A General Software Readability Model

Jonathan Dorn December 18, 2012

Software Maintenance Costs

 Maintenance may cost up to 9x all other development costs.

R.C. Seacord, D. Plakosh, and G.A. Lewis. Modernizing Legacy Systems: Software Technologies, Engineering Process and Business Practices. Addison-Wesley Longman Publishing Co. Inc., Boston, MA, USA, 2003.

Reading and Maintenance

"A central activity in software maintenance is reading."*

^{*} D. R. Raymond, "Reading source code," in Conference of the Centre for Advanced Studies on Collaborative Research, 1991.

Reading and Maintenance

"A central activity in software maintenance is reading."*

^{*} D. R. Raymond, "Reading source code," in Conference of the Centre for Advanced Studies on Collaborative Research, 1991.

readability, n.

The ease with which a text may be scanned or read; the quality in a book, etc., of being easy to understand and enjoyable to read.

www.oed.com

Making Code More Readable

- Programming languages
 - Literate Programming (e.g. CWEB) [Knuth 1984]
 - Python [Van Rossum 1996]
- Development Process
 - Readability development phase [Elshoff & Marcotty 1982]
 - Readability review phase [Knight & Myers 1993]
 - Readability team [Haneef 1998]

Is It Working?

R.P.L. Buse and T. Zimmermann, "Information needs for software development analytics," in International Conference on Software Engineering, 2012.

Parallels: English Readability

Flesch-Kincaid Grade Level

- Government mandated
 - Military manuals: 9th grade
 DOD MIL-M-28784B
 - Insurance policies: 10th grade
 C.R.S 10-16-107.3 (1)(a)

Flesch-Kincaid Grade Level

$$0.39 \left(\frac{\text{total words}}{\text{total sentences}} \right) + 11.8 \left(\frac{\text{total syllables}}{\text{total words}} \right) - 15.59$$

- Simple surface-level features (syllables, words, sentences).
- Weights calculated using regression analysis.

Flesch-Kincaid Grade Level

• Simple surface-level features (syllables, words, sentences).

 Weights calculated using regression analysis.

Flesch-Kincaid Grade Level

$$\frac{0.39 \left(\frac{\text{total words}}{\text{total sentences}}\right) + 11.8 \left(\frac{\text{total syllables}}{\text{total words}}\right) - 15.59 }{ }$$

 Simple surface-level features (syllables, words, sentences). Weights calculated using regression analysis.

Learning a Readability Metric

Source Code Readability

- Buse & Weimer 2008
 - 25 surface features (max line length, average whitespace, etc.)

Posnett, et al. 2011

8.87-0.033(Halstead volume)+0.4(total lines)-1.5(token entropy)

Problem solved?

```
def handleBlockOuote(node):
   result = BlockQuoteDitem(node.nodeName)
   result.children = processChildren(node)
   return result
def handleList(node):
   result = ListDitem(node.nodeName)
   result.children = processChildren(node)
   return result
def handleListItem(node):
    result = ListItemDitem(node.nodeName)
   result.children = processChildren(node)
   return result
def handleTable(node):
   result = TableDitem(node.nodeName)
    # Ignore table contents that are not tr
   result.children = [x
        for x in processChildren(node) if x.type=='tr']
   return result
def handleTr(node):
   result = TrDitem(node.nodeName)
    # Ignore tr contents that are not th or td
   result.children = [x
        for x in processChildren(node) if x.type in ('th', 'td')]
   return result
```

Code Examples

Code Exercises to the gamera

```
//float *attenuationIntegralPlaneArray_d; //stores partial integral on planes parallel to the camera
//CUDA_SAFE_CALL(cudaMalloc((void **)&attenuationIntegralPlaneArray_d, img->dim[1]*img->dim[3]*sizeof(float)));
et_line_integral_attenuated_gpu_kernel <<<G1,B1>>> (*d_activity, *d_attenuation, currentCamPointer);
CUDA_SAFE_CALL(cudaThreadSynchronize());
```

