	ecture 2: some geometry of linear maps
_Note Tit	
	What are the linear maps A: IK - IK
	What are the linear maps $A: \mathbb{R}^n \to \mathbb{R}^n$ that preserve distance,
	· . 11 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	1.e. 11 AX - AY 11 - 112-911
	WALL ERN
linea	inty
os	i.e. $ Ax - Ay = x-y $ with $ Ax = x + x $ $ Ax = x + x $
11×112	TATA T mr
ニベメ	$x \rightarrow x \rightarrow$
, 1	$\langle Ax, Ax \rangle \langle x, x \rangle$
polariz	ation —
locave	(=> <ax, au)="<X,U)" td="" yx,uetr<=""></ax,>
= 211	$(=) \langle = \rangle \langle Ax, Ay \rangle = \langle x, y \rangle \forall x, y \in \mathbb{R}^{n}$
م <u>۲</u> ۲	$\langle Ax, Ax \rangle = xx \forall x \in \mathbb{R}$ $\langle Ax, Ax \rangle \langle x, x \rangle$ $\langle Ax, Ay \rangle = \langle x, y \rangle \forall x, y \in \mathbb{R}^{n}$ $ x+y ^{2} - x-y ^{2} x-y ^{2} x-y ^{2} x-y ^{2} x-y ^{2} x-y ^{2}$
م د	S AAL SL
-1 .	$A^{T}A = I$
in	
y=e	દ, x=e;
	These are, of course, what are usually called "orthogonal matrices" in linear algebra. It's important you think of them as
	usually called "orthogonal matrices"
	in linear algebra. It's important you
	think of them as
	"LINEAR ISOMETRIES".
	✓
	maps that preserve
	distance, i.e. satisfy
	visturies, i.e. soxial of

There are many linear maps that are
NOI isometries.
6.9. 30 30 30 30 30 1
E.g. $\begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$, $\begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$, $\begin{bmatrix} 3 & 0 \\ 0 & -2 \end{bmatrix}$, or whogonal
OK VL JV
onthogonal
and their higher-dimensional analogs
[Ai O or u [A
$\begin{bmatrix} x_1 & 0 \\ 0 & x_n \end{bmatrix}$ or $u \begin{bmatrix} x_1 & x_2 \\ x_1 & x_2 \end{bmatrix} u^T$
or magonal.
scaling /oblating
by ai in the scaling rounding
Or alphabling
u=[u, ··· un].
Note: U.T. Satisfies ST=S.
5
The converse is also true and is
Note: U.[.i.an] UT satisfies ST=S. The converse is also true and is a standard result in linear algebra.
Theorem: If $S=S$, then it has real eigenvalues with an orthogonal set of eigenvectors.
eigenvalues with an orthogonal
set of eigenvectors.

This fact underlies the existence of principal directions and principal curvatures of a regular surface.

Now, we have two types of linear transformations:

1) isometries (orthogonal matrices)

RTR = I

They rotate, flip, or a combination of both

They do not scale/dilate.

Scaling/dilation (symmetric matrices)
with positive eigenvalues

ST=S

x0.8 us
x4

They stretch/dilate/scale.

They do not rotate or flip.

Note: symmetric matrices with only positive eigenvalues are usually called symmetric positive definite matrices.

	Rode to take the second to the
	Back to isometry, a subtle question:
_	what are all the maps, linear or nonlinear, $T: \mathbb{R}^n \to \mathbb{R}^n$ that preserve distance?
	of course, any translation $X \mapsto X + C$ for a fixed $C \in \mathbb{R}^n$ is an isometry.
	So any affine map of the form
	XHPRX+c
	RTR = I, ce Rn
	is an isometry.
	The trums out there are no others.
V	CTUS is tricky to prove, and I
	The trums out there are no others. CTUS is tricky to prove, and I can provide you with a reference.)
	Rut
	T: "a curred object" > "a curred object"
	can also be distance preserving. (And
	can also be distance preserving. (And in this context it makes no sense to
	ask if T is linear or affine.)
	$\mathbb{R}^3 \supset \mathcal{C} \bigcirc \longrightarrow \bigcirc $
	0 7 2 7

