Graphische elektronische Methoden

Author: Oliver Skoček

Inhaltsverzeichnis

1	Planare Graphen	3
2	Funktionenräume und Operatoren	10
3	Das Poisson Problem	14
4	Die Maxwell-Gleichungen	19

Einführung

Es werden einige Grundlagen der Graphentheorie eingeführt. Insbesondere werden planare Graphen und die zugehörenden dualen Graphen definiert. Anschließend werden Funktionenräume auf Graphen definiert und zum Gradienten, der Divergenz und der Rotation aus der Vektoranalysis analoge Operatoren, die jene Räume ineinander überführen. Ein zum de Rham Komplex analoges Theorem wird vorgestellt und bewiesen. Die so entwickelte Theorie wird anschließend verwendet um das verallgemeinerte Poissonproblem und seine Lösungstheorie zu formulieren. Abschließend wird analog zu den zweidimensionalen Maxwellgleichungen, ein gewöhnliches lineares Differentialgleichungssystem vorgestellt und dessen Lösbarkeit untersucht.

Planare Graphen

Ein Graph besteht aus Ecken V und Kanten E. Die Ecken und Kanten stehen in Beziehung zueinander. Man sagt eine Kante verbindet zwei Ecken. Wir wollen nur solche Graphen betrachten, deren Kanten jeweils zwei unterschiedliche Ecken verbinden.

Abbildung 1.1: Beispiel Graph.

Die Beziehung zwischen Ecken und Kanten kann durch eine Matrix dargestellt werden. Der vertikale Index der Matrix steht für die Kanten und der horizontale Index steht für die Ecken. Die Matrix ist Eins falls die Kante die Ecke mit einer anderen Ecke verbindet und sonst Null. Diese Matrix nennt man die **Inzidenzmatrix** des Graphen.

Als Beispiel betrachte die Inzidenzmatrix des Graphen in Abbildung 2.1.

1	1	0	0	0
1	0	1	0	0
0	1	0	1	0
0	1	1	0	0
1	0	0	1	0
0	0	1	1	0
0	0	1	0	1
0	0	0	1	1

Im Grunde interessieren wir uns nicht für die spezielle Realisierung von Ecken und Kanten, sondern für die Verbindungsstruktur, die genau durch die Inzidenzmatrix festgelegt wird. Dies legt folgende Definition nahe.

Definition 1.1. Ein **Graph** ist eine Matrix (Inzidenzmatrix) deren Zeilensumme zwei ist. Zwei Graphen mit Inzidenzmatrizen X und Y sind gleich falls man X aus Y durch Vertauschung von Zeilen und Spalten erhalten kann.

Bemerkung 1.2. Alternativ kann ein Graph auch durch eine Adjazenzmatrix definiert werden. Eine solche Matrix ist quadratisch und beide Indizes stehen für die Ecken des Graphen. Die Adjazenzmatrix ist eins falls die Ecken durch eine Kante verbunden sind und sonst Null. Als Beispiel die Adjazenzmatrix unseres Beispielgraphen.

Der Nachteil der Adjazenzmatrix ist, dass sie keine Mehrfachkanten zwischen zwei Ecken zulässt.

Manchmal ist es notwendig über Teile von Graphen zu sprechen. Hierzu dient das Konzept des Teilgraphen. Ein Teilgraph eines Graphen G ist ein Graph, den man durch entfernen von Ecken und Kanten aus G erhält. Bedenke dabei, dass mit jeder Ecke auch alle diese Ecke verbindenten Kanten entfernt werden müssen.

Definition 1.3. Sei G ein Graph mit Inzidenzmatrix X und H ein Graph mit Inzidenzmatrix Y, dann ist G ein **Teilgraph** von H, falls man die Matrix X durch entfernen von Zeilen oder Spalten aus der Matrix Y erhalten kann.

Betrachten wir hierzu einen Teilgraph des Beispielgraphen.

Abbildung 1.2: Teilgraph des Beispielgraphs.

Die zugehörige Inzidenzmatrix erhalten wir indem wir die ersten beiden Spalten entfernen und anschließend alle Zeilen, deren Summe ungleich zwei ist. Das Resultat ergibt dann für kannten 4, 7 und 8 folgende Inzidenz mit den Ecken 3, 4 und 5.