}

oles

Example Readability

```
//float *attenuationIntegralPlaneArray_d; //stores partial integral on planes parallel to the camera
//CUDA_SAFE_CALL(cudaMalloc((void **)&attenuationIntegralPlaneArray_d, img->dim[1]*img->dim[3]*sizeof(float)));
et_line_integral_attenuated_gpu_kernel <<<G1,Bl>>> (*d_activity, *d_attenuation, currentCamPointer);
CUDA_SAFE_CALL(cudaThreadSynchronize());
```

```
def handleBlockOuote(node):
    result = BlockQuoteDitem(node.nodeName)
   result.children = processChildren(node)
   return result
def handleList(node):
   result = ListDitem(node.nodeName)
   result.children = processChildren(node)
   return result
def handleListItem(node):
   result = ListItemDitem(node.nodeName)
    result.children = processChildren(node)
   return result
def handleTable(node):
   result = TableDitem(node.nodeName)
   # Ignore table contents that are not tr
   result.children = [x
        for x in processChildren(node) if x.type=='tr']
   return result
def handleTr(node):
   result = TrDitem(node.nodeName)
   # Ignore tr contents that are not th or td
   result.children = [x
        for x in processChildren(node) if x.type in ('th', 'td')]
    return result
```


1 Readability Rating 5

Humans

Metric Mismatch

```
//float *attenuationIntegralPlaneArray_d; //stores partial integral on planes parallel to the camera
//CUDA_SAFE_CALL(cudaMalloc((void **)&attenuationIntegralPlaneArray_d, img->dim[1]*img->dim[3]*sizeof(float)));
et_line_integral_attenuated_gpu_kernel <<<G1,Bl>>> (*d_activity, *d_attenuation, currentCamPointer);
CUDA_SAFE_CALL(cudaThreadSynchronize());
```

```
def handleBlockOuote(node):
    result = BlockQuoteDitem(node.nodeName)
   result.children = processChildren(node)
   return result
def handleList(node):
   result = ListDitem(node.nodeName)
   result.children = processChildren(node)
   return result
def handleListItem(node):
   result = ListItemDitem(node.nodeName)
    result.children = processChildren(node)
   return result
def handleTable(node):
   result = TableDitem(node.nodeName)
   # Ignore table contents that are not tr
   result.children = [x
       for x in processChildren(node) if x.type=='tr']
   return result
def handleTr(node):
   result = TrDitem(node.nodeName)
   # Ignore tr contents that are not th or td
   result.children = [x
        for x in processChildren(node) if x.type in ('th', 'td')]
   return result
```


1 Readability Rating 5Buse Metric Humans

What happened?

What Happened? Model Gro

- Character features only.
- Missing:
 - Structural patterns.
 - Line-to-line variation.
 - Spatial layout.
 - Syntax highlighting.

Ground Truth

- Small survey
 - 120 participants.
- Similar backgrounds
 - All UVa students.
- One programming language
 - Java.
- Short code samples
 - 4 13 lines.

General Readability Metric

- 1. New model.
 - Buse baseline features
 - Additional visual features
- 2. Ground truth from a large human study.
- 3. Combine and evaluate.

General Readability Metric

- 1. New model.
 - Buse baseline features
 - Additional visual features
- 2. Ground truth from a large human study.
- 3. Combine and evaluate

Visual Structural Features

Visual Structural Features

- Line-to-line periodic structure
 - E.g. indentation.

How can we measure periodicity?

Fourier Series

 Idea: periodic functions can be written as the sum of a series of sines.

$$\sum_{n=-\infty}^{\infty} c_n \left(\cos(nx) + i\sin(nx)\right)$$

Discrete Fourier Transforms

The Discrete Fourier
 Transform (DFT) computes
 the coefficients.

• Bandwidth: the range of important coefficients.

Common in signal processing.

Visual Structural Features

Sample at each line.
 Take DFT of samples.
 Record bandwidth.