What are the linear maps A: IRn = IRn
What are the linear maps A: IRn > IRn that preserve orientation"?
Below, I will
(i) try to convince you that it makes sense to define "orientation preserving" by the condition
sense to define
" orientation preserving" by the condition
det (A) > 0
(ii) at the same time, give you a self- contained presentation of what the scalar quantity det (A) is supposed to measure about the
contained presentation of what the
scalar quantity det (A)
is supposed to measure about the
map A.
, , , , , , , , , , , , , , , , , , ,
$A = A[e_1 \cdots e_n] = [Ae_1 \cdots Ae_n]$
- Ac
eza A Aez A Aez A Aez Aez Aez Aez Aez Aez A
ok ez hei
n=2 n=3
The parallelepiped with sides Ae,, Aen is the set n $P := \{ \sum_{i=1}^{n} x_i A e_i : 0 \le x_i \le 1 \}$
is the set on
P := { SxiAei :0 < x < 1}
نقا
Q: Volume (P) = ? n-dimensional volume based on extending our usual notion of area and volume
n-dimensional volume based on extending
our usual notion of area and volume

That is, instead of 1) and 3, we have

$$\mathbb{C}^{\bullet}$$
 $\mathbb{D}([a_1 - a_0 - a_0]) = d \mathbb{D}([a_1 - a_0 - a_0])$

But this would mean D(A) can sometimes be negative. For instance, (1) means multiplying a '-1' to any column will change the sign of D(A).

5.9. in 2-D
$$D([u,v]) = -D([-u,v])$$

$$= -D([-u,-v])$$

$$= D([-u,-v])$$

With this in mind, and a lit more intuition (related to "orientation"), it appears that when we change (D, 3) to (D, 3) we should also change (2) to:

2) P([a, ...aj ...ai...an]) = - D([a, ...aj...aj...aj...aj])

$$D([U,v]) = -D([U,v])$$

$$= -D([U,v])$$

$$= D([U,v])$$

$$= D([U,v])$$

$$= D([U,v])$$

$$= D([U,v])$$

$$= D([U,v])$$

Observe that the sign of D corresponds exactly to what we usually call "clockwise." or "anti-clockwise."

The following ordered basis of \mathbb{R}^2 are said to have the same orientation:

[いり, [いーい], [ール・レ], [ーじい]

The following ordered basis of \mathbb{R}^2 are said to have the opposite orientation:

[U,W], [-4,V], [-1,-W], [U,-V].

It is harder to make up a sensible notion of 'orientation' in 3— or higher dimensions. The notion of "clockwise!" and "anti-clockwise! is inherently a 2-D concept.

Nevertheless, the new axioms (1) + (2) give an extension of the 2-D picture above.

For different choices of signs &i & {+1,-1}
and permutation o: {1,2,-,n}

D([E1aou), E2aou), ..., Enaoun])

all have the same magnitude. Its sign will be a (difficult-to-interpret) way of defining "the orientation of the ordered basis"

{2,000, 2,000, ..., 2,000, ..., 2,000,}

I	Ce	omo	laine	ed c	rbou	ct -	the	unintr	uitive	nortur	re
								rentat			
iv	า า	div	nenc	nn	>	23	At	, the	same	b'm	د
1~1	2	h	ave	+h	۔ ۔	Pollo	wing	satis.	fying	resul-	t:
		, ,		• •		1	\sim		10 D	_	

_	Theorem: the (goometrically meaningful!) axioms
	the (geometrically meaningful!) axioms
	0, (1), (2), (3') uniquely determine
	· ·
	D(A), and in a very concrete way:
	$\mathcal{D}(A) = \sum_{\sigma} sgn(\sigma) A_{1,\sigma(1)} A_{2,\sigma(2)} - A_{n,\sigma(n)}$

Write $D(a_1, -, a_n)$ instead of $D(ta_n-, a_n)$ $D: \mathbb{R}^n \times -- \mathbb{R}^n \to \mathbb{R}$

The proof is easy after we observe that:

Lemma: (i) - (3') imply D: Rx - x Rn - R is
D: Rx -x Rn = R is
linear in each argument, i.e.
D(51,, dvi + Bvi,, vn)
= aD(vi, -, vi,, vn)
+ (3 D(vi,, vi',, vin)
•
(we usually call such a map multi-linear,) Proof: exercise.
multi-linear,
Proof: exercise.
Proof of theorem:
Once we have this lemma, we can
Once we have this lemma, we can almost immediately derive what D()
must be:
D(a, az,, an)
n_{11} n_{12} n_{13}
Zaijej Zazjej Zanjej
3=1 3-1 3-1
$=$ \geq a_{ij} , $(e_{j1}, (a_2), \cdots, a_n)$
$\partial_1 = 1$ N
$= \sum_{\substack{j_1=1\\ j_1=1}}^{n} a_{ij_1} \mathcal{D}(e_{j_1}, (a_2), \dots, a_n)$ $= \sum_{\substack{j_1=1\\ j_1=1}}^{n} a_{ij_1} \sum_{\substack{j_2=1\\ j_2=1}}^{n} a_{2j_2} \mathcal{D}(e_{j_1}, e_{j_2}, a_{3,-}, a_n)$
J12, 5 J22, 5
=:
$\frac{n}{n}$ $\frac{n}{n}$
$= \frac{n}{\sum_{j_1=1}^{n}} \frac{n}{j_2=1} \frac{n}{j_1} \frac{n}{j_2} \frac{n}{j_1} \frac{n}{j_2} $
91-115-1 NA=1
(n' tenns)

we are almost done, we need just one more standard combinatorics trick to understand the term

D(ej, , ejz, ---, ejn)

Note that if ji, ..., in are not distinct, then the term must vanish (why?)

But when ju, -, jn are distinct, then

(ej,-, ejn) is just a <u>permutation</u> of (e1,-, en).

Using the alternating property (2), $D(e_j, -; e_j) = (-1)$ $D(e_j, -; e_n)$ (-1) (-1) (-1) (-1) (-1) (-1) (-1) (-1) (-1)

N (o) = # of interchanging pairs needed to transform (1,2,-, M) to (juja-jh)

> this # is not unique, \
> but the ganty is,
> and that is all that matters for $N(\sigma)$ $Sgn(\sigma) := (-1)$

Facts from linear algebra:

• det(AB) = det(A) det(B) - (P)

This also has an important geometric interpretation.

We showed earlier that

det (A) = Volume (A[0,1]").

But it has an important generalization

Volume (A(S)) = |det (A)| - (P2)

for any "reasonable enough" set SCR"

(the technical condition for "reasonable enough is measurable".)

Ex: relates (P1) and (P2)

Ex: would the ratio on the LHS. of (P2)
still be indifferent to the set S
if A is a nonlinear map?

• $det(A^T) = det(A)$

Geometric meaning is best seen from the polar decomposition of A A=RS = U[a...on]uT => AT = U[a...on]uT RT isometry scaling scaling isometru Exercise: Experiment with different 2×2 or 3×3 matrices visualize the shapes of A [0,1] and ATEGIZ" visualite the shapes of A(S) for different S. Ce.g. S= circular ohsk)

Exercise

SO(n):= {all linear maps A: Rn = Rn that are (i) isometry and ?
(ii) orientation presently = {A e R MA | ATA = I, det(A) = 1} Also: OCN) := {AG RMM | ATA=I}. SECN) := {T: RM RM | Tx = Ax+c, 7 Aeso(n), CERn EM: {T: Rn Rn Tx e Ax+c, 7 A C O(n), Why do we bother to collect all these specific linear / affine maps and study each of them as a mathematical entity? - interesting structure ?

- useful?

- both ?

After Lecture 8, you can tell me if you find the mathematical structures interesting.

Regarding usefulness, I already gave you a hint of how the structure of \$0(3) may play a role in the French equation. But. 3-D rotations are also ubiquitous in applications. Think of motion sensing, robotics, satellites, drones, fluild mechanics, you name it.

For example, a standard problem in robotics is called Inverse Kinematics (IK) and in this problem it is essential to have a good way to parameterize SO(3). I will share with you such a good way in Lecture 8.

