#### An Introduction to Ordinals

D. Salgado, N. Singer

#blairlogicmath

November 2017

#### Introduction

### History

- Bolzano defined a set as "an aggregate so conceived that it is indifferent to the arrangement of its members" (1883)
  - Cantor defined set membership, subsets, powersets, unions, intersections, complements, etc.
- Given two sets A and B, Cantor says they have the same cardinality iff there exists a bijection between them
  - Denoted |A| = |B|
  - More generally,  $|A| \le |B|$  iff there is an **injection** from A to B
- Every set has a cardinal number, which represents its cardinality
  - Infinite sets have cardinalities  $\aleph_0, 2^{\aleph_0}, \dots$
  - Arithmetic can be defined, e.g.

$$|A| + |B| = |(A \times \{0\}) \cup (B \times \{1\})|$$



#### Intuition

- Cantor viewed sets as fundamentally structured
- When we view the natural numbers, why does it make sense to think of them as just an "infinite bag of numbers"?
- The natural numbers is constructed in an inherently structured way: through successors

#### Intuition

- Cantor viewed sets as fundamentally structured
- When we view the natural numbers, why does it make sense to think of them as just an "infinite bag of numbers"?
- The natural numbers is constructed in an inherently structured way: through successors
- That structure is derived from the order of the set

#### Intuition

- Cantor viewed sets as fundamentally structured
- When we view the natural numbers, why does it make sense to think of them as just an "infinite bag of numbers"?
- The natural numbers is constructed in an inherently structured way: through successors
- That structure is derived from the order of the set
- The notions of cardinality only apply to unstructured sets and are determined by bijections
- Every set also has an order type determined by order-preserving bijections: f : A → B is a bijection and

$$\forall x, y \in A [(x < y) \rightarrow (f(x) < f(y))]$$



#### Cardinals and ordinals

- The cardinality of a set corresponds to its cardinal number; the order type of a set corresponds to its ordinal number
- Two sets can have the same cardinality but different order types
- The cardinality of  $\mathbb{N}$ ,  $|\mathbb{N}|$ , is  $\aleph_0$
- The order type of  $\mathbb{N}$ , Ord  $\mathbb{N}$ , is  $\omega$
- Under order-preserving bijections, ordered sets are equivalent up to the labeling of the elements

#### Naturals and primes

Consider the naturals  $0, 1, 2, 3, \ldots$  and the primes  $2, 3, 5, 7, 11, \ldots$ 

Can they be placed in a bijection?

#### Naturals and primes

Consider the naturals  $0, 1, 2, 3, \ldots$  and the primes  $2, 3, 5, 7, 11, \ldots$ 

- Can they be placed in a bijection?
- Can they be placed in an order-preserving bijection?

### Naturals and primes

Consider the naturals  $0, 1, 2, 3, \ldots$  and the primes  $2, 3, 5, 7, 11, \ldots$ 

- Can they be placed in a bijection?
- Can they be placed in an *order-preserving bijection*?

| Naturals | 0 | 1 | 2 | 3 |  |
|----------|---|---|---|---|--|
| Primes   | 2 | 3 | 5 | 7 |  |

What about the naturals  $0,1,2,3,\ldots$  and the integers  $\ldots,-2,-1,0,1,2,\ldots$ ?

Can they be placed in a bijection?

What about the naturals  $0, 1, 2, 3, \ldots$  and the integers  $\ldots, -2, -1, 0, 1, 2, \ldots$ ?

• Can they be placed in a bijection?

| Naturals | 0 | 1 | 2  | 3 | 4  |  |
|----------|---|---|----|---|----|--|
| Integers | 0 | 1 | -1 | 2 | -2 |  |

What about the naturals  $0, 1, 2, 3, \ldots$  and the integers  $\ldots, -2, -1, 0, 1, 2, \ldots$ ?

• Can they be placed in a bijection?

| Naturals | 0 | 1 | 2  | 3 | 4  |  |
|----------|---|---|----|---|----|--|
| Integers | 0 | 1 | -1 | 2 | -2 |  |

• Can they be placed in an order-preserving bijection?

What about the naturals  $0, 1, 2, 3, \ldots$  and the integers  $\ldots, -2, -1, 0, 1, 2, \ldots$ ?

Can they be placed in a bijection?

| Naturals | 0 | 1 | 2  | 3 | 4  |  |
|----------|---|---|----|---|----|--|
| Integers | 0 | 1 | -1 | 2 | -2 |  |

- Can they be placed in an order-preserving bijection?
- Why not?

#### What is $\omega$ ?

- ullet  $\omega$  is a mathematical object that we can explicitly define (we'll do it later)
- It represents the structure of any set when it's ordered like

$$0 < 1 < 2 < 3 < \cdots$$

- ullet An ordered set has order type  $\omega$  when the set has a first element, a second element, and so on forever
- $\mathbb{N}$  has order type  $\omega$ , but so does  $\{x : x \text{ is prime}\}$ ,  $\{2^x : x \in \mathbb{N}\}$ , and  $\{-4, -3, -2, -1, 0, 1, 2, 3, ...\}$

Let's look at some structured sets and figure out their order types! Consider the sets  $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$  and  $\{0, 1, 2, 3, \ldots, a\}$ .

Do they have the same cardinality?

Let's look at some structured sets and figure out their order types! Consider the sets  $\mathbb{N} = \{0, 1, 2, 3, ...\}$  and  $\{0, 1, 2, 3, ..., a\}$ .

- Do they have the same cardinality?
- Do they have the same order type?

Let's look at some structured sets and figure out their order types! Consider the sets  $\mathbb{N} = \{0, 1, 2, 3, ...\}$  and  $\{0, 1, 2, 3, ..., a\}$ .

- Do they have the same cardinality?
- Do they have the same order type?
- ullet Define the order type of the new set to be  $\omega+1$
- What about  $\{0, 1, 2, 3, \dots, a, b, c\}$ ?

### Ordinals and hyperjumps

- There are only two kinds of ordinals: successor ordinals and limit ordinals
- Successor ordinals come "after" any given ordinal
- Limit ordinals come after you take a jump into "hyperspace"
  - Also the supremum of an infinitely increasing set of ordinals



Figure: The original USS Enterprise (NCC-1701) making the jump into "warp".

Consider the set  $\{0, 1, 2, 3, \dots, 0', 1', 2', 3', \dots\}$ .

ullet Does this have the same cardinality as  $\mathbb{N}$ ?

Consider the set  $\{0, 1, 2, 3, \dots, 0', 1', 2', 3', \dots\}$ .

- Does this have the same cardinality as  $\mathbb{N}$ ?
- What do you think its order type is?

Consider the set  $\{0, 1, 2, 3, \dots, 0', 1', 2', 3', \dots\}$ .

- Does this have the same cardinality as  $\mathbb{N}$ ?
- What do you think its order type is?
- The answer is  $\omega \cdot 2 = \omega + \omega$ 
  - $\bullet$  Two sequential copies of  $\omega$
  - What's the order type of  $\{0, 0', 1, 1', 2, 2', 3, 3', \ldots\}$ ?

Consider the set  $\{0, 1, 2, 3, \dots, 0', 1', 2', 3', \dots\}$ .

- Does this have the same cardinality as  $\mathbb{N}$ ?
- What do you think its order type is?
- The answer is  $\omega \cdot 2 = \omega + \omega$ 
  - ullet Two sequential copies of  $\omega$
  - What's the order type of  $\{0, 0', 1, 1', 2, 2', 3, 3', \ldots\}$ ?
- What's the order type of  $\{0,1,2,3,\ldots,0',1',2',3',\ldots,0'',1'',2'',3'',4''\}$ ?

#### Consider the set

$$\{0_0,1_0,2_0,3_0,\dots,0_1,1_1,2_1,3_1,\dots,0_2,1_2,2_2,3_2,\dots,\dots\}.$$

- Does this have the same cardinality as N?
- What do you think its order type is?

