Contents

A	Appendix A: Preparing everything	2
В	Appendix D.1: Descriptive Statistics Table	3
C	Appendix D.1.1: figures of each variables	4
D	Appendix D.2: Table of Market Structure(HHI)	6
E	Appendix D.3: Pearson Correlation Coefficiency	8
F	Appendix E: construct linear model	11
G	Appendix E.1: Empirical - 1	12
Н	Appendix E.2: Empirical - 2	14
I	Appendix F.1: 敏感性分析	16
J	Appendix F.2: Empirical - 1	17
K	Appendix F.3: Empirical - 2	19

企業競爭策略與產業競爭程度對避稅行為之影響

Oscar Deng

October 15, 2016

A

Appendix A: Preparing everything

```
#source("setSweave.R")
#source("setSweave.big5.R")
require(stargazer)
## Loading required package: stargazer
## Please cite as:
\textit{## Hlavac, Marek (2015)}. \ \ \textit{stargazer: Well-Formatted Regression and Summary Statistics Tables}.
## R package version 5.2. http://CRAN.R-project.org/package=stargazer
require(xtable)
## Loading required package: xtable
require(dplyr)
## Loading required package: dplyr
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
      filter, lag
## The following objects are masked from 'package:base':
##
##
      intersect, setdiff, setequal, union
require(data.table)
## Loading required package: data.table
## data.table + dplyr code now lives in dtplyr.
## Please library(dtplyr)!
## Attaching package: 'data.table'
## The following objects are masked from 'package:dplyr':
##
      between, last
require(ggplot2)
## Loading required package: ggplot2
require(stats)
source("corstars.R")
TEJ8.1 <- read.csv("TEJ8.1.csv",row.names = 1)</pre>
```

Appendix D.1: Descriptive Statistics Table

Table 1: Descriptive Statistics Table

Statistic	N	Min	Pctl(25)	Median	Pctl(75)	Max	St. Dev.	Mean
ETR	15,570	0.000	0.031	0.157	0.225	2.728	0.260	0.175
CETR	15,570	0.000	0.011	0.122	0.207	2.199	0.234	0.157
STR	15,570	0	12	15	17	25	5.256	13.885
HHI_Dum	15,483	0	0	0	1	1	0.487	0.388
STR_HHI	15,483	0	0	0	13	25	7.591	5.554
ROA	15,570	-0.467	0.006	0.049	0.098	0.343	0.103	0.045
SIZE	15,570	12.310	14.201	14.981	15.993	19.948	1.421	15.199
LEV	15,570	0.041	0.281	0.418	0.542	0.904	0.178	0.416
INTANG	15,570	0.000	0.00002	0.003	0.013	0.250	0.030	0.013
QUICK	15,570	0.036	0.781	1.221	2.052	21.571	2.415	1.884
EQINC	15,570	-0.040	-0.00001	0.000	0.000	0.050	0.007	0.0002
OUTINSTI	15,570	0.000	0.179	0.333	0.530	1.000	0.227	0.365
RELAT	15,570	0.000	0.000	0.000	0.357	100.000	9.555	2.257
FAM_Dum	15,570	0	0	1	1	1	0.488	0.611
GDP	15,570	16.019	16.284	16.354	16.519	16.564	0.149	16.382
STR_RD	15,570	0.000	0.0001	0.014	0.040	1,648.593	13.417	0.191
STR_EMP	15,570	-0.0003	0.0001	0.0002	0.0005	0.142	0.002	0.0004
STR_MB	15,570	0.000	0.850	1.270	1.980	295.620	3.328	1.733
STR_MARKET	15,570	-0.196	0.022	0.042	0.073	100.397	1.076	0.079
STR_PPE	15,570	-0.048	0.088	0.194	0.327	0.943	0.165	0.222

\mathbf{C}

Appendix D.1.1: figures of each variables

ETR 與 CETR 分布圖 (winsor 前後)

qplot(ETR,CETR,data=TEJ8.1);qplot(ETR,CETR,data=TEJ8.1)

