Package 'mdpeer'

October 13, 2022

Title Graph-Constrained Regression with Enhanced Regularization Parameters Selection

Version 1.0.1

Author Marta Karas [aut, cre], Damian Brzyski [ctb], Jaroslaw Harezlak [ctb]

Maintainer Marta Karas <marta.karass@gmail.com>

Description Provides graph-constrained regression methods in which regularization parameters are selected automatically via estimation of equivalent Linear Mixed Model formulation. 'riPEER' (ridgified Partially Empirical Eigenvectors for Regression) method employs a penalty term being a linear combination of graph-originated and ridge-originated penalty terms, whose two regularization parameters are ML estimators from corresponding Linear Mixed Model solution; a graph-originated penalty term allows imposing similarity between coefficients based on graph information given whereas additional ridge-originated penalty term facilitates parameters estimation: it reduces computational issues arising from singularity in a graph-originated penalty matrix and yields plausible results in situations when graph information is not informative. 'riPEERc' (ridgified Partially Empirical Eigenvectors for Regression with constant) method utilizes addition of a diagonal matrix multiplied by a predefined (small) scalar to handle the non-invertibility of a graph Laplacian matrix. 'vrPEER' (variable reducted PEER) method performs variable-reduction procedure to handle the non-invertibility of a graph Laplacian matrix.

Depends R (>= 3.3.3)

Imports reshape2, ggplot2, nlme, boot, nloptr, rootSolve, psych, magic, glmnet

License GPL-2

Encoding UTF-8

LazyData true

RoxygenNote 6.0.1

Suggests knitr, rmarkdown

VignetteBuilder knitr

2 Adj2Lap

NeedsCompilation no

Repository CRAN

Date/Publication 2017-05-30 04:44:40 UTC

R topics documented:

	Adj2Lap	
	.2L.normalized	3
	ndpeer	4
	iPEER	4
	iPEERc	7
	izu.mat	0
	izu.mat.factor	
	rPEER	4
Index	1	.7

Adj2Lap

Compute graph Laplacian matrix from graph adjacency matrix

Description

Compute graph Laplacian matrix from graph adjacency matrix

Usage

```
Adj2Lap(adj)
```

Arguments

adj

graph adjacency matrix (squared symmetric matrix)

Value

graph Laplacian matrix

Examples

```
# Define exemplary adjacency matrix
p1 <- 10
p2 <- 40
p <- p1 + p2
A <- matrix(rep(0, p * p), p, p)
A[1:p1, 1:p1] <- 1
A[(p1 + 1):p, (p1 + 1):p] <- 1
vizu.mat(A, "adjacency matrix")</pre>
```

Compute corresponding Laplacian matrix

L2L.normalized 3

```
L <- Adj2Lap(A)
vizu.mat(L, "Laplacian matrix")
```

L2L.normalized

Compute normalized version of graph Laplacian matrix

Description

Compute normalized version of graph Laplacian matrix

Usage

```
L2L.normalized(L)
```

Arguments

L

graph Laplcian matrix

Value

normalized graph Laplacian matrix

```
# Define exemplary adjacency matrix
p1 <- 10
p2 <- 40
p <- p1 + p2
A <- matrix(rep(0, p * p), p, p)
A[1:p1, 1:p1] <- 1
A[(p1 + 1):p, (p1 + 1):p] <- 1
vizu.mat(A, "adjacency matrix")

# Compute corresponding Laplacian matrix
L <- Adj2Lap(A)
vizu.mat(L, "Laplacian matrix")

# Compute corresponding Laplacian matrix - normalized
L.norm <- L2L.normalized(L)
vizu.mat(L.norm, "L Laplacian matrix (normalized)")</pre>
```

4 riPEER

mdpeer

mdpeer: Methods for graph-constrained regression with enhanced regularization parameters selection

