Física Básica

Um resumo de Física Básica baseado no programa do EUF.

Ugo Pozo

Sumário

			 1 1 1 1 1 1 1 3 4 4 4 4 4 4 4 4
			 5 5 5 5 5 5 5 5 5 5
			7
			7 7 7 7 7 7 7 7 7 7
			 9 9 9 9 9 9 9 9 9
g		g	

V	Termodinâmica e Física Estatística	11
	V.1 Sistemas termodinâmicos	
	V.2 Variáveis e equações de estado, diagramas PVT	11
	V.3 Trabalho e primeira lei da termodinâmica	
	V.4 Equivalente mecânico do calor	
	V.5 Energia interna, entalpia, ciclo de Carnot	11
	V.6 Mudanças de fase	
	V.7 Segunda lei da termodinâmica e entropia	11
	V.8 Funções termodinâmicas	
	V.9 Aplicações práticas de termodinâmica	11
	V.10 Teoria cinética dos gases	11
	V.11 Descrição Estatística de um Sistema Físico	
	V.12 Ensemble Microcanônico	11
	V.13 Ensemble Canônico	11
	V.14 Gás Clássico no Formalismo Canônico	11
	V.15 Ensemble Grande Canônico	11
	V.16 Gás Ideal Quântico	
	V.17 Gás Ideal de Fermi	11
	V.18 Condensação de Bose-Einstein	11
Re	eferências	13

Resumo

Esta apostila tem como objetivo servir como guia de estudos para o EUF. Ela não tem como objetivo ensinar o conteúdo de que trata, e sim servir como revisão e referência para consulta durante estudos para o EUF.

I. Mecânica Clássica

- I.l. Leis de Newton
- I.2. Movimento unidimensional
- I.3. Oscilações lineares
- I.4. Movimento em duas e três dimensões
- I.5. Gravitação newtoniana
- I.6. Cálculo variacional

Seja $\mathcal{F}(q_1(t),\ldots,q_n(t),\dot{q}_1(t),\ldots,\dot{q}_n(t)):=\int_{t_0}^{t_1}\mathrm{d}t\ f(t,q_1(t),\ldots,q_n(t),\dot{q}_1(t),\ldots,\dot{q}_n(t))$ um funcional que possua mínimos locais nas funções $\mathcal{Q}:=\left\{\chi_1(t),\ldots,\chi_n(t)\right\}$. Então, $\forall i\in\{1,\ldots,n\}$, \mathcal{Q} é a solução do sistema de equações diferenciais:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial f}{\partial \dot{q}_i} \right) = \frac{\partial f}{\partial q_i} \tag{1}$$

Exemplo I.6.1 (Princípio de Fermat). O princípio de Fermat diz que a luz andando num meio percorre o caminho que minimiza o **tempo** de percurso. Isto é, dado um meio bidimensional cujo índice de refração depende da posição (n = n(x, y)), temos:

$$T = \int_{t_0}^{t_1} dt =$$

$$= \frac{1}{c} \int_{t_0}^{t_1} dt \, \frac{c}{v} \, \frac{ds}{dt} =$$

$$= \frac{1}{c} \int_{A}^{B} ds \, n(x, y) =$$

$$= \frac{1}{c} \int_{A}^{B} \sqrt{dx^2 + dy^2} n(x, y) =$$

$$= \frac{1}{c} \int_{x_0}^{x_1} dx \sqrt{1 + \dot{y}^2} \, n(x, y)$$
(2)

Onde $\dot{y}:=rac{\mathrm{d}y}{\mathrm{d}x}$. Desse modo, se definirmos o funcional $\mathcal{T}(y,\dot{y}):=\int_{x_0}^{x_1}\mathrm{d}x\sqrt{1+\dot{y}^2}\;n(x,y)$, sabemos que o caminho y(x) é solução da Equação l para $f(x,y,\dot{y})=\sqrt{1+\dot{y}^2}\;n(x,y)$.

Exemplo I.6.2 (Catenária). A catenária é a curva que minimiza a energia potencial gravitacional de uma corda inelástica presa pelas suas duas extremidades, e cujo corpo é livre e não encosta no chão.

