«Метод конечных разностей во временной области (FDTD)»

Литература

Allen Taflove, Susan C. Hagness

Computational
Electrodynamics:
The Finite-Difference
Time-Domain Method

Литература

John B. Schneider.
Understanding the Finite-Difference TimeDomain Method

http://www.eecs.wsu.edu/~schneidj/ufdtd/

Материалы к лекциям

Исходные тексты программ:

https://github.com/Jenyay/modelling

Численный расчет производной функции

Производная функции

$$f'(x_0) = ???$$

Производная функции

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

Правая конечно-разностная схема для численного дифференцирования

$$f'(x_0) = \frac{f(x_0 + \delta) - f(x_0)}{\delta} + O(\delta)$$

 $O(\delta)$ — погрешность вычислений

Ряд Тейлора

$$f(x) = \sum_{n=0}^{\infty} f^{(n)}(x_0) \frac{(x - x_0)^n}{n!} =$$

$$= f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)(x - x_0)^2}{2!} + \dots + \frac{f^{(n)}(x_0)(x - x_0)^n}{n!} + R_n$$

$$R_{n} = \frac{f^{(n+1)}(\xi)(x - x_{0})^{(n+1)}}{(n+1)!}, x_{0} < \xi < x$$

Разложим функцию f(x) в ряд Тейлора вблизи точки x_0 со смещением δ $x=x_0+\delta$

$$f(x_0+\delta)=f(x_0)+\delta f'(x_0)+\frac{1}{2!}\delta^2 f''(x_0)+\frac{1}{3!}\delta^3 f'''(x_0)+...,$$

Выражаем $f'(x_0)$:

$$f'(x_0) = \frac{f(x_0 + \delta) - f(x_0)}{\delta} - \frac{1}{2} \delta f''(x_0) - \frac{1}{6} \delta^2 f'''(x_0) - \dots,$$

$$O(\delta) = -\left(\frac{1}{2}\delta f''(x_0) + \dots\right)$$

Погрешность пропорциональна δ.

Разложим функцию f(x) в ряд Тейлора вблизи точки x_0 со смещением $\pm \delta/2$

$$x=x_0\pm\frac{\delta}{2}$$
, $x-x_0=\pm\frac{\delta}{2}$

$$f(x_0 + \frac{\delta}{2}) = f(x_0) + \frac{\delta}{2} f'(x_0) + \frac{1}{2!} (\frac{\delta}{2})^2 f''(x_0) + \frac{1}{3!} (\frac{\delta}{2})^3 f'''(x_0) + \dots,$$

$$f\left(x_{0}-\frac{\delta}{2}\right)=f(x_{0})-\frac{\delta}{2}f'(x_{0})+\frac{1}{2!}\left(\frac{\delta}{2}\right)^{2}f''(x_{0})-\frac{1}{3!}\left(\frac{\delta}{2}\right)^{3}f'''(x_{0})+\dots,$$

Вычтем первое выражение из второго

$$f\left(x_{0}+\frac{\delta}{2}\right)-f\left(x_{0}-\frac{\delta}{2}\right)=\delta f'(x_{0})+\frac{2}{3!}\left(\frac{\delta}{2}\right)^{3}f'''(x_{0})+...,$$

Вычтем первое выражение из второго

$$f\left(x_{0}+\frac{\delta}{2}\right)-f\left(x_{0}-\frac{\delta}{2}\right)=\delta f'(x_{0})+\frac{2}{3!}\left(\frac{\delta}{2}\right)^{3}f'''(x_{0})+...,$$

Поделим левую и правую части на δ

$$\frac{f(x_0 + \frac{\delta}{2}) - f(x_0 - \frac{\delta}{2})}{\delta} = f'(x_0) + \frac{1}{3!} \frac{\delta^2}{2^2} f'''(x_0) + \dots,$$

Центральная конечно-разностная схема

$$f'(x_0) = \frac{f\left(x_0 + \frac{\delta}{2}\right) - f\left(x_0 - \frac{\delta}{2}\right)}{\delta} + O(\delta^2)$$

Отбрасываем $O(\delta^2)$

$$f'(x_0) \approx \frac{f\left(x_0 + \frac{\delta}{2}\right) - f\left(x_0 - \frac{\delta}{2}\right)}{\delta}$$

Погрешность пропорциональна δ^2 .

Конечно-разностные схемы

Задания для самостоятельной проработки

1. Оценить погрешность для левой конечно-разностной схемы расчета производной функции.

2. Предложите способ расчета производной с погрешностью, меньшей, чем у центральной конечно-разностной схемы. Оцените погрешность метода.

Уравнения Максвелла

Уравнения Максвелла

$$rot \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \mathbf{j}$$

$$rot \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$div \mathbf{D} = \rho$$

$$\mathbf{j} = \sigma(\mathbf{E} + \mathbf{E}_{ct}) =$$

$$= \sigma \mathbf{E} + \mathbf{j}_{ct}$$

 $\operatorname{div} \mathbf{B} = 0$

$$\mathbf{D} = \varepsilon \varepsilon_0 \mathbf{E}$$

$$\mathbf{B} = \mu \mu_0 \mathbf{H}$$

$$\operatorname{rot} \mathbf{F} = \begin{vmatrix} \mathbf{x_0} & \mathbf{y_0} & \mathbf{z_0} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_x & F_y & F_z \end{vmatrix}$$

$$\operatorname{div} \mathbf{F} = \frac{\partial F_{x}}{\partial x} + \frac{\partial F_{y}}{\partial y} + \frac{\partial F_{z}}{\partial z}$$

Оператор набла (♥) или оператор Гамильтона

$$\nabla \equiv \mathbf{x_0} \frac{\partial}{\partial x} + \mathbf{y_0} \frac{\partial}{\partial y} + \mathbf{z_0} \frac{\partial}{\partial z}$$

$$\nabla \varphi = \mathbf{x_0} \frac{\partial \varphi}{\partial x} + \mathbf{y_0} \frac{\partial \varphi}{\partial y} + \mathbf{z_0} \frac{\partial \varphi}{\partial z} = ?$$

ф - скалярное поле

$$\nabla \varphi = \mathbf{x_0} \frac{\partial \varphi}{\partial x} + \mathbf{y_0} \frac{\partial \varphi}{\partial y} + \mathbf{z_0} \frac{\partial \varphi}{\partial z} = \operatorname{grad} \varphi$$

ф - скалярное поле

$$\nabla \cdot \mathbf{a} = \nabla_x a_x + \nabla_y a_y + \nabla_z a_z = \frac{\partial a_x}{\partial x} + \frac{\partial a_y}{\partial y} + \frac{\partial a_z}{\partial z} = ?$$

а — векторное поле

$$\nabla \cdot \mathbf{a} = \nabla_x a_x + \nabla_y a_y + \nabla_z a_z =$$

$$= \frac{\partial a_x}{\partial x} + \frac{\partial a_y}{\partial y} + \frac{\partial a_z}{\partial z} = \operatorname{div} \mathbf{a}$$

а — векторное поле

$$\nabla \times \mathbf{a} = \begin{vmatrix} \mathbf{x_0} & \mathbf{y_0} & \mathbf{z_0} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ a_x & a_y & a_z \end{vmatrix} = \operatorname{rot} \mathbf{a}$$

а — векторное поле

Уравнения Максвелла

$$\nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \mathbf{j}$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \cdot \mathbf{D} = \rho$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\mathbf{j} = \sigma(\mathbf{E} + \mathbf{E}_{ct}) =$$

$$= \sigma \mathbf{E} + \mathbf{j}_{ct}$$

$$\mathbf{D} = \varepsilon \varepsilon_0 \mathbf{E}$$

$$\mathbf{B} = \mu \mu_0 \mathbf{H}$$

$$\nabla \times \mathbf{F} = \operatorname{rot} \mathbf{F}$$

$$\nabla \cdot \mathbf{F} = \operatorname{div} \mathbf{F}$$

Одномерный метод FDTD

FDTD. Одномерный случай. Закон Ампера

$$\varepsilon \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} + \mathbf{j} = \nabla \times \mathbf{H} =$$

$$= \begin{vmatrix} \mathbf{x_0} & \mathbf{y_0} & \mathbf{z_0} \\ \frac{\partial}{\partial x} & 0 & 0 \\ H_x & H_y & H_z \end{vmatrix} = ?$$

FDTD. Одномерный случай. Закон Ампера

$$\varepsilon \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} + \mathbf{j} = \nabla \times \mathbf{H} =$$

$$= \begin{vmatrix} \mathbf{x_0} & \mathbf{y_0} & \mathbf{z_0} \\ \frac{\partial}{\partial x} & 0 & 0 \\ H_x & H_y & H_z \end{vmatrix} = \mathbf{x_0} \cdot 0 - \mathbf{y_0} \frac{\partial H_z}{\partial x} + \mathbf{z_0} \frac{\partial H_y}{\partial x}$$

FDTD. Одномерный случай. Закон Фарадея

$$-\mu\mu_0\frac{\partial \mathbf{H}}{\partial t} = \nabla \times \mathbf{E} =$$

$$= \begin{vmatrix} \mathbf{x_0} & \mathbf{y_0} & \mathbf{z_0} \\ \frac{\partial}{\partial x} & 0 & 0 \\ E_x & E_y & E_z \end{vmatrix} = ?$$

FDTD. Одномерный случай. Закон Фарадея

$$-\mu \mu_0 \frac{\partial \mathbf{H}}{\partial t} = \nabla \times \mathbf{E} =$$

$$\mathbf{z_0}$$

$$= \begin{vmatrix} \mathbf{x_0} & \mathbf{y_0} & \mathbf{z_0} \\ \frac{\partial}{\partial x} & 0 & 0 \\ E_x & E_y & E_z \end{vmatrix} = \mathbf{x_0} \cdot 0 - \mathbf{y_0} \frac{\partial E_z}{\partial x} + \mathbf{z_0} \frac{\partial E_y}{\partial x}$$

Объединяем предыдущие уравнения

$$\varepsilon \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} + \mathbf{j} = -\mathbf{y_0} \frac{\partial H_z}{\partial x} + \mathbf{z_0} \frac{\partial H_y}{\partial x}$$

$$-\mu \mu_0 \frac{\partial \mathbf{H}}{\partial t} = -\mathbf{y_0} \frac{\partial E_z}{\partial x} + \mathbf{z_0} \frac{\partial E_y}{\partial x}$$

$$\mathbf{x_0} \varepsilon \varepsilon_0 \frac{\partial E_x}{\partial t} + \mathbf{y_0} \varepsilon \varepsilon_0 \frac{\partial E_y}{\partial t} + \mathbf{z_0} \varepsilon \varepsilon_0 \frac{\partial E_z}{\partial t} + \mathbf{x_0} j_x + \mathbf{y_0} j_y + \mathbf{z_0} j_z = -\mathbf{y_0} \frac{\partial H_z}{\partial x} + \mathbf{z_0} \frac{\partial H_y}{\partial x}$$

$$-\mathbf{x}_{\mathbf{0}}\mu\mu_{0}\frac{\partial H_{x}}{\partial t}-\mathbf{y}_{\mathbf{0}}\mu\mu_{0}\frac{\partial H_{y}}{\partial t}-\mathbf{z}_{\mathbf{0}}\mu\mu_{0}\frac{\partial H_{z}}{\partial t}=-\mathbf{y}_{\mathbf{0}}\frac{\partial E_{z}}{\partial x}+\mathbf{z}_{\mathbf{0}}\frac{\partial E_{y}}{\partial x}$$

Или в скалярном виде:

$$\mu \mu_0 \frac{\partial H_x}{\partial t} = 0$$

$$\mu \mu_0 \frac{\partial H_y}{\partial t} = \frac{\partial E_z}{\partial x}$$

$$-\mu\mu_0 \frac{\partial H_z}{\partial t} = \frac{\partial E_y}{\partial x}$$

$$\varepsilon \varepsilon_0 \frac{\partial E_x}{\partial t} + j_x = 0$$

$$\varepsilon \varepsilon_0 \frac{\partial E_z}{\partial t} + j_z = \frac{\partial H_y}{\partial x}$$

$$\varepsilon \varepsilon_0 \frac{\partial E_y}{\partial t} + j_y = -\frac{\partial H_z}{\partial x}$$

Или в скалярном виде:

$$\mu \mu_0 \frac{\partial H_x}{\partial t} = 0$$

$$\mu \mu_0 \frac{\partial H_y}{\partial t} = \frac{\partial E_z}{\partial x}$$

$$-\mu \mu_0 \frac{\partial H_z}{\partial t} = \frac{\partial E_y}{\partial x}$$

$$\varepsilon \varepsilon_0 \frac{\partial E_x}{\partial t} + j_x = 0$$

$$\varepsilon \varepsilon_0 \frac{\partial E_z}{\partial t} + j_z = \frac{\partial H_y}{\partial x}$$

$$\varepsilon \varepsilon_0 \frac{\partial E_y}{\partial t} + j_y = -\frac{\partial H_z}{\partial x}$$

Пусть существуют только E_{z} и H_{y} компоненты поля

$$\mu \mu_0 \frac{\partial H_y}{\partial t} = \frac{\partial E_z}{\partial x}$$

$$\varepsilon \varepsilon_0 \frac{\partial E_z}{\partial t} + j_z = \frac{\partial H_y}{\partial x}$$

Дискретизация

$$E_z(x, t) = E_z(m\Delta x, q\Delta t) = E_z^q[m]$$

$$H_y(x, t) = H_y(m\Delta x, q\Delta t) = H_y^q[m]$$

 Δx — пространственное смещение

 Δt — временное смещение

т — номер пространственного шага

q — номер временного шага

Трехмерная ячейка для метода FDTD (ячейка Йи, Yee cell)

Трехмерная ячейка для метода FDTD (ячейка Йи, Yee cell)

Пространственно-временная сетка для одномерного случая

Переходим к конечным разностям. Закон Фарадея

$$\mu \mu_0 \frac{\partial H_y}{\partial t} \bigg|_{(m+1/2)\Delta x, q\Delta t} = \frac{\partial E_z}{\partial x} \bigg|_{(m+1/2)\Delta x, q\Delta t}$$

Переходим к конечным разностям. Закон Фарадея

$$\mu \mu_0 \frac{H_y^{q+1/2} [m+1/2] - H_y^{q-1/2} [m+1/2]}{\Delta_t} =$$

$$=\frac{E_z^q[m+1]-E_z^q[m]}{\Delta_x}$$

Переходим к конечным разностям. Закон Фарадея

Из предыдущего уравнения

$$H_y^{q+1/2}[m+1/2]=$$

$$=H_{y}^{q-1/2}[m+1/2]+\frac{\Delta_{t}}{\mu\mu_{0}\Delta_{x}}\left(E_{z}^{q}[m+1]-E_{z}^{q}[m]\right)$$

Пространственно-временная сетка для одномерного случая

Переходим к конечным разностям. Закон Ампера

$$\left(\varepsilon \varepsilon_{0} \frac{\partial E_{z}}{\partial t} + j_{z}\right) = \frac{\partial H_{y}}{\partial x} = \frac{\partial H_{y}}{\partial x} = \frac{\partial H_{y}}{\partial x}$$

