Estruturas Discretas

Teoria dos Números Aritmética Modular

Profa. Helena Caseli helenacaseli@dc.ufscar.br

Conceitualização

- Teoria dos Números
 - Se preocupa com as propriedades e relações entre os números

Conceitualização

- Teoria dos Números
 - Se preocupa com as propriedades e relações entre os números
- Aritmética Modular
 - Estuda as operações básicas como adição e multiplicação no contexto dos números inteiros módulo n

Conceitualização

- Teoria dos Números
 - Se preocupa com as propriedades e relações entre os números
- Aritmética Modular
 - Estuda as operações básicas como adição e multiplicação no contexto dos números inteiros módulo n

RELEMBRANDO

- Função módulo (ou resto)
 - Para qualquer inteiro x e qualquer inteiro positivo n, a função módulo n, denotada por

$$f(x) = x \mod n$$

Associa a cada x o resto da sua divisão (inteira) por n

O que é?

 Um dos ramos mais antigos da matemática que engloba, basicamente, a teoria das propriedades dos inteiros (divisibilidade, paridade, primos relativos)

O que é?

 Um dos ramos mais antigos da matemática que engloba, basicamente, a teoria das propriedades dos inteiros (divisibilidade, paridade, primos relativos)

Por que estudar?

 A Teoria dos Números se tornou central na criptografia e na segurança dos computadores

O que é?

 Um dos ramos mais antigos da matemática que engloba, basicamente, a teoria das propriedades dos inteiros (divisibilidade, paridade, primos relativos)

Por que estudar?

- A Teoria dos Números se tornou central na criptografia e na segurança dos computadores
- Neste curso
 - Não serão apresentados métodos para criptografia, mas veremos a aritmética modular, que é fundamental para esses métodos

Divisibilidade

- Sejam a e b dois inteiros com b ≠ 0. Dizemos que b divide a se há um inteiro c tal que a = bc
 - Denotamos b|a

Divisibilidade

- Sejam a e b dois inteiros com b ≠ 0. Dizemos que b divide a se há um inteiro c tal que a = bc
 - Denotamos b|a

Teorema - Divisão

Sejam $a, b \in \mathbb{Z}$ com b > 0. Então, existem inteiros q e r tais que

$$a = qb + re 0 \le r < b$$

Divisibilidade

- Sejam a e b dois inteiros com b ≠ 0. Dizemos que b divide a se há um inteiro c tal que a = bc
 - Denotamos b|a

Teorema - Divisão

Sejam $a, b \in \mathbb{Z}$ com b > 0. Então, existem inteiros q e r tais que

$$a = qb + re 0 \le r < b$$

- Além disso, existe <u>um único par de tais inteiros (q, r)</u> que satisfaz essas condições
- O inteiro q é chamado **quociente** e o inteiro r é chamado **resto**
- O resto <u>nunca</u> é negativo e só é igual a 0 se b|a

Divisibilidade

$$a = qb + r$$

- Exemplos
 - Sejam a = 35 e b = 10

 Sejam a = -37 e b = 5 (Atenção!! Divisão de um inteiro negativo)

• Sejam a = -19 e b = 4

Divisibilidade

$$a = qb + r$$

- Exemplos
 - Sejam a = 35 e b = 10 Então o quociente é q = 3 e o resto é r = 5, porque $35 = 3 * 10 + 5 e 0 \le 5 < 10$
 - Sejam a = -37 e b = 5 (Atenção!! Divisão de um inteiro negativo)

Então o quociente é q = -8 e o resto é r = 3, porque $-37 = -8 * 5 + 3 e 0 \le 3 < 5$

• Sejam a = -19 e b = 4Então o quociente é q = -5 e o resto é r = 1, porque -19 = -5 * 4 + 1 e $0 \le 1 < 4$

Div e Mod

- São operações associadas ao processo de divisão
 - Div retorna o quociente da divisão
 - Mod retorna o resto da divisão

Div e Mod

- São operações associadas ao processo de divisão
 - Div retorna o quociente da divisão
 - Mod retorna o resto da divisão

Sejam $a, b \in \mathbb{Z}$ com b > 0. Pelo Teorema da Divisão, existe um único par de inteiros q e r tais que

$$a = qb + re 0 \le r < b$$

Definimos as operações div e mod como:

$$a \operatorname{div} b = q$$
 e $a \operatorname{mod} b = r$

Div e Mod

Calcule

• 12 div 5 = ? 12 mod 5 = ?

