# Logical Devices

#### We are here



#### Building up from gates...

- Some common and more complex structures:
  - Multiplexers (aka mux)
  - Decoders
    - Seven-segment decoders
  - Adders (half and full)
  - Subtractors
  - Comparators

These are all combinational circuits

#### Combinational Circuits

- Combinational Circuits are any circuits where the outputs rely strictly on the inputs.
  - Everything we've done so far and what we'll do today is all combinational logic.
- Another category is sequential circuits that we will learn in the next few weeks.

#### More Karnaugh Maps



#### Karnaugh map review



 K-maps provide an illustration of a circuit's minterms (or maxterms), and a guide to how neighbouring terms may be combined.

$$Y = \overline{A} \cdot B \cdot C + \overline{A} \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot B \cdot \overline{C} + \overline{A} \cdot B \cdot C$$

#### Karnaugh map review



 K-maps provide an illustration of a circuit's minterms (or maxterms), and a guide to how neighbouring terms may be combined.

$$Y = \overline{A} \cdot B \cdot C + \overline{A} \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot B \cdot \overline{C} + \overline{A} \cdot B \cdot C$$

$$= B \cdot C + \overline{A} \cdot \overline{C}$$

#### Reminder on Reducing Circuits

- Eliminating variables in K-Maps by drawing larger (>1 element) rectangular groupings results in a circuit with a lower cost function.
- The resulting expression is still in sum-ofproducts form.
  - But, if simplified, it is no longer in sum-of-minterms form.
- Note: It is not only the number of gates that matters when reducing circuits, but also the number of inputs to each gate.

# K-Maps - Different Notations A 3-variables map example



# Helpful Hint



#### More Examples w/ K-Maps



| F3 = |
|------|
|------|

| A BC | 00 | 01 | 11 | 10 |
|------|----|----|----|----|
| 0    | 1  | 0  | 0  | 1  |
| 1    | 1  | 0  | 0  | 1  |

|      |   | F2 = | =  |    |
|------|---|------|----|----|
| A BC |   | 01   | 11 | 10 |
| 0    | 0 | 0    | 0  | 0  |
| 1    | 1 | 1    | 1  | 1  |



F4

### More Examples w/ K-Maps



| F3 | = | C' |  |
|----|---|----|--|
|    |   |    |  |

| A BC | 00 | 01 | 11 | 10 |
|------|----|----|----|----|
| 0    | 1  | 0  | 0  | 1  |
| 1    | 1  | 0  | 0  | 1  |

|      |   | F2 = | = A |    |
|------|---|------|-----|----|
| A BC |   | 01   | 11  | 10 |
| 0    | 0 | 0    | 0   | 0  |
| 1    | 1 | 1    | 1   | 1  |

| F4 = B+C |
|----------|
|----------|

| A BC | 00 | 01 | 11 | 10 |
|------|----|----|----|----|
| 0    | 0  | 1  | 1  | 1  |
| 1    | 0  | 1  | 1  | 1  |

- Create a circuit with four inputs (A, B, C, D), and two outputs (X, Y):
  - The output X is high whenever two or more of the inputs are high.
  - The output Y is high when three or more of the inputs are high.

| A | В | С | D | х | Y |
|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 |   |   |
| 0 | 0 | 0 | 1 |   |   |
| 0 | 0 | 1 | 0 |   |   |
| 0 | 0 | 1 | 1 |   |   |
| 0 | 1 | 0 | 0 |   |   |
| 0 | 1 | 0 | 1 |   |   |
| 0 | 1 | 1 | 0 |   |   |
| 0 | 1 | 1 | 1 |   |   |
| 1 | 0 | 0 | 0 |   |   |
| 1 | 0 | 0 | 1 |   |   |
| 1 | 0 | 1 | 0 |   |   |
| 1 | 0 | 1 | 1 |   |   |
| 1 | 1 | 0 | 0 |   |   |
| 1 | 1 | 0 | 1 |   |   |
| 1 | 1 | 1 | 0 |   |   |
| 1 | 1 | 1 | 1 |   |   |

- Create a circuit with four inputs (A, B, C, D), and two outputs (X, Y):
  - The output X is high whenever two or more of the inputs are high.
  - The output Y is high when three or more of the inputs are high.

| A | В | С | D | х | Y |
|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 0 |
| 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 | 1 | 0 |
| 0 | 1 | 1 | 0 | 1 | 0 |
| 0 | 1 | 1 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 1 | 1 | 0 |
| 1 | 0 | 1 | 0 | 1 | 0 |
| 1 | 0 | 1 | 1 | 1 | 1 |
| 1 | 1 | 0 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 | 1 | 1 |
| 1 | 1 | 1 | 0 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 |

X:



X =

X:



$$X = A \cdot B + C \cdot D + B \cdot D + B \cdot C + A \cdot D + A \cdot C$$

Y:

|     | <u>C</u> . <u>D</u> | <u>C</u> ∙D | C ·D | C · <u>D</u> |
|-----|---------------------|-------------|------|--------------|
| Ā·B | 0                   | 0           | 0    | 0            |
| Ā·B | 0                   | 0           | 1    | 0            |
| A·B | 0                   | 1           | 1    | 1            |
| A·B | 0                   | 0           | 1    | 0            |

$$Y = A \cdot B \cdot D + B \cdot C \cdot D + A \cdot B \cdot C + A \cdot C \cdot D$$

#### Alternative for X: Maxterms

X:

|     | C+D | C+D | C+D | C+D |
|-----|-----|-----|-----|-----|
| A+B | 0   | 0   | 1   | 0   |
| A+B | 0   | 1   | 1   | 1   |
| Ā+B | 1   | 1   | 1   | 1   |
| Ā+B | 0   | 1   | 1   | 1   |

X =

#### Alternative for X: Maxterms

X:

|     | C+D | C+D | C+D | <del>C</del> +D |
|-----|-----|-----|-----|-----------------|
| A+B |     | 0   | 1   | 0               |
| A+B | 0   | 1   | 1   | 1               |
| Ā+B | 1   | 1   | 1   | 1               |
| Ā+B | 0   | 1   | 1   | 1               |

 $X = (A+C+D) \cdot (B+C+D) \cdot (A+B+C) \cdot (A+B+D)$ 

#### Karnaugh map review

- Note: There are cases where no combinations are possible. K-maps cannot help in these cases.
- Example: Multi-input XOR gates.
  - Output is 1 iff odd number of inputs is 1.



|   | B·€ | B·C | в∙с | B⋅C |
|---|-----|-----|-----|-----|
| Ā | 0   | 1   | 0   | 1   |
| A | 1   | 0   | 1   | 0   |

$$Y = \overline{A} \cdot \overline{B} \cdot C + A \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot B \cdot \overline{C} + A \cdot B \cdot C$$

# Multiplexers

#### Logic devices

- Certain structures are common to many circuits, and have block elements of their own.
  - e.g., Multiplexers (short form: mux)
  - Behaviour: Output is X if S is 0, and Y if S is 1:
    - S is the select input; X and Y are the data inputs.



## Multiplexer design

| X | Y | S | М |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |

|   | ₹·\$ | ₹·s | Y·S | y ⋅ <u>s</u> |
|---|------|-----|-----|--------------|
| x | 0    | 0   | 1   | 0            |
| x | 1    | 0   | 1   | 1            |

$$M = Y \cdot S + X \cdot \overline{S}$$



#### Multiplexers in Verilog

- A four-input multiplexer, created with gates.
  - Note that four input lines require two select bits to choose the output.

```
module mux gates( select, d, q );
input[1:0] select;
input[3:0] d;
output
          q;
wire q, q1, q2, q3, q4;
wire not s0, not s1;
wire[1:0] select;
wire[3:0] d;
not n1( not s0, select[0] );
not n2( not s1, select[1] );
and a1(q1, not s0, not s1, d[0]);
and a2( q2, select[0], not s1, d[1] );
and a3( q3, not s0, select[1], d[2] );
and a4( q4, select[0], select[1], d[3] );
or o1 ( q, q1, q2, q3, q4 );
endmodule
```

#### Multiplexers in Verilog

Another four-input mux, this time implemented using boolean notation differently, using

In Lab2 you need to implement a 4-to-1 mux hierarchical design.

```
module mux logic( select, d, q );
input[1:0] select;
input[3:0] d;
output q;
                             specify input
wire q;
                                       specify value
wire[1:0] select;
wire[3:0] d;
assign q = (~select[1]&~select[0])
                                      &d[0]
            (~select[1]&select[0])
                                      &d[1]
            (select[1]&~select[0])
                                      &d[2]
            (select[1]&select[0])
                                      &d[3];
endmodule
```

#### Multiplexer uses

- Muxes are very useful whenever you need to select from multiple input values.
  - <u>Example:</u> surveillance video monitors, digital cable boxes, routers.



#### Demultiplexers

- Related to decoders: demultiplexers.
  - Does multiplexer operation, in reverse.
  - <u>Example:</u> modems receiving Internet data.





#### Mux + Demux



#### Source:

https://upload.wikimedia.org/wikipedia/commons/e/eo/Telephony\_multiplexer\_system.gif



#### Decoders

- Decoders are essentially translators.
  - Translate from the output of one circuit to the input of another.
  - Think of them as providing a mapping between 2 different encodings!
- Example: Binary signal splitter
  - Activates one of four output lines, based on a two-digit binary number.



#### 7-segment decoder



- Common and useful decoder application.
  - Translate from a 4-digit binary number to the seven segments of a digital display.
  - Each output segment has a particular logic that defines it.
  - Example: Segment 0
    - Activate for values: 0, 2, 3, 5, 6, 7, 8, 9.
    - In binary: 0000, 0010, 0011, 0101, 0110, 0111, 1000, 1001.
  - First step: Build the truth table and K-map.

