

智能型流量计 RS485 通讯协议

(MODBUS 版本 1.7)

适用于:

LUY 旋进旋涡流量计 FLT 气体涡轮流量计 FLR 气体罗茨流量计 FLWY 液体涡轮流量计 LUB 旋涡流量计

浙江裕顺仪表有限公司

2017年01月

流量计 MODBUS 通讯协议

1.	MODBUS 串行通信协议	1
1. 1	MODBUS 协议基本规则与传送模式1	
1.2	RTU 模式下 MODBUS 数据包结构描述1	
	1.2.1 地址域1	
	1.2.2 功能码域1	
	1.2.3 数据域1	
	1.2.4 校验域1	
	1.2.5 网络时间考虑2	
1.3	ASCII 模式下 MODBUS 数据包结构描述2	
2.	MODBUS 通信数据包	3
2. 1	RTU 模式下的寄存器读写3	
	2.1.1 读设备寄存器(03H)3	
	2.1.2 写设备寄存器(10H)3	
2. 2	ASCII 模式下的寄存器读写3	
	2.2.1 读设备寄存器 (03H)3	
	2.2.2 写设备寄存器(10H)3	
2		,
3.	设备寄存器说明	4
4,	CRC-16 计算方法	7
4. 1	CRC-16 原始算法7	
4. 2	CRC-16 查表算法7	

1、MODBUS 串行通信协议

1.1 MODBUS 协议基本规则与传送模式

控制器通讯使用主从技术,即主机(PLC,电脑等)启动数据传输,而从机(流量计)返回对查询做出的响应或处理查询所要求的动作。主机发送数据包称为请求,从机发送数据包称为响应。在这种方式下,信息和资料在单个主机和最多32个从机之间传递。所有在RS485通信回路上传递的信息只能由主机初始化和控制,从机只能响应主机一个请求。

MODBUS 协议可以采用 ASCII 或者 RTU 模式。本流量计支持 RTU 和 ASCII 两种模式,波特率可设置为 300、600、1200、2400、4800、9600 或 19200,校验位可选奇校验、偶校验或者无校验,数据位可选 7 或 8 位,停止位可选 1 或 2 位。

1.2 RTU 模式下 MODBUS 数据包结构描述

所有 RS485 环路上的通信都以"打包"方式发生。一个数据包就是一个简单的字符串,一个数据包中最多可含 255 个字节。每个 MODBUS 数据包都由以下几个部分组成:

 名称
 T-T2-T3-T4
 地址域
 功能码域
 数据域
 校验域

 长度
 空闲
 1
 1
 变长
 2

表 1 上位机和仪表信息交互命令包通用格式

1.2.1 地址域

MODBUS 的从机地址域长度为一个字节,包含数据包传送的从机地址。有效的从机地址 范围从 1~247。从机如果接收到一帧从机地址域信息与自身地址相符合的数据包时,应当 执行数据包中所包含的命令。从机所响应的数据包中该域为自身地址。

1.2.2 功能码域

MODBUS 数据包中功能域长度为一个字节,用以通知从机应当执行何操作。从机响应数据包中应当包含主机所请求操作的相同功能域字节。有关设备的功能码参照下表。

功能码	含义	功能
0x03	读取寄存器	获得当前设备内部一个或多个当前寄存器值
0x10	设置寄存器	将指定数值写入设备内部一个或多个寄存器内

表 2 MODBUS 功能域编码

1.2.3 数据域

MODBUS 数据域长度不定,依据其具体功能而定。MODBUS 数据域采用"BIG INDIAN"模式,即高位字节在前,低位字节在后。例如 1 个 16 位寄存器包含数值为 0x1234,那么寄存器数值发送顺序为:高位字节=0x12,低位字节=0x034。

1.2.4 校验域

MODBUS-RTU 模式采用 16 位 CRC 校验, 多项式为 X¹⁶+X¹⁵+X²+1。发送设备应当对数据包

中的每一个资料都进行 CRC16 计算,最后结果存放入检验域中。接收设备也应当对数据包中的每一个资料(除校验域以外)进行 CRC16 计算,将结果域校验域进行比较。只有相同的数据包才可以被接受。循环冗余校验 CRC 区为 2 字节,含一个 16 位二进制数据。由发送设备计算 CRC 值,并把计算值附在信息中,接收设备在接收信息时,重新计算 CRC 值,并把计算值与接收的在 CRC 区中实际值进行比较,若两者不相同,则产生一个错误。

CRC 开始时先把寄存器的 16 位全部置成"1",然后把相邻 2 个 8 位字节的数据放入当前寄存器中,每个 8 位数据与该寄存器的内容进行异或运算,然后向最低有效位(LSB)方向移位,用零填入最高有效位(MSB)后,再对 LSB 检查,若 LSB=1,则寄存器与预置的固定值异或,若 LSB=0,不作异或运算。

重复上述处理过程,直至移位 8 次,最后一次(第 8 次)移位后,下一个 8 位字节数据与寄存器的当前值异或,再重复上述过程。全部处理完信息中的数据字节后,最终得到的寄存器值为 CRC 值。

具体的 CRC 校验算法参照本文第 4 部分。

1.2.5 网络时间考虑

使用 RTU 模式,消息发送至少要以 3.5 个字符时间的停顿间隔开始。当第一个域(地址域)接收到,每个设备都进行解码以判断是否发往自己的。在最后一个传输字符之后,一个至少 3.5 个字符时间的停顿标定了消息的结束。

1.3 ASCII 模式下 MODBUS 数据包结构描述

所有 RS485 环路上的通信都以"打包"方式发生。一个数据包就是一个简单的字符串。 表 3 MODBUS 的 ASCII 方式的数据格式

名称	起始码	地址码	功能码	数据区	校验码	停止码
内容	:				LRC	CR, LF
长度	1	2	2		2	2

起始码:数据格式的帧头,以":"号表示,ASCII码为(3AH)。

地址码:从站的地址,01H-FFH。

功能码: 主站发送, 告诉从站执行功能, 01H-FFH

数据区: 具体数据内容

校验码: LRC 校验码,校验码的范围为由地址码开始到数据区结束,不包含起始码。

停止码:数据格式的帧尾,用 "CR" (ODH), "LF" (OAH)

控制器在 MODBUS 网络上以 ASCII 码模式通信,在数据格式中每个字节都转换成 ASCII 码发送,也就是每个 16 进制字符($0\sim9$),($A\sim F$)都转换成 ASCII 码发送。这种方式的主要优点是字符发送的时间间隔可达 1 秒,而不产生错误。

数据格式中的每个字符发送的时间间隔不能超过 1 秒,否则,接受设备将认为是传送错误。

2、MODBUS 通信数据包

2.1 RTU 模式下的寄存器读写

2.1.1 读设备寄存器(03H)

请求数据包(主机→济	〔量计)	响应数据包(流量计→主	机)
流量计地址	1字节	流量计地址	1字节
功能码 03H	1字节	功能码 03H	1字节
开始地址(高/低)	2字节	寄存器内容长度	1字节
寄存器内容长度(高/低)	2 字节	寄存器具体内容	
CRC 校验码	2字节	CRC 校验码	2 字节

2.1.2 写设备寄存器(10H)

请求数据包(主机→济	〔量计)	响应数据包(流量计→主	机)
流量计地址	1字节	流量计地址	1字节
功能码 10H	1字节	功能码 10H	1字节
开始地址(高/低)	2 字节	开始地址(高/低)	2 字节
寄存器个数(高/低)	2字节	寄存器个数(高/低)	2 字节
寄存器内容长度	1字节	CRC 校验码	2 字节
寄存器具体内容			
CRC 校验码	2字节		

2.2 ASCII 模式下的寄存器读写

2.2.1 读设备寄存器(03H)

请求数据包(主机→济	(量计)	响应数据包(流量计→主	机)
起始码(:)	1字节	起始码(:)	1字节
流量计地址('0''1')	2 字节	流量计地址('0''1')	2 字节
功能码('0''3')	2字节	功能码('0''3')	2 字节
开始地址(高/低)	4字节	寄存器内容长度	2 字节
寄存器个数(高/低)	4字节	寄存器具体内容	
LRC 校验码	2字节	LRC 校验码	2 字节
结束码(CR, LF)	2 字节	结束码 (CR, LF)	2 字节

2.2.2 写设备寄存器(10H)

请求数据包(主机→济	(量计)	响应数据包(流量计→主	机)
起始码 (':')	1字节	起始码 (':')	1 字节
流量计地址('0''1')	2字节	流量计地址('0''1')	2 字节

功能码('1''0')	2字节	功能码('1''0')	2 字节
开始地址(高/低)	4字节	开始地址(高/低)	4字节
寄存器个数(高/低)	4字节	寄存器个数(高/低)	4字节
寄存器内容长度	2 字节	LRC 校验码	2 字节
寄存器具体内容		结束码 (CR, LF)	2 字节
LRC 校验码	2 字节		
结束码 (CR, LF)	2 字节		

3、设备寄存器说明

表 4 流量计设备寄存器

1.1 .101	地址	长	属	ांच और	会业人	1# \ L
地址	老版本	度	性	类型	参数名	描述
1		4	R	double	标况累积流量	单位 (m³)
5		2	R	float	标况流量	单位 (m³/h)
7		2	R	float	工况流量	单位 (m³/h)
9		2	R	float	温度	単位(℃)
11		2	R	float	压力	单位 (kPa)
13		4	R	double	工况体积总量	单位 (m³)
17		2	R	unsigned int	标志位	
3000	1000	2	RW	unsigned long	流量报警下限值	单位 (m³/h)
3002	1004	1	RW	unsigned int	流量报警下限值小数位数	现固定为3
3003	1006	2	RW	unsigned long	流量报警上限值	单位 (m³/h)
3005	1010	1	RW	unsigned int	流量报警上限值小数位数	现固定为3
3006	1012	2	RW	unsigned long	压力报警下限	单位 (Pa)
3008	1016	2	RW	unsigned long	压力报警上限	
3010	1020	1	RW	unsigned int	温度报警下限	使用绝对温度,单位(K)
3011	1022	1	RW	unsigned int	温度报警上限	定点一位小数
3012	1024	2	RW	unsigned long	仪表系数	
3014	1028	1	RW	unsigned int	仪表系数小数位数	
3015	1030	2	RW	unsigned long	当地大气压	单位 (Pa)
3017	1034	1	RW	unsigned int	天然气相对密度	
3018	1036	1	RW	unsigned int	CO ₂ 摩尔分数	
3019	1038	1	RW	unsigned int	№ 摩尔分数	
3020	1040	2	RW	unsigned long	下限截止流量	单位 (m³/h)
3022	1044	1	RW	unsigned int	下限截止流量小数位数	固定为3
3023	1046	2	RW	unsigned long	上限截止流量	单位 (m³/h)
3025	1050	1	RW	unsigned int	上限截止流量小数位数	固定为3
3026	1052	1	RW	unsigned int	溢出前/后小数位数	范围 0~7

地址	地址	长	属	类型	参数名	描述
4000	老版本 2000	度	性 RW		年月日时分秒	口细红叶石
				. 1.1		日期和时间
4003	2006	2	RW	unsigned long	标方累积流量	单位 (m³)
4005	2010	1	RW	unsigned int	标方累积流量小数位数	2
4006	2012	2	R0	unsigned long	标方瞬时流量	单位 (m³/h)
4008	2016	1	R0	unsigned int	标方瞬时流量小数位数	现固定为3
4009	2018	2	RW	unsigned long	工况累积流量	单位(m³/h)
4011	2022	1	RW	unsigned int	工况累积流量小数位数	
4012	2024	2	R0	unsigned long	工况瞬时流量	单位 (m³/h)
4014	2028	1	RO	unsigned int	工况瞬时流量小数位数	现固定为3
4015	2030	2	RO	unsigned long	绝对压力	单位 (Pa)
4017	2034	1	RO	unsigned int	绝对温度	定点一位小数 单位(K)
4018	2036	1	RO	unsigned int	仪表状态	见表 4
4019	2038	1	RO	unsigned int	仪表告警标志	见表 4
4020	2040	1	RO	unsigned int	流量信号频率	整数,单位 Hz
4021	2042	2	RO	Swapped float	标方累积流量	浮点数,单位(m³)
4023	2046	2	RO	Swapped float	标方瞬时流量	浮点数,单位(m³/h)
4025	2050	2	RO	Swapped float	绝对压力	浮点数,单位(kPa)
4027	2054	2	RO	Swapped float	绝对温度	浮点数,单位(℃)
4029	2058	2	RO	float	标方累积流量	浮点数,单位(m³)
4031	2062	2	RO	float	标方瞬时流量	浮点数,单位(m³/h)
4033	2066	2	RO	float	绝对压力	浮点数,单位(kPa)
4035	2070	2	RO	float	绝对温度	浮点数,单位(℃)
4037	/	2	RO	float	今日流量(按8点为界)	浮点数,单位(m³)
4039	/	2	RO	float	昨日流量(按8点为界)	浮点数,单位(m³)
4041	/	2	RO	float	本小时流量	浮点数,单位(m³)
4043	/	2	RO	float	上小时流量	浮点数,单位(m³)

表 5 仪表状态、报警寄存器

位置	仪表状态寄存器
Bit 7	保留
Bit 6	保留
Bit 5	保留
Bit 4	外部存储器存在
Bit 3	温度传感器存在
Bit 2	压力传感器存在
Bit 1	三线制外电源
Bit 0	两线制外电源

位置	仪表告警标志寄存器
Bit 7	电池二级欠压
Bit 6	电池一级欠压
Bit 5	温度超上限
Bit 4	温度超下限
Bit 3	压力超上限
Bit 2	压力超下限
Bit 1	流量超上限
Bit 0	流量超下限

举例:读取地址为 1 的流量计的标况累积流量,开始地址为 2006 (0x07D6),4 个字节为累积流量,2 个字节为小数点位置,共6个字节

发送: 01 03 07 D6 00 03 E5 47

接收: 01 03 06 00 BC 61 4E 00 03 4F 44

说明: 其中 0x00BC614E = 12345678, 小数点为 0003, 所以累积流量为 12345.678

ModScan32 软件读取数据

ModPoll 软件读取数据

4、CRC-16 计算方法

```
#define WORD unsigned short
                                  // 16 Bit 无符号数
#define BYTE
               unsigned char
                                  // 8 Bit 无符号数
4.1 CRC-16 原始算法
WORD CalcCRC16 (BYTE * pPtr,WORD nCount)
   WORD i:
   WORD wCRC = 0xFFFF;
   while (nCount > 0)
       nCount--:
       wCRC = wCRC \wedge (WORD)(0xFF&*pPtr++);
       for (i=0; i<8; i++)
           if (wCRC & 0x0001)
               wCRC = wCRC >> 1 ^0xA001;
           else
               wCRC = wCRC >> 1;
       }
   wCRC = (wCRC << 8) \mid ((wCRC >> 8) \& 0xFF);
   return wCRC;
4.2 CRC-16 查表算法
// CRC16 余式表
const WORD crc16 table[16]=
{
   0x0000, 0xCC01, 0xD801, 0x1400, 0xF001, 0x3C00, 0x2800, 0xE401,
   0xA001, 0x6C00, 0x7800, 0xB401, 0x5000, 0x9C01, 0x8801, 0x4400,
WORD CalcCRC16 (BYTE * pPtr,WORD nCount)
   BYTE ucTmp;
   WORD wCRC=0xFFFF;
   while(nCount-- > 0)
   {
       ucTmp = (BYTE)(wCRC&0x000f);
       wCRC >>= 4;
       wCRC ^= crc16 table [ucTmp^(*pPtr&0x0f)];
       ucTmp = (BYTE)(wCRC&0x000f);
       wCRC >>= 4;
       wCRC ^= crc16_table [ucTmp^(*pPtr>>4)];
       pPtr++;
   ucTmp = wCRC >> 8;
   wCRC <<= 8:
   wCRC |= ucTmp;
   return wCRC;
```