Paolo Sebastiani

Práctica final

Serie mensual

Llegadas de clientes a lugares de alojamiento en Italia

DESCRIPCIÓN DE LA SERIE TEMPORAL

 Claramente, se viaja mucho más en los meses de verano que en los de invierno

- Vamos a trabajar con la serie de las llegadas de clientes a lugares de alojamiento en Italia, fuente: ISTAT
- La periodicidad es mensual, y el periodo es 1995m01-2024m11.
- Presenta evolutividad: no tiene una media constante a lo largo de la serie (parte regular) ni por meses (parte estacional), por tanto, no hay estacionariedad.
- Sigue una tendencia alcista (ligeramente no lineal) hasta 2020 (año de la crisis Covid, en el que los viajes a Italia fueron muy limitados)
- A partir de 2021, empieza a crecer de nuevo, volviendo a los niveles anteriores a la pandemia
- Presenta un claro comportamiento estacional (cada año se repite el mismo patrón), pero las medias de los distintos meses son diferentes (no estacionariedad)

TRANSFORMACIÓN LOGARÍTMICA DE LA SERIE

- Como era de esperar, la variabilidad es ahora mucho más homogénea
- Destacan aún más los valores atípicos de 2020

ESTIMACIÓN DE UNA TENDENCIA DETERMINÍSTICA

Dependent Variable: LOG(X)

Method: Least Squares

Date: 02/13/25 Time: 19:02

Sample (adjusted): 1990M01 2024M11

Included observations: 419 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C T	15.40893 0.001396	0.054332 0.000225	283.6093 6.205951	0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.084550 0.082355 0.557065 129.4042 -348.3873 38.51383 0.000000	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watso	nt var terion ion n criter.	15.70077 0.581525 1.672493 1.691767 1.680112 0.367737

- Estimemos ahora una tendencia lineal del tipo $\log X_t = \alpha + \beta t + u_t$, donde la tendencia será: $T = \alpha + \beta t$ (α es la constante, β es la pendiente y t es la variable tiempo que va de 1 a 444)
- Los coeficientes ($\alpha \approx 15{,}41~{\rm y}~\beta \approx 0{,}0014$) son estadísticamente significativos
- El índice R^2 es 0,08: muy bajo
- El estadístico F es bastante elevado (es decir, el modelo conjuntamente es significativo)
- Nos dan la desviación típica de los residuos (0,557)
- Nos da el estadístico Durbin-Watson, que mide correlación de orden 1, y es igual a 0,37. Dado que el valor está muy lejos de 2, entonces los residuos están autocorrelacionados (correlación de primer orden), y se violan los supuestos de MLG

ESTIMACIÓN DE UNA TENDENCIA DETERMINÍSTICA - RESIDUOS

- Es evidente que el modelo lineal (en verde) no capta la estacionalidad de la serie (en naranja), y de hecho luego vamos a estimar un modelo que capture la estacionariedad
- Se observa claramente que los residuos no tienen una media constante a lo largo de toda la serie, y que presentan una fuerte ciclicidad (que el modelo lineal no puede captar)
- Esto implica que los residuos no son independientes (como sugería Durbin-Watson), por lo que se incumplen los supuestos del modelo MLG

ESTIMACIÓN DE UNA ESTACIONALIDAD DETERMINÍSTICA

Dependent Variable: LOG(X)

Method: Least Squares (Gauss-Newton / Marquardt steps)

Date: 02/13/25 Time: 19:03

Sample (adjusted): 1990M01 2024M11 Included observations: 419 after adjustments

LOG(X)=C(1)+C(2)*T+C(3)*(@SEAS(1)-@SEAS(12))+C(4)*(@SEAS(2)-

@SEAS(12))+C(5)*(@SEAS(3)-@SEAS(12))+C(6)*(@SEAS(4)-@SEAS(12))+C(7)*(@SEAS(5)-@SEAS(12))+ C(8)*(@SEAS(6)-@SEAS(12))+C(9)*(@SEAS(7)-@SEAS(12))+ C(10)*(@SEAS(8)-

@SEAS(12))+C(11)*(@SEAS(9)-@SEAS(12))+ C(12)*(@SEAS(10)-

@SEAS(12))+C(13)*(@SEAS(11)-@SEAS(12))

	Coefficient	Std. Error	t-Statistic	Prob.
C(1)	15.41430	0.036981	416.8158	0.0000
C(2)	0.001366	0.000153	8.916725	0.0000
C(3)	-0.503573	0.061359	-8.206932	0.0000
C(4)	-0.406260	0.061358	-6.621168	0.0000
C(5)	-0.247427	0.061356	-4.032614	0.0001
C(6)	-0.062402	0.061355	-1.017054	0.3097
C(7)	0.146504	0.061355	2.387813	0.0174
C(8)	0.385621	0.061355	6.285110	0.0000
C(9)	0.599451	0.061355	9.770224	0.0000
C(10)	0.674756	0.061355	10.99749	0.0000
C(11)	0.348177	0.061356	5.674656	0.0000
C(12)	0.007651	0.061358	0.124694	0.9008
C(13)	-0.503260	0.061359	-8.201835	0.0000
R-squared	0.587268	Mean depend	lent var	15.70077
Adjusted R-squared	0.575069	S.D. depende	nt var	0.581525
S.E. of regression	0.379077	Akaike info cri	terion	0.928381
Sum squared resid	58.34202	Schwarz criter	rion	1.053661
Log likelihood	-181.4959	Hannan-Quin	0.977902	
F-statistic	48.14085	Durbin-Watso	n stat	0.387872
Prob(F-statistic)	0.000000			

- Los coeficientes de la recta, C(1) y C(2) siguen siendo significativos
- Sólo el coeficiente C(6), referido al mes de abril, es el único no significativo. No obstante, no podemos eliminarlo porque los coeficientes estacionales están muy correlacionados
- El índice R^2 es 0,587: no es muy alto, pero es enormemente mayor que lo del modelo con tendencia determinista
- El estadístico F es bastante elevado (es decir, el modelo conjuntamente es significativo)
- Ahora la desviación típica de los residuos es menor (0,38 vs 0,557)
- El estadístico D-W sigue distando mucho de 2 (los residuos están autocorrelacionados en primer orden)
- El valor de la función de verosimilitud aumenta (-181,5 vs -348,38)
- Los criterios de información mejoran:

AIC (Akaike): 0,93 vs 1,67

• BIC (Schwarz): 1,05 vs 1,69

ESTIMACIÓN DE UNA ESTACIONALIDAD DETERMINÍSTICA - RESIDUOS

- Ahora la tendencia estimada (en verde) sigue mucho más estrechamente la serie original (en naranja)
- Sin embargo, los residuos siguen mostrando una fuerte ciclicidad anual (estacionalidad), y por tanto correlación, y además están sistemáticamente por encima o por debajo de cero. Esto indica que el modelo sigue sin captar plenamente el verdadero proceso de generación de datos (aún queda «información por extraer»)
- En cuanto a la parte estacionaria: este modelo consigue captarla (ciertamente mejor que el modelo lineal), sin embargo, se puede mejorar para que los residuos sean ruido blanco
- Así pues, aunque es mejor que el modelo de tendencia lineal, se vuelven a incumplir las hipótesis del MLG

ESTIMACIÓN DE UNA ESTACIONALIDAD DETERMINÍSTICA - RESIDUOS

- Cortando la serie hasta 2019, los resultados son más claros
- Es evidente que los residuos siguen mostrando una fuerte estacionalidad, y que tienen una tendencia alcista a lo largo de todo el periodo muestral
- Así que podemos confirmar que no se cumplen las hipótesis del MLG

ESTIMACIÓN DE UNA ESTACIONALIDAD DETERMINÍSTICA - PREDICCIONES

ESTIMACIÓN DE UNA ESTACIONALIDAD DETERMINÍSTICA - PREDICCIONES

- Modelo estimado con información hasta 2024m11
- La predicción mantiene la fuerte estacionalidad de la serie
- Además, la amplitud de estas fluctuaciones estacionales parece coherente con las últimas observaciones

Modelos estocásticos

SERIE MENSUAL – DIFERENCIA REGULAR (1-B)lnx

- La primera diferencia de los logaritmos es una aproximación a las tasas de crecimiento
- Al aplicar una diferencia, se observa que la serie transformada oscila en torno a un valor medio, que en este caso es igual a cero
- Por tanto, la serie transformada presenta estacionariedad en media, en la parte regular
- Ahora vamos a cortar la serie eliminando el valor atípico de la pandemia, para analizar con más detalle el comportamiento de la serie

SERIE MENSUAL – DIFERENCIA REGULAR (1-B)lnx

Enero 1990 – Febrero 2020

- La estacionalidad queda acentuada
- Sigue mostrando el patrón sistemáticamente repetitivo de los meses en cada año, pero no hay igualdad de media por meses
- Además, no se observa que todos los meses sean sistemáticamente iguales cada año (no se observa, en principio, un comportamiento determinístico estacional)
- Entonces, no hay estacionariedad en la parte estacional

SERIE MENSUAL – DIFERENCIA ESTACIONAL $(1-B^{12})$ lnx

- La diferencia estacional puede aproximarse a la tasa de crecimiento interanual (es decir, el valor de un mes es aproximadamente el cambio porcentual respecto al valor del mismo mes, pero del año anterior)
- Es difícil observar el comportamiento de la serie porque hay valores atípicos de la pandemia que influyen demasiado
- Entonces vamos a cortar la serie eliminando el valor atípico de la pandemia

15

SERIE MENSUAL – DIFERENCIA ESTACIONAL (1- B^{12})lnx

- Ahora podemos ver mejor en primer lugar que con la diferencia estacional se ha eliminado el patrón sistemático de los periodos
- Se ha eliminado también la tendencia alcista de la serie original
- Sin embargo, del gráfico parece que la media no es exactamente constante a lo largo de toda la serie
- Aunque se haya eliminado el comportamiento estacional no estacionario, no se puede afirmar que la estacionalidad se haya completamente eliminado (en el futuro podremos modelizar la parte estacional estacionaria)

16

SERIE MENSUAL – DIFERENCIA REGULAR Y ESTACIONAL $(1-B)(1-B^{12})$ lnx

Enero 1990 – Noviembre 2024

- También ahora se ve claramente que los valores atípicos de la pandemia son demasiado influyentes y no permiten analizar la serie en detalle
- Sin embargo, ya a primera vista parece que la media de la serie es constante y centrada en cero
- Vemos las series sin valores atípicos para confirmarlo

SERIE MENSUAL – DIFERENCIA REGULAR Y ESTACIONAL $(1-B)(1-B^{12})$ lnx

- Como se anticipó, está claro que la media es ahora constante e igual a cero
- Con la diferencia estacional se ha eliminado el patrón sistemático de los periodos. Se ha eliminado el comportamiento estacional no estacionario
- Se ha alcanzado estacionariedad en media tanto en la parte regular como en la parte estacional
- Sin embargo, parece que sigue habiendo muchos atípicos. Al examinarlos, se observa que la gran mayoría de ellos se refieren a los meses de marzo y abril, lo que indica que puede haber un fuerte efecto de "Semana Santa"
- De hecho, la presencia de este efecto es coherente con series relacionadas con el turismo y muy estacionales

SERIE MENSUAL ORIGINAL - CORRELOGRAMA

Date: 03/04/25 Time: 20:04 Sample (adjusted): 1990M01 2024M11

Included observations: 419 after adjustments

- Este correlograma muestra que no hay punto de corte. Las correlaciones de la muestra son muy altas, tanto en valores positivos como negativos, y decaen muy lentamente
- En la parte estacional (retardos 12, 24 y 36) se observan, igualmente, valores muy elevados que apenas disminuyen
- En definitiva, el correlograma muestra el comportamiento de una serie no estacionaria

SERIE MENSUAL EN LOGARITMOS - CORRELOGRAMA

Date: 03/04/25 Time: 20:05 Sample (adjusted): 1990M01 2024M11 Included observations: 419 after adjustments

- Con los logaritmos, las autocorrelaciones muestrales tienen un valor algo más bajo, pero son sin embargo muy significativas y decaen lentamente
- Por tanto, podemos sacar las mismas conclusiones que para el correlograma de la serie original, estableciendo que sigue sin ser estacionaria

SERIE MENSUAL PRIMERA DIFERENCIA REGULAR - CORRELOGRAMA

Date: 03/04/25 Time: 20:05 Sample (adjusted): 1990M02 2024M11 Included observations: 418 after adjustments

- Las correlaciones en la parte regular no parecen ser atenuadas y todavía presentan valores significativos para retardos elevados
- Esto puede ser por la estacionalidad y su interacción con la parte regular. De hecho, veremos que, aplicando también la diferencia estacional, la parte regular tendrá menos estructura
- Las correlaciones estacionales (retardos 12, 24 y 36) son muy elevadas y no se atenúan, entonces no hay estacionariedad en la parte estacional
- La serie queda non estacionaria

SERIE MENSUAL DIFERENCIA ESTACIONAL - CORRELOGRAMA

Date: 03/04/25 Time: 20:06 Sample (adjusted): 1991M01 2024M11 Included observations: 407 after adjustments

- Las correlaciones en la parte regular se atenúan un poco, pero se prologan durante muchos periodos (¡el ultimo significativo es el 26°!). Es bastante claro che decaen muy lentamente, entonces sigue siendo non estacionaria en la parte regular
- Las correlaciones estacionales son significativas solo en los retardos 12 y 24, así que todavía hay una cierta dependencia estacional que intentar eliminar
- Se observa que hay correlaciones cercanas a los retardos 12 y 24 que son significativamente distintas de cero, entonces hay interacción entre la parte regular y estacional

SERIE MENSUAL PRIMERA DIFERENCIA REGULAR Y ESTACIONAL - CORRELOGRAMA

Date: 03/04/25 Time: 20:06 Sample (adjusted): 1991M02 2024M11 Included observations: 406 after adjustments

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.282	0.282	32.414	0.000
<u> </u>	<u> </u>	2	-0.248		57.677	0.000
=	i m i,	3	-0.301		94.830	0.000
= '	□ -	4		-0.255	123.42	0.000
□ ·	□ -	5	-0.190	-0.224	138.36	0.000
1 1	□ -	6	-0.004	-0.120	138.37	0.000
· 🗀		7	0.203	0.000	155.42	0.000
· 🗀	1(1	8	0.218	-0.009	175.25	0.000
· 🗀		9	0.157	0.091	185.56	0.000
· þr		10	0.080	0.119	188.25	0.000
1 (1	'Þ	11	-0.041	0.101	188.94	0.000
· ·	= -	12	-0.359	-0.250	243.27	0.000
= '	'	13	-0.203	0.107	260.61	0.000
۱ þ ۱	ļ (i ļ)	14		-0.029	262.14	0.000
' Di	ļ ' @ '	15		-0.073	265.53	0.000
۱ 🌓	! □ !	16		-0.140	265.96	0.000
۱ ۱ ۱	. • • • • • • • • • • • • • • • • • • •	17		-0.093	266.91	0.000
1 1	! □ !	18		-0.169	266.91	0.000
q '	ļ " !	:	-0.090		270.37	0.000
1 [] 1	ļ ' [!	20	-0.029		270.72	0.000
' 🏴	י ווי	21	0.069	0.048	272.78	0.000
١ 🌓 ١	<u> </u> '['	22	0.042	0.007	273.53	0.000
<u>'</u>	<u> </u>	23	-0.035	0.058	274.07	0.000
" '	!	24	-0.136		282.12	0.000
'['	! ' . "	25	-0.010	0.127	282.17	0.000
' <u>[</u>]'	'['	26		-0.024	283.47	0.000
1 1	111	27		-0.022	283.68	0.000
1 1	¶ :	28		-0.077	284.33	0.000
111	¶ .	29		-0.072	284.40	0.000
11.	9:	30		-0.071	284.42	0.000
11.	<u> </u>	31		-0.035	284.58	0.000
1] 1 .ed	' '	32		-0.009	284.73	0.000
₁Щ י ↓	([]) 	33	0.009	-0.028	286.88	0.000
:[:	l F	35		0.086 -0.022	286.89	0.000
111	∐':	36		-0.022	286.89 287.47	0.000
'4'	<u> </u>	30	-0.030	-0.210	201.41	0.000

- Las correlaciones en la parte regular se han atenuado significativamente y a medida que el retardo aumenta, estas disminuyen hasta no ser significativas
- Las correlaciones estacionales igualmente se han moderado y disminuyen significativamente.
- La correlación en el retardo 12 es alta y significativa, la del retardo 36 es definitivamente no significativa, mientras que la del retardo 24 parece estar en el límite del intervalo de confianza

Contrastes de raíces unitarias y identificación de atípicos

CONTRASTES DE RAÍCES UNITARIAS: TEST DE OCSB (1/5)

Dependent Variable: D112LX

Method: Least Squares (Gauss-Newton / Marquardt steps)

Date: 03/20/25 Time: 19:13

Sample (adjusted): 1992M02 2024M11 Included observations: 394 after adjustments

D112LX=C(1)*D1+C(2)*D2+C(3)*D3+C(4)*D4+C(5)*D5+C(6)*D6+C(7)*D7 +C(8)*D8+C(9)*D9+C(10)*D10+C(11)*D11+C(12)*D12+ C(13)*D(LX(

-1),12)+C(14)*D(LX(-12),1)+C(15)*D112LX(-1)+C(16)*D112LX(-2)

+C(18)*D112LX(-4) +C(19)*D112LX(-5)+C(26)*D112LX(-12)

	Coefficient	Std. Error	t-Statistic	Prob.		
C(1)	-0.051412	0.038255	-1.343926	0.1798		
C(2)	0.084131	0.038638	2.177429	0.0301		
C(3)	0.092591	0.040696	2.275155	0.0235		
C(4)	0.156639	0.043688	3.585414	0.0004		
C(5)	0.138395	0.046299	2.989159	0.0030		
C(6)	0.204202	0.048160	4.240049	0.0000		
C(7)	0.137804	0.045165	3.051139	0.0024		
C(8)	0.067612	0.040453	1.671378	0.0955		
C(9)	-0.246209	0.043290	-5.687372	0.0000		
C(10)	-0.246984	0.042720	-5.781443	0.0000		
C(11)	-0.377551	0.048876	-7.724682	0.0000		
C(12)	0.059014	0.038207	1.544595	0.1233		
C(13)	0.000104	0.000106	0.984773	0.3254		
C(14)	-0.734648	0.061332	-11.97824	0.0000		
C(15)	0.239509	0.038909	6.155605	0.0000		
C(16)	-0.291124	0.040197	-7.242469	0.0000		
C(18)	-0.115573	0.039864	-2.899195	0.0040		
C(19)	-0.109626	0.040230	-2.724964	0.0067		
C(26)	0.085697	0.046851	1.829133	0.0682		
R-squared	0.529473	Mean depend	dent var	3.33E-05		
Adjusted R-squared	0.506888	S.D. depende		0.305602		
S.E. of regression	0.214600	Akaike info cr		-0.193060		
Sum squared resid	17.26993	Schwarz crite	rion	-0.001307		
Log likelihood	57.03290	Hannan-Quin	in criter.	-0.117079		
Durbin-Watson stat	1.884240					

- Esto es el test de OCSB, en el que sólo se incluyeron los retrasos significativos
- Los coeficientes C(13) y C(14) son las estimaciones de β_1 y β_2 , respectivamente
- Estos son los coeficientes que comprobamos con un contraste de hipótesis conjunto
- Como hemos visto en el correlograma de la serie original, presenta un comportamiento claramente estacional y no estacionario, por lo que esperamos aceptar la hipótesis nula conjunta

CONTRASTES DE RAÍCES UNITARIAS: TEST DE OCSB (2/5)

Wald Test:

Equation: OCSB_BIS

Test Statistic	Value	df	Probability
F-statistic	71.91069	(2, 375)	0.0000
Chi-square	143.8214	2	0.0000

Null Hypothesis: C(13)=C(14)=0 Null Hypothesis Summary:

Normalized Restriction (= 0)	Value	Std. Err.	
C(13)	0.000104	0.000106	
C(14)	-0.734648	0.061332	

Restrictions are linear in coefficients.

- Con el test de Wald contrastamos $H_0: \beta_1 = \beta_2 = 0$
- Incluso a un nivel de significatividad del 1%, con un valor crítico correspondiente de 22,93, no hay evidencias para rechazar la hipótesis nula
- Volviendo entonces a observar los estadísticos t del test de OCSB (es decir, 0,98 para β_1 y -11,98 para β_2), deberíamos concluir que existe una raíz unitaria sólo en la parte regular
- Por tanto, sólo es necesario aplicar la primera diferencia a la serie en logaritmos
- Sin embargo, se trata de un resultado un tanto extraño, dada la superestacionalidad de la serie, que podría deberse a los fuertes valores atípicos del Covid

CONTRASTES DE RAÍCES UNITARIAS: TEST DE OCSB (3/5)

Sample (adjusted): 1990M02 2024M11 Included observations: 418 after adjustments

- Este es el correlograma de la serie en logaritmos tras aplicar la primera diferencia
- Las dudas se intensifican, porque es evidente que no se ha alcanzado la estacionariedad en la parte estacional
- Intentamos por tanto el test OCSB sobre la serie cortada a 2019, para excluir la incidencia de los valores atípicos fuertes del Covid

CONTRASTES DE RAÍCES UNITARIAS: TEST DE OCSB (4/5)

Sample (adjusted): 1992M04 2019M12 Included observations: 333 after adjustments

D112_LX_HASTA_2019 =C(1)*D1+C(2)*D2+C(3)*D3+C(4)*D4+C(5)*D5
+C(6)*D6+C(7)*D7+C(8)*D8+C(9)*D9+C(10)*D10+C(11)*D11+C(12)
*D12+ C(13)*D(LX_HASTA_2019(-1),12)+C(14)*D(LX_HASTA_2019(
-12),1) +C(15)*D112_LX_HASTA_2019(-1)+C(16)*D112_LX_HASTA_2
019(-2)+C(17)*D112_LX_HASTA_2019(-3)+C(18)*D112_LX_HASTA_2
019(-4) +C(19)*D112_LX_HASTA_2019(-5)+ C(26)*D112_LX_HASTA_2
2019(-12)+C(27)*D112_LX_HASTA_2019(-13)+C(28)
*D112_LX_HASTA_2019(-14)

	Coefficient	Std. Error	t-Statistic	Prob.
C(1)	-0.024945	0.009294	-2.683974	0.0077
C(2)	0.050236	0.011040	4.550290	0.0000
C(3)	0.112349	0.017411	6.452784	0.0000
C(4)	0.144344	0.020854	6.921601	0.0000
C(5)	0.055457	0.014075	3.940087	0.0001
C(6)	0.105443	0.016970	6.213385	0.0000
C(7)	0.088686	0.015415	5.753154	0.0000
C(8)	0.042729	0.011065	3.861716	0.0001
C(9)	-0.178017	0.022751	-7.824536	0.0000
C(10)	-0.169791	0.022201	-7.647869	0.0000
C(11)	-0.250566	0.031653	-7.916111	0.0000
C(12)	0.040918	0.009601	4.261754	0.0000
C(13)	6.99E-05	4.30E-05	1.625682	0.1050
C(14)	-0.520382	0.063589	-8.183563	0.0000
C(15)	-0.879074	0.055467	-15.84862	0.0000
C(16)	-0.725819	0.071101	-10.20830	0.0000
C(17)	-0.383042	0.075877	-5.048189	0.0000
C(18)	-0.217365	0.068316	-3.181779	0.0016
C(19)	-0.161198	0.051656	-3.120577	0.0020
C(26)	-0.086000	0.054351	-1.582302	0.1146
C(27)	-0.307124	0.058302	-5.267803	0.0000
C(28)	-0.265652	0.046182	-5.752336	0.0000
R-squared	0.708897	Mean depend	dent var	0.000326
Adjusted R-squared	0.689240	S.D. depende	ent var	0.079878
S.E. of regression	0.044528	Akaike info cr	iterion	-3.321596
Sum squared resid	0.616644	Schwarz crite	rion	-3.070007
Log likelihood	575.0458	Hannan-Quir	n criter.	-3.221274
Durbin-Watson stat	2.178252			

- Esto es el test de OCSB sobre la serie cortada, en el que sólo se incluyeron los retrasos significativos
- Como dijimos en el test anterior, contrastamos conjuntamente si β_1 y β_2 son igual a cero

CONTRASTES DE RAÍCES UNITARIAS: TEST DE OCSB (5/5)

Wald Test:

Equation: OCSB_HASTA_2019

Test Statistic	Value	df	Probability
F-statistic	33.50427	(2, 311)	0.0000
Chi-square	67.00855	2	0.0000

Null Hypothesis: C(13) = C(14) = 0

Null Hypothesis Summary:

Normalized Restriction (= 0)	Value	Std. Err.
C(13)	6.99E-05	4.30E-05
C(14)	-0.520382	0.063589

Restrictions are linear in coefficients.

- De nuevo, llegamos a la extraña conclusión de que existe una raíz unitaria sólo en la parte regular
- Sin embargo, tanto el estadístico F de la prueba conjunta (33,5) como el estadístico t del β_2 (-8,18) no están lejos de los valores críticos (22,93 y -6,37, respectivamente)
- Tenemos esto en cuenta, pero por ahora seguimos el resultado del test y trabajamos con la primera diferencia

Modelos con primera diferencia

IDENTIFICACIÓN DEL MODELO

Date: 03/30/25 Time: 18:59

Sample (adjusted): 1990M02 2024M11 Included observations: 418 after adjustments

- Este es el correlograma de la serie $(1 B) \log X_t$
- Es evidente que tiene mucha estructura, y es la típica de las series muy estacionales
- En cuanto a la identificación del modelo:
 - Parte regular: El correlograma parcial presenta mucha estructura, mientras que el correlograma tiene la primera correlación significativa, lo que sugiere un MA(1)
 - Parte estacional: El correlograma simple presenta mucha estructura, mientras que el correlograma parcial decae inmediatamente a cero en el retardo 24, lo que sugiere un AR(1)
 - Hay una fuerte interacción entre la parte regular y la estacional
- En conclusión, yo intentaría estimar un ARMA(0,1) para la parte regular, y un ARMA(1,0) para la parte estacional

MODELIZACIÓN DEL MODELO PROPUESTO (1/2)

Dependent Variable: D1_LX

Method: ARMA Conditional Least Squares (Gauss-Newton / Marquardt

steps)

Date: 04/11/25 Time: 18:32

Sample (adjusted): 1991M02 2024M11

Included observations: 406 after adjustments

Failure to improve likelihood (non-zero gradients) after 9 iterations Coefficient covariance computed using outer product of gradients

MA Backcast: 1991M01

Variable	Coefficient	Std. Error	t-Statistic	Prob.
AR(12) MA(1)	0.586146 0.437131	0.040500 0.044744		0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.464271 0.462945 0.249370 25.12283 -11.22612 2.027345	Mean deper S.D. depen Akaike info Schwarz cri Hannan-Qu	0.002216 0.340278 0.065153 0.084889 0.072964	
Inverted AR Roots Inverted MA Roots	.96 .4883i 4883i 44	.8348i .00+.96i 8348i	.83+.48i 0096i 83+.48i	.48+.83i 48+.83i 96

- Este es el SARIMA(0,1,1)(1,0,0)
- Los coeficientes son significativos
- El coeficiente estacional es igual a 0,59
- Analicemos los residuos para hacernos una idea más clara

MODELIZACIÓN DEL MODELO PROPUESTO (2/2)

- Está claro que aún no es un buen modelo, porque los residuos están autocorrelacionados y obviamente no puede capturar los fuertes valores atípicos del Covid
- El atípico está influyendo en todo: estimación correlogramas, etc...
- Para mejorarlo, primero tenemos que identificar con precisión los valores atípicos

Date: 04/11/25 Time: 18:39

Sample (adjusted): 1991M02 2024M11

Q-statistic probabilities adjusted for 2 ARMA terms

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
ı(h	l di	l 1	-0.014	-0 014	0.0773	
ei i	i di	:	-0.093		3.5992	
⊒ i,	i <u>⊒</u> ,	i	-0.191		18.656	0.000
<u> </u>	·	4	-0.146		27.415	0.000
= -	□ ,	5	-0.149		36.636	0.000
ıdı	İ □ i₁	6	-0.064	-0.188	38.310	0.000
ı İ Di	i di	7		-0.072	41.074	0.000
ı İ Di	i di	8	0.068	-0.090	43.017	0.000
ւիլ	[d -	9	0.047	-0.086	43.930	0.000
ı j ir	'(-	10	0.045	-0.040	44.788	0.000
· j a	<u> </u> -	11	0.088	0.057	48.058	0.000
ii ·	 	12	-0.106	-0.100	52.760	0.000
ı d ı	'd'	13	-0.072	-0.060	54.957	0.000
· -		14	0.105	0.135	59.586	0.000
1 1		15	0.003	0.026	59.590	0.000
ı ğ ı	1 1	16	-0.035	-0.003	60.096	0.000
1(1		17	-0.015	0.026	60.197	0.000
ı ğ ı	III	18	-0.033	-0.032	60.666	0.000
Щ·	ļ ⊑ ļ∙	:	-0.115		66.360	0.000
· () ·	u[·		-0.036	-0.081	66.931	0.000
1)1	(¶∗	21	0.024	-0.097	67.171	0.000
ı j ir	ļ i ļ'	22	0.053	-0.102	68.403	0.000
· 🌓	[[[]	23		-0.083	68.961	0.000
1 1	ļ □ !	24	0.005	-0.134	68.970	0.000
· •	ļ ū ļ'	25		-0.120	69.377	0.000
' ji	' '	26	0.095	0.075	73.324	0.000
₁₫ •	ļ ' ('	27	-0.053		74.542	0.000
1)1		28	0.015	0.030	74.646	0.000
([] (-0.052	0.027	75.856	0.000
' []'	יווי י	i	-0.038	0.043	76.508	0.000
' ['	'['	:	-0.049		77.554	0.000
<u> </u>	<u> </u> -	32	0.022	0.043	77.773	0.000
-	ļ □ ['	33	-0.118		83.947	0.000
' ju	<u> </u> -	34	0.089	0.012	87.500	0.000
' []	! •	35		-0.082	87.653	0.000
ı D ı	III	36	0.077	-0.072	90.337	0.000

IDENTIFICACIÓN DE ATÍPICOS

- > 362 AO (2020M02)
- > 363 TC (2020M03)
- > 364 TC (2020M04)
- > 365 AO (2020M05)
- > 366 TC (2020M06)
- > 367 TC (2020M07)
- > 369 AO (2020M09)
- > 370 LS (2020M10)
- > 371 LS (2020M11)
- > 374 AO (2021M02)
- > 376 AO (2021M04)
- > 377 LS (2021M05)
- > 378 LS (2021M06)
- > 379 LS (2021M07)
- > 383 TC (2021M11)
- > 385 TC (2022M01)
- > 390 TC (2022M06)
- > 409 LS (2024M01)

