AKS алгоритм проверки числа на простоту

Рубаненко Евгений

2017

Аннотация

В данной работе рассматривается тест Агравала - Каяла - Саксены проверки числа на простоту. Алгоритм работает за полиномиальное время. Приведено доказательство корректности и сравнение с другими алгоритмами проверки числа на простоту.

1 Введение

Долгое время считалось, что изучение простых чисел - пример "чистой" математики. Но в 70-ых годах XX века выяснилось, что простые числа могут быть использованы при создании криптографических алгоритмов. Это послужило толчком в развитии данной области. Для поиска простых чисел существует множество алгоритмов: простых и сложных. Но только в 2002 году был предложен алгоритм, который ответил на вопрос принадлежности задачи распознавания простоты классу Р. Основное свойство теста AKS заключается в том, что он одновременно универсален (то есть может использоваться для проверки простоты любых чисел), полиномиален, детерминирован (что гарантирует получение уникального предопределенного результата) и безусловен (то есть корректность алгоритма не зависит от каких-либо недоказанных гипотез), предыдущие алгоритмы обладали лишь тремя из этих четырех свойств.

2 Идея

Идея алгоритма основана на следующей лемме.

Лемма 2.1. Пусть $a \in \mathbb{Z}, n \in \mathbb{N}$ и (a,n) = 1. Тогда n простое тогда и только тогда, когда

$$(X+a)^n = X^n + a \pmod{n} \tag{1}$$

Доказательство Леммы 2.1. Посмотрим на коэффициент перед X^i , $i \in \{0, \dots, n-1\}$ в многочлене $((X+a)^n-(X^n+a))$. Он равен $\binom{n}{i}a^{n-i}$. Тогда, если n простое, то $\binom{n}{i}=0 \pmod n$ и сравнение (1) верно. Если n составное, то обозначим q - простой делитель n, входящий в его разложение на простые в степени k. Тогда $q^k \nmid \binom{n}{q}$ и $(q, a^{n-q}) = 1$, откуда получаем, что коэффициент при X^q не равен нулю. Но тогда многочлен $((X+a)^n-(X^n+a))$ не равен тождественно нулю, что заверашает доказательство леммы.

Тогда можно придумать следующий тривиальный алгоритм: выбрать a и проверить (1). Проблема заключается в том, что он не эффективен - в худшем случае придется вычислить n коэффициентов в левой части (1).

Идея теста Агравала - Каяла - Саксены заключается в том, чтобы проверять следующее соотношение

$$(X+a)^n = X^n + a \ (mod \ X^r - 1, n), \tag{2}$$

где r - специально подобранное число. Теперь проблема заключается в том, что соотношению (2) могут удовлетворять не только простые n. Дальше будет показано, что можно проверить дополнительные условия, из которых будет следовать, что n простое.

3 Используемые обозначения

Большинство используемых обозначений являются общеизвестными. Дополнительную информацию можно найти в [1].

В работе используется символ $O^{\sim}(t(n))$, что есть $O(t(n) \cdot poly(log\ t(n)))$. Через HOK(m) обозначен $HOK(1,2,\ldots,m)$.

4 Алгоритм

```
Data: n: integer
Result: True, если п простое, False - иначе
if n = a^b, \varepsilon \partial e \ a \in \mathbb{N}, b > 1 then
   return False;
else
   r := \min\{r \mid o_r(n) > \log^2 n\};
   if 1 < (a, n) < n, для какого-то a \le r then
       return False;
   else
       if n \leq r then
         return True;
           for a := 1 to |\sqrt{\phi(r)} \log n| do
               if ((X+a)^n \neq X^n + a \pmod{X^r-1}, n) then
                return False;
               end
           end
           return True;
    end
end
```

Algorithm 1: AKS алгоритм

Дальше будут часто встречаться упоминания конкретных шагов алгоритма, поэтому введем следующую нумерацию:

- 1. Первый шаг If $n=a^b$, где $a\in\mathbb{N},\ b>1$ return False
- 2. Второй шаг $r := min\{r \mid o_r(n) > log^2 n\}$
- 3. Третий шаг If 1 < (a, n) < n, для какого-то $a \le r$ return False
- 4. Четвертый шаг If $n \leq r$ return True
- 5. Пятый шаг Цикл for
- 6. Шестой шаг return True

