FCC REPORT (BLE)

Applicant: Shenzhen Shuaixian Electronic Equipment Co.,Ltd.

Address of Applicant: NO.10 Lane 3,Longxing Road, Dakang Long Village,

Henggang Town, Shenzhen, China

Equipment Under Test (EUT)

Product Name: Bluetooth earphones

Model No.: SX-971

Trade mark: Suicen

FCC ID: UHB-SX971

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 03 Jul., 2013

Date of Test: 04 Jul., to 15 Jul., 2013

Date of report issued: 16 Jul., 2013

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	16 Jul., 2013	Original

Prepared by:	Sera	Date:	16 Jul., 2013
	Report Clerk		
Reviewed by:	Wimer thang Project Engineer	Date:	16 Jul., 2013

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4	TES	T SUMMARY	4
5	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND MODE	7
	5.4	DESCRIPTION OF SUPPORT UNITS	7
	5.5	LABORATORY FACILITY	8
	5.6	LABORATORY LOCATION	
	5.7	TEST INSTRUMENTS LIST	9
6	TES	T RESULTS AND MEASUREMENT DATA	
	6.1	ANTENNA REQUIREMENT:	10
	6.2	CONDUCTED EMISSION	11
	6.3	CONDUCTED OUTPUT POWER	
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND EDGE	
	6.6.		
	6.6.2		
	6.7 6.7.	SPURIOUS EMISSION 1 Conducted Emission Method	
	6.7.2		
	0		
7	TES	T SETUP PHOTO	
8	EUT	CONSTRUCTIONAL DETAILS	39

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5 General Information

5.1 Client Information

Applicant:	Shenzhen Shuaixian Electronic Equipment Co.,Ltd.	
Address of Applicant:	NO.10 Lane 3,Longxing Road, Dakang Long Village,	
	Henggang Town, Shenzhen, China	
Manufacturer/Factory:	Shenzhen Shuaixian Electronic Equipment Co.,Ltd.	
Address	NO.10 Lane 3,Longxing Road, Dakang Long Village,	
Manufacturer/Factory:	Henggang Town, Shenzhen, China	

5.2 General Description of E.U.T.

Product Name:	Bluetooth earphones
Model No.:	SX-971
Trade mark:	Suicen
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	0 dBi
Power supply:	Rechargeable Li-ion Battery DC3.7V

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 5 of 39

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2442MHz
The Highest channel	2480MHz

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.3 Test environment and mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Operation mode	Keep the EUT in continuous transmitting with modulation

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
DELL	PC	OPTIPLEX745	N/A	DoC
DELL	MONITOR	E178FPC	N/A	DoC
DELL	KEYBOARD	SK-8115	N/A	DoC
DELL	MOUSE	MOC5UO	N/A	DoC

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: CCIS130700201RF

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

● IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

● CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: 0755-23118282 Fax: 0755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 8 of 39

5.7 Test Instruments list

Radia	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	June 09 2013	June 08 2014	
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	May 25 2013	May 24 2014	
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	May 25 2013	May 24 2014	
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
5	Coaxial Cable	CCIS	N/A	CCIS0016	Apr. 01 2013	Mar. 31 2014	
6	Coaxial Cable	CCIS	N/A	CCIS0017	Apr. 01 2013	Mar. 31 2014	
7	Coaxial cable	CCIS	N/A	CCIS0018	Apr. 01 2013	Mar. 31 2014	
8	Coaxial Cable	CCIS	N/A	CCIS0019	Apr. 01 2013	Mar. 31 2014	
9	Coaxial Cable	CCIS	N/A	CCIS0087	Apr. 01 2013	Mar. 31 2014	
10	Amplifier(10kHz- 1.3GHz)	НР	8447D	CCIS0003	Apr. 01 2013	Mar. 31 2014	
11	Amplifier(1GHz- 18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	June 09 2013	June 08 2014	
12	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	Apr. 01 2013	Mar. 31 2014	
13	Horn Antenna	ETS-LINDGREN	3160	GTS217	Mar. 30 2013	Mar. 29 2014	
14	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A	
15	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A	
16	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	May. 25 2013	May. 24 2014	
17	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	Apr 01 2013	Mar. 31 2014	
18	Loop antenna	Laplace instrument	RF300	EMC0701	Aug. 12 2012	Aug. 11 2013	
19	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	May. 25 2013	May. 24 2014	
20	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	May. 25 2013	May. 24 2014	

Cond	Conducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	June 09 2013	June 08 2014	
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	May 25 2013	May 24 2014	
3	LISN	CHASE	MN2050D	CCIS0074	Apr 01 2013	Mar. 31 2014	
4	Coaxial Cable	CCIS	N/A	CCIS0086	Apr. 01 2013	Mar. 31 2014	
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 0 dBi.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China

6.2 Conducted Emission

Test Requirement: Test Method: ANSI C63.4: 2003 Test Frequency Range: Class / Severity: Class B Receiver setup: RBW=9kHz, VBW=30kHz Limit: Frequency range (MHz) Quasi-peak Average Quasi-peak Averag	V	- Conducted Emission							
Test Frequency Range: 150 kHz to 30 MHz Class / Severity: Class B Receiver setup: RBW=9kHz, VBW=30kHz Limit: Frequency range (MHz) Limit (dBuV) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 *Decreases with the logarithm of the frequency. 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. Test setup: Reference Plane LISN 40cm 80cm Filter AC power LISN 40cm 80cm Filter AC power LISN 40cm 80cm Filter AC power Remark: EUT Equipment Under Test LISN 40cm 80cm Filter AC power Test Instruments: Refer to section 5.7 for details Test mode: Refer to section 5.3 for details		Test Requirement:	FCC Part15 C Section 15.207						
Class / Severity: Class B Receiver setup: RBW=9kHz, VBW=30kHz Limit: Frequency range (MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 * Decreases with the logarithm of the frequency. Test procedure 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. Test setup: Reference Plane LISN		Test Method:	ANSI C63.4: 2003						
Receiver setup: RBW=9kHz, VBW=30kHz Limit: Frequency range (MHz) Quasi-peak Average 0.15-0.5 66 to 56° 56 to 46° 0.5-5 56 46 5-30 60 50 *Decreases with the logarithm of the frequency. 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance or the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. Test setup: Reference Plane		Test Frequency Range:	150 kHz to 30 MHz						
Limit: Frequency range (MHz)		Class / Severity:	Class B						
Test procedure Test procedure		Receiver setup:	RBW=9kHz, VBW=30kHz						
O.15-0.5 66 to 56° 56 to 46°		Limit:	Fraguency range (MHz) Limit (dBuV)						
D.5-5 56 46			Quasi-peak Average						
Test procedure Test procedure									
* Decreases with the logarithm of the frequency. 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. Test setup: Reference Plane									
1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. Test setup: Reference Plane Reference Plane Remark E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m Test Instruments: Refer to section 5.7 for details Test mode: Refer to section 5.3 for details									
a line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. Test setup: Reference Plane Regulipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m Test Instruments: Refer to section 5.7 for details Refer to section 5.3 for details			· · ·						
through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. Test setup: Reference Plane LISN AUX Equipment LISN AUX EQUIPMENT LISN LISN LISN LISN LISN Line Impedence Stabilization Network Test table height=0 8m Test Instruments: Refer to section 5.7 for details Test mode: Refer to section 5.3 for details		l est procedure	a line impedance stabilization network (L.I.S.N.), which provides a						
interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. Test setup: Reference Plane LISN 40cm 80cm Filter AC power Equipment Under Test LISN Line impedence Stabilization Network Test table height=0.8m Test Instruments: Refer to section 5.7 for details Test mode: Refer to section 5.3 for details			through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the						
LISN 40cm 80cm Filter AC power Equipment E.U.T EMI Receiver Remark E.U.T Equipment Under Test LISN: Line Impedence Stabilization Network Test Instruments: Refer to section 5.7 for details Test mode: Refer to section 5.3 for details			interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted						
AUX Equipment E.U.T Test table/Insulation plane Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m Test Instruments: Refer to section 5.7 for details Test mode: Refer to section 5.3 for details		Test setup:	Reference Plane						
Test table height=0.8m Test Instruments: Refer to section 5.7 for details Test mode: Refer to section 5.3 for details			AUX Equipment Test table/Insulation plane Remark E.U.T EMI Receiver						
Test mode: Refer to section 5.3 for details			Test table height=0.8m						
Test results: Passed		Test mode:	Refer to section 5.3 for details						
1 40004		Test results:	Passed						

Measurement Data

Neutral:

Trace: 9

: CCIS Conducted test Site : FCC PART15 B QP LISN NEUTRAL : 201RF Site Condition

Job. no

EUT : Stereo Bluetooth Headphone

Model : SX-971
Test Mode : BT TX(BLE) mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 C Huni:56% Atmos:101KPa

Test Engineer: Winner

Kemark	•	P J	LICH	C-11-		T :-:+	0		
	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark	
-	MHz	dBu∜	₫B	₫B	dBu∀	dBu∜	dB		
1	0.162	30.62	10.26	0.78	41.66	65.34	-23.68	QP	
2	0.162	24.09	10.26	0.78	35.13	55.34	-20.21	Average	
3	0.262	19.46	10.24	0.75	30.45	51.38	-20.93	Average	
1 2 3 4 5 6 7 8 9	0.327	24.61	10.25	0.73	35.59	59.53	-23.94	QP	
5	0.771	13.17	10.17	0.80	24.14	46.00	-21.86	Average	
6	1.049	18.48	10.20	0.88	29.56	56.00	-26.44	QP	
7	10.072	24.24	10.22	0.94	35.40	60.00	-24.60	QP	
8	10.072	22.61	10.22	0.94	33.77	50.00	-16.23	Average	
9	16.226	23.32	10.26	0.91	34.49	50.00	-15.51	Average	
10	16.839	25.83	10.27	0.91	37.01	60.00	-22.99	QP	
11	23.387	27.64	10.48	0.89	39.01	60.00	-20.99	QP	
12	23.387	24.77	10.48	0.89	36.14	50.00	-13.86	Average	

Line:

Trace: 11

: CCIS Conducted test Site : FCC PART15 B QP LISN LINE Site Condition

201RF Job. no

EUT Stereo Bluetooth Headphone :

Model : SX-971
Test Mode : BT TX(BLE) mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: Winner

Remark

Kemark								
	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∜	dB	₫B	dBu₹	dBu₹	dB	
1	0.162	24.41	10.24	0.78	35.43	55.34	-19.91	Average
2	0.174	27.41	10.23	0.77	38.41	64.77	-26.36	QP
2 3	0.262	18.51	10.24	0.75	29.50	51.38	-21.88	Average
4	0.337	23.78	10.27	0.73	34.78	59.27	-24.49	QP
5	0.350	17.56	10.27	0.73	28.56	48.96	-20.40	Average
4 5 6 7 8 9	0.796	17.66	10.19	0.81	28.66	56.00	-27.34	QP
7	4.315	17.27	10.29	0.88	28.44	56.00	-27.56	QP
8	4.315	11.98	10.29	0.88	23.15	46.00	-22.85	Average
9	8.062	19.76	10.26	0.85	30.87	60.00	-29.13	QP
10	8.323	18.37	10.26	0.87	29.50	50.00	-20.50	Average
11	23.511	25.09	10.49	0.89	36.47	60.00	-23.53	QP
12	23, 511	22, 72	10.49	0.89	34.10	50.00	-15.90	Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)			
Test Method:	ANSI C63.4:2003 and KDB558074			
Limit:	30dBm			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.7 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			
Remark:	Test method refer to KDB558074 v03r01 (DTS Measure Guidance) section 9.2.2.2			

Measurement Data

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	7.95		
Middle	9.07	30.00	Pass
Highest	9.18		

Test plot as follows:

Date: 12.JUL.2013 08:52:13

Lowest channel

Date: 12.JUL.2013 08:53:18

Middle channel

Date: 12.JUL.2013 08:54:25

Highest channel

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.4 Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)		
Test Method:	ANSI C63.4:2003 and KDB558074		
Limit:	>500kHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result
Lowest	0.66		
Middle	0.66	>500	Pass
Highest	0.66		

Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result
Lowest	1.06		
Middle	1.06	N/A	N/A
Highest	1.06		

Test plot as follows:

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 16 of 39

Test mode:6dB EBW GFSK

Date: 11.JUL.2013 16:13:07

#RBM 100 kHz Delta 1 [T1] 0.09 dB 0.09

Date: 11.JUL.2013 16:25:01

Date: 11.JUL.2013 16:22:13

Highest channel

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Date: 11.JUL.2013 16:28:39

Date: 11.JUL.2013 16:29:56

Date: 11.JUL.2013 16:30:58

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e)			
Test Method:	ANSI C63.4:2003 and KDB558074			
Limit:	8 dBm			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.7 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data

Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
Lowest	6.55		
Middle	7.45	8.00	Pass
Highest	7.34		

Test plots as follow:

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 19 of 39

Date: 13.JUL.2013 09:23:01

Lowest channel

Date: 13.JUL.2013 09:22:08

Middle channel

Date: 13.JUL.2013 09:20:57

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)			
Test Method:	ANSI C63.4:2003 and KDB558074			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table			
	Ground Reference Plane			
Test Instruments:	Refer to section 5.7 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Test plots as follow:

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 21 of 39

owact channal

Lowest channel

Highest channel

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205					
Test Method:	ANSI C63.4: 2003					
Test Frequency Range:	2.3GHz to 2.5GHz					
Test site:	Measurement D	istance: 3m				
Receiver setup:	Frequency	Detector Peak	RBW 1MHz	VBW 3MHz	Remark Peak Value	
	Above 1GHz	Peak	1MHz	10Hz	Average Value	
Limit:	Freque Above 1		Limit (dBuV/ 54.0 74.0	0	Remark Average Value Peak Value	
Test Procedure:	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using 					
Test setup:	Antenna Tower Horn Antenna Spectrum Analyzer Turn Table Amplifier					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Test channel: Lowest

Horizontal:

Trace: 33

Frequency (MHz)

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

Job No. 201RF

EUT : Stereo Bluetooth Headphone

Model : SX-971
Test mode : BT BLE TX(Low Channel) mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Winner

Rei

emark	:	Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq		Factor						Remark
-	MHz	dBu∀	dB/m	<u>dB</u>	dB	dBu∜/m	dBuV/m	dB	
1 2	2390.000 2390.000	7.700.00	70.00			52.29 45.38			Peak Average

Test channel: Lowest

Vertical:

Trace: 35

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

Job No. : 201RF

EUT : Stereo Bluetooth Headphone

Model : SX-971

Test mode : BT BLE TX (Low Channel) mode

Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Winner

Remark

SMall			Antenna Factor				Limit Line	Remark
7	MHz	dBu∀	dB/m	<u>dB</u>	<u>d</u> B	dBuV/m	$\overline{dBuV/m}$	
1 2	2390.000 2390.000	70.000	70.00 (0.007) 7.00					Peak Average

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 25 of 39

Test channel: Highest

Horizontal:

Frequency (MHz) Trace: 39

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

Job No. 201RF

EUT : Stereo Bluetooth Headphone

Stereo Bluetooth Headphone

Model : SX-971
Test mode : BT BLE TX(High Channel) mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Winner
Remark

Remark

		Read	Antenna	Cable	Preamn		Limit	Over	
	Freq		Factor						Remark
	MHz	dBu₹	dB/m	<u>dB</u>	<u>ab</u>	dBuV/m	dBuV/m	dB	
1 2	2483.500 2483.500	70000		705,000,00					

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 26 of 39

Project No.: CCIS130700201RF

Test channel: Highest

Vertical:

Frequency (MHz) Trace: 37

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: 201RF Job No.

: Stereo Bluetooth Headphone : SX-971 EUT

Model

Test mode : BT BLE TX (High Channel) mode

Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: Winner

Rema

1 2

ar	k :	Read	Ant enna	Cable	Preamp		Limit	Over		
	Freq		Factor				Line	Limit	Remark	
,	MHz	dBu∀	—dB/m	dB	<u>dB</u>	dBuV/m	dBuV/m	dB		-
	2483.500 2483.500	7070000000				59.17 49.03		-A7 - 00.51	Peak Average	

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 27 of 39

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	ANSI C63.4:2003 and KDB558074
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Test plot as follows:

Test mode:

#REW 100 kHz | T1 | +VEW 300 kHz | T2 | -40.15 dBm | Att 30 dB | SWT 2.5 s | 16.060740000 dHz | -20.5 dBm | Att 30 dB | SWT 2.5 s | 16.060740000 dHz | -20.5 dBm |

