

MS512 – Análise Numérica

MECC Prova Um - 24/04/2024

Prof. Lúcio Santos

Podem ser consultados livros e anotações. No fim da resolução escreva "Dou a minha palavra de honra que para fazer esta prova não recebi a ajuda de ninguém" e assine.

- 1 Seja $A \in \mathbb{R}^{n \times n}$ antissimétrica, isto é, $A^T = -A$. Prove que:
- (a) A diagonal de A é nula.
- (a) I A é não singular.
- (b) $(I-A)^{-1}(I+A)$ é ortogonal.

3 pontos

 $\fbox{2}$ Sejam $A \in \mathbb{R}^{3 \times 3}$ e $b \in \mathbb{R}^3$ dados por

$$A = \begin{pmatrix} 9 & 6 & 3 \\ 6 & 8 & 4 \\ 3 & 4 & 3 \end{pmatrix} \quad \text{e} \quad b = \begin{pmatrix} 6 \\ 2 \\ 2 \end{pmatrix}.$$

- (a) Encontre a fatoração de Cholesky de A.
- (b) Usando (a) resolva o sistema linear Ax = b.

2 pontos

3 Seja $a \in \mathbb{R}$ e considere os vetores $x=(3,4,12)^T$, $y=(a,0,0)^T$ e a matriz de Householder $H \in \mathbb{R}^{3\times 3}$ tal que Hx=y. Determine a e H.

 $oxed{4}$ Seja a matriz $A \in \mathbb{R}^{4 imes 2}$ com fatoração QR dada por

$$Q = \frac{1}{3} \begin{pmatrix} 1 & 2 & 0 & 2 \\ 0 & 0 & 3 & 0 \\ 2 & -2 & 0 & 1 \\ -2 & -1 & 0 & 2 \end{pmatrix} e R = \begin{pmatrix} 1 & 2 \\ 0 & 3 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

- (a) Use a fatoração acima para encontrar $x^* \in \mathbb{R}^2$ que minimiza $\|Ax b\|_2^2$, para $b = (1, 1, 1, 1)^T$.
- (b) Calcule o resíduo quadrático minimizado, $||Ax^* b||_2^2$.

3 pontos