- El procedimiento automático TRAMO/SEATS identificó estos 18 valores atípicos en toda la serie
- Son de todos los 3 tipos presentes en TRAMO/SEATS, es decir "AO" (Impulso), "LS" (Escalón), "TC" (Tendencia/Impulso amortiguado)
- Salvo el último, todos se refieren al periodo Covid (y su recuperación)
- Claramente, se han identificado demasiados (por ejemplo, 9 sólo en 2020)
- Tantos atípicos y tan próximos no tiene sentido desde el punto de vista estadístico, por lo que intentaré incluir sólo los más significativos

EFECTO SEMANA SANTA Y EFECTO CALENDARIO LABORAL

- Otro resultado interesante de TRAMO/SEATS es que señala la significatividad del "efecto Semana Santa" y del "efecto calendario laboral"
- De hecho, tiene mucho sentido que los movimientos turísticos se vean influidos por la Semana Santa y los fines de semana de cada mes
- Así, inicialmente veremos los modelos sólo con la corrección de atípicos, y luego veremos si los modelos realmente mejoran al añadir estos dos efectos

Efecto Semana Santa

Para cada año, se consideran los seis días anteriores al Domingo de Pascua. Si todos los días caen en Marzo, Marzo toma el valor 1 y todos los demás meses 0, y viceversa si todos caen en Abril. Si caen en ambos meses, se pone la parte proporcional para Marzo y Abril y cero en el resto

Efecto calendario laboral

He creado una serie en la que cada mes toma un valor igual al número de Sábados+Domingos de ese mes (por tanto, de un mínimo de 8 a un máximo de 10). La razón es que los meses con mayor número de fines de semana podrían registrar más turistas

ESTIMACIÓN - ATÍPICOS

Dependent Variable: D(LOG(X),1)

Method: Least Squares Date: 04/11/25 Time: 19:19

Sample (adjusted): 1990M05 2024M11 Included observations: 415 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
I2020_M03_D1 I2020_M03_D1(-1) I2020_M03_D1(-2) I2020_M03_D1(-3) I2020_M11_D1 I2020_M11_D1(-1) I2020_M11_D1(-2) I2020_M11_D1(-3) I2021_M03_D1	-2.094671 -4.524677 -2.742937 -0.839840 -1.486169 -1.560886 -1.604345 -1.299836 -1.632227 -1.652484	0.225752 0.276488 0.276488 0.225752 0.236097 0.309123 0.345610 0.356944 0.345610 0.309123	-9.278660 -16.36482 -9.920637 -3.720199 -6.294751 -5.049402 -4.642068 -3.641562 -4.722742 -5.345716	0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0003 0.0000 0.0000
I2021_M03_D1(-1) I2021_M03_D1(-2)	-0.641847	0.236097	-2.718577	0.0068
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.456849 0.443405 0.252398 25.73669 -11.93460 1.043985	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		0.000400 0.338311 0.110528 0.217302 0.152750

- La variable dummy « l_año_mes_diferencia » toma el valor 1 en ese mes de ese año, y cero en todos los demás meses
- Todas las variables dummy se añaden con retardo (hasta que sean significativas) para representar el efecto amortiguado

Date: 04/12/25 Time: 11:01 Sample (adjusted): 1990M05 2024M11 Q-statistic probabilities adjusted for 11 dynamic regressors

- Análisis del correlograma simple y parcial
 - Parte regular: el simple tiene mucha estructura, mientras que el parcial parece tener un punto de corte al segundo retardo, entonces se propone un AR(1)
 - ▶ Parte estacional: en el simple, las correlaciones estacionales tienen valores elevados que apenas disminuyen, mientras que el parcial tiene la correlación 12 elevada y la 24 esta en el borde, entonces se propone un AR(1) o un AR(2)

VALIDACIÓN - ATÍPICOS

- Los residuos muestran una fuerte estacionalidad
- Vamos a añadir los componentes ARMA sugeridos en la diapositiva anterior
- Es interesante observar que los meses más estacionales (a la baja) caen mucho. Esto podría ser una señal de que la diferencia estacional también debe hacerse, de lo contrario las variables dummies no captan totalmente el efecto

Atípicos intervenidos

ESTIMACIÓN: MODELO DE INTERVENCIÓN #1

Dependent Variable: D(LOG(X),1)

Method: Least Squares Date: 04/12/25 Time: 11:20

Sample (adjusted): 1991M05 2024M11 Included observations: 403 after adjustments Convergence achieved after 6 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
I2020_M03_D1	-2.042493	0.074097	-27.56522	0.0000
I2020_M03_D1(-1)	-4.584703	0.089565	-51.18859	0.0000
I2020_M03_D1(-2)	-2.618020	0.087328	-29.97915	0.0000
I2020_M03_D1(-3)	-0.800636	0.065516	-12.22049	0.0000
I2020_M11_D1	-0.907139	0.068061	-13.32838	0.0000
I2020_M11_D1(-1)	-1.043438	0.088992	-11.72503	0.0000
I2020_M11_D1(-2)	-0.876780	0.099776	-8.787485	0.0000
I2020_M11_D1(-3)	-0.635422	0.103464	-6.141468	0.0000
I2021_M03_D1	-1.042174	0.106025	-9.829517	0.0000
I2021_M03_D1(-1)	-1.399881	0.098112	-14.26815	0.0000
I2021_M03_D1(-2)	-0.384098	0.076737	-5.005392	0.0000
AR(1)	-0.002853	0.023080	-0.123627	0.9017
AR(12)	0.925199	0.022961	40.29469	0.0000
R-squared	0.918958	Mean depend	ent var	0.000770
Adjusted R-squared	0.916465	S.D. depende	nt var	0.340817
S.E. of regression	0.098504	Akaike info cri	terion	-1.765705
Sum squared resid	3.784216	Schwarz criterion		-1.636707
Log likelihood	368.7895	Hannan-Quin	n criter.	-1.714635
Durbin-Watson stat	2.643921			

- Al final, he modelizado la parte regular con un AR(1) y la parte estacional con un AR(1)
- El coeficiente de la parte regular no es significativo
- El coeficiente estacional es significativo y muy grande (mucho mas del modelo sin corrección de atípicos, es decir 0,59), sugiriendo una autocorrelación estacional importante

38

Vamos a mirar los residuos

VALIDACIÓN: MODELO DE INTERVENCIÓN #1 (1/2)

Date: 04/12/25 Time: 11:21

Sample (adjusted): 1991M05 2024M11

Q-statistic probabilities adjusted for 2 ARMA terms and 11 dynamic

res	

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob*
		1 -0.326	-0.326	43.240	
ւիլ	<u> </u>	2 0.052	-0.061	44.346	
, ja		3 0.095	0.105	48.019	0.000
ı d ı		4 -0.036	0.036	48.556	0.000
ı d ı	(5 -0.060	-0.074	50.044	0.000
۱) ۱	1 1	6 0.040	-0.019	50.696	0.000
ı l ı	141	7 -0.048	-0.039	51.660	0.000
1) 1	1 11	8 0.020	0.009	51.822	0.000
ı l ı	14 1	9 -0.031	-0.028	52.224	0.000
□ '	ļ □ !	10 -0.116		57.815	0.000
' 声	! ' ■	11 0.229	0.168	79.711	0.000
<u> </u>	ļ إ	12 -0.276		111.59	0.000
1)1	ļ إ		-0.116	111.82	0.000
' []'	ļ ' <u>[</u> !		-0.018	112.81	0.000
<u>.</u>	<u> </u>	15 0.041	0.114	113.52	0.000
■ '	! <u>"</u> "	16 -0.186		128.11	0.000
٠١)	ļ " '	:	-0.122	129.72	0.000
'9'	<u>"</u> "	18 -0.051		130.80	0.000
٩٠	ļ " '	19 -0.098		134.86	0.000
'['	! <u>"</u> !		-0.077	134.89	0.000
<u>'</u> "	! ' . ₽	21 0.111	0.123	140.12	0.000
<u>"L</u>	! <u>"</u>	22 -0.070		142.24	0.000
<u>'</u> -	ļ <u>"</u>	23 0.157	0.203	152.79	0.000
<u>, </u>	ļ <u>5</u> :	24 -0.123		159.29	0.000
. <u> </u>	 	:	-0.113	159.47	0.000
∵ ₽.	<u> </u>	26 0.112	0.050	164.93	0.000
-	'1'	i	-0.011	175.29	0.000
' !! '		:	-0.087 -0.072	176.80 176.93	0.000
ſ	10 1 16 1	30 -0.067		178.87	0.000
-	<u>'</u>		-0.028	180.05	0.000
'u''	7;		-0.140	187.42	0.000
<u> </u>	i id:	33 -0.199		204.84	0.000
	i id:		-0.077	212.04	0.000
4	1 11	i	-0.077	215.43	0.000
	,	36 0.119	0.049	221.78	0.000
	'"'	130 0.119	0.049	221.70	0.000

- Los residuos muestran correlaciones estacionales significativas en el retardo 12, y en el borde en los retardos 24 y 36
- El estadístico Q es igual a 221,78 y es superior al valor en tablas de la χ^2 : no podemos aceptar la hipótesis nula de que todas las correspondientes correlaciones poblacionales son distinta de cero (entonces los residuos no son ruidos blancos)

VALIDACIÓN: MODELO DE INTERVENCIÓN #1 (2/2)

 La estacionalidad de los residuos parece eliminada, pero hay valores atípicos muy marcados

 El valor de JQ (143) es muy superior a 6, por lo que los residuos no se distribuyen normalmente (probablemente debido a numerosos valores atípicos)

ESTIMACIÓN: MODELO DE INTERVENCIÓN #2

Dependent Variable: D(LOG(X),1)

Method: ARMA Conditional Least Squares (Gauss-Newton / Marquardt

steps)

Date: 04/18/25 Time: 16:49

Sample (adjusted): 1991M05 2024M11 Included observations: 403 after adjustments

Failure to improve likelihood (non-zero gradients) after 17 iterations Coefficient covariance computed using outer product of gradients

MA Backcast: 1990M05 1991M04

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(SEMANASANTA,1)	0.092717	0.007007	13.23246	0.0000
D(FINDESEMANAS,1)	0.020273	0.002114	9.590416	0.0000
D(I22020,1)	-0.078323	0.036569	-2.141799	0.0328
D1l32020	-2.209990	0.038722	-57.07362	0.0000
D1I32020(-1)	-4.883888	0.040796	-119.7144	0.0000
D1I32020(-2)	-3.112136	0.042961	-72.44111	0.0000
D1I32020(-3)	-1.319921	0.044719	-29.51581	0.0000
D1I72020	-0.533352	0.041839	-12.74764	0.0000
D1I72020(-1)	-0.237324	0.044693	-5.310112	0.0000
D1I92020	-0.444925	0.042949	-10.35948	0.0000
D1I102020	-0.897846	0.043076	-20.84326	0.0000
D1I112020	-1.731945	0.043150	-40.13812	0.0000
D1I112020(-1)	-1.745798	0.043361	-40.26211	0.0000
D1I112020(-2)	-1.630674	0.043754	-37.26907	0.0000
D1I112020(-3)	-1.193506	0.044799	-26.64160	0.0000
D1l32021	-1.589233	0.043726	-36.34553	0.0000
D1l32021(-1)	-1.805595	0.042466	-42.51877	0.0000
D1l32021(-2)	-0.860615	0.041618	-20.67873	0.0000
D1l32021(-3)	-0.316174	0.040873	-7.735445	0.0000
D1l82021	0.096993	0.034707	2.794600	0.0055
D1l12022	-0.245881	0.033781	-7.278639	0.0000
D1I62022	0.141356	0.035515	3.980146	0.0001
D1I62022(-1)	0.085457	0.033613	2.542410	0.0114
AR(12)	1.001169	0.003504	285.7462	0.0000
MA(1)	-0.628103	0.028964	-21.68563	0.0000
MA(12)	-0.356689	0.028842	-12.36683	0.0000

R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.984794 0.983786 0.043398 0.710022 705.9591 2.077362	Mean depe S.D. depen Akaike info Schwarz cri Hannan-Qu	0.000770 0.340817 -3.374487 -3.116491 -3.272347	
Inverted AR Roots	1.00 .5087i	.8750i .00+1.00i	.87+.50i 00-1.00i	.50+.87i 50+.87i
Inverted MA Roots	5087i Estimated AR 1.00 .5178i 4279i	8750i process is r .8644i .05+.90i 7545i	87+.50i nonstationary .86+.44i .0590i 75+.45i	.51+.78i 42+.79i 88

- He ampliado y mejorado el modelo anterior, modelizando la parte regular con un MA(1) y la parte estacional con un ARMA(1,1)
- Los efectos de la Semana Santa y del calendario laboral son significativos
- También he añadido muchas variables dummy para los atípicos que salieron del modelo anterior
- Aunque los criterios de información son significativamente más bajos que en el modelo anterior, la parte AR tiene ahora una raíz unitaria, lo que sugiere que probablemente debe aplicarse también la diferencia estacional

VALIDACIÓN: MODELO DE INTERVENCIÓN #2 (1/3)

Date: 04/18/25 Time: 16:49

Sample (adjusted): 1991M05 2024M11

Q-statistic probabilities adjusted for 3 ARMA terms and 23 dynamic

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob*
- III	101	1 -0.047 -0	0.047	0.8980	
ı İı		2 0.014	0.012	0.9747	
· þ i	· m	3 0.083 (0.084	3.7539	
ı l ı	1 1	4 -0.040 -0	0.033	4.4210	0.036
· þ i		5 0.042 (0.037	5.1536	0.076
1)1		6 0.011 (800.0	5.1991	0.158
1)1		7 0.009	0.015	5.2360	0.264
ı ≬ ı	ļ 1 1 11	8 -0.048 -0	0.055	6.1802	0.289
- 	ļ - ļ i-	9 0.040 (0.037	6.8498	0.335
ı ≬ ı	4 -	10 -0.046 -0	0.045	7.7187	0.358
· j i	ļ ' ļ i'		0.041	8.2593	0.409
₁₫ ₁	ļ ' ū '		0.064	9.5367	0.389
· þi	'Di		0.075	11.208	0.342
· þr	יַוּןי וּ		0.077	14.021	0.232
ď.	וַ יַּוֹי	15 -0.090 -0		17.433	0.134
' Q '	ļ Q '	16 -0.051 -0		18.514	0.139
<u> </u>	'['	17 -0.033 -0		18.962	0.166
<u>"</u> '	! □ '	18 -0.163 -		30.200	0.011
' ! !	<u> </u>	19 -0.019 -		30.354	0.016
' l '	ļ ' Ū '	20 -0.049 -0		31.373	0.018
' ! !	ļ '] !		0.025	31.509	0.025
' '	ļ ' ['		0.030	31.749	0.033
<u>'</u>	<u> </u>		0.004	31.839	0.045
■ '	! ■ !		0.208	47.419	0.001
' [D	! 'ᡛ		0.102	51.302	0.000
'] I'	'] '		0.059	53.057	0.000
III I	']'		0.024	54.386	0.000
[]:	1		0.065	54.387	0.001
<u>"</u>	<u> </u>		0.072	60.076	0.000
1.	!		0.136	68.746	0.000
11:			0.024	68.879	0.000
11:	'길'		0.008	68.949	0.000
q :	ļ <u>"</u>	33 -0.089 -0		72.406	0.000
' l l'	ļ <u>"</u>	34 -0.026 -0		72.709	0.000
	<u> </u>	35 -0.004 -0		72.715	0.000
· [] ·		36 -0.074 -0	0.122	75.132	0.000

