Степень отображения и индекс

ДГТ 12♦1. Не существует гладкого отображения круга на его границу, тождественного на ней («барабан нельзя смять на его обод»).

ДГТ 12\diamond2. Не существует гладкого касательного поля на сфере \mathbf{S}^2 , нигде не обращающегося в ноль («теорема о причёсывании ежа»).

ДГТ 12\diamond3. На \mathbf{S}^3 существует ненулевое касательное векторное поле.

ДГТ 12\diamond4. Будем считать, что $\mathbf{S}^1 \subset \mathbf{C}$. Тогда можно определить

$$\varphi_n: \mathbf{S}^1 \to \mathbf{S}^1, \quad z \mapsto z^n.$$

Докажите, что для любого многочлена $P(z)=z^n+a_{n-1}z^{n-1}+\cdots+a_1z+a_0$, не принимающего нулевые значение, и некоторого достаточно большого R>0 отображение

$$P_R: \mathbf{S}^1 \to \mathbf{S}^1, \quad z \mapsto \frac{P(Rz)}{|P(Rz)|}$$

гладко гомотопно отображению $\varphi_{\deg P}$. Найдите степень отображения P_R , сравните её со степенью P_0 и докажите основную теорему алгебры.

Дополнительные задачи

Рассмотрим n-мерное многообразие N и два его замкнутых подмногообразия P и Q размерности p и q соответственно. Пусть они трансверсальны и p+q=n. Тогда их пересечение состоит из конечного числа точек x_1,\ldots,x_m . Если N, P, Q ориентированы, то каждой точке x_j приписывается знак по следующему правилу. Пусть $\tau^p_{(j)}$ – ориентирующий касательный репер к P в точке x_j , $\tau^q_{(j)}$ — ориентирующий касательный репер к Q в точке x_j . Точке x_j приписывается знак «+», если $\tau=(\tau^p_{(j)},\tau^q_{(j)})$ является ориентирующим репером к N, и знак «-» в противном случае. Знак этот обозначается $\operatorname{sign} x_j(P\circ Q)$ и называется знаком пересечения.

Индексом пересечения P и Q называется $P\circ Q=\sum\limits_{i=1}^m \operatorname{sign} x_i(P\circ Q)$. В неориентированном случае сумма берется по модулю два. Легко проверить, что верно следующее: $P\circ Q=(-1)^{pq}Q\circ P$. Если подмногообразия Q_1,Q_2 гомотопны, то их индексы пересечения с любым P совпадают: $Q_1\circ P=Q_2\circ P$ (доказательство этого факта аналогично доказательству того, что степень отображения инвариантна относительно гомотопии).

ДГТ 12♦5. Как выглядит теорема о причёсывании ежа для \mathbf{S}^n при n > 3?

ДГТ 12⋄6. Индекс пересечения двух замкнутых подмногообразий евклидова пространства всегда равен нулю.

ДГТ 12♦7. Гладкое отображение из круга в себя имеет неподвижную точку (теорема Брауэра).

ДГТ 12\diamond8. Замкнутое связное (n-1)-мерное подмногообразие M пространства \mathbf{R}^n всегда разделяет \mathbf{R}^n на две части (и потому ориентируемо).