Systems of linear equations

Wygenerowano przez Doxygen 1.8.17

1 Indeks hierarchiczny
1.1 Hierarchia klas
2 Indeks klas
2.1 Lista klas
3 Indeks plików
3.1 Lista plików
4 Dokumentacja klas
4.1 Dokumentacja klasy Matrix
4.1.1 Opis szczegółowy
4.1.2 Dokumentacja konstruktora i destruktora
4.1.2.1 Matrix() [1/3]
4.1.2.2 Matrix() [2/3]
4.1.2.3 Matrix() [3/3]
4.1.2.4 ∼Matrix()
4.1.3 Dokumentacja funkcji składowych
4.1.3.1 add_d_x()
4.1.3.2 add_d_y()
4.1.3.3 capacity_x()
4.1.3.4 capacity_y()
4.1.3.5 operator*() [1/2]
4.1.3.6 operator*() [2/2]
4.1.3.7 operator*=()
4.1.3.8 operator+()
4.1.3.9 operator+=()
4.1.3.10 operator=() [1/2]
4.1.3.11 operator=() [2/2]
4.1.3.12 operator[]()
4.1.3.13 print() [1/3]
4.1.3.14 print() [2/3]
4.1.3.15 print() [3/3]
4.1.3.16 set_d()
4.1.3.17 size_x()
4.1.3.18 size_y()
4.1.3.19 swap_x()
4.1.3.20 swap_y()
4.1.4 Dokumentacja przyjaciół i funkcji związanych
4.1.4.1 operator*
4.1.4.2 operator <<
4.2 Dokumentacja klasy Solver
4.2.1 Opis szczegółowy

	4.2.1.1 solv()	16
	4.3 Dokumentacja klasy Solver_Gauss	16
	4.3.1 Opis szczegółowy	17
	4.3.2 Dokumentacja funkcji składowych	17
	4.3.2.1 solv()	17
	4.4 Dokumentacja klasy Solver_i	17
	4.4.1 Opis szczegółowy	18
	4.4.1.1 norm1()	18
	4.4.1.2 norm2()	18
	4.4.1.3 norm3()	18
	4.4.1.4 solv()	19
	4.5 Dokumentacja klasy Solver_Jacobi	19
	4.5.1 Opis szczegółowy	19
	4.5.2 Dokumentacja funkcji składowych	19
	4.5.2.1 solv()	19
	4.6 Dokumentacja klasy Solver_Residuum	20
	4.6.1 Opis szczegółowy	20
	4.6.2 Dokumentacja funkcji składowych	20
	4.6.2.1 solv()	20
	4.7 Dokumentacja klasy Solver_Seidl	21
	4.7.1 Opis szczegółowy	21
	4.7.2 Dokumentacja funkcji składowych	21
	4.7.2.1 solv()	21
5	Dokumentacja plików	23
	5.1 Dokumentacja pliku C:/Users/Piotrek/source/repos/Projekt/Matrix.cpp	
	5.1.1 Dokumentacja funkcji	
	5.1.1.1 operator*()	23
	5.1.1.2 operator <<()	24
	5.2 Dokumentacja pliku C:/Users/Piotrek/source/repos/Projekt/Matrix.h	24
	5.3 Dokumentacja pliku C:/Users/Piotrek/source/repos/Projekt/Projekt.cpp	24
	5.4 Dokumentacja pliku C:/Users/Piotrek/source/repos/Projekt/SLE.h	25
	5.5 Dokumentacja pliku C:/Users/Piotrek/source/repos/Projekt/Solver.cpp	25
	5.6 Dokumentacja pliku C:/Users/Piotrek/source/repos/Projekt/Solver.h	25
	5.7 Dokumentacja pliku C:/Users/Piotrek/source/repos/Projekt/Solver_Gauss.cpp	25
	5.8 Dokumentacja pliku C:/Users/Piotrek/source/repos/Projekt/Solver_Gauss.h	25
	5.9 Dokumentacja pliku C:/Users/Piotrek/source/repos/Projekt/Solver_Jacobi.cpp	26
	5.10 Dokumentacja pliku C:/Users/Piotrek/source/repos/Projekt/Solver_Jacobi.h	26
	5.11 Dokumentacja pliku C:/Users/Piotrek/source/repos/Projekt/Solver_Residuum.cpp	26
	5.12 Dokumentacja pliku C:/Users/Piotrek/source/repos/Projekt/Solver_Residuum.h	26
	5.13 Dokumentacja pliku C:/Users/Piotrek/source/repos/Projekt/Solver_Seidl.cpp	26
	5.14 Dokumentacja pliku C:/Users/Piotrek/source/repos/Projekt/Solver_Seidl.h	26

