This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

1 Veröffentlichungsnumm r:

0 228 003

G

EUROPÄISCHE PATENTANMELDUNG

- (1) Anmeldenummer: 86117295.5
- Anmeldetag: 11.12.86

(9) Int. Cl.4: **B05D 7/16**, C08G 18/08, C08G 18/10, C09D 3/72, C09D 5/44

- Priorität: 21.12.85 DE 3545618
- Veröffentlichungstag der Anmeldung: 08.07.87 Patentblatt 87/28
- Benannte Vertragsstaaten:
 ES

- 7) Anmelder: BASF Lacke + Farben Aktiengeseilschaft Max-Winkelmann-Strasse 80 D-4400 Münster(DE)
- ② Erfinder: Hille, Hans Dieter in der Schlade 24 D-5060 Bergisch-Gladbach(DE) Erfinder: Ebner, Franz Nonnengarten 4

D-8702 Kist(DE) Erfinder: Drexler, Hermann-Josef, Dr.

An der Bleiche 13 D-4402 Greven(DE)

- Wasserverdünnbares Überzugsmittel zur Herstellung der Basisschicht eines Mehrschichtliberzuges.
- © Die Erfindung betrifft Basisbeschichtungszusammensetzungen zur Herstellung von mehrschichtigen schützenden und/oder dekorative Überzügen bestehend aus wässrigen Dispersionen, die
 - (a) als filmbildendes Material mindestens ein Polyurethanharz mit einer Säurezahl von 5 bis 70, welches hergestellt worden ist, indem aus
 - (A) linearen Polyether und/oder Polyesterdiolen mit einem Molekulargewicht von 400 bis 3000
 - (B) Diisocyanaten
 - (C) Verbindungen, die zwei gegenüber Isocyanatgruppen reaktive Gruppen enthalten, wobei zumindest ein Teil der als Komponente (C) eingesetzten Verbindungen mindestens eine zur Anionenbildung befähigte Gruppe aufweist, die vorzugsweise vor der Umsetzung mit einem tertiären Amin neutralisiert worden ist, ein endständige Isocyanatgruppen aufweisenden Zwischenprodukt hergestellt worden ist, dessen freie Isocyanatgruppen anschließend mit einem mindestens drei Hyroxylgruppen enthaltenden Polyol, vorzugsweise Triol, umgesetzt worden sind,
 - (b) Pigmente und
 - (c) weitere übliche Additive enthalten.

Xerox Copy Centre

Wasserverdünnbares Überzug mittel zur Herstellung der Basisschicht eines Mehrschichtüberzuges

Die Erfindung betrifft eine Basisbeschichtungszusammensetzung zur Herstellung von mehrschichtigen, - schützenden und/oder dekorativen Überzügen auf Substratoberflächen bestehend aus einer wäßigen Dispersion, die

3.1. 主流 电影

- a) als filmbildendes Material mindestens ein Polyurethanharz mit einer Säurezahl von 5 bis 70, welches hergestellt worden ist, indem aus
 - (A) linearen Polyether-und/oder Polyesterdiolen mit einem Molekulargewicht von 400 bis 3000
 - (B) Diisocyanaten und
- (C) Verbindungen, die zwei gegenüber Isocaynatgruppen reaktive Gruppen enthalten, wobei zumindest ein Teil der als Komponente (C) eingesetzten Verbindungen mindestens eine zur Anionenbildung befähigte Gruppe aufweist, die vorzugsweise vor der Umsetzung mit einem tertiären Amin neutralisiert worden ist, ein endständige Isocyanatgruppen aufweisendes Zwischenprodukt hergestellt worden ist, dessen freie Isocyanatgruppen anschließend mit
- (D) weiteren, gegenüber Isocyanatgruppen reaktive Gruppen enthaltenden Verbindungen umgesetzt worden sind,
 - (b) Pigmente und

15

20

(c) weitere übliche Additive enthält.

Insbesondere bei der Automobillackierung aber auch in anderen Bereichen, in denen man Überzüge mit guter dekorativer Wirkung und gleichzeitig einen guten Korrosionsschutz wünscht, ist es bekannt, Substrate mit mehreren, übereinander angeordneten Überzugsschichten zu versehen.

Mehrschichtlackierungen werden bevorzugt nach dem sogenannten "Basecoat-Clearcoat"-Verlahren aufgebracht, d.h. es wird ein pigmentierter Basislack vorlackiert und nach kurzer Ablüftzeit ohne Einbrennschritt (Naß-in-Naß-Verfahren) mit Klarlack überlackiert. Anschließend werden Basislack und Klarlack zusammen eingebrannt.

Besonders große Bedeutung hat das "Basecoat-Clearcoat" Verfahren bei der Applikation von Automobil-Metalleffektlacken erlangt.

Wirtschaftliche und ökologische Gründe haben dazu geführt, daß versucht wurde, bei der Herstellung von Mehrschichtüberzügen wässrige Basisbeschichtungszusammensetzungen einzusetzen.

Überzugsmittel zur Herstellung von Basisschichten für mehrschichtige Automobillackierungen müssen nach dem heute üblichen rationellen "Naß-in-Naß"-Verfahren verarbeitbar sein, d.h. sie müssen nach einer möglichst kuzen Vortrockenzeit mit einer (transparenten) Deckschicht überlackiert werden können, ohne störende Anlöseerscheinungen zu zeigen.

Bei der Entwicklung von Überzugsmitteln für Basisschichten von Metall-Effektlacken müssen außerdem noch weitere Probleme gelöst werden. Der Metalleffekt hängt entscheidend von der Orientierung der Metall-Pigmentteilchen Im Lackfilm ab. Ein Im "Naß-in-Naß--Verfahren verarbeitbarer Metalleffekt-Basislack muß demnach Lackfilme liefern, in denen die Metall-Pigmente nach der Applikation in einer günstigen räumlichen Orientierung vorliegen und in denen diese Orientierung schnell so fixiert wird, daß sie im Laufe des weiteren Lackierprozesses nicht gestört werden kann.

Bei der Entwicklung von wasserverdünnbaren Systemen, die die oben beschriebenen Forderungen erfüllen sollen, treten auf die besonderen physikalischen Eigenschaften des Wassers zurückzuführende, schwer zu lösende Probleme auf und bis heute sind nur wenige wasserverdünnbare Lacksysteme bekannt, die als Basisbeschichtungszusammensetzungen im oben dargelegten Sinne verwendet werden können.

