Universidad de San Carlos de Guatemala Facultad de Ingeniería Organización Computacional Sección B

Práctica #3

Empacadora Coca-Cola

Integrantes

Grupo 4

Nombre	Nombre Carné	
Oswaldo Antonio Choc Cuteres	201901844	
Javier Andrés Monjes Solórzano	202100081	
Jencer Hamilton Hernández Alonzo	202002141	
Juan Pascual Itzep Coguox	202202161	

INTRODUCCIÓN

La creación de este sistema de clasificación implicó considerar varios elementos, como contadores, barras transportadoras y una variedad de sensores, incluyendo ultrasonidos, infrarrojos y de color. Estos componentes desempeñaron un papel crucial en la validación de contraseñas, gestión de inventario y clasificación de productos. Para lograr la función de clasificación en la barra transportadora, se seleccionó un diseño que permitiera un movimiento adecuado para esa tarea, optimizando así los recursos disponibles.

Asimismo, dado que el sistema requería un dispositivo para controlar el flujo de productos, se decidió utilizar un Arduino. Este microcontrolador ofrece tanto entradas como salidas para enviar y recibir señales, facilitando el control del flujo de manera eficiente. El Arduino actúa como el componente central que coordina la operación de todos los elementos del sistema, asegurando su sincronización y funcionamiento adecuado.

Para monitorear el conteo de productos, se emplearon Flip-Flops JK, D, junto con un semáforo que indica si el flujo continúa o se detiene. En cuanto a la banda transportadora, se utilizaron motores de y stepper para proporcionar movilidad, los cuales pueden ser controlados por el Arduino. Este último fue programado con instrucciones específicas para interpretar las señales de los sensores y, en función de eso, dar instrucciones precisas a la banda transportadora.

OBJETIVOS

General

Aplicar los conocimientos teóricos aprendidos en clase magistral y laboratorio para la construcción de circuitos combinacionales y secuenciales.

Específicos

- 1. Construcción de un sistema que una la lógica combinacional junto a la lógica secuencial.
- 2. Resolución de problemas mediante Electrónica Digital
- 3. Aprender el funcionamiento de diferentes elementos electromecánicos.

DESCRIPCION DEL PROBLEMA

Se abordó el desafío de clasificar productos de diferentes colores con el objetivo de optimizar el proceso. Para lograrlo, se desglosó en varios aspectos clave:

Código de activación: Se desarrolló un sistema de validación de credenciales mediante una contraseña numérica. Esta contraseña se utiliza para activar y desactivar el sistema, asegurando un control seguro sobre su funcionamiento.

Conteo de productos: Se implementaron contadores para registrar el progreso de la clasificación de productos según su color. Esta medida proporciona información valiosa sobre la cantidad de productos clasificados en cada categoría cromática.

Funcionamiento del circuito: El Arduino desempeña un papel central en el control del circuito. Este microcontrolador supervisa el estado del sistema, representado a través de un semáforo. El semáforo indica visualmente la cantidad de productos clasificados y el estado de funcionamiento del sistema, proporcionando una interfaz intuitiva para los usuarios.

PROCESO TEORICO

- 1.Diseño de Operaciones: Se realizo un análisis teórico detallado de las funciones booleanas y las operaciones lógicas necesarias para cada etapa del proyecto.
- 2.Selección de Componentes: Se selecciono cuidadosamente los componentes adecuados para cada operación, tomando en cuenta las restricciones y especificaciones del proyecto. Se utilizarán compuertas lógicas (AND, OR, NOT, XOR), flip-flops tipo D, JK, T y RS, así como multiplexores, demultiplexores, comparadores, decodificadores, displays de 7 segmentos y LEDs. Todos los componentes seleccionados deben cumplir con los requisitos establecidos y estar permitidos según las especificaciones proporcionadas.
- 3. Diseño de Circuitos: Se emplearon diagramas de bloques y esquemas para visualizar la estructura del sistema y diseñar subcircuitos para cada función requerida. Se garantizo que los resultados de cada operación se direccionen adecuadamente hacia los dispositivos de visualización, como los displays de 7 segmentos y los LEDs, según las indicaciones del proyecto. Se prestará especial atención a la optimización del diseño y la minimización del uso de componentes.
- 4.Implementación de Controladores: Se diseño controladores que gestionen la selección de operaciones según la tabla de control proporcionada en el proyecto. Estos controladores dirigirán las señales y habilitarán los subcircuitos correspondientes en el momento adecuado, garantizando un funcionamiento coordinado y eficiente del sistema en su conjunto.
- 5. Simulación en Proteus: Se realizaron simulaciones exhaustivas en el software Proteus para verificar el funcionamiento teórico del circuito diseñado. Se comprobó que los resultados obtenidos durante la simulación sean coherentes con las expectativas y que se cumplan todos los requisitos del proyecto. Se identifico y corrigieron posibles fallos o inconsistencias antes de pasar a la etapa de implementación física.
- 6. Construcción en Placa de Circuito: Se procedió a la implementación física del circuito en una placa de circuito, siguiendo fielmente el diseño teórico previamente elaborado. Se construyeron circuitos específicos, como sumadores, restadores y registros, y se conectarán de acuerdo con el esquema general del sistema. Se verificó el correcto funcionamiento de cada componente y se realizaron ajustes según sea necesario para garantizar un rendimiento óptimo del sistema completo.

DIAGRAMAS DEL CIRCUITO

EQUIPO UTILIZADO

Equipo (componente)	Cantidad	
Placas de Cobre	2 unidades	
Leds	8unidades	
Displays (Cátodos)	8unidades	
Displays (Ánodos)	6unidades	
Cable	30 mts	
Compuerta Lógica AND	12 unidades	
Compuerta Lógica OR	10 unidades	
Compuerta Lógica XOR	10 unidades	
Compuerta Lógica NOT	6 unidades	
Dipswitch	4 unidades	
Comparador	6 unidades	
Decoder	8 unidades	
Sumador	9 unidades	
Multiplexores	12 unidades	
Sockects para integrados	24 unidades	
Protoboards	15 unidades	
Boton	20 unidades	
Tansistor NPN	9 unidades	
Diodo	10 unidades	
FlipFlop JK	15 unidades	
Capacitor	12 unidades	
NTE955M oscilador/timer 8 pin	3 unidades	
Jumpers macho-hembra	24 unidades	
LED Blanco	1 unidad	
Ventilador Dc	1 unidad	
MT-6R motor 6v reductor	2 unidades	
Sensor de Color TCS230	1 unidad	
Sensor Ultrasónico HC-SR04	2 unidades	
Controlador UNL2003	1 unidad	
Motor Stepper	1 unidad	
Servo motor		
Arduino Uno	1 unidad	

PRESUPUESTO

COMPONENTES	PRECIO-UNITARIO	CANTIDAD	TOTAL
Placa	Q18. ⁰⁰	2	Q36. ⁰⁰
Socket para integrados	Q2. ⁰⁰	24	Q48. ⁰⁰
Leds	Ya contábamos con	-	-
	el componente		
Displays 7 Segementos	Q5. ⁰⁰	5	Q25. ⁰⁰
(catodo)			
Displays 7	Q5. ⁰⁰	5	Q25. ⁰⁰
Segementos(anodo)			
Cable	Q4. ⁰⁰	8	Q24. ⁰⁰ .
Compuerta Lógica AND	Q6. ⁰⁰	2	Q12. ⁰⁰
(7408)			
Compuerta Lógica OR	Q6. ⁰⁰	1	Q6. ⁰⁰
(7432)			
Compuerta Lógica NOT	Ya contábamos con	-	-
(7404)	el componente		
Compuerta Lógica XOR	Q8. ⁰⁰	3	Q24. ⁰⁰
(7486)			
Dipswitch	Q5. ⁰⁰	2	
Comparador (7485)	Q11. ⁵⁰	4	Q46. ⁰⁰
Decoder (7447)	Q12. ⁰⁰	4	Q48. ⁰⁰
Sumador (74283)	Q15. ⁵⁰	9	Q135. ⁰⁰
Multiplexores (74157)	Q7. ⁰⁰	12	Q84. ⁰⁰
FlipFlops JK	Q5. ⁰⁰	15	Q75. ⁰⁰
Transistor NPN		9	
MT-6R motor 6v reductor	Q23. ⁰⁰	2	Q46. ⁰⁰
Jumpers macho-hembra	Q2. ⁷⁵	8	Q22. ⁰⁰
Boton	Q1. ⁰⁰	20	Q10. ⁰⁰
Diodos	Q1. ⁰⁰	10	Q10. ⁰⁰
Oscilador	Q4. ⁰⁰	3	Q12. ⁰⁰
Capacitor	Q1. ⁰⁰	10	Q10. ⁰⁰
Total			Q.698 ⁰⁰

APORTE DE CADA INTEGRANTE

Estudiante	Aporte	
Oswaldo Antonio Choc Cuteres	Compra de componentes, diagrama en proteus	
	y diseño de las placas, segmentos en	
	protoboard y placa (2 contadores en placas, 2	
	contadores descendente de 15 a 0 y 1 contador	
	de 10 a 0).	
Javier Andrés Monjes Solórzano	Compra de componentes, armado de maqueta	
	y manejo de Arduino, documentación	
Jencer Hamilton Hernández Alonzo	Compra de componentes, segmentos en	
	protoboard (puente H, maqueta de teclado	
	ayuda con el contador de 10 a 0 y el de 20 a 0)	
Juan Pascual Itzep Coguox	Compra de componentes, diagrama en proteus	
	(teclado y resguado), segmentos en protoboard	
	(Teclado, Registro Contraseña, Circuito	
	Resguardado)	

Conclusiones

- Se logró un entendimiento profundo de los componentes necesarios para la operación integral del sistema de clasificación de productos, demostrando un dominio avanzado en el manejo de la lógica combinacional.
- La especificación exhaustiva de las operaciones y requisitos para cada unidad proporciona una visión clara de las funcionalidades necesarias y los métodos de implementación requeridos.
- A través de la utilización de diversos componentes en múltiples pruebas realizadas con varios diseños, se adquirió una comprensión sólida del funcionamiento de los componentes con los que previamente no se tenía mucha experiencia.
- La complejidad inherente a esta práctica contribuyó al desarrollo de nuestras habilidades de resolución de problemas a través de la utilización de componentes electrónicos. Se exploraron e implementaron varios diseños hasta encontrar el que mejor se adaptaba a nuestras ideas.

ANEXOS

Circuito Completo en Proteus

Facturas

a) Proyecto en Físico (circuitos y maqueta)