Indeks 29

Rozdział 1

Indeks hierarchiczny

1.1 Hierarchia klas

Ta lista dziedziczenia posortowana jest z grubsza, choć nie całkowicie, alfabetycznie:

Matrix	 	 7
Solver	 	 15
Solver_Gauss	 	 16
Solver_i	 	 17
Solver_Jacobi	 	 19
Solver_Residuum	 	 20
Solver Saidl		21

Indeks hierarchiczny

Rozdział 2

Indeks klas

2.1 Lista klas

Tutaj znajdują się klasy, struktury, unie i interfejsy wraz z ich krótkimi opisami:

Matrix	< D	annia allanatad Ma	aut.						
Solver	< Dyi	namic allocated Ma	atrix						-
00.70.	<	Abstrakcyjna	klas	sa d	o roz	wiazywania	ukladow	rowr	าล 15
Solver_	Gauss							'	
	<odp< td=""><td>owiada za rozwiaz</td><td>zywanie uk</td><td>ladow rown</td><td>aoda Gaussa</td><td>a</td><td></td><td> 1</td><td>16</td></odp<>	owiada za rozwiaz	zywanie uk	ladow rown	aoda Gaussa	a		1	16
Solver_	į								
	<	Abstrakcyjna	klasa	do ite	eracyjnego	rozwiazywania	ukladow	rowr	าล 17
Solver_	Jacobi							'	
	<odp< td=""><td>owiada za rozwiaz</td><td>zywanie uk</td><td>ladow rown</td><td>aoda Jacobie</td><td>ego</td><td></td><td> 1</td><td>ĮŞ</td></odp<>	owiada za rozwiaz	zywanie uk	ladow rown	aoda Jacobie	ego		1	ĮŞ
Solver_	Residu	ım							
	<odp< td=""><td>owiada za rozwiaz</td><td>zywanie uk</td><td>ladow rown</td><td>aoda minima</td><td>lizacji residuow .</td><td></td><td> 2</td><td>20</td></odp<>	owiada za rozwiaz	zywanie uk	ladow rown	aoda minima	lizacji residuow .		2	20
Solver_	Seidl								
	<Odp	owiada za rozwiaz	zywanie uk	ladow rown	aoda Gaussa	a-Seidla		2	21

4 Indeks klas

Rozdział 3

Indeks plików

3.1 Lista plików

Tutaj znajduje się lista wszystkich udokumentowanych plików z ich krótkimi opisami:

C:/Users/Piotrek/source/repos/Projekt/Matrix.cpp
C:/Users/Piotrek/source/repos/Projekt/Matrix.h
C:/Users/Piotrek/source/repos/Projekt/Projekt.cpp
C:/Users/Piotrek/source/repos/Projekt/SLE.h
C:/Users/Piotrek/source/repos/Projekt/Solver.cpp
C:/Users/Piotrek/source/repos/Projekt/Solver.h
C:/Users/Piotrek/source/repos/Projekt/Solver_Gauss.cpp
C:/Users/Piotrek/source/repos/Projekt/Solver_Gauss.h
C:/Users/Piotrek/source/repos/Projekt/Solver_Jacobi.cpp
C:/Users/Piotrek/source/repos/Projekt/Solver_Jacobi.h
C:/Users/Piotrek/source/repos/Projekt/Solver_Residuum.cpp
C:/Users/Piotrek/source/repos/Projekt/Solver_Residuum.h
C:/Users/Piotrek/source/repos/Projekt/Solver_Seidl.cpp
C:/Users/Piotrek/source/repos/Projekt/Solver_Seidl.h

