IMPLEMENTASI DETEKSI DAN PENGENALAN WAJAH PADA SISTEM UJIAN ONLINE MENGGUNAKAN METODE DEEP LEARNING BERBASIS RASPBERRY PI

H. Lami¹, S. I. Pella²

Jurusan Teknik Elektro, Fakultas Sains Dan Teknik, Universitas Nusa Cendana Jl. Adisucipto Penfui-Kupang-NTT Telp (0380) 881557 Email: h.lami@staf.undana.ac.id, Email: s.i.pella @staf.undana.ac.id

ABSTRACT

This research aims to develop a system to automatically recognize the participants in an online based test in order to make the process time and cost efficient. The system consists of a Raspberry Pi for running the face recognition algorithm, a Pi Camera for capturing the participants' images and a local server for storing the participant data. In the early stage of the research, a dataset containing the participant recent photos and the participant ids is developed. The dataset is then used in the learning process using haarcascade algorithm which is a part of deep learning method resulting in a model. In the recognition stage, images of the participants are compared to the model. The participants that are successfully recognized will be automatically allocated to avalable computers. The testing shows that the system successfully recognize both the test participant and the non-participants

Keywords: Raspberry pi, Deep, Learning, Haarcascade

ABSTRAK

Penelitian ini bertujuan untuk mengembangkan sistem yang secara otomatis dapat mengenali peserta dalam tes berbasis online untuk efisiensi waktu dan biaya. Sistem ini terdiri dari Raspberry Pi untuk menjalankan algoritma pengenalan wajah, Kamera Pi untuk menangkap gambar peserta dan server lokal untuk menyimpan data peserta. Pada tahap awal penelitian, dibangun sebuah dataset yang berisi foto terbaru peserta dan id peserta. Dataset ini kemudian digunakan dalam proses pembelajaran menggunakan algoritma haarcascade yang merupakan bagian dari metode deep learning untuk menghasilkan sebuah model. Pada tahap pengenalan, gambar peserta dibandingkan dengan model. Peserta yang berhasil dikenali akan secara otomatis dialokasikan ke komputer yang tersedia. Pengujian menunjukkan bahwa sistem berhasil mengenali peserta tes dan yang bukan peserta tes.

Kata kunci: Raspberry pi, Deep, Learning, Haarcascade

1. PENDAHULUAN

Perkembangan teknologi perangkat keras single board computer (*SBC*) memberikan suatu perubahan paradigma untuk mendisain suatu sistem komputasi yang murah[1,2]. Beberapa layanan aplikasi misalnya aplikasi keamanan, kesehatan, industri, trasnportasi, dan penginderaan menggunakan. Beberapa platform *SBC* yang ada dipasaran misalnya Raspberry Pi, Odroid, Pine A64, Orange Pi, LattePanda, Banana Pi, Le Potato, Asus Thinker Board, ClockWorkPi, Rock64MediaBoard, VIM Khadas, Pocket Beagle, Onion Omega 2+, dan Jetson Nano. Tabel 1 memberikan informasi mengenai perbandnigan antara dua platform *SBC*.

Tabel 1. Spesifikasi tiga Pabrikan SBC menurut

Cnip, KAM dan Harga					
Produk	Sistem Chip	Pilihan RAM	Harga		
Pabrikan	_	(MB/GB)	(USD)		
Raspberry Pi					
(Rpi)					
Rpi 4	BCM2711BO	1G/2G/4G	35 (1G)		
Model B					
Rpi 3	BCM2837B0	512M	25		
Model A +					
Rpi 3	BCM2837B0	1G	35		
Model B+					
Rpi 3	BCM2837	1G	35		
Model B					
Ordoid					
Ordoid C2	S905	2G	46		
Ordoid N2	S922X	4G	79		
Onion Omega	MT7688	128M	13		
2+					
Jetson Nano	Tegra X1	4G	99		

Penelitian ini memiliki dua tujuan utama yaitu bagaimana sistem mampu melakukan pengenalan wajah peserta ujian dan dari hasil validasi wajah tersebut menjadi trigger untuk membuka aplikasi sistem ujian. Beberapa penelitian terdahulu yang menggunakan central processor unit (*CPU*) maupun *SBC* dalam face-recognition yang terkait dengan penelitian ini adalah sebagai berikut:

Tabel 2. Riset Terkait dengan Penelitian yang

Menggunakan Perangkat CPU dan SBC[3-7].

