17. Аналитично задаване на правоъгълна аксонометрия

Нека $\overline{K}=\{\overline{O},\overline{e}_1,\overline{e}_2,\overline{e}_3\}$ е ортонормирана координатна система. Избираме проекционната равнина π така, че $\overline{O}\in\pi$. Нека спрямо \overline{K} равнината π има координати $\pi^{\overline{K}}[A,B,C,0]$, като $A^2+B^2+C^2=1$, т.е. нормалният вектор $\vec{N}^\pi(A,B,C)\perp\pi$ е единичен $(|\vec{N}^\pi|=1)$. Тъй като

 $U_{\scriptscriptstyle S} \perp \pi$, то $s \parallel \vec{N}^\pi$, откъдето имаме $U_{\scriptscriptstyle S}(A,B,C,0)$.

От $U_x \notin (\overline{Oxy})$ следва, че $C \neq 0$;

От $U_{x} \notin (\overline{Oyz})$ следва, че $A \neq 0$;

От $U_s \notin (\overline{Ozx})$ следва, че $B \neq 0$.

Нека $\psi_{\pi}^{\ U_s}$ е централното (в случая успоредно) проектиране от U_s в π и \bar{M} (x,y,z,t) — $\psi_{\pi}^{\ U_S}$ \to M (x',y',z',t') .

Тъй като $M = \overline{M}U_S \cap \pi$ имаме:

2)
$$M \in \pi \implies (2) Ax' + By' + Cz' = 0$$
.

От (1) и (2) намираме $\lambda(Ax + By + Cz) + \mu(A^2 + B^2 + C^2) = 0$.

Понеже $A^2 + B^2 + C^2 = 1$, можем да изберем $\lambda = 1$, $\mu = -(Ax + By + Cz)$.

Като заместим λ и μ в (1) получаваме:

$$\psi_{\pi}^{U_{S}}:\begin{cases} x'=x-(Ax+By+Cz)A=(1-A^{2})x-ABy-ACz\\ y'=y-(Ax+By+Cz)B=-ABx+(1-B^{2})y-BCz\\ z'=z-(Ax+By+Cz)C=-ACx-BCy+(1-C^{2})z \end{cases}$$
 или

$$\psi_{\pi}^{t/s} : \begin{pmatrix} x' \\ y' \\ z' \\ t' \end{pmatrix} = \begin{pmatrix} 1 - A^2 & -AB & -AC & 0 \\ -BA & 1 - B^2 & -BC & 0 \\ -CA & -CB & 1 - C^2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix}.$$

Означаваме с \overline{E}_i точките за които $\overline{O}\overline{E}_i = \vec{e}_i; i = 1, 2, 3$. Тогава

$$\overline{E}_1(1,0,0,1) \xrightarrow{\psi_{\pi}^{U_S}} E_1(1-A^2,-AB,-AC,1);$$

$$\overline{E}_2(0,1,0,1) \xrightarrow{\psi_{\pi}^{\ell_S}} E_2(-BA,1-B^2,-BC,1);$$

$$\overline{E}_3(0,0,1,1) \xrightarrow{\psi_{\pi}^{U_S}} E_3(-CA, -CB, 1-C^2, 1)$$

Тъй като $\overline{O} \equiv O(0,0,0)$, то векторите $\overrightarrow{e}_i = \overrightarrow{OE}_i$ върху аксонометричните оси $O\overrightarrow{e}_i$ имат координати:

$$\vec{e}_1 = \overrightarrow{OE_1}(1-A^2, -AB, -AC); \quad \vec{e}_2 = \overrightarrow{OE_2}(-AB, 1-B^2, -BC); \quad \vec{e}_3 = \overrightarrow{OE_3}(-AC, -BC, 1-C^2).$$