A energia potencial gravitacional de uma partícula puntiforme é dada por $E_g = mgy$, e, considerando uma corda com densidade linear de massa ρ , podemos fazer:

$$E_g = \int_M dm \ gy =$$

$$= \int_A^B ds \ \rho gy =$$

$$= \rho g \int_A^B \sqrt{dx^2 + dy^2} \ y =$$

$$= \rho g \int_{x_0}^{x_1} dx \ y \sqrt{1 + \dot{y}^2}$$
(3)

Novamente, $\dot{y} := \frac{\mathrm{d}y}{\mathrm{d}x}$. Também de forma análoga ao Exemplo I.6.1, definindo o funcional $\mathcal{E}(y,\dot{y}) := \int_{x_0}^{x_1} \mathrm{d}x \, y \sqrt{1+\dot{y}^2}$, teremos que a curva y(x) será a catenária, e será solução da Equação 1 para $f(y,\dot{y}) = y\sqrt{1+\dot{y}^2}$.

Entre outros exemplos úteis, temos:

Nome	Definição	Equação
Braquistócrona	Superfície que minimiza o tempo que uma partí- cula demora para cair diagonalmente sob influên- cia de um campo gravitacional	$f(y, \dot{y}) = y^{\frac{1}{2}} \sqrt{1 + \dot{y}^2}$
Geodésica hiperbólica	1 0	$f(y, \dot{y}) = y^{-1} \sqrt{1 + \dot{y}^2}$

Tabela 1: Resultados comuns de cálculos variacionais

Essas equações podem ser derivadas de maneira extremamente similar à do Exemplo I.6.1 e do Exemplo I.6.2.

De maneira geral, se um funcional tem um lagrangiano L (i.e. $\mathcal{F} = \int \mathrm{d}t \, L$) independente da variável de integração (no caso, o tempo), pode-se usar a Identidade de Beltrami para encontrar grandezas constantes que auxiliam a resolução das equações de Euler-Lagrange:

Equação 4 - Identidade de Beltrami. $\forall i \in \{1,\dots,n\} \exists C_i = L - \dot{q}_i \ \frac{\partial L}{\partial \dot{q}_i} \ \text{t.q.} \ \frac{\mathrm{d}C_i}{\mathrm{d}t} = 0, \ \text{i.e.}$

$$\frac{\mathrm{d}}{\mathrm{d}t}\left(L - \dot{q}_i \frac{\partial L}{\partial \dot{q}_i}\right) = 0, \forall i \in \{1, \dots, n\}$$

I.6.a) Multiplicadores de Lagrange

No caso de haver **restrições** ao movimento da(s) partícula(s), como uma partícula que anda sobre uma canaleta, ou presa a fios etc., que a impeça de se movimentar livremente e portanto relacione diferentes coordenadas, pode-se utilizar os multiplicadores de Lagrange para obter uma lagrangiana cuja aplicação nas equações de Euler-Lagrange fornece imediatamente a trajetória da partícula.

Exemplo I.6.3. Considerando a situação da Figura 1, temos dois blocos com algumas restrições de movimento: definindo a origem sobre a polia, e o tamanho do fio (inextensível) como l, temos que o bloco 1 fica sempre sobre a mesa (i.e., $y_1=0$) e que a soma das coordenadas x_1 e y_2 , em módulo, deve corresponder ao tamanho do fio (i.e., $|x_1|+|y_2|=l\Rightarrow x_1+y_2=-l$). Para simplificar, podemos impor que o bloco 2 também não se mexe horizontalmente, i.e., $x_2=0$.

Figura 1: Blocos 1 e 2, unidos por um fio ideal

Considerando ainda que L=T-V, como será visto na Subseção I.7, temos os termos para a lagrangiana tal como especificados na Tabela 2, resultando na lagrangiana da Equação 5.

