Artin: Groups

James Pagan

February 2024

Contents

1	Gro	oup Axioms	2
2	Subgroups and Cosets		
	2.1	Subgroups	3
	2.2	Cosets and Lagrange's Theorem	4
	2.3	Normal Subgroups	5
	2.4	Quotient Groups	6
3	Homomorphisms		
	3.1	Definition	7
	3.2	Kernel, Image, Cokernel	8
	3.3	The Isomorphism Theorems	9
4	Operations on Subgroups		
	4.1	Subgroup Product	11

1 Group Axioms

A **group** G is a set endowed with a binary operation, here denoted " \times ", such that for all $a, b, c \in G$, the following four axioms are satisfied:

- 1. Closure: $ab \in G$.
- 2. Associativity: a(bc) = (ab)c.
- 3. **Identity**: There is $e \in G$ such that ae = ea = a.
- 4. **Invertability**: There is $a^{-1} \in G$ such that $aa^{-1} = a^{-1}a = e$.

If the operation is commutative — that is, if ab = ba for all $a, b \in G$ — then G is said to be an **Abelian group**. The generalized associative law ensures that for all $a_1, \ldots, a_n \in G$, the product $a_1 \cdots a_n$ is independent of bracketing.

Theorem 1. Let G be a group. Then the following properties hold for any $a, b \in G$:

- 1. The identity is unique.
- 2. Inverses are unique.
- 3. $(a^{-1})^{-1} = a$.
- 4. $(ab)^{-1} = b^{-1}a^{-1}$.

Proof. The proofs are as follows:

- 1. If e and f are identities of G, then e = ef = f by the identity axiom.
- 2. If b and c are inverses of a that is, ab = ba = e = ac = ca we have

$$b = be = b(ac) = (ba)c = ec = c.$$

3. As $a^{-1}(a^{-1})^{-1} = e$ and $aa^{-1} = e$,

$$a = ae = a(a^{-1}(a^{-1})^{-1}) = (aa^{-1})(a^{-1})^{-1} = e(a^{-1})^{-1} = (a^{-1})^{-1}.$$

4. Using the Generalized Associative Law, we have

$$(ab)(b^{-1}a^{-1}) = a(bb^{-1})a^{-1} = aea^{-1} = aa^{-1} = e$$

 $(b^{-1}a^{-1})(ab) = b^{-1}(a^{-1}a)b = b^{-1}eb = b^{-1}b = e.$

Thus $b^{-1}a^{-1}$ is $(ab)^{-1}$, the unique inverse of ab.

This completes the proof.

These axioms induce equation-like manipulations worth enumerating, for $a, b, c, d, x \in G$:

- 1. Linear Equations: If ax = b or xa = b, multiplying by a^{-1} yields the unique solutions $x = a^{-1}b$ and $x = ba^{-1}$.
- 2. **Division**: If ac = bc or ca = ba, we can multiply by c^{-1} to yield a = b.
- 3. Multiplying Equations: If a = b and c = d, then ac = bc and bc = bd hence ac = bd. Similarly, it implies ad = bc.

2 Subgroups and Cosets

2.1 Subgroups

A subset $H \subseteq G$ is a **subgroup** if it is a group under the operation of G.

Theorem 2. If $H \subseteq G$ is nonempty, closed, and contains multiplicative inverses, it is a subgroup.

Proof. Let $a \in H$. Since $a^{-1} \in H$ too, we have $e = a^{-1}a \in H$ — thus H contains a multiplicative identity. Multiplication is associative for all elements of H (as elements of G), so the axioms are indeed verified.

A group is **finite** if G contains finitely many elements and **infinite** otherwise. If G is a finite group, the **order** of G — denoted |G| — is the number of elements of G.

Theorem 3. Suppose G is finite. If $H \subseteq G$ is nonempty and closed, it is a subgroup.

Proof. Let |G| = n and select $a \in H$. Consider the list

$$a, a_2, \ldots, a^n, a^{n+1}$$
.

Since this list in G (a set with n elements) contains n+1 elements, the Pigeonhole Principle guarantees that there exist $i, j \in \{1, ..., n+1\}$ with i < j such that

$$a^i = a^j$$
.

