Devoir à la maison n° 9 : corrigé

Problème 1 — Fractions continues

Partie I -

1. Par définition, $q_0 = 1 \ge 0$ et a_1, a_2 sont dans \mathbb{N}^* , donc $q_1 = a_1 \ge 1$ et $q_2 = a_2q_1 + q_0 \ge 2$. On suppose que pour un certain $n \ge 3$, on a $q_{n-1} \ge n-1$ et $q_{n-2} \ge n-2$. On obtient alors :

$$q_n=\alpha_nq_{n-1}+q_{n-2}\geqslant (n-1)+(n-2)\geqslant n\quad \mathrm{car}\ n\geqslant 3.$$

On a ainsi prouvé, par récurrence double, que $\forall n \in \mathbb{N}, q_n \geqslant n$.

2. a. On a $p_1 q_0 - q_1 p_0 = (a_0 a_1 + 1) - a_1 a_0 = 1$ et, pour $n \ge 2$:

$$p_n q_{n-1} - q_n p_{n-1} = (a_n p_{n-1} + p_{n-2}) q_{n-1} - (a_n q_n + q_{n-2}) p_{n-1} = -(p_{n-1} q_{n-2} - q_{n-1} p_{n-2}).$$

Par conséquent et par une récurrence immédiate :

$$\forall n \in \mathbb{N}^*, p_n q_{n-1} - q_n p_{n-1} = (-1)^{n-1}$$

b. Ici, pour $n \ge 2$:

$$p_n q_{n-2} - q_n p_{n-2} = (a_n p_{n-1} + p_{n-2}) q_{n-2} - (a_n q_n + q_{n-2}) p_{n-2} = a_n (p_{n-1} q_{n-2} - q_{n-1} p_{n-2}).$$

Soit, d'après le résultat précédent :

$$\forall n \ge 2, \ p_n q_{n-2} - q_n p_{n-2} = (-1)^n a_n$$

3. a. Grâce à la question précédente, il vient immédiatement, par réduction au même dénominateur :

$$\forall n \geqslant 1, \quad x_n - x_{n-1} = \frac{(-1)^{n-1}}{q_{n-1}q_n} \quad \text{et} \quad \forall n \geqslant 2, \quad x_n - x_{n-2} = \frac{(-1)^n a_n}{q_{n-2}q_n}$$

b. On vient de voir que $x_n - x_{n-2}$ est du signe de $(-1)^n$, donc la suite (x_{2n}) est strictement croissante et la suite (x_{2n+1}) est strictement décroissante. De plus, d'après I.1, $q_{n-1}q_n \xrightarrow[n \to +\infty]{} +\infty$, donc $x_n - x_{n-1} \xrightarrow[n \to +\infty]{} 0$, d'après le résultat précédent. En particulier, la suite $(x_{2n} - x_{2n+1})$ converge vers 0. Les suites $(x_{2n})_{n \in \mathbb{N}}$ et $(x_{2n+1})_{n \in \mathbb{N}}$ sont adjacentes. Elles convergent donc vers une limite commune α . Il est alors classique de montre que (x_n) elle-même converge vers α .

Si n est pair, $x_n < \alpha < x_{n+1}$ et si n est impair, $x_{n+1} < \alpha < x_n$.

- $\begin{array}{l} \textbf{c.} \text{ On vient de voir que, suivant la parité de } n, \ x_n < \alpha < x_{n+1} \text{ ou } x_{n+1} < \alpha < x_n. \text{ Dans les deux cas,} \\ |\alpha x_n| < |x_{n+1} x_n| = \frac{1}{q_n q_{n+1}}. \text{ Pour } n \geqslant 1, \ q_{n+1} = a_{n+1} q_n + q_{n-1} \geqslant q_n \text{ car } a_{n+1} \in \mathbb{N}^* \text{ et } q_n \in \mathbb{N}. \\ \text{De plus, } q_1 = a_1 \geqslant 1 = q_0 \text{ car } a_1 \in \mathbb{N}^*. \text{ Dans tous les cas, } q_{n+1} \geqslant q_n. \text{ Finalement, } |\alpha x_n| < \frac{1}{q_n^2}. \end{array}$
- $\begin{array}{l} \mathbf{d.} \ \ \text{On suppose qu'il existe} \ (c,d) \in \mathbb{Z} \times \mathbb{N}^* \ \text{tel que} \ \alpha = \frac{c}{d}. \ \text{D'après la question précédente, on a} \ \left| \frac{c}{d} \frac{p_n}{q_n} \right| < \frac{1}{q_n^2} \ \text{i.e.} \\ |cq_n dp_n| < \frac{d}{q_n}. \ \text{On en déduit que pour tout} \ n \in \mathbb{N} \ \frac{d}{q_n} \geqslant 1, \ \text{ce qui contredit le fait que} \ (q_n) \ \text{diverge vers} \\ + \infty \ \text{(en effet,} \ q_n \geqslant n \ \text{pour tout} \ n \in \mathbb{N}). \end{array}$
- **4.** a. Comme $p_{n+1}q_n p_nq_{n+1} = (-1)^n \neq 0$, le système admet des solutions réelles

$$\mathfrak{u} = \frac{qp_{n+1} - pq_{n+1}}{p_{n+1}q_n - p_nq_{n+1}} = (-1)^n(qp_{n+1} - pq_{n+1}) \qquad \mathfrak{v} = \frac{pq_n - qp_n}{p_{n+1}q_n - p_nq_{n+1}} = (-1)^n(pq_n - qp_n)$$

Ces solutions sont bien entières.

b. Si u = 0, $q = vq_{n+1}$. Or $0 < q < q_{n+1}$ donc 0 < v < 1, ce qui est impossible puisque v est entier.

c. Si v = 0, alors $p = up_n$ et $q = uq_n$. Dans ce cas,

$$|q\alpha - p| = |u||q_n\alpha - p_n| \geqslant |q_n\alpha - p_n|$$

puisque u étant un entier non nul, $|u| \ge 1$.

d. Supposons v > 0 i.e. $v \ge 1$ car v est entier. On a $q = uq_n + vq_{n+1} < q_{n+1}$. Ainsi $uq_n < (1-v)q_{n+1} \le 0$ car $q_{n+1} > 0$ puis u < 0 car $q_n > 0$.