Eine spezielle Art von Teilgraph erhält man, wenn man eine Teilmenge U der Ecken fixiert und alle Kanten aus dem Graphen entfernt, die eine nicht in der Teilmenge U enthaltene Ecke verbinden. Man nennt so einen Graph den durch die Menge U induzierten Teilgraph. Der Teilgraph in Abbildung 2.2 ist ein solches Beispiel. Es ist der durch $U = \{3, 4, 5\}$ induzierte Teilgraph des Beispielgraphen.

Definition 1.4. Sei G ein Graph, dann nennt man G zusammenhängend falls man von jeder Ecke von G jede andere Ecke über Kanten erreichen kann. Sei weiters $k \in \mathbb{N}$, dann sagt man ein Graph ist k-fach zusammenhängend, falls man k-1 beliebige Kanten entfernen könnte und der resultierende Graph immer noch zusammenhängend wäre.

Alle Graphen werden von hier an als zusammenhängend angenommen. Allgemein lässt sich jeder Graph als Ansammlung von zusammenhängenden Teilgraphen darstellen, wodurch diese Annahme im Sinne einer Vereinfachung gerechtfertigt wird.

Definition 1.5. Ein Graph hat eine **planare Darstellung** wenn man den Graph auf einem Blatt Papier zeichnen kann, indem man für jede Ecke einen Punkt zeichnet und für jede Kante einen Strich zwischen den Eck-Punkten, die sie verbinden soll, ohne das sich dabei zwei Striche kreuzen.

Der Graph aus Abbildung 2.1 hat eine planare Darstellung. Um dies zu sehen muss man nur die Position von Ecke Nummer 2 verändern.

Abbildung 1.3: Beispiel Graph (planar).

Im Allgemeinen gibt es mehrere Wege wie ein bestimmter Graph gezeichnet werden kann. Es gibt sogar für ein und denselben Graphen oft mehrere planare Darstellungen.

Abbildung 1.4: Beispiel Graph (planar) alternativ.

Es ist also zusätzliche Information notwendig um eine planare Darstellung eindeutig festzulegen. Diese zusätzliche Information kann über die Flächen aus denen sich die planare Darstellung zusammensetzt gegeben werden.

Definition 1.6. Sei G ein Graph, dann nennt man G einen **Zyklus** oder **zyklisch**, falls jede Ecke von G mit genau zwei Kanten verbunden ist.

Betrachten wir eine der planaren Darstellungen des Beispielgraphen. Eine **Fläche** ist hier ein Zyklus, der keine Ecke einschließt.

Bemerkung 1.7. Sei G ein Graph und $\{A_1, A_2, \ldots, A_n\}$ eine Menge von zyklischen induzierten Teilgraphen, sodass jede Kante von G in maximal zwei der Zyklen vorkommt und jede Ecke von G in mindestens einem der Zyklen vorkommt, dann gibt es eine eindeutige planare Darstellung des Graphen G, dessen Flächen genau die $\{A_1, A_2, \ldots, A_n\}$ sind.

Definition 1.8. Ein planarer Graph G = (g, f) ist ein Graph g und eine Menge f von Zyklen aus g wie in Bemerkung 1.6. beschrieben. Sei weiters e eine Kante von g, dann sagt man e liegt am **Rand** des Graphen wenn e genau einmal in einer Fläche vorkommt. Der Teilgraph, der genau die am Rand liegenden Kanten enthält nennt man den **Rand des Graphen**.

Abbildung 1.5: Beispiel Graph (planar) mit Flächen.

Die in Bemerkung 1.6. beschriebene Struktur legt ein mit planaren Graphen eng verknüpftes Konzept nahe. Jede Kante des Graphen ist entweder ein Bindeglied zwischen zwei Flächen oder es liegt am Rand des Graphen. Die am Rand liegenden Kanten können wiederum als Bindeglied mit der den Graphen umgebenden Fläche, genannt A_{∞} , angesehen werden und somit haben wir das Konzept des dualen Graphen entdeckt.

