(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平8-64238

(43)公開日 平成8年(1996)3月8日

識別記号

庁内整理番号

FΙ

技術表示箇所

H 0 1 M 10/40

6/16

Α Α

審査請求 未請求 請求項の数3 FD (全 5 頁)

持願平6-225924	(71)出願人	000001889
		三洋電機株式会社
平成6年(1994)8月25日		大阪府守口市京阪本通2丁目5番5号
	(72)発明者	上原 真弓
		大阪府守口市京阪本通2丁目5番5号 三
		洋電機株式会社内
	(72)発明者	小路 良浩
		大阪府守口市京阪本通2丁目5番5号 三
		洋電機株式会社内
	(72)発明者	西尾 晃治
	W=//271A	大阪府守口市京阪本通2丁目5番5号 三
		洋電機株式会社内
	(74)代理人	***
	(17) (01)	最終質に続く
		平成 6 年(1994) 8 月25日 (72)発明者 (72)発明者

(54) 【発明の名称】 非水電解液電池

(57)【要約】

【構成】正極と、リチウムを活物質とする負極と、非水 電解液と、セパレータとを備えた非水電解液電池であっ て、前記非水電解液に、Ca(CF₃ SO₃)₂、Ca $(BF_4)_2$, $Ca(PF_6)_2$, $Ca\{N(CF_3S$ O_2) $_2$ } $_2$, Ca (ClO_4) $_2$, Ca (AlC1,)2、Ca(CF3 COO)2 及びこれらの誘導体 から選ばれたカルシウム塩が、3×10⁻⁴~3×10⁻² モル/リットル添加されている。

【効果】非水電解液に特定のカルシウム塩が所定量添加 されているので、充電状態で保存した場合でも自己放電 しにくく、保存特性に優れる。

【特許請求の範囲】

【請求項1】正極と、リチウムを活物質とする負極と、非水電解液と、セパレータとを備えた非水電解液電池において、前記非水電解液に、 $Ca(CF_3SO_3)_2$ 、 $Ca(BF_4)_2$ 、 $Ca(PF_6)_2$ 、 $Ca(N(CF_3SO_2)_2)_2$ 、 $Ca(C1O_4)_2$ 、 $Ca(A1C1_4)_2$ 、 $Ca(CF_3COO)_2$ 及びこれらの誘導体から選ばれたカルシウム塩が、 $3\times10^{-4}\sim3\times10^{-2}$ モル/リットル添加されていることを特徴とする非水電解液電池。

【請求項2】前記非水電解液に、前記カルシウム塩が、 1. $5 \times 10^{-3} \sim 6 \times 10^{-3}$ モル/リットル添加されている請求項1記載の非水電解液電池。

【請求項3】前記非水電解液に、さらにN-メチル-2-ピロリドンが、前記カルシウム塩1モル当たり、10 ~ 1000m l 添加されている請求項1又は2記載の非水電解液電池。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、非水電解液電池に係わ 20 り、詳しくは、保存特性に優れた非水電解液電池を得ることを目的とした、非水電解液の改良に関する。

[0002]

【従来の技術及び発明が解決しようとする課題】近年、 リチウムを負極活物質に使用した電池が、エネルギー密 度が高く、しかも高電圧を取り出し得ることから、従前 のアルカリ電池に代わる新しい電池として、注目されて いる。

【0003】而して、この種の電池では、リチウムが水と極めて反応し易い金属であるため非水電解液が使用さ 30れている。すなわち、溶媒としては、例えばエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ピニレンカーボネート、1,2 - ジメトキシエタン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、デトラヒドロフラン、1,3 - ジオキソラン及びこれらの混合溶媒が、また溶質としては、例えばLiPF。、LiCF。SO。、LiC $1 O_4$ 、LiBF4、LiN(CF。SO2)2、LiAsF6が、それぞれ使用されている。

【0004】しかしながら、従来の非水電解液を使用した電池(非水電解液電池)には、これを充電状態で保存すると、非水電解液が負極と反応して分解し(自己放電)、電池容量が低下するという問題があった。とりわけ、負極材料として黒鉛、コークス等の炭素材料を使用した場合には、保存後に電池容量が大きく低下する。このため、上記した自己放電の問題は、負極材料として特に炭素材料を使用した非水電解液電池においては深刻な問題となっていた。

【0005】そこで、この問題を解決するべく鋭意研究 した結果、本発明者らは、非水電解液に特定の物質を添 50

加剤として所定量加えると、非水電解液と負極との反応 (自己放電)が抑制されて、保存特性が向上することを 見出した。

【0006】本発明は、かかる知見に基づきなされたものであり、その目的とするところは、保存特性に優れた非水電解液電池を提供するにある。

[0007]

【課題を解決するための手段】上記目的を達成するための本発明に係る非水電解液電池(以下、「本発明電池」と称する。)は、正極と、リチウムを活物質とする負極と、非水電解液と、セパレータとを備えた非水電解液電池において、前記非水電解液に、 $Ca(CF_3SO_3)_2$ 、 $Ca(BF_4)_2$ 、 $Ca(PF_6)_2$ 、 $Ca\{N(CF_3SO_2)_2\}_2$ 、 $Ca(ClO_4)_2$ 、 $Ca(AlCl_4)_2$ 、 $Ca(CF_3COO)_2$ 及びこれらの誘導体から選ばれたカルシウム塩が、 $3\times10^{-4}\sim3\times10^{-2}$ モル/リットル添加されていることを特徴とする。

【0008】上記カルシウム塩の添加量が $3\times10^{-4}\sim3\times10^{-2}$ モル/リットルの範囲に規制されるのは、添加量が 3×10^{-4} モル/リットル未満の場合は添加量が過少なため、一方添加量が 3×10^{-2} モル/リットルを越えた場合はカルシウム塩が電極表面に析出し、析出物が電極に悪影響を与えるため、いずれの場合も優れた保存特性を有する非水電解液電池が得られないからである。カルシウム塩の好適な添加量は、 $1.5\times10^{-3}\sim6\times10^{-3}$ モル/リットルである。

[0009] 上記列挙したカルシウム塩の誘導体としては、Ca(CF; SO;) 2 の誘導体としてCaLi(CF; SO;); が、またCa[N(CF; SO;) 2 } 2の誘導体としてCa[P(CF; SO;) 2 } 2 が、それぞれ例示される。

【0010】カルシウム塩とともに、カルシウム塩の非水電解液に対する溶解性を高めるべく、さらにN-メチル-2-ピロリドン (NMP) を添加することが好ましい。この場合のN-メチル-2-ピロリドンの好適な添加量は、カルシウム塩1モル当たり、 $10\sim1000$ m 1 である。

【0011】本発明におけるリチウムを活物質とする負極としては、リチウムイオンを吸蔵及び放出することが可能な物質又は金属リチウムを電極材料とするものが例示される。リチウムイオンを吸蔵及び放出することが可能な物質としては、Li-Al合金、Li-Sn合金、Li-Pb合金等のリチウム合金;Fe2O3、Nb2O3、WO3等の金属酸化物;黒鉛、コークス等の炭素材料が例示される。

[0012] 本発明は、リチウムを活物質とする負極に おける非水電解液の分解(自己放電)を抑制するべく、 非水電解液に特定のカルシウム塩を所定量添加した点に 最大の特徴を有する。それゆえ、負極材料及び非水電解

液以外の電池を構成する他の部材の材料については特に 制限されない。

【0013】例えば、本発明における正極材料として は、マンガン、コバルト、ニッケル、バナジウム、ニオ プを1種又は2種以上含有する金属酸化物が挙げられ

[0014]

【作用】非水電解液に特定のカルシウム塩が所定量添加 されている本発明電池においては、カルシウム塩が非水 電解液中で解離して生成したカルシウムイオンが、負極 10 の表面を取り囲んで、非水電解液が負極に接触して分解 するのを妨げるので、自己放電が抑制される。

[0015]

【実施例】以下、本発明を実施例に基づいてさらに詳細 に説明するが、本発明は下記実施例に何ら限定されるも のではなく、その要旨を変更しない範囲において適宜変 更して実施することが可能なものである。

【0016】(実施例1)

〔正極の作製〕正極活物質としてのLiCoO2 85重 量部と、導電剤としての炭素粉末10重量部と、結着剤 20 としてのフッ素樹脂粉末5重量部と、少量の水とを混合 して、スラリーを調製した。このスラリーを正極集電体 としてのアルミニウム箔の両面に塗布した後、150° Cで熱処理して、正極を作製した。

【0017】〔負極の作製〕黒鉛粉末85重量部と、結 着剤としてのフッ素樹脂粉末15重量部と、少量の水と を混合して、スラリーを調製した。このスラリーを負極 集電体としての銅箔の両面に塗布した後、150°Cで 熱処理して、負極を作製した。

【0018】〔電解液の調製〕エチレンカーポネート (EC) と1, 2-ジメトキシエタン (DME) との等 体積混合溶媒に、溶質としてのヘキサフルオロリン酸リ チウム(LiPF。)を1モル/リットル及びカルシウ ム塩としてのCa (CF: SO:) 2 を3×10-3モル /リットル溶かして、非水電解液を調製した。

【0019】〔電池の作製〕以上の正負両極及び電解液 を用いて、円筒型の本発明電池A1を作製した(電池寸 法:直径13.8mm;高さ48.9mm)。セパレー タとして、イオン透過性を有するポリプロピレン製の微 多孔膜を用い、これに先に述べた非水電解液を含浸させ 40

【0020】図1は作製した本発明電池A1を模式的に 示す断面図であり、図示の電池A1は、正極1、負極 2、これら両電極を離間するセパレータ3、正極リード 4、負極リード5、正極外部端子6、負極缶7などから なる。正極1及び負極2は、非水電解液を注入されたセ パレータ3を介して渦巻き状に巻き取られた状態で負極 缶7内に収納されており、正極1は正極リード4を介し て正極外部端子6に、また負極2は負極リード5を介し て負極缶7に接続され、電池内部で生じた化学エネルギ 50 と以外は比較例1と同様にして、比較電池B2を組み立

ーを電気エネルギーとして外部へ取り出し得るようにな っている。

【0021】 (実施例2) 電解液の調製において、非水 電解液に、Ca (CF₃ SO₃)₂ に代えてCa (BF 4)2 を5×10⁻³モル/リットル添加したこと以外は 実施例1と同様にして、本発明電池A2を組み立てた。

【0022】 (実施例3) 電解液の調製において、非水 電解液に、Ca (CF₃ SO₃) 2 に代えてCa (PF 。) 2 を3×10-3モル/リットル添加したこと以外は 実施例1と同様にして、本発明電池A3を組み立てた。

【0023】 (実施例4) 電解液の調製において、非水 電解液に、Ca (CF 3 SO 3) 2 に代えてCa (N (CF₃ SO₂)₂ }₂ を2×10⁻³ モル/リットル添 加したこと以外は実施例1と同様にして、本発明電池A 4を組み立てた。

【0024】(実施例5)電解液の調製において、非水 電解液に、Ca (CF₃ SO₃)₂ に代えてCa (C1 O_4) 2 を 4×10^{-3} モル/リットル添加したこと以外 は実施例1と同様にして、本発明電池A5を組み立て

【0025】(実施例6)電解液の調製において、非水 電解液に、Ca (CF₃ SO₃)₂ に代えてCa (A1 C 14) 2 を 3×10⁻³ モル/リットル添加したこと以 外は実施例1と同様にして、本発明電池A6を組み立て

【0026】(実施例7)電解液の調製において、非水 電解液に、Ca (CF₃ SO₃)₂ に代えてCa (CF 3 COO) 2 を4×10⁻³ モル/リットル添加したこと 以外は実施例1と同様にして、本発明電池A7を組み立 てた。

【0027】 (実施例8) 非水電解液の溶媒として、エ チレンカーポネートと1,2-ジメトキシエタンとの等 体積混合溶媒に代えて、プロピレンカーボネート(P C) と1, 2-ジメトキシエタンとの等体積混合溶媒を 使用したこと以外は実施例1と同様にして、本発明電池 A8を組み立てた。

【0028】(実施例9~16)電解液の調製におい て、非水電解液に、各カルウシム塩を添加した後、さら にN-メチルー2-ピロリドンを、各カルウシム塩1モ ル当たり100ml添加したこと以外はそれぞれ実施例 1~8と同様にして、順に本発明電池A9~A16を組 み立てた。

【0029】(比較例1)電解液の調製において、非水 電解液に、カルシウム塩を添加しなかったこと以外は実 施例1と同様にして、比較電池B1を組み立てた。

【0030】(比較例2)非水電解液の溶媒として、エ チレンカーポネートと1,2-ジメトキシエタンとの等 体積混合溶媒に代えて、プロピレンカーポネートと1, 2-ジメトキシエタンとの等体積混合溶媒を使用したこ てた。

【0031】〔各電池の保存特性〕本発明電池A1~A16及び比較電池B1,B2について自己放電率を求め、各電池の保存特性を調べた。自己放電率は、次の如くして求めた。

【0032】(保存しなかった場合の放電容量)組み立て直後の各電池を、充電電流200mAで4.1Vまで充電した後、200mAで2.75Vまで放電して、保存しなかった場合の放電容量を求めた。保存しなかった場合の放電容量(電池組み立て直後の初期の放電容量)は、650mAhであった。

【0033】(保存した場合の放電容量)同様に、組み立て直後の各電池を、充電電流200mAで4.1Vま*

* で充電し、60° Cでニヵ月間保存した後、200mA で2.75Vまで放電して、保存した場合の放電容量を 求めた。

【0034】60° Cでの二ヵ月間の保存は、室温での三ヵ年の保存に相当するので、室温での1年当たりの自己放電率を下式に基づき算出した。各電池の自己放電率を表1に示す。

【0035】自己放電率 (%/年) = { (保存しなかった場合の放電容量 - 保存した場合の放電容量) /保存し 10 なかった場合の放電容量} ÷ 3×100

[0036]

【表1】

電池	添加したカルシウム塩	NMP	自己放電率 (%/年)
1 2 3 4 4 A A A A A A A A A A A A A A A B B B B	Ca (CF ₃ SO ₂) ₂ Ca (BF ₄) ₂ Ca (PF ₆) ₂ Ca (N(CF ₃ SO ₂) ₂) ₃ Ca (ClO ₄) ₂ Ca (AlCl ₄) ₂ Ca (CF ₃ CO ₀) ₂ Ca (CF ₃ SO ₃) ₂ Ca (CF ₃ SO ₃) ₂ Ca (CF ₃ SO ₃) ₂ Ca (BF ₄) ₂ Ca (N(CF ₃ SO ₂) ₂) ₂ Ca (ClO ₄) ₂ Ca (ClO ₄) ₂ Ca (ClO ₄) ₂ Ca (CF ₃ CO ₀) ₂ Ca (CF ₃ SO ₃) ₂	無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無	3. 1 3. 3 3. 5 3. 5 3. 4 3. 5 3. 2 2. 4 3. 3 3. 2 2. 4 3. 3 3. 5 3. 5 3. 6 3. 6 3. 7 9. 8 9. 8 9. 9 9. 9
比較電池B1 比較電池B2	無添加 無添加	無添加 無添加	10.1

【0037】表1に示すように、非水電解液に特定のカルシウム塩を添加した本発明電池A1~A16は、非水電解液にカルシウム塩を添加しなかった比較電池B1,B2に比べて、自己放電率が小さく、保存特性に優れている。また、表1に示すように、本発明電池A1~A16のなかでも、非水電解液にカルシウム塩とともに、N-メチル-2-ピロリドンを添加した本発明電池A9~A16は、保存特性に特に優れている。

【0038】なお、別途、電解液の調製において、非水電解液に、 $Ca(CF_3SO_3)_2$ に代えて $CaCO_3$ 、 $CaSO_4$ 、 $Ca(NO_3)_2$ 、 $CaCl_2$ 、 $CaCl_2$ 、 CaF_2 、 $CaBr_2$ 又は CaI_2 を添加したこと以外は実施例1と同様にして、各種の非水電解液電池を組み立て、これらについても先と同様にして自己放電率を求めたところ、これらの自己放電率は全て比較電池B1の自己放電率(10.1%)と同じであった。この事実から、保存特性の改善効果は、非水電解液に本発明で規定する特定のカルシウム塩を所定量添加した場合にのみ認められる現象であることが分かる。

【0039】 [カルシウム塩の添加量と保存特性の関 殆ど低下しない、保存特性に極めて優れた非水電解液電 係] 実施例1の非水電解液の調製において、Ca(CF 50 池が得られることが分かる。なお、本発明で規定する他

【0037】表1に示すように、非水電解液に特定のカ 30 3 SO3)2の添加量を種々変えたこと以外は実施例1 レシウム塩を添加した本発明電池A1~A16は、非水 と同様にして、非水電解液電池を組み立てた。

【0040】次いで、これらの各電池を充電電流200 mAで4. 1 Vまで充電し、60° Cで二ヵ月間保存した後、200 mAで2. 75 Vまで放電して、保存後の放電容量を求めた。結果を図2 に示す。

【0041】図2は、非水電解液へのCa(CF。SO。)2の添加量と充電状態で保存した後の放電容量の関係を、縦軸に保存後の放電容量(mAh)を、また横軸にCa(CF。SO。)2の添加量(モル/リットル)をとって示したグラフである。なお、図2には、本発明電池A1[Ca(CF。SO。)2の添加量:3×10⁻³モル/リットル)及び比較電池B1[Ca(CF。SO。)2:無添加]の保存後の放電容量も示してある。

