MATH299M

Visualization through Mathematica

1 Credit Fall 2018

Administrative

Instructor: Ajeet Gary agary@terpmail.umd.edu

Office Hours: TBD MATH3115

Course supervisor: Dr. William Goldman wmg@math.umd.edu

Course Website

TBD

Overview

This course is designed to teach how to use the most common and useful features of Wolfram Mathematica, an extremely powerful technical computing system that can be used to model a wide range of problems. Plotting functions in several ways, making models that can be manipulated in real time by the user, and efficiently computing solutions to complicated equations are among the things we'll cover. We'll use these skills to model various structures in physics, economics, calculus and more, and for the final project every student will pick something relevant to their major (or interest otherwise) to model, whether that be in physics, math, engineering, economics, or anything else mathematical in nature. Over the course of learning these tools students will encounter profound examples of what Mathematica can do, seeing first hand that creating models that can be manipulated in real time helps greatly in understanding the underlying symmetries and properties of a problem.

Prerequisites

MATH140/141 (or equivalent)

Strongly recommended pre- or co-requisite: MATH241

Coding: No coding background is required, and Mathematica isn't exactly a coding language. However, having coding experience will make you more comfortable learning Mathematica. Math: The more math you know the more you'll be able to immediately get out of this class. Even if you only know introductory calculus though there are still tons of uses in calculus, pre-calc and algebra, and as you learn more math you'll be able to apply these tools to more and more topics and problems.

Physics: Some of the most fascinating models that I've personally made are ones that model physics problems. Math is the language of physics, and so having powerful math visualization tools is a major advantage in deeply understanding the results of physics problems.

Class Time

Fridays 2-2:50pm

Course Materials

The text for this course will be a Mathematica Handbook PDF that I've created and will distribute electronically.

Mathematica has excellent online documentation: http://reference.wolfram.com/language/ As a UMD student you have a free subscription to Wolfram Mathematica that you can download from TERPware:

https://terpware.umd.edu/Windows/title/1837

Assignments

All Assignments will be coding projects, most of them small.

Each week there will be a small Mathematica coding assignment on the material that we covered in lecture, each project will be due two weeks after it is assigned. Models will be submitted electronically on ELMS as a .nb file. They will generally be quite short, not demanding more than an hour outside of class per week. The last month students will be working on their Final Project. Each student will have their own topic of choice (I'll help you pick something that will be cool to model). At the end of the semester everyone will briefly present their projects.

There will be a small point deduction for assignments turned in late.

Grading

Weekly Models (12)	30%	(Lowest 3 assignments will be dropped)
Class Attendance	15%	
Project 1	10%	
Project 2	10%	
Final Project	35%	

There will also be many opportunities for extra credit.

Collaboration

Students are allowed to work together on all projects except the Final Project. If you copy other students' code all semester then on the Final Project, which will be *unique for each student*, you'll have a hard time.

Schedule (Subject to change)

W1.4.0/27 0/2	Internal and Design Veriables Cate Table Flatter
Week 1: 8/27 - 9/2	Introduction and Basics: Variables, Sets, Table, Flatten
	Model C1: Generating Rows of Pascal's Triangle
	Model 1.1: Generating Fibonacci Sequence
	Model Ex1: Multiplication Table
Week 2: 9/3 - 9/9	Basics II: Conditionals, Functions and Defining Functions
	Model C2: Converting Rectangular and Polar Coordinates
	Model 1.2: Show Convergence of Fibonacci Sequence Ratio
Week 3: 9/10 - 9/16	Manipulate I: Manipulate around Function and Table
	Model C3: Manipulating Polynomial by its Roots
	Model 1.3: Repeated Fractions with Manipulate
Week 4: 9/17 - 9/23	Graphics: Points, Lines, Rectangles
	Model C4: Visual Proof - Regular Polygons approach Circle
	Project 1: Draw Fibonacci number Rectangles
Week 5: 9/24 - 9/30	Plotting I: Plot on explicit and implicit functions
	Model C5: Manipulating Coefficients of Polynomials
	Model 2.1: Plot Sine and Cosine waves with Amplitude and Phase

