

Table of Contents

- I. Statistical Process Control
- **II. Process Control Chart**
- **III. Process Control Chart II**

• Who is the better shot?

• SPC의 기본 7 Tools

	종류	목적	특징	용도
1	Check sheet	손쉽게 데이터를 수집, 분석하기 위한 표	- 미리 표를 만들어 두고 작업을 하면서 그 결과를 표시하여, 그날의 작업과 제품상황을 알 수 있도록 한 것, 데이터를 수집, 정리하는 수고를 덜수 있으며 점검표를 사용하면 체크 누락을 예방할 수 있다.	- 점검, 기록 조사할때 - 개선효과의 확인 - 시간적 변화의 확인 - 표준화의 확인
2	Pareto Chart	개선활동을 할 때 일의 전후를 결정하는 그래프	- 불량, 재손질, 고장, 클레임 등에 의한 손실금액 및 건수를 원인별 또는 상태별로 분류하여, 이를 크기 순서대로 늘어놓은 것, 각 항목은 막대로, 누적은 꺽은선 그래프로 기입한다. 문제를 해결할때에는 중점지향으로 효과가 두드러진 큰 항목부터 착수한다.	- 층별 - 문제점의 파악 - 과거와 현상태의 파악 - 개선효과의 확인
3	Cause Effect Diagram	원인과 결과의 관계를 나타낸 것	- 품질특성, 불량항목(특성)과 그 원인(요인)과의 관계를 나타낸 것, 원인과 결과의 관계를 정리하여, 관련짓고 계통을 세우는 데 도움을 준다.	- 층별 - 원인과 결과의 인과관계를 파악한다.
4	Scatter Plot	두 가지 데이터의 관계를 알기 위한 그래프	- 관계 있는 두 가지의 특성치를 그래프의 가로축과 세로축에 잡고, 점을 찍어 만든 것. 두가지 데이터 사이에 관계가 있는가 없는가. 관계가 있다 면 어떤 관계인가를 알 수 있다.	- 층별 - 원인과 결과간의 상관조사 - 관리폭을 구하고자 할때
<u>5</u>	Control Chart	공정의 이상여부를 알기 위해, 또는 공정의 안정유지를 위해 사용하는 그래프	꺽은선 그래프의 한 가지로 세로축에 특성치, 가로축에 날짜와 시간을 잡는다. 관리상한(UCL), 관리하한(LCL), 중심선(CL)의 세가지 선을 넣은 것이 꺽은선 그래프와 다른점이다. 공전의 안정상태인지 이상상태인지를 관찰할 수 있다.	- 공정을 관리하려고 할 때 - 공정을 해석하려고 할 때
6	Design of Experiments	실험의 효율성을 개선하기 위해	- 관심대상의 특성에 영향을 미치는 인자들의 값(수준)의 조합으로 실험을 구성하여, 각각의 조합에 대한 시험을 무작위순위와 반복적으로 수향하는 것.	- 독립적인 인자와 수준들을 이용한 수요예측 - 마케팅 조사 등
7	결정집중분석	결점의 위치, 형태, 영향 등을 집중 분석하기 위해	- 결점의 상세한 분석을 위해 단면도나 전개도 형식을 이용	- 각종 부품이나 생산품의 결점 분석 시

· SPC의 예

CHECK SHEET DEFECT DATA FOR 1988-1989 YTD

Part No.: TAX-41 Location: Bellevue Study Date: 6/5/89 Analyst: TCB

	1						1000		
							1988	5	
Defect	1	2	3	4	5	6	7	8	0
Parts damaged		1		3	1	2		1	
Machining problems			3	3				. 1	
Supplied parts rusted			ı	1		2	9		
Masking insufficient		3	6	4	3	- 1			
Misaligned weld	2								
Processing out of order	2								
Wrong part issued		1						2	
Unfinished fairing			3						
Adhesive failure			-	1					
Powdery alodine					1				
Paint out of limits						1			
Paint damaged by etching			1						
Film on parts		-		-		3		1	1
Primer cans damaged						- 7		1	
Voids in casting									1
Delaminated composite									
Incorrect dimensions									
Improper test procedure									
Salt-spray failure									
TOTAL	4	5	14	12	5	9	9	6	10

Figure 4-15 A check sheet to record defects on a tank used in an aerost

· SPC의 예

Figure 4-2 A scatter diagram.

Figure 4-26 \ddot{x} chart for the average daily copper concentration.

Figure 4-27 R chart for daily copper concentration.

