Empowering Financial Inclusion:

Credit default prediction through alternative data integration

Marian Ilagan

EXECUTIVE SUMMARY

Leveraging alternative data sources can offer a more comprehensive view of borrowers' creditworthiness, especially for the creditdisadvantaged segment. In this project we explored to incorporate the use of alternative data in predictive models for credit default.

TOPICS OF DISCUSSION

1

BUSINESS OPPORTUNITY

Credit score is one of the main considerations in loan approvals

Dependency on credit score creates a challenge for credit-disadvantaged customers

Percentage of Canada's adult population that is underserved or unserved¹.

Unable to access financial services because of little to no credit history

Low credit score often leads to higher interest rates or rejection

90% of underserved migrated to credit served within two years

Higher level of inquiry implies demand is not being met

Alternative data can provide fuller picture of financial capacity

Enables lenders to make credit more available

Increase company's market share by tapping on the credit underserved

Mobile phone payments

2

PROJECT PROPOSAL

Business Goal

- Understand the overall financial capacity of underserved consumers
- Generate new credit applications and increase customer base

Analytics Goal

Develop a default risk prediction model that will ensure underserved customers who are capable of repayment are not rejected.

Research Questions

- What features from alternative data are important for default prediction?
- Which model can provide the most optimal solution?

DATA SOURCE

- International consumer finance provider
- Provides positive and safe borrowing experience to people with little or no credit history
- Makes use of alternative data to predict client's repayment abilities
- ❖Cash loans, point-of-sale loans, credit cards

Kaggle: Home Credit Default Risk

DATA DESCRIPTION

	application_df	previous_df	bureau_df	bureaubal_df	POS_df	prev_cc_df	installments_df
rows	307511	1670214	1716428	27299925	10001358	3840312	13605401
columns	122	37	17	3	8	23	8

Credit related

• Annuity, credit score from external sources, number of inquiries, type of loans, purpose of loan

Demographic

 age, gender, highest level of education, occupation, count of children, count of family members

Transactions

•credit card drawings, point-of-sale, cash loans

Social network

Number of defaults within the client's social circle

Living situation

• housing situation, rating of the region, building information of where the client lives, owns a car

Payment history

 Number of days of late payment, number of remaining installments

PROJECT AND DATA SCOPE

Assumptions

- All variables are free and acceptable to use
- Variables are legally available in Canada

Exclusions

- First time applicants
- · Clients with no data in credit bureau

Risk and Dependencies

- Skewed data
- Imbalanced dataset
- Large dataset

PROCESS FLOW

- Removed data for exclusion
- Analyzed supporting tables – Feature engineering
- Prepared final table

Initial Data Cleaning and Preparation

Data Exploration, Preprocessing

- Missing values
- Multicollinearity
- Identify Outliers
- Skewed data
- Irrelevant values

- Feature Selection
- Oversampling and under sampling
- Models
- Optimization

Modeling

Best Model

- Choose model based on ROC, F1 score, Accuracy
- Feature Importance

MODEL PERFORMANCES

	ROC-AUC	F1 Score	Accuracy
Random Forest	0.69	0.26	0.77
Stochastic Gradient Descent	0.69	0.26	0.68
Logistic Regression	0.69	0.26	0.64
Xgboost	0.69	0.20	0.86
AdaBoost	0.67	0.20	0.88
Decision Tree	0.55	0.19	0.75

BEST MODEL RESULTS

FEATURE IMPORTANCE

3

CONCLUSION & RECOMMENDATION

RECOMMENDATIONS

Analytics Team

- Tailor, refit and optimize the model to Canadian market
- Improve model scores:
 - Create high-quality features that can better predict default
 - Modify thresholds
- Create models for clients without credit history

Management

- Review regulatory laws about using alternative data
- Incorporate alternative data when evaluating the 5Cs of the applicant:
 - NAME_INCOME_TYPE (Employed or Unemployed), OCCUPATION TYPE – Capacity to pay
 - Previous average DPD (days past due) days Character or repayment behavior
- Explore the use of explainable AI (e.g. SHAP)

Analytics Goal

- Incorporated alternative data from Home Credit
- Predicted underserved customers who are capable of repayment

Research Questions

- Best Model: Random Forest 70% ROC-AUC
- Top 3 features: CB_AVG_CREDIT_ENDDATE 2yrs+,
 NAME_EDUCATION_TYPE (Secondary), NAME_INCOME_TYPE (Employed)

Business Goal

- Understood client's financial capabilities
- Make more informed lending decisions
- Empower Financial Inclusion

THANK YOU!

Any questions?

APPENDIX

SGD / Regression – Feature Importance

	coef	odds_ratio
CB_AMT_CREDIT_SUM_OVERDUE_76-100k	1.590064	4.904062
AMT_REQ_CREDIT_BUREAU_WEEK	0.598804	4.701518
NAME_INCOME_TYPE_Employed	1.109093	3.031609
CB_SEC_LOAN_0	0.864272	2.373278
DEF_30_CNT_SOCIAL_CIRCLE	0.303935	2.025294
OCCUPATION_TYPE_8_Operators_Assemblers	0.546727	1.727589
NAME_EDUCATION_TYPE_Secondary	0.541917	1.719299
OWN_CAR_AGE_21-25	0.501692	1.651513
FLAG_OWN_CAR_N	0.437463	1.548773
CB_AVG_DAYS_CREDIT_ENDDATE_2yrs+	0.297943	1.347085

EXPLAINABLE AI

Explanation

PCA

DEF_30_CNT_SOCIAL_CIRCLE

Columns after PCA	Description
AMT_REQ_CREDIT_BUREAU_HOUR	Number of inquiries 1 hr before the application
AMT_REQ_CREDIT_BUREAU_WEEK	Number of inquiries 1 wk before the application
APARTMENTS_MEDI	Normalized information about the building (median apartment size)
CB_AMT_CREDIT_SUM_OVERDUE_100+	Amount overdue in Credit bureau
CB_AMT_CREDIT_SUM_OVERDUE_26-50k	Amount overdue in Credit bureau
CB_AMT_CREDIT_SUM_OVERDUE_51-75k	Amount overdue in Credit bureau
CB_AMT_CREDIT_SUM_OVERDUE_76-100k	Amount overdue in Credit bureau
CB_AMT_CREDIT_SUM_OVERDUE_no_overdue	Amount overdue in Credit bureau
CB_AVG_DAYS_CREDIT_ENDDATE_1-2yrs	AVG remaining duration of CB credit (in days) at the time of application in Home Credit
CB_AVG_DAYS_CREDIT_ENDDATE_2yrs+	AVG remaining duration of CB credit (in days) at the time of application in Home Credit
CB_AVG_DAYS_CREDIT_ENDDATE_3-6months	AVG remaining duration of CB credit (in days) at the time of application in Home Credit
CB_AVG_DAYS_CREDIT_ENDDATE_7-12months	AVG remaining duration of CB credit (in days) at the time of application in Home Credit
CB_AVG_DAYS_CREDIT_ENDDATE_below3months	AVG remaining duration of CB credit (in days) at the time of application in Home Credit
CB_MONTHS_1_AVG_21xandup	AVG times the client has a DPD within 30days (credit bureau)
CB_MONTHS_1_AVG_none	AVG times the client has a DPD within 30days (credit bureau)
CB_MONTHS_5_AVG	AVG times the client has a DPD more than 120+ days or written off
CB_SEC_LOAN_0	Number of secured loans
CB_SEC_LOAN_3+	Number of secured loans
CB_TOTAL_CNT_CREDIT_PROLONG_0	count of times the Credit Bureau credit prolonged
CB_TOTAL_CNT_CREDIT_PROLONG_3+	count of times the Credit Bureau credit prolonged
CC_AVG_AMT_DRAWINGS	Average amount of credit card drawings
CC_PCT_CASH_DRAWINGS	Percentage of credit card cash drawings
CF_CB_MONTHS_0_AVG	Average number of times the client paid on time (credit bureau)
CF_OBS_30_CNT_SOCIAL_CIRCLE	How many observation of client's social surroundings with observable 30 DPD (days past due) - payment behavior
CNT_ACTIVE_LOANS	Number of active loans
CNT_FAM_MEMBERS_1-2	Count of family members
DAYS_ID_PUBLISH	How many days before the application did client change the identity document with which he applied for the loan
DEBT_TO_INCOME_RATIO_21-40pct	Debt to income ratio
DEBT_TO_INCOME_RATIO_41-60pct	Debt to income ratio
DEBT_TO_INCOME_RATIO_61-80pct	Debt to income ratio
DEBT_TO_INCOME_RATIO_81pct_andup	Debt to income ratio
DEBT_TO_INCOME_RATIO_none	Debt to income ratio

How many observation of client's social surroundings defaulted on 30 DPD (days past due)

EXT SOURCE 1 EXT SOURCE 2 EXT SOURCE 3

FLAG DOCUMENT 3 0

Columns after PCA

FLAG OWN CAR N FLAG WORK PHONE 0

INS AVG LATE PAYMENT 21-30days INS AVG LATE PAYMENT zero NAME EDUCATION TYPE Lower secondary

LANDAREA MEDI NAME FAMILY STATUS Married

NAME EDUCATION TYPE Secondary

NAME FAMILY STATUS Widow Separated NAME HOUSING TYPE Co-op apartment

NAME HOUSING TYPE House / apartment NAME HOUSING TYPE Municipal apartment NAME HOUSING TYPE Office apartment NAME HOUSING TYPE Rented apartment NAME INCOME TYPE Employed

OCCUPATION TYPE 1 Manager OCCUPATION TYPE 2 Professionals OCCUPATION TYPE 8 Operators Assemblers OCCUPATION TYPE 9 Elementary Occupation

POS CNT INSTALLMENTS FUTURE 1-15

POS CNT INSTALLMENTS FUTURE 16-30

POS CNT INSTALLMENTS FUTURE 31-45

POS CNT INSTALLMENTS FUTURE 46-60

POS CNT INSTALLMENTS FUTURE 76+

REGION RATING CLIENT W CITY 3

REG CITY NOT LIVE CITY 0

YEARS EMPLOYED 11-15

YEARS EMPLOYED 31+

YEARS EMPLOYED 6-10

OWN CAR AGE 11-15 OWN CAR AGE 16-20 OWN CAR AGE 21-25

OWN CAR AGE 26-30

PREV AVG DPD DAYS

Client's income is employment

Occupation Occupation Occupation Occupation Car age Car age

Description

Client has no car

client has no work phone

Median size of landarea

client's education type

client's education type

client's family status

client's family status

Housing type

Housing type

Housing type

Housing type

Housing type

Normalized credit score from external source

Normalized credit score from external source

Normalized credit score from external source

average number of days client has late payment (installments)

average number of days client has late payment (installments)

client did not submit document 3

Car age Car age Remaing count of installments for POS CASH loans Remaing count of installments for POS CASH loans

Rating of client's location is 3

Years employed

Years employed

Years employed

Remaing count of installments for POS CASH loans

Remaing count of installments for POS CASH loans

Remaing count of installments for POS CASH loans

Registered address is the same as contact address

Average DPD days in the previous applications