```
import numpy as np
import math
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
```

url = 'https://raw.githubusercontent.com/mwitiderrick/stockprice/master/NSE-TATAGLOBAL.csv
data = pd.read_csv(url)
data

	Date	Open	High	Low	Last	Close	Total Trade Quantity	Turnover (Lacs)
0	2018-09- 28	234.05	235.95	230.20	233.50	233.75	3069914	7162.35
1	2018-09- 27	234.55	236.80	231.10	233.80	233.25	5082859	11859.95
2	2018-09- 26	240.00	240.00	232.50	235.00	234.25	2240909	5248.60
3	2018-09- 25	233.30	236.75	232.00	236.25	236.10	2349368	5503.90
4	2018-09- 24	233.55	239.20	230.75	234.00	233.30	3423509	7999.55
2030	2010-07- 27	117.60	119.50	112.00	118.80	118.65	586100	694.98
2031	2010-07- 26	120.10	121.00	117.10	117.10	117.60	658440	780.01

Describing the Dataset

data.describe()

data.tail()

	Date	0pen	High	Low	Last	Close	Total Trade Quantity	Turnover (Lacs)
2030	2010-07- 27	117.6	119.50	112.00	118.80	118.65	586100	694.98
2031	2010-07- 26	120.1	121.00	117.10	117.10	117.60	658440	780.01
2032	2010-07- 23	121.8	121.95	120.25	120.35	120.65	281312	340.31

data.dtypes

Date	object
0pen	float64
High	float64
Low	float64
Last	float64
Close	float64
Total Trade Quantity	int64
Turnover (Lacs)	float64
المراجع والمراجع	

dtype: object

data['Date'].value_counts()

2018-09-28 1
2013-04-10 1
2013-03-20 1
2013-03-21 1
2013-03-22 1
...
2016-01-11 1
2016-01-12 1
2016-01-13 1
2016-01-14 1
2010-07-21 1

Name: Date, Length: 2035, dtype: int64

data['High'].hist()

<matplotlib.axes. subplots.AxesSubplot at 0x7fe90c5373d0>

plt.figure(figsize=(20,8))
data.plot()

<matplotlib.axes._subplots.AxesSubplot at 0x7fe90b22cf50>
<Figure size 1440x576 with 0 Axes>


```
data_set = data.filter(['Close'])
dataset = data.values
training_data_len=math.ceil(len(data) * 8)
training_data_len
```

16280

dataset

```
data = data.iloc[:, 0:5]
data
```

		Date	O pen	High	Low	Last	
	0	2018-09-28	234.05	235.95	230.20	233.50	
	1	2018-09-27	234.55	236.80	231.10	233.80	
	2	2018-09-26	240.00	240.00	232.50	235.00	
	3	2018-09-25	233.30	236.75	232.00	236.25	
	4	2018-09-24	233.55	239.20	230.75	234.00	
	2030	2010-07-27	117.60	119.50	112.00	118.80	
<pre>training_set = data.iloc[:, 1:2].values training_set</pre>							
array([[234.05], [234.55], [240.],							
	[121.8], [120.3], [122.1]])						

Scalling of Data Set

```
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler(feature_range = (0, 1))
data_training_scaled = scaler.fit_transform(training_set)

features_set = []
labels = []
for i in range(60, 586):
    features_set.append(data_training_scaled[i - 60:i, 0])
    labels.append(data_training_scaled[i, 0])

features_set, labels = np.array(features_set), np.array(labels)

features_set = np.reshape(features_set, (features_set.shape[0], features_set.shape[1], 1))
features_set.shape
    (526, 60, 1)
```

Building The LSTM

```
import tensorflow as tf
from tensorflow.python.keras.models import Sequential
from tensorflow.python.keras.layers import Dense
from tensorflow.python.keras.layers import LSTM
```

```
model = Sequential()
```

model.compile(optimizer='adam', loss='mean squared error')

```
model.fit(features_set, labels, epochs=50, batch_size=20)
```

```
--/-- L
                              00 J....., J.C.P
Epoch 23/50
27/27 [========== ] - 0s 3ms/step - loss: 0.0118
Epoch 24/50
27/27 [========== ] - 0s 5ms/step - loss: 0.0118
Epoch 25/50
27/27 [========== ] - 0s 3ms/step - loss: 0.0118
Epoch 26/50
27/27 [========== ] - 0s 3ms/step - loss: 0.0118
Epoch 27/50
27/27 [============ ] - 0s 4ms/step - loss: 0.0118
Epoch 28/50
27/27 [========== ] - 0s 1ms/step - loss: 0.0118
Epoch 29/50
27/27 [========== ] - 0s 2ms/step - loss: 0.0118
Epoch 30/50
27/27 [============ ] - 0s 4ms/step - loss: 0.0118
Epoch 31/50
27/27 [========= ] - 0s 3ms/step - loss: 0.0118
Epoch 32/50
27/27 [========== ] - 0s 3ms/step - loss: 0.0118
Epoch 33/50
27/27 [============ ] - 0s 2ms/step - loss: 0.0118
Epoch 34/50
27/27 [========= ] - 0s 3ms/step - loss: 0.0118
Epoch 35/50
27/27 [============ ] - 0s 2ms/step - loss: 0.0118
Epoch 36/50
27/27 [========== ] - 0s 2ms/step - loss: 0.0118
Epoch 37/50
27/27 [========== - - 0s 2ms/step - loss: 0.0118
Epoch 38/50
27/27 [============= ] - 0s 2ms/step - loss: 0.0118
Epoch 39/50
27/27 [========== - - 0s 1ms/step - loss: 0.0118
Epoch 40/50
27/27 [============ ] - 0s 2ms/step - loss: 0.0118
Epoch 41/50
27/27 [============ ] - 0s 2ms/step - loss: 0.0118
Epoch 42/50
27/27 [========== - - 0s 2ms/step - loss: 0.0118
Epoch 43/50
27/27 [============ ] - 0s 2ms/step - loss: 0.0118
Epoch 44/50
27/27 [========= ] - 0s 2ms/step - loss: 0.0118
Epoch 45/50
27/27 [========== - - 0s 2ms/step - loss: 0.0118
Epoch 46/50
27/27 [============ ] - 0s 2ms/step - loss: 0.0118
Epoch 47/50
27/27 [========= ] - 0s 3ms/step - loss: 0.0118
```

