

Knowing The Spec to Explore The Design via Transformed Bayesian Optimization

Donger Luo*1, Qi Sun*2, Xinheng Li¹, Chen Bai³, Bei Yu³, Hao Geng^{1,4}

¹ShanghaiTech University ²Zhejiang University

³Chinese University of Hong Kong

⁴Shanghai Engineering Research Center of

Energy Efficient and Custom ALIC

Outline

- 1 Introduction
- 2 Algorithms
- 3 Experiment
- 4 Conclusion

Digital IC Design Flow

- Digital IC design back end is automated using powerful EDA tools.
- While the front end of digital IC design still requires lots of manpower.

Agile Design Based ob Chisel

- Agile development is gradually being adopted to reduce chip design costs and accelerate design cycles.
- Chisel designs, like Rocket Core, Berkeley Out-of-Order Machine, and Gemmini, are configurable and parameterizable RISC-V processors.

Gemmini SoC

Gemmini SoC Parameters Examples

Paramaters (19 in the paper) include:

- selection of CPU
- cache sizes
- accelerator configurations

Parameters	Stage	Candidates		
cpu_type	CPU core	RocketBig/BoomMed/BoomLarge		
L2TLBs		512, 1024		
nWays	L2 Cache	4, 8, 16		
capacityKB		512, 1024		
tile_Rows/Columns		1, 4, 8		
mesh_Rows/Columns		8, 16, 32, 64		
sp_capacity	Accelerator	256, 512, 1024, 2048, 4096		
sp_banks		4, 16		
$dma_buswidth$		128, 256		

Overall Flow

Vanilla Gaussian Process

- A GP model is defined as a collection of random variables, any finite number of which have a joint Gaussian distribution.
- A GP is completely specified by its mean function m(x) and covariance function k(x, x'):

$$f(x) \sim \mathcal{GP}(m(x), k(x, x')),$$
 (1)

where $x \in \mathbb{R}^d$ represents the input variable vector.

Transformed Gaussian Process

The Gaussian process is transformed as:

$$f(\mathbf{x}) = f^* - \frac{1}{2}g^2(\mathbf{x}) \quad g(\mathbf{x}) \sim GP(m_0, K),$$
 (2)

so f(x) will not beyond the given spec's value f^* .

Acquisition Function

The expected hypervolume improvement EHVI is defined as the expectation of hypervolume's improvement with respect to the posterior predictive distribution of the GP:

$$EHVI(y) = \mathbb{E}_{p(y|D)}[I(y)], \tag{3}$$

EHRM Acquisition

EHRM aims to find a configuration of SoC architecture parameters with an expectation closet to the given spec, in other words, with the smallest expected hyper-regret:

$$\mathbf{x}_{t+1} = \arg\min_{\mathbf{x} \in X} \mathbb{E}H\mathbb{RM}(\mathbf{x}) = \arg\min_{\mathbf{x} \in X} \mathbb{E}[Hr(\mathbf{x})]. \tag{4}$$

Experimental Setting

- Gemmini-based RISC-V SoC
- 5 Popular LLMs as performance evaluation
- Cadence Joules and Genus for power and area evaluation
- ASAP7 7nm PDK

Experiment

Metric \ Methods	GLSVLSI'07	HPCA'07	DAC'16	ASPDAC'20	ICCAD'21	ISCA'23	Ours
$\begin{array}{c}HV_{0,1}\\HV_{0,2}\\HV\end{array}$	0.6320	0.6491	0.6789	0.6610	0.6716	0.6398	0.7063
	0.7129	0.7255	0.7231	0.7144	0.7251	0.6929	0.7472
	0.5577	0.5636	0.5891	0.5758	0.5975	0.5609	0.6208
Average	0.6342	0.6460	0.6637	0.6504	0.6647	0.6312	0.6914
Ratio(%)	91.72	93.43	95.99	94.07	96.13	91.29	100

Experiment

• The suggestion keeps getting close to the given spec QoR values and finally reaches the targets.

Conclusion

- An architecture design space exploration method based on the transformed Bayesian optimization approach.
- The constructed model utilizes the given spec QoR metric values as additional information to learn.
- A tailored acquisition function is developed for optimization in multiple metrics (e.g., cycles, power, and area).

MOSCONE WEST CENTER SAN FRANCISCO, CA, USA

