Aufgabe 1 Es sei $w, z \in \mathbf{C}, r = |z|, \varphi = \arg z, \alpha, \beta \in \mathbf{R}, n \in \mathbf{N}$. Zeigen Sie:

a)
$$\cos \alpha = \frac{1}{2} (e^{j\alpha} + e^{-j\alpha})$$

a)
$$\cos \alpha = \frac{1}{2} (e^{j\alpha} + e^{-j\alpha})$$
 b) $\sin \alpha = \frac{1}{2j} (e^{j\alpha} - e^{-j\alpha})$ c) $\cos^2 \alpha = \frac{1}{2} (1 + \cos 2\alpha)$

c)
$$\cos^2 \alpha = \frac{1}{2} (1 + \cos 2\alpha)$$

d)
$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$
 e) $\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$

e)
$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$

f)
$$|e^{j\alpha}| = 1$$

g) Re
$$z = \frac{1}{2}(z + \overline{z})$$

f)
$$|e^{j\alpha}|=1$$
 g) Re $z=\frac{1}{2}(z+\overline{z})$ h) Im $z=\frac{1}{2\overline{j}}(z-\overline{z})$ i) $\overline{e^z}=e^{\overline{z}}$

i)
$$\overline{e^z} = e^z$$

i)
$$\overline{z} = r e^{-j\zeta}$$

k)
$$z\overline{z} = r^2$$

1)
$$\frac{z}{z} = e^{2j\varphi}$$

j)
$$\overline{z}=r\mathrm{e}^{-j\varphi}$$
 k) $z\overline{z}=r^2$ l) $\frac{z}{\overline{z}}=\mathrm{e}^{2j\varphi}$ m) $z^n=r\mathrm{e}^{jn\varphi}$

n)
$$|\overline{z}| = |z|$$

n)
$$|\overline{z}| = |z|$$
 o) $\overline{w+z} = \overline{w} + \overline{z}$ p) $|wz| = |w||z|$ q) $\overline{wz} = \overline{w} \ \overline{z}$

$$p) |wz| = |w||z$$

$$q) \ \overline{wz} = \overline{w} \ \overline{z}$$

Aufgabe 2 Geben Sie die folgenden komplexen Zahlen jeweils in ihrer kartesischen Darstellung an und zeichnen Sie sie in die komplexe Ebene ein.

a)
$$\frac{3+4j}{1-2j}$$

a)
$$\frac{3+4j}{1-2j}$$
 b) $\frac{j(2+j)}{(1+j)(2-j)}$ c) $2j\frac{(1+j)^2}{3-j}$ d) $4e^{j\frac{\pi}{6}}$ e) $\sqrt{2}e^{j\frac{25\pi}{4}}$

c)
$$2j\frac{(1+j)^2}{3-j}$$

d)
$$4e^{j\frac{\pi}{6}}$$

e)
$$\sqrt{2}e^{j\frac{25\pi}{4}}$$

f)
$$je^{j\frac{11\tau}{4}}$$

g)
$$3e^{j4\pi} + 2e^{j7\pi}$$

h)
$$\sqrt{2}e^{-j\frac{\pi}{4}}$$
 i) $(1-j)^9$ j) e^j

i)
$$(1-j)^9$$

j)
$$e^j$$

Aufgabe 3 Geben Sie die folgenden komplexen Zahlen jeweils in ihrer exponentiellen Darstellung an und zeichnen Sie sie in die komplexe Ebene ein.

a)
$$1 + j\sqrt{3}$$

b)
$$-5$$

c)
$$-5 - j$$

c)
$$-5 - j5$$
 d) $(1 - j\sqrt{3})^3$ e) $(1 + j)^5$

e)
$$(1+j)^5$$

a)
$$1+j\sqrt{3}$$
 b) -3 c) $-3-j3$ d) $(1-j\sqrt{3})$ e) (1
f) $(\sqrt{3}+j^3)(1-j)$ g) $\frac{2-j\frac{6}{\sqrt{3}}}{2+j\frac{6}{\sqrt{3}}}$ h) $\frac{\sqrt{2}}{7+j7}$ i) $3+j4$ j) j^j

g)
$$\frac{2 - j\frac{6}{\sqrt{3}}}{2 + j\frac{6}{\sqrt{3}}}$$

$$h) \frac{\sqrt{2}}{7+j7}$$

i)
$$3 + j4$$

Aufgabe 4 Wie lautet jeweils zu der angegebenen Gleichung die Lösungsmenge für $z \in \mathbb{C}$?

a)
$$\frac{z-1}{z-2} = \frac{1+j}{2-j}$$

b)
$$\frac{1}{z+1} = 3 - j$$

c)
$$\frac{z}{z-1} = 1 - 3j$$

d)
$$\frac{1}{z-j} - \frac{1}{z-1} = 1+j$$
 e) $\frac{2}{z} + z = j$

e)
$$\frac{2}{z} + z = j$$

f)
$$2j - \frac{6j}{z} - jz = 2z + 1 + \frac{12}{z}$$

$$g) \ z(\overline{z} - 1) = 9 + 3j$$

g)
$$z(\overline{z} - 1) = 9 + 3j$$
 h) $|z\overline{z} - 5| + \left|\frac{z}{\overline{z}} - \frac{3 + 4j}{5}\right| = 0$ i) $z^3 = 125$

