$$s_0 = 4$$
, $s_1 = 2$, $s_2 = 5$, $s_3 = 6$

	0	1	2	3	4	5	6	7
{}								
0								
1								
2								
3								T _{3,7}

Seeking a subset $T_{3,7}$ of $S_3 = \{4, 2, 5, 6\}$ whose sum is 7.

Such a subset $T_{3,7}$ can be found if and only if either a subset of $S_2 = \{4, 2, 5\}$ sums to 7, or a subset of $S_2 = \{4, 2, 5\}$ sums to 7-6 = 1.

$$s_0 = 4$$
, $s_1 = 2$, $s_2 = 5$, $s_3 = 6$

	0	1	2	3	4	5	6	7
{}								
0								
1								
2		T _{2,1}						T _{2,7}
3								T _{3,7}

Seeking a subset $T_{2,7}$ of $S_2 = \{4, 2, 5\}$ whose sum is 7 OR a subset $T_{2,1}$ of $S_2 = \{4, 2, 5\}$ whose sum is 7-6=1.

Can find $T_{2,7}$ iff a subset of $S_1 = \{4, 2\}$ has sum 7 or a subset of $S_1 = \{4, 2\}$ has sum 7-5=2.

Can find $T_{2,1}$ iff a subset of $S_1 = \{4, 2\}$ has sum 1 (don't consider the possibility of sum 1-5)

$$s_0 = 4$$
, $s_1 = 2$, $s_2 = 5$, $s_3 = 6$

	0	1	2	3	4	5	6	7
{}								
0								
1			T _{1,2}					T _{1,7}
2		T _{2,1}						T _{2,7}
3								T _{3,7}

Starting from $T_{2,7} \subseteq S_2 = \{4, 2, 5\}$ with k = 7, we seek

- a subset $T_{1,7}$ of S_1 = {4, 2} whose sum is 7 OR
- a subset $T_{1,2}$ of $S_1 = \{4, 2\}$ whose sum is 7-5=2.

Can find $T_{1,7}$ iff a subset of $S_0 = \{4\}$ has sum 7 or a subset of $S_0 = \{4\}$ has sum 7-2=5.

Can find $T_{1,2}$ iff a subset of $S_0 = \{4\}$ has sum 2 or a subset of $S_0 = \{4\}$ has sum 2-2 = 0.

$$s_0 = 4$$
, $s_1 = 2$, $s_2 = 5$, $s_3 = 6$

	0	1	2	3	4	5	6	7
{}								
0								
1		T _{1,1}	T _{1,2}					T _{1,7}
2		T _{2,1}						T _{2,7}
3								T _{3,7}

Starting from $T_{2,1} \subseteq S_2 = \{4, 2, 5\}$ with k = 1, we seek - a subset $T_{1,1}$ of $S_1 = \{4, 2\}$ whose sum is 1

Can find $T_{1,1}$ iff a subset of $S_0 = \{4\}$ has sum 1 (don't consider the possibility of sum = 1 – 2)

$$s_0 = 4$$
, $s_1 = 2$, $s_2 = 5$, $s_3 = 6$

	0	1	2	3	4	5	6	7
{}								
0						T _{0,5}		T _{0,7}
1		T _{1,1}	T _{1,2}					T _{1,7}
2		T _{2,1}						T _{2,7}
3								T _{3,7}

Starting from $T_{1,7} \subseteq S_1 = \{4, 2\}$ with k = 7, we seek

- a subset $T_{0,7}$ of $S_0 = \{4\}$ whose sum is 7 OR
- a subset $T_{0,5}$ of S_0 = {4} whose sum is 7-2=5.

$$s_0 = 4$$
, $s_1 = 2$, $s_2 = 5$, $s_3 = 6$

	0	1	2	3	4	5	6	7
{}	T _{{},0}							
0	T _{0,0}	T _{0,1}	T _{0,2}			T _{0,5}		T _{0,7}
1		T _{1,1}	T _{1,2}					T _{1,7}
2		T _{2,1}						T _{2,7}
3								T _{3,7}

The subproblem ({}, 0) has "true" as its solution. This is the base case.

$$s_0 = 4$$
, $s_1 = 2$, $s_2 = 5$, $s_3 = 6$

	0	1	2	3	4	5	6	7
{}	true							
0								
1								
2								
3								

$$s_0 = 4$$
, $s_1 = 2$, $s_2 = 5$, $s_3 = 6$

	0	1	2	3	4	5	6	7
{}	true							
0	true							
1								
2								
3								

$$s_0 = 4$$
, $s_1 = 2$, $s_2 = 5$, $s_3 = 6$

	0	1	2	3	4	5	6	7
{}	true							
0	true							
1			true					
2								
3								

$$s_0 = 4$$
, $s_1 = 2$, $s_2 = 5$, $s_3 = 6$

	0	1	2	3	4	5	6	7
{}	true							
0	true							
1			true					
2								true
3								

$$s_0 = 4$$
, $s_1 = 2$, $s_2 = 5$, $s_3 = 6$

	0	1	2	3	4	5	6	7
{}	true							
0	true							
1			true					
2								true
3								true