## Package 'IsoplotR'

July 3, 2016

Title Statistical Toolbox for Radiometric Geochronology

Version 0.5

Description An R implementation of Ken Ludwig's popular Isoplot add-in to Microsoft Excel. Currently plots U-Pb data on Wetherill and Tera-Wasserburg concordia diagrams. Calculates concordia and discordia ages. Performs linear regression of measurements with correlated errors using the 'York' approach. Generates Kernel Density Estimates (KDEs) and Cumulative Age Distributions (CADs). Calculates 40A/39Ar ages and isochrons. Future versions will include functionality for the Rb-Sr, Sm-Nd, Re-Os, U-Th-He, fission track and cosmogenic nuclide methods, including age spectra, ternary diagrams, radial plots, banana diagrams and multidimensional scaling plots. A graphical user interface is provided as an RStudio Shiny app at http://isoplotr.londongeochron.com. Offline access to this interface will be provided at a later point in time.

Author Pieter Vermeesch [aut, cre]

Maintainer Pieter Vermeesch <p.vermeesch@ucl.ac.uk>
Depends R (>= 3.0.0)

Imports methods

License GPL-2

LazyData true

RoxygenNote 5.0.1

## R topics documented:

| age       | 2  | 2 |
|-----------|----|---|
| botev     | 4  | 4 |
| cad       | 4  | 4 |
| concordia |    | 5 |
| ellipse   |    |   |
| examples  | 7  | 7 |
| iratio    | 8  | × |
| isochron  | 9  | 5 |
| kde       |    |   |
| lambda    |    |   |
| read.data |    |   |
| settings  |    |   |
| vorkfit   | 15 | 5 |

2 age

Index 17

age Calculate isotopic ages

## **Description**

Calculates U-Pb ages and propagates their analytical uncertainties. Evaluates the equivalence of multiple (\$^{206}\$Pb/^{238}\$U-^{207}\$Pb/^{235}\$U or \$^{207}\$Pb/^{206}\$Pb-^{206}\$Pb/^{238}\$U) compositions, computes the weighted mean isotopic composition and the corresponding concordia age using the method of maximum likelihood, computes the mswd of equivalence and concordance and their respective Chi-squared p-values. Performs linear regression of U-Pb data on Wetherill and Tera-Wasserburg concordia diagrams. Computes the upper and lower intercept ages (for Wetherill) or the lower intercept age and the \$^{207}\$Pb/^{206}\$Pb intercept (for Tera-Wasserburg), taking into account error correlations and decay constant uncertainties.

## Usage

```
age(x, ...)
## Default S3 method:
age(x, method = "Pb206U238", dcu = TRUE, ...)
## S3 method for class 'UPb'
age(x, concordia = 1, wetherill = TRUE, dcu = TRUE,
    i = NA, ...)
## S3 method for class 'detritals'
age(x, ...)
## S3 method for class 'ArAr'
age(x, isochron = FALSE, dcu = TRUE, i = NA, ...)
```

## Arguments

| X         | a scalar containing an isotopic ratio, a two element vector containing an isotopic ratio and its standard error, or an object of class UPb or detritals.                                                                                                            |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | optional arguments                                                                                                                                                                                                                                                  |
| method    | one of either 'Pb206U238', 'Pb207U235', or 'Pb207Pb206'                                                                                                                                                                                                             |
| dcu       | propagate the decay constant uncertainties?                                                                                                                                                                                                                         |
| concordia | scalar flag indicating whether each U-Pb analysis should be considered separately (concordia=1), a concordia age should be calculated from all U-Pb analyses together (concordia=2), or a discordia line should be fit through all the U-Pb analyses (concordia=2). |
| wetherill | boolean flag to indicate whether the data should be evaluated in Wetherill (TRUE)                                                                                                                                                                                   |

or Tera-Wasserburg (FALSE) space. This option is only used when concordia=2

age 3

i (optional) index of a particular aliquot

isochron boolean flag indicating whether each Ar-Ar analysis should be considered sepa-

 $rately \ (i\, sochron=FALSE) \ or \ an \ is ochron \ age \ should \ be \ calculated \ from \ all \ Ar-Ar$ 

analyses together (isochron=TRUE).

