Scilab Textbook Companion for Elements of Mechanical Engineering by N. M. Bhatt and J. R. Mehta¹

Created by
Yashvardhan Gusani
Instrumentation and Control
Instrumentation Engineering
Institute of Technology, Nirma University
College Teacher
Prof. Nital Patel
Cross-Checked by
K. V. P. Pradeep

June 2, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Elements of Mechanical Engineering

Author: N. M. Bhatt and J. R. Mehta

Publisher: Mahajan Publishing, Ahmedabad

Edition: 6

Year: 2012

ISBN: 978-93-81256-35-0

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	4
1	Introduction	5
3	Properties of Gases	9
4	Properties of Steam	51
5	Steam Boilers	90
6	Heat Engines	106
7	Internal Combustion Engines	134
8	Air Compressors	153
9	Pumps	179
13	Transmission of Motion and Power	183

List of Scilab Codes

Exa 1.1.1	Example1.												5
Exa 1.1.2	Example 2.												5
Exa 1.1.3	Example 3 .												6
Exa 1.1.4	Example4.												6
Exa 1.1.5	Example 5 .												6
Exa 1.1.6	Example6.												7
Exa 1.1.7	Example 7.												7
Exa 1.1.8	Example8.												8
Exa 3.1.1	Example 1.												9
Exa 3.2.1	Example 2.												10
Exa 3.3.1	Example 3 .												11
Exa $3.4.1$	Example4.												11
Exa $3.5.1$	Example 5 .												12
Exa $3.6.1$	Example6.												13
Exa $3.7.1$	Example 7 .												14
Exa 3.8.1	Example8.												15
Exa 3.9.1	Example9.												16
Exa 3.13.	1 Example13												17
Exa 3.14.	1 Example14												18
Exa 3.15.	1 Example15												19
Exa 3.16.	1 Example16												20
Exa 3.17.	1 Example17												21
Exa 3.18.	1 Example 18												22
Exa 3.19.	1 Example19												23
Exa 3.20.	1 Example20												24
Exa 3.21.	1 Example21												25
Exa 3.22.	1 Example22												26
Eva 3 23	1 Example23												27

Exa	3.24.1	Example24												28
Exa	3.25.1	Example25												29
Exa	3.26.1	Example26												30
Exa	3.27.1	Example27												31
Exa	3.28.1	Example 28												32
Exa	3.29.1	Example29												33
Exa	3.30.1	Example30												35
Exa	3.31.1	Example31												36
Exa	3.32.1	Example32												37
Exa	3.33.1	Example33												38
Exa	3.34.1	Example34												39
Exa	3.37.1	Example37												40
Exa	3.38.1	Example38												41
Exa	3.39.1	Example39												42
Exa	3.40.1	Example40												43
Exa	3.41.1	Example41												44
$\mathbf{E}\mathbf{x}\mathbf{a}$	3.42.1	Example42												45
Exa	3.43.1	Example43												46
$\mathbf{E}\mathbf{x}\mathbf{a}$	3.44.1	Example44												47
Exa	3.45.1	Example45												48
$\mathbf{E}\mathbf{x}\mathbf{a}$	3.46.1	Example46												49
$\mathbf{E}\mathbf{x}\mathbf{a}$	4.1.1	Example 1												51
Exa	4.2.1	Example 2												53
$\mathbf{E}\mathbf{x}\mathbf{a}$	4.3.1	Example 3												54
$\mathbf{E}\mathbf{x}\mathbf{a}$	4.4.1	Example 4												54
Exa	4.5.1	Example 5												55
Exa	4.6.1	Example 6												56
Exa	4.7.1	Example 7												57
$\mathbf{E}\mathbf{x}\mathbf{a}$	4.8.1	Example 8												58
$\mathbf{E}\mathbf{x}\mathbf{a}$	4.9.1	Example 9												59
$\mathbf{E}\mathbf{x}\mathbf{a}$	4.10.1	Example 10												59
Exa	4.11.1	Example 11												60
Exa	4.12.1	Example 12												61
Exa	4.13.1	Example 13												62
		Example 14												63
Exa	4.15.1	Example 15												64
		Example 16												65
Exa	4.17.1	Example 17												66

Exa 4.18.1	Example 18												67
	Example 19												67
Exa 4.20.1	Example 20												68
	Example 21												69
Exa 4.22.1	Example 22												70
Exa 4.23.1	Example 23												72
	Example 24												74
Exa 4.25.1	Example 25												75
Exa 4.26.1	Example 26												76
Exa 4.27.1	Example 27												77
Exa 4.28.1	Example 28												78
Exa 4.29.1	Example 29												78
Exa 4.30.1	Example 30												79
Exa 4.31.1	Example 31												80
Exa 4.32.1	Example 32												81
Exa 4.33.1	Example 33												82
Exa 4.34.1	Example 34												83
Exa 4.35.1	Example 35												83
	Example 36												84
Exa 4.37.1	Example 37			•									85
Exa 4.38.1	Example 38												86
	Example 39												87
Exa 4.40.1	Example 40												88
	Example 41												88
Exa 5.1.1	Example 1												90
Exa 5.2.1	Example 2												91
Exa 5.3.1	Example 3												92
Exa 5.4.1	Example 4												92
Exa 5.5.1	Example 5												93
Exa 5.6.1	Example 6												94
Exa 5.7.1	Example 7												95
Exa 5.8.1	Example 8												96
Exa 5.9.1	Example 9												96
Exa 5.10.1	Example 10												97
Exa 5.11.1	Example 11												98
	Example 12												99
Exa 5.13.1	Example 13												99
Exa 5 14 1	Example 14												100

Exa	5.15.1	Example	15						 						101
Exa	5.16.1	Example	16						 						102
Exa	5.17.1	Example	17						 						103
Exa	5.18.1	Example	18						 						104
Exa	5.19.1	Example	19						 						104
Exa	6.1.1	Example	1						 						106
Exa	6.2.1	Example	2						 						107
Exa	6.3.1	Example	3						 						108
Exa	6.4.1	Example	4						 						108
Exa	6.5.1	Example	5						 						109
Exa	6.6.1	Example	6						 						110
Exa	6.7.1	Example	7						 						110
Exa	6.8.1	Example	8						 						110
Exa	6.9.1	Example	9						 						111
Exa	6.10.1	Example	10						 						112
Exa	6.11.1	Example	11						 						113
Exa	6.12.1	Example	12						 						114
Exa	6.13.1	Example	13						 						114
Exa	6.14.1	Example	14						 						116
Exa	6.15.1	Example	15						 						117
Exa	6.16.1	Example	16						 						119
Exa	6.17.1	Example	17						 						120
Exa	6.18.1	Example	18						 						121
Exa	6.20.1	Example	20						 						122
Exa	6.21.1	Example	21						 						123
Exa	6.22.1	Example	22						 						124
Exa	6.23.1	Example	23						 						124
Exa	6.24.1	Example	24						 						125
Exa	6.25.1	Example	25						 						126
		Example													127
Exa	6.27.1	Example	27						 						127
Exa	6.28.1	Example	28						 						128
Exa	6.29.1	Example	29						 						128
Exa	6.30.1	Example	30						 						129
		Example													130
Exa	6.32.1	Example	32						 						131
Exa	6.33.1	Example	33						 						132
Exa	7.1.1	Example	1						 						134

Exa	7.2.1	Example 2																	134
Exa	7.3.1	Example 3																	135
Exa	7.4.1	Example 4																	136
Exa	7.5.1	Example 5																	136
Exa	7.6.1	Internal Con	nl	ou	st	ioı	n i	Eı	ng	in	es								137
Exa	7.7.1	Example 7																	137
Exa	7.8.1	Example 8																	138
Exa	7.9.1	Example 9																	139
Exa	7.10.1	Example 10																	139
Exa	7.11.1	Example 11										 							140
Exa	7.12.1	Example 12										 							141
Exa	7.13.1	Example 13										 							141
Exa	7.14.1	Example 14																	142
Exa	7.15.1	Example 15										 							142
Exa	7.16.1	Example 16																	143
Exa	7.17.1	Example 17																	144
Exa	7.18.1	Example 18										 							145
Exa	7.19.1	Example 19										 							146
Exa	7.20.1	Example 20										 							146
Exa	7.21.1	Example 21										 							147
		Example 22																	148
Exa	7.23.1	Example 23										 							149
		Example 24																	150
		Example 25																	151
Exa	8.1.1	Example 1										 							153
Exa	8.2.1	Example 2																	153
Exa	8.3.1	Example 3																	154
Exa	8.4.1	Example 4																	155
Exa	8.5.1	Example 5																	155
Exa	8.6.1	Example 6																	156
Exa	8.7.1	Example 7																	156
Exa	8.8.1	Example 8																	157
Exa	8.9.1	-																	158
Exa	8.10.1	Example 10																	159
		Example 11																	159
		Example 12																	160
		Example 13																	162
		Example 14	•										•						163

Exa 8.15.1	Example 1	5													164
Exa 8.16.1	Example 1	6													165
Exa 8.17.1	Example 1	7													165
Exa 8.18.1	Example 1	8													166
	Example 1														167
Exa 8.20.1	Example 2	20													168
Exa 8.21.1	Example 2	1													168
Exa 8.22.1	Example 2	22													169
Exa 8.23.1	Example 2	23													170
Exa 8.24.1	Example 2	4													170
Exa 8.25.1	Example 2	25													171
Exa 8.26.1	Example 2	26													172
Exa 8.27.1	Example 2	27													173
Exa 8.28.1	Example 2	8													174
Exa 8.29.1	Example 2	9													176
Exa 8.30.1	Example 3	0													177
Exa 8.31.1	Example 3	1													177
Exa 9.1.1	Example 1														179
Exa 9.2.1	Example 2	2													180
Exa 9.3.1	Example 3														180
Exa 9.4.1	Example 4														181
Exa 13.1.1	Example 1														183
Exa 13.2.1	Example 2	2													183
Exa 13.3.1	Example 3	3													184
Exa 13.4.1	Example 4														185
Exa 13.5.1	Example 5)													185
Exa 13.6.1	Example 6														186

Chapter 1

Introduction

Scilab code Exa 1.1.1 Example1

Scilab code Exa 1.1.2 Example2

```
1 clc
2 clear
3
4 // Declaring values
5 Q=-700;
6 W=-3000;
7 m=5;
8 U=Q-W;
```

```
9 Us=U/m;
10 printf('Change in Specific Energy= %3.0 f J/kg',Us);
//displaying result
```

Scilab code Exa 1.1.3 Example3

```
1 clc
2 clear
3
4 // Declaring values
5 Q=50;
6 W=40;
7 U=Q-W;
8 printf('Change in Internal Energy= %2.0 f kJ',U);
```

Scilab code Exa 1.1.4 Example4

Scilab code Exa 1.1.5 Example5

Scilab code Exa 1.1.6 Example6

```
1 clc
2 clear
3
4 Th = 0.22;
                     //Thermal Efficiency
5 \text{ Hr} = 1260;
                     //Heat Rejected in MJ/hr
6 CV = 42;
                     // Calorific Value of Coal
7 X = 1 - Th;
                     //Heat Input in MJ/hr
8 \text{ HI=Hr/X};
9
10 O=((HI-Hr)*1000)/3600;
                                      //Output
                     //Mass of Fuel Used
11 Mf = HI/CV;
12
13 printf('Power Output is %2.2 f kW',0);
14 printf(' \ n');
15 printf ('Mass of Fuel used per hour: %2.1 f kg/hr', Mf)
```

Scilab code Exa 1.1.7 Example 7

Scilab code Exa 1.1.8 Example8

```
1 clc
2 clear
3
4 // Declaring Values
                   //Mass in kg
5 m = 600;
6 z = 50000;
                   //Distance in meters
7 V = 2500000;
                   //Velocity in m/hr
8 g=7.9;
                   //Gravitational Field in m/s^2
9 Vel=V/3600;
10 KE=(0.5*m*Vel*Vel)/1000000; //Kinetic Energy in MJ
11 PE=(m*g*z)/1000000;
                                           //Potential
     Energy in MJ
12
13 // Displaying Results
14 printf('The Kinetic Energy is %3.2 f MJ', KE);
15 printf(' \ n')
16 printf('The Potential Energy is %3.2 f MJ', PE);
```

Chapter 3

Properties of Gases

Scilab code Exa 3.1.1 Example1

```
1 clc
2 clear
4 // Declaring Values
5 V=3;
               //Volume in m<sup>3</sup>
6 P1=2500; //Pressure in kilobar
7 P2=1500;
8 T2=21+273; //Temperature in Kelvin
9 T1=(T2*P1)/P2;
10 Cp=1.005;
11 Cv = 0.718;
                        //Universal Gas Constant
12 R = Cp - Cv;
13 m = (P1*V)/(R*T1);
                            //Calculating mass
14 H=m*Cp*(T2-T1);
15 U=m*Cv*(T2-T1);
16 \quad Q=U;
                //Since Constant Volume Process: Work
      Done=0
17 // Displaying Results
18 printf('Change in Enthalpy: %5.2 f kJ', H);
19 printf('\n');
20 printf('Change in Internal Energy: %5.2 f kJ', U);
```

```
21 printf('\n');
22 printf('Heat Transfer: %4.2 f kJ',Q);
23 printf('\n')
24 printf('As Answer is negative, system rejects heat');
```

Scilab code Exa 3.2.1 Example2

```
1 clc
2 clear
4 //Inputs
5 m = 1;
                //Mass in kg
6 P1=7;
                //Pressure in bar
                //Temperature in K
7 T1 = 90 + 273;
8 P2=1.4;
9 R=0.287;
                //Gamma for air
10 G=1.4;
11 // Calculations according to data required
12 x=P2/P1;
13 y=0.1/1.1;
14 z=x^y;
15 T2=T1*z;
                    //calculating T2
16 printf('Final Temperature is: %3.1 f K',T2);
17 printf('\n');
18 W = (m*R*(T1-T2))/(1.1-1);
19 printf('Work Done is: %3.1 f kJ', W);
20 printf(' \ n');
21 Cv = (R)/(G-1);
22 \quad Cp = R + Cv;
23 CI = m * Cv * (T2 - T1);
24 printf ('Change in Internal Energy is: \%3.2 f kJ', CI);
25 printf(' \ n');
26 \quad Q = CI + W;
27 printf('Heat Transfer is: %3.2 f kJ',Q);
```

```
28 printf(' \ n');
```

Scilab code Exa 3.3.1 Example3

```
1 clear
2 clc
3
                          //Pressure in kPa
4 P1=2.75*100;
5 V1 = 0.09
                     //Volume in m<sup>3</sup>
6 T1 = 185 + 273;
                     //Temperature in Kelvin
7 T2=15+273;
8 R=0.29;
9 Cp=1.005;
10 Cv = 0.715;
11
12 m = (P1*V1)/(R*T1);
13 V2 = (T2/T1) * V1;
14 W=P1*(V2-V1);
15 printf('The Work Done: %2.3 f kJ', W);
16 printf('\n');
17 Q=m*Cp*(T2-T1);
18 printf('The Heat Transfer: %2.3 f kJ',Q);
19 printf('\n');
20 \quad U = Q - W;
21 printf('The change in Internal Energy: %2.3f kJ',U);
22 printf(' \ n');
```

Scilab code Exa 3.4.1 Example4

```
1 clc
2 clear
3
4 //Inputs
```

```
5 //The Values in the program are as follows:
6 //Temperature in Celcius converted to Kelvin (by
      adding 273)
7 // Pressure in bar converted to kPa (by multiplying
      100)
8 //Volume in m<sup>3</sup>
9 //Value of R, Cp and Cv in kJ/kg K
10
11 m = 0.67;
12 P1=14;
13 T1 = 290 + 273;
14 R = 287;
15 V1 = (m*R*T1)/(14*(10^5));
16 printf('The Volume: \%2.3 \, f \, kJ', V1);
17 printf('\n');
18 V2=4*V1;
19 printf('The Final Volume: %2.3 f kJ', V2);
20 printf(' \ n');
21 x = V1/V2;
22 y = x^1.3;
23 P2 = P1 * y;
24 printf('The Final Pressure: %2.3f bar',P2);
25 printf(' \ n');
26 x = V1/V2;
27 y = x^0.3;
28 T2 = T1 * y;
29 printf('The Final Temperature: %2.3 f K',T2);
30 printf(' \ n');
```

Scilab code Exa 3.5.1 Example5

```
1 clc
2 clear
3
4
```

```
5 //Inputs
6 //The Values in the program are as follows:
7 //Temperature in Celcius converted to Kelvin (by
      adding 273)
8 // Pressure in bar converted to kPa (by multiplying
       100)
9 //Volume in m<sup>3</sup>
10 // Value of R, Cp and Cv in kJ/kg K
11 P1=510;
12 V1=0.142;
13 P2=170;
14 \quad V2 = 0.275;
15 H = -65;
16 \text{ Cv=0.718};
17 X = (P2 * V2) - (P1 * V1);
18 \quad U=H-X;
19 printf ('The Change in Internal Energy: %2.2 f kJ', U);
20 printf(' \ n');
21 \quad G=H/U;
22 Cp = G * Cv;
23 R = Cp - Cv;
24 printf('The Value of R: \%2.3 \, \text{f kJ/kg K',R});
25 printf(' \ n');
```

Scilab code Exa 3.6.1 Example6

```
1 clc
2 clear
3
4 //Inputs
5 //The Values in the program are as follows:
6 //Temperature in Celcius converted to Kelvin(by adding 273)
7 //Pressure in bar converted to kPa (by multiplying 100)
```

```
8 //Volume in m<sup>3</sup>
9 //Value of R, Cp and Cv in kJ/kg K
10 P1 = 25;
11 T1 = 27 + 273;
12 P2=5;
13 T2 = 20 + 273;
14 V1 = 0.7;
15 \text{ Et} = 1.43;
16 \text{ Pn} = 101.325;
17 Tn = 273;
18
19 // Calculations
20 R = (Pn)/(Et*Tn);
21 m1 = (Pn * V1) / (R * Tn);
22 V2 = (m1*R*T1)/(P1*100);
23 m2 = (P2*100*V2)/(R*T2);
24 \text{ mf} = \text{m1} - \text{m2};
25 printf('The mass of Oxygen used: %3.3 \, f \, kg', mf);
26 printf(' \ n');
```

Scilab code Exa 3.7.1 Example7

```
1 clc
2 clear
3
4 //Inputs
5 //The Values in the program are as follows:
6 //Temperature in Celcius converted to Kelvin(by adding 273)
7 //Pressure in bar converted to kPa (by multiplying 100)
8 //Volume in m^3
9 //Value of R,Cp and Cv in kJ/kg K
10 n=1.3;
11 m=1;
```

```
12 T1=300;
13 T2=200;
14 W=90;
15 Ro=8.3143;
16 R=((n-m)*W)/((T1-T2)*m);
17 M=Ro/R;
18 printf('The molecular mass of gas is: %3.1 f kg/kg mole', M);
19 printf('\n');
```

Scilab code Exa 3.8.1 Example8

```
1 clc
2 clear
4 //Inputs
5 //The Values in the program are as follows:
6 //Temperature in Celcius converted to Kelvin (by
      adding 273)
7 // Pressure in bar converted to kPa (by multiplying
      100)
8 //Volume in m<sup>3</sup>
9 //Value of R, Cp and Cv in kJ/kg K
10 m = 0.18;
11 V1 = 0.15;
12 \quad T1 = 15 + 273;
13 P1=100;
14 \quad V2 = 0.056;
15 P2 = 400;
16 R = (P1 * V1) / (m * T1);
17 printf('The Gas Constant: \%3.3 \, f \, kJ/kg \, K',R);
18 printf('\n');
19 M=8.3141/R;
20 printf ('The Molecular Mass of Gas: %3.2 f kg/kg mole'
      , M);
```

```
21 printf(' \ n');
22 x = log(P2/P1);
23 y = log(V2/V1);
24 G = -(x/y);
25 \text{ Cv} = R/(G-1);
26 printf('The Cv: \%3.2 \text{ f kJ/kg K',Cv});
27 printf(' \ n');
28 Cp = Cv + R;
29 printf ('The Cp: \%3.2 \, \text{f kJ/kg K',Cp});
30 printf('\n');
31 x = (G-1)/G;
32 y = P2/P1;
33 z=y^x;
34 T2 = T1 * z;
35 U=m*Cv*(T2-T1);
36 printf('The change in Internal Energy: %3.2f kJ',U);
37 printf('\n');
```

Scilab code Exa 3.9.1 Example9

```
1 clc
2 clear
3
4 //Inputs
5 //The Values in the program are as follows:
6 //Temperature in Celcius converted to Kelvin(by adding 273)
7 //Pressure in bar converted to kPa (by multiplying 100)
8 //Volume in m^3
9 //Value of R,Cp and Cv in kJ/kg K
10 P1=100;
11 V1=0.25;
12 T1=100+273;
13 V2=0.05;
```

```
14 P2 = 750;
15 G=1.4;
16 R = 0.298;
17 n = (log(P2/P1))/(log(V1/V2));
18 printf('The Index n: %1.2 f', n);
19 printf('\n');
20 T2=T1*((P2/P1)^{(n-1)/n});
21 \text{ Cv=R/(G-1)};
22 Cp=R+Cv;
23 m = (P1*V1)/(R*T1);
24 W = (m*R*(T1-T2))/(n-1);
25 Q = ((G-n)/(G-1))*W;
26 printf('The Heat change: %2.2 f kJ',Q);
27 printf(' \ n');
28 \quad U = m * Cv * (T2 - T1);
29 printf('The change in Internal Energy: %2.2 f kJ', U);
30 printf('\n');
```

Scilab code Exa 3.13.1 Example 13

```
1 clc
2 clear
3
4 //Inputs
5 //The Values in the program are as follows:
6 //Temperature in Celcius converted to Kelvin(by adding 273)
7 //Pressure in bar converted to kPa (by multiplying 100)
8 //Volume in m^3
9 //Value of R,Cp and Cv in kJ/kg K
10 m=1;
11 P2=25;
12 P1=1;
13 pV=260;
```

```
14 T1 = 17 + 273;
15 T2=T1;
16 V1 = (pV*T1)/(P1*100000);
17 printf ('As process is Isothermal, Initial and Final
      Temperatures are same \n');
18 printf('The Final Temperature: %3.0 f K',T1);
19 printf('\n');
20 V2=(pV*T2)/(P2*100000);
21 printf('The Final Volume: %3.5 f m^3', V2);
22 printf(' \ n');
23 \quad CR=P2/P1;
24 printf('The Compression Ratio: %3.0 f', CR);
25 printf('\n');
26 printf ('Change in Enthalpy is zero as it is
      Isothermal process \n');
27 \text{ W}=P1*100*V1*(log(P1/P2));
28 printf('Work Done is: %3.1 f kJ', W);
29 printf('\n');
```

Scilab code Exa 3.14.1 Example14

```
1 clc
2 clear
3
4 //Inputs
5 //The Values in the program are as follows:
6 //Temperature in Celcius converted to Kelvin(by adding 273)
7 //Pressure in bar converted to kPa (by multiplying 100)
8 //Volume in m^3
9 //Value of R,Cp and Cv in kJ/kg K
10 P2=6;
11 Cp=1.75;
12 P1=1;
```

```
13 n=1.3;
14 T1 = 30 + 273;
15 \quad M = 30;
16 \text{ m} = 2;
17 Ro=8314.4;
18 R = (Ro/M)/1000;
19 printf('The Gas Constant: \%3.3 \, \text{f kJ/kg K'}, R);
20 printf('\n');
21 Cv = Cp - R;
22 G = Cp/Cv;
23 printf('The value of Gamma: %1.2f',G);
24 printf('\n');
25 T2=(T1)*((P2/P1)^((n-1)/n));
26 printf('Final Temperature: %3.2 f K',T2);
27 printf('\n');
28 W = (m*R*(T1-T2))/(n-1);
29 printf('The work done on the gas: %3.2 f kJ', W);
30 printf(' \ n');
31 Q = ((G-n)/(G-1))*W;
32 printf('The Heat Transfer is %3.2 f kJ',Q);
33 printf(' \ n');
34 \quad U = m * Cv * (T2 - T1);
35 printf ('The change in Internal Energy is %3.2 f kJ', U
      );
36 printf(' \ n');
```