Basics III: Solve, Derivatives, Integrals, Simplify, Expand Model C6: Graphing first N Derivatives of a Function Model 2.2: Calculate terms of Taylor Expansion Model Ex2: Probabilistic Interpretation of the Wave Function Model Ex2: Probabilistic Interpretation of the Wave Function Plotting II and Manipulate II: Plot and Manipulate options Model C7: Plot Sum of Sine Waves Project 2: Visualizing nth-Order Taylor Approximations Week 8: 10/15 - 10/21 Plotting IV: RegionPlot Model C8: Visualizing De Morgan's Laws with Venn Diagrams Model 3.1: Integral of a Function as Area under Curve			
Model 2.2: Calculate terms of Taylor Expansion Model Ex2: Probabilistic Interpretation of the Wave Function Week 7: 10/8 - 10/14 Plotting II and Manipulate II: Plot and Manipulate options Model C7: Plot Sum of Sine Waves Project 2: Visualizing nth-Order Taylor Approximations Week 8: 10/15 - 10/21 Plotting IV: RegionPlot Model C8: Visualizing De Morgan's Laws with Venn Diagrams Model C8: Visualizing De Morgan's Laws with Venn Diagrams Model 3.1: Integral of a Function as Area under Curve Plotting V: Plot3D Model C9: Visualizing the Fundamental Theorem of Algebra Model 3.2: Draw Paraboloids Week 10: 10/29 - 11/4 Plotting VI: ContourPlot Model C10: Visualizing Trig Functions on Complex Plane Model 3.3: Draw Conic Sections from Level Curves of Paraboloids Model Ex3: Electromagnetic Field Lines around a Dipole Week 11: 11/5 - 11/11 Plotting VII: ParametricPlot, ParametricPlot3D Model C11: Creating a Sphere, Cylinder and Torus Model 3.4: Draw a Double Helix and Cone Week 12: 11/12 - 11/18 Plotting VIII: PolarPlot, PolarPlot3D Model C12: Visual Proof of the Pythagorean Identity Sin²+Cos²=1 Model 3.5: Draw Polar Flowers Model Ex4: 3D Electron Orbits Week 13: 11/19 - 11/25 Final Project Decision Day! N students = N different projects Week 14: 11/26 - 12/2 Manipulate III: Locators and LocatorAutoCreate Week 15: 12/3 - 12/9 Evaluation Control: Evaluate and Hold Showing off the Power of Mathematica through Examples: Fractals, Relativistic Beaming, Barn-Ladder Paradox, Moebius	Week 6: 10/1 - 10/7	Basics III: Solve, Derivatives, Integrals, Simplify, Expand	
Model Ex2: Probabilistic Interpretation of the Wave Function Week 7: 10/8 - 10/14 Plotting II and Manipulate II: Plot and Manipulate options Model C7: Plot Sum of Sine Waves Project 2: Visualizing nth-Order Taylor Approximations		Model C6: Graphing first N Derivatives of a Function	
Week 7: 10/8 - 10/14 Plotting II and Manipulate II: Plot and Manipulate options Model C7: Plot Sum of Sine Waves Project 2: Visualizing nth-Order Taylor Approximations		Model 2.2: Calculate terms of Taylor Expansion	
Model C7: Plot Sum of Sine Waves Project 2: Visualizing nth-Order Taylor Approximations Week 8: 10/15 - 10/21 Plotting IV: RegionPlot Model C8: Visualizing De Morgan's Laws with Venn Diagrams Model 3.1: Integral of a Function as Area under Curve Week 9: 10/22 - 10/28 Plotting V: Plot3D Model C9: Visualizing the Fundamental Theorem of Algebra Model 3.2: Draw Paraboloids Week 10: 10/29 - 11/4 Plotting VI: ContourPlot Model C10: Visualizing Trig Functions on Complex Plane Model 3.3: Draw Conic Sections from Level Curves of Paraboloids Model Ex3: Electromagnetic Field Lines around a Dipole Week 11: 11/5 - 11/11 Plotting VII: ParametricPlot, ParametricPlot3D Model C11: Creating a Sphere, Cylinder and Torus Model 3.4: Draw a Double Helix and Cone Week 12: 11/12 - 11/18 Plotting VIII: PolarPlot, PolarPlot3D Model C12: Visual Proof of the Pythagorean Identity Sin²+Cos²=1 Model 3.5: Draw Polar Flowers Model Ex4: 3D Electron Orbits Week 13: 11/19 - 11/25 Final Project Decision Day! N students = N different projects Week 14: 11/26 - 12/2 Manipulate III: Locators and LocatorAutoCreate Week 15: 12/3 - 12/9 Evaluation Control: Evaluate and Hold Showing off the Power of Mathematica through Examples: Fractals, Relativistic Beaming, Barn-Ladder Paradox, Moebius		Model Ex2: Probabilistic Interpretation of the Wave Function	
Project 2: Visualizing nth-Order Taylor Approximations Week 8: 10/15 - 10/21 Plotting IV: RegionPlot Model C8: Visualizing De Morgan's Laws with Venn Diagrams Model 3.1: Integral of a Function as Area under Curve Week 9: 10/22 - 10/28 Plotting V: Plot3D Model C9: Visualizing the Fundamental Theorem of Algebra Model 3.2: Draw Paraboloids Week 10: 10/29 - 11/4 Plotting VI: ContourPlot Model C10: Visualizing Trig Functions on Complex Plane Model 3.3: Draw Conic Sections from Level Curves of Paraboloids Model Ex3: Electromagnetic Field Lines around a Dipole Week 11: 11/5 - 11/11 Plotting VII: ParametricPlot, ParametricPlot3D Model C11: Creating a Sphere, Cylinder and Torus Model 3.4: Draw a Double Helix and Cone Week 12: 11/12 - 11/18 Plotting VIII: PolarPlot3D Model C12: Visual Proof of the Pythagorean Identity Sin²+Cos²=1 Model 3.5: Draw Polar Flowers Model Ex4: 3D Electron Orbits Week 13: 11/19 - 11/25 Final Project Decision Day! N students = N different projects Week 14: 11/26 - 12/2 Manipulate III: Locators and LocatorAutoCreate Week 15: 12/3 - 12/9 Evaluation Control: Evaluate and Hold Showing off the Power of Mathematica through Examples: Fractals, Relativistic Beaming, Barn-Ladder Paradox, Moebius	Week 7: 10/8 - 10/14	Plotting II and Manipulate II: Plot and Manipulate options	
Week 8: 10/15 - 10/21 Plotting IV: RegionPlot Model C8: Visualizing De Morgan's Laws with Venn Diagrams Model 3.1: Integral of a Function as Area under Curve Plotting V: Plot3D Model C9: Visualizing the Fundamental Theorem of Algebra Model 3.2: Draw Paraboloids Week 10: 10/29 - 11/4 Plotting VI: ContourPlot Model C10: Visualizing Trig Functions on Complex Plane Model 3.3: Draw Conic Sections from Level Curves of Paraboloids Model Ex3: Electromagnetic Field Lines around a Dipole Week 11: 11/5 - 11/11 Plotting VII: ParametricPlot, ParametricPlot3D Model C11: Creating a Sphere, Cylinder and Torus Model 3.4: Draw a Double Helix and Cone Week 12: 11/12 - 11/18 Plotting VIII: PolarPlot, PolarPlot3D Model C12: Visual Proof of the Pythagorean Identity Sin²+Cos²=1 Model 3.5: Draw Polar Flowers Model Ex4: 3D Electron Orbits Week 13: 11/19 - 11/25 Final Project Decision Day! N students = N different projects Week 15: 12/3 - 12/9 Evaluation Control: Evaluate and Hold Showing off the Power of Mathematica through Examples: Fractals, Relativistic Beaming, Barn-Ladder Paradox, Moebius		Model C7: Plot Sum of Sine Waves	
Model C8: Visualizing De Morgan's Laws with Venn Diagrams Model 3.1: Integral of a Function as Area under Curve Week 9: 10/22 - 10/28 Plotting V: Plot3D Model C9: Visualizing the Fundamental Theorem of Algebra Model 3.2: Draw Paraboloids Week 10: 10/29 - 11/4 Plotting VI: ContourPlot Model C10: Visualizing Trig Functions on Complex Plane Model 3.3: Draw Conic Sections from Level Curves of Paraboloids Model Ex3: Electromagnetic Field Lines around a Dipole Week 11: 11/5 - 11/11 Plotting VII: ParametricPlot, ParametricPlot3D Model C11: Creating a Sphere, Cylinder and Torus Model 3.4: Draw a Double Helix and Cone Week 12: 11/12 - 11/18 Plotting VIII: PolarPlot, PolarPlot3D Model C12: Visual Proof of the Pythagorean Identity Sin²+Cos²=1 Model 3.5: Draw Polar Flowers Model Ex4: 3D Electron Orbits Week 13: 11/19 - 11/25 Final Project Decision Day! N students = N different projects Week 14: 11/26 - 12/2 Manipulate III: Locators and LocatorAutoCreate Week 15: 12/3 - 12/9 Evaluation Control: Evaluate and Hold Final Exam Week Showing off the Power of Mathematica through Examples: Fractals, Relativistic Beaming, Barn-Ladder Paradox, Moebius			
Week 9: 10/22 - 10/28 Week 9: 10/22 - 10/28 Plotting V: Plot3D Model C9: Visualizing the Fundamental Theorem of Algebra Model 3.2: Draw Paraboloids Week 10: 10/29 - 11/4 Plotting VI: ContourPlot Model C10: Visualizing Trig Functions on Complex Plane Model 3.3: Draw Conic Sections from Level Curves of Paraboloids Model Ex3: Electromagnetic Field Lines around a Dipole Week 11: 11/5 - 11/11 Plotting VII: ParametricPlot, ParametricPlot3D Model C11: Creating a Sphere, Cylinder and Torus Model 3.4: Draw a Double Helix and Cone Week 12: 11/12 - 11/18 Plotting VIII: PolarPlot, PolarPlot3D Model C12: Visual Proof of the Pythagorean Identity Sin²+Cos²=1 Model 3.5: Draw Polar Flowers Model Ex4: 3D Electron Orbits Week 13: 11/19 - 11/25 Week 14: 11/26 - 12/2 Manipulate III: Locators and LocatorAutoCreate Week 15: 12/3 - 12/9 Evaluation Control: Evaluate and Hold Final Exam Week Showing off the Power of Mathematica through Examples: Fractals, Relativistic Beaming, Barn-Ladder Paradox, Moebius	Week 8: 10/15 - 10/21		
Week 9: 10/22 - 10/28 Plotting V: Plot3D Model C9: Visualizing the Fundamental Theorem of Algebra Model 3.2: Draw Paraboloids Week 10: 10/29 - 11/4 Plotting VI: ContourPlot Model C10: Visualizing Trig Functions on Complex Plane Model 3.3: Draw Conic Sections from Level Curves of Paraboloids Model Ex3: Electromagnetic Field Lines around a Dipole Week 11: 11/5 - 11/11 Plotting VII: ParametricPlot, ParametricPlot3D Model C11: Creating a Sphere, Cylinder and Torus Model 3.4: Draw a Double Helix and Cone Week 12: 11/12 - 11/18 Plotting VIII: PolarPlot, PolarPlot3D Model C12: Visual Proof of the Pythagorean Identity Sin²+Cos²=1 Model 3.5: Draw Polar Flowers Model Ex4: 3D Electron Orbits Week 13: 11/19 - 11/25 Final Project Decision Day! N students = N different projects Week 14: 11/26 - 12/2 Manipulate III: Locators and LocatorAutoCreate Week 15: 12/3 - 12/9 Evaluation Control: Evaluate and Hold Showing off the Power of Mathematica through Examples: Fractals, Relativistic Beaming, Barn-Ladder Paradox, Moebius			
