2020 V and C without Unemployment

This is the example vignette for function: **snw_a4chk_wrk_bisec_vec** from the **PrjOptiSNW Package.** This function solves for the V(states, check) for individuals working. Dense solution. Bisection, most time for the test here taken to generate the income matrixes. But these can be generated out of the check loops.

Test SNW A4CHK WRK BISEC VEC Defaults Dense

Call the function with defaults.

```
mp_params = snw_mp_param('default_docdense');
mp_controls = snw_mp_control('default_test');
mp_controls('bl_print_vfi') = true;
mp_controls('bl_timer') = true;
[V_ss,~,cons_ss,~] = snw_vfi_main_bisec_vec(mp_params, mp_controls);
```

```
SNW_VFI_MAIN: Finished Age Group:83 of 83
SNW_VFI_MAIN: Finished Age Group:82 of 83
SNW_VFI_MAIN: Finished Age Group:81 of 83
SNW_VFI_MAIN: Finished Age Group:80 of 83
SNW_VFI_MAIN: Finished Age Group:79 of 83
SNW VFI MAIN: Finished Age Group:78 of 83
SNW VFI MAIN: Finished Age Group:77 of 83
SNW VFI MAIN: Finished Age Group:76 of 83
SNW VFI MAIN: Finished Age Group:75 of 83
SNW_VFI_MAIN: Finished Age Group:74 of 83
SNW_VFI_MAIN: Finished Age Group:73 of 83
SNW_VFI_MAIN: Finished Age Group:72 of 83
SNW VFI MAIN: Finished Age Group:71 of 83
SNW VFI MAIN: Finished Age Group:70 of 83
SNW_VFI_MAIN: Finished Age Group:69 of 83
SNW VFI MAIN: Finished Age Group:68 of 83
SNW_VFI_MAIN: Finished Age Group:67 of 83
SNW VFI MAIN: Finished Age Group:66 of 83
SNW VFI MAIN: Finished Age Group:65 of 83
SNW_VFI_MAIN: Finished Age Group:64 of 83
SNW_VFI_MAIN: Finished Age Group:63 of 83
SNW_VFI_MAIN: Finished Age Group:62 of 83
SNW_VFI_MAIN: Finished Age Group:61 of 83
SNW_VFI_MAIN: Finished Age Group:60 of 83
SNW_VFI_MAIN: Finished Age Group:59 of 83
SNW_VFI_MAIN: Finished Age Group:58 of 83
SNW_VFI_MAIN: Finished Age Group:57 of 83
SNW VFI MAIN: Finished Age Group:56 of 83
SNW VFI MAIN: Finished Age Group:55 of 83
SNW_VFI_MAIN: Finished Age Group:54 of 83
SNW VFI MAIN: Finished Age Group:53 of 83
SNW_VFI_MAIN: Finished Age Group:52 of 83
SNW_VFI_MAIN: Finished Age Group:51 of 83
SNW_VFI_MAIN: Finished Age Group:50 of 83
SNW_VFI_MAIN: Finished Age Group:49 of 83
SNW VFI MAIN: Finished Age Group:48 of 83
SNW_VFI_MAIN: Finished Age Group:47 of 83
SNW VFI MAIN: Finished Age Group:46 of 83
SNW VFI MAIN: Finished Age Group:45 of 83
SNW VFI MAIN: Finished Age Group:44 of 83
SNW VFI MAIN: Finished Age Group:43 of 83
SNW VFI MAIN: Finished Age Group:42 of 83
SNW VFI MAIN: Finished Age Group:41 of 83
SNW_VFI_MAIN: Finished Age Group:40 of 83
```

```
SNW_VFI_MAIN: Finished Age Group:39 of 83
SNW_VFI_MAIN: Finished Age Group:38 of 83
SNW_VFI_MAIN: Finished Age Group:37 of 83
SNW_VFI_MAIN: Finished Age Group:36 of 83
SNW_VFI_MAIN: Finished Age Group:35 of 83
SNW VFI MAIN: Finished Age Group: 34 of 83
SNW VFI MAIN: Finished Age Group:33 of 83
SNW_VFI_MAIN: Finished Age Group:32 of 83
SNW_VFI_MAIN: Finished Age Group:31 of 83
SNW_VFI_MAIN: Finished Age Group:30 of 83
SNW_VFI_MAIN: Finished Age Group:29 of 83
SNW_VFI_MAIN: Finished Age Group:28 of 83
SNW_VFI_MAIN: Finished Age Group:27 of 83
SNW_VFI_MAIN: Finished Age Group:26 of 83
SNW_VFI_MAIN: Finished Age Group:25 of 83
SNW VFI MAIN: Finished Age Group:24 of 83
SNW VFI MAIN: Finished Age Group:23 of 83
SNW VFI_MAIN: Finished Age Group:22 of 83
SNW VFI MAIN: Finished Age Group:21 of 83
SNW_VFI_MAIN: Finished Age Group:20 of 83
SNW_VFI_MAIN: Finished Age Group:19 of 83
SNW_VFI_MAIN: Finished Age Group:18 of 83
SNW_VFI_MAIN: Finished Age Group:17 of 83
SNW_VFI_MAIN: Finished Age Group:16 of 83
SNW_VFI_MAIN: Finished Age Group:15 of 83
SNW_VFI_MAIN: Finished Age Group:14 of 83
SNW_VFI_MAIN: Finished Age Group:13 of 83
SNW_VFI_MAIN: Finished Age Group:12 of 83
SNW_VFI_MAIN: Finished Age Group:11 of 83
SNW_VFI_MAIN: Finished Age Group:10 of 83
SNW_VFI_MAIN: Finished Age Group:9 of 83
SNW_VFI_MAIN: Finished Age Group:8 of 83
SNW_VFI_MAIN: Finished Age Group:7 of 83
SNW_VFI_MAIN: Finished Age Group:6 of 83
SNW_VFI_MAIN: Finished Age Group:5 of 83
SNW_VFI_MAIN: Finished Age Group:4 of 83
SNW_VFI_MAIN: Finished Age Group:3 of 83
SNW_VFI_MAIN: Finished Age Group:2 of 83
SNW VFI MAIN: Finished Age Group:1 of 83
Elapsed time is 139.984500 seconds.
Completed SNW VFI MAIN; SNW MP PARAM=default dense; SNW MP CONTROL=default test
```

