MA2104 CheatSheet AY23/24 —— @Jin Hang Vector

Projections: vector projection of **b** onto **a**, denoted by projection **b** Scalar Projection: The scalar projection of b onto a (also called the component of b along a) is defined to be the signed magnitude of the vector projection: $\operatorname{comp}_{\mathbf{a}} \mathbf{b} = \|\mathbf{b}\| \cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|}$

$${\bf Relationship:}$$

$$\mathrm{proj}_{\mathbf{a}}\mathbf{b} = \mathrm{comp}_{\mathbf{a}}\mathbf{b} \times \frac{\mathbf{a}}{\|\mathbf{a}\|} = \left(\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|}\right) \frac{\mathbf{a}}{\|\mathbf{a}\|} = \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|^2}\mathbf{a} = \frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{a} \cdot \mathbf{a}} \cdot \mathbf{a}$$

Theorem 6: The vector $\mathbf{a} \times \mathbf{b}$ is orthogonal to both \mathbf{a} and \mathbf{b} Cross product angle formula: $\|\mathbf{a} \times \mathbf{b}\| = \|\mathbf{a}\| \|\mathbf{b}\| \sin \theta$ Note that θ is the angle between vector **a** and **b**

Properties of cross product

- $a \times b = -b \times a$
- $(d\mathbf{a}) \times \mathbf{b} = d(\mathbf{a} \times \mathbf{b}) = \mathbf{a} \times (d\mathbf{b})$
- $\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c}$
- $(\mathbf{a} + \mathbf{b}) \times \mathbf{c} = \mathbf{a} \times \mathbf{c} + \mathbf{b} \times \mathbf{c}$
- $(a \times b) \cdot c = [a, b, c] = [b, c, a] = [c, a, b] = -[b, a, c] =$ $-[c, b, a] = -[a, c, b] = \begin{vmatrix} c_1 & c_2 & c_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$

Distance from a point to a line: Suppose P and R are two points on L. To find the distance from the point Q to the line L

$$\|\overrightarrow{PQ}\|\sin\theta = \frac{\|\overrightarrow{PQ}\times\overrightarrow{PR}\|}{\|\overrightarrow{PR}\|}$$

Relationship between 2 lines In 2-D, two lines are either parallel or intersect. In 3-D, two lines are either

- parallel
- non-parallel and intersect
- non-parallel and non-intersecting (skew lines)

Show that the lines are skew

Assume for a contradiction that L_1 and L_2 intersect.

Then there must exist a choice of the parameter t and s such that the values of x; y and z are the same.

Find the line of intersection of two planes

Solving both equations for x and setting them to be equal. Let y = t be the parameter, we obtain a parametric equation for the line of intersection.

简便方法: 交线的方向向量为两平面法向量的叉乘

Find the curve of intersection of a surface and a plane

Step 1 For
$$\begin{cases} a_1x + b_1 + c_1z = d_1 \\ a_2x^2 + b_2y^2 + c_2z^2 + ex + fy + gz = d_2 \end{cases}$$

let $z = \frac{1}{c_1}(d_1 - a_1x - b_1y)$ then substitute to the surface equation

Step 2 整理成 $m^2(x+p)^2 + n^2(y+q)^2 = r^2$ 的形式

Step 3 参数化, 令

$$\begin{cases} x(t) = \frac{1}{m}r\cos t - p\\ y(t) = \frac{1}{n}r\sin t - q\\ z(t) = \text{Combin.}(x, y) \end{cases}$$

Step 4 曲线用向量函数表示为 $r(t) = \langle x(t), y(t), z(t) \rangle$

Find the curve of intersection of two surfaces

空间曲线的性质 (1) 设空间曲线 Γ 由参数方程

$$\begin{cases} x = \varphi(t) \\ y = \psi(t), (t \in [\alpha, \beta]) \\ z = \omega(t) \end{cases}$$

给出, 其中 $\varphi(t)$, $\psi(t)$, $\omega(t)$ 均可导, $P_0(x_0, y_0, z_0)$ 是 Γ 上对应 $t = t_0$ 的点, 且当 $t = t_0$ 时, $\varphi'(t_0)$, $\psi'(t_0)$, $\omega'(t_0)$ 都不为 0, 则曲线 Γ 在 点 $P_0(x_0, y_0, z_0)$ 处的

