

cours ET1 - J. Joubert

- ▶ Plan du cours
- 1. États de la matière
 - 1.1. Descriptions macroscopique et microscopique
 - 1.2. Gaz
 - 1.3. Liquide
 - 1.4. Solide
 - 1.5. Échelle d'énergie
- 2. Transformations de la matière
 - 2.1. Transformations nucléaires
 - 2.2. Transformations chimiques
 - 2.3. Transformations physiques
 - 2.4. Échelle d'énergie
- 3. Constituants physico-chimiques
 - 3.1. Constituants
 - 3.2. Corps purs
 - 3.3. Description des mélanges
 - J. JOUBERT COURS ET1 PLAN DU COURS

- ▶ Compétences spécifiques
 - ▶ Reconnaître la nature d'une transformation
 - Déterminer l'état physique d'une espèce chimique pour des conditions expérimentales données (T, P)
 - Faire la liste des constituants physico-chimiques d'un système
 - Déterminer la composition d'un système par des grandeurs physiques pertinentes

1. États de la matière

1.1. Descriptions macroscopique et microscopique

Eau: description

Eau: description

- . . .

À l'échelle macroscopique, on peut définir une phase

<u>Définition</u>: une **phase** est une zone de l'espace où les grandeurs physiques sont continues

▶ Différentes phases

3

<u>Définition</u>: un **plasma** est un gaz formé d'ions

J. JOUBERT – COURS ET I – 1. ÉTATS DE LA MATIÈRE

1.2. Gaz

<u>Définition</u>: un **gaz** (ou une **vapeur**) est un ensemble de particules mobiles désordonnées. Les particules interagissent peu entre elles.

<u>Définition</u>: une **particule** est un morceau de matière microscopique

Ordonné/désordonnée

J. JOUBERT – COURS ET1 – 1. ÉTATS DE LA MATIÈRE

Mobile/immobile:

Interaction (interagir):

o — _

Exemples:

- ► interaction gravitationnelle
- ► Interaction électrostatique

1.2. Gaz (suite)

Description microscopique:

•	•	a	•
	•	d	•

a:_____

d:____

<u>Propriélé</u>: d » a

<u>Propriété</u>: un gaz occupe tout le volume disponible.

<u>Propriété</u>: un gaz est compressible

J. JOUBERT – COURS *ET1* – 1. ÉTATS DE LA MATIÈRE

Modèle du gaz parfait :

- Aucune interaction entre les particules, sauf les chocs.
- ▶ Le volume des particules tend vers 0.
- Équation d'état : PV = nRT

P:_____

n,

R:____

T:____

<u>Ordre de grandeur</u>: masse volumique

5

1.3. Liquide

<u>Définition</u>: un **liquide** est un ensemble de particules mobiles désordonnées. Les particules interagissent entre elles.

<u>Propriété</u>: un liquide prend la forme du récipient qui le contient. Il peut s'écouler

<u>Propriété</u>: un liquide est peu compressible

Description microscopique:

a:_____

d:_____

<u>Propriélé</u>: d ≈ a

<u>Огдге де granдеит</u>: masse volumique

 $\rho \sim 10^3 \; kg.\,m^{-3}$

<u>Définition</u>: un fluide est un état de la matière qui peut s'écouler.

fluide = {gaz ; liquide}

J. JOUBERT – COURS ET1 – 1. ÉTATS DE LA MATIÈRE

1.4. Solide

<u>Définition</u>: un **solide** est un ensemble de particules immobiles ordonnées ou désordonnées. Les particules interagissent fortement entre elles.

<u>Gropriété</u>: un solide a sa propre forme. Il ne s'écoule pas.

<u>Propriété</u>: un solide est peu compressible

<u>Remarque</u>: état condensé = {liquide; solide}

J. JOUBERT – COURS ET1 – 1. ÉTATS DE LA MATIÈRE

Description microscopique:

▶ État amorphe

Exemple: le verre (SiO₂)

▶ État cristallin

Exemple: le sel (NaCl), la silice cristalline (SiO₂)

7

1.5. Échelle d'énergie

• Énergie cinétique $E_c = \frac{1}{2}mv^2$

 $E_{\rm c}$ est lié à la température T. Quand T augmente, le mouvement des particules s'accroît.

Pour un gaz : $E_c = \frac{3}{2}RT$ (en J.mol⁻¹)

• Énergie potentielle $E_p = ?$

Ordre de grandeur:

- ▶ Dans un gaz réel $E_p \sim 10^{-2}~{\rm kJ.mol^{-1}}$
- ▶ Dans un liquide $E_p \sim 10 \text{ kJ.mol}^{-1}$
- ▶ Dans un solide $E_p \sim 10^2$ kJ.mol⁻¹

 $\frac{\mathcal{R}_{emarque}}{\mathcal{R}_{emarque}}: E_p(gaz \, parfait) = 0$

Exemple:

À T = 298 K (25°C), $E_c(gaz) \approx 3.7$ kJ.mol⁻¹ $E_p(eau_{(I)}) \approx 10$ kJ.mol⁻¹ > $E_c(eau_{(g)})$

⇒ l'eau est liquide à 298 K

 $E_p\big(O_{2(l)}\big)\approx 0.1-1~\text{kJ.mol}^{-1} \leq E_c(O_{2(g)})$

 \Rightarrow O_2 est gazeux à 298 K

J. JOUBERT – COURS *ET1* – 1. ÉTATS DE LA MATIÈRE

2. Transformation de la matière

2.1. Transformations nucléaires

 $\underline{\textit{Définition}}$: Une **transformation nucléaire** modifie les noyaux des atomes contenus dans la matière.

Noyau = {protons; neutrons}

$$m_{proton} \simeq 1,67.10^{-27} \text{ kg}$$
 $m_{neutron} \simeq 1,67.10^{-27} \text{ kg}$ $q_{proton} \simeq 1,6.10^{-19} \text{ C (= +e)}$ $q_{neutron} = 0 \text{ C}$

Électron:
$$m_{\text{\'electron}} \simeq 9,1.10^{-31} \text{ kg}$$
 $q_{\text{\'electron}} \simeq -1,6.10^{-19} \text{ C (= -e)}$

Notation des noyaux:

 $_{Z}^{A}X$

X:_	 	
A :_	 	
Z:_		

 $\underline{\mathcal{E}_{xemple}}$: 1_1H hydrogène, 2_1H deutérium, 3_1H tritium 1_8O , 1_8O

Trois types de transformations nucléaires :

- ► Fusion : _____
- Fission:
- ► Désintégration :

J. JOUBERT – COURS ET1 – 2. TRANSFORMATION DE LA MATIÈRE

9

2.1. Transformations nucléaires (suite)

Les transformations nucléaires sont **radioactives** : elles émettent des rayonnements α , β^+ , β^- et γ .

rayonnement	particule émise
α	⁴ He
$oldsymbol{eta}^{\scriptscriptstyle ext{+}}$	Positron
$oldsymbol{eta}$ -	électron
γ	photon

► Fusion:

$$\underline{\textit{Exemple}}: {}_1^2H + {}_3^6Li \rightarrow {}_3^7Be + {}_0^1n + \text{\'e}nergie}$$

► Fission:

$$\underline{\mathcal{E}_{xemple}}\colon ^{235}_{92}U+^{1}_{0}n\to ^{92}_{36}Kr+^{141}_{56}Ba+3^{1}_{0}n$$
 + énergie

▶ Désintégration α :

$$_{Z}^{A}X
ightarrow _{Z-2}^{A-4}X^{\prime }+{}_{2}^{4}He$$
 ; émission d'énergie

▶ Désintégration β^- :

$$_{Z}^{A}X
ightarrow_{Z+1}^{A}X'+e^{-}+\overline{
u_{e}}$$
; émission de rayons γ

• Désintégration β^+ :

$$_{Z}^{A}X
ightarrow _{Z-1}^{A}X^{\prime }+e^{+}+v_{e}$$
; émission de rayons γ

J. JOUBERT – COURS ET1 – 2. TRANSFORMATION DE LA MATIÈRE

2.2. Transformations chimiques

<u>Définition</u>: une **transformation chimique** modifie les **liaisons** entre les atomes et/ou la répartition des électrons entre les atomes.

Remarques:

- ► les noyaux ne sont pas modifiés
- ▶ La nature chimique des constituants est modifiée

La transformation chimique peut être modélisée par une ou plusieurs **réactions chimiques**. La réaction chimique est décrite par une équation :

$$\underbrace{\alpha A + \beta B + \cdots}_{réactifs} = \underbrace{\gamma C + \delta D + \cdots}_{produits}$$

 $\alpha, \beta, \gamma, \delta, \dots$ sont les nombres stoechiométriques.

Autre écriture possible des équations de réaction :

$$0 = \sum_{k} \nu_k A_k$$

Exemple:	transformation	de N ₂ et	H ₂ en NH ₃
----------	----------------	----------------------	-----------------------------------

J. JOUBERT – COURS ET1 – 2. TRANSFORMATION DE LA MATIÈRE

11

2.3. Transformations physiques

Définition : une **transformation physique** est un changement d'état.

<u>Propriété</u>: La transformation physique modifie l'ordre et la mobilité des particules. Elle modifie l'énergie d'interaction entre les particules.

Remarques:

Lors d'une transformation physique,

- on ne change pas la nature chimique des constituants;
- on ne change pas la nature des noyaux.

(1)			
2			

Ω	
3)	
೨	

⊕	 	 	
(5)			
<u> </u>	 	 	

6		

2.4. Échelle d'énergie

Les énergies à fournir pour effectuer les transformations dépendent des énergies d'interaction entre les particules que l'on lie ou que l'on dissocie.

3. Constituants physico-chimiques

3.1. Constituants

<u>Définition</u>: un **constituant chimique** est un objet microscopique défini par sa formule chimique.

<u>Définition</u>: un **constituant physico-chimique** est un constituant chimique associé à une phase.

<u>Exemples</u> :			

J. JOUBERT – COURS ET1 – 2. TRANSFORMATION DE LA MATIÈRE

13

3.2. Corps purs

<u>Définition</u>: un **corps pur** est un ensemble macroscopique regroupant dans une zone d'espace les particules d'un constituant chimique unique.

Exemples:

<u>Définition</u>: un **corps pur simple** est constitué d'un seul type d'atome. Un **corps pur composé** est formé d'atomes différents.

<u>Exemples</u> :	

Changement d'état des corps purs :

Évolution de la température lorsqu'on chauffe de l'eau pure liquide à pression constante :

<u>Propriété</u>: à pression fixée, la température de changement d'état d'un corps pur est unique (et inversement)

J. JOUBERT - COURS ET1 - 3. CONSTITUANTS PHYSICO-CHIMIQUES

3.2. Corps purs (suite)

courbe (S):

courbe (F):_____

courbe (V):

point T:

point C:____

Sur les courbes de changement d'état, deux phases sont en **équilibre** (elles coexistent).

<u>Définition</u>: à l'équilibre liquide/gaz, la pression est appelée **pression de vapeur saturante**.

La donnée de (T,p) permet d'identifier la phase du corps pur.

Pour $T > T_C$ et $p > p_C$, le corps pur est dans une phase **fluide supercritique**.

Cas particulier de l'eau :

15

J. JOUBERT - COURS ET1 - 3. CONSTITUANTS PHYSICO-CHIMIQUES

3.3. Description des mélanges

<u>Définition</u>: un **mélange** est un ensemble macroscopique regroupant dans une zone d'espace les particules de plusieurs constituants chimiques différents.

<u>Exemples</u>:

Pour décrire un mélange, la donnée de (T,p) est insuffisante : il faut préciser la **composition**.

 $\underline{\mathcal{D}\textit{efinition}}$: fraction molaire d'un constituant physicochimique dans une phase

$$x_k = \frac{n_k}{\sum_i n_i}$$

 $\underline{\mathcal{D}\textit{efinition}}$: fraction massique d'un constituant physico-chimique dans une phase

$$w_k = \frac{m_k}{\sum_i m_i}$$

<u>Définition</u>: **concentration molaire** d'un constituant physico-chimique dans une phase

$$C_k = \frac{n_k}{V_{phase}}$$

<u>Définition</u>: **concentration massique** d'un constituant physico-chimique dans une phase

$$c_k = \frac{m_k}{V_{phase}}$$

<u>Définition</u>: **pression partielle** d'un constituant physicochimique dans un gaz

$$P_k = x_k . p$$

J. JOUBERT - COURS ET1 - 3. CONSTITUANTS PHYSICO-CHIMIQUES

3.3. Description des mélanges

<u>Propriété</u>: loi de Dalton

$$p = \sum_{k} P_{k}$$

Changements d'état des mélanges :

En général, à pression constante, la température varie lors du changement d'état d'un mélange.

 $\underline{\textit{Exemple}}$: mélange eau-éthanol, p = 1 bar, $x_{eau} = 0.8$

Les grandeurs indépendantes de la taille du système sont **intensives**.

Exemples:

Les grandeurs qui dépendent de la taille du système sont **extensives**.

Exemples :

J. JOUBERT - COURS ET1 - 3. CONSTITUANTS PHYSICO-CHIMIQUES

By Victor Blacus - SVG version of File:Electromagnetic-Spectrum.png, CC BY-SA 3.0, https://commons.wikimedia.com/wikedow.php2-114-00-12-1

17