Varyasyon ilkesi

M. Can Kandemir

16 Nisan 2020

M. Can Kandemir Varyasyon ilkesi 16 Nisan 2020 1/13

Teori

Varyasyon ilkesi bir sisteme ait olan minimum enerji durumlarını belirlemeyi amaçlar. Bunun için bir "deneme fonksiyonu" $|\psi\rangle$ belirlenir ve sistemin bilinen hamiltonyenine uygulanır.

Varyasyon ilkesi

$$\langle H \rangle = \frac{\langle \psi | H | \psi \rangle}{\langle \psi | \psi \rangle} \ge E_0$$

Uygulanan her farklı ψ için hamiltonyenin beklenen değeri değişir. Belirlenen ψ belirli parametreler üzerinden optimize edilerek, sistemin mevcut olan minimum enerji seviyesinin bulunması amaçlanır.

M. Can Kandemir Varyasyon ilkesi 16 Nisan 2020 2/13

Varyasyon ilkesinin harmonik salınıcıya uygulanması

Harmonik salınıcıya ait hamiltonyen

$$H = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + \frac{1}{2} kx^2$$

Varyasyon ilkesi, deneme fonksiyonu $\psi=e^{-\alpha x^2}$ ve $\alpha>0$ optimizasyon parametresi olmak üzere harmonik salınıcıya uygulanırsa:

$$\langle H \rangle (\alpha) = \frac{\langle \psi_{\alpha} | H | \psi_{\alpha} \rangle}{\langle \psi_{\alpha} | \psi_{\alpha} \rangle} = \frac{\hbar^2}{2m} \alpha + \frac{1}{8} k x^2 \frac{1}{\alpha}$$

olarak bulunur.

3/13

M. Can Kandemir Varyasyon ilkesi 16 Nisan 2020

 $\langle H \rangle (\alpha)$ fonksiyonu'nun α parametresine göre türevi alınacak olunursa sonuç:

$$\frac{d}{d\alpha}\langle H\rangle(\alpha) = \frac{\hbar^2}{2m} - \frac{1}{8}kx^2\frac{1}{\alpha^2}$$

olarak bulunur. Bu sonucun minimum değeri olan 0'a eşitlenecek olursa, $\alpha_0=\frac{1}{2}\frac{\sqrt{km}}{\hbar}$ olarak bulunur. Bulunan α_0 değeri $\langle H \rangle(\alpha)$ denkleminde yerine yazılırsa:

$$\langle H \rangle (\alpha_0) = \frac{1}{2} \hbar \sqrt{\frac{k}{m}}$$

olarak bulunur. Bu sonuç harmonik salınıcının bilinen minimum enerji durumudur.

M. Can Kandemir Varyasyon ilkesi 16 Nisan 2020 4/1

Varyasyon ilkesinin farklı dalgafonksiyonları ile denenmesi

Bu sefer $\psi = \frac{1}{x^2 + \alpha}$ ve $\alpha > 0$ olarak seçersek:

$$\langle H \rangle (\alpha) = \frac{\hbar^2}{4m} \frac{1}{\alpha} + \frac{1}{2} k^2 \alpha$$
 olarak bulunur.

Bulunan $\langle H \rangle(\alpha)$ değerinin türevi alınacak olunursa:

$$\frac{d}{d\alpha}\langle H\rangle(\alpha) = -\frac{\hbar^2}{4m}\frac{1}{\alpha^2} + \frac{1}{2}k^2 \quad \text{ve} \quad \alpha_0 = \frac{1}{\sqrt{2}}\frac{\hbar}{m}\sqrt{\frac{k}{m}} \quad \text{olarak bulunur.}$$

Bulunan α_0 değerini hamiltonyendeki yerine yazacak olursak:

$$\langle H \rangle (\alpha_0) = \frac{1}{\sqrt{2}} \hbar \sqrt{\frac{k}{m}}$$
 olarak bulunur.

Bu, verilen ψ için bulunan minimum beklenen değerdir ve bilinen minimum değerin $\sqrt{2}$ katıdır.

Helyum atomunun taban durumu

Helyum atomu çekirdek etrafındaki yörüngede bulunan iki elektrondan oluşur. Helyum atomuna ait Hamiltonyen aşağıdaki şekildedir:

Helyum atomuna ait hamiltonyen

$$H = -rac{\hbar^2}{2m}\Big(
abla_1^2 +
abla_2^2\Big) - rac{e^2}{4\pi\epsilon_0}\Big(rac{2}{r_1} + rac{2}{r_2} - rac{1}{|\vec{r_1} - \vec{r_2}|}\Big)$$

Şekil 1: Helyum atomu.

Problemimiz taban enerji durumu olan E_1 'yi hesaplamak. Bu enerji iki elektronu da yörüngeden çıkarmak için gerekli olan enerjidir. Helyum atomunun taban enerji seviyesi deneysel olarak şu şekilde bulunmuştur:

$$E_1 = -78.975 \text{eV}$$
 (deneysel ölçüm)

Hamiltonyeni parçalara ayırıp incelersek hamiltonyenin, yörüngesel kinetik enerji, coulomb potansiyeli ve elektron-elektron etkileşimi olmak üzere üç kısımdan oluştuğunu görürüz.

$$H = \underbrace{-\frac{\hbar^2}{2m} \bigg(\nabla_1^2 + \nabla_2^2\bigg)}_{\text{Y\"or\"ungesel kinetik enerji}} - \underbrace{\frac{e^2}{4\pi\epsilon_0} \bigg(\frac{2}{r_1} + \frac{2}{r_2}\bigg)}_{\text{Coulomb potansiyeli}} + \underbrace{\frac{e^2}{4\pi\epsilon_0} \bigg(\frac{1}{|\vec{r_1} - \vec{r_2}|}\bigg)}_{\text{Elektron-elektron etkileşimi}}$$

Eğer elektron-elektron etkileşimini göz ardı edecek olursak sisteme ait dalgafonksiyonu iki hidrojen atomunun birleşimi olarak yazılabilir. Not: Bunu yaparken çekirdeğe ait nükleer yük e ightarrow 2e olarak değiştirilmelidir.

$$\psi_0(\vec{r_1}, \vec{r_2}) \equiv \psi_{100}(\vec{r_1})\psi_{100}(\vec{r_2}) = \frac{8}{\pi a_0^3} e^{-2(r_1 + r_2)/a_0}$$

◆ロト ◆個ト ◆差ト ◆差ト を めなべ

M. Can Kandemir Varyasyon ilkesi 16 Nisan 2020 7/13

Helyum atomunun hamiltonyenini iki kısım halinde genelleyebiliriz; Elektron-elektron etkileşimi ve elektron-çekirdek etkileşimi.

Elektron-elektron etkileşimini şimdilik gözardı edersek sistemin geri kalanı $8E_1$ olarak yazılabilir. Ve sistemin hamiltonyeni:

$$E_1 = \frac{1}{\pi a_0^3} e^{-2(r_1 + r_2)/a_0} = -13.6 \text{eV}$$
 olmak üzere $H = 8E_1 + V_{\text{ee}}$

olarak yazılabilir. Son olarak elektron-elektron etkileşimi hesaplanırsa:

$$\langle V_{ee} \rangle = \left(\frac{e^2}{4\pi\epsilon_0} \right) \left(\frac{8}{\pi a_0^3} \right)^2 \int \frac{e^{-4(r_1 + r_2)/a_0}}{|\vec{r_1} - \vec{r_2}|} d^3 \vec{r_1} d^3 \vec{r_2} = -\frac{5}{2} E_1 = 34 \text{eV}$$

olarak bulunur.

Bulunan bütün değerler toplanırsa, sistemin enerjisi -75eV olarak bulunur.

$$\langle H \rangle = 8E_1 + \langle V_{ee} \rangle \quad \rightarrow \quad \langle H \rangle = -109 \text{eV} + 34 \text{eV} = -75 \text{eV}$$

M. Can Kandemir Varyasyon ilkesi 16 Nisan 2020 8/13

Hamiltonyenin parametrize edilmesi

Fakat hala deneysel ölçüm olan -79 eV'dan uzaktayız. Daha gerçekçi bir sonuç bulmak için bir deneme keti belirleyelim.

$$\psi_1(\vec{r_1}, \vec{r_2}) \equiv \frac{Z^3}{\pi a_0^3} e^{-Z(r_1 + r_2)/a_0}$$

Buradaki Z varyasyon parametresidir ve $\langle H \rangle$ değerini minimize etmek için kullanılacaktır.

Hamiltonyeni belirlediğimiz Z parametresine göre yazacak olursak:

Z parametresine göre belirlenmiş helyum hamiltonyeni

$$H = -\frac{\hbar^2}{2m} \Big(\nabla_1^2 + \nabla_2^2 \Big) - \frac{e^2}{4\pi\epsilon_0} \Big(\frac{Z}{r_1} + \frac{Z}{r_2} \Big) + \frac{e^2}{4\pi\epsilon_0} \Big(\frac{(Z-2)}{r_1} + \frac{(Z-2)}{r_2} + \frac{1}{|\vec{r_1} - \vec{r_2}|} \Big)$$

M. Can Kandemir Varyasyon ilkesi 16 Nisan 2020 9/13

Değerleri yerine yazarsak:

$$\langle H \rangle = 2Z^2 E_1 + 2(Z - 2) \left(\frac{e^2}{4\pi\epsilon_0}\right) \left\langle \frac{1}{r} \right\rangle + \langle V_{ee} \rangle$$

Hamiltonyenin beklenen değerinin son halini yazacak olursak:

$$\langle H \rangle = [2Z^2 - 4Z(Z-2) - (5/4)Z]E_1 = [-2Z^2 + (27/4)Z]E_1$$

Şimdi bu sonucu Z parametresi için optimize edecek olursak:

$$\frac{d}{dZ}\langle H \rangle = [-4Z + (27/4)]E_1 = 0$$
 ve $Z = \frac{27}{16} = 1.69$

olarak bulunur.

◆ロト ◆個ト ◆差ト ◆差ト 差 めるぐ

10 / 13

M. Can Kandemir Varyasyon ilkesi 16 Nisan 2020

Bulunan bu sonucu hamiltonyende yerine yazacak olursak minimum enerji değerini:

$$\langle H \rangle = \frac{1}{2} \left(\frac{3}{2} \right)^6 E_1 = -77.5 \text{eV}$$
 olarak bulmuş oluruz.

Fakat bu değer yine de -79eV olan deneysel ölçüme göre %2'lik bir hata payına sahip. Daha kesin bir sonuca ulaşmak için parametre sayısını arttırabiliriz.

M. Can Kandemir Varyasyon ilkesi 16 Nisan 2020 11/13

Tablo 1: Farklı dalgafonksiyonları ve parametreler için helyum atomunun taban enerji durumu.

dalgafonksiyonu	parametre	enerji
$e^{-Z(r_1+r_2)}$	Z = 2	-74.83 eV
$e^{-\alpha(r_1+r_2)}$	$\alpha = 1.6875$	-77.48 eV
$\psi(\mathit{r}_1)\psi(\mathit{r}_2)$	best $\psi(r)$	-77.87 eV
$e^{-Z(r_1+r_2)}(1+cr_{1,2})$	best α, c	-78.67 eV
Hylleraas (1929)	10 parameters	-79.011 eV
Pekeris (1959)	1078 parameters	-79.014 eV

M. Can Kandemir Varyasyon ilkesi 16 Nisan 2020 12 / 13

Referanslar

- Griffiths, David J., and Darrell F. Schroeter. Introduction to quantum mechanics. Cambridge University Press, 2018. Chapter 8
- J. Goodisman, Contemporary Quantum Chemistry: An Introduction (1977), Chapter 4.2
- Cohen-Tannoudji C., Diu B., Laloe F. Quantum Mechanics. Volume II (1978, Wiley), Chapter E_{XI}
- Texas University Variational Principle, Helium Atom¹

M. Can Kandemir Varyasyon ilkesi 16 Nisan 2020 13 / 13