6 Indeks plików

Rozdział 4

Dokumentacja klas

4.1 Dokumentacja klasy Matrix

```
< Dynamic allocated Matrix
#include <Matrix.h>
```

Metody publiczne

- Matrix ()
- Matrix (int a, int b)
- Matrix (Matrix &A)
- ~Matrix ()
- double * operator[] (int a) const
- Matrix & operator= (const Matrix &A)
- Matrix & operator= (double **a)
- Matrix operator+ (const Matrix &A) const
- Matrix & operator+= (Matrix &A)
- Matrix operator* (const Matrix &A) const
- Matrix operator* (const double a) const
- Matrix operator*= (double a)
- void swap_x (int x1, int x2)
- void swap_y (int y1, int y2)
- void add_d_x (int x)
- void set_d (int y, int x)
- void add_d_y (int y)
- const void print ()
- · const void print (int precision, int width)
- const void print (int precision)
- const int size_y () const
- const int size_x () const
- const int capacity_x () const
- · const int capacity_y () const

Przyjaciele

- Matrix operator* (double a, Matrix A)
- std::ostream & operator<< (std::ostream &os, Matrix &A)

4.1.1 Opis szczegółowy

< Dynamic allocated Matrix

4.1.2 Dokumentacja konstruktora i destruktora

4.1.2.1 Matrix() [1/3]

```
Matrix::Matrix ( )
```

Konstruktor domyslny macierzy Tworzy obiekt ale nie rezerwuje na niego zadnej pamieci

4.1.2.2 Matrix() [2/3]

```
Matrix::Matrix (
    int a,
    int b
```

Konstruktor - tworzy macierz o rozmiarach AxB gdzie A to liczba wierszy, a B to liczba kolumn

Parametry

in	а	liczba wierszy macierzy
in	b	liczba kolumn macierzy

4.1.2.3 Matrix() [3/3]

Konstruktor kopiujacy

Parametry

in A macierz za pomoca ktorej nalezy zainicjowac dana macierz

4.1.2.4 \sim Matrix()

```
{\tt Matrix::}{\sim}{\tt Matrix} ( )
```

Destruktor macierzy

4.1.3 Dokumentacja funkcji składowych

4.1.3.1 add_d_x()

Dodaje x kolumn do macierzy

Parametry

in	X	Liczba kolumn ktore chcemy dodac
----	---	----------------------------------

4.1.3.2 add_d_y()

Dodaje y wierszy do macierzy

Parametry

```
in y Liczba wierszy ktore chcemy dodac
```

4.1.3.3 capacity_x()

```
const int Matrix::capacity_x ( ) const
```

Zwraca wartosc x pojemnosci macierzy

Zwraca

pojemnosc x macierzy

4.1.3.4 capacity_y()

```
const int Matrix::capacity_y ( ) const
```

Zwraca wartosc y pojemnosci macierzy

Zwraca

pojemnosc y macierzy

4.1.3.5 operator*() [1/2]

```
Matrix Matrix::operator* ( {\tt const\ double\ \it a\ \it )\ const}
```

Operator mnozenia macierzy przez skalar

Parametry

in a skalar przez ktory ma byc pomnozona macierz

Zwraca

macierz iloczynu

4.1.3.6 operator*() [2/2]

Operator mnozenia macierzy

Parametry

in A prawostronny czynnik ilo	czvnu macierzy
-----------------------------------	----------------

