

معماری کامپیوتر

جلسه بیستوهشتم: واحد ورودی-خروجی۲

ورودی و خروجی

- اتصال پردازنده، حافظه و تجهیزات I/O از طریق باس
- سه شیوه اتصال متفاوت و انتخاب حالت باس داده و آدرس مشترک و کنترل مجزا
 - انتقال انبوه بین I/O و حافظه و روش DMA
 - شیوههای شروع انتقال اطلاعات روی باس
 - نحوه انتقال اطلاعات بین پردازنده و تجهیزات I/O
 - روش مبتنی بر سرکشی
 - روش مبتنی بر وقفه

شيوههاي انتقال اطلاعات

- انتقال اطلاعات بین دو بخش در باس با چه پروتکلی انجام گیرد:
 - ۱ انتقال همگام (سنکرون)
 - در این روش بهازای هر کلاک اطلاعات انتقال می یابند
 - این روش سیم کشی زیاد برای کلاک نیاز دارد
- درصورتی مناسب است که سرعت طرفین ارتباط مشابه باشد (تنظیم فرکانس کلاک)
- قبلا گفتیم که تجهیزات I/O کند هستند و منجر به کاهش کارایی ارتباط و پردازنده می شوند
 - ۲- انتقال ناهمگام (آسنکرون)
 - روش رایجتر در انتقال اطلاعات

انتقال ناهمگام اطلاعات

- نیازی به کلاک یکپارچه نیست و بهمحض فراهم شدن داده، انتقال انجام می گیرد
- انتقال داده سریال: انتقال بیت به بیت داده بهصورت سری و متوالی (تمرکز روی این روش)
 - انتقال داده موازی: به تعداد بیتها سیمکشی داریم تا همزمان انتقال انجام گیرد

- هماهنگی ارسال در این روش چگونه انجام می گیرد؟
 - روش Strobe
 - روش دست دهی (Hand Shaking)

انتقال ناهمگام اطلاعات – هماهنگی ارسال

- نیاز به اضافه کردن سیگنالهایی است که مشخص کند چه زمانی آمادگی ارسال وجود دارد
- روش سیگنال Strobe: معتبر بودن داده برای انتقال را با سیگنال تکبیتی مشخص می کند
 - به ابتکار فرستنده:
 - زمانی که داده تکمیل شد، فرستنده سیگنال strobe را فعال میکند تا گیرنده داده را بردارد
- کنترل strobe در دست فرستنده است و برای زمان مشخصی فعال میماند تا گیرنده از اعتبار داده مطلع شود
 - به ابتکار گیرنده:
 - با نیاز گیرنده به داده سیگنال strobe فعال می شود و پس از استفاده از داده این سیگنال غیرفعال می گردد

هماهنگی ارسال- سیگنال Strobe

به ابتکار گیرنده

به ابتكار فرستنده

هماهنگی ارسال- سیگنال Strobe

- ارتباط از نوع سری است و در هر بار فعال شدن strobe یک بیت منتقل می شود
 - مزیت روش:
- یک سیم برای هماهنگی ارتباط لازم است و سربار سختافزاری کمی دارد و سریع است
 - عيب روش:
- روش یکطرفه است، فرستنده نمی داند که گیرنده متوجه معتبر بودن داده شده و آن را برداشته یا خیر
 - گیرنده نمی داند که فرستنده در خواست را گرفته و داده روی باس معتبر است یا خیر

انتقال ناهمگام اطلاعات – هماهنگی ارسال

- روش دست دهی (Hand Shaking)
- در این حالت دو سیگنال کنترلی تعریف می شود (valid , accept/request)
 - ارتباط رفت و برگشتی فرستنده و گیرنده ایجاد شود
 - به ابتکار فرستنده
 - سیگنال valid را فرستنده و accept را گیرنده فعال می کند
 - به ابتکار گیرنده
 - سیگنال request را گیرنده و valid را فرستنده فعال می کند

هماهنگی ارسال- مکانیزم دستدهی

- دست دهی به ابتکار فرستنده
- با آماده شده داده، سیگنال valid فعال می شود
- زمانی که گیرنده داده را دریافت کرد، accept فعال میشود
- با غیرفعال شدن valid، سیگنال accept هم غیرفعال می شود.

هماهنگی ارسال- مکانیزم دست دهی

- دست دهی به ابتکار گیرنده
- با آمدن درخواست از گیرنده (فعال شدن سیگنال request) فرستنده داده را روی باس می گذارد
 - پس از گذاشتن داده روی باس، فرستنده سیگنال valid را فعال می کند
 - داده زمانی از روی باس برداشته میشود که گیرنده request را غیرفعال کند

- میدانیم که سرعت تجهیزات I/O نسبت به پردازنده خیلی کم است
- برای برقراری ارتباط بهتر است پردازنده منتظر نباشد و I/O در زمان نیاز درخواست دهد
 - زمان نیاز: شروع یک عملیات یا اطلاع دادن برای پایان یک عملیات
 - دو روش وجود دارد:
 - روش مبتنی بر سرکشی (Polling)
- مرتبا VIچک میشود که آیا خروجی آماده است و درخواستی دارد یا نه که تاخیر زیاد و سختافزار ساده دارد
 - روش مبتنی بر وقفه (Interrupt)
 - زمانی که نیاز بود، پایه interrupt پردازنده توسط تجهیز I/O فعال می شود

