Sorting (Part II: Divide and Conquer)

CSE 373

Data Structures

Lecture 14

Readings

- Reading
 - Section 7.6, Mergesort
 - Section 7.7, Quicksort

"Divide and Conquer"

- Very important strategy in computer science:
 - Divide problem into smaller parts
 - Independently solve the parts
 - Combine these solutions to get overall solution
- Idea 1: Divide array into two halves, recursively sort left and right halves, then merge two halves → Mergesort
- Idea 2: Partition array into items that are "small" and items that are "large", then recursively sort the two sets → Quicksort

Mergesort

- Divide it in two at the midpoint
- Conquer each side in turn (by recursively sorting)
- Merge two halves together

Mergesort Example

Auxiliary Array

The merging requires an auxiliary array.

Auxiliary array

Auxiliary Array

The merging requires an auxiliary array.

Auxiliary array

Auxiliary Array

The merging requires an auxiliary array.

Auxiliary array

Merging

Merging

Merging

```
Merge(A[], T[] : integer array, left, right : integer) : {
  mid, i, j, k, l, target : integer;
  mid := (right + left)/2;
  i := left; j := mid + 1; target := left;
  while i \leq mid and j \leq right do
    if A[i] \leq A[j] then T[target] := A[i]; i := i + 1;
      else T[target] := A[j]; j := j + 1;
    target := target + 1;
  if i > mid then //left completed//
    for k := left to target-1 do A[k] := T[k];
  if j > right then //right completed//
    k := mid; l := right;
    while k \ge i do A[l] := A[k]; k := k-1; l := l-1;
    for k := left to target-1 do A[k] := T[k];
  2/19/03
                                                            11
                     Divide and Conquer Sorting - Lect
```

Recursive Mergesort

```
Mergesort(A[], T[] : integer array, left, right : integer) : {
   if left < right then
      mid := (left + right)/2;
      Mergesort(A,T,left,mid);
      Mergesort(A,T,mid+1,right);
      Merge(A,T,left,right);
}

MainMergesort(A[1..n]: integer array, n : integer) : {
    T[1..n]: integer array;
    Mergesort[A,T,1,n];
}</pre>
```

Iterative Mergesort

Iterative Mergesort

Iterative Mergesort

```
IterativeMergesort(A[1..n]: integer array, n : integer) : {
//precondition: n is a power of 2//
  i, m, parity : integer;
 T[1..n]: integer array;
 m := 2; parity := 0;
 while m \le n do
    for i = 1 to n - m + 1 by m do
       if parity = 0 then Merge(A,T,i,i+m-1);
         else Merge(T,A,i,i+m-1);
    parity := 1 - parity;
   m := 2*m;
  if parity = 1 then
    for i = 1 to n do A[i] := T[i];
}
                               How do you handle non-powers of 2?
                               How can the final copy be avoided?
```

Mergesort Analysis

- Let T(N) be the running time for an array of N elements
- Mergesort divides array in half and calls itself on the two halves. After returning, it merges both halves using a temporary array
- Each recursive call takes T(N/2) and merging takes O(N)

Mergesort Recurrence Relation

- The recurrence relation for T(N) is:
 - , T(1) ≤ a
 - base case: 1 element array → constant time
 - $T(N) \leq 2T(N/2) + bN$
 - Sorting N elements takes
 - the time to sort the left half
 - plus the time to sort the right half
 - plus an O(N) time to merge the two halves
- T(N) = O(n log n) (see Lecture 5 Slide17)

Properties of Mergesort

- Not in-place
 - Requires an auxiliary array (O(n) extra space)
- Stable
 - Make sure that left is sent to target on equal values.
- Iterative Mergesort reduces copying.