Zwraca

macierz iloczynu

4.1.3.7 operator*=()

Operator mnozenia macierzy pezez skalar i przypisania

Parametry

in a skalar przez ktory ma byc pomnozona macierz

Zwraca

macierz iloczynu

4.1.3.8 operator+()

Operator dodawania macierzy

Parametry

```
in skladnik sumy
```

Zwraca

macierz sumy

4.1.3.9 operator+=()

Operator dodawania i przypisania macierzy

Parametry

```
in A skladnik sumy
```

Zwraca

*this

4.1.3.10 operator=() [1/2]

Operator przepisania macierzy

Parametry

in	Α	macierz ktora chcemy przepisac
----	---	--------------------------------

Zwraca

*this

4.1.3.11 operator=() [2/2]

Operator przepisania tablicy do macierzy. Zakladam, ze tablica ma rozmiar taki jak aktualnie ma macierz

Parametry

	in	а	tablica zmiennych typu double, nalezy uwazac na rozmiar tablicy i macierzy	
--	----	---	--	--

Zwraca

*this

4.1.3.12 operator[]()

Operator pozwalajacy na dostep do konkretnych komorek macierzy. Jesli macierz ma jedna wiersz lub kolumne to nalezy odwolac sie do niej - np A[0][n]

Parametry

in	а	indekswiersza do ktorego chcemy sie odwolac
----	---	---

4.1.3.13 print() [1/3]

```
const void Matrix::print ( )
```

Wyswietla macierz

4.1.3.14 print() [2/3]

Wyswietla macierz

Parametry

in	precision	ustawia precyzje wyswietlania liczb w macierzy
----	-----------	--

4.1.3.15 print() [3/3]

Wyswietla macierz

Parametry

in	precision	ustawia precyzje wyswietlania liczb w macierzy
in	width	ustawia szerokosc wyswietlenia pojedyj komorki macierzy

4.1.3.16 set_d()

```
void Matrix::set_d (
    int y,
    int x )
```

Ustawia rozmiar macierzy na y na x

Parametry

in	У	Liczba wierszy ktore chcemy posiadac po operacji
in	X	Liczba kolumn ktore chcemy posiadac po operacji

4.1.3.17 size_x()

```
const int Matrix::size_x ( ) const
```

Zwraca wartosc x rozmiaru macierzy

Zwraca

rozmiar x macierzy

4.1.3.18 size_y()

```
const int Matrix::size_y ( ) const
```

Zwraca wartosc y rozmiaru macierzy

Zwraca

rozmiar y macierzy

4.1.3.19 swap_x()

Zamienia ze soba kolumny macierzy

Parametry

in	x1	indeks kolumny ktora ma byc zamieniona
in	x2	indeks kolumny ktora ma byc zamieniona

4.1.3.20 swap_y()

Zamienia ze soba kolumny macierzy

Parametry

in	y1	indeks wiersza ktory ma byc zamieniony
in	y2	indeks wiersza ktory ma byc zamieniony

4.1.4 Dokumentacja przyjaciół i funkcji związanych

4.1.4.1 operator*

Funkcja zaprzyjazniona - operator mnozenia macierzy przez skalar

Parametry

	in	а	skalar przez ktory ma byc pomnozona macierz	
--	----	---	---	--

Zwraca

macierz iloczynu

4.1.4.2 operator<<

Zaprzyjazniona funkcja operator strumieniowy

Parametry

in	os	strumietorego chcemy przeslac macierz
in	Α	Macierz ktora przesylamy do strumienia

Dokumentacja dla tej klasy została wygenerowana z plików:

- C:/Users/Piotrek/source/repos/Projekt/Matrix.h
- C:/Users/Piotrek/source/repos/Projekt/Matrix.cpp

4.2 Dokumentacja klasy Solver

< Abstrakcyjna klasa do rozwiazywania ukladow rowna

```
#include <Solver.h>
```

Diagram dziedziczenia dla Solver

Metody publiczne

- virtual bool solv (Matrix A)=0
- Matrix results ()

Atrybuty chronione

Matrix wyniki
 Macierz wynikow.

