Clustering

Daniel Shang

```
# Load the packages necessary for the project
library(psych)
## Warning: package 'psych' was built under R version 4.0.3
library(ggfortify)
## Warning: package 'ggfortify' was built under R version 4.0.3
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 4.0.3
## Attaching package: 'ggplot2'
## The following objects are masked from 'package:psych':
##
      %+%, alpha
##
library(factoextra)
## Warning: package 'factoextra' was built under R version 4.0.3
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
# In this case, we will use the 'iris' data set for illustration. A quick summary
## and the structure of the data set is shown.
data = iris
summary(data)
##
    Sepal.Length
                    Sepal.Width
                                                   Petal.Width
                                   Petal.Length
## Min.
         :4.300
                  Min.
                          :2.000
                                   Min.
                                        :1.000
                                                  Min.
                                                         :0.100
## 1st Qu.:5.100
                 1st Qu.:2.800
                                   1st Qu.:1.600
                                                  1st Qu.:0.300
## Median :5.800
                 Median:3.000
                                   Median :4.350
                                                  Median :1.300
         :5.843 Mean :3.057
                                   Mean :3.758
## Mean
                                                  Mean :1.199
## 3rd Qu.:6.400
                   3rd Qu.:3.300
                                   3rd Qu.:5.100
                                                  3rd Qu.:1.800
                  Max. :4.400
                                   Max. :6.900
## Max. :7.900
                                                  Max. :2.500
         Species
## setosa
             :50
```

```
## versicolor:50
##
  virginica:50
##
##
##
str(data)
                150 obs. of 5 variables:
## 'data.frame':
## $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
## $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
## $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
## $ Species
             : Factor w/ 3 levels "setosa", "versicolor", ...: 1 1 1 1 1 1 1 1 1 1 ...
                          K-Means Clustering -
# We set a random seed and build a K-Means model. Since the target variable (Species)
## of the iris data set has three categories, we will use three as the value K
## for now. We will come back to check if it is a good choice.
set.seed(123)
kmeans1 = kmeans(iris[, -5], 3)
kmeans1
## K-means clustering with 3 clusters of sizes 50, 62, 38
## Cluster means:
   Sepal.Length Sepal.Width Petal.Length Petal.Width
                            1.462000
       5.006000
                 3.428000
                                      0.246000
## 2
       5.901613
                 2.748387
                            4.393548
                                      1.433871
## 3
       6.850000
                 3.073684
                            5.742105
                                      2.071053
##
## Clustering vector:
   ## [149] 3 2
##
## Within cluster sum of squares by cluster:
## [1] 15.15100 39.82097 23.87947
## (between_SS / total_SS = 88.4 %)
## Available components:
## [1] "cluster"
                  "centers"
                               "totss"
                                                        "tot.withinss"
                                           "withinss"
## [6] "betweenss"
                  "size"
                               "iter"
                                           "ifault"
# Here, we build a table showing the three species categories and the three clusters
\#\# determined by K-Means model. According to the table, we can see that the model
## correctly clustered 'setosa' and did a fairly good job clustering 'versicolor.'
## However, the model seems to be not sure about which cluster 'virginica' should
## be put in.
table(iris$Species, kmeans1$cluster)
```

```
## ## 1 2 3 ## setosa 50 0 0 ## versicolor 0 48 2 ## virginica 0 14 36
```


If we plot the three clusters on a graph, we see that the green and blue clusters
are very close to each other, and they could potentially be clustered in the same
cluster.
autoplot(kmeans1, iris[, -5], frame = TRUE)

Warning: 'select_()' is deprecated as of dplyr 0.7.0.

```
## Please use 'select()' instead.
## This warning is displayed once every 8 hours.
## Call 'lifecycle::last_warnings()' to see where this warning was generated.
## Warning: 'group_by_()' is deprecated as of dplyr 0.7.0.
## Please use 'group_by()' instead.
## See vignette('programming') for more help
## This warning is displayed once every 8 hours.
## Call 'lifecycle::last_warnings()' to see where this warning was generated.
```


As we can see, the center of 'Sepal.Width' is very close to each other. kmeans1\$centers

1.462000

Sepal.Length Sepal.Width Petal.Length Petal.Width

3.428000

1

5.006000

0.246000

```
for (i in 2:nc){
    set.seed(seed)
    wss[i] <- sum(kmeans(data, centers=i)$withinss)}
plot(1:nc, wss, type="b", xlab="Number of Clusters",
    ylab="Within groups sum of squares", main = 'WSS Plot')}</pre>
```

```
# The plot shows the variance of each value of K. After K equals 2, the slope of ## line is not as high as before. This means that a K equals 2 could be a better ## choice. However, this judgment is subjective, as the slope when K equals 3 is ## also distinguishable from the slopes when K is greater than 3. We will use K ## equals 2 and see how the model performs.

wssplot(iris[, -5])
```

WSS Plot


```
# We repeat the same process as before except that we use an K equals 2 this time.
set.seed(123)
kmeans2 = kmeans(iris[, -5], 2)
kmeans2
```

```
## K-means clustering with 2 clusters of sizes 53, 97
##
## Cluster means:
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## 1 5.005660 3.369811 1.560377 0.290566
## 2 6.301031 2.886598 4.958763 1.695876
##
```

```
## Clustering vector:
   ##
## [149] 2 2
## Within cluster sum of squares by cluster:
## [1] 28.55208 123.79588
## (between_SS / total_SS = 77.6 %)
## Available components:
## [1] "cluster"
              "centers"
                        "totss"
                                   "withinss"
                                             "tot.withinss"
## [6] "betweenss"
              "size"
                        "iter"
                                   "ifault"
# Putting the clustering result in a table, we do see that each cluster is 'purer.'
## The model put 'versicolor' and 'virginica' in the same cluster.
table(iris$Species, kmeans2$cluster)
##
##
           1 2
          50 0
##
   setosa
   versicolor 3 47
##
##
   virginica
           0 50
pairs.panels(x = iris[, -5], gap = 0, bg = c('yellow', 'blue')[kmeans2$cluster],
        pch = 21, stars = TRUE, ci = TRUE, alpha = 0.1)
```


autoplot(kmeans2, iris[, -5], frame = TRUE)

As shown by all the plots and statistics, this way of clustering is also acceptable.

When putting the K-Means Clustering into practice, we should use domain knowledge

to make this kind of choice. Does clustering 'versicolor' and 'virginica' make

sense? Are they biologically similar to each other? Knowing these can help

analysts to make the proper decision of choosing K.

kmeans2\$centers

```
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## 1 5.005660 3.369811 1.560377 0.290566
## 2 6.301031 2.886598 4.958763 1.695876
```

- Hierarchical Clustering

```
# Set a random seed and randomly select 40 samples as the data set to be used in
## this example
set.seed(123)
index_1 = sample(150, nrow(iris), replace = FALSE)
iris_sample = iris[index_1[1:40], ]
```

```
# Hierarchical clustering model clusters data based on the euclidian distance between ## points. Thus, we first compute the distance between points and feed the model ## with the distance calculated. Then, we make a plot to show how the model cluster ## the data. We also add the species name onto the plot to take a glance at the ## model's performance.

distance = dist(iris_sample[, -5])
```

```
hc1 = hclust(distance)
plot(hc1, labels = iris_sample$Species, hang = -1)
```

Cluster Dendrogram

distance hclust (*, "complete")


```
# Here, we cut the model into three pieces because we choose three as our size of K.

## Then, we can look at the detail of each attribute within each cluster. For example,

## the first and second row indicate that, in the first cluster, the average

## 'Petal.Length' is 1.366667. With this data, we get a better understanding about

## how different attribute looks like within a cluster.

clusterGroups = cutree(hcl, k = 3)

tapply(iris_sample$Petal.Length, clusterGroups, mean)

## 1 2 3

## 1.366667 5.515789 3.933333

tapply(iris_sample$Petal.Width, clusterGroups, mean)

## 1 2 3

## 0.2333333 1.8894737 1.23333333

tapply(iris_sample$Sepal.Length, clusterGroups, mean)

## 4.841667 6.752632 5.555556

tapply(iris_sample$Sepal.Width, clusterGroups, mean)
```

```
## 1 2 3
## 3.375000 2.989474 2.677778
```

```
# Here, we check out what is cluster by the model as cluster number three. We can
## see that this cluster is solely consisted of 'versicolor' species. In application,
## the clustering analysis can be used to, for example, segment customers based on
## their characteristics, so that we have a better idea about how to design different
## marketing campaign to target different segment of customers.
subset(iris_sample, clusterGroups == 3)
```

##		Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
##	90	5.5	2.5	4.0	1.3	versicolor
##	91	5.5	2.6	4.4	1.2	versicolor
##	99	5.1	2.5	3.0	1.1	versicolor
##	72	6.1	2.8	4.0	1.3	versicolor
##	81	5.5	2.4	3.8	1.1	versicolor
##	60	5.2	2.7	3.9	1.4	versicolor
##	96	5.7	3.0	4.2	1.2	versicolor
##	89	5.6	3.0	4.1	1.3	versicolor
##	93	5.8	2.6	4.0	1.2	versicolor