Determining the Accuracy of Probabilistic Scoring

Client:

Alan Malik

Patient Tools

Lee Panter

ARE YOU SAD?

Do your Patient Health Questionnaire (PHQ) summaries give you feelings of:

- Inaccuracy
- Low specificity
- Low sensitivity

These may be symptoms of a more serious condition:

Insufficient Statistic (itus)™

Talk to your statistician today about:

PROBABILISTIC SCORING

^{*} Results may vary, Use as directed, May cause drowsiness-do not operate machinery until you know how this treatment affects you...

Client Proposal-Problem Statement

- Questionnaires are standard approach to preventative screening for mental health disorders
- Designed to be:
 - Easy to use, track and record
 - Quick (maximum average of 6.5 minutes)
 - Reduced to minimum necessary questions, prioritizing answers with higher risk for further evaluation
- Standard Testing Protocol
 - PHQ-2 → PHQ-9 → QDP → Mental Healthcare
 Specialist
 - PHQ-2 (Patient Health Questionnaire)
 - First two questions of PHQ-9
 - Scores are 0-6
 - Scores higher than 2 considered "at risk"

- PHQ-9
 - Scores are 0-27
 - Scores higher than 9 considered "at risk"
- QDP (Quick PsychoDiagnostic Panel)
 - Dynamic decision-tree protocol based on DSM-V
 - Can classify 11 disorders

What's the Problem?

- Poor quality statistics used for classification
- Inferior performance due to poor classification caused clinical fatigue
- One study found that after using the PHQ-2, providers did not refer a positive result 95% of the time!

Client Proposal-Solution

Collected Data:

- 2,495 total cases (observations)
- PHQ-9 & QDP results
- Collected over six months
- Federally Qualified Health Center in Montana
- QDP administration was randomized
 - Before/after taking PHQ-9
 - Some cases only took PHQ-9

Probabilistic Scores

- Iterative process
 - Updated after another question is answered
- A single score
 - Probability that the given series of answers dictates a certain classification
 - PHQ-9 has three categories to classify therefore each score is three numbers

Definitions

- E = percent of cases endorsing a specific item answer
 - (e.g percent of cases that answered 0 on q1)
- C = outcome class
 - (e.g. the outcome class of case 1 is "Major Depression")

The Process

1. Use given data to calculate the response

probabilities:
$$p_{ijk} = \frac{P(E_{ijk}|C_i)*P(C_i)}{P(E_{ijk})}$$

Where

- i = { Not Clinically Depressed, Sub-threshold Depression, Major Depression}
- j = 1, 2, ..., 9 and
- k = 0,1,2,3
- 2. Upon observing answer to next question, update distributions for E and C, and re-calculated p_{ijk}
- 3. Repeat (1) \leftarrow \rightarrow (2) until a single component probability of p_{ijk} passes acceptable threshold values

Client and Consultant Goals

Main Consultant Goals

- Mathematically prove that Probabilistic scoring is more accurate than conventional scoring
 - "...show that information is not lost when applying Bayes' Theorem"
 - Establish minimum sample size needed for Probabilistic Scoring error to be smaller than that of conventional scoring.
- Mathematically prove that probabilistic scoring derived from a conventional scored validation dataset is essentially as
 accurate as using the original validation dataset and therefore still more accurate than conventional scoring

Initial Steps

- Literature Review
 - Item Response Theory
 - Bayesian sufficiency
- Discuss areas of confusion with client and class
- Obtain client coding methods including data used to generate results
- Possibly inquire into previous proof attempts made, and other resources that might be useful

Client Goals

- Patent Concept (Complete)
- Educate medical practitioners (spreading the word)
- Getting the concept accepted as Clinically appropriate
- Obtain large PHQ-9 data set to test error convergence based upon error size

I have a question...

- There are several times in the paper where accuracy, false positives, false negatives,..., etc. are referenced. How are you calculating these values?
- What are the "cut scores" for each test you implemented? How are/were they determined?
- Is there a standard decision-tree you have been using that minimizes the error? Have you tried re-ordering the responses?
- Along a similar line, what sort of case/question independence assumptions are you making?
 - Are the cases independent?
 - How about the questions (assuming no decision tree)?
- Are you assuming that your sample is representative of your population of interest?
 - Will your database of weights be continually reset (i.e. go back to the original settings after each test), or will each test also be factored in?
- Are asymptotic results and/or asymptotic-dependent results acceptable?
- What parametric assumptions were made in your analysis? Is a proof that is specific to certain parametric values desirable?

You should stop Probabilistic Scoring if:

- You are allergic to math
- You dislike being correct

Seek immediate Statistical Assistance if you experience a positive predictive value greater than one

- For external use only
- Rinse mouth thoroughly after each use
- May cause drowsiness
- Package is NOT child resistant

THANK YOU!!