		Tangkai Cru u		
Tahun	Peneliti	Topik	Metode/	Perangkat
2015	75		Kontribusi	
2016	Patil,	Implementatio	Viola-Jones	Central
	Ajinky	n of classroom	Algorithm/	Processor
	a, and	attendance	Face-	Unit
	Mruda	system based	detection	
	ng	on face	dan Face	
	Shukla	recognition in	recognition	
		class		
2017	Patel,	IOT based	haarcascade	SBC
	Anjali,	Facial	/ Face	Raspberry
	and	Recognition	detection &	Pi
	Ashok	Door Access	Face	
	Verma	Control Home	recognition/	
	VCIIIIa		Home	
		Security		
2010	-	System	Security	CDII
2018	Cao,	The Classroom	Guru	CPU
	Fengpi	Attendance	melakukan	
	ng,	Management	konfirmasi	
	Mimi	System of	kelas via	
	Wang,	Face	website	
	and	Recognition	selanjutnya	
	Kuihao	Based on LBS	mahasiswa	
	Wang		melakukan	
			login via	
			website dan	
			authentikasi	
			kehadiran	
			dengan face	
			detection	
			and face-	
2010	D 4 - 1	C1-1-1 - XV: -1	recognition	CDC
2018	Rantelo	Scalable Video	People	SBC
	bo, K.,	Coding Based	detection	Raspberry
	et al	on Wireless		Pi
		Sensor		
		Networks for		
		Monitoring		
		Object		
2019	Sayem,	Integrating	Face-	SBC
	et al	Face	Recognition	Raspberry
		Recognition		Pi
		Security		
		System with		
		the Internet of		
		Things		
		1 milgs		

Berdasarkan perkembangan perangkat keras pada table 1 dan perkembangan penelitian pada table 2 tersebut diatas maka pada penelitian ini akan didisain suatu aplikasi yang dapat melakukan deteksi dan pengenalan wajah sistem ujian online misalnya Ujian Tulis Berbasis Komputer (UTBK)[8], TOEP dan Tes

Potensi Dasar Akademik [9] menggunakan *SBC* Raspberry pi 3 model B+.

2. METODE PENELITIAN

Penelitian ini menggunakan teknik autentikasi face recognition untuk melakukan validasi peserta ujian online. Skenario pada penelitian ini mengikuti alur sebagai berikut:

- 1. Server lokal meminta data peserta ujian pada server pusat dan menyimpan data peserta pada database lokals.
- 2. Server lokal mendistribusi data id peserta dan foto peserta pada seluruh client raspberry pi
- 3. Raspberry pi + picamera melakukan face recognition tiap peserta ujian. Setiap otentikasi yang berhasil, Raspberry Pi mengirimkan id peserta ke server local.
- Server lokal mengirimkan Id peserta yang berhasil diotentikasi ke server pusat. Server pusat membangkitkan soal ujian untuk peserta tersebut dan mengirimkannya ke server local.
- 5. Server lokal menentukan komputer yang akan digunakan oleh peserta dan mengirimkan soal ujian ke komputer tersebut
- 6. Server local mengirimkan nomor komputer untuk peserta ke Raspberry Pi untuk di tampilkan ke monitor.
- 7. Peserta menuju ke Komputer dengan nomor yang telah ditentukan untuk mulai mengerjakan soal ujian.

Gambar 1. Skenario Konfigurasi Sistem

Proses pendeteksian wajah peserta ujian menggunakan beberapa sampel gambar foto dengan mempertimbangkan kapabilitas raspberry pi[10,11]. Proses tersebut meliputi beberapa tahapan yaitu:

- Pengambilan data image peserta ujian sebagai input data set. Pada tahapan ini pengambilan dataset dikumpulkan secara manual.
- Data image masing-masing peserta ujian dikelompokan dalam masing-masing folder yang diberi nama sesuai nama peserta ujian.
- 3. Picamera secara realtime mengambil image tiap peserta.
- 4. Raspberry pi melakukan pemrosesan deteksi wajah menggunakan metode haarcascade.
- Data hasil deteksi tersebut dipecah menjadi 128d-vektor
- 6. Klasifikasi 128d-Vektor data tiap image peserta ujian.
- Identifikasi keberhasilan pengenalan wajah peserta ujian yang ditampilkan dalam monitor.

