Breve História da Computação

Sistemas da Computação Prof. Rossano Pablo Pinto, Msc. rossano at gmail com 2. Semestre 2007

Sumário

- Gerações de Computadores
- 0a. Geração Computadores Mecânicos
- 1a. Geração Válvulas
- 2a. Geração Transistores
- 3a. Geração Circuitos Integrados
- 4a. Geração VLSI
- 5a. Geração Conectividade, mobilidade,

. . . .

- 1a. Geração 1945 à 1955
 - Estímulo: 2a. Guerra Mundial
 - Usavam válvulas eletrônicas
 - Esquentavam MUITO
 - vários quilometros de fios
 - Lentos
 - Ocupavam MUITO espaço (enormes)

- 2a. Geração 1955 à 1965
 - Substituiu válvulas por transistores
 - Substituiu fios de ligação por circuito impresso
 - Estas substituições permitiram
 - Redução de custo
 - Redução de tamanho
 - Aumento da velocidade de processamento

- 3a. Geração 1965 à 1980
 - Construída a partir de circuitos integrados
 - Os circuitos integrados permitiram
 - Redução de custo
 - Redução de tamanho
 - Aumento da velocidade de processamento que alcançou a ordem de microsegundos (10⁻⁶)
 - Têm início o uso de Sistemas Operacionais + avançados

- 4a. Geração 1980 à atual
 - Aperfeiçoamento da tecnologia atual
 - VLSI (Very Large Scale Integration)
 - VLSI permitiram
 - Redução de custo
 - Redução de tamanho
 - Aumento da velocidade de processamento que alcançou a ordem de nanosegundos (10⁻⁹)

- "5a. Geração" 1990 à atual
 - Aperfeiçoamento da tecnologia atual
 - ULSI (Ultra Scale Integration)
 - ULSI permitiram
 - Redução de custo
 - Redução de tamanho
 - Aumento da velocidade de processamento
 - Conectividade
 - Mobilidade

0a. Geração – Computadores **Mecânicos** 1642 à 1945

1642 – Primeira máquina de calcular

- Blaise Pascal Cientista Francês
 - Tinha apenas 19 anos
- Foi criada p/ ajudar pai (coletor de impostos do governo Francês)
- Inteiramente Mecânica
 Engrenagens movidas a
 manivelas operadas à mão
- Fazia apenas SOMA e SUB

1642 – Primeira máquina de calcular

 Pascaline – similar a um ábaco de engrenagens ou um odômetro.

1642 – Primeira máquina de calcular

 Pascaline – não fez muito sucesso, pois era cara e requeria prática de uso.

1672 – Máquina de calcular c/ 4 operações

- Baron Gottfried von Leibniz –
 Matemático Alemão
- Inteiramente Mecânica
- Fazia SOMA, SUB, MULT e DIV
- Primeira Calculadora de 4 operações (não cabia no bolso ainda!!!)

1672 – Máquina de calcular c/ 4 operações

Máquina de Leibniz:

SOMA, SUB, MUL, DIV

150 anos de silêncio!!!

nada revolucionário ocorreu neste período

1815 – Nasce George Boole

- **1815 1864**
- Álgebra Booleana (Switching algebra)
- Tabela verdade mostra todas as possíveis combinações dada as entradas e o tipo de função (E,OU,NEG,OU Exclusivo,etc..)
 - 2ⁿ onde n representa o número de entradas (variáveis)

- 1822 Máquina (Motor) Diferencial
 - Charles Babbage Matemático Inglês da Univ. de Cambridge
 - Inteiramente Mecânica, Fazia SOMA
 e SUB
 - Utilizada para calcular tabelas de navegação
 - Rodava apenas 1 algoritmo: método de diferenças finitas usando polinômios
 - Saída: marcas em placa de cobre Precursor cartões perfurados e mídias WORM – write once, read many – Ex.: CD-ROMs

