PRACTICAL REPORT

MODUL 8

DIGITAL SYSTEM

By:

M. RIFQY FAUZY

L200184090

INFORMATION TECHNOLOGY

COMMUNICATION AND INFORMATICS FACULTY

MUHAMMADIYAH UNIVERSITY OF SURAKARTA

Experiment 1

1. Make JK the flip-flop combination!

2. Simulate your circuit!

	Input			Output			
	Clear	JK	CLK	A	В	C	D
1	1	1	0	0	0	0	0
3	1	1	1	0	0	0	0
3	1	1	0	0	0	0	1
4	1	1	1	0	0	0	1
5	1	1	0	0	0	1	0
6	1	1	1	0	0	1	0
7	1	1	0	0	0	1	1
8	1	1	1	0	0	1	1
9	1	1	0	0	1	0	0
10	1	1	1	0	1	0	0
11	1	1	0	0	1	0	1
12	1	1	1	0	1	0	1
13	1	1	0	0	1	1	0
14	1	1	1	0	1	1	0
15	1	0	0	0	1	1	1
16	1	0	1	0	1	1	1
17	1	1	0	0	1	1	1
18	1	1	1	0	1	1	1
19	0	1	0	0	0	0	0
20	0	1	1	0	0	0	0

3. What's the function of:

- a. Switch CLK
 - Add the output value and as long as they keep in their CLOCK place and changing it from 0 to 1 will change the result of the output value too. So when the CLK repeatedly switched from 0 to 1 it will add some binary digit.
- b. Switch JK
 - Store the output value (Set condition), so the output condition will display the previous condition
- c. Switch Clear
 - Reset the memory.

4. Conclusion

JK flip-flop as the input controller that determine what will the FF do. Whenever it received the increased clock condition, the circuit Counter Asynchrony Model 16 used for expanding data.

Experiment 2

1. Make the flip-flop combination!

2. Simulate your circuit!

	In	Output				
	JK	CLK	A	В	C	D
1	1	0	0	0	0	0
2	1	1	0	0	0	0
3	1	0	0	0	0	1
4	1	1	0	0	0	1
5	1	0	0	0	1	0
6	1	1	0	0	1	0
7	1	0	0	0	1	1
8	1	1	0	0	1	1
9	1	0	0	1	0	0
10	1	1	0	1	0	0
11	1	0	0	1	0	1
12	1	1	0	1	0	1
13	1	0	0	1	1	0
14	1	1	0	1	1	0
15	1	0	1	0	0	0
16	1	1	1	0	0	0
17	1	0	1	0	0	1
18	1	1	1	0	0	1
19	1	0	0	0	0	0
20	1	1	0	0	0	0
21	0	0	0	0	0	0
22	0	1	0	0	0	0
23	1	0	0	0	0	0
24	1	1	0	0	0	0

3. Conclusion:

This flip-flop function is the same as the previous flip-flop. The difference is it used the 7SEG-BCD to translate the BCD binary into the decimal form. When the JK-switch is in condition 1, use the Clock to change the decimal. However, it wouldn't work if the JK-switch is in condition 0.

Experiment 3

1. Make the flop-flop combination!

2. Simulate your circuit!

	Input			Output			
	Clear	JK	CLK	A	В	C	D
1	0	X	-	0	0	0	0
2	1	1	-	0	0	0	0
3	1	1	1	0	0	0	1
4	1	1	2	0	0	1	1
5	1	1	3	0	1	1	1
6	1	0	4	1	1	1	0
7	1	0	5	1	1	0	0
8	1	0	6	1	0	0	0
9	1	0	7	0	0	0	0
10	1	0	8	0	0	0	0
11	1	1	9	0	0	0	1
12	0	0	10	0	0	1	0
13	0	0	11	0	1	0	0
14	0	0	12	1	0	0	0
15	0	0	13	0	0	0	0

3. Conclusion:

The binary changed if the clock's condition changed from 1 to 0. And the Clear-switch reset the output values as if the JK is in condition 1.