Then $a^{i-j}=e$, and $a^{-1}=a^{i-j-1}\in H$ by closure. Hence H contains multiplicative inverses, so Theorem 2 establishes that H is a subgroup.

The subgroup relation is transitive. If M is a subgroup of H and H is a subgroup of G, then M is a subgroup of G.

2.2 Cosets and Lagrange's Theorem

Let $H \subseteq G$ be a subgroup. Then for $a \in G$, the **left coset** aH and **right coset** Ha are defined as follows:

$$aH = \{ah \mid h \in H\}$$
 and $Ha = \{ha \mid h \in H\}.$

For the remainder of this document, "coset" will refer to left cosets unless otherwise specified. Realize that $b \in aH$ if and only if $a^{-1}b \in H$. Thus for $a, b \in G$, the relation $a \sim b$ if $a^{-1}b \in H$ biconditionally implies that a and b lie in some common coset.

Theorem 4. Let $H \subseteq G$ be a subgroup. Then the relation $a \sim b$ for $a, b \in G$ is an equivalence relation.

Proof. We must verify three properties, for all $a, b, c \in G$:

- 1. Reflexivity: We have that $a^{-1}a = e \in H$, so $a \sim a$.
- 2. Symmetry: This follows from the fact H contains inverses:

$$a \sim b \iff a^{-1}b \in H \iff b^{-1}a \in H \iff b \sim a.$$

3. Transitivity: Suppose that $a \sim b$ and $b \sim c$ — that is, $a^{-1}b$ and $b^{-1}c$ lie in H. Then

$$a^{-1}c = a^{-1}ec = (a^{-1}b)(b^{-1}c) \in H;$$

thus we find $a \sim c$.

We conclude that \sim is an equivalence relation.

It is easy to demonstrate that equivalence classes are cosets themselves, which leads to a sharper proof of the following Theorem:

Theorem 5. Suppose that $a, b \in G$ and $H \subseteq G$ is a subgroup. Then aH = bH or $aH \cap bH = \emptyset$.

Proof. Suppose that $aH \cap bH \neq 0$; then there exists $c \in G$ and $h_1, h_2 \in H$ such that

$$c = ah_1 = bh_2.$$

Thus the conversion factors $a = bh_2h_1^{-1}$ and $b = ah_1h_2^{-1}$ imply that all elements of aH are elements of bH and vice versa. We conclude that aH = bH.

Theorem 6. For all $a \in G$, we have |aH| = |H|.

Proof. Define a mapping $\phi: aH \to H$ by the rule f(ah) = h. We wish to prove that f is a bijection.

1. **Injectivity**: Suppose that $f(ah_1) = f(ah_2)$ — that is, $h_1 = h_2$. Multiplying by a yields $ah_1 = ah_2$.

2. Surjectivity: For all $h \in H$, we have that f(ah) = h.

Hence f is bijective. We conclude that |aH| = |H|.

Therefore, the cosets of H partition the group G into equivalence classes of size |H|. For this reason, we sometimes denote aH by [a].

Theorem 7 (Lagrange's Theorem). Let H be a subgroup of the finite group G. Then the order of H divides the order of G.

Proof. Let the distinct cosets of H be a_1H, \ldots, a_kH for $a_1, \ldots, a_k \in G$; then

$$a_1H \cap \cdots \cap a_kH = G.$$

If we let |H| = m and |G| = n, the above formula implies that mk = n and $m \mid n$. \square

There are two more trivial assertions that bear coset manipulation a striking resemblance to manipulation of elements:

- 1. a(bH) = (ab)H and (Ha)b = H(ab).
- 2. aH = bH if and only if $H = a^{-1}bH$.

2.3 Normal Subgroups

A subgroup $N \subseteq G$ is **normal** if aN = Na for all $a \in G$. Equivalently, N is normal if $aNa^{-1} = N$ or if $ana^{-1} \in N$ for each $n \in N$. This relation is denoted $N \triangleleft G$. All groups have at least two normal subgroups: G itself and the **trivial group**, $\{e\}$.

Normality is *not* transitive. $M \triangleleft N$ and $N \triangleleft G$ does not always entail that $N \triangleleft G$.

2.4 Quotient Groups

Suppose $N \triangleleft G$. Then the **quotient group** G/N is the group of equivalence classes [a] = aN under the operation [a][b] = [ab] or equivalently $aN \times bN = abN$.

