Sistema de Riego Automático Sostenible (SRAS)

Revisión 1.00

Instrucciones para el uso de este formato

Este formato es una plantilla tipo para documentos de requisitos de producto para su desarrollo.

Está basado y es conforme con el estándar IEEE Std 830-1998 y ha sido modificada para su suso en un ambiente de desarrollo mecatrónico simplificado.

El uso de este documento permite capturar la información relevante para desarrollar un producto o algunas de sus partes, sean electrónicas, mecánicas, de software o funcionales.

Las secciones que no se consideren aplicables al sistema descrito podrán de forma justificada indicarse como no aplicables (NA).

Notas:

Los textos en color azul son indicaciones que deben eliminarse y, en su caso, sustituirse por los contenidos descritos en cada apartado.

Los textos entre corchetes del tipo "[Inserte aquí el texto]" permiten la inclusión directa de texto con el color y estilo adecuado a la sección, al pulsar sobre ellos con el puntero del ratón.

Los títulos y subtítulos de cada apartado están definidos como estilos de MS Word, de forma que su numeración consecutiva se genera automáticamente según se trate de estilos "Titulo1, Titulo2 y Titulo3".

La sangría de los textos dentro de cada apartado se genera automáticamente al pulsar Intro al final de la línea de título. (Estilos Normal indentado1, Normal indentado 2 y Normal indentado 3).

El índice del documento es una tabla de contenido que MS Word actualiza tomando como criterio los títulos del documento.

Una vez terminada su redacción debe indicarse a Word que actualice todo su contenido para reflejar el contenido definitivo.

Ficha del documento

Fecha	Revisión	Autor	Verificado dep. calidad.
Diciembre	1.0	Yawilda Isabel Martínez	Departamento de Ingeniería
2024		Fernández	Agrícola

Documento validado por las partes en fecha: 11 diciembre 2024

Por el cliente	Por la empresa suministradora
Ing. Paúl Martínez	Departamento de Ingeniería Agrícola

Rev. 1.0 Pág. 4

Contenido

FICHA	DEL DOCUMENTO	3
CONTE	ENIDO	4
1 IN	ITRODUCCIÓN	6
1.1	Propósito	6
1.2	Alcance	6
1.3	Personal involucrado	6
1.4	Definiciones, acrónimos y abreviaturas	6
1.5	Referencias	7
1.6	Resumen	7
2 D	ESCRIPCIÓN GENERAL	7
2.1	Perspectiva del producto	7
2.2	Funcionalidad del producto	7
2.3	Características de los usuarios	7
2.4	Restricciones	7
2.5	Suposiciones y dependencias	8
2.6	Evolución previsible del sistema	8
3 R	EQUISITOS ESPECÍFICOS	8
3.1.1 3.1.2 3.1.3 3.1.4	2 Interfaces de hardware 3 Interfaces de software	¡Error! Marcador no definido. ¡Error! Marcador no definido. ¡Error! Marcador no definido. ¡Error! Marcador no definido. ¡Error! Marcador no definido.
3.2 3.2.2 3.2.2 3.2.3 3.2.4	Requisito funcional 2 Requisito funcional 3	¡Error! Marcador no definido.

Rev.	1	.0
Pá	a	5

4 APÉ	ÉNDICES	8
3.4 C	Otros requisitos	¡Error! Marcador no definido.
3.3.6	Portabilidad	¡Error! Marcador no definido.
3.3.5	Mantenibilidad	¡Error! Marcador no definido.
3.3.4	Disponibilidad	¡Error! Marcador no definido.
3.3.3	Fiabilidad	¡Error! Marcador no definido.
3.3.2	Seguridad	¡Error! Marcador no definido.
3.3.1	Requisitos de rendimiento	¡Error! Marcador no definido.

Rev. 1.0 Pág. 6

1 Introducción

El Sistema de Riego Automático Sostenible (SRAS) es una solución innovadora diseñada para abordar el desperdicio de agua en la agricultura, que representa el 70% de las pérdidas totales del recurso hídrico en la República Dominicana. Este sistema utiliza paneles solares, sensores avanzados y tecnología IoT para garantizar un riego eficiente, sostenible y accesible, contribuyendo a mejorar la productividad agrícola y la conservación del agua.

1.1 Propósito

El propósito de este documento es definir los requisitos técnicos, funcionales y no funcionales del Sistema de Riego Automático Sostenible (SRAS). Este sistema busca optimizar el uso del agua en la agricultura, reducir el desperdicio mediante tecnologías inteligentes, y operar con energía solar para garantizar la sostenibilidad.

1.2 Alcance

El SRAS gestionará de forma automatizada el riego en zonas agrícolas utilizando sensores de humedad, algoritmos de control inteligente y paneles solares como fuente de energía. El sistema será aplicable a regiones agrícolas diversas, contribuyendo a reducir el desperdicio de agua hasta en un 70%.

1.3 Personal involucrado

Nombre	Yawilda Martínez	Paúl Martínez	Luis García
Rol	Ingeniera Agrícola	Desarrollador Mecatrónico	Técnico de Campo
Categoría profesional	Ingeniero Senior	Ingeniero Mecatrónico	Técnico Operativo
Responsabilidades	Diseño general del sistema y pruebas	Desarrollo del sistema de control automático	Supervisión y mantenimiento del hardware
Información de contacto Aprobación	yawm@sras.com	pm@sras.com	lgarcia@empresa.com

1.4 Definiciones, acrónimos y abreviaturas

• SRAS: Sistema de Riego Automático Sostenible.

• PV: Panel Fotovoltaico.

• IoT: Internet de las Cosas.

• MFC: Controlador de Flujo de Riego.

Rev. 1.0 Pág. 7

1.5 Referencias

Referencia	Titulo	Ruta	Fecha	Autor
REF001	Manual de sensores de humedad	www.sensoreshumedad.com	Octubre 2024	Manual Inc.
REF002	Guía técnica de paneles solares	www.panelessolares.com	Noviembre 2024	SolarTech

1.6 Resumen

El documento incluye la problemática del manejo del agua a nivel nacional, justificación del proyecto, descripción general del producto, especificaciones técnicas y funcionales, y apéndices relevantes.

2 Descripción general

2.1 Perspectiva del producto

El SRAS es un subsistema autónomo que forma parte de un sistema agrícola más amplio. Está diseñado para operar con sensores, válvulas de riego, y controladores conectados a un panel de gestión centralizado.

2.2 Funcionalidad del producto

- Sensado continuo de humedad del suelo y condiciones climáticas.
- Activación automatizada de riego en función de los datos recolectados.
- Uso de energía renovable con almacenamiento en baterías.
- Reporte de datos a una plataforma IoT para monitoreo remoto.

2.3 Características de los usuarios

Tipo de usuario	Agricultor	Técnico Especializado
Formación	Básica a técnica	Técnico o superior
Habilidades	Uso de interfaces gráficas	Diagnóstico y configuración
Actividades	Supervisión básica del	Mantenimiento avanzado y
	sistema	solución de problemas

2.4 Restricciones

- El sistema depende de un nivel mínimo de radiación solar (4 horas diarias) para operar eficientemente.
- Es necesario instalar sensores y dispositivos compatibles con los estándares internacionales para garantizar la interoperabilidad.
- El sistema requiere acceso a conectividad Wi-Fi o Bluetooth para funciones IoT y monitoreo remoto.

2.5 Suposiciones y dependencias

- 1. Los sensores y paneles solares estarán disponibles y cumpliendo con los estándares técnicos especificados.
- 2. Habrá acceso a personal técnico capacitado para la instalación y el mantenimiento del sistema.
- 3. La infraestructura de comunicación local (Wi-Fi o 4G) estará disponible en la región de operación.

2.6 Evolución previsible del sistema

- 1. Los sensores y paneles solares estarán disponibles y cumpliendo con los estándares técnicos especificados.
- Habrá acceso a personal técnico capacitado para la instalación y el mantenimiento del sistema.
- 3. La infraestructura de comunicación local (Wi-Fi o 4G) estará disponible en la región de operación.

