Garbage Classification

Roadmapa projektu:

Analiza tematu

Analiza danych

• Stworzenie modelu

Stworzenie aplikacji

Analiza tematu:

Czym dysponujemy?

Co chcemy osiągnąć?

Jak chcemy to osiągnąć?

• Dla kogo osiągamy cel?

Analiza danych:

```
    Zasadniczy dataset

                                                          (384, 512, 3)
                                                          (384, 512, 3)
                                                          (384, 512, 3)
                                                          (384, 512, 3)
                                                          (384, 512, 3)
                                                          (384, 512, 3)

    Alternatywny dataset

                                                          (384, 512, 3)
                                                          (384, 512, 3)
                                                          (384, 512, 3)
                                                          (384, 512, 3)
                                                          (384, 512, 3)
                                                          (384, 512, 3)

    Liczba fotografii

                                                          (384, 512, 3)
                                                          (384, 512, 3)
                                                          (384, 512, 3)
                                                                                            Images of label "cardboard":
                                                                                                                          403
                                                          (384, 512, 3)
                                                                                            Images of label "glass":
                                                                                                                          501
                                                          (384, 512, 3)
                                                                                            Images of label "metal":
                                                                                                                          410
                                                          (384, 512, 3)
                                                                                            Images of label "paper":
                                                                                                                          594

    Rozmiary fotografii

                                                          (384, 512, 3)
                                                                                            Images of label "plastic":
                                                                                                                          482
                                                          (384, 512, 3)
                                                                                            Images of label "trash":
                                                                                                                          137
```

Analiza danych:

Wnioski:

- Dysponujemy małą liczbą fotografii
- "Trash" jest niedoreprezentowaną klasą
- "Trash" posiada wprowadzające w błąd fotografie
- Różnice w oświetleniu oraz kącie wykonywania fotografii

Praca nad modelem:

Nigdy nie ufaj split-folders

ImageDataGenerator Twoim przyjacielem

Praca nad modelem:

Ustaw właściwy batch_size

```
training_set = train_datagen.flow_from_directory(file_path, target_size = (384, 512),
| batch_size = 120, class_mode = "categorical")
```

- Oszczędź swój czas dzięki EarlyStopping
- Sekretny składnik: learning_rate

Model #1:

Model: "sequential"

Layer (type)	Output Shape	Param #
conv2d (Conv2D)		
max_pooling2d (MaxPooling2D)	(None, 192, 256, 8)	0
conv2d_1 (Conv2D)	(None, 192, 256, 10)	730
max_pooling2d_1 (MaxPooling 2D)	(None, 96, 128, 10)	0
conv2d_2 (Conv2D)	(None, 96, 128, 12)	1092
max_pooling2d_2 (MaxPooling 2D)	(None, 48, 64, 12)	0
conv2d_3 (Conv2D)	(None, 48, 64, 14)	1526
max_pooling2d_3 (MaxPooling 2D)	(None, 24, 32, 14)	0
conv2d_4 (Conv2D)	(None, 24, 32, 16)	2032
max_pooling2d_4 (MaxPooling 2D)	(None, 12, 16, 16)	0
conv2d_5 (Conv2D)	(None, 12, 16, 18)	2610
max_pooling2d_5 (MaxPooling 2D)	(None, 6, 8, 18)	0
dropout (Dropout)	(None, 6, 8, 18)	0
flatten (Flatten)	(None, 864)	0
dense (Dense)	(None, 5)	4325
		========

by grupajeden

Total params: 12,539 Trainable params: 12,539 Non-trainable params: 0

Model #2:

Model: "sequential_1"

	Output Shape	
======================================		
max_pooling2d_6 (MaxPooling 2D)	(None, 192, 256, 8)	0
conv2d_7 (Conv2D)	(None, 192, 256, 16)	1168
max_pooling2d_7 (MaxPooling 2D)	(None, 96, 128, 16)	0
conv2d_8 (Conv2D)	(None, 96, 128, 24)	3480
max_pooling2d_8 (MaxPooling 2D)	(None, 48, 64, 24)	0
conv2d_9 (Conv2D)	(None, 48, 64, 32)	6944
max_pooling2d_9 (MaxPooling 2D)	(None, 24, 32, 32)	0
conv2d_10 (Conv2D)	(None, 24, 32, 40)	11560
max_pooling2d_10 (MaxPoolin g2D)	(None, 12, 16, 40)	0
conv2d_11 (Conv2D)	(None, 12, 16, 48)	17328
max_pooling2d_11 (MaxPoolin g2D)	(None, 6, 8, 48)	0
dropout_1 (Dropout)	(None, 6, 8, 48)	0
flatten_1 (Flatten)	(None, 2304)	0
dense_1 (Dense)	(None, 5)	11525

Total params: 52,229
Trainable params: 52,229

by grupajeden

Model #3:

Model: "sequential_2"

	Output Shape	Param #
conv2d_12 (Conv2D)	(None, 384, 512, 8)	
max_pooling2d_12 (MaxPoolin g2D)	(None, 192, 256, 8)	0
conv2d_13 (Conv2D)	(None, 192, 256, 10)	730
<pre>max_pooling2d_13 (MaxPoolin g2D)</pre>	(None, 96, 128, 10)	0
conv2d_14 (Conv2D)	(None, 96, 128, 12)	1092
max_pooling2d_14 (MaxPoolin g2D)	(None, 48, 64, 12)	0
conv2d_15 (Conv2D)	(None, 48, 64, 14)	1526
max_pooling2d_15 (MaxPooling2D)	(None, 24, 32, 14)	0
dropout_2 (Dropout)	(None, 24, 32, 14)	0
flatten_2 (Flatten)	(None, 10752)	0
dense_2 (Dense)	(None, 5)	53765
 Total params: 57,337 Trainable params: 57,337 Non-trainable params: 0		

by grupajeden

Model #4:

Model: "sequential_3"

	Output Shape	Param #
======================================		
max_pooling2d_16 (MaxPooli g2D)	in (None, 192, 256, 8)	0
conv2d_17 (Conv2D)	(None, 192, 256, 10)	730
max_pooling2d_17 (MaxPooli g2D)	in (None, 96, 128, 10)	0
conv2d_18 (Conv2D)	(None, 96, 128, 12)	1092
max_pooling2d_18 (MaxPooli g2D)	in (None, 48, 64, 12)	0
conv2d_19 (Conv2D)	(None, 48, 64, 14)	1526
nax_pooling2d_19 (MaxPooli g2D)	in (None, 24, 32, 14)	0
conv2d_20 (Conv2D)	(None, 24, 32, 16)	2032
max_pooling2d_20 (MaxPooli g2D)	in (None, 12, 16, 16)	0
conv2d_21 (Conv2D)	(None, 12, 16, 18)	2610
max_pooling2d_21 (MaxPooli g2D)	in (None, 6, 8, 18)	0
dropout_3 (Dropout)	(None, 6, 8, 18)	0
flatten_3 (Flatten)	(None, 864)	0
dense_3 (Dense)	(None, 5)	4325

Total params: 12,539 Trainable params: 12,539

Non-trainable params: 0

by grupajeden

Wnioski:

Model osiąga wynik 80% na val_accuracy

Model będzie wymagać nadzoru

Model nie wymaga fotografii w wysokiej rozdzielczości

Model działa dla fotografii wykonywanych dynamicznie

Aplikacja projektowa:

