Signal Processing - | by One

Sibi Raj B. Pillai Dept of Electrical Engineering IIT Bombay

- Impulse Replacement Operation
- Generalization
- Examples
- Digital Convolution
- Analog Domain

- Impulse Replacement Operation
- Generalization
- Examples
- Digital Convolution
- Analog Domain

- Impulse Replacement Operation
- Generalization
- Examples
- Digital Convolution
- Analog Domain

- Impulse Replacement Operation
- Generalization
- Examples
- Digital Convolution
- Analog Domain

- Impulse Replacement Operation
- Generalization
- Examples
- Digital Convolution
- Analog Domain

Dirac Formalism for Replacement

$$\delta(t-\tau) * X(t) = X(t-\tau)$$

$$\delta(t) * X(t-\tau) = X(t-\tau)$$

$$f(t) * \delta(t - \tau) = ?$$

Dirac Formalism for Replacement

$$\delta(t-\tau) * X(t) = X(t-\tau)$$

$$\delta(t) * X(t-\tau) = X(t-\tau)$$

$$f(t) * \delta(t - \tau) = ?$$

- * should be commutative, i.e. x(t) * y(t) = y(t) * x(t).
- * with an impulse at τ should yield the function $x(t-\tau)$.
- Associativity: (x(t) * y(t)) * z(t) = x(t) * (y(t) * z(t))
- Distribution over addition:

$$X(t) * (y(t) + Z(t)) = X(t) * y(t) + X(t) * Z(t).$$

• Consistency when $\delta(t-\tau)$ is used in place of any signal(s)

- * should be commutative, i.e. x(t) * y(t) = y(t) * x(t).
- * with an impulse at τ should yield the function $x(t-\tau)$.
- Associativity: (x(t) * y(t)) * z(t) = x(t) * (y(t) * z(t)).
- Distribution over addition:

$$X(t) * (y(t) + Z(t)) = X(t) * y(t) + X(t) * Z(t).$$

• Consistency when $\delta(t-\tau)$ is used in place of any signal(s)

- * should be commutative, i.e. x(t) * y(t) = y(t) * x(t).
- * with an impulse at τ should yield the function $x(t-\tau)$.
- Associativity: (x(t) * y(t)) * z(t) = x(t) * (y(t) * z(t)).
- Distribution over addition:

$$X(t) * (y(t) + Z(t)) = X(t) * y(t) + X(t) * Z(t).$$

• Consistency when $\delta(t-\tau)$ is used in place of any signal(s)

- * should be commutative, i.e. x(t) * y(t) = y(t) * x(t).
- * with an impulse at τ should yield the function $x(t-\tau)$.
- Associativity: (x(t) * y(t)) * z(t) = x(t) * (y(t) * z(t)).
- Distribution over addition:

$$X(t) * (y(t) + Z(t)) = X(t) * y(t) + X(t) * Z(t).$$

▶ Consistency when $\delta(t-\tau)$ is used in place of any signal(s)

- * should be commutative, i.e. x(t) * y(t) = y(t) * x(t).
- * with an impulse at τ should yield the function $x(t-\tau)$.
- Associativity: (x(t) * y(t)) * z(t) = x(t) * (y(t) * z(t)).
- Distribution over addition:

$$X(t) * (y(t) + Z(t)) = X(t) * y(t) + X(t) * Z(t).$$

• Consistency when $\delta(t-\tau)$ is used in place of any signal(s).

- * should be commutative, i.e. x(t) * y(t) = y(t) * x(t).
- * with an impulse at τ should yield the function $x(t-\tau)$.
- Associativity: (x(t) * y(t)) * z(t) = x(t) * (y(t) * z(t)).
- Distribution over addition:

$$X(t) * (y(t) + Z(t)) = X(t) * y(t) + X(t) * Z(t).$$

• Consistency when $\delta(t-\tau)$ is used in place of any signal(s).

We hope that there may exist such an integral operation, which boils down to a summation for digital signals.

Another Superposition 'Law'

$$x(t) = x_0 \delta(t) + x_1 \delta(t - T) + \dots + x_m \delta(t - mT)$$

$$y(t) = \delta(t) + 3\delta(t - T) + 2\delta(t - 2T)$$

$$\begin{aligned} x(t) &= x_0 \delta(t) + x_1 \delta(t-T) + \dots + x_m \delta(t-mT) \\ y(t) &= \delta(t) + 3\delta(t-T) + 2\delta(t-2T) \\ x(t) &* y(t) = x(t) + 3x(t-T) + 2x(t-2T). \end{aligned}$$

$$\begin{split} x(t) &= x_0 \delta(t) + x_1 \delta(t-T) + \dots + x_m \delta(t-mT) \\ y(t) &= \delta(t) + 3 \delta(t-T) + 2 \delta(t-2T) \\ x(t) &* y(t) = x(t) + 3 x(t-T) + 2 x(t-2T). \end{split}$$