Переходим к конечным разностям. Закон Ампера

$$\varepsilon \varepsilon_0 \frac{E_z^{q+1}[m] - E_z^q[m]}{\Delta_t} + j_z^{q+1/2}[m] =$$

$$=\frac{H_{y}^{q+1/2}[m+1/2]-H_{y}^{q+1/2}[m-1/2]}{\Delta_{x}}$$

Переходим к конечным разностям. Закон Ампера

$$E_z^{q+1}[m] =$$

$$= E_{z}^{q}[m] + \frac{\Delta_{t}}{\varepsilon \varepsilon_{0} \Delta_{x}} \left(H_{y}^{q+1/2}[m+1/2] - H_{y}^{q+1/2}[m-1/2] \right) -$$

$$-\frac{\Delta_t}{\varepsilon \varepsilon_0} j_z^{q+1/2} [m]$$

Основные единицы системы СИ

- Длина м
- Macca кг
- Время с
- Сила тока А
- Температура К
- Количество вещества моль
- Сила света кд

$$\frac{\Delta_t}{\varepsilon \varepsilon_0} j_z^{q+1/2} \Rightarrow \left[\frac{c \cdot M \cdot A}{\Phi \cdot M^2} \right] = \left[\frac{c \cdot A}{\Phi \cdot M} \right]$$

$$\left[\boldsymbol{\Phi}\right] = \left[\frac{\boldsymbol{A}^2 \cdot \boldsymbol{c}^4}{\kappa \boldsymbol{c} \cdot \boldsymbol{M}^2}\right]$$

$$\frac{\Delta_{t}}{\varepsilon \varepsilon_{0}} j_{z}^{q+1/2} \Rightarrow \left[\frac{c \cdot M \cdot A}{\Phi \cdot M^{2}} \right] = \left[\frac{c \cdot A}{\Phi \cdot M} \right] = \left[\frac{c \cdot A \cdot \kappa z \cdot M^{2}}{M \cdot A^{2} \cdot c^{4}} \right] = \left[\frac{c \cdot A \cdot \kappa z \cdot M^{2}}{M \cdot A^{2} \cdot c^{4}} \right] = \left[\frac{c \cdot A \cdot \kappa z \cdot M^{2}}{M \cdot A^{2} \cdot c^{4}} \right] = \left[\frac{c \cdot A \cdot \kappa z \cdot M^{2}}{M \cdot A^{2} \cdot c^{4}} \right] = \left[\frac{c \cdot A \cdot \kappa z \cdot M^{2}}{M \cdot A^{2} \cdot c^{4}} \right] = \left[\frac{c \cdot A \cdot \kappa z \cdot M^{2}}{M \cdot A^{2} \cdot c^{4}} \right] = \left[\frac{c \cdot A \cdot \kappa z \cdot M^{2}}{M \cdot A^{2} \cdot c^{4}} \right] = \left[\frac{c \cdot A \cdot \kappa z \cdot M^{2}}{M \cdot A^{2} \cdot c^{4}} \right] = \left[\frac{c \cdot A \cdot \kappa z \cdot M^{2}}{M \cdot A^{2} \cdot c^{4}} \right] = \left[\frac{c \cdot A \cdot \kappa z \cdot M^{2}}{M \cdot A^{2} \cdot c^{4}} \right] = \left[\frac{c \cdot A \cdot \kappa z \cdot M^{2}}{M \cdot A^{2} \cdot c^{4}} \right] = \left[\frac{c \cdot A \cdot \kappa z \cdot M^{2}}{M \cdot A^{2} \cdot c^{4}} \right] = \left[\frac{c \cdot A \cdot \kappa z \cdot M^{2}}{M \cdot A^{2} \cdot c^{4}} \right] = \left[\frac{c \cdot A \cdot \kappa z \cdot M^{2}}{M \cdot A^{2} \cdot c^{4}} \right] = \left[\frac{c \cdot A \cdot \kappa z \cdot M^{2}}{M \cdot A^{2} \cdot c^{4}} \right] = \left[\frac{c \cdot A \cdot \kappa z \cdot M^{2}}{M \cdot A^{2} \cdot c^{4}} \right] = \left[\frac{c \cdot A \cdot \kappa z \cdot M^{2}}{M \cdot A^{2} \cdot c^{4}} \right] = \left[\frac{c \cdot A \cdot \kappa z \cdot M^{2}}{M \cdot A^{2} \cdot c^{4}} \right] = \left[\frac{c \cdot A \cdot \kappa z \cdot M^{2}}{M \cdot A^{2} \cdot c^{4}} \right] = \left[\frac{c \cdot A \cdot \kappa z \cdot M^{2}}{M \cdot A^{2} \cdot c^{4}} \right] = \left[\frac{c \cdot A \cdot \kappa z \cdot M^{2}}{M \cdot A^{2} \cdot c^{4}} \right]$$

$$= \left[\frac{M \cdot K2}{A \cdot c^3} \right] = \left[\frac{B}{M} \right]$$

$$[B] = \left[\frac{M^2 \cdot K2}{A \cdot c^3} \right]$$

Формулы для метода конечных разностей во временной области

$$H_{y}^{q+1/2}[m+1/2] = H_{y}^{q-1/2}[m+1/2] + \frac{\Delta_{t}}{\mu \mu_{0} \Delta_{x}} \left(E_{z}^{q}[m+1] - E_{z}^{q}[m] \right)$$

$$E_{z}^{q+1}[m] = E_{z}^{q}[m] + \frac{\Delta_{t}}{\epsilon \epsilon_{0} \Delta_{x}} \left(H_{y}^{q+1/2}[m+1/2] - H_{y}^{q+1/2}[m-1/2] \right) - \frac{\Delta_{t}}{\epsilon \epsilon_{0}} j_{z}^{q+1/2}[m]$$

Учет источника сигнала

$$E_{z}^{q+1}[m] \leftarrow E_{z}^{q}[m] + \frac{\Delta_{t}}{\epsilon \epsilon_{0} \Delta_{x}} \left(H_{y}^{q+1/2}[m+1/2] - H_{y}^{q+1/2}[m-1/2] \right)$$

$$E_z^{q+1}[m] \leftarrow E_z^{q+1}[m] - \frac{\Delta_t}{\varepsilon \varepsilon_0} j_z^{q+1/2}[m]$$

ИЛИ

$$E_z^{q+1}[m] \leftarrow E_z^{q+1}[m] + E_{z cm}^{q+1/2}[m]$$

Критерий устойчивости Куранта-Фридриха-Леви

$$v_{max} \Delta_{t} \leq \frac{1}{\sqrt{\Delta_{x}^{-2} + \Delta_{y}^{-2} + \Delta_{z}^{-2}}}$$

$$v_{max} = \frac{C}{\sqrt{\epsilon_{min} \mu_{min}}}$$

Если
$$\Delta_x = \Delta_y = \Delta_z = \Delta$$

$$v_{max} \Delta_t \leq \frac{\Delta}{\sqrt{N}}$$

N — размерность пространства (N = 1, 2, 3)

Критерий устойчивости для одномерной задачи

 $c\Delta_t$ — максимальное расстояние, которое может пройти волна за один временной шаг Δ_t в вакууме.

Число Куранта
$$S_c = c\Delta_t / \Delta_x$$

Условие устойчивости

$$C\Delta_t \leq \Delta_x$$

ИЛИ

$$S_{c} \leq 1$$

$$H_{y}^{q+1/2}[m+1/2] =$$

$$= H_{y}^{q-1/2}[m+1/2] + \frac{\Delta_{t}}{\mu \mu_{0} \Delta_{x}} E_{z}^{q}[m+1] - E_{z}^{q}[m]$$

$$E_{z}^{q+1}[m] = E_{z}^{q}[m] + \frac{\Delta_{t}}{\epsilon \epsilon_{0} \Delta_{x}} \left(H_{y}^{q+1/2}[m+1/2] - H_{y}^{q+1/2}[m-1/2] \right)$$

$$\frac{1}{\mu \mu_0} \frac{\Delta_t}{\Delta_x} = \frac{1}{\mu \mu_0} \sqrt{\frac{\epsilon_0 \mu_0}{\epsilon_0 \mu_0}} \Delta_x = \frac{1}{\mu} \sqrt{\frac{\epsilon_0}{\mu_0}} \frac{c \Delta_t}{\Delta_x} = \frac{1}{\mu W_0} S_c$$

$$W_0 = \sqrt{\mu_0/\epsilon_0}$$

 волновое сопротивление свободного пространства

$$c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$$

- скорость света в вакууме

$$\mu_0 = 4\pi \cdot 10^{-7} \text{ }\Gamma\text{H/M}$$
 $\varepsilon_0 = 1 / (\mu_0 c^2) = 8.85 \cdot 10^{-12} \text{ }\Phi/\text{M}$

$$\frac{1}{\varepsilon \varepsilon_0} \frac{\Delta_t}{\Delta_x} = \frac{1}{\varepsilon \varepsilon_0} \sqrt{\frac{\varepsilon_0 \mu_0}{\varepsilon_0 \mu_0}} \Delta_x = \frac{1}{\varepsilon} \sqrt{\frac{\mu_0}{\varepsilon_0}} \frac{c \Delta_t}{\Delta_x} = \frac{W_0}{\varepsilon} S_c$$

$$W_0 = \sqrt{\mu_0/\epsilon_0}$$

$$c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$$

 волновое сопротивление свободного пространства

- скорость света в вакууме

$$H_y^{q+1/2}[m+1/2]=$$

$$=H_{y}^{q-1/2}[m+1/2]+(E_{z}^{q}[m+1]-E_{z}^{q}[m])\frac{1}{\mu W_{0}}S_{c}$$

$$E_z^{q+1}[m] =$$

$$= E_z^q[m] + \left(H_y^{q+1/2}[m+1/2] - H_y^{q+1/2}[m-1/2]\right) \frac{W_0}{\varepsilon} S_c$$

Расчет полей H_y и E_z в одномерном методе FDTD

Задания для самостоятельной проработки

3. Получите формулы для одномерного метода FDTD в случае, если существуют компоненты поля E_y , H_z .

Источник в разностной схеме

$$E_{\text{\tiny{IUCT.}}}(t) = E_{\text{\tiny{IUCT.}}}(q\Delta_t) = e^{-\left(\frac{q\Delta_t - 30\Delta_t}{10\Delta_t}\right)^2} = e^{-\left(\frac{q - 30}{10}\right)^2} = E_{\text{\tiny{IUCT.}}}[q]$$

Схема алгоритма FDTD

```
Начало
Задание начальных условий E_{z}^{\ 0}, H_{v}^{\ 1/2}
Цикл по времени t = [1...maxTime - 1]:
      Цикл по пространству m = [0...maxSize - 2]:
            Pасчет H_v^{q+1/2}
      Цикл по пространству m = [1...maxSize - 1]:
            Pасчет E_{z}^{q+1}
      Ввод поля с помощью источников возбуждения
Вывод результатов
Конец
```

Реализация одномерного FDTD на Python

Распространение импульса в свободном пространстве.

Число Куранта равно 1.

```
fdtd_first_version_01.py
fdtd_first_version_02.py
fdtd_first_version_03.py
fdtd_first_version_04.py
fdtd_first_version_05.py
fdtd_first_version_06.py
```

Измерение скорости распространения волны (fdtd_first_version_speed.py)

Отображение компонент поля Е и Н

Достоверность расчета

- Скорость распространение волны в вакууме равна скорости света.
- Коэффициент отражения электрической компоненты поля от РЕС равен -1.
- Коэффициент отражения электрической компоненты поля от РМС равен +1.
- Коэффициент отражения магнитной компоненты поля от РЕС равен +1.
- Коэффициент отражения магнитной компоненты поля от РМС равен -1.

Простейшие поглощающие граничные условия

Простейшее поглощающие граничные условия

Работают только для $S_c = 1$

$$E_z^{q+1}[0] = E_z^q[1]$$

$$H_y^{q+1/2}[\text{end}] = H_y^{q-1/2}[\text{end}-1]$$

Простейшее поглощающие граничные условия

Демонстрация поглощающих условий

Моделирование распространения электромагнитной волны в неоднородных средах

Геометрия решаемой задачи (fdtd_heterogen_01.py)

Конечно-разностная схема

$$H_y^{q+1/2}[m+1/2]=$$

$$=H_{y}^{q-1/2}[m+1/2]+(E_{z}^{q}[m+1]-E_{z}^{q}[m])\frac{1}{\mu W_{0}}S_{c}$$

$$E_z^{q+1}[m] =$$

$$= E_z^q[m] + \left(H_y^{q+1/2}[m+1/2] - H_y^{q+1/2}[m-1/2]\right) \frac{W_0}{\varepsilon} S_c$$

Учет параметров среды

Если
$$ε = f(m)$$

$$Ez[m] = Ez[m] + (Hy[m] - Hy[m - 1]) * Sc * W0 / eps[m]$$

$$Hy[m] = Hy[m] + (Ez[m + 1] - Ez[m]) * Sc / (W0 * mu[m])$$

Структура массивов полей

Структура массивов полей

Демонстрация моделирования распространения электромагнитной волны в неоднородных средах

Коэффициенты отражения и прохождения

Для волны, падающей по нормали:

Коэффициент отражения:

$$\Gamma = \frac{\dot{E}_{omp}}{\dot{E}_{nad}} = \frac{W_2 - W_1}{W_2 + W_1}$$

Коэффициент прохождения:

$$T = \frac{E_{np}}{\dot{E}_{na\partial}} = \frac{2W_2}{W_2 + W_1}$$

$$W = \sqrt{\frac{\mu \mu_0}{\varepsilon \varepsilon_0}} = W_0 \sqrt{\frac{\mu}{\varepsilon}}$$

Коэффициенты отражения и прохождения идеального диэлектрика

Для границы раздела двух диэлектриков $\mu_{_1} = \mu_{_2} = 1$

Коэффициент отражения:

$$\Gamma = \frac{\sqrt{\varepsilon_1} - \sqrt{\varepsilon_2}}{\sqrt{\varepsilon_2} + \sqrt{\varepsilon_1}}$$

Коэффициент прохождения:

$$T = \frac{2\sqrt{\varepsilon_1}}{\sqrt{\varepsilon_2} + \sqrt{\varepsilon_1}}$$

Погрешность из-за дискретной сетки

Погрешность из-за дискретной сетки

$$\mathbf{E}_{\text{полн}} = \mathbf{E}_{\text{пад}} + \mathbf{E}_{\text{расс}}$$

$$\mathbf{H}_{\text{полн}} = \mathbf{H}_{\text{пад}} + \mathbf{H}_{\text{расс}}$$

 $\mathbf{E}_{\text{пад}}$, $\mathbf{H}_{\text{пад}}$ могут быть рассчитаны в любой момент времени в любой точке пространства.

 $\mathbf{E}_{\text{расс}}$, $\mathbf{H}_{\text{расс}}$ изначально не известны.

$$\mathbf{E}_{\text{полн}} = \mathbf{E}_{\text{пад}} + \mathbf{E}_{\text{расс}}$$
 $\mathbf{H}_{\text{полн}} = \mathbf{H}_{\text{пад}} + \mathbf{H}_{\text{расс}}$

Метод Total-Field / Scattered-Field. 90 Левая граница

 $H_y[N-1+1/2] = H_y[N-1/2]$ — последняя ячейка в области рассеянного поля.

 $E_{z}[N]$ — первая ячейка в области полного поля.

Важно! Только рассеянное поле должно использоваться при обновлении ячеек в области рассеянного поля.

