CNN Operations (Leeture 19)

1. CNNs reduce the number weights by shaving weights spacially and

perform calculation locally (in the sliding window).

The number of Input (2D) # of sliding windows. how many sliding windows?

Step sine = 1. -> 6 windows.

2. Convolution operations in CNNs.
Donuolution: multiplication between two sequences of signals.
> signal processing.
$f(i): \mathcal{Y}_1, \mathcal{X}_2, \mathcal{Y}_{10}$
g(i); K1, K2, K3 window.
$f \neq g(i) = \sum_{u=-s}^{s} f(i-u) \cdot g(u)$. $u \in [-s, s]$
$5 + 9(1) = \frac{5}{2} + (1 - u) \cdot 9(u)$
J. XI, XY, XY, XI, XI, X7, X8, X9, X10 X
9: [K1, K2, K3]
5x9: y2=x1K1+x2K2+x3K3, y3=x2K2+x3K3+x4K3 y=x8K1+x9K2+x10K
(32, yr, y4,, y8, y9) -> 8 values

2) Keep the size of features.
Zeto padding. [0] ×1-×10
Reflection padding: x1 - x10 x10 1+ Values.
Kernel Size: 3 (Weights) -> [3] at the begining and and
at the end.
5 (Weights) -> DOM X1-X1000
3) Common filters/Kerners.
O identity tilter. [0[1] -> fxg=f (with padding)
alleraging filter 3131 -> remove noise / smooth the input
features. 3 Gaussian filters
No[1]1

4) from elementurise multiplication to mothy multiplication
$$y = f * g = K \circ f$$

$$K = \begin{pmatrix} K_{1} & K_{2} & K_{3} & 0 & 0 \\ 0 & K_{1} & K_{2} & K_{3} & 0 \\ 0 & 0 & K_{1} & K_{2} & K_{3} \end{pmatrix}, \quad J = \begin{pmatrix} K_{1} \\ X_{2} \\ X_{3} \\ X_{15} \end{pmatrix}$$

5), 21) Convolutions.

f. g -> 2D matries,

$$f \star g(i,j) = \underbrace{\sum_{u=-s}^{s} \sum_{v=-s}^{s} f(i-u,j-v) \cdot g(u,v)}_{u=-s}$$

ij Scenter coord. Of a sliding Window,

padding:

9: EE 3x3.

Top padding elements (N+2)×2+ M×2

3. Pooling operations> downsampling
fil fix fix pooling, size = 2x2 yy yız ful for fix fix 4x4 20 feature map 10 derlap a mong ele sliding windows.
max pooling: Y11= max { f11, f12, f13, f14}
Average pooling. Yn = 4 (firt first first first)
D. reduce ele resolution of injur feature map
2) focus on more global features.
but local Fewhires are als
important in some applica