D

Appendix D.2: Table of Market Structure(HHI)

```
plottbA5 <- function(x=TEJ8.1){
    x$TSE <- paste(x$TSE_code,x$TSE_name,sep="")
    HHI_DB <- base::subset(x, select=c(TSE,year,HHI)) %>% distinct
    HHI_DB$HHI <- replace(HHI_DB$HHI,HHI_DB$HHI >= 0.3,'高寡佔I型')
    HHI_DB$HHI <- replace(HHI_DB$HHI,HHI_DB$HHI < 0.3 & HHI_DB$HHI >= 0.18,'高寡佔II型')
    HHI_DB$HHI <- replace(HHI_DB$HHI,HHI_DB$HHI < 0.18 & HHI_DB$HHI >= 0.14,'低寡占I型')
    HHI_DB$HHI <- replace(HHI_DB$HHI,HHI_DB$HHI < 0.14 & HHI_DB$HHI >= 0.1,'低寡占II型')
    HHI_DB$HHI <- replace(HHI_DB$HHI,HHI_DB$HHI < 0.05,'競爭II型')
    HHI_DB$HHI <- replace(HHI_DB$HHI,HHI_DB$HHI < 0.005,'競爭II型')
    HHI_DB$HHI <- replace(HHI_DB$HHI,HHI_DB$HHI == "NaN","")
    HHI_tbl <- dcast(HHI_DB,TSE ~ year) %>% as.data.frame
    HHI_tbl <- as.data.frame(HHI_tbl[,-1],row.names=HHI_tbl[,1])
    return(HHI_tbl)
    };HHI_tbl <- plottbA5()

## Using 'HHI' as value column. Use 'value.var' to override
```

