

强化学习基础

扫码试看/订阅

《NLP实战高手课》视频课程

强化学习基础

- 强化学习设定
- 强化学习和一般的优化算法的关系
- Single-agent和Multi-agent强化学习

强化学习设定

强化学习设定: 马尔科夫性

强化学习和优化算法

- 强化学习是一种优化算法
 - ✓动态
 - ✓ 非参数
 - ✓基于神经网络

Single-agent和Multi-agent强化学习

- Single-Agent
 - ✓ 对人类难以决策(高频)的问题进行优化
 - ✓ 应用: AutoML
- Multi-agent
 - ✓ 通过去中心化的方法,构建复杂的强化学习系统
 - ✓ 应用:游戏AI,交通优化,推荐系统

MCTS 简介:如何将"推理"引入到强化学习框架中

MCTS 简介: 如何将"推理"引入到强化学习框架中 极客时间

- 游戏 AI 中的"直觉"和"推理"
- MCTS 的基本方法
- 一些提升 MCTS 的方法

游戏 AI 中的"直觉"和"推理"

MCTS 的基本方法

MCTS 的一些改进

- 采用深度神经网络而不是纯粹模拟
- 采用更有效率的搜索
- "连续可微"的"MCTS"

AutoML 及 Neural Architecture Search 简介

AutoML 及 Neural Architecture Search 简介

- AutoML 问题简介
- Neural Architecture Search 问题分解

AutoML 简介

- 定义:任何自动化的机器学习过程均可以称为 AutoML
- 常见的领域:
 - 超参数选择
 - 基于经验的建模 pipeline 组合
 - Neural Architecture Search

Neural Architecture Search 问题分解

- 核心问题: 计算效率
- 常见子问题:
 - Search Space
 - Search Strategy
 - Performance Estimation Strategy

Search Space

- 构建神经网络的零件
- 不同粒度
- 常常借用成熟的框架
- 搜索 cell 而不是整个模块

- 本质上来说, NAS 是组合优化问题
 - 任何求解组合优化的方法都可以应用于之上
- 如何将 NAS 问题 formulate 成为组合优化问题很关键

Performance Estimation Strategy

- 作为组合优化的信号
- 一些常见方法
 - Lower Fidelity Estimates
 - Learning Curve Extrapolation
 - Network Morphism
 - One-shot Search

AutoML 网络架构举例

AutoML 网络架构举例

- Swiss
- NASNet
- Evolved Transformer

• Paper: https://arxiv.org/pdf/1710.05941.pdf

NASNet

• Paper:

https://openaccess.thecvf.com/content_cvpr_2018/papers/Zoph_Learning_Transferable_Architectures_CVPR_2018_paper.pdf

Evolved Transformer

• Paper: https://arxiv.org/pdf/1901.11117.pdf

扫码试看/订阅

《NLP实战高手课》视频课程