Chapter-2; Ralynamials Palynamials -> It is an specially type algabric expression which consist variable algabric expression which consist variable cofficient and grown degree should not be negative form. and the negative form. and the constant and consist of and constant where ao, a, az, az Classification of Byromials Classification of Byromials 1> Inear 1> Monomial 2> Binomial 3> Cubic 3> Cubic 4> Riguadranomial	
Palynomials -> It is an special type of algabric expression which consist variable tofficient and prome degree should not be regardine form and file and consist variable to the negative form and file and are constant for where as, a, a, a, a, a, a, are constant for characteristication of Polynomials On the Basis of degree on the basis of the promise of the promis	
algabric expression degree should not be cofficient and posses degree should not be negative form. and fill acx + a ₁ x ² + a ₂ x ³ + a ₁ x where a ₀ , a ₁ a ₂ , a ₃ are constant Ams Classification of Edynomials on the Basis of degree on the basis of 1 > Linear 1 > Monomial 2 > Binomial 3 > Cubic 3 > Toninomial	
algabric expression degree should not be cofficient and posses degree should not be negative form. and fill acx + a ₁ x ² + a ₂ x ³ + a ₁ x where a ₀ , a ₁ a ₂ , a ₃ are constant Ams Classification of Edynomials on the Basis of degree on the basis of 1 > Linear 1 > Monomial 2 > Binomial 3 > Cubic 3 > Toninomial	
algabric expression degree should not be cofficient and posses degree should not be negative form. and fill acx + a ₁ x ² + a ₂ x ³ + a ₁ x where a ₀ , a ₁ a ₂ , a ₃ are constant Ams Classification of Edynomials on the Basis of degree on the basis of 1 > Linear 1 > Monomial 2 > Binomial 3 > Cubic 3 > Toninomial	
and tages to tage and constant for where and and constant for classification of Polynomials On the Basis of degree on the basis of linear 2 Binomial 2 Cath Quadratic 3 Toninomial	
and tages + ages of legree on the basis of some and and some and the basis of some and	X
and tage tage and constant Amore where ao, a, az, az Classification of Polynomials on the Basis of degree on the basis of 1 > Linear 1 > Monomial 2 > Carbo Quadratic 2 > Binomial 3 > Cubic 3 > Enipomial	
classification of Polynomials On the Basis of degree on the basis of 1 > Linear 1 > Monomial 2 > Binomial 3 > Cubic 3 > Tonipomial	2
Classification of Polynomials on the Basis of degree on the basis of 1 > Linear 1 > Cubic 3 > Cubic Classification of Polynomials on the basis of I > Monomial 2 > Binomial 3 > Cubic	
on the Basis of degree 1 > Linear 2 > Cubic 3 > Cubic on the basis of 1 > Monomial 2 > Binomial 3 > Cubic	
on the Basis of degree 1 > Linear 2 > Cubic 3 > Cubic on the basis of 1 > Monomial 2 > Binomial 3 > Cubic	
1 > Linear 1 > Linear 2 > Binomial 3 > Cubic 3 > Cubic	
1 > Linear 2 > Costo Quadratic 3 > Cubic 3 > Cubic	
3-7 Cubic 30 Torinomial	-
3-7 Cubic	
Som Mananial	1
4-> Biquadratic 4-> Radoration	
	1
Quadratic Palynomial	-
Gennal equation: -> ax2 + bx2 + c	
yeroes > (x a. B)	+
	+
(i) \(+ B \(\) Sum of zeroes \(\) = \(\) \(+
(iii) $\alpha - \beta$	

Exercise > 2.2

- - x +2 => 0
 - βp ⇒ 2

Relationship

- compane with 6p(x) with $anc^2 + bnctc$ $\Rightarrow a=1, b=-2, c=-8$
- Then, $\alpha + \beta \Rightarrow -b/a$ $(\Rightarrow) 4+(-2) \Rightarrow -(-2)$
- $\alpha \beta \Rightarrow c$ $2 \Rightarrow 2$ verified $\alpha \beta \Rightarrow c$
- ⇒ 4x2 ⇒ 8 €
- > [8 = 8] verified

