Package 'astsa'

August 10, 2022

Type Package
Title Applied Statistical Time Series Analysis
Version 1.16
Date 2022-08-31
Depends R (>= 3.5)
Author David Stoffer [aut, cre], Nicky Poison [ctb, mus, spy]
Maintainer David Stoffer <stoffer@pitt.edu></stoffer@pitt.edu>
BugReports https://github.com/nickpoison/astsa/issues
Description Data sets and scripts to accompany Time Series Analysis and Its Applications: With R Examples (4th ed), by R.H. Shumway and D.S. Stoffer. Springer Texts in Statistics, 2017, <doi:10.1007 978-3-319-52452-8="">, and Time Series: A Data Analysis Approach Using R. Chapman-Hall, 2019, <doi:10.1201 9780429273285="">.</doi:10.1201></doi:10.1007>
<pre>URL https://github.com/nickpoison/astsa/,</pre>
https://www.stat.pitt.edu/stoffer/tsa4/,
https://www.stat.pitt.edu/stoffer/tsda/
License GPL-3
LazyLoad yes
LazyData yes
NeedsCompilation no
R topics documented:
astsa-package
acf1
acf2
ar.mcmc
ar1miss
arf
arma.spec
ARMAtoAR
astsa.col
BCJ
beamd

birth			14
blood			15
bnrflebv			16
bnrf1hvs			16
cardox			17
ccf2			17
chicken	• •	•	18
climhyd		•	19
cmort		•	20
		•	
cpg		٠	20
detrend		٠	21
djia		•	22
dna2vector			22
EBV			24
econ5			25
ЕМО			25
EM1			27
EQ5			28
EQcount			29
eqexp			29
EXP6		•	30
	• •	•	30
		•	
ffbs		٠	31
flu		٠	33
fmri		•	33
fmril			34
gas			35
gdp			36
globtemp			36
globtempl			37
- gnp			38
Grid			39
gtemp			40
gtemp2			40
gtemp_land		•	41
gtemp_ocean	• •	•	42
Hare		•	42
		•	42
HCT			
hor			44
jj ₋			44
Kfilter0			45
Kfilter1			46
Kfilter2			47
Ksmooth0			49
Ksmooth1			50
Ksmooth2			51
lag1.plot			53
lag2.plot			54
LagReg			55
			55 56
lap			
lead			57
Lynx			57

Index

101

matrixpwr	58
mvspec	59
nyse	61
oil	62
part	63
<u>.</u>	63
polio	64
1	65
1 2	66
1	66
	67
1	68
	69
	69
	70
	70 71
1	
	71
	73
	75
	77
C	78
1	79
1	80
	81
soi	81
soiltemp	82
sp500.gr	83
sp500w	83
spec.ic	84
specenv	85
speech	87
ssm	88
star	89
stoch.reg	89
	90
•	91
	93
	94
1	 94
	95
	96
T .	90 98
•	90 99
•	
	99 00
WBC	υÜ

4 acf1

astsa-package

Applied Statistical Time Series Analysis (more than just data)

Description

Includes data and scripts to accompany Time Series Analysis and Its Applications: With R Examples (4th ed, 2017) and Time Series: A Data Analysis Approach Using R, (1st ed, 2019).

Details

Package: astsa
Type: Package
Version: 1.16
Date: 2022-08-31
License: GPL-3
LazyLoad: yes
LazyData: yes

Author(s)

David Stoffer <stoffer@pitt.edu>

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

 $The most recent version of the package can be found at \verb|https://github.com/nickpoison/astsa/|.$

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

acf1

Plot and print ACF or PACF of a time series

Description

Produces a plot (and a printout) of the sample ACF or PACF. The zero lag value of the ACF is removed.

Usage

```
acf1(series, max.lag=NULL, plot=TRUE, main=NULL, ylim=NULL, pacf=FALSE,
    ylab=NULL, na.action = na.pass, ...)
```

acf1 5

Arguments

series	The data. Does not have to be a time series object.
max.lag	Maximum lag. Can be omitted. Defaults to $\sqrt{n}+10$ unless $n<60$. If the series is seasonal, this will be at least 4 seasons by default.
plot	If TRUE (default), a graph is produced and the values are rounded and listed. If FALSE, no graph is produced and the values are listed but not rounded by the script.
main	Title of graphic; defaults to name of series.
ylim	Specify limits for the y-axis.
pacf	If TRUE, the sample PACF is returned instead of ACF.
ylab	Change y-axis label from default.
na.action	How to handle missing data; default is na.pass
	Additional arguments passed to tsplot

Details

Will print and/or plot the sample ACF or PACF (if pacf=TRUE). The zero lag of the ACF (which is always 1) has been removed. If plot=TRUE, a graph is produced and the values are rounded and listed. If FALSE, no graph is produced and the values are listed but not rounded by the script. The error bounds are approximate white noise bounds, $-1/n \pm 2/\sqrt{n}$; no other option is given.

Value

ACF The sample ACF or PACF

Author(s)

D.S. Stoffer

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/. In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

Examples

```
acf1(rnorm(100))
acf1(sarima.sim(ar=.9), pacf=TRUE)
# show it to your mom:
acf1(soi, col=6, lwd=4, gg=TRUE)
```

6 acf2

201	じつ
acı	l Z

Plot and print ACF and PACF of a time series

Description

Produces a simultaneous plot (and a printout) of the sample ACF and PACF on the same scale. The zero lag value of the ACF is removed.

Usage

Arguments

series	The data. Does not have to be a time series object.
max.lag	Maximum lag. Can be omitted. Defaults to $\sqrt{n}+10$ unless $n<60$. If the series is seasonal, this will be at least 4 seasons by default.
plot	If TRUE (default), a graph is produced and the values are rounded and listed. If FALSE, no graph is produced and the values are listed but not rounded by the script.
main	Title of graphic; defaults to name of series.
ylim	Specify limits for the y-axis.
na.action	How to handle missing data; default is na.pass
	Additional arguments passed to tsplot

Details

Will print and/or plot the sample ACF and PACF on the same scale. The zero lag of the ACF (which is always 1) has been removed. If plot=TRUE, a graph is produced and the values are rounded and listed. If FALSE, no graph is produced and the values are listed but not rounded by the script. The error bounds are approximate white noise bounds, $-1/n \pm 2/\sqrt{n}$; no other option is given.

Value

ACF	The sample ACF
PACF	The sample PACF

Author(s)

D.S. Stoffer

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/. In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

acfm 7

Examples

```
acf2(rnorm(100))
acf2(rnorm(100), 25, main='') # no title
acf2(rnorm(100), plot=FALSE)[,'ACF'] # print only ACF
acf2(soi, col=2:7, lwd=4, gg=TRUE) # mother's day present
```

acfm

ACF and CCF for Multiple Time Series

Description

Produces a grid of plots of the sample ACF (diagonal) and CCF (off-diagonal).

Usage

Arguments

series	Multiple time series (at least 2 columns of time series)
max.lag	Maximum lag. Can be omitted. Defaults to $\sqrt{n}+10$ unless $n<60$. If the series is seasonal, this will be at least 4 seasons by default.
na.action	How to handle missing data; default is na.pass
ylim	Specify limits for the all correlation axes. If NULL (default) the values are a little wider than the min and max of all values.
acf.highlight	If TRUE (default), the diagonals (ACFs) are highlighted.
	Additional arguments passed to tsplot

Details

Produces a grid of plots of the sample ACF (diagonal) and CCF (off-diagonal). The plots in the grid are estimates of $corr\{x(t+LAG), y(t)\}$. Thus x leads y if LAG is positive and x lags y if LAG is negative.

Author(s)

D.S. Stoffer

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/. In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

8 ar.mcmc

Examples

```
acfm(diff(log(econ5)))
acfm(diff(log(econ5)), gg=TRUE, acf=FALSE)
```

ar.mcmc

Fit Bayesian AR Model

Description

Uses Gibbs sampling to fit an AR model to time series data.

Usage

Arguments

xdata	time series data
porder	autoregression order
n.iter	number of iterations for the sampler
n.warmup	number of startup iterations for the sampler (these are removed)
plot	if TRUE (default) returns two graphics, (1) the draws after warmup and (2) a scatterplot matrix of the draws with histograms on the diagonal
col	color of the plots
prior_var_phi	prior variance of the vector of AR coefficients; see details
prior_sig_a	first prior for the variance component; see details
prior_sig_b	second prior for the variance component; see details

Details

Assumes a normal-inverse gamma model,

$$y_t = \phi_0 + \phi_1 y_{t-1} + \ldots + \phi_p y_{t-p} + \sigma z_t,$$

where z_t is standard Gaussian noise. With Φ being the (p+1)-dimensional vector of the ϕ s, the priors are $\Phi \mid \sigma \sim N(0, \sigma^2 V_0)$ and $\sigma^2 \sim IG(a,b)$, where $V_0 = \gamma^2 I$. Defaults are given for the hyperparameters, but the user may choose (a,b) as (prior_sig_a, prior_sig_b) and γ^2 as prior_var_phi.

The algorithm is efficient and converges quickly. Further details can be found in Example 8.36 of Douc, R., Moulines, E., & Stoffer, D. (2014). *Nonlinear Time Series: Theory, Methods and Applications with R Examples*. CRC press. ISBN 9781466502253.

Value

In addition to the graphics (if plot is TRUE), the draws of each parameter are returned invisibly and various quantiles are displayed.

ar1miss 9

Author(s)

D.S. Stoffer

Source

Based on the scirpt arp. mcmc used in Douc, Moulines, & Stoffer (2014).

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

Examples

```
ar.mcmc(rec, 2)
```

ar1miss

AR with Missing Values

Description

Data used in Chapter 6

Format

The format is: Time-Series [1:100] with NA for missing values.

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsa4/.

10 arma.spec

arf Simulated ARFIMA

Description

1000 simulated observations from an ARFIMA(1, 1, 0) model with $\phi = .75$ and d = .4.

Format

The format is: Time-Series [1:1000] from 1 to 1000: $-0.0294\ 0.7487\ -0.3386\ -1.0332\ -0.2627\ ...$

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

arma.spec

Spectral Density of an ARMA Model

Description

Gives the ARMA spectrum, tests for causality, invertibility, and common zeros.

Usage

Arguments

ar vector of AR parameters
ma vector of MA parameters
var.noise variance of the noise
n.freq number of frequencies
main title of graphic

frequency for seasonal models, adjusts the frequency scale

ylim optional; specify limits for the y-axis

... additional arguments

ARMAtoAR 11

Details

The basic call is arma.spec(ar, ma) where ar and ma are vectors containing the model parameters. Use log='y' if you want the plot on a log scale. If the model is not causal or invertible an error message is given. If there are approximate common zeros, a spectrum will be displayed and a warning will be given; e.g., arma.spec(ar=.9, ma=-.9) will yield a warning and the plot will be the spectrum of white noise.

Value

```
freq frequencies - returned invisibly
spec spectral ordinates - returned invisibly
```

Author(s)

D.S. Stoffer

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/. In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

Examples

```
arma.spec(ar = c(1, -.9), ma = .8) 

arma.spec(ar = c(1, -.9), \log''y') 

arma.spec(ar = c(1, -.9), \min''AR(2)', gg=TRUE, col=5, lwd=2) 

arma.spec(ar=c(rep(0,11),.4), ma=.5, col=5, lwd=3, frequency=12)
```

ARMAtoAR

Convert ARMA Process to Infinite AR Process

Description

Gives the π -weights in the invertible representation of an ARMA model.

Usage

```
ARMAtoAR(ar = 0, ma = 0, lag.max=20)
```

Arguments

```
ar vector of AR coefficients
ma vector of MA coefficients
lag.max number of pi-weights desired
```

12 astsa.col

Value

A vector of coefficients.

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/. In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

Examples

```
ARMAtoAR(ar=.9, ma=.5, 10)
```

astsa.col

astsa color palette with transparency

Description

Modifies the opacity level of the astsa color palette.

Usage

```
astsa.col(col = 1, alpha = 1)
```

Arguments

col numerical vector representing colors (default is 1 or 'black') - see Examples alpha factor in [0,1] setting the opacity (default is 1)

Value

a color vector using the astsa color palette at the chosen transparency level

Note

The astsa color palette is attached when the package is attached. The colors follow the R pattern of shades of: (1) black, (2) red, (3) green, (4) blue, (5) cyan, (6) magenta, (7) gold, (8) gray. The opacity of these colors can be changed easily using this script. Values are recycled, e.g., col=9 is the same as col=1.

The astsa palette was developed from two basic ideas. The first is the general idea that time series should be plotted using dark colors. The second is personal in that we prefer to anchor plots with the best blue, dodgerblue3. From there, we used the website https://www.color-hex.com/ to pick colors of type 2 to 7 that complement dodgerblue3.

Author(s)

D.S.Stoffer

BCJ 13

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

Examples

BCJ

Daily Returns of Three Banks

Description

Daily returns of three banks, 1. Bank of America [boa], 2. Citibank [citi], and 3. JP Morgan Chase [jpm], from 2005 to 2017.

Format

The format is: Time-Series [1:3243, 1:3] from 2005 to 2017: -0.01378 -0.01157 -0.00155 -0.01084 0.01252 ... with column names "boa" "citi" "jpm".

Source

Gong & Stoffer (2021). A Note on Efficient Fitting of Stochastic Volatility Models. *Journal of Time Series Analysis*, 42(2), 186-200.

https://github.com/nickpoison/Stochastic-Volatility-Models

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

 $The \ most \ recent \ version \ of \ the \ package \ can \ be \ found \ at \ \ \ https://github.com/nickpoison/astsa/.$

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

14 birth

Examples

```
tsplot(BCJ, col=2:4)
```

beamd

Infrasonic Signal from a Nuclear Explosion

Description

Infrasonic signal from a nuclear explosion.

Usage

data(beamd)

Format

A data frame with 2048 observations (rows) on 3 numeric variables (columns): sensor1, sensor2, sensor3.

Details

This is a data frame consisting of three columns (that are not time series objects). The data are an infrasonic signal from a nuclear explosion observed at sensors on a triangular array.

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

 $The most recent version of the package can be found at \verb|https://github.com/nickpoison/astsa/.$

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsa4/.

birth

U.S. Monthly Live Births

Description

Monthly live births (adjusted) in thousands for the United States, 1948-1979.

Format

The format is: Time-Series [1:373] from 1948 to 1979: 295 286 300 278 272 268 308 321 313 308 ...

blood 15

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/. In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

blood

Daily Blood Work

Description

Multiple time series of measurements made for 91 days on the three variables, log(white blood count) [WBC], log(platelet) [PLT] and hematocrit [HCT]. Missing data code is NA.

Format

The format is: mts [1:91, 1:3]

Details

This is the data set used in Chapter 6 with NA as the missing data code.

Source

Jones, R.H. (1984). Fitting multivariate models to unequally spaced data. In *Time Series Analysis of Irregularly Observed Data*, pp. 158-188. E. Parzen, ed. Lecture Notes in Statistics, 25, New York: Springer-Verlag.

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsa4/.

See Also

```
HCT, PLT, WBC
```

Examples

```
tsplot(blood, type="o", pch=19)
```

16 bnrf1hvs

bnrf1ebv

Nucleotide sequence - BNRF1 Epstein-Barr

Description

Nucleotide sequence of the BNRF1 gene of the Epstein-Barr virus (EBV): 1=A, 2=C, 3=G, 4=T. The data are used in Chapter 7.

Format

The format is: Time-Series [1:3954] from 1 to 3954: 1 4 3 3 1 1 3 1 3 1 ...

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

bnrf1hvs

Nucleotide sequence - BNRF1 of Herpesvirus saimiri

Description

Nucleotide sequence of the BNRF1 gene of the herpesvirus saimiri (HVS): 1=A, 2=C, 3=G, 4=T. The data are used in Chapter 7.

Format

The format is: Time-Series [1:3741] from 1 to 3741: 1 4 3 2 4 4 3 4 4 4 ...

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsa4/.

cardox 17

cardox

Monthly Carbon Dioxide Levels at Mauna Loa

Description

Monthly mean carbon dioxide (in ppm) measured at Mauna Loa Observatory, Hawaii. This is an update to co2 in the datasets package.

Format

The format is: Time-Series [1:729] from March, 1958 to November 2018: 315.71 317.45 317.50 317.10 ...

Details

The carbon dioxide data measured as the mole fraction in dry air, on Mauna Loa constitute the longest record of direct measurements of CO2 in the atmosphere. They were started by C. David Keeling of the Scripps Institution of Oceanography in March of 1958 at a facility of the National Oceanic and Atmospheric Administration. NOAA started its own CO2 measurements in May of 1974, and they have run in parallel with those made by Scripps since then. Data are reported as a dry mole fraction defined as the number of molecules of carbon dioxide divided by the number of molecules of dry air multiplied by one million (ppm).

Source

https://gml.noaa.gov/ccgg/trends/

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/. In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

ccf2

Cross Correlation

Description

Produces a nice graphic of the sample CCF of two time series. The actual CCF values are returned invisibly.

Usage

18 chicken

Arguments

x, y	univariate time series
max.lag	maximum lag for which to calculate the CCF
main	plot title - if NULL, uses x and y names
ylab	vertical axis label; default is 'CCF'
plot	if TRUE (default) a graphic is produced and the values are returned invisibly. Otherwise, the values are returned.
na.action	how to handle missing values; default is na.pass
type	default is cross-correlation; an option is cross-covariance
	additional arguments passed to tsplot

Details

This will produce a graphic of the sample corr[x(t+lag), y(t)] from -max.lag to max.lag. Also, the (rounded) values of the CCF are returned invisibly unless plot=FALSE. Similar details apply to the cross-covariance.

Author(s)

D.S. Stoffer

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

Examples

```
ccf2(soi, rec, plot=FALSE) # now you see it
ccf2(soi, rec) # now you don't

# happy birthday mom
ccf2(soi, rec, col=rainbow(36, v=.8), lwd=4)
```

chicken

Monthly price of a pound of chicken

Description

Poultry (chicken), Whole bird spot price, Georgia docks, US cents per pound

Usage

```
data("chicken")
```

climhyd 19

Format

The format is: Time-Series [1:180] from August 2001 to July 2016: 65.6 66.5 65.7 64.3 63.2 ...

Source

https://www.indexmundi.com/commodities/

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

climhyd

Lake Shasta inflow data

Description

Lake Shasta inflow data. This is a data frame.

Format

A data frame with 454 observations (rows) on the following 6 numeric variables (columns): Temp, DewPt, CldCvr, WndSpd, Precip, Inflow.

Details

The data are 454 months of measured values for the climatic variables: air temperature, dew point, cloud cover, wind speed, precipitation, and inflow, at Lake Shasta, California. The man-made lake is famous for the placard stating, "We don't swim in your toilet, so don't pee in our lake."

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsa4/.

20 cpg

cmort

Cardiovascular Mortality from the LA Pollution study

Description

Average weekly cardiovascular mortality in Los Angeles County; 508 six-day smoothed averages obtained by filtering daily values over the 10 year period 1970-1979.

Format

The format is: Time-Series [1:508] from 1970 to 1980: 97.8 104.6 94.4 98 95.8 ...

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/. In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

See Also

lap

cpg

Hard Drive Cost per GB

Description

Median annual cost per gigabyte (GB) of storage.

Format

The format is: Time-Series [1:29] from 1980 to 2008: 213000.00 295000.00 260000.00 175000.00 160000.00 ...

Details

The median annual cost of hard drives used in computers. The data are retail prices per GB taken from a sample of manufacturers.

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/. In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

detrend 21

detrend Detrend a Time Series

Description

Returns a time series with the trend removed. The trend can be estimated using polynomial regression or using a lowess fit.

Usage

```
detrend(series, order = 1, lowess = FALSE, lowspan = 2/3)
```

Arguments

series The time series to be detrended.

order Order of the polynomial used to estimate the trend with a linear default (order=1)

unless lowess is TRUE.

lowess If TRUE, lowess is used to find the trend. The default is FALSE.

lowspan The smoother span used for lowess.

Value

The detrended series is returned.

Author(s)

D.S. Stoffer

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsa4/.

See Also

trend

Examples

```
tsplot(cbind(salmon, detrend(salmon)))
tsplot(detrend(salmon, lowess=TRUE))
```

22 dna2vector

djia

Dow Jones Industrial Average

Description

Daily DJIA values from April 2006 - April 2016

Format

```
The format is: xts [1:2518, 1:5] 11279 11343 11347 11337 11283 ... - attr(*, "class")= chr [1:2] "xts" "zoo" ..$ : chr [1:5] "Open" "High" "Low" "Close" "Volume"
```

Source

The data were obtained via the TTR package and Yahoo financial data. Unfortunately, this does not work now. It seems like the R package quantmod is a good bet and Yahoo still has financial data.

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

dna2vector

Convert DNA Sequence to Indicator Vectors

Description

Takes a DNA sequence (string) of general form (e.g., FASTA) and converts it to a sequence of indicator vectors for use with the Spectral Envelope (specenv).

Usage

```
dna2vector(data, alphabet = NULL)
```

Arguments

data A DNA sequence as a single string.

alphabet The particular alphabet being used. The default is alphabet=c("A", "C", "G",

"T").

dna2vector 23

Details

Takes a string of categories and converts it to a matrix of indicators. The data can then be used by the script specenv, which calculates the Spectral Envelope of the sequence (or subsequence). Many different type of sequences can be used, including FASTA and GenBank, as long as the data is a string of categories.

The indicator vectors (as a matrix) are returned invisibly in case the user forgets to put the results in an object wherein the screen would scroll displaying the entire sequence. In other words, the user should do something like xdata = dna2vector(data) where data is the original sequence.

As an example, if the DNA sequence is in a FASTA file, say sequence.fasta, remove the first line which will look like >V01555.2.... Then the following code can be used to read the data into the session, create the indicator sequence and save it as a compressed R data file:

```
fileName <- 'sequence.fasta'  # name of FASTA file
data     <- readChar(fileName, file.info(fileName)$size) # input the sequence
myseq     <- dna2vector(data)  # convert it to indicators

##== and if you want to compress and save the data ==##
save(myseq, file='myseq.rda')
##== and then load it when needed ==##
load('myseq.rda')</pre>
```

Value

matrix of indicator vectors; returned invisibly

Author(s)

D.S. Stoffer

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/. In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

See Also

specenv

Examples

```
# Epstein-Barr virus (entire sequence included in astsa)
xdata = dna2vector(EBV)

# part of EBV with 1, 2, 3, 4 for "A", "C", "G", "T"
xdata = dna2vector(bnrf1ebv)

# raw GenBank sequence
```

24 EBV

EBV

Entire Epstein-Barr Virus (EBV) Nucleotide Sequence

Description

EBV nucleotide sequence - 172281 bp as a single string

Format

The format is: chr "AGAATTCGTCTT ..."

Note

EBV is not useful on its own, but using 'dna2vector', different regions can be explored. For example, ebv = dna2vector(EBV)

Source

https://www.ncbi.nlm.nih.gov/nuccore/V01555.2

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

See Also

dna2vector

econ5 25

econ5

Five Quarterly Economic Series

Description

Multiple time series of quarterly U.S. unemployment, GNP, consumption, and government and private investment, from 1948-III to 1988-II.

Usage

data(econ5)

Format

Multiple time series with 161 observations (rows) on the following 5 numeric variables (columns): unemp, gnp, consum, govinv, prinv.

Source

Young, P.C. and Pedregal, D.J. (1999). Macro-economic relativity: government spending, private investment and unemployment in the USA 1948-1998. *Structural Change and Economic Dynamics*, 10, 359-380.

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

EM0

EM Algorithm for Time Invariant State Space Models

Description

Estimation of the parameters in a simple state space via the EM algorithm.

Usage

```
EM0(num, y, A, mu0, Sigma0, Phi, cQ, cR, max.iter = 50, tol = 0.01)
```

26 EM0

Arguments

num number of observations

y observation vector or time series

A time-invariant observation matrix

mu0 initial state mean vector

Sigma0 initial state covariance matrix

Phi state transition matrix

cQ Cholesky-like decomposition of state error covariance matrix Q – see details

below

cR Cholesky-like decomposition of state error covariance matrix R – see details

below

max.iter maximum number of iterations

tol relative tolerance for determining convergence

Details

cQ and cR are the Cholesky-type decompositions of Q and R. In particular, Q = t(cQ)%*%cQ and R = t(cR)%*%cR is all that is required (assuming Q and R are valid covariance matrices).

Value

Phi	Estimate of Phi
Q	Estimate of Q
R	Estimate of R

mu0 Estimate of initial state mean

Sigma0 Estimate of initial state covariance matrix

like -log likelihood at each iteration

niter number of iterations to convergence cvg relative tolerance at convergence

Author(s)

D.S. Stoffer

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

EM1 27

e Space Models
Space Models

Description

Estimation of the parameters in the general state space model via the EM algorithm. Inputs are not allowed; see the note.

Usage

```
EM1(num, y, A, mu0, Sigma0, Phi, cQ, cR, max.iter = 100, tol = 0.001)
```

Arguments

num	number of observations
у	observation vector or time series; use 0 for missing values
A	observation matrices, an array with dim=c(q,p,n); use 0 for missing values
mu0	initial state mean
Sigma0	initial state covariance matrix
Phi	state transition matrix
cQ	Cholesky-like decomposition of state error covariance matrix \mathbf{Q} – see details below
cR	R is diagonal here, so $cR = sqrt(R) - also$, see details below
max.iter	maximum number of iterations
tol	relative tolerance for determining convergence

Details

cQ and cR are the Cholesky-type decompositions of Q and R. In particular, Q = t(cQ)%% and R = t(cR)%%cR is all that is required (assuming Q and R are valid covariance matrices).

Value

Phi	Estimate of Phi
Q	Estimate of Q
R	Estimate of R
mu0	Estimate of initial state mean
Sigma0	Estimate of initial state covariance matrix
like	-log likelihood at each iteration
niter	number of iterations to convergence
cvg	relative tolerance at convergence

Note

Inputs are not allowed (and hence not estimated). The script uses Ksmooth1 and everything related to inputs are set equal to zero when it is called.

It would be relatively easy to include estimates of 'Ups' and 'Gam' because conditional on the states, these are just regression coefficients. If you decide to alter EM1 to include estimates of the 'Ups' or 'Gam', feel free to notify me with a workable example and I'll include it in the next update.

28 EQ5

Author(s)

D.S. Stoffer

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

EQ5

Seismic Trace of Earthquake number 5

Description

Seismic trace of an earthquake [two phases or arrivals along the surface, the primary wave (t = 1, ..., 1024) and the shear wave (t = 1025, ..., 2048)] recorded at a seismic station.

Format

The format is: Time-Series [1:2048] from 1 to 2048: 0.01749 0.01139 0.01512 0.01477 0.00651 ...

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsa4/.

See Also

eqexp

EQcount 29

EQcount EQ Counts

Description

Series of annual counts of major earthquakes (magnitude 7 and above) in the world between 1900 and 2006.

Format

The format is: Time-Series [1:107] from 1900 to 2006: 13 14 8 10 16 26 ...

Source

Zucchini and MacDonald (2009). Hidden Markov Models for Time Series: An Introduction using R. CRC Press.

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

eqexp

Earthquake and Explosion Seismic Series

Description

This is a data frame of the earthquake and explosion seismic series used throughout the text.

Format

A data frame with 2048 observations (rows) on 17 variables (columns). Each column is a numeric vector.

Details

The matrix has 17 columns, the first eight are earthquakes, the second eight are explosions, and the last column is the Novaya Zemlya event of unknown origin.

The column names are: EQ1, EQ2,...,EQ8; EX1, EX2,...,EX8; NZ. The first 1024 observations correspond to the P wave, the second 1024 observations correspond to the S wave.

30 FDR

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

EXP6

Seismic Trace of Explosion number 6

Description

Seismic trace of an explosion [two phases or arrivals along the surface, the primary wave (t = 1, ..., 1024) and the shear wave (t = 1025, ..., 2048)] recorded at a seismic station.

Format

The format is: Time-Series [1:2048] from 1 to 2048: -0.001837 -0.000554 -0.002284 -0.000303 -0.000721 ...

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

See Also

eqexp

FDR

Basic False Discovery Rate

Description

Computes the basic false discovery rate given a vector of p-values.

Usage

```
FDR(pvals, qlevel = 0.05)
```

ffbs 31

Arguments

pvals a vector of pvals on which to conduct the multiple testing

qlevel the proportion of false positives desired

Value

fdr.id NULL if no significant tests, or the index of the maximal p-value satisfying the

FDR condition.

Source

https://www.stat.berkeley.edu/~paciorek/code/fdr/fdr.R

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

ffbs

Forward Filter Backward Sampling

Description

FFBS algorithm for state space models

Usage

```
ffbs(y, A, mu0, Sigma0, Phi, Ups, Gam, sQ, sR, input)
```

Arguments

A Observation matrix. Can be constant or an array with dim=c(q,p,n) if time

varying.

mu0 Initial state mean.

Sigma0 Initial state covariance matrix.

Phi State transition matrix.

Ups State input matrix; use Ups = 0 if not needed.

Gam Observation input matrix; use Gam = 0 if not needed.

sQ Pre-state error covariance matrix is Q = t(sQ)%% see details below. In the

univariate case, it is the standard deviation.

sR Pre-observation error covariance matrix is R = t(sR)%*%sR – see details below.

In the univariate case, it is the standard deviation.

input matrix or vector of inputs having the same row dimension as y; use input = 0 if

not needed

32 ffbs

Details

Refer to Section 6.12 of edition 4 text. For a linear state space model, the FFBS algorithm provides a way to sample a state sequence $x_{0:n}$ from the posterior $\pi(x_{0:n} \mid \Theta, y_{1:n})$ with parameters Θ and data $y_{1:n}$ as described in Procedure 6.1.

The general model is

$$x_t = \Phi x_{t-1} + \Upsilon u_t + sQ w_t \quad w_t \sim iid \ N(0, I)$$
$$y_t = A_t x_{t-1} + \Gamma u_t + sR v_t \quad v_t \sim iid \ N(0, I)$$

where $w_t \perp v_t$. Consequently the state noise covariance matrix is Q = sQ'sQ and the observation noise covariance matrix is R = sR'sR.

 x_t is p-dimensional and y_t is q-dimensional. With everything being conformable, u_t is $r \times 1$ vector of inputs, Υ is $p \times r$ and Γ is $q \times r$; either of these matrices may be the zero matrix.