Supposons $\nu < 0$. On a $q = uq_n + \nu q_{n+1} > 0$ i.e. $uq_n > -\nu q_{n+1} > 0$ car $q_{n+1} > 0$ puis u > 0 car $q_n > 0$. u et ν sont bien toujours de signes contraires.

Remarquons que

$$q\alpha - p = (uq_n + vq_{n+1})\alpha - (up_n + vp_{n+1}) = u(q_n\alpha - p_n) + v(q_{n+1}\alpha - p_{n+1})$$

Or, d'après la question **I.3.b**, α est strictement compris entre $\frac{p_n}{q_n}$ et $\frac{p_{n+1}}{q_{n+1}}$ donc $q_n\alpha - p_n$ et $q_{n+1}\alpha - p_{n+1}$ sont également de signes contraires. Les quantités $\mathfrak{u}(q_n\alpha - p_n)$ et $\mathfrak{v}(q_{n+1}\alpha - p_{n+1})$ sont donc de même signe de sorte qu

$$|q\alpha - p| = |u(q_n\alpha - p_n)| + |v(q_{n+1}\alpha - p_{n+1})| \geqslant |u||q_n\alpha - p_n| \geqslant |q_n\alpha - p_n|$$

- **5.** a. Considérons l'ensemble $A = \{n \in \mathbb{N} \mid q_n \leqslant q\}$.
 - ightharpoonup A est une partie de \mathbb{N} .
 - ▶ A est non vide : en effet, $q_0 = 1 \leq q \text{ donc } 0 \in \mathbb{N}$.
 - ▶ A est majorée : en effet, comme (q_n) diverge vers $+\infty$, il existe $M \in \mathbb{N}$ tel que $q_n > q$ pour tout n > M. A est donc majorée par M.

On en déduit que A admet un plus grand élément N. On a bien $q_N \le q$ car $N \in A$. De plus, $N+1 \notin A$ puisque N est le plus grand élément de A donc $q_{N+1} > q$.

b. Par inégalité triangulaire

$$\left|\frac{p}{q} - \frac{p_N}{q_N}\right| \leqslant \left|\frac{p}{q} - \alpha\right| + \left|\alpha - \frac{p_N}{q_N}\right| = \frac{1}{q}|q\alpha - p| + \frac{1}{q_N}|q_N\alpha - p_N|$$

Puisque $0 < q < q_{N+1}$, $|q_N \alpha - p_N| \le |q \alpha - p|$ d'après la question **I.4**. On en déduit

$$\left| \frac{p}{q} - \frac{p_N}{q_N} \right| \le \left(\frac{1}{q} + \frac{1}{q_N} \right) |q\alpha - p|$$

En multipliant par qq_N , on aboutit à

$$|pq_N - qp_N| \le (q_N + q)|q\alpha - p| < 1$$

 $\begin{array}{l} \operatorname{car} \, q_N \leqslant q \, \operatorname{et} \, |q\alpha-p| = q|\alpha-\frac{p}{q}| < \frac{1}{2q}. \, \operatorname{Comme} \, pq_N - qp_N \, \operatorname{est} \, \operatorname{un} \, \operatorname{entier}, \, \operatorname{on} \, \operatorname{en} \, \operatorname{d\'eduit} \, pq_N - qp_N = 0 \, \operatorname{i.e.} \\ \frac{p}{q} = \frac{p_N}{q_N}. \end{array}$

- 6. a. Le graphe demandé est un morceau de parabole. $f(-1) = f(\lambda + 1) = \lambda > 0$ et f atteint son minimum en $\lambda/2$, milieu du segment $[-1, \lambda + 1]$, ce minimum vaut $-\lambda^2/4 1$ et est donc strictement négatif.
 - **b.** Puisque $f(0) = f(\lambda) = -1 < 0$; il en résulte que

$$-1 < r_1 < 0 \quad \mathrm{et} \quad \lambda < r_2 < \lambda + 1.$$

En particulier, puisque λ est entier :

$$r_1 < 0$$
 $r_2 > 0$ $E(r_1) = -1$ $E(r_2) = \lambda$

7. a. Il vient, par définition des suites (p_n) et (q_n) :

n	0	1	2	3
pn	λ	$\lambda^2 + 1$	$\lambda^3 + 2\lambda$	$\lambda^4 + 3\lambda^2 + 1$
q_n	1	λ	$\lambda^2 + 1$	$\lambda^3 + 2\lambda$

b. Comme la suite (a_n) est constante, une récurrence forte et néanmoins immédiate fournit $\forall n \geq 1, q_n = p_{n-1}$ et donc $\forall n \in \mathbb{N}, x_n = \frac{q_{n+1}}{q_n}$.

