COL352: Assignment 1

Sachin 2019CS10722

January, 2022

1 Question 1

2 Question 2

An all-NFA M is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ that accepts $x \in \Sigma^*$ if every possible state that M could be in after reading input x is a state from F . Note, in contrast, that an ordinary NFA accepts a string if some state among these possible states is an accept state. Prove that all-NFAs recognize the class of regular languages.

To prove that all-NFA's recognise the class of regular languages we need to show two things, firstly that the language accepted by all-NFA's is regular, and secondly given any regular language there exists an all-NFA which accepts it. Following are the proofs of these parts,

To Prove: Language accepted by all-NFA is regular.

Proof: Now by the definition, all-NFA M is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ that accepts $x \in \Sigma^*$ if every possible state that M could be in after reading input x is a state from F . This would mean the all-NFA's are NFA because NFA a ccepts the string even if some of the states reached after reading an input x is in accept state F. NOw we know that the language accepted by NFA is regular. Therefore the language accepted by all-NFA is also regular. Hence proved.

To Prove: For every regular language there exists an all-NFA that accepts it

Proof: We know that for every regular language there exists a DFA which accepts it. Now the definition of a DFA M is that it is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ that accepts $x \in \Sigma^*$ if the state that M could be in after reading input x is a state from F. Now we also know that the set of states DFA M would be in after reading the input x is a singleton set (Deterministic nature) and the state belongs to F if x is accepted by DFA. So every DFA is an all-NFA. Therefore for every regular language, there exists an all-NFA that accepts it. Hence proved.

Now above two facts would imply that the all-NFA's recognize the class of regular languages.

- 3 Question 3
- 4 Question 4
- 5 Question 5
- 6 Question 6