#### Value

if x is a scalar or a vector, returns the age using the geochronometer given by method and its standard error.

if x has class UPb and concordia=1, returns a table with the following columns: 't.75', 'err[t.75]', 't.68', 'err[t.68]', 't.76', 'err[t.76]', 't.conc', 'err[t.conc]', containing the 207Pb/235U-age and standard error, the <sup>207</sup>Pb/<sup>206</sup> Pb-age and standard error, and the concordia age and standard error, respectively.

if x has class UPb and concordia=2, returns a list with the following items:

x a named vector with the (weighted mean) U-Pb composition

cov the covariance matrix of the (mean) U-Pb composition

age the concordia age (in Ma)

age.err the standard error of the concordia age

**mswd** a list with two items (equivalence and concordance) containing the MSWD (Mean of the Squared Weighted Deviates, a.k.a the reduced Chi-squared statistic outside of geochronology) of isotopic equivalence and age concordance, respectively.

**p.value** a list with two items (equivalence and concordance) containing the p-value of the Chi-square test for isotopic equivalence and age concordance, respectively.

if x has class UPb and concordia=3, returns a list with the following items:

x a two element vector with the upper and lower intercept ages (if wetherill==TRUE) or the lower intercept age and <sup>207</sup>Pb/<sup>206</sup>Pb intercept (for Tera-Wasserburg)

cov the covariance matrix of the elements in x

```
data(examples)
print(age(examples$UPb))
print(age(examples$UPb,concordia=1))
print(age(examples$UPb,concordia=2))
```

4 cad

botev

Compute the optimal kernel bandwidth

## Description

Uses the diffusion algorithm of Zdravko Botev (2011) to calculate the bandwidth for kernel density estimation

## Usage

botev(x)

#### **Arguments**

Х

a vector of ordinal data

#### Value

a scalar value with the optimal bandwidth

## Author(s)

Dzdravko Botev

## References

Botev, Z. I., J. F. Grotowski, and D. P. Kroese. "Kernel density estimation via diffusion." The Annals of Statistics 38.5 (2010): 2916-2957.

## **Examples**

```
data(examples)
samp <- examples$DZ[['N1']]
bw <- botev(samp)
print(bw)</pre>
```

cad

Plot continuous data as cumulative age distributions

## Description

Plot a dataset as a Cumulative Age Distribution (CAD), also known as a 'empirical cumulative distribution function'.

concordia 5

#### Usage

```
cad(x, method = NA, pch = NA, verticals = TRUE, xlab = "age [Ma]",
  colmap = "heat.colors", col = "black", ...)
```

#### Arguments

x an object of class UPb or detritals

method a string indicating what kind of age should be plotted.

If x has class UPb, type could be one of either t.75, t.68 (default), t.76 or

t.conc

pch (optional) plot character

verticals boolean flag indicating if the horizontal lines of the CAD should be connected

by vertical lines

xlab x-axis label

colmap an optional string with the name of one of R's built-in colour palettes (e.g.,

heat.colors, terrain.colors, topo.colors, cm.colors), which are to be used for plot-

ting data of class detritals.

col colour to give to single sample datasets (i.e. not of class detritals)

... optional arguments to the generic plot function

#### **Examples**

```
data(examples)
cad(examples$DZ)
```

concordia

Concordia diagram

## Description

Plot U-Pb data on Wetherill and Tera-Wasserburg concordia diagrams, calculate concordia ages and compositions, evaluates the equivalence of multiple ( $^{206}$ Pb/ $^{238}$ U- $^{207}$ Pb/ $^{235}$ U or  $^{207}$ Pb/ $^{206}$ Pb- $^{206}$ Pb/ $^{206}$ Pb/ $^{238}$ U) compositions, computes the weighted mean isotopic composition and the corresponding concordia age using the method of maximum likelihood, computes the mswd of equivalence and concordance and their respective Chi-squared p-values. Performs linear regression and computes the upper and lower intercept ages (for Wetherill) or the lower intercept age and the  $^{207}$ Pb/ $^{206}$ Pb intercept (for Tera-Wasserburg), taking into account error correlations and decay constant uncertainties.

## Usage

```
concordia(x, limits = NULL, alpha = 0.05, wetherill = TRUE,
    show.numbers = FALSE, ellipse.col = rgb(0, 1, 0, 0.5),
    concordia.col = "darksalmon", dcu = TRUE, show.age = 1)
```

6 ellipse

#### **Arguments**

x an object of class UPb

limits age limits of the concordia line

alpha confidence cutoff for the error ellipses

wetherill boolean flag (FALSE for Tera-Wasserburg) show.numbers boolean flag (TRUE to show grain numbers)

ellipse.col background colour of the error ellipses

concordia.col colour of the concordia line

dcu show decay constant uncertainty?

show.age one of either

1: don't show the age

2: calculate the concordia age

3: fit a discordia line

## **Examples**

```
data(examples)
concordia(examples$UPb)
```

ellipse

Get coordinates of error ellipse for plotting

## **Description**

Construct an error ellipse age a given confidence level from its centre and covariance matrix

## Usage

```
ellipse(x, y, covmat, alpha = 0.05)
```

#### **Arguments**

x x-coordinate (scalar) for the centre of the ellipse
 y y-coordinate (scalar) for the centre of the ellipse
 covmat
 covariance matrix of the x-y coordinates

alpha the probability cutoff for the error ellipses

## Value

a [50x2] matrix of plot coordinates

examples 7

#### **Examples**

```
x = 99; y = 101;
covmat <- matrix(c(1,0.9,0.9,1),nrow=2)
ell <- ellipse(x,y,covmat)
plot(c(90,110),c(90,110),type='l')
polygon(ell,col=rgb(0,1,0,0.5))
points(x,y,pch=21,bg='black')
```

examples

Example datasets for testing IsoplotR

## Description

U-Pb and detrital zircon datasets

## **Details**

examples is a list with two items

UPb: an object of class 'UPb' containing a high precision U-Pb dataset packaged with Ken Ludwig's Isoplot program.

DZ: an object of class 'detrital' containing a detrital zircon U-Pb dataset from Namibia.

## Author(s)

Ken Ludwig and Pieter Vermeesch

## References

Ludwig, K. R. User's manual for Isoplot 3.00: a geochronological toolkit for Microsoft Excel. No. 4. Kenneth R. Ludwig, 2003.

Vermeesch, Pieter, and Eduardo Garzanti. "Making geological sense of 'Big Data' in sedimentary provenance analysis." Chemical Geology 409 (2015): 20-27.

```
data(examples)
concordia(examples$UPb)
dev.new()
kde(examples$DZ)
```

8 iratio

| iratio | Isotopic ratios |
|--------|-----------------|
|--------|-----------------|

#### **Description**

Gets or sets natural isotopic ratios.

### Usage

```
iratio(ratio, x = NULL, e = NULL)
```

#### **Arguments**

```
ratio one of either 'U238U235', 'Ar40Ar36', 'Ar38Ar36', 'Rb85Rb87', 'Sr88Sr86', 'Sr87Sr86', 'Sr84Sr86', 'Re185Re187', 'Os184Os192', 'Os186Os192', 'Os187Os192', 'Os188Os192', 'Os189Os192'

x new value for ratio
e new value for its standard error
```

#### Value

if x=e=NULL, returns a two-item vector containing the mean value of the requested ratio and its standard error, respectively.

#### References

Ar: Lee, Jee-Yon, et al. "A redetermination of the isotopic abundances of atmospheric Ar." Geochimica et Cosmochimica Acta 70.17 (2006): 4507-4512.

Rb: Catanzaro, E. J., et al. "Absolute isotopic abundance ratio and atomic weight of terrestrial rubidium." J. Res. Natl. Bur. Stand. A 73 (1969): 511-516.

Sr: Moore, L. J., et al. "Absolute isotopic abundance ratios and atomic weight of a reference sample of strontium." J. Res. Natl.Bur. Stand. 87.1 (1982): 1-8.

Re: Gramlich, John W., et al. "Absolute isotopic abundance ratio and atomic weight of a reference sample of rhenium." J. Res. Natl. Bur. Stand. A 77 (1973): 691-698.

Os: Voelkening, Joachim, Thomas Walczyk, and Klaus G. Heumann. "Osmium isotope ratio determinations by negative thermal ionization mass spectrometry." Int. J. Mass Spect. Ion Proc. 105.2 (1991): 147-159.

U: Hiess, Joe, et al. " $^{238}$ U/ $^{235}$ U systematics in terrestrial uranium-bearing minerals." Science 335.6076 (2012): 1610-1614.

```
# returns the 238U/235U ratio of Hiess et al. (2012):
print(iratio('U238U235'))
# use the 238U/235U ratio of Steiger and Jaeger (1977):
iratio('U238U235',138.88,0)
print(iratio('U238U235'))
```

isochron 9

isochron

Calculate and plot isochrons

#### **Description**

Plots cogenetic <sup>40</sup>Ar/<sup>39</sup>Ar data as X-Y scatterplots, fits an isochron curve through them using the yorkfit function, and computes the corresponding isochron age, including decay constant uncertainties.

## Usage

```
isochron(x, ...)
## Default S3 method:
isochron(x, xlim = NA, ylim = NA, alpha = 0.05,
    show.numbers = FALSE, ellipse.col = rgb(0, 1, 0, 0.5),
    line.col = "grey", lwd = 2, ...)
## S3 method for class 'ArAr'
isochron(x, xlim = NA, ylim = NA, alpha = 0.05,
    show.numbers = FALSE, ellipse.col = rgb(0, 1, 0, 0.5), inverse = TRUE,
    plot = TRUE, ...)
```

#### **Arguments**

x EITHER a list with the following vectors:

X: the x-variable Y: the y-variable

sX: the standard error of X sY: the standard error of Y

rXY: the correlation coefficient of X and Y

OR an object of class ArAr

... optional arguments

xlim 2-element vector with the plot limits of the x-axis ylim 2-element vector with the plot limits of the y-axis

alpha confidence cutoff for the error ellipses

show.numbers boolean flag (TRUE to show grain numbers)

ellipse.col background colour of the error ellipses

line.col colour of the isochron line

lwd line width

inverse if TRUE, plots  $^{36}$ Ar/ $^{40}$ Ar vs.  $^{39}$ Ar/ $^{40}$ Ar. If FALSE, plots  $^{40}$ Ar/ $^{36}$ Ar vs.  $^{39}$ Ar/ $^{36}$ Ar.

plot if FALSE, suppresses the graphical output

10 kde

#### Value

```
if plot=FALSE, returns a list with the following items:
a: the intercept of the straight line fit and its standard error
b: the slope of the fit and its standard error
y0: the atmospheric <sup>40</sup>Ar/<sup>36</sup>Ar ratio and its standard error
age: the <sup>40</sup>Ar/<sup>39</sup>Ar age and its standard error
```

#### **Examples**

```
data(examples)
isochron(examples$ArAr)
```

kde

*Create* (a) *kernel density estimate*(s)

### Description

Creates one or more kernel density estimates using a combination of the Botev (2010) bandwidth selector and the Abramson (1982) adaptive kernel bandwidth modifier.

## Usage

```
kde(x, ...)
## Default S3 method:
kde(x, from = NA, to = NA, bw = NA, adaptive = TRUE,
  log = FALSE, n = 512, plot = TRUE, pch = NA, xlab = "age [Ma]",
 ylab = "", kde.col = rgb(1, 0, 1, 0.6), hist.col = rgb(0, 1, 0, 0.2),
  show.hist = TRUE, bty = "n", binwidth = NA, ncol = NA, ...)
## S3 method for class 'UPb'
kde(x, from = NA, to = NA, bw = NA, adaptive = TRUE,
  log = FALSE, n = 512, plot = TRUE, pch = NA, xlab = "age [Ma]",
 ylab = "", kde.col = rgb(1, 0, 1, 0.6), hist.col = rgb(0, 1, 0, 0.2),
  show.hist = TRUE, bty = "n", binwidth = NA, ncol = NA, type = 4,
  cutoff.76 = 1100, cutoff.disc = c(-15, 5), ...
## S3 method for class 'detritals'
kde(x, from = NA, to = NA, bw = NA, adaptive = TRUE,
  log = FALSE, n = 512, plot = TRUE, pch = NA, xlab = "age [Ma]",
 ylab = "", kde.col = rgb(1, 0, 1, 0.6), hist.col = rgb(0, 1, 0, 0.2),
  show.hist = TRUE, bty = "n", binwidth = NA, ncol = NA,
  samebandwidth = TRUE, normalise = TRUE, ...)
```

