

安全多方计算与同态加密 及其在业界的应用

洪澄

更多的"密态计算"场景

- A博士想把自己的论文送到TB网站查重一下但是不想泄露自己的论文具体内容
- B博士想在某网站上查询某个药的使用方法 • 但是不想泄露自己在关注这个药

引子

- A公司想知道自己的用户与B公司用户有多少重合度
 - 可以针对重合的这部分用户开展营销活动
 - 但是双方都不想将自己的用户信息发给对方
- 直接哈希手机号求交集行不行?
 - A -> B : { Hash(a) }
 - B local compute { Hash(b) } and compare

"密态计算" in Ant Group

- 需求背景: 跨机构的数据合作
 - 反洗钱;客户营销;
- 外部
 - E.g. 蚂蚁 vs 江苏银行, 蚂蚁 vs 浦发银行 ...
- 内部
 - 不同子公司之间的数据合作
 - E.g. 支付宝 vs 蚂蚁链
- ・服务
 - 银行A和银行B通过蚂蚁的密态计算产品进行合作

9. 蚂蚁技术研究院

Outline

- (全) 同态加密 FHE
- •安全多方计算MPC
- 我们的工作简介

同态加密Homomorphic Encryption

- 一种特殊的加密算法
- 密文不仅不泄露明文的信息, 还支持互操作
 - E.g. 密文空间的 ① 对应明文加法
 - 密文空间的 ⊙ 对应明文乘法
- •能支持无限次加法和乘法,则称为Fully HE

BFV(toy example)-- 加密

•记系数mod q的mod XN+1多项式空间为R_aN

• 明文m∈R_t^N //t<q,密钥s ∈R_a^N

• 则密文为(m+a*s+e, a) //a∈R_aN

安全性: RLWE假设

•已知 (a*s, a)是不安全的: 可以反解出s • 但是加上一些小的e之后, (a*s+e, a)就变成

安全的: 反解不出s

错误的同态加密打开方式

• Affine encryption, 具有加法同态性 (腾讯)

• 密钥生成: 取大整数n,a,b; 公开n; a,b 私密保存。

• 加密m: Enc(m) = (am+b mod n , 1), 记为(E , k)

• 密文加法: Add((E1,k1), (E2,K2)) = (E1+E2, k1+k2)

• 解密: Dec(E, k) = a-1 *(E - k*b) mod n

• 不安全

• Enc(m+1) - Enc(m) 就可以破解出a了

Enc(0)直接泄露了b

• 加密算法一定是可以正向的论证安全性

• 反向思路要不得: "我设计一个算法,没人能破解就是安全的"

• 那只是因为能破解的人没站出来

蚂蚁技术研究院

自举Bootstrapping

- 进行多次乘法操作后、噪声导致无法进一步计算
 - 再计算就出错了
- 自举可以"清除"噪声
 - 迭代自举即可实现无限计算
 - 没有自举不能叫FHE

BFV(toy example)-- 同态性

满足加法同态性:

满足乘法同态性:

FHE的编码方式

- 但是实际应用中、需要处理的是数字而不是多项式
- 需要一种从数字>多项式的编码机制
- 而且这种编码机制也得是同态的

方案A-系数编码

- 例: 甲的基因测序是 $\{a_0,a_1,\cdots a_{n-1}\}$,乙的基因测序是 $\{b_0,b_1,\cdots b_{n-1}\}$
 - 双方希望计算彼此的基因相似度,但不泄露基因明文
- Naïve方案: 甲使用n个多项式编码自己的基因, 然后加密
 - $\{a_0, a_1, \dots a_{n-1}\}$ -> $a_0 \mod X^N + 1$, $a_1 \mod X^N + 1$, ..., $a_{n-1} \mod X^N + 1$
 - 乙对这些密文和自己的明文, 执行加密计算 Σ a,b,, 返回给甲
 - 甲解密得到相似度。
- 总共花费是n次加密。n次密文-明文乘。n-1次密文加法。1次解 密. 诵信量n+1个密文。
 - Can we do better?

•安全问题:

$$P_a = a_0 + a_1 X + a_2 X^2 + \dots + a_n X^n$$
, $P_b = b_0 - b_1 X^{N-1} - b_2 X^{N-2} - \dots - b_n X^{N-n}$

- P_aP_b的常数项是Σ a_ib_i
 - 但是甲解密还能得到PaPb的其他次项
 - 这些是预期结果之外的额外信息
- 解决方案: 乙不是直接发回Enc(PaPh), 而是发回Enc(PaPh)+Ph
 - P.是一个常数项=0,其他项是随机数mod t的多项式
 - Is it OK?

方案A-系数编码 (续)

- 改进方案: 甲使用一个多项式编码自己的基因. 然后加密 $P_a = a_0 + a_1 X + a_2 X^2 + \ldots + a_n X^n$
- 乙也使用一个多项式编码自己的基因:

$$P_b = b_0 - b_1 X^{N-1} - b_2 X^{N-2} - \dots - b_n X^{N-n}$$

- 然后对Pa的密文和自己的明文Pb,执行加密计算 PaPb,返回给甲
- 甲解密,内积Σ a,b,即在结果P,P,的常数项上。
 - 原因: a₁X* (-b₁X^{N-1}) = -a₁b₁X^N = a₁b₁ mod X^N+1
- 总共花费是1次加解密. 1次密文-明文乘. 通信量2个密文
 - Is it OK?

•安全问题:

- P_aP_b的常数项明文是Σ a_ib_i
 - 但是甲解密得到的不仅是明文, 还有噪声
 - 噪声是预期结果之外的额外信息
- •解决方案: 乙需要在常数项上额外加上一个随机噪声e,
 - e,需要远大于预期的噪声,且不侵入明文
 - "noise flooding"
 - Is it OK?
 - Yest

(蚂蚁技术研究院

方案B-SIMD编码 (Packing)

- 如何将需要计算的数据编码为多项式?
 - xⁿ +1可以拆分为n个多项式的积: xⁿ +1 = (x+a₁)(x+a₂)....(x+a_n)
 - 例:设t=17,n=2,则x²+1 = (x-4)(x-13) // x²-17x+52 mod 17
 - f(x) mod (xⁿ +1) 可以表示n个整数: x_i = f(x) mod (x+a_i)
 - 例: x mod (x²+1) 可以表示 x mod (x-4) 和 x mod (x-13) ,即 x mod (x²+1) "pack" 了4和13
- •给定n个整数,可以通过中国剩余定理找到对应的f(x)来编码它们
 - 例: 2x-7 "pack" 了1和2: // 2x-7 mod (x-4) = 1, 2x-7 mod (x-13) = 2 mod 17
- Packing依然保持 (mod t上的) 同态性
 - 加法: x+(2x-7) packs 5 and 15: // 3x-7 mod (x-4) = 5, 3x-7 mod (x-13) = 15 mod 17
 - 乘法: x*(2x-7) packs 4 and 9: // 2x²-7x mod (x²+1) = -7x-2; -7x-2 mod (x-4) = 4, -7x-2 mod (x-13) = 9 mod 17
- · SIMD: 一次多项式运算完成了n次整数运算

- 例: 商家购买云上的数据库保存自己的订单数据
 - 但又害怕云服务商看到自己的营业金额,因此使用同态加密

订单号	原价	成交价	买家id	卖家id	地区
1	密文	密文	Α	В	北京
2	密文	密文	С	В	上海
3	密文	密文	D	Е	杭州

• Select sum('原价'), sum('成交价') from table group by '地区'

方案B-SIMD编码 (续)

- 一次密文加/乘可以完成N次明文加/乘,故名SIMD
 - Single Instruction Multiple Data

明文空间	编码空间	密文空间
(4,13)	^{扁码} → X ^{加和}	Enc(x)
(1,2) _	^福 →2x-7 ^加	Enc(2x-7)
(5,15)₊	 	Enc(3x-7)

FHE用途举例: 隐私保护查询

- 服务器对自己的数据库进行 插值计算,得到多项式: y=F(x)
- 客户发送同态加密的x
- 服务器在x上同态的计算F
- 客户解密F得到y

- Devil in details.
 - 数据较多时, 多项式曲线次数过高怎么办
 - 数据如何编码才能高效进行多项式计算
 - 这么大的多项式用什么数据结构存
 - 如何平衡计算量和诵信量
 - 目标: 最终实现百万级数据秒级查询

[ACM CCS 2018] Labeled PSI from Fully Homomorphic Encryption with Malicious Security

问题: 目前只能加密计算加法和乘法

• ReLU怎么办? Softmax怎么办?

•可以用高阶多项式近似,但是代价巨大

TFHE (toy example)

🥠 蚂蚁技术研究院

- 加密:
 - Enc(m) = (\vec{a}, b)
 - b= Δ m- $\vec{a} \cdot \vec{s}$ +e
- TFHE Programmable bootstrapping (PBS) :
 - Input: Enc(m)
 - Output: Enc(f(p)) // $p=\Delta m+e$

- 首先构造查找表(LUT)
 - $A_0 = f(0) + f(1) x + f(2) x^2 + \cdots + f(p) x^p + \cdots + f(n-1) x^{n-1}$
- 基本思想:将A乘Enc(x^{-p}),然后提取 出常数项
 - 注意到p=b+ $\vec{a} \cdot \vec{s}$
 - Client提供S₁= Enc(s₁)作为PBS key
 - A₀=A₀*x^{-b}
 - $A_1 = A_0 * (1 S_1) + A_0 * x^{-a_1} * S_1 = Enc(A_0 * x^{-a_1} s_1)$
 - 重复上述步骤即可达到目标

- TFHE可以通过查找表支持任意函数的加密计算
 - 但是不能SIMD编码,因此加法和乘法的吞吐量不如BFV

	多项式运算?	非多项式运算?
A类全同态加密 (BFV/BGV/CKKS)	○ 支持packing,性能好	不支持,只能近似
B类全同态加密 (TFHE/FHEW)	不支持packing,性能差	支持

[SP 2021] PEGASUS: Bridging Polynomial and Non-polynomial Evaluations in Homomorphic Encryption.

Outline

- (全) 同态加密 FHE
- •安全多方计算MPC
- 我们的工作简介

- TFHE虽然可以执行任意计算…
 - 但是最多一次支持6~7个bit
 - 更高的精度需要更长的查找表, 导致计算复杂度指数增长
 - 每秒最多算~100个
 - 要迭代N次密文乘法才能完成一个查找表计算
- ResNet里面的ReLU动辄百万个起步,精度要求32bit以上
- 需要新的技术: Secure Multiparty Computation (MPC)

- 重要的MPC工具1: Oblivious Transfer (OT)
 - S持有两个数p1和p2
 - R希望得到其中一个,且S不能知道R选择的是哪个

9. 蚂蚁技术研究院

- 重要的MPC工具1: Oblivious Transfer (OT)
 - S持有两个数p1和p2
 - R希望得到其中一个,且S不能知道R选择的是哪个

• 重要的MPC工具2: Secret Sharing

• 秘密共享的x记为[x]

给定 [x],[y], 可以计算[x + y]

不需要网络交互

给定 [x],[y], 可以计算[x AND y] //n=2

给定 [x],[y], 可以计算[Relu(x)]

• 例: 先计算 [sign(x-y)] // Relu(x)=x*(1-sign(x))

给定 [x],[y], 可以计算任意[f(x)]。但是每个AND门都要用OT通信一次 ❷

• 考虑一个AND门

0	0	0
0	1	0
1	0	0
1	1	1

•混淆后的GC_{AND}

混淆电路: 2轮通信计算任意函数

- Overview: 甲有a, 乙有b, 希望安全的计算F(a,b)
 - 甲设计混淆规则G
 - 乙使用OT. 从甲处获取b的混淆值Gb
 - 甲把a的混淆值Gb,函数F的混淆电路GC_F发给乙
 - 乙计算GC_F (G_a,G_b) = F(a,b)

任意函数都可通过XOR和AND门表示

- 给定 [x],[y], 可以计算任意[f(x)]
- 但是整数乘法用二进制门表示不太高效
 - 一个乘法包含大量的AND门。。

蚂蚁技术研究院

给定 [x],[y], 使用同态计算[x * y]

Outline

- (全) 同态加密 FHE
- •安全多方计算MPC
- 我们的工作简介

总结: MPC与FHE

	通信量	通信轮数	计算量	功能
OT-MPC	中	高 (一个AND门通信 一次)	低	任意函数
GC-MPC	高 (一个AND门几 百bit)	低	低	任意函数
SIMD FHE	低	低	中	<mark>受限:</mark> (加法、乘法only)
TFHE	低	低	高 (一个门消耗几百次乘 法)	任意函数

神经网络

- ▶ 线性层使用BFV同态
- ➤ 非线性层(ReLU)使用OT based MPC
- ➤ 一次Imagenet + ResNet50推理耗时80秒

[USENIX Security 2022] Cheetah: Lean and Fast Secure Two-Party Deep Neural Network Inference.

大模型

- ▶ 线性层使用BFV同态
- ➤ 非线性层(GeLU,Softmax)使用Secret Sharing based MPC
- ▶ Llama-7B输出一个token耗时13分钟

[NDSS 2025] Bumblebee: Secure two-party inference framework for large transformers [USENIX Security 2025] GraphAce: Secure Two-Party Graph Analysis Achieving Communication Efficiency

线性模型建模(逻辑回归、推荐系统)

- 密态梯度下降优化
- 密态求矩阵乘、Sigmoid
- 亿级数据, 小时级完成建模

[KDD 2021] When homomorphic encryption marries secret sharing:
Secure large-scale sparse logistic regression and applications in risk control **[TDSC 2021]** More efficient secure matrix multiplication for unbalanced recommender systems

跨公司的联合建模

ID	支出	收入	车险出险次数	医保报销次数
Alice	\$50,000	\$150,000	1	3
Bob	\$35,000	\$90,000	2	1
Cathy	\$45,000	\$70,000	3	3
David	\$72,000	\$300,000	2	4
	银行知	1道读部分	保险公司知道	i 文部分

- 现在Alice需要向银行申请一笔贷款
 - 银行应该批多大额度? 多少利息?
 - 银行如果能拿到保险公司的数据, 评估会更加精确
 - 但是直接卖数据会伤害用户隐私

基于决策树的密态建模 (GBDT/XGBoost)

ID	X ₁ (Age)	X ₂ (Use computer daily)	Y (Like computer game)
	6	Y	1
	12	Ν	-1
	30	Y	1
	65	N	-1
	70	N	-1

- ▶ 密态下算熵求分裂点
- ▶ 百万数据分钟级建模

[USENIX Security 2023]

Squirrel: A Scalable Secure Two-Party Computation Framework for Training Gradient Boosting Decision Tree.

硬件加速MPC

- MPC需要大量的网络传输
- RDMA网卡可以跳过TCP/IP, 直接拷贝内存
 - 提高网络带宽,降低传输延迟

[USENIX Security 2024] Accelerating Secure Collaborative Machine Learning with Protocol-Aware RDMA

更高的MPC安全级别

- 此前的描述都是假设大家会遵从协议
- · What if.. 恶意用户不遵从协议,故意传输错误的数据?
 - 最好的结果: 协议会出错终止
 - 最坏的结果: 不知情的另一方的隐私可能会泄露!
- 例: 一方故意给自己的secret share加上一个很大的值

• 令ReLU(x)永远=x

转密技术:降低FHE密文体积

• FHE会带来密文膨胀 😕

- •解决方案:
 - 先用AES等对称算法加密
 - 然后(不解密的)把AES密文转 换成FHE密文

[CHES 2025] SoK: FHE-friendly symmetric ciphers and transciphering [CHES 2025] XBOOT: Free-xor gates for ckks with applications to transciphering.

Malicious security (two party)

- 流行的解决方案需要在双方的secret share上加上验证码 (MAC)
 - 这样任意一方使用错误的数据就会被发现
- 所有的数据都加MAC,这带来了巨大的通信开销

nessage	MAC	message'
nessage	MAC	message'
message	MAC	message'
message	MAC	message'
message	MAC	message'

• 使用RMFE技术,一批数据经过转换后只需要使用一份MAC

[Asiacrypt 2023] Degree-D Reverse Multiplication-Friendly Embeddings: Constructions and Applications [ACM CCS 2024] Coral: Maliciously Secure Computation Framework for Packed and Mixed Circuits

Malicious security (two party)

- FHE中,计算方返回加密计算结果时,需要自证计算结果是对的
 - 直接使用零知识证明ZKP可以解决,但是一般ZKP(FHE)比FHE要贵1000倍以上···
 - FHE比明文已经要贵N倍…
- •提出一种新的ZKP(FHE)方案。比FHE贵100倍以内

[SP 2025] ZHE: Efficient Zero-Knowledge Proofs for HE Evaluations

Higher security with less cost (PVC)

- 为了检查恶意攻击需要付出大量的自证、检验代价
- •可以进行一定的安全妥协,仅以X%的概率检查出恶意攻击
 - 虽然达不到100%,但是"可能会被查到"这个威慑很多时候已经足够
- •例: 50%威慑力的MPC仅比semihonest MPC慢60%
 - 而Malicious(100%检测)MPC比semihonest MPC慢1个量级以上

[Eurocrypt 2019] Covert security with public verifiability: Faster, leaner, and simpler

Malicious security (three party)

•三方计算中因为有两个交叉验证者。因此ZKP代价相对低

[USENIX Security 2023] Efficient 3PC for Binary Circuits with Application to Maliciously-Secure DNN Inference [ACM CCS 2024] Sublinear Distributed Product Checks on Replicated Secret-Shared Data over without Ring Extensions

Open-source projects

- Production-level projects
 - 隐语: https://github.com/secretflow
- Research projects
 - https://github.com/antcplab

Thanks

AntCPLab.github.io