PhD Studies

Abraham Rojas Vega

June 20, 2024

Contents

1	Simplical sets and complexes					
	1.1	Simplical sets	-			
	1.2	Simplical complexes	-			
2			(
_			٠			
	2.1	Section 2.1	(
	2.2	Section 2.2	(

4 CONTENTS

Topics of Algebraic Topology

Chapter 1

Simplical sets and complexes

1.1 Simplical sets

Let Δ be the category of finite ordinal numbers, with order-preserving maps between them. More precisely, the objects for Δ consist of elements $\mathbf{n}, n \geq 0$, where \mathbf{n} is a string of relations

$$0 \to 1 \to 2 \to \cdots \to n$$

(in other words \mathbf{n} is a totally ordered set with n+1 elements). A morphism $\theta : \mathbf{m} \to \mathbf{n}$ is an order-preserving set function, or alternatively a functor. We usually commit the abuse of saying that Δ is the ordinal number category.

A simplicial set is a contravariant functor $X:\Delta^{op}\to \mathrm{Sets},$ where Sets is the category of sets.

Let Δ be the category of finite ordinal numbers, with order-preserving maps between them. More precisely, the objects for Δ consist of elements $\mathbf{n}, n \geq 0$, where \mathbf{n} is a string of relations

$$0 \to 1 \to 2 \to \cdots \to n$$

(in other words \mathbf{n} is a totally ordered set with n+1 elements). A morphism $\theta: \mathbf{m} \to \mathbf{n}$ is an order-preserving set function, or alternatively a functor. We usually commit the abuse of saying that Δ is the ordinal number category.

A simplicial set is a contravariant functor $X:\Delta^{op}\to \mathrm{Sets},$ where Sets is the category of sets.

1.2 Simplical complexes

Chapter 2

- 2.1 Section 2.1
- 2.2 Section 2.2