

Università degli Studi di Padova

Optimization Methods for Recommender Systems

K. Skurativska S. Zolghadr July 1, 2025

Introduction

Matrix completion aims to reconstruct a complete matrix from a subset of observed entries, typically under a low-rank assumption.

We focus on the Frank–Wolfe (FW) algorithm and its pairwise variant (PFW), which are projection-free methods suited for large-scale problems. FW and PFW are implemented with four step-size strategies and evaluated on the MovieLens-100k and X-Wines datasets.

Matrix Completion Problem

Example of a partially observed matrix U (left) and its recovered low-rank matrix X (right).

Let $U \in \mathbb{R}^{n_1 \times n_2}$ be a partially observed matrix, with known entries indexed by $\Omega \subseteq [1:n_1] \times [1:n_2]$.

The goal of matrix completion is to recover a low-rank matrix $X \in \mathbb{R}^{n_1 \times n_2}$ that agrees with U on the observed entries.

Matrix Completion Problem

We solve the nuclear-norm-constrained matrix completion problem:

$$\min_{X \in \mathbb{R}^{n_1 \times n_2}} \quad \frac{1}{2} \| P_{\Omega}(X - U) \|_F^2
\text{s.t.} \quad \|X\|_* \le \tau$$
(1)

- *U*: partially observed matrix
- Ω: indices of observed entries

•
$$P_{\Omega}(Z)_{ij} = \begin{cases} Z_{ij}, & (i,j) \in \Omega \\ 0, & \text{otherwise} \end{cases}$$

- $||X||_*$: nuclear norm (sum of singular values)
- $\tau > 0$: bounds rank via convex relaxation

Frank–Wolfe for Matrix Completion

Algorithm 1 Frank-Wolfe for Matrix Completion

Require: $X_0 \in \mathcal{B}_*^{\tau}$, tolerance $\varepsilon > 0$

1: **for**
$$k = 0, 1, 2, \dots$$
 do

2:
$$G_k \leftarrow P_J(X_k - U)$$

3:
$$(u_1, v_1) \leftarrow \text{top singular vectors of } G_k$$

4:
$$S_k \leftarrow -\tau \ u_1 v_1^{\top}$$

► LMO solution

5:
$$g_k^{\text{FW}} \leftarrow \langle G_k, X_k - S_k \rangle$$

⊳ FW gap

6: if
$$g_k^{\text{FW}} \le \varepsilon$$
 then return X_k

7: end if

8:
$$\alpha_k \leftarrow \text{line search or } \frac{2}{k+2}$$

9:
$$X_{k+1} \leftarrow X_k + \alpha_k (S_k - X_k)$$

Pairwise Frank–Wolfe for Matrix Completion

Algorithm 2 Pairwise Frank-Wolfe for Matrix Completion

Require: $X_0 \in \mathcal{B}_*^{\tau}$, active set \mathcal{A}_0 , tolerance $\varepsilon > 0$

1: **for**
$$k = 0, 1, 2, \dots$$
 do

2:
$$G_k \leftarrow P_{\Omega}(X_k - U)$$

3:
$$(u_1, v_1) \leftarrow \text{top singular vectors of } G_k$$

4:
$$S_k \leftarrow -\tau \ u_1 v_1^{\top}$$
 \triangleright FW atom (LMO solution)

5:
$$V_k \leftarrow \arg\max_{A \in \mathcal{A}_k} \langle G_k, A \rangle$$
 \triangleright Away atom

6:
$$d_k \leftarrow S_k - V_k$$

7:
$$g_k^{\mathsf{FW}} \leftarrow \langle G_k, X_k - S_k \rangle$$

⊳ FW gap

8: if
$$g_k^{\mathsf{FW}} \leq \varepsilon$$
 then return X_k

10:
$$\gamma_{\max} \leftarrow \text{weight of } V_k \text{ in } X_k$$

11: Choose
$$\alpha_k \in [0, \gamma_{\mathsf{max}}]$$

12:
$$X_{k+1} \leftarrow X_k + \alpha_k d_k$$

Step-Size Strategies

Duality Gap: $g_k = -\langle \nabla f(X_k), d_k \rangle = -\langle G_k, d_k \rangle$, where $G_k = P_J(X_k - U)$.

