CS 511, Fall 2024, Lecture Slides 21 Extended Example in First-Order Logic

Assaf Kfoury

7 October 2024

several structures over the domain \mathbb{N} (assume " \approx " is available) structures over the vocabulary/signature domain of natural numbers predicate symbols function symbols

 $\mathscr{F} = \{0, S\}$

 $\mathscr{P} = \varnothing$

$\mathcal{N}_1 \stackrel{ ext{def}}{=} (\mathbb{N},0,S,<)$	$\mathscr{P} = \{<\}$	$\mathcal{F}=\{0,S\}$
$\mathcal{N}_2 \stackrel{ ext{def}}{=} (\mathbb{N}, 0, S, <, +)$	$\mathscr{P} = \{<\}$	$\mathcal{F}=\{0,S,+\}$
$\mathcal{N}_3 \stackrel{ ext{def}}{=} (\mathbb{N}, 0, S, <, +, \cdot)$	$\mathscr{P} = \{<\}$	$\mathscr{F} = \{0, S, +, \cdot\}$
$\mathcal{N}_4 \stackrel{\mathrm{def}}{=} (\mathbb{N}, 0, S, <, +, \cdot, pr)$ $pr(x) \stackrel{\mathrm{def}}{=} true iff \ x is prime$	$\mathscr{P} = \{<,pr\}$	$\mathscr{F} = \{0, S, +, \cdot\}$
$\mathcal{N}_5 \stackrel{\text{def}}{=} (\mathbb{N}, 0, S, <, +, \cdot, pr, \uparrow) \ x \uparrow y \stackrel{\text{def}}{=} x^y$	$\mathscr{P} = \{<,pr\}$	$\mathscr{F} = \{0, S, +, \cdot, \uparrow\}$
$\mathcal{N}_6\stackrel{ ext{def}}{=}\cdots$		
Question: Is a new predicate (function) definable from earlier ener?		

Question: Is a new predicate (function) definable from earlier ones?

 $\mathcal{N} \stackrel{\text{def}}{=} (\mathbb{N}, 0, S)$

first-order definability over $\ensuremath{\mathbb{N}}$

lacktriangle every number n is definable from 0 and S:

```
1 \stackrel{\text{def}}{=} S(0)
2 \stackrel{\text{def}}{=} S(S(0))
3 \stackrel{\text{def}}{=} S(S(S(0)))
\dots
n \stackrel{\text{def}}{=} \underbrace{S(\dots S(0) \dots)}_{n}
```

ightharpoonup every number n is definable from 0 and S:

```
1 \stackrel{\text{def}}{=} S(0)
2 \stackrel{\text{def}}{=} S(S(0))
3 \stackrel{\text{def}}{=} S(S(S(0)))
\dots
n \stackrel{\text{def}}{=} \underbrace{S(\dots S(0) \dots)}_{n}
```

• "S" is definable from "+" : for all $m, n \in \mathbb{N}$, we have S(m) = n iff m+1=n

 \blacktriangleright every number n is definable from 0 and S:

```
1 \stackrel{\text{def}}{=} S(0)
2 \stackrel{\text{def}}{=} S(S(0))
3 \stackrel{\text{def}}{=} S(S(S(0)))
\dots
n \stackrel{\text{def}}{=} \underbrace{S(\cdots S(0) \cdots)}_{n}
```

"S" is definable from "+": for all $m, n \in \mathbb{N}$, we have S(m) = n iff m+1 = n formally: the sentence $\forall x \forall y \ (S(x) \approx y \leftrightarrow x+1 \approx y)$ is true in \mathcal{N}_2 , which implies the graph of $S^{\mathcal{N}_2}$ is defined by $\varphi_S(x,y) = (x+1 \approx y)$.

first-order definability over $\ensuremath{\mathbb{N}}$

ightharpoonup every number n is definable from 0 and S:

```
1 \stackrel{\text{def}}{=} S(0)
2 \stackrel{\text{def}}{=} S(S(0))
3 \stackrel{\text{def}}{=} S(S(S(0)))
\dots
n \stackrel{\text{def}}{=} \underbrace{S(\dots S(0) \dots)}_{n}
```

- "S" is definable from "+": for all $m,n\in\mathbb{N}$, we have S(m)=n iff m+1=n formally: the sentence $\forall x\forall y\,(\,S(x)\approx y\,\leftrightarrow\,x+1\approx y\,)$ is true in \mathcal{N}_2 , which implies the graph of $S^{\mathcal{N}_2}$ is defined by $\varphi_S(x,y)=(x+1\approx y)$.
- ▶ is "+" definable from "S"? perhaps . . .

ightharpoonup every number n is definable from 0 and S:

```
1 \stackrel{\text{def}}{=} S(0)
2 \stackrel{\text{def}}{=} S(S(0))
3 \stackrel{\text{def}}{=} S(S(S(0)))
\dots
n \stackrel{\text{def}}{=} \underbrace{S(\dots S(0) \dots)}_{n}
```