Scilab code Exa 3.15.1 Example15

```
1 clc
2 clear
3
4 //Inputs
5 //The Values in the program are as follows:
6 //Temperature in Celcius converted to Kelvin(by adding 273)
```

```
7 // Pressure in bar converted to kPa (by multiplying
      100)
8 //Volume in m<sup>3</sup>
9 // Value of R, Cp and Cv in kJ/kg K
10 P1=350;
11 P2=130;
12 R = 0.287;
13 T1 = 450;
14 G=1.4;
15 \, \text{m} = 1;
16 T2=T1*((P2/P1)^{(G-1)/G)};
17 W = (m*R*(T1-T2))/(G-1);
18 printf ('Amount of External Work done: \%3.2 f kJ/kg', W
      );
19 printf('\n');
20 \quad U = -W;
21 printf ('Change in Internal Energy: \%3.2 f kJ/kg',U);
22 printf(' \ n');
```

Scilab code Exa 3.16.1 Example16

```
1 clc
2 clear
3
4 //Inputs
5 //The Values in the program are as follows:
6 //Temperature in Celcius converted to Kelvin(by adding 273)
7 //Pressure in bar converted to kPa (by multiplying 100)
8 //Volume in m^3
9 //Value of R,Cp and Cv in kJ/kg K
10 P1=1.5;
11 V1=0.1;
12 V2=0.04;
```

```
13  P2=7.5;
14  T1=30+273;
15
16  //Using ideal gas equation
17  T2=(P2*V2*T1)/(P1*V1);
18  printf('The Value of Temperature of gas: %3.0 f K', T2
     );
```

Scilab code Exa 3.17.1 Example17

```
1 clc
2 clear
4 //Inputs
5 //The Values in the program are as follows:
6 //Temperature in Celcius converted to Kelvin (by
      adding 273)
7 // Pressure in bar converted to kPa (by multiplying
      100)
8 //Volume in m<sup>3</sup>
9 // Value of R, Cp and Cv in kJ/kg K
10 P1=1.5;
11 V1=3;
12 T1 = 27 + 273;
13 P2=30;
14 T2 = 60 + 273;
15 R = 0.287;
16
17 m1 = (P1*100*V1)/(R*T1);
18 m2 = (P2*100*V1)/(R*T2);
19
20 \text{ m} = \text{m} 2 - \text{m} 1;
21 printf('The mass pumped: %2.2 f kg',m);
22 printf('\n');
23 V = (m*R*(17+273))/(1*100);
```

```
24
25    printf('Volume: %2.2 f m^3',V);
26    printf('\n');
27
28    T3=27+273;
29    P3=(T3*P2)/T2;
30
31    printf('Final air pressure in the vessel: %2.2 f bar', P3);
32    printf('\n');
```

Scilab code Exa 3.18.1 Example18

```
1 clc
2 clear
3
4 //Inputs
5 //The Values in the program are as follows:
6 //Temperature in Celcius converted to Kelvin (by
      adding 273)
7 // Pressure in bar converted to kPa (by multiplying
      100)
8 //Volume in m<sup>3</sup>
9 // Value of R, Cp and Cv in kJ/kg K
10 V1=1.5;
11 m=2;
12 \quad T1 = 27 + 273;
13 \quad T2 = 207 + 273;
14 V2 = V1;
15 \text{ M}=28;
16 \text{ Ro} = 8.314;
17
18 R=Ro/M;
19
20 P1 = (m*R*T1)/V1;
```

Scilab code Exa 3.19.1 Example19

```
1 clc
2 clear
3
4 //Inputs
5 //The Values in the program are as follows:
6 //Temperature in Celcius converted to Kelvin (by
      adding 273)
7 // Pressure in bar converted to kPa (by multiplying
      100)
8 //Volume in m<sup>3</sup>
9 //Value of R, Cp and Cv in kJ/kg K
10 T1 = 27 + 273;
11 V1 = 0.06;
12 P1=150;
13 Ro = 8.314;
14 M = 28;
15
16 R=Ro/M;
17 m = (P1*100*V1)/(R*T1);
18 printf ('Mass of gas at design condition: %2.1 f kg', m
      );
19 printf('\n');
20
21 P2 = 170;
```

```
22 T2=(T1*P2)/P1;
23 printf('Fusible plug should melt at: %3.0 f K',T2);
24 printf('\n');
```

Scilab code Exa 3.20.1 Example 20

```
1 clc
2 clear
3
4 //Inputs
5 //The Values in the program are as follows:
6 //Temperature in Celcius converted to Kelvin (by
      adding 273)
7 // Pressure in bar converted to kPa (by multiplying
      100)
8 //Volume in m<sup>3</sup>
9 //Value of R, Cp and Cv in kJ/kg K
10 P1=7;
11 m = 3.7;
12 V1 = 1.5;
13 P2=1.4;
14 \quad V2 = 4.5;
15 \text{ U=}648;
16 \text{ Cv} = 1.05;
17
18 RT1=(P1*100*V1)/(m);
19 RT2=(P2*100*V2)/(m);
20
21 RT = RT1 - RT2;
22 T = (U)/(m*Cv);
23 R = (RT/T)
24 printf('The value of R: \%1.3 \text{ f kJ/kg K',R});
25 printf(' \ n');
26
27 Cp = Cv + R;
```

```
28 H=m*Cp*(-T);
29 printf('The change in enthalpy is: %4.2 f kJ',H);
30 printf('\n');
31
32 T1=RT1/R;
33 T2=RT2/R;
34
35 printf('Initial Temperature: %3.2 f K \n',T1);
36 printf('Final Temperature: %3.2 f K \n',T2);
```

Scilab code Exa 3.21.1 Example 21

```
1 clc
2 clear
4 //Inputs
5 //The Values in the program are as follows:
6 //Temperature in Celcius converted to Kelvin (by
      adding 273)
7 // Pressure in bar converted to kPa (by multiplying
      100)
8 //Volume in m<sup>3</sup>
9 //Value of R, Cp and Cv in kJ/kg K
10 V = 1.6;
11 P=1;
12 m = 2;
13 T=17+273;
14 G=1.4;
15
16 R = (P*100*V)/(m*T);
17 Cv = (R)/(G-1);
18 printf('The Value of Cv: %1.2f kJ/kg K',Cv);
19 printf('\n');
20
21 Cp = Cv + R;
```

```
22 printf('The Value of Cp: %1.3f kJ/kg K',Cp);
23 printf('\n')
```

Scilab code Exa 3.22.1 Example22

```
1 clc
2 clear
3
4 //Inputs
5 //The Values in the program are as follows:
6 //Temperature in Celcius converted to Kelvin (by
      adding 273)
7 // Pressure in bar converted to kPa (by multiplying
      100)
8 //Volume in m<sup>3</sup>
9 // Value of R, Cp and Cv in kJ/kg K
10 V1 = 0.091;
11 P1=2.73;
12 T1 = 187 + 273;
13 T2=27+273;
14 \text{ Cp} = 1.005;
15 \text{ Cv} = 0.718;
16
17 R = Cp - Cv;
18
19 m = (P1*100*V1)/(R*T1);
20 Q=m*Cp*(T2-T1);
21 printf('The Value of heat transferred: %1.2 f kJ',Q);
22 printf('\n')
23
24 V2 = (T2 * V1) / T1;
25 \text{ W} = \text{P1} * 100 * (\text{V2} - \text{V1});
26 printf('The Value of Work done: %1.2 f kJ', W);
27 printf('\n')
```

Scilab code Exa 3.23.1 Example23

```
1 clc
2 clear
4 //Inputs
5 //The Values in the program are as follows:
6 //Temperature in Celcius converted to Kelvin (by
      adding 273)
7 // Pressure in bar converted to kPa (by multiplying
      100)
8 //Volume in m<sup>3</sup>
9 // Value of R, Cp and Cv in kJ/kg K
10 \text{ m=28;}
11 V1=3;
12 T1 = 100 + 273;
13 T2=37+273;
14 G = 1.4;
15 \text{ Ro} = 8.314;
16
17 v = V1/m;
18 R=Ro/m;
19
20 P1 = (m*R*T1)/V1;
21
22 printf('The Specific Volume: %1.3 f m^3/kg', v);
23 printf(' \ n')
24
25 printf('The Initial Pressure: %1.2 f kPa', P1);
26 printf('\n')
27
P2 = (P1 * T2) / T1;
29 printf('The Final Pressure: %1.2 f kPa', P2);
30 printf(' \ n')
```

```
31
32    Cv=(R)/(G-1);
33    Cp=Cv*G;
34    U=m*Cv*(T2-T1);
35    H=m*Cp*(T2-T1);
36
37    printf('Change in Internal Energy: %1.2 f kJ',U);
38    printf('\n');
39
40
41    printf('Change in Heat energy: %1.2 f kJ',H);
42    printf('\n')
```

Scilab code Exa 3.24.1 Example24

```
1 clc
2 clear
4 //Inputs
5 //The Values in the program are as follows:
6 //Temperature in Celcius converted to Kelvin (by
      adding 273)
7 // Pressure in bar converted to kPa (by multiplying
      100)
8 //Volume in m<sup>3</sup>
9 // Value of R, Cp and Cv in kJ/kg K
10 V1=3;
11 V1=V1*100;
                     //In kPa
12 P1=2;
13 \quad T1 = 73 + 273;
14 P2=7;
15 R = 0.287;
16 \text{ Cv} = 0.718;
17 Cp=1.005;
18
```

Scilab code Exa 3.25.1 Example25

```
1 clc
2 clear
3
4 //Inputs
5 //The Values in the program are as follows:
6 //Temperature in Celcius converted to Kelvin (by
      adding 273)
7 // Pressure in bar converted to kPa (by multiplying
      100)
8 //Volume in m<sup>3</sup>
9 //Value of R, Cp and Cv in kJ/kg K
10 m = 1;
11 T1 = 27 + 273;
12 \quad T2 = 197 + 273;
13 V1 = 2.1;
14 R = 0.287;
15 Cp=1.005;
16
17 W=m*R*(T2-T1);
18 printf('Work Done: %1.2 f kJ', W);
19 printf('\n');
```

```
20
21 Q=m*Cp*(T2-T1);
22 U=Q-W;
23
24 printf('Change in Heat Energy: %1.2 f kJ',Q);
25 printf('\n');
26 printf('Change in Internal Energy: %1.2 f kJ',U);
27 printf('\n');
28
29 P=(m*R*T1)/(V1);
30 V2=(V1*T2)/(T1);
31 printf('Pressure: %1.2 f kPa',P);
32 printf('\n');
33 printf('Final Volume: %1.1 f m^3',V2);
34 printf('\n');
```

Scilab code Exa 3.26.1 Example26

```
1 clc
2 clear
3
4 //Inputs
5 //The Values in the program are as follows:
6 //Temperature in Celcius converted to Kelvin (by
      adding 273)
7 // Pressure in bar converted to kPa (by multiplying
      100)
8 //Volume in m<sup>3</sup>
9 // Value of R, Cp and Cv in kJ/kg K
10 V1 = 0.5;
11 P1=0.3;
12 \quad V2 = 0.1;
13 P2=(P1*V1)/(V2);
14 printf('Final Pressure: %1.2f bar',P2);
15 printf('\n');
```

Scilab code Exa 3.27.1 Example27

```
1 clc
2 clear
3
4 //Inputs
5 //The Values in the program are as follows:
6 //Temperature in Celcius converted to Kelvin (by
      adding 273)
  //Pressure in bar converted to kPa (by multiplying
      100)
8 //Volume in m<sup>3</sup>
9 //Value of R, Cp and Cv in kJ/kg K
10 m = 0.19;
11 P1=1;
12 V1 = 0.16;
13 T1=17+273;
14 P2=4.1;
15 \quad V2 = 0.046;
16 \text{ Ro} = 8.314;
17
18 R=(P1*100*V1)/(m*T1);
19 printf('Gas Constant: \%1.2 \, \text{f kJ/kg K',R});
```

```
20 printf(' \ n');
21
22 \text{ M=Ro/R};
23 printf('Molecular Mass: %1.2 f kg/kg mole', M);
24 printf(' \ n');
25
26 G=(log(P1/P2))/(log(V2/V1));
27 printf('Ratio of Specific Heats: %1.2f',G);
28 printf(' \ n');
29
30 Cv = (R)/(G-1);
31 printf('Value of Cv: %1.2 f kJ/kg K',Cv);
32 \text{ printf}(' \setminus n');
33
34 \text{ Cp}=G*Cv;
35 printf('Value of Cp: \%1.2 \, \text{f kJ/kg K',Cp});
36 printf(' \ n');
37
38 T2=(P2*100*V2)/(m*R);
39 U=m*Cv*(T2-T1);
40 printf('Change in Internal Energy: %1.2 f kJ', U);
41 printf(' \ n');
42
43 H=m*Cp*(T2-T1);
44 printf('Heat Transfer: %1.2 f kJ', H);
45 printf('\n');
46
47 W = ((P1*100*V1) - (P2*100*V2))/(G-1);
48 printf('Work Done: %1.2 f kJ', W);
49 printf('\n');
```

Scilab code Exa 3.28.1 Example 28

```
1 clc
2 clear
```

```
3
4 //Inputs
5 //The Values in the program are as follows:
6 //Temperature in Celcius converted to Kelvin (by
      adding 273)
7 // Pressure in bar converted to kPa (by multiplying
      100)
8 //Volume in m<sup>3</sup>
9 // Value of R, Cp and Cv in kJ/kg K
10 V1=0.19;
11 P1=5;
12 T1 = 190 + 273;
13 P2=1;
14 H = 100;
15 G=1.4;
16 R = 0.287;
17 Cp=1.005;
18
19 V2=V1*((P1/P2)^(1/G));
20 W = ((P1*100*V1) - (P2*100*V2))/(G-1);
21 m = (P1*100*V1)/(R*T1);
22 T2=T1*((P2/P1)^{(G-1)/G)}
23 x=H/(m*Cp);
24 T3 = x + T2;
25
26 \quad V3 = (V2 * T3) / T2;
27 \text{ Wo} = P2 * 100 * (V3 - V2);
28 Wf = W + Wo;
29 printf('Total Work Done: %1.2 f kJ', Wf);
30 printf(' \ n');
```

Scilab code Exa 3.29.1 Example 29

```
1 clc
2 clear
```

```
3
4 //Inputs
5 //The Values in the program are as follows:
6 //Temperature in Celcius converted to Kelvin (by
      adding 273)
7 // Pressure in bar converted to kPa (by multiplying
      100)
8 //Volume in m<sup>3</sup>
9 //Value of R, Cp and Cv in kJ/kg K
10 V1 = 0.1;
11 V3=V1;
12 P1=10;
13 T1 = 200 + 273;
14 P2=3;
15 R = 0.287;
16 G = 1.4;
17 \text{ Cv} = 0.718;
18
19 m = (P1*100*V1)/(R*T1);
20 T2=T1*((P2/P1)^{(G-1)/G)};
21 V2=V1*((P1/P2)^{((1)/G)});
22 T3 = T2;
23 P3 = (P2 * V2) / V3;
24 printf ('Pressure after Isothermal Compression: %1.2 f
       bar', P3);
25 printf(' \ n');
26 printf ('Temperature after isothermal compression: \%1
      .2 f K', T2);
27 printf('\n');
28
29 W1 = ((P1*100*V1) - (P2*100*V2))/(G-1);
30 printf ('Work Developed during adiabatic expansion:
      \%2.0 \, \text{f kJ}', W1);
31 printf('\n');
32
33 W2 = (P2 * 100 * V2) * log(V3/V2);
34 printf('Work of Compression: %1.2 f kJ', W2);
35 printf(' \ n');
```

```
36
37  Q=m*Cv*(T1-T3);
38  printf('Heat supplied in 3rd Process: %1.2f kJ',Q);
39  printf('\n');
40
41  U=m*Cv*(T2-T1);
42  printf('Change in Internal Energy: %1.2f kJ',U);
43  printf('\n');
```

Scilab code Exa 3.30.1 Example 30

```
1 clc
2 clear
3
4 //Inputs
5 V1 = 0.028;
6 P1=1;
7 T1 = 27 + 273;
8 n=1.3;
9 \quad V2 = 0.0046;
10 T3=T1;
11
12 T2=T1*((V1/V2)^{n-1});
13 printf('Temperature after compression: %1.2 f K',T2);
14 printf('\n');
15
16 P2=P1*((V1/V2)^n);
17 W = ((P1*100*V1) - (P2*100*V2))/(n-1);
18 printf ('Work Done: %1.2 f kJ', W);
19 printf('\n');
20
21 P3 = (T3*P2)/T2;
22 printf('Final Pressure: %1.2f bar',P3);
23 printf(' \ n');
```

Scilab code Exa 3.31.1 Example31

```
1 clc
2 clear
4 //Inputs
5 //The Values in the program are as follows:
6 //Temperature in Celcius converted to Kelvin (by
      adding 273)
7 // Pressure in bar converted to kPa (by multiplying
      100)
8 //Volume in m<sup>3</sup>
9 // Value of R, Cp and Cv in kJ/kg K
10 \quad V1 = 0.15;
11 P1=900;
12 T1 = 300 + 273;
13 T3=T1;
14 \ V2=3*V1;
15 R = 0.287;
16 \text{ Cp} = 1.005;
17 G=1.4;
18 n=1.5;
19 Cv = 0.718;
20
21 // Calculations
22 m = (P1*V1)/(R*T1);
23 T2 = (V2 * T1) / V1;
24 \quad Q1 = m * Cp * (T2 - T1);
25 printf('Heat Received: %3.2 f kJ',Q1);
26 printf(' \ n');
27
28 Q2=(m*Cv)*((n-G)/(n-1))*(T3-T2);
29 Q3=m*R*T3*(log(1/27));
30 \quad Qr = 0 - (Q2 + Q3);
```

```
31 printf('Heat Rejected: %3.2 f kJ',Qr);
32 printf('\n');
33
34 Eff=(1-(Qr/Q1))*100;
35 printf('Efficiency: %3.2 f percent',Eff);
36 printf('\n');
```

Scilab code Exa 3.32.1 Example32

```
1 clc
2 clear
3
4 //Inputs
5 //The Values in the program are as follows:
6 //Temperature in Celcius converted to Kelvin (by
      adding 273)
7 // Pressure in bar converted to kPa (by multiplying
      100)
8 //Volume in m<sup>3</sup>
9 //Value of R, Cp and Cv in kJ/kg K
10 M = 27;
11 P1=1;
12 T1 = 60 + 273;
13 n=1.3;
14 \text{ Cvm} = 21;
15 \text{ Ro} = 8.314;
16 R=Ro/M;
17
18 // Calculations
19 V1 = (R*T1)/(P1*100);
20 V2=V1/12;
21 x = V1/V2;
22 P2=P1*(x^n);
23 W = ((P1*100*V1) - (P2*100*V2))/(n-1);
24 printf ('Work Done: \%3.2 \, \text{f kJ/kg',W});
```

```
25  printf('\n');
26
27  Cv=Cvm/M;
28  Cp=Cv+R;
29  G=Cp/Cv;
30
31  Q=((G-n)/(G-1))*W;
32  printf('Heat Transfer during the process: %3.2 f kJ/kg',Q);
33  printf('\n');
```

Scilab code Exa 3.33.1 Example33

```
1 clc
2 clear
3
4 //Inputs
5 //The Values in the program are as follows:
6 //Temperature in Celcius converted to Kelvin (by
      adding 273)
7 // Pressure in bar converted to kPa (by multiplying
      100)
8 //Volume in m<sup>3</sup>
9 // Value of R, Cp and Cv in kJ/kg K
10 D=0.550;
11 L=0.740;
12 r = 12;
13 P1=100;
14 T1 = 27 + 273;
15 n=1.32;
16 R = 0.287;
17 G=1.4;
18 V = ((22/7)/4)*D*D*L;
19 V2=V/11;
20 V1 = V2 + V;
```

```
21 P2=P1*((r)^n);
22 T2=T1*((r)^(n-1));
23 printf('The Pressure at end of Compression: %3.3f
      kPa', P2);
24 printf(' \ n');
25 printf ('The Temperature at end of Compression: \%3.3 f
       K', T2);
26 printf('\n');
27 m = (P1*V1)/(R*T1);
28 printf('The Mass in the cylinder: %3.3 f kg',m);
29 printf('\n');
30 W = ((P1*V1) - (P2*V2))/(n-1);
31 printf('The Work Done: %3.3 f kJ', W);
32 \text{ printf}(' \ ' \ ');
33 Q = ((G-n)/(G-1))*W;
34 printf('The Heat Transfer: %3.3 f kJ',Q);
35 printf('\n');
```

Scilab code Exa 3.34.1 Example 34

```
1 clc
2 clear
3
4 //Inputs
5 //The Values in the program are as follows:
6 //Temperature in Celcius converted to Kelvin(by adding 273)
7 //Pressure in bar converted to kPa (by multiplying 100)
8 //Volume in m^3
9 //Value of R,Cp and Cv in kJ/kg K
10 m=1;
11 P1=10;
12 T1=337+273;
13 P2=1;
```

```
14 V = 6;
15 R = 0.287;
16 G=1.4;
17 x = log(P2/P1);
18 y = log(1/V);
19 n=x/y;
20 printf('The Value of n: %3.3f',n);
21 printf('\n');
22 V1 = (m*R*T1)/(P1*100);
23 V2 = V1 * 6;
24 W = ((P1*100*V1) - (P2*100*V2))/(n-1);
25 printf('The Work Done: %3.1 f kJ', W);
26 printf('\n');
27 Q = ((G-n)/(G-1))*W;
28 printf('The Heat Transfer: %3.2 f kJ',Q);
29 printf('\n');
```

Scilab code Exa 3.37.1 Example 37

```
1 clc
2 clear
3
4 //Inputs
5 //The Values in the program are as follows:
6 //Temperature in Celcius converted to Kelvin (by
      adding 273)
7 // Pressure in bar converted to kPa (by multiplying
      100)
8 //Volume in m<sup>3</sup>
9 //Value of R, Cp and Cv in kJ/kg K
10 \text{ T1} = 430;
11 T2=289.25;
12 P2=100;
13 P1=400;
14 G = 1.4;
```

```
15 V1 = 0.2;
16 R = 287;
17 \quad Q = 60;
18 \text{ Cp} = 1.005;
19 T2=T1*((P2/P1)^((G-1)/G));
20 V2=V1*((P1/P2)^(1/G));
21 m = (P1*1000*V1)/(R*T1);
22 W1 = (m*(R/1000)*(T1-T2))/(G-1);
23 T3 = (Q/(m*Cp)) + T2;
24 V3 = (V2 * T3) / T2;
25 \text{ W2=P2*(V3-V2)};
26 \quad W = W1 + W2;
27 printf('The Net Work Done: %3.3 f kJ', W);
28 printf(' \ n');
29 n = ((m*(R/1000)*(T1-T3))/W)+1;
30 printf('The value of n: \%3.2 \,\mathrm{f}',n);
31 printf('\n');
```

Scilab code Exa 3.38.1 Example 38

```
1 clc
2 clear
3
4 //Inputs
5 //The Values in the program are as follows:
6 //Temperature in Celcius converted to Kelvin(by adding 273)
7 //Pressure in bar converted to kPa (by multiplying 100)
8 //Volume in m^3
9 //Value of R,Cp and Cv in kJ/kg Km=1;
10 P1=6;
11 V1=0.01;
12 V2=0.05;
13 P2=2;
```

```
14 W1 = (((P1+P2)/2)*100)*(V2-V1);
15 printf ('The Work done for first cycle: %3.1 f kJ', W1)
16 printf('\n');
17 P3=P2;
18 V3 = (P1 * V1) / P3;
19 W2=P2*100*(V3-V2);
20 printf ('The Work done for second cycle: %3.1 f kJ', w2
      );
21 printf('\n');
22 \quad W3 = (P3 * 100 * V3) * (log(V1/V3));
23 printf('The Work done for third cycle: %3.2 f kJ', w3)
24 printf(' \ n');
25 \quad W = W1 + W2 + W3;
26 printf('The net Work done: %3.2 f kJ', W);
27 printf(' \ n');
Q = W;
                          //As process is cyclic
29 printf('The Heat Transfer: %3.2 f kJ',Q);
30 printf('\n');
```

Scilab code Exa 3.39.1 Example 39

```
1 clc
2 clear
3
4 //Inputs
5 //The Values in the program are as follows:
6 //Temperature in Celcius converted to Kelvin(by adding 273)
7 //Pressure in bar converted to kPa (by multiplying 100)
8 //Volume in m^3
9 //Value of R,Cp and Cv in kJ/kg K
10 V1=0.6;
```

```
11 P1=1;
12 T1 = 90 + 273;
13 \quad V2 = 0.18;
14 P2=5;
15 R = 0.287;
16 G = 1.4;
17
18 m = (P1*100*V1)/(R*T1);
19 printf('The mass of Gas: %3.4 f kg',m);
20 printf(' \ n');
21 n = (log(P2/P1))/(log(V1/V2));
22 printf('The value of n: \%3.3 \, \text{f}',n);
23 printf('\n');
24 Cv=R/(G-1);
25 T2=((P2*V2)/(P1*V1))*T1;
26 \quad U = m * Cv * (T2 - T1);
27 printf('The change in Internal Energy: %3.3 f kJ', U);
28 printf(' \ n');
```