5 Доказательство корректности

Лемма 5.1. $\mathrm{HOK}(m) \geq 2^m$ при $m \geq 9$. **Доказательство Леммы 5.1.** Рассмотрим при $m \in \{1, \dots, n\}$ интеграл

$$S(n,m) = \int_0^1 x^{m-1} (1-x)^{n-m} dx = \int_0^1 x^{m-1} \sum_{k=0}^{n-m} \binom{n-m}{k} (-1)^k x^k dx$$
$$= \sum_{k=0}^{n-m} \binom{n-m}{k} (-1)^k \int_0^1 x^{m-1+k} dx = \sum_{k=0}^{n-m} \binom{n-m}{k} (-1)^k \frac{1}{m+k}$$

 $\mathrm{HOK}(n)$ делится на m+k при всех $k\in\{0,\ldots,n-m\}$ \implies $\mathrm{HOK}(n)\cdot S(n,m)\in\mathbb{N}$. С другой стороны

$$S(n,m) = \frac{1}{m} \int_0^1 (1-x)^{n-m} dx^m = \frac{1}{m} \int_0^1 x^m (n-m)(1-x)^{n-m-1} dx$$

$$= \frac{n-m}{m} \int_0^1 x^m (1-x)^{n-m-1} dx = \frac{(n-m)(n-m-1)}{m(m+1)} \int_0^1 x^{m+1} (1-x)^{n-m-2} dx$$

$$= \dots = \frac{(n-m)(n-m-1)\dots 1}{m(m+1)\dots (n-1)} \int_0^1 x^{n-1} dx = \frac{(n-m)!}{m(m+1)\dots (n-1)n}$$

$$= \frac{(n-m)!(m-1)!}{n!} = \frac{1}{m\binom{n}{m}}$$

Так как число $\mathrm{HOK}(2n)\cdot S(2n,n)=\frac{\mathrm{HOK}(2n)}{n\binom{2n}{n}}$ целое, то $\mathrm{HOK}(2n)$ делится на $n\binom{2n}{n}$, и $n\binom{2n}{n}$ делит $\mathrm{HOK}(2n+1)$. Аналогичным образом $(n+1)\binom{2n+1}{n+1}$ делит $\mathrm{HOK}(2n+1)$. Отметим, что $(2n+1)\binom{2n}{n}=(n+1)\binom{2n+1}{n+1}$. Учитывая, что (2n+1,n)=1, получаем, что $\mathrm{HOK}(2n+1)$ делится на $n(2n+1)\binom{2n}{n}$, откуда $\mathrm{HOK}(2n+1)\geq n(2n+1)\binom{2n}{n}$.

Так как $\binom{2n}{n}$ наибольшее из 2n+1 слагаемых биномиального разложения $(1+1)^{2n}$, то $(2n+1)\binom{2n}{n} \geq 4^n$. Отсюда при $n \geq 2$ имеем $\mathrm{HOK}(2n+1) \geq 2^{2n+1}$. Кроме этого, $\mathrm{HOK}(2n+2) \geq \mathrm{HOK}(2n+1) \geq n \cdot 4^n$, так что при $n \geq 4$ выполняется $\mathrm{HOK}(2n+2) \geq 2^{2n+2}$. Таким образом, при $n \geq 9$ имеет место неравенство $\mathrm{HOK}(n) \geq 2^n$

Лемма 5.2. Существует $r \leq max\{3, \lceil log^5n \rceil\}$ такое, что $o_r(n) > log^2n$. **Доказательство Леммы 5.2.** При n=2 \exists r=3, и утверждение верно. Будем считать, что n>2. Обозначим $B=\lceil log^5n \rceil$ и рассмотрим произведение

$$P = n \cdot \prod_{i=1}^{\lfloor log^2n \rfloor} (n^i - 1)$$

Oценим P сверху

$$P < n \cdot \prod_{i=1}^{\lfloor log^2n \rfloor} n^i = \prod_{i=2}^{\lfloor log^2n \rfloor + 1} n^i < n^{\frac{1}{2}log^2n \cdot (log^2n + 3)} \le n^{\log^4n} \le 2^{\log^5n} \le 2^B$$

Так как $B = \lceil log^5n \rceil > 10$, то можно воспользоваться Леммой 5.1. Значит, P < HOK(B), так что среди чисел от 1 до B есть число s, на которое P не делится. Если (s,n) = 1, то положим r = s. Если же (s,n) > 1, то рассмотрим $r = \frac{s}{(s,n)}$. Выбранное таким образом r тоже удовлетворяет условию $r \nmid P$ $(n \mid P, s \nmid P, (n,s) \mid P \Longrightarrow r \nmid P)$, причем (r,n) = 1. Так как $r \nmid n^i - 1$, $1 \le i \le \lfloor log^2n \rfloor$, то $o_r(n) > log^2n$.

