VIRTUAL AZURE COMMUNITY DAY 06/10/2021

Leverage Power of Machine Learning with ONNX

ONNX
Not ONIX
Not ONYX

programming

machine learning

ML Primer

Open and Interoperable Al

Open Neural Network Exchange

Open format for ML models

github.com/onnx onnx.ai/

ONNX Partners

Agenda

✓ What is ONNX, When to use ONNX

☐ How to create ONNX models

☐ How to deploy ONNX models

When to use ONNX?

- Trained in Python deploy into a C#/Java/Javascript app
- High Inferencing latency for production use
- Model to run resource on IoT/edge devices
- Model to run on different OS or Hardware
- Combine running models created from different frameworks
- Training takes too long (transformer models)

Create

Frameworks

Native support

Converters

ONNX Model

Deploy

Cloud Services

Azure Machine Learning services

Ubuntu VM

Windows VM

Windows Devices

IoT/Edge Devices

Converters

Native

support

Other Devices (iOS, Android, etc)

Services

Native support

4 ways to get an ONNX model

ONNX Model Zoo

Azure Custom Vision Service

Convert existing models

Train models in Azure Machine Learning

Automated Machine Learning

ONNX Model Zoo: github.com/onnx/models

Image Classification

This collection of models take images as input, then classifies the major objects in the images into a set of predefined classes.

Model Class	Reference	Description				
MobileNet	Sandler et al.		nt CNN mode error from pa		d embedded vi	ision applications.
ResNet	He et al., He et al.	_	eep CNN mod	del (up to 152 l	p to 152 layers), won the ImageNet	
SqueezeNet	landola et al.	A ligh fewer Top-5	Model	Download	Checksum	Download (with sample test data
VGG	Simonyan et al.	Deep Challe	ResNet- 18	44.6 MB	MD5	42.9 MB

A ligh fewer Top-5	Model	Download	Checksum	Download (with sample test data)	ONNX version	Opset version	Top-1 accuracy (%)	Top-5 accuracy (%)
Deep Challe	ResNet- 18	44.6 MB	MD5	42.9 MB	1.2.1	7	69.70	89.49
Top-5	ResNet-	83.2 MB	MD5	78.6 MB	1.2.1	7	73.36	91.43
	ResNet- 50	97.7 MB	MD5	92.0 MB	1.2.1	7	75.81	92.82
	ResNet- 101	170.4 MB	MD5	159.4 MB	1.2.1	7	77.42	93.61
	ResNet- 152	230.3 MB	MD5	216.0 MB	1.2.1	7	78.20	94.21

Custom Vision Service: customvision.ai

1. Upload photos and label Image upload Add Tags Uploading 2. Train Performance Predi **Training Images Predictions** Training Images **Performance** 4 images will I Export Delete Add some tac 3. Download ONNX model! Add a tag and press enter fruit X Choose your platform **ONNX** ONNX

Convert models

1. Load existing model

2. (Convert to ONNX)

3. Save ONNX model

ONNX Models

Graph of operations

Netron

https://netron.app/

https://lutzroeder.github.io/netron/

Convert models: O PyTorch

```
import torch
import torch.onnx

model = torch.load("model.pt")

sample_input = torch.randn(1, 3, 224, 224)

torch.onnx.export(model, sample_input, "model.onnx")
```



```
In [ ]: import onnxmltools
        from keras.models import load_model
In [ ]: # Update the input name and path for your Keras model
        input_keras_model = 'model.h5'
        # Change this path to the output name and path for the ONNX model
        output onnx model = 'model.onnx'
In [ ]: # Load your Keras model
        keras_model = load_model(input_keras_model)
        # Convert the Keras model into ONNX
        onnx model = onnxmltools.convert keras(keras model)
        # Save as protobuf
        onnxmltools.utils.save_model(onnx_model, output_onnx_model)
```


> python -m tf2onnx.convert --saved-model tensorflow-model-path --output model.onnx

https://github.com/onnx/tensorflow-onnx

Convert models:


```
# Train a model.
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
iris = load iris()
X, y = iris.data, iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y)
clr = RandomForestClassifier()
clr.fit(X_train, y_train)
# Convert into ONNX format
from skl2onnx import convert sklearn
from skl2onnx.common.data_types import FloatTensorType
initial_type = [('float_input', FloatTensorType([None, 4]))]
onx = convert_sklearn(clr, initial_types=initial_type)
with open("rf_iris.onnx", "wb") as f:
    f.write(onx.SerializeToString())
```

ONNX as an intermediary format

- Convert to Tensorflow for Android
 - Convert a PyTorch model to Tensorflow using ONNX
- Convert to CoreML for iOS
 - https://github.com/onnx/onnx-coreml
- Fine-tuning an ONNX model with MXNet/Gluon
 - https://mxnet.apache.org/versions/1.3.1/tutorials/onnx/fine_tuning_gluon.html

https://github.com/onnx/tutorials

Train models in Azure Machine Learning

Experiment locally then quickly scale with GPU clusters in the cloud

Use automated machine learning and hyper-parameter tuning.

 Keeping Track of experiments, manage models, and easily deploy with integrated CI/CD tooling

Machine Learning Typical E2E Process

Create

Frameworks

Native support

Converters

Native support

ONNX Model

Deploy

Azure

Azure Machine Learning services

Ubuntu VM

Windows Server 2019 VM

Windows/Linux Devices

IoT Edge Devices

Converters

Native

support

Other Devices (iOS, etc)

Services

Deploy with Azure Machine Learning

Model management services

Deploy as web service to ACI or AKS

Capture model telemetry

Azure Machine Learning

Machine Learning Typical E2E Process

ONNX Docker Image

onnx-base: Use published ONNX package from PyPi with minimal dependencies.

onnx-dev: Build ONNX from source with minimal dependencies.

onnx-ecosystem: Jupyter notebook environment

- getting started quickly with ONNX models
- ONNX converters
- inference using ONNX Runtime.

Caffe2/PyTorch Docker

docker run -it --rm onnx/onnx-docker:cpu /bin/bash

What is the Edge?

Imagimob AB

Al on the edge

ONNX Runtime

- High performance inference engine for ONNX models
- Founded and Open Sourced by Microsoft under MIT License
- Supports full ONNX-ML spec
- Extensible architecture to plug-in hardware accelerators
- Ships with Windows 10 as WinML
- onnxruntime.ai

ONNX Runtime

Get Started Easily

Optimize Inferencing	Optimize Training						
Platform	Windows	Linux	Мас	Android	iOS		Web Browser (Preview)
API	Python	++ C#	С	Java	JS	Obj-C	WinRT
Architecture	X64	X86	ARM64	А	RM32	IBN	1 Power
	Default CPU	CUDA	DirectML		oneDNN		enVINO
Hardware Acceleration	TensorRT	NNAPI	ACL (Pr	ACL (Preview) Ar			reML eview)
	MIGraphX (Preview)	NUPHAR (Preview)	Rockchi (Previev	· V	itis AI (Previ	iew)	
Installation Instructions	Install Nuget pa Refer to <u>docs</u> fo	ckage <u>Microsoft.ML</u> requirements.	.OnnxRuntime.Gpu	!			

ONNX Runtime Web

- a JavaScript library for running ONNX models on browsers and on Node.js.
- adopted Web Assembly and WebGL technologies
- optimized ONNX model inference runtime for both CPUs and GPUs.

https://github.com/microsoft/onnxjs

Compatibility Chart

OS/Browser	Chrome	Edge	Safari	Electron	Node.js
Windows 10	wasm, webgl	wasm, webgl	-	wasm, webgl	wasm
macOS	wasm, webgl	wasm, webgl	wasm, webgl	wasm, webgl	wasm
Ubuntu LTS 18.04	wasm, webgl	wasm, webgl	-	wasm, webgl	wasm
iOS	wasm	wasm	wasm	-	-
Android	wasm, webgl	wasm, webgl	-	-	-

Windows Al platform

- WinML
 - **Practical**, simple model-based API for ML inferencing on Windows
- DirectML
 - Realtime, high control ML operator API; part of DirectX family
- Compute Driver Model
 - Robust hardware reach/abstraction layer for compute and graphics silicon

http://bit.ly/ml-onnx

Recap

✓ What is ONNX

ONNX is an open standard so you can use the right tools for the job and be confident your models will run efficiently on your target platforms

✓ How to create ONNX models
 ONNX models can be created from many frameworks

✓ How to deploy ONNX models

ONNX models can be deployed with Windows ML, .NET/Javascript/Python and to the cloud with Azure ML and the high performance ONNX Runtime

About Me

Ron Dagdag

Ron Lyle Dagdag

Immersive Experience Developer Cell: 682-560-3988 ron@dagdag.net

Experience AR

www.dagdag.net @rondagdag http://ron.dagdag.net Lead Software Engineer at Spacee

5th year Microsoft MVP awardee

Personal Projects www.dagdag.net

Email: ron@dagdag.net Twitter @rondagdag

Connect me via Linked In www.linkedin.com/in/rondagdag/

Thanks for geeking out with me about ONNX

Hackster Portfolio

www.dagdag.net @rondagdag