1822 – Máquina (Motor) Diferencial

- 1834 Máquina (Motor) Analítica
 - Charles Babbage: PAI DO COMP., AVÔ
 DO COMP. DIGITAL MODERNO
 - Inteiramente Mecânico
 - 4 componentes:
 - Store (memória)
 - MILL (unidade de computação)
 - input section (Leitor de cartão perfurado)
 - output section (cartão perfurado)

Cont.. Máquina (Motor) Analítica

- Store
 - 1000 palavras (words) de 50 dígitos decimais
 - Armazenava variáveis e resultados
- MILL
 - aceitava operandos vindos do Store
 - Operava SOMA, SUB, MUL e DIV
 - Retornava valor ao Store

Cont.. Máquina (Motor) Analítica

- Qual a grande INOVAÇÃO?
 - Primeiro computador de PROPÓSITO GERAL
 - Noção de PROGRAMAÇÃO
 - Os outros computadores apenas recebiam dados e geravam resultados
 - Este computador distinguia a entrada em "dados e instruções"

Cont.. Máquina (Motor) Analítica

- Linguagem Assembly bem simples:
 - Operações: fetch, SOMA, SUB, MUL, DIV, store, test, desvio condicional
- Ada Augusta Lovelace –
 PRIMEIRA PROGRAMADORA

Babbage contratou-a para desenvolver os programas

Cont.. Máquina (Motor) Analítica

- Ada Augusta Lovelace
 - inventou conceito de subrotina
 - descobriu a importância dos laços de repetição (loops)
 - iniciou o desenvolvimento do desvio condicional

Cont.. Máquina (Motor) Analítica

- Triste FIM:
 - Não completou a implementação do projeto
 - Não a havia a precisão necessária para construção das polias e engrenagens no século 19
 - "Derrotado" pela tecnologia da época !!!

1890 – Hollerith: máq. de perfurar cartões

- Dr. Herman Hollerith –
 Funcionário dos EUA Census
 Bureau
- Senso de 1880 Proc. manual levou 7,5 anos para finalizar
- Senso de 1890 Proc. levou 2,5 anos com:
 - máquina de perfurar cartões
 - máquina de tabular e ordenar

Cont. – Hollerith: máq. de perfurar cartões

- Dr. Herman Hollerith utilizou idéia do Joseph-Marie Jacquard para automação de teares
- Joseph-Marie Jacquard 1801 –
 Mecânico Francês
 - Inventou tear mecânico operado por cartões perfurados
 - Em 7 anos haviam 11 mil teares deste tipo operando na França.

Cont. – Hollerith: máq. de perfurar cartões

Exemplo de Cartão Perfurado

Máquina de Hollerith

Cont. – Hollerith: máq. de perfurar cartões

- Dr. Herman Hollerith fundou em 1911 a companhia "Tabulating Machine Company" para produzir máquinas de tabulação
- 1924 A companhia de Hollerith foi renomeada para IBM (International Business Machines)

1936 – Z1 – Primeira calculadora a relê

- Konrad Zuze estudante alemão de engenharia
- Zuze desconhecia o trabalho de Babbage
- Construiu uma série de máquinas automáticas de calcular – relês eletromagnéticos

1992

- Z1 foi destruída em 1944 no bombardeio de Berlim
- Z1 não influenciou as máquinas atuais. Copyleft Rossano Pablo Pinto

Cont. – Z1 – Primeira calculadora a relê

1992

1930 à 1940 - calculadoras

- John Atanasoff @ Iowa State College
- Usava aritmética binária
- Memória feita de capacitores
 - Ciclos de REFRESH !!!! Iguais as de hoje.
- A máquina nunca tornou-se operacional devido à tecnologia da época

1930 à 1940 - calculadoras

- George Stibbitz @ Bell Labs
- Um pouco + primitiva que a de Atanasoff
- Completou o projeto
- Influenciou o trabalho de John Mauchley (ENIAC)

- 1944 MARK I 1o. Comp. Prop. Geral EUA
 - Howard Aiken Phd Harvard
 - Usou projeto de Babbage p/ construir o mark
 - Construído com milhares de Relês, ocupava 120 m³, levava 3 segundos p/ multiplicar números de 10 dígitos
 - 72 palavras de 23 dígitos decimais
 - tempo de instrução de 6 segundos
 - E/S com fita de papel perfurado