Только <u>полное</u> поле должно использоваться при обновлении ячеек в области <u>полного</u> поля

Рассмотрим электрическую компоненту поля $E_{_{\scriptscriptstyle Z}}$

проблема
$$E_{z}^{noлh}[N] = E_{z}^{q}[N] + \frac{\Delta_{t}}{\epsilon \epsilon_{0} \Delta_{x}} \left(\frac{\sum_{j=1}^{nonh} \frac{pacc}{M_{y}^{q+1/2}[N+1/2] - H_{y}^{q+1/2}[N-1/2]} \right)$$

Введем дополнительный магнитный источник в точке $(N-1/2)\Delta x$

$$\underbrace{E_{z}^{q+1}[N]}_{z} = \underbrace{E_{z}^{q}[N]}_{z} +$$

$$+\frac{\Delta_{t}}{\varepsilon \varepsilon_{0} \Delta_{x}} \left(\underbrace{H_{y}^{q+1/2} [N+1/2]}_{\text{noah}} - \underbrace{\left\{ \underbrace{H_{y}^{q+1/2} [N-1/2]}_{\text{pacc}} + \underbrace{H_{y}^{inc} [N-1/2,q+1/2]}_{\text{pacc}} \right\} \right)$$

Введем дополнительный магнитный источник в точке $(N-1/2)\Delta x$

$$\underbrace{E_{z}^{q+1}[N]}_{z} = \underbrace{E_{z}^{q}[N]}_{z} +$$

$$+ \frac{\Delta_{t}}{\varepsilon \varepsilon_{0} \Delta_{x}} \underbrace{ \overbrace{H_{y}^{q+1/2}[N+1/2]}^{\text{nooh}} - \underbrace{\overbrace{H_{y}^{q+1/2}[N-1/2]}^{\text{pacc}} + \underbrace{\left(-\frac{1}{W} E_{z}^{\text{inc}}[N-1/2,q+1/2] \right) \right)}^{\text{nooh}} }$$

$$E_{z}^{q+1}[N] \leftarrow E_{z}^{q}[N] + \frac{\Delta_{t}}{\epsilon \epsilon_{0} \Delta_{x}} \left(H_{y}^{q+1/2}[N+1/2] - H_{y}^{q+1/2}[N-1/2] \right)$$

$$E_z^{q+1}[N] \leftarrow E_z^{q+1}[N] + \frac{\Delta_t}{\varepsilon \varepsilon_0 \Delta_x} \frac{1}{W} E_z^{inc}[N-1/2,q+1/2]$$

$$E_{z}^{q+1}[N] = E_{z}^{q+1}[N] + \frac{\Delta_{t}}{\epsilon \epsilon_{0} \Delta_{x}} \frac{1}{W} E_{z}^{inc}[N-1/2, q+1/2]$$

$$W = \sqrt{\frac{\mu \mu_0}{\epsilon \epsilon_0}} = W_0 \sqrt{\frac{\mu}{\epsilon}} \qquad \frac{\Delta_t}{\epsilon \epsilon_0 \Delta_x} = \frac{W_0 S_c}{\epsilon}$$

$$E_z^{q+1}[N] = E_z^{q+1}[N] + \frac{S_c}{\sqrt{\varepsilon \mu}} E_z^{inc}[N-1/2, q+1/2]$$

Для свободного пространства и если $S_c = 1$:

$$E_z^{q+1}[N] = E_z^{q+1}[N] + E_z^{inc}[N-1/2,q+1/2]$$

$$\underbrace{H_{y}^{q+1/2}[N-1/2]}_{pacc} = \underbrace{H_{y}^{q-1/2}[N-1/2]}_{pacc} + \underbrace{H_{y}^{q+1/2}[N-1/2]}_{pacc} + \underbrace{H_{y}^{q+1/2}[N-1/2]}_{pacc} + \underbrace{H_{y}^{q-1/2}[N-1/2]}_{pacc} + \underbrace{H_{y}^{q-1/2}[N-1/2]}_{pacc}$$

$$+\frac{\Delta_{t}}{\mu \mu_{0} \Delta_{x}} \sqrt{\frac{\sum_{z=1}^{nonh} \frac{nad}{nad}}{E_{z}^{q}[N] - E_{z}^{inc}[N,q]} - E_{z}^{q}[N-1]}$$

$$H_{y}^{q+1/2}[N-1/2] \leftarrow H_{y}^{q-1/2}[N-1/2] + \frac{\Delta_{t}}{\mu \mu_{0} \Delta_{x}} \left(E_{z}^{q}[N] - E_{z}^{q}[N-1] \right)$$

$$H_y^{q+1/2}[N-1/2] \leftarrow H_y^{q+1/2}[N-1/2] - \frac{\Delta_t}{\mu \mu_0 \Delta_x} E_z^{inc}[N,q]$$

Для свободного пространства и $S_c = 1$:

$$H_{y}^{q+1/2}[N-1/2] \leftarrow H_{y}^{q-1/2}[N-1/2] + \frac{1}{W_{0}} (E_{z}^{q}[N] - E_{z}^{q}[N-1])$$

$$H_y^{q+1/2}[N-1/2] \leftarrow H_y^{q+1/2}[N-1/2] - \frac{1}{W_0} E_z^{inc}[N,q]$$

Поле на границе Total-Field / Scattered-Field. Левая граница

$$H_y^{q+1/2}[N-1/2] \leftarrow H_y^{q+1/2}[N-1/2] - \frac{\Delta_t}{\mu \mu_0 \Delta_x} E_z^{inc}[N,q]$$

$$E_z^{q+1}[N] \leftarrow E_z^{q+1}[N] + \frac{\Delta_t}{\epsilon \epsilon_0 \Delta_x} \frac{1}{W} E_z^{inc}[N-1/2,q+1/2]$$

Поле на границе Total-Field / Scattered-Field. Левая граница

$$H_y^{q+1/2}[N-1/2] \leftarrow H_y^{q+1/2}[N-1/2] - \frac{S_c}{W_0 \mu} E_z^{inc}[N,q]$$

$$E_z^{q+1}[N] \leftarrow E_z^{q+1}[N] + \frac{S_c}{\sqrt{\varepsilon \mu}} E_z^{inc}[N-1/2, q+1/2]$$

Поле на границе Total-Field / Scattered-Field $_{103}$ для свободного пространства и S_{c} =1. Левая граница

$$H_y^{q+1/2}[N-1/2] \leftarrow H_y^{q+1/2}[N-1/2] - \frac{1}{W_0} E_z^{inc}[N,q]$$

$$E_z^{q+1}[N] \leftarrow E_z^{q+1}[N] + E_z^{inc}[N-1/2,q+1/2]$$

Mетод Total-Field / Scattered-Field. ¹⁰⁴ Правая граница

 $H_y[N-1+1/2] = H_y[N-1/2]$ — последняя ячейка в области полного поля.

 $E_{z}[N]$ — первая ячейка в области рассеянного поля.

Поле на границе Total-Field / Scattered-Field. Правая граница

$$H_y^{q+1/2}[N-1/2] \leftarrow H_y^{q+1/2}[N-1/2] + \frac{\Delta_t}{\mu \mu_0 \Delta_x} E_z^{inc}[N,q]$$

$$E_{z}^{q+1}[N] \leftarrow E_{z}^{q+1}[N] - \frac{\Delta_{t}}{\epsilon \epsilon_{0} \Delta_{x}} \frac{1}{W} E_{z}^{inc}[N-1/2, q+1/2]$$

Поле на границе Total-Field / Scattered-Field. Правая граница

$$H_y^{q+1/2}[N-1/2] \leftarrow H_y^{q+1/2}[N-1/2] + \frac{S_c}{W_0 \mu} E_z^{inc}[N,q]$$

$$E_z^{q+1}[N] \leftarrow E_z^{q+1}[N] - \frac{S_c}{\sqrt{\varepsilon \mu}} E_z^{inc}[N-1/2,q+1/2]$$

Поле на границе Total-Field / Scattered-Field ₁₀₇ для свободного пространства и S_c=1. Правая граница

$$H_y^{q+1/2}[N-1/2] \leftarrow H_y^{q+1/2}[N-1/2] + \frac{1}{W_0} E_z^{inc}[N,q]$$

$$E_z^{q+1}[N] \leftarrow E_z^{q+1}[N] - E_z^{inc}[N-1/2,q+1/2]$$

Схема алгоритма FDTD с использованием метода Total Field / Scattered field

```
Начало
Задание начальных условий E_z^{0}, H_v^{1/2}
Цикл по времени t = [0...maxTime - 1]:
      Цикл по пространству m = [0...maxSize - 2]:
             Pасчет H_v^{q+1/2}
      Ввод поля H<sup>inc</sup>[N, t]
      Цикл по пространству m = [1...maxSize - 1]:
             Pасчет E_z^{q+1}
      Ввод поля E^{inc}[N-1/2, t+1/2]
Вывод результатов
Конец
```

Уравнение плоской волны для гауссова сигнала

Волновое уравнение

Волновое уравнение при отсутствии сторонних токов:

$$\nabla^2 \mathbf{E} - \frac{1}{v^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} = 0 \qquad \nabla^2 \mathbf{H} - \frac{1}{v^2} \frac{\partial^2 \mathbf{H}}{\partial t^2} = 0$$

Одномерное волновое уравнение

f — одномерная функция

$$\nabla^2 f - \frac{1}{v^2} \frac{\partial^2 f}{\partial t^2} = 0$$

$$\frac{\partial^2 f(x,t)}{\partial x^2} - \frac{1}{v^2} \frac{\partial^2 f(x,t)}{\partial t^2} = 0$$

Решение одномерного волнового уравнения

 $f(\xi)$ — решение волнового уравнения, если:

- $f(\xi)$ дважды дифференцируема
- ξ можно заменить на $t \pm x / v$ (для одномерного случая)

$$v = \frac{1}{\sqrt{\mu \mu_0 \varepsilon \varepsilon_0}}$$

$$f(\xi) = f(t \pm x / v) = f(x, t)$$

Гауссов импульс в дискретной форме

$$f(t) = f(q \Delta_t) = e^{-\left(\frac{(q-d_g)\Delta_t}{w_g \Delta_t}\right)^2} = e^{-\left(\frac{q-d_g}{w_g}\right)^2} = f[q]$$

Гауссов импульс в дискретной форме

Делаем замену t на t - x / v

$$t - \frac{x}{v} = q \Delta_t - \frac{m \Delta_x}{v} = q \Delta_t - \frac{m \Delta_x \sqrt{\varepsilon \mu}}{c} =$$

$$= \left(q - \frac{m \Delta_x \sqrt{\varepsilon \mu}}{c \Delta_t} \right) \Delta_t = \left(q - \frac{m \sqrt{\varepsilon \mu}}{S_c} \right) \Delta_t$$

Для свободного пространства и $S_c = 1$:

$$t - \frac{x}{c} = (q - m)\Delta_t$$

Уравнение плоской волны в форме гауссова импульса в дискретном виде

$$E_z^{\text{inc}}[m,q] = e^{-\left(\frac{(q-m\sqrt{\epsilon\mu}/S_c)\Delta_t-d_g\Delta_t}{w_g\Delta_t}\right)^2} = e^{-\left(\frac{(q-m\sqrt{\epsilon\mu}/S_c)-d_g}{w_g}\right)^2}$$

$$H_y^{\text{inc}}[m,q] = -\frac{1}{W} E_z^{\text{inc}}[m,q] = -\frac{1}{W} e^{-\left(\frac{(q-m\sqrt{\epsilon\mu}/S_c)-d_g}{W_g}\right)^2}$$

Уравнение плоской волны в форме гауссова импульса в дискретном виде

Для свободного пространства и $S_c = 1$:

$$E_z^{\text{inc}}[m,q] = e^{-\left(\frac{(q-m)\Delta_t - d_g\Delta_t}{w_g\Delta_t}\right)^2} = e^{-\left(\frac{(q-m) - d_g}{w_g}\right)^2}$$

$$H_y^{\text{inc}}[m,q] = -\frac{1}{W_0} E_z^{\text{inc}}[m,q] = -\frac{1}{W_0} e^{-\left(\frac{(q-m)-d_g}{W_g}\right)^2}$$

Демонстрации метода Total Field / Scattered Field

Демонстрация метода TFSF (fdtd_tfsf_gauss.py)

Источники при использовании метода полного поля / рассеянного поля. Левая граница

Поле на границе Total-Field / Scattered-Field

Пусть для введенного источника x = 0 соответствует N-й ячейке

$$H_{y}^{q+1/2}[N-1/2] = H_{y}^{q+1/2}[N-1/2] - \frac{1}{W_{0}}E_{z}^{inc}[0,q]$$

$$E_z^{q+1}[N] = E_z^{q+1}[N] + E_z^{inc}[-1/2, q+1/2]$$

Источники для метода Total-Field / Scattered-Field

$$E_z^{\text{inc}}[-1/2,q+1/2]=e^{-\left(\frac{((q+0.5)-(-0.5))-d_g}{w_g}\right)^2}$$

$$E_z^{\text{inc}}[0,q]=e^{-\left(\frac{q-d_g}{w_g}\right)^2}$$

Распространение электромагнитной волны в неоднородных средах с использованием метода TFSF (fdtd_tfsf_heterogen.py)

Метод Total Field / Scattered Field с источником, расположенным в диэлектрике (fdtd_tfsf_medium_gauss.py)

Meтод Total Field / Scattered Field с использованием двух границ (fdtd_tfsf_left_right_gauss.py)

Meтoд Total Field / Scattered Field с использованием двух границ (fdtd_tfsf_left_right_gauss_pec.py)

Метод Total Field / Scattered Field с использованием двух границ (fdtd_tfsf_layer_gauss.py)

Моделирование распространения электромагнитной волны в среде с потерями

Закон Ампера для среды с потерями

При
$$\mathbf{j}_{cr} = 0$$

$$\mathbf{j} + \varepsilon \, \varepsilon_0 \, \frac{\partial \mathbf{E}}{\partial t} = \nabla \times \mathbf{H}$$

ИЛИ

$$\sigma \mathbf{E} + \varepsilon \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} = \nabla \times \mathbf{H}$$

Закон Ампера для среды с потерями

Для одномерного случая:

$$\sigma E_z + \varepsilon \varepsilon_0 \frac{\partial E_z}{\partial t} = \frac{\partial H_y}{\partial x}$$

Закон Ампера для среды с потерями в дискретном виде

Запишем производные в дискретном виде для точки ($m\Delta_x$; (q + 1/2) Δ_t):

$$\sigma E_{z}^{q+1/2}[m] + \varepsilon \varepsilon_{0} \frac{E_{z}^{q+1}[m] - E_{z}^{q}[m]}{\Delta_{t}} =$$

$$=\frac{H_{y}^{q+1/2}[m+1/2]-H_{y}^{q+1/2}[m-1/2]}{\Delta_{x}}$$

Закон Ампера для среды с потерями в дискретном виде

проблема
$$\sigma \, E_z^{q+1/2}[m] + \epsilon \, \epsilon_0 \, \frac{E_z^{q+1}[m] - E_z^{q}[m]}{\Delta_t} =$$

$$=\frac{H_{y}^{q+1/2}[m+1/2]-H_{y}^{q+1/2}[m-1/2]}{\Delta_{x}}$$

$$E_z^{q+1/2}[m] \approx \frac{E_z^{q+1}[m] + E_z^q[m]}{2}$$

Закон Ампера для среды с потерями в дискретном виде

$$E_z^{q+1/2}[m] \approx \frac{E_z^{q+1}[m] + E_z^q[m]}{2}$$

тогда:

$$\sigma \frac{E_{z}^{q+1}[m] + E_{z}^{q}[m]}{2} + \varepsilon \varepsilon_{0} \frac{E_{z}^{q+1}[m] - E_{z}^{q}[m]}{\Delta_{t}} = \frac{H_{y}^{q+1/2}[m+1/2] - H_{y}^{q+1/2}[m-1/2]}{\Delta_{x}}$$

