Foundation of Cryptography (0368-4162-01), Lecture 4 Pseudorandom Functions

Iftach Haitner, Tel Aviv University

November 29, 2011

Section 1

Function Families

Function Families

function families

- **1** $\mathbb{F} = {\mathbb{F}_n}_{n \in \mathbb{N}}$, where $\mathbb{F}_n = {f : {0, 1}^{m(n)} \mapsto {0, 1}^{\ell(n)}}$
- **2** We write $\mathbb{F} = \{ \mathbb{F}_n : \{0, 1\}^{m(n)} \mapsto \{0, 1\}^{\ell(n)} \}$
- 3 If $m(n) = \ell(n) = n$, we omit it from the notation
- We identify function with their description
- **1** The rv F_n is uniformly distributed over \mathbb{F}_n

efficient function families

Definition 1 (efficient function family)

An ensemble of function families $\mathcal{F}=\{\mathcal{F}_n\}_{n\in\mathbb{N}}$ is efficient, if the following hold:

Samplable. \mathcal{F} is samplable in polynomial-time: there exists a PPT that given 1^n , outputs (the description of) a uniform element in \mathcal{F}_n .

Efficient. There exists a polynomial-time algorithm that given $x \in \{0, 1\}^n$ and (a description of) $f \in \mathcal{F}_n$, outputs f(x).

random functions

Definition 2 (random functions)

For $m, \ell \in \mathbb{N}$, we let $\Pi_{m,\ell}$ consist of all functions from $\{0,1\}^m$ to $\{0,1\}^\ell$.

Definition 2 (random functions)

For $m, \ell \in \mathbb{N}$, we let $\Pi_{m,\ell}$ consist of all functions from $\{0,1\}^m$ to $\{0,1\}^{\ell}$.

• It takes $(2^{\ell})^{2^m}$ bits to describe an element inside $\Pi_{m\ell}$.

Definition 2 (random functions)

For $m, \ell \in \mathbb{N}$, we let $\Pi_{m,\ell}$ consist of all functions from $\{0,1\}^m$ to $\{0,1\}^\ell$.

- It takes $(2^{\ell})^{2^m}$ bits to describe an element inside $\Pi_{m,\ell}$.
- We sometimes think of $\pi \in \Pi_{m,\ell}$ as a random string of length $2^m \cdot \ell$.

Definition 2 (random functions)

For $m, \ell \in \mathbb{N}$, we let $\Pi_{m,\ell}$ consist of all functions from $\{0,1\}^m$ to $\{0,1\}^\ell$.

- It takes $(2^{\ell})^{2^m}$ bits to describe an element inside $\Pi_{m,\ell}$.
- We sometimes think of $\pi \in \Pi_{m,\ell}$ as a random string of length $2^m \cdot \ell$.
- $\bullet \ \Pi_n = \Pi_{n,n}$

Definition 3 (pseudorandom functions)

A function family ensemble $\mathbb{F} = \{\mathbb{F}_n : \{0,1\}^n \mapsto \{0,1\}^{m(n)}\}$ is pseudorandom, if

$$\left| \mathsf{Pr}[\mathsf{D}^{\mathbb{F}_n}(\mathsf{1}^n) = \mathsf{1}] - \mathsf{Pr}[\mathsf{D}^{\Pi_{n,m(n)}}(\mathsf{1}^n) = \mathsf{1} \right| = \mathsf{neg}(n),$$

pseudorandom functions

Definition 3 (pseudorandom functions)

A function family ensemble $\mathbb{F}=\{\mathbb{F}_n:\{0,1\}^n\mapsto\{0,1\}^{m(n)}\}$ is pseudorandom, if

$$\left| \Pr[D^{\mathbb{F}_n}(1^n) = 1] - \Pr[D^{\Pi_{n,m(n)}}(1^n) = 1 \right| = \text{neg}(n),$$

for any oracle-aided PPT D.

• Suffices to consider m(n) = n

pseudorandom functions

Definition 3 (pseudorandom functions)

A function family ensemble $\mathbb{F} = \{\mathbb{F}_n : \{0,1\}^n \mapsto \{0,1\}^{m(n)}\}$ is pseudorandom, if

$$\left| \mathsf{Pr}[\mathsf{D}^{\mathbb{F}_n}(\mathsf{1}^n) = \mathsf{1}] - \mathsf{Pr}[\mathsf{D}^{\Pi_{n,m(n)}}(\mathsf{1}^n) = \mathsf{1} \right| = \mathsf{neg}(n),$$

- Suffices to consider m(n) = n
- **2** Easy to construct (with no assumption) for $\Pi^{m,\ell}$ with $m \in O(\log n)$ and $\ell \in \text{poly}(n)$

Definition 3 (pseudorandom functions)

A function family ensemble $\mathbb{F} = \{\mathbb{F}_n : \{0,1\}^n \mapsto \{0,1\}^{m(n)}\}$ is pseudorandom, if

$$\left| \mathsf{Pr}[\mathsf{D}^{\mathbb{F}_n}(\mathsf{1}^n) = \mathsf{1}] - \mathsf{Pr}[\mathsf{D}^{\Pi_{n,m(n)}}(\mathsf{1}^n) = \mathsf{1} \right| = \mathsf{neg}(n),$$

- Suffices to consider m(n) = n
- **2** Easy to construct (with no assumption) for $\Pi^{m,\ell}$ with $m \in O(\log n)$ and $\ell \in \text{poly}(n)$
- PRF easily imply a PRG

Definition 3 (pseudorandom functions)

A function family ensemble $\mathbb{F} = \{\mathbb{F}_n : \{0,1\}^n \mapsto \{0,1\}^{m(n)}\}$ is pseudorandom, if

$$\left| \Pr[\mathsf{D}^{\mathbb{F}_n}(1^n) = 1] - \Pr[\mathsf{D}^{\Pi_{n,m(n)}}(1^n) = 1 \right| = \mathsf{neg}(n),$$

- Suffices to consider m(n) = n
- **2** Easy to construct (with no assumption) for $\Pi^{m,\ell}$ with $m \in O(\log n)$ and $\ell \in \text{poly}(n)$
- PRF easily imply a PRG
- Pseudorandom permutations (PRPs)

PRF from OWF

the construction

Construction 4

Let
$$g: \{0,1\}^n \mapsto \{0,1\}^{2n}$$
. Let $g_0(s) = g(s)_{1,\dots,n}$ and $g_1(s) = g(s)_{n+1,\dots,2n}$. For s and $x \in \{0,1\}^*$, let f_s be defined as $f_s(x) = g_{x_n}(\dots(g_{x_2}(g_{x_1}(s))))$

the construction

Construction 4

Let $g: \{0,1\}^n \mapsto \{0,1\}^{2n}$. Let $g_0(s) = g(s)_{1,\dots,n}$ and $g_1(s) = g(s)_{n+1,\dots,2n}$. For s and $x \in \{0,1\}^*$, let f_s be defined as $f_s(x) = g_{x_n}(\dots(g_{x_2}(g_{x_1}(s))))$

Let $\mathbb{F}_n = \{f_s \colon s \in \{0,1\}^n\}$ and $\mathbb{F} = \{\mathbb{F}_n\}$.

the construction

Construction 4

Let
$$g: \{0,1\}^n \mapsto \{0,1\}^{2n}$$
. Let $g_0(s) = g(s)_{1,...,n}$ and $g_1(s) = g(s)_{n+1,...,2n}$. For s and $x \in \{0,1\}^*$, let f_s be defined as $f_s(x) = g_{x_n}(\dots(g_{x_2}(g_{x_1}(s))))$

Let $\mathbb{F}_n = \{f_s \colon s \in \{0,1\}^n\}$ and $\mathbb{F} = \{\mathbb{F}_n\}$.

g is efficient function implies that \mathbb{F} is an efficient family.

the construction

Construction 4

Let
$$g: \{0,1\}^n \mapsto \{0,1\}^{2n}$$
. Let $g_0(s) = g(s)_{1,...,n}$ and $g_1(s) = g(s)_{n+1,...,2n}$. For s and $x \in \{0,1\}^*$, let f_s be defined as $f_s(x) = g_{x_n}(\dots(g_{x_2}(g_{x_1}(s))))$

Let
$$\mathbb{F}_n = \{f_s \colon s \in \{0,1\}^n\}$$
 and $\mathbb{F} = \{\mathbb{F}_n\}$.

g is efficient function implies that \mathbb{F} is an efficient family.

Theorem 5 (Goldreich-Goldwasser-Micali)

If g is a PRG then \mathbb{F} is a PRF.

Construction 4

Let
$$g: \{0,1\}^n \mapsto \{0,1\}^{2n}$$
. Let $g_0(s) = g(s)_{1,...,n}$ and $g_1(s) = g(s)_{n+1,...,2n}$. For s and $x \in \{0,1\}^*$, let f_s be defined as $f_s(x) = g_{x_n}(\dots(g_{x_2}(g_{x_1}(s))))$

Let $\mathbb{F}_n = \{f_s \colon s \in \{0,1\}^n\}$ and $\mathbb{F} = \{\mathbb{F}_n\}$.

g is efficient function implies that \mathbb{F} is an efficient family.

Theorem 5 (Goldreich-Goldwasser-Micali)

If g is a PRG then \mathbb{F} is a PRF.

Corollary 6

OWFs imply PRFs.

Proof Idea

• For a fixed $s \in \{0,1\}^n$, consider the execution tree T_s

Proof Idea

- For a fixed $s \in \{0,1\}^n$, consider the execution tree T_s
- Observation: $D = (g(g_0(U_n)), g(g_1(U_n)))$ is pseudorandom:

Proof Idea

- For a fixed $s \in \{0,1\}^n$, consider the execution tree T_s
- Observation: D = $(g(g_0(U_n)), g(g_1(U_n)))$ is pseudorandom: Proof: D' = $(g(U_n^{(0)}), g(U_n^1)) \approx_c U_{4n}$ and D \approx_c D'.

Proof Idea

- For a fixed $s \in \{0,1\}^n$, consider the execution tree T_s
- Observation: $D = (g(g_0(U_n)), g(g_1(U_n)))$ is pseudorandom:

Proof: $D' = (g(U_n^{(0)}), g(U_n^1)) \approx_c U_{4n}$ and $D \approx_c D'$.

- Hence we can handle input of length 1
- Extend to longer inputs?

- For a fixed $s \in \{0,1\}^n$, consider the execution tree T_s
- Observation: D = $(g(g_0(U_n)), g(g_1(U_n)))$ is pseudorandom: Proof: D' = $(g(U_n^{(0)}), g(U_n^1)) \approx_C U_{4n}$ and D \approx_C D'.
- Hence we can handle input of length 1
- Extend to longer inputs?
- We show that an efficient sample from the *truth table* of $f \leftarrow \mathbb{F}_n$, is computationally indistinguishable from that of $\pi \leftarrow \Pi_{n,n}$.

Actual proof

Actual proof

Assume \exists PPT D, $p \in$ poly and infinite set $\mathcal{I} \subseteq \mathbb{N}$ with

$$\left| \Pr[\mathsf{D}^{F_n}(1^n) = 1] - \Pr[\mathsf{D}^{\Pi_n}(1^n) = 1] \right| \ge \frac{1}{p(n)},$$
 (1)

for any $n \in \mathcal{I}$ and fix $n \in \mathbb{N}$

Actual proof

Assume $\exists \ PPT \ D, \ p \in poly \ and \ infinite \ set \ \mathcal{I} \subseteq \mathbb{N}$ with

$$\left| \Pr[\mathsf{D}^{F_n}(1^n) = 1] - \Pr[\mathsf{D}^{\Pi_n}(1^n) = 1] \right| \ge \frac{1}{p(n)},$$
 (1)

PRP from PRF

for any $n \in \mathcal{I}$ and fix $n \in \mathbb{N}$

Let $t = t(n) \in \text{poly be a bound on the running time of D}(1^n)$. We use D to construct a PPT D' such that

$$|\Pr[D'(U_{2n}^t) = 1] - \Pr[D'(g(U_n)^t) = 1| > \delta(n)/n,$$

where
$$U_{2n}^t = U_{2n}^{(1)}, \dots, U_{2n}^{(t(n))}$$
 and $g(U_n)^t = g(U_n^{(1)}), \dots, g(U_n^{(t(n))}).$

Applications

Actual proof

The hybrid

Let g and f be as in the definition of \mathbb{F}_n

Definition 7

For
$$k \in \{0, ..., n\}$$
, let $\mathcal{H}_k = \{h_\pi \colon \{0, 1\}^n \mapsto \{0, 1\}^n \colon \pi \in \Pi_{k, n}\}$, where $h_\pi(x) = f_{\pi(x_1, ..., k)}(x_{k+1, ..., n})$

Actual proof

The hybrid

Let g and f be as in the definition of \mathbb{F}_n

Definition 7

For $k \in \{0, ..., n\}$, let $\mathcal{H}_k = \{h_{\pi} : \{0, 1\}^n \mapsto \{0, 1\}^n : \pi \in \Pi_{k, n}\}$, where $h_{\pi}(x) = f_{\pi(x_1 - k)}(x_{k+1,...,n})$

- $f_{V}(\lambda) = y$
- $\Pi_{0,n} = \{0,1\}^n$, and for $\pi \in \Pi_{0,n}$ let $\pi(\lambda) = \pi$

The hybrid

Let g and f be as in the definition of \mathbb{F}_n

Definition 7

For $k \in \{0, ..., n\}$, let $\mathcal{H}_k = \{h_\pi \colon \{0, 1\}^n \mapsto \{0, 1\}^n \colon \pi \in \Pi_{k, n}\}$, where $h_\pi(x) = f_{\pi(x_1, ..., k)}(x_{k+1, ..., n})$

- $f_y(\lambda) = y$
- $\Pi_{0,n} = \{0,1\}^n$, and for $\pi \in \Pi_{0,n}$ let $\pi(\lambda) = \pi$
- Note that $\mathcal{H}_0 = \mathbb{F}_n$ and $\mathcal{H}_n = \Pi_{n,n}$

Actual proof

The hybrid

Function Families

Let g and f be as in the definition of \mathbb{F}_n

Definition 7

For $k \in \{0, ..., n\}$, let $\mathcal{H}_k = \{h_{\pi} : \{0, 1\}^n \mapsto \{0, 1\}^n : \pi \in \Pi_{k, n}\}$, where $h_{\pi}(x) = f_{\pi(x_1 - k)}(x_{k+1,...,n})$

- $f_{V}(\lambda) = y$
- $\Pi_{0,n} = \{0,1\}^n$, and for $\pi \in \Pi_{0,n}$ let $\pi(\lambda) = \pi$
- Note that $\mathcal{H}_0 = \mathbb{F}_n$ and $\mathcal{H}_n = \Pi_{n,n}$
- Can we emulate \mathcal{H}_k ?

The hybrid

Function Families

Let g and f be as in the definition of \mathbb{F}_n

Definition 7

For $k \in \{0, ..., n\}$, let $\mathcal{H}_k = \{h_{\pi} : \{0, 1\}^n \mapsto \{0, 1\}^n : \pi \in \Pi_{k, n}\}$, where $h_{\pi}(x) = f_{\pi(x_1, \dots, n)}(x_{k+1, \dots, n})$

- $f_{V}(\lambda) = V$
- $\Pi_{0,n} = \{0,1\}^n$, and for $\pi \in \Pi_{0,n}$ let $\pi(\lambda) = \pi$
- Note that $\mathcal{H}_0 = \mathbb{F}_n$ and $\mathcal{H}_n = \Pi_{n,n}$
- Can we emulate \mathcal{H}_k ? We emulate if from D's point of view.
- We present efficient "function family" $\{\mathcal{O}_k\}_{k\in[n]}$, such that
 - $D^{O_k(U_{2n}^t)}(1^n) \equiv D^{H_k}(1^n)$
 - $D^{O_k(g(U_n)^t)}(1^n) \equiv D^{H_{k-1}}(1^n)$

for any $k \in [n]$, where O_k and H_K are uniformly sampled from \mathcal{O}_k and \mathcal{H}_k respectively.

Actual proof

completing the proof

Let D'(y) return $D^{O_k(y)}$ for k uniformly chosen in [n].

completing the proof

Let D'(y) return $D^{O_k(y)}$ for k uniformly chosen in [n]. Hence

$$\begin{aligned} \left| \Pr[\mathsf{D}'(U_{2n}^t = 1) \middle| - \Pr[\mathsf{D}'(g(U_n)^t) = 1] \\ &= \left| \sum_{k=1}^n \frac{1}{n} \cdot \Pr[\mathsf{D}^{O_k(U_{2n}^t)}(1^n) = 1] - \sum_{k=1}^n \frac{1}{n} \cdot \Pr[\mathsf{D}^{O_k(g(U_n)^t)}(1^n) = 1] \right| \end{aligned}$$

Function Families

completing the proof

Let D'(y) return $D^{O_k(y)}$ for k uniformly chosen in [n]. Hence

$$\begin{aligned} &|\Pr[\mathsf{D}'(U_{2n}^t = 1]| - \Pr[\mathsf{D}'(g(U_n)^t) = 1] \\ &= \left| \sum_{k=1}^n \frac{1}{n} \cdot \Pr[\mathsf{D}^{O_k(U_{2n}^t)}(1^n) = 1] - \sum_{k=1}^n \frac{1}{n} \cdot \Pr[\mathsf{D}^{O_k(g(U_n)^t)}(1^n) = 1] \right| \\ &= \left| \frac{1}{n} \left| \sum_{k=1}^n \Pr[\mathsf{D}^{H_k}(1^n) = 1] - \sum_{k=1}^n \Pr[\mathsf{D}^{H_{k-1}}(1^n) = 1] \right| \end{aligned}$$

PRP from PRF

completing the proof

Let D'(y) return $D^{O_k(y)}$ for k uniformly chosen in [n]. Hence

$$\begin{aligned} & \left| \Pr[\mathsf{D}'(U_{2n}^t = 1] \middle| - \Pr[\mathsf{D}'(g(U_n)^t) = 1] \\ &= \left| \sum_{k=1}^n \frac{1}{n} \cdot \Pr[\mathsf{D}^{O_k(U_{2n}^t)}(1^n) = 1] - \sum_{k=1}^n \frac{1}{n} \cdot \Pr[\mathsf{D}^{O_k(g(U_n)^t)}(1^n) = 1] \right| \\ &= \left| \frac{1}{n} \middle| \sum_{k=1}^n \Pr[\mathsf{D}^{H_k}(1^n) = 1] - \sum_{k=1}^n \Pr[\mathsf{D}^{H_{k-1}}(1^n) = 1] \right| \\ &= \left| \frac{1}{n} \middle| \Pr[\mathsf{D}^{H_n}(1^n) = 1] - \Pr[\mathsf{D}^{H_0}(1^n) = 1] \middle| = \frac{1}{np(n)} \Box \end{aligned}$$

PRP from PRF

Function Families

The family \mathcal{O}_k

$$\mathcal{O}_k := \{ \mathcal{O}_{s^1, \dots, s^t} \colon s^1, \dots, s^t \in \{0, 1\}^n \times \{0, 1\}^n \}.$$

Algorithm 8 (O_{s^1,\ldots,s^t})

On the *i*'th query $x^i \in \{0, 1\}^n$:

- If x^{ℓ} with $x_{1,\dots,k-1}^{\ell} = x_{1,\dots,k-1}^{i}$ was previously asked, set $z = s_{x_{\ell}}^{\ell}$ (where ℓ is the minimal such index). Otherwise, set $z = s_{x_{i}}^{i}$.
- 2 Return $f_z(x_{k+1,\ldots,n})$

PRP from PRF

Function Families

The family \mathcal{O}_k

$$\mathcal{O}_k := \{ \mathcal{O}_{s^1, \dots, s^t} \colon s^1, \dots, s^t \in \{0, 1\}^n \times \{0, 1\}^n \}.$$

Algorithm 8 (O_{s^1,\ldots,s^t})

On the *i*'th query $x^i \in \{0, 1\}^n$:

- If x^{ℓ} with $x_{1,\dots,k-1}^{\ell} = x_{1,\dots,k-1}^{i}$ was previously asked, set $z = s_{x_{\ell}}^{\ell}$ (where ℓ is the minimal such index). Otherwise, set $z = s_{x_{i}}^{i}$.
- 2 Return $f_z(x_{k+1,\ldots,n})$

The "oracle" is stateful.

PRP from PRF

The family \mathcal{O}_k

$$\mathcal{O}_k := \{ O_{s^1, \dots, s^t} \colon s^1, \dots, s^t \in \{0, 1\}^n \times \{0, 1\}^n \}.$$

Algorithm 8 ($O_{s^1,...,s^t}$)

On the *i*'th query $x^i \in \{0, 1\}^n$:

- If x^{ℓ} with $x_{1,\dots,k-1}^{\ell} = x_{1,\dots,k-1}^{i}$ was previously asked, set $z = s_{x_k}^{\ell}$ (where ℓ is the minimal such index). Otherwise, set $z = s_{x_k}^{i}$.
- 2 Return $f_z(x_{k+1,...,n})$

The "oracle" is stateful.

We need to prove that $D^{O_k(U^t_{2n})}(1^n) \equiv D^{H_k}(1^n)$ and $D^{O_k(g(U_n)^t)}(1^n) \equiv D^{H_{k-1}}(1^n)$.

$$\mathsf{D}^{\mathcal{O}_k(\mathcal{U}_{2n}^t)}(1^n) \equiv \mathsf{D}^{\mathcal{H}_k}(1^n)$$

Proposition 9

For any $\ell, m \in \mathbb{N}$ and any algorithm A, it holds that $A^{\Pi_{\ell,m}} \equiv A^{B_{\ell,m}}$, where the stateful random algorithm $B_{\ell,m}$ answers identical queries with the same answer, and answers new queries with a random string of length m.

$$\mathsf{D}^{\mathcal{O}_k(\mathcal{U}^t_{2n})}(1^n) \equiv \mathsf{D}^{\mathcal{H}_k}(1^n)$$

Proposition 9

For any $\ell, m \in \mathbb{N}$ and any algorithm A, it holds that $A^{\Pi_{\ell,m}} \equiv A^{B_{\ell,m}}$, where the stateful random algorithm $B_{\ell,m}$ answers identical queries with the same answer, and answers new queries with a random string of length m.

Proof?

$$\mathsf{D}^{O_k(U^t_{2n})}(1^n) \equiv \mathsf{D}^{H_k}(1^n)$$

Proposition 9

For any $\ell, m \in \mathbb{N}$ and any algorithm A, it holds that $A^{\Pi_{\ell,m}} \equiv A^{B_{\ell,m}}$, where the stateful random algorithm $B_{\ell,m}$ answers identical queries with the same answer, and answers new queries with a random string of length m.

Proof? Does the above trivialize the whole issue of PRF?

$$\mathsf{D}^{O_k(U^t_{2n})}(1^n) \equiv \mathsf{D}^{H_k}(1^n)$$

Proposition 9

For any $\ell, m \in \mathbb{N}$ and any algorithm A, it holds that $A^{\Pi_{\ell,m}} \equiv A^{B_{\ell,m}}$, where the stateful random algorithm $B_{\ell,m}$ answers identical queries with the same answer, and answers new queries with a random string of length m.

Proof? Does the above trivialize the whole issue of PRF?Let \widetilde{O}_k be the variant that returns z (and not $f_{x_{k+1,...,n}}(z)$) and let \widetilde{D}_k be the algorithm that implements D using \widetilde{O}_k (by computing $f_{x_{k+1,...,n}}(z)$ by itself).

$$\mathsf{D}^{O_k(U^t_{2n})}(1^n) \equiv \mathsf{D}^{H_k}(1^n)$$

Proposition 9

For any $\ell, m \in \mathbb{N}$ and any algorithm A, it holds that $A^{\Pi_{\ell,m}} \equiv A^{B_{\ell,m}}$, where the stateful random algorithm $B_{\ell,m}$ answers identical queries with the same answer, and answers new queries with a random string of length m.

Proof? Does the above trivialize the whole issue of PRF?Let \widetilde{O}_k be the variant that returns z (and not $f_{x_{k+1,...,n}}(z)$) and let \widetilde{D}_k be the algorithm that implements D using \widetilde{O}_k (by computing $f_{x_{k+1,...,n}}(z)$ by itself). By Proposition 9

$$\mathsf{D}^{O_k(U_{2n}^t)}(1^n) \equiv \widetilde{\mathsf{D}}_k^{\widetilde{O}_k(U_{2n}^t)}(1^n) \equiv \widetilde{\mathsf{D}}_k^{\pi_k,n}(1^n) \equiv \mathsf{D}^{H_k}(1^n) \tag{2}$$

$$\mathsf{D}^{\mathcal{O}_k(g(U_n)^t)}(1^n) \equiv \mathsf{D}^{\mathcal{H}_{k-1}}(1^n)$$

It holds that

$$\mathsf{D}^{O_k(g(U_n)^t)}(1^n) \equiv \mathsf{D}^{O_{k-1}(U_{2n}^t)}(1^n) \tag{3}$$

$$D^{O_k(g(U_n)^t)}(1^n) \equiv D^{H_{k-1}}(1^n)$$

It holds that

$$D^{O_k(g(U_n)^t)}(1^n) \equiv D^{O_{k-1}(U_{2n}^t)}(1^n)$$
 (3)

Hence, by Equation (2)

$$D^{O_k(g(U_n)^t)}(1^n) \equiv D^{H_{k-1}}(1^n)$$

Section 3

PRP from PRF

Pseudorandom permutations

Let $\widetilde{\Pi}_n$ be the set of all permutations over $\{0,1\}^n$.

Definition 10 (pseudorandom permutations)

A permutation ensemble $\mathbb{F} = \{\mathbb{F}_n : \{0,1\}^n \mapsto \{0,1\}^n\}$ is a pseudorandom permutation, if

$$\left| \Pr[\mathsf{D}^{\mathbb{F}_n}(\mathsf{1}^n) = \mathsf{1}] - \Pr[\mathsf{D}^{\widetilde{\mathsf{\Pi}}_n}(\mathsf{1}^n) = \mathsf{1} \right| = \mathsf{neg}(n), \tag{4}$$

for any oracle-aided PPT D

Pseudorandom permutations

Let $\widetilde{\Pi}_n$ be the set of all permutations over $\{0,1\}^n$.

Definition 10 (pseudorandom permutations)

A permutation ensemble $\mathbb{F}=\{\mathbb{F}_n:\{0,1\}^n\mapsto\{0,1\}^n\}$ is a pseudorandom permutation, if

$$\left| \Pr[\mathsf{D}^{\mathbb{F}_n}(\mathsf{1}^n) = \mathsf{1}] - \Pr[\mathsf{D}^{\widetilde{\mathsf{\Pi}}_n}(\mathsf{1}^n) = \mathsf{1} \right| = \mathsf{neg}(n), \tag{4}$$

for any oracle-aided PPT D

Equation (4) holds for any PRF

Construction 11

Given a function family $\mathbb{F} = {\mathbb{F}_n \colon \{0,1\}^n \mapsto \{0,1\}^n}$, let

 $LR(\mathbb{F}) = \{LR(\mathbb{F}_n) \colon \{0,1\} 2n \mapsto \{0,1\}^{2n}\}, \text{ where }$

 $\mathsf{LR}(\mathbb{F}_n) = \{\mathsf{LR}(f) \colon f \in \mathbb{F}_n\} \text{ and } \mathsf{LR}(f)(\ell, r) = (r, f(r) \oplus \ell).$

Construction 11

Given a function family $\mathbb{F} = {\mathbb{F}_n : \{0,1\}^n \mapsto \{0,1\}^n}$, let $LR(\mathbb{F}) = {LR(\mathbb{F}_n) : \{0,1\}2n \mapsto \{0,1\}^{2n}}$, where

 $\mathsf{LR}(\mathbb{F}_n) = \{\mathsf{LR}(f): f \in \mathbb{F}_n\} \text{ and } \mathsf{LR}(f)(\ell,r) = (r,f(r) \oplus \ell).$

For $i \in \mathbb{N}$, let $LR^{i}(\mathbb{F})$ be the *i*'th iteration of $LR(\mathbb{F})$.

Construction 11

Given a function family $\mathbb{F} = \{\mathbb{F}_n : \{0,1\}^n \mapsto \{0,1\}^n\}$, let $LR(\mathbb{F}) = \{LR(\mathbb{F}_n) : \{0,1\}2n \mapsto \{0,1\}^{2n}\}$, where $LR(\mathbb{F}_n) = \{LR(f) : f \in \mathbb{F}_n\}$ and $LR(f)(\ell,r) = (r,f(r) \oplus \ell)$. For $i \in \mathbb{N}$, let $LR^i(\mathbb{F})$ be the i'th iteration of $LR(\mathbb{F})$.

 $LR(\mathbb{F})$ is always a permutation family, and is efficient if \mathbb{F} is.

Construction 11

Given a function family $\mathbb{F} = {\mathbb{F}_n : \{0,1\}^n \mapsto \{0,1\}^n}$, let

 $LR(\mathbb{F}) = \{LR(\mathbb{F}_n) \colon \{0,1\} 2n \mapsto \{0,1\}^{2n}\}, \text{ where }$

 $\mathsf{LR}(\mathbb{F}_n) = \{\mathsf{LR}(f) \colon f \in \mathbb{F}_n\} \text{ and } \mathsf{LR}(f)(\ell, r) = (r, f(r) \oplus \ell).$

For $i \in \mathbb{N}$, let LRⁱ(\mathbb{F}) be the i'th iteration of LR(\mathbb{F}).

 $\mathsf{LR}(\mathbb{F})$ is always a permutation family, and is efficient if \mathbb{F} is.

Theorem 12 (Luby-Rackoff)

Assuming that \mathbb{F} is a PRF, then LR³(\mathbb{F}) is a PRP

Function Families

Construction 11

Given a function family $\mathbb{F} = {\mathbb{F}_n \colon \{0,1\}^n \mapsto \{0,1\}^n}$, let

 $LR(\mathbb{F}) = \{LR(\mathbb{F}_n) : \{0,1\} 2n \mapsto \{0,1\}^{2n}\}, \text{ where }$

 $\mathsf{LR}(\mathbb{F}_n) = \{\mathsf{LR}(f) \colon f \in \mathbb{F}_n\} \text{ and } \mathsf{LR}(f)(\ell, r) = (r, f(r) \oplus \ell).$

For $i \in \mathbb{N}$, let $LR^i(\mathbb{F})$ be the *i*'th iteration of $LR(\mathbb{F})$.

 $LR(\mathbb{F})$ is always a permutation family, and is efficient if \mathbb{F} is.

Theorem 12 (Luby-Rackoff)

Assuming that $\mathbb F$ is a PRF, then $\mathsf{LR}^3(\mathbb F)$ is a PRP

It suffices to prove the the following holds for any $n \in \mathbb{N}$ (why?)

Claim 13

$$|\Pr[\mathsf{D}^{\mathsf{LR}^3(\Pi_n)}(1^n)=1]-\Pr[\mathsf{D}^{\widetilde{\Pi}_{2n}}(1^n)|=1] \leq \frac{4\cdot q^2}{2^n},$$
 for any q -query algorithm D.

Section 4

Applications

general paradigm

Design a scheme assuming that you have random functions, and the realize them using PRF.

Construction 14 (PRF-based encryption)

Given an (efficient) PRF \mathbb{F} , define the encryption scheme (Gen, Enc, Dec)) se:

Key generation Gen(1ⁿ) returns $k \leftarrow \mathbb{F}_n$

Encryption Enc_k(m) returns U_n , $k(U_n) \oplus m$

Decryption $\operatorname{Dec}_k(c=(c_1,c_n))$ returns $k(c_1)\oplus c_2$

Construction 14 (PRF-based encryption)

Given an (efficient) PRF \mathbb{F} , define the encryption scheme (Gen, Enc, Dec)) se:

Key generation Gen(1ⁿ) returns $k \leftarrow \mathbb{F}_n$

Encryption Enc_k(m) returns U_n , $k(U_n) \oplus m$

Decryption $\operatorname{Dec}_k(c=(c_1,c_n))$ returns $k(c_1)\oplus c_2$

• Advantages over the PRG based scheme?

Construction 14 (PRF-based encryption)

Given an (efficient) PRF \mathbb{F} , define the encryption scheme (Gen, Enc, Dec)) se:

Key generation Gen(1ⁿ) returns $k \leftarrow \mathbb{F}_n$

Encryption Enc_k(m) returns U_n , $k(U_n) \oplus m$

Decryption $\operatorname{Dec}_k(c=(c_1,c_n))$ returns $k(c_1)\oplus c_2$

- Advantages over the PRG based scheme?
- Proof of security

Message Authentication Code (MAC)

Goal: message authentication.

Goal: message authentication.

Definition 15 (MAC)

A MAC is a tuple of PPT's (Gen, Mac, Vrfy) such that

- Gen(1ⁿ) outputs a key $k \in \{0, 1\}^*$
- Mac(k, m) outputs a "tag" t
- Vrfy(k, m, t) output 1 (YES) or 0 (NO)

Goal: message authentication.

Definition 15 (MAC)

A MAC is a tuple of PPT's (Gen, Mac, Vrfy) such that

- Gen(1ⁿ) outputs a key $k \in \{0, 1\}^*$
- Mac(k, m) outputs a "tag" t
- \bigcirc Vrfy(k, m, t) output 1 (YES) or 0 (NO)

We require

Consistency: Vrfy(k, m, t) = 1 for any $k \in \text{Supp}(\text{Gen}(1^n))$, $m \in \{0, 1\}^n$ and t = Mac(k, m)

Unforgability: No PPT wins the MAC game with respect to (Gen, Mac, Vrfy)

Definition 16 (MAC game)

Let (Gen, Mac, Vrfy) be a MAC and let $K_n = \text{Gen}(1^n)$. An oracle-aided algorithm A wins the MAC game with respect to (Gen, Mac, Vrfy), if the following is not negligible:

$$(m,t) \leftarrow A^{\mathsf{Mac}(K_n,\cdot),\mathsf{Vrfy}(K_n,\cdot,\cdot)}(1^n) \wedge \mathsf{Vrfy}(K_n,m,t) = 1$$

 $\wedge \mathsf{Mac}(K_n,\cdot)$ was not asked on m

Function Families

Definition 16 (MAC game)

Let (Gen, Mac, Vrfy) be a MAC and let $K_n = \text{Gen}(1^n)$. An oracle-aided algorithm A wins the MAC game with respect to (Gen, Mac, Vrfy), if the following is not negligible:

$$(m,t) \leftarrow A^{\mathsf{Mac}(K_n,\cdot),\mathsf{Vrfy}(K_n,\cdot,\cdot)}(1^n) \wedge \mathsf{Vrfy}(K_n,m,t) = 1$$

 $\wedge \mathsf{Mac}(K_n,\cdot)$ was not asked on m

"Private key" definition

Function Families

Definition 16 (MAC game)

Let (Gen, Mac, Vrfy) be a MAC and let $K_n = \text{Gen}(1^n)$. An oracle-aided algorithm A wins the MAC game with respect to (Gen, Mac, Vrfy), if the following is not negligible:

$$(m,t) \leftarrow A^{\mathsf{Mac}(K_n,\cdot),\mathsf{Vrfy}(K_n,\cdot,\cdot)}(1^n) \wedge \mathsf{Vrfy}(K_n,m,t) = 1$$

 $\wedge \mathsf{Mac}(K_n,\cdot)$ was not asked on m

- "Private key" definition
- Variable length messages?

