High Performance
Computing for Weather
and Climate (HPC4WC)

Content: Intro

Lecturers: Oliver Fuhrer

Block course 701-1270-00L

Summer 2021

Work projects

- Effort is approximately 60h per person
 - Pick a topic that is challenging, but realistic
- Decide by end of next week (Deadline 1.7.2022)
 - Enter group and topic in google docs sheet
- Work with your assistant!
 - Each project will be assigned an advisor (in google docs)
 - Meet with your advisor before starting and disucuss the plan
 - Create a public #projectXX channel on Slack to stay in touch
- Hand-in source code and report (Deadline 31.8.2022)
 - Source code and report as pull request to https://github.com/ofuhrer/HP4WC/projects/2022/groupXX

Hybrid Supercomputer

Piz Daint blade (4 nodes)

Top500.org

Rank	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
1	Supercomputer Fugaku - Supercomputer Fugak A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442,010.0	537,212.0	29,899
2	Summit - IRM Courses, then AC922, IBM POWER9 22C 3.07G (z. NVIDIA Volta GV100, D. It-rail Mellanox EDR Infiniband, IBM DOE/SC/Oak Ridge National Laboratory United States	2,414,592	148,600.0	200,794.9	10,096
3	Sierra JDE COVEL SYSSE. AC922, IBM POWER9 22C 3.1G(NVIDIA Volta GV100, De A-rail Mellanox EDR Infiniband, IBM / NVIDIA / Mellanox DOE/NNSA/LLNL United States	1,572,480	94,640.0	125,712.0	7,438
4	Sunway TaihuLight - Sunway MF Sunway SW26010 2600 1.45GHz, Sunway, NRCPC National Supercomputing Center in Wuxi China	10,649,600	93,014.6	125,435.9	15,371
5	Perlmutter HEEC., EXP25n, AMD EPYC 7763 64C 2.45G 2.NVIDIA A100 SXM4 40D B, Slingshot-10, HPE D0E/SC/LBNL/NERGO United States	706,304	64,590.0	89,794.5	2,528

6	NVIDIA DGX A100, AMD EPYC 7742 64C 2.25GHz, NVIDIA A100, Milanox HDR Infiniband, Nvidia United States	555,520	63,460.0	79,215.0	2,646
7	Tianhe-2A - TH-IVB-FF County, 15-1 Xeon E5-2692v2 12C 2.2GHz, TH Expres (-2, Matrix-2000, NL)T National Super Computer Scaner in Guangzhou China	4,981,760	61,444.5	100,678.7	18,482
8	JUWELS Booster Model Courses, Sna XH2000 , AMD EPYC 7402 24C 2.8 4z, NVIDIA A100, Malanox HDR InfiniBand/ParTec Parastanon ecosterSuite, Atos Forschungszentrum Juelich (FZJ) Germany	449,280	44,120.0	70,980.0	1,764
9	HPCF Construction C4140, Xeon Gold 6252 24C 2.1GHz, N (DIA Tesla V100, MP) anox HDR Infiniband, Dell EMC Eni S.p.a. Italy	669,760	35,450.0	51,720.8	2,252
10	Frontera - Dell C6420, Xeon Platinum 8280 28C 2.7GHz, Mellanox InfiniBand HDR, Dell EMC Texas Advanced Computing Center/Univ. of Texas United States	448,448	23,516.4	38,745.9	

Supercomputer Architecture

(Numbers are for Piz Daint and vary from system to system)

Day 3

- Multi-node performance
- · Distributed memory parallelism
- MPI

Day 2

- Single node performance
- · Shared memory parallelism
- OpenMP

Day 1

- Single core performance
- Caches

Node

4/blade

Core 12/socket

Cabinet

40/system

Blade 48/cabinet

Day 4

- Hybrid node architectures
- Graphics processing units (GPUs)
- CuPy

Future of HPC in Weather and Climate?

