+

[1] Recurrent Neural Network (RNN)

Output of Activation Function at time t; "a depends on BOTH:-Input "X" and Previous activation Output "a<1-1>" Softmax a<1-1> tanh

Output of Activation Function at time t; "a<t>" depends on BOTH:Input "X<t>" and
Previous activation Output "a<t-1>"

Inputs at time t-1, t, t+1

$$a^{<1>}= F^{n} (W_{aa}a^{<0>} + W_{ax}X^{<1>} + b_{a})$$
 $y^{<1>}=F^{n} (W_{ya}a^{<1>} + b_{y})$

Non Linearity

$$a^{<1>}$$
 = tanh (W_{aa} $a^{<0>} + W_{ax}X^{<1>} + b_a$) May be tanh, ReLU, ...

$$y^{<1>}=Softmax (W_{ya} a^{<1>} + b_y)$$
 Segmoid for Binary O/P, Softmax for Multi-Class O/P

$$a^{} = tanh (W_{aa}a^{} + W_{ax}x^{} + b_a)$$
 May be tanh, ReLU, ...
$$y^{} = Softmax (W_{ya}a^{} + b_y)$$
 Segmoid for Binary O/P, Softmax for Multi-Class O/P

[2] Gated Recurrent Unit (GRU)

Define Memory Cell "C" in addition to Output of Activation function "a".

[1] Adding Update Gate G.

If G_u = 0 , Keep Memory Value "C<>>" Same as Previous Value "C<<-1>"

If G = 1, Forget Previous Memory Value "C<1-1>

C Candidate Value of Updated Memory

C Value of Updated Memory

C is the <u>Candidate</u> Update

G is the <u>Update</u> Gate

C is the <u>Actual</u> Update

Softmax

[2] Adding Relevance Gate G,

If $G_r = 1$, $C^{< t-1>}$ is Relevant to update Candidate Memory cell value " C^- If $G_r = 0$, $C^{< t-1>}$ is IrRelevant to update Candidate Memory cell value " C^- "

[2] Adding Relevance Gate G

[3] Long Short Term Memory (LSTM)