

Università degli studi di Cagliari

FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI

CORSO DI LAUREA IN MATEMATICA

UN SOLIDO CONVESSO E COMPATTO É OMEOMORFO AL DISCO

Relatore: Prof. Andrea Loi Tesi di Laurea di: Ilaria Chillotti

Anno Accademico 2010-2011

Indice

In	trod	uzione	1
1	Richiami di Topologia		
	1.1	Topologia Indotta	4
	1.2	Topologia prodotto	5
	1.3	Spazi metrici	6
	1.4	Spazi di Hausdorff	7
2	Apj	plicazioni e Omeomorfismi	9
	2.1	Applicazioni tra spazi topologici	9
	2.2	Applicazioni tra spazi metrici	9
	2.3	Omeomorfismi	10
3	Spazi Compatti		
	3.1	Lemma dell'applicazione chiusa	15
4	Teo	orema Tesi	16
$\mathbf{B}^{\mathbf{i}}$	Bibliografia		

Introduzione

Lo scopo di questa tesi è quello di dimostrare il teorema (che chiameremo in seguito "Teorema Tesi"), che afferma che un solido convesso e compatto è omeomorfo al disco. La tesi è suddivisa in quattro capitoli, i primi tre dei quali forniscono gli strumenti necessari alla dimostrazione del teorema.

Nel primo capitolo (Richiami di Topologia) vengono introdotti i concetti di topologia, spazio topologico, e vengono analizzati alcuni spazi topologici particolari.

Nel secondo capitolo (Applicazioni e Omeomorfismi) vengono definiti i concetti di applicazione continua, omeomorfismo e embedding topologico, assieme ad alcune importanti proposizioni.

Nel terzo capitolo (Spazi Compatti) si analizzano gli spazi compatti, enunciando e dimostrando proprietà e teoremi che li riguardano, in particolare il Lemma dell'applicazione chiusa.

Infine, nel quarto capitolo (Teorema Tesi) si enuncia e si dimostra il Teorema Tesi (4.0.3). Si conclude con un importante corollario che afferma che il quadrato ed il cerchio sono omeomorfi.

Capitolo 1

Richiami di Topologia

Definizione 1.1 (Topologia). Sia X un insieme non vuoto. Una topologia su X è una classe non vuota T di sottoinsiemi di X, cioè $T \subset P(X)$ (dove P(X) denota l'insieme delle parti di X), soddisfacenti le seguenti proprietà:

- 1. $\emptyset, X \in T$;
- 2. L'unione di un numero qualsiasi di insiemi di T appartiene a T;
- 3. L'intersezione di due insiemi qualsiasi di T appartiene a T.

Gli elementi di T sono chiamati insiemi aperti o aperti della topologia T, mentre gli elementi di X sono chiamati punti di X. La coppia (X,T), o più semplicemente X, è detta $Spazio\ Topologico$.

Definizione 1.2 (Punto interno, esterno, di frontiera). Sia X uno spazio topologico e S un sottoinsieme di X. Un punto $x \in X$ si dice

- interno a S se esiste un aperto U tale che $x \in U \subset S$;
- esterno a S se esiste un aperto U contenente x tale che $U \cap S = \emptyset$ o, equivalentemente, x è interno a $X \setminus S$;
- punto di frontiera di S se x non è ne interno ne esterno a S, quindi se si ha che per ogni aperto U contenente $x, U \cap S \neq \emptyset$ e $U \cap X \setminus S \neq \emptyset$.

L'insieme dei punti interni di S è chiamato Interno di S e viene indicato con Int(S). Dalla definizione di punto interno segue che:

$$Int(S) \subset S$$
.

L'insieme dei punti esterni di S è chiamato Esterno di S e viene indicato con Est(S). Dalla definizione di punto esterno si deduce che $Est(S) = Int(X \setminus S) \subset X \setminus S$, e quindi:

$$Est(S) \cap S = \emptyset.$$

L'insieme dei punti di frontiera di S è chiamato Frontiera di S e viene indicato con Fr(S). Dalla definizione di punto di frontiera si deduce che:

$$Fr(S) = Fr(X \backslash S).$$

Lo spazio topologico X può quindi essere scritto come unione disgiunta dei tre insiemi appena definiti:

$$X = Int(S) \cup Est(S) \cup Fr(S).$$

Definizione 1.3 (Insieme Aperto). Un sottoinsieme A di uno spazio topologico X si dice aperto se e solo se ogni suo punto è interno.

Definizione 1.4 (Insieme Chiuso). Un sottoinsieme C di uno spazio topologico X si dice chiuso se e solo se il suo complementare $X \setminus C$ è aperto.

1.1 Topologia Indotta

Su ogni sottoinsieme S di uno spazio topologico X possiamo definire una topologia a partire da quella di X.

Definizione 1.5 (Topologia Indotta). La topologia di S indotta a partire da quella di X è definita come la famiglia di sottoinsiemi di S della forma $U \cap S$, dove U è un aperto di X.

Quindi, se \mathcal{U} è la famiglia di aperti di X, allora $\mathcal{U}_S = \{U \cap S | U \in \mathcal{U}\}$ è la famiglia di aperti di S nella topologia indotta. Dobbiamo verificare le tre condizioni che definiscono una topologia:

- 1. Poiché $\emptyset = \emptyset \cap S$ e $S = X \cap S$, la prima condizione è soddisfatta.
- 2. Se $\{U_j \cap S | j \in J\}$ è una famiglia di elementi di \mathcal{U}_S , $\cup_{j \in J} (U_j \cap S) = (\cup_{j \in J} U_j) \cap S$ appartiene ad \mathcal{U}_S .
- 3. Se $U_1 \cap S$ e $U_2 \cap S$ sono due elementi di \mathcal{U}_S , allora $(U_1 \cap S) \cap (U_2 \cap S) = (U_1 \cap U_2) \cap S$ appartiene a \mathcal{U}_S .

Lemma 1.1.1. Se S è aperto in X, gli aperti di S nella topologia indotta sono aperti di X.

Se S è chiuso in X, i chiusi di S nella topologia indotta sono chiusi di X.

Dimostrazione. Supponiamo che S sia aperto in X e sia U un sottoinsieme aperto di S; per definizione, $U = V \cap S$, dove V è un aperto di X. Poiché S è aperto in X, ne segue che anche $U = V \cap S$ è aperto in X.

