

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и системы управления»
КАФЕЛРА «П	рограммное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

по лабораторной работе № 7 по курсу «Анализ алгоритмов» на тему: «Алгоритмы поиска»

Студент	ИУ7-54Б (Группа)	(Подпись, дата)	Разин А. (И. О. Фамилия)
Преподаватель		(Подпись, дата)	Волкова Л. Л (И. О. Фамилия)

СОДЕРЖАНИЕ

Bl	ВЕДЕНИЕ 3 Аналитическая часть 4 1.1 Линейный поиск 4 1.2 Бинарный поиск 4 Конструкторская часть 5 2.1 Псевдокоды рассматриваемых алгоритмов 5 Технологический раздел 7 3.1 Средства реализации 7 3.2 Реализация алгоритмов 7					
1	Ана	алитическая часть	4			
	1.1	Линейный поиск	4			
	1.2	Бинарный поиск	4			
2	Ког	иструкторская часть	5			
	2.1	Псевдокоды рассматриваемых алгоритмов	Ę			
3	Tex	нологический раздел	7			
	3.1	Средства реализации	7			
	3.2	Реализация алгоритмов	7			
	3.3	Тестирование	7			
4	Исс	следовательская часть	8			
	4.1	Технические характеристики	8			
	4.2	Демонстрация работы программы	8			
	4.3	Число сравнений	S			
3	АКЛ	ЮЧЕНИЕ	12			
C	ПИС	ок использованных источников	13			
П	ПРИЛОЖЕНИЕ А					

ВВЕДЕНИЕ

Тема поиска всегда остается в центре внимания в информационных технологиях, задача поиска информации в структурах данных является одной из базовых задач программирования. Оптимизация поиска — одна из важнейших задач, ее решение позволяет оптимизировать работу различных баз и структур данных [1].

Целью данной работы является исследование методов бинарного и классического поиска и их сопоставления по числу сравнений элементов.

Для поставленной цели необходимо выполнить следующие задачи.

- 1. Описать алгоритмы поиска.
- 2. Создать программное обеспечение, реализующее линейный и бинарный алгоритмы поиска.
- 3. Замерить число сравнений различных алгоритмов.
- 4. Провести анализ полученных результатов.

1 Аналитическая часть

В данной части работы будут рассмотрены бинарный и линейный алгоритмы поиска.

1.1 Линейный поиск

При использовании линейного поиска рассматриваются все элементы массива до встречи элемента, совпадающего с требуемым. Таким образом в худшем случае (отсутствия элемента в массиве) необходимо рассмотреть все элементы массива. Алгоритм имеет асимптотическую оценку O(n) [1].

1.2 Бинарный поиск

При использовании данного алгоритма предполагается упорядоченность данных, т. е. элементы массива упорядочены либо по не возрастанию либо по не убыванию. Изначально необходимо сравнить искомый элемент k с элементом массива, находящимся в середине, результат сравнения поможет определить в какой половине массива продолжить поиск, далее возможно применение той же процедуры к выбранному подмассиву и т. д. После не более чем log_2N сравнений либо ключ будет найден, либо будет установлено его отсутствие. Такая процедура иногда называется «логарифмическим поиском» или «методом деления пополам», но наиболее употребительный термин — бинарный поиск [1].

Вывод

В данной части были рассмотрены идеи линейного и бинарного алгоритмов поиска.

2 Конструкторская часть

В данной части работы будет рассмотрен псевдокод линейного и бинарного алгоритмов поиска.

2.1 Псевдокоды рассматриваемых алгоритмов

В листингах 1–2 рассмотрены псевдокоды алгоритмов поиска, входными данными для них являются:

- 1. *array* массив элементов;
- 2. N число элементов в массиве;
- 3. *target* число для поиска в массиве.

В случае отсутствия элемента в массиве происходит возврат -1 — не валидного индекса массива. Оператор \leftarrow обозначает присваивание значение переменной, оператор [i] обозначает получение элемента из массива с индексом i, рассматривается только целочисленное деление, иные операторы подобны математическим.

Алгоритм 1 Псевдокод алгоритма бинарного поиска.

```
Условия: Массив упорядочен по не убыванию. left \leftarrow 0 right \leftarrow N-1 До тех пока left \leq right выполнять middle \leftarrow (left+right)/2 Если array[middle] \leftarrow target тогда Возвратить middle Конец условия Если array[middle] < target тогда left \leftarrow middle + 1 иначе right \leftarrow middle - 1 Конец условия Конец цикла Возвратить -1
```

Алгоритм 2 Псевдокод алгоритма линейного поиска.

Цикл i от 1 до N-1 выполнять Если array[i] = target тогда Возвратить i Конец условия Конец цикла Возвратить -1

Вывод

В данной части работы был написан псевдокод для алгоритмов линейного и бинарного поиска.

3 Технологический раздел

В данной части работы будут описаны средства реализации программы, а также листинги, модульные и функциональные тесты.

3.1 Средства реализации

Алгоритмы для данной лабораторной работы были реализованы на языке C++, при использовании компилятора gcc версии 10.5.0, так как в стандартной библиотеке приведенного языка присутствует структура данных — вектор, которая позволяет хранить данные и которую возможно упорядочить с помощью средств стандартной библиотеки [2].

3.2 Реализация алгоритмов

Листинги исходных кодов программ А.1–А.2 приведены в приложении.

3.3 Тестирование

В таблице 3.1 приведены модульные тесты для разработанных алгоритмов поиска, в столбце «Цель» находятся искомые значения. Все тесты пройдены успешно.

