

$$\therefore \omega = \frac{2\pi}{T} = \frac{2\pi}{\pi} = 2 \, rad \, / \, s$$

 $\therefore V(t) = Vm\sin\omega t = 10\sin 2tV$

$$\therefore I(t) = C\frac{dV(t)}{dt} = 1m\frac{d}{dt}10\sin 2t = 20\cos 2t \ mA$$

$$\therefore P = \frac{V_{rms}^2}{R} = (\frac{10}{\sqrt{2}})^2 \frac{1}{10\Omega} = 5W$$

E = Pt = 5W(10s) = 50J

In the circuit, V(t) is given as shown.

- (a) If X = 1mF, find I(t).
- (b) If $X = 10 \Omega$, find the total energy dissipated by X in 10 sec. Given $d(\sin \alpha x) / dx = a\cos \alpha x$, $d(\cos \alpha x) / dx = -a\sin \alpha x$. (15)

2

$$Vb = Va + 4V$$

$$Vc = 0V$$

KCL:
$$\frac{16-Vb}{4} = \frac{16-Va-4}{4} = \frac{Va}{4} + 2$$

$$16 - Va - 4 = Va + 8$$

$$\therefore$$
 Va = 2V

$$\therefore Vb = 6V$$

$$Vbc = Vb - Vc = 6 - 0V = 6V$$

KCI

$$\frac{16 - Vb}{4} = i + \frac{4V}{4\Omega} = \frac{16 - 6}{4}$$

$$i + 1 = 2.5$$

$$\therefore i = 1.5A$$

4

P = iv = 4V(1.5A) = 6W

Power is absorbed by 4V source

 In the circuit, find Va, Vb and Vbc. Find also the power delivered or absorbed by the 4V supply. (24)

(32)

$$\therefore$$
 V_O = Va + Vb = 8V

Norton equivalent

Maximum power delivered when $R=4\Omega$

:.
$$P = I^2 R = (1A)^2 4\Omega = 4W$$

- 3. (a) Use **superposition method** to show that Vo = 8V. (b) Hence find the **Norton equivalent** of the network at
 - Hence find the Norton equivalent of the network at terminals ab.
- (c) If a load R is connected to ab, plot I versus V for all values of R (0 to 00 ohm). Find also the maximum power that can be dissipated by R (32).

(16)

4. In the network, find current Io. Voltage V and current I are

(24)

$$\therefore V_{X} = (2A)2\Omega = 4V$$

KVL:

$$V_{\text{oc}} = 12 - V_{\text{x}} - V_{\text{x}}$$

= $12 - 2V_{\text{y}} = 4V$

KVL:
$$12 - V_x = V_x$$

$$\therefore$$
 V_x = 6V

$$\therefore I = \frac{6V}{2\Omega} = 3A$$

$$\therefore I_{SC} = 1A$$

Thevenin resistance

$$Rth = \frac{VOC}{Isc}$$
$$= \frac{4V}{Isc} = 4\Omega$$

5. In the circuit, find Io using Norton's Theorem. The voltage controlled voltage source is in volt and equal to Vx. Hint: find Voc, Isc at terminals ab and $R_N = Voc/Isc$.

6

6. In the circuit, the switch has been closed for a long time. At t = 0 sec, the switch is opened.

Find V(t) for $t \ge 0$. Find also the maximum energy stored in the inductor.

Given that $V_L = L$ (d I_L / dt), $i(t) = i(\infty) + [i(0) - i(\infty)] e^{-t/\tau}$ and $v(t) = v(\infty) + [v(0) - v(\infty)] e^{-t/\tau}$ (24)

 $t \le 0$, S is closed

 $t \ge 0$, S is opened

$$\begin{split} & \therefore i(t) = i(\infty) + [i(0) - i(\infty)] \, e^{-t/\tau} \\ & = 0 + [8m - 0] \, e^{-t/0.5us} \\ & = 8e^{-t/0.5us} mA \end{split}$$

$$\begin{split} & \therefore v(t) \!=\! L \frac{di(t)}{dt} \!=\! 1m \frac{d}{dt} [8me^{-t0.5us}] \\ & = \! 1m (8m) \! (\! \frac{-1}{0.5u} \!) e^{-t0.5us} A \\ & = \! -16e^{-t0.5u} V \end{split}$$

Maximum energy stored in L

$$= \frac{1}{2} \text{Li}^2 = \frac{1}{2} (1 \text{mH}) (8 \text{mA}^2) = 32 \times 10^{-9} \text{J}$$

(22)

$$\tau = CR = 2mF*6\Omega = 12ms$$

$$\begin{split} & :: V(t) = V(\infty) + \left[V(0) - V(\infty)\right] e^{-t/CR} \\ & = 0 + \left[24m - 0\right] e^{-t/12ms} \\ & = 24e^{-t/12m} mV \end{split}$$

Maximum energy stored in C

$$= \frac{1}{2}CV^2 = \frac{1}{2}(2mH)(24mV^2) = 576x10^{-9}J$$