Write your name here Surname	Of	ther names
Pearson Edexcel International Advanced Level	Centre Number	Candidate Number
Chemistry Advanced Subsidiary Unit 1: The Core Prin	/	nemistry
Wednesday 7 January 2015 Time: 1 hour 30 minutes	5 – Morning	Paper Reference WCH01/01
Candidates may use a calcular	tor.	Total Marks

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 80.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed
 - you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

SECTION A

Answer ALL the questions in this section. You should aim to spend no more than 20 minutes on this section. For each question, select one answer from A to D and put a cross in the box \bowtie .

ŀ	f yo	u cl	nange your mind, put a line through the box ⊠ and then mark your new answer with a cross ⊠.				
1	A solution contains 33 ppm of solute. The mass of solute dissolved in 1 kg of this solution is						
	X	A	33 g				
	X	В	0.33 g				
	X	C	0.033 g				
	X	D	0.000033 g				
			(Total for Question 1 = 1 mark)				
2	Th	e Av	ogadro constant is equal to the number of				
	X	Α	grams of an element which contains 6.02×10^{23} atoms of that element.				
	■ B atoms contained in one mole of any element.						
	☑ C atoms contained in one mole of any monatomic element.						
	×	D	particles (atoms, ions or molecules) required to make one gram of a substance.				
			(Total for Question 2 = 1 mark)				
3	Αŀ	nydr	ocarbon contains, by mass, 82.7% carbon and 17.3% hydrogen.				
	Th	e m	olecular formula of the hydrocarbon is				
	X	A	CH ₃				
	X	В	C_2H_6				
	X	C	C_2H_5				
	X	D	C_4H_{10}				
			(Total for Question 3 = 1 mark)				

4 An ion, X⁻, contains 36 electrons.

In which block of the Periodic Table would element **X** be found?

- A s
- **⋈ B** p
- **区** d
- \mathbf{X} **D** f

(Total for Question 4 = 1 mark)

5 Consider the following data:

$$C(s) + O_2(g) \rightarrow CO_2(g)$$

$$\Delta H^{\odot} = -394 \text{ kJ mol}^{-1}$$

$$Pb(s) + \frac{1}{2}O_2(g) \rightarrow PbO(s)$$

$$\Delta H^{\odot} = -217 \text{ kJ mol}^{-1}$$

PbO(s) + CO(g)
$$\rightarrow$$
 Pb(s) + CO₂(g) $\Delta H^{\ominus} = -66 \text{ kJ mol}^{-1}$

$$\Delta H^{\odot} = -66 \text{ kJ mol}^{-1}$$

Calculate the value of the enthalpy change, in kJ mol⁻¹, for the following reaction.

$$C(s) + \frac{1}{2}O_2(g) \rightarrow CO(g)$$

- **A** -243
- **B** -111
- **◯ C** +111
- **■ D** +243

(Total for Question 5 = 1 mark)

6 Which of the following enthalpy changes cannot be measured **directly** by experiment?

The enthalpy change of

- **A** formation of methane.
- **B** combustion of hydrogen.
- **C** formation of carbon dioxide.
- **D** combustion of carbon monoxide.

(Total for Question 6 = 1 mark)

- **7** Which of the following equations represents a step that is **not** involved in the Born-Haber cycle for lithium iodide, LiI?
 - \square A Li(s) + $\frac{1}{2}I_2(s) \rightarrow LiI(s)$
 - \square **B** $\frac{1}{2}I_2(s) \rightarrow I(g)$
 - \square **C** Li(s) \rightarrow Li(g)
 - \square **D** $I(g) \rightarrow I^+(g) + e^-$

(Total for Question 7 = 1 mark)

- **8** Which of the following results in the most polarizing cation?
 - X A
 - В

 - X C
 - X D
- Cation radius

 Small

 Small

 Iarge

 large

 large

 large

 large

(Total for Question 8 = 1 mark)

9 Calcium carbonate reacts with dilute nitric acid as follows:

$$CaCO_3(s) + 2HNO_3(aq) \rightarrow Ca(NO_3)_2(aq) + H_2O(I) + CO_2(g)$$

0.05 mol of calcium carbonate was added to a solution containing 0.08 mol of nitric acid.