- Los residuos están ahora mucho menos autocorrelacionados que antes
- Sin embargo, el estadístico Q (75,13) sigue siendo superior al valor en tablas de la χ²: no podemos aceptar la hipótesis nula de que todas las correspondientes correlaciones poblacionales son distinta de cero (entonces los residuos no son ruidos blancos)
- Obsérvese que la correlación de orden 24 es significativa, lo que podría sugerir que la estacionalidad no se ha modelizado bien

VALIDACIÓN: MODELO DE INTERVENCIÓN #2 (2/3)

- Ahora los residuos tienen mucha menos volatilidad
- Sigue habiendo muchos atípicos, pero ninguno supera 3 veces la desviación típica

El único atípico realmente fuerte es el que apareció en Diciembre de 2003: probablemente, al haber intervenido en tantos atípicos, la distribución normal se truncó

VALIDACIÓN: MODELO DE INTERVENCIÓN #2 (3/3)

Quantiles of RESIDFINAL1

- Los residuos son coherentes con una distribución normal
 - JB es menor que 6
 - El grafico QQ también refleja normalidad
- Box-plot: quedan atípicos

Modelos con diferencia regular y estacional

ESTIMACIÓN - ATÍPICOS

Dependent Variable: D(LOG(X),1,12)

Method: Least Squares Date: 04/13/25 Time: 08:05

Sample (adjusted): 1991M06 2024M11 Included observations: 402 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.	
I2020_M03_D112	-2.163890	0.070202	-30.82356	0.0000	
12020_M03_D112(-1)	-4.828711	0.088125	-54.79414	0.0000	
I2020_M03_D112(-2) I2020_M03_D112(-3)	-2.982546 -1.287930	0.092264 0.084667	-32.32617 -15.21165	0.0000	
12020_M03_D112(-3) 12020_M03_D112(-4)	-0.427000	0.064007	-6.988156	0.0000	
12020_M03_D112(-4)	-0.427000	0.066935	-2.731014	0.0066	
12020_M00_D112	-0.633577	0.094661	-6.693111	0.0000	
I2020_M11_D112	-1.462797	0.115936	-12.61732		
I2020_M11_D112(-1)	-1.523906	0.133871	-11.38340	0.0000	
I2020_M11_D12(-2)	-1.281464	0.149672	-8.561806	0.0000	
I2021_M03_D112	-0.606469	0.069131	-8.772800	0.0000	
I2021_M03_D112(-1)	-1.165297	0.084667	-13.76323	0.0000	
I2021_M03_D112(-2)	-0.348457	0.084667	-4.115594	0.0000	
I2021_M03_D112(-3)	-0.165550	0.069131	-2.394748	0.0171	
R-squared	0.905310	Mean depend	lent var	0.000115	
Adjusted R-squared	0.902137	S.D. depende		0.302595	
S.E. of regression	0.094661	Akaike info criterion		-1.842825	
Sum squared resid	3.476753	Schwarz criterion		-1.703645	
Log likelihood	384.4077	Hannan-Quin	Hannan-Quinn criter1.		
Durbin-Watson stat	2.614353				

Ahora algunos atípicos se han intensificado, por lo que este modelo tiene 3 variables dummy más que el de la primera diferencia

Date: 04/13/25 Time: 08:06 Sample (adjusted): 1991M06 2024M11 Q-statistic probabilities adjusted for 14 dynamic regressors

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob*
<u> </u>	<u> </u>	1	-0.309	-0.309	38.602	0.000
· 🔚	<u> </u>	2	0.246	0.167	63.214	0.000
· 🗀	· 🗀	3	0.153	0.304	72.710	0.000
r j tr	<u> </u>	4	0.023	0.130	72.923	0.000
1(1)	 -	5	-0.014	-0.107	73.008	0.000
, þ i	• ₫ •	6	0.064	-0.075	74.696	0.000
二 ·	□ -	7	-0.166	-0.203	86.011	0.000
ı d ı	<u> </u>	8	-0.037	-0.169	86.591	0.000
1 1	1)1	9	-0.015	0.015	86.684	0.000
= '	. • • • • • • • • • • • • • • • • • • •	10	-0.206	-0.088	104.22	0.000
' 	<u>'</u> ■	11	0.105	0.116	108.84	0.000
<u> </u>	<u> </u>	12	-0.312		149.35	0.000
1)1	<u> </u>	13		-0.169	149.49	0.000
' ['	<u> </u>	14	-0.057		150.83	0.000
1 1	' !	15	0.005	0.148	150.84	0.000
■ ¹	' ['	16	-0.150		160.28	0.000
',₽	'['	17		-0.008	167.79	0.000
'[['	نال:	18	-0.037	0.038	168.36	0.000
' <u>[</u>	<u>"</u>	19		-0.060	168.51	0.000
ı <u>D</u> i	<u>"[</u> '	20		-0.078	170.18	0.000
ر آن	<u> </u>	21	0.046	0.056	171.09	0.000
<u> </u>	! ■ [ˈ	i	-0.089		174.48	0.000
<u>'</u> "	<u>'</u> "	23	0.196	0.125	190.89	0.000
-	. □:	24	-0.174		203.89	0.000
<u> </u>	<u> </u>	25		-0.209	203.89	0.000
		26	0.116	0.085	209.69	0.000
- i	<u> </u>	27	-0.168	0.064	221.96	0.000
Г	ľ	28	0.071	0.009	224.15	0.000
111			-0.019 -0.002	-0.042 0.068	224.31 224.31	0.000
111		:	-0.002		224.89	0.000
. in		32		-0.075	227.59	0.000
m .		33	-0.130		235.00	0.000
- III		34		-0.019	237.24	0.000
, p.		35	-0.130		244.66	0.000
- In	,	36	0.111	0.038	250.14	0.000
-	· · · ·	,	2	2.000		2.000

Análisis del correlograma simple y parcial

- Parte regular: tanto el simple como el parcial tienen un punto de corte evidente en el cuarto retardo, por lo que yo probaría con un AR(3) o un MA(3)
- Parte estacional: tanto el simple como el parcial tienen un punto de corte evidente en el 36° retardo, por lo que yo probaría con un AR(2) o un MA(2)

ESTIMACIÓN: MODELO DE INTERVENCIÓN #1

Dependent Variable: D(LOG(X),1,12)

Method: ARMA Conditional Least Squares (Gauss-Newton / Marquardt

steps)

Date: 04/13/25 Time: 08:35

Sample (adjusted): 1993M06 2024M11 Included observations: 378 after adjustments

Failure to improve likelihood (non-zero gradients) after 9 iterations Coefficient covariance computed using outer product of gradients

MA Backcast: 1993M03 1993M05

Coefficient	Std. Error	t-Statistic	Prob.
-2.193194	0.056233	-39.00207	0.0000
-4.818603	0.056784	-84.85916	0.0000
-2.954356	0.058880	-50.17598	0.0000
-1.224871	0.061964	-19.76761	0.0000
-0.432474	0.062260	-6.946224	0.0000
-0.225293	0.070555	-3.193141	0.0015
-0.612487	0.081497	-7.515427	0.0000
-1.501866	0.101557	-14.78838	0.0000
-1.702070	0.124888	-13.62883	0.0000
-1.477256	0.148371	-9.956528	0.0000
-0.637667	0.057097	-11.16807	0.0000
-1.104516	0.053071	-20.81206	0.0000
-0.445337	0.050781	-8.769828	0.0000
-0.143501	0.053633	-2.675609	0.0078
-0.498047	0.051131	-9.740607	0.0000
-0.371307	0.052325	-7.096115	0.0000
-0.369932	0.052834	-7.001751	0.0000
0.378443	0.052156	7.256015	0.0000
0.254955	0.053156	4.796362	0.0000
0.949179	Mean depend	lent var	0.000320
0.946630			0.311367
0.071932	•		-2.377247
1.857517			-2.179462
468.2997			-2.298749
1.970008			
	-2.193194 -4.818603 -2.954356 -1.224871 -0.432474 -0.225293 -0.612487 -1.501866 -1.702070 -1.477256 -0.637667 -1.104516 -0.445337 -0.143501 -0.498047 -0.371307 -0.369932 0.378443 0.254955 0.949179 0.946630 0.071932 1.857517 468.2997	-2.193194	-2.193194

Inverted AR Roots	.95+.16i	.9516i	.90+.34i	.9034i
	.74+.61i	.7461i	.6174i	.61+.74i
	.3490i	.34+.90i	.1695i	.16+.95i
	1695i	16+.95i	3490i	34+.90i
	61+.74i	6174i	74+.61i	7461i
	90+.34i	9034i	95+.16i	9516i
Inverted MA Roots	.3872i	.38+.72i	38	

- Al final, he modelizado la parte regular con un MA(3) y la parte estacional con un AR(2)
- Todos los coeficientes son significativos
- Los coeficientes estacionales son significativos y negativos (-0,5 y -0,37)
- EViews no señala la presencia de procesos no estacionarios
- Vamos a mirar los residuos

VALIDACIÓN: MODELO DE INTERVENCIÓN #1 (1/2)

Date: 04/13/25 Time: 08:36

Sample (adjusted): 1993M06 2024M11

Q-statistic probabilities adjusted for 5 ARMA terms and 14 dynamic

r	е	g	Γ	e	S	S	0	r	S

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob*
	1 k				
111		1 0.012		0.0506	
1 []1	<u> []</u>	2 0.054		1.1628	
1]]]	<u> </u>	3 0.047		1.9915	
1 [] 1	'¶'	:	-0.042	2.5323	
! Д! . h.	'P'	5 0.062		4.0283	0.000
']]· ■ ·	' ' 	6 0.057 7 -0.187	0.058 -0.194	5.2745 18.884	0.022
7	" ;		-0.194	21.923	0.000
1	 	9 0.021	0.049	22.098	0.000
≓ ;	i <u>≓</u> i	10 -0.195		37.004	0.000
- b	- -	11 0.054		38.126	0.000
idi.	i ili	12 -0.035		38.618	0.000
	i di		-0.072	43.005	0.000
- I	i ili	14 0.045		43.817	0.000
id i	i idi	i	-0.061	45.199	0.000
<u>.</u>	i 🔒		-0.107	50.322	0.000
-Ta	i in	17 0.126		56.607	0.000
ıΓ	i di	:	-0.012	56.763	0.000
ı i	i di	:	-0.045	57.504	0.000
ı În	j .jı	20 0.092		60.891	0.000
111	į įb	21 0.024		61.122	0.000
ı ğ ı	į di	22 -0.047	-0.096	62.018	0.000
, j	j jn	23 0.157	0.081	72.054	0.000
= -	□ -	24 -0.181	-0.153	85.399	0.000
1 1	10	25 0.007	-0.015	85.418	0.000
· 🗀		26 0.145	0.117	94.005	0.000
-	['	27 -0.142	-0.106	102.20	0.000
1)1		28 0.024	-0.004	102.44	0.000
())	լ փ	29 0.032	0.047	102.87	0.000
ı j i	• 	30 0.026	0.101	103.14	0.000
ı j ı	14 1	31 0.044	-0.037	103.95	0.000
ı j i	1/1	32 0.039	-0.020	104.58	0.000
= '	• i -	33 -0.174	-0.066	117.26	0.000
ı(tı	ļ □ !	34 -0.019	-0.131	117.40	0.000
ı q ı	ļ @['	i	-0.073	119.36	0.000
-	 	36 -0.195	-0.140	135.38	0.000

- Los residuos muestran correlaciones estacionales significativas en los retardos 24 y 36
- El estadístico Q es igual a 135,38 y es superior al valor en tablas de la χ^2 : no podemos aceptar la hipótesis nula de que todas las correspondientes correlaciones poblacionales son distinta de cero (entonces los residuos no son ruidos blancos)

VALIDACIÓN: MODELO DE INTERVENCIÓN #1 (2/2)

- Los residuos parecen fluctuar aleatoriamente y con volatilidad moderada
- Sin embargo, hay valores atípicos significativos que trataremos en el siguiente modelo

 El valor de JQ (145,4) es muy superior a 6, por lo que los residuos no se distribuyen normalmente (probablemente debido a numerosos valores atípicos)

ESTIMACIÓN: MODELO DE INTERVENCIÓN #2

Paolo Sebastiani - Práctica final

Dependent Variable: D(LOG(X),1,12)

Method: ARMA Conditional Least Squares (Gauss-Newton / Marquardt

steps)

Date: 05/04/25 Time: 17:03

Sample (adjusted): 1993M06 2024M11 Included observations: 378 after adjustments

Failure to improve likelihood (non-zero gradients) after 16 iterations Coefficient covariance computed using outer product of gradients

MA Backcast: 1993M04 1993M05

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(SEMANASANTA,1,12)	0.085858	0.009067	9.468843	0.0000
D(FINDESEMANAS,1,12)	0.019761	0.002203	8.968213	0.0000
D112l32020	-2.195985	0.037375	-58.75470	0.0000
D112l32020(-1)	-4.827837	0.036991	-130.5135	0.0000
D112l32020(-2)	-3.036131	0.037821	-80.27616	0.0000
D112l32020(-3)	-1.255555	0.037783	-33.23061	0.0000
D112l32020(-4)	-0.438326	0.037026	-11.83821	0.0000
D112l92020	-0.310911	0.039470	-7.877088	0.0000
D112l102020	-0.730933	0.039401	-18.55103	0.0000
D112l112020	-1.642918	0.042210	-38.92235	0.0000
D112l112020(-1)	-1.698201	0.042795	-39.68222	0.0000
D112l112020(-2)	-1.575688	0.042225	-37.31622	0.0000
D112l22021	-1.181977	0.041154	-28.72050	0.0000
D112l32021	-1.625692	0.042716	-38.05783	0.0000
D112l32021(-1)	-1.792317	0.039432	-45.45372	0.0000
D112l32021(-2)	-0.898542	0.037835	-23.74920	0.0000
D112l32021(-3)	-0.380485	0.037197	-10.22882	0.0000
D112l112021	-0.146434	0.036758	-3.983688	0.0001
D112l112021(-1)	-0.143924	0.038342	-3.753668	0.0002
D112l12022	-0.353194	0.038626	-9.143862	0.0000
D112l12022(-1)	-0.171643	0.037711	-4.551553	0.0000
D112l12022(-2)	-0.199030	0.037914	-5.249526	0.0000
AR(12)	-0.434963	0.054896	-7.923458	0.0000
AR(24)	-0.314446	0.055612	-5.654305	0.0000
MA(1)	-0.699722	0.056306	-12.42712	0.0000
MA(2)	0.122336	0.058208	2.101720	0.0363
R-squared	0.981611	Mean depend	dent var	0.000320
Adjusted R-squared	0.980305	S.D. depende	ent var	0.311367
S.E. of regression	0.043697	Akaike info cr	iterion	-3.356782
Sum squared resid	0.672111	Schwarz crite	rion	-3.086128
Log likelihood	660.4318	Hannan-Quin	ın criter.	-3.249364
Durbin-Watson stat	1.996890			

Inverted AR Roots	.94+.16i	.9416i	.8934i	.89+.34i
	.7460i	.74+.60i	.60+.74i	.6074i
	.34+.89i	.3489i	.16+.94i	.1694i
	16+.94i	1694i	34+.89i	3489i
	6074i	60+.74i	7460i	74+.60i
	8934i	89+.34i	9416i	94+.16i
Inverted MA Roots	.36	.34		

- He ampliado y mejorado el modelo anterior, modelizando la parte regular con un MA(2) y la parte estacional con un AR(2)
- Los efectos de la Semana Santa y del calendario laboral son significativos
- También he añadido muchas variables dummy para los atípicos que salieron del modelo anterior
- Los coeficientes estacionales son ligeramente inferiores a los del modelo anterior
- Los criterios de información son significativamente más bajos que en el modelo anterior

