Listing of the Claims:

The following is a complete listing of all the claims in the application, with an indication of the status of each:

Claims 1-19 (Cancelled).

1 Claim 20 (Currently Amended). A bus power-supply device in a node for 2 connection to a serial bus, said bus power-supply device structured to 3 supply power from a power-supply voltage of a node of a proceeding stage to a node of a next stage through a the serial bus connected to said node by 4 5 a physical layer and a plurality of connectors conductive to each other of 6 the node, wherein 7 when a power-supply voltage of said node of the proceeding stage is not supplied, a DC voltage is supplied from said node of the proceeding 8 9 stage through said serial bus to said physical layer, and when said power-10 supply voltage is supplied, a DC voltage is supplies supplied from said power-supply voltage to said physical layer by cutting off a path for 11 12 supplying a DC voltage through said serial bus to said physical layer, 13 communication being maintained between said node and proceeding and 14 next stages through the serial bus whether a power-supply voltage is 15 supplied or not. 1 Claim 21 (Currently Amended). The bus power-supply as set forth in claim 2 20, comprising: 3 a voltage detection unit which detects said power-supply voltage 4 being supplied or not being supplied; and 5 a selector which supplies a DC voltage coming through said serial 6 bus to said physical layer when said voltage detection unit is yet to detect 7 supply of a power-supply voltage and supplies a DC voltage from the 8 power-supply voltage to said physical layer by cutting off said path for 9 supplying a DC voltage through said serial bus to said physical layer when

10	said voltage detection unit detects supply.
1	Claim 22 (Previously Presented). The bus power-supply as set forth in
2	claim 20, wherein said serial bus is an IEEE-1394-1995 Standard serial
3	bus.
1	Claim 23 (Previously Presented). The bus power-supply device as set forth
2	in claim 21, comprising:
3	a first path for supplying power from said power-supply voltage to
4	said physical layer; and
5	a second path for supplying power coming through said serial bus
6	to said physical layer, wherein
7	when power is supplied from said power-supply voltage, said
8	selector cuts off said second path.
1	Claim 24 (Previously Presented). The bus power-supply device as set forth
2	in claim 21, wherein said selector is a semiconductor switch.
1	Claim 25 (Previously Presented). The bus power-supply device as set forth
2	in claim 21, wherein said voltage detection unit is a comparator.
1	Claim 26 (Currently Amended). The bus power-supply device as set forth
2	in claim 21, wherein a relay element functions as said voltage detection
3	unit and said selector.
1	Claim 27 (Previously Presented). The bus power-supply device as set forth
2	in claim 20, comprising:
3	a power-supply circuit which converts said power-supply voltage
4	into a DC voltage for said serial bus and outputs said DC voltage;
5	a converter which converts a DC voltage output from said power-
6	supply circuit into a DC voltage for said physical layer;

7	a voltage detection unit which detects said power-supply voltage
8	being supplied or not being supplied to said power-supply circuit; and
9	a selector which supplies a DC voltage applied through said serial
10	bus to said converter when said power-supply voltage is not supplied to
11	said power-supply circuit and cuts off a path for supplying a DC voltage
12	through said serial bus to said converter to supply an output of said power-
13	supply circuit to said converter when said power-supply voltage is
14	supplied.
1	Claim 28 (Currently Amended). The bus power-supply device as set forth
2	in claim 27, comprising:
3	a first path for supplying power from said power-supply voltage to
4	said physical layer; and
5	a second path for supplying power coming through said serial bus
6	to said physical layer, wherein
7	when power is supplied from said power-supply voltage, said
8	selector cuts off said second path.
1	Claim 29 (Previously Presented). The bus power-supply device as set forth
2	in claim 27, wherein said voltage detection unit detects said power-supply
3	voltage being supplied or not being supplied by detecting an output voltage
4	of said power-supply circuit.
1	Claim 30 (Currently Amended). The bus power-supply device as set forth
2	in claim 27, wherein said voltage detection unit detects said power-supply
3	voltage being supplied or not being supplied by detecting an output voltage
4	of said power-supply circuit, and which further comprises:
5	a first path for supplying power from said power-supply voltage to
6	said physical layer; and
7	a second path for supplying power coming through said serial bus
8	to said physical layer, wherein

