Práctica 4: Elasticidad*

Agnnes Maria, Wellmann Salvador, 202100186, 1,** Diego Andres Rivera Noriega, 202100164, 1,*** Joab Israel, Ajsivinac Ajsivinac, 202200135, 2,**** Dominic Juan Pablo, Ruano Perez, 202200075, 2,****** and Javier Andrés, Monjes Solórzano, 202100081 1,*******

¹Facultad de Ingeniería, Departamento de Física, Universidad de San Carlos, Edificio T1, Ciudad Universitaria, Zona 12, Guatemala. ²Facultad de Ingeniería, Departamento de Física, Universidad de San Carlos, Edificio T1, Ciudad Universitaria,

I. RESULTADOS

Figura No.1.1
Tabla de los datos obtenidos

Objeto	Boyante (N)	$\Delta FuerzaBoyante(N)$
Cubo Plateado (Aluminio)	0.095	0.02
Esfera Plateada (Metálica)	0.042	0.02
Cilindro Plateado (Aluminio)	0.045	0.02
Cilindro Dorado (Metálico)	0.127	0.02
Cilindro Rojo (Plástico)	0.535	0.02

Figura No.1.2 Tabla Esfuerzo vs. Deformación unitaria

01:::	3.f /T.f \	TT 1 D 1 1 (3)
		Volumen Desplazado (m ³)
\ /		0.0000097 ± 0.0000002
` ,		0.0000043 ± 0.0000002
Cilindro Plateado (Aluminio)	0.025 ± 0.02	0.0000046 ± 0.0000002
Cilindro Dorado (Metálico)	0.115 ± 0.02	0.0000129 ± 0.0000002
Cilindro Rojo (Plástico)	0.075 ± 0.02	0.0000545 ± 0.0000002

Figura No.1.3
Tabla Esfuerzo vs. Deformación unitaria

Objeto	Material	Densidad Teórica	Densidad Experimental
Cubo Plateado	Aluminio	2700	2600 ±300
Esfera Plateada	Metalica	7800	9300 ±900
Cilindro Plateado	Aluminio	2700	5400 ±700
Cilindro Dorado	Metalico	7800	2110 ±70
Cilindro Rojo	Plastico	920	1370 ±40

Figura No.1.4

Gráfica de incertezas de las Densidades teóricas vs Densidades Experimentales No. 1

2,300	2,400	2,500	2,600	2,700	2,800	2,90
		De	nsidad Experime	ntal		
			Den	sidad Teórica		
			Den	sidad Teórica		

Fuente: Elaboración Propia, 2023

Figura No.1.5

Gráfica de incertezas de las Densidades teóricas v
s Densidades Experimentales No.2

Grafica de Incerteza, denisdad dei Metal teorico vs Experimental						
7,500	8,000	8,500	9,000	9,500	10,000	10,500
						نــــــــــــــــــــــــــــــــــــــ
Densidad Experimental						
		-		•		

Fuente: Elaboración Propia, 2023

^{*} Laboratorios de Física

 $^{^{**}}$ e-mail:3705174660101@ingenieria.usac.edu.gt

^{***} e-mail: 3734436760101@ingenieria.usac.edu.gt

^{***} e-mail: 3114791110409@ingenieria.usac.edu.gt

^{*****} e-mail: 3863542270101@ingenieria.usac.edu.gt

^{*} e-mail: 3020696740101@ingenieria.usac.edu.gt

Figura No.1.6

Gráfica de incertezas de las Densidades teóricas v
s Densidades Experimentales No.3

 Gráfica de Incerteza, denisdad del Aluminio teórico vs Experimental

 2,500
 3,000
 3,500
 4,000
 4,500
 5,000
 5,500
 6,000
 6,500

 Densidad Experimental

Fuente: Elaboración Propia, 2023

Figura No.1.7

Gráfica de incertezas de las Densidades teóricas v
s Densidades Experimentales No.4

Fuente: Elaboración Propia, 2023

Figura No.1.8

Gráfica de incertezas de las Densidades teóricas vs Densidades Experimentales No.5

Fuente: Elaboración Propia, 2023

II. DISCUSIÓN DE RESULTADOS

En está práctica se determinó la Fuerza Boyante, el volumen desplazado y las masas de cada objeto

utilizado con sus debidas incertezas para calcular la densidad ed los mismos. Respecto a la Tabla No.1, los datos que se encuentran; representan a las fuerzas boyantes que se generaron cuando cada objeto se sumergió en el líquido. Se obtuvieron cinco fuerzas boyantes diferentes para cinco objetos de distintos materiales. Estas fuerzas se obtuvieron mediante una ecuación deducida por el comportamiento del objeto al entrar en contacto con el líquido. La incerteza, fue obtenida mediante una propagación de error y es apreciable decir que se obtuvo 0.098 para todas, ya que solo se sumaban las incertezas del dinamómetro.