Prima di dimostrare la seconda perte, facciamo vedere che un sottoinsieme chiuso di S con la topologia indotta si ottiene intersecando S con un chiuso di X. Per definizione, un insieme è chiuso se il suo complementare è aperto.

Quindi se $U = V \cap S$ è un aperto di S nella topologia indotta, allora $S \setminus U = S \setminus (V \cap S) = (S \setminus V) \cup (S \setminus S) = S \setminus V$ sarà un sottoinsieme chiuso di S nella topologia indotta. Mostriamo che $S \setminus V$ è uguale all'intersezione di S con il chiuso $X \setminus V$ di X. Si ha infatti che $S \cap (X \setminus V) = (X \cap S) \setminus V = X \cap (S \setminus V) = S \setminus V$. Quindi possiamo concludere che un chiuso di S nella topologia indotta da S si ottiene intersecando S con un chiuso di S.

Supponiamo ora che S sia un chiuso di X e sia C un sottoinsieme chiuso di S; per quanto appena dimostrato, $C = G \cap S$, dove G è un chiuso di X. Poiché S è chiuso in X, anche $C = G \cap S$ è chiuso in X (l'intersezione di chiusi è chiusa: infatti siano A, B due aperti di X, allora $X \setminus A$ e $X \setminus B$ sono chiusi. La loro intersezione $(X \setminus A) \cap (X \setminus B) = X \setminus (A \cup B)$ è chiusa).

1.2 Topologia prodotto

Consideriamo due insiemi X e Y; il prodotto cartesiano $X \times Y$ è l'insieme delle coppie ordinate (x, y), dove $x \in X$ e $y \in Y$. Se X e Y sono spazi topologici, possiamo utilizzare le loro topologie per definirne una su $X \times Y$.

Definizione 1.6 (Topologia prodotto). Siano X e Y due spazi topologici; il prodotto (topologico) $X \times Y$ è l'insieme $X \times Y$ con topologia $\mathcal{U}_{X \times Y} = \{ \bigcup_{j \in J} U_j \times V_j | U_j$ è aperto in X, V_j è aperto in Y, J è un insieme di indici $\}$ che è formata da tutte le unioni di prodotti di aperti di X e Y.

Più un generale, siano X_1, \ldots, X_n n spazi topologici; il $\operatorname{prodotto} X_1 \times \ldots \times X_n$ è l'insieme $X_1 \times \ldots \times X_n$ con la topologia $\mathcal{U}_{X_1 \times \ldots \times X_n} = \{ \bigcup_{k \in K} U_1^k \times \ldots \times U_n^k | U_i^k \text{ è aperto in } X_i, \text{ con } i = 1, \ldots, n, K \text{ è un insieme di indici} \}$, formata da tutte le unioni di prodotti aperti di X_1, \ldots, X_n .

Dobbiamo verificare le tre condizioni che definiscono una topologia; verifichiamolo per la topologia $X \times Y$:

- 1. $\emptyset = \emptyset \times \emptyset$ e $X \times Y = X \times Y$, quindi la prima condizione è soddisfatta.
- 2. La condizione sulle unioni è evidentemente soddisfatta.
- 3. Siano $W, W' \in \mathcal{U}_{X \times Y}$, quindi $W = \bigcup_{j \in J} U_j \times V_j$ e $W' = \bigcup_{k \in K} U_k' \times V_k'$, dove J e K sono insiemi di indici, U_j e U_k' sono aperti di X e V_j e V_k' sono aperti di Y. Ne segue che $W \cap W' = \bigcup_{(j,k) \in J \times K} (U_j \cap U_k') \times (V_j \cap V_k')$ appartiene a $\mathcal{U}_{X \times Y}$. Quindi anche la terza condizione è soddisfatta.

Proposizione 1.2.1. La topologia prodotto su $\mathbb{R}^n = \mathbb{R} \times ... \times \mathbb{R}$ coincide con la topologia Euclidea.

Dimostrazione. La famiglia di cubi n-dimensionali

$$Q_r(x) = \{ y \in \mathbb{R}^n | |x_i - y_i| < r \} = (x_1 - r, x_1 + r) \times \ldots \times (x_n - r, x_n + r)$$

è, al variare di $x \in \mathbb{R}^n$ e r > 0, una base sia per la topologia Euclidea, sia per la topologia prodotto di \mathbb{R}^n . Di conseguenza, poiché se due topologie, definite su uno stesso spazio topologico, hanno la stessa base sono equivalenti, allora la topologia Euclidea e quella prodotto coincidono.

1.3 Spazi metrici

Un esempio di spazio topologico, sono gli spazi metrici.

Definizione 1.7 (Metrica, Spazio Mertico). Sia X un insieme. Si definisce metrica (o distanza) su X un'applicazione

$$d: X \times X \to \mathbb{R}$$

tale che per ogni $x, y, z \in X$:

- 1. $d(x,y) \ge 0$ e d(x,y) = 0 se e solo se x = y (Positività);
- 2. d(x,y) = d(y,x) (Simmetria);
- 3. $d(x,z) \leq d(x,y) + d(y,z)$ (Disuguaglianza Triangolare).

Uno *Spazio Metrico* è una coppia (X, d) costituita da un insieme non vuoto X su cui è definita una metrica d.

Sia (X, d) uno spazio metrico. Siano $x \in X$ e r > 0. Il disco aperto di centro x e raggio r è il sottoinsieme di X definito da

$$D_r(x) = \{ y \in X | d(x, y) < r \}.$$

Un sottoinsieme X si dice aperto se è unione di dischi aperti, oppure è vuoto. Segue quindi da questa definizione che l'intero spazio X ed i dischi aperti sono insiemi aperti. Una definizione equivalente di insieme aperto è la seguente.

Proposizione 1.3.1. Un sottoinsieme $S \subset X$ è aperto se e solo se per ogni $x \in S$ esiste r(x) > 0 tale che $D_{r(x)}(x)$ sia contenuto in S.

