Modeling Mutagenicity Status of a Diverse Set of Chemical Compounds by Envelope Methods

Subho Majumdar

School of Statistics, University of Minnesota

Motivation

- Predictive analysis of data in Chemistry
- Generation of in silico models to predict activities of chemical compounds
- Application in drug development to reduce cost of manufacturing derivatives of chemicals
- Specific problem Binary class prediction in heterogeneous multivariate data(e.g. mutagen/ non-mutagen, curative effect of drug): dimension reduction

Table of contents

- 1 The data and the variables
- 2 The models
- Results
- Conclusion

Outline

- The data and the variables
- 2 The models
- Results
- Conclusion

The data

- The data were taken from the CRC Handbook of Identified Carcinogens and Non-carcinogens [5].
- Response variable is 0/1 mutagen status obtained from Ames test of mutagenicity. A chemical compound was classified as mutagen (scored 1) if its Ames score exceeded a certain cutoff, non-mutagen (scored 0) otherwise.
- Total 508 compounds- 256 mutagens and 252 non-mutagens.
- The dataset is diverse, meaning that chemical compounds belong to fairly different from each other, like Alkanes and Amines.

Chemical Class	Number of Compounds			
Aliphatic alkanes, alkenes, alkynes	124			
Monocyclic compounds	260			
Monocyclic carbocycles	186			
Monocyclic heterocycles	74			
Polycyclic compounds	192			
Polycyclic carbocycles	119			
Polycyclic heterocycles	73			
Nitro compounds	47			
Nitroso compounds	30			
Alkyl halides	55			
Alcohols, thiols	93			
Ethers, sulfides	38			
Ketones, ketenes, imines, quinones	39			
Carboxylic acids, peroxy acids	34			
Esters, lactones	34			
Amides, imides, lactams	36			
Carbamates, ureas, thioureas, guanidines	41			
Amines, hydroxylamines	143			
Hydrazines, hydrazides, hydrazones, traizines	55			
Oxygenated sulfur and phosphorus	53			
Epoxides, peroxides, aziridines	25			

Description of variables

Four types of variables:

- Topostructural (TS)- Define the molecular topology, i.e. connectedness of atoms within a molecule (103 descriptors).
- Topochemical (TC)- Have information on atom and bond types (195 descriptors).
- 3-dimensional (3D)- Define 3-dimensional aspects of the overall molecular structure (3 descriptors).
- Quantum-Chemical (QC)- Electronic aspects of molecular structure (6 descriptors).

Previous work

- Use of Ridge Regression to build a predictive model of mutagenicity [2].
 The 0/1 mutagenicity score was used as response variable since 1 corresponds to a higher mutagenicity score and 0 corresponds to a lower one.
- Variable selection on a larger set of predictors by adapting a supervised clustering algorithm previously used on high-dimensional genetic data [4].

Outline

- The data and the variables
- 2 The models
- Results
- Conclusion

Envelope regression model

$$\mathbf{Y}_i = \alpha + \beta \mathbf{X}_i + \epsilon_i, \quad \epsilon_i \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}) \text{ with } \mathbf{\Sigma} = \mathbf{\Gamma} \mathbf{\Omega} \mathbf{\Gamma}^T + \mathbf{\Gamma}_0 \mathbf{\Omega}_0 \mathbf{\Gamma}_0^T$$
 $i = 1, 2, ..., n$

- Due to Cook, Li and Chiaromonte, 2010 [1].
- $\mathbf{Y} \in \mathbb{R}^{r \times n}$ multivariate response vector, $\mathbf{X} \in \mathbb{R}^{p \times n}$ non-stochastic predictors.
- $\alpha \in \mathbb{R}^r$ intercept, $\beta \in \mathbb{R}^{r \times p}$ matrix of regression coefficients: both unknown.
- $\Gamma \in \mathbb{R}^{r \times u}$, $\Gamma_0 \in \mathbb{R}^{r \times (r-u)}$ semi-orthogonal basis matrices of $\mathcal{E}_{\Sigma}(\mathcal{B})$ and its orthogonal complement, respectively, with $\mathcal{B} = \operatorname{span}(\beta)$ and $0 \le u \le r$ being the dimension of the envelope.
- $\Omega = \Gamma \Sigma \Gamma^T$, $\Omega_0 = \Gamma_0 \Sigma \Gamma_0^T$ coordinate matrices corresponding to Γ , Γ_0 .

Graphical illustration of envelope model

(Source: Stat 8932 class notes, R. Dennis Cook)

Envelope regression model for our data: basics

- log-transformed data.
- Predictors taken as multivariate response, and the 0/1 mutagenicity status taken as the single predictor, and then envelope regression models are obtained
- Hierarchical approach to observe the effect of adding different classes of predictors: separate envelope models fit on data with only TS, only TC, TC + TS and full set of predictors.
- Data rank deficient, so PCA was performed on data and envelope model was built on first few PCs that explained 90% (or 95%) of total variation.

Supervised Singular-Value Decomposition (SupSVD)

$$X = YBV^T + FV^T + E$$

- Due to Li et al, 2014 [3].
- Matrix of predictors $\mathbf{X} \in \mathbb{R}^{n \times p}$, supervision data matrix $\mathbf{Y} \in \mathbb{R}^{n \times r}$.
- $\mathbf{B} \in \mathbb{R}^{r \times q}$ is the multivariate matrix of coefficients, $\mathbf{V} \in \mathbb{R}^{p \times q}$ full-rank loading matrix.
- $0 \le q \le r$ the dimension of the underlying space of latent parameters, and $\mathbf{F} \sim \mathcal{N}_q(\mathbf{0}, \mathbf{\Sigma_f}), \mathbf{E} \sim \mathcal{N}_\mathbf{p}(\mathbf{0}, \sigma_\mathbf{e}^2 \mathbf{I_p})$ are random error matrices s.t. $\mathbf{\Sigma} = \mathbf{V} \mathbf{\Sigma}_f \mathbf{V}^T + \sigma_e^2 \mathbf{I_p}$.
- A modified EM algorithm is used to obtain the unknown parameters $\theta = (\mathbf{B}, \mathbf{V}, \mathbf{\Sigma}_f, \sigma_e^2)$.
- The vector of mutagenicity status is now used as the supervision data matrix Y, while the data on 308 predictors is the matrix X.

Prediction through Linear Discriminant Analysis

- Envelope model- Estimate the envelope basis, say $\hat{\Gamma}$, reduce the matrix of predictors by multiplying it with the basis and then apply Fisher's Linear Discriminant Analysis on $\hat{\Gamma}^T \mathbf{Y}$.
- supSVD- Here the notations are reversed and X is our 508 × 307 data matrix. After obtaining the loading matrix V, we transform the data matrix as: U = XV, and apply LDA on U, taking Y as the 0/1 class variable.
- Correct classification percentages are obtained through cross-validation on the full sample.

Naïve CV vs. Two-fold CV

Outline

- The data and the variables
- 2 The models
- Results
- Conclusion

Results: Variance reduction by envelopes

In all the envelope models, there were massive gains in terms of variation. The gains were especially large for the first 2 principal components.

Set of	No. of	Envelope	% variance explained by			Envelope gain ratios for		
descriptors	PCs	dimension (u)	PC1	PC2	PC3	PC1	PC2	PC3
TS	7	3	70.43	10.35	2.60	25.91	36.17	2.10
TC	8	4	75.89	6.52	2.42	15.40	35.26	1.00
TS + TC	13	6	70.27	7.94	2.21	10.40	37.99	1.22
Full	15	11	58.19	7.60	5.98	1.00	1.00	1.00

Note:

- With default tolerances of objective and gradient function in env the algorithm did not converge in 1000 iterations. For this reason they were set to 1e-7 and 1e-4.
- As far as other PCs of full model were concerned, PCs 9, 11, 13 and 15 gave 1.26, 1.96, 1.88 and 1.5-fold gains, respectively.

Performance of envelopes and supSVD in prediction

Model	Type of predictors	No. of	Correct classification %		
description	in model	predictors	Total	Mutagens	Non-mutagens
Ridge regression[2]	TS+TC	298	76.97	83.98	69.84
Ridge regression[2]	TS+TC+3D+QC	307	77.17	84.38	69.84
Ridge regression after variable selection[4]	TS+TC+AP	203	78.35	84.38	72.22
Envelope LDA	TS	103	57.09	65.63	48.41
	TC	195	58.27	69.92	46.43
	TS+TC	298	60.24	69.14	51.19
SupSVD LDA 90% cutoff	TS	103 (5)	59.45	70.31	48.41
	TC	195 (37)	70.47	76.56	64.29
	TS+TC	298 (32)	68.90	75.39	62.30
	TS+TC+3D+QC	307 (34)	70.47	77.73	63.09
SupSVD LDA 95% cutoff	TS	103 (8)	60.04	67.58	52.38
	TC	195 (51)	72.44	78.13	66.67
	TS+TC	298 (48)	70.47	78.91	61.90
	TS+TC+3D+QC	307 (51)	71.06	78.91	63.09

Table: Comparison of predictive performance of various models

Outline

- The data and the variables
- 2 The models
- Results
- 4 Conclusion

Discussion

- For estimation, envelope models performed really well in conjunction with PCA for rank-deficient data, offering heavy gains for the major principal components over OLS.
- Possible reason for the poor performance in prediction:
 - High material to immaterial variation ratio
 - Heteroskedasticity caused by diverse chemical classes among compounds
 - Variation of scales between different types of variables
- Logistic Envelope Regression.
- supSVD a potential plausible approach because of its general framework and computational stability and applicability in n << p scenario.

Acknowledgements

- Prof. Dennis Cook, for his guidance and valuable inputs.
- Henry Zhang, for providing his codes for logistic envelope regression.
- Greg Grunwald, UofM-Duluth for providing the dataset.

References

COOK, R., LI, B., AND CHIAROMONTE, F.

Envelope models for parsimonious and efficient multivariate linear regression. *Stat. Sinica 20* (2010), 927–1010.

HAWKINS, D., BASAK, S., AND MILLS, D.

QSARs for chemical mutagens from structure: ridge regression fitting and diagnostics. *Environ. Toxicol. Pharmacol.* 16 (2004), 37–44.

LI, G., YANG, D., SHEN, H., AND NOBEL, A.

Supervised Singular Value Decomposition and its asymptotic properties.

Technometrics Submitted.

MAJUMDAR, S., BASAK, S., AND GRUNWALD, G.

Adapting interrelated two-way clustering method for Quantitative Structure-Activity relationship (QSAR) modeling of mutagenicity/ non-mutagenicity of a diverse set of chemicals.

Curr. Comput. Aided Drug Des. 9 (2013), 463-471.

SODERMAN, J.

CRC Handbook of Identified Carcinogens and Noncarcinogens: Carcinogenicity-Mutagenicity Database.

CRC Press, Boca Raton, FL, 1982.

THANK YOU!