Le second degré

1^{re} Spécialité mathématiques Algèbre - Cours

I. Les fonctions polynômes du second degré

Définition :

On appelle fonction polynôme (ou trinôme) du second degré toute fonction f définie sur $\mathbb R$ par $f(x)=ax^2+bx+c$ où $a,\ b$ et c sont trois réel avec $a\neq 0$. Les réels $a,\ b$ et c sont appelés coefficients de la fonction.

Exemple:

- f définie sur \mathbb{R} tel que $f(x) = 2x^2 4x + 1$
- g définie sur \mathbb{R} tel que $g(x) = -x^2 + 9x 12$

Remarque: L'expression $ax^2 + bx + c$ est dite forme développée de f(x).

1. Forme canonique

Théorème:

Toute fonction trinôme du second degré définie par $f(x)=ax^2+bx+c$ peut s'écrire sous une forme appelée canonique $f(x)=a(x-\alpha)^2+\beta$, avec $\alpha=-\frac{b}{2a}$ et $\beta=f(\alpha)$.

Exemple:

Soit f définie sur $\mathbb R$ par $f(x)=x^2-4x+17$. Donner sa forme canonique.

1. En utilisant le théorème : On a a=1, b=-4 et c=17

Calculons
$$\alpha=-\frac{b}{2a}=-\frac{-4}{2 imes 1}=\frac{4}{2}=2$$
 et $\beta=f(\alpha)=f(2)=2^2-4 imes 2+17=13$

Donc la forme canonique de f est $f(x) = 1(x-2)^2 + 13$ pour tout $x \in \mathbb{R}$.

2. En utilisant une identité remarquable :

$$f(x) = x^{2} - 4x + 17$$
$$= x^{2} - 4x + 4 - 4 + 17$$
$$= (x - 2)^{2} + 13$$

Donc la forme canonique de f est $f(x) = (x-2)^2 + 13$ pour tout $x \in \mathbb{R}$.

2. Sens de variation

Propriété:

Soit f une fonction définie sur \mathbb{R} par $f(x) = a(x - \alpha)^2 + \beta$.

- Cas où a>0: la fonction f est strictement décroissante sur $]-\infty;\alpha]$ puis strictement croissante sur $[\alpha;+\infty[$. f admet un minimum égal à β atteint en $x=\alpha$.
- Cas où a<0: la fonction f est strictement croissante sur $]-\infty;\alpha]$ puis strictement décroissante sur $[\alpha;+\infty[$. f admet un maximum égal à β atteint en $x=\alpha$.

On retient:

3. Représentation graphique

Propriété (conséquence) :

Soit f une fonction définie par $f(x) = a(x - \alpha) + \beta$.

Dans un repère orthogonal d'origine O, la représentation graphique de la fonction f est une parabole de sommet $S(\alpha; \beta)$ qui admet pour axe de symétrie la droite d'équation $x = \alpha$.

On retient:

II. Factorisation d'une fonction du second degré et équation du second degré

1 Factorisation

Définition :

On appelle discriminant de la fonction trinôme $f: x\mapsto ax^2+bx+c$ ou de l'équation $ax^2+bx+c=0$ le réel Δ défini par $\Delta=b^2-4ac$.

Exemple:

Soit l'équation $-3x^2 + 6x - 3 = 0$.

On a
$$a = -3$$
, $b = 6$ et $c = -3$.

Calculons
$$\Delta = b^2 - 4ac$$

= $6^2 - 4 \times (-3) \times (-3)$
= 0

Théorème (factorisation d'un trinôme du second degré) :

Soit f définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$.

- Si $\Delta < 0$, alors $f(x) = ax^2 + bx + c$ n'est pas factorisable.
- Si $\Delta=0$, alors $f(x)=a(x-\alpha)^2$ où $\alpha=-\frac{b}{2a}$.
- Si $\Delta>0$, alors $f(x)=a(x-x_1)(x-x_2)$ où $x_1=\frac{-b-\sqrt{\Delta}}{2a}$ et $x_2=\frac{-b+\sqrt{\Delta}}{2a}$.

2. Résolution des équation du second degré

Théorème:

Soit l'équation $ax^2 + bx + c = 0$ avec $a \neq 0$.

- Si $\Delta=0$, l'équation $ax^2+bx+c=0$ admet une unique solution $\alpha=\frac{-b}{2a}$.
- Si $\Delta>0$, l'équation $ax^2+bx+c=0$ admet deux solutions distinctes : $x_1=\frac{-b-\sqrt{\Delta}}{2a}$ et $x_2=\frac{-b+\sqrt{\Delta}}{2a}$.

Exemple:

Soit l'équation $2x^2 + 19x + 42 = 0$.

On a a = 2, b = 19 et c = 42.

On calcule
$$\Delta=b^2-4ac=25$$
.

 $\Delta>0$ donc l'équation admet deux solutions x_1 et x_2 telles que :

•
$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-19 - \sqrt{25}}{2 \times 2} = -6$$

•
$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-19 + \sqrt{25}}{2 \times 2} = -\frac{7}{2}$$

L'ensemble solution est $S = \left\{-\frac{7}{2} - 6\right\}$.

3. Somme et produit des racines

Propriété:

Soit x_1 et x_2 les racines d'une fonction polynôme du second degré $ax^2 + bx + c$, avec $a \neq 0$.

On a alors
$$x_1 + x_2 = -\frac{b}{a}$$
 et $x_1 \times x_2 = \frac{c}{a}$

III. Signe d'une fonction du second degré et inéquations

a>0 et $\Delta>0$

a<0 et $\Delta>0$

Propriété (signe d'une fonction trinôme du second degré) :

Soit f définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$.

- Si $\Delta < 0$, alors pour tout réel x, f(x) est du signe de a.
- Si $\Delta = 0$, alors pour tout réel x, f(x) est du signe de a sauf en α où f(x) = 0.
- Si $\Delta > 0$, alors pour tout réel x, f(x) s'annule en x_1 et x_2 et est du signe de a pour tout $x \in]-\infty; x_1[\cup]x_2; +\infty[$ (avec $x_1 < x_2$) et du signe opposé à celui de a pour tout $x \in]x_1; x_2[$.

Remarque: On peut retenir que f(x) est du signe de a sauf entre les racines lorsqu'elles existent.