Curs 7

Cuprins

- Congruențe
- 2 Ecuații. Relația de satisfacere
- β Γ-algebre
- Specificații algebrice

Fie (S, Σ) o signatură multisortată și $\mathcal{A} = (A_S, A_\Sigma)$ o (S, Σ) -algebră.

Definiție

O relație S-sortată $\equiv = \{\equiv_s\}_{s \in S} \subseteq A_S \times A_S$ este o congruență dacă:

Fie (S, Σ) o signatură multisortată și $\mathcal{A} = (A_S, A_\Sigma)$ o (S, Σ) -algebră.

Definiție

- O relație S-sortată $\equiv = \{\equiv_s\}_{s \in S} \subseteq A_S \times A_S$ este o congruență dacă:
 - $\square \equiv_s \subseteq A_s \times A_s$ este echivalență, or. $s \in S$:
 - reflexivă
 - simetrică
 - ☐ tranzitivă

Fie (S, Σ) o signatură multisortată și $\mathcal{A} = (A_S, A_\Sigma)$ o (S, Σ) -algebră.

Definiție

- O relație S-sortată $\equiv = \{\equiv_s\}_{s \in S} \subseteq A_S \times A_S$ este o congruență dacă:
 - $\square \equiv_s \subseteq A_s \times A_s$ este echivalență, or. $s \in S$:
 - □ reflexivă
 - simetrică
 - ☐ tranzitivă
 - □ ≡ este compatibilă cu operațiile:

pt. or.
$$\sigma: s_1 \dots s_n \to s$$
 și or. $a_i, b_i \in A_{s_i}$, $i = 1, \dots, n$
 $a_i \equiv_{s_i} b_i$, or. $i = 1, \dots, n \Rightarrow A_{\sigma}(a_1, \dots, a_n) \equiv_s A_{\sigma}(b_1, \dots, b_n)$

Exemplu

Exemple

```
NAT = (S, \Sigma)
\square S = \{nat\}
\square \Sigma = \{0 : \rightarrow nat, \ succ : nat \rightarrow nat\}
NAT-algebra A
\square \text{ Mulţimea suport: } A_{nat} := \mathbb{N}
\square \text{ Operaţii: } A_0 := 0, \ A_{succ}(x) := x + 1
n_1 \equiv_{nat} n_2 \Leftrightarrow 2 | (n_1 - n_2) \text{ este congruență (congruență modulo 2):}
\square \equiv_{nat} \text{ este echivalență}
\square \text{ dacă } n_1 \equiv_{nat} n_2, \text{ atunci } A_{succ}(n_1) \equiv_{nat} A_{succ}(n_2)
```

Fie $\mathcal A$ o (S,Σ) -algebră și \equiv o congruență pe $\mathcal A$. Definim:

 \square $[a]_{\equiv_s} := \{a' \in A_s \mid a \equiv_s a'\}$ (clasa de echivalență a lui a)

Fie \mathcal{A} o (S, Σ) -algebră și \equiv o congruență pe \mathcal{A} . Definim:

- \square $[a]_{\equiv_s} := \{a' \in A_s \mid a \equiv_s a'\}$ (clasa de echivalență a lui a)
- \square $A_s/_{\equiv_s} := \{[a]_{\equiv_s} \mid a \in A_s\}$, or. $s \in S$

Fie \mathcal{A} o (S,Σ) -algebră și \equiv o congruență pe \mathcal{A} .

Definim:

- \square $[a]_{\equiv_s} := \{a' \in A_s \mid a \equiv_s a'\}$ (clasa de echivalență a lui a)
- $\square A_s/_{\equiv_s} := \{[a]_{\equiv_s} \mid a \in A_s\}, \text{ or. } s \in S$
- \square $A/_{\equiv} := \{A_s/_{\equiv_s}\}$ devine (S, Σ) -algebră, notată $A/_{\equiv}$, cu operațiile:

Fie \mathcal{A} o (S,Σ) -algebră și \equiv o congruență pe \mathcal{A} .

Definim:

- \square $[a]_{\equiv_s} := \{a' \in A_s \mid a \equiv_s a'\}$ (clasa de echivalență a lui a)
- \square $A_s/_{\equiv_s} := \{[a]_{\equiv_s} \mid a \in A_s\}, \text{ or. } s \in S$
- \square $A/_{\equiv}:=\{A_s/_{\equiv_s}\}$ devine (S,Σ) -algebră, notată $A/_{\equiv}$, cu operațiile:
 - \square $(A/_{\equiv})_{\sigma} := [A_{\sigma}]_{\equiv_s}$, or. $\sigma : \rightarrow s$,

```
Fie \mathcal{A} o (S, \Sigma)-algebră si \equiv o congruentă pe \mathcal{A}.
Definim:
   \square [a]_{=_s} := \{a' \in A_s \mid a \equiv_s a'\} (clasa de echivalență a lui a)
   \Box A_s/_{=_s} := \{[a]_{=_s} \mid a \in A_s\}, \text{ or. } s \in S
   \square A/_{\equiv} := \{A_s/_{\equiv_s}\} devine (S, \Sigma)-algebră, notată A/_{\equiv}, cu operațiile:
           \square (A/=)_{\sigma} := [A_{\sigma}]_{=s}, or. \sigma : \rightarrow s,
            (A/_{\equiv})_{\sigma}([a_1]_{\equiv_{s_1}},\ldots,[a_n]_{\equiv_{s_n}}) := [A_{\sigma}(a_1,\ldots,a_n)]_{\equiv_{s_n}}, \text{ or. } 
                 \sigma: s_1 \ldots s_n \to s \text{ și } a_1 \in A_{s_1}, \ldots, a_n \in A_{s_n}.
   \square A/= se numește algebră cât a lui A prin congruența \equiv.
   \square [\cdot]_{=}: \mathcal{A} \to \mathcal{A}/_{=}, a \mapsto [a]_{=_{c}}, \text{ or. } a \in \mathcal{A}_{s}, \text{ este morfism surjectiv.}
```

 $[a]_{=s} = [b]_{=s} \Leftrightarrow a \equiv_s b \Leftrightarrow (a, b) \in \equiv_s$

Exemple

Exempli

```
STIVA: S = \{elem, stiva\}, \Sigma = \{0 : \rightarrow elem, empty : \rightarrow stiva,
              push : elem stiva \rightarrow stiva, pop : stiva \rightarrow stiva, top : stiva \rightarrow elem
STIVA-algebra A:
   \square A_{elam} := \mathbb{N}. A_{stive} := \mathbb{N}^*
   Operații: A_0 := 0, A_{empty} := \lambda, A_{push}(n, n_1 \dots n_k) := nn_1 \dots n_k,
        A_{pop}(\lambda) := \lambda, A_{pop}(n) := \lambda, A_{pop}(n_1 n_2 \dots n_k) := n_2 \dots n_k, pt k \geq 2
        A_{top}(\lambda) := 0, A_{top}(n_1 \dots n_k) := n_1, \text{ pt. } k > 1
\equiv \{ \equiv_{elem}, \equiv_{stiva} \} congruență pe \mathcal{A}:
   \square \equiv_{elem} := \mathbb{N} \times \mathbb{N}
   \square \equiv_{\text{stiva}} := \{(w, w') \mid w, w' \in \mathbb{N}^*, |w| = |w'|\}
```

Exemple

Exempli

```
STIVA: S = \{elem, stiva\}, \Sigma = \{0 : \rightarrow elem, empty : \rightarrow stiva,
               push : elem stiva \rightarrow stiva, pop : stiva \rightarrow stiva, top : stiva \rightarrow elem
STIVA-algebra A:
   \square A_{elam} := \mathbb{N}. A_{stive} := \mathbb{N}^*
   Operații: A_0 := 0, A_{empty} := \lambda, A_{push}(n, n_1 \dots n_k) := nn_1 \dots n_k,
         A_{pop}(\lambda) := \lambda, A_{pop}(n) := \lambda, A_{pop}(n_1 n_2 \dots n_k) := n_2 \dots n_k, pt k \geq 2
        A_{top}(\lambda) := 0, A_{top}(n_1 \dots n_k) := n_1, \text{ pt. } k > 1
\equiv \{ \equiv_{elem}, \equiv_{stiva} \} congruență pe \mathcal{A}:
   \square \equiv_{elem} := \mathbb{N} \times \mathbb{N}
   \square \equiv_{\text{stiva}} := \{(w, w') \mid w, w' \in \mathbb{N}^*, |w| = |w'|\}
A/=
```