VALIDACIÓN: MODELO DE INTERVENCIÓN #2 (1/2)

Date: 05/04/25 Time: 17:05

Sample (adjusted): 1993M06 2024M11

Q-statistic probabilities adjusted for 4 ARMA terms and 22 dynamic

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob*
1 1		1	-0.002	-0.002	0.0019	
ı j ı		2	0.011	0.011	0.0466	
ı j ı		3	0.015	0.015	0.1343	
d i	(-	4	-0.083	-0.083	2.8005	
ւի	· i	5	0.050	0.050	3.7596	0.053
1)1	1 1	6	0.015	0.017	3.8498	0.146
ı þi	· b·	7	0.056	0.058	5.0707	0.167
d .	id :	8	-0.072	-0.082	7.0615	0.133
1 1		9	-0.001	0.006	7.0618	0.216
ıdı	id :	10	-0.065	-0.067	8.7309	0.189
		11	0.023	0.036	8.9326	0.258
ı ğ ı	i¶i	12	-0.031	-0.051	9.3027	0.317
1 1		13	0.002	0.013	9.3042	0.410
ı þi		14	0.070	0.057	11.261	0.338
ıijı	111	15	-0.054		12.435	0.332
1(1)	III	16	-0.022		12.626	0.397
ı l ı	1 1	17	-0.028		12.946	0.452
□ !	□ '	18	-0.143	-0.146	21.116	0.099
ı ji r	· II·	19	0.043	0.045	21.867	0.111
ı ji r	'	20	0.050	0.040	22.885	0.117
ı ji r	· II·	21	0.046	0.052	23.723	0.127
ı İı	1 1	22	-0.005		23.734	0.164
i j i	ļ ' ļ i'	23	0.028	0.051	24.043	0.195
□ '	ļ 	24	-0.134	-0.137	31.306	0.051
1) 11	ļ ' ļ i'	25	0.040	0.057	31.969	0.059
ı þi	' '	26	0.071	0.036	34.019	0.049
-	ļ Q '	27	-0.114		39.375	0.018
'Ū'	ļ Q '	28	-0.052		40.502	0.019
□ '	ļ Q '	29	-0.165		51.658	0.001
· po	ļ ' 	30	0.096	0.108	55.435	0.001
ιŲι	ļ (Ū)	31	-0.059		56.868	0.001
1/1	<u> </u>	32	-0.008		56.894	0.001
넻	<u> </u> '¶'	33		-0.033	56.897	0.001
'₫'	' ['	34	-0.067		58.760	0.001
<u> </u>	<u> </u>	35	0.023	0.013	58.979	0.002
□ '		36	-0.175	-0.215	71.912	0.000

- Los residuos están ahora mucho menos autocorrelacionados que antes
- Sin embargo, el estadístico Q (71,91) sigue siendo superior al valor en tablas de la χ^2: no podemos aceptar la hipótesis nula de que todas las correspondientes correlaciones poblacionales son distinta de cero (entonces los residuos no son ruidos blancos)

VALIDACIÓN: MODELO DE INTERVENCIÓN #2 (2/2)

- Los residuos parecen fluctuar aleatoriamente y con volatilidad prácticamente igual a la del primero modelo
- Quedan valores atípicos significativos

• El valor de JQ (40,72) es más bajo que en el primer modelo, pero sigue siendo mucho más alto de 6, por lo que los residuos no se distribuyen normalmente

ESTIMACIÓN: MODELO DE INTERVENCIÓN FINAL SERIE CORTA

Dependent Variable: D(LOG(X),1,12)

Method: ARMA Conditional Least Squares (Gauss-Newton / Marquardt

steps)

Date: 05/09/25 Time: 12:49 Sample: 2000M01 2024M11 Included observations: 299

Failure to improve likelihood (non-zero gradients) after 17 iterations Coefficient covariance computed using outer product of gradients

MA Backcast: 1999M11 1999M12

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(SEMANASANTA,1,12)	0.083340	0.009276	8.984063	0.0000
D(FINDESEMANAS,1,12)	0.021417	0.002642	8.105387	0.0000
D112l32020	-2.163431	0.040436	-53.50242	0.0000
D112l32020(-1)	-4.763575	0.040956	-116.3089	0.0000
D112l32020(-2)	-2.949774	0.043330	-68.07770	0.0000
D112l32020(-3)	-1.148794	0.041163	-27.90837	0.0000
D112l32020(-4)	-0.248788	0.037312	-6.667724	0.0000
D112l102020	-0.519681	0.040979	-12.68154	0.0000
D112I102020(-1)	-1.329781	0.046138	-28.82155	0.0000
D112l102020(-2)	-0.549443	0.047306	-11.61468	0.0000
D112l102020(-3)	-0.450408	0.050805	-8.865397	0.0000
D(E112020,1,12)	0.826393	0.071063	11.62905	0.0000
D112l32021	-0.415322	0.048983	-8.478924	0.0000
D112l32021(-1)	-0.637844	0.049965	-12.76587	0.0000
D112l32021(-2)	0.264873	0.060004	4.414258	0.0000
D112l32021(-3)	-0.419994	0.043576	-9.638256	0.0000
D(E52021,1,12)	-1.191544	0.072184	-16.50698	0.0000
D112l12022	-0.219238	0.037689	-5.816961	0.0000
D(I12024,1,12)	-0.096381	0.041913	-2.299564	0.0222
AR(12)	-0.342330	0.063387	-5.400614	0.0000
AR(24)	-0.336655	0.063292	-5.319124	0.0000
MA(1)	-0.496695	0.059993	-8.279204	0.0000
MA(2)	0.279996	0.061569	4.547648	0.0000
R-squared	0.981280	Mean depend	lent var	0.000379
Adjusted R-squared	0.979787	S.D. depende	ent var	0.348193
S.E. of regression	0.049503	Akaike info criterion		-3.099758
Sum squared resid	0.676355	Schwarz crite	-2.815109	
Log likelihood	486.4138	Hannan-Quin	in criter.	-2.985828
Durbin-Watson stat	2.001407			

Inverted AR Roots	.94+.15i	.9415i	.8934i	.89+.34i
	.7460i	.74+.60i	.60+.74i	.6074i
	.34+.89i	.3489i	.15+.94i	.1594i
	15+.94i	1594i	3489i	34+.89i
	60+.74i	6074i	7460i	74+.60i
	8934i	89+.34i	9415i	94+.15i
Inverted MA Roots	.2547i	.25+.47i		

- Utilizando la muestra 2000-2024 (en lugar de 1990-2024), se obtienen resultados considerablemente mejores
- Los coeficientes estacionales son ligeramente inferiores a los de los modelos anteriores
- Los criterios de información son ligeramente superiores a los del segundo modelo
- (Nota: aparentemente también parece ocurrir algo atípico en 2024 el TRAMO/SEATS informa de un escalón en enero, sin embargo, la mejor intervención fue la de impulso)

VALIDACIÓN: MODELO DE INTERVENCIÓN FINAL SERIE CORTA (1/3)

Date: 05/09/25 Time: 12:49 Sample: 2000M01 2024M11

Q-statistic probabilities adjusted for 4 ARMA terms and 19 dynamic

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob*
	1 1	1	-0.007	-0.007	0.0153	
1 1		2	0.000	0.000	0.0153	
1 1		3	-0.008	-0.008	0.0331	
ı (ı		4	-0.043	-0.043	0.5891	
1 1	1 1	5	0.004	0.003	0.5931	0.441
1(1	1 1	6	-0.014	-0.014	0.6507	0.722
٠ <u>١</u> ٠	i ii	7	0.057	0.057	1.6609	0.646
1)1	1 1	8	0.008	0.007	1.6824	0.794
i j ir		9	0.026	0.027	1.8964	0.863
1 1	1 1	10	-0.001		1.8971	0.929
ı İ ı		11	-0.004	0.001	1.9022	0.965
1 🖟 1	'('	:	-0.016		1.9789	0.982
ι () ι	'[['	13	-0.050		2.7651	0.973
, j j.	יון י	14	0.051	0.048	3.6015	0.964
١٠ ا	ļ ' ['	15	-0.051	-0.052	4.4300	0.956
1 j) 1	1 11	16	0.025	0.020	4.6235	0.969
<u> </u>	'_	17	0.038	0.035	5.0927	0.973
' !	ļ <u>"</u>	18	-0.096	-0.094	8.0349	0.888
111	'[['	19	-0.021	-0.025	8.1731	0.917
·]]·	'] '	20	0.041	0.051	8.7064	0.925
' ! '	' '	21	-0.027		8.9497	0.942
'['	<u> </u>	22			9.0670	0.958
<u>'</u>]'	<u> </u>	23	0.040	0.038	9.5878	0.962
" '	! ■'	24	-0.151	-0.158	17.077	0.648
' '	'['	25	-0.005		17.084	0.706
'] '	']'	26	0.005	0.010	17.093	0.758
91	9	27	-0.103		20.616	0.605
<u>П</u> ,	<u> "</u>	28	-0.055		21.608	0.603
<u>"[] '</u>	֡֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	29	-0.073		23.399	0.554
' 	' P	30	0.125	0.114	28.653	0.327
111		31	0.026	0.025	28.886	0.366
:] [:	<u> </u>	32	0.031	0.042	29.220	0.401
1 1	' '	33			29.223	0.453
	<u>'¶</u> '	:	-0.078		31.299	0.401
그:	!	i	-0.009	0.018	31.324	0.450
<u> </u>	 '	36	-0.166	-0.1/3	40.713	0.139

- Ahora el estadístico Q (40,71) es menor al valor en tablas de la χ^2 (p-valor = 0,14): no hay evidencias para rechazar la hipótesis nula de que todas las correspondientes correlaciones poblacionales son iguales a cero y, por tanto, que sean acordes a un proceso Ruido Blanco
- Hay que señalar, sin embargo, que la correlación 36 no es muy limpia, pero el coeficiente AR(36) no era significativo y habría perturbado la distribución normal de los residuos

VALIDACIÓN: MODELO DE INTERVENCIÓN FINAL SERIE CORTA (2/3)

- Los residuos oscilan aleatoriamente
- Quedan algunos atípicos, pero no afectan a la distribución normal (como veremos en la siguiente diapositiva)

VALIDACIÓN: MODELO DE INTERVENCIÓN FINAL SERIE CORTA (3/3)

- Los residuos son coherentes con una distribución normal
 - Según el test JB, podemos aceptar la hipótesis de normalidad al 1%
 - El grafico QQ también refleja normalidad
- Box-plot: quedan atípicos, pero no son relevantes

Modelo con diferencia regular y estacionalidad determinística

ESTIMACIÓN - ATÍPICOS

Dependent Variable: D(LOG(X),1) Method: Least Squares

Date: 05/04/25 Time: 17:57

Sample (adjusted): 1990M05 2024M11 Included observations: 415 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(SEMANASANTA,1)	0.098930	0.008285	11.94008	0.0000
D(FINDESEMANAS,1)	0.021962	0.001895	11.58634	0.0000
D(I22020,1)	-0.147739	0.049944	-2.958073	0.0033
D1l32020	-2.314651	0.068367	-33.85637	0.0000
D1I32020(-1)	-4.948404	0.080891	-61.17361	0.0000
D1I32020(-2)	-3.194509	0.090084	-35.46156	0.0000
D1I32020(-3)	-1.304149	0.096789	-13.47408	0.0000
D1I72020	-0.533872	0.101626	-5.253310	0.0000
D1I72020(-1)	-0.251985	0.105130	-2.396882	0.0170
D1I92020	-0.427373	0.107112	-3.989977	0.0001
D1I102020	-0.839285	0.107781	-7.786918	0.0000
D1l112020	-1.734097	0.107122	-16.18809	0.0000
D1l112020(-1)	-1.736281	0.105097	-16.52078	0.0000
D1l112020(-2)	-1.654361	0.101656	-16.27405	0.0000
D1I112020(-3)	-1.294132	0.096785	-13.37114	0.0000
D1l32021	-1.745284	0.090041	-19.38319	0.0000
D1I32021(-1)	-1.889377	0.080846	-23.37004	0.0000
D1I32021(-2)	-0.953105	0.068301	-13.95443	0.0000
D1I32021(-3)	-0.321049	0.049850	-6.440329	0.0000
D1I12022	-0.204084	0.036455	-5.598243	0.0000
D1I62022	0.190345	0.041928	4.539772	0.0000
D1I62022(-1)	0.101750	0.042017	2.421647	0.0159
D1	-0.055022	0.008866	-6.205694	0.0000
D2	0.102485	0.009083	11.28256	0.0000
D3	0.183576	0.009424	19.48015	0.0000
D4	0.238116	0.009309	25.57997	0.0000
D5	0.194186	0.010389	18.69170	0.0000
D6	0.167995	0.008866	18.94896	0.0000
D7	0.180899	0.008870	20.39414	0.0000
D8	0.072152	0.008751	8.244622	0.0000
D9	-0.315183	0.008670	-36.35389	0.0000
D10	-0.333038	0.008675	-38.38999	0.0000
D11	-0.477077	0.008685	-54.93127	0.0000
D12	0.063709	0.008825	7.218735	0.0000
R-squared	0.979449	Mean depend		0.000400
Adjusted R-squared	0.977669	S.D. depende	nt var	0.338311
S.E. of regression	0.050556	Akaike info cri	iterion	-3.053100
Sum squared resid	0.973795	Schwarz crite	rion	-2.723073
Log likelihood	667.5183	Hannan-Quin	n criter.	-2.922596
Durbin-Watson stat	2.665464			

Date: 05/04/25 Time: 18:00

Sample (adjusted): 1990M05 2024M11

Q-statistic probabilities adjusted for 34 dynamic regressors

		1 2	-0.343	0.242		
1	3	2		-0.343	49.045	0.000
al. I	□ '		-0.001	-0.134	49.046	0.000
4. 1		3	-0.068	-0.132	51.007	0.000
d ,	二 '	4	-0.088	-0.190	54.281	0.000
· p	ı l ı	5	0.094	-0.029	58.031	0.000
40	ı ()	6	-0.021	-0.030	58.217	0.000
· þr þ	۱ پا ر	7	0.057	0.031	59.606	0.000
I II'	q ∙	8	-0.096		63.546	0.000
- III	Щı	9	-0.027		63.866	0.000
@ '	□ '	10	-0.092		67.460	0.000
1111	<u> </u>	11		-0.152	67.529	0.000
<u>'</u>	' !!!	12	0.299	0.233	105.84	0.000
@ '	' <u> </u>	13	-0.084	0.128	108.86	0.000
<u>'</u> ll'	' j	14	0.048	0.131	109.85	0.000
	'¶'	i	-0.175		123.13	0.000
'[!'	'¶'	16		-0.036	123.20	0.000
ן יוני	']'	17		-0.005	124.49	0.000
10	9'	18	-0.037		125.08	0.000
1	"] '	19		-0.060	125.70	0.000
9'	<u>"</u>	:	-0.072		127.98	0.000
¶'	9'	21	-0.050		129.07	0.000
'll'	'9'		-0.044		129.91	0.000
' <u>P</u> '	' <u>"</u> '	23		-0.030	131.32	0.000
<u> </u>	q _i	24		-0.082	132.83	0.000
' 	<u> </u>	25	0.109	0.073	138.09	0.000
길:	' <u> </u>	26	0.001	0.091	138.09	0.000
	¶!	27	-0.186		153.60	0.000
<u> </u>	길:	28	0.092	0.014	157.40	0.000
	□ !	29	-0.115		163.38	0.000
<u> </u>	' D	30	0.179	0.080	177.75	0.000
4	 h.	:	-0.058	0.006	179.29	0.000
'¶'	'] -	:	-0.025	0.029	179.58	0.000
¶'	111	:	-0.050		180.73	0.000
<u> </u>	11.	34	-0.063		182.55	0.000
<u>.</u>	11.	35	0.094	0.015	186.53	0.000
i)i l	1 1	36	0.013	-0.005	186.60	0.000

