TD n°4

Constructions d'automates (1h)

Exercice 1 (Complétion d'automates) Complétez les deux automates A_1 et A_2 sur les alphabets $\{a,b\}$ et $\{a,b,c\}$ respectivement.

Automate A_2

Exercice 2 On considère les automates suivants. Décrivez les langages qu'ils reconnaissent, puis les déterminiser.

Exercice 3 (Produit d'automates) Pour deux automates déterministes et complets $\mathcal{A} = (\Sigma, Q, q_0, F, \delta)$ et $\mathcal{A}' = (\Sigma, Q', q'_0, F', \delta')$, on définit l'automate déterministe $\mathcal{A}'' = (\Sigma, Q \times Q', (q_0, q'_0), F'', \delta'')$, dit automate produit, avec $\delta''((q, q'), a) = (\delta(q, a), \delta'(q', a))$, et l'ensemble F'' des états finaux dépend de ce que l'on veut calculer.

- 1. Dessiner un automate A_1 déterministe et complet qui reconnaît le langage \mathcal{L}_1 des mots sur $\{a,b\}$ qui commencent par a. (3 états devraient suffire.)
- 2. Dessiner un automate A_2 déterministe et complet qui reconnaît le langage \mathcal{L}_2 des mots sur $\{a,b\}$ qui finissent par b. (2 états devraient suffire.)
- 3. Dessiner le produit des deux automates A_1 et A_2 , sans s'occuper des états finaux. Éliminer le(s) état(s) non accessible(s) éventuel(s).(On dit qu'un état est accessible si on peut atteindre cet état en lisant un mot depuis un état initial.)
- 4. Comment choisir les états finaux pour obtenir :

(a)
$$\mathcal{L}_1 \cap \mathcal{L}_2$$
, (b) $\mathcal{L}_1 \cup \mathcal{L}_2$, (c) $\overline{\mathcal{L}_1 \cap \mathcal{L}_2}$.

5. Bonus : Pour lesquels de ces calculs était-il possible d'utiliser des automates déterministes non complets pour A_1 et A_2 ?

Exercice 4 Montrez que si un langage \mathcal{L} est reconnaissable, alors le langage formé des préfixes de tous les mots de \mathcal{L} est lui aussi reconnaissable. Est-ce vrai aussi pour les suffixes? Les facteurs? Les sous-mots? Illustrez ceci dans le cas ou $\mathcal{L} = \{tete, terre\}$.