Precalculus

Dario L

September 19, 2014

Preface

The goal of this notes, is to have a formal reference of the important subjects necessary to understand calculus and more advanced subjects.

Mathematics possesses not only truth, but supreme beauty, a beauty cold and austere, like that of a sculpture, and capable of stern perfection, such as only great art can show.

-Bertrand Russell

Contents

1	Foundations	1
	1.1 Greek Alphabet	1
	1.2 Language of mathematics	1
	1.3 Sets	1
	1.3.1 Special Sets	1
	1.3.2 Operations	2
2	Functions	3
	2.1 Linear	3
	2.2 Quadratic	3
	2.3 Rational and Polynomial	3
	2.4 Exponential and Logarithmic	3
	·	3
	2.5 Trigonometric	3
	2.6 Hyperbolics	3
3	Inequalities	5
4	Geometry	7
5	Sequences and Series	9
6	Conics	11
7	Trigonometry	13

Foundations

1.1 Greek Alphabet

Letter	Lower	Upper	Letter	Lower	Upper
alpha	α	A	пи	ν	N
beta	β	В	xi	ξ	Ξ
gamma	γ	Γ	omicron	0	O
delta	δ	Δ	pi	π	П
epsilon	ϵ	Ε	rho	ρ	P
zeta	ζ	Z	sigma	σ	\sum
eta	η	Н	tau	τ	T
theta	θ	Θ	upsilon	v	Y
iota	l	I	phi	φ	Φ
kappa	κ	K	chi	χ	X
lambda	λ	Λ	psi	ψ	Ψ
ти	μ	Ми	omega	ω	Ω

1.2 Language of mathematics

The language of mathematics is a system to describe concrete ideas.

1.3 Sets

A set is a collection of distinct objects.

1.3.1 Special Sets

There are some sets that hold a great mathematical importance and are used regularly everywhere so they have acquire their own names and their conventions.

The empty set is one example, is usually denoted by \emptyset or . Different families of numbers have their own names as well like:

- Prime Numbers \mathbb{P} or $\mathbb{P} = \{2, 3, 5, 7, 11, 13, 17, 19, 23, ...\}$
- Natural Numbers \mathbb{N} or $\mathbb{N} = \{1, 2, 3, 4, ...\}$ sometimes o is considered as well
- Integers \mathbb{Z} or $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$
- Real \mathbb{R} or \mathbb{R} = Every number that can be found on the number line
- Complex Numbers \mathbb{C} or \mathbb{C} = Every number that can be expressed in the form a + bi
- Irrational Numbers \mathbb{I} or \mathbb{I} = any real number that cannot be expressed as a/b where a,b are integers
- Rational Numbers \mathbb{Q} or \mathbb{Q} = any number that can be expressed as a/b where a,b are integers

1.3.2 Operations

There are several operations for construction new sets.

Unions

The union of **A** and **B** is denoted by $\mathbf{A} \cup \mathbf{B}$, can be also seen as the set of elements that belong to **A** or **B**.

Intersections

The intersection of A and B is denoted by $A \cap B$, can be also seen as the set of elements that belong to A and B. If A and B don't have any elements in common their intersection is the \emptyset and they are said to be disjoint.

Complements

A set complement is everything else that does not belong in it. $A \cap A = \Omega$

2Functions

- 2.1 Linear
- 2.2 Quadratic
- 2.3 Rational and Polynomial
- 2.4 Exponential and Logarithmic
- 2.4.1 Binomial Theorem
- 2.5 Trigonometric
- 2.6 Hyperbolics

3 Inequalities

Geometry

Sequences and Series

Conics

Trigonometry