

Aula 12: Estruturas de Dados Não-Lineares - Grafos Ponderados

2/44 Grafos Ponderados

■ Grafo Ponderado: um grafo em que pesos ou custos estão associados às arestas.

3/44 Grafos Ponderados API das classes para Grafos Ponderados

4/44 Árvores Geradoras Mínimas MST (Minimum Spanning Trees)

- Definição: para um grafo ponderado, uma árvore geradora mínima é um subgrafo conexo sem ciclos, que inclui todos os vértices e cujo peso (a soma dos pesos de todas as arestas) não é maior que o peso de qualquer outra árvore geradora.
- Importância e Aplicações: dado que uma MST representa o menor custo envolvido ao se construir um grafo ponderado, ou mesmo o custo de um grafo ponderado que representa algo existente, ele é aplicado na construção de vários tipos de redes como comunicação, elétrica, hidráulica, aeronáutica etc.

5/44 Árvores Geradoras Mínimas MST (Minimum Spanning Trees)

- Veremos dois algoritmos gulosos para a computação de MSTs:
 - Algoritmo de Prim-Jarník;
 - Algoritmo de Kruskal.
- Para esses algoritmos, assumiremos que:
 - O grafo é conexo. Caso não seja, é necessário adaptar o algoritmo para calcular a MST de cada componente conexo, obtendo assim uma floresta geradora mínima;
 - Os pesos das arestas não são necessariamente distâncias;
 - Os pesos podem ser zero ou negativos;
 - Nenhuma aresta tem peso igual a outra, apesar dos algoritmos conseguirem lidar com isso, mas não garantindo a obtenção de uma MST única, pois assim haverá mais de uma MST para um dado grafo.

Arvores Geradoras Mínimas MST (Minimum Spanning Trees)

Conceitos importantes:

- Adicionar uma aresta que conecta dois vértices em uma árvore cria um ciclo;
- Remover uma aresta de uma árvore a quebra em duas árvores;
- Propriedade do Corte: O corte de um grafo consiste no particionamento dos vértices em dois conjuntos disjuntos não vazios. Uma aresta cruzada de um corte é a aresta que conecta um vértice de um conjunto com um vértice do outro conjunto. arestas cruzadas que separam os

vértices cinzas dos brancos estão

coloridas em azul

a aresta cruzada de menor peso deve estar na MST

7/44 Árvores Geradoras Mínimas MST (Minimum Spanning Trees)

O cômputo de uma MST envolve encontrar a aresta cruzada de menor peso em cada corte possível do grafo;

8/44 Árvores Geradoras Mínimas Algoritmo de Prim (Lazy)

■ Estruturas de dados:

- boolean[] marked: armazena se um vértice está na árvore;
- marked[v] = true: v está na árvore;
- Queue<Edge> mst: arestas da MST;
- MinPriorityQueue<Edge> pq: mantém as arestas cruzadas, comparadas pelo peso.

LazyPrimMST

- weight : double
- marked : boolean[]
- mst : Queue<Edge>
- pg : MinPriorityQueue<Edge>
- + LazyPrimMST(graph : EdgeWeightedGraph)
- prim(graph : EdgeWeightedGraph, source : int) : void
- scan(graph : EdgeWeightedGraph, v : int) : void
- + edges(): Iterable<Edge>
- + weight(): double

Adiciona 0 à MST e todas as arestas na sua lista de adjacências à fila de prioridades.

	pq	
*	0-7	0,16
*	0-2	0,26
*	0-4	0,38
*	6-0	0,58

v	adjacentes				
0	6	2	4	7	
1	3	2	7	5	
2	6	7	1	0	3
3	6	1	2		
4	6	0	7	5	
5	1	7	4		•
6	4	0	3	2	
7	2	1	0	5	4

Adiciona 7 e 0-7 à MST e todas as arestas na sua lista de adjacências à fila de prioridades.

	pq	
*	1-7	0,19
	0-2	0,26
*	5-7	0,28
*	2-7	0,34
*	4-7	0,37
	0-4	0,38
	6-0	0,58

v	adjacentes				
0	6	2	4	7	
1	3	2	7	5	
2	6	7	1	0	3
3	6	1	2		
4	6	0	7	5	
5	1	7	4		
6	4	0	3	2	
7	2	1	0	5	4

Adiciona 1 e 1 - 7 à MST e todas as arestas na sua lista de adjacências à fila de prioridades.

	pq	
	0-2	0,26
	5-7	0,28
*	1-3	0,29
*	1-5	0,32
	2-7	0,34
*	1-2	0,36
	4-7	0,37
	0-4	0,38
	6-0	0,58

v	adjacentes				
0	6	2	4	7	
1	3	2	7	5	
2	6	7	1	0	3
3	6	1	2		
4	6	0	7	5	
5	1	7	4		
6	4	0	3	2	
7	2	1	0	5	4

Adiciona 2 e 0 - 2 à MST e as arestas 2 - 3 e 6 - 2 à fila de prioridades. As arestas 2 - 3 e 6 - 2 à fila de prioridades. $7 ext{ e } 1 - 2$ se tornam inelegíveis. As arestas inelegíveis são as arestas não cruzadas.

	pq	
*	2-3	0,17
	5-7	0,28
	1-3	0,29
	1-5	0,32
	2-7	0,34
	1-2	0,36
	4-7	0,37
	0-4	0,38
*	6-2	0,40
	6-0	0,58

٧	adjacentes					
0	6	2	4	7		
1	3	2	7	5		
2	6	7	1	0	3	
3	6	1	2			
4	6	0	7	5		
5	1	7	4		•	
6	4	0	3	2		
7	2	1	0	5	4	

Adiciona 3 e 2 - 3 à MST e a aresta 3 - 6 à fila de prioridades. A aresta 1 - 3 se torna inelegível.

	pq	
	5-7	0,28
	1-3	0,29
	1-5	0,32
	2-7	0,34
	1-2	0,36
	4-7	0,37
	0-4	0,38
	6-2	0,40
*	3-6	0,52
	6-0	0,58

V	adjacentes					
0	6	2	4	7		
1	3	2	7	5		
2	6	7	1	0	3	
3	6	1	2			
4	6	0	7	5		
5	1	7	4		•	
6	4	0	3	2		
7	2	1	0	5	4	

Adiciona 5 e 5 - 7 à MST e a aresta 4 - 5 à fila de prioridades. A aresta 1 - 5 se torna inelegível.

	pq	
	1-3	0,29
	1-5	0,32
	2-7	0,34
*	4-5	0,35
	1-2	0,36
	4-7	0,37
	0-4	0,38
	6-2	0,40
	3-6	0,52
	6-0	0,58

V	adjacentes				
0	6	2	4	7	
1	3	2	7	5	
2	6	7	1	0	3
3	6	1	2		
4	6	0	7	5	
5	1	7	4		
6	4	0	3	2	
7	2	1	0	5	4

Remove as arestas inelegíveis 1-3, 1-5 e 2-7 da fila de prioridades. Adiciona 4 e 4-5 à MST e a aresta 6-4 à fila de prioridades. As arestas 4-7 e 0-4 se tornam inelegíveis.

	pq	
	1-2	0,36
	4-7	0,37
	0-4	0,38
	6-2	0,40
	3-6	0,52
	6-0	0,58
*	6-4	0,93

V	adjacentes				
0	6	2	4	7	
1	3	2	7	5	
2	6	7	1	0	3
3	6	1	2		
4	6	0	7	5	
5	1	7	4		
6	4	0	3	2	
7	2	1	0	5	4

Remove as arestas inelegíveis 1-2, 4-7 e 0-4 da fila de prioridades. Adiciona 6 e 6 – 2 à MST. O restante das arestas incidentes em 6 se tornam inelegíveis.

pq	
3-6	0,52
6-0	0,58
6-4	0,93

V	adjacentes					
0	6	2	4	7		
1	3	2	7	5		
2	6	7	1	0	3	
3	6	1	2			
4	6	0	7	5		
5	1	7	4			
6	4	0	3	2		
7	2	1	0	5	4	

17/44 Árvores Geradoras Mínimas Algoritmo de Prim (Eager)

A versão eager (ansiosa) do algoritmo de Prim otimiza a versão lazy não mantendo todas as arestas de w na fila de prioridades, visto que a única aresta necessária, ou de interesse, é a que tem menor peso e que o liga à árvore.

