3.11 節の残り

shino16

2022年8月17日

目次

0	復習	2
1	General Position と特性多項式	3
2	有限体法	6
2.1	$\mathbb Q$ から $\mathbb F_q$ への帰着 $\dots\dots\dots\dots$	6
2.2	$\chi_{\mathcal{A}}(q)$ の計算 \dots	7
2.3	例:ブレイド配置	8
2.4	例:Shi 配置	9
3	問題	10

0 復習

定義. 配置 A について,

Intersection poset $L(A) := \{0$ 個以上の超平面の非空な交わり $\}$.

$$\hat{0} = V. \ s \le t \iff s \supseteq t.$$

定義.

特性多項式
$$\chi_{\mathcal{A}}(x) \coloneqq \sum_{t \in L(\mathcal{A})} \mu(\hat{0}, t) x^{\dim(t)}$$
$$= \sum_{\substack{\mathcal{B} \subseteq \mathcal{A} \\ \text{central}}} (-1)^{\#\mathcal{B}} x^{n-\operatorname{rank}(\mathcal{B})} \quad ($$
 命題 $3.11.3$).

命題 (3.11.5, Deletion-Restriction). 配置 A, $H_0 \in A$ について

$$\mathcal{A}' \coloneqq \mathcal{A} - \{H_0\},$$

$$\mathcal{A}'' \coloneqq \mathcal{A}^{H_0} = \{H \cap H_0 \neq \emptyset : H \in \mathcal{A}\}.$$

このとき

$$\chi_A(x) = \chi_{\mathcal{A}'}(x) - \chi_{\mathcal{A}''}(x).$$

1 General Position と特性多項式

定義.V: 実線形空間 について

$$r(\mathcal{A}) \coloneqq \#(領域) = r(\mathcal{A}') + r(\mathcal{A}''),$$
 $b(\mathcal{A}) \coloneqq \#(相対的に有界な領域) \quad \text{(essentialize すると有界)}$

$$= \begin{cases} b(\mathcal{A}') + b(\mathcal{A}'') & \text{if } \operatorname{rank}(\mathcal{A}) = \operatorname{rank}(\mathcal{A}'), \\ 0 & \text{if } \operatorname{rank}(\mathcal{A}) = \operatorname{rank}(\mathcal{A}') + 1. \end{cases}$$

定理.

$$r(\mathcal{A}) = (-1)^n \chi_{\mathcal{A}}(-1),$$

$$b(\mathcal{A}) = (-1)^{\operatorname{rank}(\mathcal{A})} \chi_{\mathcal{A}}(1).$$

1 General Position と特性多項式

定義. *A* の超平面は general position にある def 以下が同時に成立:

(a)
$$\{H_1, \ldots, H_p\} \subseteq \mathcal{A}, p \leq n \Longrightarrow \dim(H_1 \cap \cdots \cap H_p) = n - p,$$

(b)
$$\{H_1, \ldots, H_p\} \subseteq \mathcal{A}, p > n \Longrightarrow H_1 \cap \cdots \cap H_p = \emptyset.$$

命題. A: general position, m = #A について

$$\chi_{\mathcal{A}}(x) = \sum_{k=0}^{n} (-1)^k \binom{m}{k} x^{n-k}$$
$$= x^n - mx^{n-1} + \binom{m}{2} x^{n-2} - \dots + (-1)^n \binom{m}{n}.$$

証明. 方針:L(A) の構造に注目. $\mu(\hat{0},t)$ を explicit に求める.

$$\mathcal{A} = \{H_1, \dots, H_m\},$$
 $P = \{S \subseteq [m] : \#S \le n\}$ を包含関係で順序付け,
 $\phi : P \to L(\mathcal{A}), \quad S \mapsto \bigcap_{i \in S} H_i,$

とする^a. このとき

- (a) ϕ は全射:明らか.
- (b) φ は単射:

$$\phi(S) = \phi(S')$$

$$\Longrightarrow \phi(S) = \phi(S \cup S')$$

$$\Longrightarrow n - \#S = \dim(\phi(S)) = n - \#(S \cup S')$$

$$\Longrightarrow S = S'.$$

(c) ϕ と ϕ^{-1} は順序を保つ:

$$S \subseteq S' \iff \phi(S) \supseteq \phi(S').$$

ゆえに $L(A) \cong P$.

$$[\hat{0},S] \cong B_{\#S} \ \sharp \ \mathcal{V} \ \mu(\hat{0},S) = (-1)^{\#S}, \ \ \sharp \ \sharp \ \dim(\phi(S)) = n - \#S \ \ \sharp \ \mathcal{V}$$

$$\chi_{\mathcal{A}}(x) = \sum_{t \in L(\mathcal{A})} \mu(\hat{0}, t) x^{\dim(t)}$$

$$= \sum_{S \in P} (-1)^{\#S} x^{n - \#S}$$

$$= \sum_{k=0}^{n} (-1)^k \binom{m}{k} x^{n-k}.$$

 $[^]aP$ は truncated boolean algebra と呼ばれる.