#### Consider the set

$$\{0_0,1_0,2_0,3_0,\dots,0_1,1_1,2_1,3_1,\dots,0_2,1_2,2_2,3_2,\dots,\dots\}.$$

- Does this have the same cardinality as N?
- What do you think its order type is?
- The answer is  $\omega^2$
- We could also think of it as ordered pairs

## Ordinals and hyperjumps



Figure: All the ordinals from 0 to  $\omega^{\omega}$ . Each turn of the spiral represents another power of  $\omega$ .

### Von Neumann Ordinals

#### Peano axioms

Now, we've reduced everything in math down to arithmetic or set theory. But what if we could reduce arithmetic to set theory too? Here are the Peano axioms:

- 0 is a number
- $\circ$  S(M) is a number
- **③** S(M) ≠ 0
- Induction:

$$[\phi(0) \land \forall x [\phi(x) \to \phi(S(x))]] \to \forall x \phi(x)$$



#### The von Neumann construction as a model of arithmetic

- Peano arithmetic has one operation, successor (S)
- Set theory has one relation, membership  $(\in)$
- So we must somehow model the successor function using the only thing we have set membership.
- Let's define every natural number as the set of all lesser natural numbers, e.g.

$$4 = \{0, 1, 2, 3\}$$

- What is 0?
- What is 1?
- What is 2?
- What is 3?

#### The von Neumann construction as a model of arithmetic

- Peano arithmetic has one operation, successor (S)
- Set theory has one relation, membership  $(\in)$
- So we must somehow model the successor function using the only thing we have set membership.
- Let's define every natural number as the set of all lesser natural numbers, e.g.

$$4 = \{0, 1, 2, 3\}$$

- What is 0?
- What is 1?
- What is 2?
- What is 3?
- In general,  $S(x) = x \cup \{x\}$
- Cantor naturally extended this thinking to the infinite ordinals



## Order types, again

```
\begin{split} 0 &:= \emptyset \\ 1 &:= \{\emptyset\} \\ 2 &:= \{\emptyset, \{\emptyset\}\} \\ 3 &:= \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\} \} \\ \omega &:= \{0, 1, 2, 3, \ldots\} \\ \omega + 1 &:= \{0, 1, 2, 3, \ldots; \omega\} \\ \omega \cdot 2 &:= \omega + \omega = \{0, 1, 2, 3, \ldots; \omega, \omega + 1, \omega + 2, \omega + 3, \ldots\} \\ \omega^2 &:= \{0, \ldots; \omega, \ldots; \omega \cdot 2, \ldots; \ldots\} \end{split}
```

#### Transfinite induction

Induction can be applied to any well-ordering. When applied to infinite sets, induction is often called **transfinite induction**. In general, we split the proof into three cases:

- $oldsymbol{\circ}$   $\alpha$  is a successor ordinal
- $\bullet$  is a limit ordinal

## Transfinite example

#### Theorem

Every ordinal can be written as the sum of a limit ordinal and a finite ordinal.

#### Proof.

- 1 Zero case: Zero is the sum of a limit ordinal (0) and a finite ordinal (0).
- 2 Limit case: Suppose  $\alpha$  is a limit ordinal. Then  $\alpha$  is the sum of a limit ordinal  $(\alpha)$  and a finite ordinal (0).
- **3** Successor case: Suppose  $\alpha$  is a successor ordinal, so  $\alpha = S(\beta)$ . By the inductive hypothesis,  $\beta = \gamma + f$ , for some finite ordinal f and limit ordinal  $\gamma$ , and so  $\alpha = \gamma + S(f)$ .

# Rigor

#### Goals

- So far, we've been talking about sets as if they were structured
- From a modern perspective, sets are inherently unstructured, so we need to extrinsically define orderings on them!

We need to rigorize the following definitions:

- Ordering
- Order-preserving bijection
- Order type
- Ordinal

#### Relations

#### Definition (Binary relation)

A binary relation R between the sets S and T is a set satisfying the property:

$$R \subseteq S \times T$$

If the relation is between the set S and itself, then it is said to be "on" S.

- **①** What is the value of  $\{1,4\} \times \{3,6,7\}$ ?
- Which of the following are relations between the sets  $\{a, b, c\}$  and  $\{d, e\}$ ?
  - $\{(d,b),(a,e)\}$
  - $\{(b,e),(c,d),(a,d),(a,e)\}$
  - **3** {}



# Total orderings

## Definition (Total ordering)

A total ordering (<, S) is a binary relation < on S satisfying two properties:

- **1**  $\forall x \in S \ \neg [x < x] \ (irreflexivity)$

where a < b means that  $(a, b) \in <$ .

Which of the following is a total ordering on  $\{1, 2, 3\}$ ?

- **1** {(2,3), (3,1), (1,3)}
- **2** {(1,3), (3,2), (1,2), (2,2)}
- **3** {(3,2), (2,3), (1,3), (1,2)}
- **4** {(1,2), (2,3), (1,3)}

 $\mathbb{N}$ ,  $\mathbb{Z}$ ,  $\mathbb{Q}$ , and  $\mathbb{R}$  are totally ordered.  $\mathbb{C}$  is not.

# Well-orderings

## Definition (Well-ordering)

A well-ordering < on a set S is a total ordering where every non-empty subset has a least element:

$$\forall T \subseteq S [(T \neq \emptyset) \rightarrow (\exists y \in T \ \forall x \in T \ [y < x \lor y = x])]$$

Which of the following is well-ordered under the conventional definition of less-than?

- N
- Z
- Q
- R

Well-orderings can be equivalently defined as total orderings that have no infinitely decreasing subsets.

# Order isomorphisms

### Definition (Order isomorphism)

For two total orders  $(S, <_S)$  and  $(T, <_T)$ , a bijection  $f: S \to T$  is an order isomorphism between the sets iff it preserves ordering, i.e.

$$\forall x,y \in S [(x <_S y) \to (f(x) <_T f(y))]$$

If there exists an order isomorphism between two well-orderings  $(S, <_S)$  and  $(T, <_T)$ , they are said to be **order isomorphic**, and we write  $S \cong T$ . Order isomorphism splits all the well-ordered sets up into a bunch of classes called **order types**.

## The problem

- Order types are bags of sets that are all order isomorphic to each other
- Right now, ordinals and order types are the same
- Turns out order types are so big that they aren't really well-defined
- We need to pick canonical representatives of the order types, and we'll call them ordinals
- The ordinals should be "model citizens" of the order types that have a lot of nice properties that are happy and useful

### The solution

Each order type has a canonical representation.

#### Definition

Von Neumann construction Every ordinal is precisely the set of all smaller ordinals.

- For any ordinal  $\alpha$ ,  $S(\alpha) = \alpha \cup \{\alpha\}$
- As a consequence, the ordinals are well-ordered both by set membership (∈) and subset (⊂)

### More definitions

### Definition (Limit ordinal)

An ordinal  $\alpha$  is a limit ordinal iff it has no maximal element, i.e.

$$\forall \beta < \alpha \; \exists \gamma \; [\beta < \gamma < \alpha]$$

### Definition (Successor ordinal)

An ordinal  $\alpha$  is a successor ordinal iff it has no maximal element, or equivalently, if it is not a limit ordinal.

Often, zero is considered by itself as a "zero ordinal", and "limit ordinal" is interpreted as "non-zero limit ordinal".

