Repetitorium Analysis 1 für Physiker WS08/09 Montag - Folgen und Reihen Musterlösung

Thomas Blasi

1. Verständnisfragen

- (a) Sind folgende Aussagen richtig oder falsch:
 - i. Jede konvergente Folge hat einen Grenzwert. Richtig.
 - ii. Der Grenzwert einer Folge kann sich ändern, wenn man endlich viele Folgenglieder abändert.

Falsch. Sei $\pi(n)$ eine Permutation, die endlich viele Folgenglieder vertauscht, (a_n) eine konvergente Folge mit Grenzwert a. Sei (b_n) die abgeänderte Folge. Da die ursprüngliche Folge konvergiert gibt es ein $N(\epsilon)$ derart, dass für alle $n \geq N(\epsilon)$ gilt $|a_n-a|<\epsilon$. Wähle also nun $N_{\pi}(\epsilon):=\max\{\pi(1),\pi(2),\ldots,\pi(N(\epsilon)-1)\}+1$. Dann gilt für alle $n \geq N_{\pi}(\epsilon)$ dass $|b_n - a| < \epsilon$. D.h. die abgeänderte Folge hat den gleichen Grenzwert.

iii. Jede Nullfolge ist eine konvergente Folge.

Richtig. Jede Nullfolge konvergiert gegen Null.

iv. Jede konvergente Folge ist beschränkt.

Richtig. Vgl. Satz 6 aus der Vorlesung.

- v. Seien (a_n) , (b_n) zwei Folgen, dann gilt $\lim_{n\to\infty}(a_n+b_n)=\lim_{n\to\infty}(a_n)+\lim_{n\to\infty}(b_n)$. Falsch. Die Aussage stimmt jedoch für zwei konvergente Folgen.
- vi. Die Summe zweier divergenter Folgen ist divergent.

Falsch. Sei $a_n = n$, $b_n = -n$. Dann gilt für die Summe $a_n + b_n = 0$.

vii. Es gibt Cauchyfolgen in $\mathbb R$ die nicht konvergieren.

Falsch. Vollständigkeitsaxiom.

- viii. Teilfolgen von Teilfolgen einer Folge sind Teilfolgen der ursprünglichen Folge. Richtig.
- ix. Jede Folge hat einen Häufungspunkt.

Falsch. Z.B. hat die Folge $a_n = n$ keinen Häufungspunkt.

x. Jede konvergente Folge hat mindestens einen Häufungspunkt.

Falsch. Jede konvergente Folge hat genau einen Häufungspunkt.

- xi. Der Wert einer Reihe ändert sich nicht, wenn man endlich viele Summanden abändert. Falsch. Die Aussage wird jedoch für absolut konvergente Reihen richtig.
- xii. Wenn $\sum_{n=0}^{\infty} a_n$ konvergiert, dann ist (a_n) eine Cauchyfolge. **Richtig.** (a_n) ist dann sogar eine Nullfolge.

xiii. Wenn (a_n) Cauchyfolge, dann konvergiert $\sum_{n=0}^{\infty} a_n$.

- xiv. Wenn (a_n) Nullfolge, dann konvergiert $\sum_{n=0}^{\infty} a_n$. **Falsch.** (a_n) Nullfolge ist nur eine notwendige Bedingung für die konvergenz der
- xv. Sind $\sum_{n=0}^{\infty} a_n$ und $\sum_{n=0}^{\infty} b_n$ konvergente Reihen, dann ist $\sum_{n=0}^{\infty} a_n b_n = \sum_{n=0}^{\infty} a_n \cdot \sum_{n=0}^{\infty} b_n$.

Falsch. Die Multiplikation zweier absolut konvergenter Reihen erfolgt über das Cauchy-Produkt.

(b) Geben Sie Beispiele an:

- i. Für eine beschränkte Folge die nicht konvergiert. Z.B. die Folge $(a_n)_{n\in\mathbb{N}}$ mit $a_n=(-1)^n$. Es gilt $|a_n|\leq 1$ für alle $n\in\mathbb{N}$. Andererseits divergiert die Folge. Dies sieht man wie folgt: Angenommen, die Folge (a_n) konvergiere gegen ein $a\in\mathbb{R}$. Dann gibt es nach Definition zu $\epsilon:=1$ ein $N\in\mathbb{N}$ mit $|a_n-a|<1$ für alle $n\geq N$. Für alle $n\geq N$ folgt dann nach der Dreiecksungleichung: $2=|a_{n+1}-a|=|(a_{n+1}-a)+(a-a_n)|\leq |a_{n+1}-a|+|a_n-a|<1+1=2$ Widerspruch.
- ii. Für eine unbeschränkte Folge mit konvergenter Teilfolge. Z.B. die Folge $(0,1,1,1,2,1,3,1,4,1,5,\dots)$ mit $a_{2n}=n$ und $a_{2n+1}=1$ für alle $n\in\mathbb{N}$
- iii. Für eine konvergente Reihe die nicht absolut konvergiert. Z.B. die alternierende harmonische Reihe $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$.
- iv. Für eine divergente Reihe $\sum a_n$, wobei (a_n) eine Nullfolge ist. Z.B. die harmonische Reihe.
- v. Für eine Reihe die konvergiert, aber nicht das Quotientenkriterium erfüllt. Z.B die Reihe $\sum_{n=1}^{\infty} \frac{1}{n^2}$

2. Folgen

- (a) Untersuchen Sie folgende Folgen auf Konvergenz. Geben Sie gegebenenfalls den Grenzwert an.
 - i. $(a_n)_{n \in \mathbb{N}}$ mit $a_n = \frac{8n+2}{4n+17}$.

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{8n+2}{4n+17} = \lim_{n \to \infty} \frac{8+\frac{2}{n}}{4+\frac{17}{n}} = \frac{8+\lim_{n \to \infty} \frac{2}{n}}{4+\lim_{n \to \infty} \frac{17}{n}} = 2$$

ii. $(a_n)_{n \in \mathbb{N}}$ mit $a_n = (\sqrt{n^2 + n} - n)$.

Es gilt:
$$a_n = (\sqrt{n^2 + n} - n) = \frac{(\sqrt{n^2 + n} - n)(\sqrt{n^2 + n} + n)}{\sqrt{n^2 + n} + n} = \frac{(n^2 + 3n) - n^2}{\sqrt{n^2 + n} + n}$$

$$= \frac{3n}{\sqrt{n^2 + 3n} + n} = \frac{3}{\sqrt{1 + \frac{3}{n}} + 1}$$
Somit gilt: $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{3}{\sqrt{1 + \frac{3}{n}} + 1} = \frac{3}{\lim_{n \to \infty} \sqrt{1 + \frac{3}{n}} + 1}$

$$= \frac{3}{\sqrt{1 + \lim_{n \to \infty} \frac{3}{n} + 1}} = \frac{3}{\sqrt{1 + 0} + 1} = \frac{3}{2}$$

iii. $(a_n)_{n\in\mathbb{N}}$ mit $a_n=\sqrt{n^4+12n^2+1}-n^2+2$

Es gilt:
$$a_n = \underbrace{\sqrt{n^4 + 12n^2 + 1}}_{\alpha} - \underbrace{(n^2 - 2)}_{\beta} = \frac{\alpha^2 - \beta^2}{\alpha + \beta} = \frac{n^4 + 12n^2 + 1 - 4 - n^4 + 4n^2}{\sqrt{n^4 + 12n^2 + 1} + n^2 - 2}$$

$$= \frac{16n^2 - 3}{\sqrt{n^4 + 12n^2 + 1} + n^2 - 2} = \frac{16 - \frac{3}{n^2}}{\sqrt{1 + \frac{12}{n^2} + \frac{1}{n^4} + 1 - \frac{2}{n^2}}}$$
Somit gilt: $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{16 - \frac{3}{n^2}}{\sqrt{1 + \frac{12}{n^2} + \frac{1}{n^4} + 1 - \frac{2}{n^2}}} = \frac{16}{\sqrt{1 + 1}} = 8$

iv.
$$(a_n)_{n\geq 1}$$
 mit $a_n = \frac{1}{n^2} + \frac{2}{n^2} + \dots + \frac{n}{n^2}$.

Es gilt:
$$a_n = \sum_{k=1}^n \frac{k}{n^2} = \frac{1}{n^2} \sum_{k=1}^n k = \frac{1}{n^2} \cdot \frac{n(n+1)}{2} = \frac{n+1}{2n} = \frac{1+\frac{1}{n}}{2}$$

Somit gilt:
$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{1 + \frac{1}{n}}{2} = \frac{1 + \lim_{n \to \infty} \frac{1}{n}}{2} = \frac{1 + 0}{2} = \frac{1}{2}$$

- (b) Bestimmen Sie die Grenzwerte und Häufungspunkte. Falls die Folge mehr als einen Häufungspunkt hat, geben Sie konvergente Teilfolgen an.
 - i. $a_n = \left(1 + \frac{k}{n}\right)^n$ für $k \in \mathbb{Z}$ (*Hinweis:* Verwenden Sie, dass für jede Nullfolge x_n mit $x_n \neq 0$ und $x_n > -1$ für alle $n \in \mathbb{N}$, $\lim_{n \to \infty} \left(1 + x_n\right)^{\frac{1}{x_n}} = e$)

Es gilt:
$$a_n = \left(1 + \frac{k}{n}\right)^n = \left[\left(1 + \frac{1}{\frac{n}{k}}\right)^{\frac{n}{k}}\right]^k$$

Somit gilt:
$$\lim_{n \to \infty} a_n = \left[\lim_{n \to \infty} \left(1 + \frac{1}{\frac{n}{k}} \right)^{\frac{n}{k}} \right]^k = e^k$$

ii.
$$a_n = \frac{\cos n}{n}$$

Wir benutzen den Einschnürungssatz für $a_n := -\frac{1}{n}$ und $b_n := \frac{1}{n}$.

Da $-1 \leq \cos x \leq 1$ für alle $x \in \mathbb{R}$ ergibt sich

$$-\frac{1}{n} \le \frac{\cos n}{n} \le \frac{1}{n}.$$

Da $\frac{1}{n} \to 0$ für $n \to \infty$ folgt mit dem Einschnürungssatz $\lim_{n \to \infty} \frac{\cos n}{n} = 0$

iii.
$$a_n = \sin\left(\frac{\pi}{2}n\right)$$

Die Folge (a_n) hat drei Häufungspunkte $\{-1,0,1\}$.

Zu diesen Häufungswerten konvergente Teilfolgen sind

$$a_{4k+3} = \sin\left(\frac{3\pi}{2} + 2\pi k\right) = -1$$
$$a_{2k} = \sin(\pi k) = 0$$
$$a_{4k+1} = \sin\left(\frac{\pi}{2} + 2\pi k\right) = 1$$

(c) Man zeige:

$$\lim_{n\to\infty}\sqrt[n]{n}=1$$

Beweis. Sei $a_n = \sqrt[n]{n} = 1$. Da $a_n \ge 1$, ist $b_n := a_n - 1 \ge 0$. Wir benutzten den Binomischen Satz,

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k \ x \in \mathbb{R}, \ n \in \mathbb{N}.$$

Dabei sind die Binomialkoeffizienten definiert durch

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}.$$

Damit erhalten wir

$$n = a_n^n = (1 + b_n)^n = \sum_{k=0}^n \binom{n}{k} b_n^k \ge 1 + \binom{n}{2} b_n^2 = 1 + \frac{n(n-1)}{2} b_n^2$$

Daraus folgt

$$0 \le b_n^2 \le \frac{2}{n} \to 0$$
 für $n \to \infty$

Mit dem Einschnürungssatz folgt die Behauptung.

(d) Man berechne:

$$\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\dots}}}},$$

d.h. den Limes der Folge $(a_n)_{n\in\mathbb{N}}$ mit $a_0=1$ und $a_{n+1}=\sqrt{1+a_n}$ für $n\in\mathbb{N}$. (*Hinweis:* Um Aussagen über rekursiv definierte Folgen zu treffen benötigt man das Prinzip der vollständigen Induktion.)

