Mathematical Properties of Continuous Ranked Probability Score Forecasting

Forecast Verification and Data Assimilation Workshop

Romain Pic¹, Clément Dombry¹, Philippe Naveau² and Maxime Taillardat³

¹Laboratoire de Mathématiques de Besançon, Université de Bourgogne Franche-Comté

²Laboratoire des Sciences du Climat et de l'Environnement, Université de Versailles Saint-Quentin

³Centre National de Recherches Météorologiques, Météo France

Table of Contents

- Probabilistic Forecasting
 - Context
 - Scoring Rules and CRPS

- Distributional Regression and Statistical Learning
 - Distributional Regression
 - Statistical Learning for Distributional Regression
 - Optimal Minimax Rate of Convergence
 - k-Nearest Neighbors

Met Office

Wednesday												
07:00	08:00	09:00	10:00	11:00	12:00	13:00	14:00	15:00	16:00	17:00	18:00	19:00
- <u>\</u>	- `	- `	- `	- `	<u>♂</u> .	8	8	8	8	8	8	6
<5%	f precipitati <5% cure ©C ∨	<5%	<5%	<5%	<5%	<5%	<5%	<5%	10%	<5%	<5%	<5%
11°	12°	14°	15°	17°	18°	19°	19°	20°	20°	19°	19°	18°

Uncertainty in Forecasting

Ernest Cooke (MWR, 1906)

All those whose duty it is to issue regular daily forecasts know that there are times when they feel **very confident** and other times when they are **doubtful** as to coming weather. It seems to me that the condition of confidence or otherwise forms a **very important part of the prediction**.

Forecasting Techniques

- Various approaches :
 - Point forecasting (e.g. mean, quantile...)
 - Ensemble forecasting
 - **Distribution forecasting**: cumulative distribution function, density, quantile function, copula...
- Evaluation :
 - for point forecasting : squared error for the mean, pinball loss for the quantile.
 - for probabilistic forecasting: ?

• Question:

How can we compare a distribution and an observation? \rightarrow Scoring Rules [Gneiting and Katzfuss, 2014]

Continuous Ranked Probability Score

• Continuous Ranked Probability Score (CRPS) : [Matheson and Winkler, 1976]

$$\mathrm{CRPS}(F,y) = \int_{\mathbb{R}} (F(z) - \mathbb{1}_{y \le z})^2 \mathrm{d}z$$

• Expected CRPS : $\overline{\mathrm{CRPS}}(F,G) = \mathbb{E}_{Y \sim G}\left[\mathit{CRPS}(F,Y)\right]$

$$\overline{\mathrm{CRPS}}(F,G) - \overline{\mathrm{CRPS}}(G,G) = \int_{\mathbb{R}} (F(z) - G(z))^2 \mathrm{d}z$$

 $\overline{\mathrm{CRPS}}(F,G) \geq \overline{\mathrm{CRPS}}(G,G)$ (strictly proper)

Table of Contents

- Probabilistic Forecasting
 - Context
 - Scoring Rules and CRPS

- Distributional Regression and Statistical Learning
 - Distributional Regression
 - Statistical Learning for Distributional Regression
 - Optimal Minimax Rate of Convergence
 - k-Nearest Neighbors

Distributional Regression

- $Y \in \mathbb{R}$ variable of interest, $X \in \mathbb{R}^d$ covariables with $(X, Y) \sim P$.
- Forecaster's goal : estimate the conditional distribution of Y given X, noted F_X^* .

Verification with the CRPS

Statistical Learning for Distributional Regression

In practice, the model can be fitted on a training sample (X_i, Y_i)_{1≤i≤n} assumed i.i.d. following P.

Main Questions

$$\begin{split} R_P(\hat{F}_n) &= \mathbb{E}_{(X_i,Y_i) \sim P} \mathbb{E}_{(X,Y) \sim P} \left[\text{CRPS}(\hat{F}_{n,X},Y) \right] \\ R_P(F^*) &= \mathbb{E}_{(X,Y) \sim P} \left[\text{CRPS}(F_X^*,Y) \right] \end{split}$$

• Since the CRPS is strictly proper, $R_P(\hat{F}_n) \ge R_P(F^*)$ with equality if $\hat{F}_n = F^*$.

Questions:

- Consistency $R_P(\hat{F}_n) \to R_P(F^*)$ for large sample sizes ?
- Best achievable rate of convergence?

Definition of Convergence

In point regression: need to restrain to a class of distributions to obtain non-trivial results on the rate of convergence.

- What definition of convergence do we choose?
- Minimization of the maximal error on a class of distributions. (minimax error)

Definition

A sequence of positive numbers (a_n) is called an **optimal minimax rate of convergence** on the class $\mathcal D$ if

- (lower bound) any algorithm \hat{F}_n satisfies $\sup_{P \in \mathcal{D}} (R_P(\hat{F}_n) R_P(F^*)) \ge \epsilon a_n$ for $\epsilon > 0$ and n large enough.
- (upper bound) there exists an algorithm \hat{F}_n satisfying $\sup_{P \in \mathcal{D}} (R_P(\hat{F}_n) R_P(F^*)) < \epsilon^{-1} a_n$ for $\epsilon > 0$ and n large enough.

Class of Distributions

Class of distributions defined by the following conditions:

- i) Covariables condition : $X \in [0,1]^d P_{X-a.s.}$; \rightarrow More generally a compact.
- ii) Regression condition : For all $x \in [0,1]^d$, $\int_{\mathbb{R}} F_x^*(z)(1 F_x^*(z)) dz \le M$; \to The dispersion of Y|X = x remains bounded for all $x \in [0,1]^d$.
- iii) CRPS condition : $\|F_{x'}^* F_x^*\|_{L^2} \le C \|x' x\|^h$ for all $x, x' \in [0, 1]^d$. Using knowledge from previous observations at $X = x_i$ to extrapolate the value at $X = x \to N$ eed regularity of F^* .

• (lower bound) Use a subclass with a binary response to obtain a **lower minimax rate** of convergence : $a_n = n^{-\frac{2h}{2h+d}}$. [Györfi et al., 2002]

k-Nearest Neighbors

$$\hat{F}_{n,x}(z) = \frac{1}{k_n} \sum_{i=1}^{k_n} \mathbb{1}_{y_{i:n}(x) \le z}, \text{ i:n}(x) \text{ index of the } i\text{-th nearest neighbor of } x.$$

• Remark: k-NN are a type of Analog Method. [Delle Monache et al., 2013]

Main Results

• (lower bound) Use a subclass with a binary response to obtain a **lower minimax rate** of convergence : $a_n = n^{-\frac{2h}{2h+d}}$. [Györfi et al., 2002]

Proposition

Assume $P \in \mathcal{D}^{(h,C,M)}$ and let \hat{F}_n be the k-NN model. Then, for $d \geq 2$,

$$R_P(\hat{F}_n) - R_P(F^*) \leq c_d^h C^2 \left(\frac{k_n}{n}\right)^{2h/d} + \frac{M}{k_n}$$

where $c_d = rac{2^{3+rac{d}{d}}(1+\sqrt{d})^2}{V_d^{2/d}}$ and V_d is the volume of the unit ball in \mathbb{R}^d .

Theorem

For $d \geq 2$, the optimal minimax rate of convergence on the class $\mathcal{D}^{(h,C,M)}$ is $\mathbf{a}_n = \mathbf{n}^{-\frac{2h}{2h+d}}$. Moreover, the k-NN algorithm reaches the optimal rate of convergence for $k_n = \left(\frac{Md}{2hC^2c_d^l}\right)^{\frac{d}{2h+d}} n^{\frac{2h}{2h+d}}$.

Conclusion

- Optimal minimax rate of convergence for distributional regression in any $d \ge 2$.
- What happens in d = 1? Kernel methods reach this optimal minimax rate of convergence in any d.
- Not only methods based on the minimization of the CRPS, also methods using the CRPS for verification.
- Upper bound on the convergence rate for k-NN (and kernel methods) at fixed n.
- Extension to usual weighted CRPSs.
- Perspectives :
 - Study other algorithms : Random Forests (e.g. QRF [Taillardat et al., 2016]).
 - Study other definitions of convergence : other distances.
 - Adapt other classical results to the distributional regression framework.

Preprint: Mathematical Properties of Continuous Ranked Probability Score Forecasting, Pic et al. (https://arxiv.org/abs/2205.04360)

References I

Delle Monache, Luca et al. (2013). "Probabilistic weather prediction with analog ensemble". In: Monthly Weather Review 141, pp. 3498–3516. DOI: https://doi.org/10.1175/MWR-D-12-00281.1.

Gneiting, Tilmann and Matthiass Katzfuss (2014). "Probabilistic Forecasting". In: Annual Review of Statistics and its Applications. DOI: 10.1146/annurev-statistics-062713-085831.

Györfi, Lászlò et al. (2002). A Distribution-Free Theory of Nonparametric Regression. Springer Series in Statistics. Springer.

Matheson, James E. and Robert L. Winkler (1976). "Scoring Rules for Continuous Probability Distributions". In: Management Science 22 (10). DOI: 10.2307/2629907.

Taillardat, Maxime et al. (2016). "Calibrated Ensemble Forecasts using Quantile Regression Forests and Ensemble Model Output Statistics.". In: Monthly Weather Review 144 (6). DOI: 10.1175/MWR-D-15-0260.1.

Simulations

- $X_1, X_2 \sim \mathcal{U}([0,1])$
- $Y = X_1 + X_2 + \sigma \epsilon$ with $\epsilon \sim \mathcal{N}(0,1)$
- $Y|X \sim \mathcal{N}(X_1 + X_2, \sigma^2)$
- Checking the conditions :
 - i) $X \in [0,1]^d P_X$ -a.s.;
 - ii) For all $x \in [0,1]^d$, $\int_{\mathbb{R}} F_x^*(z)(1-F_x^*(z))dz \leq M$; $\to M = \frac{\sigma}{\sqrt{z}} \checkmark$
 - iii) $\|F_{x'}^* F_x^*\|_{L^2} \le C \|x' x\|^h$ for all $x, x' \in [0, 1]^d$. \rightarrow Hard to get optimal values for C and h but h = 1 works.
- *k*-NN :

$$\hat{F}_{n,x}(z) = \frac{1}{k_n} \sum_{i=1}^{k_n} \mathbb{1}_{y_{i:n}(x) \le z}$$

$$\overline{\text{CRPS}}(F_{n,x}, F_x^*) - \overline{\text{CRPS}}(F_x^*, F_x^*) = \int_{\mathbb{R}} \left(\frac{1}{k_n} \sum_{i=1}^{k_n} \mathbb{1}_{y_{i:n}(x) \le z} - \Phi\left(\frac{z - (x_1 + x_2)}{\sigma}\right) \right)^2 dz$$

CRPS vs. k_n

Parameters : $\sigma = 1$ and n = 200.

Scaling of k_n with n, $\sigma = 2$

$$k_n \propto n^{\frac{2h}{2h+d}}$$

Figure: Equation : y = 1.1 + 0.68x, $R^2 = 0.952$

$$k_n \propto M^{\frac{d}{2h+d}} \propto \sigma^{\frac{d}{2h+d}}$$

Figure: Equation : y = 3.9 + 0.56x, $R^2 = 0.942$