Scilab code Exa 3.40.1 Example 40

```
1 clc
2 clear
3
4 //Inputs
5 //The Values in the program are as follows:
6 //Temperature in Celcius converted to Kelvin(by adding 273)
7 //Pressure in bar converted to kPa (by multiplying 100)
8 //Volume in m^3
9 //Value of R,Cp and Cv in kJ/kg K
10 R=0.29;
11 Cp=1.005;
12 P1=2.75;
```

```
13  P2=P1;
14  V1=0.09;
15  T1=185+273;
16  T2=15+273;
17
18    // Calculations
19  V2=(V1*T2)/T1;
20    m=(P1*100*V1)/(R*T1);
21    Q=m*Cp*(T2-T1);
22    printf('The Heat Transfer: %3.3 f kJ',Q);
23    printf('\n');
24    W=P1*100*(V2-V1);
25    printf('The Work done: %3.3 f kJ',W);
26    printf('\n');
```

Scilab code Exa 3.41.1 Example41

```
1 clc
2 clear
3
4 //Inputs
5 //The Values in the program are as follows:
6 //Temperature in Celcius converted to Kelvin (by
      adding 273)
7 // Pressure in bar converted to kPa (by multiplying
      100)
8 //Volume in m<sup>3</sup>
9 //Value of R, Cp and Cv in kJ/kg K
10 T1 = 25 + 273;
11 T2=145+273;
12 m=2;
13 R = 267;
14 G=1.4;
15 Cv = R/(G-1);
16 printf('The value of Cv: %3.1 f J/kg K', Cv);
```

```
17 printf('\n');
18 Cp=G*Cv;
19 printf('The value of Cp: %3.1 f J/kg K',Cp);
20 printf('\n');
21 U=m*Cv*(T2-T1)*(1/1000);
22 printf('The change in Internal Energy: %3.1 f kJ',U);
23 printf('\n');
24 H=m*Cp*(T2-T1)*(1/1000);
25 printf('The Heat Transfer: %3.1 f kJ',H);
26 printf('\n');
```

Scilab code Exa 3.42.1 Example 42

```
1 clc
2 clear
3
4 //Inputs
5 //The Values in the program are as follows:
6 //Temperature in Celcius converted to Kelvin (by
      adding 273)
7 // Pressure in bar converted to kPa (by multiplying
      100)
8 //Volume in m<sup>3</sup>
9 // Value of R, Cp and Cv in kJ/kg K
10 D=1;
11 h=4;
12 P1=100;
13 T1 = 27 + 273;
14 P2 = 125;
15 Cp=14.307;
16 \text{ Cv} = 10.183;
17 V1 = (22/7) * (1/4) * (D*D*h);
18 R = Cp - Cv;
19 m = (P1 * V1) / (R * T1);
20 T2 = (P2 * T1) / P1;
```

```
21 Q=m*Cv*(T2-T1);
22 printf('The Heat Transfer: %3.0 f kJ',Q);
23 printf('\n');
```

Scilab code Exa 3.43.1 Example43

```
1 clc
2 clear
3
4 //Inputs
5 //The Values in the program are as follows:
6 //Temperature in Celcius converted to Kelvin (by
      adding 273)
7 // Pressure in bar converted to kPa (by multiplying
      100)
8 //Volume in m<sup>3</sup>
9 //Value of R, Cp and Cv in kJ/kg K
10 V1 = 0.15;
11 V2=3*V1;
12 P1=900;
13 P2=P1;
14 T1 = 300 + 273;
15 T3=T1;
16 n=1.5;
17 G=1.4;
18 R = 0.287;
19 Cp=1.005;
20 m = (P1*V1)/(R*T1);
21 T2 = (T1 * V2) / V1;
22 Q1=m*Cp*(T2-T1);
23 W1=m*R*(T2-T3)/(n-1);
24 Q2=(G-n)*W1/(G-1);
25 P3=P2*((T3/T2)^(G/(G-1)));
26 \quad Q3 = m*R*T1*log(P3/P1);
27 \text{ H_rec=Q1};
```

```
28 printf('The Heat received: %3.1 f kJ', H_rec);
29 printf('\n');
30 H_rej=0-(Q2+Q3);
31 printf('The Heat Rejected: %3.1 f kJ', H_rej);
32 printf('\n');
33 eff=100*(1-(H_rej/H_rec));
34 printf('Efficiency: %3.2 f percent', eff);
35 printf('\n');
```

Scilab code Exa 3.44.1 Example44

```
1 clc
2 clear
3
4 //Inputs
5 //The Values in the program are as follows:
6 //Temperature in Celcius converted to Kelvin (by
      adding 273)
7 // Pressure in bar converted to kPa (by multiplying
      100)
8 //Volume in m<sup>3</sup>
9 //Value of R, Cp and Cv in kJ/kg Km=1;
10 V1 = 0.15;
11 P1=1;
12 \quad V2 = 0.05;
13 G=1.4;
14
15 // Calculations
16 P2 = (V1 * P1) / V2;
17 W_{it}=P1*100*V1*log(P1/P2);
18 printf ('Work done in Isothermal process: %2.2 f kJ',
      W_it);
19 printf('\n');
20 P2=P1*((V1/V2)^G);
21 W_ad = ((P1*100*V1) - (P2*100*V2))/(G-1);
```

Scilab code Exa 3.45.1 Example 45

```
1 clc
2 clear
3
4 //Inputs
5 //The Values in the program are as follows:
6 //Temperature in Celcius converted to Kelvin (by
      adding 273)
7 // Pressure in bar converted to kPa (by multiplying
      100)
8 //Volume in m<sup>3</sup>
9 //Value of R, Cp and Cv in kJ/kg K
10 m=1;
11 Cp=1.005;
12 P1=100;
13 T1=17+273;
14 T2=T1;
15 P2 = 2500;
16 printf('Final Temperature: %2.2 f K',T2);
17 printf('\n');
18
19 V1 = (260*T1)/(P1*1000);
20 V2 = (P1 * V1) / P2;
21 printf('Final Volume: %2.5 f m^3', V2);
22 printf(' \ n');
23 n = P2/P1;
24 printf('Compression ratio: \%2.0 \, \text{f}',n);
25 printf('\n');
26 \text{ H=m*Cp*(T2-T1)};
27 printf ('Change in Enthalpy: %2.2 f kJ', H);
```

```
28  printf('\n');
29  W=P1*V1*log(P1/P2);
30  printf('Work done: %2.2 f kJ/kg',W);
31  printf('\n');
```

Scilab code Exa 3.46.1 Example 46

```
1 clc
2 clear
4 //Inputs
5 //The Values in the program are as follows:
6 //Temperature in Celcius converted to Kelvin (by
       adding 273)
7 // Pressure in bar converted to kPa (by multiplying
       100)
8 //Volume in m<sup>3</sup>
9 // Value of R, Cp and Cv in kJ/kg K
10 P1=150;
11 T1 = 17 + 273;
12 P2 = 750;
13 n=1.3;
14 m = 1;
15 R=0.287;
16 \text{ Cp}=1.001;
17
18 // Calculations
19 T2=T1*((P2/P1)^{(n-1)/n});
20 printf('The final temperature: %2.1 f K',T2);
21 printf('\n');
22 W=m*R*(T1-T2)/(n-1);
23 printf ('Work done: \%2.2 \,\mathrm{f} \,\mathrm{kJ/kg}', W);
24 printf('\n');
25 \text{ Cv} = \text{Cp} - \text{R};
26 \quad U = m * Cv * (T2 - T1);
```

```
27  printf('Change in internal energy: %2.2 f kJ/kg',U);
28  printf('\n');
29  G=Cp/Cv;
30  Q=((G-n)/(G-1))*W;
31  printf('Amount of heat transfer: %2.2 f kJ/kg',Q);
32  printf('\n');
33  H=m*Cp*(T2-T1);
34  printf('Change in enthalpy: %2.2 f kJ/kg',H);
35  printf('\n');
```

Chapter 4

Properties of Steam

Scilab code Exa 4.1.1 Example 1

```
1 clc
2 clear
3
4 // Case 1
5 \text{ Vg=0.132};
                    //Specific Volume
6 \text{ SV} = 0.12;
7 //As SV is less than Vg, steam is wet
9 x = SV/Vg;
10
11 printf('\n For Case 1 \n');
12 printf('Part of wet steam: %2.2f',x);
13 printf(' \ n');
14
15 // Case 2
16 T = 200;
                    //Satuaration Temperature
17 Tsat=179.9;
18 //Steam is superheated as T > Tsat
19 D_sh=T-Tsat;
20
21 printf('\n For Case 2 \n');
```

```
22 printf('Degree of Superheat: %2.1 f C', D_sh);
23 printf('\n');
24
25 // Case 3
26 P = 20;
                  //Pressure in bars
27 Hf=908.8;
                      //kJ/kg
28 \text{ Hfg} = 1890.7;
                      //kJ/kg
29 Hg=2799.5;
                      //kJ/kg
30 \text{ H}=2650;
31
32 //Steam is wet as Specific enthalpy is less than Hg
33
34 x = (H-Hf)/Hfg;
35
36 printf('\n For Case 3 \setminus n');
37 printf('Part of wet steam: %2.2f',x);
38 printf(' \ n');
39
40 // Case 4
41 T=150;
                 //in Celcius
                //Specific Volume in m<sup>3</sup>/kg
42 \text{ SV} = 0.3928;
                 //in m^3/kg
43 Vg = 0.3928;
44
45 printf('\n For Case 4 \n');
46 printf('As SV=Vg, steam is dry saturated');
47 printf('\n');
48
49 // Case 5
50 P = 10;
                 //in bars
51 \text{ S} = 5.697;
52 \text{ Sf} = 2.319;
53 \text{ Sfg} = 4.448;
54 \text{ Sg=} 6.623;
55 //As Sample specific entropy is less than Sg and
      more than Sf, steam is wet
56
57 x = (S-Sf)/Sfg;
58 printf('\n For Case 5 \ n');
```

```
59 printf('Part of wet steam: %2.1f',x);
60 printf('\n');
```

Scilab code Exa 4.2.1 Example 2

```
1 clc
2 clear
4 //At 10 bar pressure
5 P = 10;
                //in bars
6 x = 0.8;
7 Vg=0.194; //in kJ/kg
8 W=P*100*x*Vg;
9 printf('External Work Done: %3.2 f kJ/kg', W);
10 printf('\n');
11
                      //in kJ/kg
12 Hf = 762.8;
                     //in kJ/kg
13 Hfg=2015.3;
14 \text{ H=Hf+(x*Hfg)};
15 U = H - W;
16 printf('Internal energy: \%3.2 \, \text{f kJ/kg',U});
17 printf('\n');
18
19 Vf = 0.001127;
                          //in m^3/kg
20 Uf = Hf - (P*100*Vf);
21 \text{ Ux=U-Uf};
22 printf('Internal Heat of Evaporation: %3.2 f kJ/kg',
      Ux);
23 printf(' \ n');
24
                      //in kJ/kg K
25 Sf = 2.139;
                      //in kJ/kg K
26 \text{ Sfg=} 4.448;
27 S = Sf + (x * Sfg);
28 printf('Entropy of steam: %3.3 f kJ/kg',S);
29 printf('\n');
```

Scilab code Exa 4.3.1 Example 3

```
1 clc
2 clear
4 // Condition at 10 bar pressure
5 //Steam is wet
6
7 x=0.95;
                //in bars
8 P = 10;
9 \text{ Hf} = 762.8;
                   //in kJ/kg
10 Hfg=2015.3;
                     //in kJ/kg
11 H=Hf+(x*Hfg);
12 printf('Enthalpy: \%3.2 \, f \, kJ/kg',H);
13 printf('\n');
14
15 //Now we calculate Work Done
16 \text{ Vg=0.194};
               //in m^3/kg
17 W=P*100*x*Vg;
18 U=H-W;
19 printf('Internal energy: \%3.0 \, f \, kJ/kg',U);
20 printf(' \ n');
```

Scilab code Exa 4.4.1 Example 4

```
1 clc
2 clear
3
4 //Condition at pressure 15 bars
5 P=15; //in bars
6 Hf=844.9; // in kJ/kg
```

```
7 Hfg=1947.3; //in kJ/kg
8 Vg=0.132; //in m^3/kg
9 x=0.9; //Dryness fraction
10
11 W=P*100*x*Vg;
12 printf('External Work Done: %3.2 f kJ/kg',W);
13 printf('\n');
14 H=Hf+(x*Hfg);
15 U=H-W;
16 printf('Internal Energy: %3.1 f kJ/kg',U);
17 printf('\n');
```

Scilab code Exa 4.5.1 Example 5

```
1 clc
2 clear
3
               //Dryness Fraction
4 x = 0.9;
               //mass in kg
5 m=1.5;
6 Cps=2.1;
7 // Condition at 10 bars
8 P = 10;
                    //in Celcius
9 Tsat=179.9;
                    //in Celcius
10 T = 250;
                    //in kJ/kg
11 Hg=2778.1;
12 \text{ Vg=0.194};
                    //in m^3/kg
13 Cps=2.1;
14 H1=Hg+(Cps*(T-Tsat));
15 Vsup = ((T+273)/(Tsat+273))*Vg;
16 U1=H1-(P*100*Vsup);
                    //in kJ/kg K
17 Sf=2.139;
                    //in kJ/kg K
18 Sfg=4.448;
19 Sg=6.623;
                   //in kJ/kg K
20 S1=Sg+(Cps*log((T+273)/(Tsat+273)));
21
```

```
22 // Conditions at 2.8 bars
23 P2=2.8;
24 Hf=551.4;
                      //in kJ/kg
                      //in kJ/kg
25 \text{ Hfg} = 2170.7;
26 \text{ Vg=0.646};
                      //in m^3/kg
27 H2=Hf+(x*Hfg);
28 U2=H2-(P2*100*x*Vg);
29 Sf = 1.647;
                      //in kJ/kg K
30 \text{ Sfg=5.368};
                      //in kJ/kg K
31 S2=Sf+(x*Sfg);
32 \quad U = m * (U2 - U1);
33 printf ('The change in internal energy: \%3.1 f kJ/kg',
      U);
34 printf(' \ n');
35 \text{ S=S2-S1};
36 printf('The change in Entropy: %3.4 f kJ/kg K',S);
37 printf('\n');
```

Scilab code Exa 4.6.1 Example 6

```
1 clc
2 clear
3
4 // Conditions at 8 bar
5 P=8;
                         //Pressure in bar
                         //dryness fraction
6 x = 0.9;
                         //in kJ/kg
7 Hf=721.1;
                         //in kJ/kg
8 \text{ Hfg} = 2048.0;
9 Vg = 0.240;
                         //in m^3/kg
10 H1=Hf+(x*Hfg);
11 V1=x*Vg;
12
13 //Enthalpy of superheated steam at 8 bar and 200
      Celcius
14 Hg=2769.1;
```

```
15 Cps=2.1;
16 Tsup=200+273;
                                //in Celcius
                                //in Celcius
17 Tsat=170.4+273;
18 H2=Hg+(Cps*(Tsup-Tsat));
19 V2=(Vg*Tsup)/Tsat;
20 \text{ H}=\text{H}2-\text{H}1;
21 printf('Heat supplied: \%3.1 \, f \, kJ/kg',H);
22 printf('\n');
23 W=P*100*(V2-V1);
24 printf ('Work Done: \%3.3 \, \text{f kJ/kg',W});
25 printf(' \ n');
26 //At 8 bar
27 \text{ Sf} = 2.046;
                           //in kJ/kg K
                           //in kJ/kg K
28 \text{ Sfg} = 4.617;
                           //in kJ/kg K
29 Sg=6.663;
30 \text{ S1=Sf+(x*Sfg)};
31 S2=Sg+(Cps*(log(Tsup/Tsat)));
32 S = S2 - S1;
33 printf ('The Enthalpy change during process: %3.1 f kJ
      /kg K',S);
34 printf(' \ n');
```

Scilab code Exa 4.7.1 Example 7

```
12 Tsup = 300 + 273;
13 H1=Hg+(Cps*(Tsup-Tsat));
14 V1=Vg*(Tsup/Tsat);
15 U1=H1-(P1*100*V1);
16 printf('The Internal energy: %3.1 f kJ/kg', U1);
17 printf('\n');
18
19 //At 1.4 bar and other conditions
20 P2=1.4;
                           //in bars
21 x = 0.8;
                           //Dryness Fraction
22 Hf=458.4;
                           //in kJ/kg
23 \text{ Hfg} = 2232.0;
                          //in kJ/kg
24 \text{ Vg}=1.237;
                          //in m^3/kg
25 \text{ H2=Hf+(x*Hfg)};
26 \quad V2=x*Vg;
27 \quad U2=H2-(P2*100*V2);
28 U=U2-U1;
29 printf ('The change in internal energy: %3.1 f kJ/kg',
      U);
30 printf(' \ n');
```

Scilab code Exa 4.8.1 Example 8

```
1 clc
2 clear
4 // Conditions at 8 bar
5 P=8;
                      //in bars
6 x = 0.8;
                      //Dryness Fraction
7 \text{ Hf} = 721.1;
                      //in kJ/kg
8 \text{ Hfg} = 2048.0;
                      //in kJ/kg
9 H1=Hf+(x*Hfg);
                           //After adding 410 kJ of heat
10 \text{ H2=H1+410};
11 Hg = 2769.1;
                      //in kJ/kg
12 printf('The Enthalpy of steam: \%3.1 \, \text{f kJ/kg',H2});
```

Scilab code Exa 4.9.1 Example 9

Scilab code Exa 4.10.1 Example 10

```
1 clc
2 clear
3
4 //Conditions at 4 bar
5 P1=4; //in bars
```

```
//in kJ/kg
6 \text{ Hf} = 604.7;
                            //in kJ/kg
7 Hfg=2133.8;
8 \text{ Vg=0.463};
                            //in m^3/kg
9 \times 1 = 0.9;
10 H1 = Hf + (x1 * Hfg);
11 V1 = x1 * Vg;
12
13 //Now at 12 bar pressure
14 P2=12;
                             //in bars
15 V2 = (P1 * V1) / P2;
16 Vg=0.163;
                            //in m^3/kg
17 printf('At 12 bar, V2: \%3.3 \, f \, kJ/kg', V2);
18 printf('\n');
19 printf('As Vg>V2, steam is wet');
20 printf(' \ n');
21 	 x2=V2/Vg;
22 printf ('The dryness fraction at 12 bars: \%3.2 f', x2)
23 printf(' \ n');
24
25 Hf=798.6;
                             //in kJ/kg
26 \text{ Hfg} = 1986.2;
                             //in kJ/kg
27 \text{ H2=Hf+(x2*Hfg)};
28 printf ('The Final enthalpy of steam: \%3.1 \, \mathrm{f} \, \mathrm{kJ/kg}', H2
       );
29 printf(' \ n');
```

Scilab code Exa 4.11.1 Example 11

```
7 H1 = Cpw * Tw;
9 //At 8 bar condition
10 m=4;
                         //mass in kg
11 Cps=2.1;
                         //in kJ/kg
                        //in K
12 Tsat=170.4+273;
                        //in kJ/kg
13 Hg = 2769.1;
14 Tsup=200+273;
                         //in K
15 H2=Hg+(Cps*(Tsup-Tsat));
16 Q=m*(H2-H1);
17 printf('Heat to be added: %3.1 f kJ',Q);
18 printf('\n');
```

Scilab code Exa 4.12.1 Example 12

```
1 clc
2 clear
4 //Combined Separating and Throttling Calorimeter
5 m1=2;
               //mass of water seperated in kg
               //Steam discharged from calorimeter in
6 m = 20.5;
     kg
              //Steam inlet in kg
  mt = m1 + m;
                   //Dryness fraction
9 	 x1=m/(mt);
10
11 //At 12 bar pressure
12 Hf=798.6;
                   //in kJ/kg
13 Hfg=1986.2;
                   //in kJ/kg
14
                        //Pressure in mm
15 P_bar=760;
                        //Pressure in mm
16 P_fin=5;
17 P=(P_bar+P_fin)*1.01325/P_bar;
                                         //Absolute
      Pressure
18
```

Scilab code Exa 4.13.1 Example 13

```
1 clc
2 clear
3
4 //At 7 bar and 300 Celcius
5 P = 7;
                     //in bars
6 Cps=2.1;
7 Tsup = 300 + 273;
                     //in K
                    //in K
8 Tsat=165+273;
                     //in kJ/kg
9 Hg = 2763.5;
10 H1=Hg+(Cps*(Tsup-Tsat));
11
12 \times 2 = 0.9;
                      //Dryness Fraction
                     //in kJ/kg
13 Hf=697.2;
14 Hfg = 2066.3;
                     //in kJ/kg
15 H2=Hf+(x2*Hfg);
16 m = (H1 - Hg) / (Hg - H2);
17 printf('The mass flow rate of wet steam: %3.3f kg/kg
      ',m);
18 printf('\n');
```

Scilab code Exa 4.14.1 Example 14

```
1 clc
2 clear
3
4 // Conditions at 10 bar
5 P = 10;
                               //in bar
6 Tsat=179.9+273;
                               //in K
7 Hf = 762.8;
                               //in kJ/kg
8 \text{ Hfg} = 2015.3;
                               //in kJ/kg
                               //in kJ/kg
9 Hg = 2778.1;
                               //in m^3/kg
10 \text{ Vg=0.194};
11 Sf=2.139;
                               //in kJ/kg K
                               //in kJ/kg K
12 Sg=6.623;
                               //in kJ/kg K
13 Sfg=4.448;
14 x = 0.91;
                               //Dryness Fraction
                               //in kg
15 \text{ m} = 3;
16
17 //Now for wet steam
18 H=Hf+(x*Hfg);
19 H_final=m*H;
20 printf('The total Enthalpy: %3.1 f kJ', H_final);
21 printf('\n');
22 V = x * Vg;
23 U=H-(P*100*V);
24 U_final=m*U;
25 printf('The Internal Energy: %3.1f kJ',U_final);
26 printf('n');
27 S = Sf + (x * Sfg);
28 S_final=m*S;
29 printf('The Entropy: \%3.3 \, \text{f kJ/K',S_final});
30 printf('n \ n');
31
32 //Now Case 2
33 printf('Now for Case 2 \setminus n');
34 Tsat=179.9+273;
                               //in K
                               //in K
35 \text{ Tsup} = 200 + 273;
                               //in kJ/kg K
36 \text{ Cp}=2.1;
```

```
37 \text{ H=Hg+(Cp*(Tsup-Tsat))};
38 H_final=m*H;
39 printf('The Enthalpy: %3.1 f kJ', H_final);
40 printf('\n');
41 Vsup=(Tsup*Vg)/Tsat;
42 U=H-(P*100*Vsup);
43 U_final=m*U;
44 printf('The change in internal energy: %3.1f kJ',
      U_final);
45 printf('\n');
46 S=Sg+(Cp*log(Tsup/Tsat));
47 S_final=m*S;
48 printf('The Entropy: %3.1f kJ/K',S_final);
49 printf(' \ n');
50
51 / \text{Now Case } 3
52 printf('\n Now for case 3 \setminus n');
53 \text{ H=Hg};
54 H_final=m*H;
                              //in kJ
55 printf('The total enthalpy: %3.1 f kJ', H_final);
56 printf(' \ n');
57 V = Vg;
58 \quad U=H-(P*100*V);
59 U_final=m*U;
60 printf('The change in internal energy: %3.1f kJ',
      U_final);
61 printf('\n');
62 S = Sg;
63 S_final=m*S;
64 printf('The total entropy: %3.3 f kJ/kg', S_final);
65 printf('\n');
```

Scilab code Exa 4.15.1 Example 15

```
1 clc
```

```
2 clear
4 //At 15 bar condition
                               //in K
5 \text{ Tsat} = 198.3 + 273;
6 m = 7;
                               //in kg
                              //in kJ/kg
7 Hg = 2792.2;
8 \text{ Tsup} = 300 + 273;
                               //in K
                               //in kJ/kg K
9 Cps=2.1;
10 H1=Hg+(Cps*(Tsup-Tsat));
11 Cpw = 4.187;
                               //in kJ/kg K
12 H2 = Cpw * 50;
13 Q=m*(H1-H2);
14 printf('The total amount of heat required: %3.1 f kJ'
      ,Q);
15 printf('\n');
                               //in kJ/kg K
16 \text{ Sg} = 6.445;
17 S2=Sg+(Cps*log(Tsup/Tsat));
18 Sf=0.704;
                               //in kJ/kg K
19 S1=Sf;
20 S=m*(S2-S1);
21 printf('The change in Entropy: %3.2 f kJ/K',S);
22 printf(' \ n');
```

