Семинар по функциональному анализу. 315 группа, 30.03.20 (14-ый день карантина)

"Сопряженные операторы"

Перед решением задач по этой теме рекомендуется самостоятельно прочитать параграфы 18.1 (стр. 186 – 188) и 18.4 (стр. 191 – 193) из книги В.А. Треногина "Функциональный анализ".

Пусть X, Y – линейные нормированные пространства, A – линейный ограниченный оператор, действующий из X в Y (сюрьективный!). Для любого $y \in Y^*$ рассмотрим выражение $\varphi_y(x) = y(Ax)$ – оператор из X^* . Таким образом, построен линейный оператор A^* , который каждому $y \in Y^*$ ставит в соответствие $\varphi \in X^*$:

$$y(Ax) = (A^*y)(x), \ \forall x \in X, y \in Y^*.$$

Таким образом, если $A \in \mathcal{L}(X \to Y)$, то $A^* \in \mathcal{L}(Y^* \to X^*)$. Более того, $||A^*|| = ||A||$. Если пространства X и Y гильбертовы, то построение сопряженного оператора сводится к извествном правилу "перебрасывания" оператора между сомножителями в скалярном произведении: $\langle Ax, y \rangle = \langle x, A^*y \rangle$.

Задача 1. Пусть X, Y, Z – линейные нормированные пространства, $A \in \mathcal{L}(X \to Y), B \in \mathcal{L}(Y \to Z)$. Доказать, что $(BA)^* = A^*B^*$.

Решение: По определению сопряженного оператора $A^*:Y^*\to X^*,\ B^*:Z^*\to Y^*,\ (BA)^*:Z^*\to X^*.$ Тогда

$$\forall z \in Z^*, \forall x \in X \ ((BA)^*(z))(x) = z((BA)(x)) = z(B(A(x))) = (B^*z)(Ax) = (A^*(B^*z))(x)$$

Следовательно, $\forall z \in Z^*(BA)^*(z) = A^*(B^*z)$, и $(BA)^* = A^*B^*$.

Задача 2. Найти оператор, сопряженный к оператору $A: L_2[0,1] \to L_2[0,1]$, если

$$(Ax)(t) = \int_0^t \tau x(\tau) d\tau.$$

 $Pewenue: L_2[0,1]$ — гильбертово пространство, а значит можно "перебросить" оператор в скалярном произведении:

$$\forall y \in L_2[0,1] \ \langle Ax,y \rangle = \int_0^1 y(t) \int_0^t \tau x(\tau) d\tau dt = \{\text{меняем порядок интегрирования}\} =$$

$$= \int_0^1 \left(\tau \int_0^1 y(t) dt\right) x(\tau) d\tau = \langle x, A^*y \rangle \,,$$

где

$$(A^*y)(\tau) = \tau \int_{\tau}^{1} y(t)dt, \ \forall \tau \in [0,1].$$

Задача 3. Найти оператор, сопряженный к оператору $A: l_2 \to l_1$,

$$Ax = (x_1, ..., x_n, 0, ...).$$

Является ли оператор A самосопряженным?

Решение: Пространство l_1 не является гильбертовым, а потому использовать "перебрасывание" оператора внутри скалярного произведения нельзя. Сопряженный оператор A^* действует из $l_1^* = l_\infty$ в l_2 . Так как $l_1^* \neq l_2$, то оператор A не может быть самосопряженным!

$$\forall y \in l_1^* = l_\infty, \forall x \in l_2 \ y(Ax) = y_1 x_1 + \dots + y_n x_n = (A^* y)(x).$$

Последнее соотноение может выполняться только если $A^*y = (y_1, ..., y_n, 0, ...)$. (То есть по форме операторы A и A^* схожи, но все же действуют в разных пространствах!)

Задача 4. Пусть H – гильбертово пространство, $A \in \mathcal{L}(H \to H)$. Доказать, что $\ker A = \operatorname{im}^{\perp} A^*$.

Решение:

 $\forall x \in \ker A, \ \forall y \in \operatorname{im} A^* \subseteq H \Rightarrow A(x) = 0, \ \exists z \in H : A^*(z) = y \Rightarrow \langle x, y \rangle = \langle x, A^*(z) \rangle = \langle A(x), z \rangle = 0,$ а значит $\ker A \subseteq \operatorname{im}^{\perp} A^*$.

В обратную сторону:

$$\forall x \in \operatorname{im}^{\perp} A^* \Rightarrow \langle x, A^*(z) \rangle = 0, \forall z \in H \Rightarrow \langle A(x), z \rangle = 0, \forall z \in H.$$

Если предположить, что A(x) – ненулевой вектор, то при z = A(x) сразу получим противоречие полученному выше соотношению. Значит A(x) = 0 и $x \in \ker A$.

Задача 5. Пусть H – гильбертово пространство, $A \in \mathcal{L}(H \to H)$. Доказать, что

- 1. $\ker AA^* = \ker A^*$;
- 2. $\lim AA^* = \lim A$;
- 3. $||A^*A|| = ||A||^2$.

Решение:

1. Вложение $\ker A^* \subseteq \ker AA^*$ очевидно. Обратное вложение вытекает из следующей цепочки соотношений:

$$x \in \ker A^* \Leftrightarrow A^*(x) = 0 \Leftrightarrow \langle A^*(x), A^*(x) \rangle = 0 \Leftrightarrow \langle x, (AA^*)(x) \rangle = 0.$$

- 2. Соотношение вытекает из предыдущего пункта, а также предыдущей задачи, связывающей между собой образы и ядра операторов.
- 3. Из определения сопряженного оператора следует, что $||A|| = ||A^*||$. Используя неравенство из определения операторной нормы, можно показать, что

$$||A^*A|| \le ||A^*|| \cdot ||A|| = ||A||^2.$$

В обратную сторону:

$$\forall x: \|x\| = 1 \ \|Ax\|^2 = \langle Ax, Ax\rangle = \langle x, A^*Ax\rangle \leq \|x\| \cdot \|A^*Ax\| \leq \|x\| \cdot \|A^*A\| \cdot \|x\| = \|A^*A\|,$$
а значит $\|A\|^2 \leq \|A^*A\|.$

Домашнее задание: № 14.10 (б,в,г), 14.18, 14.19,

Задача 6. Пусть X – рефлексивное банахово пространство, Y – линейное нормированное пространство, $A \in \mathcal{L}(X \to Y)$. Доказать, что $\operatorname{im} A^{**} \subseteq Y$ и $A^{**} = A$ как оператор из X в Y.

Pewenue: Для любого $y \in \operatorname{im} A^{**}$ найдется $x \in X = X^{**}$: $y = A^{**}x$. Следовательно, для любого $z \in Y^*$ справедлива цепочка соотношений:

$$y(z) = (A^{**}x)(z) = x(A^*z) = (A^*z)(x) = z(Ax).$$

(третье равенство – следствие рефлексивности X). Данное соотношение позволяет однозначно сопоставить элементу $y \in Y^{**}$ элемент $Ax \in Y$.

Задача 7. Рассмотрим линейный оператор $A: L_2[0,1] \to L_2[0,1]$, Ax(t) = x'(t), определенный на подпространстве M непрерывно дифференцируемых функций, удовлетворяющих условиям x(0) = x(1) = 0. Найти A^* и его область определения.