Klasyfikacja z wykorzystaniem sieci neuronowych

W ramach tego ćwiczenia Państwa zadaniem będzie przeprowadzenie eksperymentu mającego na celu wytrenowanie modelu do klasyfikacji odręcznie pisanych cyfr z bazy MNIST. Jako klasyfikator należy zastosować każdy z trzech typów: pojedynczy neuron, sieć neuronowa MLP oraz sieć konwolucyjna.

Na początku proszę zaimportować odpowiednie pakiety

```
import numpy as np
from keras.datasets import mnist
import keras
from keras import layers
from sklearn.metrics import classification_report, confusion_matrix
```

Wczytanie i konwersja danych

Baza danych jest zawarta w bibliotece tensorflow, która zostanie też użyta do utworzenia i wytrenowania każdego z modeli.

Aby wczytać dane należy wywołać metodę:

```
training_set, test_set = mnist.load_data()
```

Dla wygody, warto podzielić zbiór danych na przykłady oraz etykiety:

```
X_train, y_train = training_set
X_test, y_test = test_set
```

Po wypisaniu wymiaru wczytanych danych, możemy się spodziewać wartości:

```
print(X_train.shape)
(60000, 28, 28)
```

Co oznacza, że tensor ma 3 wymiary i każdy z nich jest reprezentowany przez:

- ilość przykładów,
- wysokość obrazu,
- szerokość obrazu.

Tensorflow przyjmuje dane w postaci obrazów z jeszcze jednym dodatkowym wymiarem na końcu - liczbą kanałów (w przypadku obrazów w skali szarości jest to 1 kanał, dla obrazów RGB - 3 kanału). Należy dodać wymiar kanału do zbioru uczącego i testowego:

```
X_train = np.expand_dims(X_train, -1)
X_test = np.expand_dims(X_test, -1)
```

Ponowne sprawdzenie wymiary danych powinno przynieść spodziewaną zmianę.

```
print(X_train.shape)
(60000, 28, 28, 1)
```

W ostatnim kroku, wartości pikseli warto przeskalować do zakresu 0.0-1.0. Obraz jest w skali szarości, gdzie wartość pikseli jest reprezentowana na ośmiu bitach, dlatego też wystarczy podzielić każdy z pikseli przez maksymalną możliwą wartość, tj 255:

```
X_train = X_train.astype(np.float) / 255.0
X_test = X_test.astype(np.float) / 255.0
```

Przygotowanie eksperymentu

Na początku proszę zdefiniować kilka wartości definiujących warunki eksperymentu:

```
num_classes = 10
input_shape = (28, 28, 1)
batch_size = 128
epochs = 30
```

gdzie każda z nich oznacza:

num_classes - ilość klas do klasyfikacji (w tym przypadku 10 gdyż klasyfikujemy cyfry 0-9), input_shape - rozmiar wejścia na sieć (obraz w skali szarości z jednym kanałem), batch_size - rozmiar paczki będącej jednorazowym wejściem na sieć (z reguły sieci nie trenuje się na wszystkich danych na raz, m. in. z powodu ograniczeń pamięci dla obszernych danych), epochs - ilość epok uczenia. Jako jedną epokę interpretujemy "pokazanie" wszystkich przykładów modelowi.

Następnie należy przygotować model:

Wyświetlić podsumowanie:

```
model.summary()
```

I go skompilować:

```
model.compile(loss="sparse_categorical_crossentropy", optimizer="adam",
metrics=["accuracy"])
```

W przypadku tworzenia modelu, korzystamy tu z interfejsu biblioteki Keras, która stanowi uproszczenie interfejsu biblioteki tensorflow. Powyższy kod utworzy model sekwencyjny (bez rozgałęzień) składający się z warstwy wejściowej, warstwy rozplatającej obraz z macierzy HxWxD na wektor jednowymiarowy o długości H*W*D, oraz warstwy gęstej reprezentowanej przez jeden neuron dla każdej z klas. Warstwa gęsta kończy się funkcją aktywacji softmax często stosowanej do klasyfikacji wieloklasowej. Tak przygotowaną sieć można interpretować jako regresję logistyczną dla 10 klas - jest to klasyfikator liniowy. W przypadku kompilacji modelu, należy podać funkcję straty - w tym przypadku entropię krzyżową, typ f. optymalizującej, oraz dodatkowe metryki które chcemy śledzić podczas uczenia. Categorical w przypadku entropii krzyżowej oznacza klasyfikację wieloklasową (w przypadku klasyfikacji binarnej byłoby binary), natomiast sparse - że nie podajemy na wyjściu sieci etykiet kodowanych one-hot, tylko liczbą naturalną od 0 do 9.

