Definition 1. X is an H^0 -complex if $H^i(X) \neq 0 \implies i = 0$.

Theorem 2. The precomposition of the localization functor $\mathcal{Q} : \mathrm{Kom}(\mathcal{C}) \to \mathrm{D}(\mathcal{C})$ with embedding $i_0 : \mathcal{C} \to \mathrm{Kom}(\mathcal{C})$ defines an equivalence between \mathcal{C} and the full subcategory of $\mathrm{D}(\mathcal{C})$ consisting of H^0 -complexes.

Definition 3. $X[i] = T^i([X])$ for $X \in \mathcal{C}$.

Definition 4. C – abelian, then $\operatorname{Ext}_{\mathcal{C}}^{i}(X,Y) = \operatorname{Hom}_{\operatorname{D}(\mathcal{C})}(X[0],Y[i])$.

Remark 5. One does not need projectives or injectives in this definition.

Remark 6. $\operatorname{Ext}_{\mathcal{C}}^{i}(X,Y) = \operatorname{Hom}_{\operatorname{D}(\mathcal{C})}(X[k],Y[k+i])$ for any $k \in \mathbb{Z}$.

Definition 7 (multiplication). There is a multiplication

$$\operatorname{Ext}_{\mathcal{C}}^{i}(X,Y) \times \operatorname{Ext}_{\mathcal{C}}^{j}(Y,Z) \to \operatorname{Ext}_{\mathcal{C}}^{i+j}(X,Z)$$

 $via\ composition\ \operatorname{Hom}_{\operatorname{D}(\mathcal{C})}(X[0],Y[i]) \times \operatorname{Hom}_{\operatorname{D}(\mathcal{C})}(Y[i],Z[i+j]) \to \operatorname{Hom}_{\operatorname{D}(\mathcal{C})}(X[0],Z[i+j]).$

Fact 8. For an exact sequence $0 \to Y' \to Y \to Y'' \to 0$ there is an exact sequence

$$\ldots \to \operatorname{Ext}^i(X,Y') \to \operatorname{Ext}^i(X,Y) \to \operatorname{Ext}^i(X,Y'') \to \operatorname{Ext}^{i+1}(X,Y') \to \ldots$$

Exercise 9. Show that if $X \to Y \to Z \to X[1]$ is distinguished in $D(\mathcal{C})$, then we have an exact sequence of abelian groups

$$\dots \to \operatorname{Hom}_{\operatorname{D}(\mathcal{C})}(U, X[i]) \to \operatorname{Hom}_{\operatorname{D}(\mathcal{C})}(U, Y[i]) \to \operatorname{Hom}_{\operatorname{D}(\mathcal{C})}(U, Z[i]) \to \operatorname{Hom}_{\operatorname{D}(\mathcal{C})}(U, X[i+1]) \to \dots$$

Theorem 10. $\operatorname{Ext}^0_{\mathcal{C}}(X,Y) = \operatorname{Hom}_{\mathcal{C}}(X,Y)$

Theorem 11. $\operatorname{Ext}_{\mathcal{C}}^{i}(X,Y) = 0 \text{ for } i < 0.$

Theorem 12. Every element in $\operatorname{Ext}_{\mathcal{C}}^i(X,Y)$ has a presentation $X[0] \stackrel{s}{\leftarrow} K \stackrel{f}{\rightarrow} Y[i]$, where $K_j = 0$ for j < -i and for j > 0, $K_{-i} = Y$, $f_i = \operatorname{id}$, and s is a quasi-isomorphism. In other words, every such element comes from an exact sequence

$$0 \to Y = K^{-i} \to K^{-i+1} \to K^{-i+2} \to \dots \to K^1 \to K^0 \to X \to 0.$$