Which of the following statements is true?

- ☑ A 0.05 mol of carbon dioxide is produced.
- B 0.08 mol of calcium nitrate is produced.
- ☑ C Calcium carbonate is in excess by 0.01 mol.
- ☑ D Nitric acid is in excess by 0.03 mol.

(Total for Question 9 = 1 mark)

10 In which of the following pairs does each gas occupy the same volume?

All volumes are measured at the same temperature and pressure.

- ☑ A 2 g of hydrogen and 14 g of nitrogen.
- **B** 32 g of methane and 88 g of carbon dioxide.
- ☑ C 7 g of carbon monoxide and 16 g of oxygen.
- **D** 10 g of hydrogen chloride and 10 g of sulfur dioxide.

(Total for Question 10 = 1 mark)

11 Consider the reaction below.

$$2NO(g) + O_2(g) \rightarrow 2NO_2(g)$$

What is the maximum volume, in dm³, of nitrogen dioxide that could be obtained in the reaction occurring when 1 dm³ of nitrogen monoxide is mixed with 2 dm³ of oxygen, under suitable conditions?

All measurements are made at the same temperature and pressure.

- **X A** 1
- **B** 2
- **◯ C** 3
- □ D 4

(Total for Question 11 = 1 mark)

Use this space for any rough working. Anything you write in this space will gain no credit.

12 Which of the following graphs, not drawn to scale, best represents the trend in the melting temperatures of the elements across Period 3, from sodium to argon?

(Total for Question 12 = 1 mark)

13 In an experiment, 3.425 g of lead oxide was reduced to form 3.105 g of lead.

The empirical formula of the lead oxide is

- A PbO
- \boxtimes **B** Pb₃O₂
- \square **C** Pb₃O₄
- \square **D** Pb₄O₃

(Total for Question 13 = 1 mark)

- **14** Which one of the following ions has the smallest radius?
 - ⊠ A F⁻
 - B Mg²⁺
 - C Na⁺
 - □ D O²⁻

(Total for Question 14 = 1 mark)

15 Phenol, C₆H₅OH, is converted into trichlorophenol (known as TCP), C₆H₂Cl₃OH, according to the equation below.

$$\mathsf{C_6H_5OH} \; + \; \mathsf{3CI_2} \; \rightarrow \; \mathsf{C_6H_2CI_3OH} \; + \; \mathsf{3HCI}$$

If 50.0 g of phenol produces 97.6 g of TCP, what is the percentage yield of the TCP?

[Molar masses: phenol = 94 g mol^{-1} ; TCP = 197.5 g mol^{-1}]

- A 47.6%
- **B** 49.4%
- **C** 51.2%
- ☑ **D** 92.9%

(Total for Question 15 = 1 mark)

- **16** Which of the following contains a dative covalent bond?
 - \square A N_2
 - \square **B** NH₃
 - \square C NH₂

(Total for Question 16 = 1 mark)

- 17 If the price of one tonne (1000 kg) of sulfur, S, is £160, what is the cost (to the nearest pound) of the sulfur needed to make one tonne of sulfuric acid, H₂SO₄?

 - B £98

(Total for Question 17 = 1 mark)

18 Potassium combines with iodine to form potassium iodide.

Which of the following describes the bonding in the three substances?

 \times A

 \bowtie B

X C

 \boxtimes D

Potassium	lodine	Potassium iodide
ionic	covalent	ionic
metallic	ionic	covalent
covalent	covalent	ionic
metallic	covalent	ionic

(Total for Question 18 = 1 mark)

Use this space for any rough working. Anything you write in this space will gain no credit.

19 Which of the following does **not** represent the structure of the compound 2-methylpent-2-ene?

$$\overset{\mathsf{CH}_3}{ \overset{|}{\subset}} \overset{\mathsf{CH}_3}{\overset{|}{\subset}} \mathsf{CH} \overset{-}{\longrightarrow} \mathsf{CH}_2 \overset{-}{\longrightarrow} \mathsf{CH}_3$$

$$\begin{tabular}{lll} CH_3 & CH_3 \\ & & | & | & | \\ \hline \hline M & $CH_2-CH=C$ \\ & & | \\ & & CH_3 \\ \hline \end{tabular}$$

(Total for Question 19 = 1 mark)

20 Ions with the same electronic configuration are said to be **isoelectronic**.

Which of the following compounds is made up of isoelectronic ions?

- B CaBr₂
- ☑ C Na₂O
- D LiF

(Total for Question 20 = 1 mark)

TOTAL FOR SECTION A = 20 MARKS

SECTION B

		Answer ALL the questions. Write your answers in the spaces provi	ided.
21	Crude		
	(a) N	ame the process by which the hydrocarbons in crude oil are separated.	(1)
*******	(b) Th	e alkane X is composed of straight-chain molecules, each with nine carbo	n atoms.
	(i)	Give the molecular formula of X .	(1)
	(ii	Y is a branched-chain isomer of X . Y has eight carbon atoms in a straight-chain with one methyl group as a	side-chain.
		Draw the skeletal formula of one possible structure for Y .	
		Give the name of the structure that you have drawn.	(2)
Ske	eletal f	ormula:	(2)
Na	me:		

(c)	A reaction called cracking occurs when the alkane pentadecane, $C_{15}H_{32}$, is heated in the presence of a catalyst.	
	(i) Give an equation to show the cracking of one molecule of $C_{15}H_{32}$ to form one molecule of ethene and a molecule of one other product. State symbols are not required.	(1)
	(ii) In practice, cracking pentadecane forms a large number of products. Suggest why this is so.	(1)
(d)	In the petroleum industry, some straight-chain alkanes are processed to form cyclic hydrocarbons. When octane is processed, each molecule of octane produces one molecule of a cyclic hydrocarbon, C ₈ H ₁₂ , and three molecules of hydrogen as the only products. (i) Complete the skeletal formula of one of the possible cyclic hydrocarbons.	(1)
	(ii) Suggest why the petroleum industry processes straight-chain alkanes to form cyclic hydrocarbons.	(1)
	(Total for Question 21 = 8 ma	rks)

- **22** For some reactions, the enthalpy change can be determined by experiment.
 - (a) Define the term **enthalpy change of reaction**.

(2)

(b) An equation for the reaction between the two solids ammonium thiocyanate, NH₄CNS, and barium hydroxide, Ba(OH)₂, is shown below.

$$2NH_4CNS(s) \ + \ Ba(OH)_2(s) \ \rightarrow \ Ba(CNS)_2(s) \ + \ 2H_2O(I) \ + \ 2NH_3(g)$$

The following apparatus was set up in order to determine the enthalpy change for the reaction.

In the experiment, 15.22 g of NH_4CNS was reacted with an excess of $Ba(OH)_2$. The reaction absorbed heat energy from the surroundings. The temperature of the 100.0 g of water fell from 22.0°C to 16.5°C.

(i) Calculate the heat energy absorbed, in joules, during the reaction.

Use the equation

Heat energy absorbed (J) = mass of water \times 4.2 \times temperature change

(1)

(ii) Calculate the number of moles of NH₄CNS used in the experiment.

