Chen Liu

150 North University Street, West Lafayette, IN, 47907-2067 Email: liu3373@purdue.edu URL: https://cl59.github.io

Professional experience

Jul 2021 – Present Golomb Visiting Assistant Professor, Department of Mathematics, Purdue University,

Mentor: Prof. Xiangxiong Zhang

Oct 2019 – Jul 2021 Research Geophysicist, CGG Services (U.S.) Inc.

Jul 2019 – Jun 2020 Visiting Researcher, Department of Computational and Applied Mathematics, Rice

University

May 2016 – Aug 2016 Summer internship in Computation and Modeling at Shell International E&P, Inc.

Education

Rice University

May 2016 – May 2019 Ph.D. in Computational and Applied Mathematics Aug 2014 – May 2016 M.A. in Computational and Applied Mathematics

Advisor: Prof. Beatrice Riviere

Peking University

Sep 2012 – Jul 2014 M.S. in Applied Statistics

Advisor: Prof. Hao Ge

Nankai University

Sep 2008 – Jun 2012 Double Degrees, B.S. in Pharmacy and B.S. in Information and Numerical Science

Publications and communications

Preprints

- 1. **C. Liu**, B. Riviere, J. Shen, and X. Zhang (2023). "A simple and efficient convex optimization based bound-preserving high order accurate limiter for Cahn–Hilliard–Navier–Stokes system." *Submitted*. arXiv:2307.09726.
- 2. **C. Liu**, Y. Gao, and X. Zhang (2022). "Structure preserving schemes for Fokker-Planck equations of irreversible processes." *Submitted*. arXiv:2210.16628.

Journal publications

- 1. **C. Liu**, R. Masri, and B. Riviere (2023). "Convergence of a decoupled splitting scheme for the Cahn–Hilliard–Navier–Stokes system." *SIAM Journal on Numerical Analysis (to appear)*. arXiv:2210.05625.
- 2. **C. Liu** and X. Zhang (2023). "A positivity-preserving implicit-explicit scheme with high order polynomial basis for compressible Navier–Stokes equations." *Journal of Computational Physics*, 493, p. 112496. DOI: 10.1016/j.jcp.2023.112496.
- 3. R. Masri, C. Liu, and B. Riviere (2023). "Improved a priori error estimates for a discontinuous Galerkin pressure correction scheme for the Navier–Stokes equations." *Numerical Methods for Partial Differential Equations*, 39(4), pp. 3108–3144. DOI: 10.1002/num.23002.
- 4. R. Masri, **C. Liu**, and B. Riviere (2022). "A discontinuous Galerkin pressure correction scheme for the incompressible Navier–Stokes equations: Stability and convergence." *Mathematics of Computation*, 91(336), pp. 1625–1654. doi: 10.1090/mcom/3731.

- 5. **C. Liu**, D. Ray, C. Thiele, L. Lin, and B. Riviere (2022). "A pressure-correction and bound-preserving discretization of the phase-field method for variable density two-phase flows." *Journal of Computational Physics*, 449, p. 110769. DOI: 10.1016/j.jcp.2021.110769.
- 6. D. Ray, C. Liu, and B. Riviere (2021). "A discontinuous Galerkin method for a diffuse-interface model of immiscible two-phase flows with soluble surfactant." *Computational Geosciences*, 25(5), pp. 1775–1792. DOI: 10.1007/s10596-021-10073-y.
- 7. C. Liu, F. Frank, C. Thiele, F. O. Alpak, S. Berg, W. Chapman, and B. Riviere (2020). "An efficient numerical algorithm for solving viscosity contrast Cahn–Hilliard–Navier–Stokes system in porous media." *Journal of Computational Physics*, 400, p. 108948. DOI: 10.1016/j.jcp.2019.108948.
- 8. **C. Liu** and B. Riviere (2020). "A priori error analysis of a discontinuous Galerkin method for Cahn-Hilliard-Navier-Stokes equations." *CSIAM Transactions on Applied Mathematics*, 1(1), pp. 104–141. doi: 10.4208/csiam-am.2020-0005.
- 9. **C. Liu**, F. Frank, F. O. Alpak, and B. Riviere (2019). "An interior penalty discontinuous Galerkin approach for 3D incompressible Navier–Stokes equation for permeability estimation of porous media." *Journal of Computational Physics*, 396, pp. 669–686. DOI: 10.1016/j.jcp.2019.06.052.
- 10. **C. Liu**, F. Frank, and B. Riviere (2019). "Numerical error analysis for non-symmetric interior penalty discontinuous Galerkin method of Cahn–Hilliard equation." *Numerical Methods for Partial Differential Equations*, 35(4), pp. 1509–1537. DOI: 10.1002/num.22362.
- 11. F. Frank, **C. Liu**, A. Scanziani, F. O. Alpak, and B. Riviere (2018). "An energy-based equilibrium contact angle boundary condition on jagged surfaces for phase-field methods." *Journal of Colloid and Interface Science*, 523, pp. 282–291. DOI: 10.1016/j.jcis.2018.02.075.
- 12. F. Frank, C. Liu, F. O. Alpak, S. Berg, and B. Riviere (2018). "Direct numerical simulation of flow on pore-scale images using the phase-field method." *SPE Journal*, 23(5), pp. 1833–1850. DOI: 10.2118/182607-PA.
- 13. F. Frank, **C. Liu**, F. O. Alpak, and B. Riviere (2018). "A finite volume/discontinuous Galerkin method for the advective Cahn–Hilliard equation with degenerate mobility on porous domains stemming from micro-CT imaging." *Computational Geosciences*, 22(2), pp. 543–563. DOI: 10.1007/s10596-017-9709-1.

Conference proceedings

1. F. Frank, C. Liu, F. O. Alpak, M. Araya-Polo, and B. Riviere (2017). "A discontinuous Galerkin finite element framework for the direct numerical simulation of flow on high-resolution pore-scale images." *SPE Reservoir Simulation Conference*. Society of Petroleum Engineers. DOI: 10.2118/182607-MS.

Theses

- **C. Liu** (2019). "Discontinuous Galerkin methods for pore-scale multiphase flow: theoretical analysis and simulation." PhD thesis. Rice University.
- **C. Liu** (2016). "Pore-scale simulation of fluid flow using discontinuous Galerkin methods." MA thesis. Rice University.
- **C. Liu** (2014). "Coarse-grained model for studying DNA mediated allosteric phenomenon." MA thesis. Peking University.

Talks and presentations

- 1. Mini-symposium talk, The 6th SIAM Texas-Louisiana Sectional Meeting (SIAM TX-LA 2023). University of Louisiana at Lafayette, Lafayette, LA. Nov 05, 2023 (upcoming).
- 2. Talk, Finite Element Circus, University of Notre Dame, South Bend, IN. Oct 20, 2023 (upcoming).
- 3. Department colloquium talk, Oakland University, Rochester, MI. Oct 10, 2023 (upcoming).

- 4. Mini-symposium talk, AMS Fall Eastern Sectional Meeting. University at Buffalo (SUNY), Buffalo, NY. Sep 09, 2023.
- 5. Mini-symposium talk, 17th U.S. National Congress on Computational Mechanics. Albuquerque, NM. July 23, 2023.
- Mini-symposium talk, AMS Spring Central Sectional Meeting. University of Cincinnati, Cincinnati, OH. Apr 15, 2023.
- 7. Talk, Finite Element Rodeo, Texas A&M University, College Station, TX. Mar 24, 2023.
- 8. CCAM seminar, Purdue University, West Lafayette, IN. Jan 30, 2023.
- 9. Mini-symposium talk, The 7th Annual Meeting of SIAM Central States Section. Oklahoma State University, Stillwater, OK. Oct 01, 2022.
- 10. Mini-symposium talk, 2022 SIAM Great Lakes Section Annual Meeting. Wayne State University, Detroit, MI. Sep 24, 2022.
- 11. Mini-symposium talk, AMS Spring Central Sectional Meeting. Purdue University, West Lafayette, IN. Mar 27, 2022.
- 12. Mini-symposium talk, SIAM Conference on Mathematical & Computational Issues in the Geosciences, Houston, TX. Mar 13, 2019.
- 13. Poster presentation, Oil & Gas HPC Conference, Houston, TX. Mar 06, 2019.
- 14. Talk, Finite Element Rodeo, UT Austin, Austin, TX. Mar 01, 2019.
- 15. Talk, SCALA 2019: Scientific Computing Around Louisiana, Tulane University, New Orleans, LA. Feb 16, 2019.
- 16. Mini-symposium talk, InterPore 10th Annual Meeting and Jubilee Conference, New Orleans, LA. May 16, 2018.
- 17. Poster presentation, Offshore Technology Conference, Houston, TX. May 03, 2018.
- 18. Poster presentation, Oil & Gas HPC Conference, Houston. Mar 13, 2018.
- 19. Talk, Finite Element Rodeo, Louisiana State University, Baton Rouge, LA. Feb 23, 2018.
- Mini-symposium talk, Texas Applied Mathematics and Engineering Symposium, UT Austin, Austin, TX. Sep 22, 2017.
- 21. Poster presentation, Oil & Gas HPC Conference, Houston. Mar 16, 2017.
- 22. Talk, Finite Element Rodeo, Houston University, Houston, TX. Mar 03, 2017.
- 23. Talk, Finite Element Rodeo, Texas A&M University, College Station, TX. Mar 05, 2016.
- 24. Poster presentation, Oil & Gas HPC Conference, Houston. Mar 03, 2016.

Workshops participation

June 13, 2022 – June 14, 2022	Broadening Participation: 2022 Mathematical and Physical Sciences (MPS
	Workshop) for Young Investigators. Alexandria, VA.
Apr 20, 2017 – Apr 21, 2017	Digital Rock Project Workshop on Pore-Scale Flow Simulation – Integration of Simulation, Experimentation, and Imaging Processes. Houston, TX.

Teaching experience

Purdue University

Fall 2023	Instructor for MA 30300 Differential Equations and Partial Differential Equations for
	Engineering and the Sciences
Spring 2023	Instructor for MA 26600 Ordinary Differential Equations
Fall 2022	Instructor for MA 30300 Differential Equations and Partial Differential Equations for
	Engineering and the Sciences
Spring 2022	Instructor for MA 26600 Ordinary Differential Equations
Fall 2021	Instructor for MA 26600 Ordinary Differential Equations

Rice University

Spring 2018 Teaching assistant for CAAM 335 Matrix Analysis
Fall 2016 Teaching assistant for CAAM 335 Matrix Analysis

Peking University

Spring 2014 Teaching assistant for Clinical Trial Design and Analysis Fall 2013 Teaching assistant for Probability and Statistics (B)

Professional service

Co-organizer of workshops and conference mini-symposiums

March 2022 with Xiangxiong Zhang, Special Session on Recent Progress of Efficient and Robust

Schemes for Compressible Navier-Stokes Equations, AMS Spring Central Sectional

Meeting. Purdue University, West Lafayette, IN.

Referee for journals/proceedings

• Applied Mathematics and Computation

- Communications in Computational Physics
- Computational Geosciences
- Computers and Fluids
- ESAIM: Mathematical Modelling and Numerical Analysis (M2AN)
- Journal of Computational and Applied Mathematics
- Journal of Computational Physics
- Journal of Scientific Computing
- SIAM Journal on Numerical Analysis
- SIAM Journal on Scientific Computing