Missing Value Estimation for Hierarchical Time Series: A Study of Hierarchical Web Traffic

Zitao Liu

University of Pittsburgh ztliu@cs.pitt.edu

November 16, 2015

[†] This is the joint work with Chris Yan, Jimmy Yang and Milos Hauskrecht.

Hierarchical Time Series

What is **hierarchical time series**(HTS)? Yahoo! web pages are arranged in certain hierarchy and their **daily page views** become a hierarchical time series.

Hierarchical Time Series

Time series are organized in a hierarchical tree structure and they are consistent between hierarchy levels.

Consistent: Parent = Child 1 + Child 2 + Child 3 + ... + Child n

Motivation

Why we care about modeling HTS?

- Resource management.
- User behaviors understanding.
- Advertisement pricing policy.

Problem & Goal

However, missing values occur:

- machine failures
- networking disturbances
- human mistakes

Missing values will contaminate other time series through the hierarchy consequentially.

Problem

Accurately estimate the missing values.

s.t

Estimation is hierarchically consistent.

HTSImpute

In this work, we develop a new missing value estimation algorithm *HTSImpute* which

- utilizes the temporal dependence information within each individual time series (LOcal regrESSion (LOESS))
- exploits the intra-relations between different time series (Subspace Projection)
- guarantees hierarchical consistency (Hierarchical Consistency Projection)

HTSImpute - LOESS

Use LOESS to initially estimate the missing values.

Advantages:

- nonparametric
- robust
- locally weighted

HTSImpute - Subspace Projection

HTSImpute - Hierarchical Consistency Projection

where $\hat{\mathbf{L}}$ is the "true" estimate of all leaf time series.

We define the hierarchical consistency projection operator using ordinary least square as follows:

$$\mathcal{P}_{\mathsf{HTS}}(\mathbf{Y}, \mathbf{\Omega}) = \mathbf{\Omega} \hat{\mathbf{\mathsf{L}}} = \mathbf{\Omega} (\mathbf{\Omega}^ op \mathbf{\Omega})^{-1} \mathbf{\Omega}^ op \mathbf{Y}$$

Experiments - Dataset

Figure 1: Synthetic data.

Figure 2: Yahoo! web traffic data.

Experiments - Metrics

Avg-MAPE: measures the estimation accuracy.

"Estimated Value—True Value "True Value

Avg-HCG: measures the hierarchical consistency.

"Estimated Parent Value – Sum of Estimated Child Values"

Experiments - Baseline

- Regression Methods
 - Local regression (LOESS)
- Subspace Methods
 - Matrix Factorization (MF)
 - Matrix Completion (MC) using softImpute
 - weight Low Rank Approximation (wLRA)
- Latent Variable Models
 - probabilistic PCA (pPCA)

Experiments - Results

Table 1: Avg-MAPE results on FP dataset.

# MP (%)	1	3	5	10	15	20
LOESS	11.57	11.84	11.66	11.78	11.82	11.78
NMF_KL	15.12	14.11	13.83	14.48	14.74	14.61
$NMF_{L}Euclidean$	21.19	17.75	16.49	17.41	15.70	15.97
MC	57.30	44.27	46.76	57.11	63.37	66.85
pPCA	101.51	100.17	100.21	100.03	100.01	100.19
wLRA	42.39	73.64	96.91	41.54	34.03	30.10
HTSImpute	7.19	7.48	7.40	7.87	8.22	8.36

Experiments - Results

Table 2: Avg-HCG results on FP dataset (log₁₀ scale).

# MP (%)	1	3	5	10	15	20
LOESS	-2.61	-2.14	-1.93	-1.67	-1.54	-1.45
NMF_LKL	-2.52	-2.04	-1.95	-1.71	-1.60	-1.51
$NMF_{L}Euclidean$	-2.01	-1.88	-1.80	-1.62	-1.55	-1.47
MC	-1.91	-1.35	-0.96	-0.19	0.30	1.34
pPCA	0.79	0.97	1.39	1.49	2.18	1.78
wLRA	-5.65	-4.83	-1.58	-1.67	-1.55	-1.47
HTSImpute	-16.66	-16.32	-16.04	-15.80	-15.71	-15.61

Conclusion

In this work, we have presented a algorithm for HTS missing value estimation, specializing in

- taking advantage of temporal dependence information within each individual time series.
- utilizing intra-relations between different time series across the hierarchy.
- providing high satisfaction of the hierarchical consistency.

Thank you

November 16, 2015

HTSImpute - Hierarchical Consistency Projection

$$=\begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$
Summing matrix Ω

HTSImpute - Hierarchical Consistency Projection