Тогава коефицентите на изменение са:

$$p = |\vec{e}_1| = \sqrt{(1 - A^2)^2 + (-AB)^2 + (-AC)^2} = \sqrt{1 - 2A^2 + A^4 + A^2B^2 + A^2C^2}$$

$$=\sqrt{1-2A^2+A^2(A^2+B^2+C^2)}=\sqrt{1-A^2}\quad \text{и аналогично}\ \ q=\mid\vec{e}_2\mid=\sqrt{1-B^2}\ ,\ r=\mid\vec{e}_3\mid=\sqrt{1-C^2}\ .$$

Следователно $p=\mid \vec{e}_1\mid =\sqrt{1-A^2} \;,\; q=\mid \vec{e}_2\mid =\sqrt{1-B^2} \;,\; r=\mid \vec{e}_3\mid =\sqrt{1-C^2} \;.$

От тук следва че: $p^2+q^2+r^2=1-A^2+1-B^2+1-C^2=3-(A^2+B^2+C^2)=2$.

За ъглите между аксонометричните оси имаме

$$\begin{split} \cos \sphericalangle(\vec{e}_1,\vec{e}_2) &= \frac{\vec{e}_1\vec{e}_2}{|\vec{e}_1||\vec{e}_2||} = \frac{(1-A^2)(-AB) + (-AB)(1-B^2) + (-AC)(-BC)}{\sqrt{1-A^2}} = \\ &= \frac{-AB(1-A^2+1-B^2-C^2)}{\sqrt{1-A^2}} = \frac{-AB[2-(A^2+B^2+C^2)]}{\sqrt{1-A^2}\sqrt{1-B^2}}, \text{ т.е.} \\ \cos \sphericalangle(\vec{e}_1,\vec{e}_2) &= \frac{-AB}{\sqrt{1-A^2}\sqrt{1-B^2}} \text{ и аналогично} \\ \cos \sphericalangle(\vec{e}_2,\vec{e}_3) &= \frac{-BC}{\sqrt{1-B^2}}\sqrt{1-C^2}}, \quad \cos \sphericalangle(\vec{e}_3,\vec{e}_1) = \frac{-CA}{\sqrt{1-C^2}\sqrt{1-A^2}}. \end{split}$$

Правоъгълна изометрия

В този случай
$$p=q=r$$
, от където следва че $1-A^2=1-B^2=1-C^2\Rightarrow A^2=B^2=C^2$.
 Тъй като $A^2+B^2+C^2=1$, то $A^2=B^2=C^2=\frac{1}{3}$ и $|\vec{e}_i|=p=q=r=\sqrt{1-A^2}=\sqrt{\frac{2}{3}}\approx 0,82$.
 Освен това $A=\pm\frac{1}{\sqrt{3}}, B=\pm\frac{1}{\sqrt{3}}, C=\pm\frac{1}{\sqrt{3}}$.

Нека за определеност
$$A=\frac{1}{\sqrt{3}},\,B=\frac{\varepsilon}{\sqrt{3}}\;(\varepsilon=\pm 1),\,C=\frac{\eta}{\sqrt{3}}\;(\eta=\pm 1)\,.$$

За ъглите между аксонометричните оси имаме:

$$\cos \sphericalangle(\vec{e}_1, \vec{e}_2) = -\frac{\varepsilon/3}{\sqrt{2/3}\sqrt{2/3}} = -\frac{\varepsilon}{2},$$

$$\cos \sphericalangle(\vec{e}_2, \vec{e}_3) = -\frac{\varepsilon\eta}{2}, \quad \cos \sphericalangle(\vec{e}_3, \vec{e}_1) = -\frac{\eta}{2}$$

Най-често се избира $\varepsilon = \eta = 1$, тогава $\sphericalangle(\vec{e}_1, \vec{e}_2) = \sphericalangle(\vec{e}_2, \vec{e}_3) = \sphericalangle(\vec{e}_3, \vec{e}_1) = 120^\circ$.

II.Правоъгълна диметрия

Най-често използваната правоъгълна диметрия е с коефициенти на изменение p=2q=r.

