RL Tutorial worksheet

Exercise 1 – Q iteration:

$$\boldsymbol{Q_{new}}(s_t, a_t) \leftarrow \boldsymbol{Q}(s_t, a_t) + \alpha(r_t + \gamma \max_{a} \boldsymbol{Q}(s_{t+1}, a) - \boldsymbol{Q}(s_t, a_t))$$

$$\mathbf{Q_0} = N \begin{bmatrix} 1 & w \\ 10 & 8 \\ 10 & 8 \\ 10 & 8 \\ 0 & 0 \end{bmatrix} \qquad \alpha = 0.8$$

$$\gamma = 0.9$$

User 1: $N \xrightarrow{l} F \xrightarrow{l} Q$:

$$\begin{array}{|c|c|c|c|}\hline \text{Observation 1:} & & & & & & & \\ \hline (s_t, a_t, r_t, s_{t+1}) = (N, l, +1, F) & & & & & \\ \hline \textbf{\textit{Q}}_{new}(...., ...) \leftarrow \textbf{\textit{Q}}(...., ...) + \alpha(.... + \gamma \max_{a} \textbf{\textit{Q}}(...., a) - \textbf{\textit{Q}}(...., ...)) & & & & & \\ \hline \textbf{\textit{Observation 2:}} & & & & & & \\ \hline (s_t, a_t, r_t, s_{t+1}) = (....,) & & & & & \\ \hline \textbf{\textit{Q}}_{new}(...., ...) \leftarrow \textbf{\textit{Q}}(...., ...) + \alpha(.... + \gamma \max_{a} \textbf{\textit{Q}}(...., a) - \textbf{\textit{Q}}(...., ...)) & & & & & \\ \hline \textbf{\textit{Q}}_2 = \boxed{N} & & & & \\ \hline \textbf{\textit{P}} & & & & & \\ \hline \textbf{\textit{Q}}_1 = \boxed{N} & & & & \\ \hline \textbf{\textit{Q}}_2 = \boxed{N} & & & & \\ \hline \textbf{\textit{P}} & & & & & \\ \hline \textbf{\textit{Q}}_1 = \boxed{N} & & & & \\ \hline \textbf{\textit{Q}}_2 = \boxed{N} & & & & \\ \hline \textbf{\textit{P}} & & & & & \\ \hline \textbf{\textit{Q}}_1 = \boxed{N} & & & & \\ \hline \textbf{\textit{Q}}_2 = \boxed{N} & & & & \\ \hline \textbf{\textit{P}} & & & & & \\ \hline \textbf{\textit{Q}}_1 = \boxed{N} & & & & \\ \hline \textbf{\textit{Q}}_2 = \boxed{N} & & & & \\ \hline \textbf{\textit{P}} & & & & & \\ \hline \textbf{\textit{Q}}_1 = \boxed{N} & & & & \\ \hline \textbf{\textit{Q}}_2 = \boxed{N} & & & & \\ \hline \textbf{\textit{P}} & & & & & \\ \hline \textbf{\textit{Q}}_1 = \boxed{N} & & & & \\ \hline \textbf{\textit{Q}}_2 = \boxed{N} & & & & \\ \hline \textbf{\textit{P}} & & & & & \\ \hline \textbf{\textit{Q}}_1 = \boxed{N} & & & & \\ \hline \textbf{\textit{Q}}_2 = \boxed{N} & & & & \\ \hline \textbf{\textit{P}} & & & & & \\ \hline \textbf{\textit{Q}}_1 = \boxed{N} & & & & \\ \hline \textbf{\textit{Q}}_2 = \boxed{N} & & & & \\ \hline \textbf{\textit{P}} & & & & & \\ \hline \textbf{\textit{Q}}_1 = \boxed{N} & & & & \\ \hline \textbf{\textit{Q}}_2 = \boxed{N} & & & & \\ \hline \textbf{\textit{P}} & & & & & \\ \hline \textbf{\textit{Q}}_1 = \boxed{N} & & & & \\ \hline \textbf{\textit{Q}}_2 = \boxed{N} & & & & \\ \hline \textbf{\textit{Q}}_1 = \boxed{N} & & & \\ \hline \textbf{\textit{Q}}_2 = \boxed{N} & & & \\ \hline \textbf{\textit{Q}}_1 = \boxed{N} & & & \\ \hline \textbf{\textit{Q}}_2 = \boxed{N} & & & \\ \hline \textbf{\textit{Q}}_1 = \boxed{N} & & & \\ \hline \textbf{\textit{Q}}_2 = \boxed{N} & & & \\ \hline \textbf{\textit{Q}}_1 = \boxed{N} & & & \\ \hline \textbf{\textit{Q}}_2 = \boxed{N} & & & \\ \hline \textbf{\textit{Q}}_1 = \boxed{N} & & & \\ \hline \textbf{\textit{Q}}_2 = \boxed{N} & & & \\ \hline \textbf{\textit{Q}}_1 = \boxed{N} & & & \\ \hline \textbf{\textit{Q}}_2 = \boxed{N} & & & \\ \hline \textbf{\textit{Q}}_1 = \boxed{N} & & & \\ \hline \textbf{\textit{Q}}_2 = \boxed{N} & & & \\ \hline \textbf{\textit{Q}}_1 = \boxed{N} & & & \\ \hline \textbf{\textit{Q}}_2 = \boxed{N} & & & \\ \hline \textbf{\textit{Q}}_1 = \boxed{N} & & & \\ \hline \textbf{\textit{Q}}_2 = \boxed{N} & & & \\ \hline \textbf{\textit{Q}}_1 = \boxed{N} & & & \\ \hline \textbf{\textit{Q}}_2 = \boxed{N} & & & \\ \hline \textbf{\textit{Q}}_1 = \boxed{N} & & & \\ \hline \textbf{\textit{Q}}_2 = \boxed{N} & & & \\ \hline \textbf{\textit{Q}}_1 = \boxed{N} & & & \\ \hline \textbf{\textit{Q}}_2 = \boxed{N} & & & \\ \hline \textbf{\textit{Q}}_1 = \boxed{N} & & & \\ \hline \textbf{\textit{Q}}_2 = \boxed{N} & & & \\ \hline \textbf{\textit{Q}}_1 = \boxed{N} & & \\ \hline \textbf{\textit{Q}}_2 = \boxed{N} & & & \\ \hline \textbf{\textit{Q}}_1 = \boxed{N} & & \\ \hline \textbf{\textit{$$

