Question Number	Answer		Mark
17(a)(i)			
17(a)(1)	Equates horizontal component with force from current	(1)	
	-	, ,	
	F = 480 (N)	(1)	2
	Example calculation		
	$F \sin 33^\circ = 260 \text{ N}$		
	$F = 260 \text{ N} \div \sin 33^\circ = 477 \text{ N}$		
4=/ \/••\			
17(a)(ii)	Resolves vertical component of F	(1)	
	Resolves vertical component of T	(1)	
	Equates vertical forces	(1)	
		,	_
	Weight of buoy = $2500 \text{ N (ecf from (a)(i))}$	(1)	3
	Example calculation		
	$\frac{37800 \text{ From No. Single Constraints}}{477 \text{ N} \cos 33^\circ = 400 \text{ N}}$		
	$400 \text{ N} + \text{Weight of buoy} = 2.9 \times 10^3 \text{ N}$		
	Weight of buoy = $2900 \text{ N} - 400 \text{ N} = 2500 \text{ N}$		
17(b)			
17(0)	EITHER		
	Horizontal component of <i>F</i> increases (to maintain equilibrium) and		
	Vertical component of <i>F</i> remains the same (because vertical forces do not change, upthrust and weight are constant)	(1)	
	$F^2 = F_h^2 + F_v^2$ so F increases [dependent on MP1]	(1)	
	$\tan \theta = F_h/F_v$ so θ increases [dependent on MP1]	(1)	
	OR		
	Horizontal component of <i>F</i> increases (to maintain equilibrium) and		
	Vertical component of F remains the same (because vertical forces do not change, upthrust and weight are constant)	(1)	
	$F^2 = F_h^2 + F_v^2$ so F increases [dependent on MP1] Or		
	$\tan \theta = F_h/F_v$ so θ increases [dependent on MP1]	(1)	
	$F\cos\theta$ is constant so increase in either F or θ implies an increase in the other [dependent on MP2]	(1)	3
	Total for question 17		8