COMP2611 COMPUTER ORGANIZATION TOPIC 2 INTRODUCTION TO DIGITAL LOGIC

Content

- This topic explains (conceptually):
 - □ How are bits represented and handled in the hardware?
 - How to design a simple circuit to perform an abstract task (e.g. addition)?

Power of Bit

- Analog vs. Digital waveforms
 - ☐ Digital: only assumes discrete values
 - Analog: values vary over a broad range continuously

- The electronics inside modern computers are digital: they operate with only two voltage levels of interest
- Typical voltage assignment

- ☐ Binary 1: any voltage between 2.4V to 2.9V
- ☐ Binary 0: any voltage between 0V to 0.5V

Bit in Computer

- Bits are the basis for binary number representation in digital computers
- Operations in computer work on bits
- Combining bits into patterns following some conventions or rules (defined in the ISA) allow for:
 - Number representations
 - Integers,
 - Fractions and Real numbers, ...
 - Instruction encoding
 - Operation
 - Operands

Lamp Example

Example: lamp with switch

S	L
OPEN	OFF
CLOSED	ON

S	L
0	0
1	1

Lamp truth table

Lamp Example (cont.)

Two switches in series

Two switches in parallel

Truth Table

- A mathematical table used in logic
- In connection with Boolean algebra, Boolean functions
- Shows how the truth or falsity of a proposition (output) varies with that of its components (inputs)

- One column for each input variable and each output variable
- Each row of the truth table contains one possible configuration of the input variables

Boolean Algebra and Logic Operation

- Everything in digital computer is binary, the theoretical model works behind is Boolean algebra
- Algebra: values, variables, operations
- In Boolean algebra
 - ☐ The values are the symbols 0 (or FALSE) and 1 (or TRUE)
 - □ A Boolean variable (or Binary variable) is one that can take only 2 values, 0 or 1
 - Three fundamental logic operations on Boolean variables: AND, OR, NOT
 - Other commonly used logic operations: NAND, NOR, XOR
 - Logic gates implement the above logic operations and built up by transistors

NOT Operation and NOT Gate

The NOT gate (or inverter)

(a) Circuit symbol

A	В
0	1
1	0

(b) Truth table

$$B = \overline{A}$$

AND Operation and AND Gate

The AND gate

(a) Circuit symbol

A	В	C
0	0	0
0	1	0
1	0	0
1	1	1

(b) Truth table

$$C = A \cdot B$$

OR Operation and OR Gate

The OR gate

(a) Circuit symbol

A	В	C
0	0	0
0	1	1
1	0	1
1	1	1

(b) Truth table

$$C = A + B$$

NAND Operation and NAND Gate

The NAND gate

(a) Circuit symbol

A	В	C
0	0	1
0	1	1
1	0	1
1	1	0

(b) Truth table

$$C = \overline{A \cdot B}$$

NOR Operation and NOR Gate

The NOR gate

(a) Circuit symbol

A	В	C
0	0	1
0	1	0
1	0	0
1	1	0

(b) Truth table

$$C = \overline{A + B}$$

Exclusive-OR Operation and Exclusive-OR Gate

The Exclusive OR (XOR) gate

(a) Circuit symbol

A	В	C
0	0	0
0	1	1
1	0	1
1	1	0

(b) Truth table

$$C = A \oplus B$$

Logic Function

- Any operation in digital circuit can be described by truth table or logic function
- A logic function is a function on binary variables whose output is also a binary variable
- Three fundamental NOT, AND, OR logic operations are at the center of all operations in modern computers
- Logical functions can be expressed in several alternative ways:
 - Truth table
 - Logical expressions
 - ☐ Graphical form, e.g. K-map

Digital Logic Circuit Example

- A circuit with two inputs (A, B) and two outputs (S, C)
- The circuit executes as follows
 - □ S is true if exactly one input is true;
 - C is true if both two inputs are true.

- Describe the behaviour of the circuit with truth table and logic function
- Build the circuit with logic gates
- What is this circuit for?

Digital Logic Circuit Example (cont.)