- Análisis del correlograma simple y parcial
 - Parte regular: tanto el simple tiene un punto de corte en el segundo retardo, por lo que yo probaría con un MA(1)
 - Parte estacional: Tanto el simple como el parcial sólo tienen una correlación significativa de orden 12, así que yo intentaría modelizar primero un MA(1), y luego eventualmente un AR(1) o ARMA(1,1)

ESTIMACIÓN: MODELO DE INTERVENCIÓN

Dependent Variable: D(LOG(X),1)

Method: ARMA Conditional Least Squares (Gauss-Newton / Marquardt steps)

Date: 04/18/25 Time: 16:57

Sample (adjusted): 1991M05 2024M11

Included observations: 403 after adjustments

Failure to improve likelihood (non-zero gradients) after 31 iterations Coefficient covariance computed using outer product of gradients

MA Backcast: 1990M05 1991M04

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(SEMANASANTA,1)	0.091894	0.007557	12.16061	0.0000
D(FINDESEMANAS,1)	0.020895	0.002314	9.031103	0.0000
D(I22020,1)	-0.094521	0.039386	-2.399852	0.0169
D1l32020	-2.245333	0.041570	-54.01292	0.0000
D1l32020(-1)	-4.913205	0.043446	-113.0873	0.0000
D1l32020(-2)	-3.149419	0.045104	-69.82539	0.0000
D1l32020(-3)	-1.335863	0.046735	-28.58395	0.0000
D1I72020	-0.533805	0.043557	-12.25519	0.0000
D1I72020(-1)	-0.271661	0.044129	-6.156119	0.0000
D1I92020	-0.436443	0.044388	-9.832523	0.0000
D1I102020	-0.881851	0.044542	-19.79819	0.0000
D1I112020	-1.724437	0.044650	-38.62104	0.0000
D1I112020(-1)	-1.745152	0.044702	-39.03934	0.0000
D1I112020(-2)	-1.649679	0.045664	-36.12639	0.0000
D1I112020(-3)	-1.223149	0.046468	-26.32262	0.0000
D1l32021	-1.635941	0.045475	-35.97449	0.0000
D1l32021(-1)	-1.847802	0.044033	-41.96373	0.0000
D1l32021(-2)	-0.909729	0.042439	-21.43627	0.0000
D1l32021(-3)	-0.341845	0.042266	-8.087980	0.0000
D1I12022	-0.261893	0.036247	-7.225311	0.0000
D1I62022	0.154146	0.037475	4.113302	0.0000
D1I62022(-1)	0.105025	0.035109	2.991356	0.0030
D1	-0.058575	0.018619	-3.146022	0.0018
D2	0.102337	0.018727	5.464783	0.0000
D3	0.175129	0.018858	9.286774	0.0000
D4	0.244931	0.018736	13.07267	0.0000
D5	0.206141	0.019270	10.69758	0.0000
D6	0.173752	0.018439	9.422999	0.0000
D7	0.176144	0.018413	9.566526	0.0000
D8	0.064759	0.018312	3.536504	0.0005
D9	-0.313223	0.018259	-17.15440	0.0000
D10	-0.334780	0.018259	-18.33529	0.0000
D11	-0.481683	0.018258	-26.38265	0.0000
D12	0.071141	0.018448	3.856357	0.0001
AR(12)	0.607479	0.056125	10.82367	0.0000
MA(1)	-0.605974	0.041541	-14.58728	0.0000
MA(12)	-0.191500	0.054795	-3.494818	0.0005
m/ (12)	3.131300	3.034133	3.404010	0.0000

R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.986827 0.985532 0.040995 0.615095 734.8781 1.978228	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		0.000770 0.340817 -3.463415 -3.096267 -3.318062
Inverted AR Roots Inverted MA Roots	.96	.8348i	.83+.48i	.48+.83i
	.4883i	.00+.96i	0096i	48+.83i
	4883i	8348i	83+.48i	96
	.95	.8242i	.82+.42i	.49+.74i
	.4974i	.05+.86i	.0586i	39+.75i
	3975i	7243i	72+.43i	83

- He modelizado la parte regular con un MA(1) y la parte estacional con un ARMA(1,1)
- Todos los coeficientes son significativos
- Los efectos de la Semana Santa y del calendario laboral son significativos
- Los criterios de información son ligeramente mas bajos de los del modelo #2 con dos diferencias

VALIDACIÓN: MODELO DE INTERVENCIÓN (1/3)

Date: 04/18/25 Time: 16:59

Sample (adjusted): 1991M05 2024M11

Q-statistic probabilities adjusted for 3 ARMA terms and 34 dynamic

rearessors

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob*
Autocorrelation	Failiai Correlation		AC	FAC	Q-Stat	FIUD
1 1		1	0.007	0.007	0.0197	
ı j ı	j , j _i ,	2	0.052	0.052	1.1102	
ı j i	<u> </u> -	3	0.063	0.062	2.7312	
ı ()	141	4	-0.039	-0.043	3.3520	0.067
ı þ i		5	0.045	0.039	4.1666	0.125
ı (t	1 1	6	-0.015	-0.015	4.2565	0.235
1 [1	i(t)	7	-0.032	-0.032	4.6896	0.321
ı q ı	(·	8	-0.079	-0.085	7.2543	0.202
1 1	1 1	:	-0.006	0.003	7.2702	0.297
1 ()	'• '	i	-0.037		7.8431	0.347
ı þi	ļ ' ļ	11	0.086	0.097	10.888	0.208
111	' '	12	0.019	0.017	11.035	0.273
۱ آ ان	ļ ' l l'	13	0.045	0.048	11.899	0.292
<u>.</u> j i	<u> </u>	14	0.066	0.047	13.733	0.248
<u>"</u>	! ₫'	:	-0.119		19.715	0.073
'	! " "	:	-0.072		21.874	0.057
<u>"</u> "	<u> </u>	:	-0.032		22.304	0.073
" '	! " "'	:	-0.168		34.296	0.003
()	11:	:	-0.049		35.330	0.004
□ 1	' '	:	-0.076		37.813	0.003
.∥ .	' '	21	-0.052		38.980	0.003
1 1 . h.	' '	:	-0.008		39.005	0.004
, ∐). ,([],		23	0.043	0.048	39.809 41.525	0.005
·ų· · i □	q ; ;b	24	0.134	0.110	49.319	0.005
· []	i i i	26	0.134	0.030	50.290	0.001
. µ.	i ii	27	-0.107		55.257	0.000
ili.] []	28	-0.031		55.679	0.000
			-0.130		63.083	0.000
	1	30	0.140	0.162	71.643	0.000
ī	i ili	31	-0.035		72.172	0.000
1			-0.027		72.498	0.000
ıdı		:	-0.063		74.230	0.000
ı i l .	i iii	:	-0.031		74.660	0.000
, <u>]</u>],	1	35	0.048	0.010	75.676	0.000
ıjı	i di	36		-0.054	75.807	0.000

- Las autocorrelaciones estacionales (12, 24 y 36) no son significativas
- Sin embargo, el estadístico Q (75,8) sigue siendo superior al valor en tablas de la χ^2: no podemos aceptar la hipótesis nula de que todas las correspondientes correlaciones poblacionales son distinta de cero (entonces los residuos no son ruidos blancos)
- Esto significa que el modelo no es bueno, ya que los residuos no son propiamente ruidos blancos

VALIDACIÓN: MODELO DE INTERVENCIÓN (2/3)

- Los residuos parecen mostrar más o menos la misma volatilidad que el modelo #2 con dos diferencias
- De nuevo, aparecen algunos atípicos fuertes en periodos distantes del periodo Covid, pero no son fuertes como antes
- El atípico más fuerte sigue siendo uno del periodo Covid, sobre el que no pude intervenir

VALIDACIÓN: MODELO DE INTERVENCIÓN (3/3)

- Los residuos son coherentes con una distribución normal
 - Según el test JB, podemos aceptar la hipótesis de normalidad al 1%
 - El grafico QQ también refleja normalidad
- Box-plot: quedan muchos atípicos

ESTIMACIÓN: MODELO DE INTERVENCIÓN FINAL SERIE CORTA

Dependent Variable: D(LOG(X),1)

Method: ARMA Conditional Least Squares (Gauss-Newton / Marquardt

Date: 05/04/25 Time: 17:13 Sample: 2000M01 2024M11

Included observations: 299

Failure to improve likelihood (non-zero gradients) after 11 iterations

Coefficient covariance computed using outer product of gradients

MA Backcast: 1999M11 1999M12

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(SEMANASANTA.1)	0.088649	0.008935	9.921924	0.0000
D(FINDESEMANAS,1)	0.020136	0.002809	7.169444	0.0000
D1l32020	-2.187846	0.040488	-54.03702	0.0000
D1I32020(-1)	-4.794361	0.041674	-115.0450	0.0000
D1I32020(-2)	-3.004460	0.043487	-69.08821	0.0000
D1I32020(-3)	-1.164747	0.042889	-27.15724	0.0000
D1I32020(-4)	-0.353774	0.041182	-8.590493	0.0000
D1I92020	-0.222777	0.043488	-5.122706	0.0000
D1I102020	-0.665402	0.044867	-14.83042	0.0000
D1I102020(-1)	-1.560204	0.051099	-30.53285	0.0000
D1I102020(-2)	-1.598620	0.052816	-30.26777	0.0000
D1I102020(-3)	-1.519842	0.055290	-27.48875	0.0000
D1I102020(-4)	-1.112100	0.053129	-20.93211	0.0000
D1I32021	-1.577691	0.053511	-29.48360	0.0000
D1I32021(-1)	-1.795907	0.050411	-35.62556	0.0000
D1I32021(-2)	-0.881416	0.045138	-19.52701	0.0000
D1I32021(-3)	-0.343335	0.043942	-7.813331	0.0000
D1I112021	-0.048392	0.037017	-1.307302	0.1923
D1I12022	-0.234145	0.037336	-6.271238	0.0000
D1I62022	0.128930	0.036491	3.533234	0.0005
D1I62022(-1)	0.080528	0.034641	2.324682	0.0209
D(I52024)	0.131692	0.036073	3.650744	0.0003
`D1	-0.074311	0.015495	-4.795669	0.0000
D2	0.094741	0.015463	6.126837	0.0000
D3	0.177883	0.015786	11.26840	0.0000
D4	0.241861	0.015744	15.36215	0.0000
D5	0.201439	0.016677	12.07877	0.0000
D6	0.204354	0.015850	12.89305	0.0000
D7	0.166898	0.015610	10.69191	0.0000
D8	0.052993	0.015298	3.463933	0.0006
D9	-0.314834	0.015242	-20.65633	0.0000
D10	-0.326149	0.015246	-21.39215	0.0000
D11	-0.476888	0.015378	-31.01108	0.0000
D12	0.081274	0.015639	5.196742	0.0000
AR(12)	0.360378	0.061558	5.854322	0.0000
MA(1)	-0.473621	0.062564	-7.570214	0.0000
MA(2)	0.201434	0.064119	3.141555	0.0019
R-squared	0.988028	Mean depend	lent var	0.002223
Adjusted R-squared	0.986383	S.D. depende		0.368743
S.E. of regression	0.043029	Akaike info cr		-3.338498
Sum squared resid	0.485089	Schwarz crite	-2.880583	
Log likelihood	536.1054	Hannan-Quin		-3.155219
Durbin-Watson stat	1.966690			

Inverted AR Roots	.92	.80+.46i	.8046i	.46+.80i
	.4680i	.00+.92i	.0092i	46+.80
	4680i	80+.46i	8046i	92
Inverted MA Roots	.24+.38i	.2438i		

- De nuevo, utilizar la muestra 2000-2024 da mejores resultados
- En este caso fue mejor modelizar la parte regular con un MA(2) y la parte estacional con un AR(1)
- El coeficiente de la dummy impulso 2021M11 no es significativo, pero sin esa variable no se habría obtenido la normalidad de los residuos.
 Intenté fecharlo de otra manera, pero la situación no mejoró, así que podría haber un efecto importante en ese mes, pero con problemas de multicolinealidad
- Los criterios de información son ligeramente mas altos de los del modelo con serie larga

VALIDACIÓN: MODELO DE INTERVENCIÓN FINAL SERIE CORTA (1/3)

Date: 05/04/25 Time: 17:19 Sample: 2000M01 2024M11

Q-statistic probabilities adjusted for 3 ARMA terms and 34 dynamic

regressors

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob*
· (j)	1)1	1	0.011	0.011	0.0362	
(1)		2	-0.012	-0.012	0.0814	
())		3	0.035	0.036	0.4596	
ı d ı	" '	4	-0.087	-0.088	2.7641	0.096
1 1		5	-0.006	-0.003	2.7739	0.250
ı d ı	 	6	-0.050	-0.054	3.5418	0.315
ı l i	([-	7	-0.070	-0.063	5.0539	0.282
d i	('	8	-0.104	-0.113	8.3808	0.136
([)	1(1	9	-0.016		8.4589	0.206
· i	('	10	-0.093		11.126	0.133
i ji r	' -	11	0.064	0.060	12.389	0.135
i į i	'['	12		-0.024	12.398	0.192
ı (İ)	'['	13	-0.012		12.445	0.256
ن آن	']'	14	0.042	0.004	13.015	0.292
' I J'	<u> </u> ' <u>¶</u> '	15	-0.064		14.328	0.280
۱ (۱	ļ ' [] '	16	-0.031		14.633	0.331
ن آاِ ن	ļ ' ļ !'	17	0.064	0.050	15.947	0.317
' ['	ļ ' [['	18	-0.066		17.323	0.300
1 1	' '	19	0.020	0.025	17.454	0.357
'}'	' '	20		-0.010	17.548	0.418
'[['	' '	21	-0.029		17.813	0.468
' 🌓 '	ļ '['	22	0.034	0.007	18.197	0.509
'] I'	'] '	23	0.067	0.057	19.648	0.480
'	<u> </u> 'ቢ'	24	-0.041	-0.051	20.200	0.509
' 🏴 '	'	25	0.078	0.076	22.204	0.448
<u>'</u>	<u> </u> ']'	26	0.024	0.007	22.401	0.496
<u>"</u>	! 9 '	27	-0.135		28.469	0.241
<u>'</u>	! 9 '	28	-0.065		29.854	0.230
٩٠	<u> </u>		-0.114		34.171	0.131
'_ P '	<u>'</u> _ D'	30	0.083	0.096	36.464	0.106
·	"	31	-0.082		38.722	0.086
'•	']'	i	-0.026		38.942	0.103
']'	'₫'		-0.008		38.963	0.127
' ! '	<u>'</u>	34	-0.051		39.849	0.132
' '	']'	35		-0.037	39.854	0.160
1 1	'[['	36	-0.008	-0.061	39.876	0.191

- Ahora el estadístico Q (39,876) es menor al valor en tablas de la χ^2 (p-valor = 0,19): no hay evidencias para rechazar la hipótesis nula de que todas las correspondientes correlaciones poblacionales son iguales a cero y, por tanto, que sean acordes a un proceso Ruido Blanco
- Además, a diferencia del modelo final con series cortas y doble diferencia, la correlación 36 está ahora indudablemente dentro del intervalo de confianza

