First-order optics review

Lens Design OPTI 517

Lecture overview

- Collinear transformation review
- Review of first—order optics concepts
- The stop aperture
- Rays vs. Wavefronts
- How a lens design program works
- Kingslake/Johnson: chapters 1, 2, and 3
- Shannon: chapters 1,2
- J. Greivenkamp, "Field Guide to Geometrical Optics," SPIE Press, 2004.

Collinear transformation

- Collinear transformation is not specific to optics
- Camera obscura and lens focusing/imaging link the collinear transformation
- Constants defining ideal imaging
- Gaussian or Newtonian equations represent the collinear transformation

First-order optics

- First-order ray-tracing is a powerful method to analyze an optical system
- Obtain substantial lens system information from tracing two first-order rays (paraxial)
- Reflects early designers cleverness
- Real rays were difficult to trace
- Many lens design tasks are still done using firstorder rays.
- Lens design software uses some significant amount of first-order ray tracing
- Need to understand well first-order optics
 College of Optical Sciences

Ray tracing

- Real rays are traced to within the computer precision using Snell's law and the actual surface shape
- First-order rays are traced using the first-order refraction invariant: n'i'=ni and a flat surface with optical power
- Paraxial rays are very, very close to the optical axis and are traced like first-order rays with a very small factor 10⁻²⁵⁰ for heights and angles which is not explicitly written

First-order optics

- A first-order layout is like the skeleton or foundation of a lens. It helps to create a useful structure.
- The language of first-order optics

Three levels of learning 101

- I have heard/read and understand the concept
- I can apply the concept
- I can think of different ways to do the same and I practice the concept

First-order review

- 1. Gaussian and Newtonian equations
- 2. F/#, NA, aperture size
- 3. Magnification, magnifying power, optical power
- 4. Image location and size
- 5. The stop and pupils
- 6. Afocal, telecentric, doubly telecentric
- 7. Cardinal points and planes
- 8. Chief and marginal rays
- 9. Paraxial/first-order ray tracing
- 10. Lagrange invariant
- 11. Basic lens configurations: m=-1, m=0, 4f system
- 12. The eye and the sphere

101 Exercise: Review the 12 first-order points and determine you level of Knowledge about each item

Chief and marginal first-order rays

A meridional ray that passes through the axial object point and the edge of the stop is known as a marginal ray. A meridional ray that passes through the edge of the field of view and the stop center is known as a chief ray.

Paraxial Image formation

Constructions To Show paraxial ray refraction

Prof. Jose Sasiar

and Associated Quantities.

Refraction of a paraxial ray

$$\lambda = -3(1 + 1)$$
 $\lambda = -4 + 1$
 $\lambda = -4 + 1$
 $\lambda = -4 + 1$

In The paraxial resion Snell's law

becomos: NIT = Ni

Therefore: -N'd'- N'N' = -Nd+ NN

or: N'N = NN + (N'-N) & = NN - 7 (N'-N) C

\$ = (n'-n) (= (n'-n) 15 The power

which is measured in diopTers

Thus, refraction of a paroxial vay leads to:

In object space:

In Image space:
$$3' = -\frac{y_2 - y_1}{\nu_1^1 - \nu_1^1}$$

but
$$N_2' = \frac{NN_2 - \vartheta_2 \varphi}{N'}$$
 and $N_1' = \frac{NN_1 - \vartheta_1 \varphi}{N'}$

$$3' = \frac{\frac{1}{N^2 - 3^2 q} - \frac{1}{N^2 - 3^2 q} - \frac{1}{N^2 - 3^2 q}}{\frac{1}{N^2 - 3^2 q}} = -\frac{\frac{1}{N^2 - 3^2 q} - \frac{1}{N^2 - 3^2 q}}{\frac{1}{N^2 - 3^2 q}}$$

$$3' = \frac{-n'}{n - \sqrt[4]{\frac{y_2 - y_1}{y_2 - y_1}}} = \frac{+n'}{n + \sqrt[4]{3}}$$

$$ox: \frac{3}{\nu} + \lambda = \frac{3!}{\nu!}$$

Prof. Jose Sasian

$$\frac{n!}{3!} - \frac{n!}{3!} = \phi$$
for aubiTrary Y_1, Y_2, N_1, N_2
of Opt
University of

$$\xi' = \frac{\omega}{n_1}$$
 $\xi = -\frac{\omega}{n}$

Magnification

$$M = \frac{\nu}{\nu_l} = \frac{\nu_l}{\lambda} \frac{3}{3}$$

$$pnt \qquad \frac{\mu}{nl} = -\frac{t}{\xi l}$$

$$\frac{3}{3!} = -\frac{\xi}{\xi_1} m$$

$$\frac{3!}{4!} + \frac{3}{4!} = 1$$

Conclusion: paroxial image formation 15

congruent with the

collinear transformation

IHE OPTICAL INVARIANT AND THE

LAGRANGE INUARIANT

REPRACTION:
$$n'n' = nn - gg$$

$$n'n' = n\overline{n} - gg$$

$$g = \frac{nn - n'n'}{g} = \frac{n\overline{n} - n'\overline{n}'}{g}$$

TRANSFER :

$$\frac{\partial t}{\partial t} = \frac{\partial t}{\partial t} + \frac{1}{N!} \frac{(N!N!)}{N!N!} = \frac{\frac{\partial t}{\partial t} - \frac{\partial t}{\partial t}}{N!N!} = \frac{\frac{\partial t}{\partial t} - \frac{\partial t}{\partial t}}{N!N!}$$

$$n' \overline{\nu} g_{\tau} - n' \overline{\nu} g = n' \overline{\nu} g_{\tau} - n' \overline{\nu} g$$

$$n' \overline{\nu} g_{\tau} - n' \overline{\nu} g_{\tau} = n' \overline{\nu} g - n' \overline{\nu} g$$

NUARIANT ON Transfer

.. Therefore we have an optical invarignt

CHIEF RHYS ARE THE MANGINAL AND INVARIANT:

H = nug = nug

Aperture stop and a singlet lens

A virtual exit pupil

The Aperture Stop and the pupils

Aperture Stop

- •The stop helps to well define a lens system.
- •Without a stop aperture light that propagates through an optical system is not organized into well defined beams.

Aperture Stop

- The stop helps to well define a lens system. Without a welldefined stop it is not clear how light propagates through an optical system
- The stop limits the amount of light through a lens system
- The stop brings order into how the beams of light from different field points propagate towards the image plane
- The stop helps to control stray light
- The stop defines the entrance and exit pupils
- Beams from different field points spatially coincide and appear to pivot about the pupils.
- Diffraction effects from beam clipping at the stop are minimized at the exit pupil
- The light beam amplitude variation and wavefront deformation can be calculated at the exit pupil
- Identifying the aperture stop should become second nature

Cardinal points and planes

- Observation of the behavior of an optical imaging system leads one to conclude that there are a number of relevant points and planes; the points are called cardinal points. The significance of the cardinal points is that they can represent any focal system regardless of how complex the system is. Cardinal points also establish a convenient reference from which to measure distances in an optical system.
- The conjugate to the point at infinity in the object space is the rear focal point (F'). The conjugate to the point at infinity in the image space is the front focal point (F). The planes intersecting the focal points are called correspondingly the front and rear focal planes.
- The front and rear nodal points N and N' are defined as the centers of perspective; they are conjugate. Any ray passing by one nodal point will pass by the other and will preserve its direction. The planes intersecting the nodal points are called correspondingly the front and rear nodal planes.
- The front (P) and rear (P') principal points define the rear and front principal planes. The principal planes are the planes of unit magnification; they are conjugate.
- The distances from the principal points to the focal points are called the Prof. front and rear focal lengths respectively.

 College of Optical Sciences

Geometrical construction

 The cardinal points of a lens system provide a graphical method to find the image position and size.

 The cardinal points establish references to define distances and angles

Gaussian and Newtonian equations:

 Gaussian equations use the principal points to locate the coordinate origins in the object space and image space. Newtonian equations use the focal points to locate the coordinate origins in the object space and image space.

Gaussian and Newtonian imaging equations

$$m=1-\frac{Z'}{f'}$$

$$m=\frac{1}{1-\frac{Z}{f}}$$

$$\frac{Z'}{f'}-\frac{Z}{f}=1$$

$$\frac{Z'}{f'}=m$$
 $\frac{Z}{f}=\frac{1}{m}$ $ZZ'=ff'$

Summary of significant points and distances:

	Significant points on axis	Object space	Image space
•	Object/image points (conjugate) Focal points (not conjugate) Nodal point (conjugate) Principal points (conjugate) Entrance/exit pupil (conjugate)	O F N P E	O' F' N' P' E'
	Significant distances		
•	Front/rear focal lengths Object/image distances Principal point separation	f=PF s=PO PP	f'=P'F' s'=P'O'

Lens specifications

Singlet constructional parameters							
Surface	Radius of	Thickness to	Glass				
	curvature	next surface					
Stop		30.775 mm	Air				
2	00	5 mm	Bk7				
			(n=1.5168)				
3	-51.680 mm	100 mm	Air				
Image							

