Chapter III – Amplitude Modulation

ENEL 471 – Introduction to Communications Systems and Networks

Chapter Objectives

- At the end of this chapter, you will be able to:
 - Define and analyze the time domain and frequency domain representations of amplitude modulated signals
 - Perform and analyze the amplitude demodulation of signals in the absence of noise
 - Perform and analyze the amplitude demodulation of signals in the presence of channel noise

Outline

- Amplitude Modulation (AM)
 - Theory of Amplitude Modulation
 - Amplitude Demodulation
- Double Side-band Supressed Carrier (DSB-SC) Modulation
 - Theory of DSB-SC Modulation
 - DSB-SC Demodulation: Coherent Detection
 - Costas Receiver
- Single Side-band (SSB) and Vestigial Side-band (VSB) Modulation
 - Single Side-band Modulation
 - Vestigial Side-band Modulation
- Noise in AM receivers
 - Noise in DSB-SC Receivers
 - Noise in AM Receivers

Outline

- Amplitude Modulation (AM)
 - Theory of Amplitude Modulation
 - Amplitude Demodulation
- Double Side-band Supressed Carrier (DSB-SC) Modulation
 - Theory of DSB-SC Modulation
 - DSB-SC Demodulation: Coherent Detection
 - Costas Receiver
- Single Side-band (SSB) and Vestigial Side-band (VSB) Modulation
 - Single Side-band Modulation
 - Vestigial Side-band Modulation
- Noise in AM receivers
 - Noise in DSB-SC Receivers
 - Noise in AM Receivers

Definition of Modulation

- Modulation can be defined as:
 - A process by which <u>some characteristic of a carrier</u> is varied in accordance with a modulating wave (signal)
 - During this process, the information in the input signal is encoded in a carrier signal
- In wireless communication, the carrier is generally a sinusoidal signal with a frequency (carrier frequency) $f_c >> f_m$, where f_m is the highest frequency component in the input signal.

Definition of Amplitude Modulation

- For amplitude modulation :
 - The amplitude of the carrier is the characteristic of the carrier that is varied in accordance with the modulating wave (signal)
 - → The information in the input signal is encoded in the amplitude of the carrier signal

The Simplest Amplitude Modulation

$$s_{AM}(t) = m(t) \cdot c(t) = A_c \cdot m(t) \cdot \cos(2\pi f_c t)$$

- The phase reversal leads to envelope distortion
- → A simple envelope detector will not be sufficient to restore the information

Conventional AM: Time Domain Analysis

- In order to simplify the demodulation process (using a simple envelope detector, the phase reversal should be avoided
- The amplitude modulation can be expressed by:

$$s_{AM}(t) = (1 + k_a m(t)) \cdot c(t) = A_c \cdot (1 + k_a m(t)) \cdot \cos(2\pi f_c t)$$

- k_a is a constant called <u>amplitude sensitivity</u>
- To avoid phase reversal, $1 + k_a m(t)$ should be positive or alternatively:

$$|k_a m(t)| \le 1$$
, for all t

Modulation factor (or percentage modulation):

$$\mu = \max_{t} \left(\left| k_{a} m(t) \right| \right)$$

Conventional AM: Time Domain Analysis

Conventional AM: Time Domain Analysis

Modulation factor (μ)	Minimum envelope (A _{min})	Maximum enve.ope (A _{max})	Interpretation
0	A_c	A_c	No modulation
0 < <i>μ</i> < 1	$0 < A_{min} < A_c$	$A_c < A_{max} < 2A_c$	Amplitude modulation
1	A _{min} =0	$A_{max}=2A_c$	100% modulation
$\mu > 1$	A _{min} <0	$A_{max} > 2A_c$	Overmodulation

