

FAKULTET FOR REALFAG OG TEKNOLOGI

VÅRTENTAMEN 2016

Emnekode: MA-015-G

MA-015-K

Emnenavn: Matematikk for Forkurset

Dato: 11. april 2016

Varighet: 0900 - 1400

Antall sider inkl. forside 4

Tillatte hjelpemidler: Godkjent kalkulator

Godkjente formelsamlinger (uten notater)

Merknader: Løs hver oppgave på en oversiktlig måte. Ta med nødvendige

mellomregninger, slik at du forklarer fremgangsmåten og begrunner svaret. Legg vekt på nøyaktige utregninger.

Alle deloppgaver vektes likt

Oppgave 1

a) Forenkle uttrykket så mye som mulig:

$$\frac{a^2b}{\left(\sqrt{a^3b}\right)^4}$$

b) Løs likningen ved regning:

$$4\sin x - \sqrt{2} - \sqrt{6} = 0$$
 $x \in [0,360^{\circ})$

c) Løs likningen ved regning:

$$4(\ln x)^2 - \ln x^5 + 1 = 0$$

d) Løs likningen ved regning:

$$\sqrt{x+2} - 2x = 1$$

e) Deriver funksjonen:

$$f(x) = x^3 \sin(2x)$$

f) Regn ut det ubestemte integralet til funksjonen:

$$f(x) = \frac{3x}{x^2 - 4}$$

g) Regn ut ulikheten:

$$x^2 + 3x - 6 > 2x$$

h) Gitt funksjonen $f(x) = \frac{1}{2x}$

Et flatestykke er avgrenset av x – aksen, linja x = 1, linja x = 4 og grafen til f. Regn ut volumet av den gjenstanden vi får ved å dreie flatestykket 360° om x – aksen.

i) Gitt en trekant ABC, der AB = 4, BC = 6 og AC = 8. Regn ut vinkel A og vinkel B.

UNIVERSITETET I AGDER

Oppgave 2

Gitt tre punkter A(0, 0, 0), B(3, 1, 0) og C(2, 4, 0).

- a) Regn ut \overrightarrow{CA} , \overrightarrow{CB} og $\angle C$
- **b)** A, B og C utgjør tre av hjørnene i et parallellogram. Vis at punktet D (-1, 3, 0) utgjør det siste hjørnet når ABCD skal være et parallellogram.
- c) ABCD utgjør grunnflaten i en pyramide med toppunkt T(1, 2, 5). Vis og forklar hvorfor dette er en rett pyramide med kvadratisk grunnflate.
- **d**) Regn ut volumet til pyramiden *ABCDT*.
- e) Regn ut arealet til sideflaten ABT.
- f) Sideflaten ABT ligger i et plan α . Regn ut likningen for planet.

Oppgave 3

En funksjon f(x) er gitt som $f(x) = \frac{x^2 - 3x - 4}{x}$

- a) Finn definisjonsmengden og eventuelle nullpunkter til f(x).
- **b)** Regn ut eventuelle asymptoter til funksjonen.
- c) Vis ved regning at: $f'(x) = \frac{x^2 + 4}{x^2}$
- **d**) Forklar at f(x) ikke har topp eller bunnpunkter.
- e) Bestem likningen for tangenten i punktet (-1,0) ved regning.
- **f**) En annen tangent har samme stigningstall som tangenten i e). Bestem likningen for den tangenten ved regning.

Oppgave 4

En funksjon f(x) er gitt som $f(x) = x^3 - 2x^2 - x + 2$, der det ene nullpunktet er x = -1

- a) Bestem de andre nullpunktene til f(x).
- **b**) Finn topp og bunnpunktet til f(x) ved regning.
- c) Bestem vendepunktet ved regning
- **d**) Et flatestykke er avgrenset av x aksen og grafen til f(x) fra x = 0 til x = 1. Regn ut arealet av dette flatestykket.

Eksakte verdier i trigonometri

∠u,°	0°	30°	45°	60°	90°	120°	135°	150°	180°	210°	225°	240°	270°	300°	315°	330°	360°
$\angle u$, rad	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{7\pi}{6}$	$\frac{5\pi}{4}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{7\pi}{4}$	$\frac{11\pi}{6}$	2π
sin u	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0
cos u	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
tan u	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	ikke def.	$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{3}$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	ikke def.	$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{3}$	0

Vektorformler

Vektor produkt
$$[x_1, y_1, z_1] \times [x_2, y_2, z_2] = \begin{bmatrix} |y_1 & z_1| \\ |y_2 & z_2| \\ |x_2 & z_2| \end{bmatrix}, - \begin{vmatrix} |x_1 & z_1| \\ |x_2 & z_2| \\ |x_2 & y_2| \end{bmatrix}$$

Lengden av vektoren $\vec{a} \times \vec{b}$ er $|\vec{a} \times \vec{b}| = |\vec{a}| \cdot |\vec{b}| \cdot \sin v$

Arealet av et parallellogram er $A = |\vec{a} \times \vec{b}|$

Arealet av en trekant er $A = \frac{1}{2} |\vec{a} \times \vec{b}|$

Trippelprodukt $(\vec{a} \times \vec{b}) \cdot \vec{c}$

Volum av parallellepiped $V = |(\vec{a} \times \vec{b}) \cdot \vec{c}|$

Volum av firkantet pyramide $V = \frac{1}{3} |(\vec{a} \times \vec{b}) \cdot \vec{c}|$

Volum av trekantet pyramide $V = \frac{1}{6} \left| (\vec{a} \times \vec{b}) \cdot \vec{c} \right|$