Theorem 8. Let $N \triangleleft G$. Then G/N is a group.

Proof. Suppose that N is normal. We first prove that \times is well-defined; let aN = bN and cN = dN. Then

$$aNc = bNc \implies acN = bcN$$
 and $bcN = bdN$,

so acN = bdN. It is clear that G/N is closed and associative by the relevant properties of G. The identity of G/N is N itself, since

$$aN \times N = aN \times eN = (ae)N = N = (ea)N = eN \times aN = N \times aN.$$

Finally, G/N contains inverses: we have

$$aN \times a^{-1}N = (aa^{-1})N = eN = N = eN = (a^{-1}a)N = a^{-1}N \times aN.$$

Thus the inverse of aN is $a^{-1}N$. We conclude that G/N is a group.

Indeed, G/N is a group if and *only* if N is normal:

Theorem 9. Let $H \subseteq G$ be a subgroup. If G/H is a group, then H is normal.

Proof. Select $h \in H$ arbitrarily. For all $a \in G$, we have that [ah] = [a]; thus

$$[e] = [a^{-1}a] = [a^{-1}][a] = [a^{-1}][ah] = [a^{-1}ha].$$

Hence $a^{-1}ha \in H$. We deduce that H is a normal subgroup.

The **canonical epimorphism** $\pi: G \to G/N$ is the surjective homomorphism defined by $\pi(a) = aN$. It is clear that π is a homomorphism, since

$$\pi(ab) = abN = aN \times bN = \pi(a)\pi(b).$$

Applying the Correspondence Theorem to the canonical epimorphism yields that subgroups in G/N correspond one-to-one with subgroups in G that contain N.

3 Homomorphisms

3.1 Definition

A **group homomorphism** between two groups G and H is a mapping $\phi: G \to H$ such that for all $a, b \in G$,

$$\phi(ab) = \phi(a)\phi(b).$$

There are several types of homomorphisms to consider:

- 1. A surjective homomorphism is an **epimorphism**, an injective homomorphism is a **monomorphism**, and a bijetive homomorphism is an **isomorphism**.
- 2. A homomorphism $\phi: G \to G$ is an **endomorphism**, and an isomorphic endomorphism is an **automorphism**.

If there exists an isomorphism between G and H, their structures are equivalent: we say G and H are **isomorphic** and write $G \cong H$.

Theorem 10. If $\phi: G \to H$ is a homomorphism, then the following properties hold for all $a \in G$:

- 1. $\phi(e_G) = e_H$.
- 2. $\phi(a^{-1}) = \phi(a)^{-1}$.

Proof. Let us divide our proof into two parts:

- 1. Let $a \in G$. Then $\phi(e_G)\phi(a) = \phi(e_G a) = \phi(a)$. Multiplying by $\phi(a)^{-1}$ yields that $\phi(e_G) = e_H$.
- 2. We have that

$$\phi(a)\phi(a^{-1}) = \phi(aa^{-1}) = \phi(e_G) = e_H = \phi(e_G) = \phi(a^{-1}a) = \phi(a^{-1})\phi(a).$$

The uniqueness of inverses in H ensures that $\phi(a)^{-1} = \phi(a^{-1})$.

This completes the proof.

3.2 Kernel, Image, Cokernel

Let $\phi: G \to H$ be a homomorphism. The structure of this homomorphism is encapsulated by three different groups:

- 1. **Kernel**: The set $\operatorname{Ker} \phi = \{k \mid \phi(k) = e\}$.
- 2. **Image**: The set Im $\phi = \{\phi(a) \mid a \in G\}$, often denoted $\phi(G)$.

If Im ϕ is a normal subgroup, then the **cokernel** of ϕ is the quotient group Coker $\phi = H / \text{Im } \phi$. This object is only explored when H is an Abelian group.

Theorem 11. Let $\phi: G \to H$ be a homomorphism. Then the following two results hold:

- 1. Ker ϕ is a normal subgroup of G.
- 2. Im ϕ is a subgroup of H.

