CS 65500 Advanced Cryptography

Lecture 4: Oblivious Transfer II

Instructor: Aarushi Goel

Spring 2025

Agenda

- Oblivious Transfer

 → Recall Construction

 → Security Proof.

Semi-Honest Secure Two-Party Computation

Definition: A protocol T securely computes a function f in the semi-honest model, it Fa pair of two n.u. PPT simulator algorithms S_A and S_B , such that for every security parameter K, and \forall inputs $x, y \in \{0,1\}^K$, it holds that: SA(n,f(n,y)),f(n,y) $\approx 2 \text{ view (e), out_B(e)}$ SB(y, f(x,y)), f(x,y)} ≈ { ViewB(e), outA(e)} where e ~ [A(n) \ B(y)]}

Oblivious Transfer (OT)

Consider the following functionality:

Input: (ao, a,) b
Output:

a_b

Security: Alice doesn't learn b. Bob doesn't learn a_{1-b}

Constructing Oblivious Transfer Building Block I

Hard core Predicate: Hard core bit cannot be predicted with probability > 1/2 + negl(K), even given the output of a one-way function.

Definition: A predicate $h: \{0,1\}^* \rightarrow \{0,1\}$ is a hardweed predicate for a OWF f(.), if it is efficiently computable given x, f a regulgible function V(.), s.t., \forall n.u. PPT adv A, k \forall security parameters K, $Pr\left[A(1^K, f(x)) = h(x); x \leftarrow \{0,1\}^K\right] \leq \frac{1}{2} + V(K)$

Constructing Oblivious Transfer Building Block II Trapdoor One-way Permut ations: A collection of permutations is a family of permutations F=>fi:Di→RifieI satisfying the following proserties: Sampling Function: Fa PPT Gen, s.t. Gen(1) → (i&I,t) Sampling from Domain: Fa PPT algorithm that on input i outputs a uniformly random climent of Di Evaluation: Fa PPT algorithm that on input i, x & Di, outputs fi(n). Inversion with trapdoer: Fa PPT algorithm Inv S.E. Inv(1, t,y) -> fi(y) Hard to invert: \ n.u. PPT adv A, \ a negl fun V(.), s.t., Pr[fi(A(1,i,y)) = x; i + Gen(1), x \ Di, y \fi(n) \ \ V(K)

Construction of Oblivious Transfer.

Alice

Input: (ao, a,)

Protocol: (fi, fi) + Gen(1k) fi

¥je {oily

 $Z_j = h(f_i^{-1}(y_j)) \oplus a_j$ $\xrightarrow{(Z_0, Z_1)} \text{Output } h(n) \oplus Z_b$

Bob

~ × € {0,13^K, y1-6 € {0,13^K}

(40,41) Yb=fi(x)

This is a Semi-Honest Oblivious Tranfer

- → Security against Alice: Both yo & y, are uniformly distributed and therefore independent of b.
- → Security against Bob! If Bob could Marn a_{1-b}, then he would be able to predict the hardwee predicate.

Does this construction remain secure if either Alice or Bob were malicious?

Simulator SA ((ao, a,), L)

- 1. Fix a random tape en for Alice. Use this to sample $(fi, fi^{-1}) \leftarrow Gen(I^K)$
- 2. Choose two random strings yo, y, ← foils as Bob's mig
- 3. $\forall j \in \{0,1\}^2$, compute $Z_j = h(f_i^{-1}(y_j^*)) \oplus a_j$ to obtain the third mag (Z_0, Z_1)
- 4. Stop & output 1

Claim: The following two distributions are identical:

{SA ((ao,ai), 1), ab } and

of ViewA(e), OutB(e); e← [A(ao, aı)←> B(b)]}

Proof Idea: The only difference between S_A and the real execution is how y_0, y_1 are computed. However, Since f_i is a permutation, y_0, y_1 are identically distributed in both cases.

Simulator SB (b, as):

- 1. Sample fi
- 2. Choose a random tape of for B. Use that to compute $x \leftarrow \begin{cases} 0,1 \end{cases}^{K}$, $y_b = f_i(x)$, $y_{1-b} \leftarrow \begin{cases} 0,1 \end{cases}^{K}$
- 3. Compute $Z_b = h(n) \oplus a_b$, $Z_{1-b} \stackrel{\$}{\leftarrow} \S_{0,1}$
- 4 Output (Zo, Z1) as the third mig and Stop.