Exemple

Exempli

```
STIVA: S = \{elem, stiva\}, \Sigma = \{0 : \rightarrow elem, empty : \rightarrow stiva,
              push : elem stiva \rightarrow stiva, pop : stiva \rightarrow stiva, top : stiva \rightarrow elem}
STIVA-algebra A:
   \square A_{elem} := \mathbb{N}, A_{stiva} := \mathbb{N}^*
   Operații: A_0 := 0, A_{empty} := \lambda, A_{push}(n, n_1 \dots n_k) := nn_1 \dots n_k,
        A_{pop}(\lambda) := \lambda, A_{pop}(n) := \lambda, A_{pop}(n_1 n_2 \dots n_k) := n_2 \dots n_k, pt k \geq 2
        A_{top}(\lambda) := 0, A_{top}(n_1 \dots n_k) := n_1, \text{ pt. } k > 1
\equiv \{ \equiv_{elem}, \equiv_{stiva} \} congruență pe \mathcal{A}:
   \square \equiv_{elem} := \mathbb{N} \times \mathbb{N}
   \square \equiv_{\text{stiva}} := \{(w, w') \mid w, w' \in \mathbb{N}^*, |w| = |w'|\}
A/= \simeq \mathcal{B}, unde STIVA-algebra \mathcal{B}:
   \square B_{elem} := \{0\}, B_{stiva} := \mathbb{N}
   \square Operații: B_0 := 0, B_{empty} := 0, B_{push}(0, n) := n + 1,
        B_{pop}(0) := 0, B_{pop}(n) := n - 1, pt. n > 1, B_{top}(n) := 0
```

Nucleul unui morfism

Fie $f: A \to B$ un morfism de (S, Σ) -algebre.

Nucleul lui
$$f$$
 este $Ker(f) = \{Ker(f_s)\}_{s \in S}$, unde

$$Ker(f_s) := \{(a, a') \in A_s \times A_s \mid f_s(a) = f_s(a')\}, \text{ or. } s \in S.$$

Nucleul unui morfism

Fie $f: A \to B$ un morfism de (S, Σ) -algebre.

Nucleul lui f este $Ker(f) = \{Ker(f_s)\}_{s \in S}$, unde

$$Ker(f_s) := \{(a, a') \in A_s \times A_s \mid f_s(a) = f_s(a')\}, \text{ or. } s \in S.$$

Propoziție

- II Ker(f) este o congruență pe A.
- 2 Dacă \equiv este o congruență pe \mathcal{A} , atunci $Ker([\cdot]_{\equiv}) = \equiv$.

Nucleul unui morfism

Fie $f: A \to B$ un morfism de (S, Σ) -algebre.

Nucleul lui f este $Ker(f) = \{Ker(f_s)\}_{s \in S}$, unde

$$Ker(f_s) := \{(a, a') \in A_s \times A_s \mid f_s(a) = f_s(a')\}, \text{ or. } s \in S.$$

Propoziție

- II Ker(f) este o congruență pe A.
- Dacă \equiv este o congruență pe \mathcal{A} , atunci $Ker([\cdot]_{\equiv}) = \equiv$.

Demonstrație.

Exercițiu!

Proprietatea de universalitate

Teoremă (Proprietatea de universalitate a algebrei cât)

Fie \mathcal{A} o (S, Σ) -algebră $\mathfrak{s}i \equiv o$ congruență pe \mathcal{A} . Pentru orice (S, Σ) -algebră \mathcal{B} $\mathfrak{s}i$ pentru orice morfism $h: \mathcal{A} \to \mathcal{B}$ a.î. $\equiv \subseteq Ker(h)$, există un unic morfism $\overline{h}: \mathcal{A}/_{\equiv} \to \mathcal{B}$ a.î. $[\cdot]_{\equiv}; \overline{h} = h$.

Fie \mathcal{B} o (S, Σ) -algebră și $h : \mathcal{A} \to \mathcal{B}$ un morfism a.î. $\equiv \subseteq \mathit{Ker}(h)$.

Fie \mathcal{B} o (S, Σ) -algebră și $h : \mathcal{A} \to \mathcal{B}$ un morfism a.î. $\equiv \subseteq \mathit{Ker}(h)$.

□ **Existența:** Definim $\overline{h}_s([a]_{\equiv_s}) := h_s(a)$, pentru orice $a \in A_s$.

- Fie \mathcal{B} o (S, Σ) -algebră și $h : \mathcal{A} \to \mathcal{B}$ un morfism a.î. $\equiv \subseteq \mathit{Ker}(h)$.
 - □ **Existența:** Definim $\overline{h}_s([a]_{\equiv_s}) := h_s(a)$, pentru orice $a \in A_s$.
 - □ \overline{h} este bine definit: Tb. să arătăm $[a_1]_{\equiv_s} = [a_2]_{\equiv_s} \Rightarrow h_s(a_1) = h_s(a_2)$. Presupunem că $[a_1]_{\equiv_s} = [a_2]_{\equiv_s}$. Atunci $(a_1, a_2) \in \equiv_s \subseteq Ker(h)$, deci $h_s(a_1) = h_s(a_2)$.

- Fie \mathcal{B} o (S, Σ) -algebră și $h : \mathcal{A} \to \mathcal{B}$ un morfism a.î. $\equiv \subseteq \mathit{Ker}(h)$.
 - □ **Existența:** Definim $\overline{h}_s([a]_{\equiv_s}) := h_s(a)$, pentru orice $a \in A_s$.
 - □ \overline{h} este bine definit: Tb. să arătăm $[a_1]_{\equiv_s} = [a_2]_{\equiv_s} \Rightarrow h_s(a_1) = h_s(a_2)$. Presupunem că $[a_1]_{\equiv_s} = [a_2]_{\equiv_s}$. Atunci $(a_1, a_2) \in \equiv_s \subseteq Ker(h)$, deci $h_s(a_1) = h_s(a_2)$.
 - \square \overline{h} este morfism:

- Fie \mathcal{B} o (S, Σ) -algebră și $h : \mathcal{A} \to \mathcal{B}$ un morfism a.î. $\equiv \subseteq \mathit{Ker}(h)$.
 - □ **Existența:** Definim $\overline{h}_s([a]_{\equiv_s}) := h_s(a)$, pentru orice $a \in A_s$.
 - \overline{h} este bine definit: Tb. să arătăm $[a_1]_{\equiv_s} = [a_2]_{\equiv_s} \Rightarrow h_s(a_1) = h_s(a_2)$. Presupunem că $[a_1]_{\equiv_s} = [a_2]_{\equiv_s}$. Atunci $(a_1, a_2) \in \equiv_s \subseteq Ker(h)$, deci $h_s(a_1) = h_s(a_2)$.
 - $\Box \overline{h}$ este morfism:
 - dacă $\sigma: \to s \in \Sigma$, atunci $\overline{h}_s((A/_{\equiv})_{\sigma}) = \overline{h}_s([A_{\sigma}]_{\equiv_s}) = h_s(A_{\sigma}) = B_{\sigma}$.

Fie \mathcal{B} o (S, Σ) -algebră și $h : \mathcal{A} \to \mathcal{B}$ un morfism a.î. $\equiv \subseteq \mathit{Ker}(h)$.