Value

xs A p-dimensional matrix of sampled states x0n The sampled initial state (because R is 1-based)

Note

The script uses Kfilter1. To match the input, sQ and sR are transposed prior to calling Kfilter1. Also, if A_t is constant wrt time, it is not necessary to input an array; see the example.

Author(s)

D.S. Stoffer

Source

Shumway & Stoffer (2017) Edition 4, Section 6.12.

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/. In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

Examples

```
## Not run:

## -- this is just one pass - see FUN WITH ASTSA for the real fun --##

# generate some data1

set.seed(1)
sQ = 1; sR = 3; n = 100

mu0 = 0; Sigma0 = 10; x0 = rnorm(1,mu0,Sigma0)
w = rnorm(n,0,sQ); v = rnorm(n,0,sR)
x = c(x0 + w[1]); y = c(x[1] + v[1]) # initialize
```

flu 33

```
for (t in 2:n){
    x[t] = x[t-1] + w[t]
    y[t] = x[t] + v[t]
}
## run one pass of FFBS, plot data, states and sampled states
run = ffbs(y,A=1,mu0=0,Sigma0=10,Phi=1,Ups=0,Gam=0,sQ=1,sR=3,input=0)
tsplot(cbind(y,run$xs), spaghetti=TRUE, type='o', col=c(8,4), pch=c(1,NA))
legend('topleft', legend=c("y(t)","xs(t)"), lty=1, col=c(8,4), bty="n", pch=c(1,NA))
## End(Not run)
```

flu

Monthly pneumonia and influenza deaths in the U.S., 1968 to 1978.

Description

Monthly pneumonia and influenza deaths per 10,000 people in the United States for 11 years, 1968 to 1978.

Usage

```
data(flu)
```

Format

The format is: Time-Series [1:132] from 1968 to 1979: 0.811 0.446 0.342 0.277 0.248 ...

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

fmri

fMRI - complete data set

Description

Data (as a vector list) from an fMRI experiment in pain, listed by location and stimulus. The data are BOLD signals when a stimulus was applied for 32 seconds and then stopped for 32 seconds. The signal period is 64 seconds and the sampling rate was one observation every 2 seconds for 256 seconds (n=128). The number of subjects under each condition varies.

34 fmri1

Details

The LOCATIONS of the brain where the signal was measured were [1] Cortex 1: Primary Somatosensory, Contralateral, [2] Cortex 2: Primary Somatosensory, Ipsilateral, [3] Cortex 3: Secondary Somatosensory, Contralateral, [4] Cortex 4: Secondary Somatosensory, Ipsilateral, [5] Caudate, [6] Thalamus 1: Contralateral, [7] Thalamus 2: Ipsilateral, [8] Cerebellum 1: Contralateral and [9] Cerebellum 2: Ipsilateral.

The TREATMENTS or stimuli (and number of subjects in each condition) are [1] Awake-Brush (5 subjects), [2] Awake-Heat (4 subjects), [3] Awake-Shock (5 subjects), [4] Low-Brush (3 subjects), [5] Low-Heat (5 subjects), and [6] Low-Shock (4 subjects). Issue the command summary(fmri) for further details. In particular, awake (Awake) or mildly anesthetized (Low) subjects were subjected levels of periodic brushing (Brush), application of heat (Heat), and mild shock (Shock) effects.

As an example, fmri\$L1T6 (Location 1, Treatment 6) will show the data for the four subjects receiving the Low-Shock treatment at the Cortex 1 location; note that fmri[[6]] will display the same data.

Source

Joseph F. Antognini, Michael H. Buonocore, Elizabeth A. Disbrow, Earl Carstens, Isoflurane anesthesia blunts cerebral responses to noxious and innocuous stimuli: a fMRI study, Life Sciences, Volume 61, Issue 24, 1997, Pages PL349-PL354, ISSN 0024-3205, https://doi.org/10.1016/S0024-3205(97)00960-0.

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

fmri1

fMRI Data Used in Chapter 1

Description

A data frame that consists of average fMRI BOLD signals at eight locations.

Usage

data(fmri1)

Format

The format is: mts [1:128, 1:9]

gas 35

Details

Multiple time series consisting of fMRI BOLD signals at eight locations (in columns 2-9, column 1 is time period), when a stimulus was applied for 32 seconds and then stopped for 32 seconds. The signal period is 64 seconds and the sampling rate was one observation every 2 seconds for 256 seconds (n=128). The columns are labeled: "time" "cort1" "cort2" "cort3" "cort4" "thal1" "thal2" "cere1" "cere2".

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/. In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

See Also

fmri

gas

Gas Prices

Description

New York Harbor conventional regular gasoline weekly spot price FOB (in cents per gallon) from 2000 to mid-2010.

Format

The format is: Time-Series [1:545] from 2000 to 2010: 70.6 71 68.5 65.1 67.9 ...

Details

Pairs with series oil

Source

Data were obtained from: https://www.eia.gov/dnav/pet/pet_pri_spt_s1_w.htm

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

36 globtemp

See Also

oil

gdp

Quarterly U.S. GDP

Description

Seasonally adjusted quarterly U.S. GDP from 1947(1) to 2018(3).

Format

The format is: Time-Series [1:287] from 1947 to 2018: 2033 2028 2023 2055 2086 ...

Source

https://tradingeconomics.com/united-states/gdp

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/. In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

globtemp

Global mean land-ocean temperature deviations to 2015

Description

Global mean land-ocean temperature deviations (from 1951-1980 average), measured in degrees centigrade, for the years 1880-2015. This was an update of gtemp, but gtemp_land and gtemp_ocean are the most recent updates.

Format

The format is: Time-Series [1:136] from 1880 to 2015: -0.2 -0.11 -0.1 -0.2 -0.28 -0.31 -0.3 -0.33 -0.2 -0.11 ...

Details

The data were changed after 2011, so there are discrepancies between this data set and gtemp. The differences are explained in the following document: www1.ncdc.noaa.gov/pub/data/ghcn/v3/GHCNM-v3.2.0-FAQ.pdf.

globtempl 37

Source

https://data.giss.nasa.gov/gistemp/graphs/

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

See Also

gtemp_land, gtemp_ocean, globtempl, gtemp, gtemp2

globtempl

Global mean land (only) temperature deviations to 2015

Description

Global mean [land only] temperature deviations (from 1951-1980 average), measured in degrees centigrade, for the years 1880-2015. This is an update of gtemp2. Note the data file is globtemp-el not globtemp-one; the el stands for land. The data files gtemp_land and gtemp_ocean are the most recent updates.

Usage

```
data("globtempl")
```

Format

The format is: Time-Series [1:136] from 1880 to 2015: -0.53 -0.51 -0.41 -0.43 -0.72 -0.56 -0.7 -0.74 -0.53 -0.25 ...

Details

The data were changed after 2011, so there are discrepancies between this data set and gtemp2. The differences are explained in the following document:

www1.ncdc.noaa.gov/pub/data/ghcn/v3/GHCNM-v3.2.0-FAQ.pdf.

Source

```
https://data.giss.nasa.gov/gistemp/graphs/
```

38 gnp

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsa4/.

See Also

```
gtemp_land, gtemp_ocean, globtemp, gtemp2, gtemp
```

gnp

Quarterly U.S. GNP

Description

Seasonally adjusted quarterly U.S. GNP from 1947(1) to 2002(3).

Format

The format is: Time-Series [1:223] from 1947 to 2002: 1489 1497 1500 1524 1547 ...

Source

```
https://research.stlouisfed.org/
```

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsa4/.

See Also

gdp

Grid 39

Grid	A Better Add Grid to a Plot

Description

Adds a grid to an existing plot with major and minor ticks. Works like R graphics grid() but the grid lines are solid and gray and minor ticks are produced by default.

Usage

```
Grid(nx = NULL, ny = nx, col = gray(0.9), lty = 1, lwd = par("lwd"), equilogs = TRUE,
    minor = TRUE, nxm = 2, nym = 2, tick.ratio = 0.5, xm.grid = TRUE, ym.grid = TRUE, ...)
```

Arguments

nx, ny	number of cells of the grid in x and y direction. When NULL, as per default, the grid aligns with the tick marks on the corresponding default axis (i.e., tickmarks as computed by axTicks). When NA, no grid lines are drawn in the corresponding direction.
col	color of the grid lines.
lty	line type of the grid lines.
lwd	line width of the grid lines.
equilogs	logical, only used when log coordinates and alignment with the axis tick marks are active. Setting equilogs = FALSE in that case gives non equidistant tick aligned grid lines.
minor	logical with TRUE (default) adding minor ticks.
nxm, nym	number of intervals in which to divide the area between major tick marks on the x-axis (y-axis). If minor=TRUE, should be > 1 or no minor ticks will be drawn.
tick.ratio	ratio of lengths of minor tick marks to major tick marks. The length of major tick marks is retrieved from par("tck").
xm.grid, ym.grid	
	if TRUE (default), adds grid lines at minor x-axis, y-axis ticks.
• • •	other graphical parameters;

Author(s)

D.S. Stoffer

Source

The code for grid() in R graphics and minor.tick() from the Hmisc package were combined.

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/. In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

40 gtemp2

See Also

grid

gtemp

Global mean land-ocean temperature deviations

Description

This data file is old and is here only for compatibility. See globtemp and gtemp_land. The original description is: Global mean land-ocean temperature deviations (from 1951-1980 average), measured in degrees centigrade, for the years 1880-2009.

Format

The format is: Time-Series [1:130] from 1880 to 2009: -0.28 -0.21 -0.26 -0.27 -0.32 -0.32 -0.29 -0.36 -0.27 -0.17 ...

Source

https://data.giss.nasa.gov/gistemp/graphs/

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

See Also

gtemp_land, gtemp_ocean, globtemp, globtempl, gtemp2

gtemp2

Global Mean Surface Air Temperature Deviations

Description

This data file is old and is here only for compatibility. See globtemp and gtemp_land. The original description is: Similar to gtemp but the data are based only on surface air temperature data obtained from meteorological stations. The data are temperature deviations (from 1951-1980 average), measured in degrees centigrade, for the years 1880-2009.

Usage

data(gtemp2)

gtemp_land 41

Format

The format is: Time-Series [1:130] from 1880 to 2009: -0.24 -0.19 -0.14 -0.19 -0.45 -0.32 -0.42 -0.54 -0.24 -0.05 ...

Source

https://data.giss.nasa.gov/gistemp/graphs/

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

See Also

gtemp_land, gtemp_ocean, globtemp, globtempl, gtemp

gtemp_land

Global mean land temperature deviations - updated to 2017

Description

Annual temperature anomalies (in degress centigrade) averaged over the Earth's land area from 1880 to 2017.

Format

The format is: Time-Series [1:138] from 1880 to 2017: -0.62 -0.45 -0.47 -0.62 -0.82 ...

Source

https://data.giss.nasa.gov/gistemp/graphs/

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

See Also

```
gtemp_ocean, globtemp, globtemp1, gtemp2
```

42 Hare

gtemp_ocean

Global mean ocean temperature deviations - updated to 2017

Description

Annual sea surface temperature anomalies averaged over the part of the ocean that is free of ice at all times (open ocean) from 1880 to 2017.

Format

The format is: Time-Series [1:138] from 1880 to 2009: -0.05 0.01 0.00 -0.06 -0.15 ...

Source

https://data.giss.nasa.gov/gistemp/graphs/

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/. In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

See Also

```
gtemp_land, globtemp, globtempl, gtemp2
```

Hare

Snowshoe Hare

Description

This is one of the classic studies of predator-prey interactions, the 90-year data set is the number, in thousands, of snowshoe hare pelts purchased by the Hudson's Bay Company of Canada. While this is an indirect measure of predation, the assumption is that there is a direct relationship between the number of pelts collected and the number of hare and lynx in the wild.

Usage

```
data("Hare")
```

Format

The format is: Time-Series [1:91] from 1845 to 1935: 19.6 19.6 19.6 12 28 ...

Note

This data set pairs with Lynx. The data are in units of one thousand.

HCT 43

Source

From Odum's "Fundamentals of Ecology", p. 191. Data listed at: people.whitman.edu/~hundledr/courses/M250F03/LynxHare.txt.

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/. In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

See Also

Lynx

HCT

Hematocrit Levels

Description

HCT: Measurements made for 91 days on the three variables, log(white blood count) [WBC], log(platelet) [PLT] and hematocrit [HCT]. Missing data code is 0 (zero).

Format

The format is: Time-Series [1:91] from 1 to 91: 30 30 28.5 34.5 34 32 30.5 31 33 34 ...

Details

See Examples 6.1 and 6.9 for more details.

Source

Jones, R.H. (1984). Fitting multivariate models to unequally spaced data. In *Time Series Analysis of Irregularly Observed Data*, pp. 158-188. E. Parzen, ed. Lecture Notes in Statistics, 25, New York: Springer-Verlag.

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/. In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

See Also

blood, PLT, WBC

jj

hor

Hawaiian occupancy rates

Description

Quarterly Hawaiian hotel occupancy rate (percent of rooms occupied) from 1982-I to 2015-IV

Format

The format is: Time-Series [1:136] from 1982 to 2015: 79 65.9 70.9 66.7 ...

Source

```
https://dbedt.hawaii.gov/economic/qser/tourism/
```

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

Examples

jj

Johnson and Johnson Quarterly Earnings Per Share

Description

Johnson and Johnson quarterly earnings per share, 84 quarters (21 years) measured from the first quarter of 1960 to the last quarter of 1980.

Format

The format is: Time-Series [1:84] from 1960 to 1981: $0.71\ 0.63\ 0.85\ 0.44\ 0.61\ 0.69\ 0.92\ 0.55\ 0.72\ 0.77\ ...$

Details

This data set is also included with the R distribution as JohnsonJohnson

Kfilter0 45

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

 $The most recent version of the package can be found at \verb|https://github.com/nickpoison/astsa/|.$

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsa4/.

Kfilter0

Kalman Filter - Time Invariant Model

Description

Returns the filtered values for the basic time invariant state-space model; inputs are not allowed.

Usage

```
Kfilter0(num, y, A, mu0, Sigma0, Phi, cQ, cR)
```

Arguments

num	number of observations
У	data matrix, vector or time series
A	time-invariant observation matrix
mu0	initial state mean vector
Sigma0	initial state covariance matrix
Phi	state transition matrix
cQ	Cholesky-type decomposition of state error covariance matrix \boldsymbol{Q} – see details below
cR	Cholesky-type decomposition of observation error covariance matrix \boldsymbol{R} – see details below

Details

cQ and cR are the Cholesky-type decompositions of Q and R. In particular, Q = t(cQ)%*%cQ and R = t(cR)%*%cR is all that is required (assuming Q and R are valid covariance matrices).

Value

хр	one-step-ahead state prediction
Рр	mean square prediction error
xf	filter value of the state
Pf	mean square filter error
like	the negative of the log likelihood
innov	innovation series
sig	innovation covariances
Kn	last value of the gain, needed for smoothing

46 Kfilter1

Author(s)

D.S. Stoffer

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

Kfilter1

Kalman Filter - Model may be time varying or have inputs

Description

Returns both the predicted and filtered values for a linear state space model. Also evaluates the likelihood at the given parameter values.

