Regression Challenge:

Using Linear Regression and KNN Model

MD IMRAN HOSSAIN

Statistical Learning & Data Mining
Erasmus Mundus Joint Master in Medical Imaging and Applications
University of Cassino and Southern Lazio, Italy

Methodology

- 1
- Visualize the training dataset and observe the relation between input variables and the result.
- Imputing outliers and removing highly correlated input variables from the train data. Selecting input variables using the Backward Feature Selection and Forward Feature Selection algorithms for training models.
- Splitting the training dataset into train and test (80:20) and fitting the preprocessed training dataset into Linear Regression and KNN Regression model.
- Average Error (MAE), Root Mean Square Error (RMSE) and R-Squared scores for each model. Fitting testing dataset in the best model and importing results.

Linear Regression: Data Inspection & Outliers Imputation

Data Inspection

The train data consist of

- Number of input variables, X = 9
- Result, Y = 1
- Total number of samples, N = 1000

Outliers Imputation

The train data has

- Outliers containing input variables = v8 and v9
- Number of outliers in v8 = 7
- Number of outliers in v9 = 5
- Total number of outliers = 12

The **mean Imputation** method is used to impute the outliers instead of removing outliers consisting of samples from the dataset because these samples may contain important information.

Fig-2a & 2b show the boxplots of train data with outliers and without outliers (after mean imputation).

Fig-1: Visualization of the relation of input variables and results of the train data

Fig-2a: Boxplot of train dataset with outliers

Fig-2b: Boxplot of train dataset without outliers

Linear Regression: Correlation & Training Model

Correlation

After observing the correlation among input variables of the train data, it is found that:

- Input variables v1, v5, and v7 are highly correlated (more than 0.9) with each other.
- Hence, **v5** and **v7** are removed from the input variables of the train dataset.
- Total number of input variables, X = 7

Training Model

Backward Feature Selection:

- The linear regression model is trained after the elimination of input variables (v5, v7) of training data based on correlation.
- The input variables are eliminated one by one depending on the p-value.
- Finally, variables (v1, v3) are selected as they have the lowest p-value of 0.0422 and 2e-16 respectively.
- However, the training model with the combination of v1 and v3, and only v3 still provides high Residual Standard Error (RSE) of 14.88 and 14.90 respectively.

Forward Feature Selection:

- Using Interactive terms, I(v1, v3) and Polynomial terms, I(v3, v3) with the combination of input variables, the linear regression model is trained.
- It is observed that the combination of input variables and **Polynomial terms**, **I(v3, v3)** provides very **low p-value (< 1.20)** than the combination of input variables and **Interactive terms**, **I(v1, v3)**.
- Finally, the train model with v1 + v2 + v3 + v4 + v6 + v8 + v9 + I(v3 * v3) provides the minimum p-value (0.1289) and it is considered the best model for prediction.

Fig-3: Correlation of the train data

Table-1: Backward Feature Selection

Model Name	Selected Variables (based on p-value)	R-Squared	Residual Standard Error
Model 1	v1+v2+v3+v4+v6+v8+v9	0.996	14.89
Model 2	v1+v3+v4+v6+v8+v9	0.996	14.88
Model 3	v1+v3+v4+v6+v8	0.996	14.88
Model 4	v1+v3+v6+v8	0.996	14.88
Model 5	v1+v3+v6	0.996	14.88
Model 6	v1+v3	0.996	14.88
Model 7	v3	0.996	14.90

Linear Regression: Prediction & Performance

Prediction & Performance

The entire train data is predicted using the best training (Model 21) and the prediction result provides the following scores:

Table-4: Train Data Prediction Performance

Regression Error Metrics	Scores
Mean Absolute Error (MAE)	0.0096
Root Mean Squared Error (RMSE)	0.0128
R-Squared	1.0000

- It is observed that prediction with **Model 21** provides the **minimum MAE** and **RMSE**, whereas the **maximum R-Squared**.
- Finally, the result of the test data is predicted using the best model (Model 21) in order to get accurate prediction results.

