Deep Neural Networks

EN5730 Machine Learning for Communications

Samiru Gayan

Department of Electronic and Telecommunication Engineering University of Moratuwa

2024

Composing Neural Networks

• We first consider composing two shallow networks so the output of the first becomes the input of the second.

Composing Neural Networks

 ${\sf Figure} \colon {\sf Caption}$

Composing Neural Networks

- A different way to think about composing networks is that the first network folds the input space x back onto itself so that multiple inputs generate the same output.
- Then the second network applies a function, which is replicated at all points that were folded on top of one another.

Deep Neural Networks

 Neural network with one input, one output, and two hidden layers, each containing three hidden units.

$$h_1 = a[\theta_{10} + \theta_{11}x] \qquad h'_1 = a[\psi_{10} + \psi_{11}h_1 + \psi_{12}h_2 + \psi_{13}h_3]$$

$$h_2 = a[\theta_{20} + \theta_{21}x] \qquad h'_1 = a[\psi_{20} + \psi_{21}h_1 + \psi_{22}h_2 + \psi_{23}h_3]$$

$$h_3 = a[\theta_{30} + \theta_{31}x] \qquad h'_1 = a[\psi_{30} + \psi_{31}h_1 + \psi_{32}h_2 + \psi_{33}h_3]$$

$$y' = \phi_0' + \phi_1' h_1' + \phi_2' h_2' + \phi_3' h_3'$$

Deep Neural Networks

Hyperparameters

- Modern networks might have more than a hundred layers with thousands of hidden units at each layer.
- The number of hidden units in each layer is referred to as the width of the network, and the number of hidden layers as the depth.
- The total number of hidden units is a measure of the network's capacity.
- We denote the number of layers as K and the number of hidden units in each layer as D_1, D_2, \dots, D_K .
- These are examples of hyperparameters.
- They are quantities chosen before we learn the model parameters.

Matrix Notation

$$\begin{bmatrix} h_1 \\ h_2 \\ h_3 \end{bmatrix} = \mathbf{a} \begin{bmatrix} \begin{bmatrix} \theta_{10} \\ \theta_{20} \\ \theta_{30} \end{bmatrix} + \begin{bmatrix} \theta_{11} \\ \theta_{21} \\ \theta_{31} \end{bmatrix} \mathbf{x} \end{bmatrix}$$

$$\begin{bmatrix} h'_1 \\ h'_2 \\ h'_3 \end{bmatrix} = \mathbf{a} \begin{bmatrix} \begin{bmatrix} \psi_{10} \\ \psi_{20} \\ \psi_{30} \end{bmatrix} + \begin{bmatrix} \psi_{11} & \psi_{12} & \psi_{13} \\ \psi_{21} & \psi_{22} & \psi_{23} \\ \psi_{31} & \psi_{32} & \psi_{33} \end{bmatrix} \begin{bmatrix} h_1 \\ h_2 \\ h_3 \end{bmatrix} \end{bmatrix}$$

$$\mathbf{y}' = \phi'_0 + \begin{bmatrix} \phi'_1 & \phi'_2 & \phi'_3 \end{bmatrix} \begin{bmatrix} h'_1 \\ h'_2 \\ h'_3 \end{bmatrix}$$

$$\mathbf{h} = \mathbf{a} [\theta_0 + \theta \mathbf{x}]$$

$$\mathbf{h}' = \mathbf{a} [\psi_0 + \psi \mathbf{h}]$$

$$y = \phi'_0 + \phi' \mathbf{h}'$$

General Formulation

Figure: Matrix notation.

General Formulation

- Hidden units at layer $k \mathbf{h}_k$
- ullet the vector of biases that contribute to hidden layer k+1 eta_k
- ullet the weights that are applied to the kth layer and contribute to the (k+1)th layer as $oldsymbol{\Omega}_k$.

$$\begin{split} \mathbf{h}_1 &= \mathbf{a} \left[\beta_0 + \Omega_0 \mathbf{x} \right] \\ \mathbf{h}_2 &= \mathbf{a} \left[\beta_1 + \Omega_1 \mathbf{h}_1 \right] \\ \mathbf{h}_3 &= \mathbf{a} \left[\beta_2 + \Omega_2 \mathbf{h}_2 \right] \\ \bullet \\ \mathbf{h}_K &= \mathbf{a} \left[\beta_{K-1} + \Omega_{K-1} \mathbf{h}_{K-1} \right] \\ \mathbf{y} &= \beta_K + \Omega_K \mathbf{h}_K \end{split}$$

References

- 1. Understanding Deep Learning, first edition by Simon J.D. Prince
- All the images have been taken from [1].

The End