DEPARTEMENT DE MATHEMATIQUES UNIVERSITE DE BISKRA MODULE 2^{ième} Année Master Maths Premier semestre, année 2021/2022 Mouvement Brownien et calcul stochastique

Feuille 3: Exercices sur l'intégrale de Wiener

Exercice 1. 1. justifier que la variable aléatoire $X_t = \int_0^t (\sin s) dB_s$ est bien définie comme intégrale de Wiener.

- 2. Justifier que X est un processus gaussien. Calculer son espérance et sa variance $E(X_sX_t)$.
 - 3. Montrer que le processus X est une martingale.
 - 4. Quelle est la variation quadratique de X?
 - 5. Montrer que $X_t = (\sin t)B_t \int_0^t (\cos s) B_s ds$.

Exercice 2. Donner la loi de la variable aléatoire

$$Y = \int_0^{+\infty} \exp(-s) dB_s.$$

On commencera par vérifier que Y est bien définie.

Exercice 3. Etant donné un mouvement brownien réel $(B_t)_{t\geq 0}$, on définit le processus $(X_t)_{t\geq 0}$ par :

$$\forall t \ge 0, X_t = \int_0^{t^{1/2}} (2s)^{1/2} dB_s.$$

Montrer que ce procesus est gaussien. Calculer son espérance et sa covariance. En déduire que X est un mouvement brownien.

Exercice 4. Etant données deux fonctions f et g dans $L^2(\mathbb{R}_+)$, on suppose que

$$\int_0^{+\infty} f(s)dB_s = \int_0^{+\infty} g(s)dB_s.$$

Que peut-on dire de f et g?

Exercice 5. Soit $f \in L^2_{loc}(\mathbb{R}_+)$. Donner la loi de $\left(\int_0^t f(s)dB_s\right)_{t\geq 0}$.