Übungen zur Linearen Algebra I

Wintersemester 2016/17

Universität Heidelberg Mathematisches Institut Dr. D. Vogel

Dr. D. Vogel

Dr. M. Witte

Abgabetermin: Donnerstag, 28.10.2013, 9.30 Uhr

Aufgabe 1. (Tautologien) Seien p, q, r Aussagen. Überprüfen Sie durch Aufstellen der Wahrheitstafeln, dass folgende Aussagen, unabhängig von den Wahrheitswerten von p, q und r, stets wahr sind:

- (a) $(p \land (p \Rightarrow q)) \Rightarrow q$ (Gesetz zum Modus Ponens),
- (b) $(p \lor (q \land r)) \Leftrightarrow ((p \lor q) \land (p \lor r))$ (Distributivgesetze).

Aufgabe 2. (Negationen) Sei M eine Menge und P(x), Q(x) Aussagen über $x \in M$. Negieren Sie folgende Aussagen:

- (a) $(\forall x, y \in M : P(x) \land Q(y) \Rightarrow P(y)) \land (\exists x \in M : Q(x) \Leftrightarrow P(x)),$
- (b) $\forall x \in M : (P(x) \Rightarrow (\exists y \in M : \forall z \in M : ((P(z) \vee \neg Q(z)) \Leftrightarrow (P(y) \wedge \neg Q(z))) \vee Q(z))).$

In Ihrer Antwort darf die Negation \neg nur vor P(x) und Q(x) für $x \in M$ stehen, nicht aber vor zusammengesetzten Aussagen.

Aufgabe 3. (Beweis durch Widerspruch) Seien a eine irrationale und b eine rationale Zahl. Zeigen Sie:

- (a) a + b ist irrational.
- (b) $a \cdot b$ ist irrational, falls $b \neq 0$.
- (c) Man betrachte die Gerade im \mathbb{R}^2 , die durch die Gleichung y = ax + b gegeben ist. Dann gibt es nur einen Punkt auf der Geraden, der rationale Koordinaten hat, nämlich (0, b).

Aufgabe 4. (Aussagen über Mengen) Sei M eine Menge. Zeigen Sie, dass folgende Aussagen wahr sind:

- (a) $\forall A, B \in \mathcal{P}(M) : A \subseteq B \Leftrightarrow M \setminus B \subseteq M \setminus A$.
- (b) $\forall A, B \in \mathcal{P}(M) : A \cup B = A \cap B \Leftrightarrow A = B$.
- (c) $\forall A, B, C \in \mathcal{P}(M)$: $((A \subseteq C) \land (B \subseteq C)) \Leftrightarrow A \cup B \subseteq C$.

Zusatzaufgabe 5. (Satz von Euklid) Für $a, b \in \mathbb{N}$ schreiben wir a|b wenn a Teiler ist von b. Beweisen Sie durch Widerspruch den Satz von Euklid: Es gibt unendlich viele Primzahlen. Begründen Sie jeden einzelnen Schritt. Sie dürfen folgende Aussagen als wahr voraussetzen:

- α_1 : 1 ist eine natürliche Zahl.
- α_2 : Jede Primzahl ist eine natürliche Zahl.
- α_3 : Für zwei natürliche Zahlen a, b ist a + b wieder eine natürliche Zahl.
- α_4 : Für jedes $n \in \mathbb{N}$ und alle natürlichen Zahlen a_1, \ldots, a_n ist das Produkt $a_1 \cdot a_2 \cdots a_n$ eine natürliche Zahl und unabhängig von der Reihenfolge der Faktoren.
- α_5 : Jede Primzahl ist größer als 1.
- α_6 : Jede natürliche Zahl a > 1 besitzt eine Primzahl als Teiler.
- α_7 : Jede natürliche Zahl teilt sich selbst.
- α_8 : Für jedes $n \in \mathbb{N}$ und für alle natürliche Zahlen a, a_1, \dots, a_n gilt: $a | a_1 \Rightarrow a | a_1 \cdot a_2 \cdot \dots \cdot a_n$.
- α_9 : Für alle natürliche Zahlen a, b, c gilt: $(a|(b+c) \wedge a|b) \Rightarrow a|c$.
- α_{10} : Für alle natürliche Zahlen a, b gilt: Ist a Teiler von b, so ist a nicht größer als b.