Расчет электрической компоненты поля для среды с потерями

$$E_{z}^{q+1}[m] = \frac{1 - \frac{\sigma \Delta_{t}}{2 \varepsilon \varepsilon_{0}}}{1 + \frac{\sigma \Delta_{t}}{2 \varepsilon \varepsilon_{0}}} E_{z}^{q}[m] + \frac{\frac{\Delta_{t}}{2 \varepsilon \varepsilon_{0}}}{1 + \frac{\sigma \Delta_{t}}{2 \varepsilon \varepsilon_{0}}} \left(H_{y}^{q+1/2}[m+1/2] - H_{y}^{q+1/2}[m-1/2]\right)$$

Расчет электрической компоненты поля для среды с потерями

Расчет электрической компоненты поля для среды с потерями

Для случая $\sigma = 0$ См/м:

$$E_z^{q+1}[m] =$$

$$= E_{z}^{q}[m] + \frac{\Delta_{t}}{\epsilon \epsilon_{0} \Delta_{y}} \left(H_{y}^{q+1/2}[m+1/2] - H_{y}^{q+1/2}[m-1/2] \right)$$

Закон Фарадея для среды с потерями

$$-\mathbf{j}_{m}-\mu\mu_{0}\frac{\partial\mathbf{H}}{\partial t}=\nabla\times\mathbf{E}$$

ИЛИ

$$-\sigma_m \mathbf{H} - \mu \mu_0 \frac{\partial \mathbf{H}}{\partial t} = \nabla \times \mathbf{E}$$

Закон Фарадея для среды с потерями

Для одномерного случая:

$$\sigma_m H_y + \mu \mu_0 \frac{\partial H_y}{\partial t} = \frac{\partial E_z}{\partial x}$$

Закон Фарадея для среды с потерями в дискретном виде

Запишем производные в дискретном виде для точки ((m + 1/2) Δ_x ; $q\Delta_t$):

проблема
$$\sigma_m H_y^q [m+1/2] + \mu \mu_0 \frac{H_y^{q+1/2} [m+1/2] - H_y^{q-1/2} [m+1/2]}{\Delta_t} = \frac{E_z^q [m+1] - E_z^q [m]}{\Delta_t}$$

$$H_y^q[m+1/2] \approx \frac{H_y^{q+1/2}[m+1/2] + H_y^{q-1/2}[m+1/2]}{2}$$

Закон Фарадея для среды с потерями в дискретном виде

$$H_y^q[m+1/2] \approx \frac{H_y^{q+1/2}[m+1/2] + H_y^{q-1/2}[m+1/2]}{2}$$

$$\sigma_{m} \frac{H_{y}^{q+1/2}[m+1/2] + H_{y}^{q-1/2}[m+1/2]}{2} + \mu \mu_{0} \frac{H_{y}^{q+1/2}[m+1/2] - H_{y}^{q-1/2}[m+1/2]}{\Delta_{t}} = \frac{E_{z}^{q}[m+1] - E_{z}^{q}[m]}{\Delta_{x}}$$

Расчет магнитной компоненты поля для среды с потерями

для среды с потерями
$$H_y^{q+1/2}[m+1/2] = \frac{1 - \frac{\sigma_m \Delta_t}{2 \mu \mu_0}}{1 + \frac{\sigma_m \Delta_t}{2 \mu \mu_0}} H_y^{q-1/2}[m+1/2] + \frac{\Delta_t}{2 \mu \mu_0}$$

$$+ \frac{\frac{\Delta_t}{\mu \mu_0 \Delta_x}}{1 + \frac{\sigma_m \Delta_t}{2 \mu \mu_0}} \left(E_z^q[m+1] - E_z^q[m] \right)$$

Расчет магнитной компоненты поля для среды с потерями

$$H_{y}^{q+1/2}[m+1/2] = \frac{1 - \frac{\sigma_{m}\Delta_{t}}{2\mu\mu_{0}}}{1 + \frac{\sigma_{m}\Delta_{t}}{2\mu\mu_{0}}} H_{y}^{q-1/2}[m+1/2] + \frac{\Delta_{t}}{1 + \frac{\sigma_{m}\Delta_{t}}{2\mu\mu_{0}}} \left(E_{z}^{q}[m+1] - E_{z}^{q}[m]\right)$$

Расчет магнитной компоненты поля

Для случая
$$\sigma_{\rm m} = 0$$
:

$$H_y^{q+1/2}[m+1/2]=$$

$$=H_{y}^{q-1/2}[m+1/2]+\frac{\Delta_{t}}{\mu\mu_{0}\Delta_{x}}(E_{z}^{q}[m+1]-E_{z}^{q}[m])$$

Моделирование среды с потерями. Комментарии к реализации

Реализуем случай
$$\sigma_{m} = 0$$
, $Sc = 1$

$$loss = \frac{\sigma \Delta_t}{2 \varepsilon \varepsilon_0}$$

$$ceze = \frac{1 - loss}{1 + loss}$$

$$cezh = \frac{W_0/\varepsilon}{1 + loss}$$

Геометрия решаемой задачи (fdtd_loss.py)

Поглощающие граничные условия с использованием полностью согласованного слоя

Геометрия решаемой задачи

Коэффициент отражения

Для волны, падающей по нормали:

$$\Gamma = \frac{\dot{E}_{omp}}{\dot{E}_{na\partial}} = \frac{W_2 - W_1}{W_2 + W_1}$$

Волновое сопротивление в среде 151 с потерями

$$W = \sqrt{\frac{\mu \mu_0 \left(1 - i \frac{\sigma_m}{\omega \mu \mu_0}\right)}{\epsilon \epsilon_0 \left(1 - i \frac{\sigma}{\omega \epsilon_0}\right)}} = W_0 \sqrt{\frac{\mu \left(1 - i \frac{\sigma_m}{\omega \mu \mu_0}\right)}{\epsilon \left(1 - i \frac{\sigma}{\omega \epsilon_0}\right)}}$$

Волновое сопротивление в среде 152 с потерями

$$W = \sqrt{\frac{\mu \mu_0 \left(1 - i \frac{\sigma_m}{\omega \mu \mu_0}\right)}{\epsilon \epsilon_0 \left(1 - i \frac{\sigma}{\omega \epsilon_0}\right)}} = W_0 \sqrt{\frac{\mu \left(1 - i \frac{\sigma_m}{\omega \mu \mu_0}\right)}{\epsilon \left(1 - i \frac{\sigma}{\omega \epsilon_0}\right)}}$$

Если
$$\frac{\sigma_m}{\omega \mu \mu_0} = \frac{\sigma}{\omega \varepsilon \varepsilon_0}$$
 , то $W = W_0 \sqrt{\frac{\mu}{\varepsilon}}$

Реализация поглощающих граничных условий

$$loss_m = \frac{\sigma_m \Delta_t}{2\mu \mu_0}$$

$$loss_e = \frac{\sigma \Delta_t}{2 \varepsilon \varepsilon_0}$$

Если

$$\frac{\sigma_m}{\omega\mu\mu_0} = \frac{\sigma}{\omega\,\epsilon\,\epsilon_0}$$
 , to

$$\frac{\sigma_m \Delta_t}{2\mu \mu_0} = \frac{\sigma \Delta_t}{2\epsilon \epsilon_0}$$
 или $loss_m = loss_e$

Реализация поглощающих граничных условий

$$loss_e = loss_m = loss = \frac{\sigma_m \Delta_t}{2 \mu \mu_0} = \frac{\sigma \Delta_t}{2 \epsilon \epsilon_0} = 0.02$$

$$ceze = \frac{1 - loss}{1 + loss}$$

$$cezh = \frac{W_0/\varepsilon}{1 + loss}$$

$$chye = \frac{1/W_0}{1 + loss}$$

$$chyh = \frac{1 - loss}{1 + loss}$$

Демонстрация граничных условий с использованием полностью согласованного слоя (fdtd_loss_boundary.py)

Погрешность из-за дискретной сетки

Погрешность из-за дискретной сетки

Демонстрация граничных условий с использованием полностью согласованного слоя (fdtd_loss_boundary_2.py)

Поглощающие граничные условия (Absorbing boundary condition - ABC)

Типы поглощающих граничных условий

Поглощающие граничные условия можно разделить на две группы:

- Условия, аннигилирующие вытекающие волны.
- Условия, аппроксимирующие уравнение волны, распространяющейся только в одном направлении.

Линейные операторы

Оператор *А* называются линейным, если выполняются следующие условия:

$$\bullet A(\mathbf{x}_1 + \mathbf{x}_2) = A\mathbf{x}_1 + A\mathbf{x}_2$$

•
$$A(\alpha \mathbf{x}) = \alpha A \mathbf{x}$$

Свойства линейных операторов

Для двух <u>линейных</u> операторов A и B выполняются условия:

$$(A + B)(\mathbf{x}) = A(\mathbf{x}) + B(\mathbf{x})$$

$$(AB)(\mathbf{x}) = A(B(\mathbf{x}))$$

Волновое уравнение в одномерном случае

$$\nabla^2 E_z - \frac{1}{v^2} \frac{\partial^2 E_z}{\partial t^2} = 0$$

ИЛИ

$$\frac{\partial^2 E_z}{\partial x^2} - \varepsilon \, \varepsilon_0 \mu \, \mu_0 \frac{\partial^2 E_z}{\partial t^2} = 0$$

Волновое уравнение в одномерном случае

Перепишем волновое уравнение в операторном виде:

$$\left(\frac{\partial^2}{\partial x^2} - \varepsilon \,\varepsilon_0 \mu \,\mu_0 \,\frac{\partial^2}{\partial t^2}\right) E_z = 0$$

Волновое уравнение в одномерном случае

Полученный оператор может быть разложен на произведение двух операторов:

$$\left(\frac{\partial}{\partial x} - \sqrt{\varepsilon \varepsilon_0 \mu \mu_0} \frac{\partial}{\partial t}\right) \left(\frac{\partial}{\partial x} + \sqrt{\varepsilon \varepsilon_0 \mu \mu_0} \frac{\partial}{\partial t}\right) E_z = 0$$

Любая функция E_z , которая удовлетворяет хотя бы одному из следующих уравнений, является решением волнового уравнения:

I.
$$\frac{\partial E_z}{\partial x} - \sqrt{\varepsilon \varepsilon_0 \mu \mu_0} \frac{\partial E_z}{\partial t} = 0$$

II.
$$\frac{\partial E_z}{\partial x} + \sqrt{\varepsilon \varepsilon_0 \mu \mu_0} \frac{\partial E_z}{\partial t} = 0$$

$$E_z(t+x/v)=E_z(t+\sqrt{\epsilon \varepsilon_0 \mu \mu_0}x)$$

- волна, распространяющаяся влево, удовлетворяет первому уравнению адвекции, но не второму.

Покажем это.

Сделаем замену

$$\xi = t + \sqrt{\varepsilon \varepsilon_0 \mu \mu_0} x$$

$$\frac{\partial E_z}{\partial x} = \frac{\partial E_z}{\partial \xi} \frac{\partial \xi}{\partial x}$$

$$\frac{\partial E_z}{\partial t} = \frac{\partial E_z}{\partial \xi} \frac{\partial \xi}{\partial t}$$

$$\xi = t + \sqrt{\varepsilon \varepsilon_0 \mu \mu_0} x$$

$$\frac{\partial \xi}{\partial t} = 1$$

$$\frac{\partial \xi}{\partial x} = \sqrt{\varepsilon \, \varepsilon_0 \mu \, \mu_0}$$

$$\frac{\partial E_z}{\partial x} = \frac{\partial E_z}{\partial \xi} \frac{\partial \xi}{\partial x} = \frac{\partial E_z}{\partial \xi} \sqrt{\varepsilon \varepsilon_0 \mu \mu_0}$$

$$\frac{\partial E_z}{\partial t} = \frac{\partial E_z}{\partial \xi} \frac{\partial \xi}{\partial t} = \frac{\partial E_z}{\partial \xi}$$

Полученные выражения подставляем в первое уравнение адвекции

$$\frac{\partial E_z}{\partial x} - \sqrt{\varepsilon \varepsilon_0 \mu \mu_0} \frac{\partial E_z}{\partial t} = 0$$

$$\frac{\partial E_{z}}{\partial \xi} \sqrt{\epsilon \, \epsilon_{0} \mu \, \mu_{0}} - \frac{\partial E_{z}}{\partial \xi} \sqrt{\epsilon \, \epsilon_{0} \mu \, \mu_{0}} = 0$$

$$0 = 0$$

Уравнение удовлетворяется

Полученные выражения подставляем во второе уравнение адвекции

$$\frac{\partial E_z}{\partial x} + \sqrt{\varepsilon \varepsilon_0 \mu \mu_0} \frac{\partial E_z}{\partial t} = 0$$

$$\frac{\partial E_{z}}{\partial \xi} \sqrt{\varepsilon \varepsilon_{0} \mu \mu_{0}} + \frac{\partial E_{z}}{\partial \xi} \sqrt{\varepsilon \varepsilon_{0} \mu \mu_{0}} = 0$$

$$2\frac{\partial E_z}{\partial \xi} \sqrt{\epsilon \,\epsilon_0 \mu \mu_0} \neq 0$$

Уравнение не удовлетворяется

Запишем производные в уравнении адвекции через конечно-разностную схему

$$\sqrt{\varepsilon \varepsilon_0 \mu \mu_0} \frac{\partial E_z}{\partial t} \Big|_{\Delta_x/2, (q + \frac{1}{2}) \Delta_t} = \frac{2}{\Delta_x/2, (q + \frac{1}{2}) \Delta_t}$$

$$= \sqrt{\varepsilon \varepsilon_0 \mu \mu_0} \frac{E_z^{q+1} [1/2] - E_z^q [1/2]}{\Delta_t}$$

$$E_z^{q+1}[1/2] \approx \frac{E_z^{q+1}[0] + E_z^{q+1}[1]}{2}$$

$$E_z^q[1/2] \approx \frac{E_z^q[0] + E_z^q[1]}{2}$$

$$\sqrt{\epsilon \, \epsilon_0 \, \mu \, \mu_0} \frac{\partial E_z}{\partial t} \bigg|_{\Delta_x/2, (q+\frac{1}{2})\Delta_t} \approx$$

$$\approx \sqrt{\epsilon \, \epsilon_0 \, \mu \, \mu_0} \frac{E_z^{q+1}[0] + E_z^{q+1}[1]}{2} - \frac{E_z^q[0] + E_z^q[1]}{2}$$

Аналогично поступаем со вторым слагаемым в первом уравнении адвекции

$$\frac{\partial E_{z}}{\partial x} \Big|_{\Delta_{x}/2, (q+\frac{1}{2})\Delta_{t}} = \frac{E_{z}^{q+1/2}[1] - E_{z}^{q+1/2}[0]}{\Delta_{x}} \approx \frac{E_{z}^{q+1}[1] + E_{z}^{q}[1]}{2} \frac{E_{z}^{q+1}[0] + E_{z}^{q}[0]}{2}$$