Proof. Ker ϕ is nonempty since $\phi(e) = e$. We now verify that Ker ϕ is normal:

- 1. Closure: If $a, b \in \text{Ker } \phi$, then $\phi(a) = \phi(b) = e$; therefore $\phi(ab) = \phi(a)\phi(b) = e$, so $ab \in \text{Ker } \phi$.
- 2. **Invertability**: Suppose $\phi(a) \in \operatorname{Ker} \phi$. Then $\phi(a^{-1}) = \phi(a)^{-1} = e^{-1} = e$, so $a^{-1} \in \operatorname{Ker} \phi$
- 3. Normality: Let $k \in \operatorname{Ker} \phi$ and $a \in G$. Then

$$\phi(a^{-1}ka) = \phi(a)^{-1}\phi(k)\phi(a) = \phi(a)^{-1}\phi(a) = e;$$

hence $a^{-1}ka \in \text{Ker } \phi$. We conclude that $\text{Ker } \phi$ is normal.

Thus Ker ϕ is a normal subgroup. Since it is clear that Im ϕ is nonempty, we must verify:

- 1. Closure: If $\phi(a), \phi(b) \in \text{Im } \phi$, then we have $\phi(a)\phi(b) = \phi(ab) \in \text{Im } \phi$.
- 2. **Invertability**: If $\phi(a) \in \text{Im } \phi$, then we have $\phi(a)^{-1} = \phi(a^{-1}) \in \text{Im } \phi$.

We conclude that $\operatorname{Im} \phi$ is a subgroup. This completes the proof.

The reason normal subgroups are critical is precisely because the kernel of ϕ is normal.

Theorem 12. Let $\phi: G \to H$ be a homomorphism. The following two theorems hold:

- 1. ϕ is a monomorphism if and only if $\operatorname{Ker} \phi = \{e\}$.
- 2. ϕ is an epimorphism if and only if $\operatorname{Im} \phi = H$.

Proof. Suppose that ϕ is a monomorphism. Thus

$$\phi(a) = e \implies \phi(a) = \phi(e) \implies a = e,$$

so Ker $\phi = \{e\}$. If we suppose that Ker $\phi = \{e\}$, we have that

$$\phi(a) = \phi(b) \implies \phi(ab^{-1}) = e \implies ab^{-1} = e \implies a = g,$$

so ϕ is a monomorphism. The story with epimorphisms is quite simple.

The following theorem explores a special case of the Correspondence Theorem.

Theorem 13. Let $\operatorname{Ker} \phi = K$. Then $a \in G$ implies $\{b \mid \phi(b) = \phi(a)\} = aK$.

Proof. We utilize the following chain of equivalencies:

$$\phi(b) = \phi(a) \iff \phi(ba^{-1}) = e \iff ba^{-1} \in K \iff b \in aK.$$

We conclude the desired set equality:

3.3 The Isomorphism Theorems

For the remainder of this section, let $\phi: G \to H$ be a homomorphism.

Theorem 14 (First Isomorphism Theorem). $G / \operatorname{Ker} \phi \cong \operatorname{Im} \phi$.

Proof. Let $K = \operatorname{Ker} \phi$, and define a mapping $\psi : G / K \to \operatorname{Im} \phi$ by $\psi(aK) = \phi(a)$. We have for arbitrary $a, b \in G$ that

$$\psi(aK \times bK) = \psi(abK) = \phi(ab) = \phi(a)\phi(b) = \psi(aK)\psi(bK).$$

Hence ψ is a homomorphism. For injectivity, suppose that $\Psi(aK) = \Psi(bK)$ — that is, $\phi(a) = \phi(b)$. Then

$$\phi(a^{-1}b) = \phi(a)^{-1}\phi(b) = e,$$

so $a^{-1}b \in K$. Thus aK = bK. For surjectivity, it is clear that for all $\phi(a) \in \text{Im } \phi$ we have $\psi(aK) = \phi(a)$. We conclude that ψ is the desired isomorphism.

Let $\phi: G \to H$ be a homomorphism. Here are two special cases of the prior theorem:

- 1. If ϕ is a monomorphism, them $G \cong \operatorname{Im} \phi$.
- 2. If ϕ is an epimorphism, then $G / \operatorname{Ker} \phi \cong H$.

For a subgroup $M' \subseteq \text{Im } \phi$, I call $M = \{a \in G \mid \phi(a) \in M'\}$ the **contraction group**.

