

CURSO DE ENGENHARIA

Disciplina: Limite e Derivada de uma Variável Real

Funções Exponenciais e Logarítmicas

Anápolis – 2021.2

UNIVERSIDADE EVANGÉLICA DE GOIÁS

CURSO DE ENGENHARIAS

Disciplina: Limite e Derivada de uma Variável Real

Funções Exponenciais e Logarítmicas

OBJETIVOS:

- Esboçar os gráficos das funções logarítmicas naturais.
- Utilizar as propriedades dos logaritmos para simplificar, expandir e condensar expressões logarítmicas.

CURSO DE ENGENHARIAS

Disciplina: Limite e Derivada de uma Variável Real

Funções Exponenciais e Logarítmicas

REFERÊNCIAS:

RATTAN, K. S.; KLINGBEIL, N. W. Matemática Básica para Aplicações de Engenharia, Tradução de J. R. Souza. Rio de Janeiro: LTC. <u>Disponível em:</u> https://integrada.minhabiblioteca.com.br/#/books/9788521633716/cfi/6/40!/4/2/4@0:0.

Propriedades dos expoentes

Sejam a e b números positivos.

1.
$$a^0 = 1$$

2.
$$a^{x}a^{y} = a^{x+y}$$

3.
$$\frac{a^x}{a^y} = a^{x-y}$$

4.
$$(a^x)^y = a^{xy}$$

5.
$$(ab)^x = a^x b^x$$

$$6. \left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}$$

7.
$$a^{-x} = \frac{1}{x}$$

Função Exponencial - Definição

$$f: R \to R_+^*$$
 $f(x) = q^x$ $a > 0 e a \ne 1$

Domínio Base

UNIVERSIDADE EVANGÉLICA DE GOIÁS

Representação Gráfica $f(x)=2^x$

X	$g(x) = \left(\frac{1}{2}\right)^x$
2	47)4
1	1/2
0	まり 1
-1	2
-2	4

UNIVERSIDADE EVANGÉLICA DE GOIÁS

Gráfico da função exponencial

Características da função exponencial

- •A função é crescente para a base a maior que 1 (a > 1);
- •A função é decrescente para a base a maior que 0 e menor que 1 (0 < a < 1)
- A curva da função f(x) = a^x passa pelo ponto (0, 1);
- •o gráfico nunca intercepta o eixo horizontal; a função não tem raízes;

Comparação entre algumas funções

Fu	ınc	ão	1	c
	2		•	

x	2x
1	2
2	4
3	6
4	8
5	10
6	12
7	14
8	16
9	18
10	20

Função 2°

x	<u>X</u> 2		
1	1		
2	4		
3	9		
4	16		
5	25		
6	36		
7	49		
8	64		
9	9 81		
10	100		
10	100		

Função Exponencial

2×	
2	
4	
8	
16	
32	
64	
128	
256	
512	
1024	

Comparando os gráficos

Gráfico de $y = e^x$

 $e \approx 2,71828182846.$

$f(x)$ $e^{-2} \approx 0.135$ $e^{-1} \approx 0.368$ $e^{0} = 1$ $e^{1} \approx 2.718$ $e^{2} \approx 7.389$	х	-2	-1	0	1	2
	f(x)	$e^{-2}\approx 0{,}135$	$e^{-1}\approx 0.368$	$e^0 = 1$	$e^1 \approx 2,718$	$e^2 \approx 7,389$

Definição Seja f uma função injetora com domínio A e imagem B. Então, a sua **função inversa** f^{-1} tem domínio B e imagem A e é definida por

$$f^{-1}(y) = x \iff f(x) = y$$

para todo y em B.

FIGURA 2 Esta função não é injetora, pois $f(x_1) = f(x_2)$.

FIGURA 3 $f(x) = x^3$ é injetora.

FIGURA 4 $g(x)=x^2$ não é injetora.

O gráfico de f^{-1} é obtido refletindo-se o gráfico de f em torno da reta y = x.

$$\log_b x = y \iff b^y = x$$

$$\log_2 8 = y \Leftrightarrow 2^y = 8$$

$$y = 3$$

$$\log_2 8 = 3$$

Consequência da definição

$$P_1 \Longrightarrow \log_b 1 = 0$$

$$P_2 \Rightarrow \log_b b = 1$$

$$P_3 \Rightarrow \log_b b^n = n$$

$$P_4 \Rightarrow \log_b a = \log_b c \Leftrightarrow a = c$$

$$P_5 \Longrightarrow b^{\log_b a} = a$$

Propriedades Operátórias

$$P_1 \Rightarrow \log_c(a \cdot b) = \log_c a + \log_c b$$

$$P_2 \Rightarrow \log_c \left(\frac{a}{b}\right) = \log_c a - \log_c b$$

$$P_3 \Longrightarrow \log_b(a)^n = n \cdot \log_b a$$

Mudança de Base

$$\log_b a = \frac{\log_c a}{\log_c b}$$

$$\log_b a = \frac{\log_c a}{\log_c b} \neq \log_c a - \log_c b$$

Definição

$$f:R_{+}^{*} \to R$$

$$f(x) = \log_b x$$

Domínio
$$\longrightarrow R_+^*$$

Imagem
$$\longrightarrow R$$

$$D(f) = R_+^*$$

$$|\operatorname{Im}(f) = R|$$

$$g(x) = \log_{1} x$$

Função Exponencial

Função Logarítmica

Função Inversa

$$f(x) = a^x$$

 $f^{-1}(x) = \log_a x$
 $0 < a \ne 1$
Decrescente

Logaritmos Naturais

$$\log_e x = \ln x$$

$$\ln x = y \iff e^y = x$$

$$\ln(e^x) = x \qquad x \in \mathbb{R}$$
$$e^{\ln x} = x \qquad x > 0$$

