DM N°2 (pour le $\overline{30/09/2010}$)

Dans tout le problème, n désigne un entier naturel et Q le premier quadrant du plan \mathbb{R}^2 (muni de sa structure euclidienne naturelle), c'est-à-dire l'ensemble des couples de réels positifs au sens large.

On appelle S l'ensemble des suites réelles $(U_n)_{n\geqslant 0}$ vérifiant la relation de récurrence (\mathcal{R}) suivante :

pour tout
$$n \ge 1$$
, $U_{n+1} = \frac{1}{2} (U_n^2 + U_{n-1}^2)$

et telles, de plus, que l'on ait : $U_0 \ge 0$ et $U_1 \ge 0$.

On associe à tout élément (x, y) de Q la suite U(x, y) appartenant à S définie par $U_0 = x$ et $U_1 = y$.

Le terme de rang n de U(x, y) sera noté $U_n(x, y)$ ou, si aucune ambiguïté n'est possible, par U_n .

Enfin, λ désignant un élément de $\overline{\mathbb{R}} = \mathbb{R} \cup \{\pm \infty\}$, E_{λ} désignera l'ensemble des éléments (x, y) de Q tels que la suite U(x, y) ait pour limite λ .

La partie IV ne dépend que de la partie I.

Première partie : Généralités

- I.1 a) Déterminer les suites constantes appartenant à S.
 - b) Quelles sont les limites possibles finies ou infinies d'une suite appartenant à S?
 - c) Montrer que, si une suite appartenant à S a trois termes consécutifs égaux, c'est une suite constante.
 - d) Montrer que, si une suite appartenant à S a deux termes consécutifs égaux à 1, c'est une suite constante.
 - e) Que peut-on dire d'une suite appartenant à S dont un terme autre que les deux premiers est nul?
- I.2. Soit une suite $(U_n)_{n\geq 0}$ appartenant à S et non constante.
 - a) Comparer les signes de $U_{n+1} U_n$ et de $U_n U_{n-2}$ pour $n \ge 2$.
 - b) Montrer que, s'il existe $N \ge 1$ tel que U_{N+1} soit supérieur ou égal à U_{N-1} et à U_N , la suite $(U_n)_{n \ge 0}$ est strictement croissante à partir d'un certain rang.
 - On établirait de même que, s'il existe $N \ge 1$ tel que U_{N+1} soit inférieur ou égal à U_{N-1} et à U_N , la suite $(U_n)_{n \ge 0}$ est strictement décroissante à partir d'un certain rang. La démonstration correspondante n'est pas demandée.
 - c) Déterminer les limites des suites U(x, y) pour $x = \sqrt{2}$, y = 0 et pour x = 2, y = 0.
- I.3. Soit une suite $(U_n)_{n\geqslant 0}$ non constante, appartenant à S; on suppose de plus que, quel que soit N, la suite $(U_n)_{n\geqslant N}$ n'est ni strictement croissante, ni strictement décroissante.

On ne cherchera pas, dans cette question à démontrer l'existence de telles suites.

Montrer que les deux suites $(U_{2n})_{n\geqslant 0}$ et $(U_{2n+1})_{n\geqslant 0}$ sont strictement monotones et de sens contraire. Montrer que la suite $(U_n)_{n\geqslant 0}$ converge vers 1. On pourra montrer que U_0 et U_1 sont distincts et envisager les deux cas $U_0 < U_1$ et $U_0 > U_1$.

- I.4 Établir, pour une suite $(U_n)_{n\geqslant 0}$ non constante appartenant à S, l'équivalence des propriétés suivantes :
 - a) II existe un entier $N \ge 0$ tel que $U_N \ge 1$ et $U_{N+1} \ge 1$.
 - b) La suite $(U_n)_{n\geq 0}$ est strictement croissante à partir d'un certain rang.
 - c) La suite $(U_n)_{n\geqslant 0}$ tend vers $+\infty$.

On pourra, pour cela, établir que, si une suite $(U_n)_{n\geqslant 0}$ vérifie la propriété a), tous ses termes sont, à partir d'un certain rang, strictement supérieurs à 1.

I.5. Établir de même, pour une suite $(U_n)_{n\geq 0}$ de S non constante, l'équivalence des propriétés suivantes :

- a) II existe un entier $N\geqslant 0$ tel que U_N et U_{N+1} soient inférieurs au sens large à 1.
- b) La suite $(U_n)_{n\geqslant 0}$ est strictement décroissante à partir d'un certain rang.
- c) La suite $(U_n)_{n\geq 0}$ tend vers zéro.
- I.6 Montrer que E_0 , E_1 , $E_{+\infty}$ sont non vides. Quelle est leur réunion?

Deuxième partie

Dans cette partie, on montre que E_1 a moins deux éléments.

Pour $(x, y) \in \mathbb{Q}$, on désigne par $\lambda(x, y)$ la limite dans $\overline{\mathbb{R}}$ de U(x, y).

- II.1. Comparer $\lambda(x,y)$ et $\lambda(x',y')$ dans l'hypothèse où (x,y) et (x',y') vérifient : $x \le x'$ et $y \le y'$.
- II.2. On considère deux couples (x,y) et (x',y') éléments de Q. On suppose de plus que U(x,y) converge vers 1.
 - a) Soit $\varepsilon > 0$ un réel donné. Montrer que, si l'on a pour un entier N :

$$U_{N-1}(x,y) + \varepsilon \leq U_{N-1}(x',y')$$
 et $U_N(x,y) + \varepsilon \leq U_N(x'y')$

alors, pour tout $n \ge N$, on a : $U_n(x, y) + \varepsilon \le U_n(x', y')$.