Definition 1.9. Es sei G ein planarer Graph, dann kann man einen neuen Graphen, den **dualen G**raph G^D , konstruieren, dessen Kanten mit denen von G übereinstimmen, aber dessen Ecken die Flächen von G zusammen mit der umgebenden Fläche sind, also $V = \{A_1, A_2, \ldots, A_n, A_\infty\}$. Für eine gegebene Kante e und Ecke des dualen Graphen $v \in V$ ist die Inzidenzmatrix Eins falls e die Fläche v begrenzt und sonst Null.

Betrachte den dualen Graph des planaren Graphen aus Abbildung 1.5. Beachte die doppelte Kante zwischen Ecke A_4 und Ecke A_{∞} .

Abbildung 1.6: Dualer Graph des Beispielgraphen.

Die blauen Ecken symbolisieren die Ecken des Ausgangsgraphen, während die roten Ecken die Ecken des dualen Graphen darstellen. Die Platzierung von A_{∞} ist beliebig gewählt. Offensichtlich bestimmt diese Wahl, welcher der Ecken des Ausgangsgraphen die umgebende Fläche des dualen Graphen darstellt.

Bemerkung 1.10. Der duale Graph G^D ist immer auch fast ein planarer Graph, denn jede Ecke von G kann mit einem Zyklus in G^D identifiziert werden, somit bleibt aber offen welche dieser Zyklen, die umgebende Fläche ist. Dies ist insbesondere von Bedeutung wenn man den dualen Graphen des dualen Graphen, den so genannten bidualen Graphen bildet. Um eine eindeutige Zuordnung zu erzwingen muss immer einer der Ecken ausgezeichnet werden oder man verzichtet auf die planare Darstellung und arbeitet mit Polyedern.

Bislang wurden nur "ungerichtete Graphen" behandelt, also solche deren Kanten keine ausgzeichnete Beziehung mit der einen oder der anderen durch sie verbundenen Ecke haben. Graphen, deren Kanten eine solche Orientierung aufweisen, nennt man "gerichtete Graphen" und eine Adjazenzmatrix ist ein praktisches Weg um solche Strukturen zu beschreiben. Im Gegensatz zur Adjazenzmatrix eines ungerichteten Graphen wird im gerichteten Fall, einfach die Forderung nach Symmetrie der Matrix weggelassen.

Definition 1.11. Jeder planare Graph kann mit einer **Orientierung** ausgestattet werden, dies ist eine Funktion, die jeder Kante eine der Ecken zuordnet, die durch sie verbunden wird. Man stelle sich vor jede Kante ist ein Pfeil und die Orientierung gibt an auf welche Ecke sie zeigt. Man unterscheidet entsprechend eine **Spitzefunktion** $x \mapsto p(x)$, welche die Ecke zuordnet, die an der Pfeilspitze liegt und die **Schaftfunktion** $x \mapsto q(x)$, welche die andere Ecke zuordnet.

Abbildung 1.7: Graph mit Orientierung.

Zu einem gegebenen Graph gibt es $2^{|E|}$ Möglichkeiten, wobei E die Kantenmenge ist, einen gegebenen Graph mit einer Orientierung auszustatten und ihn hierdurch zu einem gerichteten Graphen zu erheben.

Bemerkung 1.12. Jede Orientierung auf einem planaren Graph G, bestimmt eindeutig eine zu ihr duale Orientierung auf dem dualen Graph. Sei hierzu A eine Fläche des planaren Graphen G, also ein induzierter Teilgraph, der ein Zyklus ist, und e eine Kante des Graphen, die auch in A liegt, dann setzen wir die Spitzenfunktion p_D der dualen Orientierung $p_D(e) = A$, falls e im planaren Graph G im Uhrzeigersinn bezüglich zu A orientiert ist.

Abbildung 1.8: Orientierung und duale Orientierung.

Definition 1.13. Sei G ein planarer Graph mit Orientierung, dann nennt man eine Folge von Ecken (x_0, x_1, \ldots, x_n) , sodass auf einander folgende Ecken immer durch eine Kante verbunden sind, einen **Pfad** auf G. Falls $x_0 = x_n$ gilt, nennt man dies einenen **geschlossenen Pfad**.

