RACIOCÍNIO LÓGICO PROPOSICIONAL

O que é uma PROPOSIÇÃO?

É uma **declaração** que pode ser classificada como **verdadeira OU falsa** mas não as duas ao mesmo tempo). São representadas por palavras/frases ou símbolos (P, Q...)

Exemplos de proposições SIMPLES:

- "O céu é azul."
- "Beto passou no concurso."
- "3 é um número ímpar."

Exemplos de "sentenças abertas", frases que NÃO são proposições:

- "Estude muito!" (ordem)
- "Quem é você?" (pergunta)
- "Tomara que chova." (desejo)

CONECTIVOS Lógicos

Servem para ligar duas ou mais proposições SIMPLES e formar uma proposição COMPOSTA.

Conectivo	Símbolo Nome lógico		Exemplo	
е	٨	Conjunção	"Beto é alto e forte"	PAQ
ou	V	Disjunção INCLUSIVA	"Beto é alto ou forte"	PVQ
se então	\rightarrow	Condicional	" Se Beto estuda, então passa" (sempre que, toda vez que, quando)	$P \rightarrow Q$
se e somente se	\leftrightarrow	Bicondicional	"Beto estuda se e somente se quer passar"	$P \leftrightarrow Q$
ou ou	V	Disjunção EXCLUSIVA	" Ou Beto é casado ou é solteiro"	P⊻Q
não	¬ ou ~	Negação	"Beto não passou no concurso"	P ¬ Q

<u>Disjunção INCLUSIVA</u> = posso ser uma coisa ou outra (alto OU forte)

(tanto é que basta 1 das condições ser verdadeira, que a proposição composta será verdadeira – VV, VF ou FV)

<u>Disjunção EXCLUSIVA</u> = não posso ser as duas coisas ao mesmo tempo (OU casado OU solteiro) (tanto é a proposição composta só será verdadeira se uma for verdadeira e a outra falsa, ou vice-versa – VF ou FV)

TABELA-Verdade

Mostra o resultado lógico (Verdadeiro – V ou Falso – F) de cada proposição COMPOSTA com base nas proposições SIMPLES (simbolizadas pelas letras P e Q).

Conjunção (E)

Ρ	q	PΛQ
V	٧	V
٧	F	F
F	٧	F
F	F	F

Só é **verdadeira** se as **ambas** forem **VERDADEIRAS** (VV). Só podemos entender "Beto é alto E forte" como verdadeira se as 2 características forem V. Se uma delas for F, já vai arruinar a veracidade da proposição composta.

Disjunção inclusiva (OU)

P	q	PVQ
V	٧	٧
٧	F	٧
F	٧	V
F	F	F

Só é **falsa** se **ambas** forem **FALSAS** (**FF**). Se eu digo que "Beto é alto OU forte", basta que satisfaça 1 desses requisitos, que já será suficiente para a proposição composta ser verdadeira.

Condicional (SE... ENTÃO)

Р	Q	$P \rightarrow Q$
٧	٧	V
٧	F	F
F	٧	V
F	F	V

Só é **falsa** quando a **primeira é verdadeira** e a **segunda é falsa (VF)**. A única forma de invalidar a proposição composta "Se Beto estuda, então passa" é se eu estudasse e não passasse. Pois, com isso, a condição seria desrespeitada. É como uma promessa: "Se eu estudar, vou passar". Se eu estudei e mesmo assim não passei, a promessa foi quebrada. Por isso, VF é o único caso falso neste conectivo.

"Implicação": Se P implica Q, então sempre que P for verdadeira, Q também deve ser.

Pois só é falsa quando P é verdadeira e Q é falsa (VF).

"Se é mamífero, então é animal." → Só seria falsa se existisse um mamífero que não fosse animal.

Bicondicional (SE E SOMENTE SE)

Р	ď	$P \leftrightarrow Q$
>	>	٧
V	F	F
F	٧	F
F	F	V

É verdadeira se ambos têm o valores IGUAIS (VV ou FF).

Disjunção exclusiva (OU... OU)

Р	ď	$P \leftrightarrow Q$
V	٧	F
٧	F	V
F	٧	V
F	F	F

É **verdadeira** se têm o **valores DIFERENTES (VF** ou **FV)**. Ou seja, será verdade apenas se uma das proposições for verdade, mas não ambas.

