Temporal Logics

http://d3s.mff.cuni.cz

Pavel Parízek

Modal logic

- Possibly
 - P

- Necessarily
 - [] P

Dynamic logic

- Formulas
 - <a> P
 - [a] P

- Special actions
 - Constant: [1] P
 - Block: [0] P

Temporal logic

Variants: LTL, CTL, ...

- Operators
 - Globally: G p
 - Eventually: F p
 - Next step: X p

Details: course NSWI101

TLA: Temporal Logic of Actions

- TLA+ specification language
 - Low-level language based on logic and sets
 - Enables users to define a transition system
- PlusCal algorithm language
 - Syntax much closer to C/C#/Java
 - Writing and testing pseudo-code
- Home page
 - http://lamport.azurewebsites.net/tla/tla.html
- TLA Toolbox (IDE)
 - http://lamport.azurewebsites.net/tla/tools.html

PlusCal

- Features
 - control-flow statements, non-determinism, simple identification of atomic steps (for concurrency), procedure call and return
- Example algorithms
 - Euclid's GCD, mutual exclusion, alternating bit
- Translation into TLA+ specification
- Analyzing with TLC model checker
- Further reading
 - L. Lamport. The PlusCal Algorithmic Language. ICTAC 2009
 - http://lamport.azurewebsites.net/pubs/pubs.html#pluscal

TLA+

- Features
 - variables, constants, arithmetic
 - common set and logic operators
 - functions, control statements
 - sequences, tuples, arrays, records
 - non-deterministic choice
 - basic temporal operators
- Example translation: Euclid's GCD
- Further reading
 - L. Lamport. Euclid Writes an Algorithm: A Fairytale
 - http://lamport.azurewebsites.net/pubs/pubs.html#euclid

Advanced topics

- Liveness (termination)
- Fairness (scheduling)

- See the course NSWI101
 - http://d3s.mff.cuni.cz/teaching/nswi101

Practice

 Analyzing distributed concurrent algorithms, protocols and systems

- Case study: Amazon
 - C. Newcombe, T. Rath, F. Zhang, B. Munteanu, M. Brooker, and M. Deardeuff. How Amazon Web Services Uses Formal Methods. Communications of the ACM, 58(4), April 2015
 - http://doi.acm.org/10.1145/2699417

