Week 5 Confidence interval

1. Introduction to confidence interval

Stat 140 - 04

Mount Holyoke College

1. Questions? (15 minutes)

2. Last week

3. Today: confidence interva

1. Questions? (15 minutes)

2. Last week

3. Today: confidence interva

I recently received a gift of 100,000 M&M's. I would like to know what proportion of these M&M's are blue?

Sample once: 10 out of 50 M&M's are blue.

$$\hat{p} = 0.2, \qquad p = ?$$

We use the statistic from a sample as a **point estimate** for a population parameter.

Point estimates will not match population parameters exactly, but they are our best guess, given the data.

Sample many times

A sampling distribution is the distribution of sample statistics computed for different samples of the same size from the same population.

A sampling distribution shows us how the sample statistic varies from sample to sample

Center

If samples are randomly selected, the sampling distribution will be centered around the population parameter.

Spread

The spread of the distribution measures how much the statistic varies from sample to sample. Also known as **Standard Error**

Shape

For most of the statistics we consider, if the sample size is large enough the sampling distribution will be symmetric and bell-shaped.

For a sufficiently large sample size, the distribution of sample proportion or sample mean is normal.

For a sufficiently large sample size, the distribution of sample proportion or sample mean is normal.

 \mathcal{N} (Population Parameter, Standard Error)

Green area = middle 95% of the values of sample statistics

Between what two values would you say 95% of sample statistics (proportion) lie?

$$P(? < \hat{p} < ?) = .95$$

1. Questions? (15 minutes)

2. Last week

3. Today: confidence interval

An interval estimate gives a range of plausible values for a population parameter.

Point vs Interval

Point estimate

Confidence interval

One common form for an interval estimate is

Point Estimate \pm Margin of Error (ME)

where the margin of error reflects the precision of the sample statistic as a point estimate for the parameter.

General Election: Trump vs. Biden (4-Way)

Top Battlegrounds: Trump vs. Biden

RCP Electoral Map | No Toss Up Map | RCP Senate Map | Senate NTU Map | RCP House Map | Latest Polls

Polling Data										
Poli	Date	Sample	MoE	Biden (D)	Trump (R)	Spread				
RCP Average	10/16 - 10/26			50.6	43.5	Biden +7.1				
Emerson	10/25 - 10/26	1121 LV	2.8	50	45	Biden +5				
IBD/TIPP	10/22 - 10/26	970 LV	3.2	50	46	Biden +4				
Rasmussen Reports	10/22 - 10/26	1500 LV	2.5	49	47	Biden +2				
JTN/RMG Research*	10/23 - 10/24	1842 LV	2.8	51	44	Biden +7				
CNBC	10/21 - 10/24	800 RV	3.5	51	40	Biden +11				
Economist/YouGov	10/18 - 10/20	1344 LV	3.2	52	43	Biden +9				
Reuters/Ipsos	10/16 - 10/20	949 LV	3.6	51	42	Biden +9				
Quinnipiac	10/16 - 10/19	1426 LV	2.6	51	41	Biden +10				
	All General Elect	tion: Trump vs. Bi	den Polling	Data						

Why is the margin of error smaller for the Emerson poll than the IBD/TIPP poll?

General Election: Trump vs. Biden (4-Way)

Top Battlegrounds: Trump vs. Biden

RCP Electoral Map | No Toss Up Map | RCP Senate Map | Senate NTU Map | RCP House Map | Latest Polls

Polling Data										
Poll	Date	Sample	MoE	Biden (D)	Trump (R)	Spread				
RCP Average	10/16 - 10/26			50.6	43.5	Biden +7.1				
Emerson	10/25 - 10/26	1121 LV	2.8	50	45	Biden +5				
IBD/TIPP	10/22 - 10/26	970 LV	3.2	50	46	Biden +4				
Rasmussen Reports	10/22 - 10/26	1500 LV	2.5	49	47	Biden +2				
JTN/RMG Research*	10/23 - 10/24	1842 LV	2.8	51	44	Biden +7				
CNBC	10/21 - 10/24	800 RV	3.5	51	40	Biden +11				
Economist/YouGov	10/18 - 10/20	1344 LV	3.2	52	43	Biden +9				
Reuters/Ipsos	10/16 - 10/20	949 LV	3.6	51	42	Biden +9				
Quinnipiac	10/16 - 10/19	1426 LV	2.6	51	41	Biden +10				
	All General Elect	ion: Trump vs. Bi	den Polling	Data						

Using the Emerson poll, calculate an interval estimate for the proportion of registered voters who planned to vote for Biden.

$$50 \pm 2.8 = (47.2, 52.8)$$

The 2020 presidential election already happened, so this is one of the rare situations in which we actually know the true population parameter, p!

In the actual election, 51% voted for Biden.

How would you find the margin of error to ensure that intervals of the form

Point Estimate \pm Margin of Error (ME)

would capture the parameter for 95% of all samples? (Hint: remember the normal distribution and 95% rule)

Using the central limit theorem, 95% confidence interval can be estimated using

Point Estimate \pm 2 Standard Error (SE)

Poll question

A survey of 1,502 Americans in January 2012 found that 86% consider the economy a "top priority" for the president and congress this year.

The standard error for this statistic is 0.01. What is the 95% confidence interval for the true proportion of all Americans that considered the economy a "top priority" at that time?

- **1**. (0.85, 0.87)
- 2. (0.84, 0.88)
- **3**. (0.82, 0.90)

In general, a confidence interval is of the form:

Point Estimate \pm Critical value \times SE

Critical value depends on

- ▶ Desired level of confidence (e.g. 90%, 95%, 99%)
- Appropriate sampling distribution (so far we have only learned normal distribution)