Таблица 3.1 – Модульные тесты

Массив	Цель	Ожидаемый р-т	Фактический результат	
			Бинарный поиск	Линейный поиск
1 2 3 4	1	0	0	0
1 2 3 4	4	3	3	3
-9 -3 -2 -1 1 2 3	-1	3	3	3
-9 -3 -2 -1 1 2 3	1	4	4	4
-9 -3 -2 -1 1 2 3	-3	1	1	1

Вывод

В данной части работы были представлены листинги реализованных алгоритмов и тесты, успешно пройденные программой.

4 Исследовательская часть

В данном разделе будут приведены примеры работы программ, постановка исследования и сравнительный анализ алгоритмов на основе полученных данных.

4.1 Технические характеристики

Технические характеристики устройства, на котором выполнялись замеры времени, представлены далее.

- 1. Процессор Intel(R) Core(TM) i7-9750H ЦПУ 2592 МГц, ядер: 6, логических процессоров: 12.
- 2. Оперативная память: 16 ГБ.
- 3. Операционная система: Майкрософт Windows 10 Pro [3].
- 4. Использованная подсистема: WSL2 [4].

При замерах времени ноутбук был включен в сеть электропитания и был нагружен только системными приложениями.

4.2 Демонстрация работы программы

На рисунке 4.1 представлена демонстрация работы разработанного приложения для алгоритмов поиска.

```
Меню:
0)Выход
1)Поиск элемента с помощью бинарного поиска
2)Поиск элемента с помощью линейного поиска
3)Расчет числа сравнений
Введите пункт из меню: 1
Введите размер массива для поиска значения:
Введите массив для поиска значения:
Введите значение для поиска:
Индекс искомого значения:1
```

Рисунок 4.1 – Пример работы программы

4.3 Число сравнений

В результате проведения замеров по числу сравнений были получены столбчатые диаграммы 4.2–4.4, при выполнении замеров элементы массива были отсортированы по возрастанию и принимали значения от 0 до 1000. Результат числа сравнений под индексом -1 является результатом поиска элемента, отсутствующего в рассматриваемом массиве.

Рисунок 4.2 – Диаграмма зависимости числа сравнений от индекса массива при использовании бинарного поиска

Рисунок 4.3 – Диаграмма зависимости числа сравнений от индекса массива при использовании бинарного поиска

Рисунок 4.4 – Диаграмма зависимости числа сравнений от индекса массива при использовании линейного поиска поиска

Вывод

Из диаграмм 4.2—4.4, можно сделать вывод, что максимальное число сравнений при использовании реализации бинарного поиска равно 10, при использовании реализации линейного поиска — 512, таким образом бинарный поиск при поиске в массиве длинной 512 в худшем случае для обоих алгоритмов (искомый элемент — последний элемент массива) требует в 51.2 раза меньше сравнений, ввиду возможности рассмотрения подмассивов. Однако, при использовании бинарного поиска стоит учитывать условие упорядоченности массива.

ЗАКЛЮЧЕНИЕ

В результате исследования что максимальное число сравнений при использовании реализации бинарного поиска равно 10, при использовании реализации линейного поиска — 512, таким образом бинарный поиск при поиске в массиве длинной 512 в худшем случае для обоих алгоритмов (искомый элемент — последний элемент массива) требует в 51.2 раза меньше сравнений, ввиду возможности разделения массива пополам и рассмотрения значений только из подмассивов. Однако стоит учитывать условие упорядоченности массива, при использовании бинарного поиска.

Поставленная цель: исследование методов бинарного и классического поиска и их сравнения по числу сравнений элементов, была достигнута. Для поставленной цели были выполнены все задачи.

- 1. Описать алгоритмы поиска.
- 2. Создать программное обеспечение, реализующее линейный и бинарный алгоритмы поиска.
- 3. Замерить число сравнений различных алгоритмов.
- 4. Провести анализ полученных результатов.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Д. К. Искусство программирования для ЭВМ. Том 3. Сортировка и поиск. //. М.: ООО «И.Д. Вильямс», 2014. С. 824.
- 2. std::vector [Электронный ресурс]. Режим доступа: https://en.cppreference.com/w/cpp/container/vector (дата обращения: 28.09.2023).
- 3. Windows 10 Pro 2h21 64-bit [Электронный ресурс]. Режим доступа: https://www.microsoft.com/ru-ru/software-download/windows10 (дата обращения: 28.09.2023).
- 4. Что такое WSL [Электронный ресурс]. Режим доступа: https://learn.microsoft.com/ru-ru/windows/wsl/about (дата обращения: 28.09.2023).

ПРИЛОЖЕНИЕ А

Листинг А.1 – Реализация алгоритма бинарного поиска

```
int binSearch(std::vector<int>& v, int x,
      std::vector<std::pair<int,int>>& res)
   {
2
       int low = 0;
3
       int high = (int)v.size() - 1;
4
       int cmpCount = 0;
5
6
       while (low <= high)</pre>
       {
            int mid = (high + low) / 2;
8
            res.emplace_back(mid,cmpCount);
9
            ++cmpCount;
10
11
            if (v[mid] == x)
12
13
                return mid;
14
            if (v[mid] < x)
15
16
                low = mid + 1;
17
18
            else
19
                high = mid - 1;
20
       }
       ++cmpCount;
21
22
23
       return -1;
24
  }
25
   Листинг А.2 – Реализация алгоритма линейного
   int search(std::vector<int>& v, int x,
      std::vector<std::pair<int,int>>& res)
   {
2
3
       int cmpCount = 0;
4
       for (int i = 0; i < v.size(); i++)</pre>
5
       {
6
            ++cmpCount;
7
```

res.emplace_back(i,cmpCount);

8