Dimostrazione. Se S è aperto, per definizione si ha che $S = \bigcup_{i \in I} D_i$, dove D_i sono dischi aperti. Sia $x \in S$, allora esiste i_0 tale che $x \in D_{i_0} \subset S$. Quindi esistono $x_0 \in X$ e $r_0 > 0$ tali che $D_{i_0} = D_{r_0}(x_0)$. Se prendiamo $r(x) = r_0 - d(x_0, x)$ e utilizziamo la disuguaglianza triangolare $d(x, z) \le d(x, y) + d(y, z)$, troviamo che $x \in D_{r(x)}(x) \subset D_{r_0}(x_0) = D_{i_0} \subset S$. Infatti, sia y un punto di $D_{r(x)}(x)$, quindi d(x, y) < r(x), dimostriamo che appartiene anche a $D_{r_0}(x_0)$, quindi $d(x_0, y) < r_0$.

$$d(x_0, y) \le d(x_0, x) + d(x, y) = r_0 - r(x) + d(x, y) < r_0 - r(x) + r(x) = r_0$$

Viceversa, se per ogni $x \in S$ esiste r(x) > 0 tale che $D_{r(x)}(x) \subset S$ allora $S = \bigcup_{x \in X} D_{r(x)}(x)$.

Ogni spazio metrico (X, d) è uno spazio topologico (e la topologia indotta dalla metrica d sarà denotata con T_d). Gli aperti della topologia sono tutti i sottoinsiemi di X tali che per ogni punto esiste un disco centrato in quel punto di raggio positivo che è contenuto nel sottoinsieme. Verifichiamo le tre proprietà della topologia:

- 1. \emptyset è aperto. X è aperto, infatti $X = \bigcup_{x \in X} D_{\varepsilon(x)}(x)$ con $\varepsilon(x) > 0$ per ogni $x \in X$.
- 2. Consideriamo un'unione infinita di dischi aperti $A = \bigcup_{i=1}^{\infty} D_{r_i}(x_i) = D_{r_1}(x_1) \cup D_{r_2}(x_2) \cup \ldots \cup D_{r_n}(x_n) \cup \ldots A$ è aperto se per ogni $y \in A$ esiste un disco centrato in y di raggio positivo che è contenuto in A. Ma poiché $y \in A = \bigcup_{i=1}^{\infty} D_{r_i}(x_i)$, esisterà un k tale che $y \in D_{r_k}(x_k) \subset A$. Allora l'unione di infiniti dischi aperti è aperta.
- 3. Consideriamo due insiemi aperti A_1 e A_2 di X. Se almeno uno dei due è uguale all'insieme vuoto, allora la loro intersezione è uguale all'insieme vuoto, quindi è aperta. Consideriamo invece il caso in cui siano entrambi due dischi aperti (non vuoti), $A_1 = D_{r_1}(x_1)$ e $A_2 = D_{r_2}(x_2)$. Nel caso in cui la loro intersezione non fosse vuota, esisterebbe almeno un punto y al suo interno, tale che $y \in A_1$ e $y \in A_2$. Poiché A_1 e A_2 sono aperti, esistono due dischetti tali che $y \in D_{\varepsilon_1}(y) \subset A_1$ e $y \in D_{\varepsilon_2}(y) \subset A_2$. Allora l'intersezione tra A_1 e A_2 è aperta perché esiste un disco aperto che contiene y e che è interamente contenuto nell'intersezione: tale disco è $D_{\varepsilon}(y)$ con $\varepsilon = \min\{\varepsilon_1, \varepsilon_2\}$.

Nel Teorema Tesi (4.0.3) che ci siamo prefissati di dimostrare , la topologia utilizzata è la topologia Euclidea ε di \mathbb{R}^n . Tale topologia è quella indotta dalla metrica Euclidea, definita come segue:

$$d_{eucl}(x, y) = ||x - y|| = \sqrt{\sum_{j=1}^{n} (x_j - y_j)^2}$$

1.4 Spazi di Hausdorff

Uno spazio topologico X è detto spazio di Hausdorff (o spazio T_2) se per ogni coppia di punti distinti x, y di X esistono due aperti U e V di X tali che $x \in U$, $y \in V$ e $U \cap V = \emptyset$ (Figura 1.1).

Teorema 1.4.1. Un sottospazio S di uno spazio di Hausdorff è di Hausdorff.

Dimostrazione. Dati due punti distinti x, y di S, esistono due aperti disgiunti U_x e U_y di X contenenti rispettivamente x e y. Allora $(U_x \cap S)$ e $(U_y \cap S)$ sono due aperti disgiunti di S contenenti rispettivamente x e y, e quindi S è di Hausdorff.

 ${\bf Figura~1.1:}~{\bf Assioma~di~separazione~di~Hausdorff}$

Capitolo 2

Applicazioni e Omeomorfismi

2.1 Applicazioni tra spazi topologici

Definizione 2.1 (Applicazione continua). Una funzione $f: X \to Y$ tra due spazi topologici si dice *continua* se per ogni aperto V di Y la controimmagine $f^{-1}(V)$ è aperta in X.

Teorema 2.1.1. Una funzione $f: X \to Y$ tra due spazi topologici $X \in Y$ è continua se e solo se per ogni chiuso C di Y la controimmagine $f^{-1}(C)$ è chiusa in X.

Dimostrazione. Supponiamo dapprima che f sia continua. Se $C \subseteq Y$ è chiuso, $Y \setminus C$ è aperto e quindi, per la continuità di f, $f^{-1}(Y \setminus C)$ è aperto in X; ma $f^{-1}(Y \setminus C) = X \setminus f^{-1}(C)$ e dunque $f^{-1}(C)$ è chiuso in X. Viceversa, se V è aperto in Y, $Y \setminus V$ è chiuso e quindi $f^{-1}(Y \setminus V) = X \setminus f^{-1}(V)$ è chiuso in X. Ma allora $f^{-1}(V)$ è aperto e questo dimostra la continuità di f.

Proposizione 2.1.2 (Composizione di funzioni continue). Siano X, Y, Z tre spazi topologici e $f: X \to Y, g: Y \to Z$ due applicazioni continue. Allora $g \circ f: X \to Z$ è continua.

Dimostrazione. Sia W un aperto di Z. Per la continuità di g, $g^{-1}(W)$ è un aperto di Y; quindi, per la continuità di f, $f^{-1}(g^{-1}(W))$ è aperto in X. Da questo segue che $(g \circ f)^{-1}(W) = f^{-1}(g^{-1}(W))$ è aperto di X ed, essendo W arbitrario, $g \circ f$ è continua.

