MachLe - Résumé Olivier D'Ancona

Evaluation Metrics $A\overline{ccura}cy$ TP + TNTP + TN + FP + FN $Precision = \frac{TP}{TP + FP}$ $Recall = \frac{TP}{TP + FN}$ $Specificity = \frac{TP}{TN + FP}$ $2 \cdot Precision \cdot Recall$ $\overline{Precision + Recall}$ $error\ rate = 1 - accuracy$

 $macro\ average = \frac{1}{n} \sum_{i=1}^{n} avg_i$

Activation Functions

Sigmoid: $\sigma(x) = \frac{1}{1 + e^{-x}}$

Gaussian : e^{-x^2}

threshold.

Softmax : $\frac{1}{\sum_{k=1}^{K} e^{z_k}}$

Neural Network

- Structure

Biais: b, An extra weight that

can be learned using a learning al-

gorithm. The purpose is to replace

Input : I, Input vector

Weights: W, Vector of weights

Learning algorithm -

1. Randomly initialize weights

2. Compute the neuron's output

for a fiven input vector X

3. Update weights: $W_i(t+1) =$

 $W_i(t) + \eta (\hat{y}_i - y) x$ with η the

learning rate and \hat{y}_i the desi-

Hyperbolic tangent : $\frac{e^x - e^{-x}}{e^x + e^{-x}}$

KNN

= Hyperparameters:

- Number of neighbours k
- Distance metric
- normalization type
- strategy if no majority

Big k:

- (+) More confidence, probabilistic
- (-) No locality, heavier

Bayes

Théorème de Baves :

$$P(C_k|x) = \frac{P(x|C_k) \cdot P(C_k)}{P(x)}$$

οù

- $-C_k$: Classe ciblée
- -x: Évidence
- $-P(C_k)$: Probabilité a priori de la classe C_k
- $P(x|C_k)$: probability of observing x given class j
- $P(C_k|x)$: Probabilité a posteriori de la classe C_k après observation de x
- P(x) : Probabilité de l'évi-Inverse d'une matrice 2x2 : dence x

avec

$$P(x) = \sum_{\text{toutes classes } C_k} P(x|C_k) \cdot P(C_k)$$

Exemple Classificateur

Fille/Garçon:

- $-P(C_f) = \frac{4}{70}, P(C_g) = \frac{66}{70}$ $-p(x|C_q) = 0.8, p(x|C_f) = 0.2$
- Calcul de p(x):

$$p(x) = 0.2 \times \frac{4}{70} + 0.8 \times \frac{66}{70}$$
 the like **Loss**:

$$P(C_f|x) = \frac{0.2 \times \frac{4}{70}}{p(x)}, \quad P(C_g|x) = \frac{(1 - y_i)\log(1 - h_\theta(x_n))}{\text{Normalization}}$$

(+)Can deal with imbalanced dataset, prior can be changed

Linear Regression

Soit un tableau de données : x = Surface(g), y = Price(cm) $x \cdot y$, x^2

$$X = [1, Surface]$$

$$X^TX = \begin{bmatrix} n & \sum x_i \\ \sum x_i & \sum x_i^2 \end{bmatrix} = \begin{bmatrix} 7 \\ 38.5 & 2 \end{bmatrix}$$
 hw(x) = sign(b + wx) Formulation:

$$X^{T}y = \begin{bmatrix} \sum y_i \\ \sum x_i y_i \end{bmatrix} = \begin{bmatrix} 348 \\ 1975 \end{bmatrix} \qquad \max_{\omega, b} \frac{1}{\|\omega\|} \quad \text{s.t.} \quad y_i(\omega \cdot x_i + b) \ge 1 \,\forall i$$

$$\hat{\theta} = (X^T X)^{-1} X^T y = \begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix} = \begin{bmatrix} -2.6 \\ 9.51 \end{bmatrix}$$

 $\hat{y} = \theta_0 + \theta_1 x$

$$\sum_{\substack{b \text{ to show } C}} P(x|C_k) \cdot P(C_k) \cdot P(C_k) = \frac{1}{ad - bc} \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Logistic Regression

$$h_{\theta}(x_n) = \sigma(x\theta^T)$$

- $h_{\theta}(x_n)$: predicted value
- $-\theta$: model's parameters -X: input vector

Goal: Find the θ that maximizes the likelihood of the data.

- Calcul de
$$P(C_f|x)$$
 et $J(\beta) = -\frac{1}{n} \sum_{i=1}^n y_i \log(h_\theta(x_n)) + (1-y_i) \log(1-h_\theta(x_n))$

Normalization

Min-max [0,1] $(x-x_{min})$ $(x_{max} - x_{min})$

Min-max [-1,1] $|2 \cdot min \quad max(x) - 1|$ min-max doesn't handle outliers.

