Wielowymiarowa Analiza Danych

Adam Matuszczyk

28 06 2019

Wstęp

#Nieprzypadkowo wybrałem dane, których użyłem do zaliczenia przedmiotu na MSAD 2018/2019 Analiza współzależności zjawisk. Analiza regresji liniowej rządzi się swoimi bardzo restrykcyjnymi warunkami, których spełnienie w tym wypadku było bardzo trudne do spełnienia. Chciałem jak drzewko, które samo reguluje warunki i inne elementy poradzi sobie z tym problemem. Dane pochodzą ze strony: https://www.kaggle.com/mirichoi0218/insurance#

```
library("tidyverse")
library("rpart.plot")
library("knitr")
```

```
d <- read_csv("insurance.csv")
d <- d %>%
  mutate_if(is.character, as.factor)
summary(d)
```

```
##
                                       bmi
                                                      children
                                                                    smoker
         age
##
           :18.00
                    female:662
   Min.
                                  Min.
                                          :15.96
                                                   Min.
                                                          :0.000
                                                                    no:1064
##
    1st Qu.:27.00
                    male :676
                                  1st Qu.:26.30
                                                   1st Qu.:0.000
                                                                    yes: 274
   Median :39.00
                                  Median :30.40
                                                   Median :1.000
##
##
    Mean
           :39.21
                                  Mean
                                          :30.66
                                                   Mean
                                                          :1.095
   3rd Qu.:51.00
##
                                  3rd Qu.:34.69
                                                   3rd Qu.:2.000
##
           :64.00
                                  Max.
                                          :53.13
                                                   Max.
                                                          :5.000
##
          region
                        charges
##
    northeast:324
                            : 1122
                    Min.
##
                    1st Qu.: 4740
    northwest:325
    southeast:364
                    Median: 9382
##
    southwest:325
                    Mean
                            :13270
##
                    3rd Qu.:16640
##
                    Max.
                            :63770
```

1.0 Budowa drzewka regresyjnego

```
m_tree <- rpart(charges ~ .,d)
#m_tree
rpart.plot(m_tree)</pre>
```


Ze względu na nie dość czytelne i trudne do zinterpretowania informacje z węzłów z funkcja wykładniczą postanowiłem przedstawiac w dalszej analizie zmienną objaśnianą w postaci log10.

```
m_tree <- rpart(log10(charges) ~ .,d) #zmienna wyjaśniana może być logarytmowana
#m_tree
rpart.plot(m_tree)</pre>
```


Z naszego drzewka mozna wyciagnąć wstepne dane, że 10^4 wynoszą średnie koszta leczenia gdy nie masz innych danych i chciałbys poprzestać tylko na informacji dla konkretnego klienta. Najważniejszą informacją z pierwszego węzła jest nałóg palania papierosów. Na tym poziomie widać również, że jeśli nie palisz to bmi nie ma znaczenia, a jeśli jesteś palący ma to znaczenie dla dalszych kosztów leczenia. Dla niepalących istotną informacją jest wiek, że jeści jesteś młodszy niż 33 lata to średnia kosztów leczenia wynosi 10^3 ,5.

2.0 Sprawdzenie stopnia skomplikowania drzewka

2.1 Sprawdzenie podziału drzewka przy danych domyślnych

printcp(m_tree)

```
##
## Regression tree:
## rpart(formula = log10(charges) ~ ., data = d)
##
## Variables actually used in tree construction:
##
  [1] age
                bmi
                         children smoker
##
## Root node error: 213.22/1338 = 0.15936
##
## n= 1338
##
##
           CP nsplit rel error xerror
                                            xstd
```

```
## 1 0.442898
                       1.00000 1.00208 0.031939
## 2 0.254962
                       0.55710 0.55834 0.020305
                   1
## 3 0.041125
                   2 0.30214 0.31046 0.018073
## 4 0.032810
                      0.26102 0.26319 0.017919
                  3
## 5 0.028337
                   4
                       0.22821 0.24968 0.017423
## 6 0.012461
                   5
                      0.19987 0.21087 0.017514
## 7 0.010000
                      0.18741 0.19553 0.016540
min(m_tree$cptable[,"xerror"])
```

```
## [1] 0.1955274
```

