

تمرین سری چهارم

سیگنالها و سیستمها – دکتر اخوان

1_ خواص سری فوریه ی سیگنال های پیوسته در زمان

سیگنال x(t) با دوره ی تناوب اصلی T_0 و ضرایب سری فوریه ی $lpha_k$ مفروض است.

الف) ضرایب سری فوریه ی سیگنال
$$y(t)=Re\{x(t)\}+Ev\{x(t)\}$$
 را برحسب x_k بیابید.

بیابید. a_k بسری فوریه ی سیگنال زیر را بر حسب a_k بیابید.

$$y(t) = \sum_{m=1}^{M} (x(t + mt_0) + x(t - mt_0))$$

ج) می دانیم اگر سیگنال x(t) با x(t) متناوب باشد، با $M \in \mathbb{Z}$ که MT_0 که بیز متناوب خواهد بود. ضرایب سری فوریه سیگنال جر می دانیم اگر سیگنال زیر ضرایب a_k در حالیکه دوره ی تناوب آن را MT_0 در نظر می گیرید برحسب a_k محاسبه کنید. اگر شکل زیر ضرایب آن را T_0 در نظر T_0 در نظر گرفته شده است را نشان دهد، ضرایب سری فوریه در حالیکه دوره ی تناوب سیگنال را T_0 در نظر می گیرید، رسم کنید.

 a_k اگر c_6 و c_2 باشد، ضرایب سری فوریه ی متناظر با سیگنال $y(t) = x(t) + x\left(\frac{3}{2}t\right)$ باشد، ضرایب سری فوریه ی متناظر با سیگنال با سیگنال با بید.

2_ ضرب سيگنال ها و كانولوشن ضرايب

دو سیگنال پیوسته ـ زمان متناوب $\chi(t)$ و $\chi(t)$ با دوره ی تناوب اصلی T_0 را در نظر بگیرید. نمایش سری فوریه ی دو سیگنال به صورت زیر می باشد:

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t} , \qquad y(t) = \sum_{k=-\infty}^{+\infty} b_k e^{jk\omega_0 t} , \quad \omega_0 = \frac{2\pi}{T_0}$$

می توان نشان داد ضرایب سری فوریه سیگنال

$$z(t) = x(t)y(t) = \sum_{k=-\infty}^{+\infty} c_k e^{jk\omega_0 t}$$

 $c_k = \sum_{n=-\infty}^\infty a_n b_{k-n}$ با کانولوشن ضرایب در حوزه ی گسسته محاسببه می شود، یعنی

الف) حال به وسیله ی قسمت قبل ضرایب سری فوریه ی دو سیگنال زیر را بیابید.

$$x_1(t) = \cos(20\pi t) \sum_{k=-\infty}^{+\infty} \Pi\left(\frac{1}{2}(t-3k)\right)$$

•
$$x_2(t) = \cos(20\pi t) \sum_{k=-\infty}^{+\infty} \left(2\Pi\left(t - \frac{1}{2} - 3k\right) + \Pi(t - \frac{3}{2} - 3k) \right)$$

در این قسمت سیگنال $\Pi(t)$ به صورت $\frac{1}{t} > \frac{1}{2}$ این قسمت سیگنال $\Pi(t)$ به صورت $\frac{1}{t} > \frac{1}{2}$ از سیگنال ها از از این قسمت سیگنال $\Pi(t)$ در این قسمت سیگنال و از این قسمت سیگنال ها از این قسمت سیگنال و از این و

ضرب دو سیگنال به وجود آمده است. سیگنال اول (سیگنال کسینوسی) که واضحا متناوب است. اگر سیگنال دوم که به صورت جمع یک سری المان (یک summation روی k) هست را رسم کنید می بینید که آن هم متناوب است.

ب) تعمیم رابطه پارسوال: رابطه ی زیر را ثابت کنید.

$$\frac{1}{T_0} \int_0^{T_0} x(t) y^*(t) dt = \sum_{k=-\infty}^{+\infty} a_k b_k^*$$

3_ رابطه بین سیگنال و ضرایب

سیگنال $\chi(t)$ با دوره ی تناوب T=4 و ضرایب سری فوریه ی a_k مفروض است و ضابطه ی آن در یک دوره ی تناوب به صورت زیر می باشد:

$$-2 < t < 2$$
 $x(t) = 1 - |t|$

مقدار عبارات زیر را محاسبه کنید:

•
$$\sum_{k=-\infty}^{+\infty} j^k a_k$$
 •
$$\sum_{k=0}^{+\infty} |a_k|^2$$

$$\sum_{k=-\infty}^{+\infty} (-1)^k a_k \qquad \qquad \sum_{k=-\infty}^{+\infty} a_{2k+1}$$

4- ضرایب سری فوریه ی سیگنال های زیر را محاسبه کنید.

1.
$$x_1(t) = \sum_{n=-\infty}^{+\infty} (-1)^n \Lambda(t-2n)$$
 hint: $\Lambda(t) = \begin{cases} t+1 & -1 \le t \le 0 \\ -t+1 & 0 \le t \le 1 \\ 0 & o \cdot w \end{cases}$

2.
$$x_2(t) = \sum_{n=-\infty}^{+\infty} (-1)^n \delta'(t - nT)$$

3.
$$x_3(t) = |\cos(2\pi f_0 t)| + \cos(2\pi f_0 t)$$

4.
$$x_4(t) = f^*(t)e^{j\frac{2\pi}{T_0}t}$$

(in terms of f(t) (periodic with period T_0) Fourier series coefficients)

5 ـ محاسبه ی ضرایب سری فوریه از روی شکل سیگنال

ضرایب سری فوریه ی سیگنال های زیر را محاسبه کنید:

