Badanie Transformatora

Student Seweryn Wasilewski

Nr Albumu 160128 Kierunek Inforamtyka

Wydział Wydział Informatyki i Teleinforamtyki

Ćwiczenie 202

Wstęp teoretyczny

Prąd przemienny

Prąd przemienny to przypadek prądu elektrycznego okresowo zmiennego, w którym wartości chwilowe podlegają zmianom w powtarzalny, określony sposób, z określoną częstotliwością.

Zależność napięcia przemiennego można zapisać jako:

$$u = U_0 \cos(\omega t) \tag{1}$$

gdzie u jest chwilową wartością napięcia, t jest czasem, U_0 - napięciem szczytowym, a ω - częstotliwością kołową. Argument funkcji kosinus nazywany jest fazą, ϕ . W obwodzie zamkniętym popłynie prąd o tym samym charakterze zmienności, ale jego faza początkowa może różnić się o kąt przesunięcia fazowego ϕ :

$$i = I_0 \cos(\omega t + \phi) \tag{2}$$

gdzie i jest chwilową wartością natężenia prądu, l_0 - szczytowym natężeniem prądu, a ϕ - różnicą faz między napięciem a prądem.

Moc wydzielana w obwodzie prądu przemiennego wyraża się wzorem:

$$P = \frac{1}{2}U_0I_0\cos\phi\tag{3}$$

Transformator

Transformator to urządzenie służące do zmiany napięcia i natężenia prądu przemiennego na inne napięcie i natężenie bez zmiany częstotliwości prądu. Rozróżniamy trzy tryby pracy transformatora: stan jałowy, stan zwarcia, stan obciążenia.

Transformator składa się z ferromagnetycznego rdzenia oraz dwóch uzwojeń: pierwotnego i wtórnego.

Stan Jałowy Przekładnia transformatora wyrażona jest wzorem:

$$\frac{U_1}{U_2} = \frac{n_1}{n_2} = K \tag{4}$$

gdzie K jest przekładnią transformatora, a n_1 oraz n_2 to liczby zwojów uzwojeń pierwotnego i wtórnego, a U_1 oraz U_2 odnoszą się do napięcia skutecznego na uzwojeniu pierwotnym i wtórnym.

Stan Zwarcia W stanie zwarcia transformatora obowiązuje równowagę:

$$U_1 I_1 = U_2 I_2 \tag{5}$$

Stan Obciążenia Sprawność transformatora definiowana jest jako stosunek mocy oddanej P_2 do mocy pobranej ze źródła P_1 :

$$\eta = \frac{P_2}{P_1} \cdot 100\% = \frac{U_2 I_2}{U_1 I_1} \cdot 100\% \tag{6}$$

Pomiary

Badania transformatora w stanie jałowym

Tabela 1: $n_1 = 400$, $n_2 = 600$

$1 \text{ abcia 1. } H_1 = 400, H_2 = 000$			
nastawione napięcie [V]	$U_1[V]$	$U_2[V]$	
1	1,079	1,487	
2	2,163	3,006	
3	3,249	4,52	
4	4,32	6,06	
5	5,41	7,67	
6	6,49	9,17	
7	7,58	10,73	
8	8,67	12,31	
9	9,77	13,91	
10	10,35	15,48	

Tabela 2: $n_1 = 400$, $n_2 = 200$

1 4 5 6 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,	, 0
nastawione napięcie [V]	$U_1[V]$	$U_2[V]$
1	1,077	0,498
2	2,161	1,003
3	3,245	1,514
4	4,32	2,027
5	5,41	2,543
6	6,49	3,061
7	7,58	3,583
8	8,65	4,08
9	9,73	4,6
10	10,32	5,12

Tabela 3: $n_1 = 400$, $n_2 = 400$

rabela o. ni	,	
nastawione napięcie [V]	$U_1[V]$	$U_2[V]$
1	1,076	0,982
2	2,159	1,996
3	3,245	3,016
4	4,32	4,03
5	5,41	5,06
6	6,48	6,1
7	7,58	7,13
8	8,65	8,17
9	9,74	9,22
10	10,32	10,26