- b) Donner la valeur de $\lambda(x', y')$ dans les deux cas suivants :
 - $x \leqslant x'$, $y \leqslant y'$ et $(x, y) \neq (x', y')$.
 - $x \ge x'$, $y \ge y'$ et $(x, y) \ne (x', y')$.
- II.3. a) Montrer qu'il existe un réel a > 0 borne supérieure de l'ensemble des $x \ge 0$ tels que $\lambda(x,0)$ soit nul.
 - b) Que dire de $\lambda(x,0)$ pour $0 \le x < a$?
 - c) Déterminer la valeur décimale approchée à 10^{-2} près par défaut de a. On donnera pour cela un programme en Maple.
- II.4. a) Montrer que, pour tout n, la fonction $x \mapsto U_n(x,0)$ est continue.
 - b) Montrer que, si la suite U(a,0) tendait vers zéro, il existerait $\varepsilon > 0$ tel que la suite $U(a+\varepsilon,0)$ tende vers zéro; on pourra utiliser pour cela la question (I.5).
 - c) Montrer de même que, si la suite U(a,0) tendait vers $+\infty$, il existerait $\varepsilon > 0$ tel que la suite $U(a-\varepsilon,0)$ tende vers $+\infty$.
 - d) En déduire $\lambda(a,0)$. Que vaut $\lambda(x,0)$ pour x > a?
 - e) Montrer que, pour y > 0, la suite $(U_n(a, y))_{n \ge 0}$ tend vers $+\infty$.

Troisième partie

Étude de E_0 , E_1 , $E_{+\infty}$ (Ces notations sont définies dans le préambule)

III.1. Soit x compris au sens large entre 0 et a. Établir l'existence d'un point unique de E_1 ayant l'abscisse x. On note désormais $\varphi(x)$ l'ordonnée de ce point et Γ la courbe décrite par le point $(x, \varphi(x))$ quand x varie de 0 à a.

Déterminer à l'aide de Γ les ensembles E_0 , E_1 , $E_{+\infty}$.

- III.2. a) Montrer que φ décroît. Déterminer $\varphi(1)$ et $\varphi(a)$.
 - b) À l'aide de la relation $U_n(x,y) = U_{n-1}\left(y, \frac{x^2 + y^2}{2}\right)$, établir, pour $x \in [0,a]$, la relation $x^2 + \varphi^2(x) = 2\varphi \left[\varphi(x)\right]$.
 - c) Calculer $\varphi(0)$, $\varphi\left(\frac{a^2}{2}\right)$.

- III.3. a) Soit y compris au sens large entre 0 et $\varphi(0)$. Montrer qu'il existe un point unique de E_1 d'ordonnée y. On notera $\psi(y)$ l'abscisse de ce point.
 - b) Montrer que φ est strictement décroissante.
 - c) (\clubsuit)Montrer que φ est continue.
- III.4. a) Étudier les variations de $x^2 + \varphi^2(x)$ pour $x \in [0, a]$. En déduire que Γ est située dans une couronne circulaire que l'on précisera.

Montrer que φ est dérivable en 0 et déterminer $\varphi'(0)$.

- b) Établir, pour $x \in [0, a]$, l'inégalité $\varphi(x) \geqslant \sqrt{ax x^2}$. On pourra comparer les suites U(a, 0) et $U\left(x, \sqrt{ax - x^2}\right)$. Qu'en résulte-t-il pour le comportement de φ au voisinage de a?
- c) En admettant que φ est dérivable pour x = 1, calculer $\varphi'(1)$.
- d) Tracer la représentation graphique de φ .

Quatrième Partie

Étude la rapidité de croissance des suites croissantes de S.

IV.1. Soit $(U_n)_{n\geqslant 0}$ une suite quelconque appartenant à S.

Démontrer, pour tout $n \ge 0$, les inégalités $\frac{1}{2} U_n^2 \le U_{n+1} \le U_n + \frac{1}{2} U_n^2$.

IV.2. Soit $(U_n)_{n\geqslant 0}$ une suite appartenant à S et tendant vers $+\infty$.

On pose $V_n = \frac{U_n}{2}$ et $z_n = 2^{-n} \ln [V_n]$ où ln désigne le logarithme népérien.

- a) Établir que la suite (z_n) tend vers une limite L (on se servira de la série de terme général $z_{n+1}-z_n$). Cette limite dépend de U_0 et U_1 : on ne cherchera pas à l'évaluer.
- b) Les hypothèses restant les mêmes, établir la double inégalité :

$$L - \frac{1}{2^n V_n} < z_n < L$$
 pour n assez grand.

En déduire un équivalent de U_n lorsque n tend vers $+\infty$ (on posera $e^L = M$).

Que peut-on dire de la différence entre U_n et cet équivalent?

- IV.3 On prend $U_0 = 2$, $U_1 = 2$. Déduire de ce qui précède une valeur approchée de L à 10^{-6} près. Quel est le nombre de chiffres dans l'écriture décimale de U_{20} ?
- IV.4. On considère ici une suite $(U_n)_{n\geqslant 0}$ appartenant à S, non constante et tendant vers zéro. établir qu'à partir d'un certain rang, on a :

$$U_{n+1} \leq U_{n-1}^2$$
.

En déduire l'existence de deux constantes A et B (A > 0 et B > 1) telles que, pour tout n, on ait $U_n \leq A.B^{-2^{n/2}}$.