Conectivo	Símbolo	Verdadeiro quando
E (conjunção)	۸	As duas forem V (VV)
OU (disjunção inclusiva)	V	Pelo menos uma for V
SE ENTÃO (condicional)	→	Todas as combinações, exceto VF
SE E SOMENTE SE (condicional)	\leftrightarrow	Iguais (VV ou FF)
OU OU (disjunção exclusiva)	¥	Diferentes (VF ou FV)

Uma dica simples para aprender isso: abra a sua mente. Se você ficar preso ao "mundo real", às leis da física, e ao que é verdadeiro ou falso segundo as suas convicções ou achismos, essa matéria dificilmente vai entrar na sua cabeça. Então a dica é: entenda e jogue as regras do jogo, aplique nas questões, passe no concurso e seja feliz.

Classificação das proposições COMPOSTAS			
Tautologia	Sempre verdadeira, independentemente dos valores lógicos das proposições simples	"Chove OU NÃO chove." = P V ¬P = Sempre V	
Contradição	Sempre falsa	"Chove e não chove ao mesmo tempo." = P ∧ ¬P = Sempre F	
Contingência	Às vezes verdadeira, às vezes falsa	Depende dos valores das proposições simples	

Não se desespere se na prova aparecer uma proposição composta por mais de 2 proposições simples, por exemplo:

"SE <u>eu não estudo</u> OU <u>não durmo bem</u>, ENTÃO <u>não vou bem na prova</u> E <u>fico nervoso</u>."

E D B N

Representando de forma simbólica (com letras):

- E: Eu estudo
- D: Eu durmo bem
- B: Vou bem na prova
- N: Fico nervoso

Expressão lógica: $(\neg E \lor \neg D) \rightarrow (\neg B \land N)$

Como interpretar: A condicional diz que, <u>SE</u> pelo menos uma coisa der errado na preparação (não estudar <u>OU</u> não dormir bem), <u>ENTÃO</u> duas consequências vão acontecer juntas:

- Você não vai bem na prova
- o <u>E</u> você vai ficar nervoso

NEGAÇÃO de Proposições

Negar é dizer que algo não acontece.

	Original	Negação
Negação SIMPLES	"Beto é feliz."	"Beto NÃO é feliz."
	"Beto é alto E forte."	"Beto NÃO é alto OU NÃO é forte."
Negação COMPOSTA	"Beto é alto OU forte."	"Beto NÃO é alto E NÃO é forte."
	"SE Beto estuda, ENTÃO vai passar"	"Beto estudou E NÃO passou"

Regra de De Morgan:

- $\neg (P \land Q) = \neg P \lor \neg Q$
- $\neg (P \lor Q) = \neg P \land \neg Q$

Ou seja, para negar uma proposição composta por conjunção (E) ou a disjunção (OU), basta TROCAR uma pela outra, e negar as 2 proposições simples.

Mais exemplos para fixar:

Negar um "E":

"João estuda E Maria trabalha." (P ∧ Q) Negação: "João **não** estuda **OU** Maria **não** trabalha." (¬P ∨ ¬Q)

Negar um "OU":

"João estuda **OU** Maria trabalha." (P ∨ Q) Negação: "João **não** estuda **E** Maria **não** trabalha." (¬P ∧ ¬Q)

*Não confunda com a NEGAÇÃO DA CONDICIONAL, em que só a 2º proposição será negada

Negar um "SE... ENTÃO":

"SE fizer sol, ENTÃO eu vou à praia." ($P \rightarrow Q$)

Negação: "Fez sol **E** eu **não** vou à praia." (P ∧ ¬Q)

Lembra daquela pessoa chata, quando você conta algo e ela só quer te contradizer. Exemplo:

Você fala: SE eu como muito, ENTÃO eu engordo. O amigo responde: Eu como muito E NÃO engordo.

Isso tira a gente do sério, mas veja pelo lado bom: vai te ajudar a gravar a negação da condicional.