Подставляем полученные выражения в первое уравнение адвекции

$$rac{E_z^{q+1}[1] + E_z^q[1]}{2} - rac{E_z^{q+1}[0] + E_z^q[0]}{2} - rac{\Delta_x}{\Delta_x}$$

$$-\sqrt{\epsilon \, \epsilon_0 \mu \, \mu_0} \frac{E_z^{q+1}[0] + E_z^{q+1}[1]}{2} - \frac{E_z^q[0] + E_z^q[1]}{\Delta_t} = 0$$

Из полученного уравнения выражаем $E_x^{q+1}[0]$ и учитываем, что:

$$\sqrt{\varepsilon\varepsilon_0\mu\mu_0} = \frac{\sqrt{\varepsilon\mu}}{c}, \quad S_c = \frac{c\Delta_t}{\Delta_x}$$

$$E_{z}^{q+1}[0] = E_{z}^{q}[1] + \frac{\frac{S_{c}}{\sqrt{\varepsilon \mu}} - 1}{\frac{S_{c}}{\sqrt{\varepsilon \mu}} + 1} (E_{z}^{q+1}[1] - E_{z}^{q}[0])$$

Аналогично можно вывести условие для правой границы

$$E_{z}^{q+1}[M] = E_{z}^{q}[M-1] + \frac{\frac{S_{c}}{\sqrt{\varepsilon \mu}} - 1}{\frac{S_{c}}{\sqrt{\varepsilon \mu}} + 1} (E_{z}^{q+1}[M-1] - E_{z}^{q}[M])$$

Поглощающие граничные условия

Для свободного пространства и $S_c = 1$ выражения сводятся к виду:

$$E_z^{q+1}[0] = E_z^q[1]$$

$$E_z^{q+1}[M] = E_z^q[M-1]$$

Демонстрация поглощающих граничных условий 182 (АВС) первой степени (fdtd_abc_first.py)

Формулировка граничных условий АВС первой степени с использованием дискретных операторов

Операторы для граничных условий ABC

Введем несколько новых операторов:

I — оператор идентичности.

$$IE_z^q[m]=E_z^q[m]$$

 s_{x}^{w} — оператор <u>пространственного</u> сдвига (сдвиг вправо).

$$s_x^w E_z^q [m] = E_z^q [m+w]$$

 s_{t}^{w} — оператор обратного <u>временного</u> сдвига.

$$s_t^w E_z^q[m] = E_z^{q+w}[m]$$

Свойства линейных операторов

Введенные операторы коммутативны (можно менять порядок их применения)

$$S_{x}^{w}S_{t}^{w}=S_{t}^{w}S_{x}^{w}$$

$$IS_{x}^{w}=S_{x}^{w}$$

$$IS_{t}^{w}=S_{t}^{w}$$

$$II=I$$

Уравнения адвекции

I.
$$\frac{\partial E_z}{\partial x} - \sqrt{\varepsilon \varepsilon_0 \mu \mu_0} \frac{\partial E_z}{\partial t} = 0$$

II.
$$\frac{\partial E_z}{\partial x} + \sqrt{\varepsilon \varepsilon_0 \mu \mu_0} \frac{\partial E_z}{\partial t} = 0$$

Использование дискретных операторов для граничных условий АВС первого порядка

$$\sqrt{\epsilon \epsilon_0 \mu \mu_0} \frac{\partial E_z}{\partial t} \bigg|_{\Delta_x/2, (q+\frac{1}{2}) \Delta_t} \approx$$

$$\approx \sqrt{\epsilon \, \epsilon_0 \, \mu \, \mu_0} \frac{E_z^{q+1}[0] + E_z^{q+1}[1]}{2} \frac{E_z^q[0] + E_z^q[1]}{2}$$

Использование дискретных операторов для граничных условий ABC первого порядка

Пространственное усреднение с помощью введенных операторов записывается следующим образом:

$$\frac{E_{z}^{q+1}[m] + E_{z}^{q+1}[m+1]}{2} = \frac{I E_{z}^{q+1}[m] + s_{x}^{1} E_{z}^{q+1}[m]}{2} = \frac{I + s_{x}^{1}}{2} E_{z}^{q+1}[m]$$

Использование дискретных операторов для граничных условий ABC первого порядка

Временное усреднение с помощью введенных операторов записывается следующим образом:

$$\frac{E_{z}^{q+1}[m] + E_{z}^{q}[m]}{2} = \frac{2IE_{z}^{q+1}[m] + s_{t}^{-1}E_{z}^{q+1}[m]}{2} = \frac{I[m] + s_{t}^{-1}E_{z}^{q+1}[m]}{2} = \frac{I[m] + s_{t}^{-1}E_{z}^{q+1}[m]}{2}$$

Поглощающие граничные условия с ¹ использованием дискретных операторов

В операторном виде указанные действия выглядят следующим образом:

$$\frac{\partial E_z}{\partial t} \bigg|_{\Delta_x/2, (q+\frac{1}{2})\Delta_t} \approx \frac{\left(\frac{I+s_x^1}{2}\right) E_z^{q+1}[0] - \left(\frac{I+s_x^1}{2}\right) s_t^{-1} E_z^{q+1}[0]}{\Delta_t} = \frac{\left(\frac{I+s_x^1}{2}\right) E_z^{q+1}[0] - \left(\frac{I+s_x^1}{2}\right) s_t^{-1} E_z^{q+1}[0]}{\Delta_t} = \frac{\left(\frac{I+s_x^1}{2}\right) E_z^{q+1}[0] - \left(\frac{I+s_x^1}{2}\right) e_z^{-1} E_z^{q+1}[0]}{\Delta_t} = \frac{\left(\frac{I+s_x^1}{2}\right) e_z^{-1}}{\Delta_t} = \frac{\left(\frac{I+s_x^1}{2}\right) e_z^{-1}}{\Delta_t} = \frac{\left(\frac{I+s_x^1}{2}\right) e_z^{-1}}{\Delta_t} = \frac{\left(\frac{I+s_x^1}{2}\right) e_z^{-1}}{\Delta_t} = \frac{\left($$

$$\begin{split} &= \left(\frac{I + s_{x}^{1}}{2}\right) \left(\frac{I - s_{t}^{-1}}{\Delta_{t}}\right) E_{z}^{q+1}[0] = \\ &= \frac{1}{2\Delta_{t}} \left(I - s_{t}^{-1} + s_{x}^{1} - s_{x}^{1} \cdot s_{t}^{-1}\right) E_{z}^{q+1}[0] = \\ &= \frac{1}{2\Delta_{t}} \left(E_{z}^{q+1}[0] - E_{z}^{q}[0] + E_{z}^{q+1}[1] - E_{z}^{q}[1]\right) \end{split}$$

Поглощающие граничные условия с использованием операторной записи

Аналогично можем поступить с расчетом производной по пространству:

$$\begin{split} &\frac{\partial E_{z}}{\partial x} \bigg|_{\Delta_{x}/2, (q+\frac{1}{2})\Delta_{t}} \approx \\ &\approx \left(\frac{s_{x}^{1} - I}{\Delta_{x}}\right) \left(\frac{I + s_{t}^{-1}}{2}\right) E_{z}^{q+1}[0] = \\ &= \frac{1}{2\Delta_{x}} \left(-I + s_{x}^{1} - s_{t}^{-1} + s_{t}^{-1} \cdot s_{x}^{1}\right) E_{z}^{q+1}[0] = \\ &= \frac{1}{2\Delta_{x}} \left(-E_{z}^{q+1}[0] + E_{z}^{q+1}[1] - E_{z}^{q}[0] + E_{z}^{q}[1]\right) \end{split}$$

Поглощающие граничные условия с использованием операторной записи

Запишем конечно-разностное выражение для уравнения адвекции:

$$\left\{ \left(\frac{s_x^1 - I}{\Delta_x} \right) \left(\frac{I + s_t^{-1}}{2} \right) - \sqrt{\mu \mu_0 \varepsilon \varepsilon_0} \left(\frac{I + s_x^1}{2} \right) \left(\frac{I - s_t^{-1}}{\Delta_t} \right) \right\} E_z^{q+1} [0] = 0$$

Решение этого уравнения для $E_{z}^{\ q+1}[0]$ даст выражение

$$E_{z}^{q+1}[0] = E_{z}^{q}[1] + \frac{\frac{S_{c}}{\sqrt{\varepsilon \mu}} - 1}{\frac{S_{c}}{\sqrt{\varepsilon \mu}} + 1} (E_{z}^{q+1}[1] - E_{z}^{q}[0])$$

Поглощающие граничные условия (Absorbing boundary condition — ABC) второй степени

Волновое уравнение в одномерном случае

Мы получим более точное решение уравнения адвекции и уменьшим отражение, если применим оператор адвекции дважды:

$$\left(\frac{\partial}{\partial x} - \sqrt{\varepsilon \varepsilon_0 \mu \mu_0} \frac{\partial}{\partial t}\right) \left(\frac{\partial}{\partial x} - \sqrt{\varepsilon \varepsilon_0 \mu \mu_0} \frac{\partial}{\partial t}\right) E_z = 0$$

Волновое уравнение в одномерном случае

Конечно-разностная схема для оператора адвекции второй степени в операторном виде:

$$\left[\left(\left(\frac{s_x^1 - I}{\Delta_x} \right) \left(\frac{I + s_t^{-1}}{2} \right) - \sqrt{\mu \mu_0 \varepsilon \varepsilon_0} \left(\frac{I + s_x^1}{2} \right) \left(\frac{I - s_t^{-1}}{\Delta_t} \right) \right] \times \left\{ \left(\frac{s_x^1 - I}{\Delta_x} \right) \left(\frac{I + s_t^{-1}}{2} \right) - \sqrt{\mu \mu_0 \varepsilon \varepsilon_0} \left(\frac{I + s_x^1}{2} \right) \left(\frac{I - s_t^{-1}}{\Delta_t} \right) \right\} \right] E_z^{q+1}[0] = 0$$

Если раскрыть скобки и решить это уравнение относительно $E_{\tau}^{q+1}[0]$, то мы получим

$$E_{z}^{q+1}[0] = \frac{-1}{\frac{1/S'_{c} + 2 + S'_{c}}{k_{1}}} \left\{ \underbrace{\left(\frac{1}{S'_{c}} - 2 + S'_{c}\right)}_{k_{2}} \left(E_{z}^{q+1}[2] + E_{z}^{q-1}[0]\right) + 2\left(S'_{c} - \frac{1}{S'_{c}}\right) \left(E_{z}^{q}[0] + E_{z}^{q}[2] - E_{z}^{q+1}[1] - E_{z}^{q-1}[1]\right) - \underbrace{\left(\frac{1}{S'_{c}} - \frac{1}{S'_{c}}\right)}_{k_{3}} \left(\frac{1}{k_{3}} - \frac{1}{k_{3}}\right) \left(\frac{1}{S'_{c}} - \frac{1}{S'_{c}}\right) \left(\frac{1}{S'_$$

$$-4\left(\frac{1}{S'_{c}}+S'_{c}\right)E_{z}^{q}[1]\}-E_{z}^{q-1}[2]$$

В предыдущем выражении:

$$S'_{c} = \frac{\Delta_{t}}{\sqrt{\mu \mu_{0} \varepsilon \varepsilon_{0}} \Delta_{x}} = \frac{S_{c}}{\sqrt{\mu \varepsilon}}$$

Для свободного пространства и $S_c = 1$ граничное условие преобразуется к виду:

$$E_z^{q+1}[0]=2E_z^q[1]-E_z^{q-1}[2]$$

Граничные условия справа выглядят аналогично, только они отражены «зеркально». Преобразуются пространственные координаты:

$$0 \rightarrow M$$

$$1 \rightarrow M - 1$$

$$2 \rightarrow M - 2$$

В индексации Python:

$$0 \rightarrow -1$$

$$1 \rightarrow -2$$

$$2 \rightarrow -3$$

Демонстрация поглощающих граничных условий 200 (АВС) второй степени (fdtd_abc_second.py)

Источники возбуждения

Гауссов импульс

Гауссов импульс

$$f_g(t) = A_m e^{-\left(\frac{t-d_g}{w_g}\right)^2}$$

Спектр гауссова импульса

Спектр гауссова импульса

Если заданы требования к сигналу:

- $A_0 > 1$ уровень ослабления сигнала в момент времени t = 0.
- $F_{\rm max}$ «максимальная» частота в спектре сигнала.
- $A_{\max} > 1$ уровень ослабления спектра сигнала на частоте F_{\max} .

$$f_g(t) = A_m e^{-\left(\frac{t-d_g}{w_g}\right)^2}$$

$$w_g = \frac{\sqrt{\ln(A_{\text{max}})}}{\pi F_{\text{max}}}$$

$$d_g = w_g \sqrt{\ln(A_0)}$$

Демонстрация спектра гауссова импульса

Недостатки гауссова импульса

- В спектре присутствует постоянная составляющая.
- Максимальное значение спектра всегда на частоте 0 ГГц.
- Сигнал с постоянной составляющей нельзя излучить.

Уравнение плоской волны для гауссова импульса в дискретном виде

Уравнение плоской волны для гауссова импульса в дискретном виде

$$f[m,q]=e^{-\left(\frac{(q-m\sqrt{\epsilon\mu}/S_c)-N_{dg}}{N_{wg}}\right)^2}$$

$$N_{wg} = w_g / \Delta_t$$

$$N_{dg} = d_g / \Delta_t$$

Дифференцированный гауссов импульс

Дифференцированный гауссов импульс

$$f_g(t) = -2 A_m \left(\frac{t - d_g}{w_g} \right) e^{-\left(\frac{t - d_g}{w_g} \right)^2}$$

Спектр дифференцированного гауссова импульса

Если заданы требования к сигналу:

- F_{\max} «максимальная» частота в спектре сигнала.
- $A_{\max} > 1$ уровень ослабления спектра сигнала на частоте F_{\max} и ослабление в момент времени t=0.

$$f_g(t) = -2 A_m \left(\frac{t - d_g}{w_g} \right) e^{-\left(\frac{t - d_g}{w_g} \right)^2}$$

$$w_g = \frac{\sqrt{\ln(5.5A_{\text{max}})}}{\pi F_{\text{max}}}$$

$$d_g = w_g \sqrt{\ln(2.5 A_{max} \sqrt{\ln(2.5 A_{max})})}$$

Демонстрация спектра дифференцированного гауссова импульса

Модулированный гауссов импульс

1.0

1e10

Модулированный гауссов импульс

$$f_g(t) = A_m \sin(2\pi f_0 t) e^{-\left(\frac{t - d_g}{w_g}\right)^2}$$

Спектр модулированного гауссова импульса

Если заданы требования к сигналу:

- f_0 центральная частота в спектре сигнала.
- $A_{\max} > 1$ уровень ослабления спектра сигнала на частоте F_{\max} .
- A_0 ослабление огибающей сигнала в момент времени t=0
- ΔF ширина спектра по уровню ослабления A_{\max} .

$$f_g(t) = A_m \sin(2\pi f_0 t) e^{-\left(\frac{t - d_g}{w_g}\right)^2}$$

$$w_g = \sqrt{\ln(A_{\text{max}})} / (\pi \Delta F)$$
 $d_g = w_g \sqrt{\ln(A_0)}$

Демонстрация спектра модулированного гауссова импульса

 $f(\xi)$ — решение волнового уравнения, если:

- $f(\xi)$ дважды дифференцируема
- ξ можно заменить на $t \pm x / v$ (для одномерного случая)

В выражении для модулированного гауссова импульса заменим *t* на *t* ± *x* / *v*

$$f_g(t) = \sin(2\pi f_0 t) e^{-\left(\frac{t - d_g}{w_g}\right)^2}$$

$$f_{g}(t,x) = \sin\left(2\pi f_{0}\left(t \pm \frac{x\sqrt{\varepsilon\mu}}{c}\right)\right)e^{-\left(\frac{t \pm \frac{x\sqrt{\varepsilon\mu}}{c} - d_{g}}{w_{g}}\right)^{2}}$$

$$\lambda_0 = N_{\lambda_0} \Delta x$$
, $w_g = N_{wg} \Delta_t$, $d_g = N_{dg} \Delta_t$,

$$\frac{x}{c} = \frac{m\Delta_x}{c} = \frac{m\Delta_t}{S_c},$$

$$f_0 = \frac{c}{\lambda_0} = \frac{c}{N_{\lambda_0} \Delta x} = \frac{S_c}{N_{\lambda_0} \Delta_t}$$

$$f_{g}[m,q] = \sin\left(\frac{2\pi S_{c}}{N_{\lambda_{0}}\Delta_{t}}\left(q\Delta_{t} \pm \frac{m\Delta_{t}\sqrt{\epsilon\mu}}{S_{c}}\right)\right)e^{-\left(\frac{q\Delta_{t} \pm \frac{m\Delta_{t}\sqrt{\epsilon\mu}}{S_{c}}-N_{dg}\Delta_{t}}{N_{wg}\Delta_{t}}\right)^{2}}$$

$$\bigwedge^{\hspace{-0.5cm} \wedge}$$

$$f_{g}[m,q] = \sin\left(\frac{2\pi}{N_{\lambda_{0}}} \left(qS_{c} \pm m\sqrt{\varepsilon\mu}\right)\right) e^{-\left(\frac{q \pm \frac{m\sqrt{\varepsilon\mu}}{S_{c}} - N_{dg}}{N_{wg}}\right)^{2}}$$

Демонстрация модулированного гауссова импульса при использовании метода Total Field / Scattered Field

fdtd_tfsf_medium_gauss_mod.py

Вейвлет Рикера

Вейвлет Рикера

$$f_r(t) = (1 - 2\{\pi f_p[t - d_r]\}^2) e^{-\{\pi f_p[t - d_r]\}^2}$$

Вейвлет Рикера

Если заданы требования к сигналу:

• f_P — «пиковая» частота в спектре сигнала.

$$f_{r}(t) = \left(1 - 2\{\pi f_{p}[t - d_{r}]\}^{2}\right) e^{-\{\pi f_{p}[t - d_{r}]\}^{2}}$$

$$d_{r} = M_{d} \frac{1}{f_{p}}$$

 $M_{\scriptscriptstyle d}$ — коэффициент задержки

Спектр вейвлета Рикера

$$F_{r}(\omega) = -\frac{2}{f_{p}\sqrt{\pi}} \left(\frac{\omega}{2\pi f_{p}}\right)^{2} \exp\left(-jd_{r}\omega - \left(\frac{\omega}{2\pi f_{p}}\right)^{2}\right)$$

Вейвлет Рикера в терминах длин волн

$$\lambda_p = N_p \Delta_x, \quad f_p = \frac{c}{\lambda_p} = \frac{c}{N_p \Delta_x}$$

Вейвлет Рикера в терминах длин волн

$$\lambda_p = N_p \Delta_x, \quad f_p = \frac{c}{\lambda_p} = \frac{c}{N_p \Delta_x}$$

$$S_c = \frac{c \Delta_t}{\Delta_x} \Rightarrow \Delta_x = \frac{c \Delta_t}{S_c}$$

$$f_{p} = \frac{S_{c}}{N_{p} \Delta_{t}}$$

Вейвлет Рикера в терминах длин волн

$$f_{p} = \frac{S_{c}}{N_{p} \Delta_{t}}$$

Тогда задержка может быть представлена как:

$$d_r = M_d \frac{1}{f_p} = M_d \frac{N_p \Delta_t}{S_c}$$

Вейвлет Рикера в дискретном виде

$$f_r[q] = \left(1 - 2\pi^2 \left[\frac{S_c q}{N_p} - M_d\right]^2\right) \exp\left(-\pi^2 \left[\frac{S_c q}{N_p} - M_d\right]^2\right)$$

Демонстрация спектра вейвлета Рикера

Уравнение плоской волны для вейвлета Рикера в дискретном виде

Уравнение плоской волны для вейвлета Рикера в дискретном виде

В выражении для вейвлета Рикера заменим t на $t \pm x / c$

$$f_r\left(t \pm \frac{x}{c}\right) = f_r(x,t) = \left(1 - 2\pi^2 f_p^2 \left(t \pm \frac{x}{c} - d_r\right)^2\right) e^{-\pi^2 f_p^2 \left(t \pm \frac{x}{c} - d_r\right)^2}$$

Уравнение плоской волны для вейвлета Рикера в дискретном виде

Запишем предыдущее выражение через число Куранта и длину волны, учитывая, что

$$\frac{x}{c} = \frac{m\Delta_x}{c} = \frac{m\Delta_t}{S_c}, \qquad f_p = \frac{S_c}{N_p\Delta_t}, \qquad d_r = M_d \frac{1}{f_p} = M_d \frac{N_p\Delta_t}{S_c}$$

$$f_r[m,q] = \left(1 - 2\pi^2 \left[\frac{S_c q \pm m}{N_p} - M_d\right]^2\right) e^{-\pi^2 \left[\frac{S_c q \pm m}{N_p} - M_d\right]^2}$$

Демонстрация вейвлета Рикера при использовании метода Total Field / Scattered Field

Уравнение плоской волны для гармонического сигнала в дискретном виде

Гармонический сигнал

$$f_h(t) = A\cos(\omega t + \phi_0)$$

или в дискретном виде

$$f_h(q \Delta_t) = A \cos(\omega q \Delta_t + \phi_0)$$

Гармонический сигнал в терминах²³⁹ длин волн

Если задана длина волны в виде: $\lambda = N_{\lambda} \cdot \Delta_{x}$, то

$$f = \frac{c}{\lambda}$$
, $\omega t = \frac{2\pi c}{\lambda}t$

$$f_h(q \Delta_t) = A \cos \left(\frac{2 \pi c}{N_{\lambda} \Delta_x} q \Delta_t + \phi_0 \right)$$

$$f_h[q] = A\cos\left(\frac{2\pi S_c}{N_\lambda}q + \phi_0\right)$$

$$T = \frac{1}{f} = \frac{\lambda}{c} = \frac{N_{\lambda} \Delta_{x}}{c}$$

Количество временных шагов на период:

$$\frac{T}{\Delta_t} = \frac{N_{\lambda} \Delta_x}{c \Delta_t} = \frac{N_{\lambda}}{S_c}$$

$$f_h(x,t) = A\cos\left(\omega t - kx + \phi_0\right) = A\cos\left(\omega\left(t - \frac{k}{\omega}x\right) + \phi_0\right)$$

$$k = \frac{2\pi}{\lambda} = \frac{\omega \sqrt{\mu \varepsilon}}{c}$$

$$x = m \Delta_x$$

тогда:

$$\omega \left(t - \frac{k}{\omega} x \right) = \frac{2 \pi c}{N_{\lambda} \Delta_{x}} \left(q \Delta_{t} - \frac{\sqrt{\mu \epsilon}}{c} m \Delta_{x} \right)$$

тогда:

$$\omega \left(t - \frac{k}{\omega} x \right) = \frac{2 \pi c}{N_{\lambda} \Delta_{x}} \left(q \Delta_{t} - \frac{\sqrt{\mu \epsilon}}{c} m \Delta_{x} \right)$$

Вынесем за скобки $\Delta_{_{\mathbf{v}}}$ / с

$$\omega \left(t - \frac{k}{\omega} x \right) = \frac{2\pi}{N_{\lambda}} \left(q \frac{\Delta_t c}{\Delta_x} - \sqrt{\mu \varepsilon} m \right) = \frac{2\pi}{N_{\lambda}} \left(S_c q - \sqrt{\mu \varepsilon} m \right)$$

В дискретном виде:

$$f_h[m,q] = A\cos\left(\frac{2\pi}{N_{\lambda}}(S_c q - \sqrt{\mu \varepsilon}m) + \phi_0\right)$$

Обычно используют:

$$f_h[m,q] = A \sin\left(\frac{2\pi}{N_{\lambda}} \left(S_c q - \sqrt{\mu \varepsilon} m\right) + \phi_0\right)$$

Демонстрация гармонического сигнала при использовании метода Total Field / Scattered Field

fdtd_tfsf_sin.py
fdtd_tfsf_medium_sin.py

Демонстрация стоячей волны

fdtd_tfsf_sin.py fdtd_swr.py

Программирование источников с использованием объектноориентированного подхода

fdtd_sources_oop_tfsf.py

Численная дисперсия

Численная дисперсия

Дисперсия — зависимость фазовой скорости волны от частоты.

$$v_{\phi} = \frac{\omega}{k} = \frac{\omega \lambda}{2\pi}$$

Область пространства как фильтр

Параметры фильтра без дисперсии

Область пространства как фильтр

Параметры фильтра с дисперсией

Волновое уравнение в одномерном случае

$$\frac{\partial^2 E_z}{\partial x^2} - \frac{1}{v^2} \frac{\partial^2 E_z}{\partial t^2} = 0$$

Ряд Тейлора

$$f(x) = \sum_{n=0}^{\infty} f^{(n)}(x_0) \frac{(x - x_0)^n}{n!} =$$

$$= f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)(x - x_0)^2}{2!} + \dots + \frac{f^{(n)}(x_0)(x - x_0)^n}{n!} + R_n$$

$$R_{n} = \frac{f^{(n+1)}(\xi)(x - x_{0})^{(n+1)}}{(n+1)!}, x_{0} < \xi < x$$

Разложим функцию f(x) в ряд Тейлора вблизи точки x_0 со смещением δ справа и слева

$$x = x_0 + \delta \qquad x - x_0 = \delta$$

$$f(x_0 + \delta) = f(x_0) + \delta f'(x_0) + \frac{1}{2!} \delta^2 f''(x_0) + \frac{1}{3!} \delta^3 f'''(x_0) + \dots$$

$$x = x_0 - \delta \qquad x - x_0 = -\delta$$

$$f(x_0 - \delta) = f(x_0) - \delta f'(x_0) + \frac{1}{2!} \delta^2 f''(x_0) - \frac{1}{3!} \delta^3 f'''(x_0) + \dots$$

Расчет второй производной в дискретном виде

Сложим выражения для $f(x + \delta)$ и $f(x - \delta)$

$$f(x_0+\delta)+f(x_0-\delta)=2f(x_0)+\frac{2}{2!}\delta^2f''(x_0)+O(\delta^4)$$

$$f''(x_0) = \frac{f(x_0 + \delta) + f(x_0 - \delta) - 2f(x_0)}{\delta^2} + O(\delta^2)$$

$$\frac{\partial^2 E_z}{\partial x^2} - \frac{1}{v^2} \frac{\partial^2 E_z}{\partial t^2} = 0$$

$$\frac{\partial^2 E_z}{\partial x^2} \bigg|_{m,q} = \frac{E_z^q[m+1] + E_z^q[m-1] - 2E_z^q[m]}{(\Delta_x)^2}$$

$$\frac{\partial^2 E_z}{\partial t^2} \bigg|_{m,q} = \frac{E_z^{q+1}[m] + E_z^{q-1}[m] - 2E_z^q[m]}{(\Delta_t)^2}$$

Подставляем выражения для вторых производных в волновое уравнение

$$\frac{E_z^q[m+1] + E_z^q[m-1] - 2E_z^q[m]}{(\Delta_x)^2} - \frac{1}{v^2} \frac{E_z^{q+1}[m] + E_z^{q-1}[m] - 2E_z^q[m]}{(\Delta_t)^2} = 0$$

Выражаем $E_z^{q+1}[m]$

$$E_z^{q+1}[m] = \frac{v^2(\Delta_t)^2}{(\Delta_x)^2} \left(E_z^q[m+1] + E_z^q[m-1] - 2E_z^q[m] \right) - E_z^{q-1}[m] + 2E_z^q[m]$$

Пусть E_z^q — плоская волна с гармоническим колебанием

$$E_z^q[m] = e^{j(\omega q \Delta_t - \overset{\circ}{k} m \Delta_x)}$$

$$\widetilde{k} = k' + j k''$$
 — комплексное волновое число в дискретном пространстве

Подставляем $E_z^q[m]$ в выражение с предыдущего слайда

$$E_z^{q+1}[m] = \frac{v^2(\Delta_t)^2}{(\Delta_z)^2} \left(E_z^q[m+1] + E_z^q[m-1] - 2E_z^q[m] \right) - E_z^{q-1}[m] + 2E_z^q[m]$$

$$e^{j(\omega(q+1)\Delta_t - \overset{.}{k} m \Delta_x)} = \frac{v^2(\Delta_t)^2}{(\Delta_x)^2} \Big[e^{j(\omega q \Delta_t - \overset{.}{k} (m+1)\Delta_x)} +$$

$$+e^{j(\omega q\Delta_{t}-\dot{k}(m-1)\Delta_{x})}-2e^{j(\omega q\Delta_{t}-\dot{k}m\Delta_{x})}\Big]-$$

$$-e^{j(\omega(q-1)\Delta_{t}-\dot{k}m\Delta_{x})}+2e^{j(\omega q\Delta_{t}-\dot{k}m\Delta_{x})}$$

Делим обе части выражения на $e^{j(\omega q \Delta_t - \tilde{k} m \Delta_x)}$

$$e^{j \omega \Delta_{t}} = \frac{v^{2} (\Delta_{t})^{2}}{(\Delta_{x})^{2}} \left(e^{-j \hat{k} \Delta_{x}} + e^{j \hat{k} \Delta_{x}} - 2 \right) - e^{-j \omega \Delta_{t}} + 2$$

Перепишем предыдущее выражение в следующем виде:

$$\frac{e^{j\omega\Delta_t} + e^{-j\omega\Delta_t}}{2} = \frac{v^2(\Delta_t)^2}{(\Delta_x)^2} \left(\frac{e^{-j\tilde{k}\Delta_x} + e^{j\tilde{k}\Delta_x}}}{2} - 1 \right) + 1$$

Перепишем предыдущее выражение в следующем виде:

$$\underbrace{\left(\frac{e^{j\omega\Delta_t} + e^{-j\omega\Delta_t}}{2}\right)}_{2} + \underbrace{\frac{v^2(\Delta_t)^2}{(\Delta_x)^2} \left(\frac{e^{-j\overset{.}{k}\Delta_x} + e^{j\overset{.}{k}\Delta_x}}{2}\right)}_{2} + 1\right) + 1$$

Применим формулу Эйлера:

$$\cos u = \frac{e^{ju} + e^{-ju}}{2}$$

$$\cos(\omega \Delta_t) = \frac{v^2(\Delta_t)^2}{(\Delta_x)^2} \left(\cos(\hat{k} \Delta_x) - 1\right) + 1$$