#### 7-segment decoder





- Example: Displaying digits 0-9
  - Assume input is a 4-digit binary number
  - Segment 0 (top segment) is low whenever the input values are 0000, 0010, 0011, 0101, 0110, 0111, 1000 or 1001, and high whenever input number is 0001 or 0100.
  - This create a truth table and map like the following....

#### 7-segment decoder

| <b>X</b> <sub>3</sub> | <b>X</b> <sub>2</sub> | X <sub>1</sub> | $\mathbf{x}_{0}$ | HEX <sub>o</sub> |
|-----------------------|-----------------------|----------------|------------------|------------------|
| 0                     | 0                     | 0              | 0                | 0                |
| 0                     | 0                     | 0              | 1                | 1                |
| 0                     | 0                     | 1              | 0                | 0                |
| 0                     | 0                     | 1              | 1                | 0                |
| 0                     | 1                     | 0              | 0                | 1                |
| 0                     | 1                     | 0              | 1                | 0                |
| 0                     | 1                     | 1              | 0                | 0                |
| 0                     | 1                     | 1              | 1                | 0                |
| 1                     | 0                     | 0              | 0                | 0                |
| 1                     | 0                     | 0              | 1                | 0                |

|                                                             | $\overline{\mathbf{x}}_{1} \cdot \overline{\mathbf{x}}_{0}$ | $\overline{\mathbf{x}}_{1} \cdot \mathbf{x}_{0}$ | $\mathbf{x_1} \cdot \mathbf{x_0}$ | $\mathbf{x}_{1} \cdot \overline{\mathbf{x}}_{0}$ |
|-------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------|-----------------------------------|--------------------------------------------------|
| $\overline{\mathbf{x}}_{3} \cdot \overline{\mathbf{x}}_{2}$ | 0                                                           | 1                                                | 0                                 | 0                                                |
| $\overline{\mathbf{x}}_{3} \cdot \mathbf{x}_{2}$            | 1                                                           | 0                                                | 0                                 | 0                                                |
| $\mathbf{x}_3 \cdot \mathbf{x}_2$                           | x                                                           | x                                                | x                                 | x                                                |
| $X_3 \cdot \overline{X}_2$                                  | 0                                                           | 0                                                | x                                 | x                                                |

- $+ X_3 \cdot X_2 \cdot X_1 \cdot X_0$
- But wait...what about input values 1010 to 1111?



#### "Don't care" values

- Input values that will never happen or are not meaningful in a given design, and so their output values do not have to be defined.
  - Recorded as 'X' in truth-tables and K-Maps.
- In the K-maps we can think of these "don't care" values as either 0 or 1 depending on what helps us simplify our circuit.
  - Note you do NOT change the X with a 0 or 1, you just include it in a grouping as needed.

#### "Don't care" values

■ New equation for HEX0:

|                                                             | $\overline{\mathbf{x}}_{1} \cdot \overline{\mathbf{x}}_{0}$ | $\overline{\mathbf{x}}_{1} \cdot \mathbf{x}_{0}$ | $\mathbf{x_1} \cdot \mathbf{x_0}$ | $\mathbf{x_1} \cdot \overline{\mathbf{x}_0}$ |
|-------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------|-----------------------------------|----------------------------------------------|
| $\overline{\mathbf{x}}_{3} \cdot \overline{\mathbf{x}}_{2}$ | 0                                                           | 1                                                | 0                                 | 0                                            |
| $\overline{\mathbf{x}}_{3} \cdot \mathbf{x}_{2}$            | 1                                                           | 0                                                | 0                                 | 0                                            |
| $\mathbf{x}_3 \cdot \mathbf{x}_2$                           | X                                                           | х                                                | x                                 | x                                            |
| $\mathbf{x}_3 \cdot \overline{\mathbf{x}}_2$                | 0                                                           | 0                                                | x                                 | x                                            |

$$HEX0 = \overline{X}_{3} \cdot \overline{X}_{2} \cdot \overline{X}_{1} \cdot X_{0}$$
$$+ X_{2} \cdot \overline{X}_{1} \cdot \overline{X}_{0}$$

# Again for segment 1



| <b>X</b> <sub>3</sub> | <b>X</b> <sub>2</sub> | X <sub>1</sub> | $\mathbf{x}_{0}$ | HEX <sub>1</sub> |
|-----------------------|-----------------------|----------------|------------------|------------------|
| 0                     | 0                     | 0              | 0                | 0                |
| 0                     | 0                     | 0              | 1                | 0                |
| 0                     | 0                     | 1              | 0                | 0                |
| 0                     | 0                     | 1              | 1                | 0                |
| 0                     | 1                     | 0              | 0                | 0                |
| 0                     | 1                     | 0              | 1                | 1                |
| 0                     | 1                     | 1              | 0                | 1                |
| 0                     | 1                     | 1              | 1                | 0                |
| 1                     | 0                     | 0              | 0                | 0                |
| 1                     | 0                     | 0              | 1                | 0                |

|                                                             | $\overline{\mathbf{x}}_{1} \cdot \overline{\mathbf{x}}_{0}$ | $\overline{\mathbf{x}}_{1} \cdot \mathbf{x}_{0}$ | $\mathbf{x_1} \cdot \mathbf{x_0}$ | $\mathbf{x}_{1} \cdot \overline{\mathbf{x}}_{0}$ |
|-------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------|-----------------------------------|--------------------------------------------------|
| $\overline{\mathbf{x}}_{3} \cdot \overline{\mathbf{x}}_{2}$ | 0                                                           | 0                                                | 0                                 | 0                                                |
| $\overline{\mathbf{x}}_{3} \cdot \mathbf{x}_{2}$            | 0                                                           | 1                                                | 0                                 | 1                                                |
| $\mathbf{x}_3 \cdot \mathbf{x}_2$                           | x                                                           | X                                                | x                                 | X                                                |
| $\mathbf{x}_3 \cdot \overline{\mathbf{x}}_2$                | 0                                                           | 0                                                | x                                 | x                                                |

$$\mathbf{HEX1} = \mathbf{X}_2 \cdot \overline{\mathbf{X}}_1 \cdot \mathbf{X}_0 + \mathbf{X}_2 \cdot \mathbf{X}_1 \cdot \overline{\mathbf{X}}_0$$

# Again for segment 2



| <b>X</b> <sub>3</sub> | <b>X</b> <sub>2</sub> | X <sub>1</sub> | $\mathbf{x}_{0}$ | HEX <sub>2</sub> |
|-----------------------|-----------------------|----------------|------------------|------------------|
| 0                     | 0                     | 0              | 0                | 0                |
| 0                     | 0                     | 0              | 1                | 0                |
| 0                     | 0                     | 1              | 0                | 1                |
| 0                     | 0                     | 1              | 1                | 0                |
| 0                     | 1                     | 0              | 0                | 0                |
| 0                     | 1                     | 0              | 1                | 0                |
| 0                     | 1                     | 1              | 0                | 0                |
| 0                     | 1                     | 1              | 1                | 0                |
| 1                     | 0                     | 0              | 0                | 0                |
| 1                     | 0                     | 0              | 1                | 0                |

|                                                             | $\overline{\mathbf{x}}_{1} \cdot \overline{\mathbf{x}}_{0}$ | $\overline{\mathbf{x}}_{1} \cdot \mathbf{x}_{0}$ | $\mathbf{x_1} \cdot \mathbf{x_0}$ | $\mathbf{x}_{1} \cdot \overline{\mathbf{x}}_{0}$ |
|-------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------|-----------------------------------|--------------------------------------------------|
| $\overline{\mathbf{x}}_{3} \cdot \overline{\mathbf{x}}_{2}$ | 0                                                           | 0                                                | 0                                 | 1                                                |
| $\overline{\mathbf{x}}_{3} \cdot \mathbf{x}_{2}$            | 0                                                           | 0                                                | 0                                 | 0                                                |
| $\mathbf{x}_3 \cdot \mathbf{x}_2$                           | x                                                           | x                                                | x                                 | x                                                |
| $\mathbf{x}_3 \cdot \overline{\mathbf{x}}_2$                | 0                                                           | 0                                                | x                                 | X                                                |

$$HEX2 = \overline{X}_2 \cdot X_1 \cdot \overline{X}_0$$

## Verilog for 7-segment display

```
//Seven segment decoder for BCD inputs from 0 to 9
module seven_seg_decoder(S,HEX0);
input [3:0]S;
output [6:0]HEX0;

assign HEX0[0]=(~S[3]&~S[2]&~S[1]&S[0])|(S[2]&~S[1]&~S[0]);
assign HEX0[1]=(S[2]&~S[1]&S[0])|(S[2]&S[1]&~S[0]);
assign HEX0[2]=~S[2]&S[1]&~S[0];
... // remaining equations left as an exercise
endmodule
```

## The final 7-seg decoder

- Decoders all look the same, except for the inputs and outputs.
- Unlike other devices, the implementation differs from decoder to decoder.



## Another "don't care" example

(not related to decoders)

- Climate control fan:
  - The fan should turn on (F) if the temperature is hot (H) or if the temperature is cold (C), depending on whether the unit is set to A/C or heating (A).

| Н | С | A | F |
|---|---|---|---|
| 0 | 0 | 0 |   |
| 0 | 0 | 1 |   |
| 0 | 1 | 0 |   |
| 0 | 1 | 1 |   |
| 1 | 0 | 0 |   |
| 1 | 0 | 1 |   |
| 1 | 1 | 0 |   |
| 1 | 1 | 1 |   |

|   | H ⋅C | H ⋅C | н∙С | H ⋅C |
|---|------|------|-----|------|
| Ā | 0    | 1    | X   | 0    |
| A | 0    | 0    | X   | 1    |

$$F = A \cdot H + \overline{A} \cdot C$$



#### Adders

- Also known as binary adders.
  - Small circuit devices that add two digits together.
  - Combined together to create iterative combinational circuits.
- Types of adders:
  - Half adders (HA)
  - Full adders (FA)
  - Ripple Carry Adder



### Review of Binary Math

Each digit of a decimal number represents a power of 10:

$$258 = 2x10^2 + 5x10^1 + 8x10^0$$

Each digit of a binary number represents a power of 2:

**01101<sub>2</sub>** = 
$$0x2^4$$
 +  $1x2^3$  +  $1x2^2$  +  $0x2^1$  +  $1x2^0$   
= **13<sub>10</sub>**

## Decimal to Binary Conversion

- Let's say I give you number 11 in decimal. How would you represent this in binary?
  - Keep dividing by 2 and write down the 11 in decimal is remainders!