Uczenie modelu

Tak przygotowany model można poddać uczeniu:

```
\label{lem:model.fit} $$ model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.2) $$
```

validation_split oznacza jaka część zbioru jest przeznaczona na walidację.

W konsoli pojawią się logi zawierające informacje o postępie uczenia, przykładowo:

Spodziewamy się spadku wartości funkcji kosztu (loss) oraz wzrostu metryki accuracy z epoki na epokę na zbiorze uczącym i walidacyjnym. Ilość epok staramy się tak dobrać aby otrzymać jak najniższe wartości kosztu (loss oraz val loss) na obu zbiorach.

Ocena modelu

Do oceny modelu klasyfikacji głównie stosuje się metryki czułości (sensitivity, recall) oraz pozytywnego przewidywania (positive predictivity, precision) oraz ich średnią harmoniczną (F1-score). Aby policzyć metryki można użyć wbudowanych w bibliotekę sciki t-learn funkcji:

```
from sklearn.metrics import classification_report, confusion_matrix
```

Jednak przed ich użyciem należy wygenerować odpowiedzi modelu na zbiorze testowym:

```
y_probab = model.predict(X_test)
```

```
y_pred = np.argmax(y_probab, axis=1)
```

```
print(classification_report(y_test, y_pred))
print(confusion_matrix(y_test, y_pred))
```

Przykładowe wyniki dla powyższego modelu mogą wyglądać następująco:

pre	ecisi	.on	reca	ll f	1-sco	re	suppo	rt			
		Θ		0.9	6	0.9	8	0.9	7	980	
		1		0.9		0.9		0.9		1135	
		2		0.9		0.9		0.9		1032	
		3		0.9	0	0.9	2	0.9	1	1010	
		4		0.9	4	0.9	3	0.9	4	982	
		5		0.9		0.8		0.8		892	
		6		0.9		0.9		0.9		958	
		7		0.9		0.9		0.9		1028	
		8 9		0.8		0.9		0.8		974	
		9		0.9	2	0.9	1	0.9	Z	1009	
	acc	curacy						0.9	3	10000	
	macro avg			0.93		0.93		0.93		10000	
wei	weighted avg			0.93		0.93		0.93		10000	
	959	0	1	2	0	6	9	2	1	0]	
[0	1115	3	3	0	1	3	2	8	0]	
]	3	10 0	926 18	15 926	8 0	4	13 2	9 11	41 22	3]	
]	3 1	2	5	920	917	23 0	10	4	10	5] 31]	
[8	2	1	34	5	779	14	8	35	6]	
[11	3	8	1	7	14	911	1	2	0]	
Ī	1	7	21	9	7	1	0	951	2	29]	
[7	6	6	23	7	21	7	9	883	5]	
[11	7	1	13	23	5	0	23	6	920]]	

Uczenie modeli nieliniowych

W ramach ćwiczenia, należy powtórzyć eksperyment dla modelu MLP oraz sieci konwolucyjnej. Sieć MLP powinna składać się z dwóch ukrytych warstw Dense, natomiast sieć konwolucyjna naprzemiennie z warstw konwolucyjnych oraz maxpooling. Przykładowa realizacja powyższych sieci mogłaby wyglądać następująco:

×

From:

https://home.agh.edu.pl/~mdig/dokuwiki/ - MVG Group

Permanent link:

https://home.agh.edu.pl/~mdig/dokuwiki/doku.php?id=teaching:data_science:ml_pl:topics:nn_klasyfikacja_intro

Last update: 2023/06/01 17:46