MARTIN MARIETTA AEROSPACE ORLANDO FL F/G 1/3
PERFORMANCE VERIFICATION OF THE 'SUPERJET' LAMINAR ANGULAR RATE--ETC(U)
MAY 80 B W CURRY
OR-16127 NADC-80081-60 NL AD-A091 089 UNCLASSIFIED

OF

MICROCOPY RESOLUTION TEST CHART NATIONAL BURLAU OF STANDARDS 1963 A

TECHNICAL REPORT NADC 80081-60

PERFORMANCE VERIFICATION OF THE "SUPERJET" LAMINAR ANGULAR RATE SENSOR

Boyd W. Curry, Jr.
Martin Marietta Corporation
Orlando Aerospace
Post Office Box 5837
Orlando, Florida 32855

May 1980

FINAL REPORT

Approved for Public Release:
Distribution Unlimited

THIS DOCUMENT IS BEST QUALITY FRACTICABLE.
THE COPY FURNISHED TO DDC CONTAINED A
SIGNIFICANT MURBER OF PAGES WHICH DO FOR
REPRODUCE LEGIBLY.

NAVAL AIR DEVELOPMENT CENTER (6013)
AIRCRAFT AND CREW SYSTEMS TECHNOLOGY DIRECTORATE
WARMINISTER, PENNSYLVANIA 18974

80 11 03 176

DOC FILE COPY

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) READ INSTRUCTIONS **Q REPORT DOCUMENTATION PAGE** BEFORE COMPLETING FORM 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER NADC 80081-60 TITLE (and Subtitle) TYPE OF REPORT A PERIOD COVERED FINAL rept. PERFORMANCE VERIFICATION OF THE SUPERJET 5 NOV 79 - 5 MAY 80 LAMINAR ANGULAR RATE SENSOR. ING DAG. REPORT NUMBER OR-16 127 GRANT NUMBER(+) 7. AUTHOR(a) ONTRACT DAAK40-790017 CURRY, JR D.O. 0006 PROGRAM ELEMENT, PROJECT AREA & WORK UNIT NUMBERS PERFORMING ORGANIZATION NAME AND ADDRESS MARTIN MARIETTA CORPORATION 62241N F41 400 000 POST OFFICE BOX 5837 ORLANDO, FLORIDA 32855 11. CONTROLLING OFFICE NAME AND ADDRESS AIRCRAFT AND CREW SYSTEMS TECHNOLOGY DIRECTORATE (6013) NAVAL AIR DEVELOPMENT CENTER 13 / NUMBER OF PAGES WARMINISTER, PENNSYLVANIA 18974 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 15. SECURITY CLASS. (of this report) UNCLASSIFIED 154. DECLASSIFICATION DOWNGRADING SCHEDULE X 16. DISTRIBUTION STATEMENT (of this Report) APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) 16. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) SUPERJET RATE SENSOR ENVIRONMENTAL TESTING ESCAPE SYSTEM **EJECTION SEAT** 20. ABSTRACT (Continue on reverse elde if necessary and identity by block number)

This report covers work accomplished under contract DAAK40-79-D-0017-0006, "Performance Verification of the Superjet Angular Rate Sensor" for potential application on the Maximum Performance Escape System (MPES) Program. Three Hamilton Standard Superjet Angular Rate Sensors (9304100-099) were subjected to a test program.

DD 1 JAN 79 1473

EDITION OF I NOV 68 IS OBSOLETE 5 'N 0102- LF- 014- 6601

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

The performance data collected from this test can be summarized as follows:

PERFORMANCE

Full Scale Rate At ±2% Linearity 500 ±100 deg/sec Scale Factor .0062 ±.0002 deg/sec

Null Bias (calculated)±2 deg/secHysteresis±0.6 deg/secThreshold<0.1 deg/sec</td>Resolution<0.1 deg/sec</td>

Readytime 80 milliseconds maximum

Drift +0.76 deg/sec/min

Null Offset (measured) +2 deg/sec

G-Sensitivity $\overline{1.68}$ deg/sec/g/maximum High Temperature Tested $+165^{\circ}F$

High Temperature Tested +165°F

Low Temperature Tested -30°F

Sensitivity to Jerk Negligible

Acoustic Sensitivity Negligible

Vibration Sensitivity +2 deg/sec at approx. 2,000 Hz

Additional information obtained regarding the three units tested as as follows:

Null Bias Drift @ 72°F .166 deg/sec over 15 minute period

Reliability

Storage Failure	<.9906
Operating Failure	<.9999995
Weight	12.0 ounces
Volume	1.5 x 3.5 x 5.0

It is recommended that additional investigation of the g-sensitivity effects be performed when the requirements of the MPES program are defined.

EXECUTIVE SUMMARY

This report covers work accomplished under contract DAAK40-79-D-0017-006, "Performance Verification of the Superjet Angular Rate Sensor," for potential application on the Maximum Performance Escape System (MPES) Program. Three Hamilton Standard Superjet Angular Rate Sensors (9304100-099) were subjected to a test program.

The performance data collected from this test can be summarized as follows:

PERFORMANCE

Full Scale Rate At ±2% Linearity 500 ±100 deg/sec Scale Factor .0062 ±.0002 deg/sec Null Bias (calculated) t2 deg/sec Hysteresis ±0.6 deg/sec Threshold <0.1 deg/sec Resolution <0.1 deg/sec Readytime 80 milliseconds maximum Drift +0.76 deg/sec/min Null Offset (measured) 12 deg/sec G-Sensitivity 1.68 deg/sec/g/maximum +165°F High Temperature Tested -30°F Low Temperature Tested Sensitivity to Jerk Negligible Acoustic Sensitivity Negligible Vibration Sensitivity ±2 deg/sec at approx. 2.000 Hz

Additional information obtained regarding the three units tested as follows:

Null Bias Drift @ 72°F .166 deg/sec over 15 minute period
Reliability
Storage Failure <.9906
Operating Failure <.9999995
Weight 12.0 ounces
Volume 1.5 x 3.5 x 5.0

It is recommended that additional investigation of the g-sensitivity effects be performed when the requirements of the MPES program are defined.

CONTENTS

Executive Summary								
1.0	Introd	uction						
2.0	Design	and Analysis						
	2.1	Design						
	2.1.1	Description						
	2.1.2	Concept						
	2.2	Operational Mode						
	2.2.1	Four Second Scenario						
	2.2.2	Fifteen Minute Scenario						
	2.3	Reliability						
	2.4	Maintainability						
	2.5	Weight and Volume						
3.0	Perfor	mance Tests						
	3.1	Baseline Tests						
	3.1.1	Test Setup and Procedure						
	3.1.2	Test Results						
	3.1.3	Data Evaluation						
	3.2	Acceleration Sensitivity						
	3.2.1	Test Setup and Procedure						
	3.2.2	Test Results						
	3.2.3	Data Evaluation						
	3.3	High Temperature Sensitivity 60						
	3.3.1	Test Setup and Procedure 60						
	3.3.2	Test Results 60						
	3.3.3	Data Evaluation 60						
	3.4	Low Temperature Sensitivity						
	3.4.1	Test Setup and Procedure						
	3.4.2	Test Results						
	3.4.3							
	3.5							
	3.5.1	Jerk Sensitivity						
	3.5.2							
	3.5.3	Test Results						
	3.6							
	3.6.1	Acoustic Sensitivity						
	3.6.2							
	3.6.2	Test Results						
	3.6.3	Data Evaluation						
	3.7.1	Vibration						
	3.7.2	Test Setup and Procedure						
		Test Results						

NADC 80081-60

4.0 Cor	nclusions and Recommendations	154
List of	Terms	155
Appendia	c es	
A.	Test Procedures	A-1
В.	Test Plan	B-1
C.	Least Squares Fit Algorithm and Output Drift	C-1

NADC 80081-60

ILLUSTRATIONS

2.1-1	Superjet Sensor Cross Section			13
2.1-2	Superjet Angular Rate Sensor Schematic			14
2.3-1	Copperhead Relability			
2.5-1	Superjet Rate Sensor			17
3.1.2-1	Output vs. Input Initial Baseline Test			
3.1.2-2	Readytime Plot (Typical)			
3.3.2-1	Output vs. Input +165°F Test Run			
3.4.2-1	Output vs. Input -30°F Test Run			
3.5.3-1	Jerk Data, S.N 355, +X Direction, CCW Rotation			94
3.5.3-2	Jerk Data, S/N 373, +X Direction, CCW Rotation			95
3.6.2-1	Acoustic Specification Octave Analysis			
3.6.2-2	Octave Analysis Calibration			
3.6.2-3	Octave Analysis Microphone No. 1			
3.6.2-4	Octave Analysis Microphone No. 2			
3.6.2-5				
3.6.2-6	Null Output vs. Accastic Environment			
	-			

TABLES

2.1-I	Superjet Rate Sensor Specification	15
3.1.2-I		21
3.1.2-II		22
3.1.2-III		23
3.1.2-IV		24
3.1.2-V		25
3.1.2-VI		26
3.1.2-VII		27
3.1.2-VIII		28
3.1.2-IX		29
3.1.3-I		32
3.1.3-II		33
3.2.2-I		35
3.2.2-11		36
3.2.2-III		37
3.2.2-IV		38
3.2.2-V		39
3.2.2-VI	G-Sensitivity Comparison	40
3.2.2-VII		41
3.2.2-VIII	G-Sensitivity Comparison	42
3.2.2-IX		43
3.2.2-X		44
3.2.2-XI		45
3.2.2-XII		46
3.2.2-XIII	G-Sensitivity Comparison	47
3.2.2-XIV	G-Sensitivity Comparison	48
3.2.2-XV	G-Sensitivity Comparison	49
3.2.2-XVI	G-Sensitivity Comparison	50
3.2.2-XVII	G-Sensitivity Comparison	51
3.2.2-XVIII	G-Sensitivity Comparison	52
3.2.2-XIX	G-Sensitivity Comparison	53
3.2.2-XX		54
3.2.2-XXI		55
3.2.2-XXII	G-Sensitivity Comparison	56
3.2.3-I		58
3.2.3-11		59
3.3.2-I	High Temperature Test Results	62
3.3.2-11		63
3.3.2-111	High Temperature Test Results	64
3.3.2-IV	High Temperature Test Results	65
3.3.2-V	High Temperature Test Results	66
3.3.2-VI	High Temperature Test Results	67
3.3.2-VII	High Temperature Test Results	68

NADC 80081-60

3.3.2-VIII	High																		69
3.3.2-IX	High	Tempe	ratu	e '	Test	: R	esu	1ts	· •	•						•			70
3.3.2-X	High	Tempe	ratu	e '	Test	: R	esu	1ts	з.	•				•					71
3.3.2-XI	High	Tempe	ratui	e '	Test	: R	esu	1ts	з.			•							72
3.3.2-XII	High																		73
3.3.2-XIII	High																		74
3.3.3-I	High	•																	76
3.3.3-11	High																		77
3.4.2-I	Low T																		80
3.4.2-II	Low T													:					81
3.4.2-111	Low T	-									-		-	•	-	-		-	82
3.4.2-IV	Low T													•					83
3.4.2-V	Low T																		84
														•					
3.4.2-VI	Low T													•					85
3.4.2-VII	Low T													•					86
3.4.2-VIII	Low T	-												•					87
3.4.2-IX	Low T													•				-	88
3.4.3-I	Cold	•																	90
3.4.3-II	Co1d																		91
3.5.2-I	Jerk																		96
3.5.2-11	Jerk	Test	Resul	lts											•	•	•		97
3.5.2-III	Jerk	Test	Resu]	lts			•												98
3.5.2-IV	Jerk	Test	Resu]	lts															99
3.5.2-V	Jerk	Test	Resu]	lts															100
3.5.2-VI	Jerk	Test	Resu]	lts															101
3.5.2-VII	Jerk																		
3.5.2-VIII	Jerk																		
3.5.2-IX	Jerk																		
3.5.2-X	Jerk																		
3.5.2-XI	Jerk																		
3.5.2-XII	Jerk																		
3.5.2-XIII	Jerk																		
3.5.2-XIII	Jerk																		
3.5.2-XIV 3.5.2-XV	Jerk																		
	Jerk																		
3.5.2-XVI																			
3.5.2-XVII	Jerk																		
3.5.2-XVIII																			
3.5.2-XIX	Jerk																		
3.5.2-XX	Jerk	Test	Resu]	ts		•	•	•	•	•	•		•	•	•	•	•	٠	115
3.5.2-XXI	Jerk					•	•		•	•	•	•	•	٠	•	•	•	٠	116
3.5,2-XXII	Jerk														•	•	•	•	117
3.5.2-XXIII															•	•	•	•	118
3.5.2-XXIV	Jerk	Test	Resu]	ts							•			•	٠	•	•	•	119
3.6.2-1	Post	Acous	tic I	Bas	elin	e	Tes	t F	lest	ılt	s			•		•	•	•	128
3.6.2-11	Post	Acous	tic I	Bas	elin	e	Tes	t F	lesi	ı1t	s				•	•	•		129
3.6.2-111	Post	Acous	tic I	Bas	elin	e	Tes	t F	lest	ılt	s								130
3.6.2-IV	Post																		131
3.6.2-V	Post																		132
3.6.2-VI	Post																		133

NADC 80081-65

3.6.2-VII	Post Acoustic Baseline Test Results
3.6.2-VIII	Post Acoustic Baseline Test Results
3.6.2-IX	Post Acoustic Baseline Test Results
3.6.2-X	Post Acoustic Baseline Test Results
3.6.3-I	Post Acoustic Test Data Summary
3.6.3-II	Post Acoustic Drift and Readytime
3.7.2-I	Severe Resonance Frequencies
3.7.2-II	Post Vibration Baseline Test Results 142
3.7.2-III	Post Vibration Baseline Test Results 143
3.7.2-IV	Post Vibration Baseline Test Results 144
3.7.2-V	Post Vibration Baseline Test Results 145
3.7.2-VI	Post Vibration Baseline Test Results 146
3.7.2-VII	Post Vibration Baseline Test Results 147
3.7.2-VIII	Post Vibration Baseline Test Results 148
3.7.2-IX	Post Vibration Baseline Test Results 149
3.7.2-X	Post Vibration Baseline Test Results 150
3.7.2-XI	Post Vibration Baseline Test Results 151
3.7.3-I	Post Vibration Baseline Test Results Data Summary . 152
3.7.3-II	Post Vibration Drift and Readytime 153

THIS PAGE INTENTIONALLY LEFT BLANK.

1.0 INTRODUCTION

The need exists for small rugged rate sensors applicable to the Navy's Maximum Performance Escape System. A recent study indicated that a prime candidate for this system is the Superjet rate sensor used on the U.S. Army Copperhead Program.

The Superjet performance verification contract DAAK 40-79-D-0017/006 was initiated on September 1979 by the U.S. Army Missile Command, Redstone Arsenal, Alabama. The program is under the technical direction of the Naval Air Development Center (NADC), Aircraft and Crew Systems Technology Directorate, Warminister, PA. Mr. R. L. McGiboney is the cognizant Project Engineer for this program.

The purpose of this performance verification task is to determine through test and analyses the suitability of the Hamilton-Standard Superjet angular rate sensor for the possible application in NADC's Maximum Performance Escape System (MPES) program.

For NADC to make that determination, a test plan (Appendix B) was submitted and approved. The results of the tests are presented in this report.

In addition, technical tasks described in the statement of work 60134-12, Paragraph 3.2, are discussed in the text. These tasks include operational mode, (4 second or 15 minute performance duration), reliability, maintainability, weight and volume.

Department of the Navy Naval Air Systems Command Advanced Technology Section AIR-5162C Washington, DC 20360

¹ Reference: Fluidic Gyro Development, Martin Marietta OR15,646 prepared under contract NO0019-78-C-0298. Prepared for:

2.0 DESIGN AND ANALYSIS

2.1 Design

2.1.1 Description

The Superjet rate sensor is manufactured by Hamilton Standard, Farmington, Connecticut, Part Number 9304100-099. The package includes a pump which directs a stream of helium between two resistive elements. The change in cooling of these elements by the gas stream is sensed to indicate angular rate. The package also includes the required electronics (analog type); so all that is required is a ± 15 V.D.C. power supply and a voltmeter. Output of the device is ± 6 V.D.C.

The three Superjet rate sensors used during this evaluation were serial numbers 0100355, 0100373, and 0100381, which will be referred to as serial numbers 355, 373, and 381, respectively. A drawing describing the Superjet package is shown in Figure B.2-1, Appendix A, Part B of this report.

A cross section of the Superjet sensor is shown in Figure 2.1-1.

The Copperhead program roll rate sensor specification may be found in Martin Marietta document SPC10200000-004.

The vendor specifications for Superjet are listed in Table 2.1-I.

2.1.2 Concept

The principle of operation of the Superjet may be most readily visualized by referring to Figure 2.1-2. As illustrated in this figure, a laminar flow gas jet flows with an average velocity V_j , from a nozzle located at one end of the case. A jet position sensor, located a distance, L, from the nozzle mouth is used to detect any lateral deflection, y, of the gas jet from the center position. In the presence of an angular rate $^\omega I$, along the input axis of the case, the jet will be deflected away from its normal center position in proportion to the magnitude of the rate, and in a direction corresponding to the clockwise or counterclockwise direction of the angular rate. The amount of this deflection may be calculated by double integration of the Coriolis acceleration of the jet as it flows toward the jet position sensor:

$$\ddot{y} = 2\omega_{I} V_{j}$$

$$\dot{y} = 2\omega_{I} V_{j}^{T}$$

$$y = \omega_{I} V_{j}^{T}$$

$$Eq (2)$$

$$y = \omega_{I} V_{j}^{T}$$

$$Eq (3)$$

At the position sensor:

$$y = \omega_{I} V_{j} T^{2} = \omega_{I} L T = \omega_{I} \frac{L^{2}}{V_{j}}$$
where $L = V_{j} T$ Eq. (4)

Thus, it can be seen from the above equation that the gas jet deflects in proportion to the input angular rate perpendicular to the axis of the jet. Moreover, the deflection is proportional to the product of the length of the jet, L, and the transit time of the jet, T, or to the length squared divided by the jet velocity. The above computation is based on small angle approximations which can be shown to be valid for actual Superjet design parameters.

Constant translational velocities of the sensor in any direction do not cause jet deflections relative to the jet position sensor. Translational acceleration is claimed also not to introduce any first order error since the laminar gas flow jet is essentially buoyantly supported within the free gas space. Acceleration does produce density gradients, however, which may cause second order errors. These, however, are claimed to be an order of magnitude smaller than comparable errors for equivalent mechanical gyros.

In order to maintain gas jet stability and produce a low noise signal, the jet must be kept within the laminar flow regime. This is achieved by limiting the the Reynolds number to a value below 1,000. Laminar flow is most readily produced with a gas having a low density and high viscosity since Reynolds number is proportional to density and inversely proportional to the viscosity of the gas. Also, from the standpoint of obtaining maximum frequency response, it is desirable to have the gas jet velocity as high as possible consistent with laminar flow criteria. Conversely, it should be recalled from the previous equations that lateral deflection is inversely proportional to the velocity. Thus, the selected design velocity represents a compromise between frequency response and sensitivity.

Conversion of the jet deflection into an electrical signal proportional to the input rate is accomplished by symmetrically mounting two temperature sensitive resistors on either side of the jet stream and connecting them by means of a bridge circuit. As the jet deflects to the left or right, the differential cooling of the temperature sensitive resistors produces an output voltage that varies linearly with input rate, over a limited range of angular rate input.

2.2 Operational Mode

The accuracy of the roll rate sensors does not change under any of the two MPES scenarios considered.

2.2.1 Four Second Scenario

The Superjet rate sensor is best suited for this scenario. There is virtually no shift in the null bias for this short time frame. It is known, however, that the electronics of the Superjet package is not temperature compensated beyond a range of -25° to +145°F.

2.2.2 Fifteen Minute Scenario

The null bias at 72°F +5°F has a shift of about 1 mv over a 15 minute period which is equivalent to .166 degrees per second rate, which was indicated by observing the units throughout the test program. Drift test data are reported for one minute periods, in Sections 3.1, 3.3, 3.4, 3.6 and 3.7.

2.3 Reliability

The only moving mechanical part in the Superjet Angular Rate Sensor is the vibrating pump diaphragm. This diaphragm consists of a ceramic piezo-electric crystal which is flexibly mounted around its periphery and has electrically excited faces perpendicular to the mounting plane. Stress levels induced under normal operating amplitude conditions are approximately 17 percent of rated fatigue strength. As a result, the crystal may vibrate indefinitely without limiting the life of the sensor.

Life tests on five experimental models have exceeded 34,000 hours each or a cumulative total of over 170,000 hours without failure. The complete absence of wear limited components in both the jet sensor and the electronics has made it possbile to attain a virtually unlimited unit life.

The environmental resistance of the sensor assembly has been analysed for a broad spectrum of vibration, shock and acceleration dynamic conditions.

The Superjet Angular Rate Sensor is exceptionally tolerant to angular rate overranging. This is a consequence of the fact that overranging does not produce an internal mechanical force on stops, gimbal suspensions, or spin bearings as in conventional rate gyroscopes. Thus, the unit will recover from any degree of overranging without degradation of performance.

Electronic oscillator driver and bridge output amplifier circuits are extremely simple. Failure rates for these components were derived from MIL-HDBK-217A, using 71°C ambient temperature and environmental stress factors for manned aircraft. The predicted failure rate of the complete circuitry totals four failures per million hours, or an equivalent MTBF of 250,000 hours. This gives an operating probability of success 0.999996.

The "Superjet" roll rate sensor is currently used on the "Copperhead" program which is a cannon launched guided projectile. Early reliability predictions on Copperhead, for the roll rate sensor, produce the following probability of success:

Storage Failure <.9906 Operating Failure <.9999995

This was based on the reliability math model as shown in Figure 2.3-1, (Reference: Copperhead (CLGP) Reliability (RAM-D) Report, Eleventh Bimonthly, CK1 SRP 00801000-011, Figure 1, Page 151).

2.4 Maintainability

The Superjet rate sensor is a hermetically sealed unit fabricated by Hamilton Standard. There are no outside moving parts and there is no maintenance requirement. If there is a malfunction, on the Copperhead program, the sensor is replaced, and sent back to the manufacturer for refurbishment.

2.5 Weight and Volume

The total weight of the Superjet package is 12.0 ounces and the total volume does not exceed $1.5" \times 3.5" \times 5"$. Figure 2.5-1 shows the outline of the sensor package.

FIGURE 2.1-1

SUPERJET SENSOR CROSS SECTION

FIGURE 2.1-2 SUPERJET ANGULAR RATE SENSOR SCHEMATIC

SUPERJET RATE SENSOR SPECIFICATION

HAMILTON STANDARD

Weight of jet:

3.8 oz

Weight of total package:

12.0 oz

Input voltage:

+15V at 80 mA -15V at 7 mA

Rate range:

500 deg/s

Scale factor:

Rate - 6 mV/deg/s

Angle - 120 mV/deg

Null stability - ±0.6 deg/s (when bias is (absolute, environment) stored during

rates)

Scale factor - 15%

(absolute, linearity, environment, and symmetry)

Linear acceleration

sensitivity:

0.02 deg/s/g

Frequency response:

>40 Hz

Input axis alignment:

<⅓ degree

Environmental capacity:

Temperature: -25°F to +155°F

Vibration: 7.6g rms

Shock: 10,000g

TABLE 2.1-I

Detonation $\mathbf{P_R} = \mathbf{R_{1,0}^{1}} \times \mathbf{R_{1,N}^{1}} \times \mathbf{C}^{-} \left[(\lambda_{NO}) (t_{1}) (K_{S}) + (\lambda_{NO}) (t_{2}) (K_{D}) + (\lambda_{NO}) (t_{3}) (K_{L}) + (\lambda_{NO}) (t_{4}) (K_{W}) + (\lambda_{NO}) (t_{5}) (K_{L}) \right]$ Onerating l'iight Non Oper Flight Loading Waiting and Deploy-ment + (AOP) (tg) Storage Acceptance Factory Test

Expected or Predicted Reliability of One Roll Rate Sensor.

- = 0.99999 based on the Roll Rate Sensor being capable of 100% acceptance testing of all functional requirements. The Roll Rate Sensor contains no one shots.
- Base for Natural or Napierian Logarithms = 2,71828.
- Non-operating or Storage Failure Rate (Time Dependent Elements) = 1,0691 x 10-7 (see Table I).
- t₁ Storage Duration = 87,600 hours (10 years covered storage) maximum.
- Kg Storage Environmental Factor = 1.0.
- Deployment Duration $(t_2 = 36 \text{ hours})$.
- Deployment Environment Factor = 5.0.
- Loading Duration = 0.0055 hours.
- Waiting Duration = 0,0167 hours.

Loading Environmental Factor = 5.0.

- w Waiting Environmental Factor = 1.0.
- My watering mitter controlled I actor 1.0.

Flight Duration Non-operating = 0.0047 hours (midrange flight).

- Firing Environmental Factor = 1000.0.
- Operating Failure Rate Including K Factors (Time Dependent Elements) = 3,90566 x 10⁻⁵ (see Table II).
- t₆ Flight Duration Operating = 0.0119 hours (midrange flight).
- Reliability of Structure and Pump Diaphragm = ,99999,

FIGURE 2.3-1

COPPERHEAD RELLABILITY MATH MODEL

FIGURE 2.5-1
SUPERJET RATE SENSOR

3.0 PERFORMANCE TESTS

Three Superjet roll rate sensors were subjected to a series of baseline tests consisting of the following:

input voltage (volts)
input current (amps)
full scale range at 2% linearity (degrees/seconds)
hysteresis (millivolts)
threshold (degrees/seconds)
resolution (degrees/seconds)
output drift (degrees/seconds)
ready time (seconds)
null offset (add after initial baseline testing) (millivolts)

The sensors were then monitored for various environmental factors which included the following:

Sensitivity to acceleration (degrees/second/G)
Temperature sensitivity at +165°F
Temperature sensitivity at -30°F
Sensitivity to jerk (å)
Acoustic sensitivity
Vibration environment

A majority of the performance testing was conducted in Martin Marietta's Precision Inertial Laboratory. The acoustic and vibration environments were generated in the Environmental Test Lab of the Orlando Division. Barometric pressure was $30.00 \pm .08$ in Hg throughout the test program.

A Hewlett Packard 9500 test set was used in the Inertial Lab, to program the Genisco 1100-2 rate table. The rate table was wired to the computer such that all power input to the Superjet test unit occurred simultaneously. This allowed the Superjet sensor to experience the actual procedure involved during a real ejection situation.

3.1 Baseline Tests

3.1.1 Test Setup and Procedure

Three "Superjet" rate sensor packages were tested in the Precision Inertial Laboratory on the Genisco series 1100-2 rate table. This rate table is programmable by paper tape reader or automatic test set for automatic operation. Speed accuracy is 0.01%; the table servo has a peak torque of 22 ft.-1bs.

The Hewlett Packard 9500A-145 test set was used to program the rate table. The test set includes a Hewlett Packard HP2116C computer controlling two 50-volt and two 100-VDC programmable power supplies as well as five non-programmable 20-ampere, 40 VDC power supplies controlling a programmable counter, oscilloscopė, a volt-ohm meter and a modular switch for control of these devices.

Each test unit was centrally located on the rate table by using a standard 8"x8"x8" test cube in the lab. The input axis of the sensor coincided with the rotation axis of the rate table.

The computer in the test set was programmed to increment the rate table (usually in 50 degree/second increments) to the maximum counterclockwise rate and back through zero to the maximum clockwise rate and back to zero rate. The actual rate and output of the sensor was recorded at each rate increment. Each data point represented an average of 40 readings taken within approximately 1.6 seconds or less. The maximum rate was varied by 50 degrees/second intervals until the non-linearity exceeded +2% of full scale, as calculated using a least-squares-fit straight line.

The output drift of each unit was measured on the rate table with the computer programmed to give a readytime plot, wait 15 seconds and take an average of 40 readings of the output, and repeat for a one minute time period, at 15 second intervals. This was done for rates of 100, 200, 300, 400 and 500 degrees/second.

Threshold and resolution was derived by rotating the rate table from 0.0 degrees/second to 1.0 degrees/second in 0.1 degree/second increments. And 5.0 degrees/second to 6.0 degrees/second in 0.1 degree/second increments, respectively.

A test schematic for the baseline test is shown in Appendix A, Figure A.2-1 of this report.

The test program was conducted under the guidance of the Test Plan (see Appendix B) prepared by Jerome C. Salmons, November 1979 which was approved by NADC on January 11, 1980. A detailed procedure for the baseline tests is shown in Appendix A, Part A of this report.

The algorithm used for calculating the least-squares-fit data and output drift may be found in Appendix C.

3.1.2 Baseline Test Results

The scale factor was computed as the slope of the least-squares-fit straight line. Percentage error from both fullscale and "ideal" (actual reading) was calculated for each data point.

The full scale rate of the sensor was determined by the ±2% linearity error requirement. Hysteresis values for clockwise and counterclockwise rates were calculated. The bias shown on the data sheets was determined as the Y-intercept of the least-squares-fit straight line.

A typical plot of voltage output vs. rate is shown in Figure 3.1.2-1 for S/N 355. Since the hysteresis error is so small (.002% of full scale) the plot is a straight line. This figure was transposed from Table 3.1.2-I. The scale factor program printouts are shown for all three serial numbers in Tables 3.1.2-I through 3.1.2-VI.

The first column in this table is the actual rate of the rate table as recorded by the computer with an accuracy within .01%. The second column is the average of 40 readings taken while dwelling at a known rate. The third column is the calculated value of the output using the curve fitting technique of the least squares fit straight line. The fourth column is the error of the particular data point as percentage of the full scale rate (from the least squares fit straight line). The fifth column is the error of each data point as a percentage of the corresponding output from the least squares fit straight line. A test summary is provided at the bottom of each table for individual evaluation.

Tables 3.1.2-VII through 3.1.2-IX show the results of the output drift. The first reading for each rate input is the output value after 15 seconds. The next reading is the value after 30 seconds. The third and fourth readings are the values for 45 and 60 seconds respectively. The third column is the mean divided by the actual rate. This was used to evaluate the drift since there were small changes in rates.

A typical readytime plot is shown in Figure 3.1.2-2. Readytime is defined as the time required for the device to reach 95% of its steadystate output without any electronic warmup, at any rate.

Threshold and resolution for the "Superjet" rate sensor was found to be less than 0.1 degrees/second. The actual value was not obtained due to the limited accuracy of the equipment used. It is believed that for the maximum performance escape system, a threshold and resolution of 0.1 degree second for this device will not impair the expected system performance significantly. The specification made by the Copperhead program at Martin Marietta called for Superjet threshold and resolution to be 0.03 degree/second maximum.

3.1.3 Data Evaluation

Baseline test data for the three Superjet rate sensor packages tested produces the following worst case evaluation:

1.	Full scale rate at +2% linearity	475 +75 degrees/second
2.	Scale Factor	.0061 +.0001 V/degrees/second
3.	Bias	+.26 degrees/second
4.	Hysteresis	+.56 degrees/second
5.	Threshold	<.1 degrees/second
6.	Resolution	<.1 degrees/second
7.	Readytime	.068 second maximum
8.	Drift	+.55 degrees/second/minute max.

The values for each unit may be evaluated from Table 3.1.3-I (baseline test data) and Table 3.1.3-II (baseline drift and readytime test data).

	DATE 2-1	8-80	RUN. Initial Baseline					
	TEMP ?2°F	50%RH	SER#355					
	RATE (DEC/SEC)	V OUT	V CALC	% FS	7 IDEAL			
*	-49.989 -99.8422 -149.639 -199.549 -249.455 -299.286 -349.236 -399.008	.2953 .5898 .8873 1.1873 1.4913 1.7996 2.1134 2.4332	.3057 .609 .9119 1.2155 1.5191 1.8223 2.1261 2.4289	.342 .628 .81 .929 .915 .746 .418	-3.418 -3.147 -2.706 -2.328 -1.834 -1.246 598			
	-448.893 -498.808 -448.988 -399.032 -349.182 -299.329 -249.395 -199.499 -149.69	2.7598 3.093 2.7613 2.4354 2.1163 1.8029 1.4945 1.1906 .8906	2.7324 3.036 2.733 2.4291 2.1258 1.8225 1.5188 1.2152	901 -1.872 93 21 .312 .645 .796 .808	1.003 1.876 1.036 .263 447 -1.077 -1.596 -2.025 -2.375			
*	-99.7762 -49.9797 49.8369 99.7095 149.589 199.43 249.302 299.192 349.056	.5929 .2975 2926 5881 8862 -1.1863 -1.4899 -1.7976 -2.11	.6086 .3056 3016 605 9084 -1.2116 -1.5152 -1.8185 -2.1219	.513 .268 297 557 731 834 83 687 392	-2.573 -2.683 -2.983 -2.792 -2.445 -2.092 -1.664 -1.147			
	398.962 448.814 498.677 448.862 398.921 349.087 299.178 249.374 199.459 149.545 99.7078 49.8523	-2.4282 -2.7528 -3.0835 -2.7533 -2.4291 -2.1114 -1.7988 -1.4914 -1.188 -888 -5903 -2944	-2.4255 -2.7287 -3.0321 -2.729 -2.4252 -2.1221 -1.8184 -1.5155 -1.2118 -9082 -625 -3017	.091 .791 1.691 .799 .126 35 645 792 784 663 483 483	.114 .882 1.696 .89 .158 501 -1.078 -1.587 -1.966 -2.216 -2.4421 -2.4409			

TEST SUMMARY

FULL SCALE RATE (DEG/SEC): 500

SCALE FACTOR (V/DEG/SEC): -6.08342E-03

BIAS (VOLTS): 1.57557E-03

HYSTERESIS, NEG RATES (VDC): -3.37982E-03

HYSTERESIS, POS RATES (VDC): 2.23863E-03

READY

TABLE 3.1.2-1

DATE . . 2-18-80

RUN Ipitial, Baselipe

	TEMP???F.	50%RH	SER#355				
	RATE (DEG/SEC)	V OUT	V CALC (VDC)	% FS	% IDEAL		
*	-49.9388 -99.8574 -149.648 -199.549 -249.487 -299.272 -349.167 -399.037 -448.851 -498.805 -548.737 -498.766	.2951 .5896 .8863 1.1858 1.4898 1.7978 2.1117 2.4313 2.7573 3.0903 3.42993 3.0918	.3073 .6124 .9168 1.2219 1.5271 1.8315 2.1365 2.4413 2.7459 3.0512 3.35652 3.051	.362 .68 .908 1.072 1.11 1.001 .738 .299 34 -1.161 -2.183 -1.213	-3.984 -3.748 -3.339 -2.953 -2.447 -1.84 -1.162 412 .416 1.28 2.188 1.338		
*	-448.95 -399.057 -399.296 -249.444 -199.492 -149.678 -99.8151 -49.8525 49.8525 49.8525 49.8525 49.7061 149.444 249.349 299.215 349.153 398.94 448.792 498.693 448.853 398.968 349.126 299.217 249.349 199.481 149.578 99.8472	2.7598 2.4343 2.115 1.8017 1.4938 1.19 .8899 .5927 .2.924 2.876 -1.4881 -1.7952 -2.1076 -2.4257 -2.4257 -3.0821 -3.0821 -3.0821 -2.4279 -1.4906 -1.187 -1.4906 -1.18876 -1.4906 -1.18876 -2.4279 -2.1103 -2.4279 -2.1103 -2.4279 -2.1103 -2.4279 -2.1103 -2.4279 -2.1103 -2.4279 -2.1103 -2.4279 -2.1103 -2.4279 -2.1103 -2.4279 -2.1103 -2.4279 -2.1103 -2.4279 -2.1103 -2.4279 -2.1103 -2.4279 -2.1103 -2.4279 -2.1103 -2.4279	2.7465 2.4415 2.1364 1.8316 1.5269 1.2215 .917 .6122 -3074 -3075 -1.52271 -1.52271 -2.1328 -2.4368 -2.7419 -2.4366 -2.7419 -2.4369 -2.	392 392 392 392 889 984 5915 5915 9618 7328 7328 7328 7328 7328 7328 652 815 815 815 815 965	-488 -292 -1 .634 -2.171 -2.556 -3.199 -3.341 -2.998 -3.46 -2.998 -2.669 -2.745 -1.162 -1.162 -3.181 1.165 -3.181 1.165 -3.7766 -3.7766		

TEST SUMMARY

FULL SCALE RATE (DEG/SEC): 550

SCALE FACTOR (V/DEG/SEC): -6.11309E-03

BIAS (VOLTS): 1.98895E-03

HYSTERESIS, NEG RATES (VDC): -4.12464E-03

HYSTERESIS, POS RATES (VDC): 2.72226E-03

TABLE 3.1.2-II

TEST ENGINEER SY Miller

2-18 80

READY

	DATE 2-18	8-80	RUN Inital Baseline					
	TEMP 72°	F 50%RH	SER# . 373					
	RATE (DEG/SEC)	V OUT	V CALC (VDC)	% FS	7 IDEAL			
	-49.9477	.2945	.3258	.461	-3.69			
	-99.766	.5947	.6122	.712	-2.853			
*	-149.737	.8985	.9196	. 85 6	-2.288			
	-199.612	1.2061	1.2263	.823	-1.65			
	-249.448	1.519	1.5328	•563	904			
	-299.355	1.8379	1.8398	.078	105			
	-349.235	2.1641	2.1466	711	.815			
	-399.093	2.4978	2.4532	-1.814	1.818			
	-349.206	2.1648	2.1464	748	.857			
	-299.35	1.8391	1.8398	.027	036			
	-249.453	1.5206	1.5329	.501	803			
	-199.555	1.2079	1.226	.734	-1.471			
	-149.71	.9006 .5966	.9194	.765 .656	-2.044			
	-99.8404 -49.9325	.2957	.6127 .3058	• 626 • 41	-2.63 -3.28			
	49.8582	3034	308	187	-1.5			
	99.7501	6034	6149	467	-1.873			
*	149.591	9055	9214	645	-1.725			
~	199.483	-1.2111	-1.2282	696	-1.395			
	249.359	-1.521	-1.535	568	912			
	299.221	-1.8359	-1.8417	233	312			
	349.141	-2.1575	-2.1487	.359	-411			
	399.028	-2.4857	-2.4555	1.226	1.229			
	349.109	-2.1581	-2.1485	.39	.446			
	299.222	-1.8371	-1.8417	188	251			
	249.374	-1.5221	-1.5351	53	85			
	199.539	-1.2126	-1.2286	652	-1.307			
	149.561	9074	9212	563	-1.505			
	99.7179	6047	6147	406	-1.628			
	49.8778	3043	3081	154	-1.234			

TEST SUMMARY

FULL SCALE RATE (DEG/SEC): 400

SCALE FACTOR (V/DEG/SEC): -6.15037E-03

BIAS (VOLTS): -1.35492E-03

HYSTERESIS, NEG RATES (VDC): -2.08056E-03

HYSTERESIS, POS RATES (VDC): 1.84214E-03

TEST ENGINEER

The state of the s

READY

TABLE 3.1.2-III

	DATE . 2-18-	-80	RUN Inital Baseline					
	TEMP 72°F	50%RH	CE DA	`373				
		•••••	SE K#		••			
	DATE	v out	V CALC	2 FS	7 IDEAL			
	RATE (DEG/SEC)	(VDC)	(VDC)	% F5	4 I DE AL			
	-49.9608	.2946	.3096	. 538	-4.849			
*	-99.8506	.5953	.6187	.837	-3.771			
•	-149.648	.8998	92.72	.98	-2.948			
	-199.546	1.2078	1.2363	1.022	-2.305			
	-249.431	1.5213	1.5453	.861	-1.554			
	-299.318	1.8406	1.8543	.492	74			
	-349.196	2.1668	2.1633	124	.16			
	-399.035	2.5006	2.4721	-1,024	1.154			
	-448.954	2.8432	2.7813	-2.22	2.225			
	-399.108	2.5015	2.4725	-1.041	1.173			
	-349.235	2.1677	2.1635	15	.193			
	-299.368	1.8417	1.8546	.464	697			
	-249.512	1.5225	1.5458	.834	-1.504			
	-199.587	1.2095	1.2365	.969	-2.186			
	-149.759	.9017	.9278	.939	-2.822			
	-99.8219	.5975	.6185	.754	-3.398			
	~49.9438	.2961	.3095	.482	-4.339			
	49.8885	3035	3089	194	-1.746			
	99.7585	6037	61 79	509	-2.295			
	149.572	9061	9265	728	-2.191			
*	199.422	-1.2117	-1.2353	845	-1.907			
	249.369	-1.5219	-1.5447	817	-1.474			
	299.209	-1.8371	-1.8534	585	88			
	349.117 398.963	-2.1588	-2.1626 -2.4714	135 .577	174 .651			
	448.943	-2.4875 -2.8236	-2.781	1.529	1.532			
	399.009	-2.488	-2.4717	.587	.662			
	349.112	-2.16	-2.1626	092	118			
	299.219	-1.8384	-1.8535	542	815			
	249.379	-1.5232	-1.5447	773	-1.395			
	199.412	-1.2134	-1.2352	783	-1.768			
	149.654	9078	927	688	-2.07			
	99.7332	6049	6177	458	-2.066			
	49.8699	3044	- 3088	158	-1.423			

TEST SUMMARY
FULL SCALE RATE (DEG/SEC): 450
SCALE FACTOR (V/DEG/SEC): -6.19478E-03

BIAS (VOLTS) : 1.14196E-04
HYSTERESIS, NEG RATES (VDC): -2.13492E-03
HYSTERESIS, POS RATES (VDC): 1.65558E-03

TEST ENGINEER

READY

TABLE 3.1.2-IV

RATE SENSOR TEST PROGRAM

	DATE 2-21	-80	RUN Initial Baseline				
	TEMP 72°	F 50%RH	SER#381				
	RATE	v out	V CALC	% FS	Z IDEAL		
	(DEG/SEC)	(VDC)	(VDC)				
	-49.9772	.2977	.3086	.323	-3.555		
	-99.7863	.594	.6153	.626	-3.453		
	-149.725	.8933	.9227	.868	-3.189		
	-199.543	1.1952	1.2294	1.008	-2.777		
*	-249.421	1.5011	1.5364	1.042	-2.298		
	-299.279	1.8115	1.8433	.94	-1.728		
	-349.155	2.1272	2.1504	. 684	-1.078		
	-399.025	2.4486	2.4574	.259	357		
	-448.908	2.7762	2.7645	346	.424		
	-498.769	3.1088	3.0714	-1.103	1.216		
	-548.666	3.44492	3 •3 7865	-1.957	1.962		
	-498.778	3.1093	3.0715	-1.117	1.232		
	-448.879	2.7775	2.7643	391	.479		
	-399,065	2.4508	2.4576	.202	278		
	-349.214	2.1299	2.1508	.617	971		
	-299.287	1.8144	1.8434	.857	-1.576		
	-249.445	1.504	1.5366	•962	-2.121		
	-199.527	1.1979	1.2293	.927	-2.555		
	-149.715	.8959	.9226	.789	-2.898		
	-99.7643	.5962	.6151	.559	-3.081		
	-49.9782	-2985	.3086	•3	-3.305		
	49.8389	2951	3059	316	-3.49		
	99.7213	5926	6129	602	-3.318		
	149.615	8923	9201	821	-3.019		
	199.41	-1.1942	-1.2266	958	-2.643		
	249.344	-1.5001	-1.534	-1.003	-2.212		
	299.168	1618.1-	-1.8408	907	-1.667		
	349.094	-2.1251	-2.1481	678	-1.069		
*	398.914	-2.4456	-2.4548	271	374		
	448.85	-2.772	-2.7622	•289	.355		
	498.659	-3.1036	-3.0688	1.026	1.131		
	548.515	-3.43916	-3.3757	1.874	1.879		
	498.693	-3.1043	-3.069	1.042	1.149		
	448.814	-2.7736	-2.762	.344	.422		
	398.953	-2.4482	-2.455	202	279		
	349.129	-2.1276	-2.1483	612	963		
	299.188	-1.8123	-1.8409	843	-1.549		
	249.324	-1.5023	-1.5339	932	-2.056		
	199.447	-1.1964	-1.2269	899	-2.478		
	149.654	8944	9203	764	-2.809		
	99.7827	5945	6128	542	-2.989		
	49.8288	2965	3058	274	-3.028		

TEST SUMMARY

FULL SCALE RATE (DEG/SEC): 550

SCALE FACTOR (V/DEG/SEC): -6.15610E-03

BIAS (VOLTS): 9.52902E-04

HYSTERESIS, NEG RATES (VDC): -2.85959E-03

HYSTERESIS, POS RATES (VDC): 2.57397E-03

TABLE 3.1.2 -V

TEST ENGINEER

RATE SENSOR TEST PROGRAM

RATE	0
RATE (DEG/SEC) (VDC) (VDC)	
-49.9646 .2978 .3105 .342 -4.11 -99.8151 .5948 .6193 .659 -3.958 -149.69 .8941 .9282 .917 -3.674 * -199.492 1.1965 1.2366 1.08 -3.247 -249.402 1.5028 1.5457 1.155 -2.778 -299.306 1.8132 1.8548 1.12 -2.245 -349.142 2.1292 2.1635 .921 -1.583 -398.988 2.4506 2.4722 .582 875 -449.006 2.7779 2.782 .11 -1.48 -498.82 3.1105 3.39905 538 .647 -548.624 3.44725 3.39903 -1.298 1.419 -598.524 3.78638 3.70809 -2.107 2.112 -548.659 3.44843 3.39925 -1.324 1.447 -498.79 3.1123 3.0903 591 .71 -448.879 2.7802 2.7812 .027 036 -399.103 2.4531 2.4729 .532 <	
-49.9646 .2978 .3105 .342 -4.11 -99.8151 .5948 .6193 .659 -3.958 -149.69 .8941 .9282 .917 -3.674 * -199.492 1.1965 1.2366 1.08 -3.247 -249.402 1.5028 1.5457 1.155 -2.778 -299.306 1.8132 1.8548 1.12 -2.245 -349.142 2.1292 2.1635 .921 -1.583 -398.988 2.4506 2.4722 .582875 -449.006 2.7779 2.782 .11148 -498.82 3.1105 3.0905538 .647 -548.624 3.44725 3.39903 -1.298 1.419 -598.524 3.78638 3.70809 -2.107 2.112 -548.659 3.44843 3.39925 -1.324 1.447 -498.79 3.1123 3.0903591 .71 -448.879 2.7802 2.7812 .027036 -399.103 2.4531 2.4729 .5328 -349.137 2.1316 2.1634 .858 -1.475 -299.338 1.8155 1.855 1.064 -2.132 -249.424 1.5052 1.5459 1.095 -2.635 -199.524 1.1991 1.2368 1.015 -3.053 -149.666 .8963 .928 .853 -3.419 -99.8218 .5965 .6193 .613 -3.683 -49.9053 .2987 .3101 .308 -3.702 49.8445 -2.9573077321 -3.87 99.739959346167627 -3.772	
-99.8151 .5948 .6193 .659 -3.958 -149.69 .8941 .9282 .917 -3.674 * -199.492 1.1965 1.2366 1.08 -3.247 -249.402 1.5028 1.5457 1.155 -2.778 -299.306 1.8132 1.8548 1.12 -2.245 -349.142 2.1292 2.1635 .921 -1.583 -398.988 2.4506 2.4722 .582875 -449.006 2.7779 2.782 .11148 -498.82 3.1105 3.0905538 .647 -548.624 3.44725 3.39903 -1.298 1.419 -598.524 3.78638 3.70809 -2.107 2.112 -548.659 3.44843 3.39925 -1.324 1.447 -498.79 3.1123 3.0903591 .71 -448.879 2.7802 2.7812 .027036 -399.103 2.4531 2.4729 .5328 -349.137 2.1316 2.1634 .858 -1.475 -299.338 1.8155 1.855 1.064 -2.132 -249.424 1.5052 1.5459 1.095 -2.635 -199.524 1.1991 1.2368 1.015 -3.053 -149.666 .8963 .928 .853 -3.419 -99.8218 .5965 .6193 .613 -3.99.739959346167627 -3.772	
* -149.69	
* -199.492 1.1965 1.2366 1.08 -3.247 -249.402 1.5028 1.5457 1.155 -2.778 -299.306 1.8132 1.8548 1.12 -2.245 -349.142 2.1292 2.1635 .921 -1.583 -398.988 2.4506 2.4722 .582875 -449.006 2.7779 2.782 .11 -148 -498.82 3.1105 3.0905538 .647 -548.624 3.44725 3.39903 -1.298 1.419 -598.524 3.78638 3.70809 -2.107 2.112 -548.659 3.44843 3.39925 -1.324 1.447 -498.79 3.1123 3.0903591 .71 -448.879 2.7802 2.7812 .027036 -399.103 2.4531 2.4729 .5328 -349.137 2.1316 2.1634 .858 -1.475 -299.338 1.8155 1.855 1.064 -2.132 -249.424 1.5052 1.5459 1.095 -2.635 -199.524 1.1991 1.2368 1.015 -3.053 -149.666 .8963 .928 .853 -3.419 -99.8218 .5965 .6193 .613 -3.683 -49.9053 .2987 .3101 .308 -3.702 49.844529573077321 -3.87 -99.739959346167627 -3.772	
-249.402 1.5028 1.5457 1.155 -2.778 -299.306 1.8132 1.8548 1.12 -2.245 -349.142 2.1292 2.1635 .921 -1.583 -398.988 2.4506 2.4722 .582875 -449.006 2.7779 2.782 .11 -1.48 -498.82 3.1105 3.0905538 .647 -548.624 3.44725 3.39903 -1.298 1.419 -598.524 3.78638 3.70809 -2.107 2.112 -548.659 3.44843 3.39925 -1.324 1.447 -498.79 3.1123 3.0903591 .71 -448.879 2.7802 2.7812 .027036 -399.103 2.4531 2.4729 .5328 -349.137 2.1316 2.1634 .858 -1.475 -299.338 1.8155 1.855 1.064 -2.132 -249.424 1.5052 1.5459 1.095 -2.635 -199.524 1.1991 1.2368 1.015 -3.053 -149.666 .8963 .928 .853 -3.419 -99.8218 .5965 .6193 .613 -3.683 -49.9053 .2987 .3101 .308 -3.702 49.844529573077321 -3.87 -99.739959346167627 -3.772	
-299.306	
-398.988	
-449.006 2.7779 2.782 .11148 -498.82 3.1105 3.0905538 .647 -548.624 3.44725 3.39903 -1.298 1.419 -598.524 3.78638 3.70809 -2.107 2.112 -548.659 3.44843 3.39925 -1.324 1.447 -498.79 3.1123 3.0903591 .71 -448.879 2.7802 2.7812 .027036 -399.103 2.4531 2.4729 .5328 -349.137 2.1316 2.1634 .858 -1.475 -299.338 1.8155 1.855 1.064 -2.132 -249.424 1.5052 1.5459 1.095 -2.635 -199.524 1.1991 1.2368 1.015 -3.053 -199.524 1.1991 1.2368 1.015 -3.053 -149.666 .8963 .928 .853 -3.419 -99.8218 .5965 .6193 .613 -3.683 -49.9053 .2987 .3101 .308 -3.702 49.844529573077321 -3.87 99.739959346167627 -3.772	
-498.82 3.1105 3.0905 538 .647 -548.624 3.44725 3.39903 -1.298 1.419 -598.524 3.78638 3.70809 -2.107 2.112 -548.659 3.44843 3.39925 -1.324 1.447 -498.79 3.1123 3.0903 591 .71 -448.879 2.7802 2.7812 .027 036 -399.103 2.4531 2.4729 .532 8 -349.137 2.1316 2.1634 .858 -1.475 -299.338 1.8155 1.855 1.064 -2.132 -249.424 1.5052 1.5459 1.095 -2.635 -199.524 1.1991 1.2368 1.015 -3.053 -149.666 .8963 .928 .853 -3.419 -99.8218 .5965 .6193 .613 -3.683 -49.9053 .2987 .3101 .308 -3.702 49.8445 2957 3077 321 -3.87 99.7399 5934 6167 627 <t< th=""><th></th></t<>	
-548.624 3.44725 3.39903 -1.298 1.419 -598.524 3.78638 3.70809 -2.107 2.112 -548.659 3.44843 3.39925 -1.324 1.447 -498.79 3.1123 3.0903591 .71 -448.879 2.7802 2.7812 .027036 -399.103 2.4531 2.4729 .5328 -349.137 2.1316 2.1634 .858 -1.475 -299.338 1.8155 1.855 1.064 -2.132 -249.424 1.5052 1.5459 1.095 -2.635 -199.524 1.1991 1.2368 1.015 -3.053 -199.524 1.1991 1.2368 1.015 -3.053 -149.666 .8963 .928 .853 -3.419 -99.8218 .5965 .6193 .613 -3.683 -49.9053 .2987 .3101 .308 -3.702 49.844529573077321 -3.87 99.739959346167627 -3.772	
-598.524 3.78638 3.70809 -2.107 2.112 -548.659 3.44843 3.39925 -1.324 1.447 -498.79 3.1123 3.0903591 .71 -448.879 2.7802 2.7812 .027036 -399.103 2.4531 2.4729 .5328 -349.137 2.1316 2.1634 .858 -1.475 -299.338 1.8155 1.855 1.064 -2.132 -249.424 1.5052 1.5459 1.095 -2.635 -199.524 1.1991 1.2368 1.015 -3.053 -149.666 .8963 .928 .853 -3.419 -99.8218 .5965 .6193 .613 -3.683 -49.9053 .2987 .3101 .308 -3.702 49.844529573077321 -3.87 99.739959346167627 -3.772	
-548.659 3.44843 3.39925 -1.324 1.447 -498.79 3.1123 3.0903591 .71 -448.879 2.7802 2.7812 .027036 -399.103 2.4531 2.4729 .5328 -349.137 2.1316 2.1634 .858 -1.475 -299.338 1.8155 1.855 1.064 -2.132 -249.424 1.5052 1.5459 1.095 -2.635 -199.524 1.1991 1.2368 1.015 -3.053 -149.666 .8963 .928 .853 -3.419 -99.8218 .5965 .6193 .613 -3.683 -49.9053 .2987 .3101 .308 -3.702 49.844529573077321 -3.87 99.739959346167627 -3.772	
-498.79 3.1123 3.0903591 .71 -448.879 2.7802 2.7812 .027036 -399.103 2.4531 2.4729 .5328 -349.137 2.1316 2.1634 .858 -1.475 -299.338 1.8155 1.855 1.064 -2.132 -249.424 1.5052 1.5459 1.095 -2.635 -199.524 1.1991 1.2368 1.015 -3.053 -149.666 .8963 .928 .853 -3.419 -99.8218 .5965 .6193 .613 -3.683 -49.9053 .2987 .3101 .308 -3.702 49.844529573077321 -3.87 99.739959346167627 -3.772	
-448.879 2.7802 2.7812 .027 036 -399.103 2.4531 2.4729 .532 8 -349.137 2.1316 2.1634 .858 -1.475 -299.338 1.8155 1.855 1.064 -2.132 -249.424 1.5052 1.5459 1.095 -2.635 -199.524 1.1991 1.2368 1.015 -3.053 -149.666 .8963 .928 .853 -3.419 -99.8218 .5965 .6193 .613 -3.683 -49.9053 .2987 .3101 .308 -3.702 49.8445 2957 3077 321 -3.87 99.7399 5934 6167 627 -3.772	
-399.103 2.4531 2.4729 .5328 -349.137 2.1316 2.1634 .858 -1.475 -299.338 1.8155 1.855 1.064 -2.132 -249.424 1.5052 1.5459 1.095 -2.635 -199.524 1.1991 1.2368 1.015 -3.053 -149.666 .8963 .928 .853 -3.419 -99.8218 .5965 .6193 .613 -3.683 -49.9053 .2987 .3101 .308 -3.702 49.844529573077321 -3.87 99.739959346167627 -3.772	
-299.338 1.8155 1.855 1.064 -2.132 -249.424 1.5052 1.5459 1.095 -2.635 -199.524 1.1991 1.2368 1.015 -3.053 -149.666 .8963 .928 .853 -3.419 -99.8218 .5965 .6193 .613 -3.683 -49.9053 .2987 .3101 .308 -3.702 49.844529573077321 -3.87 99.739959346167627 -3.772	
-249.424 1.5052 1.5459 1.095 -2.635 -199.524 1.1991 1.2368 1.015 -3.053 -149.666 .8963 .928 .853 -3.419 -99.8218 .5965 .6193 .613 -3.683 -49.9053 .2987 .3101 .308 -3.702 49.844529573077321 -3.87 99.739959346167627 -3.772	
-199.524 1.1991 1.2368 1.015 -3.053 -149.666 .8963 .928 .853 -3.419 -99.8218 .5965 .6193 .613 -3.683 -49.9053 .2987 .3101 .308 -3.702 49.844529573077321 -3.87 99.739959346167627 -3.772	
-149.666 .8963 .928 .853 -3.419 -99.8218 .5965 .6193 .613 -3.683 -49.9053 .2987 .3101 .308 -3.702 49.844529573077321 -3.87 99.739959346167627 -3.772	
-99.8218 .5965 .6193 .613 -3.683 -49.9053 .2987 .3101 .308 -3.702 49.844529573077321 -3.87 99.739959346167627 -3.772	
-49.9053 .2987 .3101 .308 -3.702 49.844529573077321 -3.87 99.739959346167627 -3.772	
49.844529573077321 -3.87 99.739959346167627 -3.772	
99.739959346167627 -3.772	
149.56189349253859 -3.444	
* 199.42 -1.1955 -1.2341 -1.039 -3.126	
249.337 -1.5016 -1.5432 -1.12 -2.694	
299.178 -1.812 -1.8519 -1.075 -2.156 349.044 -2.1274 -2.1608899 -1.546	
349.044 -2.1274 -2.1608899 -1.546 398.884 -2.4478 -2.4695583877	
448.799 -2.7745 -2.7786111149	
498.743 -3.1059 -3.088 .484 .582	
548.62 -3.44174 -3.39681 1.209 1.322	
598.466 -3.77955 -3.70554 1.992 1.997	
548.562 -3.4427 -3.39646 1.244 1.361	
498.721 -3.1075 -3.0878 .529 .636 448.857 -2.7759 -2.779083111	
398.899 -2.4497 -2.4696533802 349.051 -2.1292 -2.1608851 -1.463	
299.198 -1.8139 -1.8521 -1.027 -2.06	
249.344 -1.5038 -1.5433 -1.062 -2.556	
199.464 -1.1977 -1.2343986 -2.966	
149.63289529257822 -3.296	
99,636759526161563 -3.388	
49.837729693076288 -3.47	

TEST SUMMARY

FULL SCALE RATE (DEG/SEC): 600

SCALE FACTOR (V/DEG/SEC): -6.19356E-03

BIAS (VOLTS): 1.04026E-03

HYSTERESIS, NEG RATES (VDC): -2.58541E-03

HYSTERESIS, POS RATES (VDC): 2.23064E-03

TABLE 3.1.2-V1

TEST ENGINEER TON MILL

RATE SENSOR PROGRAM: OUTPUT DRIFT

NADC 80081-60

DATE ... 2-19-80

RUN Initial Baseline

Congo intluy in

TEMP 72°F 50%RH

SER#...355

		PUT DRIFT IN 15 SEC	INTERVALS
TIME	RATE	MEA N	SCALE FACTOR
(SEC)	(DEG/SEC)	(VDC)	(VOLTS/DEG/SEC)
15	99.8056	.592772	5.93 92 7E-03
30	99.8325	.59322	5.94215E-03
45	99.8305	.59357	5.94578E-03
60	99.8634	.594153	5.94966E-03
15	199.592	1.18991	5.96172E-03
30	199.557	1.19068	5.96663E-23
45	199.567	1.19153	5.97059E-03
60	199.59	1.19221	5.97330E-03
15	299.339	1.80431	6.02766E-03
30	299.342	1.80549	6.03154E-03
45	299.337	1.80621	6.03404E-03
60	299.318	1.80705	6.03 723E-03
15	399.056	2.44222	6.11999E-03
30	399.09	2.44294	6.12126E-Ø3
45	399.265	2.44408	6.12452E-03
60	399.112	2.44519	6.12658E-03
15	498.868	3.10689	6.22788E-03
30	498.909	3.1081	6.22980E-03
45	498.824	3.10925	6.23316E-03
60	498.847	3.11066	6.23569E-23

READY

*Data Shown are for t = 15, 30, 45, and 60 seconds for each of five nominal rate inputs of 100, 200, 300, 400, and 500 degrees/second.

TABLE 3.1.2-VII

RATE SENSOR PROGRAM: OUTPUT DRIFT

NADC 80081-60

DATE 2-19-80 RUN Initial Baseline

TEMP. 72°F...507RH... SER#...373......

Copie unit

OUTPUT	DRIFT IN 15 SEC	INTERVALS
RATE	MEAN	SCALE FACTOR
(DEG/SEC)	(VDC)	(VOLTS/DEG/SEC)
(000,000)	*****	
99.8112	.591919	5.93039E-03
99.864	592952	5.93760E-03
99.8498	.593578	5.94471E-03
99.8284	.594043	5.95064E-03
33.0204	•234040	7,375042 50
199.589	1.20507	6.03 772E-03
199.578	1.20608	6.04316E-03
199.581	1.20674	6.04638E-03
199.538	1.20752	6.05156E-03
299.308	1.84101	6.15090E-03
299.316	1.84205	6.1542ØE-Ø3
299.338	1.8429	6.15659E-03
299.338	1.84376	6.15946E-03
233,000		
399.1	2.50633	6.27997E-03
399.115	2.50797	6.28383E-03
399.072	2.50887	6.28676E-03
399.079	2.50979	6.28896E-03
033.013	2.000.0	
498.88	3.20376	6.42191E-03
498.89	3.20515	6.42456E-03
498.928	3.20679	6.42761E-03
498.927	3.20789	6.42958E-03

READY

TABLE 3.1.2-VIII

RATE SENSOR PROGRAM: OUTPUT DRIFT

NADC 80081-60

DATE ... 2-19-80 RUN Initial Baseline

TEMP. J20F2. 507RH. SER#...381.....

OUTPUT RATE (DEG/SEC)	DRIFT IN 15 SEC MEAN (VDC)	INTERVALS SCALE FACTOR (VOLTS/DEG/SEC)
99.8467	.592919	5.93829E-03
99.7802	.593474	5.94781E-03
99.8533	.593904	5.94777E-03
99.7711	.594278	5.95642E-03
199.599	1.19523	5.98817E-03
199.61	1.19608	5.99208E-03
199.599	1.19674	5.99573E-03
199.583	1.19772	6.00113E-03
299.316	1.81507	6.06406E-03
299.346	1.81605	6.06674E-03
299.359	1.81723	6.07042E-03
299.322	1.81789	6.07336E-03
399.073	2.45741	6.15779E-03
399.069	2.45848	6.16053E-03
399.103	2.45948	6.16253E-03
399.071	2.46072	6.16613E-03
498.804	3.12312	6.26122E-03
498.83	3.12489	6.26444E-03
498.83	3.1261	6.26687E-03
498.859	3.12645	6.26720E-03

READY

Eoga N. May /2 2-19-80

TABLE 3.1.2-IX

FIGURE 3.1.2-2
TYPICAL READYTIME PLOT

	S/N 355	S/N 373	S/N 381
FULL SCALE RATE (DEG/SECOND) AT +2% LINEARITY ERROR	200	400	550
SCALE FACTOR (MV/DEG/SEC)	-6.08	-6.15	-6.15
BIAS (DEG/SECOND)	26	+.22	15
HYSTERESIS CCW (DEG/SECOND)	+.56	+.34	+.47
HYSTERESIS CW (DEG/SECOND)	37	30	42
THRESHOLD (DEG/SECOND)	<.10	<.10	<.10
RESOLUTION (DEG/SECOND)	<.10	<.10	<. 10
READYTIME (SECONDS) AVG. OF 5 RATES*	+.038	+.050	+.047
DRIFT (DEG/SEC/MIN) AVG. OF 5 RATES*	+.22	+.19	+.18

*100, 200, 300, 400, AND 500 DEGREES/SECOND (See Table 3.1.3-II)

TABLE 3.1.3-I
BASELINE TEST DATA SUMMARY

(Jas/Sac)	DO (2)	OUTPUT DRIFT (DEG/SEC/MIN)			(SECONDS)	
MATE (DEG) DEG)	355	373	381	355	373	381
						270
100	+.22	+.33	+.29	.032	.035	.
200	+.25	+.23	+.21	.035	.045	.035
300	+.31	+.14	+.15	.035	.050	.045
400	+.14	+.14	+.13	070	890.	.045
200	+.17	+.13	+.10	970.	.055	90.

TABLE 3.1.3-II BASELINE DRIFT AND READYTIME

3.2 Acceleration Sensitivity

3.2.1 Test Setup and Procedure

The "Superjet" rate sensors (one at a time) were mounted on the Genisco model 1100-2 rate table in the Precision Inertial Laboratory. The rate table was again controlled by the Hewlett Packard 9500A test set. The scale factor test program (see Section 3.1) was used and a maximum rate of 500 degrees/ second was used as a baseline. The rate sensors were subjected to constant accelerations in each direction along the three mutually perpendicular axes, (See Figure B.2-1 in Appendix A).

The X and Y axes were accelerated with the input axis or Z axis of the sensor parallel to the rate table spin axis. The Z axis was accelerated with the X axis or jet axis parallel to the rate table spin axis.

The acceleration tests were conducted per Appendix A Part B of this test report. The tests deviate from the test plan (Appendix B) for which the desired maximum acceleration level was 30g.

Due to the saturation of the "Superjet" exceeding a 2% error beyond 500 degrees/second, the maximum acceleration applied was 4.74g which is equivalent to a rate of 500 degrees/second.

The orientation of Superjet while subjected to acceleration was made to be rate sensitive. The manufacturer performed acceleration tests with the Superjet oriented to be rate in-sensitive. The performance of the "Maximum Performance Escape System" depends on the g-sensitivity in any direction of acceleration, where the worst case appears to be a rate sensitive orientation.

3.2.2 Test Results

By using the scale factor test program, the voltage output of the "Superjet" was recorded at 250 and 500 degrees per second. This was done for six different orientations at a zero arm and approximately a twenty-four inch arm. The data used for the X and Y axis at the zero arm was obtained from the baseline post acoustic test results, (see Tables 3.5.2-I, IV and V). Tables 3.2.2-I through 3.2.2-XXII represent data obtained during testing for each axis accelerated. Using the underlined values, Table 3.2.2-XXII was constructed for evaluation.

	DATE . 3-28	-80	Rutt	+X R=24 in	
	TEMP72°F	50 %RH	SER	# 3 55	• • •
	RATE (DEG/SEC)	V OUT	V CALC (VDC)	7 FS	% IDEAL
	~50.0432 ~99.0811	.3345 .6065	.3149	.334	-3.334
	-149.813	.9115	.626 .9378	.627 .842	-3.14 -2.81
*	-199.697	1.2192	1.2492	.95B	-2.4
-,-	-249.624	1.5314	1.5638	.948	-1.686
	-299.477	1.8465	1.872	.753	-1.258
	-349.399	2.1715	2.1837	.391	56
	-399.313	2.5035	2.4953	- . 1 68	.01
	-449.182	2.8362	8.8066	947	1.354
	-499.393	3.1784	3.1162	-1.929	1.933
	-449.248	2.837	2.837	- • 5 6	1 • 69
	-399.284	2.5319	2.4951	-,218	.273
	-349.368 -299.517	2.1732 1.8520	2.1835 1.8723	.33	473 -1.149
	-849.583	1.534	1.5636	ຸດຍຕ •ຄຣຽ	-1.14: -1.737
	-199.715	1.2218	1.2493	.079	-0.8
	-149.778	.914	.93 75	75.6	-0.5an
	-99.8777	6286	.626	559	-2.797
	-53.31	.3355	.3147	. 205	-2.945
	49.7863	299	3263	- •899	-0.999
	99.6807	6219	6197	- •570	-2.367
	149.577	9873	9310	767	-2.565
*	199.439	-1.2149	-1.2425	- •885	-2.818
_	249,349	-1.5266	-1.5541	679	-1.767
	299.246	-1.8429	-1.8655	726	-1.013
	349.175	-2.1643	-2.1772 -0.4883	414	 593
	399.J34 448.94	-2.4913 -2.825	-2.4883 -2.8	.៨១៩ .៩ភា	101. 168.
	498.821	-3.165	-3.1114	1.715	1.70
•	448.88	-0.8264	-0.7097	. £5.8	95.6
	399,351	-2.4933	-2.4866	158	.191
	349.133	-2.1666	-2.177	334	470
	282, 222	-1.8449	-1.8654	657	-1.398
	249,437	-1.5292	-1.5544	-,837	-1.610
	199.456	-1.2175	-1.2426	838	-0.311
	149.571	9395	9312	-•695	-0.304
	99.KB9B	6036	6198	511	-0.504
	49.7656	3221	3083	261	-2.601

TEST SUMMARY
FULL SCALE RATE (DEG/SEC): 5%0
SCALE FACTOR (V/DEG/SEC): -6.04060E-33
BIAS (VOLTS): 0.50645E-33

HYSTERESIS, NEG RATES (VDC): -0.6M234E-M3 HYSTERESIS, POS RATES (VDC): 0.67243E-M3 FULL OFFSET (VDC): 3.95268E-M3

TABLE 3.2.2-I

DATE \$3-28-80 RUN -X R-24 in.

	TEMP 729	50 7 RH	SER#	355	•••
	RATE (DEG/SEC)	V OUT	V CALC (VDC)	% FS	7 IDEAL
	-53.3125	.3036	.3149	.3 61	-3.613
	-99.6789	.6055	.6252	. 653	-3.272
	-149.773	.9102	.9371	. 263	-2.872
	-199.649	1.2181	1.0461	. 262	-2.41
*	-249.61	1.53	1.5597	.953	-1.979
	-299.461	1.8474	1.8736	.745	-1.244
	-349.332	2.1692	2.182	.411	569
	-399.316	2.490	2.4934	146	.103
	-449.121	2.8333	2.304	938	1.344
	-499.298	3.1748	3.1157	-1.893	1.096
	-449.288	2.8347	2.825	952	1.36
	-399.28	2.5335	2.4932	034	.203
	-349.45	2.173	2.1824	.332	433
	-299.5	1.851	1.8739	.637	-1.064
	-249.576	1.5347	1.5505	.790	-1.500
	-199.68	1.2226	1.2403	.806	-2.360
	-149.79	.9146	.9370	.705	-2.422
	-99.854	.6394	.6257	.583	-2.621
*	-49.9917	.3061	.3147	.077	-2.770
	49.7846	8983	3375	094	-2.055
	99.7146	6013	6169	564	-2.83
	149.503	9062	9888	76	-2.54
	199.444	-1.8141	-1.8489	859	-2.154
	249.366 299.3 349.231 399.041 449.326 498.928	-1.5056 -1.6414 -0.1600 -0.4867 -2.6017 -3.1606	-1.5523 -1.6637 -2.1751 -2.4850 -2.7975	85 710 413 .096 .777 1.668	-1.734 -1.197 591 .10 .866 1.666
	448.965 399.111 349.165 299.249 249.442 199.503	-2.8229 -2.4934 -2.1645 -1.8436 -1.5262 -1.2168	-3.1387 -2.7871 -2.4662 -2.1747 -1.8634 -1.5527 -1.8413	635 786 786 785	.92 .17 467 -1.26 -1.575 -1.868
	149.621	9089	9361	678	-2.265
	99.6621	6039	6186	472	-2.368
	49.6181	3004	3877	234	-2.353

READY

TEST SUMMARY
FULL SCALE RATE (PEG/SEC): 530
SCALE FACTOR (V/DEG/SEC): -6.23678E-33

BIAS (VOLTS): 0.96644E-23
HYSTERESIS, NEG RATES (VDC): -4.64072U-03
LYSTERESIS, POS RATES (VDC): 2.67509E-03
BULL OFFSET (VBC): 3.50195U-03

TEST ENGINEER

TABLE 3.2.2-11

DATE . 3-28-80 C

RUN.Tty ... R-24. in.

	TEMP 7720F	∮\$0∕zra	SER#		•••
	RATE (DEG/SEC)	V OUT	V CALC	% FS	Z IDEAL
*	-5.1.001	.3033	.3136	.33?	-3.323
	-99.9149	.6044	.6237	.624	-3.125
	-149.8	.9379	.9339	.837	-2.794
	-199.656	1.2143	1.2437	.949	-2.376
	-249.573	1.5250	1.554	.926	-1.855
	-349.34 -399.236 -449.233 -499.200 -449.126	2.1615 2.4894 2.8234 3.1643 2.8246	2.1741 2.484 2.7948 3.1344 2.7943	.433 173 921 -1.926	577 .017 1.305 <u>1.93</u>
	-399.226	2.4912	2.4841	228	.285
	-349.373	2.1642	2.1743	.324	464
	-299.489	1.8434	1.8640	.672	-1.121
	-249.558	1.5281	1.5539	.831	-1.665
	-199.666	1.2173	1.2439	.856	-2.144
	-149.83	.9107	.9341	.752	-2.511
	-99.9183	.6064	.623 <i>2</i>	.56	-2.832
	-49.9929	.3043	.3135	.297	-2.968
	49.7931	298	3367	28	-2.612
*	99.6316 149.556 199.452 249.334 299.229	5990 9737 -1.0120 -1.5033 -1.8348	6164 9267 -1.2360 -1.5469 -1.857	536 741 658 654	-2.689 -2.476 -2.151 -1.713 -1.123
	349.117 399.367 448.885 498.784 448.982	-2.1546 -2.4799 -2.8116 -3.149 -2.8125	-2.1671 -2.4775 -2.7871 -3.0973 -2.7877	4 .077 .788 1.665	572 .397 .277 1.67
	398.992	-2.4812	-2.477	.135	.17
	349.141	-2.1566	-2.1672	34	487
	299.239	-1.837	-1.857	644	-1.377
	249.379	-1.5229	-1.5472	782	-1.568
	199.469	-1.2125	-1.2369	785	-1.968
	149.569	9458	9268	676	-2.20
	99.6486	6317	6165	478	-2.309
	49.7961	2998	3267	24	-2.406

TEST SUMMARY
FULL SCALE RATE (DEG/SEC): 500

SCALE FACTOR (V/DEG/SEC): -6.21531E-23

HYSTERESIS, NEG RATES (VDC): 0.52047E-03
HYSTERESIS, POS RATES (VDC): 0.52047E-03
HULL OFFSET (VDC): 3.5172ME-23

TEST ENGINEE

A STATE OF THE STA

TABLE 3.2.2-111

DATE .. 3-24-80

RUN .- . R-24.in.

	TEMP7201	50 7 RH.	SER	#? 5 5	•••
	RATE (DEG/SEC)	V OUT	V CALC (VPC)	3 FS	Z IDEAL
*	-49.9205 -99.8354 -149.676 -199.585 -249.5 -299.439 -349.330 -399.25 -449.316	.3022 .6034 .907 1.2139 1.5247 1.84 2.1613 2.4864 2.8204	.312 .6224 .9324 1.2427 1.5532 1.8636 2.1738 2.4845 2.794	.316 .612 .817 .93 .915 .758 .404 125 914	-3.161 -3.267 -2.73 -2.309 -1.834 -1.265 -579 .156 1.310
**	-498.035 -449.291 -399.143 -349.338 -299.367 -248.549 -199.626 -149.739 -29.7720 -49.9333 49.6621 99.7327 149.667 149.493 249.456 239.137 349.114 449.367 399.137 349.180 299.374 2199.539 149.539 149.539 149.539 149.539 149.539 149.539 149.539 149.539 149.539 149.655	3.1626 2.0032 2.4699 2.1635 1.6426 1.5274 1.2166 .9J97 .6J59 .3J39 0963 0963 0963 -1.0113 -1.5000 -1.6371 -2.4641 -2.6171 -2.4641 -2.6171 -2.4654 -2.1650 -1.5251 -1.0145 9J73 6027	3.1044 2.7944 2.4838 2.1741 1.8633 1.5535 1.243 .93.00 .620 .3101 6185 6185 9293 -1.03.91 -1.5498 -1.05.96 -2.17 -2.4803 -2.7928 -3.1312 -2.7928 -3.1312 -2.7911 -2.4805 -2.17 -1.0632 -1.03.94 -1.23.94 92.91 6189	-1.87 -1.87 -1.87 -1.97 -3.4 -666 -84 -751 -742 -515 -308 -308 -308 -308 -308 -308 -308 -308	1.874 1.331 .247 487 -1.113 -1.680 -2.131 -2.477 -2.631 -2.656 -3.090 -2.657 -2.637 -1.761 -1.010 567 .154 .94 1.748 .954 .213 -4.453 -1.453 -1.597 -2.346 -0.631

TEST SUMMARY
FULL SCALE RATE (DEG/SEC): 533

SCALE FACTOR (V/DEG/SEC): -6.21895E-03
SCALE FACTOR (V/DEG/SEC): -6.21895E-03
BIAS (VOLTS): 1.55324E-03
HYSTERESIS, "E3 RATES (VDC): -2.73639E-03
HYSTERESIS, POS RATES (VDC): 3.13735E-03
FULL OFFSET (VDC): 2.94270E-03

TEST ENGINEER SAYAN LUNG S-28-80

TABLE 3.2.2-IV

DATE 4-1480' RUN +Z (R=23.6 4a.

	PRIL	• • • • • • • • •	nor	• • • • • • • • • •	•••
	TEMP 720	50 z ra	SER	⊮ . ₹355 	•••
	RATE (DEG/SEC)	V OUT	V CALC	3 FS	7 IDEAL
*	-49.9384 -99.8117 -149.693 -199.576 -249.58 -099.409 -349.341	.00.03 2011 2026 304 3054 3068 0003	.0335 381 3825 384 3856 3871 3866	-1.249 33 712 .137 .955 1.741 2.161	13.536 1.653 2.379 343 -1.914 -3.375 -3.090
	-399.199 -449.05 -499.213 -449.398 -399.140 -349.353	JJ97 J111 J125 J111 JJ98 J384	3131 4116 3131 3116 3131 3366	2.774 3.412 3.536 3.142 2.11 1.374	-3.475 -3.799 -3.814 -3.498 -2.644 -1.967
	-099.389 -249.556 -199.637 -149.663 -99.8409 -49.9511	007 0056 0043 003 0015 0000	0071 0056 004 0025 001	47 -1.768 -3.385 -3.456 -4.394	490 .942 4.429 1J.305 17.300 43.9003
*	49.8931 99.7566 149.733 199.576 249.598	.0306 .0341 .0357 .0074 .039	. องฮร์ . ฮฮร์ . อฮร์ . อฮร . อฮร์ . อฮร์	-5.981 -5.935 -5.749 -4.571 -3.710	-59.9340 -29.747 -19.231 -11.450 -7.439
	299.363 349.342 399.133 449.899 498.902	.3137 .3126 .3144 .3164 .3164	.3111 .3126 .3141 .3156 .3171	-2.197 .#41 2.044 5.265 8.681 5.779	-3.669 .059 2.761 5.662 6.7
	399.158 349.344 299.327 249.559 199.611 149.677	.3146 .3128 .3111 .0095 .0078 .3063	.0141 .0106 .0111 .0096 .008	3.542 1.623 .539 474 -1.379 -1.478	4.437 2.323 .931 951 -3.455 -4.938
	99.7856 49.9322	.9948 .9033	.005 .0035	-1.463 -1.483	-7.329 -14.86

TEST SUMMARY
FULL SCALE RATE (DEG/SEC): 500
SCALE FACTOR (V/DEG/SEC): 3.02811E-05

BIAS (VOLTS): 1.99878E-03
HYSTERESIS, NEG RATES (VDC): -9.99930E-09
HYSTERESIS, POS RATES (VDC): 0
HULL OFFSET (VDC): 2.13032E-23

TEST ENGINEER

TABLE 3.2.2-V

	DATE 4-1	-8Q'	สมเม	-Z R+24,	4.in.
	TEMP 72°	r 50444 .	SER	# . 355	•••
	RATE (DEG/SEC)	V OUT (VDC)	V CALC (VDC)	7 FS	Z IDEAL
*	-49.9470 -99.8469 -149.758 -199.560 -849.553 -899.434 -349.397 -399.309	.0003 301 3004 3037 3046 3071 0081		-1.106 978 -1.675 -0.313 -1.573 585 -0.90	11.073 4.896 6.255 5.795 3.100 -977 -1.187 -3.013
	-449.327 -499.338 -449.242 -399.194 -349.226 -299.362 -249.424 -199.654	0391 0391 0391 0370 0462 045 0439	8197 3139 3297 3264 3370 3346 3334	4.971 0.346 4.568 1.65 327 -2.130 -3.049 -3.003	-5.536 -6.363 -5.366 -2.367 .469 3.571 6.116 9.705
æ	-149.741 -99.6400 -49.9391 49.6605 99.7550 149.601 199.491 049.416	032.0 0014 0001 .0006 .0039 .0054 .0067	3501 3559 . 3554 . 3554 . 3554 . 3567 . 331	-3.906 -4.17 -3.776 -2.484 -1.996 764 .001 1.051	13.101 03.904 37.9094 -94.01 -9.653 -0.559 -7.95
	299.297 349.239 399.105 449.109 498.846 449.110 399.307 349.000 299.308 049.457 199.703	.0094 .1106 .010 .1132 .0144 .0130 .012 .012 .0107 .0094 .0053 .0053	.3590 .3135 .0110 .213 .6143 .313 .3110 .3135 .3135 .3135 .3367 .3367	1.636 2.070 1.055 1.678 1.105 1.824 2.079 1.529 1.535 .636 445 -1.338	0.004 0.907 0.302 1.00 1.107 0.03 0.624 0.109 0.563 1.074 -1.115 -3.360 -8.014
	199.68	. პა 67	367	445	-1.115

TEST SUBMARY
FULL SCALE RATE (DEG/SEC): 543
SCALE FACTOR (V/DEG/SEC): 0.507488-05
BIAS (VOLTS): 1.666160-03
PYSTERESIS, DEG RATES (VDC): -9.99900E-39
HYSTERESIS, POS RATES (VDC): 0.85054E-05
EULL OFFSET (VDC): 0.231658-23 TEST SUGINEEN MYKIN. Lang

TABLE 3.2,2-VI

TADY

	DATE . 4-14	H	RUN.	Z . R=0 1	6. "
	TEMP. 73%	. 50%RH	SER	# 15 5	•••
	RATE (DEG/SEC)	V OUT	V CALC (VDC)	7 FS	% IDEAL
*	-49.9239 -99.7863 -149.72 -199.654 -249.556	.3031 3004 3011 3016 332	2 3325 3315 3315 332	1.435 2.369 -1.869 956 398	-14.368 -11.97 3.571 2.393 -196
	-349.400 -399.296 -449.249 -499.55 -449.218	303 2334 3356 3043 3339	0031 0036 3041 3246	1.266 3.745 5.263 6.512 4.597	-1,011 -3,013 -5,058 -6,53 -5,116
	-399.236 -349.379 -299.399 -249.587 -199.041 -149.832	0035 003 0026 0026 0017 0012	0036 0031 0026 0015 001	2.153 .692 -1.495 -2.497 -3.158 -4.216	-0.606 99 1.826 5.331 7.91 14.370
	-99.8371 -49.9398 49.6931 99.7856 149.677 199.572	0007 0303 .3027 .3013 .7319 .3304	33.35 3 . 3011 . 3316 . 3301 . 3300	-4.726 -5.484 -6.884 -5.17 -4.388 -3.887	23.67 54.9316 -60.9773 -25.935 -13.66 -9.836
*	249.532 299.469 349.266 399.231 449.114 499.112	.0031 .0036 .0043 .0048 .0055 .006	.0331 .0337 .0242 .0247 .0352 .3057	-1.43 293 1.525 2.936 4.996 6.041	-2.065 49 2.183 3.677 5.562 6.351
	449.126 399.21 349.32 299.427 249.54 199.583 149.696 99.7636	. 2355 . 2049 . 2043 . 2037 . 2031 . 2025 . 232 . 2315	.0052 .0047 .0042 .0037 .0031 .0026 .0021	4.871 3.548 2.007 .675 632 -1.717 -2.893 -1.982	5.423 4.444 2.872 1.128 -1.067 -4.322 -9.664 -9.934
	49.8821	. 3309	.3311	-2.641	-26.473

TEST SUMMARY
FULL SCALE RATE (DEG/SEC): 520

GCALE FACTOR (V/DEG/SEC): 1.03679E-05
RIAS (VOLTS): 5.50441E-04
HYSTERESIS, NEG RATES (VNC): -9.99904E-29
HYSTERESIS, POS RATES (VNC): 6.34789E-06
NULL OFFSET (VNC): 9.86644E-04

THE THE THE THE THE TANK LINE A-1-80

TABLE 3.2.2-VII

PEADY

	DATE -3-28	-80	RUN.	14. P.144 .in	ż.
	TEMP. 720F	50XRH	SER#		••
	RATE (DEG/SEC)	V OUT	V CALC (VDC)	% FS	1 IDEAL
*	-49.9921 -99.9268 -149.756 -199.685 -249.512 -299.519 -349.399	.2975 .6023 .9106 1.2228 1.5407 1.8652 2.1968	.3151 .6311 .9464 1.2623 1.5776 1.894 2.2096	.559 .91 1.132 1.25 1.165 .91	-5.587 -4.551 -3.779 -3.129 -2.335 -1.519 582
	-399,269 -449,211 -499,125 -449,211 -399,35 -349,411 -299,49	2.5363 2.884 3.2383 2.8851 2.5378 2.1986 1.8662	2.5252 2.6412 3.157 2.6412 2.5257 2.2497 1.8938	353 -1.355 -2.569 -1.387 382 .351	.440 1.530 2.574 1.544 .479 520 -1.405
	-249.634 -199.730 -149.813 -99.8929 -53.3342 49.7701 99.6431	1.5409 1.0047 .9102 .6941 .2986 3394 6136	1.5782 1.2624 .9467 .6309 .3154 3161 6316	1.116 1.192 1.394 .646 .532 212	-0.035 -2.985 -3.65 -4.030 -5.319 -2.196 -2.83
*	149.591 199.437 249.417 299.258 349.129 359.024 447.995 498.926	9005 -1.0307 -1.5453 -1.8659 -0.1930 -0.5074 -0.0697 -3.2187	9477 -1.2631 -1.5794 -1.6947 -2.0133 -2.506 -2.8400 -3.1581	-1.325 -1.327 -1.370 -91 -54 .345 .87	-2.571 -2.571 -2.150 -1.501 774 .056 .060
	449.314 399.307 349.144 299.268 249.459 159.449 149.603 98.7213 49.8317	~2.8786 ~2.5285 ~2.1946 ~1.8677 ~1.5477 ~1.5376 ~9283 ~6151 ~31	-0.8403 -2.5064 -2.6154 -1.8948 -1.5795 -1.6322 6322 6322	.896 .867 856 -1.325 967 838 54 198	.997 .364 713 -1.43 -0.614 -0.403 -0.701 -2.71 -1.901

TEST SUMMARY
FULL SCALE RATE (DEG/SEC): 500
SCALE FACTOR (V/DEG/SEC): -6.30743E-33
BIAS (VOLTS): -1.18439E-33
HYSTERESIS, REGRATES (VDC): -2.14008E-33
HYSTERESIS, POS RATES (VDC): 2.37274E-33
GULL OFFSET (VDC): -5.89595E-33

TEST ENGINEER

13-28-80

TABLE 3.2.2-VIII

CEADY

DATE . 3-28-89 FF. ...