Funktionenräume und Operatoren

Im letzten Kapitel wurden Graphen mit zusätzlicher Struktur beschrieben, nämlich planare Graphen und das Konzept des dualen Graphen. In diesem Kapitel sollen die drei Arten von Funktionen auf planaren Graphen und Operatoren, die diese Funktionen aufeinander abbilden vorgestellt werden.

Definition 2.1. Sei G ein planarer Graph und G^D sein dualer Graph, des weiteren sei V die Menge der Ecken, E die Menge der Kanten und A die Menge der Flächen (inklusive umgebende Fläche), dann unterscheiden wir drei verschiedene (endlichdimensionale) Funktionenräume auf dieser Struktur, den Raum der Kantenfunktionen $\mathfrak{K} = \{f|f: E \to \mathbb{R}\}$, den Raum der Eckfunktionen $\mathfrak{E} = \{f|f: V \to \mathbb{R}\}$ und den Raum der Flächenfunktionen $\mathfrak{F} = \{f|f: A \to \mathbb{R}\}$.

Es gibt eine natürliche Beziehung zwischen diesen drei Räumen.

Definition 2.2. Sei G ein Graph, $f \in \mathfrak{E}(G)$ eine Eckfunktion auf G, seien weiters p und q die Spitzefunktion und Schaftfunktion einer Orientierung auf G, dann nennt man $\operatorname{grad}(f) \in \mathfrak{K}(G)$ definiert durch

$$grad(f)(e) = f(p(e)) - f(q(e))$$

für eine beliebige Kante e den Gradienten von f.

Definition 2.3. Sei G ein Graph, $f \in \mathfrak{K}(G)$ eine Kantenfunktion auf G, seien weiters p und q die Spitzefunktion und Schaftfunktion einer Orientierung auf G, dann nennt man $\operatorname{div}(f) \in \mathfrak{E}(G)$, definiert durch:

$$div(f)(x) = \sum_{\acute{e} \in E, q(\acute{e}) = x} f(\acute{e}) - \sum_{e \in E, p(e) = x} f(e)$$

für eine beliebige $Ecke \ x \ die \ Divergenz \ von \ f.$

Der Gradient hebt eine Eckfunktion auf die Kanten, und die Divergenz eine Kantenfunktion auf die Ecken. Der Graph G und der duale Graph G_D haben dieselben Kantenfunktionen, daher bildet dieser Raum eine Verbindung zwischen Gradient und Divergenz des Graphen und des dualen Graphen. Der Gradient und die Divergenz des dualen Graphen werden durch $grad_D$ respektive div_D symbolisiert. Falls eine Kantenfunktion als Fluss interpretiert wird, entspricht die Divergenz der Kantenfunktion dem Nettofluss von den Ecken weg.

Satz 2.1. Sei G ein planarer Graph mit Orientierung, dann sind der Gradient und die Divergenz lineare Operatoren und es gilt:

$$div = -qrad^T$$

wobei sich die Adjunktion auf das Standardskalarprodukt bezieht.

Beweis. Sei $u \in \mathfrak{E}(G)$ und $v \in \mathfrak{K}$, dann schreiben wir das Skalarprodukt:

$$\begin{split} \langle v, \operatorname{grad}(u) \rangle_{\mathfrak{K}} &= \sum_{x \in E} v(x) * (u(p(x) - u(q(x)))) = \\ &\sum_{x \in E} v(x) * u(p(x)) - \sum_{x \in V} v(x) * u(q(x)) = \\ &\sum_{e \in V} u(e) * \sum_{j \in E, p(j) = e} v(j) - \sum_{e \in V} u(e) * \sum_{j \in E, q(j) = e} v(j) = \\ &- \langle \operatorname{div}(v), u \rangle_{\mathfrak{E}} \end{split}$$

Definition 2.4. Sei G ein planarer Graph mit Orientierung und $f \in \mathfrak{K}(G)$, $(x_i)_{i=1}^n$ ein Pfad auf G, $(e_i)_{i=1}^{n-1}$ die Folge der Kanten die für jedes $1 \leq i \leq n-1$ x_i und x_{i+1} verbindet und es sei σ_i für jedes $1 \leq i \leq n-1$ gleich -1 falls $p(e_i) = x_i$ ist und sonst +1, dann nennt man die Summe

$$\sum_{i=1}^{n-1} \sigma_i f(e_i)$$

die Pfadsumme.

