Go, change the world

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

492-V2 (1-24)

Academic year 2020-2021 (Even Sem)

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

4th June 2021	Maximum Marks	50	
18IS46	Duration	120 Mir	
IV Semester	Closed Book Online	e Test-1	
	18IS46 IV Semester	18IS46 Duration	

Sl. No.			Questions			M	BT	СО
1.a	Write NFA for the following: i) To recognize strings that start and end with same character for $\Sigma = \{a,b\}$. ii) The set of all strings containing exactly two occurrences of 10 over $\Sigma = \{0,1\}$.						L5	COI
1.b	Obtain an \(\epsilon\)-NFA for the following regular expressions: i) \((ab)^*b+ab^*)^* ii) \((a^*+b^*+c^*)\)					06	L2	COI
2.a	Find CFG's to generate the following languages: i) {\mathbf{a}^i b^j c^k i = j \text{ or } i = k} ii) {\mathbf{a}^i b^j i < 2j}					04	L5	CO3
2.b	Obtain an equivalent	0,1, 0,1, 0,1,	9	0,1,,9	1,,9 (43) 6 (45)	06	L3	CO2
3.a	Given $\Sigma = \{0, 1\}$, Obtain an equivalent DFA corresponding to the NFA given below using subset construction method.				05	L3	CO2	
		δ	0	1				
		-> p	{p,q}	{p}				
		P						
		q	Ф	{r}	_			

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Academic year 2020-2021 (Even Sem)

Particulars

Test

Max

Marks

Marks

Distribution

	Daylor B.I. Prove that	05	L3	COI
.b	State Pumping Lemma for Regular Languages. By using P.L, Prove that $L = \{a^n b^n n \ge 1\} \text{ is not regular.}$ $L = \{a^n b^n n \ge 1\} \text{ is not regular.}$	06	L4	CO3
.a	Write regular expressions for the following languages: $\Sigma = \{0,1\}$ i) The set of all strings that contain exactly three 1's. ii) The set of even length strings $(\alpha + b)(\alpha + b)$ iii) The set of all strings of 0's and 1's not containing 101 as a substring.	* 04	L3	COI
4.b	Obtain Regular Expression for the given Finite Automata $b^* (aa^* + bb^* + \varepsilon) + \varepsilon)$ Elimination Method. $b^* (aa^* + bb^* + \varepsilon) + \varepsilon)$			
	Check whether the following grammar is ambiguous. Prove your answer.	04	L3	CO3
5.a	$S \rightarrow AB \mid C$ $A \rightarrow aAb \mid ab$ $B \rightarrow cBd \mid cd$			
	C → aCd aDd D → bDc bc Show that class of regular languages is closed under Intersection and	04	L2	CO2
5.b	Complementation.	02	L4	CO:
5.c	What language over (a,b) does not be shall basable generates? Q voi	. 2		

 BT-Blooms Taxonomy, CO-Course Outcomes, M-Marks

 CO1
 CO2
 CO3
 CO4
 L1
 L2
 L3
 L4
 L5
 L6

 19
 15
 16
 10
 24
 8
 8

Toc CIE-1 Solution

04 06 2021

V-1.

1a) (i)

1i)

1t 00 0 3 4 9 9 9

26] steps to identify start state, Ξ states, transform & grand stales of DFA - 2M.

St. (190,93) +-- (192)

2a) i)
$$S \rightarrow AC \mid B$$

$$A \rightarrow aAb \mid C$$

$$C \rightarrow CC \mid C$$

$$B \rightarrow aBc \mid C$$

$$C \rightarrow bB \mid C$$

36) statement of pa-2m, proof-3m.

46. b* + b*a+ + b*a+b+

40 Each step carries marks. - 4M

Reduced R.E is (b* (aa*(bb*+E)+E)

grammar is ambiguous-1M

sb) proof complementation of diagrams
where it is required-2+2=4m

st) w contains even no of a's 8 even no of b's.