(1)

(iii) Calculate the enthalpy change of the reaction, in kJ mol⁻¹, to **two** significant figures. Include a sign in your answer.

$$2NH_4CNS(s) \ + \ Ba(OH)_2(s) \ \rightarrow \ Ba(CNS)_2(s) \ + \ 2H_2O(I) \ + \ 2NH_3(g)$$

(3)

(i)	What is meant by the term mean bond enthalpy ?	
(1)	what is meant by the term mean bond enthalpy :	(2)
(ii)	Describe the bonding in a C—C double bond in terms of the different ways in which the orbitals overlap.	
	You may draw a diagram if you wish.	
		(2)
e for o	diagram:	

(iii) Suggest why the mean bond enthalpy of a C—C bond is less than twice the mean bond enthalpy of a C—C bond.

(1)

(iv) Use the mean bond enthalpy data in the table, and the equation given below, to calculate a value for the standard enthalpy change of combustion of propene.

(3)

Bond	Mean bond enthalpy / kJ mol ⁻¹
C=C	612
C—C	347
С—Н	413
0=0	498
C=O	805
О—Н	464

Answer = kJ mol⁻¹

*(v)	The Data Booklet value for the standard enthalpy change of copropene is –2058 kJ mol ⁻¹ .	ombustion of
	Explain why the value calculated in (c)(iv) is less exothermic the Booklet value.	nan the Data (2)
	(Total for Ques	tion 22 = 17 marks)

- 23 Iodine monochloride, ICI, is an interhalogen compound. Molecules of iodine monochloride have a permanent dipole. Alkenes react with ICI, under suitable conditions, in a similar way to the reaction of alkenes with hydrogen chloride, HCI.
 - (a) Propene reacts with ICl to form two possible organic products. One of these products is 2-chloro-1-iodopropane.
 - (i) Complete the mechanism below, by adding curly arrows and the intermediate species.

(3)

(ii) Classify the type and mechanism for the reaction in (a)(i).

(2)

(iii) Draw the structure of the other possible organic product of the reaction of propene with ICl.

(1)

of t	ethane reacts with ICl, under suitable conditions, to form many products. Two these products are iodomethane and hydrogen chloride. e reaction between methane and ICl is similar to that between methane and orine, Cl ₂ .	
(i)	Suggest the essential condition needed for this reaction.	(1)
*(ii)	The mechanism for the reaction between methane and ICI involves three stages. One of these is the third and final stage, called termination.	
	Describe the mechanism of the reaction to form iodomethane and hydrogen chloride.	
	In your answer, include:	
	the type of reaction and mechanism	
	the type of bond fission occurring	
	• the name and equation for the first stage of the mechanism	
	• the name and equations for the second stage of the mechanism	
	one equation for a termination step	
	Curly (half-) arrows and state symbols are not required in your equations.	(7)
Type of rea	action and mechanism	
Type of bo	ond fission occurring	

Total for Overtion 22 14 montes)
Total for Question 23 = 14 marks)

