Dr. Francesco Gallinaro Tutorat: Max Herwig

Modelltheorie

Blatt 0

Abgabe: 24.10.2023, 12 Uhr

Dieses Blatt ist nicht Teil der Studienleistung

Aufgabe 1 (3 Punkte).

a) In der Sprache \mathcal{L} sei $\varphi[x_1,\ldots,x_n]$ eine \mathcal{L} -Formel der Form

$$\varphi[x_1,\ldots,x_n] = \exists y_1\ldots\exists y_m\psi[x_1,\ldots,x_n,y_1,\ldots,y_m],$$

wobei ψ eine quantorfreie \mathcal{L} -Formel ist. Gegeben eine Struktur \mathcal{B} sowie Elemente a_1, \ldots, a_n aus der Unterstruktur \mathcal{A} von \mathcal{B} , zeige, dass

$$\mathcal{A} \models \varphi[a_1, \dots, a_n] \Rightarrow \mathcal{B} \models \varphi[a_1, \dots, a_n].$$

b) Gilt die Rückrichtung?

Aufgabe 2 (4 Punkte).

Sei \mathcal{L} eine Sprache, welche ein einstelliges Prädikat P_n für jedes n in \mathbb{N} enthält. Betrachte eine \mathcal{L} -Theorie T und eine \mathcal{L} -Formel $\varphi[x]$ derart, dass in jedem Modell \mathcal{A} von T jede Realisierung a von φ in einem der Prädikate $P_n^{\mathcal{A}}$ liegt. Zeige, dass es ein N aus \mathbb{N} gibt, so dass

$$T \models \forall x \left(\varphi[x] \to \bigvee_{n=0}^{N} P_n(x) \right).$$

Hinweis: Kompaktheitssatz.

Aufgabe 3 (10 Punkte).

Sei I eine (nicht-leere) Menge. Ein $Filter \mathcal{F}$ auf I ist eine nicht-leere Teilmenge der Potenzmenge $\mathcal{P}(I)$ mit folgenden Eigenschaften:

- 1. $\emptyset \notin \mathcal{F} \text{ und } I \in \mathcal{F}$.
- 2. Für alle X und Y aus \mathcal{F} , liegt $X \cap Y$ in \mathcal{F} .
- 3. Falls X in \mathcal{F} liegt und $X \subset Y$, dann liegt Y auch in \mathcal{F} .
- a) Zeige, dass jeder beliebige Durchschnitt von Filtern wieder ein Filter ist. Ist die Vereinigung von Filtern wiederum ein Filter?

Eine nicht-leere Teilmenge $\mathcal{B} \subseteq \mathcal{P}(I)$ ist eine *Filterbasis*, falls kein endlicher Durschnitt von Elementen aus \mathcal{B} leer ist. Ein *Ultrafilter* ist ein maximaler Filter.

b) Zeige, dass eine Filterbasis \mathcal{B} einen Filter bestimmt, welcher von \mathcal{B} erzeugt wird.

Falls $\mathcal{B} = \{X\}$ für ein $X \subset I$, wird der von X erzeugte Filter Hauptfilter genannt.

(Bitte wenden!)

- c) Zeige, dass jeder Filter in einem Ultrafilter enthalten ist. Ferner zeige, dass ein Ultrafilter genau dann ein Filter \mathcal{F} ist, wenn er folgende Zusatzeigenschaft besitzt:
 - 4. Wenn $X \cup Y$ in \mathcal{F} liegt, dann liegt X oder Y in \mathcal{F} .
- d) Wenn ein Hauptultrafilter \mathcal{U} von der Teilmenge $X \subset I$ erzeugt wird, wie groß ist dann X? Für unendliche I sei $\mathcal{F}(I)$ die Kollektion aller koendlichen Teilmengen von I, das heißt,

$$\mathcal{F}(I) = \{X \subset I : I \setminus X \text{ ist endlich}\}.$$

Zeige, dass $\mathcal{F}(I)$ ein Filter ist. Ein Ultrafilter \mathcal{U} ist genau dann kein Hauptfilter, wenn \mathcal{U} den Filter $\mathcal{F}(I)$ enthält.

- e) Falls die Menge I Mächtigkeit \aleph_0 hat, zeige, dass ein Ultrafilter \mathcal{U} genau dann unter abzählbaren Durchschnitten abgeschlossen ist, wenn \mathcal{U} ein Hauptultrafilter ist.
- f) Gegeben einen Filter \mathcal{F} auf I und eine Familie $(X_i)_{i\in I}$ von (nicht-leeren) Mengen, definiere folgende Relation auf $\prod_{i\in I} X_i$:

$$(a_i)_{i\in I} \sim_{\mathcal{F}} (b_i)_{i\in I} \iff \{i \in I : a_i = b_i\} \in \mathcal{F}.$$

Zeige, dass $\sim_{\mathcal{F}}$ eine Äquivalenzrelation ist.

DIE ÜBUNGSBLÄTTER KÖNNEN ZU ZWEIT EINGEREICHT WERDEN. ABGABE DER ÜBUNGSBLÄTTER IM FACH 3.33 IM KELLER DES MATHEMATISCHEN INSTITUTS.