Satz 2.2. Sei G ein planarer Graph mit Orientierung, $f \in \mathfrak{K}(G)$ sodass $div_D(f) = 0$, dann gilt dass für jeden geschlossenen Pfad in G die Pfadsumme gleich Null ist.

Beweis. Zu allererst reicht es einfach geschlossene Pfade zu betrachten daher jene in denen nur das erste Glied mehrfach und zwar doppelt auftaucht. Diese Einschränkung ist zulässig weil sich für alle anderen geschlossenen Pfade die Pfadsumme sich als Summe solcher einfach geschlossenen

Pfade schreiben lässt.

Jeder einfach geschlossene Pfad zerteilt den Graph in zwei Teilgraphen, sodass die Vereinigung der Teilgraphen ganz G ist und der Durchschnitt nur den geschlossenen Pfad enthält. Jener Teilgraph, der keinen Teil des Randes von G enthält ist der innere Graph.

Sei $f \in \mathfrak{K}(G)$, dann gilt für jeden Zyklus in G, dass falls er als Pfad gegen den Uhrzeigersinn orientiert geschrieben wird, die Pfadsumme gleich dem Wert von div_D ist.

Sein nun $(x_i)_{i=1}$ ein einfach geschlossener Pfad, dann können wird die Pfadsumme als Summe über alle Zyklen des zugehörigen inneren Graphen schreiben, da die Pfade über die Zyklen immer als gegen den Uhrzeigersinn orientiert angenommen werden, heben sich alle Kantenwerte auf, die nicht zum Pfad $(x_i)_{i=1}$ gehören. Da $\operatorname{div}_D(f) = 0$ ist, ist somit auch die Pfadsumme gleich Null.

Es besteht eine Analogie der hier definierten Operatoren zu den Differentialoperatoren der Vektoranalysis. Interessanterweise entspricht die duale Divergenz der Rotation. Die Analogie untermauernd kann man folgendes Theorem formulieren.

Theorem 2.5 (Der de Rham Komplex). Die Operator grad, div, grad_D und div_D erfüllen folgende exakte Sequenzen, daher das Bild der Abbildungen entspricht dem Kern der nachfolgenden Abbildung. Beachte, dass \mathbb{R} in den Formeln für die dem entsprechenden Raum zugehörigen konstanten Funktionen steht.

(2.1)
$$\mathbb{R} \longrightarrow \mathfrak{E}(G) \xrightarrow{grad} \mathfrak{K}(G) \xrightarrow{div_D} \mathfrak{A}(G)/\mathbb{R} \longrightarrow 0$$

(2.2)
$$\mathbb{R} \longrightarrow \mathfrak{A}(G) \stackrel{grad_D}{\longrightarrow} \mathfrak{K}(G) \stackrel{div}{\longrightarrow} \mathfrak{E}(G)/\mathbb{R} \longrightarrow 0$$

Beweis de Rham Komplex. Es genügt Gleichung 2.1 in Theorem 2.4 zu beweisen, da 2.2 durch Anwendung von 2.1 auf den dualen Graphen folgt.

Erste zu beweisende Aussage: Der Kern von grad sind genau die konstanten Eckfunktionen.

Da G zusammenhängend ist und da grad an einer Kante nur Null sein kann wenn beide Ecken, welche die Kante verbindet, den selben Wert haben, ist grad(f) genau dann Null wenn f konstant ist.

Zweite zu beweisende Aussage: Das Bild von grad ist genau der Kern

von div_D .

Sei a ein Zyklus von G, und $(x_i)_{i=1}^k$ die Folge der Ecken des Zyklus im Uhrzeigersinn durchgezählt und $f \in \mathfrak{E}$, dann gilt:

$$div_D(\operatorname{grad}(f)) = \sum_{i=1}^{k-1} \sigma(i) * \sigma(i) * (f(x_{(i+1) \bmod k}) - f(x_{i \bmod k}))$$

Da $k \mod k = 0$ gilt, kommt in der Summe jeder Wert von f genau einmal mit positiven und einmal mit negativen Vorzeichen vor. Daher die Summe ist gleich Null.

