Álgebra lineal I, Grado en Matemáticas

Febrero 2020, Primera Semana

No se permite el uso de material impreso (libros, apuntes) ni ningún tipo de calculadora. Todas las soluciones tendrán que darse suficientemente razonadas.

Defina los siguientes conceptos: (2 puntos)

Utilice sólo una cara para estas definiciones

- (a) Matriz idempotente y matriz nilpotente.
- (b) Subespacio vectorial.
- (c) Matriz de una aplicación lineal.
- (d) Espacio dual.

Ejercicio 1: (2 puntos)

Demuestre que si A y B son dos matrices de orden n, entonces det(AB) = det(A) det(B).

Ejercicio 2: (2,5 puntos) Dada la matriz

$$A = \left(\begin{array}{cccc} a+1 & 0 & 1 & 1 \\ 1 & b & 2 & 1 \\ a & a & ab & a \end{array}\right) \quad \mathbf{con} \ a,b \in \mathbb{K}$$

Demuestre que su rango no depende del valor de b.

Ejercicio 3: (1,5 puntos)

En $\mathbb{K}_4[x]$, el espacio vectorial de los polinomios de grado menor o igual que 4 con coeficientes en \mathbb{K} , determine:

- (a) Una base que no contenga polinomios de grado 1 y grado 3.
- (b) Un subespacio suplementario del siguiente subespacio

$$\{-2\lambda + \mu + \lambda x^2 + \mu x + \mu x^3 : \lambda, \mu \in \mathbb{K}\}\$$

Ejercicio 4: (2 puntos)

Determine la matriz en la base canónica del endomorfismo f de \mathbb{K}^3 que cumple:

(a)
$$f \circ f = 4f$$

(b)
$$f(1,0,0) = (1,1,0), f(0,1,1) = (6,2,4)$$