User 2: $H \xrightarrow{l} N \xrightarrow{l} N \xrightarrow{l} F \xrightarrow{w} N$:

$Q_{new}(\ldots, \ldots) \leftarrow Q(\ldots, \ldots) + \alpha(\ldots + \gamma \max_{a} Q(\ldots, a) - Q(\ldots, \ldots))$	
$(s_t, a_t, r_t, s_{t+1}) = (\dots, \dots)$	$Q_6 = N$
Observation 6:	
$Q_{new}(\ldots, \ldots) \leftarrow Q(\ldots, \ldots) + \alpha(\ldots + \gamma \max_{a} Q(\ldots, a) - Q(\ldots, \ldots))$	$Q_5 = N$
$(s_t, a_t, r_t, s_{t+1}) = (\dots, \dots)$	
Observation 5:	l w
$Q_{new}(\ldots, \ldots) \leftarrow Q(\ldots, \ldots) + \alpha(\ldots + \gamma \max_{a} Q(\ldots, a) - Q(\ldots, \ldots))$	
$(s_t, a_t, r_t, s_{t+1}) = (\dots, \dots)$	$Q_4 = N$
Observation 4:	
$Q_{new}(\ldots, \ldots) \leftarrow Q(\ldots, \ldots) + \alpha(\ldots + \gamma \max_{a} Q(\ldots, a) - Q(\ldots, \ldots))$	$Q_3 = N $
$(s_t, a_t, r_t, s_{t+1}) = (\dots, \dots)$	
Observation 3:	l w

Exercise 2 – Value Iteration:

$$V_{new}(s) \leftarrow \max_{a} \left\{ \sum_{s'} P(s'|s,a) \left(r(s,a,s') + \gamma V(s') \right) \right\}, \quad \gamma = 0.9$$

$$\boldsymbol{V_0} = \begin{matrix} H \\ N \\ F \\ Q \end{matrix} \begin{bmatrix} 10 \\ 10 \\ 10 \\ 0 \end{bmatrix}$$

	Next State					
		Н	N	F	Q	
Current State	Н	0.8	0.1	0.0	0.1	
	N	0.0	0.5	0.2	0.3	
	F	0.0	0.0	0.2	0.8	
When user loses: $a = 1$						

	Next State					
		Н	N	F	Q	
Current State	Н	0.9	0.0	0.0	0.1	
	N	0.7	0.2	0.0	0.1	
	F	0.3	0.4	0.1	0.2	
When user wins: $a = w$						

$$\begin{array}{l} V_{new}(F) \\ \leftarrow \max \left\{ \dots \dots \times (\dots \dots + \gamma \times \dots \dots) + \dots \times (\dots \dots + \gamma \times \dots \dots) + P(Q|F,l) \times (\dots \dots + \gamma \times \dots \dots) \right\} \\ = \dots \dots \times (\dots \dots + \gamma \times \dots \dots) + \dots \times (\dots \dots + \gamma \times \dots \dots) + P(Q|F,l) \times (\dots \dots + \gamma \times \dots \dots) \right\} \\ = \dots \dots \\ V_{new}(N) \\ \leftarrow \max \left\{ P(H,N,l) \times (\dots \dots + \gamma \times \dots \dots) + \dots \times (\dots \dots + \gamma \times \dots \dots) + \dots \times (\dots \dots + \gamma \times \dots \dots) + \dots \times (\dots \dots + \gamma \times \dots \dots) \right\} \\ = \dots \dots \\ P(H,N,w) \times (\dots \dots + \gamma \times \dots \dots) + \dots \times (\dots \dots + \gamma \times \dots \dots) + \dots \times (\dots \dots + \gamma \times \dots \dots) + \dots \times (\dots \dots + \gamma \times \dots \dots) \right\} \\ = \dots \dots \\ V_{new}(H) \\ \leftarrow \max \left\{ \dots \dots \times (\dots \dots + \gamma \times \dots \dots) + \dots \times (\dots \dots + \gamma \times \dots \dots) + \dots \times (\dots \dots + \gamma \times \dots \dots) + \dots \times (\dots \dots + \gamma \times \dots \dots) \right\} \\ = \dots \dots \\ = \dots \dots \\ = \dots \dots \\ V_{new}(H) \\ \leftarrow \max \left\{ \dots \dots \times (\dots \dots + \gamma \times \dots \dots) + \dots \times (\dots \dots + \gamma \times \dots \dots) + \dots \times (\dots \dots + \gamma \times \dots \dots) + \dots \times (\dots \dots + \gamma \times \dots \dots) \right\} \\ = \dots \dots \\ = \dots \dots \\ = \dots \dots \\ = \dots \dots \\ V_{new}(H) \\ \leftarrow \max \left\{ \dots \dots \times (\dots \dots + \gamma \times \dots \dots) + \dots \times (\dots \dots + \gamma \times \dots \dots) + \dots \times (\dots \dots + \gamma \times \dots \dots) + \dots \times (\dots \dots + \gamma \times \dots \dots) \right\} \\ = \dots \dots \\ = \dots \\ =$$