- "S" is definable from "+": for all $m, n \in \mathbb{N}$, we have S(m) = n iff m+1 = n formally: the sentence $\forall x \forall y (S(x) \approx y \leftrightarrow x+1 \approx y)$ is true in \mathcal{N}_2 , which implies the graph of $S^{\mathcal{N}_2}$ is defined by $\varphi_S(x,y) = (x+1 \approx y)$.
- is "+" definable from "S"? perhaps . . . for all $m,n,p\in\mathbb{N}$, we have m+n=p iff $\underbrace{S(\cdots S(m)\cdots)}=p$

 \blacktriangleright every number n is definable from 0 and S:

```
1 \stackrel{\text{def}}{=} S(0)
2 \stackrel{\text{def}}{=} S(S(0))
3 \stackrel{\text{def}}{=} S(S(S(0)))
\dots
n \stackrel{\text{def}}{=} \underbrace{S(\cdots S(0) \cdots)}_{n}
```

- "S" is definable from "+": for all $m, n \in \mathbb{N}$, we have S(m) = n iff m+1 = n formally: the sentence $\forall x \forall y (S(x) \approx y \leftrightarrow x+1 \approx y)$ is true in \mathcal{N}_2 , which implies the graph of $S^{\mathcal{N}_2}$ is defined by $\varphi_S(x,y) = (x+1 \approx y)$.
- is "+" definable from "S"? perhaps . . . for all $m, n, p \in \mathbb{N}$, we have m + n = p iff $\underbrace{S(\cdots S(m) \cdots)}_n = p$ "formally": $\forall x \forall y \forall z \, [\underbrace{S(\cdots S(x) \cdots)}_y \approx z \leftrightarrow x + y \approx z \,]$ so perhaps $\varphi_+(x,y,z) \stackrel{\mathrm{def}}{=} \underbrace{(S(\cdots S(x) \cdots) \approx z \ldots)}_n$ Not quite!

first-order definability over $\ensuremath{\mathbb{N}}$

1. FACT

"+" is **NOT** (first-order) definable from "0" and "S" (difficult!)

- 1. FACT "+" is **NOT** (first-order) definable from "0" and "S" (difficult!)
- FACT
 "<" is (first-order) definable from "+" (easy: try it!)

- 1. FACT "+" is **NOT** (first-order) definable from "0" and "S" (difficult!)
- FACT
 "<" is (first-order) definable from "+" (easy: try it!)
- 3. FACT "+" is **NOT** (first-order) definable from "<", "0", and "S" (difficult!)

- 1. FACT "+" is **NOT** (first-order) definable from "0" and "S" (difficult!)
- 2. FACT "<" is (first-order) definable from "+" (easy: try it!)
- 3. FACT "+" is **NOT** (first-order) definable from "<", "0", and "S" (difficult!)
- FACT
 "·" is NOT (first-order) definable from "0", "S", and "+"
 (no need to mention "<") (difficult!)

- 1. FACT "+" is **NOT** (first-order) definable from "0" and "S" (difficult!)
- 2. FACT "<" is (first-order) definable from "+" (easy: try it!)
- 3. FACT "+" is **NOT** (first-order) definable from "<", "0", and "S" (difficult!)
- 4. FACT"·" is NOT (first-order) definable from "0", "S", and "+" (no need to mention "<") (difficult!)
- 5. FACT
 "+" is (first-order) definable from "<" and ":" (tricky: try hint below!)

- FACT
 - "+" is **NOT** (first-order) definable from "0" and "S" (difficult!)
- 2. FACT
 - "<" is (first-order) definable from "+" (easy: try it!)
- 3. FACT
 - "+" is **NOT** (first-order) definable from "<", "0", and "S" (difficult!)
- 4. FACT
 - "·" is **NOT** (first-order) definable from "0", "S", and "+" (no need to mention "<") (difficult!)
- 5. FACT
 - "+" is (first-order) definable from "<" and ":" (tricky: try hint below!)

Hint. Use the following equivalence for all $m,n,p\in\mathbb{N}$ $(p=0)\vee(p=m+n)$ iff $(m\cdot p+1)\cdot(n\cdot p+1)=p^2\cdot(m\cdot n+1)+1$

▶ is "pr" definable from $\{0, S, <, +, \cdot\}$?

▶ is "pr" definable from $\{0, S, <, +, \cdot\}$?

YES pr(n) is true iff $\varphi(n)$ is true, where $\varphi(x)$ is the WFF

$$\varphi(x) \ \stackrel{\text{def}}{=} \ \neg(x \approx 1) \ \land \ \forall y \forall z \left[\ (x \approx y \cdot z) \ \rightarrow \ (y \approx 1 \lor z \approx 1) \ \right]$$

▶ is "↑" definable from $\{0, S, <, +, \cdot\}$?

is "pr" definable from $\{0, S, <, +, \cdot\}$?

YES pr(n) is true iff
$$\varphi(n)$$
 is true, where $\varphi(x)$ is the WFF
$$\varphi(x) \ \stackrel{\text{def}}{=} \ \neg(x \approx 1) \ \land \ \forall y \forall z \left[\ (x \approx y \cdot z) \ \rightarrow \ (y \approx 1 \lor z \approx 1) \ \right]$$

is " \uparrow " definable from $\{0, S, <, +, \cdot\}$? **YES** $m = n \uparrow p$ iff $\varphi(m, n, p)$ is true, where $\varphi(x, y, z)$ is the WFF . . . (not very difficult: try it!)