Date: 12.JUL.2013 09:03:55

30MHz~25GHz

Date: 12.JUL.2013 08:59:28

30MHz~25GHz

Date: 12.JUL.2013 08:56:44

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205								
Test Method:	ANSI C63.4:200)3							
Test Frequency Range:	9KHz to 25GHz								
Test site:	Measurement D	istance: 3m							
Receiver setup:									
	Frequency								
	30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-peak Value								
	Above 1GHz	Peak 1MHz 3MHz Peak Value							
	Above IGHZ	Peak	1MHz	10Hz	Average Value				
Limit:									
	Frequency		Limit (dBuV/m	@3m)	Remark				
	30MHz-88MHz		40.0		Quasi-peak Value				
	88MHz-216MHz	-	43.5		Quasi-peak Value				
	216MHz-960MH	Z	46.0		Quasi-peak Value				
	960MHz-1GHz		54.0		Quasi-peak Value				
	Above 1GHz	-	54.0		Average Value				
Test Procedure:	1. The EUT we the ground to determine to determine antenna, we tower. 3. The antennal Both horizon make the meters and to find the meters and the	at a 3 meter te the position was set 3 meter was set 3 meter was set 3 meter was set 3 meter was mediated and verneasurement. Suspected ember the anterest the rota table maximum reaspecies expected of the pecified, there EUT would we 10 dB meter was set of the peak or averneas was set of the set of the pecified, there EUT would we 10 dB meter was set of the peak or averneas was s	camber. The of the highest eters away funted on the trailed from or ethe maximutical polarizations was turned ding. In Maximum Ham EUT in pean testing could be reported argin would be	table was a stradiation. The meter to the me	Peak Value le 0.8 meters above rotated 360 degrees aterference-receiving lable-height antenna of four meters above of the field strength. It is antenna are set to stranged to its worst its from 1 meter to 4 rees to 360 degrees letect Function and las 10 dB lower than loped and the peak of the emissions that done by one using the dand then reported				

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 31 of 39

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 32 of 39

Project No.: CCIS130700201RF

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL Condition

Job No. : 201RF

EUT : Stereo Bluetooth Headphone

Model : SX-971 : BT TX mode Test mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Winner

Rema

12345

ark	•	Read	Antenna	Cable	Preamp		Limit	Over	
	Freq		Factor						
-	MHz	dBu∀	—dB/m	₫B	<u>dB</u>	dBuV/m	$\overline{dB} \overline{uV}/\overline{m}$		
5	207.850	53.18	10.80	2.86	29.78	37.06	43.50	-6.44	QP
)	212.270	56.81	10.93	2.86	29.75	40.85	43.50	-2.65	QP
}	216.024	59.27	11.07	2.85	29.74	43.45	46.00	-2.55	QP
	219.845	54.95	11.17	2.85	29.72	39.25	46.00	-6.75	QP
i	263.819	51.08	12.17	2.85	29.55	36.55	46.00	-9.45	QP
1	477, 169	47, 10	16,01	3.42	30, 52	36, 01	46,00	-9.99	ΩP

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 33 of 39

Vertical:

Report No: CCIS13070020102

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL Condition

: 201RF

EUT : Stereo Bluetooth Headphone

Model : SX-971

Test mode : BT TX mode

Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55%

Test Engineer: Winner

Remark :

CHILLY									
	Freq		Antenna Factor			Level	Limit Line	Over Limit	Remark
-	MHz	dBu₹	dB/m	₫B	dB	dBuV/m	dBuV/m	dB	
1	39.437	35.20	13.44	1.21	27.21	22.64	40.00	-17.36	QP
2	108.647	35.07	12.39	2.03	29.91	19.58	43.50	-23.92	QP
3	207.850	43.92	10.80	2.86	29.78	27.80	43.50	-15.70	QP
4	216.024	49.58	11.07	2.85	29.74	33.76	46.00	-12.24	QP
5	263.819	40.62	12.17	2.85	29.55	26.09	46.00	-19.91	QP
6	477, 169	41.37	16.01	3.42	30.52	30. 28	46,00	-15.72	OP

