Course e-mail CS4375 – AI Techniques.
ai-ewi@lists.tudelft.nl

Exercise sheet Linear Inverse Reinforcement Learning
Lecturer Luciano Cavalcante Siebert, II/INSY/EEMCS

Exercise sheet: Linear inverse reinforcement Learning

This practical exercise is <u>not</u> a deliverable for the course. The goal is to compement the lecture. If you have any questions, please contact the TAs or the lecturer (<u>l.cavalcantesiebert@tudelft.nl</u>).

In this practical exercise, we will get more acquainted with inverse reinforcement learning by running some simple experiments.

First, download the content from Brightspace or from this Github repository: https://github.com/lcsiebert/IRL assignment 1

- 1. *main.py*, contains the main loop. You can use it to define the parameters and run your experiments.
- 2. *gridworld.py*, is the environment we will be using.
- 3. *linear_irl.py*, constains the linear inverse reinforcement learning algorithm as described in Ng and Russel (2000)¹

Set up

You will need to get a working python3 (either directly or via Conda) installation and install a few packages (probably you have most of them installed), namely:

CVXOPT, a free package for convex optimization

pip install cvxopt

Numpy

pip install numpy

matplotlib

pip install matplotlib

Description of the environment

We will experiment with an environment called "biking in the Netherlands" (*gridworld.py*). You want to bike a given route to reach home (the upper-right grid square), departing from your initial position (lower-left grid square). You can choose to go up, down, right, or left. However, due to strong wind, your actions have a 30% chance of moving in a random direction.

Instructions

First, analyze the three files (main.py, gridworld.py, and linear_irl.py) and run the experiment. After that:

1) Define a new optimal policy by replacing the content of the function "optimal policy deterministic" in the *gridworld* file. Be creative; you can either

¹ A. Y. Ng and S. J. Russell. 2000. Algorithms for inverse reinforcement learning. In: Proceedings of the 17th International Conference on Machine Learning (ICML '00), Stanford University, Stanford, CA, USA. https://ai.stanford.edu/~ang/papers/icml00-irl.pdf

- create a function² or define the policy manually. However, the termination state should remain in the upper-right grid square.
- 2) Test different combinations of the discount factor (γ , variable: *discount*) and the penalty factor (λ , variable: *I1*), and analyze the impact on estimating the reward.

Answer and reflect on the following questions:

- **E1**: What is your new optimal policy? Please describe the reasoning behind it.
- **E2**: What was your strategy for exploring the discount and penalty factors?
- **E3**: Describe and discuss how different combinations of the discount and penalty factors impacted the estimated rewards.

² For example,	the current function	n implements th	ne following:
IF x < y:			

Go right

ELSE:

Go left.