Afirmações e negações com QUANTIFICADORES

TODO (∀): Generalizações afirmativas (Ex: Todo político é honesto)

NENHUM (¬∃): Generalizações negativas (Ex: Nenhum político é honesto)

ALGUM/EXISTE (∃): "Ao menos um caso" (Ex: Algum político é honesto / Existe político honesto)

Observações:

- Eu posso falar "todo mamífero é animal", mas a recíproca "todo animal é mamífero" não é verdadeira.
- A negação do TODO não é NENHUM (e vice-versa), mas sim ALGUM. Para negar "todos os carros são azuis" é suficiente dizer "existe pelo menos um carro que NÃO é azul."
- Já a negação do ALGUM usamos o NENHUM. Para negar "algum peixe vive fora da água", dizemos "nenhum peixe vive fora da água".

Para negar	Dizemos
Todo X é Y	Algum X NÃO é Y
Nenhum X é Y	Algum X NÃO é Y
Algum X é Y	Nenhum X é Y

EQUIVALÊNCIA Lógica

Duas proposições são equivalentes quando sempre têm o mesmo valor lógico.

Original	Equivalente
$P \rightarrow Q$	¬Q → ¬P (contrapositiva)
$P \rightarrow Q$	¬P V Q

Exemplos práticos:

"Se estiver calor, então ligo o ventilador." ($P \rightarrow Q$)

o Está calor (P).

Ligo o ventilador (Q).

○ Forma simbólica: $P \rightarrow Q$

É equivalente dizer: "Se NÃO ligo o ventilador, então NÃO está calor." (¬Q → ¬P)

Também é equivalente dizer: "NÃO está calor OU ligo o ventilador." (¬P V Q)

REVISÃO		
Proposição	Aquilo que podemos julgar como V ou F	
Disjunção "e" (∧)	Só é V se os dois forem V	
Conjunção inclusiva "ou" (V)	Só é F se os dois forem F	
Condicional "se então" (→)	Só é F quando VF	
Bicondicional "se e somente se" (↔)	V se forem iguais (VV ou FF)	
Conjunção exclusiva "ou… ou" (⊻)	V se forem diferentes (VF ou FV)	
	Disjunção "e" (∧) ou Conjunção inclusiva "ou" (∨): Troca o conectivo e nega as 2 proposições	
Negação	$\neg(P \land Q) = \neg P \lor \neg Q$ $\neg(P \lor Q) = \neg P \land \neg Q$	
	Condicional "se então" (→): Troca por "e" e nega a 2º ¬(P ∨ Q) = P ∧ ¬Q	
Equivalência	$P \rightarrow Q = \neg Q \rightarrow \neg P$ (inverte e nega as 2) $P \rightarrow Q = \neg P \lor Q$ (nega a 1º e usa o "ou")	

QUESTÕES PARA TREINAR (gabarito ao final)

- 1) A negação da afirmação: "não ficou doente e vai ficar em casa" é:
- a) Ficou doente e não vai ficar em casa.
- b) Não ficou doente ou vai ficar em casa.
- c) Ficou doente ou não vai ficar em casa.
- d) Ficou doente ou vai ficar em casa.
- e) Não ficou doente ou não vai ficar em casa.
- 2) Considere seguintes proposições:
- p: Em março há 2 feriados ou 5 domingos.
- q: Em março nunca há carnaval.

A negação da condicional p → q é equivalente à afirmação:

- a) Em março não há 2 feriados e não há 5 domingos e em março sempre há carnaval.
- b) Em março não há 2 feriados ou não há 5 domingos e em março sempre há carnaval.
- c) Em março há 2 feriados ou 5 domingos e em março pode haver carnaval.
- d) Se em março não há 2 feriados e não há 5 domingos, então em março sempre há carnaval.
- e) Se em março não há 2 feriados e não há 5 domingos, então em março pode haver carnaval.
- 3) Se Adão vai ao cinema, Benedito consegue estudar e Carla não faz brigadeiro. Carla fez brigadeiro, então podemos afirmar que
- a) Benedito conseguiu estudar.
- b) Adão não foi ao cinema.
- c) Benedito não conseguiu estudar.
- d) Adão foi ao cinema.
- e) Adão foi ao cinema se Benedito conseguiu estudar.
- 4) Toda vez que viaja ao interior, Luciano não vai à feira. Quando está em férias e não é dia útil, Luciano viaja ao interior. Se hoje Luciano foi à feira, então, necessariamente,
- a) é dia útil.
- b) Luciano está em férias.
- c) Luciano não está em férias.
- d) não é dia útil.
- e) Luciano não viajou ao interior.