welf checks = 2; [V W, C W] = snw_a4chk_wrk_bisec_vec(welf_checks, V ss, cons_ss, mp_params, mp_controls);

Elapsed time is 76.079485 seconds.

Completed SNW A4CHK WRK BISEC VEC; welf checks=2; TR=0.0017225; SNW MP PARAM=default dense; SNW MP CONTROL=default test

CONTAINER NAME: mp container map ND Array (Matrix etc)

(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	\\\\\\\\\	<i></i>	.,,,,,,,,,,,,,,,,						
	i	idx	ndim	numel	rowN	colN	sum	mean	std
	_								
C_W	1	1	6	1.9173e+06	83	23100	9.1863e+06	4.7913	8.3422
<pre>C_W_minus_C_ss</pre>	2	2	6	1.9173e+06	83	23100	1018.4	0.00053118	0.00074775
V_W	3	3	6	1.9173e+06	83	23100	-4.2855e+06	-2.2352	17.877
V_W_minus_V_ss	4	4	6	1.9173e+06	83	23100	15640	0.0081571	0.021566
mn_MPC	5	5	6	1.9173e+06	83	23100	2.9563e+05	0.15419	0.21706

```
mn_V_W_gain_check = V_W - V_ss;
mn_MPC_W_gain_share_check = (C_W - cons_ss)./(welf_checks*mp_params('TR'));
```

