PROBLEM SETS FOR INTRODUCTION TO ENUMERATIVE COMBINATORICS

FULVIO GESMUNDO

ABSTRACT. This document collects a few problems which should be useful to practice on the material that is covered during the lectures.

Lecture 1

Problem 1. Let V be a vector space of dimension n+1 and let $\nu_{d,n}: \mathbb{P}V \to \mathbb{P}S^dV$ be the Veronese embedding. Show that if $X \subseteq \mathbb{P}V$ is a variety of dimension k and degree e, then $\nu_{d,n}(X)$ has degree d^ke .

In particular, the degree of a k-dimensional subvariety of $\nu_{d,n}(\mathbb{P}V)$ is a multiple of d^k .

Problem 2. Let

$$\Psi = \{ (p, q, r) \in \mathbb{P}^n \times \mathbb{P}^n \times \mathbb{P}^n : p, r, s \text{ are collinear} \}.$$

Show that Ψ is a subvariety of $\mathbb{P}^n \times \mathbb{P}^n \times \mathbb{P}^n$ of codimension n-1.

Determine the class $[\Psi]$ in the Chow ring $CH(\mathbb{P}^n \times \mathbb{P}^n \times \mathbb{P}^n)$.

Note: The Chow ring of a product of several projective spaces is what one expects. If $\dim V_i = n_i + 1$, then

$$CH(\mathbb{P}V_1 \times \cdots \times \mathbb{P}V_s) = \mathbb{Z}[\alpha_1, \dots, \alpha_s]/(\alpha_1^{n_1+1}, \dots, \alpha_s^{n_s+1})$$

where α_j is identified with the class of the pull back of the hyperplane section in $\mathbb{P}V_j$ via the projection map. In other words

$$\alpha_j = [\mathbb{P}V_1 \times \cdots \times \mathbb{P}V_{j-1} \times H_j \times \mathbb{P}V_{j+1} \times \cdots \times \mathbb{P}V_s].$$

Problem 3. Let $\mathbb{P}S^3\mathbb{C}^3$ be the space of homogeneous polynomials of degree 3 in three variables. Let

$$\mathcal{T} = \{ f : f = \ell_1 \ell_2 \ell_3 \text{ for some linear forms } \ell_i \},$$

that is the space of *triangles* (i.e., cubic curves which are union of three lines).

Determine the dimension and the degree of \mathcal{T} .

Hint: Write \mathcal{T} is the image of a map defined on $\mathbb{P}^2 \times \mathbb{P}^2 \times \mathbb{P}^2$.

Problem 4. Let $\mathbb{P}S^3\mathbb{C}^3$ be the space of homogeneous polynomials of degree 3 in three variables, that is the space of plane cubic curves. Let

$$\mathcal{A} = \{f : f = \ell_1 \ell_2 \ell_3 \text{ for some linear forms } \ell_i \text{ with a common zero}\}\},$$

that is the space of asterisks (i.e., cubic curves which are union of three lines passing through the same point).

Determine the dimension and the degree of A.

Hint: It is similar to the previous problem, but one needs something more complicated than $\mathbb{P}^2 \times \mathbb{P}^2 \times \mathbb{P}^2$.

Problem 5. Let $\mathbb{P}S^3\mathbb{C}^3$ be the space of homogeneous polynomials of degree 3 in three variables, that is the space of plane cubic curves. Let

$$C = \{ f = \ell_1^2 \ell_2 : \ell_j \text{ is a linear form} \},$$

that is the space of cubic curves which are union of a double line and a line.

Determine the dimension and the degree of C.