第一章 模拟卷三

题 **1.1.** 设
$$\mathbf{A} = \begin{pmatrix} 1 & -1 & 0 \\ 2 & 0 & -1 \\ 0 & 4 & 1 \end{pmatrix}$$
, 求矩阵 \mathbf{A} 的 LR 分解。

题 1.3. 设 $\boldsymbol{A} = \begin{pmatrix} 0 & 1 & 2 \\ -4 & 3 & 4 \\ 1 & 0 & 1 \end{pmatrix}$, 求可逆阵 \boldsymbol{P} 和 \boldsymbol{A} 的若当 (Jordan) 标准型 \boldsymbol{J} , 使 $\boldsymbol{P}^{-1}\boldsymbol{A}\boldsymbol{P} = \boldsymbol{J}$,

题 1.4. 设 \mathcal{T} 为线性空间 $\mathbb{R}^{2\times 2}$ 上的变换, $\mathcal{T}(\boldsymbol{X}) = \boldsymbol{A}\boldsymbol{X}\boldsymbol{A}, \boldsymbol{X} \in \mathbb{R}^{2\times 2}$,其中 $\boldsymbol{A} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$,求线性变换 \mathcal{T} 在基 $\boldsymbol{A}_1 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, $\boldsymbol{A}_2 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, $\boldsymbol{A}_3 = \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$, $\boldsymbol{A}_4 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ 下的矩

阵, 并求 T 的特征值。

并求 e^{2At}

题 1.5. 用矩阵函数求解常微分方程组初值问题的解

$$\begin{cases} \frac{d\mathbf{x}}{dt} = \begin{pmatrix} -5 & 1\\ -1 & -3 \end{pmatrix} \mathbf{x} \\ \mathbf{x}(t)|_{t=0} = (1,0)^T \end{cases}$$

题 1.6. 在线性空间 $\mathbb{R}^{2\times 2}$ 中,对于任意的 $A, B \in \mathbb{R}^{2\times 2}$,定义 A 与 B 的内积为 $(A, B) = \operatorname{tr}(A^TB)$, $V = \{A|A \in \mathbb{R}^{2\times 2}, \operatorname{tr}(A) = 0\}$ 为 $\mathbb{R}^{2\times 2}$ 的子集,其中 $\operatorname{tr}(A) = a_{11} + a_{22}$ 为 $A = (a_{ij})_{2\times 2}$ 的迹。

- (1) 证明: V 是 $\mathbb{R}^{2\times 2}$ 的子空间。
- (2) 求 V 的一组标准正交基,及 V 的正交补 V^{\perp} 。
- 题 1.7. 设 \mathcal{T} 是 n 维线性空间 \mathbf{V} 的线性变换, $\mathrm{rank}(\mathcal{T})=r>0$, $\mathcal{T}^2=\mathcal{T}$,证明:
 - (1) 存在 V 的一组基 $\alpha_1, \alpha_2, \ldots, \alpha_n$,满足 $\mathcal{T}(\alpha_i) = \begin{cases} \alpha_i, 1 \leq i \leq r \\ \mathbf{0}, r \leq i \leq n \end{cases}$,其中 $\alpha_{r+1}, \ldots, \alpha_n$ 是 $\mathrm{Ker}\mathcal{T}$ 的基。
 - (2) 写出 T 在基 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 下的矩阵,以及 T 的最小多项式。
 - (3) $V = \text{Im}\mathcal{T} \oplus \text{Ker}\mathcal{T}$, 其中 $\text{Im}\mathcal{T} \in \mathcal{T}$ 的像空间, $\text{Ker}\mathcal{T} \in \mathcal{T}$ 的核空间。