Please complete the following exercises. Feel free to work with classmates, but each student must turn in **UNIQUE** work, not photocopies or identical replicates. When applicable, use **APA format** in communicating your results in text. **Show your work!** If any question involves any math at all, show your work. When it doubt, write it out. Always show more than you think you need.

Name:

1) WRITE-UP - Textbook Problems								
Cohen Chap		Chap	Exercises	Pts	Off			
	5	Α	*1, 2, *5, 6, 7, 9, 10	6				
		В	*1, *8, 9, *10	6				
_		С	3, 4	2				
		Α	*1, 2, 4, *5, 6	6				
	6	В	*1, 2, *4, 5, 8	5				
_		С	1, 2, 3	2				
		Α	*7, 8	2				
	7	В	*3, *4, 6	3				
		С	1, 5	2				
		Α	3, 9, *10	3				
	8	В	6	1				
		С	2 (altered) (Use G-Power, no syntax or code)	1				

2) 5	2) SUMMARY – Supplementary Reading							
	The ASA's Stat	ement on p-Values: Context, Process, and Purpose	Pts	Off				
	Half Page	Read the article and summarize the main points for future reference.	5					

3) F	3) R SYNTAX - Section C: Ihno's data set - add to the skeleton R notebook and knit to .pdf & upload								
	Coher	n Chap	Exercises	Pts	Off				
	5	С	3, 4	2					
	6	С	1, 2, 3	2					
·	7	С	1, 5	2					

Gra	ding		Earned	Possible
	CORRECTNESS	a subset of spot-checked items: must show work, especially items from back of book or done in class		50
	COMPLETENESS	more than one item is missing or skipped: 25/50 roughly half the assignment is completed: 10/50		50
				100

5 A *1. Calculated z-value > p-value ... 1-tailed & 2-tailed

- a) If the **calculated z** for an experiment equals **1.35**, what is the corresponding **p-value**?
- 1-tail: p = _____ 2-tail: p = _____
- b) If the **calculated z** for an experiment equals **0.7**, what is the corresponding **p-value**?
- 1-tail: p = _____ 2-tail: p = ____
- c) If the **calculated z** for an experiment equals **2.2**, what is the corresponding **p-value**?
- 1-tail: p = _____ 2-tail: p = _____

5 A 2. alpha > critical z-value ... 1-tailed & 2-tailed

- a) If **alpha** were set to the unusual value of .08, what would be the magnitude of the **critical z**?
- 1-tail: z_{cv} = _____ 2-tail: z_{cv} = _____
- b) If **alpha** were set to the unusual value of .03, what would be the magnitude of the **critical z**?
- 1-tail: z_{cv} = _____ 2-tail: z_{cv} = _____
- c) If alpha were set to the unusual value of .007, what would be the magnitude of the <u>critical z</u>?
- 1-tail: z_{cv} = _____ 2-tail: z_{cv} = _____

5 A | *5. sample mean → p-value (2-tailed)

An English professor suspects that her <u>current class</u> of 36 students is unusually good at verbal skills. She looks up the verbal SAT score for each student and is pleased to find that the **mean for the class is 540**.

Assuming that the <u>general population</u> of students has a **mean verbal SAT score of 500** with a **standard deviation of 100**, what is the **two-tailed** p value corresponding to this class?

POPULATION PARAMETERS

n = ____

X = _____

SAMPLE STATISTICS

 $\sigma_{\bar{X}}$ = ____

Standard Error for the Mean

$$\sigma_{\bar{X}} = \frac{\sigma}{n}$$

Formula 5.1

$$z = \frac{\bar{X} - \mu}{\sigma_{\bar{X}}}$$

z = _____

2-tail: p = _____

5 A 0. Very large 2-score					
Consider a situation in which you have calculated the z score for a group of participants and have obtained the unusually high value of 20 .					
Which of the following statements would be true , and which would be false ? Explain your answer in each case.					
a.) You must have made a calculation error because z scores cannot get so high.					
☐ TRUE ☐ FALSE EXPLAIN .					
b.) The null hypothesis cannot be true.					
☐ TRUE ☐ FALSE EXPLAIN .					
c.) The null hypothesis can be rejected, even if a very small alpha is used. 7					
☐ TRUE ☐ FALSE EXPLAIN .					
d.) The difference between the sample mean and the hypothesized population mean must have been quite large.					
☐ TRUE ☐ FALSE EXPLAIN .					

5 A 7. Very large z-score

Suppose the z score mentioned in Exercise 6 involved the measurement of height for a group of men. If μ = 69 inches and σ = 3 inches, <u>how</u> can a group of men have a z score equal to 20?

Give a **numerical example** illustrating how this can occur.

5 A 9. One-tail vs. Two-tails

Describe a situation in which a **one-tailed** hypothesis test seems justified.

Describe a situation in which a **two-tailed** test is clearly called for.

5 A 10. One-tail vs. Two-tails

Describe a case in which it would probably be appropriate to use an **alpha smaller** than the conventional .05 (e.g., .01).

Describe a case in which it might be appropriate to use an unusually **large alpha** (e.g., .1).

5 B *1. Hypothesis test: Mean (z-score)

A psychiatrist is testing a new antianxiety drug, which seems to have the potentially harmful side effect of lowering the heart rate. For a **sample of 50** medical students whose pulse was measured after 6 weeks of taking the drug, the **mean heart rate was 70 beats per minute** (bpm).

If the mean heart rate for the <u>population</u> is **72 bpm** with a **standard deviation of 12**, can the psychiatrist conclude that the new drug lowers heart rate significantly? (Set alpha = .05 and perform a one-tailed test.)

n = __

POPULATION PARAMETERS

SAMPLE STATISTICS

$$\overline{X}$$
 =

$$\sigma_{\bar{X}}$$
 = _____

H₀:_____

Ha:

Standard Error for the Mean

$$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$$

Formula 5.1

$$z = \frac{\bar{X} - \mu}{\sigma_{\bar{x}}}$$

z = _____

1-tail: p = _____

- ☐ Provides evidence that new drug lowers heart rate
- □ No evidence that the new drug lowers heart rate

5 B *8. sample mean → p-value (2-tailed)

Imagine that you are testing a new drug that seems to <u>raise</u> the number of T cells in the blood and therefore has enormous potential for the treatment of disease. After treating **100 patients**, you find that their **mean T cell count is 29.1**. Assume that μ and σ (hypothetically) are **28 and 6**, respectively.

- a.) Test the null hypothesis at the .05 level, two-tailed.
- □ Provides evidence that new drug increases T cells□ No evidence that the new drug increases T cells
- b.) Test the same hypothesis at the .10 level, two-tailed.
 - □ Provides evidence that new drug increases T cells□ No evidence that the new drug increases T cells
- c.) **Describe** in practical terms what it would mean to **commit a Type I error** in this example.
- d.) **Describe** in practical terms what it would mean to **commit a Type II error** in this example.
- e.) How might you **justify** the use of .10 for alpha in similar experiments?

5 B 9. Effect of the Population SD on the z-score

a) Assuming everything else in the previous problem stayed the same, what would happen to your calculated z if the population standard deviation (σ) were 3 instead of 6?

Standard Error for the Mean $\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$

Formula 5.1
$$z = \frac{\bar{X} - \mu}{\sigma \bar{x}}$$

z = _____ > _____

b) What **general statement** can you make about how changes in σ affect the calculated value of z?

5 B *10. Sample size requirements

Referring to Exercise 8, suppose that **mean** (\overline{X}) is equal to 29.1 regardless of the sample size.

How large would n have to be for the calculated z to be statistically significant at the .01 level (two-tailed)?

