Name	Date	

Stoichiometry

CHEMISTRY A

Stoichiometry can be thought of as the math of chemistry. It involves using relationships between reactants and/or products to determine such quantities as mass, moles, and number of atoms. Dimensional analysis is a way to simplify stoichiometric problem solving. In this activity, you will use dimensional analysis in order to count the number of atoms in a given substance.

- 1. A sample of gold (Au) has a mass of 35.12 g.
 - a. Calculate the number of moles of gold (Au) in the sample and record in Table 1. Show your work.
 - b. Calculate the number of atoms of gold (Au) in the sample and record in Table 1. Show your work.
- 2. A sample of table sugar (sucrose, $C_{12}H_{22}O_{11}$) has a mass of 1.202 g.
 - a. Calculate the number of moles of $C_{12}H_{22}O_{11}$ contained in the sample and record in Table 1. Show your work.
 - b. Calculate the moles of each element in $C_{12}H_{22}O_{11}$ and record in Table 1. Show your work.
 - c. Calculate the number of atoms of each type in $C_{12}H_{22}O_{11}$ and record in Table 1. Show your work.

Table 1					
	Au	C ₁₂ H ₂₂ O ₁₁			
Mass (grams)					
Molar mass (g/mol)					
		C:			
Moles of each element		H:			
		O:			
		C:			
Atoms of each element		H:			
		O:			

