Quantum One-Wayness of the Single Round Sponge with Invertible Permutations

Joseph Carolan¹, Alexander Poremba²

1. University of Maryland, 2. MIT

Motivation: SHA3

- International hash standard: SHA3
- SHA3 uses the **sponge** to achieve variable input length

Sponge Construction

- ullet Based on permutation arphi on RATE + CAPACITY bits
- ullet Both arphi and $arphi^{-1}$ have a public description
- Oracles can be implemented given this description:

$$O_{\varphi} |x\rangle |y\rangle = |x\rangle |y \oplus \varphi(x)\rangle$$

$$O_{\varphi^{-1}} |x\rangle |y\rangle = |x\rangle |y \oplus \varphi^{-1}(x)\rangle$$

- ullet We model adversaries as having black-box access ${\it O}_{\!arphi},{\it O}_{\!arphi^{-1}}$
- ullet It is standard to model φ as random permutations

Sponge Security

- We then show security in the Random Permutation Model
- Strong classical results in this model ("Indifferentiability")
 - (\rightarrow) This is the classical theory basis of the Sponge/SHA3
 - (\rightarrow) We want a similar basis for quantum security
- Post-quantum security of the sponge is a major open problem
- Very few quantum results allowing inverse queries
- ullet Problem: quantum adversaries can query arphi and $arphi^{-1}$
 - (\rightarrow) No compressed oracle! How to analyze?
 - (\rightarrow) In fact, few techniques whatsoever.

Quantum Security of the Sponge

• For simplicity, restrict to one round:

Quantum Security of the Sponge

- Single-round sponge is reset indifferentiable from a random oracle when RATE ≤ CAPACITY [Zhandry 21]
- "As good as a random oracle" when RATE \leq CAPACITY
- Problem:

Hash	Rate	Capacity
SHA3-224	1152	448
SHA3-256	1088	512
SHA3-384	832	768
SHA3-512	576	1024

- Reset indifferentiability is *impossible* when RATE > CAPACITY
- Even when RATE ≤ CAPACITY, known bounds are only super-polynomial (not tight)
- We need more techniques!

Double Sided Zero Search [Unruh 21, 23]

Problem (DSZS)

In: Queries to permutation φ and φ^{-1} on 2n bits

Out: A "zero pair" (x, y) s.t.

$$\varphi(x||0^n)=y||0^n$$

- ullet DSZS pprox zero pre-image in one-round sponge
- ullet DSZS \geq collision in (full) sponge

Zero Pairs Intuition

Some facts [CP'24]:

- Exactly one zero pair on average
- At least one with probability 1 1/e + o(1)
- More than k with probability $\exp(-\Omega(k))$
- $\Omega(2^n)$ classical queries required to find one (if it exists)

Double Sided Zero Search Hardness

Conjecture [Unruh 21, 23]

Finding a zero pair requires $\Omega\left(\sqrt{2^n}\right)$ quantum queries

- Would provide evidence of post-quantum security of sponge
- Motivates new techniques
- "Even simple questions relating to (superposition access to) random permutations are to the best of our knowledge not in the scope of existing techniques"
 [Unruh 23]

Double Sided Zero Search Hardness

Theorem [CP'24]

Finding a zero pair requires $\Omega\left(\sqrt{2^n}\right)$ quantum queries

- We prove Unruh's conjecture
- Tight up to constant, even for small success probabilities
- Technique: worst-to-average case reduction, inspired by Young subgroups
- Leads to quantum one-wayness of the single round sponge

Proof outline

Theorem [CP'24]

Finding a zero pair requires $\Omega\left(\sqrt{2^n}\right)$ quantum queries

Proof.

A worst-to-average case reduction:

- (1) Construct a worst-case instance from unstructured search
- (2) Rerandomize to an average-case instance, by symmetrizing

Worst-Case Hardness

• In the worst case, solution may not exist!

$$\varphi_w(x||y) := x||(y \oplus 1^n)$$

Worst-Case Hardness with K solutions

• Let f be a function on n bits that marks K many inputs,

$$\varphi_w(x||y) = \begin{cases} x||y & \text{if } f(x) = 1\\ x||(y \oplus 1^n) & \text{if } f(x) = 0 \end{cases}$$

- x is in a zero pair of φ_w if and only if f(x) = 1
- Inverse queries don't help, because $\varphi_w = \varphi_w^{-1}$

Symmetrization

- Let ω, σ be random permutations that preserve suffix 0^n
- Sandwich a worst-case instance to get an average-case instance (with K zero pairs)

$$\varphi := \omega \circ \varphi_{\mathbf{w}} \circ \sigma$$

Symmetrization

- Let ω, σ be random permutations that preserve suffix 0^n
- Sandwich a worst-case instance to get an average-case instance (with K zero pairs)

$$\varphi := \omega \circ \varphi_{\mathbf{w}} \circ \sigma$$

- Let H be the symmetric subgroup which preserves the suffix 0^n
- Given zero pair (x, y) in $\varphi = \omega \circ \varphi_w \circ \sigma$, have a zero pair $(\sigma(x), \omega^{-1}(y))$ in φ_w , hence $\sigma(x)$ is marked by f

- Let H be the symmetric subgroup which preserves the suffix 0^n
- Given zero pair (x, y) in $\varphi = \omega \circ \varphi_w \circ \sigma$, have a zero pair $(\sigma(x), \omega^{-1}(y))$ in φ_w , hence $\sigma(x)$ is marked by f

- Let H be the symmetric subgroup which preserves the suffix 0^n
- Given zero pair (x, y) in $\varphi = \omega \circ \varphi_w \circ \sigma$, have a zero pair $(\sigma(x), \omega^{-1}(y))$ in φ_w , hence $\sigma(x)$ is marked by f

- Let G be the symmetric group on 2^{2n} elements
- Let H be the symmetric subgroup which preserves the suffix 0^n
- Consider double cosets $\{C_0, C_1, ..., C_{2^n}\} = H \setminus G / H$
- From the theory of Young subgroups:

Characterization Lemma [CP'24]

The double coset C_K is the set of permutations with K Zero Pairs

Symmetrization Lemma [CP'24]

If $\omega, \sigma \sim H$ are uniformly random, and any fixed $\varphi_w \in C_K$, then $\omega \circ \varphi_w \circ \sigma$ is uniform random over C_K

Summary of results

Prior argument plus tail bounds on Zero Pairs gives:

Theorem [CP'24]

A quantum algorithm making q queries to random φ, φ^{-1} on 2n bits finds a Zero Pair with probability at most $50 \cdot \frac{q^2}{2^n}$.

A similar proof gives:

Theorem [CP'24]

A quantum algorithm making q queries to random φ, φ^{-1} on r+c bits breaks one-wayness of the single-round sponge with probability at most $80 \cdot \frac{q^2}{2^{\min(r,c)}}$.

 These are tight up to a constant factor, for all success probabilities

Future Directions

- Other applications of symmetrizing over double cosets?
- One-wayness beyond a single round?
- Query lower bounds for collision resistance, second preimage resistance, etc?
- Indifferentiability?
- See also concurrent work by Majenz, Malavolta, and Walter
 (→) Similar results, different techniques, [eprint:2024/1140]

Thank you!

[CP24] Quantum One-Wayness of the Single Round Sponge with Invertible Permutations, eprint:2024/414 [Unruh 21 (23)] (Towards) Compressed Permutation Oracles, eprint:2021/062(2023/770) [Zhandry 21] Redeeming Reset Indifferentiability and Post-Quantum Groups eprint:2021/288