First-order ray trace

	First-order ray trace. $\mathcal{K} = 1.67$							
Surface	у	и	ni	\overline{y}	u	$n\overline{i}$		
Stop	6.2500	0.0000	0.0000	0.0000	0.2679	0.2679		
2.0000	6.2500	0.0000	0.0000	8.2462	0.1767	0.2679		
3.0000	6.2500	-0.0625	-0.1834	9.1295	0.1767	0.0000		
Image	0.0000	-0.0625	-0.0625	26.7949	0.1767	0.1767		

Real Ray-tracing

To face page 42.

OFFICAL DESIGN AND LENS COMPUTATION

A	LCU	LAT	HOM:	No.	14

Ray-trace through last surface-corrected by Chr. (1), i.e., $r_4 = -12.999$ inches. LAST SURFACE

	LASI SUKEACE	
	c	F
	ray	ray
L	36-6239	38-6775
-r	+12-299	+12-299
(L-r)	48-9229	50-9765
log sin U	7-97849	7-95485
$\log (L-r)$	1-68951	1.70737
$\log (L-r) \sin U$	9-66800	9 66222
- log r	1-06987 <i>n</i>	1·08967n
log sin I	8 · 57813 u	8·57235n
- log N/N*	0 22802	0-23386
log sin I'	8 - 80615H	8-80621#
log sm z	1.08987n	1-08987n
$\log r \cdot \sin F$	9-89602	9-89608
- log sin U'	8 - 55248	8:55254
$\log (L'-r)$	1 · 34354	1-34354
U	0-32-43	0-30-59
i .	- 2-10-10	2- 8-27
U+I	- 1-37-27	- 1-37-28
- P	3-40-9	3-40-11
U'	2- 2-42	2- 2-43
L'-r	22:0567	22-0567
7	- 12-299	- 12-299
final L'	9-7577	9-7577
-4U	- 0-16-22	- 0-15-30
- 11	1- 5- 5	- 1- 4-14
$\frac{1}{2}(I-U)$	- 1-21-27	- 1-19-44
¥"	- 1-50- 4	- 1-50- 6
- 1U'	- 1- 1-21	- 1- 1-22
$\frac{1}{2}(I' - U')$	- 2-51-25	- 2-51-28
log D	1-56376	1-58746
log sin U	7-97849	7-95485
- log sec ((I - U)	0-00012	0-00012
log PA	9-54237	9-54243
log cosec U'	1-44752	1-44746
- log cos ½(l' - U')	9-99946	9-99946
log L'	0.98935	0.98935
final L' (by check)	9-7578	9.7578

Chromatic Aberration $(L_0^i - L_2^i) = 0.0000$ inches Chromatic Aberrance = $\pm \frac{0.5 \ \lambda}{N^2 \sin^2 U_0^2 \sin^2 z} = \pm 0.0089$ inches.

