CMPT 379 Compilers

Anoop Sarkar http://www.cs.sfu.ca/~anoop

9/8/05

Lexical Analysis

• Also called *scanning*, take input program string and convert into tokens

• Example:

("double") T DOUBLE T IDENT ("f") T OP T IDENT ("sqrt") double f = sqrt(-1); T LPAREN T INTCONSTANT ("1") T RPAREN (")") T SEP (";")

Token Attributes

• Some tokens have attributes

- T_IDENT "sqrt" - T_INTCONSTANT

• Other tokens do not

- T WHILE

• Token=T IDENT, Lexeme="sqrt", Pattern

• Source code location for error reports

9/8/05 3

Lexical errors

- What if user omits the space in "doublef"?
 - No lexical error, single token T_IDENT("doublef") is produced instead of sequence T_DOUBLE, T_IDENT("f")!
- Typically few lexical error types
 - E.g., illegal chars, opened string constants or comments that are not closed

9/8/05 9/8/05

Implementing Lexers: Loop and switch scanners

- · Ad hoc scanners
- Big nested switch/case statements
- Lots of getc()/ungetc() calls
 - Buffering
- Can be error-prone, use only if
 - Your language's lexical structure is simple
 - Tools don't do what you want
- Changing or adding a keyword is problematic
- Key idea: separate the defn from the implementation
- Problem: we need to reason about patterns and how they can be used to define tokens (recognize strings).

9/8/05

Formal Languages: Recap

- Symbols: a, b, c
- Alphabet : finite set of symbols $\Sigma = \{a, b\}$
- String: sequence of symbols bab
- Empty string: ε Define: $\Sigma^{\varepsilon} = \Sigma \cup \{\varepsilon\}$
- Set of all strings: Σ^* cf. The Library of Babel, Jorge Luis Borges
- (Formal) Language: a set of strings

```
\{a^n b^n : n > 0\}
```

Regular Languages

- The set of regular languages: each element is a regular language
- Each regular language is an example of a (formal) language, i.e. a set of strings

```
e.g. \{a^m b^n : m, n \text{ are +ve integers }\}
```

9/8/05

Regular Languages

- Defining the set of all regular languages:
 - The empty set and $\{a\}$ for all a in Σ^ϵ are regular languages
 - If L_1 and L_2 and L are regular languages, then:

$$L_1 \cdot L_2 = \{xy \mid x \in L_1 \text{ and } y \in L_2\}$$
 (concatenation)
 $L_1 \cup L_2$ (union)
 $L^* = \bigcup_{i=0}^{\infty} L^i$ (Kleene closure)

are also regular languages

- There are no other regular languages

9/8/05 6 9/8/05

Formal Grammars

- A formal grammar is a concise description of a formal language
- A formal grammar uses a specialized syntax
- For example, a regular expression is a concise description of a regular language
 (a|b)*abb: is the set of all strings over the alphabet {a, b} which end in abb

9/8/05

Regular Expressions: Definition

- Every symbol of $\Sigma \cup \{ \epsilon \}$ is a regular expression
- If r₁ and r₂ are regular expressions, so are
 - Concatenation: r₁ r₂
 - Alternation: $r_1 | r_2$
 - Repetition: r₁*
- Nothing else is.
 - Grouping re's: e.g. aalbc vs. ((aa)lb)c

Regular Expressions: Examples

- Alphabet { 0, 1 }
- All strings that represent binary numbers divisible by 4 (but accept 0) ((0|1)*00)|0
- All strings that do not contain "01" as a substring 1*0*

9/8/05

Regular Expressions

- To describe all lexemes that form a token as a *pattern*
 - -(0|1|2|3|4|5|6|7|8|9)+
- Need decision procedure: to which token does a given sequence of characters belong (if any)?
 - Finite State Automata

9/8/05 10 9/8/05

Finite Automata: Recap

- A set of states S
 - One start state q₀, zero or more final states F
- An alphabet \sum of input symbols
- A transition function:
 - $-\delta$: $S \times \Sigma \Rightarrow S$
- Example: $\delta(1, a) = 2$

9/8/05

Finite Automata: Example

• What regular expression does this automaton accept?

Answer: (0|1)*00

FA: Pascal Example

9/8/05

15

Building a Lexical Analyzer

- Token ⇒ Pattern
- Pattern ⇒ Regular Expression
- Regular Expression \Rightarrow NFA
- NFA \Rightarrow DFA
- DFA ⇒ Lexical Analyzer

NFAs

- NFA: like a DFA, except
 - A transition can lead to more than one state, that is, δ : S x $\Sigma \Rightarrow 2^S$
 - One state is chosen non-deterministically
 - Transitions can be labeled with ε , meaning states can be reached without reading any input, that is,

$$\delta: S \times \Sigma \cup \{ \epsilon \} \Rightarrow 2^{S}$$

9/8/05 17

Thompson's construction

- Converts regexps to NFA
- Five simple rules
 - Symbols
 - Empty String
 - Alternation $(r_1 \text{ or } r_2)$
 - Concatenation (r_1 followed by r_2)
 - Repetition (r_I^*)

