Math 145 (Jao: section 1) A2 Numerical

Simon Liu — 20765498

7 Numerical Problem 1

7.1 Finding -1 in \mathbb{Z}_n

Axiom A4 states that a + (-a) = 0.

 \mathbb{Z}_5 :

$$1 + (-1) = 0$$
$$1 + 4 = 0$$
$$\therefore -1 = 4.$$

In integer systems \mathbb{Z}_6 , \mathbb{Z}_7 , and \mathbb{Z}_10 ,

Theorem 7.1. -1 = n - 1 in \mathbb{Z}_n .

See proof for Theorem 7.2 with a = 1.

Theorem 7.2. -a = n - a in \mathbb{Z}_n .

Proof. For all a and k in \mathbb{Z} ,

$$a \equiv kn + a \pmod{n}$$
$$-a \equiv -kn - a \pmod{n}$$

Letting k = -1,

$$-a \equiv n - a \pmod{n}$$

We know that

$$\forall m \in \mathbb{Z}, m \pmod{n} \in \mathbb{Z}_n$$

So,

$$-a \equiv n - a \pmod{n} \in \mathbb{Z}_n$$

7.2 Finding $\frac{1}{2}$ in \mathbb{Z}_n

Definition 7.1. $\frac{1}{a}$ is the element of \mathbb{Z}_n satisfying $a \cdot \frac{1}{a} = 1, \forall a \in \mathbb{Z}_n$ if it exists. For $\frac{1}{2}$, a = 2 in Definition 7.1.

 \mathbb{Z}_5 :

$$2 \cdot \frac{1}{2} \equiv 1 \equiv 6 \pmod{5}$$
$$\frac{1}{2} = 3 \in \mathbb{Z}_5$$

 $\therefore \frac{1}{2}$ exists in \mathbb{Z}_5 .

 \mathbb{Z}_6 :

$$2 \cdot \frac{1}{2} \equiv 7 \pmod{6}$$

However, there is no integer b where $2 \cdot b = 7$, so we try larger products that are congruent to 1 (mod 6), only to observe that the product (R.S. of equation) is always odd. There is no such $a \in \mathbb{Z}_6$ that when multiplied by 2 results in an odd integer.

 $\therefore \frac{1}{2}$ does not exist in \mathbb{Z}_5 .

Working more examples,

Theorem 7.3. $\frac{1}{2}$ does not exist in \mathbb{Z}_n when \mathbb{Z}_n is even.

See proof for Theorem 7.4 with k = 2.

7.3 Finding $\frac{1}{3}$ in \mathbb{Z}_n

 \mathbb{Z}_5 :

$$3 \cdot \frac{1}{3} \equiv 1 \equiv 6 \pmod{5}$$
$$\frac{1}{3} = 2 \in \mathbb{Z}_5$$

 $\therefore \frac{1}{3}$ exists in \mathbb{Z}_5 .

 \mathbb{Z}_6 :

$$3 \cdot \frac{1}{3} \equiv 1 \equiv 7 \equiv 13 \pmod{6}$$

Similar to how $\frac{1}{2} \notin \mathbb{Z}_6$ in Section 7.2, $\frac{1}{3}$ does not seem to exist in \mathbb{Z}_6 either.

Working more examples,

Generalizing Theorem 7.3,

Theorem 7.4. $\frac{1}{k}$ does not exist in \mathbb{Z}_n when k|n

Proof. By Definition 7.1, letting $a = \frac{1}{k}$,

$$k \cdot a \equiv 1 \pmod{n}$$
.

Suppose that k|n, ie. $n = k \cdot m, m \in \mathbb{Z}^+$. Then,

$$k \cdot a \equiv 1 \pmod{mk}$$
$$k \cdot a \equiv 1 \pmod{k}$$
$$k \pmod{k} \cdot a \pmod{k} \equiv 1 \pmod{k}$$
$$0 \cdot a \pmod{k} \equiv 1 \pmod{k}$$

This is not possible for the non-trivial values of k > 1, therefore a does not exist. \square

7.4 Finding $\frac{1}{k}$ in \mathbb{Z}_n

After working through more examples on varying values of k and n, it seemed that k and n had to be coprime for $\frac{1}{k}$ to exist.

Here are some notable examples.

	\mathbb{Z}_7	\mathbb{Z}_{10}	\mathbb{Z}_{12}	
1/1	1	1	1	
1/2	4	DNE	DNE	
1/3	5	7	DNE	
1/4	2	DNE	DNE	
1/5	3	DNE	5	
1/6	6	DNE	DNE	
1/7	DNE	3	7	
1/8		DNE	DNE	
1/9		9	DNE	
1/10		DNE	DNE	
1/11			11	
1/12			DNE	

Conjecture 7.5. $\frac{1}{k}$ does not exist in \mathbb{Z}_n when gcd(k, n) > 1.

7.5 Finding $\sqrt{-1}$ in \mathbb{Z}_n

Definition 7.2. \sqrt{a} is an element of \mathbb{Z}_n satisfying $(\sqrt{a})^2 = a$ if it exists.

When looking for $\sqrt{-1}$, we need to look for a value a when squared results in n-1 by Theorem 7.1.

I listed examples shown in the spreadsheet 'squares.ods' (uploaded to Learn) on Sheet 1. The second row is values of n representing integer systems \mathbb{Z}_n , and the first column is values of a to square. Entries in the table compute $a^2 \pmod{n}$.

If $\sqrt{-1}$ exists in any given \mathbb{Z}_n , then in its respective column there will exist a cell equal to n-1. These values are highlighted in yellow.