Process Control Charts: Practice

Detecting Variation

- Choice of Control Limits
 - 정규분포
 - 3sigma (sd) limit: P(Type I error)=0.0027

$$|\mathbf{Q}| = P(\text{Type I Error})$$

$$= P(\overline{X} > UCL, \quad \overline{X} < LCL \mid X \sim N(\mu, \sigma^2))$$

$$= P(\overline{X} > \mu + 3 \frac{\sigma}{\sqrt{n}}, \overline{X} < \mu - 3 \frac{\sigma}{\sqrt{n}} \mid X \sim N(\mu, \sigma^2))$$

$$= P(\overline{X} - \mu + 3 \frac{\sigma}{\sqrt{n}}, \overline{X} < \mu - 3 \frac{\sigma}{\sqrt{n}} \mid X \sim N(\mu, \sigma^2))$$

$$= P(\overline{X} - \mu + 3 \frac{\sigma}{\sqrt{n}}, \overline{X} < \mu - 3 \frac{\sigma}{\sqrt{n}} \mid X \sim N(\mu, \sigma^2))$$

- Specify P(Type I error) (e.g., 0.002): 3.09
- Warning Limits based on 2 sigma

Control Chart의 통계적 배경

- Control charts: 제품 품질에 영향을 주는 원인들을 발견할 수 있게 함
- Basic Principles
 - 기본 요소: Center line, Upper control limit, Lower control limit
 - 샘플들은 대상 프로세스에서 일정한 시간 간격으로 추출
 - 표본 평균 / 표본 비율 등이 차트로 부터 계산/ 샘플들이 Plot/ CL, UCL, LCL을 Plot
 - CL은 목표값이거나 목표 디자인 스펙
 - control limits (UCL, LCL)은 해당 프로세스가 잘 제어될 경우, 대부분의 표본점들
 이 그 범위 내에서 발생
 - control limits 밖의 표본점 또는 범위 내 systematic/nonrandom pattern 발견
 - Variable Control Chart, Attribute Control Chart

Control Chart 디자인

- 표본 크기, 샘플링 빈도, Control Limit을 설정
- M: Control에서 벗어난 샘플 관측하기 위해 필요한 Trial의 수
- P: Pr(any point exceeds the control limits), Control limit을 벗어난 샘플들
 이 발생할 확률
- Average Run Length(ARL)=E(M)=1/p

Control Charts의 패턴 분석

- Long run up: any type of run of length 8 or more (run down or up)
- Pattern recognition (e.g. cyclic behavior)
- 다음의 경우, 프로세스에 이상이 있을 수 있음 (Western Electric Handbook)
 - ① One point plots outside the 3-sigma control limits
 - 2 Two out of three consecutive points plot beyond the 2-sigma warning limits
 - 3 4 out of 5 consecutive points plot at a distance of 1-sigma or beyond from the center line
 - 4 8 consecutive points plot on one side of the center line
 - (5) An unusual or nonrandom pattern in the data
 - 6 One or more points near a warning or control limit.

• X Chart, R Chart, S Chart, XR Chart, XS Chart

- X Chart, R Chart, S Chart, XR Chart, XS Chart
 - X Chart: 각 샘플에서의 평균의 차이를 관리
 - R Chart: 각 샘플에서의 Range(Max-Min)의 차이를 관리
 - S Chart: 각 샘플에서의 표준편차의 차이를 관리
 - XR Chart: 각 샘플에서의 평균과 Range의 차이를 관리
 - XS Chart: 각 샘플에서의 평균과 표준편차의 차이를 관리

• \overline{X} Chart: 모집단이 정규분포이고, 평균과 표준편차를 아는 경우

X Chart:
$$\mu_{\bar{x}} \pm 3\sigma_{\bar{x}}$$

$$X \sim N(\mu, \sigma^2)$$

Take a sample of size $n(x_1,...,x_n)$ and obtain

$$\overline{X} = \sum_{j=1}^{n} \frac{X_j}{n}$$

The limits for the \overline{X} -charts are based on the standard deviation of the random variable \overline{X} .

• \overline{X} Chart: 모집단이 정규분포이고, 평균과 표준편차를 아는 경우

We know the average of independent observations in a sample of size n.

$$\mu_{\overline{X}} = \mu, \qquad \sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$$

where σ is the standard deviation of an individual observation.