4.2.1 Opis szczegółowy

< Abstrakcyjna klasa do rozwiazywania ukladow rowna

4.2.1.1 solv()

wirtualna metoda rozwiazywania rowna1]Parametry in A macierz dolaczona Nx(N+1) gdzie lewa czesc NxN jest macierza wspołczynnikow, a ostatni wiersz jest wektorem wynikow rownania w postaci macierzowej

Implementowany w Solver_i, Solver_Residuum, Solver_Seidl, Solver_Gauss i Solver_Jacobi.

Dokumentacja dla tej klasy została wygenerowana z plików:

- C:/Users/Piotrek/source/repos/Projekt/Solver.h
- C:/Users/Piotrek/source/repos/Projekt/Solver.cpp

4.3 Dokumentacja klasy Solver_Gauss

<Odpowiada za rozwiazywanie ukladow rownaoda Gaussa

```
#include <Solver_Gauss.h>
```

Diagram dziedziczenia dla Solver_Gauss

Metody publiczne

• bool solv (Matrix A)

Dodatkowe Dziedziczone Składowe

4.3.1 Opis szczegółowy

< Odpowiada za rozwiazywanie ukladow rownaoda Gaussa

4.3.2 Dokumentacja funkcji składowych

4.3.2.1 solv()

Implementacja metody rozwiazywania rownaoda Gaussa

Parametry

in A macierz dolaczona Nx(N+1) gdzie lewa czesc NxN jest macierza wspolczynnikow, a ostatni wiersz jest wektorem wynikow rownania w postaci macierzowej

Implementuje Solver.

Dokumentacja dla tej klasy została wygenerowana z plików:

- C:/Users/Piotrek/source/repos/Projekt/Solver_Gauss.h
- C:/Users/Piotrek/source/repos/Projekt/Solver_Gauss.cpp

4.4 Dokumentacja klasy Solver_i

< Abstrakcyjna klasa do iteracyjnego rozwiazywania ukladow rowna

```
#include <Solver.h>
```

Diagram dziedziczenia dla Solver_i

Metody publiczne

- virtual bool solv (Matrix A)=0
- void set_precision (double precision)

Ustawia precyzje generowania rozwiaznia.

Metody chronione

- bool norm1 (Matrix &A)
- bool norm2 (Matrix &A)
- bool norm3 (Matrix &A)

Atrybuty chronione

• double precision = 0.001

Precyzja generowania rozwiazania (warunek stopu)

4.4.1 Opis szczegółowy

< Abstrakcyjna klasa do iteracyjnego rozwiazywania ukladow rowna

4.4.1.1 norm1()

1. Norma zbieznosci metody iteracyjnej

4.4.1.2 norm2()

1. Norma zbieznosci metody iteracyjnej

4.4.1.3 norm3()

1. Norma zbieznosci metody iteracyjnej

4.4.1.4 solv()

wirtualna metoda rozwiazywania rowna1]Parametry in A macierz dolaczona Nx(N+1) gdzie lewa czesc NxN jest macierza wspołczynnikow, a ostatni wiersz jest wektorem wynikow rownania w postaci macierzowej

Implementuje Solver.

Implementowany w Solver_Residuum, Solver_Seidl i Solver_Jacobi.

