# IBM Machine Learning Professional Certificate

- Supervised Learning-(Classification)

Choe C.S

October 2021

### **Main Objective**

### **Objective**

 This report aims to analyze and predict Customer Churn in Telcom Industry using Supervised Machine Learning algorithm.

### Data Set

 The data set used for this analysis is Telcom Customer Churn from Kaggle.com.

### **Steps Involved**

- 1) Perform Data preprocessing Data Formatting convert column names for better understanding of each column.
- 2) EDA To gain better understanding of each feature variables and its affects on the target variable.
- 3) Perform Feature Engineering to remove unwanted columns, transform categorical data into numeric format and perform Feature Scaling.
- 4) Perform Machine Learning on the data set using Classification algorithm
   (Logistic Regression, KNN, Decision Tree and Random Forest classification).

### **Import Data**

- The data set was import from <u>Kaggle.com</u>.
- The table at the bottom shows the top 5 rows for the data set

|   | customerID     | tenure | PhoneService | Contract           | PaperlessBilling | PaymentMethod             | MonthlyCharges | TotalCharges | Churn | MultipleLines    | <br>OnlineSecurity | Onlir |
|---|----------------|--------|--------------|--------------------|------------------|---------------------------|----------------|--------------|-------|------------------|--------------------|-------|
| 0 | 7590-<br>VHVEG | 1      | No           | Month-<br>to-month | Yes              | Electronic check          | 29.85          | 29.85        | No    | No phone service | <br>No             |       |
| 1 | 5575-<br>GNVDE | 34     | Yes          | One<br>year        | No               | Mailed check              | 56.95          | 1889.5       | No    | No               | <br>Yes            |       |
| 2 | 3668-<br>QPYBK | 2      | Yes          | Month-<br>to-month | Yes              | Mailed check              | 53.85          | 108.15       | Yes   | No               | <br>Yes            |       |
| 3 | 7795-<br>CFOCW | 45     | No           | One<br>year        | No               | Bank transfer (automatic) | 42.30          | 1840.75      | No    | No phone service | <br>Yes            |       |
| 4 | 9237-<br>HQITU | 2      | Yes          | Month-<br>to-month | Yes              | Electronic check          | 70.70          | 151.65       | Yes   | No               | <br>No             |       |
|   |                |        |              |                    |                  |                           |                |              |       |                  |                    |       |

### **Data Preprocessing**

- There are a total of 7042 rows with 21 column of data.
- There is a total of 1 "float64", 2 "int64" and 18 "object" columns.
- Data formatting will be required on "TargetChargers" column for data type conversion.

