Лабораторная работа № 1

«Исследование простейших цепей переменного тока и явления резонанса токов»

1. Цель работы – исследование соотношений между напряжениями, токами при параллельном соединении элементов.

2. Системные требования

Microsoft Office 2007 или выше со включенной поддержкой макросов (Visual Basic). Работоспособность на более ранних версиях не проверялась, но не исключается

3. Схема исследуемой цепи

Исследуемая цепь выполнена в виде виртуальной модели в среде Visual Basic. Схема исследуемой цепи представлена на рисунке 1. Цепь содержит катушку индуктивности, имеющую активное сопротивление R_{κ} и индуктивность L_{κ} , батарею конденсаторов $C_1 \div C_{19}$, включенных между собой параллельно. Все элементы соединяются согласно схеме.

Электрическая цепь получает питаний от источника регулируемого напряжения (ИРН), в качестве которого используется лабораторный автотрансформатор регулировочный (ЛАТР) с вольтметром во вторичной цепи V. Силу тока на входе цепи, на конденсаторах и на катушке индуктивности измеряют амперметрами A, A1 и A2 соответственно, входное напряжение — вольтметром V. Активная мощность измеряется ваттметром W.

Все измерительные приборы в цепи имеют нормированную погрешность, соответствующую классу точности «1».

Рис. 1. Схема исследуемой цепи

4. Порядок выполнения работы

- 4.1. Открыть файл «ЛР резонанс токов.xlsm». При появлении предупреждения системы безопасности ответить «разрешить редактирование» и «включить активное содержимое», иначе программа не сможет запуститься.
- 4.2. В появившемся приветственном сообщении нажать «ОК», при этом откроется основное окно программы.
- 4.3. Установить индуктивность катушки **L**, а также входное напряжение **U** согласно выданному варианту. Прибор **V** покажет напряжение на входе с учетом собственной погрешности. Частоту сети оставить равной 50, Гц.

Параметры электрической цепи катушка индуктивности Индуктивность L, мГн 100		конденсатор Ёмкость С, мкФ 100	×
входное напряжение U, В 12 Показания измерительных приборов		частота сети f , Гц	50
А: амперметр на входе цепи (А)	0	А2: амперметр на катушке (А)	0
А1: амперметр на конденсаторе (А)	0	Р: активная мощность цепи (Вт)	0
V: вольтметр на входе цепи (В)	0		
Показать схему Зани О программе	ести данные в таблицу Excel	Рассчитать показания изнери	ятельных приборов

Рис. 2.

Внимание! Индуктивность катушки **L** в программе задается приближенно, реальная индуктивность отличается от введенного значения! Вычислить по этому числу точную резонансную емкость нельзя!

Внимание! Катушка индуктивности имеет также активное сопротивление $\mathbf{R}_{\mathbf{k}}$, которое на этапе выполнения лабораторной работы неизвестно и может быть вычислено только косвенными методами!

- 4.4. Изменяя емкость батареи конденсаторов (с точностью до целых значений), добиться режима резонанса токов, при котором ток в цепи минимален (по показаниям амперметра A).
- 4.5. Изменяя величину емкости конденсаторов на величину -30 мкФ, -10 мкФ, +10 мкФ, +30 мкФ **от резонансной**, измерить напряжение U, общий ток I, мощность P (по показаниям соответствующих приборов); токи в ветвях I_1 , I_2 для пяти опытов с таким расчетом, чтобы было сделано по 2 измерения до и после резонанса.

Результаты измерений занести в таблицу 1.

Таблица 1

Измерено					U= B										
					Вычислено										
С	I	P	I ₁	I_2	U	\mathcal{Y}_{K}	$g_{\rm K}$	$\boldsymbol{e}_{\mathrm{K}}$	$\boldsymbol{\mathit{\theta}}_{\mathrm{C}}$	в	g	У	$\cos \varphi$	I_a	I_p
мкФ	A	Вт	A	A	В	См	См	См	См	См	См	См	-	A	A

Внимание! Для отображения показаний приборов после изменения параметров цепи необходимо каждый раз нажимать кнопку «Рассчитать показания измерительных приборов»

Внимание! Нажатие кнопки «Занести данные в таблицу Excel» перенесет текущие показания измерительных приборов в свободную строку электронной таблицы

Внимание! Не забудьте скопировать данные перед выходом из программы, при повторном открытии файла данные будут уничтожены!

5.Обработка результатов измерений и их анализ

5.1. По результатам измерений п. 4.4-4.5 для каждого значения емкости (рис. 1), следует вычислить активные, реактивные и полные проводимости и токи:

$$\begin{aligned} y_k = I_2/U; & \cos\varphi = \frac{P}{UI} = \frac{g}{y}; & g = g_K; & g_K = \frac{R_K}{Z_K^2} = R_K y_K^2; & g_K = \sqrt{y_K^2 - g_K^2} = X_K y_K^2; \\ b_c = 1/X_c = I_1/U; & y = \frac{I}{U}; & g_K = g_C - g_K; & I_a = I\cos\varphi; & I_p = I\sin\varphi. \end{aligned}$$

Используя таблицу 1, построить **три** векторные диаграммы напряжения и токов, и **три** треугольника проводимостей:

- а) для режима до резонанса токов, для значения емкости на 30 мкФ меньшей резонансной.
 - б) при резонансе токов,
- в) для режима после резонанса токов, для значения емкости на 30 мкФ большей резонансной.
- 5.2. Построить на .одном графике зависимости $I=f(s_C)$, $I_a=f(s_C)$, $I_p=f(s_C), \ s=f(s_C), \ \cos\varphi=f(s_C).$

Показать на этих графиках точки, соответствующие резонансу токов.

6. Контрольные вопросы

- 6.1 Что называется проводимостью цепи?
- 6.2. Как определяется активная, реактивная и полная проводимости?
- 6.3. Как определить активную и реактивную составляющие тока?
- 6.4. Как связаны активная, реактивная и полная мощности цепи с проводимостями?
 - 6.5. Как построить векторную диаграмму цепи?
 - 6.6. Как определить сопротивление цепи через проводимости?
 - 6.7. Как зависят токи I_1 , I_2 , $\cos \varphi$ от емкости цепи?
 - 6.8. Как зависят проводимости g, g_K, e_K, y от емкости цепи

- 6.9. Как построить треугольники проводимостей?
- 6.10. Как определить коэффициент мощности через проводимости и сопротивления?
 - 6.11. Какое влияние оказывает емкость на коэффициент мощности?
 - 6.12. Как зависят общий ток и его составляющие от емкости?
 - 6.13. Каковы условия резонанса токов и его особенности?
 - 6.14. Изменением каких величин можно достичь резонанса токов?
 - 6.15. Как можно повысить коэффициент мощности?
- 6.16. Как влияет величина емкости на активную и реактивную мощности?

7. Библиографический список

- 1. Зевеке Г.В. Основы теории цепей. Учебник для вузов. Авторы: Г.В. Зевеке, П.А. Ионкин, А.В. Нетушил, С.В. Страхов. 5-е издание, переработанное. Москва: Энергоатомиздат, 1989.
- 2. Касаткин А.С., Немцов М.В. Электротехника. М.: Энергоатомиздат, 1283. С. 94-98.
- 3. Иванов И.И., Равдоник В.С. Электротехника, М.: Высшая школа, 1984. С. 66-68.