Searching and Sorting

Tiziana Ligorio

tligorio@hunter.cuny.edu

Today's Plan

Recap

Searching algorithms and their analysis

Sorting algorithms and their analysis

Announcements

Questions?

Searching

Looking for something!
In this discussion we will assume searching for an element in an array

Linear search

Most intuitive

Start at first position and keep looking until you find it

```
int linearSearch(int a[], int size, int value)
{
    for (int i = 0; i < size; i++)
    {
        if (a[i] == value) {
            return i;
        }
    }
    return-1;
}</pre>
```

How long does linear search take?

If you assume value is in the array and probability of finding it at any location is uniform, on average n/2

If value is not in the array (worst case) n

Either way it's O(n)

What if you know array is sorted?

Can you do better than linear search?

Lecture Activity

You are given a sorted array of integers.

How would you search for 115? (try to do it in fewer than n steps: don't search sequentially)

You can write pseudocode or succinctly explain your algorithm

We have seen this before... where?

What is happening here?

What is happening here?

Size of search is cut in half at each step

What is happening here?

Size of search is **cut in half** at each step

The running time

Simplification: assume n is a power of 2 so it can be evenly divided in two parts

Let $\dot{T}(n)$ be the running time and assume $n = 2^k$

$$T(n) = T(n/2) + 1$$
One comparison

Search lower OR upper half

What is happening here?

Size of search is cut in half at each step

Let T(n) be the running time and assume $n = 2^k$ T(n) = T(n/2) + 1 T(n/2) = T(n/4) + 1One comparison Search lower OR upper half of n/2

What is happening here?

Size of search is cut in half at each step

Let T(n) be the running time and assume $n = 2^k$ T(n) = T(n/2) + 1 T(n/2) = T(n/4) + 1 T(n) = T(n/4) + 1 + 1

What is happening here?

Size of search is cut in half at each step

Let T(n) be the running time and assume $n = 2^k$

$$T(n) = T(n/2) + 1$$
 $T(n) = T(n/4) + 2$
....

What is happening here?

Size of search is cut in half at each step

Let T(n) be the running time and assume $n = 2^k$ T(n) = T(n/2) + 1

$$T(n) = T(n/4) + 2$$

. . .

$$T(n) = T(n/2^k) + k$$

What is happening here?

Size of search is cut in half at each step

Let T(n) be the running time and assume $n = 2^k$ T(n) = T(n/2) + 1

$$T(n) = T(n/4) + 2$$

$$T(n) = T(n/2^k) + k$$

 $T(n) = T(1) + log_2(n)$

The number to which I need to raise 2 to get n And we said $n = 2^k$

What is happening here?

Size of search is cut in half at each step

Let T(n) be the running time and assume $n = 2^k$ T(n) = T(n/2) + 1

$$T(n) = T(n/4) + 2$$

....
 $T(n) = T(n/2^k) + k$
 $T(n) = T(1) + log_2(n)$

Binary search is O(log(n))

Sorting

Rearranging a sequence into increasing (decreasing) order!

Several approaches

Can do it in may ways

What is the best way?

Let's find out using Big-O

Lecture Activity

Write **pseudocode** to sort an array.

543	3	523	76	200	158	195	108	43	274	100	14	599
-----	---	-----	----	-----	-----	-----	-----	----	-----	-----	----	-----

There are many approaches to sorting We will look at some comparison-based approaches here

Sorted

Unsorted

Find the smallest item and move it at position 1

Find the next-smallest item and move it at position 2

• • •

How much work?

Find smallest: look at n elements

How much work?

Find smallest: look at n elements

Find second smallest: look at n-1 elements

How much work?

Find smallest: look at n elements

Find second smallest: look at n-1 elements

Find third smallest: look at n-2 elements

• • •

How much work?

Find smallest: look at n elements

Find second smallest: look at n-1 elements

Find third smallest: look at n-2 elements

. . .

