Обнаружение аномалий

Виктор Китов

v.v.kitov@yandex.ru

Аномалии (выбросы)

- Аномалия (выброс, outlier) объект, нетипичный для общего распределения объектов.
- Применения обнаружения аномалий
 - очистка данных (убрать ошибочные наблюдения)
 - обнаружение нетипичных объектов:
 - мошеннические финансовые транзакции
 - хакерские атаки в сети
 - мониторинг исправности устройств

Методы обнаружения аномалий

- Виды постановок задач:
 - Детекция новизны (novelty detection): обучающая выборка не содержит аномалий.
 - Детекция выбросов (outlier detection): обучающая выборка содержит аномалии.
- Методы оценивают степень нетипичности:

$$x$$
 - выброс \iff outlierness $(x) > threshold$

- Это задача обучения без учителя
 - если с учителем, то это классификация несбалансированных классов
- Оценка по размеченной валидации, используя ROC, AUC.
 - но не используем для обучения-выбросов мало, переобучимся

Содержание

- 1 Статистическое обнаружение аномалий
- 2 Обнаружение аномалий по расстоянию
- Одноклассовый метод опорных векторов
- 4 Изолирующий лес

Статистическое обнаружение аномалий

- Выбросы точки с p(x) < threshold.
- ullet Предположим $p(x) \sim \mathcal{N}(x|\mu,\Sigma) \propto e^{-rac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}.$
- После получения $\widehat{\mu},\widehat{\Sigma}$ устойчивым к выбросам способом найдем расстояние Махаланобиса:

outlierness(x) =
$$\sqrt{(x - \widehat{\mu})^T \widehat{\Sigma}^{-1} (x - \widehat{\mu})}$$

Статистическое обнаружение аномалий

• Выбросы не обязательно на границе распределений:

- p(x) можно оценить параметрически, смесью или ядерной оценкой плотности (KDE)
 - лучше не включать х в оценку, особенно для KDE.

Содержание

- Статистическое обнаружение аномалий
- 2 Обнаружение аномалий по расстоянию

Обнаружение аномалий по расстоянию

простой способ: x-outlier \iff $d_K(x) > threshold$

- выброс А либо пропущен, либо все точки разреженного кластера выбросы.
- Local outlier factor (LOF) приспосабливается к изменяемой плотности.

Метод local outlier factor

• Идея: смотреть на относительное расстояние:

$$outlierness(x) = \frac{\rho\left(x, x_{NN_K(x)}\right)}{\rho\left(x_{NN_K(x)}, x_{NN_K(x_{NN_K}(x))}\right)}$$

где $NN_K(x)$ -индекс K-го ближайшего соседа x.

Метод local outlier factor

• Идея: смотреть на относительное расстояние:

$$outlierness(x) = \frac{\rho\left(x, x_{NN_K(x)}\right)}{\rho\left(x_{NN_K(x)}, x_{NN_K(x_{NN_K}(x))}\right)}$$

где $NN_K(x)$ -индекс K-го ближайшего соседа x.

• Метод LOF (сглаженный вариант)

$$outlierness(x) = \frac{1}{K} \sum_{i \in NN_K(x)} \frac{AR_K(x)}{AR_K(x_i)}$$

где $AR_K(x)$ - оценка локальной плотности вокруг x:

$$AR_K(x) = \frac{1}{K} \sum_{i \in NN_K(x)} \rho(x, x_i)$$

Учет локального распределения точек

- У учетом локального распределения выброс м. быть не самым далеким объектом.
- Подходы, учитывающие локальное распределение:
 - смесь Гауссиан, выброс-точка с малым p(x) либо принадлежащая компоненте с большим Σ .
 - метод локального кластера (local cluster)
 - метод локальной окрестности (local neighborhood)

Метод локального кластера

- **1** Кластеризуем точки на K кластеров:
- ② Для каждого кластера находим μ_k и Σ_k .
- Для объекта x:
 - находим ближайший кластер:

$$\widehat{c} = \underset{c}{\operatorname{arg min}} \sqrt{(x - \mu_c)^T \Sigma_c^{-1} (x - \mu_c)}$$

степень нетипичности:

$$\textit{outlierness}(x) = \sqrt{(x - \mu_{\widehat{c}})^T \Sigma_{\widehat{c}}^{-1} (x - \mu_{\widehat{c}})}$$

Метод локальной окрестности

- **1** Инициализируем $L_K(x) = \{x\}$
- ② Для k = 1, 2, ... K:

 - $2 L_K(x) := L_K(x) \cup \{x_k\}$
- Исключим x: $L_K(x) := L_K(x) \setminus \{x\}$
- ullet Используя $L_K(x)$ рассчитаем $\mu(x)$ и $\Sigma(x)$
- Отепень нетипичности:

outlierness(x) =
$$\sqrt{(x - \mu(x))^T \Sigma(x)^{-1} (x - \mu(x))}$$

Комментарий: вычислительно сложнее м-да локального кластера, зато лучше таргетирует распределение вокруг x.

Содержание

- 1 Статистическое обнаружение аномалий
- 2 Обнаружение аномалий по расстоянию
- 3 Одноклассовый метод опорных векторов
- 4 Изолирующий лес

Одноклассовый метод опорных векторов

Найдем подпирающую границу данных $\langle w, x_n \rangle + w_0 \geq \rho$ с макс. ρ :

$$\begin{cases} \frac{1}{2} \|w\|^2 - \rho \to \min_{w, w_0, \rho}, \\ \langle w, x_n \rangle + w_0 \ge \rho & n = \overline{1, N} \end{cases}$$

Одноклассовый метод опорных векторов

Найдем подпирающую границу данных $\langle w, x_n \rangle + w_0 \geq \rho$ с макс. ρ :

$$\begin{cases} \frac{1}{2} \|w\|^2 - \rho \to \min_{w, w_0, \rho}, \\ \langle w, x_n \rangle + w_0 \ge \rho & n = \overline{1, N} \end{cases}$$

Одноклассовый метод опорных векторов (one-class SVM) оставляет "нарушителей", внося штраф $\xi_n \geq 0$:

$$\begin{cases} \frac{1}{2} \|w\|^2 + \frac{1}{\nu N} \sum_{n=1}^{N} \xi_n - \rho \to \min_{w, \rho, \xi_1, \dots \xi_N} \\ \langle w, x_i \rangle + w_0 \ge \rho - \xi_n, \ n = \overline{1, N}. \\ \xi_n \ge 0, \ n = \overline{1, N}. \end{cases}$$

 $\langle w, x_i \rangle + w_0 < \rho <=> x_i$ — выброс, $\nu \downarrow \Rightarrow \#$ выбросов \downarrow , доля выбросов в выборке $\to \nu$ при $N \to \infty$

outlierness(x) =
$$\rho - \langle w, x \rangle + w_0$$

Интуиция

Выбросы - объекты, слишком близкие к началу координат

Ядерное обобщение с RBF ядром

Содержание

- 1 Статистическое обнаружение аномалий
- 2 Обнаружение аномалий по расстоянию
- 3 Одноклассовый метод опорных векторов
- 4 Изолирующий лес

Изолирующий лес

• Алгоритм построения изолирующего дерева:

```
инициализировать корень со всеми наблюдениями пока существуют узлы с \geq 2 несовпадающими наблюдениями: выбрать такой узел выбрать случайный неконстантный признак f выбрать случайный порог t \in [f_{min}, f_{max}) разбить узел на 2 подузла по правилу f \leq t
```

Изолирующий лес

• Алгоритм построения изолирующего дерева:

```
инициализировать корень со всеми наблюдениями пока существуют узлы с \geq 2 несовпадающими наблюдениями: выбрать такой узел выбрать случайный неконстантный признак f выбрать случайный порог t \in [f_{min}, f_{max})
```

• Типичность объекта≈глубина листа с этим объектом

разбить узел на 2 подузла по правилу f < t

- выбросы легче отделить
- показатель слишком зависит от дерева
- Изолирующий лес (isolation forest) ансамбль М независимых изолирующих деревьев.
 - типичность объекта=средняя глубина соотв. листа по деревьям.
 - нетипичность = типичность.

Пример работы изолирующего леса

Заключение

- Детекция выбросов задача обучения без учителя
 - с учителем классификация несбалансированных классов
- Важно адаптировать метод к
 - изменяющейся плотности данных
 - локальному распределению данных
- Оценка по размеченной валидации, используя ROC, AUC.
- Подходы:
 - основанные на плотности $p_{\theta}(x) < threshold$, θ -робастная оценка.
 - основанные на расстоянии
 - Local outlier factor (LOF)
 - метод локальных центроидов
 - метод локальных окрестностей
 - Линейный: одноклассовый метод опорных векторов +ядерное обобщение
 - Правиловый: изолирующий лес

Сравнение методов

Сравнение методов (sklearn)

