CS 3843 Computer Organization, Fall 2013 Assignment 2 Solution

Due Friday, September 27, 2013

This assignment is due at the beginning of class on the due date. There will be a 10 percent penalty for late assignments.

Solve the following problems and hand them in at the beginning of class on the due date. You may use a basic calculator, but you must show how you got your answer.

Write out the solutions neatly. Problems should be in order. Your **name** and the assignment number should be in the upper right corner of the first sheet you hand in. Stack the pages neatly and put a single stable in the upper left corner. Make sure the staple does not obscure any of your writing.

- 1. (14 points)
 - a. (5 points) Assume that x, y, and z are unsigned 12-bit integers. Suppose x = 1925, y = 3012, and z = x + y. What is the value of z?

Sol:
$$z = (x+y) \mod 2^{12} = 4937 \mod 4096 = 841$$

b. (5 points) Assume that x, y, and z are unsigned 12-bit integers. Suppose x = 1925, y = 3012, and z = x - y. What is the value of z?

Sol:
$$z = (x-y) \mod 2^{12} = (-1087) \mod 4096 = 4096-1087 = 3009$$

c. (4 points) Assume that x, y, and z are two's complement 12-bit integers. Suppose x = 1925, y = 1302, and z = x + y. What is the value of z?

Sol:
$$z = x + y = 1925 + 1302 = 3227 > 2047$$

Let $N^* = 3227$ representing -N where $N = 2^{12}$ - $N^* = 4096$ - $3227 = 869$
Therefore $z = -N = -869$

2. (10 points) Show how to use shifting, adding and subtracting to efficiently multiply *x* by 1273.

Sol:
$$1273 = 100 \ 1111 \ 1001 = 2^{10} + 2^8 - 2^3 + 1$$

Therefore $1273 \times x = (x << 10) + (x << 8) - (x << 3) + x$

- 3. (20 points) Logical Operators in C and Bit-level Operators
 - Suppose that x and y have byte values 0x3F and 0x75, respectively. Fill in the following table indicating the byte value of the different C expressions:

Expression	Value	Expression	Value
x & y	0x35	x && y	0x01
x / y	0x7F	x // y	0x01
~x /~ y	0xCA	!x // !y	0x00
x & ! y	0x00	x && ~y	0x01

4. (30 points) Shift operations (left shift and right shift - logical and arithmetic) on single-byte quantities. Each of the answers should be 8 binary digits or 2 hexadecimal digits.

Answer the following questions for x = 0x54 (10 points)

- a) what is its binary representation?
- b) what is $x \ll 3$ in binary representation and in hexadecimal representation?
- c) what is $x \gg 2$ (logical) in binary representation and in hexadecimal representation?
- d) what is x >> 2 (arithmetic) in binary representation and in hexadecimal representation? Repeat for x = 0x98 (10 points) and x = 0x45 (10 points).

Sol:

a) 0x54= 0101 0100	a) 0x98= 1001 1000	a) 0x45= 0100 0101
b) $1010\ 0000 = 0$ xA0	b) $1100\ 0000 = 0xC0$	b) $0010\ 1000 = 0x28$
c) $0001\ 0101 = 0x15$	c) $0010\ 0110 = 0x26$	c) $0001\ 0001 = 0x11$
d) $0001\ 0101 = 0x15$	d) $1110\ 0110 = 0xE6$	d) $0001\ 0001 = 0x11$
		,

5. (30 points) Suppose we truncate a 5-bit value (represented by hex digits 0 through 1F) to a 4-bit value (represented as hex digit 0 through F). Fill in the table below showing the effect of this truncation for some cases, in terms of the unsigned and two's-complemented interpretations of those bit patterns.

Hex		Unsigned		Two's Complement	
Original (hex)	Truncated	Original (decimal)	Truncated	Original (decimal)	Truncated
0	0	0	0	0	0
3	3	3	3	2	2
11	1	11	11	11	-5
17	7	17	1	-15	1
1F	F	31	15	-1	-1