Prova 3

Curso de Ciências Atuariais Disciplina Probabilidade 1- Professora Cristina 26/09/2022 - Terceiro exercício de probabilidade

- 1) Uma moeda honesta é lançada 3 vezes. Seja X o número de caras nos 2 primeiros lançamentos e seja Y o número de caras nos 2 últimos lançamentos.
- a) (0.5 pontos) Liste todos os elementos do espaço amostral deste experimento, especificando os valores de X e Y.

$$S_{X_1} = \begin{cases} (c, c, _) = 0 \\ (c, k, _); (k, c, _) = 1 \\ (k, k, _) = 2 \end{cases}$$

$$S_{Y_1} = \begin{cases} (_, c, c) = 0 \\ (_, c, k); (_, k, c) = 1 \\ (_, k, k) = 2 \end{cases}$$

	X	Y	$\mathbb{P}()$
(c, c, c)	0	0	$\left(\frac{1}{2}\right)^3 = \frac{1}{8}$
(c, c, k)	0	1	$\left(\frac{1}{2}\right)^2 * \frac{1}{2} = \frac{1}{8}$
(c, k, c)	1	1	$\frac{1}{2} * \frac{1}{2} * \frac{1}{2} = \frac{1}{8}$
(k, c, c)	1	0	$\frac{1}{2} * \left(\frac{1}{2}\right)^2 = \frac{1}{8}$
(c, k, k)	1	2	$\frac{1}{2} * \left(\frac{1}{2}\right)^2 = \frac{1}{8}$
(k, c, k)	1	1	$\frac{1}{2} * \frac{1}{2} * \frac{1}{2} = \frac{1}{8}$
(k, k, c)	2	1	$\left(\frac{1}{2}\right)^2 * \frac{1}{2} = \frac{1}{8}$
(k, k, k)	2	2	$\left(\frac{1}{2}\right)^3 = \frac{1}{8}$

b) (1 ponto) Construa a função de distribuição de probabilidade conjunta de (X,Y).

Y	X			$\mathbb{P}(Y = y)$
-	0	1	2	1 (1))
0	$\frac{1}{8}$	$\frac{1}{8}$	0	$\frac{2}{8}$
1	$\frac{1}{8}$	$\frac{2}{8}$	$\frac{1}{8}$	$\frac{4}{8}$
2	0	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{2}{8}$
$\mathbb{P}(X = x)$	$\frac{2}{8}$	$\frac{4}{8}$	$\frac{2}{8}$	1

c) (1 ponto) Calcule E(X)

$$E(X) = 0 * \frac{2}{8} + 1 * \frac{4}{8} + 2 * \frac{2}{8} = 0 + \frac{4}{8} + \frac{4}{8} = \frac{8}{8} = 1$$

2) A tabela a seguir fornece a função de probabilidade conjunta da v.a. (X, Y).

X	Y						
1	1	2	3				
0	0,10	0,20	0,20				
1	0,04	0,08	0,08				
2	0,06	0,12	0,12				

a) (0,5 pontos) Verifique se X e Y são independentes

$$E(X) = 1*0, 2+2*0, 40+3*0, 4=2,2$$

$$E(Y) = 0*0, 5+1*0, 20+2*0, 3=0,8$$

$$E(XY) = 0*0, 5+1*0, 04+2*0, 14+3*0, 08+4*0, 12+6*0, 12=1,76$$

$$E(XY) = E(X)*E(Y)$$

$$1,76 = 2,2*0,8$$

X e Y são independentes

b) (1 ponto) Encontre a distribuição de X dado Y=2

$$\begin{array}{c|c} X & \mathbb{P}(X = x| \ Y = 2) \\ \hline 0 & \frac{0,20}{0,40} = 0,5 \\ \hline 1 & \frac{0,08}{0,40} = 0,2 \\ \hline 2 & \frac{0,12}{0,40} = 0,3 \\ \hline \end{array}$$

c) (1 ponto) Encontre E(X|Y=2)

$$E(X|Y = 2) = 0 * 0.5 + 1 * 0.2 + 2 * 0.3 = 0.8$$

3) Numa caixa encontram-se 5 moedas de ouro e 2 de prata. Serão retiradas 2 moedas com reposição. Considere as variáveis aleatórias:

X = Quantidade de moedas de ouro

Y = Quantidade de moedas de prata

a) (1 ponto) Construa a função de distribuição de probabilidade conjunta de (X, Y).