Model C9: Visualizing the Fundamental Theorem of Algebra Model 3.2: Draw Paraboloids Week 10: 10/29 - 11/4 Plotting VI: ContourPlot Model C10: Visualizing Trig Functions on Complex Plane Model 3.3: Draw Conic Sections from Level Curves of Paraboloids Model Ex3: Electromagnetic Field Lines around a Dipole Week 11: 11/5 - 11/11 Plotting VII: ParametricPlot, ParametricPlot3D Model C11: Creating a Sphere, Cylinder and Torus Model 3.4: Draw a Double Helix and Cone Week 12: 11/12 - 11/18 Plotting VIII: PolarPlot, PolarPlot3D Model C12: Visual Proof of the Pythagorean Identity Sin²+Cos²=1 Model 3.5: Draw Polar Flowers Model Ex4: 3D Electron Orbits Week 13: 11/19 - 11/25 Final Project Decision Day! N students = N different projects Week 14: 11/26 - 12/2 Manipulate III: Locators and LocatorAutoCreate Week 15: 12/3 - 12/9 Evaluation Control: Evaluate and Hold Showing off the Power of Mathematica through Examples: Fractals, Relativistic Beaming, Barn-Ladder Paradox, Moebius		Model 3.1: Integral of a Function as Area under Curve	
Week 10: 10/29 - 11/4 Week 10: 10/29 - 11/4 Plotting VI: ContourPlot Model C10: Visualizing Trig Functions on Complex Plane Model 3.3: Draw Conic Sections from Level Curves of Paraboloids Model Ex3: Electromagnetic Field Lines around a Dipole Week 11: 11/5 - 11/11 Plotting VII: ParametricPlot, ParametricPlot3D Model C11: Creating a Sphere, Cylinder and Torus Model 3.4: Draw a Double Helix and Cone Week 12: 11/12 - 11/18 Plotting VIII: PolarPlot, PolarPlot3D Model C12: Visual Proof of the Pythagorean Identity Sin²+Cos²=1 Model 3.5: Draw Polar Flowers Model Ex4: 3D Electron Orbits Week 13: 11/19 - 11/25 Week 14: 11/26 - 12/2 Manipulate III: Locators and LocatorAutoCreate Week 15: 12/3 - 12/9 Final Exam Week Showing off the Power of Mathematica through Examples: Fractals, Relativistic Beaming, Barn-Ladder Paradox, Moebius	Week 9: 10/22 - 10/28		
Week 10: 10/29 - 11/4 Plotting VI: ContourPlot Model C10: Visualizing Trig Functions on Complex Plane Model 3.3: Draw Conic Sections from Level Curves of Paraboloids Model Ex3: Electromagnetic Field Lines around a Dipole Week 11: 11/5 - 11/11 Plotting VII: ParametricPlot, ParametricPlot3D Model C11: Creating a Sphere, Cylinder and Torus Model 3.4: Draw a Double Helix and Cone Week 12: 11/12 - 11/18 Plotting VIII: PolarPlot, PolarPlot3D Model C12: Visual Proof of the Pythagorean Identity Sin²+Cos²=1 Model 3.5: Draw Polar Flowers Model Ex4: 3D Electron Orbits Week 13: 11/19 - 11/25 Final Project Decision Day! N students = N different projects Week 14: 11/26 - 12/2 Manipulate III: Locators and LocatorAutoCreate Week 15: 12/3 - 12/9 Evaluation Control: Evaluate and Hold Showing off the Power of Mathematica through Examples: Fractals, Relativistic Beaming, Barn-Ladder Paradox, Moebius			
Model C10: Visualizing Trig Functions on Complex Plane Model 3.3: Draw Conic Sections from Level Curves of Paraboloids Model Ex3: Electromagnetic Field Lines around a Dipole Week 11: 11/5 - 11/11 Plotting VII: ParametricPlot, ParametricPlot3D Model C11: Creating a Sphere, Cylinder and Torus Model 3.4: Draw a Double Helix and Cone Week 12: 11/12 - 11/18 Plotting VIII: PolarPlot, PolarPlot3D Model C12: Visual Proof of the Pythagorean Identity Sin²+Cos²=1 Model 3.5: Draw Polar Flowers Model Ex4: 3D Electron Orbits Week 13: 11/19 - 11/25 Final Project Decision Day! N students = N different projects Week 14: 11/26 - 12/2 Manipulate III: Locators and LocatorAutoCreate Week 15: 12/3 - 12/9 Evaluation Control: Evaluate and Hold Showing off the Power of Mathematica through Examples: Fractals, Relativistic Beaming, Barn-Ladder Paradox, Moebius		Model 3.2: Draw Paraboloids	
