ntroduction tmLQCD OpenCL Hybrid Strategy Perspective

Twisted mass fermions on GPUs An application to the LOEWE cluster at CSC

Lars Zeidlewicz

In collaboration with Matthias Bach, Owe Philipsen and Christopher Pinke

Institut für Theoretische Physik Goethe-Universität Frankfurt

Lattice QCD and high performance computing on GPUs March 11, 2011

The plan of this talk

Introduction

- Finite temperature QCD
- Twisted mass lattice fermions

Status Report

- Solver
- Heatbath
- Using the LOEWE-CSC cluster

Physical objects of interest

properties of the Quark-Gluon-Plasma $T > T_c$

properties of the thermal transition $T \approx T_c$, possibly $\mu \neq 0$

Chiral limit

What is the nature of the $N_f = 2$ chiral transition?

- Computational cost grows with inverse power of pion mass
- Infer chiral limit properties from universal scaling behaviour
- In any case: Small pion masses necessary

tmfT 2011

Lattice QCD at finite T

- Discretise spacetime by a hypercube of size N_σ³ × N_τ and lattice spacing a
- Temperature:

$$T = \frac{1}{aN_{\tau}}$$

Carefully control cutoff effects:

$$F\left(\frac{1}{N_{\tau}}\right) = F_{\text{continuum}} + F_{(2)} \frac{1}{T^2 N_{\tau}^2} + \dots$$

Need aspect ratio N_σ/N_τ as large as possible
 ⇒ large spatial volumes

troduction tmLQCD OpenCL Hybrid Strategy Perspectives

Which lattice fermions?

Staggered fermions

- + Computationally cheap
- + Results at physical masses and below

Wilson fermions

- + Theoretically sound
- Improvement possible: clover & maximally twisted mass

Chiral fermions

- + Theoretically sound
- + Lattice chiral symmetry

 Theoretical doubts ("rooting")

- Explicitly broken chiral symmetry
 - ⇒ linear cutoff effects
 - ⇒ additive mass renormalisation

 Very expensive (non-local or 5 dimensional)

Twisted mass fermions: continuum Frezzotti, Grassi, Sint, Weisz

Chiral symmetry transformation in $N_f = 2$ flavour space:

$$\psi = \begin{pmatrix} u \\ d \end{pmatrix} \longrightarrow \chi = e^{-i\gamma_5 \tau^3 \omega/2} \psi$$

$$M\overline{\psi}\psi \longrightarrow \overline{\chi} \left(\underbrace{M\cos\omega}_{m_0} + i\gamma_5 \tau^3 \underbrace{M\sin\omega}_{\mu_0} \right) \chi$$

Quark mass:

$$M_R = \sqrt{Z_m^2 m_0^2 + Z_\mu^2 \mu_0^2}$$

Maximal twist:

$$m_0 = 0 \Rightarrow \omega = \pi/2$$

Twisted mass fermions: lattice

Frezzotti, Grassi, Sint, Weisz

fermion matrix with twisted mass term

$$M_{\rm tm} = 1 + 2i\kappa a\mu_0\gamma_5\tau^3 - \kappa D_W[U]$$

- N_f = 2 mass-degenerate Wilson type fermions (inclusion of strange & charm possible)
- Hopping parameter: $\kappa = 1/(2am_0 + 8r)$
- Non-trivial bare parameter phase space (Aoki phase & Sharpe-Singleton plane)

tmfT, PRD 80, 2010

Fermion determinant

- Twisted mass acts as infrared regulator for the fermion matrix
- Flavour determinant can be evaluated explicitly:

$$\mathsf{Det}_f \, M_{\mathsf{tm}} = \mathsf{Det}_f \left(M_W[U] \, \mathbf{1}_f + 2\mathrm{i} \kappa a \mu_0 \gamma_5 \tau^3 \right)$$
$$= M_W[U] \, M_W^{\dagger}[U] + 4\kappa^2 (a\mu_0)^2$$

· Original motivation for twisted mass term

Improvement

- Maximal twist is achieved for vanishing untwisted mass component
- Hopping parameter must be tuned to its critical value $\kappa_c(\beta)$
- Maximal twist ensures automatic O(a) improvement, i. e. absence of linear cutoff effects in physical observables Frezzotti, Rossi, JHEP 0408

Example: Free dispersion relation

$$E(\mathbf{p}) = \sqrt{\mathbf{p}^2 + M^2} - a \frac{1}{2} \frac{M^3 \cos \omega}{\sqrt{\mathbf{p}^2 + M^2}} + \mathcal{O}(a^2)$$

tmLQCD package

- MPI-parallel CPU code for twisted mass fermions exists (freely available)
- C code developed within the European Twisted Mass Collaboration
 - Jansen, Urbach, Comp. Phys. Commun., 180, 2009
- Algorithm: Mass preconditioning, multiple time-scale integrators, even-odd preconditioning...
 Jansen et al. Comp. Phys. Commun., 174, 2006
- Both $N_f = 2$ and $N_f = 2 + 1 + 1$ are implemented
- ETMC have used the two-flavour code down till 280 MeV pion masses
 ETMC, JHEP 1008
- We test the code on the CPU part of LOEWE-CSC already

