Vehtari et al 2020 Rank-normalization, folding, and localization

Daniele Zago

March 21, 2021

Summary

The authors show that traditional \hat{R} and split- \hat{R} statistics of Gelman and Rubin, 1992 and Gelman, Carlin, et al., 2013 has serious flaws when

- 1. The chain tails are thick which produce a variance that is either too large or infinite.
- 2. The variance varies across chains, but they have the same mean.

Therefore, they introduce an improved version of the statistic, the folded-split- \hat{R} , which alleviates some of the problems of the previous methods. This method is based on the computation of multiple chains, and returning the maximum of two split- \hat{R} statistics, in order to monitor the within and between variances with and without the effect of different scales.

1 Background

Figure 1: Information should be compared within and between simulated chains.

The usual split- \hat{R} for M chains of size N is defined as

$$\hat{R} = \sqrt{\frac{\frac{N-1}{N}W + \frac{1}{N}B}{W}},$$

where B is the between-chain variance and W is the within-chain variance:

$$B = \frac{N}{M-1} \sum_{m=1}^{M} \left(\bar{\vartheta}_{\cdot m} - \bar{\vartheta}_{\cdot \cdot} \right)^{2},$$

$$W = \frac{1}{M} \sum_{m=1}^{M} \frac{1}{N-1} \sum_{n=1}^{N} \left(\vartheta_{nm} - \bar{\vartheta}_{\cdot m} \right)^{2}.$$

$$(1)$$

2 Contribution

The improved \hat{R} is computed by:

1. Calculating a rank normalized split- \hat{R} , by applying Equation 1 to

$$z_{nm} = \Phi^{-1} \left(\frac{\operatorname{rank} \vartheta_{nm} - 3/8}{NM - 1/4} \right),\,$$

where ranks are pooled from all chains.

2. Calculating the rank normalized split- \hat{R} not only for ϑ_{nm} but also for

$$\zeta_{mn} = |\vartheta_{nm} - \text{median}(\vartheta)|$$

in order to be robust to different scales.

3. Returning the maximum of the quantities obtained in steps 1) and 2).

Equation 1 to the folded draws

Figure 2: Usual \hat{R} (red) and the improved \hat{R} introduced in this paper (blue); the two scenarios on the left are constructed not to be mixed, and the usual split- \hat{R} fails to diagnose the lack of convergence.

References

Gelman, A., Carlin, J. B., et al. (2013). Bayesian data analysis. 3 edizione. Chapman and Hall/CRC.

REFERENCES References

Gelman, A. and Rubin, D. B. (1992). "Inference from Iterative Simulation Using Multiple Sequences". In: $Statistical\ science\ 7.4$, pp. 457–472.