States, Actions, and Policies

Decision Under Uncertainty

Guillaume Lozenguez

@imt-lille-douai.fr

IMT Lille Douai École Mines-Télécom IMT-Université de Lille

Acting over a dynamic system: the agent

Rarely deterministic, Mostly uncertain

Rational Agent

"I act, therefore I am."

▶ My actions have an effect over the world **AND** I have the choice to act or not.

```
cf. "BullShit Jobs" - David Graeber (2019) (p.132-133 in French version)
```

Deliberativ Architecture - BDI:

- **Believe**: refers to the knowledge of the agent
- **Desire**: The agent's goals (classically states to reach)
- Intention: the succession of actions to perform oriented toward the goals

Acting over a system : formally

Markov Chain (Andreï Markov 1856-1922)

A tuple: $\langle States\ (S),\ Transitions\ (T) \rangle$

- **States**: set of configurations defining the studied system
- ▶ **Transitions**: Describe the possible evolution of the system state

$$T(s_t,\ s_{t+1}) = P(s_{t+1}|s_t)$$

Vocabulary Parrenthesis: Hidden Markov Chain

> The system state is not directly observable.

Acting over a system : formally

Impact of the actions

► **Actions**: finite set of possible actions to perform

Updated Transition function:

The probabilistic evolution depends on the performed action.

 $T(s^t,\ a,\ s^{t+1})$ return the probability to reach s^{t+1} by doing a from s^t :

$$T(s^t,\ a,\ s^{t+1}) = P(s^{t+1}|s^t,a)$$

Multi-variable system

State and Action space:

> Cartesian produc over State and Action variables

Multi-variable Transition function:

The probabilistic evolution depends on the performed action.

$$T:S imes A imes S o [0,1] \qquad T\left(\left[egin{array}{c|c} x_1 \ x_2 \ dots \ x_n \end{array}
ight], \left[egin{array}{c|c} a_1 \ a_2 \ dots \ a_n \end{array}
ight], \left[egin{array}{c|c} x'_1 \ x'_2 \ dots \ x'_n \end{array}
ight]
ight)\in [0,1]$$

Model of 421: States and actions

States:

- The value of each die's face $(d_n \in [1,6])$ and the re-roll number $(h \in [2,0])$
- So: **168** states (56 combinations over a horizon of 3).

Actions:

- The choice of roll again each die: $[\mathit{roll},\ \mathit{keep}]$
- so 8 actions (2^3)

Action Example:

By choosing to "roll-*keep*-roll" in state: "6-4-3 (2)" to expect a "4-2-1 (1)"

Model of 421: Transition function with 421-game

► Transitions:

— All reachable states by rolling some dice with the probability to reach them.

Model of 421: Transition function with 421-game

Transitions Example:

Choosing to "roll-*keep*-roll" from "6-4-3 (2)" implies *21* reachable states:

$$P(...)$$
 = [0,1] $P(...)$ = [0,1]
 $4-1-1(1)$ = $1/36$...
 $4-2-1(1)$ = $1/18$ $6-4-4$ = $1/18$
 $4-2-2(1)$ = $1/36$ $6-5-4$ = $1/18$
...

Choosing: building a policy of actions

ightharpoonup $ightharpoonup a policy <math>(\pi)$: a function returning the action to perform Considering the current state of the system:

$$\pi:S o A$$

 $\pi(s)$: the action to perform in s

Choosing: building a policy of action

Example of policy:

Always target a 4-2-1: keeping only one 4, one 2 and one 1

${m s}$	$\pi^{421}(s)$	s	$\pi^{421}(s)$
<u>1</u> -1-1	<i>keep</i> -roll-roll	•••	
2-1-1	keep-keep-roll	4-2-1	keep-keep-keep
3 -1 -1	roll- <i>keep</i> -roll	•••	
4-1- 1	keep-keep-roll	6-6-5	roll-roll
•••		6-6-6	roll-roll

(Invariant over the horizon h)

Policy as decision tree

Nodes: variables ; **Edges:** assignment ; **leaf:** Action to perform

Policy as decision tree

$$ightharpoonup \pi(2, False, 42)$$
 = Action-4

Choosing to optimize

Require to evaluate the interest of each action on the system evolution:

► *Reward/Cost function* (R):

$$R: S \times A \rightarrow \mathbb{R}$$

 $R(s_t,\ a)$ is the reward by doing a from s_t .

Objective : Maximazing the gains (sum of percived rewards)

reward in 421-game

Over the final combination only with the action "keep-keep-keep" or when the horizon is 0

$$egin{array}{lll} score(4-2-1) &= 800 \\ score(1-1-1) &= 700 \\ score(x-1-1) &= 400 + x \\ score(x-x-x) &= 300 + x \\ score((x+2)-(x+1)-x) &= 202 + x \\ score(2-2-1) &= 0 \\ score(x-x-y) &= 100 + x \\ score(y-x-x) &= 100 + y \\ \end{array}$$

Let's go....