Z danych domyślnych wynika, że najniższą wartość błędu poprawności krzyżowej (xerror) mamy przy wartości parametru złożoności (cp) na poziomie 0,01, dlatego przystapię do dalszej analizy podziału drzewka ze zmieniąną wartością cp=0.0001

2.2 Podział drzewka przy wartości cp= 0,0001

```
#?rpart.control
set.seed(1)
m_tree <- rpart(log10(charges) ~ .,d, control = rpart.control(cp = 0.0001))
#rpart.plot(m_tree)
printcp(m_tree)

##
## Regression tree:
## rpart(formula = log10(charges) ~ ., data = d, control = rpart.control(cp = 1e-04))</pre>
```

```
## Variables actually used in tree construction:
## [1] age
                bmi
                         children region
                                                    smoker
## Root node error: 213.22/1338 = 0.15936
##
## n= 1338
##
              CP nsplit rel error xerror
##
                                              xstd
## 1 0.44289785
                         1.00000 1.00301 0.031967
## 2
     0.25496176
                         0.55710 0.55868 0.020309
                      1
## 3 0.04112461
                     2
                         0.30214 0.31237 0.018099
## 4 0.03280979
                     3
                         0.26102 0.26699 0.017764
## 5 0.02833662
                         0.22821 0.25780 0.018599
                     5
                         0.19987 0.21817 0.018296
## 6
     0.01246139
## 7
     0.00528835
                     6
                         0.18741 0.20034 0.017385
                     7
## 8 0.00479175
                         0.18212 0.19518 0.017388
     0.00444849
                     8
                         0.17733 0.19390 0.017580
## 9
## 10 0.00434874
                     9
                          0.17288 0.19043 0.017389
                     10
## 11 0.00276466
                         0.16853 0.18537 0.017127
## 12 0.00267414
                     12
                          0.16300 0.18405 0.017540
## 13 0.00210557
                         0.16033 0.18342 0.017758
                     13
## 14 0.00200919
                     14
                         0.15822 0.18456 0.018216
## 15 0.00199696
                     15
                         0.15621 0.18448 0.018668
## 16 0.00169988
                     16
                         0.15422 0.18503 0.018882
## 17 0.00150340
                     17
                         0.15252 0.18357 0.019063
```

```
## 18 0.00144601
                          0.15101 0.18256 0.019033
## 19 0.00135736
                     19
                          0.14957 0.18216 0.019098
## 20 0.00135637
                     20
                          0.14821 0.18116 0.018903
                          0.14414 0.18052 0.018906
## 21 0.00130694
                     23
## 22 0.00118269
                     24
                          0.14283 0.18002 0.018913
                     25
                          0.14165 0.18074 0.019155
## 23 0.00106361
## 24 0.00103429
                          0.14059 0.18013 0.019007
                          0.13852 0.18065 0.019002
## 25 0.00096877
                     28
## 26 0.00078513
                     29
                          0.13755 0.18096 0.019041
                     30
## 27 0.00073828
                          0.13676 0.18270 0.019292
## 28 0.00072744
                     31
                          0.13603 0.18463 0.019272
## 29 0.00067238
                     32
                          0.13530 0.18412 0.019228
## 30 0.00067231
                     33
                          0.13463 0.18387 0.019228
                     35
                          0.13328 0.18384 0.019193
## 31 0.00063895
## 32 0.00053250
                     37
                          0.13200 0.18381 0.019159
## 33 0.00049475
                     38
                          0.13147 0.18252 0.019119
## 34 0.00047357
                     39
                          0.13098 0.18302 0.019160
## 35 0.00045970
                     40
                          0.13050 0.18322 0.019164
## 36 0.00045491
                          0.13004 0.18270 0.019109
                     41
## 37 0.00041706
                     42
                          0.12959 0.18388 0.019198
## 38 0.00040508
                     43
                          0.12917 0.18513 0.019338
## 39 0.00038075
                          0.12877 0.18533 0.019321
## 40 0.00035034
                     45
                          0.12839 0.18641 0.019401
## 41 0.00034455
                     47
                          0.12768 0.18609 0.019358
                     48
## 42 0.00032362
                          0.12734 0.18702 0.019508
## 43 0.00031765
                     49
                          0.12702 0.18710 0.019508
## 44 0.00030471
                     54
                          0.12543 0.18675 0.019470
                          0.12512 0.18660 0.019472
## 45 0.00030213
                     55
## 46 0.00026802
                     56
                          0.12482 0.18756 0.019508
## 47 0.00023989
                     57
                          0.12455 0.18757 0.019530
## 48 0.00022917
                     60
                          0.12383 0.18792 0.019532
## 49 0.00020628
                     63
                          0.12315 0.18778 0.019525
## 50 0.00019300
                     64
                          0.12294 0.18792 0.019557
## 51 0.00017437
                          0.12275 0.18800 0.019582
                     65
## 52 0.00015119
                     68
                          0.12222 0.18832 0.019543
## 53 0.00015029
                     69
                          0.12207 0.18855 0.019539
## 54 0.00013674
                     70
                          0.12192 0.18821 0.019526
## 55 0.00013509
                     71
                          0.12179 0.18811 0.019524
## 56 0.00013189
                     72
                          0.12165 0.18810 0.019525
## 57 0.00012311
                     73
                          0.12152 0.18845 0.019557
## 58 0.00011900
                     74
                          0.12140 0.18823 0.019553
## 59 0.00011817
                     75
                          0.12128 0.18823 0.019553
                          0.12116 0.18834 0.019552
## 60 0.00011549
                     76
                     77
## 61 0.00010759
                          0.12104 0.18838 0.019574
                     78
                          0.12093 0.18844 0.019575
## 62 0.00010502
                     79
## 63 0.00010201
                          0.12083 0.18832 0.019575
## 64 0.00010072
                     80
                          0.12073 0.18839 0.019576
## 65 0.00010000
                          0.12063 0.18840 0.019576
                     81
```