Тогава:
$$\sqrt{1-A^2}=2\sqrt{1-B^2}=\sqrt{1-C^2}$$
, и от $A^2+B^2+C^2=1$ получаваме $A^2=C^2$; $B^2=1-(A^2+C^2)=1-2A^2$. Но $1-A^2=4(1-B^2)$, откъдето намираме, че $1-A^2=8A^2$, т.е. $A^2=C^2=1/9$; $B^2=7/9$.

Така получаваме:
$$|\vec{e}_1| = |\vec{e}_2| = p = r = \sqrt{1 - \frac{1}{9}} = \frac{2\sqrt{2}}{3} \approx 0,94$$
 и $|\vec{e}_2| = q = \frac{1}{2}r = \frac{\sqrt{2}}{3} \approx 0,47$.

Нека
$$A=\frac{1}{3},\,B=arepsilon\,\frac{\sqrt{7}}{3}\,(arepsilon=\pm 1),\,C=\frac{\eta}{3}\,(\eta=\pm 1)$$
. Тогава за ъглите

между аксонометричните оси получаваме:

$$\cos \sphericalangle(\vec{e}_1,\vec{e}_2) = -\frac{\varepsilon\sqrt{7}}{4}; \cos \sphericalangle(\vec{e}_2,\vec{e}_3) = -\frac{\varepsilon\eta\sqrt{7}}{4}; \cos \sphericalangle(\vec{e}_3,\vec{e}_1) = -\frac{\eta}{8};$$

При $\varepsilon = \eta = 1$ тези ъгли са:

$$\sphericalangle(\vec{e}_1,\vec{e}_2) \approx 131^{\circ}25'; \quad \sphericalangle(\vec{e}_2,\vec{e}_3) \approx 131^{\circ}25'; \quad \sphericalangle(\vec{e}_3,\vec{e}_1) \approx 97^{\circ}10.$$

между аксонометричните оси получаваме: $\cos \sphericalangle(\vec{e}_1,\vec{e}_2) = -\frac{\varepsilon\sqrt{7}}{4}; \cos \sphericalangle(\vec{e}_2,\vec{e}_3) = -\frac{\varepsilon\eta\sqrt{7}}{4}; \cos \sphericalangle(\vec{e}_3,\vec{e}_1) = -\frac{\eta}{8}; \qquad \vec{e}_1 \qquad 97^0 \qquad 131^0 \qquad \vec{e}_2 \qquad \vec{e}_3 \qquad \vec{e}_4 \qquad \vec{e}_4 \qquad \vec{e}_4 \qquad \vec{e}_5 \qquad \vec{e}_4 \qquad \vec{e}_5 \qquad \vec{e}_6 \qquad \vec{e}$

Желателно е да получим координатите на точките, които са аксонометрични проекции, спрямо ортонормирана координатна система в проекционната равнина π .

Обикновено се приема проекционната равнина (екрана) да съвпада с равнината \overline{Oxy} .

За тази цел след като получим аксонометричния образ в равнината π , завъртаме π така, че да съвпадне с \overline{Oxv} , като това осъществяваме по следния начин:

Избираме ортонормирана координатна система $K' = \overline{O}\vec{e}_1'\vec{e}_2'\vec{e}_3'$ такава, че векторите \vec{e}_1', \vec{e}_2' да са компланарни с π , т.е. $\vec{e}_1' \parallel \pi$, $\vec{e}_2' \parallel \pi$, а $\vec{e}_3' = \vec{N}^\pi(A, B, C)$.

Нека $\vec{e}_2'(u,v,w)$, като $|\vec{e}_2'|=1$, т.е. $u^2+v^2+w^2=1$. От условието $\vec{e}_2' \parallel \pi$ имаме Au+Bv+Cw=0. Тъй като K' е ортонормирана координатна система, то $\vec{e}_1'=\vec{e}_2'\times\vec{e}_3'$ и следователно $\vec{e}_1'\begin{pmatrix} v & w \\ B & C \end{pmatrix}, \begin{vmatrix} w & u \\ C & A \end{pmatrix}, \begin{vmatrix} u & v \\ A & B \end{pmatrix}$ т.е. $\vec{e}_1'(Cv-Bw,Aw-Cu,Bu-Av)$.

