

Alignment and splice junction identification

RNA-Seq Hands-on Practical

Never Stand Still

Zhiliang Chen Systems Biology Initiative University of New South Wales

Introduction

- The goal of this hands-on session is to perform some basic tasks in the downstream analysis of RNA-seq data. We will start from RNAseq data aligned to the zebrafish genome using Tophat.
 - Prepare the environment
 - Tophat alignment
 - Viewing the alignment using IGV

Preparing the alignment

- Sample
 - Zebra fish
 - 2 conditions : 2cells and 6h
- Type of sequencing
 - 76bp pair-end
 - Illumina
- File name and formats
 - Fastq file
 - 2cells 1.fastq and 2cells 2.fastq
 - 6h 1.fastq and 6h 2.fastq

Alignment

- Reference genome
 - Danio_rerio.Zv9.66
 - Index has already been created
- Alignment program and parameters
 - The 2cells data is pre-aligned
 - Alignment needs to be done for 6h dataset

Alignment Visualisation in IGV

- The Integrative Genomics Viewer (IGV) is able to provide a visualisation of read alignments given a reference sequence and a BAM file.
 - Visualise the alignment
 - Look at the splice junctions
- Interpreting the alignment in IGV
 - http://www.broadinstitute.org/igv/AlignmentData