- □ **Existența:** Definim $\overline{h}_s([a]_{\equiv_s}) := h_s(a)$, pentru orice $a \in A_s$.
 - □ \overline{h} este bine definit: Tb. să arătăm $[a_1]_{\equiv_s} = [a_2]_{\equiv_s} \Rightarrow h_s(a_1) = h_s(a_2)$. Presupunem că $[a_1]_{\equiv_s} = [a_2]_{\equiv_s}$. Atunci $(a_1, a_2) \in \equiv_s \subseteq Ker(h)$, deci $h_s(a_1) = h_s(a_2)$.
 - $\frac{h}{h}$ este morfism:
 - dacă $\sigma: \to s \in \Sigma$, atunci $\overline{h}_s((A/_{\equiv})_{\sigma}) = \overline{h}_s([A_{\sigma}]_{\equiv s}) = h_s(A_{\sigma}) = B_{\sigma}$.
 dacă $\sigma: s_1 \dots s_n \to s \in \Sigma$ și $a_1 \in A_{s_1} \dots a_n \in A_{s_n}$, atunci

$$\bar{h}_{s}((A/_{\equiv})_{\sigma}([a_{1}]_{\equiv_{s_{1}}}, \dots, [a_{n}]_{\equiv_{s_{n}}})) = \bar{h}_{s}([A_{\sigma}(a_{1}, \dots, a_{n})]_{\equiv_{s}})
= h_{s}(A_{\sigma}(a_{1}, \dots, a_{n}))
= B_{\sigma}(h_{s_{1}}(a_{1}), \dots, h_{s_{n}}(a_{n}))
= B_{\sigma}(\bar{h}_{s_{1}}([a_{1}]_{\equiv_{s_{1}}}), \dots, \bar{h}_{s_{n}}([a_{n}]_{\equiv_{s_{n}}})).$$

Fie \mathcal{B} o (S, Σ) -algebră și $h : \mathcal{A} \to \mathcal{B}$ un morfism a.î. $\equiv \subseteq Ker(h)$.

- □ Existența: Definim $\overline{h}_s([a]_{\equiv_s}) := h_s(a)$, pentru orice $a \in A_s$.
 - □ \overline{h} este bine definit: Tb. să arătăm $[a_1]_{\equiv_s} = [a_2]_{\equiv_s} \Rightarrow h_s(a_1) = h_s(a_2)$. Presupunem că $[a_1]_{\equiv_s} = [a_2]_{\equiv_s}$. Atunci $(a_1, a_2) \in \equiv_s \subseteq Ker(h)$, deci $h_s(a_1) = h_s(a_2)$.
 - \square \overline{h} este morfism:

 - lacktriangledown dacă $\sigma: s_1 \ldots s_n
 ightarrow s \in \Sigma$ si $a_1 \in A_{s_1}, \ldots, a_n \in A_{s_n}$, atunci

$$\overline{h}_{s}((A/_{\equiv})_{\sigma}([a_{1}]_{\equiv s_{1}}, \dots, [a_{n}]_{\equiv s_{n}})) = \overline{h}_{s}([A_{\sigma}(a_{1}, \dots, a_{n})]_{\equiv s})
= h_{s}(A_{\sigma}(a_{1}, \dots, a_{n}))
= B_{\sigma}(h_{s_{1}}(a_{1}), \dots, h_{s_{n}}(a_{n}))$$

- $= B_{\sigma}(\overline{h}_{s_1}([a_1]_{\equiv s_1}), \ldots, \overline{h}_{s_n}([a_n]_{\equiv s_n})).$
- Unicitatea: Fie $g: A/_{\equiv} \to \mathcal{B}$ a.î. $[\cdot]_{\equiv}$; g = h. Atunci $g_s([a]_{\equiv_s}) = h_s(a) = \overline{h}_s([a]_{\equiv_s})$, or. $a \in A_s$.

Consecințe

Propoziție (*)

Fie \Re o clasă de (S, Σ) -algebre. Dacă

$$\equiv_{\mathfrak{K}}:=\bigcap\{\mathit{Ker}(h)\mid h:T_{\Sigma}\to\mathcal{B}\in\mathfrak{K}\;\mathsf{morfism}\},$$

atunci următoarele proprietăți sunt adevărate:

Consecințe

Propoziție (*)

Fie \Re o clasă de (S, Σ) -algebre. Dacă

$$\equiv_{\mathfrak{K}}:=\bigcap\{\mathit{Ker}(h)\mid h:T_{\Sigma}\to\mathcal{B}\in\mathfrak{K}\;\mathsf{morfism}\},$$

atunci următoarele proprietăți sunt adevărate:

 $\blacksquare \equiv_{\mathfrak{K}}$ este congruența pe T_{Σ} ,

Consecințe

Propoziție (*)

Fie $\mathfrak K$ o clasă de (S,Σ) -algebre. Dacă

$$\equiv_{\mathfrak{K}}:=\bigcap\{Ker(h)\mid h:T_{\Sigma}\to\mathcal{B}\in\mathfrak{K} \text{ morfism}\},$$

atunci următoarele proprietăți sunt adevărate:

- $\blacksquare \equiv_{\mathfrak{K}}$ este congruența pe T_{Σ} ,
- **2** pt. or. $\mathcal{B} \in \mathfrak{K}$, există un unic morfism $\overline{h}: T_{\Sigma}/_{\equiv_{\mathfrak{K}}} \to \mathcal{B}$.

Ecuații. Relația de satisfacere

Din cursurile trecute

Fie (S, Σ) o signatură multisortată și X mulțime de variabile.

- \square T_{Σ} este (S, Σ) -algebră inițială, i.e. pentru orice (S, Σ) -algebră \mathcal{B} există un unic morfism $f: T_{\Sigma} \to \mathcal{B}$.
- \square $T_{\Sigma}(X)$ este (S, Σ) -algebră liber generată de X, i.e. pentru orice (S, Σ) -algebră $\mathcal{B} = (B_S, B_\Sigma)$, orice funcție S-sortată $e: X \to B_S$ se extinde unic la un (S, Σ) -morfism $\tilde{e}: T_{\Sigma}(X) \to \mathcal{B}$.

Motivație

Un modul în Maude (care conține doar declații de sorturi și operații) construiește efectiv algebra T_{Σ} .

Ce se întâmplă cu ecuațiile?

Ce se întâmplă cu atributele operațiilor?

Ecuație

Fie (S, Σ) o signatură multisortată.

Definiție

- O (S, Σ) -ecuație este formată din
 - \square o mulțime de variabile X,
 - \square doi termeni de același sort $t, t' \in T_{\Sigma}(X)_s$.

Notăm o ecuație prin

$$(\forall X)t \stackrel{\cdot}{=}_{s} t'$$

 $\stackrel{\cdot}{=}$ egalitate formală = egalitate efectivă

Satisfacerea unei ecuații

Fie (S, Σ) o signatură multisortată.

Definiție

O (S,Σ) -algebră $\mathcal{A}=(A_S,A_\Sigma)$ satisface o ecuație $(\forall X)t\stackrel{.}{=}_s t'$ dacă pentru orice funcție S-sortată $e:X\to A_S$,

$$\tilde{e}_s(t) = \tilde{e}_s(t').$$

Notăm faptul că \mathcal{A} satisface ecuația $(\forall X)t =_s t'$ prin

$$\mathcal{A} \models (\forall X)t \stackrel{\cdot}{=}_s t'$$

□ Dacă $\mathcal{A} \models (\forall X)t \stackrel{\cdot}{=}_s t'$, mai spunem și că \mathcal{A} este un model al ecuației $(\forall X)t \stackrel{\cdot}{=}_s t'$.

Satisfacerea unei ecuații

Am văzut că orice funcție S-sortată $e:X\to A_S$ se extinde unic la un morfism $\tilde{e}:T_\Sigma(X)\to \mathcal{A}$.

Satisfacerea unei ecuații

Am văzut că orice funcție S-sortată $e: X \to A_S$ se extinde unic la un morfism $\tilde{e}: T_{\Sigma}(X) \to \mathcal{A}$.

Definiție (echivalentă)

O (S, Σ) -algebră $\mathcal{A} = (A_S, A_\Sigma)$ satisface o ecuație $(\forall X)t \stackrel{.}{=}_s t'$ dacă pentru orice morfism $f: \mathcal{T}_\Sigma(X) \to A$,

$$f_s(t) = f_s(t')$$
.

