Announcements

Weekly Reading Assignment:Chapter 22

Homework #5 due on Nov. 17, 2005

Graphs

- A collection of vertices or nodes, connected by a collection of edges.
- Applicable to many applications where there is some "connection" or "relationship" or "interaction" between pairs of objects
 - network communication & transportation
 - VLSI design & logic circuit design
 - surface meshes in CAD/CAM & GIS
 - path planning for autonomous agents
 - precedence constraints in scheduling

Basic Definitions

- Directed Graph (or digraph) G = (V, E) consists of a finite set V, called vertices or nodes, and E, a set of ordered pairs, called edges of G. E is a binary relation on V. Self-loops are allowed. Multiple edges are not allowed, though (v, w) and (w, v) are distinct edges.
- Undirected Graph (or graph) G = (V, E) consists of a finite set V of vertices, and a set E of unordered pairs of distinct vertices, called edges of G. No self-loops are allowed.

Examples of Digraphs & Graphs

Figure 5.2 Directed and undirected graphs. (a) A directed graph G = (V, E), where $V = \{1, 2, 3, 4, 5, 6\}$ and $E = \{(1, 2), (2, 2), (2, 4), (2, 5), (4, 1), (4, 5), (5, 4), (6, 3)\}$. The edge (2, 2) is a self-loop. (b) An undirected graph G = (V, E), where $V = \{1, 2, 3, 4, 5, 6\}$ and $E = \{(1, 2), (1, 5), (2, 5), (3, 6)\}$. The vertex 4 is isolated. (c) The subgraph of the graph in part (a) induced by the vertex set $\{1, 2, 3, 6\}$.

Definitions

- Vertex w is adjacent to vertex v if there is an edge (v,w). Given an edge e = (u,v) in an undirected graph, u and v are the endpoints of e and e is incident on u (or on v). In a digraph, u & v are the origin and destination. e leaves u and enters v.
- A digraph or graph is weighted if its edges are labeled with numeric values.
- In a digraph,
 - Out-degree of v: number of edges coming out of v
 - In-degree of v: number of edges coming in to v

In a graph, degree of v: no. of incident edges to v

Combinatorial Facts

In a graph

- $0 \le e \le C(n,2) = n (n-1) / 2 \in O(n^2)$
- $\sum_{v \in V} \deg(v) = 2e$

In a digraph

- $0 \le e \le n^2$
- $\sum_{v \in V} \text{in-deg}(v) = \sum_{v \in V} \text{out-deg}(v) = e$

A graph is said to be *sparse* if $e \in O(n)$, and *dense* otherwise.

Definitions (Path vs. Cycle)

- Path: a sequence of vertices $\langle v_0, ..., v_k \rangle$ s.t. (v_{i-1}, v_i) is an edge for i = 1 to k, in a digraph. The length of the path is the number of edges, k.
- w is reachable from u if there is a path from u to
 w. A path is simple if all vertices are distinct.
- *Cycle*: a path containing at least 1 edge and for which $v_0 = v_k$, in a digraph. A cycle is *simple* if, in addition, all vertices are distinct.
- For graphs, the definitions are the same, but a simple cycle must visit ≥ 3 distinct vertices.

History on Cycles/Paths

- Eulerian cycle is a cycle (not necessarily simple) that visits every edge of a graph exactly once.
- Hamiltonian cycle (path) is a cycle (path in a directed graph) that visits every vertex exactly once.

Definitions (Connectivity)

- Acyclic: if a graph contains no simple cycles
- Connected: if every vertex of a graph can reach every other vertex
- Connected: every pair of vertices is connected by a path
- Connected Components: equivalence classes of vertices under "is reachable from" relation
- Strongly connected: for any 2 vertices, they can reach each other in a digraph
- G = (V, E) & G' = (V', E') are isomorphic, if \exists a bijection $f: V \rightarrow V'$ s.t. $v, u \in E$ iff $(f(v), f(u)) \in E'$.

Examples for Isomorphic Graphs

Figure 5.3 (a) A pair of isomorphic graphs. The vertices of the top graph are mapped to the vertices of the bottom graph by f(1) = u, f(2) = v, f(3) = w, f(4) = x, f(5) = y, f(6) = z. (b) Two graphs that are not isomorphic, since the top graph has a vertex of degree 4 and the bottom graph does not.