Total work: n + (n-1) + (n-2) + ... + 1

$$n + (n-1) + ... + 2 + 1 = n(n+1) / 2$$

$$T(n) = (n^2+n) / 2 + n = O()$$
?

$$T(n) = (n^2+n) / 2 + n = O()?$$
Ignore constant

Ignore non-dominant terms

$$T(n) = (n^2+n) / 2 + n = O(n^2)$$
Ignore constant

Ignore non-dominant terms

$$T(n) = n(n+1) / 2$$
 comparisons + n data moves = $O()$?

$$T(n) = (n^2+n) / 2 + n = O(n^2)$$

Selection Sort run time is O(n²)

Stability

A sorting algorithm is Stable if elements that are equal remain is same order relative to each other after sorting

Execution time DOES NOT depend on initial arrangement of data => ALWAYS $O(n^2)$

O(n²) comparisons

Good choice for small **n** and/or data moves are costly (O(n) data moves)

Unstable

Understanding O(n²)

T(n)

Understanding O(n²)

T(n)

$$T(2n) \approx 4T(n)$$

$$(2n)^2 = 4n^2$$

Understanding O(n²)

100 14 3 43 200 274

T(n)

 $T(3n) \approx 9T(n)$

 $(3n)^2 = 9n^2$

Understanding O(n²) on large input

```
If size of input increases by factor of 100 
Execution time increases by factor of 10,000 
T(100n) = 10,000T(n)
```

66

Understanding O(n²) on large input

If size of input increases by factor of 100 Execution time increases by factor of 10,000 T(100n) = 10,000T(n)

Assume n = 100,000 and T(n) = 17 seconds Sorting 10,000,000 takes 10,000 longer

Understanding O(n²) on large input

If size of input increases by factor of 100 Execution time increases by factor of 10,000 T(100n) = 10,000T(n)

Assume n = 100,000 and T(n) = 17 seconds Sorting 10,000,000 takes 10,000 longer

Sorting 10,000,000 entries takes ≈ 2 days

Multiplying input by 100 to go from 17sec to 2 days!!!

Raise your hand if you had Selection Sort

Bubble Sort

Bubble Sort

Bubble Sort

Sorted

Sorted

Sorted

Sorted

Sorted

Sorted

Compare adjacent elements and if necessary swap them

End of1st Pass:

Not sorted, but largest has "bubbled up" to its proper position

2nd Pass:

Sort **n-1**

Sorted

Sorted

Sorted

2nd Pass

Sorted

2nd Pass

Sorted

2nd Pass

3rd Pass:

Sort **n-2**

Sorted

3rd Pass

Sorted

3rd Pass

Compare adjacent elements

Array is sorted
But our algorithm doesn't know
It keeps on going

Sorted

3rd Pass

3rd Pass

4th Pass:

Sort **n-3**

Sorted

Sorted

4th Pass

5th Pass:

Sort n-4

Sorted

Done!

How much work?

First pass: n-1 comparisons and at most n-1 swaps

Second pass: n-2 comparisons and at most n-2 swaps

Third pass: n-3 comparisons and at most n-3 swaps

Total work: (n-1) + (n-2) + ... + 1

T(n) = n(n-1) / 2 comparisons + n(n-1) / 2 swaps = <math>O()?

A swap is usually more than one operation but this simplification does not change the analysis

$$T(n) = 2(n(n-1) / 2) = O()$$
?

$$T(n) = n(n-1) / 2 comparisons + n(n-1) / 2 swaps = $O()$?$$

A swap is usually more than one operation but this simplification does not change the analysis

$$T(n) = 2(n(n-1) / 2) = O()$$
?

$$T(n) = 2((n^2-n)/2) = O()$$
?

$$T(n) = n(n-1) / 2 comparisons + n(n-1) / 2 swaps = $O()$?$$

A swap is usually more than one operation but this simplification does not change the analysis

$$T(n) = 2(n(n-1) / 2) = O()$$
?

$$T(n) = 2((n^2-n)/2) = O()$$
?

$$T(n) = n^2 - n = O()$$
?

Ignore non-dominant terms

$$T(n) = n(n-1) / 2 comparisons + n(n-1) / 2 swaps = O()?$$

A swap is usually more than one operation but this simplification does not change the analysis

$$T(n) = 2(n(n-1) / 2) = O()?$$

$$T(n) = 2((n^2-n)/2) = O()?$$

$$T(n) = n^2 - n = O(n^2)$$

Bubble Sort run time is $O(n^2)$

Optimize!

