UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P.O. Box 1450 Alexandria, Virginia 22313-1450 www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
09/935,982	08/23/2001	John W. Evans	97541.00011	2268
21832 7590 12/03/2009 MCCARTER & ENGLISH, LLP HARTFORD CITYPLACE I 185 ASYLUM STREET HARTFORD, CT 06103			EXAM	INER
			DELCOTTO, GREGORY R	
			ART UNIT	PAPER NUMBER
			1796	
			MAIL DATE	DELIVERY MODE
			12/03/2009	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

ARK OFFICE PPEALS S Light
PPEALS
s Light
s Light
s Light
s Light
r 5, 2009
,
EN and

1	The above-entitled matter came on for hearing on Thursday,
2	November 5, 2009, commencing at 1:00 p.m., at the U.S. Patent and
3	Trademark Office, 600 Dulany Street, 9th Floor, Hearing Room A,
4	Alexandria, Virginia, before Ashorethea Cleveland, Notary Public.
5	THE USHER: Calendar Number 39. Number 2009-009364. Mr. Grondahl
6	JUDGE KIMLIN: Good afternoon, Mr. Grondahl.
7	MR. GRONDAHL: Good afternoon.
8	JUDGE KIMLIN: Our reporter today is Miss Cleveland. You
9	can begin when you're ready.
10	MR. GRONDAHL: Thank you. Here with me today are the
11	two inventors on this particular application, Mr. Evans and Mr. Light.
12	JUDGE KIMLIN: Welcome.
13	MR. GRONDAHL: At the start, there is a procedural matter I
14	just want to bring to the Board's attention. There is another appeal pending
15	on an application for which Mr. Evans is an inventor. The application is
16	serial number 10/629,642.
17	JUDGE KIMLIN: 629642?
18	MR. GRONDAHL: Yes. I bring it to the Board's attention
19	because in that case, the Examiner asked us to identify this case as a related,
20	a related appeal; and it came to my attention yesterday that we hadn't
21	crossed and identified that appeal in this case. This case has been identified
22	there but that one had not been identified here.
23	JUDGE KIMLIN: So, you say that's series 10/629,642?
24	MR. GRONDAHL: 6-2-9-6-4-2. When I return to my office, I
25	will put a paper in the file.

1	JUDGE WARREN: And what's the status of that case?
2	MR. GRONDAHL: It's awaiting a hearing.
3	JUDGE WARREN: It's also awaiting a hearing?
4	MR. GRONDAHL: Yes. We didn't think it was related. The
5	Examiner in that case did.
6	JUDGE KIMLIN: That's fine; as long as you provide us this
7	information.
8	MR. GRONDAHL: Okay. Thank you.
9	The claimed invention in this case, as I am sure you know, is
10	directed to a method for producing a non-aqueous heat transfer fluid that has
11	a reduced oral toxicity; and there are two aspects to the invention. One is
12	that it's a non-aqueous heat transfer fluid and that it's got a reduced oral
13	toxicity, unexpectedly reduced oral toxicity.
14	The limitations of the independent Claim 30 require that an
15	ethylene glycol based, non-aqueous heat transfer fluid be provided.
16	JUDGE WARREN: Counselor, the Examiner says that
17	"non-aqueous" has the meaning in your spec, most notably, at page 28, line
18	16, and that paragraph goes to page 29, line 5.
19	MR. GRONDAHL: Yes.
20	JUDGE WARREN: That suggests that "non-aqueous" means
21	the water is present only as an impurity and preferably no greater than a
22	starting concentration of about 0.5 weight percent.
23	MR. GRONDAHL: Yes.
24	JUDGE WARREN: Which means that given the hygroscopic
25	nature of ethylene glycol that you can have more than 0.5 weight percent.

1	MR. GRONDAHL: In use, the fluid might because it is
2	hygroscopic may take on additional water.
3	The purpose of the invention, the claimed invention, required a
4	non-aqueous heat transfer fluid to start and the specification defines that as a
5	starting fluid that only has .5 percent by weight.
6	JUDGE WARREN: It says, "preferably." It doesn't say "only,"
7	I believe.
8	MR. GRONDAHL: Well, we have certainly been arguing
9	during the case that it is .5, less than .5; and the Examiner, I think, has used
10	that, as well.
11	So, I believe we've clarified that during the prosecution history
12	to make clear that the intention is that it be no more than .5 percent.
13	JUDGE NAGUMO: But your specification says that it's
14	present only as an impurity
15	MR. GRONDAHL: Yes.
16	JUDGE NAGUMO: And on the next page it says that water
17	can just by absorption from the atmosphere, I guess, can take up to as much
18	as 10 percent and you still haven't really changed the cooling.
19	So, why should we not read the claim broadly and say, okay, it's
20	present only as an impurity, whatever that means. Well, it means up to 10
21	percent, for example.
22	MR. GRONDAHL: The remainder of the paragraph talks
23	about what happens because of the hygroscopic nature of the glycol, that
24	additional water might be absorbed.