Theorem 15 (Correspondence Theorem). Subgroups of G which contain $\operatorname{Ker} \phi$ correspond one-to-one with subgroups of $\operatorname{Im} \phi$.

Proof. For each subgroup $H' \subseteq \text{Im } \phi$, consider the contraction group $G' = \{a \mid \phi(a) \in H'\}$. Observe the following:

- 1. Nonempty: Clearly $e \in G'$ since $\phi(e) = e \in H'$.
- 2. Closed: If $a, b \in G'$, then $\phi(ab) = \phi(a)\phi(b) \in H'$ by the closure of H'. Therefore $ab \in G'$.
- 3. **Inverses**: If $a \in G'$, then $\phi(a^{-1}) = \phi(a)^{-1} \in H'$; thus $a^{-1} \in G'$.

Hence G' is a subgroup. It is clear that $\operatorname{Ker} \phi \subseteq G'$, so the First Isomorphism Theorem yields that

$$G' / \operatorname{Ker} \phi \cong H'$$
.

Thus this construction is injective. It is surjective, since for each Ker $\subseteq G' \subseteq G$, the subgroup G' is contracted by $\phi(G')$. The correspondence is now established.

In fact, this bijection applies to *normal* subgroups too. The Second Isomorphism Theroem the utilizes the properties in **SECTION NUMBERS HERE!**

Theorem 16 (Second Isomorphism Theorem). Let $H \subseteq G$ be a subgroup and $N \triangleleft G$. Then $N \triangleleft HN$ and $H \cap N \triangleleft H$; furthermore, $HN/N \cong H/H \cap N$.

Proof. Define a mapping $\phi: H \to HN/N$ by $\phi(h) = HN$. Clearly ϕ is well-defined; it is a homomorphism, since $h_1, h_2 \in H$ implies

$$\phi(h_1h_2) = h_1h_2N = (h_1N)(h_2N) = \phi(h_1)\phi(h_2).$$

 ϕ is surjective, since for all $hN \in HN/N$, we have $\phi(h) = hN$. The kernel of ϕ is all $h \in N$ — namely, $H \cap N$. We conclude by the First Isomorphism Theorem that

$$H/H \cap N \cong HN/N,$$

which completes the proof.

Theorem 17 (Third Isomorphism Theorem). If $N \triangleleft G$ and $N \subseteq M \triangleleft G$, then G/M = (G/N)/(M/N).

Proof. Let $\phi: G \to G/N$ be the canonical epimorphism. Define $\psi: G \to \phi(G)/\phi(M)$ by the rule $\psi(a) = \phi(a)\phi(M)$. It is clear that ψ is well-defined and surjective; it is a homomorphism since

$$\psi(ab) = \phi(ab)\phi(M) = (\phi(a)\phi(M))(\phi(b)\phi(M)) = \psi(a)\psi(b).$$

The kernel of ϕ is all $a \in M$. The First Isomorphism Theorem yields that

$$G/M \cong \phi(G)/\phi(M)$$
.

Since the kernel of ϕ is N, we have that $\phi(G) \cong G/N$ and $\phi(M) \cong M/N$; substituting yields the desired G/M = (G/N)/(M/N).

A corollary of the Third Isomorphism Theorem is that $G/N \cong \phi(G)/\phi(N)$.

4 Operations on Subgroups

4.1 Subgroup Product

Let $H \subseteq G$ be a subgroup and let $N \triangleleft G$. The **subgroup product** HN is defined as

$$HN \stackrel{\text{def}}{=} \{hn \mid h \in H, n \in N\}.$$

It is relatively easy to deduce that HN is a subgroup of G: for all $h_1n_1, h_2n_2 \in HN$,

1. Closure: Since $h_2^{-1}n_1h_2 \in N$, define n such that $n_1h_2 = h_2n$. Then

$$(h_1n_1)(h_2n_2) = (h_1h_2)(nn_2) \in HN.$$

2. Inverses: Since $hn^{-1}h^{-1} \in N$, define n_0 such that $n^{-1}h^{-1} = h^{-1}n_0$. Then

$$(h_1 n_1)^{-1} = n_1^{-1} h_1^{-1} = h^{-1} n_0 \in HN.$$

Since HN is clearly nonempty, we conclude that $HN \subseteq G$ is a subgroup. It is clear that $N \triangleleft HN$ and $H \subset HN$.