Description

Provides graph-constrained regression methods in which regularization parameters are selected automatically via estimation of equivalent Linear Mixed Model formulation. 'riPEER' (ridgified Partially Empirical Eigenvectors for Regression) method employs a penalty term being a linear combination of graph-originated and ridge-originated penalty terms, whose two regularization parameters are ML estimators from corresponding Linear Mixed Model solution; a graph-originated penalty term allows imposing similarity between coefficients based on graph information given whereas additional ridge-originated penalty term facilitates parameters estimation: it reduces computational issues arising from singularity in a graph-originated penalty matrix and yields plausible results in situations when graph information is not informative. 'riPEERc' (ridgified Partially Empirical Eigenvectors for Regression with constant) method utilizes addition of a diagonal matrix multiplied by a predefined (small) scalar to handle the non-invertibility of a graph Laplacian matrix. 'vrPEER' (variable reducted PEER) method performs variable-reduction procedure to handle the non-invertibility of a graph Laplacian matrix.

riPEER

Graph-constrained regression with penalty term being a linear combination of graph-based and ridge penalty terms

Description

Graph-constrained regression with penalty term being a linear combination of graph-based and ridge penalty terms.

See *Details* for model description and optimization problem formulation.

Usage

```
riPEER(Q, y, Z, X = NULL, optim.metod = "rootSolve",
  rootSolve.x0 = c(1e-05, 1e-05), rootSolve.Q0.x0 = 1e-05, sbplx.x0 = c(1,
  1), sbplx.lambda.lo = c(10^(-5), 10^(-5)), sbplx.lambda.up = c(1e+06,
  1e+06), compute.boot.CI = FALSE, boot.R = 1000, boot.conf = 0.95,
  boot.set.seed = TRUE, boot.parallel = "multicore", boot.ncpus = 4,
  verbose = TRUE)
```

Arguments

Q graph-originated penalty matrix $(p \times p)$; typically: a graph Laplacian matrix y response values matrix $(n \times 1)$ Z design matrix $(n \times p)$ modeled as random effects variables (to be penalized in regression modeling); assumed to be already standarized

riPEER 5

X	design matrix $(n \times k)$ modeled as fixed effects variables (not to be penalized in regression modeling); if does not contain columns of 1s, such column will be added to be treated as intercept in a model
optim.metod	optimization method used to optimize $\lambda = (\lambda_Q, \lambda_R)$
	 "rootSolve" (default) - optimizes by finding roots of non-linear equations by the Newton-Raphson method; from rootSolve package "sbplx" - optimizes with the use of Subplex Algorithm: 'Subplex is a variant of Nelder-Mead that uses Nelder-Mead on a sequence of subspaces'; from nloptr package
rootSolve.x0	vector containing initial guesses for $\lambda=(\lambda_Q,\lambda_R)$ used in "rootSolve" algorithm
rootSolve.Q0.x0	
	vector containing initial guess for λ_R used in "rootSolve" algorithm
sbplx.x0	vector containing initial guesses for $\lambda=(\lambda_Q,\lambda_R)$ used in "sbplx" algorithm
sbplx.lambda.lo	
	vector containing minimum values of $\lambda=(\lambda_Q,\lambda_R)$ grid search in "sbplx" algorithm
sbplx.lambda.up	
	vector containing mximum values of $\lambda=(\lambda_Q,\lambda_R)$ grid search in "sbplx" algorithm
compute.boot.CI	
	logical whether or not compute bootstrap confidence intervals for \boldsymbol{b} regression coefficient estimates
boot.R	number of bootstrap replications used in bootstrap confidence intervals computation
boot.conf	confidence level assumed in bootstrap confidence intervals computation
boot.set.seed	logical whether or not set seed in bootstrap confidence intervals computation
boot.parallel	value of parallel argument in boot function in bootstrap confidence intervals computation
boot.ncpus	value of ncpus argument in boot function in bootstrap confidence intervals computation
verbose	logical whether or not set verbose mode (print out function execution messages)

Details

Estimates coefficients of linear model of the formula:

$$y = X\beta + Zb + \varepsilon$$

where:

- y response,
- X data matrix,
- Z data matrix,
- β regression coefficients, *not penalized* in estimation process,

6 riPEER

• b - regression coefficients, *penalized* in estimation process and for whom there is, possibly a prior graph of similarity / graph of connections available.