Hoping to find a visual pattern for the existence of $\sqrt{-1}$, I did not reach any conclusions. I did however notice that for any given \mathbb{Z}_n , $a^2 \pmod{n}$ was symmetrical across a.

Theorem 7.6. $\forall a \in \mathbb{Z}_n, a^2 \equiv (n-a)^2 \pmod{n}$

Proof.

$$a^{2} \equiv (n-a)^{2} \pmod{n}$$

$$a^{2} \equiv n^{2} + a^{2} - 2na \pmod{n}$$

$$a^{2} \pmod{n} \equiv n^{2} \pmod{n} + a^{2} \pmod{n} - 2na \pmod{n}$$

$$a^{2} \pmod{n} \equiv 0 + a^{2} \pmod{n} - 0$$

$$a^{2} = a^{2} \pmod{n}$$

I did, however, have a list of $n \leq 100$ where $\sqrt{-1}$ exists in \mathbb{Z}_n . Call this sequence S_i .

$$S_i : \{1, 2, 5, 10, 13, 17, 25, 26, 29, 34, 37, 41, 50, 53, 58, 61, 65, 73, 74, 82, 85, 89, 97\}$$

In majority of the above number systems, there existed two values of $\sqrt{-1}$. Interestingly, n=65 and n=85 had four. There were some patterns I could recognize, however none of them described existence of $\sqrt{-1}$ completely.

Theorem 7.7. $\sqrt{-1}$ exists in \mathbb{Z}_n when $n = k^2 + 1, k \in \mathbb{Z}$.

Proof.

$$\sqrt{-1} = k \in \mathbb{Z}_{k^2+1}$$

$$\sqrt{-1} \equiv k \pmod{k^2+1}$$

$$(\sqrt{-1})^2 \equiv k^2 \pmod{k^2+1}$$

$$-1 = k^2 \pmod{k^2+1}$$

This is true by Theorem 7.1:

$$-1 \equiv n - 1 \pmod{n}$$
$$1 \equiv k^2 \equiv (k^2 + 1) - 1 \pmod{n}$$
$$k^2 \equiv k^2 \pmod{n}$$

With no additional insight, I entered the first few numbers of S_i into The On-Line Encyclopedia Of Integer Sequences (OEIS), finding sequence A008784 to be what I was looking for.

An interesting property of this sequence (other than that it represents n s.t. $\sqrt{-1}$ exists \pmod{n} is that every element could be represented as a sum of squares. However, this did not mean that I could simply state that $\forall ab \in \mathbb{Z}, a^2 + b^2 \in S_i$.

This, in turn, meant that it was not as straightforward as I initially thought it would be to construct elements of S_i . I needed to recognize another pattern to do so.

By creating a table in Sheet 2 of 'squares.odt', I computed the sums of squares for $a, b \leq 10$. It seemed that a and b had to be coprime for the sum of their squares to belong in S_i .

Conjecture 7.8. $\forall a, b \in \mathbb{Z}$, if gcd(a, b) = 1, then $\sqrt{-1}$ exists in \mathbb{Z}_n where $n = a^2 + b^2$.

However, I could not explain the anomaly of there existing four or more values of $\sqrt{-1}$ in \mathbb{Z}_{65} and \mathbb{Z}_{85} . Theorem 7.6 seemed to explain there existing two values of $\sqrt{-1}$ to some extent, but what caused four or more values?

I went to Prof. Jao's office hours, and he pointed out a particular property of modular arithmetic:

Definition 7.3. $a \equiv b \pmod{pq} \Rightarrow a \equiv b \pmod{p} \land a \equiv b \pmod{q}$.

Lending itself to:

Theorem 7.9. If $\sqrt{-1}$ exists in \mathbb{Z}_n and \mathbb{Z}_m , then it exists in \mathbb{Z}_{nm} .

Now, with Conjecture 7.8 and Theorem 7.9, we can see that $65 = 4^2 + 7^2$, and is also the product of 5 and 13, both of which are values of n where $\sqrt{-1}$ exists in \mathbb{Z}_n . Similarly, $85 = 5^2 + 8^2$, and 85 = 5 * 17.

8 Numerical Problem 2

8.1 Computation of $\left|\alpha - \frac{41}{24}\right|$

α	$\alpha - (41/24)$	$ \alpha - (41/24) $
-1/1	-17/24	17/24
2/1	7/24	7/24
5/3	-1/24	1/24
12/7	1/168	1/168
41/24	0	0

Notice that the sequence $\{\alpha - \frac{41}{24}\}$ seems to converge to 0, after having terms alternate between being positive and negative. $\{|\alpha - \frac{41}{24}|\}$ also converges to 0.

8.2 An attempt at defining a pattern

Let us define S_A : $\{0, 1, 3, 7, 17, 24, 41\}$, and A = 7 to be the size of S_A . $a_n \in S_A$ where $a_1 = 0$, $a_2 = 1$, etc.

Similarly, we define $S_B : \{1, 1, 2, 2, 3\}$ with respective B = 5 and $b_n \in S_B$. To express the general term a_n in terms of these two sets, we have:

$$a_n = a_{n-1} \cdot b_{B-n+3} + a_{n-2}$$

So, to construct members of S_A , the first two elements a_1 and a_2 must be given, as well as a full set S_B where B = A - 2.

8.3 Observations from the table

		1	1	2	2	3	b
0	1	1	2	5	12	41	c
1	0	1	1	3	7	24	a

From the patterns suggested in the assignment,

$$c = b \cdot 41 + 12$$

More generally, a term in the row containing c is the product of the term immediately above it with the term to the left, plus the term two to the left.

Furthermore, we can say that

$$a \cdot 41 - c \cdot 24 = 1$$