So sind in der US-4,558,090 Überzugsmittel zur Herstellung der Basisschicht von Mehrschichtüberzügen offenbart, die aus einer wässrigen Dispersion eines Polurethanharzes mit einer Säurezahl von 5 -70 bestehen. Die wässrige Polyurethandispersion, die neben dem Bindemittel Pigmente und übliche Zusatzstoffe sowie gegebenenfalls noch weitere Bindemittelkomponenten enthalten kann, wird hergestellt durch Umsetzung (A) eines linearen Polyether-und/oder Polyesterdiols mit endständigen Hydroxylgruppen und einem Molekulargewicht von 400 bis 3 000, mit

- (B) einem Diisocyanat und
- (C) einer Verbindung, die zwei gegenüber Isocyanatgruppen reaktive Gruppen und mindestens eine zur Anlonenbildung befähigte Gruppe aufweist, wobei die zur Anlonenbildung befähigte Gruppe vor der Umsetzung mit einem tertiären Amin neutralisiert worden ist
- zu einem Zwischenprodukt mit endständigen Isocyanatgruppen, Überführung des aus (A), (B) und (C) enthaltenen Zwischenprodukts in eine überwiegend wäßrige Phase und
- (D) Umsetzung der noch vorhandenen Isocyanatgruppen mit einem Di-und/oder Polyamin mit primären und/oder sekundären Aminogruppen.

Die in der US 4,558,090 offenbart in Überzugsmittel eignen sich gut zur Herstellung der Basisschicht von Mehrschichtüberzügen, si sind aber für eine praktische V rwendung vor allem in Serienlackierproz ssen ungeeignet, weil die schnell trochnenden Überzugsmittel in din zur Anwendung kommenden Applikationsgeräten (z.B. Lackspritzpistole; automatische, elektrostatisch unterstütze Hochrotationsanlagen u.s.w.). so gut haften, daß sie nur unt ir großen Schwierigkeiten wieder entfernt werden können. Dadurch ist ein vor allem in der Automobilserienlackierung sehr oft schnell durchzuführender Wechsel der applizierten Lacksysteme (z.B. Farbtonwechsel) nicht möglich.

Aufgabe der vorliegenden Erfindung war es daher, wässrige Dispersionen zu entwickeln, die als Basisbeschlichtungszusammensetzungen zur Herstellung von mehrschichtigen schützenden und/oder dekorativen Überzügen auf Substratoberflächen verwendet werden können und die alle oben dargelegten Forderungen, die an eine Basisbeschichtungszusammensetzung zu stellen sind, erfüllen und auch in den zur Anwendung kommenden Applikationsgeräten problemlos verarbeitet werden können.

Diese Aufgabe konnte überraschenderweise durch Verwendung von wässrigen Dispersionen gemäß dem Oberbegriff des Anspruchs 1 gelöst werden, die dadurch gekennzeichnet sind, daß das Polyurethanharz durch eine Umsetzung des aus (A) und (B) sowie (C) erhaltenen Zwischenproduktes mit einem mindestens drei Hydroxylgruppen enthaltenden Polyol, vorzugsweise Triol, und Überführung des so gewonnenen Reaktionsproduktes in die wässrige Phase hergestellt worden ist.

Es ist überraschend und war nicht vorhersehbar, daß die auf die ansich gewünschten Eigenschaften (schnelles Antrocknen des aufgebrachten Naßfilms, erschwertes Wiederanlösen des angetrockneten Films)
zurückzuführenden Schwierigkeiten bei der Entfernung von in den Applikationsgeräten zurückgebliebenen
Lackresten durch Verwendung der erfindungsgemäßen wässrigen Polyurethandispersion gelöst werden
können und daß keine qualitative Einbußen in der fertiggestellten Mehrschichtlackierung in Kauf genommen
werden müssen.

Die erfindungsgemäßen Dispersionen werden erhalten, indem die Komponenten (A), (B) und (C) zu einem endständige Isocyanatgruppen aufweisenden Zwischenprodukt umgesetzt werden. Die Umsetzung der Komponenten (A), (B) und (C) erfolgt nach den gut bekannten Verfahren der organischen Chemie, wobei bevorzugt eine stufenweise Umsetzung der Komponenten (z.B. Bildung eines ersten Zwischenproduktes aus den Komponenten (A) und (B), das dann mit (C) zu einem zweiten Zwischenprodukt umgesetzt wird) durchgeführt wird. Es ist aber auch eine gleichzeitige Umsetzung der Komponenten (A), - (B) und (C) möglich.

Die Umsetzung wird bevorzugt in Lösungsmitteln durchgeführt, die gegenüber Isocyanatgruppen inert und mit Wasser mischbar sind. Vorteilhaft werden Lösungsmittel eingesetzt, die neben den oben beschriebenen Eigenschaften auch noch gute Löser für die hergestellten Polyurethane sind sich aus wässrigen Mischungen leicht abtrennen lassen. Besonders gut geeignete Lösungsmittel sind Aceton und Methylethylketon.

Als Komponente (A) können prinzipiell alle bei der Herstellung von Beschichtungsmitteln auf Polyurethanbasis gebräuchlichen Diole eingesetzt werden. Geeignete Polyetherdiole entsprechen der allgemeinen Formel:

45

in der R = Wasserstoff oder ein niedriger Alkylrest, gegebenenfalls mit verschiedenen Substituenten, ist, n = 2 bis 6 und m = 10 bis 50 oder noch höher ist. Beispiele sind Poly(oxytetramethylen)glykole, Poly-(oxyethylen)glykole und Poly(oxypropylen)glykole.

Die bevorzugten Polyalkylenetherpolyole sind Poly(oxypropylen)glykole mit einem Molekulargewicht im Bereich von 400 bis 3 000.

Polyesterdiole können ebenfalls als polymere Diolkomponente (Komponente A) bei der Erfindung verwendet werden. Man kann die Polyesterdiole durch Veresterung von organischen Dioarbonsäuren oder ihren Anhydriden mit organischen Diolen herstellen. Die Dioarbonsäuren und die Diole können aliphatische oder aromatische Dioarbonsäuren und Diole sein.

Die zur Herstellung der Polyester verwendeten Diole schließen Alkylenglykole wie Ethylenglykol. Butylenglykol, Neopentyglykol und andere Glykole wie Dimethylolcyclohexan ein.

Die Säurekomponente des P lyesters besteht in erster Lini aus niederm lekularen Dicarbonsäuren oder ihren Anhydriden mit 2 bis 18 Kohlenstoffatomen im Molekül.

Geeignete Säuren sind beispielsweise Phtalsäure, Isophthalsäure, Terephthalsäure, Tetrahydrophthalsäure, Hexahydrophthalsäure, Adipinsäue, Azelainsäure, Sebazinsäure, Maleinsäure, Glutarsäur , Hexachlorheptandicarbonsäure und Tetrachlorphthalsäure. Anstelle dieser Säuren können auch ihre Anhydride, soweit diese existieren, verwendet werden.

Femer lassen sich bei der Erfindung auch Polyesterdiole, die sich von Lactonen ableiten, als Komponente (A) benutzen. Diese Produkte erhält man beispielsweise durch die Umsetzung eines «Caprolactons mit einem Diol. Solche Produkte sind in der US-PS 3 169 945 beschrieben.

Die Polylactonpolyole, die man durch diese Umsetzung erhält, zeichnen sich durch die Gegenwart einer endständigen Hydroxylgruppe und durch wiederkehrende Polyesteranteile, die sich von dem Lacton ableiten, aus. Diese wiederkehrenden Molekülanteile können der Formel

entsprechen, in der n bevorzugt 4 bis 6 ist und der Substituent Wasserstoff, ein Alkylrest, ein Cycloalkylrest oder ein Alkoxyrest ist, wobei kein Substituent mehr als 12 Kohlenstoffatome enthält und die gesamte Anzahl der Kohlenstoffatome in dem Substituenten in dem Lactonring 12 nicht übersteigt.

Das als Ausgangsmaterial verwendete Lacton kann ein beliebiges Lacton oder eine beliebige Kombination von Lactonen sein, wobei dieses Lacton mindestens 6 Kohlenstoffatome in dem Ring enthalten sollte, zum Beispiel 6 bis 8 Kohlenstoffatome und wobei mindestens 2 Wasserstoffsubstituenten an dem Kohlenstoffatom vorhanden sein solten, das an die Sauerstoffgruppe des Rings gebunden ist. Das als Ausgangsmaterial verwendete Lacton kann durch die folgende allgemeine Formel dargestellt werden.

$$CH_{\frac{1}{2}}(CR_2)nC = 0$$

in den n und R die bereits angegebene Bedeutung haben.

5

10

25

Die bei der Erfindung für die Herstellung der Polyesterdiole bevorzugten Lactone sind die Caprolactone, bei denen n den Wert 4 hat. Das am meisten bevorzugte Lacton ist das unsubstituierte «Caprolacton, bei dem n den Wert 4 hat und alle R-Substituenten Wasserstoff sind. Dieses Lacton wird besonders bevorzugt, da es In großen Mengen zur Verfügung steht und Überzüge mit ausgezeichneten Eigenschaften ergibt. Außerdem können verschiedene andere Lactone einzeln oder in Kombination benutzt werden.

Beispiele von für die Umsetzung mit dem Lacton geeigneten aliphatischen Diolen schließen ein Ethylenglykol, 1,3-Propandiol, 1,4-Butandiol, Dimethylolcyclohexan.

Als Komponente (B) können für die Herstellung der Polyurethandispersion bellebige organische Diisocyanate eingesetzt werden. Beispiele von geeigneten Diisocyanaten sind Trimethylendiisocyanat, Tetramethylendiisocyanat, Pentamethylendiisocyanat, Hexamethylendiisocyanat, Propylendiisocyanat, Ethylethylendiisocyanat, 2,3-Dimethylethylendiisocyanat, 1-Methyltrimethylendiisocyanat, 1,3-Cyclopentylendiisocyanat, 1,4-Cyclohexylendiisocyanat, 1,2-Cyclohexylendiisocyanat, 1,3-Phelendiisocyanat, 1,4-Phenylendiisocyanat, 2,4-Toluylendiisocyanat, 2,6-Toluylendiisocyanat, 4,4'-Biphenylendiisocyanat, 1,5-Naphthylendiisocyanat, 1,4-Naphthylendiisocyanat, 1-Isocyanatomethyl-5-Isocyanato-1,3,3-trimethylcyclohexan, Bis-(4-isocyanatocyclohexyl)methan, Bis-(4-isocyanatophenyl)-methan, 4,4'-Diisocyanatodiphenylether und 2,3-Bis-(8-Isocyanatooctyl)-4-octyl-5-hexyl-cyclohexen.

Als Komponente (C) werden Verbindungen eingesetzt, die zwei gegenüber Isocyanatgruppen reaktive Gruppen enthalten, wobei zumindest ein Teil der als Komponente (C) eingesetzten Verbindungen mindestens eine zur Anionenbildung befähigte Gruppe aufweist, die vorzugsweise vor der Umsetzung mit einem tertiären Amin neutralisiert worden ist.

Durch Einstellung eines bestimmten Mischungsverhältnisses zwischen den zur Anionenbildung befähigten Gruppen enthaltenden und den von diesen Gruppen freien Verbindungen kann der Anteil an ionischen Gruppen im Polyurethanmolekül gesteuert werden.

Geeignete mit Isocyanatgruppen reagierende Gruppen sind insbesondere Hydroxylgruppen. Die Verwendung von Verbindungen, die primäre oder sekundäre Aminogruppen enthalten, kann einen negativen Einfluß auf die oben beschriebene Verarbeitbarkeit der Dispersionen haben. Art und Menge von gegebenenfalls einzusetzenden aminogruppenhaltigen Verbindungen sind vom Durchschnittsfachmann durch einfach durchzuführende Routineuntersuchungen zu ermitteln.

Als zur Anionenbildung befähigte Gruppen kommen vor allem Carboxyl-und Sulfonsäuregruppen in Betracht. Di se Gruppen können vor der Umsetzung mit ein m tertiären Amin neutralisiert werd n, um ine Reaktion mit den Isocyanatgruppen zu vermeiden.

Als Verbindung, die mindestens zwei mit Isocyanatgruppen reagierend Gruppen und mind stens eine zur Anionenbildung befähigte Gruppe nthält, sind beispi Isweise Dihydroxypropionsäure Dimethylolpropionsäure, Dihydroxybemsteinsäure oder Dihydroxybenzoesäure geeignet. Geeignet sind auch die durch Oxydation von Monosaccharlden zugänglichen Polyhydroxysäur n, z.B. Glukonsäure, Zuckersäure, Schleimsäure, Glukuronsäure und dergleichen.

Aminogruppenhaltige Verbindungen sind beispielsweise a,3-Diaminovaleriansäure, 3,4-Diaminobenzoesäure, 2,4-Diamino-toluol-sulfonsäure-(5), 4,4'-Diamino-diphenylethersulfonsäure und dergleichen.

Geeignete tertiäre Amine zur Neutralisation der anionischen Gruppen sind beispielsweise Trimethylamin Triethylamin, Dimethylanilin, Diethylanilin, Triphenylamin und dergleichen.

Als Verbindungen, die zwei gegenüber Isocyanatgruppen reaktive Gruppen aufweisen, jedoch frei von zur Anionenbildung befähigten Gruppen sind, können beispielsweise niedermolekulare Diole oder Diamine mit primären oder sekundären Aminogruppen eingesetzt werden.

Das aus (A), (B) und (C) gebildete isocyanatgruppenhaltige Zwischenprodukt wird mit dem mindestens drei Hydroxylgruppen enthaltenden Polyol umgesetzt, was höchstwahrscheinlich eine Kettenverlängerung und gegebenenfalls auch eine Verzweigung des Bindemittelmoleküls zur Folge hat.

Bei dieser Umsetzung muß sorgfältig darauf geachtet werden, daß keine vernetzten Produkte erhalten werden.

Das kann zum Beispiel durch Zugabe einer auf den Isocyanatgruppengehalt des aus (A), (B) und (C) erhaltenen Zwischenproduktes und die Reaktionsbedingungen abgestimmten Menge an Polyol erreicht werden.

Im Prinzip sind alle mindestens drei Hydroxylgruppen enthaltenden Polyole, die mit dem aus (A), (B) und (C) erhaltenen Zwischenprodukt so umgesetzt werden können, daß keine vernetzten Produkte entstehen, zur Herstellung der erfindungsgemäßen Polyurethandispersion geeignet. Als Beispiele seien Trimethylolpropan, Glycerin, Erythrit, Mesoerythrit, Arabit, Adonit, Xylit, Mannit, Sorbit, Dulcit, Hexantriol, (Poly)Pentaerythritol u.s.w. genannt.

Ganz besonders gute Ergebnisse können erzielt werden, wenn Trimethylolpropan als Polyol eingesetzt wird.

30

Es ist auch denkbar, daß durch gleichzeitige Umsetzung aller vier Komponenten (A), (B), (C) und Polyol unvernetzte Polyurethane herstellbar sind, die zu brauchbaren Basisbeschichtungszusammensetzungen verarbeitet werden können.

Nach der Umsetzung des aus (A), (B) und (C) erhaltenen Zwischenproduktes mit der Polyolkomponente, die vorzugsweise in einem gegenüber Isocyanatgruppen inerten, mit Wasser mischbaren, das entstehende Polyurethan gut lösenden und aus wässrigen Mischungen gut abtrennbaren Lösungsmitteln (z.B. Aceton oder Methylethyl -keton) durchgeführt worden ist und gegebenenfalls noch durchzuführenden Neutralisierung der zur Anionenbildung befähigten Gruppen wird das Reaktionsprodukt in eine wässrige Phase Überführt. Das kann zum Beispiel durch Dispergierung des Reaktionsgemisches in Wasser und Abdestillieren der unter 100 °C siedenden organischen Lösungsmittelanteile geschehen.

Unter wässriger Phase ist Wasser, das auch noch organische Lösungsmittel enthalten kann, zu verstehen. Als Beispiele für Lösungemittel, die im Wasser vorhanden sein können, seien heterocyklische, aliphatische oder aromatische Kohlenwasserstoffe, ein-oder mehrwertige Alkohole, Ether, Ester und Ketone, wie zum Beispiel N-Methylpyrrolidon, Toluol, Xylol, Butanol, Ethyl-und Butylgiykol sowie deren Acetate, Butyldiglycol, Ethylenglykoldibutylether, Ethylenglykoldiethylether, Diethylenglykoldimethylether, Cyclohexanon, Methylethylketon, Aceton, Isophoron oder Mischungen davon genannt.

Nachdem der pH-Wert der resultierenden Polyurethandispersion kontrolliert und gegebenenfalls auf einen Wert zwischen 6 und 9 eingestellt worden ist, bildet die Dispersion die Grundlage der erfindungsgemäßen Überzugsmittel, in die die übrigen Bestandteile wie z.B. zusätzliche Bindemittel, Pigmente, organische Lösungsmittel und Hilfsstoffe durch Dispergieren beispielsweise mittels eines Rührers oder Dissolvers homogen eingearbeitet werden. Abschließend wird erneut der pH-Wert kontrolliert und gegebenenfalls auf einen Wert von 6 bis 9, vorzugsweise 7,0 bis 8,5 eingesetellt. Weiterhin werden der Festkörpergehalt und die Viskosität auf die an die jeweiligen Applikationsbedingungen angepaßten Werte eingestellt.

Die gebrauchsfertigen Überzugsmittel weisen in der Regel einen Festkörperanteil von 10 bis 30 Gew.-% auf, und ihre Auslaufzeit im ISO-Becher 4 beträgt 15 bis 30 Sekunden, vorzugsweise 18 bis 25 Sekunden. Ihr Anteil an Wasser beträgt 60 bis 90 Gew.-%, der an organischen Lösungsmitteln 0 bis 20 Gew.-%, jeweils bezogen auf das gesamte Überzugsmittel.

Di vorteilhaften Wirkungen der erfindungsgemäßen Beschichtungszusammensetzungen sind auf din Einsatz der oben beschriebenen wässrigen Polyurethandispersion zurückzuführen.

In vielen Fällen ist es wünschenswert, die Eigenschaften der erhaltenen Überzüge durch Mitverwendung weiterer Bindemittelsysteme in der Basis-Beschichtungszusammensetzung gezielt zu verbessern.

Die erfindungsgemäßen Basis-Beschichtungszusammensetzungen enthalten vorteilhaft als zusätzliche Bindemittelkomponente ein wasserverdünnbares Melaminharz in einem Anteil von 1 bis 80 Gew.-%, bevorzugt 20 bis 60 Gew.-%, bezogen auf den Festkörpergehalt der Polyurethandispersion.

Wasserlösliche Melaminharze sind an sich bekannt und werden in größerem Umfang eingesetzt. Es handelt sich hierbei um veretherte Melamin-Formaldehyd-Kondensationsprodukte. Ihre Wasserlöslichkeit hängt abgesehen vom Kondensationsgrad, der möglichst niedrig sein soll, von der Veretherungskomponente ab, wobei nur die niedrigsten Glieder der Alkanol-bzw. Ethylenglykolmonoetherreihe wasserlösliche Kondensate ergeben. Die größte Bedeutung haben die Hexamethoxymethylmelaminharze. Bei Verwendung von Lösungsvermittiem können auch butanolveretherte Melaminharze in wäßriger Phase dispergiert werden.

Es besteht auch die Möglichkeit, Carboxylgruppen in das Kondensat einzufügen. Umetherungsprodukte hochvereiherter Formaldehydkondensate mit Oxycarbonsäuren sind über ihre Carboxylgruppe nach Neutralisation wasserlöslich und könne als Vernetzerkomponente in den erfindungsgemäßen Überzugsmitteln eingesetzt werden.

Anstelle der beschriebenen Melaminharze können auch andere wasserlösliche oder wasserdispergierbare Aminoharze wie z.B. Benzoguanaminharze eingesetzt werden.

20

50

Für den Fall, daß die erfindungsgemäße Basisbeschichtungszusammensetzung ein Melaminharz enthält, kann sie vorteilhaft zusätzlich als weitere Bindemittelkomponente ein wasserverdünnbares Polyesterharz und/oder ein wasserverdünnbares Polyacrylatharz enthalten, wobei das Gewichtsverhältnis Melaminharz: Polyester-/Polyacrylatharz 2:1 bis 1:4 beträgt und der Gesamtanteil an Melaminharz, Polyester-/Polyacrylatharz, bezogen auf den Festkörpergehalt der Polyurethandispersion 1 bis 80 Gew.-%, bevorzugt 20 bis 60 Gew.-% beträgt.

Wasserverdünnbare Polyester sind solche mit freien Carboxylgruppen, d.h. Polyester mit hoher Säurezahl.

Es sind grundsätzlich zwei Methoden bekannt, die benötigten Carboxylgruppen in das Harzsystem einzufügen. Der erste Weg besteht darin, die Veresterung bei der gewünschten Säurezahl abzubrechen. Nach Neutralisation mit Basen sind die so erhaltenen Polyester in Wasser löslich und verfilmen beim Einbrennen. Die zweite Möglichkeit besteht in der Bildung partieller Ester von Di-oder Polycarbonsäuren mit hydroxylreichen Polyestern mit niedriger Säurezahl. Für diese Reaktion werden überlicherweise Anhydride der Dicarbonsäuren herangezogen, welche unter milden Bedingungen unter Ausbildung einer freien Carboxylgruppe mit der Hydroxylkomponente umgesetzt werden.

Die wasserverdünnbaren Polyacrylatharze enthalten ebenso wie die oben beschriebenen Polyesterharze freie Carboxylgruppen. Es handelt sich in der Regel um Acryl-bzw. Methacrylcopolymerisate, und die Carboxylgruppen stammen aus den Anteilen an Acryl-oder Methacrylsäure.

Als Vernetzungsmittel können auch blocklerte Polyisocyanate eingesetzt werden. Es können bei der Erfindung beliebige Polyisocyanate benutzt werden, bei denen die Isocyanatgruppen mit einer Verbindung umgesetzt worden sind, so daß das gebildete blockierte Polyisocyanat gegenüber Hydroxylgruppen bei Raumtemperaturen beständig ist, bei erhöhten Temperaturen, in der Regel im Bereich von etwa 90 bis 300 °C, aber reagiert. Bei der Herstellung der blockierten Polyisocyanate können beliebige für die Vernetzung geeignete organische Polyisocyanate verwendet werden. Bevorzugt sind die Isocyanate, die etwa 3 bis etwa 36, Insbesondere etwa 8 bis 15 Kohlenstoffatome enthalten. Beispiele von geeigneten Diisocyanaten sind die oben genannten Diisocyanate (Komponente B).

Es können auch Polyisocyanate von höherer Isocyanatfunktionalität verwendet werden. Beispiele dafür sind Tris-(4-isocyanatophenyl)-methan, 1,3,5-Triisocyanatobenzol, 2,4,6-Triisocyanatotoluol, 1,3,5-Tris-(6-iso cyanatohexyl)-biuret. Bis-(2,5-diisocyanato-4-methylphenyl)-methan und polymere Polyisocyanate, wie Dimere und Trimere von Diisocyanatotoluol. Ferner kann man auch Mischungen von Polyisocyanaten benutzen..

Die bei der Erfindung als Vernetzungsmittel in Betracht kommenden organischen Polyisocyanate können auch Präpolymere sein, die sich beispielsweise von einem Polyol einschlleßlich eines Polyetherpolyols oder eines Polyesterpolyols ableiten. Dazu werden bekanntlich Polyole mit einem Überschuß von Polyisocyanaten umgesetzt, wodurch Präpolymere mit endständigen Isocyanatgruppen entstehen. Beispiele von Polyolen, die hierfür verwendet werden können, sind einfache Polyole, wie Glykole, z.B. Ethylenglykol und Propylenglykol, und andere Polyole, wie Glycerin, Trimethylolpropan, Hexantriol und Pentaerythrit; ferner Monoether, wie Diethylenglykol und Dipropylenglykol sowie Polyether, die Addukte aus solchen Polyolen und Alkylenoxiden sind. Beispiele von Alkylenoxiden, die sich für eine Polyadditi n an diese Polyole unter Bildung von Polyethem eignen, sind Ethylenoxid, Propylenoxid, Butylenoxid und Styroloxid.

Man bezeichn t diese Polyadditionsprodukte im allgemeinen als Polyeth r mit endständigen Hydroxylgruppen. Si können linear oder verzweigt sein. Belspiele von solchen Poly them sind Polyoxyethylenglykol von einem Molekulargewicht von 1 540, Polyoxypropylenglykol mit einem Molekulargewicht von 1 025, Polyoxytetramethylenglykol, Polyoxyhexamethylenglykol, Polyoxynonamethylenglykol, Polyoxydecamethylenglykol, Polyoxydecamethylenglykol, Polyoxydecamethylenglykol, Polyoxydecamethylenglykol, Polyoxydecamethylenglykol, und Mischungen davon. Andere Typen von Polyoxyalkylenglykolethem können ebenfalls verwendet werden. Besonders geeignete Polyetherpolyole sind diejenigen, di man erhält durch Umsetzung von derartigen Polyolen, wie Ethylenglykol, Diethylenglykol, Triethylenglykol, 1,4-Butandiol, 1,3-Butandiol, 1,6-Hexandiol und Mischungen davon; Glycerintrimethylolethan, Trimethylolpropan, 1,2,6-Hexantriol, Dipentaerythrit, Tripentaerythrit, Polypentaerythrit, Methylglukosiden und Saccharose mit
Alkylenoxiden, wie Ethylenoxid, Propylenoxid oder Mischungen davon.

Für die Blockierung der Polyisocyanate können beliebige geeignete aliphatische, cycloaliphatische od r aromatische Alkylmonoalkohole verwendet werden. Beispiele dafür sind aliphatische Alkohole, wie Methyl-, Ethyl-, Chlorethyl-, Propyl-, Butyl-, Amyl-, Hexyl-, Heptyl-, Octyl-, Nonyl-, 3,3,5-Trimethylhexyl-, Decyl-und Laurylalkohol; aromatische Alkylalkohole, wie Phenylcarbinol und Methylphenylcarbinol. Es können auch geringe Anteile an höhermolekularen und relativ schwer flüchtien Monoalkoholen gegebenenfalls mitverwendet werden, wobei diese Alkohole nach ihrer Abspaltung als Weichmacher in den Überzügen wirken. Andere geeignete Blockierungsmittel sind Oxime, wie Methylethylketonoxim, Acetonoxim und Cyclohexanonoxim, sowie auch Caprolactame, Phenole und Hydroxamsäureester. Bevorzugte Blockierungsmittel sind Malonester, Acetessigester und β -Diketone.

Die blockierten Polyisocyanate werden hergestellt, indem man eine ausreichende Menge eines Alkohols mit dem organischen Polyisocyanat umsetzt, so daß keine freien Isocyanatgruppen mehr vorhanden sind.

20

Die erfindungsgemäßen Basisbeschichtungszusammensetzungen können alle bekannten und in der Lackindustrie üblichen Pigmente oder Farbstoffe enthalten.

Als Farbstoffe bzw. Pigmente, die anorganischer oder organischer Natur sein können, werden beispielsweise genannt Titandioxid, Graphit, Ruß, Zinkchromat, Strontriumchromat, Bariumchromat, Bleichromat, Bleicyanamid, Bleisilicochromat, Zinkoxid, Cadmiumsulfid, Chromoxid, Zinksulfid, Nickeltitangelb, Chromtitangelb, Eisenoxidrot, Eisenoxidschwarz, Ultramarinblau, Phthalocyaninkomplexe, Naphtholrot, Chinacridon, halogenierte Thioindigo-Pigmente oder dergleichen.

Als besonders bevorzugte Pigmente werden Metallpulver einzeln oder im Gemisch wie Kupfer, Kupferlegierungen, Aluminium und Stahl, vorzugsweise Aluminiumpulver, in wenigstens überwiegendem Anteil eingesetzt, und zwar in einer Menge von 0,5 bis 25 Gew.-% bezogen auf den gesamten Festkörpergehalt der Überzugsmittel an Bindemitteln. Als metallische Pigmente werden solche handelsüblichen Metallpulver bevorzugt, die für wäßrige Systeme speziell vorbehandelt sind.

Die Metallpulver können auch zusammen mit einem oder mehreren der obengenannten nichtmetallischen Pigmente bzw. Farbstoffe eingesetzt werden. In diesem Fall wird deren Anteil so gewählt, daß der erwünschte Metallic-Effekt nicht unterdrück wird.

Die erfindungsgemäßen Basisbeschichtungszusammensetzungen können auch weitere übliche Zusätze wie Lösungsmittel, Füllstoffe, Weichmacher, Stabilisatoren, Netzmittel, Dispergierhilfsmittel, Verlaufmittel, Entschäumer und Katalysatoren einzeln oder im Gemisch in den üblichen Mengen enthalten. Diese Substanzen können den Einzelkomponenten und/oder der Gesamtmischung zugesetzt werden.

Geeignete Füllstoffe sind z.B. Talkum, Glimmer, Kaolin, Kreide, Quarzmehl, Asbestmehl, Schiefermehl, Bariumsulfat, verschiedene Kieselsäuren, Silikate, Glasfasern, organische Fasern und dergleichen. Die oben beschriebenen Beschichtungszusammensetzungen werden erfindungsgemäß in Verfahren zur Herstellung von mehrschichtigen Überzügen auf Substratoberflächen verwendet, bei welchen

- (1) als Basisbeschichtungszusammensetzung eine wäßrige Dispersion aufgebracht wird
- (2) aus der in Stufe (1) aufgebrachten Zusammensetzung ein Polymerfilm auf der Substratoberfläche gebildet wird
- (3) auf der so erhaltenen Basisschicht eine geeignete transparente Deckschichtzusammensetzung aufgebracht und anschließend
 - (4) die Basisschicht zusammen mit der Deckschicht eingebrannt wird.

Als Deckschichtzusammensetzungen sind grundsätzlich alle bekannten nicht oder nur transparent pigmentierten Überzugsmittel geeignet. Hierbei kann es sich um konventionelle lösungsmittelhaltige Klarlacke wasserverdünnbare Klarlacke oder Pulverklarlacke handeln.

Als zu beschichtende Substrate kommen vor allem vorbehandelte Metallsubstrate in Frage, es können aber auch nicht vorbehandelte Metalle und beliebige andere Substrate wie zum Beispiel Holz, Kunststoffe u.s.w. unter Verwendung der erfindnugsgemäßen Basisbeschichtungszusammensetzungen mit einer mehrschichtigen schützenden und/oder dekorativen Beschichtung überzogen werden.

Die Erfindung wird in den folgenden Beispielen näher erläutert. Alle Angaben über Teile und Prozentsätze sind Gewichtsangaben, falls nicht ausdrücklich etwas anderes festgestellt wird.

Herstellung einer erfindungsgemäßen Polyurethandispersion

255 g eines Polyesters aus Hexandiol-1,6 und Isophthalsäure mit einem mittleren Molekulargewicht von 614, werden zusammen mit 248 g eines Polypropylenglykols mit einem mittleren Molekulargewicht von 600 und mit 100 g Dimethylolpropionsäure auf 100°C erhitzt und 1 Stunde im Vakuum entwässert. Bei 80°C werden 528 g 4,4°-Dicyclohexylmethandiisocyanat und 480 g Methylethylketon zugegeben. Es wird bei 80°C so lange gerührt, bis der Gehalt an freien Isocyanatgruppen 1,69 %, bezogen auf die Gesamteinwaage, beträgt.

Jetzt werden 28,5 g Trimethylolpropan und anschließend 0,4 g Dibutylzinndilaurat zugegeben und 2 Stunden bei 80°C weiter gerührt. Nach Zugabe von 1590 g Methylethylketon wird so lange bei 80°C gehalten, bis die Viskosität, gemessen im DIN-Becher, 65 s beträgt (Probe Im Verhältnis 2:3 in N-Methylpyrrolidon gelöst).

Nach Zugabe einer Mischung aus 22,4 g Dimethylethanolamin und 2650 g deionisiertem Wasser wird im Vakuum das Methylethylketon abdestillert, und man erhält eine feinteilige Dispersion mit einem Festkörpergehalt von 30 %, einem pH-Wert von 7,4 und einer Viskosität von 48 s, gemessen im DIN-Becher.

Herstellung von Zweischicht-Lackierungen nach dem Base-Coat-/Clear-Coat-Verfahren unter Verwendung der nach obiger Vorschrift hergestellten erfindungsgemäßen Polyurethandispersion

Die Herstellung der Zweischichtlackierung erfolgte nach den in der US 4, 558, 090 angegebenen experimentellen Angaben.

Ein unter Verwendung der erfindungsgemäßen Polyurethandispersion hergestellter Metalleffekt-Basislack konnte zu einer qualitativ hochwertigen zweischichtigen Metalleffektlackierung mit einem ausgezeichneten Metalleffekt verarbeitet werden.

