CENG 384 - Signals and Systems for Computer Engineers Spring 2023 Homework 2

Geçit, Emre e2521581@ceng.metu.edu.tr

Yancı, Baran e2449015@ceng.metu.edu.tr

April 12, 2023

1. (a)

$$y(t) = x(t) - 5\dot{y}(t)$$

(b)

$$y(t) = (e^{-t} + e^{-3t})u(t) - 5\dot{y}(t)$$

$$y(t) + 5\dot{y}(t) = (e^{-t} + e^{-3t})u(t)$$

$$y(t) = y_p(t) + y_h(t)$$

$$y_p(t) = Ke^{-t}u(t) + Le^{-3t}u(t)$$

$$Ke^{-t}u(t) + Le^{-3t}u(t) + 5(-Ke^{-t}u(t) - 3Le^{-3t}u(t)) = (e^{-t} + e^{-3t})u(t)$$

$$Ke^{-t}u(t) + Le^{-3t}u(t) - 5Ke^{-t}u(t) - 15Le^{-3t}u(t) = (e^{-t} + e^{-3t})u(t)$$

$$e^{-t}u(t)(K - 5K) + e^{-3t}u(t)(L - 15L) = (e^{-t} + e^{-3t})u(t)$$

$$K - 5K = 1$$

$$K = -1/4$$

$$L - 15L = 1$$

$$L = -1/14$$

$$y_p(t) = \frac{-1}{4}e^{-t}u(t) + \frac{-1}{14}e^{-3t}u(t)$$

$$y_h(t) = c_1e^{at}$$

$$c_1e^{at} + 5\alpha c_1e^{at} = 0$$

$$c_1 + 5\alpha c_1 = 0$$

$$\alpha = \frac{-1}{5}$$

$$y_h(t) = c_1e^{-\frac{1}{5}t}$$

$$y(t) = y_p(t) + y_h(t)$$

$$= \frac{-1}{4}e^{-t}u(t) + \frac{-1}{14}e^{-3t}u(t) + c_1e^{-\frac{1}{5}t}$$

$$y(0) = 0$$

$$0 = \frac{-1}{4} + \frac{-1}{14} + c_1$$

$$c_1 = \frac{9}{28}$$

$$y(t) = \frac{-1}{4}e^{-t}u(t) + \frac{-1}{14}e^{-3t}u(t) + \frac{9}{28}e^{-\frac{1}{5}t}$$

1

2. (a)

$$\begin{split} y[n] &= x[n] * h[n] \\ &= \sum_{k=0}^n x[k]h[n-k] \\ &= \sum_{k=0}^n \left(2\delta[k] + \delta[k+1]\right) \left(\delta[n-(1+k)] + 2\delta[n+1-k]\right) \\ &= 2\sum_{k=0}^n \delta[k]\delta[n-(1+k)] + 4\sum_{k=0}^n \delta[k]\delta[n+1-k] + \sum_{k=0}^n \delta[k+1]\delta[n-(1+k)] + 2\sum_{k=0}^n \delta[k+1]\delta[n+1-k] \\ &= 2\delta\left[\frac{n-1}{2}\right] + 4\delta\left[\frac{n+1}{2}\right] + \delta\left[\frac{n-2}{2}\right] + 2\delta\left[\frac{n}{2}\right] \end{split}$$

(b)

$$\begin{split} y(t) &= \frac{dx(t)}{dt} * h(t) \\ &= \frac{d}{dt} \left(u(t-1) + u(t+1) \right) * e^{-t} \sin(t) u(t) \\ &= \left(\delta(t-1) - \delta(t+1) \right) * e^{-t} \sin(t) u(t) \\ &= \int_{-\infty}^{\infty} \left(\delta(\tau-1) - \delta(\tau+1) \right) e^{-t-\tau} \sin(t-\tau) d\tau \\ &= \int_{-\infty}^{\infty} \delta(\tau-1) e^{-t-\tau} \sin(t-\tau) d\tau - \int_{-\infty}^{\infty} \delta(\tau+1) e^{-t-\tau} \sin(t-\tau) d\tau \\ &= e^{-t-1} \sin(t-1) u(t) + e^{-t+1} \sin(t+1) u(t) \end{split}$$