Usage

```
Kfilter1(num, y, A, mu0, Sigma0, Phi, Ups, Gam, cQ, cR, input)
```

Arguments

num	number of observations
У	data matrix, vector or time series
A	time-varying observation matrix, an array with dim=c(q,p,n)
mu0	initial state mean
Sigma0	initial state covariance matrix
Phi	state transition matrix
Ups	state input matrix; use Ups = 0 if not needed
Gam	observation input matrix; use Gam = 0 if not needed
cQ	Cholesky-type decomposition of state error covariance matrix \boldsymbol{Q} – see details below
cR	Cholesky-type decomposition of observation error covariance matrix \boldsymbol{R} – see details below
input	matrix or vector of inputs having the same row dimension as y; use input = \emptyset if not needed

Details

cQ and cR are the Cholesky-type decompositions of Q and R. In particular, Q = t(cQ)%*%cQ and R = t(cR)%*%cR is all that is required (assuming Q and R are valid covariance matrices).

Kfilter2 47

Value

хр	one-step-ahead prediction of the state
Рр	mean square prediction error
xf	filter value of the state
Pf	mean square filter error
like	the negative of the log likelihood
innov	innovation series
sig	innovation covariances
Kn	last value of the gain, needed for smoothing

Author(s)

D.S. Stoffer

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/. In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

Kfilter2	Kalman Filter - Model may be time varying or have inputs or correlated errors

Description

Returns the filtered values for the state space model. In addition, the script returns the evaluation of the likelihood at the given parameter values and the innovation sequence.

Usage

Arguments

num	number of observations
У	data matrix, vector or time series
Α	time-varying observation matrix, an array with $dim = c(q,p,n)$
mu0	initial state mean
Sigma0	initial state covariance matrix
Phi	state transition matrix
Ups	state input matrix; use Ups = 0 if not needed

48 Kfilter2

Gam	observation input matrix; use Gam = 0 if not needed
Theta	state error pre-matrix
cQ	Cholesky decomposition of state error covariance matrix Q – see details below
cR	Cholesky-type decomposition of observation error covariance matrix \boldsymbol{R} – see details below
S	covariance-type matrix of state and observation errors
input	matrix or vector of inputs having the same row dimension as y ; use input = 0 if not needed

Details

cQ and cR are the Cholesky-type decompositions of Q and R. In particular, Q = t(cQ)%%cQ and R = t(cR)%%cR is all that is required (assuming Q and R are valid covariance matrices).

Value

хр	one-step-ahead prediction of the state
Рр	mean square prediction error
xf	filter value of the state
Pf	mean square filter error
like	the negative of the log likelihood
innov	innovation series
sig	innovation covariances

K last value of the gain, needed for smoothing

Author(s)

D.S. Stoffer

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

Ksmooth0 49

Ksmooth0	Kalman Filter and Smoother - Time invariant model without inputs

Description

Returns both the filtered values and smoothed values for the state-space model.

Usage

```
Ksmooth0(num, y, A, mu0, Sigma0, Phi, cQ, cR)
```

Arguments

num	number of observations
у	data matrix, vector or time series
A	time-invariant observation matrix
mu0	initial state mean vector
Sigma0	initial state covariance matrix
Phi	state transition matrix
cQ	Cholesky-type decomposition of state error covariance matrix \boldsymbol{Q} – see details below
cR	Cholesky-type decomposition of observation error covariance matrix R – see details below

Details

cQ and cR are the Cholesky-type decompositions of Q and R. In particular, Q = t(cQ)%%cQ and R = t(cR)%%cR is all that is required (assuming Q and R are valid covariance matrices).

Value

xs		state smoothers
Ps		smoother mean square error
x0n		initial mean smoother
P0n		initial smoother covariance
J0		initial value of the J matrix
J		the J matrices
хр		one-step-ahead prediction of the state
Рр		mean square prediction error
xf		filter value of the state
Pf		mean square filter error
lik	e	the negative of the log likelihood
Kn		last value of the gain

Author(s)

D.S. Stoffer

50 Ksmooth1

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

Ksmooth1

Kalman Filter and Smoother - General model

Description

Returns both the filtered and the smoothed values for the state-space model.

Usage

```
Ksmooth1(num, y, A, mu0, Sigma0, Phi, Ups, Gam, cQ, cR, input)
```

Arguments

num	number of observations
У	data matrix, vector or time series
A	time-varying observation matrix, an array with dim=c(q,p,n)
mu0	initial state mean
Sigma0	initial state covariance matrix
Phi	state transition matrix
Ups	state input matrix; use Ups = 0 if not needed
Gam	observation input matrix; use Gam = 0 if not needed
cQ	Cholesky-type decomposition of state error covariance matrix \boldsymbol{Q} – see details below
cR	Cholesky-type decomposition of observation error covariance matrix \boldsymbol{R} – see details below
input	matrix or vector of inputs having the same row dimension as y; use input = \emptyset if not needed

Details

cQ and cR are the Cholesky-type decompositions of Q and R. In particular, Q = t(cQ)%%cQ and R = t(cR)%%cR is all that is required (assuming Q and R are valid covariance matrices).

Ksmooth2 51

Value

xs	state smoothers
Ps	smoother mean square error
x0n	initial mean smoother
P0n	initial smoother covariance
Ј0	initial value of the J matrix
J	the J matrices
хр	one-step-ahead prediction of the state
Рр	mean square prediction error
xf	filter value of the state
Pf	mean square filter error
like	the negative of the log likelihood
Kn	last value of the gain

Author(s)

D.S. Stoffer

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

Ksmooth2	Kalman Filter and Smoother - General model, may have correlated
	errors

Description

Returns the filtered and smoothed values for the state-space model. This is the smoother companion to Kfilter2.

Usage

52 Ksmooth2

Arguments

num number of observations

y data matrix, vector or time series

A time-varying observation matrix, an array with dim=c(q,p,n)

mu0 initial state mean

Sigma0 initial state covariance matrix

Phi state transition matrix

Ups state input matrix; use Ups = 0 if not needed

Gam observation input matrix; use Gam = 0 if not needed

Theta state error pre-matrix

cQ Cholesky-type decomposition of state error covariance matrix Q – see details

below

cR Cholesky-type decomposition of observation error covariance matrix R – see

details below

S covariance matrix of state and observation errors

input matrix or vector of inputs having the same row dimension as y; use input = 0 if

not needed

Details

cQ and cR are the Cholesky-type decompositions of Q and R. In particular, Q = t(cQ)%%cQ and R = t(cR)%%cR is all that is required (assuming Q and R are valid covariance matrices).

Value

XS	state smoothers

Ps smoother mean square error

J the J matrices

xp one-step-ahead prediction of the state

Pp mean square prediction error xf filter value of the state Pf mean square filter error

like the negative of the log likelihood

Kn last value of the gain

Author(s)

D.S. Stoffer

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

lag1.plot 53

lag1.plot	Lag Plot - one time series	
-----------	----------------------------	--

Description

Produces a grid of scatterplots of a series versus lagged values of the series.

Usage

Arguments

series	the data
max.lag	maximum lag
corr	if TRUE, shows the autocorrelation value in a legend
smooth	if TRUE, adds a lowess fit to each scatterplot
col	color of points; default is gray(.1)
lwl	width of lowess line; default is 1
bgl	background of the ACF legend; default is 'white'
ltcol	legend text color; default is black
box.col	color of the border of the ACF legend; default is 'gray(62)'
	additional graphical arguments

Author(s)

D.S. Stoffer

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

See Also

```
lag2.plot
```

Examples

```
lag1.plot(log(varve), max.lag=9)
lag1.plot(soi, 12, cex=1, pch=19, col=astsa.col(4, .3), gg=TRUE, corr=FALSE)
```

54 lag2.plot

lag2.plot Lag Plot - two time series

Description

Produces a grid of scatterplots of one series versus another. The first named series is the one that gets lagged.

Usage

Arguments

series1	first series (the one that gets lagged)
series2	second series
max.lag	maximum number of lags
corr	if TRUE, shows the cross-correlation value in a legend
smooth	if TRUE, adds a lowess fit to each scatterplot
col	color of points; default is gray(.1)
lwl	width of lowess line; default is 1
bgl	background of the ACF legend; default is 'white'
ltcol	legend text color; default is black
box.col	color of the border of the ACF legend; default is 'gray(62)'
	additional graphical parameters

Author(s)

D.S. Stoffer

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

See Also

```
lag1.plot
```

Examples

```
lag2.plot(soi, rec, max.lag=3)
lag2.plot(soi, rec, 8, cex=1.1, pch=19, col=5, bgl='transparent', lwl=2)
```

LagReg 55

LagReg	Lagged Regression	

Description

Performs lagged regression as discussed in Chapter 4.

Usage

```
LagReg(input, output, L = c(3, 3), M = 40, threshold = 0,
    inverse = FALSE)
```

Arguments

input input series
output output series

L degree of smoothing; see spans in the help file for spec.pgram.

M must be even; number of terms used in the lagged regression

threshold the cut-off used to set small (in absolute value) regression coeffcients equal to

zero

inverse if TRUE, will fit a forward-lagged regression

Details

For a bivariate series, input is the input series and output is the output series. The degree of smoothing for the spectral estimate is given by L; see spans in the help file for spec.pgram. The number of terms used in the lagged regression approximation is given by M, which must be even. The threshold value is the cut-off used to set small (in absolute value) regression coeffcients equal to zero (it is easiest to run LagReg twice, once with the default threshold of zero, and then again after inspecting the resulting coeffcients and the corresponding values of the CCF). Setting inverse=TRUE will fit a forward-lagged regression; the default is to run a backward-lagged regression. The script is based on code that was contributed by Professor Doug Wiens, Department of Mathematical and Statistical Sciences, University of Alberta.

Value

Graphs of the estimated impulse response function, the CCF, and the output with the predicted values superimposed.

beta Estimated coefficients

fit The output series, the fitted values, and the residuals

Author(s)

D.S. Stoffer

Section 1 lap

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

lap

LA Pollution-Mortality Study

Description

LA Pollution-Mortality Study (1970-1979, weekly data).

Format

The format is: mts [1:508, 1:11]

Details

columns are time series	with names
(1) Total Mortality	tmort
(2) Respiratory Mortality	rmort
(3) Cardiovascular Mortality	cmort
(4) Temperature	tempr
(5) Relative Humidity	rh
(6) Carbon Monoxide	со
(7) Sulfur Dioxide	so2
(8) Nitrogen Dioxide	no2
(9) Hydrocarbons	hycarb
(10) Ozone	о3
(11) Particulates	part

Note

Details may be found in http://www.sungpark.net/ShumwayAzariPawitan88.pdf

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

 $The most recent version of the package can be found at \verb|https://github.com/nickpoison/astsa/|.$

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

lead 57

lead

Leading Indicator

Description

Leading indicator, 150 months; taken from Box and Jenkins (1970).

Usage

```
data(lead)
```

Format

The format is: Time-Series [1:150] from 1 to 150: 10.01 10.07 10.32 9.75 10.33 ...

Details

This is also the R time series BJsales.lead: The sales time series BJsales and leading indicator BJsales.lead each contain 150 observations. The objects are of class "ts".

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

See Also

sales

Lynx

Canadian Lynx

Description

This is one of the classic studies of predator-prey interactions, the 90-year data set is the number, in thousands, of lynx pelts purchased by the Hudson's Bay Company of Canada. While this is an indirect measure of predation, the assumption is that there is a direct relationship between the number of pelts collected and the number of hare and lynx in the wild.

Usage

```
data("Lynx")
```

Format

The format is: Time-Series [1:91] from 1845 to 1935: 30.1 45.1 49.1 39.5 21.2 ...

58 matrixpwr

Note

The data are in units of one thousand. This data set pairs with Hare and is NOT the same as lynx.

Source

```
From Odum's "Fundamentals of Ecology", p. 191. Additional information at http://people.whitman.edu/~hundledr/courses/M250F03/M250.html
```

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

See Also

Hare

matrixpwr

Powers of a Square Matrix

Description

matrixpwr computes powers of a square matrix including negative powers for nonsingular matrices. %^% is a more intuitive interface as an operator.

Usage

```
matrixpwr(A, power)
A %^% power
```

Arguments

A a square matrix power single numeric

Details

Raises matrix to the specified power. The matrix must be square and if power < 0, the matrix must be nonsingular.

```
Note that %^% is defined as "%^%" <- function(A, power) matrixpwr(A, power) If power = 0, the identity matrix is returned.
```

Value

Returns matrix raised to the given power.

mvspec 59

Author(s)

D.S. Stoffer

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/. In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

Examples

```
# 2-state Markov transition matrix to steady state
P = matrix(c(.7,.4,.3,.6), 2)
P %^% 50

# surround with parentheses if used in an expression
c(.5,.5) %*% (P%^%50)

# Inverse square root
Q = var(econ5)
Q %^% -.5
```

mvspec

Univariate and Multivariate Spectral Estimation

Description

This is spec.pgram with a few changes in the defaults and written so you can easily extract the estimate of the multivariate spectral matrix as fxx. The bandwidth calculation has been changed to the more practical definition given in the text and this can be used to replace spec.pgram.

Usage

Arguments

```
x univariate or multivariate time series (i.e., the p columns of x are time series)
spans specify smoothing; same as spec.pgram
kernel specify kernel; same as spec.pgram
taper specify taper; same as spec.pgram with different default
pad specify padding; same as spec.pgram
fast specify use of FFT; same as spec.pgram
```

60 mvspec

demean if TRUE, series is demeaned first; same as spec.pgram detrend if TRUE, series is detrended first; same as spec.pgram

plot plot the estimate; same as spec.pgram
log same as spec.pgram but default is 'no'
type type of plot to be drawn, defaults to lines

na.action same as spec.pgram

nxm, nym the number of minor tick mark divisions on x-axis, y-axis; the default is one

minor tick on the x-axis and none on the y-axis

main title of the graphics; if NULL, a suitable title is generated

... graphical arguments passed to plot.spec

Details

This is spec.pgram from the stats package with a few changes in the defaults and written so you can easily extract the estimate of the multivariate spectral matrix as fxx. The default for the plot is NOT to plot on a log scale and the graphic will have a grid. The bandwidth calculation has been changed to the more practical definition given in the text, $(L_h/n.used)*frequency(x)$. Also, the bandwidth is no longer displayed in the graphic. Although meant to be used to easily obtain multivariate spectral estimates, this script can be used for univariate time series. Note that the script does not taper by default (taper=0); this forces the user to do "conscious tapering".

Value

An object of class "spec", which is a list containing at least the following components:

fxx spectral matrix estimates; an array of dimensions dim = c(p,p,nfreq)

freq vector of frequencies at which the spectral density is estimated.

spec vector (for univariate series) or matrix (for multivariate series) of estimates of

the spectral density at frequencies corresponding to freq.

details matrix with columns: frequency, period, spectral ordinate(s)

coh NULL for univariate series. For multivariate time series, a matrix containing the

squared coherency between different series. Column i + (j - 1) * (j - 2)/2 of coh contains the squared coherency between columns i and j of x, where i < j.

phase NULL for univariate series. For multivariate time series a matrix containing the

cross-spectrum phase between different series. The format is the same as coh.

Lh Number of frequencies (approximate) used in the band.

n. used Sample length used for the FFT

df Degrees of freedom (may be approximate) associated with the spectral estimate.

bandwidth Bandwidth (may be approximate) associated with the spectral estimate.

method The method used to calculate the spectrum.