RUN - 4 R-24 1n.

TEMP. 727. / 30784. SER# . 3.373.

	RATE	V OUT	V CALC	7 FS	Z IDEAL
	(DEG/SEC)	(VDC)	(VDC)		
	(1,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	(())	(11,0)		
	-6/3 (UAC Z	20.05	.3175	.631	-6.035
	-50.0083	.2985	•	-	
	-99.8911	.6043	.6342	.944	-4.703
	-149.746	.9141	.95 27	1.153	-3.649
*	-199.693	1.2278	1.2670	1.261	-3.158
	-249.59	1.547	1.5846	1.184	-2.372
	-299.443	1.8725	1.9011	.898	-1.5
	-349.411	2.2356	2.2183	.401	 5 73
	-399.299	2.5464	2.535	359	. 45
	-449.277	2.8946	2.8523	-1.334	1.484
	-499.118	3.2494	3.1687	-2.540	0.547
	-449.169	2.8959	2.8516	-1.397	1.555
	-399.186	2.5489	2.5343	- 459	.575
	-349.483	2.2384	2.2187	325	- 465
	-099.470	1.8757	1.9312	.696	-1.346
			1.5847	1.000	-2.176
	-849.618	1.5500			
	-199.666	1.2311	1.2676	1.15	-0.88 -0.88
	-149.707	.9173	.9506	1.348	-3.498
	-99.925	•63.73	. 63 44	. 85.4	-4.272
	-49.9929	.33.74	.3174	•537	-5.375
	49.7969	3.197	3161	- • €	-2.337
*	99.6655	6154	6327	- 546	-2.738
	149.58	9235	9498	3×3• =	-2.741
	100.470	-1.2346	-1.2663	-1.331	-2.539
	249,425	-1.55 13	-1.5034	-1.344	<u>-2.192</u>
	299.249	-1.8714	-1.8997	893	-1.421
	349.178	-2.1994	-2.2167	- 545	78
	399.338	-2.5343	-2.5332	.432	. 34
	448.953	-2.8763	-2.8501	.803	.917
	498,858	-3.2253	-3.167	1.839	1.843
	449.014	-2.8771	- 0 . 85 J5	.838	933
	399.394	-2.5349	-2.5336	.041	.351
	349.153	-2.2337	-2.0166	531	717
	299.242	-1.8728	-1.6997	848	-1.417
	249.425	-1.552	-1.5834	•	-1.976
				991	
	199.484	-1.2363	-1.0664	947	-2.373
	149.517	9252	9490	755	<u>-</u> 0.504
	99.7118	6170	633	498	-0.497
	49.7937	3112	3161	155	-1.554

TEST SUMMARY
FULL SCALI RATE (DEG/SEC): 500
SCALE FACTOR (V/DEG/SEC): -6.34050E-03

HYSTERESIS, POS RATES (VDC): -3.35779E-83
HYSTERESIS, FOS RATES (VDC): -3.35779E-83
HULL OFFSET (VDC): -5.30375E-83

TEST ENGINEER

TABLE 3.2.2-IX

	DATE . 3-20	→80	RUN.	+Y > R=24 in	. .
	TEMP73°F	50ZRH	SER#	373	• •
	RATE (DEG/SEC)	V OUT	V CALC (VDC)	7 FS	Z IDEAL
*	-49.9922 -99.9149 -149.727 -199.676 -249.576 -299.428 -349.319 -399.214 -449.239	.0991 .6055 .9155 1.0094 1.5489 1.8744 0.2081 0.5485 0.8975	.3183 .6353 .9516 1.2688 1.5857 1.9323 2.2191 2.5359 2.8534	.604 .939 1.137 1.242 1.16 .878 .345 396 -1.380	-6.341 -4.699 -3.79% -3.111 -2.324 -1.467 493 .496 1.545
ж	-499.315 -449.142 -399.28 -349.336 -299.514 -249.536 -199.675 -149.754 -53.342 49.6669 149.593 199.446 249.356 299.3 349.19 369.346 448.526 448.526 448.527 448.577	3.2527 2.8977 2.5489 2.2485 1.8753 1.5496 1.2335 .9169 .6371 -3131 9136 -1.2345 -1.5532 -1.871 -2.199 -2.5338 -2.6761 -3.2249 -2.8766	3.1697 2.653 2.5364 2.219 1.9327 1.5354 1.2682 .9518 .3153 3154 6321 9492 -1.2652 -1.5827 -1.5827 -2.5333 -2.8531 -3.1673 -2.6534	-2.615 -1.408396 .330 .866 1.13 1.007 1.1 .876 .575169985 -1.003908916 .8916 .8916 .8016	2.60 1.567 .496 475 -1.445 -3.264 -3.272 -4.366 -5.751 -1.697 -2.61 -0.695 -0.466 -2.352 -1.517 796 .301 .314 1.615
	399.031 349.171 299.234 249.386 199.462 149.509 99.6723 49.8113	-2.5344 -2.2 -1.8722 -1.5513 -1.2357 9246 6160 3138	-2.5332 -2.0166 -1.0995 -1.5009 -1.0659 9490 6300 3155	. 138 501 059 996 95 774 485 148	.348 746 -1.435 -1.997 -0.301 -0.506 -0.433 -1.401

TEST SUMMARY
FULL SCALE RATE (DEG/SEC): 523

GCALE FACTOR (V/DEG/SEC): -6,35/3/6E-23
BIAS (VOLTS): 7.80690E-34
HYSTERESIS, MEG RATES (VDC): -1.61763/E-33
HYSTERESIS, POS RATES (VDC): 1.01063/E-33
EVILL OFFSET (VDC): -5.73215E-33

TEST ENGINEER

READY

TABLE 3.2.2-X

RUD. TY. . R#24 in. DATE . 3-28-80 SER# ... 3/3 TEMP 7420F 5078#

RATE (DEG/GEC)	TUO V	V CALC	" FS	: IDEAL
-49.9245	.096	.313	•536	-5.360
-99.8134	. 6335	.6287	592	-4.466
-149.734	.9085	.9447	1.143	-3.815
-199.551	1.2233	1.8529	1.030	-3.121
<u>-249.537</u>	1.5385	1.5761	1.106	-2.378
-000.37	1.8656	1.8917	.918	-1.533
- 349.878	2.1939	2.2075	.43	-,615
-399.168	2,5328	2.5232	334	.38
-449.JRG -498.98	2.6792 3.2322	2.8380	-1.078	1.423
-449.123	0.881	3.1545 2.8394	-2.455 -1.314	1.463
-399.170	2.5349	2.5233	368	.461
-349.258	2.1965	2.0374	.345	493
-899.313	1.8655	1.3914	.617	-1.365
-249.460	1.5421	1.5759	1.37	-2.145
-199.637	1.2247	1.2603	1.126	-0.10
-149.675	.9124	.9443	1.337	-3.364
-99.8349	.634	• 6087	. 78	-3.9.9
-49.9839	.2982	.313	.467	-4.674
49.8534	- . 3७९६	~.31 65	079	-0.795
29.7636	6142	 63 43	635	-3.100
149.633	9815	040'	- •80E	-5.°500
192.535	-1.030	-1.8650	-1.360	-0.671
249.449	-1.5473	-1.5816	-1.JS5	-0.174
299.318	-1.8679	-1.8978	- 005 - 650	-1.545
349.865 399.187	+2.1957 +2.53∂5	-2.2133 -2.5289	559 .35	8 .262
448.50	-0.8730	-2.8442	.916	1.301
498.857	-3.2228	-3,1631	1.984	1.961
449.339	-2.8747	-2.8446	.95	1.050
399.131	-0.533	- 0.5009	.127	.16
349.190	3391.3-	-2.2129	446	639
299.351	-1.8715	-1.6975	822	-1.370
249.434	-1.5537	-1.5816	974	-1.258
199.50	-1.2353	-1.0657	050	-8.434
149.658	9246	9581	- •0.13	÷0., 6€3
29.79.17	6166	6345	566	<u>-0.83</u> €
49.6871	31.59	3137	246	-2.47

TEST SUMMARY

FULL SCAL. RATE (DEG/SEC): 503
SCALE FACTOR (V/DEG/SEC): -6.32068E-33

PYSTERESIS, POS MATES (VDC): -6.63715E-33
BULL OFFSET (VDC): -6.63715E-33

TEST ENGINEER

TABLE 3.2.2-XI

EADY

DATE . 4-1-80

RUN +Z R=23.6 in.

	TEUP. 72°F	.507RH	SER	# 373	•••
	HATE (DEGNEED)	V OUT (VDC)	V CALC	: ro	Z IDEAL
:<	-49.9361 -99.7697 -149.714 -199.624 -249.466 -349.679	3125 3156 3033 305 3257 3343 3389	0118 0169 0286 025 0337 0337	2.10 1.340 .559 13 025	-01.006 -6.704 -0.001 .030 1.654 0.634
	-399.004 -449.13 -499.003 -449.170 -399.167	0434 0477 052 3478 0435	0405 0409 0510 0469 0405	-1.642 -2.10 -0.404 -1.660 -2.050 -2.255	0.73 0.053 1.071 0.000 0.005
	-349.075 -095.431 -049.544 -195.6.4 -149.717 -09.6536	0369 0344 0097 005 005 0157	0381 0337 0003 005 0100	-1.93 -1.441 642 159 .838 1.057	0.763 0.437 1.686 .390 784 -0.885
*	-49.94.13 49.9015 99.600 149.604 190.583 049.473	011 0019 .0006 .017 .0113 .0154	2115 2.31 .313 .3057 .91 1	1.595 2.765 2.507 2.65 2.546 2.191	-18.907 07.600 14.679 1.657 7.13 4.191
	299.340 349.270 399.138 449.120 498.909	.3197 .3225 .261 .8294 .8325	.0166 .036 .0276 .0363 .0363	-1.436 -3.364 -5.937 -2.663	1.47: -1.441 -4.014 -6.639 -0.660 -6.057
	399.259 349.219 209.329 249.429 199.547 149.590 99.7586	.3831 .3831 .3196 .3159 .318 .3379 .335	. #276 .#232 .#105 .#144 .#141 .##57	-2.56 074 1.679 3.395 4.340 4.97 5.179	-3.510 393 3.130 6.823 10.0 16.639 05.454
	49.901	#d]	3331	4.791	48.3712

TEST SUPPARY
FULL SCALE DATE (DEG/SEC): 540
SCALE FACTOR (V/DEG/SEC): 6.77455F-05
DIAS (VOLTS): -7.4543.0E-03
HYGTERESIS, NES RATES (VPC): 3
LULL OFFSET (VPC): -6.161470-03

TABLE 3.2.2-XII

PEARY

1 ATE 4-1-80

RUN -Z R=24.4 in.

7 IDDA:
-11 + 603
-4.001 .179 0.963 3.049 3.995 4.365
3.434 0.141 .515 0.333 3.074 3.074 3.010 1.204
-0.771 -13.117 -31.501 48.07.1 07.354 17.657 10.490 7.767
3.667 531 -4.74 -0.477 -11.777 -6.577 -4.815 036 3.134 7.447 11.796 16.617 05.566 47.6730

TEST SUMMARY
FULL SCALE RATE (DEG/SEC): 500
SCALE FACTOR (V/DEG/SEC): 5.30347E-05
3IAS (VOLTS): -7.663451-43
EYSTEREGIS, FOR RATES (VPC): -4.35330F-34
FYSTEREGIS, FOS RATES (VPC): 1.391367-34
CLL OFFSET (VDC): -6.369931-33

TABLE 3.2.2-XIII

TEADY

	DATE 4-1-	-80	RUU	Z- R=0 in.	•••
	TEMP	50 2R H	#ER	# 373	•••
	RATE (DEGZGZG)	CADC)	V CALC (VDC)	7 13	7 IDEAL
*	-49.9870 -99.0400 -149.840 -199.650 -249.58	0103 0141 0170 017 0055	3119 3150 3155 3016 3051	4.767 3.448 2.117 .278 -1.393	-47.6795 -17.065 -6.7 696 0.791
	-899.475 -349.431 -399.343 -449.874 -499.133	0293 033 0365 04 0433	J284 v317 J349 J382 J415	-2.869 -4.357 -4.795 -5.321 -5.466	4.75 5.636 6.334 5.500 5.476
	-449.162 -399.27 -349.433 -299.462 -249.541 -199.637	04 0365 0329 0292 4254 0215	0382 0349 0317 0284 0251 2218	-5.530 -4.837 -3.935 -0.479 90	6.125 6.32 5.567 4.130 1.844 ~1.705
	-149.635 -99.654 -49.9635 49.6661 55.7619	3176 3130 3141 3300 337	3156 3156 3119 3253 326	2.691 4.173 5.478 7.676 7.745	-0.000 -0.0.000 -54.0070 76.030 31.0107
;k	149.739 199.60 049.537 099.437 349.336 399.254	.323.7 .336.7 .339.4 .3139 .3156	.3017 .3145 .2377 .0111 .3144	7.510 6.590 4.909 0.054 -1.507 -6.191	25.49 16.597 9.635 3.431 -9.157 -7.753
	449.139 499.105 449.119 399.215 349.300	.31.72 .31.85 .31.71 .31.56 .313.8	.021 .0243 .0177 .0144	-11.581 -17.412 -11.638 -6.288 -1.786	-10.493 -17.443 -12.957 -7.976 -0.574
	299.449 049.538 199.631 149.637 09.011 49.9381	.3118 .3394 .3367 .3338 .3337 3307	.3111 .3078 .3345 .3310 3353	0.031 4.044 0.010 7.70 0.359 7.903	3.725 0.737 10.74 25.097 41.0709 79.576

TEST SUBBARY

FULL SCALE RATE (DEGASEC): 5.44

SCALL FACTOR (VZDECZGEC): 6.59.36.T-U5

BIAS (VOLTS): -0.60350E-03

YYSTERASIS, MAG RATES (VDC): -2.30050Z-04

HYSTA RESIS, POS RATES (VDC): 9.78.80.E-35

LULL OFFSET (VDC): -6.45033.T-03

TABLE 3.2.2-XIV

	DATE . 3-28	-80	RUD.	+X R=24 1	۹
	TEUP 72°F	50%RH	SER#	381	• •
	RATE (PEG/SEG)	V OUT (VPC)	V CALC (VDC)	: rs	7 IDEAL
	-49.9377	.2869	.8957	.285	-2.553
	-99.0574	.5879	.6357	.573	-2.671
	-149.761	.0914	.9155	.776	-0.596
	-199.563	1.1977	1.8847	.267	-0.173
	-049.461	1.53 <u>61</u>	1.5346	.653	-1.71
; K	-299.392	1.8227	1.8446	.7	-1.160
	-349.084	2.1432	2.1543	.36	516
	-399.172	2.4692	2.4641	163	.024
	-449.J18 -498.95	0.8335 3.1366 2.8314	2.7736 3.3836 2.7739	867 -1.705 884	.966 1.739 .984
	-349.272 -399.157 -349.272	2.4697 2.1442	2.464 2.1543	184 .386	.23 467
	-299.412	1.8241	1.8447	.663	-1.137
	-249.47	1.5093	1.5346	.817	-1.637
	-199.582	1.199	1.2249	.833	-2.388
	-149.737	.6984	.9150	.733	-0.447
	-99.81	.589	.6354	.589	-0.649
	-49.9222	.28 7 3	.8955	.266	-0.665
	49.6577 29.7924 142.7-3	3144 6128 9196	3039 6339 0430	377 503 72	-0.903 -0.604
	199.531	-1.82 GC	-1,053	503	-0.164
	249.405	-1.53 GS	-1,563	654	-1.710
*	299,352	-1.6510	-1,873	771	-1.171
	349,064	-0.1713	-8,1686	365	503
	399,383	-0.4968	-8,4888	-148	.105
	449.014	-0.0074	-2,8300	.(1)	.904
	490.884	-3.163	-3,1119	1.646	1.65
	449.009	-0.6007	-2,8300	.(54	.95
	399,297	-0.4963	-2,4923	.100	.04
	349,153	-0.1736	-2,1822	070	375
	899,8%	-1.6541	-1,8726	595	954
	249.476	-1.5390	-1.5633	776	-1.550
	198.544	-1.8884	-1.8533	00	-2.00
	148.678	9815	9437	713	-2.302
	99.731	6176	0334	50	-0.000
	49.8760	3147	374	200	-3.000

TEST SUBBARY

FULL SCALE RATE (PEGZSEC): 5JJ

GGALE FACTOR (VZPEGZSEC): -6.00/94E-08

DIAS (VOLTS): -1.43357E-29

HYSTEREDIS, MEG RATES (VDC): -1.270290-33

MYSTEREDIS, MOS RATES (MMC): 0.86773E-3

LULL OFFSET (VDC): -1.234012-32

TUST TESTERS TRUE

THATE

TABLE 3.2.2-XV

	1.6TD 3-28-80		Pur -X . R=24 in.		
	TE! :72°F	50%вн	SER#381'		
	DAVA Chā MgLG)	v out (voc)	V CALC (VLC)	t ir	1 HUAL
	-48.9179 -99.8266 -1.8.688 -199.585 -848.465	.8651 .5848 .0075 1.1909 1.5384	.0945 .033 .010 1.0001 1.5005	•843 •986 •791 •8	-8.030 -1.007 -0.041 -2.054 -1.751
	-200.300 -340.155 -300.104 -440.000	1.8160 0.1355 0.4635 0.7833 3.1244	1.636 0.1471 0.4550 0.7644 3.3731	.055 .375 140 630 -1.658	-1.100 537 .100 -033 1.661
	-448.106 -398.145 -349.670 -008.30 -008.50 -109.605	2.7915 0.4603 0.1365 1.6196 1.5360 1.1967	0.7651 0.4550 0.1470 1.6363 1.5097	351 039 .031 .587 .76	.949 .001 ~.403 ~.550 ~1.504 ~1.957
	-140.676 -99.(134 -49.1100 49.006(99.7309	.0913 .5660 .0073 3131	.0110 .0130 .0045 3031 6317	.667 .605 305 305	-0.03 -0.03 -0.03 -0.353 -3.01 -0.50
*<	149.003 109.540 049.447 009.000	0170 -1.0000 -1.5305 -1.526 -0.1646	90.74 -1 .0403 -1 .5580 -1 .0660 -0 .1751	74° 055 031 004 305	-0.490 -0.140 -1.600 -1.1.0
	39°.134 44°.173 40°.200 44°.200 30°.11°	-2.4867 -2.618 -3.1514 -2.6169 -2.4934	-0.4045 -0.7036 -3.1001 -0.7031 -0.4030	.133 .797 1.590 .637	.167 .076 1.505 .030
	345.865 859.837 845.393 196.588 146.667 99.7315 46.4746	-0.1668 -1.6464 -1.5547 -1.0253 8106 6163 315	-2.1759 -1.0669 -1.5570 -1.8499 9470 6310 3031	09 590 746 774 684 195 1160	415 000 -1.400 -1.54 -0.615 -0.414

TAST CHETAPY

FULL COALL RATE (PROZSEC): 5'

SCALL PACYOR (VZHECZSTC): -C.18677R-33

I AS (MOLTS): -1.435618-16

FYSTATURIES, RES RATES (MRC): -Z.767508-38

FYSTATURIES, ROS RATES (MRC): 0.413/32-33

COLL OFFORT (MRC): -1.676518-39

TUST TO THE COMME

STATE

TABLE 3.2.2-XVI

	PATS. 3-28	3-80	BUI	+Y R=24	ln.
	THE P 72°F	50%RH	GAR	381	•••
	DATE CLEOZOLIU)	V OUT (UPC)	CADO) A CATO	7 70	3 IGEAL
34.	-50.017° -50.0.71 -149.003 -169.666 -249.530	.0000 .5003 .0003 1.1053 1.5051	.2961 .6356 .9147 1.2237 1.533	.3.9 .62.3 .60 .90.0 .5.97	-3.197 -3.117 -2.737 -2.319 -1.799
	-099.433 -349.34 -399.155 -449.120 -490.340	1.0190 2.1399 2.4657 2.7967 3.1323 2.7984	1.8423 2.1517 2.4635 2.7733 3.3798 2.7733	.702 .381 167 85 -1.697 934	-1.236 546 .239 .946 1.7
	-399.03 -349.420 -290.477 -249.530 -199.649 -149.0	2.4663 2.1436 1.624 1.5096 1.1957 .8936	2.461 2.1523 1.8426 1.533 1.0037	-,035 -011 -0 -753 -774 -000	.095 430 -1.330 -1.511 -1.94 -0.075
	-50.6525 -52.0173 30.7654 59.6576 149.559	.51 %7 .01 75 3134 6140 5155	.0353 .0061 3005 630 5414	.5.74 .2.64 0.24 55.4 73.5	-0.504 -0.040 -0.050 -0.770 -0.467
112	15°.435 645.303 695.10 345.166 355.76 446.95 455.766	-1.0000 -1.5345 -1.6464 -0.1675 4915 -0.6619 -3.1551	-1.05.33 -1.50 -1.0607 -0.1703 -2.4079 -0.7871 -3.1761	035 053 653 346 .117 .779 1.599	-0.14 -1.653 -1.61 5 -140 -150
	440.533 398.976 349.171 290.055 649.347 159.45 140.504	-0.6003 -0.403 -0.1691 -1.6531 -1.5359 -1.0261 9031	-0.707 -2.4073 -0.1706 -1.0691 -1.5597 -1.2574 9413	.315 .103 306 615 77 704 604	-0.8 -0.8 -0.40* -1.543 -1.506 -0.65
	00.7001 49.7975	6165 3167	6301 3007	603 057	-0.577

TUBL COALL RATE (DEG/GEG): 511

SCALE MOTOR (MARE/GEG/GEG): -0.198080-13

BIAS (MOLTS): -1.385630-30

MMSTEMBIS, FES RATES (MOC): -4.457108-13

MMSTEMBIS, POS RATES (MOC): 1.688778-14

DULL OFFICIT (MOC): -1.046470-30

TABLE 3.2.2-XVII

 $\mathbb{T}_{\mathbb{R}^n}, Y$

DATE 3-28-80

RUI' -Y R-24 in.

	TENP72°	50 7 RH	SER	4 381	• • •
	RATE (DEG/SEC)	V OUT	V CALC	7 FS	Z IDEAL
	-49.9926	.2874	.0958	.271	-2.705
	-99.8895	.5888	.6350	.548	-2.742
	-149.847	.0923	.9161	.768	-2.571
*	-199.698	1.1900	1.2258	.876	-0.194
	-249.504	1.5089	1.5352	.844	-1.690
	-299.419	1.8242	1.8452	.675	-1.120
	-349.321	2.1442	2.1552	.354	537
	-399.225	2.47	2.4652	154	•193
	-449.136	2.8JØ9	2.7752	888	•901
	-498.993	3.1358	3.J849	-1.639	<u>1.643</u>
	-449.191	2.8J17	2.7756	84	•935
	-399.24 -349.32 <i>C</i> -299.461	2.4708 2.1458 1.826 1.5115	2.4653 2.1552 1.8455	178 .3.33 .626	.003 433 -1.345
	-249.558 -199.666 -149.766 -99.9366	1,201 .694 .5931	1.5355 1.2257 .2156 .6361	• 774 • 795 • 696 • 514	-1.55 -1.991 -2.325 -2.57
	-53,3315	.288	.2959	.255	-2.548
	49.7812	3141	3239	316	-3.17
	99.6324	6159	6336	571	-2.866
	149.524	90	9439	768	-2.566
*	199.457	-1.0068	-1.5537	067	-2.174
	249.366	-1.5375	-1.5637	044	-1.692
	299.268	-1.8504	-1.6737	664	-1.143
	349.095	-2.1707	-2.1830	339	485
	399.319 448.98 498.931 448.938	-2.4978 -2.8288 -3.164 -2.8332	-2.4933 -2.8337 -3.1138 -2.8334	.144 .839 1.617	11. 160. 20.1
	399.365	-2.4998	~2.4936	.8	.25
	349.237	-2.1748	~2.1639	895	422
	299.22	-1.8551	~1.8738	6	-1.332
	249.363	-1.5424	~1.5637	751	-1.536
	199.434	-1.2094	~1.2535	777	-1.947
	149.569	9024	~.9438	68	-2.336
	99.6029	6177	~.6334	537	-2.543
	49.7983	3150	~.324	285	-2.568
	. •	J	• • • • • • • • • • • • • • • • • • • •		1.0

TEST SUMBARY
FULL SCALE RATE (DEG/SEC): 538
SCALE FACTOR (V/DEG/SEC): -6.011772-03
BIAS (VOLTS): -1.47093E-30
MYSTERESIS, MEG RATES (VDC): -2.53034E-03
HYSTERESIS, POS RATES (VDC): 2.86007E-23
HULL OFFSET (VDC): -1.19394E-20

TEST CHISTHEEV

A STATE OF THE STA

TABLE 3.2.2-XVIII

	DATE 4-1-80		RUN. +Z/ R=24.4 in.		
	TEOP . 72°F 50%RH		SER# 381		
	RATE (DEG/CEC)	V OUT	V CALC (VDC)	: FS	2 IDEAL
*	-49.9313 -99.81 -149.676 -199.629 -049.46	016 0179 00 000 000 000	0162 0182 0202 0202 0201	1.194 1.639 .962 .849 1.249	-11.952 -0.217 -3.213 -2.125 -2.534
	-299.492 -349.319 -399.175 -449.133 -499.365	0256 0276 0296 0318 0336	J261 J261 J301 J321 J34	1.499 1.449 1.534 1.225 1.031	-2.532 -2.374 -1.901 -1.364 -1.373
	-449.027 -399.091 -349.263 -299.426 -249.427 -199.609	0319 0299 028 0261 0240 0224	3321 3391 3281 3261 3241 3220	1.816 .698 .534 .033 279	-1.131 074 764 355 .550 2.481
*	-149.742 -99.8252 -49.9164 49.0946 99.6041 149.607	82.05 31.87 31.68 013 011 339	0000 0100 0100 0103 0103 0003	-1.537 -0.439 -0.903 -3.603 -3.790 -3.417	5.131 10.010 20.077 -36.3399 -19.300 -11.415
	199.581 249.4°3 299.358 349.29 399.156 449.138	3069 3046 3026 3034 .Ju18	3363 3143 3224 3304 . 3316 . 2336	-0.771 -0.703 -1.363 350 1.059 3.164	-6.940 -4.174 -0.077 075 1.577 3.523
	493.967 449.130 399.000 349.007 099.41 049.450 199.550 149.667 99.7416	.0065 .0048 .0019 0008 0024 0045 0065 0085 0105	.0055 .0036 .0016 0004 0024 0043 0063 0063 0103	4.865 3.301 1.630 .833 05 769 637 946 -1.070	4.075 3.697 2.343 1.15 416 -1.546 -1.597 -3.159 -6.376
	199.550 149.667	Ju 65 Ju 65	- , 2363 - , 3363	637 946	-1.59 -3.15

TEST SUMMARY
FULL SCALE RATE (PEG/SEC): 533
SCALE FACTOR (V/DEG/SEC): 3.966851-05

BIAS (VOLTS): -1.40458E-02

HYSTERESIS, MEG RATES (VDC): -9.99900E-09

HYSTERESIS, POS RATES (VDC): 2

BULL OFFSET (VDC): -1.36150E-00

the state of the s

READY

TABLE 3.2.2-XIX

DATE: 4-1-80 PUG -Z R-24.4.1n.

			1.00 a a a a a a a a a a a a a a a a a a		
	THUY72°F	507RH	SER	,38L	•••
	CHENERIO)	V OUT	V CALC (VDC)	: IT	: Inval
	-40.9350 -90.8117 -149.6	3158 3177 3186	3157 3174 3188	"14 -1.47% -2.323	6.15 7.4 % 7.754
	-19°.517 -249.443 -299.478	3010 3200 3246	- 3226 - 3244	-1.000 -1.600 -1.32	3.010 1.700
*	-349.291 -399.177 -449.014	3261 0275 029	1035 9735	.437 1.826 3.675	580 -0.410 -4.391
	-498.681 -449.169 -399.67	33 <u>00</u> 3089 3075	3313 3079 3079	6.014 4.336 1.065	-0.83 -4.45 -2.336 -4.66
	-340.074 -000.070 -045.403 -105.604	0261 0246 026 0213	3861 3844 3827 3829	.1/5 -1.165 -1.650 -0.044	1.040 3.39 9.111
	-1 15.775 -19.67 5 -45.0340	3197 18 160	3190 1174 157	-3.116 -2.96 -2.96	1 - 4 10 14 - 91 9 27 - 591 -11 - 15 - 15
• •	40.0050 90.7506 140.004 100.501	0100 0107 007	4120 1130 157 7	-1.00 -1.000 00	-6.147 : 65 -731
	2015 . 474 2019 . 337 340 . 433 350 . 157	051 032 014 .0 3	3.53 3.55 3.11 33.11	. £73 1. ££4 1. £1 . 396	1.00 7.017 0.75 0.001
	420.010 405.02 446.045	• 11 • 13 7 • 127	17	1.141 1.743	0.305 1.113 1.811
	300.130 340.010 650.376 040.301	0010 0010 0 35 050	3 ~.7315 ~.255 ~.255	1.401 1.147 .346 531	1.7" 1.630 .57: -165
	198,050 148,755 20,7647 49,6600	3.70 391 3130 317		- 065 -1.005 -0.63 -2.63	-0.300 -0.300 -11.037 -00.30

THIST BUILDARY
FULL BOALD MATE CHARMED: 500
SCALD MACTOR (VVPERIS, C): 3.484537-15

TABLE 3.2.2-XX

LAPY

	DATE 4-1-80	.	Z R=0 ir	٧
	TEMP72°F507RB	. SER	» 381	• • •
	MATE V OUT (PEG/SEC) (VDC)	V CALC (VIIC)	7 F5	7 IDUAL
	-50.81253151 -99.87948163 -149.833173 -199.6314183	J147 J158 J169 J16	-3.671 -3.936 -3.29 -2.004	3 C . 1 ° 7 ° 1 9 • 7 4 5 1 8 • 9 ° 7 • 4 7 ?
*	-249.6073194 -299.5634232 -349.436421 -399.3094219	3191 3232 3213 3224 4235	-0.149 039 3.104 5.117 0.754	4.335 -4.442 -6.446 -9.746
	-449.11" - 3225 -499.175 - 3232 -449.219 - 3225 -399.284 - 3210 -349.363 - 3211	2246 2235 224 2013	13.373 0.08 5.640 0.417	-17.305 -13.136 -7.37 -3.455
	-899.4953823 -849.6864193 -199.7154185 -149.6874176 -99.91493166	3030 2101 010 3100 3152	377 -1.979 -4.441 -5.976 -7.038	.56° 3.903 13.117 19.944 36.0010
	-50.30290150 45.8650134 95.7030122 145.701111 155.5220097	0147 0125 0114 0133 0393	-7.763 -7.636 -6.9 -5.595 -4.360	78.605 -76.5000 -34.5000 -18.609 -13.03
نو	249.489383 299.389387 349.385357 359.195342 449.147327	3355 3371 236 2349 3338	-1.747 356 0.8.4 5.831	-3.5.01 61 4014 7.3.33 13.449
	498.9650310 449.1330008 399.1560040 349.0950057	มลก7 มลล มลล มลล มลล	13.270 9.27 6.179 8.52	13.3 13.40 7.735 4.336 .631
	299.359307 249.4843084 199.5570496 149.687311 99.77783167 45.86193135	8371 3300 8393 3134 3114 3105	.3C -2.554 -4.922 -5.749 -6.997 -7.174	-5.110 -10.339 -19.546 -34.5049 -71.2339

TEST SHEMARY
FULL SCALE RATE (DEG/SEC): 500

GCALE FACTOR (VIDEGISEC): 500 GCALE FACTOR (VIDEGISEC): 2.19745F-35 BIAS (VOLTS): -1.56350E-30 BYSTERESIS, DEC RATES (VDC): -5.91705E-35 UYSTERESIS, POS RATES (VDC): 1.87050F-35 OBLL OFFSET (VDC): -1.35644E-30

TEST [0010017 ...

TABLE 3.2.2-XXI

PEADY

NADC 80081-60

N DATA	(volts)
SENSITIVITY	OUTPUT
C - SE	VOLTAGE

				S/N 355				S/N 373	13			S/N 38	=	
ACCELER.	MATE DEC/SEC	3	אל וואסנעצ ככי: כ	יסונע: כא	Š	ZERO* CV	AT RADIUS CCU CI	DIUS Cu	75	ZERO* Cu	AT RADIUS	DIUS	25	ZERO CW
		1.184	1.5327	-1.5279	1.5485	-1.5431	1.5418	-1.5465	1.5589	-1.5624	1.5087	-1.5379	1.5286	-1.5430
**	200	4.736	3.1784	-3.165	3.2095	-3.194	3.2383	-3.2187	-	-	3.1366	-3.163	3.1669	-3.1748
אמנד כ	WULL OFFSET NV **	**	+3.	+3.95	+2.	+2.73	-5.	-5.30	-5.	-5.55	-12	-12.35	-1.	-7.85
SCALE FACT	SCALE FACTOR NV/DEG/S	/SEC	9	-6.24	9-	-6.30	-9-	-6.32	9	-6.35	9 -	6.21	·9-	-6.28
-1	250	1.184	1.5324	-1.5270	1.5485	-1.5431	1.5486	-1.5512	1.5589	-1.5624	1.5043	-1.5336	1.5286	-1.5430
-x	200	4.736	3.1748	-3.1606	3.2095	-3.1940	3.2494	3,2253	-	•	3.1244	-3.1514	3.1669	-3.1748
אנודד כ	NULL OFFSET MV		+3.	+ 3.50	+2	+2.73	-5.	-5.38		-5.55	-12	-12.85	-7.	-7.85
SCALE FACT	SCALE PACTOR NV/DEG/SEC	/SEC	-6.	-6.24	9-	-6.30	- e .	-6.34	٩	-6.35	9 -	6.18	-6.	-6.28
+4	250	1.184	1.5266	-1.5216	1.5485	-1.5431	1.5493	-1.5508	1.5589	-1.5624	1.5074	-1.5352	1.5286	-1.5430
**	\$ 00	4.736	3.:643	-3.149	3.2095	-3.1940	3.2527	-3.2249	,	-	3.1323	-3.1551	3.1669	-3.1748
אמנד כ	MULL OFFSET HV		3.	3.52	2	2.73	٠,	-5.70	-5	-5.55	-12	-12.42	-7	-7.85
SCALE FACT	SCALE FACTOR SY/DEG/SEC	/SEC	-6.	-6.22	٩	-6.30	9	-6.35	9-	-6.35	9 -	6.20	Ŷ	-6.28
-۲	250	1.184	2.5274	-1.5236	1.5485	-1.5431	1,5403	-1.5490	1.5589	-1.5624	1.5102	-1.5389	1.5286	-1.5430
-T	200	4.736	3.1626	-3.1554	3.2095	-3.1940	3.2322	-3.2228	-	•	3.1358	-3.1640	3.1669	-3.1748
DETE C	MULL OFFSET NV		2.	2.94	2	2.73	۴	-6.61	Ş-	-5.55	-11	-11.99	-7.	-7.85
SCALE FACT	SCALE FACTOR NV/DEG/SEC	/SEC	-6.	-6.22	9-	-6.30	9	-6.33	٩	-6.35	9-	6.21	-6.	-6.28
2+	250	1.1643	2056	+.0093	0002	+. 9931	6297	+.0157	0255	+.0094	0241	0047	0194	7800'-
2+	200	4.6571	,0125	+.0184	0043	+.0260	0520	+.0325	0433	+.0185	0338	+.0065	0232	0012
DILLE	WULL OFFSET MY		2	2.10	0	96.0	-9	-6.20	9-	-6.40	-13	-13.60	-13.60	09.
SCALE FACTOR NV/DEG/SEC	TOR NV/DEG	/SEC	9-	-6.22	9-	-6.30	9-	-6.33	9-	-6.35	.9	.21	6.28	28
Z-	250	1.2037	6700	+.0081	0002	+.003:	1620	+.0147	0255	+.0094	0229	0052	0194	0084
7-	200	6718.7	3099	+.0144	+.0043	+.0060	-, 3493	+.0289	0433	+.0185	0302	+.0037	0232	0012
O TLIM	MULL OFFSET NY		2	2.20	0	0.98	9	-6.40	9-	-6.40	-13	-13.50	-13.60	.60
SCALE FACT	SCALE FACTOR MY/DEGISEC	SEC		\$.		ž		Ş		¥		Ķ	ž	
Od to Cavity O attende	The Can	POST AC	BACE	BACET THE TECT	×4 005	2.7		7						

*DATA O LANED FINE POST ACT TIT BASELINE TEST FOR +X, -Y, +Y AND -Y KKES.

TABLE 3.2.2-XXII

The second secon

3.2.3 Data Evaluation

Using Table 3.2.2-XXII, the acceleration sensitivity of the "Superjet" was calculated for the "Maximum Performance Escape System" scenario

The G-sensitive terms were reduced as follows:

$$Gs = \frac{(V-NO)}{(SF)At Radius} - \frac{(V-NO)}{(SF)Zero Arm}$$
 Eq (5)

where:

Gs = Acceleration Sensitivity (deg/sec/g)

V = Voltage Output Counterclockwise or Clockwise

NO = Null Offset

SF = Scale Factor at Zero or at Radius (volts/deg/sec)

G = Acceleration Level in Units of Gravity g (where $g = 32.17 \text{ ft/sec}^2$)

The G-sensitivity was calculated and is compared with the manufacturer's G-sensitivity data as shown in Table 3.2.3-I. The values obtained by Martin Marietta represent the worst case for each individual axis. The manufacturer's data was evaluated by accelerating the axes at 20.0g and positioning the rate sensor on a rate table to be rate insensitive. This was done on a 4.0 inch arm at 2500 degrees/second clockwise and counterclockwise. The G-sensitivity data was calculated as shown for rate insensitive orientations:

$$Gs = \frac{Vcw + Vccw}{2G(SF)} = degrees/second/g$$
 Eq (6)

where:

Gs = G-sensitivity

Vcw = Voltage Output Clockwise

Vccw = Voltage Output Counterclockwise

 $G = 20 \text{ g where } g = 32.174 \text{ ft/sec}^2$

SF = Scale Factor (nominally 0.006 v/degrees/second)

G-SENSITIVITY COMPARISON

AXIS ACCELERATED	MMC	3	MANUFACTU	IRER
	DEG/SEC/G	G	DEG/SEC/G	G
Х	1.33	1.184g	0.13	20g
Y	1.68	1.184g	0.14	20g
Z	0.90	1.164g	0.02	20g

TABLE 3.2.3-1

It is questionable whether it is correct to calculate the G-sensitivity term by averaging the clockwise and counterclockwise rate outputs, without considering the rate outputs in the absence of acceleration, since these outputs are not necessarily equal to each other.

For tests that have the rate sensor input axis parallel to the rate table axis of rotation, the rate sensor would gradually go into saturation at rates above 500 deg/s so that the difference in output would strictly be a matter of difference in saturation and not necessarily due to linear acceleration

The G-sensitivity data for each direction and g level is shown in Table 3.2.3-II along with the manufacturers data. Included in the table are sketches showing sensor orientations with respect to the acceleration vector and centerline of the rate table. The sensor sketch shows the wires and jet axis orientation. The arrow inside the block is the jet axis.

G-SENSITIVITY - DEC/SEC/G

AXIS ACCELERATED	HEIC		355	373	381	NOTE	HAMILTON STANDARD
		CCW	-0.311	-1.331	+0.235		1
+x }		ccw	-0.060	-	10.326	7	
~ ('	c₩	+0.100	-1.108	41.022	3	0 1
	•	CW.	+0.090	-	+0.646	4	•
		CCW	-0.291	-1.067	40.706	i	
_x }		CCW	-0.167	-	+0.446	2	0 .13
-^ (j [c₩	-0.082	-1,011	+1.373	,	[0]
	l	€	-0.074	-	+0.753	4	•
	1	ccu	-0.416	-1.257	40.401	1	
+4		ccw	-0.179	-	+0.355	2	1 11
**		c₩	-0.147	-1.563	+0.979	3	-+ .14
	l	€W	-0.123	-	+0.547	4	0'0
	1	ccw	-0.228	-1.683	+0.390	1	. [
-y	(I®I)	ccv	-0.217	-	+0.286	,	
-,	(19)	€₩	+0.046	-1.275	+1.206	3	
		CW	+0.075	-	10.692	4	
+2		ccm	+0.902	+0.605	+0.659	5	1
		new	+0.324	+0.306	+0.370	6	
	T 11	c₩	10.705	+0.834	+0.520	,]	
		۲w	+0.392	+0.471	+0.271	В	1
		ccw	+0.793	+0.408	+0.490	9	1
-z	<u>-</u>	crw	+0.230	+0.201	10.249	10	(a) .n2
- 4.		c₩	+0.508	+0.702	+0.422	[11]	
	·	CA.	+0.242	+0.344	+0.165	12	I

- 5) 250°/m, 1.1643 g 9) 250°/m, 1.8037 g
 6) 500°/m, 4.657 g 10) 500°/m, 4.815 g
 7) 250°/m, 1.645 g 11) 250°/m, 1.2037 g
 8) 500°/m, 4.657 g 12) 500°/m, 4.8149 g
- 1) 250°/m, 1.184 g 2) 500°/m, 4.736 g 3) 250°/m, 1.184 g 4) 500°/m, 4.736 g

TABLE 3.2.3-11

3.3 High Temperature Sensitivity

3.3.1 Test Setup and Procedure

The test setup for the $+165^{\circ}F$ $\pm 5^{\circ}F$ temperature sensitivity environment is the same as the baseline test setup except for the addition of heat.

