- Proyecto Capstone: Predicción de Rotación de Empleados Salifort Motors
- © Objetivo Diseñar un modelo predictivo que identifique si un empleado abandonará la empresa, utilizando variables como:

Departamento

Número de proyectos

Media de horas mensuales

Evaluación del desempeño

Entre otras

PROPÓSITO Salifort Motors enfrenta una alta rotación de empleados. Esto afecta la productividad y eleva los costos de contratación y formación. El objetivo de este análisis es construir un modelo que prediga si un empleado abandonará la empresa. Esto permitirá tomar decisiones informadas y diseñar estrategias de retención más efectivas.

A.1. Importación de librerías y carga de datos

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

# Cargar el conjunto de datos de empleados
df = pd.read_csv('HR_comma_sep.csv')
df.head()
```

Out[80]:		satisfaction_level	last_evaluation	number_project	average_montly_hours	time_spend_co
	0	0.38	0.53	2	157	
	1	0.80	0.86	5	262	
	2	0.11	0.88	7	272	
	3	0.72	0.87	5	223	
	4	0.37	0.52	2	159	
	4					•

A.2. Análisis exploratorio (EDA)

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

# Valores nulos
print(" Valores nulos por columna:")
```

```
print(df.isnull().sum())
 # Tipos de datos
 print("\n | Tipos de datos:")
 print(df.dtypes)
 # Mapeo de la variable 'left' para hacerlo más claro
 df['left_label'] = df['left'].map({0: 'Se quedo', 1: 'Dejo la empresa'})
 # Gráfico con etiquetas claras
 plt.figure(figsize=(6,4))
 sns.countplot(x='left_label', hue='left_label', data=df, palette='Set2', legend=Fal
 plt.title(' Distribución de empleados que dejaron la empresa')
 plt.xlabel('Estado del empleado')
 plt.ylabel('Cantidad de empleados')
 plt.tight_layout()
 plt.show()
Valores nulos por columna:
satisfaction_level
```

```
last_evaluation
number_project
average_montly_hours
time_spend_company
                        0
Work_accident
                        0
left
                        0
promotion_last_5years
Department
salary
                        0
dtype: int64
```

ii Tipos de datos:

satisfaction_level	float64
last_evaluation	float64
number_project	int64
average_montly_hours	int64
time_spend_company	int64
Work_accident	int64
left	int64
promotion_last_5years	int64
Department	object
salary	object
dtype: object	

Dejó la empresa Se quedó Estado del empleado

```
In [82]:
         import matplotlib.pyplot as plt
         # Lista de columnas y títulos traducidos
         columnas = {
             'satisfaction_level': 'Nivel de satisfacción',
             'last evaluation': 'Última evaluación',
             'number_project': 'Número de proyectos',
             'average_montly_hours': 'Horas mensuales promedio',
             'time_spend_company': 'Años en la empresa'
         # Crear subgráficos
         fig, axs = plt.subplots(nrows=2, ncols=3, figsize=(16, 8))
         axs = axs.flatten()
         # Dibujar histogramas uno por uno
         for i, (col, titulo) in enumerate(columnas.items()):
             ax = axs[i]
             ax.hist(df[col], bins=20, edgecolor='black', color='cornflowerblue')
             ax.set_title(titulo, fontsize=12)
             ax.set_xlabel(titulo, fontsize=10)
             ax.set_ylabel('Frecuencia', fontsize=10)
             ax.grid(True, linestyle='--', alpha=0.6)
             ax.set_xlim(left=0) # Para evitar que empiece en negativo
         # Eliminar subgráfico sobrante si hay menos de 6
         for j in range(len(columnas), len(axs)):
             fig.delaxes(axs[j])
         plt.tight_layout()
         plt.suptitle('Distribución de variables numéricas del personal', fontsize=14, y=1.0
         plt.show()
```



```
In [83]: import seaborn as sns
         import matplotlib.pyplot as plt
         # Diccionario de variables traducidas
         columnas = {
             'satisfaction_level': 'Nivel de satisfacción',
              'last_evaluation': 'Última evaluación',
             'number_project': 'Número de proyectos',
              'average_montly_hours': 'Horas mensuales promedio',
              'time_spend_company': 'Años en la empresa'
         }
         # Mapear valores de la variable 'left' para mostrar etiquetas claras
         df['Estado empleado'] = df['left'].map({0: 'Se quedó', 1: 'Dejó la empresa'})
         # Estilo visual general
         sns.set(style='whitegrid', palette='Set2')
         # Crear boxplots en bucle
         for col, titulo in columnas.items():
             plt.figure(figsize=(8, 5))
             sns.boxplot(x='Estado empleado', y=col, data=df)
             plt.title(f'{titulo} según estado del empleado', fontsize=13)
             plt.xlabel('Estado del empleado', fontsize=11)
             plt.ylabel(titulo, fontsize=11)
             plt.xticks(fontsize=10)
             plt.yticks(fontsize=10)
             plt.grid(True, linestyle='--', alpha=0.5)
             plt.tight_layout()
             plt.show()
```



```
In [84]: import seaborn as sns
         import matplotlib.pyplot as plt
         # Traducción de columnas
         col_rename = {
             'satisfaction_level': 'Satisfacción',
             'last_evaluation': 'Evaluación',
             'number_project': 'Número de proyectos',
             'average_montly_hours': 'Horas mensuales',
             'time_spend_company': 'Años en la empresa',
             'Work_accident': 'Accidente laboral',
             'left': 'Abandono',
              'promotion_last_5years': 'Promoción reciente'
         }
         # Renombrar columnas
         df_cor = df.rename(columns=col_rename)
         corr = df_cor[list(col_rename.values())].corr()
         # 材 Crear heatmap con paleta invertida
         plt.figure(figsize=(10, 8))
         sns.set(font_scale=1.0)
         sns.heatmap(
             corr,
             annot=True,
             fmt=".2f",
             cmap="RdBu", # 🚰 Invertimos el esquema: lo positivo es azul y lo negativo ro
             vmin=-1, vmax=1,
             square=True,
             linewidths=0.5,
             linecolor='gray',
             annot_kws={"size": 10},
             cbar_kws={"label": "Coeficiente de correlación"}
```

```
plt.xticks(rotation=45, ha='right', fontsize=10)
plt.yticks(rotation=0, fontsize=10)
plt.title('Mapa de correlación entre variables del personal', fontsize=14, pad=12)
plt.tight_layout()
plt.show()
```

Mapa de correlación entre variables del personal


```
In [31]: import seaborn as sns
   import matplotlib.pyplot as plt
   from matplotlib.patches import Patch

# Correlación con 'Left'
corr_numericas = df.select_dtypes(include='number').corr()
correlaciones = corr_numericas['left'].drop('left').sort_values()
colores = ['steelblue' if val < 0 else 'salmon' for val in correlaciones]

# Crear gráfico
fig, ax = plt.subplots(figsize=(9, 5))
correlaciones.plot(kind='barh', color=colores, ax=ax)

# Configurar título, ejes y grid
ax.set_title('Correlación de variables con el abandono de personal', fontsize=13)
ax.set_xlabel('Coeficiente de correlación')
ax.axvline(0, color='gray', linestyle='--')
ax.grid(True, axis='x', linestyle='--', alpha=0.5)</pre>
```


A.3 – Preparación de datos

```
In [85]:
         import time
         from sklearn.preprocessing import LabelEncoder
         from sklearn.model_selection import train_test_split
         inicio = time.time()
         print("∑ Iniciando proceso de preparación de datos...")
         # Codificar variables categóricas
         le_dep = LabelEncoder()
         le_sal = LabelEncoder()
         df['Department'] = le_dep.fit_transform(df['Department'])
         df['salary'] = le_sal.fit_transform(df['salary'])
         print("  Variables categóricas codificadas correctamente.")
         # Separar variables predictoras y objetivo
         X = df.drop('left', axis=1)
         y = df['left']
         # División de datos
```

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_sta
fin = time.time()
tiempo_total = fin - inicio

print(" División en entrenamiento y prueba completada.")
print(f" Tiempo total de procesamiento: {tiempo_total:.2f} segundos")
```

- 📕 Iniciando proceso de preparación de datos...
- ✓ Variables categóricas codificadas correctamente.
- 🔽 División en entrenamiento y prueba completada.
- Tiempo total de procesamiento: 0.02 segundos

A.4 – Modelado

```
In [86]: import time
         import pandas as pd
         from sklearn.preprocessing import LabelEncoder
         from sklearn.model selection import train test split
         from sklearn.ensemble import RandomForestClassifier
         from xgboost import XGBClassifier
         from sklearn.linear_model import LogisticRegression
         from sklearn.metrics import classification report
         print(" \ Iniciando preprocesamiento...")
         # Codificación de variables categóricas
         le_dep = LabelEncoder()
         le sal = LabelEncoder()
         df['Department'] = le_dep.fit_transform(df['Department'])
         df['salary'] = le_sal.fit_transform(df['salary'])
         # Verificamos que 'left' esté en formato numérico
         if df['left'].dtype == 'object':
             df['left'] = LabelEncoder().fit transform(df['left'])
         # Seleccionar solo columnas numéricas
         X = df.drop('left', axis=1).select_dtypes(include=['int64', 'float64'])
         y = df['left']
         print(f"  Se utilizarán {X.shape[1]} variables numéricas para el modelo.")
         # División de datos
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_sta
         print(" Datos divididos en entrenamiento (80%) y prueba (20%).")
         # Función para entrenar y evaluar
         def entrenar_y_evaluar(nombre_modelo, modelo):
             inicio = time.time()
             modelo.fit(X_train, y_train)
             tiempo = time.time() - inicio
             y_pred = modelo.predict(X_test)
             print(f"    Tiempo de entrenamiento: {tiempo:.2f} segundos")
             print(f" | Resultados para {nombre_modelo}:\n")
             print(classification_report(y_test, y_pred, target_names=["Se quedó", "Se fue"]
```

Entrenar modelos
entrenar_y_evaluar("Random Forest", RandomForestClassifier(random_state=42))
entrenar_y_evaluar("XGBoost", XGBClassifier(eval_metric='logloss', random_state=42)
entrenar_y_evaluar("Regresión Logística", LogisticRegression(max_iter=1000, random_

- Iniciando preprocesamiento...
- Se utilizarán 9 variables numéricas para el modelo. Datos divididos en entrenamiento (80%) y prueba (20%).
- ① Tiempo de entrenamiento: 0.98 segundos
- Resultados para Random Forest:

	precision	recall	f1-score	support
Se quedó	0.99	1.00	0.99	2294
Se fue	0.99	0.96	0.97	706
accuracy			0.99	3000
macro avg	0.99	0.98	0.98	3000
weighted avg	0.99	0.99	0.99	3000

- ① Tiempo de entrenamiento: 0.11 segundos
- Resultados para XGBoost:

	precision	recall	f1-score	support
Se quedó	0.99	1.00	0.99	2294
Se fue	0.98	0.96	0.97	706
accupacy			0.99	3000
accuracy	0.00	0.00		
macro avg	0.99	0.98	0.98	3000
weighted avg	0.99	0.99	0.99	3000

- 🚀 Entrenando modelo: Regresión Logística
- ① Tiempo de entrenamiento: 0.39 segundos
- Resultados para Regresión Logística:

Se quedó 0.79 0.92 0.85	2294
Se fue 0.47 0.23 0.31	706
accuracy 0.76	3000
macro avg 0.63 0.57 0.58	3000
weighted avg 0.72 0.76 0.72	3000

In [95]: from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
import matplotlib.pyplot as plt

1) Predicciones sobre el conjunto de test

```
y_pred = rf.predict(X_test)
y_prob = rf.predict_proba(X_test)[:, 1] # Para métricas probabilísticas
# 2) Métricas principales
accuracy = accuracy_score(y_test, y_pred)
 roc_auc = roc_auc_score(y_test, y_prob)
matriz_conf = confusion_matrix(y_test, y_pred)
 reporte = classification_report(y_test, y_pred, output_dict=False)
# 3) Mostrar resumen
 print("@ Evaluación del modelo Random Forest")
print(f" ✓ Accuracy : {accuracy:.2%}")
print(f" 	✓ ROC AUC
                          : {roc_auc:.3f}")
 # 4) Mostrar matriz de confusión
import seaborn as sns
 plt.figure(figsize=(5,4))
 sns.heatmap(matriz_conf, annot=True, fmt='d', cmap='Blues',
            xticklabels=['Se quedo', 'Se fue'],
            yticklabels=['Se quedo', 'Se fue'])
 plt.title('Matriz de Confusión')
 plt.xlabel('Predicción')
plt.ylabel('Valor real')
 plt.tight_layout()
plt.show()
# 5) Curva ROC
RocCurveDisplay.from_estimator(rf, X_test, y_test)
 plt.title('Curva ROC del modelo')
plt.grid(True, linestyle='--', alpha=0.4)
plt.tight_layout()
plt.show()
🎯 Evaluación del modelo Random Forest
              : 98.83%
Accuracy
ROC AUC
                 : 0.991
Classification Report:
```

precision recall f1-score support

0.99

0.97

0.99

0.98

0.99

2294

706

3000

3000

3000

1.00

0.98

0.99

0.96

0

1

accuracy

macro avg

weighted avg

0.99

0.99

0.99

0.99

In [87]: # Entrenar modelos y generar predicciones

Random Forest
from sklearn.ensemble import RandomForestClassifier
rf = RandomForestClassifier(random_state=42)

```
rf.fit(X_train, y_train)
rf_pred = rf.predict(X_test)
# XGBoost
from xgboost import XGBClassifier
xgb = XGBClassifier(eval_metric='logloss', random_state=42)
xgb.fit(X_train, y_train)
xgb_pred = xgb.predict(X_test)
# Regresión Logística
from sklearn.linear_model import LogisticRegression
lr = LogisticRegression(max_iter=1000, random_state=42)
lr.fit(X_train, y_train)
lr_pred = lr.predict(X_test)
# Y ahora sí... la función para imprimir resultados
from sklearn.metrics import classification_report, accuracy_score
def imprimir_resultados(modelo_nombre, y_test, y_pred):
   print("\n" + "=" * 70)
   print(f" Resultados del modelo: {modelo_nombre.upper()}")
   print("-" * 70)
   accuracy = accuracy_score(y_test, y_pred)
   print(f"  Precisión global (Accuracy): {accuracy:.4f}")
   if accuracy >= 0.95:
        print(" Resultado excepcional: este modelo tiene un rendimiento casi perf
   elif accuracy >= 0.85:
        print(" 💍 Buen desempeño, aunque hay espacio para perfeccionar la prediccio
   else:
        print("🛕 El rendimiento es limitado. Podría mejorarse con más ajustes o da
   print("\n i Informe detallado por clase:\n")
   print(classification_report(y_test, y_pred, target_names=["Se quedó", "Se fue"]
   print("=" * 70 + "\n")
# Ejecutar resultados
imprimir_resultados("Random Forest", y_test, rf_pred)
imprimir_resultados("XGBoost", y_test, xgb_pred)
imprimir_resultados("Regresión Logística", y_test, lr_pred)
```

Resultados del modelo: RANDOM FOREST

- 🧩 Resultado excepcional: este modelo tiene un rendimiento casi perfecto.
- Informe detallado por clase:

	precision	recall	f1-score	support
Se quedó	0.99	1.00	0.99	2294
Se fue	0.99	0.96	0.97	706
accuracy			0.99	3000
macro avg	0.99	0.98	0.98	3000
weighted avg	0.99	0.99	0.99	3000

Resultados del modelo: XGBOOST

- 🧱 Resultado excepcional: este modelo tiene un rendimiento casi perfecto.
- Informe detallado por clase:

	precision	recall	f1-score	support
Se quedó	0.99	1.00	0.99	2294
Se fue	0.98	0.96	0.97	706
accuracy			0.99	3000
macro avg	0.99	0.98	0.98	3000
weighted avg	0.99	0.99	0.99	3000

Resultados del modelo: REGRESIÓN LOGÍSTICA

- 🛕 El rendimiento es limitado. Podría mejorarse con más ajustes o datos.
- Informe detallado por clase:

	precision	recall	f1-score	support
Se quedó	0.79	0.92	0.85	2294
Se fue	0.47	0.23	0.31	706
accuracy			0.76	3000
macro avg	0.63	0.57	0.58	3000
weighted avg	0.72	0.76	0.72	3000

```
In [88]: import matplotlib.pyplot as plt
         import seaborn as sns
         import matplotlib.ticker as mtick
         # Asumimos que ya tienes:
         # nuevos_empleados → DataFrame con 'nombre', 'Probabilidad_de_irse' y 'Riesgo'
         # colores → dict {'Bajo':..., 'Medio':..., 'Alto':...}
         # TOP N
                              → número de empleados a mostrar
         # 1) Seleccionar y ordenar Top N
         top = (
             nuevos_empleados
             .nlargest(TOP N, "Probabilidad de irse")
             .sort_values("Probabilidad_de_irse", ascending=True)
         )
         # 2) Estilo general
         sns.set_style("whitegrid")
         # 3) Figura con altura dinámica
         height = TOP_N * 0.5 + 1.5 # 0.5" por barra + 1.5" de margen
         fig, ax = plt.subplots(figsize=(10, height))
         # 4) Dibujar barras horizontales con hue → activa la leyenda
         bars = sns.barplot(
             data=top,
             x="Probabilidad_de_irse",
             y="nombre",
             hue="Riesgo",
             palette=colores,
             dodge=False,
             ax=ax
         # 5) Formatear ejes
         ax.set xlim(0, 1)
         ax.xaxis.set_major_formatter(mtick.PercentFormatter(xmax=1))
         ax.set_xlabel("Probabilidad de abandono", fontsize=12, weight="bold")
         ax.set_ylabel("") # sin etiqueta redundante
         ax.set_title(f"Top {TOP_N} empleados con mayor riesgo de abandono",
                      fontsize=14, weight="bold")
         # 6) Invertir Y para tener el mayor riesgo arriba
         ax.invert yaxis()
         # 7) Anotar porcentaje al final de cada barra
         for container in bars.containers:
             ax.bar_label(container, fmt="%.0f%", padding=4, fontsize=10)
         # 8) Leyenda externa
```

```
ax.legend(
    title="Nivel de Riesgo",
    bbox_to_anchor=(1.02, 1),
    loc="upper left",
    borderaxespad=0
)

# 9) Ajustes finales
plt.tight_layout()
plt.subplots_adjust(right=0.75) # dejar espacio para la leyenda
plt.show()
```



```
plt.title('Distribución de niveles de riesgo de abandono')
plt.tight_layout()
plt.show()
```

Distribución de niveles de riesgo de abandono


```
In [90]: import seaborn as sns
         import matplotlib.pyplot as plt
         # Datos y colores
         orden = ['Alto', 'Medio', 'Bajo']
         valores = nuevos_empleados['Riesgo'].value_counts().reindex(orden, fill_value=0)
         # Construir DataFrame temporal para graficar
         import pandas as pd
         df_plot = pd.DataFrame({
             'Riesgo': valores.index,
             'Conteo': valores.values
         })
         # Graficar de forma compatible con versiones nuevas
         plt.figure(figsize=(7, 5))
         barras = sns.barplot(
             data=df_plot,
             x='Riesgo',
             y='Conteo',
             hue='Riesgo',
             palette=colores,
             order=orden,
             legend=False
         )
         # Etiquetas sobre cada barra
         for i, val in enumerate(df_plot['Conteo']):
             barras.text(i, val + 100, str(val), ha='center', va='bottom', fontsize=11)
```

```
# Estética
plt.title('Conteo de empleados por nivel de riesgo', fontsize=14, weight='bold')
plt.xlabel('Nivel de riesgo', fontsize=12)
plt.ylabel('Número de empleados', fontsize=12)
plt.grid(axis='y', linestyle='--', alpha=0.3)
sns.despine()
plt.tight_layout()
plt.show()
```



```
joblib.dump(le_dep, 'encoder_departamento.pkl')
 print("☑ Encoder de 'Department' guardado como 'encoder_departamento.pkl'")
 joblib.dump(le_sal, 'encoder_salario.pkl')
 print(" Encoder de 'salary' guardado como 'encoder_salario.pkl'")
 # 3. Guardar columnas usadas en entrenamiento
 # -----
 joblib.dump(list(X.columns), 'columnas_usadas_modelo.pkl')
 print(f" Columnas de entrada guardadas como 'columnas_usadas_modelo.pkl' ({len(X
 # 📊 4. Guardar los datos predichos con riesgo
 # ------
 archivo_pred = 'predicciones_empleados.csv'
 nuevos_empleados.to_csv(archivo_pred, index=False)
 print(f" ✓ Archivo con predicciones guardado como '{archivo_pred}' - {nuevos_emple
 # XX Resumen final
 print("\n 🛠 Todo guardado correctamente. ¡Listo para reutilizar o desplegar en prod
Modelo Random Forest guardado como 'modelo_random_forest.pkl'
Encoder de 'Department' guardado como 'encoder_departamento.pkl'
Encoder de 'salary' guardado como 'encoder_salario.pkl'
🔽 Columnas de entrada guardadas como 'columnas usadas modelo.pkl' (9 columnas)
Archivo con predicciones guardado como 'predicciones_empleados.csv' - 14999 regi
stros
🧩 Todo guardado correctamente. ¡Listo para reutilizar o desplegar en producción!
 import matplotlib.pyplot as plt
 importancias = pd.Series(rf.feature importances , index=X.columns).sort values()
 plt.figure(figsize=(8, 5))
```

```
import pandas as pd
import matplotlib.pyplot as plt

importancias = pd.Series(rf.feature_importances_, index=X.columns).sort_values()
plt.figure(figsize=(8, 5))
importancias.plot(kind='barh', color='#2A9D8F')
plt.xlabel('Importancia del atributo')
plt.title(' Variables que más influyen en el abandono')
plt.grid(axis='x', linestyle='--', alpha=0.3)
plt.tight_layout()
plt.show()
```



```
In [98]: resumen = nuevos_empleados.groupby('Department')['Riesgo'].value_counts(normalize=T
    resumen = (resumen * 100).round(1) # en porcentaje
    resumen.to_excel('resumen_riesgo_por_departamento.xlsx')
```

```
In [ ]:
```