Claim: The following two distributions are identical:

 $\{S_B(b,a_b), \underline{J}\}$

of ViewB(e), OutA(e); e←[A(ao,ai)←>B(b)]}

Proof Idea: The only difference between S_B and the real execution is how z_0, z_1 are computed. However, Since $h(f_i^{-1}(y_{1-b}))$ is computationally indistinguishable from random (even given y_{1-b}), this change is computationally indistinguishable.

To Prove:
$$\{S_B(b, a_b), I\}$$
 $\approx_c \{View_B(e), Out_A(e); e \leftarrow [A(a_0, a_1) \leftrightarrow B(b)]\}$
 $\{f_i \stackrel{\sharp}{\leftarrow} Gen(I^K), \kappa \stackrel{\sharp}{\leftarrow} \{o_1 I_j^K, y_b = f_i(\kappa), y_{1-b} \stackrel{\sharp}{\leftarrow} \{o_1 I_j^K, z_b = h(\kappa) \oplus a_b, z_{1-b} \stackrel{\sharp}{\leftarrow} \{o_1 I_j^K, y_b = f_i(\kappa), y_{1-b} \stackrel{\sharp}{\leftarrow} \{o_1 I_j^K, z_b = h(\kappa), y_{1-b} = h(\kappa), y_{1-b} \stackrel{\sharp}{\leftarrow} \{o_1 I_j^K, z_b = h(\kappa), y_{1-b} = h(\kappa), y_{1$

Hi:
$$\int f_i \stackrel{\$}{\leftarrow} Gen(I^K)$$
, $\kappa \stackrel{\$}{\leftarrow} \{o_1 i_3^K, y_b = f_i(\kappa), y_{1-b} \stackrel{\$}{\leftarrow} \{o_1 i_3^K, z_b = h(\kappa) \oplus a_b, z_{1-b} \stackrel{\$}{\leftarrow} \{o_1 i_3^K\}$

H2:
$$\int f_{i} \stackrel{\$}{\leftarrow} Gen(I^{K}), \chi \stackrel{\$}{\leftarrow} fo_{1}i_{3}^{K}, y_{b} = f_{i}(\chi), y_{1-b} \stackrel{\$}{\leftarrow} fo_{1}i_{3}^{K}, \chi_{b} = f_{i}(\chi), \chi_{1-b} \stackrel{\$}{\leftarrow} fo_{1}i_{3}^{K}, \chi_{1-b} = \chi_{1-b} =$$

H3:
$$\int fi \stackrel{\$}{\leftarrow} Gen(1^k), n \stackrel{\$}{\leftarrow} \int 011 \stackrel{?}{\downarrow}^{\kappa}, y_b = fi(n), y_{1-b} \stackrel{\$}{\leftarrow} \{011 \stackrel{1}{\downarrow}^{\kappa}, z_{b-b}\}$$

$$Z_b = h(f_i^{-1}(y_b)) \oplus a_b, z_{1-b} = h(f_i^{-1}(y_{1-b})) \oplus a_{1-b}$$

H₁ = H2: Security of one-time pad

Security Proof.

We want to show that $\forall b, a_b, a_{1-b} \in \{0,1\}^3$, the following distributions are computionally indistinguishable: H3: $\int fi \stackrel{\$}{\leftarrow} Gen(1^k), \chi \stackrel{\$}{\leftarrow} \int 0.13^k, y_b = fi(\chi), y_{1-b} \stackrel{\$}{\leftarrow} \int 0.13^k,$ $Z_b = h(f_i^{-1}(y_b)) \oplus a_b, Z_{1-b} = h(f_i^{-1}(y_{1-b})) \oplus a_{1-b}$ What does the security game for this indistinguishability look like?

Proof by Reduction

het us assume for the Sake of contradiction that Fado A, who can distinguish b/w H2 & H3 with non-negle advantage V. We will use this adv to design another adv B, who can break security of hard core predicates.

Security game for HCP corresponding to trapdoor OWP!

 $\alpha \leftarrow \{0,1\}, (fi,fi^{-1}) \leftarrow Gien(1^k), y = fi(n)$

if d=0: Z = {011}

if x=1: Z=h(fi (y))

 f_i, y, z

Adv wins if $\alpha' = \alpha$

Adv

Proof by Reduction

Ch
$$a \leftarrow $2011$$

 $(fi,fi^{-1}) \leftarrow Gien(1^{k})$
 $y \leftarrow 2011
 $y \leftarrow 2011
 $x = 0$:
 $x \leftarrow 2011
 $x \leftarrow 2011