1	The reason you start and the reason the fluid that's claimed here
2	starts with no more than .5 percent is because water is generally undesirable
3	and while recognizing that the fluid can still perform if it does absorb some
4	water after use, you want to minimize the amount of water to start with for
5	the fluid and to get what you want in the fluid.
6	JUDGE WARREN: How does that affect the process, the
7	claimed process?
8	MR. GRONDAHL: Well, it affects the claimed process
9	because you have to start with ethylene glycol and propylene glycol that
10	have very low-water contents, less than .5 percent.
11	So, in order for it to be a non-aqueous heat transfer fluid at the
12	start, it has to have that level of water present only as an impurity and no
13	water actually added to the fluid.
14	JUDGE WARREN: But if I say I can only have water present
15	as an impurity, then what's to prevent me from having 10 percent water, as
16	much as 10 percent water, say, that crept in as an impurity? Is there some
17	consequence in the process of mixing these things with more water that
18	actually makes a difference in the processing?
19	MR. GRONDAHL: In the processing itself, I
20	JUDGE WARREN: This is a claim for a process. That's why I
21	ask.
22	MR. GRONDAHL: Yes. Yes. In the process itself, these
23	materials are certainly compatible with water. But as I said, the reason we
24	use non-aqueous, that term, is because we want the fluid to start with no

1	water or very little water, less than .5 percent; and that is what we have
2	argued during the prosecution and the Examiner has responded on that basis.
3	So, I would suggest that "non-aqueous" would have to be read,
4	particularly in view of the arguments we have made, to be limited to .5
5	percent, starting in the fluid that's produced by the process.
6	JUDGE WARREN: Thank you.
7	JUDGE KIMLIN: Counselor, you also had the term
8	"non-aqueous heat transfer fluid" in the preamble.
9	MR. GRONDAHL: Yes.
10	JUDGE WARREN: Your additives can be molybdate salt and
11	nitrate salt. Wouldn't they have water associated with them when you add
12	them?
13	MR. GRONDAHL: No. Those additives do not have water
14	associated when you add them. They are soluble in the glycols and that's
15	one of the
16	JUDGE KIMLIN: It's a requirement that they have to be
17	non-aqueous; is that right? It wouldn't have any attached water when you
18	put them in, when you mix them?
19	MR. GRONDAHL: I don't believe they do. The additives are
20	added. I believe we describe the process in the application.
21	JUDGE KIMLIN: And the propylene glycol. So, it wouldn't
22	have any water associated with it?
23	MR. GRONDAHL: It may have up to .5 percent because it is
24	hygroscopic.

1	JUDGE WARREN: Aren't they allowed? Because it's not
2	listed as non-aqueous either.
3	MR. GRONDAHL: Well, the preamble listed says the entire
4	heat transfer fluid is non-aqueous.
5	JUDGE WARREN: Okay. So, if we can have .5 percent water
6	with the ethylene glycol and .5 percent water with the propylene glycol, then
7	we're up to one percent.
8	MR. GRONDAHL: That's not the way I believe the claim
9	should be read, Judge Warren.
10	We say in the preamble it's a method for producing ethylene
11	glycol based, non-aqueous heat transfer fluid. It's ethylene glycol based and
12	the heat transfer fluid as a whole has to have less than .5 percent water
13	JUDGE WARREN: So, then you're saying you're just
14	describing this before you use it?
15	MR. GRONDAHL: I'm sorry.
16	JUDGE WARREN: You're just describing this? You're
17	essentially claiming a composition in terms of how it's made, is that correct,
18	as opposed to the composition, per se?
19	MR. GRONDAHL: We're not claiming the composition. Yes.
20	What we're claiming is and this goes to the other unexpected result or
21	property of this fluid, is that it unexpectedly reduced the oral toxicity of
22	the
23	JUDGE WARREN: I understand that; but you've already given
24	us a range in which that reduction in oral toxicity occurs which is about 5

