Pareto/NBD в «sklearn'овских» терминах

Математическая модель (MM)	Линейная регрессия $Y = k * x + bias$	Pareto/NBD
Параметры ММ модели, которые		Гиперпараметры?: λ – transaction rate (отвечает за частоту транзакций, не зависит от клиента) μ – churn rate (отвечает за время жизни клиента, не зависит от клиента) Параметры:
нужно найти, для того, чтобы	k, bias	Параметры: Параметры гамма распределения, описывающие различия между клиентами в их поведении относительно совершения транзакций r – shape parameter α - scale parameter Параметры гамма распределения, описывающие различия между клиентами в показателях отсева (оттока) s – shape parameter
Признаки	Матрица «объект – признак»	 β - scale parameter Матрица «клиент – признак» Для описания клиента достаточно знать: 1. Число транзакций в период времени от начала наблюдения до текущего момента 2. Время последней покупки, между 1ой и последней покупкой. Т.е. нам надо знать всего 2 информации – давность и частота покупок
Целевая переменная, что прогнозируем, выход модели	Ү (какое то число)	Р (X) – вероятность наблюдения х транзакций в период времени т в будущем E (X) - ожидаемое число транзакций в прогнозный период для клиента с наблюдаемым поведением
Функционал ошибки	минимизируем Ф = (y_true – y_pred) ²	максимизируем Функцию максимального правдоподобия $\frac{\lambda^x \mu}{\lambda + \mu} e^{-(\lambda + \mu)t_x} + \frac{\lambda^{x+1}}{\lambda + \mu} e^{-(\lambda + \mu)T}$
Метод оптимизации	Градиентный спуск, SGD, Adam, adagrad и др.	Hamiltonian Monte Carlo (HMC) (в stan) или др.алгоритмы численной оптимизации *

*Функция правдоподобия, связанная с моделью Парето / NBD, довольно сложна и требует многочисленных вычислений гипергеометрической функции Гаусса. Множественные оценки гауссовской гипергеометрии очень требовательны с вычислительной точки зрения. Кроме того, точность некоторых *числовых процедур*, используемых для оценки этой функции, может существенно варьироваться в пространстве параметров; Это может вызвать серьезные проблемы для методов численной оптимизации, поскольку они ищут максимум функции правдоподобия.