Por otro lado, en la Tabla No.2 se encuentran los volúmenes desplazados, los cuales se refieren al cambio de volumen del líquido cuando los objetos fueron introducidos. Todos los volúmenes se trabajaron en unidades de m^3 lo cual se apreció porque, todos los volúmenes calculados, resultaron ser magnitudes muy pequeñas, al igual que sus incertezas.

Se determinó el empuje con la Tabla No.1 y el volumen desplazado de esta forma en la tabla No.2, se realizó el cálculo de la densidad en la tabla No.3. Se observó que, al calcular los datos intermedios, como la fuerza de empuje y el volumen desplazado para determinar las densidades de cada objeto, eran dependientes del peso del objeto tanto en el agua como cuando estaban en el aire. Esto nos hace darnos cuenta que según el principio de Arquímedes describe cómo los objetos interactúan con los fluidos en los que están sumergidos y es fundamental para entender el comportamiento de los objetos en el agua y otros fluidos.

Se determinó la densidad para cada objeto analizado, se asignó un material dependiendo el valor de la densidad, sin embargo, este material pudo no ser el adecuado debido a que la incerteza de la densidad experimental fue bastante amplia por lo tanto el material asignado puede no ser el real.

También se buscó la determinación de la densidad de los 5 diferentes materiales, y se observó que la mayoría de los resultados experimentales estuvieron cercanos a los teóricos, esto demostró que la experimentación tuvo, en ocasiones, un alto grado de exactitud. Algo importante a resaltar es que las respuestas obtenidas mostraron un amplio margen de error.

Se comprobó que el principio de Arquímedes es un teorema fundamental para encontrar la densidad de cualquier objeto, y así con ello predecir el material del que fue fabricado

III. ANEXOS

A. Muestra de Cálculo

Con la Ecuación: $B = w_{aire} - w_{fluido} = pgV_d$ utilizando los pesos de la siguiente forma:

Donde

- \blacksquare B= Fuerza Boyante o de empuje (N)
- w_{aire} Peso del objeto en el aire (N)
- $\mathbf{w}_{fluido} = \text{Peso del objeto sumergido en el gluido}(\text{agua})(N)$

Con los datos de w

- $w_{aire} = 0.245N$
- $\mathbf{w}_{fluido} = 0.150N$

$$B = 0.245N - 0.150N = 0.095N \tag{1}$$

La incerteza es:

$$\Delta B = \pm (\Delta W_{aire} + \Delta w_{fluido}) \tag{2}$$

Donde: $\Delta W_{aire} y \Delta w_{fluido}$ son iguales, ya que fueron medidos con el mismo instrumento.

$$\Delta B = \pm (0.049 + 0.049) = \pm 0.098N \tag{3}$$

Al despejar V_d de la ecuación $B = w_{aire} - w_{fluido} = pgV_d$ se obtiene lo siguiente:

$$\frac{B}{pq} = V_d \tag{4}$$

Donde:

- \blacksquare B= Fuerza Boyante(N)
- p= Densidad del fluido donde se sumergió (agua= $1000kg/m^3$)
- $g = Gravedad 9.8m/s^2$

Sustiyendo la fuerza Boyante de m_1 y conservando la incerteza, ya que se esta operando entre constantes.

$$\frac{0.095N}{1000kg/m^3(9.8m/s^2)} = V_{d1} = 9.64 * 10^{-6}m^3 \pm 0.098m^3$$
(5)

Con la fórmula del peso:

$$w = mg \tag{6}$$

Donde el w es w_{aire} , al dividirlo entre la gravedad, da como resultado la masa y al estar operandose entre constantes, la incerteza del peso se conserva.

$$\frac{w_{aire}}{q} = m \tag{7}$$

$$m = \frac{0.245N}{9.8m/s^2} = 0.025kg \pm 0.049 \tag{8}$$

La densidad es la relacion entre la masa(kg) y el volúmen (m^3) :

$$p = \frac{m}{V} \tag{9}$$

$$p_1 = \frac{0.025kg}{9.694 * 10^{-6}} = 2578.91kg/m^3 \tag{10}$$

La incerteza de la densidad:

$$\Delta p = p(\frac{\Delta m}{m} + \frac{\Delta V}{V}) \tag{11}$$

Donde:

- p Densidad medida.
- Δm = Incerteza de la masa.
- ullet m= Masa utilizada en el cálculo de la densidad.
- ΔV = Incerteza del volúmen.
- ullet V =Volúmen utilizado en el cálculo de la d
nsidad.

$$\Delta p_1 = 2578.91 kg/m^3 \left(\frac{0.049 kg}{0.025 kg} + \frac{0.098 m^3}{9.694 * 10^{-6}}\right) = \pm 2.678 * 10^7 kg/m^3$$
(12)

Figura 1.9

Cálculo de las Boyantes

```
In[33]:= incerteza = (0.001 + 0.001)
Out[33]= 0.002
 In[4]:= B1 = 0.245 - 0.15
Out[4]= 0.095
       Boyante 1 = 0.095 \pm 0.002
 In[5]:= B2 = 0.392 - 0.35
Out[5]= 0.042
       Boyante_2 = 0.042 \pm 0.002
 In[6]:= B3 = 0.245 - 0.20
Out[6]= 0.045
       Boyante_3 = 0.045 \pm 0.002
 In[7]:= B4 = 1.127 - 1
Out[7]= 0.127
       Boyante_4 = 0.127 \pm 0.002
ln[24]:= B5 = 0.735 - 0.20
Out[24]= 0.535
       Boyante_{5} = 0.535 \pm 0.002
```

Fuente: Elaboración propia 2023

Figura 1.10

Cálculo de Masas

Fuente: Elaboración propia 2023

Figura 1.11

Cálculo del volumén desplazado

```
VOLUMENES
ln[36]:= vd1 = 0.095 / (1000 * 9.81)
Out[36]= 9.684 \times 10^{-6}
In[35]:= IncertezaV1 = vd1 * (0.002/0.095)
Out(351= 2.03874 \times 10^{-7}
       V_desplazado1 = 0.0000097 ± 0.0000002
ln[20] = vd2 = B2 / (1000 * 9.81)
Out[20]= 4.28135 \times 10^{-6}
In[37]:= IncertezaV2 = vd2 * (0.002 / B2)
Out[37]= 2.03874 \times 10^{-7}
       V_despLazado2 = 0.0000043 ± 0.0000002
ln[21]:= vd3 = B3 / (1000 * 9.81)
Out[21]= 4.58716×10<sup>-6</sup>
In[38]:= IncertezaV3 = vd3 * (0.002 / B3)
Out[38]= 2.03874 \times 10^{-7}
       V_desplazado3 = 0.0000046 ± 0.0000002
```

Fuente: Elaboración propia 2023

 ${\bf Figura~1.12}$

Cálculo del volumén desplazado

```
|n|48| = vd4 = B4 / (1000 * 9.81)
|Oul|48| = 0.000012946
|n|49| = IncertezaV4 = vd4 * (0.002 / B4)
|Oul|49| = 2.03874 × 10<sup>-7</sup>
|V_despLazado4 = 0.0000129 ± 0.0000002
|n|46| = vd5 = (0.535) / (1000 * 9.81)
|Oul|46| = 0.0000545362
|n|43| = IncertezaV5 = vd5 * (0.002 / B5)
|Oul|43| = 2.03874 × 10<sup>-7</sup>
|V_despLazado5| = 0.0000545 ± 0.0000002
```

Fuente: Elaboración propia 2023

Figura 1.13

Cálculo de densidades

DENSIDADES

Densidad_Experimental2 = 9300 ± 900

In[55]:= incertezaD2 = D2 * (0.002 / m2 + 0.00000002 / vd2)

Densidad_Ex

Out[55]= 903.143

In[57]:= incertezaD3 = D3 * (0.002 / m3 + 0.00000002 / vd3)

Out[57]= 673.378

Densidad_Experimental3 = 5400 ± 700

Fuente: Elaboración propia 2023

Figura 1.14

Cálculo de densidades

```
| In[31] = D4 = m4 / vd4
| Out[31] = 2106.54
| In[58] = incertezaD4 = D4 * (0.002 / m4 + 0.0000002 / vd4)
| Out[58] = 69.2165
| Densidad_Experimental4 = 2110 ± 70
| In[32] = D5 = m5 / vd5
| Out[32] = 1373.83
| In[59] = incertezaD5 = D5 * (0.002 / m5 + 0.00000002 / vd5)
| Out[59] = 41.7111
| Densidad_Experimental5 = 1370 ± 40
```

Fuente: Elaboración propia 2023

https://acortar.link/P5rkRR https://acortar.link/DCOrDz https://acortar.link/UDmFgl

^[1] SERWAY, RAYMOND. A. (Tomo 1, $7^{\underline{a}}$ edi). (Bogotá, 2008). Física. McGraw-Hill.

^[2] Ohanian, H.Markert, J. (Volumen 1. Tercera edición). (New York-London, 2007).: Física para ingeniería y ciencias. W. W. Norton Company, Inc.

^[3] Reckdahl, K.(Versión [3.0.1]). (2006). Using Imported Graphics in LATEX and pdfLATEX.