The method uses a penalty being a linear combination of a graph-based and ridge penalty terms:

$$\beta_{est}, b_{est} = arg \min_{\beta, b} \{ (y - X\beta - Zb)^T (y - X\beta - Zb) + \lambda_Q b^T Qb + \lambda_R b^T b \}$$

where:

- Q a graph-originated penalty matrix; typically: a graph Laplacian matrix,
- λ_Q regularization parameter for a graph-based penalty term
- λ_R regularization parameter for ridge penalty term

The two regularization parameters, λ_Q and λ_R , are estimated as ML estimators from equivalent Linear Mixed Model optimization problem formulation (see: References).

- Graph-originated penalty term allows imposing similarity between coefficients based on graph information given.
- Ridge-originated penalty term facilitates parameters estimation: it reduces computational issues arising from singularity in a graph-originated penalty matrix and yields plausible results in situations when graph information is not informative.

Bootstrap confidence intervals computation is available (not set as a default option).

Value

b.est	vector of b coefficient estimates
beta.est	vector of β coefficient estimates
lambda.Q	λ_Q regularization parameter value
lambda.R	λ_R regularization parameter value
lambda.2	lambda.R/lambda.Q value
boot.CI	data frame with two columns, lower and upper, containing, respectively, values of lower and upper bootstrap confidence intervals for b regression coefficient estimates
obj.fn.val	optimization problem objective function value

References

Karas, M., Brzyski, D., Dzemidzic, M., J., Kareken, D.A., Randolph, T.W., Harezlak, J. (2017). Brain connectivity-informed regularization methods for regression. doi: https://doi.org/10.1101/117945

```
set.seed(1234)
n <- 200
p1 <- 10
p2 <- 90
p <- p1 + p2
# Define graph adjacency matrix</pre>
```

riPEERc 7

```
A <- matrix(rep(0, p*p), nrow = p, ncol = p)
A[1:p1, 1:p1] \leftarrow 1
A[(p1+1):p, (p1+1):p] <- 1
L <- Adj2Lap(A)
# Define Q penalty matrix as graph Laplacian matrix normalized)
Q <- L2L.normalized(L)
# Define Z,X design matrices and aoutcome y
Z <- matrix(rnorm(n*p), nrow = n, ncol = p)</pre>
b.true <- c(rep(1, p1), rep(0, p2))
X <- matrix(rnorm(n*3), nrow = n, ncol = 3)</pre>
beta.true <- runif(3)</pre>
intercept <- 0
eta <- intercept + Z %*% b.true + X %*% beta.true
R2 <- 0.5
sd.eps <- sqrt(var(eta) * (1 - R2) / R2)</pre>
error <- rnorm(n, sd = sd.eps)
y <- eta + error
## Not run:
riPEER.out <- riPEER(Q, y, Z, X)
plt.df <- data.frame(x = 1:p, y = riPEER.out$b.est)</pre>
ggplot(plt.df, aes(x = x, y = y, group = 1)) + geom_line() + labs("b estimates")
## End(Not run)
## Not run:
# riPEER with 0.95 bootstrap confidence intervals computation
riPEER.out <- riPEER(Q, y, Z, X, compute.boot.CI = TRUE, boot.R = 500)
plt.df \leftarrow data.frame(x = 1:p,
                      y = riPEER.out$b.est,
                      lo = riPEER.out$boot.CI[,1],
                      up = riPEER.out$boot.CI[,2])
ggplot(plt.df, aes(x = x, y = y, group = 1)) + geom_line() +
  geom_ribbon(aes(ymin=lo, ymax=up), alpha = 0.3)
## End(Not run)
```

riPEERc

Graph-constrained regression with addition of a small ridge term to handle the non-invertibility of a graph Laplacian matrix

Description

Graph-constrained regression with addition of a diagonal matrix multiplied by a predefined (small) scalar to handle the non-invertibility of a graph Laplacian matrix (see: References).

Bootstrap confidence intervals computation is available (not set as a default option).