c. La suite (q_n) est définie par $q_0 = 1, q_1 = \lambda = r_1 + r_2$ et la relation de récurrence linéaire double

$$\forall n \geqslant 2 \quad q_n = \lambda q_{n-1} + q_{n-2}$$

dont l'équation caractéristique n'est autre que f(x) = 0. q_n est donc de la forme $A_1r_1^n + A_2r_2^n$, où les scalaires $A_1, A_2 \text{ sont déterminés par } \begin{cases} q_0 = A_1 + A_2 = 1 \\ q_1 = A_1 r_1 + A_2 r_2 = r_1 + r_2 \end{cases}. \text{ On en tire } A_1 = \frac{r_1}{r_1 - r_2} \text{ et } A_2 = \frac{r_2}{r_2 - r_1}. \text{ On a } a_1 = \frac{r_1}{r_1 - r_2} \text{ et } A_2 = \frac{r_2}{r_2 - r_1}.$

finalement:

$$\forall n \in \mathbb{N}, \quad q_n = \frac{r_2^{n+1} - r_1^{n+1}}{r_2 - r_1}$$

d. En vertu des deux questions précédentes :

$$\forall n \in \mathbb{N}, x_n = \frac{r_2^{n+2} - r_1^{n+2}}{r_2^{n+1} - r_1^{n+1}}$$

e. Puisque $|r_1| < 1$ et $r_2 > 1$, il en résulte :

$$\lim_{n\to\infty}x_n=r_2$$

f. Ici, $q_0=1, q_1=3$ et $\forall n\geqslant 2, \ q_n=3q_{n-1}+q_{n-2},$ d'où les valeurs :

n	0	1	2	3	4	5	6
q_n	1	3	10	33	109	360	1189

On a
$$\frac{1}{q_4q_5} < 10^{-4}$$
, or d'après **I.3**, $x_4 = \frac{q_5}{q_4} < \alpha < x_5 = \frac{q_6}{q_5}$ et $x_5 - x_4 = \frac{1}{q_4q_5}$, d'où $\frac{360}{109} < \alpha < \frac{1189}{360}$

Remarque. On constate que
$$\frac{360}{109} \approx 3,30275, \ \frac{1189}{360} \approx 3,30278 \ \mathrm{et} \ \alpha = r_2 = \frac{3+\sqrt{13}}{2} \approx 3,30278.$$

Partie II -

1. On procède par récurrence sur l'entier r. On fixe donc $n \in \mathbb{N}^*$. Notre hypothèse de récurrence est la suivante :

HR(r): pour tout (n+r) uplet de réels (b_0,\ldots,b_{n+r}) tels que $b_k>0$ pour $k\geqslant 1$, on a

$$[b_0, \ldots, b_{n-1}, [b_n, \ldots, b_{n+r}]] = [b_0, \ldots, b_{n+r}]$$

HR(0) est vraie puisque $[b_n] = b_n$.

On suppose HR(r) vraie pour un certain $r \ge 1$.

Soient alors (b_0, \ldots, b_{n+r+1}) un (n+r+1)-uplet de réels tels que $b_k > 0$ pour $k \geqslant 1$. On applique l'hypothèse de récurrence au (n+r)-uplet $\left(b_0,\ldots,b_{n+r-1},b_{n+r}+\frac{1}{b_{n+r+1}}\right)$. Ainsi

$$\left[b_0, \dots, b_{n-1}, \left[b_n, \dots, b_{n+r-1}, b_{n+r} + \frac{1}{b_{n+r+1}}\right]\right] = \left[b_0, \dots, b_{n+r-1}, b_{n+r} + \frac{1}{b_{n+r+1}}\right]$$

Or par définition, ceci équivaut à

$$[b_0, \ldots, b_{n-1}, [b_n, \ldots, b_{n+r+1}]] = [b_0, \ldots, b_{n+r+1}]$$

Ainsi HR(r+1) est vraie.

Par récurrence, HR(r) est vraie pour tout $r \in \mathbb{N}$.

a. En appliquant la définition :

$$[\alpha_0,\alpha_1] = \frac{\alpha_0\alpha_1+1}{\alpha_1} = \frac{p_1}{q_1} \qquad \qquad [\alpha_0,\alpha_1,\alpha_2] = \frac{\alpha_0\alpha_1\alpha_2+\alpha_0+\alpha_2}{\alpha_1\alpha_2+1} = \frac{p_2}{q_2}$$

b. On note HR(n) l'hypothèse de récurrence suivante :

Pour tout réel
$$x > 0$$
, $[a_0, ..., a_n, x] = \frac{p_n x + p_{n-1}}{q_n x + q_{n-1}}$.

On a
$$[a_0, a_1, x] = \frac{a_0 a_1 x + a_0 + x}{a_1 x + 1} = \frac{p_1 x + p_0}{q_1 x + q_0}$$
 donc $HR(1)$ est vraie. On suppose $HR(n)$ vraie pour un certain $n \ge 1$. On alors

$$[a_0, \dots, a_{n+1}, x] = \left[a_0, \dots, a_n, a_{n+1} + \frac{1}{x}\right]$$

On applique alors HR(n) au réel strictement positif $a_{n+1} + \frac{1}{n}$:

$$\left[a_0, \dots, a_n, a_{n+1} + \frac{1}{x}\right] = \frac{p_n\left(a_{n+1} + \frac{1}{x}\right) + p_{n-1}}{q_n\left(a_{n+1} + \frac{1}{x}\right) + q_{n-1}} = \frac{(a_{n+1}p_n + p_{n-1})x + p_n}{(a_{n+1}q_n + q_{n-1})x + q_n} = \frac{p_{n+1}x + p_n}{q_{n+1}x + q_n}$$