Free Trees, Forests, and DAG's

Free Tree

Forest

DAG

Graph Representations

Let G = (V, E) be a digraph with n = |V| & e = |E|

- Adjacency Matrix: a $n \times n$ matrix for $1 \leq v, w \leq n$ $A[v,w] = 1 \text{ if } (v,w) \in E \text{ and } 0 \text{ otherwise}$ If digraph has weights, store them in matrix.
- Adjacency List: an array Adj[1...n] of pointers where for $1 \le v \le n$, Adj[v] points to a linked list containing the vertices which are adjacent to v. If the edges have weights then they may also be stored in the linked list elements.

Example for Graphs

Figure 23.1 Two representations of an undirected graph. (a) An undirected graph G having five vertices and seven edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation of G.

NOTE: it is common to include cross links between corresponding edges, when you need to mark the edges you visit before. E.g. (v, w) = (w, v) UNC Chapel Hill

M. C. Lin

Example for Digraphs

Figure 23.2 Two representations of a directed graph. (a) A directed graph G having six vertices and eight edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation of G.

Finding Shortest Paths

- Given an undirected graph and source vertex s, the length of a path in a graph (without edge weights) is the number of edges on the path. Find the shortest path from s to each other vertex in the graph.
- Brute-Force: enumerate all simple paths starting from s and keep track of the shortest path arriving at each vertex.
 There may be n! simple paths in a graph...

Breadth-First-Search (BFS)

- Given:
 - G = (V, E)
 - A distinguished source vertex
- Systematically explores the edges of G to discover every vertex that is reachable from s
 - Computes (shortest) distance from s to all reachable vertices
 - Produces a breadth-first-tree with root s that contains all reachable vertices

Breadth-First-Search (BFS)

BFS colors each vertex:

white -- undiscovered

gray -- discovered but "not done yet"

black -- all adjacent vertices have been discovered

BFS for Shortest Paths

Finished

Discovered

O Undiscovered

```
BFS(G,s)
```

```
for each vertex u in (V[G] \setminus \{s\})
1.
                        do color[u] \leftarrow white
3
                        d[u] \leftarrow \infty
4
                        \pi[\mathbf{u}] \leftarrow \mathsf{nil}
5
        color[s] \leftarrow gray
6
        d[s] \leftarrow 0
       \pi[s] \leftarrow \mathsf{nil}
8
        Q \leftarrow \Phi
9
        enqueue(Q,s)
```

white: undiscovered gray: discovered black: finished

Q: a queue of discovered vertices color[v]: color of v d[v]: distance from s to v $\pi[u]$: predecessor of v

```
while Q \neq \Phi
10
11
                 do u \leftarrow dequeue(Q)
12
                             for each v in Adj[u]
                                        do if color[v] = white
13
                                                    then color[v] \leftarrow gray
14
                                                    d[v] \leftarrow d[u] + 1
15
16
                                                     \pi[v] \leftarrow u
                                                    enqueue(Q,v)
17
18
                             color[u] \leftarrow black
```

Operations of BFS on a Graph

Breadth-First Tree

- For a graph G = (V, E) with source s, the predecessor subgraph of G is $G_{\pi} = (V_{\pi}, E_{\pi})$ where
 - $-V_{\pi} = \{v \in V : \pi[v] \neq NIL\} \cup \{s\}$
 - $-E_{\pi} = \{(\pi[v], v) \in E : v \in V_{\pi} \{s\}\}$
- The predecessor subgraph G_{π} is a *breadth-first* tree if:
 - V_{π} consists of the vertices reachable from s and
 - for all $v \in V_{\pi}$, there is a unique simple path from s to v in G_{π} that is also a shortest path from s to v in G.
- The edges in E_π are called *tree edges*. $|E_\pi/=|V_\pi/$ 1

Intuition: Breadth-First Tree

- The predecessor pointers of the BFS define an inverted tree (an acyclic directed graph in which the source is the root, and every other node has a unique path to the root). If we make these edges bidirectional we get a rooted unordered tree called a BFS tree for G.
- There are potentially many BFS trees for a given graph, depending on where the search starts and in what order vertices are placed on the queue. These edges of G are called tree edges and the remaining edges of G are called cross edges.

