Technical Cybersecurity

ARM & MIPS vs. x86_64

x86_64

YOU WILL NEVER SEE AN X86_64 CPU IN IOT

- ...I mean, you might, but not today
- So why are we looking at x86 and not ARM?

THE CONCEPTS ARE THE SAME

- ...and x86 is more accessible
- You'll need to read up on the topics we've been covering for the specific processor you're targeting

ARM Differences

REGISTER ARCHITECTURE

- ▶ 13 general purpose registers: *r0-r12*
- sp: stack pointer
- Ir: link register, address to return to when function completes (x86 keeps this on the stack); however, in multiply nested function calls, return address for later functions is on the stack
- pc: program counter, points to current instruction (same as ip or rip)
- apsr: application program status register, similar to eflags

MIPS Differences

REGISTER ARCHITECTURE

- GP registers
 - ▶ v0-1: return values
 - ▶ a0-3: arguments to functions
 - ▶ t0-9: temporary registers, not preserved
 - ▶ s0-8: saved registers, preserved
- gp: global area pointer, points to global data segment
- sp: stack pointer
- fp: frame pointer
- ra: return address, like Ir in arm

Instruction Architectures

ARM AND MIPS ARE RISC

- Reduced Instruction Set Computer architectures
 - ...also known as *load-store* architectures

x86 is CISC

- Complex Instruction Set Computer architecture
- However today many complex instructions are broken down into component microcode instructions

Concepts are the same, but study up on instruction and computer architectures.