The circuit is a 1-bit half adder

Truth Table

Logic Function

Circuit Implementation

Computer Arithmetic and Logic operation can be specified via logic functions

Digital Logic Circuit

- Two types of digital logic circuits inside a computer:
 - □ Combinational logic circuits
 - Logic circuits that do not have memory
 - The output depends only on the current inputs and the circuit
 - They can be specified fully with a truth table or a logic equation
 - Sequential logic circuits
 - Logic circuits that have memory
 - The output depends on both the current inputs and the value stored in memory (called state)

COMBINATIONAL LOGIC

Simple Combinational Logic Circuits

- Multiplexor/ De-multiplexor
- Decoder/Encoder
- Two-level logic and Programmable Logic Array (PLA)

- The above circuits can be implemented using AND, OR, and NOT gates only
- They are higher-level basic building blocks that are commonly seen in combinational logic

Multiplexor

- A multiplexor (or selector) selects one of the data inputs as output by a control input value
 - ☐ Example: 4-to-1 multiplexor

- For a 2ⁿ-to-1 multiplexor
 - 2ⁿ data inputs
 - n selection inputs
 - a single output

S_1	S_0	0
0	0	I_0
0	1	I_1
1	0	I_2
1	1	I_3

4-to-1 MUX Implementation

■ How to implement a higher order MUX, e.g. 8-to-1?

Decoder

A decoder (N-to-2^N decoder) is a logical block with an N-bit input and 2^N 1-bit outputs

The output corresponds to the input bit pattern is true while all other outputs are false.

Example: 2-to-4 decoder

Logic Circuit Design Process

- A simple logic design process involves
 - Problem specification
 - Truth table derivation
 - Derivation of logical expression
 - □ Simplification of logical expression
 - Implementation

Example: 3-person Majority Vote

Problem: 3 person vote for a motion, if 2 or more says YES, the motion is approved

- Step 1: truth table
- Step 2: derive the logic function according to the truth table

Inputs			Output
Х	Υ	Z	D
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

minterm vs. maxterm

minterm, denoted as m_i , where $0 \le i \le 2^n - 1$, is the product (AND) of n Boolean variables in its original or negated form

maxterm, denoted as M_i , where $0 \le i \le 2^n - 1$, is the sum (OR) of n Boolean variables in its original or negated form

Va	Variable Minterm		Variable		Ma	axterm
Х	у	z	Term	Designation	Term	Designation
0	0	0	x'y'z'	m _o	x+y+z	Mo
0	0	1	x'y'z	m ₁	x+y+z'	M ₁
0	1	0	x'yz'	m ₂	x+y'+z	M ₂
0	1	1	x'yz	m_3	x+y'+z'	M_3
1	0	0	xy'z'	m ₄	x'+y+z	M_4
1	0	1	xy'z	m ₅	x'+y+z'	M ₅
1	1	0	xyz'	m ₆	x'+y'+z	M ₆
1	1	1	xyz	m ₇	x'+y'+z'	M ₇

Canonical Forms

- Any Boolean function can be expressed as
 - □ a sum (OR) of its 1-minterms, or
 - □ a product (AND) of its 0-maxterms
- Any Boolean function that is expressed as a sum of minterms or as a product of maxterms is said to be in its canonical form

Example: Canonical form of majority vote

Inputs			Output
Α	В	С	D
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$D = m_3 + m_5 + m_6 + m_7$$

= $\overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$

$$D = M_0 M_1 M_2 M_4$$

= $(A + B + C)(A + B + \overline{C})(A + \overline{B} + C)(\overline{A} + B + C)$

Two-Level Logic

- Any logic function can be expressed in a canonical form as a two-level representation:
 - □ Every input is either a variable or its negated form.
 - ☐ One level consists of **AND** gates only.
 - ☐ The other level consists of **OR** gates only.
- Sum-of-products (SOP) form:
 - $\square \quad \text{E.g.,} \quad \mathsf{E} = (\mathsf{A} \cdot \mathsf{B} \cdot \overline{\mathsf{C}}) + (\mathsf{A} \cdot \mathsf{C} \cdot \overline{\mathsf{B}}) + (\mathsf{B} \cdot \mathsf{C} \cdot \overline{\mathsf{A}})$
 - ☐ More commonly used than product-of-sums representation.
- Product-of-sums (POS) form:
 - $\square \quad \text{E.g., } E = (\overline{A} + \overline{B} + C) \cdot (\overline{A} + \overline{C} + B) \cdot (\overline{B} + \overline{C} + A)$
- Logic function with only AND, OR, NOT can express all possible truth tables

Programmable Logic Array

A programmable logic array (PLA) is a gate-level <u>implementation</u> of the two-level representation for any set of logic functions, which corresponds to a truth table with multiple output columns.