Определение 5.1. Пусть r - некоторое, а p - простое числа. Назовем число $m \in \mathbb{N}$ особым по отношению к многочлену f(X), если

$$f^m(X) = f(X^m) \ mod(X^r - 1, \ p)$$

Лемма 5.3. Если m и m' являются особыми для многочлена f(X), то $m \cdot m'$ также является особым по отношению к f(X).

Доказательство Леммы 5.3. Так как m является особым для f(X), имеем

$$f^{m \cdot m'}(X) = f^{m'}(X^m) \pmod{X^r - 1}, \ p$$

Так как m' является особым для f(X), то заменяя X на X^m в определении, получим

$$f^{m'}(X^m) = f(X^{m \cdot m'}) \pmod{X^{m \cdot r} - 1}, \ p) = f(X^{m \cdot m'}) \pmod{X^r - 1}, \ p)$$

где последнее равентсво получено исходя из того, что $X^r - 1|X^{m \cdot r} - 1$. Объединяя, получаем

$$f^{m \cdot m'}(X) = f(X^{m \cdot m'}) \pmod{X^r - 1}, \ p$$

Лемма 5.4. Если m является особым для многочленов f(X) и g(X), то оно также является особым для многочлена $f(X) \cdot g(X)$.

Доказательтво Леммы 5.4.

$$(f(X) \cdot g(X))^m = f^m(X) \cdot g^m(X) = f(X^m) \cdot g(X^m) \pmod{X^r - 1}, \ p)$$

Теорема 5.1. Если n простое, то алгоритм возвращает True.

Доказательство Теоремы 5.1. Если n простое, то на первом и третьем шагах алгоритм не может вернуть False. Согласно Лемме 2.1. на пятом шаге алгоритм тоже не может вернуть False. Тогда алгоритм вернет True, и это произойдет либо на 4, либо на 6 шаге.

Теорема 5.2. Если алгоритм вернул True, то n простое.

Если алгоритм вернул True на четвертом шаге, то n обязано быть простым, иначе бы на третьем шаге был бы найден простой делитель n. Остается рассмотреть случай, когда алгоритм возвращает True на шестом шаге.

Обозначим r - число, найденное на втором шаге, $l = \lfloor \sqrt{\phi(r)} \log n \rfloor$.

Так как $o_r(n) > 1$, то существует простое p такое, что $p \mid n$ и $o_r(p) > 1$. Понятно, что p > r и (n,r) = 1, потому что иначе простота n выяснилась бы или на третьем, или на четвертом шаге. Отсюда следует, что $p, n \in \mathbb{Z}_r^*$. Зафиксируем p, r, l.

На пятом шаге алгоритма проверяется l сравнений. Так как алгоритм выводит True на шестом шаге, то все сравнения являеются верными, то есть

$$(X+a)^n = X^n + a \pmod{X^r - 1}, \ n), \ 0 \le a \le l$$

Отсюда следует, что

$$(X+a)^n = X^n + a \pmod{X^r - 1}, \ p), \ 0 \le a \le l$$

Согласно лемме 2.1. получаем

$$(X+a)^p = X^p + a \pmod{X^r - 1}, \ p), \ 0 \le a \le l$$

Из последних двух соотношений следует, что

$$(X+a)^{\frac{n}{p}} = X^{\frac{n}{p}} + a \pmod{X^r - 1}, \ n), \ 0 \le a \le l$$

то есть оба p и $\frac{n}{p}$ являются особыми для f(X). Из Лемм 5.3. и 5.4. следует, что любое число из множества $I = \{(\frac{n}{p})^i \cdot p^j \mid i, j \geq 0\}$ является особым для любого многочлена из множества $P = \{\prod_{a=0}^l (X+a)^{e_a} \mid e_a \geq 0\}.$

Определим теперь два конечных множества

$$G = \{m \ (mod \ r), m \in I\}$$

$$\mathcal{G} = \{ g(X) \pmod{h(X)}, \ p), g(X) \in P \}$$

где h(X) - один из неприводимых многочленов степени $o_r(p) > 1$, на которые раскладывается круговой многочлен $Q_r(X)$ над полем F_p (известно, что $Q_r(X) \mid X^r - 1$).

Введем следующее обозначение: $F = F_p(X)/(h(X))$. Тогда F является полем (потому что h(X) неприводим над F_p). Обозначим |G| = t. Так как $o_r(n) > log^2 n$, то $t > log^2 n$. Также отметим, что раз (n,r) = (p,r) = 1, то G является подгруппой \mathbb{Z}_r^* .

