

## 基于行为特征的人体识别技术

苑正雄 2018.05.31

# 目录

- 1. 背景及研究意义
- 2. 研究现状
- 3. 主要研究内容
- 4. 背景知识
- 5. 项目实施方案
- 6. 实验
- 7. 拓展
- 8. 总结与展望
- 9. 参考文献





## --> 背景及研究意义





- 信息安全系统的需求逐渐增加
- 生物识别技术为计算机安全提供了友好和可靠的解决方案 机器学习技术的发展为生物识别技术提供了理论基础
- 行为生物特征研究相对较少

| 类别            | 举例                  |  |  |
|---------------|---------------------|--|--|
| 基于身份的特征       | 签字、手绘等              |  |  |
| 基于人机交互的特征     | 肌肉动作: 使用键盘、鼠标的动作等   |  |  |
|               | 高级行为:游戏技巧、使用软件的技能   |  |  |
| 基于非直接的人机交互的特征 | 下意识产生的行为,如:执行程序的方式等 |  |  |
| 动作技能          | 步伐、手势等              |  |  |
| 没有肌肉动作的行为特征   | 思考时的策略、技巧等          |  |  |

## --> 背景及研究意义





#### 为什么要研究行为生物特征?

#### Behavioral vs Physical

- 方便采集数据
- 成本低
- 种类更多
- 研究相对较少
- 可以作为辅助特征提高识别率

## --> 研究现状





- 对于物理生物特征的研究已经相当成熟,并已广泛应用于实际生活当中
- 对于行为生物特征的研究相对较少,技术不够成熟
- 受外界影响因素比较多,如步态识别中的角度影响
- 由 Z. Wu 等人提出的方案中,在 CASIA-B 数据集上,对于正常、穿大衣、带包三种情况下的跨角度识别平均准确率分别为 94.0%、 50.9%、 73.3%

## --> 主要研究内容





### 步态识别 (gait recognition)

- 独特性高
- 持久性相对较好
- 数据易采集
- 可行性高
- 适合远距离识别

主要解决步态识别中由于 角度变化而引起的识别率 下降的问题





## **GEI (Gait Energy Image)**



## --> 项目实施方案











数据集: CASIA-B



## --> 实验





#### 实现细节:

#### 主要参数:

learning\_rate=0.0001

AdamOptimizer

train\_steps=25000

batch\_size=128

train\_data={2500+,2500-}

val\_data={1000+,1000-}



MT 网络

## --> 实验





#### 结果:

Gallery: NM #1-4, Probe: NM #5-6





Gallery: NM #1-4, Probe: CL #1-2











#### Gait Entropy Image (GEnI):







#### 分块:



## --> 拓展











|           | 平均准确率  |        |        |
|-----------|--------|--------|--------|
|           | 正常     | 带包     | 穿大衣    |
| Z. Wu's   | 91.1%  | 73.3%  | 50.9%  |
| 0urs      | 95. 8% | 91.5%  | 84.4%  |
| GEnI      | 94. 7% | 88.7%  | 84.0%  |
| Bottom-MT | 95. 7% | 90. 2% | 84. 1% |
| Top-MT    | 95. 6% | 87.1%  | 80.2%  |





#### 提高图片的精确程度:

- 改进背景删除算法
- 改进人体居中算法





#### 利用步态序列中的时序信息:

- 采用 RNN / LSTM 提取时间信息
- 采用色彩步态轮廓图或者光流图等带有时序信息的方式来描述步态

## --> 参考文献





- [1] Yampolskiy, R.V. and Govindaraju, "Behavioral biometrics: a survey and classification", Int. J. Biometrics, Vol. 1, No. 1, pp.81-113,2008.
- [2] 樊洄敏. 生物识别技术的发展探究[J]. 中国战略新兴产业,2018(04):34.
- [3] J. Han and B. Bhanu, "Individual recognition using gait energy image," IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 2, pp. 316–322, Feb. 2006.
- [4] S. Tong, Y. Fu, H. Ling, "Verification-based Pairwise Gait Identification," IEEE ICMEW.,pp. 10-14, July. 2017.
- [5] Z. Wu, Y. Huang, X. Wang and T. Tan, "A Comprehensive Study on Cross-View Gait Based Human Identification with Deep CNNs," IEEE Trans. PAMI., vol. 39, no.2, pp.209-223, Feb. 2017.
- [6] C. Wang, J. Zhang, J. Pu, X. Yuan, and L. Wang, "Chrono-gait image: A novel temporal template for gait recognition," in Proc. 11th Eur. Conf. Comput. Vis., 2010, pp. 257–270.
- [7] T. Lam, K. Cheung, and J. Liu, "Gait flow image: A silhouette-based gait representation for human identification," Pattern Recog., vol. 44, no. 4, pp. 973–987, Apr. 2010.
- [8] S. Yu, D. Tan, and T. Tan, "A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition," in Proc. 18th Int. Conf. Pattern Recog., 2006, pp. 441–444.
- [9] B. K. P. Horn and B. G. Schunck, "Determining optical flow," Artificial Intelligence, vol. 17, no. 81, pp. 185–203, 2004.
- [10] Y. LeCun, K. Kavukvuoglu, and C. Farabet, "Convolutional networks and applications in vision," in Proc. Int. Symp. Circuits Syst., 2010, pp. 253–256.
- [11] D. Cheng, Y. Gong, S. Zhou, J. Wang and N. Zheng, "Person Re-identification by Multi-Channel Parts-Based CNN with Improved Triplet Loss Function," 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, 2016, pp. 1335-1344.
- [12] N. Li, Y. Xu and X. K. Yang, "Part-based human gait identification under clothing and carrying condition variations," 2010 International Conference on Machine Learning and Cybernetics, Qingdao, 2010, pp. 268-273.
- [13] L. Breiman, "Random Forests," Machine Learning, vol. 45, pp. 5-32, 2001
- [14] http://www.cnblogs.com/wentingtu/archive/2011/12/22/2297405.html
- [15] D. P. Kingma and J. L. Ba, "Adam: A method for stochastic optimization," 2015 ICLR, arXiv: 1412.6980 [cs.LG].
- [16] K. Bashir, T. Xiang, and S. Gong. Gait recognition using gait entropy image. In Proc. of the 3rd Int. Conf. on Imaging for Crime Detection and Prevention, pages 1–6, Dec. 2009.
- [17] W. Dempster, G. Gaughran, Properties of body segments based on size and weight. American Journal of Anatomy, 120(1): 33-54. 1967.
- [18] C. Wang, J. Zhang, J. Pu, X. Yuan, and L. Wang, "Chrono-gait image: A novel temporal template for gait recognition," in Proc. 11th Eur. Conf. Comput. Vis., 2010, pp. 257–270.
- [19] Socher, Richard; Lin, Cliff; Ng, Andrew Y.; Manning, Christopher D. "Parsing Natural Scenes and Natural Language with Recursive Neural Networks". The 28th International Conference on Machine Learning (ICML 2011).
- [20] S. Hochreiter and J. Schmidhuber, "Long Short-Term Memory," in Neural Computation, vol. 9, no. 8, pp. 1735-1780, Nov. 15 1997.

# 谢谢! Q&A

苑正雄 2018.05.31