- 5) Quando estou feliz e faz sol, passeio com o cachorro. Sempre que passeio com o cachorro e não passo na padaria, como um pastel na feira. Ontem, não comi um pastel na feira e não passei na padaria. Logo, ontem, necessariamente,
- a) eu não estava feliz.
- b) fez sol.
- c) não passeei com o cachorro.
- d) eu estava feliz.
- e) passeei com o cachorro.
- 6) Considere a afirmação: Se sou descendente de italiano, então gosto de macarrão e gosto de parmesão. Uma afirmação que corresponde à negação lógica desta afirmação é
- a) Sou descendente de italiano e, não gosto de macarrão ou não gosto de parmesão.
- b) Se não sou descendente de italiano, então não gosto de macarrão e não gosto de parmesão.
- c) Se gosto de macarrão e gosto de parmesão, então não sou descendente de italiano.
- d) Não sou descendente de italiano e, gosto de macarrão e não gosto de parmesão.
- e) Se não gosto de macarrão e não gosto de parmesão, então não sou descendente de italiano.
- 7) Considere a afirmação: Ontem trovejou e não choveu. Uma afirmação que corresponde à negação lógica desta afirmação é
- a) se ontem não trovejou, então não choveu.
- b) ontem trovejou e choveu.
- c) ontem não trovejou ou não choveu.
- d) ontem não trovejou ou choveu.
- e) se ontem choveu, então trovejou.
- 8) Do ponto de vista da lógica, a proposição "se tem OAB, então é advogado" é equivalente à
- a) tem OAB ou é advogado.
- b) se não tem OAB, então não é advogado.
- c) se não é advogado, então não tem OAB.
- d) é advogado e não tem OAB.
- e) se é advogado, então tem OAB.

- 9) Maria disse: Gerusa estava doente e não foi trabalhar. Sabe-se que Maria mentiu. Sendo assim, é correto afirmar que
- a) Gerusa não estava doente, mas não foi trabalhar.
- b) Gerusa não estava doente e não foi trabalhar.
- c) Gerusa não estava doente ou foi trabalhar.
- d) se Gerusa foi trabalhar, então não estava doente.
- e) Gerusa estava doente ou foi trabalhar.
- 10) Não gosto de ficar em casa e vou ao cinema todos os dias. Do ponto de vista lógico, uma afirmação que corresponde a uma negação dessa afirmação é:
- a) Não gosto de sair de casa e não vou ao cinema todos os dias.
- b) Vou ao cinema todos os dias e gosto de ficar em casa.
- c) Não vou ao cinema todos os dias ou não gosto de ficar em casa.
- d) Se não gosto de ficar em casa, então vou ao cinema todos os dias.
- e) Gosto de ficar em casa ou não vou ao cinema todos os dias.
- 11) Um economista afirmou, no telejornal, que "se os impostos não sobem, então a receita fiscal não cresce". Do ponto de vista da lógica, uma frase equivalente a essa é
- a) se a receita fiscal cresce, então os impostos sobem.
- b) se os impostos sobem, então a receita fiscal cresce.
- c) se a receita fiscal não cresce, então os impostos não sobem.
- d) ou o imposto não sobe, ou a receita cresce.
- e) o imposto sobe sempre que a receita fiscal aumenta
- 12) Considere a seguinte declaração, feita por um analista político fictício: "se o partido P conseguir eleger Senador no Estado F ou no Estado G, então terá a maioria no Senado". A partir da declaração do analista, é correto concluir que, necessariamente, se o partido P
- a) não tiver a maioria no Senado, então não terá conseguido eleger o senador no Estado G.
- b) tiver a maioria no Senado, então terá conseguido eleger o senador no Estado G.
- c) tiver a maioria no Senado, então terá conseguido eleger o senador no Estado F.
- d) não conseguiu eleger o senador no Estado F, então não terá a maioria no Senado.
- e) não conseguiu eleger o senador no Estado G, então não terá a maioria no Senado.