- 1. 切向量为 $\tau = (\varphi'(t_0), \psi'(t_0), \omega'(t_0))$
- 2. 切线方程为 $\frac{x-x_0}{\varphi'(t_0)} = \frac{y-y_0}{\psi'(t_0)} = \frac{z-z_0}{\omega'(t_0)}$.
- 3. 法平面 (过点 $P_0(x_0, y_0, z_0)$ 且与切线垂直的平面) 方程为 $\varphi'(t_0)(x-x_0) + \psi'(t_0)(y-y_0) + \omega'(t_0)(z-z_0) = 0$
- (2) 设空间曲线 Γ 由交面式方程 $\left\{ egin{array}{ll} F(x,y,z)=0, \\ G(x,y,z)=0 \end{array}
 ight.$ 给出,则在以下表

达式有意义的条件下, 曲线 Γ 在点 $P_0(x_0, y_0, z_0)$ 处的

(1) 切向量为

$$\tau = \left(\left| \begin{array}{cc|c} F_y' & F_z' \\ G_y' & G_z' \end{array} \right|_{P_0}, \left| \begin{array}{cc|c} F_z' & F_x' \\ G_z' & G_x' \end{array} \right|_{P_0}, \left| \begin{array}{cc|c} F_x' & F_y' \\ G_x' & G_y' \end{array} \right|_{P_0} \right)$$

$$\frac{x-x_0}{\left|\begin{array}{c|c} F_y' & F_z' \\ G_y' & G_z' \end{array}\right|_{P_0}} = \frac{y-y_0}{\left|\begin{array}{c|c} F_z' & F_x' \\ G_z' & G_x' \end{array}\right|_{P_0}} = \frac{c_x-z_0}{\left|\begin{array}{c|c} F_x' & F_y' \\ G_x' & G_y' \end{array}\right|_{P_0}}.$$

(3)法平面方程为

$$\begin{vmatrix} F'_y & F'_z \\ G'_y & G'_z \end{vmatrix} (x - x_0) + \begin{vmatrix} F'_z & F'_x \\ G'_z & G'_x \end{vmatrix} (y - y_0) + \begin{vmatrix} F'_x & F'_y \\ G'_x & G'_y \end{vmatrix} (z - z_0) \xrightarrow{\textbf{Sketch contour plots}} \underbrace{\textbf{Sketch contour plots}}_{\textbf{Sketch contour plots}} \underbrace{\textbf{Use}}_{\textbf{Sketch contour plots}} \underbrace{\textbf{Sketch contour plots}}_{\textbf{Sketch contour plots}} \underbrace{\textbf{Use}}_{\textbf{Sketch con$$

旋转曲面问题

曲线
$$\Gamma: \left\{ \begin{array}{ll} F(x,y,z) = 0, \\ G(x,y,z) = 0 \end{array} \right.$$
 绕直线 $L: \frac{x-x_0}{m} = \frac{y-y_0}{n} = \frac{z-z_0}{p}$ 旋转 形成一个旋转曲面,旋转曲面方程的求法如下.

已知点 $M_0(x_0, y_0, z_0)$, 方向向量 $\mathbf{s} = (m, n, p)$. 在母线 Γ 上任取一点 $M_1(x_1,y_1,z_1)$, 则过 M_1 的纬圆上任意一点 P(x,y,z) 满足条件

$$\overrightarrow{M_1P} \perp \boldsymbol{s}, \quad |\overrightarrow{M_0P}| = |\overrightarrow{M_0M_1}|,$$

$$\mathbb{H} \left\{ \begin{array}{l} m(x-x_1) + n(y-y_1) + p(z-z_1) = 0 \\ (x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2 = \\ (x_1-x_0)^2 + (y_1-y_0)^2 + (z_1-z_0)^2 \end{array} \right.$$

与方程 $F(x_1, y_1, z_1) = 0$ 和 $G(x_1, y_1, z_1) = 0$ 联立消去 x_1, y_1, z_1 , 便可得到旋转曲面的方程.

Coplanar $(\sharp \overline{\mathbf{n}}) \Rightarrow a \cdot (b \times c) = 0$

Find the distance of two planes

Find two point on P_1 and P_2 , assume they are (a_1, b_2, c_3) and (a_2,b_2,c_2) , then let

$$\mathbf{u} = (a_1 - a_2, b_1 - b_2, c_1 - c_2)$$

Assume the normal vector to the planes is n, then

$$d = \|\mathbf{u}\| |\cos \theta| = \left| \frac{\mathbf{u} \cdot \mathbf{n}}{\|\mathbf{n}\|} \right|$$

Vector-valued function:

$$\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$$

We say that r(t) is a **parametrization** of C. A curve C can have more than one parameterizations.

Sketch the curve traced out by the vector-valued function Interpretation: r(t) = the position vector of a particle in space at time t, then $\mathbf{r}'(t)$ = the velocity of the particle at time t. Hence,

Derivative of Vector-valued Function: r is differentiable at t=a and its derivative is given by $\mathbf{r}'(a)=\langle f'(a),g'(a),h'(a)\rangle$.

• $\frac{d}{dt}\mathbf{r}(t)\cdot\mathbf{s}(t) = \mathbf{r}'(t)\cdot\mathbf{s}(t) + \mathbf{r}(t)\cdot\mathbf{s}'(t)$

 $\|\mathbf{r}'(t)\|$ = speed of the particle at time t:

• $\frac{d}{dt}(\mathbf{r}(t) \times \mathbf{s}(t)) = \mathbf{r}'(t) \times \mathbf{s}(t) + \mathbf{r}(t) \times \mathbf{s}'(t)$

Find the tangent line L to the curve r(t)

- \bullet We need to determine t first
- Find vector $\mathbf{u} = \mathbf{r}'(t)$
- Then, vector u is the direction vector of the tangent line of $\mathbf{r}(t)$ at point P

求两向量函数在某一点的夹角 ⇔ 求导 → 方向向量夹角

Arc Length: Let C be the curve given by

$$\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k} \quad a \le t \le b$$

where f', g', h' are continuous. If C is traversed exactly once as t increases from a to b, then its length is

$$s = \int_a^b \sqrt{f'(t)^2 + g'(t)^2 + h'(t)^2} dt = \int_a^b \left\| \mathbf{r}'(t) \right\| dt$$

Partial Derivatives

Find the range of f(x,y): i.e. for $f(x,y) = x \ln(y^2 - x)$ Only when $y^2 - x > 0 \Leftrightarrow y^2 > x \Leftrightarrow Domain = \{(x, y) \in \mathbf{R} : y^2 > x\}$ **Level Curve:** A level curve of f(x,y) is the two-dimensional

graph of the equation f(x, y) = k for some constant k.

Contour Plot: A contour plot of f(x,y) is a graph of numerous level curves f(x,y) = k, for representative values of k.

Sketch contour plots Use values of k that are equally spaced

- The traces in y = k is ...
- The traces in z = k is ...
- Try to draw the diagram of curve in xy, yz, xz plane and decide the outline. (can refer to the appendix)

Level Surface: A level surface of f(x, y, z) is the 3-D graph of the equation f(x, y, z) = k for some constant k.

Limit: Let f be a function of two variables whose domain Dcontains points arbitrarily close to (a, b). We say that the limit of f(x,y) as (x,y) approaches (a,b) is $L \in \mathbb{R}$, denoted by

$$\lim_{(x,y)\to(a,b)} f(x,y) = L$$

if for any number $\epsilon > 0$ there exists a number $\delta > 0$ such that $|f(x,y)-L|<\epsilon$, whenever $0<\sqrt{(x-a)^2+(y-b)^2}<\delta$

How to show limit does not exist

- Consider the limit along the path P_1 . We have ...
- Consider the limit along the path P_2 . We have ...
- Since this limit along P_2 is different from the one we had previously for P_1 , we conclude that the limit does not exist.

How to show limit exists

- we can deduce it from known/simple functions using properties of limits or continuity
- we can use the **Squeeze theorem**

Limit Theorems

- $\lim_{(x,y)\to(a,b)} (f(x,y) \pm g(x,y)) =$ $\lim_{(x,y)\to(a,b)} f(x,y) \pm \lim_{(x,y)\to(a,b)} g(x,y)$
- $\lim_{(x,y)\to(a,b)} (f(x,y)\cdot g(x,y)) =$ $\left(\lim_{(x,y)\to(a,b)} f(x,y)\right) \cdot \left(\lim_{(x,y)\to(a,b)} g(x,y)\right)$
- $\lim_{(x,y)\to(a,b)} \frac{f(x,y)}{g(x,y)} = \frac{\lim_{(x,y)\to(a,b)} f(x,y)}{\lim_{(x,y)\to(a,b)} f(x,y)}$, where $\lim_{(x,y)\to(a,b)} g(x,y) \neq 0$

Squeeze Theorem Suppose

- $|f(x,y) L| \le g(x,y) \forall (x,y)$ close to (a,b)
- $\lim_{(x,y)\to(a,b)} g(x,y) = 0$

Then, $\lim_{(x,y)\to(a,b)} f(x,y) = L$

极坐标换元法证明极限存在/不存在(通法)

- Let $f(x,y) = 0 \to f(r\cos\theta, r\sin\theta) = 0$, 即让极径r来代表趋近 值, 让极角 θ 来代表趋近路径
- $\lim_{r \to k^+} f(r\cos\theta, r\sin\theta)$
- - 1. 如果**只**包含 θ 变量,则该极限不存在
 - 2. 如果... = $r^n \sin^a \theta \cos^b \theta$ 则极限为0
 - 3. 若... = $\frac{r^n}{\sin^a \theta + \cos^b \theta}$ 则需要讨论是否存在分母为0的情况判断极

Continuity of f(x,y): $\lim_{(x,y)\to(a,b)} f(x,y) = f(a,b)$

Continuity Theorems: If f(x,y) and g(x,y) are continuous at (a,b), then

- $f \pm q$ is is continuous at (a, b)
- $f \cdot q$ is is continuous at (a, b)
- $\frac{f}{a}$ is is continuous at (a,b), provided $g(a,b) \neq 0$

Continuity and Composition: Suppose f(x,y) is continuous at (a,b) and q(x) is continuous at f(a,b). Then

$$h(x,y) = (g \circ f)(x,y) = g(f(x,y))$$

is continuous at (a, b).

Continuity Functions: Subsequently, the following classes of functions are continuous in its domain.

- Polynomial in x and y;
- Trigonometric and exponential functions in x and y;
- Rational function in x and y.

Partial Derivative: If f is a function of two variables, its partial

derivatives are the functions
$$f_x$$
 and f_y defined by:
$$f_x(x,y) = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{f(x,y+h) - f(x,y)}$$

$$f_y(x,y) = \lim_{h \to 0} \frac{f(x,y+h) - f(x,y)}{h}$$

Equation of Tangent Plane: Consider the surface S given by z = f(x, y). A normal vector to the tangent plane to S at (a, b) is $\langle f_x(a,b), f_y(a,b), -1 \rangle$. Hence, tangent plane

 $z = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$

Increment: Let z = f(x, y). Suppose Δx and Δy are increments in the independent variable x and y respectively from a fixed point (a,b), then $\Delta z = f(a + \Delta x, b + \Delta y) - f(a,b)$

Differentiability - Two Variable Let z = f(x, y). We say that f is differentiable at (a, b) if we can write

 $\Delta z = f_x(a,b)\Delta x + f_y(a,b)\Delta y + \epsilon_1 \Delta x + \epsilon_2 \Delta y$ where ϵ_1 and ϵ_2 are functions of Δx and Δy which vanish(i.e. $\epsilon_1, \epsilon_2 \to 0 \text{ as } \Delta x, \Delta y \to 0)$

Linear approximation: $\Delta z \approx f_x(a,b)\Delta x + f_y(a,b)\Delta y$

Implicit Differentiation: Suppose the equation F(x, y, z) = 0, where F is differentiable, defines z implicitly as a differentiable function of x and y. Then,

Directional derivative: The directional derivative of
$$f(x,y)$$
 at

$$(x_0,y_0)$$
 in the direction of unit vector $\mathbf{u}=\langle a,b \rangle$ is $D_{\mathbf{u}}f\left(x_0,y_0\right)=\lim_{h\to 0} \frac{f\left(x_0+ha,y_0+hb\right)-f\left(x_0,y_0\right)}{\mathrm{Suppose}\ f(x,y)}= \nabla f\cdot \mathbf{u}$ Level Curve vs ∇f :

of x and y at (x_0, y_0) . Suppose $\nabla f(x_0, y_0) \neq \mathbf{0}$. Then $\nabla f(x_0, y_0)$ is normal to the level curve f(x,y) = k that contains the point (x_0, y_0) . Similar in x-y-z for $\nabla F(x_0, y_0, z_0)$

Tangent Plane to Level Surface:

 $\nabla F(x_0, y_0, z_0) \cdot \langle x - x_0, y - y_0, z - z_0 \rangle = 0$ **Saddle Point:** Let $f(x,y):D\to\mathbb{R}$. Then A point (a,b) is called a saddle point of f if

- $f_x(a,b) = f_y(a,b) = 0$; AND
- every neighborhood at (a, b) contains points $(x, y) \in 2D$ for which f(x,y) < f(a,b) and points $(x,y) \in 2D$ for which f(x,y) > f(a,b)

Closed Set in \mathbb{R}^2 A set $R \subseteq \mathbb{R}^2$ is closed if it contains all its boundary points. (A boundary point of R is a point (a, b) such that every disk with center (a, b) contains points in R and also points in $\mathbb{R}^2 \setminus R$)

Bounded Set in \mathbb{R}^2 A set $R \subseteq \mathbb{R}^2$ bounded if it is contained within some disk. In other words, it is finite in extent

The Closed Interval Method / Find the extreme value

- Find the values of f at its critical points in D.
- Find the extreme values of f on the boundary of D. Let x = n, represent f(x, y) only in y, same for let $y = n \dots$
- The largest of the values from Step 1 and Step 2 is the absolute maximum value; the smallest of these values is the absolute minimum value.

Appendix

Relationship between basic concept

标准积分表

- $\int \frac{1}{ax+b} dx = \frac{1}{a} \ln|ax+b| + C$
- $\int \tan(ax+b)dx = \frac{1}{a} \ln|\sec(ax+b)| + C$
- $\int \sec(ax+b)dx = \frac{1}{a}\ln|\sec(ax+b) + \tan(ax+b)| + C$
- $\int \csc(ax+b)dx = -\frac{1}{a}\ln|\csc(ax+b) + \cot(ax+b)| + c$ $\int \cot(ax+b)dx = -\frac{1}{a}\ln|\csc(ax+b) + \cot(ax+b)| + c$ $\int \cot(ax+b)dx = -\frac{1}{a}\ln|\csc(ax+b)| + C$
- $\int \sec^2(ax+b)dx = \frac{1}{a}\tan(ax+b) + C$
- $\int \csc^2(ax+b)dx = -\frac{1}{a}\cot(ax+b) + C$ $\int \sec(ax+b)\tan(ax+b)dx = \frac{1}{a}\sec(ax+b) + C$
- $\int \csc(ax+b)\cot(ax+b)dx = -\frac{1}{a}\csc(ax+b) + C$
- $\int \frac{1}{a^2 + (x+b)^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x+b}{a} \right) + C$
- $\int \frac{1}{\sqrt{a^2 (x+b)^2}} dx = \sin^{-1}\left(\frac{x+b}{a}\right) + C$
- $\int \frac{-1}{\sqrt{a^2 (x+b)^2}} dx = \cos^{-1} \left(\frac{x+b}{a} \right) + C$
- $\bullet \int \frac{1}{a^2 (x+b)^2} dx = \frac{1}{2a} \ln \left| \frac{x+b+a}{x+b-a} \right| + C$
- $\bullet \int \frac{1}{(x+b)^2 a^2} dx = \frac{1}{2a} \ln \left| \frac{x+b-a}{x+b+a} \right| + C$
- $\int \frac{1}{\sqrt{(x+b)^2+a^2}} dx = \ln \left| (x+b) + \sqrt{(x+b)^2+a^2} \right| + C$
- $\int \frac{1}{\sqrt{(x+b)^2 a^2}} dx = \ln \left| (x+b) + \sqrt{(x+b)^2 a^2} \right| + C$

2 D diamen

3-D diagram				
名称		图像		方程
elliptical helix			$x^2 + \left(\frac{y}{3}\right)^2 = 1$	
Cylinder (柱面) [1] 圆柱面	x x	,	$y^2 + z^2 = 1$	
Cylinder (柱面) [2] 抛物柱面	**	0 y	$z = x^2$	
Quadric Surface (二次曲面)				
Elliptic paraboloid 椭圆抛物面	x	y	$rac{x^2}{a^2}+rac{y^2}{b^2}=rac{z}{c}$	
Ellipsoid 椭球面	X	z y	$rac{x^2}{a^2} + rac{y^2}{b^2} + rac{z^2}{c^2} = 1$ 特别的, $a = b = c$ 时为球面	
Double Cone 椭圆锥面	z x y		$\frac{z^2}{c} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$	
其他比较重要的二次曲面				
$-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ Hyperboloid of 2 sheet		$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$ Hyperboloid of 1 sheet		$\frac{x^2}{a^2} - \frac{y^2}{b^2} = \frac{z}{c}$ Hyperboloid Paraboloid
双叶双曲	单叶双曲面		双曲抛物面 (马鞍面)	