FUNDAMENTOS DE SISTEMAS EMBEBIDOS INTRODUCCIÓN

RG Ramírez-Chavarría

Mercado actual

Introducción

 Un microcontrolador (MCU) es una computadora pequeña un circuito integrado.

 Consiste de una unidad central de procesamiento (CPU) combinada con periféricos (memorias, entradas salidas I/O, convertidores, y temporizadores).

Radiografía de un microcontrolador

Microcontrolador VS Microprocesador

 Un microcontrolador es una computadora que contiene procesador, memoria y periféricos programables dentro de un solo chip.

 Un microprocesador incorpora las funciones de únicamente de un CPU en un solo chip (no memoria, no periféricos, etc.)

Microcontrolador VS Microprocesador

Tipos de procesadores

- En el cómputo de propósito general, la arquitectura dominante es el Intel x86.
- En el cómputo embebido, existe una gran variedad de dispositivos para diseñar.
- A tener en mente cuando se diseña:
 - Periféricos, Concurrencia & Temporización, Tasas de reloj, Tamaño de memoria(SRAM & flash), tamaño del propio dispositivo.

Una clasificación de microcontroladores

Cómo elegir un MCU?

- Las métricas que DEBEMOS considerar
 - Consumo de energía
 - Frecuencia de reloj (velocidad de procesamiento)
 - Terminales I/O
 - Memoria
 - Funcionalidad interna
 - Periféricos y núcleos específicos

Cómo elegir un MCU?

- Las métricas que DEBEMOS considerar
 - Power consumption
 - Preferentemente > mA
 - Frecuencia de reloj
 - kHz muy lento...
 - 100MHz demasiado rápido...
 - Terminales I/O
 - Muchos periféricos- sensores, UART, SD card, DAC, ADC, LED, sensors capacitivos, Wi-Fi, BLE

Cómo elegir un MCU?

- Las métricas que DEBEMOS considerar
 - Memoria
 - Necesitamos memoria suficiente para programa y datos
 - Funcionalidad interna y núcleos específicos
 - Acceso Directo a Memoria (DMA)
 - Procesamiento Digital de Señales (DSP)

Input and Output (I/O)

I/O Devices

• Interfaz entre el MCU y el mundo exterior.

- Digitales (estados lógicos altos y bajos)
- Analógicos (señales en tiempo continuo)
- Comunicaciones (paralelo y serial)
- Interrupciones externas

Lenguajes de programación

Configurar los I/O, describir funciones, manipulación de registros.

- Ensamblador ASM
- Estructurado C
- Orientado a objetos C++
- Python?

Arquitecturas

• Por memoria

Arquitecturas

Por conjunto de instrucciones

RISC: Reduced instruction set computer

CISC: Complex instruction set computer

Tamaño de un procesador

Qué define el tamaño de un procesador?

Diferencia entre un procesador de 8 bits, 16 bits, 32 bits?

Bus de datos vs bus de direcciones

Dispositivos para diseñar SE

Microcontroladores

Microprocesadores?

ASIC (Application Specic Integrated Circuit)

FPGA (Field Programmable Gate Array)

Nuestros dispositivos para desarrollar SE

ESP 32

Diferencias

ESP 32

Microcontrolador

- Procesador dual core Xtensa® LX6 de 32 bits
- Frecuencia de reloj : 160 Mhz -240 Mhz
- Memoria 520 Kb de RAM
- •Wifi integrado: Acces point & Station
- •Bluetooth 4.2 2.4 Ghz; BT 2.0 y 4.0 BLE
- •36 GPIO terminales
- •16 x Analog-to-Digital Converter (ADC) de 12 bits de resolución
- •2 x Digital to Analog converter (DAC) de 8 bits.
- •Hasta 16 canales de PWM.
- •2 x UART 2 x I2C channels y 4 x SPI channels.

Consumo < 100 mA

RASPBERRY Pi

Microprocesador

•CPU + GPU: **Broadcom BCM2837B0**, Cortex-

A53 (ARMv8) 64-bit SoC @ 1.4GHz

- Memoria 1GB RAM LPDDR2 SDRAM
- •Wi-Fi + Bluetooth: 2.4GHz y 5GHz IEEE

802.11.b/g/n/ac, Bluetooth 4.2, BLE

- •Ethernet: Gigabit Ethernet sobre USB 2.0 (300 Mbps)
- •40 GPIO terminales
- •HDMI
- •4 puertos USB 2.0
- •Salida de audio estéreo y vídeo compuesto
- Micro-SD (Almacenamiento)

Consumo > 400 mA

 Determine si los siguientes ejemplos son SE o no. Lista tres características que los definirían como SE.

1.1 Una maquina rasuradora tiene un MCU PIC16F1516 (16 MHz, 8k flash, 512B RAM), un display de 7 segmentos, un sensor de presión I2C, y un motor con sus respectiva etapa de potencia.

 Determine si los siguientes ejemplos son SE o no. Lista tres características que los definirían como SE.

1.2 Un iPhone 8 tiene un procesador ARM A11 en el. El procesador es quad-core 64-bit operando a 2.3 GHz, y con memoria caché. También tiene un GPU.

 Determine si los siguientes ejemplos son SE o no. Lista tres características que los definirían como SE.

1.3 Un microondas tiene un procesador MSP432 de 16-bits operando a 48 MHz, y los periféricos asociados son un LCD, un teclado y etapas de calefacción y ventilación.

2. Determine de cuantos bits son los siguientes sistemas.

2.1 Un ARM 1176. Sus registros, ALU, PC (program-counter), y bus de direcciones son todos de 32 bits.

2.2 Un 8031 Intel. Sus registros, bus de datos, y ALU son de 8 bits, el apuntador de instrucciones y el bus de direcciones son de 16 bits.