The Woolz Internet Image Protocol (IIP) Server (Version 1.1.9)

Zsult Husz * Bill Hill †

November 18, 2016

Abstract

The Woolz Internet Imaging Protocol (IIP) server (WlzIIPSrv) extends the IIP to allow views of 3D Woolz objects with multiple components. This manual describes these extensions for both users and developers of the WlzIIPSrv.

^{*}Supported by NIH under grant #1R01MH070370-01A2.

[†]bill.hill@igmm.ed.ac.uk

Contents

Ti	itle Page	j			
A l	bstract	j			
C	ontents	ii			
1	Introduction	1			
2	Extension overview	1			
	2.1 Woolz object specification	4			
	2.2 Setting sectioning and query parameters				
	2.3 Extended object reference	12			
	2.4 Image Processing Expressions	20			
3	HTML query examples	21			
4	WlzIIPSrv coding				
	4.1 Architecture	24			
	4.2 IIPSrv and WlzIIPSrv beside the IIP specification	25			
5	Woolz IIP Proxy	26			
	5.1 WlzIIPProxy options	26			
6	WlzIIPSrv installation	28			
	6.1 Install FastCGI	28			
	6.2 Source code	28			
	6.3 Compiling	29			
	6.4 Customisable parameters	29			
7	WlzIIPProxy installation	29			
8	Acknowledgement	30			
Δ	fegi configuration	31			

1 Introduction

The Internet Imaging Protocol IIP provides quick access to large image databases allowing large images to be viewed remotely. It makes use of tile-based delivery so that panning and zooming within large images is possible without needing to download the entire image. The computational requirements of the client machine for viewing are low, allowing viewers to be implemented within web browsers. However, it is limited to 2D images. In biomedical imaging (and many other fields) 3D images are routinely used. A set of extensions to the IIP server was developed within the Edinburgh Mouse Atlas Project [EMA] to allow the remote visualization of sections through large 3D objects. These extensions make use of many of the features of Woolz, an image processing system with it's own efficient image representation [WOO].

This document assumes understanding of the IIP [4].

For clarity, in the rest of this document IIPSrv will refer to the original IIP server, with code version 0.9.7 [Pillay and Pitzalis], WlzIIPSrv will refer to the extended server, while IIP will point to the protocol standard of [4].

The coordinate system convention used in this document is shown in Figure 1. The object coordinate is defined by the object and the section coordinates result after sectioning. Then, the translated section coordinates with the section's minimum at (0,0) are the display coordinates. Further, the section is divided into non-overlapping tiles covering the whole section. Tiles are numbered with 0, 1, 2, etc., with the 0^{th} coordinates matching the display coordinates. The and $1^{st}, 2^{nd}$, etc. tiles continue from left to right and top to bottom. A client can visualise a section with reduced viewing area. This has the view coordinates and is client dependent.

2 Extension overview

In addition to the IIPSrv commands, a WlzIIPSrv command specifies an object, sets the viewing section parameters and requests image or meta data of the object. Tile request are similar to the TIFF requests, however for a Woolz object the resolution number used in **JTL/TIL** is ignored.

The extended command list that sets query parameters are summarised in Table 1, while Table 2 shows the new objects that may be queried with the **OBJ** command.

Command	Purpose	Syntax
\mathbf{CVT}	Request an image to be returned as a	CVT=format
	composed image. CVT accepts JPG,	
	PNG and WLZ format requests.	
\mathbf{DST}	Specify the distance of the sectioning	DST=dis
	plane.	
\mathbf{FPL}	Specify a viewing section through fit-	FPL=fspec[,fcpec]*
	ting a plane to the given points or	where
	compound indices.	fspec = I (X,Y,Z)
FXP	Specify the fixed point of the viewing	FXP=X,Y,Z
	section rotation.	
\mathbf{FXT}	Specify the second fixed point of the	FXT=X,Y,Z
	viewing section rotation.	
MAP	Define a colour or grey value mapping.	MAP=
		<pre>mspec[,mspec[,mspec]]]</pre>
		where
_		mspec=t,il,iu,ol,ou,p0,p1
MOD	Specify the projection mode.	MOD=mode
PAB	Specify the 3D query point absolute	PAB=X,Y,Z
	in the object coordinate.	
PIT	Specify the pitch angle of the section-	PIT=angle
DDI	ing rotation.	
PRL	Specify the 2D query point relative in	PRL=T,X,Y
DOT	tile or display or tile coordinate.	DET.
PTL	Retrieve a tile as a PNG image.	PTL=res,tile
DPT	Specify the rendering depth.	DPT=depth
RMD	Specify the rendering mode.	RMD=mode
ROL	Specify the roll angle of the sectioning rotation.	ROL=angle
SCL	Specify the scale used in the sectioning	 SCL=scale
	transformation.	DOT POSTS
SEL	Specify a component of a compound	SEL=E,R,G,B,A
	object to be displayed and its colour.	, , , , , , , , , , , , , , , , , , ,
	See 2.4.	
UPV	Specify the up vector for the	UPV=X,Y,Z
	UP_IS_UP mode.	,-,-
WLZ	Specify the Woolz object.	WLZ=path
YAW	Specify the yaw angle of the sectioning	YAW=angle
	rotation.	

