Е. А. СИДОРОВА, С. П. ЖЕЛЕЗНЯК

ЛАБОРАТОРНЫЙ ПРАКТИКУМ ПО РАБОТЕ В ТАБЛИЧНОМ ПРОЦЕССОРЕ MICROSOFT EXCEL 2010

ЧАСТЬ 3

вычисления с проверкой условий

Министерство транспорта Российской Федерации Федеральное агентство железнодорожного транспорта Омский государственный университет путей сообщения

Е. А. Сидорова, С. П. Железняк

ЛАБОРАТОРНЫЙ ПРАКТИКУМ ПО РАБОТЕ В ТАБЛИЧНОМ ПРОЦЕССОРЕ MICROSOFT EXCEL 2010

Часть 3

вычисления с проверкой условий

Утверждено методическим советом университета в качестве практикума к выполнению самостоятельной и лабораторных работ

УДК 004.67(075.8) ББК 32.973я73 С34

Пабораторный практикум по работе в табличном процессоре Microsoft Excel 2010. Часть 3. **Вычисления с проверкой условий** / Е. А. Сидорова, С. П. Железняк; Омский гос. ун-т путей сообщения. Омск, 2018. 30 с.

Лабораторный практикум состоит из трех частей. В третьей части рассмотрены особенности создания формул в табличном процессоре Microsoft Excel 2010 с применением встроенных функций, содержащих проверку выполнения условий. Представлены примеры реализации наиболее часто встречающихся операций и практические задания.

Практикум предназначен для студентов и аспирантов очной и заочной форм обучения всех направлений подготовки (специальностей), изучающих дисциплины информационного профиля: «Информатика», «Информационные технологии», «Компьютерные технологии и информатика», «Информационные системы и базы данных» и др., а также может быть использован для самостоятельной работы любых категорий пользователей персонального компьютера.

Библиогр.: 4 назв. Табл. 2. Рис. 16.

Рецензенты: доктор техн. наук, профессор В. Н. Горюнов; доктор техн. наук, профессор А. А. Кузнецов.

© Омский гос. университет путей сообщения, 2018

ОГЛАВЛЕНИЕ

Введение	5
Лабораторная работа 3. Вычисления с проверкой условий	6
3.1. Встроенные функции Excel с проверкой условий	6
3.2. Функция ЕСЛИ	7
3.3. Вложенные функции	. 10
3.4. Функция СЧЁТЕСЛИ	. 11
3.5. Функция СЧЁТЕСЛИМН	. 12
3.6. Функция СУММЕСЛИ	. 13
3.7. Организация разветвлений с помощью вложенных функций ЕСЛИ	. 16
3.8. Логические функции НЕ, И, ИЛИ	. 18
3.9. Контрольные вопросы	. 21
3.10. Задания	. 21
Задание 1. Вычисления с проверкой условий	. 21
Задание 2. Суммирование с проверкой условия	. 23
Задание 3. Вложенные функции ЕСЛИ	. 25
Задание 4. Работа с логическими функциями	. 28
Библиографический список	. 29

ВВЕДЕНИЕ

Табличный процессор Microsoft Excel 2010 (далее – Excel) представляет собой удобный инструмент для автоматизации вычислений в различных сферах деятельности человека. Большой набор стандартных встроенных функций позволяет успешно решать задачи разного уровня сложности, обрабатывать и управлять большими массивами информации, обеспечивает получение достоверных результатов.

В лабораторной работе 3 рассматриваются вопросы эффективного применения функций обработки данных, удовлетворяющих некоторому условию, а также логических функций, представлены задания для самостоятельного выполнения студентом. После завершения лабораторной работы студент предъявляет преподавателю файл с выполненным заданием.

Библиографический список, представленный в конце практикума, содержит литературу для углубленного изучения материала по рассматриваемой тематике.

Лабораторная работа 3

ВЫЧИСЛЕНИЯ С ПРОВЕРКОЙ УСЛОВИЙ

Цель работы:

- 1) изучение возможностей Excel для реализации вычислений, содержащих проверку выполнения условий;
- 2) освоение способов применения встроенных функций, содержащих проверку выполнения условий, и логических функций;
- 3) закрепление навыков обработки данных, удовлетворяющих заданным условиям.

3.1. Встроенные функции Excel с проверкой условий

В научной и производственной деятельности часто приходится решать задачи по отбору и обработке данных, удовлетворяющих заданным условиям. В Excel для этого имеется ряд встроенных функций, в том числе:

ЕСЛИ – осуществляет проверку выполнения заданного условия в ячейках;

СЧЁТЕСЛИ, СЧЁТЕСЛИМН – подсчитывают количество непустых ячеек, значения которых удовлетворяют одному или множеству проверяемых условий;

СУММЕСЛИ – вычисляет сумму значений ячеек в заданном диапазоне, удовлетворяющих проверяемому условию.

Рассмотрим особенности применения этих функций на примере таблицы результатов сессии (рис. 1), в которой нужно заполнить выделенные заливкой ячейки:

- 1) в ячейках I3:I9 вывести фамилии студентов, имеющих средний балл 4 и выше;
- 2) в ячейках J3:J9 назначить стипендию в размере 5000 руб. студентам, сдавшим все экзамены на 4 и 5;
- 3) в ячейках D10:G10 подсчитать общее количество пятерок по каждой учебной дисциплине;
- 4) в ячейках J11 и J12 вычислить суммы стипендии, назначенной студентам указанных групп.

Порядок действий для решения каждой из этих задач представлен ниже соответственно в примерах 1-4.

	Α	В	С	D	E	F	G	Н	1	J
1	№	Фамилия И.О.			Оце		Список	Стипендия,		
2	п/п	студента	Группа	Математика	Физика	Информатика	История	Средний балл	студентов (ср. балл ≥ 4)	руб.
3	1	Авдеев К.В.	47a	4	5	3	3	3,75		
4	2	Белова А.С.	476	4	4	5	5	4,50		
5	3	Ерофеев Д.И.	47a	5	5	4	5	4,75		
6	4	Иванов И.П.	476	5	5	5	5	5,00		
7	5	Котова Н.В.	476	5	4	3	5	4,25		
8	6	Морозов Ф.Д.	47a	3	3	3	3	3,00		
9	7	Федюнин И.Н.	476	5	4	4	5	4,50		
10	Кол	пичество 5 по дисци	плинам							
11								Стипендия	47a	
12								по группам, руб.	476	

Рис. 1. Исходная таблица результатов сессии

3.2. Функция ЕСЛИ

Функция ЕСЛИ проверяет, выполняется ли условие, и возвращает одно значение, если оно выполняется, и другое значение, если оно не выполняется. В библиотеке встроенных функций Excel функция ЕСЛИ находится в категории *Логические*.