【0042】図2より、非水電解液へのCa(CF_3S O $_3$) $_2$ の添加量が $3\times10^{-4}\sim3\times10^{-2}$ モル/リットルの場合に、無添加の場合に比べて、有意な効果が認められ、特に $1.5\times10^{-3}\sim6\times10^{-3}$ モル/リットルの場合に、保存後の放電容量が保存前のそれに比べて殆ど低下しない、保存特性に極めて優れた非水電解液電池が得られることが分かる。なお、本祭明で担定する他

のカルシウム塩、すなわち $Ca(BF_4)_2$ 、 $Ca(PF_6)_2$ 、 $Ca(N(CF_3SO_2)_2)_2$ 、 $Ca(CIO_4)_2$ 、 $Ca(AICI_4)_2$ 及び $Ca(CF_3COO)_2$ についても、上記と同様に、カルシウム塩は 1. $5\times 10^{-3}\sim 6\times 10^{-3}$ モル/リットルの範囲で添加することが好ましいという結果が得られた。

【0043】 叙上の実施例では本発明を円筒型の非水電解液電池に適用する場合を例にして説明したが、電池の形状に特に制限はなく、本発明は扁平型、角型等、種々の形状の非水電解液電池に適用し得るものである。

[0044]

【発明の効果】非水電解液に特定のカルシウム塩が添加されているので、充電状態で保存した場合でも自己放電

しにくく、保存特性に優れる。

【図面の簡単な説明】

【図1】実施例で作製した円筒型の非水電解液電池(本発明電池)の断面図である。

【図2】非水電解液へのCa (CF。SO。)2 の添加量と充電状態で保存した後の放電容量の関係を示すグラフである。

【符号の説明】

A1 円筒型の非水電解液電池(本発明電池)

10 1 正極

- 2 負極
- 3 セパレータ

[図1]

フロントページの続き

(72)発明者 斎藤 俊彦

大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平8-321312

(43)公開日 平成8年(1996)12月3日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FΙ			技術表示箇所
H 0 1 M	6/16			H 0 1 M	6/16	Α	
	10/40				10/40	Α	

審査請求 未請求 請求項の数2 FD (全 5 頁)

(21)出願番号	特願平7-150844	(71)出願人 000001889
		三洋電機株式会社
(22)出願日	平成7年(1995)5月24日	大阪府守口市京阪本通2丁目5番5号
		(72)発明者 神野 丸男
		大阪府守口市京阪本通2丁目5番5号 三
		洋電機株式会社内
		(72)発明者 上原 真弓
		大阪府守口市京阪本通2丁目5番5号 三
		洋電機株式会社内
		(72)発明者 桜井 敦志
		大阪府守口市京阪本通2丁目5番5号 三
		洋電機株式会社内
		(74)代理人 弁理士 松尾 智弘
		最終頁に続く

(54) 【発明の名称】 非水電解液電池

(57)【要約】

【構成】エチレンカーボネート、プロピレンカーボネー ト及びプチレンカーボネートよりなる群から選ばれた少 なくとも一種の高誘電率溶媒を含有する溶媒にトリフル オロメタンスルホン酸リチウム又はヘキサフルオロリン 酸リチウムを溶かしてなる非水電解液に、特定の添加剤 が1~20体積%添加されている。

【効果】添加剤がリチウムなどと反応して負極の表面に 被膜を形成し、この被膜が負極と非水電解液の反応を起 こりにくくするので、長期間保存した場合でも自己放電 が起こりにくい。このため、本発明電池は、保存特性に 優れる。