kde 11

#### **Arguments**

x a vector of numbers or an object of class UPb or detrital

... optional arguments to be passed on to density

from minimum age of the time axis. If NULL, this is set automatically to maximum age of the time axis. If NULL, this is set automatically

bw the bandwidth of the KDE. If NULL, bw will be calculated automatically using

botev()

adaptive boolean flag controlling if the adaptive KDE modifier of Abramson (1982) is

used

log transform the ages to a log scale if TRUE

n horizontal resolution of the density estimate

plot show the KDE as a plot

pch the symbol used to show the samples. May be a vector. Set pch = NA to turn

them off.

xlab the label of the x-axis ylab the label of the y-axis

kde.col the fill colour of the KDE specified as a four element vector of r, g, b, alpha

values

hist.col the fill colour of the histogram specified as a four element vector of r, g, b, alpha

values

show.hist boolean flag indicating whether a histogram should be added to the KDE

bty change to "o", "1", "7", "c", "u", or "]" if you want to draw a box around the

plot

binwidth scalar width of the histogram bins, in Myr if x\$log==FALSE, or as a fractional

value if x\$log==TRUE. Sturges' Rule is used if binwidth==NA

ncol scalar value indicating the number of columns over which the KDEs should be

divided. This option is only used if x is of class detritals.

type scalar indicating whether to plot the <sup>207</sup>Pb/<sup>235</sup>U age (type=1), the <sup>206</sup>Pb/<sup>238</sup>U

age (type=2), the  $^{207}$ Pb/ $^{206}$ Pb age (type=3), the  $^{207}$ Pb/ $^{206}$ Pb- $^{206}$ Pb/ $^{238}$ U age

(type=4), or the (Wetherill) concordia age (type=5)

cutoff. 76 the age (in Ma) below which the <sup>206</sup>Pb/<sup>238</sup>U and above which the <sup>207</sup>Pb/<sup>206</sup>Pb

age is used. This parameter is only used if type=4.

cutoff.disc two element vector with the maximum and minimum percentage discordance

allowed between the  $^{207}\text{Pb}/^{235}\text{U}$  and  $^{206}\text{Pb}/^{238}\text{U}$  age (if  $^{206}\text{Pb}/^{238}\text{U}$  < cutoff.76) or between the  $^{206}\text{Pb}/^{238}\text{U}$  and  $^{207}\text{Pb}/^{206}\text{Pb}$  age (if  $^{206}\text{Pb}/^{238}\text{U}$  > cutoff.76). Set

cutoff.disc=NA if you do not want to use this filter.

samebandwidth boolean flag indicating whether the same bandwidth should be used for all sam-

ples. If samebandwidth = TRUE and bw = NULL, then the function will use the

median bandwidth of all the samples.

normalise boolean flag indicating whether or not the KDEs should all integrate to the same

value.

12 lambda

#### Value

if plot==TRUE, returns an object of class KDE, i.e. a list containing the following items:

x horizontal plot coordinates

y vertical plot coordinates

bw the base bandwidth of the density estimate

ages the data values from the input to the KDE function

or, if class(x)=='detritals', an object of class KDEs, i.e. a list containing the following items:

kdes a named list with objects of class KDE

from the beginning of the common time scale

to the end of the common time scale

themax the maximum probability density of all the KDEs

xlabel the x-axis label to be used by plot.KDEs

## **Examples**

```
data(examples)
kde(examples$DZ[['N1']],kernel="epanechnikov")
kde(examples$DZ,from=0,to=3000)
```

lambda

Decay constants

#### **Description**

Gets or sets the decay constants of radioactive isotopes

## Usage

```
lambda(nuclide, x = NULL, e = NULL)
```

## Arguments

nuclide the nuclide name

x new value for the decay constant

e new value for the decay constant uncertainty

#### Value

if x==e==NULL, returns a two-item vector containing the decay constant [in Ma-1] and its standard error, respectively.

read.data 13

#### References

U: Jaffey, A. H., et al. "Precision measurement of half-lives and specific activities of U 235 and U 238." Physical Review C 4.5 (1971): 1889.