Origem	Coordenadas	Restrição	Termo da lagrangiana
Bloco 1	x_1, y_1	-	$rac{m_1}{2}\left(\dot{x}_1^2 + \dot{y}_1^2 ight) - m_1 g y_1$
Bloco 2	x_2, y_2	_	$\frac{m_1}{2} \left(\dot{x}_1^2 + \dot{y}_1^2 \right) - m_1 g y_1$ $\frac{m_2}{2} \left(\dot{x}_2^2 + \dot{y}_2^2 \right) - m_2 g y_2$
Mesa	λ_1	$y_1 = 0$	$\lambda_1 (y_1 - 0)$
Fio	λ_2	$x_1 + y_2 = -l$	$\lambda_{2}\left(x_{1}+y_{2}+l\right)$
∄ movimento horizontal	λ_3	$x_2 = 0$	$\lambda_3 \left(x_2 - 0 \right)$

Tabela 2: Coordenadas e restrições dos multiplicadores de Lagrange

$$L = \frac{m_1}{2} \left(\dot{x}_1^2 + \dot{y}_1^2 \right) - m_1 g y_1 + \frac{m_2}{2} \left(\dot{x}_2^2 + \dot{y}_2^2 \right) - m_2 g y_2 + \lambda_1 y_1 + \lambda_2 \left(x_1 + y_2 + l \right) + \lambda_3 x_2 \tag{5}$$

Em resumo, uma restrição de coordenadas pode ser representada como $g(q_1,\ldots,q_n,\dot{q}_1,\ldots,\dot{q}_n)=0$. Se houver $k\in\mathbb{N}$ restrições em vigor em um determinado sistema, a lagrangiana modificada L' que incorpora essas restrições será dada por:

$$L' = L + \sum_{i=1}^{k} \lambda_i \ g_i(q_1, \dots, q_n, \dot{q}_1, \dots, \dot{q}_n)$$
 (6)

Onde L é a lagrangiana original do sistema, e λ_i são as coordenadas extras que deverão ser levadas em consideração na resolução das equações de Euler-Lagrange.

I.7. Equações de Lagrange e de Hamilton

I.7.a) Por que L = T - V**?**

Do princípio de d'Alembert¹, pode-se chegar a uma **força generalizada**, em função das coordenadas generalizadas, que é dada por

$$Q_k = \sum_{i=1}^N \vec{F}_i \, \frac{\partial \vec{r}_i}{\partial q_k} \, .$$

Utilizando-se do princípio de d'Alembert, de cálculo variacional e após diversos passos, pode-se chegar a:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial T}{\partial \dot{q}_k} \right) - \frac{\partial T}{\partial q_k} = Q_k. \tag{7}$$

Quando a força Q_k deriva de um potencial escalar, i.e., $\vec{F}_i = -\nabla_i V$, temos que

$$Q_k = -\frac{\partial V}{\partial q_k}$$

e se $Q_k = Q_k(q_{1k}(t), \dots, q_{nk}(t), t)$, isto é, Q_k não depende da velocidade da partícula k, sabemos que

$$\frac{\partial Q_k}{\partial \dot{q}_k} = 0 \implies \frac{\mathbf{d}}{\mathbf{d}t} \left(\frac{\partial Q_k}{\partial \dot{q}_k} \right) = 0$$

e daí, com L := T - V,

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial T}{\partial \dot{q}_k} \right) - \frac{\partial T}{\partial q_k} = Q_k \ \Rightarrow \ \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}_k} \right) - \frac{\partial L}{\partial q_k} = 0.$$

Para forças que dependam da velocidade (e.g. força de Lorentz), deve-se utilizar o potencial generalizado U, definido como

$$Q_k = -\frac{\partial U}{\partial q_k} + \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial U}{\partial \dot{q}_k} \right).$$

Essa definição alternativa do potencial permite manter válida Equação 1, para L=T-U, e, por exemplo, no caso da força de Lorentz, leva ao potencial

 $^{^1{\}rm O}$ princípio de d'Alembert diz que toda partícula num sistema, independentemente do número de forças concretas que atuem sobre ela, na verdade pode ser interpretado como estando em *equilibrio exceto pela ação de uma força externa*, que causa movimento (ainda que virtual). Ou seja, para cada partícula indexada por $i\in\mathbb{N}, \vec{F_i}-\dot{\vec{p_i}}=0.$

$$U=q\left(arphi-ec{v}\cdotec{A}
ight)$$
 ,

onde $\vec{A} \equiv$ potencial vetor, $\varphi \equiv$ potencial elétrico, $q \equiv$ carga elétrica e $\vec{v} \equiv$ velocidade da partícula.