Общая форма записи функции ЕСЛИ:

ЕСЛИ(Лог_выражение; Значение_если_истина; Значение_если_ложь),

где Лог_выражение – любое значение или выражение, которое при вычислении дает значение *Истина* или *Ложь* (здесь записывается проверяемое условие);

Значение_если_истина — значение, которое возвращается, если Лог_выражение имеет значение *Истина* (здесь записывается результат, который функция должна вывести, если проверяемое условие выполняется). Если этот аргумент не задан, то возвращается значение *Истина*.

Значение_если_ложь – значение, которое возвращается, если Лог_выражение имеет значение *Ложь* (здесь записывается результат, который функция должна вывести, если проверяемое условие не выполняется). Если этот аргумент не задан, то возвращается значение *Ложь*.

Пример 1. В ячейках I3:I9 (см. рис. 1) вывести фамилии студентов, имеющих средний балл 4 и выше.

Порядок действий:

1. Установить курсор в первую результирующую ячейку I3.

2. Запустить Мастер функций, выбрать функцию ЕСЛИ и в открывшемся диалоговом окне этой функции ввести ее аргументы (рис. 2):

в поле Лог_выражение — проверяемую ячейку и заданное условие (H3>=4), при этом Excel справа от этого поля отобразит слово ЛОЖЬ, означающее, что проверяемое условие в данном случае не выполняется, поскольку значение в ячейке H3 равно 3,75;

1	Аргументы функции						3	Ľ
	ЕСЛИ							
	Лог_выражение	H3>=4	1		1	=	ложь	
	Значение_если_истина	B3			K	=	"Авдеев К.В."	
	Значение_если_ложь				1	=		
						=	0	
	Проверяет, выполняется ли усл если нет.	повие, и	і возвращает	г одно значен	ие, е	сли	оно выполняется, и другое значени	e,
	Значение_если	_ложь					я, если 'лог_выражение' имеет значе цается значение ЛОЖЬ.	ние
	Значение: О							
	Справка по этой функции						ОК Отмена	

Рис. 2. Диалоговое окно функции ЕСЛИ для примера 1

в поле Значение_если_истина — результат, который следует вывести в ячейке I3, если Лог_выражение окажется истинным. Здесь указывается ссылка на ячейку В3, содержимое которой (фамилию студента) Excel должен отобразить в результирующей ячейке I3, если проверяемое условие будет выполняться;

в поле Значение_если_ложь – результат, который следует вывести в ячейке I3, если Лог_выражение окажется ложным. В нашем примере для студентов, имеющих средний балл менее 4, фамилии отображать не нужно, т. е. соответствующие ячейки визуально должны быть пустыми. Однако если поле Значение_если_ложь в диалоговом окне оставить пустым, то при невыполнении условия, заданного в поле Лог_выражение, Excel отобразит в результирующей ячейке I3 слово ЛОЖЬ. Чтобы этого избежать, надо набрать в поле Значение_если_ложь пробел (или текст, которым нужно сопроводить вывод соответствующего результата).

3. Нажать кнопку ОК, вследствие чего в ячейке I3 автоматически сформируется формула = ECЛИ(H3>=4; B3; " "), и Excel отобразит в ней результат вычислений – ячейка визуально останется пустой, так как проверяемое условие

для студента Авдеева К. В. не выполняется (его средний балл ниже 4). Следует отметить, что в созданной формуле пробел заключен в кавычки, как это должно быть с любыми текстовыми данными, являющимися аргументами функций. При необходимости Excel ставит кавычки автоматически, в том числе и в полях ввода аргументов в диалоговых окнах функций.

4. Скопировать формулу из ячейки I3 в ячейки I4:I9 с помощью маркера заполнения.

Результат выполнения примера 1 в ячейках I3:I9 представлен в подразд. 3.6 (стр. 15).

Пример 2. В ячейках J3:J9 назначить стипендию в размере 5000 руб. студентам, сдавшим все экзамены на 4 и 5.

Порядок действий:

- 1. Установить курсор в первую результирующую ячейку Ј3.
- 2. Запустить Мастер функций, выбрать функцию ЕСЛИ и в открывшемся диалоговом окне этой функции ввести ее аргументы (рис. 3):

в поле Лог_выражение – проверяемое условие. Так как ни одна оценка студента в ячейках D3:G3 не должна быть менее 4, достаточно проверить минимальную из них, определив ее значение с помощью функции МИН. Тогда в поле Лог_выражение необходимо набрать условие МИН(D3:G3)>=4 (при этом для ввода диапазона ячеек D3:G3 достаточно выделить его мышью);

в поле Значение_если_истина — число 5000; в поле Значение_если_ложь — число 0.

Рис. 3. Диалоговое окно функции ЕСЛИ для примера 2

- 3. Нажать кнопку ОК, вследствие чего в ячейке J3 автоматически сформируется формула = ECЛИ(МИН(D3:G3)>=4; 5000; 0), и Excel отобразит в ней результат вычислений число 0, так как у студента Авдеева К. В. есть тройки.
- 4. Скопировать формулу из ячейки J3 в ячейки J4:J9 с помощью маркера заполнения.

Результат выполнения примера 2 в ячейках J3:J9 представлен в подразд. 3.6 (стр. 15).

3.3. Вложенные функции

В рассмотренном выше примере 2 созданная формула объединяет в себе сразу две встроенные функции Excel (ЕСЛИ и МИН) и представляет собой пример вложенных функций. При создании таких формул следует соблюдать правило — на любом уровне вложенности¹ «внутренняя» (вложенная) функция со всеми своими аргументами должна полностью входить в состав одного аргумента «внешней» для нее функции.

Ввод формул с вложенными функциями ничем не отличается от ввода обычных формул, однако применение для этого Мастера функций имеет ряд особенностей. Рассмотрим их на примере ввода функции МИН в поле Лог_выражение при выполнении задания примера 2 (см. рис. 3):

- установить курсор в поле Лог_выражение;
- из выпадающего списка в поле адреса ячейки (слева от строки формул) выбрать нужную функцию (если она там отсутствует, то воспользоваться опцией *Другие функции...*) в нашем случае это функция МИН;
- в открывшемся диалоговом окне функции МИН в поле *Число1* указать диапазон проверяемых ячеек D3:G3 (для этого достаточно выделить указанный диапазон мышью);
- для возврата в диалоговое окно функции ЕСЛИ щелкнуть на имени функции ЕСЛИ в строке формул и продолжить ввод данных согласно изложенному в примере 2 порядку.

Такой способ ввода наиболее удобен при создании сложных формул, содержащих несколько функций с большим количеством аргументов.

¹ Microsoft Excel 2010 допускает до 64 уровней вложенности функций.