	t ² -15
(V)	$t^2 - 1s \Rightarrow \rho(x)$
	·
	$\Rightarrow t^2 - JS \Rightarrow 0$ $\Rightarrow t^2 \Rightarrow JS$
	$\Rightarrow t = \sqrt[4]{s}$
	$\Rightarrow \Rightarrow \Rightarrow \sqrt{15}$ $\beta \Rightarrow -\sqrt{15}$
	2 4 -1/15 , p -7 V 15
	Relationship
	a compare (p(x) with at2 + b+++c
	a = 1, $b = 0$, $c = -15$
	$(1) \times + \beta \Rightarrow -b/a$
	$\Rightarrow \sqrt{15} + (-\sqrt{15}) \Rightarrow (0)$
	> 0 = 0 venified
	VS. T. S.
	(i) 4. B => C/a
	2 VIS X-VIS 2-15
	=> [-15 => -15] verified
(in)	
(111)	$6x^2 - 3 - 7x$
sels	>6 x ² -7x 4-03
	$\Rightarrow 6x^2 - 9x + 2x - 3$
	$\Rightarrow 3(2x-3)+1(2x-3)$
V 1	$\Rightarrow 3x(2x-3) + 1(2x-3)$ $\Rightarrow (2x-3) (3x+1)$
m61	w, 2 x - 3 = 0
	$\alpha = 3$
	2
	$\gg 3\alpha + 1$, $\beta = -1$
	' 3

campare of pex) with 6x2-2x-3 a = 6, b = -7, c = -3 $\Rightarrow \frac{3}{2} + \left(-\frac{1}{3}\right) = -\left(-\frac{7}{6}\right)$ verified = 7 =-1 verified (ii) (2s-1)-1(2s-1)21-1=0 > 22-1 =0 B = 1 compare 2 p(x) with $48^2 - 48 + 1$, a $\begin{array}{c} \alpha + \beta = -\frac{1}{4} \\ \Rightarrow 1 + 1 = \frac{a}{2} \left(-\frac{4}{4} \right) \end{array}$ > [= 1] vorified

1 = 1 venified (iv) 442+ 84 sol = 4u2 +8u = p(x) Retationship compone por with 4u2 + 8u a = 4, b = 8, c = 0DO = 0 registied

		Page	
(vi)	$3x^{2} - x - 4$ $3x^{2} - 4x + 3x - 4$		2 -> (i sol-> L
	$\Rightarrow x(3x-4)+1(3x-4)$,	7
	$\Rightarrow 3x - 4 \ge 0$		
	$\Rightarrow \alpha = \frac{4}{3}$		
	$\Rightarrow z+1$ $\Rightarrow \beta = -1$		
	campore pcx with 3x2-x-4	V	(ĵi) Selo
2	$a = 3, b = -1, c = -4$ $A \neq \beta - b$	12 1 K	Set o
	$\Rightarrow 4 + -1 = (-1)$		
	⇒ •4-3 = •11 3 3		
	> a 1 = 1 verified 3 3		
	DeB = C	13	
	$\Rightarrow \frac{4 \times -1}{3} = -\frac{4}{3}$		(111)
	$\frac{3}{3} - \frac{4}{3} = -\frac{4}{3} \text{ Verified}$		

2- 1 -1 sol let a quadratic equation ax2 +bx + c ⇒ x + β = 3 = 1 => a=4, -b=1=> b=-1, c=-4 => 4x2 -x - 4 Am (ii) $\sqrt{2}$, $\frac{1}{3}$ selo Let à quadratic equation ax2 + bx tc $\Rightarrow \alpha + \beta = -b = \sqrt{2}$ to me most here we find that a = 3 so me multiply 3 forom 00 - b $b0, a = 3, -b = 3\sqrt{2} \Rightarrow -3\sqrt{2}, c = 1$ => [3 x2 - 3 \sqrt{2} x + 1] And liii, 0, 5 Vs Let a quadratic equation ax2 + bx +c $\Rightarrow \alpha + \beta = -\frac{1}{\alpha} = 0$ > x B = C = 15 so, $\alpha = 0$ 01, b = 0, $c = \sqrt{5}$

Descripe - Core (iv) 1, 911 Solo Let the zeroes α and β A.T.O, $\alpha + \beta = 1$, $\alpha = 1$ => p(x)=x20-(x+B)x+(xB) 22 0-(1)x + 1 x2 0-x +1 Ans $(\mathbf{v}) \stackrel{-\mathbf{I}}{\longrightarrow} , \stackrel{\mathbf{I}}{\smile}$ sol- Let the zeros & and B A.T.D., $\alpha + \beta = -1$, $\alpha \beta = 1$ Required Polynomials =>x2 + (x + B)x + (x B) $\Rightarrow p(x)=x^{2} \cdot (-1)x + (4)$ $\Rightarrow x^{2} + 1x + 1$ $\Rightarrow \frac{1}{4} \left(4x^2 + x + 1 \right)$ => 4x2-x+1; Ans (vi) 4, 1 sols let the zeroes & and B A.T.O; Q+B=4, QB=1 Required polynomials $\Rightarrow p(x) = x^2 o - (x + \beta)x + (x \beta)$

E16	
304:	Oats And
	(Page
	$\Rightarrow 2^2 \circ 4 \times 1 \mid Ans$
	1102
	2011
	X
11.00	
	-
	95,300
L	
	· · · · · · · · · · · · · · · · · · ·
•	
i e e e e e e e e e e e e e e e e e e e	
/-	
)	
3	·
1	