Московский физико-технический институт Физтех-школа прикладной математики и информатики

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

III CEMECTP

Лектор: Жуковский Сергей Евгеньевич

Автор: Лизюра Дмитрий

 $\Pi poe\kappa m$ на Github

Содержание

1	Введение				
	1.1 Простейшие типы дифференциальных уравнений				
		1.1.1 У _І	равнения с разделяющимися переменными	3	
		1.1.2 Ли	инейные уравнения I порядка	4	
		1.1.3 У _І	равнение Бернулли	6	
		1.1.4 У _І	равнение Риккати	6	
	1.2	Уравнени	ия в дифференциалах	6	
		1.2.1 O	днородные уравнения	6	
		1.2.2 У _І	равнения в полных дифференциалах	7	
		1.2.3 Ин	нтегрирующий множитель	7	
2	Методы понижения порядка ОДУ				
3	Задача Коши				
	3.1	Теоремы	о существовании и о единственности решения	9	
4	Теоремы о продолжении решений				
5	Уравнения, не разрешённые относительно производной				
6	Некоторые следствия теорем о существовании решений				
7	Линейные однородные системы ОДУ				
8	Линейные неоднородные системы ОДУ.				
	Лин	ейные О	ДУ высших порядков	21	
	8.1	Линейны	е неоднородные системы ОДУ	21	
		8.1.1 M	етод вариации постоянных	21	
	8.2	Линейны	е однородные ОДУ	22	
9	Линейные ОДУ с постоянными коэффициентами				
	9.1	Линейны	е однородные ОДУ с постоянными коэффициентами	25	
	9.2	Линейны	е неоднородные ОДУ с постоянными коэффициентами	26	
	9.3	Веществе	енные решения	27	
10	Сис	темы лиі	нейных ОДУ с постоянными коэффициентами	28	
	10.1	Комплекс	сные однородные системы	28	
	10.2	Веществе	енные однородные системы	29	

	10.3 Компексные неоднородные системы	30		
	10.4 Вещественные неоднородные системы с правой частью специального вида .	31		
11	Матричная экспонента 11.1 Определение	31		
	11.1 Определение			
12 Теорема Штурма				
	12.1 Свойства	34		
	12.2 Теорема Штурма	35		
13	Зависимость решения задачи Коши от параметра	37		
14	Линейные уравнения, уравнение Эйлера	38		

1 Введение

Определение. Пусть $\Omega \subset \mathbb{R} \times \underbrace{\mathbb{R}^n \times \cdots \times \mathbb{R}^n}_{k+1 \text{ pas}}, \ F: \Omega \to \mathbb{R}^m$. Обыкновенным дифферен-

ииальным уравнением (или системой) к-ого порядка (ОДУ) называется уравнение

$$F(t, x, x', \dots, x^{(k)}) = 0.$$

Его решением называется функция $x: I \to \mathbb{R}^n$, где:

- $\triangleright I \subset \mathbb{R}$ интервал.
- $\triangleright x \in C^k(I,\mathbb{R}^n) k$ раз непрерывно дифференцируемая функция.
- \triangleright Для любого $t \in I$ выполнено $(t, x(t), \dots, x^{(k)}(t)) \in \Omega$, то есть попадает в область определения F.
- $ightharpoonup F(t, x(t), ..., x^{(k)}(t)) \equiv 0$ на I.

Как правило, рассматривать совсем общие уравнения неинтерестно, так как они слишком сложные, поэтому мы обычно будем рассматривать частный случай.

Определение. Пусть $\Gamma \subset \mathbb{R} \times \underbrace{\mathbb{R}^n \times \cdots \times \mathbb{R}^n}_{k \text{ раз}}, \ F : \Gamma \to \mathbb{R}^n$. Нормальным ОДУ (или

системой) k-ого порядка называется уравнение

$$x^{(k)} = F(t, x, x', \dots, x^{(k-1)}).$$

Примеры:

- 1. x' = x, решение $x(t) = ce^t$ для всех $c \in \mathbb{R}$ и интервалов $I \subset \mathbb{R}$. Решением является и функция и область определения.
- 2. $t^2 + x^2 + (x')^2 = 0$. Решений нет, так как решение должно быть определено на *интервале*, то есть только в нуле определить нельзя.
- 3. $x' = 1 + x^2$. Понятно, что $x(t) = \operatorname{tg}(t)$ подходит, но что с областью определения? Нам подходят $t \in \mathbb{R} \setminus \{\frac{\pi}{2} + \pi n \mid n \in \mathbb{Z}\}$, откуда получается, что решения это все функции, определённые на подынтервалах этого множества.

1.1 Простейшие типы дифференциальных уравнений

1.1.1 Уравнения с разделяющимися переменными

Пусть I, J — интервалы, $f: I \to \mathbb{R}, q: J \to \mathbb{R}$ — непрерывные функции.

Определение. Уравнение с разделяющимися переменными — это уравнение вида x' = f(t)g(x).

Рассмотрим два случая.

Второй — $g(\cdot)$ не обнуляется. Зафиксируем какое-то решение $x(\cdot)$. Заметим, что получится тождество $x'(t) \equiv f(t)g(x)$. Тогда можно разделить на g(x(t)):

$$\frac{x'(t)}{g(x(t))} \equiv f(t)$$

Проинтегрируем обе части. Здесь и далее под интегралом подразумевается какая-то фиксированная первообразная.

$$\int \frac{x'(t)}{g(x(t))}dt \equiv \int f(t)dt + C$$

Внесём x под дифференциал.

$$\int \frac{dx}{q(x(t))} \equiv \int f(t)dt + C$$

Положим $G(t)=\int \frac{dx}{g(x)}$ и $F(t)=\int f(t)dt$, тогда получаем

$$G(x(t)) \equiv F(t) + C$$

Теперь заметим, что $g(\cdot)$ — это непрерывная функция на интервале, которая не обнуляется. Иными словами, она строго больше нуля или строго меньше, а это значит, что $G(\cdot)$ строго возрастает или строго убывает, то есть к ней применима теорема об обратной функции.

$$x(t) \equiv G^{-1}(F(t) + C)$$

Так как везде были тождества, сие уравнение эквивалентно исходному. Важно только помнить, что G^{-1} определена на G(J), так что подходят не совсем все пары (t,C).

Но что делать со случаем, когда $g(\cdot)$ всё-таки обнуляется? Тут возникают всякие неприятности, как минимум, если для какого-то $\overline{x} \in J$ выполнено $g(\overline{x}) = 0$, то $x(t) \equiv \overline{x}$ — решение для всех $t \in I$. Но можно пойти дальше.

Упражнение. Пусть существует $\overline{x} \in J$, такое что $g(\overline{x}) = 0$, а при $x > \overline{x}$ выполнено $g(x) \neq 0$. Пусть также найдётся $\overline{t} \in I$, такое что $f(\overline{t}) \neq 0$, а интеграл $\int_{\overline{x}}^{x} \frac{d\xi}{g(\xi)}$ сходится при $x > \overline{x}$. Тогда найдётся функция y(t) для $t > \overline{t}$ и функция

$$\widehat{x}(t) = \begin{cases} \overline{x}, & t \leqslant \overline{t} \\ y(t), & t > \overline{t} \end{cases}$$

являющаяся решением.

Что это всё значит: мы нашли тривиальное решение $x(t) \equiv \overline{x}$, потом нашли решение уравнения $y(\cdot)$ методом выше (так как там уже $g(\cdot)$ не обнуляется), а теперь взяли, склеили их и получили новое решение. В виде картинки:

1.1.2 Линейные уравнения І порядка

Пусть задан интервал $I \subset \mathbb{R}$ и две непрерывные функции $a, b: I \to \mathbb{R}$.

Определение. Линейное уравнение первого порядка — уравнение вида x' + a(t)x = b(t). Если $b(t) \equiv 0$, то уравнение называется однородным, иначе — неоднородным.

Однородное уравнение — это уравнение с разделяющей переменной. Его мы уже умеем решать:

$$\frac{dx}{dt} = -a(t)x$$

Рис. 1: Третье решение.

При $x(t) \equiv 0$ верно, далее рассматриваем на интервалах, на которых не обнуляется.

$$\frac{dx}{x} = -a(t)dt$$

$$\ln(|x|) = -\int a(t)dt + C$$

$$|x(t)| = \widetilde{C} \exp\left(-\int_{t_0}^t a(s)ds\right)$$

$$x(t) = C \exp\left(-\int_{t_0}^t a(s)ds\right), t \in I$$

Здесь C несколько раз переопределялась, конкретные переходы должны быть понятны. Для решения неоднородных уравнений можно использовать метод вариации произвольной постоянной. Пусть C = C(t), тогда

$$x(t) = C(t) \exp\left(-\int_{t_0}^t a(s)ds\right), t \in I$$

Подставим в исходное неоднородное уравнение:

$$C'(t) \exp\left(-\int_{t_0}^t a(s)ds\right) - C(t) \exp\left(-\int_{t_0}^t a(s)ds\right) a(t) + a(t)C \exp(\dots) = b(t)$$
$$C' = b(t) \exp\left(\int_{t_0}^t a(s)ds\right)$$
$$C(t) = \int_{t_0}^t b(s) \exp\left(\int_{t_0}^s a(\xi)d\xi\right) ds + C$$

По итогу

$$x(t) = \left(\int_{t_0}^t b(s) \exp\left(\int_{t_0}^s a(\xi) d\xi \right) ds + C \right) \cdot \exp\left(- \int_{t_0}^t a(s) ds \right).$$

При желании эту формулу можно запомнить, но лучше просто знать метод и применять его.

1.1.3 Уравнение Бернулли

Пусть задан интервал $I \subset \mathbb{R}$, константа $\alpha \in (0,1) \cup (1,+\infty)$ и две непрерывные функции $a,b:I \to \mathbb{R}$. Рассмотрим уравнение Бернулли:

$$x' = a(t)x + b(t)x^{\alpha}.$$

Для решения разделим на x^{α} :

$$x^{-\alpha}x' = x^{1-\alpha}a(t) + b(t)$$

Замена: $y(t) = x(t)^{1-\alpha}$, тогда уравнение выше перепишется в виде $y'(t) = (1-\alpha)x^{-\alpha}x'(t)$ или же

 $\frac{y'}{1-\alpha} = a(t)y + b(t)$

Получили линейное уравнение первого порядка.

1.1.4 Уравнение Риккати

Пусть $a,b,c:I\to\mathbb{R}$ — непрерывные функции, рассмотрим уравнение

$$x' = a(t)x^2 + b(t)x + c(t).$$

Пусть с небес нам дали одно из его решений $y(\cdot)$. Тогда можно сделать замену z(t) = x(t) - y(t), тогда уравнение перепишется в виде

$$z' + y' = az^2 + 2azy + ay^2 + bz + by + c =$$

(По условию $ay^2 + by + c = y'$)

$$= az^2 + 2azy + bz + y'.$$

По итогу получается

$$z' = az^2 + (2ay + b)z$$

— уравнение Бернулли.

1.2 Уравнения в дифференциалах

Пусть $\Omega \subset \mathbb{R}^2$, $M, N : \Omega \to \mathbb{R}$. Рассмотрим уравнение

$$M(t,x)dt + N(t,x)dx = 0.$$

Здесь решением может является и функция x = x(t), и функция t = t(x), удовлетворяющая всем условиям.

1.2.1 Однородные уравнения

Пусть найдётся $p \geqslant 0$, такое что для любого k > 0 выполнено $M(kt, kx) \equiv k^p(t, x)$ и $N(kt, kx) = k^p N(t, x)$. Тогда уравнение будет называться однородным, и решается оно

заменой $x(t) = t \cdot z(t)$. При t > 0 уравнение перепишется в виде

$$t \cdot z' + z = -\frac{M(1, z)}{N(1, z)},$$

а при t < 0 будет

$$t \cdot z' + z = -\frac{M(-1, -z)}{N(-1, -z)}.$$

Получили уравнение с разделяющимися переменными.

Замечание. Да, нужно рассматривать два случая отдельно, просто выносить k < 0 не получится. Например, для M(t,x) = |x| отрицательные k не вынесутся, а с положительными всё в порядке.

1.2.2 Уравнения в полных дифференциалах

Пусть M и N непрерывны, Ω открыто и существует непрерывно дифференцируемая функция $f:\Omega\to\mathbb{R}$, такая что $\frac{\partial f}{\partial t}(t,x)\equiv M(t,x)$ и $\frac{\partial f}{\partial x}(t,x)\equiv N(t,x)$. Тогда уравнение (1) будет называться уравнением в полных дифференциалах.

Теорема. (Из матанализа, б/д) Пусть множество Ω выпукло и $\frac{\partial M}{\partial x}(t,x)\equiv \frac{\partial N}{\partial t}(t,x)$. Тогда найдётся дважды непрерывно дифференцируемая функция $f:\Omega\to\mathbb{R}$, такая что $\frac{\partial f}{\partial t}=M$ и $\frac{\partial f}{\partial x}=N$.

Утверждение. Уравнение в полных дифференциалах эквивалентно уравнению f(t,x) = C, где C — константа.

Доказательство. Пусть $x(\cdot)$ — решение уравнения (1). Запишем цепочку эквивалентных утверждений:

$$x'(t) \equiv -\frac{M(t, x(t))}{N(t, x(t))}$$

$$N(t, x(t))x' + M(t, x(t)) \equiv 0$$

$$\frac{\partial f}{\partial x}(t, x(t))x'(t) + \frac{\partial f}{\partial t}(t, x(t)) \equiv 0$$

(Заметим, что это производная композиции)

$$\frac{d}{dt}(f(t, x(t))) \equiv 0$$
$$f(t, x(t)) = C.$$

1.2.3 Интегрирующий множитель

Пусть $M,N:\Omega\to\mathbb{R}$ — непрерывно дифференцируемые функции, Ω — односвязная область, уравнение то же. Уравнение в дифференциалах можно свести к уравнению в полных дифференциалах умножением на специальную функцию $\mu(t,x)$, правда, новое уравнение не обязательно будет эквивалентно исходному.

Определение. Функция $\mu : \Omega \to \mathbb{R}$ называется *интегрирующим множителем*, если $\mu \neq 0$ на Ω и уравнение $\mu M dt + \mu N dx = 0$ является уравнением в полных дифференциалах.

Общего способа подбора интегрирующего множителя нет (как правило, это не проще, чем решить само уравнение), и здесь будет рассмотрен только самый простой случай.