9	when power is supplied from said power-supply voltage, said
10	selector cuts off said second path.
1	Claim 31 (Previously Presented). The bus power-supply device as set forth
2	in claim 27, comprising:
3	a first path for supplying power from said power-supply voltage to
4	said physical layer; and
5	a second path for supplying power coming through said serial bus
6	to said physical layer, wherein
7	when power is supplied from said power-supply voltage, said
8	selector cuts off said second path, and
9	wherein said selector is a semiconductor switch.
1	Claim 32 (Previously Presented). The bus power-supply device as set forth
2	in claim 27, wherein said voltage detection unit detects said power-supply
3	voltage being supplied or not being supplied by detecting an output voltage
4	of said power-supply circuit, and wherein said selector is a semiconductor
5	switch.
1	Claim 33 (Previously Presented). The bus power-supply device as set forth
2	in claim 27, wherein said voltage detection unit is a comparator.
1	Claim 34 (Previously Presented). The bus power-supply device as set forth
2	in claim 27 wherein a relay element functions as said voltage detection uni
3	and said selector.
1	Claim 35 (Currently Amended). A node having a bus power-supply device
2	structured to supply power from a power-supply voltage to a node of a nex
3	stage through a serial bus connected to said node by a physical layer and a
4	plurality of connectors conductive to each other of the node, comprising:
5	a plurality of connectors each having a power-supply terminal to

Docket: MA-448-US

6	which a DC voltage is applied from other nodes through said serial bus and
7	a signal terminal to and from which a signal from other nodes in input and
8	output;
9	a physical layer which outputs a signal input through a signal
10	terminal of one connector to a signal terminal of the other connector,
11	wherein
12	power-supply terminals of said plurality of connectors are rendered
13	conductive to each other,
14	said bus power-supply device supplies a DC voltage through said
15	serial bus to said physical layer through said power-supply terminal when
16	none of a power-supply voltage of said node is supplied, and
17	supplies a DC voltage from the power-supply voltage to said
18	physical layer by cutting off a path for supplying a DC voltage through
19	said serial bus to said physical layer when said power-supply voltage is
20	supplied, communication being maintained between said node and
21	proceeding and next stages through the serial bus whether a power-supply
22	voltage is supplied or not.
1	Claim 36 (Currently Amended). The node as set forth in claim 35, wherein
2	said bus power-supply device comprises
3	a voltage detection unit which detects said power-supply voltage
4	being supplied or not being supplied; and
5	a selector which supplies a DC voltage coming through said serial
6	bus to said physical layer when said voltage detection unit is yet to detect
7	supply of a power-supply voltage and supplies a DC voltage from the
8	power-supply voltage to said physical layer by cutting off said path for
9	supplying a DC voltage through said serial bus to said physical layer when
10	said voltage detection unit detects supply.
1	Claim 37 (Currently Amended). The node as set forth in claim 36,
2	comprising:

3	a first path for supplying power from said power-supply voltage to
4	said physical layer; and
5	a second path for supplying power coming through said serial bus
6	to said physical layer, wherein when power is supplied from said power-
7	supply voltage, said selector cuts off said second path.
1	Claim 38 (Currently Amended). The node as set forth in claim 35, wherein
2	said bus power-supply device comprises:
3	a power-supply circuit which converts said power-supply voltage
4	into a DC voltage for said serial bus and outputs said DC voltage;
5	a converter which converts a DC voltage output from said power-
6	supply circuit into a DC voltage for said physical layer;
7	a voltage detection unit which detects said power-supply voltage
8	being supplied or not being supplied to said power-supply circuit; and
9	a selector which supplies a DC voltage applied through said serial
10	bus to said converter when said power-supply voltage is not supplied to
11	said power-supply circuit and cuts off a path for supplying a DC voltage
12	through said serial bus to said converter to supply an output of said power-
13	supply circuit to said converter when said power-supply voltage is
14	supplied.