- 13) No Brasil, o voto é obrigatório apenas para os brasileiros alfabetizados que têm de 18 a 70 anos. De acordo com essa informação, se Luíza é uma brasileira que não é obrigada a votar, então, necessariamente, Luíza
- a) é analfabeta e tem menos de 18 anos ou mais de 70.
- b) é analfabeta ou tem menos de 18 anos ou mais de 70.
- c) não é analfabeta, mas tem menos de 18 anos.
- d) é analfabeta, mas pode ter de 18 a 70 anos.
- e) tem mais de 70 anos, mas pode não ser analfabeta.
- 14) Vou à academia todos os dias da semana e corro três dias na semana. Uma afirmação que corresponde à negação lógica da afirmação anterior é
- a) Não vou à academia todos os dias da semana ou não corro três dias na semana.
- b) Vou à academia quase todos os dias da semana e corro dois dias na semana.
- c) Nunca vou à academia durante a semana e nunca corro durante a semana.
- d) Não vou à academia todos os dias da semana e não corro três dias na semana.
- e) Se vou todos os dias à academia, então corro três dias na semana.
- 15) Leia a instrução fictícia reproduzida a seguir e suponha que ela seja sempre cumprida.
- "Sempre que um Oficial de Justiça executar uma intimação, ele deverá estar acompanhado por um Policial Federal."

Nessas condições, é correto concluir que, necessariamente,

- a) os Oficiais de Justiça deverão estar acompanhados por um Policial Federal durante todo seu horário de trabalho.
- b) um Oficial de Justiça só deverá solicitar o acompanhamento de um Policial Federal quando for executar uma intimação.
- c) sempre que um Oficial de Justiça estiver acompanhado por um policial, ele deverá estar executando uma intimação.
- d) se um Oficial de Justiça não estiver executando uma intimação, então ele não poderá estar acompanhado por um Policial Federal.
- e) se um Oficial de Justiça não estiver acompanhado por um Policial Federal, então ele não estará executando uma intimação.

- 16) Ao se admitir por verdadeira a declaração "Se Paulo é alto, então Gabriela não é alta", concluise, de maneira correta e necessária, que se
- a) Gabriela é alta, então Paulo não é alto.
- b) Gabriela é alta, então Paulo é alto.
- c) Gabriela não é alta, então Paulo não é alto.
- d) Gabriela não é alta, então Paulo é Gabriela.
- e) Paulo não é alto, então Gabriela é maior que Paulo.
- 17) A negação de "Ruy Barbosa é abolicionista e Senador Dantas é baiano" é:
- a) Ruy Barbosa não é abolicionista e Senador Dantas não é baiano.
- b) Ruy Barbosa é baiano e Senador Dantas é abolicionista.
- c) Ruy Barbosa não é abolicionista ou Senador Dantas não é baiano.
- d) Ruy Barbosa é baiano ou Senador Dantas não é abolicionista.
- e) Ruy Barbosa é Senador Dantas e Senador Dantas é Ruy Barbosa.
- 18) Se Lucia é pintora, então ela é feliz. Portanto:
- a) Se Lucia não é feliz, então ela não é pintora.
- b) Se Lucia é feliz, então ela é pintora.
- c) Se Lucia é feliz, então ela não é pintora.
- d) Se Lucia não é pintora, então ela é feliz.
- e) Se Lucia é pintora, então ela não é feliz.
- 19) Um economista deu a seguinte declaração em uma entrevista: "Se os juros bancários são altos, então a inflação é baixa". Uma proposição logicamente equivalente à do economista é:
- a) se a inflação não é baixa, então os juros bancários não são altos.
- b) se a inflação é alta, então os juros bancários são altos.
- c) se os juros bancários não são altos, então a inflação não é baixa.
- d) os juros bancários são baixos e a inflação é baixa.
- e) ou os juros bancários, ou a inflação é baixa.