(i) Explain how gaseous atoms of rubidium are ionized in a mass spectrometer. (ii) In a sample of rubidium, the isotope ⁸⁵ Rb has an abundance 2.5 times greater than that of ⁸⁷ Rb. Calculate the relative atomic mass of rubidium in this sample. Give your answer to one decimal place.) Complete the table below.		(3)
neutron electron State, in terms of the sub-atomic particles present, the meaning of the term isotopes . (2) The element rubidium exists as the isotopes ⁸⁵ Rb and ⁸⁷ Rb. (i) Explain how gaseous atoms of rubidium are ionized in a mass spectrometer. (2) (ii) In a sample of rubidium, the isotope ⁸⁵ Rb has an abundance 2.5 times greater than that of ⁸⁷ Rb. Calculate the relative atomic mass of rubidium in this sample. Give your answer to one decimal place.	Sub-atomic particle	Relative mass	Relative charge
electron b) State, in terms of the sub-atomic particles present, the meaning of the term isotopes . (2) c) The element rubidium exists as the isotopes ⁸⁵ Rb and ⁸⁷ Rb. (i) Explain how gaseous atoms of rubidium are ionized in a mass spectrometer. (2) (ii) In a sample of rubidium, the isotope ⁸⁵ Rb has an abundance 2.5 times greater than that of ⁸⁷ Rb. Calculate the relative atomic mass of rubidium in this sample. Give your answer to one decimal place.	proton		
(2) State, in terms of the sub-atomic particles present, the meaning of the term isotopes . (2) The element rubidium exists as the isotopes ⁸⁵ Rb and ⁸⁷ Rb. (i) Explain how gaseous atoms of rubidium are ionized in a mass spectrometer. (2) (ii) In a sample of rubidium, the isotope ⁸⁵ Rb has an abundance 2.5 times greater than that of ⁸⁷ Rb. Calculate the relative atomic mass of rubidium in this sample. Give your answer to one decimal place.	neutron		
(2) The element rubidium exists as the isotopes ⁸⁵ Rb and ⁸⁷ Rb. (i) Explain how gaseous atoms of rubidium are ionized in a mass spectrometer. (2) (ii) In a sample of rubidium, the isotope ⁸⁵ Rb has an abundance 2.5 times greater than that of ⁸⁷ Rb. Calculate the relative atomic mass of rubidium in this sample. Give your answer to one decimal place.	electron		
than that of ⁸⁷ Rb. Calculate the relative atomic mass of rubidium in this sample. Give your answer to one decimal place.			
	(i) Explain flow gascous atom.	s of rubidium are ionized in a	
	(ii) In a sample of rubidium, th than that of ⁸⁷ Rb. Calculate the relative atom	e isotope ⁸⁵ Rb has an abundar	nce 2.5 times greater
	(ii) In a sample of rubidium, th than that of ⁸⁷ Rb. Calculate the relative atom	e isotope ⁸⁵ Rb has an abundar	nce 2.5 times greater
	(ii) In a sample of rubidium, th than that of ⁸⁷ Rb. Calculate the relative atom	e isotope ⁸⁵ Rb has an abundar	nce 2.5 times greater
	(ii) In a sample of rubidium, th than that of ⁸⁷ Rb. Calculate the relative atom	e isotope ⁸⁵ Rb has an abundar	nce 2.5 times greater
	(ii) In a sample of rubidium, th than that of ⁸⁷ Rb. Calculate the relative atom	e isotope ⁸⁵ Rb has an abundar	nce 2.5 times greater

(d) The diagram below illustrates a model of the metallic bonding in rubidium.

Write appropriate labels in the two empty boxes in order to complete the diagram.

(2)

(Total for Question 24 = 12 marks)

25	lonizat	ion energies pro	vide evidence f	or the arrangeme	ent of electrons	s in atoms.	
	(a) (i) Write an equation, including state symbols, to show the second ionization energy of magnesium.						
1	*(ii)	Give two reason than the first ior	is why the seco nization energy	nd ionization end of magnesium.	ergy of magnes	sium is greater	(2)
2							
	(iii) Complete the table by suggesting a value for the third ionization energy of magnesium.						
	loniza	tion number	First	Second	Third	Fourth	Fifth

lonization number	First	Second	Third	Fourth	Fifth
lonization energy / kJ mol ⁻¹	738	1450		10 500	13 600

(b) (i)	Give the electronic configurations of phosphorus and of sulfur in s, p and d notation.	(2)
Phosphor	us (atomic number 15)	
Sulfur (ato	omic number 16)	
(ii)	By reference to your answer in (b)(i), explain why the first ionization energy of sulfur is lower than that of phosphorus.	
		(2)
	(Total for Question 25 = 9 ma	rks)
	TOTAL FOR SECTION B = 60 MAI	RKS

TOTAL FOR SECTION B = 60 MARKS
TOTAL FOR PAPER = 80 MARKS

4	3
2	Ξ
9	2
2	5
ī	í
J	_
Ċ)
0	ر
Lahla	2
-	
۳,	2
١,)
١,)
١,)
٠,)
Pariodic -	
Pariodic -	
١,	