Scilab code Exa 4.16.1 Example 16

```
1 clc
2 clear
3
4 // Conditions at 10 bar
5 P = 10;
                           //in bar
                           //in K
6 Tsat=179.9+273;
                           //in kJ/kg
7 Hf = 762.8;
                           //in kJ/kg
8 \text{ Hfg} = 2015.3;
9 Hg = 2778.1;
                           //in kJ/kg
10 \text{ Vg=0.194};
                           //in m^3/kg
```

```
//Dryness Fraction
11 x = 0.7;
12 V = x * Vg;
13 m = 0.2/V;
                           //mass in kg
14 mf = 2/V;
                          //mass in kg
15 H=Hf+(x*Hfg);
16 \text{ H\_tot=H*mf};
17 printf('The total enthalpy: %3.1 f kJ', H_tot);
18 printf('\n');
19 U=H-(P*100*V);
20 \quad U_{tot} = U * mf;
21 printf('The internal energy: %3.1 f kJ', U_tot);
22 printf(' \ n');
23 W = P * 100 * V;
24 \text{ W_tot=W*mf};
25 printf ('The external work of evaporation: %3.1 f kJ',
      W_tot);
26 printf('\n');
```

Scilab code Exa 4.17.1 Example 17

```
1 clc
2 clear
4 // Conditions at 10 bar pressure
5 P = 10;
                         //in bar
                         //in K
6 Tsat=179.9+273;
7 Tsup=350+273;
                         //Dryness Fraction
8 x = 0.9;
                         //in kJ/kg
9 Hf = 762.8;
                         //in kJ/kg
10 Hfg = 2015.3;
                         //in kJ/kg
11 Hg=2778.1;
                         //in m^3/kg
12 \text{ Vg=0.194};
                         //in kJ/kg K
13 Cps = 2.1;
14 Ha=Hg+(Cps*(Tsup-Tsat));
15 Hb=Hf+(x*Hfg);
```

Scilab code Exa 4.18.1 Example 18

```
1 clc
2 clear
3
4 //Now at 10 bar pressure
5 V = 1.5;
                            //Volume in m<sup>3</sup>
                            //Pressure in bar
6 P = 10;
                           //Dryness fraction
7 x=0.91;
8 \text{ Vg=0.194};
                            //in m^3/kg
9 \text{ m=V/Vg};
10
11 Vf = x * Vg;
12 \text{ m_f=V/Vf};
13 printf ('Amount of water to be placed in container:
      \%2.2 \, f \, kg', m);
14 printf('\n');
15 printf('Mass of water required: %2.2 f kg', m_f);
16 printf('\n');
```

Scilab code Exa 4.19.1 Example 19

```
1 clc
2 clear
3
4 //Conditions at 7 bat
```

```
5 P=7;
                           //in bar
6 Tsat=165+273;
                           //in K
                           //in kJ/kg
7 Hf = 697.2;
                           //in kJ/kg
8 \text{ Hfg} = 2066.3;
9 Hg = 2763.5;
                           //in kJ/kg
10 Vg=0.273;
                           //in m^3/kg
                           //in m
11 D=0.02;
                           //in m/s
12 \text{ vel} = 17;
                           //in kJ/kg K
13 Cps=4.187;
                           //in Celcius
14 \text{ Tw1} = 25;
                           //in Celcius
15 \text{ Tw} 2 = 100;
16 Vfr = (22/7) *D*D*vel*(1/4)*60;
                                             //Volume flow
      rate in m<sup>3</sup>/min
17 x = 0.9;
                           //Dryness Fraction
18 V = x * Vg;
19
20 Mfr=Vfr/V;
                           //Mass flow rate
21 printf('The mass flow rate of steam: %2.2 f kg/min',
      Mfr);
22 printf(' \ n');
23 H1=Hf+(x*Hfg);
24 \text{ H2=Cps}*100;
25 Mw = (Mfr*(H1-H2))/(Cps*(Tw2-Tw1));
26 printf ('The mass flow rate of water: %2.2 f kg/min',
      Mw);
27 printf(' \ n');
```

Scilab code Exa 4.20.1 Example 20

```
//in m^3/kg
7 \text{ Vg=0.215};
8 \text{ Hf} = 742.8;
                            //in kJ/kg
                            //in kJ/kg
9 Hfg = 2031.1;
                            //in kJ/kg
10 Hg = 2773.9;
                            //in K
11 T2=250+273;
12 x = 0.91;
                            //Dryness Fraction
13 V1 = x * Vg;
                            //From Steam Table
14 \quad V2 = 0.2696;
15 W=P*100*(V2-V1);
16 printf('The Work Output: %2.2 f kJ/kg', W);
17 printf('\n');
18 H1=Hf+(x*Hfg);
19 H2=2946.3;
                            //From steam table in kJ/kg
20 \quad Q = H2 - H1;
21 printf('The heat supplied to steam: %2.2 f kJ/kg',Q);
22 printf(' \ n');
23 \quad U = Q - W;
24 printf ('The internal energy of steam increases by:
      \%2.2 \, \text{f} \, \text{kJ/kg}', \text{U};
25 printf('\n');
```

Scilab code Exa 4.21.1 Example 21

```
1 clc
2 clear
4 // Conditions at 16 bar
5 P = 16;
                              //in bar
6 Vov = 0.015;
                             //Volume of Vessel
7 \text{ Mos} = 0.1;
                             //Mass of steam
8 SV=Vov/Mos;
                             //Specific Volume
9 Vg=0.124;
                             //in m^3/kg
10 Tsat=201.4+273;
                             //in K
11 Tsup=(SV/Vg)*Tsat;
12 printf('The temperature of steam: %2.2 f K', Tsup);
```

```
13 printf('\n');
14
15 //Now cooling takes place
16 Tsat=191.16;
                               //From steam table
17 printf('After cooling, temperature of steam: %2.2 f K
       ', Tsat);
18 printf('\n');
19
20 //Now cooled to 10 bar pressure
21 P1=16;
                           //in bar
                           //in m^3/kg
22 \text{ Vg=0.194};
23 \quad v = 0.15;
                           //in m^3/kg
24 \text{ x=v/Vg};
                           //Dryness Fraction
25
26 //For constant Volume process W=0
27 \text{ Hg} = 2794.0;
                           //in kJ/kg
                           //in kJ/kg
28 Hf=762.8;
29 Hfg=2015.3;
                           //in kJ/kg
                           //in kJ/kg K
30 \text{ Cps} = 2.1;
                           //in C
31 Tsup=300.84;
                           //in C
32 Tsat=201.4;
33 H1=Hg+(Cps*(Tsup-Tsat));
34 \text{ U1=H1-(P1*100*v)};
35 P2=10;
                           //in bar
36 \text{ H2=Hf+(x*Hfg)};
37 U2=H2-(P2*100*v);
38 \quad Q = U2 - U1;
39 printf('Heat rejected by system: %2.2 f kJ/kg',Q);
40 printf(' \ n');
```

Scilab code Exa 4.22.1 Example 22

```
1 clc
2 clear
3
```

```
4 //Isothermal process
5 P = 10;
                                //in bar
6 Tsat = 179.9 + 273;
                                //in K
                                //in m^3/kg
7 \text{ Vg=} 0.194;
8 \text{ Hf} = 762.6;
                                //in kJ/kg
9 Hfg = 2015.3;
                                //in kJ/kg
10 Hg = 2778.1;
                                //in kJ/kg
11 \times 1 = 1;
                                //Dryness Fraction
                                //in kJ/kg K
12 Sf = 2.139;
                                //in kJ/kg K
13 Sfg=4.448;
14 Sg=6.623;
                                //in kJ/kg K
                                //in m<sup>3</sup>
15 V = 0.3;
16 \text{ m=V/Vg};
                                //in kg
17 V2 = Vg/2;
18 \text{ x}2=V2/Vg;
                                //Dryness Fraction
19 W=P*100*(V2-Vg)*m;
20 printf('Work Done: %2.2 f kJ', W);
21 printf(' \ n');
22 \text{ H1=Hg};
23 H2=Hf+(x2*Hfg);
24 \quad Q = m * (H2 - H1);
25 printf('Change in Enthalpy: %2.2 f kJ',Q);
26 printf(' \ n');
27 U = (Q - W);
28 printf ('Change in total Internal Energy: %2.2 f kJ', U
29 printf(' \ n');
30 \text{ S1=Sg};
31 S2=Sf+(x2*Sfg);
32 S=m*(S2-S1);
33 printf('Change in Entropy: %2.2 f kJ/K',S);
34 printf(' \ n');
35
36 //Now for case 2 where PV=C
37 printf('Now for case 2');
38 printf(' \ n');
39
40 \quad V01 = 0.097;
```

```
41 V02=0.5*V01;
                             //in bars
42 P1=10;
43 P2=(P1*V01)/V02;
                             //in bars
44
45 //Now at 20 bars
46 \text{ Vg1} = 0.0996;
                                  //in m^3/kg
47 \quad V2 = 0.097;
                                  //Dryness Fraction
48 \text{ x} 2 = V2 / Vg1;
                                 //in kJ/kg
49 Hf=908.8;
                                 //in kJ/kg
50 \text{ Hfg} = 1890.7;
51 H2=Hf+(x2*Hfg);
52 \text{ H=m*(H2-Hg)};
53 printf('Change in Enthalpy: %2.2 f kJ', H);
54 printf('\n');
55
56 \text{ W=m*P1*100*Vg*(log(V02/V01))};
57 printf('Total work done: %2.2 f kJ', W);
58 printf(' \ n');
59
                            //as P1 V1= P2 V2
60 \text{ U=H};
61 Q=U+W;
62 printf('Change in Enthalpy: %2.2 f kJ',Q);
63 printf(' \ n');
64
65 //Now at 20 bar pressure
66 \text{ Sf} = 2.447;
                                 //in kJ/kg K
67 \text{ Sfg} = 3.894;
                                 //in kJ/kg K
                                  //in kJ/kg K
68 \text{ Sg1} = 6.341;
69 S2=Sf+(x2*Sfg);
70 \text{ S1=Sg};
71 \quad S=m*(S2-S1)
72 printf('Change in Entropy: \%2.3 \, \text{f kJ/K',S});
73 printf(' \ n');
```

Scilab code Exa 4.23.1 Example 23

```
1 clc
2 clear
4 //Initial conditions at 7 bar pressure
5 P1=7;
                           //in bars
                          //in m^3/kg
6 Vg1=0.273;
                            //in m^3/kg
7 V1 = Vg1;
8 \text{ Hg1} = 2763.5;
                            //in kJ/kg
9 H1=Hg1;
                               //in K
10 Tsat=165+273;
                           //in kJ/kg K
11 Sf=1.992;
                          //in kJ/kg K
12 Sfg=4.716;
13 Sg=6.708;
                           //in kJ/kg K
14 n = 1.1;
15
16 // Final conditions at 0.5 bar
                           //in bars
17 P2=0.5;
18 V2=((P1*(V1^1.1))/P2)^(1/1.1);
                                                  //using P(V)
      \hat{1}.1 = Constant
19
20 W = ((P1*100*V1) - (P2*100*V2))/(n-1);
21 printf('Work Done: %3.2 f kJ', W);
22 printf('\n');
23
24 \text{ Hf2} = 340.6;
                               //in kJ/kg
25 \text{ Hfg2} = 2305.4;
                               //in kJ/kg
26 \text{ Vg2=3.24};
                               //in m^3/kg
27 \text{ x} 2 = V2 / Vg2;
                                //Dryness Fraction
28
29 H2=Hf2+(x2*Hfg2);
30
31 U1=H1-(P1*100*V1);
32 \quad U2=H2-(P2*100*V2);
33 \quad U = U2 - U1;
34 printf ('Change in Internal Energy: \%3.2 \, \text{f kJ/kg',U});
35 printf('\n');
36
37 \quad Q = U + W;
                           //From First law of
```

Thermodynamics 38 printf('Heat Transferred: %3.2 f kJ/kg',Q); 39 printf($' \ n'$); 40 41 S1=Sg;42 //At 0.5 bar//in kJ/kg K 43 Sf2=1.091; //in kJ/kg K 44 Sfg2=6.503; 45 Sg2 = 7.594;//in kJ/kg K 46 S2=Sf2+(x2*Sfg2); 47 S=S2-S1;48 printf('Change in Entropy: %3.2 f kJ/kg K',S); 49 printf('\n');

Scilab code Exa 4.24.1 Example 24

```
1 clc
2 clear
4 //At state 1
5 P1 = 20;
                           //in bar
6 V = 2;
7 \text{ Vg1}=0.0996;
                           //in m^3/kg
8 Tsat1=212.4+273;
                               //in K
                           //in K
9 Tsup1=573;
10 V1=Vg1*(Tsup1/Tsat1);
11 m=V/V1;
12
13 //At state 2
14 \quad V2 = V1;
15 \text{ Vg2=V2};
16 P2=16.9;
                           //From Steam Table
17
18 // Calculations
                           //in kJ/kg
19 Hg1 = 2799.5;
```

```
20 Cps=2.1;
                           //in kJ/kg K
21 H1=m*(Hg1+(Cps*(Tsup1-Tsat1)));
22 \quad U1 = H1 - (P1 * 100 * V);
23
24 \text{ Hg2} = 2795.5;
                        //in kJ/kg from Steam table
25 \text{ H2=m*Hg2};
26 \quad U2=H2-(P2*100*V);
27
28 \quad Q = U2 - U1;
29 printf('Heat Transferred: %3.1 f kJ',Q);
30 printf(' \ n');
31
32 Sg1=6.341;
                               //in kJ/kg K
33 S1=Sg1+(Cps*log(Tsup1/Tsat1));
34
                              //From Steam Table
35 \quad S2=6.4022;
36 S = m * (S2 - S1);
37 printf('Change in Entropy: %3.3 f kJ/K',S);
38 printf(' \ n');
```

Scilab code Exa 4.25.1 Example 25

```
1 clc
2 clear
3
4 //For Throttling process, H1=H2
5 //At 15 bar pressure
6 P1 = 15;
                             //in bar
7 Hf1=844.9;
                             //in kJ/kg
8 \text{ Hfg1=1947.3};
                             //in kJ/kg
                             //Dryness Fraction
9 x1=0.73;
10
11 //At 1 bar pressure
12 P2=1;
                             //in bar
13 Hf2=417.5;
                             //in kJ/kg
```

```
//in kJ/kg
14 Hfg2=2258.0;
15 Hg2=2675.5;
                                //in kJ/kg
                               //in kJ/kg
16 \text{ H2} = 2266.4;
17
18 H1 = Hf1 + (x1 * Hfg1);
19 x2=(H2-Hf2)/Hfg2;
20
21 / \text{Now if } x1 = 0.95
22 H1=Hf1+(0.95*Hfg1);
23 H2=H1;
24
25 //At 1 bar
26 \text{ Hg} = 2675.5;
27 \text{ Cps} = 2.1;
28 x = 0.93;
                               //New dryness fraction
29 T=(H2-Hg)/Cps;
                                //Temperature difference
30 Tsat=99;
                                //in Celcius
31 Tsup=Tsat+T;
32 printf ('Temperature of superheated steam: %3.1 f
      Celcius', Tsup);
33 printf('\n');
34
35 //Now at 15 bar
                                //in kJ/kg K
36 \text{ Sf} = 2.315;
                                //in kJ/kg K
37 \text{ Sfg}=4.130;
38 \text{ Sg=} 6.445;
                                //in kJ/kg K
39 \text{ S1=Sf+(x*Sfg)};
40
41 / \text{Now at 1 bar}
                                //in kJ/kg K
42 Sg1=7.360;
43 S2=Sg1+(Cps*log((Tsup+273)/(Tsat+273)));
44 S=S2-S1;
45 printf('Change in Entropy: %3.2 f kJ/kg K',S);
46 printf(' \ n');
```

Scilab code Exa 4.26.1 Example 26

```
1 clc
2 clear
3
4 // Heat lost by Steam=Heat gained by water and
      calorimeter
6 \text{ ms} = 2;
                           //in kg
                           //in kJ/kg
7 Hf1=697.2;
                          //in kJ/kg
8 \text{ Hfg1} = 2066.3;
                          //in kJ/kg
9 \text{ Hf} 2 = 146.7;
                          //in Celcius
10 \quad T2 = 35;
11 T1=15;
                           //in Celcius
12 \text{ mg} = 56;
                           //in kg
                           //in kJ/kg K
13 Cpw=4.187;
14 H_gained=mg*Cpw*(T2-T1);
15 x=(((H_gained)/2)+(Hf2-Hf1))/Hfg1;
16 printf('The dryness fraction is %2.2 f', x);
17 printf('\n');
```

Scilab code Exa 4.27.1 Example 27

```
1 clc
2 clear
3
4 // Calculating dryness fraction
5 Ms=10;
6 Mw=1;
7 x=(100*Ms)/(Ms+Mw);
8 printf('The Dryness Fraction of steam is %2.1f
        percent',x);
9 printf('\n');
```

Scilab code Exa 4.28.1 Example 28

```
1 clc
2 clear
                         //in bar
4 P1=11;
                         //in bar
5 P2=1.1;
                         //in K
6 T2=130+273;
                         //in kJ/kg K
7 Cps = 2.1;
9 //At 11 bar
                         //in kJ/kg
10 Hf1=781.3;
11 Hfg1=2000.4;
                         //in kJ/kg
12
13 //At 1.1 bar
                         //in kJ/kg
14 \text{ Hg2} = 2679.7;
                         //in K
15 Tsat=102.3+273;
16 \text{ Tsup} = 130 + 273;
17
18 //Now for throttling process, H1=H2
19 H2=Hg2+(Cps*(Tsup-Tsat));
20 x = ((H2 - Hf1) * 100) / Hfg1;
21 printf('The dryness fraction of steam: %2.1f',x);
22 printf('\n');
```

Scilab code Exa 4.29.1 Example 29

```
1 clc
2 clear
3
4 //Combined seperating and throttling calorimeter
5 Ms=5; //in kg
```

```
//in kg
6 \text{ Mw} = 0.5;
                       //in kJ/kg K
7 Cps=2.1;
                    //in mm of Hg
8 Man=166.8;
                      //in mm of Hg
9 Bar=733.6;
10
11 x1=Ms/(Ms+Mw);
12 P=Man+Bar;
13 P_bar = (1.01325*P)/760; // Pressure in bar
14
15 //From steam table
                           //in kJ/kg
16 Hf1=742.8;
17 Hfg1=2031.1;
                           //in kJ/kg
                           //in K
18 Tsat=104.8+273;
19 Tsup=110.3+273;
                           //in K
                           //in kJ/kg
20 Hg=2683.5;
21
22 H2=Hg+(Cps*(Tsup-Tsat));
23 x2 = (H2 - Hf1) / Hfg1;
24 x = x1 * x2;
25 printf('The dryness fraction of steam: %2.3f',x);
26 printf(' \ n');
```

Scilab code Exa 4.30.1 Example 30

```
//Specific Density of Hg
11 SD=13.6;
12
13 x1=Ms/(Ms+Mw);
                                //Dryness Fraction
                                //Pressure in mm
14 P = (P1/SD) + P2;
15 P=1.01325;
                                //Pressure in bar
16
17 //Now at 7.5 bar pressure
                                //in kJ/kg
18 Hf1 = 709.2;
                                //in kJ/kg
19 Hfg1=2057.0;
20
21 / \text{Now at } 1.01325 \text{ bar}
22 \text{ Hg2} = 2676.0;
                                //in kJ/kg
                                //in K
23 \text{ Tsat} = 100 + 273;
                                //in kJ/kg K
24 \text{ Cps} = 2.1;
                                //in K
25 \text{ Tsup} = 110 + 273;
26
27 //For throttling H1=H2
28 H2=Hg2+(Cps*(Tsup-Tsat));
29 x2 = (H2 - Hf1) / Hfg1;
30
31 x = x1 * x2;
32 printf('The dryness fraction of steam: %2.3f',x);
33 printf('\n');
```

Scilab code Exa 4.31.1 Example 31

```
10 Sf2=1.7327;
                                  //in kJ/kg K
                                  //in kJ/kg K
11 Sg2=6.9358;
                                  //in m^3/kg
12 \text{ Vg2=0.5173};
13
14 //Now at 0.36 bar pressure
15 \text{ Vg3}=4.408;
                                  //in m^3/kg
16
17 S1=Sf1+(x1*(Sg1-Sf1));
18
19 //As process is adiabatic
20 S2=S1;
21
22 //From steam table, Sg=6.9358 > S2
23
24 x2 = (S2 - Sf2) / (Sg2 - Sf2);
25 V2=x2*Vg2;
26
27 //As volume remains constant
28 V3 = V2;
29 x3=V3/Vg3;
30 printf('The dryness fraction of steam: %2.3f',x3);
31 printf(' \ n');
```

Scilab code Exa 4.32.1 Example 32

```
11
12 Hf2=640.1;
                                 //in kJ/kg
                                 //in kJ/kg
13 Hfg2=2107.4;
14 x2 = (H1 - Hf2) / Hfg2;
15 \text{ Vg2=0.375};
16
17 Ms = (1/(x2*Vg2));
18 \text{ Vg3=0.462};
19 //Now mass of steam blown off
20 \quad M=m-Ms;
21
22 printf('Mass of steam blown off: %2.3 f kg', M);
23 printf(' \ n');
24
                            //Volume in m<sup>3</sup>
25 \quad V = 1;
26 \text{ x3=V/(Ms*Vg3)};
27 printf('Dryness fraction of steam: %2.3 f', x3);
28 printf(' \ n');
```

Scilab code Exa 4.33.1 Example 33

```
1 clc
2 clear
4 //At 25 bar pressure
                               //Pressure in bar
5 P = 25;
6 x = 0.8;
                               //Dryness fraction
7 Hf=962.1;
                               //in kJ/kg
8 \text{ Hfg=} 1841;
                               //in kJ/kg
9 Vg = 0.0801;
                               //in m^3/kg
10 H=Hf+(x*Hfg);
11 printf ('Enthalpy: \%2.1 \, \text{f kJ/kg',H});
12 printf('\n');
13
14 U=H-(P*100*x*Vg);
```

```
15 printf('Internal Energy: \%2.1\,\mathrm{f}\,\mathrm{kJ/kg}',U);
16 printf('\n');
```

Scilab code Exa 4.34.1 Example 34

```
1 clc
2 clear
3
4 \text{ Ms} = 20;
                     //in kg
5 \text{ Mw=2};
                     //in kg
                    //in kJ/kg K
6 Cps=2.1;
7 x1=Ms/(Ms+Mw); //Dryness fraction
9 //At 12 bar pressure
                         //in kJ/kg
10 Hf1=798.6;
11 Hfg1=1986.2;
                         //in kJ/kg
12
13 //At 1 bar pressure
                         //in kJ/kg
14 Hg2=2675.5;
                              //in K
15 Tsup=110+273;
                              //in K
16 Tsat=99+273;
17
18 //For throttling, H1=H2
19 H2=Hg2+(Cps*(Tsup-Tsat));
20 x2 = (H2 - Hf1) / Hfg1;
21
22 x = x1 * x2;
23 printf('Dryness fraction of steam: %2.4 f kJ',x);
24 printf(' \ n');
```

Scilab code Exa 4.35.1 Example 35

```
1 clc
```

```
2 clear
3
                                //in m<sup>3</sup>
4 V = 0.15;
                                //in bar
5 P=4;
6 x = 0.8;
                                //Dryness fraction
8 //Now at 4 bar pressure
                                //in bar
9 P = 4;
10 Vg=0.463;
                                //in m^3/kg
11
12 SV = x * Vg;
13 Mos=V/SV;
                                //Mass of Steam
14
  //Now if Volume is 1 m<sup>3</sup>
16
                                //in kg
17 Ms=1/SV;
18 //At 4 bar pressure
19 Hf = 604.7;
                                //in kJ/kg
20 \text{ Hfg} = 2133.8;
                                //in kJ/kg
21 H=Ms*(Hf+(x*Hfg));
22 printf('Enthalpy of 1 m<sup>3</sup> steam: %2.2 f kJ', H);
23 printf(' \ n');
```

Scilab code Exa 4.36.1 Example 36

```
1 clc
2 clear
3
4 P1=9;
                         //in bar
                         //in bar
5 P2=1;
                         //in K
6 T2=115+273;
                        //in kg
7 m = 1.8;
                        //in kg
8 m1=0.2;
9 x1=m/(m+m1);
                        //Dryness fraction
10
```

```
11 //Now from steam table
12 Hf=742.8;
                         //in kJ/kg
                         //in kJ/kg
13 Hfg = 2031.1;
                        //in kJ/kg
14 Hg=2675.5;
                        //in K
15 Tsat=99+273;
                         //in K
16 Tsup=115+273;
                         //in kJ/kg K
17 Cps = 2.1;
18 H2=Hg+(Cps*(Tsup-Tsat));
19 x2=(H2-Hf)/Hfg;
20 x = x1 * x2;
21 printf('The dryness fraction: %2.4 f kJ',x);
22 printf(' \ n');
```

Scilab code Exa 4.37.1 Example 37

```
1 clc
2 clear
3
4 m1=0.45;
                             //in kg
5 m = 7;
                             //in kg
6 P1=12;
                             //in bar
7 Bar = 760;
                             //mm of Hg Barometer reading
                             //mm of Hg Manometer Reading
8 \text{ Man} = 180;
9 Cps=2.1;
                             //in kJ/kg K
10 P=Bar+Man;
11 P2=(P*1.01325)/760; //Pressure in bar
12 Tsup = 140 + 273;
                               //in K
13 x1=m/(m+m1);
14
15 //Now at 12 bar pressure
                             //in kJ/kg
16 Hf=798.6;
                             //in kJ/kg
17 Hfg=1986.2;
18
19 //At 1.25 bar pressure
20 Hg=2685.3;
                             //in kJ/kg
```

Scilab code Exa 4.38.1 Example 38

```
1 clc
2 clear
3
4 // Case 1
                           //in bar
5 P = 10;
                           //in kJ/kg K
6 Cps=2.1;
7 x = 0.85;
                           //Dryness fraction
8 \text{ Hf} = 762.8;
                          //in kJ/kg
                          //in kJ/kg
9 \text{ Hfg} = 2015.3;
                          //in m^3/kg
10 \text{ Vg=0.194};
11 Hg = 2778.1;
                           //in kJ/kg
12
13 H=Hf+(x*Hfg);
14 printf('Case 1: When x=0.85 \setminus n \setminus n');
15 printf('Enthalpy of steam: %2.2 f kJ', H);
16 printf(' \ n');
17
18 U=H-(P*100*x*Vg);
19 printf('Internal Energy of steam: %2.2 f kJ', U);
20 printf(' \ n');
21
22 // Case 2
23 H=Hg;
                           //in kJ/kg
24 printf('\n \nCase 2: When steam is dry and saturated
```

```
n n';
25 printf('Enthalpy of steam: %2.2 f kJ', H);
26 printf(' \ n');
27
28 \quad U=H-(P*100*Vg);
29 printf('Internal Energy of steam: %2.2 f kJ',U);
30 printf('\n');
31
32 //Case 3
                                //in K
33 \text{ Tsup} = 300 + 273;
                                     //in K
34 \text{ Tsat} = 179.9 + 273;
35 \text{ H=Hg+(Cps*(Tsup-Tsat))};
36 printf('\n \nCase 3: When steam is superheated to
       300 \text{ C } \text{ } \text{n } \text{'n'});
37 printf('Enthalpy of steam: %2.2 f kJ', H);
38 printf('\n');
39
40 Vsup=(Tsup/Tsat)*Vg;
41 U=H-(P*100*Vsup);
42 printf('Internal Energy of steam: %2.2 f kJ',U);
43 printf(' \ n');
```

Scilab code Exa 4.39.1 Example 39

```
1 clc
2 clear
3
                            //in kg
4 Ms = 5;
5 P=5;
                            //in bar
                            //in K
6 Tsup = 250 + 273;
                           //in kJ/kg K
7 Cps = 2.1;
                           //in C
8 \text{ Tf} = 30;
9 Cpw=4.187;
                           //in kJ/kg K
10 H1 = Cpw * Tf;
11
```

Scilab code Exa 4.40.1 Example 40

```
1 clc
2 clear
3
4 \text{ Ms} = 3;
                            //in kg
                            //in C
5 \text{ Tf} = 30;
6 P = 8;
                            //in bar
7 Tsup = 210 + 273;
                            //in K
                           //in kJ/kg K
8 \text{ Cps} = 2.1;
                            //in kJ/kg K
9 Cpw = 4.186;
10
11 H1 = Cpw * Tf;
12
13 //At 8 bar pressure
                                 //in K
14 Tsat=170.4+273;
                                 //in kJ/kg
15 Hg = 2769.1;
16 H2=Hg+(Cps*(Tsup-Tsat));
17 Q = Ms * (H2 - H1);
18 printf('Amount of heat required: %2.2 f kJ',Q);
19 printf(' \ n');
```

Scilab code Exa 4.41.1 Example 41

```
1 clc
```

```
2 clear
4 //At 7 bar pressure
                           //in bar
5 P1=7;
6 P2=1;
                           //in bar
7 n=1.1;
8 //Now according to law of expansion P(V)^1.1=
      Constant
9
10 Vg1=0.273;
                           //in m^3/kg
11 V1=Vg1;
12 V2=((P1/P2)^(1/n))*V1;
13
14 W = ((P1*100*V1) - (P2*100*V2))/(n-1);
15 printf ('Work Done: \%3.1 \, \text{f kJ/kg',W});
16 printf('\n');
17
18 Hg=2763.5;
                  //in kJ/kg
19 \text{ H1=Hg};
20 \text{ Vg} = 1.694;
21 //At 1 bar, Vg=1.694 and as V2<Vg steam is wet
22 x = V2/Vg;
23
                           //in kJ/kg
24 \text{ Hf} = 417.5;
                           //in kJ/kg
25 \text{ Hfg} = 2258;
26 H2=Hf+(x*Hfg);
27
28 \quad U2=H2-(P2*100*V2);
29 U1=H1-(P1*100*V1);
30 \ U=U2-U1;
31 printf('Change in Internal Energy: %3.2 f kJ/kg',U);
32 \text{ printf}(' \setminus n');
33
34 \quad Q = U + W;
35 printf ('Heat transferred during the process: %3.2 f
      kJ/kg',Q);
36 \text{ printf}(' \ ' \ ');
```

Chapter 5

Steam Boilers

Scilab code Exa 5.1.1 Example 1

```
1 clc
2 clear
3
4 Mf = 1300;
                               //in kg
5 \text{ Ma} = 13000;
                               //in kg
                               //in bar
6 P = 7;
                              //in kJ/kg K
7 Cpw=4.187;
8 \text{ CV} = 30000;
                               //in kJ/kg
                               //Dryness Fraction
9 x = 0.95;
                               //in C
10 Tfw=40;
11
12 Hfw=Tfw*Cpw;
13
14 //At 7 bar
                              //in kJ/kg
15 Hf=697.2;
16 Hfg=2066.3;
                               //in kJ/kg
17
18 H=Hf+(x*Hfg);
19 Ms=Ma/Mf;
20
21 Me = (Ms * (H-Hfw))/(2257);
```

```
22 printf('Equivalent evaporation: %3.2 f kg/kg of coal'
         ,Me);
23 printf('\n');
24
25 Eff=100*(Ma*(H-Hfw))/(Mf*CV);
26 printf('Boiler Efficiency: %3.1 f Percent', Eff);
27 printf('\n');
```

Scilab code Exa 5.2.1 Example 2

```
1 clc
2 clear
3
4 Ma = 5400;
                              //in kg/hr
                              //in C
5 Tfw=42;
                              //in bar
6 P = 7.6;
7 \text{ Mf} = 670;
                              //in kg/hr
                              //Dryness Fraction
8 x = 0.98;
                              //kJ/kg
9 \text{ CV} = 31000;
10 Ms=Ma/Mf;
11 Hf=175.81;
                             //in kJ/kg
12 Hfw=Hf;
13
14 //Now at 7.6 bar pressure
                              //in kJ/kg
15 Hf=711.8;
                              //in kJ/kg
16 Hfg = 2055.2;
17
18 H=Hf+(x*Hfg);
19 Eff=100*(Ma*(H-Hfw))/(Mf*CV);
20 printf('Boiler Efficiency %3.1f percent', Eff);
21 printf('\n');
22
23 Me = (Ms * (H-Hfw))/(2257);
24 printf ('Equivalent evaporation: %3.2 f kg/kg of coal'
      ,Me);
```

```
25 printf(' \ n');
```

Scilab code Exa 5.3.1 Example 3

```
1 clc
2 clear
3
4 P=12;
                               //in bar
5 \text{ CV} = 34000;
                               //in kJ/kg
                               //in C
6 T = 250;
                               //in kg/kg of coal
7 \text{ Ms} = 10;
                               //in C
8 \text{ Tfw}=36;
9 Hfw = 150.74;
                               //in kJ/kg
10 Hg = 2784.8;
                               //in kJ/kg
11 Tsup=T;
                               //in C
12 Tsat=188;
13 Cps=2.1;
                               //in kJ/kg K
14 H=Hg+(Cps*(Tsup-Tsat));
15
16 Me = (Ms * (H-Hfw))/2257;
17 printf('Equivalent evaporation: %3.2 f kg/kg of coal'
      ,Me);
18 printf('\n');
19
20 Eff = (Me * 250) / 21.296;
21 printf('Boiler Power: %3.2 f kW', Eff);
22 printf(' \ n');
```

Scilab code Exa 5.4.1 Example 4

```
1 clc
2 clear
3
```

```
//kg of steam
4 Ma = 35500;
5 \text{ Mf} = 3460;
6 \text{ CV} = 39500;
7 Ms=Ma/Mf;
8
9
                              //in kJ/kg
10 Hfw2=313.9;
                              //in kJ/kg
11 Hfw1=71.4;
12
13 Q=Ma*(Hfw2-Hfw1);
                                  //Heat added in
      economizer
                         //in kJ/kg
14 \text{ H} = 2915.0;
15
16 Me = (Ms * (H-Hfw2))/2257;
17 printf('Equivalent evaporation: %3.2 f kg/kg of Oil',
18 printf('\n');
20 Eff1=(Ma*100*(H-Hfw2))/(Mf*CV);
21 printf('Thermal Efficiency of boiler: %3.1f Percent'
      ,Eff1);
22 printf(' \ n');
23
24 Eff2=(Ma*100*(H-Hfw1))/(Mf*CV);
25 printf ('Thermal Efficiency of Boiler plant: %3.1 f
      Percent', Eff2);
26 printf(' \ n');
27
28 HU=860875000/(Mf*CV);
29 printf ('Heat Utilized by Economizer: %3.1f Percent',
      HU);
30 printf(' \ n');
```

Scilab code Exa 5.5.1 Example 5

```
1 clc
2 clear
3
                         //in kg/hr
4 \text{ Ma} = 10000;
5 P = 7;
                          //in bar
6
                         //in C
7 Tfw=40;
                         //in kJ/kg
8 \text{ Hfw} = 167.6;
                         //in kJ/kg
9 H=2763.5;
10
                                   //Heat per minute
11 Q=Ma*(H-Hfw)/60;
12 SA=Q/2720;
                                   //Heating surface area
      required
13 printf ('Heating surface area required: %3.1 f m^2', SA
      );
14 printf('\n');
15
16 GA = SA/25;
17 printf('Grate area required: %3.1 f m^2', GA);
18 printf('\n');
```

Scilab code Exa 5.6.1 Example 6

```
1 clc
2 clear
4 Ma = 2400;
                            //in kg
5 \text{ Mf} = 240;
                            //in kg
                            //in bar
6 P = 12;
                            //in kJ/kg
7 CV = 33500;
                            //in C
8 \text{ Tfw} = 120;
9 Cpw = 4.187;
10 Hfw = Cpw * Tfw;
11 H=2784.8;
                            //in kJ/kg
12 Mfa=Mf-(0.1*Mf);
```

Scilab code Exa 5.7.1 Example 7

```
1 clc
2 clear
3
4 Mf = 255;
                     //in kg
5 x = 0.94;
                     //Dryness Fraction
                     //in kJ/kg
6 \text{ CV} = 30100;
                     //in bar
7 P=11.5;
                     //in kg
8 \text{ Ma} = 2100;
9 Tfw=25;
                     //in C
10 Ms=Ma/Mf;
11
                          //in kJ/kg
12 Hfw = 104.9;
                         //in kJ/kg
13 Hf=790.1;
                          //in kJ/kg
14 Hfg=1993.2;
15 H=Hf+(x*Hfg);
16
17 Me = (Ms * (H-Hfw))/2257;
18 Eff = (Ma*100*(H-Hfw))/(Mf*CV);
19 printf('Equivalent Evaporation: %3.2f kg/kg of coal
      \n', Me)
20 printf('Thermal Efficiency: %3.1f percent', Eff);
21 printf(' \ n');
```

Scilab code Exa 5.8.1 Example 8

```
1 clc
2 clear
 3
4 Hf = 762.8;
                                 //in kJ/kg
5 \text{ Hfg} = 2015.3;
                                 //in kJ/kg
6 x = 0.95;
                                 //Dryness Fraction
7 \text{ Ma} = 1000;
8 \text{ Eff} = 0.75;
9 \text{ CV} = 31000;
10
11 H=Hf+(x*Hfg);
12 Cpw=4.187;
13 T = 50;
14
15 Hfw = Cpw * T;
16 Q=Ma*(H-Hfw);
17
18 Mf = Q / (Eff * CV);
19 y=Mf/0.9;
20
21 Eff1=(Q*100)/(y*CV);
22 printf('Efficiency of Boiler and grate: %3.1f
       percent',Eff1);
23 printf(' \ n');
```

Scilab code Exa 5.9.1 Example 9

```
1 clc
2 clear
3
```

```
4 //At 10 bar
5 Hg = 2778.1;
                               //in kJ/kg
                               //in kJ/kg K
6 Cp = 2.1;
7 T = 50;
8 \text{ CV} = 30000;
                          //in kJ/kg
9
10 H=Hg+(Cp*T);
11 \quad C=4.187;
12 Tf = 30;
13 Hfw=C*Tf;
14
15 Ms = 800/100;
16
17 Me = (Ms * (H-Hfw))/2257;
18 printf('Equivalent Evaporation: %3.2f kg/kg of coal'
      ,Me);
19 printf('\n');
20
21 Eff = (Ms*100*(H-Hfw))/CV;
22 printf ('Efficiency of Boiler and grate: %3.1 f
      percent', Eff);
23 printf(' \ n');
```

Scilab code Exa 5.10.1 Example 10

Scilab code Exa 5.11.1 Example 11

```
1 clc
2 clear
                          //in kg/hr
4 Ma = 1100;
5 \text{ CV} = 33000;
                               //in kJ/kg
                          //in C
6 Tfw=46;
                     //in bar
7 P = 10;
                     //Dryness Fraction
8 x = 0.9;
                          // Efficiency
9 Eff=0.81;
10
11 Hf=762.8;
12 Hfg = 2015.3;
13 H=Hf+(x*Hfg);
14 Hfw = 192.6;
15
16 Mf = (Ma*(H-Hfw))/(CV*Eff);
17 printf('Amount of Coal Consumed per hour: %3.1 f kg',
      Mf);
18 printf('\n');
```

Scilab code Exa 5.12.1 Example 12

```
1 clc
2 clear
                          //kg/kg of fuel
4 Ms = 7.3;
5 \text{ Tfw}=46;
                          //in C
                          //in bar
6 P = 10;
7 FOE=1.17;
                          //Factor of Evaporation
8 \text{ Eff} = 0.79;
9 Me = FOE * Ms;
10 printf ('Equivalent Evaporation: %3.2 f kg/kg of coal'
      ,Me);
11 printf('\n');
12
                               //in kJ/kg
13 Hfw = 192.6;
14 Hg = 2778.1;
                               //in kJ/kg
15 Tsat=179.9;
                               //in C
16 \text{ Cps} = 2.1;
                               //in kJ/kg K
17 H = (2257 * FOE) + Hfw;
18 Tsup = ((H-Hg)/Cps) + Tsat;
19 printf ('Temperature of Superheated Steam: %3.1 f C',
      Tsup);
20 printf(' \ n');
21
22 CV = (Ms*(H-Hfw))/Eff;
23 printf('Calorific Value: %3.1 f kJ/kg',CV);
24 printf('\n');
```

Scilab code Exa 5.13.1 Example 13

```
1 clc
```

```
2 clear
3
                          //in kg/hr
4 Ma=18000;
                          //in bar
5 P = 10;
                          //Dryness Fraction
6 x = 0.97;
                          //in C
7 Tfw=40;
                          //in kg/hr
8 \text{ Mf} = 2050;
                          //kJ/kg
9 CV = 28000;
10
11 //At 10 bar
12 Hf1=762.8;
13 Hfg1=2015.3;
14 H = Hf1 + (x * Hfg1);
15
16 Hfw = 167.6;
17
18 Eff = (Ma * 100 * (H - Hfw)) / (Mf * CV);
19 printf('Boiler efficiency: %3.2f Percent', Eff);
20 printf('\n');
21
22 EA = ((Ma/Mf)*(H-Hfw))/2257;
23 printf ('Equivalent Evaporation: %3.2 f kg/kg of coal'
      , EA);
24 printf(' \ n');
```

Scilab code Exa 5.14.1 Example 14

```
9
10 Qs=Mf*CV;
11 printf('Heat Supplied per hour: %3.1 f kJ/hr',Qs);
12 printf('\n');
13
14 //At 12 bar
                         //in kJ/kg
15 Hf=798.6;
                         //in kJ/kg
16 \text{ Hfg} = 1986.2;
17 H1=Hf+(x*Hfg);
18
19 //At 105 C
20 Hfw = 438.9;
                         //in kJ/kg
21 Eff=(Ma*100*(H1-Hfw))/Qs;
22 printf('Thermal Efficiency: %3.2f Percent', Eff);
23 printf(' \ n');
24
25 \text{ Ms=Ma/Mf};
26 printf('Factor of Evaporation: %3.2 f', Ms);
27 printf(' \ n');
```

Scilab code Exa 5.15.1 Example 15

```
1 clc
2 clear
3
4 Ms = 7.5;
                     //kg/kg of coal
5 P = 11;
                     //in bar
6 Tf = 70;
                     //in C
7 Eff=0.75;
                    // Efficiency
                    //Factor of Evaporation
8 FOE=1.15;
                    //in kJ/kg K
9 Cps=2.1;
10 Hfw = 293;
                    //in kJ/kg
11 H = (FOE * 2257) + Hfw;
12
13 //At 11 bar
```

```
14 Hg = 2781.7;
                   //in kJ/kg
                   //in C
15 Tsat=184.1;
16 Tsup=((H-Hg)/Cps)+Tsat;
17 DOS=Tsup-Tsat; //Degree of Superheat
18 printf('Degree of Superheat: %3.1 f C', DOS);
19 printf('\n');
20
21 Me = (Ms * (H-Hfw))/2257;
22 printf ('Equivalent evaporation: %3.2 f kg/kg of coal'
      ,Me);
23 printf('\n');
24
25 CV = (Ms*(H-Hfw))/Eff;
26 printf('Calorific value of Boiler: %3.2 f kJ/kg ',CV)
27 printf('\n');
```

Scilab code Exa 5.16.1 Example 16

```
1 clc
2 clear
3
                     //in kg/hr
4 Ma=17000;
5 P = 14;
                     //in bar
                     //Dryness Fraction
6 x = 0.95;
                          //in C
7 Tfw=102;
                          //in kg/hr
8 \text{ Mf} = 2050;
                     // Calorific Value
9 CV = 27400;
10 HS = Mf * CV;
11 printf('Heat Supplied per hour: %3.2 f kJ', HS);
12 printf('\n');
13
                          //in kJ/kg
14 Hf=830.3;
                          //in kJ/kg
15 Hfg=1959.7;
16 Hfw = 427.5;
                          //in kJ/kg
```

Scilab code Exa 5.17.1 Example 17

```
1 clc
2 clear
3
                     // kg/hr
4 Ma = 1800;
                     //in bar
5 P = 12;
6 x = 0.97;
                      //Dryness Fraction
7 Tfw=105;
                     //in C
                     //in kg/hr
8 \text{ Mf} = 2050;
                     //in kJ/kg
9 CV = 27400;
10
11 Q=Mf*CV;
12 printf('Heat Supplied: %3.2 f kJ',Q);
13 printf(' \ n');
14
15 //At 12 bar pressure
16 \text{ Hf} = 798.6;
                          //in kJ/kg
                          //in kJ/kg
17 Hfg=1986.2;
18 H=Hf+(x*Hfg);
19 Hfw = 4.187 * Tfw;
20
21 Me = (Ma*(H-Hfw))/(2257*Mf);
```

```
printf('Equivalent Evaporation: %3.2 f kg/kg of coal'
    ,Me);
printf('\n');

Eff=(Ma*100*(H-Hfw))/(CV*Mf);
printf('Efficiency of boiler: %3.2 f Percent', Eff);
printf('\n');
```

Scilab code Exa 5.18.1 Example 18

Scilab code Exa 5.19.1 Example 19

```
10 Hfw = Tfw * 4.187;
11
12 //At 1 bar pressure
                    //kJ/kg
13 Hf = 417.5;
14 Hfg=2258;
                    //kJ/kg
15 H=Hf+(x*Hfg);
16 Ms=Ma/Mf;
17
18 Me = (Ms * (H-Hfw))/2257;
19 printf ('Equivalent Evaporation: %3.3 f kg/kg of coal'
      ,Me);
20 printf(' \ n');
21
22 Eff=(Ms*100*(H-Hfw))/CV;
23 printf('Efficiency: %3.2f percent', Eff);
24 printf(' \ n');
```

Chapter 6

Heat Engines

Scilab code Exa 6.1.1 Example 1

```
1 clc
2 clear
3
4 m=1; //in kg
5 R=0.287; //Universal Gas Constant
6 r=7; //Compression Ratio
                //in bar
7 P1=1;
                //in K
8 T1 = 24 + 273;
                //in K
9 T3 = 2000;
10 G = 1.4;
                 //Gamma
11
12 ASE=(1-(1/(r)^(G-1)))*100;
13 printf('Air Standard Efficiency is %3.1f Percent',
      ASE);
14 printf('\n');
15
16 P2=P1*(r)^G;
17 printf('Pressure at end of Compression is %3.2f Bar'
      ,P2);
18 printf('\n');
19
```

```
20 T2=T1*((r)^{(G-1)});
21 printf ('Temperature at end of Compression is %3.2 f K
       ',T2);
22 printf(' \ n');
23
24 \text{ Cv} = 0.718;
25 \quad Q = Cv * (T3 - T2);
26 printf('Heat Supplied is \%3.2 \,\mathrm{f}\,\mathrm{kJ/kg',Q});
27 printf(' \ n');
28
29 W = ASE * Q / 100;
30 V1=(m*R*T1)/(P1*100);
31 \ V2 = V1/r;
32 V = V1 - V2;
33 Pm = W/V;
34 printf('Mean Effective Pressure is \%3.2f kPa', Pm);
35 printf(' \ n');
```

Scilab code Exa 6.2.1 Example 2

```
1 clc
2 clear
3
                      //in K
4 T1 = 323;
5 T2 = 673;
                      //in K
6 G = 1.4;
8 \text{ r}_{\text{G}}=\text{T2}/\text{T1};
9 r=(r_G)^(1/(G-1));
10 printf('Compression Ratio is %2.2 f', r);
11 printf('\n');
12
13 Eff=100*(1-(1/(r^{(G-1))));
14 printf ('Air Standard Efficiency is %2.0f Percent',
      Eff);
```

```
15 printf('\n');
```

Scilab code Exa 6.3.1 Example 3

```
1 clc
2 clear
3
                      //in kPa
4 P1=97;
                      //in K
5 T1 = 323;
                      //Compression Ratio
6 \text{ r=5};
                      //in kJ/kg
7 Q = 930;
8 G = 1.4;
9 Cv = 0.718;
10 T2=T1*(r^{(G-1)});
11 T3 = (Q/Cv) + T2;
12 printf ('Maximum Temperature Attained is %2.2 f K', T3)
13 printf(' \ n');
14
15 Eff=100*(1-(1/(r)^{(G-1))};
16 printf ('Thermal Efficiency of cycle is %2.1f Percent
       ', Eff);
17 printf('\n');
18
19 W = Eff * Q / 100;
20 printf ('Work Done is \%2.2 \,\mathrm{f}\,\mathrm{kJ/kg}', W);
21 printf(' \ n');
```