Утверждение. Если $M(t,x)\neq 0$ при всех $(t,x)\in \Omega$ и $(\frac{\partial M}{\partial x}-\frac{\partial N}{\partial t})\frac{1}{N}$ зависит только от t, то существует интегрирующий множитель μ , зависящий только от t и такой, что $\mu(t)\neq 0$ при всех t.

Доказательство. Чтобы уравнение было уравнением в полных дифференциалах, дифференциалы должны совпадать (по теореме выше). То есть

$$\frac{\partial}{\partial x} \left(\mu(t) M(t,x) \right) \equiv \frac{\partial}{\partial t} \left(\mu(t) N(t,x) \right)$$

Раскроем производные:

$$\mu \frac{\partial M}{\partial x} \equiv \mu_t' N + \mu \frac{\partial N}{\partial t}$$

$$\mu_t' = \frac{\mu}{N} \left(\frac{\partial M}{\partial x} - \frac{\partial N}{\partial t} \right)$$

По условию дробь зависит только от t, откуда получается уравнение с разделяющимися переменными для функции $\mu(t)$, и её можно найти стандартными техниками.

2 Методы понижения порядка ОДУ

(Не знаю, откуда взялся этот параграф в конспекте, но на всякий случай оставлю его) Пусть у нас есть ОДУ $F(t, x, x', x'', \dots, x^{(n)}) = 0$ (1). Рассмотрим случаи:

- 1) $F(t, x^{(k)}, \dots, x^{(n)}) = 0$. Сделаем замену $y(t) = x^{(k)}$, порядок понизился.
- 2) $F(x,x',\ldots,x^{(n)})=0$. Введём новую функцию p(x)=x', тогда $x''=p_x'(x)x'=p_x'p$. Исходное уравнение можно записать в виде $F(x,p,p_x'p,\ldots)=0$. Теперь решаем уравнение относительно p и x.
- 3) $F(y,x,x',\dots,x^{(n)})=0$ и при фиксированном t функция $F(t,\cdot)$ положительно однородная, то есть

$$F(t, \lambda x, \lambda x', \dots, \lambda x^{(n)}) = 0 \iff F(t, x, x', \dots, x^{(n)}) = 0 \ \forall \lambda > 0, x, x', \dots$$

Пример положительно однородной функции: $t(x')^2+(x'')^2+e^tx^2=0$. Решается заменой: x'=xz, где z— новая функция от t. Тогда $x''=x'z+xz'=x(z^2+z')$. Подставляя в исходное уравнение, имеем $F(t,x,xz,x(z^2+z'),\dots)=0$. Вспоминая про положительную однородность, мы можем избавиться от x, рассмотрев случаи, когда x>0 и x<0:

$$\begin{cases}
F(x,1,z,z^2+z',\dots) = 0 \\
F(x,-1,-z,-z^2-z',\dots) = 0.
\end{cases}$$

Эта система не эквивалентна исходной, у неё могут быть новые решения.

3 Задача Коши

Определение. Пусть у нас есть нормальная система ОДУ, а также $t_0 \in \mathbb{R}$ и $x_0, x_0^1, \dots, x_0^{k-1} \in \mathbb{R}^n$. Рассмотрим задачу

$$\begin{cases} F(t, x, x', \dots, x^{(k)}) = 0 \\ x(t_0) = x_0 \\ x'(t_0) = x_0^1 \\ \vdots \\ x^{(k-1)}(t_0) = x_0^{k-1} \end{cases}$$

Соотношения про значения в точке t_0 принято называть начальным условием. Важно, что в задаче Коши k-ого порядка должно быть ровно k начальных условий. Решение задачи Коши — решение дифференциального уравнения, удовлетворяющее начальному условию. На данный момент у дифференциального уравнения есть одно решение с точностью до области определения. Чтобы убрать и эту неоднозначность, введём следующее

Определение. Функция $x:I\to\mathbb{R}^n$ называется непродолжаемым (глобальным) решением системы, если для любого решения $\tilde{x}:\tilde{I}\to\mathbb{R}^n$, такого что $I\subset\tilde{I}$ и $x\equiv\tilde{x}$ на I, выполняется $I=\tilde{I}$.

Дальше нас будут в основном интересовать непродолжаемые решения.

3.1 Теоремы о существовании и о единственности решения

В этом пункте мы будем рассматривать только нормальные задачи Коши первого порядка. Напоминание:

Определение. Пусть X, Y — метрические пространства, $\beta \geqslant 0, g: X \to Y$. Отображение g называется липшицевым (с константной Липшица β), если выполняется неравенство

$$\rho_Y(g(x), g(u)) \leqslant \beta \rho_X(x, u)$$

Теорема. (О существовании и единственности решения задачи Коши) Пусть $f: \Gamma \to \mathbb{R}^n$, $(t_0,x_0) \in \Gamma$ — непрерывное отображение. Пусть r>0, такое что $B:=B((t_0,x_0),r) \subset \Gamma$ (следует из открытости). Положим $m:=\sup_{(t,x)\in B}|f(t,x)|$ и $d:=\frac{r}{\sqrt{1+m^2}}$. Пусть существуют $\frac{\partial f_i}{\partial x_j}(t,x)$ для всех $(t,x) \in \Gamma$ и все $\frac{\partial f_i}{\partial x_j}$ непрерывны на Γ . Тогда задача Коши имеет решение $x:(t_0-d,t_0+d)\to \mathbb{R}^n$, такое что для любого другого решения $\widehat{x}:J\to \mathbb{R}^n$ верно, что $x\equiv \widehat{x}$ на $(t_0-d,t_0+d)\cap J$.

Для доказательства нам потребуется несколько вспомогательных фактов.

Теорема. Пусть (X, ρ) — полное метрическое пространство, и существует такое отображение $\Phi: X \to X$, что $f \circ \Phi$ — липшицево с $\beta \in [0,1)$. Тогда у Φ существует единственная стационарная точка.

Доказательство. Рассмотрим последовательность $\{x_n\}$, такую что $x_{n+1} = \Phi(x_n)$. Будем доказывать, что последовательность фундаментальна, и поэтому она сходится в силу полноты пространства. Оценим $\rho(x_n, x_{n+k})$. По неравенству треугольника

$$\rho(x_n, x_{n+k}) \leqslant \sum_{i=n}^{n+k-1} \rho(x_i, x_{i+1}) = \sum_{i=n}^{n+k-1} \rho(\Phi^i(x_0), \Phi^{i+1}(x_0)) =$$

$$= \sum_{i=n}^{n+k-1} \rho(\Phi^{i}(x_{0}), \Phi^{i}(\Phi(x_{0}))) \leqslant$$

Применим определение сжимающего отображения:

$$\leq \sum_{i=n}^{n+k-1} \beta^i \rho(x_0, \Phi(x_0)) \leq \sum_{i=n}^{\infty} \beta^i \rho(x_0, \Phi(x_0)) = \frac{\beta^n}{1-\beta} \rho(x_0, \Phi(x_0)).$$

Следовательно, последовательность $\{x_n\}$ фундаментальна, и в силу полноты пространства $\exists x \in X : x_n \to x$. Докажем, что эта точка x и есть искомая неподвижная.

$$\rho(x, \Phi(x)) \leqslant \rho(x, x_n) + \rho(x_n, \Phi(x_n)) + \rho(\Phi(x_n), \Phi(x)) \leqslant$$
$$\leqslant \rho(x, x_n) + \frac{\beta^n}{1 - \beta} \rho(x_0, \Phi(x_0)) + \beta \rho(x_n, x).$$

Заметим, что левая часть не зависит от n, а правая стремится к нулю при росте n, поэтому $\rho(x, \Phi(x))$ можно сделать меньше любого $\varepsilon > 0$.

Докажем единственность. Пусть $\xi = \Phi(\xi)$. Тогда

$$\rho(x,\xi) = \rho(\Phi(x), \Phi(\xi)) \leqslant \beta \rho(x,\xi).$$

Так как $\beta < 1$, это возможно только при $x = \xi$.

Пример. Как найти решение уравнения $x=\cos(x)$, используя только калькулятор с тригонометрическими функциями? Можно просто применять косинус к нулю, пока не сойдётся, так как $X=[0,\frac{\pi}{2}-\varepsilon]$ является подходящим под условие теоремы полным метрическим пространством.

Следствие. Пусть (X, ρ) — полное метрические пространство, $\Phi: X \to X$ — произвольное отображение, но $\exists N$, такое что Φ^N сжимающее. Тогда у Φ существует единственная неподвижная точка.

Доказательство. Существование. Возьмём единственный x, такой что $x = \Phi^N(x)$. Тогда $\Phi(x) = \Phi^N(\Phi(x))$. Следовательно, $\Phi(x)$ — неподвижная точка Φ^N , то есть $x = \Phi(x)$. Единственность. Пусть ξ — неподвижная точка Φ , то есть $\xi = \Phi(x)$. Применим $\Phi(x) = \Phi(x)$

раз: $\xi = \Phi^N(\xi)$, то есть $\xi = x$.

Утверждение. Пусть $T \subset \mathbb{R}, \ K \subset \mathbb{R}^n$ — компакт, $K \neq \emptyset$. C(T,K) — пространство непрерывных функций, действующих из T в K с метрикой $\rho(x_1,x_2) = \sup_{t \in T} |x_1(t) - x_2(t)|$, и оно является полным.

Утверждение. $\forall A \in \mathbb{R}^{n \times n}, x \in \mathbb{R}^n$ выполнено $||Ax|| \leqslant ||A|| \cdot |x|$, было доказано в прошлом семестре.

Утверждение. Пусть Γ открыто, f — непрерывное отображение, частные производные $\frac{\partial f_i}{x_j}$ существуют. Тогда найдётся $l \geqslant 0$, такой что для всех $(t,x_1),(t,x_2) \in B$ выполнено $|f(t,x_1)-f(t,x_2) \leqslant l|x_1-x_2|$ (отображение липшицево).

Доказательство. Зафиксируем t, x_1, x_2 . Положим $a(s) := f(t, x_1 + s(x_2 - x_1))$ для $s \in [0, 1]$. Тогда

$$|f(t,x_2) - f(t,x_1)| = |a(1) - a(0)| = \left| \int_0^1 a'(s)ds \right| =$$

$$= \left| \int_0^1 \frac{\partial f}{\partial x} (t, x_1 + s(x_2 - x_1))(x_2 - x_1) ds \right| \leqslant$$

(по утверждению про норму матрицы)

$$\leqslant \left| \int_0^1 \left\| \frac{\partial f}{\partial x}(t, x_1 + s(x_2 - x_1)) \right\| \cdot |x_2 - x_1| ds \right| =$$

$$= \left| \int_0^1 \left\| \frac{\partial f}{\partial x}(t, x_1 + s(x_2 - x_1)) \right\| ds \right| \cdot |x_2 - x_1| \leqslant l|x_2 - x_1|,$$

где $l = \max_{(\tau,x)\in B} \|\frac{\partial f}{\partial x}(\tau,x)\|$, он достигается в силу замкнутости шара B.

Доказательство главной теоремы. Возьмём произвольный интервал T, такой что $t_0 \in T \subset (t_0-d,t_0+d)$. Положим $R:=\sqrt{r^2-d^2}$ (можно проверить, что выражение под корнем положительное), $X:=C(R,B(x_0,R))$ — полное метрическое пространство.

Замечание: $\forall x \in X, t \in T \ (t, x(t)) \in B$, так как

$$|t - t_0|^2 + |x(t) - x_0|^2 \le d^2 + R^2 = r^2.$$

Зададим отображение $\Phi: X \to X$ так, что $\Phi(x)(t) = x_0 + \int_{t_0}^t f(s, x(s)) ds$. Необходимо проверить корректность определения, ибо $\Phi(x)$ не обязательно лежит в X, то есть $\Phi(x)(t)$ должно лежать в $B(x_0, R)$:

$$|\Phi(x)(t) - x_0| = \left| \int_{t_0}^t f(s, x(s)) ds \right| \leqslant \left| \int_{t_0}^t |f(s, x(s))| ds \right| \leqslant$$

(два модуля нужны, так как t_0 может превосходить t)

$$\leqslant \left| \int_{t_0}^t m ds \right| = m|t - t_0| \leqslant md = \frac{rm}{\sqrt{1 + m^2}} = R.$$

Последнее равенство получено подстановкой d в определение R. Докажем, что

$$|\Phi^N(x_1)(t) - \Phi^N(x_2)(t)| \leqslant \frac{(l|t - t_0|)^N}{N!} \rho(x_1, x_2)$$

для всех $x_1, x_2 \in X, N \in \mathbb{N}, t \in T$. Здесь l берётся из утверждения про липшицевость. Имеем

$$|\Phi^{N}(x_{1})(t) - \Phi^{N}(x_{2})(t)| = \left| \int_{t_{0}}^{t} \left(f(x, \Phi^{N-1}(x_{1})(s)) - f(s, \Phi^{N-1}(x_{2})(s)) \, ds \right| \le \left| \int_{t_{0}}^{t} \left| \Phi^{N-1}(x_{1})(s) - \Phi^{N-1}(x_{2})(s) \, ds \right| \right|$$

Посмотрим на первые несколько N. При N=1:

ФПМИ МФТИ, осень 2023

$$\left|\Phi^{1}(x_{1})(t) - \Phi^{1}(x_{2})(t)\right| \leqslant l \left|\int_{t_{0}}^{t} |x_{1}(s) - x_{2}(s)|ds\right| \leqslant$$

(по определению расстояния между функциями)

$$\leqslant l \left| \int_{t_0}^t \rho(x_1, x_2) ds \right| = l \rho(x_1, x_2) |t - t_0|.$$

При N=2:

$$\left| \Phi^{2}(x_{1})(t) - \Phi^{2}(x_{2})(t) \right| \leqslant l \left| \int_{t_{0}}^{t} |\Phi^{1}(x_{1})(s) - \Phi^{1}(x_{2}(s))| ds \right| \leqslant$$

(применим доказанное в предыдущем пункте)

$$\leq l^2 \rho(x_1, x_2) \left| \int_{t_0 t}^t |s - t_0| ds \right| = \frac{l^2}{2!} |t - t_0|^2 \rho(x_1, x_2).$$

При N=3:

$$\left|\Phi^{3}(x_{1})(t) - \Phi^{3}(x_{2})(t)\right| \leqslant l \left| \int_{t_{0}}^{t} |\Phi^{2}(x_{1})(s) - \Phi^{2}(x_{2}(s))|ds| \leqslant$$

(применим доказанное)

$$\leq \frac{l^3}{2!}\rho(x_1, x_2) \left| \int_{t_0}^t |s - t_0|^2 ds \right| = \frac{l^3}{3!} |t - t_0|^3 \rho(x_1, x_2).$$

Аналогично можно доказать и для всех N, формально нужно применить математическую индукцию.

Из доказанной формулы получаем, что для всех $x_1, x_2 \in X$

$$\rho(\Phi^{N}(x_1), \Phi^{N}(x_2)) = \sup_{t \in T} |\Phi^{N}(x_1)(t) - \Phi^{N}(x_2)(t)| \le$$

$$\leq \frac{l^N}{N!} \sup_{t \in T} |t - t_0|^N \rho(x_1, x_2) \leq \frac{l^N d^N}{N!} \rho(x_1, x_2).$$

Последний переход сделан из соображения, что $T \subset B(t_0,d)$. Так как последнее выражение стремится к нулю при увеличении N, найдётся N, такое что $\frac{l^N d^N}{N!} < 1$, и, значит, Φ^N — сжимающее отображение. По следствию из принципа сжимающих отображений существует единственная неподвижная точка x у $\Phi(\cdot)$. То есть для всех $t \in T$

$$x = \Phi(x) \iff x(t) \equiv \Phi(x)(t) \iff x(t) \equiv x_0 + \int_{t_0}^t f(s, x(s)) ds \iff$$

$$\iff \begin{cases} x'(t) \equiv f(t, x(t)), \\ x(t_0) = x_0. \end{cases}$$

Последний переход получен дифференцированием, теоремы про дифференцирование интегралов будут позже в матанализе. Следовательно, x — решение задачи Коши, и оно единственно на любом интервале $T \subset (t_0 - d, t_0 + d)$.

Докажем вторую часть теоремы. Возьмём произвольное решение $\widehat{x}: J \to \mathbb{R}^n$ и положим $T:=(t_0-d,t_0+d)\cap J$. Из доказанного следует, что $x(t)\equiv \widehat{x}(t)$ на T, что и требовалось доказать.

4 Теоремы о продолжении решений

Пусть дано открытое множество $\Gamma \subset \mathbb{R} \times \mathbb{R}^n$ и отображение $f: \operatorname{cl}(\Gamma) \to \mathbb{R}^n$ (замыкание Γ), $(t_0, x_0) \in \Gamma$ — решение задачи Коши.

Теорема. Пусть $\operatorname{cl}(\Gamma)$ — компакт, f непрерывно, существуют непрерывные $\frac{\partial f_i}{\partial x_j}$ на Γ . Тогда существует решение задачи Коши $x:(a,b)\to\mathbb{R}^n$, такое что $(a,x(a+0)),(b,x(b-0))\in \partial\Gamma$ (нули — это пределы справа/слева, $\partial\Gamma$ — граница Γ).

Иными словами, решение можно продолжить до границ области определения функции. Доказательство. Поскольку $\operatorname{cl}(\Gamma)$ — компакт и f непрерывно, функция f ограничена, то есть $\exists M \geqslant 0: |f(t,x)| \leqslant M$. Положим $r_0:=\rho((t_0,x_0),\partial\Gamma)$ — инфимум расстояния от точки до точки во множестве, $d_0:=\frac{r_0}{\sqrt{1+M^2}}$. Тогда по теореме 2 существует решение задачи Коши $\varphi_1: (t_0-d_0,t_0+d_0) \to \mathbb{R}^n$. Построим решение x(t). Определим $x(t):=\varphi_1(t)$ при $t\in (t_0-d_0,t_0+\frac{d_0}{2})$

Теперь положим $t_1:=t_0+\frac{d_0}{2},\ x_1:=\varphi_1(t_1),\ r_1:=\rho((t_1,x_1),\partial\Gamma),\ d_1:=\frac{r_1}{\sqrt{1+M^2}}.$ Вновь по теореме о существовании и единственности найдётся единственное решение задачи Коши $\varphi_2:(t_1-d_1,t_1+d_1)\to\mathbb{R}^n.$ Определим $x(t)=\varphi_2(t)$ при $t\in(t_1,t_1+\frac{d_1}{2}).$ Тогда имеем, что x — единственное решение задачи Коши на $(t_0-d_0,t_0+d_0)\cap(t_1-d_1,t_1+d_1),$ так как на этом интервале $\varphi_1\equiv\varphi_2.$

Продолжаем так строить и доопределять x на полуинтервалах вида $[t_k, t_k + \frac{d_k}{2})$. Теперь у нас есть два случая. Первый — процесс завершился, то есть $\exists k: (t_k, x(t_k - 0)) \in \partial \Gamma$. Тогда $b:=t_k$. Второй — такого k нет. Так как $\operatorname{cl}(\Gamma)$ — компакт, последовательность $\{t_k\}$ ограничена, а по построению она возрастает. Значит, существует предел $b:=\lim_{k\to\infty}(t_k)$.

Докажем, что существует предел x(b-0). Функция x определена на $\bigcup_{k=0}^{\infty} [t_k, t_{k+1})$, поэтому $x(\cdot)$ определена на $[t_0, b)$. Тогда имеем

$$|x'(t)| = |f(t, x(t))| \leqslant M \Rightarrow |x(t) - x(s)| \leqslant M|t - s|.$$

Иными словами, функция x липшицева, и по критерию Коши существует предел x(b-0). Докажем, что $(b,x(b-0))\in\partial\Gamma$. По построению имеем $t_{k+1}=t_0+d_0+\frac{d_1}{2}+\cdots+\frac{d_k}{2}\to_{k\to\infty}b$, то есть $d_k\to 0$. По определению d_k — это расстояние до границы, умноженное на константу, поэтому $\rho((t_k,x_k),\partial\Gamma)\to 0$. Имеем $\mathrm{cl}(\Gamma)$ — компакт, поэтому и $\partial\Gamma$ — это компакт. По определению расстояния до множества найдётся пара $(t_k',x_k')\in\partial\Gamma$, такая что $\rho((t_k,x_k),\partial\Gamma)=|(t_k,x_k)-(t_k',x_k')|$. Тогда получаем

$$|(b, x(b-0) - (t'_k, x'_k))| \le |(b, x(b-0)) - (t_k, x_k)| + \rho((t_k, x_k), \partial \Gamma) \to 0.$$

Первое слагаемое стремится к нулю, так как это предел, второе — так как точки стремятся к границе. Следовательно, $(t'_k, x'_k) \to (b, x(b-0))$, и, так как $\partial \Gamma$ — компакт, предел этой последовательности тоже лежит в $\partial \Gamma$, то есть $(b, x(b-0)) \in \partial \Gamma$.

Аналогично можно доказать существование решения слева от t_0 .

Замечание. Данная теорема не гарантирует существование решения на всей проекции множества по одной из координат.

Лемма. (О дифференцируемом множестве) Пусть $I \subset \mathbb{R}$ — интервал, $t_0 \in I$, $z \in C^1(I,\mathbb{R}^n)$, A > 0, $B \geqslant 0$, $|z'(t)| \leqslant |A(z(t))| + B$ для всех $t \in I$. Тогда

$$|z(t)| \le |z(t_0)|e^{A(t-t_0)} + \frac{B}{A} \left(e^{A|t-t_0|} - 1\right).$$

Замечание. При A=0 имеем $z'(t)\leqslant B$. Тогда $|z(t)|\leqslant |z(t_0)|+B|t-t_0|$ для всех $t\in I$. Доказательство. При $t>t_0$ (при $t=t_0$ очевидно, при $t< t_0$ аналогично). Пусть $z(t)\neq 0$, при равенстве нулю очевидно. Если $z(\tau)\neq 0$ при $\tau\in (t_0,t)$, то положим $t^*:=t_0$. В противном случае положим $t^*=\sup\{\tau\in (t_0,t): z(\tau)=0\}$. Тогда $z(t)\neq 0$ на интервале (t^*,t) . Докажем, что $\frac{d}{dt}|z(\tau)|\leqslant |z'(\tau)|$ при $\tau\in (t^*,t)$. Замечание: продифференцировать модуль можно, так как он не обращается в ноль.

Имеем тождество $|z(\tau)|^2 \equiv \langle z(\tau), z(\tau) \rangle$ (скалярное произведение). Продифференцируем его:

$$2|z(\tau)|\frac{d}{dt}|z(\tau)| \equiv 2\langle z(\tau), z'(\tau)\rangle \leqslant 2|z(\tau)| \cdot |z'(\tau)|.$$

Последнее неравенство — по неравенству Коши-Буняковского. В процессе мы продифференцировали скалярное произведение. Выведем его: пусть $\gamma(\tau) := \langle z(\tau), z(\tau) \rangle$. Распишем, как сумму координат и заметим, что получится ровно $\gamma' = \sum_{i=1}^{n} 2z_i z_i'$.

как сумму координат и заметим, что получится ровно $\gamma' = \sum_{i=1}^n 2z_i z_i'$. Обратно к исходной задаче. Мы получили, что $\frac{d}{dt}|z(\tau)| \leqslant |z'(\tau)| \leqslant A|z(\tau)| + B$. Тогда, домножая обе стороны, получаем

$$\left(\frac{d}{dt}|z(\tau)| - Az(\tau)\right)e^{-A(\tau - t^*)} \leqslant Be^{-A(\tau - t^*)}.$$

Дальше можно вынести производную и получить

$$\frac{d}{dt}\left(|z(\tau)|e^{-A(\tau-t^*)}\right) \leqslant Be^{-A(\tau-t^*)}.$$

Возьмём определённый интеграл от обеих частей:

$$|z(t)|e^{-A(t-t^*)} - |z(t^*)| \le -\frac{B}{A}e^{-A(t-t^*)} + \frac{B}{A}.$$

Тогда

$$|z(t)| \le |z(t^*)|e^{A(t-t^*)} + \frac{B}{A} \left(e^{A(t-t^*)} - 1\right).$$

Получили почти то, что нужно, но тут вместо t_0 стоит t^* . Но по построению имеем, что $t-t^*\leqslant t-t_0$ и $|z(t^*)|\leqslant |z(t_0)|$ (менее очевидно, но делается разбором случаев: либо равны, либо $z(t^*)=0$).

Обозначение. O(x,R) — открытый шар радиуса R с центром в x. B(x,R) — замкнутый.

Теорема. (Вторая о продолжении решения) Пусть $I \subset \mathbb{R}$ — интервал, $f: I \times \mathbb{R}^n \to \mathbb{R}^n$, $t_0 \in I$, $x_0 \in \mathbb{R}^n$. Пусть:

- \triangleright Для f выполняются предположения теоремы 2 (о существовании и единственности решения).
- $ightarrow \exists a,b \in C(I,\mathbb{R}_+): |f(t,x)| \leqslant a(t)|x|+b(t) \ \forall t \in I, x \in \mathbb{R}^n$ условие ограниченного роста.

Тогда существует решение $x: I \to \mathbb{R}^n$ задачи Коши. От предыдущих теорем эта отличается тем, что решение определено на всём данном интервале.

Доказательство. І. Возьмём числа $\alpha, \beta \in I$, такие что $\alpha < t_0 < \beta$. Тогда $\exists A, B > 0$, такие что $|a(t)| \leq A$ и $|b(t)| \leq B$ для всех $t \in [\alpha, \beta]$. Положим $\Gamma := (\alpha, \beta) \times O(0, R+1) \subset$

 $I \times \mathbb{R}^n$. Здесь

$$R := \max_{\alpha \leqslant t \leqslant \beta} \left(|x_0| e^{A|t - t_0|} + \frac{B}{A} \left(e^{A|t - t_0|} - 1 \right) \right)$$

Из теоремы 3 следует, что существует решение $x:(\overline{\alpha},\overline{\beta})\to\mathbb{R}^n$, такое что $\forall t\ x(t)\in\Gamma$ и $(\alpha,x(\overline{\alpha}+0)),(\beta,x(\overline{\beta}-0))\in\partial\Gamma$. Из леммы имеем, что $|x(t)|\leqslant R+R+1$. Поэтому $\overline{\alpha}=\alpha$ и $\overline{\beta}=\beta$, так как их проекция на \mathbb{R}^n не может лежать на границе O(0,R+1), то есть проекция на I лежит на границе. Таким образом, решение $x(\cdot)$ определено на (α,β) .

II. Возьмём числа α_i , β_i , такие что $\alpha_i \to \inf(I)$, $\beta_i \to \sup(I)$, причём обе монотонны. Тогда $\forall i \ \alpha_i < t_0 < \beta_i$, они вложены и $I = \bigcup_{i=1}^{\infty} (\alpha_i, \beta_i)$. Для всех i существует решение $x^i : (\alpha_i, \beta_i) \to \mathbb{R}^n$. Рассмотрим произвольный $t \in I$. Для всех пар индексов i, j, таких что $t \in (\alpha_i, \beta_i)$ и $t \in (\alpha_j, \beta_j)$ верно по теореме 2, что $x^i(t) = x^j(t)$. Поэтому можно положить $x(t) := x^i(t)$, и оно будет определено однозначно вне зависимости от i. Следовательно, это и есть искомое решение задачи Коши.

5 Уравнения, не разрешённые относительно производной

Рассмотрим уравнение f(t, x, x') = 0. Здесь $f: \Omega \to \mathbb{R}$, где $\Omega \subset \mathbb{R}^3$.

Пример. (Задача Коши, у которого много решений) $(x')^2 - x^2 = 0$. Оно эквиваленно одному из двух уравнений x' = x и x' = -x. Их решениями являются $x = x_0 e^{-t}$ и $x = x_0 e^t$ — два решения задачи Коши.

Теорема. (О существовании и единственности решения задачи Коши для неявного уравнения) Пусть $(t_0, x_0, v_0) \in \Omega$, $f \in C^1(\Omega, \mathbb{R})$. Если $f(t_0, x_0, v_0) = 0$ и $\frac{\partial f}{\partial x'}(t_0, x_0, v_0) \neq 0$, то существует d > 0 и решение $x : (t_0 - d, t_0 + d) \to \mathbb{R}$ задачи Коши, являющееся единственным, удовлетворяющим равенству $x'(t_0) = v_0$.