	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
M1100 水泥工業				高寡佔I型	高寡佔I型	高寡佔I型	高寡佔I型	高寡佔I型	高寡佔I型	高寡佔I型	高寡佔I型	高寡佔I型	高寡佔I型	高寡佔I型	高寡佔I型
M1200 食品工業	高寡佔Ⅱ型	高寡佔 II 型	高寡佔Ⅱ型	高寡佔Ⅱ型	高寡佔Ⅱ型	高寡佔Ⅱ型	高寡佔Ⅱ型	高寡佔Ⅰ型	高寡佔I型	高寡佔I型	高寡佔I型	高寡佔I型	高寡佔I型	高寡佔I型	高寡佔I型
M1300 塑膠工業		高寡佔I型	高寡佔I型	高寡佔I型	高寡佔I型	高寡佔I型	高寡佔Ⅱ型	高寡佔 II 型	高寡佔Ⅱ型	高寡佔Ⅱ型	高寡佔 II 型	高寡佔Ⅱ型	高寡佔 II 型	高寡佔Ⅱ型	高寡佔Ⅱ型
M1400 紡織纖維	競爭I型	競爭I型	競爭I型	競爭Ⅰ型	競爭I型	低寡占Ⅱ型	低寡占II型	低寡占I型	低寡占I型	低寡占I型	低寡占I型	低寡占I型	高寡佔Ⅱ型	高寡佔Ⅱ型	高寡佔 II 型
M1500 電機機械	高寡佔Ⅱ型	低寡占I型	低寡占I型	高寡佔Ⅱ型	低寡占I型	高寡佔Ⅱ型	高寡佔Ⅱ型	高寡佔Ⅱ型	高寡佔Ⅱ型	高寡佔Ⅱ型	低寡占I型	低寡占I型	低寡占Ⅱ型	低寡占Ⅱ型	競爭Ⅰ型
M1600 電器電纜	高寡佔Ⅱ型	高寡佔 II 型	高寡佔Ⅱ型	高寡佔Ⅱ型	高寡佔Ⅱ型	高寡佔Ⅱ型	高寡佔Ⅱ型	高寡佔Ⅱ型	高寡佔Ⅱ型	高寡佔Ⅱ型	高寡佔I型	高寡佔I型	高寡佔I型	高寡佔I型	高寡佔I型
M1721 化學工業	高寡佔 II 型	高寡佔 II 型	低寡占I型	低寡占I型	低寡占II型	低寡占Ⅱ型	競爭I型	競爭I型	競爭Ⅰ型	競爭I型	競爭I型	競爭I型	競爭I型	競爭I型	競爭Ⅰ型
M1722 生技醫療		高寡佔 II 型	高寡佔Ⅱ型	低寡占I型	低寡占Ⅱ型	低寡占Ⅱ型	競爭I型	競爭I型	競爭Ⅰ型	競爭I型	競爭I型	競爭Ⅰ型	競爭Ⅱ型	競爭II型	競爭Ⅱ型
M1800 玻璃陶瓷												高寡佔Ⅰ型	高寡佔Ⅰ型	高寡佔I型	高寡佔I型
M1900 造紙工業			高寡佔I型	高寡佔I型	高寡佔I型	高寡佔I型	高寡佔I型	高寡佔Ⅱ型	高寡佔Ⅱ型	高寡佔Ⅱ型	高寡佔Ⅱ型	高寡佔Ⅱ型	高寡佔Ⅱ型	高寡佔Ⅱ型	高寡佔 II 型
M2000 鋼鐵工業	高寡佔Ⅰ型	高寡佔 II 型	高寡佔Ⅱ型	高寡佔Ⅱ型	高寡佔Ⅱ型	低寡占I型	高寡佔Ⅱ型	高寡佔 II 型	高寡佔Ⅱ型	高寡佔Ⅱ型	高寡佔Ⅱ型	高寡佔Ⅱ型	高寡佔 II 型	高寡佔Ⅱ型	高寡佔 II 型
M2100 橡膠工業				高寡佔I型	高寡佔Ⅱ型	高寡佔Ⅱ型	高寡佔Ⅱ型	高寡佔Ⅱ型	高寡佔Ⅱ型	高寡佔Ⅱ型	高寡佔Ⅱ型	高寡佔Ⅱ型	高寡佔Ⅱ型	高寡佔Ⅱ型	高寡佔 II 型
M2200 汽車工業					高寡佔Ⅱ型	高寡佔Ⅱ型	高寡佔Ⅱ型	高寡佔 II 型	高寡佔Ⅱ型	高寡佔Ⅱ型	高寡佔Ⅱ型	高寡佔Ⅱ型	高寡佔 II 型	高寡佔Ⅱ型	高寡佔 II 型
