

FIG. 1

FIG. 2

FIG. 3

Section "AA"

2 Terminal Sensor Packaging

Fig. 4

Fig. 5 Tyre Valve Insulated Electrode
Used To Connect Sensor To
External Face Of Wheel Rim

Fig. 6

**System Implementation showing
TPMS Enabled Wheel Rim and
TPMS Enabled Disk Brake Caliper**

INDUCTIVELY COUPLED CIRCUIT

$$\begin{aligned}
 &V = Nd\phi/dt = d\lambda/dt = L \frac{dI}{dt} \\
 &\text{FLUX } \phi = \Phi m \sin 2\pi ft \\
 &V_{RMS} = 4.44 N f \Phi m \\
 &V_2 = (N_2 / N_1) V_1 \\
 &I_2 = (V_2 / R_1) \\
 &\text{THE COMPONENT OF PRIMARY CURRENT DUE TO LOAD IS} \\
 &I'_1 = (N_2 / N_1) I_2
 \end{aligned}$$

FIG. 7

FOR SINUSOIDS, VOLTAGE V_{12} COUPLED INTO THE INPUT BY A CURRENT I_2 IS $V_{12} = j\omega M_{12} I_2$

WHERE $Z_{12} = j\omega M_{12}$ = MUTUAL IMPEDANCE

IF $Z_{12} = Z_{21}$ OR $M_{12} = M_{21} = M$ USING RECIPROCITY FOR A BILATERAL NETWORK,

THEN $V_1 = j\omega L_1 I_1 + j\omega M I_2 = Z_{11} I_1 + Z_{12} I_2$

AND $V_2 = j\omega M I_1 + j\omega L_2 I_2 = Z_{21} I_1 + Z_{22} I_2$

FIG. 8

**Non Contact System Showing
TPMS Enabled Steel Wheel Rim and
TPMS Enabled Disk Brake Caliper
Mounting Bracket**

Fig. 10

**Non Contact System Showing
TPMS Enabled Steel Wheel Rim and
TPMS Enabled Disk Brake Caliper
Mounting Bracket**

Fig. 11

FIG. 12

FIG. 13

EXTERNAL COIL & CAPACITOR-
ALL OTHER COMPONENTS IN SENSOR PACKAGE

FIG. 14

EXTERNAL COIL, CAPACITOR & BRIDGE RECTIFIER

FIG. 15

ELECTROMAGNETIC COUPLING SIGNAL WAVEFORMS**FIG. 16**

FIG. 17

FIG. 18

FIG. 19A

FIG. 19B

FIG. 19C

FIG. 19D