Spatial Layout Features

```
class class_attribute(PythonStructural, Element): pass
                                                                                                                              class expression_value(PythonStructural, Element): pass
        deltaW += vd[threadIdx.x] * hd[threadIdx.y] - vr[threadIdx.x] * hr[threadIdx.y];
                                                                                                                             class attribute(PythonStructural, Element): pass
                                                                                                                             # Structural Support Elements
if (i < I && j < J) {
          deltaW /= samples;</pre>
                                                                                                                             class parameter_list(PythonStructural, Element): pass
                                                                                                                             class parameter_tuple(PythonStructural, Element): pass
                                                                                                                             class parameter default(PythonStructural, TextElement): pass
        cudafloat learningRate = UpdateLearningRate(learningRateW, lastDeltaWithoutLearningMomentumW, deltaW, w, u, d);
                                                                                                                             class import_group(PythonStructural, TextElement): pass
        UpdateWeight(learningRate, momentum, deltaW, lastDeltaW, lastDeltaWithoutLearningMomentumW, weights, w);
                                                                                                                             class import_from(PythonStructural, TextElement): pass
                                                                                                                             class import_name(PythonStructural, TextElement): pass
                                                                                                                             class import_alias(PythonStructural, TextElement): pass
if(i < I && threadIdx.y == 0) {</pre>
                                                                                                                             class docstring(PythonStructural, Element): pass
       errors[i] = error;
                                                                                                                             # -----
       // Update a 
if (j == 0) {
                                                                                                                             # Inline Elements
                cudafloat learningRate = UpdateLearningRate(learningRateA, lastDeltaWithoutLearningMomentumA, deltaA, i, u, d); # These elements cannot become references until the second
                UpdateWeight(learningRate, momentum, deltaA, lastDeltaA, lastDeltaWithoutLearningMomentumA, a, i);
                                                                                                                             # pass. Initially, we'll use "reference" or "name".
                                                                                                                             class object_name(PythonStructural, TextElement): pass
                                                                                                                             class parameter_list(PythonStructural, TextElement): pass
// Update b
                                                                                                                             class parameter(PythonStructural, TextElement): pass
if (i == 0 && j < J) {
          deltaB /= samples;</pre>
                                                                                                                             class parameter_default(PythonStructural, TextElement): pass
                                                                                                                             class class_attribute(PythonStructural, TextElement): pass
                                                                                                                             class attribute_tuple(PythonStructural, TextElement): pass
```

Spatial Layout Features

- Fraction of screen occupied by each color.
 - Count area highlighted with each color.
 - Record ratios between colors.
- Patterns of color.
 - Construct matrix of 0s (whitespace) and 1s (highlighted text).
 - Compute 2D DFT of matrix.
 - Record average bandwidth in X and Y dimensions.

DFT Example (comments)

```
class class_attribute(PythonStructural, Element): pass
                                                                                                                          class expression_value(PythonStructural, Element): pass
       deltaW += vd[threadIdx.x] * hd[threadIdx.y] - vr[threadIdx.x] * hr[threadIdx.y];
                                                                                                                         class attribute(PythonStructural, Element): pass
                                                                                                                          # Structural Support Elements
if (i < I && j < J) {
    deltaW /= samples;</pre>
                                                                                                                         class parameter_list(PythonStructural, Element): pass
                                                                                                                         class parameter_tuple(PythonStructural, Element): pass
                                                                                                                         class parameter default(PythonStructural, TextElement): pass
       cudafloat learningRate = UpdateLearningRate(learningRateW, lastDeltaWithoutLearningMomentumW, deltaW, w, u, d):
                                                                                                                         class import_group(PythonStructural, TextElement): pass
       UpdateWeight(learningRate, momentum, deltaW, lastDeltaW, lastDeltaWithoutLearningMomentumW, weights, w);
                                                                                                                         class import_from(PythonStructural, TextElement): pass
                                                                                                                         class import_name(PythonStructural, TextElement): pass
                                                                                                                         class import_alias(PythonStructural, TextElement): pass
if(i < I && threadIdx.y == 0) {</pre>
                                                                                                                         class docstring(PythonStructural, Element): pass
       errors[i] = error;
       // Update a
                                                                                                                            Inline Elements
               cudafloat learningRate = UpdateLearningRate(learningRateA, lastDeltaWithoutLearningMomentumA, deltaA, i, u, d)
               UpdateWeight(learningRate, momentum, deltaA, lastDeltaA, lastDeltaWithoutLearningMomentumA, a, i);
                                                                                                                         class object_name(PythonStructural, TextElement): pass
                                                                                                                         class parameter_list(PythonStructural, TextElement): pass
// Update b
                                                                                                                         class parameter(PythonStructural, TextElement): pass
class parameter_default(PythonStructural, TextElement): pass
                                                                                                                          class class_attribute(PythonStructural, TextElement): pass
                                                                                                                         class attribute_tuple(PythonStructural, TextElement): pass
```

