4.1 Maximum and minimum values

微分應用之一: 找極值。

- 1. Extreme Value Theorem 極值定理 (存在性)
- 2. Fermat's Theorem 費馬定理 (找極値)

0.1 Extreme Value Theorem

Define: A function $f: D \to R$ and $c \in D$. f(c) is the

- absolute maximum value 絕對最大値 of f on D if $f(c) \geq f(x)$ for all $x \in D$. (maximum a., n., pl.: -ima)
- absolute minimum value 絕對最小値 of f on D if $f(c) \leq f(x)$ for all $x \in D$. (minimum a., n., pl.: -ima) (absolute max/min is sometimes called global max/min, and both called extreme values 極値 of f.)
- local maximum value 相對 (局部) 極大値 of f if $f(c) \geq f(x)$ when x is near c. (有些書用 maximal a.)
- local minimum value 相對 (局部) 極小値 of f if $f(c) \leq f(x)$ when x is near c. (有些書用 minimal a.)

Attention:絕對最大/小值發生在端點時不是相對極大/小值。

Theorem 1 (Extreme Value Theorem) 閉連續有極値

If f is **continuous** on a **closed** interval [a,b], then f attains an absolute maximum value f(c) and an absolute minimum value f(d) at some numbers c and d in [a,b]. (f has **extreme** values.)

Proof. (省略: 閉區間 = 頭尾固定; 連續 = 中間沒斷; ⇒ 有高有低。) ■

Note:

not continuous, no max.

not closed, no extreme values.

0.2 Fermat's Theorem

Theorem 2 (Fermat's Theorem) 極處可微導數爲零

If f has a local maximum or minimum at c, and if f'(c) exists, then f'(c) = 0.

Proof. [反證法]

If
$$f'(c) > 0$$
, then $\lim_{h \to 0} \frac{f(c+h) - f(c)}{h} > 0$,
 $\implies f(c+\delta) > f(c) > \frac{f(c-\delta)}{h}$

for some $\delta > 0$ small enough.

(The case of f'(c) < 0 is similar.)

 $\implies f(c)$ is not a local max/min, a contradiction.

Therefore, f'(c) = 0.

[直證法] Suppose f(c) is a local max, $f(c) \ge f(c+h)$.

When
$$h > 0$$
, $\frac{f(c+h) - f(c)}{h} \le 0$. $(\frac{(-)}{(+)})$

$$f'(c) \text{ exists, } f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h} = \lim_{h \to 0^+} \frac{f(c+h) - f(c)}{h} \le 0.$$

When
$$h < 0$$
, $\frac{f(c+h) - f(c)}{h} \ge 0$. $(\frac{(-)}{(-)})$

$$f'(c) \text{ exists, } f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h} = \lim_{h \to 0^-} \frac{f(c+h) - f(c)}{h} \ge 0.$$

Therefore, f'(c) = 0.

Remark: f has local max/min: $\begin{cases} f'(c) \text{ exists} \implies f'(c) = 0; \\ f'(c) \text{ does not exist} \implies ? \end{cases}$

Ex: f(x) = |x| has a (absolute) min(imum value) f(0) = 0 at 0, but f'(x) does not exist) at $0 \not\equiv f'(0)$.

Define: A *critical number* 臨界値 (奇異點) of a function f is a number c in the **domain** of f such that either f'(c) = 0 or f'(c) **does not exist**.

Note: f has local max/min at $c \implies c$ is a critical number of f. but c is a critical number of $f \longrightarrow f$ has local max/min at c.

極值就在臨界值中!

戀曲 有美好回憶 不是每個臨界都是極值。

Ex: $f(x) = x^3$ has a critical number 0, but f(0) is not an extreme value.

Closed interval method: 閉區間法

f is continuous on a closed interval [a, b] 閉連續。 (先保證有極值再講究方法)

(沒有不在場證明) **Step 1.** 找臨界値: f(c) for critical number $c \in (a, b)$ of f.

Step 2. 找邊界點: f(a), f(b).

Step 3. 比大小: The largest/smallest value in Steps 1 and 2 is the absolute $\frac{\text{maximum}}{\text{minimum}}$ value of f.

Example 0.1 Find max/min of $f(x) = x^3 - 3x^2 + 1$, $-\frac{1}{2} \le x \le 4$.

1.
$$f'(x) = 3x^2 - 6x = 3x(x-2)$$
,

$$f'(x) = 0$$
 when $x = 0$ or $x = 2$, $f(x) = 0$ when $f(x) = 0$ when $f(x) = 0$ when $f(x) = 0$ is $f(x) = 0$.

2. 邊界點:
$$f(-\frac{1}{2}) = \frac{1}{8}$$
, $f(4) = 17$.

3. Choose the largest/smallest in $\{-3, \frac{1}{8}, 1, 17\}$.

Ans: The absolute maximum value is f(4) = 17, the absolute minimum value is f(2) = -3.

Note: 要寫淸楚極值在哪值多少 $f(\cdots) = \cdots$ 。

♦ Additional: Proof of Extreme Value Theorem

極値定理的完整證明, 需要學習進階 (advanced) 微積分, 從 實數的完備性公設 (Completeness Axiom of Real Numbers) 開始, 一路證明: 區間套定理 (Nested Intervals Thoerem), 波爾札諾-魏爾斯特拉斯定理 (Bolzano-Weierstrass Theorem), 有界定理 (Bounding Theorem); 這裡只給最後一步的證明。

Theorem 3 (Completeness Axiom of Real Numbers (§11))

Every nonempty set of real numbers that has an upper bound has a least upper bound (lub).

Theorem 4 (Nested Interval Theorem)

Intervals
$$I_1 \supset I_2 \supset \cdots \supset I_n \supset \cdots \implies \bigcap_{n=1}^{\infty} I_n \neq \emptyset$$
.

Theorem 5 (Bolzano-Weierstrass Theorem)

Every bounded sequence has a convergent subsequence.

Theorem 6 (Bounding Theorem) (閉區間連續函數的值域有界。)

If f is continuous on closed interval [a, b], then the range of f is bounded.

Proof. (Extreme Value Theorem)

By Bounding Theorem and Completeness Axiom, the range of f has a least upper bound M, claim that " $\exists c \in [a,b] \ni f(c) = M$ ".

Suppose not, consider $g(x) = \frac{1}{M - f(x)}$ is continuous on [a, b], by Bound-

ing Theorem, g(x) is bounded above by L > 0. Then $\frac{1}{M - f(x)} < L$,

 $f(x) < M - \frac{1}{L}(< M)$, a lower upper bound than M, a contradiction.

Similarly, the range of f has a greatest lower bound L and $\exists d \in [a, b] \ni f(d) = L$.