A BRAIDED MONOIDAL CATEGORY IS SYMMETRIC IF AND ONLY IF THE PRODUCT IS BRAIDED

DAVID MICHAEL ROBERTS

The following diagram commutes, by virtue of the symmetric monoidal category axioms, and shows in that case $\otimes: \mathcal{C} \times \mathcal{C} \to \mathcal{C}$ is a *braided* strong monoidal functor. That \otimes is a *strong* monoidal functor is due to Joyal–Street ('Braided monoidal categories'¹, Proposition 2). The vertical composites down the sides below are the comparison maps for pre- and post- \otimes products given by Joyal–Street.

In the diagram I have written $AB := A \otimes B$ etc, and identity arrows 1_X are written as just X. Isomorphisms arising from associators (α) are in blue, those arising from the braiding (σ) are in orange. Notice that the equality $\stackrel{*}{=}$ is the only place where the symmetry axiom is used.

Conversely, take $\mathcal C$ to be merely braided and \otimes a braided functor. If B=C=I the diagram above implies $(I\sigma^{-1})I=(I\sigma)I\colon (I(DA))I\to (I(AD))I$. Applying naturality squares for $IX\to X$ and $XI\to X$ gives us that $\sigma^{-1}=\sigma$, hence $\mathcal C$ is symmetric.

I'm sure this result is rather old, but haven't found a reference. It follows from high-powered abstract machinery about E_{∞} -algebras in **Cat**, but I think this was possible to prove by the time of Mac Lane's 1963 coherence theorem.

Date: 17 Dec 2019.

 $^{{\}rm ^{1}Available~at~http://web.science.mq.edu.au/~street/JS1.pdf}$