1011 in binary!

Use the quotient from previous row

| Number | Quotient =<br>Number / 2 | Remainder = Number % 2 |  |
|--------|--------------------------|------------------------|--|
| 11     |                          |                        |  |
|        |                          |                        |  |
|        |                          |                        |  |
|        |                          | -                      |  |

## Decimal to Binary Conversion

- Let's say I give you number 11 in decimal. How would you represent this in binary?
  - Keep dividing by 2 and write down the 11 in decimal is remainders!

1011 in binary!

| Use the       |
|---------------|
| quotient from |
| previous row. |

| Number | Quotient =<br>Number / 2 | Remainder = Number % 2 |   |                          |
|--------|--------------------------|------------------------|---|--------------------------|
| 11     | 5                        |                        | 1 | Least<br>Significant Bit |
| 5      | 2                        |                        | 1 |                          |
| 2      | 1                        |                        | 0 |                          |
| 1      | 0                        |                        | 1 | Most<br>Significant Bit  |

### Hexadecimal Numbers

- Base 16 numbers, where valid values are:
  - 0 to 9 as in decimal, and
  - □ 10 is A
  - □ 11 is B

  - □ 15 is F

Hex numbers are typically expressed as 0x

- Writing a binary number in hex(-adecimal):
  - 00000101111111010 = 0000 0101 1111 1010 = 0x05fa
  - In Verilog (more about this in the handout of Lab 3):
    - 16'b0000\_0101\_1111\_1010
    - 16'h05FA (16'h05fa is fine too)

## Unsigned binary addition

```
27 + 53
    27 = 00011011
    53 = 00110101
       1 1 1 1 1 1
      00011011
    +00110101
      01010000
8010
     01010000
```

## Unsigned binary addition





#### Half Adders

A 2-input, 1-bit width binary adder that performs the following computations:

- A half adder adds two bits to produce a two-bit sum.
- The sum is expressed as a sum bit S and a carry bit C.



### Half Adder Implementation

 Equations and circuits for half adder units are easy to define (even without Karnaugh maps)



### Half Adder Implementation

 Equations and circuits for half adder units are easy to define (even without Karnaugh maps)

$$C = X \cdot Y \qquad S = X \cdot \overline{Y} + \overline{X} \cdot Y$$
$$= X \oplus Y$$



#### Full Adders

 Similar to half-adders, but with another input Z, which represents a carry-in bit.



- C and Z are sometimes labeled as C<sub>out</sub> and C<sub>in</sub>.
- When Z is 0, the unit behaves exactly like a half adder.
- When Z is 1:

# Full Adder Design

| X | Y | Z | С | S |
|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 1 |
| 0 | 1 | 0 | 0 | 1 |
| 0 | 1 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 | 1 |
| 1 | 0 | 1 | 1 | 0 |
| 1 | 1 | 0 | 1 | 0 |
| 1 | 1 | 1 | 1 | 1 |

| С | $\overline{\mathbf{Y}} \cdot \overline{\mathbf{Z}}$ | $\overline{\mathbf{Y}} \cdot \mathbf{Z}$ | Y · Z | $\mathbf{Y} \cdot \overline{\mathbf{Z}}$ |
|---|-----------------------------------------------------|------------------------------------------|-------|------------------------------------------|
| x | 0                                                   | 0                                        | 1     | 0                                        |
| x | 0                                                   | 1                                        | 1     | 1                                        |

| S | $\overline{\mathbf{Y}} \cdot \overline{\mathbf{Z}}$ | $\overline{\mathbf{Y}}\cdot\mathbf{Z}$ | Y ·Z | $\mathbf{Y} \cdot \overline{\mathbf{Z}}$ |
|---|-----------------------------------------------------|----------------------------------------|------|------------------------------------------|
| x | 0                                                   | 1                                      | 0    | 1                                        |
| x | 1                                                   | 0                                      | 1    | 0                                        |

$$C = X \cdot Y + X \cdot Z + Y \cdot Z$$

$$S = X \oplus Y \oplus Z$$

### Full Adder Design

The C term can also be rewritten as:

$$C = X \cdot Y + (X \oplus Y) \cdot Z$$

- Two terms come from this:
  - $\mathbf{X} \cdot \mathbf{Y} = \mathbf{Carry} \ \mathbf{generate} \ (\mathbf{G}).$
  - $X \oplus Y = carry propagate (P)$ .
- Results in this circuit →



## Ripple-Carry Binary Adder

 Full adder units are chained together in order to perform operations on signal vectors.



## Adders in Verilog

Verilog code that implements a half adder unit.

```
module half_adder (in_x, in_y, out_sum, out_carry);
input in_x;
input in_y;
output out_sum;
output out_carry;

assign out_sum = in_x^in_y;
assign out_carry = in_x&in_y;
endmodule
```

## Adders in Verilog

Verilog code that implements a full adder unit.

```
module full adder(sum,cout,a,b,cin);
output sum, cout;
input a, b, cin;
assign sum = a^b^cin;
assign cout = (a\&b) | (cin\& (a^b));
endmodule
                           module full adder(sum,cout,a,b,cin);
                           output sum, cout;
                           input a,b,cin;
                           assign {cout,sum}=a+b+cin;
                           endmodule
```

# The role of C<sub>in</sub>

- Why can't we just have a half-adder for the smallest (right-most) bit?
- We could, if we were only interested in addition. But the last bit allows us to do subtraction as well!
  - Time for a little fun with subtraction!

#### Fun with Subtraction

- 1. Find a partner.
- 2. Have each person choose a five-digit binary number.
- 3. Take the smaller number, and invert all the digits.
- 4. Add this inverted number to the larger one.
- 5. Add one to the result.
- 6. Check what the result is...



#### Subtractors

- Subtractors are an extension of adders.
  - Basically, perform addition on a negative number.
- Before we can do subtraction, need to understand negative binary numbers.
- Two types:
  - Unsigned = a separate bit exists for the sign; data bits store the positive version of the number.
  - Signed = all bits are used to store a 2's complement negative number.
    - More common, and what we use for this course.

### Two's complement

- First step: getting 1's complement:
  - Given number X with n bits, take  $(2^{n}-1) X$
  - Negates each individual bit (bitwise NOT).

```
01001101 → 10110010
11111111 → 00000000
```

2's complement = (1's complement + 1)

```
01001101 → 10110011
11111111 → 00000001
```

Know this!

 Note: Adding a 2's complement number to the original number produces a result of zero.

## Signed subtraction

- Negative numbers are generally stored in 2's complement notation.
  - Reminder: 1's complement → bits are the bitwise NOT of the equivalent positive value.
  - 2's complement → one more than 1's complement value; results in zero when added to equivalent positive value.
    - Subtraction can then be performed by using the binary adder circuit with negative numbers.

# Signed representations

| Decimal | Unsigned | Signed 2's |
|---------|----------|------------|
| 7       | 111      |            |
| 6       | 110      |            |
| 5       | 101      |            |
| 4       | 100      |            |
| 3       | 011      | 011        |
| 2       | 010      | 010        |
| 1       | 001      | 001        |
| 0       | 000      | 000        |
| -1      |          | 111        |
| -2      |          | 110        |
| -3      |          | 101        |
| -4      |          | 100        |

## Rules about signed numbers

- When thinking of signed binary numbers, there are a few useful rules to remember:
  - The largest positive binary number is a zero followed by all ones.
  - The binary value for -1 has ones in all the digits.
  - The most negative binary number is a one followed by all zeroes.
- There are 2<sup>n</sup> possible values that can be stored in an n-digit binary number.
  - 2<sup>n-1</sup> are negative, 2<sup>n-1</sup>-1 are positive, and one is zero.
  - For example, given an 8-bit binary number:
    - There are 256 possible values

-1 to -128

- One of those values is zero
- 128 are negative values (11111111 to 10000000)
- 127 are positive values (00000001 to 01111111)

1 to 12**7** 



## Practice 2's complement!

 Assume 4-bits signed representation, write the following decimal numbers in binary:

```
0010
            1111
            0000
Not possible to represent in 4 digits!
            1000
```

■ What is max positive number? => 7 (or 24-1 -1)

$$\Rightarrow$$
 7 (or  $2^{4-1}$  -1)

■ What is min negative number? => -8 (or -24-1)

$$=> -8$$
 (or  $-2^{4-1}$ )

#### At the core of subtraction

- Subtraction of a number is simply the addition of its negative value.
  - Where the negative value is found using the 2's complement process.

$$-7-3=7+(-3)$$

$$-3-2=-3+(-2)$$

## Signed Subtraction example





## What about bigger numbers



$$00011010 = 26_{10}$$

 $11100110 = -26_{10}$ 

#### Subtraction circuit

- 4-bit subtractor: X Y
  - X plus 2's complement of Y
  - X plus 1's complement of Y plus 1

Feed 1 as Carry-In in the least significant FA.



#### Addition/Subtraction circuit



- The full adder circuit can be expanded to incorporate the subtraction operation.
  - Remember: 2's complement = 1's complement + 1
    - We need Sub fed as Cin

### Food for Thought

- What happens if we add these two positive signed binary numbers 0110 + 0011 (i.e., 6 + 3)?
  - The result is 1001.
  - But that is a negative number (-7)! ⊗
- What happens if we add the two negative numbers 1000 + 1111 (i.e., -8 + (-1))?
  - The result is 0111 with a carry-out.  $\odot$
- We need to know when the result might be wrong.
  - This is usually indicated in hardware by the Overflow flag!
  - More about this when we'll talk about processors.