なおV: 実線形空間 について

$$r(\mathcal{A}) = (-1)^n \chi_{\mathcal{A}}(-1) = \sum_{k=0}^n \binom{m}{k}$$
$$= 1 + m + \binom{m}{2} + \dots + \binom{m}{n}.$$

m < n obs

$$b(\mathcal{A}) = (-1)^m \chi_{\mathcal{A}}(1)$$

$$= (-1)^m \sum_{k=0}^m (-1)^k \binom{m}{k}$$

$$= \delta_{0m},$$

 $m \ge n$ のとき $\operatorname{rank}(A) = n$ より

$$b(\mathcal{A}) = (-1)^n \chi_{\mathcal{A}}(1)$$

$$= \sum_{k=0}^n (-1)^{n-k} \binom{m}{k}$$

$$= \binom{m-1}{n}.$$

(注) 最後の等号について:

(a) 漸化式を用いる:

$${m \choose n} - {m \choose n-1} + {m \choose n-2} - \cdots$$

$$= \left[{m-1 \choose n} + {m-1 \choose n-1} \right] - \left[{m-1 \choose n-1} + {m-1 \choose n-2} \right] + \cdots$$

$$= {m-1 \choose n}.$$

(b) FPS:

$$(-1)^n [x^n] \frac{1}{1-x} (1-x)^m = \binom{m-1}{n}.$$

2 有限体法

 \mathbb{Q} 上の配置 A の特性多項式を,有限体を使って計算しよう.

2.1 \mathbb{Q} から \mathbb{F}_a への帰着

- A 全体を同時に整数倍して分母をはらう.
- 素ベキqをとって全体の $\operatorname{mod} q$ をとり、 A_q を得る.

定義. \mathcal{A} は mod q で良い帰着を持つ $\stackrel{\text{def}}{\Longleftrightarrow}$ $L(\mathcal{A}) \cong L(\mathcal{A}_q)$.

命題. \mathbb{Z} 上の配置 A について, A が $\operatorname{mod} p$ で良い帰着を持たないような素数 p は有限個のみ.

証明. $H_1, \ldots, H_j \in \mathcal{A} (H_i : \alpha_i \cdot x = a_i)$ について,

$$H_{1} \cap \cdots \cap H_{j} \neq \emptyset$$

$$\iff \operatorname{rank} \begin{pmatrix} \alpha_{1} & a_{1} \\ \vdots & \vdots \\ \alpha_{j} & a_{j} \end{pmatrix} = \operatorname{rank} \begin{pmatrix} \alpha_{1} \\ \vdots \\ \alpha_{j} \end{pmatrix}. \tag{1}$$

また $H_1 \cap \cdots \cap H_j \neq \emptyset$ ならば

$$\dim(H_1 \cap \dots \cap H_j) = \operatorname{null} \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_j \end{pmatrix} = n - \operatorname{rank} \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_j \end{pmatrix}. \tag{2}$$

等式 (1) の成立/不成立と式 (2) の値が \mathbb{Z} 上, \mathbb{F}_q 上で一致すればよい. (:: 増えない (1),潰れない (2),大小関係を保つ (明らか),比較不可能な関係を保つ (2))

(行列の rank) = $(\max k \text{ s.t.}$ 正則な $k \times k$ 小行列が存在) より、どの正方小行列についても行列式が非ゼロから $\mod p$ でゼロにならなければよい、p を十分大きくとれば OK.

2.2 $\chi_{\mathcal{A}}(q)$ の計算

この節のメイン.

定理 (3.11.10). \mathbb{Q}^n 上の配置 \mathcal{A} , $L(\mathcal{A}) \cong L(\mathcal{A}_q)$ なる素ベキ q について,

$$\chi_{\mathcal{A}}(q) = \# \left(\mathbb{F}_q^n - \bigcup_{H \in \mathcal{A}_q} H \right)$$
$$= q^n - \# \bigcup_{H \in \mathcal{A}_q} H.$$

無限個のqについて上の等式が成り立つので、補完で $\chi_A(x)$ が得られる.

証明. 方針: $\chi_{\mathcal{A}}(q)$ を Möbius 反転の式にあてはめる.

 $f,g:L(\mathcal{A}_q)\to\mathbb{Z}$ &

$$f(t) = \#t = q^{\dim(t)},$$
$$g(t) = \#\left(t - \bigcup_{u > t} u\right),$$

で定める. $f(t) = \sum_{u \geq t} g(u)$ より

$$\begin{split} g(t) &= \sum_{u \geq t} \mu(t, u) f(u) \\ &= \sum_{u \geq t} \mu(t, u) q^{\dim(u)}. \end{split}$$

 $t = \hat{0}$ を代入して

$$g(\hat{0}) = \chi_{\mathcal{A}}(q) = \# \left(\mathbb{F}_q^n - \bigcup_{H \in \mathcal{A}_q} H \right).$$

2.3 例:ブレイド配置

braid……組みひも

定義. ランク n-1 のブレイド配置

$$\mathcal{B}_n = \{x_i - x_j = 0 : 1 \le i < j \le n\} \text{ in } K^n.$$

これは直線 $x_1 = \cdots = x_n$ を含む $\binom{n}{2}$ 個の超平面の集まり.

例: \mathcal{B}_3 https://www.geogebra.org/3d/uxubgxrc

特性多項式を有限体法で計算しよう. 十分大きな素数 p について、定理 3.11.10 より

$$\chi_{\mathcal{B}_n}(p) = \#\{(x_1, \dots, x_n) \in \mathbb{F}_p^n : x_i \neq x_j \ (\forall i < j)\} \\
= (p)_n.$$

ゆえに

$$\chi_{\mathcal{B}_n}(x) = (x)_n.$$

実は $L(\mathcal{B}_n) \cong \Pi_n$ (問題 108 で後述).

2 有限体法 2.4 例:Shi 配置

2.4 **例:Shi 配置**

定義.

Shi 配置 $S = \{x_i, x_j = c : c \in \{0, 1\}, i \le i < j \le n\}.$

定理 (3.11.7).

$$\chi_{\mathcal{S}_n}(x) = x(x-n)^{n-1}.$$

証明.素数pについて次を示す:

$$\# \left(\mathbb{F}_p^n - \bigcup_{H \in (\mathcal{S}_n)_p} H \right) = p(p-n)^{n-1}.$$

次の条件を満たす $\pi = (B_1, \ldots, B_{p-n})$ を考える a :

- (a) $\bigcup B_i = [n],$
- (b) $B_i \cup B_j = \emptyset \ (i \neq j)$, and
- (c) $1 \in B_1$.

 (a,π) $(a \in \mathbb{F}_p)$ を $\mathbb{F}_p^n - \bigcup_{H \in (\mathcal{S}_n)_p} H$ の元に一対一に対応させよう.

- for i in 1, ..., p n:
 - for j in B_i (昇順):

$$* \alpha_j \leftarrow a$$
.

*
$$a \leftarrow a + 1$$
.

 $-a \leftarrow a + 1.$

例: $p = 11, n = 6, a = 6, \pi = (\{1,4\}, \{5\}, \emptyset, \{2,3,6\}, \emptyset)$:

$$\alpha_1 = 6$$
, $\alpha_4 = 7$, $\alpha_5 = 9$, $\alpha_2 = 1$, $\alpha_3 = 2$, $\alpha_6 = 3$.

$$(\alpha_1, \dots, \alpha_n) \in \left(\mathbb{F}_p^n - \bigcup_{H \in (\mathcal{S}_n)_p} H\right)$$
:
$$\alpha_i - \alpha_j = 1 \implies i, j \ \text{tx} \ \pi \ \text{上で同一ブロックに属し}, \ j < i.$$

全単射性: $\alpha_1, \ldots, \alpha_n$ を、 α_1 を先頭として昇順に並べる (informal). α_1 から a が、p-n 個のギャップから p-n 個のブロックとそれらの間の順番が一意に決まる.

各 $1 < i \le n$ について、i が所属するブロックが p-n 通りあることから、 (a,π) は $p(p-n)^{n-1}$ 通り.

系 (3.11.14).

$$r(S_n) = (n+1)^{n-1},$$

 $b(S_n) = (n-1)^{n-1}.$

$$r(S_2) = 3, b(S_2) = 1.$$

 $r(S_3) = 4^2 = 16, b(S_3)2^2 = 4.$

3 問題

問題 108. 単純グラフ G=(V,E) について, G の n-彩色とは次を満たす $f:V \to [n]$:

• $f(a) \neq f(b) \ (\{a,b\} \in E).$

 $\chi_G: n \mapsto \#(G \circ n$ -彩色) は $G \circ$ **彩色多項式**. $p \coloneqq \#V$.

a.~V の安定な分割:全てのブロックがGの安定集合.

 $^{^{}a}\left[n\right]$ \mathcal{O} weak ordered partition

 $S_G(j) := \#(V \text{ の安定な } j \text{ ブロック分割})$ について次を示せ:

$$\chi_G(n) = \sum_{j=1}^n S_G(j)(n)_j.$$

b. 半順序集合 $L_G := \{\pi : V \text{ の分割, 各ブロックが } G \text{ で連結} \}$. 次を示せ:

$$\chi_G(n) = \sum_{\pi \in L_G} \mu(\hat{0}, \pi) n^{\#\pi}.$$

なお、これより $\chi_G(n)=n^{\#(G\,\, \odot 連結成分)}\chi_{L_G}(n)$.

c. グラフィカル配置:

$$\mathcal{B}_G = \{x_i = x_j : \{i, j\} \in E\} \text{ in } \mathbb{R}^p.$$

 $L_G \cong L(\mathcal{B}_G), \ \chi_G = \chi_{\mathcal{B}_G}$ を示せ.

d. $e \in E$ について

$$G - e = (V, E - \{e\},$$
 $G/e = (e$ を縮約し、多重辺を 1 つにまとめる).

次を示せ:

$$\chi_G(n) = \chi_{G-e}(n) - \chi_{G/e}(n).$$

解答 (a.). ちょうど j 色を使う n-彩色は $S_G(j)(n)_j$ 通り. ただし $(n)_j$ は j 個のブロックに色を割り当てる方法の数.

解答 (b.). $g(\sigma) = \sum_{\pi \geq \sigma} \mu(\sigma,\pi) n^{\#\pi}$ とすると、Möbius 反転により

$$n^{\#\sigma} = \sum_{\pi > \sigma} g(\pi).$$

 $g(\hat{0}) = \chi_G(n)$ となるように g をうまく定めたい.

 $g(\sigma) := (\pi \text{ operator ope$

定義より $\chi_G(n) = g(\hat{0}) = \sum_{\pi} \mu(\hat{0}, \pi) n^{\#\pi}$.

 $\chi_G(n) = n^{\#(G \text{ の連結成分})} \chi_{L_G}(n)$:

$$L_G$$
 のランク = $p - \#(G)$ の連結成分),

$$\rho(\pi) = p - \#\pi,$$

より

$$\chi_{L_G}(n) = \sum_{\pi} \mu(\hat{0}, \pi) n^{(L_G \text{ のランク}) - \rho(\pi)}$$

$$= \sum_{\pi} \mu(\hat{0}, \pi) n^{\#\pi - \#(G \text{ の連結成分})}.$$

解答 (c.). $\pi \in L_G$ に対して, π の各ブロックに含まれる辺を集め, これらに対応する超平面の交叉 ($\in L(\mathcal{B}_G)$) を対応付ける. これは $L_G \to L(\mathcal{B}_G)$ の同型写像.

b. より

$$\chi_G(n) = n^a \chi_{L_G}(n) = n^a \chi_{L(\mathcal{B}_G)}(n) = n^{a+b} \chi_{\mathcal{B}_G}(n)$$
 (a,b は定数).

どちらも次数はpなのでa+b=0.

解答 (d.).

$$\chi_{\mathcal{B}_G}(n) = \chi_{\mathcal{B}_{G-e}}(n) - \chi_{\mathcal{B}_{G/e}}(n).$$

を示す. Deletion-Restriction $\chi_{\mathcal{A}}(x) = \chi_{\mathcal{A}'}(x) - \chi_{\mathcal{A}''}(x)$ を用いる. e に対応する超平面 H_e について $(\mathcal{B}_G)' = \mathcal{B}_G - \{H_e\} = \mathcal{B}_{G-e}$.

あとは $\chi_{(\mathcal{B}_G)''}(n) = \chi_{\mathcal{B}_{G/e}}(n)$ を示せばよい. WLOG $e = \{p-1, p\}$.

$$(\mathcal{B}_{G})'' = \{ H \cap H_{e} \neq \emptyset : H \in \mathcal{B}_{G} - \{ H_{e} \} \}$$

$$= \{ x_{i} = x_{j}, x_{p-1} = x_{p} : \{ i, j \} \in E - \{ e \} \} \text{ in } \mathbb{R}^{p},$$

$$\mathcal{B}_{G/e} = \{ x_{i} = x_{j} : \{ i, j \} \in E, i, j
$$\cup \{ x_{i} = x_{p-1} : \{ i, p \} \in E \} \text{ in } \mathbb{R}^{p-1}.$$$$

 \mathcal{B}_G の超平面は必ず $x_{p-1}=x_p$ であり、 x_p を取り除けば $\mathcal{B}_{G/e}$ に一致. したがって $(\mathcal{B}_G)'',\mathcal{B}_{G/e}$ は本質的に同じ (informal).

注:組合せ的証明の方が簡単. $e=\{i,j\}$ について

$$\chi_G(n) = \#\{f: G - e \ O \ n$$
-彩色, $f(i) \neq f(j)\}$, $\chi_{G/e}(n) = \#\{f: G - e \ O \ n$ -彩色, $f(i) = f(j)\}$.