Continuous Random Variables and Uniform

- 1. Determine whether the following statements are true or false. Briefly explain.
 - (a) If X is a continuous random variable and $a \in \mathbb{R}$, then $P(X \leq a) = P(X < a)$.
 - (b) The density function f for any continuous random variable must satisfy $0 \le f(x) \le 1$ for all $x \in \mathbb{R}$.
 - (c) The support of a continuous random variable X is the set of all real numbers x so that P(X = x) > 0.
 - (d) The CDF F for a continuous random variable is an antiderivative for its density function.
 - (e) If X is a continuous random variable with density f and $\epsilon > 0$ is small, then $f(x) \cdot \epsilon \approx P(x \epsilon/2 < X < x + \epsilon/2)$.
- 2. Let X be a continuous random variable with PDF $f_X(x) = 4xe^{-2x^2}$ for x > 0. Find the CDF of X and use it to obtain P(X > 1).
- 3. Let $U \sim \text{Uniform}(-1,1)$. Find the CDF and PDF of U^2 . Is the distribution of U^2 Uniform(0,1)? Why or why not?