

Virtual, October 10-21, 2020

Qiaomei Mao, Chong Wang, Shenghao Yu, Ye Zheng and Yuqi Li Ningbo University

2020 IEEE International Symposium on Circuits and Systems Virtual, October 10-21, 2020

Object Detection

Single Object

Is it possible to detect new classes without training samples?

Multiple Object
Classification
+
Localization

Multiple Object

Zero-Shot Learning

Without any training samples, learn some new categories that have never been seen before with the help of semantic concepts (e.g., attributes, word vectors, etc.).

Zero-Shot Object Detection

seen class: dog

unseen class: cat

Zero-Shot + = Learning

Object Detection

Zero-Shot Object Detection

Modifying the classic object detection network and introducing zero-shot learning classifier can achieve zero-shot object detection.

Challenge # The accurate alignment between visual features and semantic concepts.

Motivation

It is inspired by the fundamental reason that how to learn unseen classes from seen ones just like the human cognitive system.

Overall Framework

Alignment Between Two Space

abstract diagram of the attribute table

$$X_{ij} = \left\{ \begin{array}{ll} 1, & \text{if i category has j attribute} \\ 0, & \text{otherwise} \end{array} \right., \quad Y_i = \left[X_{i1}, X_{i2}, \cdots, X_{ij} \right]$$

Evaluation Method

seen class: tiger, panda, horse,

desk, chair

unseen class: zebra

$$Z'_u = arg \max_{c_j} \sum_{Y_i \in N_k(Y_u)} I(Z_i = c_j),$$

$$I(Z_i = c_j) = \begin{cases} 1, & \text{if } Z_i = c_j \\ 0, & \text{otherwise} \end{cases}$$

Similarity Measure

	Eye	Wing	Head	Long tail	
Bird	1	1	1	0	
Cat	1	0	1	1	

- 1. Euclidean 🗸
- 2. Manhattan
- 3. Cosine

Similarity Measure

Similarity: 65%

Category Similarity

Qualitative Results on COCO

Method	Seen/Unseen	mAP (%)	Recall (%)
SB(2018ECCV)	48/17	0.70	24.39
DSES(2018ECCV)	48/17	0.54	27.19
PL-ZSD(2020AAAI)	48/17	10.01	43.56
PL-ZSD(2020AAAI)	65/15	12.4	37.72
PL-ZSD + CS	65/15	13.6	44.33
TL-ZSD(2019ICCV)	65/15	14.57	48.15
Ours	65/15	15.34	47.83

Selected Experimental Results

The seen and unseen classed are marked in yellow and purple, respectively.

Thank you!

Paper path: https://ieeexplore.ieee.org/document/9043901

