# Fundamental Network Concepts

**Building Blocks of Network Analysis** 

SMM638 Network Analytics

# What is a Graph?

#### **Mathematical Foundation:**

A graph G is defined as:  $G = \{V, E\}$ 

#### Where:

- $V = [v_1, v_2, ..., v_i, ..., v_n]$  (vertices/nodes)
- $\blacktriangleright \ E = [(v_1,v_2),(v_1,v_i),...,(v_i,v_j)] \ \text{(edges/links)}$

#### In Plain Language:

- **Vertices (Nodes)**: The entities or objects
- **Edges** (Links/Ties): The connections or relationships
- ▶ **Graph**: The complete structure of nodes and edges

# Vertices (Nodes)

#### Vertices represent the fundamental units in a network

#### **Examples across domains:**

- **Social networks**: People, organizations, groups
- ▶ Biological networks: Proteins, genes, organisms
- ► Technological networks: Computers, routers, devices
- **Economic networks**: Companies, banks, countries

#### **Node Attributes:**

- Demographic characteristics (age, location)
- Type or category (customer, supplier, partner)
- Performance metrics (revenue, citations, activity)
- Temporal information (founding date, tenure)

# Edges (Links/Ties)

#### Edges encode relationships between nodes

#### **Key Properties:**

#### 1. Direction

- ightharpoonup Directed: One-way relationships (A ightharpoonup B)
- Undirected: Mutual relationships (A B)

#### 2. Weight

- ▶ Weighted: Strength or frequency of connection
- Unweighted: Binary presence/absence

#### 3. Sign

- Positive: Friendship, cooperation, support
- Negative: Conflict, competition, animosity

#### 4. Type

Multiple relationship types (multiplex networks)

# Network Relationships

#### What Constitutes a Connection?

The definition of a relationship determines:

- ▶ What edges mean and how to interpret them
- Whether relationships are symmetric or asymmetric
- ► How to measure or identify connections
- ▶ The substantive interpretation of patterns

#### **Examples:**

- **Social**: Friendship, advice-seeking, collaboration
- **Economic**: Trade, investment, supply relationships
- ▶ Information: Email exchange, citations, hyperlinks
- ▶ **Biological**: Protein interactions, predator-prey

# One-Mode Networks

Unipartite Networks: One Type of Node

All nodes are of the same type; connections occur between similar entities

### **Common Examples:**

- Friendship networks: People People
  - **Citation networks**: Papers →
  - Papers

    Trade networks: Countries
    - Countries
- Collaboration networks:
  Scientists Scientists

#### **Characteristics:**

► Adjacency matrix is square (n × n)

Can calculate standard network metrics



| Node | Α | В | C | D | Ε |
|------|---|---|---|---|---|
| Α    | 0 | 1 | 1 | 0 | 0 |
| В    | 1 | 0 | 1 | 1 | 0 |
| C    | 1 | 1 | 0 | 0 | 1 |
| D    | 0 | 1 | 0 | 0 | 1 |
| E    | 0 | 0 | 1 | 1 | 0 |

#### Two-Mode Networks

# Bipartite Networks: Two Types of Nodes

Edges only connect nodes of different types

#### **Common Examples:**

- **Actor-Movie**: Actors Movies
- ► Author-Paper: Authors
- Publications
- Customer-Product: Buyers
  - Items purchased
- Student-Course: Students
  Classes enrolled

#### **Analytical Approaches:**

- 1. Analyze the bipartite structure directly
- Project onto one-mode networks (actors actors who shared movies)
- 3. Examine affiliation patterns



#### Incidence Matrix:

| M1 | M2  | М3      | M4             |
|----|-----|---------|----------------|
| 1  | 1   | 0       | 0              |
| 1  | 0   | 1       | 0              |
| 0  | 1   | 1       | 1              |
|    | 1 1 | 1 1 1 1 | 1 1 0<br>1 0 1 |

#### **Directed Networks**

# Asymmetric Relationships with Direction

Edges have a source and target:  $A \to B$ 

### **Key Examples:**

- **Email networks**: Sender → Receiver
- Citation networks: Citing paper
  - ightarrow Cited paper
- **Food webs**: Predator  $\rightarrow$  Prey
- Twitter: Follower → Followed account

#### **Important Distinctions:**

- In-degree: Incoming connections (popularity, citations received)
- Out-degree: Outgoing connections (activity, citations made)
- Reciprocity: Do ties go both ways?



| Node | Α | В | C | D | Ε |
|------|---|---|---|---|---|
| Α    | 0 | 1 | 1 | 0 | 0 |
| В    | 0 | 0 | 0 | 1 | 0 |
| С    | 1 | 0 | 0 | 0 | 0 |
| D    | 0 | 0 | 0 | 0 | 1 |
| E    | 0 | 0 | 1 | 0 | 0 |

#### **Undirected Networks**

# Symmetric Relationships Without Direction

Edges represent mutual connections:

A—B

#### **Key Examples:**

- Friendship networks: Mutual friendships
- **Co-authorship**: Joint publications
- Infrastructure: Roads, power grids, railways
- ▶ **Protein interactions**: Molecular binding

#### **Characteristics:**

- Connection implies reciprocal relationship
- Single degree measure (not in/out)
- ► Simpler mathematical properties
- ► Adjacency matrix is symmetric



| Node        | Α           | В     | C     | D     | Ε |
|-------------|-------------|-------|-------|-------|---|
| A           | 0           | 1     | 1     | 0     | 0 |
| В           | 1           | 0     | 1     | 1     | 0 |
| С           | 1           | 1     | 0     | 0     | 1 |
| D           | 0           | 1     | 0     | 0     | 1 |
| E           | 0           | 0     | 1     | 1     | 0 |
| B<br>C<br>D | 1<br>1<br>0 | 0 1 1 | 1 0 0 | 1 0 0 | 1 |

# Signed Networks

# Edges Carry Positive or Negative Valence

Relationships can be friendly or hostile

#### Positive Edges (+):

- Friendship, alliance, cooperation
- Support, endorsement, trust

#### Negative Edges (—):

- ▶ Animosity, conflict, competition
- ▶ Opposition, distrust, rivalry

#### **Applications:**

- Social balance theory (enemy of my enemy is my friend)
- Coalition formation in politics
- Opinion polarization dynamics
- Organizational conflict analysis



# Signed Adjacency Matrix:

| Α  | В                 | С                         | D                                   | E                                            |
|----|-------------------|---------------------------|-------------------------------------|----------------------------------------------|
| 0  | 1                 | -1                        | 0                                   | 0                                            |
| 1  | 0                 | 0                         | 1                                   | 0                                            |
| -1 | 0                 | 0                         | -1                                  | 0                                            |
| 0  | 1                 | -1                        | 0                                   | 1                                            |
| 0  | 0                 | 0                         | 1                                   | 0                                            |
|    | 0<br>1<br>-1<br>0 | 0 1<br>1 0<br>-1 0<br>0 1 | 0 1 -1<br>1 0 0<br>-1 0 0<br>0 1 -1 | 0 1 -1 0<br>1 0 0 1<br>-1 0 0 -1<br>0 1 -1 0 |

# Weighted Networks

Edge Strength Varies Continuously Weights represent connection intensity, frequency, or capacity

#### **Examples:**

- Communication: Number of messages exchanged
- ► **Transportation**: Traffic volume, distance, capacity
- Financial: Transaction amounts, investment size
- Neural: Synaptic strength between neurons

#### **Analytical Implications:**

- Can identify strong vs. weak ties
- ▶ Weighted centrality measures
- Flow and capacity analysis
- More nuanced than binary networks



# Weighted Adjacency Matrix:

| Node | Α | В | C | D | Ε |
|------|---|---|---|---|---|
| Α    | 0 | 5 | 2 | 0 | 0 |
| В    | 5 | 0 | 0 | 8 | 0 |
| C    | 2 | 0 | 0 | 3 | 0 |
| D    | 0 | 8 | 3 | 0 | 6 |
| Ε    | 0 | 0 | 0 | 6 | 0 |
|      |   |   |   |   |   |

# **Unweighted Networks**

#### Binary: Connection Present or Absent

All edges treated equally (0 or 1)

#### **Characteristics:**

- Simpler to collect and analyze
- Focus on topology, not intensity
- ► May lose important information
- Standard network metrics apply directly

#### When Appropriate:

- Relationship strength unclear or unmeasurable
- Presence/absence is the key question
- Simplification aids interpretation
- Preliminary exploratory analysis



| Node | Α | В |   | D        | F |
|------|---|---|---|----------|---|
| node | A | D | C | <u> </u> |   |
| Α    | 0 | 1 | 1 | 0        | 0 |
| В    | 1 | 0 | 1 | 1        | 0 |
| C    | 1 | 1 | 0 | 0        | 1 |
| D    | 0 | 1 | 0 | 0        | 1 |
| E    | 0 | 0 | 1 | 1        | 0 |

# **Dyads**

#### The Simplest Network Substructure

A dyad consists of two nodes and potential edge(s) between them

#### Types in Directed Networks:

- Null dyad: No connection (0 edges)
- Asymmetric dyad: One-way connection (1 edge)
- Mutual/Reciprocal dyad: Two-way connection (2 edges)

#### **Analytical Value:**

- Foundation for reciprocity analysis
- Building block of larger structures
- Pairwise relationship dynamics
- Simplest unit of social interaction



# Adjacency Matrix (Binary, Dyad Highlighted):

 $\mathsf{Node}$ 

A

В

C

F

Α

0

#### Triads

#### Three Nodes and Their Connections

Triads are fundamental for understanding:

### **Key Concepts:**

- Transitivity: "Friend of friend is friend" ( $A \rightarrow B$ ,  $B \rightarrow C$ ,  $A \rightarrow C$ )
- Structural balance: Stability of positive/negative relationships
  - Clustering: Local cohesion patterns
  - Network motifs: Recurring small-scale patterns

### **Example Patterns:**

- $\triangleright$  Open triad:  $A \rightarrow B$ ,  $B \rightarrow C$  (no  $A \rightarrow C$
- ightharpoonup Closed triad:  $A \rightarrow B$ ,  $B \rightarrow C$ ,  $C \rightarrow A$ (triangle)
- Balanced triad: Signs follow



#### **Adjacency Matrix** (Binary, Triad Highlighted): Node

В

0

# Key Takeaways



#### **Core Building Blocks:**

- Networks = Nodes +
   Edges + Relationships
- 2. Direction matters: Symmetric vs. Asymmetric
- 3. Weights capture relationship intensity
- 4. Signs represent positive/negative ties
- 5. Mode determines what connects to what



#### **Analytical Foundation:**

- Choice of representation affects analysis
  - Different network types require different methods
  - Substructures (dyads, triads) reveal patterns
- Complex networks require sophisticated approaches

**Next:** We'll use these concepts to measure and analyze real networks