Table 1: Extended command overview

Object	Purpose
IIP-server	Identify if WLZ-IIP is running.
Max-size	The size of the section.
Tile-size	The size of a tile.
Wlz-true-voxel-	The voxel size of the object.
size	
Wlz-volume	The volume of the object or first selection (if it exists).
Wlz-n-	The number of components in a compound object.
component	
Wlz-distance-	The range of the sectioning plane distance.
range	
Wlz-sectioning-	The pitch, yaw and roll angles of the sectioning plane.
angles	
Wlz-coordinate-	The 3D coordinates defined in 2D by the PRL command.
3D	
Wlz-grey-stats	Simple statistics of the image values of the object or first selection (if it exists).
Wlz-grey-value	The grey or RGB value of a point specified either the
	PRL or the PAB commands.
Wlz-	The display coordinates and displacement from the sec-
transformed-	tioning plane of a 3D point defined by PAB .
coordinate-3d	
Wlz-	The components of the compound object that 2D/3D
foreground-	query point is a foreground.
objects	

Table 2: Extended object overview

Figure 1: Coordinate systems

2.1 Woolz object specification

\mathbf{WLZ}	Purpose	Specify the Woolz object.	It is similar to

the **FIF** command, however instead of loading Pyramidal Tiled TIFF images, it specifies a Woolz object. Compered with **FIF**, the Woolz object is not loaded until a later operation requires this. The Woolz objects are cached. 3D domain and value objects, and compound objects with 3D domain or value components are supported. For a compound object the domain of the first object must include all other object domains. If file name ends with .gz, gzipped Woolz object is ex-

pected.

Syntax WLZ=path

Input Param- PATH path Full path of the Woolz object.

eters

Response WLZ returns nothing when accompanied by

other commands

Example \Rightarrow WLZ=/home/bill/pics/lobster3d.wlz

Notes Equivalent if FIF [4, p.25]

2.2 Setting sectioning and query parameters

DST	Purpose	optional and can be used in any combination. Specify the distance of the sectioning plane.
_ ~ _	Syntax	DST=dis
	Input Param-	FLOAT dis
	eters	The distance to the sectioning plane.
	Response	none
	Example	⇒DST=12.5
	Default value	0.0
FPL	Purpose	Specify the view by fitting a plane to given
		points or through components of a compound
		object.
	Syntax	<pre>FPL=fspec[,fcpec]*</pre>
		where
		fspec = I/(X,Y,Z)
	Input Param-	UINT I
	eters	Index of a compound object component
		FLOAT X
		Point x coordinate
		FLOAT Y
		Point y coordinate
		FLOAT Z
	.	Point z coordinate
	Response	none
	Example	⇒FXP=(120,20,15),(567,89,45),(339,87,62)
	Default value	Plane through (0,0,0) with PIT=0.0
		and YAW=0.0
FXP	Purpose	Specify the view rotation fixed point in the
	C4	object coordinate system.
	Syntax Innut Danam	FXP=X,Y,Z
	Input Param- eters	FLOAT X The x coordinate
	eters	FLOAT Y
		The y coordinate
		FLOAT Z
		The z coordinate
	Response	none
	Example	\Rightarrow FXP=10.5,20,15.0

\mathbf{FXT}	Purpose	Specify the secon	d fixed point in	the object
----------------	---------	-------------------	------------------	------------

coordinate system of the viewing section ro-

tation used only with MOD=FIXED_LINE.

Syntax FXT=X,Y,Z Input Param- FLOAT X

eters The x coordinate

FLOAT Y

The y coordinate

FLOAT Z

The z coordinate

Response none

Example \Rightarrow FXT=30,-20.2,15.0

Default value 0.0,0.0,0.0

MAP Purpose

Defines a colour or grey value mapping. Grey values outside the mapped region are clamped to the minimum and maximum output colour componentor grey values. There may be 1,2,3 or 4 mapping specifications given; with a single mapping specification meaning a grey value mapping, two specifications a grey with alpha mapping, three an RGB mapping and four an RGB α mapping.

Syntax

MAP=mspec[,mspec[,mspec[,mspec]]] where mspec=t,il,iu,ol,ou,p0,p1

Input Parameters

 $\texttt{t} \, \in \, \texttt{IDENTITY} \, \mid \, \texttt{LINEAR} \, \mid \, \texttt{GAMMA} \, \mid \, \texttt{SIGMOID}$

The mapping function

FLOAT il

Input lower grey value

FLOAT il

Input upper grey value

FLOAT ol

Output lower colour component or grey value

FLOAT ol

Output upper colour component or grey value

FLOAT p0

Gamma (γ) or first sigmoid parameter (μ)

FLOAT p1

Second sigmoid parameter (σ)

Response

none

Example

 \Rightarrow MAP=LINEAR,0,4095,0,255

Input grey values in the range 0-4095 are mapped to output values with the range 0-

255

Default value

IDENTITY

MOD	Purpose	Specify projection mode.
11102	Syntax	MOD=mode
	Input Param-	mode ∈ STATUE UP_IS_UP FIXED_LINE
	eters	ZERO_ZETA ZETA
	CUCIS	The projection mode
	Response	none
	Example	⇒MOD=FIXED_LINE
	Default value	UP_IS_UP
PIT	Purpose	Specify the pitch angle of the sectioning rota-
LII	rurpose	tion
	C	V
	Syntax	PIT=angle
	Input Param-	FLOAT angle rotation angle in degrees
	eters	
	Response	none
	Example	⇒PIT=180.0
	Range	0.0-180.0
	Default value	0.0
PAB	$\mathbf{Purpose}$	Specify a 3D query point absolute in the ob-
		ject coordinate system.
	Syntax	PAB=X,Y,Z
	Input Param-	FLOAT X
	eters	The x coordinate
		FLOAT Y
		The y coordinate
		FLOAT Z
		The z coordinate
	Notes	If both PRL and PAB are specified then
		PRL has priority of feature queries
	Response	none
	Example	⇒PAB=200,-50,30
	1	· · ·

PRL	Purpose	Specify a 2D query point relative to tile of
		display coordinate system.
	Syntax	PRL=T,X,Y
	Input Param-	RANGE T
	eters	The T tile number
		RANGE X
		The x coordinate
		RANGE Y
		The y coordinate
	Notes	PRL either specified a coordinate in a give
		tile, or if the tile number $T=-1$ then in th
		display coordinates
	Response	none
	Range	T=-1 maxtile
		X,Y are limited to the tile or section size
	Example	\Rightarrow PRL=2,20,1
	Default value	none
DPT	Purpose	Specify the rendering depth
	Syntax	DPT=depth
	Input Param-	FLOAT depth rendering depth for projection
	eters	rendering modes, depth zero implies no limi
	Response	none
	Example	⇒DPT=10
	Default value	0
RMD	Purpose	Specify the rendering mode
	Syntax	RMD=mode
	Input Param-	${\it mode} \ \in \ {\tt SECT} \ \ {\tt PRJN} \ \ {\tt PRJD} \ \ {\tt PRJV}$
	eters	The rendering mode
	Response	none
	Example	\Rightarrow RMD=PRJV
	Default value	SECT

ROL	Purpose	Specify the roll angle of the sectioning rota-	
		tion	
	Syntax	ROL=angle	
	Input Param-	FLOAT angle rotation angle in degrees	
	eters		
	Response	none	
	Example	\Rightarrow ROL=20.0	
	Range	0.0-360.0	
	Default value	0.0	
\mathbf{SCL}	${f Purpose}$	Specify the scale used in the sectioning trans-	
		formation.	
	Syntax	SCL=scale	
	Input Para	m- FLOAT scale the scale. A values over one is	
	eters	up, while lower than one is down-scaling.	
	${f Response}$	none	
	Example	\Rightarrow SCL=2.5	
	${f Range}$	positive	
	Default valu	e 1.0	
$\overline{\text{UPV}}$	Purpose	Specify the up vector for the UP_IS_UP mode.	
	Syntax	UPV=X,Y,Z	
	Input Param-	FLOAT X	
	eters	The x component	
		FLOAT Y	
		The y component	
		FLOAT Z	
		The z component	
	Response	none	
	Example	\Rightarrow UPV=0,-1,2	
	Default value	0.0,0.0,-1.0	
YAW	Purpose	Specify the yaw angle of the sectioning rota-	
		tion.	
	Syntax	YAW=angle	
	Input Param-	FLOAT angle rotation angle in degrees	
	eters		
	Response	none	
	Example	\Rightarrow YAW=2.0	
	Range	0.0-360.0	
	Default value	0.0	

PTL	Purpose	Retrieve a tile as a PNG image. This command is equivalent to the JTL command returning JPEG tiles.
	Syntax	PTL=res,tile
	Input Param-	INT res resolution
	eters	INT tile tile number
	Response	Requested tile tile on the resolution res
	Example	⇒PTL=1,2
	Default value	0,0
CVT	Purpose	Request an image to be returned as a composed image. CVT accepts JPG and PNG format requests.
	Syntax	CVT=format
	Input Param- eters	PNG JPEG format output format
	Response	Requested image
	Example	⇒CVT=png
	Default value	jpeg

SEL Purpose Specify a component of a compound object to

be displayed and its colour. The component can be specified either by it's index or by a image processing expression which can combine the components through the use of image processing operators. Where a Woolz object is not a compound object, the SEL command will regard it as a compound object with a single component of index zero. Image processing expressions are explained in 2.4. If the command is not present then the first object is returned. Multiple **SEL** will stack up the section in the request order.

