AR16

CODE: 16BS1001 SET-1

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech I Semester Supplementary Examinations, November-2018

ENGINEERING MATHEMATICS - I

		ENGINEERING MATHEMATICS – I		
(Common to all Branches)			70	
			lax Marks: 70	
Answer ONE Question from each Unit All Questions Carry Equal Marks				
All parts of the Question must be answered at one place				
		UNIT-I		
1.	a)	Solve $(1+x^2)\frac{dy}{dx} + 2xy = 2x(1+x^2); y(0) = 1$	7M	
	b)	If 30% of a radioactive substance disappears in 10 days, how long it will take for 90% of it disappear	7M	
2	,	(OR)	53. 6	
2.	a)	Solve(xysinxy + cosxy)ydx + (xysinxy - cosxy)xdy = 0	7M	
	b)	Find the orthogonal trajectories of the family of curves $r = a(sec\theta + tan\theta)$	7M	
		<u>UNIT-II</u>		
3.	a)	Solve $(D^2 - 6D + 9)y = 3e^{3x} + 7e^{-2x} - aloga$ where a is constant	7M	
	b)	Solve $(D^2 - 1)y = e^{-x}\sin(e^{-x}) + \cos(e^{-x})$ by using variation of	7M	
		parameters		
		(OR)		
4.	Sol	ve $(D^2 + 4D + 3)y = cos3x - 3x^3$	14 M	
5	a)	If $u = f\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)$ then $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial x} + z\frac{\partial u}{\partial x} = 0$	7M	
	b)	Find the extreme values of $f(x,y) = 2(x^2 - y^2) - x^4 + y^4$	7M	
	,	(OR)	53. 6	
6.	a)	If $u = r\cos\theta$, $v = r\sin\theta$, $w = z$, then $j\left(\frac{u,v,w}{r,\theta,z}\right)$	7M	
	b)	Show that $u = \frac{x}{y}$, $v = \frac{x+y}{x-y}$ are functionally dependent and find the relation	7M	
		<u>UNIT-IV</u>		
7.	a)	Evaluate $\iint xy dx dy$ over the positive quadrant of the circle $x^2 + y^2 = a^2$	7M	
	b)	Evaluate $\int_0^{\frac{\pi}{2}} \int_0^{\cos\theta} r \sqrt{a^2 - r^2} dr d\theta$	7 M	
		(0.7)		
8.	۵)	(OR)	7M	
0.	a)	Evaluate $\int_0^a \int_x^a (x^2 + y^2) dx dy$ by change of order of integration		
	b)	Evaluate $\iiint 45 x^3 y dx dy dz$ where V is the region bounded by $x = y = z = z$	7M	
		0 and $4x+2y+z=8$		
0	,	<u>UNIT-V</u>	<i>5</i> 3. <i>6</i>	
9.	a)		7M	
	b)	, , , , , , , , , , , , , , , , , , ,	7M	
		c is the circle $x^2 + y^2 = 1$, $z = 0$		
4.0		(OR)	143.5	
10). V	erify the Gauss divergence theorem for	14M	
		$\bar{z} = (x^2 - yz)\bar{\iota} + (y^2 - zx)\bar{\jmath} + (z^2 - xy)\bar{k}$ taken over the cube $0 \le x \le 1$		

1; $0 \le y \le 1$; $0 \le z \le 1$

CODE: 13BS1001 SET-2

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech I Semester Supplementary Examinations, November-2018

ENGINEERING MATHEMATICS - I (Common to All Branches)

Time: 3 Hours Max Marks: 70

PART-A

ANSWER ALL QUESTIONS

 $[1 \times 10 = 10 \text{ M}]$

- 1. a) Find the Integrating factor of $\frac{dy}{dx} = \frac{x^3 + y^3}{x^2}$
 - b) Write the condition for exactness of the DE M(x,y) dx + N(x,y) dy = 0.
 - c) Find the Particular integral of the DE $(D-1)^2 y = e^x$
 - Solve the DE $\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 4y = 0$.
 - e) Write the generalized mean value theorem for one variable.
 - f) If $f(x)=Tan^{-1}x$ f(0)=0 then what is the value of $f^{1}(0)$?
 - g) Write the formula for the surface area of revolution of y=y(x) about x-axis from x_1 to x_2 .
 - h) What substitutions are to be made from Cartesian coordinates to change to polar coordinates in double integral.
 - i) Find $\nabla \cdot \mathbf{R}$ if R = xi + yj + zk
 - j) State Green's Theorem in a plane.

PART-B

Answer one question from each unit

[5x12=60M]

UNIT-I

2. a Solve the 1st order DE
$$(x^3 y^2 + x)dy + (x^2 y^3 - y)dx = 0$$
. **6M**

b Find the orthogonal trajectories of
$$y^2=4ax$$
. 6M

(OR)

3. a Solve the 1st order DE
$$(x^3 y^2 + x)dy + (x^2 y^3 - y)dx = 0$$
. **6M**

b Find the orthogonal trajectories of confocal conics
$$\frac{x^2}{a^2} + \frac{y^2}{a^2 + \lambda} = l, \lambda$$
 being parameter.

UNIT-II

12M 4 Solve: $(D^2 + 5D + 6) y = e^{-2x} Sec^2 x (1 + 2 tan x)$. Solve the second order DE $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = Cosx$. 5. **6M** Solve: $(D^2 + 3D + 2) y = e^x$ **6M UNIT-III** Expand e x in ascending powers of x by Maclaurin's series. 6. a **6M** Find the dimensions of the rectangular box, open at the top of **6M** maximum capacity, whose surface area is 432 sq. cm. 7. Expand f(x, y) = Sinxy in powers of (x-1) and $\left(y - \frac{\pi}{2}\right)$ upto second **6M** degree terms. Find the dimensions of the rectangular box, open at the top of **6M** maximum capacity whose surface is 432 sq.cm **UNIT-IV** 8. a Find the complete length of the Cardioid $r = a(1 + \cos \theta)$ 6M Change the order of integration and write the integral b **6M** $\int_0^a \int_{x^2/x}^{2a-x} f(x, y) \, dy \, dx$ (OR) Find the volume formed by the curves $y=x^2$ and y=x revolving about y 9. Change the order of integration and evaluate $\int_{0}^{4} \int_{v}^{4} \frac{x \, dy \, dx}{x^2 + v^2}.$ **6M** b **UNIT-V** 10. Verify Green's theorem for $\int [(3x - 8y^2) dx + (4y - 6xy) dy]$ where C is **12M** the boundary of the region bounded by x=0, y=0 and x+y=1Find curl F at (1,-1,1) where $F = xy^2i + 2x^2yzj - 3yz^2k$. 11. **6M** Find grad f, where $f = x^3 + y^3 + z^3 - 3xyz$ **6M**