Análisis Matemático II – Cuestionario del Final del 15/12/20

P1

Se sabe que el volumen del cuerpo definido por:

$$x^2 + y^2 + z^2 \le R^2$$
 , $\frac{1}{\sqrt{3}} x \le y \le \sqrt{3} x$, 1° octante , $R > 0$

es igual a $\frac{3}{2}$ π , entonces se puede afirmar que:

Seleccione una:

- O a. Ninguna de las otras es correcta
- \bigcirc b. R=3
- \circ c. R = 1/3
- \bigcirc d. R = 1/27
- e. R = 27

P2

Dada la ecuación diferencial 9x + 4yy' = 0, la solución particular que pasa por el punto (2,0) es una curva que admite la siguiente ecuación vectorial:

Seleccione una:

$$\bigcirc a. \ \overline{X} = (\frac{1}{2}\cos(t), \frac{1}{3}\sin(t)) \cos 0 \le t \le 2\pi$$

- O b. Ninguna de las otras es correcta
- \bigcirc c. $\overline{X} = (2\cos(t), 3\sin(t)) \cos 0 \le t \le 2\pi$
- \bigcirc d. $\overline{X} = (3\cos(t), 2\sin(t)) \cos 0 \le t \le 2\pi$

$$\bigcirc$$
 e. $\overline{X} = (\frac{1}{3}\cos(t), \frac{1}{2}\sin(t)) \text{ con } 0 \le t \le 2\pi$

P3

Sea el campo escalar $f\in C^2(\mathbb{R}^2)$, sabiendo que:

f(1,1) = 4 es extremo local y que la matriz jacobiana del ∇f en (1,1) es $D \nabla f(1,1) = \begin{pmatrix} 5 & 1 \\ 1 & 3 \end{pmatrix}$,

la expresión que permite aproximar los valores de f por Taylor de 2° orden en un entorno de (1,1) es:

Seleccione una:

O a. Ninguna de las otras es correcta

○ b.
$$f(x,y) \equiv 4 + \frac{5}{2}(x-1)^2 + \frac{3}{2}(y-1)^2 + (x-1)(y-1)$$

$$\bigcirc$$
 c. $f(x,y) \equiv 4 + (x-1) + (y-1) + \frac{5}{2}(x-1)^2 + \frac{3}{2}(y-1)^2 + (x-1)(y-1)$

○ d.
$$f(x,y) \equiv 4+5(x-1)^2+3(y-1)^2+2(x-1)(y-1)$$

○ e.
$$f(x,y) \equiv 4 - \frac{5}{2} (x-1)^2 - \frac{3}{2} (y-1)^2 - (x-1) (y-1)$$

Análisis Matemático II – Cuestionario del Final del 15/12/20

P4

Dado $\overline{f}(x,y,z) = (z^2/2, 2y, 2kxz)$ el valor de la constante k para el cual la circulación de \overline{f} desde $\overline{A} = (0,2,3)$ hasta $\overline{B} = (1,1,1)$ resulte independiente del camino y, en ese caso, el correspondiente resultado de dicha circulación son:

Seleccione una:

O a. Ninguna de las otras es correcta

Ob.
$$k=1/2$$
 y $\int_{\overline{AB}} \overline{f} \cdot d\overline{s} = -5/2$

$$\bigcirc$$
 c. $k = -1/2$ y $\int_{\overline{\Delta B}} \overline{f} \cdot d\overline{s} = -5/2$

$$\bigcirc$$
 d. $k=1/2$ y $\int_{\overline{AB}} \overline{f} \cdot d\overline{s} = 5/2$

$$\bigcirc$$
 e. $k=2$ y $\int_{\overline{AB}} \overline{f} \cdot d\overline{s} = 5/2$

P5

Dado $\overline{f}(x,y) = (x, 2x^3 + y)$ definido en \mathbb{R}^2 , una ecuación cartesiana para su familia de líneas de campo es:

Seleccione una:

- \bigcirc a. $y = x^3 + C x^2$
- O b. $y = C x^3 + 2 x$
- O c. Ninguna de las otras es correcta
- \bigcirc d. $y = 2 x + C x^2$
- \bigcirc e. $y = x^3 + Cx$

P6

Dados $f: \mathbb{R}^3 \to \mathbb{R}$ / f(x,y,z) = x+y+z g(x-y) con g' continua y la superficie Σ de ecuación

$$x + y = 4$$
 con $x \ge 0$, $y \ge 0$, $0 \le z \le 8$,

Seleccione una:

- O a. 64
- О в. −64
- O c. 32
- O d. Ninguna de las otras es correcta
- e. -32

P7

Dado $\overline{f}\in C^1(\mathbb{R}^3)$ tal que $\overline{f}(x,y,z)=(z^3+y^5$, e^{x^2+z} , e^{x^2+z} , e^{x^2+z} , e^{x^2+z} , e^{x^2+z} , e^{x^2+z} , e^{x^2+z}

$$x^2 + y^2 + z^2 = 2 \text{ con } z \ge 1$$
,

el flujo de \overline{f} a través de Σ orientada hacia \mathbf{Z}^+ resulta igual a:

Seleccione una:

- \bigcirc a. 4π
- O b. π
- O c. 0
- d. − π
- O e. Ninguna de las otras es correcta

Análisis Matemático II – Cuestionario del Final del 15/12/20

P8

```
Sean f(x,y,z)=3 x-4 y+2 z-y \overline{g}:\mathbb{R}^2\to\mathbb{R}^3 differenciable, del tipo \overline{g}=(g_1,g_2,g_3).

Sabiendo que \nabla g_1(0,0)=(1,2), \nabla g_2(0,0)=(0,10) y \nabla g_3(0,0)=(3,1), entonces el \nabla (f\circ \overline{g})(0,0) resulta igual a:

Seleccione una:

o a. Ninguna de las otras es correcta

b. (9,-32)

c. (9,32)

o d. (-9,32)
```

P9

Siendo $f(x,y) = e^{a x + b y} \cos(x + y)$ con a,b constantes, para que la derivada direccional máxima de f en (0,0) resulte igual a $3\sqrt{2}$ y se produzca en la dirección del 1º cuadrante que forma un ángulo de $\pi/4$ con el semieje x^+ , dichas constantes deben ser:

Seleccione una:

- O a. Ninguna de las otras es correcta
- b. a = 3, $b = \sqrt{2}$
- \bigcirc c. a = 3, b = 3
- \bigcirc d. $a = \sqrt{2}$, $b = \sqrt{2}$
- \circ e. $a = \sqrt{2}$, b = 3

P10

Sea $g(x,y) = f(x,y) + 2yx^3$ con z = f(x,y) definida implícitamente mediante la ecuación $2xe^z - y^2z + z \ln(x) - 2 = 0$ en un entorno de $(x_0,y_0) = (1,2)$. Sabiendo que f(1,2) = 0, se puede afirmar que la recta normal en $(1,2,z_0)$ a la superficie de ecuación z = g(x,y) ...

Seleccione una:

- O a. Ninguna de las otras es correcta
- \bigcirc b. ... interseca al plano XY en el punto (-51, -6, 0)
- O c. ... interseca al plano XV en el punto (45,10,0)
- O d. ... interseca al plano XY en el punto (53,10,0)
- \odot e. ... interseca al plano xy en el punto (1,2,0)