Quicksort

- Quicksort uses a divide and conquer strategy, but does not require the O(N) extra space that MergeSort does
 - Partition array into left and right sub-arrays
 - Choose an element of the array, called pivot
 - the elements in left sub-array are all less than pivot
 - elements in right sub-array are all greater than pivot
 - Recursively sort left and right sub-arrays
 - Concatenate left and right sub-arrays in O(1) time

"Four easy steps"

- To sort an array S
 - 1. If the number of elements in **S** is 0 or 1, then return. The array is sorted.
 - 2. Pick an element *v* in **S**. This is the *pivot* value.
 - 3. Partition $S-\{v\}$ into two disjoint subsets, $S_1 = \{\text{all values } x \leq v\}$, and $S_2 = \{\text{all values } x \geq v\}$.
 - 4. Return QuickSort(**S**₁), *v*, QuickSort(**S**₂)

The steps of QuickSort

Details, details

- Implementing the actual partitioning
- Picking the pivot
 - vant a value that will cause |S₁| and |S₂| to be non-zero, and close to equal in size if possible
- Dealing with cases where the element equals the pivot

Quicksort Partitioning

- Need to partition the array into left and right subarrays
 - the elements in left sub-array are \leq pivot
 - → elements in right sub-array are ≥ pivot
- How do the elements get to the correct partition?
 - Choose an element from the array as the pivot
 - Make one pass through the rest of the array and swap as needed to put elements in partitions

Partitioning:Choosing the pivot

- One implementation (there are others)
 - median3 finds pivot and sorts left, center, right
 - Median3 takes the median of leftmost, middle, and rightmost elements
 - An alternative is to choose the pivot randomly (need a random number generator; "expensive")
 - Another alternative is to choose the first element (but can be very bad. Why?)
 - Swap pivot with next to last element

Partitioning in-place

- Set pointers i and j to start and end of array
- Increment i until you hit element A[i] > pivot
- Decrement j until you hit elmt A[j] < pivot</p>
- Swap A[i] and A[j]
- Repeat until i and j cross
- Swap pivot (at A[N-2]) with A[i]

Example

Choose the pivot as the median of three

0	1	2	3	4	5	6	7	8	9
8	1	4	9	0	3	5	2	7	6

Median of 0, 6, 8 is 6. Pivot is 6

Place the largest at the right and the smallest at the left.
Swap pivot with next to last element.

Example

Move i to the right up to A[i] larger than pivot. Move j to the left up to A[j] smaller than pivot. Swap

Example

Recursive Quicksort

```
Quicksort(A[]: integer array, left,right : integer): {
pivotindex : integer;
if left + CUTOFF ≤ right then
  pivot := median3(A,left,right);
  pivotindex := Partition(A,left,right-1,pivot);
  Quicksort(A, left, pivotindex - 1);
  Quicksort(A, pivotindex + 1, right);
else
  Insertionsort(A,left,right);
}
```

Don't use quicksort for small arrays. CUTOFF = 10 is reasonable.

Quicksort Best Case Performance

 Algorithm always chooses best pivot and splits sub-arrays in half at each recursion

- T(0) = T(1) = O(1)
 - constant time if 0 or 1 element
- For N > 1, 2 recursive calls plus linear time for partitioning
- T(N) = 2T(N/2) + O(N)
 - Same recurrence relation as Mergesort

$$T(N) = O(N \log N)$$

Quicksort Worst Case Performance

 Algorithm always chooses the worst pivot – one sub-array is empty at each recursion

```
> T(N) \le a \text{ for } N \le C

> T(N) \le T(N-1) + bN

> \le T(N-2) + b(N-1) + bN

> \le T(C) + b(C+1) + ... + bN

> \le a + b(C + (C+1) + (C+2) + ... + N)

> T(N) = O(N^2)
```

 Fortunately, average case performance is O(N log N) (see text for proof)

Properties of Quicksort

- Not stable because of long distance swapping.
- No iterative version (without using a stack).
- Pure quicksort not good for small arrays.
- "In-place", but uses auxiliary storage because of recursive call (O(logn) space).
- O(n log n) average case performance, but
 O(n²) worst case performance.

Folklore

- "Quicksort is the best in-memory sorting algorithm."
- Truth
 - Quicksort uses very few comparisons on average.
 - Quicksort does have good performance in the memory hierarchy.
 - Small footprint
 - Good locality