# Precalculus The inequality $b \ge \sin \theta \ge a$

**Todor Milev** 

2019

Solve. Among your solutions, find those between  $-360^\circ$  and  $450^\circ$ .  $\frac{1}{2} \le \sin \theta < \frac{\sqrt{3}}{2}$ 



Solve. Among your solutions, find those between  $-360^{\circ}$  and  $450^{\circ}$ .  $\frac{1}{2} \le \sin \theta < \frac{\sqrt{3}}{2}$ 











Solve. Among your solutions, find those between  $-360^{\circ}$  and  $450^{\circ}$ .  $\frac{1}{2} \le \sin \theta < \frac{\sqrt{3}}{2}$ 



Solve. Among your solutions, find those between  $-360^{\circ}$  and  $450^{\circ}$ .  $\frac{1}{2} \le \sin \theta < \frac{\sqrt{3}}{2}$ 



$$\frac{1}{2} \le \sin \theta < \frac{\sqrt{3}}{2}$$



Solve. Among your solutions, find those between  $-360^{\circ}$  and  $450^{\circ}.$ 



Solve. Among your solutions, find those between  $-360^{\circ}$  and  $450^{\circ}.$ 



Solve. Among your solutions, find those between  $-360^{\circ}$  and  $450^{\circ}.$ 



Solve. Among your solutions, find those between  $-360^{\circ}$  and  $450^{\circ}.$ 



$$\frac{1}{2} \le \sin \theta < \frac{\sqrt{3}}{2}$$

$$x \in [30^{\circ}, 60^{\circ})$$



Solve. Among your solutions, find those between  $-360^{\circ}$  and  $450^{\circ}$ .

$$\begin{array}{l} \frac{1}{2} \le \sin \theta < \frac{\sqrt{3}}{2} \\ x \in [30^{\circ}] \end{array}$$

)





Solve. Among your solutions, find those between  $-360^{\circ}$  and  $450^{\circ}$ .

$$\frac{1}{2} \leq \sin \theta < \frac{\sqrt{3}}{2}$$
$$x \in [30^{\circ}]$$

$$,150^{\circ}$$

1





Solve. Among your solutions, find those between  $-360^{\circ}$  and  $450^{\circ}$ .

$$\frac{1}{2} \le \sin \theta < \frac{\sqrt{3}}{2}$$
$$x \in [30^{\circ}]$$

,60°

) ∪ (120°

,150°

1





Solve. Among your solutions, find those between  $-360^{\circ}$  and  $450^{\circ}$ .

$$\frac{1}{2} \le \sin \theta < \frac{\sqrt{3}}{2}$$

$$x \in [30^{\circ}]$$

,60°

) ∪ **(120**°

, 150°

]





$$\frac{1}{2} \leq \sin \theta < \frac{\sqrt{3}}{2}$$
$$x \in [30^{\circ}]$$





$$\begin{array}{l} \frac{1}{2} \leq \sin \theta < \frac{\sqrt{3}}{2} \\ x \in [30^{\circ} + k360^{\circ}, 60^{\circ} + k360^{\circ}) \cup (120^{\circ} + k360^{\circ}, 150^{\circ} + k360^{\circ}] \end{array}$$



Solve. Among your solutions, find those between  $-360^{\circ}$  and  $450^{\circ}$ .

$$\tfrac{1}{2}{\le}{\sin\theta}<\tfrac{\sqrt{3}}{2}$$

$$x \in \frac{30^{\circ} + k360^{\circ}, 60^{\circ} + k360^{\circ})}{(120^{\circ} + k360^{\circ}, 150^{\circ} + k360^{\circ})}$$

$$x \in$$

$$[30^{\circ}, 60^{\circ}) \cup (120^{\circ}, 150^{\circ}]$$

$$k = 0$$

 $y = \sin x$ 



$$\begin{array}{l} \frac{1}{2} \leq \sin \theta < \frac{\sqrt{3}}{2} \\ x \in [30^{\circ} + k360^{\circ}, 60^{\circ} + k360^{\circ}) \cup (120^{\circ} + k360^{\circ}, 150^{\circ} + k360^{\circ}] \end{array}$$

$$x \in$$

$$[30^{\circ}, 60^{\circ}) \cup (120^{\circ}, 150^{\circ}] \cup [390^{\circ}, 420^{\circ}) \cup (480^{\circ}, 510^{\circ}]$$

$$k=0$$
  
 $k=1$ 





$$\frac{1}{2} \le \sin \theta < \frac{\sqrt{3}}{2}$$

$$x \in [30^{\circ} + k360^{\circ}, 60^{\circ} + k360^{\circ}) \cup (120^{\circ} + k360^{\circ}, 150^{\circ} + k360^{\circ}]$$

$$x \in$$

$$[30^{\circ}, 60^{\circ}) \cup (120^{\circ}, 150^{\circ}] \cup [390^{\circ}, 420^{\circ}) \cup (480^{\circ}, 510^{\circ}]$$

$$k=0$$
 $k=1$ 





Solve. Among your solutions, find those between  $-360^{\circ}$  and  $450^{\circ}$ .