Es fehlt noch zu zeigen, dass es zu jedem Element im Kern von div_D auch im Bild von grad ist.

Sei f eine Kantenfunktion, sodass gilt $\operatorname{div}_D(f) = 0$, dann gilt wegen dem Satz 2.2, dass für beliebige Ecken $a, b \in V$ gilt, dass die Pfadsummen für alle Pfade, die in a starten und in b enden, gleich sind.

Wählen wir nun eine beliebige Ecke x_0 , weil G zusammenhängend ist, können wir von x_0 zu jeder Ecke in G einen Pfad bilden um $F \in (E)(G)$ zu definieren, sodass für jede Ecke x F(x) gleich der Pfadsumme eines Pfades von x_0 nach x hat. Dies ist ja eindeutig. Es gilt nun grad(F) = f.

Die letzte zu beweisende Aussage: Das Bild von ${\rm div}_D$ ist genau das orthogonale Komplement der konstanten Flächenfunktionen.

Wegen dem Satz 2.1 und der ersten Aussage in diesem Beweis folgt die Aussage. $\hfill\Box$

Das Poisson Problem

Ein klassisches Problem der Theorie elektrischer Netzwerke sowie der Elektrostatik ist das (verallgemeinerte) Poissonproblem. Dieses Problem wird hier in einigen seiner Facetten vorgestellt und basierend auf der bisher behandelten Graphentheorie formuliert und gelöst.

Das verallgemeinerte Poisson Problem Sei G ein planarer Graph, ∂ eine Teilmenge der Ecken, r eine positive Kantenfunktion und f und g Eckfunktionen, dann wird eine Eckfunktion u gesucht sodass gilt:

$$-div(r * grad(u))(x) = f(x) \text{ falls } x \notin \partial$$

(3.2)
$$u(x) = g(x) \text{ falls } x \in \partial$$

Die Bedingung 2.4 ist motiviert durch Randwertprobleme aus der Theorie der partiellen Differentialgleichungen.

Definition 3.1. Sei G ein planarer Graph mit Orientierung, r eine positive Kantenfunktion, dann nennt man Δ_r , definiert durch

$$\Delta_r(u) = -div(r * grad(u)) \text{ falls } u \in \mathfrak{E}(G)$$

den r-gewichteten Laplace Operator

Die Formulierung für elektrische Netzwerke Gegeben ein Netzwerk(Graph) bestehend aus Spannungsquellen, Stromquellen und linearen Komponenten (elektrische Widerstände), finde die elektrische Spannung zwischen beliebigen zwei Punkten im Netzwerk, und für jeden Leiter im Netzwerk, den durchfließenden elektrischen Strom.

Abbildung 3.1: Beispiel Stromkreis.

Die Formulierung in der Elektrostatik Sei Ω eine offene Teilmenge des \mathbb{R}^3 mit glatten Rand $\partial\Omega$ und ρ die elektrische Ladungsdichte in Ω . Gesucht ist das Potential $\phi:\Omega\to\mathbb{R}$ sodass:

(3.3)
$$\Delta \phi(x) = \rho(x) \text{ falls } x \in \Omega$$

(3.4)
$$\phi(x) = 0 \text{ falls } x \in \partial \Omega$$

Physikalisch wird Ω ein Hohlraum in einem guten elektrischen Leiter, wie etwa einem Metall, sein, da ein Solcher das Potential am Rand des Hohlraumes auf einen konstanten Wert zwingt.

Die Elektrostatik lebt im \mathbb{R}^3 , daher ist die bisher entwickelte Theorie nur in Grenzfällen anwendbar. Dieser Spezialfall tritt ein falls ρ und Ω o.B.d.A entlang der z-Achse konstant sind, daher das Problem effektiv zwei Dimensional wird. Für genau diesen Fall wird eine Theorie der zweidimensionalen Maxwell Gleichungen im nächsten Kapitel entwickelt.

