Instr.	Platf.	Period	Footprint	Swath	n Parameters	Projects
				width	L	
			$[\mathrm{km}^2]$	$[\mathrm{km}]$		
GOME	ERS2	1995-2003	320×40	960	R_{TOA}	B01
ATSR-2	ERS2	1995-2003	1×1	500	AOT , R_{TOA} , BT_{TOA}	B01, B02
SCIA	EnviSat	2002-2012	30×60	960	$ m R_{TOA}$	B01
			30×30	960	R_{TOA}	B01
MERIS	EnviSat	2002-2012	1×1	1150	R _{TOA} , albedo, melt ponds	B01, C01
AATSR	EnviSat	2002-2012	1×1	500	BT _{TOA} , cloud mask, AOT	B01, B02, C01
GOME2-A	MetopA	2007-	80×40	1920	R_{TOA}	B01
			40×40	960	R_{TOA}	B01
IASI-A	MetopA	2007-	12(*)	2200	$\mathrm{BT}_{\mathrm{TOA}}$	B01
GOME2-B	MetopB	2011-	80×40	1920	$ m R_{TOA}$	B01
			40×40	960	$ m R_{TOA}$	B01
IASI-B	MetopB	2011-	12	2200	$\mathrm{BT}_{\mathrm{TOA}}$	B01
GOME2-C	MetopC	2018-	80×40	1920	R_{TOA} , PPG, CDOM, BrO	B01, C03
			40×40	960	R_{TOA} , PPG, CDOM, BrO	B01, C03
IASI-C	MetopC	2018-	12	2200	$\mathrm{BT}_{\mathrm{TOA}}$	B01
OLCI-A	Sentinel-3A	2016-	1×1	1270	AOT, R_{TOA}	B01, B02
			0.3×0.3	1270	albedo, melt ponds	C01
SLSTR-A	Sentinel-3A	2016-	0.5×0.5	1270	cloud mask, BT_{TOA}	B01, B02, C01
			1×1	1400	R_{TOA}, BT_{TOA}	B01, B02, C01
OLCI-B	Sentinel-3B	2018-	1×1	1270	AOT, R_{TOA}	B01, B02
			0.3×0.3	1270	albedo, melt ponds	C01
SLSTR-B	Sentinel-3B	2018-	0.5×0.5	1270	cloud mask, BT_{TOA}	B01, B02, C01
			1×1	1400	R_{TOA}, BT_{TOA}	B01, B02, C01
TROPOMI	Sentinel-5P	2017-	5.5×3.5	2600	R_{TOA} , PPG, CDOM, BrO	B01, C03
POLDER	PARASOL	2004-2013	6×7	2400	AOT	B02
C-SAR	Sentinel-1A	2014-	$5 \text{ to } 40 \mathrm{m}$	410	leads, ice roughness	D03, B07
C-SAR	Sentinel-1B	2016-	$5 \text{ to } 40 \mathrm{m}$	410	leads, ice roughness	D03, B07
C-SAR	RCM	2019-	$1 \text{ to } 100 \mathrm{m}$	500	leads, ice roughness	D03, B07
AMSR-E	Aqua	2002-2011	5 to 56	1445	sea ice, snow, water	B05, D03
					vapour, SST	
AMSR2	GCOM-W	2012-	4 to 47	1450	sea ice, snow, water	B05, D03
					vapour, SST	
MIRAS	SMOS	2009-	40	1000	ice thickness	B05, D03
SMAP	SMAP	2015-	40	1000	ice thickness	B05, D03
AMSU-B	NOAA-15/16/17	1999-2014	16	2250	water vapour	B05
MHS	Metop-A/B/C	2006-	16	1920	water vapour	B05
ATLAS	ICESat-2	2018-	$17\mathrm{m}$	6.6	ice topography/roughness	D03

List of most important and actively used satellite instruments in Phase II including their key characteristics. Worth to mention is that the equator crossing time is for most of the multispectral and hyperspectral instruments listed here between 9:30-10:30h, except TROPOMI and POLDER which are in afternoon orbits. The footprint sizes given for the same instrument depend on the wavelength ranges or changes in operation during the mission.