Badania transformatora w stanie zwarcia

Tabela 4: $n_1 = 400$, $n_2 = 600$

$1 \text{ abcia 4. } H_1 = 400, H_2 = 000$			
nastawone napięcie [V]	$I_1[A]$	$I_2[A]$	
1	0,045	0,04	
2	0,091	0,083	
3	0,137	0,126	
4	0,184	0,169	
5	0,227	0,211	
6	0,275	0,255	
7	0,321	0,3	
8	0,367	0,341	
9	0,413	0,386	
10	0,459	0,43	

Tabela 5: $n_1 = 400$, $n_2 = 200$

, `	
$I_1[A]$	$I_2[A]$
0,041	0,075
0,083	0,154
0,126	0,232
0,168	0,311
0,21	0,387
0,25	0,462
0,293	0,54
0,334	0,628
0,381	0,71
0,425	0,791
	I ₁ [A] 0,041 0,083 0,126 0,168 0,21 0,25 0,293 0,334 0,381

Tabela 6: $n_1 = 400$, $n_2 = 400$

$1 \text{ abela 0. } 11_1 - 400, 11_2 - 400$			
nastawone napięcie [V]	$I_1[A]$	$I_2[A]$	
1	0,046	0,027	
2	0,093	0,057	
3	0,142	0,087	
4	0,189	0,115	
5	0,236	0,145	
6	0,283	0,175	
7	0,33	0,204	
8	0,377	0,234	
9	0,423	0,236	
10	0,468	0,292	

Badania transformatora w stanie obciążonym

Tabela 7: Napięcie zasilania $U_z = 4[V]$, $n_1 = 400$, $n_2 = 200$

$R[\Omega]$	$I_1[A]$	$U_1[V]$	$I_2[A]$	$U_2[V]$
0	0,159	4,250	0,279	0,390
1	0,153	4,250	0,281	0,475
2	0,142	4,250	0,258	0,770
3	0,121	4,250	0,226	1,027
4	0,113	4,250	0,196	1,150
5	0,108	4,250	0,195	1,209
6	0,099	4,250	0,177	1,323
8	0,086	4,250	0,151	1,463
10	0,075	4,250	0,131	1,560
14	0,064	4,250	0,106	1,668
18	0,054	4,270	0,088	1,743
22	0,048	4,290	0,074	1,795
26	0,044	4,290	0,064	1,830
30	0,040	4,290	0,056	1,859
34	0,038	4,290	0,050	1,880
∞	0,022	4,310	0,000	2,023

Wykresy

Stan Jałowy

Rysunek 1: Funkcja $U_2 = f(U_1)$ dla różnych wartości uzwojenia wtórnego transformatora n_2 w stanie Jałowym kiedy $n_1 = 400$

Stan Zwarcia

Rysunek 2: Funkcja $I_2 = f(I_1)$ dla różnych wartości uzwojenia wtórnego transformatora n_2 w stanie Zwarcia kiedy $n_1 = 400$

Stan Obciążeniowy

Rysunek 3: Funkcja $U_2 = f(I_2)$ dla uzwojenia pierwotnego $n_1 = 400$, uzwojenia wtórnego $n_2 = 200$ transformatora i napięcia zasilającego $U_z = 4[V]$

Rysunek 4: Funkcja $\eta = f(I_2)$, sprawności transformatora dla poszczególnych pomiarów w stanie obciążeniowym, dla uzwojenia pierwotnego $n_1 = 400$, uzwojenia wtórnego $n_2 = 200$ transformatora i napięcia zasilającego $U_z = 4[V]$

Objaśnienie Symboli

• Teoretyczna wartość przekładni transformatora

$$K_t = \frac{n_1}{n_2}$$

• Reczywista wartość przekładni transformatora dla danego ustawienia uzwojeń i ($i = \{1, 2, 3\}$)

$$K_{ri} = \frac{U_1}{U_2}$$

- K_{r1} -wyliczona wartość rzeczywista przekładni transformatora zasilanego napięciem U_z dla uzwojeń $n_1 = 400$, $n_2 = 600$ dla danego pomiaru z tabeli (1)
- K_{r2} -wyliczona wartość rzeczywista przekładni transformatora zasilanego napięciem U_z dla uzwojeń $n_1 = 400$, $n_2 = 200$ dla danego pomiaru z tabeli (2)
- K_{r3} -wyliczona wartość rzeczywista przekładni transformatora zasilanego napięciem U_z dla uzwojeń $n_1 = 400$, $n_2 = 400$ dla danego pomiaru z tabeli (3)

Obliczenia

$U_z[V]$	K_{r1}	K_{r2}	K_{r3}
1	0,7256	2,1627	1,0957
2	0,7196	2,1545	1,0817
3	0,7188	2,1433	1,0759
4	0,7129	2,1312	1,0720
5	0,7053	2,1274	1,0692
6	0,7077	2,1202	1,0623
7	0,7064	2,1155	1,0631
8	0,7043	2,1201	1,0588
9	0,7024	2,1152	1,0564
10	0,6686	2,0156	1,0058

Tabela 8: Obliczenia wartości rzeczywistych przekładni K_r transformatora zasilanego napieciem U_z dla danego ustawień uzwojeń transofmratora

	K_{r1}	K_{r2}	K _{r3}
śr. aryt.	0,7072	2,1206	1,0641
odch. stand. ΔK_r	0,0156	0,0404	0,0236

Tabela 9: Obliczenia statystyczne dla obliczeń z tabeli (8)

$R[\Omega]$	/ ₁ [A]	$U_1[V]$	<i>I</i> ₂ [A]	$U_2[V]$	$\eta [\%]$
0	0,159	4,25	0,161	0,161	16,10
1	0,153	4,25	0,205	0,205	20,53
2	0,142	4,25	0,329	0,329	32,92
3	0,121	4,25	0,451	0,451	45,13
4	0,113	4,25	0,503	0,503	50,29
5	0,108	4,25	0,514	0,514	51,36
6	0,099	4,25	0,557	0,557	55,66
8	0,086	4,25	0,604	0,604	60,44
10	0,075	4,25	0,641	0,641	64,11
14	0,064	4,25	0,650	0,650	65,00
18	0,054	4,27	0,665	0,665	66,52
22	0,048	4,29	0,645	0,645	64,51
26	0,044	4,29	0,620	0,620	62,05
30	0,040	4,29	0,607	0,607	60,67
34	0,038	4,29	0,577	0,577	57,66
∞	0,022	4,31	0,000	0,000	0,00

Tabela 10: Obliczenia wykonane dla tabeli (4). Sprawność η [%] wyliczono ze wzoru (6)

Wnioski

Na podstawie wykresu zależności $U_2=f(I_2)$ można zauważyć, że gdy wzrasta natężenie prądu I_2 , napięcie U_2 maleje. Wartość U_2 osiąga najwyższą wartość, gdy $I_2=0$, co odpowiada stanowi rozwarcia obwodu wtórnego (rezystancji $R\to\infty$). Zależność ta wskazuje, że obciążenie transformatora powoduje spadek napięcia na stronie wtórnej – im większy prąd płynie w obwodzie wtórnym, tym niższe jest napięcie U_2 . Jest to typowe zachowanie transformatora pod obciążeniem, gdzie wzrost obciążenia skutkuje spadkiem napięcia wtórnego.

Na podstawie wykresu zależności sprawności transformatora η od natężenia prądu I_2 można stwierdzić, że sprawność transformatora początkowo wzrasta wraz ze wzrostem prądu I_2 , osiągając maksimum przy wartościach I_2 w zakresie około 0,78 mA - 1,14 mA, gdzie wynosi około 64,9%. Następnie, przy dalszym wzroście obciążenia (czyli przy większych wartościach I_2), sprawność stopniowo maleje. Obserwacja ta wskazuje, że transformator osiąga najwyższą sprawność przy średnich wartościach prądu wtórnego, natomiast nadmierne obciążenie obniża jego efektywność.

	$K_1 (n_1 = 400, n_2 = 600)$	$K_2 (n_1 = 400, n_2 = 200)$	$K_3 (n_1 = 400, n_2 = 400)$
Rzeczywista K_r	0.71 ± 0.02	$2,12 \pm 0,04$	$1,06 \pm 0,02$
Teoretyczna K_t	2 3	2	1

Bibliografia

Krzysztof Łapsa, Ćwiczenia laboratoryjne z fizyki, Wydawnictwo Politechniki Poznańskiej, Poznań 2008