2.2 Applicazioni tra spazi metrici

Definizione 2.2 (Applicazione continua). Siano (X, d_X) e (Y, d_Y) due spazi metrici. Diremo che una funzione $f: X \to Y$ è continua nel punto $x \in X$ se e solo se per ogni $\varepsilon > 0$ esiste un $\delta_{\varepsilon} > 0$ tale che $d_Y(f(x), f(y)) < \varepsilon$ per ogni $y \in X$, tale che $d_X(x, y) < \delta_{\varepsilon}$. Equivalentemente, f è continua nel punto

 $x \in X$ se per ogni $\varepsilon > 0$ esiste un $\delta_{\varepsilon} > 0$ tale che $f(D_{\delta_{\varepsilon}}(x)) = D_{\varepsilon}(f(x))$. Diremo che $f \ \dot{e} \ continua$ se $\dot{e} \ continua$ in ogni punto di X.

Teorema 2.2.1. Una funzione $f: X \to Y$ tra due spazi metrici è continua se e solo se per ogni aperto V di Y, l'insieme $f^{-1}(V)$ è aperto in X.

Dimostrazione. Siano d_X e d_Y le due distanze su X e Y rispettivamente. Supponiamo f continua, siano V un aperto non vuoto di Y e $x \in f^{-1}(V)$ (se $V = \emptyset$ allora $f^{-1}(V) = \emptyset$ e non c'è nulla da dimostrare). Sia $\varepsilon > 0$ tale che $D_{\varepsilon}(f(x)) \subset V$. Per la continuità di f in x esiste $\delta_{\varepsilon} > 0$ tale che

$$f(D_{\delta_{\varepsilon}}(x)) \subset D_{\varepsilon}(f(x)).$$

Ma allora:

$$D_{\delta_{\varepsilon}}(x) \subset f^{-1}(f(D_{\delta_{\varepsilon}}(x))) \subset f^{-1}(D_{\varepsilon}(f(x))) \subset f^{-1}(V)$$

e quindi, poiché questo accade per ogni $x \in f^{-1}(V)$, si ha che $f^{-1}(V)$ è aperto.

Viceversa, supponiamo che la controimmagine tramite f di qualsiasi aperto di Y sia un aperto di X. Allora per ogni $\varepsilon > 0$, $f^{-1}(D_{\varepsilon}(f(x)))$ è un aperto di X. Poiché $x \in f^{-1}(D_{\varepsilon}(f(x)))$ esiste $\delta_{\varepsilon} > 0$ tale che: $D_{\delta_{\varepsilon}}(x) \subset f^{-1}(D_{\varepsilon}(f(x)))$. Segue che $f(D_{\delta_{\varepsilon}}(x)) \subset D_{\varepsilon}(f(x))$ e quindi f è continua in x. Siccome x è arbitrario f è continua.

2.3 Omeomorfismi

Definizione 2.3 (Omeomorfismo). Un'applicazione $f: X \to Y$ si dice omeomorfismo se f è continua, biunivoca e l'inversa $f^{-1}: X \to Y$ è continua. Due spazi topologici X e Y si dicono omeomorfi (o topologicamente equivalenti) se esiste un omeomorfismo $f: X \to Y$.

Definizione 2.4 (Embedding topologico). Un'applicazione $f: X \to Y$ si dice *embedding topologico* se l'applicazione $X \to f(X)$ indotta da f su f(X) è un omeomorfismo. In particolare, un omeomorfismo $f: X \to Y$ è un embedding topologico.

Proposizione 2.3.1 (Composizione di omeomorfismi). La composizione di omeomorfismi è un omeomorfismo.

Proposizione 2.3.2 (Composizione di embedding topologici). *La composizione di embedding topologici* è un embedding topologico.

Capitolo 3

Spazi Compatti

Definizione 3.1 (Ricoprimento e sottoricoprimento). Un *ricoprimento* di un sottoinsieme S di un insieme X è una famiglia di sottoinsiemi $\mathcal{U} = \{U_j | j \in J\}$ di X tale che $S \subseteq \bigcup_{j \in J} U_j$. Un ricoprimento viene detto finito se l'insieme di indici J è finito.

Siano $\mathcal{U} = \{U_j | j \in J\}$ e $\mathcal{V} = \{V_k | k \in K\}$ due ricoprimenti di un sottoinsieme S di X. Diremo che $\mathcal{U} = \{U_j | j \in J\}$ è un sottoricoprimento di $\mathcal{V} = \{V_k | k \in K\}$ se per ogni $j \in J$ esiste un $k \in K$ tale che $U_j = V_k$.

Definizione 3.2 (Ricoprimento aperto). Siano X uno spazio topologico e S un sottoinsieme di X; diremo che un ricoprimento $\mathcal{U} = \{U_j | j \in J\}$ di S è aperto se U_j è un sottoinsieme aperto di X per ogni $j \in J$.

Definizione 3.3 (Compatti). Un sottoinsieme S di uno spazio topologico X si dice *compatto* se per ogni ricoprimento aperto di S ammette un sottoricoprimento finito.

In particolare, lo stesso spazio X risulta compatto se ogni ricoprimento aperto di X ammette un sottoricoprimento finito. In altre parole, X è compatto se dato un qualsiasi ricoprimento aperto $\mathcal{U} = \{U_j | j \in J\}$ di X, esiste un numero finito di aperti $U_1, \ldots, U_k \in \mathcal{U}$ tali che $X = U_1 \cup \ldots \cup U_k$.

Teorema 3.0.3 (Teorema principale sulla compattezza). Siano X e Y spazi topologici e sia $f: X \to Y$ una funzione continua. Se X è compatto, allora f(X) è compatto.

Dimostrazione. Sia \mathcal{U} un ricoprimento aperto di f(X), cioè \mathcal{U} è costituito da aperti di Y la cui unione contiene f(X). Siccome \mathcal{U} ricopre f(X) e f è continua , la famiglia $\{f^{-1}(U)|U\in\mathcal{U}\}$ è un ricoprimento aperto di X. Per la compattezza di X un numero finito di questi aperti, $f^{-1}(U_1), \ldots, f^{-1}(U_k)$ ricopre X cioè $X = f^{-1}(U_1) \cup \ldots \cup f^{-1}(U_k)$. Allora U_1, \ldots, U_k è un ricoprimento aperto di f(X) in quanto $f(X) = f(\bigcup_{j=1}^k f^{-1}(U_j)) = \bigcup_{j=1}^k f(f-1(U_j)) \subset \bigcup_{j=1}^k U_j$.