VALIDACIÓN: MODELO DE INTERVENCIÓN FINAL SERIE CORTA (2/3)

- Los residuos oscilan aleatoriamente
- Quedan algunos atípicos, pero no afectan a la distribución normal (como veremos en la siguiente diapositiva)

VALIDACIÓN: MODELO DE INTERVENCIÓN FINAL SERIE CORTA (3/3)

- Los residuos son coherentes con una distribución normal
 - JB (6,76) es mayor que 6, pero al 1% podemos concluir que los residuos son normales
 - El grafico QQ también refleja normalidad
- Box-plot: quedan atípicos, pero no son relevantes

COMPARACIÓN DE MODELOS

Modelo	Akaike (AIC)	Schwarz (BIC)	Log-likelihood	Standard error
Modelo determinístico	0,93	1,05	-181,5	0,38
ARIMA (0,1,1)(1,0,0) ₁₂	0,06	0,08	-11,22	0,25
ARIMA (1,1,0)(1,0,0) ₁₂ + atip	-1,76	-1,63	368,79	0,1
ARIMA (0,1,1)(1,0,1) ₁₂ + atip + SS + CL	-3,37	-3,12	705,96	0,043
ARIMA (0,1,3)(2,1,0) ₁₂ + atip	-2,37	-2,18	468,3	0,072
ARIMA (0,1,2)(2,1,0) ₁₂ + atip + SS + CL	-3,35	-3,08	660,43	0,043
ARIMA (0,1,2)(2,1,0) ₁₂ + atip + SS + CL (muestra 2000-2024)	-3,1	-2,82	487	0,05
ARIMA (0,1,1)(1,0,1) ₁₂ + atip + SS + CL + dummies estacionales	-3,46	-3,1	734,88	0,041
ARIMA $(0,1,2)(1,0,0)_{12}$ + atip + SS + CL + dummies estacionales (muestra 2000-2024)	-3,34	-2,88	536,1	0,043

- En primer lugar, hay que recordar que los dos únicos modelos válidos (es decir, que producen Ruidos Blancos residuos) son los dos modelos con la muestra 2000-2024
- Dicho esto, de los dos, elegiría el de estacionalidad determinística, porque tiene los criterios de información y la desviación típica más bajos, y la log-likelihood más alta
- No obstante, para mayor exhaustividad, también utilizaré el mejor de los modelos estocásticos para las predicciones (es decir, el séptimo)

Predicción

PREDICCIÓN SEIS PERIODOS POR DELANTE (SUBMUESTRA)

Dependent Variable: D(LOG(X),1)
Method: ARMA Conditional Least Squares (Gauss-Newton / Marquardt steps)
Date: 05/10/25 Time: 16:17
Sample: 2000M01 2024M05
Included observations: 293
Failure to improve likelihood (non-zero gradients) after 11 iterations

Failure to improve likelihood (non-zero gradients) after 11 iterations Coefficient covariance computed using outer product of gradients MA Backcast 1999M11 1999M12

Variable Coefficient Std. Error t-Statistic Prob.					
D(FINDESEMANAS, i)	Variable	Coefficient	Std. Error	t-Statistic	Prob.
D1132020(-1) -4.795198 0.042015 -114.1302 0.0000 D1132020(-2) -3.006546 0.043215 -68.72124 0.0000 D1132020(-3) -1.165460 0.0432240 -26.95319 0.0000 D1132020(-3) -0.363885 0.041413 8-545211 0.0000 D1192020 -0.222441 0.043755 5.083797 0.0000 D1102020 -0.666288 0.045338 -14.69588 0.0000 D11102020(-1) -1.560648 0.051309 -30.41652 0.0000 D11102020(-2) -1.599208 0.052998 -30.17495 0.0000 D11102020(-2) -1.599208 0.052998 -30.17495 0.0000 D11102020(-3) -1.520671 0.055326 -29.50532 0.0000 D1102021(-1) -1.796947 0.053147 -20.98261 0.0000 D1132021 -1.579599 0.035236 -29.50532 0.0000 D1132021(-1) -1.796947 0.053147 -20.98261 0.0000 D1132021(-2) -0.882881 0.045389 -19.45078 0.0000 D1132021(-2) -0.342487 0.044117 -7.763240 0.0000 D1132021(-3) -0.342487 0.044117 -7.763240 0.0000 D1112022 0.234488 0.037558 -6.243418 0.0000 D1112022 0.130457 0.036839 -19.45078 0.0000 D1162022(-1) 0.082118 0.035027 2.344436 0.0000 D1 0.094871 0.015277 -4.876543 0.0000 D1 0.094871 0.015523 15.86590 0.0000 D5 0.200305 0.045266 3.381505 0.0000 D5 0.200305 0.015501 11.42231 0.0000 D5 0.204103 0.015277 -4.876543 0.0000 D6 0.204103 0.015277 -4.876543 0.0000 D7 0.164188 0.015743 10.42900 0.0000 D8 0.054955 0.015600 11.42031 0.0000 D8 0.34945 0.0156501 11.42231 0.0000 D8 0.054955 0.015600 12.07327 0.0000 D8 0.034953 0.015501 12.07327 0.0000 D8 0.034953 0.015502 5.288025 0.0000 D8 0.034954 0.015573 15.288502 0.0000 D8 0.034955 0.015600 12.073290 0.0000 D8 0.034954 0.0155315 -20.88474 0.0000 D9 0.319842 0.015315 -20.88474 0.0000 D1 0.0324561 0.015503 -5.288025 0.0000 D8 0.054955 0.015400 3.568613 0.0004 D9 0.319842 0.015315 -20.88474 0.0000 D1 0.0324561 0.015503 -5.288025 0.0000 D8 0.054955 0.015400 3.568613 0.0004 D9 0.319842 0.015315 -20.88474 0.0000 D1 0.0324561 0.015503 -5.288025 0.0000 D8 0.054955 0.015400 3.568613 0.0004 D9 0.319842 0.015315 -20.88474 0.0000 D1 0.477362 Schwarz criterion -3.329217 0.0000 D8 0.054955 0.015400 3.568613 0.0004 D9 0.319842 0.015315 -20.88474 0.0000 D10 -0.324561 0.015300 -21.17102 0.0000 D11 0.479671 0.015623 15.466790	D(SEMANASANTA,1)	0.088543	0.009041	9.793286	0.0000
D1132020(-1)	D(FINDESEMANAS,1)	0.020321	0.002881	7.054092	0.0000
D1132020(-2)	D1l32020	-2.188047	0.040761	-53.68027	0.0000
D1132020(-3)		-4.795198			
D1132020(-4)		-3.006546	0.043750	-68.72124	0.0000
D192020 -0.222441 0.043755 5.083797 0.0000 D11102020(-1) -0.666288 0.045338 -14.69588 0.0000 D11102020(-2) -1.590648 0.051309 -30.41652 0.0000 D11102020(-2) -1.590908 0.052998 -30.17495 0.0000 D11102020(-4) -1.590971 0.055366 -29.50532 0.0000 D1132021(-1) -1.796947 0.050528 -29.50532 0.0000 D1132021(-2) -0.882861 0.045389 -19.46078 0.0000 D1132021(-3) -0.342487 0.044117 -7.763240 0.0000 D1112021 -0.048494 0.037236 -1.302359 0.1940 D1162022(-1) -0.342487 0.044118 0.03025 -1.302359 0.1940 D112021 -0.048494 0.037236 -1.302359 0.1940 D1162022(-1) 0.082118 0.035027 2.344436 0.0100 D162022(-1) 0.082118 0.035027 2.344436 0.0100 D1 -0.0	D1I32020(-3)	-1.165460	0.043240	-26.95319	0.0000
D11102020 -0.666288 0.045338 -14.69588 0.0000 D11102020(-1) -1.560648 0.051309 -30.41652 0.0000 D11102020(-2) -1.599208 0.052998 -30.17495 0.0000 D11102020(-3) -1.520671 0.055326 -27.48590 0.0000 D1132021 -1.795999 0.053536 -29.50532 0.0000 D1132021(-1) -1.796947 0.050528 -35.56358 0.0000 D1132021(-2) -0.882861 0.045389 -19.45078 0.0000 D1132021(-3) -0.342487 0.044117 -7.763240 0.0000 D1112022 -0.234488 0.037256 -8.243418 0.0001 D1112022 -0.234488 0.037558 -8.243418 0.0005 D1162022 0.130457 0.036839 3.541232 0.0005 D1620224) 0.149650 0.044256 3.381505 0.0008 D1 -0.074500 0.015277 4.876543 0.0000 D2 0.094871 0.015271					
D11102020(-1)					
D11102020(-2) -1.599208 0.052998 -30.17495 0.0000 D11102020(-4) -1.590671 0.055326 -27.48590 0.0000 D1102020(-4) -1.114097 0.055346 -27.48590 0.0000 D1132021 -1.579599 0.053536 -29.50532 0.0000 D132021(-2) -1.759599 0.053536 -29.50532 0.0000 D132021(-2) -0.882861 0.045389 -19.45078 0.0000 D132021(-2) -0.882861 0.045389 -19.45078 0.0000 D132021(-3) -0.342487 0.044117 -7.763240 0.0000 D132021(-3) -0.342487 0.044117 -7.763240 0.0000 D1112022 -0.234488 0.037236 -1.302359 0.1940 D1112022 -0.234488 0.037558 -6.243418 0.0000 D1102022 0.130457 0.036839 3.541232 0.0005 D162022(-1) 0.082118 0.035027 2.344436 0.0108 D162022 0.104650 0.044256 3.381505 0.0008 D152024 0.094871 0.015277 -4.876543 0.0000 D2 0.094871 0.015273 4.876543 0.0000 D2 0.094871 0.015273 4.876543 0.0000 D5 0.00350 0.016591 1.207327 0.0000 D5 0.200305 0.016591 1.207327 0.0000 D5 0.200305 0.016591 1.207327 0.0000 D6 0.204103 0.015784 1.293089 0.0000 D7 0.164188 0.015743 10.42900 0.0000 D7 0.164188 0.015743 10.42900 0.0000 D7 0.164188 0.015743 10.42900 0.0000 D7 0.324561 0.015330 -21.17102 0.0000 D10 -0.324561 0.015330 -21.17102 0.0000 D11 -0.479671 0.015482 -3.98203 0.0000 D11 -0.479671 0.015482 -3.98203 0.0000 D11 -0.479671 0.0156267 2.876836 0.0004 D12 0.081931 0.015500 5.286025 0.0000 D144000 0.086495 0.055647 -7.435076 0.0000 D7.540324 0.00056547 -7.435076 0.0000 D7.540324 0.00056547 -7.435076 0.0000 D7.540324 0.00056547 -7.435076 0.0000 0.0000 D7.540324 0.00000 0.00000 0.00000 0.00000 0.00000000					
D11102020(-3)					
D1110220(-4)					
D1132021 -1.579599 0.053536 -29.50532 0.0000 D1132021(-2) -1.7795947 0.050528 -35.56358 0.0000 D1132021(-3) -0.882861 0.045389 -19.45078 0.0000 D1132021(-3) -0.382487 0.044117 -7.763240 0.0000 D1112021 -0.084948 0.037236 -1.302359 0.1940 D1112022 -0.234488 0.037558 -6.243418 0.0000 D1162022 0.130457 0.036839 3.541232 0.0005 D162022 0.130457 0.036839 3.541232 0.0005 D162024) 0.149650 0.044256 3.381505 0.0008 D1 -0.074500 0.015277 4.876543 0.0000 D2 0.094871 0.015273 4.876543 0.0000 D3 0.177851 0.015235 6.227230 0.0000 D4 0.241933 0.015523 15.58590 0.0000 D5 0.200305 0.016591 12.07327 0.0000 D6 0.200305 0.016591 12.07327 0.0000 D7 0.164188 0.015743 10.42900 0.0000 D8 0.054955 0.015400 3.588613 0.0004 D9 -0.319842 0.015315 -20.88474 0.0000 D8 0.054955 0.015400 3.588613 0.0004 D9 -0.319842 0.015315 -20.88474 0.0000 D10 -0.324561 0.015330 -21.17102 0.0000 D11 -0.479671 0.015482 -30.98203 0.0000 D12 0.081931 0.015504 5.266025 0.0000 D14 0.479674 0.015482 -30.98203 0.0000 D15 0.349433 0.063071 5.540321 0.0000 D10 -0.324561 0.015300 -21.17102 0.0000 D11 -0.479674 0.015482 -30.98203 0.0000 D12 0.081931 0.015500 5.266025 0.0000 D14 0.0874767 0.015482 -30.98203 0.0000 D15 0.081931 0.015500 5.266025 0.0000 D16 0.081931 0.015500 5.266025 0.0000 D17 0.187763 0.063074 -7.435076 0.0000 D18 0.08527 -7.435076 0.0000 D19 0.986400 S.D. dependent var 0.004647 D19 0.986400 S.D. dependent var 0.379558 S.E of regression 0.043182 S.D. dependent var 0.379558 S.E of regression 0.043182 S.D. dependent var 0.379558 S.E of regression 0.043182 S.D. dependent var 0.379558 S.E of regression 0.043182 S.D. dependent var 0.379558 S.E of regression 0.043182 S.D. dependent var 0.004647 D10 -0.479671 0.0910 0.0910 -2.8046791 -3.466791 -3.9920 0.0921 -4.46791 -3.9920 0.0921 -4.46791 -3.9920 0.0921 -4.46791 -3.9920 0.0921 -4.46791 -3.9920 0.0921 -4.46791 -3.9920 0.0921 -4.46791 -3.9920 0.0921 -4.46791 -3.9920 0.0921 -4.46791 -3.9920 0.0921 -3.9921 -4.46791 -3.9920 0.0921 -3.9921 -4.46791 -3.9920 0.0921 -3.9921 -3.9921 -3.9921 -3.9921 -3.9921 -3.9921					
D1132021(-1)					
D1132021(-2)					
D1132021(-3)					
D11112021					
D1112022					
D1162022					
D1162022(-1)					
D(152024)					
D1					
D2 0.094871 0.015235 6.227230 0.0000 D3 0.177851 0.015571 11.42231 0.0000 D4 0.241933 0.015571 11.42231 0.0000 D5 0.200005 0.016591 12.07327 0.0000 D6 0.204103 0.015784 12.93089 0.0000 D7 0.164188 0.015743 10.42900 0.0000 D8 0.054955 0.015400 3.568613 0.0004 D9 -0.319842 0.015315 -20.88474 0.0000 D10 -0.324561 0.015330 -21.17102 0.0000 AR(12) 0.349433 0.063071 5.540321 0.0000 AR(12) 0.349433 0.063071 5.540321 0.0000 MA(1) -0.472474 0.063547 -7.435076 0.0000 MA(2) 0.187763 0.085267 2.876836 0.0044 R-squared 0.986420 S.D. dependent var 0.037658 S.E. drigeression 0.043182					
D3					
D4 0.241933 0.015523 15.8550 0.0000 D5 0.200305 0.016591 12.07327 0.0000 D6 0.204103 0.015784 12.93089 0.0000 D7 0.164188 0.015743 10.42900 0.0000 D8 0.054955 0.015400 3.568613 0.0004 D9 -0.319842 0.015330 -21.17102 0.0000 D10 -0.324561 0.015330 -21.17102 0.0000 D11 -0.479671 0.015482 -30.98203 0.0000 AR(12) 0.349433 0.063071 5.540321 0.0000 MA(1) -0.472474 0.065267 2.876836 0.0044 R-squared 0.986094 Mean dependent var 0.00464 Adjusted R-squared 0.986420 S.D. dependent var 0.370558 S.E. of regression 0.043182 Akaike info criterion -3.329217 Sum squared resid 0.477362 Schwarz criterion -2.864495 Log likelihood					
D5					
D6 0.204103 0.015784 12.93089 0.0000 D7 0.164188 0.015743 10.42900 0.0000 D8 0.054955 0.015340 3.568613 0.0004 D9 -0.319842 0.0153315 -20.88474 0.0000 D10 -0.324561 0.015330 -21.17102 0.0000 D11 -0.479671 0.015382 -30.98203 0.0000 D12 0.081931 0.015500 5.288025 0.0000 AR(12) 0.349433 0.063071 5.540321 0.0000 MA(1) -0.472474 0.063547 -7.435076 0.0000 MA(2) 0.187763 0.065267 2.876836 0.00464 R-squared 0.986420 S.D. dependent var 0.070585 3.29217 SE of regression 0.043182 Akaike info criterion -3.329217 -2.864485 Log likelihood 524.7303 Hannan-Quinn criter -3.143085 Durbin-Walson stat 1.966342 1.99448i .79-46i 46-7					
D7 0.164188 0.015743 10.42900 0.0000 D8 0.0054955 0.015400 3.568613 0.0004 D9 -0.319842 0.015315 -20.88474 0.0000 D10 -0.324561 0.015330 -21.17102 0.0000 D11 -0.479671 0.015482 -30.98203 0.0000 AR(12) 0.081931 0.015500 5.286025 0.0000 MA(12) 0.349433 0.063071 5.540321 0.0000 MA(1) -0.472474 0.063547 -7.435076 0.0000 MA(2) 0.187763 0.065267 2.876836 0.0044 R-squared Adjusted R-squared 0.986994 Mean dependent var 0.370558 S.E. of regression 0.043182 Akaike info criterion -3.329217 Sum squared resid 0.477362 Schwarz criterion -2.864495 Durbin-Watson stat 1.966342 0.479461 79-461 79-461 46-791 -0.921 0.0-921 -46-791 -992					
D8					
D9					
D10 -0.324561 0.015330 -21.17102 0.0000 D11 -0.479671 0.015482 -30.98203 0.0000 D12 0.081931 0.015500 5.268025 0.0000 AR(12) 0.349433 0.063071 5.540321 0.0000 MA(1) -0.472474 0.063547 -7.435076 0.0000 MA(2) 0.187763 0.065267 2.876836 0.004 R-squared 0.986420 S.D. dependent var 0.370558 S.E. of regression 0.043182 Akaike info criterion -3.329217 Sum squared resid 0.043182 Akaike info criterion -3.2864485 Log likelihood 524.7303 Hannan-Quinn criter. -3.143085 Durbin-Walson stat 1.966342 79+46i .79-46i .46-79i Inverted AR Roots 92 .79+46i .79-46i .46-79i -46-79i -79-46i .79-46i .92					
D11					
D12					
AR(12) 0.349433 0.063071 5.540321 0.0000 MA(1) -0.472474 0.063547 -7.435076 0.0000 MA(2) 0.187763 0.065267 2.876836 0.0044 R-squared 0.988094 Mean dependent var 0.004647 Adjusted R-squared 0.986420 S.D. dependent var 0.370558 S.E. of regression 0.043182 Akaike info criterion -3.329217 Sum squared resid 0.477362 Schwarz criterion -2.864495 Log likelihood 524.7303 Hannan-Quinn criter3.143085 Unverted AR Roots 92 7.9+46i 7.9-46i 46-79i -46-79i -79-46i -7.9+46i -9.92					
MA(1)					
MA(2) 0.187763 0.065267 2.876836 0.0044					
R-squared					
Adjusted R-squared S.E. of regression 0.986420 0.043182 S.D. dependent var Akaike info criterion 0.370558 -3.329217 S.E. of regression 0.043182 Akaike info criterion -2.864495 Log likelihood Durbin-Watson stat 524.7303 1.966342 Hannan-Quinn criter. -3.143085 Inverted AR Roots 4.64-79i 92 -46-79i .79+46i 0.09+92i -79-46i .79-46i -79+46i -92 .46-79i -92	(L)	0.101100	0.000201	2.070000	0.0011
S.É of regression 0.043182 O.477362 Akaike info criterion -3.329217 - 2.864485 Sum squared resid 0.477362 Schwarz criterion -2.864485 Log likelihood 524.7303 Hannan-Quinn criter. -3.143085 Inverted AR Roots 92 .79+46i .79-46i 46-79i .46-79i .79-46i .79+46i .92+79+46i .92+79+46i	R-squared	0.988094	Mean depen	dent var	0.004647
Sum squared resid Log likelihood Durbin-Watson stat 0.477362 524,7303 Schwarz criterion Hannan-Quinn criter. -2.864485 -3.143085 Inverted AR Roots 4.64-79i .92 .46+.79i .79+.46i .00+.92i .7946i .0092i .4679i .46+.79i .9246i .79+.46i .7946i .92	Adjusted R-squared	0.986420			0.370558
Log likelihood Durbin-Watson stat 524,7303 1,966342 Hannan-Quinn criter. -3.143085 Inverted AR Roots 4.6479i .92 .46+.79i .79+.46i .00+.92i .0092i .0092i .46+.79i .46+.79i	S.E. of regression	0.043182			-3.329217
Durbin-Watson stat 1.966342 Inverted AR Roots .92 .79+.46i .7946i .4679i .4679i .00+.92i .0092i 46+.79i .4679i .7946i .79+.46i 92					-2.864485
Inverted AR Roots 92 .79+.46i .7946i .4679i .46+.79i .00+.92i .0092i .46+.79i .4679i .7946i .92					-3.143085
.46+.79i .00+.92i .0092i46+.79i 4679i7946i79+.46i92	Durbin-Watson stat	1.966342			
.46+.79i .00+.92i .0092i46+.79i 4679i7946i79+.46i92	Inverted AR Roots	.92	.79+.46i	.7946i	.4679i
4679i7946i79+.46i92					