Доказательство. Посмотрим на f(t,x,x')=0, как на уравнение относительно трёх переменных и разрешим его относительно x'. По теореме о неявной функции найдутся числа $r,\varepsilon>0$ и отображение $g:O((t_0,x),r)\to\mathbb{R}$, такие что $g\in C^1$, $f(t,x,g(t,x))\equiv 0$, $g(t_0,x_0)=v_0$ (следует из того, что $f(t_0,x_0,v_0)=0$ и производная не равна нулю) и данное решение единственно в ε -окрестности точки v_0 . Рассмотрим новую задачу Коши:

$$\begin{cases} x' = g(t, x) \\ x(t_0) = x_0 \end{cases}$$

Теперь у нас явно выражен x', поэтому можно применить теорему 2:

$$\exists d > 0, x : (t_0 - d, t_0 + d) \to \mathbb{R} : x(\cdot)$$
 — решение

Проверим, что это решение подходит в исходную систему:

$$f(t, x(t), x'(t)) \equiv f(t, x(t), g(t, x(t))) \equiv 0, t \in (t_0 - d, t_0 + d).$$

Выполнение начального условия следует из того, что x удовлетворяет начальному условию в новой задаче Коши. Проверим для $x'(t_0)$:

$$x'(t_0) = g(t_0, x(t_0)) = g(t_0, x_0) = v_0.$$

Следовательно, мы нашли решение исходной задачи Коши. Докажем, что оно единственно. Уменьшим d так, чтобы $(t,x(t)) \in O((t_0,x_0),\frac{r}{2})$. Предположим противное: существует ещё одно решение $\varphi:I\to\mathbb{R}$, такое что $\varphi'(t_0)=v_0$ и существует $\hat{t}\in J:=(t_0-d,t_0+d)\cap I$, такое что $\varphi(t)\neq x(t)$. Не умаляя общности, $\hat{t}>t_0$. Положим $t_1=\inf\{t\in J:t>t_0,x(t)\neq\varphi(t)\}$. Теперь мы можем взять t_2 и t_3 так, что $t_1< t_2< t_3$ и $x(t_2)\neq\varphi(t_2)$ (так как t_1 — это инфимум тех, что не равны, и множество открыто и не содержит нижнюю грань) и $\varphi(t)\in O((t_0,x_0,r))$ при $t\in[t_0,t_3]$. Поскольку $f(t,\varphi(t),\varphi'(t))\equiv 0$ на $[t_0,t_3]$, имеем $\varphi'(t)\equiv g(t,\varphi(t))$ (так как в теореме о неявной функции утверждается единственность). Кроме того, $\varphi(t_0)=x_0$, поэтому φ — это решение новой задачи Коши на $[t_0,t_3]$. Следовательно, $\varphi(t_2)=x(t_2)$, так как по построению $t_2\in[t_0,t_3)$.

Замечание. Из того, что в теореме о неявной функции и в теореме о решении задачи Коши есть единственность, единственность напрямую не следует, так как мы фиксируем переменные не в том порядке (подробнее на 6 лекции на ~ 35 минуте).

Определение. Множество

$$\left\{(t,x)\mid \exists v: (t,x,v)\in\Omega, f(t,x,v)=0, \frac{\partial f}{\partial x'}(t,x,v)=0\right\}$$

называется дискриминантной кривой. На нём решение может не быть единственным.

Определение. $\widehat{x}(\cdot)$ называется *особым решением* ОДУ f(t,x,x')=0, если для всех t_0 существует решение $x(\cdot)$, такое что $\widehat{x}(t_0)=x(t_0)$, $\widehat{x}'(t_0)=x'(t_0)$ и $\widehat{x}(t)\not\equiv x(t)$ на интервале (t_0-d,t_0+d) для всех d. Они нас интересуют из-за того, что в них можно "склеивать" два других решения.

Пример. $x' = \sqrt[3]{x}$. $x(t) \equiv 0$ — особое решение.

Утверждение. Если $\widehat{x}:I\to\mathbb{R}$ — особое решение, то для всех $t\in I$ точка $(t,\widehat{x}(t))$ лежит на дискриминантной кривой.

Доказательство. Зафиксируем $\tau \in I$. Так как \widehat{x} — решение, $f(\tau, \widehat{x}(\tau), \widehat{x}'(\tau)) \equiv 0$ на I. Если $\frac{\partial f}{\partial x'}(\tau, \widehat{x}(\tau), \widehat{x}'(\tau)) \neq 0$, то $\widehat{x}(\cdot)$ — единственное решение задачи Коши

$$\begin{cases} f(t, x, x') = 0 \\ x(\tau) = \widehat{(\tau)} \end{cases},$$

удовлетворяющее условию $x'(\tau) = \widehat{x}'(\tau)$. Тогда \widehat{x} — это единственное решение, поэтому особым оно быть не может. Таким образом, $\frac{\partial f}{\partial x'}(\tau,\widehat{x}(\tau),\widehat{x}'(\tau)) = 0$, то есть $(\tau,\widehat{x}(\tau))$ лежит в дискриминантной кривой.

Пример. $(x')^2 - 4x^3(1-x) = 0$. Найдём дискриминатную кривую:

$$\begin{cases} v^2 - 4x^2(1-x) = 0\\ 2v = 0. \end{cases}$$

Нетрудно заметить, что дискриминатная кривая — это две прямые (t,0) и (t,1). Чтобы найти особые решения, нужно решить исходное уравнение: $x(t) = \frac{1}{(t+c)^2+1}$, x(t) = 0 и x(t) = 1. Особым решением является $x \equiv 1$, так как его касаются все решения $\frac{1}{(t+c)^2+1}$, и по этой прямой можно склеивать решения для разных c.

6 Некоторые следствия теорем о существовании решений

Мы будем рассматривать два типа уравнений:

1. Уравнения старших порядков. Дано открытое множество $\Gamma \subset \mathbb{R}^{k+1}$, отображение $f:\Gamma \to \mathbb{R}$, вектор $(t_0,x_0^0,x_0^1,\dots,x_0^{k-1}) \in \Gamma$. Задача Коши вида

$$\begin{cases} x^{(k)} = f(t, x, x', \dots, x^{(k-1)}) \\ x(t_0) = x_0^0 \\ \vdots \\ x^{(k-1)}(t_0) = x_0^{k-1} \end{cases}$$

Хотелось бы свести эту задачу к задаче с меньшим порядком производной, чтобы применить теорему 5 о существовании и единственности. Положим $y_i := x^{i-1}$ для $i \in [1, k]$. Тогда система сводится к виду

$$\begin{cases} y_1' = y_2 \\ y_2' = y_3 \\ \vdots \\ y_{k-1}' = y_k \\ y_k' = f(t, y_1, y_2, \dots, y_k) \\ y_1(t_0) = x_0^0 \\ y_2(t_0) = x_0^1 \\ \vdots \\ y_k(t_0) = x_0^{k-1} \end{cases}$$

Введём отображение $F:\Gamma\to\mathbb{R}^k$, такое что $F(t,y)=(y_2,y_3,\ldots,f(t,y))^T$. Положим $y_0=(x_0^0,x_0^1,\ldots,x_0^{k-1})$, тогда эту задачу можно записать в виде

$$\begin{cases} y' = F(t, y) \\ y(t_0) = y_0 \end{cases} .$$

В частности, если x — решение исходной задачи, то $y = (x, x', \dots)$ — это решение новой, и, наоборот, если y — решение новой задачи, то $x = y_1$ — решение исходной.

Теорема. Пусть f непрерывна, для всех $(t, x_0, x_1, \ldots, x_{k-1})$ существуют частные производные $\frac{\partial f_i}{\partial x^{(j)}}$ и $\frac{\partial f_i}{\partial x^{(j)}}$ непрерывны. Тогда существует d>0 и решение $x:(t_0-d,t_0+d)\to\mathbb{R},$ являющееся единственным решением задачи Коши. Следует напрямую из теоремы о существовании и единственности и замены, описанной выше.

2. Пусть нам дана непрерывная функция $A: I \to \mathbb{R}^{n \times n}$, функция $b: I \to \mathbb{R}^n$, число $t_0 \in I$ и $x_0 \in \mathbb{R}^n$. Рассмотрим систему линейных уравнений

$$\begin{cases} x' = A(t) \cdot x + b(t) \\ x(t_0) = x_0 \end{cases}$$

Теорема. Если A и b непрерывны, то существует единственное решение $x:I\to \mathbb{R}^n$ данной задачи Коши.

Доказательство. Положим $\widehat{a}(t) := \|A(t)\|, \ t \in I$ и $\widehat{b}(t) = |b(t)|, \ t \in I$. Тогда

$$|A(t)x + b(t)| \le |A(t)x| + |b(t)| \le ||A(t)|| \cdot |x| + |b(t)| \le \widehat{a}(t)|x| + \widehat{b}(t).$$

Применяя теорему выше, получаем, что решение существует на всём интервале I. Докажем единственность. Пусть $\widehat{x}, \varphi: I \to \mathbb{R}^n$ — решения, покажем, что они совпадают. Не умаляя общности, существует $t > t_0$, такое что $\widehat{x}(t) \neq \varphi(t)$. Положим $\tau = \inf\{t > t_0: \widehat{x}(t) \neq \varphi(t)\}$, тогда $\widehat{x}(\tau) = \varphi(\tau)$ (доказывается от противного, получится, что τ — не инфимум). Следовательно, в любой окрестности точки τ задача Коши

$$\begin{cases} x' = A(t)x + b(t) \\ x(\tau) = \widehat{x}(\tau) \end{cases}$$

имеет хотя бы два решения — противоречие.

7 Линейные однородные системы ОДУ

Пусть нам дан интервал $I \subset \mathbb{R}$ и линейные пространства $C(I, \mathbb{R}^n)$, $C^1(I, \mathbb{R}^n)$ (непрерывные и непрерывно дифференцируемые функции).

Напоминание. Система функций $x^1, \ldots, x^k \in C(I, \mathbb{R}^n)$ называется *линейно зависимой*, если существует линейная комбинация с не всеми нулевыми коэффициентами, тождественно равная нулю.

Упражнение. Если x^1, \ldots, x^k линейно зависимы, то для всех $t \in I$ векторы $x^1(t), \ldots, x^k(t)$ линейно зависимы.

Замечание. В обратную сторону неверно, например, $x^1(t) = 1$ и $x^2(t) = t$.

Определение. Пусть даны функции $x^1, \ldots, x^n \in C(I, \mathbb{R}^n)$. Определителем Вронского этой системы $\omega(t) = \det(x^1(t), \ldots, x^n(t))$. Нетрудно заметить, что если векторы линейно зависимы, то $\omega(t) \equiv 0$, и обратно неверно: $x^1(t) = (1 \ 1)^T, \ x^2(t) = (t \ t)^T$.

Пусть нам даны функции $a_{j,k} \in C(I,\mathbb{R})$, где $j,k \in [1,n]$. Положим матрицу $A(t) = (a_{j,k}(t))_{j,k \in [1,n]}$. Рассмотрим систему

$$\begin{cases} x'_1 = a_{11}(t)x_1 + \dots + a_{1n}(t)x_n \\ \vdots \\ x'_n = a_{n1}(t)x_1 + \dots + a_{nn}(t)x_n \end{cases}$$

Или, что эквивалентно, x' = A(t)x.

Определение. Эта система называется линейной однородной системой ОДУ.

Замечание. Почему эта система называется линейной? Введём линейный оператор $L:C^1(I,\mathbb{R}^n)\to C(I,\mathbb{R}^n)$, такой что (Lx)(t)=x'(t)-A(t)x(t). Заметим, что множество решений уравнений совпадает с ядром данного линейного оператора.

Утверждение. Пусть x^1, \ldots, x^n — решения системы (1). Если существует $\tau \in I$, такое что $\omega(\tau) = 0$, то все решения x^1, \ldots, x^n линейно зависимы.

Доказательство. Если $\omega(\tau)=0$, то $x^1(\tau),\ldots,x^n(\tau)$ линейно зависимы (именно значения в этой точке), то есть существуют $\lambda_1,\ldots,\lambda_n$, такие что $\sum_{j=1}^n \lambda_j x^j(\tau)=0$. Положим $x:=\sum_{j=1}^n \lambda_j x^j$. По построению $x(\tau)=0$, то есть x является решением задачи Коши

$$\begin{cases} x' = A(t)x \\ x(\tau) = 0. \end{cases}$$

У этой задачи есть очевидное и единственное решение — $x\equiv 0$. Следовательно, $x(t)\equiv 0$, то есть $\sum_{j=1}^n \lambda_j x^j(t)\equiv 0$, то есть x^1,\ldots,x^n линейно зависимы.

Замечание. Это утверждение является обратным к предыдущему утверждению, которое в общем случае работает только в одну сторону.

Определение. Φ ундаментальной системой решений называется упорядоченный набор из n линейно независимых решений системы (1).

Утверждение. ФСР существует.

 $\sum_{i=1}^{n} \lambda_j x^j(t_0)$. Рассмотрим задачу Коши

Доказательство. Зафиксируем t_0 и рассмотрим задачу Коши

$$\begin{cases} x' = A(t) \cdot x \\ x(t_0) = e_j \end{cases},$$

где e_j — базисный вектор. По теореме о существовании у неё существует решение $x^j \in C^1(I,\mathbb{R}^n)$ при любом $j \in [1,n]$. Покажем, что все x^j линейно независимы. Действительно, $x^j(t_0) = e_j$, то есть все $x^j(t_0)$ линейно независимы, поэтому можно доказать от противного, что и сами решения линейно независимы.

Определение. Общим решением называется множество всех решений системы (1). Теорема. Если $x^1, \ldots, x^n - \Phi$ CP, то общее решение — это линейная оболочка x^1, \ldots, x^n . Доказательство. Докажем два вложения. \supset : очевидно. \subset . Пусть $\widehat{x}(\cdot)$ — решение системы (1). Возьмём произвольное $t_0 \in I$, тогда, так как x^j образуют Φ CP, $x^j(t_0)$ линейно независимы по утверждению выше. Следовательно, существует представление $\widehat{x}(t_0)$ =

$$\begin{cases} x' = A(t) \cdot x \\ x(t_0) = \widehat{x}(t_0). \end{cases}$$

У неё есть два решения — $\widehat{x}(\cdot)$ и $\sum_{j=1}^{n} \lambda_{j} x^{j}(\cdot)$. Следовательно, они совпадают, и что доказывает включение.

Определение. Пусть $x^1,\dots,x^n\in C^1(I,\mathbb{R}^n)$ — ФСР. Тогда $X(t)=(x^1(t),\dots,x^n(t))$ для $t\in I$ называется фундаментальной матрицей решений (ФМР).

Замечание. Общее решение системы (1) можно переписать через ФМР: $\{X(\cdot) \cdot c : c \in \mathbb{R}^n\}$.

