Data Understanding

Source : http://archive.ics.uci.edu/ml/datasets/Auto+MPG

• Instances : 398

Attributes: 8

Goal: Regression to Predict MPG (Mile Per Gallon) or fuel consumption

Pre-processing Data

	upg	cyminers	inipg cyminers displacement norsepower weight acceleration model-year origin	Hotachower	weight	acceleration	illouel-year	origin	cal-llaille
0	18.0	8	307.0	130.0	130.0 3504.0	12.0	70	1	1 chevrolet chevelle malibu
_	15.0	00	350.0	165.0	165.0 3693.0	11.5	70	_	buick skylark 320
2	18.0	00	318.0	150.0	150.0 3436.0	11.0	70	_	plymouth satellite
u	16.0	00	304.0	150.0	150.0 3433.0	12.0	70	_	amc rebel sst
4	4 17.0	6 0	302.0	140.0	140.0 3449.0	10.5	70	_	ford torino

memory usage: 28.1+ KB	dtypes: float64(4),	car-name	origin	model-year	acceleration	weight	horsepower	displacement	cylinders	pdw	Data columns	RangeIndex: 398 entries, 0 to 397	<class 'panda<="" td=""></class>
28.1+		398	398	398	398	398	392	398	398	398	(total	98 entr	s.core.
KB	int64(3)	non-null	non-null	non-null	non-null	non-null	392 non-null	non-null	non-null	non-null float64	9 columns):	ies, 0 to	frame.Dat
	int64(3), object(2)	object	int64	int64	float64	float64	object	float64	int64	float64	s):	5 397	'pandas.core.frame.DataFrame'>
	2)												

 There are 6 missing value for horsepower column, in this case i'm using mean to replace the missing value

Data Exploration (1)

- I'm pretty straight forward for this step, i jumped in to plot heatmap based on attributes correlation.
- From this heatmap, we can conclude that cylinders, displacement, horsepower, and weight have strong negative correlation to MPG

Data Exploration (2)

- Then i pairplot the data to visualize the correlation between each attributes.
- I highlighted all attributes correlation to mpg
- From this plot, it is strengthened my conclusion about cylinders, displacement, horsepower, and weight correlation to mpg
- Based on this plot, i will make machine learning model with only 4 attributes above

Modelling

- I splitted the data to 80% of train data and 20% of test data.
- I choose 2 simple model of regression:
- Linear Regression
- Polynomial Regression
- Those 2 models from scikit-learn library
- Evaluation for this 2 models using R-squared method, and here the result:

```
In [14]: #fitting into LinearRegression
                                                                      Out[14]: 0.683561414185194
                                                                                                                                            y_pred=lr.predict(X_test)
                                                                                                                                                                   lr.fit(X_train,y_train)
                                                                                                                  r2_score(y_test, y_pred)
                                                                                                                                                                                                  lr=LinearRegression()
                     Linear Regression
                                                                                                                                                                                                                                   In [15]: poly = PolynomialFeatures(degree=2)
                                                                                                                                                          X_train_ = poly.fit_transform(X_train)
X_test_ = poly.fit_transform(X_test)
pr = LinearRegression()
y_pred_=pr.predict(X_test_)
                         # Predict
                                                                            pr.fit(X_train_, y_train)
```

Polynomial Regression

Out[15]: 0.7635569868533403

r2_score(y_test, y_pred_)

Conclusion

- MPG values have strong correlation to the cylinders, displacement,
- Polynomial Regression is the best model so far with R-squared score : horsepower, and weight values.