Лемма 5.5. $\mid \mathcal{G} \mid \geq {t+l \choose t-1}$.

Доказательство Леммы 5.5. Напомним, $h(X) \mid Q_r(X), X$ - корень из единицы r-ой степени. Для начала покажем, что любые два различных полинома степени меньшей, чем t, переходят в различные элементы \mathcal{G} . Возьмем два произвольных полинома $f(X) \in P$ и $g(X) \in P$ и допустим протвиное, то есть что f(X) = g(X) в поле F. Пусть $m \in I$ - некоторое число. Тогда $f^m(X) = g^m(X)$ в поле F. Исходя из того, что m является особым для обоих f(X) и g(X), а $h(X) \mid X^r - 1$, получаем, что

$$f(X^m) = g(X^m)$$

в поле F. Отсюда следует, что X^m является корнем многочлена Q(Y) = f(Y) - g(Y) при всех $m \in G$. Так как (m,r) = 1 (потому что G является подгруппой в \mathbb{Z}_r^*), то каждый X^m является корнем из 1 степени r. Тогда в поле F у многочлена Q(Y) найдется |G| = t различных корней. В то же время степень многочлена Q(Y) меньше t согласно выбору f(X) и g(X). Получили противоречие, а значит, $f(X) \neq g(X)$ в поле F. Заметим следующее: $i \neq j$ в F_p , так как $l = \lfloor \sqrt{\phi(r)} \log n \rfloor < \sqrt{r} \log n < r$ и p > r. Тогда все элементы $X, X + 1, X + 2, \ldots, X + l$ будут различны в F. Также, учитывая, что степень h(r) больше 1, получаем, что $X + a \neq 0$ для всех $0 \leq a \leq l$. Мы показали, что в $\mathcal G$ существует хотя бы l+1 полином степени 1. Отсюда следует, что в $\mathcal G$ найдется не менее $\binom{t+l}{t-1}$ различных полиномов степени меньше t.

Лемма 5.6. Если n не является степенью p, то $|\mathcal{G}| \leq n^{\sqrt{t}}$. Доказательство Леммы 5.6. Рассмотрим следующее подмножество I:

$$\bar{I} = \{ (\frac{n}{p})^i \cdot p^j \mid 0 \le i, j \le \lfloor \sqrt{t} \rfloor \}$$

Если n не является степенью p, то в множестве \bar{I} содержится хотя бы $(\lfloor \sqrt{t} \rfloor + 1)^2 > t$ различных элементов. Так как |G| = t, то найдутся два числа m_1 и m_2 , сравнимых по модулю r. Без ограничения общности будем считать, что $m_1 > m_2$. Тогда

$$X^{m_1} = X^{m_2} \pmod{X^r - 1}$$

Рассмотрим некоторый многочлен $f(X) \in P$. Тогда

$$f^{m_1}(X) = f(X^{m_1}) \pmod{X^r - 1}, \ p)$$
$$= f(X^{m_2}) \pmod{X^r - 1}, \ p)$$
$$= f^{m_2}(X) \pmod{X^r - 1}, \ p)$$

То есть

$$f^{m_1}(X) = f^{m_2}(X)$$

в поле F. Следовательно, $f(X) \in \mathcal{G}$ и является корнем многочлена $Q(Y) = Y^{m_1} - Y^{m_2}$ в поле F. Так как многочлен f(X) был выбран произвольно, то многочлен Q(Y) имеет не менее $|\mathcal{G}|$ корней в F. Оценив степень многочлена Q(Y) как $m_1 \leq (\frac{n}{p} \cdot p)^{\sqrt{t}} \leq n^{\sqrt{t}}$ получаем, что $|\mathcal{G}| < n^{\sqrt{t}}$.

Доказательство Теоремы 5.2. Допустим, что алгоритм вернул True. Согласно Лемме 5.5., для t = |G| и $l = \lfloor \sqrt{\phi(r)} \log n \rfloor$ имеем

$$\mathcal{G} \geq \binom{t+l}{t-1} \geq^{(1)} \binom{l+1+\lfloor \sqrt{t} \log n \rfloor}{\lfloor \sqrt{t} \log n \rfloor} \geq^{(2)} \binom{2\lfloor \sqrt{t} \log n \rfloor+1}{\lfloor \sqrt{t} \log n \rfloor} >^{(3)} 2^{\lfloor \sqrt{t} \log n \rfloor+1} \geq n^{\sqrt{t}}$$

$$(1): t > \sqrt{t} \log n; \ (2): l = \lfloor \sqrt{\phi(r)} \log n \rfloor \geq \lfloor \sqrt{t} \log n \rfloor; \ (3): \lfloor \sqrt{t} \log n \rfloor > \lfloor \log^2 n \rfloor \geq 1$$

Согласно Лемме 5.6., $|G| \le n^{\sqrt{t}}$, если n не является степенью p. Тогда $n = p^k$, k > 0. Если k > 1, то алгоритм вернул бы False на первом шаге. Тогда k = 0 и n = p.

