Chapitre 13)

Devoir Surveillé 8

EDS Première

Durée: 45min

7 Conditions d'évaluation

Calculatrice : autorisée.

Compétences évaluées :

- □ Utiliser les propriétés algébriques de l'exponentielles.
- ☐ Résoudre des équations et inéquations avec des exponentielles.
- ☐ Etudier une fonction contenant des exponentielles.

Exercice 1 Questionnaire à Choix Multiples

(20 points)

Pour chaque question, déterminer la (ou les) réponse.s correcte.s. Vous justifierez soigneusement vos réponses sur la copie.

Partie A - Propriétés algébriques

- 1. $\exp(7+2) = \dots$
 - \bigcirc exp(9)
 - $(b) \exp 7 \times 2$
 - $\stackrel{\smile}{\mathsf{(c)}} e^9$
 - \bigcirc d) $e^7 \times e^2$
 - (e) $e^7 + e^2$
 - $(f) e^{14}$
- 2. $\exp(5-3) = \dots$
 - \bigcirc e^2

 - (c) e^{-15}
- 3. Pour tout réel x, on a $\exp(x) \times \exp(-x) = ...$
 - \bigcirc 0
 - (b) 1
 - \bigcirc $\exp(x^2)$
- 4. Pour tout réel x, on a $(e^x + e^{-x})^2 = \dots$
 - $\bigcirc \hspace{-.7cm} \bigcirc \hspace{-.7cm} e^{2x} + e^{-2x}$
 - (b) 1
 - \bigcirc $e^{2x} + e^{-2x} + 2$

Partie B - Médicament

On injecte un médicament dans le sang d'un patient. On note f(t) la quantité (en mg) de médicament présent dans le sang du patient à l'instant t exprimé en heure. On admet que l'on peut modéliser cette quantité par la fonction f définie sur l'intervalle $[0;+\infty[$ par $f(t)=8e^{-0.35t}$

- 1. On a:
 - (a) f(0) = 8
 - (b) f(1) = 8
 - © Pour tout réel $t \geq 0, f'(t) = \frac{8e^{-0.35t}}{}$
 - d Au bout de 2h, la quantité de médicament dans le sang a diminué de moitié.
- 2. Pour tout réel $t \geq 0$, on a $\frac{f(t+1)}{f(t)}...$
 - $\bigcirc {\bf Q} = e^{-0.35}$
 - $(b) = e^{0.35}$
 - $(c) = e^{-0.35c}$
 - $(d) \approx 0,70$
 - (e) = 8
 - $(f) \approx 1,42$
- 3. Selon ce modèle, le taux d'élimination du médicament par heure est, arrondi à 0,01%, de :
 - (a) 35%
 - (b) 0,70%
 - (c) 29,53%

Partie C - Étude d'une fonction

Soit f la fonction définie sur $\mathbb R$ par : $f(x)=(2x-3)e^x$

- 1. f(0) = ...
 - \bigcirc 0
 - (b) -3
 - \bigcirc -3e
- 2. f(1) = ...
 - \bigcirc -e
 - (b) -2,718
 - $(c) \epsilon$
- 3. Pour tout réel x, on a :
 - (a) $f'(x) = 2e^x + (2x 3)e^x$
 - (b) $f'(x) = (2x 3)e^x$
 - $\bigcirc f'(x) = 2e^x$
 - $(d) f'(x) = (2x-1)e^x$
- 4. La fonction f est :
 - (a) croissante sur \mathbb{R}
 - (b) positive sur \mathbb{R}
 - \bigcirc croissante sur $[0,5;+\infty[$
 - (d) négative sur $]-\infty;1,5].$
- 5. L'équation réduite de la tangente T à la courbe $\mathcal C$ au point d'abscisse 0 est :
 - (a) y = -3x 1
 - (b) y = -x 3
 - $\stackrel{\frown}{\text{(c)}} y = x 3$
 - $(\mathsf{d}) \ y = -3x$