• 35 div 3 = ? 35 mod 3 = ?

• 30 div 6 = ? 30 mod 6 = ?

-7 div 4 = ? -7 mod 4 = ?

-19 div 7 = ? -19 mod 7 = ?

• 11 div 3 = ? 11 mod 3 = ?

• 23 div 10 = ? 23 mod 10 = ?

Div e Mod

Calcule

-7 div
$$4 = -2$$
 -7 mod $4 = 1$ (-7 = -2 * 4 + 1 e 0 \leq 1 < 4)

- Máximo Divisor Comum (MDC)
 - O máximo divisor comum de $a, b \in \mathbb{Z}$ é o maior inteiro que divide a e b
 - Denotamos mdc(a,b)

Máximo Divisor Comum (MDC)

- O máximo divisor comum de $a, b \in \mathbb{Z}$ é o maior inteiro que divide a e b
 - Denotamos mdc(a,b)

Sejam $a, b \in \mathbb{Z}$. Dizemos que um inteiro d é o **máximo** divisor comum de a e b se

- d é um divisor comum de a e b, e
- se c é um divisor comum de a e b, então $c \le d$

Máximo Divisor Comum (MDC)

- O máximo divisor comum de $a, b \in \mathbb{Z}$ é o maior inteiro que divide a e b
 - Denotamos mdc(a,b)

Sejam $a, b \in \mathbb{Z}$. Dizemos que um inteiro d é o **máximo** divisor comum de a e b se

- d é um divisor comum de a e b, e
- se c é um divisor comum de a e b, então $c \le d$

Se existir o mdc(a, b) então ele é único

Máximo Divisor Comum (MDC)

- Exemplos
 - mdc(18, 24) = ?
 - mdc(30, 20) = ?
 - mdc(30, 24) = ?
 - mdc(-30, -24) = ?

Máximo Divisor Comum (MDC)

- Exemplos
 - mdc(18, 24) = 6
 - mdc(30, 20) = 10
 - mdc(30, 24) = 6
 - mdc(-30, -24) = 6

Como calcular?

- Máximo Divisor Comum (MDC)
 - Algoritmo de Euclides

Proposição

Sejam a e b inteiros positivos, então mdc (a, b) = mdc (b, a mod b)

- Máximo Divisor Comum (MDC)
 - Algoritmo de Euclides

Proposição

Sejam $a \in b$ inteiros positivos, então mdc (a, b) = mdc (b, a mod b)

Entrada: dois inteiros positivos a e b

Saída: o b utilizado no último cálculo de mdc

Máximo Divisor Comum (MDC)

Algoritmo de Euclides

Proposição

Sejam $a \in b$ inteiros positivos, então mdc (a, b) = mdc (b, a mod b)

- Entrada: dois inteiros positivos a e b
- Passos
 - Dividir a por b e armazenar o resto em r
 - Se r = 0 retorna b
 - Senão calcular o mdc(b, r)
- Saída: o b utilizado no último cálculo de mdc

Máximo Divisor Comum (MDC)

Algoritmo de Euclides

Proposição

Sejam $a \in b$ inteiros positivos, então mdc (a, b) = mdc (b, a mod b)

- Entrada: dois inteiros positivos a e b
- Passos
 - Dividir a por b e armazenar o resto em r
 - Se r = 0 retorna b
 - Senão calcular o mdc(b, r)
- Saída: o b utilizado no último cálculo de mdc
- Quando a < b, a primeira iteração do algoritmo de Euclides apenas inverte a ordem dos valores

Máximo Divisor Comum (MDC)

Algoritmo de Euclides

Proposição

Sejam $a \in b$ inteiros positivos, então mdc (a, b) = mdc (b, a mod b)

- Entrada: dois inteiros positivos a e b
- Passos
 - Dividir a por b e armazenar o resto em r
 - Se r = 0 retorna b
 - Senão calcular o mdc(b, r)
- Saída: o b utilizado no último cálculo de mdc
- Quando a < b, a primeira iteração do algoritmo de Euclides apenas inverte a ordem dos valores

Recursividade

- Máximo Divisor Comum (MDC)
 - Exemplos
 - mdc (18, 24)

mdc (18, 24) ⇒

- Máximo Divisor Comum (MDC)
 - Exemplos
 - mdc (18, 24)

```
mdc (18, 24) \Rightarrow 18 \mod 24 = ?
```

- Máximo Divisor Comum (MDC)
 - Exemplos
 - mdc (18, 24)

 $mdc (18, 24) \Rightarrow 18 \mod 24 = 18$

- Máximo Divisor Comum (MDC)
 - Exemplos
 - mdc (18, 24)

```
mdc (18, 24) \Rightarrow 18 mod 24 = 18 mdc (24, 18) \Rightarrow
```

- Máximo Divisor Comum (MDC)
 - Exemplos
 - mdc (18, 24)

```
mdc (18, 24) \Rightarrow 18 \mod 24 = 18
```

 $mdc (24, 18) \Rightarrow 24 \mod 18 = ?$

- Máximo Divisor Comum (MDC)
 - Exemplos
 - mdc (18, 24)

```
mdc (18, 24) \Rightarrow 18 mod 24 = 18
```

 $mdc (24, 18) \Rightarrow 24 \mod 18 = 6$

- Máximo Divisor Comum (MDC)
 - Exemplos
 - mdc (18, 24)

```
mdc (18, 24) \Rightarrow 18 mod 24 = 18

mdc (24, 18) \Rightarrow 24 mod 18 = 6

mdc (18, 6) \Rightarrow
```

- Máximo Divisor Comum (MDC)
 - Exemplos
 - mdc (18, 24)

```
mdc (18, 24) \Rightarrow 18 mod 24 = 18
mdc (24, 18) \Rightarrow 24 mod 18 = 6
```

 $mdc (18, 6) \Rightarrow 18 \mod 6 = ?$

- Máximo Divisor Comum (MDC)
 - Exemplos
 - mdc (18, 24)

```
mdc (18, 24) \Rightarrow 18 mod 24 = 18

mdc (24, 18) \Rightarrow 24 mod 18 = 6

mdc (18, 6) \Rightarrow 18 mod 6 = 0
```

- Máximo Divisor Comum (MDC)
 - Exemplos
 - mdc (18, 24)

```
mdc (18, 24) \Rightarrow 18 mod 24 = 18

mdc (24, 18) \Rightarrow 24 mod 18 = 6

mdc (18, 6) \Rightarrow 18 mod 6 = 0

\Rightarrow 6
```


- Máximo Divisor Comum (MDC)
 - Calcule
 - mdc (75, 67)

 $mdc (75, 67) \Rightarrow ?$

- Máximo Divisor Comum (MDC)
 - Calcule
 - mdc (75, 67)

mdc (75, 67)
$$\Rightarrow$$
 75 mod 67 = 8
mdc (67, 8) \Rightarrow 67 mod 8 = 3
mdc (8, 3) \Rightarrow 8 mod 3 = 2
mdc (3, 2) \Rightarrow 3 mod 2 = 1
mdc (2, 1) \Rightarrow 2 mod 1 = 0
 \Rightarrow 1

- Números relativamente primos e número primo
 - Sejam a e b inteiros. Dizemos que a e b são relativamente primos (ou primos entre si) se e somente se mdc(a, b) = 1
 - → Dois inteiros são relativamente primos se os únicos divisores que eles têm em comum são 1 e -1

- Números relativamente primos e número primo
 - Sejam a e b inteiros. Dizemos que a e b são relativamente primos (ou primos entre si) se e somente se mdc(a, b) = 1
 - → Dois inteiros são relativamente primos se os únicos divisores que eles têm em comum são 1 e -1
 - Um inteiro positivo p > 1 é primo se ele é divisível por 1 e por ele mesmo (p)
 - Se n > 1 não é primo, então n é dito composto
 - 0 e 1 não são nem primos nem compostos!
 - 2 é o único primo par

Fatoração em primos

Teorema Fundamental da Aritmética

- Seja n um número inteiro positivo
- Então n se fatora (decompõe) em um produto de números primos
- Além disso, essa fatoração é única a menos da ordem dos primos

Fatoração em primos

Teorema Fundamental da Aritmética

- Seja n um número inteiro positivo
- Então n se fatora (decompõe) em um produto de números primos
- Além disso, essa fatoração é única a menos da ordem dos primos
 - Exemplos
 - **30 = ?**
 - 45 = ?
 - **24 = ?**

Fatoração em primos

Teorema Fundamental da Aritmética

- Seja n um número inteiro positivo
- Então n se fatora (decompõe) em um produto de números primos
- Além disso, essa fatoração é única a menos da ordem dos primos

Exemplos

Fatoração em primos

Teorema Fundamental da Aritmética

- Seja n um número inteiro positivo
- Então n se fatora (decompõe) em um produto de números primos
- Além disso, essa fatoração é única a menos da ordem dos primos

Exemplos

Qual o mdc(30,24)?

Fatoração em primos & mdc

- Calculando mdc usando fatoração em primos
 - Sejam a e b inteiros positivos. Podemos fatorá-los em números primos como

$$a = 2^{e2}3^{e3}5^{e5}7^{e7}...$$
 $b = 2^{f2}3^{f3}5^{f5}7^{f7}...$

- Assim, d = mdc(a, b) pode ser escrito como $d = 2^{\times 2}3^{\times 3}5^{\times 5}7^{\times 7}...$
- Onde $x2 = min\{e2, f2\}$, $x3 = min\{e3, f3\}$ e assim por diante
- Exemplo
 - mdc(30,24)
 30 = 2 * 3 * 5
 24 = 2³ * 3
 mdc(30,24) = 2¹ *3¹ * 5⁰ = 6

Fatoração em primos & mdc

- Calcule o mdc usando fatoração em primos
 - a) mdc(15, 28)
 - b) mdc(40, 78)
 - c) mdc(13, 7)

Fatoração em primos & mdc

- Calcule o mdc usando fatoração em primos
 - a) mdc(15, 28) = 1

$$15 = 3^1 * 5^1$$

$$28 = 2^2 * 7^1$$

b) mdc(40, 78) = 2

$$40 = 2^3 * 5^1$$

$$78 = 2^1 * 3^1 * 13^1$$

c) mdc(13, 7) = 1

$$13 = 13^1$$

$$7 = 7^1$$

Aritmética modular

 É o estudo das operações básicas (adição, subtração, multiplicação e divisão) no contexto dos números inteiros módulo n

- É o estudo das operações básicas (adição, subtração, multiplicação e divisão) no contexto dos números inteiros módulo n
- O conjunto Z_n
 - O conjunto Z_n, onde n é um inteiro positivo, é o conjunto de todos os números naturais de 0 a n-1, inclusive:

$$Z_n = \{0, 1, 2, ..., n-1\}$$

Aritmética modular

- É o estudo das operações básicas (adição, subtração, multiplicação e divisão) no contexto dos números inteiros módulo n
- O conjunto Z_n
 - O conjunto Z_n, onde n é um inteiro positivo, é o conjunto de todos os números naturais de 0 a n-1, inclusive:

$$Z_n = \{0, 1, 2, ..., n - 1\}$$

Exemplos

•
$$Z_1 = \{0\}$$
 $Z_2 = \{0, 1\}$ $Z_3 = \{0, 1, 2\}$
• $Z_4 = \{0, 1, 2, 3\}$ $Z_{10} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

• . . .

- Adição (⊕) e multiplicação (⊗) modulares
 - Para trabalhar com operações modulares, é necessário definir previamente qual o contexto em que as operações serão realizadas, ou seja o conjunto Z_n

Aritmética modular

- Adição (⊕) e multiplicação (⊗) modulares
 - Para trabalhar com operações modulares, é necessário definir previamente qual o contexto em que as operações serão realizadas, ou seja o conjunto Z_n
 - Sejam n um inteiro positivo e $a, b \in \mathbb{Z}_n$. Definimos

```
a \oplus b = (a + b) \mod n (adição modular)
```

 $a \otimes b = (a * b) \mod n$ (multiplicação modular)

- Adição (⊕) e multiplicação (⊗) modulares
 - Para trabalhar com operações modulares, é necessário definir previamente qual o contexto em que as operações serão realizadas, ou seja o conjunto Z_n
 - Sejam n um inteiro positivo e $a, b \in \mathbb{Z}_n$. Definimos

```
a \oplus b = (a + b) \mod n (adição modular)
```

- $a \otimes b = (a * b) \mod n$ (multiplicação modular)
- → "a soma modular de a e b no contexto Z_n é igual ao resto da divisão inteira da soma de a e b por n"
- → "o produto modular de a e b no contexto Z_n é igual ao resto da divisão inteira do produto de a e b por n"

Aritmética modular

Exemplos – adição (⊕) e multiplicação (⊗)

```
• Se n = 10, Z_{10} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}
```

- **•** 5 ⊕ 5 = **?**
- 9 ⊕ 8 = ?
- **■** 5 ⊗ 5 = **?**
- **■** 9 ⊗ 8 = ?

- Exemplos adição (⊕) e multiplicação (⊗)
 - Se n = 10, $Z_{10} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 - $5 \oplus 5 = (5 + 5) \mod 10 = 10 \mod 10 = 0$
 - $9 \oplus 8 = (9 + 8) \mod 10 = 17 \mod 10 = 7$
 - $5 \otimes 5 = (5 * 5) \mod 10 = 25 \mod 10 = 5$
 - \bullet 9 \otimes 8 = (9 * 8) mod 10 = 72 mod 10 = 2

Aritmética modular

Exemplos – adição (⊕) e multiplicação (⊗)

• Se
$$n = 10$$
, $Z_{10} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

•
$$5 \oplus 5 = (5 + 5) \mod 10 = 10 \mod 10 = 0$$

•
$$9 \oplus 8 = (9 + 8) \mod 10 = 17 \mod 10 = 7$$

•
$$5 \otimes 5 = (5 * 5) \mod 10 = 25 \mod 10 = 5$$

$$\bullet$$
 9 \otimes 8 = (9 * 8) mod 10 = 72 mod 10 = 2

• Se
$$n = 7$$
, $Z_7 = \{0, 1, 2, 3, 4, 5, 6\}$

Aritmética modular

Exemplos – adição (⊕) e multiplicação (⊗)

• Se
$$n = 10$$
, $Z_{10} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

•
$$5 \oplus 5 = (5 + 5) \mod 10 = 10 \mod 10 = 0$$

•
$$9 \oplus 8 = (9 + 8) \mod 10 = 17 \mod 10 = 7$$

•
$$5 \otimes 5 = (5 * 5) \mod 10 = 25 \mod 10 = 5$$

$$\bullet$$
 9 \otimes 8 = (9 * 8) mod 10 = 72 mod 10 = 2

• Se
$$n = 7$$
, $Z_7 = \{0, 1, 2, 3, 4, 5, 6\}$

•
$$5 \oplus 5 = (5 + 5) \mod 7 = 10 \mod 7 = 3$$

•
$$3 \oplus 6 = (3 + 6) \mod 7 = 9 \mod 7 = 2$$

•
$$5 \otimes 5 = (5 * 5) \mod 7 = 25 \mod 7 = 4$$

$$\bullet$$
 3 \otimes 6 = (3 * 6) mod 7 = 18 mod 7 = 4

- Aritmética modular
 - Quanto é 11 ⊕ 8 em Z₁₂?

