CMC TELECOM

8th Floor, CMC Tower, 19 Street, Tan Thuan EPZ, District 7, Ho Chi Minh City

Tel: +842871090100| Fax:

+84 28 3925 9755| <u>cmctelecom.vn</u>

SECURITY ASSESSMENT REPORT

ASSESSMENT SUBJECT: SafeNote.apk

Ho Chi Minh City, 2023

CMC TELECOM

Version	1.0
Target	SafeNote.apk
Date	06/04/2023
Document Type	Report
Prepared By	Tran Truong Giang

MỤC LỤC

MŲC LŲC	3
I. Overview	4
1. Synopsis	4
2. Method of implementation	4
3. Classification of Vulnerabilities	5
4. Scope of Work	6
5. Summary of Testing Process	7
II. Details of Implementation	9
1. Application Information	9
2. Summarized findings and Vulnerability Graph	10
3. Vulnerability List	11
4. Vulnerability details	12
4.1 Application Backup Enabled	12
4.2 Weak Cryptography	15
4.3 Insecure Content Provider Access Error! Book	kmark not defined.
4.4 Debug Mode Enabled	19
4.5 Insecure Storage in Database Error! Book	kmark not defined.
4.6 Insecure Storage in Shared Preferences	21

I. Overview

1. Synopsis

From March 07, 2023 – March 10, 2023 CMCCS and REDACTED had collaborated to conduct the penetration test for the app SafeNote.apk. All tests follow the OWASP standards.

The assessment procedure includes:

- Planning: Identify the subject and scope for assessment
- Discovery: Test, Scan, Search and Identify intel relevant to the test subject including Versions, Vulnerabilities, Weakness, Sensitive data, etc
- Attack: CMC Personnel will perform attacks and exploits on discovered vulnerabilities.
- Reporting: Document the vulnerabilities along with the method of exploit recognised on the test subject, and recommendation for remedy.

2. Method of implementation

Gray Box Pen-testing: In this method, the internal structure of the application is known partially (usually internal account or test account)

With Grey Box Pentesting, CMC will be provided with an internal account along with necessary information of the system to conduct the test.

3. Classification of Vulnerabilities

	CLASSIFICATION OF VULNERABILITY				
Level	CVSS V3 Scoring	Description			
Critical	9 – 10	Vulnerabilities that allow hackers to attack from the outside in with the highest privilege, exposing sensitive or full data, impacting severely the information integrity (data is modified or completely erased) as well as its availability (all services are shut down)			
High	7 – 8,9	Vulnerabilities allowing attackers to impact the system within a certain scope such as taking over user authority to access a device without authentication, exposing large amount of data (but have low level of sensitivity), data is subjected to modification and its integrity is affected, leading to the system being stalled of interrupted. However, the impact is not too severe to the reputation of the organisation and only affects a group of users			
Medium	4 – 6,9	Vulnerabilities at this level is usually used as a predecessor for future attacks and exploits to potentially affect the system at a higher level. These types of vulnerabilities can cause nuisance for users but usually do not affect the availability of the service directly			

		Vulnerabilities that leak data at a low level where said data	
		are not valuable for exploits and does not affect the	
Low 0,1 – 3,9		integrity of the information as well as the activities of the	
		system. The fix is often feasible and easy with little to no	
		cost. Organisations' reputation is not affected	

4. Scope of Work

Method of Implementation	Test Object
Black Box	
Pen-testing	App SafeNote.apk

5. Summary of Testing Process

After discussing with REDACTED on ensuring the continual availability of the app SafeNote.apk. CMC proposed conducting the penetration test from 27/03/2023 – 08/04/2023. The detail of work is as follow:

STT		Condition	
		Determine the types of data connections that the app uses 3G, WiFi connection, NFC connection, Bluetooth.	PASS
1	Collection Of Information	The permissions that the app requires when installing.	PASS
		Collect information about unfamiliar domains or IP connections in the application.	PASS
		Collect information about the SDK if built into the app.	PASS
	Static Analysis	Evaluate the authentication mechanism.	FAIL
		Check the anti-root, anti-vm, cert-pinning mechanisms (if any) of the application.	PASS
		Check the app's permission configurations.	PASS
2		Check the configuration in the Manifest (Activity Hijacking) file.	PASS
		Check session management mechanisms and insecure cookie storage.	PASS
		Check for sensitive information in logs, code, in directories or in sqlite.	FAIL
		Check information about libraries, dependencies, and open source from 3 rd	PASS

		parties.	
		Data transport cascade assessment.	PASS
		Evaluate the possibility of decompiling source code and tampering with applications.	FAIL
	Dynamic Analysis	Evaluate Web App issues related to the application: XSS, Command Injection, CRSF, SQL Injection, Cookies	PASS
		Evaluation of the application's encryption machanisms.	FAIL
		Analyze files created during application installation.	PASS
3		Memory analysis.	PASS
		Evaluation of authentication mechanisms.	FAIL
		Evaluating the authorization mechanism.	PASS
		Evaluation of session management mechanisms.	PASS
		Data transfer layer assessment.	PASS
		Evaluate server-side attacks from the application.	PASS

