PHYSICS 204A: MATH METHODS

IAN LIM LAST UPDATED OCTOBER 1, 2019

These notes were taken for Physics 204A, *Math Methods*, as taught by Nemanja Kaloper at the University of California, Davis in fall quarter 2019. I live-TEXed them using Overleaf, and as such there may be typos; please send questions, comments, complaints, and corrections to itlim@ucdavis.edu.

Many thanks to Arun Debray for the LATeX template for these lecture notes: as of the time of writing, you can find him at https://web.ma.utexas.edu/users/a.debray/.

CONTENTS

1.	Wednesday, September 25, 2019
2.	Monday, September 30, 2019

Lecture 1.

Wednesday, September 25, 2019

Reading assignment: read Ch. 2 and 3 of the course text (Arfken/Weber). This is basic linear algebra and vector analysis.

The purpose of this course is to learn formal aspects of quantum mechanics. We'll focus on doing analysis in Hilbert space. It's a remarkable fact about the natural world that most of our physical world is well-approximated by linear systems.

In the simplest form, we may think of vectors as arrays of numbers,

$$(v_1, v_2, \ldots). \tag{1.1}$$

1

But we can also think of some real function $f(x) : \mathbb{R} \to \mathbb{R}$ as a collection of numbers too, just by taking its values at arbitrarily close points.

Definition 1.2. A *linear vector space* over a field F, denoted L(F), is a set $\{|v\rangle\}$ with an addition operation + such that

- o for $|v\rangle$, $|u\rangle \in L$, $|u\rangle + |v\rangle = |w\rangle \in L$ (closure)
- ∘ for $c \in F$, $c|v\rangle \in L$ (scalar multiplication).

These axioms directly imply that any linear combination of vectors in *L* is also in the vector space:

$$c_v|v\rangle + c_u|u\rangle \in L. \tag{1.3}$$

This leads us naturally to the notion of *linear* (*in*)*dependence*. Suppose we take some vectors $|v_k\rangle \in L$ and make a linear combo,

$$\sum_{k} c_k |v_k\rangle. \tag{1.4}$$

Definition 1.5. A set of vectors $\{|v_k\rangle\}$ is *linearly dependent* if there exists some $\{c_k\}$ not all zero such that

$$\sum_{k} c_k |v_k\rangle = |0\rangle,\tag{1.6}$$

and such that $|0\rangle \notin \{|v_k\rangle\}$.

We need this last condition because otherwise we could simply take the coefficient of the $|0\rangle$ vector to be 1 and then arrive at a trivial solution.

Definition 1.7. If a set of vectors is not linearly dependent, it is *linearly independent*.

The next question we might ask is as follows: what is the size of the biggest set of linearly independent vectors we can construct for a given vector space?

Definition 1.8. The maximum number of linearly independent vectors associated to a given vector space is called the *dimension*.

Example 1.9. We may consider an infinitely differentiable (C^{∞}) function. It has a Taylor expansion

$$f(x) = \sum \frac{f^{(n)}(0)}{n!} x^n, \tag{1.10}$$

which we may think of as an expansion in the basis $(1, x, x^2, ...)$.

So this is a vector space with countably infinite dimension. But we can have uncountably infinite-dimensional spaces too, e.g. the space of Fourier-transformable functions in a basis e^{ikx} , $k \in \mathbb{R}$. These factors are not just linearly independent; introducing an appropriate inner product, they are orthogonal.

It follows that for a vector space L_D of dimension D, any set with more than D vectors must be linearly dependent, i.e. $\exists \bar{c}_v, \bar{c}_k$ not all zero such that

$$\bar{c}_v|v\rangle + \sum_k \bar{c}_k|v_k\rangle = 0.$$
(1.11)

Moreover $\bar{c}_v \neq 0$ or else the original set $|v_k\rangle$ would be linearly dependent. Hence we can divide through, define $\hat{c}_k = \bar{c}_k/\bar{c}_v$, and write

$$|v\rangle = \sum_{k} \hat{c}_{k} |v_{k}\rangle. \tag{1.12}$$

That is, we have *decomposed* a general vector $|v\rangle$ in terms of its components \hat{c}_k with respect to a basis $|v_k\rangle$. We might now be interested in adding more structure to our vector space. Consider L_D with $|v\rangle$, $|u\rangle$.

Definition 1.13. We define an *inner product* by

$$\langle v|u\rangle:(|v\rangle,|u\rangle)\to F$$
 (1.14)

as a map from the input vectors to the field over which the vector space is defined, with the following properties:

- $\circ \langle u|(\lambda|v_1\rangle + \mu|v_2\rangle) = \lambda \langle u|v_1\rangle + \mu \langle u|v_2\rangle \text{ (linearity)}$
- $\circ \langle v|u\rangle = \langle u|v\rangle^*$
- $v = \langle v | v \rangle = 0$, with equality only for the zero vector (positive semi-definite).

If we choose a basis $\{|v_k\rangle\}$, then if our vectors $|u\rangle$, $|v\rangle$ have some expansion in this basis then by linearity that

$$\langle u|v\rangle = \sum_{k} \hat{c}_{k}^{v} \langle u|v_{k}\rangle, \tag{1.15}$$

and we can expand each of these inner products as

$$\langle u|v_k\rangle = (\langle v_k|u\rangle)^* = \sum_n c_n^{u*} \langle v_n|v_k\rangle.$$
 (1.16)

It follows that we can write a general inner product as

$$\langle u|v\rangle = \sum_{n,k} = c_k^v c_n^{u*} \langle v_n|v_k\rangle. \tag{1.17}$$

Moreover if we could choose a nice basis which had a special property of *orthogonality* or better yet *orthonormality*, we could reduce this to a single sum

$$\langle u|v\rangle = \sum_{k} c_{k}^{v} c_{k}^{*} \tag{1.18}$$

in terms of the components alone.

Lecture 2.

Monday, September 30, 2019

Last time, we wrote a general form for the dot (inner) product,

$$\langle u|v\rangle = \sum_{n,m} c_n^{*u} c_m^v \langle \phi_n | \phi_m \rangle, \tag{2.1}$$

where the $|\phi\rangle$ s are basis vectors and u, v have expansions

$$|u\rangle = \sum_{n} c_n^u |\phi_n\rangle. \tag{2.2}$$

This is some quadratic form (it depends only quadratically on the components). And indeed it would be very nice if we could define $\langle \phi_N | \phi_m \rangle = \delta_{nm}$, so that our double-sum collapses to a single sum.

Orthonormality Let us suppose we start with a basis $\{|\phi_n\rangle\}$ for a vector space L_D . We shall show that we can construct a new basis $\{|\chi_n\rangle\}^D$ such that $\langle \chi_m|\chi_n\rangle = \delta_{mn}$ has the desired property.

WLOG let us number the basis vectors $|\phi_1\rangle, |\phi_2\rangle, \dots$ and consider some inner products. The inner product

$$\langle \phi_1 | \phi_1 \rangle = N_1 \tag{2.3}$$

is some value N_1 . If $N_1 = 1$ then we are done; otherwise, define

$$|\chi_1\rangle \equiv \frac{1}{\sqrt{N_1}}|\phi_1\rangle \tag{2.4}$$

so that

$$\langle \chi_1 | \chi_1 \rangle = \frac{\langle \phi_1 | \phi_1 \rangle}{N_1} = 1.$$
 (2.5)

Hence $|\chi_1\rangle$ is a unit vector.

Consider the next vector $|\phi_2\rangle$. If

$$\langle \chi_1 | \phi_2 \rangle = 0, \tag{2.6}$$

then we can normalize and get

$$|\chi_2\rangle = \frac{|\phi_2\rangle}{\sqrt{N_2}},\tag{2.7}$$

where $N_2 = \langle \phi_2 | \phi_2 \rangle$. Otherwise, we first subtract off the projection of the first normalized vector,

$$|\hat{\chi}_2\rangle = |\phi_2\rangle - \langle \chi_1 |\phi_2\rangle |\chi_1\rangle,\tag{2.8}$$

so that

$$\langle \chi_1 | \hat{\chi}_2 \rangle = \langle \chi_1 | \phi_2 \rangle - \langle \chi_1 | \phi_2 \rangle \underbrace{\langle \chi_1 | \chi_1 \rangle}_{-1} = 0.$$
 (2.9)

Hence by our definition, $|\chi_1\rangle$ and $|\hat{\chi}_2\rangle$ are orthogonal and we can just normalize. Defining

$$\hat{N}_2 = \langle \hat{\chi}_2 | \hat{\chi}_2 \rangle, \tag{2.10}$$

we have

$$|\chi_2\rangle = \frac{|\hat{\chi}_2\rangle}{\sqrt{\hat{N}_2}},\tag{2.11}$$

which is a unit vector and normal to $|\chi_1\rangle$.

We continue by induction, subtracting off projections and normalizing. This is the *Gram-Schmidt* procedure. Notice also that because $\langle \phi_n | \phi_m \rangle = \langle \phi_m | \phi_n \rangle^*$, we can consider values of m,n to be entries in a Hermitian matrix. Recalling that $\langle u | u \rangle \geq 0$, the norm is perfectly well-defined and indeed we can see that orthonormalization is equivalent to diagonalizing a Hermitian matrix.

¹Note that the procedure is a little more subtle in the infinite-dimensional case.

More inner products On a function space, we can define an inner product

$$\langle f|g\rangle = \int_{-\infty}^{\infty} dx \, f^*(x)g(x). \tag{2.12}$$

These inner products come with strings attached; our functions usually have to satisfy some integrability properties in order for the inner products to be well-defined. Often the functions we're interested in come from differential equations. Most of the ones we encounter in physics are second-order so these functions ought to be twice-differentiable.² And we should also require that our functions are square-integrable so that the integral is well-defined.

We can then define

$$\langle u|u\rangle = \sum_{n,m} c_n^* c_m \langle \phi_n | \phi_m \rangle$$

= $\sum_n |c_n|^2$. (2.13)

And this is none other than the generalization of Pythagoras's theorem.

Schwarz inequality From the axioms, we can prove the following inequality.

$$|\langle f|g\rangle|^2 \le \langle f|f\rangle\langle g|g\rangle. \tag{2.14}$$

We may define the linear combination

$$|f - \lambda g\rangle$$
 (2.15)

and consider its norm (squared)

$$\langle f - \lambda g | f - \lambda g \rangle = \langle f | f \rangle - \lambda^* \langle g | f \rangle - \lambda \langle f | g \rangle + \lambda \lambda^* \langle g | g \rangle. \tag{2.16}$$

This is obviously non-negative, given the axioms. We can extremize this by taking derivatives with respect to λ , λ^* (which we may treat as linearly independent, since they are complex) and find that

$$\lambda^* = \frac{\langle g|f\rangle}{\langle g|g\rangle}, \quad \lambda = \frac{\langle f|g\rangle}{\langle g|g\rangle}. \tag{2.17}$$

A bit of manipulation yields the Schwarz inequality.

Let us also note that we can in general translate between the ket notation and vector notation. For a ket vector $|u\rangle$ we can associate the bra (row) vector $\langle u|=(c_1^*,c_2^*\ldots,c_D^*)$. Then the vector inner product is the same as old-fashioned row-column multiplication.

Bessel inequality Suppose we rewrite the vector $|u\rangle$ in a weird way, as

$$|u\rangle = \sum_{n} {}'c_{n}^{u} |\phi_{n}\rangle + |\Delta u\rangle,$$
 (2.18)

where we take some terms and separate them out (so the sum \sum' omits some indices). We know that

$$|\Delta u\rangle = u - \sum_{n} c_{n}^{8} |\phi_{n}\rangle \neq 0,$$
 (2.19)

so that

$$0 < \langle \Delta u | \Delta u \rangle \tag{2.20}$$

$$= \langle u - \sum' c_n^u \phi_n | u - \sum' c_n^u \phi_n \rangle \tag{2.21}$$

$$= \langle u|u\rangle - \sum' |c_n^u|^2. \tag{2.22}$$

Check the cross-terms with the definition of u to get this final term. Rearranging, we get the Bessel inequality, which says that

$$\langle u|u\rangle > \sum' |c_n^u|^2, \tag{2.23}$$

i.e. the norm of a vector is greater than the partial sums of the squares of the components.

²This is a little too strong, actually. They can have finitely many discontinuities and this is still okay.

Linear operators We are primarily interested in linear operators, i.e. linear maps from the vector space to itself obeying

$$A(\lambda|\phi\rangle + \mu|\chi\rangle) = \lambda A|\phi\rangle + \mu A|\chi\rangle. \tag{2.24}$$

We can define two operators to be equal if they have the same action on all vectors, i.e.

$$A|\phi\rangle = B|\phi\rangle \tag{2.25}$$

for all $\phi \in L$.

In particular there's a nice way that we can rewrite the identity operator, as

$$\mathbb{I} = \sum_{n} |\phi_n\rangle\langle\phi_n|. \tag{2.26}$$

Let's prove this: by definition, $\mathbb{I}|u\rangle = |u\rangle$. On the other side, we see that

$$\sum_{n} |\phi_{n}\rangle\langle u| = \sum_{n} c_{n}^{u} |\phi_{n}\rangle \equiv |u\rangle.$$
 (2.27)

Provided that $\{|\phi_n\rangle\}$ is a complete basis, this operator is indeed the identity.

The delta function The Dirac delta function is defined in such a way that

$$\int_{a}^{b} f(t)\delta(x-t)dt = f(x), \tag{2.28}$$

provided that x is in the interval (a, b). We could think of this as an inner product, however. We have a function and its shadow on the delta function picks out a value. The delta function isn't properly square-integrable, but we may consider it as having a good inner product with functions in our function space (as the limit of some sequence of square-integrable functions, if you like).

Now we'll do something strange. Let us express the delta function in a function basis,

$$\delta(x-t) = \sum_{n} c_n(t)\phi_n(x). \tag{2.29}$$

The *t* dependence must be in the coefficients since the functions themselves are just given. How do we find the coefficients? Just take the integral

$$\int dx \, \phi_m^*(x) \delta(x-t) = \int dx \, \sum_n c_n(t) \phi_n(x) \phi_n^*. \tag{2.30}$$

This is super easy to evaluate. On the RHS we have a Kronecker delta δ_{nm} by the orthonormality of the basis, and on the left side we have the evaluation of the basis vector ϕ_m^* at t, i.e.

$$c_m(t) = \phi_m^*(t). \tag{2.31}$$

Hence

$$\delta(x-t) = \sum_{n} \phi_n^*(t)\phi_n(x). \tag{2.32}$$

We can se that this had to be the case by substituting our expression for the delta function into an integral:

$$f(x) = \int dt \, \delta(x - t) f(t) = \sum_{n} \phi_n(x) \int dt \, \phi_n^*(t) f(t)$$
 (2.33)

$$= \sum \langle \phi_n | f \rangle \phi_n(x), \tag{2.34}$$

which is none other than the components of f in the basis ϕ_n .

To make our discussion more concrete, let us consider analytic functions which have Taylor expansion

$$f(x) = \sum \frac{f^{(n)}(0)}{n!} x^n,$$
 (2.35)

defined over the interval [-1,1]. Hence $\{1,x,x^2,x^3,\ldots\}$ form a complete basis set for arbitrarily differentiable functions. They are certainly not orthogonal in general, e.g. $\int_{-1}^1 dx \, 1 \cdot x^2 \neq 0$. But we can make them orthonormal with Gram-Schmidt.

Under this inner product, we have

$$\int_{-1}^{1} dx \, 1 \cdot 1 = 2,\tag{2.36}$$

so our first normalized vector is $1/\sqrt{2}$. We can check x:

$$\int_{-1}^{1} dx \, x \cdot x = 2/3,\tag{2.37}$$

so the next normalized vector is $\sqrt{3/2}x$. Continuing this way, we see that x^2 and x are already orthogonal

$$\int_{-1}^{1} dx \, \frac{1}{\sqrt{2}} x^2 = \frac{2}{3\sqrt{2}},\tag{2.38}$$

so our first unit vector is not orthogonal to x^2 . We can instead define

$$\hat{x}^2 = x^2 - \sqrt{\frac{2}{3}}. (2.39)$$

which is now orthogonal to the first unit vector $1/\sqrt{2}$ and to the second unit vector $\sqrt{3/2}x$. We can normalize \hat{x}^2 and determine the third unit vector in this set, which is $\frac{3x^2}{2} - 1$ (we think). Let us remark that the most general operators that can be diagonalized are normal operators, i.e. those

satisfying

$$[A, A^{\dagger}] = 0. {(2.40)}$$

Clearly, one set of operators that are not normal are the raising and lowering operators, whose commutator is $[a, a^{\dagger}] = 1$.