Eddy effects on South Atlantic Ventilation Pathways using Lagrangian backtracking

Simon Schäfers¹, Alexa Griesel¹, Manita Chouksey^{1,2}

¹Institue of Oceanography, Universität Hamburg, Germany simon.schaefers@studium.uni-hamburg.de

²Leibniz-Institut für Ostseeforschung, Warnemünde, Germany

How do eddy effects alter source regions of South Atlantic AAIW?

- → Lagrangian backtracking from AAIW to surface to determine source region, pathway and transit time
- → Eddy resolving velocities vs Seasonal mean flow

Objective – AAIW Formation

- Source regions influence inventory and age of AAIW [1]
- Coarse vs high resolution ocean models: strong influence of eddy effects on AAIW formation [2]
- Lagrangian backtracking provides insight into discrete pathways from water mass to source region

Figure 1: $EKE = \frac{1}{2n} \sum_{i=1}^{n} \vec{u}'^2 \ u' = u - \overline{u_{year}}$. (a) Eddy permitting model output, $u = \overline{u_{1d}}$. (b) Seasonal mean flow: $u = \overline{u_{90d}}$. Black box indicates particle release area.

Setup

Configuration (Fig. 1):

- Eddy permitting: 1-Day mean (standard output)
- Seasonal mean flow: 90-Day rolling mean of standard output

Advection:

- Parcels: discrete advective particle tracking
- AAIW definition: $30^{\circ}-40^{\circ}S$, $60^{\circ}W-20^{\circ}E$, $\sigma = 26.8-27.4 \text{ kg/m}^{3}$, $>10^{5}$ particles
- Surface criterion: z_{particle}<10m
- Velocities: 1/10° ocean model (Parallel Ocean Program)
 Time: 1990, 120 cycles

Using Lagrangian backtracking, we demonstrate how mesoscale eddy effects connect the ACC with South Atlantic AAIW and accelerate water mass formation by altering ventilation pathways.

Source Regions – Eddy effects let ACC surface waters reach South Atlantic AAIW

Figure 2: South Atlantic AAIW source regions (here: last surface contact) of eddy permitting (purple) and seasonal mean flow (orange) simulation. (a) Horizontal distribution (2x2°) of ventilations, black patches indicate strong ventilation in both simulations. (b) Latitudinal (2°) and (c) longitudinal (2°) distribution. (d) Transit times ($\Delta t = 2a$) and seasonality of ventilations.

Pathways - Seasonal mean overestimates Atlantic and Indian Ocean's contribution to South Atlantic AAIW

Key Results

- Without eddy effects, AAIW originates from Atlantic and Indian Ocean's mid-latitudes
- Eddy effects facilitate a meridional "escape" of ACC surface waters into AAIW
- Pacific water masses get favored by eddy effects and rejuvenate AAIW
- Mesoscale eddies rejuvenate South Atlantic AAIW by ~4 years by favoring the cold-water route and blocking water masses from the Indian Ocean.

Transit times – Eddy effects rejuvenate South Atlantic AAIW with young Pacific water masses

Figure 4: (a) Transit time distribution of particles in eddy permitting (solid) and seasonal mean flow (dotted) simulation ($\Delta t = 2a$). Source regions (ocean basins) show different distributions. **(b)** chart of water mass ages derived from (a). Time of ventilation maximum (peak), median, and average shown for each source region in both simulations.

Figure 3: Pathways and distributions by source region for (a-b) eddy permitting and (c-d) seasonal mean flow simulation. (a,c)
Trajectories per 1x1° dyed in dominating source region. Source region defined by ventilation inside the ocean basin (dashed line). Black contour shows main pathways (>5% of trajectories).

(b,c) Share of ventilations by source region (compare Fig. 2c).

References:

[1] Chouksey, M., Griesel, A., Eden, C. and Steinfeldt, R., 2022. Transit Time Distributions and ventilation pathways using CFCs and Lagrangian backtracking in the South Atlantic of an eddying ocean model. *Journal of Physical Oceanography*, 52(7), pp.1531-1548.

[2] Kamenkovich, I., Garraffo, Z., Pennel, R. and Fine, R.A., 2017. Importance of mesoscale eddies and mean circulation in ventilation of the S outhern O cean. *Journal of Geophysical Research: Oceans, 122*(4), pp.2724-2741.