Homework II - Group 010

I. Pen-and-paper

1) Assuming 1 is positive and 0 is negative

<i>x</i> ₁			<i>x</i> ₂		x 3	<i>X</i> 4	X 5	X 6	X 7	X 8	$d(x_i, x_j)$
			5/2		3/2	1/2	3/2	3/2	3/2	5/2	x_1
	y 1	y 2	Class		3/2	5/2	3/2	3/2	3/2	1/2	X 2
X1	A	0	1			3/2	5/2	5/2	1/2	3/2	x 3
X 2	В	1	1				3/2	3/2	3/2	5/2	<i>X</i> 4
X3	A	1	1					1/2	⁵ / ₂	3/2	V-
X4	A	0	1					/2	/2	/2	X 5
X 5	В	0	0						⁵ / ₂	3/2	X 6
X 6	В	0	0							3/2	x_7
X 7	A	1	0								X 8
X8	В	1	0								

$$\begin{aligned} x_1 &\to weight\left(0: 3*\frac{1}{3/2}, 1: \frac{1}{3/2} + \frac{1}{1/2}\right) = weight\left(0: 2, 1: \frac{8}{3}\right) \to TP \\ x_2 &\to weight\left(0: \frac{1}{1/2} + 3*\frac{1}{3/2}, 1: \frac{1}{3/2}\right) = weight\left(0: 4, 1: \frac{2}{3}\right) \to FN \\ x_3 &\to weight\left(0: \frac{1}{1/2} + \frac{1}{3/2}, 1: 3*\frac{1}{3/2}\right) = weight\left(0: \frac{8}{3}, 1: 2\right) \to FN \\ x_4 &\to weight\left(0: 3*\frac{1}{3/2}, 1: \frac{1}{1/2} + \frac{1}{3/2}\right) = weight\left(0: 2, 1: \frac{8}{3}\right) \to TP \\ x_5 &\to weight\left(0: \frac{1}{1/2} + \frac{1}{3/2}, 1: 3*\frac{1}{3/2}\right) = weight\left(0: \frac{8}{3}, 1: 2\right) \to TN \\ x_6 &\to weight\left(0: \frac{1}{1/2} + \frac{1}{3/2}, 1: 3*\frac{1}{3/2}\right) = weight\left(0: \frac{8}{3}, 1: 2\right) \to TN \\ x_7 &\to weight\left(0: \frac{1}{3/2}, 1: \frac{1}{1/2} + 3*\frac{1}{3/2}\right) = weight\left(0: \frac{2}{3}, 1: 4\right) \to FP \\ x_8 &\to weight\left(0: 3*\frac{1}{3/2}, 1: \frac{1}{1/2} + \frac{1}{3/2}\right) = weight\left(0: 2, 1: \frac{8}{3}\right) \to FP \\ recall &= \frac{TP}{TP + FN} = \frac{2}{2 + 2} = \frac{1}{2} \end{aligned}$$

Homework II - Group 010

2) Assuming 1 is positive and 0 is negative

$p(class = 1) = \frac{5}{9}$
$p(class = 0) = \frac{4}{9}$
$p(y_1 = A) = \frac{4}{9}$
$p(y_1 = B) = \frac{5}{9}$
$p(y_2 = 0) = \frac{5}{9}$
$p(y_2 = 0) = \frac{4}{9}$ $p(y_2 = 1) = \frac{4}{9}$
$p(y_2 = 1) = \frac{1}{9}$

	y 1	y 2	уз	Class
X 1	A	0	1.2	1
X2	В	1	0.8	1
X3	A	1	0.5	1
X4	A	0	0.9	1
X5	В	0	1	0
X 6	В	0	0.9	0
X 7	A	1	1.2	0
X8	В	1	0.8	0
X 9	В	0	0.8	1

$$p(y_1 = A, y_2 = 0) = \frac{2}{9}; \ p(y_1 = A, y_2 = 0 \mid class = 0) = 0; \ p(y_1 = A, y_2 = 0 \mid class = 1) = \frac{2}{5}$$

$$p(y_1 = A, y_2 = 1) = \frac{2}{9}; \ p(y_1 = A, y_2 = 1 \mid class = 0) = \frac{1}{4}; \ p(y_1 = A, y_2 = 1 \mid class = 1) = \frac{1}{5}$$

$$p(y_1 = B, y_2 = 0) = \frac{3}{9} = \frac{1}{3}; \ p(y_1 = B, y_2 = 0 \mid class = 0) = \frac{2}{4} = \frac{1}{2}; \ p(y_1 = B, y_2 = 0 \mid class = 1) = \frac{1}{5}$$

$$p(y_1 = B, y_2 = 1) = \frac{2}{9}; \ p(y_1 = B, y_2 = 1 \mid class = 0) = \frac{1}{4}; \ p(y_1 = B, y_2 = 1 \mid class = 1) = \frac{1}{5}$$