Ainsi HR(n+1) est vraie. Par récurrence, HR(n) est vraie pour tout $n \ge 1$.

c. On a facilement :

$$[a_0] = a_0 = \frac{p_0}{q_0} = x_0$$
 $[a_0, a_1] = \frac{a_0 a_1 + 1}{a_1} = \frac{p_1}{q_1} = x_1$

Pour $n \ge 2$, on utilise la question précédente

$$[a_0, \dots, a_{n-1}, a_n] = \frac{p_{n-1}a_n + p_{n-2}}{q_{n-1}a_n + q_{n-2}} = \frac{p_n}{q_n} = x_n$$

- **a.** D'après ??, $x_0 = a_0 < \alpha < x_1 = a_0 + \frac{1}{a_1}$. Or $a_1 \geqslant 1$, donc $a_0 \leqslant \alpha < a_0 + 1$. Puisque $a_0 \in \mathbb{Z}$, $a_0 = E(\alpha)$.
 - b. D'après la question II.1,

$$[a_0, \ldots, a_n] = [a_0, [a_1, \ldots, a_n]] = a_0 + \frac{1}{[a_1, \ldots, a_n]}$$

- c. La suite $(a_{k+n})_{n\in\mathbb{N}}$ est aussi dans S. On en déduit comme précédemment que la suite $([a_k,\ldots,a_n])_{n\in\mathbb{N}}$ converge vers un irrationnel.
- d. D'après la question II.2.c,

$$\forall n \in \mathbb{N}^*, \ x_n = [a_0, \dots, a_n] = a_0 + \frac{1}{[a_1, \dots, a_n]},$$

d'où, par unicité de la limite, pour n tendant vers l'infini : $\alpha = a_0 + \frac{1}{\alpha_1}$. En appliquant, pour k fixé dans \mathbb{N} , ce même résultat à la suite $(\mathfrak{a}_{k+n})_{n\in\mathbb{N}},$ qui est aussi dans S, on obtient :

$$\forall k \in \mathbb{N}, \ \alpha_k = \alpha_k + \frac{1}{\alpha_{k+1}}$$

e. On en déduit comme en II.3.a que $a_k = E(\alpha_k)$ pour tout k. Ainsi, à partir de la valeur de α , la suite (a_n) se construit par récurrence, parallèlement à la suite (α_n) , grâce aux relations suivantes :

$$\alpha_0=\alpha\;,\;\alpha_0=E(\alpha)\quad\mathrm{et}\quad\forall k\in\mathbb{N},\;\alpha_{k+1}=\frac{1}{\alpha_k-\alpha_k}\;,\;\alpha_{k+1}=E(\alpha_{k+1})$$

Cela montre, pour α donné, l'unicité de la suite $\alpha \in S$ telle $\alpha = F(\alpha)$.

Si l'on se donne α , on peut construire les suites (α_n) et (α_n) par l'algorithme précédent. Il faut tout de même vérifier que ces suites sont bien définies par récurrence et que $a \in S$.

 α_0 et α_0 sont bien définies avec α_0 irrationnel et α_0 entier.

Supposons avoir montré que α_k et α_k étaient définis avec α_k irrationnel et α_k entier pour un certain $k \in \mathbb{N}$. On a alors $\alpha_k - a_k \neq 0$ et donc α_{k+1} est bien définie. De plus, $a_{k+1} = E(\alpha_{k+1})$ est bien défini et entier. Enfin, $\alpha_{k+1} = \frac{1}{\alpha_k - a_k}$ est irrationnel puique α_k l'est.

Ceci montre que les suites (a_n) et (α_n) sont bien définies. De plus, $a_0 = E(\alpha_0) \in \mathbb{Z}$. Pour $k \in \mathbb{N}^*$, $a_k < \alpha_k = 0$ $E(\alpha_k) < \alpha_k + 1$, les deux inégalités étant strictes car α_k est irrationnel. Ainsi $0 < \alpha_k - \alpha_k < 1$ et donc $\alpha_{k+1} > 1$ puis $a_{k+1} = E(\alpha_{k+1}) \geqslant 1$. Ceci montre que pour $n \geqslant 1$, $a_n \in \mathbb{N}^*$. De plus, $a_0 = E(\alpha_0) \in \mathbb{Z}$ donc $a \in S$.

On a donc montré la surjectivité de F.

Par conséquent, F est bijective.

f. On trouve

$$a_0 = 1$$
 $a_1 = 1$ $a_2 = 2$ $a_3 = 1$ $\alpha_1 = \frac{\sqrt{3}}{2} + \frac{1}{2}$ $\alpha_2 = \sqrt{3} + 1$ $\alpha_3 = \frac{\sqrt{3}}{2} + \frac{1}{2}$

On fait l'hypothèse de récurrence suivante

$$HR(n): \ \alpha_{2n-1}=1, \ \alpha_{2n}=2, \ \alpha_{2n-1}=\frac{\sqrt{3}}{2}+\frac{1}{2} \ \alpha_{2n}=\sqrt{3}+1$$

Les calculs précédents montrent que HR(1) est vraie. Supposons HR(n) vraie pour un certain $n \ge 1$. On a alors

$$\alpha_{2n+1} = \frac{1}{\alpha_{2n} - \alpha_{2n}} = \frac{1}{\sqrt{3} - 1} = \frac{\sqrt{3}}{2} + \frac{1}{2}$$

$$\alpha_{2n+2} = \frac{1}{\alpha_{2n+1} - \alpha_{2n+1}} = \frac{1}{\frac{\sqrt{3}}{2} - \frac{1}{2}} = \sqrt{3} - 1$$

$$\alpha_{2n+2} = 2$$

Ceci prouve que HR(n) est vraie pour tout $n \ge 1$.