DFT Example (comments) Amplitude

DFT Example (comments)

Alignment Features

WXSCHEDULER_DAILY
WXSCHEDULER_WEEKLY
WXSCHEDULER_MONTHLY
WXSCHEDULER_TODAY
WXSCHEDULER_TO_DAY
WXSCHEDULER_PREV
WXSCHEDULER_NEXT
WXSCHEDULER_PREVIEW

 Identify 3+ lines with same token/token or token/whitespace transitions.

 Record number and length of matches.

Linguistic Features

- Average dictionary words in identifiers
 - Underscore-separated words
 - CamelCase
 - Prefix and suffix

General Readability Metric

- 1. New model.
 - Buse baseline features
 - Additional visual features
- 2. Ground truth from a large human study.
- 3. Combine and evaluate.

- Similar backgrounds (all UVa students).
- Single programming language (Java).
- Short code samples (4 13 lines).

- Similar backgrounds (all UVa students).
- Single programming language (Java).
- Short code samples (4 13 lines).

- Similar backgrounds (all UVa students).
- Diverse backgrounds:
 - Udacity students: beginners, professionals learning Python
 - reddit users: forum on programming
- Single programming language (Java).
- Short code samples (4 13 lines).

- Diverse backgrounds: Udacity students, reddit users.
- Single programming language (Java).
- Short code samples (4 13 lines).

- Diverse backgrounds: Udacity students, reddit users.
- Single programming language (Java).
- Multiple languages: Java, Python, CUDA.
- Short code samples (4 13 lines).

- Diverse backgrounds: Udacity students, reddit users.
- Multiple languages: Java, Python, CUDA.
- Short code samples (4 13 lines).

- Diverse backgrounds: Udacity students, reddit users.
- Multiple languages: Java, Python, CUDA.
- Short code samples (4 13 lines).
- Three code sample lengths: 10, 30, and 50 lines.

Code Samples

- Top-ten most recently updated projects in SourceForge.
- 360 total code samples.
 - 120 samples from each language.
 - 120 samples of each length.

- Survey takers rated 20 randomly selected samples.
 - Syntax pre-highlighted on server.

- Over 76,000 individual ratings (6x larger).
- Over 2,600 completed surveys (21x larger).

Category	Median (yrs)	> 1 year	> 5 years	> 10 years
Overall	8	2598	1972	1242
Java	2	1896	646	247
Python	1	1655	253	59
CUDA	0	181	8	2
School	3	2118	522	28
Industry	3	1808	1091	655

- Over 76,000 individual ratings (6x larger).
- Over 2,600 completed surveys (21x larger).

Category	Median (yrs)	> 1 year	> 5 years	> 10 years
Overall	8	2598	1972	1242
Java	2	1896	646	247
Python	1	1655	253	59
CUDA	0	181	8	2
School	3	2118	522	28
Industry	3	1808	1091	655

- Over 76,000 individual ratings (6x larger).
- Over 2,600 completed surveys (21x larger).

Category	Median (yrs)	> 1	year	> 5 years	> 10 years
Overall	8		2598	1972	1242
Java	2		1896	646	247
Python	1		1655	253	59
CUDA	0		181	8	2
School	3		2118	522	28
Industry	3		1808	1091	655

- Over 76,000 individual ratings (6x larger).
- Over 2,600 completed surveys (21x larger).