1	percent to 30 percent by weight of the propylene glycol based on the total
2	amount of the propylene and ethylene glycols.
3	MR. GRONDAHL: Yes.
4	JUDGE WARREN: So, you already have that there.
5	MR. GRONDAHL: Yes when you say we already have it,
6	you
7	JUDGE WARREN: Well, you have already specified what
8	your range that provides the reduction of toxicity.
9	MR. GRONDAHL: Yes. Yes.
10	JUDGE WARREN: Okay.
11	MR. GRONDAHL: And as I said, it's a non-aqueous fluid with
12	reduced toxicity. As you said, Judge Warren, one of the other limitations is
13	5 to 30 percent by weight, the ethylene glycol and propylene glycol.
14	The references cited by the Examiner in our view all require
15	added water to the heat transfer fluids that are described.
16	The Remy reference, which claims to anticipate or the
17	Examiner held anticipates the process here the fluid described in Remy
18	is the only place he describes ethylene glycol and propylene glycol: He
19	talks about putting in a phosphate buffer which requires added water.
20	The statements made in Remy, broad statements, some
21	combination, some unspecified combinations of ethylene glycol require no
22	added water, don't describe particular combinations of glycols.
23	In fact, what Remy goes on to say in his examples using
24	ethylene glycol and propylene glycol, he puts in a phosphate buffer which
25	requires added water and therefore can't anticipate this claim.

1	In addition, and another reason Remy can't anticipate the claim
2	and does not anticipate the claim is that the phosphate buffer is not soluble
3	in ethylene glycol and propylene glycol, which is why you have the added
4	water; and that's another element of the
5	JUDGE WARREN: Can you point out where you find that
6	limitation in Remy?
7	MR. GRONDAHL: Pardon?
8	JUDGE WARREN: Can you point out where you find that
9	disclosure in Remy, that if ethylene glycol and propylene glycol are mixed
10	there has to be phosphoric acid added and so therefore there has to be water?
11	MR. GRONDAHL: It's in his example where he uses ethylene
12	glycol and propylene glycol. The only example he provides has one part
13	water and phosphate buffer added.
14	JUDGE WARREN: Where he says he prefers, where he has
15	preferably a mixture of at least 30 weight percent propylene glycol and from
16	0.1 to 70 weight percent of ethylene glycol, he has no requirement there for
17	water, and he says that phosphoric acid is added only if the initial pH value
18	of the alkylene glycol base fluid is too alkylene. So
19	MR. GRONDAHL: I believe we're talking about page five of
20	Remy. I want to make sure we're talking about the same passage.
21	JUDGE WARREN: The preference for the mixture of
22	propylene glycol and ethylene glycol is on page four. The preference for
23	less than about one weight percent of water is at the bottom of page five,
24	which essentially is no water, according to the reference.
25	MR. GRONDAHL: Yes.

1	JUDGE WARREN: And the optional addition of phosphoric
2	acid is on page six.
3	MR. GRONDAHL: And what happens is, the way Remy walks
4	through and describes the fluids that he's describing there he starts out on
5	page four saying that preferably the alkylene glycol is a mixture, can be
6	propylene glycol or a mixture. Then he goes on to talk about the corrosion
7	inhibitors employed and he mentions phosphoric acid.
8	The portion of Remy that you point to at the bottom of page
9	five, he is not he doesn't talk about ethylene glycol and propylene glycol.
10	He switches back to just alkylene glycol generally. He says, most preferably
11	the alkylene glycol is used with essentially no water. So, he is again back to
12	some unspecified ethylene glycol or mixture.
13	But when he talks about ethylene glycol and propylene glycol
14	together, there's phosphoric acid and there's water.
15	Even on page four, below the passage that you pointed to, when
16	he talks about the corrosion inhibitor combination, right after he talks about
17	ethylene glycol and propylene glycol, he mentions phosphoric acid.
18	So, Remy is teaching that for ethylene glycol and propylene
19	glycol, you've got to have a buffer and that buffer is going to require water.
20	That was consistent with what was known at the time; and Remy talked
21	about the fact that uninhibited and hydrous glycols are undesirable because
22	of the corrosion that they would cause.
23	So, Remy, when he talks generally and generically about
24	alkylene glycols, says no water but doesn't really specify which alkylene
25	glycols that would apply to.