Thus LCL and UCL are defined as:

$$UCL = \mu + 3\frac{\sigma}{\sqrt{n}}, \quad LCL = \mu - 3\frac{\sigma}{\sqrt{n}}$$

• \overline{X} Chart 예

••						
	Sample Number	Observations				
	1	1515	1518	1512	1498	1511
	2	1504	1511	1507	1499	1502
	3	1517	1513	1504	1521	1520
	4	1497	1503	1510	1508	1502
	5	1507	1502	1497	1509	1512
	6	1519	1522	1523	1517	1511
	7	1498	1497	1507	1511	1508
	8	1511	1518	1507	1503	1509
	9	1506	1503	1498	1508	1506
	10	1503	1506	1511	1501	1500
	11	1499	1503	1507	1503	1501
	12	1507	1503	1502	1500	1501
	13	1500	1506	1501	1498	1507
	14	1501	1509	1503	1508	1503
	15	1507	1508	1502	1509	1501
	16	1511	1509	1503	1510	1507
	17	1508	1511	1513	1509	1506
	18	1508	1509	1512	1515	1519
	19	1520	1517	1519	1522	1516
	20	1506	1511	1517	1516	1508
	21	1500	1498	1503	1504	1508
	22	1511	1514	1509	1508	1506
	23	1505	1508	1500	1509	1503
	24	1501	1498	1505	1502	1505
_	25	1509	1511	1507	1500	1499
-						

p. 689 Sample Information on Tensile Strength Data

Tensile Strength Data

R Chart: 각 샘플 내 관측치의 수가 적은 경우

Sample Number		C	bservation	ns	
1	1515	1518	1512	1498	1511
2	1504	1511	1507	1499	1502
3	1517	1513	1504	1521	1520
4	1497	1503	1510	1508	1502
5	1507	1502	1497	1509	1512
6	1519	1522	1523	1517	1511
7	1498	1497	1507	1511	1508
8	1511	1518	1507	1503	1509
9	1506	1503	1498	1508	1506
10	1503	1506	1511	1501	1500
11	1499	1503	1507	1503	1501
12	1507	1503	1502	1500	1501
13	1500	1506	1501	1498	1507
14	1501	1509	1503	1508	1503
15	1507	1508	1502	1509	1501
16	1511	1509	1503	1510	1507
17	1508	1511	1513	1509	1506
18	1508	1509	1512	1515	1519
19	1520	1517	1519	1522	1516
20	1506	1511	1517	1516	1508
21	1500	1498	1503	1504	1508
22	1511	1514	1509	1508	1506
23	1505	1508	1500	1509	1503
24	1501	1498	1505	1502	1505
25	1509	1511	1507	1500	1499

p. 689 Sample Information on Tensile Strength Data

• R Chart

XR Chart

Sample Number	Observations				
1	1515	1518	1512	1498	1511
2	1504	1511	1507	1499	1502
3	1517	1513	1504	1521	1520
4	1497	1503	1510	1508	1502
5	1507	1502	1497	1509	1512
6	1519	1522	1523	1517	1511
7	1498	1497	1507	1511	1508
8	1511	1518	1507	1503	1509
9	1506	1503	1498	1508	1506
10	1503	1506	1511	1501	1500
11	1499	1503	1507	1503	1501
12	1507	1503	1502	1500	1501
13	1500	1506	1501	1498	1507
14	1501	1509	1503	1508	1503
15	1507	1508	1502	1509	1501
16	1511	1509	1503	1510	1507
17	1508	1511	1513	1509	1506
18	1508	1509	1512	1515	1519
19	1520	1517	1519	1522	1516
20	1506	1511	1517	1516	1508
21	1500	1498	1503	1504	1508
22	1511	1514	1509	1508	1506
23	1505	1508	1500	1509	1503
24	1501	1498	1505	1502	1505
25	1509	1511	1507	1500	1499

p. 689 Sample Information on Tensile Strength Data

XR Chart

• S Chart: 각 샘플에서의 Obs.들의 표준편차

Sample		C	bservation	ıs	
1	62.255	62.301	62.289	62.189	62.311
2	62.187	62.225	62.337	62.297	62.307
3	62.421	62.377	62.257	62.295	62.222
4	62.301	62.315	62.293	62.317	62.409
5	62.400	62.375	62.295	62.272	62.372
6	62.372	62.275	62.315	62.372	62.302
7	62.297	62.303	62.337	62.392	62.344
8	62.325	62.362	62.351	62.371	62.397
9	62.327	62.297	62.318	62.342	62.318
10	62.297	62.325	62.303	62.307	62.333
11	62.315	62.366	62.308	62.318	62.319
12	62.297	62.322	62.344	62.342	62.313
13	62.375	62.287	62.362	62.319	62.382
14	62.317	62.321	62.297	62.372	62.319
15	62.299	62.307	62.383	62.341	62.394
16	62.308	62.319	62.344	62.319	62.378
17	62.319	62.357	62.277	62.315	62.295
18	62.333	62.362	62.292	62.327	62.314
19	62.313	62.387	62.315	62.318	62.341
20	62.375	62.321	62.354	62.342	62.375
21	62.399	62.308	62.292	62.372	62.299
22	62.309	62.403	62.318	62.295	62.317
23	62.293	62.293	62.342	62.315	62.349
24	62.388	62.308	62.315	62.392	62.303
25	62.324	62.318	62.315	62.295	62.319
	25				

p. 698 Volume of Containers for 25 Samples

S Chart

- X Chart, R Chart, S Chart, XR Chart, XS Chart
 - R 또는 S 차트를 통한 문제 상황 발견
 - X 차트를 통한 구체적인 문제 분석
- 그 외의 차트: P Chart, C Chart, U Chart, EWMA Chart, CUMSUM chart 등
 - P: Proportion, 불량의 비율
 - C: Count, 불량의 수
 - U: Unit별 Count, 특정 단위 당 불량의 수
 - **–** ...