Example: A PLA corresponds to the sum-of-products representation

PLA Example

Show a PLA implementation of this example:

Inputs			Outputs		
Α	В	С	D	E	F
0	0	0	0	0	0
0	0	1	1	0	0
0	1	0	1	0	0
0	1	1	1	1	0
1	0	0	1	0	0
1	0	1	1	1	0
1	1	0	1	1	0
1	1	1	1	0	1

Sum-of-product representation

$$D = \overline{A} \cdot \overline{B} \cdot C + \overline{A} \cdot B \cdot \overline{C} + \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot \overline{C} + A \cdot \overline{B} \cdot C + A \cdot B \cdot \overline{C} + A \cdot B \cdot \overline{C}$$

$$E = \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot C + A \cdot B \cdot \overline{C}$$

$$F = A \cdot B \cdot C$$

PLA Example (cont.)

- 3 inputs -> 3 rows in the AND plane
- 7 unique product terms with at least one TRUE value in the output -> 7 columns in the AND plane.
- 3 outputs -> 3 rows in the OR plane

Inputs			Outputs		
Α	В	С	D	Е	F
0	0	0	0	0	0
0	0	1	1	0	0
0	1	0	1	0	0
0	1	1	1	1	0
1	0	0	1	0	0
1	0	1	1	1	0
1	1	0	1	1	0
1	1	1	1	0	1

PLA Example (cont.)

$$D = \overline{A} \cdot \overline{B} \cdot C + \overline{A} \cdot B \cdot \overline{C} + \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot \overline{C} + A \cdot \overline{B} \cdot C + A \cdot B \cdot \overline{C} + A \cdot B \cdot \overline{C}$$

$$E = \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot C + A \cdot B \cdot \overline{C}$$

$$F = A \cdot B \cdot C$$

An equivalent PLA representation

Logical Equivalence

Are the two circuits below doing the same thing?

- Proving logical equivalence of two circuits
 - ☐ Derive the logical expression for the output of each circuit
 - ☐ Show that these two expressions are equivalent
- Method 1: truth table
 - For every combination of inputs, if both expressions yield the same output, they are equivalent
 - ☐ Good for logical expressions with small number of variables
- Method 2: algebraic manipulation
 - With help of Boolean Algebra (introduced later in circuit simplification)

Example: Logic Equivalence with Truth Table

- Is the circuit logically equivalent to the AND gate?
- Derive logical expression from a circuit
 - Trace from the input to output
 - □ Write down intermediate logical expressions along the path
- work out the truth table
- Proving logical equivalence

A	В	$\mathbf{F} = \mathbf{A}\mathbf{B}$	$\mathbf{F} = (\mathbf{A} + \mathbf{B})(\mathbf{A} + \overline{\mathbf{B}})(\overline{\mathbf{A}} + \mathbf{B})$

Logic Expression Simplification

- Truth tables can grow rapidly in size and become tedious.
 - □ N inputs means 2ⁿ rows in truth table
- Logic expressions are better in this case, however, there are equivalent logic expressions for the same truth table, and each of them will lead to a circuit implementation
- Simplifying logic expressions leads to simpler and cheaper circuits (lesser components)
- There are many formal methods, algorithms and software for simplifying Boolean expressions
 - □ Boolean Algebra
 - □ Karnaugh-Maps (K-maps)

Boolean Algebra Revisit

- Boolean Algebra is the algebra of logic that deals with the study of binary variables and logical operations
- It transform logical statements into mathematical symbols and calculate the truth or falsity of related statements by using rules