Formula 5.1
$$z = \frac{\bar{X} - \mu}{\sigma_{\bar{X}}}$$

n = ____

5	В	11. Define '	alpha'				
Alpha	stand	s for which of the f	following?				
a)	The _l	proportion of exper	riments that will attain statistical significance	☐ TRUE			
b)	•	proportion of exper ttain statistical sign	riments for which the null hypothesis is true that nificance	☐ TRUE			
c)	-	proportion of statis thesis is true	stically significant results for which the null	☐ TRUE			
d)	The _l	proportion of exper	riments for which the null hypothesis is true	☐ TRUE			
5	В	12. Errors i	n hypothesis testing				
Suppolater reduces.	In the last few years, an organization has conducted 200 clinical trials to test the effectiveness of antianxiety drugs. Suppose, however, that all of those drugs were obtained from the same fraudulent supplier, which was later revealed to have been sending only inert substances (e.g., distilled water, sugar pills) instead of real drugs. If alpha = .05 was used for all hypothesis tests How many of these 200 experiments would you expect to yield significant results? How many Type I errors would you expect?						
-	- ,	-					
5	В	13. Errors i	n hypothesis testing				
	Since she arrived at the university, Dr. Pine has been very productive and successful. She has already performed 20 experiments that have each attained the . 05 level of statistical significance.						
What i	is you	best guess for the	e number of Type I errors she has made so far?				
For the	or the number of Type II errors ?						

5 C 3. Hypothesis test: Mean (z-score)

a) In the past 10 years, previous stats classes who took the same mathquiz that Ihno's students took averaged 28 with a standard deviation of 8.5. What is the two-tailed p value for Ihno's students with respect to that past population? (Don't forget that the N for mathquiz is not 100.)

write code to find mean & n in your R syntax file

POPULATION PARAMETERS

SAMPLE STATISTICS

$$\overline{X}$$
 =

$$\sigma_{\bar{X}}$$
 = _____

H₀:_____

Ha: _____

Standard Error for the Mean

n = ____

$$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$$

Formula 5.1

$$z = \frac{\bar{X} - \mu}{\sigma_{\bar{X}}}$$

z = _____

2-tail: p = _____

Would you say that Ihno's class performed significantly better than previous classes?

- ☐ Provides evidence Ihno's class performed significantly better than previous classes
- No evidence that Ihno's class performed any differently than previous classes

EXPLAIN.

5 C 3. Hypothesis test: Mean (z-score)

b) In the past 10 years, previous stats classes who took the same **Statquiz** that Ihno's students took averaged 6.1 with a standard deviation of 2.5. What is the two-tailed p value for Ihno's students with respect to that past population?

write code to find mean & n in your R syntax file

POPULATION PARAMETERS

SAMPLE STATISTICS

$$\overline{X}$$
 = _____

$$\sigma_{\bar{X}}$$
 = _____

H₀:_____

Ha:____

Standard Error for the Mean

n =

$$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$$

Formula 5.1

$$z = \frac{\bar{X} - \mu}{\sigma_{\bar{X}}}$$

z = _____

2-tail: p = _____

Would you say that Ihno's class performed significantly better than previous classes?

- lacktriangledown Provides evidence Ihno's class performed significantly better than previous classes
- No evidence that Ihno's class performed any differently than previous classes

EXPLAIN.

Test both the <u>mathquiz</u> and <u>statquiz</u> variables for their resemblance to **normal distributions**.

Based on skewness, kurtosis, and the Shapiro-Wilk statistic, which variable has a sample distribution that is **not** very consistent with the assumption of normality in the population?

Skewness

Kurtosis

Shapiro-Wilk

stat = _____ p = _____

<-- Type R code into Skeleton and Knit to get pdf including output

□ NORMAL (or normal'ish) **□** NOT NORMAL

Sketch a plot you made in R by hand (histogram &/or qq plot)

STATQUIZ

MATHQUIZ

Skewness

Kurtosis

Shapiro-Wilk

stat = _____

<-- Type **R code** into Skeleton and Knit to get **pdf** including output

□ NORMAL (or normal'ish) □ NOT NORMAL

Sketch a plot you made in R by hand (histogram &/or qq plot)

6 A *1. Standard Error for the Mean

 $s_{\bar{X}} = \frac{s}{\sqrt{n}}$

Formula 6.1

The unbiased variance (s²) **200** participants is **55**.

a) What is the value of the estimated standard error of the mean $(s_{\bar{X}})$?

S \(\bar{V} = _____

b) If the variance were the same but the sample were increased to **1800** participants, what would be the new value of $s_{\bar{X}}$?

S \(\bar{X} = _____

6 A 2. Sample Mean: z-score and p-value

A survey of **144 college students** reveals a mean beer consumption **rate of 8.4** beers per week, with a **standard deviation of 5.6**.

a) If the **national average is seven** beers per week, what is **the z score** for the college students? What **p value** does this correspond to?