P Chart

- 불량인 아이템의 발생확률인 p
- 각 아이템의 생산은 독립적
- 생산된 n개의 아이템은 이항 분포 X를 따름

$$X \sim \text{Binomial}(n,p), \quad P(X = X) = \binom{n}{x} p^x (1-p)^{n-x},$$

$$E(X) = np \quad and \quad Var(X) = np(1-p)$$

– P Chart: $\mu_{X/n} \pm k\sigma_{X/n}$

Sample	Number of Defective Components
1	8
2	6
3	5
4	7
5	2
6	5
7	3
8	8
9	4
10	4
11	3
12	1
13	5
14	4
15	4
16	2
17	3
18	5
19	6
20	3

- C Chart
 - 단위 생산에 대한 검사에서 불량의 수가 포아송 분포를 따르는 경우

X: number of nonconformities in an inspection unit of product

 λ : average number of nonconformities in an inspection unit

- 포아송 분포

$$X \sim Poisson(\lambda), \quad P(X = x) = \frac{e^{-\lambda}\lambda^x}{x!}, \quad x = 0, 1, 2, ... \quad E(X) = \lambda, \quad Var(X) = \lambda$$

$$\hat{\lambda} = x, \quad E(\hat{\lambda}) = \lambda, \quad Var(\hat{\lambda}) = \lambda$$

C Chart

$$\mu_X \pm k\sigma_X$$

$$UCL = \lambda + 3\sqrt{\lambda}, \quad LCL = \lambda - 3\sqrt{\lambda}$$

C Chart

- 포아송 분포 모수를 모르는 경우
- λ 에 대한 불편추정량인 $\hat{\lambda}$ 를 계산
- 샘플에서의 불량의 수의 평균으로 계산
- m개의 생산된 샘플들에 대해서 불량 수의 평균을 다음과 같이 계산

$$\hat{\lambda} = \frac{\sum_{i=1}^{m} X_i}{m}$$

- UCL, LCL은 다음과 같음

$$UCL = \hat{\lambda} + 3\sqrt{\hat{\lambda}}, \quad LCL = \hat{\lambda} - 3\sqrt{\hat{\lambda}}$$

Sample Number	Number of Defects	Sample Number	Number of Defects
1	8	11	3
2	7	12	7
3	5	13	5
4	4	14	9
5	4	15	7
6	7	16	7
7	6	17	8
8	4	18	6
9	5	19	7
10	6	20	4

U Chart

- N개 생산에 대한 검사에서 불량의 수가 포아송 분포를 따르는 경우

X: number of nonconformities in n inspection units of product u: average number of nonconformities per inspection unit

- 포아송 분포 정의

$$X \sim Poisson(nu), \qquad E\left(\frac{X}{n}\right) = u, \quad Var\left(\frac{X}{n}\right) = \frac{nu}{n^2} = \frac{u}{n}$$

U Chart

$$\mu_{X/n} \pm k\sigma_{X/n}$$

$$UCL = u + 3\sqrt{\frac{u}{n}}, \quad LCL = u - 3\sqrt{\frac{u}{n}}$$

Sample	Number of
Number	Defects
1	3
2	5
3	8
4	5
5	8
6	4
7	3
8	6
9	5
10	2
11	7
12	5
13	9
14	4
15	6
16	5
17	3
18	2
19	1
20	6

• Measurement와 Process Capability Index

- "Measure of capability of process to meet (fall within) specification limits"
- "width" of process variation: 6σ
- 6σ < (USL LSL)인 경우, 최소 99.7%의 프로세스 산출물이 specification limits 안에서 발생

Process Capability Index

• Process Capability Index Cp를 다음과 같이 정의

$$Cp = \frac{USL - LSL}{6\,\sigma}$$

- If Cp > 1.0, process is... capable_
- If *Cp < 1.0*, process is... *not capable*

Process Capability Index Cp

One sided spec
$$C_{PU} = \frac{USL - \mu}{3\sigma}$$
 $C_{PL} = \frac{\mu - LSL}{3\sigma}$

Industrial Data Science Lab & Unique AI

Contact:

won.sang.l@gmail.com

https://sites.google.com/view/idslab