Satz 3.1. Sei G ein planarer Graph, r eine positive Kantenfunktion und Δ_r der r-gewichtete Laplace Operator, dann gilt:

- Die Form der Matrix Δ_r is unabhängig von der gewählten Orientierung auf G.
- Δ_r ist symmetrisch.
- Δ_r ist positiv semidefinit.
- Der Kern von Δ_r ist der Raum der konstanten Eckfunktionen.

Beweis. Seien p_0 und p_1 Orientierungen auf G und $grad_0$ und $grad_1$ die zugehöringen Gradienten, dann gilt:

$$grad_0 = D * grad_1$$

wobei D eine Diagonalmatrix ist, deren Einträge ± 1 sind. Wegen Satz 2.1 folgt die erste Aussage.

Die zweite Aussage folgt direkt aus der Definition von Δ_r und Satz 2.1. Seien hierzu u und $v \in \mathfrak{E}$, dann gilt:

$$\langle u, \Delta_r(v) \rangle_{\mathfrak{E}} = \langle \sqrt{r} * \operatorname{grad}(u), \sqrt{r} * \operatorname{grad}(v) \rangle_{\mathfrak{K}}$$

Analog zeigt man die dritte Aussage, indem man u = v setzt.

$$\langle \sqrt{r} * \operatorname{grad}(u), \sqrt{r} * \operatorname{grad}(u) \rangle_{\mathfrak{S}} > 0$$

Die letzte Aussage: $u \in \text{kern}(\Delta_r)$ gilt genau dann wenn für jedes $v \in \mathfrak{E}$

$$\langle v, \Delta_r(u) \rangle_{\mathfrak{E}} = 0$$

also genau dann wenn

$$\langle \sqrt{r} * \operatorname{grad}(u), \sqrt{r} * \operatorname{grad}(v) \rangle_{\mathfrak{K}} = 0$$

Da r>0 gilt, ist dies equivalent zu der Aussage $u\in\ker(\operatorname{grad})$. Der Gradient ist genau dann Null wenn u konstant ist, da unser Graph zusammenhängend ist.

Theorem 3.2. Sei G ein planarer Graph, r eine Kantenfunktion, ∂ eine Teilmenge der Ecken und f sowie g Eckfunktionen, dann ist das Poissonproblem genau dann lösbar wenn entweder ∂ nicht leer ist oder f im orthogonalen Komplement der konstanten Funktionen ist.

Beweis. Falls ∂ leer ist, folgt da der Kern von Δ_r durch die konstanten Funktionen gebildet wird und weil die Abbildung symmetrisch ist, dass der Bildraum das orthogonale Komplement der konstanten Funktionen ist.

Falls aber ∂ nicht leer ist, aber $\partial \neq V$ ist, gilt:

Sei A die Untermatrix die man durch streichen der zu ∂ gehörenden Zeilen und Spalten erhält und sei x ein Element von $\ker(A)$, daher A(x) = 0. Wir köennen ein Element \hat{x} von \mathfrak{E} konstruieren, sodass \hat{x} an den Ecken die zu ∂ gehören Null gesetzt wird und sonst den Wert annimmt den x an der entsprechenden Ecke hat. Es gilt dann:

$$\Delta_r(\hat{x})|_{E-\partial} = 0$$

und somit

$$\langle \sqrt{r} \operatorname{grad}(\hat{x}), \sqrt{r} \operatorname{grad}(\hat{x}) \rangle_{\mathfrak{K}} = \langle \hat{x}, \Delta_r(\hat{x}) \rangle_{\mathfrak{E}} = 0$$

Damit muss aber \hat{x} zum Kern von Δ_r gehören, also eine konstante Funktion sein. Die einzige Möglichkeit wie \hat{x} eine konstante Funktion ist, ist wenn es

identisch Null ist. Es wurde somit gezeigt, dass der Kern von A trivial ist und somit A invertierbar ist.

Das Setzen der Randbedingung entspricht aber genau dem Streichen dieser Zeile sowie Spalten und der Konstruktion einer zugehörigen im Allgemeinen von Null verschiedenen Inhomogenität.

Der Fall $\partial = V$ ist trivialerweise erfüllt.

