Practice Problems Set #1 (Probability and Statistics)

- 1. For a fix natural number $n \in \mathbb{N}$, let $\Omega = \{0,1\}^n$ (the set of all n bit strings). Let p,q be two real numbers such that $0 \le p,q \le 1$ and p+q=1.
 - Show that the following function $\mathbb{P}: \Omega \to [0,1]$ is a probability distribution on Ω , where \mathbb{P} is defined as follows: for any $\boldsymbol{w} = (w_1, \dots, w_n) \in \Omega$, $\mathbb{P}(\boldsymbol{w}) = \prod_{i=1}^n p^{w_i} q^{1-w_i}$.
- 2. Let $\Omega = \{1, 2, 3, 4\} \times \{1, 2, 3, 4\}$. Let $\mathbb{P} : \Omega \to [0, 1]$ be the uniform distribution on Ω . Let $B = \{(s, t) \mid s + t = 6\}$. Describe the conditional distribution $\mathbb{P}_B : \Omega \to [0, 1]$.
- 3. For i in $1 \leq i \leq 2$, let $\mathbb{P}_i : \Omega_i \to [0,1]$ be a probability distribution. Define a function $\mathbb{P} : \Omega = \Omega_1 \times \Omega_2 \to [0,1]$ as follows: for every $\boldsymbol{w} = (w_1, w_2) \in \Omega$, $\mathbb{P}(\boldsymbol{w}) = \mathbb{P}_1(w_1) \times \mathbb{P}_2(w_2)$. Show that \mathbb{P} is a probability distribution on Ω .
- 4. Let $\mathbb{P}: \Omega \to [0,1]$ be a probability distribution and $A, B \subseteq \Omega$. Show that $\mathbb{P}(\bar{A}/B) = 1 \mathbb{P}(A/B)$.
- 5. Let $\mathbb{P}: \Omega \to [0,1]$ be a probability distribution and $A, B \subseteq \Omega$. It is give that $\mathbb{P}(A) = \frac{1}{5}$, $\mathbb{P}(A/B) = \frac{1}{3}$, and $\mathbb{P}(B/A) = \frac{1}{7}$. Compute $\mathbb{P}(B)$.
- 6. Let $\mathbb{P}: \Omega \to [0,1]$ be a probability distribution and $A, B \subseteq \Omega$. Show that $\mathbb{P}(B \setminus A) = \mathbb{P}(B) \mathbb{P}(A \cap B)$, where $B \setminus A = \{w \in B \mid w \notin A\}$.
- 7. Let $\mathbb{P}: \Omega \to [0,1]$ be a probability distribution and $A, B \subseteq \Omega$. Show that $\mathbb{P}(A \cup B)\mathbb{P}(A \cap B) \leq \mathbb{P}(A)\mathbb{P}(B)$.
- 8. Let $\mathbb{P}: \Omega \to [0,1]$ be a probability distribution and $A, B, C \subseteq \Omega$ such that $A \cap \bar{C} = B \cap \bar{C}$, where \bar{C} denotes the compliment of C in Ω . Show that $|\mathbb{P}(A) \mathbb{P}(B)| \leq \mathbb{P}(C)$.
- 9. Let $\mathbb{P}: \Omega \to [0,1]$ be a probability distribution and $A, B \subseteq \Omega$. Show that if A and B are independent, i.e., $\mathbb{P}(A \cap B) = \mathbb{P}(A) \times \mathbb{P}(B)$, then so are \bar{A} and B.