#### Unsigned subtraction

- General algorithm:
  - 1. Get the 2's complement of the subtrahend (the term being subtracted).
  - 2. Add that value to the minuend (the term being subtracted from).
  - 3. If there is an end carry (C<sub>out</sub> is high), the final result is positive and does not change.
  - 4. If there is no end carry ( $C_{out}$  is low), get the 2's complement of the result and add a negative sign to it (or set the sign bit high).
- Special case for signed subtraction:
  - Sign and magnitude representation (using a sign bit).

## Unsigned subtraction example



#### Sign & Magnitude Representation

- The Sign part: one bit is designated as the sign (+/-).
  - 0 for positive numbers
  - 1 for negative numbers
- The Magnitude part: Remaining bits store the positive (i.e., unsigned) version of the number.
- Example: 4-bit binary numbers:
  - 0110 is 6 while 1110 is -6 (most significant bit is the sign)
  - What about 0000 and 1000? => zero (two ways)
- Sign-magnitude computation is more complicated.
  - 2's complement is what today's systems use!

# Comparators



#### Comparators

- A circuit that takes in two input vectors, and determines if the first is greater than, less than or equal to the second.
- How does one make that in a circuit?



- A B

  A=B

  Comparator
  A>B

  A>B

  A<B
- Consider two binary numbers
   A and B, where A and B are one bit long.
- The circuits for this would be:

$$A \cdot B + \overline{A} \cdot \overline{B}$$

A>B:

A<B:</p>



| A | В |
|---|---|
| 0 | 0 |
| 0 | 1 |
| 1 | 0 |
| 1 | 1 |

- What if A and B are two bits long?
- The terms for this circuit for have to expand to reflect the second signal.
- For example:



$$A == B: \qquad (A_1 \cdot B_1 + \overline{A}_1 \cdot \overline{B}_1) \cdot (A_0 \cdot B_0 + \overline{A}_0 \cdot \overline{B}_0)$$
Make sure that the values of bit 1 are the same of bit 0 are the same

• What about checking if A is greater or less than B?



A>B:

$$\boxed{ A_1 \cdot \overline{B}_1 + \left( (A_1 \cdot B_1 + \overline{A}_1 \cdot \overline{B}_1) \cdot (A_0 \cdot \overline{B}_0) \right)}$$

Check if first bit satisfies condition

If not, check that the first bits are equal...

...and then do the 1-bit comparison

A<B:</p>

$$\overline{A}_1 \cdot B_1 + (A_1 \cdot B_1 + \overline{A}_1 \cdot \overline{B}_1) \cdot (\overline{A}_0 \cdot B_0)$$

- The final circuit equations for twoinput comparators are shown below.
  - Note the sections they have in common!



• A>B: 
$$A_1 \cdot \overline{B}_1 + (A_1 \cdot B_1 + \overline{A}_1 \cdot \overline{B}_1) \cdot (A_0 \cdot \overline{B}_0)$$

#### General Comparators

- The general circuit for comparators requires you to define equations for each case.
- Case #1: Equality
  - If inputs A and B are equal, then all bits must be the same.
  - Define  $X_i$  for any digit i:
    - (equality for digit i)
  - Equality between A and B is defined as:

$$A==B$$
 :  $X_0 \cdot X_1 \cdot ... \cdot X_n$ 

 $X_i = A_i \cdot B_i + \overline{A}_i \cdot \overline{B}_i$ 

#### Comparators

- <u>Case #2:</u> A > B
  - The first non-matching bits occur at bit i, where  $A_i=1$  and  $B_i=0$ . All higher bits match.
  - Using the definition for X<sub>i</sub> from before:

$$A>B = A_n \cdot \overline{B}_n + X_n \cdot A_{n-1} \cdot \overline{B}_{n-1} + ... + A_0 \cdot \overline{B}_0 \cdot \prod_{k=1}^n X_k$$

- **Case #3:** A < B
  - The first non-matching bits occur at bit i, where  $A_i=0$  and  $B_i=1$ . Again, all higher bits match.

$$A < B = \overline{A}_n \cdot B_n + X_n \cdot \overline{A}_{n-1} \cdot B_{n-1} + \dots + \overline{A}_0 \cdot B_0 \cdot \prod_{k=1}^n X_k$$

### Comparator truth table

 Given two input vectors of size n=2, output of circuit is shown at right.

