Grafuri bipartite

Colorări ale grafurilor

- ▶ G = (V, E) graf neorientat
 - c: $V \rightarrow \{1, 2, ..., p\}$ s.n <u>p-colorare</u> a lui G
 - ∘ c : V \rightarrow {1, 2, ..., p} cu c(x) \neq c(y) \forall xy ∈ E s.n <u>p</u>-colorare <u>proprie</u> a lui G
 - G s.n <u>p-colorabil</u> dacă admite o p-colorare proprie

Colorări ale grafurilor

3-colorabil, dar nu și 2-colorabil (!)

▶ G = (V, E) graf neorientat s.n. bipartit \Leftrightarrow există o partiție a lui V în două submulțimi V_1, V_2 (bipartiție):

$$V = V_1 \cup V_2$$
$$V_1 \cap V_2 = \emptyset$$

astfel încât orice muchie $e \in E$ are o extremitate în V_1 și cealaltă în V_2

Notăm $G = (V_1 \dot{\cup} V_2, E)$

▶ G = (V, E) s.n bipartit complet \Leftrightarrow

este bipartit și $E = \{xy \mid x \in V_1, y \in V_2\}$

Notăm cu $K_{p,q}$ dacă $p = |V_1|$ și $q = |V_2|$

• $G = (V, E) s.n bipartit complet \Leftrightarrow$

este bipartit și $E = \{xy \mid x \in V_1, y \in V_2\}$

Notăm cu $K_{p,q}$ dacă $p = |V_1|$ și $q = |V_2|$

► K_{3,3}

Observație

• G = (V, E) bipartit \Leftrightarrow

există o 2-colorare proprie a vârfurilor (bicolorare):

$$c: V \rightarrow \{1, 2\}$$

(i.e. astfel încât pentru orice muchie $e=xy \in E$ avem $c(x) \neq c(y)$)

nu este bipartit

Modelare

Aplicații

Graf de conflicte (exemplu substanțe care interacționează, activități incompatibile, relații în rețele sociale)

Cuplaje, reţele...

Aplicații p -colorări

Exemplu – De câte săli este nevoie minim pentru programarea într-o zi a n conferințe cu intervale de desfășurare date?

```
Conf. 1: interval (1,4)
```

Conf. 2: interval (2,3)

Conf. 3: interval (2,5)

Conf. 4: interval (6,8)

Conf. 5: interval (3,8)

Conf. 6: interval (6,7)

Aplicații p -colorări

Exemplu – De câte săli este nevoie minim pentru programarea într-o zi a n conferințe cu intervale de desfășurare date?

Conf. 1: interval (1,4)

Conf. 2: interval (2,3)

Conf. 3: interval (2,5)

Conf. 4: interval (6,8)

Conf. 5: interval (3,8)

Conf. 6: interval (6,7)

Graful intersecției intervalelor este 3-colorabil:

Sunt necesare minim 3 săli (corespunzătoare celor 3 culori):

Sala 1: (1,4), (6,7)

Sala 2: (2,3), (3,8)

Sala 3: (2,5), (6,8)

Aplicații p -colorări

Alocare de registrii (Register allocation problem)

pot fi simultan active (nu pot fi memorate în același registru)

- Numărul de culori = numărul de regiștri
- Vârfuri de aceeași culoare = pot fi memorate în același registru

Propoziție

Un arbore este graf bipartit

 Teorema König - Caracterizarea grafurilor bipartite

Fie G = (V, E) un graf cu $n \ge 2$ vârfuri.

Avem

G este bipartit \Leftrightarrow toate ciclurile elementare din G sunt pare

Teorema König – Caracterizarea grafurilor bipartite

Demonstrație - Idee: Presupunem G conex.

Colorăm un arbore parțial al său.

Arătăm că celelalte muchii (care nu sunt în arborele parțial) au extremitățile colorate diferit

Bibliografie DR Popescu – Combinatorică și Teoria grafurilor (Teorema 4.18)

- ► Teorema König ⇒ Agoritm pentru a testa dacă un graf este bipartit
 - Colorăm un arbore parțial al său printr-o parcurgere (colorăm orice vecin j nevizitat al vârfului curent i cu o culoare diferită de cea a lui i)
 - Testăm dacă celelalte muchii de la i la vecini j deja vizitați
 (colorați) au extremitățile i și j colorate diferit

