

BACH EM CIÊNCIA DA COMPUTAÇÃO

SISTEMAS DIGITAIS

2020.1

Linked in

Mestrando em Informática Aplicada — UFRPE(2020). Especialista em Segurança da Informação pela Faculdade ESTACIO(2016). Graduado em Redes de Computadores pela Faculdade de Tecnologia IBRATEC (2013). Técnico em Manutenção e Suporte em Informática(2010). Atualmente estou como professor celetista na UNIFG e UNIBRA. Tenho experiência na área de Segurança da Informação, com ênfase em REDE DE COMPUTADORES, CIÊNCIA DA COMPUTAÇÃO e GESTÃO DA TECNOLOGIA DA INFORMAÇÃO.

Formação Acadêmica

PPGIA UFRPE

Mestrando, Uma abordagem para detecção de intrusão em ambientes baseados na Internet das Coisas

2020 - 2022

Universidade Estácio de Sá

Especialista em Segurança da Informação, IDS/IPS COMO ELEMENTOS DE SEGURANÇA EM UMA REDE CORPORATIVA CONTRA ATAQUE DoS E DDoS, 9.0

2014 - 2016

Artigo Científico : IDS/IPS COMO ELEMENTOS DE SEGURANÇA EM UMA REDE CORPORATIVA CONTRA ATAQUE DOS E DDoS

FACULDADE DE TECNOLOGIA IBRATEC

Graduação em Redes de Computadores, CARTÃO MAGNÉTICO NO SISTEMA PÚBLICO DE VACINAÇÃO, 9,0

2010 - 2013

INFORMAÇÕES

- **☐** Atendimento:
 - ☐ No horário da aula.
 - ☐ Fora do horário da aula somente por e-mail/Telegram:

- □d.gomes@unifg.edu.br
- □@drg_prof

- ☐ Quintas-feiras;
- ■8h50 às 11h50.

APRESENTAÇÃO

SISTEMAS DIGITAIS

- > INTRODUÇÃO AOS SISTEMAS DIGITAIS
- > SISTEMAS DE NUMERAÇÃO
- > INTRODUÇÃO À ÁLGEBRA BOOLEANA
- > PROPRIEDADES E TEOREMAS
- CIRCUITOS LÓGICOS
- > DERIVAÇÃO DE FUNÇÕES BOOLEANAS
- ➤ MAPA DE KARNAUGH
- > INTRODUÇÃO AOS CIRCUITOS SEQUENCIAIS
- > FLIP-FLOP'S SENSÍVEIS À BORDA DO CLOCK
- > CONTADORES BINÁRIOS SÍNCRONOS e ASSÍNCRONOS

A disciplina aborda as técnicas para construção de portas lógicas, que são os blocos funcionais básicos dos circuitos lógicos digitais. Apresenta ferramentas para a síntese e análise de circuitos elementares, metodologias de projeto orientadas à combinação desses módulos e, portanto, a implementação de sistemas digitais de maior complexidade.

COMPETÊNCIAS

I – ANALISAR E RESOLVER PROBLEMAS II - TRABALHAR EM EQUIPE

VII - PENSAMENTO MATEMÁTICO, FÍSICO E

QUÍMICO - Aplicar conhecimentos matemáticos, físicos, químicos nas atividades da engenharia.

VIII - PENSAMENTO LÓGICO - Pensar e usar a lógica formal estabelecendo relações, comparações e distinções em diferentes situações.

OBJETIVOS DE APRENDIZAGEM

- 1. Analisar os conceitos de lógica digital e circuitos digitais para capacitação em análise e desenvolvimento de projetos de sistemas digitais para computação.
- 2. Usar as técnicas de projeto e construção de circuitos digitais combinacionais e sequenciais.
- 3. Identificar as simbologias de portas lógicas e relacioná-las à circuitos digitais combinacionais. e flip-flops.

- 4. Analisar os teoremas da Álgebra Booleana e simplificar circuitos digitais combinacionais.
- 5. Utilizar técnicas de simplificação de circuitos digitais através do Mapa de Karnaugh.
- 6. Projetar Máquinas de Estado com portas lógicas e flip-flops.

BIBLIOGRAFIA BÁSICA

- 1. TOCCI, Ronald J.; WIDMER, Neal S.; MOSS, Gregory L., Sistemas Digitais: Princípios e Aplicações [recurso eletrônico, Biblioteca Virtual 3.0]. Prentice Hall Brasil, 2007.
- 2. TOKHEIM, Roger. Fundamentos de Eletrônica Digital: Circuito Combinacionais. Porto Alegre: AMGH, 2013.
- 3. VAHID, Frank; LASCHUK, Anatólio, Sistemas Digitais: Projeto, otimização e HDLs [recurso eletrônico, Minha Biblioteca]. Porto Alegre: Grupo A, 2011.

BIBLIOGRAFIA COMPLEMENTAR

- 1. ERCEGOVAC, Milos D.; LANG, Tomas e MORENO, Jaime H., **Introdução Aos Sistemas Digitais**. Porto Alegre, Bookman, 2000.
- 2. IDOETA, Ivan V.; CAPUANO, Francisco G., Elementos de eletrônica digital. Livros Érica Editora. Ltda, 2007.
- 3. FLOYD, Thomas. **Sistemas Digitais: Fundamentos e Aplicações** [recurso eletrônico, Minha Biblioteca]. 9a ed. Porto Alegre: Grupo A, 2011.
- 4. TAUB, Herbert; SCHILLING, Donald, **Eletrônica digital**. São Paulo. McGraw-Hill, 1982.
- 5. ZUFFO, João Antônio. **Sistemas Eletrônicos Digitais**. São Paulo: Edgard Blucher, 1981.