- Quanto é 11 ⊕ 8 em Z₁₂?
 - (11+8) mod 12 = 19 mod 12 = 7

Aritmética modular

- Quanto é 11 ⊕ 8 em Z₁₂?
 - (11+8) mod 12 = 19 mod 12 = 7
 - Analogia do relógio
 - → 11 horas + 8 horas = (11+8) mod 12 = 19 mod 12 = 7

 Por isso a aritmética modular também é chamada de aritmética do relógio ou circular

- Propriedades das operações
 - Fechamento
 - Sejam $a, b \in Z_n$. Então $a \oplus b$ e $a \otimes b \in Z_n$
 - Essa propriedade diz que o resultado da soma ou da multiplicação modular entre elementos de um dado contexto também está no mesmo contexto

- Propriedades das operações
 - Fechamento
 - Sejam $a, b \in Z_n$. Então $a \oplus b$ e $a \otimes b \in Z_n$
 - Essa propriedade diz que o resultado da soma ou da multiplicação modular entre elementos de um dado contexto também está no mesmo contexto
 - Exemplo
 - Se n = 10 e a = 9 e b = 8 (a, b $\in Z_{10}$)
 - 9 \oplus 8 = (9 + 8) mod 10 = 17 mod 10 = 7 e 7 ∈ Z_{10}

- Propriedades das operações
 - Comutatividade
 - Seja n inteiro com $n \ge 2$
 - Para todos os valores $a, b \in \mathbb{Z}_n$, temos que

$$a \oplus b = b \oplus a e a \otimes b = b \otimes a$$

- Associatividade
 - Para todos os valores a, b, c ∈ Z_n , temos que $a \oplus (b \oplus c) = (a \oplus b) \oplus c$ e $a \otimes (b \otimes c) = (a \otimes b) \otimes c$

- Propriedades das operações
 - Elemento identidade
 - Para todo $a \in Z_n$, temos que

$$a\oplus 0 = a$$
, $a\otimes 1 = a e a\otimes 0 = 0$

- Distributividade
 - Para todos os valores $a, b, c \in Z_n$, temos que

$$a\otimes (b\oplus c) = (a\otimes b)\oplus (a\otimes c)$$

- Proposição
 - Seja n um inteiro positivo e sejam a, $b \in Z_n$. Então, existe um e um só $x \in Z_n$ tal que $a = b \oplus x$
 - O mesmo não pode ser afirmado sobre a multiplicação modular

- Proposição
 - Seja n um inteiro positivo e sejam a, $b \in Z_n$. Então, existe um e um só $x \in Z_n$ tal que $a = b \oplus x$
 - O mesmo não pode ser afirmado sobre a multiplicação modular
 - Exemplo
 - Considere o contexto $Z_{10} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 - Qual é o valor de x que satisfaz a equação 2⊗x = 6?
 - Qual é o valor de x que satisfaz a equação 2⊗x = 7?

- Proposição
 - Seja n um inteiro positivo e sejam a, $b \in Z_n$. Então, existe um e um só $x \in Z_n$ tal que $a = b \oplus x$
 - O mesmo não pode ser afirmado sobre a multiplicação modular
 - Exemplo
 - Considere o contexto $Z_{10} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 - Qual é o valor de x que satisfaz a equação $2 \otimes x = 6$? R. $2 \otimes 3 = 6$ e que $2 \otimes 8 = 6$. Assim, x pode ser 3 ou 8
 - Qual é o valor de x que satisfaz a equação 2⊗x = 7?
 R. não há valores para x que resolvam essa equação