3. HASIL DAN PEMBAHASAN

Hasil dari implementasi berdasarkan skenario pada gambar 1 dapat mengenal peserta ujian yang terlihat pada gambar 2.

Gambar 2 Verifikasi Tiga Peserta Ujian melalui Face-Recognition

Setelah data proses face recognition maka proses selanjutnya adalah mencari komputer yang tersedia pada ruangan ujian yang dapat dilihat pada algoritma sebagai berikut:

(1) Id_participant+ Face-recognition
 process
(2) select available computer from
 local_computer table
(3) insert into participant table (
 id_participant, id_comp)
(4) update local_computer table set
 available = false where id =
 id_comp
(5) display(id_participant,id_comp)

Gambar 3 Algoritma Pengalokasian Komputer

Jika id_participant tidak ditemukan maka hasilnya sebagai berikut :

```
System Pengenalan Wajah Peserta Tes Online
Video Size (x,y)= 640 x 480
Unknown
```


Gambar 4 Contoh Hasil Id Peserta Tidak Ditemukam

Struktur database pada server lokal untuk pengidentifikasian peserta dan pengalokasian computer peserta sesuai gambar berikut

Gambar 5 Struktur Database

4. KESIMPULAN

Paper ini menyajikan pemodelan sistem identifiasi peserta secara otomatis pada kegiatan tes berbasis online. Metode haarcascade yang diimplementasikan pada Raspbery Pi sukses mengidentifikasi peserta ujian yang telah terdaftar dan memiliki data gambar pada dataset. Hasil perekaman wajah yang belum terdapat di dataset peserta berhasil dikenali sebagai objek 'unknown'.

DAFTAR PUSTAKA

- [1] Johnston, Steven J., et al. "Commodity single board computer clusters and their applications." *Future Generation Computer Systems* 89, 2018, pp. 201-212.
- [2] Kyaw, Ar Kar, Hong Phat Truong, and Justin Joseph. "Low-Cost Computing Using Raspberry Pi 2 Model B." *JCP* 13.3,2018, pp. 287-299.
- [3] Patil, Ajinkya, and Mrudang Shukla.

 "Implementation of classroom attendance system based on face recognition in class." International Journal of Advances in Engineering & Technology 7.3,2014, p. 974.
- [4] Cao, Fengping, Mimi Wang, and Kuihao Wang.
 "The Classroom Attendance Management
 System of Face Recognition Based on
 LBS." 2018 5th International Conference on
 Education, Management, Arts, Economics and
 Social Science (ICEMAESS 2018). Atlantis
 Press, 2018.
- [5] Patel, Anjali, and Ashok Verma. "IOT based Facial Recognition Door Access Control Home Security System." *International Journal of Computer Applications* 172.7, 2017, pp. 11-17.
- [6] Rantelobo, K., et al. "Scalable Video Coding Based on Wireless Sensor Networks for Monitoring Object." THE FIRST INTERNATIONAL CONFERENCE AND EXHIBITION ON SCIENCES AND TECHNOLOGY (ICEST) 2018. 2018.
- [7] M. Sayem and M. S. Chowdhury, "Integrating Face Recognition Security System with the Internet of Things," 2018 International Conference on Machine Learning and Data Engineering (iCMLDE), Sydney, Australia, 2018,pp.14-18.
 doi:10.1109/iCMLDE.2018.00013
- [8] Website LTMPT https://ltmpt.ac.id/?mid=8 diakses pada tanggal 29/07/2019.
- [9] Website PLTI https://plti.co.id/ diakses pada tanggal 29/07/2019.
- [10] Rosebrock, Adrian. "OpenCV Face Recognition." PyImageSearch. Dostopno na: https://www. pyimagesearch. com/2018/09/24/opencv-face-recognition/[14.4.2019], 2018.
- [11] Prasanna, D. Mary, and Ch Ganapathy Reddy. "Development of Real Time Face Recognition System Using OpenCV." *Development* 4.12, 2017.