

NeuroExP presents:

A device to simulate blast-induced traumatic brain injury to study the injury, to translate the results into drug discoveries, and to inspire engineering to drive prevention

Current Major Challenges in Blast-induced Traumatic Brain Injury (bTBI)

HIGH COMPLEXITY

- Blast shockwave propagation is complex and varied
- Leads to injury that is not obvious

QUESTIONABLE UNDERSTANDING

 Mechanism of how blast shockwaves lead to brain injury is not understood on the cellular level

LIMITED IN VIVO MODELS

 Animal models do not replicate blastinduced neurotrauma (BINT) effects on human brain cells

NO IN VITRO MODELS

- Well-designed experimental models are lacking
- None allow for a real-time study of the injury

Study blast-induced traumatic brain injury (bTBI) on a <u>cellular level</u>

Quantify current understanding to discover drugs and therapies to <u>cure</u> TBI

Engineer novel materials to <u>prevent</u> such injuries

Controllable

Quantifiable

Reproducible

Adjustable

Robust

Market & Competition

Segments: Research Tool, Drug Development, Biomaterials Engineering

Market Need

- 1.7 million people sustain TBI per year
- 4,500 people experience TBI every day
- 40% of TBI patients deteriorate after hospitalization
- 1 out of 5 soldiers have been diagnosed and many go undiagnosed or misdiagnosed

Competition

- Research trials of molecular targeted therapies (BHR-100, NeuroSTAT, rhuEpo)
- Weak competition due to lack of understanding of the injury
- Gaps in Market: Delayed diagnosis, poor societal awareness of TBI, qualitative-only diagnosis

1. Research
Tool (shortterm)

- <u>Current diagnosis/testing</u>: symptoms-based, evaluation of blood flow
- Lack of direct cell and tissue analysis of brain cells for TBI detection

2. Drug
Development
(long-term)

- 2010 worth US \$1.54 billion, forecast to reach \$2 billion by 2017
- Market potential: Use brain cell and tissue imaging to develop targeted drug treatments

3.
Biomaterials
Engineering
(long-term)

- Focused on TBI prevention
- U. Arkansas: Bioreactor to simulate physical impact but not on cellular level
- Use of mice models and analyzed posthumous

Raise funding to build **prototype** for in vitro experiments

Collaborate with big pharma to develop

HTS assay

Next generation prototype: Care AND prevent

2016-2021 2017-2020 r₂₀₁₅ High throughput screens Testing with brain slices **Industry Standard Prototype** Test novel biomaterials Drug discovery In vitro, cell culture testing **Protect IP Protect IP** Commercialize Commercialize Commercialize Raw Material Expense Inspection **Industry-Standard**

Labor

Prototype

Emily Zhen:
Undergraduate LSM;
cognitive neuroscience,
finance, marketing

Yike (Ecko) Chen:

MEAM Graduate;

Mechanical and electrical design, programming

Mithil Chokshi: Bioengineer ('13); drug discovery, biomaterials, business development

Team

Medha Sengupta:

MLA Graduate;
Neurobiology, clinical
trials, business
development

Krystle Karoscik:

MLA Graduate;
Neurobiology, clinical
trials, business
development