Category	Median (yrs)	> 1 year	> 5 years	> 10 years
Overall	8	2598	1972	1242
Java	2	1896	646	247
Python	11	1655	253	59
CUDA	0	181	8	2
School	3	2118	522	28
Industry	3	1808	1091	655

51

General Readability Metric

- 1. New model.
 - Buse baseline features
 - Additional visual features
- 2. Ground truth from a large human study.
- 3. Combine and evaluate.

Example Readability

```
//float *attenuationIntegralPlaneArray_d; //stores partial integral on planes parallel to the camera
//CUDA_SAFE_CALL(cudaMalloc((void **)&attenuationIntegralPlaneArray_d, img->dim[1]*img->dim[3]*sizeof(float)));
et_line_integral_attenuated_gpu_kernel <<<G1,Bl>>> (*d_activity, *d_attenuation, currentCamPointer);
CUDA_SAFE_CALL(cudaThreadSynchronize());
```

```
def handleBlockOuote(node):
    result = BlockQuoteDitem(node.nodeName)
   result.children = processChildren(node)
   return result
def handleList(node):
   result = ListDitem(node.nodeName)
   result.children = processChildren(node)
   return result
def handleListItem(node):
   result = ListItemDitem(node.nodeName)
    result.children = processChildren(node)
   return result
def handleTable(node):
   result = TableDitem(node.nodeName)
    # Ignore table contents that are not tr
   result.children = [x
        for x in processChildren(node) if x.type=='tr']
   return result
def handleTr(node):
   result = TrDitem(node.nodeName)
    # Ignore tr contents that are not th or td
   result.children = [x
        for x in processChildren(node) if x.type in ('th', 'td')]
    return result
```


1 Readability Rating 5New Metric HumansBuse Metric

Annotator Agreement

Spearman correlation:
 Agreement on ordering

Score	Meaning
+1	Perfect agreement
0	No relationship
-1	Perfect disagreement

Impact of New Features

 How much improvement is due to our new features?

Re-train Buse metric with our survey results.

 Compare our metric (old + new features) to Buse metric (old features only)

Impact of New Features

Compute f-measure:

$$f = 2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$$
$$\text{precision} = \frac{TP}{TP + FP}$$
$$\text{recall} = \frac{TP}{TP + FN}$$

Head-to-Head F-Measure

- Multi-language
 - 5% improvement

- Single-language
 - 16-26% improvement

57

Predictors of Readability

All Languages, All Lengths

Category	Description	+/-
Syntax	Line Length	-
Syntax	Long lines	-
Visual	Operator area	-
Structural	1D DFT of syntax	-
Visual	2D DFT of comments	+
Visual	String area to keyword area	+
Alignment	Min alignment length	+

5+ Years Industry Experience

Category	Description	+/-
Syntax	Long lines	-
Syntax	Whitespace	-
Visual	Comment area	+
Structural	1D DFT of whitespace	-

Predictors of Readability

All Languages, All Lengths

Category	Description	+/-
Syntax	Line Length	-
Syntax	Long lines	-
Visual	Operator area	-
Structural	1D DFT of syntax	-
Visual	2D DFT of comments	+
Visual	String area to keyword area	+
Alignment	Min alignment length	+

5+ Years Industry Experience

Category	Description	+/-
Syntax	Long lines	-
Syntax	Whitespace	-
Visual	Comment area	+
Structural	1D DFT of whitespace	-

Predictors of Readability

Java

Category	Description	+/-
Structural	1D DFT of whitespace	-
Syntax	Long lines	-
Syntax	Lines between identifiers	-
Syntax	Keywords	+
Structural	1D DFT of syntax	-

Python

Category	Description	+/-
Syntax	Identifiers	-
Linguistic	Identifier components	-
Visual	Operator area to keyword area	-
Structural	Operator to identifier tokens	+
Structural	1D DFT of syntax	-

Conclusion

- Visual and spatial features can significantly improve the accuracy of readability metrics.
 - Different features are more predictive for different languages.
- Largest human study of readability ratings to date.
 - Survey data is available online.

Questions?