8 riPEERc

Usage

```
riPEERc(Q, y, Z, X = NULL, lambda.2 = 0.001, compute.boot.CI = FALSE,
boot.R = 1000, boot.conf = 0.95, boot.set.seed = TRUE,
boot.parallel = "multicore", boot.ncpus = 4, verbose = TRUE)
```

Arguments

	Q	graph-originated penalty matrix $(p \times p)$; typically: a graph Laplacian matrix
	У	response values matrix $(n \times 1)$
	Z	design matrix $(n \times p)$ modeled as random effects variables (to be penalized in regression modeling); assumed to be already standarized
	X	design matrix $(n \times k)$ modeled as fixed effects variables (not to be penalized in regression modeling); should contain colum of 1s if intercept is to be considered in a model
	lambda.2	(small) scalar value of regularization parameter for diagonal matrix by adding which the Q matrix is corrected (note: correction is done $before \ \lambda_Q$ regularization parameter value estimation; in other words: λ_Q estimation is done for the corrected Q matrix)
compute.boot.CI		
		logical whether or not compute bootstrap confidence intervals for \boldsymbol{b} regression coefficient estimates
	boot.R	number of bootstrap replications used in bootstrap confidence intervals computation
	boot.conf	confidence level assumed in bootstrap confidence intervals computation
	boot.set.seed	logical whether or not set seed in bootstrap confidence intervals computation
	boot.parallel	value of parallel argument in boot function in bootstrap confidence intervals computation $% \left(1\right) =\left(1\right) \left(1\right$
	boot.ncpus	value of ncpus argument in boot function in bootstrap confidence intervals computation $% \left(1\right) =\left(1\right) \left(1\right) \left$
	verbose	logical whether or not set verbose mode (print out function execution messages)

Value

b.est	vector of b coefficient estimates
beta.est	vector of β coefficient estimates
lambda.Q	λ_Q regularization parameter value
lambda.R	lambda.Q*lambda.2 value
lambda.2	lambda. 2 supplied argument value
boot.CI	data frame with two columns, lower and upper, containing, respectively, values of lower and upper bootstrap confidence intervals for b regression coefficient estimates

riPEERc 9

References

Karas, M., Brzyski, D., Dzemidzic, M., J., Kareken, D.A., Randolph, T.W., Harezlak, J. (2017). Brain connectivity-informed regularization methods for regression. doi: https://doi.org/10.1101/117945

```
set.seed(1234)
n <- 200
p1 <- 10
p2 <- 90
p < - p1 + p2
# Define graph adjacency matrix
A \leftarrow matrix(rep(0, p*p), nrow = p, ncol = p)
A[1:p1, 1:p1] <- 1
A[(p1+1):p, (p1+1):p] <- 1
L <- Adj2Lap(A)
# Define Q penalty matrix as graph Laplacian matrix normalized)
Q <- L2L.normalized(L)
# Define Z,X design matrices and aoutcome y
Z <- matrix(rnorm(n*p), nrow = n, ncol = p)</pre>
b.true <- c(rep(1, p1), rep(0, p2))
X \leftarrow matrix(rnorm(n*3), nrow = n, ncol = 3)
beta.true <- runif(3)</pre>
intercept <- 0
eta <- intercept + Z %*% b.true + X %*% beta.true
R2 <- 0.5
sd.eps <- sqrt(var(eta) * (1 - R2) / R2)</pre>
error <- rnorm(n, sd = sd.eps)
y <- eta + error
## Not run:
riPEERc.out <- riPEERc(Q, y, Z, X)</pre>
plt.df <- data.frame(x = 1:p, y = riPEERc.out$b.est)</pre>
ggplot(plt.df, aes(x = x, y = y, group = 1)) + geom_line() + labs("b estimates")
## End(Not run)
## Not run:
# riPEERc with 0.95 bootstrap confidence intervals computation
riPEERc.out <- riPEERc(Q, y, Z, X, compute.boot.CI = TRUE, boot.R = 500)
plt.df <- data.frame(x = 1:p, y = riPEERc.out$b.est,</pre>
                      lo = riPEERc.out$boot.CI[,1],
                      up = riPEERc.out$boot.CI[,2])
ggplot(plt.df, aes(x = x, y = y, group = 1)) + geom_line() +
  geom_ribbon(aes(ymin=lo, ymax=up), alpha = 0.3)
## End(Not run)
```