The results are returned invisibly if plot is true.

nyse 61

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

Examples

```
# real raw periodogram
mvspec(soi)
mvspec(soi, log='y') # on a log scale

# smooth and some details printed
mvspec(soi, spans=c(7,7), taper=.5)$details[1:45,]

# multivariate example
ts.plot(mdeaths, fdeaths, col=1:2) # an R data set, male/female monthly deaths ...
dog = mvspec(cbind(mdeaths, fdeaths), spans=c(3,3), taper=.1)
dog$fxx # look a spectral matrix estimates
dog$bandwidth # bandwidth with time unit = year
dog$df # degrees of freedom
plot(dog, plot.type="coherency") # plot of squared coherency
```

nyse

Returns of the New York Stock Exchange

Description

Returns of the New York Stock Exchange (NYSE) from February 2, 1984 to December 31, 1991.

Usage

```
data(nyse)
```

Format

```
The format is: Time-Series [1:2000] from 1 to 2000: 0.00335 -0.01418 -0.01673 0.00229 -0.01692 ...
```

Source

```
S+GARCH module - Version 1.1 Release 2: 1998
```

62 oil

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

oil

Crude oil, WTI spot price FOB

Description

Crude oil, WTI spot price FOB (in dollars per barrel), weekly data from 2000 to mid-2010.

Format

The format is: Time-Series [1:545] from 2000 to 2010: 26.2 26.1 26.3 24.9 26.3 ...

Details

pairs with the series gas

Source

Data were obtained from the URL: www.eia.doe.gov/dnav/pet/pet_pri_spt_s1_w.htm

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

See Also

gas

part 63

part

Particulate levels from the LA pollution study

Description

Particulate series corresponding to cmort from the LA pollution study.

Format

The format is: Time-Series [1:508] from 1970 to 1980: 72.7 49.6 55.7 55.2 66 ...

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/. In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

See Also

lap

PLT

Platelet Levels

Description

PLT: Measurements made for 91 days on the three variables, log(white blood count) [WBC], log(platelet) [PLT] and hematocrit [HCT]. Missing data code is 0 (zero).

Usage

data(PLT)

Format

The format is: Time-Series [1:91] from 1 to 91: 4.47 4.33 4.09 4.6 4.41 ...

Details

See Examples 6.1 and 6.9 for more details.

Source

Jones, R.H. (1984). Fitting multivariate models to unequally spaced data. In *Time Series Analysis of Irregularly Observed Data*, pp. 158-188. E. Parzen, ed. Lecture Notes in Statistics, 25, New York: Springer-Verlag.

64 polio

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

See Also

blood, HCT, WBC

polio

Poliomyelitis cases in US

Description

Monthly time series of poliomyelitis cases reported to the U.S. Centers for Disease Control for the years 1970 to 1983, 168 observations.

Format

The format is: Time-Series [1:168] from 1970 to 1984: 0 1 0 0 1 3 9 2 3 5 ...

Details

The data were originally modelled by Zeger (1988) "A Regression Model for Time Series of Counts," *Biometrika*, 75, 822-835.

Source

Data taken from the gamlss.data package; see https://www.gamlss.com/.

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

Examples

```
tsplot(polio, type='s')
```

polyMul 65

polyMul

Multiplication of Two Polynomials

Description

Multiplication of two polynomials.

Usage

```
polyMul(p, q)
```

Arguments

```
p coefficients of first polynomialq coefficients of second polynomial
```

Details

inputs are vectors of coefficients a, b, c, ..., in order of power $ax^0 + bx^1 + cx^2 + ...$

Value

coefficients of the product in order of power

Author(s)

D.S. Stoffer

Source

based on code from the polymatrix package https://github.com/namezys/polymatrix

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

Examples

```
a = 1:3 # 1 + 2x + 3x^2
b = 1:2 # 1 + 2x
polyMul(a, b)
# [1] 1 4 7 6
# 1 + 4x + 7x^2 + 6x^3
```

66 qinfl

prodn

Monthly Federal Reserve Board Production Index

Description

Monthly Federal Reserve Board Production Index (1948-1978, n = 372 months).

Usage

data(prodn)

Format

The format is: Time-Series [1:372] from 1948 to 1979: 40.6 41.1 40.5 40.1 40.4 41.2 39.3 41.6 42.3 43.2 ...

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

qinfl

Quarterly Inflation

Description

Quarterly inflation rate in the Consumer Price Index from 1953-Ito 1980-II, n = 110 observations.

Format

The format is: Time-Series [1:110] from 1953 to 1980: 1.673 3.173 0.492 -0.327 -0.333 ...

Details

pairs with qintr (interest rate)

Source

Newbold, P. and T. Bos (1985). Stochastic Parameter Regression Models. Beverly Hills: Sage.

qintr 67

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

See Also

qintr

qintr

Quarterly Interest Rate

Description

Quarterly interest rate recorded for Treasury bills from 1953-Ito 1980-II, n = 110 observations.

Format

The format is: Time-Series [1:110] from 1953 to 1980: 1.98 2.15 1.96 1.47 1.06 ...

Details

pairs with qinfl (inflation)

Source

Newbold, P. and T. Bos (1985). Stochastic Parameter Regression Models. Beverly Hills: Sage.

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsa4/.

See Also

qinfl

68 rec

rec

Recruitment (number of new fish index)

Description

Recruitment (index of the number of new fish) for a period of 453 months ranging over the years 1950-1987. Recruitment is loosely defined as an indicator of new members of a population to the first life stage at which natural mortality stabilizes near adult levels.

Usage

data(rec)

Format

The format is: Time-Series [1:453] from 1950 to 1988: 68.6 68.6 68.6 68.6 68.6 ...

Details

can pair with soi (Southern Oscillation Index)

Source

Data furnished by Dr. Roy Mendelssohn of the Pacific Fisheries Environmental Laboratory, NOAA (personal communication). Further discussion of the concept of Recruitment may be found here: derekogle.com/fishR/examples/oldFishRVignettes/StockRecruit.pdf

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

See Also

soi

sales 69

sales Sales

Description

Sales, 150 months; taken from Box and Jenkins (1970).

Format

The format is: Time-Series [1:150] from 1 to 150: 200 200 199 199 199 ...

Details

This is also the R data set BJsales: The sales time series BJsales and leading indicator BJsales.lead each contain 150 observations. The objects are of class "ts".

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

See Also

lead

salmon

Monthly export price of salmon

Description

Farm Bred Norwegian Salmon, export price, US Dollars per Kilogram

Format

The format is: Time-Series [1:166] from September 2003 to June 2017: $2.88\ 3.16\ 2.96\ 3.12\ 3.23\ 3.32\ 3.45\ 3.61\ 3.48\ 3.21\ ...$

Source

https://www.indexmundi.com/commodities/

70 salt

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsa4/.

salt

Salt Profiles

Description

Salt profiles taken over a spatial grid set out on an agricultural field, 64 rows at 17-ft spacing.

Usage

data(salt)

Format

The format is: Time-Series [1:64] from 1 to 64: 6 6 6 3 3 3 4 4 4 1.5 ...

Details

pairs with saltemp, temperature profiles on the same grid

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

See Also

saltemp

saltemp 71

saltemp

Temperature Profiles

Description

Temperature profiles over a spatial grid set out on an agricultural field, 64 rows at 17-ft spacing.

Usage

```
data(saltemp)
```

Format

```
The format is: Time-Series [1:64] from 1 to 64: 5.98 6.54 6.78 6.34 6.96 6.51 6.72 7.44 7.74 6.85 ...
```

Details

pairs with salt, salt profiles on the same grid

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

See Also

salt

sarima

Fit ARIMA Models

Description

Fits ARIMA models (with diagnostics) in a short command. It can also be used to perform regression with autocorrelated errors.

Usage

```
sarima(xdata, p, d, q, P = 0, D = 0, Q = 0, S = -1,
    details = TRUE, xreg=NULL, Model=TRUE,
    fixed=NULL, tol = sqrt(.Machine$double.eps),
    no.constant = FALSE, ...)
```

72 sarima

Arguments

xdata	univariate time series
р	AR order (must be specified)
d	difference order (must be specified)
q	MA order (must be specified)
Р	SAR order; use only for seasonal models
D	seasonal difference; use only for seasonal models
Q	SMA order; use only for seasonal models
S	seasonal period; use only for seasonal models
xreg	Optionally, a vector or matrix of external regressors, which must have the same number of rows as xdata.
Model	if TRUE (default), the model orders are printed on the diagnostic plot.
fixed	optional numeric vector of the same length as the total number of parameters. If supplied, only parameters corresponding to NA entries will be estimated.
details	if FALSE, turns off the diagnostic plot and the output from the nonlinear optimization routine, which is optim. The default is TRUE.
tol	controls the relative tolerance (reltol in optim) used to assess convergence. The default is sqrt(.Machine\$double.eps), the R default.
no.constant	controls whether or not sarima includes a constant in the model. In particular, if there is no differencing $(d=0 \text{ and } D=0)$ you get the mean estimate. If there is differencing of order one (either $d=1$ or $D=1$, but not both), a constant term is included in the model. These two conditions may be overridden (i.e., no constant will be included in the model) by setting this to TRUE; e.g., $sarima(x,1,1,0,no.constant=TRUE)$. Otherwise, no constant or mean term is included in the model. If regressors are included (via xreg), this is ignored. additional graphical arguments

Details

If your time series is in x and you want to fit an ARIMA(p,d,q) model to the data, the basic call is sarima(x,p,d,q). The values p,d,q, must be specified as there is no default. The results are the parameter estimates, standard errors, AIC, AICc, BIC (as defined in Chapter 2) and diagnostics. To fit a seasonal ARIMA model, the basic call is sarima(x,p,d,q,P,D,Q,S). For example, sarima(x,2,1,0) will fit an ARIMA(2,1,0) model to the series in x, and sarima(x,2,1,0,0,1,1,12) will fit a seasonal ARIMA(2,1,0) * $(0,1,1)_{12}$ model to the series in x. The difference between the information criteria given by sarima() and arima() is that they differ by a scaling factor of the effective sample size.

Value

fit	the arima object
degrees_of_freedom	
	Error degrees of freedom
ttable	a little t-table with two-sided p-values
AIC	value of the AIC - all ICs are the values reported in fit divided by the essential number of observations (after differencing)
AICc	value of the AICc
BIC	value of the BIC

sarima.for 73

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

 $The \ most \ recent \ version \ of \ the \ package \ can \ be \ found \ at \ \ https://github.com/nickpoison/astsa/.$

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsa4/.

See Also

```
sarima.for, sarima.sim
```

Examples

```
sarima(log(AirPassengers),0,1,1,0,1,1,12)

(dog <- sarima(log(AirPassengers),0,1,1,0,1,1,12))
summary(dog$fit) # fit has all the returned arima() values

plot(resid(dog$fit)) # plot the innovations (residuals)
sarima(log(AirPassengers),0,1,1,0,1,1,12,details=FALSE)$BIC # print model BIC only

# fixed parameters
x = sarima.sim( ar=c(0,-.9), n=200 ) + 50
sarima(x, 2,0,0, fixed=c(0,NA,NA))

# fun with diagnostics
sarima(log(AirPassengers),0,1,1,0,1,1,12, gg=TRUE, col=4)</pre>
```

sarima.for

ARIMA Forecasting

Description

ARIMA forecasting.

Usage

Arguments

xdata	univariate time series
n.ahead	forecast horizon (number of periods)
р	AR order
d	difference order
q	MA order
Р	SAR order: use only for seasonal models

74 sarima.for

D	seasonal difference; use only for seasonal models
Q	SMA order; use only for seasonal models
S	seasonal period; use only for seasonal models
tol	controls the relative tolerance (reltol) used to assess convergence. The default is \ensuremath{sqrt} (.Machine\$double.eps), the R default.
no.constant	controls whether or not a constant is included in the model. If no.constant=TRUE, no constant is included in the model. See sarima for more details.
plot	if TRUE (default) the data (or some of it) and the forecasts and bounds are plotted
plot.all	if TRUE, all the data are plotted in the graphic; otherwise, only the last 100 observations are plotted in the graphic.
xreg	Optionally, a vector or matrix of external regressors, which must have the same number of rows as the series. If this is used, newxreg MUST be specified.
newxreg	New values of xreg to be used for prediction. Must have at least n. ahead rows.
fixed	optional numeric vector of the same length as the total number of parameters. If supplied, only parameters corresponding to NA entries will be estimated.
	additional graphical arguments

Details

For example, sarima.for(x,5,1,0,1) will forecast five time points ahead for an ARMA(1,1) fit to x. The output prints the forecasts and the standard errors of the forecasts, and supplies a graphic of the forecast with +/- 1 and 2 prediction error bounds.

Value

pred the forecasts

se the prediction (standard) errors

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/. In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsa4/.

See Also

sarima

Examples

```
sarima.for(log(AirPassengers),12,0,1,1,0,1,1,12)
# fun with the graphic
sarima.for(log(AirPassengers),12,0,1,1,0,1,1,12, gg=TRUE, col=4, main='arf')
# with regressors:
```

sarima.sim 75

```
nummy = length(soi)
n.ahead = 24
nureg = time(soi)[nummy] + seq(1,n.ahead)/12
sarima.for(soi,n.ahead,2,0,0,2,0,0,12, xreg=time(soi), newxreg=nureg)
```

sarima.sim

ARIMA Simulation

Description

Simulate data from (seasonal) ARIMA models.

Usage

```
sarima.sim(ar = NULL, d = 0, ma = NULL, sar = NULL, D = 0, sma = NULL, S = NULL, n = 500, rand.gen = rnorm, innov = NULL, burnin = NA, <math>t0 = 0, ...)
```

Arguments

ar	coefficients of AR component (does not have to be specified)
d	order of regular difference (does not have to be specified)
ma	coefficients of MA component (does not have to be specified)
sar	coefficients of SAR component (does not have to be specified)
D	order of seasonal difference (does not have to be specified)
sma	coefficients of SMA component (does not have to be specified)
S	seasonal period (does not have to be specified)
n	desired sample size (defaults to 500)
rand.gen	optional; a function to generate the innovations (defaults to normal)
innov	an optional times series of innovations. If not provided, rand.gen is used.
burnin	length of burn-in (a non-negative integer). If NA (the default) a reasonable value is selected.
t0	start time (defaults to 0)
	additional arguments applied to the innovations. For rand.gen, the standard deviation of the innovations generated by rnorm can be specified by sd or the mean by mean (see details and examples). In addition, rand.gen may be overridden using a preset sequence of innovations specifying innov (see details and examples).

Details

Will generate a time series of length n from the specified SARIMA model using simplified input.

The use of the term mean in ...refers to the generation of normal innovations. For example, sarima.sim(ar=.9, mean=5) will generate data using N(5,1) or 5+N(0,1) innovations, so that the constant in the model is 5 and the mean of the AR model is 5/(1-.9) = 50. In sarima.sim(ma=.9, mean=5), however, the model mean is 5 (the constant). Also, a random walk with drift = .1 can be generated by sarima.sim(d=1, mean=.1, burnin=0), which is equivalent to cumsum(rnorm(500, mean=.1))

76 sarima.sim

mean=.1)). The same story goes if sd is specified; i.e., it's applied to the innovations. Because anything specified in ... refers to the innovations, a simpler way to generate a non-zero mean is to add the value outside the call; see the examples.

If innov is used to input the innovations and override rand.gen, be sure that length(innov) is at least n + burnin. If the criterion is not met, the script will return less than the desired number of values and a warning will be given.