Conventional AM: Frequency Domain Analysis

 By applying the Fourier transform to the expression of the amplitude modulation:

$$s_{AM}(t) = (1 + k_a m(t)) \cdot c(t) = A_c \cdot (1 + k_a m(t)) \cdot \cos(2\pi f_c t)$$

we can write:

$$S_{AM}(f) = \mathscr{F}(s_{AM}(t)) = \mathscr{F}(A_c \cdot (1 + k_a m(t)) \cdot \cos(2\pi f_c t))$$

or:

$$S_{AM}(f) = \frac{A_c}{2} \left(\delta(f - f_c) + \delta(f + f_c) \right) + k_a \frac{A_c}{2} \left(M(f - f_c) + M(f + f_c) \right)$$

Conventional AM: Frequency Domain Analysis

- The modulation process shifts the message spectrum to high frequencies (around f_c and $-f_c$)
- The amplitude modulated spectrum is composed of 3 parts:
 - Upper sideband (USB): frequencies outside $\pm f_c$
 - Lower sideband (LSB): frequencies inside $\pm f_c$
 - A carrier frequency that does not carry any information
- The amplitude modulated signal requires a transmission bandwidth of 2W

Efficiency the Conventional AM Modulation

The time domain representation can be rewritten as:

$$s_{AM}(t) = \underbrace{A_c \cos(2\pi f_c t)}_{\text{carrier}} + \underbrace{k_a A_c m(t) \cos(2\pi f_c t)}_{\text{sidebands}}$$

- The power in the carrier is given by: $E[A_c^2 \cos^2(2\pi f_c t)] = \frac{A_c^2}{2}$
- The power in the sidebands is:

$$E[A_c^2 k_a^2 m^2(t) \cos^2(2\pi f_c t)] = \frac{A_c^2 k_a^2}{2} E[m^2(t)]$$

Power efficiency of conventional AM:

$$\eta_{AM} = \frac{\text{power in the sidebands}}{\text{total power of the AM signal}} = \frac{\frac{A_c^2 k_a^2}{2} E \left[m^2(t) \right]}{\frac{A_c^2}{2} + \frac{A_c^2 k_a^2}{2} E \left[m^2(t) \right]} = \frac{k_a^2 E \left[m^2(t) \right]}{1 + k_a^2 E \left[m^2(t) \right]}$$

Conventional AM: Advantages and Drawbacks

Advantages:

- No distortion to the amplitude of the modulated signal (no phase reversal)
- Ease of implementation of the receiver (envelope detector is sufficient to detect the original message)

Drawbacks:

- Low power efficiency: high total transmit power but only part of it is used for the actual information (sidebands)
- High transmission bandwidth requirements: the amplitude modulated signal requires a transmission bandwidth of 2W (twice the message bandwidth

Example: Single Tone Modulation

 A transmitter uses conventional amplitude modulation to modulate a message having the form of a single tone:

$$m(t) = A_m \cos(2\pi f_m t)$$

The carrier signal is:

$$c(t) = A_c \cos(2\pi f_c t)$$

- a. What is the time-domain representation of the modulated signal
- Calculate the frequency domain representation of the modulated signal and plot its frequency spectrum
- Determine the power efficiency of the modulation

Outline

- Amplitude Modulation (AM)
 - Theory of Amplitude Modulation
 - Amplitude Demodulation
- Double Side-band Supressed Carrier (DSB-SC) Modulation
 - Theory of DSB-SC Modulation
 - DSB-SC Demodulation: Coherent Detection
 - Costas Receiver
- Single Side-band (SSB) and Vestigial Side-band (VSB) Modulation
 - Single Side-band Modulation
 - Vestigial Side-band Modulation
- Noise in AM receivers
 - Noise in DSB-SC Receivers
 - Noise in AM Receivers

Definition of Demodulation

- Demodulation can be defined as:
 - A process by which the original message is recovered from the modulated signal (inverse of the modulation)
 - During this process, the information in the input signal is decoded/extracted from the carrier signal
- There are generally 2 types of demodulators:
 - Non coherent : doesn't require a carrier recovery
 - Coherent : requires carrier recovery

Example of Implementation of Conventional AM

- The generation of AM signals can be done using different devices.
- One option is to use a <u>switching modulator</u>
- The circuit uses a diode that acts as an ideal switch: presents a zero impedance when forward biased (c(t) > 0) and infinite impedance when reverse biased (c(t) < 0).
- [It assumes that the amplitude of the carrier A_c is much larger than of m(t)]

Switching Modulator: Principle of Operation

The input voltage is the sum of the carrier and the message signal

$$v_1(t) = m(t) + c(t) = m(t) + A_c \cos(2\pi f_c t)$$

• If $A_c >> |m(t)|$, the diode switches as a function of the sign of the carrier. This is equivalent to a multiplication with a periodic pulse train $g_{T_c}(t)$

$$v_2(t) \approx \left[m(t) + A_c \cos(2\pi f_c t) \right] \cdot g_{\tau_o}(t)$$

Using the Fourier Series, the periodic pulse train can be expressed as:

$$g_{T_o}(t) = \frac{1}{2} + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1} \cos(2\pi f_c t (2n-1))$$

Switching Modulator: Principle of Operation

- The signal at the output of the switching modulator is the sum of 2 components:
 - The desired AM modulated signal, given by:

$$\left| \frac{A_c}{2} \right| 1 + \frac{4}{\pi A_c} m(t) \left| \cos(2\pi f_c t) \right|$$

- Unwanted components at even harmonics (delta functions) and odd harmonics (spectrums of width 2W)
- The unwanted components should be filtered out using a band-pass filter at the output of the switching modulator
- The sensitivity of the AM modulated signal is

$$k_a = \frac{4}{\pi A_c} << 1$$

→ The efficiency of the modulation is very low

Example of Implementation of Conventional Amplitude Demodulator – Envelope Detector

- The demodulation can be achieved using an envelope modulator circuit.
 - \rightarrow Objective, detect the envelope of the modulated signal $A_c \cdot (1 + k_a m(t))$
- The circuit uses a diode that acts as an ideal switch: presents a small resistance r_f when forward biased and infinite impedance when reverse biased.
- We assume that the amplitude modulated signal is supplied by a voltage source of internal resistance R_s

Example of Implementation of Conventional Amplitude Demodulator – Envelope Detector

- Principle of operation:
 - On a positive half cycle of the modulated signal, the diode is forward biased. The capacitor C is charged
 - On a negative half cycle of the modulated signal, the diode is reverse biased. The capacitor C is discharged in the load resistor R_I
- Conditions for proper operation:
 - The charging time constant should be short compared to the carrier period

$$(r_f + R_s)C \ll \frac{1}{f_c}$$

 The discharging time constant should be long compared to the carrier period and short compared to the envelope variation

$$\frac{1}{f_c} << R_I C << \frac{1}{W}$$

Example of Implementation of Conventional Amplitude Demodulator – Envelope Detector

AM signal

Demodulated signal

ENEL 471 – Introduction to Communications Sys

Outline

- Amplitude Modulation (AM)
 - Theory of Amplitude Modulation
 - Amplitude Demodulation
- Double Side-band Supressed Carrier (DSB-SC) Modulation
 - Theory of DSB-SC Modulation
 - DSB-SC Demodulation: Coherent Detection
 - Costas Receiver
- Single Side-band (SSB) and Vestigial Side-band (VSB) Modulation
 - Single Side-band Modulation
 - Vestigial Side-band Modulation
- Noise in AM receivers
 - Noise in DSB-SC Receivers
 - Noise in AM Receivers

Double Sideband – Supressed Carrier Modulation (DSB-SC): Time Domain Analysis

$$s_{AM}(t) = m(t) \cdot c(t) = A_c \cdot m(t) \cdot \cos(2\pi f_c t)$$

- By supressing the carrier, there will be no wasted energy on transmitting a power that carrier no information (the carrier)
- → The phase reversal will require more complicated circuits in the transmitter and receiver

DSB-SC: Frequency Domain Analysis

 By applying the Fourier transform to the expression of the amplitude modulation:

$$s_{AM}(t) = m(t) \cdot c(t) = A_c \cdot m(t) \cdot \cos(2\pi f_c t)$$

we can write:

$$S_{AM}(f) = \mathcal{F}(s_{AM}(t)) = \mathcal{F}(A_c \cdot m(t) \cdot \cos(2\pi f_c t))$$

or:

$$S_{AM}(f) = \frac{A_c}{2} (M(f - f_c) + M(f + f_c))$$

DSB-SC: Advantages and Drawbacks

Drawbacks:

- Require more complex implementation than the conventional AM (envelope detector is not sufficient to detect the original message)
- High transmission bandwidth requirements: the amplitude modulated signal requires a transmission bandwidth of 2W (twice the message bandwidth

Advantages:

Good power efficiency: No wasted power in transmitting the carrier

Example of Implementation of a DSB-SC – Ring Modulator

- The objective is to provide a circuit that will multiply a varying message signal m(t) with a carrier signal c(t)
- One of the most useful product modulator or DSB-SC modulators is the ring modulator
- It includes four diodes all of them placed in the same direction to form a ring

Example of Implementation of a DSB-SC – Ring Modulator

- We assume that the diodes are identical and are ideal:
 - when they are forward biased they have a resistance r_f
 - When they are reverse biased they have a very high resistance r_b
- The diodes are controlled by a square wave carrier signal c(t) of frequency f_c , applied by means of 2 center tapped transformers
- The principle of operation is as follows:
 - If the carrier signal is positive, the four-diode equivalent circuit is given by figure b (see next slide) and the output is then m(t)
 - If the carrier signal is negative, the four-diode equivalent circuit is given by figure c (see next slide) and the output is then inverted, -m(t)
- → The circuits acts as a commutator

Example of Implementation of a DSB-SC – Ring Modulator

The output is then given by:

$$s(t) = \begin{cases} m(t) & \text{if } c(t) > 0 \\ -m(t) & \text{if } c(t) < 0 \end{cases}$$

Or simply:

$$s(t) = m(t) \cdot c(t)$$

Ring Modulator – Time Domain Analysis

The modulated signal is given by:

$$s(t) = m(t) \cdot c(t)$$

 Using Fourier series the square wave carrier can be expressed as:

$$c(t) = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1} \cos(2\pi f_c t (2n-1))$$

 The modulated signal can then be expressed by:

$$s(t) = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1} \cos(2\pi f_c t (2n-1)) \cdot m(t)$$

Ring Modulator – Frequency Domain Analysis

 Using the Fourier transform, the spectrum of the modulated signal can then be expressed by:

$$S(f) = \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1} \left[M(f - (2n-1)f_c) + M(f + (2n-1)f_c) \right]$$

- The modulated signal is composed of:
 - A useful signal around the carrier frequency f_c
 - Non useful harmonics at odd multiples of f_c , they can be removed by a low-pass filtering

Outline

- Amplitude Modulation (AM)
 - Theory of Amplitude Modulation
 - Amplitude Demodulation
- Double Side-band Supressed Carrier (DSB-SC) Modulation
 - Theory of DSB-SC Modulation
 - DSB-SC Demodulation: Coherent Detection
 - Costas Receiver
- Single Side-band (SSB) and Vestigial Side-band (VSB) Modulation
 - Single Side-band Modulation
 - Vestigial Side-band Modulation
- Noise in AM receivers
 - Noise in DSB-SC Receivers
 - Noise in AM Receivers

DSB-SC Demodulation – Coherent Detection

- The message signal m(t) can be uniquely recovered from the DSB-SC signal s(t) by:
 - Multiply s(t) with a cosine wave
 - Apply a low-pass filter
- We assume that the cosine wave in the demodulator is perfectly synchronized in phase and frequency with the carrier wave

DSB-SC Demodulation – Coherent Detection

The signal at the output of the product modulator is given by:

$$v(t) = s(t) \cdot A'_c \cos(2\pi f_c t + \phi)$$

$$v(t) = A_c \cos(2\pi f_c t) \cdot A'_c \cos(2\pi f_c t + \phi) \cdot m(t)$$

$$v(t) = \frac{A_c A'_c}{2} \cos(4\pi f_c t + \phi) \cdot m(t) + \frac{A_c A'_c}{2} \cos(\phi) \cdot m(t)$$

After low-pass filtering, the signal becomes:

$$V_o(t) = \frac{A_c A_c'}{2} \cos(\phi) \cdot m(t)$$

- If the phase shift, ϕ , is equal to zero, the output is maximum
- If the phase shift, ϕ , is equal to 90°, the output is zero
- → It is important to maintain synchronization in both the phase and amplitude of the receiver carrier compared to the transmitter carrier

Outline

- Amplitude Modulation (AM)
 - Theory of Amplitude Modulation
 - Amplitude Demodulation
- Double Side-band Supressed Carrier (DSB-SC) Modulation
 - Theory of DSB-SC Modulation
 - DSB-SC Demodulation: Coherent Detection
 - Costas Receiver
- Single Side-band (SSB) and Vestigial Side-band (VSB) Modulation
 - Single Side-band Modulation
 - Vestigial Side-band Modulation
- Noise in AM receivers
 - Noise in DSB-SC Receivers
 - Noise in AM Receivers

Costas Receiver

 In order to synchronize the phase of the transmitting and receiving carriers, two receiving paths are used

The carrier is shifted by 90° between the two paths (sine and cosine)

The two outputs are compared and used for estimating and cancelling the

phase offset.

Outline

- Amplitude Modulation (AM)
 - Theory of Amplitude Modulation
 - Amplitude Demodulation
- Double Side-band Supressed Carrier (DSB-SC) Modulation
 - Theory of DSB-SC Modulation
 - DSB-SC Demodulation: Coherent Detection
 - Costas Receiver
- Single Side-band (SSB) and Vestigial Side-band (VSB) Modulation
 - Single Side-band Modulation
 - Vestigial Side-band Modulation
- Noise in AM receivers
 - Noise in DSB-SC Receivers
 - Noise in AM Receivers

Singe Sideband – Supressed Carrier Modulation (SSB-SC)

- Only one sideband (upper or lower) is required to transmit and demodulate the information (since the two sidebands carry the same information)
- → One of the two sidebands can be filtered out. This will result in a more efficiency use of the frequency spectrum (only a band of length W is used instead of 2W in the case of DSB-SC)
- Since the carrier is removed, and only one sideband is transmitted, this AM modulation technique has the best power efficiency
- The gain in power and spectral efficiency is obtained by trading off the design complexity, especially in the receiver

SSB-SC: Frequency Domain Analysis

 Starting from a DSB-SC spectra, we apply an ideal filter to remove one of the sidebands

If the upper sideband is transmitted, the transmitted spectrum will be

given by:

SSB-SC: Frequency Domain Analysis

The obtained SSB spectrum is then given by:

→ The SSB signal has a spectrum of width W

$$S_{SSB}(f) = \frac{A_c}{2} \cdot \left(M(f - f_c) + M(f + f_c) \right) \cdot H_{BP}(f)$$

where

$$H_{BP}(f) = rect\left(\frac{f - (f_c + W/2)}{W}\right) + rect\left(\frac{f + (f_c + W/2)}{W}\right)$$

SSB-SC: Advantages and Drawbacks

Drawbacks:

 Require more complex implementation than the conventional AM and the DSB-SC (in addition to the complex implementation of DSB-SC, an ideal filtering of one of the sidebands is required)

Advantages:

- Good power efficiency: No wasted power in transmitting the carrier nor in transmitting the second sideband
- Efficient frequency band utilization requires a transmission bandwidth of 2W (half the requirement of conventional AM and DSB-SC)

Outline

- Amplitude Modulation (AM)
 - Theory of Amplitude Modulation
 - Amplitude Demodulation
- Double Side-band Supressed Carrier (DSB-SC) Modulation
 - Theory of DSB-SC Modulation
 - DSB-SC Demodulation: Coherent Detection
 - Costas Receiver
- Single Side-band (SSB) and Vestigial Side-band (VSB) Modulation
 - Single Side-band Modulation
 - Vestigial Side-band Modulation
- Noise in AM receivers
 - Noise in DSB-SC Receivers
 - Noise in AM Receivers

Vestigial Sideband Modulation (VSB)

- Ideal filters do not exist in practice (they are not causal)
- Filtering out one sideband completely is not possible in practice
- The vestigial sideband modulation consists of transmitting one sideband and a fraction (vestige) of the other sideband to simplify the design of sideband filters

Vestigial Sideband Modulation (VSB)

$$S_{VSB}(f) = \frac{A_c}{2} \cdot \left(M(f - f_c) + M(f + f_c) \right) \cdot H_{VSB}(f)$$

- Practical filters with a nonzero transition band can be used for sideband rejection
- → Easier design of the sideband filter but what about the signal integrity?
- → What conditions should we place on the filter to allow accurate recovery?

VSB Demodulation

ENEL 471 – Introduction to Communications Systems and Networks

VSB Demodulation

The spectrum of the signal at the input of the demodulator is given by:

$$S(f) = \frac{A_c}{2} \cdot \left(M(f - f_c) + M(f + f_c) \right) \cdot H(f)$$

• After passing through the product modulator of the receiver, the signal v(t) has the spectrum :

$$V(f) = \frac{A_c A_c'}{4} \cdot M(f) \cdot \left(H(f - f_c) + H(f + f_c)\right) + \frac{A_c A_c'}{4} \cdot \left(M(f - 2f_c) \cdot H(f - f_c) + M(f + 2f_c) \cdot H(f + f_c)\right)$$

After low-pass filtering, the remaining component is:

$$V_o(f) = \frac{A_c A'_c}{\Delta} \cdot M(f) \cdot (H(f - f_c) + H(f + f_c))$$

VSB Demodulation

If the frequency response of the filter satisfies the following condition:

$$H(f-f_c)+H(f+f_c)=1$$
 for $-W \le f \le W$

The demodulated signal will have the spectrum:

$$V_o(f) = \frac{A_c A_c'}{4} \cdot M(f)$$

 The time domain representation of the demodulated signal is then given by:

 $V_o(t) = \frac{A_c A'_c}{4} \cdot m(t)$

Outline

- Amplitude Modulation (AM)
 - Theory of Amplitude Modulation
 - Amplitude Demodulation
- Double Side-band Supressed Carrier (DSB-SC) Modulation
 - Theory of DSB-SC Modulation
 - DSB-SC Demodulation: Coherent Detection
 - Costas Receiver
- Single Side-band (SSB) and Vestigial Side-band (VSB) Modulation
 - Single Side-band Modulation
 - Vestigial Side-band Modulation
- Noise in AM receivers
 - Noise in DSB-SC Receivers
 - Noise in AM Receivers

Noise Definition

- Noise is undesired random time-varying wave that adds to signals and affects systems performance.
 - → It is important to study its effect on the system performance and the systems effect on noise.
- It is random time-varying: can be modeled with a random process.
 Most often it modeled as an additive noise with Gaussian probability density function (pdf)

$$p_n(n) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(\frac{-(n-m)^2}{2\sigma^2}\right)$$

- -m = E[n(t)] is the mean of the noise
- $-\sigma$ is the standard deviation (σ^2 is the variance)

Noise Autocorrelation

- The autocorrelation measures the degree of dependence between two random variable (waves, signals, ...):
- For the noise the expression of the autocorrelation between $n(t_1)$ and $n(t_2)$ is given by:

$$R_n(t_1,t_2) = E[n(t_1)n(t_2)]$$

 In the case of *ergodic* signals (which is the case for most signals, noises in RF), the autocorrelation is independent of time and its expression is:

$$R_n(\tau) = E[n(t)n(t+\tau)] = \lim_{T\to\infty} \frac{1}{T} \int_{-T/2}^{T/2} n(t)n(t+\tau)dt$$