POPULATION PARAMETERS

 H_0 : μ =

n = ____

SAMPLE STATISTICS

$$\bar{X}$$
 = _____

 $SD: S_X = \longrightarrow SE: S_{\bar{X}} = \longrightarrow$

Formula 6.1

$$s_{\bar{X}} = \frac{s}{\sqrt{n}}$$

Formula 6.2A

$$z = \frac{\bar{X} - \mu}{s_{\bar{X}}}$$

z = _____

2-tail: p = _____

b) If the **national average were four** beers per week, what would the **z score** be? What can you say about the **p value** in this case?

2-tail: p = _____

- 6 A 4. One Sample Mean: df and Critical Values of t
 - a.) In a one-group t test based on a sample of 20 participants, what is the value for df?

df = _____

b.) What are the **two-tailed critical t** values for alpha = .05? For alpha = .01?

 α =.05: t_{cv} = _____ α =.01: t_{cv} = _____

c.) What is the **one-tailed critical t** for alpha = .05? For alpha = .01?

 α =.05: t_{cv} = _____ α =.01: t_{cv} = _____

6 A *5. One Sample Mean: t-score and Critical Values of t (change n)

Twenty-two stroke patients performed a maze task. The mean number of trials (\bar{X}) for success was 14.7 with s = 6.2. If the population mean (μ) for this task is 6.5...

n = __

a.) What is the calculated value for t? What is the critical t for a .05, two-tailed test?

POPULATION PARAMETERS

SAMPLE STATISTICS

X = _____

 $SD: S_X = \longrightarrow SE: S_{\bar{X}} = \longrightarrow$

Formula 6.1

$$s_{\bar{X}} = \frac{s}{\sqrt{n}}$$

Formula 6.3

$$t = \frac{\bar{X} - \mu}{s_{\bar{X}}}$$
$$df = n - 1$$

b.) If only **11 patients** had been run but the data were the same as in part a, what would be the calculated value for t?

How does this value compare with the t value calculated in part a?

6 A 6. One Sample Mean: t-score and Critical Values of t (change n)

a.) Referring to part a of Exercise 5, what would the calculated t value be if s = 3.1 (all else remaining the same)?

b.) Comparing the t values you calculated for Exercises 5a and 6a, what can you say about the relation between t and the sample standard deviation?

6 B *1. One Sample Mean: t-test

A high school is proud of its advanced chemistry class, in which its **16 students** scored an **average of 89.3** on the statewide exam, with s = 9.

a.) Test the null hypothesis that the advanced class is just a random selection from the state population ($\mu = 84.7$), using alpha = .05 (two-tailed).

n =

POPULATION PARAMETERS

SAMPLE STATISTICS

$$\bar{X}$$
 = _____

$$SD: s_X = \longrightarrow SE: s_{\bar{X}} = \longrightarrow$$

Formula 6.1

$$s_{\bar{X}} = \frac{s}{\sqrt{n}}$$

Formula 6.3

$$t = \frac{X - \mu}{s_{\bar{X}}}$$
$$df = n - 1$$

- **Provides evidence** the advanced chemistry class at this school is not a random selection from the state.
- **No evidence** that the advanced chemistry class at this school is not a random selection from the state.
 - b.) Test the same hypothesis at the .01 level (two-tailed).
- □ **Provides evidence** the advanced chemistry class at this school is not a random selection from the state.
- □ No evidence that the advanced chemistry class at this school is not a random selection from the state

Considering your decision with respect to the null hypothesis, what type of error (Type I or Type II) **could you be making**?

- **□** Type I
- Type II

6 B 2. One Sample: t-test for Mean

Are serial killers more introverted than the general population?

A sample of **14 serial killers** serving life sentences was tested and found to have a **mean** introversion score (\bar{X}) of **42** with $\mathbf{s} = \mathbf{6.8}$. If the **population mean (\mu) is 36**, are the serial killers significantly more introverted at the .05 level? (Perform the appropriate <u>one-tailed test</u>, although normally it would not be justified.)

n =

POPULATION PARAMETERS

SAMPLE STATISTICS

$$\overline{X}$$
 = _____

 $SD: s_X = \longrightarrow SE: s_{\bar{X}} = \longrightarrow$

Formula 6.1

$$s_{\bar{X}} = \frac{s}{\sqrt{n}}$$

Formula 6.3

$$t = \frac{\bar{X} - \mu}{s_{\bar{X}}}$$
$$df = n - 1$$

EXPLAIN CONCLUSION: Are serial killers more introverted than the general population?