Th: Le Roux, L. J., and L. E. Glendenin. "Half-life of 232Th." Proceedings of the National Meeting on Nuclear Energy, Pretoria, South Africa. 1963.

Ar: Renne, Paul R., et al. "Joint determination of 40K decay constants and 40Ar\*/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology." Geochimica et Cosmochimica Acta 74.18 (2010): 5349-5367.

## **Examples**

```
print(lambda('U238'))
# use the decay constant of Kovarik and Adams (1932)
lambda('U238',0.0001537,0.0000068)
print(lambda('U238'))
```

read.data

Read geochronology data

## **Description**

Cast a .csv file or a matrix into one of IsoplotR's data classes

#### Usage

```
read.data(x, ...)
## Default S3 method:
read.data(x, method = "Pb206U238", format = 1, ...)
## S3 method for class 'matrix'
read.data(x, method = "U-Pb", format = 1, ...)
```

## **Arguments**

```
a file name (.csv format) or matrix

optional arguments to the read.csv function

method one of 'U-Pb', 'Ar-Ar', 'Rb-Sr', 'Sm-Nd', 'Re-Os', 'U-Th-He', 'fission tracks', 'cosmogenic nuclides' or 'other'

format formatting option, depends on the value of method. If method = 'U-Pb', then format is one of either:

1: 7/6, s[7/6], 6/8, s[6/8], 7/5, s[7/5]

(other formats will be added later)
```

14 settings

## Value

```
an object of class 'UPb', 'ArAr', 'RbSr', 'SmNd', 'ReOs', 'UThHe', 'fission', 'cosmogenics', or 'other'
```

## **Examples**

```
# load one of the built-in .csv files:
data(examples)#fname <- system.file("UPb.csv",package="IsoplotR")
#UPb <- read.data(fname,'U-Pb')
concordia(examples$UPb)</pre>
```

settings

Load settings to and from json

## Description

Get and set preferred values for decay constants and isotopic abundances from and to a .json file format

## Usage

```
settings(fname = NULL)
```

## Arguments

fname

the path of a . json file

## Value

```
if fname==NULL, returns a . json string
```

```
json <- system.file("defaults.json",package="IsoplotR")
settings(json)
print(settings())</pre>
```

yorkfit 15

yorkfit

Linear regression of X, Y-variables with correlated errors

## **Description**

Implements the unified regression algorithm of York et al. (2004) which, although based on least squares, yields results that are consistent with maximum likelihood estimates of Ludwig and Titterington (1994)

## Usage

```
yorkfit(X, Y, sX, sY, rXY)
```

## Arguments

| X   | vector of measurements                   |
|-----|------------------------------------------|
| Υ   | vector of measurements                   |
| sX  | standard errors of X                     |
| sY  | standard errors of Y                     |
| rXY | correlation coefficients between X and Y |

#### Value

- a two element list of vectors containing
- a the intercept of the straight line fit and its standard error
- **b** the slope of the fit and its standard error

### References

Ludwig, K. R., and D. M. Titterington. "Calculation of 230ThU isochrons, ages, and errors." Geochimica et Cosmochimica Acta 58.22 (1994): 5031-5042.

York, Derek, et al. "Unified equations for the slope, intercept, and standard errors of the best straight line." American Journal of Physics 72.3 (2004): 367-375.

16 yorkfit

```
plot(range(X),fit$a[1]+fit$b[1]*range(X),type='l',ylim=range(Y))
for (i in 1:n){
    covmat[1,1] <- sX[i]^2
    covmat[2,2] <- sY[i]^2
    covmat[1,2] <- rXY[i]*sX[i]*sY[i]
    covmat[2,1] <- covmat[1,2]
    ell <- ellipse(X[i],Y[i],covmat,alpha=0.05)
    polygon(ell)
}</pre>
```

# **Index**

```
age, 2
botev, 4
cad, 4
concordia, 5
ellipse, 6
examples, 7
iratio, 8
isochron, 9
kde, 10
lambda, 12
read.data, 13
settings, 14
yorkfit, 15
```