UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Eksamen i MAT-INF 1100 — Modellering og

beregninger.

Eksamensdag: Onsdag 10. oktober 2012.

Tid for eksamen: 15:00-17:00.

Oppgavesettet er på 6 sider.

Vedlegg: Formelark.

Tillatte hjelpemidler: Ingen.

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene.

Svarene føres på eget svarark.

De 10 første oppgavene teller 2 poeng hver, de siste 10 teller 3 poeng hver. Den totale poengsummen er altså 50. Det er 5 svaralternativer for hvert spørsmål, men det er bare ett av disse som er riktig. Dersom du svarer feil eller lar være å krysse av på et spørsmål, får du null poeng. Du blir altså ikke "straffet" med minuspoeng for å svare feil. Lykke til!

NB. Husk å sjekke at du har ført inn svarene riktig på svararket!

Oppgaveark

Oppgave 1. Det desimale tallet 165 representeres i totallssystemet som

A: 1011 0101₂

B: 1110 0101₂

C: 1010 0100₂

D: 1010 0111₂

✓**E:** 1010 0101₂

Oppgave 2. Skrevet i totallssystemet blir det heksadesimale tallet $a7.5d_{16}$

A: 1010 0111.1101 1101₂

 $\sqrt{\mathbf{B}}$: 1010 0111.0101 1101₂

C: 1110 0111.0101 1101₂

D: 1010 1111.0101 1101₂

E: 1011 0111.0101 1111₂

Oppgave 3. Det rasjonale tallet 3/5 kan skrives i 2-tallsystemet som

 $\checkmark \mathbf{A} \colon 0.1001\ 1001\ 1001 \cdots_2$ der sifrene 1001 gjentas uendelig mange ganger

B: 0.011₂

 $C: 0.11_2$

D: $0.0101\ 0101\ 0101\cdots_2$ der sifrene 01 gjentas uendelig mange ganger

E: $0.1101\ 1101\ 1101\cdots_2$ der sifrene 1101 gjentas uendelig mange ganger

Oppgave 4. Det oktale tallet 56.27₈ representeres i totallsystemet som

A: 11 0110.0101 11₂

B: 10 1110.1101 11₂

✓ C: 10 1110.0101 11₂

D: 10 1010.0111 11₂

E: $10\ 1010.0101\ 01_2$

Oppgave 5. Kun ett av følgende utsagn er sant, hvilket?

√ A: Det rasjonale tallet 65/81 kan representeres med en endelig sifferutvikling i 6-tallsystemet

 $\mathbf{B} \text{:}\ \mathrm{Det}\ \mathrm{rasjonale}\ \mathrm{tallet}\ 5/12\ \mathrm{kan}\ \mathrm{representeres}\ \mathrm{med}\ \mathrm{en}\ \mathrm{endelig}\ \mathrm{sifferutvikling}\ \mathrm{i}\ 3\text{-tallsystemet}$

 \mathbf{C} : Det rasjonale tallet 5/12 kan representeres med en endelig sifferutvikling i 2-tallsystemet

 $\mathbf{D}\text{:}$ Både 1/7 og 1/8 kan representeres med endelige sifferutviklinger i 60-tallsystemet

E: Hvis vi bruker 128 bits flyttall får vi aldri problemer med avrundingsfeil

Oppgave 6. Tallet

$$\frac{\sqrt{32}-1}{\sqrt{2}+1}$$

er det samme som

A: $\sqrt{32} - 3$

B: $\sqrt{8} + 5$

 $\mathbf{C} \colon 0$

✓ **D**: $9 - 5\sqrt{2}$

E: $\sqrt{32} + 1$

Oppgave 7. Hva er minste øvre skranke for mengden

$$\{x \in \mathbb{R} \mid x^6 - 2 < 0\}?$$

A: 2

B: 6

 \checkmark C: $2^{1/6}$

D: 1

E: $\sqrt{2}$

Oppgave 8. Hva er Taylor-polynomet av grad 2 om a = 0 for funksjonen $f(x) = x^5 + 3x - 1$?

A:
$$-1 + 3x + 2x^2$$

B:
$$-1 + 2x$$

C:
$$-1 + 3x - x^2$$

D:
$$-1 + 3x + x^2$$

$$\sqrt{E}$$
: −1 + 3 x

Oppgave 9. Hvilken av følgende differensligninger er lineær?

A:
$$x_{n+1}^2 - x_n = n$$

✓B:
$$x_{n+3} - nx_{n+2} + 3x_{n+1} - x_n = \sin n$$

C:
$$x_{n+2} - \sin x_n = 3^n$$

D:
$$x_{n+2} - x_{n+1} x_n = 1$$

E:
$$x_{n+2}x_{n+1} - x_n = n$$

Oppgave 10. For hvilken av følgende verdier av c blir Taylor-polynomet av grad 2 om a=0 for funksjonen $f(x)=cx+e^{-x/c}$ lik $1+x^2/2$?

A:
$$c = 3$$

B:
$$c = 1/2$$

$$✓$$
 C: $c = -1$

D:
$$c = 2$$

E:
$$c = -2$$

Oppgave 11. Hva er Taylor-polynomet av grad 3 om $a = \pi/2$ for funksjonen $f(x) = \sin x$?

A:
$$x - x^3/6$$

$$\sqrt{\mathbf{B}}$$
: 1 − $(x - \pi/2)^2/2$

C:
$$1 + (x - \pi/2)^2/2$$

D:
$$1 - (x - \pi/2)^2/3$$

E:
$$1 + x^2$$

Oppgave 12. For hvilken verdi av β har vi at $100_{\beta} = 10_{4\beta}$, med andre ord at 100 i β -tallsystemet er lik 10 i 4β -tallsystemet?

A:
$$\beta = 8$$

B:
$$\beta = 6$$

C:
$$\beta = 5$$

$$\checkmark \mathbf{D}: \beta = 4$$

E:
$$\beta = 2$$

Oppgave 13. Vi tilnærmer funksjonen $f(x) = e^x$ med sitt Taylorpolynom av grad n om a = 0. Hva er minste verdi av n som gjør at den absolutte feilen i tilnærmingen er mindre enn 0.001 for alle x i intervallet [-1,0]?

A:
$$n = 3$$

B:
$$n = 4$$

C:
$$n = 5$$

$$\sqrt{\mathbf{D}}$$
: $n=6$

E:
$$n = 7$$

Oppgave 14. Hvilket av følgende uttrykk vil gi stor relativ feil om det evalueres for negative flyttall med stor absoluttverdi?

A:
$$x^2 + x^4$$

B:
$$x + e^x$$

C:
$$x + \sin x$$

D:
$$1 + x^2$$

✓**E**:
$$\sqrt{x^2 + 2} + x$$

Oppgave 15. Differensligningen

$$x_{n+1} - 3x_n = n, \ n \ge 0$$

med startverdi $x_0 = 0$ har løsningen

$$\checkmark$$
 A: $x_n = (3^n - 2n - 1)/4$

B:
$$x_n = (3^n + 2n - 1)$$

C:
$$x_n = (3^n - 1)/2$$

D:
$$x_n = (3^n + 3n - 1)/6$$

E:
$$x_n = 3^n - 1$$

Oppgave 16. En annenordens lineær og homogen differensligning med konstante koeffisienter har den generelle løsningen

$$x_n = C2^n + D3^{-n}$$
.

Hva kan da ligningen være?

A:
$$3x_{n+2} - 7x_{n+1} - 2x_n = 0$$

B:
$$2x_{n+2} + 7x_{n+1} + 2x_n = 0$$

C:
$$3x_{n+2} + 7x_{n+1} + 2x_n = 0$$

$$\checkmark$$
D: $3x_{n+2} - 7x_{n+1} + 2x_n = 0$

E:
$$3x_{n+2} + 5x_{n+1} + 2x_n = 0$$

Oppgave 17. Vi har gitt en differensligning med tilhørende startverdier,

$$x_{n+2} - 6x_{n+1} + 9x_n = 2^n$$
, $n \ge 0$, $x_0 = 1$, $x_1 = -2/3$.

Hva er løsningen?

A:
$$x_n = 1 - 5n3^{n-2}$$

B:
$$x_n = 2^n - 8n/3$$

C:
$$x_n = 3^n - 11n2^{n-1}/3$$

$$\sqrt{\mathbf{D}}$$
: $x_n = 2^n - 8n3^{n-2}$

E:
$$x_n = 2^{n+1} - 3^n$$

Oppgave 18. Vi har differensligningen

$$3x_{n+2} - 5x_{n+1} = 1/7$$
, $x_1 = -1/14$

og simulerer denne med 64-bits flyttall på datamaskin. For tilstrekkelig store n vil da den beregnede løsningen \bar{x}_n gi som resultat

A: 0

B: -1/14

C: $(5/3)^n$

✓ **D:** overflow

E: 1

Oppgave 19. Vi har differensligningen

$$5x_{n+2} - 16x_{n+1} + 3x_n = 0.$$

For hvilket par av startverdier vil den eksakte løsningen forbli begrenset mens den simulerte løsningen (med 64 bits flyttall) vil gi overflow?

A: $x_0 = 1$, $x_1 = 1$

B: $x_0 = 0$, $x_1 = 1/3$

C: $x_0 = 1$, $x_1 = 2$

√D: $x_0 = 1$, $x_1 = 1/5$

E: $x_0 = 1$, $x_1 = 2/5$

Oppgave 20. For hvert naturlig tall n lar vi P_n betegne påstanden

$$P_n: \sum_{i=1}^n \frac{1}{i(i+1)} = \frac{n}{n+1}.$$

Et induksjonsbevis for at P_n er sann for alle naturlige tall kan være som følger:

- 1. Vi ser lett at P_1 er sann.
- 2. Anta nå at vi har bevist at P_k er sann for en $k \ge 1$. For å fullføre induksjonsbeviset, må vi vise at da er også P_{k+1} sann. Vi ser at

$$\begin{split} \sum_{i=1}^{k+1} \frac{1}{i(i+1)} &= \sum_{i=1}^{k} \frac{1}{i(i+1)} + \frac{1}{(k+1)(k+2)} \\ &= \frac{k}{k+1} + \frac{1}{(k+1)(k+2)} \\ &= \frac{k(k+2)+1}{(k+1)(k+2)} \\ &= \frac{(k+1)^2}{(k+1)(k+2)} \\ &= \frac{k+1}{k+2}. \end{split}$$

Dermed stemmer formelen også for n = k + 1 om den stemmer for n = k, så påstanden P_n er sann for alle naturlige tall n.

Hvilket av følgende utsagn er sant?

A: Påstanden P_n er sann for $n \ge 1$, men del 2 av induksjonsbeviset er feil

B: Påstanden P_n er ikke sann for alle $n \ge 1$, og del 2 av induksjonsbeviset er feil

C: Påstanden P_n er ikke sann for alle $n \ge 1$, og del 1 av induksjonsbeviset er feil

 \checkmark **D:** Påstanden P_n er riktig for alle $n \ge 1$ og induksjonsbeviset er riktig

E: Beviset er riktig, men det er ikke noe induksjonsbevis

Det var det!