Scilab code Exa 6.4.1 Example 4

```
1 clc
2 clear
3
```

```
//in K
4 T1=57+273;
                         //in K
5 T2 = 603 + 273;
                         //in K
6 T3=1950+273;
7 T4 = 870 + 273;
                         //in K
8 G=1.4;
9 P1=1;
                         //in bar
10 Cp=1.005;
11 Cv = 0.718;
12
13 P2=P1*((T2/T1)^((G)/(G-1)));
14 printf('Maximum Pressure attained is %2.1f bar', P2);
15 printf(' \ n');
16
                               //Heat Supplied
17 Qs = Cp * (T3 - T2);
                             //Heat Rejected
18 Qr = Cv * (T4 - T1);
19 Eff=100*(1-(Qr/Qs));
20 printf('Efficiency is %2.0f Percent', Eff);
21 printf('\n');
```

Scilab code Exa 6.5.1 Example 5

```
15 printf('\n');
```

Scilab code Exa 6.6.1 Example 6

Scilab code Exa 6.7.1 Example 7

Scilab code Exa 6.8.1 Example 8

```
1 clc
2 clear
3
                //Diameter in cm
4 D=10;
                //Length in cm
5 L=15;
6 Vs = (22/7)*(1/4)*D*D*L;
                                  //in cm^3
7 Vc = 250;
               //in cm^3
8 V2=Vc;
9 V1 = Vs + Vc;
10 r = V1/V2;
11 G=1.4;
12
13 Eff=100*(1-(1/(r^{(G-1))));
14 printf('Efficiency is %2.1f Percent', Eff);
15 printf(' \ n');
```

Scilab code Exa 6.9.1 Example 9

```
1 clc
2 clear
3
4 T3=15+273;
               //in K
5 T4 = T3;
6 P3=1.1;
               //in bar
                //in bar
7 P4=4;
                //in bar
8 P1=12;
               //in rpm
9 N = 150;
10 G=1.4;
11
12 T1=T4*((P1/P4)^{(G-1)/G)};
13 Eff=100*(1-(T4/T1));
14 printf('The Efficiency is %3.2f Percent', Eff);
15 printf('\n');
16
17 r = P4/P3;
```

```
18 R=0.287;
19 m=1;
20
21 W=m*R*(T1-T3)*(log(r));
22 P=W*(N/60);
23 printf('The Power is %3.1 f kW',P);
24 printf('\n');
```

Scilab code Exa 6.10.1 Example 10

```
1 clc
2 clear
3
                          //in K
4 T3=1350+273;
                          //in K
5 T1 = 30 + 273;
                     //in kJ/kg
6 Qs = 750;
7 Cv = 0.718;
8 G=1.4;
9
10 / \text{For Process } 2-3
11 T2=T3-(Qs/Cv);
12 r=(T2/T1)^(1/(G-1));
13 printf('The compression Ratio is %3.2f',r);
14 printf('\n');
15
16 Eff=100*(1-(1/(r^{(G-1))));
17 printf('The Efficiency is %3.1f Percent', Eff);
18 printf(' \ n');
19
20 W=Eff*Qs/100;
21 printf('The Work Output is %3.0 f kJ/kg', W);
22 printf(' \ n');
23
24 P21 = (r^G);
25 \text{ P32=T3/T2};
```

Scilab code Exa 6.11.1 Example 11

```
1 clc
2 clear
4 Vs = 500;
                      //in cm^3
                      //in cm<sup>3</sup>
5 \text{ Vc} = 55;
6 T1 = 30 + 273;
                      //in K
7 P1=1;
                      //in bar
                         //in K
8 T3 = 1450 + 273;
9 G = 1.4;
10 R = 0.287;
11 Cv = 0.718;
12 r = (Vs + Vc)/Vc;
13 Eff=100*(1-(1/(r^{(G-1))));
14 printf ('The standard air Efficiency is %3.2f Percent
       ', Eff);
15 printf(' \ n');
16
17 T2=T1*(r^{(G-1)});
18 Qs = Cv * (T3 - T2);
19 W = Eff * Qs;
20
21 V1 = Vc + Vs;
22 m = (P1*100*V1*(10^-6))/(R*T1);
23 Pm = (W*m) / (100*(Vs*(10^-6)));
24 printf('The Mean Effective Pressure is %3.1f kPa',Pm
      );
25 printf(' \ n');
```

Scilab code Exa 6.12.1 Example 12

```
1 clc
2 clear
3
                //Compression Ratio
4 r=6;
5 T1 = 20 + 273;
                //in K
6 G = 1.4;
7 Cv = 0.718;
8 \ Qs = 1900;
9 Eff=100*(1-(1/(r^{(G-1))}));
10 printf('The Efficiency is %3.2f Percent', Eff);
11 printf('\n');
12
13 T2=T1*(r^{(G-1)});
14 printf('The value of T2 is %3.0 f K',T2);
15 printf('\n');
16
17 T3 = (Qs/Cv) + T2;
18 printf('The value of T3 is \%3.0\,\mathrm{f} K',T3);
19 printf('\n');
20
21 T4=T3/(r^{(G-1)});
22 printf('The value of T4 is %3.0 f K', T4);
23 printf(' \ n');
24
25 \ W=Qs*Eff/100;
26 printf('The Work Output is %3.0 f kJ/kg', W);
27 printf(' \ n');
```

Scilab code Exa 6.13.1 Example 13

```
1 clc
2 clear
 3
4 D=0.1;
                 //Diameter
5 L=0.12;
                 //Length
6 V = (22/7) * (1/4) * D * D * L;
7 T1 = 19 + 273;
8 r=6.5;
                 //Compression ratio
                 //in bar
9 P1=1;
                  //Gamma
10 G = 1.4;
11 Vs = 9.425*(10^-4);
12 Vc=Vs/(r-1);
13 V1 = Vc + Vs;
14 printf ('V1= \%3.5 \, \text{f m}^3', V1);
15 printf('\n');
16
17 \quad V2 = Vc;
18 V3=Vc;
19 P2=P1*(r^G);
20 printf('P2= %3.1 f bar', P2);
21 printf('\n');
22
23 T2=T1*(r^{(G-1)});
24 printf ('T2= \%3.1 \text{ f K', T2});
25 printf(' \ n');
26
27 //For process 2-3
28 \, Qs = 1900;
29 \text{ Cv} = 0.718;
30 T3 = (Qs/Cv) + T2;
31 printf('T3= \%3.1 \text{ f K',T3});
32 \text{ printf}(' \ n');
33
34 P3=P2*(T3/T2);
35 printf('P3= \%3.1 \, \text{f bar',P3});
36 printf(' \ n');
37
38 //For process 4-1
```

```
39 V4 = V1;
40 P4=P3*((V3/V4)^G);
41 printf('P4= %3.1 f bar',P4);
42 printf(' \ n');
43
44 T4=T1*(P4/P1);
45 printf('T4= %3.1 f K', T4);
46 printf('\n');
47
48 Eff=100*(1-(1/(r^{(G-1))}));
49 printf('Efficiency= %3.1f Percent', Eff);
50 printf(' \ n');
51
52 R = 0.287;
53 \text{ m} = (P1*100*V1)/(R*T1);
54 Pm = (Eff * Qs * m) / (10000 * Vs);
55 printf('Mean Effective Pressure= \%3.1 f bar', Pm);
56 printf('\n');
```

Scilab code Exa 6.14.1 Example 14

```
1 clc
2 clear
3
               //in bar
4 P1=1;
                  //in K
5 T1 = 20 + 273;
6 P2=39;
               //in bar
7 P3=P2;
8 T3=1100+273; //in K
9 G=1.4;
10
11 //For reversible Adiabatic Process 1-2
12 T2=T1*((P2/P1)^{(G-1)/G)};
13 r=(P2/P1)^(1/G);
14
```

```
15 Z=T3/T2;
16
17 Eff=100*(1-((1/(r^(G-1)))*(1/G)*((Z^G)-1)/(Z-1)));
18 printf('Efficiency: %2.2f Percent', Eff);
19 printf('\n');
```

Scilab code Exa 6.15.1 Example 15

```
1 clc
2 clear
                 //Compression Ratio
4 r = 16;
                //Diameter
5 D=0.21;
                 //Length
6 L=0.3;
                 //in bar
7 P1=1;
8 G=1.4;
9 T1=17+273; //in K
10 Z = [0.1*(r-1)+1];
11 Vs = (22/7) * (1/4) * D* D* L;
12 Vc=Vs/15;
13 V2=Vc;
14 printf ('Vc= V2= \%2.6 \, f \, m^3', Vc);
15 printf(' \ n');
16 V1 = Vc + Vs;
17 printf ('V1= \%2.4 \text{ fm}^3', V1);
18 printf('\n');
19 V3 = (0.1*(Vs)) + (V2);
20 printf ('V3= \%2.4 \, \text{f m}^3', V3);
21 printf('\n');
22
23 //For Process 1-2
24 P2=r^G;
25 printf('P2= %2.1 f bar', P2);
26 printf(' \ n');
27
```

```
28 T2=T1*(r^{(G-1)});
29 printf('T2= %2.1 f K',T2);
30 printf(' \ n');
31
32 T3 = Z * T2;
33 printf('T3= \%2.1 \, \text{f K'}, T3);
34 printf(' \ n');
35
36 P3=P2;
37 P4=P3*((V3/V1)^G);
38 printf('P4= %2.1 f bar', P4);
39 printf('\n');
40
41 T4=T3*((V3/V1)^{(G-1)});
42 printf('T4= \%2.1 f K', T4);
43 printf('\n');
44
45 \text{ Cv} = 0.718;
46 \text{ Cp}=1.005;
47
48 Eff=100*(1-((Cv*(T4-T1))/(Cp*(T3-T2))));
49 printf('Efficiency: %2.1f Percent', Eff);
50 printf(' \ n');
51
52 R = 0.287;
53 m = (P1*100*V1)/(R*T1);
54 Pm = (m*((Cp*(T3-T2))-(Cv*(T4-T1))))/(Vs);
55 printf('Mean Effective Pressure= \%2.1 f kPa', Pm);
56 printf('\n');
57
                     //Cycles per minute
58 N = 300;
59 W = 10.41;
60 EP = W * (N/60);
61 printf('Engine Power= %2.2 f kW', EP);
62 printf('\n');
```

Scilab code Exa 6.16.1 Example 16

```
1 clc
2 clear
                 //Compression Ratio
4 r = 19;
                 //in bar
5 P1=1;
6 T1=17+273; //in K
                //in kJ/cycle
7 \ Qs = 730;
8 G = 1.4;
9
10 //For process 1-2
11 m=1;
                 //in kg
12 R = 0.287;
                //Universal Gas Constant
13 V1=(m*R*T1)/(P1*100);
14 printf ('V1= \%2.4 \, \text{fm}^3/\text{kg}', \text{V1});
15 printf('\n');
16
17 V2=V1/r;
18 printf ('V2= \%2.4 \text{ f m}^3/\text{kg}', V2);
19 printf('\n');
20
21 P2=P1*(r^G);
22 printf('P2= %2.1 f bar', P2);
23 printf(' \ n');
24
25 T2=T1*(r^(G-1));
26 printf('T2= %2.1 f K',T2);
27 printf(' \ n');
28
29 //For Process 2-3
30 \text{ Cv} = 0.718;
31 T3 = (Qs/(Cv*m)) + T2;
32 printf('T3= \%2.1 \, \text{f K'}, T3);
```

```
33 printf(' \ n');
34
35 P3=P2;
36 printf('P3= %2.1 f bar', P3);
37 printf(' \ n');
38
39 //As pressure is constant
40 V3 = (T3/T2) * V2;
41 printf ('V3= \%2.4 \, \text{f m}^3/\text{kg}', V3);
42 printf(' \ n');
43
44 //For process 3-4
45 \quad V4 = V1;
46 T4=T3*((V3/V4)^{(G-1)});
47 printf('T4= %2.1 f K', T4);
48 printf(' \ n');
49
50 P4=P3*((V3/V4)^G);
51 printf('P4= %2.2 f bar', P4);
52 printf('\n');
53
54 \text{ Cp=1.005};
55
56 \quad W = ((Cp) * (T3 - T2)) - ((Cv * (T4 - T1)));
57 printf ('Work Done= \%2.1 \, \text{f kJ/kg',W});
58 printf('\n');
59
60 Eff=100*(W/(Cp*(T3-T2)));
61 printf('Efficiency= %2.2f Percent', Eff);
62 printf(' \ n');
63
64 Pm = W/(V1 - V2);
65 printf('Mean Effective Pressure= \%2.2 f kPa', Pm);
66 printf(' \ n');
```

Scilab code Exa 6.17.1 Example 17

Scilab code Exa 6.18.1 Example 18

```
1 clc
2 clear
3
                 //in cm
4 D=16;
5 L=24;
                  //in cm
6 \text{ Vc} = 340;
7 V2=Vc;
8 G=1.4;
9
10 Vs = (22/7)*(1/4)*D*D*L;
11 V1 = Vs + Vc;
12 r = V1/V2;
13
14 //Cut-off is 6% of the stroke
15 \text{ Co1} = 0.06;
16
17 V3 = (Co1 * (V1 - V2)) + V2;
18 Z=V3/V2;
19 x = (Z^G) - 1;
20 y=(r^{(G-1)})*(G)*(Z-1);
```

```
21 Eff1=100*(1-((x)/(y)));
22
23
24
25 //Cut-off is 10% of the stroke
26 \text{ Co2=0.10};
27
28 V3 = (Co2 * (V1 - V2)) + V2;
29 Z = V3/V2;
30 x = (Z^G) - 1;
31 y=(r^(G-1))*(G)*(Z-1);
32 Eff2=100*(1-((x)/(y)));
33
34 Loss=((Eff1-Eff2)*100)/Eff1;
35
36 printf('Loss: \%2.2f Percent',r);
37 printf(' \ n');
```

Scilab code Exa 6.20.1 Example 20

```
1 clc
2 clear
3
                        //in K
4 T3=1000+273;
                        //in K
5 T1 = 27 + 273;
6 G=1.25;
8 r = (T3/T1)^G;
9 printf('Compression Ratio: %2.1f',r);
10 printf(' \ n');
11
12 T2=sqrt(T1*T3);
13 T4=T2;
14 printf('T2=T4=\%2.0 f K', T2);
15 printf('\n');
```

```
16
17  Cv=0.718;
18  W=Cv*[(sqrt(T3))-(sqrt(T1))]^2;
19  printf('Maximum Work Done: %2.0 f kJ/kg',W);
20  printf('\n');
```

Scilab code Exa 6.21.1 Example 21

```
1 clc
2 clear
4 r=6;
                 //Compression Ratio
5 G=1.4;
7 Eff=100*(1-(1/(r^(G-1))));
8 printf('Efficiency: %2.2f Percent', Eff);
9 printf('\n');
10
11 m=1;
                      //in kg
12 R = 0.287;
                      //Universal Gas Constant
                      //in K
13 T1 = 27 + 273;
                  //in bar
14 P1=1;
15
16 V1 = (m*R*T1)/(P1*100);
17 V2=V1/r;
18 Vc = V2;
19 Vs = V1 - Vc;
20
21 T2=T1*(r^(G-1));
22 \text{ Cv} = 0.718;
23 \, Qs = 1046;
24 T3 = (Qs/Cv) + T2;
25 T4=T3/(r^{(G-1)});
26 W = Qs - (Cv * (T4 - T1));
27 \text{ Pm=W/Vs};
```

```
28 printf('Effective Mean Pressure: %2.2 f kPa', Pm);
29 printf('\n');
```

Scilab code Exa 6.22.1 Example 22

```
1 clc
2 clear
3
4 T1 = 87 + 273;
                   //in K
                //Compression Ratio
5 r = 14;
6 \quad T3 = 1795 + 273;
                       //in K
7 T4=677+273; //in K
8 G=1.4;
9 T2=T1*(r^{(G-1)});
10 printf('T2= \%2.1 \, \text{f K',T2});
11 printf('\n');
12
13 Cp=1.005;
14 Cv = 0.718;
15 W = [Cp*(T3-T2)] - [Cv*(T4-T1)];
16 Qs = Cp * (T3 - T2);
17 Eff = (W*100)/Qs;
18 printf('Efficiency: %2.1f Percent', Eff);
19 printf('\n');
```

Scilab code Exa 6.23.1 Example 23

```
1 clc
2 clear
3
4 r=16;    //Compression Ratio
5 P1=1;    //in bar
6 T1=20+273;    //in K
```

```
//in K
7 T3=1431+273;
8 G=1.4;
9 T2=T1*[r^{(G-1)}];
10 m=1;
11 R=0.287;
12 V1 = (m*R*T1)/(P1*100);
13 V2=V1/r;
14
15 //For Constant Pressure Process 2-3
16 V3 = V2 * (T3/T2);
17 Z=V3/V2;
18 Eff=100*(1-((1/(r^(G-1)))*(1/G)*((Z^G)-1)/(Z-1)));
19 printf('Efficiency is %2.1f Percent', Eff);
20 printf(' \ n');
21
22 \text{ Cp}=1.005;
23 Qs = Cp * (T3 - T2);
24 \ W=Qs*Eff/100;
25 \text{ Vs} = \text{V1} - \text{V2};
26 \text{ Pm=W/Vs};
27 printf('Effective Mean Pressure %2.1f kPa', Pm);
28 printf(' \ n');
```

Scilab code Exa 6.24.1 Example 24

```
1 clc
2 clear
3
4 r=8;
5 T1=310;    //in K
6 T3=1600;    //in K
7 G=1.4;
8 Cv=0.717;
9
10 //For process 1-2
```

```
11 T2=T1*(r^(G-1));
12
13 //Now Heat Supplied
14 Qs=Cv*(T3-T2);
15 printf('Heat Supplied= %2.1 f kJ/kg',Qs);
16 printf('\n');
17
18 //Efficiency of Cycle
19 Eff=100*[1-(1/(r^(G-1)))];
20 printf('Efficiency is %2.1 f Percent',Eff);
21 printf('\n');
```

Scilab code Exa 6.25.1 Example 25

```
1 clc
2 clear
3
                //Compression Ratio
4 r=15;
                 //in kPa
5 P1 = 100;
6 T1 = 27 + 273;
7 Cp=1.006;
8 \text{ Cv} = 0.717;
9 G=1.4;
10
11 //Cut off takes place at 12% of Working Stroke
12 T2=T1*(r^{(G-1)});
13 printf('T2= \%2.1 \text{ f K',T2});
14 printf('\n');
15
16 P2=P1*(r^G);
17 printf('P2= %2.1 f kPa', P2);
18 printf('\n');
19
20 Z=(0.12*(r-1))+1;
21 Eff=100*(1-((1/(r^{(G-1))})*(1/G)*((Z^{G})-1)/(Z-1)));
```

```
22 printf('Efficiency is %2.1f Percent', Eff);
23 printf('\n');
```

Scilab code Exa 6.26.1 Example 26

```
1 clc
2 clear
3
4 T1=288;
                //in K
5 T3 = 1673;
                     //in K
                //in kJ/kg
6 Qs=800;
7 G=1.4;
8 \text{ Cv} = 0.718;
9 R = 0.287;
10 P1=1;
11
12 Cp = Cv *G;
13 T2=T3-(Qs/Cp);
14
15 x = T2/T1;
16 r=x^(1/(G-1));
17 printf('Compression Ratio %2.1 f',r);
18 printf(' \ n');
19
20 Eff=100*[1-(1/(r^{(G-1)))];
21 printf('Efficiency is %2.1f Percent', Eff);
22 printf('\n');
23
24 P3=r*T3*P1/T1;
25 printf('P3= %2.1 f bar', P3);
26 printf(' \ n');
```

Scilab code Exa 6.27.1 Example 27

```
1 clc
2 clear
3
4 T2=293;    //in K
5 Eff=0.7;
6 T1=T2/(1-Eff);
7 printf('T1= %2.1 f K',T1);
8 printf('\n');
```

Scilab code Exa 6.28.1 Example 28

```
1 clc
2 clear
3
                //in K
4 T1 = 330;
5 T2 = 876;
                //in K
6 T3 = 2223;
                    //in K
                    //in K
7 T4 = 1143;
                //in bar
8 P1=1;
9 G=1.4;
10
11 Cv = 0.718;
12 Cp=1.005;
13 Eff=100*[1-((Cv*(T4-T1))/(Cp*(T3-T2)))];
14 printf('Efficiency is %2.1f Percent', Eff);
15 printf(' \ n');
16
17 //For Process 1-2
18 P2=P1*[(T2/T1)^(G/(G-1))];
19 printf('Maximum Pressure %2.1f bar', P2);
20 printf(' \ n');
```

Scilab code Exa 6.29.1 Example 29

```
1 clc
2 clear
4 T1=25+273; //in K
                        //in K
5 T3 = 1500 + 273;
6 Qa = 900;
              //in kJ/kg
7 Cv = 0.718;
8 G=1.4;
9
10 T2=T3-(Qa/Cv);
11 r=(T2/T1)^(1/(G-1));
12 printf('Compression Ratio is %2.1f',r);
13 printf('\n');
14
15 Eff=100*[1-(1/(r^{(G-1))})];
16 printf('Efficiency is %2.1f Percent', Eff);
17 printf('\n');
18
19 Px=r^G; //Max Pressure
                //1/Min Pressure
20 Py = T3/T2;
21 \quad P = Px * Py;
22 printf('Pressure Ratio %2.1f',P);
23 printf(' \ n');
```

Scilab code Exa 6.30.1 Example 30

```
10
11 r=(P2/P1)^(1/G);
12 printf('Compression Ratio is %2.1f',r);
13 printf('\n');
14
15 Eff=100*[1-(1/r^{(G-1))}];
16 printf('Efficiency is %2.1f Percent', Eff);
17 printf('\n');
18 T2=T1*(r^{(G-1)});
19 T3=T2*(P3/P2);
20 T4=T3/(r^{(G-1)});
21 W=Cv*[T3-T2+(T1-T4)];
22
23 R = 0.287;
24 V1 = (R*T1)/P1;
25 V2=V1/r;
26
27 \text{ Pm}=W/(V1-V2);
28 printf('Mean Effective Pressure %2.1f bar', Pm);
29 printf('\n');
```

Scilab code Exa 6.31.1 Example 31

```
13
14 V1=(R*T1)/(P1*100);
15
16
17 r=(P2/P1)^(1/G);
18 Z=T3/T2;
19 Eff=100*(1-((1/(r^(G-1)))*(1/G)*((Z^G)-1)/(Z-1)));
20 printf('Efficiency is %2.1 f Percent', Eff);
21 printf('\n');
```

Scilab code Exa 6.32.1 Example 32

```
1 clc
2 clear
                 //Compression Ratio
4 r=16;
                 //in bar
5 P1=1;
6 T1=20+273;
                          //in K
7 T3 = 1431 + 273;
8 G=1.4;
9
10 T2=T1*(r^{(G-1)});
11 Z=T3/T2;
12 T4 = (Z^G) * T1;
13 Eff=100*[1-((T4-T1)/(G*(T3-T2)))];
14 printf('Efficiency is %2.1f Percent', Eff);
15 printf(' \ n');
16
17 \text{ Cp} = 1.005;
18 Qs = Cp * (T3 - T2);
19 W = Eff * (Qs/100);
20 R = 0.287;
21 V1 = (R*T1)/(P1*100);
22 V2 = V1/r;
23 V = V1 - V2;
```

```
24
25 Pm=W/(V);
26 printf('Mean Effective Pressure %2.1 f kPa',Pm);
27 printf('\n');
```

Scilab code Exa 6.33.1 Example 33

```
1 clc
2 clear
 3
                  //in bar
4 P1=1;
5 T1=15+273;
                       //in K
6 P2=15;
                  //in bar
7 P3 = 40;
                  //in bar
8 G = 1.4;
9
10 r=(P2/P1)^(1/G);
11 Eff=100*[1-(1/(r^{(G-1))})];
12 printf('Efficiency is %2.1f Percent', Eff);
13 printf('\n');
14
15 T2=T1*[(P2/P1)^{(G-1)/G)};
16 \quad T3 = T2 * (P3/P2);
17 \text{ Cv} = 0.718;
18
19 Qs = Cv * (T3 - T2);
20 W=Eff*Qs;
21 R=0.287;
22
23 V1 = (R*T1)/(P1*100);
24 \ V2 = V1/r;
25
26 \text{ Vs} = \text{V1} - \text{V2};
27 \text{ Pm}=W/(Vs*100);
28
```

```
29 printf('Mean Effective Pressure is %2.1 f kPa',Pm); 30 printf('\n');
```

