8) 1.
$$Poso1$$
 $C=2$
 $Pso2$ $C=4=2^2$
 $Pso3$ $C=8=2^3$
 $Pso3$ $C=8=2^3$
 $Pso4$ $C=16=2^4$
 $Pso5$ $C=16=$

3.
$$\int e_1 F_{01} : \sum_{i=1}^{m-1} (2d_0 F_{01})$$
 $2d_0 F_{01} : \sum_{i=1}^{m-1} (C_2)$
 $2d_0 F_{01} : \sum_{i=1}^{m-1} (C_2)$
 $= C_1 + \sum_{i=1}^{m-1} (\sum_{i=1}^{m-1} (C_2)) = C_1 + \sum_{i=1}^{m-1} (i-2(C_2))$
 $= C_1 + \sum_{i=1}^{m-1} (\sum_{i=1}^{m-1} (C_2)) = C_1 + \sum_{i=1}^{m-1} (\sum_{i=1}^{m-1} (C_2))$
 $= C_1 + (m/2) - 1 \cdot m^{-1} \cdot (m^{-1} - 4C_2)$
 $= C_1 + (m/2) - 1 \cdot m^{-1} \cdot (m^{-1} - 4C_2)$
 $= C_1 + (m/2) - 1 \cdot m^{-1} \cdot (m^{-1} - 4C_2)$
 $= C_1 + (m/2) \cdot m^{-1} \cdot (m^{-1} - 4C_2)$
 $= C_1 + (m/2) \cdot m^{-1} \cdot (m^{-1} - 4C_2)$
 $= C_1 + (m/2) \cdot m^{-1} \cdot (m^{-1} - 4C_2)$
 $= C_1 + (m/2) \cdot m^{-1} \cdot (m^{-1} - 4C_2)$
 $= C_1 + (m/2) \cdot m^{-1} \cdot (m^{-1} - 4C_2)$
 $= C_1 + (m/2) \cdot m^{-1} \cdot (m^{-1} - 4C_2)$
 $= C_1 + (m/2) \cdot m^{-1} \cdot (m^{-1} - 4C_2)$
 $= C_1 + (m/2) \cdot m^{-1} \cdot (m^{-1} - 4C_2)$
 $= C_1 + (m/2) \cdot m^{-1} \cdot (m^{-1} - 4C_2)$
 $= C_1 + (m/2) \cdot m^{-1} \cdot (m^{-1} - 4C_2)$
 $= C_1 + (m/2) \cdot m^{-1} \cdot (m^{-1} - 4C_2)$
 $= C_1 + (m/2) \cdot m^{-1} \cdot (m^{-1} - 4C_2)$
 $= C_1 + (m/2) \cdot m^{-1} \cdot (m^{-1} - 4C_2)$
 $= C_1 + (m/2) \cdot m^{-1} \cdot (m^{-1} - 4C_2)$
 $= C_1 + (m/2) \cdot m^{-1} \cdot (m^{-1} - 4C_2)$
 $= C_1 + (m/2) \cdot m^{-1} \cdot (m^{-1} - 4C_2)$
 $= C_1 + (m/2) \cdot m^{-1} \cdot (m^{-1} - 4C_2)$
 $= C_1 + (m/2) \cdot m^{-1} \cdot (m^{-1} - 4C_2)$
 $= C_1 + (m/2) \cdot m^{-1} \cdot (m^{-1} - 4C_2)$
 $= C_1 + (m/2) \cdot m^{-1} \cdot (m^{-1} - 4C_2)$
 $= C_1 + (m/2) \cdot m^{-1} \cdot (m^{-1} - 4C_2)$
 $= C_1 + (m/2) \cdot m^{-1} \cdot (m^{-1} - 4C_2)$
 $= C_1 + (m/2) \cdot m^{-1} \cdot (m^{-1} - 4C_2)$
 $= C_1 + (m/2) \cdot m^{-1} \cdot (m^{-1} - 4C_2)$
 $= C_1 + (m/2) \cdot m^{-1} \cdot (m^{-1} - 4C_2)$
 $= C_1 + (m/2) \cdot m^{-1} \cdot (m^{-1} - 4C_2)$
 $= C_1 + (m/2) \cdot m^{-1} \cdot (m^{-1} - 4C_2)$
 $= C_1 + (m/2) \cdot m^{-1} \cdot (m^{-1} - 4C_2)$
 $= C_1 + (m/2) \cdot m^{-1} \cdot (m^{-1} - 4C_2)$
 $= C_1 + (m/2) \cdot m^{-1} \cdot (m^{-1} - 4C_2)$
 $= C_1 + (m/2) \cdot m^{-1} \cdot (m^{1} - 4C_2)$
 $= C_1 + (m/2) \cdot m^{-1} \cdot (m^{-1} - 4C_2)$
 $= C_1 + (m/2) \cdot m^{-1} \cdot (m^{-1} - 4C_2)$
 $= C_1 + (m/2) \cdot m^{-1} \cdot (m^{-1} - 4C_2)$
 $= C_1 + (m/2) \cdot m^{-1} \cdot (m^{-1} - 4C_2)$
 $= C_1 + (m/2) \cdot m^{-1} \cdot (m^{-1} - 4C_2)$
 $= C_1 + (m/2) \cdot m^{-1}$