$$\begin{array}{l} \frac{1}{2} \le \sin \theta < \frac{\sqrt{3}}{2} \\ x \in [30^{\circ} + k360^{\circ}, 60^{\circ} + k360^{\circ}) \cup (120^{\circ} + k360^{\circ}, 150^{\circ} + k360^{\circ}] \end{array}$$

 $y = \sin x$  150  $\frac{\sqrt{3}}{2}$   $\frac{\sqrt{3}}{2}$   $\frac{\sqrt{3}}{2}$   $\frac{\pi}{6}$   $\frac{\pi}{3}$   $\frac{\pi}{2}$   $\frac{2\pi}{3}$   $\frac{5\pi}{6}$   $\pi$ 

$$\frac{1}{2} \le \sin \theta < \frac{\sqrt{3}}{2} 
x \in [30^{\circ} + k360^{\circ}, 60^{\circ} + k360^{\circ}) \cup (120^{\circ} + k360^{\circ}, 150^{\circ} + k360^{\circ}]$$



Solve. Among your solutions, find those between  $-360^{\circ}$  and  $450^{\circ}$ .

$$\frac{1}{2} \le \sin \theta < \frac{\sqrt{3}}{2}$$

$$x \in [30^{\circ} + k360^{\circ}, 60^{\circ} + k360^{\circ}) \cup (120^{\circ} + k360^{\circ}, 150^{\circ} + k360^{\circ}]$$

$$\begin{array}{c} \cup \left[ -690^{\circ}, -660^{\circ} \right) \cup \left( -600^{\circ}, -570^{\circ} \right] \\ \cup \left[ -330^{\circ}, -300^{\circ} \right) \cup \left( -240^{\circ}, -210^{\circ} \right] \\ \cup \left[ 30^{\circ}, 60^{\circ} \right) \cup \left( 120^{\circ}, 150^{\circ} \right] \\ \cup \left[ 390^{\circ}, 420^{\circ} \right) \cup \left( 480^{\circ}, 510^{\circ} \right] \end{array}$$

$$\begin{vmatrix} k = -2 \\ k = -1 \\ k = 0 \end{vmatrix}$$

k = 1

 $x \in$ 





$$\tfrac{1}{2}{\le}{\sin\theta}<\tfrac{\sqrt{3}}{2}$$

$$x \in [30^{\circ} + k360^{\circ}, 60^{\circ} + k360^{\circ}) \cup (120^{\circ} + k360^{\circ}, 150^{\circ} + k360^{\circ}]$$

$$\begin{array}{cccc}
 & \cup \left[-690^{\circ}, -660^{\circ}\right) \cup \left(-600^{\circ}, -570^{\circ}\right] & & k = -2 \\
 & \cup \left[-330^{\circ}, -300^{\circ}\right) \cup \left(-240^{\circ}, -210^{\circ}\right] & & k = -1 \\
 & \times \in & \cup \left[30^{\circ}, 60^{\circ}\right) \cup \left(120^{\circ}, 150^{\circ}\right] & & k = 0 \\
 & \cup \left[390^{\circ}, 420^{\circ}\right) \cup \left(\underline{480^{\circ}, 510^{\circ}}\right] & & k = 1
\end{array}$$





 $x \in$ 

Solve. Among your solutions, find those between  $-360^{\circ}$  and  $450^{\circ}$ .

$$\begin{array}{l} \frac{1}{2} \le \sin \theta < \frac{\sqrt{3}}{2} \\ x \in [30^{\circ} + k360^{\circ}, 60^{\circ} + k360^{\circ}) \cup (120^{\circ} + k360^{\circ}, 150^{\circ} + k360^{\circ}] \end{array}$$

#### In radians:

$$\mathbf{X} \in \left[ -\frac{11\pi}{6}, -\frac{5\pi}{3} \right) \cup \left[ -\frac{4\pi}{3}, -\frac{7\pi}{6} \right) \cup \left[ \frac{\pi}{6}, \frac{\pi}{3} \right) \cup \left[ \frac{2\pi}{3}, \frac{5\pi}{6} \right) \cup \left[ \frac{13\pi}{6}, \frac{7\pi}{3} \right)$$