■ Yes

■ NO

6 B *4. One Sample: Confidence Interval for the Mean

A psychologist studying the dynamics of marriage wanted to know how many hours per week the average American couple spends discussing marital problems. The sample **mean** (\bar{X}) of **155 randomly selected** couples turned out to be **2.6 hours**, with **s = 1.8.**

n =

a.) Find the 95% confidence interval for the mean (μ) of the population.

POPULATION PARAMETERS

 $\mu \leftarrow 95\%$ CI for

SAMPLE STATISTICS

 \bar{X} = _____

 $SD: s_X = \longrightarrow SE: s_{\bar{X}} = \longrightarrow$

Formula 6.1

$$s_{\bar{X}} = \frac{s}{\sqrt{n}}$$

Formula 6.3

$$t = \frac{\bar{X} - \mu}{s_{\bar{X}}}$$
$$df = n - 1$$

t_{cv} = _____

95% CI: (,)

- **b.)** A European study had already estimated the population mean to be **3 hours per week** for European couples. Are the American couples **significantly different** from the European couples at the **.05** level?
 - Yes
 - NO

Show how your answer to part a makes it easy to answer part b.

6 B 5. Sample Size ← wideth of CI

If the psychologist in exercise 4 wanted the **width of the confidence interval to be only half an hour**, how many couples would have to be sampled?

Formula 6.5

$$n = \left(\frac{4s}{W}\right)^2$$

n = _____

6 B 8. One Sample: Confidence Interval for the Mean

A psychologist would like to know how many casual friends are in the average person's social network. She interviews a random sample of people and determines for each the **number of friends** or social acquaintances they see or talk to at least once a year. The data are as follows:

5, 11, 15, 9, 7, 13, 23, 8, 12, 7, 10, 11, 21, 20, 13

a.) Find the 90% confidence interval for the mean number of friends for the entire population.

POPULATION PARAMETERS SAMPLE STATISTICS $\mu \leftarrow \text{CI for} \qquad \qquad \bar{X} = \underline{\hspace{1cm}}$ SD: $s_X = \underline{\hspace{1cm}} \rightarrow \text{SE}: s_{\bar{X}} = \underline{\hspace{1cm}}$

 $s_{\bar{X}} = \frac{s}{\sqrt{n}}$

Formula 6.3 $t = \frac{\bar{X} - \mu}{s_{\bar{X}}}$ df = n - 1

X	±	t_{CV}	· $\mathcal{S}_{ar{X}}$	
				Т

Formula 6.6

t_{CV} = _______ 90% CI: (______ , ______)

b.) Find the **95%** CI.

c.) If a previous researcher had predicted a **population mean of 10** casual friends per person, could that prediction be **rejected as an hypothesis at the .05 level, twotailed**?

☐ Yes ☐ NO

EXPLAIN.

6 C	1. One	e Sample:	Confidence	Interval	for	the	Mean		
-----	--------	-----------	------------	----------	-----	-----	------	--	--

Perform **one-sample t tests** to determine whether the baseline, pre-, or postquiz **anxiety scores** of Ihno's students differ significantly ($\alpha = .05$, two-tailed) from the mean ($\mu = 18$) found by a very large study of college students across the country. Find the **95% CI for the population mean** for each of the three anxiety measures.

Type R code into Skeleton and Knit to get pdf including output

	Sample Mean	95% CI (71.63, 72.91)	Test value = 18 t(99) = 24.744, p=.013	Ihno's different?		
Baseline				☐ Different☐ Same		
Pre-quiz				☐ Different☐ Same		
Post-Quiz				☐ Different☐ Same		
6 C 2. One Sample: Confidence Interval for the Mean						

Perform a one-sample t test to determine whether the average **baseline heart rate** of Ihno's

<u>male</u> students differs significantly from the mean HR ($\mu = 70$) for college-aged men at the .01 level, two-tailed. Find the 99% CI for the population mean represented by Ihno's male students.