II. Details of Implementation

1. Application Information

Platform	Android			
Package Name	com.els.safenote			
Version	Android 11			
Min SDK	16			
Target SDK	24			
MD5	3ea6097be40583e9f11a940afbe02fcc			
SHA1	950c546d2555f36579d0731d519735bc10fe220c			
SHA256	a1728c0740bb6e0d3fe8241c6418201a9e9927a90c92 45de6bc73ac75a3a6fcd			

2. Summarized findings and Vulnerability Graph

Classification	Quantity
Target	SafeNote.apk
Total vulnerabilities found	04

3. Vulnerability List

No	VULNERABILITY LIST	STATUS
1	Application Backup Enabled	MEDIUM
2	Weak Cryptography	HIGH
3	Debug Mode Enabled	CRITICAL
4	Insecure Storage in Shared Preferences	HIGH

4. Vulnerability details

4.1 Application Backup Enabled

The following summaries the vulnerability's severity ratings.

Description:

This is a feature that is used to enable a backup storage device such as an external hard drive or an online cloud storage account. When enabled, a copy of the data stored on the primary storage device is backed up to the secondary device on a regular basis. This provides an extra layer of protection if the primary storage device fails or is damaged.

In this case, the application did not control which kind of data will be backed up. Therefore, the attacker can backup the data the get the sensitive information.

Proof of Concept:

Use jadx to reverse the apk file. In AndroidManifest.xml, we can see that this application allow backup feature

android:allowBackup="true"

Use adb backup com.els.safenote to create a backup file. In the device, it will ask for permission to backup, choose backup my data, we will get the file named backup.ab

Convert the backup.ab into backup.tar like below

```
(Lucgyy® Lucgryy)-[~/backup_safenote]
$ cat backup.ab| (dd bs=24 count=0 skip=1; cat) | zlib-flate -uncompress > backup.tar
0+0 records in
0+0 records out
0 bytes copied, 0.000425914 s, 0.0 kB/s

(Lucgyy® Lucgryy)-[~/backup_safenote]
$ ls
backup.ab backup.tar
```

Extract that .tar file

```
-(Lucgyy® Lucgryy)-[~/backup_safenote]
└$ tar -xvf ./backup.tar
apps/com.els.safenote/ manifest
apps/com.els.safenote/a/base.apk
apps/com.els.safenote/f/Congratulations.txt
apps/com.els.safenote/sp/safenote conf.xml
shared/0/Pictures
shared/0/Pictures/.thumbnails
shared/0/Pictures/.thumbnails/.nomedia
shared/0/Pictures/.thumbnails/.database uuid
shared/0/Podcasts
shared/0/Ringtones
shared/0/Notifications
shared/0/Documents
shared/0/Music
shared/0/Music/.thumbnails
shared/0/Music/.thumbnails/.database_uuid
shared/0/Music/.thumbnails/.nomedia
shared/0/Movies
shared/0/Movies/.thumbnails
shared/0/Movies/.thumbnails/.database uuid
shared/0/Movies/.thumbnails/.nomedia
shared/0/Alarms
shared/0/Audiobooks
shared/0/Download
shared/0/Download/Magisk-25.2(25200).apk
shared/0/Statements jack.html
shared/0/DCIM
```

We can read the content of the Shared Preferences

Exploitation Tool:

adb, Genymotion, jadx, Test Manual

Recommendation:

Set up the back up rule to control which kind of information in backed up. More detail here: Back up user data with Auto Backup | Android Developers

If the application do not allow backup, set the allowBackup to false in AndroidManifest.xml

References:

Back up user data with Auto Backup | Android Developers

4.2 Weak Cryptography

The following summaries the vulnerability's severity ratings.

Description:

This is the vulnerable that cryptographic algorithm that is easily broken or cracked by a motivated attacker. It is considered to be vulnerable because it lacks the necessary strength or complexity to withstand a determined attack. Weak algorithms can be used to encrypt data or authenticate access, but they are easily broken by attackers due to their lack of robustness.