Dokumentacja dla tej klasy została wygenerowana z plików:

- C:/Users/Piotrek/source/repos/Projekt/Solver.h
- C:/Users/Piotrek/source/repos/Projekt/Solver.cpp

4.5 Dokumentacja klasy Solver_Jacobi

<Odpowiada za rozwiazywanie ukladow rownaoda Jacobiego

```
#include <Solver_Jacobi.h>
```

Diagram dziedziczenia dla Solver Jacobi

Metody publiczne

• bool solv (Matrix A)

Dodatkowe Dziedziczone Składowe

4.5.1 Opis szczegółowy

<Odpowiada za rozwiazywanie ukladow rownaoda Jacobiego

4.5.2 Dokumentacja funkcji składowych

4.5.2.1 solv()

Implementacja metody rozwiazywania rownaoda Jacobiego

Parametry

in A macierz dolaczona Nx(N+1) gdzie lewa czesc NxN jest macierza wspolczynnikow, a ostatni wiersz jest wektorem wynikow rownania w postaci macierzowej

Implementuje Solver_i.

Dokumentacja dla tej klasy została wygenerowana z plików:

- C:/Users/Piotrek/source/repos/Projekt/Solver Jacobi.h
- C:/Users/Piotrek/source/repos/Projekt/Solver_Jacobi.cpp

4.6 Dokumentacja klasy Solver_Residuum

<Odpowiada za rozwiazywanie ukladow rownaoda minimalizacji residuow

```
#include <Solver_Residuum.h>
```

Diagram dziedziczenia dla Solver_Residuum

Metody publiczne

• bool solv (Matrix A)

Dodatkowe Dziedziczone Składowe

4.6.1 Opis szczegółowy

<Odpowiada za rozwiazywanie ukladow rownaoda minimalizacji residuow

4.6.2 Dokumentacja funkcji składowych

4.6.2.1 solv()

Implementacja metody rozwiazywania rownaoda residuow

Parametry

ſ	in	Α	macierz dolaczona Nx(N+1) gdzie lewa czesc NxN jest macierza wspolczynnikow, a ostatni wiersz
			jest wektorem wynikow rownania w postaci macierzowej

Implementuje Solver_i.

Dokumentacja dla tej klasy została wygenerowana z plików:

- C:/Users/Piotrek/source/repos/Projekt/Solver Residuum.h
- C:/Users/Piotrek/source/repos/Projekt/Solver_Residuum.cpp

4.7 Dokumentacja klasy Solver_Seidl

<Odpowiada za rozwiazywanie ukladow rownaoda Gaussa-Seidla

```
#include <Solver_Seidl.h>
```

Diagram dziedziczenia dla Solver_Seidl

Metody publiczne

• bool solv (Matrix A)

Dodatkowe Dziedziczone Składowe

4.7.1 Opis szczegółowy

<Odpowiada za rozwiazywanie ukladow rownaoda Gaussa-Seidla

4.7.2 Dokumentacja funkcji składowych

4.7.2.1 solv()

Implementacja metody rozwiazywania rownaoda Gaussa-Seidla

Parametry

in A macierz dolaczona Nx(N+1) gdzie lewa czesc NxN jest macierza wspolczynnikow, a ostatni wiersz jest wektorem wynikow rownania w postaci macierzowej

Implementuje Solver_i.

Dokumentacja dla tej klasy została wygenerowana z plików:

- C:/Users/Piotrek/source/repos/Projekt/Solver_Seidl.h
- C:/Users/Piotrek/source/repos/Projekt/Solver_Seidl.cpp

Rozdział 5

Dokumentacja plików

5.1 Dokumentacja plikuC:/Users/Piotrek/source/repos/Projekt/Matrix.cpp

```
#include "Matrix.h"
#include <iostream>
#include <algorithm>
#include <iomanip>
```

Funkcje

- Matrix operator* (double a, Matrix A)
- std::ostream & operator<< (std::ostream &os, Matrix &A)

5.1.1 Dokumentacja funkcji

5.1.1.1 operator*()

```
Matrix operator* ( \label{eq:double a, Matrix A} \mbox{ Matrix } \mbox{$A$} \mbox{ } \mbox{$\mathsf{Matrix}$ } \mbox{$A$} \mbox{ } \mbox{$\mathsf{Matrix}$ } \mbox{$\mathsf{A}$} \mbox{} \mbox
```

