

UNIVERSITÀ DEGLI STUDI DI MILANO

DIPARTIMENTO DI INFORMATICA

Corso di Laurea Magistrale in Scienze e Tecnologie dell'Informazione

Mole.io

un sistema per la gestione centralizzata dei log applicativi

RELATORE

Prof. Ernesto DAMIANI TESI DI LAUREA DI

Federico GANDELLINI

CORRELATORE Matr. 123456

Prof. Nome COGNOME

Anno Accademico 2013/2014

Ringraziamenti

Un grazie a ...

Indice

Introduzione					
1	Log	: contesti e problematiche	5		
	1.1	La centralizzazione	5		
	1.2	Trattare gli errori applicativi	6		
	1.3	Business intelligence	7		
2	Log	: software e applicazioni	8		
	2.1	Prodotti e soluzioni sul mercato	8		
	2.2	Una nuova applicazione: Mole.io	9		
3	Metodologie di sviluppo				
	3.1	User stories	10		
	3.2	Test e behavior driven development	11		
4	Tec	nologie utilizzate	12		
	4.1	Node.js	12		
		4.1.1 La storia	12		
		4.1.2 NPM e moduli	13		
	4.2	RabbitMQ	14		
	4.3	MongoDB	15		
		4.3.1 Fronteggiare le richieste	15		

INDICE	2

	4.4	AngularJS e altre tecnologie di frontend						
		4.4.1 Gestione delle dipendenze	16					
	4.5	Strumenti per il deploy	17					
5	Mol	Mole.io						
	5.1	Architettura del sistema	18					
		5.1.1 CQRS ed estensibilità	18					
		5.1.2 mole	19					
		5.1.3 mole-suit	20					
	5.2	Autenticazione degli utenti						
	5.3	Scalabilità e affidabilità	22					
	5.4	Problematiche di sviluppo	23					
6	Con	figurazioni e benchmark	24					
Co	Conclusioni e sviluppi futuri							

Introduzione

In questa tesi descriveremo Mole.io: un sistema centralizzato per la raccolta e l'aggregazione di messaggi provenienti da applicazioni remote.

Durante il loro ciclo di lavoro o processing, le applicazioni software eseguono operazioni significative o entrano in situazioni di errore, in questi casi è importante che le persone cha hanno in carico la gestioni di questi sistemi, siano informate dell'accaduto in modo da operare scelte opportune o applicare le dovute correzioni (bugfix).

Gli sviluppatori spesso utilizzano messaggi di tracciamento (log) per stampare a video o salvare in files stati significativi delle applicazioni. Gli stessi log sono utilizzati più spesso per riportare situazioni di errore (Exception e Stack Trace).

Il problema principale di questo approccio è la *località* dei *log*, solitamente questi *files* vengono salvati, nella stessa macchina sulla quale sta operando l'applicazione.

All'aumentare del numero di applicazioni da gestire e del numero di macchine in produzione, capita spesso che i server siano in luoghi geograficamente distanti tra loro. Questa situazione rende evidente la difficoltà di ottenere un feedback veloce dello stato di ogni software e delle eventuali situazioni di errore in cui le applicazioni si trovano.

Mole.io cerca di risolvere il problema facendo in modo che i software

Introduzione 4

che lo utilizzano, siano in grado di inviare le informazioni che ritengono significative ad un server centrale, che le raccoglie, le cataloga e le aggrega per essere facilmente supervisionate da parte degli sviluppatori.

Nel primo capitolo tratteremo approfonditamente il problema dei log, i contesti nei quali essi vengono utilizzati e le problematiche legate alla gestione di questo tipo di soluzione di tracciamento. Vedremo anche come utilizzare i log per ottenere informazioni di supporto alla business intelligence.

Il secondo capitolo riporterà un elenco dei principali software per la gestione centralizzata dei log presenti sul mercato e delle soluzioni Open Source che sono state prese a modello per la realizzazione di Mole.io. Descriveremo ogni applicazione e mostreremo come Mole.io possa essere una soluzione innovativa sotto svariati punti di vista.

I due capitoli seguenti permetteranno di approfondire i dettagli tecnici delle metodologie di sviluppo applicate durante il *design* del software e alcune tra le principali tecnologie utilizzate per la realizzazione del sistema.

Il quinto capitolo descriverà la struttura di Mole.io e le varie componenti software che rendono l'applicazione scalabile, sicura e garantiscono l'alta affidabilità della soluzione. Uno spazio particolare sarà inoltre riservato alle problematiche incontrate durante lo sviluppo.

Nel sesto capitolo vedremo in modo oggettivo, con benchmark e stress test il comportamento di Mole.io all'aumentare del carico di lavoro e dimostreremo come le soluzioni di design applicate garantiscano buone performance anche in condizioni critiche.

Infine discuteremo i risultati ottenuti e proporremo alcune interessanti funzionalità che trasformeranno Mole.io dall'attuale *proof of concept* ad un vero e proprio servizio.

Log: contesti e

problematiche

introduzione ai log, cosa sono e perché servono $problema\ spazio,\ localit\tilde{A}\ difficili\ da\ leggere\ e\ difficile\ tirarci\ fuori\ delle$ info significative

1.1 La centralizzazione

tante applicazioni (anche tipi diversi) che loggano tanti clienti da gestire dislocati sul territorio

1.2 Trattare gli errori applicativi

 $\operatorname{perch} \tilde{\mathbf{A}}$ " riportare gli errori delle app (facilitare e velocizzare bugfix)

1.3 Business intelligence

capire come gli utenti usano il sistema statistiche sul sistema decidere come indirizzare lo sviluppo

Log: software e applicazioni

ci sono tante soluzioni sul mercato, di seguito alcune ma non ci piacciono

2.1 Prodotti e soluzioni sul mercato

overview di alcuni sistemi di logging con le relative funzioni specifiche i competitor airbreak - logga solo rollbar - aggrega papertrail - live log

2.2 Una nuova applicazione: Mole.io

 $\operatorname{perch} \tilde{\mathbf{A}} \textcircled{\mathbf{c}}$ le soluzioni sul mercato non ci piacciono le peculiarit $\tilde{\mathbf{A}}~$ di mole.io

Metodologie di sviluppo

3.1 User stories

3.2 Test e behavior driven development

Tecnologie utilizzate

- 4.1 Node.js
- 4.1.1 La storia

4.1. Node.js 13

4.1.2 NPM e moduli

4.2 RabbitMQ

4.3 MongoDB

4.3.1 Fronteggiare le richieste

- 4.4 AngularJS e altre tecnologie di frontend
- 4.4.1 Gestione delle dipendenze

4.5 Strumenti per il deploy

Mole.io

- 5.1 Architettura del sistema
- 5.1.1 CQRS ed estensibilità

5.1.2 mole

 ${\bf I}$ denormalizzatori

5.1.3 mole-suit

I plugin e gli widget

5.2 Autenticazione degli utenti

5.3 Scalabilità e affidabilità

5.4 Problematiche di sviluppo

Configurazioni e benchmark

problemi con i benchmark - dipendi dalla rete su cui sei - nostro client fatto con node - perch \tilde{A} © non l'abbiamo usato - come sono stati fatti i benchmark - specifiche del sistema VM, ram, hdd, ... - risultati ottenuti

Conclusioni e sviluppi futuri