Easy to check:

if there are no swaps in any given phase stop because it is sorted

Bubble Sort Analysis

Execution time DOES depend on initial arrangement of data

Worst case: O(n²) comparisons and data moves

Best case: O(n) comparisons and data moves

Stable

If array is already sorted bubble sort will stop after first pass and no swaps => good choice for small n and data likely somewhat sorted

Raise your hand if you had Bubble Sort

https://www.youtube.com/watch?v=lyZQPjUT5B4

Sorted

Sorted

Sorted

Sorted

Sorted

Pick first element in unsorted region and put it in right place in sorted region

Sorted

Sorted

Sorted

Sorted

Sorted

Pick first element in unsorted region and put it in right place in sorted region

Sorted

Sorted

Sorted

Sorted

Sorted

Sorted

Sorted

Sorted

Pick first element in unsorted region and put it in right place in sorted region

Sorted

Sorted

Sorted

Pick first element in unsorted region and put it in right place in sorted region

Sorted

Sorted

Sorted

Sorted

5th Pass

Pick first element in unsorted region and put it in right place in sorted region

Sorted

Pick first element in unsorted region and put it in right place in sorted region

Insertion Sort Analysis

How much work?

First pass: 1 comparison and at most 1 swap

Second pass: at most 2 comparisons and at most 2 swaps

Third pass: at most 3 comparisons and at most 3 swaps

Total work: 1 + 2 + 3 + ... + (n-1)

$$1 + 2 + . . (n-2) + (n-1) = n(n-1)/2$$

Insertion Sort Analysis

$$T(n) = n(n-1) / 2 comparisons + n(n-1) / 2 swaps = $O()$?$$

$$T(n) = 2((n^2-n)/2) = O()$$
?

$$T(n) = n^2 - n = O(n^2)$$

Insertion Sort run time is $O(n^2)$

Sorted

Sorted

Insertion Sort Analysis

Execution time DOES depend on initial arrangement of data

Worst case: O(n²) comparisons and data moves

Best case: O(n) comparisons and data moves

Stable

If array is already sorted Insertion sort will do only n comparisons and no swaps => good choice for small n and data likely somewhat sorted

Raise your hand if you had Insertion Sort

What we have so far

	Worst Case	Best Case
Selection Sort	O(n ²)	O(n ²)
Bubble Sort	O(n ²)	O(n)
Insertion Sort	O(n ²)	O(n)

Pick first element in unsorted region and put it in right place in sorted region

Lecture Activity

Sort the array using Insertion Sort

Show the entire array after each comparison/swap operation and at each step mark clearly the division between the sorted and unsorted portions of the array

https://www.toptal.com/developers/sorting-algorithms

Can we do better?

Can we do better?

Divide and Conquer!!!

Merge Sort

100	14	3	43	200	274	523	108	76	195	599	158	2	260	11	64	932	5

T(n)

100	14	3	43	200	274	523	108	76	195	599	158	2	260	11	64	932	5

T(n)

100	14	3	43	200	274	523	108	76
-----	----	---	----	-----	-----	-----	-----	----

195 599	158	2	260	11	64	932	5
---------	-----	---	-----	----	----	-----	---

100	14	3	43	200	274	523	108	76	195	599	158	2	260	11	64	932	5

T(n)

100	14	3	43	200	274	523	108	76
-----	----	---	----	-----	-----	-----	-----	----

195 599	158	2	260	11	64	932	5
---------	-----	---	-----	----	----	-----	---

T(1/2n)

T(1/2n)

100	14	3	43	200	274	523	108	76	195	599	158	2	260	11	64	932	5

T(n)

100	14	3	43	200	274	523	108	76
-----	----	---	----	-----	-----	-----	-----	----

195	599	158	2	260	11	64	932	5
-----	-----	-----	---	-----	----	----	-----	---

T(1/2n)

T(1/2n)

 $(n/2)^2 = n^2/4$

100	14	3	43	200	274	523	108	76	195	599	158	2	260	11	64	932	5
,																	

T(n)

100 14	3	43	200	274	523	108	76
--------	---	----	-----	-----	-----	-----	----

$$T(^{1}/_{2}n)\approx ^{1}/_{4}T(n)$$

$$T(^{1}/_{2}n)\approx ^{1}/_{4}T(n)$$

$$(n/2)^2 = n^2/4$$

100	14	3	43	200	274	523	108	76	195	599	158	2	260	11	64	932	5
,																	

T(n)

$$T(^{1}/_{2}n)\approx ^{1}/_{4}T(n)$$

$$T(^{1}/_{2}n)\approx ^{1}/_{4}T(n)$$

$$(n/2)^2 = n^2/4$$

Each step makes one comparison and reduces the number of elements to be merged by 1.

