I used the given test_image/juguar2/source_noise2 and tried changing different parameters to see what affects NLM.

Keep patch size p = 7, maximum search radius w = 630(the length of the image) fixed, set the number of nearest neighbors k = 1, 4, 6

K = 1:

K = 4:

K = 6:

We can see that when k=4 the algorithm produces a much better image than when k=1. Set k=6, the de-noised image looks even better.

As a result, a larger number of nearest neighbors has a better effect on de-noising images.

Keep patch size p=7, the number of nearest neighbors k=4 fixed, set maximum search radius $w=50,\,300,\,630$

W = 50:

W = 300:

W = 630:

When w increases, the result image changes slightly.

My explanation is that the search radius 50 is enough in searching a nice candidate for each patch, so the increase in the maximum radius does not have a significant effect.

Keep the number of nearest neighbors k = 4, maximum search radius w = 630 fixed, set patch size p = 3, 5, 7

P = 3:

P = 5:

P = 7:

We can see that the choice of different patch sizes may cause changes in the shape and distribution of the noise.

I also captured some photos by my phone and tried them on the NLM algorithm.

Source image 1:

Result 1:

Source image 2:

Result 2:

The NLM algorithm produced good denoised images.

Generalized PatchMatch with k = 3:

Nnf_order0:

Nnf_order1:

Nnf_order2:

Nnf_vec_order0:

Rec-src_order0:

Rec-src_order1:

Rec-src_order2:

