Instituto de Matemática

Gabarito da 1^a Lista de Teoria da Computação Professora: Maria Alice Silveira de Brito Data: 14/10/2010

- 1. Considere as seguintes linguagens regulares definidas a seguir sobre o alfabeto S = 0.1 e para cada uma delas:
 - (a) Enumere os seus primeiros elementos linguagens dos itens K a V.
 - (b) Apresente uma gramática regular que a gere.
 - (c) Apresente um autômato finito determinístico que a reconheça.
 - (d) Apresente uma expressão regular que a denote.
 - (a) $L_A = \{\varepsilon\}.$ i. $M = (\{q_1, q_2\}, \{0, 1\}, \delta, q_1, \{q_1\})$ ii. $S \to \varepsilon$ iii.

iv. $e = \varepsilon$

 q_2 q_2

(b) $L_B = \{0\}.$

i.
$$M = (\{q_1, q_2, q_3\}, \{0, 1\}, \delta, q_1, \{q_2\})$$

ii. $S \rightarrow 0$ $\delta = 0$ q_3 q_3 q_3 q_2

iv. e = 0

(c) $L_C = \{1\}.$

i.
$$M = (\{q_1, q_2, q_3\}, \{0, 1\}, \delta, q_1, \{q_2\})$$

ii. $S \rightarrow 1$ 0 δ 1 q_2 q_3 iii. q_2 q_3 q_3 q_3

iv. e = 1

(d) $L_D = \{00\}.$

i.
$$M = (\{q_1, q_2, q_3, q_4\}, \{0, 1\}, \delta, q_1, \{q_3\})$$

ii. $S \rightarrow 0R$ $R \to 0$ δ 0 q_2 q_3 q_4 q_2 q_3 q_4 q_4 q_4 q_4

iv. e = 00

(e) $L_E = \{11\}.$

i.
$$M = (\{q_1, q_2, q_3, q_4\}, \{0, 1\}, \delta, q_1, \{q_3\})$$

(f) $L_F = \{000\}$

iv. e = 11

i. $M = (\{q_1, q_2, q_3, q_4, q_5\}, \{0, 1\}, \delta, q_1, \{q_4\})$

ii. $S \to 0R$, $R \to 0Q$, $Q \rightarrow 0$.

ii.	δ	0	1
	q_1	q_2	q_5
	q_2	q_3	q_5
	q_3	q_4	q_5
	q_4	q_5	q_5
	q_5	q_5	q_5

iv. e = 000

(g) $L_G = \{00, 0000, 000000, \ldots\}.$

i. $M = (\{q_1, q_2, q_3, q_4\}, \{0, 1\}, \delta, q_1, \{q_3\})$

ii. $S \rightarrow 0R$, $R \to 0S|0$.

	δ	0	1
	q_1	q_2	q_4
iii.	q_2	q_3	q_4
	q_3	q_2	q_4
	a_4	a_{4}	a_{4}

iv. e = 00(00)

(h) $L_H = \{\varepsilon, 00, 0000, 000000, \ldots\}.$

i. $M = (\{q_1, q_2, q_3\}, \{0, 1\}, \delta, q_1, \{q_1\})$

ii. $S \to 0R|\varepsilon$,

 $R \to 0S$.

iii.	δ	0	1
	q_1	q_2	q_3
	q_2	q_1	q_3
	q_3	q_3	q_3

iv. $e = (00)^*$

(i) $L_I = \{111, 111111, 1111111111, \ldots\}.$

i. $M = (\{q_1, q_2, q_3, q_4, q_5\}, \{0, 1\}, \delta, q_1, \{q_4\})$

ii. $S \rightarrow 1R$, $R \rightarrow 1T$,

 $T \to 1S|1$.

	δ	0	1
iii.	q_1	q_5	q_2
	q_2	q_5	q_3
	q_3	q_5	q_4
	q_4	q_5	q_2
	q_5	q_5	q_5

iv. $e = 111(111)^*$

(j) $L_J = \{\varepsilon, 111, 1111111, 1111111111, \ldots\}.$

i.
$$M = (\{q_1, q_2, q_3, q_4\}, \{0, 1\}, \delta, q_1, \{q_1\})$$

ii. $S \to 1R|\varepsilon$,

 $R \to 1T$,

 $T \to 1S$.

	δ	0	1
	q_1	q_4	q_2
iii.	q_2	q_4	q_3
	q_3	q_4	q_1
	q_4	q_4	q_4

iv. $e = (111)^3$

(k) $L_K = \{ w \in \Sigma^* : |w| = 2q \ge 0, q \in \mathbb{Z} \}$

i. $M = (\{q_1, q_2\}, \{0, 1\}, \delta, q_1, \{q_1\})$

ii. $S \rightarrow 0R|1R|\varepsilon$,

 $R \to 0S|1S.$

iv. $e = ((0 \cup 1)(0 \cup 1))^*$

- (1) $L_L = \{ w \in \Sigma^* : |w| = 2q \ge 2, q \in \mathbb{Z} \}$
 - i. $M = (\{q_1, q_2, q_3\}, \{0, 1\}, \delta, q_1, \{q_3\})$
 - ii. $S \rightarrow 0R|1R$,

 $R \rightarrow 0|1|0S|1S$.

iii.	δ	0	1
	q_1	q_2	q_2
	q_2	q_3	q_3
	q_3	q_2	q_2

iv. $e = (0 \cup 1)(0 \cup 1) ((0 \cup 1)(0 \cup 1))^*$

(m)

- (n) $L_N = \{w \in \Sigma^* \colon |w| = 2q, q \in \mathbb{Z} \text{e } w \text{ começa com } 00\}$
 - i. $M = (\{q_1, q_2, q_3, q_4, q_5\}, \{0, 1\}, \delta, q_1, \{q_3\})$

ii. $S \to 0R$,

 $R \to 0T$

 $T \to 0M|1M|\varepsilon,$

 $M \rightarrow 0T | 1T$.

	δ	0	1
	q_1	q_2	q_5
iii.	q_2	q_3	q_5
	q_3	q_4	q_4
	q_4	q_3	q_3

iv. $\overline{e = 00 ((0 \cup 1)(0 \cup 1))^*}$

- (o) $L_O = \{ w \in \Sigma^* \colon |w| = 3q, q \in \mathbb{Z} \text{e } w \text{ termina com } 11 \}.$
 - i. $M = (\{q_1, q_2, q_3, q_4, q_5\}, \{0, 1\}, \delta, q_1, \{q_5\})$

ii. $S \rightarrow 0R|1R$,

 $R \to 0T|1Q$,

 $T \rightarrow 0S|1S$,

 $Q \rightarrow 0S|1S|1$.

	δ	0	1
iii.	q_1	q_2	q_2
	q_2	q_3	q_4
	q_3	q_1	q_1
	q_4	q_1	q_5
	q_5	q_2	q_2

iv. $e = ((0 \cup 1)(0 \cup 1)(0 \cup 1))^* (0 \cup 1)11$

(p) $L_P = \{w \in \Sigma^* \colon |w| = 3q, q \in \mathbb{Z} \text{e } w \text{ começa com } 000\}.$

i. $M = (\{q_1, q_2, q_3, q_4, q_5, q_6, q_7\}, \{0, 1\}, \delta, q_1, \{q_4\})$

ii. $S \to 0R$,

 $R \to 0Q,$

 $Q \to 0T$,

 $T \rightarrow 0 U |1 U| \varepsilon,$

 $U \to 0X | 1X$,

 $X \rightarrow 0T|1T$.

	δ	0	1
	q_1	q_2	q_7
	q_2	q_3	q_7
iii.	q_3	q_4	q_7
	q_4	q_5	q_5
	q_5	q_6	q_6
	q_6	q_4	q_4

iv. $e = 000 ((0 \cup 1)(0 \cup 1)(0 \cup 1))^*$

(q) $L_Q = \{ w \in \Sigma^* \colon w \text{ não possui nem zeros nem uns isolados } \}.$

i. $M = (\{q_1, q_2, q_3, q_4, q_5, q_6\}, \{0, 1\}, \delta, q_1, \{q_1, q_3, q_5\})$

ii. $S \rightarrow 0R|1Q|\varepsilon$,

 $R \to 0T$,

 $Q \rightarrow 1U$,

 $\tilde{T} \rightarrow 0T|1Q|\varepsilon$,

 $U \to 1U|0R|\varepsilon$.

	δ	0	1
	q_1	q_2	q_4
iii.	q_2	q_3	q_6
	q_3	q_3	q_4
	q_4	q_6	q_5
	q_5	q_2	q_5
	q_6	q_6	q_6

iv. $e = (((00)0^*) \cup ((11)1^*))^*$

(r) $L_R = \{ w \in \Sigma^* : w \text{ possui o símbolo inicial e final distintos } \}.$

i. $M = (\{q_1, q_2, q_3, q_4, q_5\}, \{0, 1\}, \delta, q_1, \{q_3, q_5\})$

ii. $S \rightarrow 0R|1Q$,

 $R \rightarrow 0R|1R|1,$

 $Q \rightarrow 0Q|1Q|0$.

	δ	0	1
iii.	q_1	q_2	q_4
	q_2	q_2	q_3
	q_3	q_2	q_3
	q_4	q_5	q_4
	q_5	q_5	q_4

iv.
$$e = (1(0 \cup 1)^*0) \cup (0(0 \cup 1)^*1)$$

- (s) $L_S = \{ w \in \Sigma^* : w \text{ começa com um número par }$ de zeros e termina com um número ímpar de uns
 - i. $M = (\{q_1, q_2, q_3, q_4\}, \{0, 1\}, \delta, q_1, \{q_2\})$

ii. $S \to 0Z|1U$,

 $Z \to 0S$

 $U \to 0R|1T|\varepsilon$,

 $T \to 1U|0R$,

 $R \to 1U|0R$.

	δ	0	1
	q_1	q_1	q_2
iii.	q_2	q_3	q_4
	q_3	q_3	q_2
	q_4	q_3	q_2

iv. $e = (00)^*(0 \cup 1)^*(11)^*1$

- (t) $L_T = \{ w \in \Sigma^* : w \text{ possui exatamente 3 uns } \}.$
 - i. $M = (\{q_1, q_2, q_3, q_4, q_5\}, \{0, 1\}, \delta, q_1, \{q_4\})$

ii. $S \rightarrow 0S|1R$.

 $R \to 0R|1Q$

 $Q \to 0Q|1F,$ $F \to 0F|\varepsilon.$

	δ	0	1
	q_1	q_1	q_2
iii.	q_2	q_2	q_3
111.	q_3	q_3	q_4
	q_4	q_4	q_5
	q_5	q_5	q_5

iv. $e = 0^*10^*10^*10^*$

- (u) $L_U = \{w \in \Sigma^* : w \text{ possui exatamente } 3 \text{ uns não} \}$ consecutivos \}.
 - i. $M = (\{q_1, q_2, q_3, q_4, q_5, q_6, q_7\}, \{0, 1\}, \delta, q_1, \{q_6\})$

ii. $S \rightarrow 0S|1R$,

 $R \rightarrow 0Q$,

 $\begin{array}{c} Q \rightarrow 0Q|1T, \\ T \rightarrow 0M, \end{array}$

 $M \to 0M|1N$,

 $N \to 0N|\varepsilon$.

	δ	0	1
iii.	q_1	q_1	q_2
	q_2	q_3	q_7
	q_3	q_3	q_4
	q_4	q_7	q_5
	q_5	q_5	q_6
	q_6	q_6	q_7
	q_7	q_7	q_7

iv. $e = 0^*100^*100^*10^*$

(v) $L_V = \{ w \in \Sigma^* : w \text{ possui blocos de tamanho 5,}$ cada com pelo menos 2 zeros \}.

2. Essa gramática G = (N, S, P, S), abaixo, define as propriedades de um conjunto bem familiar seu, tente descobrir qual é esse conjunto, gerando cadeias por árvores de derivação, ou, por intuição.

 $S \to V|-V$,

 $V \rightarrow P | ED$,

 $D \to AD|P$

 $E \rightarrow 1|2|3|4|5|6|7|8|9$,

 $A \rightarrow 1|2|3|4|5|6|7|8|9|0,$

 $P \to 0|2|4|6|8.$

Resposta: Os números inteiros pares.

3. Enumere os elementos das seguintes linguagens e apresente a gramática correspondente a cada uma:

(a) $L_A = \{a^i b^j : 1 \le i \le j \le 2.i\},$

Resposta:

 $S \to aR$

 $R \to Qb|Sb|b$,

 $Q \to Sb|b$.

(b) $L_B = \{a^i b^i c^{2j} : i, j \ge 1\},\$

Resposta:

 $S \rightarrow aAbCcc$.

 $A \to aAb|\varepsilon$,

 $C \to Ccc|\varepsilon$.

(c) $L_C = \{w : |w| > 0 \text{ e o número de a's é igual ao}\}$ número de b's }.

Resposta:

 $S \to ARB$

 $R \to ARB|\varepsilon$

 $AB \rightarrow BA$,

 $A \rightarrow a$,

 $B \rightarrow b$.

4. Talvez o exemplo mais famoso de ambigüidade em linguagem de programação seja representado pelo comando if b then if b then a else a, no qual o else pode estar associado tanto ao primeiro if quanto ao segundo. A seguinte gramática reflete esta ambigüidade. $G_1 = (\{S\}, \text{ if, then, else, a, b},$ P_1, S), em que

 $P_1 = \{S \rightarrow \text{if b then } S \text{ else } S | \text{ if b then } S | a\}.$

(a) Mostre que G_1 é ambígua. Esta ambigüidade pode ser tratada se, arbitrariamente, estabelecermos que, para o comando em questão, o else deva estar associado ao último then. A seguinte gramática reflete esta consideração.

 $G_2 = (\{S_1, S_2\}, \text{if}, \text{then}, \text{else}, \text{a}, \text{b}, P_2, S_1), \text{ em}$

 $P_2 = \{S_1 \rightarrow \text{if b then } S_1 | \text{if b then } S_2 \text{ else} \}$ $S_1|a, S_2 \rightarrow \text{if b then } S_2 \text{ else } S_2|a\}.$

(b) Apresente a árvore de derivação de G_2 cujo resultado seja if b then if b then a else a

5. Enumere os elementos da linguagem e construa o AFND M que reconheça $L(M)=\{xyz|x,z\in\{a,b\}^*$ e (y=aaa ou $y=bb)\}.$

Resposta:

Obtemos o AFND a partir do seguinte AFD $M=(\{q_1,q_2,q_3,q_4,q_5,q_6\},\{0,1\},\delta,q_1,\{q_4,q_6\})$

δ	a	b
q_1	q_2	q_5
q_2	q_3	q_5
q_3	q_4	q_5
q_4	q_4	q_5
q_5	q_2	q_6
q_6	q_2	q_6

6. Apresente um AFD que reconheça a linguagem gerada pela gramática $G=(\{S,A,B\},\{0,1\},P,S),$ em que P é o seguinte conjunto:

$$S \rightarrow 0A|1B$$
,

$$A \to 1S|\varepsilon$$
,

$$B \to 0S|\varepsilon$$
.

Resposta:

$$M = (\{S, A, B, F\}, \{0, 1\}, \delta, q_1, \{A, B\})$$

δ	0	1
S	A	B
A	F	S
B	S	F
F	F	F

7. Apresente uma gramática regular que gere a linguagem reconhecida pelo AFD $M=(\{A,B,C,D\},\{0,1\},\delta,A,\{C\}),$ em que δ é definido por:

δ	0	1
A	B	A
B	C	D
C	A	B
D	C	B

Resposta: $G = (\{A, B, C, D\}, \Sigma = \{0, 1\}, P, A)$, onde P é definido por:

$$P = \{$$

$$A \rightarrow 0B|1A$$
,

$$B \to 0C|1D$$
,

$$C \to 0A|1B|\varepsilon$$
,

$$D \rightarrow 0C|1B$$
.

8. Apresente uma expressão regular que represente a linguagem:

$$L = \{a^{2i}b^{2j+1}c^{3k+3} : i, j, k \ge 0\},\$$

Resposta: $e = (aa)^*b(bb)^*ccc(ccc)^*$.

9. Apresente o AFD que reconhece cada uma das seguintes expressões regulares:

(a) $0 \cup (01)^*00 \cup 1^*0$

 $M = (\{q_1, q_2, q_3, q_4, q_5, q_6\}, \{0, 1\}, \delta, q_1, \{q_2, q_5\})$

δ	0	1
q_1	q_2	q_4
q_2	q_5	q_3
q_3	q_2	q_6
q_4	q_5	q_4
q_5	q_6	q_6
q_6	q_6	q_6

(b) $(10 \cup 100)^*10$

 $M = (\{q_1, q_2, q_3, q_4, q_5\}, \{0, 1\}, \delta, q_1, \{q_3, q_4\})$

δ	0	1
q_1	q_5	q_2
q_2	q_3	q_5
q_3	q_4	q_2
q_4	q_5	q_2
q_5	q_5	q_5