

Hypothesis Testing II: Two Sample *t* Tests

Introduction to Data Science Algorithms Jordan Boyd-Graber and Michael Paul

OCTOBER 6, 2016

Comparing Two Samples

- Thus far, we've tested whether data is consistent with mean μ
- What if we want to test whether two samples are from the same distribution

Comparing Two Samples

- Thus far, we've tested whether data is consistent with mean μ
- What if we want to test whether two samples are from the same distribution
- Two-Sample t-test

Two-Sample (unpooled)

- Two samples $X_1 = \{x_{1,1}, x_{1,2} \dots x_{1,N_1}\}$ and $X_2 = \{x_{2,1}, x_{2,2} \dots x_{2,N_2}\}$
- Doesn't assume that variance is the same for both samples (unpooled)
- Compute mean and sample variance for sample 1 $(\bar{x_1}, s_1^2)$ and sample 2 $(\bar{x_2}, s_2^2)$

Test Statistic

T-statistic

$$T = \frac{(\overline{x}_1 - \overline{x}_2)}{\sqrt{\frac{s_1^2}{N_1} + \frac{s_2^2}{N_2}}} \tag{1}$$

Plug into t-distrubtion with

$$v = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{N_2}\right)^2}{\frac{\left(\frac{s_1^2}{N_1}\right)^2}{N_1 - 1} + \frac{\left(\frac{s_2^2}{N_2}\right)^2}{N_2 - 1}} \tag{2}$$

• Intuition: Difference between \bar{x}_1 and \bar{x}_2 has variance that's an interpolation between the two samples

Test Statistic

T-statistic

$$T = \frac{(\overline{x}_1 - \overline{x}_2)}{\sqrt{\frac{s_1^2}{N_1} + \frac{s_2^2}{N_2}}} \tag{1}$$

Plug into t-distrubtion with

$$v = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{N_2}\right)^2}{\frac{\left(\frac{s_1^2}{N_1}\right)^2}{N_1 - 1} + \frac{\left(\frac{s_2^2}{N_2}\right)^2}{N_2 - 1}} \tag{2}$$

- Intuition: Difference between \bar{x}_1 and \bar{x}_2 has variance that's an interpolation between the two samples
- Two-tailed vs. one-tailed distinction still applies