Estructura y Representación de Datos

Prof. Tatiana Ilabaca

Primer semestre 2021

Módulo 2 Estructuras de datos estáticas

Arreglos

Objetivos

Lección 1

- Conocer las características de una estructura estática
- Conocer las características de los arreglos
- Conocer las características de los arreglos unidimensionales
- Aplicar e implementar arreglos unidimensionales (VECTORES)

Estructuras de datos estáticas

Introducción

- Las estructuras de datos, según donde residían, se clasificaban en:
 - Estructuras internas (memoria principal)
 - Estructuras externas (soporte externo)

Estructuras de datos estáticas

Características

- Poseen una cantidad fija de elementos
- · La cantidad de espacio asignado en memoria es fijo
- El tamaño de la estructura:
 - queda determinado con la declaración de la estructura en el programa
 - no puede variar en tiempo de ejecución
- · La reorganización de sus elementos puede resultar muy costosa

Características

- Colección ordenada de elementos; cada elemento tiene una posición
- Son estructuras homogéneas; sus elementos son del mismo tipo de datos
- Permiten referirse a una colección de elementos mediante un mismo nombre.
- Son referenciados; el acceso a cada elemento se realiza a través de uno o más índices
- El número de índices depende de las dimensiones del arreglo
- Los arreglos más comunes son:
 - Arreglo unidimensional: Vector
 - Arreglo bidimensional: Matriz
 - Arreglo tridimensional: Cubo

Características

 Un arreglo representa a un conjunto de celdas de memorias consecutivas y su identificador es la dirección de memoria del primer elemento

short int a[5]={1,2,3}; a es la dirección de memoria de la primera celda

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
20	21	22	23	24	25	26	a	(68)	29	30	31	32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59
60	61	62	63	64	65	66	67	1		2		3						78	79
80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99

Vectores (Arreglos unidimensionales)

Referencias

Declaración en C
tipo nombre[tamaño];

//Ejemplo
int locker[6];

Matrices (Arreglos bidimensionales)

$$\begin{pmatrix} 2 & 1 & 5 & -1 & 8 \\ -1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 10 & 11 & 13 \end{pmatrix}$$

Matriz de orden 3x5

Referencias

Declaración en C

tipo nombre[cantFilas][cantColumnas];

//Ejemplo

int locker[3][6];

Cubos (Arreglos tridimensionales)

//Declaración en C

tipo nombre[cantFilas][cantColumnas][cantPlanos];

```
//Ejemplo
//Filas: Tipo vacuna
//Columnas: Rango etareo
//Planos: Región
```

int vacunacion[2][10][16];

Vectores

Características

- Arreglo unidimensional
- Utiliza un índice para referenciar los elementos
- El índice debe ser de tipo entero
- El valor del índice puede estar dado por un número, una variable o una expresión

```
int vector1[10];
float vector2[5];
char vector3[20];
int i=0;

vector1[1]=7;
vector2[i]=3.5;
vector3[i+1]='A';
```


Vectores

Operaciones

- Asignación
- Eliminación*
- Modificación
- Búsqueda
- Ordenamiento
- Inicialización

Actividad

 Implementar un programa que permita ingresar los valores correspondientes a 10 mediciones de PH, los almacene en un vector, calcule el promedio y obtenga el valor de la medición más ácida.

Estudiar para el Lunes 19.04

- Texto: Estructura de Datos. Proyecto LATIn
- Capítulo 3: Algoritmos de búsqueda
 - Introducción
 - Búsqueda secuencial
 - Búsqueda binaria
 - Búsqueda Hash (hasta colisiones). Métodos 1 y 2.
- No considerar complejidad

Desarrollar la Guía de Práctica 3 publicada en el Aula Virtual.

Actividad

