Ejercicios Topología

Hugo Del Castillo Mola

12 de octubre de 2022

Índice general

1.	Espacios Topológicos	2
	1.1. Funciones Continuas	2

Capítulo 1

Espacios Topológicos

1.1. Funciones Continuas

Ejercicio 1.1.1 (27). Sea $(X, \mathcal{T}), (X', \mathcal{T}')$ e.t., $f: (X, \mathcal{T}) \to (X', \mathcal{T}')$ aplicación. Entonces, $\mathcal{T} = \mathcal{T}_d \Leftrightarrow f$ es continua.

Solución.

$$(\Rightarrow) \mathcal{T} = \mathcal{T}_d \Rightarrow \forall A \subset X, A \in \mathcal{T}_d \Rightarrow \forall A' \in \mathcal{T}', f^{-1}(A') \in \mathcal{T} = \mathcal{T}_d.$$

(⇐) ejercicio 26

Ejercicio 1.1.2 (28). Probar que existen aplicaciones abiertas y cerradas simultaneamente, pero que no son continuas.

Solución (28). Sea (X, \mathcal{T}) , (X, \mathcal{T}') , e.t. tal que $\mathcal{T} = \{\emptyset, X\}$ topología trivial, $\mathcal{T}' = \mathcal{P}(X')$, $\mathbbm{1}: (X, \mathcal{T}) \to (X', \mathcal{T}')$ aplicación identidad. Entonces, $\forall A \in \mathcal{T}$, $\mathbbm{1}(A) \in \mathcal{T}'$ y $\forall C$ cerrado de (X, \mathcal{T}) , $\mathbbm{1}(C)$ cerrado de (X', \mathcal{T}') . Pero, $\forall A' \in \mathcal{T}': A' \subset X$, $f^{-1}(A') \notin \mathcal{T}$.

Ejercicio 1.1.3 (29). Sea $(X, \mathcal{T}), (X', \mathcal{T}')$ e.t., $f: (X, \mathcal{T}) \to (X', \mathcal{T}')$ continua, abierta y suprayectiva, \mathcal{B} base de \mathcal{T} . Entonces, $\mathcal{G} = \{f(B) : B \in \mathcal{B}\}$ es base de \mathcal{T}' .

Solución. $\forall A' \in \mathcal{T}' \xrightarrow{f.cont} f^{-1}(A') \in \mathcal{T} \xrightarrow{\mathcal{B} \text{ base de } \mathcal{T}} \exists \mathcal{B}' \subset \mathcal{B} : f^{-1}(A') = \bigcup_{B \in \mathcal{B}'} B \xrightarrow{f \text{ supra.}} f(f^{-1}(A')) = f\left(\bigcup_{B \in \mathcal{B}'} B\right) = \bigcup_{B \in \mathcal{B}'} f(B) \text{ donde } f^{-1}(A') \in \mathcal{T} \xrightarrow{f \text{ ab.}} f(f^{-1}(A')) = A' \in \mathcal{T}' \Rightarrow \mathcal{G} \text{ base de } \mathcal{T}'.$

Ejercicio 1.1.4 (30). Sean $(X, \mathcal{T}), (X', \mathcal{T}'), (X'', \mathcal{T}'')$ aplicaciones continuas tales que $g \circ f$ es homeomorfismo y g es inyectiva (suprayectiva). Entonces, f y g son homeomorfismos.

Solución. Trivial.

Ejercicio 1.1.5 (31). Sea $(X, \mathcal{T}), (X', \mathcal{T}')$ espacios topológicos, $f: (X, \mathcal{T}) \to (X', \mathcal{T}')$ homeomorfismo y $A \subset X: A \cap A' = \emptyset$. Entonces, $f(A) \cap f(A') = \emptyset$.

Solución. Supongamos que $A \cap A' = \emptyset$ y $f(A) \cap f(A') \neq \emptyset$. Entonces, f homeomorfismo \Rightarrow f inyectiva \Rightarrow $f(A \cap A') = f(A) \cap f(A') \neq \emptyset$ pero $f(A \cap A') = f(\emptyset) = \emptyset \Rightarrow f(A \cap A') \neq f(A) \cap f(A')$ contradicción.

Ejercicio 1.1.6 (32). Sea $(X,\mathcal{T}),(X',\mathcal{T}')$ e.t., $f:(X,\mathcal{T})\to (X',\mathcal{T}')$ aplicación inyectiva y abierta, y $A\subset X$. Entonces, $f|_A:(A,\mathcal{T}|_A)\to (f(A),\mathcal{T}'|_{f(A)})$ es inyectiva y abierta.

Solución. Sea $G \in \mathcal{T}|_A \Rightarrow \exists U \in \mathcal{T} : G = U \cap A \Rightarrow f|_A(G) = f(G) = f(U \cap A) \xrightarrow{f \text{ iny.}} f(U \cap A) = f(U) \cap f(A) \in \mathcal{T}'|_{f(A)}.$

Ejercicio 1.1.7 (33). Sea $\{(X_j, \mathcal{T}_j)\}_{j\in J}$ familia no vacía de espacios topoógicos, $A_j \subset X_j, \forall i \in J$. Entonces, $\prod_{j\in J} \left(\mathcal{T}_j|_{A_j}\right) = \left(\prod_{j\in J} \mathcal{T}_j\right)|_{\prod_{j\in J} A_j}$

Solución. content