Analysis of BFS

- Initialization takes O(V).
- Traversal Loop
 - After initialization, each vertex is enqueued and dequeued at most once, and each operation takes O(1). So, total time for queuing is O(V).
 - The adjacency list of each vertex is scanned at most once. The sum of lengths of all adjacency lists is $\Theta(E)$.
- Summing up over all vertices => total running time of BFS is O(V+E), linear in the size of the adjacency list representation of graph.

Shortest Paths

- Shortest-Path distance $\delta(s, v)$ from s to v is the minimum number of edges in any path from vertex s to vertex v, or else ∞ if there is no path from s to v.
- A path of length $\delta(s, v)$ from s to v is said to be a *shortest path* from s to v.

Lemmas

- Let G = (V, E) be a directed or undirected graph, and let $s \in V$ be an arbitrary vertex. Then, for any edge $(u,v) \in E$, $\delta(s,v) \leq \delta(s,u) + 1$.
- Let G = (V, E) be a directed or undirected graph, and suppose that BFS is run on G from a given source vertex $s \in V$. Then upon termination, for each vertex $v \in V$, the value d[v] computed by BFS satisfies $d[v] \ge \delta(s, v)$.
- Suppose that during the execution of BFS on a graph G, the queue Q contains vertices $(v_1, ..., v_r)$, where v_1 is the head of Q and v_r is the tail. Then, $d[v_r] \le d[v_1] + 1$ and $d[v_i] \le d[v_{i+1}]$ for i = 1, 2, ..., r-1.

M. C. Lin

Correctness of BFS

• Let G = (V, E) be a directed or undirected graph, and suppose that BFS is run on G from a given source vertex $s \in V$. Then, during its execution, BFS discovers every vertex $v \in V$ that is reachable from the source s, and upon termination, $d[v] = \delta(s, v)$ for all $v \in V$. Moreover, for any vertex $v \neq s$ that is reachable from s, one of the shortest paths from s to v is the shortest path from sto $\pi[v]$ followed by the edge $(\pi[v], v)$.

Depth-First-Search (DFS)

- Explore edges out of the most recently discovered vertex v
- When all edges of v have been explored, backtrack to explore edges leaving the vertex from which v was discovered (its predecessor)
- "Search as deep as possible first"
- Whenever a vertex v is discovered during a scan of the adjacency list of an already discovered vertex u, DFS records this event by setting predecessor $\pi[v]$ to u.

Depth-First Trees

- Coloring scheme is the same as BFS. The predecessor subgraph of DFS is $G_{\pi} = (V, E_{\pi})$ where $E_{\pi} = \{(\pi[v], v) : v \in V \text{ and } \pi[v] \neq NIL\}$. The predecessor subgraph G_{π} forms a depth-first forest composed of several depth-first trees. The edges in E_{π} are called tree edges.
- Each vertex u has 2 timestamps: d[u] records when u is first discovered (grayed) and f[u] records when the search finishes (blackens). For every vertex u, d[u] < f[u].

DFS(G)

- 1. for each vertex $u \in V[G]$
- 2. do $color[u] \leftarrow WHITE$
- 3. $\pi[u] \leftarrow \text{NIL}$
- 4. $time \leftarrow 0$
- 5. for each vertex $u \in V[G]$
- 6. do if color[v] = WHITE
- 7. then DFS-Visit(v)

DFS-Visit(u)

- 1. $color[u] \leftarrow GRAY$ ∇ White vertex u has been discovered
- **2.** $d[u] \leftarrow ++time$
- 3. for each vertex $v \in Adj[u]$
- 4. do if color[v] = WHITE
- 5. then $\pi[v] \leftarrow u$
- 6. DFS-Visit(v)
- 7. $color[u] \leftarrow BLACK$ ∇ Blacken u; it is finished.
- **8.** $f[u] \leftarrow time++$

Operations of DFS

Analysis of DFS

- Loops on lines 1-2 & 5-7 take $\Theta(V)$ time, excluding time to execute DFS-Visit.
- DFS-Visit is called once for each white vertex $v \in V$ when it's painted gray the first time. Lines 3-6 of DFS-Visit is executed |Adj[v]| times. The total cost of executing DFS-Visit is $\sum_{v \in V} |Adj[v]| = \Theta(E)$
- Total running time of DFS is $\Theta(V+E)$.