przycinamy drzewko dla parametru cp=0.002 ze względu na najniższą wartość błędu poprawności krzyżowej xerror. poniżej tej wartości dochodzi do tzv zjawiska overfitted.

2.3 Przycinam drzewko przy wartości cp= 0,002

```
m_tree <- prune(m_tree, cp = 0.002)
rpart.plot(m_tree)</pre>
```


Mamy ciekawe wnioski i dwa narzucające sie modele postepowania. Czy lepiej byc palącym i przy okazji mieć bmi>=30? Wtedy praktycznie nie spełniając żadnych dodatkowych warunków przy średnich kosztach leczenia na poziomie 10^4,6 możemy sobie żyć w spokoju, ale chyba szczęsliwi przynajmniej o smak np. smalców lub boczków na pszennym pieczywie. Czy być mężczyzną na dododatek niezbyt starym bo młodszym niż.23lata jeszcze bez dzieci i nie palić!!! Zostawiam do przemyslenia.

Zauważmy, że zmienna age wielokrotnie wchodzi w interakcje w różnych węzłach i w wielu wypadkach w gałęziach przy różnych innych parametrach jest istotna

3.0 Sprawdzane dokładności prognozy

Aby zbadać sprawdzalność drzewka utworzę z danych dwa zbiory train oraz test. Do zbioru train zostanie wylosowanych 70%danych, aby każdowo otrzymywać podobny zbiór użyłem funkcji set.seed().

```
#budowa modelu treningowego i testowego
set.seed(1)
ind <- sample(1:nrow(d), 0.7*nrow(d))
train <- slice(d, ind)
test <- slice(d, -ind)</pre>
```

wykonujemy analizę dla zbioru treningowego

```
m_tree <- rpart(log10(charges) ~ ., train)
#m_tree
rpart.plot(m_tree)</pre>
```


printcp(m_tree)

```
## Regression tree:
## rpart(formula = log10(charges) ~ ., data = train)
## Variables actually used in tree construction:
## [1] age
                bmi
                         children smoker
##
## Root node error: 145.99/936 = 0.15598
##
## n= 936
##
##
           CP nsplit rel error xerror
## 1 0.451013
                       1.00000 1.00294 0.038570
                   0
## 2 0.254752
                       0.54899 0.55110 0.023942
## 3 0.055009
                     0.29423 0.30059 0.019287
                   2
## 4 0.028667
                   3
                       0.23923 0.25375 0.021922
## 5 0.020190
                       0.21056 0.21749 0.021495
## 6 0.014094
                   5
                       0.19037 0.19919 0.021222
                   6 0.17628 0.19676 0.021593
## 7 0.013254
```

dopasowujemy wartości cp w celu optymalizacji drzewka zbioru treningowego

```
m_tree <- rpart(log10(charges) ~ ., train, control = rpart.control(cp = 0.0001))</pre>
#m tree
#rpart.plot(m_tree)
#?rpart.control
printcp(m_tree)
## Regression tree:
## rpart(formula = log10(charges) ~ ., data = train, control = rpart.control(cp = 1e-04))
## Variables actually used in tree construction:
               bmi
                         children region
                                                    smoker
##
## Root node error: 145.99/936 = 0.15598
##
## n= 936
##
              CP nsplit rel error xerror
##
## 1 0.45101311
                      0
                          1.00000 1.00468 0.038572
## 2
     0.25475230
                          0.54899 0.55125 0.023914
     0.05500860
## 3
                          0.29423 0.30490 0.019778
     0.02866659
                          0.23923 0.25388 0.022031
## 5 0.02018976
                      4
                         0.21056 0.22414 0.022197
                         0.19037 0.20212 0.020974
## 6 0.01409411
## 7 0.01325355
                     6
                          0.17628 0.19881 0.021167
## 8
     0.00570527
                     7
                          0.16302 0.18966 0.020960
                     8
                         0.15732 0.17810 0.019227
## 9 0.00539593
## 10 0.00481367
                     9
                          0.15192 0.17378 0.019114
                          0.14711 0.16975 0.019066
## 11 0.00397360
                     10
## 12 0.00315844
                     11
                          0.14313 0.16845 0.019422
                     12
