

Полупроводников диод

Работа по постоянен ток

Структура на диод

Изправителен диод с pn преход Rectifying pn junction diode Диод на Шотки Schottky Barrier Diode (SBD)

Приложения

Схема на изправител

Защита от пренапрежение

Режими на работа

Обратно включване: Потенциалът на катодът е по-положителен от този на анода. Право включване: Потенциалът на анода е по-положителен от този на катода.

Волт-Амперна характеристика на диод

Волт-Амперна Характериситка I=f(U)

Диодът е нелинеен елемент с едностранна проводимост.

При обратно включване, токът е много малък.

Уравнение на идеализиран диод

$$I = I_S \left(e^{\frac{U}{\varphi_T}} - 1 \right)$$
$$\varphi_T = \frac{kT}{a}$$

 I_S — ток на насищане

 φ_T — топлинен потенциал

При 25°C, $\varphi_{\mathrm{T}} = 26mV$

Волт-Амперна Характериситка I=f(U)

Сравнение на B-A характеристики на изправителен диод с pn преход и Шотки диод Спрямо диодите с pn преход, Шотки диодите имат:

- По нисък пад на напрежението при право включване
- Значително по-голям ток на насищане!

Товарна права и работна точка

Влияние на температурата

Влияние на температурата – право включване

$$TKU_F = \frac{dU}{dT} \approx \frac{\Delta U}{\Delta T} | I = const$$

$$TKU_F \approx -2 \text{ mV/} \circ C$$

Fig. 1 - Forward Voltage vs. Junction Temperature

Болшинството диоди имат отрицателен температуран коефициент на напрежението – т.е. U_F намалява с увеличение на температурата (при постоянен ток).

Figure 1. Forward Characteristics

Изключение правят SiC диодите с преход на Шотки, които имат положителен температурен коефициент.

Влияние на температурата – обратно включване

Figure 3. Typical Reverse Current

 $I_{\rm s}$ се удвоява на всеки 10 °С увеличение на температурата.

Тъй като обратният ток се формира от топлинно генерирани неосновни токоносители, той силно зависи от изменението на температурата.

Обратният ток на Шотки диодите е много по-голям от този на диодите с pn преход.

Максимално допусими параметри

MAXIMUM RATINGS

Rating		Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	15	V
Average Rectified Forward Current (T _C = 140°C per Diode) (T _C = 140°C per Device)	l _{F(AV)}	20 40	Α
Peak Repetitive Forward Current, per Diode (Square Wave, 20 kHz, T _C = 135°C)	I _{FRM}	40	Α
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions, Halfwave, Single Phase, 60 Hz)	I _{FSM}	150	Α
Peak Repetitive Reverse Surge Current (2.0 μs, 1.0 kHz)	I _{RRM}	1.0	Α
Storage Temperature Range	T _{stg}	-65 to +175	°C
Operating Junction Temperature (Note 1)	TJ	-65 to +150	°C
Voltage Rate of Change (Rated V _R)	dv/dt	1,000	V/μs

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Пример MBR4015CTLG Si Schottky диод

Намаляване на макс. допусимият ток при повишаване на температурата

Figure 4. Current Derating, Case, Per Leg

Топлинно съпротивление

Топлинното съпротивление R_{θ} (или R_{th}) показва ефективността на отвеждане топлината от полупроводниковият кристал към околното пространство. То се измерва в градуси на Ват (K/W или °C/W).

$$P_{D} = \frac{T_{J} - T_{A}}{R_{\theta JA}} \qquad P_{D} = \frac{T_{J} - T_{C}}{R_{\theta JC}}$$

P_D представлява максималната мощността, която диода може да разсейва при дадени температура на кристала

 T_J = Junction Temperature / температура на кристала

 T_C = Case Temperature / температура на корпуса

 T_L = Lead Temperature / температура на изводите

 T_A = Ambient Temperature / околна температура

 $R_{\theta JC}$ = Топлинно съпротивление кристал – корпус

 $R_{\theta,II}$ = Топлинно съпротивление кристал – изводите

 $R_{\theta JA}$ = Топлинно съпротивление кристал – околна среда

THERMAL CHARACTERISTICS (Per Diode)

Characteristic	Conditions	Symbol	Max	Unit
Maximum Thermal Resistance, Junction-to-Case	Min. Pad	R _{eJC}	1.3	°C/W
Maximum Thermal Resistance, Junction-to-Ambient	Min. Pad	$R_{\theta JA}$	70	

Топлинно съпротивление

Figure 5. Current Derating, Ambient, Per Leg

Топлинното съпротивление може да се намали с помощтта на радиатор. Той представява метална конструкция с голяма площ, която спомага по-лесното отвеждане на топлината.