GABARITO: 1 (C) 2 (C) 3 (B) 4 (E) 5 (C) 6 (A) 7 (D) 8 (C) 9 (C) 10 (E) 11 (A) 12 (A) 13 (B) 14 (A) 15 (E) 16 (A) 17 (C) 18 (A) 19 (A)

QUESTÕES COMENTADAS (vamos pensar juntos)

Enunciado da questão 1: A negação da afirmação: "não ficou doente e vai ficar em casa" é:

- a) Ficou doente e não vai ficar em casa.
- b) Não ficou doente ou vai ficar em casa.
- c) Ficou doente ou não vai ficar em casa.
- d) Ficou doente ou vai ficar em casa.
- e) Não ficou doente ou não vai ficar em casa.

Resolução passo a passo:

- Proposição original: ¬D Λ C (NÃO ficou doente E vai ficar em casa)
- Para negar uma conjunção "E", usamos a lei de De Morgan (basta trocar o conectivo para a disjunção "OU" e negar as 2):
 - o ¬(¬D ∧ C) = D ∨ ¬C
 - o Ou seja: Ficou doente OU NÃO vai ficar em casa

Gabarito: c) Ficou doente ou não vai ficar em casa.

Lei de De Morgan na veia! Não tem segredo: é só trocar "E" por "OU" e negar ambas as proposições.

Enunciado da questão 2: Considere seguintes proposições:

- p: Em março há 2 feriados ou 5 domingos.
- q: Em março nunca há carnaval.

A negação da condicional p → q é equivalente à afirmação:

- a) Em março não há 2 feriados e não há 5 domingos e em março sempre há carnaval.
- b) Em março não há 2 feriados ou não há 5 domingos e em março sempre há carnaval.
- c) Em março há 2 feriados ou 5 domingos e em março pode haver carnaval.
- d) Se em março não há 2 feriados e não há 5 domingos, então em março sempre há carnaval.
- e) Se em março não há 2 feriados e não há 5 domingos, então em março pode haver carnaval.

Resolução passo a passo:

- Para negar a condicional $P \rightarrow Q$, basta trocar o conectivo por "e" e negar a 2° : $P \land \neg Q$
 - o P: Em março há 2 feriados ou 5 domingos (MANTÉM)
 - Conectivo (TROCA: de "SE... ENTÃO" para "E")
 - o Q: Em março nunca há carnaval. (NEGA: em março pode haver carnaval)
- Logo, a negação de "P → Q" é:
 (Em março há 2 feriados ou 5 domingos) E (em março pode haver carnaval)

Gabarito: c) Em março há 2 feriados ou 5 domingos e em março pode haver carnaval.

Negar um condicional é uma das habilidades mais cobradas no raciocínio lógico proposicional. Grave bem: a negação de "SE p, ENTÃO q" é "p E NÃO q". É isso que você deve buscar entre as alternativas.

Enunciado da questão 3: Se Adão vai ao cinema, Benedito consegue estudar e Carla não faz brigadeiro. Carla fez brigadeiro, então podemos afirmar que

- a) Benedito conseguiu estudar.
- b) Adão não foi ao cinema.
- c) Benedito não conseguiu estudar.
- d) Adão foi ao cinema.
- e) Adão foi ao cinema se Benedito conseguiu estudar.

Resolução passo a passo:

- Primeiro de tudo: respira. Vamos com calma. Aqui temos uma proposição composta por 3 proposições simples, em que teremos que resolver como uma equação matemática, parte por parte.
- Tradução das proposições:
 - o A: Adão vai ao cinema.
 - B: Benedito consegue estudar.
 - C: Carla faz brigadeiro.
 - o A proposição inicial é: Se A, então B e não C = A → (B Λ ¬C)
- Foi dito que "Carla fez brigadeiro" → C é verdadeira.
 Portanto, ¬C é falsa.
- Dentro do parênteses, temos uma conjunção (B ∧ ¬C), que já sabemos ser falsa, uma vez que
 ¬C é falsa, e basta 1 F para tornar falsa a proposição composta por conjunção.
- Voltando a olhar para a condicional A → (B ∧ ¬C), vemos que a única forma de tudo isso ser verdadeiro é se A também for falso. Pois se for verdadeiro, resultará em VF, que torna falsa a proposição composta por condicional.
- Ou seja, como (B ∧ ¬C) é falso (porque ¬C é falso), para que o condicional A → (B ∧ ¬C) seja verdadeiro, A precisa ser falsa.
- Então a hipótese (A) não pode ser verdadeira. Adão não pode ter ido ao cinema.