                          0.13998 0.16476 0.019483
## 13 0.00254194
## 14 0.00179553
                     13
                          0.13743 0.16582 0.019552
## 15 0.00162380
                     14
                          0.13564 0.17413 0.021205
                     15
                          0.13401 0.17270 0.020963
## 16 0.00148963
## 17 0.00125920
                     19
                          0.12806 0.17259 0.021311
## 18 0.00125284
                     21
                          0.12554 0.17197 0.021234
## 19 0.00104439
                     22
                          0.12428 0.17172 0.021294
## 20 0.00092544
                     23
                          0.12324 0.17456 0.021821
## 21 0.00089991
                          0.12231 0.17534 0.021891
## 22 0.00089709
                     25
                          0.12141 0.17492 0.021892
## 23 0.00075949
                     26
                          0.12052 0.17567 0.022118
                     28
## 24 0.00063507
                          0.11900 0.17391 0.021954
## 25 0.00055323
                     29
                          0.11836 0.17308 0.021810
## 26 0.00047867
                     30
                          0.11781 0.17420 0.022452
## 27 0.00045871
                     31
                          0.11733 0.17465 0.022494
## 28 0.00043051
                     33
                          0.11641 0.17528 0.022518
## 29 0.00041062
                     34
                          0.11598 0.17642 0.022539
                     35
## 30 0.00040923
                          0.11557 0.17649 0.022539
## 31 0.00040008
                     36
                         0.11516 0.17649 0.022539
```

```
## 32 0.00037988
                           0.11476 0.17598 0.022537
## 33 0.00037974
                     38
                           0.11438 0.17592 0.022533
## 34 0.00037371
                     39
                           0.11400 0.17543 0.022469
## 35 0.00036741
                           0.11363 0.17525 0.022469
                     40
  36 0.00035987
                     41
                           0.11326 0.17447 0.022461
## 37 0.00032487
                      43
                           0.11254 0.17477 0.022530
## 38 0.00031451
                      44
                           0.11222 0.17399 0.022465
                     45
                           0.11190 0.17409 0.022465
## 39 0.00031431
## 40 0.00031354
                     46
                           0.11159 0.17405 0.022466
                     47
## 41 0.00027113
                           0.11128 0.17397 0.022463
## 42 0.00021116
                     48
                           0.11100 0.17407 0.022486
## 43 0.00020894
                      49
                           0.11079 0.17370 0.022481
## 44 0.00019348
                     50
                           0.11058 0.17363 0.022481
                     51
                           0.11039 0.17395 0.022502
## 45 0.00018863
## 46 0.00018102
                     52
                           0.11020 0.17406 0.022502
## 47 0.00015307
                     53
                           0.11002 0.17414 0.022502
## 48 0.00014642
                     54
                           0.10987 0.17420 0.022501
## 49 0.00012987
                     55
                           0.10972 0.17442 0.022503
## 50 0.00012570
                           0.10959 0.17445 0.022501
                     56
## 51 0.00011911
                     57
                           0.10947 0.17408 0.022476
## 52 0.00011234
                     58
                           0.10935 0.17394 0.022477
## 53 0.00010176
                     59
                           0.10923 0.17407 0.022478
## 54 0.00010000
                           0.10913 0.17427 0.022484
                     60
```

```
m_tree <- prune(m_tree, cp = 0.002)
rpart.plot(m_tree)</pre>
```