Proposizione 3.0.4 (Proprietà assoluta dei compatti). Siano S e T, $S \subset T$, due sottoinsiemi di uno spazio topologico X. Allora S è un sottoinsieme compatto di X se e solo se S è un sottoinsieme compatto di T (Con T dotato della topologia indotta da X).

Dimostrazione. Supponiamo che S sia compatto come sottoinsieme (o come sottospazio) di T e sia $\mathcal{U} = \{U_j\}_{j \in J}$ un ricoprimento aperto di S in X. Allora la famiglia $\mathcal{U} \cap T = \{U_j \cap T\}_{j \in J}$ è un ricoprimento aperto di S in T; infatti gli $U_j \cap T$ sono aperti in T rispetto alla topologia indotta da X. Siccome S è compatto in T, esisteranno un numero finito di questi aperti $U_1 \cap T, \ldots, U_k \cap T$, tali che $S \subset (U_1 \cap T) \cup \ldots \cup (U_k \cap T)$ e quindi $S \subset U_1 \cup \ldots \cup U_k$. Questo mostra che S è compatto in X.

Viceversa, supponiamo che S sia compatto in X e sia $\mathcal{U}' = \{U'_j\}_{j \in J}$ un ricoprimento aperto si S in T, cioè $S \subset \cup_{j \in J} U'_j$. Allora per ogni $j \in J$, esiste un aperto U_j di X tale che $U'_j = U_j \cap T$ e quindi $S \subset \cup_{j \in J} U_j$. Essendo S compatto in X, esiste un numero finito di questi aperti U_1, \ldots, U_k tali che $S \subset U_1 \cup \ldots \cup U_k$. Segue che $S \subset (U_1 \cap T) \cup \cdots \cup (U_k \cap T)$ e quindi S è compatto in T.

Proposizione 3.0.5 (Proprietà degli spazi compatti). Sono riportate di seguito alcune proprietà degli spazi compatti:

- 1. Ogni sottoinsieme chiuso di uno spazio compatto è compatto.
- 2. Il prodotto finito $X_1 \times ... \times X_k$ di spazi compatti è compatto se e solo se ciascun X_j , con j = 1, ..., k è compatto.
- 3. In uno spazio di Hausdorff X, gli insiemi compatti e disgiunti possono essere separati da insiemi aperti. Ovvero, se $A, B \subset X$ sono sottoinsiemi compatti e disgiunti di X, esistono due insiemi aperti disgiunti $U, V \subset X$ tali che $A \subset U$ e $B \subset V$.
- 4. Ogni sottoinsieme compatto di uno spazio di Hausdorff è chiuso.

Dimostrazione. Dimostriamo le proprietà:

- 1. Sia $C \subset X$ un sottoinsieme chiuso dello spazio compatto X e sia \mathcal{U} un ricoprimento aperto di C. Allora $\mathcal{U} \cup X \setminus C$ è un ricoprimento aperto di X. Siccome X è compatto, questo ricoprimento possiede un sottoricoprimento aperto e finito $\{U_1, \ldots, U_k, X \setminus C\}$, $U_j \in \mathcal{U}$ con $j = 1, \ldots, k$, di X. Quindi $C \subset U_1 \cup \ldots \cup U_k$. Questo mostra allora che C è compatto.
- 2. Per dimostrare questo punto, è sufficiente considerare il prodotto $X \times Y$ di due spazi e poi usare l'induzione. Supponiamo che X e Y siano compatti e sia \mathcal{U} un ricoprimento aperto di $X \times Y$. Sia $x \in X$ un

punto arbitrario di X. Allora essendo $Y \simeq \{x\} \times Y$ compatto esiste un numero finito U_1, \ldots, U_k di elementi di \mathcal{U} tali che $\{x\} \times Y \subset U_1 \cup \ldots \cup U_k$. Per definizione di topologia prodotto su $X \times Y$ per ogni $y \in Y$ esistono due aperti V di X e W di Y tali che

$$(x,y) \in V \times W \subset U_1 \cup \ldots \cup U_k$$
.

gli aperti della forma $V \times W$ ricoprono $\{x\} \times Y$ e quindi, usando ancora il fatto che Y è compatto, esistono V_1, \ldots, V_m aperti di X contenenti x e W_1, \ldots, W_m aperti di Y tali che

$$\{x\} \times Y \subset (V_1 \times W_1) \cup \ldots \cup (V_m \times W_m) \subset U_1 \cup \ldots \cup U_k.$$

Sia $Z_x = V_1 \cap \ldots \cap V_m$. Allora la "striscia" $Z_x \times Y$ è contenuta in $U_1 \cup \ldots \cup U_k$. In definitiva abbiamo dimostrato che per ogni $x \in X$ esiste un sottoinsieme aperto $Z_x \subset X$ tale che $Z_x \times Y$ può essere ricoperto da un numero finito di aperti di U. La famiglia di aperti $\{Z_x | x \in X\}$ è un ricoprimento aperto di X. Essendo X compatto, esiste un numero finito di questi aperti, $\{Z_{x_1}, \ldots, Z_{x_s}\}$, che ricoprono ancora X e quindi

$$X \times Y = \bigcup_{i=1}^{s} Z_{x_i} \times Y.$$

Siccome un numero finito di insiemi di \mathcal{U} ricoprono ciascuna striscia $Z_{x_i} \times Y$ segue che un numero finito di aperti di \mathcal{U} ricopre $X \times Y$ e quindi $X \times Y$ è compatto.

Viceversa, se $X \times Y$ è compatto allora, per il Teorema 3.0.3, X (e rispettivamente Y) è compatto in quanto immagine dell'applicazione continua $\pi_1: X \times Y \to X, (x,y) \mapsto x$ (e rispettivamente $\pi_2: X \times Y \to Y, (x,y) \mapsto y$).

3. Consideriamo prima il caso in cui B è costituito da un solo punto, cioè $B=\{q\}$ (che è compatto per il punto (1)). Per ogni punto $p\in A$, esistono insiemi aperti e disgiunti U_p e V_p tali che $p\in U_p$ e $q\in V_p$ (in quanto X è uno spazio di Hausdorff). La famiglia $\{U_p|p\in A\}$ è un ricoprimento aperto di A e quindi, poiché A è compatto, esiste un sottoricoprimento finito $\{U_{p_1},\ldots,U_{p_k}\}$. Sia $U=U_{p_1}\cup\ldots\cup U_{p_k}$ e $V=V_{p_1}\cap\ldots\cap V_{p_k}$. Allora U e V sono insiemi aperti e disgiunti tali che $A\subset U$ e $\{q\}\subset V$, quindi questo caso è provato.

Consideriamo il caso generale, ovvero quando B è costituito da più punti. Quello che abbiamo appena dimostrato ci dice che per ogni $q \in B$ esistono due insiemi aperti e disgiunti di X, U_q e V_q , tali che $A \subset U_q$ e $B \subset V_q$. Per la compattezza di B, un numero finito di questi aperti $\{V_{q_1}, \ldots, V_{q_m}\}$ ricoprono B. Allora $U = U_{q_1} \cap \ldots \cap U_{q_m}$ e $V = V_{q_1} \cup \ldots \cup V_{q_m}$ sono due aperti disgiunti che contengono A e B rispettivamente, e questo conclude la dimostrazione.

4. Sia K un sottoinsieme compatto di uno spazio di Hausdorff X. Sia $x \in X \backslash K$. Per quanto detto nel punto (3), esistono insiemi aperti e disgiunti U e V_x tali che $K \subset U$ e $x \in V_x$. In particolare V_x è un aperto contenente x tale che $V_x \subset X \backslash K$. Segue che $X \backslash K = \bigcup_{x \in X \backslash K} V_x$ è aperto, e quindi K è chiuso.

Corollario 3.0.6. Sia $Q_r(x) = \{w \in \mathbb{R}^n | d^{\square}(x, w) = \max_j \{|x_j - y_j|\} < r\}$. Per ogni r > 0 e ogni $x \in \mathbb{R}^n$ il cubo $\overline{Q_r(x)}$ è compatto.

Dimostrazione. Ricordiamo che:

$$Q_r(x) = \{ y \in \mathbb{R}^n | |x_i - y_i| < r \} = (x_1 - r, x_1 + r) \times \ldots \times (x_n - r, x_n + r).$$

D'altra parte $(x_j - r, x_j + r) \simeq (0, 1)$, per ogni $j = 1, \ldots, n$. Poiché, presi due sottoinsiemi S_1, S_2 di due spazi topologici X_1, X_2 , si ha che $\overline{S_1 \times S_2} = \overline{S_1} \times \overline{S_2}$, segue che $\overline{Q_r(x)}$ è omeomorfo a $I^n = I \times \ldots \times I$, dove I = [0, 1]. Ma poiché I^n è compatto, allora anche $\overline{Q_r(x)}$ è compatto.

Proposizione 3.0.7. Un sottoinsieme compatto di uno spazio metrico (X, d) è chiuso e limitato.

Dimostrazione. Sia K un sottoinsieme compatto di uno spazio metrico (X,d). Poiché ogni spazio metrico è di Hausdorff, per il punto (4) della Proposizione 3.0.5 segue che K è chiuso, in quanto sottoinsieme compatto di uno spazio di Hausdorff. Dimostriamo quindi che K è limitato. La famiglia $\{D_r(x)|x\in K, r>0\}$ è un ricoprimento aperto di K, che ha quindi un sottoricoprimento finito (per la compattezza di K) $\{D_{r_1}(x_1),\ldots,D_{r_m}(x_m)\}$. Allora K è limitato in quanto è contenuto nell'unione finita di insiemi limitati.

Teorema 3.0.8 (Teorema di Heine-Borel per \mathbb{R}^n). Un sottoinsieme K di \mathbb{R}^n è compatto se e solo se K è chiuso e limitato.

Dimostrazione. Poiché \mathbb{R}^n è uno spazio metrico, segue dalla Proposizione 3.0.7 che se $K \subset \mathbb{R}^n$ è compatto allora è chiuso e limitato.

Viceversa, supponiamo che K sia chiuso e limitato. Sia $x \in K$, essendo K limitato esiste r > 0 tale che $K \subset B_r(x)$, quindi

$$K \subset B_r(x) \subset \overline{B_r(x)} \subset \overline{Q_r(x)}.$$

Ma $Q_r(x)$ è compatto (per il corollario 3.0.6), allora K è un sottoinsieme chiuso del compatto $\overline{Q_r(x)}$, ed è quindi compatto per il punto (1) della Proposizione 3.0.5.

Teorema 3.0.9 (Teorema del valore estremo). Se X è uno spazio compatto $e f: X \to \mathbb{R}$ è una funzione continua, allora f è limitata e assume un valore minimo e un valore massimo su X.

Dimostrazione. Per il Teorema 3.0.3, f(X) è un sottoinsieme compatto di \mathbb{R} . Quindi, per il Teorema 3.0.8, f(X) è chiuso e limitato. In particolare, esso contiene un estremo inferiore e un estremo superiore.

3.1 Lemma dell'applicazione chiusa

Lemma 3.1.1 (dell'applicazione chiusa). supponiamo che $f: X \to Y$ sia un'applicazione continua da uno spazio compatto X ad uno spazio di Hausdorff Y. Valgono i seguenti fatti:

- f è un'applicazione chiusa;
- se f è una bigezione allora è un omeomorfismo;
- se f è iniettiva allora è un embedding topologico.

Dimostrazione. Sia $C \subset X$ un sottoinsieme chiuso di X. Allora, poiché un sottoinsieme chiuso di uno spazio compatto è compatto, C è compatto (si veda la (1) della Proposizione 3.0.5). Quindi segue da Teorema principale sulla compattezza (3.0.3) che f(C) è compatto e quindi chiuso per la (4) della Proposizione 3.0.5. Questo mostra che f è un'applicazione chiusa e questo prova la prima. Se f è bigettiva allora essendo chiusa la sua inversa è continua e questo prova la seconda. Infine se f è iniettiva allora $f: X \to Y$ è un embedding topologico.

