Kevicio from last time: · Functions · Intuitive ideas of a group - shuffly of a dick of 52 cards · Groups of symmetries - geometry -The symmetric group Sn is the group of permutations of [1,2,3,...,n] This color from set to itself Lecture 3: Groups comany from algebraic equations An algebraic equation is something like p(x1, x2, ..., xn) = 0 polynomial E_{x} : $\chi^{2} + 2x_{1}x_{2} + \chi^{2}_{2} - 1 = 0$ x+ x, = =1 Xz = -x, + L $\int_{\Sigma} : x_1^2 + x_7^2 - L = 0$

Def: An automorphism of Z(p) is a sequence of rational functions $P_1(x_1,...,x_n),...,P_n(x_1,...,x_n)$ such that $P(x_1,...,x_n) = (P_1(x_1,...,x_n),...,P(x_1,...,x_n))$ restricts to a bijection of Z(p).

Roots of unity:

Def i An n'th root of unity is a solution of the algebraic equation $z^n = 1$ In other words, it's an element of Z(p) for $p(z) = z^n - 1$

Q: What are the automorphisms of Z(p)?

hooking for rational functions p(z) with p(Z(p)) = Z(p)

Example of one $g(z) = z^2$

Make sure p(Z(p)) = Z(p)

Take 2 with 2"=1.

$$g(z) = z^2$$
. $(z^2)^n = z^{2n} = (z^n)^2 = 1^2 = 1$

1 get that $g(Z(p)) \subseteq Z(p)$.

As long as n and z are relatively prime $g(Z(p)) = Z(p)$

In general: define
$$g: Z \mapsto Z^k$$
 $\left(g_k(z) = Z^k\right)$

$$x_1^2 + x_2^2 + a x_1^2 x_2^2 - 1 = 0$$

What are the automorphisms?

Given
$$(Y_1, Y_2)$$
 define $\int_{(Y_1, Y_2)} (X_1, X_2) = \left(\frac{X_1 Y_2 + X_2 Y_1}{1 - \alpha X_1 X_2 Y_1 Y_2}, \frac{X_2 Y_2 - X_1 Y_1}{1 + \alpha X_1 X_2 Y_1 Y_2}\right)$

Defous a bijection of Z(p)!

Define
$$(x_1, x_2) + (y_1, y_2) = 9_{(y_1, y_2)}(x_1, x_2)$$

Number Theory: modular arithmetic

addition modulo 12

Ex:
$$2 + 3 = 0$$

 $8 + 25 = 1$
 $4 + 79 = 4 + 2 = 9$

This defines a group structure on $M_{e_n} = \{0,1,2,...,n-1\}$ $(j,k) \longmapsto j \oplus_n k$

More generally
$$1R_r = [0,r)$$
 $x + y = \begin{cases} x+y, x+y \ge r \\ x+y-r, x+y \ge r \end{cases}$

Ex:
$$\sqrt{2} + \frac{1}{3} = \sqrt{2} + 2 - 3 = \sqrt{2} - 1$$

$$\frac{7\pi}{4} + \frac{\pi}{2\pi} = \frac{9\pi}{4} - 2\pi = \frac{\pi}{4}$$

B Mary Operations

Def: A binary operation on a set G is a function m: G×G >G m(a,b) = a * b

Example: G=12 define a*b = a+b

perfectly eyood brings operation.

Alternatively, define axb=ab
also perfectly good (different) binary operation

Crazy example axb = 2+cos(b)

Example: G= {A | A is a 5×5 real matrix }.

A*B = AB is a brnary operation

Example: G = IR, a * b = a/b something's wrong! 1 * 0 not defined Example: G = IN, a * b = a - b 0 * 1 = -1 NOT or G! Not well

Definition: A binary operation is associative if a*(b*c) = (a*b)*c for all $a, b, c \in G$.

It's called commutative if a*b=b*a for all $a,b\in G$.

Ex: G=IR a*b=a-b
is well defined?

 $w^{0} \int_{0}^{\infty} (1 \times 0) \times 1 = (1 - 0) \times 1 = 1 \times (0 - 1) = 1 \times -1 = 1 - (-1) = 2$

5+3=5-3=2 but 3+5=3-5=-2 Not commutative