SEL=E,R,G,B,A

SEL=E,R,G,B

SEL=E, A SEL=E

Input Param-

eters

Syntax

UINT E compound object index or image pro-

cessing expression

 $\begin{array}{ll} \textbf{UINT} & \textbf{\textit{R}} \ \text{red value} \\ \textbf{UINT} & \textbf{\textit{G}} \ \text{green value} \\ \textbf{UINT} & \textbf{\textit{B}} \ \text{blue value} \end{array}$

UINT A alpha value

Response none

Example \Rightarrow SEL=0,255,0,255,127

Default value 0,0,0,0,0

2.3 Extended object reference

IIP-	Purpose	Identify if WIzIIPSrv is running.
server		
	Syntax	IIP-server
	Response	IIP-server:255.552255
	Example	⇒OBJ=IIP-server
		\Leftarrow IIP-server:255.552255
	Note	This object should be used to verify if the IIP
		server has Woolz sectioning capabilities

Max- size	Purpose	Return the size of the section. For a Woolz object, the size is dependent on the sectioning parameters
	Syntax	Max-size
	Response	Max-size:width height
		INT width
		The width in pixels of the section at the current scale
		INT height
		The height in pixels of the section at the current scale
	Example	\Rightarrow OBJ=Max-size
		←Max-size:512 1024
	${f Note}$	The size is dependent on the viewing plane
		defining parameters
Tile-	Purpose	Return the size of a tile.
\mathbf{size}		
	Syntax	Tile-size
	Response	Tile-size:width height
		INT width
		The width in pixels of the tile
		INT height
		The height in pixels of the tile
	Example	\Rightarrow OBJ=Tile-size
		←Tile-size:64 64
	Note	The size is constant throughout the life of the server (see also section 6.4).

Wlz- true- voxel- size	Purpose	Returns the voxel size of the object.	
2123	Syntax	Wlz-true-voxel-size	
	Response	Wlz-true-voxel-size:X Y Z	
	-	FLOAT X	
		The x size	
		FLOAT Y	
		The y size	
		FLOAT Z	
		The z size	
	Example	\Rightarrow OBJ=Wlz-true-voxel-size	
		\Leftarrow Wlz-true-voxel-size:2 1 2.2	
	Note	The voxel size is object specific, but view in-	
		dependent.	
Wlz- volume	Purpose	Returns the volume of the object.	
	Syntax	Wlz-volume	
	Response	Wlz-volume:volume	
	-	INT volume	
		The volume of the Woolz object	
	Example	\Rightarrow OBJ=Wlz-volume	
		<pre>←Wlz-volume:748</pre>	
	Note	The volume is object specific, but view independent, with the volume being of the object or first selection if it exists.	

Wlz-n-	Purpose	Returns the number of components of a com-	
compon		pound object.	
	Syntax	Wlz-n-components	
	Response	Wlz-n-components:n	
		INT n	
		The number of components of the Woolz ob-	
		ject	
	Example	⇒OBJ=Wlz-n-components	
	-	<pre> ⟨ Wlz-n-components:3</pre>	
	Note	The number of components will be 1 if the	
		object is not a compound object or is com-	
		pound and only has a single component; in	
		other cases the number of components will be	
		greater for a valid object.	
Wlz-	Purpose	Returns the range of the sectioning plane dis-	
$\operatorname{distance}$)-	tance.	
range	a .		
	Syntax	Wlz-distance-range	
	Response	Wlz-distance-range:min max	
		FLOAT min	
		The minimum distance	
		FLOAT max	
		The maximum distance	
	Example	\Rightarrow OBJ=Wlz-distance-range	
		\leftarrow Wlz-distance-range:-20 80	
	Note	The distance range is view-dependent.	
\mathbf{Wlz} -	Purpose	Returns in degrees pitch, yaw and roll angles	
sectioni	ng-	of the rotation of the sectioning plane.	
angles			
	Syntax	Wlz-sectioning-angles	
	Response	Wlz-sectioning-angles:pitch yaw roll	
		FLOAT pitch	
		The pitch angle of viewing plane rotation	
		FLOAT yaw	
		The yaw angle of viewing plane rotation	
		FLOAT roll	
		The roll angle of viewing plane rotation	
	Example	\Rightarrow OBJ=Wlz-sectioning-angles	
		←Wlz-sectioning-angles:0 40 30	

Wlz-Purpose Returns The first and last plane, line and col-**3**dumn number of the object. boundingbox Syntax Wlz-3d-bounding-box Response Wlz-3d-bounding-box:plane1 lastpl line1 lastln colum1 lastcl FLOAT plane1 The first plane number of the object FLOAT lastpl The last plane number of the object FLOAT line1 The first line number of the object FLOAT lastln The last line number of the object FLOAT colum1 The first column number of the object FLOAT lastcl The last column number of the object

90

Example

 \Rightarrow OBJ=Wlz-3d-bounding-box

 \Leftarrow Wlz-3d-bounding-box:0 10 -15 15 30

Wlz- transfor 3d- boundin		Returns The first and last plane, line and column number of the object after a section transform.
	Syntax Response	Wlz-transformed-3d-bounding-box Wlz-transformed-3d-bounding-box:plane1 lastpl line1 lastln colum1 lastcl FLOAT plane1 The first section plane number FLOAT lastpl The last section plane number FLOAT line1 The first line number of the section FLOAT lastln The last line number of the section FLOAT colum1 The first column number of the section FLOAT lastcl
	Example	The last column number of the section ⇒0BJ=Wlz-transformed-3d-bounding-box ⟨=Wlz-transformed-3d-bounding-box:10 100 -23 12 308 490
Wlz- Purpose coordinate- 3D		Returns the 3D object coordinates defined in 2D by the PRL command.
<i>3.</i> 2	Syntax Response	Wlz-coordinate-3D Wlz-coordinate-3D: X Y Z FLOAT X The x coordinate FLOAT Y The y coordinate FLOAT Z The z coordinate
Example		⇒OBJ=Wlz-coordinate-3D ←Wlz-coordinate-3D:20 30 10