0 (8)	(78) 4.0 He helium 2	20.2 Ne neon 10	39.9 Ar argon 18	83.8	Krypton 36	131.3 X	xenon 54	[222]	Rn radon 86	D
7	(77)	19.0 F fluorine 9	35.5 Cl chlorine 17	79.9	Br bromine 35	126.9	iodine 53	[210]	At astatine 85	Elements with atomic numbers 112-116 have been reported but not fully authenticated
9	(16)	16.0 O oxygen 8	32.1 S sulfur 16	79.0	Selenium 34	127.6 T e	tellurium 52	[509]	Po polonium 84	116 have b
Ω	(15)	14.0 N nitrogen	31.0 P	74.9	AS arsenic 33	121.8 Sh	antimony 51	209.0	Bi bismuth 83	tomic numbers 112-116 hav but not fully authenticated
4	(14)	12.0 C carbon 6	28.1 Si silicon 14	72.6	Ge germanium 32	118.7 Sn	tin 20	207.2	Pb tead 82	atomic nu but not f
m	(13)	10.8 B boron 5	27.0 Al aluminium 13	2.69	Ga gallium 31	114.8	indium 49	204.4	T thallium 81	nents with
	,	3	(12)	65.4	Zn zinc 30	112.4	cadmium 48	200.6	Hg mercury 80	Elen
			(11)	63.5	Cu copper 29	107.9	silver 47	197.0	Au gold 79	Rg roentgenium 111
			(10)	58.7	nickel 28	106.4 Pd	palladium 46	195.1	Pt platinum 78	Ds damstadtium 110
			(6)	58.9	Co cobalt 27	102.9 Rh	rhodium 45	192.2	lr iridium 77	[268] [271] [272]
	1.0 エ hydrogen		(8)	55.8	Fe iron 26	101.1 R1	ruthenium 44	190.2	Os osmium 76	[277] Hs hassium 108
	-		0	54.9	Mn manganese 25	[98] T c	technetium 43	186.2	Re rhenium 75	[264] Bh bohrium 107
		mass bol number	(9)	52.0	Cr Mn chromium manganese 24 25	95.9	molybdenum technetium ruthenium 42 44	183.8	W tungsten 74	Db Sg dubnium seaborgium 105
	Key	relative atomic mass atomic symbol name atomic (proton) number	(5)	50.9	V vanadium 23	92.9 Nh	niobium 41	180.9	Ta tantalum 73	[262] Db dubnium 105
		relati ato	(4)	47.9	Ti titanium 22	91.2 7r	zirconium 40	178.5	Hf hafnium 72	Rf nutherfordium 104
		7	(3)	45.0	Sc scandium 21	88.9	yttrium 39	138.9	La* lanthanum 57	[227] Ac* actinium 89
2	(2)	9.0 Be beryllium 4	24.3 Mg magnesium 12	40.1	Ca calcium 20	87.6 Sr	strontium 38	137.3	Ba barium 56	[226] Ra radium 88
-	(1)	6.9 Li lithium 3	23.0 Na sodium 11	39.1	K potassium 19	85.5 Rh	rubidium 37	132.9	Cs caesium 55	[223] Fr francium 87

140	141	144	[147]	150	152			163	165	167	169	173	
g	P	P	Pm	Sm	Eu	В	ТР	ρ	운	ᆸ	T	ХÞ	3
cerium	praseodymium	neodymium	promethium	samarium	europium	90		dysprosium	holmium	erbium	thulium	ytterbium	=
28	29	09	61	62	63			99	29	89	69	70	
													Ш
232	[231]	238	[237]	[242]	[243]	[247]	[245]	[251]	[254]	[223]	[526]	[254]	[257]
드	Pa	>	å	Pu	Am	5	쑮	ຽ	Es	Fm	ΡW	ž	۲
thorium	protactinium	uranium	neptunium	plutonium	americium	anium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium
06	91	92	93	94	95	96	4	86	66	100	101	102	103

* Lanthanide series * Actinide series