INTERROGATION N. 7

NOM: PRÉNOM:

Exercice 1 - Parmi les permutations suivantes, lesquelles appartiennent au groupe alterné (justifier la réponse)?

$$\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ 7 & 10 & 9 & 11 & 8 & 3 & 1 & 6 & 5 & 2 & 4 \end{pmatrix} \in \mathscr{S}_{11}, \quad \sigma_2 = (132)(46)(5987) \in \mathscr{S}_9.$$

Exercice 2 -

- (1) Combien y-a-t-il de 5-cycles dans \mathcal{S}_5 ?
- (2) Soit σ un 5-cycle de \mathscr{S}_5 . Démontrer que son stabilisateur pour l'action par conjugaison de \mathscr{S}_5 est $\langle \sigma \rangle$. On pourra d'abord déterminer son orbite.
- (3) En déduire qu'il existe deux classes de conjugaison de 5-cycles pour l'action de conjugaison de \mathscr{A}_5 sur lui-même.

Exercice 1: $\mathcal{E}: \mathcal{J}_m \longrightarrow \{\pm i\}$ est un homomorphisme de groupes jour tout $m \ge 1$, et 8i \mathcal{E} est un cycle de \mathcal{J}_m alors $\mathcal{E}(\mathcal{L}) = (-1)^{\ell-1}$ où ℓ est la longueur de \mathcal{L} .

On $\mathcal{J}_1 = (17)(210)(39586)(411)$,

donc $\mathcal{E}(\mathcal{J}_1) = -1$

Exencice 2:

- (1) Az a 24 5-cycles.
- (2) On écrit $\sigma = (abcde)$ où $a,b,c,d,e \in \{1,2,3,4,5\}$ sont distincts. Soit $\sigma' = (\alpha \beta \delta \delta \epsilon)$ un 5-wycle de f_5 .

Alors {1,2,3,4,5} = {a, b, c, d, e} = {a, p, r, s, E} de sonte que

$$Z := \left(\begin{array}{cccc} a & b & x & d & e \\ \alpha & \beta & \delta & \delta & \varepsilon \end{array} \right) \in \mathcal{I}_{5}.$$

Gna $T \circ \sigma \circ \vec{\tau}^{(4)} = (T(a) \quad T(b) \quad T(c) \quad T(d) \quad T(e) = \sigma'$

Donc l'orbite de v contient tous les 5-eycles.

Elle est constituée de 5-eycles d'après l'identité générale (*).

Elle a donc 24 éléments.

L'équation aux classes donne donc $Card(Stab_{\sigma}(\sigma)) = \frac{Card(S_{\sigma})}{S} = \frac{120}{24} = 5$. $Card(S_{\sigma}) = Stab_{\sigma}(\sigma)$ car $\sigma \in \langle \sigma \rangle$ et $\langle \sigma \rangle$ est abélien. $Card(\langle \sigma \rangle) = 5$ car σ est un 5-cycle, donc d'endre 5.

Aimsi: $S+ab_{\sigma}(\sigma) = \langle \sigma \rangle$.

Soit $\sigma \in \mathcal{F}$ um 5-cycle

(3) Par définition Stab₄ $(\sigma) = \{ \tau \in \mathcal{K}_5 \mid \tau \circ \sigma \circ \overline{\tau}' = \sigma \}$ $= \mathcal{K}_5 \cap Stab_5 (\sigma) = \mathcal{K}_5 (\sigma)$ $= \mathcal{K}_5 \cap Stab_5 (\sigma) = \mathcal{K}_5 (\sigma)$

Donc $Stab_{A_5}(\sigma) = \langle \sigma \rangle$.

L'équation aux classes donne donc $Cand(t_5 \cdot \sigma) = \frac{Cand(t_5)}{Cand(Stab_{_{1}}(\sigma))} = \frac{60}{5} = 12.$

Comme il y a 24 5-ydes (dans to comme dans to) on déduit qu'il y a 2 orbites de 5-cycles pour l'action de conjugaison de to sur to.