Para class = 0:

$$\begin{split} \mu &= 0.975; \ \sigma = \frac{\sqrt{105}}{60}; \ p(y_3 = x | \ class = 0) = \frac{60 * e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}}{\sqrt{210\pi}} \\ p(class = 0 | \ y_1 = a, y_2 = b, y_3 = c) &= \frac{p(y_1 = a, y_2 = b, y_3 = c | \ class = 0) * p(class = 0)}{p(y_1 = a, y_2 = b, y_3 = c)} \\ &= \frac{p(y_1 = a, y_2 = b | \ class = 0) * p(y_3 = c | \ class = 0) * p(class = 0)}{p(y_1 = a, y_2 = b) * (p(y_3 = c | \ class = 0) * p(class = 0) * p(class = 1) * p(class = 1)} \end{split}$$

Para class = 1:

$$\mu = 0.84; \ \sigma = \sqrt{0.063}; \ p(y_3 = x \mid class = 1) = \frac{e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}}{\sqrt{0.126\pi}}$$

$$p(class = 1 \mid y_1 = a, y_2 = b, y_3 = c) = \frac{p(y_1 = a, y_2 = b, y_3 = c \mid class = 1) * p(class = 1)}{p(y_1 = a, y_2 = b, y_3 = c)}$$

$$= \frac{p(y_1 = a, y_2 = b \mid class = 1) * p(y_3 = c \mid class = 1) * p(class = 1)}{p(y_1 = a, y_2 = b) * (p(y_3 = c \mid class = 0) * p(class = 0) * p(class = 1) * p(class = 1)}$$

Homework II - Group 010

3) Assuming 1 is positive and 0 is negative

$$\begin{pmatrix} A \\ 1 \\ 0.8 \end{pmatrix} : \ p(class = 1|\ y_1 = A, y_2 = 1, y_3 = 0.8) =$$

$$= \frac{p(y_1 = A, y_2 = 1|\ class = 1) * p(y_3 = 0.8|\ class = 1) * p(class = 1)}{p(y_1 = A, y_2 = 1) * (p(y_3 = 0.8|\ class = 0) * p(class = 0) + p(y_3 = 0.8|\ class = 1) * p(class = 1))}$$

$$= \frac{\frac{1}{5} * 1.569 * \frac{5}{9}}{\frac{2}{9} * (1.382 * \frac{4}{9} + 1.569 * \frac{5}{9})} = 0.5280$$

$$\begin{pmatrix} B \\ 1 \\ 1 \\ 1 \end{pmatrix} : \ p(class = 1|\ y_1 = B, y_2 = 1, y_3 = 1) =$$

$$= \frac{p(y_1 = B, y_2 = 1|\ class = 1) * p(y_3 = 1|\ class = 1) * p(class = 1)}{p(y_1 = B, y_2 = 1) * (p(y_3 = 1|\ class = 0) * p(class = 0) + p(y_3 = 1|\ class = 1) * p(class = 1))}$$

$$= \frac{\frac{1}{5} * 1.297 * \frac{5}{9}}{\frac{2}{9} * (2.311 * \frac{4}{9} + 1.297 * \frac{5}{9})} = 0.3711$$

$$\begin{pmatrix} B \\ 0 \\ 0.9 \end{pmatrix} : \ p(class = 1|\ y_1 = B, y_2 = 0, y_3 = 0.9) =$$

$$= \frac{p(y_1 = B, y_2 = 0) * (p(y_3 = 0.9|\ class = 1) * p(y_3 = 0.9|\ class = 1) * p(class = 1)}{p(y_1 = B, y_2 = 0) * (p(y_3 = 0.9|\ class = 0) * p(class = 0) + p(y_3 = 0.9|\ class = 1) * p(class = 1)}$$

$$= \frac{\frac{1}{5} * 1.545 * \frac{5}{9}}{\frac{1}{12} * (2.121 * \frac{4}{12} * 1.545 * \frac{5}{20}} = 0.2850$$

4)

$$f\left(\begin{pmatrix} A\\1\\0.8 \end{pmatrix}, 0.3 \right) = Positive(0.5280 > 0.3)$$

$$f\left(\begin{pmatrix} B\\1\\1 \end{pmatrix}, 0.3 \right) = Positive(0.3711 > 0.3)$$

$$f\left(\begin{pmatrix} B\\0\\0.9 \end{pmatrix}, 0.3 \right) = Negative(0.2850 \le 0.3)$$

$$Accuracy = \frac{3}{3} = 1$$

$$f\left(\begin{pmatrix} A\\1\\0.8 \end{pmatrix}, 0.5 \right) = Positive$$

$$f\left(\begin{pmatrix} B\\1\\1 \end{pmatrix}, 0.5 \right) = Negative$$

Homework II - Group 010

$$f\left(\begin{pmatrix} B\\0\\0.9 \end{pmatrix}, 0.5\right) = Negative$$

$$Accuracy = \frac{2}{3}$$

$$f\left(\begin{pmatrix} A\\1\\0.8 \end{pmatrix}, 0.7\right) = Negative$$

$$f\left(\begin{pmatrix} B\\1\\1\end{pmatrix}, 0.7\right) = Negative$$

$$f\left(\begin{pmatrix} B\\0\\0.9\end{pmatrix}, 0.7\right) = Negative$$

$$Accuracy = \frac{1}{3}$$

The decision threshold 0.3 is the one that optimizes testing accuracy.

II. Programming and critical analysis

5)

Confusion Matrix Naïve Bayes

Predicted class=0 Predicted class=1

Real class=0	67	125
Real class=1	69	495

Confusion Matrix kNN

Predicted class=0 Predicted class=1

Real class=0 50 142 Real class=1 67 497

6) p-value = 0.91 with H_0 : Naïve Bayes better or equal to kNN (H_1 : kNN better than Naïve Bayes). This means that this hypothesis H_0 is accepted for levels of significance equal or under 91% and is rejected for higher levels. For the usual levels of significance (0.01, 0.05 and 0.1) H_0 is accepted and H_1 (the one we wanted to classify) is rejected. We can conclude that, in this situation, the hypothesis "kNN is statistically superior to Naïve Bayes regarding accuracy" is not true.

7)

- 1. kNN is sensitive to outliers. In this case, kNN only works with five elements (increasing the risk of overfit), while Naïve Bayes works with all of them.
- 2. Also, kNN did not considerate the weight and the data was not normalized, which may have decreased the accuracy.

Aprendizagem 2022/23 Homework II – Group 010

III. APPENDIX

```
import pandas as pd
import math
from scipy.io.arff import loadarff
from sklearn.feature_selection import SelectKBest
from sklearn.model selection import StratifiedKFold
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn import metrics
from scipy import stats
data = loadarff('pd_speech.arff')
df = pd.DataFrame(data[0])
df['class'] = df['class'].str.decode('utf-8')
y = df['class']
X = df.drop('class', axis=1)
cv = StratifiedKFold(n_splits=10, shuffle=True, random_state=0)
naive bayes classifier = GaussianNB()
knn_classifier = KNeighborsClassifier(n_neighbors=5, weights='uniform',
metric='euclidean')
cm_kNN = [[0, 0], [0, 0]]
cm_NB = [[0, 0], [0, 0]]
accuracy_kNN = []
accuracy_NB = []
for train_index, test_index in cv.split(X, y):
    X_train, X_test = X.iloc[train_index], X.iloc[test_index]
    y_train, y_test = y.iloc[train_index], y.iloc[test_index]
    naive_bayes_classifier.fit(X_train, y_train)
    y_pred = naive_bayes_classifier.predict(X_test)
    cm = metrics.confusion_matrix(y_test, y_pred)
    cm_NB = [ (a + b) for a, b in zip(cm_NB, cm) ]
    accuracy NB += [metrics.accuracy score(y test, y pred)]
```


Aprendizagem 2022/23 Homework II – Group 010

```
knn_classifier.fit(X_train, y_train)
y_pred = knn_classifier.predict(X_test)
cm = metrics.confusion_matrix(y_test, y_pred)
cm_kNN = [ (a + b) for a, b in zip(cm_kNN, cm) ]

accuracy_kNN += [metrics.accuracy_score(y_test, y_pred)]

confusion_NB = pd.DataFrame(cm_NB, index=['Real class=0', 'class=1'], columns=['Predicted class=0', 'Predicted class=1'])

confusion_kNN = pd.DataFrame(cm_kNN, index=['Real class=0', 'class=1'],
columns=['Predicted class=0', 'Predicted class=1'])

print("Naïve Bayes Confusion Matrix\n ", confusion_NB)
print("\n\nkNN Confusion Matrix\n", confusion_kNN)

res = stats.ttest_rel(accuracy_kNN, accuracy_NB, alternative='greater')
print(res.pvalue)
```

END