Capitolo 4

Teorema Tesi

Prima di parlare del teorema, diamo le definizioni di Convesso e solido convesso, ed enunciamo (e dimostriamo) un lemma che ci servirà poi nella dimostrazione del teorema stesso.

Definizione 4.1 (Convesso). Un sottoinsieme $K \subset \mathbb{R}^n$ è detto *convesso* se per ogni coppia di punti x e y in K il segmento che li congiunge $\overline{xy} = \{(1-t)x + ty | t \in I\}$ è interamente contenuto in K.

Figura 4.1: Insieme convesso e insieme non convesso.

Definizione 4.2 (Solido convesso). Un *solido convesso* è un sottoinsieme convesso il cui interno è non vuoto.

Gli esempi più semplici di solidi convessi sono $D^n = \overline{B_1(0)}$ e \mathbb{R}^n .

Lemma 4.0.2. Sia x_0 un punto di \mathbb{R}^n e sia

$$C_{x_0} = \bigcup_{y \in B_1(0)} \overline{x_0 y}$$

l'insieme costituito da tutti i segmenti di retta $\overline{x_0y}$ che uniscono x_0 a y al variare di $y \in B_1(0)$. Allora ogni punto tx_0 , $0 \le t < 1$, è interno a C_{x_0} .

Dimostrazione. Sia $0 \le t_0 < 1$ e consideriamo la palla aperta $B_{1-t_0}(t_0x_0)$ di centro t_0x_0 e raggio $1-t_0$. Mostreremo che $B_{1-t_0}(t_0x_0) \subset C_{x_0}$ e che quindi il punto $t_0x_0 \in Int(C_{x_0})$, per definizione di punto interno (Intuitivamente, se $t_0 = 0$ allora $B_{1-t_0}(t_0x_0) = B_1(0)$; più t_0 si avvicina a 1, più la palla $B_{1-t_0}(t_0x_0)$ rimpicciolisce fino quasi a diventare un punto. Di conseguenza è inclusa in C_{x_0}).

Sia quindi $z \in B_{1-t_0}(t_0x_0)$, cioè $||z-t_0x_0|| < 1-t_0$. Si consideri il punto $y_0 = x_0 + \frac{1}{1-t_0}(z-x_0)$; la sua norma sarà

$$||y_0|| = ||x_0 + \frac{1}{1 - t_0}(z - x_0)|| = \frac{1}{1 - t_0}||z - t_0x_0|| < 1$$

Si deduce che $y_0 \in B_1(0)$. Quindi i punti del segmento di retta $\overline{x_0y_0}$ stanno in C_{x_0} (per definizione di C_{x_0}). Questo segmento può essere parametrizzato da

$$\overline{x_0y_0} = \{s_t = x_0 + t(y_0 - x_0) = x_0 + \frac{1}{1 - t_0}(z - x_0), 0 \le t \le 1\}$$

(infatti per t=0 ho $s_0=x_0$, per t=1 ho $s_1=y_0$) e quindi il punto $z=s_{1-t_0}\in \overline{x_0y_0}\subset C_{x_0}$ che è ciò che volevamo dimostrare.

Teorema 4.0.3 (Teorema Tesi). Sia K un sottoinsieme compatto e convesso di \mathbb{R}^n con interno non vuoto. Allora $D^n = \overline{B_1(0)}$ e K sono omeomorfit tramite un omeomorfismo $G: D^n \to K$ che manda $S^{n-1} = Fr(D^n)$ in Fr(K).

Dimostrazione. Per ipotesi Int(K) è non vuoto, quindi consideriamo p, un punto interno a K. La traslazione

$$t_{-n}: \mathbb{R}^n \to \mathbb{R}^n, x \longmapsto x - p$$

è un omeomorfismo di \mathbb{R}^n che porta il punto p nell'origine $0 \in \mathbb{R}^n$ e il sottoinsieme compatto e convesso K di \mathbb{R}^n nel sottoinsieme compatto e convesso $t_{-p}(K)$ di \mathbb{R}^n . Poiché $p \in Int(K)$, allora anche $0 \in Int(t_{-p}(K))$ ed esiste quindi (per la definizione di Punto Interno) una palla aperta $B_{\varepsilon}(0) \subset t_{-p}(K)$ per un opportuno $\varepsilon > 0$.

Consideriamo inoltre l'applicazione lineare (dilatazione, multiplo dell'identità di \mathbb{R}^n)

$$\varphi_{\varepsilon}: \mathbb{R}^n \to \mathbb{R}^n, x \longmapsto \varphi_{\varepsilon}(x) = \frac{x}{\varepsilon}$$

che è un omeomorfismo che porta il sottoinsieme compatto e convesso $t_{-p}(K)$ di \mathbb{R}^n nel sottoinsieme compatto e convesso $H = \varphi_{\varepsilon}(t_{-p}(K))$ di \mathbb{R}^n e $B_{\varepsilon}(0)$ in $B_1(0) \subset H$.

(In pratica ho spostato K nell'origine con la traslazione, poi l'ho ingrandito, dilatato, con l'applicazione lineare)

Per dimostrare il teorema è allora sufficiente costruire un omeomorfismo

$$F:D^n\to H$$

tale che la sua inversa $F^{-1}: H \to D^n$ sia tale che $F^{-1}(Fr(H)) = S^{n-1} = Fr(D^n)$. Infatti

 $G' = F^{-1} \circ \varphi_{\varepsilon} \circ t_{-p} : K \to D^n$

sarà l'omeomorfismo cercato (che è effettivamente l'inversa di $G: D^n \to K$). Cominciamo a costruire un omeomorfismo

$$f: S^{n-1} \to Fr(H)$$

che sarà la restrizione a S^{n-1} dell'omeomorfismo F che vogliamo costruire. Sia $x \in \mathbb{R}^n$, $x \neq 0$ e sia r_x la semiretta di \mathbb{R}^n passante per l'origine (compresa l'origine) e per il punto x. Questa semiretta è un sottoinsieme chiuso di \mathbb{R}^n , perché il suo complementare è aperto, e quindi la sua intersezione con H, $r_x \cap H$, è un sottoinsieme compatto di \mathbb{R}^n . Sia

$$d_r: r_r \cap H \to \mathbb{R}$$

la funzione continua che ad un punto $y \in r_x \cap H$ associa la sua distanza dall'origine, cioè $d_x(y) = ||y||$. Segue dal Teorema del valore estremo (3.0.9) che esiste almeno un punto $x_0 \in r_x \cap H$ tale che $d_x(x_0) = ||x_0|| \ge ||y||$ per ogni $y \in r_x \cap H$.