data_testing_complete = pd.read_csv(url)
data_testing_processed = data_testing_complete.iloc[:, 1:2]
data_testing_processed

	Open	7
0	234.05	
1	234.55	
2	240.00	
3	233.30	
4	233.55	
2030	117.60	
2031	120.10	
2032	121.80	
2033	120.30	
2034	122.10	
2035 rc	ws × 1 co	olumns

Prediction of the Data

```
test_feature = np.array(test_feature)
test_feature = np.reshape(test_feature, (test_feature.shape[0] - test_feature.shape[1], 1)
test_feature.shape
     (1740, 1)
predictions = model.predict(test_feature)
predictions
     array([[0.20600162],
            [0.21654502],
            [0.21654502],
            . . . ,
            [0.67234385],
            [0.6605839],
            [0.64760745]], dtype=float32)
x_{train} = data[0:1256]
y_{train} = data[1:1257]
print(x_train.shape)
print(y_train.shape)
     (1256, 5)
```

x_train

(1256, 5)

	Date	Open	High	Low	Last		
0	2018-09-28	234.05	235.95	230.20	233.50		
1	2018-09-27	234.55	236.80	231.10	233.80		
2	2018-09-26	240.00	240.00	232.50	235.00		
3	2018-09-25	233.30	236.75	232.00	236.25		
4	2018-09-24	233.55	239.20	230.75	234.00		
1251	2013-09-04	142.00	145.35	140.65	143.60		
1252	2013-09-03	144.10	145.20	140.70	141.80		
1253	2013-09-02	139.40	144.40	139.35	144.00		
1254	2013-08-30	138.10	140.65	136.70	139.20		
1255	2013-08-29	137.00	140.40	137.00	137.10		
1256 rows × 5 columns							

np.random.seed(1)

Drawing a Single number from the Normal Distribution

```
np.random.normal(1)
0.7506296245225899
```

Drawing 5 numbers from Normal Distribution

```
np.random.normal(5)
     6.4621079370449745

np.random.seed(42)

np.random.normal(size=1000, scale=100).std()
     97.87262077473541
```

Ploting Results

```
plt.figure(figsize=(18,6))
plt.title("Stock Market Price Prediction")
plt.plot(data_testing_complete['Close'])
plt.xlabel('Date', fontsize=18)
plt.ylabel('Total Trade Quantity', fontsize=18)
plt.show()
```

Stock Market Price Prediction

Analyze the Closing price from the dataframe

```
data["Date"] = pd.to_datetime(data.Date)
data.index = data['Date']
plt.figure(figsize=(20, 10))
plt.plot(data["Open"], label='ClosePriceHist')
```

[<matplotlib.lines.Line2D at 0x7fe89e45e990>]


```
plt.figure(figsize=(12,6))
plt.plot(data['Date'])
plt.xlabel('Turnover (Lacs)', fontsize=18)
plt.ylabel('Total Trade Quantity', fontsize=18)
plt.show()
```


Analyze the Closing price from the

```
data["Turnover (Lacs)"] = pd.to_datetime(data.Date)
data.index = data['Turnover (Lacs)']
plt.figure(figsize=(20, 10))
plt.plot(data["Turnover (Lacs)"], label='ClosePriceHist')
```

[<matplotlib.lines.Line2D at 0x7fe89e281e10>]


```
sns.set(rc = {'figure.figsize': (20, 5)})
data['Open'].plot(linewidth = 1,color='blue')
```

<matplotlib.axes._subplots.AxesSubplot at 0x7fe89e2ade50>

data.columns

df

```
Index(['Date', 'Open', 'High', 'Low', 'Last', 'Turnover (Lacs)'], dtype='object')
df = pd.read_csv(url)
```

```
Date Open High Low Last Close Total Trade Quantity (Lacs)

cols_plot = ['Open','High','Low','Last','Close']

axes = df[cols_plot].plot(alpha = 1, figsize=(20, 30), subplots = True)

for ax in axes:
    ax.set_ylabel('Variation')
```


✓ 6s completed at 3:40 PM

×