In this case, the programmer used MD5 algorithm, a very popular algorithm with poor security. Moreover, the programmer use hard-coded MD5 hash value for cryptographic purpose

Proof of Concept:

Using jadx to reversing the apk file. In the class named Login , we can see the variable MD5 PIN in Shared Preferences: "8323f649e9b04dd5b428d246db5430f2"

```
editor.putBoolean("FIRSTRUN", false);
editor.putString("MD5_PIN", "8323f649e9b04dd5b428d246db5430f2");
editor.commit();
```

Using website MD5 Online | Free MD5 Decryption, MD5 Hash Decoder to crack the MD5 hash, we get: eLS095

Found: eLS095 (hash = 8323f649e9b04dd5b428d246db5430f2)

Enter that PIN code, we login successfully

Exploitation Tool:

Genymotion, jadx, Test Manual

Recommendation:

Use android Keystore system to store key securely

Get the key:

```
KeyGenerator keyGenerator;
SecretKey secretKey;
try {
    keyGenerator = KeyGenerator.getInstance("AES");
    keyGenerator.init(256);
    secretKey = keyGenerator.generateKey();
} catch (Exception e) {
    e.printStackTrace();
}
```

Initialize the IV:

```
byte[] IV = new byte[16];
SecureRandom random;
random = new SecureRandom();
random.nextBytes(IV);
```

Encryption:

```
public static byte[] encrypt(byte[] plaintext, SecretKey key, byte[] IV)
throws Exception {
    Cipher cipher = Cipher.getInstance("AES");
    SecretKeySpec keySpec = new SecretKeySpec(key.getEncoded(), "AES");
    IvParameterSpec ivSpec = new IvParameterSpec(IV);
    cipher.init(Cipher.ENCRYPT_MODE, keySpec, ivSpec);
    byte[] cipherText = cipher.doFinal(plaintext);
    return cipherText;
}
```

Decryption:

```
public static String decrypt(byte[] cipherText, SecretKey key, byte[] IV)
{
    try {
```

```
Cipher cipher = Cipher.getInstance("AES");
    SecretKeySpec keySpec = new SecretKeySpec(key.getEncoded(),
"AES");
    IvParameterSpec ivSpec = new IvParameterSpec(IV);
    cipher.init(Cipher.DECRYPT_MODE, keySpec, ivSpec);
    byte[] decryptedText = cipher.doFinal(cipherText);
    return new String(decryptedText);
} catch (Exception e) {
    e.printStackTrace();
}
return null;
}
```

- Use SHA256 hashing algorithm instead of MD5

References:

AES 256 Encryption and Decryption in Android with Example (amarinfotech.com)

Android Keystore system | Android Developers

4.3 Debug Mode Enabled

The following summarises the vulnerability's severity ratings.

Possibility	HIGH	Technical Impact	CRITICAL	Business Impact	HIGH
-------------	------	---------------------	----------	--------------------	------

Description:

This is a security vulnerability that allows a user to access the application's debug mode and bypass certain security checks. This can be exploited to gain access to sensitive data, modify application configurations, or execute malicious code

In this case, the developer forget to disable the debugging feature

Proof of Concept:

Use jadx to reverse the apk file. In AndroidManifest.xml, we can see that this application enabled debugging

```
android:debuggable="true"
```

With that feature, the attacker can access the application's data as non-rooted user for example sqlite, shared preferences,...

```
vbox86p:/ # run-as com.els.safenote
vbox86p:/data/user/0/com.els.safenote $ ls
cache code_cache databases files no_backup shared_prefs
```

Exploitation Tool:

adb, Genymotion, jadx, Test Manual

Recommendation:

In AndroidManifest.xml, set the 'debuggable' attribute to 'false'

References:

<u>Exploiting debuggable android applications | Infosec Resources (infosecinstitute.com)</u>

4.4 Insecure Storage in Shared Preferences

The following summaries the vulnerability's severity ratings.

Description:

This application use Shared Preferences to stored the MD5 value of the pin code which can get access to the 'Safe Note' service. This is dangerous because the attacker can easily get access to the Shared Preferences.

Proof of Concept:

The Shared preferences is stored in /data/data/com.els.safenote/shared_prefs

Exploitation Tool:

adb, Genymotion, jadx, Test Manual

Recommendation:

Do not stored sensitive data in Shared Preferences.

References:

Data Storage on Android - OWASP MASTG (gitbook.io)