Wandeln wir zur Untermauerung der theoretischen Arbeit an einem Beispiel den elektrischen Stromkreis in Abbildung 3.1 in einen Graphen in dem bisher entwickelten Formalismus um.

Abbildung 3.2: Beispiel Stromkreis (Graph).

An den elektrischen Widerständen jeder Kante können wir in Abbildung 3.2 die Korrespondenz zu Abbildung 3.1 erkennen. Die Kehrwerte der Widerstände entsprechen der Kantenfunktion r und $\partial = \{2,3\}$, g(2) = 5, g(3) = 0 und $f \equiv 0$. Das V steht für die Spannungsquelle beziehungsweise die Randbedingung.

$$\begin{pmatrix} 1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ 1 & 0 & 0 & -1 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & -1 & 0 & 1 \end{pmatrix}^T \begin{pmatrix} \frac{1}{500} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{1000} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2000} & 0 & 0 & 0 \\ 0 & 0 & 0 & V & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{4700} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{4700} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{400} \end{pmatrix} \begin{pmatrix} 1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ 1 & 0 & 0 & -1 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & -1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{500} + \frac{1}{1000} + \frac{1}{2000} & -\frac{1}{500} & -\frac{1}{1000} & -\frac{1}{400} \\ -\frac{1}{1000} & -\frac{1}{400} & -V & -\frac{1}{4700} \\ -\frac{1}{2000} & -\frac{1}{400} & -\frac{1}{4700} & \frac{1}{400} + \frac{1}{4700} + \frac{1}{2000} \end{pmatrix}$$

Anschließend wendet man die Randbedingung an, daher man setzt die zweite Komponente des gesuchten Vektors 5 und die Dritte Komponente 0, dies

entspricht dem streichen der mit V markierten Ecken und bilden der passenden Inhomogenität.

$$\begin{pmatrix} \frac{1}{500} + \frac{1}{1000} + \frac{1}{2000} & -\frac{1}{2000} & | \frac{5}{500} \\ -\frac{1}{2000} & \frac{1}{400} + \frac{1}{4700} + \frac{1}{2000} & | \frac{5}{400} \end{pmatrix}$$

Dies entspricht genau der Matrixgleichung, die man mit den gebräuchlichen Methoden in der Physik zu diesem Problem erhält.

Die Maxwell-Gleichungen

Die Elektrodynamik beschreibt elektromagnetische Phänomene als durch Felder vermittelte Wechselwirkung von Materie. Diese Felder gehorchen vier Gleichungen, Maxwell-Gleichungen, die im neunzehnten Jahrhundert durch den Schotten James Clerk Maxwell formuliert wurden. Diese partiellen Differentialgleichungen beschreiben wie sich elektromagnetische Felder in Abhängigkeit eines Materiestrom zeitlich entwickeln. Die Diskretisierung jener Differentialgleichungen führt im zweidimensionalen Fall zu einer Variante der Maxwell-Gleichungen für planare Graphen.

Definition 4.1. Sei G ein planarer Graph, r, ϵ , σ , e_0 Kantenfunktionen, μ und b_0 Flächenfunktionen und q_0 eine Eckfunktion, dann nennt man eine Schar von Kantenfunctionen $e: \mathbb{R} \to \mathfrak{K}(G)$, eine Schar von Flächenfunktionen $b: \mathbb{R} \to \mathfrak{A}(G)$ und eine Schar von Eckfunktionen $q: \mathbb{R} \to \mathfrak{E}(G)$ sodass für alle $t \in \mathbb{R}$ gilt (wobei $j(t) := \sigma e(t)$)

(4.1)
$$div(r * \epsilon * e(t)) = q(t)$$

(4.2)
$$div_d(r * e(t)) = -\frac{\partial b(t)}{\partial t}$$

(4.3)
$$r * grad_d(\mu * b(t)) = \epsilon * \frac{\partial e(t)}{\partial t} + j(t)$$

und die Anfangsbedingungen

$$(4.4) e(0) = e_0$$

$$(4.5) b(0) = b_0$$

$$(4.6) q(0) = q_0$$

erfüllt sind, eine Lösung der Maxwell-Gleichungen.