Lecture-22

Sushrut Tadwalkar; 55554711

October 30, 2023

Quote of the day

"The shape of water – woman falls in love with monster; fine. However, the shape of water is a beautiful phrase, because water has no shape!" - Dr. Loewen, 10/30/2023

"Metric... is that Greek for measurement? Might be." - Dr. Loewen, 10/30/2023

1 Point-set topology

1.1 Open sets

Step 1: Euclidean \mathbb{R}^k

Recall $\mathbb{R}^k = \{(x_1, \dots, x_k) : x_j \in \mathbb{R}\}$ with $|\underline{x}| = \sqrt{x_1^2 + x_2^2 + \dots + x_k^2}$.

Definition: Open set

A subset $\mathcal{U} \subseteq \mathbb{R}^k$ is *open* iff for all $x \in \mathcal{U}$, there exists $\varepsilon > 0$ such that for all x' with $|x' - x| < \varepsilon$, $x' \in \mathcal{U}$.

The following diagram provides intuition:

Figure 1: Visualization of an open set.

Note. Call $\mathbb{B}[x;\varepsilon)$ with $\varepsilon>0$ an "open ball with centre x and radius ε ." It does indeed deserve to be called open: pick some $y\in\mathbb{B}[x;\varepsilon)$; thus $r=|y-x|<\varepsilon$. Here, $\varepsilon-r>0$, and $\mathbb{B}[y;\varepsilon-r)\subseteq\mathbb{B}[x;\varepsilon)$. To verify, pick some $z\in\mathbb{B}[y;\varepsilon-r)$. Then

$$|z - x| \le |z - y| + |y - x|$$

$$< (\varepsilon - r) + r = \varepsilon.$$

The following diagram provides intuition:

Figure 2: Visualization of an open ball.

Notation 1. We define:

(a) An open ball as

$$\mathbb{B}[x;\varepsilon) := \{ x' \in \mathbb{R}^k : |x' - x| < \varepsilon \}.$$

(b) A closed ball as

$$\mathbb{B}[x;\varepsilon] := \{x' \in \mathbb{R}^k : |x' - x| \le \varepsilon\}.$$

(c) The final case (there's no name),

$$\mathbb{B}(x;\varepsilon) := \{ x' \in \mathbb{R}^k : 0 < |x' - x| < \varepsilon \}.$$

Definition: Topology

We call \mathcal{T} a *topology*, where

$$\mathscr{T} := \{ \mathcal{U} \subseteq \mathbb{R}^k : \mathcal{U} \text{ is open} \}.$$

Here, $\mathscr{T} \subseteq \mathscr{P}(\mathbb{R}^k)$.

There are a few key properties of \mathcal{T} :

(HTS 1) $\emptyset \in \mathscr{T}$ and $\mathbb{R}^k \in \mathscr{T}$.

(HTS 2) For any collection \mathscr{G} of open sets,

$$\bigcup \mathscr{G} = \bigcup_{G \in \mathscr{G}} G$$

is also open.

(HTS 3) For any *finite* collection of open sets G_1, \ldots, G_N , the set

$$\bigcap_{k=1}^{N} G_k = G_1 \cap G_2 \cap \dots \cap G_N$$

is also open.

Proof. Pick $x \in \bigcap_{k=1}^N G_k$. For each $k, x \in G_k \implies$ there exists $\varepsilon_k > 0$ such that $\mathbb{B}[x; \varepsilon) \subseteq G_l$. Take

$$\varepsilon = \min\{\varepsilon_1, \varepsilon_2, \dots, \varepsilon_N\}$$
 to see that $\mathbb{B}[x; \varepsilon) \subseteq G_k$ for all k . Therefore, $\mathbb{B}[x; \varepsilon) \subseteq \bigcap_{k=1}^N G_k$.

(HTS 4) For any $x, y \in \mathbb{R}^k$ – where $x \neq y$ – there exists $\mathcal{U}, \mathcal{V} \in \mathcal{T}$ such that $x \in \mathcal{U}, y \in \mathcal{V}, \mathcal{U} \cap \mathcal{V} = \emptyset$.

Proof. Let r = |x - y| < 0 and take $\mathcal{U} = \mathbb{B}[x; r/3)$, $\mathcal{V} = \mathbb{B}[y; r/3)$. Picking some $z \in \mathcal{U} \cap \mathcal{V}$ is an immediate contradiction:

$$r = |x - y| \le |x - z| + |z - y| < \frac{r}{3} + \frac{r}{3}.$$

The following diagram provides intuition:

Figure 3: Visualization of HTS 4.

Note. *HTS stands for* Hausdorff Topological Space. *The condition for a topological space for being Hausdorff is just (HTS 4); rest are true for general topological spaces.*

Step 2: Metric spaces

Definition: Metric

Given any set $\mathcal{X} \neq \emptyset$, a function $d: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a *metric* exactly when

(a) $d(x,y) \ge 0$ for all $x,y \in \mathcal{X}$ with

$$d(x,y) = 0 \iff x = y.$$

- (b) d(x, y) = d(y, x) for all $x, y \in \mathcal{X}$ (Symmetry).
- (c) d(x, z) < d(x, y) + d(y, z) for all $x, y, z \in \mathcal{X}$ (Triangle inequality).

Example 1. The following are examples are metrics:

- (a) Euclidean \mathbb{R}^k has d(x,y) = |y-x|; this is called the "Euclidean metric".
- (b) Recall

$$\ell^2 = \left\{ x = (x_1, x_2, \dots) : \sum_{k=1}^{\infty} x_k^2 < \infty \right\}$$

with $||y-x|| = \left[\sum_{k=1}^{\infty} (y_k - x_k)^2\right]^{1/2} = d(x,y)$ (we proved this in homework 7 problem 3.)

- (c) For the set \mathcal{X} of bounded functions, $f:[0,1]\to\mathbb{R}$, $d(x,y)=\sup\{|x(t)-y(t)|\}$ works (we proved this in homework 5 problem 8.)
- (d) For any $\mathcal{X} \neq \emptyset$, take

$$d(x,y) = \begin{cases} 0, & \text{if } x = y \\ 1, & \text{if } x \neq y \end{cases}.$$

This is called the "discrete metric".

Why do we care about all this anyways? nce to cover many structures at once.	? The main reason – at the moment at least – is to extend th	e idea