We claim:

A method of inducing the virus resistance of plants which
 comprises treating the plants, the soil or seeds with an effective amount of a compound of the formula I

$$x_m + \sum_{Q} A$$

10

in which

X is halogen, C_1 - C_4 -alkyl or trifluoromethyl;

15

m is 0 or 1;

Q is $C(=CH-CH_3)-COOCH_3$, $C(=CH-OCH_3)-COOCH_3$, $C(=N-OCH_3)-COOCH_3$, $C(=N-OCH_3)-COOCH_3$;

20

A is -O-B, $-CH_2O-B$, $-OCH_2-B$, -CH=CH-B, $-C\equiv C-B$, $-CH_2O-N=C\;(R^1)-B \;\; or \;\; -CH_2O-N=C\;(R^1)-C\;(R^2)=N-OR^3 \;, \;\; where$

B is phenyl, naphthyl, 5-membered or 6-membered hetaryl or 5-membered or 6-membered heterocyclyl, containing one to three N atoms and/or one O or S atom or one or two O and/or S atoms, the ring systems being unsubstituted or substituted by one to three radicals Ra:

30

35

Ra is cyano, nitro, amino, aminocarbonyl,
 aminothiocarbonyl, halogen, C₁-C₆-alkyl,
 C₁-C₆-haloalkyl, C₁-C₆-alkylcarbonyl,
 C₁-C₆-alkylsulfonyl, C₁-C₆-alkylsulfinyl,
 C₃-C₆-cycloalkyl, C₁-C₆-alkoxy, C₁-C₆-haloalkoxy,
 C₁-C₆-alkyloxycarbonyl, C₁-C₆-alkylthio,
 C₁-C₆-alkylamino, di-C₁-C₆-alkylamino,
 C₁-C₆-alkylaminocarbonyl, di-C₁-C₆-alkylamino-carbonyl, C₁-C₆-alkylaminothiocarbonyl,
 di-C₁-C₆-alkylaminothiocarbonyl,
 C₂-C₆-alkenyloxy, phenyl, phenoxy, benzyl,
 benzyloxy, 5- or 6-membered heterocyclyl, 5- or
 6-membered hetaryl, 5- or 6-membered hetaryloxy,
 C(=NOR^α)-OR^β or OC(R^α)₂-C(R^β)=NOR^β.

40

45

25

30

35

40

45

the cyclic radicals, in turn, being unsubstituted or substituted by one to three radicals R^b:

RЪ is cyano, nitro, halogen, amino, amino-5 carbonyl, aminothiocarbonyl, C1-C6-alkyl, C_1-C_6 -haloalkyl, C_1-C_6 -alkylsulfonyl, C₁-C₆-alkylsulfinyl, C₃-C₆-cycloalkyl, C_1-C_6 -alkoxy, C_1-C_6 -haloalkoxy, C_1-C_6 -alkoxycarbonyl, C₁-C₆-alkylthio, C₁-C₆-alkylamino, 10 di-C₁-C₆-alkylamino, C₁-C₆-alkylaminocarbonyl, di-C₁-C₆-alkylaminocarbonyl, C_1-C_6 -alkylaminothiocarbonyl, di- C_1 - C_6 -alkylaminothiocarbonyl, C2-C6-alkenyl, C_2 - C_6 -alkenyloxy, C_3 - C_6 -cycloalkyl, 15 C3-C6-cycloalkenyl, phenyl, phenoxy, phenylthio, benzyl, benzyloxy, 5- or 6-membered heterocyclyl, 5- or 6-membered hetaryl, 5- or 6-membered hetaryloxy or $C (=NOR^{\alpha}) - OR^{\beta};$ 20

 R^{α} , R^{β} are hydrogen or C_1 - C_6 -alkyl;

- R¹ is hydrogen, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_3 - C_6 -cycloalkyl, C_1 - C_4 -alkoxy;
- R² is phenyl, phenylcarbonyl, phenylsulfonyl, 5- or 6-membered hetaryl, 5- or 6-membered hetarylcarbonyl or 5- or 6-membered hetarylsulfonyl, the ring systems being unsubstituted or substituted by one to three radicals R^a,

 $C_1-C_{10}-alkyl,\ C_3-C_6-cycloalkyl,\ C_2-C_{10}-alkenyl,\ C_2-C_{10}-alkynyl,\ C_1-C_{10}-alkylcarbonyl,\ C_2-C_{10}-alkenyl-carbonyl,\ C_3-C_{10}-alkynylcarbonyl,\ C_1-C_{10}-alkyl-sulfonyl,\ or\ C(=NOR^\alpha)-OR^\beta,\ the\ hydrocarbon\ radicals$ of these groups being unsubstituted or substituted by one to three radicals $R^c\colon$

R^c is cyano, nitro, amino, aminocarbonyl, aminothiocarbonyl, halogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkylsulfonyl, C₁-C₆-alkylsulfinyl, C₁-C₆-alkoxy, C₁-C₆-alkoxy, C₁-C₆-alkoxy, C₁-C₆-alkylthio, C₁-C₆-alkylamino, di-C₁-C₆-alkylamino, C₁-C₆-alkylaminocarbonyl, di-C₁-C₆-alkylaminocarbonyl, C₁-C₆-alkylamino-

3. A method as claimed in claim 1 or 2, wherein an active ingredient of the formula II

5 ON COH3 TO (R^b) x

10 is used.

4. A method as claimed in claim 1 or 2, wherein an active ingredient of the formula III

15 $\bigcirc \bigvee_{V} \bigcirc \bigcap_{H_3} \bigcap_{R^a}$ III

is used.

5. A method as claimed in claim 1 or 2, wherein an active ingredient selected from the group of I-5, III-4 and VII-1

25

30

OCH₃

I-5

OCH₃

VII-1

is used.

40 6. The use of the compounds of the formula I as claimed in any of claims 1 to 5 for inducing the virus resistance of plants.