Exercise 1

a)

$$\varphi = (a \to \bigcirc \neg b) \text{ W } (a \land b)$$

$$\varphi' = \neg \varphi = \neg [(a \to \bigcirc \neg b) \text{ W } (a \land b)]$$

$$\Leftrightarrow ((a \to \bigcirc \neg b) \land \neg (a \land b)) \text{ U } (\neg (a \to \bigcirc \neg b) \land \neg (a \land b))$$

$$\Leftrightarrow ((\neg a \lor \bigcirc \neg b) \land \neg a \lor \neg b) \text{ U } (\neg (a \to \bigcirc \neg b) \land \neg (a \land b))$$

$$\Leftrightarrow ((\neg a \lor \bigcirc \neg b) \land \neg a \lor \neg b) \text{ U } (\neg (\neg a \lor \bigcirc \neg b) \land \neg (a \land b))$$

$$\Leftrightarrow ((\neg a \lor \bigcirc \neg b) \land \neg a \lor \neg b) \text{ U } ((a \land \bigcirc b) \land \neg (a \land b))$$

$$\Leftrightarrow ((\neg a \lor \bigcirc \neg b) \land \neg a \lor \neg b) \text{ U } ((a \land \bigcirc b) \land (\neg a \lor \neg b))$$

$$\Leftrightarrow ((\neg a \lor \bigcirc \neg b) \land \neg a \lor \neg b) \text{ U } ((a \land \bigcirc b) \land (\neg a \lor \neg b))$$

$$\Leftrightarrow ((\neg a \lor \bigcirc \neg b) \land \neg a \lor \neg b) \text{ U } (a \land \bigcirc b \land \neg b)$$

$$\Leftrightarrow (\neg a \lor (\neg b \land \bigcirc \neg b)) \text{ U } (a \land \neg b \land \bigcirc b)$$

$$\Leftrightarrow \neg (a \land \neg (\neg b \land \bigcirc \neg b)) \text{ U } (a \land \neg b \land \bigcirc b)$$

$$cl(\varphi') = \{ \underbrace{\frac{a}{,} \neg a,}_{b, \neg b, \neg b}, \underbrace{\frac{b}{,} \neg b,}_{\neg b \land \bigcirc \neg b}, \neg (\neg b \land \bigcirc \neg b),}_{\underline{a \land \neg (\neg b \land \bigcirc \neg b)}, \neg (a \land \neg (\neg b \land \bigcirc \neg b))}$$

$$\underbrace{\frac{a \land \neg b}{a \land \neg b,} \neg (a \land \neg b),}_{\underline{a \land \neg b,} \neg (a \land \neg b),}_{\underline{a \land ob}, \neg (a \land \bigcirc b),}_{\underline{a \land \neg b \land ob}, \neg (a \land \neg b \land \bigcirc b),}_{\underline{a \land \neg b \land ob}, \neg (a \land \neg b \land \bigcirc b),}_{\underline{\varphi'}, \neg \varphi'} \}$$

$$(\text{Note: } \neg \bigcirc b \equiv \bigcirc \neg b)$$

				$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$						
	a	b	$\bigcirc b$	$\neg b \land \bigcirc \neg b$	$a \land \neg \eta$	$a \wedge \neg b$	$\neg b \wedge \bigcirc b$	$a \wedge \bigcirc b$	$a \land \neg b \land \bigcirc b$	φ'
B_0	0	0	0	1	0	0	0	0	0	1
B_0'	0	0	0	1	0	0	0	0	0	0
B_1	0	0	1	0	0	0	1	0	0	1
B_1'	0	0	1	0	0	0	1	0	0	0
B_2	0	1	0	0	0	0	0	0	0	1
B_2'	0	1	0	0	0	0	0	0	0	0
$\overline{B_3}$	0	1	1	0	0	0	0	0	0	1
B_3'	0	1	1	0	0	0	0	0	0	0
B_4	1	0	0	1	0	1	0	0	0	1
B_4'	1	0	0	1	0	1	0	0	0	0
B_5	1	0	1	0	1	1	1	1	1	1
B_6	1	1	0	0	1	0	0	0	0	0
B_7	1	1	1	0	1	0	0	1	0	0
(NT :	_		7/			.1 .1 1				1 100

(Note: Every B'_i is the row representing the possibility but not necessity of rule (ii) first item on slide 138)

c)

We construct the GNBA $\mathcal{G} = (Q, 2^{AP}, \delta, Q_0, \mathcal{F})$, where

- $Q = \{B_0, B'_0, B_1, B'_1, B_2, B'_2, B_3, B'_3, B_4, B'_4, B_5, B_6, B_7\}$
- $Q_0 = \{B_0, B_1, B_2, B_3, B_4, B_5\}$
- $\mathcal{F} = \{\{B'_0, B'_1, B'_2, B'_3, B'_4, B_5, B_6, B_7\}\}$
- \bullet and δ as follows:

Exercise 2

a)

$$\varphi = \Box(a \to ((\neg b) \ U \ (a \land b)))$$

$$\varphi' = \neg \varphi = \neg \left[\Box(a \to ((\neg b) \ U \ (a \land b)))\right]$$

$$\Leftrightarrow \neg \left[\neg \Diamond \neg (a \to ((\neg b) \ U \ (a \land b)))\right]$$

$$\Leftrightarrow \Diamond \neg (a \to ((\neg b) \ U \ (a \land b)))$$

$$\Leftrightarrow true \ U \ \neg (a \to ((\neg b) \ U \ (a \land b)))$$

$$\Leftrightarrow true \ U \ \neg (\neg a \lor ((\neg b) \ U \ (a \land b)))$$

$$\Leftrightarrow true \ U \ (a \land \neg ((\neg b) \ U \ (a \land b)))$$

So
$$closure(\varphi) = \{\underbrace{true}_{,} \neg true \\ \underbrace{a, \neg a,}_{b, \neg b,} \\ \underbrace{a \wedge b, \neg (a \wedge b),}_{(\neg b) \ U \ (a \wedge b), \neg ((\neg b) \ U \ (a \wedge b)),} \\ \underbrace{(\neg b) \ U \ (a \wedge b), \neg ((\neg b) \ U \ (a \wedge b)),}_{\underline{\varphi'}, \neg \varphi'\}}$$

b)

					$\overbrace{\hspace{1.5cm}}^{\eta}$		
	true	a	b	$a \wedge b$	$(\neg b) \ \mathrm{U} \ (a \wedge b)$	$a \wedge \eta$	φ'
B_0	1	0	0	0	1	0	1
B_0'	1	0	0	0	1	0	0
B_0''	1	0	0	0	0	0	0
$B_0^{\prime\prime\prime}$	1	0	0	0	0	0	1
B_1	1	0	1	0	0	0	1
B_1'	1	0	1	0	0	0	0
B_2	1	1	0	0	1	0	1
B_2'	1	1	0	0	1	0	0
B_2''	1	1	0	0	0	0	0
$B_2^{'''}$	1	1	0	0	0	0	1
$\bar{B_3}$	1	1	1	1	1	1	1

Felix Linhart: 318801

Exercise 3

$$\neg \bigcirc \psi \in B \Leftrightarrow \bigcirc \psi \notin B$$
$$\stackrel{*}{\Leftrightarrow} \psi \notin B'$$

where * holds, because of $B' \in \delta(B, B \cap AP)$