I.7.b) Equações de Hamilton

Pode-se definir a hamiltoniana de um sistema a partir da transformada de Legendre² da sua lagrangiana.

- I.8. Forças centrais
- I.9. Sistemas de partículas
- I.10. Referenciais não inerciais
- I.11. Dinâmica de corpos rígidos
- I.12. Oscilações acopladas

²Transformadas de Legendre também serão extremamente úteis no estudo das funções termodinâmicas, na Subseção V.8.

II. Eletromagnetismo

- II.1. Campos eletrostáticos no vácuo e nos materiais dielétricos
- II.2. Resolução das equações de Poisson e Laplace
- II.3. Campos magnéticos, correntes estacionárias e materiais não magnéticos
- II.4. Força eletromotriz induzida e energia magnética
- II.5. Materiais magnéticos
- II.6. Equações de Maxwell
- II.7. Propagação de ondas eletromagnéticas
- II.8. Reflexão e Refração
- II.9. Radiação
- II.10. Eletromagnetismo e Relatividade

III. Física Moderna

- III.1. Fundamentos da relatividade restrita
- III.2. Mecânica relativística das partículas
- III.3. Propagação da luz e a relatividade newtoniana
- III.4. Experimento de Michelson e Morley
- III.5. Postulados da teoria da relatividade restrita
- III.6. As transformações de Lorentz
- III.7. Causalidade e simultaneidade
- III.8. Energia e momento relativísticos
- III.9. Radiação térmica, o problema do corpo negro e o postulado de Planck
- III.10. Fótons e as propriedades corpusculares da radiação
- III.11. O modelo de Rutherford e o problema da estabilidade dos átomos
- III.12. O modelo de Bohr
- III.13. Distribuição de Boltzmann da energia
- III.14. Átomos, Moléculas e Sólidos

IV. Mecânica Quântica

- IV.1. Introdução às ideias fundamentais da teoria quântica
- IV.2. O aparato matemático da mecânica quântica de Schrödinger
- IV.3. Formalização da Mecânica Quântica. Postulados. Descrição de Heisenberg
- IV.4. O oscilador harmônico unidimensional
- IV.5. Potenciais Unidimensionais
- IV.6. A equação de Schrödinger em três dimensões. Momento angular
- IV.7. Forças centrais e o átomo de Hidrogênio
- IV.8. Spinores na teoria quântica não-relativística
- IV.9. Adição de momentos angulares
- IV.10. Teoria de perturbação independente do tempo
- IV.11. Partículas idênticas

V. Termodinâmica e Física Estatística

- V.1. Sistemas termodinâmicos
- V.2. Variáveis e equações de estado, diagramas PVT
- V.3. Trabalho e primeira lei da termodinâmica
- V.4. Equivalente mecânico do calor
- V.5. Energia interna, entalpia, ciclo de Carnot
- V.6. Mudanças de fase
- V.7. Segunda lei da termodinâmica e entropia
- V.8. Funções termodinâmicas
- V.9. Aplicações práticas de termodinâmica
- V.10. Teoria cinética dos gases
- V.11. Descrição Estatística de um Sistema Físico
- V.12. Ensemble Microcanônico
- V.13. Ensemble Canônico
- V.14. Gás Clássico no Formalismo Canônico
- V.15. Ensemble Grande Canônico
- V.16. Gás Ideal Quântico
- V.17. Gás Ideal de Fermi
- V.18. Condensação de Bose-Einstein

Referências

INSTITUTO DE FÍSICA - USP, INSTITUTO DE FÍSICA DE SÃO CARLOS - USP, INSTITUTO DE FÍSICA "GLEB WATAGHIN" - UNICAMP, INSTITUTO DE FÍSICA TEÓRICA - UNESP, UFABC, UFSCAR, UFRGS, UFMG, UFPE, UFRN. **Edital**: Exame Unificado de Pós-Graduações em Física - EUF 2018-2. São Paulo: [s.n.], 2018. Disponível em:

<http://143.54.179.227/Eventos/Temp/edital_euf_2018-25058724.pdf>. Acesso em: 2 abr.
2018.