Z-norm:
$$x' = \frac{(x-\mu)}{\sigma}$$

Support Vector Machine (SV Concept: SVM finds the hyper-

plane that best separates different classes by maximizing the margin between the closest points of different classes (support vectors).

$$hw(x) = sign(b + wx)$$

$$\max_{\omega,b} \frac{1}{\|\omega\|} \quad \text{s.t.} \quad y_i(\omega \cdot x_i + b) \ge 1 \,\forall$$

- ω : Normal vector to the hyperplane
- -b: Bias term
- x_i, y_i : Training data points and labels

Kernel Trick: SVM can be extended to non-linearly separable data using kernel functions, which implicitly map input space to a higherdimensional feature space.

Common Kernels :

- Linear : $\langle x, x' \rangle$
- Polynomial: $(\gamma \langle x, x' \rangle + r)^d$
- Gaussian (RBF) $e^{(-\gamma ||x-x'||^2)}$
- (+) Effective in high-dimensional spaces, Memory efficient, Versatile (different kernel functions)
- (-) Sensitive to the choice of kernel and regularization parameters, Not suitable for very large datasets hinge loss: $max(0, 1-y_i(w\cdot x_i+b))$ (0 if correct classification) (1 if falls on the hyperplane) (>1 if misclas-

sified) objective function to minimize:

$$= \lim_{\omega,b} \frac{1}{2} \|\omega\|^2 + C \sum_{i=1}^{n} \max(0, 1 - y_i(\omega))$$

where C nutch the hinge loss term (how far are we predicting from

4. Repeat steps 2 and 3 for the number of epochs you need or until the error is smaller than

red output.

Clustering

blablbalba blablbalbaabab bababa

Decision Tree

Concept: Decision tree is a flowchart-like structure in which each internal node represents a test on a feature (e.g. whether a coin flip comes up heads or tails), each branch represents the outcome of the test, and each leaf node represents a class label (decision taken after computing all features).

Entropy:

$$H(X) = -\sum_{i=1}^{n} p(x_i) \log_2 p(x_i)$$

where

— $p(x_i)$: Probability of class x_i

Information Gain:

$$IG(X,Y) = H(X) - H(X|Y)$$

where

- H(X): Entropy of the parent node
- H(X|Y): Entropy of the child node

Gini Impurity:

$$G(X) = 1 - \sum_{i=1}^{n} p(x_i)^2$$

where

— $p(x_i)$: Probability of class x_i

CART Algorithm:

- Select the best attribute using IG or Gini
- Make that attribute a decision node and break the dataset into smaller subsets
- Recursively repeat the process on each subset until you find leaf nodes in all the branches of the tree

Pruning: Pruning is a technique in machine learning and search algorithms that reduces the size of decision trees by removing sections

Convolutional Neural Networks

Recurrent Neural Networks

Dimensionality Reduction

Reinforcement Learning

Computational Complexity of ML Algorithms

Algorithm	Assumption	Train Time/Space	Inference Time/Space
KNN (Brute Force)	Similar things exist in close proximity	$O(knd) \ / \ O(nd)$	$O(knd) \ / \ O(nd)$
KNN (KD Tree)	Similar things exist in close proximity	$O(nd\log(n)) \ / \ O(nd)$	$O(k\log(n)d) \ / \ O(nd)$
Naive Bayes	Features are conditionally independent	$O(ndc) \ / \ O(dc)$	$O(dc) \ / \ O(dc)$
Logistic Regression	Classes are linearly separable	$oxed{O(nd) / O(nd)}$	$O(d) \ / \ O(d)$
Linear Regression	Linear relationship between variables	$oxed{O(nd) / O(nd)}$	$O(d) \ / \ O(d)$
SVM	Classes are linearly separable	$O(n^2d^2) \ / \ O(nd)$	$O(kd) \ / \ O(kd)$
Decision Tree	Feature selection by information gain	$O(n\log(n)d) \ / \ O(ext{nodes})$	$O(\log(n)) \ / \ O(\mathrm{nodes})$
Random Forest	Low bias and variance trees	$O(kn\log(n)d) \ / \ O(\mathrm{nodes} \times k)$	$O(k \log(n)) \ / \ O(\mathrm{nodes} \times k)$
GBDT	High bias, low variance trees	$O(Mn\log(n)d) / O(\operatorname{nodes} \times M + \gamma_m)$	$O(M \log(n)) / O(\operatorname{nodes} \times M + \gamma_m)$