Above 1GHz

Lowest

Report No: CCIS13070020102

Average

Test channel:	Test channel:				Level:		Peak	
Frequency (MHz)	Read	Antenna	a Cable	Preamp	Level	Limit Line	Over	
	Level	Factor		Factor	(dBuV/m)	(dBuV/m)	Limit	Polarization
	(dBuV)	(dB/m)	(dB)	(dB)	(abav/iii)	(aba v/iii)	(dB)	
4804.00	54.12	31.53	8.90	40.24	54.31	74.00	-19.69	Vertical
7206.00	49.68	36.47	10.59	41.24	55.50	74.00	-18.50	Vertical
9608.00	46.78	38.10	13.16	41.40	56.64	74.00	-17.36	Vertical
4804.00	54.74	31.53	8.90	40.24	54.93	74.00	-19.07	Horizontal
7206.00	49.32	36.47	10.59	41.24	55.14	74.00	-18.86	Horizontal
9608.00	46.59	38.10	13.16	41.40	56.45	74.00	-17.55	Horizontal

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	35.62	31.53	8.90	40.24	35.81	54.00	-18.19	Vertical
7206.00	30.41	36.47	10.59	41.24	36.23	54.00	-17.77	Vertical
9608.00	27.51	38.10	13.16	41.40	37.37	54.00	-16.63	Vertical
4804.00	35.42	31.53	8.90	40.24	35.61	54.00	-18.39	Horizontal
7206.00	30.84	36.47	10.59	41.24	36.66	54.00	-17.34	Horizontal
9608.00	27.43	38.10	13.16	41.40	37.29	54.00	-16.71	Horizontal

Level:

Remark:

Test channel:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Average

Test channe	est channel:		Middle		Level:		Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	54.36	31.58	8.98	40.15	54.77	74.00	-19.23	Vertical
7326.00	49.84	36.47	10.69	41.15	55.85	74.00	-18.15	Vertical
9768.00	46.51	38.53	13.37	41.71	56.70	74.00	-17.30	Vertical
4884.00	54.26	31.58	8.98	40.15	54.67	74.00	-19.33	Horizontal
7326.00	49.35	36.47	10.69	41.15	55.36	74.00	-18.64	Horizontal
9768.00	46.41	38.53	13.37	41.71	56.60	74.00	-17.40	Horizontal

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	35.12	31.58	8.98	40.15	35.53	54.00	-18.47	Vertical
7326.00	30.25	36.47	10.69	41.15	36.26	54.00	-17.74	Vertical
9768.00	27.41	38.53	13.37	41.71	37.60	54.00	-16.40	Vertical
4884.00	34.87	31.58	8.98	40.15	35.28	54.00	-18.72	Horizontal
7326.00	30.46	36.47	10.69	41.15	36.47	54.00	-17.53	Horizontal
9768 00	27 66	38 53	13 37	41 71	37 85	54 00	-16 15	Horizontal

Level:

Remark:

Test channel:

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

Middle

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Average

Test channel:			Highest		Level:		Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Loss	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	I I imit	Polarization
4960.00	53.87	31.69	9.08	40.03	54.61	74.00	-19.39	Vertical
7440.00	49.23	36.60	10.80	41.05	55.58	74.00	-18.42	Vertical
9920.00	46.41	38.66	13.55	41.99	56.63	74.00	-17.37	Vertical
4960.00	53.64	31.69	9.08	40.03	54.38	74.00	-19.62	Horizontal
7440.00	49.21	36.60	10.80	41.05	55.56	74.00	-18.44	Horizontal
9920.00	46.32	38.66	13.55	41.99	56.54	74.00	-17.46	Horizontal

Frequency (MHz)	Read	Antenna	Cable	Preamp	Level (dBuV/m)	Limit Line (dBuV/m)	Over	Polarization
	Level	Factor	Loss	Factor			Limit	
	(dBuV)	(dB/m)	(dB)	(dB)			(dB)	
4960.00	34.56	31.69	9.08	40.03	35.30	54.00	-18.70	Vertical
7440.00	30.55	36.60	10.80	41.05	36.90	54.00	-17.10	Vertical
9920.00	27.43	38.66	13.55	41.99	37.65	54.00	-16.35	Vertical
4960.00	34.46	31.69	9.08	40.03	35.20	54.00	-18.80	Horizontal
7440.00	30.05	36.60	10.80	41.05	36.40	54.00	-17.60	Horizontal
9920.00	27.41	38.66	13.55	41.99	37.63	54.00	-16.37	Horizontal

Level:

Remark:

Test channel:

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

Highest

2. The emission levels of other frequencies are very lower than the limit and not show in test report.