### Addition

### Definition (Ordinal addition)

For two ordinals  $\alpha$  and  $\beta$ ,

$$\alpha + \beta = \operatorname{Ord}((\alpha \times \{0\}) \cup (\beta \times \{1\}), <_+)$$

where the ordering  $<_+$  is defined as

$$\{(a,b): (a \in \alpha \land b \in \alpha \land a < b) \lor (a \in \alpha \land b \in \beta) \lor (a \in \beta \land b \in \beta \land a < b)\}$$

# Multiplication

### Definition (Ordinal multiplication)

For two ordinals  $\alpha$  and  $\beta$ ,

$$\alpha \cdot \beta = \mathsf{Ord}(\alpha \times \beta, <_*)$$

where the **lexicographic ordering**  $<_*$  is defined as

$$\{((a_0,b_0),(a_1,b_1)):(a_0 < a_1) \lor (a_0 = a_1 \land b_0 < b_1)\}$$

# Exponentiation

## Burali-Forti paradox

Suppose O is the set of all ordinals. Then, since O is a well-ordered and complete set of ordinals, O is itself an ordinal. Then  $O \in O$ , but this means that O < O, which is a contradiction.

- The limit of  $\omega, \omega^{\omega}, \omega^{\omega^{\omega}}, \dots$  is  $\epsilon_0$ 
  - First epsilon number to solve  $\omega^{\epsilon} = \epsilon$
- When we write down (notate) the ordinals, how many symbols in our alphabet are there?

- The limit of  $\omega, \omega^{\omega}, \omega^{\omega^{\omega}}, \dots$  is  $\epsilon_0$ 
  - First epsilon number to solve  $\omega^{\epsilon}=\epsilon$
- When we write down (notate) the ordinals, how many symbols in our alphabet are there?
- We can only explicitly write down a countable number of ordinals!
- ullet The first "un-notatable" ordinal is the **Church-Kleene ordinal**  $\omega_{\mathit{CK}}^1$ 
  - Cannot be computed or defined recursively

- The limit of  $\omega, \omega^{\omega}, \omega^{\omega^{\omega}}, \dots$  is  $\epsilon_0$ 
  - First epsilon number to solve  $\omega^{\epsilon}=\epsilon$
- When we write down (notate) the ordinals, how many symbols in our alphabet are there?
- We can only explicitly write down a countable number of ordinals!
- $\bullet$  The first "un-notatable" ordinal is the Church-Kleene ordinal  $\omega_{\it CK}^1$ 
  - Cannot be computed or defined recursively
- ullet After all the countable ordinals comes the first uncountable ordinal  $\omega_1$

- The limit of  $\omega, \omega^{\omega}, \omega^{\omega^{\omega}}, \dots$  is  $\epsilon_0$ 
  - First epsilon number to solve  $\omega^{\epsilon}=\epsilon$
- When we write down (notate) the ordinals, how many symbols in our alphabet are there?
- We can only explicitly write down a countable number of ordinals!
- $\bullet$  The first "un-notatable" ordinal is the Church-Kleene ordinal  $\omega_{\it CK}^1$ 
  - Cannot be computed or defined recursively
- ullet After all the countable ordinals comes the first uncountable ordinal  $\omega_1$
- Question: How many ordinals are there?

- The limit of  $\omega, \omega^{\omega}, \omega^{\omega^{\omega}}, \dots$  is  $\epsilon_0$ 
  - First epsilon number to solve  $\omega^{\epsilon}=\epsilon$
- When we write down (notate) the ordinals, how many symbols in our alphabet are there?
- We can only explicitly write down a countable number of ordinals!
- $\bullet$  The first "un-notatable" ordinal is the Church-Kleene ordinal  $\omega_{\it CK}^1$ 
  - Cannot be computed or defined recursively
- ullet After all the countable ordinals comes the first uncountable ordinal  $\omega_1$
- Question: How many ordinals are there?
- Answer: SO MANY.

## Bonus: RIGORRRR!

#### Induction

Here's a proof that transfinite induction works.

### Theorem (Induction)

Given any well-ordering (S,<) and property  $\phi$ ,

$$[\forall x \in S ([\forall y < x \ \phi(y)] \to \phi(x))] \to \forall x \phi(x)$$

#### Proof.

Assume  $\forall x \in S ([\forall y < x \ \phi(y)] \rightarrow \phi(x))$ .

