Duração: 90 minutos

1º Teste de ALGA EE

Nome:	Nr.:	Curso:

GRUPO I (10 valores)

Indique com as letras V ou F o valor lógico de cada uma das seguintes afirmações, sem apresentar cálculos. Cotação - Resposta certa: 1 valor. Resposta em branco: 0 valores. Resposta errada: -0,5 valores.

1. Considere as matrizes
$$A = \begin{bmatrix} 1 & 0 & 2 \\ 1 & 0 & 1 \end{bmatrix}$$
 e $B = 3A$. Então, $AB^T = \begin{bmatrix} 15 & 9 \\ 9 & 6 \end{bmatrix}$.

2. Considere a matriz
$$A = [a_{ij}] \in \mathcal{M}_{3\times 3}(\mathbb{R}), \ a_{ij} = \begin{cases} i \text{ se } i > j \\ 0 \text{ se } i = j \\ 1 \text{ se } i < j \end{cases}$$
 Então, $\frac{A^T + 3A}{2}$ é uma matriz simétrica.

3. Sejam as matrizes
$$X = [\xi_{ij}] \in \mathcal{M}_{m \times n}(\mathbb{R})$$
 e $Y = [y_{ij}] \in \mathcal{M}_{m \times p}(\mathbb{R})$. Então $XY \in \mathcal{M}_{m \times p}(\mathbb{R})$ e $(XY)_{ab} = \sum_{i=1}^{n} \xi_{ai} y_{ib}, \ a = 1, \dots, m, \ b = 1, \dots, p.$

- 4. Sejam A uma matriz do tipo 15×5 , B uma matriz do tipo 6×5 e C uma matriz do tipo 15×6 . Então a expressão $AB^{\rm T} C^{\rm T}$ está bem definida.
- 5. Seja $A = \begin{bmatrix} 0 & 2 & 4 & 0 \\ 1 & 1 & 0 & 2 \\ 2 & 2 & 0 & 5 \end{bmatrix}$. Efetuando, sobre a matriz A, a seguinte sequência de operações elementares $l_1 \leftrightarrow l_2, \ l_3 \leftarrow l_3 2l_1$ e $l_1 \leftarrow l_1 2l_3$ obtemos uma matriz em escada reduzida.
- 6. Se A é uma matriz escalar, então A é uma matriz triangular inferior.
- 7. Sejam A e B matrizes invertíveis de ordem n. Então, a solução da equação matricial $X^{T}A^{-1} B = I_n$ é $X = A^{T} + A^{T}B^{T}$.
- 8. Sejam as matrizes $A=\begin{bmatrix}1&1\\0&0\end{bmatrix}$ e $B=\begin{bmatrix}a&2\\0&2\end{bmatrix}$. Então se $a=2,\,A$ e B são matrizes comutáveis.
- 9. Seja $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ uma matriz invertível tal que $A^3 = \frac{1}{4}I_n$. Então, $A^{-1} = 4A^2$.
- 10. Seja $A=\begin{bmatrix}0&1&0\\0&0&-1\\1&0&0\end{bmatrix}$. Então, A é ortogonal.

GRUPO II (10 valores)

Em cada uma das perguntas seguintes, apresente os cálculos relevantes.

- 1. Determine os valores de b para os quais a matriz $A = \begin{bmatrix} 1 & b & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 2 \end{bmatrix}$ é invertível.
- 2. Considere a matriz invertível $A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 2 \end{bmatrix}$.
 - (a) Determine A^{-1} .
 - (b) Use A^{-1} para resolver a equação matricial 2AX = B com $B = \begin{bmatrix} 1 & -1 & 2 \end{bmatrix}^T$.
- 3. Considere a matriz $A = \begin{bmatrix} 1 & 2 & 1 \\ -3 & -6 & 1 \\ 1 & 3 & 0 \end{bmatrix}$.
 - (a) Determine uma matriz em escada equivalente a A.
 - (b) Determine fer(A).
 - (c) Justifique, sem fazer mais cálculos, se a matriz A é invertível.
- 4. Indique, justificando, o valor lógico da seguinte proposição: "Sejam A, B e C matrizes quadradas da mesma ordem não-nulas. Então, se AC = BC, tem-se que A = B.