Table-2: Forward Feature Selection with Interactive Terms

Model Name	Selected Variables (based on p-value)	R-squared	Residual Standard Error
Model 8	v3+l(v1*v3)	0.996	14.88
Model 9	v1+v3+l(v1*v3)	0.996	14.88
Model 10	v1+v3+v6+l(v1*v3)	0.996	14.88
Model 11	v1+v3+v6+v8+l(v1*v3)	0.996	14.88
Model 12	v1+v3+v4+v6+v8+l(v1*v3)	0.996	14.89
Model 13	v1+v3+v4+v6+v8+v9+l(v1*v3)	0.996	14.89
Model 14	v1+v2+v3+v4+v6+v8+v9+l(v1*v3)	0.996	14.90

Table-3: Forward Feature Selection with Polynomial Terms

Model Name	Selected Variables (based on p-value)	R-squared	Residual Standard Error
Model 14	v3+l(v3*v3)	1	1.193
Model 16	v1+v3+l(v3*v3)	1	0.1065
Model 17	v1+v3+v6+l(v3*v3)	1	0.08375
Model 18	v1+v3+v6+v8+l(v3*v3)	1	0.08378
Model 19	v1+v3+v4+v6+v8+l(v3*v3)	1	0.08381
Model 20	v1+v3+v4+v6+v8+v9+l(v3*v3)	1	0.08385
Model 21	v1+v2+v3+v4+v6+v8+v9+l(v3*v3)	1	0.01289

KNN Regression: Data Normalization & Training Model

Data Normalization

The training data is normalized using the **min-max** normalization technique in order to reduce biasness of output values toward the k-value and input variables.

Model Training

Data Split:

The normalized training data is split into **train** and **test** with a ratio of **80** and **20** in order to train the **KNN** model using the **FNN** library.

Backward Feature Selection:

- At first, the **KNN** model is trained with all input variables (except **v5** and **v7** because of the high correlation factor) and the optimal **K** is selected based on the minimum **Root Mean Square Error (RMSE)** using the iteration technique.
- Input variables are eliminated one by one for training the model depending on the p-value.
- Finally, KNN is trained with the combination of v1 and v3 input variables only and it provides the minimum RMSE score (0.0129) with an optimal K value of 6.

k vs RMSE

Fig-4: Plot of k vs RMSE

Table-5: Forward Feature Selection

Model Name	Selected Variables (based on p-value)	K (optimal)	RMSE
Model 1	v1+v2+v3+v4+v6+v8+v9	6	0.0650
Model 2	v1+v3+v4+v6+v8+v9	8	0.0580
Model 3	v1+v3+v4+v6+v8	9	0.0473
Model 4	v1+v3+v6+v8	4	0.0381
Model 5	v1+v3+v6	7	0.0295
Model 6	v1+v3	6	0.0129

KNN Regression: Prediction & Performance

Prediction & Performance

The training data is predicted using the best training (Model 6) and the prediction result provides the following scores:

- It is observed that prediction with **Model 6** provides the **minimum MAE** and **RMSE**, whereas the **maximum R-Squared**.
- Finally, the result of the test data is predicted using the best model (Model 6) in order to get accurate prediction results.

Linear Regression & KNN Regression

The **Table-7** indicates a compassion of performance between KNN model and Linear Regression model:

- In the case of Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE), the KNN model performed better (with less error) than the Linear Regression model.
- In the case of **R-Squared**, the KNN model performed worse than the Linear Regression model.

Table-6: Train Data Prediction Performance

Regression Error Metrics	Scores
Mean Absolute Error (MAE)	0.00774
Root Mean Squared Error (RMSE)	0.01030
R-Squared	0.99788

Table-7: Performance between KNN and Linear Model

Regression Error Metrics	KNN	Linear
Mean Absolute Error (MAE)	0.0077	0.0096
Root Mean Squared Error (RMSE)	0.0103	0.0128
R-Squared	0.9978	1.0000