	Sample Mean	99% CI (71.63, 72.91)	Test value = 70 t(99) = 24.744, p=.013	Ihno's different?
MALE Baseline				☐ Different☐ Same
6 C 3.	One Samp	le: Confidence In	terval for the Mean	

Perform a one-sample t test to determine whether the average **postquiz heart rate** of Ihno's

female students differs significantly ($\alpha = .05$, two-tailed) from the mean resting HR ($\mu = 72$) for collegeaged women. Find the 95% CI for the population mean represented by Ihno's female students.

	Sample Mean	95% CI (71.63, 72.91)	Test value = 72 t(99) = 24.744, p=.013	Ihno's different?
FEMALE Post-Quiz				☐ Different☐ Same

In a study of a new treatment for phobia, the data for the experimental group were $\overline{X_1}=27$. 2 , $S_1=4$, and $n_1=15$. The data for the control group were $\overline{X_2}=34$. 4 , $S_2=14$, and $n_2=15$.

a.) Calculate the separate-variances t value.

experimental

$$n_1 =$$

$$\overline{X_1} = \underline{\hspace{1cm}}$$

$$s_1 =$$

control

$$n_2 =$$

$$\overline{X_2} = \underline{\hspace{1cm}}$$

$$s_2 = _{___}$$

SAMPLE DIFFERENCE

$$df =$$

$$\overline{X_1} - \overline{X_2} = \underline{\hspace{1cm}}$$

H₀:_____

H_a:_____

Separate variances

$$SE = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

Formula 7.8

$$t = \frac{\overline{D} - 0}{SE}$$

 $\min(n_1, n_2) - 1 < df < n_1 + n_2 - 2$

b.) Calculate the **pooled-variance** t value.

SAMPLE DIFFERENCE

$$df = \underline{\hspace{1cm}}$$

$$\overline{X_1} - \overline{X_2} = \underline{\qquad}$$

$$s^2 - \underline{\qquad}$$

Pooled variance - Formula 7.6

$$s_p = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

$$SE = \sqrt{s_p \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$$

Formula 7.8

$$t = \frac{\overline{D} - 0}{SE}$$
$$df = n_1 + n_2 - 2$$

t(____) = _____

7 A 8. Experiment: true or quasi	
a.) Design a true experiment involving two groups (i.e., the experimenter decides, at random, in which	1
group each participant will be placed).	
b.) Design a quasi-experiment (i.e., an observational study) involving groups not created, but only	
selected, by the experimenter.	
How are your conclusions from this experiment limited, even if the results are statistically	
significant?	

On the first day of class, a third-grade teacher is told that 12 of his students are "gifted," as determined by IQ tests, and the remaining 12 are not. In reality, the two groups have been carefully matched on IQ and previous school performance.

At the end of the school year, the gifted students have a grade average of 87.2 with s = 5.3, whereas the other students have an average of 82.9, with s = 4.4.

Perform a t test to decide whether you can conclude from these data that false expectations can affect student performance; use alpha = .05, two-tailed. ← use separate variances (not pooled)

$$n_1 =$$

$$\overline{X_1} = \underline{\hspace{1cm}}$$

$$s_1 = _{__}$$

"not gifted"

$$n_2 =$$

$$\overline{X_2} = \underline{\hspace{1cm}}$$

$$s_2 = _{___}$$

SAMPLE DIFFERENCE

$$af = \underline{\hspace{1cm}}$$

$$\overline{X_1} - \overline{X_2} = \underline{\hspace{1cm}}$$

H0:

Ha:__

Separate variances

$$SE = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

Formula 7.8

$$t = \frac{\overline{D} - 0}{SE}$$

$$\min(n_1, n_2) - 1 < df < n_1 + n_2 - 2$$

CONCLUSION:

*4. Two Independent Sample Mean Difference: Confidence Interval 7

A researcher tested the diastolic blood pressure of 60 marathon runners and 60 nonrunners. The mean for the runners was **75.9** mmHg with s = 10, and the mean for the nonrunners was **80.3** mmHg with s = 8.

"runners"

"non-runner"

$$\overline{X_2} = \underline{\hspace{1cm}}$$

SAMPLE DIFFERENCE

$$df = \underline{\hspace{1cm}}$$

$$df = \underline{\underline{}}$$

$$\overline{X_1} - \overline{X_2} = \underline{\underline{}}$$

a.) Find the 95% confidence interval for the difference of the population means.

