

Modul M1 – Allgemeine Psychologie Vorlesung

Prof. Dr. Florian Kattner
Professur für Allgemeine Psychologie
Health and Medical University
Olympischer Weg 1
14471 Potsdam

Inhalte der Vorlesung

Nr.	Datum	Thema
1	12.10.2021 (Di)	Einführung: Was ist Allgemeine Psychologie?
2	19.10.2021 (Di)	Psychophysik I: Schwellenmessung
3	26.10.2021 (Di)	Psychophysik II: Skalierung, adaptive Verfahren und Signalentdeckungstheorie
4	02.11.2021 (Di)	Visuelle Wahrnehmung I: Grundlagen des Sehens
5	09.11.2021 (Di)	Visuelle Wahrnehmung II: Kortikale Organisation
6	16.11.2021 (Di)	Visuelle Wahrnehmung III: Farbwahrnehmung geänderte Uhrzeit: 13:00-14:30
7	23.11.2021 (Di)	Visuelle Wahrnehmung IV: Tiefen- und Größenwahrnehmung
8	30.11.2021 (Di)	Auditive Wahrnehmung I: Grundlagen des Hörens
9	06.12.2021 (Mo)	Auditive Wahrnehmung II: Richtungshören und auditive Szenenanalyse
10	14.12.2021 (Di)	Aufmerksamkeit
11	11.01.2022 (Di)	Gedächtnis I: Einteilung von Gedächtnissystemen
12	18.01.2022 (Di)	Gedächtnis II: Arbeitsgedächtnis und exekutive Funktionen
13	25.01.2022 (Di)	Gedächtnis III: Langzeitgedächtnis
14	01.02.2022 (Di)	Sprache: Wahrnehmung und Verstehen
15	08.02.2022 (Di)	Wiederholung und Fragestunde

Mentimeter-Frage 1:

 Auf welchen Punkt der psychometrischen Funktion konvergiert ein 3-down/1-up Verfahren?

https://www.menti.com/vbvz4owtz5

Mentimeter-Frage 1

Go to www.menti.com and use the code 9554 2039

Auf welchen Punkt der psychometrischen Funktion konvergiert ein 3-down/1-up Verfahren?

Mentimeter

Press ENTER to show correct

•

Lösung

3-down / 1-up staircase-Verfahren

- Wahrscheinlichkeit für down-Ast: drei Richtige in Folge = $p \cdot p \cdot p = p^3$
- Wahrscheinlichkeit für up-Ast:
 - a) eine falsche Antwort (1 p) oder
 - b) eine richtige und dann eine falsche Antwort $p \cdot (1-p)$ oder
 - zwei richtige und dann eine falsche Antwort $p \cdot p \cdot (1-p)$ = $(1-p) + p \cdot (1-p) + p \cdot p \cdot (1-p)$
 - Bei Konvergenz des Verfahrens:

$$p^{3} = (1 - p) + p \cdot (1 - p) + p \cdot p \cdot (1 - p)$$

$$p^{3} = 1 - p + p - p^{2} + p^{2} - p^{3}$$

$$p^{3} = 1 - p^{3}$$

$$p = \sqrt[3]{\frac{1}{2}} = 0.7937$$

Mentimeter-Frage 2:

Was kennzeichnet direkte Skalierungsverfahren?

https://www.menti.com/vbvz4owtz5

Mentimeter-Frage 2:

Go to www.menti.com and use the code 9554 2039

Was kennzeichnet direkte Skalierungsverfahen?

Mentimeter

Press ENTER to show correct

Ergebnisse der direkten Lautheitsskalierung

 Die Pegelunterschiede (in dB) in den 20 Durchgängen betrugen:

- Für jede der neun Pegelstufen (und für jede Versuchsperson) berechnen wir das mittlere Urteil
 - o geometrischer Mittelwert: $\overline{x} = \sqrt[n]{\prod_{i=1}^{n} x_i} = \sqrt[n]{x_1 \cdot x_2 \cdot \dots \cdot x_n}$
 - o Beispiel: angenommen, bei +15 waren die Urteile $x_1 = 20, x_2 = 18, x_3 = 24$ → $\bar{x} = \sqrt[3]{20 \cdot 18 \cdot 24} = \sqrt[3]{8640} = 20.51971$
- Das können Sie mal für ihre eigenen Urteile berechnen!

Ergebnisse der direkten Lautheitsskalierung

- Logarithmiert man die Lautheitswerte nun, dann ergibt sich ein annähernd linearer Zusammenhang!
- Steigung b kann nun mittels linearer
 Regression geschätzt werden:

$$\log(S) = \log(a) + b\log(I)$$

y-Achse: log(Lautheitsurteil)

x-Achse: log(Schalldruck p) = Pegel (dB)!

$$\rightarrow \log(y) = 0.99 + 0.03 \log(x)$$

 b entspricht dem Exponenten in der Stevens'schen Potenzfunktion:

$$S = a \cdot I^b$$

Lautheit = $10^{0.99} \cdot SPL^{0.03} = 9.75 SPL^{0.03}$

Signalentdeckungstheorie (Wiederholung)

 Die Sensitivität d' (Empfindlichkeit) entspricht dem Abstand der beiden Verteilungen für Rauschen und Signal + Rauschen.

$$d' = \frac{\mu_{SN} - \mu_N}{\sigma} = z(HR) - z(FAR)$$

 Das Kriterium entspricht dem Punkt auf der Empfindungsstärkeskala, ab dem eine Versuchsperson mit "Ja" antwortet.

$$\beta = \frac{f(x_{crit}|SN)}{f(x_{crit}|N)}$$

 β <0 \rightarrow laxes Kriterium

 β >0 \rightarrow strenges Kriterium

Signalentdeckungstheorie

- Isosensitivitätskurven (oder Receiver Operating Characteristic / ROC-Kurve): Trefferrate als Funktion der Fehlalarmrate
- Alle Punkte auf der Kurve haben dieselbe
 Sensitivität (Malte = Leonie), sie unterscheiden sich nur im Antwortkriterium!
 - links unten: strikt (viele Verpasser)
 - o rechts oben: lax (viele Fehlalarme)
- Die Krümmung der ROC-Kurve ist ein Maß für die Sensitivität (= Empfindlichkeit der Wahrnehmung)
 - → Hat Frederik die höhere oder geringere Sensitivität?

