CEC GridLAB-D Modeling Program

GLOW, OpenFIDO, and HiPAS SLAC Requirements Analysis

Draft as of 15 March 2019

David P. Chassin Principal Investigator dchassin@slac.stanford.edu

Current GridLAB-D usage review

California-based projects that use GridLAB-d

Code review

Findings from GridLAB-D 4.0 code review

User interviews

User interviews synopsis

General requirements identification

Requirements identified from usage/code reviews and interviews

Current GridLAB-D Usage Review

- 1. VADER (DOE)
- 2. Powernet (CEC)
- 3. GRIP (DOE)

Visual Analytics for Distributed Energy Resources (VADER)

- SLAC
- Uses simulation engine for scenario modeling
- Relies on utility models, AMI and SCADA data
- Analytics supported:
 - Solar disaggregation
 - Switch status detection
 - Machine learning-based power flow

PowerNET (DOE) and PowerNET With Markets (CEC)

SLAC

- Simulation to estimate control system impacts
- Data and model sources
 - Cyme network models and tariff/DR/DER control models
 - Semi-aggregated AMI and SCADA data (AWS MySQL/Mariah RDS)

Analytics implemented:

- Advanced load control performance evaluation
- Demand response performance evaluation
- Distributed energy resource performance impacts
- Cost and revenue impacts

Grid Resilience Intelligence Project (GRIP)

SLAC

- Utility resilience anticipation/absorption tools
- Data and model sources
 - Cyme network and DMS control models
 - AMI and SCADA data
- Analytics supported:
 - Pole failure impacts
 - Absorption strategy performance evaluation

NERC load composition for planning studies

- Relies on data collected from utilities
 - Feeder load measurements
 - AMI data

Analysis of data to validate load composition

- Weather sensitivity
- Filling in gaps in data coverage
- Verification of default value
- Managing datasets used in planning studies

Code Review

- 1. Data formats
- 2. Core structure
- 3. Platform dependencies
- 4. Data handling

Support for new/modern data formats, e.g.,

- JSON (widely used by python-based software)
- CIM (new standard for network modeling)
- OpenADR (new standard for DR/DER controls)
- Emerging standards for tariff modeling

Separate core from data, UX and module APIs

- Main: platform, module and solver management
- APIs: UX, module, solver and host access libraries

Reentrancy for scenarios analysis

- Main needs to be run multiple cores in a single process
- Session stream/copy needed for scenario processing

Standardized deployment hosts

- Docker
- Amazon Web Services (AWS)
- Google Cloud
- Microsoft Azure

Embedding in open-source languages

- Python 3 module
- Others (e.g., Julia, R)?

Standardize data handling APIs

- Credential management for cloud-based data access
- Download caches for using remote data
- Support data pipelines used in analysis methods
- Uploading, reviewing, and publishing data & results

Scenario-based data management

Provide access to data based on scenario parameters

Data processing

Standardized data cleaning, previewing, and output formatting

User Interviews

- 1. Government (state and federal)
- 2. Utilities (TSO/DSO, public/private)
- 3. Service provides (data analytics)
- 4. Researchers (academic, government)

Tariff analysis

- Customer revenue and resource cost impacts at distribution level
- Tariff parameter sensitivity analysis on revenue and costs

ICA analysis

Implementation of a standard integrated capacity analysis method

LNBA analysis

Implementation of a standard locational net-benefit analysis method

Resilience analysis

- Asset vulnerability assessment
- Large-scale rare event impacts analysis

ICA, LNBA analysis

Validation of ICA and LNBA on utility test models

Tariff design

Validation of tariff design tools on utility test models

Resilience planning

Demonstrate asset vulnerability and extreme event analysis method

Resource procurement modeling

- Load modeling and load forecasting
- Distributed energy resource modeling
- Demand response modeling

Custom analysis implementation and deployment

 C

Automate access to public data repositories

- Weather data collection/processing/delivery
- Standard grid, building, and tariff models libraries

Data import and export

- Automatic data format recognition and handling
- Data cleaning, time-standardization, identification

Documentation

Current internals documentation is needed for all analytic methods

Training resources

User cases with step-by-step instruction online as videos

Valid agents for all system components

- Code snippets, standardized units, parameter ranges, good defaults
- E.g., distribution grids, households, buildings, renewable resources

Data-driven res/com building models

CEUS/RBSA data for residential and commercial building models

Optimization solvers

Update optimization module to support new methods

Identified Requirements

Categories of identified requirements

SLAC

Usability

Improve GridLAB-D user experience and support GLOW UX design

Speed

Enable multicore, multihost, and cloud scale simulations

Flexibility

Enable user-defined data pipelines, scenarios, and modules

Validation

Enable user-defined model validation tools

Reproducibility

Enable high-reproducibility simulation capabilities

Need a well-designed UX

- Data access
- Simulation hosting

Data access UX

Plug-and-play import, cleaning, viewing and export tools

Simulation hosting UX

- Individual and organization credential management system
- Local, organizational, and cloud simulation management system

Parallelization for internal loops

- Many potentially parallel internal loops
- Parallel loops exist at every level of simulation

Access and control of external hosts

- Configuration of multiple host pools
- Scalable job control
- Share resource management (e.g., input data, intermediate results)
- Automatic dispatch of processing pipeline

User-defined scenario design

- Model selection/customization
- Scenario-based data selection

Scenario execution

- Scalable hosting of processing
- Resource usage/cost tracking/management

Scenario result analysis

- Collection of scenario output results
- Preview and output formatting (e.g., collation, tabulation, plotting)

Validation of methods and tools

- Integrated capacity analysis (ICA)
- Locational Net-Benefit Analysis (LNBA)
- Tariff design
- Resilience analysis (asset vulnerability, rare large event impacts)

Focus on canonical test and results

- Standard test cases must be implemented
- Results must be matched to a predetermined error margin
- Incorporated into main build validation procedure

Stochastic model reproducibility

- Local entropy sources
- Saving/restoring entropy state in model save/load

Variables and properties

- Latent variable implementation
- Cross-correlated properties
- Uncertainty propagation

Questions & Discussion

Sources and Interviews

SLAC

Sources

- Leigh Tesfatsion (Iowa State University)
- GridLAB-D (GitHub)
- VADER (DOE)
- GRIP (DOE)
- PowerNET (DOE)
- PowerNET Mkts (CEC)

Interviews

- CPUC
- Utilities
- CCAs
- Vendors