Dense Param Results Define Frames

Define the matrix dimensions names and dimension vector values. Policy and Value Functions share the same ND dimensional structure.

```
% Grids:
age_grid = 18:100;
agrid = mp_params('agrid')';
eta_H_grid = mp_params('eta_H_grid')';
eta_S_grid = mp_params('eta_S_grid')';
ar_st_eta_HS_grid = string(cellstr([num2str(eta_H_grid', 'hz=%3.2f;'), num2str(eta_S_grid', 'wz
edu_grid = [0,1];
marry_grid = [0,1];
kids_grid = (1:1:mp_params('n_kidsgrid'))';
% NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
cl_mp_datasetdesc = {};
cl_mp_datasetdesc{1} = containers.Map({'name', 'labval'}, {'age', age_grid});
cl_mp_datasetdesc{2} = containers.Map({'name', 'labval'}, {'savings', agrid});
cl_mp_datasetdesc{3} = containers.Map({'name', 'labval'}, {'eta', 1:length(eta_H_grid)});
cl_mp_datasetdesc{4} = containers.Map({'name', 'labval'}, {'edu', edu_grid});
cl_mp_datasetdesc{5} = containers.Map({'name', 'labval'}, {'marry', marry_grid});
cl_mp_datasetdesc{6} = containers.Map({'name', 'labval'}, {'kids', kids_grid});
```

Analyze Difference in V and C with Check

The difference between V and V with Check, marginal utility gain given the check.

```
% Generate some Data
mp_support_graph = containers.Map('KeyType', 'char', 'ValueType', 'any');
mp_support_graph('cl_st_xtitle') = {'Savings States, a'};
mp_support_graph('st_legend_loc') = 'eastoutside';
mp_support_graph('bl_graph_logy') = true; % do not log
mp_support_graph('it_legend_select') = 21; % how many shock legends to show
mp_support_graph('cl_colors') = 'jet';
```

MEAN(MN_V_GAIN_CHECK(A,Z))

Tabulate value and policies along savings and shocks:

```
% Set
ar_permute = [1,4,5,6,3,2];
% Value Function
st_title = ['MEAN(MN_V_W_GAIN_CHECK(A,Z)), welf_checks=' num2str(welf_checks) ', TR=' num2str(metb_az_v = ff_summ_nd_array(st_title, mn_v_W_gain_check, true, ["mean"], 4, 1, cl_mp_datasetdesc
```

xx MEAN(MN_V_W_GAIN_CHE	,,,			XXXXXXXXXXXXXXX	XXXXXXXXX		
group	savings	mean_eta_1	mean_eta_2	mean_eta_3	mean_eta_4	mean_eta_5	mean_eta_6	mean
1	0	0.1253	0.074981	0.055673	0.048117	0.044975	0.043551	0.
2	0.00085734	0.12419	0.074491	0.055326	0.047802	0.044666	0.043243	0.
3	0.0068587	0.1134	0.069223	0.051492	0.044298	0.041233	0.039822	0.
4	0.023148	0.097789	0.061019	0.045415	0.038762	0.035824	0.034438	0.
5	0.05487	0.080591	0.051512	0.038393	0.032456	0.029694	0.028347	0.
6	0.10717	0.066209	0.04312	0.032206	0.026999	0.024439	0.02315	0.
7	0.18519	0.055273	0.036722	0.027464	0.022816	0.020445	0.019208	0.

8	0.29407	0.046205	0.031335	0.023475	0.019332	0.017115	0.015921	0.6
9	0.43896	0.038899	0.026901	0.020203	0.016487	0.014432	0.013288	0.6
10	0.625	0.032914	0.023206	0.01748	0.014151	0.012235	0.011147	0.
11	0.85734	0.027964	0.020082	0.015185	0.012196	0.010425	0.0093921	0.00
12	1.1411	0.023831	0.017415	0.013228	0.01055	0.0089155	0.0079353	0.00
13	1.4815	0.020354	0.015123	0.011544	0.009154	0.0076473	0.0067305	0.00
14	1.8836	0.017411	0.013142	0.010084	0.0079624	0.0065822	0.0057191	0.00
15	2.3525	0.01491	0.011422	0.0088155	0.0069411	0.0056799	0.0048763	0.00
16	2.8935	0.01278	0.0099292	0.0077111	0.0060627	0.0049139	0.00417	0.00
17	3.5117	0.010963	0.0086325	0.006748	0.0053037	0.0042629	0.0035742	0.00
18	4.2121	0.0094097	0.0075049	0.0059067	0.0046452	0.003708	0.0030741	0.6
19	5	0.0080801	0.0065236	0.0051712	0.0040728	0.0032336	0.0026529	0.00
20	5.8805	0.0069408	0.005669	0.0045263	0.0035738	0.0028265	0.0022959	0.00
21	6.8587	0.0059645	0.0049254	0.0039619	0.0031383	0.0024763	0.0019929	0.6
22	7.9398	0.0051283	0.0042793	0.0034693	0.0027581	0.0021743	0.0017357	0.00
23	9.1289	0.0044123	0.0037185	0.0030385	0.0024262	0.0019129	0.0015169	0.00
24	10.431	0.0037995	0.0032324	0.0026622	0.0021364	0.0016863	0.0013302	0.00
25	11.852	0.003275	0.0028112	0.002334	0.0018832	0.0014891	0.0011702	0.000
26	13.396	0.002826	0.0024466	0.0020476	0.0016617	0.0013172	0.0010325	0.000
27	15.069	0.0024417	0.002131	0.0017977	0.0014674	0.001167	0.00091372	0.000
28	16.875	0.0021125	0.0018578	0.0015793	0.001297	0.0010354	0.00081079	0.000
29	18.82	0.0018302	0.0016212	0.0013885	0.0011478	0.00092002	0.00072118	0.000
30	20.91	0.0015879	0.0014162	0.0012217	0.0010167	0.00081861	0.00064283	0.000
31	23.148	0.0013798	0.0012385	0.0010759	0.0009012	0.00072932	0.00057411	0.000
32	25.541	0.0012009	0.0010843	0.0009484	0.00079962	0.0006506	0.00051369	0.000
33	28.093	0.0010468	0.0009506	0.00083682	0.00071027	0.00058112	0.00046038	0.000
34	30.81	0.00091399	0.00083444	0.00073914	0.00063151	0.00051959	0.0004132	0.000
35	33.697	0.00079937	0.00073346	0.00065356	0.000562	0.00046497	0.00037134	0.000
36	36.758	0.00070031	0.0006456	0.00057854	0.00050061	0.00041657	0.00033417	0.000
37	40	0.00061458	0.00056907	0.00051272	0.00044637	0.00037369	0.00030114	0.000
38	43.427	0.00054027	0.00050235	0.00045493	0.00039841	0.00033554	0.00027171	0.000
39	47.044	0.00047578	0.0004441	0.00040415	0.00035595	0.00030154	0.00024544	0.000
40	50.856	0.0004197	0.0003932	0.00035947	0.00031835	0.00027123	0.00022197	0.000
41	54.87	0.00037088	0.00034866	0.00032015	0.00028502	0.00024425	0.00020097	0.000
42	59.089	0.00032832	0.00030963	0.00028549	0.00025545	0.00022017	0.00018213	0.000
43	63.519	0.00029112	0.00027538	0.00025491	0.0002292	0.00019866	0.0001652	0.000
44	68.164	0.00025858	0.0002453	0.00022791	0.00020588	0.00017942	0.00014999	0.000
45	73.032	0.00023009	0.00021884	0.00020403	0.00018514	0.00016219	0.00013633	0.000
46	78.125	0.00020506	0.00019552	0.0001829	0.00016667	0.00014676	0.00012403	0.000
47	83.45	0.00018305	0.00017495	0.00016417	0.00015021	0.00013292	0.00011295	9.194
48	89.011	0.00016367	0.00015678	0.00014756	0.00013553	0.00012051	0.00010293	8.422
49	94.815	0.00014658	0.00014071	0.00013281	0.00012243	0.00010935	9.3884e-05	7.722
50	100.87	0.00013149	0.00012646	0.00011968	0.00011071	9.9328e-05	8.5712e-05	7.086
51	107.17	0.00011812	0.00011382	0.00010799	0.00010023	9.0308e-05	7.832e-05	6.513
52	113.73	0.00010628	0.00010259	9.756e-05	9.0844e-05	8.2186e-05	7.163e-05	5.992
53	120.55	9.5767e-05	9.2592e-05	8.8254e-05	8.2429e-05	7.4868e-05	6.558e-05	5.528
54	127.64	8.642e-05	8.3687e-05	7.9939e-05	7.4885e-05	6.8292e-05	6.0156e-05	5.129
55	135	8.642e-05	8.3687e-05	7.9939e-05	7.4886e-05	6.8293e-05	6.0156e-05	5.129

% Consumption

st_title = ['MEAN(MN_MPC_W_GAIN_CHECK(A,Z)), welf_checks=' num2str(welf_checks) ', TR=' num2str
tb_az_c = ff_summ_nd_array(st_title, mn_MPC_W_gain_share_check, true, ["mean"], 4, 1, cl_mp_data

xxx MEAN(MM	N_MPC_W_GAIN_C savings	HECK(A,Z)), we mean eta 1	<pre>lf_checks=2, mean eta 2</pre>	TR=0.0017225 mean eta 3	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	mean eta 5	mean eta 6	mean
1	0	0.98526	0.94217	0.8526	0.74198	0.63783	0.53426	0.48
2	0.00085734	0.98083	0.93786	0.84881	0.73884	0.63523	0.53232	0.48
3	0.0068587	0.84368	0.82032	0.76961	0.69489	0.60245	0.50284	0.44
4	0.023148	0.74921	0.72805	0.68324	0.61779	0.54083	0.44605	0.38
5	0.05487	0.65324	0.6462	0.61132	0.55665	0.48187	0.38513	0.34
6	0.10717	0.44202	0.45645	0.45163	0.41094	0.33575	0.27028	0.24
7	0.18519	0.33034	0.32383	0.31456	0.29031	0.25187	0.22146	0.20

8	0.29407	0.2813	0.27271	0.25807	0.23769	0.21574	0.18987	0.18
9	0.43896	0.2249	0.21944	0.2088	0.19411	0.17106	0.15956	0.1
10	0.625	0.18874	0.18492	0.17862	0.16796	0.15453	0.14541	0.13
11	0.85734	0.16236	0.16065	0.15616	0.14905	0.14279	0.13554	0.13
12	1.1411	0.14885	0.14631	0.14134	0.13638	0.13247	0.12795	0.12
13	1.4815	0.14162	0.13888	0.13477	0.13128	0.12868	0.1241	0.12
14	1.8836	0.13892	0.1348	0.13159	0.12972	0.12474	0.1229	0.12
15	2.3525	0.1332	0.13062	0.12766	0.12451	0.12159	0.1208	0.12
16	2.8935	0.12454	0.12268	0.11998	0.1182	0.11676	0.1156	0.11
17	3.5117	0.11709	0.11733	0.11648	0.11442	0.11309	0.11261	0.11
18	4.2121	0.11435	0.11378	0.11298	0.11334	0.11262	0.11261	0.11
19	5	0.1145	0.11409	0.11341	0.11308	0.11352	0.11332	0.11
20	5.8805	0.11285	0.11256	0.11208	0.11172	0.11225	0.11213	0.11
21	6.8587	0.11083	0.11068	0.11047	0.10985	0.11078	0.11083	0.11
22	7.9398	0.10949	0.1094	0.10929	0.10873	0.10975	0.10986	0.10
23	9.1289	0.11049	0.11045	0.1103	0.11001	0.11084	0.11113	0.11
24	10.431	0.10943	0.10944	0.10941	0.10911	0.10976	0.1104	0.11
25	11.852	0.10714	0.10715	0.10724	0.10692	0.10733	0.10819	0.10
26	13.396	0.10662	0.10663	0.1067	0.10651	0.10659	0.10769	0.1
27	15.069	0.10898	0.10898	0.10905	0.10886	0.10872	0.11016	0.11
28	16.875	0.11044	0.11045	0.11051	0.11053	0.11005	0.11171	0.11
29	18.82	0.10911	0.10911	0.10917	0.10934	0.10873	0.11026	0.11
30	20.91	0.10635	0.10635	0.1064	0.10632	0.10602	0.1073	0.10
31	23.148	0.10594	0.10595	0.106	0.1059	0.10562	0.10662	0.10
32	25.541	0.10778	0.10778	0.10784	0.10792	0.10752	0.10823	0.10
33	28.093	0.10799	0.10799	0.10804	0.10814	0.10789	0.10822	0.10
34	30.81	0.10767	0.10768	0.10771	0.1078	0.1075	0.10766	0.10
35	33.697	0.10815	0.10815	0.10818	0.10827	0.1081	0.10772	0.10
36	36.758	0.10925	0.10926	0.10928	0.10937	0.10947	0.10864	0.11
37	40	0.10756	0.10757	0.10759	0.10766	0.10784	0.10705	0.10
38	43.427	0.1062	0.10621	0.10623	0.1063	0.10628	0.10578	0.10
39	47.044	0.10582	0.10583	0.10586	0.10592	0.1058	0.10552	0.10
40	50.856	0.10829	0.10831	0.10833	0.1084	0.1084	0.108	0.10
41	54.87	0.10898	0.10899	0.10902	0.10908	0.10916	0.10873	0.10
42	59.089	0.10774	0.10775	0.10778	0.10783	0.10792	0.10748	0.10
43	63.519	0.10666	0.10668	0.1067	0.10674	0.10683	0.10655	0.10
44	68.164	0.1073	0.10732	0.10734	0.10738	0.10746	0.10733	0.10
45	73.032	0.1085	0.10851	0.10853	0.10857	0.10864	0.10853	0.10
46	78.125	0.10779	0.1078	0.10782	0.10785	0.10792	0.10795	0.1
47	83.45	0.10631	0.10632	0.10634	0.10637	0.10643	0.10644	0.10
48	89.011	0.10666	0.10667	0.10668	0.10671	0.10677	0.10674	0.10
49	94.815	0.10809	0.1081	0.10812	0.10814	0.1082	0.1082	0.10
50	100.87	0.10807	0.10808	0.10809	0.10811	0.10816	0.10814	0.1
51	107.17	0.10728	0.10729	0.1073	0.10732	0.10737	0.10734	0.10
52	113.73	0.10761	0.10762	0.10763	0.10764	0.10768	0.10766	0.10
53	120.55	0.10824	0.10825	0.10825	0.10827	0.10829	0.10822	0.10
54	127.64	0.10739	0.10738	0.10738	0.10736	0.10728	0.10683	0.10
	135	0.40=00	0.10=00	0 10=00	0 10=01	0 10=00	0 10500	0.44

Graph Mean Values:

135

0.10739

55

```
st_title = ['MEAN(MN\_V\_W\_GAIN\_CHECK(A,Z)), welf\_checks=' num2str(welf_checks) ', TR='
mp_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_V\_W\_GAIN\_CHECK(a,z))'};
ff_graph_grid((tb_az_v{1:end, 3:end}))', ar_st_eta_HS_grid, agrid, mp_support_graph);
```

0.10738

0.10736

0.10728

0.10683

0.10

0.10738

Graph Mean Consumption (*MPC: Share of Check Consumed*):

```
st_title = ['MEAN(MN\_MPC\_W\_GAIN\_CHECK(A,Z)), welf\_checks=' num2str(welf_checks) ', TR=' nump_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_MPC\_W\_GAIN\_CHECK(a,z))'};
ff_graph_grid((tb_az_c{1:end, 3:end})', ar_st_eta_HS_grid, agrid, mp_support_graph);
```


Analyze Kids and Marriage and Age

Aggregating over education, savings, and shocks, what are the differential effects of Marriage and Age.

```
% Generate some Data
mp_support_graph = containers.Map('KeyType', 'char', 'ValueType', 'any');
ar_row_grid = [...
    "k0M0", "K1M0", "K2M0", "K3M0", "K4M0", ...
    "k0M1", "K1M1", "K2M1", "K3M1", "K4M1"];
mp_support_graph('cl_st_xtitle') = {'Age'};
mp_support_graph('st_legend_loc') = 'best';
mp_support_graph('bl_graph_logy') = true; % do not log
mp_support_graph('st_rounding') = '6.2f'; % format shock legend
mp_support_graph('cl_scatter_shapes') = {...
```

```
'o', 'd', 's', 'x', '*', ...
'o', 'd', 's', 'x', '*'};

mp_support_graph('cl_colors') = {...
    'red', 'red', 'red'...
'blue', 'blue', 'blue', 'blue'};
```

MEAN(VAL(KM,J)), MEAN(AP(KM,J)), MEAN(C(KM,J))

Tabulate value and policies:

```
% Set
% NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
ar_permute = [2,3,4,1,6,5];
% Value Function
st_title = ['MEAN(MN_V W_GAIN_CHECK(KM,J)), welf_checks=' num2str(welf_checks) ', TR=' num2str(
tb_az_v = ff_summ_nd_array(st_title, mn_v_W_gain_check, true, ["mean"], 3, 1, cl_mp_datasetdesd
group
          kids
                marry
                       mean_age_18
                                   mean_age_19
                                               mean_age_20
                                                           mean_age_21
                                                                       mean_age_22
                                                                                   mean_age_23
    1
           1
                  0
                         0.010124
                                    0.0096664
                                                0.0091647
                                                            0.0084563
                                                                         0.007865
                                                                                    0.0073681
    2
           2
                  0
                         0.013555
                                     0.012956
                                                 0.012265
                                                              0.01127
                                                                         0.010434
                                                                                    0.0097263
    3
           3
                  0
                         0.015552
                                     0.014968
                                                 0.014264
                                                             0.013108
                                                                         0.012138
                                                                                     0.011317
    4
           4
                  0
                         0.017504
                                     0.016894
                                                  0.01613
                                                             0.014825
                                                                          0.01373
                                                                                     0.012804
    5
           5
                 0
                         0.019059
                                     0.018461
                                                 0.017679
                                                             0.016263
                                                                         0.015076
                                                                                     0.014074
    6
           1
                 1
                        0.0042913
                                    0.0040316
                                                 0.003771
                                                            0.0034429
                                                                         0.003166
                                                                                    0.0029296
    7
           2
                                                                                     0.003898
                 1
                        0.0057322
                                    0.0053869
                                                0.0050374
                                                            0.0045932
                                                                        0.0042175
    8
           3
                  1
                                   0.0063759
                                                0.0059804
                                                            0.0054519
                                                                        0.0050047
                                                                                    0.0046232
                        0.0067661
    9
                                    0.007599
                                                            0.0065203
           4
                  1
                        0.0080474
                                                0.0071398
                                                                        0.0059876
                                                                                    0.0055354
    10
           5
                        0.0095567
                                    0.0090861
                                                0.0085927
                                                            0.0078601
                                                                        0.0072337
                                                                                    0.0066974
% Consumption Function
st_title = ['MEAN(MN_MPC_W_GAIN_CHECK(KM,J)), welf_checks=' num2str(welf_checks) ', TR=' num2st
tb_az_c = ff_summ_nd_array(st_title, mn_MPC_W_gain_share_check, true, ["mean"], 3, 1, cl_mp_date
```

group	kids	marry	mean_age_18	mean_age_19	mean_age_20	mean_age_21	mean_age_22	mean_age_2
1	1	0	0.056055	0.062152	0.076579	0.072049	0.069081	0.07123
2	2	0	0.062949	0.07061	0.08564	0.082109	0.080745	0.08133
3	3	0	0.068855	0.079381	0.10061	0.099067	0.095297	0.089577
4	4	0	0.073038	0.087775	0.10721	0.10193	0.10055	0.094713
5	5	0	0.086493	0.089191	0.11627	0.10754	0.10561	0.10214
6	1	1	0.087018	0.092174	0.10003	0.094839	0.091444	0.091707
7	2	1	0.087939	0.094393	0.10299	0.10006	0.098626	0.090967
8	3	1	0.10007	0.10127	0.11098	0.10622	0.10685	0.10379
9	4	1	0.099978	0.1049	0.11207	0.11365	0.11202	0.10686
10	5	1	0.10876	0.11206	0.12109	0.11868	0.1267	0.11636

Graph Mean Values:

```
st_title = ['MEAN(MN\_V\_W\_GAIN\_CHECK(KM,J)), welf\_checks=' num2str(welf_checks) ', TR=' num
mp_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_V\_W\_GAIN\_CHECK(KM,J))'};
ff_graph_grid((tb_az_v{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Graph Mean Consumption (MPC: Share of Check Consumed):

```
st_title = ['MEAN(MN\_MPC\_W\_GAIN\_CHECK(KM,J)), welf\_checks=' num2str(welf_checks) ', TR=' r
mp_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_MPC\_W\_GAIN\_CHECK(KM,J))'};
ff_graph_grid((tb_az_c{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Analyze Education and Marriage

Aggregating over education, savings, and shocks, what are the differential effects of Marriage and Age.

```
% Generate some Data
mp_support_graph = containers.Map('KeyType', 'char', 'ValueType', 'any');
ar_row_grid = ["E0M0", "E1M0", "E0M1", "E1M1"];
mp_support_graph('cl_st_xtitle') = {'Age'};
mp_support_graph('st_legend_loc') = 'best';
mp_support_graph('bl_graph_logy') = true; % do not log
mp_support_graph('st_rounding') = '6.2f'; % format shock legend
mp_support_graph('cl_scatter_shapes') = {'*', 'p', '*', 'p' };
mp_support_graph('cl_colors') = {'red', 'red', 'blue', 'blue'};
```

MEAN(VAL(EM,J)), MEAN(AP(EM,J)), MEAN(C(EM,J))

Tabulate value and policies:

```
% Set
% NaN(n jgrid,n agrid,n etagrid,n educgrid,n marriedgrid,n kidsgrid);
ar_permute = [2,3,6,1,4,5];
% Value Function
st_title = ['MEAN(MN V W GAIN CHECK(EM,J)), welf_checks=' num2str(welf_checks) ', TR=' num2str(
tb_az_v = ff_summ_nd_array(st_title, mn_v w gain_check, true, ["mean"], 3, 1, cl_mp_datasetdeso
group
         edu
               marry
                      mean_age_18
                                 mean_age_19
                                             mean_age_20
                                                         mean_age_21
                                                                    mean_age_22
                                                                                mean_age_23
                       0.015898
                                               0.01488
    1
          0
                0
                                   0.015428
                                                          0.014086
                                                                       0.01338
                                                                                  0.01275
    2
          1
                0
                        0.01442
                                   0.013751
                                              0.012921
                                                          0.011482
                                                                      0.010317
                                                                                 0.0093657
    3
          0
                1
                       0.0074423
                                  0.0070662
                                              0.0066934
                                                          0.006237
                                                                     0.0058341
                                                                                 0.0054769
    4
          1
                1
                       0.0063152
                                  0.0059256
                                               0.005515
                                                         0.0049104
                                                                     0.0044097
                                                                                 0.0039966
% Consumption
st_title = ['MEAN(MN_MPC_W_GAIN_CHECK(EM,J)), welf_checks=' num2str(welf_checks) ', TR=' num2st
tb_az_c = ff_summ_nd_array(st_title, mn_MPC_W_gain_share_check, true, ["mean"], 3, 1, cl_mp_date
edu
               marry
                      mean_age_18
                                 mean_age_19
   group
                                             mean_age_20
                                                         mean_age_21
                                                                    mean_age_22
                                                                                mean_age_23
```

Graph Mean Values:

1

2

3

4

0

1

0

0

1

1

0.059933

0.079022

0.088005

0.1055

```
st_title = ['MEAN(MN\_V\_W\_GAIN\_CHECK(EM,J)), welf\_checks=' num2str(welf_checks) ', TR=' num
mp_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_V\_W\_GAIN\_CHECK(EM,J))'};
ff_graph_grid((tb_az_v{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```

0.078043

0.11648

0.094532

0.12433

0.076386

0.10869

0.093334

0.12005

0.076149

0.10436

0.094468

0.11979

0.074623

0.10097

0.093024

0.11085

0.065486

0.090158

0.089818

0.1121

Graph Mean Consumption (MPC: Share of Check Consumed):

```
st_title = ['MEAN(MN\_MPC\_W\_GAIN\_CHECK(EM,J)), welf\_checks=' num2str(welf_checks) ', TR=' r
mp_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_MPC\_W\_GAIN\_CHECK(EM,J))'};
ff_graph_grid((tb_az_c{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