18/44 Árvores Geradoras Mínimas Algoritmo de Prim (Eager)

■ Estruturas de dados:

- boolean[] marked: armazena se um vértice está na árvore;
- ightharpoonup marked[v] = true: v está na árvore;
- Edge[] edgeTo: arestas da MST;
- **edgeTo[v]:** é a aresta que conecta v na árvore;
- double[] distTo: armazena os pesos das arestas:
- distTo[v]: o peso da aresta que contém v na árvore;
- IndexedMinPriorityQueue<Double> pq: mantém as arestas cruzadas, comparadas pelo peso;

Adiciona 0 à MST e todas as arestas na sua lista de adjacências à fila de prioridades, dado que cada aresta é a melhor (e única) conexão conhecida entre um vértice da árvore e um vértice que não está na árvore.

V	edgeTo[]	distTo[]
0		0,00
1		+∞
2	0-2	0,26
3		+∞
4	0-4	0,38
5		+∞
6	6-0	0,58
7	0-7	0,16

V	adjacentes				
0	6	2	4	7	
1	3	2	7	5	
2	6	7	1	0	3
3	6	1	2		
4	6	0	7	5	
5	1	7	4		
6	4	0	3	2	
7	2	1	0	5	4

Adiciona 7 e 0-7 à MST e 1-7 e 5-7 à fila de prioridades. As arestas 4 - 7 e 2 - 7 não afetam a fila de prioridades, pois seus pesos não são menores que os pesos das conexões conhecidas da MST aos vértices 4 e 2, respectivamente.

V	edgeTo[]	distTo[]
0		0,00
1	1-7	0,19
2	0-2	0,26
3		+∞
4	0-4	0,38
5	5-7	0,28
6	6-0	0,58
7	0-7	0,16

V	adjacentes				
0	6	2	4	7	
1	3	2	7	5	
2	6	7	1	0	3
3	6	1	2		
4	6	0	7	5	
5	1	7	4		
6	4	0	3	2	
7	2	1	0	5	4

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA

Adiciona 1 e 1 - 7 à MST e 1 - 3 à fila de prioridades.

V	edgeTo[]	distTo[]	
0		0,00	
1	1-7	0,19	
2	0-2	0,26	
3	1-3	0,29	
4	0-4	0,38	
5	5-7	0,28	
6	6-0	0,58	
7	0-7	0,16	

V	adjacentes				
0	6	2	4	7	
1	3	2	7	5	
2	6	7	1	0	3
3	6	1	2		
4	6	0	7	5	
5	1	7	4		-
6	4	0	3	2	
7	2	1	0	5	4

Adiciona 2 e 0-2 à MST, substitui 0-6 por 2-6 como a menor aresta de um vértice da árvore até 6 e substitui 1-2por 2 – 3 como a menor aresta de um vértice da árvore até 3.

V	edgeTo[]	distTo[]
0		0,00
1	1-7	0,19
2	0-2	0,26
3	2-3	0,17
4	0-4	0,38
5	5-7	0,28
6	6-2	0,40
7	0-7	0,16

V	adjacentes				
0	6	2	4	7	
1	3	2	7	5	
2	6	7	1	0	3
3	6	1	2		
4	6	0	7	5	
5	1	7	4		-
6	4	0	3	2	
7	2	1	0	5	4

Simulação

Adiciona 3 e 2 - 3 à MST.

