cisco

16 动态路由协议介绍

16.1 动态路由协议原理

Dynamic Routing Protocol Operation

The Evolution of Dynamic Routing Protocols

- Dynamic routing protocols used in networks since the late 1980s
- Newer versions support the communication based on IPv6

Routing Protocols Classification

	Interior Gateway Protocols				Exterior Gateway Protocols		
	Distance Vector		Link-State		Path Vector		
IPv4	RIPv2	EIGRP	OSPFv2	IS-IS	BGP-4		
IPv6	RIPng	EIGRP for IPv6	OSPFv3	IS-IS for IPv6	BGP-MP		

Types of Routing Protocols

IGP and EGP Routing Protocols

IGP versus EGP Routing Protocols

Interior Gateway Protocols (IGP) -

- Used for routing within an AS
- Include RIP, EIGRP, OSPF, and IS-IS

Exterior Gateway Protocols (EGP) -

- Used for routing between AS
- Official routing protocol used by the Internet

Dynamic Routing Protocol Operation Purpose of Dynamic Routing Protocols

Routing Protocols are used to facilitate the exchange of routing information between routers.

The purpose of dynamic routing protocols includes:

- Discovery of remote networks
- Maintaining up-to-date routing information
- Choosing the best path to destination networks
- •Ability to find a new best path if the current path is no longer available

Dynamic Routing Protocol Operation

Purpose of Dynamic Routing Protocols (cont.)

Main components of dynamic routing protocols include:

- **-Data structures -** Routing protocols typically use tables or databases for its operations. This information is kept in RAM.
- •Routing protocol messages Routing protocols use various types of messages to discover neighboring routers, exchange routing information, and other tasks to learn and maintain accurate information about the network.
- **-Algorithm -** Routing protocols use algorithms for facilitating routing information for best path determination.

Cold Start

Directly Connected Networks Detected

Network	Interface	Нор
10.1.0.0	Fa0/0	0
10.2.0.0	S0/0/0	0

Network	Interface	Нор
10.2.0.0	S0/0/0	0
10.3.0.0	S0/0/1	0

Network	Interface	Нор
10.3.0.0	S0/0/1	0
10.4.0.0	Fa0/0	0

Routers running RIPv2

- R1 adds the 10.1.0.0 network available through interface FastEthernet 0/0 and 10.2.0.0 is available through interface Serial 0/0/0.
- R2 adds the 10.2.0.0 network available through interface Serial 0/0/0 and 10.3.0.0 is available through interface Serial 0/0/1.
- R3 adds the 10.3.0.0 network available through interface Serial 0/0/1 and 10.4.0.0 is available through interface FastEthernet 0/0.

Network Discovery

Initial Exchange

Network	Interface	Нор	Network	Interface	Нор	Network	Interface	Нор
10.1.0.0	Fa0/0	0	10.2.0.0	S0/0/0	0	10.3.0.0	S0/0/0	0
10.2.0.0	S0/0/0	0	10.3.0.0	S0/0/1	0	10.4.0.0	Fa0/0	0
10.3.0.0	S0/0/0	1	10.1.0.0	S0/0/0	1	10.2.0.0	S0/0/1	1
			10.4.0.0	S0/0/1	1			

Exchanging the Routing Information

Next Update

Network	Interface	Нор	Network	Interface	Нор	Network	Interface
10.1.0.0	Fa0/0	0	10.2.0.0	S0/0/0	0	10.3.0.0	S0/0/1
10.2.0.0	S0/0/0	0	10.3.0.0	S0/0/1	0	10.4.0.0	Fa0/0
10.3.0.0	S0/0/0	1	10.1.0.0	S0/0/0	1	10.2.0.0	S0/0/1
10.4.0.0	S0/0/0	2	10.4.0.0	S0/0/1	1	10.1.0.0	S0/0/1

Achieving Convergence

Converging

Slower Convergence: RIP Faster Convergence: EIGRP and OSPF

16.2 距离向量路由协议

Types of Routing Protocols

Distance Vector Routing Protocols

For R1, 172.16.3.0/24 is one hop away (distance). It can be reached through R2 (vector).

Distance vector IPv4 IGPs:

- RIPv1 First generation legacy protocol
- RIPv2 Simple distance vector routing protocol
- IGRP First generation Cisco proprietary protocol (obsolete)
- EIGRP Advanced version of distance vector routing

Distance Vector Routing Protocol Operation

Distance Vector Technologies

- Characteristics of Distance Vector routing protocols:
 - Periodic updates
 - Neighbors
 - Broadcast updates
 - Entire routing table is included with routing update

Distance Vector Routing Protocol Operation

Distance Vector Algorithm

RIP uses the Bellman-Ford algorithm as its routing algorithm.

IGRP and EIGRP use the Diffusing Update Algorithm (DUAL) routing algorithm developed by Cisco.

16.3 链路状态路由协议

Types of Routing Protocols

Link-State Routing Protocols

Link-State Protocol Operation R4 Link-state Database R2 Link-state Database 172.16.3.0/24 Link update from R1 R1 Link-state Database R3 Link-state Database

Link-state protocols forward updates when the state of a link changes.

Link-state IPv4 IGPs:

- OSPF Popular standards based routing protocol
- IS-IS Popular in provider networks.

Link-State Routing Protocol Operation

Shortest Path First Protocols

Link-State Routing Protocol Operation

Dijkstra's Algorithm

Dijkstra's shortest path first algorithm

Link-State Routing Process

How does a link-state routing protocol work?

Link-State Routing Process

- 1. Each router learns about its own links, its own directly connected networks.
- 2. Each router is responsible for "saying hello" to its neighbors on directly connected networks.
- 3. Each router builds a Link-State Packet (LSP) containing the state of each directly connected link.
- 4. Each router floods the LSP to all neighbors, who then store all LSPs received in a database.
- Each router uses the database to construct a complete map of the topology and computes the best path to each destination network.

Link-State Routing Process

Link-State Updates Link-State Routing Process

Link—This is an interface on a router.

Link State—the information about the state of the links.

Link-State Updates Link-State Routing Process

- A neighbor is any other router that is enabled with the same link-state routing protocol.
- Hello packets continue to be exchanged to monitor the state of the neighbor.

Link-State Routing Process

Link-State Updates Link-State Routing Process

- Whenever a router receives an LSP, it immediately sends that LSP out all other interfaces.
- Protocols calculate the SPF after the flooding is complete.
- Other information is included in the LSP to help manage the flooding process, such as sequence numbers and aging information.
- An LSP only needs to be sent:
 - —During initial startup of the router or of the routing protocol process on that router.
 - —Whenever there is a change in the topology, including a link going down or coming up, or a neighbor adjacency being established or broken.

Link-State Routing Process

Link-State Routing Process

R1s Link-state Database

R1s Link State Database

LSP from R1:

- · Connected to neighbor R2 on network 10.2.0.0/16, cost of 20
- · Connected to neighbor R3 on network 10.3.0.0/16, cost of 5
- Connected to neighbor R4 on network 10.4.0.0/16, cost of 20
- Has a network 10.1.0.0/16, cost of 2

LSP from R2:

- · Connected to neighbor R1 on network 10.2.0.0/16, cost of 20
- Connected to neighbor R5 on network 10.9.0.0/16, cost of 10
- Has a network 10.5.0.0/16, cost of 2

LSP from R3:

- Connected to neighbor R1 on network 10.3.0.0/16, cost of 5
- Connected to neighbor R4 on network 10.7.0.0/16, cost of 10
- Has a network 10.6.0.0/16, cost of 2

LSP from R4:

- · Connected to neighbor R1 on network 10.4.0.0/16, cost of 20
- · Connected to neighbor R3 on network 10.7.0.0/16, cost of 10
- · Connected to neighbor R5 on network 10.10.0.0/16, cost of 10
- · Has a network 10.8.0.0/16, cost of 2

- · Connected to neighbor R2 on network 10.9.0.0/16, cost of 10
- · Connected to neighbor R4 on network 10.10.0.0/16, cost of 10
- Has a network 10.11.0.0/16, cost of 2

Link-State Routing Process

Building the SPF Tree

R1s Link State Database

LSP from R1:

- · Connected to neighbor R2 on network 10.2.0.0/16, cost of 20
- · Connected to neighbor R3 on network 10.3.0.0/16, cost of 5
- · Connected to neighbor R4 on network 10.4.0.0/16, cost of 20
- Has a network 10.1.0.0/16, cost of 2

LSP from R2:

- · Connected to neighbor R1 on network 10.2.0.0/16, cost of 20
- · Connected to neighbor R5 on network 10.9.0.0/16, cost of 10
- Has a network 10.5.0.0/16, cost of 2

LSP from R3:

- Connected to neighbor R1 on network 10.3.0.0/16, cost of 5
- · Connected to neighbor R4 on network 10.7.0.0/16, cost of 10
- · Has a network 10.6.0.0/16, cost of 2

LSP from R4:

- · Connected to neighbor R1 on network 10.4.0.0/16, cost of 20
- · Connected to neighbor R3 on network 10.7.0.0/16, cost of 10
- · Connected to neighbor R5 on network 10.10.0.0/16, cost of 10
- Has a network 10.8.0.0/16, cost of 2

- · Connected to neighbor R2 on network 10.9.0.0/16, cost of 10
- · Connected to neighbor R4 on network 10.10.0.0/16, cost of 10
- Has a network 10.11.0.0/16, cost of 2

Link-State Routing Process

Building the SPF Tree

R1s Link State Database

LSP from R1:

- · Connected to neighbor R2 on network 10.2.0.0/16, cost of 20
- · Connected to neighbor R3 on network 10.3.0.0/16, cost of 5
- · Connected to neighbor R4 on network 10.4.0.0/16, cost of 20
- Has a network 10.1.0.0/16, cost of 2

LSP from R2:

- · Connected to neighbor R1 on network 10.2.0.0/16, cost of 20
- · Connected to neighbor R5 on network 10.9.0.0/16, cost of 10
- Has a network 10.5.0.0/16, cost of 2

LSP from R3:

- Connected to neighbor R1 on network 10.3.0.0/16, cost of 5
- · Connected to neighbor R4 on network 10.7.0.0/16, cost of 10
- · Has a network 10.6.0.0/16, cost of 2

LSP from R4:

- · Connected to neighbor R1 on network 10.4.0.0/16, cost of 20
- · Connected to neighbor R3 on network 10.7.0.0/16, cost of 10
- · Connected to neighbor R5 on network 10.10.0.0/16, cost of 10
- Has a network 10.8.0.0/16, cost of 2

- · Connected to neighbor R2 on network 10.9.0.0/16, cost of 10
- · Connected to neighbor R4 on network 10.10.0.0/16, cost of 10
- Has a network 10.11.0.0/16, cost of 2

Link-State Routing Process

Building the SPF Tree

R1s Link State Database

LSP from R1:

- · Connected to neighbor R2 on network 10.2.0.0/16, cost of 20
- · Connected to neighbor R3 on network 10.3.0.0/16, cost of 5
- · Connected to neighbor R4 on network 10.4.0.0/16, cost of 20
- Has a network 10.1.0.0/16, cost of 2

LSP from R2:

- · Connected to neighbor R1 on network 10.2.0.0/16, cost of 20
- · Connected to neighbor R5 on network 10.9.0.0/16, cost of 10
- Has a network 10.5.0.0/16, cost of 2

LSP from R3:

- Connected to neighbor R1 on network 10.3.0.0/16, cost of 5
- Connected to neighbor R4 on network 10.7.0.0/16, cost of 10
- · Has a network 10.6.0.0/16, cost of 2

LSP from R4:

- · Connected to neighbor R1 on network 10.4.0.0/16, cost of 20
- · Connected to neighbor R3 on network 10.7.0.0/16, cost of 10
- · Connected to neighbor R5 on network 10.10.0.0/16, cost of 10
- Has a network 10.8.0.0/16, cost of 2

- · Connected to neighbor R2 on network 10.9.0.0/16, cost of 10
- · Connected to neighbor R4 on network 10.10.0.0/16, cost of 10
- Has a network 10.11.0.0/16, cost of 2

Link-State Routing Process

Building the SPF Tree

R1s Link State Database

LSP from R1:

- · Connected to neighbor R2 on network 10.2.0.0/16, cost of 20
- · Connected to neighbor R3 on network 10.3.0.0/16, cost of 5
- · Connected to neighbor R4 on network 10.4.0.0/16, cost of 20
- Has a network 10.1.0.0/16, cost of 2

LSP from R2:

- · Connected to neighbor R1 on network 10.2.0.0/16, cost of 20
- · Connected to neighbor R5 on network 10.9.0.0/16, cost of 10
- Has a network 10.5.0.0/16, cost of 2

LSP from R3:

- Connected to neighbor R1 on network 10.3.0.0/16, cost of 5
- · Connected to neighbor R4 on network 10.7.0.0/16, cost of 10
- · Has a network 10.6.0.0/16, cost of 2

LSP from R4:

- Connected to neighbor R1 on network 10.4.0.0/16, cost of 20
- · Connected to neighbor R3 on network 10.7.0.0/16, cost of 10
- · Connected to neighbor R5 on network 10.10.0.0/16, cost of 10
- · Has a network 10.8.0.0/16, cost of 2

- · Connected to neighbor R2 on network 10.9.0.0/16, cost of 10
- · Connected to neighbor R4 on network 10.10.0.0/16, cost of 10
- Has a network 10.11.0.0/16, cost of 2

Link-State Routing Process

Building the SPF Tree

R1s Link State Database

LSP from R1:

- · Connected to neighbor R2 on network 10.2.0.0/16, cost of 20
- · Connected to neighbor R3 on network 10.3.0.0/16, cost of 5
- · Connected to neighbor R4 on network 10.4.0.0/16, cost of 20
- Has a network 10.1.0.0/16, cost of 2

LSP from R2:

- · Connected to neighbor R1 on network 10.2.0.0/16, cost of 20
- · Connected to neighbor R5 on network 10.9.0.0/16, cost of 10
- Has a network 10.5.0.0/16, cost of 2

LSP from R3:

- Connected to neighbor R1 on network 10.3.0.0/16, cost of 5
- · Connected to neighbor R4 on network 10.7.0.0/16, cost of 10
- · Has a network 10.6.0.0/16, cost of 2

LSP from R4:

- · Connected to neighbor R1 on network 10.4.0.0/16, cost of 20
- · Connected to neighbor R3 on network 10.7.0.0/16, cost of 10
- · Connected to neighbor R5 on network 10.10.0.0/16, cost of 10
- Has a network 10.8.0.0/16, cost of 2

- · Connected to neighbor R2 on network 10.9.0.0/16, cost of 10
- Connected to neighbor R4 on network 10.10.0.0/16, cost of 10
- Has a network 10.11.0.0/16, cost of 2

Link-State Routing Process

- Determining the Shortest Path
 - The shortest path to a destination determined by adding the costs and finding the lowest cost.

Link-State Updates Link-State Routing Process

Generating a Routing Table from the SPF Tree

SPF Information

- Network 10.5.0.0/16 via R2 serial 0/0/0 at a cost of 22
- Network 10.6.0.0/16 via R3 serial 0/0/1 at a cost of 7.
- Network 10.7.0.0/16 via R3 serial 0/0/1 at a cost of 15
- Network 10.8.0.0/16 via R3 serial 0/0/1 at a cost of 17
- Network 10.9.0.0/16 via R2 serial 0/0/0 at a cost of 30.
- Network 10.10.0.0/16 via R3 serial 0/0/1 at a cost of 25
- Network 10.11.0.0/16 via R3 serial 0/0/1 at a cost of 27

R1 Routing Table

Directly Connected Networks

- 10.1.0.0/16 Directly Connected Network
- 10.2.0.0/16 Directly Connected Network
- 10.3.0.0/16 Directly Connected Network
- 10.4.0.0/16 Directly Connected Network

Remote Networks

- 10.5.0.0/16 via R2 serial 0/0/0, cost = 22
- 10.6.0.0/16 via R3 serial 0/0/1, cost = 7.
- 10.7.0.0/16 via R3 serial 0/0/1, cost = 15
- 10.8.0.0/16 via R3 serial 0/0/1, cost = 17
- 10.9.0.0/16 via R2 serial 0/0/0, cost = 30
- 10.10.0.0/16 via R3 serial 0/0/1, cost = 25
- 10.11.0.0/16 via R3 serial 0/0/1, cost = 27

Why Use Link-State Routing Protocols

Protocols that Use Link-State

There are only two link-state routing protocols:

- Open Shortest Path First (OSPF) most popular
 - began in 1987
 - two current versions
 - OSPFv2 OSPF for IPv4 networks
 - OSPFv3 OSPF for IPv6 networks

IS-IS was designed by International Organization for Standardization (ISO)