10 vizu.mat

vizu.mat Visualize matrix data in a form of a heatmap, with continuous values legend

Description

Matrix data visualization in a form of a heatmap, with the use of ggplot2 library. Minimum user input (a matrix object) is needed to produce decent visualization output. Automatic plot adjustments are implemented and used as defaults, including selecting legend color palette and legend scale limits. Further plot adjustments are available, including adding a title, font size change, axis label clearing and others.

Usage

```
vizu.mat(matrix.object, title = "", base_size = 12, adjust.limits = TRUE,
  adjust.colors = TRUE, fill.scale.limits = NULL, colors.palette = NULL,
  geom_tile.colour = "grey90", clear.labels = TRUE, clear.x.label = FALSE,
 clear.y.label = FALSE, uniform.labes = FALSE, rotate.x.labels = FALSE,
  x.lab = "", y.lab = "", axis.text.x.size = base_size - 2,
 axis.text.y.size = base_size - 2, axis.title.x.size = base_size - 2,
  axis.title.y.size = base_size - 2, legend.text.size = base_size - 2,
  legend.title.size = base_size - 2, legend.title = "value",
  text.font.family = "Helvetica", remove.legend = FALSE,
  axis.text.x.breaks.idx = NULL, axis.text.y.breaks.idx = NULL)
```

Arguments

matrix.object matrix title plot title base size base font size adjust.limits

logical whether or not adjust legend scale limits automatically:

- legend scale starts / ends with 0 for matrix with non-negative / non-positive values only,
- legend scale is symmetric for matrix with both negative and positive values

adjust.colors

logical whether or not adjust legend color automatically:

- · legend color palette white-red for a data matrix with non-negative values
- legend color palette blue-white for a data matrix with non-positive values
- · legend color palette blue-white-red for a data matrix with both positive and negative values

fill.scale.limits

2-element vector defining legend scale limits

colors.palette legend color color palette

vizu.mat 11

geom_tile.colour

tiles color value

clear.labels logical whether or not clear both x- and y-axis labels

clear.x.label logical whether or not clear x-axis labels

clear.y.label logical whether or not clear y-axis labels

uniform.labes logical whether or not define generic short column and rows labeling:

- 'c1','c2',...,'cp' for columns,
- 'r1','r2',...,'rp' for rows; might be especially useful if the matrix some long colnames and rownames already assigned

rotate.x.labels

logical whether or not rotate x-axis labels by 90 degrees

x.lab x-axis label

y.lab y-axis label

axis.text.x.size

font size of x-axis text

axis.text.y.size

font size of y-axis text

axis.title.x.size

font size of x-axis label

axis.title.y.size

font size of y-axis label

legend.text.size

font size of legend text

legend.title.size

font size of legend title

legend.title legend title

text.font.family

font family

remove.legend logical whether or not remove legend

axis.text.x.breaks.idx

indices of x-axis elements whose thicks are kept and whose numerical labels are kept

axis.text.y.breaks.idx

indices of y-axis elements whose thicks are kept and whose numerical labels are kept

Value

ggplot2 object

12 vizu.mat.factor

Examples

```
mat <- matrix(rnorm(30*30), nrow = 30, ncol = 30)
vizu.mat(mat)
vizu.mat(mat, fill.scale.limits = c(-3,3))
vizu.mat(mat, fill.scale.limits = c(-10.10))
vizu.mat(mat, fill.scale.limits = c(-10,10),
         uniform.labes = TRUE, clear.labels = FALSE)
colnames(mat) <- paste0("col", 1:30, sample(LETTERS, 30, replace = TRUE))</pre>
rownames(mat) <- paste0("row", 1:30, sample(LETTERS, 30, replace = TRUE))</pre>
vizu.mat(mat, fill.scale.limits = c(-10,10),
         clear.labels = FALSE,
         rotate.x.labels = TRUE)
mat.positive <- abs(mat)</pre>
vizu.mat(mat.positive,
       title = "positive values only -> legend limits and colors automatically adjusted",
         clear.labels = FALSE,
         rotate.x.labels = TRUE)
```

vizu.mat.factor

Visualize matrix data in a form of a heatmap, with categorical values legend

Description

Matrix data visualization in a form of a heatmap, with the use of ggplot2 library. Numerical values are represented as categorical. Minimum user input (a matrix object) is needed to produce decent visualization output. Further plot adjustments are available, including tile color change, adding a title, font size change, axis label clearing and others.

