Rank-65550 over GF(8)

January 15, 2021

The equation

The equation of the surface is:

$$X_0^3 + X_1^3 + X_3^3 + X_0 X_1 X_2 = 0$$

(1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0)

The point rank of the equation over GF(8) is 1227134038

General information

Number of lines	3
Number of points	73
Number of singular points	1
Number of Eckardt points	0
Number of double points	3
Number of single points	21
Number of points off lines	49
Number of Hesse planes	0
Number of axes	0
Type of points on lines	93
Type of lines on points	$2^3, 1^{21}, 0^{49}$

Singular Points

The surface has 1 singular points:

$$0: P_2 = \mathbf{P}(0,0,1,0) = \mathbf{P}(0,0,1,0)$$

The 3 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{648} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{648} = \mathbf{Pl}(0, 1, 1, 0, 0, 0)_{10}$$

$$\ell_1 = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{4681} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{4681} = \mathbf{Pl}(0, 1, 0, 0, 0, 1)_{657}$$

$$\ell_2 = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{666} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{666} = \mathbf{Pl}(1, 0, 1, 1, 1, 1)_{1323}$$

Rank of lines: (648, 4681, 666)

Rank of points on Klein quadric: (10, 657, 1323)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 3 Double points: The double points on the surface are:

$$P_2 = (0,0,1,0) = \ell_0 \cap \ell_1$$

$$P_{139} = (1,0,1,1) = \ell_0 \cap \ell_2$$

$P_{146} = (0, 1, 1, 1) = \ell_1 \cap \ell_2$

Single Points

The surface has 21 single points: The single points on the surface are:

$0: P_5 = (1, 1, 0, 0)$ lies on line ℓ_2
$1: P_{75} = (1, 0, 0, 1)$ lies on line ℓ_0
2: $P_{82} = (0, 1, 0, 1)$ lies on line ℓ_1
$3: P_{156} = (3, 2, 1, 1)$ lies on line ℓ_2
4: $P_{163} = (2, 3, 1, 1)$ lies on line ℓ_2
$5: P_{174} = (5,4,1,1)$ lies on line ℓ_2
6: $P_{181} = (4, 5, 1, 1)$ lies on line ℓ_2
7: $P_{192} = (7, 6, 1, 1)$ lies on line ℓ_2
8: $P_{199} = (6,7,1,1)$ lies on line ℓ_2
9: $P_{202} = (1,0,2,1)$ lies on line ℓ_0
10: $P_{209} = (0, 1, 2, 1)$ lies on line ℓ_1

11: $P_{266} = (1,0,3,1)$ lies on line ℓ_0 12: $P_{273} = (0,1,3,1)$ lies on line ℓ_1 13: $P_{330} = (1,0,4,1)$ lies on line ℓ_0 14: $P_{337} = (0,1,4,1)$ lies on line ℓ_1 15: $P_{394} = (1,0,5,1)$ lies on line ℓ_0 16: $P_{401} = (0,1,5,1)$ lies on line ℓ_1 17: $P_{458} = (1,0,6,1)$ lies on line ℓ_0 18: $P_{465} = (0,1,6,1)$ lies on line ℓ_1 19: $P_{522} = (1,0,7,1)$ lies on line ℓ_0 20: $P_{529} = (0,1,7,1)$ lies on line ℓ_0

The single points on the surface are:

Points on surface but on no line

The surface has 49 points not on any line: The points on the surface but not on lines are:

$0: P_4 = (1, 1, 1, 1)$	$8: P_{105} = (7, 3, 0, 1)$
$1: P_{22} = (3, 1, 1, 0)$	9: $P_{112} = (6, 4, 0, 1)$
$2: P_{24} = (5, 1, 1, 0)$	$10: P_{116} = (2, 5, 0, 1)$
$3: P_{25} = (6, 1, 1, 0)$	$11: P_{126} = (4, 6, 0, 1)$
$4: P_{36} = (1,3,1,0)$	$12: P_{133} = (3,7,0,1)$
$5: P_{52} = (1, 5, 1, 0)$	$13: P_{216} = (7, 1, 2, 1)$
$6: P_{60} = (1, 6, 1, 0)$	$14: P_{246} = (5, 5, 2, 1)$
$7: P_{95} = (5, 2, 0, 1)$	$15: P_{258} = (1, 7, 2, 1)$

$16: P_{279} = (6, 1, 3, 1)$	$33: P_{429} = (4,4,5,1)$
17: $P_{283} = (2, 2, 3, 1)$	$34: P_{432} = (7,4,5,1)$
$18: P_{285} = (4, 2, 3, 1)$	$35: P_{436} = (3, 5, 5, 1)$
$19: P_{287} = (6, 2, 3, 1)$	$36: P_{453} = (4,7,5,1)$
$20: P_{295} = (6, 3, 3, 1)$	$37: P_{470} = (5, 1, 6, 1)$
$21: P_{299} = (2,4,3,1)$	$38: P_{480} = (7, 2, 6, 1)$
$22: P_{314} = (1,6,3,1)$	$39: P_{498} = (1, 5, 6, 1)$
$23: P_{315} = (2,6,3,1)$	$40: P_{503} = (6, 5, 6, 1)$
$24: P_{316} = (3, 6, 3, 1)$	$41: P_{504} = (7, 5, 6, 1)$
$25: P_{339} = (2, 1, 4, 1)$	$42: P_{510} = (5, 6, 6, 1)$
$26: P_{346} = (1, 2, 4, 1)$	$43: P_{515} = (2,7,6,1)$
$27: P_{383} = (6, 6, 4, 1)$	$44: P_{518} = (5,7,6,1)$
$28: P_{404} = (3, 1, 5, 1)$	$45: P_{520} = (7,7,6,1)$
$29: P_{418} = (1, 3, 5, 1)$	$46: P_{533} = (4, 1, 7, 1)$
$30: P_{421} = (4, 3, 5, 1)$	$47: P_{548} = (3, 3, 7, 1)$
$31: P_{422} = (5, 3, 5, 1)$	$48: P_{554} = (1,4,7,1)$
$32: P_{428} = (3,4,5,1)$	

Line Intersection Graph

 $\begin{array}{c|c} & 0 & 1 & 2 \\ \hline 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 2 & 1 & 1 & 0 \end{array}$

Neighbor sets in the line intersection graph:

Line 0 intersects

	Line	ℓ_1	ℓ_2
in p	oint	P_2	P_{139}

 ${\bf Line~1~intersects}$

Line	ℓ_0	ℓ_2
in point	P_2	P_{146}

Line 2 intersects

Line	ℓ_0	ℓ_1
in point	P_{139}	P_{146}

The surface has 73 points:

The points on the surface are:

$0: P_2 = (0, 0, 1, 0)$	15: $P_{126} = (4, 6, 0, 1)$	$30: P_{266} = (1, 0, 3, 1)$
$1: P_4 = (1, 1, 1, 1)$	16: $P_{133} = (3, 7, 0, 1)$	$31: P_{273} = (0, 1, 3, 1)$
$2: P_5 = (1, 1, 0, 0)$	17: $P_{139} = (1, 0, 1, 1)$	$32: P_{279} = (6, 1, 3, 1)$
$3: P_{22} = (3, 1, 1, 0)$	18: $P_{146} = (0, 1, 1, 1)$	$33: P_{283} = (2, 2, 3, 1)$
$4: P_{24} = (5, 1, 1, 0)$	$19: P_{156} = (3, 2, 1, 1)$	$34: P_{285} = (4, 2, 3, 1)$
$5: P_{25} = (6, 1, 1, 0)$	$20: P_{163} = (2, 3, 1, 1)$	$35: P_{287} = (6, 2, 3, 1)$
$6: P_{36} = (1, 3, 1, 0)$	$21: P_{174} = (5, 4, 1, 1)$	$36: P_{295} = (6, 3, 3, 1)$
$7: P_{52} = (1, 5, 1, 0)$	$22: P_{181} = (4, 5, 1, 1)$	$37: P_{299} = (2,4,3,1)$
$8: P_{60} = (1, 6, 1, 0)$	23: $P_{192} = (7, 6, 1, 1)$	$38: P_{314} = (1, 6, 3, 1)$
$9: P_{75} = (1,0,0,1)$	$24: P_{199} = (6,7,1,1)$	$39: P_{315} = (2, 6, 3, 1)$
$10: P_{82} = (0, 1, 0, 1)$	$25: P_{202} = (1, 0, 2, 1)$	$40: P_{316} = (3, 6, 3, 1)$
$11: P_{95} = (5, 2, 0, 1)$	$26: P_{209} = (0, 1, 2, 1)$	$41: P_{330} = (1, 0, 4, 1)$
$12: P_{105} = (7, 3, 0, 1)$	$27: P_{216} = (7, 1, 2, 1)$	$42: P_{337} = (0, 1, 4, 1)$
13: $P_{112} = (6, 4, 0, 1)$	$28: P_{246} = (5, 5, 2, 1)$	$43: P_{339} = (2, 1, 4, 1)$
$14: P_{116} = (2, 5, 0, 1)$	$29: P_{258} = (1, 7, 2, 1)$	$44: P_{346} = (1, 2, 4, 1)$

$45: P_{383} = (6, 6, 4, 1)$	$55: P_{436} = (3, 5, 5, 1)$	$65: P_{515} = (2,7,6,1)$
46: $P_{394} = (1, 0, 5, 1)$	$56: P_{453} = (4,7,5,1)$	$66: P_{518} = (5, 7, 6, 1)$
$47: P_{401} = (0, 1, 5, 1)$	$57: P_{458} = (1,0,6,1)$	$67: P_{520} = (7, 7, 6, 1)$
$48: P_{404} = (3, 1, 5, 1)$	$58: P_{465} = (0, 1, 6, 1)$	$68: P_{522} = (1, 0, 7, 1)$
$49: P_{418} = (1, 3, 5, 1)$	$59: P_{470} = (5, 1, 6, 1)$	$69: P_{529} = (0, 1, 7, 1)$
$50: P_{421} = (4, 3, 5, 1)$	$60: P_{480} = (7, 2, 6, 1)$	$70: P_{533} = (4, 1, 7, 1)$
$51: P_{422} = (5, 3, 5, 1)$	$61: P_{498} = (1, 5, 6, 1)$	$71: P_{548} = (3, 3, 7, 1)$
$52: P_{428} = (3, 4, 5, 1)$	$62: P_{503} = (6, 5, 6, 1)$	$72: P_{554} = (1, 4, 7, 1)$
$53: P_{429} = (4, 4, 5, 1)$	$63: P_{504} = (7, 5, 6, 1)$	
$54: P_{432} = (7, 4, 5, 1)$	$64: P_{510} = (5, 6, 6, 1)$	