Chapter 7

Internal Combustion Engines

Scilab code Exa 7.1.1 Example 1

Scilab code Exa 7.2.1 Example 2

```
1 clc
2 clear
3
4 n=6;  //Number of Cylinders
5 IP=90;  //Indicated Power in kW
```

```
// Mechanical Efficiency
6 \text{ Eff} = 0.85;
                //in bar
7 Pmb=5;
8 LD=1.5;
9 Pm=Pmb/Eff;
10 N = 800;
11 nx=N/2;
12
13 / Length = 1.5*D
14 D=[[IP*60*4]/[Pm*100*(22/7)*LD*nx*n]]^(1/3);
15 printf('D= %3.4 f mm', D*100);
16 printf(' \ n');
17 L=D*LD;
18 printf('L= %3.4 f mm',L*100);
19 printf('\n');
```

Scilab code Exa 7.3.1 Example 3

```
1 clc
2 clear
3
4 BP=22; //Brake Power
                 // Mechanical Efficiency
5 Eff=0.85;
6 IP=BP/Eff;
7 \text{ mf} = 6.5;
8 \text{ CV} = 30000;
               // Calorific Value
9 Ebth=BP/((mf/3600)*CV);
10 printf('Brake Thermal Eff= \%3.1 f Percent', Ebth*100);
11 printf('\n');
12
13 Eith=IP/((mf/3600)*CV);
14 printf ('Indicated Thermal Eff= %3.1 f Percent', Eith
      *100);
15 printf('\n');
16
17 BSFC=mf/BP;
```

```
18 printf('BSFC= %3.1 f kg/kWh', BSFC);
19 printf('\n');
```

Scilab code Exa 7.4.1 Example 4

```
1 clc
2 clear
3
4 BP=185;
                //Brake Power
5 Eff=0.75;
6 IP=BP/Eff;
7 LD=1.5;
8 N = 35;
9 n=N/2;
10 nx=4;
11 Pm=830;
                //in kPa
12 D=[[IP*4]/[Pm*(22/7)*LD*nx*n]]^(1/3);
13 printf('D= \%3.0 f mm', D*1000);
14 printf('\n');
15 \quad L=D*LD;
16 printf('L= %3.0 f mm', L*1000);
17 printf(' \ n');
```

Scilab code Exa 7.5.1 Example 5

```
1 clc
2 clear
3
4 Vc=5*(10^-4);
5 D=0.15;
6 L=0.2;
7 Vs=(22/7)*D*D*L*(1/4);
8 r=(Vc+Vs)/Vc;
```

Scilab code Exa 7.6.1 Internal Combustion Engines

```
1 clc
2 clear
3
4 Pm=600;
5 A=(22/7)*(1/4)*0.11*0.11*0.14;
6 n=1000;
7 IP=(Pm*A*n)/60;
8 Em=0.8;
9 BP=Em*IP;
10 printf('BP= %3.2 f kW', BP);
11 printf('\n');
```

Scilab code Exa 7.7.1 Example 7

```
1 clc
2 clear
3
4 r=6;
```

```
5 G=1.4;
6 Ea=100*[1-(1/(r^(G-1)))];
7 Ebt=Ea/2;
8 CV=41500;
9 BP=15;
10 Mf=BP/(CV*(Ebt/100));
11 printf('Mf= %3.2 f kg/hr', Mf*3600);
12 printf('\n');
```

Scilab code Exa 7.8.1 Example 8

```
1 clc
2 clear
3
4 n = 4;
5;
7 DL=1.2;
8 \text{ BP} = 32;
9 N = 2500;
10 Pm = 9;
11 Em = 0.86;
12 Mf = 9;
13 CV = 43000;
14
15 IP=BP/Em;
16 D=[[IP*60*4]/[Pm*100*(22/7)*DL*N*n]]^(1/3);
17 printf('D= %3.0 f mm', D*1000);
18 printf('\n');
19
20 L = DL *D;
21 printf('L= \%3.0 f mm', L*1000);
22 printf(' \ n');
23
24 Ebth=BP/(Mf*CV/3600);
```

```
25  printf('Ebth= %3.2 f Percent', Ebth*100);
26  printf('\n');
27
28  Eith=Ebth/Em;
29  printf('Eith= %3.2 f Percent', Eith*100);
30  printf('\n');
```

Scilab code Exa 7.9.1 Example 9

```
1 clc
2 clear
3
4 Eith=0.29;
5 Em=0.77;
6 BP=5.5;
7 SG=0.87;
8 CV=43000;
9 Ebth=Em*Eith;
10 Mf=(BP*3600)/(Ebth*CV);
11 D=SG*1000;
12 Mff=(Mf*1000)/D
13 printf('Mf= %3.2 f litre/hr', Mff);
14 printf('\n');
```

Scilab code Exa 7.10.1 Example 10

```
1 clc
2 clear
3
4 D=16;
5 L=19;
6 Vc=700;
7 Pm=5;
```

```
8 N=1000;
9 Eith=0.32;
10 Vs=(22/7)*D*D*L*(1/4);
11 Vc=700;
12 G=1.4;
13 r=(Vs+Vc)/Vc;
14 Ea=[1-(1/(r^(G-1)))];
15 Er=Eith/Ea;
16 printf('Relative Efficiency= %3.2 f Percent', Er*100);
17 printf('\n');
18
19 IP=(Pm*100*Vs*(10^-6)*N)/60;
20 printf('IP= %3.2 f KW', IP);
21 printf('\n');
```

Scilab code Exa 7.11.1 Example 11

```
1 clc
2 clear
3
4 T=50;
5 Vst=870;
6 N=300;
7 Pm=10;
8 n=N/2;
9
10 BP=(2*(22/7)*N*T)/(60*1000);
11 IP=(Pm*100*Vst*(10^-6)*N)/(60*2);
12 Em=BP/IP;
13 printf('Mechanical Efficiency= %3.2 f Percent', Em *100);
14 printf('\n');
```

Scilab code Exa 7.12.1 Example 12

```
1 clc
2 clear
3
4 Pm=7;
5 A=(22/7)*(1/4)*((0.15/1.25)^2);
6 n=900;
7 L=0.15;
8 N=2
9 IP=(Pm*100*A*L*n*N)/(60*2);
10 printf('IP= %3.2 f kW', IP);
11 printf('\n');
```

Scilab code Exa 7.13.1 Example 13

```
1 clc
 2 clear
 3
4 N = 900;
5 D=0.1;
6 L=0.14;
7 \text{ Mf} = 2.1;
8 \text{ CV} = 42000;
9 \text{ Pm} = 7.5;
10 Vc = 0.15;
11 G=1.4;
12 A = (22/7) * (1/4) * D * D;
13 IP = (Pm * 100 * A * L * N * 2) / (60 * 2);
14 Eith=(IP*3600)/(Mf*CV);
15 printf('Eith= %3.1 f Percent', Eith*100);
16 printf(' \ n');
17
18 r=(1+0.15)/(0.15);
19 Ea=1-[1/(r^{(G-1))};
```

```
20 Er=Eith/Ea;
21 printf('Relative Efficiency= %3.2f Percent',Er*100);
22 printf('\n');
```

Scilab code Exa 7.14.1 Example 14

```
1 clc
2 clear
3
4 \text{ NOC=6};
5 N = 820;
6 n=N/2;
7 IP = 90;
8 LD=1.4;
9 Pbm=5;
10 Em = 0.79;
11 BP=IP*Em;
12 D = [[IP*60*2]/[Pbm*100*(22/7)*(1/4)*LD*N*NOC]]^(1/3);
13 printf('D= \%3.0 f mm', D*1000);
14 printf('\n');
15 L=LD*D;
16 printf('L= \%3.0 f mm', L*1000);
17 printf(' \ n');
```

Scilab code Exa 7.15.1 Example 15

```
1 clc
2 clear
3
4 NOC=4;
5 N=2500;
6 n=N/2;
7 BP=200;
```

```
8 LD=1.2;
9 \text{ Pm} = 10;
10 Em = 0.81;
11 Mf = 65;
12 \text{ CV} = 42000;
13 IP=BP/Em;
14 D = [[IP*60*2*4]/[Pm*100*(22/7)*(1.2*(N)*NOC)]]^(1/3);
15 printf('D= \%3.0 f mm', D*1000);
16 printf('\n');
17
18 L=LD*D;
19 printf('L= \%3.0 f mm', L*1000);
20 printf(' \ n');
21
22 Eith=(IP*3600)/(Mf*CV);
23 printf('Eith= \%3.2 f Percent', Eith*100);
24 printf(' \ n');
25
26 Ebth=Eith*Em;
27 printf('Ebth= %3.2 f Percent', Ebth*100);
28 printf(' \ n');
```

Scilab code Exa 7.16.1 Example 16

```
1 clc
2 clear
3
4 IP=42;
5 FP=7;
6 ES=1800;
7
8 BP=IP-FP;
9
10 Em=BP/IP;
11 printf('Mechanical Efficiency= %3.0 f Percent', Em
```

Scilab code Exa 7.17.1 Example 17

```
1 clc
2 clear
3
4 D=0.3;
5 L=0.45;
6 N = 300;
7 Pimep=6;
8 F=1.5;
9 Reff = (180+4)/2;
10
11 IP=(Pimep*100*L*(22/7)*(1/4)*(D*D)*N)/(2*60);
12 printf('Indicated Power= \%3.2 f kW', IP);
13 printf(' \ n');
14
15 BP=(2*(22/7)*N*F*Reff)/6000;
16 printf('Brake Power= %3.2 f kW',BP);
17 printf('\n');
```

```
18
19 Em=BP/IP;
20 printf('Mechanical Efficiency= %3.2 f Percent', Em
        *100);
21 printf('\n');
```

Scilab code Exa 7.18.1 Example 18

```
1 clc
2 clear
4 D=0.27;
5 L=0.38;
6 Pmep=6;
7 N = 250;
8 F = 1000;
9 \text{ Reff=0.75};
10 Mf = 10;
11 CV = 44400;
12
13 BP = (2*(22/7)*N*(F*Reff))/60;
14 printf('Brake Power= \%3.2 f kW', BP/1000);
15 printf(' \ n');
16
17 A = (22/7) * (1/4) * (D*D);
18 IP = [Pmep*100*L*A*N]/(2*60);
19 printf('Indicated Power= \%3.2 f kW', IP);
20 printf(' \ n');
21
22 \text{ Em=BP/(IP*1000)};
23 printf ('Mechanical Efficiency = \%3.2 f Percent', Em
      *100);
24 printf(' \ n');
25
26 Eith=(IP*3600)/(Mf*CV);
```

```
27 printf('Indicated Thermal Power= %3.2 f Percent',Eith
     *100);
28 printf('\n');
```

Scilab code Exa 7.19.1 Example 19

```
1 clc
2 clear
3
4 NOC=6;
5 IP=89.5;
6 N = 800;
7 LD=1.25;
8 \text{ Em} = 0.8;
9 Pbemp=5;
10 Em = 0.8;
11 Pimep=Pbemp/0.8;
12
13 D3=(IP*2*60*4)/(Pimep*100*LD*(22/7)*N*NOC);
14 D=D3^(1/3);
15 L=LD*D;
16 printf('L= \%3.0 f mm', L*1000);
17 printf(' \ n');
18 printf('D= %3.0 f mm', D*1000);
19 printf('\n');
```

Scilab code Exa 7.20.1 Example 20

```
1 clc
2 clear
3
4 D=0.25;
5 L=0.4;
```

```
6 Pm = 6.5;
7 N = 250;
8 W = 1080;
9 Ddrum=1.5;
10 Mf = 10;
11 CV = 44300;
12
13 A = (22/7) * (1/4) * D * D;
14 IP=(Pm*100*A*L*N)/(60*2);
15 printf('Indicated Power= %3.2 f kW', IP);
16 printf('\n');
17
18 Reff=Ddrum/2;
19 W=1.08;
20
21 BP = [2*(22/7)*N*W*Reff]/60;
22 printf('Brake Power= \%3.2 f kW', BP);
23 printf(' \ n');
24
25 \text{ Em=BP/IP};
26 Eith=(IP*3600)/(Mf*CV);
27 printf('Em= %3.2 f Percent', Em*100);
28 printf(' \ n');
29 printf('Eith= %3.2 f Percent', Eith*100);
30 printf('\n');
```

Scilab code Exa 7.21.1 Example 21

```
1 clc
2 clear
3
4 W=50;
5 S=7;
6 D=1.25;
7 N=450;
```

```
8 Mf=4;
9 CV=43000;
10 Em=0.7;
11 Reff=9.81*(D/2);
12
13 BP=[2*(22/7)*N*(W-S)*Reff]/(60*1000);
14 Ebth=(BP*3600)/(Mf*CV);
15 printf('Ebth= %3.2 f Percent', Ebth*100);
16 printf('\n');
17
18 Eith=Ebth/Em;
19 printf('Eith= %3.2 f Percent', Eith*100);
20 printf('\n');
```

Scilab code Exa 7.22.1 Example 22

```
1 clc
2 clear
3
4 T = 640;
5 D=0.21;
6 N = 350;
7 L=0.28;
8 \text{ Pm} = 5.6;
9 Mf=8.16;
10 CV = 42705;
11
12 BP = [2*(22/7)*N*T]/60000;
13 printf('Brake Power= %3.2 f kW', BP/1000);
14 printf(' \ n');
15
16 A = (22/7) * (1/4) * D * D;
17 IP=(Pm*100*A*L*N)/60;
18
19 Em=BP/IP;
```

```
20  printf('Em= %3.2 f Percent', Em*100);
21  printf('\n');
22
23  Eith=(IP*3600)/(Mf*CV);
24  printf('Eith= %3.2 f Percent', Eith*100);
25  printf('\n');
26
27  Ebth=(BP*3600)/(Mf*CV);
28  printf('Ebth= %3.2 f Percent', Ebth*100);
29  printf('\n');
30
31  BSFC=Mf/BP;
32  printf('BSFC= %3.2 f kg/kWh', BSFC);
33  printf('\n');
```

Scilab code Exa 7.23.1 Example 23

```
1 clc
2 clear
3
4 IP=37;
5 \text{ FP=6};
6 BSFC=0.28;
7 \text{ CV} = 44300;
9 BP = IP - FP;
10 Em = (IP - FP) / IP;
11 printf('Em= %3.2 f Percent', Em*100);
12 printf('\n');
13
14 Mf = BSFC * BP;
15 Ebth = (BP*3600)/(Mf*CV);
16 printf ('Ebth= \%3.2 \, \text{f} Percent', Ebth*100);
17 printf('\n');
18
```

```
19  Eith=Ebth/Em;
20  printf('Eith= %3.2 f Percent', Eith*100);
21  printf('\n');
```

Scilab code Exa 7.24.1 Example 24

```
1 clc
2 clear
3
4 D=0.1;
5 L=0.125;
6 \text{ Pm} = 2.6;
7 W = 60;
8 S=19;
9 Reff=0.4;
10 r=6;
11 Mf = 1;
12 CV = 42000;
13 N = 2000;
14
15 A = (22/7) * (1/4) * D * D;
16
17 IP=(Pm*100*A*L*N)/(60*2);
18 printf('indicated Power= \%3.2 f kW', IP);
19 printf('\n');
20
21 BP = (2*(22/7)*N*(W-S)*Reff)/60000;
22 printf('Brake Power= \%3.2 f kW', BP);
23 printf(' \ n');
24
25 \text{ Em=BP/IP};
26 printf('Em= %3.2 f Percent', Em*100);
27 printf(' \ n');
28
29 Ebth=(BP*3600)/(Mf*CV);
```

```
30  printf('Ebth= %3.2 f Percent', Ebth*100);
31  printf('\n');
32
33  Eith=Ebth/Em;
34  printf('Eith= %3.2 f Percent', Eith*100);
35  printf('\n');
36
37  G=1.4;
38  Ea=1-[1/(r^(G-1))];
39  printf('Ea= %3.2 f Percent', Ea*100);
40  printf('\n');
41
42  Er=Ebth/Ea;
43  printf('Er= %3.2 f Percent', Er*100);
44  printf('\n');
```

Scilab code Exa 7.25.1 Example 25

```
1 clc
2 clear
3
4 IP=30;
5 N = 2500;
6 Pm = 800;
7 \text{ Em} = 0.8;
8 LD=1.5;
9 Ebth=0.28;
10 CV = 44000;
11
12 BP=IP*Em;
13 printf('Brake Power= %3.2 f kW', BP);
14 printf('\n');
15
16 Mf = (BP/(Ebth*CV));
17 printf('Mass Flow Rate= \%3.2 \,\mathrm{f}\,\mathrm{kg/hr}', Mf * 3600);
```

18 printf(' \n');

Chapter 8

Air Compressors

Scilab code Exa 8.1.1 Example 1

```
1 clc
2 clear
3
4 P1=100;
5 T1=300;
6 P2=650;
7 n=1.25;
8 r=0.05;
9
10 Ev=1-[r*(((P2/P1)^(1/n))-1)];
11 printf('Volumetric Efficiency= %2.2f Percent', Ev *100);
12 printf('\n');
```

Scilab code Exa 8.2.1 Example 2

```
1 clc
2 clear
```

```
3
4 D=0.24;
5 LN=5/6;
6 P1=100;
7 P2=1000;
8 n=1.35;
9
10 A=(22/7)*(1/4)*D*D;
11
12 IP=[n/(n-1)]*[P1*A*LN]*[((P2/P1)^((n-1)/n))-1];
13 printf('Indicated Power= %2.2 f kW', IP);
14 printf('\n');
```

Scilab code Exa 8.3.1 Example 3

```
1 clc
2 clear
4 N = 300;
5 D=0.2;
6 L=0.24;
7 P1=1.01325;
8 P2=8*1.01325;
9 n=1.35;
10 Et = 0.96;
11 Em = 0.85;
12 Vs = (22/7) * (1/4) * D* D* L;
13
14 IP=[n/(n-1)]*[P1*Vs]*[N/60]*[((P2/P1)^((n-1)/n))-1];
15 printf('Indicated Power= %2.1 f kW', IP*100);
16 printf(' \ n');
17
18 BP=IP/(Et*Em);
19 printf('Brake Power= \%2.1 \, \text{f kW'}, BP*100);
20 printf('\n');
```

Scilab code Exa 8.4.1 Example 4

```
1 clc
2 clear
4 n=1.35;
5 P1=1.013;
6 V1 = 1/60;
7 P2=7;
8 \text{ Et} = 0.85;
9 \text{ Em} = 0.9;
10
11 IP=[n/(n-1)]*[P1*100*V1]*[((P2/P1)^((n-1)/n))-1];
12 printf('Indicated Power= %2.1 f kW', IP);
13 printf(' \ n');
14
15 BP = IP / (Et * Em);
16 printf('Brake Power= %2.1 f kW', BP);
17 printf('\n');
```

Scilab code Exa 8.5.1 Example 5

```
1 clc
2 clear
3
4 n=1.2;
5 P1=1;
6 P2=6;
7 Vs=1.5/60;
8
9 IP=[n/(n-1)]*[P1*100*Vs]*[((P2/P1)^((n-1)/n))-1];
```

```
10     printf('Indicated Power= %2.1 f kW', IP);
11     printf('\n');
12     MP=6.55;
13     Em=IP/MP;
14     printf('Mechanical Efficiency= %2.1 f Percent', Em *100);
15     printf('\n');
```

Scilab code Exa 8.6.1 Example 6

```
1 clc
2 clear
4 N = 300;
5 V14=14/(2*N);
6 Vs=0.023/(1.05-0.22);
7 n=1.3;
8 P1=1.013;
9 P2=7;
10 IP=[n/(n-1)]*[P1*100*V14]*[((P2/P1)^((n-1)/n))
      -1]*[2*N/60];
11 printf('Indicated Power= %2.1 f kW', IP);
12 printf(' \ n');
13
14 T1=288;
15 T2=T1*[(P2/P1)^{(n-1)/n)};
16 printf('Delivery Temperature= %2.0 f K',T2);
17 printf('\n');
18
19 printf('Swept Volume= %2.4 f m^3', Vs);
20 printf(' \ n');
```

Scilab code Exa 8.7.1 Example 7

```
1 clc
2 clear
3
4 P1=1;
5 P2=10;
6 Vs = 0.015;
7 \text{ FAD} = 3;
8 \ Vc = Vs * 0.06;
9 n=1.3;
10 T1 = 20 + 273;
11
12 IP=[n/(n-1)]*[P1*100*3]*[((P2/P1)^((n-1)/n))-1];
13 printf('Indicated Power= %2.1 f kW', IP/60);
14 printf(' \ n');
15
16 V4=Vc*[(P2/P1)^(1/n)];
17 V1 = Vs + Vc;
18 \quad V14=0.0107;
19 RS=3/V14;
20 printf('Rotation Speed= %2.0 f RPM', RS);
21 printf('\n');
22 Tf=288;
23 Pf=101.325;
24 Vf = [P1*100*(FAD)*Tf]/[T1*Pf];
25 printf('Vf= \%2.4 \, \text{f m}^3/\text{min}', \text{Vf});
26 printf(' \ n');
27
28 \text{ Mcd=V1/(V14)};
29 printf ('Mcd = \%2.1 f', Mcd);
30 printf('\n');
```

Scilab code Exa 8.8.1 Example 8

```
1 clc
2 clear
```

```
3
4 P1=1;
5 P2=10;
6 Vs=0.014;
7 n=1.3;
8 V1=3;
9 FAD=3;
10
11 W=[n/(n-1)]*[P1*100*V1/60]*[((P2/P1)^((n-1)/n))-1];
12 printf('Power required= %2.1 f kW', W);
13 printf('\n');
14
15 RPM=FAD/Vs;
16 printf('Rotational Speed= %2.0 f rpm', RPM);
17 printf('\n');
```

Scilab code Exa 8.9.1 Example 9

```
1 clc
2 clear
4 Vs=5.665/600;
5 \text{ Vc=0.04*Vs};
6 V3=Vc;
7 n=1.3;
8 P3=5.6;
9 P2=0.97;
10 V4=V3*[(P3/P2)^(1/n)];
11 V1 = Vs + Vc;
12 \text{ Vd=V1-V4};
13 T1 = 300;
14 Tf=288;
15 P1=0.96;
16 Pf=1.01325;
17 Vf = [Tf *P1 * Vd] / [Pf *T1];
```

```
18 Mcd=V1/(Vd);
19 printf('Vf= %2.4 f m^3/cycle',Vf);
20 printf('\n');
21 printf('Mc/Md= %2.2 f ',Mcd);
22 printf('\n');
23
24 N=600;
W=[n/(n-1)]*[P1*100*Vd]*[((P3/P1)^((n-1)/n))-1];
26 IP=W*N/60;
27 printf('Indicated Power= %2.2 f kW',IP);
28 printf('\n');
```

Scilab code Exa 8.10.1 Example 10

```
1 clc
2 clear
4 	ext{ IP=15;}
5 n=1.2;
6 P1 = 100;
7 P2 = 700;
8 x=[(P2/P1)^((n-1)/n)]-1;
9 V1N = [IP*(n-1)*60]/[n*P1*x*2];
10 LN=150/2;
11 D2=V1N*4/[(22/7)*LN];
12 D=D2^0.5;
13 L=D*1.5;
14 printf('D= \%2.0 f mm', D*1000);
15 printf(' \ n');
16 printf('L= \%2.0 f mm', L*1000);
17 printf('\n');
```

Scilab code Exa 8.11.1 Example 11

```
1 clc
2 clear
3
4 P1=1;
5 P2=16;
6 n=1.3;
7 LN=100;
8 N = 350;
9 IP = 30;
10 Ev=0.95;
11
12 L=LN/N;
13 x = [((P2/P1)^((n-1)/n)) - 1];
14 V14 = [IP*(n-1)*60]/[n*P1*100*x*N];
15 Vs = V14/Ev;
16 D2=Vs*4/[(22/7)*L];
17 D=D2^0.5;
18 printf('D= \%2.0 f mm', D*1000);
19 printf('\n');
20 printf('L= %2.0 f mm', L*1000);
21 printf('\n');
```