1	JUDGE WARREN: Well, counselor, if the reference
2	essentially mixes essentially the same ingredients that you do in the manner
3	that you claim, why wouldn't Remy, and the idea that he doesn't have to
4	have any phosphoric acid there essentially describe your claim method to
5	one skilled in the art?
6	MR. GRONDAHL: Because what Remy describes for ethylene
7	glycol and propylene glycol is the use of phosphoric acid and water to buffer
8	that which would not be a non-aqueous heat transfer fluid and it would
9	contain an additive that requires water to function.
10	So, what Remy describes for the specific combination claimed
11	here, the only specific combination he shows is ethylene glycol and
12	propylene glycol where he described phosphoric acid and water.
13	JUDGE NAGUMO: Is there evidence in the record that .5
14	weight percent water would be insufficient for phosphoric acid to perform its
15	intended function? Because under your construction, I can have up to .5
16	water.
17	MR. GRONDAHL: Yes.
18	JUDGE NAGUMO: Under a broader construction argument
19	it's quite a bit larger. But is there evidence in the record here that shows that
20	.5 water would be insufficient for the phosphoric acid to perform its function
21	and therefore outside the scope?
22	MR. GRONDAHL: There is no evidence in the record directly
23	related to that point. However, I point out as described in the specification,
24	the non-aqueous heat transfer fluid only has water present as an impurity,
25	again, because of the hygroscopic nature of the materials.

1	Remy, on top of whatever might be there as an impurity, is
2	adding another one percent of water in order to buffer this phosphoric acid
3	and for the phosphoric acid to function.
4	So, there's no direct evidence about whether .5 percent would
5	function. I would point out that Remy doesn't use .5 percent. He uses one
6	percent and adds it and it's not present there merely as an impurity due to the
7	hygroscopic nature of the materials.
8	So, our position on the anticipation by Remy is that Remy
9	simply does not meet all the limitations of the claim.
10	The other two references that are cited by the Examiner:
11	Meyer. Meyer is clearly directed to an aqueous heat transfer fluid and says
12	it's mixed with water. Column one, lines 39 through 43 talks about mixing it
13	with water. It's really directed to a prevention of precipitation of salts from
14	glycols mixed with water; and he says that you can have up to 50 percent
15	water, preferably one to 10 percent water. He's really describing a de-icing
16	fluid, not a heat transfer fluid, and he has a polymeric additive to prevent the
17	precipitation of salt when the glycol is added to water.
18	So, Meyer failed because it's clearly in use. The fluid has
19	added water. In fact, he says to add it to water. It has a polymeric additive
20	which would not be although Meyer says, sort of in a throw-away line,
21	that you can use it as a heat transfer fluid, in fact the polymeric additive may
22	be very unsatisfactory to a heat transfer fluid.
23	JUDGE WARREN: But your method, counsel, is a method for
24	producing a composition. It's not for a method of using your composition.

1	MR. GRONDAHL: Well, it's a method for producing a heat
2	transfer, a non-aqueous heat transfer fluid.
3	JUDGE WARREN: And the reference's composition can't be
4	used as a heat transfer?
5	MR. GRONDAHL: No; this one would not with the polymeric
6	additive. It would not be satisfactory. In fact, it's really directed to the
7	de-icing fluid. It's clear throughout that that's what he was directing this
8	towards.
9	JUDGE WARREN: So, all the composition has to do is act as
10	a heat transfer fluid under some condition? It doesn't have to I'm not sure
11	what the standard is that you want us to apply in determining what a heat
12	transfer fluid is.
13	MR. GRONDAHL: Well, it would be a fluid that and it's
14	discussed in the specification, the properties of a good heat transfer fluid, the
15	viscosity, for example, being an important characteristic. The whole
16	purpose of Meyer is to increase the viscosity which the specification clearly
17	states is undesirable in a heat transfer fluid.
18	The specification goes through the desirable physical
19	characteristics in detail of a heat transfer fluid and what's desired in a heat
20	transfer fluid in terms of physical characteristics.
21	JUDGE WARREN: It says here that this composition is useful
22	as an antifreeze fluid and heat transfer applications.
23	MR. GRONDAHL: It says that. It says that but in fact the
24	increase in the viscosity would not make it satisfactory for a heat transfer
25	fluid. How that worked its way into the Meyer patent is unclear; but you've