Idee: Zeige zunächst die Folge ist monoton steigend und beschränkt. Daraus folgt die Konvergenz. Dies geschieht beide Male durch vollständige Induktion.

Induktionsvoraussetzung: $a_n \leq a_{n+1}$ für alle $n \in \mathbb{N}$.

Induktions an fang: Es sei n = 0. Dann ist $a_n = a_0 = 1 < \sqrt{2} = a_1 = a_{n+1}$.

Induktionsschritt: Es gelte $a_n \leq a_{n+1}$ für ein $n \in \mathbb{N}$. Dann ist auch $1 + a_n \leq 1 + a_{n+1}$, und da $a_n \geq 0$ gilt, ist somit auch $a_{n+1} = \sqrt{1 + a_n} \leq \sqrt{1 + a_{n+1}} = a_{n+2}$. Also gilt die Aussage auch für n+1.

Induktionsvoraussetzung: $a_n \leq 2$ für alle $n \in \mathbb{N}$.

Induktionsanfang: Es sei n = 0. Dann ist $a_0 = 1 < 2$.

Induktionsschritt: Es gelte $a_n \leq 2$ für ein $n \in \mathbb{N}$.

So ist auch $a_{n+1} = \sqrt{1+a_n} \le \sqrt{1+2} \le 2$. Also gilt die Aussage auch für n+1.

Also ist (a_n) monoton wachsend und beschränkt. Folglich existiert der Grenzwert $a := \lim_{n \to \infty} a_n = \lim_{n \to \infty} a_{n+1}$, und es gilt:

$$a = \lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \sqrt{1 + a_n} = \sqrt{1 + \lim_{n \to \infty} a_n} = \sqrt{1 + a}$$
$$\Rightarrow a^2 - a - 1 = 0 \Rightarrow a_{1/2} = \frac{1}{2} \pm \sqrt{\frac{1}{4} + 1} = \frac{1 \pm \sqrt{5}}{2}$$

Da $\frac{1-\sqrt{5}}{2} < 0$ ist, aber $a_n > 0 \Rightarrow a \ge 0$ gilt, ist

$$\lim_{n \to \infty} a_n = a = \frac{1 + \sqrt{5}}{2}$$

(e) Beweisen Sie Satz 6 aus der Vorlesung: Jede konvergente Folge ist beschränkt.

Beweis. Sei $\lim_{n\to\infty}a_n=a$. Dann gibt es ein $N\in\mathbb{N}$, so dass $|a_n-a|<1$ für alle $n\geq N$. Daraus folgt mit der Dreiecksungleichung $|a_n-a|\geq |a_n|-|a|$, dass $|a_n|\leq |a_n-a|+|a|\leq 1+|a|$ für $n\geq N$. Wir setzten $M:=\max\{|a_0|,|a_1|,\ldots,|a_{N-1}|,|a|+1\}$. Damit gilt $|a_n|\leq M$ für alle $n\in\mathbb{N}$.

3. Reihen

(a) Untersuchen Sie die folgenden Reihen auf (absolute) Konvergenz:

i.
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n-1}}$$

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n-1}} = 2 \cdot \sum_{n=0}^{\infty} \left(-\frac{1}{2} \right)^n = 2 \cdot \frac{1}{1 - (-1/2)} = \frac{4}{3}$$

Somit konvergiert $\sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n-1}}$ absolut.

ii.
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} \text{ mit } x \in \mathbb{R}$$

Nach dem Archimedischen Axiom gibt es ein $n_0 \in \mathbb{N}$, sodass $n_0 \geq |x|$. Für alle $n \ge n_0$ gilt somit:

$$\left| \frac{\frac{(-1)^{n+1}}{(2n+2)!} x^{2n+2}}{\frac{(-1)^n}{(2n)!} x^{2n}} \right| = \left| \frac{-1}{(2n+1)(2n+2)} x^2 \right| = \frac{|x|^2}{(2n+1)(2n+2)} \le \frac{|x|^2}{4n^2} \le \frac{|x|^2}{4n_0^2} \le \frac{1}{4} := \theta < 1$$

