EECS 151/251A Discussion 12

Zhaokai Liu

Agenda

- SRAMs
 - Architecture
 - 6T SRAM Read
 - 6T SRAM Write
 - Multi-Voltage SRAM
- Memory decoding
 - Design example

SRAMs

SRAM Architecture

- Grid of SRAM bitcells: 1:
 - o width = word size
 - height = # of words
- Bitlines (vertical) are shared across cells in a column
 - Long wires with a large capacitive load (drains of access transistors, read/write circuits)
- Wordlines (horizontal) are shared across cells in a row
 - Also long with large capacitive load (gates of access transistors)
- Peripheral circuitry (bitline drivers, sense amp, decoders)
 - Need to reduce the total number of pins, N+M address lines for 2^(N+M)
 - Ex: if N+M=20 --> 2^20 = 1 Mb

The 6T SRAM Cell

- Inverters (PL NL and PR NR)
 - in positive feedback form the memory element (like a latch!)
- AXL and AXR are the access transistors
 - Allow the bitlines to access the memory nodes (Q, Qbar) when WL = 1
- Only 1 WL in an SRAM array is active at a time
 - Addresses an entire row of SRAM cells
- Bitlines are controlled differently for read and write

6T SRAM Cell: 3 Modes of Operation

SRAM Read Operation

Procedure:

- Precharge BL and BLbar to VDD
- 0 Raise WL
- Sense dip on one bitline with sense amp
- Lower WL
- Discharge bitlines

BL

SRAM Read Stability

For cross-coupled INU

 Read stability = reading doesn't corrupt the value stored in Q and Qbar

- a. The access transistor shouldn't overpower the node storing a '0' and flip its state
- b. Sizing: make the latch NMOS stronger than the access transistor = $(W_n > W_{access})$

Equivalent Circuit

Read SNM

SRAM Write Operation

Procedure:

Drive BL and BLbar with data to write

O Raise WL

O Wait some amount of time (write time)

O Lower WL

Discharge bitlines

SRAM Write

- Write-ability = the cell's memory value can be changed
 - a. Access transistor must overpower latch
 - b. Assuming the cell is read stable ($W_n > W_{access}$), the node with '0' can't be overpowered => so we must overpower PMOS ($W_{access} > W_p$) and override the '1' node

Conflicts between read and write

Size 6T the SRAM cell for optimized read and write operation separately:

Multi-Voltage SRAM

You have 3 high voltage levels to choose: 0.9V, 1.0V(ref), 1.1V;

3 low voltages: -0.1V, 0V(ref), 0.1V

Which voltage is preferred?

Read speed	stability		
	during reading		

during reading						
	Readability.	Read Stability	Writability			
WL	l. i V	0.90	1.1 ∨			
BL	don4 caye	か. 9レ	1-1v/-0-1V			
VDD	1.1 🗸	1-1V	@9v			
GND	-a-1 U	- 0·1V	0-1V			

Memory Decoders

2-Stage Decoding

- Problem: each distinct address => 1 WL
 - Binary-to-thermometer conversion!
 - Naive method: each WL has its own NAND + inverter tree (a lot of load & logic!)
- 2-stage decoding: predecoders and final decoders
 - Decode some bits first, then the rest (MSB/LSB doesn't matter)
 - Larger predecode is better (this is just a path delay w/ branching problem)

