Matemática Discreta - Grado en Ing. Informática Relación de Ejercicios 1(Lógica)

1. Sean p : "Hace frío lenguaje natural.	o" y q: "Está llovie	endo". Expresa cao	da una de las sigui	entes fórmulas en
(a) $q \vee \neg p$	(b) $\neg p \land \neg q$	(c) $\neg(\neg q)$	(d) $p \vee q$	

2. Sean p, q y r los siguientes enunciados.

p: Se han visto osos por la zona.

q: Es seguro caminar por el sendero.

r: Las fresas del sendero están maduras.

Formalizar los siguientes enunciados usando p, q y r.

(a) Las fresas del sendero están maduras, pero no se han visto osos por la zona.

(b) No se han visto osos por la zona y es seguro caminar por el sendero, pero las fresas del sendero están maduras.

(c) Si las fresas del sendero están maduras, es seguro caminar por el sendero si, y sólo si, no se han visto osos por la zona.

(d) No es seguro caminar por el sendero, pero no se han visto osos por la zona y las fresas del sendero están maduras.

3. Construye las tablas de verdad para cada una de las siguientes proposiciones.

(a)
$$(p \lor q) \to (p \land q)$$
 (b) $(p \to q) \to (q \to p)$ (c) $(p \to q) \leftrightarrow (\neg q \to \neg p)$

(c)
$$(p \to q) \leftrightarrow (\neg q \to \neg p)$$

4. Simplifica las siguientes proposiciones.

(a)
$$\neg (p \land \neg q)$$
 (b) $\neg (\neg p \lor \neg q)$ (c) $\neg (\neg p \lor q)$ (d) $\neg (\neg p \land \neg q)$

(b)
$$\neg(\neg p \lor \neg q)$$

(c)
$$\neg(\neg p \lor q)$$

(d)
$$\neg(\neg p \land \neg q)$$

5. Simplifica los siguientes enunciados.

(a) No es verdad que su madre es inglesa o su padre francés.

(b) No es verdad que estudia física pero no matemáticas.

(c) No es verdad que no hace frío o está lloviendo.

6. Escriba la negación de las proposiciones siguientes y simplifíquelas.

(a)
$$(\neg p \lor q) \land r$$

(b)
$$p \vee (q \wedge \neg r)$$

- 7. Escriba la negación de los siguientes enunciados.
 - (a) Él es rubio y tiene los ojos azules.
 - (b) Ella no es ni rica ni feliz.
 - (c) Ha perdido su trabajo o no ha ido a trabajar.
- 8. Obtenga el Recíproco y el Contrarrecíproco de cada una de las siguientes implicaciones.
 - (a) Si nieva hoy, esquiaré mañana.
 - (b) Voy a clases siempre que vaya a haber un examen.
 - (c) Un entero positivo es primo si, y sólo si, no tiene otros divisores más que 1 y él mismo.
- 9. Sean $p \neq q$ dos proposiciones. La disyunción exclusiva de $p \neq q$, denotada por $p \neq q$, es la proposición "p o q, pero no ambas".
 - (a) Construya la tabla de verdad para $p \vee q$.
 - (b) Demuestra que $p \vee q \equiv (p \vee q) \wedge \neg (p \wedge q)$.
- 10. Demuestra, sin usar tablas de verdad, que $\neg(p \lor (\neg p \land q))$ y $\neg p \land \neg q$ son lógicamente equivalentes.
- 11. Demuestra que $(p \to q) \land (q \to r) \to (p \to r)$ es una tautología.
- 12. Demuestra, sin usar tablas de verdad, que $(p \wedge q) \to (p \vee q)$ es una tautología.

(a) $q \lor \neg p$ (b) $\neg p \land \neg q$ (c) $\neg (\neg q)$ (d) $p \lor q$ 3) Esta lloviendo o no hace frío b) No hace frío y no esta lloviendo c) No es verdad que no esta lloviendo 1) Hace frío o esta lloviendo	lenguaje natural		-	da una de las siguientes fó	
1) No hace frío y no esta lloviendo 1) No es verdad que no está lloviendo	(a) $q \vee \neg p$	(b) $\neg p \land \neg q$	(c) $\neg(\neg q)$	(d) $p \vee q$	
E) No es verdad que no está llovien do	3) Esta llovi	endo o no hao	e frío		
1) No es verdad que no está llovien do) No hace	frío y no est	a lloviendo		
) Hace frío o eta lloviendo) No es verd	ad que no etá	llovier do		
) Hace fric	o eta llovi	endo		

- 2. Sean p, q y r los siguientes enunciados.
 - p: Se han visto osos por la zona. q: Es seguro caminar por el sendero.
 - r: Las fresas del sendero están maduras.

Formalizar los siguientes enunciados usando p, q y r.

- - (a) Las fresas del sendero están maduras, pero no se han visto osos por la zona.