Если необходимо отредактировать формулу с вложенными функциями, то для вызова диалогового окна любой из входящих в нее функций нужно в режиме редактирования формулы (непосредственно в ячейке или строке формул) установить курсор на имя функции и нажать кнопку .

Пример применения вложенных функций ЕСЛИ рассмотрен в подразд. 3.7.

3.4. Функция СЧЁТЕСЛИ

Функция СЧЁТЕСЛИ подсчитывает количество непустых ячеек в указанном диапазоне, удовлетворяющих заданному условию. В библиотеке встроенных функций Excel она находится в категории *Статистические*.

Общая форма записи функции СЧЁТЕСЛИ:

СЧЁТЕСЛИ(Диапазон; Критерий),

где Диапазон – диапазон ячеек, в котором подсчитывается количество непустых ячеек;

Критерий – условие в форме числа, выражения или текста, которое определяет, какие ячейки надо подсчитывать.

Пример 3. В ячейках D10:G10 (см. рис. 1) подсчитать общее количество пятерок по каждой учебной дисциплине.

Порядок действий:

- 1. Установить курсор в первую результирующую ячейку D10.
- 2. Запустить Мастер функций, выбрать функцию СЧЁТЕСЛИ и в открывшемся диалоговом окне этой функции ввести ее аргументы (рис. 4):
- в поле Диапазон диапазон ячеек в графе «Математика», в которых будет проверяться выполнение заданного условия (D3:D9);
 - в поле Критерий проверяемое условие (оценка 5).
- 3. Нажать кнопку ОК, вследствие чего в ячейке D10 автоматически сформируется формула =СЧЁТЕСЛИ(D3:D9; "=5"), и Excel отобразит в ней результат вычислений число 4 (количество пятерок по математике).
- 4. Скопировать формулу из ячейки D10 в ячейки E10:G10 с помощью маркера заполнения.

Результат выполнения примера 3 в ячейках D10:G10 представлен в подразд. 3.6 (стр. 15).

Аргументы функции				? ×
_СЧЁТЕСЛИ				
Диапазон	D3:D9	<u> </u>	=	{4:4:5:5:5:3:5}
Критерий	5	<u> </u>	=	5
			=	: 4
Подсчитывает количество н	епустых я	неек в диапазоне, удовлетв	оря	яющих заданному условию.
1	Критерий	условие в форме числа, вы какие ячейки надо подсчит		жения или текста, который определяет, вать.
Значение: 4				
Справка по этой функции				ОК Отмена

Рис. 4. Диалоговое окно функции СЧЁТЕСЛИ

3.5. Функция СЧЁТЕСЛИМН

В тех случаях, когда для решения задачи нужно выполнить подсчет количества значений, удовлетворяющих не одному, а сразу нескольким условиям, применяется функция СЧЁТЕСЛИМН, в диалоговом окне которой можно перечислить до 127 пар проверяемых диапазонов и соответствующих им условий. Например, если в примере 2 дополнительно понадобится подсчитать количество пятерок по математике в группе 476 (см. рис. 1) и вывести результат в ячейке D11, то нужно выполнить следующие действия:

- 1) установить курсор в результирующую ячейку D11;
- 2) запустить Мастер функций, выбрать функцию СЧЁТЕСЛИМН и в открывшемся диалоговом окне этой функции ввести ее аргументы (рис. 5):

в поле Диапазон_условия1 — диапазон ячеек в графе «Математика», в которых будет проверяться выполнение первого условия (D3:D9);

в поле Условие1 – первое проверяемое условие (оценка 5);

в поле Диапазон_условия2 — диапазон ячеек в графе «Группа», в которых будет проверяться выполнение второго условия (С3:С9);

в поле Условие2 – второе проверяемое условие (47б);

3) нажать кнопку ОК, вследствие чего в ячейке D11 автоматически сформируется формула =СЧЁТЕСЛИМН(D3:D9; 5; C3:C9; "476"), и Excel отобразит в ней результат вычислений – число 3.

,	Аргументы функции	<u>?</u>	X
	СЧЁТЕСЛИМН		
	Диапазон_условия1	D3:D9 K = {4:4:5:5:5:3:5}	4
	Условие1	5	
	Диапазон_условия2	C3:C9 = {"47a":"476":"476":"476":"4	
	Условие2	476 =	
	Диапазон_условия3	= ссылка	Ţ
		= чеек, удовлетворяющих заданному набору условий. Словие2: условие в форме числа, выражения или текста, определяющее подсчитываемые ячейки.	
	Значение: Справка по этой функции	ОК Отмена	<u>. </u>

Рис. 5. Диалоговое окно функции СЧЁТЕСЛИМН

3.6. Функция СУММЕСЛИ

Функция СУММЕСЛИ суммирует ячейки, заданные указанным условием. В библиотеке встроенных функций Excel она находится в категории *Математические*.

Общая форма записи функции СУММЕСЛИ:

СУММЕСЛИ(Диапазон; Критерий; Диапазон_суммирования),

где Диапазон – диапазон проверяемых ячеек;

Критерий – условие в форме числа, выражения или текста, определяющее суммируемые ячейки;

Диапазон_суммирования — фактические ячейки для суммирования. Если диапазон суммирования не указан, то будут суммироваться ячейки, заданные аргументом Диапазон.

Пример 4. В ячейках J11 и J12 (см. рис. 1) вычислить суммы стипендии, назначенной студентам групп 47а и 47б.

Порядок действий:

- 1. Установить курсор в ячейку Ј11.
- 2. Запустить Мастер функций, выбрать функцию СУММЕСЛИ и в открывшемся диалоговом окне этой функции ввести ее аргументы (рис. 6):

в поле Диапазон – диапазон ячеек в графе «Группа», в которых будет проверяться выполнение заданного условия (С3:С9);

в поле Критерий – ячейку I11, которая содержит проверяемое условие (47а); в поле Диапазон_суммирования – диапазон ячеек в графе «Стипендия, руб.», значения которых будут суммироваться в случае выполнения проверяемого условия (J3:J9).

,	Аргументы функции					<u>?</u>	×
	СУММЕСЛИ						
	Диапазон	C3:C9		1	=	{"47a":"476":"47a":"476":"476":"47	r:
	Критерий	I11		1	=	"47a"	
	Диапазон_суммирования	J3:J9		1	=	{0:5000:5000:5000:0:5000}	
					=	5000	
	Суммирует ячейки, заданные ука	азанным ус	словием.				
	Диапазон_суммиров	ука				вания. Если диапазон суммирования ейки, задаваемые параметром	не
	Значение: 5000						
	Справка по этой функции					ОК Отмена	

Рис. 6. Диалоговое окно функции СУММЕСЛИ

3. Нажать кнопку ОК, вследствие чего в ячейке J11 автоматически сформируется формула = СУММЕСЛИ(С3:С9; I11; J3:J9), и Excel отобразит в ней результат вычислений – число 5000 (общую сумму стипендии студентов группы 47а).

Вычисление общей суммы стипендии студентов группы 476 в ячейке J12 можно выполнить аналогично, но более эффективно применить для этого автозаполнение. С этой целью в формуле в ячейке J11 нужно поменять относительные адреса ячеек проверяемого и суммируемого диапазонов на абсолютные (для этого можно воспользоваться клавишей F4). В результате формула в ячейке J11 будет иметь вид =СУММЕСЛИ(\$C\$3:\$C\$9; I11; \$J\$3:\$J\$9), после чего ее нужно скопировать из ячейки J11 в ячейку J12 с помощью маркера заполнения.

Итоговая таблица результатов сессии (см. рис. 1) после выполнения примеров 1-4 представлена на рис. 7.

_	_
Ξ	_
(л
•	• •

	Α	В	С	D	Е	F	G	Н	1	J
1					Оце	нки по дисциплинам			Список	
2	№ п/п	Фамилия И.О. студента	Группа	Математика	Физика	Информатика	История	Средний балл	студентов (ср. балл ≥ 4)	Стипендия, руб.
3	1	Авдеев К.В.	47a	4	5	3	3	=CP3HA4(D3:G3)	=ЕСЛИ(Н3>=4;В3;" ")	=ЕСЛИ(МИН(D3:G3)>=4; 5000; 0)
4	2	Белова А.С.	476	4	4	5	5	=CP3HA4(D4:G4)	=ЕСЛИ(Н4>=4;В4;" ")	=ECЛИ(МИН(D4:G4)>=4; 5000; 0)
5	3	Ерофеев Д.И.	47a	5	5	4	5	=CP3HA4(D5:G5)	=ЕСЛИ(H5>=4;B5;" ")	=ECЛИ(МИН(D5:G5)>=4; 5000; 0)
6	4	Иванов И.П.	476	5	5	5	5	=CP3HA4(D6:G6)	=ЕСЛИ(Н6>=4;В6;" ")	=ECЛИ(МИН(D6:G6)>=4; 5000; 0)
7	5	Котова Н.В.	476	5	4	3	5	=CP3HA4(D7:G7)	=ЕСЛИ(Н7>=4;В7;" ")	=ECЛИ(МИН(D7:G7)>=4; 5000; 0)
8	6	Морозов Ф.Д.	47a	3	3	3	3	=CP3HA4(D8:G8)	=ЕСЛИ(Н8>=4;В8;" ")	=ECЛИ(МИН(D8:G8)>=4; 5000; 0)
9	7	Федюнин И.Н.	476	5	4	4	5	=CP3HA4(D9:G9)	=ЕСЛИ(Н9>=4;В9;" ")	=ECЛИ(МИН(D9:G9)>=4; 5000; 0)
10	Коли	чество 5 по дисці	иплинам	=CЧЁТЕСЛИ(D3:D9;"=5")	=СЧЁТЕСЛИ(Е3:Е9;"=5")	=СЧЁТЕСЛИ(F3:F9;"=5")	=СЧЁТЕСЛИ(G3:G9;"=5")			
11								Стипендия по группам,	47a	=СУММЕСЛИ(\$C\$3:\$C\$9; I11; \$J\$3:\$J\$9)
12								руб.	476	=СУММЕСЛИ(\$C\$3:\$C\$9; I12; \$J\$3:\$J\$9)

a

	Α	В	С	D	E	F	G	Н	I	J
1	.No	Фамилия И.О.			Оце	нки по дисциплі	инам		Список	Стипендия,
2	п/п	студента	Группа	Математика	Физика	Информатика	История	Средний балл	студентов (ср. балл ≥ 4)	руб.
3	1	Авдеев К.В.	47a	4	5	3	3	3,75		0
4	2	Белова А.С.	476	4	4	5	5	4,50	Белова А.С.	5000
5	3	Ерофеев Д.И.	47a	5	5	4	5	4,75	Ерофеев Д.И.	5000
6	4	Иванов И.П.	476	5	5	5	5	5,00	Иванов И.П.	5000
7	5	Котова Н.В.	476	5	4	3	5	4,25	Котова Н.В.	0
8	6	Морозов Ф.Д.	47a	3	3	3	3	3,00		0
9	7	Федюнин И.Н.	476	5	4	4	5	4,50	Федюнин И.Н.	5000
10	Кол	ичество 5 по дисци	плинам	4	3	2	5			
11								Стипендия	47a	5000
12								по группам, руб.	476	15000

б

Рис. 7. Итоговая таблица результатов сессии в режимах отображения формул (a) и отображения значений (б)

3.7. Организация разветвлений с помощью вложенных функций ЕСЛИ

С помощью вложенных функций ЕСЛИ можно организовать вычислительный процесс с множеством разветвлений. Рассмотрим их применение на конкретном примере.

Пример 5. Вычислить значение функции y при изменении аргумента x в диапазоне от 5 до 15 с шагом 1:

$$y = \begin{cases} 2.5x & \text{при} & x < 7; \\ \sqrt[3]{x^2} & \text{при} & 7 \le x \le 11; \\ x + 0.5 & \text{при} & x > 11. \end{cases}$$
 (1)

Фрагмент рабочего листа Excel с результатами расчета представлен на рис. 8, примеры записи математических выражений в Excel подробно рассмотрены в работе [4, с. 14].

Рис. 8. Пример вложенных функций ЕСЛИ

Порядок действий:

1. В ячейки A3:A13 с помощью автозаполнения с арифметической прогрессией ввести значения x от 5 до 15 с шагом 1.

- 2. Установить курсор в первую расчетную ячейку В3, запустить Мастер функций и выбрать функцию ЕСЛИ.
 - 3. В открывшемся диалоговом окне (рис. 9) ввести:

в поле Лог_выражение — первое условие из формулы (1). Для определения значения y в ячейке B3 исходное значение x находится в ячейке A3, поэтому условие будет иметь вид A3<7;

в поле 3начение_если_истина — соответствующее первому условию формулы (1) выражение для расчета значения y (2,5*A3);

поле Значение_если_ложь должно содержать выражение для расчета значения y, если условие x < 7 не выполняется (т. е. при $x \ge 7$), но в формуле (1) для такого случая приведены два разных выражения: второе — при $x \le 11$ и третье — при x > 11. Для выбора нужного варианта необходимо в поле Значение_если_ложь опять вставить функцию ЕСЛИ, для чего щелкнуть мышью в поле адреса ячейки на имени функции ЕСЛИ.

Рис. 9. Ввод первой (внешней) функции ЕСЛИ

- 4. В открывшемся новом диалоговом окне функции ЕСЛИ (с пустыми полями аргументов) ввести второе проверяемое условие из формулы (1) и соответствующие выражения, как показано на рис. 10.
- 5. Нажать кнопку ОК, вследствие чего в ячейке В3 автоматически сформируется формула, приведенная на рис. 8, и Excel отобразит в ней результат расчета число 12,5.

6. Скопировать введенную в ячейку B3 формулу в ячейки B4:B13 с помощью маркера заполнения.

Рис. 10. Ввод второй (вложенной) функции ЕСЛИ

Поскольку каждая формула в ячейках ВЗ:В13 содержит в себе все три заданных выражения для расчета *у*, они будут выдавать правильные результаты для любых произвольных значений *х*, введенных в соответствующие ячейки АЗ:А13, в том числе из разных диапазонов числовой оси. Например, если в ячейку АЗ ввести число 10, то в ячейке ВЗ будет результат 4,6 (расчет по второму выражению), если в ячейку АЗ ввести число 15 — в ячейке ВЗ будет результат 15,5 (расчет по третьему выражению).

3.8. Логические функции НЕ, И, ИЛИ

Для расширения функционала проверки выполнения условий в Excel имеются функции HE, И, ИЛИ. В библиотеке встроенных функций они находятся в категории *Логические* и во многих случаях применяются совместно с функцией ЕСЛИ.

Аргументами и результатами этих функций являются логические значения *Истина* или *Ложь*, а их действие аналогично соответствующим операциям алгебры логики:

функция НЕ(Логическое_значение) принимает в виде аргумента всего одно логическое значение и меняет его на противоположное (рис. 11, а), т. е. значение *Истина* она изменит на *Ложь* и наоборот;

функция И(Логическое_значение1; [Логическое_значение2]; ...) возвращает логическое значение Истина, если все аргументы функции вернули истинное значение. Если хотя бы один аргумент возвращает значение Ложь, то функция также вернет значение Ложь (рис. 11, б);

функция ИЛИ(Логическое_значение1; [Логическое_значение2]; ...) возвращает логическое значение *Истина*, если хотя бы один аргумент функции вернет истинное значение (рис. 11, в).

						C2 ▼ (J _x = N(A2; B2)					C2 ▼ (a) f _x =ИЛИ(
	C2		▼ (f _x	=HE(A2)		Α	В	С			4	Α	В	С	
	Α	В	С		1	а	b	aΛb		-	L	а	b	a v b	
1	а		¬a		2	0	0	ЛОЖЬ		2	2	0	0	ЛОЖЬ	
2	0		ИСТИНА		3	0	1	ЛОЖЬ		3	3	0	1	ИСТИНА	
3	1		ЛОЖЬ		4	1	0	ЛОЖЬ		4	ļ	1	0	ИСТИНА	
					5	1	1	ИСТИНА			5	1	1	ИСТИНА	
a			б						В						

Рис. 11. Результаты логических функций НЕ (а), И (б), ИЛИ (в)

Рассмотрим применение логических функций на конкретном примере.

Пример 6. Составить таблицу истинности логического выражения $\bar{b} \vee a \wedge b$, полученный результат представить с помощью констант 1 (*Истина*) и 0 (*Ложсь*).

Решим поставленную задачу двумя способами.

Способ 1. Построим результирующую таблицу истинности, выполняя каждую логическую операцию по отдельности (рис. 12):

- 1) в ячейках A2:В5 введем все возможные комбинации значений логических переменных а и b;
- 2) в ячейках C2, D2, E2 введем по очереди логические функции заданного выражения в соответствии с приоритетом их выполнения;
- 3) в ячейке F2 введем функцию ЕСЛИ для преобразования логических значений *Истина* и *Ложь* соответственно в числовые значения 1 и 0;

4) скопируем формулу из ячейки F2 в ячейки F3:F5 с помощью маркера заполнения.

	Α	В	С	D	Е	F				
1	а	b	¬b	aΛb	¬b∨a∧b					
2	0	0	=HE(B2)	= И (A2; B2)	=ИЛИ(C2; D2)	=ЕСЛИ(Е2=ИСТИНА; 1; 0)				
3	0	1	=HE(B3)	=И(A3; B3)	=ИЛИ(C3; D3)	=ЕСЛИ(Е3=ИСТИНА; 1; 0)				
4	1	0	=HE(B4)	=И(A4; B4)	=ИЛИ(C4; D4)	=ЕСЛИ(Е4=ИСТИНА; 1; 0)				
5	1	1	=HE(B5)	=И(A5; B5)	=ИЛИ(C5; D5)	=ЕСЛИ(Е5=ИСТИНА; 1; 0)				

a

	A B		С	D	Е	F
1	а	b	¬b	a∧b	¬bva∧	b
2	0	0	ИСТИНА	ЛОЖЬ	ИСТИНА	1
3	0	1	ЛОЖЬ	ЛОЖЬ	ЛОЖЬ	0
4	1	0	ИСТИНА	ЛОЖЬ	ИСТИНА	1
5	1	1	ЛОЖЬ	ИСТИНА	ИСТИНА	1

б

Рис. 12. Результат выполнения примера 6 (способ 1) в режимах отображения формул (а) и отображения значений (б)

В функции ЕСЛИ аргумент Лог_выражение (см. подразд. 3.2) может принимать только значения *Истина* или *Ложь*, поэтому в формулах в ячейках F2:F5 можно опустить оператор сравнения (=ИСТИНА) и записать их более компактно. Например, в ячейке F2 формула может иметь вид =ЕСЛИ(E2; 1; 0).

Способ 2. Построим результирующую таблицу истинности, объединив все логические операции в одной формуле с помощью вложенных функций (рис. 13):

- 1) в ячейках A2:В5 введем все возможные комбинации значений логических переменных а и b;
 - 2) в ячейке С2 введем функцию ЕСЛИ с вложенными функциями ИЛИ, НЕ, И;

3) скопируем формулу из ячейки F2 в ячейки F3:F5 с помощью маркера заполнения.

	Α	В	С
1	а	b	¬b∨a∧b
2	0	0	=ЕСЛИ(ИЛИ(НЕ(В2);И(А2;В2));1;0)
3	0	1	=ЕСЛИ(ИЛИ(НЕ(В3);И(А3;В3));1;0)
4	1	0	=ЕСЛИ(ИЛИ(НЕ(В4);И(А4;В4));1;0)
5	1	1	=ЕСЛИ(ИЛИ(НЕ(В5);И(А5;В5));1;0)

Рис. 13. Вложенные логические функции при выполнении примера 6 в режиме отображения формул

3.9. Контрольные вопросы

- 1) Какая функция Excel используется для подсчета количества ячеек, значения которых удовлетворяют некоторому условию?
- 2) В чем заключается различие ввода проверяемого условия в функциях СЧЁТЕСЛИ и ЕСЛИ?
 - 3) Какие аргументы имеет функция СУММЕСЛИ?
 - 4) Как можно отредактировать формулу с вложенными функциями?
 - 5) Могут ли быть вложенными функции ЕСЛИ?
- 6) Приведите примеры использования функции ЕСЛИ и логических функций НЕ, И, ИЛИ.