Aritmética modular

- Subtração (θ) modular
 - Seja n um inteiro positivo e sejam a, $b \in Z_n$
 - Então,

$$\mathbf{a} \theta \mathbf{b} = (\mathbf{a} - \mathbf{b}) \mod \mathbf{n}$$

• Ou, alternativamente, definimos a θ b como o único valor $x \in Z_n$ tal que $a = b \oplus x$

- Subtração (θ) modular
 - Seja n um inteiro positivo e sejam a, $b \in \mathbb{Z}_n$
 - Então,

$$\mathbf{a} \theta \mathbf{b} = (\mathbf{a} - \mathbf{b}) \mod \mathbf{n}$$

- Ou, alternativamente, definimos a θ b como o único valor $x \in Z_n$ tal que $a = b \oplus x$
- Exemplos
 - Se n = 10, $Z_{10} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 - 3 θ 2 = ? (é a solução para 3 = 2 \oplus x)
 - 9 θ 8 = ? (é a solução para 9 = 8 \oplus x)
 - $4 \theta 9 = ?$ (é a solução para $4 = 9 \oplus x$)

- Subtração (θ) modular
 - Seja n um inteiro positivo e sejam a, $b \in \mathbb{Z}_n$
 - Então,

$$\mathbf{a} \theta \mathbf{b} = (\mathbf{a} - \mathbf{b}) \mod \mathbf{n}$$

- Ou, alternativamente, definimos a θ b como o único valor $x \in Z_n$ tal que $a = b \oplus x$
- Exemplos
 - Se n = 10, $Z_{10} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 - 3 θ 2 = 1 (é a solução para 3 = 2 \oplus x)
 - 9 θ 8 = 1 (é a solução para 9 = 8 \oplus x)
 - $4 \theta 9 = 5$ (é a solução para $4 = 9 \oplus x$)

- Inverso (a-1) modular
 - Sejam n um inteiro positivo e $a \in Z_n$. O inverso de a é um elemento $b \in Z_n$ tal que

$$a\otimes b = 1$$

- Inverso (a-1) modular
 - Sejam n um inteiro positivo e $a \in Z_n$. O inverso de a é um elemento $b \in Z_n$ tal que

$$a\otimes b = 1$$

- → O inverso de um elemento a é denotado por a-1
- Um elemento de Z_n que tenha inverso é chamado inversível
- → Nem todos os elementos de Z_n têm inverso. Porém, se ele tiver inverso, esse inverso é único

- Inverso (a-1) modular
 - Exemplos
 - Em $Z_{10} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 - O inverso de 2 é o elemento $x \in Z_{10}$ tal que $2 \otimes x = 1$
 - O inverso do elemento 3 é o elemento $x \in Z_{10}$ tal que $3 \otimes x = 1$

Aritmética modular

- Inverso (a-1) modular
 - Exemplos
 - Em $Z_{10} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 - O inverso de 2 é o elemento $x \in Z_{10}$ tal que $2 \otimes x = 1$
 - R. 2 não tem inverso
 - O inverso do elemento 3 é o elemento $x \in Z_{10}$ tal que $3 \otimes x = 1$

```
R. Podemos verificar que 3 \otimes 7 = (3*7) \mod 10 = 21 \mod 10 = 1
Logo, x = 7 é o inverso de 3 em Z_{10}. Escrevemos 3^{-1}=
```

7

- Inverso (a-1) modular
 - Se calcularmos o inverso de todos os elementos de Z_{10} , vamos verificar que:
 - 0 não tem inverso
 - Os elementos 2, 4, 5, 6 e 8 não têm inversos
 - Os elementos 1, 3, 7 e 9 têm inversos, e esse inverso é único

- Inverso (a-1) modular
 - Se calcularmos o inverso de todos os elementos de Z_{10} , vamos verificar que:
 - 0 não tem inverso
 - Os elementos 2, 4, 5, 6 e 8 não têm inversos
 - Os elementos 1, 3, 7 e 9 têm inversos, e esse inverso é único
 - Das afirmações colocadas, concluímos que os elementos de Z₁₀ que têm inverso são exatamente aqueles que são relativamente primos com 10

Aritmética modular

Inverso (a-1) modular

Teorema – Elementos invertíveis em **Z**_n

- Seja n um inteiro positivo e seja a $\in Z_n$
- Então, a é invertível se e somente se a e n são relativamente primos

Aritmética modular

Inverso (a-1) modular

Teorema – Elementos invertíveis em Z_n

- Seja n um inteiro positivo e seja $a \in Z_n$
- Então, a é invertível se e somente se a e n são relativamente primos
 - Dois números inteiros são relativamente primos se o máximo divisor comum deles é 1, ou seja, mdc(a,b) = 1
 - De fato, os elementos de Z_{10} que são relativamente primos com 10 são exatamente aqueles que têm inverso em Z_{10}
 - mdc(1,10) = 1, mdc(3,10) = 1, mdc(7,10) = 1, mdc(9,10) = 1

Aritmética modular

• No contexto Z_9 = {0, 1, 2, 3, 4, 5, 6, 7, 8}, diga quais são os elementos invertíveis em Z_9 e quais não são

- No contexto Z_9 = {0, 1, 2, 3, 4, 5, 6, 7, 8}, diga quais são os elementos invertíveis em Z_9 e quais não são
 - Os elementos invertíveis em Z₉ são 1, 2, 4, 5, 7 e 8, todos relativamente primos com 9
 - Os elementos não invertíveis em Z₉ são 0, 3 e 6

- Divisão (Ø) modular
 - Seja n um inteiro positivo e seja b um elemento invertível de Z_n
 - Seja a $\in \mathbb{Z}_n$ arbitrário
 - Então, definimos a divisão modular como

$$a \varnothing b = a \otimes b^{-1}$$

- Divisão (Ø) modular
 - Seja n um inteiro positivo e seja b um elemento invertível de Z_n
 - Seja a $\in \mathbb{Z}_n$ arbitrário
 - Então, definimos a divisão modular como

$$a \varnothing b = a \otimes b^{-1}$$

- Exemplo
 - Em $\in \mathbb{Z}_{10}$ calcule $2\emptyset 7$
 - Como $7^{-1} = 3$, $2\emptyset 7 = 2 \otimes 3 = 6$

- Exemplo de aplicação
 - CPF Cadastro de Pessoa Física
 - O CPF é composto por 11 dígitos, onde os primeiros oito dígitos são o número-base, o nono define a Região Fiscal, o penúltimo é o DV módulo 11 dos nove anteriores e o último é o DV módulo 11 dos dez anteriores
 - Exemplo: CPF = 280.012.389-38

- Exemplo de aplicação
 - CPF Cadastro de Pessoa Física
 - O CPF é composto por 11 dígitos, onde os primeiros oito dígitos são o número-base, o nono define a Região Fiscal, o penúltimo é o DV módulo 11 dos nove anteriores e o último é o DV módulo 11 dos dez anteriores
 - Exemplo: CPF = 280.012.389-38

$$S = 2*1 + 8*2 + 0*3 + 0*4 + 1*5 + 2*6 + 3*7 + 8*8 + 9*9$$

 $S = 2 + 16 + 0 + 0 + 5 + 12 + 21 + 64 + 81$
 $201 \mod 11 = 3$

- Exemplo de aplicação
 - CPF Cadastro de Pessoa Física
 - O CPF é composto por 11 dígitos, onde os primeiros oito dígitos são o número-base, o nono define a Região Fiscal, o penúltimo é o DV módulo 11 dos nove anteriores e o último é o DV módulo 11 dos dez anteriores
 - Exemplo: CPF = 280.012.389-38

$$S = 2*0 + 8*1 + 0*2 + 0*3 + 1*4 + 2*5 + 3*6 + 8*7 + 9*8 + 3*9$$

 $S = 0 + 8 + 0 + 0 + 4 + 10 + 18 + 56 + 72 + 27$
 $195 \mod 11 = 8$