Gabarito: b) Adão não foi ao cinema.

Sempre que você tiver uma condicional (se... então), lembre-se: se a consequência (2º parte) for falsa, a única forma do condicional ser verdadeiro é a hipótese (1º parte) também ser falsa. Essa é uma aplicação direta da tabela verdade da condicional.

Enunciado da questão 4: Toda vez que viaja ao interior, Luciano não vai à feira. Quando está em férias e não é dia útil, Luciano viaja ao interior. Se hoje Luciano foi à feira, então, necessariamente,

- a) é dia útil.
- b) Luciano está em férias.
- c) Luciano não está em férias.

- d) não é dia útil.
- e) Luciano não viajou ao interior.

Resolução passo a passo:

- Tradução das proposições:
 - o A: Viagem para o interior.
 - o B: Feira.
 - o C: Férias.
 - o D: Dia útil.
- Montando as proposições fornecidas:
 - o A → ¬B (SE viaja, ENTÃO NÃO vai à feira)
 - (C Λ ¬D) → A (SE está de férias e NÃO é dia útil, ENTÃO viaja)
- No final do enunciado, sabemos que ele realmente foi à feira (então **B** é verdadeiro)
- Podemos usar a proposição A → ¬B e encontrar sua equivalência (contrapositiva): B → ¬A, invertendo e negando as duas
- Logo, SE ele foi à feira (**B** verdadeiro), ENTÃO NÃO viajou ao interior (¬**A** é verdadeiro).
- Se a 1º parte é V, para manter a condicional verdadeira, a 2º parte precisa ser V também (uma vez que VF na condicional torna tudo falso)

Gabarito: e) Luciano não viajou ao interior.

Usamos a contrapositiva da condicional. Sempre que a banca fornecer um condicional, é útil reescrevê-la com sua contrapositiva, pois isso facilita deduções lógicas a partir de novos fatos.

Enunciado da questão 5: Quando estou feliz e faz sol, passeio com o cachorro. Sempre que passeio com o cachorro e não passo na padaria, como um pastel na feira. Ontem, não comi um pastel na feira e não passei na padaria. Logo, ontem, necessariamente,

- a) eu não estava feliz.
- b) fez sol.
- c) não passeei com o cachorro.

- d) eu estava feliz.
- e) passeei com o cachorro.

Resolução passo a passo:

- Tradução das proposições:
 - E: Estou feliz.
 - S: Faz sol.
 - C: Passeio com o cachorro.
 - o P: Passo na padaria.
 - T: Como pastel na feira.
- Proposições dadas:
 - (E \wedge S) \rightarrow C (SE feliz E sol, ENTÃO cachorro)
 - (C Λ ¬P) → T (SE cachorro e NÃO padaria, ENTÃO pastel)
- Ontem:
 - ¬T (NÃO comi pastel)
 - o ¬P (NÃO passei na padaria)
- Vamos usar a proposição (C ∧ ¬P) → T, cuja equivalência contrapositiva é: ¬T → ¬(C ∧ ¬P)
 (inverti e neguei as 2)
- Para negar "E" em ¬(C ∧ ¬P), basta trocar por "OU" e negar as 2: (¬C ∨ P)
- Sabemos que ¬T é verdadeira (NÃO comi pastel). Então a implicação (¬C V P) precisa ser verdadeira também (pois VF na condicional daria F). Isso só será possível se (¬C V P) for verdadeira
- Como **P** é falsa (não fui à padaria), então ¬**C** só pode ser verdadeira, pois na disjunção (OU) uma das duas precisa ser V. Dessa forma, **C** é falsa (ou seja, não passeei com o cachorro)

Gabarito: c) não passeei com o cachorro.

A dica é identificar os blocos de informação e usar a contrapositiva da proposição. Se algo deveria acontecer quando duas condições se juntam, e sabemos que o resultado não ocorreu, então uma das condições não se confirmou — e com ¬P já dada, C só pode ser falsa.

ESPAÇO PARA ANOTAÇÕES

O que mais você viu nas questões que merece ser **revisado**? Anote aqui: