Double Turán Problem

April 11, 2025

Contents

1	Introduction		
	1.1	Definitions and Notation	2
	1.2	Problem Statement	2
2	Induced Version		
	2.1	Complete Graph F	5
	2.2	Non-bipartite F	7
3	General Version		9
	3.1	Complete F	10
	3.2	Bipartite F	13

1 Introduction

Let F be a graph with at least one edge. A graph G is F-free if G does not contain F as a subgraph. The fundamental question in extremal graph theory is to determine the maximum number of edges in an n-vertex F-free graph. These maxima, denoted $\operatorname{ex}(n,F)$, are referred to as the extremal numbers or Turán numbers for F.

In this thesis, we investigate a closely related problem which we refer to as the double Turán problem. Let G_1, G_2, \ldots, G_m be graphs on the same vertex set of size n. We are interested in determining the maximum sum of edges over m graphs G_1, G_2, \ldots, G_m whose pairwise intersection is F-free. We denote this quantity as $\exp_2(m, n, F)$ and refer to an F in the intersection of two of the graphs G_i as a double F.

1.1 Definitions and Notation

Denote the set of first n positive integers as $[n] = \{1, 2, ..., n\}$. Given a set X, we denote 2^X as the power set of X.

Let G = (V, E) be a graph. Let V(G) = V denote the vertex set and E(G) = E denote the edge set of G. We note by v(G) = |V| the number of vertices and e(G) = |E| the number of edges in G. For vertex $v \in V(G)$, we denote by $N_G(v) = \{u \in V(G) : \{u, v\} \in E(G)\}$ the neighborhood of v.

Given graphs G_1, \ldots, G_m on some vertex set V, we denote G_{i_1,\ldots,i_k} as graph on V with edge set $E(G_{i_1,\ldots,i_k}) = \bigcap_{\alpha=1}^k E(G_{i_\alpha})$. Given two graphs G_1, G_2 , we denote $G_1 \cup G_2$ as the graph on $V(G_1) \cup V(G_2)$ with edge set $E(G_1 \cap G_2) = E(G_1) \cup E(G_2)$. Let s

In this thesis, we reserve n to denote the number of vertices in a graph. We call a n-vertex complete graph K_n , and a complete bipartite graph $K_{a,b}$, where a,b are the size of its parts. We denote P_n as a path with n edges, and C_n as a cycle with n edges. Given graph G, H, define G + H as the graph fully connecting G, H, i.e. $V(G + H) = V(G) \cup V(H)$ and $E(G + H) = E(G) \cup E(H) \cup \{\{u, v\} : u \in V(G), v \in V(H)\}$.

Given graphs G and F, we say that G is F-free if G does not contain F as a subgraph. We denote $\operatorname{ex}(n,F)$ to be the maximum possible number of edges an F-free graph on n vertices, and we call a F-free graph achieving this maximum an extremal graph for F. Given graphs G_1, \ldots, G_m on the same set of vertices and F, we say that G_1, \ldots, G_m are pairwise F-free if $E(G_i) \cap E(G_j)$ does not contain F for $i \neq j$. Let v be a vertex from G_1, G_2, \ldots, G_m . Unless otherwise specified, we denote d(v) as the sum of degree of v over all G_i .

1.2 Problem Statement

Let $ex_2(m, n, F)$ be the maximum possible number of edges that m pairwise F-free graphs on n vertices can have. Our goal is to determine $ex_2(m, n, F)$ for different forbidden graphs F. A trivial construction with $G_1 = f$

 K_n and G_2, \ldots, G_m to be extremal graphs for F yields the lower bound $\exp(m, n, F) \ge \binom{n}{2} + (m-1)\exp(n, F)$. In this work, we use this bound as a benchmark to either show its tightness or to improve it.

Additionally, we are also interested in a more restrictive version where G_1, \ldots, G_m are induced subgraphs of $G_1 \cup \cdots \cup G_m$. Let $\operatorname{ex}_2^*(m, n, F)$ as the maximum possible number of edges that m pairwise F-free graphs on n vertices can have, with the constraint that each graph is an induced subgraph of their union. A trivial construction with $G_1 = \cdots = G_m$ to be extremal graphs for F yields the lower bound $\operatorname{ex}_2^*(m, n, F) \geq m \cdot \operatorname{ex}(n, F)$. This is the benchmark we use to determine $\operatorname{ex}_2^*(m, n, F)$. Similar to the non-induced case, we will use this bound as a benchmark and base our work on it.

2 Induced Version

In this chapter, we investigate the case where G_1, \ldots, G_m are induced subgraphs of $G_1 \cup \cdots \cup G_m$ and are pairwise F-free, for some specified F. Unless otherwise specified, when we say G_1, \ldots, G_m are induced subgraph, we mean that they are induced subgraphs of $G_1 \cup \cdots \cup G_m$.

The following lemma shows that the problem can be reduced to only two graphs.

Lemma 2.1. Let $n, m, k \geq 2$ with $m \geq k$, F be some graph. Then

$$\operatorname{ex}_2^*(m, n, F) \le \frac{m}{k} \cdot \operatorname{ex}_2^*(k, n, F).$$

Moreover, let G_1, \ldots, G_m be induced doubly F-free graphs on [n] and suppose that $\sum_{i=1}^k e(G_i) = \exp_2^*(k, n, F)$ only if $G_1 = \cdots = G_k$. Then $\sum_{i=1}^m e(G_i) = \exp_2^*(m, n, F)$ only if $G_1 = \cdots = G_m$.

Proof. Let G_1, \ldots, G_m be induced subgraphs of $G_1 \cup \cdots \cup G_m$ with $E(G_i) \cap E(G_j)$ not containing F for $i \neq j$. Put $G_{i+m} = G_i$ for all $i \in [m]$. Then

$$\sum_{i=1}^{m} e(G_i) = \frac{1}{k} \sum_{i=1}^{m} [e(G_i) + \dots + e(G_{i+k-1})] \le \frac{1}{k} \sum_{i=1}^{m} \exp_2^*(k, n, F) = \frac{m}{k} \cdot \exp_2^*(k, n, F),$$

which establishes the upper bound.

Suppose $\sum_{i=1}^k e(G_i) = \exp_2^*(k, n, F)$. By assumption $G_1 = \cdots = G_k$, so $e(G_i) = \exp_2^*(k, n, F)/k$ for $1 \le i \le k$. Hence, the construction $G_1 = \cdots = G_m$ meets the upperbound. On the other hand, if $G_1 \ne G_2$ then $\sum_{i=1}^k e(G_i) < \exp_2^*(k, n, F)$. Since $\sum_{i=1}^k e(G_{i+j}) \le \exp_2^*(k, n, F)$ for all $j \ge 1$, we have $\sum_{i=1}^m e(G_i) < \frac{m}{k} \cdot \exp_2^*(k, n, F)$. Thus the extremal condition is met only when $G_1 = \cdots = G_m$.

Lemma 2.1 allows us to reduce the problem to the case for two subgraphs G_1, G_2 . Let $S = V(G_1) \cap V(G_2)$, $t = |T|, s = |V(G_1) \setminus T|$, and $n - t - s = |V(G_2) \setminus T|$. Note that $t, s \in \mathbb{Z}_{\geq 0}$. Since G_1, G_2 are induced subgraphs of $G_1 \cup G_2$, we have $G_1[T] = G_2[T] = G_1 \cap G_2$. But then $G_1 \cap G_2$ is F-free, so $e(G_1[T]) = e(G_2[T]) \leq ex(t, F)$. Fixing s and t, the optimal construction to maximize the number of edges over G_1, G_2 is thus putting $G_1 \cap G_2$ as an extremal graph for F on c vertices and connect all edges that are not induced in A. This yields the inequality

$$e(G_1) + e(G_2) \le {s \choose 2} + {n-s-t \choose 2} + (n-t)t + 2ex(t, F).$$

But then notice $\binom{n-t}{2} > \binom{s}{2} + \binom{n-t-s}{2}$ for 0 < s < n-t. This implies our construction is optimized when s = 0 or s = n-t, that is, to let G_2 contain G_1 or the other way around. Hence, we may assume s = 0 and define the following construction function:

Definition 2.2. For $n \ge t \ge 1$ and F some graph, define

$$C(n,t,F) := {n-t \choose 2} + (n-t)t + 2ex(t,F).$$

The construction described by C(n, t, F) are graphs G_1, G_2 on [n], such that G_2 is the t-vertex extremal graph for F and $G_1 = G_2 + K_{n-t}$.

The above discussion also yields the following lemma:

Lemma 2.3. Let F be some graph. For $n \geq 1$,

$$\operatorname{ex}_2^*(2, n, F) = \max_{0 \le t \le n} \mathcal{C}(n, t, F).$$

Moreover, the equality holds for n-vertex graphs G_1, G_2 only if G_1, G_2 are the construction described by $C(n, t_{max}, F)$, where $t_{max} = \arg \max_{0 \le t \le n} C(n, t, F)$.

The problem is now reduced to maximizing C over t. In particular, C(n, n, F) gives our benchmark construction of $G_1 = G_2$ being the extremal graphs for F on n vertices. For $0 \le k \le t \le n$, define

$$\Delta_k \mathcal{C}(n, t, F) := \mathcal{C}(n, t, F) - \mathcal{C}(n, t - k, F) = \frac{1}{2}k(k - 2t + 1) + 2[ex(t, F) - ex(t - k, F)]$$

and denote $\Delta C = \Delta_1 C$. Most of the work in this section will show that the maximum of C happens when $t \geq n - k$ by proving that $\Delta_k C(n, t, F) > 0$ for all $c = t \leq n - k$.

Lemma 2.4. Let $n, t_0 \ge 1$, $m \ge 2$, and F be some graph. If $C(n, t, F) < 2 \cdot ex(n, F)$ for $0 \le t < t_0$ and $ex(t, F) - ex(t - 1, F) > \frac{t-1}{2}$ for $t_0 \le t \le n$, then

$$\operatorname{ex}_2^*(m, n, F) = m \cdot \operatorname{ex}(n, F).$$

Moreover, the equality holds for n-vertex graphs G_1, G_2, \ldots, G_m if and only if all $G_1 = G_2 = \cdots = G_m$ are extremal graphs for F.

Proof. By Lemma 2.1 and Lemma 2.3, it suffices to show C(n, t, F) has a unique maximum of 2ex(n, F) at t = n. We may assume $t \ge t_0$ by assumption. Suppose t < n. Since $ex(t, F) - ex(t - 1, F) > \frac{t-1}{2}$,

$$\Delta C(n, t, F) = -t + 1 + 2[ex(t, F) - ex(t - 1, F)] > 0.$$

Thus, C is strictly increasing with respect to t for $t \ge t_0$, so C has a unique maximum of $2 \cdot \operatorname{ex}(n, F)$ at t = n, which yields the unique extremal construction of $G_1 = G_2$ being extremal graphs for F on n vertices.

2.1 Complete Graph F

We will show the following result in this section:

Theorem 2.5. For $n, m, r \geq 3$,

$$ex_2^*(m, n, K_r) = m \cdot ex(n, K_r),$$

with equality for n-vertex graphs G_1, G_2, \ldots, G_m if and only if $G_1 = \cdots = G_m = T_{r-1}(n)$.

Surprisingly, the proof for the triangle case (r=3) is more complicated than the cases for larger r. Hence, we will first prove the case for $r \geq 4$ and then prove the triangle case separately. In particular, the case for $r \geq 4$ is a direct consequence of the following lemma:

Lemma 2.6. For $n \geq 2$ and $r \geq 3$,

$$ex(n, K_r) - ex(n-1, K_r) \ge \frac{n-1}{2},$$

with equality if and only if n is odd and r = 3.

Proof. By Turán's Theorem,

$$\operatorname{ex}(n, K_r) - \operatorname{ex}(n-1, K_r) = \delta(T_{r-1}(n)) = n - \left\lceil \frac{n}{r-1} \right\rceil \ge n - \left\lceil \frac{n}{2} \right\rceil.$$

The result now follows.

Theorem 2.7. For $n, m \geq 2$ and $r \geq 4$,

$$\operatorname{ex}_2^*(m, n, K_r) = m \cdot \operatorname{ex}(n, K_r),$$

with equality for n-vertex graphs G_1, G_2, \ldots, G_m if and only if $G_1 = \cdots = G_m = T_{r-1}(n)$.

Proof. The result follows from Lemma 2.4 and Lemma 2.6.

As shown in Lemma 2.6, the condition given by Lemma 2.4 is not satisfied for all n in the triangle case, and there are indeed constructions of induced subgraphs G_1, G_2 that meet the extremal condition but are neither equal nor both complete bipartite graphs. For odd n, consider $G_1 = K_{\frac{n-1}{2}, \frac{n-1}{2}}$ and $G_2 = K_{\frac{n-1}{2}, \frac{n-1}{2}} + K_1$. The number of edges over G_1, G_2 is $\frac{(n-1)^2}{2} + n - 1 = \frac{n^2 - 1}{2} = 2 \left\lfloor \frac{n^2}{4} \right\rfloor$, which meets the benchmark construction of two complete bipartite graphs. We will show that this is the only deviant construction for the triangle case.

Theorem 2.8. Let $n, m \geq 2$, and let G_1, \ldots, G_m be pairwise K_3 -free induced subgraphs on n vertices. Then

$$\operatorname{ex}_{2}^{*}(m, n, K_{3}) = m \left| \frac{n^{2}}{4} \right|.$$

Moreover, $\sum_{i} e(G_{i}) = \exp_{2}^{*}(m, n, K_{3})$ if and only if $G_{1} = \cdots = G_{m} = K_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil}$, unless n is odd and m = 2, in which case $e(G_{1}) + e(G_{2}) = \exp_{2}^{*}(2, n, K_{3})$ if and only if either $G_{1} = G_{2} = K_{\frac{n+1}{2}, \frac{n-1}{2}}$ or $G_{1} = K_{\frac{n-1}{2}, \frac{n-1}{2}}$ and $G_{2} = G_{1} + K_{1}$.

Proof. We claim that $\exp_2^*(2, n, K_3) = 2 \left\lfloor \frac{n^2}{4} \right\rfloor$, and the equality holds for G_1, G_2 on [n] only when $G_1 = G_2 = K_{\left\lfloor \frac{n}{2} \right\rfloor, \left\lceil \frac{n}{2} \right\rceil}$ unless n is odd, $G_1 = K_{\frac{n-1}{2}, \frac{n-1}{2}}$, and $G_2 = K_{\frac{n-1}{2}, \frac{n-1}{2}} + K_1$.

Consider $\Delta_2 \mathcal{C}(n, t, K_3)$. Since

$$\Delta_2 \mathcal{C}(n, t, K_3) = -2t + 3 + 2\left[\left\lfloor \frac{t^2}{4} \right\rfloor - \left\lfloor \frac{(t-2)^2}{4} \right\rfloor \right] = -2t + 3 + 2(t-1) = 1 > 0,$$

 $\mathcal{C}(n,t,K_3)$ has a maximum of $2\left\lfloor\frac{n^2}{4}\right\rfloor$ when $t\geq n-1$, so $\operatorname{ex}_2^*(2,n,K_3)=2\left\lfloor\frac{n^2}{4}\right\rfloor$ by Lemma 2.3. We are done if t=n, so assume that t=n-1. Then in the extremal condition, $G_1=G_{1,2}=K_{\left\lfloor\frac{n-1}{2}\right\rfloor,\left\lceil\frac{n-1}{2}\right\rceil}$ and

$$e(G_1) + e(G_2) = 2 \left| \frac{(n-1)^2}{4} \right| + \deg(v),$$

where v is the only vertex not in $G_1 \cap G_2$. But then to meet the extremal condition,

$$\deg(v) = 2\left\lfloor \frac{n^2}{4} \right\rfloor - 2\left\lfloor \frac{(n-1)^2}{4} \right\rfloor = \begin{cases} n & \text{if } n \text{ is even,} \\ n-1 & \text{if } n \text{ is odd.} \end{cases}$$

Hence, n must be odd and G_2 must be a copy of G_1 with all vertices adjacent to the only remaining vertex, i.e. $G_2 = G_1 + K_1$. This shows the claim.

By Lemma 2.1 and our claim, it remains to show that for odd n and m=3, $G_1=G_2=G_3=K_{\frac{n+1}{2},\frac{n-1}{2}}$ if the extremal condition is met. Suppose not. Our claim then guarantees one of the subgraphs, say G_1 , is $K_{\lceil \frac{n-1}{2} \rceil, \lfloor \frac{n-1}{2} \rfloor} + K_1$. But then by our claim $G_2=G_3=G_1+K_1$, which contradicts that G_2, G_3 are pairwise K_3 -free. This completes the proof.

Theorem 2.5 now follows directly from Theorem 2.7 and Theorem 2.8.

2.2 Non-bipartite F

For non-bipartite F, it is hard to determine the extremal graphs for F in general, but their structures becomes more apparent when n is large.

More specifically, the Erdős-Stone Theorem tells us that for large n, the extremal graph for F mimics the structure of the Turán graph. With this idea in mind, the following theorem is a generalization of Theorem 2.5 for large n.

Theorem 2.9. Let $m, r \geq 3$, and F be a r-colorable graph. Then for large enough n,

$$ex_2^*(m, n, F) = m \cdot ex(n, F),$$

with equality for n-vertex graphs G_1, G_2, \ldots, G_m if and only if $G_1 = \cdots = G_m$ are extremal F-free graphs.

Proof. By Lemma 2.1, it suffices to show the case for m=3. Let G_1, G_2, G_3 be induced doubly F-free graphs, such that $e(G_1)+e(G_2)+e(G_3)=\exp_2^*(3,n,F)$. We may assume $e(G_1)\geq e(G_2)\geq e(G_3)$, and we already know $\exp_2^*(3,n,F)\geq 3\exp(n,F)$. Consequently, we must have $e(G_1)+e(G_2)\geq 2\exp(n,F)$. Since G_1, G_2, G_3 are induced and $e(G_1)+e(G_2)+e(G_3)\geq 3\exp(n,F)$, it suffices to show that $G_1=G_2$ are n-vertex F-free extremal graphs.

Let $t = |V(G_1 \cap G_2)|$. If $t < \sqrt{n}$, then

$$2\mathrm{ex}(n,F) \ge 2e(T_{r-1}(n)) \ge 2\left\lfloor \frac{n^2}{4} \right\rfloor \ge \binom{n}{2} + \binom{\sqrt{n}}{2} > \mathcal{C}(n,t,F).$$

Thus $t \ge \sqrt{n}$. But then for large enough t, any extremal t-vertex F-free graph contains a spanning complete (r-1)-partite subgraph $T_{r-1}(t)$, so we may add $\operatorname{ex}(t-1,F) - e(T_{r-1}(t-1))$ egdes to $T_{r-1}(t)$ and still avoid F as a subgraph. Hence for large enough t, we have $\operatorname{ex}(t,F) \ge \operatorname{ex}(t-1,F) - e(T_{r-1}(t-1)) + e(T_{r-1}(t))$, and so

$$ex(t,F) - ex(t-1,F) \ge e(T_{r-1}(t)) - e(T_{r-1}(t-1)) \ge t - \left[\frac{t}{r-1}\right].$$

It immediately follows that

$$C(n,t,F) - C(n,t-1,F) = -t + 1 + 2[ex(t,F) - ex(t-1,F)] = t + 1 - 2\left[\frac{t}{r-1}\right].$$
 (2.1)

For $r \geq 4$, C(n, t, F) is strictly increasing on t, so by Lemma 2.3,

$$\exp_2^*(2, n, F) = \mathcal{C}(n, n, F) = 2\exp(n, F) = e(G_1) + e(G_2),$$

and $G_1 = G_2$ are *n*-vertex *F*-free extremal graphs, as desired.

Now suppose r=3. Equation (2.1) shows that $\mathcal{C}(n,t,F)$ is strictly increasing for even t and $\mathcal{C}(n,t,F) \geq \mathcal{C}(n,t-1,F)$ for odd t. By Lemma 2.3, we now have

$$\exp_2^*(2, n, F) = \max[\mathcal{C}(n, n, F), \mathcal{C}(n, n - 1, F)] = 2\exp(n, F) = e(G_1) + e(G_2),$$

and either $G_1 = G_2$ are *n*-vertex extremal *F*-free graphs, or G_2 is an (n-1)-vertex extremal *F*-free graph and $G_1 = G_2 + K_1$. If the latter case is true, then $e(G_3) \ge \operatorname{ex}(n,F) > e(G_2)$, and this contradiction completes the proof.

For small n, we may not be able to achieve the same result. Consider the case when F is the bowtie graph, i.e. the 5-vertex graph with two triangles sharing a vertex. For $n \leq 4$, the n-vertex extremal graph for F is the complete graph K_n . For $n \geq 5$, the n-vertex extremal graph for F is then $K_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil}$ plus an edge, and so $\exp(n, F) = \left\lfloor \frac{n^2}{4} \right\rfloor + 1$. But then in this case when n = 5,

$$C(5,4,F) = 2e(K_4) + 4 = 16 > C(5,5,F) = 2\left(\left|\frac{5^2}{4}\right| + 1\right) = 14.$$

This yields an instance where the construction $G_1 = K_{v(F)-1}$ and $G_2 = K_n$ beats our benchmark construction. Thus the following lemma gives a lower bound for n to avoid losing to this construction.

Lemma 2.10. Let $n, r, k \geq 3$, and F be r-colorable with |V(F)| = k. If $n > k^2 - 3k + 2$ and r - 1 divides n, then

$$C(n, n, F) > C(n, k - 1, F).$$

Proof. We need to show that

$$2\mathrm{ex}(n,F) - \binom{n}{2} > \binom{k-1}{2}.$$

Since $ex(n, F) \ge e(T_{r-1}(n)) = \left(1 - \frac{1}{r-1}\right) \frac{n^2}{2} \ge \frac{n^2}{4}$,

$$2ex(n,F) - \binom{n}{2} \ge \frac{n^2}{2} - \binom{n}{2} = \frac{n}{2} > \frac{k^2 - 3k + 2}{2} = \binom{k-1}{2}.$$

3 General Version

TODO: add introduction.

Theorem 3.1. For all n and graph F,

$$ex_2(m, n, F) = m(1 + o(1))ex(n, F)$$

as $m \to \infty$.

Proof. Let r = v(F). Pick $\epsilon > 0$. Reorder G_1, \ldots, G_m so that $G_1, \ldots, G_{m'}$ are all the G_i 's containing at least $(1+\epsilon)\operatorname{ex}(n,F)$ edges. A theorem of Simonovits states that G contains at least δn^r copies of F for some $\delta = \delta(\epsilon)$. Since there can be at most $\binom{n}{r}$ copies of F across all G_i 's,

$$m'\delta n^r \le \binom{n}{r} \le n^r \implies m' \le \frac{1}{\delta}.$$

It now follows that

$$\sum_{i=1}^{m} e(G_i) = \sum_{i=1}^{m'} e(G_i) + \sum_{i=m'+1}^{m} e(G_i)$$

$$\leq \frac{1}{\delta} \binom{n}{2} + \left(m - \frac{1}{\delta}\right) (1 + \epsilon) \operatorname{ex}(n, F)$$

$$= m \left[1 + \epsilon + \frac{1}{m\delta} \left(\frac{\binom{n}{2}}{\operatorname{ex}(n, F)} - (1 + \epsilon)\right)\right] \operatorname{ex}(n, F).$$

Since ϵ is arbitrary, the result follows.

Theorem 3.2. For large enough n, suppose that G_1, \ldots, G_m are graphs on common vertex set [n] with no copy of F contained in any k of the G_i 's. If there exists extremal F-free subgraph H on n vertices such that $\binom{m}{k}\Delta(H) = o(n^{1/2})$, then

$$\operatorname{ex}_2(m, n, F) = (k-1)\binom{n}{2} + \operatorname{ex}(n, F)\binom{m}{k}.$$

Proof. For $S \subseteq [m]$, let E_S denote the set of edges that are contained in exactly $\{G_i\}_{i \in S}$. Then

$$\sum_{i=1}^{m} e(G_i) = \sum_{S \subseteq [m]} |S| |E_S| \le (k-1) \binom{n}{2} + \sum_{S \subseteq [m], |S| \ge k} (|S| - k + 1) |E_S|.$$

Let $A_S = \bigcup_{T \supseteq S} E_T$, i.e. the set of edges that are contained in all G_i with $i \in S$. When $|S| \ge k$, the edge

set A_S is F-free and thus

$$\sum_{T\supset S} |E_T| \le \operatorname{ex}(n, F).$$

Hence,

$$\sum_{\substack{S \subseteq [m] \\ |S| > k}} (|S| - k + 1)|E_S| = \sum_{\substack{S \subseteq [m], T \subseteq S \\ |S| = k}} \sum_{T \subseteq S} \frac{(|T| - k + 1)|E_T|}{{|T| \choose k}} \le \sum_{\substack{S \subseteq [m], T \subseteq S \\ |S| = k}} \sum_{T \subseteq S} |E_T| \le {m \choose k} \operatorname{ex}(n, F),$$

as each $T \in [m]$ with $|T| \ge k$ is counted $\binom{|T|}{k}$ times in total and $|T| - k + 1 \le \binom{|T|}{k}$. This proves the upper bound.

Now we show the bound is tight. In particular, we need to show there exists a construction such that the graph with edge set E_S is an extremal F-free graph, for all $S \subseteq [m]$ of size k. Let $M = {m \choose k}$ and H_1, \ldots, H_M be copies of an extremal F-free graph on n vertices with $\Delta(H_i) = o(n^{1/2})$ for all i. It suffices to show that we can embed each H_i onto [n] such that their edge sets are pairwise disjoint. We begin by an arbitrary embedding of each H_i and iteratively decrease the number of intersecting edges. Define a (u, v, i)-swap by swapping the embedding of vertex u and v of H_i , i.e. replacing each edge $\{u, w\} \in E(H_i)$ with the edge $\{u, w\}$ and each edge $\{v, w\} \in E(H_i)$ with the edge $\{v, w\}$. This perserves the type of isomorphism of H_i . Given a vertex v, let $N(v) = N_{H_1}(v) \cup \cdots \cup N_{H_M}(v)$. Suppose there exists an intersecting edge $\{u, w\} \in E(H_i) \cap E(H_j)$. Since $|N(u)| \leq M \cdot \Delta(H_i) = o(n^{1/2})$, $|N(u) \cup N(N(u))| = o(n)$ so there exists a vertex $v \notin N(u) \cup N(N(u))$. Since $N(u) \cap N(v) = \emptyset$, performing a (u, v, i)-swap reduces the number of intersecting edges. The result now follows from iterating this process.

3.1 Complete F

It turns out that $\exp_2(m, n, K_r)$ can be determined exactly, but the statement of the theorem requires some definitions. Let $k \geq 2$ and sets $S_{ij} \subseteq [m]$, for $1 \leq i < j \leq k$. We call the following type of construction a k-blowup:

Define G_1, G_2, \ldots, G_m by partitioning [n] into k sets V_1, V_2, \ldots, V_k and letting $\{u, v\} \in E(G_h)$ whenever $u \in V_i, v \in V_j, h \in S_{ij}$. Additionally, for each $i \in [k]$ and $\{u, v\} \subseteq V_i$, we place $\{u, v\}$ in exactly one of G_1 .

Given a k-blowup, we may define m graphs H_1, H_2, \ldots, H_m on [k] with edge set $E(H_h) := \{\{i, j\} : h \in S_{ij}\}$ for $h \in [m]$. We call H_1, H_2, \ldots, H_m the pattern of the k-blowup, and we say that a k-blowup is doubly F-free if its pattern is doubly F-free.

Example of a 5-blowup. A label $i \in \{1, 2, 3, 4\}$ at an edge indicates that the edge is in G_i .

For $M \geq 3$, let $R_M(F)$ denote the M-color Ramsey number for F. That is, the minimum number N such that there exists a monochromatic F in any M-coloring of the edges of K_N .

Let $m \geq 3$ and $M = {m \choose 2}$. Define B(m, n, F) as the maximum of $\sum_{i=1}^{m} e(G_i)$ such that G_1, G_2, \ldots, G_m form a doubly F-free k-blowup, for some $k \leq R_M(F)$.

We are new ready to state the theorem.

Theorem 3.3. For $n, m \ge 1$ and $r \ge 2$,

$$ex_2(m, n, K_r) = B(m, n, K_r).$$

Proof of Theorem 3.3. Notice that we trivially have $B(m, n, K_r) \leq \exp_2(m, n, K_r)$, so it suffices to show the reverse inequality. That is, we need to show that there exist $k \leq R_M(K_r)$ and S_{ij} for $1 \leq i < j \leq k$ such that the k-blowup construction on meets the desired bound.

Let G_1, G_2, \ldots, G_m be graphs on [n] with no double K_r and $\sum_{i=1}^m e(G_i) = \exp_2(m, n, K_r)$. Observe that any pair $\{i, j\} \subseteq [n]$ must be in some G_i , otherwise we may add it to G_1 without creating a double K_r .

We call vertices v, v' clones if for all $u \in [n] \setminus \{v, v'\}$ and $i \in [m]$, the edge $\{u, v\} \in E(G_i)$ if and only if $\{u, v'\} \in E(G_i)$. Furthermore, we call $\{v, v'\}$ a light edge if $\{v, v'\}$ is in exactly one graph G_i .

We now apply Algorithm 1 to G_1, G_2, \ldots, G_m .

Algorithm 1 symmetrization algorithm

```
while \exists a light edge whose endpoints are not clones \mathbf{do} among all vertices incident to such an edge, select a vertex v with maximum degree B_v \leftarrow collection of vertices sending a light edge to v that are not clones of v while B_v \neq \emptyset \mathbf{do} pick u \in B_v
j \leftarrow \text{colour of the light edge from } u \text{ to } v
\mathbf{for } 1 \leq i \leq m \text{ do}
\mathbf{if } i \neq j \text{ then};
N_{G_i}(u) \leftarrow N_{G_i}(v)
\mathbf{else if } i = j \text{ then}
N_{G_i}(u) \leftarrow (N_{G_i}(v) \setminus \{u\}) \cup \{v\}
\mathbf{end if}
\mathbf{end for}
\mathbf{end while}
```

Claim 3.3.1. Algorithm 1 terminates.

Proof. Notice that at the end of the 'while $B_v \neq \emptyset$ ' loop, every vertex sending a light edge to v is a clone of v. This implies v along with the set L_v of vertices receiving light edges from v induce a clique of size at least two in some G_i , and an empty graph in every other graph G_j with $j \neq i$. Moreover, any vertex $w \notin L_v$ sends edges to either all or none of the vertices in L_v , and if w is incident to L_v , then w sends edges to L_v in at least two graphs. It now follows that no light edge incident with a vertex in L_v will be picked again in an iteration of the out most while loop. Thus the algorithm can run through at most n/2 such iterations, and so it terminates.

Claim 3.3.2. G'_1, G'_2, \ldots, G'_m do not contain a double K_r and $\sum_{i=1}^m e(G'_i) = \exp(m, n, K_r)$.

Proof. Note that we replace u by a clone of v in the for loop of Algorithm 1. Since $\{u,v\}$ remains to be an light edge in this step, u and v cannot both belong to a double K_r in the modified graphs. Furthermore, any double K_r containing u after the for loop arises from a double K_r containing v prior to the for loop. But then G_1, G_2, \ldots, G_m contained no double K_r to begin with, so G'_1, G'_2, \ldots, G'_m do not contain a double K_r .

We now show that the algorithm does not reduce the number of edges. By our choice of v, we know $d(v) \geq d(u)$ for all $u \in B_v$ prior to the for loop. Hence, replacing u with a clone of v does not decrease the number of edge over a complete iteration of the inner while loop. Therefore, $\sum_{i=1}^{m} e(G'_i) = \exp_2(m, n, K_r)$. \square

Hence, the algorithm outputs graphs G'_1, G'_2, \ldots, G'_m with $\exp(m, n, K_r)$ edges and the additional property that light edges come in 'clone cliques.' We may thus partition the vertex set [n] into k disjoint sets V_1, V_2, \ldots, V_k , such that each V_i induces a clique of light edges from the same graph. Moreover, for distinct $i, j \in [k]$, define S_{ij} to be the set of all edges between V_i and V_j , and note that any edge in S_{ij} appear in at least two modified graphs. The sets S_{ij} now yield a k-blowup. Notice that if the pattern of the k-blowup contains a double K_r , then the original graphs G_1, G_2, \ldots, G_m must have contained a double K_r as well, contradiction. Thus the k-blowup is doubly K_r -free.

It remains to show that $k < R_M(K_r)$. For each edge $\{i, j\} \subseteq [k]$ in the pattern of the k-blowup, we assign an arbitrary distinct pair $\{a, b\} \subseteq L_{ij} \subseteq [m]$ to $\{i, j\}$. If $k \ge R_M(K_r)$, then there exists K_r in the pattern of the k-blowup colored by some distinct pair $\{a, b\} \subseteq [m]$. But then this implies the pattern of the k-blowup contains a double K_r , contradiction. This completes the proof.

When m=2,

$$e(G_1) + e(G_2) \le \binom{n}{2} + e(G_{1,2}) \le \binom{n}{2} + e(n, K_3)$$

which meets the benchmark bound. Surprisingly, our desired bound is also met when m=3:

Theorem 3.4. For all n,

$$\exp_2(3, n, K_3) = \binom{n}{2} + \left| \frac{n^2}{2} \right|.$$

Proof. Define $H_k \subseteq G$ be the graph with edges contained in at least k number of G_i 's and note that $e(G_1) + e(G_2) + e(G_3) = e(H_1) + e(H_2) + e(H_3)$. Thus it suffices to show that $e(H_2) + e(H_3) \le \frac{n^2}{2}$. Notice H_2 must not contain any triangles with two edges in H_3 , so

$$e(H_2) + e(H_3) \le \binom{n}{2} + e(H_3) - |\{\{u, v\} : u \ne v, N_{H_3}(u) \cap N_{H_3}(v) \ne \emptyset\}|.$$

Let H_3' be the graph with the same vertex set as H_3 and edge set $\{\{u,v\}: u \neq v, N_{H_3}(u) \cap N_{H_3}(v) \neq \emptyset\}$. It suffices to show that $\frac{n}{2} \geq e(H_3) - e(H_3')$.

Let $d_1 \geq d_2 \geq \cdots \geq d_n$ and $f_1 \geq f_2 \geq \cdots \geq f_n$ each be the degree sequence of H_3 and H'_3 , respectively. We show that $f_i \geq d_i - 1$ for all i. Let v_i denote the vertex in H with degree d_i and u_i be the vertex in H with degree f_i . Let $S_i = |N_{H_3}(v_1) \cup \cdots \cup N_{H_3}(v_i)|$. Since

$$\sum_{u \in S_i} d_{H_3}(u) \ge d_1 + \dots + d_i,$$

we have that $|S_i| \ge i$. But then $S_i \setminus \{u_1, \dots, u_{i-1}\}$ is non-empty, and every $u \in S_i$ has degree $d_{H'_3}(u) \ge d_i - 1$. Hence, $f_i \ge d_i - 1$ for all i, which yields

$$e(H_3') = \frac{1}{2} \sum_{i=1}^{n} f_i \ge \frac{1}{2} \sum_{i=1}^{n} (d_i - 1) = e(H_3) - \frac{n}{2}.$$

However, the bound in Proposition 3.1 is not tight for $m \ge 4$, as shown in the following graph:

The number on each edge denotes the set of G_i 's that contain the edge.

The above graph contains 29 edges, which exceeds the bound $\binom{5}{2} + 3\lfloor \frac{5^2}{4} \rfloor = 28$ by 1. By blowing up the above graph, we can construct a graph with $n \in 10\mathbb{Z}$ vertices that contains

$$5\binom{n/5}{2} + 29 \cdot \frac{(n/5)^2}{4}$$

edges, which exceeds the bound $\binom{n}{2} + 3\lfloor \frac{n^2}{4} \rfloor$ by $n^2/100$.

3.2 Bipartite F

In this section, we discuss the case where F is bipartite. In particular, we focus on the cases where $F \subseteq K_{2,2}$ is P_2 , a path of length 2, or M_2 , a matching with two edges.

Theorem 3.5.

$$\exp_2(m, n, P_2) \le \left(\frac{1}{2} + o(1)\right) \min\{n^2 \sqrt{m}, mn^{3/2}\},$$

as $n \to \infty$ or $m \to \infty$. Moreover,

$$\exp_2(m, n, P_2) = \left(\frac{1}{2} + o(1)\right) mn^{3/2},$$

for $\sqrt{n} \le m \le n$.

Proof. Let G_1, \ldots, G_m be graphs on [n] not containing a P_2 . We first show the claimed upperbound and then show the tightness of the bound when $\sqrt{n} \leq m \leq n$.

Claim 3.5.1.
$$\exp_2(m, n, P_2) \le mn \cdot \frac{1 + \sqrt{4n^2/m + 1}}{4}$$
.

Proof. Since there are no double P_2 ,

$$\sum_{i=1}^{m} \#\{P_2 \subseteq G_i\} \le \#\{P_2 \subseteq G\}.$$

For all G_i , each vertex v in G_i along with two of its neighbors form one unique P_2 , so

$$\#\{P_2 \subseteq G_i\} = \sum_{v \in V(G_i)} \binom{d_{G_i}(v)}{2}.$$

By Jensen's inequality,

$$\sum_{v \in V(G_i)} {d_{G_i}(v) \choose 2} \ge n {d_{G_i}(v)/n \choose 2} = n {2e(G_i)/n \choose 2} \ge \frac{2(e(G_i))^2}{n} - e(G_i).$$

On the other hand, since each three vertices in G can form at most three P_2 's,

$$\#\{P_2 \subseteq G\} \le 3\binom{n}{3} \le \frac{n^3}{2}.$$

Combining the above inequalities yields and using Jensen's inequality once more yields

$$\frac{2m}{n} \left(\frac{1}{m} \sum_{i=1}^{m} e(G_i) \right)^2 - \sum_{i=1}^{m} e(G_i) \stackrel{Jensen's}{\leq} \sum_{i=1}^{m} \frac{2(e(G_i))^2}{n} - e(G_i) \leq \frac{n^3}{2}.$$

Solving the quadratic equation gives

$$\sum_{i=1}^{m} e(G_i) \le mn \cdot \frac{1 + \sqrt{4n^2/m + 1}}{4}.$$

Claim 3.5.2. $\exp_2(m, n, P_2) \le \frac{1}{2}(mn^{3/2} + n^2)$.

Proof. For each vertex $u \in [n]$, define H_u as the $m \times n$ bipartite graph with edge set $E(H_u) := \{\{v, i\} : \{u, v\} \in E(G_i)\}$. If H_u contains a quadrilateral $\{v, i\}, \{v, j\}, \{w, i\}, \{w, j\}$, then $\{u, v\}, \{u, w\}$ form a double P_2 in $G_i \cap G_j$, contradiction. Thus we conclude that H_u is quadrilateral-free, and therefore $e(H_u) \leq m\sqrt{n} + n$, by the Kővari-Sós-Turán theorem. It now follows that

$$\sum_{i=1}^{m} e(G_i) = \frac{1}{2} \sum_{u \in V(G)} e(H_u) \le \frac{1}{2} (mn^{3/2} + n^2).$$

The above two claims yield the desired upper bound. We now show the lower bound.

Claim 3.5.3. $\exp(m, n, P_2) \ge (1/2 + o(1))mn^{3/2}$, for $\sqrt{n} \le m \le n$.

Proof. Suppose G_1, G_2, \ldots, G_n are graphs on [n] containing no double P_2 and $\sum_{i=1}^n e(G_i) \ge (1/2 + o(1))n^{5/2}$, with $e(G_1) \ge e(G_2) \ge \cdots \ge e(G_n)$. Then G_1, G_2, \ldots, G_m are graphs with no double P_2 and $\sum_{i=1}^m e(G_i) \ge (1/2 + o(1))mn^{3/2}$. Hence, it suffices to prove the case for m = n.

Consider a finite projective plane with n points and n lines, with prime q chosen so that $n = (1 + o(1))(q^2 + q + 1)$ as $q \to \infty$. Let $S_1, \ldots, S_n \subseteq [n]$ be the n lines of the projective plane. Note that each line S_i contains q + 1 points, and the intersection of any two distinct lines S_i, S_j contains $|S_i \cap S_j| = 1$ point.

Define G_1, \ldots, G_n to be graphs on [n], each with edge set

$$E(G_i) := \{ \{j, k\} \subseteq [n] : j \neq k, j + k \in S_i \mod n \}.$$

Note that the intersection of distinct G_i , G_j is P_2 free: since $|S_i \cap S_j| = 1$, if $\{a, b\}$, $\{a, c\} \in E(G_i) \cap E(G_j)$, then a + b = a + c so b = c.

We now count the number of edges in G_1, \ldots, G_n . Since $|S_i| = q + 1$, for each point $j \in [n]$, there are q + 1 choices for $k \in [n]$ such that $j + k \in S_i$. But then we have to avoid counting the same edge twice and loops, so the number of edges in G_i is

$$e(G_i) = \frac{n(q+1) - \#\text{loops counted for } G_i}{2}$$
.

If $j \in [n]$ is even, then k = j/2 is the unique number in [n] such that $k + k = j \mod n$. If $j \in [n]$ is odd, then k = (n + j)/2 is the unique number in [n] such that $k + k = j \mod n$, as n is even. Hence, for each $j \in S_i$, there exists a unique $k \in [n]$ such that $k + k = j \mod n$, and thus

#loops counted for
$$G_i = |S_i| = q + 1$$
.

Since $q + 1 = (1 + o(1))n^{1/2}$, the number of edges in G_1, \ldots, G_n is

$$\sum_{i=1}^{n} e(G_i) = n \cdot \frac{n(q+1) - (q+1)}{2} = \left(\frac{1}{2} + o(1)\right) n^{5/2},$$

as $n \to \infty$.

Claim 3.5.4. $\exp_2(m, n, P_2) \ge (1/2 + o(1))\sqrt{m}n^2$, for $n < m \le n^2$.

Proof.

Theorem 3.6. For all n, m,

$$\exp_2(m, n, M_2) \le n^{5/2}$$
.

Proof. Notice that $\#\{M_2\subseteq G\}=\binom{e(G_i)}{2}$. On the other hand, each four vertices in G can form at most three M_2 's, so $\#\{M_2\subseteq G\}\le 3\binom{n}{4}\le \frac{n^4}{8}$. By the same argument as in Theorem 3.4, we have

$$\sum_{i=1}^{n} \binom{e(G_i)}{2} = \sum_{i=1}^{n} \#\{M_2 \subseteq G_i\} \le \#\{M_2 \subseteq G\} \le \frac{n^4}{8}.$$

By Jensen's inequality,

$$\sum_{i=1}^{n} \binom{e(G_i)}{2} \ge n \binom{\sum_{i=1}^{n} e(G_i)/n}{2} = \frac{1}{2n} \left[\left(\sum_{i=1}^{n} e(G_i) \right)^2 - n \sum_{i=1}^{n} e(G_i) \right].$$

Combining the above inequalities yields

$$\left(\sum_{i=1}^{n} e(G_i)\right)^2 - n \sum_{i=1}^{n} e(G_i) \le \frac{n^5}{4},$$

and solving the quadratic inequality gives

$$\sum_{i=1}^{n} e(G_i) \le n^{5/2}.$$

We may obtain an exact result if we forbid both P_2 and M_2 at the same time:

Theorem 3.7. For all n, m,

$$ex_2(m, n, \{P_2, M_2\}) = n^2 - n.$$

Proof. Denote the set of G_i 's as $\{G_i\} = \{G_1, \ldots, G_n\}$, and the set of distinct pairs of G_i 's as $\{G_i\}^2 = \{\{G_j, G_k\} : j \neq k\}$. Consider the bipartite graph H with vertex set $V(H) = \{G_i\} \sqcup E(K_n)$ and edge set $E(H) = \{\{G_j, e\} \in \{G_i\} \times E(K_n) : e \in G_j\}$. Define $\phi : \{G_i\}^2 \to 2^{E(K_n)}$ by sending each $\{G_j, G_k\}$ to their common edge set $E(G_j) \cap E(G_k)$. Notice that each distinct G_j, G_k have at most one edge in common, so $|\phi(G_j, G_k)| \leq 1$. On the other hand, each edge $e \in E(G)$ can be obtained via ϕ by $\binom{d_H(e)}{2}$ possible distinct pairs (G_j, G_k) , and thus $|\phi^{-1}(e)| = \binom{d_H(e)}{2}$. But then

$$\binom{n}{2} \geq \sum_{(G_j,G_k) \in \{G_i\}^2} |\phi(G_j,G_k)| = \sum_{e \in E(K_n)} |\phi^{-1}(e)| = \sum_{e \in E(K_n)} \binom{d_H(e)}{2}.$$

By Jensen's inequality,

$$\sum_{e \in E(K_n)} \binom{d_H(e)}{2} \geq \binom{n}{2} \binom{\sum_{e \in E(K_n)} d_H(e)/\binom{n}{2}}{2} = \binom{n}{2} \binom{\sum_{i=1}^n e(G_i)/\binom{n}{2}}{2}.$$

Combining the above inequalities yields

$$2\binom{n}{2}^{2} \ge \left(\sum_{i=1}^{n} e(G_{i})\right)^{2} - \binom{n}{2} \sum_{i=1}^{n} e(G_{i}),$$

and the result now follows from solving the quadratic inequality.

To see that this bound is tight, consider the construction such that for each distinct $i, j \in [n], E(G_i) \cap E(G_j)$ contains exactly one unique edge $e \in K_n$. The number of edges in this construction is $2\binom{n}{2} = n^2 - n$.