Partie III -

1. a. D'après II.3.b, on sait que pour $n \in \mathbb{N}^*$.

$$[a_0, \dots, a_n] = a_0 + \frac{1}{[a_1, \dots, a_n]}$$

Or la suite (a_n) est constante donc $[a_1, \ldots, a_n] = [a_0, \ldots, a_{n-1}]$. En utilisant **II.3.b**, on a donc $x_n = a_0 + \frac{1}{x_{n-1}}$ puis, par passage à la limite $\alpha = a_0 + \frac{1}{\alpha}$ i.e. $\alpha^2 - a_0 \alpha - 1 = 0$.

b. Pour $n \ge m$, on a par m-périodicité et en utilisant II.1 :

$$[a_0, \ldots, a_{m-1}, a_m, \ldots, a_n] = [a_0, \ldots, a_{m-1}, [a_m, \ldots, a_n]] = [a_0, \ldots, a_{m-1}, [a_0, \ldots, a_{n-m}]]$$

En passant à la limite lorsque n tend vers $+\infty$, on obtient $\alpha=[\alpha_0,\ldots,\alpha_{m-1},\alpha].$

D'après II.2.b, on a :

$$\alpha = [a_0, \dots, a_{m-1}, \alpha] = \frac{\alpha p_{m-1} + p_{m-2}}{\alpha q_{m-1} + q_{m-2}}$$

On en déduit que $q_{\mathfrak{m}-1}\alpha^2+(q_{\mathfrak{m}_2}-p_{\mathfrak{m}-1})\,\alpha-p_{\mathfrak{m}-2}=0,$ ce qui prouve que α est quadratique.

- 2. a. Remarquons qu'on ne peut avoir $\kappa \mu \phi = 0$. En effet, ceci impliquerait $\kappa \nu \lambda \mu = 0$. On a donc $\theta = \frac{\nu \phi \lambda}{\kappa \mu \phi}$. Soit $P = \alpha X^2 + bX + c$ un polynôme à coefficients entiers de degré 2 annulant θ . Alors le polynôme $Q = (\kappa \mu X)^2 P\left(\frac{\nu X \lambda}{\kappa \mu X}\right)$ est à coefficients entiers, est de degré au plus 2 et annule ϕ . Le coefficient de X^2 dans Q est $\alpha \nu^2 + b\mu \nu + c\mu^2$.
 - \blacktriangleright Si $\mu=0,$ alors $\nu\neq 0$ par hypothèse et le coefficient de X^2 dans Q est $\alpha\nu^2\neq 0.$
 - ▶ Si $\mu \neq 0$ le coefficient de X^2 dans Q peut s'écrire $\mu^2 P\left(\frac{\nu}{\mu}\right)$. Comme θ est irrationnel, la seconde racine θ' de P est également irrationnelle puisque $\theta + \theta' = -\frac{b}{a} \in \mathbb{Q}$. Le rationnel $\frac{\nu}{\mu}$ ne peut donc être racine de P et le coefficient de X^2 dans Q est à nouveau non nul.

Finalement, Q est bien de degré 2, ce qui achève de prouver que φ est quadratique.

- b. La suite associée à α_r , autrement dit $(a_{r+n})_{n\in\mathbb{N}}$, est périodique de période n. D'après la question III.1, α_r est donc quadratique. Or $\alpha=[a_0,\ldots,a_{r-1},\alpha_r]$ donc si r=1, $\alpha=a_0+\frac{1}{\alpha_r}$ et si $m\geqslant 2$, $\alpha=\frac{\alpha_rp_{r-1}+p_{r-2}}{\alpha_rq_{r-1}+q_{r-2}}$. Comme $p_{r-1}q_{r-2}-p_{r-2}q_{r-1}=(-1)^{r-1}\neq 0$, la question précédente montre que α est également quadratique.
- 3. a. On sait que pour $n \ge 2$, $\alpha = \frac{p_{n-1}\alpha + p_{n-2}}{q_{n-1}\alpha + q_{n-2}}$. En reportant dans l'égalité, $A\alpha^2 + B\alpha + C = 0$ puis en multipliant par $(q_{n-1}\alpha + q_{n-2})^2$, on obtient l'égalité demandée.

b. Puisque $A\alpha^2 + B\alpha + C = 0$:

$$A_n = A_n - q_{n-1}^2(A\alpha^2 + B\alpha + C) = q_{n-1}^2\left(Ax_{n-1}^2 + Bx_{n-1} + C\right) - q_{n-1}^2\left(A\alpha^2 + B\alpha + C\right) = q_{n-1}^2(x_{n-1} - \alpha)(A(x_{n-1} + \alpha) + Bx_{n-1} + C)$$

Or $|x_{n-1} - \alpha| < \frac{1}{q_{n-1}^2}$ d'après **I.3.c** donc $|A_n| < |Ax_{n-1}| + |A\alpha| + |B|$. Comme (x_n) converge, elle est bornée. Il s'ensuit que (A_n) est également bornée. Or $C_n = A_{n-1}$ pour $n \ge 3$ donc (C_n) est également bornée.

c. Après développement et factorisation, on trouve

$$B_n^2 - 4A_nC_n = \left(p_{n-1}^2q_{n-2}^2 - 2p_{n-1}q_{n-1}p_{n-2}q_{n-2} + p_{n-2}^2q_{n-1}^2\right)\left(B^2 - 4AC\right)$$

Or $p_{n-1}^2 q_{n-2}^2 - 2p_{n-1}q_{n-1}p_{n-2}q_{n-2} + p_{n-2}^2 q_{n-1}^2 = (p_{n-1}q_{n-2} - p_{n-2}q_{n-1})^2$. On conclut que $\Delta_n = \Delta$ grâce à **I.2.a**.

