浙江大学实验报告

专业:信息工程 姓名:李坤林

学号: 3200101135 日期: 2/26/2023

地点:外经贸楼实验室

课程名称: 微机原理与接口技术 指导老师: 黄凯 实验名称: 10 控制与定时器计数实验

一、实验目的和要求

IO 控制实验:

- ① 掌握基本 IO 输入输出操作指令;
- ② 熟练运用"伟福 WAVE" 环境对汇编程序进行调试。

定时器计数实验

- ① 掌握 8051 的定时器、中断系统编程方法;
- ② 了解定时器的应用、实时程序的设计和调试技巧。

二、实验内容和原理

IO 控制实验:

- ① 8 位逻辑电平显示的接口电路设计如图 1-1 所示,用 P1 口做输出口,接八位逻辑电平显示,程序功能使发光二极管从右到左轮流循环点亮。用导线将 MCS51 模块的 P1.0-P1.7 端口依次与 L0-L7 小灯连接。在"WAVE"环境运行该程序,观察发光二极管显示情况。
- ② 8 位拨动开关的接口电路设计如图 1-2 所示,假设采用 P1 口控制 LED 显示,P2 口接收拨码开关的输入值,用导线将 MCS51 模块的 P1.0-P1.7 端口依次与 L0-L7 小灯连接,并将 P2.0-P2.7 端口依次与 K0-K7 开关连接。
- ③ 假设采用 P1.0 口控制外部 LED, 拨动开关控制外部中断, 用二号导线将 MCS51 模块的 P1.0、P3.2 口分别与八位逻辑电平显示模块的 L0、单次脉冲输出相连。并在 WAVE 环境 运行程序, 观察实验现象。
- ④ 在上述步骤中,如果改变中断的触发方式为电平触发方式,试改动程序,并在 WAVE 环境运行程序,观察实验现象,说明实验结果。
- ⑤ 画出流程并设计程序实现 8 位逻辑电平显示模块的奇偶位的亮灭闪烁显示, 闪烁间隔为 1S。

数制及代码转换:

- ⑥ 系统的时钟为 12MHz, 现欲实现 10ms 的精确定时, 完成空白处程序填写, 并在 WAVE 环境运行程序, 观察实验现象。
- ⑦ 假设采用 P1.0 口控制外部 LED,用拨动开关控制外部中断,用二号导线将 MCS51 模块的 P1.0、P3.2 口分别与八位逻辑电平显示模块的 L0、C6 区八位逻辑电平输出 K0 相连。在 WAVE 环境运行以下程序,分别拨动 K0 于高低电平位置,观察实验现象,并说明所发生实验现象的原因。
- ⑧ 用二号导线将 MCS51 模块的 P1.0 与八位逻辑电平显示模块的任意一只发光二极管相连,全速运行下列程序,发光二极管隔一秒点亮一次,点亮时间为一秒。流程图为:
- ⑨ 编程使第 1~4 和 5~8 发光二极管循环点亮的时间分别为 0.25s、0.5s、0.75s、1s。

三、主要仪器设备

计算机一台

Lab8000 系列 80C51 实验开发系统一套 2 号导线若干条

四、操作方法和实验步骤

1. 循环点亮

LED 小灯泡从右向左依次点亮并不断循环。

2. 拨码亮灭

拨码开关在下面时对应的灯熄灭, 拨码在上面对应的灯亮。

3. 按钮亮灭

4. 电平触发

ORG 0000H

LJMP MAIN

ORG 0003H

LJMP INTERRUPT

ORG 0030H

MAIN: CLR P1.0

MOV TCON, #OOH

MOV IE, #81H

SJMP \$

INTERRUPT: PUSH PSW

CPL P1.0

POP PSW

RETI

END

当 P3.2 保持低电平时, LED 灯被点亮, 亮度稍低于上面。

5. 奇偶亮灭

ORG 0000H

LOOP: MOV A, #055H

MOV R2, #2

OUTPUT: MOV P1, A

RL A

ACALL DELAY

DJNZ R2, OUTPUT

LJMP LOOP

DELAY: MOV R6, #OAH
DLY1: MOV R5, #OC8H

DLY2: MOV R4, #0F9H DLY3: DJNZ R4, DLY3

DJNZ R5, DLY2 DJNZ R6, DLY1

RET END

奇偶循环亮灭

Lab2

1. 100ms 精准定时

ORG 0000H

MOV TMOD, #01H

LOOP1: MOV RO, #OAH

LOOP2: MOV TLO, #OFOH

MOV THO, #OD8H

SETB TRO

JNB TFO, \$

CLR TF0

DJNZ RO, LOOP2

CPL P1.0

SJMP LOOP1

END

LED 灯高频闪烁,每秒钟亮 5次

2. 拨码控制外部中断

当快速拨码 KO 时,LED 灯的明暗状态不定,当拨码开关稳定在上面时,LED 常亮,亮度稍低。

3. 一秒交替亮灭

一秒亮一秒暗

4. 设计实验

ORG 0000H

LJMP MAIN

ORG 001BH

LJMP INT

ORG 0100H

MAIN: MOV TMOD, #10H

MOV TH1, #3CH

MOV TL1, #OBOH

MOV R7, #0

MOV P1, #1

SETB EA

SETB ET1

SETB TR1

SJMP \$

ORG 0800H

INT: CJNE R7, #0, NEXTO

MOV P1, #1

NEXTO: INC R7

MOV TH1, #3CH

MOV TL1, #OBOH

CJNE R7, #5, NEXT1

MOV P1, #2

RETI

NEXT1: CJNE R7, #15, NEXT2

MOV P1, #4

RETI

NEXT2: CJNE R7, #30, NEXT3

MOV P1, #8

RETI

NEXT3: CJNE R7, #50, NEXT4

MOV P1, #16

RETI

NEXT4: CJNE R7, #55, NEXT5

MOV P1, #32

RETI

NEXT5: CJNE R7, #65, NEXT6

MOV P1, #64

RETI

NEXT6: CJNE R7, #80, NEXT7

MOV P1, #128

NEXT7: CJNE R7, #100, ENDINT

MOV R7,#0

ENDINT:

RETI

1-4 和 5-8 发光二极管循环点亮时间分别为 0.25, 0.5, 0.75, 1s

