Аннотация

Исследуется проблема понижения сложности аппроксимирующей модели при переходе к данным домена меньшей мощности. Вводятся понятия учителя, ученика, слабого и сильного доменов. Признаковые описания моделей ученика и учителя принадлежат разным доменам. Мощность одного домена больше мощности другого. Рассматриваются методы, основанные на дистилляции моделей машинного обучения. Вводится предположение, что решение оптимизационной задачи от параметров обеих моделей и доменов повышает качество модели ученика.

Содержание

1	Введение	4
2	Анализ литературы	4
3	Постановка задачи	5
	3.1 Базовая постановка задачи дистилляции Хинтона	. 5
	3.2 Постановка задачи дистилляции для многодоменной	
	выборки	. 6
1	Вычислительный эксперимент	7
•	-	•
	4.1 Базовый экперимент	. 8

1 Введение

2 Анализ литературы

- В [1] рассматривается метод учета меток учителя, используя функцию softmax с параметром температуры.
- В [2] рассматривается метод дистилляции в случае несовпадения признаковых описаний ученика и учителя

3 Постановка задачи

3.1 Базовая постановка задачи дистилляции Хинтона

Задано множество объектов Ω и множество целевых переменных \mathbb{Y} . Множество $\mathbb{Y} = \{1, ..., R\}$ для задачи классификации, где \mathbb{R} - число классов, множество $\mathbb{Y} = \mathbb{R}$ для задачи регресии.

В постановке Хинтона в качестве модели ученика ${\bf g}$ рассматривается функция из множества:

$$\eth = \{ \mathbf{g} | \mathbf{g} = softmax(\mathbf{z}(\mathbf{x})/T), \mathbf{z} : \mathbb{R}^n \to \mathbb{R}^R \}$$

В качестве модели учителя ${\bf f}$ рассматривается функция из множества:

$$\mho = \{\mathbf{g}|\mathbf{g} = softmax(\mathbf{v}(\mathbf{x})/T), \mathbf{v} : \mathbb{R}^n \to \mathbb{R}^R\}$$

 ${f v},\,{f z}$ - дифференцируемые параметрические функции заданной структуры, T - параметр температуры со свойствами:

- 1) при $T \to 0$ получаем вектор, в котором один из классов имеет единичную вероятность;
- 2) при $T \to \infty$ получаем равновероятные классы.

Функция потерь \mathcal{L} учитывает перенос информации от модели учителя \mathbf{f} к модели ученика \mathbf{g} имеет вид

$$\mathcal{L} = -\sum_{i=1}^{m} \sum_{r=1}^{R} y_i^r \log g(x_i)|_{T=1} - \sum_{i=1}^{m} \sum_{r=1}^{R} f(x_i)|_{T=T_0} \log g(x_i)|_{T=T_0},$$

где $\cdot|_{T=t}$ означает, что параметр температуры T в предыдущей функции равен t.

3.2 Постановка задачи дистилляции для многодоменной выборки

Заданы множества объектов \mathbb{X} , \mathbb{X}' - данные первого и второго доменов, и множество целевых переменных \mathbb{Y} . Множество $\mathbb{Y}=\{1,...,R\}$ для задачи классификации, где \mathbb{R} - число классов, множество $\mathbb{Y}=\mathbb{R}$ для задачи регресии. \mathbf{f} , \mathbf{g} - модели учителя и ученика соответственно. Рассматриваются отображения

$$\varphi: \mathbb{X} \to \mathbb{X}', |\mathbb{X}'| \gg |\mathbb{X}|$$
$$\mathbf{f}: \mathbb{X}' \to \mathbb{Y}$$

Требуется получить отбражение

$$\mathbf{g}:\mathbb{X}\to\mathbb{Y}$$

4 Вычислительный эксперимент

Выборка FashionMNIST. Эксперимент проводился для задачи классификации для выборки FashionMNIST [3]. В качестве модели учителя **f** рассматривается четырёхслойная нейросеть, в качестве функции активации рассматривается ReLu. В качестве модели ученика рассматривается однослойная нейросеть.

На рисунках 1, 2 показаны графики зависимостей Ассигасу и кроссэнтропии на тестовой выборке между истинными метками объектов и вероятностями, предсказанными моделью ученика. На графиках видно, что модель, использующая метки учителя, показывает лучшее значение Ассигасу, но большее значение ошибки.

Puc. 1: Зависимость а) Accuracy; b) CrossEntropyLoss между истинными и предсказанными учеником метками от числа итераций на тестовой выборке

4.1 Базовый экперимент

Список литературы

- [1] Hinton G., Vinyals O., Dean J Distilling the Knowledge in a Neural Network // NIPS Deep Learning and Representation Learning Workshop. 2015.
- [2] D. Lopez-Paz, L. Bottou, B. Schölkopf, V. Vapnik Unifying distillation and privileged information // ICLR. 2016.
- [3] Xiao H., Rasul K., Vollgraf R. Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms. 2017. https://arxiv.org/abs/1708.07747.