3. (a)

$$\begin{split} y(t) &= x(t) * h(t) \\ &= \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau \\ &= \int_{-\infty}^{\infty} x(t-\tau)h(\tau)d\tau \\ &= \int_{-\infty}^{\infty} e^{-(t-\tau)}e^{-2\tau}d\tau \\ &= \int_{0}^{t} e^{-(t-\tau)}e^{-2\tau}d\tau \\ &= e^{-t} \int_{0}^{t} e^{\tau}d\tau \\ &= e^{-t} \left(1 - e^{-t}\right)u(t) \end{split}$$

(b)

$$\begin{split} y(t) &= x(t) * h(t) \\ &= \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau \\ &= \int_{-\infty}^{\infty} x(t-\tau)h(\tau)d\tau \\ &= \int_{-\infty}^{\infty} \left(u(t-\tau) - u(t-(\tau+1))\right)e^{3\tau}d\tau \\ &= \int_{-\infty}^{\infty} u(t-\tau)e^{3\tau}d\tau - \int_{-\infty}^{\infty} u(t-(\tau+1))e^{3\tau}d\tau \\ &= \int_{-\infty}^{t} e^{3\tau}d\tau - \int_{-\infty}^{t-1} e^{3\tau}d\tau \\ &= \frac{e^{3t}}{3} - \frac{e^{3t-3}}{3} \end{split}$$

$$\begin{split} y[n] - y[n-1] - y[n-2] &= 0 \\ y[n] &= y[n-1] + y[n-2] \\ y[2] &= y[1] - y[0] &= 2 \\ y[3] &= y[2] - y[1] &= 3 \\ y[4] &= y[3] - y[2] &= 5 \\ y[5] &= y[4] - y[3] &= 8 \end{split}$$

It is the Fibonacci sequence.

$$y[n] = \frac{(1+\sqrt{5})^n - (1-\sqrt{5})^n}{2^n\sqrt{5}}$$

$$y^{(3)}(t) - 6y''(t) + 13y'(t) - 10y(t) = 0$$
$$K^3 - 6K^2 + 13K - 10 = 0$$
$$K(K - 5)(K - 2) + (K + 5)(K - 2) = 0$$
$$(K - 2)(K^2 - 4K + 5) = 0$$

$$K = 2, 2 - i, 2 + i$$

$$y_h(t) = c_1 e^{2t} + c_2 e^{(2+i)t} + c_3 e^{(2-i)t}$$

$$y_h(t) = c_1 e^{2t} + c_2 \left(e^{2t} \cos(t) + i e^{2t} \sin(t) \right) + c_3 \left(e^{2t} \cos(t) - i e^{2t} \sin(t) \right)$$

$$y_h(t) = c_1 e^{2t} + c_2 e^{2t} \cos(t) + c_3 e^{2t} \cos(t) + c_2 i e^{2t} \sin(t) - c_3 i e^{2t} \sin(t)$$

$$y_h(t) = c_1 e^{2t} + (c_2 + c_3) e^{2t} \cos(t) + i (c_2 - c_3) e^{2t} \sin(t)$$

$$y_h(t) = C_1 e^{2t} + C_2 e^{2t} \cos(t) + C_3 e^{2t} \sin(t)$$

$$y''(0) = 3$$

$$= 4C_1 + 3C_2 + 4C_3$$

$$y'(0) = 1.5$$

$$= 2C_1 + 2C_2 + C_3$$

$$y(0) = 1$$

$$= C_1 + C_2$$

$$C_1 = 2$$

$$C_2 = -1$$

$$C_3 = -0.5$$

$$y_h(t) = 2e^{2t} - e^{2t}\cos(t) - \frac{1}{2}e^{2t}\sin(t)$$

- 5. (a)
 - (b)
 - (c)
- $6. \quad (a)$
 - (b)
 - (c)
- 7. (a)
 - (b)