6 Анализ временной сложности алгоритма

Теорема 6.1. Алгоритм определяет простоту числа за время $O^{\sim}(\log^{\frac{21}{2}}n)$.

Лемма 6.1. Первый шаг алгоритма работает за время $O^{\sim}(log^3n)$.

Доказательство Леммы 6.1. На первом шаге проверяется, что $n \neq a^b$. Для этого надо перебрать $O(\log n)$ вариантов для a. Для конкретного a с помощью бинарного поиска проверяется, что не существует подходящего b. Перебор b требует $O(\log n)$ времени, а вычисление каждого числа вида a^b - $O^{\sim}(\log n)$. Тогда общая сложность первого шага составит $O^{\sim}(\log^3 n)$.

Лемма 6.2. Второй шаг алгоритма работает за время $O^{\sim}(log^7n)$.

Доказательство Леммы 6.2. На втором шаге алгоритма находится такое r, что $o_r(n) > log^2 n$. Это можно сделать следующим образом: в цикле по r будем проверять, что $n^k \neq 1 (mod\ r)$ для всех $k \leq log^2 n$. Для конкретного r потребуется не больше $O(log^2 n)$ умножений по модулю r, откуда сложность одной итерации - $O^\sim(log^2 n\ log\ r)$. Согласно Лемме 5.2., необходимое r найдется, причем перебрать придется всего $O(log^5 n)$ значений. Тогда общая сложность второго шага составит $O^\sim(log^7 n)$.

Лемма 6.3. Третий шаг алгоритма работает за время $O(log^6n)$.

Доказательство Леммы 6.3. Третий шаг алгоритма - цикл из r итераций. На каждой итерации вычисляется НОД двух чисел, что требует $O(\log n)$ времени. Тогда общая сложность третьего шага составит $O(r \log n) = O(\log^6 n)$.

Лемма 6.4. Пятый шаг алгоритма работает за время $O^{\sim}(\log^{\frac{21}{2}}n)$.

Доказательство Леммы 6.4. Пятый шаг алгоритма - цикл из $\lfloor \sqrt{\phi(r)} \log n \rfloor$ итераций. На каждой итерации полином степени r возводится в степень n (что требует $O(\log n)$ времени); его коэффициенты можно оценить как $O(\log n)$. Таким образом, каждая итерация требует $O^{\sim}(r \log^2 n)$ времени. Тогда общая сложность пятого шага составит

$$O^{\sim}(r\sqrt{\phi(r)}\ log^3n) = O^{\sim}(r^{\frac{3}{2}}log^3n) = O^{\sim}(log^{\frac{21}{2}}n)$$

Доказательство Теоремы 6.1. Так как четвертый шаг алгоритма выполняется за $O(\log n)$, то из Лемм 6.1. - 6.4. следует, что временная сложность алгоритма составляет $O^{\sim}(\log^{\frac{21}{2}}n)$. \square

7 Сравнение с другими алгоритмами

В данной работе было проведено сравнение трех алгоритмов:

- 1. AKS алгоритм
- 2. Вероятностный тест Ферма
- 3. Простая проверка до корня из числа

(дополнительную информацию про тест Ферма можно найти в [3])

Сначала было проверено, что алгоритмы работают корректно - правильно проверяют простоту чисел в диапазоне [1, 1000].

Затем были проведены измерения времени работы представленных алгоритмов.

Следующий график демонстрирует время работы алгоритмов (учитывалось время работы только на простых числах).

Как отметил Дональд Кнут, тест AKS носит только теоретический характер: применять его для поиска простых чисел нецелесообразно.

Более подробно код алгоритмов и проведенное исследование можно посмотреть в [4].

8 Источники информации

- [1] Э.Б. Винберг, Курс алгебры (2011)
- [2] Agrawal, Manindra; Kayal, Neeraj; Saxena, Nitin (2004). "PRIMES is in P"

- $[3] \ https://habrahabr.ru/post/205318/\\ [4] \ https://github.com/svinkapeppa/5-semestr/tree/master/complexity$