• Exact Line Search: Closed-form step for quadratic loss:

$$\alpha_k = \frac{g_k}{\|P_J d_k\|^2}$$

• Diminishing Step Size: Simple decay rule:

$$\alpha_k = \frac{2}{k+2}$$

Armijo Backtracking: Adaptive geometric decay:

$$f(X_k + \alpha_k d_k) \leq f(X_k) - c\alpha_k g_k$$

where $c \in (0,1)$, typically 10^{-4}

• **Lipschitz-Based Rule:** Gradient assumed L-Lipschitz (we use L = 1):

$$lpha_k = \min\left\{1, rac{\mathcal{g}_k}{L\|P_J d_k\|^2}
ight\}$$

Implementation

Initialization:

- Start from $X_0 = 0$
- If τ is not provided:

$$au = 0.1 \sum_{(i,j) \in \Omega} \sigma_{ij}$$
 (observed singular values)

otherwise: use $au \in (0,1)$

Stopping Criterion:

- Stop if dual gap $g_k < TOL$ or iteration count $k = T_{max}$.
- Default tolerances:
 - TOL = 10^{-8} (FW)
 - TOL = 10^{-8} (PFW)

Implementation Results

(a) Objective convergence

(b) Dual-gap decay

Training curves on the Unreal dataset (solid: FW, dashed: PFW).

Datasets and Preparation

Datasets:

- MovieLens-100K:
 - 943 users, 1,682 movies, 100,000 ratings
- XWine:
 - 100,646 wines with sensory scores, 1,056,079 users and 21,013,536 ratings

Dataset Preparation:

- Filter users to retain only:
 - MovieLens: users with > 50 ratings
 - XWines: users with > 20 ratings

Training results MovieLense

(a) Objective convergence

(b) Dual-gap decay

Results on MovieLens

Table: MovieLens Dataset – FW and PFW Variants

Alg.	Step	Obj.	Gap	Rank	RMSE / Acc (%)
FW	Fixed	133826.01	3.48×10^{2}	29	2.8285 / 98.17
FW	Exact	133132.17	4.89×10^{-4}	7	2.8320 / 98.17
FW	Armijo	133132.17	2.31×10^{-4}	2	2.8320 / 98.17
FW	Lipschitz	133132.17	1.10×10^{-6}	3	2.8320 / 98.17
PFW	Fixed	133731.07	3.00×10^{2}	28	2.8289 / 98.17
PFW	Exact	133132.17	1.37×10^{-3}	7	2.8320 / 98.17
PFW	Armijo	133132.17	1.39×10^{-2}	2	2.8320 / 98.17
PFW	Lipschitz	133132.18	1.36×10^{-2}	7	2.8320 / 98.17

Task: Completion of 563×1681 rating matrix with nuclear-norm ball au = 1686

Training results XWines

(a) Objective convergence

(b) Dual-gap decay

Results on XWines

Table: XWines Dataset – FW and PFW Variants

Alg.	Step	Obj.	Gap	Rank	RMSE / Acc (%)
FW	Fixed	147241.14	7.52×10^{3}	32	2.9934 / 99.66
FW	Exact	132719.08	$1.58 imes 10^{1}$	13	3.0429 / 99.66
FW	Armijo	132703.82	$1.58 imes 10^{0}$	1	3.0429 / 99.66
FW	Lipschitz	132702.88	$5.77 imes 10^{0}$	13	3.0430 / 99.66
PFW	Fixed	182735.70	7.43×10^{2}	27	2.8361 / 99.66
PFW	Exact	181255.43	3.49×10^{-5}	4	2.8411 / 99.66
PFW	Armijo	181255.59	4.03×10^{-1}	3	2.8411 / 99.66
PFW	Lipschitz	181255.43	7.53×10^{-4}	4	2.8411 / 99.66

Conclusion

- Both Frank-Wolfe (FW) and Pairwise Frank-Wolfe (PFW) effectively solve the matrix completion task on the MovieLens and XWines datasets.
- While all step-size strategies achieve comparable RMSE and accuracy, Exact and Armijo steps consistently yield faster convergence and lower-rank solutions, especially when used with PFW.
- PFW demonstrates superior optimization efficiency over FW by enabling faster objective and dual gap reduction, without sacrificing predictive performance.
- For the best trade-off between accuracy, convergence speed, and solution sparsity, PFW with Exact or Armijo step size is recommended.

Questions?