- ☐ În cazul monosortat, cuantificarea înaintea unei ecuații nu este necesară.
- ☐ În cazul multisortat, dacă nu cuantificăm înaintea unei ecuații putem obține paradoxuri.

- ☐ În cazul monosortat, cuantificarea înaintea unei ecuații nu este necesară.
- ☐ În cazul multisortat, dacă nu cuantificăm înaintea unei ecuații putem obține paradoxuri.

Exemplu

□ Signatura: $S = \{s, b\}$, $\Sigma = \{T : \rightarrow b, F : \rightarrow b, g : s \rightarrow b\}$

- ☐ În cazul monosortat, cuantificarea înaintea unei ecuații nu este necesară.
- ☐ În cazul multisortat, dacă nu cuantificăm înaintea unei ecuații putem obține paradoxuri.

- □ Signatura: $S = \{s, b\}$, $\Sigma = \{T : \rightarrow b, F : \rightarrow b, g : s \rightarrow b\}$
- \square T_{Σ} : $T_{\Sigma,s} = \emptyset$, $T_{\Sigma,b} = \{T,F\}$

- În cazul monosortat, cuantificarea înaintea unei ecuații nu este necesară.
- ☐ În cazul multisortat, dacă nu cuantificăm înaintea unei ecuații putem obține paradoxuri.

- □ Signatura: $S = \{s, b\}$, $\Sigma = \{T : \rightarrow b, F : \rightarrow b, g : s \rightarrow b\}$
- \Box T_{Σ} : $T_{\Sigma,s} = \emptyset$, $T_{\Sigma,b} = \{T,F\}$
- $\square \ T_{\Sigma} \not\models (\forall \emptyset) T \stackrel{.}{=}_b F$
 - $T_T = T \neq F = T_F$

- În cazul monosortat, cuantificarea înaintea unei ecuații nu este necesară.
- ☐ În cazul multisortat, dacă nu cuantificăm înaintea unei ecuații putem obține paradoxuri.

- □ Signatura: $S = \{s, b\}$, $\Sigma = \{T : \rightarrow b, F : \rightarrow b, g : s \rightarrow b\}$
- \Box T_{Σ} : $T_{\Sigma,s} = \emptyset$, $T_{\Sigma,b} = \{T,F\}$
- $\Box T_{\Sigma} \not\models (\forall \emptyset) T \stackrel{\cdot}{=}_b F$
 - $T_T = T \neq F = T_F$
- $\square T_{\Sigma} \models (\forall X) T \stackrel{\cdot}{=}_b F, \text{ unde } X_s := \{x\} \text{ și } X_b := \emptyset$
 - lacksquare nu există niciun morfism $f:T_\Sigma(X) o T_\Sigma$

Ecuație condiționată

Fie (S, Σ) o signatură multisortată.

Definiție

- O (S, Σ) -ecuație condiționată este formată din
 - \square o mulțime de variabile X,
 - \square doi termeni de același sort $t,t'\in T_\Sigma(X)_s$,

Ecuație condiționată

Fie (S, Σ) o signatură multisortată.

Definiție

- O (S, Σ) -ecuație condiționată este formată din
 - \square o mulțime de variabile X,
 - \square doi termeni de același sort $t,t'\in T_\Sigma(X)_s$,
 - \square o mulțime H de ecuații $u \stackrel{\cdot}{=}_{s'} v$, cu $u, v \in T_{\Sigma}(X)_{s'}$.

Ecuație condiționată

Fie (S, Σ) o signatură multisortată.

Definiție

- O (S, Σ) -ecuație condiționată este formată din
 - \square o mulțime de variabile X,
 - \square doi termeni de același sort $t,t'\in \mathcal{T}_{\Sigma}(X)_s$,
 - \square o mulțime H de ecuații $u \doteq_{s'} v$, cu $u, v \in T_{\Sigma}(X)_{s'}$.

Notăm o ecuație condiționată prin

$$(\forall X)t \stackrel{\cdot}{=}_s t' \text{ if } H$$

- \square În practică H este finită, i.e. $H = \{u_1 \stackrel{\cdot}{=}_{s_1} v_1, \dots, u_n \stackrel{\cdot}{=}_{s_n} v_n\}.$
- \square Ecuațiile din H sunt cuantificate cu X.
- \square Ecuațiile din H se numesc condiții.
- \square O ecuație $(\forall X)t \stackrel{\cdot}{=}_s t'$ este o ecuație condiționată în care H este \emptyset .

Satisfacerea unei ecuații condiționate

Fie (S, Σ) o signatură multisortată.

Definiție

O (S, Σ) -algebră $\mathcal{A} = (A_S, A_\Sigma)$ satisface o ecuație condiționată $(\forall X)t \stackrel{.}{=}_s t'$ if H dacă pentru orice funcție S-sortată $e: X \to A_S$,

$$\tilde{e}_{s'}(u) = \tilde{e}_{s'}(v)$$
, or. $u \stackrel{\cdot}{=}_{s'} v \in H \Rightarrow \tilde{e}_{s}(t) = \tilde{e}_{s}(t')$.

Notăm faptul că ${\mathcal A}$ satisface ecuația condiționată $(\forall X)t\stackrel{\cdot}{=}_s t'$ if H prin

$$\mathcal{A} \models (\forall X)t \stackrel{\cdot}{=}_s t' \text{ if } H$$

$$\square A \models (\forall X)t \stackrel{.}{=}_s t' \Leftrightarrow A \models (\forall X)t \stackrel{.}{=}_s t' \text{ if } \emptyset$$

Satisfacerea unei ecuații condiționate

Definiție (echivalentă)

O (S, Σ) -algebră $\mathcal{A} = (A_S, A_\Sigma)$ satisface o ecuație condiționată $(\forall X)t \stackrel{.}{=}_s t'$ if H dacă pentru orice morfism $f: T_\Sigma(X) \to A$,

$$f_{s'}(u) = f_{s'}(v)$$
, or. $u \stackrel{\cdot}{=}_{s'} v \in H \Rightarrow f_s(t) = f_s(t')$.

$$STIVA = (S = \{elem, stiva\}, \Sigma)$$

$$\square \Sigma = \{0 : \rightarrow elem, empty : \rightarrow stiva, push : elem stiva \rightarrow stiva, pop : stiva \rightarrow stiva, top : stiva \rightarrow elem\}$$
 $X: X_{elem} = \{E\}, X_{stiva} = \{S, Q\}$
Ecuația condiționată:
$$(\forall X) top(S) \stackrel{\cdot}{=}_{elem} E \text{ if } \{S \stackrel{\cdot}{=}_{stiva} push(E, Q)\}$$

Exemplu (cont.)

- \square Mulţimea suport: $A_{elem} := \mathbb{N}$, $A_{stiva} := \mathbb{N}^*$
- □ Operații: $A_0 := 0$, $A_{empty} := \lambda$, $A_{push}(n, n_1 ... n_k) := nn_1 ... n_k$, $A_{pop}(\lambda) := \lambda$, $A_{pop}(n) := \lambda$, $A_{pop}(n_1 n_2 ... n_k) := n_2 ... n_k$, pt $k \ge 2$ $A_{top}(\lambda) := 0$, $A_{top}(n_1 ... n_k) := n_1$, pt. $k \ge 1$

Exemplu (cont.)

- \square Mulțimea suport: $A_{elem} := \mathbb{N}, \ A_{stiva} := \mathbb{N}^*$
- □ Operaţii: $A_0 := 0$, $A_{empty} := \lambda$, $A_{push}(n, n_1 ... n_k) := nn_1 ... n_k$, $A_{pop}(\lambda) := \lambda$, $A_{pop}(n) := \lambda$, $A_{pop}(n_1 n_2 ... n_k) := n_2 ... n_k$, pt $k \ge 2$ $A_{top}(\lambda) := 0$, $A_{top}(n_1 ... n_k) := n_1$, pt. $k \ge 1$
- $A \models (\forall X) top(S) \stackrel{.}{=}_{elem} E \text{ if } \{S \stackrel{.}{=}_{stiva} push(E, Q)\}$

Exemplu (cont.)