3.10. Задания

Задание 1. Вычисления с проверкой условий.

- 1. Откройте Excel-шаблон.
- 2. Сохраните Excel-шаблон с именем Фамилия_Excel-3 (здесь и далее вместо слова «Фамилия» укажите вашу фамилию) в личной папке. Все дальнейшие действия выполняйте в этом файле.
 - 3. В свойствах файла в поле Примечания укажите свои фамилию и группу.
 - 4. Создайте новый рабочий лист, назвав его «Лаб3_з1».
- 5. В верхнем колонтитуле справа введите свой учебный шифр, в нижнем колонтитуле справа фамилию и инициалы преподавателя.

6. Создайте таблицу с результатами сессии по образцу рис. 14. При этом:

в ячейке «Фамилия И.О.» создайте примечание, в котором укажите дату выполнения работы;

в столбце « \mathbb{N}_2 п/п» с помощью автозаполнения введите порядковые номера строк от 1 до K, где K – количество студентов в вашей подгруппе;

в строке с вашим порядковым номером в столбце «№ п/п» исправьте номер на свой учебный шифр и в соответствующей ячейке столбца «Фамилия И.О.» введите свои фамилию и инициалы;

в остальных строках в столбце «Фамилия И.О.» в произвольном порядке введите фамилии всех студентов вашей подгруппы;

во всех ячейках столбца «Группа» укажите свою группу;

ячейки в столбцах оценок по дисциплинам заполните произвольным образом числами 2, 3, 4, 5 (в каждой строке должно быть не менее двух оценок).

A	Α	В	С	D	Е	F	G	Н	1	J	K	L	
1	Результаты сессии												
2	№	Фамилия	Голи		Оц	енки		Средний	Всего	Фамилия И.О.	OTTO	Перевод на	
3	п/п	И.О.	па	Математика	Физика	Информатика	бапп		д балл баппов (СрБ > 3)	баппов (СрБ >	(СрБ ≥ 3)	(+)	след. курс (да/нет)
4	1			3		4	2						
5	2			5	5		5						
6													
	Cpe	дний балл								D			
7	по д	исциплина	ıM							Всего			
8													
9		Итоги											
10	Bcer	го оценок											
11	в то	м числе:											
12		5											
13		4											
14		3											
15		2											

Рис. 14. Образец таблицы для выполнения задания 1

7. Значения в ячейках, выделенных заливкой, вычислите с применением встроенных функций Excel:

в ячейках строки «Средний балл по дисциплинам» с помощью функции СРЗНАЧ определите средний балл по каждой дисциплине (с одним десятичным знаком);

в ячейках столбца «Средний балл (СрБ)» с помощью функции СРЗНАЧ рассчитайте средний балл по каждому студенту (с одним десятичным знаком);

в ячейках столбца «Всего баллов» с помощью функции СУММ вычислите общую сумму баллов по каждому студенту;

в ячейках столбца «Фамилия И.О. ($Cpb \ge 3$)» с помощью функции ЕСЛИ выведите фамилии студентов со средним баллом не ниже 3;

в ячейках столбца «Отличники (+)» с помощью функции ЕСЛИ выведите признак «+», если студент имеет средний балл по всем сданным экзаменам 5, в противном случае оставьте ячейку пустой. В последней ячейке этого столбца выведите количество отличников;

в ячейках столбца «Перевод на след. курс (да/нет)» с помощью функции ЕСЛИ выведите сообщение «да», если студент переведен на следующий курс (обязательным условием для перевода студента является отсутствие у него двоек по дисциплинам), иначе выведите сообщение «нет». В последней ячейке этого столбца выведите количество студентов, переведенных на следующий курс;

в таблице «Итоги» с помощью функций СЧЁТ и СЧЁТЕСЛИ вычислите общее количество оценок и количество оценок каждого вида.

8. Сохраните содержимое рабочей книги.

Задание 2. Суммирование с проверкой условия.

- 1. Откройте свою рабочую книгу Фамилия_Excel-3, создайте в ней новый рабочий лист с именем «Лаб3-з2», на котором выполните приведенные ниже задания.
- 2. Создайте таблицу с результатами тестирования по образцу рис. 15. Ячейки с наименованиями тестов и ячейки с фамилиями заполните с помощью автозаполнения.
- 3. В ячейках С8:Е16 столбца «Коэффициент выполнения теста» установите проверку данных, задав условие, что вводимое значение должно быть в диапазоне [0; 1]. Предусмотрите вывод соответствующего сообщения при ошибке (в заголовке сообщения об ошибке укажите свою фамилию).
- 4. Введите в ячейки С8:Е16 столбца «Коэффициент выполнения теста» произвольные числа в диапазоне [0; 1].
- 5. Значения в ячейках с заливкой вычислите с применением встроенных функций Excel (для удобства копирования формул используйте в них относительные, абсолютные и смешанные адреса ячеек):
- в ячейках F8:H16 столбца «Количество баллов» рассчитайте оценку в баллах, полученную каждым студентом за отдельный тест, как произведение коэффициента выполнения теста на максимальное количество баллов за этот тест;

в ячейках I8:I16 столбца «Количество баллов» (в графе «Всего») вычислите для каждого студента суммарный балл за все тесты;

в столбце «СУММПРОИЗВ» для каждого студента определите суммарный балл за все тесты другим способом — с помощью функции СУММПРОИЗВ (без использования результатов расчетов из столбца «Количество баллов»). Сравните результаты в столбцах I и J и убедитесь в их идентичности;

в столбце «Количество студентов» примените функцию СЧЁТЕСЛИ;

в ячейках столбца «Сумма баллов» примените функцию СУММЕСЛИ;

в столбце «Средний балл на одного студента» вычислите средний балл по всем тестам в расчете на одного студента в каждой группе (учтите, что функцию СРЗНАЧ в этом случае применять нельзя).

6. Сохраните содержимое рабочей книги.