V	edgeTo[]	distTo[]
0		0,00
1	1-7	0,19
2	0-2	0,26
3	2-3	0,17
4	0-4	0,38
5	5-7	0,28
6	6-2	0,40
7	0-7	0,16

V	adjacentes				
0	6	2	4	7	
1	3	2	7	5	
2	6	7	1	0	3
3	6	1	2		
4	6	0	7	5	
5	1	7	4		
6	4	0	3	2	
7	2	1	0	5	4

Adiciona 5 e 5 – 7 à MST e substitui 0 – 4 por 4 – 5 como a menor aresta de um vértice da árvore até 4.

V	edgeTo[]	distTo[]
0		0,00
1	1-7	0,19
2	0-2	0,26
3	2-3	0,17
4	4-5	0,35
5	5-7	0,28
6	6-2	0,40
7	0-7	0,16

V	adjacentes				
0	6	2	4	7	
1	3	2	7	5	
2	6	7	1	0	3
3	6	1	2		
4	6	0	7	5	
5	1	7	4		•
6	4	0	3	2	
7	2	1	0	5	4

Adiciona 4 e 4 - 5 à MST.

V	edgeTo[]	distTo[]
0		0,00
1	1-7	0,19
2	0-2	0,26
3	2-3	0,17
4	4-5	0,35
5	5-7	0,28
6	6-2	0,40
7	0-7	0,16

V	adjacentes				
0	6	2	4	7	
1	3	2	7	5	
2	6	7	1	0	3
3	6	1	2		
4	6	0	7	5	
5	1	7	4		
6	4	0	3	2	
7	2	1	0	5	4

Adiciona 6 e 6 - 2 à MST.

V	edgeTo[]	distTo[]
0		0,00
1	1-7	0,19
2	0-2	0,26
3	2-3	0,17
4	4-5	0,35
5	5-7	0,28
6	6-2	0,40
7	0-7	0,16

V	adjacentes				
0	6	2	4	7	
1	3	2	7	5	
2	6	7	1	0	3
3	6	1	2		
4	6	0	7	5	
5	1	7	4		-
6	4	0	3	2	
7	2	1	0	5	4

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA

27/44 Árvores Geradoras Mínimas Algoritmo de Kruskal

 O algoritmo de Kruskal consiste em processar as arestas na ordem de seus pesos (menor para o maior), inserindo na MST todas as arestas que não formam ciclos com as arestas adicionadas anteriormente, parando o processo após a inserção de V-1arestas. As arestas que vão sendo inseridas formam uma floresta que evolui gradualmente à uma árvore única, a MST;

Internamente, uma fila de prioridades mínima será usada para

obter a ordem de processamento das arestas e a estrutura de dados UnionFind será usada para verificar a conectividade/ciclo entre vértices;

Estrutura de dados:

Queue<Edge> mst: arestas da MST.

KruskalMST

- weight : double
- mst : Queue<Edge>
- + KruskalMST(graph : EdgeWeightedGraph)
- + edges(): Iterable<Edge>
- + weight(): double

mst	pq
0-7	0,16
2-3	0,17
1-7	0,19
0-2	0,26
5-7	0,28
1-3	0,29
1-5	0,32
2-7	0,34
4-5	0,35
1-2	0,36
4-7	0,37
0-4	0,38
6-2	0,40
3-6	0,52
6-0	0,58
6-4	0,93

V	adjacentes					
0	6	2	4	7		
1	ფ	2	7	5		
2	6	7	1	0	3	
3	6	1	2			
4	6	0	7	5		
5	1	7	4			
6	4	0	3	2		
7	2	1	0	5	4	

29/44 Digrafos Ponderados

■ Digrafo Ponderado: um digrafo em que pesos ou custos estão associados às arestas.

Digrafos Ponderados API das classes para Digrafos Ponderados

Menor Caminho SP (Shortest Path)

- **Definição:** O menor caminho de um vértice s a um vértice t em um grafo ponderado é um caminho direto de s a t com a propriedade de que nenhum outro caminho tem menor peso;
- Importância e Aplicações: um menor caminho em um grafo, envolvendo dois vértices, representa o menor custo envolvido em se caminhar do vértice fonte ao vértice de destino, sendo assim, uma das aplicações mais facilmente notada é do cálculo do menor caminho entre cidades em um mapa. Outra possibilidade de aplicação seria no roteamento de pacotes em uma rede de computadores, em que o melhor caminho a se tomar é o que visita os nós da rede através de conexões mais rápidas.

Menor Caminho SP (Shortest Path)

- Veremos um algoritmo para a computação dos menores caminhos entre vértices em um digrafo ponderado:
 - Algoritmo de Dijkstra.
- Para esse algoritmo, assumiremos que:
 - Os caminhos são direcionados;
 - Os pesos das arestas não são necessariamente distâncias;
 - Nem todos os vértices precisam ser alcançáveis;
 - Os pesos serão positivos;
 - Ciclos são ignorados;
 - Os menores caminhos não são necessariamente únicos;
 - Arestas paralelas e loops são permitidos.

Menor Caminho Algoritmo de Dijkstra

 O algóritmo de Dijkstra é análogo ao algoritmo de Prim. Enquanto no algoritmo de Prim constrói-se a MST adicionando novas arestas a cada passo, no algoritmo de Dijkstra a SPT (Shortest Path Tree) é construída, passo a passo, relaxando-se vértices que não fazem parte da SPT que tenham o menor valor distTo[v].

V	edgeTo[]		distTo[]
0	nu	11	0,00
1	5 → 1	0,32	1,05
2	0→2	0,26	0,26
3	7 → 3	0,37	0,97
4	0→4	0,38	0,38
5	4 → 5	0,35	0,73
6	3 → 6	0,52	1,49
7	2 > 7	0,34	0,60

EDUCAÇÃO, CIÊNCIA E TECNOLOGIA

34/44 Menor Caminho Algoritmo de Dijkstra

■ Estruturas de dados:

- Edge[] edgeTo: menor caminho entre vértices:
- edgeTo[v]: última aresta no menor caminho $s \rightarrow v$;
- double[] distTo: armazena aa distância dos menores caminhos;
- **distTo[v]:** distância do menor caminho entre $s \rightarrow v$:
- IndexedMinPriorityQueue<Double> pq: fila de prioridades dos vértices próximos a serem relaxados;

Menor Caminho 35/44 Algoritmo de Dijkstra

Relaxamento de Arestas: relaxar uma aresta $v \rightarrow w$ significa testar se a melhor maneira conhecida até o momento de ir de s a w é ir de s a v, e então usar a aresta de v a w e, caso seja, atualizar as estruturas de dados para refletir essa possibilidade.


```
private void relax( Edge e ) {
   int v = e.from();
   int w = e.to();
   if ( distTo[w] > distTo[v] + e.weight() ) {
        distTo[w] = distTo[v] + e.weight();
        edgeTo[w] = e;
```


Adiciona 0 à SPT e seus vértices adjacentes 2 e 4 à fila de prioridades.

V	edgeTo[]		distTo[]	
0	nu	11	0,00	
1			+∞	
2	0→2	0,26	0,26	←
3			+∞	
4	0→4	0,38	0,38	
5			+∞	
6			+∞	
7			+∞	

V	adjacentes		
0	2	4	
1	3		•
2	7		
3	6		
4	7	5	
5	1	7	4
6	4	0	2
7	3	5	

Remove 2 da fila de prioridades, adiciona $0 \rightarrow 2$ à SPT e adiciona 7 à fila de prioridades.

V	edgeTo[]		distTo[]
0	nu	11	0,00
1			+∞
2	0→2	0,26	0,26
3			+∞
4	0→4	0,38	0,38
5			+∞
6			+∞
7	2 → 7	0,34	0,60

V	adjacentes		
0	2	4	
1	3		
2	7		
3	6		
4	7	5	
5	1	7	4
6	4	0	2
7	3	5	

Remove 4 da fila de prioridades, adiciona $0 \rightarrow 4$ à SPT e adiciona 5 à fila de prioridades. A aresta $4 \rightarrow 7$ é inelegível.

V	edge	eTo[]	distTo[]
0	nu	11	0,00
1			+∞
2	0→2	0,26	0,26
3			+∞
4	0→4	0,38	0,38
5	4 →5	0,35	0,73
6			+∞
7	2 → 7	0,34	0,60

V	adj	acer	ites
0	2	4	
1	3		•
2	7		
3	6		
4	7	5	
5	1	7	4
6	4	0	2
7	3	5	

Remove 7 da fila de prioridades, adiciona $2 \rightarrow 7$ à SPT e adiciona 3 à fila de prioridades. A aresta $7 \rightarrow 5$ é inelegível.

V	edgeTo[]		distTo[]
0	nu	11	0,00
1			+∞
2	0→2	0,26	0,26
3	7 → 3	0,37	0,97
4	0→4	0,38	0,38
5	4→ 5	0,35	0,73
6			+∞
7	2 → 7	0,34	0,60

V	adjacentes		
0	2	4	
1	3		
2	7		
3	6		
4	7	5	
5	1	7	4
6	4	0	2
7	3	5	

Remove 5 da fila de prioridades, adiciona $4 \rightarrow 5$ à SPT e adiciona 1 à fila de prioridades. A aresta $5 \rightarrow 7$ é inelegível.

V	edgeTo[]		dietTo[]	
V	eug		distTo[]	
0	nu	11	0,00	
1	5 → 1	0,32	1,05	
2	0→2	0,26	0,26	
3	7→ 3	0,37	0,97	•
4	0→4	0,38	0,38	
5	4→ 5	0,35	0,73	
6			+∞	
7	2 > 7	0,34	0,60	

V	adjacentes		
0	2	4	
1	3		•
2	7		
3	6		_
4	7	5	
5	1	7	4
6	4	0	2
7	3	5	

Remove 3 da fila de prioridades, adiciona $7 \rightarrow 3$ à SPT e adiciona 6 à fila de prioridades.

V	edgeTo[]		distTo[]
0	nu	11	0,00
1	5 → 1	0,32	1,05
2	0→2	0,26	0,26
3	7 → 3	0,37	0,97
4	0→4	0,38	0,38
5	4 → 5	0,35	0,73
6	3→6	0,52	1,49
7	2 > 7	0,34	0,60

V	adjacentes		
0	2	4	
1	3		•
2	7		
3	6		
4	7	5	
5	1	7	4
6	4	0	2
7	3	5	

Remove 1 da fila de prioridades e adiciona $5 \rightarrow 1$ à SPT. A aresta $1 \rightarrow 3$ é inelegível.

V	edgeTo[]		distTo[]
0	nu	11	0,00
1	5 → 1	0,32	1,05
2	0 → 2	0,26	0,26
3	7 → 3	0,37	0,97
4	0→4	0,38	0,38
5	4 → 5	0,35	0,73
6	3 → 6	0,52	1,49
7	2 > 7	0,34	0,60

V	adjacentes		
0	2	4	
1	ფ		
2	7		
3	6		
4	7	5	
5	1	7	4
6	4	0	2
7	3	5	

Remove 6 da fila de prioridades e adiciona $3 \rightarrow 6$ à SPT.

V	edgeTo[]		distTo[]
0	null		0,00
1	5 → 1	0,32	1,05
2	0→2	0,26	0,26
3	7 → 3	0,37	0,97
4	0→4	0,38	0,38
5	4 → 5	0,35	0,73
6	3 → 6	0,52	1,49
7	2 > 7	0,34	0,60

V	adjacentes		
0	2	4	
1	3		
2	7		
3	6		_
4	7	5	
5	1	7	4
6	4	0	2
7	3	5	

44/44 Bibliografia

SEDGEWICK, R.; WAYNE, K. Algorithms. 4. ed. Boston: Pearson Education, 2011. 955 p.

WEISS, M. A. Data Structures and Algorithm Analysis in Java. 3. ed. Pearson Education: New Jersey, 2012. 614 p.

CORMEN, T. H.; LEISERSON, C. E.; RIVEST, R. L.; STEIN, C. **Algoritmos – Teoria e Prática**. 3. ed. São Paulo: GEN LTC, 2012. 1292 p.