		F4 - 12-010	a ₁ = 0-150	14F - 1 - 3	7544	D-door
	First Surface		Second Surface F		Third Surface C F	
	ray	ray	ray	ray	ray	ray
L .			17-6797 + 4-444	17·4889 + 4·444	36·6239 +12·610	38-6775 12-610
(L-r)	Y= 0	-3536	22-1237	21-9329	. 49-2339	51 - 2875
$\log \sin U$ + $\log (L-r)$			8 · 29631 1 · 34486	8 · 30097 1 · 34110	7-97849 1-69226	7·95485 1·71001
log (L-r) sin U -log r	9·54851 0·78412	9·54851 0·78412	9-64117 0-64777#	9·64207 0·64777n	9-67075 1-10072#	9-66486 1-10072v
log sin I	8-76439	8 - 76439	8-99340a	8-99430n	8·57003H	8-56414n
$+ \log \frac{N}{N}$	9-81959	9-81714	9-95239	9-94900	0.22802	0-23386
log sin I' + log r	8-58398 0-78412	8-58153 0-78412	8 · 94579# 0 · 64777#	8-94330n 0-64777n	8-79805n 1-10072n	8 · 79800n 1 · 10072n
$-\log r \cdot \sin F$ $-\log \sin U'$	9·36810 8·29631	9-36565 8-30097	9·59356 7·97849	9-59107 7-95485	9-89877 8-54654	9 · 89872 8 · 54642
$\log (L^2 - r)$	1:07179	1.06468	1-61507	1.63622	1-35223	1 - 35230
. U	0- 0- 0 3-19-57	0- 0- 0 3-19-57	1- 8- 1 - 5-39- 8	1- 8-45 - 5-39-51	0-32-43 -2- 7-46	0-30-59 -2- 6- 2
U+ I -I'	3-19-57 2-11-56	3-19-57 2-11-12	-4-31- 7 5- 3-50	- 4-31 -6 5- 2- 5	-1-35- 3 3-36- 5	-1-35- 3 3-36- 3
U*	1-8-1	1- 8-45	0-32-43	0-30-59	2- 1- 2	. 2- 1- 0
L'-r +r	11 · 7975 6 · 083	11 · 6059 6 · 063	41-2164 -4-444	43 · 2733 - 4 · 444	22·5025 -12·610	22 · 5061 - 12 · 610
L' d'	17:8905 0-200	17-6889	36-7724 0-150	38-8293 0-150	9-8925	9-\$961
new L	17-6805	17-4889	- 36-6224	38-6793		1 1
- ½U + ½ I	0- 0- 0 1-39-58	0- 0- 0 1-39-58	-0-34-0 -2-49-34	- 0-34-22 - 2-49-56	-0-16-22 -1-3-53	- 0-15-30 - 1- 3- 1
±(I− U)	1-39-58	1-39-58	- 3-23-34	- 3-24-18	- 1-20-15	-1-18-31
11' -1U'	1- 5-58 -0-34- 0	1- 5-36 -0-34-22	- 2-31-55 - 0-16-22	- 2-31- 2 - 0-15-30	-1-48-2 -1-0-31	- 1-48- 2 - 1- 0-30
$\frac{1}{2}(I'-U')$	0-31-58	0-31-14	- 2-48-17	- 2-46-32	- 2-48-33	- 2-48-32
log L + log sin U		,	1-24748 8-29631	1-24276 8-30097	1 · 56376 7 · 97849	1 · 58746 7 · 95485
or log Y (for II light) + log sec ½(I – U)	9-54851 0-00018	9·54851 0·00018	0.00076	0-00077	0-00012	0.00011
log PA	9-54869	9-54869	9 - 54455	9-54450	9-54237 . 1-45346	9 · 54242 1 · 45358
$+ \log \csc U'$ $+ \log \cos \frac{1}{2}(I' - U')$	1-70369 9-99998	1-69903 9-99998	2·02151 9·99948	2·04515 9·99949	9-99948	9-99948
$\log L'$	1-25236	1-24770	1-56554	1 · 58914	0.99531	0-99548
L' (by check)	17-8797 0-200	17:6889 0:200	.36-7739 0-150	38-8275 0-150	9-8926	9-8965
X	12,4207	17,4880	36-6239	38-6275		

From B. K. Johnson 1948 Optical design and lens computation of Optical Sciences

Real and first-order rays

The sphere

$$\frac{1}{f} = \frac{n-1}{r} + \frac{1-n}{-r} - \frac{2r}{n} \frac{n-1}{r} \frac{1-n}{-r} = \frac{n-1}{r} \left(2 + \frac{2r}{n} \frac{1-n}{r} \right)$$

$$= \frac{n-1}{r} \left(2 + \frac{2}{n} \frac{1-n}{1} \right) = \frac{n-1}{r} \left(\frac{2n}{n} + \frac{2}{n} \frac{1-n}{1} \right) =$$

$$= \frac{n-1}{r} \frac{2}{n} = \frac{1.5-1}{0.3M} \frac{2}{1.5} = \frac{1}{0.3} \frac{2}{3} \frac{1}{M}$$

 ${\rm Prof.\ Jose\ Sasian} f = 0.45 M$

4f optical relay system

4f optical system

Solves in a lens design program

- First-order calculations
- Distance to the ideal image plane
- Surface curvature for a given ray angle

Pick ups

- Radii
- Index
- Thickness
- Aspheric coefficient
- Many more

The 'complete optical' system

- Optical elements/components
- Lenses, mirrors, gratings, filters, prisms
- Apertures
- Light baffles
- Detectors
- Coatings
- Opto-mechanics

Point in case: Am I missing something?

Rays and wavefronts: two approaches for understanding light propagation

- Ray approach
- Wave approach
- •The unphysical point source concept

Optical path length/difference

$$OPL = \int_{a}^{b} n(s) ds \qquad OPL = \sum_{i} n_{i} s_{i}$$

Main lecture topic

First-order optics review

Check in your knowledge

 Go one step further toward mastering the basics of first-order optics

Summary

- Review of first-order optics
- The aperture stop

Next class: review of aberrations