Thompson Rule 1

• For each symbol *x* of the alphabet, there is a NFA that accepts it (include a *sinkhole* state)

9/8/05

Thompson Rule 2

• There is an NFA that accepts only ε

Thompson Rule 3

• Given two NFAs for r_1 , r_2 , there is a NFA that accepts $r_1 | r_2$

9/8/05

Thompson Rule 4

• Given two NFAs for r_1 , r_2 , there is a NFA that accepts r_1r_2

Thompson Rule 5

• Given a NFA for r_1 , there is an NFA that accepts r_1^*

9/8/05 23

Example

- Set of all binary strings that are divisible by four (include 0 in this set)
- Defined by the regexp: ((0|1)*00) | 0
- Apply Thompson's Rules to create an NFA

9/8/05 22 9/8/05 24

Basic Blocks 0 and 1

(this version does not report errors: no *sinkholes*)

(0|1)*

27

9/8/05 25 9/8/05

011

(0|1)*00

9/8/05 26 9/8/05 28

Simulating NFAs

- Similar to DFA simulation
- But have to deal with ε transitions and multiple transitions on the same input
- Instead of one state, we have to consider *sets* of states
- Simulating NFAs is a problem that is closely linked to converting a given NFA to a DFA

NFA to DFA Conversion

- Subset construction
- Idea: subsets of set of all NFA states are *equivalent* and become one DFA state
- Algorithm simulates movement through NFA
- Key problem: how to treat ε-transitions?

9/8/05

ε-Closure

• Start state: q₀

• ε-closure(S): S is a set of states

initialize:
$$S \leftarrow \{q_0\}$$

 $T \leftarrow S$
repeat $T' \leftarrow T$
 $T \leftarrow T' \cup [\cup_{s \in T'} \mathbf{move}(s, \epsilon)]$
until $T = T'$

9/8/05 30 9/8/05 32

ε-Closure (T: set of states)

```
push all states in T onto stack initialize \varepsilon-closure(T) to T while stack is not empty do begin pop t off stack for each state u with u \in move(t, \varepsilon) do if u \notin \varepsilon-closure(T) do begin add u to \varepsilon-closure(T) push u onto stack end end
```

9/8/05

NFA Simulation

- After computing the ε -closure move, we get a set of states
- On some input extend all these states to get a new set of states

```
\mathbf{DFAedge}(T,c) = \epsilon\text{-}\mathbf{closure}\left(\cup_{q \in T}\mathbf{move}(q,c)\right)
```

NFA Simulation

• Start state: q_0 • Input: c_I , ..., c_k $T \leftarrow \epsilon\text{-closure}(\{q_0\})$ for $i \leftarrow 1$ to k $T \leftarrow \mathbf{DFAedge}(T, c_i)$

9/8/05

Conversion from NFA to DFA

- Conversion method closely follows the NFA simulation algorithm
- Instead of simulating, we can collect those NFA states that behave identically on the same input
- Group this set of states to form one state in the DFA

Subset Construction

```
add \varepsilon-closure(q_0) to Dstates unmarked while \exists unmarked T \in Dstates do begin mark T;
for each symbol c do begin
U := \varepsilon-closure(\mathbf{move}(T, c));
if U \notin Dstates then
\text{add } U \text{ to } Dstates unmarked Dtrans[\mathbf{d}, c] := \mathbf{U};
end
end
```

Example: subset construction

9/8/05 37 9/8/05

Subset Construction

```
states[0] = \epsilon\text{-closure}(\{q_0\})
p = j = 0
while j \le p \text{ do begin}
for each symbol $c$ \text{ do begin}
e = DFAedge(states[j], c)
if e = states[i] \text{ for some } i \le p
then \quad Dtrans[j, c] = i
else \quad p = p+1
states[p] = e
Dtrans[j, c] = p
j = j+1
end
end
```

ε -closure(q_0)

39

$move(\varepsilon$ - $closure(q_0), 0)$

9/8/05

$move(\varepsilon$ -closure(q_0), 1)

ϵ -closure(move(ϵ -closure(q_0), 0))

ϵ -closure(move(ϵ -closure(q_0), 1))

9/8/05 42 9/8/05

45

Minimization (II)

Minimization of DFAs

- Algorithm for minimizing the number of states in a DFA
- Step 1: partition states into 2 groups: accepting and non-accepting

9/8/05

Minimization of DFAs

- Step 2: in each group, find a sub-group of states having property P
- P: The states have transitions on each symbol (in the alphabet) to the same group

A. 0: blue A, 1: yellow E, 0: blue E, 1: yellow D, 0: yellow D, 1: yellow 9/8/05

Minimization of DFAs

- Step 3: if a sub-group does not obey P split up the group into a separate group
- Go back to step 2. If no further sub-groups emerge then continue to step 4

A. 0: blue B, 0: blue A, 1: green B, 1: green C, 0: blue E, 0: blue E, 1: green C, 1: green D, 0: yellow D, 1: green 9/8/05 51

Minimization of DFAs

- Step 4: each group becomes a state in the minimized DFA
- Transitions to individual states are mapped to a single state representing the group of states

NFA to DFA

- Subset construction converts NFA to DFA
- Complexity:
 - in programs we measure time complexity in number of steps
 - For FSAs, we measure complexity in terms of the number of states

NFA to DFA

9/8/05 53 9/8/05

NFA to DFA

- Problem: An *n* state NFA can sometimes become a 2^n state DFA, an exponential increase in complexity
 - Try the subset construction on NFA built for the regexp $A*aA^{n-1}$ where A is the regexp (alb)
- Minimization can reduce the number of states
- But minimization requires determinization

NFA to DFA

NFA to DFA

NFA vs. DFA in the wild

Engine Type	Programs
DFA	awk (most versions), egrep (most versions), flex, lex, MySQL, Procmail
Traditional NFA	GNU <i>Emacs</i> , Java, <i>grep</i> (most versions), <i>less</i> , <i>more</i> , .NET languages, PCRE library, Perl, PHP (pcre routines), Python, Ruby, <i>sed</i> (most versions), vi
POSIX NFA	mawk, MKS utilities, GNU Emacs (when requested)
Hybrid NFA/DFA	GNU awk, GNU grep/egrep, Tcl

Regexp to DFA: (ab|ba)*#

Regexp to DFA: followpos

- *followpos(p)* tells us which positions can follow a position *p*
- There are two rules that use the *firstpos* {} and *lastpos* () information

Regexp to DFA: (ab|ba)*#

Regexp to DFA: (ab|ba)*#

Regexp to DFA: (ab|ba)*#

Equivalence of Regexps

- (RIS)IT == RI(SIT) == RISIT
- (RS)T == R(ST)
- (R|S) == (S|R)
- R*R* == (R*)* == $R* == RR* \mid \epsilon$
- R** == R*
- (R|S)T = RT|ST

- $R(S|T) == RS \mid RT$
- (R|S)* == (R*S*)* == (R*S)*R* == (R*|S*)*
- $RR^* == R^*R$
- (RS)*R == R(SR)*
- $R = R|R = R|\epsilon$

Equivalence of Regexps

• 0(10)*1l(01)*

• (RS)*R == R(SR)*

• (01)(01)*I(01)*

• RS == (RS)

• $(01)(01)*|(01)(01)*|\epsilon$

• $R^* == RR^* | \epsilon$

• $(01)(01)*|\epsilon$

• R == R | R

• (01)*

• $R^* == RR^* | \epsilon$

9/8/05 65

Lexical Analyzer using DFAs

- Each token is defined using a regexp r_i
- Merge all regexps into one big regexp $-R = (r_1 \mid r_2 \mid ... \mid r_n)$
- Convert *R* to an NFA, then DFA, then minimize
 - remember orig NFA final states with each DFA state

Lexical Analyzer using DFAs

- The DFA recognizer has to find the *longest* match for a token
 - e.g. < print > and not < pr >, < int >
- If two patterns match the same token, pick the one that was listed earlier in R
 - e.g. prefer final state (in the original NFA) of r_2 over r_3

9/8/05

Lexical Analyzer using DFAs

- Alternative method:
 - Organize all the DFAs for each token in an ordered list
 - For input i_1 , i_2 , ..., i_n run all DFAs until some reach a final state (pick the longest match for each DFA)
 - Pick the token for which some DFA could read the longest match in the input,
 - e.g. prefer DFA #8 over all others because it read the input until i_{30} and none of the other DFAs reached i_{30}
 - If two DFAs reach the same input character then pick the one that is listed first in the ordered list

9/8/05 66 9/8/05 68

Implementing DFAs

- 2D array storing the transition table
- Adjacency list, more space efficient but slower
- Merge two ideas: array structures used for sparse tables like DFA transition tables
 - base & next arrays: Tarjan and Yao, 1979
 - Dragon book (default+base & next+check)

9/8/05

Implementing DFAs

	a	b	c	d
0	-	1	-	2
1	1	-	1	-
2	1	2	1	1

Implementing DFAs

	a	b	c	d
0	-	1	-	2
1	1	-	1	-
2	1	2	1	-

2 2 next 5 6 0 0 check

base

nextstate(s, x):

L := base[s] + x

return next[L] if check[L] eq s

9/8/05

Implementing DFAs

	a	b	c	d
0	١	1	-	2
1	1	-	1	-
2	1	2	1	-

next

base

nextstate(s, x):

L := base[s] + x

default 9/8/05

return next[L] if check[L] eq selse return next state(default[s], x)

9/8/05

70

Summary

- Token ⇒ Pattern
- Pattern ⇒ Regular Expression
- Regular Expression \Rightarrow NFA
 - Thompson's Rules
- NFA \Rightarrow DFA
 - Subset construction
- DFA \Rightarrow minimal DFA
 - Minimization
- \Rightarrow Lexical Analyzer (multiple patterns)

9/8/05 73