ and $g(\pm T_s) = g(\pm 2T_s) = g(\pm 3T_s) = \cdots = 0$	[8M]	
		where the sampling interval T_s is the Nyquist interval for $g(t)$, that is, $T_s = \frac{1}{2B}$.		
	b)	Draw the block diagram of PCM system and explain.	[8M]	
3	a) b)	Draw the block diagram of coherent binary PSK detector and explain its operation. Explain the process of differential encoding and detection of binary DPSK with the following data: [1 0 1 0 0 1 1 1 0 0].	[8M] [8M]	
4	a)	Plot and compare the probability of error for the non-coherent detection of binary ASK and binary FSK.	[8M]	
	b)	Explain the operation of integrate-and-dump filter.	[8M]	
5	a)	A memoryless source emits 0.3, 0.25, 0.15, 0.12, 0.1, and 0.08. Find the entropy of this source.	[8M]	
	b)	Define the following: i) Amount of information ii) Average information iii) Mutual information iv) Information rate	[8M]	

Code No: RT32043 (R13) (SET - 1

6 a) A source emits seven messages with probabilities 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, [8M] and 1/64, respectively. Obtain the Huffman code and find the average length of the codeword.

b) Write notes on Shanon-Fano coding.

[8M]

7 a) The decoding table for the single-error correcting (7, 4) code is given in Table. [8M] Determine the data vectors transmitted for the following received vectors \mathbf{r} :

- i) 1101101
- ii) 0101000
- iii) 0001100

e	S
1000000	110
0100000	011
0010000	111
0001000	101
0000100	100
0000010	010
0000001	001

b) Write notes on Viterbi algorithm.

[8M]
