Q: Les ondes électromagnétiques comme les ondes sonores sont caractérisées par	Q: Quelle est la relation entre la fréquence, la longueur d'onde et la célérité pour une onde ?	Q: Quel est le domaine de fréquence des ondes sonores audibles ?	Q: Par comparaison, quelle est la célérité la plus grande entre les ondes électromagnétiques et les ondes sonores ?
quelles grandeurs ? Q: Que permet de faire un oscilloscope ?	Q: Comment appelle-t-on des signaux en phase ?	Q: Dans quel domaine utilise-t-on les rayons X ?	Q: Quelle est le
Q: De quelle nature sont les rayons X ?	Q: Pourquoi les rayons X présentent-ils un danger pour le corps humain ?	Q: Quels sont les atomes qui sont les plus absorbants par les rayons X ?	Q: Pour quelle raison les os apparaissent-ils blancs sur une radiographie ?
Q: En quoi consiste une radiographie ?	Q: En quoi consiste la radiothérapie ?	Q: Que signifie l'acronyme IRM ?	Q: Que permet de faire une IRM ?

Les ondes	De 20 Hz à 20 kHz (20	$\lambda \times f = c$ (longueur	La fréquence notée f
électromagnétiques	000 Hz).	d'onde × fréquence =	ou ν (nu), la longueur
ont une célérité		célérité).	d'onde notée λ
beaucoup plus grande			(lambda) et la vitesse
que les ondes sonores.			de propagation
			appelée célérité.
Leur fréquence est	Dans le domaine	Des signaux sont en	Il permet de visualiser
comprise entre 3 $ imes$	médical (radiographie,	phase si leurs	les signaux reçus ou
$10^{16} \text{Hz et 3} \times 10^{20} \text{Hz}.$	radiothérapie) et dans	maximums et	émis.
	la sécurité (contrôle	minimums se	
	dans les aéroports).	produisent aux mêmes	
		instants.	
Parce qu'ils absorbent	Les atomes de numéro	Car le corps humain	Ce sont des ondes

atomique Z élevé.

absorbe les rayons X,

ce qui peut

endommager les

cellules et les tissus.

Il s'agit de traiter

localement un cancer à

l'aide de rayons X.

électromagnétiques de

haute fréquence.

Il s'agit d'obtenir une

image interne du corps

sans endommager les

cellules.

Observer les tissus Imagerie par mous comme le Résonance cerveau, la moelle Magnétique. épinière, les muscles ou le cœur.

fortement les rayons X,

notamment grâce au

calcium (Z = 20).

Q: Quels sont les atomes qui sont réactifs à l'IRM ?	Q: Pourquoi ajoute-t-on des produits de contraste lors d'une IRM ?	Q: Quel est l'ion principalement utilisé dans les produits de contraste ?	Q: Pourquoi le gadolinium n'est-il pas utilisé sous sa forme ionique libre (atomique) ?
Q: Avec quelle molécule liguante le gadolinium est-il associé pour être moins toxique ?			

Car sous sa forme ionique libre, il est toxique pour l'organisme.	Le gadolinium sous forme d'ion Gd³+.	Pour améliorer la qualité des images obtenues.	Les atomes d'hydrogène.
			Avec des molécules appelées chélates, qui l'encapsulent (l'entourent) pour le rendre inoffensif.