Неуправляемо повишаване на температурата Thermal Runaway

Диодите с бариера на Шотки са податливи на прекомерно генериране на топлина при големи токове. В резултат на това, комбинацията от отделената топлина с нарастващ IR (ток на утечка) може да доведе до повишаване температурата на диода.

Следователно, неправилен термичен дизайн може да доведе до това, че количеството генерирана топлина надвишава разсейваното количество. Което води до допълнително увеличаване на температурата и тока на утечка и в крайна сметка ще доведе до повреда.

Това явление се нарича "Thermal Runaway".

Схеми с диоди и задачи

 U_1 - електродвижеща сила на източника на напрежение (участва в сумирането със знак минус)

 U_D - пад на напрежението върху диода

 U_R - пад на напрежението върху резистора

Закон на Кирхоф за напреженията Алгебричната сума от напреженията в затворен контур е равна на нула.

$$(-U_1) + U_D + U_R = 0$$

Закон на Кирхоф за токовете Алгебричната сума на всички токове в даден възел е равна на нула.

Възел а: $I_{U1} = I_D$

Възел b: $I_D = I_R$

 $I_{U1} = I_D = I_R = I$

Възел с: $I_R = I_{U1}$

Закон на Ом - връзка между напрежението и тока в един клон от схемата.

$$R = \frac{U_R}{I_R} = \frac{U_R}{I}$$

Изчисляване на токоограничаващ резистор

$$U_R = U_1 - U_D$$

$$R = \frac{U_R}{I_{max}}$$

Предназначението на резистора в схемата на фигурата е да поддържа тока през диода по-малък от максимално допустимия (Imax).

Без наличие на този резистор в схемите, няма какво да ограничи нарастването на тока при право влючване и диодът ще изгори.

Прагов модел на диод

Като използвате прагов модел на диод с Uo=0.7V, определете токовете, падовете на напрежение и разсейваните мощности върху резистора и диода в схемата.

- 1) Източникът на напрежение U1, диодът D1 и резисторът R1 са свързани последователно => през тях тече еднакъв ток I.
- 2) Диодът е включен в права посока и U1 > Uo => диодът е "отпушен" и пропуска ток.
- 3) От законът на Кирхоф за напреженията => U1 = Ur + Ud; Ur = U1 Ud = 10V 0.7V = 9,3V
- 4) От законът на Ом => I = Ur / R1 = 9,3V / 1kOhm = 9,3mA
- 5) Мощността, разсейвана върху резистора е Pr = Ur . I = 9,3V . 9,3mA = 86,5mW
- 6) Мощността, разсейвана върху диода е Pd = Ud . I = 0,7V . 9,3mA = 6,5mW

проверки

Елемент	U	1	Р
D1	0,7V	9,3mA	6,5mW
R1	9,3V	9,3mA	86,5mW

Определете напреженията върху резистора и диода и големината на тока, ако U1=10V и R1=100 Ома. Използвайте прагов модел на диод с Uo=0.7V. D_1

- 1) Източникът на напрежение U1, диодът D1 и резисторът R1 са свързани последователно => през тях тече еднакъв ток I.
- 2) Диодът е включен в обратна посока => диодът не пропуска ток => I = 0.
- 3) От законът на Ом => Ur = I . R1 = 0 . 100 Ohm = 0
- 4) От законът на Кирхоф за напреженията => U1 = Ur + Ud; Ud = U1 Ur = 10V 0 = 10V

Елемент	U	I	Р
D1	10V	0	0
R1	0	0	0

Какво ще покава волтметъра, ако U1=10V, R1=100 Ohm, а D1 е силициев диод с PN преход.

10V

9.3V

0.7V

OV

Диодът е включен в права посока и U1 > Uo => диодът е "отпушен" и пропуска ток.

За силициев диод с pn преход, Uo=0.7V

Какво ще покава волтметъра, ако U1=10V, R1=100Ohm, а D1 е силициев диод с PN преход.

○ 10V

9.3V

O.7V

○ 0V

Диодът е включен в обратна посока \Rightarrow диодът е запушен и не пропуска ток \Rightarrow I = 0

Съгласно законът на Ом: Ur = I R = 0V