$$S_X = \begin{cases} (Pr, Pr) = 0\\ (Pr, Ou); (Ou, Pr) = 1\\ (Ou, Ou) = 2 \end{cases}$$

$$\mathbb{P}(X = 0) = \frac{2}{7} * \frac{2}{7} = \frac{4}{49}$$

$$\mathbb{P}(X = 1) = \frac{5}{7} * \frac{2}{7} + \frac{2}{7} * \frac{5}{7} = \frac{20}{49}$$

$$\mathbb{P}(X = 2) = \frac{5}{7} * \frac{5}{7} = \frac{25}{49}$$

$$S_Y = \begin{cases} (Ou, Ou) = 0\\ (Ou, Pr); (Pr, Ou) = 1\\ (Pr, Pr) = 2 \end{cases}$$

$$\mathbb{P}(Y = 0) = \frac{5}{7} * \frac{5}{7} = \frac{25}{49}$$

$$\mathbb{P}(Y = 1) = \frac{5}{7} * \frac{2}{7} + \frac{2}{7} * \frac{5}{7} = \frac{20}{49}$$

$$\mathbb{P}(Y = 2) = \frac{2}{7} * \frac{2}{7} = \frac{4}{49}$$

Y		X		$\mathbb{P}(Y = y)$
-	0	1	2	
0	0	0	$\frac{25}{49}$	$\frac{25}{49}$
1	0	$\frac{20}{49}$	0	$\frac{20}{49}$
2	$\frac{4}{49}$	0	0	$\frac{4}{49}$
$\mathbb{P}(X = x)$	$\frac{4}{49}$	$\frac{20}{42}$	$\frac{25}{49}$	1

b) (0,5 pontos) Verifique se X e Y são independentes.

$$\mathbb{P}(X = x) * \mathbb{P}(Y = y) = \mathbb{P}(X = x \cap Y = y)$$

$$\mathbb{P}(X = 0) * \mathbb{P}(Y = 0) = \mathbb{P}(X = 0 \cap Y = 0)$$

$$\frac{25}{49} * \frac{4}{49} \neq 0$$

X e Y não são independentes

c) (1 ponto) Encontre a distribuição de probabilidade de Y dado $\mathbf{X}=\mathbf{0}.$

Y
$$\mathbb{P}(Y = y \mid X = 0)$$
 0
 $\frac{0}{49} = 0$
 1
 $\frac{0}{49} = 0$
 $\frac{4}{49} = 0$
 $\frac{4}{49} = 1$

4) Considere a seguinte distribuição de probabioidade conjunta (X, Y)

X	Y			
71	0	-1		
0	0,1	0,05		
-1	0,3	0,15		
2	0,2	0,2		

a) (0.5 pontos) Encontre E(X|Y = -1).

X
$$\mathbb{P}(X = x \mid Y = -1)$$

$$0 \frac{0.05}{0.22} = 0.2273$$

$$-1 \frac{0.15}{0.22} = 0.6818$$

$$2 \frac{0.02}{0.22} = 0.0900$$

b) (1 ponto) Encontre a distribuição de probabilidade de W=X - 2Y.

X	Y	W
0	0	0
0	-1	2
-1	0	-1
-1	-1	1
2	0	2
2	-1	4

$$\begin{array}{c|c} W & \mathbb{P}(W = w) \\ \hline -1 & 0.3 \\ \hline 0 & 0.1 \\ \hline 1 & 0.15 \\ \hline 2 & 0.25 \\ \hline 4 & 0.2 \\ \hline \end{array}$$

c) (1 ponto) Encontre E(W).

$$E(W) = -1 * 0.3 + 0 * 0.1 + 1 * 0.15 + 2 * 0.25 + 4 * 0.2$$

$$E(W) = -0.3 + 0 + 0.1 + 0.5 + 0.8 = 1.1$$

Desafio para bônus (1 ponto):

Foi feito o loteamento de uma área rural em terrenos retangulares. Para cada terreno, seu comprimento e sua largura, ambos em metros, podem ser iguais a 10m, 20m ou 30m. Para simplificar, vamos trabalhar em decâmetros (simbolicamente dam), lembrando que 1dam = 10m. Assim, tanto o comprimento X como a largura Y de um terreno sorteado

ao acaso, podem ser iguais a 1, 2 ou 3. A tabela a seguir fornece (apenas parcialmente) a distribuição conjunta de X e de Y, variáveis aleatórias supostas independentes:

X		$\mathbb{P}(X)$		
A	1	2	3	
1	0,35		0,14	
2				0,20
3	0,05			
$\mathbb{P}(Y)$		0,30		

Considere as v.a.'s V=2X+2Y, o perímetro do terreno e W=XY, a área do terreno. Calcule:

a) O valor de cada probabilidade, conjunta ou marginal, omitido na tabela acima.

