Neural Networks 101: Implementing Feedforward Neural Nets using TensorFlow

Lu Lu

Aug 3, 2018 @Crunch Seminar

Feedforward Neural Nets (FNN)

Figure 1

Feedforward Neural Nets (FNN)

$$\mathcal{N}: \mathbb{R}^{d_{in}} o \mathbb{R}^{d_{out}}$$
 with L layers and \mathcal{N}^I neurons in the layer I
$$\mathbf{x}^I = \sigma(\mathbf{h}^I) \qquad \mathbf{h}^I = \mathbf{W}^I \mathbf{x}^{I-1} + \mathbf{b}^I \quad \text{for } I = 1, \dots, L-1$$

$$\mathbf{y} \equiv \mathbf{x}^L = \mathbf{h}^L = \mathbf{W}^L \mathbf{x}^{L-1} + \mathbf{b}^L$$

- $\mathbf{x}^0 \in \mathbb{R}^{d_{in}}$: input
- ▶ \mathbf{W}^{l} : weight matrix $(N^{l} \times N^{l-1})$ in the layer l
- ▶ $\mathbf{b}' \in \mathbb{R}^{N'}$: biases in the layer I
- ullet $\sigma\colon\mathbb{R} o\mathbb{R}$, component-wise activation function (nonlinear)
- $\mathbf{x}' \in \mathbb{R}^{N'}$: neural activity in the layer I

$$\mathbf{y} \equiv \mathbf{x}^{L} = \mathbf{W}^{L} \sigma(\mathbf{W}^{L-1} \sigma(\dots \sigma(\mathbf{W}^{2} \sigma(\mathbf{W}^{1} \mathbf{x}^{0} + \mathbf{b}^{1}) + \mathbf{b}^{2})) + \mathbf{b}^{L-1}) + \mathbf{b}^{L}$$

What activations CAN we use IN THEORY?2

 $ightharpoonup \sigma: \mathbb{R}
ightharpoonup \mathbb{R}$ is a generalized sigmoidal function, if

$$\sigma(x) o \begin{cases} 1 & \text{as } x o +\infty \\ 0 & \text{as } x o -\infty \end{cases}.$$

- σ is a Tauber-Wiener (TW) function, if all the linear combinations $\sum_{i=1}^{N} c_i \sigma(\lambda_i x + \theta_i)$, $i = 1, \ldots, N$, are dense in every C[a, b].
- ▶ If σ is a **bounded** generalized sigmoidal function, then $\sigma \in (TW)$
- ▶ Suppose that $\sigma \in C(\mathbb{R}) \cap S'(\mathbb{R})^1$, then $\sigma \in (\mathsf{TW})$ iff σ is not a polynomial
- ▶ If $\sigma \in (TW)$, then every measurable function f can be approximated arbitrarily well by a single-hidden-layer FNN.
- ► Any continuous, slowly increasing, non-polynomial function can be used as an activation.

¹Contains all slowly increasing functions (polynomially growing)

²Chen & Chen, IEEE Trans Neural Netw, 1993; Chen & Chen, IEEE Trans Neural Netw, 1995.

What activations SHOULD we use IN REALITY?3

Suggestions:

- Never use Sigmoid
- ► For very deep NN (>10 layers), try ReLU-based activations first

³LeCun et al., Neural Netw, 1998; Glorot & Bengio, AISTATS, 2010; Glorot et al., AISTATS, 2011.

Machine learning frameworks

arXiv mentions as of 2018/03/07 (past 3 months)

Figure 2

What is TensorFlow?

- ▶ Open sourced by Google in November 2015
- Library for numerical computation
- ▶ **NOT** provide out-of-the-box machine learning solutions
- Tensor: geometric objects that describe linear relations between geometric vectors, scalars, and other tensors n-dimensional matrix

TensorFlow

```
import tensorflow as tf
```

- data type: tf.float32, tf.float64
- Inputs: tf.placeholder
- Variables to be optimized: tf.Variable
- ► Math operations
 - Multiplies matrix a by matrix b: tf.matmul(a, b)
 - tf.nn.tanh, tf.nn.relu
 - mean: tf.reduce_mean
- Session

```
# Build a NN
...
# Launch, init, run
sess = tf.Session()
sess.run(tf.global_variables_initializer())
sess.run(..., feed_dict={...})
```

Hands-on: Build your own FNN

Figure 3: Mission Impossible?

What is next?

Training loop

After building a neural network, train, i.e., optimize \mathbf{W} and \mathbf{b} using data.

- Define a loss to be minimized
- ▶ Initialize the net
- Choose an optimizer

Loss

Traing data set: $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$

Mean absolute error (MAE) or L1

$$\frac{1}{n}\sum_{i=1}^{n}|\mathcal{N}(x_i)-y_i|$$

Mean squared error (MSE) or L2

$$\frac{1}{n}\sum_{i=1}^{n}(\mathcal{N}(x_i)-y_i)^2$$

tf.reduce_mean((y_pred - y_true)**2)

. . . .

How to initialize the weights?

Weights are randomly sampled (zero mean). $\mathbf{b} = 0$.

Initializer	Var[w]	Activation
Glorot uniform/normal ⁴	$2/(fan_{in} + fan_{out})$	tanh
He normal ⁵	2/fan _{in}	ReLU
LeCun normal ⁶	$1/fan_{in}$	SeLU
Orthogonal ⁷	-	all
LSUV ⁸	-	all

- ► fan_{in}: the number of input units of the layer
- ► fan_{out}: the number of output units of the layer

⁴Glorot & Bengio, AISTATS, 2010.

⁵He et al., ICCV, 2015.

⁶LeCun et al., Neural Netw, 1998; Klambauer et al., NIPS, 2017.

⁷Saxe et al., ICLR, 2014.

⁸Mishkin & Matas, ICLR, 2015.

How to optimize?

Optimizers

```
► SGD: w_{t+1} = w_t - \eta \nabla_w loss(w)
```

- ► SGDNesterov⁹: momentum
- ► AdaGrad¹⁰: adaptive per-parameter learning rates
- ▶ AdaDelta¹¹, RMSProp¹²: extensions of AdaGrad
- Adam¹³: adaptive & momentum
- **•** . . .

```
learning_rate = ...
loss = ...
opt = tf.train.AdamOptimizer(learning_rate)
train = opt.minimize(loss)
```

¹³Kingma & Ba, ICLR, 2015.

⁹Sutskever et al., ICML, 2013.

¹⁰Duchi et al., JMLR, 2011.

¹¹Zeiler, arXiv, 2012.

¹²Hinton, csc321, 2014.

What else?

- Overfitting
 - Early stopping: Beautiful FREE LUNCH¹⁴
 - ▶ L1/L2 regularization: $\lambda \sum_{w} |w|^2$
 - ► Dropout¹⁵
- Normalization

¹⁴Hinton, NIPS, 2015.

¹⁵Srivastava et al., JMLR, 2014.

Hands-on: Training & Predicting

Figure 4: You can predict the unknown in a snap.