Somit konvergiert $\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$ nach dem Qutientenkriterium absolut, und zwar für alle $x \in \mathbb{R}$.

iii.
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{n} \left(\frac{1}{3} + \frac{1}{n}\right)^n$$

$$0 < \left| (-1)^n \frac{1}{n} \left(\frac{1}{3} + \frac{1}{n} \right)^n \right| = \frac{1}{n} \left(\frac{1}{3} + \frac{1}{n} \right)^n \le \frac{1}{n} \left(\frac{1}{3} + \frac{1}{2} \right)^n = \frac{1}{n} \left(\frac{5}{6} \right)^n \le \left(\frac{5}{6} \right)^n.$$

Da $\sum_{n=1}^{\infty} \left(\frac{5}{6}\right)^n$ als geometrische Reihe konvergiert, konvergiert folglich $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n} \left(\frac{1}{3} + \frac{1}{n}\right)^n$ nach dem Majorantenkriterium absolut.

iv.
$$\sum_{n=1}^{\infty} \frac{n}{4n^2 - 3}$$

$$\sum_{n=1}^{\infty} \frac{n}{4n^2 - 3} \ge \sum_{n=1}^{\infty} \frac{n}{4n^2} \ge \frac{1}{4} \cdot \sum_{n=1}^{\infty} \frac{1}{n} = +\infty$$

Wir haben also eine divergierende Minorante. Somit divergiert auch $\sum_{n=1}^{\infty} \frac{n}{4n^2-3}$

v.
$$\sum_{n=1}^{\infty} (-1)^n \frac{\sin(\sqrt{n})}{n^{\frac{5}{2}}}$$

Da $-1 < \sin x < 1$ für alle $x \in \mathbb{R}$ gilt:

$$\left| (-1)^n \frac{\sin(\sqrt{n})}{n^{\frac{5}{2}}} \right| \le \frac{1}{n^{\frac{5}{2}}}.$$

Da $\sum_{n=1}^{\infty} \frac{1}{n^{\frac{5}{2}}}$ konvergiert, konvergiert also nach dem Majorantenkriterium

$$\sum_{n=1}^{\infty} (-1)^n \frac{\sin(\sqrt{n})}{n^{\frac{5}{2}}} \text{ absolut.}$$

vi.
$$\sum_{n=1}^{\infty} \frac{1}{n}$$

vi. $\sum_{n=1}^{\infty} \frac{1}{n}$ Um die Divergenz der harmonischen Reihe zu zeigen betrachten wir folgende Par-

$$S_{2^k} = \sum_{n=1}^{2^k} \frac{1}{n} = 1 + \frac{1}{2} + \sum_{i=1}^{k-1} \left(\sum_{n=2^{i+1}}^{2^{i+1}}\right)$$
$$= 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right) + \dots + \left(\frac{1}{2^{k-1} + 1} + \dots + \frac{1}{2^k}\right).$$

Da die Summe jeder Klammer $\geq \frac{1}{2}$ ist, folgt $S_{2^k} \geq 1 + \frac{k}{2}$. Also ist die Folge der Partialsummen unbeschränkt, d.h. es gilt

$$\sum_{n=1}^{\infty} \frac{1}{n} = \infty.$$

(b) Bestimmen Sie die Werte der folgenden Reihen:

i.
$$\sum_{n=1}^{\infty} \frac{1}{4n^2 - 1}$$

Für alle $n \ge 1$ hat man die Zerlegung

$$\frac{1}{4n^2-1} = \frac{1}{2} \cdot \frac{1}{(2n-1)(2n+1)} = \frac{1}{2} \left(\frac{1}{2n-1} - \frac{1}{2n+1} \right).$$