 - (b) No se han visto osos por la zona y es seguro caminar por el sendero, pero las fresas

- - del sendero están maduras.
- (c) Si las fresas del sendero están maduras, es seguro caminar por el sendero si, y sólo si,
 - no se han visto osos por la zona.
- (d) No es seguro caminar por el sendero, pero no se han visto osos por la zona y las fresas
- del sendero están maduras.
- 3) (N7P
- 6) (7p 1 g) 1 C
- $\frac{C)}{d} \xrightarrow{r} \frac{(q \leftrightarrow 1p)}{r}$

3. Construye las tablas de verdad para cada una de las siguientes proposiciones.

(a)
$$(p \lor q) \to (p \land q)$$
 (b) $(p \to q) \to (q \to p)$ (c) $(p \to q) \leftrightarrow (\neg q \to \neg p)$

9)

F

V

(a) $\neg (p \land \neg q)$ (b) $\neg (\neg p \lor \neg q)$ (c) $\neg (\neg p \lor q)$ (d) $\neg (\neg p \land \neg q)$

4. Simplifica las siguientes proposiciones.

- 2) 7 (p/7q) = 7p V q 6) 7 (7p V q) = p N q c) 7 (7p V q) = p V 7q d) 7 (7p N 7q) = p V q

5. Simplifica los siguientes enunciados.
 (a) No es verdad que su madre es inglesa o su padre francés. (b) No es verdad que estudia física pero no matemáticas. (c) No es verdad que no hace frío o está lloviendo.
a) No es verdad que su madre es inglessa y no es verdad que su
a) No es verdad que su madre es inglesa y no es verdad que su padre es francés → 7p17g
6) No es vended que estudio físico o es verded que estudia materáticas - 1 paq. c) Hace frío y no es verded que este lleviendo - proq.

6. Escriba la negación de las pr	roposiciones siguientes y simplifíquelas.	
(a) $(\neg p \lor q) \land r$	(b) $p \lor (q \land \neg r)$	
a) 7 ((7pvq) 1 C) =	7 (7p Vq) V 7 (= (p 1 7q) V	1 (
	12 (q121) = 2p1 (2qV1)	
	1 '	

 7. Escriba la negación de los siguientes enunciados. (a) Él es rubio y tiene los ojos azules. (b) Ella no es ni rica ni feliz. (c) Ha perdido su trabajo o no ha ido a trabajar.
2) El no es rubio o no tiere los ajos azules 6) Ella es rica o feliz c) No ha perdido su trabajo y ha ido a trabajar
57 100 110 per 11700 30 1170 100 0 1170 100 0

	8. Obtenga el Recíproco y el Contrarrecíproco de cada una de las siguientes implicaciones.
	(a) Si nieva hoy, esquiaré mañana.
	(b) Voy a clases siempre que vaya a haber un examen.
	(c) Un entero positivo es primo si, y sólo si, no tiene otros divisores más que 1 y él mismo.
	D) Reciproco: Esquiaré mariama si nieva Ley
	Contra (recípio co: si no esquio momano, entonce) no habia nevado bey
	b) Reciproco: S: voy a dasos, entancel va a haber un eximen
	6) Reciproco: S: voy a dares, entancel va a haber un eximen Contra (reciproco: S: no voy a dares, entancel no va a haber un eximen
(c) Reciproco: si m utero positivo el primo, si no treve más divisores que 1
	y el mismo
	Contra reciproco: si un utero positivo no el primo, si tiene mú divisores
	que 1 y el mismo
	7 5

- 9. Sean $p \ge q$ dos proposiciones. La disyunción exclusiva de $p \ge q$, denotada por $p \ge q$, es la proposición " $p \ge q$, pero no ambas".
 - (a) Construya la tabla de verdad para $p \veebar q.$
 - (b) Demuestra que $p \vee q \equiv (p \vee q) \wedge \neg (p \wedge q)$.

3)	ρ	q	P ¥ 9
·	V	V	F
	٧	F	V
	F	F	F
	F	V	٧

ρ	q	P 1 9	2017	(pvg) 11717g)
٧	V	V	F	F
٧	F	V	V	V
F	F	F	V	F
F	٧	V	V	V

equivalentes. 7 (pv(7p1q)) = 7p11(1p1q) = 7p1(pV1q) = 1p11q

10. Demuestra, sin usar tablas de verdad, que $\neg(p \lor (\neg p \land q))$ y $\neg p \land \neg q$ son lógicamente

11. Demuestra que $(p \to q) \wedge (q \to r) \to (p \to r)$ es una tautología.

								1
ρ	9	(p - 9	901	(b + d) V (d + c)	por	(b → d) v (d → l) → (b → l)	
V	V	ν	V	V	V	V	V	
٧	V	F	V	F	F	F	٧	
V	F	F	F	V	F	F	V	
F	F	F	٧	ν	V	V	V	
f	F	٧	٧	ν	V	V	V	
F	V	V	V	V	V	٧	V	
F	V	F	٧	F	F	V	V	
V	F	V	F	V	F	٧	V	

12. Demuestra, sin usar tablas de verdad, que $(p \wedge q) \to (p \vee q)$ es una tautología.

$$(\rho \Lambda q) \rightarrow (\rho Vq) = 7(\rho \Lambda q) V(\rho Vq) = (1\rho V 1q) V(\rho Vq)$$

$$= (\rho \vee \neg \rho) \vee (q \vee \neg q)$$