ASSIGNMENT 3

B.VANDANA

1.Importing Required Package

```
import pandas as pd
import seaborn as sns
import numpy as np
from matplotlib import pyplot as plt
%matplotlib inline
```

2.Loading the Dataset

In [3]:

df=pd.read_csv("C:\\Users\\Sandhya Jayaraman\\Downloads\\abalone.csv")
df

Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings	
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	10
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	7
•••									
4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11
4173	М	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10

4174	М	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9
4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10
4176	М	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	12

4177 rows × 9 columns

3. Visualizations

3.1 Univariate Analysis

In [4]:

sns.displot(df.Sex)

Out[4]:

<seaborn.axisgrid.FacetGrid at 0x1ca06fdfd48>

3.2 Bi-Variate Analysis

In [5]:

df.plot.line()

Out[5]:

<AxesSubplot:>

3.3 Multi-Variate Analysis

In [6]:

sns.lmplot("Diameter", "Length", df, hue="Length", fit_reg=False);

c:\users\sandhya jayaraman\appdata\local\programs\python\python37\lib\site-packages\seaborn_decorators.py:43: FutureWarning: Pass the following varia bles as keyword args: x, y, data. From version 0.12, the only valid positio nal argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

4.Perform descriptive statistics on the dataset.

In [7]:

df.describe()

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
Count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000
Mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0.238831	9.933684
Std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.139203	3.224169
Min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.001500	1.000000
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.130000	8.000000
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0.234000	9.000000
75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.329000	11.000000
max	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	1.005000	29.000000

5. Handle the Missing values.

In [9]:

```
data=pd.read_csv("C:\\Users\\Sandhya Jayaraman\\Downloads\\abalone.csv")
pd.isnull(data["Sex"])
0 False
```

1 False

2 False

3 False

```
4 False
...
4172 False
4173 False
4174 False
4175 False
4176 False
Name: Sex, Length: 4177, dtype: bool
```

6. Find the outliers and replace the outliers

```
In [10]:
df["Rings"]=np.where(df["Rings"]>10,np.median,df["Rings"])
df["Rings"]
                                                                        Out[10]:
        <function median at 0x000001CA73E62048>
                                                7
1
3
                                               10
                                                7
4
4172
        <function median at 0x000001CA73E62048>
4173
                                               10
4174
4175
                                               10
4176
        <function median at 0x000001CA73E62048>
Name: Rings, Length: 4177, dtype: object
```

7. Check for Categorical columns and perform encoding

In [11]:

 $\verb|pd.get_dummies(df,columns=["Sex","Length"], \verb|prefix=["Length","Sex"])|.head()|$

```
6 5 4 5
```

5 rows × 144 columns

8.Split the data into dependent and independent variables

8.1 Split the data into Independent variables.

```
X=df.iloc[:,:-2].values
print(X)

[['M' 0.455 0.365 ... 0.514 0.2245 0.101]

['M' 0.35 0.265 ... 0.2255 0.0995 0.0485]

['F' 0.53 0.42 ... 0.677 0.2565 0.1415]

...

['M' 0.6 0.475 ... 1.176 0.5255 0.2875]

['F' 0.625 0.485 ... 1.0945 0.531 0.261]

['M' 0.71 0.555 ... 1.9485 0.9455 0.3765]]
```

8.2 Split the data into Dependent variables.

In [12]:

```
Y=df.iloc[:,-1].values
print(Y)
[<function median at 0x000001CA73E62048> 7 9 ... 9 10
<function median at 0x000001CA73E62048>]
```

9. Scale the independen tvariables

```
In [14]:
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
scaler=MinMaxScaler()
                                                       In [15]:
df[["Length"]]=scaler.fit transform(df[["Length"]])
print(df)
    Sex Length Diameter Height Whole weight Shucked weight \
   M 0.513514 0.365 0.095 0.5140
                                               0.2245
 M 0.371622 0.265 0.090 0.2255
                                               0.0995
1
    F 0.614865
                 0.420 0.135
                                  0.6770
                                               0.2565
   M 0.493243 0.365 0.125 0.5160
                                               0.2155
    I 0.344595 0.255 0.080 0.2050
                                               0.0895
          . . .
                  . . .
                        . . .
                                    . . .
               0.450 0.165
4172 F 0.662162
                                  0.8870
                                               0.3700
4173 M 0.695946 0.440 0.135
                                               0.4390
                                  0.9660
4174 M 0.709459
                 0.475 0.205
                                  1.1760
                                               0.5255
4175 F 0.743243 0.485 0.150
                                  1.0945
                                               0.5310
4176 M 0.858108 0.555 0.195
                                  1.9485
                                               0.9455
Viscera weight Shell weight
                                                  Rings
```