- \square Mulţimea suport: $A_{elem} := \mathbb{N}$, $A_{stiva} := \mathbb{N}^*$
- □ Operații: $A_0 := 0$, $A_{empty} := \lambda$, $A_{push}(n, n_1 ... n_k) := nn_1 ... n_k$, $A_{pop}(\lambda) := \lambda$, $A_{pop}(n) := \lambda$, $A_{pop}(n_1 n_2 ... n_k) := n_2 ... n_k$, pt $k \ge 2$ $A_{top}(\lambda) := 0$, $A_{top}(n_1 ... n_k) := n_1$, pt. $k \ge 1$
- $A \models (\forall X) top(S) \stackrel{\cdot}{=}_{elem} E \text{ if } \{S \stackrel{\cdot}{=}_{stiva} push(E, Q)\}$
 - \square fie $e: X \to A$ o evaluare a.î. $\tilde{e}_{stiva}(S) = \tilde{e}_{stiva}(push(E,Q))$

Exemplu (cont.)

- \square Mulțimea suport: $A_{elem} := \mathbb{N}, \ A_{stiva} := \mathbb{N}^*$
- □ Operații: $A_0 := 0$, $A_{empty} := \lambda$, $A_{push}(n, n_1 ... n_k) := nn_1 ... n_k$, $A_{pop}(\lambda) := \lambda$, $A_{pop}(n) := \lambda$, $A_{pop}(n_1 n_2 ... n_k) := n_2 ... n_k$, pt $k \ge 2$ $A_{top}(\lambda) := 0$, $A_{top}(n_1 ... n_k) := n_1$, pt. $k \ge 1$
- $\mathcal{A} \models (\forall X) top(S) \stackrel{.}{=}_{elem} E \text{ if } \{S \stackrel{.}{=}_{stiva} push(E, Q)\}$
 - \square fie $e: X \to A$ o evaluare a.î. $\tilde{e}_{stiva}(S) = \tilde{e}_{stiva}(push(E,Q))$
 - \square obţinem $\tilde{e}_{stiva}(S) = A_{push}(\tilde{e}_{elem}(E), \tilde{e}_{stiva}(Q))$

Exemplu (cont.)

- \square Mulţimea suport: $A_{elem} := \mathbb{N}$, $A_{stiva} := \mathbb{N}^*$
- □ Operații: $A_0 := 0$, $A_{empty} := \lambda$, $A_{push}(n, n_1 ... n_k) := nn_1 ... n_k$, $A_{pop}(\lambda) := \lambda$, $A_{pop}(n) := \lambda$, $A_{pop}(n_1 n_2 ... n_k) := n_2 ... n_k$, pt $k \ge 2$ $A_{top}(\lambda) := 0$, $A_{top}(n_1 ... n_k) := n_1$, pt. $k \ge 1$
- $A \models (\forall X) top(S) \stackrel{.}{=}_{elem} E \text{ if } \{S \stackrel{.}{=}_{stiva} push(E, Q)\}$
 - \square fie $e: X \to A$ o evaluare a.î. $\tilde{e}_{stiva}(S) = \tilde{e}_{stiva}(push(E,Q))$
 - \square obţinem $\tilde{e}_{stiva}(S) = A_{push}(\tilde{e}_{elem}(E), \tilde{e}_{stiva}(Q))$
 - \square notăm $n := \tilde{e}_{elem}(E)$, $w := \tilde{e}_{stiva}(S)$, $w' := \tilde{e}_{stiva}$

Exemplu (cont.)

- \square Mulțimea suport: $A_{elem} := \mathbb{N}, \ A_{stiva} := \mathbb{N}^*$
- □ Operații: $A_0 := 0$, $A_{empty} := \lambda$, $A_{push}(n, n_1 ... n_k) := nn_1 ... n_k$, $A_{pop}(\lambda) := \lambda$, $A_{pop}(n) := \lambda$, $A_{pop}(n_1 n_2 ... n_k) := n_2 ... n_k$, pt $k \ge 2$ $A_{top}(\lambda) := 0$, $A_{top}(n_1 ... n_k) := n_1$, pt. $k \ge 1$
- $\mathcal{A} \models (\forall X) top(S) \stackrel{\cdot}{=}_{elem} E \text{ if } \{S \stackrel{\cdot}{=}_{stiva} push(E, Q)\}$
 - \square fie $e: X \to A$ o evaluare a.î. $\tilde{e}_{stiva}(S) = \tilde{e}_{stiva}(push(E,Q))$
 - \square obţinem $\tilde{e}_{stiva}(S) = A_{push}(\tilde{e}_{elem}(E), \tilde{e}_{stiva}(Q))$
 - \square notăm $n := \tilde{e}_{elem}(E)$, $w := \tilde{e}_{stiva}(S)$, $w' := \tilde{e}_{stiva}$
 - \square rezultă w = nw' și

Exemplu (cont.)

```
STIVA-algebra A:
   \square Multimea suport: A_{elem} := \mathbb{N}, A_{stiva} := \mathbb{N}^*
   \square Operații: A_0 := 0, A_{empty} := \lambda, A_{push}(n, n_1 \dots n_k) := nn_1 \dots n_k,
       A_{pop}(\lambda) := \lambda, A_{pop}(n) := \lambda, A_{pop}(n_1 n_2 \dots n_k) := n_2 \dots n_k, pt k \ge 2
       A_{top}(\lambda) := 0, A_{top}(n_1 \dots n_k) := n_1, \text{ pt. } k \ge 1
A \models (\forall X) top(S) \stackrel{\cdot}{=}_{elem} E \text{ if } \{S \stackrel{\cdot}{=}_{stiva} push(E, Q)\}
   \square fie e: X \to A o evaluare a.î. \tilde{e}_{stiva}(S) = \tilde{e}_{stiva}(push(E,Q))
   \square obtinem \tilde{e}_{stiva}(S) = A_{push}(\tilde{e}_{elem}(E), \tilde{e}_{stiva}(Q))
       notăm n := \tilde{e}_{elem}(E), w := \tilde{e}_{stiva}(S), w' := \tilde{e}_{stiva}(S)
       rezultă w = nw' si
             \tilde{e}_{elem}(top(S)) = A_{top}(\tilde{e}_{stiva}(S)) = A_{top}(w) = A_{top}(nw') = n =
                                                         \tilde{e}_{elem}(E)
```

Exemplu (cont.)

- \square Mulţimea suport: $C_{elem} := \mathbb{N}, \ C_{stiva} := \mathbb{N}^*$
- □ Operații: $C_0 := 0$, $C_{empty} := \lambda$, $C_{push}(x, x_1 ... x_k) := x_1 ... x_k x$, $C_{pop}(\lambda) := \lambda$, $C_{pop}(x) := \lambda$, $C_{pop}(x_1 ... x_{k-1} x_k) := x_2 ... x_k$, pt $k \ge 2$ $C_{top}(\lambda) := 0$, $C_{top}(x_1 ... x_k) := x_1$, pt. $k \ge 1$

Exemplu (cont.)

- \square Mulţimea suport: $C_{elem} := \mathbb{N}, \ C_{stiva} := \mathbb{N}^*$
- □ Operații: $C_0 := 0$, $C_{empty} := \lambda$, $C_{push}(x, x_1 \dots x_k) := x_1 \dots x_k x$, $C_{pop}(\lambda) := \lambda$, $C_{pop}(x) := \lambda$, $C_{pop}(x_1 \dots x_{k-1} x_k) := x_2 \dots x_k$, pt $k \ge 2$ $C_{top}(\lambda) := 0$, $C_{top}(x_1 \dots x_k) := x_1$, pt. $k \ge 1$
- $\mathcal{C} \not\models (\forall X) top(S) \stackrel{.}{=}_{elem} E \text{ if } \{S \stackrel{.}{=}_{stiva} push(E, Q)\}$

Exemplu (cont.)

