Projet PEP – Processeur ARM Cortex M0 Unité Arithmétique et Logique et Banc de Registres

Les deux premiers composants essentiels d'un processeur, quel que soit son jeu d'instructions, sont l'Unité Arithmétique et Logique (ALU) et le Banc de registres.

L'ALU réalise toutes les opérations et fournit en sortie le résultat de l'opération demandée (Codop). Le banc de registre sert de mémoire locale et temporaire, il dispose de deux ports d'accès en lecture et d'un port d'accès en écriture.

Réalisez ces deux composants sous l'environnement Logisim.

ALU (composant combinatoire)

Port	Direction	Taille	Rôle
Α	In	32	Opérande A
В	In	32	Opérande B
Flags	Out	4	Drapeaux Z, N, V, C
Shifter	In	5	Nombre de décalage de 0 à 31
CarryIn	In	1	Retenue entrante
Codop	In	4	Sélection de l'opération
S	Out	32	Résultat

Tableau 1 - Interface de l'ALU

L'unité arithmétique et logique :

- réalise les opérations sur les opérandes A et B sur 32 bits,
- l'opération est sélectionnée par un Codop sur 4 bits parmi les 16 opérations calculées,
- dans le cas d'un décalage, le nombre de décalages est indiqué par le port Shifter,
- calcule les Flags Z (Zero), N (Negative), V (Overflow), et C (Carry Out).

Les 16 opérations possibles sont indiquées dans le tableau ci-dessous.

CODOP	Opération	Instructions
0000	A and B	AND
0001	A xor B	EOR
0010	B << shift	LSL
0 0 1 1	B >> shift	LSR
0100	B >> shift (arith)	ASR
0101	A + B + Cin	ADC
0110	A – B + Cin – 1	SBC
0111	B >> shift (rot)	ROR
1000	A and B	TST
1001	0 – B	RSB
1010	A – B	CMP
1011	A + B	CMN
1100	A or B	ORR
1 1 0 1	A * B	MUL
1110	A and not B	BIC
1111	Not B	MVN

Tableau 2 - Opérations de l'ALU

Banc de registre (composant séquentiel)

Port	Direction	Taille	Rôle
DataIn	In	32	Données à enregistrer
Aout	Out	32	Opérande A
Bout	Out	32	Opérande B
Clk	In	1	Clock
RegDest	In	3	Sélection du registre en écriture
RegA	In	3	Sélection du registre en lecture pour la source A
RegB	In	3	Sélection du registre en lecture pour la source B
Reset	In	1	Reset des registres

Tableau 3 - Interface du Banc de registres

Le banc de registre stocke les résultats temporaires dans 8 registres de 32 bits de R0 à R7. Le contrôleur (TP suivant) peut sélectionner le numéro d'un registre unique en écriture (depuis Dataln) et deux registres en lectures sur deux ports de sortie Aout et Bout. Le reset remet à zéro le contenu de tous les registres.

Pour réaliser le banc de registres, vous aurez besoin des composants suivants :

- registres,
- décodeurs,
- multiplexeurs,
- Input/Output Pins.

Premiers tests

Les deux composants peuvent ensuite être testés en les connectant de la manière suivante. Les flèches extérieures correspondent aux valeurs à placer manuellement pour la validation.