Комплексное волновое число в дискретном пространстве

$$\dot{\widetilde{k}} = \frac{1}{\Delta_x} \arccos\left(\left(\frac{\Delta_x}{v\Delta_t}\right)^2 \left(\cos(\omega\Delta_t) - 1\right) + 1\right)$$

$$v_{\phi} = \frac{\omega}{k}$$
 — фазовая скорость

Частный случай: $\Delta_{x} \rightarrow 0, \Delta_{t} \rightarrow 0$

Используем разложение функции cos(u) в ряд Маклорена:

$$\cos u = 1 - \frac{u^2}{2!} + \frac{u^4}{4!} - \dots + \frac{(-1)^n x^{(2n)}}{(2n)!}$$

Для малого u будем считать, что

$$\cos u \approx 1 - \frac{u^2}{2!}$$

Частный случай: $\Delta_x \to 0, \Delta_t \to 0$

$$\dot{\vec{k}} = \frac{1}{\Delta_x} \arccos\left(\left(\frac{\Delta_x}{v\Delta_t}\right)^2 \left(\cos(\omega \Delta_t) - 1\right) + 1\right) =$$

$$= \frac{1}{\Delta_x} \arccos\left(\left(\frac{\Delta_x}{v\Delta_t}\right)^2 \left(1 - \frac{(\omega \Delta_t)^2}{2} - 1\right) + 1\right) =$$

$$= \frac{1}{\Delta_x} \arccos\left(1 - \frac{(\Delta_x)^2}{2} \frac{\omega^2}{v^2}\right) = \frac{1}{\Delta_x} \arccos\left(1 - \frac{1}{2} (k \Delta_x)^2\right)$$

$$k^2$$

Частный случай: $\Delta_X \rightarrow 0, \Delta_t \rightarrow 0$

Для малого Δ_x :

$$1 - \frac{(k\Delta_x)^2}{2} \approx \cos(k\Delta_x)$$

$$\dot{\tilde{k}} = \frac{1}{\Delta_x} \arccos(\cos(k \Delta_x)) = k$$

Нет численной дисперсии

Частный случай: «Магический» шаг по времени

$$\Delta_t = \frac{\Delta_x}{v}$$

Если
$$\Delta_t = \frac{\Delta_x}{v}$$
 или $v \frac{\Delta_t}{\Delta_x} = 1$

$$\dot{\widetilde{k}} = \frac{1}{\Delta_x} \arccos\left[\left(\frac{\Delta_x}{v \Delta_t}\right)^2 \left(\cos(\omega \Delta_t) - 1\right) + 1\right] =$$

$$= \frac{1}{\Delta_x} \arccos\left(\cos\left(\omega \Delta_t\right) - 1 + 1\right) = \frac{\omega \Delta_t}{\Delta_x} = \frac{\omega}{v} = k$$

Нет численной дисперсии

Численная дисперсия

$$\tilde{c} = c \frac{\pi \sqrt{\epsilon \mu}}{N_{\lambda} \arcsin\left(\frac{\sqrt{\epsilon \mu}}{S_c} \sin\left(\frac{\pi S_c}{N_{\lambda}}\right)\right)}$$

 \widetilde{c} — скорость распространения волны в дискретном пространстве N_{λ} — Количество ячеек сетки на длину волны

Численная дисперсия

Если Sc = 1,
$$ε$$
 = 1, $μ$ = 1

$$\tilde{c} = c \frac{\pi}{N_{\lambda} \arcsin\left(\sin\left(\frac{\pi}{N_{\lambda}}\right)\right)} = \frac{c \pi N_{\lambda}}{N_{\lambda} \pi} = c$$

Нет численной дисперсии

Анализ численной дисперсии (dispersion.py)

Анализ численной дисперсии (fdtd_dispersion_vacuum.py)

Расчет фазовой скорости по фазовому спектру сигнала (fdtd_dispersion.py)

$$v_{\phi} = \frac{\omega}{k} = \frac{\omega \lambda}{2\pi} = \frac{\omega d}{\Delta_{\phi}} = \frac{\omega N_d \Delta_x}{\Delta_{\phi}}$$

d — расстояние между датчиками, м

 $N_{\scriptscriptstyle d}$ — расстояние между датчиками, отсчет

$$\omega = 2\pi f = 2\pi n \Delta f = \frac{2\pi n}{N_s \Delta_t}$$

n — номер отсчета в спектре сигнала $N_{\mbox{\tiny c}}$ — количество отсчетов в зарегистрированном сигнале

Расчет фазовой скорости по фазовому спектру сигнала (fdtd_dispersion.py)

$$v_{\phi} = \frac{2\pi n N_d \Delta_x}{N_s \Delta_t \Delta_{\phi}} = \frac{2\pi n N_d c}{N_s \Delta_{\phi} S_c}$$

Коэффициенты отражения и прохождения

Для границы раздела двух диэлектриков $\mu=1$

$$T = \frac{2\sqrt{\varepsilon_1}}{\sqrt{\varepsilon_2} + \sqrt{\varepsilon_1}}$$

$$\Gamma = \frac{\sqrt{\varepsilon_1} - \sqrt{\varepsilon_2}}{\sqrt{\varepsilon_2} + \sqrt{\varepsilon_1}}$$

Коэффициенты прохождения и отражения в дискретном пространстве

$$\widetilde{T} = \frac{2\sqrt{\varepsilon_{1}}\cos\left(\frac{\widetilde{\beta_{1}}\Delta_{x}}{2}\right)}{\sqrt{\varepsilon_{1}}\cos\left(\frac{\widetilde{\beta_{2}}\Delta_{x}}{2}\right) + \sqrt{\varepsilon_{2}}\cos\left(\frac{\widetilde{\beta_{1}}\Delta_{x}}{2}\right)}$$

$$\widetilde{\Gamma} = \frac{\sqrt{\varepsilon_{1}}\cos\left(\frac{\widetilde{\beta_{2}}\Delta_{x}}{2}\right) - \sqrt{\varepsilon_{2}}\cos\left(\frac{\widetilde{\beta_{1}}\Delta_{x}}{2}\right)}{\sqrt{\varepsilon_{1}}\cos\left(\frac{\widetilde{\beta_{2}}\Delta_{x}}{2}\right) + \sqrt{\varepsilon_{2}}\cos\left(\frac{\widetilde{\beta_{1}}\Delta_{x}}{2}\right)}$$

$$\frac{\widetilde{\beta_i} \, \Delta_x}{2} = \arcsin \left(\frac{\sqrt{\varepsilon_i \, \mu_i}}{S_c} \sin \left(\frac{\pi \, S_c}{N_\lambda} \right) \right)$$

Коэффициент прохождения в дискретном 277 пространстве (reflection_error.py)

Использование неравномерной сетки разбиения по пространству

$$H_y^{q+1/2}[m+1/2]=$$

$$=H_{y}^{q-1/2}[m+1/2]+\frac{\Delta_{t}}{\mu\mu_{0}\Delta_{x}[m+1/2]}(E_{z}^{q}[m+1]-E_{z}^{q}[m])$$

$$E_z^{q+1}[m] =$$

$$= E_{z}^{q}[m] + \frac{\Delta_{t}}{\varepsilon \varepsilon_{0} \Delta_{x}[m]} \left(H_{y}^{q+1/2}[m+1/2] - H_{y}^{q+1/2}[m-1/2] \right)$$

Использование неравномерной сетки разбиения по пространству

$$H_y^{q+1/2}[m+1/2]=$$

$$=H_{y}^{q-1/2}[m+1/2]+(E_{z}^{q}[m+1]-E_{z}^{q}[m])\frac{1}{\mu W_{0}}S_{c}[m+1/2]$$

$$E_z^{q+1}[m] =$$

$$= E_z^q[m] + \left(H_y^{q+1/2}[m+1/2] - H_y^{q+1/2}[m-1/2]\right) \frac{W_0}{\varepsilon} S_c[m]$$

Использование неравномерной сетки разбиения по пространству

$$v \frac{\Delta_t}{\Delta_x} \leq 1$$

$$\frac{c}{\sqrt{\varepsilon \mu}} \frac{\Delta_t}{\Delta_x} \leq 1$$

$$\frac{S'_c}{\sqrt{\varepsilon \mu}} \leq 1$$

$$S'_c \leq \sqrt{\varepsilon \mu}$$

Пример использования неравномерной сетки пространственного разбиения (fdtd_heterogen_sc.py)

Пример использования неравномерной сетки пространственного разбиения (fdtd_heterogen_sc_layer.py)

Проблемы из-за смещенной сетки

Погрешности метода FDTD

Источники погрешностей метода FDTD

- Численная дисперсия.
- Отражение от границ области моделирования.
- Ступенчатая аппроксимация границ объектов.
- Численный шум.
- Постоянная составляющая тока может создавать остаточные электрические заряды (емкость ячеек сетки).

Отражение от границ области моделирования

Источники погрешностей метода FDTD

- Численная дисперсия.
- Отражение от границ области моделирования.
- Ступенчатая аппроксимация границ объектов.
- Численный шум.
- Постоянная составляющая тока может создавать остаточные электрические заряды (емкость ячеек сетки).

Ступенчатая аппроксимация границ объектов

Источники погрешностей метода FDTD

- Численная дисперсия.
- Отражение от границ области моделирования.
- Ступенчатая аппроксимация границ объектов.
- Численный шум.
- Постоянная составляющая тока может создавать остаточные электрические заряды (емкость ячеек сетки).

Модификации метода FDTD

- Метод FDTD в криволинейных системах координат.
- Уменьшение отражений от границ области моделирования.
- Использование неравномерных сеток разбиения.
- Использование ячеек неправильной формы.
- Учет временной дисперсии среды.
- Учет зависимости параметров среды от частоты.
- Метод FDTD с произвольным шагом по времени.

Двумерный метод конечных разностей во временной области

Закон Фарадея

$$-\sigma_m \mathbf{H} - \mu \mu_0 \frac{\partial \mathbf{H}}{\partial t} = \nabla \times \mathbf{E} =$$

$$= \begin{vmatrix} \mathbf{x_0} & \mathbf{y_0} & \mathbf{z_0} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & 0 \\ E_x & E_y & E_z \end{vmatrix} = \mathbf{x_0} \frac{\partial E_z}{\partial y} - \mathbf{y_0} \frac{\partial E_z}{\partial x} + \mathbf{z_0} \left(\frac{\partial E_y}{\partial x} - \frac{\partial E_x}{\partial y} \right)$$

Закон Ампера

$$\sigma \mathbf{E} + \varepsilon \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} = \nabla \times \mathbf{H} =$$

$$= \begin{vmatrix} \mathbf{x_0} & \mathbf{y_0} & \mathbf{z_0} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & 0 \\ H_x & H_y & H_z \end{vmatrix} = \mathbf{x_0} \frac{\partial H_z}{\partial y} - \mathbf{y_0} \frac{\partial H_z}{\partial x} + \mathbf{z_0} \left(\frac{\partial H_y}{\partial x} - \frac{\partial H_x}{\partial y} \right)$$

Законы Фарадея и Ампера в скалярном виде

$$-\sigma_{m}H_{x}-\mu\mu_{0}\frac{\partial H_{x}}{\partial t}=\frac{\partial E_{z}}{\partial y}$$

$$\sigma E_{x}+\epsilon\epsilon_{0}\frac{\partial E_{x}}{\partial t}=\frac{\partial H_{z}}{\partial y}$$

$$\sigma E_{y}+\epsilon\epsilon_{0}\frac{\partial E_{y}}{\partial t}=\frac{\partial H_{z}}{\partial y}$$

$$\sigma E_{y}+\epsilon\epsilon_{0}\frac{\partial E_{y}}{\partial t}=-\frac{\partial H_{z}}{\partial x}$$

$$\sigma_m H_y + \mu \mu_0 \frac{\partial H_y}{\partial t} = \frac{\partial E_z}{\partial x}$$

$$-\sigma_{m}H_{z}-\mu\mu_{0}\frac{\partial H_{z}}{\partial t}=\frac{\partial E_{y}}{\partial x}-\frac{\partial E_{x}}{\partial y} \quad \sigma E_{z}+\varepsilon\varepsilon_{0}\frac{\partial E_{z}}{\partial t}=\frac{\partial H_{y}}{\partial x}-\frac{\partial H_{x}}{\partial y}$$

$$\sigma E_x + \varepsilon \varepsilon_0 \frac{\partial E_x}{\partial t} = \frac{\partial H_z}{\partial y}$$

$$\sigma E_{y} + \varepsilon \varepsilon_{0} \frac{\partial E_{y}}{\partial t} = -\frac{\partial H_{z}}{\partial x}$$

$$\sigma E_z + \varepsilon \varepsilon_0 \frac{\partial E_z}{\partial t} = \frac{\partial H_y}{\partial x} - \frac{\partial H_x}{\partial y}$$

Законы Фарадея и Ампера в скалярном виде

$$-\sigma_m H_x - \mu \mu_0 \frac{\partial H_x}{\partial t} = \frac{\partial E_z}{\partial y}$$

$$\sigma_m H_y + \mu \mu_0 \frac{\partial H_y}{\partial t} = \frac{\partial E_z}{\partial x}$$

$$-\sigma_{m}H_{z}-\mu\mu_{0}\frac{\partial H_{z}}{\partial t}=\frac{\partial E_{y}}{\partial x}-\frac{\partial E_{x}}{\partial y}$$

$$\sigma E_{z}+\varepsilon\varepsilon_{0}\frac{\partial E_{z}}{\partial t}=\frac{\partial H_{y}}{\partial x}-\frac{\partial H_{x}}{\partial y}$$

$$\sigma E_x + \varepsilon \varepsilon_0 \frac{\partial E_x}{\partial t} = \frac{\partial H_z}{\partial y}$$

$$\sigma E_{y} + \varepsilon \varepsilon_{0} \frac{\partial E_{y}}{\partial t} = -\frac{\partial H_{z}}{\partial x}$$

$$\sigma E_z + \varepsilon \varepsilon_0 \frac{\partial E_z}{\partial t} = \frac{\partial H_y}{\partial x} - \frac{\partial H_x}{\partial y}$$

Виды поляризации для двумерного случая

 TM^{Z} E_{z} E_{z} E_{x} E_{x} E_{x} E_{x}

Виды мод электромагнитной волны

- TM Transverse magnetic Поперечно-магнитная волна. Нет магнитной составляющей в указанном направлении (Е-волна).
- TE Transverse electric Поперечно-электрическая волна. нет электрической составляющей в указанном направлении (Н-волна).
- TEM Transverse electromagnetic Поперечноэлектромагнитная волна. нет электрической и магнитной составляющих в указанном направлении.
- Гибридные есть и электрическая, и магнитная составляющие в указанном направлении.

Двумерный метод конечных разностей во временной области для поляризации ТМ^z

Поляризация TM^z

Метод FDTD для поляризации TM^z. Законы Фарадея и Ампера в скалярном виде

$$-\sigma_m H_x - \mu \mu_0 \frac{\partial H_x}{\partial t} = \frac{\partial E_z}{\partial y}$$

$$\sigma_m H_y + \mu \mu_0 \frac{\partial H_y}{\partial t} = \frac{\partial E_z}{\partial x}$$

$$\sigma E_z + \varepsilon \varepsilon_0 \frac{\partial E_z}{\partial t} = \frac{\partial H_y}{\partial x} - \frac{\partial H_x}{\partial y}$$

Дискретизация величин Е и Н

$$H_{x}(x,y,t) = H_{x}(m\Delta_{x},n\Delta_{y},q\Delta_{t}) = H_{x}^{q}[m,n]$$

$$H_{y}(x,y,t) = H_{y}(m\Delta_{x},n\Delta_{y},q\Delta_{t}) = H_{y}^{q}[m,n]$$

$$E_{z}(x,y,t) = E_{z}(m\Delta_{x},n\Delta_{y},q\Delta_{t}) = E_{z}^{q}[m,n]$$

- m индекс по пространству вдоль оси X.
- *п* индекс по пространству вдоль оси Y.
- *q* индекс по времени.
- $\Delta_{_{\! x}}$, $\Delta_{_{\! v}}$ размер сетки по осям X и Y соответственно.

