```
G \subseteq \mathbb{C} ואורפית G \subseteq \mathbb{C} פתוחה אזי \{f\} הולומורפית G \subseteq \mathbb{C} הגדרה:
                     A\left(G
ight)=H\left(G
ight)=\mathrm{Hol}\left(G
ight) פתוחה אזי G\subseteq\mathbb{C} תהא
```

 $\|f\|_{C(K)}=\max|f\left(K
ight)|$ אזי קומפקטית אזי $f:G o\mathbb{C}$ מרומורפית הגדרה: תהא מרוחה תהא הגדרה: תהא

טור פונקציות מתכנס נורמלית: תהא $\sum_{n=0}^\infty f_n$ אזי $\langle f_n \in \operatorname{Hol}(G) \mid n \in \mathbb{N}
angle$ פתוחה ותהיינה $G \subseteq \mathbb{C}$ אחי עבורה לכל מתכנס. $\sum_{m \leq n} \|f_n\|_{C(K)}$ מתכנס $m \in \mathbb{N}$

$$-\sum_{n\in\mathbb{Z}}\sum_{n\in\mathbb{Z}}\sum_{(z-n)^2}\sum_{n\in\mathbb{Z}}\sum_{(z-n)^2}$$
 טענה אויילר: יהי

$$\pi\cdot\cot\left(\pi z
ight)=rac{1}{z}+\sum_{n\in\mathbb{Z}\setminus\{0\}}\left(rac{1}{z-n}+rac{1}{n}
ight)$$
 אזי $z\in\mathbb{C}$ אזי $z\in\mathbb{C}$

$$rac{\pi}{\sin(\pi z)} = \lim_{m o\infty} \sum_{|n| < m} rac{(-1)^n}{z-n}$$
מסקנה אויילר: יהי $z\in\mathbb{C}$ אזי

 $\pi\cdot\cot\left(\pi z\right)=rac{1}{z}+\sum_{n\in\mathbb{Z}\backslash\{0\}}\left(rac{1}{z-n}+rac{1}{n}
ight)$ אזי $z\in\mathbb{C}$ אזי $z\in\mathbb{C}$ מסקנה אויילר: יהי $z\in\mathbb{C}$ אזי $z\in\mathbb{C}$ אזי $z\in\mathbb{C}$ מסקנה אויילר: יהי $z\in\mathbb{C}$ אזי $z\in\mathbb{C}$ אזי $z\in\mathbb{C}$ מכפלה מתכנסת: יהיו $z\in\mathbb{C}$ ויהי $z\in\mathbb{C}$ ויהי $z\in\mathbb{C}$ ויהי $z\in\mathbb{C}$ באשר $z\in\mathbb{C}$ אזי $z\in\mathbb{C}$ אזי $z\in\mathbb{C}$

$$p_n \xrightarrow[n o \infty]{} 1$$
 טענה: יהיו $\prod_{i=0}^\infty p_i$ עבורם $p_i \in \mathbb{C} \mid n \in \mathbb{N}$ טענה: יהיו

 $\log\left(re^{i heta}
ight)=\log\left(r
ight)+\mathrm{Arg}\left(e^{i heta}
ight)$ אזי $heta\in\mathbb{R}$ ויהי ו $r\in\mathbb{R}_+$ יהי וואי של ויהי וואי של הראשי של

 $\mathbb{C}\setminus\{0\}$ ענף של log ענה: Log טענה:

טענה: יהיו $P\in\mathbb{C}ackslash\{0\}$ ויהי $\langle p_n\in\mathbb{C}\mid n\in\mathbb{N}
angle$ התב"ש

 $P=\exp\left(\sum_{i=0}^{\infty}\log\left(p_{i}
ight)\right)$ מתכנס וכן $\sum_{i=0}^{\infty}\log\left(p_{i}
ight)$ מתכנסת) מתכנסת) אזי ($\sum_{i=0}^{\infty}a_{i}$) מתכנסת) באשר $\sum_{i=0}^{\infty}\left|a_{i}\right|^{2}$ מתכנסת) באשר $\sum_{i=0}^{\infty}\left|a_{i}\right|^{2}$ מתכנסת).

. טענה: $\prod_{i=0}^{\infty}\left(1+a_i\right)$ אינה מתכנסת עבורם $\sum_{i=0}^{\infty}a_i$ עבורם עבורם $\langle a_n\in\mathbb{C}\mid n\in\mathbb{N}
angle$

. טענה: $\sum_{i=0}^\infty a_i$ אינה מתכנסת מת=0 מתכנסת עבורם =0 עבורם עבורם =0 אינה מתכנס.

סענה: יהיו $\prod_{i=0}^\infty \left(1+a_i\right)$ מתכנסת באשר באשר $\sum_{i=0}^\infty |a_i|$ באשר ל $a_n\in\mathbb{C}\mid n\in\mathbb{N}$

 $\prod_{n=0}^\infty (1+a_n)$ אזי $\langle a_n\in {
m Hol}\,(G)\mid n\in \mathbb{N}
angle$ מכפלת פונקציות מתכנסת באופן נורמלי: תהא $G\subseteq \mathbb{C}$ פתוחה ותהיינה מתכנס באופן נורמלי. $\sum_{n=0}^{\infty}a_n$

מתקיים $\sigma\in S_\mathbb{N}$ מתכנסת באופן נורמלי מתכנסת באשר $\prod_{i=0}^\infty p_i$ באשר איי לכל $\langle p_n\in \mathrm{Hol}\,(G)\mid n\in\mathbb{N}
angle$ מתקיים $G\subseteq\mathbb{C}$ $.\prod_{i=0}^{\infty} p_i = \prod_{i=0}^{\infty} p_{\sigma(i)}$

 $\prod_{i=0}^{\infty}p_{i}\in\mathrm{Hol}\left(G
ight)$ מתכנסת באופן נורמלי אזי ענה: תהא באשר ערה: באשר ל $\left(p_{n}\in\mathrm{Hol}\left(G
ight)\mid n\in\mathbb{N}
ight)$ באשר מתכנסת באופן נורמלי אזי טענה: תהא $G\subseteq\mathbb{C}$ פתוחה ותהיינה $\sum_{i=0}^\infty \frac{p_i'}{n_i}$ מתכנסת באופן נורמלי אזי מתכנס באופן $\sum_{i=0}^\infty p_i$ מתכנס באופן $\sum_{i=0}^\infty p_i$ נורמלי.