Ainsi, $|B_n| = \sqrt{\Delta + 4A_nC_n}$. Puisque (A_n) et (C_n) sont bornées, (B_n) l'est également.

- d. Les suites (A_n) , (B_n) et (C_n) étant bornées, elles ne prennent qu'un nombre fini de valeurs. L'ensemble des trinômes $A_nX^2 + B_nX + C_n$ est donc également fini. Montrons qu'aucun de ces trinômes n'est nul. Le trinôme $AX^2 + BX + C$ ne peut avoir un discriminant nul sinon α serait une racine double de ce trinôme et donc rationnelle. Ainsi $\Delta_n \neq 0$ pour tout $n \geq 2$: les trinômes $A_nX^2 + B_nX + C_n$ ne peuvent être nuls (on peut même montrer que $A_n \neq 0$ car sinon la racine α_n serait rationnelle). Ainsi chaque trinôme $A_nX^2 + B_nX + C_n$ admet au plus deux racines (exactement deux, en fait). Comme ces trinômes sont en nombre fini, les racines en question le sont également.
- e. Les réels α_n étant racines des trinômes $A_nX^2 + B_nX + C_n$, on en déduit que la suite (α_n) ne prend qu'un nombre finie de valeurs. L'application $n \mapsto \alpha_n$ n'est donc pas injective.
- **f.** Les réels α_r et α_{r+m} sont les images respectives des suites $(a_{r+n})_{n\in\mathbb{N}}$ et $(a_{r+m+n})_{n\in\mathbb{N}}$ par F. Par injectivité de F, ces deux suites sont égales, ce qui signifie que \mathfrak{a} est périodique de période \mathfrak{m} à partir du rang \mathfrak{r} .
- 4. a. Notons Q un second polynôme à coefficients entiers de degré 2 annulant α . Posons $P = \alpha X^2 + bX + c$ avec $\alpha, b, c \in \mathbb{Z}$ et $Q = dX^2 + eX + f$ avec $d, e, f \in \mathbb{Z}$. Posons enfin $R = dP \alpha Q$. R est un polynôme de degré au plus 1 à coefficients entiers anulant α . Comme α est irrationnel, R ne peut être de degré 1. Ainsi R est constant et cette constante est nulle puisque R s'annule en α . Ainsi $dP = \alpha Q$. Les polynômes P et Q sont proportionnels : ils ont les mêmes racines.
 - b. On procède par récurrence. L'initialisation est évidente puisque $\alpha_0=\alpha$. Suuposons α_n quadratique pour un certain $n\in\mathbb{N}$. On a vu que $\alpha_{n+1}=\frac{1}{\alpha_n-\alpha_n}$. Comme α_n est irrationnel et α_n entier, α_{n+1} est irrationnel. Notons P un polynôme à coefficients entiers de degré 2 annulant α_n . On vérifie que le polynôme $X^2P\left(\alpha_n+\frac{1}{X}\right)$ est bien à coefficients entiers de degré 2 et annule α_{n+1} . Ainsi α_{n+1} est quadratique. Par récurrence, α_n est quadratique pour tout $n\in\mathbb{N}$.
 - c. Soit P un polynôme annulateur de α_n à coefficients entiers de degré 2. Puisque $\alpha_{n+1} = \frac{1}{\alpha_n \alpha_n}$ le polynôme $Q = X^2 P\left(\alpha_n + \frac{1}{X}\right)$ est un polynôme à coefficients entiers de degré 2 annulant α_{n+1} . Puisque α'_n est la seconde racine de P, $\frac{1}{\alpha'_n \alpha_n}$ est la seconde racine de Q. Autrement dit, $\alpha'_{n+1} = \frac{1}{\alpha'_n \alpha_n}$.
 - d. Montrons par récurrence que pour tout $n \in \mathbb{N}$, $-1 < \alpha'_n < 0$. L'initialisation est claire puisque $\alpha'_0 = \alpha'$. Supposons $-1 < \alpha'_n < 0$ pour un certain $n \in \mathbb{N}$. Or $-1 \alpha_n < \alpha'_n \alpha_n < -\alpha_n < 0$ et $\alpha'_{n+1} = \frac{1}{\alpha'_n \alpha_n}$ d'après la question précédente donc $-\frac{1}{1+\alpha_n} < \alpha'_{n+1} < -\frac{1}{\alpha_n}$. Or $\alpha_n \geqslant 1 > 0$ pour $n \geqslant 1$ par hypothèse et $\alpha_0 \geqslant 1 > 0$ puisque $\alpha > 1$. Par conséquent $-1 < \alpha'_{n+1} < 0$. On a donc bien montré l'hérédité.

Fixons $n \in \mathbb{N}$. On a $-\frac{1}{\alpha'_{n+1}} = a_n - \alpha'_n$. Puisque $0 < -\alpha'_n < 1$, $a_n = E\left(-\frac{1}{\alpha'_{n+1}}\right)$.

e. Comme α est quadratique, on a vu dans les questions précédentes que la suite α était périodique à partir d'un certain rang. Il en est de même de la suite (α_n) par définition de cette suite. Il existe donc deux entiers m et p tels que m < p et $\alpha_m = \alpha_p$. On fait alors l'hypothèse de récurrence suivante :

 $HR(k) : \ll \alpha_k = \alpha_{k+p-m} \gg$

 $\begin{array}{l} \text{HR}(m) \text{ est vraie. Supposons } \text{HR}(k) \text{ vraie pour un certain } k \in \llbracket 1,m \rrbracket. \text{ On a donc } \alpha_k = \alpha_{k+p-m} \text{ puis } \alpha_k' = \alpha_{k+p-m}' \text{ et } -\frac{1}{\alpha_k'} = -\frac{1}{\alpha_{k+p-m}'}. \text{ En passant à la partie entière et grâce à la question précédente, } \alpha_{k-1} = \alpha_{k+p-m-1}. \text{ Or } \alpha_{k-1} = \alpha_{k-1} + \frac{1}{\alpha_k} \text{ et } \alpha_{k+p-m-1} = \alpha_{k+p-m-1} + \frac{1}{\alpha_{k+p-m}} \text{ donc } \alpha_{k-1} = \alpha_{k+p-m+1} \text{ i.e.} \\ \text{HR}(k-1) \text{ est vraie. Par récurrence descendante finie, } \text{HR}(0) \text{ est vraie i.e. } \alpha_0 = \alpha_{p-m}. \text{ Or } (\alpha_n)_{n \in \mathbb{N}} = F(\alpha_0) \text{ et } (\alpha_p-m+n) = F(\alpha_{p-m}). \text{ Par injectivité de F, ces deux suites sont égales, ce qui prouve que } (\alpha_n) \text{ est périodique } (\text{de période } p-m). \end{array}$

Partie IV -

- 1. Supposons que \sqrt{d} soit rationnel. Alors il existerait $(a,b) \in \mathbb{N} \times \mathbb{N}^*$ tel que $\sqrt{d} = \frac{a}{b}$ i.e. $a^2 = db^2$. Notons \mathcal{P} l'ensemble des nombres premiers : le théorème fondamental de l'arithmétique dit qu'il existe deux familles presque nulles d'entiers naturels $(\alpha_p)_{p \in \mathcal{P}}$ et $(\beta_p)_{p \in \mathcal{P}}$ telles que $a = \prod_{p \in \mathcal{P}} p^{\alpha_p}$ et $b = \prod_{p \in \mathcal{P}} p^{\beta_p}$. Comme b^2 divise a^2 , $2\beta_p \leqslant 2\alpha_p$ pour tout $p \in \mathcal{P}$. Par conséquent, $\beta_p \leqslant \alpha_p$ pour tout $p \in \mathcal{P}$ et donc b divise a. Ainsi \sqrt{d} est entier ce qui contredit le fait que d n'est pas un carré d'entier.
- 2. On veut montrer que la suite $(\alpha_n)_{n\geqslant 1}$ est périodique. D'après la question III.4.e, il suffit de montrer que $\alpha_1>1$ et $-1<\alpha_1'<0$. Puisque $\alpha_0=E(\alpha_0)$ et $\alpha_0\notin\mathbb{Z},\,0<\alpha_0-\alpha_0<1$ et donc $\alpha_1=\frac{1}{\alpha_0-\alpha_0}>1$. De plus, un polynôme à coefficients entiers de degré 2 annulant α est $P=X^2-d$. Un polynôme à coefficients entiers de degré 2 annulant α_1 est donc

 $Q = X^2 P\left(\alpha_0 + \frac{1}{X}\right) = (\alpha_0^2 - d)X^2 + 2\alpha_0 X + 1$

Or Q(0) = 1 > 0 et $Q(-1) = (a_0 - 1)^2 - d < 0$ donc Q admet une racine dans] - 1,0[d'après le théorème des valeurs intermédiaires. Cette racine n'est autre que α'_1 .

3. a. Puisque $x^2 - dy^2 = (x - y\sqrt{d})(x + y\sqrt{d}), \ x - y\sqrt{d} = \frac{1}{x + y\sqrt{d}}$. De plus, $x^2 = 1 + dy^2 > dy^2$ donc $x > y\sqrt{d}$ puisque x et $y\sqrt{d}$ sont positifs. On en déduit que $|x - y\sqrt{d}| = x - y\sqrt{d}$. Enfin, $d \ge 1$ puisque 0 est un carré d'entier (en fait, on a même $d \ge 2$) donc $x > y\sqrt{d} > y$. Ainsi $\frac{1}{x + y\sqrt{d}} < \frac{1}{2y}$. On en déduit que $|x - y\sqrt{d}| < \frac{1}{2y}$ puis, en divisant par y > 0, $\left| \frac{x}{y} - \sqrt{d} \right| < \frac{1}{2y^2}$. D'après la question **I.5.b**, il existe $N \in \mathbb{N}$ tel que $\frac{x}{y} = \frac{p_N}{q_N}$ i.e. $xq_N = yp_N$. D'après **I.2.a**, $p_{N+1}q_N - q_{N+1}p_N = (-1)^N$: on a donc une relation de Bézout entre les entiers p_N et q_N qui sont premiers entre eux. De même, l'égalité $x^2 - dy^2 = 1$ constitue une relation de Bézout entre x et y. Comme $xq_N = yp_N$, p_N divise xq_N donc, d'après le lemme de Gauss, divise x. De même, x divise yp_N donc y d'après

le lemme de Gauss. Ainsi $x = p_N$ puis $y = q_N$.