Wlz-Purpose Computes and returns simple statistics of the grey values of a Woolz object. greystats Syntax Wlz-grey-stats Response Wlz-grey-stats:n t gl gu sum ss mean stddev or Wlz-grey-stats: NULL UINT n Number of image values in the Woolz object. WlzGreyType t The Woolz image value type, with WLZ_GREY_INT | WLZ_GREY_SHORT | WLZ_GREY_UBYTE | WLZ_GREY_FLOAT | WLZ_GREY_DOUBLE | WLZ_GREY_RGBA FLOAT gl Minimum image value. FLOAT gu Maximum image value. FLOAT sum Sum of image values. FLOAT ss Sum of squares of image values. FLOAT mean Mean image value. FLOAT stddev Standard deviation of image values. Example ⇒OBJ=Wlz-grey-value ⟨─Wlz-grey-stats: 489600 UBYTE 0 255 8.5857e+06 1.42684e+09 17.5362 51.0567 Note For RGB α Woolz objects the computed values will be for the modulus of the image values. The statistics are of the object or first selection if it exists. When the object of first selection does not have image values NULL will

be returned.

Wlz- Purpose grey- value		Returns in grey or RGB value of a point specified either the PRL or the PAB commands.		
varue	Syntax Response	Wlz-grey-value: grey or Wlz-grey-value: R G B INT grey The grey value of the pixel INT R The red channel of the pixel INT G The green channel of the pixel INT B The blue channel of the pixel ⇒OBJ=Wlz-grey-value		
	Note	←Wlz-grey-value:0 255 10 The returned values are in the range of 0 to		
Wlz- Purpose transformed- coordinate-		Returns the the display coordinates and displacement from the sectioning plane of a 3D point defined by PAB		
3d	Syntax Response	Wlz-transformed-coordinate-3d: X Y D INT X The x coordinate in display frame INT Y The y coordinate in display frame FLOAT D The the signed distance from the sectioning plane		
	Example	⇒OBJ=Wlz-transformed-coordinate-3d ←Wlz-transformed-coordinate-3d:30 40 60.0002		

Wlz- Purpose The components of the compound object that

foreground- 2D/3D query point is a foreground

objects

Syntax Wlz-foreground-objects

Response Wlz-transformed-coordinate-3d: O_1 O_2

 \dots O_n INT O_1

The compound object index that a point is a

foreground pixel

Example \Rightarrow OBJ=Wlz-foreground-objects

⟨─Wlz-foreground-objects: 0 2 5 10

Object queries **Author**, **Copyright**, **Create-dtm**, **Subject** and **Appname** return *author*/ *copyright*/ *create-dtm*/ *subject*/ *app-name unknown* since they are not defined for a Woolz object.

2.4 Image Processing Expressions

Image processing expressions may be built using the components of Woolz compound objects and basic image processing operators. The operators supported are: background, difference, dilation, domain, erosion, fill, intersection, occupancy, setvalue, threshold, transfer and union. Image processing expressions are built from compound object indices and the image processing operators. Two of the image processing operators (occupancy and union) may given a list indices in their expressions. The occupancy operator may also be given no indices which implies all components of the compound object. Whether complex selections that use image processing operations are allowed can be controlled using the COMPLEX_SELECTION environment variable. The image processing expressions can be written using the syntax defined in table 3. This allows expressions such as:

- erosion(1,2) erodes the domain of the object with index one in the compound object by two voxels.
- diff(dilation(1,2),3) dilates the domain of the object with index one in the compound object by two voxels and then computes the difference between that and the object with index 3.
- domain(threshold(0,200,ge)) creates a domain from the object with index 0 where all voxels have values greater than or equal to 200. Without the domain operator threshold would give a object with image values.

```
exp list
                 (exp \mid idx \; list) \; (,exp \; list)
                 idx
exp
            :=
                 background(exp, val)
                 diff(exp, exp)
                 dilation(exp,uint)
                 domain(exp) |
                 erosion(exp,uint)
                 fill(exp)
                 intersect (exp list, exp list)
                 occupancy(index list?) |
                 setvalue(exp, val)
                 threshold (exp, val, cmp)
                 transfer(exp, exp)
                 union(exp list | idx list,exp list | idx list)
idx list
                 (uint | idx range | idx list,idx list)
                 uint-uint
idx range
            :=
                 uint
idx
val
                 (int) | (float ) ([eE] int)?
real
                 int[.] uint
                 -?uint
int
            :=
                 [0-9]+
uint
                 (lt)|(le)|(eq)|(ge)|(gt)
cmp
```

Table 3: Syntax for image processing expressions.

The image processing operators available and their parameters are described in table 4.

3 HTML query examples

Tile request

```
http://localhost/fcgi-bin/iipsrv.fcgi?
WLZ=/home/bill/pics/lobster3d.wlz&
QLT=50&JTL=1,0
```

Returns a jpeg tile 0 with a quality factor of 50%. The section default parameters, mode UP_IS_UP and zero distance and viewing angles are used.

Sectioning plane distance

Operator	Complexity	Description
background (exp, value)	1	Sets the background value (value out-
		side the expresion object's domain) to
		the given value.
$\operatorname{diff}(exp, exp)$	2	The difference between the two given
		domains.
dilation(exp, radius)	2	The dilation of the domain by radius
		voxels.
domain(exp)	1	The domain of the expresion's object.
erosion (exp, radius)	2	The erosion of the domain by radius
		voxels.
fill(exp)	2	Fills all holes not connected to the
		outside in the given expression's do-
		main.
intersect (exp list)	2	The intersection of the domains in the
_		given lists.
occupancy (idx list?)	2	The domain occupancy in the optional
		list.
setvalue(exp,value)	2	Creates an object with the domain of
		the given expression and all values set
		to the given value.
threshold(exp, value,	2	Creates an object where the image
comparison)		values satisfy the given value and
•		comparison. Here the value is float-
		ing point and valid comparisons are
		lt (less than), le (less than or equal),
		eq (equal), ge (greater than or equal)
		and gt) (greater than).
transfer(exp, exp)	2	Creates a new object with the domain
1, 1		of the first expression's object and the
		values of the second. Values outside
		the domain of the second but within
		the first are set to the second's back-
		ground value.
union (exp list idx list,	2	The union of the domains in the given
exp list idx list)		lists.

Table 4: Descriptions of image processing operators with complexity values ${\cal C}$

```
http://localhost/fcgi-bin/iipsrv.fcgi?
WLZ=/home/bill/pics/lobster3d.wlz&DST=8&QLT=50&PTL=1,0
```

As above, but the sectioning plane distance is 8 and the returned tile has been compressed with png not jpeg format.

Sectioning mode, plane distance and angle

http://localhost/fcgi-bin/iipsrv.fcgi?DST=40&YAW=61.5&PIT=3&ROL=0&MOD=ZETA&WLZ=/home/zsolth/small.wlz&QLT=50&CVT=jpeg

Returns the whole section with the distance 40, yaw angle 61.5, pitch 3, roll 0 degrees, for a plane at distance 40

Distance range query

results in

results in

Wlz-distance-range:0 171

3D object coordinate query

 $\label{localhost} $$ $$ http://localhost//fcgi-bin/l.fcgi?WLZ=/home/zsolth/fif/wlz/ts14.wlz\& DST=200\&YAW=10\&PIT=3\&PRL=0,30,40\&0BJ=Wlz-coordinate-3d $$$ $$$

Wlz-coordinate-3d:418.43 53.5708 15.9916

The (30,40) display coordinate in sectioning plane DST=200 has 3D object coordinates (418.43,53.5708,15.9916).

3D coordinate projection to a section

http://localhost//fcgi-bin/l.fcgi?WLZ=/home/zsolth/fif/wlz/ts14.wlz&DST=130&YAW=10&PIT=3&PAB=418.43,53.5708,15.9916&OBJ=Wlz-tranformed-coordinate-results in

Wlz-transformed-coordinate-3d:30 40 70.0002

The (418.43,53.5708,15.9916) object coordinate in sectioning plane DST=130 has display coordinates (30,40) and has a distance 70.0002 from the plane.

Sectioning, selection and image processing operations

http://localhost/fcgi-bin/iipsrv.fcgi?DST=40&YAW=61.5&PIT=3&ROL=0&MOD=ZETA&WLZ=/home/bill/compound.wlz&SEL=(dilation(union(1-3)),255,0,0,255)&QLT=50&CVT=jpeg

The section is selected as described above and a domain is created that is the dilated union of components 1, 2 and 3 of the compound object.

4 WlzIIPSrv coding

4.1 Architecture

Figure 2: wlziipsrv version 0.9.7 architecture

Figure 2 depicts the architecture of the WlzIIPSrv this being inherited from the original IIPSrv and explaining both. Blocks in the figure represent either C++ classes or structures.

The **Task** class is the base of all command classes that serve independently each IIP command. Its static factory(string type) method creates an instance of the appropriate class that serves the type IIP command.

Figure 2 shows some of the classes implementing the IIP commands, all derived form the Task. Four command types can be identified:

Parameter setting commands such CNT and ROL pass a parameter to the server. The parameter value is stored by the command in the Session structure.

- Object defining commands such FIF and WLZ receive the file name of an object and creates the necessary structures to handle an object. In WlzIIPSrv, either TPTImage and WlzImage classes store Tiled Pyramidal TIFFs and Woolz objects.
- Image providers such JTL, PTL and CVT generate a tile or a full image corresponding to the previously set parameters, stored in the Session structure.
- Parameter enquiry with OBJ command returns an parameter computed or previously specified.

The Session structure stores all session related parameters, including the current image object.

To reduce the computation overhead, three types of caches are used:

- for tiles (RawTile),
- for flat images (IIPImage)
- for Woolz objects and view structures (WlzObj).

The interactions between classes, figure 2, are multiple:

- task creates the requested command class,
- commands set session related parameters and the current object
- the **OBJ** command provides the current object parameters,
- before loading from disc, when an operation requires access object data the appropriate cache structure is checked first. Also, when a tile is requested, if it parameters result in a cache hit then the cached tile is returned. The a Woolz view structures are cached and looked before a section is generated.

4.2 IIPSrv and WlzIIPSrv beside the IIP specification

IIP [4, p.25] defines a set of mandatory and optional commands that an IIP server should implements. The IIPSrv implements a subset of this commands, while also adds extra commands. WlzIIPSrv further extends the command set, while some of the original IIP commands are incompatible with Woolz objects.

The list of commands from Table 5 compares command sets of the IIP specification, the IIPSrv and the WlzIIPSrv with supported (S), unsupported (N), partially implemented (P) and commands in an unknown, an undocumented or nonfunctional state (U).

5 Woolz IIP Proxy

The Woolz IIP Proxy filters and forwards IIP requests to one or more WlzIIP servers. The requests conform the FCGI protocol. Though it was designated to work for IIP and Woolz requests, it is generic and can be applied to any FCGI request. Therefore, it is possible to chain multiple proxies.

Figure 3: Architecture of Woolz IIP Server using a proxy server. The proxy forwards the user web requests served first by apache to the individual IIP Servers that have direct access to the Woolz Object. The numbered lines show the ordering of the requests (continuous line) and the replies (dotted lines).

The WlzIIPProxy is an independent program running on the proxy server. Apache2 server forwards the FCGI request to this sever, on a configurable port. WlzIIPSrv check the html request string (the FCGI_PARAMS packet QUERY_STRING parameter) and if any remote FCGI server definition string is a substring of the request then request is forwarded to this server. If there is no hit then the request is forwarded to the first FCGI remote server. The default setup of the WlzIIPProxy architecture is shown in figure3

5.1 WlzIIPProxy options

Usage:

WlzIIPProxy [-p<portnumber>] [-c<conf_filename>] [-l<log_filename>]

Command	IIP spec	IIPSrv	WlzIIPSrv
AFN	S	N	N
CIN	S	N	N
CNT	S	S	S
CTW	S	N	N
CVT FIF	S	S	S S
FTR	S S	S N	N N
HEI	s	U	Ü
ICC	s	S	U
JTL	š	S	P
OBJ	S	S	S
QLT	S	S	S
RAR	S	N	N
RFM	S	N	N
RGN	S	S	S
ROI	S	S	S
RST	S	N	N
SDS	S	S	N
TIL WID	S S	S U	P U
JTLS	N	S	N
SHD	N N	S	U
DST	N	N	S
FPL	N	N	S
FXP	N	N	S
FXT	N	N	S
MAP	N	N	S
MOD	N	N	S
PAB	N	N	S
PIT	N	N	S
PRL	N	N	S
PTL	N N	N N	S S
DPT RMD	N N	N N	S
ROL	N N	N	S
SCL	N	N	S
SEL	N	N	S
UPV	N	N	S
WLZ	N	N	S
YAW	N	N	S
Affine-transform	S	N	N
App-name	S	U	P
Aspect-ratio	S	N	N
$egin{aligned} \mathbf{Author} \\ \mathbf{Basic\text{-}info} \end{aligned}$	S S	U S	N S
Colorspace	s	S	U
Color-twist	S	N	N
Comment	s	U	N
Comp-group	s	N	N
Contrast-adjust	S	N	N
Copyright	S	U	S
Create-dtm	S	U	N
Edit-time	S	U	N
File-class-id	S S	N N	N N
Filtering-value	S	N N	N N
ICC-profile IIP-opt-comm	S	S	S
IIP-opt-obj	s	S	S
IIP-server	S	S	S
IIP-socket	S	N	N
IIP	S	P	P
Keywords	S	U	N
Last-author	S	U	N
Last-printed	S S	U U	N
$egin{array}{c} { m Last-save-dtm} \\ { m Max-size} \end{array}$	S	S	N S
Property	S	N N	N N
Render-path	s	N	N
Resolution-number	s	S	S
Rev-number	S	Ŭ	N
ROI	S	N	N
Security	S	N	N
Stream	S	N	N
Subject	S	U	P
Summary-info	S	U	P
Title View-info	S S	U N	N N
View-info Horizontal-views	N N	S	U
Horizontal-views Tile-size	N N	S	S
Vertical-views		S	U
Wlz-3d-bounding-box	N	N	S
Wlz-coordinate-3D	N	N	S
Wlz-distance-range	N	N	S
Wlz-foreground-objects	N	N	S
Wlz-grey-stats	N	N	S
Wlz-grey-value	N	N	S
Wlz-n-components	N	N	S
Wlz-sectioning-angles	l N	N	S
		TN.T	
Wlz-transformed-3d-bounding-box	N	N N	S
Wlz-transformed-3d-bounding-box Wlz-transformed-coordinate-3d	N N	N	S
Wlz-transformed-3d-bounding-box	N		

[-v<loglevel>] [-h]

where the options are:

- -p Port number. Default value: 123777
- -c Configuration file containing WLZ name to server name mapping. Default value: WlzIIPProxy.conf
- -l Log file name. -v with a value greater than 0 must be used. Default value: /tmp/WlzIIPProxy.log
- -v Log level. Default value: 0
- -h Help, prints usage message.

The log level is 0 to 3 with

- 0 no log,
- $\bullet\,$ 1 system startup, shutdown, error messages,
- 2 as fcgi connection messages,
- 3 as level 2 and received/sent packet types.

The configuration file has three columns for:

- 1. search string,
- 2. server name (or ip),
- 3. port number.

6 WlzIIPSrv installation

6.1 Install FastCGI

Download and install FastCGI [LIB]. WlzIIPSrv was tested with fcgi-2.4.0 only.

6.2 Source code

Obtain the source files from github:

https://github.com/ma-tech/WlzIIPSrv

The following packages are also required:

https://github.com/ma-tech/External https://github.com/ma-tech/Woolz

6.3 Compiling

Having already built the required external libraries including the Woolz libraries; within the WlzIIPSrv root directory edit and execute the build script:

```
cp build.sh mybuild.sh
vi mybuild.sh
./mybuild.sh
```

The build script can be edited, but most often this will only need to be done to change the install prefix. The Woolz libraries should be build with external file format support enabled.

For doxygen documentation run make doc. The documentation is generated into the Docs directory.

Installing implies moving the src/wlziipsrv.fcgi into the server's fcgi
directory:

```
cp src/wlziipsrv.fcgi /opt/apache/fcgi-bin/
```

Do not forget to set read and execute access modes!

6.4 Customisable parameters

In addition to the IIPSrv [Pillay and Pitzalis, p.25] configuration parameters, WlzIIPSrv allows with the parameters from Table 6 changing the logging, caches and tile sizes.

The example configuration from appendix A defines a view structure cache with 200 structures, a 1500MB Woolz object cache and 100×100 tile size.

7 WlzIIPProxy installation

- Download and compile / install FastCGI [LIB].
- Get WlzIIPProxy source code from the CVS repository:

```
cvs checkout -P src/Applications/WlzIIPProxy
```

 Configure and compile WlzIIPProxy: Run from the WlzIIPSrv root directory

```
aclocal; autoheader; automake; autoconf; ./configure; make
```

Parameter	Description	Default value
LOGFILE	Location of log file.	/tmp/iipsrv.log
LOGLEVEL	Log level (EMERG, FATAL,	WARN
	ALERT, CRIT, ERROR, WARN,	
	NOTICE, INFO, DEBUG).	
FILESYSTEM_PREFIX	Prefix directory for images.	"
MAX_WLZOBJ_CACHE_SIZE	Maximum Woolz object cache size	1024
	in MBs.	
MAX_WLZOBJ_CACHE_COUNT	Maximum number of Woolz ob-	100
	ject in cache.	
WLZ_TILE_WIDTH	Tile width in pixels.	100
WLZ_TILE_HEIGHT	Tile height in pixels.	100
COMPLEX_SELECTION	Controls complex selections	0
	with values:	
	0 - No complex selections,	
	1 - All low cost selections,	
	2 - All selections.	

Table 6: WlzIIPSrv extra configuration parameters

• Run WlzIIPProxy on the desired port and using the configuration file.

WlzIIPProxy -p <portnumber> -c <config_file>

- Configure apache2 on the web server:
 - 1. install mod_fastcgi (you might need to reinstall apache2) **Note:** the mod_fcgi module, provided in SUSE 10.3 can not make remote FCGI request therefore is not compatible with WlzIIPSrv. mod_fastcgi must be used.
 - 2. add to httpd.conf (/opt/apache/conf//httpd.conf):

FastCgiExternalServer <virtual_path_to_fcgi> -host <hostname>:<portnumber>

8 Acknowledgement

We gratefully acknowledge the support from NIH under grant #1R01MH070370-01A2.

A fcgi configuration

An example of the apache2 configuration (/opt/apache/conf/httpd.conf) is 1

```
# Create a directory for the iipsrv binary
ScriptAlias /fcgi-bin/ "/opt/apache/fcgi-bin/"
# Set the options on that directory
<Directory "/opt/apache/fcgi-bin">
   AllowOverride None
   Options None
   Order allow, deny
   Allow from all
   # Set the module handler
   AddHandler fcgid-script .fcgi
</Directory>
# Initialise the FCGI server and set some default values
FastCgiServer /opt/apache/fcgi-bin/wlziipsrv.fcgi \
-initial-env LOGFILE=/opt/apache/logs/wlziipsrv.log \
-initial-env LOGLEVEL=WARN \
-initial-env JPEG_QUALITY=50 \
-initial-env FILESYSTEM_PREFIX=/export/images \
-initial-env MAX_CVT=3000 \
-initial-env MAX_WLZOBJ_CACHE_COUNT=100 \
-initial-env MAX_WLZOBJ_CACHE_SIZE=4000 \
-initial-env WLZ_TILE_WIDTH=100 \
-initial-env WLZ_TILE_HEIGHT=100 \
-initial-env COMPLEX_SELECTION=0
```

References

[EMA] The e-mouse atlas project.

[LIB] Fastcgi api (libfcgi).

[WOO] Woolz image processing system.

¹This configuration file is compatible with mod_fcgi. For mod_fastcgi alternative format must be used (see IIPSrv web-page).

[4] I3A (1997). Internet imaging protocol.

 $[\mbox{Pillay}$ and $\mbox{Pitzalis}]$ Pillay, R. and Pitzalis, D. IIPSrv.