Model 3.3: Draw Conic Sections from Level Curves of Paraboloids Model Ex3: Electromagnetic Field Lines around a Dipole Week 11: 11/5 - 11/11 Plotting VII: ParametricPlot, ParametricPlot3D Model C11: Creating a Sphere, Cylinder and Torus Model 3.4: Draw a Double Helix and Cone Week 12: 11/12 - 11/18 Plotting VIII: PolarPlot, PolarPlot3D Model C12: Visual Proof of the Pythagorean Identity Sin²+Cos²=1 Model 3.5: Draw Polar Flowers Model Ex4: 3D Electron Orbits Week 13: 11/19 - 11/25 Final Project Decision Day! N students = N different projects Week 14: 11/26 - 12/2 Manipulate III: Locators and LocatorAutoCreate Week 15: 12/3 - 12/9 Final Exam Week Showing off the Power of Mathematica through Examples: Fractals, Relativistic Beaming, Barn-Ladder Paradox, Moebius	Week 10: 10/29 - 11/4		
Model Ex3: Electromagnetic Field Lines around a Dipole Week 11: 11/5 - 11/11 Plotting VII: ParametricPlot, ParametricPlot3D Model C11: Creating a Sphere, Cylinder and Torus Model 3.4: Draw a Double Helix and Cone Week 12: 11/12 - 11/18 Plotting VIII: PolarPlot, PolarPlot3D Model C12: Visual Proof of the Pythagorean Identity Sin²+Cos²=1 Model 3.5: Draw Polar Flowers Model Ex4: 3D Electron Orbits Week 13: 11/19 - 11/25 Final Project Decision Day! N students = N different projects Week 14: 11/26 - 12/2 Manipulate III: Locators and LocatorAutoCreate Week 15: 12/3 - 12/9 Evaluation Control: Evaluate and Hold Final Exam Week Showing off the Power of Mathematica through Examples: Fractals, Relativistic Beaming, Barn-Ladder Paradox, Moebius			
Week 11: 11/5 - 11/11 Plotting VII: ParametricPlot, ParametricPlot3D Model C11: Creating a Sphere, Cylinder and Torus Model 3.4: Draw a Double Helix and Cone Week 12: 11/12 - 11/18 Plotting VIII: PolarPlot, PolarPlot3D Model C12: Visual Proof of the Pythagorean Identity Sin²+Cos²=1 Model 3.5: Draw Polar Flowers Model Ex4: 3D Electron Orbits Week 13: 11/19 - 11/25 Final Project Decision Day! N students = N different projects Week 14: 11/26 - 12/2 Manipulate III: Locators and LocatorAutoCreate Week 15: 12/3 - 12/9 Evaluation Control: Evaluate and Hold Final Exam Week Showing off the Power of Mathematica through Examples: Fractals, Relativistic Beaming, Barn-Ladder Paradox, Moebius			
Model C11: Creating a Sphere, Cylinder and Torus Model 3.4: Draw a Double Helix and Cone Week 12: 11/12 - 11/18 Plotting VIII: PolarPlot, PolarPlot3D Model C12: Visual Proof of the Pythagorean Identity Sin²+Cos²=1 Model 3.5: Draw Polar Flowers Model Ex4: 3D Electron Orbits Week 13: 11/19 - 11/25 Final Project Decision Day! N students = N different projects Week 14: 11/26 - 12/2 Manipulate III: Locators and LocatorAutoCreate Week 15: 12/3 - 12/9 Evaluation Control: Evaluate and Hold Final Exam Week Showing off the Power of Mathematica through Examples: Fractals, Relativistic Beaming, Barn-Ladder Paradox, Moebius			
Week 12: 11/12 - 11/18 Plotting VIII: PolarPlot, PolarPlot3D Model C12: Visual Proof of the Pythagorean Identity Sin²+Cos²=1 Model 3.5: Draw Polar Flowers Model Ex4: 3D Electron Orbits Week 13: 11/19 - 11/25 Final Project Decision Day! N students = N different projects Week 14: 11/26 - 12/2 Manipulate III: Locators and LocatorAutoCreate Week 15: 12/3 - 12/9 Evaluation Control: Evaluate and Hold Final Exam Week Showing off the Power of Mathematica through Examples: Fractals, Relativistic Beaming, Barn-Ladder Paradox, Moebius	Week 11: 11/5 - 11/11		