Wie sehen die Verteilungen der Empfindungsstärke bei **Frederik** aus?

Signalentdeckungstheorie

- Wer hat das strikteste Kriterium?
- Wer hat die höchste Empfindlichkeit?

Visuelle Wahrnehmung I: Grundlagen des Sehens

Visuelle Wahrnehmung

- Transformation: Licht erreicht Pupille, wird fokussiert und erzeugt ein Abbild auf der Retina des Auges (Netzhaut)
- **Transduktion:** Photorezeptoren in der Retina wandeln Lichtenergie in elektrische Energie um
 - Erste Photorezeptoren entwickelten sich bereits vor über 500 Mio. Jahren (Plattwürmer)

Elektromagnetische Strahlung

 (Sichtbares) Licht = Elektromagnetische Strahlung mit Wellenlängen zwischen 400 und 700 nm

Das Auge als optisches System

- Ziel: Scharfes Abbild des fokussierten Objekts im Bereich der *Fovea* auf der Retina
- Licht erreicht Pupille und wird durch optisches System fokussiert:
 - Cornea (Hornhaut): 80% der Brechkraft
 → kann nicht verändert werden
 - Linse: 20% der Brechkraft → kann Form verändern (Akkommodation)

Akkommodation

- a) Ab 6 m Abstand sind Lichtstrahlen praktisch parallel und landen (wegen der Lichtbrechung) auf einem Punkt A der Retina.
- b) Licht näherer Objekte landet zunächst "hinter" der Retina (→ Bild auf der Retina ist unscharf)
- c) Kontraktion der Ziliarmuskeln erhöht Krümmung der Linse → Scharfstellung
- Nahpunkt = kleinste Entfernung, auf die die Linse akkommodieren kann, um ein Objekt scharfzustellen

Fehlsichtigkeiten

1. Kurzsichtigkeit (Myopie)

- a) Brechkraft der Cornea zu stark (refraktäre Myopie) oder
- b) Augapfel zu lang (axiale Myopie)

Fernpunkt = maximaler Abstand, in dem ein Objekt noch auf der Retina fokussiert werden kann

Was tun?

- Brille/Kontaktlinsen
- Laser-in-situ-Keratomileusis
 (LASIK): Entfernung eines Stücks
 der Cornea, um Brechkraft zu
 reduzieren (bis ca. -10 Dioptrien)

Fehlsichtigkeiten

2. Weitsichtigkeit (Hyperopie)

- Grund meist: Augapfel zu kurz → parallele Lichtstrahlen fokussieren hinter der Retina
- Lösung: Akkommodation (Kopfschmerzen?) oder konvexe Korrekturlinsen

3. Altersweitsichtigkeit (Presbyopie)

Grund: Verhärtung der Linse

Rezeptoren auf der Retina

- ca. 120 Mio. Stäbchen (rods)
- ca. 5 Mio Zapfen (cones)
- Außensegmente der Rezeptoren enthalten Sehpigmentmoleküle, bestehend aus Opsin (langer Teil) und Retinal (kurzer Teil)

Transduktion

- Umwandlung von Lichtenergie (Photone) in elektrische Energie durch Aktivierung der Photorezeptoren (Stäbchen und Zapfen)
- Isomerisierung: Lichtempfindlichen Sehpigmente (Opsin und Retinal) verändern Molekülstruktur durch Absorption von Photonen (Lichtteilchen).

 Chemische Kettenreaktion erzeugt elektrische Signale und verstärkt Isomerisierung.

Verteilung der Rezeptoren auf der Retina

- Fovea (Sehgrube im gelben Fleck): nur Zapfen (ca. 50000)
- Peripherie: Stäbchen (120 Mio.) und Zapfen (ca. 5 Mio.)

 Blinder Fleck: keine Rezeptoren in dem Bereich, wo der Sehnerv das Auge verlässt.

HMU Health and Medical University Potsdam

Demo: Blinder Fleck Schließen Sie das rechte Auge und schauen Sie auf die 3!

1 2 3 4 5 6

Wenn Sie den richtigen Abstand einnehmen, verschwindet der gelbe Punkt!

Dunkeladaptation

- Photopisches Sehen: Bei Helligkeit sind Zapfen lichtempfindlicher als Stäbchen (=niedrigere Schwelle)
- Skotopisches Sehen: Bei Dunkelheit erhöhen beide Rezeptortypen ihre Lichtempfindlichkeit, aber unterschiedlich schnell:
 - Zapfenadaptation: 7-10 min
 - Stäbchenadaptation: 20-30 min
 - → Stäbchen erreichen die höhere Lichtempfindlichkeit im Dunkeln (100000x höher als in Helligkeit)!

https://www.youtube.com/watch?v=EIHylacXIAA

Myth Busters: Warum Piraten Augenklappen trugen...