

Wat is deep learning?

Deep learning is een machine learning methode waarbij kunstmatige neurale netwerken leren van grote hoeveelheden data.

Het ontstaan van deep learning

Neurale netwerken and deep learning bestaan al een tijd, maar computers hadden niet voldoende rekenkracht om deep learning te faciliteren.

Waarom deep learning?

Prestatie van deep learning modellen t.o.v. hoeveelheid data blijft toenemen

Machine learning vs. Deep learning

Machine Learning Car Not Car Output Input Feature extraction Classification Deep Learning Not Car Input Feature extraction + Classification Output

Een neuraal netwerk is een groep verbonden neuronen

Geïnspireerd op de werking van het menselijk brein

De werking van een neuron

De werking van een neuron

De gewichten

Wat gebeurt er in de neuron?

Activatiefunctie over gewogen som

Activatiefuncties bepalen de output

Threshold

Sigmoid

ReLU

Activatiefunctie voor elke laag

Een neurale netwerk trainen

Kostfunctie om error te meten

Gewichten updaten

Back propagation

Gradient descent

Stap voor stap kosten minimaliseren

Gradient = dC/dw

Learning rate

Learning rate mag niet te hoog en niet te laag zijn

Verschillende soorten NNs

Recurrent Neural Network (RNN)

Sequentiële data (tijdsgebonden)

text data

audio data

Reinforcement learning

Auto Encoder (AE)

Model traint de output om gelijkenissen te vinden met de input

Representation/feature learning

audioverwerking

ruisonderdrukking

Deep Convolutional Neural Network (CNN)

Ruimte en tijdsgebonden data

Video

Audio

Beelddata

0	0	0	0	0	0	0
0	0	1	0	1	0	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	1	0	0	0	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

Convolutional layer

Feature map: Een filter/kernel die eigenschappen herkent

Feature map scant de hele afbeelding en geeft hoge scores als deze dezelfde eigenschap vindt.

0	0	1
1	0	0
0	1	1

Pooling layer

Dimensie reductie d.m.v. poolen

Flattening

Van tabel naar vector

1	1	0	
1	2	1	
)	2	1	

0

Structuur van een CNN

Gradient descent algoritmes

- Stochastic Gradient Descent Het model wordt geoptimaliseerd volgens de error na elke sample.
- Batch Gradient Descent Het model wordt geoptimaliseerd gebaseerd op de gemiddelde error van de hele trainingsset.
- Mini-Batch Gradient Descent —Splitst de trainingset op in batches en past het model aan na elke batch.