Power Spectral Density of Noise

 The Fourier transform of the autocorrelation is the power spectral density (or frequency power spectrum) of the random variable

$$S_{n}(f) = \int_{-\infty}^{\infty} R_{n}(\tau) e^{-j2\pi f\tau} d\tau$$

$$R_{n}(\tau) = \int_{-\infty}^{\infty} S_{n}(f) e^{j2\pi f\tau} df$$

• For $\tau = 0$, we have:

$$R_n(0) = E[n^2] = \int_{-\infty}^{\infty} S_n(f) df$$

→ The total power of the noise is obtained by integrating the power spectral density over the entire frequency axis

Power Spectral Density of White Noise

One important particular case in communications:

$$S_n(f) = \frac{n_0}{2}$$

- → White noise
- The autocorrelation is:

$$R_n(\tau) = \frac{n_0}{2} \delta(\tau)$$

Generic Receiver Model in the Presence of Noise

- The noise process is modeled as an additive white Gaussian noise (AWGN) with zero mean and power spectral density $n_0/2$
- The band-pass filter is an ideal band-pass filter centered around tha carrier frequency f_c and with a bandwidth W equal to the bandwidth of the transmitted signal.
- AT the output of the band-pass filter, the noise process becomes a filtered noise with a limited bandwidth, W

Receiver Performance Metric: Signal-to-Noise Ratio (SNR)

 Definition of the signal-to-noise ratio: At any point in the receiver system, the SNR can be obtained by:

$$SNR = \frac{\text{the average power of the modulated signal}}{\text{the average power of the noise in the message bandwidth}}$$

 The contribution to noise is an important characteristic of any wireless receiver. This contribution can be quantified using the figure of merit :

$$FOM = \frac{SNR_{out}}{SNR_{in}}$$

where SNR_{in} is the SNR at the input of the receiver and SNR_{out} is the SNR at the output of the receiver.

Performance of DSB-SC with Coherent Detection in the Presence of Noise

The DSB signal is:

$$s(t) = CA_c \cos(2\pi f_c t) m(t)$$

 If P is the average power of the message signal, the SNR at the input of the receiver is given by:

$$SNR_{in} = \frac{C^2 A_c^2 P}{2W n_0}$$

Performance of DSB-SC with Coherent Detection in the Presence of Noise

- The filtered signal is: x(t) = s(t) + n(t)
- At the output of the product modulator the signal is :

$$v(t) = x(t)\cos(2\pi f_c t)$$

• The SNR at the output of the DSB-SC receiver is :

$$SNR_{out} = \frac{C^2 A_c^2 P}{2W n_0}$$

• The figure of merit of the DSB-SC receiver is then:

$$FOM = \frac{SNR_{out}}{SNR_{in}} = 1$$

Outline

- Amplitude Modulation (AM)
 - Theory of Amplitude Modulation
 - Amplitude Demodulation
- Double Side-band Supressed Carrier (DSB-SC) Modulation
 - Theory of DSB-SC Modulation
 - DSB-SC Demodulation: Coherent Detection
 - Costas Receiver
- Single Side-band (SSB) and Vestigial Side-band (VSB) Modulation
 - Single Side-band Modulation
 - Vestigial Side-band Modulation
- Noise in AM receivers
 - Noise in DSB-SC Receivers
 - Noise in AM Receivers

Performance of conventional AM with Envelope Detection in the Presence of Noise

The AM signal is:

$$s(t) = A_c (1 + k_a m(t)) \cos(2\pi f_c t)$$

 If P is the average power of the message signal, the SNR at the input of the receiver is given by:

$$SNR_{in} = \frac{A_c^2 \left(1 + k_a^2 P\right)}{2Wn_0}$$

Performance of conventional AM with Envelope Detection in the Presence of Noise

- The filtered signal is: x(t) = s(t) + n(t)
- At the output of the envelope detector the signal is :

$$y(t)$$
 = envelope of $\{x(t)\}$

 The SNR at the output of the DSB-SC receiver can be approximated by :

$$SNR_{out} \approx \frac{A_c^2 k_a^2 P}{2Wn_0}$$

The figure of merit of the DSB-SC receiver is then:

$$FOM = \frac{SNR_{out}}{SNR_{in}} \approx \frac{k_a^2 P}{1 + k_a^2 P}$$