Suppose  $\phi$  does not hold for all  $x \in S$ . Let  $T = \{x : x \in S \land \neg \phi(x)\}$ .

Since  $T \subseteq S$ , T is non-empty, and < well-orders S, T must have a least element  $x_0$ .

We know that  $\neg \phi(x_0)$ , so by our assumption, there is some  $y < x_0$  such that  $\neg \phi(y)$ . Thus,  $y \in T$ . But  $x_0$  is the minimal element of T! Thus, we have a contradiction, and  $\forall x \phi(x)$ .

# Order isomorphisms

#### Theorem

Order isomorphism is an equivalence relation.

#### Proof.

- **1** Reflexivity: The identity function on  $(S, <_S)$  is an order isomorphism.
- ② Symmetry: Let f be an order isomorphism from  $(S, <_S)$  to  $(T, <_T)$ . Then  $f^{-1}$  is an order isomorphism from  $(T, <_T)$  to  $(S, <_S)$ .
- **3** Transitivity: Let f be an order isomorphism from  $(S, <_S)$  to  $(T, <_T)$  and g be an order isomorphism from  $(T, <_T)$  to  $(U, <_U)$ . Then  $g \circ f$  is an order isomorphism from  $(S, <_S)$  to  $(U, <_U)$ .



# Comparison of well-orderings

## Definition (Initial segment)

Let (S,<) be a well-ordering. Any  $x \in S$  generates a (proper) **initial** segment  $(S,<)/x = \{y: y \in S \land y < x\}$ .

What are the initial segments of the well-ordering  $\omega^2 + \omega$ ?

### Definition (Ordinal comparison)

For any two well-orderings  $(S, <_S)$  and  $(T, <_T)$ ,  $(S, <_S) \lhd (T, <_T)$  iff  $(S, <_S)$  is order isomorphic to some initial segment of T, that is,

$$\exists x \in T (S, <_S) \cong (T, <_T)/x$$

# Properties of ordinal comparison

Let ON be the class of all ordinals.

#### Theorem

Ordinal comparison well-orders the class of all ordinals.

### Proof.

To show that  $(ON, \triangleleft)$  is a partial order, let  $\alpha, \beta, \gamma \in ON$  and consider:

- $oldsymbol{\circ}$   $\alpha$  cannot be order isomorphic to a proper initial segment of itself, so  $\lhd$  is irreflexive.
- ② If  $\alpha \lhd \beta$ , then it cannot be the case that  $\beta \lhd \alpha$ , because by composing the two resulting isomorphisms,  $\alpha$  would be isomorphic to a proper initial segment of itself. Thus,  $\lhd$  is antisymmetric.
- **3** If  $\alpha \lhd \beta \lhd \gamma$ , compose the orderings. The new ordering is clearly an order isomorphism, and its image in  $\gamma$  must be an initial segment (why)?. Thus,  $\lhd$  is transitive.

## Properties of ordinal comparison

Let ON be the class of all ordinals.

#### Theorem

Ordinal comparison well-orders the class of all ordinals.

#### Proof.

To prove totality, (in progress).

To see why  $\lhd$  is well-founded, let A be a set of ordinals. Choose some  $\alpha \in A$ . If  $\alpha$  is minimal, we are done. Otherwise, let B be the set of all ordinals less than  $\alpha$ . Since we have trichotomy, each of these ordinals must be isomorphic to some initial segment of  $\alpha$ . Let X be the set of x's which correspond to the initial segments in  $\alpha$ . Since  $X \subseteq \alpha$ , choose the minimal such X, and the minimal element of B must be  $(\alpha, \lhd)/x$ .

# Properties of ordinal comparison

#### Theorem

Any well-ordering  $(S, <_S)$  is order isomorphic to the set of its initial segments under ordinal comparison:

$$(S, <_S) \cong (\{(S, <_S)/x : x \in S\}, \triangleleft)$$

This motivates us to define an ordinal as the set of all lesser ordinals.