Lokale Stetigkeit (Stetigkeit von f bei x₀)

Gegeben sei eine Funktion mit Gleichung y = f(x) mit Definitionsmenge D_f . Man untersucht die Stetigkeit von f bei x_0 . Es trifft **genau einer** der vier folgenden Fälle zu:

1. f ist bei x₀ stetig:

$$x_0 \in D_f$$
 und $\lim_{x \to x_0} f(x) = f(x_0)$

2. f ist bei x₀ unstetig:

$$x_0 \in D_f$$
 und $(\lim_{x \to x_0} f(x) \text{ existiert nicht oder } \lim_{x \to x_0} f(x) \neq f(x_0))$

3. f ist bei x_0 stetig fortsetzbar: s. bei 2.

$$x_0 \notin D_f$$
 und $\lim_{x \to x_0} f(x)$ existiert

4. f ist bei x₀ nicht stetig fortsetzbar:

$$x_0 \notin D_f$$
 und $\lim_{x \to x_0} f(x)$ existiert nicht

Bem.: Ist also f bei x₀ nicht stetig, so trifft einer der Fälle 2. bis 4. zu.

Darstellung im Baumdiagramm:

Globale Stetigkeit einer Funktion

Definition: Eine Funktion ist **stetig**, falls sie an jeder Stelle x_0 **ihrer Definitionsmenge** (lokal) stetig ist.

www.mathematik.ch (B.Berchtold)