برقراری ارتباط بین پردازنده و I/O- سرکشی

- روش مبتنی بر سرکشی (Polling):
- یک flag داریم که هرگاه توسط دستگاه ورودی اخروجی فعال شد یعنی نیاز به پردازنده است
 - لازم است پردازنده بهطور متناوب این flag را چک کند
 - سربار کارایی زیادی دارد
 - سختافزار ساده دارد

- روش مبتنی بر وقفه (Interrupt):
- برای درخواست یا اعلام اتمام عملیات پایه interrupt پردازنده فعال می شود
 - دو نوع وقفه داریم:
- خارجی (External): سیم کشی مستقل سختافزاری دارند (مدنظر ماست و اولویت بالاتر دارند)
 - داخلی (Internal): دو نوع است:
 - از داخل پردازنده و پس از عملیات نادرست مانند تقسیم بر صفر فراخوانی می شود (Exception)
- توسط کاربر در زبان اسمبلی و با دستور INT انجام می شود و برای برقراری ارتباط هم استفاده می شود
 - مانند subroutine هاست ولی اولویت بالاتری دارد (مانند نوشتن زمان روی نمایشگر)

- روش مبتنی بر وقفه (Interrupt):
- برای درخواست یا اعلام اتمام عملیات پایه interrupt پردازنده فعال می شود
 - پردازنده پس از اتمام دستور جاری، به وقفه رسیدگی میکند
- در اثر وقفه، عملیات جاری پردازنده متوقف شده و کنترل برنامه به مکان دیگری میرود
 - Interrupt handler/Interrupt subroutine (ISR) •
 - عملیات مدنظر وقفه اجرا شده و کنترل برنامه به حالت قبل برمی گردد

- در حالت سختافزاری، چند پایه وقفه روی پردازنده داشته باشیم؟
 - بهازای هر تجهیز ورودی اخروجی یک پایه داشته باشیم
 - هزینه و سیم کشی زیاد و مدار پیچیده تر
 - یک پایه وقفه داشته باشیم و دسترسی به آن را مدیریت کنیم
 - روش Daisy Chain
 - روش Parallel Interrupt

- روش مديريت وقفه Daisy Chain
- زمانی که پایه وقفه پردازنده فعال شد، سیگنال Ack به اولین I/O با اولویت بالاتر میفرستد
- اگر این دستگاه درخواستی داشته باشد ارسال می کند در غیر اینصورت سیگنال Ack را به بعدی می دهد
 - در این حالت ممکن است برخی I/O ها نوبتشان رعایت نشود

• دستگاه با اولویت بیشتر نوبت دیگری را بگیرد

- روش مديريت وقفه موازي
- واحد Programmable Interrupt Control) PIC) مديريت وقفهها از I/O به پردازنده را برعهده دارد
 - ullet در صورت فعال شدن Ack این واحد براساس اولویت انتخاب می کند کدام وقفه به پردازنده برود

- بعد از آنکه وقفه آمد و پذیرفته شد، نوع آن از کجا مشخص میشود؟
 - :Vector •
- در کلاک بعدی که وقفه آمد، مقدار یا شماره وقفه روی باس داده فرستاده میشود
 - :Non-Vector •
- شماره وقفه در مکانی از حافظه که از پیش توافق شده وجود دارد و پردازنده میبایست به آن مراجعه کند

• مثال: فرض کنید پردازنده با فرکانس 1GHz داریم که میبایست ۱۰۰۰ بایت داده را از ورودی بخواند. سرعت ورودی، یک بایت در هر ۲۰۰۰ میلی ثانیه است. اگر پردازش داده و ذخیره آن در بافر ۱۰۰۰ سیکل طول بکشد، به سوالات زیر پاسخ دهید:

الف) اگر پردازنده با روش سرکشی متوجه حضور داده شود و تکرار سرکشی ۶۰ سیکل طول بکشد، و زمان سرکشی ۶ سیکل باشد زمان کل عملیات چند سیکل میشود؟

ب) اگر بجای سرکشی از وقفه استفاده کنیم و اجرای وقفه ۲۰۰ سیکل طول بکشد، زمان کل عملیات چند سیکل میشود؟

• حل:

الف)

0.02 ms * 1GHz - 1000 = 19000 number of cycles for data transfer

19000 / 60 = 316.66 number of polls

317 * 6 = 1902 number of polling cycles

1902 + 1000 = 2902 number of cycles for each byte (polling + buffering)

2902 * 1000 = 2902000 cycle for whole data (1000 bytes)

ب) با ورود هر بایت، ۱۲۰۰ سیکل صرف پردازش داده (بافرینگ و وقفه) میشود

1200 * 1000 = 1200000 cycle for whole data