1	0.0485	0.0700	7
2	0.1415	0.2100	9
3	0.1140	0.1550	10
4	0.0395	0.0550	7
4172	0.2390	0.2490	<pre><function 0x000001ca73e62048="" at="" median=""></function></pre>
4173	0.2145	0.2605	10
4174	0.2875	0.3080	9
4175	0.2610	0.2960	10
4176	0.3765	0.4950	<pre><function 0x000001ca73e62048="" at="" median=""></function></pre>

[4177 rows x 9 columns]

10. Split the data into training and testing

In [16]:

```
from sklearn.model_selection import train_test_split

train_size=0.8

X=df.drop(columns=['Sex']).copy()

y=df['Sex']

X_train,X_rem,y_train,y_rem=train_test_split(X,y,train_size=0.8)

test_size=0.5

X_valid,X_test,y_valid,y_test=train_test_split(X_rem,y_rem,test_size=0.5)

print(X_train.shape),print(y_train.shape)

print(X_valid.shape),print(y_valid.shape)

print(X_test.shape),print(y_test.shape)

(3341, 8)

(3341,)
```

```
(418, 8)
(418,)
```

(418, 8)

(418,)

Out[16]:

(None, None)

11.Build the Model

In [18]:

test_size=0.33

seed=7

 $\label{eq:continuous} $$X_{\text{train}}, Y_{\text{test}}, y_{\text{train}}, y_{\text{test=train_test_split}}(X, y, \text{test_size=test_size}, \text{rand om_state=seed})$$

12. Train the model

In [19]:

 X_{train}

Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings	
4131	0.682432	0.425	0.145	0.8300	0.3790	0.1605	0.2575	<function 0x000001ca73e62048="" at="" median=""></function>
3204	0.797297	0.530	0.185	1.3955	0.4560	0.3205	0.4900	<function 0x000001ca73e62048="" at="" median=""></function>
2622	0.844595	0.575	0.205	1.7975	0.7295	0.3935	0.5165	<function 0x000001ca73e62048="" at="" median=""></function>
2114	0.074324	0.095	0.035	0.0105	0.0050	0.0065	0.0035	4

1422	0.871622	0.575	0.215	2.1730	0.9515	0.5640	0.5365	<function 0x000001ca73e62048="" at="" median=""></function>
1372	0.729730	0.475	0.165	1.0230	0.4905	0.1955	0.3035	<pre><function 0x000001ca73e62048="" at="" median=""></function></pre>
919	0.452703	0.310	0.090	0.3335	0.1635	0.0610	0.0910	6
2550	0.277027	0.220	0.080	0.1315	0.0660	0.0240	0.0300	5
537	0.290541	0.230	0.075	0.1165	0.0430	0.0255	0.0400	7
1220	0.344595	0.250	0.095	0.2085	0.1020	0.0395	0.0520	7

2798 rows × 8 columns

y_train

Out[20]:

4131 I

3204 F

2622 F

2114 I

1422 M

. .

1372 F

919 I

2550 I

537 M

1220 I

Name: Sex, Length: 2798, dtype: object

13.Test the model

In [21]:

X_test

								Out[21]:
	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
1157	0.716216	0.470	0.165	1.1775	0.6110	0.2275	0.2920	9
1125	0.641892	0.425	0.150	0.8315	0.4110	0.1765	0.2165	10
2053	0.520270	0.345	0.110	0.4595	0.2350	0.0885	0.1160	7
3591	0.777027	0.475	0.165	1.3875	0.5800	0.3485	0.3095	9
455	0.675676	0.470	0.140	0.8375	0.3485	0.1735	0.2400	<function 0x000001ca73e62048="" at="" median=""></function>
•••								
3150	0.783784	0.505	0.165	1.3670	0.5835	0.3515	0.3960	10
3037	0.655405	0.450	0.145	0.8940	0.3885	0.2095	0.2640	9
2050	0.506757	0.350	0.130	0.4655	0.2075	0.1045	0.1350	8
1690	0.743243	0.500	0.170	1.0985	0.4645	0.2200	0.3540	9
253	0.675676	0.460	0.185	1.0940	0.4485	0.2170	0.3450	<pre><function 0x000001ca73e62048="" at="" median=""></function></pre>

 $1379 \ rows \times 8 \ columns$

y_test

```
1157 F

1125 M

2053 M

3591 F

455 M

...

3150 F

3037 M

2050 M

1690 M

253 F

Name: Sex, Length: 1379, dtype: object
```

14. Measure the performance using Metrics

In [23]: