# Convolutional Neural Networks and Deep Learning

#### Overview

- Deep Networks
- Convolution Neural Networks
- Introduction to Google Colab
- Design and train a simple CNN on MNIST dataset
- Do it yourself

# Deep Neural Network



# Convolution on Images

$$I = \begin{bmatrix} 5 & 2 & 1 & 0 \\ 4 & 3 & 5 & 2 \\ 2 & 8 & 2 & 2 \\ 8 & 10 & 5 & 1 \end{bmatrix}$$

$$F = \begin{bmatrix} \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \end{bmatrix}$$

#### **Convolutional Neural Networks**



# How does a simple CNN look?

# **Convolutional Layer**



# ReLU



### Softmax



# **Pooling**

| 2 | 2 | 7 | 3 |
|---|---|---|---|
| 9 | 4 | 6 | 1 |
| 8 | 5 | 2 | 4 |
| 3 | 1 | 2 | 6 |





# **Fully Connected**



# Google Colab

- Cloud based open source service to execute python code
- Developed by Google
- Requires
  - a Google account, Google Chrome
  - stable internet connectivity
- Provide backends with
  - CPU
  - GPU
  - TPU

# Machine Learning Libraries

- Data Processing (NumPy, Pandas)
- Data Visualization (Matplotlib)
- Neural Network Architecture (Keras)
- Neural Network Computation (Tensorflow, Theano, CNTK)

#### Tensorflow Vs. Keras

#### Keras (Frontend)

- Open source neural network library
- written in python

#### Tensorflow (backend)

- Open-source library for dataflow and differentiable programming
- Create graph of tensor computations

#### **MNIST**



Figure : Some images from MNIST Dataset with labels

# Pre-processing and Training

- Resizing
- Normalisation of data
- Denoising
- Data augmentation



Figure : Example of Data Augmentation

# Simple DNN Model

# Training Data Training Data Training Data Training Data Dense (128) Training Data $Y_0$ Dense (128) $Y_{10}$ $Y_{10}$

Both Hidden layers use 'ReLu' as activation function

DIY



17

# Transfer Learning

- Instead of training our own model from scratch
- Take the feature extractor from previously trained network and fine tune the classifier
- Other models:
  - ResNet, VGG16, VGG19, Inception etc.

# Machine Learning with Custom Dataset

- Create a dataset
- Apply some preprocessing (if required)
- Design a network as per your application
- Train model

# **Appendix**



Figure. Weights

# Thank You