Seconda Prova in Itinere

15/06/2021 — versione 1 —

32 pt - durata 1h 30' - MS Forms

Gli studenti aventi diritto a svolgere la **prova ridotta** del 30% secondo la L.170/2010 (indicazioni **Multichance** team) **NON** svolgono i quesiti contrassegnati con (***)

TEST - 15 pt

1 — 2 pt

Si consideri la funzione $f(x)=e^{(2x+\sin(\pi\,x))}$ e il suo interpolante polinomiale $\Pi_5 f(x)$ su n+1=6 nodi equispaziati in [-1,1]. Si riportino il valore massimo dell'errore $e_5(f)=\max_{x\in[-1,1]}|f(x)-\Pi_5 f(x)|$ e il punto $\overline{x}\in[-1,1]$ dove questo è realizzato.

1.6122, 0.8588

2-1 pt (***) No Multichance

Siano date le n+1=5 coppie di dati $\{(0,1),(0.25,0.5),(0.5,1.5),(0.75,-0.25),(1,1)\}$. Qual è valore massimo dell'interpolante polinomiale lineare a tratti $\Pi_1^H(x)$ dei dati precedenti per $x \in [0,1]$?

1.5

3 — 1 pt

Si consideri la funzione $f(x) = 2 |\sin(\pi x)|$ e il suo interpolante polinomiale quadratico a tratti $\Pi_2^H f(x)$ su 4 sottointervalli equispaziati di [0,4]. Si riporti il valore $\Pi_2^H f(1.75)$.

3/2

4-2 pt (***) No Multichance

Dati i nodi $x_0 = 0$, $x_1 = 1/2$ e $x_2 = 2$, sia $\varphi_0(x)$ la funzione caratteristica di Lagrange associata al nodo x_0 . Quanto vale l'approssimazione dell'integrale $\int_{x_0}^{x_2} \varphi_0(x) dx$ ottenuta con il metodo di Simpson?

-1/3

5-1 pt

Si consideri l'approssimazione dell'integrale $I(f)=\int_a^b f(x)\,dx$, dove $f\in C^\infty([a,b])$, tramite una formula di quadratura composita. Sapendo che per $M_1=10$ sottointervalli equispaziati di [a,b] si ha un errore pari a $e_1(f)=10^{-1}$, mentre per $M_2=100$ sottointervalli si ha un errore $e_2(f)=10^{-4}$, si stimi l'ordine di accuratezza p della formula.

3

6-1 pt

Si consideri l'approssimazione dell'integrale doppio $I(f)=\int_a^b\int_c^df(x,y)\,dydx$ tramite la formula dei trapezi, ovvero

$$I_t(f) = \frac{(b-a)(d-c)}{4} [f(a,c) + f(a,d) + f(b,c) + f(b,d)].$$

Posti $a=c=0,\,b=d=1$ e $f(x,y)=2^{(x+3y)},$ si riporti il valore di $I_t(f).$

6.7500

7-2 pt

Si consideri il seguente problema di Cauchy:

$$\begin{cases} y'(t) = -\sqrt{\frac{10 y(t)}{10 + t}} & t \in (0, 4), \\ y(0) = 9. \end{cases}$$

Utilizzando il metodo di Heun con passo h = 0.2, si riporti il valore calcolato di u_{N_t} , ovvero l'approssimazione di y(4), essendo $t_n = n h$ per $n = 0, \ldots, N_t$.

1.3664

8-1 pt

Si consideri il seguente problema ai limiti:

$$\left\{ \begin{array}{ll} -u''(x) + \eta\,u'(x) = f(x) & x \in (a,b), \\ u(a) = u(b) = 0, & \end{array} \right.$$

dove $\eta>0$. Si supponga di approssimare tale problema utilizzando il metodo delle differenze finite centrate con tecnica Upwind e passo di discretizzazione h>0, ottenendo così la soluzione numerica $\{u_j\}_{j=0}^{N+1}$ nei corrispondenti nodi $\{x_j\}_{j=0}^{N+1}$. Assumendo che la soluzione esatta $u\in C^4([a,b])$ sia nota e che l'errore per $h=h_1=0.1$ sia $E_{h_1}=\max_{j=0,\dots,N+1}|u(x_j)-u_j|=2\cdot 10^{-2}$, si riporti il valore stimato dell'errore E_{h_2} corrispondente alla scelta $h=h_2=0.05$.

 10^{-2}

9 — 2 pt

Si consideri il seguente problema ai limiti:

$$\begin{cases} -u''(x) + 3u(x) = 10\sin(\pi x) & x \in (0,1), \\ u(0) = 1, & u(1) = 0. \end{cases}$$

Si approssimi il problema utilizzando il metodo delle differenze finite centrate con passo di discretizzazione h=1/10 ottenendo la soluzione numerica $\{u_j\}_{j=0}^{N+1}$ nei corrispondenti nodi $\{x_j\}_{j=0}^{N+1}$ per (N+1)=10. Si risolva il problema e si riporti il valore della soluzione numerica u_2 , ovvero l'approssimazione di $u(x_2)$.

1.1442

$10-2 \; \mathrm{pt}$ (***) No Multichance

Si consideri il seguente problema di diffusione:

$$\begin{cases} \frac{\partial u}{\partial t}(x,t) - \frac{\partial^2 u}{\partial x^2}(x,t) = 0 & x \in (0,1), \ t > 0, \\ u(0,t) = u(1,t) = 0 & t > 0, \\ u(x,0) = 6\sin(\pi x) & x \in (0,1). \end{cases}$$

Si consideri l'approssimazione di tale problema tramite il metodo delle differenze finite centrate con passo di discretizzazione spaziale h=0.5 e il metodo di Crank-Nicolson con passo di discretizzazione temporale $\Delta t=0.1$. Si calcoli u_1^5 , ovvero l'approssimazione di u(0.5,0.5).

0.0867

ESERCIZIO – 17 pt

Si consideri il seguente problema differenziale, che rappresenta un sistema massamolla-smorzatore in condizioni di risonanza:

$$\begin{cases} \frac{d^2x}{dt^2}(t) + 4\frac{dx}{dt}(t) + 100x(t) = 200\cos(10t) & t \in (0,5), \\ \frac{dx}{dt}(0) = 50, & (1) \\ x(0) = 0, & \end{cases}$$

di cui $x(t):[0,5]\to\mathbb{R}$ è la soluzione.

Punto 1) — 3 pt

Si riscriva il problema (1) come un sistema di Equazioni Differenziali Ordinarie del primo ordine nella forma

$$\begin{cases} \frac{d\mathbf{y}}{dt}(t) = A\mathbf{y}(t) + \mathbf{g}(t) & t \in (0, t_f), \\ \mathbf{y}(0) = \mathbf{y}_0, & \end{cases}$$
 (2)

con $\mathbf{y}(t) = (w(t), \ x(t))^T$, dove $w(t) = \frac{dx}{dt}(t)$ per $t \in (0, t_f)$. Si riportino le espressioni di $A \in \mathbb{R}^{2 \times 2}$, $\mathbf{g}(t) : (0, t_f) \to \mathbb{R}^2$, $\mathbf{y}_0 \in t_f$.

$$A = [-4, -100; 1, 0], \quad \mathbf{g}(t) = (200 \cos(10t), 0)^T, \quad \mathbf{y}_0 = (50, 0)^T, \quad t_f = 5$$

Spazio per risposta lunga

Punto 2) — 2 pt

Con riferimento a un generico sistema di Equazioni Differenziali Ordinarie nella forma (2), si riporti la definizione di zero-stabilità in relazione al metodo di Eulero in avanti. Si definisca tutta la notazione utilizzata.

Spazio per risposta lunga

Punto 3) — 3 pt

Si approssimi il problema (2) del Punto 1) tramite il metodo di Eulero in avanti usando opportunamente la funzione Matlab[®] eulero_avanti_sistemi.m con passo $h = 10^{-2}$. Si riportino:

- i valori delle approssimazioni u_1 e u_{N_h} rispettivamente di $x(t_1)$ e $x(t_f)$, dove $t_n=n\,h$ per $n=0,1,\ldots,N_h,\,h=\frac{t_f}{N_h};$
- il valore minimo $u_m=\min_{n=0,\dots,N_h}u_n$ e il tempo discreto $t_m=\mathrm{argmin}_{n=0,\dots,N_h}u_n$ corrispondente a u_m .

$$u_1 = 0.5000, \quad u_{N_h} = -2.0510, \quad u_m = -6.6617, \quad t_m = 4.8700$$

Spazio per risposta breve

Punto 4) — 2 pt

Dopo aver risposto al Punto 3) e sapendo che la soluzione esatta del problema (1) è

$$x(t) = 5\sin(10t),$$

si calcolino gli errori $E_h = |u_{N_h} - x(t_f)|$ ottenuti con il metodo di Eulero in avanti e corrispondenti ai passi $h_1 = 10^{-3}$, $h_2 = 5 \cdot 10^{-4}$, $h_3 = 2.5 \cdot 10^{-4}$ e $h_4 = 1.25 \cdot 10^{-4}$, essendo u_n l'approssimazione di $x(t_n)$. Si riportino i valori E_{h_i} per $i = 1, \ldots, 4$.

0.0583, 0.0288, 0.0143, 0.0071

Spazio per risposta breve

Punto 5) — 2 pt

Si utilizzino gli errori E_{h_i} ottenuti al Punto 4) per stimare algebricamente l'ordine di convergenza p del metodo di Eulero in avanti. Si giustifichi la risposta data e la si motivi alla luce della teoria.

$$p = 1.0042$$

Spazio per risposta lunga

Punto 6) — 2 pt (***) No Multichance

Con riferimento al sistema di Equazioni Differenziali Ordinarie (2) del Punto 1) con $\mathbf{g} = \mathbf{0}$, per quali valori di h > 0 il metodo di Eulero in avanti risulta assolutamente stabile?

0 < h < 0.04

Spazio per risposta breve

Punto 7) — 3 pt (***) No Multichance

Si vuole ora applicare a un sistema di Equazioni Differenziali Ordinarie nella forma (2) il metodo di Runge-Kutta associato alla seguente tabella di Butcher

$$\begin{array}{c|ccccc}
0 & 0 & 0 & 0 \\
1/2 & 1/2 & 0 & 0 \\
1 & -1 & 2 & 0 \\
\hline
0 & 1/6 & 2/3 & 1/6
\end{array}$$

Si scriva un'opportuna funzione Matlab[®] che implementi il metodo precedente per un sistema di EDO con il generico passo h>0.

Si utilizzi la funzione precedentemente implementata per risolvere il sistema di Equazioni Differenziali Ordinarie (2) di cui al Punto 1) usando il passo $h = 10^{-2}$. Si riportino i valori delle approssimazioni u_1 e u_{N_h} rispettivamente di $x(t_1)$ e $x(t_f)$.

$$u_1 = 0.4992, \quad u_{N_h} = -1.3117$$

Spazio per risposta breve