M2324 半導體	高寡佔I型	高寡佔 II 型	高寡佔Ⅱ型	高寡佔Ⅱ型	高寡佔Ⅱ型	低寡占Ⅱ型	競爭I型	競爭I型	競爭I型	競爭I型	競爭I型	競爭I型	競爭I型	競爭Ⅰ型	低寡占II型
M2325 電腦及週邊			低寡占I型	低寡占I型	低寡占Ⅱ型	低寡占Ⅱ型	低寡占Ⅱ型	競爭I型	競爭Ⅰ型	低寡占Ⅱ型	低寡占Ⅱ型	低寡占Ⅱ型	低寡占Ⅱ型	低寡占Ⅱ型	低寡占II型
M2326 光電業	高寡佔Ⅰ型	高寡佔I型	高寡佔I型	高寡佔Ⅱ型	高寡佔Ⅱ型	高寡佔Ⅱ型	低寡占Ⅱ型	低寡占II型	低寡占Ⅱ型	低寡占Ⅱ型	低寡占Ⅱ型	低寡占Ⅱ型	低寡占II型	低寡占Ⅱ型	低寡占II型
M2327 通信網路業	高寡佔I型	高寡佔I型	高寡佔 I 型	高寡佔Ⅰ型	高寡佔I型	高寡佔I型	高寡佔Ⅱ型	低寡占II型	低寡占Ⅱ型	低寡占Ⅱ型	低寡占II型	低寡占Ⅱ型	低寡占Ⅱ型	低寡占Ⅱ型	低寡占Ⅱ型
M2328 電子零組件	低寡占I型	低寡占I型	低寡占Ⅱ型	競爭Ⅰ型	競爭Ⅰ型	競爭II型	競爭 II 型	競爭Ⅱ型	競爭Ⅱ型	競爭 II 型	競爭Ⅱ型	競爭Ⅱ型	競爭 Ⅱ 型	競爭II 型	競爭Ⅱ型
M2329 電子通路業			低寡占Ⅱ型	競爭I型	低寡占Ⅱ型	低寡占Ⅱ型	競爭Ⅰ型	競爭Ⅰ型	低寡占Ⅱ型	低寡占Ⅱ型	低寡占II型	低寡占Ⅱ型	低寡占I型	低寡占I型	低寡占I型
M2330 資訊服務業	高寡佔Ⅱ型	高寡佔 II 型	高寡佔Ⅱ型	高寡佔Ⅱ型	低寡占I型	低寡占Ⅱ型	競爭Ⅰ型	競爭Ⅰ型	競爭Ⅰ型	競爭Ⅰ型	競爭Ⅰ型	競爭Ⅰ型	競爭Ⅰ型	競爭Ⅰ型	競爭Ⅰ型
M2500 建材營造	低寡占Ⅱ型	低寡占II型	競爭Ⅰ型	競爭I型	競爭Ⅰ型	競爭I型	競爭 II 型	競爭Ⅱ型	競爭Ⅱ型	競爭 II 型	競爭Ⅱ型	競爭Ⅱ型	競爭 Ⅱ 型	競爭II 型	競爭Ⅱ型
M2600 航運業		高寡佔I型	高寡佔I型	高寡佔Ⅰ型	高寡佔Ⅰ型	高寡佔Ⅱ型	高寡佔Ⅱ型	低寡占I型	低寡占I型	低寡占I型	低寡占I型	低寡占I型	低寡占I型	低寡占I型	低寡占I型
M2700 觀光事業		高寡佔 II 型	高寡佔Ⅱ型	高寡佔Ⅱ型	低寡占I型	低寡占I型	低寡占Ⅱ型	低寡占II型	低寡占Ⅱ型	低寡占Ⅱ型	低寡占II型	低寡占Ⅱ型	低寡占Ⅱ型	低寡占Ⅱ型	低寡占Ⅱ型
M2900 貿易百貨		高寡佔Ⅰ型	高寡佔Ⅰ型	高寡佔Ⅰ型	高寡佔I型	高寡佔Ⅱ型	高寡佔Ⅱ型	高寡佔Ⅱ型	高寡佔Ⅱ型	高寡佔Ⅱ型	高寡佔Ⅱ型	高寡佔Ⅱ型	高寡佔Ⅱ型	高寡佔Ⅱ型	高寡佔Ⅱ型
M3200 文化創意業				高寡佔Ⅱ型	高寡佔Ⅱ型	高寡佔Ⅱ型	高寡佔Ⅱ型	高寡佔Ⅱ型	高寡佔Ⅱ型	高寡佔Ⅱ型	高寡佔 II 型	高寡佔Ⅱ型	高寡佔Ⅱ型	高寡佔Ⅱ型	高寡佔 II 型
M9700 油電燃氣業	高寡佔Ⅱ型	高寡佔 II 型	高寡佔Ⅱ型	高寡佔I型	高寡佔I型	高寡佔I型	高寡佔I型	高寡佔I型	高寡佔I型	高寡佔I型	高寡佔I型	高寡佔I型	高寡佔I型	高寡佔I型	高寡佔I型

