Particle spectrograph

Wave operator and propagator

	$\omega_{1}^{\sharp 1}{}_{lphaeta}$	$\omega_{1}^{\#2}{}_{\alpha\beta}$	$f_{1}^{\#1}_{\alpha\beta}$	$\omega_{1^{-}\ lpha}^{\#1}$	$\omega_{1-lpha}^{\#2}$	$f_{1-\alpha}^{\#1}$	$f_{1}^{#2}\alpha$
$\omega_{1}^{\#1}\dagger^{lphaeta}$	$k^2 (2r_3 + r_5) - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
$\omega_{1}^{\#2}\dagger^{lphaeta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$f_{1}^{\#1}\dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\sharp 1} {\dagger}^{lpha}$	0	0	0	$k^2 \left(-r_1 + 2 r_3 + r_5 \right) + \frac{t_1}{6}$	$\frac{t_1}{3\sqrt{2}}$	0	<u>i k t 1</u> 3
$\omega_{1}^{\#2} \dagger^{lpha}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	<u>t</u> 1 3	0	$\frac{1}{3}\bar{l}\sqrt{2}kt_1$
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_1^{\#2} \dagger^{\alpha}$	0	0	0	$-rac{1}{3}ar{\it l}\it kt_1$	$-\frac{1}{3}\bar{l}\sqrt{2}kt_1$	0	$\frac{2 k^2 t_1}{3}$

					1 -		
$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{i}{k(1+2k^2)(r_1-2r_3-r_5)}$	$\frac{i(6k^2(r_1-2r_3-r_5)-t_1)}{\sqrt{2}k(1+2k^2)^2(r_1-2r_3-r_5)t_1}$	0	$\frac{1}{\frac{-r_1+2r_3+r_5}{(1+2k^2)^2}} + \frac{6k^2}{t_1}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1^-\alpha}^{\#2}$	0	0	0	$\frac{1}{\sqrt{2} (k^2 + 2k^4) (r_1 - 2r_3 - r_5)}$	$\frac{1}{-r_1 + 2r_3 + r_5} + \frac{6k^2}{t_1}$ $2(k+2k^3)^2$	0	$-\frac{i(6k^2(r_1-2r_3-r_5)-t_1)}{\sqrt{2}k(1+2k^2)^2(r_1-2r_3-r_5)t_1}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{1}{k^2 (.r_1 + 2 r_3 + r_5)}$	$\frac{1}{\sqrt{2} \; (k^2 + 2 k^4) (r_1 - 2 r_3 - r_5)}$	0	$\frac{i}{k(1+2k^2)(-r_1+2r_3+r_5)}$
$\tau_{1}^{\#1}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{-2ik^3(2r_3+r_5)+ikt_1}{(1+k^2)^2t_1^2}$	$\frac{-2k^4(2r_3+r_5)+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2 k^2 (2 r_3 + r_5) + t_1}{(1 + k^2)^2 t_1^2}$	$\frac{i(2k^3(2r_3+r_5)-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\tau_1^{\#1} + \alpha \beta \frac{i \sqrt{2} k}{t_1 + k^2 t_1}$	0	0	0	0
	$\sigma_{1}^{\#1} \dagger^{lphaeta}$	$\sigma_{1}^{\#2} + \alpha^{\beta}$	$t_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$t_1^{\#2} +^{\alpha}$

$\sigma_{0}^{\#1}$	C)	0 0		- 1	t ₁		$\omega_{2^{-}}^{\#1}lphaeta\chi$	C	0	0	1,2 , , ,1
$\tau_0^{\#2}$	0)	0 0		0			1	la.	1		
$\tau_{0}^{\#1}$	0	٥	0	0	•	U		$f_{2}^{\#1}$	<u> </u>	√2	$k^2 t_1$	•
$\sigma_{0}^{\#1}$	1	2 (-11+13)	0			0		$\omega_2^{\#1}$	t1		$\frac{ikt_1}{\sqrt{2}}$	(
	7#1 + 6k 1 + 1 + 6k 1 +								"," $+\alpha\beta$	س ₂ + ۱	$f_{2}^{\#1} \dagger^{\alpha \beta}$	#1 , $\alpha\beta\chi$
	$\omega_{0^{+}}^{\sharp 1} \qquad f_{0^{+}}^{\sharp 1} \ f_{0^{+}}^{\sharp 2} \ \omega_{0^{-}}^{\sharp 1}$											
$\omega_{0}^{\#1}$	†	$6 k^2 (-r_1 + r_3)$				0		0	()		
$f_{0}^{#1}$			0			0		0	()		
$f_{0}^{#2}$	2 +		0					0	()		
$\omega_0^{\#1}$	$\omega_0^{\#1}$ † 0				0		0	- <i>t</i>	1			
	$\sigma^{\sharp 1}_{\mathtt{2}^{+}lphaeta}$ $ au^{\sharp 1}_{\mathtt{2}^{+}lphaeta}$ $\sigma^{\sharp 1}_{\mathtt{2}^{-}lphaeta\chi}$											
$\sigma_2^{\#}$	1 †	.αβ	$\frac{2}{(1+2k^2)^2t_1}$			$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$				0		
$ au_2^{\#}$	1 + +	.αβ	$\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t_1}$			(1-	$\frac{4k^2}{(1+2k^2)^2t_1}$			0		
$\sigma_2^{\#1}$	$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$ 0			0			$\frac{2}{2 k^2 r_1 + t_1}$					

Source constraints/gauge generators					
SO(3) irreps	Multiplicities				
$\tau_{0+}^{\#2} == 0$	1				
$\tau_{0+}^{\#1} == 0$	1				
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3				
$\tau_{1}^{\#1}{}^{\alpha} == 0$	3				
$\tau_{1+}^{\#1\alpha\beta} + \bar{\imath}k\sigma_{1+}^{\#2\alpha\beta} == 0$	3				
$\tau_{2+}^{\#1\alpha\beta} - 2\bar{i}k\sigma_{2+}^{\#1\alpha\beta} == 0$	5				
Total constraints:	16				

Massive and massless spectra

Quadratic pole						
Pole residue:	$\left \frac{1}{(r_1 - 2r_3 - r_5)t_1^2} > 0 \right $					
Polarisations:	2					

Unitarity conditions

 $r_1 < 0 \&\& r_5 < r_1 - 2 r_3 \&\& t_1 > 0$