Also ist

$$s_k := \sum_{n=1}^k \frac{1}{4n^2 - 1} = \frac{1}{2} \left(\sum_{n=1}^k \frac{1}{2n - 1} - \sum_{n=1}^k \frac{1}{2n + 1} \right)$$
$$= \frac{1}{2} \left(\sum_{n=0}^{k-1} \frac{1}{2n + 1} - \sum_{n=1}^k \frac{1}{2n + 1} \right) = \frac{1}{2} \left(1 - \frac{1}{2k + 1} \right).$$

Daher gilt

$$\sum_{n=1}^{\infty} \frac{1}{4n^2 - 1} = \lim_{k \to \infty} s_k = \frac{1}{2}.$$

ii.
$$\sum_{n=1}^{\infty} \frac{2^{n+1}}{n!}$$

Man verwende hier die Exponentialreihe:

$$\sum_{n=1}^{\infty} \frac{2^{n+1}}{n!} = 2 \cdot \sum_{n=1}^{\infty} \frac{2^n}{n!} = 2(e^2 - 1)$$

iii.
$$\sum_{n=1}^{\infty} \frac{1}{(3n+1)(3n-2)}$$

Der Wert dieser Reihe beträgt $\frac{1}{3}$. Die Lösung erfolgt völlig analog zur Aufgabe i.

iv.
$$\sum_{n=1}^{\infty} 3^{\frac{n}{2}} 2^{1-n}$$

Diese Reihe kann auf die geometrische Reihe zurückgeführt werden:

$$\sum_{n=1}^{\infty} 3^{\frac{n}{2}} 2^{1-n} = 2 \sum_{n=1}^{\infty} \left(\frac{\sqrt{3}}{2} \right)^n = 2 \left[\sum_{n=0}^{\infty} \left(\frac{\sqrt{3}}{2} \right) - 1 \right] = 2 \left[\frac{1}{1 - \frac{\sqrt{3}}{2}} - 1 \right] = \frac{\sqrt{3}}{1 - \frac{\sqrt{3}}{2}}$$

(c) Bestimmen Sie den Konvergenzradius der folgenden Reihen:

i.
$$\sum_{n=1}^{\infty} \frac{2^n}{n} z^n$$

Hier ist der Konvergenzradius

$$R = \frac{1}{\limsup \sqrt[n]{\frac{2^n}{n}}} = \frac{1}{\lim_{n \to \infty} \frac{2}{\sqrt[n]{n}}} = \frac{1}{2}$$

Da $\lim_{n\to\infty} \frac{2}{\sqrt[n]{n}} = 2$.

ii.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} z^n$$

Der Konvergenzradius ist

$$R = \frac{1}{\limsup \sqrt[n]{\frac{|(-1)^{n+1}|}{n}}} = \frac{1}{\lim_{n \to \infty} \sqrt[n]{\frac{1}{n}}} = 1.$$

iii.
$$\sum_{n=0}^{\infty} 3^n \sqrt{(3n-2)2^n} z^n$$

Der Konvergenzradius ist

$$R = \frac{1}{\limsup \sqrt[n]{3^n \sqrt{(3n-2)2^n}}} = \frac{1}{\lim_{n \to \infty} 3\sqrt{2} \sqrt[2n]{3n-2}} = \frac{1}{3\sqrt{2}}$$

wegen
$$\lim_{n\to\infty} \sqrt[2n]{3n-2} = \lim_{n\to\infty} \sqrt[2n]{3} \sqrt[2n]{n-2/3} = 1 \cdot 1 = 1.$$

iv.
$$\sum_{n=1}^{\infty} \frac{(2+(-1)^n)^n}{n} z^n$$

Hier berechnet sich der Konvergenzradius folgendermaßen:

$$R = \frac{1}{\limsup \sqrt[n]{\frac{(2+(-1)^n)^n}{n}}} = \frac{1}{\limsup \frac{2+(-1)^n}{\sqrt[n]{n}}} = \frac{1}{3}$$

An dieser Stelle ist es wichtig, dass der Limes superior benutzt wird. Daher wird von den beiden Häufungspunkten von $(2+(-1)^n)_{n\in\mathbb{N}}$, sprich 1 und 3, der größere benutzt.