NOVO MÉTODO DE AVALIAÇÃO

	, A	4Δ	IS
F	PRA	TIC	Δ
P	RO)	(IV	Α
-	PLU	RA	I

COMO É ATUALMENTE Composição da Nota U1 + U2 Média Geral 7,0 Obrigatória **APS Prova Substitutiva** Não **Segunda Chamada** Sim **Disciplina Online** 4 Av online + 1 pres. (7,0) Nota Única **Estágios e TCC Atividade Complementares** Cumpriu/Ñ Cumpriu **Modelo das Provas** Variado Cobrança da substitutiva Sim Prova de Recuperação Final Sim

COMO SERÁ 2020.1						
Composição da Nota	N1 + N2					
Média Geral	6,0					
APS	Obrigatória em N2					
Prova Substitutiva	Sim					
Segunda Chamada	Não					
Disciplina Online	4 Av online + 1 pres. (6,0)					
Estágios e TCC	Nota Única com Rubricas					
Atividade Complementares	Cumpriu/Ñ Cumpriu					
Modelo das Provas	Reflexivas - Competência					
Cobrança da substitutiva	Não					
Prova de Recuperação Final	Não					

NOVO MÉTODO DE AVALIAÇÃO

MODALIDADE PRESENCIAL

A1 AVALIAÇÃO TEÓRICA
INDIVIDUAL $0 \to 10$ AVALIAÇÃO TEÓRICA OU AVALIAÇÃO
INTEGRADORA OU TESTE DE PROGRESSO
INDIVIDUAL $0 \to 10$ AVALIAÇÃO TEÓRICA OU PRÁTICA
INDIVIDUAL OU GRUPO $0 \to 10$

cálculo **N1 A1 + A2 + A3 3**

N2
PESO
6
A5

APS (ATIV. PRÁTICA SUPERVIS.)

INDIVIDUAL ou GRUPO

0 → 10

AVALIAÇÃO TEÓRICA ou PRÁTICA

INDIVIDUAL

0 → 10

AVALIAÇÃO SUBSTITUTIVA

APENAS se o aluno não realizar a A5 ou não alcançar a média 6 na disciplina

Substituída apenas se a nota for superior ao valor da A5.

CÁLCULO N2 (A4*0,1) + (A5*0,9)

CÁLCULO MÉDIA FINAL

(N1*0,4) + (N2*0,6)

CALENDÁRIO ACADÊMICO

MAIS	
PRATICA	
PROXIMA	
PLURAL	

FEVEREIRO								
D	S	T	Q	Q	S	S		
						1		
2	3	4	5	6	7	8		
9	10	11	12	13	14	15		
16	17	18	19	20	21	22		
23	24	25	26	27	28	29		

MARÇ	0	AN CH		MIN.		
D	S	T	Q	Q	S	S
1	2	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28
29	30	31				

10.02 – Inícios das aulas – Veteranos

25 a 31.03 – Avaliação N1(A1)

12.02 – Inícios das aulas – Calouros

ABRIL			A WIN	N WY		
D	S	T	Q	Q	S	S
			1	2	3	4
5	6	7	8	9	10	11
12	13	14	15	16	17	18
19	20	21	22	23	24	25
26	27	28	29	30		

22 a 28.04 – Avaliação N1(A2)

CALENDÁRIO ACADÊMICO

MAIO							
D	S	T	Q	Q	S	S	
OF DEY					1	2	
3	4	5	6	7	8	9	
10	11	12	13	14	15	16	
17	18	19	20	21	22	23	
24	25	26	27	28	29	30	
31							

18 a 22.05 – Avaliação N1(A3)

JUNHO								
D	S	T	Q	Q	S	S		
	1	2	3	4	5	6		
7	8	9	10	11	12	13		
14	15	16	17	18	19	20		
21	22	23	24	25	26	27		
28	29	30						

01 a 05.06 – Avaliação N2(A4) - APS

15 a 19.06 – Avaliação N2(A5)

22 a 27.06 – Avaliação N2(A6) Substitutiva

30.06 - Encerramento do Semestre

MÉTODOS DE AVALIAÇÃO

APS – ATIVIDADE PRÁTICA SUPERVISIONADA

U1 – PROVA INTERDISCIPLINAR

 $U2-PROVA\ INTERDISCIPLINAR+APS$

APS - ATIVIDADE PRÁTICA SUPERVISIONADA

Utilizando o simulador de circuitos digitais e simule um circuito lógico e elabore um relatório técnico de seu funcionamento. Este relatório deverá conter os seguintes itens:

- 1. Capa
- 2. Introdução teórica (explicação do funcionamento do circuito)
- 3. Materiais utilizados (lista de componentes necessárias para montagem do circuito)
- 4. Resultados (prints da simulação)
- 5. Conclusão (análise dos resultados da simulação)
- 6. Referências bibliográficas

REGRAS PARA UMA BOA CONVIVÊNCIA

DEMONSTRAÇÃO DA DISCIPLINA