- **b.** On a $\frac{x^2}{y^2} = d + \frac{1}{y^2} > d$ donc $x_N = \frac{p_N}{q_N} = \frac{x}{y} > \sqrt{d}$. Or on a prouvé à la question **I.3.b** que $x_n < \alpha = \sqrt{d}$ pour n pair. C'est donc que N est impair.
- **c.** D'après **II.1**, on a pour $n \geqslant N$, $[a_0, \ldots, a_N, \ldots, a_n] = [a_0, \ldots, a_N, [a_{N+1}, \ldots, a_n]]$ puis en faisant tendre n vers l'infini, $\alpha = [a_0, \ldots, a_N, \alpha_{N+1}]$. D'après **II.2.b**, il vient $\sqrt{d} = \alpha = \frac{p_N \alpha_{N+1} + p_{N-1}}{q_N \alpha_{N+1} + q_{N-1}}$ (on a bien $N \geqslant 1$ car N est impair).
- d. L'égalité de la question précédente peut également s'écrire $\alpha_{N+1}(p_N-q_N\sqrt{d})=q_{N-1}\sqrt{d}-p_{N-1}$. En multipliant cette égalité par $p_N+q_N\sqrt{d}$ et en tirant parti du fait que (p_N,q_N) est un couple de solutions de l'équation de Pell-Fermat, on obtient

$$\alpha_{N+1} = (p_N q_{N-1} - p_{N-1} q_N) \sqrt{d} + (dq_N q_{N-1} - p_N p_{N-1})$$

D'après la question I.2.a, $p_N q_{N-1} - p_{N-1} q_N = (-1)^{N-1} = 1$ car N est impair. Il suffit alors de poser $b = dq_N q_{N-1} - p_N p_{N-1}$.

- e. D'après II.3.d, on a $\alpha_{N+1}=\alpha_{N+1}+\frac{1}{\alpha_{N+2}}$ et $\sqrt{d}=\alpha=\alpha_0=\alpha_0+\frac{1}{\alpha_1}$. Ainsi $\alpha_0+b+\frac{1}{\alpha_1}=\alpha_{N+2}+\frac{1}{\alpha_{N+2}}$. Puisque pour tout $n\in\mathbb{N}^*$, $\frac{1}{\alpha_n}=\alpha_{n-1}-E(\alpha_{n-1})$, on a $0<\frac{1}{\alpha_n}<1$, notamment pour n=1 et n=N+2. Comme α_0+b et α_{N+2} sont entiers, on a donc $\frac{1}{\alpha_1}=\frac{1}{\alpha_{N+2}}$ i.e. $\alpha_1=\alpha_{N+2}$. Or α_1 et α_{N+2} sont les images respectives de $(\alpha_n)_{n\geqslant 1}$ et $(\alpha_{n+N+1})_{n\geqslant 1}$ par l'application injective F. Ces deux suites sont donc égales, ce qui prouve que (α_n) est périodisue de période N+1 à partir du rang 1. Comme m est la plus petite période de $(\alpha_n)_{n\geqslant 1}$, N+1 est donc un multiple de m i.e. $N\equiv -1[m]$.
- 4. Il suffit de remonter les étapes des questions précédentes. Puisque N+1 est un multiple de m, $\alpha_{N+2}=\alpha_1$. Ceci équivaut à $\frac{1}{\alpha_{N+2}}=\frac{1}{\alpha_1}$ ou encore $\alpha_{N+1}-\alpha_{N+1}=\alpha_0-\alpha_0$ d'où, finalement, $\alpha_{N+1}=\sqrt{d}+\alpha_{N+1}-\alpha_0$. Or on a déjà vu que $\sqrt{d}=\frac{p_N\alpha_{N+1}+p_{N-1}}{q_N\alpha_{N+1}+q_{N-1}}$. En reportant l'expression de α_{N+1} que l'on vient de déterminer, on obtient après calcul

$$p_{N}(a_{N+1}-a_{0})+p_{N-1}-dq_{N}=(q_{N}(a_{N+1}-a_{0})+q_{N-1}-p_{N})\sqrt{d}$$

 $\mathrm{Comme}\ \sqrt{d}\ \mathrm{est\ irrationnel},\ \mathrm{les\ entiers}\ p_N(\alpha_{N+1}-\alpha_0)+p_{N-1}-dq_N\ \mathrm{et}\ q_N(\alpha_{N+1}-\alpha_0)+q_{N-1}-p_N\ \mathrm{sont\ nuls\ i.e.}$

$$dq_{N} = p_{N}(a_{N+1} - a_{0}) + p_{N-1}$$
$$p_{N} = q_{N}(a_{N+1} - a_{0}) + q_{N-1}$$

On en déduit que

$$\begin{split} p_N^2 - dq_N^2 &= p_N \left[q_N (\alpha_{N+1} - \alpha_0) + q_{N-1} \right] - q_N \left[p_N (\alpha_{N+1} - \alpha_0) + p_{N-1} \right] \\ &= p_N q_{N-1} - q_N p_{N-1} = (-1)^{N-1} = 1 \end{split}$$

car N est impair. Le couple $(\mathfrak{p}_N,\mathfrak{q}_N)$ est donc bien solution de l'équation de Pell-Fermat.