Chap. 7 Loglinear Models

- $lackbox{ } \underline{\text{Logistic}}$ regression distinguishes between response variable Y and explanatory variables x_1, x_2, \dots
- Loglinear models treat all variables as response variables(like correlation analysis)

ex) Survey of High school students

 $Y_1 = \text{used marijuana? (Yes, No)}$

 $Y_2 = \text{alcohol? (Yes, No)}$

 $Y_3 = \text{cigarettes?}$ (Yes, No)

Any variables independent?

Strength of association?

Interaction?

Loglinear models treat cell counts as Poisson and use the log-link function.

Motivation: In $I \times J$ table, X and Y are independent?

If
$$P(X=i, Y=j) = P(X=i)P(Y=j)$$
 for all i, j $\Rightarrow \pi_{ij} = \pi_{i+}\pi_{+j}$

For expected frequencies

$$\mu_{ij} = n\pi_{ij} = n\pi_{i+}\pi_{+\;j} \; \; \text{(indep.)}$$

$$\log \mu_{ij} = \lambda + \lambda_i^X + \lambda_j^Y$$

where λ_i^X : effect of X falling in row i, λ_j^Y : effect of Y falling in column j.

This is loglinear model of independence

Treat X and Y symmetrically (differs form logistic regression, which distinguishes between Y= response and X= explanatory)

ex) Revisit Income and job satisfaction (See model 4 in SAS output)

Income	Very	Little	Moderate	Very	Т-4-1
(\$1,000)	Dissat	Dissat	Satisfied	Satisfied	Total
< 5	2	4	13	3	22
5~15	2	6	22	4	34
15~25	0	1	15	8	24
> 25	0	3	13	8	24
Total	4	14	63	23	104

Using x = income scores (3,10, 20, 30), we used SAS (PROC LOGISTIC) to fit model

$$\log\left(\frac{\pi_i}{\pi_4}\right) = \alpha_i + \beta_j x, \ j = 1, 2, 3$$

(We analyzed this using multinomial logit models in ch.6)

Let's consider loglinear model (Income (I) and job satisfaction (S)) Model

$$\log\left(\mu_{ij}\right) = \lambda + \lambda_i^I + \lambda_j^S$$

can be expressed as

$$\log \mu_{ij} = \lambda + \lambda_1^I Z_1 + \lambda_2^I Z_2 + \lambda_3^I Z_3 + \lambda_1^s W_1 + \lambda_2^S W_2 + \lambda_3^S W_3$$
 where $Z_1 = \begin{cases} 1, & income \ cat. \ 1 \end{cases}$ $W_1 = \begin{cases} 1, & sat. \ cat. \ 1 \\ 0, & o.w. \end{cases}$
$$Z_3 = \begin{cases} 1, & income \ cat. \ 3 \\ 0, & o.w. \end{cases}$$
 $W_3 = \begin{cases} 1, & sat. \ cat. \ 3 \\ 0, & o.w. \end{cases}$

<u>Parameter</u>	No. non-redundant	
λ	1	
λ_i^X	I– 1	$(can set \lambda_I^X = 0)$
λ_j^Y	J– 1	(can set $\lambda_J^Y = 0$)
λ_{ii}^{XY}	(I-1)(J-1)	(no. of products of dummy variables)

Note:

For a Poisson loglinear model

$$df = no. \ Poisson \ count - no. \ parameters$$

 $(no.\ Poisson\ counts = no.\ cells\,)$

ex) Independence model, $I \times J$ table

$$\log \mu_{ij} = \lambda + \lambda_i^X + \lambda_j^Y$$

$$df = IJ - \{1 + (I-1) + (J-1)\} = (I-1)(J-1)$$

Test of indep. using Pearson X^2 or likelihood ratio G^2 is a goodness-of-fit test of the indep. loglinear model.

The model allowing association

$$\log \mu_{ij} = \lambda + \lambda_i^X + \lambda_j^Y + \lambda_{ij}^{XY}$$

has df = 0 (saturated), giving a perfect fit.

- ex) Revisit Income and job satisfaction
- Indep. model:

$$\log{(\mu_{ij})} = \lambda + \lambda_i^I + \lambda_j^S$$

has
$$X^2 = 11.5(p - value = 0.243)$$
, $G^2 = 13.5(p - value = 0.141)$, $df = 9$

• Saturated model: $X^2 = G^2 = 0$, $df = 0 (All \hat{\mu_{ij}} = n_{ij})$

Estimated odds ratio in saturated model using highest and lowest categories is

$$\begin{split} \frac{\hat{\mu}_{11}\hat{\mu_{44}}}{\hat{\mu}_{14}\hat{\mu}_{41}} &= \exp\left[\hat{\lambda}_{11}^{IS} + \hat{\lambda}_{44}^{IS} - \hat{\lambda}_{14}^{IS} - \hat{\lambda}_{41}^{IS}\right] \\ &= \exp\left(24.288\right) = 35,294,747,720 \left(GENMOD\right) \\ &= \frac{n_{11}n_{44}}{n_{14}n_{41}} = \frac{2\times8}{3\times0} = \infty \end{split}$$

since model is saturated.

(software doesn't quite get right answer when $ML\ est. = \infty$)

	Job satisfaction						
Income	Very	Little	Moderate	Very			
(\$1,000)	Dissat	Dissat	Satisfied	Satisfied			
< 5	2	4	13	3			
5~15	2	6	22	4			
15~25	0	1	15	8			
> 25	0	3	13	8			

```
data jobsatis;
input income satis count @@;
cards;
3 1 2 3 2 4 3 3 13 3 4 3
10 1 2 10 2 6 10 3 22 10 4 4
20 1 0 20 2 1 20 3 15 20 4 8
30 1 0 30 2 3 30 3 13 30 4 8
/* Independence loglinear model */
• proc genmod data=jobsatis;
   class income satis;
   model count = income satis / dist=poi link=log;
  run;
/* Saturated loglinear model */
proc genmod data=jobsatis;
   class income satis;
   model count = income satis income*satis / dist=poi link=log;
  run;
```

Model Information

Data Set WORK.JOBSATIS
Distribution Poisson
Link Function Log
Dependent Variable count

Number of Observations Read 16 Number of Observations Used 16

 $\begin{array}{cccc} \text{Class Level Information} \\ \text{Class Levels} & \text{Values} \\ \text{income} & 4 & 3 \ 10 \ 20 \ 30 \\ \text{satis} & 4 & 1 \ 2 \ 3 \ 4 \end{array}$

Criteria For Assessing Goodness Of Fit

Value	Value/DF
13.4673	1.4964
13.4673	1.4964
11.5242	1.2805
11.5242	1.2805
129.0550	
	13.4673 13.4673 11.5242 11.5242

Analysis Of Parameter Estimates

Parameter Intercept income income income income satis satis satis	3 10 20 30 1 2 3 4	DF 1 1 1 0 1 1	Estimate 1.6692 -0.0870 0.3483 0.0000 0.0000 -1.7492 -0.4964 1.0076 0.0000	Standard Error 0.2748 0.2952 0.2666 0.2887 0.0000 0.5417 0.3390 0.2436 0.0000	1.1305 -0.6655 -0.1742 -0.5658 0.0000 -2.8110 -1.1608 0.5302 0.0000	2.2078 0.4915 0.8708 0.5658 0.0000 -0.6874 0.1679 1.4851 0.0000	Chi- Square 36.89 0.09 1.71 0.00 10.43 2.14 17.11	Pr > ChiSq
Scale NOTE: The	scale	0 param	1.0000 neter was held	0.0000 d fixed.	1.0000	1.0000		

0

The GENMOD Procedure

Model Information

Data Set WORK.JOBSATIS
Distribution Poisson
Link Function Log
Dependent Variable count

Number of Observations Read 16 Number of Observations Used 16

Class Level Information
Class Levels Values
income 4 3 10 20 30
satis 4 1 2 3 4

Criteria For Assessing Goodness Of Fit

Criterion	DF	Value	Value/DF
Deviance	0	0.0000	
Scaled Deviance	0	0.0000	
Pearson Chi-Square	0	0.0000	
Scaled Pearson X2	0	0.0000	•
Log Likelihood		135.7886	

WARNING: Negative of Hessian not positive definite.

				Analysis	s Of Parame	ter Estimate	es		
					Standard	Wald 95% (Confidence	Chi-	
Parameter			DF	Estimate	Error	Lin	nits	Square	Pr > ChiSq
Intercept			1	2.0794	0.3536	1.3865	2.7724	34.59	<.0001
income	3		1	-0.9808	0.6770	-2.3077	0.3461	2.10	0.1474
income	10		1	-0.6931	0.6124	-1.8934	0.5071	1.28	0.2577
income	20		1	0.0000	0.5000	-0.9800	0.9800	0.00	1.0000
income	30		0	0.0000	0.0000	0.0000	0.0000		•
satis	1		1	-24.7726	0.8660	-26.4700	-23.0752	818.24	<.0001
satis	2		1	-0.9808	0.6770	-2.3077	0.3461	2.10	0.1474
satis	3		1	0.4855	0.4494	-0.3952	1.3662	1.17	0.2799
satis	4		0	0.0000	0.0000	0.0000	0.0000		•
income*satis	3	1	1	24.3671	1.2583	21.9009	26.8334	375.00	<.0001
income*satis	3	2	1	1.2685	1.0206	-0.7319	3.2689	1.54	0.2139
income*satis	3	3	1	0.9808	0.7824	-0.5527	2.5143	1.57	0.2100
income*satis	3	4	0	0.0000	0.0000	0.0000	0.0000		•
income*satis	10	1	0	24.0794	0.0000	24.0794	24.0794	•	
income*satis	10	2	1	1.3863	0.9354	-0.4471	3.2197	2.20	0.1383
income*satis	10	3	1	1.2192	0.7053	-0.1630	2.6015	2.99	0.0838
income*satis	10	4	0	0.0000	0.0000	0.0000	0.0000		•
income*satis	20	1	1	-0.0000	84674.82	-165960	165959.6	0.00	1.0000
income*satis	20	2	1	-1.0986	1.2583	-3.5648	1.3676	0.76	0.3826
income*satis	20	3	1	0.1431	0.6274	-1.0865	1.3727	0.05	0.8196
income*satis	20	4	0	0.0000	0.0000	0.0000	0.0000		•
income*satis	30	1	0	0.0000	0.0000	0.0000	0.0000		•
income*satis	30	2	0	0.0000	0.0000	0.0000	0.0000		•
income*satis	30	3	0	0.0000	0.0000	0.0000	0.0000		
income*satis	30	4	0	0.0000	0.0000	0.0000	0.0000		•
Scale			0	1.0000	0.0000	1.0000	1.0000		

NOTE: The scale parameter was held fixed.

Loglinear Models for Three-way Tables

Two-factor terms represent conditional log odds ratios, at fixed level of third variable (X,Y,Z)

Cell probabilities: $\{\pi_{ijk}\}$

Cell counts: $\{n_{ijk}\}$

Expected counts: $\{\mu_{ijk}\}$.

Types of independence

Def. (X, Y, Z) are mutually independent if

$$\pi_{ijk} = \pi_{i++} \, \pi_{+\, j\, +} \, \pi_{++\, k}$$
 for all i,j,k .

Corresponds to loglinear model of form

$$\log \mu_{ijk} = \lambda + \lambda_i^X + \lambda_j^Y + \lambda_k^Z.$$

Denoted by (X, Y, Z).

 $\underline{\mathrm{Def.}}\ Y$ is jointly independent of X and Z if

$$\pi_{ijk} = \pi_{i+k}\pi_{+j+}$$
 for all i, j, k .

Corresponding model is

$$\log \mu_{iik} = \lambda + \lambda_i^X + \lambda_i^Y + \lambda_k^Z + \lambda_{ik}^{XZ}.$$

Denoted by (XZ, Y).

 $\underline{\text{Def.}}\ X$ and Y are conditionally independent given Z if

$$\pi_{ij|k} = \pi_{i+|k} \pi_{+|i|k}$$
 for all i, j, k .

Corresponding model is

$$\log \mu_{iik} = \lambda + \lambda_i^X + \lambda_i^Y + \lambda_k^Z + \lambda_{ik}^{XZ} + \lambda_{ik}^{YZ}.$$

Denoted by (XZ, YZ).