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 7042 entries, 0 to 7041
Data columns (total 21 columns):
     Column
                       Non-Null Count Dtype
     customerID
                       7042 non-null
                                       object
     tenure
                       7042 non-null
                                       int64
                       7042 non-null
                                       object
     PhoneService
                       7042 non-null
                                       object
 3
     Contract
     PaperlessBilling 7042 non-null
                                       object
     PaymentMethod
                       7042 non-null
                                       object
     MonthlyCharges
                       7042 non-null
                                       float64
     TotalCharges
                       7042 non-null
                                       object
     Churn
                       7042 non-null
                                       object
                       7042 non-null
     MultipleLines
                                       object
    InternetService
                       7042 non-null
                                       object
    OnlineSecurity
                       7042 non-null
                                       object
                       7042 non-null
    OnlineBackup
                                       object
    DeviceProtection 7042 non-null
                                       object
    TechSupport
                       7042 non-null
                                       object
    StreamingTV
                       7042 non-null
                                       object
    StreamingMovies
                       7042 non-null
                                       object
     gender
                       7042 non-null
                                       object
    SeniorCitizen
                       7042 non-null
                                       int64
     Partner
                       7042 non-null
                                       object
    Dependents
                       7042 non-null
                                       object
dtypes: float64(1), int64(2), object(18)
```

### **Data Preprocessing – Data Formatting**

- The column "TotalChargers" is in "object" data type and not suitable for analysis.
- As chargers must be in numeric type for analysis, data formatting will be performed on this column to convert string to "float64".

| customerID       | object  |
|------------------|---------|
| tenure           | int64   |
| PhoneService     | object  |
| Contract         | object  |
| PaperlessBilling | object  |
| PaymentMethod    | object  |
| MonthlyCharges   | float64 |
| TotalCharges     | object  |
| Churn            | object  |
| MultipleLines    | object  |
| InternetService  | object  |
| OnlineSecurity   | object  |
| OnlineBackup     | object  |
| DeviceProtection | object  |
| TechSupport      | object  |
| StreamingTV      | object  |
| StreamingMovies  | object  |
| gender           | object  |
| SeniorCitizen    | int64   |
| Partner          | object  |
| Dependents       | object  |
| dtype: object    | ŭ       |

object customerID tenure int64 obiect PhoneService object Contract PaperlessBilling object PaymentMethod object MonthlyCharges float64 float64 ▶ TotalCharges Churn object MultipleLines object InternetService object OnlineSecurity object OnlineBackup object DeviceProtection object TechSupport object StreamingTV object StreamingMovies object object gender SeniorCitizen int64 Partner object Dependents object dtype: object

# Data Preprocessing – Handling Missing Data

- The data set has 11 missing data for column"TotalChargers".
- Due to low amount of missing data the decision is to remove the missing rows.

| customerID       | 0    |             | customerID       | 0 |
|------------------|------|-------------|------------------|---|
| tenure           | 0    |             | tenure           | 0 |
| PhoneService     | 0    |             | PhoneService     | 0 |
| Contract         | 0    |             | Contract         | 0 |
| PaperlessBilling | 0    |             | PaperlessBilling | 0 |
| PaymentMethod    | 0    |             | PaymentMethod    | 0 |
| MonthlyCharges   | 0    |             | MonthlyCharges   | 0 |
| TotalCharges     | 11 — | <del></del> | TotalCharges     | 0 |
| Churn            | 0    |             | Churn            | 0 |
| MultipleLines    | 0    |             | MultipleLines    | 0 |
| InternetService  | 0    |             | InternetService  | 0 |
| OnlineSecurity   | 0    |             | OnlineSecurity   | 0 |
| OnlineBackup     | 0    |             | OnlineBackup     | 0 |
| DeviceProtection | 0    |             | DeviceProtection | 0 |
| TechSupport      | 0    |             | TechSupport      | 0 |