Value

A time series of length n from the specified SARIMA model with the specified frequency if the model is seasonal and start time t0.

Note

The model autoregressive polynomial ('AR side' = AR x SAR) is checked for causality and the model moving average polynomial ('MA side' = MA x SMA) is checked invertibility. The script stops and reports an error at the first violation of causality or invertibility; i.e., it will not report multiple errors.

Author(s)

D.S. Stoffer

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

Examples

```
## AR(2) with mean 50 [n = 500 is default]
y = sarima.sim(ar=c(1.5,-.75)) + 50
tsplot(y)

## ARIMA(0,1,1) with drift
tsplot(sarima.sim(ma=-.8, d=1, mean=.1))

## SAR(1) example from text
Months = c("J","F","M","A","M","J","J","A","S","O","N","D")
sAR = sarima.sim(sar=.9, S=12, n=36)
tsplot(sAR, type='c')
points(sAR, pch=Months, cex=1.1, font=4, col=1:4)

## SARIMA(0,1,1)x(0,1,1)_12 - B&J's favorite
tsplot(sarima.sim(d=1, ma=-.4, D=1, sma=-.6, S=12, n=120))

## infinite variance t-errors
tsplot(sarima.sim(ar=.9, rand.gen=function(n, ...) rt(n, df=2) ))

## use your own innovations
```

scatter.hist 77

```
dog = rexp(150, rate=.5)*sign(runif(150,-1,1))
tsplot(sarima.sim(n=100, ar=.99, innov=dog, burnin=50))
## generate seasonal data but no P, D or Q - you will receive
## a message to make sure that you wanted to do this on purpose:
tsplot(sarima.sim(ar=c(1.5,-.75), n=144, S=12), ylab='doggy', xaxt='n')
mtext(seq(0,144,12), side=1, line=.5, at=0:12)
```

scatter.hist

Scatterplot with Marginal Histograms

Description

Draws a scatterplot with histograms in the margins.

Usage

Arguments

X	vector of x-values
У	corresponding vector of y-values
xlab	x-axis label (defaults to name of x)
ylab	y-axis label (defaults to name of y)
title	plot title (optional)
pt.size	size of points in scatterplot
hist.col	color for histograms
pt.col	color of points in scatterplot
pch	scatterplot point character
reset.par	reset graphics - default is TRUE; set to FALSE to add on to scatterplot
	other graphical parameters

Author(s)

D.S. Stoffer

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

 $The most recent version of the package can be found at \verb|https://github.com/nickpoison/astsa/|.$

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

78 SigExtract

Examples

```
scatter.hist(tempr, cmort, hist.col=astsa.col(5,.4), pt.col=5, pt.size=1.5, reset=FALSE)
lines(lowess(tempr, cmort), col=6)
```

SigExtract

Signal Extraction And Optimal Filtering

Description

Performs signal extraction and optimal filtering as discussed in Chapter 4.

Usage

```
SigExtract(series, L = c(3, 3), M = 50, max.freq = 0.05)
```

Arguments

series univariate time series to be filtered

L degree of smoothing (may be a vector); see spans in spec.pgram for more

details

M number of terms used in the lagged regression approximation

max.freq truncation frequency, which must be larger than 1/M.

Details

The basic function of the script, and the default setting, is to remove frequencies above 1/20 (and, in particular, the seasonal frequency of 1 cycle every 12 time points). The sampling frequency of the time series is set to unity prior to the analysis.

Value

Returns plots of (1) the original and filtered series, (2) the estiamted spectra of each series, (3) the filter coefficients and the desired and attained frequency response function. The filtered series is returned invisibly.

Note

The script is based on code that was contributed by Professor Doug Wiens, Department of Mathematical and Statistical Sciences, University of Alberta.

Author(s)

D.S. Stoffer

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/. In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

sleep1 79

sleep1

Sleep State and Movement Data - Group 1

Description

Sleep-state and number of movements of infants taken from a study on the effects of prenatal exposure to alcohol. This is Group 1 where the mothers did not drink alcohol during pregnancy.

Format

List of 12 (by subjects): 'data.frame': 120 obs. of 3 variables: .. min: int [1:120] minute (1 to 120) .. state: int [1:120] sleep state 1 to 6 with NA missing (see details) .. mvmnt: int [1:120] number of movements

Details

Per minute sleep state, for approximately 120 minutes, is categorized into one of six possible states, non-REM: NR1 [1] to NR4 [4], and REM [5], or AWAKE [6]. NA means no state is recorded for that minute (if there, it occurs at end of the session). Group 1 (this group) is from mothers who abstained from drinking during pregnancy. In addition, the number of movements per minute are listed.

Source

Stoffer, D. S., Scher, M. S., Richardson, G. A., Day, N. L., Coble, P. A. (1988). A Walsh-Fourier Analysis of the Effects of Moderate Maternal Alcohol Consumption on Neonatal Sleep-State Cycling. Journal of the American Statistical Association, 83(404), 954-963. https://doi.org/10.2307/2290119 Stoffer, D. S. (1990). Multivariate Walsh-Fourier Analysis. Journal of Time Series Analysis, 11(1), 57-73. https://doi.org/10.1111/j.1467-9892.1990.tb00042.x

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

See Also

sleep2

Examples

80 sleep2

```
x = dna2vector(sleep1[[1]]$state[1:115], alphabet=c('1','2','3','4','5')) # never awake
specenv(x, spans=c(3,3))
abline(v=1/60, lty=2, col=8)
## End(Not run)
```

sleep2

Sleep State and Movement Data - Group 2

Description

Sleep-state and number of movements of infants taken from a study on the effects of prenatal exposure to alcohol. This is Group 2 where the mothers drank alcohol in moderation during pregnancy.

Format

List of 12 (by subjects): 'data.frame': 120 obs. of 3 variables: .. min: int [1:120] minute (1 to 120) .. state: int [1:120] sleep state 1 to 6 with NA missing (see details) .. mvmnt: int [1:120] number of movements

Details

Per minute sleep state, for approximately 120 minutes, is categorized into one of six possible states, non-REM: NR1 [1] to NR4 [4], and REM [5], or AWAKE [6]. NA means no state is recorded for that minute (if there, it occurs at end of the session). Group 2 (this group) is from mothers who drank alcohol in moderation during pregnancy. In addition, the number of movements per minute are listed.

Source

Stoffer, D. S., Scher, M. S., Richardson, G. A., Day, N. L., Coble, P. A. (1988). A Walsh-Fourier Analysis of the Effects of Moderate Maternal Alcohol Consumption on Neonatal Sleep-State Cycling. Journal of the American Statistical Association, 83(404), 954-963. https://doi.org/10.2307/2290119 Stoffer, D. S. (1990). Multivariate Walsh-Fourier Analysis. Journal of Time Series Analysis, 11(1), 57-73. https://doi.org/10.1111/j.1467-9892.1990.tb00042.x

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

See Also

sleep1

so2 81

Examples

so2

SO2 levels from the LA pollution study

Description

Sulfur dioxide levels from the LA pollution study

Format

The format is: Time-Series [1:508] from 1970 to 1980: 3.37 2.59 3.29 3.04 3.39 2.57 2.35 3.38 1.5 2.56 ...

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/. In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

See Also

lap

soi

Southern Oscillation Index

Description

Southern Oscillation Index (SOI) for a period of 453 months ranging over the years 1950-1987.

Format

The format is: Time-Series [1:453] from 1950 to 1988: $0.377\ 0.246\ 0.311\ 0.104\ -0.016\ 0.235\ 0.137\ 0.191\ -0.016\ 0.29\ ...$

82 soiltemp

Details

pairs with rec (Recruitment)

Source

Data furnished by Dr. Roy Mendelssohn of the Pacific Fisheries Environmental Laboratory, NOAA (personal communication).

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

See Also

rec

soiltemp

Spatial Grid of Surface Soil Temperatures

Description

A 64 by 36 matrix of surface soil temperatures.

Format

The format is: num [1:64, 1:36] 6.7 8.9 5 6.6 6.1 7 6.5 8.2 6.7 6.6 ...

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

sp500.gr 83

sp500.gr

Returns of the S&P 500

Description

Daily growth rate of the S&P 500 from 2001 though 2011.

Format

```
The format is: Time Series; Start = c(2001, 2); End = c(2011, 209); Frequency = 252
```

Source

Douc, Moulines, \& Stoffer (2014). *Nonlinear Time Series: Theory, Methods and Applications with R Examples*. CRC Press. ISBN: <9781466502253>

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

Examples

```
## Not run:
tsplot(sp500.gr, gg=TRUE, col=5, las=0)
## End(Not run)
```

sp500w

Weekly Growth Rate of the Standard and Poor's 500

Description

Weekly closing returns of the SP 500 from 2003 to September, 2012.

Format

An 'xts' object on 2003-01-03 to 2012-09-28; Indexed by objects of class: [Date] TZ: UTC

84 spec.ic

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/. In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

spec.ic

Estimate Spectral Density of a Time Series from AR Fit

Description

Fits an AR model to data and computes (and by default plots) the spectral density of the fitted model based on AIC (default) or BIC.

Usage

Arguments

data a univariate time series.

BIC if TRUE, fit is based on BIC. If FALSE (default), fit is based on AIC.

order.max maximum order of models to fit. Defaults to 30.

main title. Defaults to name of series, method and chosen order.

plot if TRUE (default) produces a graphic of the estimated AR spectrum.

detrend if TRUE, detrends the data first. Default is FALSE.

method method of estimation - a character string specifying the method to fit the model

chosen from the following: "yule-walker", "burg", "ols", "mle", "yw". Defaults

to "yule-walker".

... additional arguments.

Details

Uses ar to fit the best AR model based on pseudo AIC or BIC. No likelihood is calculated unless method='mle' is used, however, the calculations will be slow. The minimum centered AIC and BIC values and the spectral and frequency ordinates are returned silently.

Value

[[1]] Matrix with columns: ORDER, AIC, BIC

[[2]] Matrix with columns: freq, spec

Author(s)

D.S. Stoffer

specenv 85

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsa4/.

See Also

```
ar, spec.ar
```

Examples

```
## Not run:
# AIC
spec.ic(soi)
spec.ic(sunspotz, method='burg', col=4)

# BIC after detrending on log scale
spec.ic(soi, BIC=TRUE, detrend=TRUE, log='y')

# plot AIC and BIC without spectral estimate
tsplot(0:30, spec.ic(soi, plot=FALSE)[[1]][,2:3], type='o', xlab='order', nxm=5)
## End(Not run)
```

specenv

Spectral Envelope

Description

Computes the spectral envelope of categorical-valued or real-valued time series.

Usage

Arguments

xdata	For categorical-valued sequences, a matrix with rows that are indicators of the categories represented by the columns, possibly a sequence converted using dna2vector. For real-valued sequences, a matrix with at least two columns that are various transformations of the data.
section	of the form start:end where start < end are positive integers; specifies the section used in the analysis - default is the entire sequence.
spans	specify smoothing used in mvspec.
kernel	specify kernel to be used in mvspec.
taper	specify amount of tapering to be used in mvspec.

86 specenv

significance significance threshold exhibited in plot - default is .0001; set to NA to cancel plot if TRUE (default) a graphic of the spectral envelope is produced limits of the spectral envelope axis; if NULL (default), a suitable range is calculated.

real FALSE (default) for categorical-valued sequences and TRUE for real-valued sequences.

.. other graphical parameters.

Details

Calculates the spectral envelope for categorical-valued series as discussed in

https://www.stat.pitt.edu/stoffer/dss_files/spenv.pdf

and summarized in

https://doi.org/10.1214/ss/1009212816.

Alternately, calculates the spectral envelope for real-valued series as discussed in

https://doi.org/10.1016/S0378-3758(96)00044-4.

These concepts are also presented (with examples) in Section 7.9 (Chapter 7) of Time Series Analysis and Its Applications: With R Examples: https://www.stat.pitt.edu/stoffer/tsa4/.

For categorical-valued series, the input xdata must be a matrix of indicators which is perhaps a sequence preprocessed using dna2vector.

For real-valued series, the input xdata should be a matrix whose columns are various transformations of the univariate series.

The script does not detrend the data prior to estimating spectra. If this is an issue, then detrend the data prior to using this script.

Value

By default, will produce a graph of the spectral envelope and an approximate significance threshold. A matrix containing: frequency, spectral envelope ordinates, and (1) the scalings of the categories in the order of the categories in the alphabet or (2) the coefficients of the transformations, is returned invisibly.

Author(s)

D.S. Stoffer

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

See Also

dna2vector

speech 87

Examples

```
## Not run:
# a DNA sequence
data = bnrf1ebv
xdata = dna2vector(data)
u = specenv(xdata, section=1:1000, spans=c(7,7))
head(u) # scalings are for A, C, G, and last one T=0 always
# a real-valued series (nyse returns)
x = astsa::nyse
xdata = cbind(x, abs(x), x^2)
u = specenv(xdata, real=TRUE, spans=c(3,3))
\# plot optimal transform at freq = .001
beta = u[2, 3:5]
b = beta/beta[2] # makes abs(x) coef=1
gopt = function(x) { b[1]*x+b[2]*abs(x)+b[3]*x^2 }
curve(gopt, -.2, .2, col=4, lwd=2, panel.first=Grid())
g2 = function(x) \{ b[2]*abs(x) \} # corresponding to |x|
curve(g2, -.2,.2, add=TRUE, col=6)
## End(Not run)
```

speech

Speech Recording

Description

A small .1 second (1000 points) sample of recorded speech for the phrase "aaa...hhh".

Format

The format is: Time-Series [1:1020] from 1 to 1020: 1814 1556 1442 1416 1352 \dots

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

88 ssm

|--|

Description

Fits a simple univariate state space model, $x[t] = alpha + phi \ x[t-1] + w[t]$, and $y[t] = A \ x[t] + v[t]$. The parameters alpha, phi, sigma[w] and sigma[v] are estimated; parameter phi may be fixed. State predictions and smoothers and corresponding error variances are evaluated at the estimates. The sample size must be at least 20.

Usage

```
ssm(y, A, phi, alpha, sigw, sigv, fixphi = FALSE)
```

Arguments

у	data
Α	measurement value (fixed constant)
phi	initial value of phi, may be fixed
alpha	initial value for alpha
sigw	initial value for sigma[w]
sigv	initial value for sigma[v]
fixphi	if TRUE, the phi parameter is fixed

Details

The script works for a specific univariate state space model. The initial state conditions use a default calculation and cannot be specified. The parameter estimates are printed and the script returns the state predictors and smoothers.

Value

At the MLEs, these are returned invisibly:

Хр	time series - state prediction, x_t^{t-1}
Рр	corresponding MSPEs, P_t^{t-1}
Xf	time series - state filter, \boldsymbol{x}_t^t
Pf	corresponding MSEs, P_t^t
Xs	time series - state smoother, \boldsymbol{x}_t^n
Ps	corresponding MSEs, P_t^n

Author(s)

D.S. Stoffer

star 89

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

star

Variable Star

Description

The magnitude of a star taken at midnight for 600 consecutive days. The data are taken from the classic text, The Calculus of Observations, a Treatise on Numerical Mathematics, by E.T. Whittaker and G. Robinson, (1923, Blackie and Son, Ltd.).

Format

The format is: Time-Series [1:600] from 1 to 600: 25 28 31 32 33 33 32 ...

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

stoch.reg

Frequency Domain Stochastic Regression

Description

Performs frequency domain stochastic regression discussed in Chapter 7.