| Inputs                |       |       | Outputs            |       |       |       |
|-----------------------|-------|-------|--------------------|-------|-------|-------|
| $A\hspace{-0.2cm}A_1$ | $A_0$ | $B_1$ | $\boldsymbol{B}_0$ | A < B | A = B | A > B |
| 0                     | 0     | 0     | 0                  | 0     | 1     | 0     |
| 0                     | 0     | 0     | 1                  | 1     | 0     | 0     |
| 0                     | 0     | 1     | 0                  | 1     | 0     | 0     |
| 0                     | 0     | 1     | 1                  | 1     | 0     | 0     |
| 0                     | 1     | 0     | 0                  | 0     | 0     | 1     |
| 0                     | 1     | 0     | 1                  | 0     | 1     | 0     |
| 0                     | 1     | 1     | 0                  | 1     | 0     | 0     |
| 0                     | 1     | 1     | 1                  | 1     | 0     | 0     |
| 1                     | 0     | 0     | 0                  | 0     | 0     | 1     |
| 1                     | 0     | 0     | 1                  | 0     | 0     | 1     |
| 1                     | 0     | 1     | 0                  | 0     | 1     | 0     |
| 1                     | 0     | 1     | 1                  | 1     | 0     | 0     |
| 1                     | 1     | 0     | 0                  | 0     | 0     | 1     |
| 1                     | 1     | 0     | 1                  | 0     | 0     | 1     |
| 1                     | 1     | 1     | 0                  | 0     | 0     | 1     |
| 1                     | 1     | 1     | 1                  | 0     | 1     | 0     |

## Comparator example (cont'd)

A<B:

|                                                         | $\overline{B}_0 \cdot \overline{B}_1$ | $B_0 \cdot \overline{B}_1$ | B <sub>0</sub> 'B <sub>1</sub> | $\overline{B}_0 \cdot B_1$ |
|---------------------------------------------------------|---------------------------------------|----------------------------|--------------------------------|----------------------------|
| $\overline{\mathbf{A}}_0 \cdot \overline{\mathbf{A}}_1$ | 0                                     | 1                          | 1                              | 1                          |
| $A_0 \cdot \overline{A}_1$                              | 0                                     | 0                          | 1                              | 1                          |
| $A_0 \cdot A_1$                                         | 0                                     | 0                          | 0                              | 0                          |
| $\overline{\mathbf{A}}_0 \cdot \mathbf{A}_1$            | 0                                     | 0                          | 1                              | 0                          |

$$LT = B_1 \cdot \overline{A}_1 + B_0 \cdot B_1 \cdot \overline{A}_0 + B_0 \cdot \overline{A}_0 \cdot \overline{A}_1$$

## Comparator example (cont'd)

$$A=B$$
:

|                                                         | $\overline{B}_0 \cdot \overline{B}_1$ | $B_0 \cdot \overline{B}_1$ | $B_0 \cdot B_1$ | $\overline{B}_0 \cdot B_1$ |
|---------------------------------------------------------|---------------------------------------|----------------------------|-----------------|----------------------------|
| $\overline{\mathbf{A}}_0 \cdot \overline{\mathbf{A}}_1$ | 1                                     | 0                          | 0               | 0                          |
| $A_0 \cdot \overline{A}_1$                              | 0                                     | 1                          | 0               | 0                          |
| $A_0 \cdot A_1$                                         | 0                                     | 0                          | 1               | 0                          |
| $\overline{\mathbf{A}}_0 \cdot \mathbf{A}_1$            | 0                                     | 0                          | 0               | 1                          |

## Comparator example (cont'd)

A>B:

|                                                         | $\overline{B}_0 \cdot \overline{B}_1$ | $B_0 \cdot \overline{B}_1$ | B <sub>0</sub> ·B <sub>1</sub> | $\overline{B}_0 \cdot B_1$ |
|---------------------------------------------------------|---------------------------------------|----------------------------|--------------------------------|----------------------------|
| $\overline{\mathbf{A}}_0 \cdot \overline{\mathbf{A}}_1$ | 0                                     | 0                          | 0                              | 0                          |
| $A_0 \cdot \overline{A}_1$                              | 1                                     | 0                          | 0                              | 0                          |
| $A_0 \cdot A_1$                                         | 1                                     | 1                          | 0                              | 1                          |
| $\overline{\mathbf{A}}_0 \cdot \mathbf{A}_1$            | 1                                     | 1                          | 0                              | 0                          |

$$GT = \overline{B}_1 \cdot A_1 + \overline{B}_0 \cdot \overline{B}_1 \cdot A_0 + \overline{B}_0 \cdot A_0 \cdot A_1$$

### Comparators in Verilog

Implementing a comparator can be done by putting together the circuits as shown in the previous slide, or by using the comparison operators to make things a little easier:

```
module comparator_4_bit (a_gt_b, a_lt_b, a_eq_b, a, b);
input [3:0] a, b;
output a_gt_b, a_lt_b, a_eq_b;
assign a_gt_b = (a > b);
assign a_lt_b = (a < b);
assign a_eq_b = (a == b);
endmodule</pre>
```

## Comparing larger numbers

- As numbers get larger, the comparator circuit gets more complex.
- At a certain level, it can be easier sometimes to just process the result of a subtraction operation instead.
  - Easier, less circuitry, just not faster.