Week 12: 11/12 - 11/18 Plotting VIII: PolarPlot, PolarPlot3D Model C12: Visual Proof of the Pythagorean Identity Sin²+Cos²=1 Model 3.5: Draw Polar Flowers Model Ex4: 3D Electron Orbits Week 13: 11/19 - 11/25 Final Project Decision Day! N students = N different projects Week 14: 11/26 - 12/2 Manipulate III: Locators and LocatorAutoCreate Week 15: 12/3 - 12/9 Evaluation Control: Evaluate and Hold Showing off the Power of Mathematica through Examples: Fractals, Relativistic Beaming, Barn-Ladder Paradox, Moebius			
Model C12: Visual Proof of the Pythagorean Identity Sin²+Cos²=1 Model 3.5: Draw Polar Flowers Model Ex4: 3D Electron Orbits Week 13: 11/19 - 11/25 Final Project Decision Day! N students = N different projects Week 14: 11/26 - 12/2 Manipulate III: Locators and LocatorAutoCreate Week 15: 12/3 - 12/9 Evaluation Control: Evaluate and Hold Final Exam Week Showing off the Power of Mathematica through Examples: Fractals, Relativistic Beaming, Barn-Ladder Paradox, Moebius			
Model 3.5: Draw Polar Flowers Model Ex4: 3D Electron Orbits Week 13: 11/19 - 11/25 Final Project Decision Day! N students = N different projects Week 14: 11/26 - 12/2 Manipulate III: Locators and LocatorAutoCreate Week 15: 12/3 - 12/9 Evaluation Control: Evaluate and Hold Final Exam Week Showing off the Power of Mathematica through Examples: Fractals, Relativistic Beaming, Barn-Ladder Paradox, Moebius	Week 12: 11/12 - 11/18	· · · · · · · · · · · · · · · · · · ·	
Week 13: 11/19 - 11/25 Final Project Decision Day! N students = N different projects Week 14: 11/26 - 12/2 Manipulate III: Locators and LocatorAutoCreate Week 15: 12/3 - 12/9 Evaluation Control: Evaluate and Hold Final Exam Week Showing off the Power of Mathematica through Examples: Fractals, Relativistic Beaming, Barn-Ladder Paradox, Moebius			
Week 13: 11/19 - 11/25 Final Project Decision Day! N students = N different projects Week 14: 11/26 - 12/2 Manipulate III: Locators and LocatorAutoCreate Week 15: 12/3 - 12/9 Evaluation Control: Evaluate and Hold Final Exam Week Showing off the Power of Mathematica through Examples: Fractals, Relativistic Beaming, Barn-Ladder Paradox, Moebius			
Week 14: 11/26 - 12/2 Week 15: 12/3 - 12/9 Final Exam Week Showing off the Power of Mathematica through Examples: Fractals, Relativistic Beaming, Barn-Ladder Paradox, Moebius			
Week 15: 12/3 - 12/9 Final Exam Week Showing off the Power of Mathematica through Examples: Fractals, Relativistic Beaming, Barn-Ladder Paradox, Moebius			
Final Exam Week Showing off the Power of Mathematica through Examples: Fractals, Relativistic Beaming, Barn-Ladder Paradox, Moebius		Manipulate III: Locators and LocatorAutoCreate	
Fractals, Relativistic Beaming, Barn-Ladder Paradox, Moebius	Week 15: 12/3 - 12/9	Evaluation Control: Evaluate and Hold	
	Final Exam Week		
Transformations, Dynamical Systems, Chaos, and more		Fractals, Relativistic Beaming, Barn-Ladder Paradox, Moebius	
		Transformations, Dynamical Systems, Chaos, and more	

In Black is the topic of the week (the tools we'll be learning)

In Green is the in-class example that we'll do together

In Blue is the assignment assigned that day which will be due in two weeks

In Purple are Extra Credit projects (more of these will be added)

Course Policies

The standard course policies apply: http://ugst.umd.edu/courserelatedpolicies.html