Baby Rudin

Ashan Jayamal

2024-09-11

Contents

1	The Real and Complex Number Systems	5
	1.1 Exercise	5
2	Basic Topology	7
3	Numerical Sequences and Series	9
4	Continuity	11

4 CONTENTS

The Real and Complex Number Systems

1.1 Exercise

Exercise 1.1. If r is rational $r \neq 0$ and x is irrational, prove that r + x and rx are irrational.

Suppose that $0 \neq r \in \mathbb{Q}$ and $x \in \mathbb{R} \setminus \mathbb{Q}$

• Claim 1: r+x is irrational. Assume the contray that $r+x\in\mathbb{Q}$. Since, \mathbb{Q} is field,

$$x = (r+x) - r \in \mathbb{Q}$$

- . This is a contradiction. Thus, r + x is contradiction.
- Claim 2: rx is irrational. Assume the contray that $rx \in \mathbb{Q}$. Since, \mathbb{Q} is field,

$$\left(\frac{1}{x}\right)rx = \left(\frac{1}{x}\right)xr = \left(\frac{1}{x}x\right)r = x \in \mathbb{Q}$$

. This is a contradiction. Thus, r + x is contradiction.

Exercise 1.2 (1:R2). Prove that there is no rational number whose square is 12.

Proof. First observe that

$$\sqrt{12} = \sqrt{4 \cdot 3} = 2\sqrt{3}$$

Claim 1: $\forall n \in \mathbb{N} 3 | n^2 \implies 3 | n$.

Let $n \in \mathbb{N}$. Suppose that $3|n^2$ We know that 3 is prime. Then by number theory results we can get 3|n or 3|n. We are done.

Cliam 2: |sqrt3 is irrartional.

We use inderect proof. Assume contary, $\sqrt{3}$ is rational. In other words,

$$\sqrt{3} = \frac{p}{q}$$
 for some $q \in \mathbb{Z}, q \neq 0$ and p,q have no comman factors.

Thus,

$$3q^2=p^2$$

Then, by above claim we can get that 3|p. Thus, there exists $k \in \mathbb{Z}$ such that 3k = p. Thus,

$$3q^2 = p^2$$

$$3q^2 = (3k)^2$$

$$3q^2 = 9k^2$$

$$q^2 = 3k^2$$

So, both p and q have comman factor 3. This contract our assumption. Thefore, $\sqrt(3)$ is irrational. So we are done proof of claim 2.

Since
$$\sqrt{3}$$
 is not a

Exercise 1.3. Let E be a nonempty subset of an ordered set. Suppose α is a lower bound of E and β is an upper bound of E. Prove that $\alpha \leq \beta$.

Let $\emptyset \neq E$ is sub set of ordered set.

Basic Topology

Numerical Sequences and Series

Continuity