Jak widać nasze drzewko treningowe różni się od drzewka z pełnego zbioru danych. Oczywiście wynika to z podziału zbioru gdzie w zbiorze train mam tylko 70% danych

3.1 Predykcja

[1] 5549.625

Podstawiam zbiór testowy

MSE (mean squer error) Średni błąd kwadratowy: zmienna liczona dla zmiennych wykładniczych

```
mean((results$charges_log - results$pred_log)^2)
## [1] 0.03637355
```

RMSE(root mean squer error)błąd średnio kwadratowy dla zmiennych wykładniczych

```
sqrt(mean((results$charges_log - results$pred_log)^2))
## [1] 0.1907185
```

Można powiedzieć, że model myli się o 0,17log10(charges)

```
sqrt(mean((results$charges - results$pred)^2))
```

```
results <- data.frame(charges_log = log10(test$charges), pred_log = pred, charges = test$charges, pred = 10^pred, diff = abs(test$charges - 10^pred))
head(results) %>% round(3) %>% kable
```

diff	pred	charges	$\operatorname{pred}_{-\log}$	charges_log
716.420	17601.344	16884.924	4.246	4.227
371.403	2096.956	1725.552	3.322	3.237
17552.894	4431.577	21984.471	3.647	4.342
1066.606	7473.017	6406.411	3.873	3.807
15822.510	13100.627	28923.137	4.117	4.461
3461.574	24347.152	27808.725	4.386	4.444

Chociaż są wyniki znacznie odbiegające od oczekiwanych jak chociażby pierwszy z tabeli to

model srednio myli sie o ok. 4850\$.