i)
$$z^3 = 125$$

i)
$$z^4 = -16$$

k)
$$z^3 = 32(1+i)^2$$

k)
$$z^3 = 32(1+j)^2$$
 1) $z^3 - z^2 + 4z - 4 = 0$

m)
$$z^4 - 2z^2 - 3 = 0$$
 n) $|z| = \operatorname{Re} z + 1$

n)
$$|z| = \text{Re } z + 1$$

o)
$$\text{Im} \frac{z-j}{z-1} = 0$$

p)
$$\left| \frac{z}{z + 1} \right| = 2$$

q)
$$\left| \frac{z-j}{z-1} \right| = 1$$

r)
$$(1+z)^5 = (1-z)^5$$

 $\mathbf{Aufgabe}$ 5 Skizzieren Sie jeweils in der Gaußschen Zahlenebene die Menge aller komplexen Zahlen z, die die angegebene Ungleichung erfüllen.

a)
$$0 < \text{Re } \gamma + \text{Im } \gamma < 2$$

b)
$$|z-2| < |2z-1|$$

a)
$$0 < \text{Re } z + \text{Im } z < 2$$
 b) $|z - 2| < |2z - 1|$ c) $|z + 1 - 3j| \ge 2|z + 1|$

d)
$$|z-3| < |z+i|$$

Lösungen zu Aufgabe 2

a)
$$-1 + 2j$$

a)
$$-1+2j$$
 b) $-\frac{1}{10}+j\frac{7}{10}$ c) $-\frac{6}{5}-j\frac{2}{5}$ d) $2\sqrt{3}+j2$ e) $1+j$

c)
$$-\frac{6}{5} - j\frac{2}{5}$$

d)
$$2\sqrt{3} + j2$$

e)
$$1 + j$$

f)
$$-\frac{1}{\sqrt{2}} - j\frac{1}{\sqrt{2}}$$
 g) 1

h)
$$1 - j$$

i)
$$16 - j16$$

h)
$$1 - j$$
 i) $16 - j16$ j) $\cos 1 + j \sin 1$

Lösungen zu Aufgabe 3

a)
$$2e^{j\frac{\pi}{3}}$$

b)
$$5e^{j\pi}$$

c)
$$5\sqrt{2}e^{j\frac{57}{4}}$$

d)
$$8e^{-j\pi}$$

a)
$$2e^{j\frac{\pi}{3}}$$
 b) $5e^{j\pi}$ c) $5\sqrt{2}e^{j\frac{5\pi}{4}}$ d) $8e^{-j\pi}$ e) $4\sqrt{2}e^{j\frac{5\pi}{4}}$

f)
$$2\sqrt{2}e^{-j\frac{5}{1}}$$

g)
$$e^{-j\frac{2\pi}{3}}$$

h)
$$\frac{1}{7}e^{j\frac{7}{4}}$$

f)
$$2\sqrt{2}e^{-j\frac{5\pi}{12}}$$
 g) $e^{-j\frac{2\pi}{3}}$ h) $\frac{1}{7}e^{j\frac{7\pi}{4}}$ i) $5e^{j\arctan\frac{4}{3}}$ j) $e^{-\frac{\pi}{2}}$

j)
$$e^{-\frac{\pi}{2}}$$

Lösungen zu Aufgabe 4

a)
$$\left\{ \frac{6}{5} - \frac{3}{5}j \right\}$$

c)
$$\left\{1 + \frac{1}{3}j\right\}$$

e)
$$\{2j, -j\}$$

g)
$$\{-3j, 1-3j\}$$

i)
$$\{5e^{k\frac{2\pi}{3}j} \mid k=0,1,2\}$$

k)
$$\left\{4e^{\left(\frac{\pi}{6}+k\frac{2\pi}{3}\right)j} \mid k=0,1,2\right\}$$
 1) $\left\{1,-2j,2j\right\}$

m)
$$\{\sqrt{3}, -\sqrt{3}, j, -j\}$$

o)
$$\{x + jy \mid y = 1 - x, \ x \in \mathbf{R} \setminus \{1\}\}$$
 p) $\{-\frac{4}{3} + \frac{2}{3}e^{j\varphi} \mid \varphi \in [0, 2\pi)\}$

$$q) \{x + jy \mid y = x, \ x \in \mathbf{R} \}$$

b)
$$\left\{ -\frac{7}{10} + \frac{1}{10}j \right\}$$

d)
$$\{0,1+j\}$$

f)
$$\{3j, -2j\}$$

h)
$$\{2+j, -2-j\}$$

j)
$$\left\{ 2e^{\left(\frac{\pi}{4} + k\frac{2\pi}{4}\right)j} \mid k = 0, 1, 2, 3 \right\}$$

1)
$$\{1, -2j, 2j\}$$

n)
$$\{x + jy \mid y^2 = 2x + 1, x, y \in \mathbf{R} \}$$

$$p) \left\{ -\frac{4}{3} + \frac{2}{3} e^{j\varphi} \mid \varphi \in [0, 2\pi) \right\}$$

q)
$$\left\{ x + jy \mid y = x, \ x \in \mathbf{R} \right\}$$
 r) $\left\{ \frac{j \sin \varphi}{1 + \cos \varphi} \mid \varphi = k \frac{2\pi}{5}, \ k = 0, 1, 2, 3, 4 \right\}$