

EE290C - Fall 2018 Advanced Topics in Circuit Design VLSI Signal Processing

TuTh 2 - 3:30pm Cory 540A/B

Practical Information

- > Instructor:
 - → Borivoje Nikolić

509 Cory Hall, 3-9297, bora@eecs

Office hours: Th 10-11am or by appointment

- GSI: Paul Rigge
 - > rigge@berkeley

Class Discussion

http://piazza.com/class#spring2018/ee290c/

Sign up for Piazza!

Class Web page

http://bcourses.berkeley.edu

Class Github

https://github.com/ucberkeley-ee290c

Class Objectives

- Review of signal processing algorithms used in wireless and wireline communications, data storage
- > Fixed-function and programmable DSP architectures
- > Chisel as a hardware-construction language
- > Design, verification and validation of a DSP block
- Integration of DSP functions into a complex SoC
- > Build an exciting SoC!

-3

Prerequisites

- > EECS 251A Introduction to Digital Systems
 - > Primarily logic design; FPGA and ASIC tool knowledge is helpful
- > EE 123 Digital Signal Processing
 - Need to know FIR/IIR filters, design
 - DFT, FFT, Z transform
 - > Graduate DSP knowledge will be reviewed in class

Class Materials

No perfect textbook

- Chueh, Tsai, Lai, Baseband Receiver Design for Wireless MIMO-OFDM Communications, Wiley 2012.
- Woods, McAllister, Lightbody, Yi, FPGAImplementation of DSP Systems, Wiley 2017.
- Meher, Stouraitis, Arithmetic Circuits for DSP Applications, Wiley 2017.
- Markovic, Brodersen, DSP Architecture Design Essentials, Springer, 2012.

> References

Weekly reading assignments

•5

Rough Class Outline

- 1. Introduction: systems and optimization metrics (this class)
- 2. Dataflow analysis
- 3. DSP arithmetic (Number representations, quantization effects, functions, CORDIC)
- 4. Automatic gain control using LMS and variants
- Filters, FIR, IIR. Transformations, pipelining, parallelism, interleaving, transposing distributed arithmetic.
- 6. Adaptive filters implementation
- FFT, Frequency-domain filtering
- 8. Viterbi algorithm and implementation, Soft decoding & turbo.
- 9. Message passing with LDPC example
- 10. Systolic arrays, Machine learning accelerators
- 11. MIMO algorithms
- 12. Carrier/timing recovery, estimation, filters, correlators.
- 13. ADC specs, analog impairments
- 14. SW/HW tradeoffs, modem example
- Class presentations

Class Tracks (August-September)

	Lectures	Assignments	Reading
1	Intro	Chisel bootcamp	Chisel papers
2	Dataflow, numbers	Chisel bootcamp	
3	CORDIC	Chisel bootcamp, CORDIC	CORDIC
4	Using Rocket Chip DSP in Chisel	OFDM simulator	OFDM
5	LMS, AGC	Diplomacy	LMS chapter
6	FIR, IIR filters	FIR design	Filters
7	FFT	FFT design	FFT papers

-7

Grading

- > Assignments 30%
- ▶ Project 70%
 - > Report and presentations at the end of semester

Tools

- > Chisel
 - Open and free
- Logic simulator
 - > Verilator, Synopsys VCS, Cadence Xcelium
- > Logic synthesis
 - > Synopsys DC + 28nm SAED library or
 - Xilinx Vivado
 - Place and route is optional

-9

EE290C - Fall 2018
Advanced Topics in Circuit Design
VLSI Signal Processing

DSP systems

Why Wireless?

- > > 1 Billion cell phones an year mostly smartphones
 - Major industry driver
- Wireless embedded into everything from TVs to gaming to clothes
 - > Internet of things yet to come
- > 100's of GOPS to TOPS of signal processing done in a tiny form factor with energy constraints
- > RF/Analog/DSP/Protocols need to be jointly designed and optimized
- > So a great driver for the class
- (wireline is good too, many shared blocks)

Chisel: Constructing Hardware In a Scala Embedded Language

- Hardware Construction Language (HCL)
- Started in 2010 (DAC 2012)
- HCL based in Scala, a functional/object-oriented programming language
- Hosts Berkeley hardware projects
- Many ongoing industry collaborators (Intel, LBNL, Northrop Grumman, Google, SiFive, BAE Systems)

```
import chisel3._

class GCD extends Module {
    val io = IO(new Bundle {
        val a = Input(UInt(32.W))
        val b = Input(UInt(32.W))
        val e = Input(Bool())
        val z = Output(UInt(32.W))
        val v = Output(Bool())
    })

    val x = Reg(UInt(32.W))
    val y = Reg(UInt(32.W))
    val y = Reg(UInt(32.W))
    when (x > y) { x := x -% y }
    .otherwise { y := y -% x }
    when (io.e) { x := io.a; y := io.b }
    io.z := x
    io.v := y === 0.U
}
```

-15

Chisel is RTL, not HLS

- HCLs give users access to the expressiveness of the host language
- Scala provides many features:
 - o Powerful parameterization
 - Functional programming
 - Static typing
 - Object-oriented programming
- Enables Agile Design

FIRRTL: Flexible Intermediate Representation for RTL Most custom transformations A frontend parses and translates rocket-chip.scala operate on Low FIRRTL source into an intermediate representation, FIRRTL Chisel 3.0 Apply lowering transformations that rocket-chip.fir high2mid rewrite the design using a simpler rocket-chip.middle.fir and smaller subset of FIRRTL nodes mid2low rocket-chip.low.fir **Custom transformations make lowOpt** project- or platform-specific changes rocket-chip.opt.fir without modifying the RTL! verilog backend **Custom transformations are** composable! rocket-chip.v A backend emits design in *.v A. Izraelevitz, ICCAD 2017 18

First Assignment

Read

- J. Bachrach, DAC'12 paper
- A. Izraelevitz, ICCAD'17 paper
- > A. Wang, DAC'18 paper

Chisel bootcamp

- > Complete modules 1, 2.1, 2.2 by next Thursday
- > We will go through the Chisel bootcamp in 3 weeks

-19

So, How to Build an SoC in Class?

- > Principles (algorithms, architectures) in class
 - > Reinforce through assignments
 - > Practice writing Chisel generators through assignments
- > Build Chisel generators
- Plug into a template RISC-V SoC
- > This is really complex, but many details are abstracted

> Qualcomm Snapdragon 850

- Complex SoC:
 - > LTE, WiFi modems
 - GPS
 - Applications processors
 - GPU
 - Vector processors
 - Image signal processor
 - Audio signal processor
 - Security
 - System memory

Wireless Modems

- > There are several systems and many standards
 - > Cellular (4G/5G)
 - WiFi
 - > Bluetooth
 - Zigbee
 - > NB-IoT, LTE-M
 - NFC
- > Similarities and differences
- > Many shared functions

Frequency Division Multiplexing

> Different users simultaneously use different frequencies

> Inter-carrier interference limited by filtering

-23

OFDM Basics

- > Orthogonal Frequency Division Modulation (OFDM)
- > Multi-carrier system, with fixed inter-carrier spacing

N Sub-carriers can be efficiently generated via N-point IFFT

Cyclic Prefix

- Cyclic pre-fix added to combat inter-symbol interference due to multi-path and relax synchronization
- Also enables frequency domain equalization since channel appears as a circular convolution
- Sub-carriers remain orthogonal as long as multi-path delay spread is smaller than CP length

OFDMA

- MA = Multiple Access
- > Different users allocated different groups of subcarriers

OFDM Use

- **WPAN**
 - > Bluetooth 3.0, 4.0, 5.0
- **WLAN**
 - > IEEE 802.11a/g, 802.11n, 802.11ac, 802.11ad,...
- ▶ Cellular
 - LTE, 5G
- **Broadcast**
 - > DVB-T, DVB-H, DAB

Multiple-Input-Multiple-Output (MIMO)

Use of multiple receive/transmit antennas to increase spectral efficiency

- As long as channel H is well conditioned it can be effectively inverted and the spatial streams are recovered
- > MIMO support is part of cellular data and WLAN standards

---32

Multi-user MIMO

- > Beamforming to each user
- > Spatial multiplexing to increase spectral efficiency
- > Complex matrix operations performed in real time

-33

Software-Defined Basebands

> Freescale LTE accelerator (~2010)

- > DSP functions attached to Rocket chip via Diplomacy
 - We will provide examples (and assignments)

--3

Next Lecture

- Number representations
- > Methods of computation