【特許請求の範囲】

【請求項1】正極と、リチウムを活物質とする負極と、 エチレンカーボネート、プロピレンカーボネート及びブ チレンカーボネートよりなる群から選ばれた少なくとも 一種の高誘電率溶媒を含有する溶媒にトリフルオロメタ ンスルホン酸リチウム又はヘキサフルオロリン酸リチウ ムを溶かしてなる非水電解液と、セパレータとを備える 非水電解液電池であって、前記非水電解液が、トリエチ ルアミン、n-プチルアミン、アニリン、トリメチルヒ ドロキシルアミン、1-ジメチルアミノ-2-メトキシ 10 エタン、アセトニトリル、アクリロニトリル、3-メト キシプロピオニトリル、ベンゾニトリル、ニトロメタ ン、ニトロエタン、N, N-ジメチルアセトアミド、 N. N-ジメチルホルムアミド、ホルムアミド、N-メ チル-2-ピロリドン、N, N' -ジメチルイミダゾリ ジノン、イソキサゾール、3,5-ジメチルイソキサゾ ール、3-メチル-2-オキサゾリドン、1,2,3-オキサジアゾール、N-メチルモルホリン、ジメチルス ルフィド、エチルメチルスルフィド、2-メチルチオフ ェン、1-ブタンチオール、ペンゼンチオール、ジメチ 20 ルサルフェート、ジエチルサルフェート、ジメチルサル ファイト、ジエチルサルファイト、プタジエンスルホ ン、3-メチルスルホレン、1、4-チオキサン、フェ ノキサチイン、1,4-チアジン、チオモルホリン、ピ リジン、1,3-ジメチル-2-イミダゾリジノン、ジ メチルスルホキシド、ジメチルスルホン、メチルエチル スルホネート及びジメチルスルフィナイトよりなる群か ら選ばれた少なくとも1種の添加剤を1~20体積%含 有することを特徴とする非水電解液電池。

【請求項2】前記非水電解液がさらに1, 2-ジメトキ 30シエタンを含有する請求項1記載の非水電解液電池。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、非水電解液電池に係わり、詳しくは非水電解液電池の保存特性を改善することを目的とした、非水電解液の改良に関する。

[0002]

【従来の技術及び発明が解決しようとする課題】近年、 リチウムを活物質とする負極を備える非水電解液電池 が、正極の活物質を適宜選定することにより高容量化が 40 可能なことから注目されている。

【0003】ところで、リチウムを括物質とする負極としては、金属リチウム、リチウム合金、炭素材料などが 提案されている。

【0004】しかしながら、これらの負極材料は一般に保存中に非水電解液と反応し易く、このためリチウムを負極の活物質とする非水電解液電池には、長期間保存すると自己放電により放電容量が著しく減少するという問題がある。

【0005】本発明は、この問題を解決するべくなされ 50 とを備える非水電解液電池の保存特性を改善するべく、

たものであって、その目的とするところは、負極と非水の気がよってにはお田さる自己が無なが知さることに

電解液との反応に起因する自己放電を抑制することにより、優れた保存特性を有する非水電解液電池を提供する にある。

[0006]

【課題を解決するための手段】上記目的を達成するため の本発明に係る非水電解液電池(本発明電池)は、正極 と、リチウムを活物質とする負極と、エチレンカーポネ ート、プロピレンカーポネート及びプチレンカーポネー トよりなる群から選ばれた少なくとも一種の高誘電率溶 媒にトリフルオロメタンスルホン酸リチウム又はヘキサ フルオロリン酸リチウムを溶かしてなる非水電解液と、 セパレータとを備える非水電解液電池であって、前記非 水電解液が、トリエチルアミン、n-プチルアミン、ア ニリン、トリメチルヒドロキシルアミン、1-ジメチル アミノー2-メトキシエタン、アセトニトリル、アクリ ロニトリル、3-メトキシプロピオニトリル、ペンゾニ トリル、ニトロメタン、ニトロエタン、N, N-ジメチ ルアセトアミド、N, N-ジメチルホルムアミド、ホル ムアミド、N-メチル-2-ピロリドン、N, N'-ジ メチルイミダゾリジノン、イソキサゾール、3,5-ジ メチルイソキサゾール、3-メチル-2-オキサゾリド ン、1、2、3-オキサジアゾール、N-メチルモルホ リン、ジメチルスルフィド、エチルメチルスルフィド、 2-メチルチオフェン、1-プタンチオール、ペンゼン チオール、ジメチルサルフェート、ジエチルサルフェー ト、ジメチルサルファイト、ジエチルサルファイト、ブ タジエンスルホン、3-メチルスルホレン、1,4-チ オキサン、フェノキサチイン、1,4-チアジン、チオ モルホリン、ピリジン、1,3-ジメチル-2-イミダ ゾリジノン、ジメチルスルホキシド、ジメチルスルホ ン、メチルエチルスルホネート及びジメチルスルフィナ イトよりなる群から選ばれた少なくとも1種の添加剤を 1~20体積%含有する。

【0007】本発明電池の非水電解液は特定の添加剤を 1~20体積%含有する。添加剤含有率がこの範囲を外 れると、保存特性が向上しにくくなる。

[0008] 非水電解液の溶媒として、上記高誘電率溶媒に1,2-ジメトキシエタンを加えた混合溶媒を使用すれば、保存特性をさらに改善することができる。その場合の高誘電率溶媒と1,2-ジメトキシエタンとの好適な含有比は、体積比で3:7~7:3の範囲である。

【0009】リチウムを活物質とする負極の具体例としては、リチウム合金(リチウム・アルミニウム合金、リチウム・鉛合金など)、金属酸化物 (LiNb2Osなど) 又は炭素材料(黒鉛、コークス、有機物焼成体など)を負極材料に使用したものが挙げられる。

[0010] 本発明は、特定の負極と特定の非水電解液とを備える非水電解液電池の保存特性を改善するべく、

非水電解液として特定の添加剤を所定量含有するものを 使用した点にその特徴が有る。したがって、正極、セパ レータなどの電池を構成する他の部材については、非水 電解液電池用として従来提案乃至実用されている種々の ものを使用することができる。また、本発明は、一次電 池及び二次電池の両方に適用可能なものである。

[0011]

【作用】非水電解液に含有させた特定の添加剤と、非水電解液中の溶媒・溶質及び負極中のリチウムとが反応して、負極表面に被膜が形成される。この被膜により、負 10極と非水電解液との反応が起こりにくくなるので、自己放電が抑制される。その結果、長期間保存した場合でも放電容量が減少しにくくなる(保存特性の向上)。なお、被膜は電子電導性が良好であるので、負極に被膜が形成されることにより負極における電極反応が阻害されることはない。

[0012]

【実施例】以下、本発明を実施例に基づいてさらに詳細 に説明するが、本発明は下記実施例に何ら限定されるも のではなく、その要旨を変更しない範囲において適宜変*20

*更して実施することが可能なものである。

【0013】〔圧極の作製〕活物質としての二酸化マンガン(375°Cで熱処理した二酸化マンガン)と、導電剤としてのアセチレンブラックと、結着剤としてのポリフッ化ビニリデンとを、重量比80:10:10で混合して正極合剤を調製し、この正極合剤をNーメチルー2ーピロリドンに分散させてスラリーを調製し、このスラリーをアルミニウム箔上に塗布し、圧延し、直径20mmの円盤状に打ち抜いた後、150°Cで2時間熱処理して、正極を作製した。

【0014】〔負極の作製〕金属リチウム圧延板を直径20mmの円盤状に打ち抜いて、負極を作製した。

【0015】〔非水電解液の調製〕表 $1\sim$ 表6に組成を示す溶媒に、トリフルオロメタンスルホン酸リチウム(LiCF:SO:)又はヘキサフルオロリン酸リチウム(LiPF:)を1モル/リットル溶かして非水電解液を調製した。

[0016]

【表1】

浴蛛組成比 (体磁比)		溶質	自己放锯率(%)
BC:DME = 50:50 BC:DME:トリエナがイミッ = 47.5:47.5:5 BC:DME:カーナチがイミッ = 47.5:47.5:5 BC:DME:オーナチがイミッ = 47.5:47.5:5 BC:DME:オーナチがイミッ = 47.5:47.5:5 BC:DME:オーナチがイミッ = 47.5:47.5:5 BC:DME:オーナチがイミッ = 47.5:47.5:5 BC:DME:オーナートリル = 47.5:47.5:5 BC:DME:オーナートリー = 47.5:47.5:5 BC:DME:オーカートリートリー・オーカー・オーカー・カートリー・カー	》)	ងគំនំនំងំងំងំងំងំងំងំងំងំងំងំងំងំងំងំងំង	1 4 5 8 8 5 4 4 5 5 4 5 4 5 8 8 8 8 8 8 8

[0017]

【表2】

溶媒組成比 (体徵比)		溶質	自己放電率 (%)
BC:1ME:3-7月が入り本レソ = 47.5:47.5:5 (BC:DME:7**/ 1,4-74**サン = 47.5:47.5:5 (BC:DME:7**/ 1,4-74*サン = 47.5:47.5:5 (BC:DME:1,4-7**)ソ = 47.5:47.5:5 (BC:DME:1,4-7**)ソ = 47.5:47.5:5 (BC:DME:1,3-7)/ 1,4-2-4:4/リリソッ=47.5:47.5:5 (BC:DME:1,3-7)/ 1,4-2-4:4/リリソッ=47.5:47.5:5 (BC:DME:3)/ 1,4-3-4-4 (-1,7-5)/ 1,5-5 (-1,7	本本本本本本本本本本本本本本本本本本本本本本本本本本本本本本本本本本本本本本	និស្តិន និស្សិន និស្តិន និស្តិន និស្តិន និស្តិន និស្តិន និស្តិន និស្តិន និស្សិន និស្តិន និស្តិន និស្តិន និស្តិន និស្តិន និស្តិន និស្តិន និស្សិន និស្តិន និស្សិន និស្ស	55555554545555455554

[0018]

* *【表3】

	浴煤組成比(体	植比)	溶質	自己放電率 (%)
BC: Filthatiy	= 100	(比較電池)	LiCF,SO,	1 8
	= 95:5	(本発明電池Y)	LiCF,SO,	5

[0019]

※ ※【表4】

裕與組成比(体徵比)	裕質	自己放電率 (%)
EC:DeE = 50:50 (比較電池) EC:DeE:	Lice So, Lice So, Lic	1 9 1 65 1 44 2 1 1 8 1 8 1 6

[0020]

★ ★【表5】

	浴媒組成比 (体積比)		浴質	自己放電率(%)
EC:PC:DME EC:PC:DME EC:BC:DME EC:BC:DME PC:BC:DME PC:BC:DME	: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(比較電池) (本発明電池) (比較電池) (本発明電池) (比較電池) (本発明電池)	Lice, SO, Lice, SO, Lice, SO, Lice, SO, Lice, SO, Lice, SO,	1 4 4 1 3 4 1 3

[0021]

☆40☆【表6】

添加剂組成比(体積比)	常質	自己放電率(%)
BC:DME:トリエナがマン = 49.95:49.95:0.1 (比較戦) BC:DME:トリエナがマン = 49.75:49.75:0.5 (比較戦) BC:DME:トリエナがマン = 49.5:49.5:1 (本発明) BC:DME:トリエナがマン = 49:40:20 (本発明) BC:DME:トリエナがマン = 40:40:20 (本発明) BC:DME:トリエナがマン = 35:35:30 (比較戦)	性) はでいい。 電池) はでいい。 電池) はでいい。 電池) はでいい。	1 3 1 2 5 5 5 1 8

【0022】 〔電池の組立〕以上の正極、負極及び非水 m) 電解液を用いて種々の扁平型の非水電解液電池を組み立 微多 てた (電池寸法:直径20.0mm、厚さ2.5m 50 た。

m)。なお、セパレータとしては、ポリプロピレン製の 微多孔膜を使用し、これに先の非水電解液を含浸させ

【0023】〔各電池の自己放電率〕各電池の電池組立 直後の25°Cでの放電容量C1及び80°Cで二箇月保存した後の25°Cでの放電容量C2を求めて、各電 池の保存後の自己放電率を、下式により算出した。放電容量C1、C2は、全て1k Ω の定抵抗で放電して求めたものである。結果を先の表1~表6に示す。なお、表中、ECはエチレンカーポネートを、PCはプロピレンカーボネートを、BCは、プチレンカーポネートを、またDMEは1,2-ジメトキシエタンを、それぞれ表す。

[0024]

自己放電率(%)=(1-C2/C1)×100

【0025】表1~表5に示すように、特定の添加剤を含有する非水電解液(添加剤含有率はいずれも5体積%)を使用した本発明電池は、添加剤を含有しない溶媒及び溶質が同じ非水電解液を使用した比較電池に比べて、自己放電率が低い。このことから、非水電解液に特定の添加剤を含有させることにより、保存特性に優れた

非水電解液電池が得られることが分かる。

【0026】また、表1中の本発明電池Xが、表3中の本発明電池Yに比べて自己放電率が低いことから、高率放電溶媒と1,2一ジメトキシエタンとの混合溶媒を使用することにより、より一層保存特性に優れた非水電解液電池が得られることが分かる。

【0027】さらに、表6に示すように、添加剤含有率を1~20体積%とした場合は、自己放電率が5%と極めて低いのに対して、添加剤含有率がこの範囲を外れる10と自己放電率が高くなる。このことから、非水電解液の添加剤含有率を1~20体積%の範囲に規制する必要があることが分かる。

[0028]

【発明の効果】添加剤がリチウムなどと反応して負極の 表面に被膜を形成し、この被膜が負極と非水電解液の反 応を起こりにくくするので、長期間保存した場合でも自 己放電が起こりにくい。このため、本発明電池は、保存 特性に優れる。

フロントページの続き

(72)発明者 西尾 晃治

大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内

(72)発明者 斎藤 俊彦

大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内