	Α	В	С	D	Е	F	G	Н		1
- 4	A				L		- G	П	1	,
1										
2		вание теста	Тест1	Тест2	Тест3					
	Максима		25	30	45					
3	количест	гво баллов								
4										
5				Pe	зультаты	тестирования				
6			Коэффици	ент выполн	ения теста		Количест	во баллов		
7	Группа	Фамилия	Тест1	Тест2	Тест3	Тест1	Тест2	Тест3	Bcero	СУММ ПРОИЗВ
8	47a	Фамилия1	0,56	0,94	0,36					
9	47a	Фамилия2								
10	476	Фамилия3								
11	47в	Фамилия4								
12	476	Фамилия5								
13	47B	Фамилияб								
14	476	Фамилия7								
15	47a	Фамилия8								
16	476	Фамилия9								
17										
18			Итоги	по группам	MI .					
19		Количество Сумма ба			OB.	Средний балл				
20	Группа	студентов	Тест1	Тест2	Тест3	на одного студента				
21	47a									
22	476									
23	47в									

Рис. 15. Образец таблицы для выполнения задания 2

Задание 3. Вложенные функции ЕСЛИ.

- 1. Откройте свою рабочую книгу Фамилия_Excel-3, создайте в ней новый рабочий лист с именем «Лаб3-з3», на котором выполните приведенные ниже задания.
- 2. В соответствии с индивидуальным вариантом из табл. 1 создайте формулу для вычисления значения функции с применением вложенных функций ЕСЛИ аналогично примеру 5. При необходимости задайте значение $\pi = 3,1415926$. Образец выполнения задания для варианта 19 представлен на рис. 16.
- 3. Скопируйте созданную формулу в две соседние ячейки ниже и проверьте результат расчета при всех контрольных значениях x, указанных в последней графе табл. 1.
 - 4. Сохраните содержимое рабочей книги.

	D8 $ = $)		
	Α	В		С	D	I	Е		F	G	Н	
1			()]_
2			$\sin^3 6$		x < 0.5				При	X = 0,4	y = 0.31	
3	19	y =	$\left\{e^{w+x}\right\}$	-4 0,5	$5 \le x \le 1,5$,	w = 0,65		При	x = 1,5	y = 4,58	
4			cos(x	$+7)^{2}$	$5 \le x \le 1,5$ $x > 1,5$				При $x = 2,6$			
5			(333(11	,					•			
6												
7	w			X	у							
8	0,65			0,4	0,31							
9				1,5	4,58							
10				2,6	-0,49							
44												

Рис. 16. Образец выполнения задания 3

Таблица 1 Функции для вычисления с помощью вложенных функций ЕСЛИ

Вари-	Функция	Исходные данные	Контрольные значения
1	2	3	4
0	$y = \begin{cases} \ln ax^{2} + b - 0.5 & x < 0.2 \\ e^{ax} - ab & 0.2 \le x \le 2.2 \\ \sin^{2}(x + a) & x > 2.2 \end{cases}$	a = 0.12; b = -4.4	При $x = 0$ $y = 0.98$ При $x = 2.2$ $y = 1.83$ При $x = 4.4$ $y = 0.96$

Продолжение табл. 1

1	2		3	4
1	$y = \begin{cases} lg xk \\ cos(x+k)^3 \\ \sqrt[3]{x} + e^{kx} \end{cases}$	$x < -1$ $-1 \le x \le 0$ $x > 0$	k = 0,04	При $x = -1,1$ $y = -1,36$ При $x = 0$ $y = 1$ При $x = 1,1$ $y = 2,08$
2		$x < 0$ $0 \le x \le 1$ $x > 1$	d = 6,2	При $x = -0.1$ $y = 0.01$ При $x = 1$ $y = 6.24$ При $x = 2.1$ $y = 1.28$
3	$y = \begin{cases} \sin \sqrt{7x + b} \\ \cos x \end{cases}$	x < 0.3 $0.3 \le x \le 0.7$ x > 0.7	a = 98,3; b = 4,5	При $x = 0.26$ $y = 2.27$ При $x = 0.7$ $y = 0.08$ При $x = 1.14$ $y = 1.85$
4	$y = \begin{cases} 0.3w - e^{x-k} \\ \cos^{3}(wx + k) \\ \ln(x - 0.3) \end{cases}$	$x < 2$ $2 \le x \le 7$ $x > 7$	w = 2.81; k = 0.95	При $x = 1,5$ $y = -0,89$ При $x = 7$ $y = -0,01$ При $x = 12,5$ $y = 2,5$
5	$y = \begin{cases} e^{2x} - \sqrt[3]{d^4} \\ \lg(0.5d + x^2) \\ \sin(x + d^2) \end{cases}$	$x < 1$ $1 \le x \le 4$ $x > 4$	d = 4,4	При $x = 0.7$ $y = -3.15$ При $x = 4$ $y = 1.26$ При $x = 7.3$ $y = 1$
6	$y = \begin{cases} \ln x+k \\ k+0.65e^{x-k} \\ \sqrt[3]{kx} + \cos^2 kx \end{cases}$	$x < -2$ $-2 \le x \le 2$ $x > 2$	k = 2,1	При $x = -2,4$ $y = -1,2$ При $x = 2$ $y = 2,69$ При $x = 6,4$ $y = 2,79$
7	$y = \begin{cases} a + \sin^2 x \\ \sqrt{\lg(a - x)} \\ e^{\sqrt{x - b}} \end{cases}$	$x < 0$ $0 \le x \le 6$ $x > 6$	a = 7,13; b = 0,91	При $x = -0.6$ $y = 7.45$ При $x = 6$ $y = 0.23$ При $x = 12.6$ $y = 30.54$

Продолжение табл. 1

1	2		3	4
8	$y = \begin{cases} e^{wx} + \sqrt{w} \\ \sin\left(x^2 - \frac{\pi}{2}\right) \\ \ln 0.39x^2 \end{cases}$	x < 1,5 $1,5 \le x \le 6,5$ x > 6,5	w = 1,57	При $x = 1$ $y = 6,06$ При $x = 6,5$ $y = 0,16$ При $x = 12$ $y = 4,03$
9	$y = \begin{cases} d\sin^2 x \\ e^{0.2d\sqrt{x}} \\ \lg x^2 - 0.2x \end{cases}$	$x < 0$ $0 \le x \le 5$ $x > 5$	d = 2,5	При $x = -0.5$ $y = 0.57$ При $x = 5$ $y = 3.06$ При $x = 10.5$ $y = -0.06$
10	$y = \begin{cases} b \sin x \\ \ln^2 x - e^{-bx} \\ \cos \sqrt{(x+b)^3} \end{cases}$	x < 3.5 $3.5 \le x \le 8.5$ x > 8.5	b = 0,91	При $x = 3$ $y = 0.13$ При $x = 8.5$ $y = 4.58$ При $x = 14$ $y = 0.52$
11	$y = \begin{cases} e^{\cos x } \\ \lg \sqrt{(x+a)^3} \\ a\sqrt{ \sin x } \end{cases}$	$x < -2$ $-2 \le x \le 5$ $x > 5$	a = 3,8	При $x = -2.7 y = 0.4$ При $x = 5 y = 1.42$ При $x = 12.7 y = 1.39$
12	$y = \begin{cases} 2\cos\left(x^2 - \frac{\pi}{2}\right) \\ 2x - 3\ln x - 3 \\ e^{-kx} - \frac{x^2}{3 + 0.2x^2} \end{cases}$	$x < 0.5$ $0.5 \le x \le 0.6$ $x > 0.6$		При $x = 0.49$ $y = 0.48$ При $x = 0.6$ $y = -0.27$ При $x = 0.71$ $y = 0.77$
13	$y = \begin{cases} e^{bx} - \sqrt{2x} \\ \lg x^{2} - x + 1, 8 \\ \sin^{2}(x^{3} + 1) \end{cases}$	$x < 2$ $2 \le x \le 3$ $x > 3$	b = 0,7	При $x = 1,9$ $y = 1,83$ При $x = 3$ $y = -0,25$ При $x = 4,1$ $y = 0,52$
14	$y = \begin{cases} \cos(x^{2} + a) \\ \ln^{2}(1+x) - 1.5 \\ e^{-ax} + 0.5 \end{cases}$	$x < 0$ $0 \le x \le 1$ $x > 1$	a = 2	При $x = -0.1$ $y = -0.43$ При $x = 1$ $y = -1.02$ При $x = 2.1$ $y = 0.51$

Окончание табл. 1

1	2		3	4
15	$y = \begin{cases} e^{-1.57x} - 7 \\ x + \sqrt[3]{\sin\left(\frac{1}{x}\right)} \\ d + \lg\sqrt{x + 7} \end{cases}$	$x < 1,2$ $1,2 \le x \le 3,2$ $x > 3,2$	d = 4,7	При $x = 1$ $y = -6.79$ При $x = 3.2$ $y = 3.87$ При $x = 5.4$ $y = 5.25$
16	$y = \begin{cases} \ln^2 \sqrt{x^2 - 0.5} \\ \cos\left(\frac{x + a}{x - b}\right) \\ e^{ax - b} + 0.7 \end{cases}$	$x < 2$ $2 \le x \le 3$ $x > 3$	a = 0,5; b = 1	При $x = 1,9$ $y = 0,32$ При $x = 3$ $y = -0,18$ При $x = 4,1$ $y = 3,56$
17	$y = \begin{cases} e^{x+k} - 2\\ \sin^3(x + \sqrt{k})\\ \lg(x + 7\sqrt{x}) - x \end{cases}$	$x < 0$ $0 \le x \le 1$ $x > 1$	k = 0,5	При $x = -0.1$ $y = -0.51$ При $x = 1$ $y = 0.97$ При $x = 2.1$ $y = -1.01$
18	$y = \begin{cases} \ln^2 ax - 2 \\ 5 - e^{-x + \sqrt{a}} \\ a + \cos \sqrt{x + a^2} \end{cases}$	x < 4.5 $4.5 \le x \le 6.5$ x > 6.5	a = 3,4	При $x = 4,3$ $y = 5,2$ При $x = 6,5$ $y = 4,99$ При $x = 8,7$ $y = 3,19$

Задание 4. Работа с логическими функциями.

- 1. Откройте свою рабочую книгу Фамилия_Excel-3, создайте в ней новый рабочий лист с именем «Лаб3-з4», на котором выполните приведенные ниже задания.
- 2. В соответствии с индивидуальным вариантом из табл. 2 составьте таблицу истинности заданного логического выражения двумя способами аналогично примеру 6. Оформите работу по образцу рис. 12 и 13. Убедитесь в том, что полученные разными способами результаты являются идентичными.
 - 3. Сохраните содержимое рабочей книги.

Таблица 2

Логические выражения

Вари-	Выражение	Вари-	Выражение	Вари-	Выражение	Вари-	Выражение
0	$a \wedge \overline{b \vee c}$	5	$a \wedge (\bar{b} \vee \bar{c})$	10	$\overline{a \wedge b \wedge c}$	15	$\bar{a} \vee \bar{b} \vee \bar{c}$
1	$\bar{a} \wedge b \vee c$	6	$a \wedge \overline{b} \wedge \overline{c}$	11	$\bar{a} \wedge (b \vee c)$	16	$\bar{a} \vee \bar{b} \wedge c$
2	$a \vee \overline{b} \wedge c$	7	$a \wedge (b \vee c)$	12	$\bar{a} \lor b \land \bar{c}$	17	$\overline{a \lor b} \land \overline{c}$
3	$a \vee \overline{b} \wedge \overline{c}$	8	$\overline{a \wedge b} \vee \overline{c}$	13	$\overline{a} \wedge \overline{b \vee c}$	18	$\overline{a} \wedge \overline{b \wedge c}$
4	$\overline{a \lor b} \land c$	9	$\overline{a \wedge b \vee c}$	14	$\bar{a} \wedge \bar{b} \vee \bar{c}$		

Библиографический список

- 1. Гаврилов М. В. Информатика и информационные технологии: Учебник / М. В. Гаврилов, В. А. Климов. М.: Юрайт, 2016. 383 с.
- 2. Патеюк А. Г. Обработка данных в табличном процессоре Microsoft Excel 2010. Часть 1. Основы вычислений в электронных таблицах: Учебное пособие / А. Г. Патеюк / Омский гос. ун-т путей сообщения. Омск, 2014. 58 с.
- 3. Настащук Н. А. Обработка данных в табличном процессоре Microsoft Excel 2010. Часть 2. Работа с диаграммами и списками в электронных таблицах: Учебное пособие / Н. А. Настащук / Омский гос. ун-т путей сообщения. Омск, 2014. 87 с.
- 4. Сидорова Е. А. Лабораторный практикум по работе в табличном процессоре Microsoft Excel 2010. Часть 2. Создание формул. Встроенные функции: Практикум / Е. А. Сидорова, С. П. Железняк / Омский гос. ун-т путей сообщения. Омск, 2018. 37 с.

Учебное издание

СИДОРОВА Елена Анатольевна, ЖЕЛЕЗНЯК Светлана Петровна

ЛАБОРАТОРНЫЙ ПРАКТИКУМ ПО РАБОТЕ В ТАБЛИЧНОМ ПРОЦЕССОРЕ MICROSOFT EXCEL 2010

Часть 3

ВЫЧИСЛЕНИЯ С ПРОВЕРКОЙ УСЛОВИЙ

Практикум

Редактор Н. А. Майорова

Подписано в печать 08.06.2018. Формат $60 \times 84^{-1}/_{16}$. Офсетная печать. Бумага офсетная. Усл. печ. л. 1,9. Уч.-изд. л. 2,1. Тираж 500 экз. Заказ

**

Редакционно-издательский отдел ОмГУПСа Типография ОмГУПСа

*

644046, г. Омск, пр. Маркса, 35