- \square Mulţimea suport: $C_{elem} := \mathbb{N}, C_{stiva} := \mathbb{N}^*$
- □ Operații: $C_0 := 0$, $C_{empty} := \lambda$, $C_{push}(x, x_1 ... x_k) := x_1 ... x_k x$, $C_{pop}(\lambda) := \lambda$, $C_{pop}(x) := \lambda$, $C_{pop}(x_1 ... x_{k-1} x_k) := x_2 ... x_k$, pt $k \ge 2$ $C_{top}(\lambda) := 0$, $C_{top}(x_1 ... x_k) := x_1$, pt. k > 1
- $\mathcal{C} \not\models (\forall X) top(S) \stackrel{.}{=}_{elem} E \text{ if } \{S \stackrel{.}{=}_{stiva} push(E, Q)\}$
 - □ fie $e: X \to C$ o evaluare definită prin $e_{elem}(E) = 2$, $e_{stiva}(Q) = 3$ 4, $e_{stiva}(S) = 3$ 4 2

Exemplu (cont.)

STIVA-algebra \mathcal{C} :

- \square Mulţimea suport: $C_{elem} := \mathbb{N}, C_{stiva} := \mathbb{N}^*$
- □ Operații: $C_0 := 0$, $C_{empty} := \lambda$, $C_{push}(x, x_1 ... x_k) := x_1 ... x_k x$, $C_{pop}(\lambda) := \lambda$, $C_{pop}(x) := \lambda$, $C_{pop}(x_1 ... x_{k-1} x_k) := x_2 ... x_k$, pt $k \ge 2$ $C_{top}(\lambda) := 0$, $C_{top}(x_1 ... x_k) := x_1$, pt. k > 1
- $\mathcal{C} \not\models (\forall X) top(S) \stackrel{.}{=}_{elem} E \text{ if } \{S \stackrel{.}{=}_{stiva} push(E, Q)\}$
 - □ fie $e: X \to C$ o evaluare definită prin $e_{elem}(E) = 2$, $e_{stiva}(Q) = 3$ 4, $e_{stiva}(S) = 3$ 4 2
 - \square atunci $\tilde{e}_{stiva}(S) = \tilde{e}_{stiva}(push(E,Q))$

Exemplu (cont.)

STIVA-algebra \mathcal{C} :

- \square Mulţimea suport: $C_{elem} := \mathbb{N}, \ C_{stiva} := \mathbb{N}^*$
- □ Operații: $C_0 := 0$, $C_{empty} := \lambda$, $C_{push}(x, x_1 ... x_k) := x_1 ... x_k x$, $C_{pop}(\lambda) := \lambda$, $C_{pop}(x) := \lambda$, $C_{pop}(x_1 ... x_{k-1} x_k) := x_2 ... x_k$, pt $k \ge 2$

$$C_{top}(\lambda) := 0$$
, $C_{top}(x_1 \dots x_k) := x_1$, pt. $k \ge 1$

$$\mathcal{C} \not\models (\forall X) top(S) \stackrel{\cdot}{=}_{elem} E \text{ if } \{S \stackrel{\cdot}{=}_{stiva} push(E, Q)\}$$

- □ fie $e: X \to C$ o evaluare definită prin $e_{elem}(E) = 2$, $e_{stiva}(Q) = 3$ 4, $e_{stiva}(S) = 3$ 4 2
- \square atunci $\tilde{e}_{stiva}(S) = \tilde{e}_{stiva}(push(E,Q))$
- \square dar $\tilde{e}_{elem}(E) = 2 \neq 3 = \tilde{e}_{elem}(top(S))$

Γ-algebre

Definiții

Fie

- \square (S, Σ) o signatură multisortată
- $\hfill\Box$ Γ o mulțime de ecuații condiționate

Definiții

Fie

- \square (S, Σ) o signatură multisortată
- □ Γ o mulțime de ecuații condiționate

Definiție

O (S,Σ) -algebră $\mathcal A$ este o Γ -algebră $(\mathcal A$ este model pentru $\Gamma)$ dacă

$$\mathcal{A} \models \gamma$$
, or. $\gamma \in \Gamma$.

Definiții

Fie

- \square (S, Σ) o signatură multisortată
- □ Γ o mulțime de ecuații condiționate

Definiție

O (S, Σ) -algebră \mathcal{A} este o Γ -algebră $(\mathcal{A} \text{ este model pentru } \Gamma)$ dacă $\mathcal{A} \models \gamma, \text{ or. } \gamma \in \Gamma.$

- \square În acest caz, notăm $\mathcal{A} \models \Gamma$
- \square Notăm cu $Alg(S, \Sigma, \Gamma)$ clasa tuturor Γ -algebrelor.

Proprietăți

Teoremă

Fie
$$\mathcal A$$
 și $\mathcal B$ două (S,Σ) -algebre a.î. $\mathcal A\simeq\mathcal B$ și $\gamma:=(\forall X)t\stackrel{.}{=}_s t'$ if $H.$

$$\mathcal{A} \models \gamma \Leftrightarrow \mathcal{B} \models \gamma.$$

Demonstrație

Exercitiu!

Consecința semantică

Fie (S,Σ) o signatură multisortată și Γ o mulțime de ecuații condiționate.

Definiție

O ecuație condiționată θ este consecință semantică a lui Γ dacă

$$\mathcal{A} \models \Gamma$$
 implică $\mathcal{A} \models \theta$,

pentru orice (S, Σ) -algebră A.

- \square În acest caz, notăm $\Gamma \models \theta$.
- Dacă Θ mulțime de ecuații condiționate, atunci

$$\Gamma \models \Theta \Leftrightarrow \Gamma \models \theta$$
, or. $\theta \in \Theta$

Exemplu

Exemplu (Teoria grupurilor)

```
\square (S, \Sigma, \Gamma) unde
        \square S = \{elem\}
         \Sigma = \{e : \rightarrow elem, -: elem \rightarrow elem, +: elem elem \rightarrow elem\}
         \Gamma = \{(\forall \{x, y, z\})(x + y) + z = x + (y + z),
                        (\forall \{x\})e + x \stackrel{\cdot}{=} x,
                         (\forall \{x\})x + e \stackrel{\cdot}{=} x,
                         (\forall \{x\})(-x) + x \stackrel{\cdot}{=} e.
                         (\forall \{x\})x + (-x) \stackrel{\cdot}{=} e\}
\square \ \theta_1 := (\forall \{x, y, z\}) x \stackrel{\cdot}{=} y \text{ if } \{x + z \stackrel{\cdot}{=} y + z\}
\square \theta_2 := (\forall \{x,y\})x + y = y + x
\Box \Gamma \models \theta_1
\Box \Gamma \not\models \theta_2
```

Congruențe închise la substituții

Fie

- \Box (S, Σ) o signatură multisortată,
- Γ o mulţime de ecuaţii condiţionate,
- $\ \square \ \mathcal{A} = (A_S, A_\Sigma) \ \text{o} \ (S, \Sigma) \text{-algebră și} \equiv \text{o congruență pe } \mathcal{A}.$

Congruențe închise la substituții

Fie

- \Box (S, Σ) o signatură multisortată,
- Γ o mulţime de ecuaţii condiţionate,
- \square $\mathcal{A} = (A_S, A_{\Sigma})$ o (S, Σ) -algebră și \equiv o congruență pe \mathcal{A} .

Spunem că ≡ este închisă la substituție dacă

$$\mathsf{CS}(\Gamma, \mathcal{A}) \quad \text{or. } (\forall X)t =_{\mathsf{s}} t' \text{ if } H \in \Gamma, \text{ or. } e: X \to A_{\mathsf{S}} \\ \tilde{e}_{\mathsf{s}'}(u) \equiv_{\mathsf{s}'} \tilde{e}_{\mathsf{s}'}(v), \text{ or. } u =_{\mathsf{s}'} v \in H \Rightarrow \tilde{e}_{\mathsf{s}}(t) \equiv_{\mathsf{s}} \tilde{e}_{\mathsf{s}}(t').$$

Congruențe închise la substituții

Fie

- \square (S, Σ) o signatură multisortată,
- Γ o mulţime de ecuaţii condiţionate,
- \square $\mathcal{A} = (A_S, A_{\Sigma})$ o (S, Σ) -algebră și \equiv o congruență pe \mathcal{A} .