1	got to read this from the point of view of someone skilled in the art, and
2	someone skilled in the art would recognize
3	JUDGE NAGUMO: What evidence do you have that viscosity
4	is beyond the range of what the art recognizes as a useful heat transfer fluid?
5	MR. GRONDAHL: I believe there's a declaration from Mr.
6	Evans. I'm trying to think whether he discussed that. He discussed many
7	things. The specification itself calls out the desirable properties of a heat
8	transfer fluid.
9	JUDGE NAGUMO: Not necessarily evidence of what the art
10	recognizes as a heat transfer fluid; and the Examiner is entitled to rely on the
11	disclosure in patents absent countervailing evidence that it wouldn't be
12	suitable.
13	So, you've got a reference that says their invention at least in
14	certain embodiments is useful as a heat transfer fluid, and I'm not sure I'm
15	seeing anything in the claim that necessarily excludes other materials, in
16	particular the thickening polymer.
17	MR. GRONDAHL: Well, again, I think that what I would
18	suggest in the claim it does, that is the heat transfer fluid I understand your
19	point certainly about the Examiner not necessarily needing to or taking the
20	reference at face value.
21	I think if you read the reference in its entirety, which is also
22	required, in its entirety it's clear that what is really being discussed is
23	de-icing fluid where viscosity is very desirable. High viscosity is very
24	desirable.

1	So, one skilled in the art I believe would see that having a high
2	viscosity heat transfer fluid would not be desirable. It's hard to pump.
3	Gums up the works, if you will.
4	Again, I come back to Meyer. It's clearly an aqueous heat
5	transfer fluid in use. He adds it to water.
6	And again, Wood is similar. In fact, Wood says that the fluid
7	necessarily contains sodium metasilicate which is not soluble in either
8	ethylene glycol or propylene glycol and requires water to be present, to be
9	added.
10	In fact, what Wood describes when he talks about having little
11	or no water present, he talks about a concentrate; not the fluid, not the heat
12	transfer fluid. It's a concentrate that's then diluted further in use which you
13	have to do with sodium metasilicate.
14	JUDGE WARREN: But the claim reads on a concentrate.
15	MR. GRONDAHL: Well, it doesn't read on a concentrate in a
16	sense that you don't and if it's fluid, you don't add any water to it. It's a
17	heat transfer fluid, a non-aqueous heat transfer fluid.
18	JUDGE WARREN: It's still a concentrate.
19	MR. GRONDAHL: Well, you don't add anything in use. You
20	use it as it is, as a non-aqueous heat transfer fluid. You don't add water to it
21	which Wood requires. Wood says in use, it's a standard aqueous heat
22	transfer
23	JUDGE WARREN: But your specification says you can have
24	up to 10 percent weight water in use.

1	MR. GRONDAHL: Again, we come back to the claim
2	construction issue that you pointed out at the beginning: what's meant by a
3	non-aqueous heat transfer fluid? And it's less than .5 percent water as an
4	impurity in the starting fluid.
5	We recognize that water can end up in the fluid. The only point
6	we're trying to make in that passage is that if a little bit of water leaks in, this
7	fluid will still function in terms of its physical characteristics.
8	The starting fluid and the fluid that's claimed here is a fluid that
9	has less than .5 percent water present as an impurity. What happens when
10	those are in use is what the "up to 10 percent" refers to in the specification.
11	So, in sum, it's our belief that none of these references
12	anticipate or render the claimed process obvious. They all describe fluids
13	that require added water, require additives that are not soluble in the alcohols
14	or require water to function; and for those reasons, we think that the
15	Examiner's rejection should be reversed.
16	Are there any other questions?
17	JUDGE WARREN: One more question.
18	MR. GRONDAHL: Yes.
19	JUDGE WARREN: Your spec discloses, talking about how
20	you prepare the non-aqueous heat transfer fluids. On page 14, it's indicated
21	that you use industrial-grade propylene glycol and ethylene glycol.
22	MR. GRONDAHL: Mm-hum.
23	JUDGE WARREN: How anhydrous is industrial-grade
24	glycols?
25	MR. GRONDAHL: I don't know. Could I ask the inventors?

1	JUDGE WARREN: Sure.
2	MR. LIGHT: The spec is below five 100ths of one percent as
3	applied by the manufacturer.
4	JUDGE WARREN: Thank you.
5	MR. GRONDAHL: Thank you. Are there any other
6	questions?
7	(No response.)
8	MR. GRONDAHL: Thank you.
9	JUDGE KIMLIN: All right. Thank you for coming.
10	MR. GRONDAHL: Thank you for your time.
11	Whereupon, at approximately 1:30 p.m., the proceedings were
12	concluded.
13	