Usage

```
stoch.reg(data, cols.full, cols.red, alpha, L, M, plot.which)
```

90 sunspotz

Arguments

data data matrix

cols.full specify columns of data matrix that are in the full model

cols.red specify columns of data matrix that are in the reduced model (use NULL if there

are no inputs in the reduced model)

alpha test size

L smoothing - see spans in spec.pgram

M number of points in the discretization of the integral

plot.which coh or F. stat, to plot either the squared-coherencies or the F-statistics, respec-

tively

Value

power.full spectrum under the full model
power.red spectrum under the reduced model
Betahat regression parameter estimates
eF pointwise (by frequency) F-tests

coh coherency

Note

The script is based on code that was contributed by Professor Doug Wiens, Department of Mathematical and Statistical Sciences, University of Alberta.

Author(s)

D.S. Stoffer

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

sunspotz

Biannual Sunspot Numbers

Description

Biannual smoothed (12-month moving average) number of sunspots from June 1749 to December 1978; n = 459. The "z" on the end is to distinguish this series from the one included with R (called sunspots).

SV.mcmc 91

Format

The format is: Time Series: Start = c(1749, 1) End = c(1978, 1) Frequency = 2

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/. In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsa4/.

SV.mcmc

Fit Bayesian Stochastic Volatility Model

Description

Fits a stochastic volatility model to a univariate time series of returns.

Usage

Arguments

у	single time series of returns
nmcmc	number of iterations for the MCMC procedure
burnin	number of iterations to discard for the MCMC procedure
init	initial values of (phi, sigma, beta) - default is c(0.9, 0.5, .1)
hyper	hyperparameters for bivariate normal (phi, sigma), user inputs (mu_phi, mu_q, sigma_phi, sigma_q, rho) - default is c(0.9, 0.5, 0.075, 0.3, -0.25)
tuning	tuning parameter - default is .03
sigma_MH	covariance matrix for random walk Metropolis - default is tuning * matrix($c(1,25,25,1)$, nrow=2, ncol=2)
npart	number of particles used in particle filter - default is 10

Details

mcmseed

The log-volatility process is x_t and the returns are y_t . The SV model is

seed for mcmc - default is 90210

$$x_t = \phi x_{t-1} + \sigma w_t$$
 $y_t = \beta \exp\{\frac{1}{2}x_t\}\epsilon_t$

where w_t and ϵ_t are independent standard normal white noise. The model is fit using a technique described in the paper listed in the source. Two graphics are returned: (1) the three parameter traces [with effective sample sizes (ESS)], their ACFs, and their histograms with the .025, .5, and .975 quantiles displayed, and (2) the log-volatility posterior mean along with corresponding .95 credible intervals.

92 SV.mcmc

Value

Returned invisibly:

phi vector of sampled state AR parameter
sigma vector of sampled state error stnd deviation
beta vector of sampled observation error scale
log.vol matrix of sampled log-volatility

options values of the input arguments

Note

Except for the data, all the other inputs have defaults. The time to run and the acceptance rate are returned at the end of the analysis. The acceptance rate should be around 28% and this can be adjusted using the tuning parameter.

Author(s)

D.S. Stoffer

Source

Gong & Stoffer (2021). A note on efficient fitting of stochastic volatility models. *Journal of Time Series Analysis*, 42(2), 186-200. https://github.com/nickpoison/Stochastic-Volatility-Models

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

Examples

```
## Not run:
#-- A minimal example --##
myrun <- SV.mcmc(sp500w) # results in object myrun - don't forget it
str(myrun) # an easy way to see the default input options
## End(Not run)</pre>
```

SVfilter 93

SVfilter	Switching Filter (for Stochastic Volatility Models)	

Description

Performs a special case switching filter when the observational noise is a certain mixture of normals. Used to fit a stochastic volatility model.

Usage

```
SVfilter(num, y, phi0, phi1, sQ, alpha, sR0, mu1, sR1)
```

Arguments

num	number of observations
у	time series of returns
phi0	state constant
phi1	state transition parameter
sQ	state standard deviation
alpha	observation constant
sR0	observation error standard deviation for mixture component zero
mu1	observation error mean for mixture component one
sR1	observation error standard deviation for mixture component one

Value

xp	one-step-ahead prediction of the volatility
Pp	mean square prediction error of the volatility
like	the negative of the log likelihood at the given parameter values

Author(s)

D.S. Stoffer

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/. In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

94 test.linear

tempr

Temperatures from the LA pollution study

Description

Temperature series corresponding to cmort from the LA pollution study.

Format

The format is: Time-Series [1:508] from 1970 to 1980: 72.4 67.2 62.9 72.5 74.2 ...

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

See Also

lap

test.linear

Test Linearity of a Time Series via Normalized Bispectrum

Description

Produces a plot of the tail probabilities of a normalized bispectrum of a series under the assumption the model is a linear process with iid innovations.

Usage

```
test.linear(series, color = TRUE, detrend = FALSE)
```

Arguments

series the time series (univariate only)

color if FALSE, the graphic is produced in gray scale

detrend if TRUE, the series is detrended first

Value

prob matrix of tail probabilities - returned invisibly

trend 95

Note

The null hypothesis is that the data are from a linear process with i.i.d. innovations. Under the null hypothesis, the bispectrum is constant over all frequencies. Chi-squared test statistics are formed in blocks to measure departures from the null hypothesis and the corresponding p-values are displayed in a graphic and returned invisibly. Details are in Hinich, M. and Wolinsky, M. (2005). Normalizing bispectra. *Journal of Statistical Planning and Inference*, 130, 405–411.

Author(s)

D.S. Stoffer

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/. In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

Examples

```
## Not run:
test.linear(nyse) # :(
test.linear(soi) # :)
## End(Not run)
```

trend

Estimate Trend

Description

Estimates the trend (polynomial or lowess) of a time series and returns a graphic of the series with the trend and error bounds superimposed.

Usage

```
trend(series, order = 1, lowess = FALSE, lowspan = .75, robust = TRUE, col = c(4, 6), ylab = NULL, ...)
```

Arguments

series	The time series to be analyzed (univariate only).
order	Order of the polynomial used to estimate the trend with a linear default (order=1) unless lowess is TRUE.
lowess	If TRUE, loess from the stats package is used to fit the trend. The default is FALSE.
lowspan	The smoother span used for lowess.
robust	If TRUE (default), the lowess fit is robust.

96 tsplot

col	Vector of two colors for the graphic, first the color of the data (default is 4) and second the color of the trend (default is 6). Both the data and trend line will be the same color if only one value is given.
ylab	Label for the vertical axis (default is the name of the series).
	Other graphical parameters.

Details

Produces a graphic of the time series with the trend and a .95 pointwise confidence interval superimposed. The trend estimate and the error bounds are returned invisibly.

Value

Produces a graphic and returns the trend estimate and error bounds invisibly (see details).

Author(s)

D.S. Stoffer

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

See Also

detrend

Examples

```
## Not run:
trend(soi)

trend(soi, lowess=TRUE)
## End(Not run)
```

tsplot

Time Series Plot

Description

Produces a nice plot of univariate or multiple time series in one easy line.

97 tsplot

Usage

```
tsplot(x, y=NULL, main=NULL, ylab=NULL, xlab='Time', type=NULL,
        margins=.25, ncolm=1, byrow=TRUE, minor=TRUE, nxm=2, nym=1,
        xm.grid=TRUE, ym.grid =TRUE, col=1, gg=FALSE, spaghetti=FALSE,
        pch=NULL, lty=1, lwd=1, ...)
```

Arguments

x, y	time series to be plotted; if both present, x will be the time index.
main	add a plot title - the default is no title.
ylab	y-axis label - the default is the name of the ts object.
xlab	x-axis label - the default is 'Time'.
type	type of plot - the default is line.
margins	inches to add (or subtract) to the margins.
ncolm	for multiple time series, the number of columns to plot.
byrow	for multiple time series - if TRUE (default), plot series row wise; if FALSE, plot series column wise.
minor, nxm, nym	if minor=TRUE, the number of minor tick marks on x-axis, y-axis. minor=FALSE removes both or set either to 0 or 1 to remove. The default is one minor tick on the x-axis and none on the y-axis.
xm.grid, ym.gri	
	if TRUE (default), adds grid lines at minor x-axis, y-axis ticks.
col	line color(s), can be a vector for multiple time series.
gg	if TRUE, will produce a gris-gris plot (gray graphic interior with white grid lines); the default is FALSE. The grammar of astsa is voodoo; see https://musicaficionado.blog/2017/11/08/gris-gris-by-dr-john/
spaghetti	if TRUE, will produce a spaghetti plot (all series on same plot).
pch	plot symbols (default is 1, circle); can be a vector for multiple plots.
lty	line type (default is 1, solid line); can be a vector for multiple plots.
lwd	line width (default is 1); can be a vector for multiple plots.
	other graphical parameteres; see par.

Author(s)

D.S. Stoffer

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/. In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/ blob/master/NEWS.md.

98 unemp

Examples

```
## Not run:
tsplot(soi, col=4, main="Southern Oscillation Index")
#
tsplot(1:453, soi, ylab='SOI', xlab='Month')
#
tsplot(climhyd, ncolm=2, gg=TRUE, col=2:7, lwd=2) # gris-gris plot
#
x <- replicate(100, cumsum(rcauchy(1000))/1:1000)
tsplot(x, col=1:8, main='No LLN For You', spaghetti=TRUE)
## End(Not run)</pre>
```

unemp

U.S. Unemployment

Description

Monthly U.S. Unemployment series (1948-1978, n = 372)

Usage

data(unemp)

Format

The format is: Time-Series [1:372] from 1948 to 1979: 235 281 265 241 201 ...

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

See Also

UnempRate

UnempRate 99

UnempRate

U.S. Unemployment Rate

Description

Monthly U.S. unemployment rate in percent unemployed (Jan, 1948 - Nov, 2016, n = 827)

Format

The format is: Time-Series [1:827] from 1948 to 2017: 4 4.7 4.5 4 3.4 3.9 3.9 3.6 3.4 2.9 ...

Source

https://data.bls.gov/timeseries/LNU04000000/

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/.

In addition, the News and Changel og files are at https://github.com/nickpoison/astsa/.

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

See Also

unemp

varve

Annual Varve Series

Description

Sedimentary deposits from one location in Massachusetts for 634 years, beginning nearly 12,000 years ago.

Format

The format is: Time-Series [1:634] from 1 to 634: 26.3 27.4 42.3 58.3 20.6 ...

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

 $The \ most \ recent \ version \ of \ the \ package \ can \ be \ found \ at \ \verb|https://github.com/nickpoison/astsa/.$

In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

100 WBC

WBC

White Blood Cell Levels

Description

WBC: Measurements made for 91 days on the three variables, log(white blood count) [WBC], log(platelet) [PLT] and hematocrit [HCT]. Missing data code is 0 (zero).

Format

The format is: Time-Series [1:91] from 1 to 91: 2.33 1.89 2.08 1.82 1.82 ...

Details

See Examples 6.1 amd 6.9 for more details.

Source

Jones, R.H. (1984). Fitting multivariate models to unequally spaced data. In *Time Series Analysis of Irregularly Observed Data*, pp. 158-188. E. Parzen, ed. Lecture Notes in Statistics, 25, New York: Springer-Verlag.

References

You can find demonstrations of astsa capabilities at FUN WITH ASTSA.

The most recent version of the package can be found at https://github.com/nickpoison/astsa/. In addition, the News and ChangeLog files are at https://github.com/nickpoison/astsa/blob/master/NEWS.md.

The webpages for the texts are https://www.stat.pitt.edu/stoffer/tsa4/ and https://www.stat.pitt.edu/stoffer/tsda/.

See Also

blood, HCT, PLT

Index

* color	part, 63
astsa.col, 12	PLT, 63
* datasets	polio, 64
ar1miss,9	prodn, 66
arf, 10	qinfl, <u>66</u>
BCJ, 13	qintr, 67
beamd, 14	rec, 68
birth, 14	sales, 69
blood, 15	salmon, 69
bnrf1ebv, 16	salt, 70
bnrf1hvs, 16	saltemp, 71
cardox, 17	sleep1, 79
chicken, 18	sleep2, <u>80</u>
climhyd, 19	so2, 81
cmort, 20	soi, 81
cpg, 20	soiltemp, 82
djia, <u>22</u>	sp500.gr, 83
EBV, 24	sp500w, 83
econ5, 25	speech, 87
EQ5, 28	star, 89
eqexp, 29	sunspotz, 90
EXP6, 30	tempr, 94
flu, 33	unemp, 98
fmri, 33	UnempRate, 99
fmri1, 34	varve, 99
gas, 35	WBC, 100
gdp, 36	* manip
globtemp, 36	dna2vector, 22
globtempl, 37	* math
gnp, 38	matrixpwr, 58
gtemp, 40	polyMul, 65
gtemp2, 40	* package
$gtemp_land, 41$	astsa-package, 4
gtemp_ocean, 42	* ts
Hare, 42	acf1,4
HCT, 43	acf2, 6
hor, 44	acfm, 7
jj, 44	ar.mcmc,8
lap, 56	arma.spec, 10
lead, 57	ARMAtoAR, 11
Lynx, 57	astsa-package, 4
nyse, <u>61</u>	ccf2, 17
oil, 62	detrend, 21