註:

- a. 分類方式參考美國司法部之市場結構分類標準,依 HHI 值判斷其競爭程度,HHI 值愈小代表該產業集中度愈低,產業競爭程度愈激烈。
- b. 分類區間: 高寡佔 I 型 □0.3 >高寡佔 II 型 □0.18 >低寡占 I 型 □0.14 >低寡占 II 型 □0.1 >競爭 I 型 □0.05 >競爭 II 型。

Appendix D.3: Pearson Correlation Coefficiency

```
ETR.cortab <- corstars(TEJ8.1 %>% select(ETR,STR,HHI_Dum,ROA,SIZE,LEV,
                     INTANG,QUICK,EQINC,OUTINSTI,RELAT,FAM_Dum,GDP)
  ,method = "pearson",removeTriangle = "lower",star = 3,result = "none")
## Loading required package: Hmisc
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:dplyr':
##
      combine, src, summarize
##
## The following objects are masked from 'package:xtable':
##
      label, label <-
##
## The following objects are masked from 'package:base':
##
##
      format.pval, round.POSIXt, trunc.POSIXt, units
CETR.cortab <- corstars(TEJ8.1 %>% select(CETR,STR,HHI_Dum,ROA,SIZE,LEV,
                     INTANG,QUICK,EQINC,OUTINSTI,RELAT,FAM_Dum,GDP)
  ,method = "pearson",removeTriangle = "lower",star = 3,result = "none")
```

表、相關係數表 (應變數為 ETR)

xtable(ETR.cortab)

	ETR	STR	HHI_Dum	ROA	SIZE	LEV	INTANG	QUICK	EQINC	OUTINSTI	RELAT	FAM_Dum	GDP
ETR	1.00	0.01	-0.03**	0.06***	0.02**	0.02*	0.01	-0.02*	-0.01	-0.05***	0.00	0.01	0.04***
STR		1.00	0.05***	-0.03***	-0.11***	-0.11***	0.05***	0.09***	0.00	-0.11***	0.01	-0.02**	0.22***
HHI Dum			1.00	-0.01	-0.09***	-0.07***	0.01	0.08***	-0.04***	-0.05***	0.04***	0.00	0.16***
ROA				1.00	0.10***	-0.26***	-0.04***	0.09***	0.17***	0.17***	0.01	-0.05***	-0.03***
SIZE					1.00	0.29***	0.04***	-0.21***	0.16***	0.39***	0.02**	0.03***	0.08***
LEV						1.00	-0.06***	-0.57***	-0.04***	0.04***	0.03***	0.06***	-0.08***
INTANG							1.00	0.05***	-0.03***	0.05***	0.00	0.01	0.06***
QUICK								1.00	0.01	-0.02*	-0.01	-0.08***	0.08***
EQINC									1.00	0.12***	0.00	0.00	0.08***
OUTINSTI										1.00	-0.01	-0.04***	0.07***
RELAT											1.00	-0.02*	-0.03***
FAM Dum												1.00	-0.01
GDP													1.00

註:a. 變數定義同前表。 b. ***、**、* 表示 1%、5% 及 10% 顯著水準。

表、相關係數表 (應變數為 CETR)

xtable(CETR.cortab)

	CETR	STR	HHI_Dum	ROA	SIZE	LEV	INTANG	QUICK	EQINC	OUTINSTI	RELAT	FAM_Dum	GDP
CETR	1.00	0.02*	-0.02**	0.02**	0.02*	0.02*	0.02	-0.03***	-0.02**	-0.06***	0.00	0.02*	0.04***
STR		1.00	0.05***	-0.03***	-0.11***	-0.11***	0.05***	0.09***	0.00	-0.11***	0.01	-0.02**	0.22***
HHI_Dum			1.00	-0.01	-0.09***	-0.07***	0.01	0.08***	-0.04***	-0.05***	0.04***	0.00	0.16***
ROA				1.00	0.10***	-0.26***	-0.04***	0.09***	0.17***	0.17***	0.01	-0.05***	-0.03***
SIZE					1.00	0.29***	0.04***	-0.21***	0.16***	0.39***	0.02**	0.03***	0.08***
LEV						1.00	-0.06***	-0.57***	-0.04***	0.04***	0.03***	0.06***	-0.08***
INTANG							1.00	0.05***	-0.03***	0.05***	0.00	0.01	0.06***
QUICK								1.00	0.01	-0.02*	-0.01	-0.08***	0.08***
EQINC									1.00	0.12***	0.00	0.00	0.08***
OUTINSTI										1.00	-0.01	-0.04***	0.07***
RELAT											1.00	-0.02*	-0.03***
FAM_Dum												1.00	-0.01
GDP													1.00

註:a. 變數定義同前表。 b. ***、**、* 表示 1%、5% 及 10% 顯著水準。

Appendix E: construct linear model

Appendix E.1: Empirical - 1

模型 1:

 $TAXAVO_{it} = \beta_0 + \beta_1 STR_{it} + \beta_2 HHI_{jt} + \beta_3 ROA_{it} + \beta_4 SIZE_{it} + \beta_5 LEV_{it} + \beta_6 INTANG_{it} + \beta_7 QUICK_{it} + \beta_8 EQINC_{it} + \beta_9 OUTINSTI_{it} + \beta_{10} RELAT_{it} + \beta_{11} FAMILY_{it} + \beta_{12} GDP_{it} + \varepsilon_{13}$ 實證結果 — 不包含 STRATEGY×HHI

```
stargazer(lm.ETR,lm.CETR,
  dep.var.labels = c("$TAXAVO_{it}=ETR_{it}$","$TAXAVO_{it}=CashETR_{it}$"),
  digits=3)
```

Table 2:

	Table 2:					
	Dependent variable:					
	$TAXAVO_{it} = ETR_{it}$	$TAXAVO_{it} = CashETR_{it}$				
	(1)	(2)				
STR	-0.0002	0.0003				
	(0.0004)	(0.0004)				
HHI_Dum	-0.018***	-0.014^{***}				
	(0.004)	(0.004)				
ROA	0.210***	0.107***				
	(0.022)	(0.020)				
SIZE	0.006***	0.005***				
	(0.002)	(0.002)				
LEV	0.043***	0.019				
	(0.015)	(0.014)				
INTANG	0.121*	0.144**				
	(0.070)	(0.063)				
QUICK	-0.001	-0.002**				
	(0.001)	(0.001)				
EQINC	-0.782^{***}	-0.942^{***}				
	(0.289)	(0.260)				
OUTINSTI	-0.095***	-0.083^{***}				
	(0.010)	(0.009)				
RELAT	-0.0001	0.0001				
	(0.0002)	(0.0002)				
FAM_Dum	0.006	0.006^{*}				
	(0.004)	(0.004)				
GDP	0.100***	0.080***				
	(0.015)	(0.013)				
Constant	-1.539***	-1.223***				
	(0.240)	(0.216)				
Observations	15,483	15,483				
\mathbb{R}^2	0.014	0.011				
Adjusted R ²	0.013	0.011				
Residual Std. Error (df = 15470)	0.259	0.233				
F Statistic (df = 12; 15470)	18.272***	14.713***				

Note:

Appendix E.2: Empirical - 2

模型 2:

 $TAXAVO_{it} = \beta_0 + \beta_1 STR_{it} + \beta_2 HHI_{jt} + \beta_3 STR_{it} * HHI_{it} + \beta_4 ROA_{it} + \beta_5 SIZE_{it} + \beta_6 LEV_{it} + \beta_7 INTANG_{it} + \beta_8 QUICK_{it} + \beta_9 EQINC_{it} + \beta_{10} OUTINSTI_{it} + \beta_{11} RELAT_{it} + \beta_{12} FAMILY_{it} + \beta_{13} GDP_{it} + \varepsilon_{14}$ 實證結果 — 包含 STRATEGY×HHI

```
stargazer(lm.ETR.SH,lm.CETR.SH,
  dep.var.labels = c("TAXAVO_{it}=ETR_{it}","TAXAVO_{it}=CashETR_{it}"),
  digits=3)
```

Table 3:

	Table 3.	1			
	Dependent variable:				
	$TAXAVO_{it} = ETR_{it}$	$TAXAVO_{it} = CashETR_i$			
	(1)	(2)			
STR	0.0002	0.001*			
	(0.001)	(0.0005)			
HHI_Dum	0.0001	0.006			
	(0.013)	(0.012)			
STR_HHI	-0.001	-0.001^{*}			
	(0.001)	(0.001)			
ROA	0.210***	0.107***			
	(0.022)	(0.020)			
SIZE	0.006***	0.005***			
	(0.002)	(0.002)			
LEV	0.043***	0.018			
	(0.015)	(0.014)			
INTANG	0.127*	0.150**			
	(0.070)	(0.063)			
QUICK	-0.001	-0.002**			
	(0.001)	(0.001)			
EQINC	-0.791***	-0.952^{***}			
	(0.289)	(0.260)			
OUTINSTI	-0.095***	-0.083^{***}			
	(0.010)	(0.009)			
RELAT	-0.00005	0.0001			
	(0.0002)	(0.0002)			
FAM Dum	0.006	0.006^{*}			
_	(0.004)	(0.004)			
GDP	0.098***	0.078***			
	(0.015)	(0.013)			
Constant	-1.511***	-1.192***			
	(0.241)	(0.216)			
Observations	15,483	15,483			
\mathbb{R}^2	0.014	0.011			
Adjusted R ²	0.013	0.011			
Residual Std. Error $(df = 15469)$	0.259	0.233			
F Statistic (df = 13; 15469)	17.035***	13.837***			

Appendix F.1: 敏感性分析

敏感性分析 分析一、百分位 重建模型

```
TEJ8.2 <- TEJ8.1 %>% mutate(STR.PR = STR_RD.perank+STR_MB.perank+STR_EMP.perank+STR_PPE.perank+STR_MARKET.per
% mutate(STR.PR_HHI = STR.PR*HHI_Dum)
lm.ETR2 <- lm(ETR ~ STR.PR+HHI_Dum+ROA+SIZE+LEV+INTANG+QUICK+EQINC+OUTINSTI+RELAT+FAM_Dum+GDP
,TEJ8.2)
lm.CETR2 <- lm(CETR ~ STR.PR+HHI_Dum+ROA+SIZE+LEV+INTANG+QUICK+EQINC+OUTINSTI+RELAT+FAM_Dum+GDP
,TEJ8.2)
lm.ETR.SH2 <- lm(ETR ~ STR.PR+HHI_Dum+STR.PR_HHI+ROA+SIZE+LEV+INTANG+QUICK+EQINC+OUTINSTI+RELAT+FAM_Dum+GDP,TE
lm.CETR.SH2 <- lm(CETR ~ STR.PR+HHI_Dum+STR.PR_HHI+ROA+SIZE+LEV+INTANG+QUICK+EQINC+OUTINSTI+RELAT+FAM_Dum+GDP,TE
```

Appendix F.2: Empirical - 1

新模型 1:

 $TAXAVO_{it} = \beta_0 + \beta_1 STR.PR_{it} + \beta_2 HHI_{jt} + \beta_3 ROA_{it} + \beta_4 SIZE_{it} + \beta_5 LEV_{it} + \beta_6 INTANG_{it} + \beta_7 QUICK_{it} + \beta_8 EQINC_{it} + \beta_9 OUTINSTI_{it} + \beta_{10} RELAT_{it} + \beta_{11} FAMILY_{it} + \beta_{12} GDP_{it} + \varepsilon_{13}$ 實證結果 — 不包含 STRATEGY×HHI

```
stargazer(lm.ETR2,lm.CETR2,
  dep.var.labels = c("$TAXAVO_{it}=ETR_{it}$","$TAXAVO_{it}=CashETR_{it}$"),
  digits=3)
```

Table 4:

	Dependent variable:					
	$TAXAVO_{it} = ETR_{it}$	$TAXAVO_{it} = CashETR_i$				
	(1)	(2)				
STR.PR	-0.006**	-0.004				
	(0.003)	(0.003)				
HHI_Dum	-0.020***	-0.017^{***}				
	(0.005)	(0.004)				
ROA	0.216***	0.106***				
	(0.024)	(0.021)				
SIZE	0.005***	0.005***				
	(0.002)	(0.002)				
LEV	0.033**	0.013				
	(0.016)	(0.014)				
INTANG	0.141*	0.169**				
	(0.075)	(0.067)				
QUICK	-0.001	-0.003**				
	(0.001)	(0.001)				
EQINC	-0.958***	-1.029***				
	(0.304)	(0.273)				
OUTINSTI	-0.094***	-0.084^{***}				
	(0.011)	(0.010)				
RELAT	-0.00004	0.0001				
	(0.0002)	(0.0002)				
FAM_Dum	0.004	0.004				
_	(0.005)	(0.004)				
GDP	0.092***	0.066***				
	(0.016)	(0.014)				
Constant	-1.387***	-0.955***				
	(0.262)	(0.235)				
Observations	14,454	14,454				
R ²	0.014	0.010				
Adjusted R ²	0.013	0.010				
Residual Std. Error (df = 14441)	0.264	0.237				
F Statistic (df = 12; 14441)	16.475***	12.710***				

Note:

*p<0.1; **p<0.05; ***p<0.01

Appendix F.3: Empirical - 2

新模型 2:

 $TAXAVO_{it} = \beta_0 + \beta_1 STR.PR_{it} + \beta_2 HHI_{jt} + \beta_3 STR.PR_{it} * HHI_{it} + \beta_4 ROA_{it} + \beta_5 SIZE_{it} + \beta_6 LEV_{it} + \beta_7 INTANG_{it} + \beta_8 QUICK_{it} + \beta_9 EQINC_{it} + \beta_{10} OUTINSTI_{it} + \beta_{11} RELAT_{it} + \beta_{12} FAMILY_{it} + \beta_{13} GDP_{it} + \varepsilon_{14}$ 實證結果 — 包含 STRATEGY×HHI

```
stargazer(lm.ETR.SH2,lm.CETR.SH2,
  dep.var.labels = c("$TAXAVO_{it}=ETR_{it}$","$TAXAVO_{it}=CashETR_{it}$"),
  digits=3)
```

Table 5:

	Dependent variable:					
	$TAXAVO_{it} = ETR_{it}$	$TAXAVO_{it} = CashETR_{it}$				
	(1)	(2)				
STR.PR	-0.006	-0.005				
	(0.004)	(0.004)				
HHI_Dum	-0.016	-0.024*				
	(0.015)	(0.014)				
STR.PR_HHI	-0.002	0.003				
	(0.006)	(0.005)				
ROA	0.216***	0.107***				
	(0.024)	(0.021)				
SIZE	0.005***	0.005***				
	(0.002)	(0.002)				
LEV	0.033**	0.013				
	(0.016)	(0.014)				
INTANG	0.142*	0.166**				
	(0.075)	(0.068)				
QUICK	-0.001	-0.003**				
	(0.001)	(0.001)				
EQINC	-0.958^{***}	-1.028***				
	(0.304)	(0.273)				
OUTINSTI	-0.094***	-0.084^{***}				
	(0.011)	(0.010)				
RELAT	-0.00004	0.0001				
	(0.0002)	(0.0002)				
FAM_Dum	0.004	0.004				
	(0.005)	(0.004)				
GDP	0.092***	0.066***				
	(0.016)	(0.014)				
Constant	-1.389***	-0.951***				
	(0.262)	(0.235)				
Observations	14,454	14,454				
\mathbb{R}^2	0.014	0.010				
Adjusted R ²	0.013	0.010				
Residual Std. Error ($df = 14440$)	0.264	0.237				
F Statistic (df = 13; 14440)	15.212***	11.754***				
Note:		*p<0.1; **p<0.05; ***p<0.01				