Function Families

Definition 16 (MAC game)

Let (Gen, Mac, Vrfy) be a MAC and let $K_n = \text{Gen}(1^n)$. An oracle-aided algorithm A wins the MAC game with respect to (Gen, Mac, Vrfy), if the following is not negligible:

$$(m,t) \leftarrow A^{\mathsf{Mac}(K_n,\cdot),\mathsf{Vrfy}(K_n,\cdot,\cdot)}(1^n) \wedge \mathsf{Vrfy}(K_n,m,t) = 1$$

 $\wedge \mathsf{Mac}(K_n,\cdot)$ was not asked on m

- "Private key" definition
- Variable length messages?
- Definition too strong? Any message? Use of Verifier?

Function Families

Definition 16 (MAC game)

Let (Gen, Mac, Vrfy) be a MAC and let $K_n = \text{Gen}(1^n)$. An oracle-aided algorithm A wins the MAC game with respect to (Gen, Mac, Vrfy), if the following is not negligible:

$$(m,t) \leftarrow A^{\mathsf{Mac}(K_n,\cdot),\mathsf{Vrfy}(K_n,\cdot,\cdot)}(1^n) \wedge \mathsf{Vrfy}(K_n,m,t) = 1$$

 $\wedge \mathsf{Mac}(K_n,\cdot)$ was not asked on m

- "Private key" definition
- Variable length messages?
- Definition too strong? Any message? Use of Verifier?
- "Reply attacks"

Definition 16 (MAC game)

Let (Gen, Mac, Vrfy) be a MAC and let $K_n = \text{Gen}(1^n)$. An oracle-aided algorithm A wins the MAC game with respect to (Gen, Mac, Vrfy), if the following is not negligible:

$$(m,t) \leftarrow A^{\mathsf{Mac}(K_n,\cdot),\mathsf{Vrfy}(K_n,\cdot,\cdot)}(1^n) \wedge \mathsf{Vrfy}(K_n,m,t) = 1$$

 $\wedge \mathsf{Mac}(K_n,\cdot)$ was not asked on m

PRP from PRF

- "Private key" definition
- Variable length messages?
- Definition too strong? Any message? Use of Verifier?
- "Reply attacks"

Definition 17 (*ℓ***-time MAC)**

Same as in Definition 15, but security is only required against ℓ -query adversaries.

constructions

Construction 18 (One-time MAC)

Gen(1ⁿ) =
$$U_n$$
, Mac(k , m) = $k \oplus m$ and Vrfy(k , m , t) = 1 iff $t = k \oplus m$

constructions

Construction 18 (One-time MAC)

Gen(1ⁿ) =
$$U_n$$
, Mac(k , m) = $k \oplus m$ and Vrfy(k , m , t) = 1 iff $t = k \oplus m$

Construction 19 ($\ell \in poly$ -time MAC, Stateful)

Use ℓ random strings of length n

constructions

Function Families

Construction 18 (One-time MAC)

Gen(1ⁿ) = U_n , Mac(k, m) = $k \oplus m$ and Vrfy(k, m, t) = 1 iff $t = k \oplus m$

Construction 19 ($\ell \in poly$ -time MAC, Stateful)

Use ℓ random strings of length n

Construction 20 ($\ell \in poly$ -time MAC)

Gen(1ⁿ) return a random member in \mathcal{H}_n , where $\mathcal{H} = \{\mathcal{H}_n \colon \{0,1\}^n \mapsto \{0,1\}^n\}$ is an efficient family of ℓ -wise independent hash functions.^a

Let Mac(k, m) = k(m), and Vrfy(k, m, t) = 1 iff t = k(m).

^aFor any distinct $x_1, \ldots, x_\ell \in \{0, 1\}^n$ and $y_1, \ldots, y_\ell \in \{0, 1\}^n$, $Prh \leftarrow \mathcal{H}_n[h(x_1) = y_1 \wedge \cdots \wedge h(x_\ell) = y_\ell] = 2^{-tn}.$

PRF-based MAC

Construction 21 (PRF-based MAC)

Same as Construction 20, but uses a family of length preserving function \mathbb{F} instead of \mathcal{H} .

Claim 22

Assuming that \mathbb{F} is a PRF, then Construction 21 is a (poly-time) MAC.

Proof:

PRF-based MAC

Construction 21 (PRF-based MAC)

Same as Construction 20, but uses a family of length preserving function \mathbb{F} instead of \mathcal{H} .

Claim 22

Assuming that \mathbb{F} is a PRF, then Construction 21 is a (poly-time) MAC.

Proof: Easy to prove if $\mathbb F$ is a family of random functions. Hence, also holds in case $\mathbb F$ is a PRF.