Ортогоналната трансформация φ , която довежда $K' = \overline{O}\overline{e}_1'\overline{e}_2'\overline{e}_3'$ в $\overline{K} = \overline{O}\overline{e}_1\overline{e}_2\overline{e}_3$, ще довежда равнината $\pi \equiv (\overline{O}\overline{e}_1'\overline{e}_2')$ в равнината $(\overline{O}\overline{e}_1\overline{e}_2) \equiv (\overline{O}\overline{x}\overline{y})$, т.е. $\varphi(\pi) = (\overline{O}\overline{e}_1\overline{e}_2)$. От формулите за смяна на ортонормирани координатни системи (в нехомогенни координати спрямо \overline{K}) имаме:

$$\varphi: \begin{pmatrix} x^* \\ y \\ z^* \end{pmatrix} = \begin{pmatrix} Cv - Bw & Aw - Cu & Bu - Av \\ u & v & w \\ A & B & C \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

В хомогенни координати трансформацията φ се представя чрез:

$$\varphi: \begin{pmatrix} x^* \\ y^* \\ z^* \\ t^* \end{pmatrix} = \begin{pmatrix} Cv - Bw & Aw - Cu & Bu - Av & 0 \\ u & v & w & 0 \\ A & B & C & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix}.$$

С трансформацията $\theta = \varphi \psi_{\pi}^{U_s}$ намираме координатите на аксонометричните проекции на точките в равнината $\pi(\overline{Oxy})$:

$$\theta: \begin{pmatrix} x' \\ y' \\ z' \\ t' \end{pmatrix} = \begin{pmatrix} Cv - Bw & Aw - Cu & Bu - Av & 0 \\ u & v & w & 0 \\ A & B & C & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 - A^2 & -AB & -AC & 0 \\ -AB & 1 - B^2 & -BC & 0 \\ -AC & -BC & 1 - C^2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix}$$

Като използваме, че $A^2 + B^2 + C^2 = 1$, Au + Bv + Cw = 0 получаваме:

$$\theta: \begin{pmatrix} x' \\ y' \\ z' \\ t' \end{pmatrix} = \begin{pmatrix} Cv - Bw \ . & Aw - Cu & Bu - Av & 0 \\ u & v & w & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix}.$$

Тъй като $\vec{e}_3 \parallel \pi, \mid \vec{e}_3 \mid \neq 0$, можем да изберем $\vec{e}_2' = \frac{\vec{e}_3}{\mid \vec{e}_3 \mid} \left(-\frac{AC}{\sqrt{1-C^2}}, -\frac{BC}{\sqrt{1-C^2}}, \frac{1-C^2}{\sqrt{1-C^2}} \right)$.

Тогава $\vec{e}_1' = \left(-\frac{B}{\sqrt{1-C^2}}, \frac{A}{\sqrt{1-C^2}}, 0\right)$. Така окончателно получаваме за θ :

$$\theta: \begin{pmatrix} x' \\ y' \\ z' \\ t' \end{pmatrix} = \begin{pmatrix} -\frac{B}{\sqrt{1-C^2}} & \frac{A}{\sqrt{1-C^2}} & 0 & 0 \\ -\frac{AC}{\sqrt{1-C^2}} & -\frac{BC}{\sqrt{1-C^2}} & \frac{1-C^2}{\sqrt{1-C^2}} & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix}.$$

Така например за правоъгълна изометрия с $\varepsilon = \eta = 1$, ще имаме

$$\theta: \begin{pmatrix} x' \\ y' \\ z' \\ t' \end{pmatrix} = \begin{pmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 & 0 \\ -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} & \frac{\sqrt{2}}{\sqrt{3}} & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix}.$$

За намиране на първата вторична проекция използваме същата матрица, като държим сметка, че за точката $\bar{M}(x,y,z,t)$ точката $\bar{M}_1(x,y,0,t)$ е ортогонална проекция в равнината $(\bar{O}\overline{e_1}\overline{e_2})$.