Matching problems

Jiaxin Hu

February 14, 2022

Here is a series of graph matching problem.

1. Correlated graph matching. (Ding et al., 2021a).

Consider two correlated Erdős-Rényi graphs $A, B \sim G(n, q)$ on the same vertex sets [n]. Let $\pi : [n] \mapsto [n]$ denote the latent permutation. Assume that conditional on A, for all i < j, $B_{\pi(i)\pi(j)}$ are independent and distributed as

$$B_{\pi(i)\pi(j)} \sim \begin{cases} Ber(s) & \text{if } A_{ij} = 1\\ Ber\left(\frac{q(1-s)}{1-q}\right) & \text{if } A_{ij} = 0. \end{cases}$$

Note that A, B are symmetric matrices, and A_{ii}, B_{ii} for all $i \in [n]$ are not well-defined.

Problem: recover π given A, B.

2. Testing correlation of graphs. (Wu et al., 2020)

Consider two weighted random graphs $G_1([n], W)$ and $G_2([n], W')$, where the edge weights $\{(W_{ij}, W'_{ij}) : 1 \leq i < j \leq n\}$ are i.i.d. pairs or random variables and W_{ij}, W'_{ij} have the same marginal distribution. Now, consider the hypothesis testing problem:

$$H_0: W_{ij}, W'_{ij}$$
 are independent \leftrightarrow $H_1: W_{ij}, W'_{ij}$ are correlated.

Problem: Given the unlabeled version of G_1, G_2 , i.e., $\tilde{G}_1 = \pi_1 \circ G_1$ and $\tilde{G}_2 = \pi_2 \circ G_2$, test H_0 versus H_1 .

3. Planted matching. (Ding et al., 2021b)

Consider a bipartite weighted graph G with left vertex set [n] and right vertex set [n]'. Let $W_{ij'} = W_e$ denote the weight on the edge $e = (i, j') \in E$. Let $\pi : [n] \mapsto [n]'$ denote a perfect mapping between [n] and [n]', and $M = \{e = (i, j') : i = \pi(j')\}$ denote the edges corresponding to the perfect match π .

Suppose the bipartite weighted graph G is generated as

$$(i,j') \begin{cases} \text{connected} & \text{if } (i,j') \in M \\ \sim P((i,j') \text{ connected}) = \frac{d}{n} & \text{if } (i,j') \notin M \end{cases}, \quad \text{with weight} \quad W_{ij'} \sim \begin{cases} \mathcal{P} & \text{if } (i,j') \in M \\ \mathcal{Q} & \text{if } (i,j') \notin M \end{cases},$$

where d is some positive constant, and \mathcal{P}, \mathcal{Q} are two distributions.

Problem: recover M based on G.

4. Recover networks from unlabeled noisy samples. (Josephs et al., 2021)

Consider an underlying network A with noisy observations $\tilde{A}^{(i)}$ for i = 1, ..., m, where

$$\mathbb{P}(\tilde{A}_{uv}^{(i)} = 1 | A_{uv}) = \begin{cases} 1 - \beta & A_{uv} = 1\\ \alpha & A_{uv} = 0. \end{cases}$$

Then, each pair of observations $\tilde{A}^{(i)}$, $\tilde{A}^{(j)}$ can be viewed as correlated Erdős-Rényi graphs.

Problem: recover A from $\tilde{A}^{(i)}$, i = 1, ..., m.

References

- Ding, J., Ma, Z., Wu, Y., and Xu, J. (2021a). Efficient random graph matching via degree profiles. *Probability Theory and Related Fields*, 179(1):29–115.
- Ding, J., Wu, Y., Xu, J., and Yang, D. (2021b). The planted matching problem: Sharp threshold and infinite-order phase transition. arXiv preprint arXiv:2103.09383.
- Josephs, N., Li, W., and Kolaczyk, E. D. (2021). Network recovery from unlabeled noisy samples. arXiv preprint arXiv:2104.14952.
- Wu, Y., Xu, J., and Yu, S. H. (2020). Testing correlation of unlabeled random graphs. arXiv preprint arXiv:2008.10097.