Obstacle Avoiding Robot With IR Sensor

Member Names:

Mohamed Ibrahim gad sad (Team Leader)	18011334
Ahmed Magdy Ali	18010189
Ziyad Elsayed Ramadan	18010716
Mohamed Ibrahim Mohamed ElSaied	18011342
Abdelrahman Nabil Abdo	18010991

1. Abstract & Aim

Our hardware project is An obstacle avoiding robot which is a tiny example for our modern cars which will be all working with sensors and cameras for auto pilot systems for more comofort so we tried to constract a small model of it using ESP32 and IR sensor and some important components .

Table of contents:

1. Abstract	1
2. Electrical description	3
2.1. used components	3
2.2.SCHEM OF CIRCUIT	6
2.3.PROCEDURE TO USE	7
3.Mechanical description	7
4.budget	7
5. challenges	8
6. Referneces	8

2. Electrical description:

2.1.Used components:

- 1. Esp32 kit
- 2. L293d Ic
- 3. Buck converter
- 4. Dc motors, plastic wheels and cluster wheel
- 5. Lithium ion battery
- 6. IR (infra red) sensor
- 7. Buzzer
- 8. Bread board
- 9. Jumpers

1.Esp: main micro controller

2.L293d: motor driver

3.3.buck converter: to transform batteries voltage

into 5 volt

4.IR sensor detect obstacles

L293D Pinout

L293D Animation

L293D IC

www.TheEngineeringProjects.com

ESP32 Dev. Board Pinout

SCHEM OF CIRCUIT:

2.3.PROCEDURE TO USE

- 1.CONNECT THE BATTERY (TURN THE SWITCH ON)
- 2.LEAVE IT ON THE GROUND
- 3. IT WILL AVOID THE Walls crashing when its sensor see any of them
- 4. algorithm is to stop play alarm get back slightly turn right then check if there is any other Obstacle, if not continue walking ahead

3.mechanical description:

- 1.We used a custom CNC chassis of plastic material
- 2. plastic wheels
- 3.cluster wheel

4. budget:

Component	Price
IR sensor	25 LE
L293d IC	18 LE
Esp32 kit	200 LE
Small size bread board	20 LE
Buck converter	35 LE
Plastic wheels	Borrowed
battery	//
Power bank	//
Dc motors	//
Buzzer	5 LE

5.challenge faced team:

- 1. Coding the esp32 using Arduino IDE and understanding the difference between esp32 and Arduino
- 2. Servo motor has broken down and we had to change the algorithm
- 3. Power issue of the sensors: sensors wasn't able to take a 5volt power from any thing but for external arduino uno and not the 5 volt regulator which we used and we solved this problem using the buck converter
- 4. Debugging code to take appropriate decisions

References:

- 1. Wiley. Exploring. Arduino. Jul. 2013
- 2. https://divi0t.com/infrared-sensor-tutorial-for-arduino-and-esp8266/
- 3.youtube tuturials