If there are *n* total elements to be merged, merging is **O(n)**

|--|

T(n)

11 64 158 195 260 599 932

$$T(^{1}/_{2}n)\approx ^{1}/_{4}T(n)$$

$$T(^{1}/_{2}n)\approx ^{1}/_{4}T(n)$$

T(n)

$$T(1/2n) \approx 1/4 T(n)$$

$$T(1/2n) \approx 1/4 T(n)$$

$$T(n) \approx \frac{1}{2}T(n) + n$$

Speed up insertion sort by a factor of two by splitting in half, sorting separately and merging results!

Splitting in two gives 2x improvement.

Splitting in two gives 2x improvement.

Splitting in four gives 4x improvement.

Splitting in two gives 2x improvement.

Splitting in four gives 4x improvement.

Splitting in eight gives 8x improvement.

Splitting in two gives 2x improvement.

Splitting in four gives 4x improvement.

Splitting in eight gives 8x improvement.

What if we never stop splitting?

Merge how many times?

Merge how may times? $n/2^k = 1$

$$n = 2^k$$

$$\log_2 n = k$$

Merge log₂ n times

211

How would you code this?

How would you code this?

Hint: Divide and Conquer!!!

Execution time does NOT depend on initial arrangement of data

Worst Case: O(n log n) comparisons and data moves

Best Case: O(n log n) comparisons and data moves

Stable

Best we can do with <u>comparison-based</u> sorting that does not rely on a data structure in the worst case => can't beat O(n log n)

Space overhead: auxiliary array at each merge step

What we have so far

	Worst Case	Best Case
Selection Sort	O(n ²)	O(n ²)
Insertion Sort	O(n ²)	O(n)
Bubble Sort	O(n ²)	O(n)
Merge Sort	O(nlogn)	O(nlogn)

> pivot

Quick Sort Analysis

Divide and Conquer

n comparisons for each partition

How many subproblems? => Depends on pivot selection

Ideally partition divides problem into two n/2 subproblems for logn recursive calls (Best case)

Possibly (though unlikely) each partition has 1 empty subarray for n recursive calls (Worst case)

Ideally median

Need to sort array to find median

Other ideas?

Ideally median

Need to sort array to find median

Other ideas?

Pick first, middle, last position and order them making middle the pivot

95 6 13

Ideally median

Need to sort array to find median

Other ideas?

Pick first, middle, last position and order them making middle the pivot

Quick Sort Analysis

Execution time DOES depend on initial arrangement of data AND on PIVOT SELECTION (luck?) => on random data can be faster than Merge Sort

Optimization (e.g. smart pivot selection, speed up base case, iterative instead of recursive implementation) can improve actual runtime -> fastest comparison-based sorting algorithm on average

Worst Case: O(n²) comparisons and data moves

Best Case: O(n log n) comparisons and data moves

Unstable

```
void quickSort(array, first, last)
{
   if last - first + 1 = MIN_SIZE
        //base case with improvement
        insertionSort(array, first, last)
   else
        pivot_index = partition(array, first, last)
        quickSort(array, first, pivot_index - 1)
        quickSort(array, pivot_index + 1, last)
}
```

	Worst Case	Best Case
Selection Sort	O(n ²)	O(n ²)
Insertion Sort	O(n ²)	O(n)
Bubble Sort	O(n ²)	O(n)
Merge Sort	O(nlogn)	O(nlogn)
Quick Sort	O(n ²)	O(nlogn)

https://www.toptal.com/developers/sorting-algorithms

https://www.youtube.com/watch?v=kPRA0W1kECg

