Topological Data Analysis

JinHwa Jeong

Department of Mathematics Sungkyunkwan University

November 15,2022

JinHwa Jeong TDA November 15,2022 1/20

Data analysis is a process of inspecting, cleansing, transforming, and modeling data with the goal of discovering useful information, informing conclusions, and supporting decision-making.

2/20

Data analysis is a process of inspecting, cleansing, transforming, and modeling data with the goal of discovering useful information, informing conclusions, and supporting decision-making.

- Linear Regression
- Decision Tree
- Machine Learning

2/20

Topology is concerned with the properties of a geometric object that are preserved under continuous deformations

3/20

JinHwa Jeong TDA

• Qualitative information is needed

4/20

- Qualitative information is needed
- Metrics are not theoretically justified

JinHwa Jeong TDA November 15,2022 4 / 20

- Qualitative information is needed
- Metrics are not theoretically justified
- Coordinates are not natural

4/20

- Qualitative information is needed
- Metrics are not theoretically justified
- