0.1 Proof of theorem 0.1

Our relaxed objective becomes:

minimize
$$f'_S := \text{Tr}(\mathbf{M}^T \mathbf{L} \mathbf{M}),$$

subject to $\mathbf{M}^T \mathbf{D} \mathbf{M} = \mathbf{1}^{k \times k}$ and $\mathbf{M} \in \mathbb{R}^{n \times k}.$

The optimal solution to f_S^{\prime} is more tractable to compute.

Theorem 0.1. The optimal solution to f'_S is the matrix **U** with the first k eigenvectors of the generalized eigenvalue problem $\mathbf{L}\mathbf{u} = \lambda \mathbf{D}\mathbf{u}$ as its columns.

Originally stated without proof in [2], we construct a full proof of the theorem here. It requires finding a lower bound for $Tr(\mathbf{M}^T \mathbf{L} \mathbf{M})$, and showing that $\mathbf{M} := \mathbf{U}$ achieves this bound. For a brief mathematical background, we again refer to appendix \mathbf{A} .

Lemma 0.2 (Courant-Fischer Min-Max Theorem). Let $A \in \mathbb{R}^{n \times n}$ be some symmetric matrix with eigenvalues

$$\lambda_1 \leq \cdots \leq \lambda_n$$
.

Then,

$$\lambda_d = \min_{\substack{S \subseteq \mathbb{R}^n \\ \dim(S) = d}} \max_{\substack{\mathbf{x} \in S \\ \mathbf{x} \neq \mathbf{0}_{\mathbf{n}}}} R_{\mathbf{A}}(\mathbf{x}),$$

where $R_A(\mathbf{x})$ denotes the Rayleigh-Ritz quotient [1], defined as

$$\frac{\mathbf{x}^T \mathbf{A} \mathbf{x}}{\mathbf{x}^T \mathbf{x}}$$

for any $1 \le d \le n$.

Proof. Let $\mathbf{u}_1, \dots, \mathbf{u}_n \in \mathbb{R}^n$ be an orthonormal set of eigenvectors of **A** corresponding to eigenvalues $\lambda_1, \dots, \lambda_n$, implying $\|\mathbf{u}_d\|^2 = 1$ for $1 \le d \le n$. Since **A** is symmetric, this set exists (see appendix A.1.2).

Now let $S_d := \operatorname{span}(\mathbf{u}_d, \dots, \mathbf{u}_n)$ and let $S \subseteq \mathbb{R}^n$ be an arbitrary set with $\dim(S) = d$. If $S_d \cap S = \{\mathbf{0}^n\}$, then by lemma A.4, $S_d + S$ would be a subspace of \mathbb{R}^n of dimension d + (n - d + 1) = n + 1, which is impossible by lemma A.5. Therefore, $S_d \cap S \neq \{\mathbf{0}^n\}$. Now let $\mathbf{s} \in S_d \cap S$ such that $\mathbf{s} \neq \mathbf{0}^n$. Since $\mathbf{s} \in S_d$, we can write \mathbf{s} as a linear combination $\mathbf{s} = \sum_{j=d}^n \alpha_j \mathbf{u}_j$, for scalars $\alpha_j \in \mathbb{R}$. Then, we see

$$R_{\mathbf{A}}(\mathbf{s}) = \frac{\mathbf{s}^T \mathbf{A} \mathbf{s}}{\mathbf{s}^T \mathbf{s}} = \frac{\sum_{j=d}^n \alpha_j^2 \lambda_j}{\sum_{j=d}^n \alpha_j^2} \ge \frac{\sum_{j=d}^n \alpha_j^2 \lambda_d}{\sum_{j=d}^n \alpha_j^2} = \lambda_d,$$

where the inequality follows from $\lambda_d \leq \cdots \leq \lambda_n$. Therefore,

$$\max_{\substack{\mathbf{x} \in S \\ x \neq \mathbf{0}^n}} R_{\mathbf{A}}(\mathbf{x}) \geq \lambda_d.$$

Since S was chosen as an arbitrary subspace of \mathbb{R}^n with dimension d, this statement holds for all such sets.

In particular, it holds for $S_1 := \operatorname{span}(\mathbf{u}_1, \dots, \mathbf{u}_d)$. Again, using lemma A.4, we can pick $\mathbf{0}^n \neq \mathbf{s} \in S_1 \cap S_d$, and write $\mathbf{s} = \sum_{j=1}^d \beta_j \mathbf{u}_j$, for scalars $\beta_j \in \mathbb{R}$. Analogously, we get

$$R_{\mathbf{A}}(\mathbf{s}) = \frac{\mathbf{s}^T \mathbf{A} \mathbf{s}}{\mathbf{s}^T \mathbf{s}} = \frac{\sum_{j=1}^n \beta_j^2 \lambda_j}{\sum_{j=1}^n \beta_j^2} \le \frac{\sum_{j=1}^n \beta_j^2 \lambda_d}{\sum_{j=1}^n \beta_j^2} = \lambda_d,$$

where the inequality follows from $\lambda_1 \leq \cdots \leq \lambda_d$. Combining the two inequalities, we get

$$\min_{\substack{S \subseteq \mathbb{R}^n \\ \dim(S)=d}} \max_{\substack{\mathbf{x} \in S \\ \mathbf{x} \neq \mathbf{0}^n}} R_{\mathbf{A}}(\mathbf{x}) = \lambda_d,$$

which is what we wanted to show.

 $^{^{1}}$ By 'the first k eigenvectors' we mean eigenvectors corresponding to the k smallest eigenvalues.

Corollary 0.3. We have

$$\lambda_n = \max_{\substack{\mathbf{x} \in \mathbb{R}^n \\ \mathbf{x} \neq \mathbf{0}^n}} R_{\mathbf{A}}(\mathbf{x})$$

Proof. Any subspace S of \mathbb{R}^n of dimension n is equal to \mathbb{R}^n itself. The statement now follows from lemma 0.2.

Corollary 0.4. Let A as in lemma 0.2. Then

$$\lambda_d = \max_{\substack{S \subseteq \mathbb{R}^n \\ \dim(S) = n - d + 1}} \min_{\substack{\mathbf{x} \in S \\ \mathbf{x} \neq \mathbf{0}^n}} R_{\mathbf{A}}(\mathbf{x})$$

Proof. Analogous as in lemma 0.2, by swapping S_d and S_1 .

Lemma 0.5 (Part of Cauchy's Interlacing Theorem). Suppose that $1 \le k \le n$. Let $A \in \mathbb{R}^{n \times n}$ be symmetric, partitioned as

$$\mathbf{A} = \begin{bmatrix} \mathbf{B} & \mathbf{C} \\ \mathbf{C}^T & \mathbf{D} \end{bmatrix}$$
, with $\mathbf{B} \in \mathbb{R}^{k \times k}$, $\mathbf{D} \in \mathbb{R}^{n-k \times n-k}$, $\mathbf{C} \in \mathbb{R}^{k \times n-k}$,

and let the $\lambda_1^{\mathbf{A}} \leq \cdots \leq \lambda_n^{\mathbf{A}}$ and $\lambda_1^{\mathbf{B}} \leq \cdots \leq \lambda_k^{\mathbf{B}}$ be the eigenvalues of \mathbf{A} and \mathbf{B} . Then, $\lambda_d^{\mathbf{A}} \leq \lambda_d^{\mathbf{B}}$ for $1 \leq d \leq k$.

Proof. From corollary 0.4, we have

$$\lambda_d^{\mathbf{A}} = \max_{\substack{S \subseteq \mathbb{R}^n \\ \dim(S) = n - d + 1}} \min_{\substack{\mathbf{x} \in S \\ \mathbf{x} \neq \mathbf{0}^n}} R_{\mathbf{A}}(\mathbf{x}).$$

Similarly, we get

$$\lambda_d^{\mathbf{B}} = \max_{\substack{S \subseteq \mathbb{R}^k \\ \dim(S) = (n-k) - d + 1}} \min_{\mathbf{y} \in S} R_{\mathbf{B}}(\mathbf{y}).$$

Now for any $\mathbf{y} \in \mathbb{R}^k$ define $\bar{\mathbf{y}} \in \mathbb{R}^n$ which has the same elements as \mathbf{y} for the first k dimensions, and zero for the last n-k dimensions. Then, $\mathbf{y}^T \mathbf{B} \mathbf{y} = \bar{\mathbf{y}}^T \mathbf{A} \bar{\mathbf{y}}$ and also $\mathbf{y}^T \mathbf{y} = \bar{\mathbf{y}}^T \bar{\mathbf{y}}$, whence $R_{\mathbf{B}}(\mathbf{y}) = R_{\mathbf{A}}(\bar{\mathbf{y}})$. We can now rewrite $\lambda_d^{\mathbf{B}}$ as

$$\lambda_d^{\mathbf{B}} = \max_{\substack{S \subseteq \mathbb{R}^n \\ \dim(S) = n-d+1}} \min_{\substack{\bar{\mathbf{y}} \in S, \dagger \\ \mathbf{y} \neq \mathbf{0}^n}} R_{\mathbf{A}}(\bar{\mathbf{y}}),$$

where \dagger refers to the condition on $\bar{\mathbf{y}}$ that its last n-k elements have to equal zero. Clearly, this is the same statement as $\lambda_d^{\mathbf{A}}$, but with the extra condition \dagger . If we substitute $\mathbf{x} := \bar{\mathbf{y}}$, we thus get

$$\lambda_d^{\mathbf{A}} = \max_{\substack{S \subseteq \mathbb{R}^n \\ \dim(S) = n-d+1}} \min_{\substack{\mathbf{x} \in S \\ \mathbf{x} \neq \mathbf{0}^n}} R_{\mathbf{A}}(\mathbf{x}) \le \max_{\substack{S \subseteq \mathbb{R}^n \\ \dim(S) = n-d+1}} \min_{\substack{\mathbf{x} \in S, \dagger \\ \mathbf{x} \neq \mathbf{0}^n}} R_{\mathbf{A}}(\mathbf{x}) = \lambda_d^{\mathbf{B}}.$$

Corollary 0.6 (part of the Poincaré Separation Theorem). Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be symmetric and suppose that $1 \leq k \leq n$. Let $\mathbf{u}_1, \ldots, \mathbf{u}_k \in \mathbb{R}^n$ be an orthonormal set of vectors and let $\mathbf{V} \in \mathbb{R}^{n \times k}$ be the (orthogonal) matrix with $\mathbf{u}_1, \ldots, \mathbf{u}_k$ as its columns. Set $\mathbf{B} := \mathbf{V}^T \mathbf{A} \mathbf{V} \in \mathbb{R}^{k \times k}$ and arrange the eigenvalues of \mathbf{A} and \mathbf{B} as above. Then, $\lambda_d^{\mathbf{A}} \leq \lambda_d^{\mathbf{B}}$ for $1 \leq d \leq k$.

Proof. If k < n, pick n - k additional orthonormal vectors $\mathbf{u}_{k+1}, \dots, \mathbf{u}_n \in \mathbb{R}^n$, and let $\mathbf{U} \in \mathbb{R}^{n \times n}$ be an extension of \mathbf{V} by adding these last orthonormal vectors as columns. Then, \mathbf{U} is an orthogonal matrix, i.e. $\mathbf{U}^T\mathbf{U} = \mathbf{1}_n$. By lemma $\mathbf{A}.\mathbf{10}$, we see that \mathbf{A} and $\mathbf{U}^T\mathbf{A}\mathbf{U}$ share the same eigenvalues.

To finish our argument, see that removing the last n - k rows and columns of $\mathbf{U}^T \mathbf{A} \mathbf{U}$ gives us back \mathbf{B} . Hence, lemma 0.5 gives us

$$\lambda_d^{\mathbf{A}} = \lambda_d^{\mathbf{U}^T \mathbf{A} \mathbf{U}} \le \lambda_d^{\mathbf{B}},$$

which is what we wanted to show.

Corollary 0.7. Let **A** and **B** as above. Then, $\text{Tr}(\mathbf{B}) \geq \sum_{d=1}^{k} \lambda_d^{\mathbf{A}}$.

Proof. Combining corollary 0.6 and the definition of Tr yields

$$\operatorname{Tr}(\mathbf{B}) = \sum_{d=1}^{k} \lambda_d^{\mathbf{B}} \ge \sum_{d=1}^{k} \lambda_d^{\mathbf{A}}.$$

For our proof of theorem 0.1, we will rewrite our original objective

minimize
$$\operatorname{Tr}(\mathbf{M}^T \mathbf{L} \mathbf{M})$$
, subject to $\mathbf{M}^T \mathbf{D} \mathbf{M} = \mathbf{1}^{k \times k}$ and $\mathbf{M} \in \mathbb{R}^{n \times k}$.

to suit the form of corollary 0.6. To do so, let $L_N := D^{-\frac{1}{2}}LD^{-\frac{1}{2}} \in \mathbb{R}^{n \times n}$ and $H := D^{\frac{1}{2}}M$. The objective then becomes

minimize
$$\operatorname{Tr}(\mathbf{H}^T \mathbf{L_N H})$$
, subject to $\mathbf{H}^T \mathbf{H} = \mathbf{1}^{k \times k}$ and $\mathbf{H} \in \mathbb{R}^{n \times k}$.

To enhance the structure of the proof, we will show one property of L_N that we will use.

Lemma 0.8. If v is an eigenvector of L_N with eigenvalue λ , then $u := D^{-\frac{1}{2}}v$ is a solution to the generalized eigenvalue problem $Lu = \lambda Du$.

Proof.

$$\begin{split} L_N v &= \lambda v \iff D^{-\frac{1}{2}} L D^{-\frac{1}{2}} v = \lambda v \\ &\iff L D^{-\frac{1}{2}} v = \lambda D^{\frac{1}{2}} v \qquad \qquad \text{(multiplying by } D^{\frac{1}{2}} \text{ from the left)} \\ &\iff L (D^{-\frac{1}{2}} v) = \lambda D (D^{-\frac{1}{2}} v) \qquad \qquad \text{(by rearranging)} \\ &\iff L u = \lambda D u. \end{split}$$

Proof of theorem 0.1. By definition, $\mathbf{L_N} \in \mathbb{R}^{n \times n}$ is a symmetric matrix. Hence, corollary 0.7 applies, so

$$\operatorname{Tr}(\mathbf{H}^T \mathbf{L}_{\mathbf{N}} \mathbf{H}) \geq \sum_{d=1}^k \lambda_d^{\mathbf{L}_{\mathbf{N}}},$$

for all $\mathbf{H} \in \mathbb{R}^{n \times k}$ with $\mathbf{H}^T \mathbf{H} = \mathbf{1}^{k \times k}$.

Now set **H** to be the matrix having the first k eigenvectors of $\mathbf{L_N}, \mathbf{v_1}, \dots, \mathbf{v_k} \in \mathbb{R}^n$, as its columns. It then follows that

$$Tr(\mathbf{H}^{T}\mathbf{L}_{\mathbf{N}}\mathbf{H}) = \sum_{d=1}^{k} \mathbf{v}_{d}^{T}\mathbf{L}_{\mathbf{N}}\mathbf{v}_{d}$$

$$= \sum_{d=1}^{k} \mathbf{v}_{d}^{T}\lambda_{d}^{\mathbf{L}_{\mathbf{N}}}\mathbf{v}_{d}$$

$$= \sum_{d=1}^{k} (\mathbf{v}_{d}^{T}\mathbf{v}_{d})\lambda_{d}^{\mathbf{L}_{\mathbf{N}}}$$

$$= \sum_{d=1}^{k} \lambda_{d}^{\mathbf{L}_{\mathbf{N}}} \qquad (\text{since } \mathbf{v}_{d}^{T}\mathbf{v}_{d} = 1)$$

Combining everything, we get

$$\min_{\mathbf{H} \in \mathbb{R}^{n \times k}} \operatorname{Tr}(\mathbf{H}^T \mathbf{L}_{\mathbf{N}} \mathbf{H}) = \sum_{d=1}^k \lambda_d^{\mathbf{L}_{\mathbf{N}}},$$

and this minimum is reached by the matrix **H** having the first k eigenvectors of $\mathbf{L_N}$ as its columns. If we substitute back $\mathbf{M} = \mathbf{D}^{-\frac{1}{2}}\mathbf{H}$, we see by lemma 0.8 that the minimum for the original objective is reached by the matrix **M** having the first k eigenvectors of the generalized eigenvalue problem $\mathbf{Lu} = \lambda \mathbf{Du}$, which is what we wanted to show.

Bibliography

- [1] Roger A Horn and Charles R Johnson. *Matrix analysis*. Cambridge university press, 2012.
- [2] Ahmed H Sameh and John A Wisniewski. A trace minimization algorithm for the generalized eigenvalue problem. *SIAM Journal on Numerical Analysis*, 19(6):1243–1259, 1982.

A Mathematical prerequisites

A.1 Linear algebra

A.1.1 Vector space

A vector space over $\mathbb R$ is a non-empty set V equipped with an addition and a (scalar) multiplication operation, defined

$$+: V \times V \to V$$

 $(\mathbf{x}, \mathbf{y}) \mapsto \mathbf{x} + \mathbf{y}$

and

$$: \mathbb{R} \times V \to V$$
$$(\lambda, \mathbf{y}) \mapsto \lambda \cdot \mathbf{y} = \lambda \mathbf{y},$$

such that the following conditions hold:

- ightharpoonup For all $\mathbf{x}, \mathbf{y} \in V : \mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$
- $For all x, y, z \in V : (x + y) + z = x + (y + z)$
- ▶ For all $\mathbf{x}, \mathbf{y} \in V$ there exists a unique $\mathbf{z} \in V$ such that $\mathbf{x} + \mathbf{z} = \mathbf{y}$
- ▶ For all $\mathbf{x} \in V$ and $\lambda, \lambda' \in \mathbb{R}$: $(\lambda \lambda')\mathbf{x} = \lambda(\lambda'\mathbf{x})$
- ▶ For all $\mathbf{x} \in V$ and $\lambda, \lambda' \in \mathbb{R}$: $(\lambda + \lambda')\mathbf{x} = \lambda \mathbf{x} + \lambda' \mathbf{x}$
- ▶ For all $\mathbf{x}, \mathbf{y} \in V$ and $\lambda \in \mathbb{R}$: $\lambda(\mathbf{x} + \mathbf{y}) = \lambda \mathbf{x} + \lambda \mathbf{y}$
- \triangleright For all $\mathbf{x} \in V$: $1\mathbf{x} = \mathbf{x}$.

Elements of the vector space V are called vectors. In this thesis, we will only use Euclidean vector spaces \mathbb{R}^d with d > 1 with commonly defined dot product and norms. That is, for $\mathbf{x} := [x_1, \cdots, x_d]^T$, $\mathbf{y} := [y_1, \dots, y_d]^T \in \mathbb{R}^d$, we denote the dot product between \mathbf{x} and \mathbf{y} by

$$\mathbf{x}^T \mathbf{y} = \begin{bmatrix} x_1 & \cdots & x_d \end{bmatrix} \begin{bmatrix} y_1 \\ \vdots \\ y_d \end{bmatrix} = \sum_{i=1}^d x_i y_i,$$

and the (Euclidean) norm of x by

$$\|\mathbf{x}\| = \sqrt{\mathbf{x}^T \mathbf{x}}.$$

Lemma A.1.

$$\|\mathbf{x} - \mathbf{y}\|^2 = \|\mathbf{x}\|^2 - 2\mathbf{x}^T\mathbf{y} + \|\mathbf{y}\|^2$$
.

Proof. We have

$$\|\mathbf{x} - \mathbf{y}\|^{2} = (\mathbf{x} - \mathbf{y})^{T} (\mathbf{x} - \mathbf{y})$$

$$= \sum_{i=1}^{d} (x_{i} - y_{i})^{2}$$

$$= \sum_{i=1}^{d} (x_{i})^{2} + \sum_{i=1}^{d} (y_{i})^{2} - 2 \sum_{i=1}^{d} x_{i} y_{i}$$

$$= \|\mathbf{x}\|^{2} - 2\mathbf{x}^{T} \mathbf{y} + \|\mathbf{y}\|^{2}.$$

Two vectors \mathbf{x} and \mathbf{y} are called orthogonal if $\mathbf{x}^T \mathbf{y} = 0$, and orthonormal if they are orthogonal and additionally $\|\mathbf{x}\| = \|\mathbf{y}\| = 1$.

A linear combination of vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ is a vector $\mathbf{x} \in \mathbb{R}^d$ such that

$$\mathbf{x} = \lambda_1 \mathbf{x}_1 + \dots + \lambda_n \mathbf{x}_n$$

for some $\lambda_1, \dots, \lambda_n \in \mathbb{R}$. Vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ are said to be linearly independent if the linear combination such that

$$\lambda_1 \mathbf{x}_1 + \dots + \lambda_n \mathbf{x}_n = \mathbf{0}^d$$

is achieved only with $\lambda_1 = \dots = \lambda_n = 0$. The span of vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$, denoted span $(\mathbf{x}_1, \dots, \mathbf{x}_n)$ is the set of all linear combinations of $\mathbf{x}_1, \dots, \mathbf{x}_n$.

Lemma A.2. If $\mathbf{x}_1, \dots, \mathbf{x}_n$ are orthonormal, they are linearly independent.

Proof. Let $\lambda_1 \mathbf{x}_1 + \cdots + \lambda_n \mathbf{x}_n = \mathbf{0}^d$, and consider that for any $1 \le j \le n$, we have

$$\mathbf{x}_{j}^{T} \cdot (\lambda_{1} \mathbf{x}_{1} + \dots + \lambda_{n} \mathbf{x}_{n}) = (\lambda_{1} \mathbf{x}_{j}^{T} \mathbf{x}_{1} + \dots + \lambda_{n} \mathbf{x}_{j}^{T} \mathbf{x}_{n})$$
$$= \lambda_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j}.$$

Since $\mathbf{x}_j^T \mathbf{x}_j = \mathbf{0}^d$ implies \mathbf{x}_j^T (which contradicts orthonormality) it holds that $\lambda_j = 0$. Hence, $\lambda_1 = \cdots = \lambda_n = 0$.

A subspace $W \subset V$ is a subset of V such that

- \triangleright 0 \in W
- ▶ For all $\mathbf{x}, \mathbf{y} \in W$: $\mathbf{x} + \mathbf{y} \in W$, and
- \triangleright For all $\mathbf{x} \in W$, $\lambda \in \mathbb{R}$: $\lambda \mathbf{x} \in W$.

Given two subspaces $W, W' \subset V$, the sets $W \cap W'$ and $W + W' := \{\mathbf{w} + \mathbf{w}' \mid \mathbf{w} \in W, \mathbf{w}' \in W'\}$ are also subspaces of V. The dimension of a subspace W – denoted $\dim(W)$ – is the largest number k such that there exist k linearly independent vectors in W.

Lemma A.3. Let $\mathbf{x}_1, \dots, \mathbf{x}_n$ be orthonormal. Then it holds that $\dim(\operatorname{span}(\mathbf{x}_1, \dots, \mathbf{x}_n)) = n$.

Proof. By lemma A.2 we know dim(span($\mathbf{x}_1, \dots, \mathbf{x}_n$)) $\geq n$. By definition, all elements \mathbf{x} of span($\mathbf{x}_1, \dots, \mathbf{x}_n$) are linear combinations of $\mathbf{x}_1, \dots, \mathbf{x}_n$, and thus any $\mathbf{x} \in \text{span}(\mathbf{x}_1, \dots, \mathbf{x}_n)$ can be written as $\mathbf{x} = \lambda_1 \mathbf{x}_1 + \dots + \lambda_n \mathbf{x}_n$, or $\mathbf{0}^d = \lambda_1 \mathbf{x}_1 + \dots + \lambda_n \mathbf{x}_n - \mathbf{x}$. Since at least the last scalar is non-zero, \mathbf{x} is not linearly independent. Hence, dim(span($\mathbf{x}_1, \dots, \mathbf{x}_n$)) = n.

Lemma A.4. For two subspaces $W, W' \subseteq V$ of a vector space V, we have dim(W) + dim(W') = dim(W + W') if $W \cap W' = \{0^d\}$.

Proof. Let $\dim(W) := r$ and $\dim(W') := s$, and let $\mathbf{u}_1, \dots, \mathbf{u}_r \in W, \mathbf{v}_1, \dots, \mathbf{v}_s \in W'$ be two linearly independent sets of vectors. We will show that $\mathbf{u}_1, \dots, \mathbf{u}_r, \mathbf{v}_1, \dots, \mathbf{v}_s$ are all linear independent from each other. To do so, let

$$\mathbf{0}^d = \sum_{i=1}^r \lambda_i \mathbf{u}_i + \sum_{i=1}^s \lambda_j' \mathbf{v}_j,$$

or

$$\sum_{i=1}^r \lambda_i \mathbf{u}_i = -\sum_{j=1}^s \lambda_j' \mathbf{v}_j.$$

Let $\mathbf{x} := \sum_{i=1}^r \lambda_i \mathbf{u}_i = -\sum_{j=1}^s \lambda_j' \mathbf{v}_j$. By definition of subspaces, $\mathbf{x} \in W$ and also $\mathbf{x} \in W'$, so $\mathbf{x} \in W \cap W'$. Since $W \cap W' = \{\mathbf{0}^d\}$ however, we know, $\sum_{i=1}^r \lambda_i \mathbf{u}_i = -\sum_{j=1}^s \lambda_j' \mathbf{v}_j = \mathbf{0}^d$. Since $\mathbf{u}_1, \dots, \mathbf{u}_r$ and $\mathbf{v}_1, \dots, \mathbf{v}_s$ are linearly independent, this means $\lambda_1 = \dots = \lambda_r = \lambda_1' = \dots = \lambda_s' = 0$, which in turn means $\mathbf{u}_1, \dots, \mathbf{u}_r, \mathbf{v}_1, \dots, \mathbf{v}_s$ are linearly independent.

Now let $\mathbf{x} \in W + W'$, such that it can be written as $\mathbf{x} = \sum_{i=1}^{r} \lambda_i \mathbf{u}_i + \sum_{j=1}^{s} \lambda_j' \mathbf{v}_j$. By the same argument as lemma A.3 we see \mathbf{x} is not linearly independent from $\mathbf{u}_1, \dots, \mathbf{u}_r, \mathbf{v}_1, \dots, \mathbf{v}_s$. Since \mathbf{x} was chosen arbitrarily, there

exist at most r + s linearly independent vectors in W + W', i.e. $\dim(W + W') = r + s = \dim(W) + \dim(W')$, which is what we wanted to show.

Lemma A.5. $dim(\mathbb{R}^d) = d$.

Proof. Clearly, vectors $[1,0\cdots 0]^T$, $[0,1\cdots 0]^T$, ..., $[0,0\cdots 1]^T \in \mathbb{R}^d$ are linearly independent. Therefore, $\dim(\mathbb{R}^d) \geq d$. Now let $\mathbf{x} = [x_1 \cdots x_d]^T$ be some other element of \mathbb{R}^d . Then, \mathbf{x} can be written as

$$\mathbf{x} = x_1 \cdot [10 \cdots 0]^T + \cdots + x_d \cdot [00 \cdots 1]^T,$$

which means \mathbf{x} is not linearly independent from $[10\cdots0]^T$, $[01\cdots0]^T$, ..., $[00\cdots1]^T$. Since \mathbf{x} was chosen arbitrarily, $\dim(\mathbb{R}^d) = d$.

A.1.2 Matrices

A matrix is a rectangular array of objects – which, in the context of this thesis, are all real numbers – called entries. A matrix with n rows and k columns is a $n \times k$ matrix, and the set of all such matrices is denoted $\mathbb{R}^{n \times k}$ (n and k are also called the dimensions). The entry in the i-th row and j-th column of a matrix $\mathbf{M} \in \mathbb{R}^{n \times k}$ is denoted $(\mathbf{M})_{ij}$, such that the matrix can be portrayed visually as

$$\mathbf{M} = \begin{bmatrix} (\mathbf{M})_{11} & (\mathbf{M})12 & \dots & (\mathbf{M})1k \\ (\mathbf{M})21 & (\mathbf{M})22 & \dots & (\mathbf{M})2k \\ \vdots & \vdots & \ddots & \vdots \\ (\mathbf{M})n1 & (\mathbf{M})n2 & \dots & (\mathbf{M})nk \end{bmatrix}.$$

A d-dimensional (row) vector is also a $1 \times d$ -dimensional matrix. There are a couple basic operations defined on matrices: addition, (scalar) multiplication and transposition. Addition and scalar multiplication function entrywise, i.e. for $\mathbf{M}, \mathbf{M}' \in \mathbb{R}^{n \times k}, \ \lambda \in \mathbb{R}$:

$$(\mathbf{M} + \mathbf{M}')_{ij} = (\mathbf{M})_{ij} + (\mathbf{M}')_{ij},$$
$$(\lambda \mathbf{M})_{ij} = \lambda (\mathbf{M})_{ij}.$$

Switching rows and columns, we get the transpose of M, denoted M^T , defined as

$$(\mathbf{M}^T)_{ij} = (\mathbf{M})_{ji}.$$

Multiplication of two matrices is defined for matrices $\mathbf{M} \in \mathbb{R}^{n \times k}$ and $\mathbf{M}' \in \mathbb{R}^{k \times n'}$ – such that the number of columns in \mathbf{M} equals the number of rows in \mathbf{M}' – and returns a matrix $\mathbf{M}\mathbf{M}' \in \mathbb{R}^{n \times n'}$ such that

$$(\mathbf{M}\mathbf{M}')_{ij} = \sum_{r=1}^{k} (\mathbf{M})_{ir} (\mathbf{M}')_{rj} = \mathbf{m}_{i}^{T} \mathbf{m}_{j}',$$

where \mathbf{m}_i and \mathbf{m}'_j refer to the *i*-th row of \mathbf{M} and *j*-th column of \mathbf{M}' respectively. A few properties using and connecting the operations include:

- M(M' + M'') = MM' + MM''
- $\triangleright M(M'M'') = (MM')M''$
- $\triangleright (\mathbf{M}^T)^T = \mathbf{M}$
- $\triangleright (\mathbf{M} + \mathbf{M}')^T = \mathbf{M}^T + \mathbf{M}'^T$

If $\mathbf{M}^T = \mathbf{M}$ we call \mathbf{M} symmetric. A matrix $\mathbf{M} \in \mathbb{R}^{n \times n}$ is called orthogonal if the columns of \mathbf{M} form a set of orthonormal vectors, such that $\mathbf{M}^T \mathbf{M} = \mathbf{1}^{n \times n}$. Here, $\mathbf{1}^{n \times n}$ is the identity matrix defined as $(\mathbf{1})_{ij} = \delta_{ij}$ where δ_{ij} is the Kronecker delta. The $n \times k$ matrix with only zero entries is denoted $\mathbf{0}^{n \times k}$.

Multiplication of a matrix with a vectors induces another important notion we will use: eigenvectors. For any square matrix $\mathbf{M} \in mathbb{R}^{n \times n}$, $\mathbf{x} \in mathbb{R}^n$, we call \mathbf{x} an eigenvector of \mathbf{M} if

$$\mathbf{M}\mathbf{x} = \lambda \mathbf{x}$$

for some $\lambda \in \mathbb{R}$, and call λ a eigenvalue of **M**.

Lemma A.6. If \mathbf{v} is an eigenvector of \mathbf{M} with eigenvalue λ than $\alpha \mathbf{v}$ is also an eigenvector \mathbf{M} with eigenvalue λ for any $0 \neq \alpha \in \mathbb{R}$.

Proof. Let λ be the eigenvalue corresponding to v. Then, we have

$$\mathbf{M}(\alpha \mathbf{v} = \alpha(\mathbf{M}\mathbf{v}) = \alpha\lambda\mathbf{v} = \lambda(\alpha\mathbf{v}).$$

Lemma A.6 tells us it is silly to speak of *the* eigenvectors of M, when in fact there are an infinite amount of them corresponding to every distinct eigenvalue. In particular, for every λ we can construct an eigenvector of unit length by picking some eigenvector \mathbf{v} and determining

$$\frac{1}{\|\mathbf{v}\|}\mathbf{v}.$$

Lemma A.7. Let **m** be symmetric. Then, any two eigenvectors of **M** with distinct eigenvectors are orthogonal.

Proof. Let \mathbf{x}, \mathbf{y} be distinct eigenvectors with eigenvalues λ and λ' , $\lambda \neq \lambda'$. Then by definition the following holds:

$$\mathbf{M}\mathbf{x} = \lambda \mathbf{x}$$
$$\mathbf{M}\mathbf{y} = \lambda' \mathbf{y}.$$

It now follows that

$$\lambda(\mathbf{x}^T \mathbf{y}) = (\lambda \mathbf{x})^T \mathbf{y}$$

$$= (\mathbf{M} \mathbf{x})^T \mathbf{y}$$

$$= \mathbf{x}^T \mathbf{M}^T \mathbf{y}$$

$$= \mathbf{x}^T \mathbf{M} \mathbf{y}$$

$$= \mathbf{x}^T \lambda' \mathbf{y}$$

$$= \lambda' (\mathbf{x}^T \mathbf{y}),$$

meaning $0 = (\lambda - \lambda')(\mathbf{x}^T \mathbf{y})$. Since $\lambda \neq \lambda'$, we have $\mathbf{x}^T \mathbf{y} = 0$, which means \mathbf{x} and \mathbf{y} are orthogonal.

A $n \times n$ symmetric matrix **M** is called positive semi-definite if and only if $\mathbf{x}^T \mathbf{M} \mathbf{x} \geq \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$.

Lemma A.8. If **M** is positive semi-definite, it has only non-negative eigenvalues.

Proof. Let λ be some eigenvalue of \mathbf{M} and let \mathbf{v} be some corresponding eigenvector. Then it holds that $0 \le \mathbf{v}^T \mathbf{M} \mathbf{v} = \mathbf{v}^T (\lambda \mathbf{v}) = (\mathbf{v}^T \mathbf{v}) \lambda$. Since $\mathbf{v}^T \mathbf{v} \ge 0$ (easily checked) it must be the case that $\lambda \ge 0$.

Combining lemma A.6, A.7 and A.8, we see that for any positive semi-definite matrix **M**, we know **M** has eigenvalues $0 \le \lambda_1 \le \cdots \le \lambda_k$ (for some k > 0), such that there exists an orthonormal set of eigenvectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$ corresponding to those eigenvalues.

For any eigenvalue λ , we define its eigenspace $E_{\mathbf{M}}(\lambda)$ as the set of all eigenvectors corresponding to this eigenvalue, i.e. for some $\mathbf{M} \in mathbb{R}^{n \times n}$ it is defined as

$$\{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{M}\mathbf{x} = \lambda \mathbf{x}\}.$$

Lemma A.9. For any $\mathbf{x}_1, \dots, \mathbf{x}_n, \mathbf{y} \in \mathbb{R}^d$, with $\mathbf{x}_i := [x_i^1, \dots, x_i^d]^T$ for $1 \le i \le n$, we have

$$\sum_{i=1}^{n} \mathbf{x}_{i}^{T} \mathbf{y} = (\sum_{i=1}^{n} \mathbf{x}_{i})^{T} \mathbf{y}$$

Proof.

$$\sum_{i=1}^{n} \mathbf{x}_{i}^{T} \mathbf{y} = \left(\sum_{i=1}^{n} \mathbf{x}_{i}^{T}\right) \cdot \mathbf{y}$$

$$= \left(\sum_{i=1}^{n} \mathbf{x}_{i}\right)^{T} \cdot \mathbf{y}. \qquad (\text{since } (\mathbf{M} + \mathbf{M}')^{T} = \mathbf{M}^{T} + \mathbf{M}'^{T})$$

Lemma A.10. Let $A, B \in \mathbb{R}^{n \times n}$. Then $\lambda \neq 0$ is an eigenvalue of AB iff λ is an eigenvalue of BA.

Proof. Let **u** be an eigenvector of **AB** associated with eigenvalue λ , i.e. $ABu = \lambda u$. Let v := Bu. Then,

$$BAv = BABu$$

$$= B(ABu)$$

$$= B\lambda u$$

$$= \lambda(Bu)$$

$$= \lambda v.$$

Hence, λ is an eigenvalue of BA too. The other implication follows analogously, mutatis mutandis.

Lastly, the trace of a square matrix M, denoted Tr(M) is the sum of its diagonal elements, i.e.

$$\operatorname{Tr}(\mathbf{M}) = \sum_{i=1}^{n} (\mathbf{M})_{ii}.$$

It can be shown that the trace is equal to the sum of the eigenvalues of M.