Конечно-разностная аппроксимация для закона Фарадея

Запишем конечно-разностную аппроксимацию для точки $(m\Delta_x, (n+1/2)\Delta_y, q\Delta_t)$

$$-\sigma_{m} \frac{H_{x}^{q+1/2}[m,n+1/2] + H_{x}^{q-1/2}[m,n+1/2]}{2} - \mu \mu_{0} \frac{H_{x}^{q+1/2}[m,n+1/2] + H_{x}^{q-1/2}[m,n+1/2]}{\Delta_{t}} = \frac{E_{z}^{q}[m,n+1] - E_{z}^{q}[m,n]}{\Delta}$$

Конечно-разностная аппроксимация для закона Фарадея

Из полученного уравнения выражаем
$$H_x^{q+1/2}[m,n+1/2]$$
:
$$H_x^{q+1/2}[m,n+1/2] = \frac{1 - \frac{\sigma_m \Delta_t}{2\mu \mu_0}}{1 + \frac{\sigma_m \Delta_t}{2\mu \mu_0}} H_x^{q-1/2}[m,n+1/2] - \frac{1}{2\mu \mu_0}$$

$$-\frac{1}{1+\frac{\sigma_m\Delta_t}{2\mu\mu_0}}\frac{\Delta_t}{\mu\mu_0\Delta_y}\left(E_z^q[m,n+1]-E_z^q[m,n]\right)$$

Конечно-разностная аппроксимация для закона Фарадея

Подобным образом выражаем
$$H_y^{q+1/2}[m+1/2,n]$$
:
$$H_y^{q+1/2}[m+1/2,n] = \frac{1-\frac{\sigma_m\Delta_t}{2\mu\mu_0}}{1+\frac{\sigma_m\Delta_t}{2\mu\mu_0}}H_y^{q-1/2}[m+1/2,n] + \frac{1}{2\mu\mu_0}$$

$$+\frac{1}{1+\frac{\sigma_{m}\Delta_{t}}{2\mu\mu_{0}}}\frac{\Delta_{t}}{\mu\mu_{0}\Delta_{x}}\left(E_{z}^{q}[m+1,n]-E_{z}^{q}[m,n]\right)$$

Конечно-разностная аппроксимация для закона Ампера

Подобным образом выражаем $E_z^{q+1}[m, n]$ из закона Ампера:

$$E_{z}^{q+1}[m,n] = \frac{1 - \frac{\sigma \Delta_{t}}{2 \, \epsilon_{0}}}{1 + \frac{\sigma \Delta_{t}}{2 \, \epsilon_{0}}} E_{z}^{q}[m,n] + \frac{\sigma \Delta_{t}}{2 \, \epsilon_{0}}$$

$$+\frac{1}{1+\frac{\sigma\Delta_{t}}{2\varepsilon\varepsilon_{0}}}\left(\frac{\Delta_{t}}{\varepsilon\varepsilon_{0}\Delta_{x}}\left\{H_{y}^{q+1/2}[m+1/2,n]-H_{y}^{q+1/2}[m-1/2,n]\right\}-\frac{1}{2\varepsilon\varepsilon_{0}}\left\{H_{y}^{q+1/2}[m+1/2,n]-H_{y}^{q+1/2}[m-1/2,n]\right\}-\frac{1}{2\varepsilon\varepsilon_{0}}\left\{H_{y}^{q+1/2}[m+1/2,n]-H_{y}^{q+1/2}[m-1/2,n]\right\}$$

$$-\frac{\Delta_{t}}{\epsilon \,\epsilon_{0} \Delta_{v}} \{H_{x}^{q+1/2}[m,n+1/2] - H_{x}^{q+1/2}[m,n-1/2]\})$$

Пространственная сетка для двумерного метода FDTD. Поляризация TM^z

Особенности реализации двумерного метода FDTD

- Размер массива для компоненты $E_{_{\rm z}}$ $M \times N$
- Размер массива для компоненты $H_{_{\scriptscriptstyle X}}$ $M \times (N$ 1)
- Размер массива для компоненты $H_{_{y}}$ (M 1) × N

Если $\Delta_{x} = \Delta_{y} = \delta$, то можно ввести следующие коэффициенты:

$$C_{hxh}(m, n+1/2) = \frac{1 - \frac{\sigma_m \Delta_t}{2 \mu \mu_0}}{1 + \frac{\sigma_m \Delta_t}{2 \mu \mu_0}} \Big|_{m\delta, (n+1/2)\delta}$$

$$C_{hxe}(m, n+1/2) = \frac{1}{1 + \frac{\sigma_m \Delta_t}{2 \mu \mu_0}} \frac{\Delta_t}{\mu \mu_0 \delta} \Big|_{m\delta, (n+1/2)\delta}$$

Если $\Delta_x = \Delta_y = \delta$, то можно ввести следующие коэффициенты:

$$C_{hyh}(m+1/2,n) = \frac{1 - \frac{\sigma_m \Delta_t}{2 \mu \mu_0}}{1 + \frac{\sigma_m \Delta_t}{2 \mu \mu_0}} \Big|_{(m+1/2)\delta, n\delta}$$

$$C_{hye}(m+1/2,n) = \frac{1}{1 + \frac{\sigma_m \Delta_t}{2 \mu \mu_0}} \frac{\Delta_t}{\mu \mu_0 \delta} \Big|_{(m+1/2)\delta, n\delta}$$

Если $\Delta_{x} = \Delta_{y} = \delta$, то можно ввести следующие коэффициенты:

$$C_{eze}(m,n) = \frac{1 - \frac{\sigma \Delta_t}{2 \varepsilon \varepsilon_0}}{1 + \frac{\sigma \Delta_t}{2 \varepsilon \varepsilon_0}} \Big|_{m\delta, n\delta}$$

$$C_{ezh}(m,n) = \frac{1}{1 + \frac{\sigma \Delta_t}{2 \varepsilon \varepsilon_0}} \frac{\Delta_t}{\varepsilon \varepsilon_0 \delta}$$

$$m_{\delta,n\delta}$$

Программная реализация конечноразностной схемы

Критерий устойчивости Куранта-Фридриха-Леви

$$v_{max} \Delta_{t} \leq \frac{1}{\sqrt{\Delta_{x}^{-2} + \Delta_{y}^{-2} + \Delta_{z}^{-2}}}$$

$$v_{max} = \frac{c}{\sqrt{\epsilon_{min} \mu_{min}}}$$

Если
$$\Delta_x = \Delta_y = \Delta_z = \Delta$$

$$v_{max} \Delta_t \leq \frac{\Delta}{\sqrt{N}}$$

N — размерность пространства (1, 2, 3)

Критерий стабильности для одномерного пространства:

$$S_c = \frac{v \Delta_t}{\Delta_x} \le 1$$

Критерий стабильности для одномерного пространства:

$$S_c = \frac{v \Delta_t}{\Delta_x} \le 1$$

Критерий стабильности для N-мерного пространства:

$$S_c = v \Delta_t \sqrt{\sum_{n=1}^{N} \frac{1}{\Delta_n^2}} \le 1$$

Критерий стабильности для одномерного пространства:

$$S_c = \frac{v \Delta_t}{\Delta_x} \le 1$$

Критерий стабильности для N-мерного пространства:

$$S_c = v \Delta_t \sqrt{\sum_{n=1}^{N} \frac{1}{\Delta_n^2}} \le 1$$

Критерий стабильности для двумерного пространства:

$$S_c = v \Delta_t \sqrt{\frac{1}{\Delta_x^2} + \frac{1}{\Delta_y^2}} \le 1$$

Если $\Delta_{x} = \Delta_{y} = \Delta$, то

$$S_c = v \Delta_t \sqrt{\frac{1}{\Delta^2} + \frac{1}{\Delta^2}} \le 1 \quad \Rightarrow \quad S_c = \frac{v \Delta_t \sqrt{2}}{\Delta} \le 1$$

Критерий стабильности для N-мерного пространства:

$$S_c = \frac{v \Delta_t \sqrt{N}}{\Delta} \le 1$$

ИЛИ

$$S_c = \frac{v \Delta_t}{\Delta} \le \frac{1}{\sqrt{N}}$$

Введем коэффициент — аналог одномерного числа Куранта для двумерного случая

$$Cdtds = \frac{v \Delta_t}{\Delta} \le \frac{1}{\sqrt{2}}$$

Критерий устойчивости для двумерного FDTD:

$$\Delta_t \leq \frac{\Delta}{c\sqrt{2}}$$

Демонстрация двумерного метода FDTD для поляризации ТМ^z. Источник цилиндрической волны.

Демонстрация двумерного метода FDTD для поляризации ТМ^z. <u>Источник плоской волны.</u>

Двумерный метод конечных разностей во временной области для поляризации TE^z

Поляризация TE^z

Законы Фарадея и Ампера в скалярном виде

$$\sigma E_x + \varepsilon \varepsilon_0 \frac{\partial E_x}{\partial t} = \frac{\partial H_z}{\partial y}$$

$$\sigma E_{y} + \varepsilon \varepsilon_{0} \frac{\partial E_{y}}{\partial t} = -\frac{\partial H_{z}}{\partial x}$$

$$-\sigma_{m}H_{z}-\mu\mu_{0}\frac{\partial H_{z}}{\partial t}=\frac{\partial E_{y}}{\partial x}-\frac{\partial E_{x}}{\partial y}$$

Дискретизация величин Е и Н

$$E_{x}(x,y,t) = E_{x}(m\Delta_{x},n\Delta_{y},q\Delta_{t}) = E_{x}^{q}[m,n]$$

$$E_{y}(x,y,t) = E_{y}(m\Delta_{x},n\Delta_{y},q\Delta_{t}) = E_{y}^{q}[m,n]$$

$$H_{z}(x,y,t) = H_{z}(m\Delta_{x},n\Delta_{y},q\Delta_{t}) = H_{z}^{q}[m,n]$$

- m индекс по пространству вдоль оси X.
- *п* индекс по пространству вдоль оси Y.
- *q* индекс по времени.
- $\Delta_{_{\! X}}$, $\Delta_{_{\! V}}$ размер сетки по осям X и Y соответственно.

Конечно-разностная схема

$$H_{z}^{q+1/2}[m+1/2,n+1/2] = \frac{1 - \frac{\sigma_{m}\Delta_{t}}{2\mu\mu_{0}}}{1 + \frac{\sigma_{m}\Delta_{t}}{2\mu\mu_{0}}}H_{z}^{q-1/2}[m+1/2,n+1/2] -$$

$$-\frac{1}{1+\frac{\sigma_{m}\Delta_{t}}{2\mu\mu_{0}}}\left(\frac{\Delta_{t}}{\mu\mu_{0}\Delta_{x}}\left\{E_{y}^{q}[m+1,n+1/2]-E_{y}^{q}[m,n+1/2]\right\}-\right)$$

$$-\frac{\Delta_{t}}{\mu \mu_{0} \Delta_{y}} \left\{ E_{x}^{q} [m+1/2, n+1] - E_{x}^{q} [m+1/2, n] \right\}$$

Конечно-разностная схема

$$E_{x}^{q+1}[m+1/2,n] = \frac{1 - \frac{\sigma \Delta_{t}}{2 \varepsilon \varepsilon_{0}}}{1 + \frac{\sigma \Delta_{t}}{2 \varepsilon \varepsilon_{0}}} E_{x}^{q}[m+1/2,n] +$$

$$+\frac{1}{1+\frac{\sigma\Delta_{t}}{2\varepsilon\varepsilon_{0}}}\frac{\Delta_{t}}{\varepsilon\varepsilon_{0}\Delta_{y}}\left[H_{z}^{q+1/2}[m+1/2,n+1/2]-H_{z}^{q+1/2}[m+1/2,n-1/2]\right]$$

Конечно-разностная схема

$$E_y^{q+1}[m,n+1/2] = \frac{1 - \frac{\sigma \Delta_t}{2 \varepsilon \varepsilon_0}}{1 + \frac{\sigma \Delta_t}{2 \varepsilon \varepsilon_0}} E_y^q[m,n+1/2] -$$

$$-\frac{1}{1+\frac{\sigma \Delta_{t}}{2 \varepsilon \varepsilon_{0}}} \frac{\Delta_{t}}{\varepsilon \varepsilon_{0} \Delta_{x}} \left(H_{z}^{q+1/2}[m+1/2,n+1/2] - H_{z}^{q+1/2}[m-1/2,n+1/2]\right)$$

Пространственная сетка для двумерного метода FDTD. Поляризация TE^z

Если $\Delta_x = \Delta_y = \delta$, то можно ввести следующие коэффициенты:

$$C_{hzh}(m+1/2,n+1/2) = \frac{1 - \frac{\sigma_m \Delta_t}{2\mu\mu_0}}{1 + \frac{\sigma_m \Delta_t}{2\mu\mu_0}} \Big|_{(m+1/2)\delta,(n+1/2)\delta}$$

$$C_{hze}(m+1/2,n+1/2) = \frac{1}{1 + \frac{\sigma_m \Delta_t}{2\mu \mu_0}} \frac{\Delta_t}{\mu \mu_0 \delta} \Big|_{(m+1/2)\delta,(n+1/2)\delta}$$

Если $\Delta_{x} = \Delta_{y} = \delta$, то можно ввести следующие коэффициенты:

$$C_{exe}(m+1/2,n) = \frac{1 - \frac{\sigma \Delta_t}{2 \varepsilon \varepsilon_0}}{1 + \frac{\sigma \Delta_t}{2 \varepsilon \varepsilon_0}} \Big|_{(m+1/2)\delta, n\delta}$$

$$C_{exh}(m+1/2,n) = \frac{1}{1 + \frac{\sigma \Delta_t}{2 \varepsilon \varepsilon_0}} \frac{\Delta_t}{\varepsilon \varepsilon_0 \delta} \Big|_{(m+1/2)\delta, n\delta}$$

Если $\Delta_{x} = \Delta_{y} = \delta$, то можно ввести следующие коэффициенты:

$$C_{eye}(m,n+1/2) = \frac{1 - \frac{\sigma \Delta_t}{2 \varepsilon \varepsilon_0}}{1 + \frac{\sigma \Delta_t}{2 \varepsilon \varepsilon_0}} \Big|_{m\delta,(n+1/2)\delta}$$

$$C_{eyh}(m, n+1/2) = \frac{1}{1 + \frac{\sigma \Delta_t}{2 \varepsilon \varepsilon_0}} \frac{\Delta_t}{\varepsilon \varepsilon_0 \delta} \Big|_{m \delta, (n+1/2) \delta}$$

Программная реализация конечноразностной схемы

Демонстрация двумерного метода FDTD для поляризации TE^z. Источник цилиндрической волны.

Объединенная пространственная сетка для двумерного метода FDTD для двух поляризаций