Scilab code Exa 8.12.1 Example 12

```
1 clc
2 clear
3
4 D=0.2;
5 L=0.3;
6 Vs=(22/7)*(1/4)*D*D*L;
7 Vc=0.04*Vs;
8
9 V3=Vc;
10 P2=9;
11 P1=1;
```

```
12 n=1.3;
13 V4=V3*[(P2/P1)^(1/n)];
14 V1 = Vs + Vc;
15 W=[n/(n-1)]*[P1*100]*[V1-V4]*[((P2/P1)^((n-1)/n))
      -1];
16 R = 0.287;
17 T1 = 15 + 273;
18 Md = [P1*(V1-V4)*100]/[R*T1];
19 Wpkg=W/Md;
20 printf ('Word done per kg: %3.2 f kJ/kg of air', Wpkg);
21 printf('\n');
22
23 T2=T1*[(P2/P1)^((n-1)/n)];
24 G = 1.4;
25 Q = [(G-n)/(G-1)] * [(R*(T1-T2))/(n-1)];
26 printf('Heat Transfereed: %3.2 f kJ/kg',Q);
27 printf(' \ n');
28
29 \text{ Pm=W/Vs};
30 printf ('Mean Effective Pressure: %3.2 f kPa', Pm);
31 printf('\n');
32
33 Mac = V1/(V1 - V4);
34 printf ('Mass of air compressed to delivered: \%3.2 f'
      ,Mac);
35 printf(' \ n');
36
37 \text{ Tf} = \text{T1};
38 Pf=101.325;
39 Vf = [P1*100*(V1-V4)*Tf]/[Pf*T1];
40 RPM=500;
41 Vf = Vf * RPM;
42 printf ('FAD at standard condition: \%3.2 f m^3/min', Vf
      );
43 printf(' \ n');
44
45 IP=[W*RPM]/60;
46 Etrans=0.92;
```

```
47 Emech = 0.85;
48 Emotor=0.75;
49 MP=IP/[Etrans*Emech*Emotor];
50 printf('Motor Power: %3.2 f kW', MP);
51 printf(' \ n');
52
53 \text{ MAC=Md*RPM};
54 printf('Mass of air compressed: %3.2 f kg/min', MAC);
55 printf('\n');
56
57 \quad ACC = MAC * Mac;
58 printf('Air compressed in cylinder: %3.2 f kg/min',
      ACC);
59 printf('\n');
60
61 printf ('End Temperature: %3.2 f K', T2);
62 printf(' \ n');
```

Scilab code Exa 8.13.1 Example 13

```
1 clc
2 clear
3
4 Vs=0.015;
5 Vc=0.06*Vs;
6 V3=Vc;
7 n=1.3;
8 P2=10;
9 P1=1;
10 N=280;
11
12 V4=V3*[(P2/P1)^(1/n)];
13 printf('V4: %3.4 f m^3/cycle', V4);
14 printf('\n');
15 printf('V3: %3.4 f m^3/cycle', V3);
```

Scilab code Exa 8.14.1 Example 14

```
1 clc
2 clear
4 P2=6;
5 P1 = 0.96;
6 n=1.3;
7 \text{ CV} = 0.04;
9 Ev = [1 - [CV * [((P2/P1)^(1/n)) - 1]]] * 100;
10 printf ('Clearance Volumetric Efficiency: %3.1 f
       Percent', Ev);
11 printf(' \ n');
12
13 D=0.09;
14 L=0.1;
15 Vs = (22/7) * (1/4) * (D*D*L);
16 \ Vc = 0.04 * Vs;
17 V4=Vc*[(P2/P1)^(1/n)];
18 V1 = Vc + Vs;
19 EDV = V1 - V4;
```

```
20 printf ('Effective Displacement Volume: %3.5 f m^3',
      EDV);
21 printf('\n');
22
23 T1=313;
24 Tf = 293;
25 \text{ Pf} = 1;
26 Vf = [(P1*(EDV)*Tf)]/[T1*Pf];
27 N = 410;
28 \text{ FAD=Vf*N*2*60};
29 printf('Free air delivered: \%3.2 \,\mathrm{f}\,\mathrm{m}^3',FAD);
30 printf('\n');
31
32 W=[n/(n-1)]*[P1*100*(V1-V4)]*[((P2/P1)^((n-1)/n))
      -1];
33 IP=W*2*N/60;
34 printf('Indicated Power: %3.2 f kW', IP);
35 printf(' \ n');
```

Scilab code Exa 8.15.1 Example 15

```
1 clc
2 clear
3
4 P1=1;
5 P2=5;
6 T1=27+273;
7 m=1;
8 R=0.287;
9
10 W1=m*R*T1*(log(P2/P1));
11 printf('Work in isothermal process: %3.1 f kJ', W1);
12 printf('\n');
13
14 G=1.4;
```

```
15 W2=[G/(G-1)]*[m*R*T1]*[((P2/P1)^((G-1)/G))-1];
16 printf('Work in isentropic process: %3.0 f kJ', W2);
17 printf('\n');
18
19 n=1.25;
20 W3=[n/(n-1)]*[m*R*T1]*[((P2/P1)^((n-1)/n))-1];
21 printf('Work in polytropic process: %3.1 f kJ', W3);
22 printf('\n');
```

Scilab code Exa 8.16.1 Example 16

```
1 clc
2 clear
3
4 IP=41;
5 P1=1;
6 T1 = 17 + 273;
7 P2=7;
8 N = 100;
9 n=1.2;
10
11 L=150/[2*N];
12 V1 = (22/7) * (1/4) * (L); //Along with D^2
13 W=[n/(n-1)]*[P1*100*V1]*[((P2/P1)^((n-1)/n))-1];
14 D2=[IP*60]/[W*2*N];
15 D=sqrt(D2);
16 printf('D: %3.3 f m',D);
17 printf('\n');
```

Scilab code Exa 8.17.1 Example 17

```
1 clc
2 clear
```

```
3
4 D=0.15;
5 L=0.2;
6 P1=1;
7 T1 = 17 + 273;
8 P2=7;
9 N = 100;
10 R = 0.287;
11 V1 = (22/7) * (1/4) * D * D * L;
12 m=[P1*100*V1]/[R*T1];
13 Mpm=m*N;
14 n=1.25;
15
16 IP=[n/(n-1)]*[P1*100*V1]*[((P2/P1)^((n-1)/n))-1]*[N
      /60];
17 printf('Mass/min: %3.1 f Mpm', Mpm);
18 printf('\n');
19
20 printf('Indicated Power: %3.1 f kW', IP);
21 printf(' \ n');
22
23 T2=T1*[(P2/P1)^((n-1)/n)];
24 printf('T2: %3.1 f K',T2);
25 printf(' \ n');
```

Scilab code Exa 8.18.1 Example 18

```
1 clc
2 clear
3
4 D=0.15;
5 N=100;
6 L=0.2;
7 P1=1;
8 T1=27+273;
```

```
9 P2=6;
10 n=1.25;
11
12 Vs = (22/7) * (1/4) * D * D * L;
13 Vc = 0.05 * Vs;
14 V1 = Vs + Vc;
15 V4=Vc*[(P2/P1)^(1/n)];
16
17 IP = [n/(n-1)] * [P1 * 100 * (V1 - V4)] * [((P2/P1)^((n-1)/n))
       -1];
18 IPf = IP ** (N/60)
19 printf('IP: %3.2 f kJ', IPf);
20 printf('\n');
21
22 \text{ Pm=IP/Vs};
23 printf('Mean Effective Pressure: %3.2 f kN/m^2', Pm);
24 printf(' \ n');
```

Scilab code Exa 8.19.1 Example 19

```
1 clc
2 clear
3
4 n=1.2;
5 m=5;
6 R=0.287;
7 T2=107+273;
8 T1=27+273;
9 IP=[n/(n-1)]*[m/60]*[R*(T2-T1)];
10 printf('Air Power: %3.2 f kW', IP);
11 printf('\n');
12
13 BP=14;
14 Em=IP*100/BP;
15 printf('Mechanical Efficiency: %3.0 f Percent', Em);
```

```
16 printf(' \ n');
```

Scilab code Exa 8.20.1 Example 20

```
1 clc
2 clear
3
4 V1 = 50;
5 P1=1;
6 P2=5.5;
7 n=1.3;
8 \text{ Em} = 0.82;
10 IP=[n/(n-1)]*[P1*100*V1]*[((P2/P1)^((n-1)/n))
      -1] * [1/60];
11 BP = IP / Em;
12
13 printf('IP: %3.1 f kW', IP);
14 printf(' \ n');
15 printf('BP: %3.1 f kW', BP);
16 printf(' \ n');
17
18 IsoP=P1*100*V1*[log(P2/P1)]*(100/60);
19 Eo=IsoP/BP;
20 printf('Isothermal Efficiecy: %3.1f Percent', Eo);
21 printf(' \ n');
```

Scilab code Exa 8.21.1 Example 21

```
1 clc
2 clear
3
4 P1=1;
```

```
5 P2=5.5;
6 T1=27+273;
7 Pa=1.01325;
8 Ta=17+273;
9 C=0.06;
10 n=1.3;
11
12 Ev=[(P1*Ta)/(Pa*T1)]*[1+C-(C*((P2/P1)^(1/n)))];
13 printf('Volumetric Efficiency: %3.0 f Percent', Ev *100);
14 printf('\n');
```

Scilab code Exa 8.22.1 Example 22

```
1 clc
2 clear
3
4 V14=7.5;
5 P1=1;
6 T1 = 27 + 273;
7 P2=5.5;
8 n=1.3;
9 C=0.06;
10
11 T2=T1*[(P2/P1)^{(n-1)/n)];
12 printf('T2: %3.1 f K',T2);
13 printf('\n');
14
15 Ev=1+C-[C*((P2/P1)^((1/n)))];
16 printf('Vol Eff: %3.1 f Percent', Ev*100);
17 printf(' \ n');
18
19 AP = [n/(n-1)] * [P1 * 100 * V14/60] * [((P2/P1)^((n-1)/n))
20 printf('Air Power: %3.1 f kW', AP);
```

```
21 printf('\n');
22
23 Em=0.9;
24 BP=AP/Em;
25 printf('BP: %3.1 f kW', BP);
26 printf('\n');
27
28 Emot=0.96;
29 EMC=BP/Emot;
30 printf('Electric Motor Capacity: %3.1 f kW', EMC);
31 printf('\n');
```

Scilab code Exa 8.23.1 Example 23

```
1 clc
2 clear
4 V1=5;
5 P1=1;
6 P2=5;
7 n=1.25;
8 \text{ Em} = 0.9;
9 IP=[n/(n-1)]*[P1*100*V1/60]*[((P2/P1)^((n-1)/n))-1];
10 SP = IP / Em;
11 printf('Shaft Power: %3.1 f kW', SP);
12 printf('\n');
13
14 IsoP=P1*100*V1*(log(P2/P1))*(1/60);
15 Eo=IsoP/SP;
16 printf('Overall Efficiency: %3.0f Percent', Eo*100);
17 printf('\n');
```

Scilab code Exa 8.24.1 Example 24

```
1 clc
2 clear
3
4 V1 = 25;
5 P1=1;
6 P2=7;
7 N = 460;
8 \text{ Em} = 0.8;
9 Ev=0.76;
10 Ei = 0.81;
11
12 IsoP=P1*100*V1*(log(P2/P1));
13 IndP=IsoP/Ei;
14 Vs = V1/Ev;
15 Pm=IndP/Vs;
16 BP=IndP/(3600*Em);
17
18 printf('Mean Effective Pressure: %3.2f bar', Pm/100);
19 printf('\n');
20
21 printf('BP: %3.2 f kW', BP);
22 printf(' \ n');
```

Scilab code Exa 8.25.1 Example 25

```
1 clc
2 clear
3
4 Va=3;
5 Pa=1;
6 Ta=17+273;
7 P2=8.2;
8 N=300;
9 n=1.35
10 LD=1.2;
```

```
11 Em = 0.9;
12 \quad C=0.05;
13
14 P1=Pa-0.05;
15 T1=Ta+10;
16 V14=[Pa*Va*T1]/[P1*Ta];
17
18 IP=[n/(n-1)]*[P1*100*V14/60]*[((P2/P1)^((n-1)/n))
      -1];
19 BP = IP / Em;
20 printf('BP: %3.1 f kW', BP);
21 printf('\n');
22
23 Ev=1+C-[C*((P2/P1)^(1/n))];
24 printf ('Volumetric Efficiency: %3.1f Percent', Ev
      *100);
25 printf(' \ n');
26
27 \text{ Vs} = (22/7)*(1/4)*LD;
28 \quad VsMin=Vs*2*N;
29 D3=V14/[VsMin*Ev];
30 D=D3^(1/3);
31 printf('Cylinder Diameter: %3.0 f mm', D*1000);
32 \text{ printf}(' \setminus n');
```

Scilab code Exa 8.26.1 Example 26

```
1 clc
2 clear
3
4 V1=1;
5 P1=1.013;
6 T1=15+273;
7 P2=7;
8 R=0.287;
```

```
9 n=1.35;
10
11 m = [P1*100*V1]/[R*T1];
12 printf('Mass of air per minute: %3.1 f kg',m);
13 printf('\n');
14
15 T2=T1*[((P2/P1)^((n-1)/n))];
16 printf('T2: %3.1 f K', T2);
17 printf('\n');
18
19 IP=[n/(n-1)]*[P1*100*V1/60]*[((P2/P1)^((n-1)/n))-1];
20 printf('IP: %3.1 f kW', IP);
21 printf('\n');
22
23 IsoP=P1*100*V1*(1/60)*\log(P2/P1);
24 Ei=IsoP/IP;
25 printf('Isothermal Efficiency: %3.0f Percent', Ei
      *100);
26 printf(' \ n');
```

Scilab code Exa 8.27.1 Example 27

```
1 clc
2 clear
3
4 P1=1.013;
5 T1=15+273;
6 P2=7;
7 FAD=0.3;
8 G=1.4;
9
10 IP=[G/(G-1)]*[P1*100*FAD/60]*[((P2/P1)^((G-1)/G)) -1];
11 printf('For Isentropic process \n');
12 printf('IP: %3.1 f kW', IP);
```

```
13 printf('\n');
14
15 T2=T1*[(P2/P1)^{(G-1)/G)};
16 printf('T2: %3.0 f K',T2);
17 printf('\n');
18
19 printf('For Reversible Isothermal process \n');
20 IP=P1*100*FAD*(1/60)*[log(P2/P1)];
21 printf('IP: %3.3 f kW', IP);
22 printf(' \ n');
23
24 T2 = T1;
25 printf('T2: %3.0 f K',T2);
26 printf(' \ n');
27
28 printf('For Polytropic process \n');
29 n = 1.25
30 IP=[n/(n-1)]*[P1*100*FAD/60]*[((P2/P1)^((n-1)/n))
31 printf('IP: %3.3 f kW', IP);
32 \text{ printf}(' \ ' \ ');
33
34 T2=T1*[(P2/P1)^((n-1)/n)];
35 printf('T2: \%3.2 \text{ f K',T2});
36 printf('\n');
```

Scilab code Exa 8.28.1 Example 28

```
1 clc
2 clear
3
4 V1=94;
5 P1=1;
6 T1=25+273;
7 P2=9;
```

```
8
9 printf('For isothermal process \n');
10 T2=T1;
11 printf('T2: %3.0 f K',T2);
12 printf('\n');
13
14 P=P1*100*V1*log(P2/P1);
15 printf('Power required: %3.0 f kW', P/60);
16 printf('\n');
17
18 \quad Q=P;
19 printf('Heat Rejected: %3.0 f KW',Q/60);
20 printf(' \ n');
21
22 printf('\n For adiabatic process \n');
23 G = 1.4;
24 T2=T1*[(P2/P1)^((G-1)/G)];
25 printf('T2: %3.0 f K',T2);
26 printf('\n');
27
28 P = [G/(G-1)] * [P1 * 100 * V1/60] * [((P2/P1)^((G-1)/G)) - 1];
29 printf('Power required: %3.0 f kW',P);
30 printf(' \ n');
31
32 \quad Q = 0;
33 printf('Heat Rejected: %3.0 f kW',Q);
34 printf('\n');
35
36 printf('\n For adiabatic process \n');
37 n=1.25;
38 T2=T1*[(P2/P1)^((n-1)/n)];
39 printf('T2: \%3.0 \, \text{f K'}, T2);
40 printf(' \ n');
41
42 P=[n/(n-1)]*[P1*100*V1/60]*[((P2/P1)^((n-1)/n))-1];
43 printf('Power required: %3.0 f kW',P);
44 printf('\n');
45
```

```
46 R=0.287;

47 Cp=1.005;

48

49 m=[P1*100*V1]/[R*T1];

50 H=m*(1/60)*Cp*(T2-T1);

51 Q=H-P;

52 printf('Heat Rejected: %3.0 f kW',Q);

53 printf('\n');
```

Scilab code Exa 8.29.1 Example 29

```
1 clc
2 clear
3
4 P1=1;
5 P2=12;
6 n=1.3;
7 N = 350;
8 L=180/(2*N);
9 IP = 30;
10 Ev=0.92;
11
12 W=[n/(n-1)]*[P1*100]*[((P2/P1)^((n-1)/n))-1];
      with (V1-V4)
13 V14 = [IP*60] / [N*W];
14 Vs = V14/Ev;
15 D2=Vs*4/[(22/7)*L];
16 D = sqrt(D2);
17 printf('D: %3.3 f m',D);
18 printf(' \ n');
19 printf('L: %3.3 f m',L);
20 printf(' \ n');
```

Scilab code Exa 8.30.1 Example 30

```
1 clc
2 clear
3
4 m = 1;
5 P1=1;
6 P2=5;
7 T1 = 27 + 273;
8 n=1.25;
9 R = 0.287;
10
11 W=m*R*T1*log(P2/P1);
12 printf ('Work Done for Isothermal Process: %3.2 f kJ/
      kg \ \ n \ ;
13 printf(' \ n');
14
15 G=1.4;
16 W = [G/(G-1)] * [m*R*T1] * [((P2/P1)^((G-1)/G)) - 1];
17 printf ('Work Done for Isentropic Process: %3.2 f kJ/
      kg \ \ n \ ;
18 printf(' \ n');
19
20 W=[n/(n-1)]*[m*R*T1]*[((P2/P1)^((n-1)/n))-1];
21 printf ('Work Done for Polytropic Process: %3.2 f kJ/
      kg \ \ n \ ;
22 printf(' \ n');
```

Scilab code Exa 8.31.1 Example 31

```
1 clc
2 clear
3
4 D=0.15;
5 L=0.3;
```

```
6 P1=1;
7 T1 = 27 + 273;
8 P2=8;
9 N = 120;
10 G=1.4;
11 R=0.287;
12 Vs = (22/7)*(1/4)*D*D*L;
13
14 m = [P1*100*Vs]/[R*T1];
15 printf('Mass of air compressed per cycle: %3.4 f kJ/
      cycle ',m);
16 printf(' \ n');
17
18 W = [G/(G-1)] * [P1*100*Vs] * [((P2/P1)^((G-1)/G)) -1];
19 printf('Work required per cycle: \%3.3\,\mathrm{f} kJ/cycle ',W)
20 printf(' \ n');
21
22 P = (W*N)/60;
23 printf('Power required to drive compressor: %3.2 f kJ
      /cycle ',P);
24 printf(' \ n');
```

Chapter 9

Pumps

Scilab code Exa 9.1.1 Example 1

```
1 clc
2 clear
3
4 D=0.3;
5 L=0.6;
6 N = 60;
7 Hs = 5;
8 \text{ Hd} = 10;
9 \text{ Ep=0.8};
10 Qa=0.075;
11
12 A = (22/7) * (1/4) * D*D;
13 Rho=1000;
14 g=9.81;
15
16 F1=Rho*g*Hs*A;
17 F2=Rho*g*Hd*A;
18
19 TF=F1+F2;
20 printf('Total Force Required: %2.2 f kN', TF/1000);
21 printf(' \ n');
```

```
22
23 Q=(2*L*A*N)/60;
24 Qa=0.075;
25 Slip=(Q-Qa)/Q;
26 printf('Percentage Slip: %2.2 f Percent', Slip*100);
27 printf('\n');
28
29 Cd=Qa/Q;
30
31 P=(Rho*g*Qa*(Hs+Hd))/Ep;
32 printf('Power input: %2.2 f kW', P/1000);
33 printf('\n');
```

Scilab code Exa 9.2.1 Example 2

```
1 clc
2 clear
3
4 Qa=0.025;
5 Hm=20;
6 L=0.4;
7 D=0.3;
8
9 A=(22/7)*(1/4)*D*D;
10 Slip=0.02;
11 Q=25/[1000*(1-Slip)];
12
13 N=(Q*60)/(L*A);
14
15 printf('Speed of Pump: %2.2 f RPM',N);
16 printf('\n');
```

Scilab code Exa 9.3.1 Example 3

```
1 clc
2 clear
3
4 Hs = 32;
5 N = 1450;
6 Eff=0.85;
7 \quad Q = 0.05;
8 \text{ Hfs=1};
9 Hfd=6;
10 Hm=Hs+Hfd+Hfs;
11 Rho=1000;
12 g=9.81;
13
14 P=[Rho*g*Q*Hm]/Eff;
15 printf('Power Consumed: %2.2 f kW', P/1000);
16 printf(' \ n');
```

Scilab code Exa 9.4.1 Example 4

```
1 clc
2 clear
3
4 Pm = 25;
5 \text{ Em} = 0.9;
6 \quad Q = 0.063;
7 Hs=4;
8 \text{ Hd} = 25;
9 Rho=1000;
10 Hm = Hs + Hd;
11 g=9.81;
12
13 Ph=Rho*g*Q*Hm/1000;
14 Ps = Em * Pm;
15 Ep=Ph/Ps;
16
```

```
17 printf('Efficiency of Pump: \%2.2\,\mathrm{f} Percent', Ep*100); 18 printf('\n');
```

Chapter 13

Transmission of Motion and Power

Scilab code Exa 13.1.1 Example 1

```
1 clc
2 clear
3
4 N1=250;
5 D1=53;
6 D2=32;
7
8 N2=N1*(D1/D2);
9 printf('Speed of shaft: %2.2 f RPM', N2);
10 printf('\n');
```

Scilab code Exa 13.2.1 Example 2

```
1 clc
2 clear
3
```

```
4 D1=600;
5 D2 = 300;
6 \text{ N1} = 100;
7 VR = D1/D2;
8 \text{ N2=VR*N1};
10 printf('Case One \n');
11 printf ('Velocity Ratio= \%2.2 \, \text{f}', VR);
12 printf('\n');
13 printf('Speed of driven shaft= \%2.2 f RPM', N2);
14 printf('\langle n \rangle n');
15
16 printf('Case Two \n');
17 VR = (D1+5)/(D2+5);
18 N2 = VR * N1;
19 printf('Velocity Ratio= %2.2 f', VR);
20 printf('\n');
21 printf('Speed of driven shaft= %2.2 f RPM', N2);
22 printf('\n\n');
23
24 printf('Case Three n');
25 S = 4;
26 VR = [(D1+5)/(D2+5)] * [(100-S)/100];
27 \text{ N2=VR*N1};
28 printf('Velocity Ratio= %2.2 f', VR);
29 printf('\n');
30 printf('Speed of driven shaft= \%2.2 f RPM', N2);
31 printf('\langle n \rangle n');
```

Scilab code Exa 13.3.1 Example 3

```
1 clc
2 clear
3
4 D1=0.3;
```

```
5 D2=0.2;
6 C=3;
7
8 L1=[(22/7)*(1/2)*(D1+D2)]+[((D1+D2)^2)/(4*C)]+(2*C);
9 L2=[(22/7)*(1/2)*(D1+D2)]+[((D1-D2)^2)/(4*C)]+(2*C);
10
11 L=L2-L1;
12 printf('The belt length is to be reduced by %2.4 f mm ',(0-L)*1000);
13 printf('\n');
```

Scilab code Exa 13.4.1 Example 4

```
1 clc
2 clear
3
4 D=1;
5 P = 5000;
6 N = 250;
7 \text{ Mew=0.25};
8 \text{ PP} = 20;
9 Theta=170*(22/7)*(1/180);
10 V = ((22/7) * D * N) / 60;
11
12 T12 = exp(Mew*Theta) - 1;
13 T2=(P/(V*T12));
14 T1 = (T12 + 1) * T2;
15 \text{ W=T1/PP};
16
17 printf('Width of belt= \%2.2 f mm', W);
18 printf('\n');
```

Scilab code Exa 13.5.1 Example 5

```
1 clc
2 clear
3
4 N1=1000;
5 Z1=30;
6 Z2=45;
7 Z3=75;
8
9 N13=Z3/Z1;
10 N3=N1/N13;
11
12 printf('Velocity Ratio of gear train= %2.1f ',N13);
13 printf('\n');
14 printf('N3= %2.1f RPM',N3);
15 printf('\n');
```

Scilab code Exa 13.6.1 Example 6

```
1 clc
2 clear
3
4 Na=600;
5 Za=25;
6 Zb=50;
7 Zc=20;
8 Zd=40;
9 Nad=(Zb/Za)*(Zd/Zc);
10 Nd=Na/Nad;
11
12 printf('Speed of Output Shaft= %2.1 f RPM',Nd);
13 printf('\n');
```