Laws of Boolean Algebra are powerful tools to simplify logic equations

Basic Laws of Boolean Algebra

Name	AND form	OR form
Identity law	1A = A	0 + A = A
Null law	0A = 0	1 + A = 1
Idempotent law	AA = A	A + A = A
Inverse law	$A\overline{A} = 0$	$A + \overline{A} = 1$
Commutative law	AB = BA	A + B = B + A
Associative law	(AB)C = A(BC)	(A + B) + C = A + (B + C)
Distributive law	A + BC = (A + B)(A + C)	A(B + C) = AB + AC
Absorption law	A(A + B) = A	A + AB = A
De Morgan's law	$\overline{AB} = \overline{A} + \overline{B}$	$\overline{A + B} = \overline{A}\overline{B}$

Boolean Algebra Example

Simplify $C + \overline{BC}$

Simplify $\overline{AB}(\overline{A} + B)(\overline{B} + B)$

Simplify 3-person majority vote $D = \overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$

K-Map

- K-Map is a graphical representation of the truth table or logic function
- In a K-map each cell represents one possible minterm
- Cells are arranged following a Gray code i.e., two adjacent cells are such that the corresponding minterms differ in only one variable

K-map Layout Example

BA	0	1
0	m0	m1
1	m2	m3

2 inputs

BC A	00	01	11	10
0	m0	m1	m3	m2
1	m4	m5	m7	m6

3 inputs

CD AB	00	01	11	10
00	m0	m1	m3	m2
01	m4	m5	m7	m6
11	m12	m13	m15	m14
10	m8	m9	m11	m10

4 inputs

K-map Simplification Rules

- Find largest size groups of adjacent cells at 1
- 2^N (i.e. 1, 2, 4, 8) adjacent cells in each group
- K-map is toroid (i.e., rightmost cells are adjacent to the leftmost cells and topmost cells are adjacent to bottom cells)
- Larger groups = fewer inputs to the AND gate
- Fewer groups = fewer AND gates and fewer inputs to OR gate
- Best group might not be unique

Simplification Example

Simplify $F = A \cdot \overline{B} + A \cdot B + \overline{A} \cdot B$

A B	0	1
0	$\overline{A} \cdot \overline{B}$	$\overline{A} \cdot B$
1	$A \cdot \overline{B}$	$A \cdot B$

$$F = A + B$$

Simplify majority vote

$$D = (\overline{A} \cdot B \cdot C) + (A \cdot B \cdot \overline{C}) + (A \cdot \overline{B} \cdot C) + (A \cdot B \cdot C)$$

$$D = AB + AC + BC$$

7-Segment Display

- Use 7-segment digital display to display one Hexadecimal digit
- Each segment is represented by a logic function

- **Tasks:**
 - ☐ Give the truth table for segment G
 - □ How many inputs needed?
 - Deduce the sum-of-products logic equation from the table
 - ☐ Use K-Map to simplify the logic equation

Truth Table for Segment G

Inputs			Out	put	
i ₃	i ₂	i ₁	i _o	G	A
0	0	0	0	0	
0	0	0	1	0	
0	0	1	0	1	
0	0	1	1	1	
0	1	0	0	1	
0	1	0	1	1	
0	1	1	0	1	
0	1	1	1	0	
1	0	0	0	1	
1	0	0	1	1	
1	0	1	0	1	
1	0	1	1	1	
1	1	0	0	0	
1	1	0	1	1	
1	1	1	0	1	
1	1	1	1	1	

- Using the table we have 12 minterms for segment G in the logic expression
- Try Segment A as an exercise

K-Map and Simplification

 $G = i_1 i_0' + i_3 i_2' + i_3 i_0 + i_2' i_1 + i_3' i_2 i_1'$

Conclusion:

- □ Before simplification we would need 12 AND gates with 4 inputs each and one OR gate with 12 inputs
- ☐ After we only need 4 AND gates with 2 inputs one AND gate with 3 inputs and one OR gate with 5 inputs

i ₁ i ₀ i ₃ i ₂	00	01	11	10
00	0	0	1	1
01	1	1	0	1
11	0	1	1	1
10	1	1	1	1

BASIC SEQUENTIAL LOGIC

S-R Latch: Simple Storage Element

■ S-R latches (set-reset latches)

- Unclocked memory element
- R is used to 'reset' or 'clear' the element
- ☐ S is used to 'set' the element
- ☐ If both R and S are 'not chosen', output is in 'Quiescent' state
 - hold its previous value
 - o can be <u>either</u> 0 or 1
- ☐ Usually built from a pair of cross-coupled NOR (or NAND) gates.