Motivation: LOEWE-CSC

- Top500 rank 22 in November 2010 (285 Tflops, rank 2 in Germany)
- Rank 8 of green IT machines (741 Mflops/W, rank 4 in Germany)
- Approximately 800 nodes constitute a CPU/GPU hybrid structure
 - 2 AMD Opteron 12 core (→ 24 cores per node)
 - 1 AMD ATI Radeon 5870 (Cypress)
- Infiniband connected

CSC

roduction tmLQCD OpenCL Hybrid Strategy Perspectives

Twisted mass simulations using OpenCL

Wishlist

- Have an OpenCL heatbath working
- Have a solver in OpenCL that can be applied to both CPU and GPU
- Have an OpenCL HMC
- Expand fermionic part to $N_f = 2 + 1 + 1$ PHMC
- Have a hybrid Hybrid Monte-Carlo, especially for the 24 core / 1 GPU architecture of a LOEWE-CSC node
- Ultimately: Have a program that can take advantage of the complete LOEWE-CSC cluster

Our Program

- New architecture & programming language
 ⇒ write code from scratch
- OpenCL is rapidly evolving
- Embed OpenCL code in C/C++ host environment

```
class opencl {
public:
opencl(cl_device_type wanted){init(wanted);};
~opencl(){finalize();};
...
}
```

Our Program

- New architecture & programming language
 ⇒ write code from scratch
- OpenCL is rapidly evolving
- Embed OpenCL code in C/C++ host environment

Our Program

- New architecture & programming language
 ⇒ write code from scratch
- OpenCL is rapidly evolving
- Embed OpenCL code in C/C++ host environment

- Compiler switches for single/double, 12-double reconstruction of SU(3) matrices...
- Development started in December 2010
- ullet OpenCL frontend class: \sim 2200 lines of C++ code
- Kernel code: O(3k) lines (no BLAS libraries)

troduction tmLQCD OpenCL Hybrid Strategy Perspective:

Solver in OpenCL

Status

- Target: Even-odd preconditioned solvers BiCGStab, CG,...
- · Achieved: Solver in OpenCL, no even-odd yet
- We have some experience from an existing CUDA solver (F. Burger, HU Berlin)
- We have used the CUDA solver on the gpu-scout of CSC (NVIDIA Teslas)

Current Limits

- For Cypress: RAM = 1 GB $\Rightarrow N_{\sigma}^3 \times N_{\tau} \le 10^6$ e.g. $42^3 \times 12$, $38^3 \times 16$
- double precision, 12-double reconstruction, even-odd, BiCGStab

Heatbath

Heatbath algorithm for SU(3) pure gauge theory

- 12-double reconstruction for gauge fields (Clark et al.)
- For Cypress GPUs: 1 GB \Rightarrow $N_{\sigma}^3 \times N_{\tau} \leq 5 \cdot 10^6$ e.g. $76^3 \times 12$, $66^3 \times 16$
- Non-fermionic applications in our group: QGP properties, hydrodynamics
- Use it independently and as first step towards an HMC

- Comparison to finite temperature results Boyd et al. Nucl. Phys. B469, 1996
- $N_{\tau}=8$, $N_{\sigma}=16$, thermal transition at $\beta\approx5.69$

- Comparison to finite temperature results Boyd et al. Nucl. Phys. B469, 1996
- $N_{\tau}=8$, $N_{\sigma}=16$, thermal transition at $\beta\approx5.69$

- Comparison to finite temperature results Boyd et al. Nucl. Phys. B469, 1996
- $N_{\tau}=8$, $N_{\sigma}=16$, thermal transition at $\beta\approx5.69$

- Comparison to finite temperature results Boyd et al. Nucl. Phys. B469, 1996
- $N_{\tau}=8$, $N_{\sigma}=16$, thermal transition at $\beta\approx5.69$

Hybrid OpenCL HMC

- One GPU is memory limited
- Try to distribute calculation on CPUs and attached GPU efficiently
 - LOEWE-CSC 24 cores & 1 GPU
- Distributing the calculation over several nodes leads to extra communication
- How can we make optimal use of the LOEWE-CSC cluster beyond one node?
- Possibly different algorithms are more suitable for that structure (e.g. DDHMC)

roduction tmLQCD OpenCL Hybrid Strategy Perspectives

Conclusions and future plans

lots to do...

- Heatbath is ready, complete benchmarking
- Solver code needs further checks
- Probably, heavy performance optimisation possible
- Hybrid code must be implemented. We have not addressed questions concerning the global cluster structure yet

perspectives

- Fermion matrix can be exchanged
- OpenCL is programmed device independently

Thank you