Eg. let
$$\bar{x} = (x_0, \dots, x_m) = (2, 3, 5, 4, 5)$$
 and $\bar{y} = (y_0, \dots, y_2) = (1, 3, 2)$.

$$x(t) = x_0 \delta(t) + x_1 \delta(t - T) + \dots + x_m \delta(t - mT)$$

$$y(t) = \delta(t) + 3\delta(t - T) + 2\delta(t - 2T)$$

$$x(t) * y(t) = x(t) + 3x(t - T) + 2x(t - 2T).$$

Eg. let
$$\bar{x} = (x_0, \dots, x_m) = (2, 3, 5, 4, 5)$$
 and $\bar{y} = (y_0, \dots, y_2) = (1, 3, 2)$.

$$\begin{split} x(t) &= x_0 \delta(t) + x_1 \delta(t-T) + \dots + x_m \delta(t-mT) \\ y(t) &= \delta(t) + 3\delta(t-T) + 2\delta(t-2T) \\ x(t) &* y(t) = x(t) + 3x(t-T) + 2x(t-2T). \end{split}$$

Eg. let
$$\bar{x} = (x_0, \dots, x_m) = (2, 3, 5, 4, 5)$$
 and $\bar{y} = (y_0, \dots, y_2) = (1, 3, 2)$.

			2	0	J	4	J
					1	3	2
2 x(t-2T)			4	6	10	8	10
3 x(t-1T)		6	9	15	12	15	
1 x(t-0T)	2	3	5	4	5		

$$\begin{split} x(t) &= x_0 \delta(t) + x_1 \delta(t-T) + \dots + x_m \delta(t-mT) \\ y(t) &= \delta(t) + 3\delta(t-T) + 2\delta(t-2T) \\ x(t) &* y(t) = x(t) + 3x(t-T) + 2x(t-2T). \end{split}$$

Eg. let
$$\bar{x} = (x_0, \dots, x_m) = (2, 3, 5, 4, 5)$$
 and $\bar{y} = (y_0, \dots, y_2) = (1, 3, 2)$.

			2	3	5	4	5
					1	3	2
2 x(t-2T)			4	6	10	8	10
3 x(t-1T)		6	9	15	12	15	
1 x(t-0T)	2	3	5	4	5		
	2	9	18	25	27	23	10

$$\begin{split} x(t) &= x_0 \delta(t) + x_1 \delta(t-T) + \dots + x_m \delta(t-mT) \\ y(t) &= \delta(t) + 3 \delta(t-T) + 2 \delta(t-2T) \\ x(t) &* y(t) = x(t) + 3 x(t-T) + 2 x(t-2T). \end{split}$$

Eg. let
$$\bar{x} = (x_0, \dots, x_m) = (2, 3, 5, 4, 5)$$
 and $\bar{y} = (y_0, \dots, y_2) = (1, 3, 2)$.

			_	Ū	Ū	•	Ū
					1	3	2
2 x(t-2T)			4	6	10	8	10
3 x(t-1T)		6	9	15	12	15	
1 x(t-0T)	2	3	5	4	5		
	2	9	18	25	27	23	10

For $\bar{z} = \bar{x} * \bar{y}$, makes sense to define $z_n := \sum_k y_k x_{n-k}$

Primary School Days

Multiplication without carry addition is called **convolution** $\bar{x}*\bar{u}=(\bar{x} \text{ multiply } \bar{u}) \text{ modulo MAXNUM}.$

Primary School Days

 $\label{eq:multiplication} \mbox{Multiplication without carry addition is called $\mbox{convolution}$.}$

 $\bar{x} * \bar{u} = (\bar{x} \text{ multiply } \bar{u}) \text{ modulo MAXNUM}.$

Notation: Vector $\bar{x} := x_0, \dots, x_{N-1}$.

Distribution of * over +

$$\bar{X}*(\bar{U}_1+\bar{U}_2)=(\bar{X}*\bar{U}_1)+(\bar{X}*\bar{U}_2).$$

Examples:

$$\bar{X} * [1 \ 1] = \bar{X} * ([1 \ 0] + [0 \ 1]) = (\bar{X} * [1 \ 0]) + (\bar{X} * [0 \ 1])$$

$$\bar{X} * [\alpha \ \beta] = \bar{X} * ([\alpha \ 0] + [0 \ \beta]) = (\bar{X} * [\alpha \ 0]) + (\bar{X} * [0 \ \beta])$$

Makes sense to have $\bar{x} * [1 \ 0] = \bar{x}$ "— digital impulse"

Notation: Vector $\bar{x} := x_0, \dots, x_{N-1}$.