X		$\mathbb{P}(X)$		
Λ	1	2	3	ш (Ж)
1	0,35	a	0,14	b
2	С	d	е	0,20
3	0,05	f	g	h
$\mathbb{P}(Y)$	i	0,30	j	k

$$0.35 + c + 0.05 = i$$

 $0.35 + (0.20 * i) + 0.05 = i$
 $0.40 = 0.8i$
 $i = 0.5$

$$0.20 * i = c$$

 $0.20 * 0.5 = c$
 $c = 0.1$

$$k = 1$$

$$i + 0.30 + j = k$$

 $0.5 + 0.30 + j = 1$
 $j = 0.2$

$$b * j = 0.14$$

$$0.2 * b = 0.14$$

 $b = 0.7$

$$b + 0.2 + h = k$$

 $0.7 + 0.2 + h = 1$
 $h = 0.1$

$$0.35 + a + 0.14 = b$$

 $0.35 + a + 0.14 = 0.7$
 $a = 0.21$

$$d = 0.30 * 0.20$$

 $d = 0.06$

$$f = 0.30 * h$$

 $f = 0.30 * 0.1$
 $f = 0.03$

$$e = 0.20 * j$$
 $e = 0.20 * 0.2$
 $e = 0.04$

$$g = h * j$$

 $g = 0.1 * 0.2$
 $g = 0.02$

X		$\mathbb{P}(X)$		
Λ	1	2	3	
1	0,35	0,21	0,14	0,70
2	0,10	0,06	0,04	0,20
3	0,05	0,03	0,02	0,10
$\mathbb{P}(Y)$	0,5	0,30	0,2	1

b) A probabilidade condicional de que a área seja igual a $4\mathrm{dam}^2$, dado que o perímetro é igual a $8\mathrm{dam}$.

X	Y	V	W	$\mathbb{P}(X=x\cap Y=y)$
1	1	4	1	0,35
1	2	6	2	0,10
1	3	8	3	0,05
2	1	6	2	0,21
2	2	8	4	0,06
2	3	10	6	0,03
3	1	8	3	0,14
3	2	10	6	0,04
3	3	12	9	0,02

V		$\mathbb{P}(V)$					
·	1	2	3	4	6	9	II (V)
4	0,35	0	0	0	0	0	0,35
6	0	0,31	0	0	0	0	0,31
8	0	0	0,19	0,06	0	0	0,19
10	0	0	0	0	0,07	0	0,07
12	0	0	0	0	0	0,02	0,02
$\mathbb{P}(W)$	0,35	0,31	0,19	0,06	0,07	0,02	1

$$\mathbb{P}(W = 4 \mid V = 8) = \frac{\mathbb{P}(W = 4) * \mathbb{P}(V = 8)}{\mathbb{P}(V = 8)} = \mathbb{P}(W = 4) = 0,06$$

Formulário:

$$\begin{split} & \mathrm{E}(\mathrm{X}) = \sum_{i=1}^n \, \mathrm{x}_i \, * \, \mathbb{P}(\mathrm{X} = \mathrm{x}_i) \\ & \mathbb{P}(\mathrm{X} = \mathrm{x}_i \mid \mathrm{Y} = \mathrm{y}_j) = \frac{\mathbb{P}(X = x_i, Y = y_j)}{\mathbb{P}(Y = y_j)} \\ & \mathrm{Se} \, \mathrm{X} \, \mathrm{e} \, \mathrm{Y} \, \mathrm{s\tilde{a}o} \, \mathrm{independentes}, \, \mathrm{ent\tilde{a}o} \colon \, \mathbb{P}(X = x_i, Y = y_j) = \mathbb{P}(X = x_i) * \mathbb{P}(X = x_j) \\ & \mathrm{E}(\mathrm{X} \mid \mathrm{Y} = \mathrm{y}_j) = \sum_{i=1}^n \, \mathrm{x}_i \, * \, \mathbb{P}(\mathrm{X} = \mathrm{x}_i \mid \mathrm{Y} = \mathrm{y}_j) \end{split}$$