A thermistor was mounted under one of the rate sensor mounting screws. A portable environmental chamber was mounted over the 8"X8"X8" test cube on the Genisco 1100-2 rate table. The heating coils located on the test cube were then connected to a temperature controller located in the rate table controller test console. After temperature equalization and soaking for 45 minutes minimum, the tests were run.

The temperature was monitored and controlled continuously throughout the test. A test schematic is shown in Figure C.3-1 of Appendix A, Part C.

The procedure is outlined in Appendix A Part C of this report. There were no deviations from the test plan.

3.3.2 Test Results

The test results are presented in the same form as the baseline test. The scale factor test program results are shown in Tables 3.3.2-I through 3.3.2-X. Tables 3.3.2-XI through 3.3.2-XIII show the output drift characteristics at different rates. The null offset measurement was added to the printout to monitor variations from setup to setup and day to day. From Table 3.3.2-I, a plot was made to show typically the high temperature effect on the output vs. input. This is shown in Figure 3.3.2-I for S/N 355 and can be compared to the baseline data at room temperature recorded in Figure 3.1.2-1.

Readytime, threshold, and resolution were measured in the same manner as the baseline test.

3.3.3 Data Evaluation

The high temperature $(+165^{\circ}F + 5^{\circ}F)$ sensitivity data for the 3 Superjet rate sensors tested produce the following worst case evaluation:

1.	Full Scale Rate at +2% Linearity Error	625 + 75 deg/sec
2.	Scale Factor	.0062 +.0002 V/deg/sec
3.	Bias	+3.24 deg/sec
4.	Hysteresis	+.25 deg/sec
5.	Threshold	<.1 deg/sec
6.	Resolution	<.1 deg/sec
7.	Readytime	.068 sec maximum
8.	Drift	+.36 deg/sec/min maximum

A breakdown of tests data for each serial number is shown in Tables 3.3.3-I and 3.3.3-II.

It is evident that the high temperature increases the full scale rate at $\pm 2\%$ linearity and null bias appreciably. This is due to the fact that the Superjet sensors tested are not temperature compensated above $\pm 145^{\circ}$ F. Readytime increased slightly but is well within the 0.100 second requirement.

	RATE S	EDSOR TES	T PROGRAM		NADC 80081-60
	DATE . 3-12	-80	RUN.	нот	• • •
	TEMP1650	F	SER#	355	•••
	RATE (DEGZSEC)	V OUT	V CALC	% FS	Z IDEAL
*	(DEG/SEC) -49.9545 -99.6366 -149.773 -199.746 -249.642 -299.612 -349.296 -449.367 -399.36 -449.367 -399.565 -249.665 -199.759 -99.565 -199.759 -99.569 149.664 199.559 349.559 349.559 349.559 349.551 449.130	(VEC) .302 .5985 .8971 1.1981 1.5025 1.8108 2.1036 2.4413 2.7649 3.0942 2.7658 2.4421 2.1241 1.8113 1.503 1.1968 .8977 .508958646746 -1.1849 -1.4865 -1.1868 -2.1068 -2.1068 -2.1068 -2.1068 -2.744 -3.0734	(VDC) -3111 -6145 -9181 1.020 1.5255 1.8293 2.4355 2.7432 3.9433 2.74 0.4359 2.1332 1.829 1.5256 1.2221 -918 -6151 -3113 -2958 -1.9308	.3 .526 .691 .788 .756 .301 191 811 -1.672 848 232 .583 .742 .583 .745 .57 .57 .57 .57 .57 .57 .57 .57 .57 .5	-3.336 -2.636 -2.336 -1.973 -1.514 -1.316 -3.39 -2.39 -2.39 -2.675 -943 -2.53 -430 -1.916 -2.600 -3.336 -1.949 -2.134 -1.965 -1.965 -1.435 -1.435 -1.436 -1.435 -1.436 -1.435 -1.436 -1.435 -1.436 -1.489 -1.489 -1.489 -1.489 -1.489 -1.489 -1.489 -1.489 -1.396 -1.489 -1.
	449.208 399.246 349.354 299.444 249.576 199.689 149.738 99.8456 49.8648	-2.7447 -2.4234 -2.1376 -1.7963 -1.4895 -1.1861 8857 5876 2949	-2.7249 -2.4036 -2.1172 -1.8137 -1.5134 -1.207 9033 5996 2959	.652 .091 314 57 686 688 579 393 165	.706 .114 449 952 -1.374 -1.722 -1.930 -1.969 -1.651

TEST SUMMARY
FULL SCALE RATE (DEG/SEC): 500

SCALE FACTOR (V/DEG/SEC): -6.06122E-33

BIAS (VOLTS): 7.32315E-33

HYSTERESIS, UEG RATES (VDC): -9.02176E-04

LYSTERESIS, POS RATES (VDC): 1.26636E-33

HULL OFFSET (VDC): 6.40393E-03

TEST ENGINEER TOYCH

TABLE 3.3.2-I

TEST SUMMARY

FULL SCALE RATE (DEG/SEC): 550

-2.0848

-1.777

-1.4737

-1.1735

-.8763

-.5811

-.2874

349.466

299.483

249.628

199.637

149.759

49.9074

SCALE FACTOR (V/DEG/SEC): -6.03694E-03

BIAS (VOLTS) : 6.21719E-33

-2.1035

-1.8317

-1.5336

-1.199

-.8979

-.5959

-.2951

HYSTERESIS, NEG RATES (VDC): -2.86031E-33 HYSTERESIS, POS RATES (VDC): 2.38895E-33

HULL OFFSET (VDC): 6.428878-33

TABLE 3.3.2-11

TEST CUGINEER

-.888

-1.37

-1.792

-2.113

-2.387

-2.453

-2.535

-.564 -.745

- .013

-.769

- .45

-.445

-.23

A STATE OF THE STA

RATE SENSOR TEST PROGRAM

```
DATE 3-12-80
                          RUN HOT NADC 80081-60
TEMP 164°F
                          SER# 355
          V OUT
                     V CALC
                                7 FS
                                          7 IDEAL
RATE
(DEG/SEC) (VDC)
                     (VDC)
                     .3139
-49.979
                                .352
                                          -4.222
           .301
          .5962
                                . 63
-99.9318
                     .6193
                                           -3.78
                                .852
                                          -3.411
           .8935
                     .9248
-149.905
-199.761
          1.1928
                     1.2295
                                1.002
                                           -3.339
                                1.058
                                          -2.541
                     1.5346
-249.671
          1.4959
-299.582
          1.8024
                     1.8397
                                1.018
                                          -2.239
                     2.1452
                                .848
                                          -1.456
-349.551
          2.1141
-399.519
                     2.4507
                                .549
                                           -.825
          2.4305
                     2.7555
                                .073
                                           -.098
-449.387
          2.7528
-499.353
          3.0807
                     3.0609
                                -.539
                                           .647
                     3.36614
          3.41375
                                           1.418
-549.27
                               -1.298
-599.226
          3.75133
                     3.67152
                                -2.176
                                          2.179
-549.275
          3.41371
                     3.36617
                                -1.296
                                           1.416
                     3.0608
                                           .658
-499.329
          3.0809
                                -.548
          2.7535
                     2.7559
                                           -.386
-449.445
                                .065
                     2.4536
                                .525
-399.516
                                           -.783
          2.4314
                                .826
                     2.1453
                                           -1.417
-349.56
          2.115
                                .995
                                           -1.994
                     1.8398
-299.597
          1.8333
-249.724
                     1.535
                                1.046
                                           -2.512
           1.4966
                     1.2295
                                .979
                                           -2.94
-199.758
          1.1936
                                .821
          .8942
                                           -3.287
-149.832
                     .9243
          .5971
                     .6191
                                .602
-99.9048
                                           -3.614
                     .3141
-50.0005
          .3015
                                .344
                                           -4.125
                     -.2965
           -.2882
49.8772
                                -.226
                                           -2.714
                     -.6013
                                -.485
                                           -2.919
99.7399
           -.5835
149.718
                     -.9268
                                -.72
                                           -2.886
          -.8824
-1.1794
                                -.888
199.638
                     -1.212
                                           -2.668
249.552
           -1.4817
                     -1.5171
                                -.966
                                           -2.322
          -1.7872
                     -1.8225
                                -.964
                                           -1.931
299.52
349.468
           -2.0971
                     -2.1279
                                -.839
                                           -1.44
                                -.572
399.285
           -2.4114
                                           -.36
                     -2.4324
                                -.175
                                           -.234
449.256
           -2.7314
                     -2.7379
                                .372
                                           .447
499.165
           -3.0566
                     -3.243
           -3.38697
                     -3.34867
                                1.044
                                           1.141
549.182
                                1.84
                                           1.842
599.127
           -3.72146
                     -3.65399
                               1.268
                                           1.166
549.18
           -3.38781
                     -3.34866
499.292
           -3.0574
                     -3.2437
                                .3 73
                                           .448
                                - .163
                                           -.217
449.332
           -2.7324
                     -2.7383
399.391
           -2.4125
                     -2.4331
                                -.562
                                           -.844
                                -.823
           -2.0981
                                           -1.413
349.545
                     -2.1283
299.51
           -1.7885
                     -1.8225
                                -.926
                                           -1.856
                                           -2.237
249.599
                                -.931
                     -1.5174
           -1.4833
                                -.85
                                           -2.553
199.687
           -1.1811
                     -1.2123
                                -.686
                                           -2.747
                     -.9072
149.786
           -.8821
99.767
           -.5849
                     -.6015
                                -.451
                                           -2.71
49.8976
           -.2894
                     -.2966
                                -.196
                                           -2.361
```

TEST SUMMARY

FULL SCALE RATE (DEG/SEC): 630

SCALE FACTOR (V/DEG/SEC): -6.11297E-33

BIAS (VOLTS) : 8.41362E-23 HYSTERESIS, NEG RATES (VDC): -9.17435E-04

HYSTERESIS, POS RATES (VDC): 1.69754E-03 NULL OFFSET (VDC): 6.63767E-03

TABLE 3.3.2-III

TEST ENGINEER Cyc Color 2 050

NADC 80081-60

	DATE 3-13-80		RUD #QT				
	TEMP1650	o r	SERA	373	•••		
	RATE (DEG/SEC)	V OUT	V CALC (VDC)	7 FS	7 IDEAL		
*	-49.8987 -99.8215 -149.734 -199.575 -249.431 -299.397 -349.253 -399.125 -349.326 -249.326 -249.456 -149.759 -99.81	.328 .6401 .9549 1.2735 1.5967 1.9253 2.2598 2.6 2.2604 1.9258 1.5973 1.274 .9557	.338 .6556 .9735 1.2908 1.6282 1.9262 2.2436 2.5611 2.2434 1.9258 1.6283 1.2907 .9737	.392 .612 .73 .681 .452 .737 635 -1.529 666 0 .435 .654 .706	-3.142 -2.453 -1.949 -1.365 725 349 .727 1.532 .763 0 697 -1.31 -1.885 -2.36		
*	-49.9443 49.8832 99.7518 149.593 199.557 249.42 299.275 349.198 398.967 349.182 299.271 249.439 199.574 149.672 99.7619 49.6748	.3284293562489186 -1.2348 -1.5552 -1.8799 -2.2399 -2.5455 -2.2145 -1.8827 -1.5561 -1.235962596254	.33 83 2972 6147 932 -1.25 -1.5675 -1.8848 -2.2325 -2.5194 -2.2325 -1.8848 -1.5676 -1.2531 9325 6147 2972	.387 146 39 525 597 48 193 .286 1.₽23 161 449 505 348 318	-3.1 -1.169 -1.563 -1.424 -1.197 77 258 .328 1.026 .357 215 721 -1.124 -1.35 -1.395 88		

TEST SUMMARY
FULL SCALE RATE (DEG/SEC): 403
SCALE FACTOR (V/DEG/SEC): -6.36587E-33

BIAS (VOLTS) : 2.03222E-02 HYSTERESIS, NEG RATES (VDC): -7.75695E-04 HYSTERESIS, POS RATES (VDC): 1.12939E-03 NULL OFFSET (VDC): 1.76674E-02

TEST ENGINEER 4

READY

TABLE 3.3.2-IV

RATZ (DEG/SEC)	V OUT	V CALC	7 FS	I DE AL
(1)2(1) 02(0)	(1	((()		
-49.9442	.3267	.3424	.498	-4.902
-99.7982	.638	.6624	.761	-3.813
-149.678	.9523	.9825	.941	-3.142
-199.527	1.27	1.3024	306.1	-2.526
-249.477	1.5926	1.6229	.944	-1.893
-299.373	1.9226	1.9432	.704	-1.175
-349,252	2.2545	2.2632	.272	~ .3 89
-399.145	2.5944	2.5834	3 43	• 43
-449.028	2.9395	2.9036	-1.12	1.247
-498.967	3.28721	3.224	-1.967	1.971
-449.02	2.9399	2.9335	-1.133	1.262
-399.157	2.5952	2,5835	3 65	.458
-349.263	2.256	2.2633	•22G	- ,326
-299.27	1.922	1.9425	.637	-1.364
-249.498	1.5942	1.623	. 800	-1.832
-199.517	1.2717	1.3323	.954	-5.36
-149.758	.9538	•982 7	• 0	-3.005
-09-8366	.6394	•6624	.719	-3.631
-49.9281	.3276	.3423	.46	-4.633
49.0046	2933	ଅ୭୍ଟେ	~.154	-1.539
29.6276	6.13.9	6179	~.435	-2.152
149.615	9169	- ,9368	- ,665	-2.223
199.471	-1.0324	-1.2582	- ,832	-2.011
249,421	-1.550	-1.5786	- •658	-1.661
299.3	-1.876	-1.8988	713	-1.191
349,266	-0.0055	-2.2195	437	- •ୁଟେନ
399,448	-2.54	-2.539	.034	.342
448,979	-0.8891	-2.8594	645	.717
498.62	-3.2039	-3.1793	1.39	1.393
448.93	-2.8838	-8.8591	•6 <u>7</u> 8	755
399,041	-2.5412	-2.5389	.37	.307
349.143	-8.8367	-2.2167	3 75	538
299,31	-1.8772	-1.8989	676	-1.129
249,412	-1.5536	-1.5787	781	-1.567
199.503	-1.2338	-1.2585	~ .772	-1.933
149.647	9182	9384	631	-2.138
39.7585	6350	6183	436	-0.335
49.064	294	2981	128	~1. €85

TEST SUMMARY
FULL SCALE RATE (DEG/SEC): 500
SCALE FACTOR (V/DEG/SEC): -6.41750E-03
BIAS (VOLTS): 2.19196E-02
HYSTERESIS, NEG RATES (VPC): -.0016963
HYSTERESIS, POR RATES (VPC): 1.56927E-03
HULL OFFSET (VPC): .016964

TEST ENGINEER'S

the state of the s

TABLE - 3.3.2-V

	DATE 3-13	-80	Run.	HQT	• •
	TEMP+165	oF.	SER#	373	• •
	RATE (PEG/SEC)	V OUT	V CALC (VDC)	7 FS	7 IDEAL
*	-49.912 -99.7998 -149.632 -199.566 -249.422 -299.331 -349.267 -399.116 -449.094 -498.956 -546.769 -496.84 -446.906	.3264 .6377 .9523 1.2698 1.5925 1.9205 2.2545 2.5942 2.9392 3.28703 3.63494 3.28789 2.9403	.3446 .6664 .9879 1.31 1.6316 1.9535 2.2756 2.5972 2.9195 3.2412 3.56255 3.2424 2.9183	.513 .809 1.333 1.130 1.131 .93 .594 .063 555 -1.291 -2.34 -1.336 616	-5.652 -4.457 -3.685 -3.121 -2.428 -1.738 935 114 .679 1.423 2.445 1.473
*	-399.115 -349.226 -299.299 -249.492 -199.543 -149.649 -99.8252 -49.9238 48.6697 99.7281 149.466 249.41 299.297 349.237 398.979 449.221 498.87 548.775 498.811 448.95 399.448 349.17 299.285 249.436 199.532 149.581 99.6736 49.8513	2.5956 2.256 1.9219 1.5942 1.2715 .9536 .6391 .3273 6341 917 -1.5524 -1.6764 -2.2056 -2.5476 -2.809 -3.2245 -3.2253 -2.8816 -2.5477 -1.8777 -1.8777 -1.8777 -1.8777 -1.8777 -1.8777 -1.8777 -1.8777 -1.8777 -1.8777 -1.8748 -2.8054 -2.941	2.5972 2.2753 1.9533 1.632 1.3298 .988 .6666 .344729962069402 -1.5862 -1.948 -2.5539 -2.8737 -3.1953 -3.51716 -3.1949 -2.0279 -1.5861 -1.5864942294226248	.343 .547 .886 1.36 .97 .776 .49 63 4167 7182 889 691 89 .231 .823 633 633 635 849 849 856 856 856 865 849 -	259 261 - 1.625 - 2.357 - 2.9565 - 4.279 - 1.573 - 2.5392 - 2.5392 - 2.639 - 1.639 - 1.639 - 1.467 - 2.467 - 2.467 - 2.344 - 2.397 - 2.347 - 2.347 - 2.347 - 2.349 - 2.347 - 2.349 - 2.349

TEST SUMMARY
FULL SCALE RATE (DEG/SEC): 550
SCALE FACTOR (V/DEG/SEC): -6.45050E-03
BIAS (VOLTS): 2.26589E-02
HYSTERESIS, NEG RATES (VDC): -1.68777E-03
HYSTERESIS, POS RATES (VDC): 1.62792E-03
HULL OFFSET (VDC): 1.67407E-02

TABLE 3.3.2-VI

TEST ENGINEER

		· · · · · · · · · · · · · · · · · · ·			MADE GOODI
	DATE 3-12	2-80	RUN.	нот	•••
	TEMP 165	PF.	SER#	381	•••
	RATE (DEG/SEC)	V OUT	V CALC (VDC)	? FS	7 IDEAL
**	•••			. 241 .441 .599 .68 .581 .382 .92 -1.128 -751 -333 .445 .552 .656 .566 .41 .828 553 .656 .41 .828 553 .656 .41 .828 553 .656 .41 .828 553 .845 .845 .845 .846 .828 553 .846 .828 553 .846 .828 553 .846 .828 553 .846 .828 553 .846 .828 553 .846 .828 553 .846 .828 553 .846 .856 .856 .856 .856 .856 .856 .856 .85	-2.429 -2.429 -2.197 -1.52 -1.367 -1.367 -1.362 -1.362 -1.363 -1.41 -1.55 -1.56 -1.76 -
	249.616 199.671 149.669 99.7602	-1.5387 -1.2312 9263 6236	-1.5592 -1.0512 9429 6351	635 59 487 339	-1.333 -1.626 -1.79 -1.866
	49.8565	3223	3274	149	-1.646

TEST SUMMARY
FULL SCALE RATE (DEG/SEC): 550
SCALE FACTOR (V/DEG/SEC): -6.16636E-33

BIAS (VOLTS): -1.99573E-32

HYSTERESIS, NEG RATES (VDC): -1.27745E-33

HYSTERESIS, POS RATES (VDC): 1.54114E-33

NULL OFFSET (VDC): -1.96618E-32

TABLE 3.3.2-VII TEST ENGINEER 3-12-50

The state of the s

RATE SINSOR TEST PROGRAM

	DATE 3-12	-80	RUN.	нот	• • •	
	TEMP1630	F	SER#	381	NADC	80081-60
	RATE (DEG/SEC)	V OUT	V CALC (VDC)	7 FS	7 IDEAL	
*	The G/Sec () = 199.649	VDC) .2821 .5834 1.4964 1.4964 1.4964 1.8076 2.122 2.7608 3.40573 3.72361 3.40573 3.40573 3.40573 3.40573 3.40573 3.40573 3.40573 3.40573	000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		-3.7455 -2.1831 -1.779 -1.324 -3.93 -1.391 -3.93 -1.369 -1.369 -1.369 -1.369 -1.369 -1.369 -1.368 -1	
	49.8944	3223	3281	155	-1.859	

TEST SUMMARY

FULL SCALE RATE (DEG/SEC): 600

SCALE FACTOR (V/DEG/SEC): -6.10139E-03

BIAS (VOLTS): -1.96605E-02

HYSTERESIS, NEG RATES (VDC): -1.12579E-33

HYSTERESIS, POS RATES (VDC): 1.93787E-03

NULL OFFSET (VDC): -1.93361E-02

TABLE 3.3.2-VIII

TEST ENGINEER

RATE SENSOR TEST PROGRAM

CDEG/SEC) (VDC) (VDC) -49.9743 .2793 .2895 .252 -3.277 -99.9149 .5802 .5989 .465 -3.02149.788 .883 .9078 .617 -2.679 -199.758 1.1875 1.2174 .744 -2.421 -249.675 1.4953 1.5267 .78 -2.331 *-299.619 1.8061 1.8361 .744 -1.613 -349.522 2.121 2.1452 .602 -1.12 -399.482 2.4393 2.4547 .384625 -449.482 2.7603 2.7645 .103 -15 -499.326 3.0826 3.0733 -232 .3362 -499.319 3.40475 3.38307 -538 .637 -599.396 3.72346 3.69145795 .863 -649.15 4.33538 4.33154833 .834 -599.208 3.72403 3.69214792 .359 -549.257 3.40568 3.38269 -571 .676 -499.368 3.3839 3.0736257 .335 -449.423 2.7614 2.7641 .368398 -399.466 2.4407 2.4547 .347564 -349.423 2.7614 2.7641 .368098 -399.466 2.4407 2.4547 .347564 -349.514 2.1225 2.1452 .564 -1.05 -299.592 1.8078 1.8359 .699 -1.517 -199.725 1.1889 1.2172 .703 -2.287 -149.915 .8842 .9086 .366 -2.627 -149.915 .8842 .9086 .366 -2.627 -149.915 .8842 .9086 .366 -2.627 -149.915 .8842 .9086 .366 -2.627 -149.915 .8842 .9086 .366 -2.627 -149.915 .8842 .9086 .368 -2.627 -149.915 .8842 .9086 .368 -2.627 -149.915 .8842 .9086 .368 -2.627 -149.915 .8842 .9086 .368 -2.627 -149.915 .8842 .9086 .368 -2.627 -149.915 .8842 .9086 .368 -2.627 -149.915 .8842 .9086 .368 -2.627 -149.915 .8842 .9086 .368 -2.627 -149.915 .8842 .9086 .368 -2.627 -149.915 .8842 .9086 .368 -2.627 -149.915 .8842 .9086 .368 -2.627 -149.915 .8842 .9086 .368 -2.627 -149.915 .8842 .9086 .368 -2.627 -149.915 .8842 .9086 .368 -2.627 -149.915 .8842 .9086 .368 -2.627 -149.915 .8842 .9086 .368 -2.627 -149.915 .8842 .9086 .368 -2.627 -249.571 .1.5374 .1.5663 .717 .1.866		DATE3-12	198:	RUN.	HOJ	•••
(DEG/SEC) (VDC) (VDC) -49.9743 .2793 .2895 .252 -3.277 -99.9149 .5802 .5989 .465 -3.024 -149.788 .883 .9078 .617 -2.677 -199.758	•	TEMP164	°F	SER#	381	•••
-99.9149 .5802 .5989 .465 -3.02149.788 .883 .9078 .617 -2.675 -199.758 1.1875 1.2174 .744 -2.421 -249.675 1.4953 1.5267 .78 -2.331 * -299.619 1.8061 1.8361 .744 -1.613 -349.522 2.121 2.1452 .602 -1.12 -399.482 2.4353 2.4547 .384625 -449.482 2.7603 2.7645 .103 -1.5 -499.326 3.0826 3.0733 -232 .3362 -549.319 3.40475 3.38367538 .637 -599.096 3.72346 3.69145795 .863 -649.15 4.33538 4.33154833 .834 -599.08 3.72346 3.69145795 .863 -649.15 4.33538 4.33154833 .834 -599.08 3.72403 3.69214792 .359 -549.257 3.40568 3.38269571 .676 -499.368 3.3839 3.0736257 .335 -449.423 2.7614 2.7641 .068098 -399.466 2.4407 2.4547 .347564 -349.368 3.3839 3.0736257 .335 -449.423 2.7614 2.7641 .068098 -399.516 2.1225 2.1452 .564 -1.05 -299.592 1.8078 1.8359 .699 -1.517 -349.724 1.4968 1.527 .75 -1.957 -199.725 1.1889 1.2172 .703 -2.267 -199.725 1.1889 1.2172 .703 -2.267 -199.725 1.1889 1.2172 .703 -2.267 -199.725 1.1889 1.2172 .703 -2.267 -199.725 1.1889 1.2172 .703 -2.267 -549.571 -1.5374 -1.5663 -717 -1.867 -549.571 -1.5374 -1.5663 -717 -1.867 -549.571 -1.5374 -1.5663 -717 -1.867 -549.571 -1.5374 -1.5663 -717 -1.867 -549.571 -1.5374 -1.5663 -717 -1.867 -549.571 -1.5374 -1.5663 -717 -1.867 -549.571 -1.5374 -1.5663 -717 -1.567 -749.571 -1.5575 -3.711 -1.567 -749.571 -1.5574 -1.5663 -717 -1.567 -749.571 -1.5574 -1.5663 -717 -1.567 -749.571 -1.5574 -1.5663 -717 -1.567 -749.571 -1.5574 -1.5663 -717 -1.567 -749.571 -1.5574 -1.5663 -717 -1.567 -749.571 -1.5574 -1.5663 -717 -1.567 -749.571 -1.5574 -1.5663 -717 -1.567 -749.571 -1.5574 -1.5663 -717 -1.567 -749.571 -1.5574 -1.5663 -717 -1.567 -749.571 -1.5574 -1.5663 -717 -1.567 -749.571 -1.5574 -1.5663 -717 -1.567 -749.571 -1.5574 -1.5663 -717 -1.567 -749.571 -1.5574 -1.5663 -717 -1.567 -749.571 -1.5774 -1.5663 -717 -1.571 -749.571 -1.5774 -1.5663 -717 -1.571 -749.571 -1.5774 -1.5663 -717 -1.571 -749.571 -1.5774 -1.5663 -717 -1.571 -749.571 -1.5774 -1.5663 -717 -1.571 -749.571 -1.5774 -1.5663 -717 -1.571 -749.571 -1.5774 -1.5663 -717 -1.571 -749.571 -1.5774					% FS	% IDEAL
-449.423 2.7614 2.7641 .068098 -399.466 2.4407 2.4547 .347564 -399.466 2.4407 2.4547 .347564 -399.514 2.1225 2.1452 .564 -1.05 -299.592 1.8078 1.8359 .699 -1.517 -249.724 1.4968 1.527 .75 -1.957 -199.725 1.1889 1.2172 .703 -2.267 -149.915 .8842 .9086 .606 -2.627 -149.915 .8842 .9086 .606 -2.627 -50.3181 .2799 .2897 .244 .3.177 49.875532143291192 -2.507 99.802562246384398 -2.507 149.65992549475545 -2.507 149.65992549475545 -2.367 199.687 -1.23 -1.2572677 -2.20 -1.92.571 -1.5374 -1.5663717 -1.867 -1.99.515 -1.8475 -1.8757701 -1.527	*	-99.9149 -149.788 -199.758 -249.675 -299.619 -349.522 -349.482 -449.326 -499.326 -599.396 -649.15	.5802 .883 [.1875] [.4953] [.806] 2.4393 2.7603 3.0826 3.040475 3.72346 4.03508 3.72403	.5989 .9078 l.2174 l.5267 l.8361 2.1452 2.4547 2.7645 3.0733 3.38307 3.69145 4.33154 3.69214	.465 .617 .744 .78 .744 .602 .384 .103 232 538 795 833	625 15 .322 .637 .863 .834
599.104 -3.75061 -3.73164 .67 .727 549.209 -3.44123 -3.42253 .464 .549 499.3 -3.1236 -3.1134 .18 .234 449.336 -2.7597 -2.033R -1.04 -1.5 399.342 -2.48 -2.4941 -351 -571 349.463 -2.1632 -2.1651 -544 -1.01 299.547 -1.8494 -1.6759 -657 -1.42 249.574 -1.5393 -1.5663 -667 -1.74 199.62 -1.2318 -1.2568 -662 -2.315	*	-499.368 -499.466 -399.514 -299.5724 -199.9156 49.8059 149.8059 149.8059 149.8059 149.8059 149.8059 149.855 149.86687 1299.4566 499.253 299.4566 499.353 299.3463 299.547 199.572	3.3839 2.7614 2.1225 1.8078 1.4968 1.1889 .8842 .5812 .5219 -3214 -6224 -9254 -1.23 -1.5374 -1.23 -1.5374 -2.4782 -3.4484 -2.7979 -3.1192 -3.45161 -3.75661 -3.75661 -3.1236 -2.7997 -2.1632 -1.8494 -1.5398	3.0736 2.7641 2.4547 2.1452 1.8359 1.527 1.2172 .9086 .5989 .2897 -,3291 6384 9473 -1.2572 -1.5663 -1.8757 -2.1849 -2.4949 -2.4949 -3.73166 -3.73166 -3.4226 -3.431134 -2.8038 -2.4949 -1.8759 -1.8759 -1.8759 -1.8759 -1.8759 -1.875663 -1.2568	257 .068 .347 .564 .595 .703 .606 .438 .24419239854567771778158441415 .151 .452 .641810455154455767	.335 098 564 -1.05 -1.952 -2.289 -2.659 -2.595 -2.595 -2.366 -2.204 -1.521 -1.387 -673 -217 .534 .695 .707 .727 .549 .234 -1.5

TEST SUMMARY

FULL SCALE RATE (DEG/SEC): 658

SCALE FACTOR (V/DEG/SEC): -6.19501E-83

BIAS (VOLTS): -2.81269E-80

HYSTERESIS, NEG RATES (VDC): -1.6028E-83

HYSTERESIS, POS RATES (VDC): 1.94040E-83

HULL OFFSET (VDC): -1.93649E-82

TEST ENGLHEER AND MARKET

TABLE 3.3.2-IX

RATE	SEUSOR	TEST	PROGRAM

NADC 80081-60

	DATE . 3-12	-80	RUN.	нот	• •
	TEMP . 1640	F	SER#	381	• •
	RATE (DEG/SEC)	V OUT	V CALC (VDC)	7 FS	7 IDEAL
*	-99.8895 -199.749 -299.575 -399.532	.5798 1.1866 1.8040 2.4364	.6319 1.2193 1.8364 2.4542	.511 .756 .744 .413	-3.578 -2.65 -1.739 723
•	-499.26 -599.192	3.0795 3.72075	3.371 3.68884	198 737	.277 .861
	-699.069 -599.148 -499.351	4.3338 3.72154 3.8807	4.32632 3.68857 3.0715	635 762 213	.636 .89 .898
	-399.46 -299.578	2.4377	2.454	.377	66 -1.674
	-199.756	1.1872	1.2193	.743	-2.693
	-99.8828 99.8245	.5804 6205	.6319 6328	.496 284	-3.476 -1.99
	199.638 299.527	-1.2268 -1.8432	-1.2499 -1.8674	533 561	-1.37 -1.31
*	399.363	-2.4726	-2.4846	278	487
	499.19 599.05	-3.113 -3.75153	-3.1318 -3.71914	•25.9 •74.9	•3 63 975
	698.951	-4.28764	-4.33677	-1.135	.875 -1.137
	599.139 499.188	-3.75269 -3.1145	-3.7195 -3.1018	.767 .294	.896 .412
	399.314	-2.4744	-2.4243	229	432
	299.537	-1.8448	-1.8675	524	-1.224
	199.61	-1.2284	-1.2497	493	-1.723
	99.8248	6222	6327	243	-1.703

TEST SUMMARY
FULL SCALE RATE (DEG/SEC): 700
SCALE FACTOR (V/DEG/SEC): -6.18237E-03
BIAS (VOLTS): -015642
HYSTERESIS, NEG RATES (VDC): -1.28984E-03
HYSTERESIS, POS RATES (VDC): 1.80912E-03
NULL OFFSET (VDC): -1.95895E-02

TEST ENGINEERS

READY

TABLE 3.3.2-X

RATE SEUSOR PROGRAM: OUTPUT DRIFT NADC	80081-60
--	----------

DATE 3-13-80	RUN HOT
TEMP. +165°F	SER# 355

1501	77	DEIM		
RATE CDEG/S		N 15 SEC TAN (VDC)	INTERVALS SCALE FACTOR (VOLTS/DES/SCC)
99.8386	.596	_	5.9787 <i>8</i> E13	
3913.00	.597		5.98389E-03	
99.7797 99.7493	.597 .597		5 . 98053 E- 73 5 . 991 J1 E - 73	
199.541	1.19	9771	6.03235E-23 6.03327E-23 6.02460E-23 6.00745E-23	
199.556	1.19	1799	6 • 3 33 2.7E - 3 3	
199.564	1.19	¥83	6.3246JE-83	
199.544	1.19	18 7 5	6.00745E-03	
299.334	1.81		6 . 25 63 9 E - 23 6 . 25 73 5 E - 23 6 . 25 82 9 E - 23 6 . 3623 9 E - 23	
299.338	1.81		6 . 25 73 5 E - 33	
299.35	1.81		6.35829E-03	
25.663	1.81	406		
399.111	2.44	-	6.13140E-03 6.13529E-03 6.13791E-03	
399.078	2.44		6.13529E-03	
399.367	2.44		6.13791E-33	
399.129	2.44	1974	6.13802E-03	
498.896	3.12		6.22354E+23	
498.799	3.12		6.22679E - ∂3	
498.957	3.12	_	6.225 28E-23	
498.854	3.12	1636	6.22698E-23	

MULL OFFSET (VDC): 4.85412E-23

READY

TABLE 3.3.2-XI

DATE 3-13-80 RUN HOT

TEMP. 163°F. SER# ... 373

	OUTPUT	DRIFT	IN	15	SEC	INTERVALS
RATE		UEAR				

001401	I DWILL IN ID DEC INT	ERVALD
RATE	UEAR	SCALE FACTOR
(DEG/SEC)	(VDC)	(VOLTS/DEG/SEC
99.8170	• 63 623	6.37395E-03
99. 7 848	• 63 685 6	6.382292-03
99.7756	.636936	6,38338E-03
99.7782	.637496	6.38512E-03
199.542	1.26872	6.35817E-03
199.581	1.26943	6.36047E-03
199.563	1.27043	6.36606E-03
199.57	1.27093	6.36837E-03
299.293	1.92227	6.42268E-03
299.339	1.92247	6.42238E-23
299.34	1.92299	6.42412E-33
299.297	1.92375	6.42754E-33
399.106	2,59895	6.51194E-23
399.394	2.59987	6.51444E-23
399.491	2.60049	6.516325-33
399.107	2.63119	6.517522-33
498.849	3.29585	6.606900-33
498.919	3.29692	6.608125-03
498.848	3.29744	6.613138+33
498,938	3.09846	6.61096E-33

HULL OFFSET (VDC): 1.63632E-22 Englid. Com 1

READY

TABLE 3.3.2-XII

DATE . 3-13-80	RUN HOT
TEMP 165°F	SER# 381

OUTPUT DRIFT IN 15 SEC INTERVA	LS
--------------------------------	----

RATE	MEAN	SCALE FACTOR
(DEG/SEC)	(VDC)	(VOLTS/DEG/SEC
99.9279	•57377	5.74184E-03
99.9183	.574024	5.74493E-03
99.9649	.574516	5.7474 <i>0</i> E-03
99.935	.574479	5.74853E-03
199.76	1.17852	5.89967E-03
199.757	1.17897	5.90201E-03
199.758	1.17893	5.92178E-23
199.752	1.17928	5.90372E-03
299.574	1.79536	5.99303E-03
299.534	1.7955	5.99431E-03
299.534	1.796/15	5.99614E-03
299.628	1.79699	5.9974JE-33
399.391	2.4287	.026381
399.39	2.4289	6.08152E-03
399.433	2.42895	.936381
399.412	2.42972	6.38324E-33
499.185	3.37446	6.15895E-33
499.263	3.07449	6.15836E-33
499.302	3.07462	6.15782E-03
499.212	3.0749	6.15951E-33

NULL OFFSET (VDC): -.022159

Bylh. lung /

READY

TABLE 3.3.2-XIII

HIGH TEMPERATURE TEST DATA SUMMARY (+165°F ±5°F)

PARAMETER	S/N 355	S/N 373	S/N 381
FULL SCALE RATE (DEG/SECOND) AT +2% LINEARITY ERROR	055	200	700
SCALE FACTOR (MV/DEG/SEC) AT BASELINE FACTOR	-6.08	-6.37	-6.17
BIAS (DEG/SECOND)	-1.20	-3.19	+3.24
HYSTERESIS CCW (DEG/SECOND)	+.15	+.12	+.21
HYSTERESIS CW (DEG/SECOND)	21	18	25
NULL OFFSET (DEG/SECOND)	-1.05	-2.77	+3.19
THRESHOLD (DEG/SECOND)	<.10	<.10	<.10
RESOLUTION (DEG/SECOND)	<.10	<.10	<.10
READYTIME (SECONDS) AVG. OF 5 RATES*	650.	.065	890.
DRIFT (DEG/SEC/MIN) AVG. OF 5 RATES*	.14	.14	80°

*100, 200, 300, 400, AND 500 DEGREES/SECOND (See Table 3.3.3-II)

TABLE 3.3.3-I

HIGH TEMPERATURE DRIFT AND READYTIME SUMMARY (+165°F ±5°F)

RATE (DEG/SEC)	no no	OUTPUT DRIFT (DEC/SEC/MIN)			READYTIME (SECONDS)	
	355	373	381	355	373	381
100	+.27	+.23	+.14	890.	.065	.065
200	+.11	+.21	+.08	.052	.062	.067
300	+.09	+.10	+.09	.062	.062	.075
400	+.15	+.12	+.05	090.	890.	090.
. 005	+,08	+.08	+.01	.052	.070	.075

ARI.E 3, 3, 3-11

3.4 Low Temperature Sensitivity

3.4.1 Test Setup and Procedure

The test setup for the $-30^{\circ}F \pm 5^{\circ}F$ temperature sensitivity environment is the same as the baseline test setup except for the addition of cooling.

A thermocouple was mounted under one of the rate sensor mounting screws. A portable environmental chamber was mounted over the 8"X8"X8" test cube on the Genisco 1100-2 rate table.

A tank of liquid nitrogen was used for cooling by pressurizing with dry nitrogen. The dry nitrogen pressure was controlled by a solenoid to maintain a constant temperature. After temperature stabilization and a 45 minute soak, the test was run. The thermocouple was disconnected prior to each run. This was done due to the absence of thermocouple wiring in the rate table slip rings.

This test deviates from the $-65^{\circ}F \pm 5^{\circ}F$ described in the test plan. This was discussed and approved by NADC at the mid-task review.

A test schematic is shown in Figure C.3-2 of Appendix A, Part C.

3.4.2 Test Results

The test results are presented in the same manner as the baseline test. The results are shown in tables 3.4.2-I through 3.4.2-IX. From table 3.4.2-II, a plot was made to typically show the low temperature effect on the output of the units. This is compared to the baseline data obtained at room temperature as shown in Figure 3.1.2-1. This particular plot is for S/N 355 sensor at 500 degrees/second maximum rate.

Readytime, threshold and resolution were measured exactly as done during the baseline test.

3.4.3 Data Evaluation

The cold temperature $(-30^{\circ}F \pm 5^{\circ}F)$ sensitivity data for the Superjet rate sensors tested produced the following worst case evaluation:

1.	Full Scale Rate at ±2% Linearity Error	425 +25 deg/sec
2.	Scale Factor	.005 <u>8</u>
3.	Bias	+1.66 deg/sec
4.	Hysteresis	+2.44 deg/sec
5.	Threshold	<0.1 deg/sec
6.	Resolution	<0.1 deg/sec
7.	Readytime	.069 sec max.
8.	Drift	random (±4.8 deg/sec/min)

The data recorded for each serial number is shown in Tables 3.4.3-I and 3.4.3-II.

The full scale rate decreases with cold temperature along with a scale factor reduction of approximately 10%. The hysteresis error increased substantially on serial number 355 while the other two units hardly changed.

Threshold, resolution and readytime were virtually unchanged while the drift characteristics were random. This may have been caused by the heating and cooling of the wires located in the sensor.

	RATE :	SENSOR TES	T PROGRAM		NADC 80081-60
	DATE . 3-17	-8Q	Run.	cold	••••
	TEMP3	Dok	SER#	355	••••
	RATE (DEG/SEC)	V OUT	V CALC	3 FS	7 IDEAL
	-49.9135 -99.7846 -149.663 -199.5 -249.409 -299.367	.2567 .5624 .8369 1.1128 1.3956 1.6811	.2933 .5737 .8541 1.1342 1.4148 1.6957	.26 .447 .679 .247 .76	-2.343 -2.315 -2.341 -1.929 -1.371 863
*	-349.159 -398.971 -448.864 -399.34 -349.155 -299.286 -249.404 -199.489	1.9732 2.2808 2.5903 2.2758 1.9836 1.6876 1.3958 1.1129	1.9756 2.2556 2.5361 2.256 1.9756 1.6952 1.4148 1.1342	.396 997 -2.144 784 316 .321 .748 .841	123 1.125 2.15 .884 .428 453 -1.35 -1.887
¥x	-149.622 -99.7812 -49.9168 49.8251 99.7632 149.631 199.427 249.352	.8331 .5518 .2754 2632 5326 8098 -1.3917 -1.3747	.8538 .5736 .2933 2674 5481 6263 -1.1084 -1.3691	.93.9 .863 .736 284 615 732 664 571	-2.824 -3.891 -6.365 -2.566 -2.772 -0.231 -1.498
	299.246 349.114 398.675 448.811 398.931 349.148 299.166 249.395 199.44 149.643 99.7721 49.8652	-1.66J1 -1.95J3 -2.242 -2.5414 -2.2374 -1.942 -1.6535 -1.3739 -1.095 -816 5405 2751	-1.6696 -1.95 -2.2297 -2.5104 -2.23 -1.9501 -1.6692 -1.3894 -1.1285 8086 5482 2676	375 .014 .485 1.226 .293 323 62 612 535 498 303	563 .312 .547 1.229 .33 416 932 -1.104 -1.236 -1.496 -1.368 2.664

TEST SUMMARY
FULL SCALE RATE (DEG/SEC): 450
SCALE FACTOR (V/DEG/SEC): -5.62178E-03
BIAS (VOLTS): 1.26843E-02
HYSTERESIS, UEG RATES (VDC): -1.04051E-02
HYSTERESIS, POS RATES (VDC): 1.48815E-02
NULL OFFSET (VDC): 1.73858E-03

TEST ENGINEER

READY

TABLE 3.4.2-1

	DATE 3-17-80		RUD		
	TEMP30°	F	SER#	355	••
	RATE (DEG/JEC)	V OUT	V CALC (VEC)	7 FS	7 IDEAL
.k	-49.9170 -99.8134 -149.69 -199.563 -249.443 -299.825 -349.194 -399.335 -448.822 -448.822 -499.315 -249.355 -199.48 -199.355 -199.48 -199.357 -49.635 99.7657 -49.633 199.52 849.49 848.836 899.215 349.110 849.366 899.215 349.110 849.366 899.215 349.110 849.366 899.215 849.366 899.215 849.366 899.215 849.366 899.215 849.366 899.215 849.366 899.215 849.366 899.215 849.366 899.215 849.366 899.215 849.366 899.215 849.366 899.215 849.366 899.215 849.366 899.215 849.366 899.215 849.366 899.215 849.366 899.215 849.485	.2763 .550 .C3J7 1.1100 1.3995 1.6917 1.9875 0.2893 0.5925 0.2893 1.9040 1.9040 1.9040 1.9040 1.4J75 1.123 .2417 .5628 .2777 5483 1.1J57 -1.2636 -2.8000 -	.2822 .5768 .8612 1.1457 1.4322 1.7141 1.9924 2.28378 2.2625 2.5625 2.5625 2.5625 2.5625 2.5625 2.5625 2.5625 2.6634 1.9991 1.7147 1.4252 .861 .8277 5613 -1.4148 -1.6987 -2.5531 -2.5531 -2.5531 -2.55524 -1.699 -1.4151	.556 .867 1.373 1.161 1.375 .709 .41 035 -2.451 -1.295 .505 .505 .777 .70 .676 .513 457 77 7741 7	-5.57 -4.345 -3.503 -2.505 -1.310 -0.155 -1.310 -0.70 -0.45 -1.355 -1.555 -1.555 -1.555 -1.657 -1.401 -2.107 -1.401 -1.401 -1.577 -1.401 -1.577 -1.401 -1.577 -1.401 -1.577 -1.401 -1.600 -1.600
	199.465 149.535 99.7365 49.6686	-1.107 8273 5516 2641	-1.13 8454 5614 2769	637 637 343 451	-0.206 -0.100 -1.700 -4.505

TEST SUMMARY
FULL SCALE RATE (DEG/SEC): 543

SCALE FACTOR (VZDEGZSEC): 523

SCALE FACTOR (VZDEGZSEC): -5.703 72E-23

BIAS (VOLTS): 7.4593 9E-33

MYSTERESIS, DEG RATES (VDC): -1.20493E-30

MYSTERESIS, POS RATES (VDC): 1.30496E-30

BULL OFFGET (VFC): 2.47325E-33

TEST CHOINEER

PEADY

TABLE 3.4.2-II

NADC 80081-60

	DATE 3-14-80		RUN. COLD		
	TEMP30)°F	SER#	373	••
	RATE (DEG/SEC)	V OUT	V CALC (VDC)	7 FS	Z IDEAL
*	-49.9432 -99.8069 -149.632 -199.511 -249.419 -209.326 -349.182 -399.205 -349.116 -299.291 -249.468 -199.536 -149.676	.292 .5839 .8781 1.1729 1.4722 1.7752 2.2884 2.4095 2.0874 1.7745 1.4677 1.1695	.3345 .5988 .8926 1.1869 1.4813 1.7757 2.2699 2.3638 2.0695 1.7755 1.4816 1.187	.529 .631 .615 .591 .384 .724 788 -1.938 761 .745 .586 .741	-4.238 -2.520 -1.645 -1.184 615 033 .902 1.943 .872 36 94 -1.486 -2.07
*	-99.8134 -49.9442 49.834 99.7129 149.53 199.449 249.278 299.224 348.994 398.995 349.122 299.163 249.324 199.489 149.53 99.7298 49.8531	.5813 .2892 2864 5744 8657 -1.1584 -1.4534 -1.7511 -2.3667 -2.3667 -2.3667 -1.7435 -1.4421 -1.1469 8584 5718	.5987 .3245 2842 5784 8723 -1.1668 -1.7555 -2.3441 -2.3441 -2.3497 -1.7551 -1.4611 -1.1671 8723 5785 2843	.738 .646 .096 171 281 356 315 186 .245 .956 .116 492 894 857 592 285	-2.959 -5.176 .767 687 753 713 505 249 .281 .959 .13.2 65.7 -1.29 -1.718 -1.584 -1.143 .85.9

TEST SUMMARY
FULL SCALE RATE (DEG/SEC): 400
SCALE FACTOR (V/DEG/SEC): -5.89959E-03

BIAS (VOLTS) : 9.82179E-33

MYSTERESIS, NEG RATES (VDC): -9.99900E-09 HYSTERESIS, POS RATES (VDC): 3.84152E-04 NULL OFFSET (VDC): 1.11750E-03

TEST ENGINEER

READY

TABLE 3.4.2-III

RATE	V OUT	V CALC	3 FS	7 IDEAL
(DEG/SEC)	(VDC)	(VDC)		
			~ *	
-49.9153	.2668	•2833 5.255	.55	-4.958
-99.8337	.5394	.5625	.988	-4.393
-149.703	.8145	.8439	1.159	-3.480
-199.478	1.3964	1.1248	1.121	-2.522
-249,438	1.3824	1.4068	.059	-1.731
-299.313	1.6735	1.6862	•58	871
-349.136	1.9731	1.9694	146	.128
-398.998	2.278	2.2538	-1.07?	1.239
-448.917	2.5886	2.5325	-2.237	8.818
-399.01	2.2754	2.2509	965	1.468
-349.179	1.9721	1.9697	- 196	.1.24
-299.382	1.6764	1.6886	.481	722
-249.417	1.3884	1.4067	.718	-1.095
-199.553	1.1042	1.1252	.827	-1.865
-149.719	.8229	.844	. 83	-2.494
-99.7982	.5458	.5623	. 648	-2.921
-49.934	.27	.2839	•429	-3.866
49.8157	2742	2821	339	-2.795
39.6892	5471	~ .5635	645	-2.91
149.542	8242	8440	RI4	-2.45
199.342	-1.103	-1.1259	9:13	-2.339
249.20	-1.3863	-1.4077	845	-1.525
299.131	-1.6752	-1.6091	545	- , 60
348.987	-1.9715	-1.97:14	. 441	. 153
326.68	-2 714	-2.252	. 763	.861
448.791	-2.5755	-2.5337	1.647	1.651
398.878	-2.2641	-2.2519	.477	•53f
348,994	-1.9655	-1.9705	195	251
299.138	-1.6739	-1.6891	- . G	933
249.337	-1.3873	-1.4.79	812	-1.466
199.358	-1.1059	-1.126	79?	-1.787
149.633	8281	8452	672	-8.301
19.7399	5532	5638	418	-1.885
49.8384	2796	2822	132	910

TEST SUMMARY

FULL SCALE RATE (DEG/SEC): 450

SCALE FACTOR (V/DEG/SEC): -5.64346E-03

BIAS (VOLTS): -9.06240E-04

HYSTERESIS, DEG RATES (VDC): -8.43811E-03

HYSTERESIS, POS RATES (VDC): 6.04451E-03

DULL OFFSET (VDC): -5.69418E-03

TEST ENGINEER

TEADY

TABLE 3.4.2-IV

AS.	TΣ	SENSOR	TEST	PROGRAM	
c 3	3~1	7-80		BITH	COI

	DATE 3-17-80		Run COLD		
	TEMP30°		SER#	381	• •
	RATE (DEG/SEC)	V OUT	V CALC	? FS	Z IDEAL
*	-49.8873 -99.7795 -149.631 -199.563 -249.426 -299.349 -349.12 -398.959 -449.851 -299.271 -299.271 -299.271 -149.663 -99.7745 -49.855 -49.855 -49.856 199.470 249.360 299.254 349.111 399.343 448.845	.272 .5467 .8205 1.13561 1.3661 1.969 2.2698 2.2698 2.2666 1.9681 1.9681 1.389 1.1347 .8249 .5496 .2737 2763 8288 -1.3899 -1.1363 -1.3899 -1.1363 -1.3899 -1.6776 -1.9688 -1.9688	.2812 .5622 .843 1.1242 1.435 1.686 1.9665 2.2473 2.5285 2.2476 1.6858 1.4349 1.1237 .8431 .5622 .2814 2816 561 8427 -1.4343 -1.6853 -1.9661 -2.2473 -2.5279	.364 .61 .807 .816 .749 .546 -1.729 -1.729 -361 .629 .748 .720 .496 .331 17 333 67 344 .466	-3.281 -2.749 -2.427 -1.841 -1.351 -1.61 -1.032 -1.754 -0.135 -1.688 -0.17 -2.035 -1.500 -1.500 -1.500 -1.500 -1.500 -1.500 -1.500
	396.999 349.171 209.056 249.307 199.484 149.530 99.7467 49.8080	-0.058 -1.9588 -1.6664 -1.3619 -1.1053 8080 5511 077	-2.2471 -1.9665 -1.6753 -1.434 -1.1034 840 9616 0885	.430 3 748 67 714 500 416 137	.407 387 -1.105 -1.57 -1.610 -1.57 -1.079 -1.234

TEST SHUPARY
FULL SCALE RATE (DEG/SEC): 453
SCALE FACTOR (VZDEG/SEC): -5.63233E-03
PIAS (VOLTS): 1.88592E-04
HYSTERESIS, NEG RATES (VDC): -2.96712E-03
DYSTERESIS, POS RATES (VDC): 7.01904E-04
BULL OFFSET (VDC): -2.17223E-03

TEST ENGINEER (

NADC 80081-60

READY

TABLE 3.4.2-V

	DATE 3-17-80		RU11CQLD		
	TEMP30	o _F	SER#	381	••
	RATE (DEG/SEC)	V OUT	V CALC (VDC)	7 FS	Z IDEAL
*	-49.8992 -99.8536 -149.666 -199.504 -249.482 -299.243 -349.177 -399.338 -448.947	.2799 .5569 .8371 1.124 1.4118 1.7236 1.9996 2.3241 2.6071	.2945 .5798 .8643 1.1491 1.4339 1.7186 2.0038 2.2886 2.5737	.511 .8 .953 .876 .774 .524 .149 430 -1.171	-5.119 -4.337 -3.160 -0.196 -1.551676213 .534 1.334
	-498.828 -448.841 -398.942 -349.177 -299.289 -249.428 -199.555 -149.661	2.9195 2.6315 2.6327 1.9929 1.6962 1.4068 1.1204 .8393	2.8584 2.5731 2.2881 2.0038 1.7189 1.4341 1.1490 .8643	-2.139 997 163 .450 .790 .955 1.008	2.144 1.11 .235 647 -1.324 -1.915 -2.525 -2.917
*	-99.7540 -49.9396 49.6491 99.76J2 149.591 199.534 049.349 299.061 349.055 399.057 446.911 496.757 446.856 398.134 299.163 049.437 199.450	.5649 .000 0716 5485 6340 -1.1096 -1.3931 -1.6000 -1.974 -0.2711 -0.5775 -2.8865 -2.572 -2.2656 -1.6734 -1.3875 -1.1053	.5792 .0947 2753 5633 645 -1.1302 -1.4147 -1.6998 -1.9844 -2.2695 -2.5546 -2.5546 -2.6393 -2.5543 -2.9845 -1.6993 -1.4151 -1.1297	.641 .443 109 415 510 703 756 687 366 .453 .803 1.654 .600 13 944 964 964	-3.011 -4.438 -1.094 -2.079 -1.730 -1.011 -1.516 -1.147 504 .JC7 .895 1.650 .693 103 103 103 104
	149.687 99.767 49.0630	8271 5537 2771	8455 5634 2754	646 339 .860	-2.158 -1.698 .60

TEST SUMMARY
FULL SCALE RATE (DEG/SEC): 53M
SCALE FACTOR (V/DEG/SEC): -5.71161E-33
BIAS (VOLTS): 9.44667E-33
HYSTERESIS, NEG RATES (VDC): -4.83674F-33
HYSTERESIS, POS RATES (VDC): 5.53429E-33
BULL OFFSET (VDC): 4.2338E-33

TEST ENCINEER ...

The state of the s

3-17-50

TABLE 3.4.2-VI

READY

DATE 3-17-80.		COLD
TEMP300F	•••• SER# •	
OUTPUT RATE (DEG/SEC)	DRIFT IN 15 REG : MEAN (VDC)	INTERVALS SCALE FACTOR (VOLTS/DEG/SEC)
99.4523 99.7665 99.6336 99.4074	•562269 •561386 •565372 •564995	5 .63131E=23 5 .62732E=33 5 .66405E=33 5 .65978E=33
199.57 199.548 199.511 199.547	1.12914 1.12527 1.12734 1.12459	5 • 65 7878 = 23 5 • 6483 1 % = 23 5 • 65 25 4 E = 23 5 • 63 5 73 % = 23
299.324 299.275 299.271 299.473	1.71.552 1.73941 1.74163 1.74779	5.714618-25 5.711648-25 5.605030-25 5.736448-25
399.348	2.3751 2.34705 2.3451 2.30300	5 • 776 • 80 = 30 5 • 761 • 70 = 37 5 • 7764 ° E = 33 5 • 888 • 80 = 75

FULL OFFSET (VDC): 1.47318E-33

0.95035 0.96330 0.97110 0.95398 5.010107-74 5.041095-33 5.05579E-33 5.00077E-33

PEARY

· . 🄰

498.015 498.743 498.366 498.798

TABLE 3.4.2-VII

DATE . 3-14-80 RUN . COLD

TEMP. -30°F SER#...373

RATE (DEG/	NEA	15 SEC N NC)	INTERVALS	SCALE FACTOR (VOLTS/DEG/SEC
99.7721 99.8254 99.8279 99.7812	.5616 .5564 .5619 .5703	52 11	5 5	.62931E-23 .57426E-23 .62879E-23 .71562E-23
199.529 199.525 199.539 199.577	1.148 1.154 1.144 1.153	3 38	5 5	.75534E- <i>0</i> 3 .78526E- <i>0</i> 3 .73512E- <i>0</i> 3 .77913E- <i>0</i> 3
299.271 299.265 299.238 299.22	1.770 1.749 1.725 1.710	4 54	5	.91638E-83 .84566E-83 .76645E-83 .71695E-83
399.246 399.276 399.251 399.247	2.317 2.330 2.326 2.332	96 3	5	.80799E-03 .84349E-03 .82958E-03 .84466E-33
498.778 498.835 498.747 498.792	2.999 3.010 2.985 2.964	79 34	ն 5	.01273E-03 .03566E-13 .98567E-33 .94349E-33

HULL OFFSET (VDC): -1.76195E-33

Boyd h. lun, h. 3-14-80

READY

TABLE 3.4.2-VII

DATE . 3-17-89		RUNCOLD
TP MD	=3.660F	SER# 381

EMP .= 300F S	ER#

OUTPUT RATE (DEG/SEC)	DRIFT IN 15 SEC MEAN (VDC)	INTERVALS SCALE FACTOR (VOLTS/DEG/SEC)
99.7462	.543208	5.44591E-03
	.54366	5.44619E-03
99.8239	- J4300 - 43051	5.45123E-03
99.7665	.543851	5.44991E-03
99.7452	.543602	J • 44 3 51 11 - 65
		5.51514E-83
199.541	1.1005	
199.511	1.10699	5.54851E-03
199.539	1.10554	5.54345E-03
199.548	1.13587	. 305543
299,252	1.68049	5.615.64E-03
299.275	1.68279	5.61619E-03
	1.68285	5.623JEE-33
299.276	1.002.02	5.62413E-03
299.337	1.68351	> 000-41-0-12 De
	0.07036	.035712
398.995	2.27936	5.69562E=33
399.217	2.27265	5.68784E+33
399.839	2.26967	
399,036	2.2709	5.69J97E-33
		5 5-50 LP 33
498.795	2.89499	5.79594E-33
498.827	2.88462	5.7828112-33
498.737	2.88183	5.77826E-33
498.752	2.87971	5.77382E-33
430・126	2. 4 (7 1 2 1 4	· • -

HULL OFFSET (VDC): -3.8815 JE-33

READY

Boy 3-17-80

TABLE 3.4.2-1X

COLD TEMPERATURE TEST DATA (-30°F)

PARAMETER	S/N 355	S/N 373	S/N 381
FULL SCALE RATE (DEG/SECOND) AT +2% LINEARITY ERROR	450	400	450
SCALE FACTOR (MV/DEG/SEC) AT BASELINE RATE	-5.70	-5.90	-5.71**
BIAS (DEC/SECOND)	-1.31	-1.66	-1.65
HYSTERESIS CCW (DEG/SECOND)	2.25	.17	. 70
HYSTERESIS CW (DEG/SECOND)	-2.44	65	76
NULL OFFSET (DEG/SECOND)	43	19	84
THRESHOLD (DEG/SECOND)	<0.10	<0.10	<0.10
RESOLUTION (DEG/SECOND)	<0.10	<0.10	<0.10
READYTIME (SECONDS) AVG. OF 5 RATES*	.067	690.	.068
DRIFT (DEG/SEC/MIN) AVG. OF 5 RATES*	+1.08 (RANDOM)	+.82 (RANDOM)	+,61 (RANDOM)

*100, 200, 300, 400, AND 500 DECREES/SECOND (See Table 3.4.3-II) **DATA FROM 500 DEC/SEC RUN

ARIF 3 1, 3-T

The state of the s

COLD TEMPERATURE DRIFT AND READYTIME (-30°F)

RATE (DEG/SEC)		OUTPUT DRIFT (DEG/SEC/MIN)	T ()	× 0	READYTIME (SECONDS)	
	355	373	381	355	373	381
100	+2.65	+4.79	+0.19	.068	890.	020.
200	+0.52	-3.40	+2.34	890.	.070	.065
300	-1.81	-4.51	+0.19	• 065	690.	020.
400	+3.20	+0.82	+0.85	890.	.070	020.
200	+1.32	+3.12	-0.52	90.	020.	.065

ABLE 3.4.3-II

3.5 Sensitivity Jerk

3.5.1 Test Setup and Procedure

The test setup for the constant change in acceleration is the same as in the acceleration sensitivity test. The only difference is in the computer programming. A test schematic is shown in Figure D.2-1 in Appendix A.

The computer was programmed to accelerate the rate table from 0 degrees/second to 1000 degrees/second by incrementing the angular rates in 0.015 degree/second increments. The units were subjected to counterclockwise and clockwise rates.

The angular velocity was then incremented by .030 degree/second increments to double the jerk rate. Three more increments were used, i.e. .045, .060, and .075 degree/second. This method allowed each unit to be subjected to 5 different jerk rates. Data was taken at approximately 250 degrees/second and 500 degrees/second rates, only since higher rates cause saturation. The test procedure is discussed in Appendix A, Part D.

3.5.2 Test Results

Data could only be taken at multiples of the rate increments. As a result, the actual rates for each jerk are:

RATE INCREMENT O/SEC	JERK	RUN TIME APPROXIMATE	250°/SEC	500°/SEC
.015	1	11.7	250.5	501.0
.030	2	5.8	252.0	501.0
.045	3	3.9	252.0	504.0
.060	4	2.9	252.0	504.0
.075	5	2.4	255.0	502.5

Using the actual rates, the output may be corrected for evaluation by transforming all data to the nominal rates. This is done by using the nominal scale factor of each unit. It is not known if the scale factor remains constant from one jerk value to the next. However, if the scale factor changes by ±1%, the output would change only by ±.01%. Historical data shows the scale factor on sensor serial number 355 at 500 degrees/second maximum rate changes by 3.6% which is equivalent to .1 degree/second for 250 degrees/second rate and .18 degree/second for 500 degrees/second rate.

However, the repeatibility of the sensor has varied up to 19 millivolts at 500 degrees/second (post acoustic baseline, S/N 381), which enters into the Jerk evaluation.

The data collected for each direction and serial number is shown in Tables 3.5.2-I through 3.5.2-XXIV. Data was obtained at 750, 500 and 250 degrees/second rates.

OF

AD A 00109

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

3.5.3 Data Evaluation

It is evident that the change of acceleration (jerk) sensitivity on the Superjet is so small that it is concealed in the repeatibility of each sensor, which has been measured to be 31 mv at 500 degrees/second rate from one setup to another setup.

This is shown typically by Figures 3.5.3-1 and 3.5.3-2, which is for the positive X direction rotating counterclockwise and for serial numbers 355 and 373.

Serial number 355 shows a large delta between the zero arm run and the 24 inch arm, but the gap is constant, therefore indicating neglible jerk sensitivity. The gap on serial number 373 is small which also indicates neglible jerk sensitivity.

The slope of the data points do suggest that there may be an angular acceleration sensitivity. The highest value of the two sensors occurs for serial number 373 at the 500 degrees/second reading. The change in output is = 22.0 millivolts which is equivalent to 3.47 degrees/second shift from $\dot{\omega}$ = 87 degrees/second² to 427 degrees/second². This reduces to an angular acceleration sensitivity of 0.01 degrees/second/degree/second².


```
NADC 80081-60
  CHIER I FOR CCU POTATION; -I FOR CU ROTATION ?I
?7.533
THE SEAS Y OUT G I
TIME TIPE (MC)
                                                                                                  4.0097
4.9U05
4.0064
4.071
4.914
  10.148
6.JB1
4.J73
3.J6
D.466
                                                  9.095
4.675
3.106
0.351
                                                                                                                                                  1.5591
3.11462
4.65314
6.18954
7.67345
   NEADY
NUM
DD7#......AYIS......NULL WOLTS.....
 g not
                                                  9.299
4.69
3.136
2.359
                                                                                                 -4.3058
-4.3069
-4.3070
-4.3074
                                                                                                                                                  1.55744
3.13492
4.63534
6.16737
   12.161
 6.1
4.386
3.071
2.473
                                                  1.915
                                                                                                  -4.J277
                                                                                                                                                   7.65074
   READY
  SER#.....NULL YOLTS.....
  ENTER 1 FOR COM ROTATION; -1 FOR CM ROTATION 71 75-333 THE CVPC G CVPC G
                                                                                                 3.1582
3.1578
3.1749
3.1694
                                                  6.218
3.131
2.116
1.598
   11.898
                                                                                                                                                  1.59186
3.17466
4.73737
6.38493
   5.966
3.998
  3.204
   READY
 ENTER 1 FOR CCW ROTATION: -1 FOR CW ROTATION ?-1 1003 25.333 THE NEAS V OUT G 0
                                                  MEAS
TIME
                                                                                                  V OUT
                                                                                                                                                  G DOT
   TIPE
                                                  6.238
3.141
0.123
1.634
1.089
                                                                                                  -3.1094
-3.129
-3.1466
-3.1415
-3.1269
                                                                                                                                                  1.58653
5.16435
4.72834
6.27984
7.83366
  11.938
5.986
4.310
  TEADY
TU!
GERMAN SULL YOLTS
  CHTEP I FOR COMPONATION: -1 FOR CAPPONATION 01 00.522
                                                                                                  v out
  TIPE
                                                                                                  (VDC)
 11.659
5.848
3.018
0.945
0.371
                                                                                                 1.5018
1.5317
1.509
1.5061
                                                  3.135
                                                                                                                                                  1.6245
                                                                                                                                                  3.23871
4.8341
6.43104
7.90819
                                                  1.6
1.284
.825
   READY
CHTER 1 FOR CCW ROTATION; -1 FOR CW POTATION 7-1 10050
 GERAL POLTS.....
                                                                                                  V OUT
                                                                                                                                                  3 POT
  11.12
                                                  TIME
                                                                                                 -1.5386
-1.5163
-1.5167
-1.5139
-1.53
 11.699
5.769
3.937
7.935
                                                                                                                                                 1.61094
3.00713
4.01600
6.43046
7.95700
                                                  3.145
   SEACY
                                                                               JERK DATA
                                                                       TABLE 3.5.2-I
```

TABLE 3.5.2-11

```
ENTER | FOR CCV ROTATION; -| FOR CV ROTATION 1: 77.530 TUN MEAS VOUT GITTIME TIPE (VDC)
                                                             1.56232
3.11462
4.65014
6.18954
7.68357
                    9.269
12.123
                                         4.8817
4:373
                    4.675
                                         4.8993
                                         4.8679
3.86
                     2.351
READY
RUY
SER#.....NULL VOLTS.....
ENTER I FOR CCV ROTATION: -1 FOR CW ROTATION ?-1 TCDR 77.538
TIME
                                         v out
                                                              G DOT
                                         (VDC)
                    9.299
4.69
3.136
2.359
                                         -4.3249
-4.8259
-4.8264
-4.3266
-4.327
12.162
6.131
4.386
3.371
2.473
                                                             1.55731
3.18441
4.63534
6.16737
7.65871
READY
CUM
SER#.....AXIS.....MULL VOLTS.....
ENTER 1 FOR CCW ROTATION; -1 FOR CW ROTATION ?1 75.333
                    MEAS
TIME
                                         V OUT
RUN
TIME
                                                              G DOT
                                         3.1564
3.1568
3.1738
3.1697
3.1556
11.898
5.966
3.998
3.334
2.42
                    6.218
3.131
2.116
1.598
                                                             1.59186
3.17466
4.73737
6.38493
7.82645
READY
TUN
SER#.....NULL VOLTS.....
ENTER 1 FOR CCW ROTATION; -1 FOR CW ROTATION ?-1 TCDR 75.300
                                         V OUT
RUN
                     EAS
                                                              G DOT
                                         -3,1284
-3,1279
-3,1452
-3,1486
-3,1258
                                                              1.55653
3.16352
4.72201
6.26192
7.80066
11.938
5.987
4.311
3.315
2.428
                    6.238
3.141
2.122
1.634
READY
ENTER 1 FOR CCW ROTATION; -1 FOR CW ROTATION ?1 ?2.538 RUN MEAS VOUT G E
                     MEAS
TIME
                                         V OUT
                                                              G DOT
TIME
                                         1.5232
1.5324
1.5365
1.5295
1.5458
                                                              1.6245
3.23871
4.83533
6.43124
7.98482
11.659
                     3.135
5.848
3.917
2.945
2.372
                     1.6
1.683
.825
.676
READY
SERP.....NULL VOLTS.....
EMTER I FOR CCW ROTATION; -! FOR CW ROTATION ?-! RCDR 72.583
                                         V OUT
                     YEAS
TIME
                                                              G POT
TIME
                                         -1.539
-1.5193
-1.5171
-1.514
-1.5299
                                                              1.61894
3.22713
4.81689
6.40948
7.93798
11.699
5.869
3.932
7.955
                     3.145
 2.38
READY
                             JERK DATA
TABLE 3.5.2-III
```

```
R - 24 In.
NADC 80081-60
ENTER I FOR CCW ROTATION: -! FOR CW ROTATION ?!
 27.540
TIPE
                      MEAS
TIME
                                           V OUT
                                                                 G DOT
10.149
6.381
4.372
3.36
2.465
                      9.295
4.675
3.125
2.351
                                            4.8367
                                                                 1.55898
                                            4.8954
4.8814
4.8664
4.9888
                                                                 3.11462
4.65128
6.18954
7.68357
READY
RUN
SER#.....AXIS......HULL VOLTS.....
SHITER I FOR CCW ROTATION; -1 FOR CW ROTATION ?-1 TCDR 77.533 RUM MEAS WOUT GO
                                            V OUT
                                                                 G DOT
TIPE
12.163
6.101
4.086
3.071
2.474
                                                                 1.55718
3.19441
4.63534
6.16737
7.65562
                      9.299
                                            -4.82R
                      4.69
3.136
2.359
1.915
                                            -4.829
-4.8294
-4.8296
READY
RUN
SER#.....AXIS.....NULL VOLTS.....
ENTER 1 FOR CCW ROTATION; -1 FOR CW ROTATION ?1 75.232 CUN YEAS VOUT GITTINE TIME (VDC)
                                                                 G DOT
11.898
5.967
3.998
3.006
2.42
                                           3.1582
3.1597
3.1749
3.1769
3.1586
                                                                 1.59186
3.17412
4.73737
6.38073
7.82645
                      6.218
                      2.116
READY
SER#.....NULL VOLTS.....
ENTER I FOR CCW ROTATION; -I FOR CW ROTATION 7-1 RCDR 75.355 RUN MEAS V OUT G DITHE TIME (VDC)
                                                                  G DOT
11.938
5.988
4.312
3.316
2.428
                                            -3.1382
-3.1381
-3.153
-3.1497
-3.1347
                                                                 1.58653
3.16299
4.72884
6.27984
7.80066
                      6.238
                      3.141
2.123
1.684
1.289
READY
SER# ..... VOLTS .....
ENTER I FOR CCW ROTATION; -I FOR CW ROTATION 71 72.583
RUN MEAS V OUI G!
                                                                  G DOT
11.659
5.848
3.917
2.945
2.372
                                            1.5234
1.5332
1.5389
                                                                  1.6245
3.23871
4.83533
                      3,135
                      1.6
                                            1.5281
READY
SER#......NULL VOLTS.....
 ENTER 1 FOR CCW ROTATION: -: FOR CW ROTATION ?-!
 RCDR
70.588
TUP
TIME
                      MEAS
TIME
                                            V OUT
                                                                  G DOT
                                                                  1.61894
3.00713
4.81689
6.40948
7.95798
                      3.145
1.686
1.387
.627
.679
11.699
5.869
3.938
2.955
                                            -1.512
-1.5215
-1.519
-1.5174
 2.38
                                     JERK DATA
 CEADY
                                 TABLE 3.5.2-IV
```

THE REPORT OF THE PARTY OF THE

2-60

```
R = 24.4 in.
ENTER 1 FOR CCV ROTATION: -1 FOR CV ROTATION ?1
?7.533
TUP 1EAS V OUT G !
TIME TIME (VDC)
                                                              G POT
10.103
6.880
4.074
3.361
0.467
                    9.27
4.676
3.127
2.352
                                         -.209989
-.212677
-.209258
-.308541
-.208141
                                                             1.64143
3.27179
4.88439
6.53302
8.26637
READY
ENTER | FOR CCW ROTATION; -| FOR CW ROTATION 7-1 CDR 77.538 RUN MEAS V OUT G DOT
                                         V OUT
TIME
                    9.342
4.733
3.137
2.36
1.916
                                                             1.6384
3.23877
4.86885
6.47754
8.24325
                                          .617775
12.235
                                         .#1575
.#18235
.#16232
.#15232
5.144
4.387
3.372
2.474
READY
ENTER 1 FOR CCG ROTATION: -1 FOR CW ROTATION ?1
?5.330
RUN NEAS V OUT G !
TIME TIME (VDC)
                                                              G POT
11.941
5.967
3.999
3.205
2.481
                                                             1.66644
3.33484
4.97599
6.62196
8.21933
                                         -.036489
-.035477
                    6.261
3.132
2.117
1.599
1.286
                                         -.004302
YGABE
NUN
SER#.....NULL VOLTS.....
ENTER 1 FOR CCW ROTATION; -1 FOR CW ROTATION ?-1
TODR
?5.200
TIME
                                         V OUT
                                                              G DOT
11.98
6.33
4.313
3.317
2.429
                                          .314991
.315071
.812995
                                                              1.66132
3.3
4.95863
                     6.281
                    3.184
2.124
1.635
1.29
                                                              6.59562
ENTER 1 FOR CCW ROTATION; -1 FOR CW ROTATION 71 72.538
                     EAS
                                                              G POT
                                          (VNC)
TIME
                                         -.202239
-.801161
-.833595
-.333116
11.731
5.849
3.918
2.946
2.373
                                                             1.78362
3.40212
5.07887
6.75458
8.38559
                     3.178
                     1.621
1.364
.825
.677
YEARY
ENTER 1 FOR CCM ROTATION; -1 FOR CM ROTATION 7-1 RC02
72.53d
100
TIME
                                                              G DOT
TIPE
                                         (VDC)
11.741
5.912
3.933
2.956
2.381
                                         .849.748
.879.628
.827.626
.3371.62
.8465.78
                    3.188
1.649
1.JOE
.828
.68
                                                             1.69403
3.36567
5.2595
6.73173
0.35741
                                    JERK DATA
TEADY
                               TABLE 3.5.2-V
```

```
3-20-80 R = 23.6 in.
 ENTER 1 FOR CCV ROTATION; -1 FOR CW ROTATION 21
 ?7.5aJ
DUN
TIME
                                               TEAS
                                                                                                V OUT
10.124
6.382
4.116
3.133
2.538
                                               9.27
4.676
3.169
2.394
1.952
                                                                                               -.018506
-.019367
-.0186
-.018453
-.018773
                                                                                                                                              1.53609
3.36248
4.52527
6.33058
7.42663
 READY RUN
 SER#......MULL VOLTS.....
 ENTER I FOR CCW ROTATION; -1 FOR CW ROTATION ?-1
 77.500
BUR
TIME
                                               MEAS
TIME
                                                                                                V OUT
                                                                                                                                               G DOT
                                                                                                .J28J24
.J293J3
.D29749
.J38377
                                                                                                                                              1.52597
3.85244
4.55738
6.86315
7.5287
 12.206
                                                 9.343
                                                4.691
3.137
2.36
1.916
6.120
4.387
3.372
2.474
DEADY
RUB
SER#.....AXIS.......HULL VOLTS......
 ENTER I FOR CCW ROTATION; -1 FOR CW ROTATION ?1
 ?5.338
                                                                                                 V OUT
 200
 TIME
                                               6.261
3.174
2.159
1.642
1.328
                                                                                               -.009559
-.010141
-.010161
-.010073
                                                                                                                                              1.55984
3.09917
4.60925
6.13809
7.56232
11.941
6.31
4.341
3.349
 2.463
 CEADY
TUP SERV.......AXIS.......NULL VOLTS.....
 ZETER I FOR CCW ROTATION; -1 FOR CW ROTATION ?-1
 V OUT
                                                                                                                                                G POT
                                                 TIME
                                               6.281
3.142
2.124
1.635
1.29
                                                                                                 .318655
.319551
.323174
                                                                                                                                               1.5545
3.11853
4.64142
11.982
 4.313
ENTER 1 FOR CCW ROTATION; -1 FOR CW ROTATION 71 ?2.588
 AUN
TIME
                                                                                                -.822606
                                                                                                                                              1.59183
3.16177
4.74235
6.2336
7.71263
11.731
5.891
3.961
                                                3.178
                                                1.643
1.127
.868
.72
                                                                                                -.832777
-.832777
-.832952
                                                                                                 -.003002
 READY
 ENTER 1 FOR CCW ROTATION; -1 FOR CW ROTATION ?-1 RODR ?-1.580 RUF RODR PROPERTY RODR P
                                                                                                V OUT
                                                                                                                                               S POT
 TIME
1 L . 740
5 . 87
3 . 933
2 . 956
2 . 381
                                                3.180
1.637
1.386
.820
                                                                                                                                              1.58607
3.17328
4.73580
6.33138
7.80076
                                                                                                .313634
.311534
.018174
.818818
                                                                         JERK DATA
  ?EADY
                                                                  TABLE 3.5.2-VI
```

	? 7.500 Rut' Time		MEAS TIME	•	V OUT (VDC)	g por	S/N 355 R = G in. +3.9NV X and Y Axis
	1 2 . J21 6 . J3 4 . J38 3 . J34 C . 445		9.214 4.647 3.107 2.337 1.898		4.9358 4.9210 4.9869 4.8917 4.9344	1.57558 3.14396 4.69844 6.24258 7.74640	
	READY RUN ERTER I ?7.533 RUN TIME	FOR	CCW ROTATION; IEAS TIME	-1	FOR CW ROTATION V OUT (VDC)	?-1 3 DOT	
	12.06 6.049 4.052 3.045 2.453		9.244 4.662 3.117 2.345 1.904		-4.2311 -4.2321 -4.2325 -4.2327 -4.2331	1.57048 3.1311 4.67423 6.22003 7.72116	
	READY RUN BUTER 1 75.000 RUN TIME	FOR	CCW ROTATION; EAS TIME	-1	FOR CW ROTATION V OUT (VDC)	71 G DOT	
;	11.768 5.982 3.955 2.973 C.393		6.181 3.113 2.123 1.589 1.277		3.1841 3.1833 3.2006 3.1982 3.1828	1.63945 3.23938 4.78887 6.37367 7.91475	
	PEADY RUN ENTER I 75.338 RUU TIME	FOR	CCW ROTATION; TEAS TIME	-1	FOR CW ROTATION V OUT (VDC)	7-1 G DOT	
	11.838 5.922 3.967 2.982 2.431		6.201 3.123 2.11 1.594 1.281		-3.1636 -3.1624 -3.1796 -3.1731 -3.1597	1.604 3.19824 4.77439 6.35144 7.88838	
	READY RUP ENTER L 72.523 RUN TIME	FOR	CCW ROTATION; MEAS TIME	-1	FOR CW ROTATION V OUT (VDC)	71 G DOT	
	l 1.5 5.77 3.864 2.925 2.34		3.116 1.591 1. <i>3</i> 77 .82 .673		1.5362 1.5447 1.5423 1.539 1.5552	1.64696 3.2825 4.93166 6.51979 8.09402	
	TEADY TUP TOTER 1 72.500 TUP TIME	FOR	CCW ROTATION; MEAS TIME	- 1	FOR CW ROTATION V OUT (VDC)	?-1 G DOT	
	11.541 5.789 3.879 2.916 2.348		3.126 1.596 1.381 .802 .675		-1.5243 -1.534 -1.5313 -1.5284 -1.5433	1.64111 3.27172 4.8827 6.4952 8.36644	
	TEADY		•	_	ERK DATA BLE 3.5.2-VII		

RUII EIITER 1 ?7.500	FOR CCW ROTATION; -		71 G DOT	S/N 355 +3.1 MV Z Axis	R = 0 in.
RUN Time	Meas Time	V OUT	G DOI	2 /0.10	
12.03	9.214	005661 005699	1.5744 3.13836		
6.335 4.042	4.648 3.128	005339	4.6058		
3.338	2.338	335929	6.23436		
2.448	1.899	036481	7.73693		
?EADY					
OHA		. COR CU DOTATIO	N 7-1		
ENTER 1 27.500	FOR CCW ROTATION; -	I FUR CW RUINITO			
มนพ	MEAS	V OUT	G DOT		
TIME	TIME	(VDC)			
12.111	9.236	.011204	1.56387		
6.356	4.663	.010696 .010364	3.12748 4.66963		
4.356 3.849	3.118 2.346	.212593	6.21187		
2.456	1.905	116110.	7.71173		
READY					
ENTER I	FOR CCW ROTATION;	-1 FOR CW ROTATIO	H 71		
?5. 033	MEAS	v out	G DOT		
TIME	TIME	(VDC)			
11.828	6.223	00241	1.60128		
5.911	3.113	002609	3.2042		
3.962	2.104 1.59	002671 002688	4.78041 6.35997		
2.978	1.32	002005	7.76548		
2.400	• • • •				
READY Run					
ENTER	FOR CCW ROTATION;	-: FOR CW ROTATIO	N 7-1		
25.338	*EAS	V OUT	G DOT		
RUI: Time	TIME	(VDC)			
11.868	6,243	.008308	1.59539		
5.932	3.124	.00831	3.19285		
3.975	2.111	.2083.28	4.76478 6.33869		
2.988	1.595 1.282	.038481 .008439	7.87199		
2.406	1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
READY					
RUN ENTER	I FOR CCW ROTATION;	-! FOR CW ROTATI	ON 71		
72.500		V OUT	G DOT		
RUN Time	TIME	(VDC)			
	3.159	.000283	1.63699		
11.57 5.784	1.592	.000232	3.27455		
3.875	1.078	.0034	4.88774 6.42948		
2.955	.863	. <i>3</i> 0 <i>0</i> 295 . <i>3</i> 00356	8.26988		
2.347	.673	. 70000	0.00000		
READY					
RUN ENTER	I FOR CCW ROTATION;	-1 FOR CW ROTATI	ON ?-!		
?2.526	3	V OUT	G DOT		
TIME	MEAS Time	(VDC)	- 00.		
	- ·-	•	1 22107		
11.61	2 3.17	.006073 .006035	1.43107		
5.834 3.888	1.597 1.081	.00593	4.8714		
2.983	.823	. 225 797	6.47964		
2.355	.676	. 225 765	8.04246		
PEADY		JERK DATA TABLE 3.5.2-VI	ı		

```
R = 24 in.
          3-20-80
EMTER 1 FOR CCW ROTATION; -1 FOR CW ROTATION ?1 ?7.533 DUM "EAS V OUT G 1
                                                          6 DOT
TIME
                                       (VNC)
                   9.295
4.675
3.126
2.351
1.929
                                                          1.5591
3.11462
4.65314
6.18954
7.68045
12.148
                                       4.9422
6.J81
4.J73
3.J6
2.466
                                       4.9486
4.9315
4.9138
                                       4.9521
PEADY
MEAS
TIME
                                       V OUT
                                                          G DOT
TIME
                   9.299
4.69
3.136
2.359
                                       -4.2351
-4.2361
-4.2365
-4.237
                                                          1.55718
3.12441
4.63534
6.16737
7.65871
12.163
6.131
4.266
3.271
2.473
                    1.915
READY
SER#.....NULL VOLTS.....
ENTER I FOR CCW ROTATION; -1 FOR CW ROTATION ?1
75.330
TUN
TIME
                                       V OUT
                                                           G DOT
11.898
5.967
3.998
3.205
2.42
                                                           1.59186
3.17412
4.73737
6.30283
7.82645
                    6.218
                                       3.2283
                    3.131
2.116
1.599
                                       3.2259
3.2419
3.2359
                    1.285
READY
SER#.....NULL VOLTS.....
ENTER I FOR CCW ROTATION; -1 FOR CW ROTATION 7-1 TCPR 75,003
                                                           G DOT
                                       (VDC)
TIME
11.938
5.986
4.312
3.316
2.428
                   6.238
3.141
2.123
1.604
                                       -3.2326
-3.1986
-3.2155
-3.2387
-3.192
                                                          1.58653
3.16405
4.72084
6.27984
7.80066
                    1.289
PEARY
EMTER 1 FOR CCW ROTATION; -1 FOR CW ROTATION 21 22.5388 CMH SEAS V OUT G I TIME (VDC)
                                                           G POT
11.659
5.848
3.917
0.945
0.372
                                       1.5348
1.5427
1.5396
1.5374
1.5538
                                                           1.6245
3.23871
4.83533
6.43124
7.98482
                    3.135
                    1.6
                    .825
.677
READY
TUP
SER#.....NULL VOLTS.....
ENTER 1 FOR CCW ROTATION; -1 FOR CW ROTATION ?-1 RCDR 70.5344 TUN MEAS VOUT G DO TIME TIME (VDC)
                                                           G DOT
11.699
5.369
3.932
0.955
2.38
                    3.145
1.636
1.887
.827
                                       -1.5364
-1.5449
-1.5417
-1.5384
-1.5543
                                                           1.61894
3.22713
4.81689
6.48948
7.95798
                               JERK DATA
READY
                          TABLE 3.5.2-IX
```

A STATE OF THE STA

```
R = 24 1n.
EMTER 1 FOR CCW ROTATION; -1 FOR CW ROTATION ?1 ?7.5538 RUD NEAS VOUT GI
                                    V OUT
                                                      G POT
TIPE
                  TINE
12.102
6.481
4.373
3.46
                  9.269
                                    4.9319
4.9447
4.9273
                                                       1.56245
                                                       3.11462
4.65214
6.18954
7.65245
                  4.675
3.126
2.351
1.939
2.466
READY
200
EPTER I FOR CCW ROTATION; -1 FOR CW ROTATION ?-1
REDR
27.5 aa
RUN
                                                       G POT
                                     V GUT
                  TEAS
TIME
                  TIME
                                     (VDC)
12.162
                  9.299
                                    -4.8362
                                                       1.55731
6.101
4.086
3.071
0.473
                                                      3.18441
4.63534
6.16737
                                     4.0371
                  4.69
3.136
                                     -4.0376
-4.0377
-4.033
READY
SER#.....NULL VOLTS.....
1.592
3.17466
4.73737
6.34283
7.82645
                  6.217
                                    3.2368
11.897
5.966
3.998
3.005
0.42
                  2.116
                                    3.2492
3.2427
5.2245
READY
SER#.....HULL VOLTS.....
ENTER 1 FOR CCW ROTATION; -! FOR CW ROTATION 7-1 RCDR
75.333
TUN
TIME
                                    V OUT
                  NEAS
TIME
                                                       G DOT
11.938
5.987
4.J12
3.J16
2.428
                  6.238
                                     -3 .208
                                     -3.2055
-3.2198
-3.2131
-3.1972
                                                      3.16352
4.72384
6.27984
7.83366
                  3.141
2.123
1.634
1.289
PEARY
SER#.....NULL VOLTS.....
ENTER 1 FOR CCV ROTATION; -1 FOR CW ROTATION ?1
72.500
RUM MEAS VOUT GITTINE TIME CVDC)
11.659
5.848
3.917
2.945
2.372
                                    1,5483
1,5482
1,5447
1,542
1,5573
                                                       1.6245
3.23871
4.83533
6.43124
7.98482
                  1.6
1.883
.825
.676
REAPY
SER#.....NULL VOLTS.....
ENTER 1 FOR CCU ROTATION; -1 FOR CU ROTATION 7-1 1002
72.538
                  TEAS
                                     V OUT
                                                       G DOT
TIME
                                     ( VDC )
                                    -1.5483
-1.5489
-1.5453
-1.5423
-1.5583
                                                      1.61894
3.22713
4.81689
6.43948
7.95798
11.699
3.932
                  1.JR7
.827
2.3R
                   .679
                              JERK DATA
TEARY
                           TABLE 3.5.2-X
```

a had not been and the same of the same of

NADC 80081-60

The state of the s

```
R = 24 in.
NADC 80081-60
ENTER 1 FOR CCV ROTATION; -1 FOR CW ROTATION ?1 77.598 RUH MEAS VOUT GITTINE (VDC)
                                                                      G POT
                       9.269
4.675
3.126
2.351
1.989
                                               4.9356
4.9469
4.9333
4.9157
4.9536
                                                                      1.56232
3.11462
4.65814
6.18954
7.68245
12.123
6.481
4.473
3.26
2.466
READY
SER#.....NULL VOLTS.....
ENTER 1 FOR CCW ROTATION: -1 FOR CW ROTATION ?-1
RCDR
77.500
RUN
                        MEAS
TIME
                                               V OUT
                                                                      G DOT
BMIT
                       9.299
4.69
3.136
2.359
1.915
                                               -4.8332
-4.8341
-4.8345
-4.8347
-4.835
                                                                      1.55731
3.10492
4.63534
6.16737
7.65871
12.162
6.1
4.286
3.371
2.473
READY
SER#.....NULL VOLTS.....
EMTER I FOR CCW ROTATION; -I FOR CW ROTATION 71-+
75.000
RUN MEAS V OUT G DOT
TIME TIME (VDC)
11.898
5.967
3.998
3.005
2.42
                       6.218
3.131
2.116
1.599
1.285
                                              3.2286
3.2248
3.248
3.236
3.2173
                                                                      1.59186
3.17412
4.73737
6.30283
7.82645
READY
SERA.....NULL VOLTS.....
ENTER I FOR CCW ROTATION; -I FOR CW ROTATION ?-I RCDR ?5.333 RUH MEAS V OUT G DI TIME TIME (VDC)
11.938
5.986
4.012
3.316
2.428
                                               -3.1981
-3.1929
-3.21
-3.233
-3.1852
                                                                      1.58653
3.16485
4.72884
6.27984
7.88866
                        6.238
                        3.141
2.123
1.604
1.289
READY
SER#.....NULL VOLTS.....
ENTER I FOR CCV ROTATION; -I FOR CW ROTATION 71 72.538 RUP IEAS VOUT GITTINE (VDC)
                                                                       G DOT
                       3.135
1.6
1.883
.825
11.656
5.846
3.917
2.945
2.372
                                                                      1.62464
3.23871
4.83533
6.43124
7.98482
                                               1.5342
1.5417
1.538
1.5344
                                                1.5518
READY RUN
SER#.....NULL VOLTS.....
ENTER I FOR CCW ROTATION; -1 FOR CW ROTATION ?-1 RCDR
20.530
RUN
TIME
                        MEAS
TIME
                                               V OUT
                                                                      C DOT
                       3.145
1.636
1.487
.827
.679
                                               -1.5336
-1.5421
-1.5355
-1.5358
-1.5527
11.699
5.869
3.938
2.955
2.38
                                                                      1.61894
3.22713
4.81689
6.40948
7.95798
                                         JERK DATA
READY
                                     TABLE 3.5.2-XI
```

AND ASSESSMENT OF THE PROPERTY OF THE PARTY OF THE PARTY

```
NADC 80081-60
CYTER 1 FOR CCV ROTATION: -1 FOR CV ROTATION 7: 77.530 RUN MEAS V OUT G
                     MEAS
TIPE
                                          V OUT
                                                               G DOT
TIME
10.148
6.881
1.370
3.86
                    9.295
4.675
3.125
2.351
                                                               1.5591
3.11460
4.65128
6.18954
7.68345
                                          4.9037
                                          4.933R
4.912
4.894
0.466
                     1.939
                                          4.9330
READY
 1111
SER#.....NULL VOLTS.....
ENTER 1 FOR CCW ROTATION: -1 FOR CW ROTATION 7-1
7007
77.533
RUN
                     IEAS
TIME
                                          V OUT
                                                               G DOT
TIME
                    9.299
4.69
3.136
2.359
1.915
                                         -4.8333
-4.8344
-4.8348
-4.835
-4.8353
                                                               1.55731
3.13441
4.63534
6.16737
7.65871
12.162
6.131
4.386
3.071
2.473
READY
SER#.....NULL VOLTS.....
ENTER 1 FOR CCW ROTATION; -1 FOR CW ROTATION 71 75,3000 RUP NEAS V OUT G 1
                     MEAS
TIME
                                          V OUT
ZMIT
11.89R
5.966
3.99R
3.935
2.40
                                         3.2205
3.2173
3.2352
3.226
3.2287
                                                               1.59186
3.17466
4.73737
6.38283
                     6.218
                     3.131
2.116
1.599
1.285
                                                               7.82645
READY
SER#.....AX1S......NULL VOLTS.....
CHTER 1 FOR CCW ROTATION; -1 FOR CW ROTATION ?-1 RCDR ?5.333 RUN MEAS V OUT G DO TIME TIME (VDC)
                                                               G DOT
                                                               1.58653
3.16352
4.72884
6.27984
7.80066
11.938
                     6.238
                                          -3.1994
-3.1966
4.310
3.316
0.428
                     2.123
1.634
1.289
                                          -3.2123
-3.2056
-3.1891
READY
SER#......NULL VOLTS.....
ENTER | FOR CCW ROTATION: -1 FOR CW ROTATION 21
TIME
                                          V OUT
                     MEAS
TIME
11.659
                     3.135
                                          1.5347
                                                               1.6245
5.848
3.917
0.945
2.372
                                                               3.23871
4.83533
6.43124
7.98482
                     1.6
                                          1.5425
                     .825
.676
                                           1.5362
                                          1.3521
READY
SER#.....PULL VOLTS.....
ENTER I FOR CCW ROTATION; -I FOR CW ROTATION 7-1 RCDR 70.530 RIN 'EAS V OUT G DO TIME TIME (VDC)
                                                               G POT
11.699
5.869
3.938
0.955
0.38
                    3.145
1.636
1.387
.827
.679
                                         -1.5352
-1.544
-1.541
-1.5369
-1.5534
                                                               1.61894
3.22713
4.61609
6.43948
7.95798
READY
                                    JERK DATA
                               TABLE 3.5.2-XII
```

```
3-20-80
                             R = 23.6 1m
                                                                                     NADC 80081-60
ENTER I FOR CCV ROTATION; -I FOR CW ROTATION ?! 77.583
PUN MEAS V OUT G F
                                       V OUT
                                                           g not
TIME
                                       -.271795
-.372166
-.372315
-.071864
12.151
6.124
4.116
                    9.297
                                                           1.53288
                   4.718
3.169
2.395
1.952
                                                           3.8414R
4.52527
3.134
2.508
                                                           6.03054
7.42663
READY
ENTER 1 FOR CCW ROTATION; -1 FOR CW ROTATION ?-1
PCDR
?7.500
RUN
                    MEAS
                                       V OUT
                                                           G DOT
TIME
                    TIME
                                       (VDC)
12.163
6.143
4.129
3.114
2.516
                                                           1.53137
3.83287
4.51182
5.98137
7.48382
                                       .036632
.036302
.0361
.035952
.036356
READY
SER#.....NULL VOLTS.....
HTER ! FOR CCW ROTATION; -! FOR CW ROTATION ?!
25.223
RUN
TIPE
                    MEAS
TIME
                                       V OUT
11.941
6.011
4.842
3.849
2.463
                                       -.0515R3
-.051291
-.051506
                    6.261
3.175
2.159
                                                           1.55984
3.09865
4.60812
                                                           6.10889
7.56232
READY
RUN
SER#.....AXIS......NULL VOLTS.....
ENTER I FOR CCW ROTATION; -I FOR CW ROTATION ?-I
3002
25.328
310
                                       V OUT
                    MEAS
                                                           G DOT
TIME
                    TIME
                    6.281
3.184
2.166
1.647
1.332
11.982
6.029
4.055
3.059
2.471
                                                           1.5545
3.JB94
4.59334
6.JB892
7.53784
                                        .02747
.027739
.027718
                                        #28026
#27717
READY
RUP
SER#.....NULL VOLTS......
EPTER 1 FOR CCW ROTATION; -1 FOR CW ROTATION ?1 72.538 RUP PEAS V OUT G S
                                       V OUT
                    MEAS
TIME
                                                           G DOT
TIME
                    3.178
1.644
1.127
.868
.72
                                       -.028887
-.029308
-.029079
-.029138
-.02933
                                                           1.59183
3.16124
4.72235
6.2336
7.71263
11.701
5.892
3.961
0.988
2.415
READY
ENTER 1 FOR CCW POTATION: -1 FOR CW ROTATION 7-1 NCDR
TIME
                    TEAS
                                       V OUT
                                                           C DOT
                   3.188
1.649
1.13
.87
                                       .313207
.313135
.312934
.312743
.313J26
                                                           1.58627
3.15854
4.68579
6.21281
7.68717
11.742
5.912
3.975
2.99R
2.423
                                  JERK DATA
REAPY
                            TABLE 3.5.2-XIII
```

```
NADC 80081-60
3-20-80
                                   R = 24.4 in.
ENTER 1 FOR CCW POTATION; -1 FOR CW ROTATION 71 77.580 RUM HEAS
                       MEAS
TIME
                                                                      S DOT
TIME
                                               (VDC)
                       9.27
4.718
3.169
2.395
1.953
                                              -.862962
-.863583
-.863977
-.863172
-.363812
12.124
6.123
4.116
3.134
2.539
                                                                      1.64129
                                                                      3.24988
4.83455
6.41376
7.93135
READY
SEP#.....NULL VOLTS.....
ENTER I FOR CCY ROTATION; -I FOR CY ROTATION ?-I RCD2 77.528
                       MEAS
TIME
                                               V OUT
                                                                      G DOT
TIME
                       9.342
4.733
3.179
2.462
1.958
                                                                      1.6324
3.23877
4.81933
6.39017
7.90898
12.235
6.144
4.129
3.114
2.516
                                               .029515
                                               .029838
.029884
.029893
                                                .030049
READY
SER#.....NULL VOLTS.....
ENTER | FOR CCW ROTATION; -| FOR CW ROTATION ?! 75.330 RUP MEAS V OUT G! TIME (VDC)
11.941
6.J!
4.J41
                       6.261
3.174
2.159
                                               -.048714
-.048593
-.048976
                                                                      1.66644
3.31898
4.92428
3.049
                        1.642
1.328
                                               -.84891
-.848264
READY
DUN
SER#.....NULL VOLTS.....
ENTER I FOR CCW ROTATION; -: FOR CW ROTATION 7-: RCDR 75.383 RUH MEAS V OUT G DO TIME TIME (VDC)
11.981
6.23
4.255
3.359
2.471
                       6.281
3.184
2.166
1.647
1.332
                                               .025032
.025178
.025287
.025287
.025079
                                                                      1.66088
3.3
4.90727
6.50507
3.05301
READY
SER#.....NULL VOLTS.....
ENTER : FOR CCV ROTATION; -1 FOR CW ROTATION ?: ?2.538 RUH MEAS V OUT G !
                        MEAS
TIME
                                                                      G DOT
 TIME
                                              -.0263 F5
-.0263 75
-.026707
-.026585
-.026912
11.721
5.892
3.961
2.988
2.415
                                                                      1.70062
3.37729
5.02373
6.65964
8.23975
                        3.178
                       1.644
1.127
.868
.72
 READY
SER*......NULL VOLTS.....
ENTER 1 FOR CCW ROTATION; -1 FOR CW ROTATION ?-1 7CDR ?2.538 7UH MEAS V OUT G DOTTIME TIME (VDC)
                                                                      G DOT
11.741
5.912
3.974
6.998
6.424
                       3.138
1.649
1.13
.87
.720
                                               .313889
.313524
.313593
.313386
.313399
                                                                      1.69483
3.36587
5.8873
6.63742
6.63916
                                            JERK DATA
 EADY
                                        TABLE 3.5.2-XIV
```

عائب أستائلها تطافأ بالأراجة وأجله فتأث السياسية أأالت

RUN ENTER I ?7.500	FOR CCW ROTATION;	-1 FOR CU ROTATION		S/N 373 R = o in. -6.5MV
RUN TIME	M e as Time	V OUT	G DOT	X and Y Axis
12.02 6.03 4.038 3.034 2.445	9.214 4.647 3.107 2.337 1.898	4.9292 4.9464 4.9285 4.9387 4.9487	1.57571 3.14096 4.69044 6.24258 7.74642	
READY		-1 FOR CW ROTATION		
77.500 RUN TIME	MEAS TIME	V OUT	G DOT	
12.96 6.349 4.352 3.345 2.453	9.244 4.662 3.117 2.345 1.904	-4.8372 -4.0382 -4.0386 -4.0389 -4.0391	1.57048 3.1311 4.67423 6.22003 7.72116	
75.302	•	-1 FOR CW ROTATION		
RUN Time	meas Time	V OUT (VDC)	G DOT	
11.794 5.902 3.955 2.973 2.393	6.227 3.113 2.103 1.589 1.277	3.2338 3.229 3.243 3.235 3.2197	1.6059 3.22928 4.78887 6.37067 7.91475	
READY RUN ENTER 1 75.330 RUN	MEAS	~1 FOR CW ROTATION V OUT	7-1 G DOT	
TIME 11.808 5.922 3.967 2.983 2.4	TIME 6.201 3.123 2.11 1.594 1.281	(VDC) -3.2056 -3.2031 -3.2183 -3.2117 -3.195	1.604 3.19824 4.77439 6.34931 7.89167	
READY		-1 FOR CW ROTATION V OUT (VDC)	?1 G DOT	
11.5 5.77 3.864 2.905 2.34	3.116 1.591 1.077 .82 .673	1.539 1.5466 1.543 1.5394 1.5544	1.64696 3.2825 4.90166 6.51979 8.09402	
? ? .5 88 Ruii	MEAS	-I FOR CW ROTATION	?-1 G DOT	
TIME 11.54 5.79 3.878 2.916 2.348	7 IME 3.126 1.596 1.08 .822 .675	(VDC) -1.54 -1.5473 -1.5442 -1.5485 -1.5561	1.64125 3.27116 4.88396 6.4952 8.86644	
READY		JERK DATA TABLE 3.5.2 -XV	·-·•	

```
ENTER 1 FOR CCW ROTATION; -1 FOR CW ROTATION ?1 77.523 WEAS VOIIT
                                                                                S/N 373 R = 0 in.
-6.2 HV
Z Axis
                                                                  G DOT
                                            (VDC)
                      TIME
TIME
                                                                  1.56892
12.272
6.277
4.284
3.281
                                            -.254157
                      9.256
                      4.69
3.15
2.381
                                            -.05421
-.054414
-.054396
-.054896
                                                                  4.63761
6.14735
7.62643
2.49
 READY
TUN ENTER I FOR CCW ROTATION; -1 FOR CW ROTATION 7-1
 77.500
                                             V OUT
                                                                  G DOT
                       MEAS
 RUK
TIME
                      TIME
                                             (VDC)
                                                                  1.56361
3.12748
12.113
6.256
4.256
                      9.287
                                             .016855
                      4.663
3.118
2.346
                                             .016281
.015863
                                                                  4.66963
                                             .01644
 3.249
 2.456
                       1.905
 READY
 RUN
ENTER I FOR CCW ROTATION; -1 FOR CW ROTATION 71
 25.320
300
                                             V OUT
                                                                   G DOT
                       MEAS
 TIME
                       TIME
                                             -.040132
-.039801
-.039996
                                                                   1.62128
 11.828
5.953
                       6.223
                                                                  3.18159
4.73145
6.27152
7.76548
                       3.155
2.146
1.632
 4.203
3.32
2.439
                                             -.040111
                                             -.039936
                       1.32
 READY
 RUB
ENTER I FOR CCW ROTATION; -I FOR CW ROTATION ?-I
 25.220
RUII
                                             V OUT
                                             (VDC)
                       TIME
                                                                    1.59575
                                              .015467
  11.869
                        6.244
                                             .015383
.01532
.015043
                                                                   3.19285
4.76478
6.33869
 5.932
3.975
2.988
                       3.124
                       1.595
                                              .015055
                                                                    7.87526
  2.405
  ENTER 1 FOR CCW ROTATION; -1 FOR CW ROTATION ?1 ?2.5300
                                                                    G DOT
                                             V OUT
  TIME
                        TIME
                                                                   1.63671
3.2515
4.83533
6.40731
                                              -.023495
                        3.16
  11.572
                        1.634
1.12
.863
.716
                                             -.023523
-.023523
  5.825
3.917
2.956
                                              -.023544
                                              -.023518
                                                                    7.928
  2.389
  READY
  RUH
ENTER : FOR CCW ROTATION; -: FOR CW ROTATION ?-!
?2.533
RUH
MEAS VOUT G DO
                                                                    G DOT
                                              (VDC)
   TIME
                        TIME
                                              .007952
                                                                    1.63121
  11.611
                        3.169
                                                                    3.26327
4.8714
6.47964
                                              .2078
.207748
.207719
  5.884
                        1.281
.823
  2.923
                         .676
                                               .907778
                                                                    8.84246
                                              JERK DATA
  READY
                                          TABLE 3.5.2-XVI
```

BUN SER*	3-20-80 R = 2	4 in.	.NULL VOLTS10.99.			
20TER 1	FOR CCW POTATION:	-1 FOR CU ROTAT	O# 71			
AUN TIME	ÆAS Time	V OUT	g bot			
10.148	9.295 4.675	4.7724 4.7798	1.5591 3.11462			
4.373	3.126	4,7632	4.65314			
3.36 2.466	2.351 1.939	4.7425 4.779	6.18934 7.63345			
READY TUR		Y1 5	HIN I WATE			
	FOR CCW ROTATION;					
77.500	•					
RUN	MEAS Time	V OUT (VDC)	g not			
12,162	9.299	-3,999	1.55731			
6.131 4.486	4.69 3.136	-4.8001 -4.3005	3 .10441 4 .63534			
3.271	2.359	-4. <i>390</i> 6	6.16737			
0.473	1.915	-4.001	7.65871			
TEADY THU SER#	A	71S	NULL VOLTS			
ENTER I	FOR CCW ROTATION;	-1 FOR CW ROTAT	ION 71			
25,303	MEAS	V OUT	G DOT			
Time	TIME	(VDC)	• • • • • • • • • • • • • • • • • • • •			
11.897	6.217	3.1297	1.592			
5.967 3.998	3.131 2.116	3.1291 3.14 3 4	3.17412 4.73737			
3.305	1.599	3.1346	6.50263			
0.42	1,265	3.1206	7,82645			
READY RUP SERP	A	xis	.NULL VOLTS			
CUTER 1	FOR CCW ROTATION:	-1 FOR CW ROTAT	10# ?-1			
	FOR CCW ROTATION;					
25.333 Tun	MEAS	v out	G DOT			
TIME	TIME	(VDC)				
11,238	6.238	-3.1436	1.58653			
5.906 4.312	3.141 2.123	-3.1424 -3.1546	3.16435 4.72084			
3.315	1.634	-3.1474	6.27984			
8.428	1.289	-3.1324	7.80066			
READY 1885						
SER#		XIS	HULL VOLTS			
2012R 72.508	FOR CCW ROTATION;	-1 FOR CW ROTAT	ION 71			
RUN	MEAS	v out	g por			
TINE	TIME	(VDC)				
11.658	3.135	1.563	1.62464			
5.847 3.917	1.6 1.083	1.5107 1.5074	3.23927 4.83533			
2.945 2.372	.825 .676	_ 1.5846 1.52J3	6.43124 7.984 <i>8</i> 2			
	*0.0	1.7243	7.50482			
TEADY TUN SER#		xis	, MULL VOLTS			
	FOR CCW ROTATION:	-I FOR CW ROTAT	ION 7-1			
2008 22.504						
nn.50a niir Tine	(EAS	<i>₩ 001</i> (VDC)	G P01			
	TIME					
11.699 5.869	3.145 1.686	-1.5249 -1.5339	1.61894 3.22713			
3.932	1.387	-1.5336	4.61669			
2.955	.e.7 .679	-1.5274 -1.5487	6.43948 7.95798			
		RK DATA	********			
READY	TABLE 3.5.2-XVII					

```
NADC 80081-60
ENTER 1 FOR CCV ROTATION; -: FOR CW ROTATION 21
27.533
                   HEAS
                                       V OUT
                                                          G POT
TIPE
18.123
6.381
4.372
3.36
2.466
                                      4.7474
4.7615
4.7441
4.7878
4.7638
                   9.269
4.675
3.125
2.351
1.949
                                                          1.56032
                                                          3.11468
4.65188
6.18954
7.68345
READY
ENTER 1 FOR CCW ROTATION; -1 FOR CW ROTATION 7-1 RORR 77.500 BUT IEAS VOUT G D
                   TIME
                                                          G DOT
 TIME
                                       (VDC)
                   9.299
4.69
3.136
2.359
1.915
                                       -3.9989
-4
-4.0033
-4.2033
12.162
                                                          1.55731
                                                          3.12492
4.63534
6.16737
7.65871
6.1
4.286
3.271
2.473
TEADY
SEP#......VULL VOLTS.....
11.598
5.967
3.998
3.334
0.42
                   6.218
3.131
2.116
1.598
                                      3.1263
3.1245
3.1397
3.1343
3.1175
                                                          1.59186
3.17412
4.73737
6.30493
7.82645
                    1.285
 READY
SER#.....NULL VOLTS.....
ENTER 1 FOR CCW ROTATION; -1 FOR CW ROTATION ?-1 7CDR
 25.338
                                       V OUT
                                                          G DOT
                    ME AS
TIME
TIME
11.938
5.987
4.312
3.316
0.408
                                       -3.1404
-3.1379
-3.1523
-3.1468
-3.1301
                                                          1.58653
3.16352
4.72384
6.27934
7.83366
                    6.238
                    3.141
2.123
1.634
1.289
 EADY
ENTER I FOR COM POTATION; -I FOR CW ROTATION 71
20,588
TUT: IEAS
 HEAS
TIME
 TIPE
                                       (VDC)
11.659
5.847
3.917
2.945
2.372
                                       1.5834
1.5129
1.51
1.5869
1.5232
                                                          1.6245
3.23927
4.83533
G.43124
7.98482
                    3.135
                    1.6
1.333
.825
.677
 READY
 SER#......MULL VOLTS.....
 THIER I FOR CCV ROTATION; -1 FOR CW ROTATION ?-1 DCD2
12.500
                                       V OUT
                    TEAS
                                                           G POT
 TIME
11.699
5.869
3.938
2.955
2.38
                                       -1.5036
-1.5325
-1.5050
-1.5059
-1.5416
                                                          1.61094
3.22713
4.01609
6.43948
7.95798
                    3.145
                    1.636
1.387
.807
.679
                                 JERK DATA
 CEADY
                              TABLE 3.5.2-XVII
```

```
NADC 80081-60
ENTER 1 FOR CCW ROTATION: -1 FOR CW POTATION 21
27.538
                   TEAS
                                       V OUT
                                                           3 DOT
TIME
                   9.225
4.675
3.125
2.351
1.939
                                       4.7668
4.7734
4.7583
4.7410
4.7777
                                                          1.55898
3.11462
4.65128
6.18954
7.68845
12.149
6.881
4.372
3.26
2.466
READY
ENTER I FOR CCW ROTATION; -I FOR CW ROTATION 7-1 RCDR 77.530 RUI (EAS V OUT G DO
                    LEAS
TIME
                                                           G DOT
TIME
                                       (VDC)
                                                          1.55731
3.13441
4.63534
6.16737
7.65871
                                       -3.999
-4.380i
-4.0284
-4.8005
12.162
                   9.299
6.121
4.286
3.271
                   4.69
3.136
2.359
1.915
2.473
READY
ENTER I FOR CCW ROTATION; -I FOR CW ROTATION ?I ?5.330 UN IEAS VOUT G D TIME TIME
SER#.....HULL VOLTS.....
                                                           G DOT
11.898
5.967
3.998
3.236
2.42
                   6.218
3.131
2.116
1.599
1.285
                                                          1.59186
3.17412
4.73737
6.30273
7.82645
                                       3.1301
                                       3.1444
3.1397
3.1225
SER#.....NULL VOLTS.....
ENTER 1 FOR CCW ROTATION: -1 FOR CW ROTATION ?-1
TCDR
75.200
RUN MEAS VOUT G DO
TIME TIME (VDC)
                                                           G DOT
11.938
5.986
4.312
3.316
0.428
                                       -3.1429
-3.1422
-3.1534
-3.1479
-3.1317
                    6.238
                                                           1.58653
                   3.141
2.123
1.634
1.289
                                                          3.16435
                                                           9:27384
7:27386
CEADY
SEC#.....NULL VOLTS.....
ENTER | FOR CCW ROTATION; -I FOR CW ROTATION ?! 70.500 RUN MEAS V OUT G D TIME TIME (VDC)
                                                           G DOT
11.659
5.848
3.917
0.945
0.372
                                       1.5033
1.5126
1.549
1.5266
                                                          1.6245
3.23871
4.83533
6.43124
7.98482
                    3.135
                    1.6
                                       1.5223
TEADY
G POT
11.699
5.869
3.930
0.955
0.30
                                                          1.61894
3.02713
4.81689
6.43948
7.95798
                    3.145
                                       -1.5259
```

114

JERK DATA

TABLE 3.5.2-XIX

-1.5325 -1.5293 -1.523 -1.5425

1.636 1.887 .827 .679

TEADY

```
NADC 80081-60
EUTER 1 FOR CCU ROTATION; -1 FOR CW ROTATION 71 77.533 RUN PERS V OUT G 1
                 TIME
                                   V GUT
TIPE
10.148
6.381
4.473
3.46
0.466
                                   4,7519
4,7577
4,7411
4,7039
4,7596
                                                     1.5591
3.11462
4.65214
6.18954
7.68845
TEADY
CHIER I FOR COM NOTATION; -1 FOR CW ROTATION ?-1
TENE
                                    V OUT
                                                      G DOT
12.162
6.131
4.386
3.371
2.473
                                    -3.9997
-4.2028
-4.2011
-4.2312
-4.2317
                                                     1.55731
3.13441
4.63534
6.16737
7.65871
                  9.299
YEADY
THE
SEP#.....RULL VOLTS......
SITE? I FOR COM ROTATION; -I FOR COM ROTATION ?I
25-33-3
TON MEAS V OUT G D
TIME TIME (VDC)
                                   3.1262
3.1248
3.1383
3.1388
3.1158
11.898
5.967
3.598
3.335
                  6.218
3.131
2.116
1.599
1.285
                                                     1.59186
3.17412
4.73737
6.33283
7.82645
0.40
READY
G DOT
11.938
5.987
4.311
3.416
2.423
                                                     1.58653
5.16352
4.70001
6.27984
7.80366
                  6,238
                                    -3.146
                  3.141
2.122
1.6J4
1.239
                                    -3.1445
-3.1577
-3.1555
-3.1376
PEADY
TUN
SEP#.....NULL VOLTS.....
ENTEP 1 FOR CCW ROTATION; -1 FOR CW ROTATION 71 72.33
                  TIME
                                    V OUT
                                                      G DOT
TIME
11.659
5.848
3.917
0.945
0.370
                                                     1.6245
3.23871
4.83533
6.43124
7.98482
                  3.135
                  1,6
1,JR3
.825
.676
c not
11.698
5.669
3.932
2.955
2.38
                                    -1.5263
-1.5344
-1.5313
-1.5279
-1.5427
                                                      1.61936
3.02713
4.01609
5.43949
7.95790
                  3.145
 TEADY
                            JERK DATA
                         TABLE 3.5.2-XX
```

```
ลิยก
       R = 23.6 in.
ENTER I FOR CCW POTATION: -1 FOR CW POTATION ?1
77.503
RUP
TIPE
                                        V OUT
                    EAS
10.124
6.104
4.116
3.144
2.538
                                        -.J4068P
-.J43738
-.J43357
-.J43747
-.J43835
                                                            1.53629
3.J4148
4.52527
6.20364
7.42663
                    9.27
                    4.718
3.169
2.395
1.952
READY
EPTER 1 FOR CCW ROTATION; -1 FOR CW ROTATION ?-!
1007
17.500
100
                    LEAS
                                        ( VDC )
                                                            G DOT
TIME
12.236
6.131
4.387
3.372
2.474
                   9.343
4.691
3.137
2.36
1.916
                                                            1.52597
3.25294
4.55738
6.06315
7.5287
                                         .02269
.02128
.021213
                                         .222126
PEADY
RUH
GERA......WILL VOLTS.....
ENTER 1 FOR CCW ROTATION; -1 FOR CM ROTATION 71
75.302
200 XEAS V OUT OF
                                        V OUT
                    MEAS
TIME
                                                            G DOT
TIME
                    6.261
3.174
2.159
1.642
1.328
                                        -.029817
-.029751
-.029882
-.030195
                                                            1.55984
3.09917
4.60812
6.10889
7.56232
11.941
6.21
4.242
3.349
2.463
                                         -.229866
READY
ENTER 1 FOR CCW ROTATION; -1 FOR CW ROTATION 7-1 RCD2 75.230 RUD YEAS VOUT G DO
                                        V OUT
                                                            G DOT
TIME
11.981
5.988
4.310
3.316
0.429
                                        .008142
.008612
.008861
.009339
.009494
                                                            1.55463
3.11355
4.64257
6.17573
7.66818
                    6,281
READY
ENTER 1 FOR CCW ROTATION: -1 FOR CW ROTATION 71
72.530
RUU
TIME
                    TIME
                                         V OUT
11.731
5.892
3.961
0.989
0.416
                                        -.020764
-.020881
-.021123
-.021149
-.721186
                                                            1.59183
3.16124
4.70235
6.23152
7.70944
                    3.178
                    1.644
1.127
.868
.72
SHIER I FOR CCU ROTATION; -1 FOR CM ROTATION ?-1 MCDR
22.538
                    . EAS
                                        V OUT
TIME
11.740
5.87
3.933
2.956
2.301
                    3.188
1.637
1.JRC
.820
                                        -.302627
-.330266
-.031083
-.331662
-.331683
                                                            1.58627
3.17328
4.73588
6.30138
7.88276
                                JERK DATA
 PEADY
                            TABLE 3.5.2-XXI
```

A CANADA CANADA

```
ENTER 1 FOR CON ROTATION; -1 FOR CM ROTATION ?1 77,530 TUP 1EAS VOUT 3.8
                                                 TEAS
                                                                                                  V OUT
                                                                                                                                                     S DOT
TIME
                                                 9.312
4.676
3.169
2.352
1.91
                                                                                                  -.331675
-.331191
-.330469
-.30900
10.165
6.385
4.116
10.165
                                                                                                                                                    1.63576
3.07179
4.63455
6.53369
0.36934
SER*......ATIS......HULL VOLTS.....
THIER I FOR COM ROTATION: -1 FOR CW ROTATION 7-1 NCDR 7-1, NCDR 7-
                                                 9.342
4.733
3.137
2.36
1.916
                                                                                                                                                     1.63J4
3.25877
4.86805
6.47754
0.04325
                                                                                                    .014418
.013368
.011595
 10.035
6.144
4.J87
3.J72
2.474
  LEADY
THE
 DE M......NULL VOLTS.....
 ENTER 1 FOR CCW ROTATION; -1 FOR CW ROTATION 71 75.333 PUR :EAS V OUT 6 N
                                                                                                    V OUT
                                                                                                                                                     G DOT
  TIME
                                                   TIME
11.941
5.967
4.341
3.349
2.481
                                                                                                   -.827379
-.826582
-.826923
-.828138
-.825396
                                                                                                                                                     1.66644
3.33404
4.92428
6.5264
8.21933
                                                   6.261
                                                  3.132
2.159
1.642
1.286
  EDITER I FOR CCM ROTATION; -1 FOR CW ROTATION ?-1 2008 ?5.850 PUP EAS V OUT G D
                                                                                                    V OUT
                                                                                                                                                     3 POT
  T I ME
                                                  TIPE
 11.981
6.03
4.210
3.217
3.409
                                                  6.281
3.184
2.123
1.625
1.29
                                                                                                    .386146
.385899
.383855
.383667
.38224
                                                                                                                                                      1.66388
                                                                                                                                                     3.3
4.95987
6.59562
0.19026
  PEADY
  DUP
DOP#.....NULL MOLTS.....
11.731
5.892
3.961
0.988
0.415
                                                                                                    -.020852
-.020884
-.J00992
-.J20982
-.J21176
                                                   3.178
                                                                                                                                                      1.78062
3.37729
5.82373
                                                   1.644
1.127
.368
.72
    "EADY
  ENTER 1 FOR GGV ROTATION: -1 FOR CW ROTATION 7-1 RGD? 20.550
                                                                                                                                                      G POT
  TIUZ
                                                                                                    -. 333329
-. 333477
-. 335356
-. 33634
-. 336448
                                                   3.108
  11.740
5.910
3.933
                                                                                                                                                      1.69469
                                                   1.649
1.368
.628
                                                                                                                                                     3,36587
5,3555
6,73173
C,35741
   37.
138.5
                                                                                         JERK DATA
   DEADY
                                                                                 TABLE 3.5.2-XXII
```

Control of the second second

				NADC 80081-60
	FOR CCW ROTATION; -1	FOR CW ROTATION	?1	S/N 381 R = 0 in.
77.500 RUN TIME	MEAS TIME	V OUT	G DOT	X and Y Ax1s
12.02	9.214	4.7526	1.57571	
6.03	4.647	4.7649	3.14096 4.69044	
4.038	3.107 2.337	4.7476 4.7301	6.24258	
3.834 2.445	1.898	4.7655	7,74642	
READY RUM				
ENTER 1	FOR CCW ROTATION; -1	FOR CW ROTATION		
สบท	11EAS	V OUT	G DOT	
TIME	TIME	(000)		
12.361	9.244	-3.9969	1.57235	
6.049	4.662	-3.9981 -3.9984	4.67539	
4.251 3.245	3.117 2.345	-3.9986	6.22003	
2.453	1.904	-3.999	7.72116	
READY				
200				
	FOR CCW ROTATION; -	FOR CW RUIALLOR	1 11	
?5.228 300	MEAS	V OUT	G DOT	
TIME	TIME	(VDC)		
11.768	6.181	3.143	1.60945	
5.902	3.113	3.1414	3.20908 4.78887	
3.955	2.123 1.539	3.1538 3.147	6.37267	
2.973 2.393	1.277	3.1318	7.91475	
RUN				
ZHTER	FOR CCW ROTATION; -	I FOR CW ROTATION	4 7-1	
?5.300 300	!TEAS	v out	G DOT	
TIME	TIME	(VDC)		
	6.221	-3.1641	1.604	
11.808	3,123	-3.158	3.19824	
3.968	2.11	-3.1724	4.77318 6.35144	
2.982	1.594 1.281	-3.1653 -3.1492	7.89167	
2.4	1 64.01			
READY				
RUU Enter	FOR CCW ROTATION; -	I FOR CW ROTATIO	N ?1	
?2.503	!EAS	v out	g DOT	
TIME EMIT	TIME	(VDC)	-	
	2.116	1.5121	1.64696	
11.5 5.77	3.116 1.591	1.5197	3.2825	
3.864	1.077	1.5158	4.90166	
2.995	.82	1.512 1.5258	6.51979 3.09402	
2.34	.673	1.000	0.0.400	
READY				
DUU ENTER	FOR CCW ROTATION;	-1 FOR CW ROTATIO	IN 7-1	
22.500				
7011	MEAS Time	V OUT	G DOT	
3111				
11.542	3.127	-1.5379 -1.5434	1.64096 3.27116	
5.79 3.878	1.596 1.38	-1.5402	4.88395	
2.915	.822	-1.536	6.4952	
0.348	.675	-1.5511	8.25644	
EADY		JERK DATA		
.=	7	ABLE 3.5.2-XXI	II	

RUP EMTER L 27.500	FOR CCW POTATION; -1	FOR CW ROTATION	?1
TIME	∴EAS TIME	V GUT (VDC)	G DOT
12.875 6.872	9.269 4.69	318633 01842	1.56853
4.081	3.15 2.381	018491 018446	4.64132
2.488	1.941	018582	7.61254
READY RUN ENTER 1 27.500	FOR CCW ROTATION; -1	FOR CW ROTATION	?-1
RUN TIME	HEAS Time	(VDC)	3 DOT
12.104	9.287 4.663	.001857 .001763	1.56477
4.094	3.16 2.346	.302322 .002044	4.62628
2.454	1.905	.001186	7.71891
READY RUN RUTER I	FOR CCW ROTATION; -1	FOR CW ROTATION	21
25.000	MEAS	v out	G DOT
TIME	TIME	(VDC)	
11.811 5.945	6.224 3.156	018204 018204	1.63359 3.18587
3.998 3.315	2.147 1.632	018325 018173	4.73737 6.23192
2.437	1.321	81 83 11	7.77185
READY RUN ENTER 1	FOR CCW ROTATION; -1	FOR CW ROTATION	?-1
25.222 7011	(ÆAS	v out	G DOT
TIME	TIME	(VDC)	
11.351 5.965 3.969	6.244 3.166 2.111	203791 224255 304192	1.59818 3.17519 4.77198
3.225	1.637	20441	6.26116 7.8851
READY	1 • 2 0 2	1004550	7.0021
RUN ENTER I	FOR CCW ROTATION; -1	FOR CW ROTATION	71
?2.500 Tun	EAS	V OUT	G POT
TIME	TIME 3.16	(VDC) a1627R	
11.545 5.812 3.908	1.634 1.12	016278 016449	1.64354 3.25877 4.84647
2.949	.863 .716	016557 016421	6.42252
READY	• 714	- 1010421	1.54130
สมช	FOR CCW ROTATION; -1	FOR CW ROTATION	71-
STOP			
READY RIII			
?2.500	FOR CCW ROTATION; -1		
RUN Time	MEAS Time	V OUT (VDC)	G DOT
11.585	3.17	009092	1.63487
5.79 3.88	1.597 1.382	239357 239538	3.27116
2.349	.323 .676	JJ9621 JJ9697	6.49297 8.36331
READY	TAR	JERK DATA SLE 3.5.2-XXIV	

3.6 Acoustic Sensitivity

3.6.1 Test Setup and Procedure

The sensor units were mounted (one at a time) on a cantilever beam (aluminum channel) and positioned in the throat of the acoustic chamber. The jet axis (X - axis) of the sensor coincided with the direction of acoustic wave propagation and with the horizontal centerline of the chamber.

The unit was energized and a series of eight acoustic pulses (approximately 155 db for 10 seconds) were applied to the test area. Three microphones were placed within the test area under procedures outlined in MIL-STD-810C, Method 515.2. The null output of the unit was monitored throughout testing along with the input to the acoustic chamber.

A test schematic is shown in Figure E.2-1 of Appendix A, Part E of this report, with the test procedure.

The baseline tests were repeated to discover any anomolies caused by the acoustic environment. These tests were done as in Section 3.1 of this report.

3.6.2 Test Results

The octave analysis specification for the category D, 165 db acoustic test is shown in Figure 3.6.2-1.

The calibration of the acoustic chamber is shown in the octave analysis shown in Figure 3.6.2-2.

The octave analysis for the three microphones placed around the test specimen indicated an overall acoustic level of 155 db. (See Figures 3.6.2-3 to 3.6.2-5) This level was the highest that could be obtained for this setup. One of the acoustic drivers had to be replaced due to failure caused by pushing the limit of the equipment.

The output of the device was recorded on an occillograph. A typical graph is shown in Figure 3.6.2-6.

The post acoustic baseline test results are shown in Tables 3.6.2-I through 3.6.2-X. The data is in the same form as the initial baseline test data.

3.6.3 Data Evaluation

The acoustic environment had no effect on the null output of the device except for the increase in noise level. All three devices had a pretest noise level of 6.0 millivolts peak to peak. The overall average noise level during testing was 12.0 millivolts with no shift in the null D.C. output. The noise level of the null output was 6.0 milliovlts after the acoustic pulses, indicating no adverse effects on the Superjet sensor.

The worst case baseline data obatined for the three test units after the acoustic environmental test is as shown below:

1.	Full Scale Rate at +2% Linearity Error	500 +100 deg/sec
2.	Scale Factor	$00\overline{6}30 +.00002 \text{ V/deg/sec}$
3.	Bias	+1.07 deg/sec
4.	Hysteresis	+0.46 deg/sec
5.	Threshold	<0.10 deg/sec
6.	Resolution	<0.10 deg/sec
7.	Readytime	.071 seconds maximum
	Drift	+.75 deg/sec/min maximum
9.	Null Offset	<u>+</u> 1.25 deg/sec

The fullscale rate increased by 9% on S/N 381 and the scale factor increased by 0.2 millivolts/degrees/second. The only substantial increase in the bias parameter occurred in S/N 381 as also shown in the null offset measurement. The null offset measurements were not taken during the initial baseline test. The calculated bias (least squares fit) value relates to null offset which is the voltage measured before the actual test sequence. Readytime has increased typically 50% over the initial baseline test but remains the same as measured in the hot and cold temperature tests. The drift of the sensors have increased approximately 265% over the inital baseline measurements. This may have been caused by the temperature test environments.

FIGURE 3.6.2-1

SPECIFICATION ILL-STD-910C NETHOD 515.2 CATEGORY D

FIGURE 3.6.2-2
CALIBRATION 170 db
3-27-80
ACOUSTIC CHAMBER

4) St. 169.72

105.82 112.77 108.50 114.65 169.71 132.92 129.76 107.50

U+U h+LI N+ 1S.0 63.0 24.0 250.0 27.0 250.0 30.0 1000.0 33.0 2000.0 36.0 4000.0 39.0 8000.0

FIGURE 3.6.2-3

MICROPHONE NO. 1 CALIURATION 3-27-80

10.0 63.0 144.61 21.0 125.0 149.80 24.0 250.0 143.50 27.0 500.0 143.25 30.0 1000.0 144.22 33.0 2000.0 144.22 33.0 2000.0 111.93 36.0 4000.0 139.44 39.0 8000.0 111.49

FIGURE 3.6.2-4
MICROPHONE %0. 2 CALIBRATION
3-27-80

LEU A-LI N- 4 (4) 5L- 154.64

1S.0 63.0 140.84

21.0 125.0 150.06

24.0 250.0 147.18

27.0 500.0 149.43

30.0 1000.0 143.79

33.0 2000.0 139.85

36.0 4000.0 135.14

39.0 8000.0 107.59

42.0 16000.0 113.35

MICROSHONE 10

MICROPHONE NO. 3 CALIBRATION 3-27-80

FIGURE 3.6.2-6

NULL OUTPUT VS. ACOUSTIC ENVIRONMENT (TYPICAL)

TEST SUMMARY

FULL SCALE RATE (PEG/SEC): 500

-.3838

49.8628

SCALL FACTOR (V/DEG/SEC): -6.33421E-23

BIAS (VOLTS) : 3.35270E-33

-.311

HYSTERESIS, NEG RATES (VDC): -2.89790E-03 PYSTERESIS, POS RATES (VDC): 1.85776E-83

NULL OFFSET (VDC): 2.72875E-33

-.227

-2.273

7-22-80

TEST ENGINEER

PEADY

TABLE 3.6.2-I

SCALE FACTOR PROGRAM

TEST SUMMARY

FULL SCALE RATE (PEG/SEC): 550

-3.186

-2.8451

-2.51.0

-2.1813

-1.5399

-1.2262

-.9163

-.6387

-.3031

-1.858

498.87

448.955

399.263

349.232

299.075

249.423

199.461

149.583

99.6976

49.8504

SCALE FACTOR (VADEGASEC): -6.32132E-33

BIAS (VOLTS) : 3.23861E-03

-3.1500

-2.8346

-2.5193

-2.2043

-1.8085

-1.5733

-1.2576

-.9423

-.627

-.3119

HYGTERESIS, NEG RATES (VDC): -2.78058E-33 HYGTERESIS, POS RATES (VPC): 2.11167E-33

TABLE 3.6.2-II

TEST ENGINEER F

.302

- .261

-.661

-.878

- .958

-.932

-.748

-.527

- .252

.37

-.36

-1.341

-1.613

-0.114

-2.486

-2.745

-2.935

-2.779

PATE . 3-22-80	RUE BASELINE	
TEOF . 72°F . 907RH	SER#373	

	RATE (DEG/SEC)	V OUT	V CALC (VDC)	? FS	7 IDEAL
	-49.94J1 -99.8478	.3017	.3137 .6289	•494 • 7 5	-3.958 -3.305
*	-149.68	.922	9437		
•			-	.86	-2.229
	-199.553	1.2381	1.2588	.819	-1.641
	-249.532	1.5598	1.5744	•5.75	000
	-299.481	1.8888	1.8897	.358	378
	-349.292	2.2238	2.2348	751	-BKI
	-399.170	2.5669	2.5199	-1.861	1.865
	-349.000	ย •ย244	2.2347	781	.894
	-899.365	1.8898	1.8694	. 3.14	336
	-249.535	1.5615	1.5744	5.39	816
	-199,610	1.23.98	1.0500	.766	-1.54
	-149.78	•9238	.0444	.eic	-2.178
	- ୨୩ - ୧୯୯୬	.6115	• 6288	• 683	-2.739
	-49.9614	.3323	.3138	.453	-3.627
	49.0533	3123	3168	176	-1.439
	29.7327	6233	6317	451	-1.839
	149.618	9307	947	645	-1.706
٠٧	199.518	-1.2441	-1.0622	718	-1.44
	249.337	-1.5624	-1.577	576	905
	299.271	-1.8861	-1.8904	25	334
	349.156	-0.0165	-2.2376	.353	434
	399.256	-2.5539	-2.5223	1.030	1.235
	349.143	-2.2172	-2.2375	.385	. 141
	299.4:75	-1.8869	-1.8984	218	891
	249.412	-1.5636	-1.5774	- 549	881
	199.474	-1.2456	-1.868	648	-1.3
	149.574	9317	- 9467	- 594	-1.589
	99.6276	6214	6310	406	-1.63
	49.0101	3131	3165	135	-1.081
	3.0 * 0.1 0.1	•0101	- •0100	- • 100	-1.001

TEST SUMMARY
FULL SCALE RATE (DEG/SEC): 400
SCALE FACTOR (V/DEG/SEC): -6.3173/2E-03
BIAS (VOLTO): -1.609162-03
LYSTERESIS, DEG RATES (VDC): -1.7553/62-23
HYSTERESIS, POS RATES (VDC): 1.494/65/E-03
BULL OFFSET (VDC): -5.602/5/E-03

TEST ENGINEER A

READY

TABLE 3.6.2-111

TEST SUBMARY
FULL SCALE RATE (DEC/SEC): 450

SCALE FACTOR (V/DEG/SEC): -6.35151E-83

BIAS (VOLTS) : -1.13828E-33

MYSTERESIS, MEG RATES (VDC): -2.29526E-43 MYSTERESIS, POS RATES (VDC): 1.51515E-J3

HULL OFFSET (VPC): -5.55475E-33

TEST ENGINEER

The second secon

3-27-80

PEADY

TABLE 3.6.2-IV

1

And the second second

TEST SUMMARY

FULL SCALE RATE (DEG/SEC): 553

-2.1802

-2.5369

-2.8389

-3.1748

-3.1754

-2.8397

-2.5081

-2.1816

-1.8632

-1.5439

-1.0313

-.9227

-.6162

-.3116

-3.51313

SCALE FACTOR (VZDEG/SEC): -6.26574E-33

BIAS (VOLTS) 9 -6.7141JE-J3

-2.0015

-2.5152

-2.629

-3.1426

-3.1429

-2.6292

-2.5152

-2.2317

-1.8881

-1.5742

-1.0637

-.9472

- .6333

-.3031

-3.45644

MYSTERESIS, MEG RATES (VDC): -2.87718E-23 MYSTERESIS, POS RATES (VDC): 1.77813E-23

MULL OFFSET (VDC): -7.84673E-23

TABLE 3.6.2-V

349.171

399.30

449.331

498.897

548.806

498.931

449.326

399.075

349.197

299.335

249.376

199.5

149.615

99.6858

49.8528

TAST ENGINEER

-.615

-.24

.085

.929

1.64

.941

.3.34

-.234

-.58

-.806

-.878

- .852

-.739

- .495

-.238

-.969

1.304

1.643

1.037

.372 -.082

-.914

-1.481

-1.937

-2.346

-2.635

-1.733

-2.629

- .33

.35

RATE SENSOR TEST PROGRAM

	DATE 3-27	-80	, יזעא	Post Acoustic	B/L	NADC	80081-60
	TEMP 72°F	51%RH	SER#	381	• •		
	_						
	RATE (DEG/SEC)	(VDC)	V CALC (VDC)	% FS	Z IDEA	L	
ж				342 -651 -942 1.47 1.157 -552 -521 -255 -1.840 -1.23 -1.840 -1.23 -1.840 -1.23 -1.840 -1.23 -329 -445 -990 -445 -990 -831 -990 -831 -990 -831 -990 -831 -990 -831 -990 -831 -990 -831 -990 -831 -990	-4.27 -3.611 -3.617 -2.143 -2.143 -2.143 -2.143 -2.143 -3.33 -3.33 -3.33 -3.33 -3.33 -3.641 -1.533 -3.641 -1.533 -3.641 -3.52		
*	249.471 299.3 349.178 349.127 448.979 498.87 548.806 598.647 548.813 498.914 449.002 349.122 349.275 299.324 249.469 199.547 149.693 99.7484 49.847	-1.5435 -1.8589 -2.1799 -2.5058 -2.837 -3.1723 -3.51031 -3.84686 -3.51104 -3.1735 -2.8384 -2.5076 -2.1817 -1.8609 -1.5451 -1.5451 -1.5451 -1.5255 -66001 -3165	-1.8972 -2.2112 -2.5255 -2.8394 -3.1535 -3.46774 -3.78148 -3.46779 -3.1537 -2.8396 -2.5256 -2.2118 -1.8974 -1.5035 -1.5035 -1.5035 -1.5035 -1.5035 -1.5035 -1.5035 -1.5035 -1.5035 -1.5035 -1.5035 -1.5035	-1.066 -1.213 828 522 364 .5 1.127 1.731 1.145 .523 229 476 797 964 -1.018 947 794 794 556 277	-2.3632 -1.232 784 621 1.232 1.735 1.252 .629 339 715 -1.37 -1.932 -2.846 -3.121 -3.336		

TEST SUMMARY
FULL SCALE RATE (DEG/SEC): 633
SCALE FACTOR (V/DEG/SEC): -6.29488E-03 SCALE FACTOR (V/DEG/SEC): -6.29486E-23
BIAS (VOLTS): -1.31749E-32
EYSTERESIS, NEG RATES (VDC): -2.66266E-23
HYSTERESIS, PGS RATES (VDC): 2.32203E-03
HULL OFFSET (VDC): -1.28466E-32
TABLE 3.6.2-VI
TEST ENGINEER

A CONTRACT OF THE PROPERTY OF

RATE SENSOR TEST PROGRAM

	DATE .3-27-	80	Run Post Acoustic 8/L			
	TENP. 72°F.	51 \$RH	SER#	381	•••	
	RATE (DEG/SEC)	V OUT	V CALC	. FS	7 IDEAL	
*	-49.947 -99.8434 -149.741 -199.58 -249.507 -299.406 -349.36 -399.182 -449.13 -499.11 -548.893 -598.822 -648.661 -598.947 -499.279	.2883 .5937 .8959 1.2037 1.5154 1.5154 2.1534 2.48 2.8125 3.149 3.48734 4.15835 3.8254 4.15835 3.82531 3.82531 3.43937 3.1539	.3 J5 8 .6233 .93 48 1.249 1.563 7 1.0783 2.1932 2.5073 2.8021 3.1366 3.451 47 3.76581 4.37999 3.76586 3.45141 3.137	.426 .721 .951 1.136 1.179 1.137 .971 .665 .235 355 355 355 454 -1.925 -1.454 -1.925 -1.495 919	-5.549 -4.695 -4.13 -3.630 -3.371 -2.467 -1.837 -1.382 -34 1.578 1.929 1.623 1.360 443	
	-449.116 -399.139 -349.332 -299.389 -249.507 -199.619 -149.78 -99.8354 -49.9547 49.8739 99.7332 149.598 199.495	2.8149 2.4827 2.1557 1.8341 1.5175 1.2750 .8976 .5923 .289 3156 6184 9238 -1.2314	2.822 2.5073 2.1928 1.8782 1.5637 1.2493 .9351 .6202 .3058 3235 6378 9521 -1.2667	.174 .6JI .926 1.277 1.128 1.26 .914 .682 .411 193 473 692 861	052 979 -1.606 -2.338 -3.453 -3.453 -3.967 -4.443 -5.349 -2.521 -3.201 -3.207 -2.826	
*	249.447 249.1317 349.135 449.351 448.937 548.63 548.63 548.63 548.63 548.63 548.63 449.346 399.165 349.239 249.335 149.537 149.537 149.547 299.386	-1.543 -1.8584 -2.1792 -2.836 -3.1714 -3.5495 -3.84584 -3.99415 -3.84683 -3.51274 -3.173 -2.3379 -2.5471 -2.1813 -1.5448 -1.2332 -9254 -61.99 -3.165	-1.5616 -1.8959 -2.2133 -2.5249 -2.5258 -3.1541 -3.46879 -3.78348 -4.297878 -3.46877 -3.1543 -2.8398 -2.5254 -2.2134 -1.8959 -1.5815 -1.567 -1.567 -3.233	942 914 759 487 293 423 993 1.522 -2.53.9 1.024 455 047 446 712 862 895 825	-2.455 -1.936 -1.413 792 135 .551 1.177 1.652 -2.537 1.213 .592 267 727 -!.326 -1.872 -2.333 -2.687 -2.837 -2.837 -2.172	

TEST SUMMARY

FULL SCALE RATE (DEG/SEC): 653

SCALE FACTOR (V/DEG/SEC): -6.303 PIE-23

BIAS (VOLTS): -9.1313 42-03

HYSTERESIS, MEG RATES (VDC): -2.64645E-23

HYSTERESIS, POS RATES (VDC): 2.127652-03

DULL OFFSET (VDC): -312814

TEST ENGINEER

RATE SET	SOR PROGRAM:	OUTPUT DRIFT POST ACOU	NADC 80081-60 STIC
DATE . 3-28-80		RUN. BASELINE	• • • •
TEMP . 72°F	50%RH	SER# 355	••••
outpi	T DRIFT IN 19	SEC INTERVA	LS
RATE	MEAN		SCALM FACTOM
(DEG/SEC)	(VDC)	(VOLTG/DAG/JEC)
29.797	.6.3.348	6	6.01737E-37
90.790	.63328		6.344162-33
99.8132	.63393		6.3536543
99.8295	• 63454	5	6.355788-33
199.597	1.2134	4	G. 364385-03
199.571	1.2150		6.J8683E-93
199.590	1.8169		6.J9737E-J3
199.62	1.2183	2.	6.13172E-33
299.403	1.8367		6.13455E-33
299.42	1.8434		6.15674E-33
299.473	1.8459		6.165295-33
222.364	1.8476		6.171952-33
399,196	0.4857	74	6.226868-23
399.214	2.4957		6.25173E-33
399.236	2.4985		6.25991E-33
399.205	2.5012		6.26541E=33
490.386	3.1614	: 1	6.33531E=33 6.35692E=33
499.359	3.1734	18	
498.969	3.1775		6 •3 6883 E= 33
499.314	3.1798		6.37210E-33

MULL OFFSET (VDC): 2.27038E-33

Say le lungh

TABLE 3.6.2-VIII

RATE SEESOR PROGRAM: OUTPUT DRIFT POST ACOUSTIC NADC 80081-60

RUN BASELINE

DATE 3-28-80

TEMP 72°F 50ZRH SER# ... 373

RATE CDEG/SI	DRIFT	IN 15 MEAN (VDC)	SEC	INTERVALS	SCALE FACTOR (VOLTS/DEG/SEC)
99.8198	• :	599355		6	.00438E-03
99.6254	. (1.11539		C	•325 G1 E= 33
99.831		632466		C	• J3 486E+ J3
99,8365	• (533356		6	.348442-33
199.618	1	.21929		ĸ	.138132-33
122.560	1	.22421			.13369E-J3
199.605	1	.22556		6	• 13 994E+#3
190.596	1	.22655		6	.14512E-33
229.364	1	.86141			.01797E-78
299.392		. ଌଟ୍ଟେଅ ଜ			•₽4853E+37
209.415	. 1	.e7305			.n4633E-03
299.437	1	.8715		ત	.053670-33
399.198	2	.53146		G	.34137E-33
399.201	2	.54137		C	. 36537E+∂3
399,217	2	.54413		5	.37279E-23
399,22	2	. 54688		ų	•37764E+33
400.973	3	.23239			.478JSD-33
498,986	3	.24514		G	•5.33.47E=.33
499.318	3	.24863		G	•51234E-33
499.044	3	.25.469		C	.513C5E=33

MULL OFFSET (VDC): -6.42718E-33

Boyl W. Cumph 3-28-80

RATE SERS	OR PROGRAM:	OUTPUT DRIFT POST ACOUSTIC	NADC 80081-60
PATE . 3-27-80	• • • •	RUM BASELINE	• •
TEMP .//2°F 51	ZRH	SER# . 381	••
		•	
		SEC INTERVALS	
RATE	DEA!		SCALE FACTOR
(DEG/SEC)	(VDC)		(VOLTS/DEG/SEC)
99.8889	.58422	5	.85281E-33
99.866	.586314		67131E-33
99.8614	.587233		878471:-33
99.8792	.587252		.87963 E- 33
• • • • • • • • • • • • • • • • • • • •		. ,	
199.636	1.19246	5.	.963168-33
199.622	1.19484		98551E-33
199.633	1.19587		.9912312-33
199.589	1.19657		.99513E-33
200.36	1.81235	۴.	. 85423E-33
209.354	1.81898		. 3 75 5 0 D = <i>d</i> 3
299.365	1.82384	6.	. ୬୧୧૩૩ E− 03
299.427	1.00156	.	. 383.49E+.33
399.216	2.45457		.14854E+.3
399.179	2.46417		.1731 *E=03
399.187	2.46667		.17924E- 33
399.188	2.46818	٥,	100000-83
10.00			
498.945	3.11943	ĸ.	.05005E-33

NULL OFFSET (VDC): -9.57715E-33

3.13142

3.13445 3.13584

499.003

499.234 499.238 6.27535E-33

6.08104E-03 6.00376E-03

BoydW. Cump 3-27-80

TABLE 3.6.2-X

POST ACOUSTIC TEST DATA SUMMARY

PARAMETER	S/N 355	S/N 373	S/N 381
FULL SCALE RATE (DEG/SECOND) AT +2% LINEARITY ERROR	200	007	009
SCALE FACTOR (MV/DEG/SEC) AT BASELINE RATE	-6.30	-6.32	-6.29
BIAS (DEG/SECOND)	-0.53	+0.29	+1.07
HYSTERESIS CCW (DEG/SECOND)	+0.46	+0.28	+0.33
HYSTERESIS CW (DEG/SECOND)	-0.29	-0.24	-0.28
NULL OFFSET (DEG/SECOND)	-0.43	+0.89	+1.25
THRESHOLD (DEG/SECOND)	<0.10	<0.10	<0.10
RESOLUTION (DEG/SECOND)	<0.10	<0.10	<0.10
READYTIME (SECONDS) AVG. OF 5 RATES*	.061	690.	.071
DRIFT (DEG/SEC/MIN) AVG. OF 5 RATES*	+0.75	+0.75	+0.65

*100, 200, 300, 400, AND 500 DEGREES/SECOND (SEE TABLE 3.6.3-II)

TABLE 3.6.3-I

POST ACOUSTIC DRIFT AND READYTIME

RATE (DEG/SEC)	DO (2)	OUTPUT DRIFT (DEG/SEC/MIN)			READYTIME (SECONDS)	
	355	373	381	355	373	381
100	+.82	+.76	+.57	.062	020.	.070
200	+.79	+.78	+.67	090.	070	.070
300	+.79	69.+	+.62	090.	020.	.070
400	+.58	+.76	+.73	090.	890.	020.
200	+.78	+.75	+.67	.062	890.	.075

TARES 6 3-TT

3.7 Vibration

3.7.1 Test Setup and Procedure

The Superjet rate sensors were individually subjected to a sinusoidal mechanical vibration along each of its mutually perpendicular axis as described in Figure B.2-1 in Appendix A, Part B of this report.

A test fixture was fabricated by the environmental lab to accept the hole pattern of the Superjet assembly. The test fixture was installed on a test cube that is part of the C-60 vibration test set. A control accelerometer was mounted on the test fixture to monitor the vibration input along the vertical axis of the test set. The unit was then mounted on the test fixture. The 2222B accelerometer was mounted on the unit along the sensitive axis using Eastman 910 adhesive. A resonance search from 10 Hz to 3000 Hz was conducted at 3 g rms to find the three most severe resonances. This part of the test deviates from the test plan which describes the search from 10 to 5000 Hz. The maximum frequency available at the Martin facility is 3000 Hz. MIL-STD-810C procedures defines 10 to 2000 Hz as the resonance search frequencies. After the severe resonances were determined, the unit was subjected to each resonance frequency for a period of 10 minutes at 5.2 g rms. The unit was then tested for the other axes in the same manner.

After the vibration test, the baseline test was performed for all three units. This is the final test of the program and the results were compared to the post-acoustic baseline test as described in Section 3.6.

3.7.2 Test Results

A dyna-monitor was used to fine tune the most severe frequencies for dwelling. The output accelerometer was installed on the fibre cap of the sensor for S/N 373, and 355 when vibrating the X-axis (jet axis). Upon removal of the accelerometer the fibre cap of S/N 355 separated from its bond joint. This caused concern and the accelerometer was installed on a block on the top of the sensor. This explains the differences of frequencies established along the X-axis. The accelerometer was continued to a hard mount on the sensor for the Y and Z axes. The frequencies for each axis and serial number that were searched at 3.0 g rms and occurred again at 5.2 g rms are shown in Table 3.7.2-I. Also shown is the accelerometer output in units of g (gravity)

	S/N	355	S/N	373	S/N	381
AXIS	f Hz	g	f Hz	8	f Hz	g
х	605	7.0	605	5.0	605	4.0
	850	11.8	970	9.8	950	5.5
	1075	9.5	1125	7.8	2500	14.0
Y	620	7.0	605	7.2	605	7.0
	925	8.2	1000	12.0	1150	13.2
	1840	9.6	2300	15.0	2150	9.2
Z	575	7.0	1025	7.3	560	6.0
	975	9.0	2225	10.0	1100	6.2
	1950	14.0	2650	18.0	2350	18.0

TABLE 3.7.2-I SEVERE RESONANCE FREQUENCIES

The results from the baseline tests are shown in Tables 3.7.2-II through 3.7.2-XI.

3.7.3 Data Evaluation

The Superjet rate sensor is virtually unaffected by vibration along the X and Z axes except for a small increase in null noise level.

However, when the rate sensor is subjected to a vibration along the Y-axis, (normal to jet-axis and input axis), a null shift occurs at a very high frequency. This was evident on S/N 355 and S/N 381, which occurred at 1995 Hz and 2150 Hz respectively, during the resonance search. A null shift also occurred on S/N 373, but this was detected only on the dwell sequence since a sweep was not performed. A sweep was not performed due to the use of a dynamometer to tune in the resonance frequency.

The worst case baseline data was reduced to yield the following:

1.	Full Scale Rate at +2% Linearity Error	500 <u>+</u> 100 deg/sec
2.	Scale Factor	$.006\overline{2}5 + .00002 \text{ V/deg/sec}$
3.	Bias	+2.19 deg/sec
4.	Hysteresis	+ .56 deg/sec
5.	Threshold	<0.10 deg/sec
6.	Resolution	<0.10 deg/sec
7.	Readytime	.080 seconds maximum
8.	Drift	+.76 deg/sec/min maximum
9.	Null Offset	+2.08 deg/sec

Readytime increased by 12% and the bias shifted by 104% on S/N 381. Since the other units did not change appreciably, the effects of vibration is predicted to be undamaging.

TEST SUMMARY
FULL SCALE RATE (DEG/SEC): 500

SCALE FACTOR (V/DEG/SEC): -6.27015E-03

BIAS (VOLTS) : 0.15551E-U3 PYSTERESIS, DEG RATES (VDC): -3.50833E-33 PYSTERESIS, POS RATES (VDC): 1.83084E-33 DULL OFFSET (VDC): 1.88887E-33

TEST DUGINEER

TABLE 3.7.2-II

READY

HATE . 4-7-80.

POST VIBRATION

Ruff. BASELINE....

```
TEMP . 72°F . 507RH
                          SER# ... 355
                     V CALC
RATE
          W OUT
                                7. FS
                                           4 IDEAL
(DEG/SEC) (VDC)
                     (VDC)
                     .3178
                                .3 93
-49.985
          .3340
                                           -4.33
                                .699
          .6379
-99.6117
                     .6321
                                           -3.852
                                .933
          .9143
                     .9467
                                           -3.427
-149.68
-109.595
          1.0030
                     1.2615
                                1.389
                                           -3.031
-049.466
                     1.5761
          1.5377
                                1.119
                                           -2.444
-099.341
                                           -1.637
          1.856
                     1.8937
                                1
                                .719
-349.225
                     2.2054
         2.1834
                                           -1.133
                                .259
-399.134
                                           -.357
         2.511
                     2.52
-448.933
          2.648
                                -.395
                     2.8343
                                           .484
                     3.1493
                                -1.016
-498.659
          3.1914
                                           1.341
          3.54348
                                -2.217
-548.678
                     3.46357
                                           0.000
                     3.1493
                                           1.371
          3.1925
-498.069
                                -1.043
          2.8498
                     2.3349
                                           .524
-449.300
                                -.428
-399.118 0.5128
                     2.5201
                                           -.289
                                965.
-349.191
                     2.2052
                                .647
                                           -1.319
          2.1827
-299.34
          1.8588
                     1.8907
                                .90
                                           -1.689
          1.5486
                     1.5763
-249.494
                                1.03
                                           -2.27
-199.549
          1.2267
                     1.2612
                                .996
                                           -2.744
          .917
                     .9465
                                .851
-149.656
                                           -3.126
-99.854
          .6103
                     .6324
                                . 63 6
                                           -3.534
          .3055
                     .3178
                                .354
                                           -3.892
-49.9843
                                -.279
49.8545
          -.3023
                     -.312
                                           -3.081
99.7518
                     -.6267
                                -.58
          -.6366
                                           -3.198
149.588
          -.9127
                     -.9411
                                -.817
                                           -3.235
199.474
                     -1.2558
                                - .973
          -1.222
                                           -2.683
                                           -2.254
                     -1.5705
                                -1.022
249.373
          -1.5351
299.271
          -1.8524
                     -1.6853
                                -.947
                                           -1.74
                                -.727
          -2.1753
349.143
                     -2.1998
                                           -1.114
398,984
          -2.5338
                     -2.5142
                                - .3
                                           -.414
                                .264
                                           .323
448,892
          -2.8382
                     1033.3-
498.809
          -3.1786
                     -3.1439
                                908
                                           1.131
548.674
          -3.52484
                     -3.45842
                                1.914
                                           1.919
                                           1.135
498.775
          -3.1794
                     -3.1437
                                1.329
448.942
                                .227
          -0.6391
                     -2.6291
                                           .352
                                           -.379
309.046
                                -.275
          -2.5051
                     -2.5146
                                -.664
349.167
          -2.1771
                     -2.2301
                                           -1.246
                     -1.8854
299,293
                                - ,993
          -1.8544
                                           -1.641
249.33
                                -.958
                                           -0.209
          -1.5372
                     -1.5762
          -1.2244
                                -.9.7
199.5
                     -1.0559
                                           -0.5
149.574
          -.9153
                     -.941
                                - . 74
                                           -2.721
                                -.53
                                           -2.003
          -.6384
                     -.6268
```

TEST SUMMARY

FULL SCALE RATE (DEG/SEC): 554

-.3034

SCALL FACTOR (V/DEG/SEC): -6.3079/E-03

31AS (VOLTS) : 2.500932-03

-.3121

-.251

TEST DUGINEER

-0.765

PYGTEREGIS, MEG RATES (VDC): -0.94516E-03 HYGTEREGIS, POS RATES (VDC): 2.59483E-03

BULL OFFSET (VPC): 2.457350-33

TABLE 3.7.2-111

49.6775

POST VIBRATION

	DATE 4-7-80		RUN BASELINE		
	TEMP .72°F.	50 % RH . !	SER	4 37,3	•••
	RATE (DEG/SEC)	V OUT	V CALC	% FS	2 IDEAL
	-49.955	.2973	.3095	.488	2.989
	-99.8151	.6823	.6209	.746	-2.989
*	-149.700	.9107	.9327	.878	-2.345
	-199.614	1.2231	1.2443	.85	-1.783
	-249.49	1.5411	1.5559	.591	947
	-299.223	1.8658	1.8665	.33	34
	-349.162	2.1975	2.1785	763	.274
	-399.128	2.5372	2.4836	-1 .865	1.869
	-349.25	2.1983	2.179	773	.885
	-299.416	1.867	1.8677	.113	339
	-249.438	1.5429	1.5555	.544	639
	-199.597	1.225	1.2442	.77	-1.544
	-149.632	.9124	.9321	.79	-2.111
	-99.832	.604	.621	.682	-2.73?
	-49.9777	.2984	.3096	.447	-3.577
	49.8457	3097	3139	169	-1.359
*	99.767	6141	6258	466	-1.867
	149.559	9209	9368	635	-1.699
	199.444	-1.231	-1.2484	697	-1.397
	249.422	-1.5457	-1.5636	595	953
	299.271	-1.8656	-1.872	253	338
	349.136	-2.1923	-2.1835	.355	.426
	399.353	-2.5262	-2.4953	1.238	1.241
	349.126	-2.1932	-2.1834	.393	.45
	299.261	-1.8666	-1.8719	213	~.264
	249.431	-1.547	-1.5605	54	867
	159.547	-1.8324	-1.249	667	-1.337

TEST SUMMARY

FULL SCALE RATE (DEG/SEC): 400

-.5222

-.6154

-.3136

149.603

99.789 49.8636

SCALE FACTOR (V/DEG/SEC): -6.24649E-33 3IAS (VOLTS): -2.57981E-33

-.9371

-.6259

-.314

HYSTERESIS, HER RATES (VDC): -1.86341E-23 HYSTERESIS, POS RATES (VDC): 1.37997E-33

FULL OFFSET (VDC): -5.85045E-43

TEST CUGIUEER

-.594

-.422

-.14

-1.588 -1.69

-1.101

TEADY

	RATE	SZUSOR TES		POST VIBRATIO	NADC 80081-60
	DATE . 4-7-	80		BASELINE	• •
	TEMP . 72°F	507RH	SER	373	• •
	RATE (PEG/SEC)	V OUT	V CALC	7 FS	7 IDEAL
	-49.95.83 -99.85.86 -149.747	.2962 .6032 .9377	.3158 .6237 .9366	.518 .834 1.322	-4.696 -3.757 -3.370
**	-199.619 -249.448 -299.377	1.0191 1.5363 1.8597	1.8498 1.5617 1.8747	1.367 .099 .534	-0.425 -1.600 830
	-349.252 -399.126 -448.945 -399.110	2.1946 2.529 2.6759 2.5298	2.1874 2.50J1 2.8125 2.5031	111 -1.701 -0.046 -1.850	.143 1.151 2.251 1.100
	-349.091 -299.316 -249.433	0.1901 1.8610 1.5386	2.1677 1.6743 1.5616	156 .445 .813	668 -1.467
	-199.61 -149.70 -99.6436 -49.9614	1.2217 .949t .6424 .2976	1.2492 .9364 .6237 .3139	.976 .943 .753 .470	-2.0 -2.633 -3.393 -4.050
	49.8643 99.7399 149.625	3091 6106 9167	315 6277 9435	2.19 53 771	-1.885 -2.39 -2.318
×	199.439 249.306 299.2 349.899	-1.2081 -1.540 -1.6614 -2.1677	-1.8588 -1.566 -1.8783 -2.1918	877 849 599 184	-1.97 -1.530 9 16
	399.335 448.97 399.843 349.149	-0.501 -0.8618 -2.5017 -0.1691	-2.5341 -2.6173 -2.5343	.6 1.575 .617	.677 1.579 .696
	299.231 249.432 199.535	-1.8633 -1.5448 -1.2338	-2.1915 -1.6785 -1.5663 -1.8534	484 537 782 823	138 838 -1.41 -1.855
	149.567 99.679 49.8435	9209 6146 3152	94J1 6273 3149	681 452 164	-2.341 -1.482

TEST CUMMARY
FULL SCALE RATE (DEG/CEC): 4500
SCALE FACTOR (V/DEG/CEC): -6.06991E-03
BIAS (VOLTS): -2.34913E-03
HYSTERESIS, NEG RATES (VDC): -2.50506E-03
HYSTERESIS, POS RATES (VDC): 0.17795E-03
HULL OFFSET (VDC): -6.14920E-03

TEST ENGINEER

READY

TABLE 3.7.2-V

- 1 - 1 - 1 - 1 - 1	• t · · ·	• 1 L 1	• ((1	-5 . 1
-109.551	1.1963	1.8331	.985	-2.714
-020,,0	1.5066	1.5411	1 . 36	-2.218
-090.30	1.0216	1.8583	£95	-1.645
-349.100	8.1413	0.1629	. 63	990
-359. 194	2.4667	C . 4 73 f	219	- 2888
-44515	8.7978	0.7849	3 75	.46
-400.147	3.137	3.2950	-1.390	1.233
-548.663	3.47101	3.43614	-1.805	1.933
-498 964	3.1335	3.0963	-1.496	1.232
-440.371	2.7966	2.7853	- 300	481
-399.138	468	2.4741	.175	045
-349.255	2.1431	2.1630	588	- 925
-299,345	1,8231	1.8501	847	-1.555
-0.2.403	1.5483	1.541	95.2	-2.1
-199.599	1.198	1.2334	.945	-
-149.7J5	.8919	0194	- 636 - 616	-2.624 -2.624
-99.0383	•0313 •5883	.6304		-2.948 -3.941
-49.9355	.2867	2970	•588 3.17	-3.241
49.501		3240	.317 292	-3.491
	3140			-3.02
99.7721	6158	-,6355	577	-3.18
149.569	9192	9459	7F	-0.869
199.508	-1.2250	-1.2572	933	-2.573
249.43	-1.535	-1.5603	971	-0.142
299.354	-1.549	-1.8795	89	-1.635
349.136	-0.1686	-8.1098	62	976
300.00	-2.4907	-2.5311	÷.246	339
448,546	-0.0004	-2.9119	.330	377
496.813	-3.1563	-3.1007	.978	1.179
548.711	-3.49367	-3.43368	1.756	1.76
498.643	-3.1571	-3.1229	.007	1.399
449.336	-2.8233	-2.8173	•3 <u>01</u>	•3.93
399.343	-8.4937	-2.5319	21	25
349.19	-2.1657	-0.1931	596	930
222.315	-1.8535	-1.6793	838	-1.54
249.464	-1.5367	-1.5686	- • 928	-2.345
199.539	-1.28gs	-1.2574	891	~D.455
149.643	- "65%	0464	745	-2.739
92.6850	6171	635	- •521	-2.877
49.9156	3155	- •3247	27	-2.976

TEST SUMPARY

FULL SCALE RATE (PLG/SEC): 55%

GCALE FACTOR (VVDEG/SEC): -6.23289E-33
BIAS (VOLTS): -1.36786E-32
HYSTERESIS, NEG RATES (VDC): -1.95563E-33
HYSTERESIS, POS RATES (VDC): 1.74748E-33
BULL OFFSET (VPC): -1.29399E-42

3.7.2-VI

TEST DESIRES

RATE SENSOR TEST PROGRAM POST VIBRATION

				POST VIBRAT	ION
	DATE 4-7	-80	200.	BASELINE	NADC 80081-60
		· · · · · · · · · · · · · · · · · · ·			••
	TEMP 720F	50%RH	SER#	381	
		• • • • • • • • •	0271	•••••	••
	DATE	M. OUT	W CALC	% FS	% IDEAL
	RATE	V OUT	V CALC	% F3	" INCAL
	(DEG/SEC)	(ADC)	(VDC)		
					_
	-49.9386	•886	.2991	.348	-4.175
	-99.8354	•5868	·e11e	•661	-3. 97
	-149.835	.6899	.9246	.923	-3.698
	-199.571	1.1961	1.2363	1.071	-3.221
	-249.411	1.5063	1.5485	1.123	-2.702
	-299.375	1.8209	1.8615	1.28	-2.164
*	-349.231	2.1407	2.1738	.88	-1.511
-				-	
	-399.186	2.466	2.4867	•55	827
	-449.082	2.7971	2.7992	. 05 7	376
	-493.91	3.1325	3.1113	563	.678
	-548.747	3.47083	3.42354	-1.258	1.376
	-598.644	3.80909	3.73 søe	-1.943	1.947
	-548.795	3.47181	3.42384	-1.276	1.395
	-498.849	3.1342	3.1139	62	.745
	-448.995	2.7993	2.7987	216	.321
	-399.077	2.4682	2.486	.472	71
	-349.229	2.1434	2.1736	.886	-1.385
	-299.414	1.8235	1.8617	1.318	-2.24
	-249.492	1.5087	1.549	1.074	-2.584
	-199.546	1.1933	1.2362	1.308	-3.332
	-149.67	.8921	.9238	•843	-3 .3 7 9
	-99.84J4	•5885	.6117	<u>.617</u>	-3.726
	-49.9459	.2369	.2991	.326	-3.92
	49.8716	3147	3261	332	-3.638
	99.7298	6161	6384	594	-3.576
* -	149.611	9193	95 28	83 9	-3.365
	199.532	-1.2255	-1.2635	-1.313	-3.345
	249.464	-1.5354	-1.5763	-1.389	-2.618
	299.29	-1.3493	-1.8884	-1.34	-2.384
	349.239	-2.1685	-2.2011	866	-1.488
	399.068	-2.4927	-2.5134	55	827
	448.987	-2.8225	-2.826	593	125
	498.833	-3.1568	-3.1383	.494	
					.594
	548.731	-3.49442	-3.45377	1.161	1.27
	598.615	-3.83134	-3.76323	1.812	1.816
	548.789	-3.49535	-3.45113	1.176	1 • 286
	498.831	-3.1581	-3.1383	•527	. 63 4
	449.211	-2.8241	-2.8262	056	374
	399.075	-2.4945	-2.5134	502	 755
	349.143	-2.1733	-2.2007	807	-1.386
	299.329	-1.8512	-1.8886	996	-1.997
	249.439	-1.5373	-1.5761	-1.233	-2.485
	199.491	-1.0273	-1.2633	958	-2.86
	149.576	9213	9536	781	-3.131
	99.7687	6175	6386	563	-3.386
	49.8479				
	42.0413	3158	3259	271	-3.264

TEST SUMMARY
FULL SCALE RATE (DEG/SEC): 603
SCALE FACTOR (V/DEG/SEC): -6.26373E-23

SCALE FACTOR (VVDEG/SEC): -N.265/32-25

BIAS (VOLTS) : -1.37173E-30

HYSTERESIS, PES RATES (VIC): -2.63389E-33

HYGTERESIS, POS RATES (VDC): 1.99114E-33

FULL)FFSET (IDC): -1.097018-30

TEST ENGINEER.

3.7.2-VII

	RATE	COUSOR TEST	PROGRAM	POST VIB	RATION
	DATE4-7		2006	MASELINE	•*u.
	TEMP 72.E.	50%RH	S⊇R#	381	••
	RATE (DEG/SEC)	V OUT	V CALC	7 FS	7 IDEAL
*	-49.5396 -99.81 -149.744 -199.544 -249.45 -299.368 -349.23 -399.147 -449.332 -498.9 -548.812 -598.644 -646.59	.2853 .5853 .8881 1.1934 1.523 1.8168 2.1363 2.4611 2.7914 3.12.63 3.46414 3.846414 4.13696	.3024 .6149 .9278 1.2399 1.5526 1.8654 2.1779 2.4907 2.8033 3.1158 3.42858 3.74284 4.05302	.42 .726 .975 1.142 1.217 1.195 1.021 .726 .292 26 873 -1.507	-5.469 -4.729 -4.231 -3.72 -3.171 -2.594 -1.9 -1.182 422 .338 1.034 1.636 2.346
	-548.59 -598.649 -548.918 -498.893 -449.238 -399.393 -349.279 -249.543 -199.59 -149.648 -99.868 -49.9489 49.9489 49.7315	4.13696 3.83356 3.46625 3.1286 2.7943 2.4642 2.1395 1.82 1.536 1.1962 .5935 .2063 3142	4.05382 3.74380 3.42924 3.1157 2.8231 2.4903 2.1782 1.8649 1.5532 1.2402 .9272 .615 .305 -3032	-C.J41 -1.539 909 320 .216 .641 .949 1.1 1.379 .900 .566 .396 .396	2.345 1.671 1.376 .42 313 -1.344 -1.766 -2.389 -3.515 -3.918 -4.431 -5.153 -5.286 -3.296
*	149.567 149.567 149.369 1349.282 349.282 349.285 449.231 498.87 540.686 590.781 648.498 499.268 499.268 499.292 649.431 199.503 149.733 49.733 49.733	918 -1.2035 -1.5328 -1.5328 -1.8473 -2.1652 -2.4169 -3.1523 -3.48972 -3.82694 -3.9275 -3.82694 -3.9275 -3.82694 -3.49372 -3.82694 -2.8235 -2.4914 -2.8235 -2.4914 -2.5354 -1.2258 -3.666 -3.153	9486 -1.2611 -1.5732 -1.6661 -2.1969 -2.5114 -2.8243 -3.1367 -3.44677 -3.76231 -4.27423 -3.76197 -3.44944 -3.1362 -2.5113 -2.1966 -1.5734 -1.2627 9486 -1.5734 -1.2627 9486 323	750 750 750 921 975 827 135 1 .025 1 .5125 - 2.125 1 .513 436 456 925 934 933 933 934 935 934 936 936 936 937 936 937 9	-3.263 -3.228 -2.584 -2.113 -1.539 -895 -195 -195 -191 1.732 1.2 -560 -131 -794 -1.965 -2.433 -2.795 -2.433 -2.795 -3.529 -3.529 -2.493

TEST SUBMARY

FULL SCALE RATE (DEG/SEC): 658

GGALE FACTOR (V/DEG/SEC): -6.26639E-03

RIAS (VOLTS): -1.3544EE-32

PYSTERESIS, UEG RATES (VDC): -3.2034/2E-33

PYSTERESIS, POS RATES (VDC): 2.0435/2E-33

BULL OFFSET (VDC): -1.31849E-32

TEST ENGIUEER

TABLE 3.7.2-VIII

The second secon

2015 SEPS DATE4-7-80 TEDP72°F .50	nerl	ET DRIFT POST VIBRATION NADC 80081-60 BASELINE 355
OUTPUT DATE (DECONDED)	DATET IN 15 SEC DEAN (VDC)	
99.4345	.623388	C.34338E-33
90.8457	.625658	G.∂G586E-3
90.8472	.636267	G.37195E-33
90.8376	.636618	.336376
109.596	1.01304	G. JE140E-33
199.611	1.01063	G.105J5E-33
199.622	1.00J21	G.110GCL-33
199.6	1.02Ø98	G.117142-33
#99.397	1.84J96	6.14888E+J3
#99.306	1.84771	6.17166E+J3
#99.456	1.85J52	6.1795EE+J3
#99.461	1.85231	6.1853JE+J3
309.0	2.49331	6.237495-33
309.184	2.49931	6.261365-33
309.198	2.57242	6.268615-33
309.198	2.50452	6.273975-33
409.431	3.165	6.34032E-33
409.425	3.1779	6.3603E-33
409.465	3.18113	6.374160-33
409.466	3.18396	6.37903D-33

PULL OFFSET (VDC): 2.45546E-33

Boyleh! Cury f

RATE : 4-7- PATE : 4-7- TEMP : 472°F		OUTPUT DRIFT POST VIBRATION DUL BASELINE SER# 373
OUT RATU CPENZSLO)	TPUT DHIFT IN 15 TEAT (MMC)	SEC INTERVALS SCALE FACTOR (VOLTO/DEG/S/C)
90.0490 09.035 99.646 99.83	•6/1/46 •6/35/76 •6/4/35/5 •6/4/71/4	6. U553CE- 3
199.607	1.88157	6.11484E=33
199.678	1.88488	6.13699E=33
199.619	1.886	6.14167E=33
199.688	1.38788	6.14774E=33
299.43	1.86054	6.21362E+33
299.441	1.86709	6.23526E+33
299.407	1.86902	6.24641E+33
299.441	1.67333	6.24636E+33
399.201	2.5287	6.3344UE+73
399.221	2.53813	6.35771E+73
309.19	2.54077	6.364579-03
399.197	2.54022	6.36531D+43
490.007	3.22597	6 • 465 • 3 T = .t3
490.000	3.2372	6 • 4095 3 T = .t7
490.000	3.24146	6 • 495 93 T = .t7
490.000	3.24395	6 • 5 400 6T = 13

TULL OFFS.7 (VOC): 4.566917-30

Boyd W. Cuy h

RATE SEPSOR PROGRAM: OUTPUT DRIFT
POST VIBRATION
RUB BASELINE
RUB BASELINE

SER# ... 381..... TEUP . 72°F . . 507RH . . . OPTPUT BAILFT IN 15 SEC INTERMALS SCALE FACTOR (VOLTSZPEGZSEC) RATE MEAT. (VDC) CHEGISTO 5.853952-33 .584426 99.8345 .586388 5.871542-33 92.8675 .586943 5.875C4E-33 22.1244 5.87765E-33 99.4768 .587.349 5,063331-33 1.19346 199.64 5.943000-43 1.19457 199.632 5.909541.- 13 1.19552 109.631 5.991350-63 1.19611 139.639 6.345410-33 1.8133 299.45 6.368108+33 1.81712 229.449

6.07471E-33 1.81874 299.396 6.37535E-33 1.819#5 299.414 6.14180N- X 2.45169 399,212 6.164997-23 399.224 2.46121 . 436171 329.22.0 2.46363 6.1747.E-33 2.46515 399.234 G.2437GE-33

 496.98L
 3.11433
 6.24376E-33

 499.033
 3.12579
 6.26436E-33

 406.99L
 3.1285
 6.26964E-33

 499
 3.1336
 6.27375E-33

PULL OFFSET (VDC): -1.34531%- 0

Boy h. Cuy h

And the second s

POST VIBRATION TEST DATA SUMMARY

PARAMETER	S/N 355	S/N 373	S/N 381
FULL SCALE RATE (DEG/SECOND) AT ±2% LINEARITY ERROR	005	400	009
SCALE FACTOR (MV/DEG/SEC) AT BASELINE RATE	-6.27	-6.25	-6.23
BIAS (DEG/SECOND)	-0.34	+0.41	+2.19
HYSTERESIS CCW (DEG/SECOND)	95*0+	+0.30	+0.31
HYSTERESIS CW (DEG/SECOND)	-0.29	-0.22	-0.27
NULL OFFSET (DEG/SECOND)	-0.32	+6.0+	+2.08
THRESHOLD (DEG/SECOND)	<0.10	<0.10	<0.10
RESOLUTION (DEG/SECOND)	<0.10	<0.10	<0.10
READYTIME (SECONDS) AVG. OF 5 RATES*	.070	020.	080
DRIFT (DEG/SEC/MIN) AVG. OF 5 RATES*	+0.76	+0.72	+0.63

*100, 200, 300, 400 AND 500 DEGREES/SECOND. (See Table 3.7.3-II)

TABLE 3.7.3-I

POST VIBRATION DRIFT AND READYTIME

RATE (DEG/SEC)	90 10)	OUTPUT DRIFT DEG/SEC/MIN)			READYTIME (SECONDS)	
	355	373	381	355	373	381
100	+.70	+.72	+.51	.072	.072	.085
200	+.76	+.70	+.61	.070	.072	.078
300	+.77	+.69	+.64	890.	890.	.075
400	+.78	+.72	+.70	890.	.070	.075
200	+.80	+.75	+.70	.072	.070	060.

PARLE 3.7.3-11

4.0 CONCLUSIONS AND RECOMMENDATIONS

The data collected and evaluated produced the following information on the 3 Superjet Angular Rate Sensors tested:

SUPERJET TEST DATA (Worst Case)

1.	Full Scale Rate at +2% Linearity	500 +100 deg/sec
2.	Scale Factor	$.0062 \pm .0002 \text{ V/deg/sec}$
3.	Null Bias (calculated)	+2 deg/sec
4.	Hysteresis	+0.6 deg/sec
5.	Threshold	<0.1 deg/sec
6.	Resolution	<0.1 deg/sec
7.	Readytime	80 milliseconds maximum
8.	Drift	+0.76 deg/sec/min
9.	Null Offset (measured)	+2 deg/sec
10.	G-Sensitivity	$\overline{1.68}$ deg/sec/g maximum
11.	High Temperature Tested	+165°F
12.	Low Temperature Tested	-30°F
13.	Sensitivity to Jerk	Negligible
14.	Acoustic Sensitivity	Negligible
15.	Vibration Sensitivity	± 2 deg/sec at approx. 2,000 Hz

The low temperature environment -30° F changes the scale factor by -10%. The reduction of the scale factor by 10% shifts the least squares fit straight line out of the $\pm 2\%$ linearity limits of the baseline performance, (See Figure 3.4.2-1).

The Superjet rate sensor/electronic package needs to be better temperature compensated for the requirements of the Maximum Performance Escape System.

It is difficult to determine the impact of a (worst case) 1.68 deg/second/g G-sensitivity effects of the Superjet, without a clearer definition of the MPES requirements. A conceivable 10 g environment would generate a 10 degree/second error.

Considering the results of this test program, it appears that the Superjet angular rate sensor is a viable candidate for the Maximum Performance Escape System. Additional testing should be performed to verify the unexpected high G-sensitivity.

LIST OF TERMS

ACOUSTIC SENSITIVITY:

Acoustic Sensitivity is the effect of acoustic vibration on an operating sensor (output change vs. frequency) and the shift in performance parameters after a known acoustic environment.

BIAS:

Bias is the null or zero offset evaluated as the output at zero input as calculated using the method of least squares to input-output data obtained by varying the input cyclically over the input span. This excludes outputs due to hysteresis and acceleration.

DRIFT:

Drift is the change in output at a given rate over a specified period of time (degrees/second/minute).

G-SENSITIVITY:

G-Sensitivity is the effect of acceleration on the output of the sensor. (degrees/second/g)

HYSTERESIS:

Hysteresis is the difference between output signals for increasing and decreasing inputs at that input for which the difference is maximum, measured after cycling through the input span (degrees/second).

JERK:

The constant rate of change of acceleration.

NON-LINEARITY:

Non-linearity is a term which describes the systematic deviations from the least squares straight line for input-output relationships which nominally can be represented by a linear equation. In this case non-linearity is $\pm 2\%$ full scale.

NULL OFFSET:

Null offset is the sensor output when the input rate is zero, generally expressed as an equivalent input rate. It excludes outputs due to hysteresis and acceleration (degrees/second).

READYTIME:

Readytime is the time required for the sensor to measure 95% of its steadystate output, at all rates, without any electronic warmup.

RELIABILITY:

Reliability is the probability that a sensor will meet specified performance requirements under specified environmental conditions throughout a specified operating or storage life.

RESOLUTION:

Resolution is the largest value of the minimum change in input, for inputs greater than the threshold, which produces a change in output equal to some specified percentage (at least fifty percent) of the change in output expected using the nominal scale factor (degrees/second).

SCALE FACTOR:

Scale factor is the ratio of change in output to a change in the input intended to be measured. Scale factor is generally evaluated as the slope or the straight line that can be fitted by the method of least squares to input-output data obtained by varying the input cyclically over the input span (volts/degree/second).

THRESHOLD:

Threshold is the largest absolute value of the minimum input that produces an output equal to some specified percentage (at least fifty percent) of the output expected using the nominal scale factor (degree/second).

VIBRATION SENSITIVITY:

Vibration sensitivity is the effect of vibration on an operating sensor (output change vs. frequency) and the shift in performance parameters after a known vibration environment.

APPENDIX A

Introduction

This test procedure outlines the details and order of events to evaluate the performance of Hamilton-Standard's "SUPERJET" Rate Sensor for application to a Navy Air Development Center (NADC) Program. This procedure is in accordance with "Test Plan, for Performance Verification Tests, on the SUPER-JET Angular Rate Sensor, Contract No. DAAK40-79-D-0017, November, 1979", prepared by Jerome C. Salmons. The test plan has been approved by NADC as of January 11, 1980.

A. Baseline Test

A.1 Parameters to be measured are:

Input Voltage (Volts)
Input Current (Amps)
Full Scale Range at 2% Linearity (Degrees/Seconds)
Hysteresis (VDC)
Threshold (Degrees/Seconds)
Resolution (Degrees/Seconds)
Output Drift (Degrees/Seconds/Minutes)
Ready Time (Seconds)
Null Offset (VDC)

A.2 Test Setup

The baseline tests are conducted at $77^{\circ}F \pm 10^{\circ}F$ and less than 90% relative humidity.

The equipment used for baseline performance was:

Genisco 1100-2 Rate Table & Controller BWC032580-001 Test Plate BWC032580-002 Test Plate 8"X8"X8" Cube Test Fixture Honeywell 1858 Visicorder Hewlett Packard 9500A Test Set:

- 1 HP 2116C Computer
- 2 50 Volt Power Supplies
- 2 100 Volt Programmable Power Supplies
- 5 40 Volt Power Supplies
- 1 Programmable Counter
- 1 Oscilloscope
- 1 Volt Ohmmeter

Modular Switch Panel

A test schematic is shown in Figure A.2-1.

A.3 Test Procedure

- 1. Install test plate BWC032580-001 to top of Genisco 1100-2 Rate Table. Insure that "connector" stamped on plate is near connector located on rate table.
- 2. Install test plate BWC032580-002 onto 8"X8"X8" cube test fixture.
- 3. Install Superjet sensor on test plate BWC032580-002 and install cube on table so that sensor is located on the rate table centerline. (Input axis parallel to rate table axis.)
- 4. Connect wires on rate table to sensor.
- 5. Load "scale factor" program in 9500A computer test set and turn on rate table controller.
- 6. Engage Switch 1 on computer switch panel, (See Figure A.3-1).
- If hysteresis measurement at each rate increment is desired, engage Switch 14.
- 8. To abort test Switch 15 should be engaged.
- 9. Run program.
- 10. Check voltage and current requirements on printout. The values shall be:

- 11. Check temperature reading (if high or low temperature extremes) and null offset.
- 12. Disengage Switch 1 on computer switchboard.
- 13. Insert maximum rate desired and rate increment, (degrees/second, example: 500, 50), into computer.
- 14. Make test run.
- 15. Obtain data printout. Check test summary:

'Full Scale Rate
'Scale Factor*
'Bias*
'Hysteresis, Negative Rates
'Hysteresis, Positive Rates
'Null Offset**

The state of the s

- *Determined by least squares fit.

 **Added after first run of baseline test.
- 16. Note temperature, relative humidity, date, and barometric pressure.
- 17. Check percent of full scale linearity error to be less than +2%.
- 18. Rerun program at new maximum rate until linearity error exceeds +2%.
- 19. For this program rate increments have been set at 50 degrees/second.
- 20. Repeat Steps 1 thru 19 for other Rate Sensor units.
- Load "Output Drift/Ready Time/Threshold/Resolution" program in the 9500A Computer Test Set and turn on Rate Table Controller.
- 22. Connect the Honeywell 1858 Visicorder to the patch panel on the Hewlett Packard 9500A Test Set. The remote drive on the Visicorder is connected to D21 and D22 on the patch panel. Set time lines to .1 seconds and chart speed to 8 in/second. Using a channel on the Visicorder with a sensitivity of 500 millivolts per division, connect the signal line to L27 on the patch panel. The computer is programmed to run recorder for 250 milliseconds, turn on the sensor and measure output for 750 milliseconds, for readytime measurements.
- 23. Run program.
- 24. When bells ring, set sensitivity on recorder to 100 mv/division for 100 degree/sec. rate. This must be done within two minutes after sounding bell.
- 25. When bells ring, set sensitivity to 200 mv/division for 200 degree/ second rate two minute wait.
- 26. When bells ring, set sensitivity to 500 mv/div. This will be setting for 300, 400, and 500 degrees/second rates.
- 27. Data printout:

Output Drift Null Offset

- 28. Repeat Steps 23 thru 27 for other units.
- 29. Engage switch 1 on computer switchboard and run program.
- 30. Set sensitivity of recorder to 5 MV full scale. It may be required to use an external power generator to offset the null offset voltage of any sensor.

THE RESERVE OF THE PARTY OF THE

- 31. Set recorder drive to manual and set at .8 in./sec. chart speed with time lines at 10 second intervals.
- 32. Operate the rate table controller manually from zero degree/second to 1.0 degree/second in 0.1 degree/second increments. Allow each increment to run 1 second minimum. (Threshold test, ref.).
- 33. Operate the rate table controller manually from 5.0 to 6.0 degrees/second in 0.1 degrees/second increment. Allow each increment to run 1 second minimum. (Resolution test, ref.).
- 34. Repeat Steps 30 thru 33 for other units.
- 35. Stop program.

FIGURE A.2-1
BASELINE TEST SCHEMATIC

APPENDIX A - PART B

B. ACCELERATION SENSITIVITY

B.1 Parameters to be measured:

Output vs. Acceleration (in units of gravity g) Null Offsets

B.2 Test Setup

The acceleration test was conducted at $77^{\circ}F \pm 10^{\circ}F$ and less than 90% relative humidity.

The equipment used for the acceleration test was:

Hewlett Packard 9500A Test Set
Genisco Gl100-2 Rate Table and Controller
8"X8"C8" Test Cube
BWC032580-001 Test Plate
BWC032580-002 Test Plate
BWC032580-003 Arm
BWC032580-004 Angle (used for acceleration of Z axis)
BWC032580-005 Plate (used for acceleration of X and Y axis)

The test setup schematic is shown in Figure B.2-1, which is the baseline test schematic. Axis orientation is shown in Figure B.2-1.

B.3 Test Procedure

The acceleration test was performed by the following steps:

- Install test plate BWC032580-001 to top of Genisco 1100-2 rate table.
 Insure that "connector" is stamped on plate near connector located on rate table.
- 2. Install test plate BWC032580-002 into 8"X8"X8" cube test fixture.
- 3. Install Superjet sensor on test plate BWC032580-002 insuring that sensor is located on the rate table centerline.

Mount cube test fixture as follows:

AXIS ACCELERATED	HOLE PATTERN USED ON BWCO32580-001 TEST PLATE
x	1
Y	1
Z	3 (jet axis down)

Check to see that sensor centerline is on rate table centerline.

- 4. Connect wires on rate table to sensor.
- 5. Load "scale factor" program in 9500A computer test set and turn on rate table controller.
- 6. Disengage switch 1 on computer switchboard.
- 7. Engage switch 14.
- 8. To abort test switch 15 should be engaged.
- 9. Run program.
- 10. Input maximum rate of 500 degrees per second and 50 degrees per second rate increment. i.e. 500, 50.
- 11. Test run.
- 12. Data printout.
- 13. Note temperature, relative humidity, date, and barometric pressure.
- 14. Repeat steps 3 through 13 for each axis and unit, (should be 6 runs for 3 units since X and Y axis runs are identical).
- 15. Remove test plates and test cube from rate table.
- 16. Attach BWC032580-003 arms to rate table.
- 17. Attach units to either BWC032580-004 angle or BWC032580-005 plate depending on which axis is accelerated (make sure that both sides are identical for maintaining proper rate table balance).
- 18. Connect electrical pigtail to one of the units.
- 19. Run program.
- 20. Input maximum rate of 500 degrees/second.
- 21. Test run.
- 22. Data printout.
- 23. Note temperature, relative humidity, date and barometric pressure.
- 24. Repeat steps 17 through 23 for all configurations.
- 25. End of testing.

FIGURE B.2-1

SENSOR ORIENTATION

The state of the s

FIGURE B.2-2

ACCELERATION TEST SCHEMATIC

APPENDIX A - PART C

C. TEMPERATURE SENSITIVITY

C.1 Parameters to be measured are:

Input Voltage
Input Current
Full Scale Range at +2% Linearity
Hysteresis
Threshold
Resolution
Output Drift
Readytime
Null Offset

C.2 Test Setup

The temperature sensitivity tests were conducted at $-30^{\circ}F \pm 5^{\circ}F$ and $+165^{\circ}F$ +5°F. The equipment used for this test was:

Hewlett Packard 9500A Test Set
Genisco G1100-2 Rate Table and Controller
8"X8"X8" Test Cube
BWC032580-001 Test Plate
BWC032580-002 Test Plate
Martin Marietta Temperature Controller
Fenwal UUT 45J1 Thermistor
Martin Marietta Environmental Chamber (Portable)
Honeywell 1858 Visicorder
Liquid Nitrogen Bottle
Iron-constantine Thermocouple Wire

C.3 Test Procedure

This procedure may be used for both hot and cold temperature testing. The only difference is the external setup. Figure C.3-1 shows the test schematic for the high temperature testing. The cold temperature test schematic is shown in Figure C.3-2. The test procedure for either hot or cold environments is as follows:

- 1. Bring test unit to temperature and soak for 45 minutes.
- 2. Load "scale factor" program in 9500A computer test set and turn on rate table controller.
- 3. Engage switch 1 on computer switchboard.
- 4. If hysteresis at each rate is desired, engage switch 14.
- 5. To abort test switch 15 should be engaged.

The state of the s

- 6. Run program.
- 7. Check voltage and current requirements on print out. The values shall be:

Voltage +15.0V ±0.5V -15.0V ±0.5V

Current - Positive 85.0 \pm 5.0 ma Negative 11.0 \pm 1.0 ma

- 8. Check temperature reading and null offset.
- 9. If satisfied with temperature and null offset disengage switch 1 on computer switchboard.
- Insert maximum rate desired and rate increment (degrees/second).
 Example: 500, 50.
- 11. Run test.
- 12. Check data printout and test summary:

'Full Scale Rate

'Scale Factor*

'Bias*

'Hysteresis, Negative Rates

Hysteresis, Positive Rates

'Null Offset**

*Determined by least squares fit.

**Added after initial baseline test.

- 13. Note temperature, relative humidity, date, and barometric pressure.
- 14. Check percent of full scale linearity to be less than 2%.
- 15. Rerun program at new maximum rate until linearity error exceeds 2%.
- 16. For this program rate increments have been set at 50 degrees/second.
- 17. Load "output drift/readytime/threshold/resolution" program into the 9500A computer test set and turn on rate table controller.
- 18. Connect the Honeywell 1858 Visicorder to the patch panel on the Hewlett Packard 9500A test set. The remote drive on the visicorder is connected to D21 and D22 on the patch panel. Set time lines to .01 seconds and chart speed to 8 inches/second. Using a channel on the visicorder with a sensitivity of 500 millivolts per division, connect the signal line to D29 and the return line to L27 on the patch panel. The remote drive is programmed to run recorder for 250 milliseconds, turn on the sensor and measure output for 750 milliseconds.

- 19. Run program.
- 20. When bells ring, set sensitivity on recorder to 100 mv/division for 100 deg/sec. This must be done within two minutes after sounding bell.
- 21. When bells ring, set sensitivity to 200 mv/division for 200 degrees/second two minute wait.
- 22. When bells ring, set sensitivity to 500 mv/division. This will be setting for 300, 400, and 500 degrees/second rates.
- 23. Data Printout:
 Output Drift
 Null Offset
- 24. Engage Switch 1 on computer switchboard and run program.
- 25. Set sensitivity of recorder to 5mv full scale. It may be required to use an external power generator to offset the null offset voltage of any sensor.
- 26. Set recorder drive to manual and set at .8 inches/second, chart speed with time lines at 10 second intervals.
- 27. Operate the rate table controller manually from zero degree/second to 1.0 degree/second in 0.1 degree/second increments. Allow each increment to run 1 second minimum.
- 28. Operate the rate table controller manually from 5.0 to 6.0 degrees/ second in 0.1 degrees/second increment. Allow each increment to run 1 second minimum.
- 29. Stop program.
- 30. Repeat Steps 1 thru 29 for other units.
- 31. For 165°F, connect heater wires and monitor thermistor until resistance is 6750 OHMS +200 OHMS. Soak unit for 45 mintues.

For -30° F, connect liquid nitrogen hose to top of chamber and monitor flow and dry nitrogen pressure until thermocouple wire is -30° F $\pm 5^{\circ}$ F. Soak for 45 minutes.

HIGH TEMPERATURE TEST SCHEMATIC

FIGURE C.3-1

FIGURE C.3-2 LOW TEMPERATURE TEST SCHEMATIC

D. JERK SENSITIVITY

D.1 Parameters to be measured:

Output at Various Jerk Rates Null Offset

D.2 Test Setup

The Jerk tests are to be conducted at $77^{\circ}F \pm 10^{\circ}F$ and less than 90% relative humidity. The following equipment is to be used:

Hewlett Packard 9500A Test Set Genisco G1100-2 Rate Table and Controller BWC 032580-003 Arm BWC 032580-004 Angle BWC 032580-005 Plate BWC 032580-001 Test Plate BWC 032580-002 Test Plate 8"X8"X8" Test Cube

A test schematic is shown in Figure D.2-1.

D.3 Test Procedure

The jerk test was performed by the following steps:

- 1. Install test plate BWC 032580-001 to top of Gensico 1100-2 rate table. Insure that "connector" stamped on plate in near connector located on rate table.
- 2. Install test plate BWC 032580-003 into 8"X8"X8" cube test fixture.
- 3. Install Superjet sensor on test plate BWC 032580-002 insuring that sensor is located on the rate table centerline.

Mount cube test fixture as follows:

AXIS ACCELERATED	BWC 032580-002 TEST PLATE
x	1
Y	1
Z	3 (Jet Axis Down)

Check to see that sensor centerline is on rate table centerline.

- 4. Connect wires on rate table to sensor.
- Load "jerk test" program in 9500A computer test set and turn on rate table controller.

Market Control of the Control of the

- 6. Disengage Switch 1 on computer switchboard.
- 7. Engage Switch 14.
- 8. To abort test switch 15 should be engaged.
- 9. Run program.
- Insert measurement rate of 250 or 500 degrees per second and direction of rotation.
- 11. Run test.
- 12. Check data printout.
- 13. Note temperature, relative humidity, date and barometric pressure.
- 14. Repeat steps 3 through 13 for each axis and unit, (should be 6 runs for 3 units since X and Y axis runs are identical).
- 15. Remove test plates and test cube from rate table.
- 16. Attach BWC 032580-003 arms to rate table.
- 17. Attach units to either BWC 032580-004 angle or BWC 032580-005 plate depending on which axis is accelerated (make sure that both sides are identical for maintaining proper rate table balance).
- 18. Connect electrical pigtails to one of the units.
- 19. Run program.
- 20. Input measurement rate of 250 or 500 degrees/second.
- 21. Run test.
- 22. Check data printout.
- 23. Note temperature, relative humidity, date and barometric pressure.
- 24. Repeat steps 17 through 23 for all configurations.

FIGURE D.2-1 JERK TEST SCHEMATIC

The state of the s

E. ACOUSTIC SENSITIVITY

E.1 Parameters to be measured:

Overall Decibel Level Null Output

E.2 Test Setup

The acoustic test was conducted at $72^{\circ}F$ and less than 90% relative humidity. The equipment used was:

Martin Marietta Acoustic Chamber Hewlett Packard Model 5451B Acoustic Analyzer Honeywell 1858 Visicorder Martin Marietta Control Box Digitec 262C Multimeter Philbrick Researches PR-300 Power Supply

A test schematic is shown in Figure E.2-1.

A test schematic describing the monitoring of each unit is shown in Figure E.2-2.

E.3 Test Procedure

The acoustic test was performed by the following steps:

- 1. Install unit on beam support and position in acoustic chamber throat area.
- 2. Position three microphones surrounding the test article as described in MIL-STD-810C method 515.2 paragraph 3.5.2.1.
- 3. Connect test unit to control box.
- 4. Connect +15 V.D.C. and -15 V.D.C. to control box.
- 5. Connect white wire on test unit to (+) signal on digital multimeter (must be floating DMM, Ref 6V) and on visicorder.
- 6. Connect grey wire on test unit to common on DMM, and on visicorder.
- 7. Connect real time noise analyzer to recorder and set at 170 db full scale.
- 8. Turn on DMM and set sensitivity to read millivolts.
- Turn on recorder set at 0.8 inches/second chart speed and 10 second time lines.

- 10. Turn on test unit by turning power switch to "warmup" on control box.
- 11. Apply acoustic environment of eight 10 second ±8 second pulses and achieve the maximum overall db level, but do not exceed 165 db.
- 12. End test.
- 13. Repeat steps 1 through 12 for other units.

ACOUSTIC TEST SCHEMATIC

FIGURE E.2-1

FIGURE E.2-2
TEST SET CONTROL

APPENDIX A - PART F

F. VIBRATION

F.1 Parameters to be measured:

Most Severe Resonances (3) Null Output

F.2 Test Setup

The vibration test was conducted at $70^{\circ}F$ and less than 90% relative humidity. The test was performed in the environmental test laboratory at Martin Marietta. The equipment used was:

C-60 Vibration Test Set
10 - 3000 Hz capability
Endevco Dynamometer Model 2702B
Accelerometer 2222B S/N FX15
 (.3% sensitivity)
Honeywell 1858 Visicorder
Martin Marietta Control Box
Digitec 262C Multimeter
Philbrick Researches PR-300 Power Supply

The test setup is illustrated schematically by Figure F.2-1, and Figure E.2-2.

F.3 Test Procedure

Each test run was based on the following step-by-step procedure:

- Install unit on test fixture mounted on test cube located on the C-60 Vibration Test Set.
- 2. Annotate orientation.
- 3. Connect control accelerometer to monitor vibration input (3.0 or 5.2g rms).
- 4. Mount accelerometer 2222B on Superjet sensor in a manner to monitor the output of the axis under vibration.
- 5. Connect control accelerometer to visicorder. Set sensitivity to 10 g/in.
- 6. Connect output accelerometer to visicorder to 10 g/in.
- 7. Connect unit to control box.
- 8. Connect +15.0VDC and -15.0VDC and common to control box.
- 9. Connect white wire on test unit to the (+) on digital multimeter (must be floating DMM, Ref. 6V).

- 10. Connect grey wire on test unit to common on DMM.
- 11. Connect white and grey wires to visicorder. Set sensitivity to 20 mv/in.
- 12. Connect frequency counter on C-60 test set to visicorder. Set sensitivity to $5\ v/in$.
- 13. Set chart speed to 0.1 in/sec and timelines to 10 second intervals.
- 14. Start visicorder.
- 15. Turn on unit at control box (power switch to "warmup").
- 16. Apply resonance search at 3g rms from 10 to 3000 Hz over a period of 3.5 minutes.
- 17. Stop visicorder.
- 18. Select the three most severe resonances and annotate.
- 19. Start visicorder.
- 20. Dwell unit for 10 minutes at each selected resonance.
- 21. Stop visicorder.
- 22. Turn off unit.
- 23. Repeat test for each orientation and other units.
- 24. Repeat baseline test per Part A.

FIGURE F.2-1

APPENDIX B

TEST PLAN
for
Performance Verification Tests
on the
SUPERJET Angular Rate Sensor
Contract No. DAAK40-79-D-0017
November, 1979

Prepared by
Jerome C. Salmons
Dept. 5463

Martin Marietta Corporation
Orlando, Florida

FOREWORD

This document is prepared to fulfill the requirements of paragraphs 3.2.1.5 and 3.2.1.6 of Statement of Work 60134-12 dated 7 August 1979 which describes the effort authorized under Operations Directive No. 3-0017-00-375-15. This O. D., issued 19 October 1979, implements contract number DAAK40-79-D-0017 with the Naval Air Development Center Aircraft and Crew Systems Technology Directorate, Warminster, Pa. 18974. Under the terms of the referenced contract Martin Marietta is to evaluate the Hamilton-Standard SUPERJET angular rate sensor for possible application in the Maximum Performance Escape System (MPES) Program being conducted by the Naval Air Development Center (NADC). A major portion of the evaluation effort will involve performance tests under various environmental conditions. This document describes the test program to be conducted and gives a time schedule for the accomplishment of major milestones.

CONTENTS

Par	a. No.	Page
	Title Page	1
	Forward	2
	Table of Contents	3
	List of Tables and Illustrations	4
	Summary	5
1.	Introduction	6
1.1	Purpose	6
1.2	Test Objectives	6
2.	APPLICABLE DOCUMENTS	7.
3.	TEST APPROACH	; 8
3.1	Test Facilities	8
3.2	Test Equipment	
3.3	Test Articles	8 8
3.4	Test Descriptions	10
4.0	TEST IMPLEMENTATION	15
4.1	Test Procedures	
4.2	Failure Documentation	15
4.3	Data Requirements	15
4.4	Schedule and Milestones	16
5.0	Definitions	17 19
	Appendix A	19
	Typical Test Data Sheet	20

TABLES

NO.		PAGE
1.	Test Equipment	9
	ILLUSTRATIONS	
1.	RRS Mounting Dimensions and Orientation	12
2.	Roll Rate Sensor Test Schedule	18

SUMMARY

This test plan document describes the scope of effort to be expended in evaluating the performance of Hamilton-Standard's SUPERJET roll rate sensor (RRS) for application to a Navy Air Development Center (NADC) Program. The tests to be conducted are described, the number of test units to be employed is given and the test levels for each test are specified. Test schedules and data formats for each test are presented. Measurements to be made are listed and test apparatus to be used is specified.

1. INTRODUCTION

1.1 Purpose

The SUPERJET is an angular rate sensor produced by the Hamilton Standard Division of United Technologies, Inc. One version of this device containing associated electronics for shaping and correcting the output and providing switching and null bias functions is being developed for use on the Copperhead projectile as a roll rate sensor.

In a previous study conducted by Martin Marietta Corp., Orlando, Florida, the potential application of the SUPERJET to air crew ejection systems was recognized. The final report of this study effort (OR 15646) recommended further evaluation of the SUPERJET to better define its potential for such application. The purpose of this test plan is to describe the test activities involved in the evaluation effort and to establish a time schedule for performing the test effort.

1.2 Test Objectives

The major objectives of this test program are to demonstrate feasibility of less than 2 deg/s bias error with 0.1s ready time and linearity of 1 percent over the rate range of \pm 500 deg/s at any temperature between -65° F and \pm 165° F.

Secondary objectives will be to determine the effects on sensor output of high and low temperature, linear acceleration, rate of change of acceleration, vibration and acoustic environments.

Where it can be determined that tests equivalent to those specified herein have been conducted on other programs, the data from such tests may be presented in lieu of duplicating those tests.

2. APPLICABLE DOCUMENTS

2.1 Authorizing Documents

Contract
 Statement of Work, NADC No.
 Operations Directive, Martin Marietta No.
 DAAK40-79-D-0017
 60134-12
 3-0017-00-375-15

2.2 References

Martin Marietta Reports
 Fluidic Gyro Development, August, 1979
 OR15,646

2. Military Standards

Environmental Test Methods MIL-STD-810C Change 4

3. Specifications, Martin Marietta

Roll Rate Sensor SPC 10200000-004

TEST APPROACH

3.1 Test Facilities

The test program described herein is to be conducted by various laboratories of Martin Marietta Corp., Orlando, Florida. Room temperature performance tests will be conducted on a rate table in the Fluidics Lab or Precision Inertial Laboratory. The Dynamics Lab and the Environmental Test Lab will provide equipment for generating vibration and acoustic environments and shall provide all necessary measurement and recording equipment for these tests. Temperature chambers mounted on a rate table will be used for creating the high and low temperature environments during rate tests. At this time it is proposed to use thermostatically controlled electric heaters for creating the high temperature environment. The low temperature environment will be created by flowing gaseous nitrogen from a liquid N₂ supply through an insulated chamber on the rate table.

3.2 Test Equipment

Test equipment necessary for conducting this test program is given in Table 1.

3.3 Test Articles

The roll rate sensors to be tested are identified as Hamilton Standard P/N 9304100099. Serial number 0100196 and 0100142 are presently available from a previous test program. Additional units of the same part number will be obtained by transfer or consignment from the Copperhead program, or purchased from Hamilton Standard should it prove impractical to use Copperhead units.

AD-A091 089

MARTIN MARIETTA AEROSPACE ORLANDO FL
PERFORMANCE VERIFICATION OF THE 'SUPERJET' LAMINAR ANGULAR RATE--ETC(U)
MAY 80 B W CURRY
OR-16127

NADC-80081-60

END
PART | Name | Na

DTIC

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963 A

TABLE 1
Test Equipment

Model No/ Part No.	Description/Manufacturer	Accuracy (%)
	Power Supply +5v	<u>+</u> 1.00
	Power Supply +11.5v	<u>+</u> 1.00
	Power Supply +15.0v	<u>+</u> 1.00
	Power Supply -15.0v	<u>+</u> 1.00
HP3449 or HP3465B	Digital voltmeter-Hewlett Packar High Impedence 0-100 mv range	rd 0.25
	RRS Test Set	
	Acoustic chamber-Martin Marietta	3
Model	MB Shaker	
Model G-1100	Rate table-Genisco Rate table controller-	
	test set-Hewlett Packard	
	Temperature control chamber Martin	
Model 1054	Precision Centrifuge- Martin-Genisco	

Similar equipment having adequate performance characteristics for the usage intended may be substituted. Test data sheets shall note the actual equipment used.

3.4 Test Descriptions

3.4.1 Base Line Performance Tests

These tests shall be performed at room ambient conditions of 77°F

+ 10°F and less than 90% relative humidity. The unit under test (UUT)

shall be at a stable temperature prior to test. Unless otherwise implied

or specified, the following tests will be made while the sensor is motionless with

its base in contact with a horizontal support surface:

- Input voltage and current requirements will be measured at the power supplies.
- Output drift the sensor output change with time shall be determined for constant rate inputs.
- Output scale factor (volts/deg/sec)
- 4. Full scale range for 2% linearity
- 5. Threshold
- 6. Resolution
- 7. Hysteresis

3.4.2 Ready Time

A test for "ready time" shall be made by recording the output characteristic of the sensor as the unit is activated. The recording shall be measured to determine the steady state output level. "Ready time" is the time required for the unit to respond to the activation signal and develop and output equal to 95 % of the steady state level.

3.4.3 Acceleration Sensitivity Tests

3.4.3.1 Constant Acceleration

The unit will be oriented on a centrifuge and subjected to constant accelerations in each direction along each of the three mutually perpendicular axes (reference Figure 1). Various levels of acceleration shall be applied up to a maximum of 30g. The sensitivity of the sensor output to the applied acceleration shall be determined.

3.4.3.2 Constant Jerk

The centrifuge will be programmed to produce linearly varying accelerations by linearly changing the rate of rotation. The rate of change of acceleration shall be varied in increments from zero to 10g/sec. The sensitivity of the sensor output to the applied rate of change of acceleration (jerk) shall be determined. The acceleration vectors shall be oriented in each direction along the three test axes shown in Figure 1.

3.4.4 Vibration Tests

The sensitivity of the unit to vibration environments will be evaluated by tests conducted in accordance with MIL -STD-810C procedures. Vibration will be applied along the three axes defined in Figure 1.

A resonance search will be performed at a maximum level of 3g from 10 to 5000 Hz in each axis. The three most severe resonances in each axis will be selected. The unit will then be vibrated at each of the three selected frequencies in each axis for 10 minutes. The test level shall be 5.2g.

Null output shall be monitored during vibration.

Figure 1 RRS Mounting Dimensions and Orientation

3.4.5 Acoustic Sensitivity

The sensitivity of the RRS to high level acoustic environment will be evaluated by tests conducted in general conformity to MIL-STD-810C. The RRS will be suspended in an acoustic chamber on elastic cords having a natural frequency less than 25 Hz. Procedure 1 of MIL-STD-810C will be used as a guide. A category B test will be conducted (150 db for 30 minutes) to evaluate the effects of longer term acoustic environment on the RRS output. Measurements of the RRS output will be made at intervals no greater than 5 minutes during this test. A category D test will be conducted for limited time periods. A minimum sound pressure level of 165 db will be applied in "pulses" of approximately I second duration. The sound pressure level will be brought up to the maximum level in the minimum time period consistent with laboratory operating procedures and equipment capabilities. Following the sound "pulse" the pressure level will be allowed to decay in accordance with inherent equipment characteristics. This short duration acoustic pulse will be applied to the energized RRS a minimum of 8 times. The output will be continously recorded. Acoustic effects on the RRS output will be determined by comparing the recorded null output during and following the acoustic pulse to the output recorded just prior to application of the acoustic environment. In addition, results of post-environment performance tests will be compared to pre-environment performance baseline tests.

3.4.6 Temperature Sensitivity Tests

The baseline performance tests will be conducted at $-65^{\circ}F \pm 5^{\circ}F$ and at $+165^{\circ}F \pm 5^{\circ}F$. The temperature chamber shall be stabilized at the test temperature preceding the testing. Data from these tests shall be compared to room temperature test data to determine temperature sensitivity.

4. TEST IMPLEMENTATION

4.1 Test Procedures

The major tests necessary in the conduct of this test program are as follows:

- 1. Baseline performance tests.
- 2. High temperature test.
- 3. Low temperature test.
- 4. Acceleration test.
- 5. Rate of acceleration (jerk) test.
- 6. Vibration test.
- 7. Acoustic sensitivity test.

A detailed test procedure shall be written giving the steps to follow in conducting the above tests. The procedure will define the order of testing, when the RRS is to be operated, how and when the environmental exposure is to be applied, the parameters to be measured and recorded, and the frequency or time of measurement. Baseline Performance will be established prior to and following environmental exposures.

4.2 Failure Documentation

In case of equipment failure appropriate entries as to schedule impact and corrective action shall be made in the test logs by the test program engineer.

In case of failure of the Unit Under Test , a full description of the test conditions and nature of the failure will be given in the test report. Failure analysis, failure testing and failure reports are beyond the scope of this program.

4.3 Data Requirements

4.3.1. Photographic Documentation

Photographs will be employed as necessary to supplement drawings, sketches, and descriptive material in the test report, such that test set-ups may be reconstructed or duplicated. Orientation of the test specimen during environmental exposures is of particular interest and must be fully documented.

4.3.2. Data Sheets

Data sheets similar to the example shown in Appendix A will be prepared for use with each test procedure and shall contain as a minimum the following entries in addition to sections for recording observed performance data.

Name of Test

Place of Test

Part number & serial number of test article

Pertinent test equipment model/serial numbers

Date

Test conditions @ Start Finish

Time of day

Temperature

Baro. press

Humidity

Test Engineer(s) attesting signature

4.3.3 Oscillograph Records

Oscillograph records shall be annotated to indicate trace identification, scale factors, and time of events and shall be identified with the entries listed in paragraph 4.3.2.

4.4 Schedule and Milestones

A schedule for conducting the tests described herein is shown in Figure 2. It is planned that all testing shall be completed by 1 April 1980. Test data reduction, analysis, evaluation and presentation and preparation of descriptive test results will be completed by 1 May 1980. Test results will be made available to NADC on or before 15 May 1980. The formal test report will be a part of the program final report.

5. DEFINITIONS

Scale Factor - slope of best fitting straight line to test data.

Linearity - the deviation of the output data from the best straight

line fit to the data <u>and</u> through the zero rate point.

Null Bias - output of rate sensor at zero rate input. Also termed "offset".

Hysteresis - the difference in output at any rate when approached in opposite directions.

Figure 2 ROLL RATE SENSOR TEST SCHEDULE

Baseline Functional Tests

Test plan

Environmental Exposures

Test Report (in final report)

Final distribution

Approval

Draft

Test results available

Data analysis

APPENDIX A

TYPICAL DATA SHEET

Test:	
Date: Laboratory: Test Machine: Test Article I. D. Name: Part No.: Model No.: Serial No.:	Temp: Baro. Press: Relative Humidity: Input: Voltage Current Power
Input Output	DATA ANALYSIS RESULTS
This test conducted in accordance with paragraph of TPL and paragraph of TPR except as noted. Test Engineer: Signature	Null Bias

The second secon

APPENDIX C

LEAST SQUARES FIT ALGORITHM

Scale factor, bias and linearity:

$$Z = B + Ax$$

$$B = (Q - (A \cdot S)/H9$$

$$A = ((H9 \cdot P) - (S \cdot Q))/((H9 \cdot T) - (S \cdot S))$$

$$H9 = (4 \cdot (R1/R2))/2$$

Where:

A = Slope of Least Squares Fit Straight Line (volts/degrees/second)

B = Bias (Y - Intercept of Least Squares Fit Line (volts))

H9 = Number of Data Points

P = Sum of Inputs Times Outputs (volts/degrees/second)

Q = Sum of the Outputs (volts)

 R_1 = Maximum Rate (degrees/second)

R₂ = Rate Increment (degrees/second)

S = Sum of the Inputs (degrees/second)

T = Sum of the Inputs Squared (degrees/second)²

X = Input (degrees/second)

Z = Least Squares Fit Straight Line (volts)

Hysteresis: Maximum

$$M = Y_1 - Y_2$$

Where:

M = Hysteresis (volts)

Y₁ = Output Recorded Approaching Maxmimum Rate

Y2 = Output Recorded Approaching Zero Rate

OUTPUT DRIFT ALGORITHM

$$D = \frac{SF_{H} - SF_{L}}{SF_{NOM}} \times \frac{60}{t} \times 100$$

Where: SF_u = Highest scale factor at rate

 SF_{τ} = Lowest scale factor at rate

SF_{NOM} = Nominal baseline scale factor

t = Time in seconds between high and low

scale factors