Distribution of * over +

$$\bar{X}*(\bar{U}_1+\bar{U}_2)=(\bar{X}*\bar{U}_1)+(\bar{X}*\bar{U}_2).$$

Examples

$$\bar{X} * [1 \ 1] = \bar{X} * ([1 \ 0] + [0 \ 1]) = (\bar{X} * [1 \ 0]) + (\bar{X} * [0 \ 1])$$

$$\bar{X} * [\alpha \ \beta] = \bar{X} * ([\alpha \ 0] + [0 \ \beta]) = (\bar{X} * [\alpha \ 0]) + (\bar{X} * [0 \ \beta])$$

Makes sense to have $\bar{x} * [1 \ 0] = \bar{x}$ "— digital impulse"

Notation: Vector $\bar{x} := x_0, \dots, x_{N-1}$.

Distribution of * over +

$$\bar{X}*(\bar{U}_1+\bar{U}_2)=(\bar{X}*\bar{U}_1)+(\bar{X}*\bar{U}_2).$$

Examples:

$$\bar{X} * [1 \ 1] = \bar{X} * ([1 \ 0] + [0 \ 1]) = (\bar{X} * [1 \ 0]) + (\bar{X} * [0 \ 1])$$

$$\bar{X} * [\alpha \ \beta] = \bar{X} * ([\alpha \ 0] + [0 \ \beta]) = (\bar{X} * [\alpha \ 0]) + (\bar{X} * [0 \ \beta])$$

Makes sense to have $\bar{x} * [1 \ 0] = \bar{x}$ "— digital impulse"

Notation: Vector $\bar{x} := x_0, \dots, x_{N-1}$.

Distribution of * over +

$$\bar{X}*(\bar{U}_1+\bar{U}_2)=(\bar{X}*\bar{U}_1)+(\bar{X}*\bar{U}_2).$$

Examples:

$$\bar{X} * [1 \ 1] = \bar{X} * ([1 \ 0] + [0 \ 1]) = (\bar{X} * [1 \ 0]) + (\bar{X} * [0 \ 1])$$

$$\bar{X} * [\alpha \ \beta] = \bar{X} * ([\alpha \ 0] + [0 \ \beta]) = (\bar{X} * [\alpha \ 0]) + (\bar{X} * [0 \ \beta])$$

Makes sense to have $\bar{x} * [1 \ 0] = \bar{x}$ "— digital impulse".

Integration

$$I = \int_2^7 |x - \sin(x)| \, dx$$

Figure: Riemann Sum for $f(x) = x - \sin(x)$

Integration

Figure: Riemann Sum for $f(x) = x - \sin(x)$

Integration

Figure: Riemann Sum for $f(x) = x - \sin(x)$

Riemann Approximation

Figure: Piecewise approximation of $f(x) = x - \sin(x)$

Figure: Piecewise approximation of $f(x) = x - \sin(x)$

Figure: f(x) as a Composition

Figure: Piecewise approximation of $f(x) = x - \sin(x)$

Figure: f(x) as a Composition

Figure: Piecewise approximation of $f(x) = x - \sin(x)$

Figure: Piecewise approximation of $f(x) = x - \sin(x)$

Function x(t)

Function y(t)

$$\bar{x}_T = \sum_{m \in I} x(mT) \delta(t-mT) \ , \ \bar{y}_T = \sum_{n \in J} y(nT) \delta(t-nT).$$

Function x(t)

Function y(t)

$$\begin{split} \bar{x}_T &= \sum_{m \in I} x(mT) \delta(t-mT) \quad , \quad \bar{y}_T &= \sum_{n \in J} y(nT) \delta(t-nT). \\ x(t) &* y(t) \approx r_T(t) * \bar{x}_T * \bar{y}_T * r_T(t) \end{split}$$

Function x(t)

Function y(t)

$$\begin{split} \bar{X}_T &= \sum_{m \in I} X(mT) \delta(t-mT) \quad , \quad \bar{y}_T &= \sum_{n \in J} y(nT) \delta(t-nT). \\ X(t) &* y(t) \approx r_T(t) * \bar{X}_T * \bar{y}_T * r_T(t) \\ &= \bar{X}_T * \bar{y}_T * r_T(t) * r_T(t). \end{split}$$

Function x(t)

Function
$$y(t)$$

$$\begin{split} \bar{X}_T &= \sum_{m \in I} x(mT) \delta(t-mT) \quad , \quad \bar{y}_T = \sum_{n \in J} y(nT) \delta(t-nT). \\ &\qquad \qquad \text{Discrete Convolution} \\ &\qquad \qquad x(t) * y(t) \approx r_T(t) * \bar{X}_T * \bar{Y}_T * r_T(t) \\ &\qquad \qquad = \bar{X}_T * \bar{Y}_T * r_T(t) * r_T(t). \end{split}$$

Function x(t)

Function y(t)

$$\begin{split} \bar{X}_T &= \sum_{m \in I} X(mT) \delta(t-mT) \quad , \quad \bar{y}_T = \sum_{n \in J} y(nT) \delta(t-nT). \\ X(t) * y(t) \approx r_T(t) * \bar{X}_T * \bar{y}_T * r_T(t) \quad \text{Analog Convoltn} \\ &= \bar{X}_T * \bar{y}_T * r_T(t) * r_T(t). \end{split}$$

Leaky Bucket

