

Football Transfers Network Analysis

ProDEI040 - Analysis of Social and Information Networks 2017/2018

Alexandre Ribeiro up201205024@fe.up.pt

Introduction

- This project aims to study football transfers, with focus on their values, from a social network perspective
- Gephi was used as graph analysis tool
- Original data was scraped from https://www.transfermarkt.com/
 - English, Spanish, German, Italian, French and Portuguese leagues
 - o 2015/2016, 2016/2017 and 2017/2018 seasons
 - Some transfers were ignored
 - Transfers from or to non main teams (i.e. U21, B, ...)
 - Transfers with unknown value, zero cost and loans

Dataset

- The dataset consists of a **list of transfers**
 - Each transfer is a network edge
 - Player Name, Source Club, Target Club, Transfer Value
 - Transfer value, in euros, is the edge weight
 - Each **club** is a network **node**
 - There are **2151** transfers

Player	Source	Target	Value
Corentin Tolisso	Olympique Lyon	Bayern Munich	41500000

Chapter 1 and 2

Overview and Graph

The Graph - First Overview

- Fruchterman Reingold Layout
- Less edges than dataset entries
 - Edges with same (Source Club, Target Club) pair were merged and their weights added together

Some measures of the network

- Average Node Degree
 - 0 3,506
- Average Weighted Degree
 - 0 25669685

- In average, each team was involved in 3,5 transfers
- In average, each team moved almost 26 million euros

	Average Path Length	Network Diameter
Directed	3,599	7
Undirected	3,339	6

Some measures of the network (cont.)

Some measures of the network (cont.)

Connected Components

- This football transfers dataset comprises:
 - 1 weakly connected component
 - 327 strongly connected components
- A directed graph is strongly connected if there is a path in each direction between each
 pair of vertices
- The **giant component** is useful to depict the **core routes** of football players

Strongly Connected Components

Entire Network

Context x

Nodes: 231 (41,47% visible)

Edges: 1437 (73,58% visible)

Directed Graph

b) Network Giant Component

Chapter 3

Strong and Weak Ties

Directed Betweenness Centrality

- Clubs acting as transfer brokers
- Clubs with ability to connect other clubs

Id	Betweenness Cen 🗸	
Juventus FC	10080.762513	
Inter Milan	9827.375422	
ACF Fiorentina	9214.215949	
Sporting CP	8911.397713	
AS Roma	7776.889477	
SL Benfica	7398.874308	
Manchester City	7214.960602	
UC Sampdoria	7191.315191	
VfL Wolfsburg	6686.104189	
Torino FC	6656.99053	

Nodes sized by betweenness centrality

Undirected Betweenness Centrality

Id	Betweenness Cen 🗸	
ACF Fiorentina	10526.085479	
Sporting CP	9857.706696	
SL Benfica	8552.878445	
SC Braga	8410.703103	
Juventus FC	8375.924342	
Manchester City	7565.648989	
VfL Wolfsburg	6618.559115	
Inter Milan	6092.497965	
AS Roma	5973.893891	
LOSC Lille	5951.935111	

Eigenvector Centrality

- Represents the relative influence of a club in the network
- Based on the density of the inbound connections (purchases) to each club and its neighbors

Nodes sized by eigenvector centrality

Id	Eigenvector Centrality 🗸	
Juventus FC	1.0	
Watford FC	0.86546	
Inter Milan	0.831948	
AS Roma	0.79393	
AC Milan	0.699482	
Chelsea FC	0.682429	
Sevilla FC	0.675637	
Atalanta BC	0.611128	
Manchester City	0.609273	
AS Monaco	0.593155	

Larger means stronger attraction to players

Closeness Centrality & Eccentricity

- Average distance from a node to all other nodes in the network
 - Lower values are mainly clubs
 outside the selected leagues

Closeness Centrality Distribution

- Distance from a node to the farthest node from it in the network
 - Ranges from zero to network diameter

Eccentricity Distribution

Triadic Closure

- Season 2016
- There is a strong tie between Paris Saint-Germain and Chelsea FC and Real Madrid

Triadic Closure

- Season 2017
- A new tie is formed between Chelsea FC and Real Madrid

Chapter 4

Networks in Their Surrounding Contexts

- Similar nodes may be more likely to attach to each other than dissimilar ones
- Assuming the weighted degree as the node similarity measure
- Nodes grouped by weighted degree

Manchester City Ego-Network

Juventus FC Ego-Network

Chelsea FC Ego-Network

FC Barcelona Ego-Network

- The homophily principle is not rigorously verified
- Generally, the clubs relate without major restrictions
 - They seek for players who meet their needs and budget
 - If they are direct competitors, they may not easily transfer between them

Chapter 5

Positive and Negative Relationships

Structural Balance

For every set of three nodes, if we consider the three edges connecting them, either all
 three of these edges are labeled positive, or else exactly one of them is labeled positive

Chapter 18

Power Laws and Rich-Get-Richer Phenomena

Power Law

Example of power law distribution

Rich-get-Richer Phenomena

- This phenomenon is also known as **preferential attachment**
 - Links are formed "preferentially" to clubs that already have high degree
- Wolverhampton Wanderers doesn't exist in the 2016 dataset
 - If we take into account the **2016 + 2017** dataset
 - The average degree is 2,869
 - It mainly linked with clubs with high degree

Id	Degree	~	
SLBenfica	31		
AS Monaco	24		
FC Porto	18		
SCO Angers	15	15	
Rio Ave FC	6		

Chapter 19

Cascading Behavior in Networks

Cascading

Considering a **high value transfer (50 million euros or more)** as a behavior that may be propagated

2016 Liverpool FC Ego-Network Depth 1

Chapter 20

The Small-World Phenomenon

The Small-World Phenomenon

- Considering the network as undirected, it exhibits the small-world phenomenon
 - Average shortest path length: 3.339
 - Average clustering coefficient: 0.176
 - o Diameter: 6
- If we consider it as directed the small-world phenomenon doesn't hold
 - There are clubs without transfers-in or transfers-out, making them points without return

The Small-World Phenomenon

- Considering the biggest strongly connected component, it exhibits the small-world phenomenon, despite weaker than the undirected network
 - Average shortest path length: 3.226
 - Average clustering coefficient: 0.116
 - o Diameter: 7

Context x

Nodes: 231 (41,47% visible)

Edges: 1437 (73,58% visible)

Directed Graph

Some interesting clubs

Juventus

- More transfers, in and out (highest degree)
- Most central club (highest betweenness and eigenvector centrality)

Manchester City

- Moved more money (highest weighted degree)
 - Club that spent more in transfers in (highest weighted in-degree)
 - Biggest difference between weighted in-degree and weighted out-degree

Leeds United

• Highest degree between clubs with no triangles in their neighbour

Conclusions

- Clubs relate without major restrictions
- Italian clubs are the most active
- More context would be interesting
 - Timestamps of transfers
 - Relate the money spent by a team with its performance (UEFA ranking)