Usage

```
vizu.mat.factor(matrix.object, title = "", base_size = 12,
    scale_fill_manual.values = NULL, geom_tile.colour = "grey90",
    clear.labels = TRUE, clear.x.label = FALSE, clear.y.label = FALSE,
    uniform.labes = FALSE, rotate.x.labels = FALSE, x.lab = "",
    y.lab = "", axis.text.x.size = base_size - 2,
    axis.text.y.size = base_size - 2, axis.title.x.size = base_size - 2,
    axis.title.y.size = base_size - 2, legend.text.size = base_size - 2,
    legend.title.size = base_size - 2, legend.title = "value",
    text.font.family = "Helvetica", remove.legend = FALSE,
    factor.levels = NULL, axis.text.x.breaks.idx = NULL,
    axis.text.y.breaks.idx = NULL)
```

Arguments

```
matrix.object matrix title plot title
```

vizu.mat.factor

base font size base_size scale_fill_manual.values vector of legend colors for categorical values geom_tile.colour tiles color value clear.labels logical whether or not clear both x- and y-axis labels clear.x.label logical whether or not clear x-axis labels clear.y.label logical whether or not clear y-axis labels uniform.labes logical whether or not define generic short column and rows labeling: • 'c1','c2',...,'cp' for columns, • 'r1','r2',...,'rp' for rows; might be especially useful if the matrix some long colnames and rownames already assigned rotate.x.labels logical whether or not rotate x-axis labels by 90 degrees x.lab x-axis label y-axis label y.lab axis.text.x.size font size of x-axis text axis.text.y.size font size of y-axis text axis.title.x.size font size of x-axis label axis.title.y.size font size of y-axis label legend.text.size font size of legend text legend.title.size font size of legend title legend.title legend title text.font.family font family remove.legend logical whether or not remove legend factor.levels vector of values defining levels of factors (might be used to redefine order of variables in the legend) axis.text.x.breaks.idx indices of x-axis elements whose thicks are kept and whose numerical labels are kept axis.text.y.breaks.idx indices of y-axis elements whose thicks are kept and whose numerical labels are kept

Value

ggplot2 object

14 vrPEER

Examples

```
mat <- diag(30)
vizu.mat.factor(mat)
vizu.mat.factor(mat,
                title = "some title",
                scale_fill_manual.values = c("white", "red"),
                axis.text.x.breaks.idx = seq(1,30,5),
                axis.text.y.breaks.idx = seq(1,30,5))
vizu.mat.factor(mat,
                title = "some title: large font, legend: small font",
                base_size = 20,
                legend.text.size = 10,
                legend.title.size = 10)
vizu.mat.factor(mat,
                scale_fill_manual.values = c("white","red"),
                clear.labels = FALSE)
colnames(mat) <- paste0("col", 1:30, sample(LETTERS, 30, replace = TRUE))</pre>
rownames(mat) <- paste0("row", 1:30, sample(LETTERS, 30, replace = TRUE))</pre>
vizu.mat.factor(mat,
                clear.labels = FALSE,
                rotate.x.labels = TRUE)
```

vrPEER

Graph-constrained regression with variable-reduction procedure to handle the non-invertibility of a graph-originated penalty matrix

Description

Graph-constrained regression with variable-reduction procedure to handle the non-invertibility of a graph-originated penalty matrix (see: References).

Bootstrap confidence intervals computation is available (not set as a default option).

Usage

```
vrPEER(Q, y, Z, X = NULL, sv.thr = 1e-05, compute.boot.CI = FALSE,
boot.R = 1000, boot.conf = 0.95, boot.set.seed = TRUE,
boot.parallel = "multicore", boot.ncpus = 4, verbose = TRUE)
```

Arguments

	ered in a model
X	design matrix $(n \times k)$ modeled as fixed effects variables (not to be penalized in regression modeling); should contain colum of 1s if intercept is to be consid-
	regression modeling); assumed to be already standarized
Z	design matrix $(n \times p)$ modeled as random effects variables (to be penalized in
У	response values matrix $(n \times 1)$
Q	graph-originated penalty matrix $(p \times p)$; typically: a graph Laplacian matrix

vrPEER 15

sv.thr	threshold value above which singular values of Q are considered "zeros"
compute.boot.C	I
	logical whether or not compute bootstrap confidence intervals for \boldsymbol{b} regression coefficient estimates
boot.R	number of bootstrap replications used in bootstrap confidence intervals computation
boot.conf	confidence level assumed in bootstrap confidence intervals computation
boot.set.seed	logical whether or not set seed in bootstrap confidence intervals computation
boot.parallel	value of parallel argument in boot function in bootstrap confidence intervals computation
boot.ncpus	value of ncpus argument in boot function in bootstrap confidence intervals computation
verbose	logical whether or not set verbose mode (print out function execution messages)

Value

b.est vector of b coefficient estimates vector of b coefficient estimates vector of b coefficient estimates b ambda. Q b regularization parameter value data frame with two columns, lower and upper, containing, respectively, values of lower and upper bootstrap confidence intervals for b regression coefficient estimates

References

Karas, M., Brzyski, D., Dzemidzic, M., J., Kareken, D.A., Randolph, T.W., Harezlak, J. (2017). Brain connectivity-informed regularization methods for regression. doi: https://doi.org/10.1101/117945

```
set.seed(1234)
n <- 200
p1 <- 10
p2 <- 90
p < - p1 + p2
# Define graph adjacency matrix
A <- matrix(rep(0, p*p), nrow = p, ncol = p)
A[1:p1, 1:p1] <- 1
A[(p1+1):p, (p1+1):p] <- 1
L <- Adj2Lap(A)
# Define Q penalty matrix as graph Laplacian matrix normalized)
Q <- L2L.normalized(L)
# Define Z,X design matrices and aoutcome y
Z <- matrix(rnorm(n*p), nrow = n, ncol = p)</pre>
b.true <- c(rep(1, p1), rep(0, p2))
X <- matrix(rnorm(n*3), nrow = n, ncol = 3)</pre>
beta.true <- runif(3)</pre>
intercept <- 0
```

16 vrPEER

```
eta <- intercept + Z %*% b.true + X %*% beta.true
R2 <- 0.5
sd.eps <- sqrt(var(eta) * (1 - R2) / R2)</pre>
error <- rnorm(n, sd = sd.eps)</pre>
y <- eta + error
## Not run:
# run vrPEER
vrPEER.out <- vrPEER(Q, y, Z, X)</pre>
plt.df <- data.frame(x = 1:p,</pre>
                      y = vrPEER.out$b.est)
ggplot(plt.df, aes(x = x, y = y, group = 1)) + geom_line()
## End(Not run)
## Not run:
# run vrPEER with 0.95 confidence intrvals
vrPEER.out <- vrPEER(Q, y, Z, X, compute.boot.CI = TRUE, boot.R = 500)</pre>
plt.df \leftarrow data.frame(x = 1:p,
                      y = vrPEER.out$b.est,
                      lo = vrPEER.out$boot.CI[,1],
                      up = vrPEER.out$boot.CI[,2])
ggplot(plt.df, aes(x = x, y = y, group = 1)) + geom_line() +
  geom_ribbon(aes(ymin=lo, ymax=up), alpha = 0.3)
## End(Not run)
```

Index

```
Adj2Lap, 2
L2L.normalized, 3
mdpeer, 4
mdpeer-package (mdpeer), 4
riPEER, 4
riPEERc, 7
vizu.mat, 10
vizu.mat.factor, 12
vrPEER, 14
```