← use separate variances (not pooled)

Separate variances

$$SE = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

 $\min(n_1, n_2) - 1 < df$

$$\frac{\textbf{Formula 7.10}}{\overline{X_1} - \overline{X_2} \pm t_{CV} \cdot \textit{SE}}$$

95% CI: (______, , _____

b.) Find the 99% confidence interval for the difference of the population means.

99% CI: (_____, , ____,

c.) Use the confidence intervals you found in parts a and b to test the null hypothesis that running has no effect on blood pressure at the .05 and .01 levels, two tailed.

Alpha = .05■ Runners are different ■ no difference

Alpha = .01■ Runners are different ■ no difference

A psychologist is studying the concentration of a certain enzyme in saliva as a possible indicator of chronic anxiety level.

A sample of 12 anxiety neurotics yields a mean enzyme concentration of 3.2 with s = .7. For comparison purposes, a sample of 20 subjects reporting low levels of anxiety is measured and yields a mean enzyme concentration of 2.3, with s = .4.

a.) Perform a t test (alpha = .05, two-tailed) to determine whether the two populations sampled differ with respect to their mean saliva concentration of this enzyme.

use pooled variances (not separate)

"neurotics"

$$n_1 =$$

$$\overline{X_1} = \underline{\hspace{1cm}}$$

$$s_1 =$$

"low anx"

$$n_2 =$$

$$\overline{X_2} = \underline{\hspace{1cm}}$$

$$s_2 = _{___}$$

SAMPLE DIFFERENCE

$$df =$$

$$\overline{X_1} - \overline{X_2} =$$

H₀:_____

Ha:_____

Pooled variance - Formula 7.6

$$s_p = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

$$SE = \sqrt{s_p \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$$

Formula 7.8

$$t = \frac{\overline{D} - 0}{SE}$$
$$df = n_1 + n_2 - 2$$

t(____) = _____

t_{cv} = _____

CONCLUSION:

- b.) Based on your answer to part a, what **type of error** (Type I or Type II) might you be making?
- **□** Type I
- Type II