Spunem că ≡ este închisă la substituție dacă

$$\mathsf{CS}(\Gamma, \mathcal{A}) \quad \text{or. } (\forall X)t =_{\mathsf{s}} t' \text{ if } H \in \Gamma, \text{ or. } e : X \to A_S$$
$$\tilde{e}_{\mathsf{s}'}(u) \equiv_{\mathsf{s}'} \tilde{e}_{\mathsf{s}'}(v), \text{ or. } u =_{\mathsf{s}'} v \in H \Rightarrow \tilde{e}_{\mathsf{s}}(t) \equiv_{\mathsf{s}} \tilde{e}_{\mathsf{s}}(t').$$

Propoziție (*)

Dacă \equiv este o congruență pe ${\cal A}$ închisă la substituție, atunci

$$A/_{\equiv} \models \Gamma$$
.

Echivalența semantică

Fie

- \square (S, Σ) o signatură multisortată,
- Γ o mulţime de ecuaţii condiţionate,
- \square $\mathcal{A} = (A_S, A_{\Sigma})$ o (S, Σ) -algebră

Echivalența semantică pe $\mathcal A$ determinată de Γ este

$$\equiv_{\Gamma,\mathcal{A}} := \bigcap \{ Ker(h) \mid h : \mathcal{A} \to \mathcal{B}, \ \mathcal{B} \models \Gamma \}.$$

Echivalența semantică

Fie

- \square (S, Σ) o signatură multisortată,
- Γ o mulţime de ecuaţii condiţionate,
- \square $\mathcal{A}=(A_{\mathcal{S}},A_{\Sigma})$ o (\mathcal{S},Σ) -algebră

Echivalența semantică pe ${\mathcal A}$ determinată de Γ este

$$\equiv_{\Gamma,\mathcal{A}} := \bigcap \{ Ker(h) \mid h : \mathcal{A} \to \mathcal{B}, \ \mathcal{B} \models \Gamma \}.$$

Dacă $\mathcal{A} = \mathcal{T}_{\Sigma}(X)$, notăm $\equiv_{\Gamma, \mathcal{T}_{\Sigma}(X)}$ cu \equiv_{Γ} .

Echivalența semantică (pe $T_{\Sigma}(X)$):

$$t \equiv_{\Gamma_s} t' \Leftrightarrow \Gamma \models (\forall X)t \stackrel{\cdot}{=}_s t'.$$

Congruența semantică

Propoziție (*)

 $\equiv_{\Gamma,\mathcal{A}}$ este o congruență pe \mathcal{A} închisă la substituție.

Propoziție (*)

 $\equiv_{\Gamma,\mathcal{A}}$ este cea mai mică congruență pe \mathcal{A} închisă la substituție.

Γ-algebra iniţială

Definim pe T_{Σ} congruența semantică determinată de Γ :

$$\equiv_{\Gamma, T_{\Sigma}} := \bigcap \{ Ker(f) \mid f : T_{\Sigma} \to \mathcal{B}, \ \mathcal{B} \models \Gamma \}$$

Teoremă (*)

 $T_{\Sigma}/_{\equiv_{\Gamma,T_{\Sigma}}}$ este Γ -algebra inițială.

Demonstrație

- $\square \equiv_{\Gamma, T_{\Sigma}}$ este închisă la substituții
- $\Box T_{\Sigma}/_{\equiv_{\Gamma,T_{\Sigma}}} \models \Gamma$
- $\square \equiv_{\Gamma, T_{\Sigma}} = \equiv_{\mathfrak{K}}$, unde $\mathfrak{K} = Alg(S, \Sigma, \Gamma)$
- \square Pt. or. $\mathcal{B} \models \Gamma$, ex. un unic morfism $\bar{f} : T_{\Sigma}/_{\equiv_{\Gamma}, \tau_{\Sigma}} \to \mathcal{B}$

Consecințe

Fie (S, Σ) o signatură multisortată și Γ o mulțime de ecuații condiționate.

Teoremă (*)

Fie $\mathcal{A}=(A_S,A_\Sigma)$ o (S,Σ) -algebră și $h:T_\Sigma\to\mathcal{A}$ unicul morfism. Sunt echivalente:

- Λ este Γ-algebră iniţială.
- 2 A verifică următoarele proprietăți:
 - □ No Junk: h este surjectiv
 - No Confusion:

$$h_s(t_1) = h_s(t_2) \Leftrightarrow \Gamma \models (\forall \emptyset) t_1 \stackrel{.}{=}_s t_2$$
, or. $t_1, t_2 \in (T_{\Sigma})_s$.

Specificații algebrice

Specificații

- O specificație este un triplet (S, Σ, Γ) , unde
 - \square (S, Σ) este o signatură multisortată
 - □ Γ este o mulțime de ecuații condiționate

Specificații

- O specificație este un triplet (S, Σ, Γ) , unde
 - \square (S, Σ) este o signatură multisortată
 - Γ este o mulțime de ecuații condiționate

Specificația (S, Σ, Γ) definește clasa modelelor $Alg(S, \Sigma, \Gamma)$, care reprezintă semantica ei.

Specificații echivalente

Definiție

Două specificații (S, Σ, Γ_1) și (S, Σ, Γ_2) sunt echivalente dacă definesc aceeași clasă de modele, i.e.

$$\mathcal{A} \models \Gamma_1 \Leftrightarrow \mathcal{A} \models \Gamma_2$$

□ Dacă Γ și Θ sunt mulțimi de ecuații condiționate a.î. $\Gamma \models \Theta$, atunci (S, Σ, Γ) și $(S, \Sigma, \Gamma \cup \Theta)$ sunt specificații echivalente.

Semantica unui modul în Maude

Fie (S,Σ) o signatură multisortată și Γ o mulțime de ecuații condiționate.

$$\mathfrak{I}_{(S,\Sigma,\Gamma)} = \{ \mathcal{I} \mid \mathcal{I} \text{ Γ-algebra inițială} \}$$

 \square $\mathfrak{I}_{(S,\Sigma,\Gamma)}$ este un tip abstract de date

Semantica unui modul în Maude

Fie (S, Σ) o signatură multisortată și Γ o mulțime de ecuații condiționate.

$$\mathfrak{I}_{(S,\Sigma,\Gamma)} = \{ \mathcal{I} \mid \mathcal{I} \text{ Γ-algebra inițială} \}$$

 \square $\mathfrak{I}_{(S,\Sigma,\Gamma)}$ este un tip abstract de date

În Maude, un modul fmod ... endfm definește tipul abstract de date $\mathfrak{I}_{(S,\Sigma,\Gamma)}$ și construiește efectiv algebra $T_{\Sigma}/_{\equiv_{\Gamma},\tau_{\Sigma}}$

- □ S mulţimea sorturilor
- Σ mulţimea simbolurilor de operaţii
- □ Γ mulțimea ecuațiilor definite în modul, iar fiecare ecuație

eq
$$t = t$$
' \dot{s} i ceq $t = t$ ' if H

este cuantificată de variabilele care apar în t și t'.

Specificație corectă

Fie (S, Σ) o signatură multisortată și \mathcal{A} o (S, Σ) -algebră.