Funkcja zaprzyjazniona - operator mnozenia macierzy przez skalar

Parametry

in	а	skalar przez ktory ma byc pomnozona macierz
----	---	---

24 Dokumentacja plików

Zwraca

macierz iloczynu

5.1.1.2 operator<<()

```
std::ostream& operator<< (
          std::ostream & os,
          Matrix & A )</pre>
```

Zaprzyjazniona funkcja operator strumieniowy

Parametry

in	os	strumietorego chcemy przeslac macierz
in	Α	Macierz ktora przesylamy do strumienia

5.2 Dokumentacja pliku C:/Users/Piotrek/source/repos/Projekt/Matrix.h

```
#include <iostream>
```

Komponenty

class Matrix

< Dynamic allocated Matrix

5.3 Dokumentacja plikuC:/Users/Piotrek/source/repos/Projekt/Projekt.cpp

```
C:/Users/Plotrek/source/repos/Projekt/Projekt.cpp
```

```
#include <iostream>
#include <iomanip>
#include "SLE.h"
```

Funkcje

• int **main** ()

5.4 Dokumentacja pliku C:/Users/Piotrek/source/repos/Projekt/SLE.h

```
#include "Matrix.h"
#include "Solver.h"
#include "Solver_Gauss.h"
#include "Solver_Jacobi.h"
#include "Solver_Residuum.h"
#include "Solver_Seidl.h"
```

5.5 Dokumentacja plikuC:/Users/Piotrek/source/repos/Projekt/Solver.cpp

```
#include "Solver.h"
#include <algorithm>
```

5.6 Dokumentacja pliku C:/Users/Piotrek/source/repos/Projekt/Solver.h

```
#include "Matrix.h"
```

Komponenty

- · class Solver
 - < Abstrakcyjna klasa do rozwiazywania ukladow rownaclass Solver_i
 - < Abstrakcyjna klasa do iteracyjnego rozwiazywania ukladow rownaDoxyCompactItemize

5.7 Dokumentacja pliku

C:/Users/Piotrek/source/repos/Projekt/Solver_Gauss.cpp

```
#include "Solver_Gauss.h"
```

5.8 Dokumentacja pliku

C:/Users/Piotrek/source/repos/Projekt/Solver_Gauss.h

```
#include "Solver.h"
#include "Matrix.h"
```

Komponenty

- class Solver_Gauss

< Odpowiada za rozwiazywanie ukladow rownaoda Gaussa

26 Dokumentacja plików

5.9 Dokumentacja pliku

C:/Users/Piotrek/source/repos/Projekt/Solver_Jacobi.cpp

```
#include "Solver_Jacobi.h"
#include <algorithm>
#include <iostream>
```

5.10 Dokumentacja pliku

C:/Users/Piotrek/source/repos/Projekt/Solver_Jacobi.h

```
#include "Solver.h"
#include "Matrix.h"
```

Komponenty

```
    class Solver_Jacobi
    < Odpowiada za rozwiazywanie ukladow rownaoda Jacobiego</li>
```

5.11 Dokumentacja pliku

C:/Users/Piotrek/source/repos/Projekt/Solver_Residuum.cpp

```
#include "Solver_Residuum.h"
#include <algorithm>
#include <iostream>
```

5.12 Dokumentacja pliku

C:/Users/Piotrek/source/repos/Projekt/Solver Residuum.h

```
#include "Solver.h"
#include "Matrix.h"
```

Komponenty

```
    class Solver_Residuum
    Odpowiada za rozwiazywanie ukladow rownaoda minimalizacji residuow
```

5.13 Dokumentacja pliku

C:/Users/Piotrek/source/repos/Projekt/Solver_Seidl.cpp

```
#include "Solver_Seidl.h"
#include <algorithm>
#include <iostream>
```

