- **8.4** In the circuit of Fig. 8.65, find:
 - (a) $v(0^+)$ and $i(0^+)$,
 - (b) $dv(0^+)/dt$ and $di(0^+)/dt$,
 - (c) $v(\infty)$ and $i(\infty)$.

Figure 8.65

For Prob. 8.4.

8.16 Find i(t) for t > 0 in the circuit of Fig. 8.70.

Figure 8.70

For Prob. 8.16.

8.24 The switch in Fig. 8.77 moves from position A to position B at t = 0 (please note that the switch must connect to point B before it breaks the connection at A, a make-before-break switch). Determine i(t) for t > 0.

Figure 8.77

For Prob. 8.24.

8.33 Find v(t) for t > 0 in the circuit of Fig. 8.81.

Figure 8.81

For Prob. 8.33.

8.65 Determine the differential equation for the op amp circuit in Fig. 8.110. If $v_1(0^+) = 2$ V and $v_2(0^+) = 0$ V, find v_o for t > 0. Let R = 100 k Ω and C = 1 μ F.

Figure 8.110

For Prob. 8.65.

8.75 Obtain the dual of the circuit in Fig. 8.119.

Figure 8.119

For Prob. 8.75.

9.26 The loop equation for a series RLC circuit gives

$$\frac{di}{dt} + 2i + \int_{-\infty}^{t} i \, dt = \cos 2t \, A$$

Assuming that the value of the integral at $t = -\infty$ is zero, find i(t) using the phasor method.

9.41 Find v(t) in the RLC circuit of Fig. 9.48.

Figure 9.48 For Prob. 9.41.

9.59 For the network in Fig. 9.66, find Z_{ln} . Let $\omega = 10$ rad/s.

Figure 9.66 For Prob. 9.59.