Graphical Symbol

A S-R latch built by NOR gates in quiescent state when previous value is 0

Reset S-R Latch

Suppose we start with Q = 1, then change R to 1

Set the S-R Latch

Suppose we start Q = 0, then change S to 1

S-R Latch (with NOR Gate) Summary

- Both Set and Reset are de-asserted (low), R = 0, S = 0
- ☐ Hold current value in latch
- Reset is asserted, R = 1, S = 0
- ☐ Set value to 0
- Set is asserted, R = 0, S = 1
- ☐ Set value to 1
- Both are asserted (high), R = 1, S = 1
- □ Both outputs equal to 0
- ☐ Final state determined by electrical properties of gates (racing condition)
- □ Invalid input

Inp	uts	Out	Outputs	
R	S	Q Not Q		
0	0	Latch		
1	0	0 1		
0	1	1 0		
1	1	Invalid		

Gated D-Latch

- D-latch with two inputs
 - □ D (data)
 - WE (write enable)
- When WE = 1, latch is set to value of D
- When WE = 0, latch holds previous value

Inp	Inputs		Outputs	
WE	D	Q Not C		
0	0	Latch		
0	1	Latch		
1	0	0	1	
1	1	1	0	

A gated D latch built by NOR S-R latches

Register

- A register stores a multi-bit value
 - ☐ A collection of D-latches, all controlled by a common WE
 - □ WE = 1, n-bit value D is written to the register

4-bit register built with D-latch

Clock Signal

- A microprocessor is composed of many different circuits that are operating simultaneously if each circuit X takes in inputs at time T_{in}, takes time T_{exe} to execute the logic, and produces outputs at time Tout, imagine the complications in coordinating the tasks of every circuit
- Solution: all circuits on the chip share a clock signal (a square wave) that tells every circuit when to accept inputs, how much time they have to execute the logic, and when they must produce outputs

Clock Terminology

- A clock is a free-running signal with a fixed cycle time (called clock period) or, equivalently, a fixed clock frequency (i.e., inverse of the cycle time).
- Edge-triggered clocking:
 - Design methodology for sequential logic circuits in which all state changes occur on a clock edge (rising edge or falling edge).

Example
$$4 GHZ = clock speed = \frac{1}{cycle time} = \frac{1}{250 ps}$$

Timing Diagram

- Digital timing diagram
 - ☐ A representation of a set of signals in the time domain
 - ☐ Can contain many rows, usually one of them being the clock
- Example: timing diagram of D latch
 - Use clock signal as WD

Master-Slave D Flip-Flop

- Built by a pair of clock-gated D-latches
- Terminology:
 - □ Latch: outputs can change any time the clock is asserted (high)
 - ☐ Flip-flop: outputs can change only on a clock edge
- Example: Falling-edge-triggered master-slave D flip-flop
 - □ When the clock input C changes from asserted to de-asserted, the Q output

stores the value of the D input.

Falling-edge-triggered Master-slave D Flip-flop

- When clock is asserted, D is updated in Master flip-flop
- When clock is de-asserted (1->0, falling edge), D is updated in Slave flip-flop, and is visible in Output Q

Sequential Circuit

- Combines combinational logic with storage
- 'Remembers' state, and changes output (and state) based on inputs and current state
- The **state** of a system is a snapshot of all the relevant elements of the system at the moment the snapshot is taken
- Frequently, a clock circuit triggers transition from one state to the next

Concluding Remarks

- Logic operation: NOT, AND, OR, NAND, NOR, XOR
- Logic gate
- **■** Truth table and logic function
- Combinational vs. sequential circuit
- Building blocks of combinational logic: Decoder/Encoder, Multiplexor, Demultiplexor
- Two-level logic: sum-of-product and product-of-sum
- PLA
- Boolean Algebra
- Karnaugh-Maps (K-maps)
- S-R latch
- Gated D-latch
- Clock and timing diagram
- D flip-flop