Утверждение. $X'(t) \equiv A(t)X(t), t \in I$. Доказывается прямой проверкой.

Теорема. (Об описании множества всех ФМР) Пусть $X(\cdot)$ — фундаментальная матрица решений. Тогда множество всех ФМР системы (1) записывается в виде $\{X(\cdot)C:C\in\mathbb{R}^{n\times n},\det(C)\neq 0\}$.

Доказательство. \supset . Возьмём такую матрицу C. Тогда

$$X(t)C = \left(\sum_{j=1}^{n} C_{j1}x^{j}(t) \dots \sum_{j=1}^{n} C_{jn}x^{j}(t)\right).$$

Каждый столбец является линейной комбинацией столбцов X, то есть решением системы. Более того, $\det(XC) = \det(X) \cdot \det(C) \neq 0$, поэтому столбцы линейно независимы, то есть образуют Φ MP.

 \subset . Пусть $Y(\cdot)$ — фундаментальная матрица решений, зафиксируем произвольное $t_0 \in I$ и положим $C = X^{-1}(t_0) \cdot Y(t_0)$. Рассмотрим матрицу $X(\cdot)C$ — она является ФМР по первому пункту и совпадает с Y в точке t_0 . Теперь применим теорему о существовании к каждому столбцу матриц XC и Y и получим, что они совпадают (подробнее на $\sim 1:05$ лекции 7).

Теорема. (Формула Лиувилля-Остроградского) Пусть $x^1, \ldots, x^n - \Phi$ СР, $\omega(\cdot)$ — определитель Вронского, тогда для всех $t_0 \in I$ верно

$$\omega(t) \equiv \omega(t_0) \exp\left(\int_{t_0}^t \operatorname{tr}(A(s))ds\right).$$

Лемма. Пусть

$$\omega_{j}(t) = \det \begin{pmatrix} x_{1}^{1}(t) & \dots & x_{1}^{n}(t) \\ \vdots & & & \\ (x_{j}^{1})'(t) & \dots & (x_{j}^{n})'(t) \\ \vdots & & & \\ x_{n}^{1}(t) & \dots & x_{n}^{n}(t) \end{pmatrix}$$

(производные только в j-ой строке). Тогда $\omega'(t) = \sum_{j=1}^n \omega_j(t)$ для всех $t \in I$. Доказательство. Вспомним, что определитель — это сумма произведений по всех

Доказательство. Вспомним, что определитель — это сумма произведений по всех перестановкам.

$$\omega'(t) = \frac{d}{dt} \left(\sum_{\pi} \sigma(\pi) x_1^{\pi(1)}(t) \dots x_n^{\pi(n)}(t) \right) =$$

Теперь продифференцируем:

$$= \sum_{\pi} \left((x_1^{\pi(1)})' x_2^{\pi(2)} \dots x_n^{\pi(n)} + \dots + x_1^{\pi(1)} \dots (x_n^{\pi(n)})' \right).$$

Разобъём на n сумм, где в i-ой сумме берётся производная у x_i , и получим искомое.

Доказательство теоремы. По лемме

$$\omega'(t) = \sum_{i=1}^{n} \det \begin{pmatrix} x_1^1(t) & \dots & x_1^n(t) \\ \vdots & & & \\ (x_j^1)'(t) & \dots & (x_j^1)'(t) \\ \vdots & & & \\ x_n^1(t) & \dots & x_n^b(t) \end{pmatrix}$$

ФПМИ МФТИ, осень 2023

Теперь вспомним, что каждый столбец является решением системы, поэтому можно переписать в виде

$$\sum_{i=1}^{n} \det \begin{pmatrix} x_1^1(t) & \dots & x_1^n(t) \\ \vdots & & & \\ \sum_{k=1}^{n} a_{jk}(t) x_k^1 & \dots & \sum_{k=1}^{n} a_{jk}(t) x_k^n(t) \\ \vdots & & & \\ x_n^1(t) & \dots & x_n^n(t) \end{pmatrix}$$

Теперь умножим i-ую строку $(i \neq j)$ на x_{ji} и вычтем из j-ой строки. Получится

$$\omega'(t) = \sum_{j=1}^{n} a_{jj}(t)\omega(t) \equiv \omega(t)\operatorname{tr}(A(t)).$$

Теперь посмотрим на это, как на дифференциальное уравнение. Это линейное уравнение или с разделяющими переменными. В любом случае, получаем

$$\omega(t) = C \exp\left(\int_{t_0}^t \operatorname{tr}(A(s))ds\right).$$

Теперь подставим t_0 и получим, что $C = \omega(t_0)$.

Замечание. Звучит, как что-то странное и нигде не нужное, но на практике это помогает, когда мы смогли угадать одно решение системы и хотим найти остальные.

8 Линейные неоднородные системы ОДУ. Линейные ОДУ высших порядков

8.1 Линейные неоднородные системы ОДУ

Пусть нам даны $n \in \mathbb{N}$, интервал $I \subset \mathbb{R}$ и функции $A \in C(I, \mathbb{R}^{n \times n}), b \in C(I, \mathbb{R}^n)$. Мы уже умеем решать систему вида

$$x' = A(t)x$$

Нас интересуют решения системы

$$x' = A(t)x + b(t).$$

Теорема. Пусть $\widehat{x}(\cdot)$ — частное решение системы (2). Тогда общее решение системы (2) — множество всех функций вида $x(\cdot) + \widehat{x}(\cdot)$, где $x(\cdot)$ — решение системы (1). Очевидно, так как это линейное уравнение.

8.1.1 Метод вариации постоянных

Позволяет находить частное решение системы (2).

Пусть $X(\cdot) = (x_1(\cdot), \dots, x_n(\cdot))$ — фундаментальная матрица решений (1), $t_0 \in I$. Тогда x(t) = X(t)C — общее решение (1). Найдём частное решение (2) в виде

$$x(t) + X(t)C(t), t \in I.$$

Продифференцируем:

$$X'(t)C(t) + X(t)C'(t) = A(t)X(t)C(t) + b(t).$$

Так как A(t)X(t) = X'(t), можно упростить:

$$X(t)C'(t) = b(t).$$

Тогда

$$C'(t) = X^{-1}(t)b(t),$$

то есть

$$C(t) = \int_{t_0}^t X^{-1}(s)b(s)ds.$$

Таким образом, частное решение записывается в виде

$$\widehat{x}(t) = X(t) \int_{t_0}^t X^{-1}(s)b(s)ds.$$

И общее решение — это

$$x(t) = X(t)C + X(t) \int_{t_0}^t X^{-1}(s)b(s)ds.$$

Корректность следует из того, что все переходы верны в обе стороны.

8.2 Линейные однородные ОДУ

Пусть даны $n \in \mathbb{N}$, интервал $I \subset \mathbb{R}$ и функции $b, a_0, a_1, \ldots, a_n \in C(I, \mathbb{R}(\mathbb{C}))$ — можно и для вещественных, и для комплексных функций. Дополнительное ограничение: a_0 не обращается в ноль. Нас интересует уравнение

$$\sum_{j=0}^{n} a_{n-j}(t)x^{(j)} = 0 \sim a_n(t)x^{(n)} + \dots + a_{n-1}(t)x' + a_n(t)x = 0.$$

И уравнение

$$\sum_{j=0}^{n} a_{n-j}(t)x^{(j)} = b(t) \sim a_n(t)x^{(n)} + \dots + a_{n-1}(t)x' + a_n(t)x = b(t).$$

(В обоих случаях написаны две эквивалентные формы)

Сделаем замену:

$$y^1 = x, y^2 = x', \dots, y^n = x^{(n-1)}.$$

Тогда система (3) записывается в виде

$$\begin{cases} (y^1)' = y^2 \\ \vdots \\ (y^{n-1})' = y^n \\ (y^n)' = -\frac{a_1(t)}{a_0(t)} y^n - \dots - \frac{a_n(t)}{a_0(t)} y^1. \end{cases}$$

Сделаем то же самое для системы (4):

$$\begin{cases} (y^1)' = y^2 \\ \vdots \\ (y^{n-1})' = y^n \\ (y^n)' = -\frac{a_1(t)}{a_0(t)} y^n - \dots - \frac{a_n(t)}{a_0(t)} y^1 + \frac{b(t)}{a_0(t)}. \end{cases}$$

Эквивалентности $(3) \sim (6)$ и $(4) \sim (7)$ доказываются прямой проверкой.

Лемма. Пусть $x_1(\cdot), \ldots, x_k(\cdot)$ — решения уравнения (3), а $y_1(\cdot), \ldots, y_k(\cdot)$ — соответствующие после замены решения системы (6). Система функций x_1, \ldots, x_k линейно зависима тогда и только тогда, когда система y_1, \ldots, y_k линейно зависима.

Доказательство. Из определения линейной зависимости существует ненулевой $\lambda \in \mathbb{R}^k(\mathbb{C}^k)$, такой что $\sum_{j=1}^n \lambda_j x_j(t) \equiv 0$. Продифференцируем сумму n раз:

$$\exists \lambda \in \mathbb{R}^k(\mathbb{C}^k) : \begin{cases} \sum_{j=1}^n \lambda_j x_j(t) \equiv 0\\ \sum_{j=1}^n \lambda_j x_j'(t) \equiv 0\\ \sum_{j=1}^n \lambda_j x_j''(t) \equiv 0\\ \vdots \end{cases}$$

Подставим y_i и просуммируем покоординатно:

$$\iff \exists \lambda \in \mathbb{R}^k(\mathbb{C}^k) : \sum_{j=1}^n \lambda_j y_j(t) \equiv 0$$

Первое утверждение эквивалентно линейной зависимости x_1, \dots, x_k , второе — y_1, \dots, y_k .

Теорема. Существуют линейно независимые решения $x_j(\cdot)$, где $j \in [1, n]$, уравнения (3). Более того, решений ровно n, то есть общее решение системы (3) имеет вид

$$x(t) = c_1 x_1(t) + \dots + c_n x_n(t), t \in I, c_j \in \mathbb{R}(\mathbb{C}).$$

Следует из эквивалентности системе (6), для которой аналогичные утверждения были доказаны ранее.

Замечание. Для комплексных чисел аналогичной утверждение не было доказано, но в этом случае на систему из n комплексных уравнений можно смотреть, как на систему из 2n вещественных уравнений.

Определение. Пусть $x_1,\ldots,x_{n-1}\in C^{n-1}(I,\mathbb{R}(\mathbb{C}))$. Определителем Вронского этой си-

ФПМИ МФТИ, осень 2023

стемы функций называется

$$\omega(t) = \begin{vmatrix} x_1(t) & \dots & x_n(t) \\ x'_1(t) & \dots & x'_n(t) \\ \vdots & \ddots & \vdots \\ x_1^{(n-1)}(t) & \dots & x_n^{(n-1)}(t) \end{vmatrix}$$

Нетрудно проверить, что для линейно зависимых функций определитель Вронского равен нулю, но в обратную сторону это неверно: $x_1(t) = t^2$, $x_2(t) = t|t|$. (Здесь небольшое дежавю, но ранее мы определяли его для более узкого случая).

Утверждение. (О связи определителя Вронского для функций и для вектор-функций) Пусть x_1, \ldots, x_n — решение системы (3), y_1, \ldots, y_n — решение системы (6), связанные с x_1, \ldots, x_n заменой (5). Тогда $\omega(t)$ совпадает с определителем Вронского вектор-функций y_1, \ldots, y_n . Доказывается прямой проверкой.

Утверждение. Пусть x_1, \ldots, x_n — решение системы (3). Тогда если существует τ , такое что $\omega(\tau) = 0$, то $\omega(\tau) \equiv 0$ и функции линейно зависимы.

Доказывается переходом к вектор-функциям y_i : возьмём τ , получим линейную зависимость функций y_i в какой-то точке, значит, они линейно зависимы, и исходные функции линейно зависимы.

Утверждение. (Формула Лиувилля-Остроградского)

$$\omega(t) \equiv \omega(t_0) \exp\left(-\int_{t_0}^t \frac{a_1(s)}{a_0(s)} ds\right).$$

Доказательство. Найдём матрицу A для вектор-функций y_i :

$$A(t) = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -\frac{a_n}{a_0} & -\frac{a_{n-1}}{a_0} & -\frac{a_{n-2}}{a_0} & \dots & -\frac{a_1}{a_0} \end{pmatrix}$$

Соответственно её след равен $-\frac{a_1}{a_0}$.

Теорема. (О решении системы (4)) $x_{\text{общ.(4)}} = x_{\text{част.(4)}} + x_{\text{общ.(3)}}$. Частное решение системы (4) можно найти методом вариации постоянной: пусть x_1, \ldots, x_n — линейно независимые решения системы (3). Тогда частное решение (4) записывается в виде

$$x(t) = \sum_{j=1}^{n} C_j(t) x_j(t).$$

Возьмём $C_j(t)$, которые получаются при применении метода вариации постоянной для системы (4), то есть они удовлетворяют X(t)C'=b(t) или же

$$\begin{pmatrix} x_{1}(t) & \dots & x_{n}(t) \\ x'_{1}(t) & \vdots & x'_{n}(t) \\ \vdots & \ddots & \vdots \\ x_{1}^{(n-1)}(t) & \dots & x_{n}^{(n-1)}(t) \end{pmatrix} \begin{pmatrix} c'_{1}(t) \\ c'_{2}(t) \\ \vdots \\ c'_{n}(t) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ \frac{b(t)}{a_{0}(t)} \end{pmatrix}$$

 $\overline{\Phi\Pi M M \Phi T M}$, осень 2023

Теперь заметим, что они подходят, здесь не понял, $\sim 1:05$ лекция 8.

Пример. $x'' - 3x' + 2x = e^{-t}$. Здесь n = 2, $a_0(t) \equiv 1$, $a_1(t) \equiv -3$, $a_2(t) \equiv 2$, $b(t) \equiv e^{-1}$ — линейное ОДУ. Будем искать решение вида $x(t) = e^{\lambda t}$. Тогда однородное уравнение переписывается в виде $(\lambda^2 - 3\lambda + 2)e^{\lambda t} = 0$, то есть решение — $x(t) = c_1 e^t + c_2 e^{2t}$. Найдём частное решение:

$$\begin{pmatrix} e^t & e^{2t} \\ e^t & 2e^{2t} \end{pmatrix} \begin{pmatrix} c_1' \\ c_2' \end{pmatrix} = \begin{pmatrix} 0 \\ e^{-t} \end{pmatrix}$$

Умножим на обратную матрицу:

$$\begin{pmatrix} c_1' \\ c_2' \end{pmatrix} = \frac{1}{e^{3t}} \begin{pmatrix} 2e^{2t} & -e^{2t} \\ -e^t & e^t \end{pmatrix} \begin{pmatrix} 0 \\ e^{-t} \end{pmatrix}$$

То есть $c_1'=-e^{-2t}$ и $c_2'=e^{-3t}$. Интегрируя, получаем $c_1=\frac{1}{2}e^{-2t}$ и $c_2=-\frac{1}{3}e^{-3t}$. Тогда частным решением будет

$$x(t) = \frac{1}{2}e^{-2t}e^t - \frac{1}{3}e^{-3t}e^{2t} = \frac{1}{6}e^{-t}.$$

Общее решение — сумма общего однородного и частного.

Линейные ОДУ с постоянными коэффициентами 9

Линейные однородные ОДУ с постоянными коэффициентами 9.1

Пусть $n \in \mathbb{N}$, $a_0, \ldots, a_n \in \mathbb{C}$, причём $a_0 \neq 0$. Рассмотрим уравнение

$$a_0x^{(n)} + \dots + a_nx = 0.$$

Сделаем замену $x(t) = e^{\lambda t}$, тогда уравнение приводится к виду $M(\lambda) = a_0 \lambda^n + \dots + a_n = 0$. Тогда, если $\lambda_1, \ldots, \lambda_n$ — корни этого уравнения, решением задачи будут функции x(t) = $e^{\lambda_i t}$ и любые их линейные комбинации.

Положим $Lx(t) = \sum_{j=0}^{n} a_{n-j} x^{(j)}(t)$. **Лемма.** Пусть $\gamma \in \mathbb{C}$ — корень M кратности $k \in \mathbb{N} \cup \{0\}$, s — неотрицательное целое число. Тогда

$$L(t^s e^{\gamma t}) = \begin{cases} 0, & s \leqslant k - 1 \\ P(t)e^{\gamma t}, & s \geqslant k \end{cases},$$

где P — какой-то многочлен степени s-k.

Доказательство.

$$L(t^s e^{\gamma t}) \equiv \sum_{j=0}^n a_{n-j} \frac{\partial^j}{\partial t^j} (t^s e^{\gamma t}) \equiv \sum_{j=0}^n a_{n-j} \frac{\partial^j}{\partial t^j} \left(\frac{\partial^s}{\partial \gamma^s} e^{\gamma t} \right) \equiv$$

(Поменяем частные производные местами)

$$\equiv \sum_{j=0}^{n} a_{n-j} \frac{\partial^{s}}{\partial \gamma^{s}} (\gamma^{j} e^{\gamma t}) \equiv \frac{\partial^{s}}{\partial \gamma^{s}} (e^{\gamma t} M(\gamma)) \equiv$$

(так как $\gamma -$ корень кратности k)

$$\equiv \sum_{j=0}^{s} C_s^j M^{(j)}(\gamma) t^{s-j} e^{\gamma t}.$$

Получили искомый многочлен.

Теорема. Пусть $\lambda_1, \dots, \lambda_m$ — попарно различные корни кратностей k_1, \dots, k_m соответственно. Тогда $t^s e^{\lambda_j t}$ $(s \in [0, k_j], j \in [1, m])$ — фундаментальная система решений.

Доказательство. Очевидно, что эти функции являются решениями. Докажем, что они линейно независимы. Пусть $\sum c_{j,s} \cdot t^s e^{\lambda_j t} \equiv 0$. Тогда существуют многочлены, такие что

$$p_1(t)e^{\lambda_1 t} + \dots + p_m(t)e^{\lambda_m t} \equiv 0.$$

Разделим:

$$p_1(t) + \dots + p_m(t)e^{(\lambda_m - \lambda_1)t} \equiv 0.$$

Продифференцируем достаточное число раз, чтобы $p_1(t)$ обнулился. Получаем новые многочлены

$$\widehat{p}_2(t)e^{\lambda_2-\lambda_1)t} + \dots + \widehat{p}_m e^{(\lambda_m-\lambda_1)t} \equiv 0.$$

Нетрудно доказать, что $\deg(p_i) = \deg(\widehat{p}_i)$, поэтому эту операцию можно дальше продолжать, пока не получим

$$\widehat{p}_m(t)e^{(\lambda_m-\lambda_{m-1})t} \equiv 0.$$

Получаем, что многочлен \hat{p}_m нулевой, то есть у него степень $-\infty$, то есть и у исходного многочлена p_m была такая степень. Повторяя эту процедуру для остальных многочленов, получаем, что все многочлены нулевые. Следовательно, все коэффициенты линейной комбинации нулевые.

9.2 Линейные неоднородные ОДУ с постоянными коэффициентами

Всё то же самое, но теперь

$$a_0x^{(n)} + \dots + a_{n-1}x' + a_nx = b(t).$$

Если b(t) — многочлен, то очевидно решается по линейности (?). Рассмотрим случай, когда $b(t) = p(t)e^{\gamma t}$ — квазимногочлен.

Теорема. Существует решение $x(\cdot)$ уравнения (2) вида $x(t) = t^k q(t) e^{\gamma t}$, где k — кратность корня γ многочлена M, а q — какой-то многочлен, степень которого не превосходит степень p.

Доказательство. Пусть $m = \deg(p), \ p(t) = q_0 t^m + \dots + q_{m-1} t + q_m$. Положим $x_1(t) = at^{m+k}e^{\gamma t}$ (число a определим позже). Тогда по лемме

$$Lx_1(t) = a(\Theta t^m + r(t))e^{\gamma t}, \deg(r) < m.$$

Положим $a=\frac{p_0}{\Theta}$. Тогда $Lx_1(t)=(p_0t^m+\widehat{r}(t))e^{\gamma t}$. Докажем теорему индукцией по m. При m=0 имеем $x=x_1$ — искомый многочлен. Пусть теорема верна для многочленов степени

меньше m. Будем искать решение в виде $x = x_1 + x_2$, где x_2 — квазимногочлен, то есть мы хотим, чтобы $L(x_1 + x_2)(t) \equiv p(t)e^{\gamma t}$. Распишем x_1 и x_2 :

$$(p_0t^m + \widehat{r}(t))e^{\gamma t} + Lx_2(t) = (p_0t^m + p_1t^{m-1} + \dots + p_m)e^{\gamma t}.$$

Сократим $p_0 t^m e^{\gamma t}$:

$$Lx_2(t) \equiv (-\widehat{r}(t) + p_1 t^{m-1} + \dots + p_m)e^{\gamma t}.$$

Справа имеем многочлен степени менее m, поэтому можно применить предположение индукции:

$$\exists q_2 : L(t^k q_2(t)e^{\gamma t}) \equiv (-\widehat{r}(t) + p_1 t^{m-1} + \dots)e^{\gamma t}, \deg(q_2) \leqslant m - 1.$$

Таким образом,

$$x(t) = \frac{p}{\Theta}t^{m+k}e^{\gamma t} + t^kq_2(t)e^{\gamma t}$$

является решением уравнения (2).

Пример. $x''-x=t^3e^t$. Характеристический многочлен — $\lambda^2-1=0$. Возьмём корень $\gamma=1$ кратности 1. Тогда решение имеет вид

$$x(t) = t^{1}(q_{0}t^{3} + q_{1}t^{2} + q_{2}t + q_{3})e^{t}.$$

Теперь это можно поставить в исходное уравнение и получить систему уравнений, из которой получается решение.

9.3 Вещественные решения

Теперь коэффициенты вещественные, уравнение однородное и мы хотим найти вещественные решения. Тогда характеристический многочлен имеет решения трёх типов: вещественные и пары сопряжённых комплексных. Рассмотрим пары комплексных $\lambda = \alpha \pm i\beta$. Тогда $t^s e^{\lambda t}$ и $t^s e^{\bar{\lambda} t}$ — решения (1). В силу линейности решениями также являются

$$\frac{t^s e^{\lambda t} + t^s e^{\overline{\lambda} t}}{2}, \quad \frac{t^s e^{\lambda t} - t^s e^{\overline{\lambda} t}}{2i}.$$

Складывая эти решения, получаем по определению синуса и косинуса решения вида $t^s e^{\alpha t} \cos(\beta t)$ и $t^s e^{\alpha t} \sin(\beta t)$ — вещественные.

Теорема. Вместе с корнями $\lambda \in \mathbb{R}$ многочлена M эти решения образуют фундаментальную систему решений.

Доказательство. Пусть $\lambda_j = \alpha_j + i\beta_j$, $\overline{\lambda_j} = \alpha_j - i\beta_j$ для $j \in [1,l]$ и $\lambda_j \in \mathbb{R}$ для $j \in [2l+1,n]$ — все решения в комплексных числах. Положим $z_j^s(t) = t^s e^{\lambda_j t}$, $z_{j+l}^s(t) = t^s e^{\overline{\lambda_j} t}$, $z_j^s(t) = t^s e^{\lambda_j t}$ — соответствующие этим λ решения. Докажем линейную независимость, пусть

$$\sum_{s} \left(\sum_{j=1}^{l} c_{j}^{s} \frac{z_{j}^{s} + z_{j+l}^{s}}{2} + \sum_{j=1}^{l} c_{j+l}^{s} \frac{z_{j}^{s} - z_{j+l}^{s}}{2i} + \sum_{j=2l+1}^{m} c_{j}^{s} z_{j} \right) \equiv 0.$$

Приведём подобные слагаемые:

$$\left(\frac{c_1^s}{2} + \frac{c_{l+1}^s}{2i}\right) + z_1^s + \left(\frac{c_1^s}{2} - \frac{c_{l+1}^s}{2i}\right) z_{l+1}^s + \dots + \sum_{j=2l+1}^m c_j^s z_j^s \equiv 0.$$

В силу равенства нулю все коэффициенты равны нулю. Из этих слагаемых видим, что $c_1^s = c_{l+1}^s = c_{2l+1}^s = 0$. Аналогично для остальных.

Случай неоднородных уравнений: выражение в правой части можно привести к виду $(P_1(t)\cos(\mu t) + B(t)\sin(\mu t))e^{\eta t}$. Решение тогда ищется в виде

$$x(t) = t^{k}(Q_{1}(t)\cos(\mu t) + Q_{2}(t)\sin(\mu t))e^{\eta t},$$

где k — кратность корня $\gamma = \eta + i\mu$.

10 Системы линейных ОДУ с постоянными коэффициентами

10.1 Комплексные однородные системы

Пусть нам даны $n \in \mathbb{N}$ и матрица $A \in \mathbb{C}^{n \times n}$. Рассмотрим систему

$$x' = Ax$$
.

Как мы знаем из алгема, матрицу A можно привести к жордановой нормальной форме, то есть найдутся матрицы $B,C\in\mathbb{C}^{n\times n}$, причём $\det(C)\neq 0$, такие что $B=C^{-1}AC$, и матрица B имеет вид

$$\begin{pmatrix} K_1 & 0 & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & K_s \end{pmatrix},$$

где K_j — жорданова клетка с собственным значением λ_j и собственным вектором h_j .

Определение. $h_{j,1},\ldots,h_{j,k_j}$ называется cepueй с собственным значением λ_j , если $Ah_{j,1}=\lambda_jh_{j,1},\ Ah_{j,2}=\lambda_jh_{j,2}+h_{j,1}$, и так далее, $Ah_{j,k_j}=\lambda h_{j,k_j}+h_{j,k_j-1}$. У Штепина это, кажется, называлось жордановой диаграммой.

Научимся их находить проще. Пусть e_1,\ldots,e_n — базис, тогда, просто подставляя в определение B, получаем $Be_1=\lambda_1e_1,\ Be_2=\lambda_1e_2+e_1,$ и так далее, $Be_{k_1}=\lambda_1e_{k_1}+e_{k_1-1}.$ Теперь выразим B через A:

$$C^{-1}ACe_1 = \lambda_1 e_1 \Rightarrow A(Ce_1) = \lambda_1(Ce_1).$$

Аналогично $A(Ce_2) = \lambda_1(Ce_2) + Ce_1$.

Таким образом, зная матрицу C, мы можем вычислить серию довольно нехитрым образом: $h_{1,i} = Ce_i$, аналогично для остальных клеток.

На этом воспоминания из алгема заканчиваются, вернёмся к диффурам. Положим

$$\omega_{j,r}(t) := \frac{t^{r-1}}{(r-1)!} h_{j,1} + \frac{t^{r-2}}{(r-2)!} h_{j,2} + \dots + h_{j,r},$$

П

где $j=\overline{1,s}$ и $r=\overline{1,k_j}$. Заметим, что всего функций будет n из простых комбинаторных соображений.

Теорема. Набор функций $\omega_{j,r}(t)e^{\lambda_j t}$ является фундаментальной системой решений. Так, мы научились явно строить решение системы.

Доказательство. Проверим, что все n функций действительно являются решениями. Для этого нам понадобится два тождества. Первое:

$$\omega'_{j,r}(t) \equiv \omega_{j,r-1}(t).$$

(здесь мы считаем, что $\omega_{i,0}(t) \equiv 0$)

Второе:

$$A\omega_{j,r}(t) \equiv \lambda_j \omega_{j,r}(t) + \omega_{j,r-1}(t).$$

Следует из соотношений на $h_{i,\cdot}$, как на серию.

Теперь подставим в систему:

$$\frac{d}{dt} \left(\omega_{j,r}(t) e^{\lambda_j t} \right) \equiv \left(\omega'_{j,r}(t) + \lambda_j \omega_{j,r} \right) e^{\lambda_j t} \equiv \left(\omega_{j,r-1}(t) + \lambda_j \omega_{j,r} \right) e^{\lambda_j t} \equiv$$

$$\equiv A \omega_{j,r}(t) \cdot e^{\lambda_j t} \equiv A(\omega_{j,r}(t) e^{\lambda_j t}).$$

Следовательно, решением являются.

Проверим линейную независимость. Заметим, что $\omega_{j,r}(t)e^{\lambda_j t}|_{t=0}=h_{j,r}$. Из простых соображений все $h_{j,r}$ линейно независимы, откуда и $\omega_{j,r}(t)e^{\lambda_j t}$ линейно независимы.

10.2 Вещественные однородные системы

Пусть нам даны $n \in \mathbb{N}$ и $A \in \mathbb{R}^{n \times n}$, система та же. Теперь нас напрягают комплексные собственные значения.

Пусть $\lambda_1, \ldots, \lambda_l \in \mathbb{C}$, а $\lambda_{l+1}, \ldots, \lambda_{2l}$ — сопряжённые к ним соответственно, и оставшиеся $\lambda_{2l+1}, \ldots, \lambda_s \in \mathbb{R}$. Тогда серию можно построить так, что $h_{l+1,r} = \overline{h}_{1,r}, \ldots, h_{2l,r} = \overline{h}_{l,r}$.

Определение $\omega_{j,r}$ остаётся тем же, но теперь для $j=\overline{1,l}$ мы рассмотрим функции

$$\frac{1}{2} \left(\omega_{j,r}(t) e^{\lambda_j t} + \overline{\omega_{j,r}(t) e^{\lambda_j t}} \right)$$

И

$$\frac{1}{2i} \left(\omega_{j,r}(t) e^{\lambda_j t} - \overline{\omega_{j,r}(t) e^{\lambda_j t}} \right).$$

Нетрудно заметить, что они вещественные, являются решениями и линейно независимы (это доказывалось в предыдущем параграфе). Остаются вещественные собственные значения, но для них всё просто: $\omega_{j,r}(t)e^{\lambda_j t}$ подойдёт.

Перепишем решения для $j=\overline{1,l}$ в более удобном виде. Пусть $\lambda_j=\alpha_j+i\beta_j,\ h_{j,r}=a_{j,r}+ib_{j,r}$ — алгебраическая форма записи комплексного числа. Тогда первая группа решений будет иметь вид

$$Re\left(\omega_{j,r}(t)e^{\lambda_j t}\right) = \left(\frac{t^{r-1}}{(r-1)!}a_{j,1} + \dots + a_{j,r}\right)\cos(\beta_j t)e^{\alpha_j t} -$$

$$-\left(\frac{t^{r-1}}{(r-1)!}b_{j,1}+\cdots+b_{j,r}\right)\sin(\beta_j t)e^{\alpha_j t}$$

— произведение действительных частей минус произведение мнимых. Вторая —

$$\left(\frac{t^{r-1}}{(r-1)!}b_{j,1} + \dots + b_{j,r}\right)\cos(\beta_j t)e^{\alpha_j t} + \left(\frac{t^{r-1}}{(r-1)!}a_{j,1} + \dots + a_{j,r}\right)\sin(\beta_j t)e^{\alpha_j t}.$$

10.3 Компексные неоднородные системы

Как и ранее, у нас есть $n \in \mathbb{N}, A \in \mathbb{C}^{n \times n}$, многочлен $p : \mathbb{R} \to \mathbb{C}^n$ и число $\gamma \in \mathbb{C}$. Рассмотрим систему

$$x' = Ax + p(t)e^{\gamma t}.$$

Определение. $p(t)e^{\gamma t}$ будем называть *правой частью специального вида*. В этом случае мы умеем находить частное решение даже без метода вариации постоянной.

Перепишем систему в более удобном виде

$$z' = Bz + \tilde{p}(t)e^{\gamma t},$$

где $B = C^{-1}AC$ и $\tilde{p}(t) = C^{-1}p(t)$.

Какая связь между системами (2) и (3)? Пусть $z(\cdot)$ — решение (3), положим $x(\cdot) := Cz(\cdot)$, тогда $z = C^{-1}x$. Подставим в систему (2): $C^{-1}x' = BC^{-1}x + \tilde{p}e^{\gamma t}$, откуда $x' = CBC^{-1}x + C\tilde{p}e^{\gamma t}$, то есть $x' = Ax + pe^{\gamma t}$. Иными словами, системы эквивалентны, засим будем решать систему (3), ибо она проще из жордановых соображений. В частности, нас только интересует какое-то одно частное решение, ибо остальные получаются по линейности.

Пусть

$$B = \begin{pmatrix} K_1 & 0 & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & K_s \end{pmatrix},$$

 k_i — размер клетки K_i , λ_i — собственные значения. Напишем систему (3) построчно:

$$\begin{cases} z_1' = \lambda_1 z_1 + z_2 + \tilde{p}_1 e^{\gamma t} \\ \vdots \\ z_{k_1-1}' = \lambda_1 z_{k_1-1} + z_{k_1} + \tilde{p}_{k_1-1} e^{\gamma t} \\ z_{k_1}' = \lambda_1 z_{k_1} + z_{k_1} + \tilde{p}_{k_1} e^{\gamma t} \\ \vdots \end{cases}$$

Проанализируем эти уравнения. Если $\gamma \neq \lambda_1$, то решение k_1 -ой строчки можно написать в виде $z_{k_1}(t) = q_{k_1}e^{\gamma t}$, где $\deg(q_{k_1}) \leqslant \deg(p)$, по теореме для линейных однородных уравнений. Аналогично $z_{k_1-1}(t) = q_{k_1-1}(t)e^{\gamma t}$, где $\deg(q_{k_1-1}) \leqslant \deg(p)$. Такую штуку можно провернуть для всех уравнений, что даёт нам искомое решение.

Если же $\gamma = \lambda_1$, то k_1 -ое уравнение решается, как $z_{k_1}(t) = t \cdot q_{k_1}(t)e^{\gamma t}$ для $\deg(q_{k_1}) \leqslant \deg(p)$. Загоним t в q_{k+1} , тогда у нас получится всё, как в предыдущем случае, но теперь $\deg(q_{k_1}) \leqslant 1 + \deg(p)$, $\deg(q_{k_1-1}) \leqslant 2 + \deg(p)$ и так далее. По итогу,

Теорема. Если $\gamma \neq \lambda_j$ для всех j, то существует частное решение системы (2), имеющее вид $x(t) = P(t)e^{\gamma t}$, где $\deg(P) \leqslant \deg(p)$.

А если же $\gamma = \lambda_j$, то существует частное решение системы (2), имеющее вид $x(t) = P(t)e^{\gamma t}$, где $\deg(P) \leqslant \deg(p) + \max\{k_l\}$, где максимум берётся по таким l, что $\lambda_l = \lambda_j$, ибо в таких клетках как раз реализуется второй случай и оценка на степень ухудшается.

Таким образом, для нахождения частного решения можно просто применить метод неопределённых коэффициентов.

10.4 Вещественные неоднородные системы с правой частью специального вида

Пусть дана $A \in \mathbb{R}^{n \times n}$, числа $\alpha, \beta \in \mathbb{R}$ и многочлены $U, V : \mathbb{R} \to \mathbb{R}^n$. Рассмотрим систему

$$x' = Ax + e^{\alpha t}(V(t)\cos(\beta t) + V(t)\sin(\beta t))$$

и систему

$$z' = Az + (U(t) - iV(t))e^{(\alpha + i\beta)t}.$$

У второй системы, как известно, есть решение вида

$$z(t) = (F(t) + iG(t))e^{(\alpha + i\beta)t}.$$

где F и G — многочлены, степени которых не превосходят $\max(\deg(U), \deg(V)) + k$, где k — размер наибольшей жордановой клетки, содержащей собственное значение $\lambda = \alpha + i\beta$, в жордановой форме A.

Решение первой системы тогда записывается в виде

$$x(t) = Re(z(t)) = e^{\alpha t} (F(t)\cos(\beta t) - G(t)\sin(\beta t)).$$

Проверим это: при подстановке Re(z(t)) во вторую систему мы получим в точности систему (1).

11 Матричная экспонента

11.1 Определение

Пусть дана матрица $A \in \mathbb{R}^{n \times n}$ (можно и в $\mathbb{C}^{n \times n}$). Тогда

$$e^A := \sum_{j=0}^{\infty} \frac{A^j}{j!},$$

где 0! = 1 и $A^0 = E$.

Лемма. Для любого r>0 ряд $\sum_{j=0}^{\infty} \frac{t^j A^j}{j!}$ сходится абсолютно и равномерно при $|t|\leqslant r$. Доказательство. Оценим норму одного слагаемого:

$$\left\| \frac{t^j A^j}{j!} \right\| \leqslant \frac{t^j}{j!} \|A\|^j,$$

так как норма произведение не превосходит произведение норм. Ряд слагаемых справа сходится абсолютно и равномерно, как экспонента, поэтому и слева то же самое. Более того, норма суммы не превосходит сумму норм, поэтому

$$\left\| \sum_{j=0}^{\infty} \frac{t^j A^j}{j!} \right\| \leqslant \sum_{j=0}^{\infty} \left\| \frac{t^j A^j}{j!} \right\| \leqslant e^{t\|A\|}.$$

11.2 Свойства

Свойство 1. Пусть матрицы A и B коммутируют, тогда $e^{A+B}=e^Ae^B.$ Доказательство. Вычислим левую и правую части:

$$e^{A+B} = \sum_{j=0}^{\infty} \frac{(A+B)^j}{j!} = \sum_{j,k=0}^{\infty} \Theta_{j,k} A^j B^k.$$

$$e^{A}e^{B} = \sum_{j=0}^{\infty} \frac{A^{j}}{j!} \sum_{k=0}^{\infty} \frac{B^{k}}{k!} = \sum_{j,k=0}^{\infty} \mu_{j,k} A^{j} B^{k}.$$

Можно вычислить значения $\Theta_{j,k}$ и $\mu_{j,k}$, но лучше заметим, что они не зависят от n, поэтому их можно вычислить при n=1 и подставить в общую формулу. Так вот, при n=1получаем, что A и B — это числа, и свойство заведомо верно. Следовательно, $\Theta_{i,k}=\mu_{i,k}$ при n=1 и при всех n.

Замечание. Если $AB \neq BA$, то свойство не обязательно верно. Возьмём

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

Тогда $A^2 = B^2 = 0$ и

$$A + B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, AB = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, BA = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

То есть $e^A e^B \neq e^B e^A$, но $e^{A+B} = e^{B+A}$.

Свойство 2. Функция $t \to e^{tA}$ дифференцируема и $\frac{d}{dt}e^{tA} = Ae^{tA}$. Доказательство. Продифференцируем ряд $e^{tA} = \sum_{j=0}^{\infty} \frac{t^j A^j}{j!}$:

$$\frac{d}{dt}\left(\frac{t^jA^j}{j!}\right) \equiv \frac{t^{j-1}A^j}{(j-1)!}.$$

Оценим норму одного слагаемого производной:

$$\leq \frac{|t|^{j-1}}{(j-1)!} ||A||^j.$$

Этот ряд сходится абсолютно и равномерно. Следовательно, функция дифференцируема

и её можно дифференцировать почленно.

$$\frac{d}{dt} \left(e^{tA} \right) \equiv \sum_{j=1}^{\infty} \frac{t^{j-1} A^j}{(j-1)!} \equiv A \sum_{j=1}^{\infty} \frac{t^{j-1} A^{j-1}}{(j-1)!} \equiv A e^{tA}.$$

Замечание. Матрицу A можно было вынести и справа и получить $e^{tA}A$.

Свойство 3. $X(t) = e^{tA}$ является решением задачи Коши X' = AX, X(0) = E. Первое следует из свойства 2, второе — из определения. В частности, X(t) является фундаментальной системой решений системы x = Ax.

Свойство 4. $\det(e^{tA}) \equiv e^{t \cdot \operatorname{tr}(A)}$. Следует из теоремы Лиувилля-Остроградского: берём $t_0 = 0$, тогда матрица A(s) не зависит от s и интеграл тривиален.

Свойство 5. Пусть

$$K = \begin{pmatrix} \lambda & 1 & 0 & \dots & 0 \\ 0 & \lambda & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \lambda \end{pmatrix}, F = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 0 \end{pmatrix}$$

(то есть $K = \lambda E + F$ — жорданова клетка, матрицы размера $m \times m$). Тогда

$$e^{tF} = \sum_{j=0}^{m-1} \frac{t^j F^j}{j!} = \begin{pmatrix} 1 & \frac{t}{1!} & \frac{t^2}{2!} & \dots & \frac{t^{m-1}}{(m-1)!} \\ 0 & 1 & \frac{t}{1!} & \dots & \frac{t^{m-2}}{(m-2)!} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix}$$

Также

$$e^{t\lambda E} \equiv e^{t\lambda} E.$$

И по итогу

$$e^{tK} = e^{t\lambda E + tF} \equiv e^{t\lambda E} e^{tF} \equiv e^{t\lambda} e^{tF}.$$

Свойство 6. Пусть

$$B = \begin{pmatrix} K_1 & 0 & \dots & 0 \\ 0 & K_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & K_s \end{pmatrix},$$

где K_i — жордановы клетки. Тогда

$$e^{tB} = \begin{pmatrix} e^{tK_1} & 0 & \dots & 0 \\ 0 & e^{tK_2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & e^{tK_s} \end{pmatrix}.$$

Очевидно, так как мы возводим блочную матрицу в степень понятным образом.

Свойство 7. Если $B, C \in \mathbb{C}^{n \times n}$ и $\det(C) \neq 0$, причём $B = C^{-1}AC$, то $e^{tA} = Ce^{tB}C^{-1}$. Доказательство. Распишем e^{tB} , в каждом множителе C^{-1} и C посередине сократятся,

ФПМИ МФТИ, осень 2023

а вхождения по краям можно вынести и получить искомое.

12 Теорема Штурма

Пусть $I \subset \mathbb{R}$ — интервал, $a \in C^1(I, \mathbb{R}), b \in C(I, \mathbb{R})$ — функции. Рассмотрим уравнение

$$x'' + a(t)x' + b(t)x = 0.$$

Правильной заменой его можно свести к уравнению

$$y'' + q(t)y = 0.$$

Найдём такую замену: пусть x(t) = u(t)y(t), тогда x' = u'y + uy' и x'' = u''y + 2u'y' + uy''. Тогда уравнение (1) записывается в виде

$$u''y + 2u'y' + au'y + auy' + buy = 0.$$

Теперь будем искать решение, удовлетворяющее уравнению 2u' + au = 0, тогда $u' = -\frac{1}{2}au$ и

$$u'' = -\frac{1}{2}a'u - \frac{1}{2}au' = \left(-\frac{1}{2}a' + \frac{1}{4}a^2\right)u.$$

Подставим в исходное:

$$uy'' + \left(\left(-\frac{1}{2}a' + \frac{1}{4}a^2\right)u - \frac{1}{2}a^2u + bu\right)y = 0.$$

Если 2u' + au = 0, то

$$u(t) = \exp\left(-\frac{1}{2} \int_{t_0}^t a(s)ds\right),$$

поэтому она всегда положительна и можно разделить:

$$y'' + \left(-\frac{1}{2}a' - \frac{1}{4}a^2 + b\right)y = 0.$$

Теперь будем рассматривать только уравнение (2).

12.1 Свойства

Свойство 1. Если $y(\cdot)$ — нетривиальное решение, то все нули функции $y(\cdot)$ являются простыми, то есть если $y(t_0)=0$, то $y'(t_0)\neq 0$.

Доказательство. Рассмотрим задачу Коши

$$\begin{cases} y'' + q(t)y = 0 \\ y(t_0) = 0 \\ y'(t_0) = 0 \end{cases}$$

У неё есть ровно одно решение $y(t) \equiv 0$ — тривиальное.

Определение. \hat{t} называется точкой прикосновения множества $T \subset \mathbb{R}$, если $\forall \varepsilon > 0$ $T \cap O_{\varepsilon}(\hat{t}) \neq \emptyset$. В отличие от предельных точек здесь шар не проколотый.

Свойство 2. Если $y(\cdot)$ — нетривиальное решение, то множество нулей $\{t \in I : y(t) = 0\}$ не имеет предельных точек, то есть нет сходящейся последовательности нулей.

Доказательство. От противного: существует последовательность $\{t_j\} \subset I$ и $t \in I$, такие что $t_j \to t$, все $y(t_j) = 0$ и y(t) = 0. Тогда между соседними t_j производная y' обращается в ноль по теореме Ролля, так как значения на концах равны. Тогда y'(t) = 0.

12.2 Теорема Штурма

Пусть даны $q, Q \in C(I, \mathbb{R})$, числа $t_1, t_2 \in I$, такие что $t_1 < t_2$ и уравнение

$$z'' + Q(t)z = 0.$$

Пусть также:

- 1. $q(t) \leqslant Q(t)$ на I.
- 2. y нетривиальное решение (2).
- 3. $y(t_1) = y(t_2) = 0$.
- 4. $y(t) \neq 0$ на (t_1, t_2) (по свойству 2 это натуральное предположение).
- 5. z нетривиальное решение (3).

Тогда либо

- \triangleright Существует $t_0 \in (t_1, t_2)$, такое что $z(t_0) = 0$.
- $\triangleright z(t_1) = z(t_2) = 0.$

Доказательство. Пусть для определённости y(t) > 0 на (t_1, t_2) (так как она непрерывна и не равна нулю на интервале, так считать можно). Тогда $y'(t_1) \ge 0$ и $y'(t_2) \le 0$. Более того, по свойству 1 $y'(t_1) > 0$ и $y'(t_2) < 0$. Умножим (2) на z, (3) — на y и вычтем:

$$y''(t)z(t) - z''(t)y(t) \equiv (Q(t) - q(t))y(t)z(t).$$

Заметим, что в левой части производная:

$$\frac{d}{dt}\left(y'(t)z(t) - y(t)z'(t)\right) \equiv \left(Q(t) - q(t)\right)y(t)z(t).$$

Проинтегрируем по t от t_1 до t_2 :

$$y'(t_2)z(t_2) - y(t_2)z'(t_2) - y'(t_1)z(t_1) + y(t_1)z'(t_1) = \int_{t_1}^{t_2} (Q(t) - q(t))y(t)z(t)dt.$$

Вспомним, что t_1 и t_2 — нули функции y:

$$y'(t_2)z(t_2) - y'(t_1)z(t_1) = \int_{t_1}^{t_2} (Q(t) - q(t))y(t)z(t)dt.$$

Предположим, что z(t) > 0 на (t_1, t_2) (при z(t) < 0 аналогично). Тогда есть 3 случая: z(t) > 0 на $[t_1, t_2]$, z(t) > 0 на $[t_1, t_2]$ и $z(t_2) = 0$ и наоборот. Во всех трёх случаях правая часть уравнения (5) неотрицательна, а левая — отрицательна, так как мы вычитаем из неположительного неотрицательное, и хотя бы одно из них отлично от нуля, противоречие.

Таким образом, мы предположили отрицание первого следствия и получили второе следствие, то есть теорема доказана.

Пример.

$$y'' + \frac{1}{4(1+t^2)}y = 0, t > 0.$$

Тогда его решение $y(\cdot)$ имеет не более двух нулей. Рассмотрим уравнение

$$z'' + \frac{1}{4t^2}z = 0.$$

Его решением является $z(t) = \sqrt{t}(c_1 \ln(t) + c_2)$ — не более одного нуля. Положим

$$q(t) := \frac{1}{4(1+t)^2}, Q(t) := \frac{1}{4t^2}.$$

По теореме Штурма и перебору случаев получаем искомое.

Пример 2.

$$z'' + (1 + t^2)z = 0, t \in [1, 5].$$

Любое нетривиальное решение имеет хотя бы один нуль. Рассмотрим уравнение

$$y'' + 1 \cdot y = 0.$$

Его решением является $y(t) = c_1 \sin(t + c_2)$. У него либо 1, либо 2 нуля в зависимости от c_2 . Рассмотрим решения с двумя. По теореме Штурма между этими двумя нулями есть нуль функции z(t).

Следствие 1. Пусть $q(t) \leq 0$. Тогда для любого нетривиального решения $y(\cdot)$ мощность множества его нулей не превосходит 1.

Доказательство. Положим $Q(t) \equiv 0$. Тогда уравнение (3) имеет вид z'' = 0 и $z(t) \equiv 1$ — нетривиальное решение. Если у решения $y(\cdot)$ хотя бы 2 нуля, то по теореме Штурма у $z(t) \equiv 1$ есть хотя бы один нуль.

Следствие 2. Пусть y_1, y_2 — линейно независимые решения (2), t_1 и t_2 — последовательные нули $y_1(t)$. Тогда существует единственная точка $t \in (t_1, t_2)$, такая что $y_2(t) = 0$. Иными словами, их нули чередуются (если два нуля совпали, то решения линейно зависимы).

Доказательство. Положим Q(t)=q(t), тогда по теореме Штурма существует $t\in[t_1,t_2]$, такое что $y_2(t)=0$. Если $t=t_1$, то определитель Вронского

$$\omega(t) = \begin{vmatrix} y_1(t) & y_2(t) \\ y_1'(t) & y_2'(t) \end{vmatrix}$$

равен нулю, так как верхняя строчка равна нулю, что противоречит линейной независимости y_1 и y_2 . При $t=t_2$ то же самое, поэтому все нули лежат в интервале. Докажем

единственность. Пусть существуют $\tau_1, \tau_2 \in (t_1, t_2)$, такие что $\tau_1 < \tau_2$ и $y_2(\tau_1) = y_2(\tau_2) = 0$. Тогда по теореме Штурма существует нуль решения y_1 в интервале (τ_1, τ_2) — противоречие.

Следствие 3. Пусть существует нетривиальное решение \hat{y} уравнения (2), такое что множество его нулей бесконечно. Тогда для любого решения y этого уравнения множество его нулей тоже бесконечно. Очевидно из следствия 2: либо линейно зависимы, тогда множества нулей совпадают, либо независимы, тогда бесконечно между нулями \hat{y} .

13 Зависимость решения задачи Коши от параметра

Теорема 1. Пусть $\Omega \subset \mathbb{R} \times \mathbb{R}^n$ открыто, $f: \Omega \to \mathbb{R}^n$ непрерывно, $\frac{\partial f}{\partial x}$ существует и непрерывна, $(t_0, x_0) \in \Omega$ — произвольные, $\varphi: I \to \mathbb{R}^n$ решение задачи Коши, $[\alpha, \beta]$ — отрезок, такой что $t_0 \in [\alpha, \beta] \subset I$, $\rho > 0$ — число, такое что $V = \{(t, x): |x - \varphi(t)| \leqslant \rho, t \in [\alpha, \beta]\} \subset \Omega$.

Тогда $\forall \varepsilon > 0 \; \exists \delta > 0 : \forall g : \Omega \to \mathbb{R}^n$ с теми же ограничениями, что и на f, таких что $|f - g| \leq \delta$ на V, решение $y(\cdot)$ задачи Коши с (t_0, y_0) существует на $[\alpha, \beta]$ и $|\varphi(t) - y(t)| < \varepsilon$ на $[\alpha, \beta]$.

Доказательство. Функция f ограничена числом m и липшицева с константой k. Пусть $J \subset [\alpha, \beta]$ — отрезок, такой что $t_0 \in J$ и при $t \in J$ $(t, y(t)) \in V$. Тогда

$$\begin{aligned} |y'(t) - \varphi'(t)| &= |g(t, y(t)) - f(t, \varphi(t))| \leqslant \\ &\leqslant |g(t, y(t)) - g(t, y(t)) - f(t, y(t))| + |f(t, y(t)) - f(t, \varphi(t))| \leqslant \\ &\leqslant \delta + k|\varphi(t) - y(t)|, \forall t \in J. \end{aligned}$$

Положим $r=\beta-\alpha$, тогда $|\varphi(t)-y(t)|\leqslant \delta e^{kr}+\frac{\delta}{k}(e^{kr}-1)$. Выберем δ так, чтобы это было меньше ε . По теореме о продолжении решения решение $y(\cdot)$ определено на всём отрезке $[\alpha,\beta]$, так как мы сделали разность достаточно малой. Оценка на модуль разности решений следует из выбора δ .

Теорема 2. Пусть $\Omega \subset \mathbb{R} \times \mathbb{R}^n$ открыто, $M \subset \mathbb{R}^m$, $M \neq \emptyset$, $f: \Omega \times M \to \mathbb{R}^n$ непрерывно, $a: M \to \mathbb{R}^n$ непрерывно, $\frac{\partial f}{\partial x}$ существует и непрерывна, $\varphi(\cdot, \mu)$ — непродолжаемое решение задачи Коши

$$\begin{cases} x' = f(t, x, \mu) \\ x(t_0) = a(\mu) \end{cases},$$

 $D := \{(t,\mu): \varphi(t,\mu) \text{ определено}\}.$ Тогда отображние $\varphi(\cdot,\cdot)$ непрерывно и множество D открыто.

Доказательство. Докажем непрерывность. Зафиксируем $(\widehat{t}, \widehat{\mu}) \in D$. Возьмём отрезок $[\alpha, \beta]$, такой что $t_0 \in (\alpha, \beta)$ и $\widehat{t} \in (\alpha, \beta)$. Зафиксируем $\rho > 0$, такое что

$$V := \{(t, x) : t \in [\alpha, \beta], |\varphi(t, \widehat{\mu}) - x| \leqslant \rho\} \subset \Omega.$$

Тогда по теореме 1 $\forall \varepsilon > 0 \; \exists \delta(\varepsilon) > 0$. Пусть $O(\widehat{\mu}) \subset M$ — такая окрестность $\widehat{\mu}$, что

$$\begin{cases} |f(t,x,\mu) - f(t,x,\widehat{\mu})| \leq \delta, \forall (t,x) \in V \\ |a(\mu) - a(\widehat{\mu})| \leq \delta \end{cases}$$

Почему так можно выбрать: второе условие очевидно в силу непрерывности, а первое можно от противного, доказывается через компактность и выбор сходящейся подпоследовательности.

Тогда по теореме 1 для всех $\mu \in O(\widehat{\mu})$ имеем, что $\varphi(\cdot,\mu)$ определено на $[\alpha,\beta]$ и $|\varphi(t,\mu)-\varphi(t,\widehat{\mu})|<\varepsilon$ на $[\alpha,\beta]$. Из этого напрямую следует, что D открыто. Так как при фиксированном μ функция $\varphi(\cdot,\mu)$ является решением задачи Коши, она непрерывна. Следовательно, существует окрестность $T\ni \widehat{t}$, такая что $|\varphi(t,\widehat{\mu})-\varphi(\widehat{t},\widehat{\mu})|<\varepsilon$. Тогда для всех $(t,\mu)\in T\times O(\widehat{\mu})$ имеем

$$|\varphi(t,\mu) - \varphi(\widehat{t},\widehat{\mu})| \leq |\varphi(t,\mu) - \varphi(t,\widehat{\mu})| + |\varphi(t,\mu) - \varphi(\widehat{t},\widehat{\mu})| < \varepsilon + \varepsilon.$$

Таким образом, $\varphi(\cdot,\cdot)$ непрерывна.

Теорема 3. (б/д) Дополнительно к условиям теоремы 2 предположим, что $M \subset \mathbb{R}$ открыто, $\frac{\partial f}{\partial \mu}$ и a' существуют и непрерывны. Тогда φ непрерывно дифференцируема, существует и непрерывны производные $\frac{\partial^2 \varphi}{\partial t \partial \mu}$, $\frac{\partial^2 \varphi}{\partial \mu \partial t}$, и $\frac{\partial^2 \varphi}{\partial t \partial \mu}$. Более того, $\frac{\partial \varphi}{\partial \mu}(t, \widehat{\mu})$ является решением задачи Коши

$$\begin{cases} v' = \frac{\partial f}{\partial x}(t, \varphi(t, \widehat{\mu}))v + \frac{\partial f}{\partial \mu}(t, \varphi(t, \widehat{\mu}), \widehat{\mu}) \\ v(t_0) = a'(\widehat{\mu}) \end{cases}$$

14 Линейные уравнения, уравнение Эйлера

Эта тема должна была быть раньше, но Жуковский забыл про неё. Пусть $a_0, a_1, \ldots, a_n \in \mathbb{R}, b : \mathbb{R} \to \mathbb{R}$ непрерывна. Рассмотрим уравнение Эйлера

$$a_0 t^n x^{(n)} + \dots + a_{n-1} t x' + a_n x = b(t).$$

Правильной заменой его можно свести к уравнению с постоянными коэффициентами. Решим его при t>0, сделав замену $t=e^s$, $y(s)=x(e^s)$. Получим $y'=x'e^s$, $y''=x''e^{2s}+x'+e^s=x''e^{2s}+y'$ и так далее. Теперь можно выразить $x'=e^{-s}y'$, $x''=(y''-y)e^{-2s}$ и так далее. Можно доказать, что k-ая производная — это линейная комбинация производных y, умноженная на e^{-ks} .

Дальше для n=2: $a_0t^2x''+a_1tx'+a_2x=b(t)$. После подстановки получим

$$a_0 e^{2s} (y'' - y') e^{-2s} + a_1 e^s y' e^{-s} + a_2 y = b(e^s).$$

Потом нужно отдельно решить для t < 0, после чего не гарантируется, что решения получится склеить, например, если $x(t) = \frac{1}{t}$: решение не может содержать точку t = 0.