

Packet Tracer - VLSM Design and Implementation Practice Topology

You will receive one of three possible topologies.

Addressing Table

Device	Interface	IP Address	Subnet Mask	Default Gateway
	G0/0			N/A
	G0/1			N/A
	S0/0/0			N/A
	G0/0			N/A
	G0/1			N/A
	S0/0/0			N/A
	VLAN 1			
	NIC			

Objectives

Part 1: Examine the Network Requirements

Part 2: Design the VLSM Addressing Scheme

Part 3: Assign IP Addresses to Devices and Verify Connectivity

Background

In this activity, you are given a /24 network address to use to design a VLSM addressing scheme. Based on a set of requirements, you will assign subnets and addressing, configure devices and verify connectivity.

Instructions

Part 1: Examine the Network Requirements

Step 1: Determine the number of subnets needed.

You will subnet the network address 192.168.72.0/24. The network has the following requirements:

Packet Tracer - VLSM Design and Implementation Practice

Room - 1/4 LAN will require
 Room - 279 LAN will require
 Room - 312 LAN will require
 Room - 407 LAN will require
 Room - 407 LAN will require

How many subnets are needed in the network topology? 5 Subnets (counting one between the routers)

Step 2: Determine the subnet mask information for each subnet.

a. Which subnet mask will accommodate the number of IP addresses required for from - III ?

How many usable host addresses will this subnet support?

128 gives 14 host addresses 4

- b. Which subnet mask will accommodate the number of IP addresses required for \$\lambda \com -279 \quad ?

 How many usable host addresses will this subnet support?

 \[\lambda 2 + \quad \text{qives} \quad 2^{5} 2 = 30 \quad \text{hosts} \quad \text{dds} \]
- c. Which subnet mask will accommodate the number of IP addresses required for \$\int_{OOM} 3/2 ?

 How many usable host addresses will this subnet support?

127 gives 25-2=30 hosts adds

- d. Which subnet mask will accommodate the number of IP addresses required for Room 407?

 How many usable host addresses will this subnet support?

 /26 ques 2⁶-2 = 62 hosts addresses
- e. Which subnet mask will accommodate the number of IP addresses required for the connection between Branch 1 and Branch 2?

 /30 gives 2 host addresses

Part 2: Design the VLSM Addressing Scheme

Step 1: Divide the 192.169.72.0/24 network based on the number of hosts per subnet.

- a. Use the first subnet to accommodate the largest LAN.
- b. Use the second subnet to accommodate the second largest LAN.
- c. Use the third subnet to accommodate the third largest LAN.
- d. Use the fourth subnet to accommodate the fourth largest LAN.
- e. Use the fifth subnet to accommodate the connection between \mathfrak{b}_{i} and \mathfrak{b}_{z}

Step 2: Document the VLSM subnets.

Complete the **Subnet Table**, listing the subnet descriptions (e.g. [[S1Name]] LAN), number of hosts needed, then network address for the subnet, the first usable host address, and the broadcast address. Repeat until all addresses are listed.

Subnet Table

192.168.72.0 /24 { 192.168.72.0 /26 62 hosts { 192.168.72.64 /27 30 hosts } 192.168.72.96 /27 30 hosts } 192.168.72.128 /27 30 hosts { 192.168.72.128 /27 192.168.72.128 /28 14 hosts } 192.168.72.128 /27 192.168.72.144 /30 } 192.168.72.144 /30 }

Subnet Description	Number of Hosts Needed	Network Address/CIDR	First Usable Host Address	Broadcast Address
Room - 407	58	192.168.72.0/26	192.168.72.1	192.168.72.63
Room - 3/2	29	.64 /27	. 65	_. 45
Room-279	15	. 96 /27	. 97	. 127
Room-114	7	. 128/28	. 129	. 143
Routers	2	- 144/30	. 144	. 151

Step 3: Document the addressing scheme.

a. Assign the first usable IP addresses to Branch 1

for the two LAN links and the WAN link.

b. Assign the first usable IP addresses to Branch 2 address for the WAN link.

for the two LAN links. Assign the last usable IP

- c. Assign the second usable IP addresses to the switches.
- d. Assign the last usable IP addresses to the hosts.

Part 3: Assign IP Addresses to Devices and Verify Connectivity

Most of the IP addressing is already configured on this network. Implement the following steps to complete the addressing configuration.

Step 1: Configure IP addressing on the router LAN interfaces.

Step 2: Configure IP addressing on the , switch including the default gateway.

Step 3: Configure IP addressing on , including the default gateway.

Step 4: Verify connectivity.

You can only verify connectivity from , , and . However, you should be able to ping every IP address listed in the **Addressing Table**.