04-05 极限与余极限

LATEX Definitions are here.

若提供函子 $\overline{\bigcirc}$: $\overline{\bigcirc}$, 其中的 $\overline{\bigcirc}$ 为小范畴 (即 $\overline{\bigcirc}$ 0 的 $\overline{\bigcirc}$ 能与 Set 中某个对象建立双射) 则

泛性质

默认函子 $\lim: \frac{\mathsf{Cat}}{(\mathsf{I} \longrightarrow \mathsf{C})} \overset{??}{\longrightarrow} \mathsf{C}$ 在范畴 C 中有如下性质 :

默认函子 $\operatorname{colim}: \overset{\operatorname{Cat}}{(I \longrightarrow C)} \overset{??}{\longrightarrow} C$ 在范畴 C 中有如下性质 :

• (C colim → c)

i 为 I 中任意对象 。此即为

余极限的**泛性质** 。

(i) Note

在上面的插图中

• $\operatorname{Di}_{I}^{c}: \overline{C \xrightarrow{C_{\mathsf{at}}} (C \times C)}$ 为对角函子满足 $c \longmapsto \overline{(c \cdot c)}$

•
$$Di: C \xrightarrow{Cat} C \xrightarrow{Cat} C$$
 $c \mapsto 常值函子$
 $c \mapsto c \mapsto c$
 $i \mapsto c$
 $f \mapsto cid$

即为对角函子的第二种等价的定义。 I 为仅含两个对象的范畴,在此则 作为一个指标范畴。1和2分别为 其中的对象。

- $\frac{C}{C}: \stackrel{\mathsf{Cat}}{\longmapsto} C$ 为函子 , 满足 $\mathsf{i} \longmapsto \mathsf{c}_\mathsf{i}$
- 不难看出上图中

$$\pi: \underbrace{({\color{red}C} \lim) \operatorname{Di}}^{\mathsf{C}} \xrightarrow{\mathsf{Cat}} {\color{red}C}$$

$$\epsilon: {\color{red}C} \xrightarrow{\mathsf{Cat}} ({\color{red}C} \operatorname{colim}) \operatorname{Di}$$

都构成自然变换 。 $1^{\frac{\pi}{1}}$. $2^{\frac{\pi}{1}}$ 和 1^{ϵ} . 2^{ϵ} 可分别视作是 $\frac{\pi}{1}$ 和 $\frac{\epsilon}{1}$ 。