7 C 1. Two Independent Sample Mean D	ifference: Hypothesis Test	
Perform a two-sample t test to determine whether there is a	statistically significant difference in	
baseline heart rate between the men and the women	of Ihno's class.	
Type R code into Skeleton and Knit to get pdf including output		
Do you have homogeneity of variance? Explain.	_	
	□ yes	
	□ no	
Report your results as they might appear in a journal article.		
Include the 95% CI for this gender difference.		
7 C 5. Two Independent Sample Mean D	ifference: Hypothesis Test	
Perform a two-sample t test to determine whether coffee dri	integra subjitited significantly bigbor	
	inkers exhibited significantly higher	
	- · · · · ·	
postquiz heart rates than nondrinkers at the .05 le	evel.	
postquiz heart rates than nondrinkers at the .05 le	evel.	
postquiz heart rates than nondrinkers at the .05 le	evel. get pdf including output	
than nondrinkers at the .05 less than postquiz heart rates than nondrinkers at the .05 less than postquiz heart rates than nondrinkers at the .05 less than postquiz heart rates than nondrinkers at the .05 less than postquiz heart rates than nondrinkers at the .05 less than postquiz heart rates than nondrinkers at the .05 less than postquiz heart rates than nondrinkers at the .05 less than postquiz heart rates than nondrinkers at the .05 less than postquiz heart rates than nondrinkers at the .05 less than nondrinkers at the	get pdf including output Coffee drinkers are different	
Type R code into Skeleton and Knit to	get pdf including output Coffee drinkers are different no difference	
than nondrinkers at the .05 less than postquiz heart rates than nondrinkers at the .05 less than postquiz heart rates than nondrinkers at the .05 less than postquiz heart rates than nondrinkers at the .05 less than postquiz heart rates than nondrinkers at the .05 less than postquiz heart rates than nondrinkers at the .05 less than postquiz heart rates than nondrinkers at the .05 less than postquiz heart rates than nondrinkers at the .05 less than postquiz heart rates than nondrinkers at the .05 less than nondrinkers at the	get pdf including output Coffee drinkers are different	
than nondrinkers at the .05 less than postquiz heart rates than nondrinkers at the .05 less than postquiz heart rates than nondrinkers at the .05 less than postquiz heart rates than nondrinkers at the .05 less than postquiz heart rates than nondrinkers at the .05 less than postquiz heart rates than nondrinkers at the .05 less than postquiz heart rates than nondrinkers at the .05 less than postquiz heart rates than nondrinkers at the .05 less than postquiz heart rates than nondrinkers at the .05 less than nondrinkers at the	evel. get pdf including output Coffee drinkers are different no difference Coffee drinkers are different no difference	
than nondrinkers at the .05 less than services at the .05 less tha	evel. get pdf including output Coffee drinkers are different no difference Coffee drinkers are different no difference	
Type R code into Skeleton and Knit to t() = Is this t test significant at the .01 level? Find the 99% CI for the difference of the two population means.	Coffee drinkers are different no difference Coffee drinkers are different no difference no difference	
Type R code into Skeleton and Knit to t() = Is this t test significant at the .01 level? Find the 99% CI for the difference of the two population means.	evel. get pdf including output Coffee drinkers are different no difference Coffee drinkers are different no difference	
Type R code into Skeleton and Knit to t() = Is this t test significant at the .01 level? Find the 99% CI for the difference of the two population means.	Coffee drinkers are different no difference Coffee drinkers are different no difference no differenc	
Type R code into Skeleton and Knit to t() = Is this t test significant at the .01 level? Find the 99% CI for the difference of the two population means.	Coffee drinkers are different no difference Coffee drinkers are different no difference no differenc	
Type R code into Skeleton and Knit to t() = Is this t test significant at the .01 level? Find the 99% CI for the difference of the two population means.	Coffee drinkers are different no difference Coffee drinkers are different no difference no differenc	
Type R code into Skeleton and Knit to t() = Is this t test significant at the .01 level? Find the 99% CI for the difference of the two population means.	Coffee drinkers are different no difference Coffee drinkers are different no difference no differenc	
Type R code into Skeleton and Knit to t() = Is this t test significant at the .01 level? Find the 99% CI for the difference of the two population means.	Coffee drinkers are different no difference Coffee drinkers are different no difference no differenc	
Type R code into Skeleton and Knit to t() = Is this t test significant at the .01 level? Find the 99% CI for the difference of the two population means.	Coffee drinkers are different no difference Coffee drinkers are different no difference no differenc	
Type R code into Skeleton and Knit to t() = Is this t test significant at the .01 level? Find the 99% CI for the difference of the two population means.	Coffee drinkers are different no difference Coffee drinkers are different no difference no differenc	

8 A	١	3. Cohen's d
If the mean verbal SAT score is 510 for women and 490 for men, what is the d ?		
		d =
8 A	١	9. Extremely large t-value
The t val u	ıe c	calculated for a particular two group experiment was – 23.
Which of	the	following can you conclude?
	a.	A calculation error must have been made.
	b.	The number of participants must have been large.
	c.	The effect size must have been large.
	d.	The expected t was probably large.
		The alpha level was probably large.
Explain y	our	choice.
8 A		*10. Cohen's d
Suppose Type I err		are in a situation in which it is more important to reduce Type II errors than to worry about
		e following could be helpful in reducing Type II errors?
	a.	Make alpha unusually large (e.g., .1).
	b.	Use a larger number of participants.
	c.	Try to increase the effect size.
	d.	All of the above.
	e.	None of the above.
Explain your choice.		

6. Power & Sample Size 8 В A drug for treating headaches has a side effect of lowering diastolic blood pressure by 8 mmHg compared to a placebo. If the population standard deviation is known to be 6 mmHg, a.) What would be the **power** of an experiment ($\alpha = .01$, two-tailed) comparing the drug to a placebo using **15 participants per** group? power = b.) How many participants would you need per group to attain power = .95, with α = .01, two-tailed? 8 2. Power & Sample Size -- USE G*Power SOFTWARE --Given the adjusted effect size from part a of the previous exercise, I am changing this problem! How many participants of each gender (assuming equal sample sizes) would be needed for power to be .8, with alpha = .05, two-tailed test? For a small effect size (d = .2) For a medium effect size (d = .5)For a large effect size (d = .8) n =