$I \times J \times K$ tables

The general loglinear model is

$$\log \mu_{ijk} = \lambda + \lambda_i^X + \lambda_j^Y + \lambda_k^Z + \lambda_{ij}^{XY} + \lambda_{ik}^{XZ} + \lambda_{jk}^{YZ} + \lambda_{ijk}^{XYZ}$$

Interpretation of parameters

Local odds ratio:

$$\theta_{ij(k)} = \frac{\pi_{ijk} \, \pi_{i+1,j+1,k}}{\pi_{i+1,j,k} \, \pi_{i,j+1,k}} \; \; \text{for} \; \; i=1,\ldots,I; \; j=1,\ldots,J; \; k=1,\ldots\;,K.$$

lacktriangle For model (XY, XZ, YZ) of no three factor interaction,

$$\begin{split} \log \theta_{ij(k)} &= \log \mu_{ijk} + \log \mu_{i+1,j+1,k} - \log \mu_{i+1,j,k} - \log \mu_{i,j+1,k} \\ &= \lambda_{ij}^{XY} + \lambda_{i+1,j+1}^{XY} - \lambda_{i+1,j}^{XY} - \lambda_{i,j+1}^{XY} \end{split}$$

which is independent of k.

i.e.,
$$\theta_{ij(1)} = \cdots = \theta_{ij(K)}$$
 for all i, j .

The conditional association between any pair of variables is identical at each category of the third. This is the homogeneous assocation model.

• Do $\{\lambda_{ij}^{XY}\}$ also describe marginal association? No. (Collapsing doesn't have same association)

ex) $2 \times 2 \times 2$ table

Let μ_{ijk} denotes expected freq. : λ^{XZ}_{ik} and λ^{YZ}_{jk} denote association parameters

$$\log \mu_{ijk} = \lambda + \lambda_i^X + \lambda_i^Y + \lambda_k^Z + \lambda_{ik}^{XZ} + \lambda_{ik}^{YZ}$$

satisfies

 $lackbox{0}$ $\log \theta_{XY(Z)} = 0$ (X and Y conditionally indep. given Z)

$$\theta_{XY(Z)} = \frac{\mu_{22(k)}\mu_{11(k)}}{\mu_{12(k)}\mu_{21(k)}} \implies \log\theta_{XY(k)} = \log\mu_{22(k)} + \log\mu_{11(k)} - \log\mu_{12(k)} - \log\mu_{21(k)}$$

$$\bullet \ \log \theta_{X(j)Z} = \begin{cases} \lambda_{11}^{XZ} + \lambda_{22}^{XZ} - \lambda_{12}^{XZ} - \lambda_{21}^{XZ} \\ 0 \ \text{if} \ \lambda_{ik}^{XZ} = 0 \end{cases}$$

$$\theta_{X(j)Z} = \frac{\mu_{2(j)2}\mu_{1(j)1}}{\mu_{1(j)2}\mu_{2(j)1}} \implies \log\theta_{X(j)Z} = \log\mu_{2(j)2} + \log\mu_{1(j)1} - \log\mu_{1(j)2} - \log\mu_{2(j)1}$$

i.e., the XZ odds ratio is same at all levels Y

Denoted by (XZ, YZ), called model of \underline{XY} conditional indep. given Z.

ex)

$$\log \mu_{ijk} = \lambda + \lambda_i^X + \lambda_j^Y + \lambda_k^Z + \lambda_{ij}^{XY} + \lambda_{ik}^{XZ} + \lambda_{jk}^{YZ}$$

called model of homogeneous association

Each pair of variables has association that is identical at all levels of third variable. Denoted by (XY, XZ, YZ)

ex) Revisit Berkely admission data $(2 \times 2 \times 6)$

Gender (M, F) \times Admitted (Y, N) \times Department (1,2,3,4,5,6)

Recall marginal 2×2 AG table has $\hat{\theta} = 1.84$

Model(AD, DG)

A and G conditionally indep. given D

eg) for Dept. 1,

$$\begin{split} \hat{\theta}_{AG(1)} &= \frac{531.4 \times 38.4}{293.6 \times 69.6} = 1.0 \\ &= \hat{\theta}_{AG(2)} = \dots = \hat{\theta}_{AG(6)} \end{split}$$

(see model 2(predicted values))

But model fit poorly $:G^2=21.7,\ X^2=19.9,\ df=6\,(p-value<.0001)$

for H_0 : Model(AD, DG) holds.

Conclude A and G are not conditionally indep. given $\ensuremath{\mathsf{D}}$

$$\hat{\theta}_{AG(1)} = \frac{\hat{\mu}_{22(1)}\hat{\mu}_{11(1)}}{\hat{\mu}_{12(1)}\hat{\mu}_{21(1)}}$$

where
$$\hat{\mu}_{22(1)} = \exp\left\{\hat{\lambda} + \hat{\lambda}_{2}^{A} + \hat{\lambda}_{2}^{G} + \hat{\lambda}_{21}^{AD} + \hat{\lambda}_{21}^{GD}\right\}$$

$$\hat{\mu}_{11(1)} = \exp\left\{\hat{\lambda} + \hat{\lambda}_{1}^{A} + \hat{\lambda}_{1}^{G} + \hat{\lambda}_{11}^{AD} + \hat{\lambda}_{11}^{GD}\right\}$$

$$\hat{\mu}_{12(1)} = \exp\left\{\hat{\lambda} + \hat{\lambda}_{1}^{A} + \hat{\lambda}_{2}^{G} + \hat{\lambda}_{11}^{AD} + \hat{\lambda}_{21}^{GD}\right\}$$

$$\hat{\mu}_{21(1)} = \exp\left\{\hat{\lambda} + \hat{\lambda}_{2}^{A} + \hat{\lambda}_{1}^{G} + \hat{\lambda}_{21}^{AD} + \hat{\lambda}_{11}^{GD}\right\}$$

lacktriangle Model(AG, AD, DG)

Also, permits $A\,G$ association with same odds ratio for each dept. eg., for Dept.1

$$\begin{split} \hat{\theta}_{A\,G(1)} &= \frac{529.3 \times 36.3}{295.7 \times 71.7} = 0.90 \qquad \text{(see model } \textbf{3)} \\ &= \hat{\theta}_{A\,G(2)} = \cdots = \hat{\theta}_{A\,G(6)} \\ &= \exp{(\hat{\lambda}_{11}^{A\,G} + \hat{\lambda}_{22}^{A\,G} - \hat{\lambda}_{12}^{A\,G} - \hat{\lambda}_{21}^{A\,G})} \\ &= \exp{(-0.0999)} = 0.9 \end{split}$$

Controlling for dept., estimated odds of admission for <u>males</u> equal .90 times estimated odds for <u>females</u>.

$$\hat{\theta} = 1.84$$
 ignores dept. (Simson's Paradox)

But this model also fits poorly: $G^2 = 20.2$, $X^2 = 18.8$, df = 5(p-value < 0.0001) for H_0 : model(AG, AD, DG) holds. i.e., true AG odds ratio not identical for each dept.

lacktriangle Adding 3-factor interaction term λ_{ijk}^{GAD} gives saturated mode ($\mid X \mid imes 5$ cross

products of dummies).

Residual analysis

For model (AD, DG) or (AD, AG, DG), only Dept.1 has large adjusted residuals (≈ 4 in absolute value).

Dept.1 has

- fewer males accepted than expected by model.
- more femals accepted than expected by model.

If refit model (AD, DG) to $2 \times 2 \times 5$ table for Dept. 2-6, $G^2 = 2.7$, df = 5, good fit

```
data berkeley;
input dept $ gender $ admit $ count @@;
cards;
a male
        yes 512 a male no 313
a female yes 89 a female no 19
b male yes 353 b male no 207
b female yes 17 b female no 8
c male yes 120 c male no 205
c female yes 202 c female no 391
d male yes 138 d male no 279
d female yes 131 d female no 244
e male yes 53 e male no 138
e female yes 94 e female no 299
f male yes 22 f male no 351
f female yes 24 f female no 317
run;
/* (A.D.G) */
proc genmod data=berkeley;
   class dept(ref=last) gender(ref=last) admit(ref=first)/param=ref;
   model count=admit gender dept/dist=poi link=log;
  run;
/* (AD.DG) */
proc genmod data=berkeley;
   class dept(ref=last) gender(ref=last) admit(ref=first)/param=ref;
   model count=admit gender dept admit*dept dept*gender/dist=poi link=log obstats;
  run;
/* (AG, AD, DG) */

genmod data=berkeley;

   class dept(ref=last) gender(ref=last) admit(ref=first)/param=ref;
   model count=admit gender dept admit*gender admit*dept gender*dept/dist=poi link=log obstats;
/* Delete department A */
  data bcdef;
   set berkeley;
   if dept^='a';
/* (AD,DG) without department A */
4 proc genmod data=bcdef;
   class dept(ref=last) gender(ref=last) admit(ref=first)/param=ref;
   model count=admit gender dept admit*dept dept*gender/dist=poi link=log;
  run;
/* (AG,AD,DG) without department A */
6 proc genmod data=bcdef;
   class dept(ref=last) gender(ref=last) admit(ref=first)/param=ref;
   model count=admit gender dept admit*gender admit*dept gender*dept/dist=poi link=log;
  run;
```

0

Model Information

Data Set	WORK.BERKELEY
Distribution	Poisson
Link Function	Log
Dependent Variable	count

Number of Observations Read Number of Observations Used 24 24

a 1		Level	Informatio			
Class	Value		Design	var.	ıabıes	
dept	a	1	0	0	0	0
_	b	0	1	0	0	0
	С	0	0	1	0	0
	d	0	0	0	1	0
	е	0	0	0	0	1
	f	0	0	0	0	0
gender	female	1				
	male	0				
admit	no	0				
	yes	1				

Criteria For Assessing Goodness Of Fit

011001101	TIDDCDDTIIG	document of 110	
Criterion	DF	Value	Value/DF
Deviance	16	2097.6712	131.1045
Scaled Deviance	16	2097.6712	131.1045
Pearson Chi-Square	16	2000.3281	125.0205
Scaled Pearson X2	16	2000.3281	125.0205
Log Likelihood		19464.3700	
Algorithm converged.			

Analysis Of Parameter Estimates
Standard Wald 95% Confidence

					Standard	Wald 95% C	onfidence	Chi-	
F	arameter		DF	Estimate	Error	Lim	iits	Square	Pr > ChiSq
I	intercept		1	5.5603	0.0411	5.4797	5.6409	18281.7	<.0001
а	dmit	yes	1	-0.4567	0.0305	-0.5165	-0.3969	224.15	<.0001
g	gender	female	1	-0.3829	0.0303	-0.4422	-0.3235	159.93	<.0001
d	lept	a	1	0.2675	0.0497	0.1701	0.3650	28.95	<.0001
d	lept	b	1	-0.1993	0.0558	-0.3086	-0.0900	12.77	0.0004
d	lept	С	1	0.2513	0.0499	0.1535	0.3491	25.37	<.0001
d	lept	d	1	0.1037	0.0516	0.0025	0.2048	4.04	0.0445
d	lept	е	1	-0.2010	0.0558	-0.3103	-0.0916	12.98	0.0003
S	cale		0	1.0000	0.0000	1.0000	1.0000		

NOTE: The scale parameter was held fixed.

② The GENMOD Procedure

Model Information

Data Set	WORK.BERKELEY
Distribution	Poisson
Link Function	Log
Dependent Variable	count

Number of Observations Read Number of Observations Used 24 24

Class Level Information

Class	Value		Desig	n Varia	ables	
dept	a	1	0	0	0	0
_	b	0	1	0	0	0
	С	0	0	1	0	0
	d	0	0	0	1	0
	е	0	0	0	0	1
	f	0	0	0	0	0
gender	female	1				
	\mathtt{male}	0				
admit	no	0				
	yes	1				

Criteria For Assessing Goodness Of Fit

Chi-

Pr > ChiSq

<.0001

<.0001

Criterion	DF	Value	Value/DF
Deviance	6	21.7355	3.6226
Scaled Deviance	6	21.7355	3.6226
Pearson Chi-Square	6	19.9383	3.3231
Scaled Pearson X2	6	19.9383	3.3231
Log Likelihood		20502.3379	
Algorithm converged.			

Analysis Of Parameter Estimates Wald 95% Standard Parameter DF Estimate Confidence Limits Square Error Intercept 0.0527 5.7517 5.9583 $12\overline{3}42.7$ 1 5.8550 -2.3769admit yes 1 -2.67560.1524 -2.9744308.10 female -0.0897-0.2365gender 1 0.0749 0.0572 -0.17290.0770 -0.3238-0.0219 1 а -0.3582 -0.3458 -0.6978 -0.5280 0.0866 b -0.5031-0.6604С 0.0803 -0.2369d 0.0763 -0.3865-0.0873-0.89270.0927 -1.0743-0.7110е

1.43 0.2312 5.04 0.0248 dept 37.15 dept <.0001 39.29 dept <.0001 dept 9.63 0.0019 92.78 <.0001 dept dept*admit yes 1 3.2691 0.1671 2.9417 3.5966 382.88 <.0001 а dept*admit 3.5613 338.63 1 3.2185 2.8757 b 0.1749 <.0001 yes 2.3880 2.3438 2.0600 2.0108 0.1674 151.45 dept*admit С yes 1.7319 <.0001 dept*admit d yes 0.1699 1.6778 140.07 <.0001 77.82 234.84 dept*admit yes 1.5861 0.1798 1.2337 1.9385 <.0001 е -2.1921 dept*gender female ī -1.9436 0.1268 -1.6950 <.0001 а 0.2177 ī -3.0194-2.5927 female 192.34 dept*gender -3.4461<.0001 b dept*gender female 1 0.6911 0.1019 0.4914 0.8907 46.02 <.0001 dept*gender female 1 -0.01650.1033 -0.21900.1861 0.03 0.8734 0.8112 0.1157 49.14 dept*gender 1 0.5844 1.0381 <.0001 female 1.0000 1.0000 0.0000 1.0000 Scale

NOTE: The scale parameter was held fixed.

Observation Statistics (** Reschi: Pearson residual, Resdev: deviance residual, residual, StReschi: Standardized Pearson residual) StResdev: standardized deviance

Observation	count	dept gender admit	Pred	Xbeta	Std
Observacion	Count	dept gender admit HessWgt Lower	Upper	Resraw	Reschi
		Resdev StResdev	StReschi	Reslik	resciii
1	512	a male yes	531.43085	$6.\overline{2755731}$	0.0424759
_	31%	531.43085 488.98011	577.56693	-19.43085	-0.842885
		-0.848101 -4.178759	-4.153057	-4.154119	0.01000
2	313	a male no	293.56917	5.6821133	0.0561458
		293.56917 262.97775	327.71919	19.430835	1.1340606
		1.1218832 4.1084599	4.1530548	4.1497461	
3	89	a female yes	69.569537	4.2423268	0.0992536
		69.569537 57.270933	84.509196	19.430463	2.3295583
		2.2320798 3.9791972	4.1529753	4.0990903	
4	19	a female no	38.431098	3.648867	0.1058274
		38.431098 31.232183	47.289339	-19.4311	-3.134411
		-3.477633 -4.607882	-4.153111	-4.417888	
5	353	b male yes	354.18803	5.8698279	0.0527164
		354.18803 319.41965	392.74091	-1.188034	-0.063127
		-0.063162 -0.50399	-0.503708	-0.503712	
6	207	b male no	205.81197	5.326963	0.0687566
		205.81197 179.86426	235.50296	1.1880342	0.0828121
~		0.0827326 0.5032243	0.5037077	0.5036947	0.000400
7	17	b female yes	15.811966	2.760767	0.202468
		15.811966 10.63273	23.514024	1.1880342	0.2987693
•	•	0.2951405 0.4975897	0.5037077	0.5015638	0.0000000
8	8	b female no	9.1880342	2.217902	0.2072239
		9.1880342 6.1211534	13.791514	-1.188034	-0.391938
0	100	-0.400875 -0.515193	-0.503708	-0.510693	0 0017000
9	120	c male yes	113.99782	4.7361793	0.0713666
		113.99782 99.117242	131.11244	6.0021786	0.5621609
10	205	0.557333 0.8606111	0.8680662	0.8649474	0 060547
10	205	c male no	211.00218	5.3518685	0.060543
		211.00218 187.3927	237.5862	-6.002179	-0.413205

11	202	-0.415187 -0.87 c female 208.00218 184.6 -0.4182 -0.87	yes 1759 2	-0.868066 208.00218 234.34877 -0.868066	-0.869012 5.3375486 -6.002179 -0.869039	0.060849 -0.416174
12	391		no 6386 4	384.99782 422.72392 0.8680662	5.9532377 6.0021786 0.8677882	0.0476956 0.3059002
13	138		yes 5566]	141.63258 162.35302 -0.545873	4.9532362 -3.632576 -0.546612	0.069663 -0.305234
14	279		no 2841 3	275.36742 306.83327 0.5458732	5.6181063 3.6325758 0.5456815	0.0552042 0.2189064
15	131		yes 9866	127.36742 146.54614 0.5458732	4.847076 3.6325758 0.544983	0.0715647 0.3218737
16	244		no 0296 2	247.63258 277.22004 -0.545873	5.5119461 -3.632576 -0.546114	0.0575855 -0.23084
17	53		yes 5026 5	48.077055 58.672463 1.0005342	3.872805 4.9229452 0.992317	0.1016169 0.7099963
18	138		no 8683]	142.92295 165.95577 -1.000534	4.9623056 -4.922945 -1.001524	0.0762339 -0.411788
19	94	e female 98.922945 83.35	yes 2901]	98.922945 117.40142 -1.000534	4.5943412 -4.922945 -1.002615	0.087378 -0.494967
20	299	e female 294.07705 263.5	no 7946 3	294.07705 328.10338	5.6838418 4.9229452	0.0558617 0.2870744
21	22	24.030812 17.84	yes 9355 3	1.0005342 24.030812 32.352986	1.0003062 3.1793369 -2.030812	0.1517219 -0.414272
22	351	348.96919 314.7	no 2249 3	-0.619753 348.96919 386.94245	-0.623813 5.8549836 2.0308123	0.0527011 0.1087117
23	24	21.969188 16.2	yes 9162 2	0.6197526 21.969188 29.625366	0.6197342 3.0896409 2.0308123	0.1525488 0.4332742
24	317	0.4268436	no 0832 3	0.6197526 319.03081 355.36908 -0.619753	0.6152741 5.7652877 -2.030812 -0.619775	0.0550363 -0.113698

Model Information
WORK.BERKELEY
ution Poisson
Cotion Log
count Data Set
Distribution
Link Function
Dependent Variable

Number of Observations Read Number of Observations Used 24 24

	Class	rever	Informati	Lon		
Class	Value		Design	ı Varia	ables	
dept	a	1	0	0	0	0
	b	0	1	0	0	0
	С	0	0	1	0	0
	d	0	0	0	1	0
	e	0	0	0	0	1
	f	0	0	0	0	0
gender	female	1				
_	\mathtt{male}	0				
admit	no	0				
	ves	1				

			Ān	alvsis Of	Parameter	Estimates			
			****	41,515 OI	Standard	Wald	95%	Chi-	
Parameter			DF	Estimate	Error		ce Limits	Square	Pr > ChiSq
Intercept			ī	5.8581	0.0527	5.7548	5.9613	12365.7	<.0001
admit	yes		ī	-2.7244	0.1577	-3.0335	-2.4153	298.46	<.0001
gender	female		ī	-0.0961	0.0751	-0.2434	0.0511	1.64	0.2006
dept	a		1	-0.1686	0.0769	-0.3194	-0.0178	4.80	0.0284
dept	b		1	-0.5284	0.0865	-0.6980	-0.3588	37.29	<.0001
dept	С		1	-0.4839	0.0814	-0.6434	-0.3245	35.38	<.0001
dept	d		1	-0.2240	0.0767	-0.3743	-0.0737	8.53	0.0035
dept	е		1	-0.8791	0.0930	-1.0613	-0.6969	89. 4 5	<.0001
gender*admit	female	yes	1	0.0999	0.0808	-0.0586	0.2583	1.53	0.2167
dept*admit	a	yes	1	3.3065	0.1700	2.9733	3.6396	378.38	<.0001
dept*admit	b	yes	1	3.2631	0.1788	2.9127	3.6135	333.12	<.0001
dept*admit	C	yes	1	2.0439	0.1679	1.7149	2.3729	148.24	<.0001
dept*admit	d	yes	1	2.0119	0.1699	1.6788	2.3449	140.18	<.0001
dept*admit	е	yes	1	1.5672	0.1804	1.2135	1.9208	75.44	<.0001
dept*gender	a	female	1	-2.0023	0.1357	-2.2683	-1.7363	217.68	<.0001
dept*gender	b	female	1	-3.0771	0.2229	-3.5140	-2.6403	190.63	<.0001
dept*gender	C	female	1	0.6628	0.1044	0.4583	0.8674	40.34	<.0001
dept*gender	d	female	1	-0.0440	0.1057	-0.2512	0.1632	0.17	0.6774
dept*gender	е	female	1	0.7929	0.1167	0.5642	1.0215	46.19	<.0001
Scale			0	1.0000	0.0000	1.0000	1.0000		
NOTE: The scal	e parame	eter was	held	fixed.					

Observation Statistics (** Reschi: Pearson residual, Resdev: deviance residual, StReschi: Standardized Pearson residual)

Observation	count	dept gender admit HessWgt Lower	Pred Upper	Xbeta Resraw	Std Reschi
		Resdev StResdev	StReschi	Reslik	
1	512	a male yes	529.26988	6.2714985	0.0427054
_	OIN	529.26988 486.77278	575.47713	-17.26988	-0.750673
		-0.754812 -4.049477	-4.027272	-4.028046	0.130013
2	313	a male no	295.73014	5.6894473	0.0563134
~	010	295.73014 264.82656	330.23996	17.269864	1.0042483
		0.9947045 3.9889963	4.0272693	4.0249	1.0048400
3	89		71.730325	4.2729136	0.1018191
3	09				
			87.573236	17.269675	2.039073
4	7.0	1.9645109 3.879963	4.0272253	3.9899909	0 110000
4	19	a female no	36.270065	3.5909927	0.1165867
		36.270065 28.860876	45.581347	-17.27007	-2.867608
_		-3.157703 -4.43473	-4.027316	-4.238772	
5	353	b male yes	353.63951	5.8682781	0.052782
		353.63951 318.88392	392.18316	-0.639511	-0.034007
6	207	b male no	206.36049	5.3296246	0.0687252
		206.36049 180.35475	236.11605	0.6395108	0.0445179
		0.0444949 0.2795786	0.2797229	0.2797192	
7	17	b female yes	16.360489	2.7948692	0.2039494
		16.360489 10.969688	24.400476	0.6395107	0.1581065
		0.1570929 0.2779296	0.2797228	0.2791512	
8	8	b female no	8.6395115	2.156346	0.2138246
_	-	8.6395115 5.6817404	13.137024	-0.639512	-0.217572
		-0.220343 -0.283285	-0.279723	-0.281884	01.02.01.0
9	120	c male yes	109.2453	4.6935958	0.0800879
J	120	109.2453 93.375254	127.81261	10.754703	1.0289566
		1.0127309 1.8511689	1.8808278	1.8720004	1.0203300
10	205	c male no	215.75471	5.3741422	0.0627097
10	۵05	215.75471 190.80147	243.97136	-10.75471	-0.732181
		-0.738394 -1.896788	-1.880829	-1.883256	-0.13%TOT
77	200				0 0670707
11	202	c female yes	212.75471	5.3601399	0.0630707

		212.75471 188.01536 -0.743672 -1.897018	240.7493 -1.880829	-10.75471 -1.883326	-0.737325
12	391	c female no	380.24529	5.9408166	0.049028
	002	380.24529 345.407	418.59743	10.754707	0.5515268
		0.5489572 1.8720652	1.8808285	1.8800765	
13	138	d male yes	137.20741	4.9214937	0.0749396
		137.20741 118.46468	158.91549	0.7925914	0.0676645
		0.0675995 0.1411229	0.1412585	0.1412274	
14	279	d male no	279.79259	5.6340486	0.0563198
		279.79259 250.55134	312.44653	-0.792595	-0.047384
		-0.047407 -0.141326	-0.141259	-0.141267	
15	131	d female yes	131.7926	4.8812294	0.0759943
		131.7926 113.55454	152.95987	-0.792595	-0.069041
		-0.06911 -0.141401	-0.141259	-0.141293	
16	244	d female no	243.20741	5.4939146	0.0598286
		243.20741 216.29703	273.46581	0.7925928	0.0508232
		0.0507956 0.1411822	0.1412588	0.1412489	
17	53	e male yes	45.68082	3.8216785	0.1107698
		45.68082 36.76601	56.757241	7.3191799	1.0829178
7.0	7.50	1.0557746 1.5925468	1.6334899	1.6156233	0 00007.7
18	138	e male no	145.31918	4.9789326	0.077011
		145.31918 124.96001	168.99539	-7.319183	-0.607157
7.0	0.4	-0.612364 -1.647499	-1.633491	-1.635433	0.000077
19	94	e female yes	101.31918	4.6182758	0.0889611
		101.31918 85.10751	120.61893	-7.319183	-0.727138
00	000	-0.736167 -1.653774	-1.633491	-1.63753	0 0000010
20	299	e female no	291.68082	5.6756601	0.0565015
		291.68082 261.10408	325.83825	7.3191827	0.4285571
0.7	00	0.4267832 1.6267294	1.6334905	1.6330261	0 1000001
21	22	f male yes	22.9571	3.1336273	0.1567901
		22.9571 16.883288	31.215985	-0.9571	-0.199756
00	707	-0.201168 -0.304786	-0.302645	-0.30358	0.0000000
22	351	f male no	350.0429	5.8580557	0.0526799
		350.0429 315.70399	388.11683	0.9570993	0.051156
07	0.4	0.0511327 0.3025072	0.302645	0.302641	0 1000000
23	24	f female yes	23.042901	3.1373577	0.1567227
		23.042901 16.948628	31.328511	0.957099	0.1993831
24	717	0.1980262 0.3005852 f female no	0.3026449	0.3017527	0 055100
24	317		317.9571	5.7619165	0.055192
		317.9571 285.35734 -0.053702 -0.302797	354.28112 -0.302645	-0.957099 -0.30265	-0.053675
		-0.053104 -0.304191	-U.3U&0 4 3	-0.30203	

4

The GENMOD Procedure
Model Information
Data Set WORK.BCDEF
Distribution Poisson
Link Function Log
Dependent Variable count
Number of Observations Read 20
Number of Observations Used 20

	a	_			
	Class Level	Ln:	tormatic	on	
Class	Value		Design	Variables	
dept	b	1	Ŏ	0	0
_	С	0	1	0	0
	d	0	0	1	0
	е	0	0	0	1
	f	0	0	0	0
gender	female	1			
	male	0			
admit	no	0			
	yes	1			

Criteria For Assessing Goodness Of Fit

Criterion	DF	Value	Value/DF
Deviance	5	2.6815	0.5363
Scaled Deviance	5	2.6815	0.5363
Pearson Chi-Square	5	2.6904	0.5381
Scaled Pearson X2	5	2.6904	0.5381
Log Likelihood		15996.8481	

Algorithm converged.

			λn	alvsis Of	Parameter	Estimates			
				d1/515 01	Standard	Wald	95%	Chi-	
Parameter			DF	Estimate	Error	Confidence	ce Limits	Square	Pr > ChiSq
Intercept			1	5.8550	0.0527	5.7517	5.9583	$12\overline{3}42.7$	<.0001
admit	yes		1	-2.6756	0.1524	-2.9744	-2.3769	308.10	<.0001
gender	female		1	-0.0897	0.0749	-0.2365	0.0572	1.43	0.2312
dept	b		1	-0.5280	0.0866	-0.6978	-0.3582	37.15	<.0001
dept	C		1	-0.5031	0.0803	-0.6604	-0.3458	39.29	<.0001
dept	d		1	-0.2369	0.0763	-0.3865	-0.0873	9.63	0.0019
dept	е		1	-0.8927	0.0927	-1.0743	-0.7110	92.78	<.0001
dept*admit	b	yes	1	3.2185	0.1749	2.8757	3.5613	338.63	<.0001
dept*admit	C	yes	1	2.0600	0.1674	1.7319	2.3880	151.44	<.0001
dept*admit	d	yes	1	2.0108	0.1699	1.6778	2.3438	140.07	<.0001
dept*admit	е	yes	1	1.5861	0.1798	1.2337	1.9385	77.82	<.0001
dept*gender	b	female	1	-3.0194	0.2177	-3.4461	-2.5926	192.34	<.0001
dept*gender	C	female	1	0.6911	0.1019	0.4914	0.8907	46.02	<.0001
dept*gender	d	female	1	-0.0165	0.1033	-0.2190	0.1861	0.03	0.8734
dept*gender	е	female	1	0.8112	0.1157	0.5844	1.0381	49.13	<.0001
Scale			0	1.0000	0.0000	1.0000	1.0000		
NOTE: The scale	e parame	eter was	held	fixed.					

Model Information								
Data	a Set	WORK.BCDEF						
Dis	Distribution			oisson				
Lin	k Function			Log				
Dep	endent Varia	ble		count				
Number	of Observati	ons	Read	20				
Number (of Observati	ons	Used	20				
	Class Level	Inf	formatio	on				
Class	Value		Design	Variables				
dept	b	1	Ō	0	0			
	С	0	1	0	0			
	d	0	0	1	0			
	е	0	0	0	1			
	f	0	0	0	0			
gender	female	1						
	male	0						
admit	no	0						
	yes	1						

Criteria	For Assessing	Goodness Of Fit	
Criterion	DF	Value	Value/DF
Deviance	4	2.5564	0.6391
Scaled Deviance	4	2.5564	0.6391
Pearson Chi-Square	4	2.5582	0.6395
Scaled Pearson X2	4	2.5582	0.6395
Log Likelihood		15996.9106	
Algorithm converged.			

			An	alysis Of	Parameter				
					Standard	Wald	95%	Chi-	
Parameter			\mathtt{DF}	Estimate	Error	Confiden	ce Limits	Square	Pr > ChiSq
Intercept			1	5.8540	0.0528	5.7506	5.9575	12295.4	<.0001
admit	yes		1	-2.6611	0.1578	-2.9704	-2.3518	284.33	<.0001
gender	female		1	-0.0877	0.0751	-0.2350	0.0595	1.36	0.2430
dept	b		1	-0.5279	0.0867	-0.6978	-0.3581	37.11	<.0001
dept	С		1	-0.5092	0.0822	-0.6703	-0.3481	38.37	<.0001
dept	d		1	-0.2409	0.0773	-0.3923	-0.0895	9.72	0.0018
dept	е		1	-0.8970	0.0936	-1.0804	-0.7135	91.86	<.0001
gender*admit	female	yes	1	-0.0307	0.0868	-0.2007	0.1394	0.13	0.7235
dept*admit	b	yes	1	3.2053	0.1788	2.8548	3.5557	321.37	<.0001
dept*admit	С	yes	1	2.0652	0.1681	1.7358	2.3946	151.00	<.0001
dept*admit	d	yes	1	2.0107	0.1699	1.6777	2.3437	140.06	<.0001
dept*admit	е	yes	1	1.5922	0.1806	1.2382	1.9462	77.70	<.0001
dept*gender	b	female	1	-3.0020	0.2231	-3.4393	-2.5647	181.06	<.0001
dept*gender	С	female	1	0.6999	0.1049	0.4943	0.9055	44.52	<.0001
dept*gender	d	female	1	-0.0080	0.1061	-0.2159	0.1998	0.01	0.9397
dept*gender	е	female	1	0.8170	0.1169	0.5879	1.0461	48.85	<.0001
Scale			0	1.0000	0.0000	1.0000	1.0000		
NOTE: The scale parameter was held fixed.									

Inference about conditional Association

ex) Model (AD, AG, DG)

$$\log \mu_{ijk} = \lambda + \lambda_i^G + \lambda_j^A + \lambda_k^D + \lambda_{ij}^{GA} + \lambda_{ik}^{GD} + \lambda_{jk}^{AD}$$

 $H_0: \lambda_{ij}^{GA} = 0 \, (A \text{ cond. indep. of } G, \text{ given } D)$

$$\begin{array}{l} Likelihood\ ratio\ stat. = & -2(L_0-L_1) \\ = & Deviance\ \text{for}\ (AD,\ DG) - Deviance\ \text{for}\ (AD,\ AG,\ DG) \\ = & 21.7 - 20.3 = 1.5\ with\ df = 6 - 5 = 1(p-value = 0.21) \end{array}$$

 H_0 is plausible, but test is shaky because model (AD, AG, DG) fits poorly.

Recall
$$\hat{\theta}_{AG(D)} = \exp(\hat{\lambda}_{11}^{AG}) = \exp(0.0999) = 1.105$$

95% C.I. for $\theta_{AG(D)}$ is

$$\exp[0.0999 \pm 1.96(0.0808)] = (0.943, 1.295)$$

(contains 1) Plausible that $\theta_{AG(D)} = 1$

There are equivalences between loglinear models and corresponding logit models that treat one of the variables as a response variable, others as explanatory.

ex) Model (XY, XZ, YZ)

Suppose Y is binary

Construct the logit

$$\begin{split} \log \left[\frac{P(Y=1 \mid X=i,Z=k)}{P(Y=2 \mid X=i,Z=k)} \right] &= \log \left(\frac{\pi_{i1k}}{\pi_{i2k}} \right) = \log \left(\frac{\mu_{i1k}}{\mu_{i2k}} \right) \\ &= \log \mu_{i1k} - \log \mu_{i2k} \\ &= (\lambda + \lambda_i^X + \lambda_i^Y + \lambda_k^Z + \lambda_{i1}^{XY} + \lambda_{ik}^{XZ} + \lambda_{1k}^{YZ} \\ &- (\lambda + \lambda_i^X + \lambda_2^Y + \lambda_k^Z + \lambda_{i2}^X + \lambda_{ik}^{XZ} + \lambda_{2k}^{YZ}) \\ &= (\lambda_1^Y - \lambda_2^Y) + (\lambda_{i1}^{XY} - \lambda_{i2}^{XY}) + (\lambda_{1k}^{YZ} - \lambda_{2k}^{YZ}) \\ &= \alpha + \beta_i^X + \beta_k^Z \end{split}$$

Note:

- Loglinear models extend to any no. of dimensions
- $lackbox{lack}$ Loglinear models treat all variables symmetrically; Logistic regression models treat Y as response and other variables as explanatory. Logistic regression is the more natural approach when one has a single response variable.(eg., graduate admission) See output for logit analysis of data.

ex) Auto accidents.

G = gender(F, M), L = location(urban, rural),

 $S = seat \ belt \ use(No, \ Yes)$, $I = injury(No, \ Yes)$ I is natural response variable.

Loglinear model (GLS, IG, IL, IS) fit quite well ($G^2 = 7.5$, df = 4). Simpler to consider logit model with I as response.

$$\log it \hat{P}(I=Yes) = -3.34 + 0.54G + 0.76L + 0.82S$$

Controlling for other variables, estimated odds of injury are:

 $e^{0.54} = 1.72$ times higher for females than males(C.I.:(1.63, 1.82))

 $e^{0.76} = 2.13$ times higher in rural than urban locations(C.I.:(2.02, 2.25))

 $e^{0.82} = 2.26$ times higher when not wearing seat belt(C.I.:(2.14, 2.39))

Why ever use loglinear model for contingency table?

Information about all associations, not merely effects of explanatory variables on response.

ex) Auto accident data

Loglinear model (GI, GL, GS, IL, IS, LS) ($G^2 = 23.4$, df = 5) fits almost as well as (GLS, GI, IL, IS)($G^2 = 7.5$, df = 4) in practical terms but n is huge (68,694). In model (GI, GL, GS, IL, IS, LS), the estimated parameters are

<u>Variables</u>	$\hat{\underline{\lambda}}$	odds ratio $(\hat{\theta})$	$1/\hat{ heta}$
GL	-0.21	0.81(fem. rur.)	1.23(=1/0.81)
GS	-0.46	0.63(fem. no)	1.58
GI	-0.54	0.58(fem. no)	1.72
LS	-0.08	0.92(rur. no)	1.09
LI	-0.75	0.47(rur. no)	2.13
SI	-0.81	0.44(no no)	2.26

where S: seat belt, I: injury

eg., for those not wearing seat belts, the estimated odds of being injured are 2.26 times the estimated odds or injury for those wearing seat belts, controlling for gender and location.(or interchanges S and I in terp.)

Dissimilarity Index

$$D = \sum \mid p_i - \hat{\pi}_i \mid /2 = \sum \mid n_i - \hat{\mu}_i \mid /2n$$

- A goodness-of-fit test should not be the sole criterion for selecting a model,
- \bullet $0 \le D \le 1$, with smaller values for better fit.
- lacktriangle D = Proportion of sample cases that must move to different cells for model to

fit perfectly.

- The dissimilarity index helps indicate whether the lack of fit is important in a practical sense.
- ex) Loglinear model(GLS, IG, IL, IS) has D=0.003Simpler model (GL, GS, LS, IG, IL, IS) has $G^2=23.4(df=5)$ for testing fit (p-value<0.001), but D=0.008 (Good fit for practical purposes, and simpler to interpret GS, LS associations)

For large n, effects can be "statistically significant" without being "practically significant".

Model can fail good-of-fit test but still be adequate for practical purpose.

```
data injury;
  input G L S I count @@;
cards;
0\ 0\ 0\ 0\ 7287\ 0\ 0\ 0\ 1 \qquad 996\ 0\ 0\ 1\ 0\ 11587\ 0\ 0\ 1\ 1 \qquad 759
0 1 0 0 3246 0 1 0 1 973 0 1 1 0 6134 0 1 1 1
1 0 0 0 10381 1 0 0 1 812 1 0 1 0 10969 1 0 1 1 1 1 0 0 6123 1 1 0 1 1084 1 1 1 0 6693 1 1 1 1
                                                       380
run;
ods listing close;
proc catmod data=injury;
  weight count;
  model G*I*L*S= _response_/ pred=freq;
 loglin g|i g|l g|s i|l i|s l|s;
 ods output predictedfreqs=templ anova=temp;
run;
quit;
data templ (keep=pl functionnum);
 set templ;
 rename predfunction=pl;
run;
proc catmod data=injury;
  weight count;
  model G*I*L*S= _response_/ pred=freq;
  loglin g|l|s g|i i|l i|s;
  ods output predictedfreqs=temp2 anova=temp3;
run;
quit;
ods output close;
ods listing;
data temp2;
 set temp2;
 rename predfunction=p2;
run;
data combo;
  merge templ temp2;
  by functionnum;
  Male=G+0;
 Location=L+0;
  Seat=S+0;
  Injury=I+0;
  rename obsfunction = observed;
run;
proc format;
  value male 0='Female' 1='Male';
  value location 0='Urban' l='Rural';
  value Yesno 0='No' l='Yes';
proc sort data=combo;
  by male location seat injury;
proc print data= combo;
 format male male. location location. seat yesno. injury yesno.;
  var male location seat injury observed pl p2;
run;
proc sgl;
  select sum( abs(observed-pl) ) / (2*sum(observed)) as dl,
           sum( abs(observed-p2) ) /( 2*sum(observed) ) as d2
  from combo;
quit;
```

0bs	Male	Location	Seat	Injury	observed	pl	p2
1	Female	Urban	No	No -	7287	7166.369	7273.214
2	Female	Urban	No	Yes	996	993.0169	1009.786
3	Female	Urban	Yes	No	11587	11748.31	11632.62
4	Female	Urban	Yes	Yes	759	721.3055	713.3779
5	Female	Rural	No	No	3246	3353.829	3254.662
6	Female	Rural	No	Yes	973	988.7848	964.3382
7	Female	Rural	Yes	No	6134	5985.493	6093.502
8	Female	Rural	Yes	Yes	757	781.8927	797.4979
9	Male	Urban	No	No	10381	10471.5	10358.93
10	Male	Urban	No	Yes	812	845.1187	834.0683
11	Male	Urban	Yes	No	10969	10837.83	10959.23
12	Male	Urban	Yes	Yes	380	387.5588	389.7677
13	Male	Rural	No	No	6123	6045.306	6150.192
14	Male	Rural	No	Yes	1084	1038.08	1056.808
15	Male	Rural	Yes	No	6693	6811.371	6697.644
16	Male	Rural	Yes	Yes	513	518.2429	508.3564

d1 d2

0.008219 0.002507

ex) Death Penalty for multiple homicide indictments in Florida.

Victim's	Suspect's	Death Pe	enalty(P)	Prop.	
Race(V)	Race(D)	Yes	No	Yes	
	White	53	414	0.113	
White	wille	(52.8)	(414.2)	0.113	
winte	Black	11	37	0.229	
	DIACK	(11.2)	(36.8)	0.229	
	White	0	16	0.000	
Dlogl	wille	(0.2)	(15.8)	0.000	
Black	Dlogl	4	139	0.000	
	Black	(3.8)	(139.2)	0.029	

where ()=fitted mean on (DP, VP, VD)

Goodness of fit

<u>Model</u>	$\underline{G^2}$	\underline{df}	$\underline{p-value}$
(D, V, P)	402.8	4	0.000
(DV, P)	22.3	3	0.000
(DV, PV)	5.4	2	0.070
(DV, DP)	20.7	2	0.000
(DP, VP, DV)	0.4	1(=8-7)	0.540

Compare these two models((DV, PV), (DP, VP, DV))

$$G^2 = 5.4 - 0.4 = 5.0, df = 1$$

So (DP, VP, DV) is better

Note:

- $lacktriangledown G^2$ is monotone decreasing as model becomes more complex
- lacktriangle (DP, VP, VD) seems to fit well
- Fitted tables can be described by odds ratios eg) for model (DP, VP, DV)

Estimated odds of death penalty are 45% higher for white suspect than black suspect; 42% as high for white suspect as black suspect controlling for V (Simpson's Paradox)

Note:

- Fitted marginal odds ratios=sample values, since likelihood equations for this model $\hat{\mu}_{dv+} = n_{dv+}, \ \hat{\mu}_{d+p} = n_{d+p}, \ \hat{\mu}_{+vp} = n_{+vp}, \ all \ d, \ v, \ p \ .$
- lacktriangle Fitted conditional odds ratios identical at each level of third variable $((PD,\ PV,\ DV))$

Corresponding Logit Models

Treat P as response variable, D, V as explanatory.

$$\log\left[\frac{P(P=1\mid D=i,V=j)}{P(P=2\mid D=i,V=j)}\right] = \log\left(\frac{\mu_{ij1}}{\mu_{ij2}}\right) = \alpha \text{ corresponds to loglinear model } (DV,P)$$

$$G^2 = 22.3, \ df = 4-1=3$$

=
$$\alpha + \beta_j^V$$
 corresponds to (PV,DV) $G^2 = 5.4, \ df = 2$

=
$$\alpha + \beta_i^D$$
 corresponds to (PD,DV) $G^2 = 20.7, \ df = 2$

=
$$\alpha + \beta_i^D + \beta_j^V$$
 corresponds to (PD, PV, DV) $G^2 = 0.4, \ df = 1 = 4 - 3$

For this logit model from (PD, PV, DV),

<u>Para.</u>	<u>Est.</u>	<u>S.E.</u>
β_1^D	-0.868	0.367
eta_1^V	2.404	0.601

 $e^{2.404}=11.1$. Controlling for defendant's race, odds of death penalty estimated to be 11.1 times higher when victims were white than when victims were black. 95% C.I. for $\theta_{(S)\,VP}$ is $\exp\left[2.404\pm1.96(0.601)\right]=(3.4,\ 35.9)$

```
data loglin;
 input d v p count;
                                   d = \begin{cases} 1 & white \\ 0 & black \end{cases}, \quad v = \begin{cases} 1 & white \\ 0 & black \end{cases}
cards;
1 1 1 53
1 1 0 414
1010
1 0 0 16
0 1 1 11
0 1 0 37
0014
0 0 0 139
run;
/*(DP, VP, DV)*/
proc genmod data=loglin order=data;
 class d v p;
 model count = d v p d*v d*p v*p /dist=poi link=log lrci obstats;
run;
/*(DV, PV)*/
proc genmod data=loglin order=data;
 class d v p;
 model count = d v p d*v v*p /dist=poi link=log lrci obstats;
run;
```

The GENMOD Procedure Model Information

WORK.LOGLIN

Data Set

Data Set Distribution Link Function Dependent Va	n On		sson Log ount	
Number of Obser Number of Obser				8
Class I Class d v p	Level Inform Levels 2 2 2	Mation Value: 10 10	5	
Parameter Prml Prm2 Prm3	eter Informa Effect Intercept d d	tion d 1 0	V	p
Prm4 Prm5 Prm6 Prm7 Prm8 Prm9	v v p d*v d*v	1 1	1 0 1 0 1 0	1
Prm10 Prm11 Prm12 Prm13 Prm14 Prm15 Prm16	d*v d*v d*p d*p d*p	0 0 1 1 0		1 0 1 0 1
Prm17	v*p		1	0

 Prm18
 v*p
 0
 1

 Prm19
 v*p
 0
 0

The GENMOD Procedure

Analysis Of Maximum Likelihood Parameter Estimates

						Likeliho	od Ratio		
					Standard	95% Con	fidence	Wald	
Parameter			DF	Estimate	Error	Lim	its	Chi-Square	Pr > ChiSa
Intercept			1	4.9358	0.0847	4.7650	5.0974	3394.84	<.0001
d	1		1	-2.1746	0.2638	-2.7308	-1.6899	67.97	<.0001
ď	ō		0	0.0000	0.0000	0.0000	0.0000		
V	i		í	-1.3298	0.1848	-1.7059	-0.9793	51.79	<.0001
v	0		0	0.0000	0.0000	0.0000	0.0000		
p	ĭ		ĭ	-3.5961	0.5069	-4.7754	-2.7349	50.33	<.0001
p	ō		0	0.0000	0.0000	0.0000	0.0000		
đ*v	i	1	í	4.5950	0.3135	4.0080	5.2421	214.78	<.0001
d*v	1	0	0	0.0000	0.0000	0.0000	0.0000		
d*v	ō	ĺ	Ö	0.0000	0.0000	0.0000	0.0000		
d*v	Ó	0	0	0.0000	0.0000	0.0000	0.0000		
d*p	ĺ	1	1	-0.8678	0.3671	-1.5633	-0.1140	5.59	0.0181
d*p	1	0	0	0.0000	0.0000	0.0000	0.0000		
d*p	0	1	0	0.0000	0.0000	0.0000	0.0000		
d*p	0	0	0	0.0000	0.0000	0.0000	0.0000		
v*p	1	1	1	2.4044	0.6006	1.3068	3.7175	16.03	<.0001
v*p	1	0	0	0.0000	0.0000	0.0000	0.0000		
v*p	0	1	0	0.0000	0.0000	0.0000	0.0000	•	
v*p	0	0	0	0.0000	0.0000	0.0000	0.0000		
Scale			0	1.0000	0.0000	1.0000	1.0000		
NOTE: The so	cale 1	parar	neter	was held fi					
	-	-							

Observation Statistics

		Standard Error of the
Observation	count	Predicted Linear Linear d v p Value Predictor Predictor HessWgt Lower Std Std
		Raw Pearson Deviance Deviance Pearson Upper Residual Residual Residual Residual Residual Likelihood
		Residual Leverage CookD Intercept DFBETA_dl DFBETA_vl DFBETA_ DFBETA_ DFBETA_ DFBETAS_ DFBETAS_
		DFBETĀŠ_ DFBETAS_ DFBETĀŠ_ DFBETĀŠ_ vl pl dlvl dlpl vlpl
1	53	1 1 52.817821 3.9668486 0.1373785 52.817821 40.350013 69.138073 0.1821794 0.0250674 0.025053 0.4444776 0.4447329 0.4447321 0.996823 8.8654137 0.0013089 -0.012826 -0.006257 -0.049027 0.0182143 1.0605444 0.0702672 0.0154515 -0.048627
2	414	-0.03386 -0.096717 0.0580937 2.8891826 0.1169918 1 1 0 414.18218 6.0263059 0.0491266 414.18218 376.1619 456.04532 -0.182179 -0.008952 -0.008952 -0.444765 -0.444733
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
3	0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
4	16	-0.049027
		25.824428 0.1821794 0.0458064 0.0457189 0.4438833 0.4447329 0.4447329 0.9893915 2.6352105 0.0013089 1.0728473 -0.006257 -0.049027 -1.067459 -0.025129 0.0702672 0.0154515 4.0674093
5	11	-0.03386 -0.096717 -3.404624 -0.068458 0.1169918 0 1 1 11.182179 2.4143214 0.2967929 11.182179 6.2502284 20.005851 -0.182179 -0.05448 -0.054629 -0.445949 -0.444733
		-0,444751 0,9849937 1.8546433 0,0013089 -0.012826 -0.006257 -0.049027 0.0182143 1.0605444 -1.015406 0.0154515 -0.048627 -0.03386 -0.096717 0.0580937 2.8891826 -1.690608
6	37	0 1 0 36.817821 3.605982 0.1644292 36.817821 26.674462 50.818342 0.1821794 0.0300241 0.0299994 0.4443669 0.4447329

```
\begin{array}{c} 0.4447312 \quad 0.9954423 \quad 6.1712718 \quad 0.0013089 \quad -0.012826 \quad 1.0794165 \\ -0.049027 \quad -1.067459 \quad 1.0605444 \quad -1.015406 \quad 0.0154515 \quad -0.048627 \\ 5.8412888 \quad -0.096717 \quad -3.404624 \quad 2.8891826 \quad -1.690608 \\ 7 \quad 4 \quad 0 \quad 1 \quad 3.8178206 \quad 1.3396797 \quad 0.5004169 \quad 3.8178206 \quad 1.4317259 \\ 10.180548 \quad 0.1821794 \quad 0.0932377 \quad 0.0925105 \quad 0.4412644 \quad 0.4447329 \\ \quad 0.444581 \quad 0.9560474 \quad 0.614604 \quad 0.0013089 \quad -0.012826 \quad -0.006257 \\ 1.0366464 \quad 0.0182143 \quad -0.025129 \quad -1.015406 \quad 0.0154515 \quad -0.048627 \\ \quad -0.03386 \quad 2.0450151 \quad 0.0580937 \quad -0.068458 \quad -1.690608 \\ 8 \quad 139 \quad 0 \quad 0 \quad 139.18218 \quad 4.9357837 \quad 0.0847123 \quad 139.18218 \quad 117.88985 \\ 164.32015 \quad -0.182179 \quad -0.015442 \quad -0.015446 \quad -0.44463 \quad -0.444733 \\ \quad -0.444733 \quad 0.9987944 \quad 23.407779 \quad -1.084365 \quad 1.0728473 \quad 1.0794165 \\ 1.0366465 \quad -1.067459 \quad -0.025129 \quad -1.015406 \quad -12.80056 \quad 4.0674093 \\ 5.8412888 \quad 2.0450151 \quad -3.404624 \quad -0.068458 \quad -1.690608 \\ \end{array}
```

Model Information

TITULINGCTOIL
WORK.LOGLIN
Poisson
Log
able count

Number of Observations Read 8
Number of Observations Used 8

Class Level Information

Class	Levels	Values
d	2	10
v	2	1 0
D	2	1 0

Par	ameter Informat	ion		
Parameter	Effect	d	v	р
Prml	Intercept			
Prm2	d d	1		
Prm3	d	0		
Prm4	V		1	
Prm5	V		0	
Prm6	p			1
Prm7	p			0
Prm8	₫*v	1	1	
Prm9	d*v	1	0	
Prm10	d*v	0	0 1	
Prmll	d*v	0	0	
Prm12	v*p		1	1
Prm13	v*p		1	0
Prm14	v*p		0	1
Prm15	Λ* <u>D</u>		0	0

Criteria Fo	Assessing	Goodness Of Fit	
Criterion	DF	Value	Value/DF
Deviance	2	5.3940	2.6970
Scaled Deviance	2	5.3940	2.6970
Pearson Chi-Square	2	5.8109	2.9054
Scaled Pearson X2	2	5.8109	2.9054
Log Likelihood		2924.2162	

The GENMOD Procedure Criteria For Assessing Goodness Of Fit

Criterion	DF	Value	Value/DF
Full Log Likelihood		-21.7170	
AIC (smaller is better)		55. 4 339	
AICC (smaller is better)		139.4339	
BIC (smaller is better)		55.9106	
Algorithm converged			

Analysis Of Maximum Likelihood Parameter Estimates

						Likeliho	od Ratio		
					Standard	95% Con	fidence	Wald	
Parameter			DF	Estimate	Error	Lim	its	Chi-Square	Pr > ChiSq
Intercept			1	4.9374	0.0846	4.7669	5.0987	3406.92	<.0001
ď	1		1	-2.1903	0.2636	-2.7462	-1.7058	69.03	<.0001
d	0		0	0.0000	0.0000	0.0000	0.0000		
V	1		1	-1.1989	0.1681	-1.5379	-0.8773	50.85	<.0001
V	0		0	0.0000	0.0000	0.0000	0.0000		
p	1		1	-3.6571	0.5064	-4.8357	-2.7972	52.15	<.0001
p	0		0	0.0000	0.0000	0.0000	0.0000		
₫*v	1	1	1	4.4654	0.3041	3.8966	5.0940	215.64	<.0001
d*v	1	0	0	0.0000	0.0000	0.0000	0.0000		
d*v	0	1	0	0.0000	0.0000	0.0000	0.0000		
d*v	0	0	0	0.0000	0.0000	0.0000	0.0000		
v*p	1	1	1	1.7045	0.5237	0.7995	2.9072	10.59	0.0011
v*p	1	0	0	0.0000	0.0000	0.0000	0.0000		
v*p	0	1	0	0.0000	0.0000	0.0000	0.0000		
v*p	0	0	0	0.0000	0.0000	0.0000	0.0000		
Scale			0	1.0000	0.0000	1.0000	1.0000		
NOTE: The go	י בובי	narai	natar	was hold f	havi				

NOTE: The scale parameter was held fixed.

Observation Statistics

		obber vacion boatiboles
		Standard Error of the
Observation	count	Predicted Linear Linear d v p Value Predictor Predictor HessWgt Lower Std Std
		Raw Pearson Deviance Deviance Pearson Upper Residual Residual Residual Residual Residual Likelihood
		Residual Leverage CookD Intercept DFBETA_dl DFBETA_vl DFBETA_ DFBETAS_ DFBETAS_ DFBETAS_ DFBETAS_
		DFBETA_pl dlvl vlpl Intercept dl vl DFBETAS_ DFBETAS_ DFBETAS_ pl dlvl vlpl
1	53	1 1 1 58.034956 4.0610455 0.1257958 58.034956 45.353635
		74.2621 -5.034956 -0.660923 -0.670843 -2.348113 -2.313392 -2.316245 0.9183787 10.036111 5.35E-17 -3.02E-16 0.1197802 -3.27E-15 -0.132092 -0.963856 6.325E-16 -1.14E-15 0.7124703 -6.45E-15 -0.434391 -1.840385
2	414	1 1 0 408.96505 6.0136297 0.0491617 408.96505 371.39808 450.33191 5.0349527 0.248973 0.2484648 2.3086673 2.31339 2.3133353 0.9884174 76.116692 3.77E-16 7.541E-16 0.1197801
_		-1.1E-15 0.9308326 -0.963856 4.457E-15 2.861E-15 0.7124698 -2.17E-15 3.0610949 -1.840384
3	0	1 0 1 0.4025249 -0.909998 0.5533579 0.4025249 0.1360735 1.1907262 -0.402525 -0.634449 -0.897246 -0.958241 -0.677579 -0.928245 0.1232551 0.0107572 0.0028875 -0.028695 -0.002888 -0.114776 0.0286945 0.1147756 0.0341356 -0.10885 -0.017175
4	16	-0.226648
5	11	-0.114772 -1.111855 0.1147722 0.0341346 4.2177198 -0.017175 -0.226641 -3.656397 0.2191458
		8.5853065 5.0349491 2.0615221 1.8421756 2.0672431 2.3133883 2.12026 0.2058931 0.2312644 3.3E-17 -2.33E-16 0.11978 2.53E-16 -0.132091 0.0990686 3.901E-16 -8.84E-16 0.7124693
6	37	4.995E-16 -0.43439 0.1891614 0 1 0 42.034965 3.7385018 0.1452889 42.034965 31.618446 55.883146 -5.034965 -0.776589 -0.792921 -2.362049 -2.313395 -2.318929 0.8873108 7.0233097 -3.1E-16 1.783E-15 -0.943146 6.976E-16 0.9308348 0.0990689 -3.67E-15 6.762E-15 -5.609974
7	4	1.377E-15 3.061102 0.189162 0 0 1 3.597566 1.2802575 0.5006975 3.597566 1.3483861 9.598498 0.402434 0.2121731 0.2083911 0.6653505 0.6774257
8	139	0.6762507 0.9019027 0.7031929 0.0028868 -0.028688 -0.002887 1.0255753 0.0286881 -1.025575 0.0341279 -0.108826 -0.017171 2.0252081 0.0943423 -1.958231 0.0 0 139.40251 4.9373655 0.0845891 139.40251 118.10499
ō	139	164.54055 -0.402515 -0.034092 -0.034108 -0.677868 -0.677561 -0.677562 0.9974684 30.147391 -1.137666 1.1118596 1.137666 1.0257807 -1.11186 -1.025781 -13.44933 4.2177375 6.7670055 2.0256137 -3.656412 -1.958623

SAS loglinear modeling of death penalty data

```
data loglin;
                                                             \underbrace{\left\{ \underbrace{b}^{\omega} \begin{array}{c} (0) \\ b \end{array} \right\}}_{p}, \ p = \underbrace{\left\{ \underbrace{ves} \begin{array}{c} (0) \\ p \end{array} \right\}}_{p}
                                                                                                 \int w(0)
input d$ v$ p$ count @@;
                                                                              \underbrace{[no]^{(0)}}_{}, v =
                                                        d =
cards;
w w yes 53 w w no 414 w b yes 0 w b no 16
b w yes 11 b w no 37 b b yes 4 b b no 139
run;
  /*(DP, VP, DV)*/
• proc genmod data=loglin;
     class d v p;
     model count=d v p d*v d*p v*p/dist=poi link=log lrci obstats;
  /*(DV, PV)*/
2 proc genmod data=loglin;
     class d v p;
     model count=d v p d*v d*p v*p/dist=poi link=log lrci obstats;
    run;
```

The GENMOD Procedure

Moo Data Set Distributi Link Funct Dependent	on ion	WORK.L	OGLIN isson Log count	
Number of Obs Number of Obs				8 8
Class Class d v p	Level Infor Levels 2 2 2	rmation Valu b w b w no ye	es	
Parameter	meter Inform Effect	ation d	V	p
Prml Prm2 Prm3 Prm4 Prm5	Intercept d d v v	b w	b w	-
Prm6 Prm7 Prm8	p p d*v	b	" b	no yes
Prm9 Prm10 Prm11	d*v d*v d*v	b w w	w b w	
Prml2 Prml3 Prml4	d*p d*p d*p	b b w		no yes no
Prm15 Prm16 Prm17 Prm18	d*p v*p v*p	W	b b	yes no yes
Prm19	v*p		W W	no yes

Criteria For Assessing Goodness Of Fit

Criterion	DF	Value	Value/DF
Deviance	1	0.3798	0.3798
Scaled Deviance	1	0.3798	0.3798
Pearson Chi-Square	1	0.1978	0.1978
Scaled Pearson X2	1	0.1978	0.1978
Log Likelihood		2926.7234	
Full Log Likelihood		-19.2098	
AIC (smaller is better)		52.4197	
AICC (smaller is better)			
BIC (smaller is better)		52.9758	
Algorithm converged.			

Analysis Of Maximum Likelihood Parameter Estimates Standard Likelihood Ratio 95% Wald Parameter DFEstimate Chi-Square Pr > ChiSq Error Confidence Limits 3.6850 -2.2399 0.0000 -7.0608 0.0000 4.2245 -0.9504 833.78 22.66 3.9668 0.1374 <.0001 Intercept 1 -1.5525 0.0000 -5.6696 0.3262 0.0000 ī <.0001 d b ď 0 w b 0.0000 77.06 <.0001 0.6459 -4.4854 0.0000 2.0595 0.0000 4.5950 0.0000 2.3565 0.0000 5.2421 0.0000 0.0000 0.1458 0.0000 0.3135 0 1 0 1 1.7836 0.0000 4.0080 0.0000 0.0000 199.40 <.0001 р no yes b p d*v 214.78 <.0001 b 0.0000 0 d*v b 0.0000 W b 0.0000 0.0000 0.0000 0.0000 -1.5633 0.0000 0.0000 1.3068 0.0000 0.0000 0.0000 0.0000 0.3671 0.0000 0.0000 0.0000 d*v w b 0 0.0000 0.0000 0.0000 -0.1140 0.0000 0.0000 0.0000 3.7175 0.0000 0.0000 0.0000 -0.8678 0.0000 0.0000 0.0000 2.4044 0.0181 5.59 d*p no 1 0 0 0 b d*p yes d*p W no d*p v*p v*p w b yes 0.6006 16.03 <.0001 no 0.0000 0.0000 0.0000 0.0000 0 b yes v*p пo v*p 0.0000 yes 0 0.0000 1.0000 1.0000 Scale 1.0000

NOTE: The scale parameter was held fixed.

Observation Statistics

					Standard Error of the				
Observation	count	d v p	Predicted Value	Linear Predictor Std	Linear Predictor Std	HessWgt	Lower	Upper	Raw Residual
		Pearson Residual DFBETA_db DFBETAS_ vb	Deviance Residual DFBETA_vb DFBETAS_ pno	Deviance Residual DFBETA_ pno DFBETAS_ dbvb	Pearson Residual DFBETA_ dbvb DFBETAS_ dbpno	Likelihood Residual DFBETA_ dbpno DFBETAS_ vbpno	Leverage DFBETA_ vbpno	CookD DFBETAS_ Intercept	DFBETA_ Intercept DFBETAS_ db
1	53	w w yes 0.0250674 -1.065932 -0.127307	52.817821 0.025053 -0.082224 -7.417328	3.9668486 0.4444776 -1.081785 0.0580937	0.1373785 0.4447329 0.0182143 2.8891826	52.817821 0.4447321 1.0605444 0.1169918	40.350013 0.996823 0.0702672	69.138073 8.8654137 7.8776834	0.1821794 1.0822244 -3.267969
2	414	w w no -0.008952 0.0197411 1.5536267	414.18218 -0.008952 1.0034492 -7.417328	6.0263059 -0.444765 -1.081785 -3.404624	0.0491266 -0.444733 -1.067459 2.8891826	414.18218 -0.444733 1.0605444 0.1169918	376.1619 0.9995949 0.0702672	456.04532 69.713343 -0.025107	-0.182179 -0.003449 0.060523
3	0	w b yes -0.426825 0.0197411 -0.127307	0.1821794 -0.603621	-1.702763 -0.628947 0.0038891 0.0580937	0.6581489 -0.444733 0.0182143 -0.068458	0.1821794 -0.616414 -0.025129 0.1169918	0.0501513 0.0789128 0.0702672	0.6617845 0.0024207 -0.025107	-0.182179 -0.003449 0.060523
4	16	w b no 0.0458064 0.0197411 1.5536267	15.817821 0.0457189 1.0034492 0.0266656	2.7611372 0.4438833 0.0038891 -3.404624	0.2500983 0.4447329 -1.067459 -0.068458	15.817821 0.4447239 -0.025129 0.1169918	9.6886345 0.9893915 0.0702672	25.824428 2.6352105 -0.025107	0.1821794 -0.003449 0.060523
5	11	b w yes -0.05448 -1.065932	11.182179 -0.054629	2.4143214 -0.445949 0.0038891 0.0580937	0.2967929 -0.444733 0.0182143 2.8891826	11.182179 -0.444751 1.0605444 -1.690608	6.2502284 0.9849937 -1.015406	20.005851 1.8546433 -0.025107	-0.182179 -0.003449 -3.267969
6	37	b w no 0.0300241 0.0197411 1.5536267	36.817821 0.0299994 1.0034492 0.0266656	3.605982 0.4443669 0.0038891 -3.404624	0.1644292 0.4447329 -1.067459 2.8891826	36.817821 0.4447312 1.0605444 -1.690608	26.674462 0.9954423 -1.015406	50.818342 6.1712718 -0.025107	0.1821794 -0.003449 0.060523
7	4	b b yes	3.8178206	1.3396797	0.5004169	3.8178206	1.4317259	10.180548	0.1821794

		0.0932377 0.0197411 1.5536267	0.0925105 1.0034492 0.0266656	0.0038891	0.4447329 0.0182143 -0.068458	0.444581 -0.025129 -1.690608	0.9560474 -1.015406	0.614604 -0.025107	-0.003449 0.060523	
8	139	b b no	139.18218	4.9357837	0.0847123	139.18218	117.88985	164.32015	-0.182179	
		-0.015442	-0.015446	-0.44483	-0.444733	-0.444733	0.9987944	23.407779	-0.003449	
		0.0197411	1.0034492	0.0038891	-1.067459	-0.025129	-1.015406	-0.025107	0.060523	
		1 5536267	0 0266656	-3 101621	-0 068458	-1 600608				

Model Information

Data Set	WORK.LOGLIN
Distribution	Poisson
Link Function	Log
Dependent Variable	count

Number of Observations Read Number of Observations Used

Class Level Information

Class	Levels	Values
d	2	b w
v	2	b w
מ	2	no ves

	Parameter Informa	tion		
Parameter	Effect	d	v	p
Prml	Intercept			
Prm2	d	b		
Prm3	d	W		
Prm4	V		b	
Prm5	v		W	
Prm6	p			no
Prm7	p			yes
Prm8	d*v	b	b	
Prm9	d*v	b	W	
Prm10	d*v	W	b	
Prmll	d*v	W	W	
Prml2	d*p	b		no
Prml3	d*p	b		yes
Prml4	d*p	W		no
Prm15	d*p	W		yes
Prml6	v*p		b	no
Prml7	v*p		b	yes
Prm18	v*p		W	no
Prm19	V*D		W	ves

Criteria For Assessing Goodness Of Fit

01100114 101	TIDDCCDDTIIG	doodiicbb of 110	
Criterion	DF	Value	Value/DF
Deviance	1	0.3798	0.3798
Scaled Deviance	1	0.3798	0.3798
Pearson Chi-Square	1	0.1978	0.1978
Scaled Pearson X2	1	0.1978	0.1978
Log Likelihood		2926.7234	
Full Log Likelihood		-19.2098	
AIC (smaller is better)		52.4197	
AICC (smaller is better)			
BIC (smaller is better)		52.9758	
Algorithm converged.			

The GENMOD Procedure

Analysis Of Maximum Likelihood Parameter Estimates

					Sta	ndard Li	kelihood Rat	io 95%	Wald
Parameter			DF	Estimate	Error	Confiden	ce Limits	Chi-Square	Pr > ChiSq
Intercept			1	3.9668	0.1374	3.6850	4.2245	833.78	<.0001
d -	b		1	-1.5525	0.3262	-2.2399	-0.9504	22.66	<.0001
d	W		0	0.0000	0.0000	0.0000	0.0000		
V	b		1	-5.6696	0.6459	-7.0608	-4.4854	77.06	<.0001
V	W		0	0.0000	0.0000	0.0000	0.0000		
p	no		1	2.0595	0.1458	1.7836	2.3565	199.40	<.0001
p	yes		0	0.0000	0.0000	0.0000	0.0000		
₫*v	b	b	1	4.5950	0.3135	4.0080	5.2421	214.78	<.0001
d*v	b	W	0	0.0000	0.0000	0.0000	0.0000		
d*v	W	b	0	0.0000	0.0000	0.0000	0.0000		
d*v	W	W	0	0.0000	0.0000	0.0000	0.0000		
d*p	b	no	1	-0.8678	0.3671	-1.5633	-0.1140	5.59	0.0181
d*p	b	yes	0	0.0000	0.0000	0.0000	0.0000		
d*p	W	no	0	0.0000	0.0000	0.0000	0.0000		
d*p	W	yes	0	0.0000	0.0000	0.0000	0.0000		
v*p	b	no	1	2.4044	0.6006	1.3068	3.7175	16.03	<.0001
v*p	b	yes	0	0.0000	0.0000	0.0000	0.0000		
v*p	W	no	0	0.0000	0.0000	0.0000	0.0000		
v*p	W	yes	0	0.0000	0.0000	0.0000	0.0000		
Scale			0	1.0000	0.0000	1.0000	1.0000		

NOTE: The scale parameter was held fixed.

Observation Statistics

			Do a 3 de mileo 3	T:	Standard Error of the				D
Observation	count	d v p	Predicted Value	Linear Predictor Std	Linear Predictor Std	HessWgt	Lower	Upper	Raw Residual
		DFBETAS_	Deviance Residual DFBETA_vb DFBETAS_	Deviance Residual DFBETA_ pno DFBETAS_	Pearson Residual DFBETA_ dbvb DFBETAS_	Likelihood Residual DFBETA_ dbpno DFBETAS_	Leverage DFBETA_ vbpno	CookD DFBETAS_ Intercept	DFBETA_ Intercept DFBETAS_ db
		vb	pno	dbvb	dbpno	vbpno			
1	53	w w yes 0.0250674 -1.065932 -0.127307	-0.082224	3.9668486 0.4444776 -1.081785 0.0580937	0.1373785 0.4447329 0.0182143 2.8891826	52.817821 0.4447321 1.0605444 0.1169918	40.350013 0.996823 0.0702672	69.138073 8.8654137 7.8776834	0.1821794 1.0822244 -3.267969
2	414	w w no -0.008952 0.0197411	414.18218 -0.008952 1.0034492	6.0263059 -0.444765 -1.081785	0.0491266 -0.444733 -1.067459	414.18218 -0.444733 1.0605444	376.1619 0.9995949 0.0702672	456.04532 69.713343 -0.025107	-0.182179 -0.003449 0.060523
3	0	1.5536267 w b yes -0.426825 0.0197411	0.1821794 -0.603621 -0.082224	-3.404624 -1.702763 -0.628947 0.0038891	2.8891826 0.6581489 -0.444733 0.0182143	-0.616414 -0.025129	0.0501513 0.0789128 0.0702672	0.6617845 0.0024207 -0.025107	-0.182179 -0.003449 0.060523
4	16	w b no 0.0458064 0.0197411	15.817821 0.0457189 1.0034492	0.0580937 2.7611372 0.4438833 0.0038891 -3.404624	-0.068458 0.2500983 0.4447329 -1.067459 -0.068458	0.1169918 15.817821 0.4447239 -0.025129 0.1169918	9.6886345 0.9893915 0.0702672	25.824428 2.6352105 -0.025107	0.1821794 -0.003449 0.060523
5	11	b w yes -0.05448 -1.065932	11.182179 -0.054629 1.0034492	2.4143214 -0.445949 0.0038891 0.0580937		11.182179 -0.444751 1.0605444 -1.690608	6.2502284 0.9849937 -1.015406	20.005851 1.8546433 -0.025107	-0.182179 -0.003449 -3.267969
6	37	b w no 0.0300241 0.0197411	36.817821 0.0299994 1.0034492	3.605982 0.4443669 0.0038891 -3.404624	0.1644292 0.4447329 -1.067459 2.8891826	36.817821 0.4447312 1.0605444 -1.690608	26.674462 0.9954423 -1.015406	50.818342 6.1712718 -0.025107	0.1821794 -0.003449 0.060523
7	4	b b yes 0.0932377 0.0197411	3.8178206 0.0925105 1.0034492	1.3396797 0.4412644 0.0038891 0.0580937			1.4317259 0.9560474 -1.015406	10.180548 0.614604 -0.025107	0.1821794 -0.003449 0.060523
8	139	b b no -0.015442 0.0197411	139.18218 -0.015446 1.0034492	4.9357837 -0.44483 0.0038891 -3.404624	0.0847123 -0.444733 -1.067459 -0.068458	139.18218 -0.444733 -0.025129 -1.690608	117.88985 0.9987944 -1.015406	164.32015 23.407779 -0.025107	-0.182179 -0.003449 0.060523

SAS logit modeling of death penalty data

```
data loglin:
    input d v yes n;
    cards:

1 1 53 467
1 0 0 16
0 1 11 48
0 0 4 143
;
run:

1 proc genmod data=loglin:
    model yes/n=d v/dist=bin link=logit lrci obstats:
    run:

2 proc genmod data=loglin:
    model yes/n=v /dist=bin link=logit lrci obstats:
    run:
```

The GENMOD Procedure

Algorithm converged.

Data Set	WORK.LOGLIN
Distribution	Binomial
Link Function	Logit
Response Variable (Events)	yes
Response Variable (Trials)	n
Number of Observations Read	4
Number of Observations Used	4
Number of Events	68
Number of Trials	674

Response Profile
Ordered Binary Total
Value Outcome Frequency
1 Event 68
2 Nonevent 606

Parameter Information
Parameter Effect
Prml Intercept
Prm2 d
Prm3 v

ightharpoonup Deviance of (*DP*, *VP*, *DV*) Criteria For Assessing Goodness Of Fit DF Value/DF Criterion Value 0.3798 Deviance 1 0.3798 Scaled Deviance 0.3798 1 Pearson Chi-Square 0.1978 0.1978 0.1978 Scaled Pearson X2 0.1978 -209.4783 Log Likelihood Full Log Likelihood AIC (smaller is better) AICC (smaller is better) -6.649919.2998 17.4587 BIC (smaller is better)

Analysis Of Maximum Likelihood Parameter Estimates

Standard Likelihood Ratio 95% Wald Parameter DF Estimate Error Confidence Limits Chi-Square Pr > ChiSq

Intercept	1	-3.5961	0.5069	-4.7754	-2.7349	50.33	<.0001
d	1	-0.8678	0.3671	-1.5633	-0.1140	5.59	0.0181
V	1	2.4044	0.6006	1.3068	3.7175	16.03	<.0001
Scale	0	1.0000	0.0000	1.0000	1.0000		

NOTE: The scale parameter was held fixed.

The GENMOD Procedure Observation Statistic

		0bs	ervation St	atistics							
					Standa	rd					
					Error						
					t	he					
						Predicted	Linear	Linear			
Observation		yes	n	d	v		dictor Pre	dictor H	less\gt	Lower	Upper
						Std	Std				
			Raw	Pearson	Deviance	Deviance	Pearson	Likelihood			
			Residual	Residual	Residual	Residual	Residual	Residual	Leverage	CookD	
			_ DFBETA_			_DFBETAS_					
			Intercept	DFBETA_d	DFBETA_v	Intercept	DFBETAS_d	DFBETAS_v			
1	53	467	,	,	0.1131003	-2.059457	0.1458456	46.844111	0.0874393	0.1450046	
1	33	407	0.1821794	0.0266178	0.1131003	0.4445101	0.1436436	0.4447321		18.338917	
				1.0605443	0.0702672	-0.096717	2.8891823	0.1169918	0.9904170	10.330917	
2	0	16	1,00490.0	1.0003443	0.0113862	-4.463901	0.6158305		0.0034329	0.0370700	
4	U	10	-0.182179	-0.429276	-0.60535	-0.627148	-0.444733	-0.616408			
			-0.049027	-0.025129	0.0702672	-0.096717	-0.068458	0.1169918	0.0003043	0.0040334	
3	11	48	0.043027	1	0.2329621	-1.191661	0.3380944	8.5771557	0.1353672	0.3707483	
3	11	-10	-0.182179	-0.062205	-0.062324	-0.445581	-0.444733	-0.444749		3.3039979	
				1.0605444	-1.015406	-0.096717	2.8891824	-1.690608	0.300430	0.0000010	
4	4	143	0.010001	0	0.026698	-3.596104	0.5069138	3.7158927	0.0100544	0.0689731	
-	-	110	0.182179	0.0945076	0.0937908	0.441359	0.4447318	0.4445801		1.3940224	
			1.036644	-0.025129	-1.015404	2.0450103	-0.068458	-1.690604	0.0010110	2.0020002	

Model Information

Model information	
Data Set	WORK.LOGLIN
Distribution	Binomial
Link Function	Logit
Response Variable (Events)	yes
Response Variable (Trials)	n
Number of Observations Read	4
Number of Observations Used	4
Number of Events	68
Number of Trials	674

Response Profile

0rdered	Binary	Total
Value	Outcome	Frequency
1	Event	68
2	Nonevent	606

Parameter Information Parameter Effect Prml Intercept Prm2 v

Criteria For	Assessing	Goodness Of Fit	Deviance of (DV, PV)
Criterion Deviance Scaled Deviance Pearson Chi-Square	DF 2 2 2	Value 5.3940 5.3940 5.8109	Value/DF 2.6970 2.6970 2.9054
Scaled Pearson X2 Log Likelihood	2	5.8109 -211.9854	2.9054
Full Log Likelihood		-9.1570	
AIC (smaller is better)		22.3140	
AICC (smaller is better)		34.3140	
BIC (smaller is better) Algorithm converged.		21.0866	
nigorium converged.			

Analysis Of Maximum Likelihood Parameter Estimates

				Standard	Likelil	nood Ratio 95%	Wald
Parameter	DF	Estimate	Error	Confidence	Limits	Chi-Square	Pr > ChiSq
Intercept	1	-3.6571	0.5064	-4.8357	-2.7972	52.15	<.0001
V	1	1.7045	0.5237	0.7995	2.9072	10.59	0.0011
Scale	0	1.0000	0.0000	1.0000	1.0000		

NOTE: The scale parameter was held fixed.

Observation Statistics

						Standard Error of the			
				Predicted	Linear	Linear		_	
Observation	yes	n	V	Value	Predictor	Predictor Std	HessWgt Std	Lower	Upper
			Raw	Pearson	Deviance	Deviance	Pearson	Likelihood	
			Residual	Residual DFBETA_	Residual	Residual DFBETAS_	Residual	Residual	Leverage
			CookD	Intercept	DFBETA_v	Intercept	DFBETAS_v		
,		400	,	0.1040710	1 000004	0 155555	EO 000040	0.000400	0.355055
1	53	467	L 0740E7	0.1242718	-1.952584	0.1335751	50.822842	0.098466	0.155673
			-5.034953 26.034154	-0.706262	-0.715377 -0.963856	-2.343246	-2.31339 -1.840367	-2.316189	0.9067961
2	0	16	0.034134	0 0.0251573	-3.657128	0 0.5064099	0.3923905	0 0004747	0.0650959
4	U	10						0.0094741	
			-0.402517	-0.642576	-0.902958	-0.952134	-0.677572	-0.928187	0.1006289
			0.0256841						
3	11	48	1	0.1242718	-1.952584	0.1335751	5.223761	0.098466	0.155673
			5.0349513	2.2029449	2.0055762	2.1061259	2.3133897	2.1262976	0.0932039
			0.2750375	0	0.0990687	0	0.1891598		
4	4	143	0	0.0251573	-3.657128	0.5064099	3.5069902	0.0094741	0.0650959
			0 4025066						
			2.0515151	1.0257807	-1.025781	2.0255938	-1.958605	2.01000	0.0000111
3	11	48 143	0.0256841 1 5.0349513 0.2750375 0 0.4025066	-0.114776 0.1242718 2.2029449 0 0.0251573 0.2149343	0.1147756 -1.952584 2.0055762 0.0990687 -3.657128 0.2112023	-0.226646 0.1335751 2.1061259 0 0.5064099 0.6657898	0.2191502 5.223761 2.3133897 0.1891598 3.5069902 0.6775546	0.098466 2.1262976	0.155673 0.0932039

Association Graphs and collapsibility (Lauritzen, Graphical Models, 1996)

An association graph portrays conditional associations by edge(paths) connecting variables(nodes)

ex) (XY, XZ, YZ)

(XZ, YZ)

• Two variables are conditionally indep., given any subset of variables that separates them in an assoc. graph.

ex) (WX, XY, YZ)

W and Z are conditionally indep., given X alone or Y alone or both X and Y

- lackbox For 3 way tables, XY marginal and conditional odds ratios are identical if either(**)
- Z and X are conditionally indep. or
- Z and Y are conditionally indep. (proof: exer 9.26)

ex) (XY, YZ)

$$\Rightarrow \log \mu_{ijk} = \lambda + \lambda_i^X + \lambda_j^Y + \lambda_k^Z + \lambda_{ij}^{XY} + \lambda_{jk}^{YZ}$$

(X and Z conditional indep. given Y)

$$\Rightarrow \log \text{ conditional odds } \log \frac{\mu_{11k}\mu_{22k}}{\mu_{12k}\mu_{21k}} = (\lambda_{11}^{XY} + \lambda_{22}^{XY} - \lambda_{12}^{XY} - \lambda_{21}^{XY}) \ \text{ does not depend on } k$$

XY marg. association same as conditional associations(by (**)), since Z and X conditional indep.

$$\rightarrow P(X=i,Z=k \mid Y=j) = P(X=i \mid Y=j)P(Z=k \mid Y=j) \text{ for all } j=1,\dots,J$$

Similarly YZ marginal association same as conditional associations, since X and Z conditional indep.

$$\Rightarrow \log \text{ conditional odds } \log \frac{\mu_{i11}\mu_{i22}}{\mu_{i12}\mu_{i21}} = (\lambda_{11}^{YZ} + \lambda_{22}^{YZ} - \lambda_{12}^{YZ} - \lambda_{21}^{YZ}) \text{ does not depend on } i$$

X and Z may be marginally indep, since Y and Z conditionally indep, Y and X conditionally indep.

ex) (XY, Z)

Here, X and Z are both conditionally and marginally indep.

ex) (X, YZ)

Each pair conditionally and marginally indep.

ex) (XY, XZ, YZ)

Each conditional association my differ from corresponding marginal association.

Loglinear Modeling of Rates

ex) Survival of patients after heart valve replacement operation.(Laird and Olivier, 1981, JASA)

109 patients observed from 3 to 97 month. 21 death, 88 censored observation.

		Type of Heart valve				
		Aortic	Mitral			
λσο	<55	4(1259)	1(2082)			
Age	55+	7(1417)	9(1647)			

count is no. $death(n_{ij})$ and () is sum of times to death+times to censoring, for all subjects at that age-value combination (t_{ij})

Sampe death rate=
$$\frac{no.\ deaths}{no.\ person\ months\ of\ \exp osure} = \frac{n_{ij}}{t_{ij}}$$

Age Type of Heart valve
Aortic Mitral

0.0032 0.0005
55+ 0.0049 0.0055

where
$$0.0032 = \frac{4}{1259}$$

Let
$$\mu_{ij} = E(n_{ij} \mid t_{ij}) \,.$$
 Model

$$\log\left(\frac{\mu_{ij}}{t_{ij}}\right) = \alpha + \beta_i^A + \beta_j^V$$

where $\{n_{ij}\}$ are indep. Poisson $\{\mu_{ij}\}$

$$\mu_{ij} = t_{ij} \exp \underbrace{(\alpha + \beta_i^A + \beta_j^V)}_{\text{rate of death(indep. of time)}}$$

This is a loglinear model with $\log \mu_{ij}$ replaced by

$$\log \mu_{ij} - \log t_{ij}$$

For ML fit,

$$G^2 = 3.2(df = 4 - 3 = 1)$$

with constraint $\hat{\beta}_2^A = \hat{\beta}_2^V = 0$

$$\hat{\beta}_1^A = -1.22(s.e = 0.51)$$

Death rate for old age group estimated to be $e^{1.22}=3.4$ times death rate for younger group, for each valve type.

Valve type does not have significant effect.

$$Z = \frac{0.3299}{0.4382}, \ Z^2 = 0.57, \ p-value = 0.45$$

$$LR = 3.79 - 3.22 = 0.57, df = 1$$

Note:

- Assuming $n_{ij} \sim Pois[t_{ij} \exp{(\alpha + \beta_i^A + \beta_j^V)}]$ is equivalent to assuming "time to death" T has negative exponential dist. with para. $\lambda = \exp{(\alpha + \beta_i^A + \beta_j^V)}$
- lacktriangle Generalize constant rate assumption by breaking time scale into intervals and using rate λ_k in interval k.
- $lackbox{ Permit covariates by expressing λ as function of \underline{x} and para. $\underline{\beta}$ } \lambda(\underline{x},\ \underline{\beta}) = \lambda \exp\left(\underline{\beta}^T\underline{x}\right)$
- lacktriangle Use $\lambda(t) \exp{(\underline{\beta}^T \underline{x})}$ with $\lambda(t)$ treated nonparametrically(Cox, 1972)

SAS for Poisson loglinear model with offset for modeling rates(Heart valve data)

```
data survival;
input age valve deaths exposure;
logexp=log(exposure);
cards;
1 1 4 1259
1 2 1 282
2 1 7 1417
2 2 9 1647
/* Both predictors*/
1 proc genmod data=survival;
   class age valve;
   model deaths=age valve/dist=poi link=log offset=logexp obstats;
  run;
/* only age as predictor*/
2 proc genmod data=survival;
   class age valve;
   model deaths=age/dist=poi link=log offset=logexp obstats;
  run;
```