3 Requisitos específicos

3.1.1 Requisitos Comunes de los Interfaces

El SRAS requiere interfaces claras y fáciles de usar para facilitar la interacción del usuario con el sistema.

3.1.1 Interfaces de Usuario

- Pantallas táctiles resistentes a condiciones climáticas extremas.
- Interfaz gráfica simple e intuitiva para visualizar datos como humedad del suelo y estado del sistema.
- Notificaciones automáticas sobre el estado de operación y posibles fallos.

3.1.2 Interfaces de Hardware

- Compatibilidad con bombas de riego, sensores de humedad y temperatura.
- Conexiones estandarizadas (USB, Ethernet) para facilitar el mantenimiento.
- Paneles solares integrados con baterías recargables para funcionamiento autónomo.

3.1.3 Interfaces de Software

- Integración con plataformas IoT para almacenamiento y análisis de datos.
- Compatibilidad con aplicaciones móviles y web para control remoto.
- Soporte para actualizaciones de software OTA (Over-the-Air).

3.1.4 Interfaces de Comunicación

- Módulos de comunicación Wi-Fi, Bluetooth y 4G opcional para transferencia de datos.
- Protocolos seguros para la transmisión de información entre dispositivos.

3.1.2 Requisitos Funcionales

- 1. Sensar y reportar los niveles de humedad cada 10 minutos.
- 2. Activar o desactivar automáticamente las bombas de riego según los parámetros definidos.
- 3. Generar reportes sobre el uso de agua y eficiencia del sistema.
- 4. Recargar baterías en un máximo de 6 horas con radiación solar óptima.

3.1.3 3.3.2 Seguridad

- Encriptación de datos transmitidos entre dispositivos y la nube para proteger la información.
- Acceso restringido a usuarios autorizados mediante contraseñas o autenticación biométrica.
- Registro de actividades del sistema para auditorías de seguridad.

3.1.4 3.3.3 Fiabilidad

- Tolerancia a fallos en los sensores y en el sistema de comunicación.
- Tiempo promedio entre fallos (MTBF) estimado en 1 año.
- Módulos de autodiagnóstico para detectar problemas rápidamente.

3.1.5 3.3.4 Disponibilidad

- Operación garantizada en un 95% del tiempo, incluyendo situaciones de baja radiación solar.
- Respaldo mediante baterías de alta capacidad para mantener el funcionamiento durante 24 horas sin radiación solar.

3.1.6 3.3.5 Mantenibilidad

- Manuales técnicos detallados para facilitar el mantenimiento por personal capacitado.
- Detección de fallos en sensores o componentes a través de alertas automatizadas.
- Diseño modular para reemplazo rápido de partes defectuosas.

Rev. 1.0 Pág. 10

3.1.7 3.3.6 Portabilidad

- Compatible con distintas configuraciones agrícolas y climáticas.
- Diseño compacto y ligero para facilitar el transporte e instalación en zonas remotas.
- Uso de tecnologías estándares que permitan la migración a otras plataformas si es necesario.

3.1.8 3.4 Otros Requisitos

- 1. Cumplimiento con regulaciones ambientales locales e internacionales.
- 2. Funcionalidad multilingüe para atender a usuarios de diferentes regiones.
- 3. Documentación y soporte técnico en línea disponibles.

4 Apéndices

5 4.1 Diagrama del Sistema

Se incluye un diagrama que ilustra la conexión entre los paneles solares, sensores de humedad, bombas de agua y la unidad de control.

6 4.2 Listado de Materiales

Componente	Componente	Componente
Paneles solares (300W)	6	Generar energía para el sistema.
Baterías recargables (12V, 100Ah)	2	Almacenar energía solar para uso nocturno.
Sensores de humedad	10	Medir la humedad del suelo.
Unidad de control con loT	1	Automación y control de riego.
Bombas de agua (submersible)	1	Transportar agua desde la fuente.
Wi-Fi/Bluetooth Module	1	Comunicación inalámbrica.