Definiție

O specificație (S, Σ, Γ) este adecvată pentru $\mathcal A$ dacă $\mathcal A$ este Γ -algebră inițială, i.e.

$$\mathcal{A}\in\mathfrak{I}_{(S,\Sigma,\Gamma)}.$$

- $\Box S = \{s\}$
- \square $\Sigma = \{0 : \rightarrow s, succ : s \rightarrow s\}$
- $\Box \Gamma = \{(\forall x) succ(succ(succ(x)))) \stackrel{\cdot}{=} x\}$

Exempli

- $\Box S = \{s\}$
- \square $\Sigma = \{0 : \rightarrow s, succ : s \rightarrow s\}$
- $\Box \Gamma = \{(\forall x) succ(succ(succ(x)))) \stackrel{\cdot}{=} x\}$

 (S, Σ, Γ) este o specificație adecvată pentru $\mathcal{A} = (\mathbb{Z}_4, 0, succ)$, unde $A_{succ}(x) := (x+1) \mod 4$.

Exempli

- $\Box S = \{s\}$
- \square $\Sigma = \{0 : \rightarrow s, succ : s \rightarrow s\}$
- $\Box \Gamma = \{(\forall x) succ(succ(succ(x)))) \stackrel{\cdot}{=} x\}$

 (S, Σ, Γ) este o specificație adecvată pentru $\mathcal{A} = (\mathbb{Z}_4, 0, succ)$, unde $A_{succ}(x) := (x+1) \mod 4$.

Se reduce la a arăta că A este Γ -algebra inițială, i.e.

- $1 \mathcal{A} \models \gamma$, or. $\gamma \in \Gamma$,
- **2** pt. or. Γ -algebră \mathcal{B} , există un unic morfism $f: \mathcal{A} \to \mathcal{B}$.

$$\mathcal{A} = (\mathbb{Z}_4, 0, succ)$$
, unde $A_{succ}(x) := (x+1) \mod 4$.

$$\mathcal{A} = (\mathbb{Z}_4, 0, succ)$$
, unde $A_{succ}(x) := (x+1) \mod 4$.

- $\ \ \, \mathbf{1} \ \ \, \mathcal{A} \models (\forall x) succ(succ(succ(succ(x)))) \stackrel{\cdot}{=} x$
 - $\square \text{ Fie } e: X \to \mathbb{Z}_4, \text{ unde } X = \{x\}.$

$$\mathcal{A} = (\mathbb{Z}_4, 0, succ)$$
, unde $A_{succ}(x) := (x+1) \mod 4$.

- $\blacksquare \ \mathcal{A} \models (\forall x) succ(succ(succ(succ(x)))) \stackrel{\cdot}{=} x$

 - Avem

$$\tilde{e}(succ(succ(succ(x))))) = A_{succ}(A_{succ}(A_{succ}(A_{succ}(e(x)))))$$

$$= (e(x) + 4) \mod 4$$

$$= e(x) = \tilde{e}(x)$$

Exemplu

$$\mathcal{A} = (\mathbb{Z}_4, 0, succ)$$
, unde $A_{succ}(x) := (x+1) \mod 4$.

- - Avem

$$\tilde{e}(succ(succ(succ(x))))) = A_{succ}(A_{succ}(A_{succ}(e(x)))))$$

$$= (e(x) + 4) \mod 4$$

$$= e(x) = \tilde{e}(x)$$

Fie B o Γ-algebră.

Existența: Definim $f: \mathbb{Z}_4 \to B$ prin

Exempli

$$\mathcal{A} = (\mathbb{Z}_4, 0, succ)$$
, unde $A_{succ}(x) := (x+1) \mod 4$.

- $\blacksquare \ \mathcal{A} \models (\forall x) succ(succ(succ(succ(x)))) \stackrel{\cdot}{=} x$

 - Avem

$$\tilde{e}(succ(succ(succ(x))))) = A_{succ}(A_{succ}(A_{succ}(e(x)))))$$

$$= (e(x) + 4) \mod 4$$

$$= e(x) = \tilde{e}(x)$$

Fie B o Γ-algebră.

Existența: Definim $f: \mathbb{Z}_4 \to B$ prin

- $\Box f(0) := B_0$
- $f(x+1) := B_{succ}(f(x)), \text{ pt. } 0 \le x \le 2$

Exemplu

2 Arătăm că f este morfism:

- 2 Arătăm că f este morfism:
 - $\Box f(A_0) = f(0) = B_0$

- 2 Arătăm că f este morfism:
 - $\Box f(A_0) = f(0) = B_0$
 - $f(A_{succ}(x)) = f(x+1) = B_{succ}(f(x)), \text{ pt. } 0 \le x \le 2$

- 2 Arătăm că f este morfism:
 - $\Box f(A_0) = f(0) = B_0$
 - $f(A_{succ}(x)) = f(x+1) = B_{succ}(f(x)), \text{ pt. } 0 \le x \le 2$
 - Trebuie să mai arătăm că $f(A_{succ}(3)) = B_{succ}(f(3))$:

- 2 Arătăm că f este morfism:
 - $\Box f(A_0) = f(0) = B_0$
 - $f(A_{succ}(x)) = f(x+1) = B_{succ}(f(x)), \text{ pt. } 0 \le x \le 2$
 - Trebuie să mai arătăm că $f(A_{succ}(3)) = B_{succ}(f(3))$:
 - $f(A_{succ}(3)) = f(0) = B_0$

- 2 Arătăm că f este morfism:
 - $\Box f(A_0) = f(0) = B_0$
 - $f(A_{succ}(x)) = f(x+1) = B_{succ}(f(x)), \text{ pt. } 0 \le x \le 2$
 - □ Trebuie să mai arătăm că $f(A_{succ}(3)) = B_{succ}(f(3))$:
 - $f(A_{succ}(3)) = f(0) = B_0$
 - $B_{succ}(f(3)) = B_{succ}(B_{succ}(B_{succ}(B_{succ}(B_0))))$

Exemplu

- 2 Arătăm că f este morfism:
 - $\Box f(A_0) = f(0) = B_0$
 - $f(A_{succ}(x)) = f(x+1) = B_{succ}(f(x)), \text{ pt. } 0 \le x \le 2$
 - Trebuie să mai arătăm că $f(A_{succ}(3)) = B_{succ}(f(3))$:
 - $f(A_{succ}(3)) = f(0) = B_0$
 - $B_{succ}(f(3)) = B_{succ}(B_{succ}(B_{succ}(B_{succ}(B_0))))$
 - Cum $\mathcal{B} \models (\forall x) succ(succ(succ(succ(x)))) \stackrel{.}{=} x$, pt. $e': X \rightarrow B$, $e'(x) := B_0$, obtinem

$$B_{succ}(B_{succ}(B_{succ}(B_{succ}(B_0)))) = \tilde{e'}(succ(succ(succ(x))))) = e'(x) = B_0$$

Deci $f(A_{succ}(3)) = B_{succ}(f(3))$.

Exemplu

f(x+1)

Arătăm că f este morfism: $\Box f(A_0) = f(0) = B_0$ $\Box f(A_{succ}(x)) = f(x+1) = B_{succ}(f(x)), \text{ pt. } 0 \le x \le 2$ Trebuie să mai arătăm că $f(A_{succ}(3)) = B_{succ}(f(3))$: $f(A_{succ}(3)) = f(0) = B_0$ $B_{succ}(f(3)) = B_{succ}(B_{succ}(B_{succ}(B_{succ}(B_0))))$ • Cum $\mathcal{B} \models (\forall x) succ(succ(succ(succ(x)))) \doteq x$, pt. $e' : X \rightarrow B$, $e'(x) := B_0$, obtinem $B_{succ}(B_{succ}(B_{succ}(B_{succ}(B_0)))) = \tilde{e'}(succ(succ(succ(x))))) =$ $e'(x) = B_0$ Deci $f(A_{succ}(3)) = B_{succ}(f(3))$. **Unicitatea:** Fie $g: A \rightarrow B$ un morfism. Arătăm că g(x) = f(x), or. $x \in \{0, 1, 2, 3\}$, prin inductie: \Box $g(0) = g(A_0) = B_0 = f(0)$ $\Box g(x+1) = g(A_{succ}(x)) = B_{succ}(g(x)) = B_{succ}(f(x)) = f(A_{succ}(x)) =$ Pe săptămâna viitoare!