Association rule mining

Outline

- Basket Analysis,
- Frequent Itemset,
- Rules Generation,
- Rules Evaluation,
- Libraries,
- Mlxtend API,
- Exercises.

Basket Analysis

- 1. What are the patterns among customer purchases (events)?
- 2.Creation of rules in a form $X \rightarrow Y$ (antecedants \rightarrow consequents) where X and Y are *disjoint* sets.
- 3.{Bread} → {Butter} people who buy bread are also likely to buy butter.
- 4. Purpose: promotion campaigns, shop organization, etc.
- 5. Rule mining contains **two steps**: frequent itemset generation and (based on that), the final rule creation.

Frequent Itemset

- 1.Set of sets containing products (events) that often co-occur together.
- 2.An itemset is "frequent" if it meets a user-specified support threshold. If the **support** threshold is set to 0.5 (50%), a frequent itemset is a set of items that occur together in at least 50% of all transactions in the database.
- 3. Frequent itemsets can be generated by Apriori method.

Transaction ID	Items Bought	Min. support 50%	
2000	A,B,C	Frequent Itemset	Support
1000	A,C	{A}	75%
4000	A,D	→ {B}	50%
5000	B,E,F	{C}	50%
		{A,C}	50%

Generation of association rules

- 1.Based on frequent itemsets the rules are being generated.
- After rules generation, the chosen measure evaluates them (confidence, lift, or support again).
- **3.Most often:** support is first used to find frequent (significant) itemsets, hen confidence is used in a second step to produce rules from the frequent itemsets that exceed a min. confidence threshold.

If {A,B,C,D} is a frequent itemset, candidate rules:

- 4.If the free BD \rightarrow AC, CD \rightarrow AB, Iso frequent,
- so rules like $A \rightarrow B$ are also generated but not using this set.
- Frequent itemsets of size 1 are not considered.

Rules evaluation - measures

1. Support - frequency of rule/itemset, the probability of seeing such a rule/itemset in the database. D - database (set of transactions), t - transaction, A - itemset.

$$support(A) = \frac{|\{t \in D; A \subseteq t\}|}{|D|}$$

$$\operatorname{support}(A \to C) = \operatorname{support}(A \cup C), \quad \operatorname{range:} [0, 1]$$

2.Confidence - the probability of seeing C in a transaction given that it also contains A. Antisymmetric. Commonly used in rule mining as a threshold. Sensitive to the frequency of A. The higher, the better.

$$\operatorname{confidence}(A o C) = rac{\operatorname{support}(A o C)}{\operatorname{support}(A)}, \quad \operatorname{range:} [0,1]$$

3.Lift - now orten A and C occur together when we assume that they are statistically independent. If A and C are independent, the Lift score will be exactly 1. Symmetric. The higher, the better.

$$\operatorname{lift}(A \to C) = \frac{\operatorname{confidence}(A \to C)}{\operatorname{support}(C)}, \quad \operatorname{range:} [0, \infty]$$

Rules evaluation - example

Transaction 1	9 9 %
Transaction 2	9 9 9
Transaction 3	(4)
Transaction 4	(4)
Transaction 5	/ D 🗇 💊
Transaction 6	∅ 📦 ⊜
Transaction 7	∅
Transaction 8	
· ·	- S. (1)

```
Support \{ \bigcirc \} = \frac{4}{8} = 0.5
port{Beer} = ?
port{Apple, Beer} = ?
Confidence \{ \bigcirc \rightarrow \mathbb{I} \} = \frac{\text{Support } \{ \bigcirc, \mathbb{I} \}}{\text{Support } \{ \bigcirc \}}
Confidence{Apple \rightarrow Beer} = ?
Lift \{ \bigcirc \rightarrow \square \} = \frac{\text{Support } \{ \bigcirc, \square \}}{\text{Support } \{ \bigcirc \} \times \text{Support } \{ \square \}}
 Lift{Apple \rightarrow Beer} = ?
```

Rules evaluation - example

= 1

Transaction 1	9 9 %
Transaction 2	(4) (9) (9)
Transaction 3	()
Transaction 4	(4)
Transaction 5	/ D 🕒 %
Transaction 6	∅ 🐌 ⊜
Transaction 7	/
Transaction 8	∅ ७
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

```
Support \{ \bigcirc \} = \frac{4}{8} = 0.5
port{Beer} = 6/8 = 0.75
port{Apple, Beer} = 3/8 = 0.375
Confidence \{ \bigcirc \rightarrow \mathbb{P} \} = \frac{\text{Support } \{ \bigcirc, \mathbb{P} \}}{\text{Support } \{ \bigcirc, \mathbb{P} \}}
Confidence{Apple \rightarrow Beer} =
= 0.375/0.5 = 0.75
Lift \{ \bigcirc \rightarrow \mathbb{P} \} = \frac{\text{Support } \{ \bigcirc, \mathbb{P} \}}{\text{Support } \{ \bigcirc \} \times \text{Support } \{ \bigcirc \} \}}
 Lift{Apple \rightarrow Beer} = 0.375/(0.5*0.75)=
```

mlxtend.frequent_patterns.apriori

- 1.from mlxtend.frequent patterns import apriori.
- 2. Works on pandas DataFrame helps in result manipulation.
- 3. The data has to be One-hot encoded.

API

apriori(df, min_support=0.5, use_colnames=False)

Get frequent itemsets from a one-hot DataFrame Parameters

· df: pandas DataFrame

pandas DataFrame in one-hot encoded format. For example Apple Bananas Beer Chicken Milk Rice 0 1 0 1 1 1 0 1 0 1 0 1 2 1 0 1 0 0 0 3 1 1 0 0 0 0 4 0 0 1 1 1 1 5 0 0 1 0 1 1 6 0 0 1 0 1 0 7 1 1 0 0 0 0

min_support : float (default: 0.5)

A float between 0 and 1 for minumum support of the itemsets returned. The support is computed as the fraction transactions_where_item(s)_occur / total_transactions.

use_colnames : bool (default: False)

If true, uses the DataFrames' column names in the returned DataFrame instead of column indices.

Returns

pandas DataFrame with columns ['support', 'itemsets'] of all itemsets that are >= min_support.

mlxtend.frequent_patterns.association_rules

- 1. Generates association rules from frequent itemset, providing several measures: support, confidence, lift, leverage, conviction (not working properly).
- Input Pandas dataframes of frequent itemsets, returned by the apriori method.

API

association_rules(df, metric='confidence', min_threshold=0.8)

Generates a DataFrame of association rules including the metrics 'score', 'confidence', and 'lift'

Parameters

- df: pandas DataFrame
 pandas DataFrame of frequent itemsets with columns ['support', 'itemsets']
- metric : string (default: 'confidence')

Metric to evaluate if a rule is of interest. Supported metrics are 'support', 'confidence', 'lift', 'leverage', and 'conviction' These metrics are computed as follows: - support(A->C) = support(A+C) [aka 'support'], range: [0, 1] - confidence(A->C) = support(A+C) / support(A), range: [0, 1] - lift(A->C) = confidence(A->C) / support(C), range: [0, inf] - leverage(A->C) = support(A->C) - support(A)*support(C), range: [-1, 1] - conviction = [1 - support(C)] / [1 - confidence(A->C)], range: [0, inf]

min_threshold : float (default: 0.8)

Minimal threshold for the evaluation metric to decide whether a candidate rule is of interest.

Returns

pandas DataFrame with columns "antecedent support", "consequent support", "support", "confidence", "lift", "leverage", "conviction" of all rules for which metric(rule) >= min_threshold.