Cont. MARK I
– 1o. Comp.
Prop. Geral
EUA

Cont. MARK I – 1o. Comp. Prop. Geral EUA

Cont. MARK I – 1o. Comp. Prop. Geral EUA

Cont. MARK I – 1o. Comp. Prop. Geral EUA

MARK II foi completado mas tornara-se obsoleto Começara a era ELETRÔNICA

1a. Geração – Válvulas 1945 à 1955

 1943 – COLOSSUS – Primeiro computador Eletrônico

- Alan Turing ajudou no projeto
- Governo Inglês manteve segredo por 30 anos
- Não influenciou os computadores modernos (pois ficou em segredo)
- Foi utilizado para quebra de mensagens criptografadas pela Enigma alemã

- 1946 ENIAC (Electronic Numerical Integrator and Computer) - EUA
 - John Mauchley e seu aluno de graduação J.
 Presper Eckert. (+ John von Neumann)
 - 18.000 válvulas, 1500 relês, 30 toneladas,
 140 kW de consumo
 - 20 registradores de 10 dígitos decimais
 - programação usando 6000 chaves e conexão de cabos
 - Projeto n\u00e3o estava pronto em 1946

 Cont. – ENIAC (Electronic Numerical Integrator and Computer) - EUA

 Cont. – ENIAC (Electronic Numerical Integrator and Computer) - EUA

The ENIAC Today

John Mauchley

- Computadores criados após palestra sobre ENIAC:
 - 1949 EDSAC Maurice Wilkes –
 Universidade de Cambridge Primeiro computador com Programa Armazenado
 - JOHNIAC Rand Corporation
 - ILLIAC Universidade de Illinois
 - MANIAC Los Alamos Laboratory
 - WEIZAC Weizmann Institute of Israel

- EDVAC (Electronic Discrete Variable Automatic Computer)
 - John Mauchley e J. Presper Eckert –
 Universidade da Pensilvânia
 - Projeto foi prejudicado pela saída de ambos da universidade para fundar a empresa Eckert-Mauchley Computer Corporation
 - Depois de várias fusões surge a UNISYS Corporation

EDVAC

Copyleft Rossano Pablo Pinto

- 1952 IAS Maioria da máquinas atuais utiliza este projeto
 - John von Neumann Princeton
 - Matemático e físico
 - No ENIAC, cada "bit" era representado por 10 válvulas (decimal – 0 à 9)
 - von Neumann propôs utilizar aritmética binária
 - Substituiu programação via cabos/chaves por programas digitais armazenados em MEMÓRIA

Cont. IAS – Máquina de von Neumann:

- Cont. IAS Máquina de von Neumann:
 - 5 partes: memória, ULA, UC, Entrada, Saída
 - Não possuía unidade aritmética de ponto flutuante
 - Cada palavra podia armazenar:
 - 2 instruções de 20 bits ou 1 inteiro de 40 bits
 - Formato das instruções:
 - 8 bits dedicados a identificar tipo da instrução
 - 12 bits p/ especificar uma das 4096 palavras na meória ($2^{12} = 4096$)

- 1951 Whirlwind I MIT Primeiro computador de tempo-real
 - Palavra de 16 bits
 - levou à invenção da memória de núcleo magnético (magnetic core memory)
 - alavancou a invenção do primeiro minicomputador comercial

- 1953 701 IBM
 - Deu origem ao coneceito de séries

- 2048 palavras de 16 bits, 17.000 inst. p/ seg.
- 1956 704 IBM
 - 4K core memory
 - Hardware para ponto-flutuante
- 1958 709 IBM
 - melhorias dos modelos anteriores, último modelo à válvula

2a. Geração – Transistores 1955 à 1965

http://pt.wikipedia.org/wiki/Trans%C3%ADstor

- 1948 Invenção do transistor
 - John Bardeen, Walter Brattain, William Shockley @ Bell Labs
 - 1956 Prêmio Nobel de Física
 - Por volta de 1950 as válvulas ficaram obsoletas

- TX-0 Primeiro Computador Transistorizado
 - MIT Lincolm Laboratory
 - 16 bits, similar ao Whirlwind I
 - 1957 Um dos engenheiros do projeto,
 Kenneth Olsen, fundou a:
 - Digital Equipment Corporation (DEC)

• Cont. – TX-0 Prim. Comp. Transistorizado

TX-2 Evolução TX-0

- 1960 PDP-I DEC
 - Vendeu 50 unidades (custava US\$120.000,00 ótimo custo/benefício), MIT recebeu 1 PDP-I
 - 4K de palavras de 18 bits, ciclo de 5 microsegundos (10⁻⁶)
 - Display visual c/ habilidade de plotar pontos em qualquer lugar da tela de 512x512
 - Depois de muito tempo, alunos criaram o primeiro video-game nele: guerra nas estrelas

Cont.. 1960 – PDP-I - DEC

- 1960 7090 IBM
 - Um dos primeiros mainframes totalmente transistorizados
 - Sucessora da 709 (válvula), só que usando transistor
 - ciclo de 2,5 microsegundos (10⁻⁶), 229.000 cálculos por segundo
 - Custava milhões de dólares

- 1961 1401 IBM
 - Computador tremendamente popular
 - podia ler/escrever fitas magnéticas, ler/furar cartões magnéticos
 - quase tão rápido quanto o 7094 por uma fração do preço
 - era terrível para computação científica
 - ótimo para computação "comercial" (armazenagem e acesso a dados)

- Cont. 1401 IBM
 - Não possuía registradores e nem palavras de tamanho fixo
 - memória de 4K 8bit bytes (4KB)
 - Cada byte possuía o seguinte formato:

- 1962 7094 IBM
 - ciclo de 2 microsegundos, 32K de memória de palavras de 36 bits.
 - Fim da era das máquinas com projeto similar ao ENIAC

- 1964 6600 CDC (Control Data Corp.)
 - máquina com praticamente uma ordem de magnitude + rápida que a 7094 da IBM
 - CPU "altamente paralela"
 - possuía várias unidades de execução p/ fazer:
 - +1 adição
 - +1 multipliação
 - +1 divisão

Todas as unidades rodavam em paralelo (10 instruções sendo executadas ao mesmo tempo)

possuía vários outros "pequenos computadores" p/ auxiliar a CPU principal

- Cont. 6600 CDC (Control Data Corp.)
 - Seymour Cray projetista da 6600 dedicou sua vida para construir SUPERCOMPUTADORES
 - 6600
 - 7600
 - Cray-1

- Burroughs B5000
 - Primeira máquina projetada para uma linguagem de alto nível
 - Principal objetivo: construir uma máquina capaz de ser programada em Algol 60 (precursora da Linguagem Pascal)
 - Incluíram diversas facilidades em hardware para facilitar o trabalho do compilador
 - NÃO obteve muito sucesso

- 1965 PDP-8 DEC
 - Vendeu 50.000 unidades (custava US\$16.000,00 uma PECHINCHA)
 - Introduziu conceito de barramento único, o omnibus

Cont. 1965 –
 PDP-8 - DEC

Cont.

1965 -

PDP-8 - DEC

Processsador

Figure 16. PDP-8/A processor (interior).

- Cont. PDP-8 DEC
 - Palavra de 12 bits
 - Barramento:
 - Definição: coleção de fios (trilhas) paralelos para conectar os componentes de um computador.
 - Foi adotado como "padrão" em todos os minicomputadores desde então.
 - Grande mudança: barramento ao invés de memory-centered (como no IAS)

- Cont. PDP-8 DEC
 - módulos do PDP-7 e PDP-8

Copyleft Rossano Pablo Pinto

Cont. – PDP-8 - DEC

3a. Geração – Circuitos Integrados 1965 à 1980

3a. G – Cl 1965 à 1980

- 1958 Invenção do CI
 - Robert Noyce
 - Permitiu colocar várias dezenas de **transistores** em um **ÚNICO CHIP**
 - Benefícios:
 - computadores + rápidos, menores e + baratos

3a. G – Cl 1965 à 1980

- 1964 System/360 IBM
 - Baseada em circuitos integrados
 - Microprogramada

- Primeira linha de produto projetada como uma família (2 versões e vários configurações):
 - Versão comercial e versão científica, onfigurações em diversos tamanhos e velocidades
 - Mesma linguagem assembly para cada uma delas
 - PROGRAMA ESCRITO P/ UMA MÁQUINA,
 RODARIA EM QUALQUER UMA DELAS !!!!!!

- Cont. System/360 IBM
 - Modelos:

Property	Model 30	Model 40	Model 50	Model 65
Relative performance	1	3.5	10	21
Cycle time (nsec)	1000	625	500	250
Maximum memory (KB)	64	256	256	512
Bytes fetched per cycle	1	2	4	16
Maximum number of data channels	3	3	4	6

Figure 1-7. The initial offering of the IBM 360 product line.

 Todos os outros fabricantes adotaram o conceito de FAMÍLIA.

- Cont. System/360 IBM
 - MULTIPROGRAMAÇÃO:
 - Vários programas carregados na memória
 - Enquanto um esperava pelo término de E/S, outro era executado pela CPU
 - VIRTUALIZAÇÃO (EMULAÇÃO) de hardware:
 - podia rodar programas escritos para 1401 e 7094
 - 3 microprogramas:
 - p/ o conjunto de instruções do 360
 - p/ o conjunto de instruções do 1401
 - p/ o conjunto de instruções do 7094

- Cont. System/360 IBM
 - Espaço de endereçamento de 16 MB
 - Seguiram as séries: 370, 4300, 3080 e 3090
 - Meados de 1980 o limite de 16 MB tornou-se um PROBLEMA SÉRIO !!!
 - IBM abandonou a compatibilidade com as outras séries quando adotou endereçamento de 32 bits.

- PDP-11 DEC
 - Sucessor de 16 bits do PDP-8
 - Sucesso enorme em universidades

4a. Geração – VLSI 1980 à ????

4a. G – VLSI 1980 à ????

- LSI e VLSI
- Mini e super minicomputadores
 - Sistemas multiusário, UNIX, VMS)
- PC de 16 bits da IBM (DOS)

- Workstations (monousuário e muiulareia)
- Multiprocessamento, divisão de programas entre processadores, paralelismo
- WANS, TCP/IP, CCITT X.25, LAN, S.O. Rede

4a. G – VLSI 1980 à ????

- Arquitetura RISC (Reduced Instruction Set Computer)
- CPUs super-escalares

COMPUTADORES PESSOAIS

- Inicialmente vendidos sem software (o usuário precisava escreve-lo)
- CP/M (Gary Kildall) Primeiro S.O. utilizado em computadores pessoais (processador 8080)

4a. G – VLSI 1980 à ????

Tarefa 1:

- Pesquisar sobre a história do computador pessoal (principalmente IBM, Microsoft, Apple, DOS e OS/2).
- Entregar monografia sobre o assunto.
- Tarefa 2 Fazer resumo:
 - Cap. 1 Seção 1.2 (e todas as sub-seções)
 - Cap. 1 Seção 1.3 (e todas as sub-seções)
 - Cap. 2 Seção 2.1.3

5a. Geração ????? 1991 à ????

5a. G - ???? 1991 à ????

- Sistemas especialistas, Sistemas multimídia, Banco de dados distribuídos
- Inteligência artificial, Redes neurais
- ULSI
- Arquiteturas paralelas, Programação concorrente, Processamento distribuído
- Surge o Linux
- Interfaces Gráficas

5a. G - ???? 1991 à ????

- CONECTIVIDADE (802.11, GSM, GPRS, etc..)
- MOBILIDADE (notebooks, PDAs, telefones celulares)
 - celulares: autonomia (bateria) de 1 semana
 - PDAs: autonomia de 1 semana
 - notebooks: autonomia entre 30 minutos à ~8 horas

"Quando achamos que já chegamos, paramos de avançar." Mark Baker