Determinístico

Dependent Variable: D(LOG(X),1,12)
Method: ARMA Conditional Least Squares (Gauss-Newton / Marquardt steps)
Date: 05/10/25 Time: 18:13
Sample: 2000M01 2024M05
Included observations: 293
Failure to improve likelihood (non-zero gradients) after 19 iterations
Coefficient covariance computed using outer product of gradients
MA Backcast: 1999M11 1999M12

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(SEMANASANTA,1,12)	0.085272	0.009381	9.090166	0.0000
D(FINDESEMANAS, 1, 12)	0.021908	0.002609	8.395598	0.0000
D112l32020	-2.159216	0.040095	-53.85256	0.0000
D112l32020(-1)	-4.761006	0.040842	-116.5715	0.0000
D112l32020(-2)	-2.948134	0.043180	-68.27565	0.0000
D112l32020(-3)	-1.154608	0.041104	-28.08972	0.0000
D112l32020(-4)	-0.255073	0.037384	-6.823141	0.0000
D112l102020	-0.516780	0.041239	-12.53135	0.0000
D112I102020(-1)	-1.331477	0.046732	-28.49155	0.0000
D112I102020(-2)	-0.543823	0.047713	-11.39776	0.0000
D112I102020(-3)	-0.444216	0.050333	-8.825487	0.0000
D(E112020,1,12)	0.833921	0.071641	11.64031	0.0000
D112l32021	-0.414445	0.048289	-8.582680	0.0000
D112l32021(-1)	-0.635832	0.049835	-12.75873	0.0000
D112l32021(-2)	0.265072	0.059974	4.419810	0.0000
D112l32021(-3)	-0.422068	0.045038	-9.371328	0.0000
D(E52021,1,12)	-1.169717	0.074185	-15.76755	0.0000
D112l12022	-0.218600	0.037428	-5.840573	0.0000
D(I12024,1,12)	-0.088779	0.041876	-2.120071	0.0349
AR(12)	-0.374491	0.064515	-5.804694	0.0000
AR(24)	-0.333491	0.064463	-5.173362	0.0000
MA(1)	-0.480972	0.061982	-7.759849	0.0000
MA(2)	0.264771	0.063520	4.168281	0.0000
R-squared	0.982018	Mean depen		0.000452
Adjusted R-squared	0.980553	S.D. depend		0.351568
S.E. of regression	0.049028	Akaike info		-3.117624
Sum squared resid	0.648999	Schwarz crit		-2.828736
Log likelihood	479.7319	Hannan-Qui	nn criter.	-3.001920
Durbin-Watson stat	1.978082			
Inverted AR Roots	.94+.15i	.9415i	.8934i	.89+.34i
invented / it / tools	.7460i	.74+.60i	.6074i	.60+.74i
	.3489i	.34+.89i	.1594i	.15+.94i
	1594i	15+.94i		3489i
	60+.74i	6074i		7460i
	8934i	89+.34i		9415i
Inverted MA Roots	.24+.45i	.2445i	.541.151	.04 . 101
IIIVOITOU IMA I TOUTO	.241.401	.24401		

Estocástico

 Dado que la última observación disponible es 2024M11, se estiman de nuevo los modelos hasta 2024M05

PREDICCIÓN SEIS PERIODOS POR DELANTE (SUBMUESTRA)

Forecast: XF_DET_24M11 Actual: X Forecast sample: 2024M06 2024M11 Included observations: 6 Root Mean Squared Error 914640.0 Mean Absolute Error 822904.6 Mean Abs. Percent Error 6.873480 Theil Inequality Coef. 0.033120 Bias Proportion 0.809466 Variance Proportion 0.000947 Covariance Proportion 0.189587 Theil U2 Coefficient 0.276828 Symmetric MAPE 7.197493

- Las dos predicciones son muy similares
- El modelo estocástico parece tener un intervalo de confianza más amplio

Forecast: XF STOC 24M11 Actual: X Forecast sample: 2024M06 2024M11 Included observations: 6 Root Mean Squared Error 1326604. Mean Absolute Error 1106823. Mean Abs. Percent Error 7.539087 Theil Inequality Coef. 0.044856 Bias Proportion 0.564596 0.331912 Variance Proportion Covariance Proportion 0.103492 Theil U2 Coefficient 0.295068 Symmetric MAPE 7.247992

PREDICCIÓN SEIS PERIODOS POR DELANTE (SUBMUESTRA)

Determinístico

Predicciones a seis	meses. Dato último: ma	yo 2024				
	Real	Predic	Dif	Dif al cuadrado	Lim inferior	Lim superior
202406	14.912.860	14.668.229	244.631	59.844.380.649	13.285.850	16.194.442
202407	17.533.845	16.514.868	1.018.977	1.038.314.781.162	14.697.048	18.557.527
202408	18.013.367	17.472.631	540.736	292.395.117.812	15.321.060	19.926.353
202409	14.626.670	13.094.858	1.531.812	2.346.448.041.150	11.318.822	15.149.572
202410	9.940.479	9.126.404	814.075	662.717.804.260	7.791.844	10.689.544
202411	6.492.395	5.705.198	787.197	619.678.356.495	4.815.445	6.759.353

Suma cuadrados 836.566.413.588 ECM 914.640,05

Estocástico

Predicciones a seis i	Predicciones a seis meses. Dato último: mayo 2024						
	Dool	Dd'	D.t.	Diff of overdende			
	Real	Predic	Dif	Dif al cuadrado	Lim inferior	Lim superior	
202406	14.912.860	16.852.656	- 1.939.796	3.762.810.105.148	15.168.002	18.724.419	
202407	17.533.845	18.841.750	- 1.307.905	1.710.614.949.857	16.761.336	21.180.384	
202408	18.013.367	20.144.724	- 2.131.357	4.542.682.134.217	17.538.014	23.138.874	
202409	14.626.670	15.098.954	- 472.284	223.052.569.412	12.894.142	17.680.775	
202410	9.940.479	10.400.023	- 459.544	211.180.699.169	8.731.203	12.387.809	
202411	6.492.395	6.162.341	330.054	108.935.526.657	5.092.089	7.457.539	

- En ambos modelos, todas las predicciones se sitúan dentro del intervalo de confianza
- El modelo predice bien la submuestra
- El ECM del modelo estocástico (1.326.604) es aproximadamente un 45% mayor que el ECM del modelo determinístico (914.640)
- Como ya se ha mencionado, los intervalos de confianza del modelo estocástico son más amplios

Suma cuadrados 1.759.879.330.743 ECM 1.326.604,44

- Ahora se utilizan los modelos completos (hasta 2024M11)
- Las predicciones se hacen de 2024M12 a 2026M12
- Las dos predicciones son muy similares
- El modelo estocástico parece tener un intervalo de confianza más amplio

				Inter	Interv	Tasa
		Original	Predicción	Inferior	superior	variación
2024	octubre	9.940.479	9.940.479	9.940.479	9.940.479	-2,68%
	noviembre	6.492.395	6.492.395	6.492.395	6.492.395	7,97%
	diciembre		7.023.220	6.326.456	7.525.403	0,14%
2025	gen-25		6.170.630	5.461.541	6.638.577	10,79%
	febrero		6.889.617	5.980.610	7.557.461	7,79%
	marzo		8.350.369	7.138.940	9.300.554	3,28%
	abril		11.239.414	9.458.972	12.716.705	21,82%
	mayo		12.894.571	10.721.994	14.766.224	-1,07%
	junio		15.942.413	13.072.655	18.512.945	6,90%
	julio		18.698.824	15.206.968	21.893.599	6,649
	agosto		20.188.113	16.251.763	23.879.332	12,079
	septiembre		14.708.018	11.714.848	17.583.398	0,569
	octubre		10.463.024	8.262.621	12.616.179	5,269
	noviembre		6.836.795	5.285.529	8.218.955	5,30%
	diciembre		7.116.065	5.418.646	8.785.709	1,329
2026	gen-26		6.656.379	4.992.457	8.302.869	7,879
	febrero		7.212.082	5.327.446	9.134.160	4,689
	marzo		8.971.072	6.537.464	11.517.170	7,439
	abril		11.562.425	8.311.959	15.047.377	2,879
	mayo		13.901.218	9.869.456	18.318.035	7,819
	junio		16.426.218	11.514.430	21.922.957	3,039
	julio		19.498.923	13.519.937	26.309.523	4,289
	agosto		21.277.065	14.588.200	29.032.746	5,39%
	septiembre		15.125.230	10.252.899	20.874.866	2,849
	octubre		11.080.230	7.435.602	15.447.130	5,90%
	noviembre		6.905.171	4.565.679	9.685.335	1,009
	diciembre		7.337.958	4.794.641	10.458.347	3,129

Determinístico

Estocástico

- Los intervalos de confianza del modelo estocástico son más amplios
- Las tasas de variación del modelo estocástico son, en media, superiores

Determinístico

Estocástico

			Determinístico			Estocástico	
	Datos reales	Predicción	Interv Inferior	Interv superior	Predicción	Interv Inferior	Interv superior
2024M12	6.839.099	7.023.220,01	6.326.455,94	7.525.402,58	6.965.087,27	6.314.326,63	7.682.915,93
2025M01	6.145.038	6.170.629,87	5.461.540,87	6.638.576,97	6.392.710,68	5.632.873,39	7.255.044,98
2025M02	6.407.006	6.889.617,12	5.980.609,72	7.557.460,77	6.655.973,29	5.820.145,00	7.611.834,50
		ECM	517.174,03		ECM	373.094,51	

- Hoy están disponibles 3 observaciones más
- En ambos modelos, las 3 observaciones se sitúan dentro de los intervalos de confianza
- El ECM del modelo determinístico (517.174) es aproximadamente un 39% mayor que el ECM del modelo estocástico (373.094)