In [7]: import pandas as pd import numpy as np from sklearn.model selection import train test split from sklearn.linear model import LinearRegression from sklearn.metrics import mean squared error, r2 score import matplotlib.pyplot as plt import seaborn as sns In [29]: data = pd.read csv('Desktop/train456.csv') In [30]: data.head()

Out[30]:

	Id	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	Utilities	•••
0	1	60	RL	65.0	8450	Pave	NaN	Reg	Lvl	AllPub	
1	2	20	RL	80.0	9600	Pave	NaN	Reg	Lvl	AllPub	
2	3	60	RL	68.0	11250	Pave	NaN	IR1	Lvl	AllPub	
3	4	70	RL	60.0	9550	Pave	NaN	IR1	Lvl	AllPub	
4	5	60	RL	84.0	14260	Pave	NaN	IR1	Lvl	AllPub	

5 rows × 81 columns

```
In [31]:
features = data[['GrLivArea', 'BedroomAbvGr', 'FullBath']]
target = data['SalePrice']
                                                                          In [32]:
X_train, X_test, y_train, y_test = train_test_split(features, target,
test size=0.2, random state=42)
                                                                          In [33]:
model = LinearRegression()
model.fit(X train, y train)
                                                                         Out[33]:
LinearRegression
LinearRegression()
                                                                          In [34]:
y_pred = model.predict(X test)
                                                                          In [35]:
mse = mean_squared_error(y_test, y_pred)
                                                                          In [36]:
r2 = r2_score(y_test, y_pred)
print(f'Mean Squared Error: {mse:.2f}')
print(f'R2 Score: {r2:.2f}')
Mean Squared Error: 2806426667.25
R<sup>2</sup> Score: 0.63
                                                                          In [37]:
#example
```

```
new house = np.array([[2000, 3, 2]]) \# 2000 square feet, 3 bedrooms, 2
bathrooms
predicted price = model.predict(new house)
print(f'Predicted Price: ${predicted price[0]:,.2f}')
Predicted Price: $240,377.51
/opt/anaconda3/lib/python3.11/site-packages/sklearn/base.py:439:
UserWarning: X does not have valid feature names, but LinearRegression was
fitted with feature names
  warnings.warn(
                                                                      In [38]:
plt.figure(figsize=(10, 6))
plt.scatter(y_test, y_pred, alpha=0.7)
plt.xlabel('Actual Prices')
plt.ylabel('Predicted Prices')
plt.title('Actual vs. Predicted House Prices')
plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)],
color='red')
plt.show()
```


In []:

In []: