Chapitre 3 : Probabilités conditionnelles

Notation 1

- On note Ω l'univers, c'est-à-dire l'ensemble des issues possibles de l'expérience aléatoire.
- Un événement correspond à une partie des issues possibles de l'expérience, c'est un sousensemble de Ω .
- On note P(A) la probabilité que l'événement A se réalise.
- On note \overline{A} l'événement complémentaire de A.
- On note $A \cup B$ l'événement qui se réalise si l'événement A ou l'événement B se réalise, c'està-dire si au moins l'un des deux se réalise.
- On note $A \cap B$ l'événement qui se réalise si l'événement A et l'événement B se réalise, c'està-dire si les deux événements se réalisent simultanément.

1 Probabilités conditionnelles

Dans tout le chapitre, sauf indication du contraire, A et B sont deux événements d'un univers Ω , tels que

$$P(A) \neq 0$$
.

Définition 2 (Probabilité conditionnelle)

La **probabilité conditionnelle** que l'événement B se réalise sachant que l'événement A est réalisé se note

$$P_A(B)$$

et est définie par

$$P_A(B) = \frac{P(A \cap B)}{P(A)}$$

Exemple 1

Un sac contient quatre boules noires numérotées de 1 à 4 et notées N_1, N_2, N_3, N_4 ainsi que six boules blanches numérotées de 1 à 6 et notées $B_1, B_2, B_3, B_4, B_5, B_6$. On extrait au hasard une boule dans le sac. On a

$$\Omega = \{N_1, N_2, N_3, N_4, B_1, B_2, B_3, B_4, B_5, B_6\}.$$

On note

- A l'événement « la boule tirée porte un numéro 3 » ;
- B l'événement « la boule est blanche ».

On a $A = \{N_3, B_3\}$, $B = \{B_1, B_2, B_3, B_4, B_5, B_6\}$, et $A \cap B = \{B_3\}$. On a ainsi $P(A) = \frac{2}{10} \neq 0$ et $P(A \cap B) = \frac{1}{10}$. La probabilité d'extraire une boule blanche **sachant qu'**elle porte le numéro 3 est

égale à

$$P_A(B) = \frac{\frac{1}{10}}{\frac{2}{10}}$$
$$= \frac{1}{10} \times \frac{10}{2}$$
$$= \frac{1}{2}.$$

Application 2

On jette un dé équilibré à six faces numérotées de 1 à 6 et on s'intéresse au nombre obtenu. Quelle est la probabilité que le nombre obtenu soit un nombre premier sachant que le nombre obtenu est supérieur à 4?

Propriété 1

La probabilité $P_A(B)$ vérifie

$$0 \le P_A(B) \le 1$$
 et $P_A(B) + P_A(\overline{B}) = 1$.

Propriété 2

Si A et B sont deux événements de probabilité non nulle, alors

$$P(A \cap B) = P_A(B) \times P(A) = P_B(A) \times P(B).$$

Exemple 3

Si P(A) = 0.7, P(B) = 0.6, et $P_A(B) = \frac{4}{7}$, alors

$$P(A \cap B) = P(A) \times P_A(B) = 0.7 \times \frac{4}{7} = 0.4$$

puis

$$P_B(A) = \frac{P(B \cap A)}{P(B)} = \frac{0.4}{0.6} = \frac{2}{3}.$$

Remarque

La propriété 2 permet de passer de $P_A(B)$ à $P_B(A)$ (et inversement). On voit dans l'exemple 3 que ce n'est pas la même chose!

Application 4

Dans une classe de première, 55% des élèves sont des filles et 40% des élèves sont des filles demipensionnaires. On choisit un élève au hasard dans cette classe. Quelle est la probabilité qu'un élève soit demipensionnaire sachant que c'est une fille?

1.1 Utilisation de tableaux

Notation 3

Les tableaux à double entrée permettent une présentation claires de certaines expériences aléatoires et facilitent le calcul des probabilités conditionnelles.

	В	$\overline{\mathbf{B}}$	Total
A	$P(A \cap B)$	$P(A \cap \overline{B})$	P(A)
$\overline{\mathbf{A}}$	$P(\overline{A}\cap B)$	$P(\overline{A}\cap \overline{B})$	$P(\overline{A})$
Total	P(B)	$P(\overline{B})$	1

- $P(A \cap B)$ se lit à l'intersection de la ligne A et de la colonne B.
- P(A) (respectivement P(B)) se lit sur la dernière colonne (respectivement la dernière ligne).
- $P_A(B)$ (ou $P_B(A)$) s'obtient en calculant le quotient des deux probabilités adéquates :

$$P_A(B) = \frac{P(A \cap B)}{P(A)}$$
 et $P_B(A) = \frac{P(A \cap B)}{P(B)}$.

Exemple 5

Si P(A) = 0.7, P(B) = 0.6 et $P(A \cap B) = 0.4$, on a alors le tableau suivant.

	В	$\overline{\mathbf{B}}$	Total
\mathbf{A}	0,4	0,3	0,7
$\overline{\mathbf{A}}$	0,2	0,1	0,3
Total	0,6	0,4	1

Et on trouve donc

$$-P(\overline{A} \cap \overline{B}) = 0.1;$$

—
$$P_B(\overline{A}) = \frac{P(\overline{A} \cap B)}{P(B)} = \frac{0.2}{0.6} = \frac{1}{3};$$

-
$$P_{\overline{A}}(B) = \frac{P(\overline{A} \cap B)}{P(\overline{A})} = \frac{0.2}{0.3} = \frac{2}{3};$$

Application 6

Un club sportif rassemble 180 membres répartis en deux catégories : juniors et seniors. On compte 135 seniors dont 81 hommes. Il y a 27 garçons parmi les juniors.

En choisissant une femme au hasard, calculer la probabilité d'avoir une juniore.

2 Formule des probabilités totales

2.1 Arbre pondéré

Définition 4 (Arbre pondéré)

Un arbre pondéré, ou arbre de probabilité, est un schéma mettant en jeu des probabilités conditionnelles et permettant de calculer rapidement des probabilités.

$$P(A) = A \xrightarrow{P_A(B)} B$$

$$P_A(\overline{B}) = \overline{B}$$

$$P_{\overline{A}}(B) = B P(\overline{A} \cap B) = P(\overline{A}) \times P_{\overline{A}}(B)$$

$$P_{\overline{A}}(\overline{B}) = \overline{B}$$

Propriété 3 (admise)

- 1. La somme des probabilités des branches issues d'un nœud est égale à 1.
- 2. La probabilité de l'événement à l'extrémité d'un chemin est égale au produit des probabilités des branches composant ce chemin.
- 3. La probabilité d'un événement est égale à la somme des probabilités des chemins conduisant à cet événement.

Exemple 7

On considère l'arbre pondéré ci-contre.

- La première propriété nous dit que 0.7 + 0.1 + x = 1, d'où x = 0.2. De même y = 0.6 et z = 0.6.
- La deuxième propriété nous dit que $P(A \cap D) = P(A) \times P_A(D) = 0.7 \times 0.4 = 0.28$.
- La troisième propriété nous dit que $P(D) = P(A \cap D) + P(C \cap D) = 0.7 \times 0.4 + 0.2 \times 0.5 = 0.38$.

Application 8

On considère une expérience aléatoire et deux événements A et B tels que P(A) = 0.6, $P_A(B) = 0.7$ et $P_{\overline{A}}(B) = 0.2$.

- 1. Construire un arbre pondéré complet représentant cette expérience.
- 2. Déterminer la probabilité de l'événement $A \cap B$.

2.2 Probabilités totales

Définition 5 (Partition de l'univers)

Soit $k \in \mathbb{N}^*$ un entier naturel non nul et A_1, A_2, \ldots, A_k des événements non vides de Ω . Les événements A_1, A_2, \ldots, A_k forment une **partition de l'univers** Ω si et seulement si

- ils sont deux à deux **incompatibles** : pour tous entiers distincts i et j entre 1 et k, on a $A_i \cap A_j = \emptyset$;
- leur réunion forme tout l'univers : $A_1 \cup A_2 \cup \cdots \cup A_k = \Omega$.

Propriété 4 (Formule des probabilités totales)

On considère une expérience aléatoire d'univers Ω et un événement B. On note A_1, \ldots, A_k k événements formant une partition de l'univers. Alors on a

$$P(B) = P(A_1 \cap B) + P(A_2 \cap B) + \dots + P(A_k \cap B)$$

Remarque

Un événement A et son complémentaire \overline{A} forment toujours une partition de l'univers. On a donc

$$P(B) = P(A \cap B) + P(\overline{A} \cap B).$$

Exemple 9

On considère l'arbre pondéré ci-contre. Les événements A, B et C forment une partition de l'univers Ω , ainsi

$$P(D) = P(A \cap D) + P(B \cap D) + P(C \cap D)$$

$$= P(A) \times P_A(D) + P(B) \times P_B(D) + P(C) \times P_C(D)$$

$$= 0.1 \times 0.2 + 0.5 \times 0.7 + 0.4 \times 0.1$$

$$= 0.41$$

Application 10

On considère les événements A et B vérifiant l'arbre pondéré ci-contre.

Déterminer P(B).

3 Indépendance

Définition 6 (Indépendance)

Soient A et B deux événements d'un univers Ω . On dit que A et B sont **indépendants** lorsque

$$P(A \cap B) = P(A) \times P(B).$$

Propriété 5

Soient A et B deux événements d'un univers Ω , tels que $P(A) \neq 0$. Alors A et B sont indépendants si et seulement si $P_A(B) = P(B)$.

Démonstration. C'est un résultat d'équivalence ("si et seulement si"). Commençons par le sens direct : si A et B sont indépendants alors $P_A(B) = P(B)$. Cela vient de la définition de $P_A(B)$. En effet $P_A(B) = \frac{P(A \cap B)}{P(A)}$. Mais dans le cas de deux événements indépendants on a $P(A \cap B) = P(A) \times P(B)$, donc

$$P_A(B) = \frac{P(A)P(B)}{P(A)} = P(B).$$

L'autre sens (si $P_A(B) = P(B)$ alors A et B sont indépendants) vient aussi de la définition. On a $P_A(B) = P(B)$ donc $\frac{P(A \cap B)}{P(A)} = P(B)$, d'où finalement $P(A \cap B) = P(A)P(B)$, et donc les événements A et B sont indépendants.

Remarque

L'intuition derrière la notion d'indépendance est que si deux événements sont indépendants, la réalisation de l'un n'influence pas la réalisation de l'autre.

Exemple 11

Soient A et B deux événements indépendants tels que P(A) = 0.8 et P(B) = 0.35. Danc ce cas, on a

$$P(A \cap B) = 0.8 \times 0.35 = 0.28.$$

Propriété 6 (admise)

Si A et B sont deux événements indépendants, alors \overline{A} et B sont aussi deux événements indépendants.

Application 12

On dispose d'une urne qui contient trois boules rouges numérotées 1, 2, 3 ainsi que six boules noires numérotées 1, 1, 1, 2, 2 et 3. Les boules sont indiscernables au toucher. On tire une boule au hasard dans cette urne et on s'intéresse aux événements suivants :

- R: « Tirer une boule rouge. »
- P : « Tirer une boule dont le numéro est pair. »
- U: « Tirer une boule dont le numéro est 1. »
- 1. Montrer que les événements P et R sont indépendants.
- 2. Les événements R et U sont-ils indépendants? Justifier.