| StreamingTV      | 0    |             | StreamingTV      | 0 |
| StreamingMovies  | 0    |             | StreamingMovies  | 0 |
| gender           | 0    |             | gender           | 0 |
| SeniorCitizen    | 0    |             | SeniorCitizen    | 0 |
| Partner          | 0    |             | Partner          | 0 |
| Dependents       | 0    |             | Dependents       | 0 |
| dtype: int64     |      |             | dtype: int64     |   |
|                  |      |             |                  |   |

### **EDA - Descriptive analysis**

- The table on the right shows the descriptive analysis summary for data set.
- The mean value for the tenure is 32.4170, MonthlyChargers is 64.792398, TotalChargers is 2282.651714 and SeniorCitizen is 0.162424.
- The minimum value for the tenure is 1, MonthlyChargers is 18.25, TotalChargers is 18.8 and SeniorCitizen is 0.
- The maximum value for the tenure is 72, MonthlyChargers is 118.75, TotalChargers is 8684.8 and SeniorCitizen is 1.

|       | tenure      | MonthlyCharges | TotalCharges | SeniorCitizen |
|-------|-------------|----------------|--------------|---------------|
| count | 7031.000000 | 7031.000000    | 7031.000000  | 7031.000000   |
| mean  | 32.417010   | 64.792398      | 2282.651714  | 0.162424      |
| std   | 24.543738   | 30.084168      | 2266.279660  | 0.368865      |
| min   | 1.000000    | 18.250000      | 18.800000    | 0.000000      |
| 25%   | 9.000000    | 35.575000      | 401.400000   | 0.000000      |
| 50%   | 29.000000   | 70.350000      | 1397.300000  | 0.000000      |
| 75%   | 55.000000   | 89.850000      | 3793.050000  | 0.000000      |
| max   | 72.000000   | 118.750000     | 8684.800000  | 1.000000      |

### **EDA** – Visual exploration



- The bar plot on the left shows total number of customer who churn and did not churn.
- From this plot, there are more customer who did not churn compared to the ones who did.
- An estimated value of 5000 customers did not churn while 2000 customers churn.

### EDA – Visual exploration (pairplot with hue)



- The bar plot on the left shows total number of customer according to contract duration.
- Form this plot, the highest number of customers falls under **Month-to-month** contract.
- The least amount opt for One year Contract.
- Although there are many customers who opt for **Month-to-month** contract, there is a high record of customer churn for this contract at more than 2000.

### EDA – Visual exploration (Categorical data)





- The bar plot on the right shows the Internet service used by customers.
- The first plot shows **DSL** service at around 2400, **Fiber optic** with the highest amount at roughly 3000, and 1500 for customer with No Internet Service.
- The second graph shows the highest amount of churn coming from customer with Fiber Optic Internet Service while the highest amount of customers who did not churn are from DSL.
- The lowest amount of churn coming from Customers with No Internet Service while the highest are the ones with Fiber optic.

# EDA – Visual exploration (Categorical data)

No internet service



- The bar plot on the right records the amount of **movie** streaming activities.
- The first plot shows the highest amount of customers that don't stream movies followed by customers who do at more than 2500 and the lowest for customer without internet service at 1500.
- From the second plot, the highest amount of customer who did not churn are the ones who stream movies at around 2000 while the lowest are the ones without internet service at around 1500.

# EDA – Visual exploration (Categorical data)



- The bar plot on the right records the data for Online Security.
- The first plot shows most of the customers not equipped with Online Security with an amount of 3500, while customers with online security at 2000.
- From the second plot, the highest amount of customer who did not churn are the ones without internet service while the lowest are the ones without internet service.

# Feature Engineering – Remove ID column

#### **Drop unrequired column**

• Customer ID is removed from data set before machine learning process takes place.

Before

| customerIE      | tenure | Phone Service | Contract           | PaperlessBilling | PaymentMethod             | MonthlyCharges | TotalCharges | Churn | MultipleLines       | <br>Online Security | Onlir |
|-----------------|--------|---------------|--------------------|------------------|---------------------------|----------------|--------------|-------|---------------------|---------------------|-------|
| 0 7590<br>VHVE  |        | No            | Month-<br>to-month | Yes              | Electronic check          | 29.85          | 29.85        | No    | No phone<br>service | <br>No              |       |
| 5575<br>GNVDE   |        | Yes           | One year           | No               | Mailed check              | 56.95          | 1889.5       | No    | No                  | <br>Yes             |       |
| 2 3668<br>QPYBR | 2      | Yes           | Month-<br>to-month | Yes              | Mailed check              | 53.85          | 108.15       | Yes   | No                  | <br>Yes             |       |
| 3 7795<br>CFOCW |        | No            | One year           | No               | Bank transfer (automatic) | 42.30          | 1840.75      | No    | No phone<br>service | <br>Yes             |       |
| 4 9237<br>HQITU |        | Yes           | Month-<br>to-month | Yes              | Electronic check          | 70.70          | 151.65       | Yes   | No                  | <br>No              |       |

Removing ID

After

|   | Private | Apps      | Accept    | Enroll    | Top 10%   | Top 25%   | Full-time-<br>Undergrad | Part-time-<br>Undergrad | Outstate  | Boarding  | Books     | Personal  | PhD       | Terminal  | S.F.Rat  |
|---|---------|-----------|-----------|-----------|-----------|-----------|-------------------------|-------------------------|-----------|-----------|-----------|-----------|-----------|-----------|----------|
| 0 | Yes     | -0.011583 | 0.006320  | 0.427055  | 0.014037  | -0.191827 | 0.323264                | 0.361674                | -0.746356 | -0.964905 | -0.601556 | 1.259401  | -0.163028 | -0.115729 | 1.0137   |
| 1 | Yes     | 0.245031  | 0.457067  | 0.067493  | -0.535636 | -1.353911 | 0.252545                | 0.875509                | 0.457496  | 1.909208  | 1.286817  | 0.469963  | -2.675646 | -3.378176 | -0.4777) |
| 2 | Yes     | -0.151913 | -0.111012 | -0.374601 | -0.053802 | -0.292878 | -0.674259               | -0.685997               | 0.201305  | -0.554317 | -1.036697 | -0.050896 | -1.204845 | -0.931341 | -0.3007  |
| 3 | Yes     | -1.298516 | -1.267855 | -1.313967 | 1.500947  | 1.677612  | -1.363987               | -0.963863               | 0.626633  | 0.996791  | -0.601556 | -0.640670 | 1.185206  | 1.175657  | -1.6152  |
| 4 | Yes     | -2.014530 | -2.145621 | -2.262878 | -0.535636 | -0.596031 | -2.060724               | 0.660925                | -0.716508 | -0.216723 | 1.525504  | 0.469963  | 0.204672  | -0.523535 | -0.5535  |

### Feature Engineering – Feature Scaling

#### **Standard Scaler**

- Feature Scaling was perform on the numeric feature variables to normalize the ranges of the data.
- Standard Scaler from Scikit Learn preprocessing was used for this process.
- The variables that were scaled are "tenure", "MonthlyChargers" and "TotalChargers".

|      | tenure | MonthlyCharges | TotalCharges |
|------|--------|----------------|--------------|
| 0    | 1      | 29.85          | 29.85        |
| 1    | 34     | 56.95          | 1889.5       |
| 2    | 2      | 53.85          | 108.15       |
| 3    | 45     | 42.30          | 1840.75      |
| 4    | 2      | 70.70          | 151.65       |
|      |        |                |              |
| 7037 | 72     | 21.15          | 1419.4       |
| 7038 | 24     | 84.80          | 1990.5       |
| 7039 | 72     | 103.20         | 7362.9       |
| 7040 | 11     | 29.60          | 346.45       |
| 7041 | 4      | 74.40          | 306.6        |

Standard Scaler

|      | tenure    | MonthlyCharges | TotalCharges |
|------|-----------|----------------|--------------|
| 0    | -1.280133 | -1.161571      | -0.994124    |
| 1    | 0.064501  | -0.260700      | -0.173491    |
| 2    | -1.239386 | -0.363752      | -0.959571    |
| 3    | 0.512713  | -0.747702      | -0.195004    |
| 4    | -1.239386 | 0.196383       | -0.940375    |
|      |           |                |              |
| 7026 | 1.612868  | -1.450780      | -0.380938    |
| 7027 | -0.342964 | 0.665101       | -0.128922    |
| 7028 | 1.612868  | 1.276762       | 2.241828     |
| 7029 | -0.872668 | -1.169881      | -0.854413    |
| 7030 | -1.157893 | 0.319380       | -0.871998    |

**Before Standard Scaler** 

After Standard Scaler

### Feature Engineering – Feature Encoding

- As there are many categorical variables present in data set, it is important to perform feature encoder to convert categorical data type to numeric data type for Machine Learning application.
- Each categorical variables were split into Binary variables, Ordinal variables and Numeric variables.
- LabelBinarizer(), LabelEncoder() from Scikit-Learn was used to convert the categorical variables' data type to numeric data type.

### Feature Engineering – Feature Encoding

#### **Categorical Variables**

16 Categorical variables

| PhoneService     | 2 |
|------------------|---|
| Contract         | 3 |
| PaperlessBilling | 2 |
| PaymentMethod    | 4 |
| Churn            | 2 |
| MultipleLines    | 3 |
| InternetService  | 3 |
| OnlineSecurity   | 3 |
| OnlineBackup     | 3 |
| DeviceProtection | 3 |
| TechSupport      | 3 |
| StreamingTV      | 3 |
| StreamingMovies  | 3 |
| gender           | 2 |
| Partner          | 2 |
| Dependents       | 2 |

#### **Binary Variables**

- Variables with only 2 unique values
- 6 Binary variables

|   | Binary_varaibles |
|---|------------------|
| 0 | PhoneService     |
| 1 | PaperlessBilling |
| 2 | Churn            |
| 3 | gender           |
| 4 | Partner          |
| 5 | Dependents       |
|   |                  |

#### **Numeric Variables**

- Categorical Variables that are not ordered according to category
- 9 Numeric Variables

|   | Numeric_values   |
|---|------------------|
| 0 | DeviceProtection |
| 1 | StreamingTV      |
| 2 | OnlineSecurity   |
| 3 | PaymentMethod    |
| 4 | MultipleLines    |
| 5 | InternetService  |
| 6 | TechSupport      |
| 7 | OnlineBackup     |
| 8 | StreamingMovies  |
|   |                  |

#### **Ordinal Variable**

- Categorical Variables that are in ordered of category
- 1 Numeric Variables

Ordinal\_varables

Contract

# Feature Engineering – (Feature Encoding)

|   | customerID     | tenure | Phone Service | Contract           | PaperlessBilling | PaymentMethod             | MonthlyCharges | TotalCharges | Churn | MultipleLines       | <br>Online Security | Onlir |
|---|----------------|--------|---------------|--------------------|------------------|---------------------------|----------------|--------------|-------|---------------------|---------------------|-------|
| 0 | 7590-<br>VHVEG | 1      | No            | Month-<br>to-month | Yes              | Electronic check          | 29.85          | 29.85        | No    | No phone<br>service | <br>No              |       |
| 1 | 5575-<br>GNVDE | 34     | Yes           | One year           | No               | Mailed check              | 56.95          | 1889.5       | No    | No                  | <br>Yes             |       |
| 2 | 3668-<br>QPYBK | 2      | Yes           | Month-<br>to-month | Yes              | Mailed check              | 53.85          | 108.15       | Yes   | No                  | <br>Yes             |       |
| 3 | 7795-<br>CFOCW | 45     | No            | One year           | No               | Bank transfer (automatic) | 42.30          | 1840.75      | No    | No phone<br>service | <br>Yes             |       |
| 4 | 9237-<br>HQITU | 2      | Yes           | Month-<br>to-month | Yes              | Electronic check          | 70.70          | 151.65       | Yes   | No                  | <br>No              |       |

**Before Feature Encoding** 

#### **Feature Encoding**

|   | tenure    | PhoneService | Contract | PaperlessBilling | MonthlyCharges | TotalCharges | Churn | gender | SeniorCitizen | Partner | <br>MultipleLines_No<br>phone service | MultipleLine |
|---|-----------|--------------|----------|------------------|----------------|--------------|-------|--------|---------------|---------|---------------------------------------|--------------|
| 0 | -1.280133 | 0            | 0        | 1                | -1.161571      | -0.994124    | 0     | 0      | 0             | 1       | <br>1.0                               |              |
| 1 | 0.064501  | 1            | 1        | 0                | -0.260700      | -0.173491    | 0     | 1      | 0             | 0       | <br>0.0                               |              |
| 2 | -1.239386 | 1            | 0        | 1                | -0.363752      | -0.959571    | 1     | 1      | 0             | 0       | <br>0.0                               |              |
| 3 | 0.512713  | 0            | 1        | 0                | -0.747702      | -0.195004    | 0     | 1      | 0             | 0       | <br>1.0                               |              |
| 4 | -1.239386 | 1            | 0        | 1                | 0.196383       | -0.940375    | 1     | 0      | 0             | 0       | <br>0.0                               |              |
|   |           |              |          |                  |                |              |       |        |               |         |                                       |              |

After Feature Encoding

All data types are in numeric form after Feature Encoding was performed on the data set

### Machine Learning – Splitting of Data

#### **Total number of Churn**

- There is a total of 5162 non-churn and 1869 amount of churn.
- In other words the percentage of non-churn is 73.418% and 26.58% for churn.
- The data shows uneven amount of distribution for targeted variable.
- Therefore, data set was split using Stratified Shuffle Split from Scikit Learn's model selection for even split.

#### 0 5162 1 1869 Name: Churn, dtype: int64

0 5162 1 1869

Name: Churn, dtype: int64

#### **Data split (StratifiedShuffleSplit)**

- Data set was split into training (70%) and testing data (30%).
- Training set = X\_train, Y\_train (70%).
- Testing set = X\_test, Y\_test (30%).

```
Shape for X_train is: (4921, 29)
Shape for y_train is: (4921,)
Shape for X_test is: (2110, 29)
Shape for y_test is: (2110,)
```

# Machine Learning – Logistic Regression

#### **Machine Learning**

- Machine learning classification algorithms (Logistic Regression, KNN, Decision Tree and Random Forest Classification)
  were used for churn prediction.
- Each models' performance were evaluated using: Confusion Matrix and Classification Report

#### **Logistic Regression**

#### **Decision Matrix**

|   | 0    | 1   |
|---|------|-----|
| 0 | 1374 | 175 |
| 1 | 244  | 317 |

|           | 0        | 1        |
|-----------|----------|----------|
| precision | 0.849197 | 0.644309 |
| recall    | 0.887024 | 0.565062 |
| f1-score  | 0.867698 | 0.602089 |

- The decision matrix for Logistic regression records TN = 1374, FP = 175, FN = 244 and TP = 317
- The Classification Report for Logistic regression records Precision = 0.8495, Recall = 0.887, f1-score = 0.868 for not churn and Precision = 0.644, Recall = 0.5651, f1-score = 0.602

### **Machine Learning - KNN**

#### **K-Nearest Neighbor (KNN)**

- To select the best number of neighbors an error rate graph was plotted using ranges of neighbor values from n\_neighbors = 1 to 40.
- From the graph the lowest error rate recorded was k = 27



#### **Decision Matrix**

|   | 0    | 1   |
|---|------|-----|
| 0 | 1342 | 207 |
| 1 | 228  | 333 |

| 0        | 1                    |
|----------|----------------------|
| 0.854777 | 0.616667             |
| 0.866365 | 0.593583             |
| 0.860532 | 0.604905             |
|          | 0.854777<br>0.866365 |

- The decision matrix for Logistic regression records TN = 1342, FP = 207, FN = 228 and TP = 333
- The Classification Report for Logistic regression records Precision = 0.855, Recall = 0.866, f1-score = 0.861 for not churn and Precision = 0.617, Recall = 0.594, f1score = 0.605

### **Machine Learning – Decision Tree**

#### **Decision Tree Classification**

#### **Decision Matrix**

|   | 0    | 1   |
|---|------|-----|
| 0 | 1263 | 286 |
| 1 | 303  | 258 |

|           | 0        | 1        |
|-----------|----------|----------|
| precision | 0.806513 | 0.474265 |
| recall    | 0.815365 | 0.459893 |
| f1-score  | 0.810915 | 0.466968 |

- The decision matrix for Logistic regression records TN = 1263, FP = 286, FN = 303 and TP = 258
- The Classification Report for Logistic regression records Precision = 0.807, Recall = 0.815, f1-score = 0.811 for not churn and Precision = 0.474, Recall = 0.46, f1-score = 0.467

### **Machine Learning – Random Forest**

#### **Random Forest Classification**

- To select the best number of tress, out of bag error graph was plotted using number of trees values of n\_estimators = [5, 10, 15, 20, 25, 30, 40, 50, 100, 150, 200, 300, 400]
- From the graph the Lowest Out of bag error at n\_tress
   = 200



#### **Decision Matrix**



|           | 0        | 1        |
|-----------|----------|----------|
| precision | 0.825491 | 0.621810 |
| recall    | 0.894771 | 0.477718 |
| f1-score  | 0.858736 | 0.540323 |

- The decision matrix for Logistic regression records TN = 1386, FP = 163, FN = 293 and TP = 268
- The Classification Report for Logistic regression records Precision = 0.855, Recall = 0.895, f1-score = 0.859 for not churn and Precision = 0.622, Recall = 0.478, f1score = 0.543

### **Overall Results**

|                              | accuracy | precision | recall   | f1       | auc      |
|------------------------------|----------|-----------|----------|----------|----------|
| Logistic Regression          | 0.801422 | 0.644309  | 0.565062 | 0.602089 | 0.836583 |
| KNN                          | 0.793839 | 0.616667  | 0.593583 | 0.604905 | 0.826006 |
| Decision Tree Classification | 0.720853 | 0.474265  | 0.459893 | 0.466968 | 0.638181 |
| Random Forest Classification | 0.783886 | 0.621810  | 0.477718 | 0.540323 | 0.816695 |

#### **Discussion**

- From this analysis, the highest accuracy is Logistic Regression at 0.801 followed by KNN at 0.79, Random Forest Regression at 0.784 and Decision Tree at 0.720.
- The highest precision is Logistic Regression at 0.644 followed by Random Forest at 0.6218, KNN 0.617 and Decision Tree at 0.474.
- The highest recall is KNN at 0.594 followed by Logistic Regression at 0.565, Random Forest 0.478 and Decision Tree at 0.46.
- The highest f-1 score is KNN at 0.605 followed by Logistic Regression at 0.602, Random Forest 0.54 and Decision Tree at 0.467.
- The highest precision is Logistic Regression at 0.837 followed by KNN at 0.826, Random Forest Regression at 0.817 and Decision Tree at 0.638.

### **Conclusion & Improvements**

#### **Conclusion**

- Logistic Regression has proven to be the most suitable model for prediction as it has obtained the highest score for accuracy, precision and auc.
- Although KNN may be a good choice as it has higher recall and f-1 score compared to other models, it still has lower accuracy, precision and auc score compared to Logistic Regression.
- The model that performs the poorest is Decision Tree with the lowest value for all scores.

#### **Improvements**

• Future method to improve better prediction results can be achieve using Boosting methods such as Ada-Boosting, Gradient Boosting or Xg-Boosting

# **Appendix**

#### **Link to Code**

https://github.com/cs-robot-collab/IBM-ML-DL/blob/master/IBM%20Machine%20Learning%20Classification%20Report.ipynb