Lab 12: LATEX

Michael Turner

April 29, 2024

Directions

Your lab assignment today is to write the code to produce **this document (yes this one, the whole thing)** as well as a "README.md" which mimics this. you should end up with a second copy of this document at the end, but one that you compiled using LaTeX via the pdflatexcommand.

- 1. First, write some "code" (hint: LATEX is popular on stack overflow).
- 2. Then, compile it with pdflatex.
- 3. Check the pdf to see if it looks right.
- 4. Rinse, repeat.
- 5. When you're done, submit your text file and "README.md".

Text Formatting

Sometimes, you may want to emphasize some text.

Problem 0: Latent Dirichlet Allocation

Hey, can you help me with my homework? In Laten Dirichlet Allocation, we might need to use the equation for callapsed Gibbs sampling with equal document lengths N. (hint: math symbols can't be emphasized like text)

According to our model, the total probability is given as follows:

$$P(W, Z, \theta, \phi, \alpha, \beta) = \prod_{i=1}^{K} P(\phi_i : \beta) \prod_{j=1}^{M} P(\theta_j ; \alpha) \prod_{t=1}^{N} p(Z_{j,t} | \theta_j) P(W_{j,t} | \phi_{Z_{j,t}})$$
(1)

After some fancy math on (1), integrating ϕ and θ out gives us

$$P(Z, W; \alpha, \beta) = \prod_{j=1}^{M} \frac{\Gamma(\sum_{i=1}^{K} \alpha_i) \prod_{i=1}^{K} \Gamma(n_{j,(.)}^{i} + \alpha_i)}{\prod_{i=1}^{K} \Gamma(\alpha_i) \Gamma(\sum_{i=1}^{K} n_{j,(.)}^{i} + \alpha_i)} \times \prod_{j=1}^{K} \frac{\Gamma(\sum_{r=1}^{V} \beta_r) \prod_{r=1}^{V} \Gamma(n_{(.),r}^{i} + \beta_r)}{\prod_{r=1}^{V} \Gamma(\beta_r) \Gamma(\sum_{r=1}^{V} n_{(.),r}^{i} + \beta_r)}$$
(2)

Now we can work with that!

Problem 1: Let's Learn Markdown!

Make your git page's README.md to mimic tghis paper. HINT: you can embed latex equations into your markdown. you oculd use Pandoc, but don't becuase that's cheating. To keep it simple, I'd recommend turning your equations into images.