Die Entfernbarkeit von in den Applikationsgeräten zurückgebliebenen Lackresten wird anhand der folgenden Vergleichsversuche demonstriert:

Auf einer Glasplatte wurde ein Metalleffekt-Basislack gemäß der US 4,558,090 und ein Metalleffekt-Basislack gemäß der vorliegenden Erfindung in einer Naßfilmdicke von 100 μm mit Hilfe eines Rakels aufgetragen.

Nach 2stündigem Trocknen bei Raumtemperatur wurde mit einer Mischung auf 50 Teilen Wasser und 50 Teilen n-Propanol versucht, den angetrockneten Lackfilm von der Glasplatte zu entfernen. Dazu wurde ein mit dieser Reinigungsmischung getränkter Pinsel mit leichtem Druck in kreisenden Bewegungen über den getrockneten Lackfilm geführt. Der aus dem erfindungsgemäß hergestellten Metalleffekt-Basislack gebildete Lackfilm löste sich schon nach den ersten Kreisbewegungen homogen auf. Der unter Verwendung der in der US 4,558,090 offenbarten Dispersion hergestellte Lackfilm dagegen quoll zunächst auf und löste sich erst nach vielfachen Kreisbewegungen in größeren zusammenhängenden Fladen vom Untergrund ab.

Dieser Versuch wurde mit einer Vielzahl unterschiedlichster Lösungsmittel bzw. Lösungsmittelgemische wiederholt. In allen Fällen wurden ähnliche Ergebnisse erhalten.

Ansprüche

45

25

- 1. Basisbeschichtungszusammensetzung zur Herstellung von mehrschichtigen, schützenden und/oder dekorativen Überzügen bestehend aus einer wässrigen Dispersion, die
- (a) als filmbildendes Material mindestens ein Polyurethanharz mit einer Säurezahl von 5 bis 70, welches hergestellt worden ist, Indem aus
- (A) linearen Polyether-und/oder Polyesterdiolen mit einem Molekulargewicht von 400 bis 3000
- (B) Dilsocyanaten und
- (C) Verbindungen, die zwei gegenüber Isocyanatgruppen reaktive Gruppen enthalten, wobei zumindest ein Teil der als Komponente (C) eingesetzten Verbindungen mindestens eine zur Anionenbildung befähigte Gruppe aufweist, di vorzugsweise vor der Umsetzung mit einem tertiär n Amin neutralisiert worden ist, ein endständige Isocyanatgruppen aufweisendes Zwischenprodukt hergestellt word n ist, dessen freie

Isocyanatgruppen anschließend mit

- (D) weiteren, gegenüber Isocyanatgruppen reaktive Gruppen enthaltenden Verbindungen umgesetzt worden sind
- (b) Pigmente und
- 5 (c) weitere üblich Additive

dadurch gekennzeichnet, daß

die wässrige Polyurethandispersion durch Umsetzung des aus (A), (B) und (C) erhaltenen Zwischenproduktes mit einem mindestens drei Hydroxylgruppen enthaltenden Polyol, vorzugsweise Triol, und Überführung des so gewonnenen Reaktionsproduktes in eine wässrige Phase hergestellt worden ist.

- 2. Verfahren zur Herstellung eines mehrschichtigen, schützenden und/oder dekorativen Überzuges auf einer Substratoberfläche, bei welchem
- (1) als Basisbeschichtungszusammensetzung eine wässrige Dispersion aufgebracht wird, die
- (a) als filmbildendes Material mindestens eine Polyurethanharz mit einer Säurezahl von 5 bis 70, welches hergestellt worden ist, indem aus
 - (A) linearen Polyether-und/oder Polyesterdiolen mit einem Molekulargewicht von 400 bis 3000
 - (B) Diisocyanaten und
- (C) Verbindungen, die zwei gegenüber Isocyanatgruppen reaktive Gruppen enthalten, wobei zumindest ein Teil der als Komponente (C) eingesetzten Verbindungen mindestens eine zur Anionenbildung befähigte Gruppe aufweist, die vorzugsweise vor der Umsetzung mit einem tertiären Amin neutralisiert worden ist ein endständige Isocyanatgruppen aufweisendes Zwischenprodukt hergestellt worden ist, dessen freie Isocyanatgruppen anschließend mit
 - (D) weiteren, gegenüber isocyanatgruppen reaktive Gruppen enthaltenden Verbindungen umgesetzt worden sind,
- 25 (b) Pigmente und
 - (c) weitere übliche Additive enthält.
 - (2). Aus der in Stufe (1) aufgebrachten Zusammensetzung ein Polymerfilm auf der Oberfläche gebildet wird.
 - (3) auf der so erhaltenen Basisschicht eine geeignete transparente Deckschichtzusammensetzung aufgebracht und anschließend die Basisschicht zusammen mit der Deckschicht eingebrannt wird,
- o dadurch gekennzeichnet, daß
 - die die Basisbeschichtungszusammensetzung bildende Polyurethandispersion durch eine Umsetzung des aus (A), (B) und (C) erhaltenen Zwischenproduktes mit einem mindestens drei Hydroxylgruppen enthaltenden Polyol, vorzugsweise Triol, und Überführung des so gewonnenen Reaktionsproduktes in die wässrige Phase hergestellt worden ist.
 - 3. Basisbeschichtungszusammensetzung oder Verfahren nach den Ansprüchen 1 oder 2 dadurch gekennzeichnet, daß
 - die Umsetzung des aus (A), (B) und (C) erhaltenen Zwischenproduktes mit dem Polyol in einem wassermischbaren, unter 100 °C siedenden gegenüber Isocyanatgruppen Inerten und aus wässrigen Mischungen gut abtrennbaren organischen Lösungsmittel, bevorzugt Aceton, durchgeführt worden ist.
 - 4. Basisbeschichtungszusammensetzung oder Verfahren nach einem der Ansprüche 1 bis 3 dadurch gekennzeichnet, daß
 - das aus (A), (B) und (C) erhaltene Zwischenprodukt mit Trimethylolpropan umgesetzt worden ist.
 - 5. Basisbeschichtungszusammensetzung oder Verfahren nach einem der Ansprüche 1 bis 4 dadurch gekennzeichnet, daß
- die Basisbeschichtungszusammensetzung als zusätzliche Bindernittelkomponente ein wasserverdünnbares Melaminharz in einem Anteil von 1 bis 80 Gew.-%, bevorzugt 20 bis 60 Gew.-%, bezogen auf den Festkörpergehalt der Polyurethandispersion, enthält.
 - 6. Basisbeschichtungszusammensetzung oder Verfahren nach einem der Ansprüche 1 bis 5 dadurch gekennzeichnet, daß
- die Basisbeschichtungszusammensetzung als weitere Bindemittelkomponente ein wasserverdünnbares Polyesterharz und/oder ein wasserverdünnbares Polyacrylatharz enthält, wobei das Gewichtsverhältnis Melaminharz zu Polyesterharz und/oder Polyacrylatharz 2:1 bis 1:4 beträgt und der Gesamtanteil an Melaminharz, Polyester und Polyacrylatharz, bezogen auf den Festkörpergehalt der Polyurethandispersion, 1 bis 80 Gew.-%, bevorzugt 20 bis 60 Gew.-% beträgt.
- 7. Basisbeschichtungszusammensetzung oder Verfahren nach einem der Ansprüche 1 bis 6

 dadurch gekennzeichnet, daß

 die Basisbeschichtungszusammensetzung als zusätzliche Bindemittelkomponente ein blockiertes Polyiso-

cyanat, zusammen mit einem wasserverdünnbaren Polyesterharz und/oder einem wasserverdünnbaren Polyacrylatharz, enthält, wobei der Anteil an Polyisocyanat, Polyesterharz, und/oder Polyacrylatharz insgesamt 1 bis 80 Gew.-%, bezogen auf den Festkörpergehalt der Polyurethandispersion, beträgt.

- 8. Basisbeschichtungszusammensetzung oder Verfahren nach einem der Ansprüche 1 bis 7
- dadurch gekennzeichnet, daß
 - die Basisbeschichtungszusammensetzung 0,5 bis 25 Gew.-% Metallpigmente, bezogen auf den gesamten Festkörpergehalt der Polyurethandispersion, enthält.
 - 9. Verwendung von wässrigen Dispersionen, die
- (a) als filmbildendes Material mindestens ein Polyurethanharz mit einer Säurezahl von 5 bis 70, welches hergestellt worden ist, indem aus
- (A) linearen Polyether-und/oder Polyesterdiolen mit einem Molekulargewicht von 400 bis 3000
- (B) Dilsocyanaten und
- (C) Verbindungen, die zwei gegenüber Isocyanatgruppen reaktive Gruppen enthalten, wobei zumindest ein Teil der als Komponente (C) eingesetzten Verbindungen mindestens eine zur Anionenbildung befähigte Gruppe aufweist, die vorzugsweise vor der Umsetzung mit einem tertiären Amin neutralisiert worden ist, ein endständige Isocyanatgruppen aufweisendes Zwischenprodukt hergestellt worden ist, dessen freie Isocyanatgruppen anschließend mit einem mindestens drei Hydroxylgruppen enthaltenden Polyol, vorzugsweise Triol, umgesetzt worden sind,
- (b) Pigmente und
- 20 (c) weitere übliche Additive
 - enthalten, als Basisbeschichtungszusammensetzungen für die Herstellung von mehrschichtigen, schützenden und/oder dekorativen Überzügen auf Substratoberflächen.
 - 10. Substrat, beschichtet mit einem mehrschichtigen, schützenden und/oder dekorativem Überzug, der erhalten worden ist, indem
 - (1) als Basisbeschichtungszusammensetzung eine wässrige Dispersion aufgebracht worden Ist, die
 (a) als filbildendes Material mindestens ein Polyurethanharz mit einer Säurezahl von 5 bis 70, welches hergestellt worden ist, indem aus
 - (A) linearen Polyether und/oder Polyesterdiolen mit einem Molekulargewicht von 400 bis 3000
 - (B) Diisocyanaten und
- (C) Verbindungen, die zwei gegenüber Isocyanatgruppen reaktive Gruppen enthalten, wobel zumindest ein Teil der als Komponente (C) eingesetzten Verbindungen mindestens eine zur Anionenbildung befähigte Gruppe aufweist, die vorzugsweise vor der Umsetzung mit einem tertiären Amin neutralisiert worden ist, ein endständige Isocyanatgruppen aufweisendes Zwischenprodukt hergestellt worden ist, dessen freie Isocyanatgruppen anschließend mit
- 35 (D) weiteren, gegenüber Isocyanatgruppen reaktive Gruppen enthaltenden Verbindungen umgesetzt worden sind
 - (b) Pigmente und
 - (c) weitere übliche Additve enthält.
- (2) aus der in Stufe (1) aufgebrachten Zusammensetzung ein Polymerfilm auf der Oberfläche gebildet worden ist.
 - (3) auf der so erhaltenen Basisschicht eine geeignete transparente Deckschicht-Zusammensetzung aufgebracht worden ist und anschließend
 - (4) die Basisschicht zusammen mit der Deckschicht eingebrannt worden ist, dadurch gekennzeichnet, daß
- 45 die die Basisbeschichtungszusammensetzung bildende wässrige Polyurethandispersion durch eine Umsetzung des aus (A), (B) und (C) erhaltenen Zwischenproduktes mit einem mindestens drei Hydroxylgruppen enthaltenden Polyol, vorzugsweise Triol, und Überführung des so gewonnenen Reaktionsproduktes in eine wässrige Phase hergestellt worden ist.

50

EP 86 11 7295

EINSCHLÄGIGE DOKUMENTE Keinnzeichnung des Dokuments mit Angabe, soweit erforderlich. Betrifft				WI ARRIENATION 605
Ategorie		ts mit Angabe, soweit erforderlich, eblichen Teile	Betrift Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. Cl. 4)
A	EP-A-O 022 452 * Seite 7, Ze Zeile 7; Ansprüc	ile 8 - Seite 8,	1	B 05 D 7/16 C 08 G 18/08 C 08 G 18/10 C 09 D 3/72
A	EP-A-O 148 970 CORPORATION) * Seite 10, Zeil 31, Zeile 16 12; Ansprüche 1,	en 17-27; Seite - Seite 32, Zeile	1	C 09 D 5/44
A	US-A-3 438 940 al.) * Spalte 1, Zeil Zeile 69 *	- (W. KEBERLE et e 53 - Spalte 4,	1	
A	EP-A-0 089 497 (BASF AG) * Insgesamt * & US-A-4 558 090 (Cat. D)		1-10	RECHERCHIERTE SACHGEBIETE (Int. Cl.4)
				C 08 G C 09 D
Der	vorliegende Recherchenbericht wurd	e für alle Patentansprüche ersteilt.	<u> </u>	
Recherchenort Abechlußdatum der Recherche DEN HAAG 26-02-1987		BOIL	Prüfer RGONJE A.F.	

FPA Form 1503 03 82

X: von besonderer Bedeutung allein betrachtet
Y: von besonderer Bedeutung in Verbindung mit einer
anderen Veräffentlichung derselben Kategorie
A: technologischer Hintergrund
O: nichtschrittliche Offenbarung
P: Zwischenliteratur
T: der Erfindung zugrunde liegende Theorien oder Grundsätze

D: in der Anmeidung angeführtes Dokument '
L: aus andern Gründen angeführtes Dokument

Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument

THIS PAGE BLANK (USPTO)