Boolean Algebra Reference

Axioms of Boolean Algebra*

1a.
$$0 \cdot 0 = 0$$

1b.
$$1+1=1$$

$$2a. \quad 1 \cdot 1 = 1$$

$$2b. \quad 0+0=0$$

$$3a. \quad 0 \cdot 1 = 1 \cdot 0 = 0$$

$$3b$$
. $1+0=0+1=1$

4a. If
$$x = 0$$
, then $\bar{x} = 1$

4b. If
$$x = 1$$
, then $\bar{x} = 0$

10a.
$$x \cdot y = y \cdot x$$

Commutative

9.

10*b*.
$$x + y = y + x$$

11a.
$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

Associative

11b.
$$x + (y + z) = (x + y) + z$$

12a.
$$x \cdot (y + z) = x \cdot y + x \cdot z$$

Distributive

Single-Variable Theorems

 $x \cdot 0 = 0$

5b. x+1=1

6a. $x \cdot 1 = x$

6b. x + 0 = x

7a. $x \cdot x = x$

7b. x+x=x

8a. $x \cdot \overline{x} = 0$

8b. $x + \overline{x} = 1$ $\frac{=}{x} = x$

5a.

12b.
$$x + y \cdot z = (x + y) \cdot (x + z)$$

13a.
$$x + x \cdot y = x$$

Absorption

13b.
$$x \cdot (x + y) = x$$

14a.
$$x \cdot y + x \cdot \overline{y} = x$$

Combining

14b.
$$(x + y) \cdot (x + \overline{y}) = x$$

$$15a. \quad \overline{x \cdot y} = \overline{x} + \overline{y}$$

15b.
$$\overline{x+y} = \overline{x} \cdot \overline{y}$$

16a.
$$x + \overline{x} \cdot y = x + y$$

16b.
$$x \cdot (\bar{x} + y) = x \cdot y$$

17a.
$$x \cdot y + y \cdot z + \overline{x} \cdot z = x \cdot y + \overline{x} \cdot z$$

Consensus

17b.
$$(x+y) \cdot (y+z) \cdot (\overline{x}+z) = (x+y) \cdot (\overline{x}+z)$$

^{*} Information copied from Brown, S. & Vranesic, Z. (2008). Fundamentals of Digital Logic with *Verilog Design*, 2nd ed. Boston: McGraw-Hill, pp. 29-31.