5.14 Dokumentacja pliku

C:/Users/Piotrek/source/repos/Projekt/Solver_Seidl.h

```
#include "Solver.h"
#include "Matrix.h"
```

Komponenty

- class Solver_Seidl

< Odpowiada za rozwiazywanie ukladow rownaoda Gaussa-Seidla

Dokumentacja plików

Indeks

```
\simMatrix
                                                                     Solver_i, 18
     Matrix, 8
                                                                norm3
                                                                     Solver_i, 18
add d x
     Matrix, 9
                                                                operator<<
add d v
                                                                     Matrix, 15
     Matrix, 9
                                                                     Matrix.cpp, 24
C:/Users/Piotrek/source/repos/Projekt/Matrix.cpp, 23
                                                                     Matrix, 9, 10, 15
C:/Users/Piotrek/source/repos/Projekt/Matrix.h, 24
                                                                     Matrix.cpp, 23
C:/Users/Piotrek/source/repos/Projekt/Projekt.cpp, 24
                                                                operator*=
C:/Users/Piotrek/source/repos/Projekt/SLE.h, 25
                                                                     Matrix, 10
C:/Users/Piotrek/source/repos/Projekt/Solver.cpp, 25
                                                                operator+
C:/Users/Piotrek/source/repos/Projekt/Solver.h, 25
                                                                     Matrix, 11
C:/Users/Piotrek/source/repos/Projekt/Solver_Gauss.cpp, 25
                                                                operator+=
C:/Users/Piotrek/source/repos/Projekt/Solver_Gauss.h, 25
                                                                     Matrix, 11
C:/Users/Piotrek/source/repos/Projekt/Solver_Jacobi.cpp, 26
                                                                operator=
C:/Users/Piotrek/source/repos/Projekt/Solver Jacobi.h, 26
                                                                     Matrix, 11, 12
C:/Users/Piotrek/source/repos/Projekt/Solver_Residuum.cpp, 26 operator[]
C:/Users/Piotrek/source/repos/Projekt/Solver_Residuum.h, 26
                                                                     Matrix, 12
C:/Users/Piotrek/source/repos/Projekt/Solver Seidl.cpp, 26
C:/Users/Piotrek/source/repos/Projekt/Solver Seidl.h, 26
                                                                print
capacity_x
                                                                     Matrix, 12, 13
     Matrix, 9
capacity_y
                                                                set_d
     Matrix, 9
                                                                     Matrix, 13
                                                                size_x
Matrix, 7
                                                                     Matrix, 13
     \simMatrix, 8
                                                                size_y
     add_d_x, 9
                                                                     Matrix, 14
     add_d_y, 9
                                                                solv
     capacity_x, 9
                                                                     Solver, 16
     capacity_y, 9
                                                                     Solver_Gauss, 17
     Matrix, 8
                                                                     Solver_i, 18
     operator<<, 15
                                                                     Solver Jacobi, 19
     operator*, 9, 10, 15
                                                                     Solver Residuum, 20
     operator*=, 10
                                                                     Solver_Seidl, 21
     operator+, 11
                                                                Solver, 15
     operator+=, 11
                                                                     solv, 16
     operator=, 11, 12
                                                                Solver_Gauss, 16
     operator[], 12
                                                                     solv, 17
     print, 12, 13
                                                                Solver_i, 17
     set_d, 13
                                                                     norm1, 18
                                                                     norm2, 18
     size_x, 13
     size_y, 14
                                                                     norm3, 18
                                                                     solv, 18
     swap_x, 14
     swap_y, 14
                                                                Solver_Jacobi, 19
Matrix.cpp
                                                                     solv, 19
                                                                Solver Residuum, 20
     operator << , 24
     operator*, 23
                                                                     solv, 20
                                                                Solver_Seidl, 21
norm1
                                                                     solv, 21
     Solver_i, 18
                                                                swap_x
norm2
                                                                     Matrix, 14
```

30 INDEKS

swap_y Matrix, 14