Weekly Summary Template

Advait Ashtikar

Table of contents

Tuesday, Feb 14	1
Loading Libraries	2
Explanation of the Variables	3
Exploratory Data Analysis:	
Regression Model	7
Correlation Table	11
Variance Inflation Factors	14
Stepwise Regression	15
Thursday, Feb 16	22

Tuesday, Feb 14

! TIL

Include a *very brief* summary of what you learnt in this class here. Today, I learnt the following concepts in class:

- 1. Multicollinearity
- 2. Variable Selection
- 3. Shrinkage Estimators

Loading Libraries

```
library(tidyverse)
-- Attaching packages ----- tidyverse 1.3.2 --
v ggplot2 3.4.1 v purrr 1.0.1
v readr 2.1.4 v forcats 1.0.0
-- Conflicts ----- tidyverse conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
  library(ISLR2)
  library(dplyr)
  library(readr)
  library(purrr)
  library(glmnet)
Loading required package: Matrix
Attaching package: 'Matrix'
The following objects are masked from 'package:tidyr':
   expand, pack, unpack
Loaded glmnet 4.1-6
  library(caret)
Loading required package: lattice
Attaching package: 'caret'
The following object is masked from 'package:purrr':
   lift
```

Loading required package: carData Attaching package: 'car' The following object is masked from 'package:dplyr': recode

The following object is masked from 'package:purrr':

some

library(car)

```
library(corrplot)
```

```
corrplot 0.92 loaded
```

In this class, we learnt about variable selection. For this, we will use **Boston housing dataset** which is described here:

```
library(ISLR2)
attach(Boston)

df <- Boston
head(df)</pre>
```

```
crim zn indus chas
                                           dis rad tax ptratio 1stat medv
                                rm age
1 0.00632 18
             2.31
                     0 0.538 6.575 65.2 4.0900
                                                 1 296
                                                          15.3
                                                               4.98 24.0
2 0.02731 0
             7.07
                     0 0.469 6.421 78.9 4.9671
                                                 2 242
                                                          17.8
                                                               9.14 21.6
3 0.02729
          0
             7.07
                     0 0.469 7.185 61.1 4.9671
                                                 2 242
                                                          17.8 4.03 34.7
4 0.03237
             2.18
                     0 0.458 6.998 45.8 6.0622
                                                 3 222
                                                               2.94 33.4
          0
                                                          18.7
5 0.06905
          0 2.18
                     0 0.458 7.147 54.2 6.0622
                                                 3 222
                                                          18.7 5.33 36.2
6 0.02985 0 2.18
                     0 0.458 6.430 58.7 6.0622
                                                 3 222
                                                          18.7 5.21 28.7
```

Explanation of the Variables

The original data are 506 observations on 14 variables, medv being the target variable:

- crim per capita crime rate by town
- zn proportion of residential land zoned for lots over 25,000 sq.ft
- indus proportion of non-retail business acres per town
- chas Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
- nox nitric oxides concentration (parts per 10 million)
- rm average number of rooms per dwelling
- age proportion of owner-occupied units built prior to 1940
- dis weighted distances to five Boston employment centres
- rad index of accessibility to radial highways
- tax full value property tax rate per USD 10,000
- ptratio pupil teacher ratio by town
- 1stat percentage of lower status of the population
- medv median value of owner occupied homes is USD 1000's

Exploratory Data Analysis:

Histogram:

```
df %>%
  keep(is.numeric) %>%
  gather() %>%
  ggplot(aes(value)) +
  geom_histogram() +
  facet_wrap(~ key, scales = "free")
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Boxplot:

```
df %>%
  keep(is.numeric) %>%
  gather() %>%
  ggplot(aes(y = value)) +
  geom_boxplot() +
  facet_wrap(~ key, scales = "free")
```


Scatterplot: Used to get a better understanding of the data

```
df %>%
  select(-chas) %>%
  gather(key, val, -medv) %>%
  ggplot(aes(x = val, y = medv)) +
  geom_point(alpha = 0.1) +
  stat_smooth(formula = y ~ x, method = "lm") +
  facet_wrap(~ key, scales = "free")
```


Regression Model

We begin by creating a regression model to predict \mathtt{medv}

```
full_model <- lm(medv ~ ., df)
summary(full_model)</pre>
```

Call:

lm(formula = medv ~ ., data = df)

Residuals:

Min 1Q Median 3Q Max -15.1304 -2.7673 -0.5814 1.9414 26.2526

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	41.617270	4.936039	8.431	3.79e-16	***
crim	-0.121389	0.033000	-3.678	0.000261	***
zn	0.046963	0.013879	3.384	0.000772	***
indus	0.013468	0.062145	0.217	0.828520	
chas	2.839993	0.870007	3.264	0.001173	**

```
-18.758022
                        3.851355 -4.870 1.50e-06 ***
nox
             3.658119
                        0.420246 8.705 < 2e-16 ***
rm
             0.003611
                        0.013329 0.271 0.786595
age
            -1.490754
                        0.201623 -7.394 6.17e-13 ***
dis
                        0.066908 4.325 1.84e-05 ***
rad
            0.289405
            -0.012682
                        0.003801 -3.337 0.000912 ***
tax
ptratio
            -0.937533
                        0.132206 -7.091 4.63e-12 ***
lstat
            -0.552019
                        0.050659 -10.897 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 4.798 on 493 degrees of freedom Multiple R-squared: 0.7343, Adjusted R-squared: 0.7278 F-statistic: 113.5 on 12 and 493 DF, p-value: < 2.2e-16

broom::tidy(full_model)

A tibble: 13 x 5

	term	estimate	std.error	statistic	p.value
	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	(Intercept)	41.6	4.94	8.43	3.79e-16
2	crim	-0.121	0.0330	-3.68	2.61e- 4
3	zn	0.0470	0.0139	3.38	7.72e- 4
4	indus	0.0135	0.0621	0.217	8.29e- 1
5	chas	2.84	0.870	3.26	1.17e- 3
6	nox	-18.8	3.85	-4.87	1.50e- 6
7	rm	3.66	0.420	8.70	4.81e-17
8	age	0.00361	0.0133	0.271	7.87e- 1
9	dis	-1.49	0.202	-7.39	6.17e-13
10	rad	0.289	0.0669	4.33	1.84e- 5
11	tax	-0.0127	0.00380	-3.34	9.12e- 4
12	ptratio	-0.938	0.132	-7.09	4.63e-12
13	lstat	-0.552	0.0507	-10.9	6.39e-25

We can see that most of the variables are significant. However, notably

age and indus are not significant predictors of medv

Is this true?

Plot and Regression Modelfor age

```
plot(medv ~ age, df)
abline(lm(medv ~ age), col = "red")
```



```
model_age <- lm(medv ~ age, df)
summary(model_age)</pre>
```

Call:

lm(formula = medv ~ age, data = df)

Residuals:

Min 1Q Median 3Q Max -15.097 -5.138 -1.958 2.397 31.338

Coefficients:

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 8.527 on 504 degrees of freedom

Multiple R-squared: 0.1421, Adjusted R-squared: 0.1404 F-statistic: 83.48 on 1 and 504 DF, p-value: < 2.2e-16

Plot and Regression Model for indus

```
plot(medv ~ indus, df)
abline(lm(medv ~ indus), col = "red")
```



```
model_indus <- lm(medv ~ indus, df)
summary(model_indus)</pre>
```

Call:

lm(formula = medv ~ indus, data = df)

Residuals:

Min 1Q Median 3Q Max -13.017 -4.917 -1.457 3.180 32.943

Coefficients:

Estimate Std. Error t value Pr(>|t|)

```
(Intercept) 29.75490    0.68345    43.54    <2e-16 ***
indus    -0.64849    0.05226    -12.41    <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 8.057 on 504 degrees of freedom
Multiple R-squared: 0.234, Adjusted R-squared: 0.2325
```

154 on 1 and 504 DF, p-value: < 2.2e-16

Correlation Table

F-statistic:

```
R <- df %>%
  keep(is.numeric) %>%
  cor()
R
```

```
indus
                                                 chas
              crim
                           7.n
                                                             nox
        1.00000000 -0.20046922
                               0.40658341 -0.055891582 0.42097171
crim
       -0.20046922 1.00000000 -0.53382819 -0.042696719 -0.51660371
zn
indus
        0.40658341 -0.53382819 1.00000000 0.062938027
                                                      0.76365145
chas
       -0.05589158 -0.04269672 0.06293803
                                          1.000000000
                                                      0.09120281
        0.42097171 -0.51660371 0.76365145 0.091202807
                                                      1.00000000
nox
       rm
age
        0.35273425 -0.56953734 0.64477851 0.086517774 0.73147010
dis
       rad
        0.62550515 -0.31194783 0.59512927 -0.007368241 0.61144056
tax
        0.58276431 - 0.31456332 \quad 0.72076018 - 0.035586518 \quad 0.66802320
ptratio 0.28994558 -0.39167855 0.38324756 -0.121515174 0.18893268
lstat
        0.45562148 -0.41299457
                               0.60379972 -0.053929298 0.59087892
medv
       -0.38830461 0.36044534 -0.48372516 0.175260177 -0.42732077
               rm
                                     dis
                                                  rad
                                                             tax
                                                                    ptratio
                          age
crim
       -0.21924670 0.35273425 -0.37967009 0.625505145
                                                      0.58276431
                                                                  0.2899456
zn
        0.31199059 -0.56953734 0.66440822 -0.311947826 -0.31456332 -0.3916785
       -0.39167585 0.64477851 -0.70802699 0.595129275
indus
                                                      0.72076018 0.3832476
chas
        0.09125123 0.08651777 -0.09917578 -0.007368241 -0.03558652 -0.1215152
       -0.30218819 0.73147010 -0.76923011 0.611440563
                                                      0.66802320
nox
                                                                  0.1889327
rm
        1.00000000 - 0.24026493 - 0.20524621 - 0.209846668 - 0.29204783 - 0.3555015
       -0.24026493 1.00000000 -0.74788054 0.456022452 0.50645559 0.2615150
age
dis
        0.20524621 - 0.74788054 1.00000000 - 0.494587930 - 0.53443158 - 0.2324705
rad
       -0.20984667 \quad 0.45602245 \quad -0.49458793 \quad 1.000000000 \quad 0.91022819 \quad 0.4647412
       -0.29204783 0.50645559 -0.53443158 0.910228189 1.00000000 0.4608530
tax
```

```
ptratio -0.35550149 0.26151501 -0.23247054 0.464741179
                                                          0.46085304
                                                                      1.0000000
                    0.60233853 -0.49699583 0.488676335 0.54399341
lstat
        -0.61380827
                                                                      0.3740443
medv
         0.69535995 -0.37695457
                                 0.24992873 -0.381626231 -0.46853593 -0.5077867
             lstat
                         medv
crim
         0.4556215 -0.3883046
        -0.4129946 0.3604453
indus
         0.6037997 -0.4837252
chas
        -0.0539293 0.1752602
nox
         0.5908789 -0.4273208
rm
        -0.6138083 0.6953599
         0.6023385 -0.3769546
age
dis
        -0.4969958 0.2499287
         0.4886763 -0.3816262
rad
         0.5439934 -0.4685359
tax
ptratio 0.3740443 -0.5077867
         1.0000000 -0.7376627
lstat
medv
        -0.7376627 1.0000000
```

In a correlation table, we are selecting all the numeric values, where every single value is telling what the correlation with every other variable in data frame.

Q. What is an admissible correlation value?

An admissible correlation value lies between -1 and 1.

A good way to visualize correlation is using corrplot()

```
library(corrplot)
corrplot(R, type = "upper", order = "hclust")
```


- From the plot we can see that, variables indus and age are fairly negatively correlated to the medv variable
- We can also see that, except chas variable, every other variable has some correlation with the other variables

Call:

lm(formula = medv ~ ., data = df %>% select(-c(indus, nox, dis)))

Residuals:

Min 1Q Median 3Q Max -16.9388 -3.0974 -0.7082 1.8472 28.3443

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 21.655695 4.215323 5.137 4.01e-07 ***
crim -0.091908 0.034722 -2.647 0.008380 **
zn 0.008794 0.012670 0.694 0.487957

```
2.952830
                        0.913519
                                   3.232 0.001309 **
chas
rm
             4.100202
                       0.439135
                                   9.337 < 2e-16 ***
             0.020892
                      0.012195
                                  1.713 0.087315 .
age
                        0.067890
                                   3.710 0.000231 ***
             0.251852
rad
tax
            -0.012434
                        0.003469 -3.584 0.000371 ***
                        0.129206 -6.862 2.03e-11 ***
ptratio
            -0.886594
lstat
            -0.573951
                        0.053177 -10.793 < 2e-16 ***
                0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
Residual standard error: 5.084 on 496 degrees of freedom
Multiple R-squared: 0.6999,
                                Adjusted R-squared: 0.6944
```

F-statistic: 128.5 on 9 and 496 DF, p-value: < 2.2e-16

Variance Inflation Factors

The variance inflation factor (VIF) is the ratio of the variance of estimating some parameter in a model that includes multiple other terms (parameters) by the variance of a model constructed using only one term.

If the standard error increases, then the significance of the variable decreases.

```
library(car)
vif_model <- lm(medv ~ ., df)
vif(vif_model) %>%
  knitr::kable()
```

	X
crim	1.767486
zn	2.298459
indus	3.987181
chas	1.071168
nox	4.369093
rm	1.912532
age	3.088232
dis	3.954037
rad	7.445301
tax	9.002158
ptratio	1.797060
İstat	2.870776

A high inflation factor is any factor that is greater than 2.

Stepwise Regression

The process of selecting variables that are relatively more important than the other variables is known as **stepwise regression**.

```
null_model <- lm(medv ~ 1, df)
full_model <- lm(medv ~ ., df)</pre>
```

The null_model does not contain any variable in a data frame.

The full_model contains all the variables in a data frame.

```
library(caret)
  forward_model <- step(null_model,</pre>
                         direction = "forward",
                         scope = formula(full_model))
Start: AIC=2246.51
medv \sim 1
          Df Sum of Sq
                         RSS
                                 AIC
+ lstat
           1
               23243.9 19472 1851.0
               20654.4 22062 1914.2
+ rm
           1
               11014.3 31702 2097.6
+ ptratio 1
+ indus
           1
                9995.2 32721 2113.6
                9377.3 33339 2123.1
+ tax
+ nox
           1
               7800.1 34916 2146.5
                6440.8 36276 2165.8
+ crim
           1
                6221.1 36495 2168.9
+ rad
           1
+ age
           1
                6069.8 36647 2171.0
+ zn
           1
                5549.7 37167 2178.1
                2668.2 40048 2215.9
+ dis
           1
+ chas
           1
                1312.1 41404 2232.7
                       42716 2246.5
<none>
Step: AIC=1851.01
medv ~ lstat
          Df Sum of Sq
                         RSS
                                 AIC
           1
                4033.1 15439 1735.6
+ rm
```

```
2670.1 16802 1778.4
+ ptratio 1
+ chas
           1
                786.3 18686 1832.2
+ dis
                772.4 18700 1832.5
           1
           1 304.3 19168 1845.0
1 274.4 19198 1845.8
+ age
+ tax
           1
                160.3 19312 1848.8
+ zn
+ crim 1 146.9 19325 1849.2
+ indus 1 98.7 19374 1850.4
<none>
                        19472 1851.0
+ rad
         1 25.1 19447 1852.4
               4.8 19468 1852.9
+ nox
           1
```

Step: AIC=1735.58
medv ~ lstat + rm

		${\tt Df}$	Sum o	f Sq	RSS	AIC
+	ptratio	1	171	1.32	13728	1678.1
+	chas	1	54	8.53	14891	1719.3
+	tax	1	42	5.16	15014	1723.5
+	dis	1	35	1.15	15088	1725.9
+	crim	1	31	1.42	15128	1727.3
+	rad	1	18	0.45	15259	1731.6
+	indus	1	6	1.09	15378	1735.6
<1	none>				15439	1735.6
+	zn	1	5	6.56	15383	1735.7
+	age	1	2	0.18	15419	1736.9
+	nox	1	1	4.90	15424	1737.1

Step: AIC=1678.13
medv ~ lstat + rm + ptratio

```
Df Sum of Sq RSS
+ dis
            499.08 13229 1661.4
      1
+ chas 1
            377.96 13350 1666.0
+ crim 1 122.52 13606 1675.6
           66.24 13662 1677.7
+ age
<none>
                  13728 1678.1
+ tax 1 44.36 13684 1678.5
           24.81 13703 1679.2
+ nox 1
+ zn
      1 14.96 13713 1679.6
            6.07 13722 1679.9
+ rad 1
+ indus 1 0.83 13727 1680.1
```

```
Step: AIC=1661.39
medv ~ lstat + rm + ptratio + dis
       Df Sum of Sq RSS
                            AIC
        1
            759.56 12469 1633.5
+ nox
+ chas
             267.43 12962 1653.1
+ indus 1
            242.65 12986 1654.0
           240.34 12989 1654.1
+ tax
        1
+ crim 1 233.54 12995 1654.4
       1 144.81 13084 1657.8
+ zn
+ age
        1 61.36 13168 1661.0
                   13229 1661.4
<none>
            22.40 13206 1662.5
+ rad
Step: AIC=1633.47
medv ~ lstat + rm + ptratio + dis + nox
       Df Sum of Sq RSS
                            AIC
+ chas
       1
             328.27 12141 1622.0
             151.71 12318 1629.3
+ zn
       1
+ crim 1 141.43 12328 1629.7
+ rad
        1 53.48 12416 1633.3
<none>
                   12469 1633.5
+ indus 1 17.10 12452 1634.8
+ tax 1
            10.50 12459 1635.0
     1
             0.25 12469 1635.5
+ age
Step: AIC=1621.97
medv ~ lstat + rm + ptratio + dis + nox + chas
       Df Sum of Sq
                     RSS
                            AIC
+ zn
        1 164.406 11977 1617.1
       1 116.330 12025 1619.1
+ crim
+ rad 1 58.556 12082 1621.5
<none>
                   12141 1622.0
           26.274 12115 1622.9
+ indus 1
            4.187 12137 1623.8
+ tax
      1
+ age
        1
             2.331 12139 1623.9
Step: AIC=1617.07
medv ~ lstat + rm + ptratio + dis + nox + chas + zn
```

Df Sum of Sq

RSS

AIC

```
+ crim 1 170.902 11806 1611.8
                   11977 1617.1
<none>
        1 31.773 11945 1617.7
+ tax
+ rad
        1
            28.311 11948 1617.9
+ indus 1 27.377 11949 1617.9
            0.071 11977 1619.1
+ age
        1
Step: AIC=1611.8
medv ~ lstat + rm + ptratio + dis + nox + chas + zn + crim
       Df Sum of Sq RSS
                            AIC
       1 155.006 11651 1607.1
+ rad
                   11806 1611.8
<none>
+ indus 1 24.957 11781 1612.7
             1.418 11804 1613.7
+ tax
        1
+ age
        1
            0.178 11806 1613.8
Step: AIC=1607.11
medv ~ lstat + rm + ptratio + dis + nox + chas + zn + crim +
   rad
       Df Sum of Sq RSS
                            AIC
+ tax
            298.573 11352 1596.0
<none>
                    11651 1607.1
+ indus 1
            44.346 11606 1607.2
            0.581 11650 1609.1
+ age
      1
Step: AIC=1595.98
medv ~ lstat + rm + ptratio + dis + nox + chas + zn + crim +
   rad + tax
       Df Sum of Sq RSS
                          AIC
                    11352 1596.0
<none>
+ age
             1.6865 11350 1597.9
        1
+ indus 1
             1.0784 11351 1597.9
  summary(forward_model)
Call:
lm(formula = medv ~ lstat + rm + ptratio + dis + nox + chas +
    zn + crim + rad + tax, data = df
```

```
Residuals:
```

```
Min 1Q Median 3Q Max -15.1814 -2.7625 -0.6243 1.8448 26.3920
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 41.451747
                         4.903283
                                    8.454 3.18e-16 ***
             -0.546509
lstat
                         0.047442 -11.519 < 2e-16 ***
rm
              3.672957
                         0.409127
                                    8.978 < 2e-16 ***
                         0.130423 -7.138 3.39e-12 ***
             -0.930961
ptratio
dis
             -1.515951
                         0.187675 -8.078 5.08e-15 ***
            -18.262427
                         3.565247 -5.122 4.33e-07 ***
nox
chas
              2.871873
                         0.862591
                                    3.329 0.000935 ***
zn
              0.046191
                         0.013673
                                    3.378 0.000787 ***
             -0.121665
                         0.032919 -3.696 0.000244 ***
crim
              0.283932
                         0.063945
                                    4.440 1.11e-05 ***
rad
             -0.012292
                         0.003407 -3.608 0.000340 ***
tax
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.789 on 495 degrees of freedom Multiple R-squared: 0.7342, Adjusted R-squared: 0.7289 F-statistic: 136.8 on 10 and 495 DF, p-value: < 2.2e-16

AIC is like a replacement for R^2

Unlike R^2 , where a higher value is better, we prefer to have a low AIC value

Based on lstat is the best model, as it has the lowest value

Forward Selection: In this form of stepwise regression we keep building our model from 0 (or a low value), and add variables, until we reach a stage where our AIC ends to be high.

```
- indus
          1 1.08 11350 1597.9
                1.69 11351 1597.9
- age
          1
<none>
                     11349 1599.8
- chas
              245.31 11595 1608.7
          1 256.28 11606 1609.2
- tax
            263.59 11613 1609.5
- crim
          1 311.49 11661 1611.6
          1 430.71 11780 1616.7
- rad
              546.10 11896 1621.6
- nox
          1
- ptratio 1 1157.70 12507 1647.0
          1 1258.52 12608 1651.1
- dis
          1 1744.36 13094 1670.2
- rm
          1 2733.54 14083 1707.0
- lstat
Step: AIC=1597.9
medv ~ crim + zn + chas + nox + rm + age + dis + rad + tax +
   ptratio + lstat
         Df Sum of Sq RSS
                             AIC
                1.69 11352 1596.0
- age
<none>
                     11350 1597.9
            251.21 11602 1607.0
- chas
          1
- zn
          1 262.99 11614 1607.5
          1 299.68 11650 1609.1
- tax
- crim
         1 313.07 11664 1609.7
         1 453.61 11804 1615.7
- rad
             574.23 11925 1620.9
- nox
          1
- ptratio 1 1168.01 12518 1645.5
          1 1333.19 12684 1652.1
- dis
- rm
          1 1750.50 13101 1668.5
          1 2743.21 14094 1705.4
- lstat
Step: AIC=1595.98
medv ~ crim + zn + chas + nox + rm + dis + rad + tax + ptratio +
   lstat
         Df Sum of Sq RSS
                              AIC
<none>
                     11352 1596.0
- chas
              254.21 11606 1605.2
          1
          1 261.75 11614 1605.5
- zn
          1 298.57 11651 1607.1
- tax
          1 313.27 11666 1607.8
- crim
```

1 452.16 11804 1613.7

- rad

```
601.74 11954 1620.1
- nox
           1
- ptratio
           1
               1168.51 12521 1643.5
- dis
               1496.35 12848 1656.6
           1
               1848.38 13201 1670.3
- rm
           1
- lstat
           1
               3043.23 14395 1714.2
  summary(backward model)
Call:
lm(formula = medv ~ crim + zn + chas + nox + rm + dis + rad +
    tax + ptratio + lstat, data = df)
Residuals:
     Min
               1Q
                    Median
                                 3Q
                                         Max
-15.1814 -2.7625
                   -0.6243
                             1.8448
                                     26.3920
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
                         4.903283
(Intercept) 41.451747
                                    8.454 3.18e-16 ***
crim
             -0.121665
                         0.032919 -3.696 0.000244 ***
                                    3.378 0.000787 ***
              0.046191
                         0.013673
zn
              2.871873
                         0.862591
                                    3.329 0.000935 ***
chas
nox
            -18.262427
                         3.565247 -5.122 4.33e-07 ***
                                    8.978 < 2e-16 ***
              3.672957
                         0.409127
rm
dis
             -1.515951
                         0.187675 -8.078 5.08e-15 ***
                                    4.440 1.11e-05 ***
rad
              0.283932
                         0.063945
             -0.012292
                         0.003407 -3.608 0.000340 ***
tax
ptratio
             -0.930961
                         0.130423 -7.138 3.39e-12 ***
             -0.546509
                         0.047442 -11.519 < 2e-16 ***
lstat
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.789 on 495 degrees of freedom
Multiple R-squared: 0.7342,
                                Adjusted R-squared: 0.7289
F-statistic: 136.8 on 10 and 495 DF, p-value: < 2.2e-16
```

Another way to do the same, is using **Backward Selection**. In this we start with the full_model, and start removing variable, until we see a decrease in the AIC value. At this point, if we remove any more variables, the AIC value would increase.

In this case, both **forward** and **backward** models have given the same result. This may not always be the case.

• Another option for the direction in the step() function is both this is a hybrid of both forward and backward selection.

Thursday, Feb 16

! TIL

Include a $very\ brief$ summary of what you learnt in this class here. Today, I learnt the following concepts in class:

- 1. Item 1
- 2. Item 2
- 3. Item 3