Note. If $T\colon V\to W$ is a linear transformation then for any vector $\mathbf{b}\in W$ we can consider the equation

$$T(\mathbf{x}) = \mathbf{b}$$

Definition

If $T: V \to W$ is a linear transformation then:

1) The kernel of T is the set

$$\mathsf{Ker}(T) = \{ \mathsf{v} \in V \mid T(\mathsf{v}) = \mathbf{0} \}$$

2) The image of T is the set

$$Im(T) = \{ w \in W \mid w = T(v) \text{ for some } v \in V \}$$

Proposition

If $T: V \to W$ is a linear transformation then:

- 1) Ker(T) is a subspace of V
- 2) $\operatorname{Im}(T)$ is a subspace of W

Theorem

If $T: V \to W$ is a linear transformation and v_0 is a solution of the equation

$$T(\mathbf{x}) = \mathbf{b}$$

then all other solutions of this equation are vectors of the form

$$\mathbf{v}=\mathbf{v}_0+\mathbf{n}$$

where $n \in Ker(T)$.

Example.

$$D\colon C^{\infty}(\mathbb{R}) \longrightarrow C^{\infty}(\mathbb{R})$$
$$f \longmapsto f'$$

Proposition

If $T: V \to W$ is a linear transformation then

- 1) T is onto if and only if $\operatorname{Im}(T) = W$
- 2) T is one-to-one if and only if $Ker(T) = \{0\}$.

Recall:

- ullet A vector space is a set V equipped with operations of addition and multiplication by scalars. These operations must satisfy some properties.
- Some examples of vector spaces:
 - 1) \mathbb{R}^n = the vector space of column vectors.
- 2) $\mathcal{F}(\mathbb{R}) = \text{the vector space of all functions } f: \mathbb{R} \to \mathbb{R}.$
- 3) $C(\mathbb{R})$ = the vector space of all continuous functions $f: \mathbb{R} \to \mathbb{R}$.
- 4) $C^{\infty}(\mathbb{R})$ = the vector space of all smooth functions $f: \mathbb{R} \to \mathbb{R}$.
- 5) $M_{m,n}(\mathbb{R}) = \text{the vector space of all } m \times n \text{ matrices.}$
- **6)** \mathbb{P} = the vector space of all polynomials.
- 7) \mathbb{P}_n = the vector space of polynomials of degree $\leq n$.