Il punto x_0 è un punto di frontiera per H. Infatti $H = Int(H) \cup Fr(H)$ (in quanto H è chiuso). Se $x_0 \in Int(H)$ allora $x_0 + \delta \frac{x_0}{\|x_0\|} \in r_x \cap H$, per un opportuno $\delta > 0$, e quindi $\|x_0 + \delta \frac{x_0}{\|x_0\|}\| > \|x_0\|$ che è in contrasto con la scelta di x_0 . Allora $x_0 \in Fr(H)$. Vogliamo dimostrare che x_0 è unico, cioè la semiretta r_x interseca Fr(H) in un unico punto x_0 . Per fare ciò consideriamo l'insieme

$$C_{x_0} = \bigcup_{y \in B_1(0)} \overline{x_0 y}$$

come nel Lemma 4.0.2. Siccome H è convesso e $B_1(0) \subset H$ segue che $B_1(0) \subset C_{x_0} \subset H$. Dal Lemma 4.0.2 ogni punto tx_0 , $0 \le t < 1$ è interno a C_{x_0} e quindi interno a H. Conseguentemente ogni altro punto di $(r_x \cap H) \setminus \{x_0\}$ è interno a H e questo mostra l'unicità di x_0 (Figura 4.2).

Resta quindi ben definita l'applicazione $f: S^{n-1} \to Fr(H)$ che ad un punto $x \in S^{n-1}$ associa $x_0 = f(x) = r_x \cap H$. Quest'applicazione è invertibile e la sua inversa $f^{-1}: Fr(H) \to S^{n-1}$ è data da

$$f^{-1}(y) = r_x \cap S^{n-1} = \frac{y}{\|y\|}, y \in Fr(H).$$

Osserviamo che f^{-1} è continua in quanto restrizione a Fr(H) dell'applicazione continua $\mathbb{R}^n \setminus \{0\} \to S^{n-1} \subset \mathbb{R}^n, y \longmapsto \frac{y}{\|y\|}$. Segue quindi dal secondo punto del Lemma dell'applicazione chiusa che $f: S^{n-1} \to Fr(H)$ è un omeomorfismo in quanto Fr(H) è compatta (per il Teorema 3.0.8) e S^{n-1}

Figura 4.2: Il punto x_0 è unico.

è di Hausdorff. Estendiamo infine fall'applicazione $F:D^n=\overline{B_1(0)}\to H$ ponendo

$$F(x) = \begin{cases} ||x|| f(\frac{x}{||x||}) & \text{se } x \in D^n \setminus \{0\} \\ 0 & \text{se } x = 0 \end{cases}$$

Non è difficile verificare che F è continua, iniettiva e suriettiva.

- \bullet Continua: la continuità di F segue da quella di f.
- Iniettiva: presi $x, x' \in D^n$ tali che $x \neq x' \Rightarrow F(x) \neq F(x')$. Distinguiamo due casi:

caso 1: x, x' stanno sulla stessa semiretta r_x , allora $f(\frac{x}{\|x\|}) = f(\frac{x'}{\|x'\|})$, ma poiché x e x' sono diversi, anche le loro norme sono diverse, quindi $F(x) \neq F(x')$.

- caso 2: x, x' stanno su due semirette differenti r_x e $r_{x'}$, allora $f(\frac{x}{\|x\|}) = x_0 \neq x'_0 = f(\frac{x'}{\|x'\|})$; se moltiplichiamo questi due punti rispettivamente per $\|x\|$ e $\|x'\|$ otteniamo due punti multipli di x_0 e di x'_0 che stanno sulle due semirette r_x e r'_x , quindi sono diversi e $F(x) \neq F(x')$.
- Suriettiva: consideriamo un generico $x \in D^n$ e dimostriamo la suriettività per i punti appartenenti alla semiretta r_x . Poiché x è stato scelto in modo generico, allora la dimostrazione vale per tutti gli $x \in D^n \setminus \{0\}$. Sappiamo che $f(\frac{x}{\|x\|}) = x_0 = r_x \cap Fr(H)$; poiché $x \in D^n \setminus \{0\} = \overline{B_1(0)} \setminus \{0\}$ allora la sua norma sarà $0 < \|x\| \le 1$, quindi $F(x) = \|x\| x_0$

si trova sul segmento $\overline{0x_0}$ (0 escluso). Al variare di x in $D^n \cap r_x$ otteniamo tutti i punti del segmentino. Se invece x=0 allora F(x)=0. Quindi per ogni $y\in H$ esiste una $x\in D^n$ tale che F(x)=y, quindi F è suriettiva.

Segue, ancora dal secondo punto del Lemma dell'applicazione chiusa (D^n è compatto e H è di Hausdorff) che $F:D^n\to H$ è un omeomorfismo e questo conclude la dimostrazione de teorema.

Corollario 4.0.4 (Quadrato e Cerchio omeomorfi). Siano $x, y \in \mathbb{R}^n$ e r, s > 0. Allora $Q_r(x)$ e $B_s(y)$ sono omeomorfi. Più precisamente esiste un omeomorfismo:

$$F: \overline{Q_r(x)} \to \overline{B_s(y)}$$

che induce un omeomorfismo tra $Q_r(x)$ e $B_s(y)$ e tra $Int(Q_r(x))$ e $Int(B_s(y))$.

Dimostrazione. La prova del corollario segue dal teorema appena dimostrato e dal corollario 3.0.6. $\hfill\Box$

Figura 4.3: Cubo deformato in una sfera.

Bibliografia

- [1] Czes Kosniowski. Introduzione alla Topologia Algebrica. Zanichelli, 1988.
- [2] Andrea Loi. Appunti di Topologia Generale. Università di Cagliari, 2010.
- [3] John M. Lee. Introduction to Topological Manifolds. Springer, ().