INDEX

EM0, 25	detrend, 21, 96
EM1, 27	djia, 22
ffbs, 31	dna2vector, 22, 24, 85, 86
Kfilter0,45	unazvecetor, 22, 27, 03, 00
Kfilter1, 46	EBV, 24
Kfilter, 40 Kfilter2, 47	econ5, 25
	EM0, 25
Ksmooth0, 49	EM1, 27
Ksmooth1, 50	EQ5, 28
Ksmooth2, 51	EQcount, 29
lag1.plot, 53	eqexp, 28, 29, 30
lag2.plot, 54	EXP6, 30
LagReg, 55	LNI 0, 30
mvspec, 59	FDR, 30
sarima,71	ffbs, 31
sarima.for,73	flu, 33
sarima.sim,75	
SigExtract, 78	fmri, 33, 35
specenv, 85	fmri1, 34
ssm, 88	gas 25 62
stoch.reg, 89	gas, 35, 62
SV.mcmc, 91	gdp, 36, 38
SVfilter, 93	globtemp, 36, 38, 40–42
test.linear,94	globtempl, 37, 37, 40–42
trend, 95	gnp, 38
tsplot, 96	Grid, 39
%^% (matrixpwr), 58	grid, 40
P // 2	gtemp, 37, 38, 40, 41
	gtemp2, 37, 38, 40, 40, 41, 42
acf1, 4	
acf1, 4 acf2. 6	gtemp_land, 37, 38, 40, 41, 41, 42
acf2, 6	
acf2, 6 acfm, 7	gtemp_land, 37, 38, 40, 41, 41, 42 gtemp_ocean, 37, 38, 40, 41, 42
acf2, 6 acfm, 7 ar, 85	gtemp_land, 37, 38, 40, 41, 41, 42 gtemp_ocean, 37, 38, 40, 41, 42 Hare, 42, 58
acf2, 6 acfm, 7 ar, 85 ar.mcmc, 8	gtemp_land, 37, 38, 40, 41, 41, 42 gtemp_ocean, 37, 38, 40, 41, 42 Hare, 42, 58 HCT, 15, 43, 64, 100
acf2, 6 acfm, 7 ar, 85 ar.mcmc, 8 ar1miss, 9	gtemp_land, 37, 38, 40, 41, 41, 42 gtemp_ocean, 37, 38, 40, 41, 42 Hare, 42, 58
acf2, 6 acfm, 7 ar, 85 ar.mcmc, 8 ar1miss, 9 arf, 10	gtemp_land, <i>37</i> , <i>38</i> , <i>40</i> , <i>41</i> , 41, 42 gtemp_ocean, <i>37</i> , <i>38</i> , <i>40</i> , <i>41</i> , 42 Hare, 42, <i>58</i> HCT, <i>15</i> , 43, <i>64</i> , <i>100</i> hor, 44
acf2,6 acfm,7 ar,85 ar.mcmc,8 ar1miss,9 arf,10 arma.spec,10	gtemp_land, 37, 38, 40, 41, 41, 42 gtemp_ocean, 37, 38, 40, 41, 42 Hare, 42, 58 HCT, 15, 43, 64, 100
acf2,6 acfm,7 ar,85 ar.mcmc,8 ar1miss,9 arf,10 arma.spec,10 ARMAtoAR,11	gtemp_land, 37, 38, 40, 41, 41, 42 gtemp_ocean, 37, 38, 40, 41, 42 Hare, 42, 58 HCT, 15, 43, 64, 100 hor, 44 jj, 44
acf2,6 acfm,7 ar,85 ar.mcmc,8 ar1miss,9 arf,10 arma.spec,10 ARMAtoAR,11 astsa (astsa-package),4	gtemp_land, 37, 38, 40, 41, 41, 42 gtemp_ocean, 37, 38, 40, 41, 42 Hare, 42, 58 HCT, 15, 43, 64, 100 hor, 44 jj, 44 Kfilter0, 45
acf2,6 acfm,7 ar,85 ar.mcmc,8 ar1miss,9 arf,10 arma.spec,10 ARMAtoAR,11 astsa(astsa-package),4 astsa-package,4	gtemp_land, 37, 38, 40, 41, 41, 42 gtemp_ocean, 37, 38, 40, 41, 42 Hare, 42, 58 HCT, 15, 43, 64, 100 hor, 44 jj, 44 Kfilter0, 45 Kfilter1, 32, 46
acf2,6 acfm,7 ar,85 ar.mcmc,8 ar1miss,9 arf,10 arma.spec,10 ARMAtoAR,11 astsa (astsa-package),4	gtemp_land, 37, 38, 40, 41, 41, 42 gtemp_ocean, 37, 38, 40, 41, 42 Hare, 42, 58 HCT, 15, 43, 64, 100 hor, 44 jj, 44 Kfilter0, 45 Kfilter1, 32, 46 Kfilter2, 47
acf2,6 acfm,7 ar,85 ar.mcmc,8 ar1miss,9 arf,10 arma.spec,10 ARMAtoAR,11 astsa(astsa-package),4 astsa-package,4 astsa.col,12	gtemp_land, 37, 38, 40, 41, 41, 42 gtemp_ocean, 37, 38, 40, 41, 42 Hare, 42, 58 HCT, 15, 43, 64, 100 hor, 44 jj, 44 Kfilter0, 45 Kfilter1, 32, 46 Kfilter2, 47 Ksmooth0, 49
acf2, 6 acfm, 7 ar, 85 ar.mcmc, 8 ar1miss, 9 arf, 10 arma.spec, 10 ARMAtoAR, 11 astsa (astsa-package), 4 astsa-package, 4 astsa.col, 12 BCJ, 13	gtemp_land, 37, 38, 40, 41, 41, 42 gtemp_ocean, 37, 38, 40, 41, 42 Hare, 42, 58 HCT, 15, 43, 64, 100 hor, 44 jj, 44 Kfilter0, 45 Kfilter1, 32, 46 Kfilter2, 47 Ksmooth0, 49 Ksmooth1, 50
acf2,6 acfm,7 ar,85 ar.mcmc,8 ar1miss,9 arf,10 arma.spec,10 ARMAtoAR,11 astsa(astsa-package),4 astsa-package,4 astsa.col,12 BCJ,13 beamd,14	gtemp_land, 37, 38, 40, 41, 41, 42 gtemp_ocean, 37, 38, 40, 41, 42 Hare, 42, 58 HCT, 15, 43, 64, 100 hor, 44 jj, 44 Kfilter0, 45 Kfilter1, 32, 46 Kfilter2, 47 Ksmooth0, 49
acf2, 6 acfm, 7 ar, 85 ar.mcmc, 8 ar1miss, 9 arf, 10 arma.spec, 10 ARMAtoAR, 11 astsa (astsa-package), 4 astsa-package, 4 astsa.col, 12 BCJ, 13 beamd, 14 birth, 14	gtemp_land, 37, 38, 40, 41, 41, 42 gtemp_ocean, 37, 38, 40, 41, 42 Hare, 42, 58 HCT, 15, 43, 64, 100 hor, 44 jj, 44 Kfilter0, 45 Kfilter1, 32, 46 Kfilter2, 47 Ksmooth0, 49 Ksmooth1, 50 Ksmooth2, 51
acf2, 6 acfm, 7 ar, 85 ar.mcmc, 8 ar1miss, 9 arf, 10 arma.spec, 10 ARMAtoAR, 11 astsa (astsa-package), 4 astsa-package, 4 astsa.col, 12 BCJ, 13 beamd, 14 birth, 14 blood, 15, 43, 64, 100	gtemp_land, 37, 38, 40, 41, 41, 42 gtemp_ocean, 37, 38, 40, 41, 42 Hare, 42, 58 HCT, 15, 43, 64, 100 hor, 44 jj, 44 Kfilter0, 45 Kfilter1, 32, 46 Kfilter2, 47 Ksmooth0, 49 Ksmooth1, 50 Ksmooth2, 51 lag1.plot, 53, 54
acf2, 6 acfm, 7 ar, 85 ar.mcmc, 8 ar1miss, 9 arf, 10 arma.spec, 10 ARMAtoAR, 11 astsa (astsa-package), 4 astsa-package, 4 astsa.col, 12 BCJ, 13 beamd, 14 birth, 14 blood, 15, 43, 64, 100 bnrf1ebv, 16	gtemp_land, 37, 38, 40, 41, 41, 42 gtemp_ocean, 37, 38, 40, 41, 42 Hare, 42, 58 HCT, 15, 43, 64, 100 hor, 44 jj, 44 Kfilter0, 45 Kfilter1, 32, 46 Kfilter2, 47 Ksmooth0, 49 Ksmooth1, 50 Ksmooth2, 51 lag1.plot, 53, 54 lag2.plot, 53, 54
acf2, 6 acfm, 7 ar, 85 ar.mcmc, 8 ar1miss, 9 arf, 10 arma.spec, 10 ARMAtoAR, 11 astsa (astsa-package), 4 astsa-package, 4 astsa.col, 12 BCJ, 13 beamd, 14 birth, 14 blood, 15, 43, 64, 100	gtemp_land, 37, 38, 40, 41, 41, 42 gtemp_ocean, 37, 38, 40, 41, 42 Hare, 42, 58 HCT, 15, 43, 64, 100 hor, 44 jj, 44 Kfilter0, 45 Kfilter1, 32, 46 Kfilter2, 47 Ksmooth0, 49 Ksmooth1, 50 Ksmooth2, 51 lag1.plot, 53, 54 lag2.plot, 53, 54 LagReg, 55
acf2, 6 acfm, 7 ar, 85 ar.mcmc, 8 ar1miss, 9 arf, 10 arma.spec, 10 ARMAtoAR, 11 astsa (astsa-package), 4 astsa-package, 4 astsa.col, 12 BCJ, 13 beamd, 14 birth, 14 blood, 15, 43, 64, 100 bnrf1ebv, 16 bnrf1hvs, 16	gtemp_land, 37, 38, 40, 41, 41, 42 gtemp_ocean, 37, 38, 40, 41, 42 Hare, 42, 58 HCT, 15, 43, 64, 100 hor, 44 jj, 44 Kfilter0, 45 Kfilter1, 32, 46 Kfilter2, 47 Ksmooth0, 49 Ksmooth1, 50 Ksmooth2, 51 lag1.plot, 53, 54 lag2.plot, 53, 54 LagReg, 55 lap, 20, 56, 63, 81, 94
acf2, 6 acfm, 7 ar, 85 ar.mcmc, 8 ar1miss, 9 arf, 10 arma.spec, 10 ARMAtoAR, 11 astsa (astsa-package), 4 astsa-package, 4 astsa.col, 12 BCJ, 13 beamd, 14 birth, 14 blood, 15, 43, 64, 100 bnrf1ebv, 16 bnrf1hvs, 16 cardox, 17	gtemp_land, 37, 38, 40, 41, 41, 42 gtemp_ocean, 37, 38, 40, 41, 42 Hare, 42, 58 HCT, 15, 43, 64, 100 hor, 44 jj, 44 Kfilter0, 45 Kfilter1, 32, 46 Kfilter2, 47 Ksmooth0, 49 Ksmooth1, 50 Ksmooth2, 51 lag1.plot, 53, 54 lag2.plot, 53, 54 LagReg, 55 lap, 20, 56, 63, 81, 94 lead, 57, 69
acf2, 6 acfm, 7 ar, 85 ar.mcmc, 8 ar1miss, 9 arf, 10 arma.spec, 10 ARMAtoAR, 11 astsa (astsa-package), 4 astsa-package, 4 astsa.col, 12 BCJ, 13 beamd, 14 birth, 14 blood, 15, 43, 64, 100 bnrf1ebv, 16 bnrf1hvs, 16 cardox, 17 ccf2, 17	gtemp_land, 37, 38, 40, 41, 41, 42 gtemp_ocean, 37, 38, 40, 41, 42 Hare, 42, 58 HCT, 15, 43, 64, 100 hor, 44 jj, 44 Kfilter0, 45 Kfilter1, 32, 46 Kfilter2, 47 Ksmooth0, 49 Ksmooth1, 50 Ksmooth2, 51 lag1.plot, 53, 54 lag2.plot, 53, 54 lagReg, 55 lap, 20, 56, 63, 81, 94 lead, 57, 69 Lynx, 42, 43, 57
acf2, 6 acfm, 7 ar, 85 ar.mcmc, 8 ar1miss, 9 arf, 10 arma.spec, 10 ARMAtoAR, 11 astsa (astsa-package), 4 astsa-package, 4 astsa.col, 12 BCJ, 13 beamd, 14 birth, 14 blood, 15, 43, 64, 100 bnrf1ebv, 16 bnrf1hvs, 16 cardox, 17 ccf2, 17 chicken, 18	gtemp_land, 37, 38, 40, 41, 41, 42 gtemp_ocean, 37, 38, 40, 41, 42 Hare, 42, 58 HCT, 15, 43, 64, 100 hor, 44 jj, 44 Kfilter0, 45 Kfilter1, 32, 46 Kfilter2, 47 Ksmooth0, 49 Ksmooth1, 50 Ksmooth2, 51 lag1.plot, 53, 54 lag2.plot, 53, 54 LagReg, 55 lap, 20, 56, 63, 81, 94 lead, 57, 69
acf2, 6 acfm, 7 ar, 85 ar.mcmc, 8 ar1miss, 9 arf, 10 arma.spec, 10 ARMAtoAR, 11 astsa (astsa-package), 4 astsa-package, 4 astsa.col, 12 BCJ, 13 beamd, 14 birth, 14 blood, 15, 43, 64, 100 bnrf1ebv, 16 bnrf1hvs, 16 cardox, 17 ccf2, 17 chicken, 18 climhyd, 19	gtemp_land, 37, 38, 40, 41, 41, 42 gtemp_ocean, 37, 38, 40, 41, 42 Hare, 42, 58 HCT, 15, 43, 64, 100 hor, 44 jj, 44 Kfilter0, 45 Kfilter1, 32, 46 Kfilter2, 47 Ksmooth0, 49 Ksmooth1, 50 Ksmooth2, 51 lag1.plot, 53, 54 lag2.plot, 53, 54 LagReg, 55 lap, 20, 56, 63, 81, 94 lead, 57, 69 Lynx, 42, 43, 57 lynx, 58
acf2, 6 acfm, 7 ar, 85 ar.mcmc, 8 ar1miss, 9 arf, 10 arma.spec, 10 ARMAtoAR, 11 astsa (astsa-package), 4 astsa-package, 4 astsa.col, 12 BCJ, 13 beamd, 14 birth, 14 blood, 15, 43, 64, 100 bnrf1ebv, 16 bnrf1hvs, 16 cardox, 17 ccf2, 17 chicken, 18 climhyd, 19 cmort, 20	gtemp_land, 37, 38, 40, 41, 41, 42 gtemp_ocean, 37, 38, 40, 41, 42 Hare, 42, 58 HCT, 15, 43, 64, 100 hor, 44 jj, 44 Kfilter0, 45 Kfilter1, 32, 46 Kfilter2, 47 Ksmooth0, 49 Ksmooth1, 50 Ksmooth2, 51 lag1.plot, 53, 54 lag2.plot, 53, 54 LagReg, 55 lap, 20, 56, 63, 81, 94 lead, 57, 69 Lynx, 42, 43, 57 lynx, 58 matrixpwr, 58
acf2, 6 acfm, 7 ar, 85 ar.mcmc, 8 ar1miss, 9 arf, 10 arma.spec, 10 ARMAtoAR, 11 astsa (astsa-package), 4 astsa-package, 4 astsa.col, 12 BCJ, 13 beamd, 14 birth, 14 blood, 15, 43, 64, 100 bnrf1ebv, 16 bnrf1hvs, 16 cardox, 17 ccf2, 17 chicken, 18 climhyd, 19	gtemp_land, 37, 38, 40, 41, 41, 42 gtemp_ocean, 37, 38, 40, 41, 42 Hare, 42, 58 HCT, 15, 43, 64, 100 hor, 44 jj, 44 Kfilter0, 45 Kfilter1, 32, 46 Kfilter2, 47 Ksmooth0, 49 Ksmooth1, 50 Ksmooth2, 51 lag1.plot, 53, 54 lag2.plot, 53, 54 LagReg, 55 lap, 20, 56, 63, 81, 94 lead, 57, 69 Lynx, 42, 43, 57 lynx, 58

INDEX 103

```
nyse, 61
oil, 36, 62
par, 97
part, 63
PLT, 15, 43, 63, 100
polio, 64
polyMul, 65
prodn, 66
qinfl, 66, 67
qintr, 67, 67
rec, 68, 82
sales, 57, 69
salmon, 69
salt, 70, 71
saltemp, 70, 71
sarima, 71, 74
sarima.for, 73, 73
sarima.sim, 73, 75
scatter.hist, 77
SigExtract, 78
sleep1, 79, 80
sleep2, 79, 80
so2, 81
soi, 68, 81
soiltemp, 82
sp500.gr, 83
sp500w, 83
spec.ar, 85
spec.ic, 84
specenv, 23, 85
speech, 87
ssm, 88
star, 89
stoch.reg, 89
\quad \text{sunspotz}, \textcolor{red}{90}
SV.mcmc, 91
SVfilter, 93
tempr, 94
test.linear, 94
trend, 21, 95
tsplot, 5-7, 18, 96
unemp, 98, 99
UnempRate, 98, 99
varve, 99
WBC, 15, 43, 64, 100
```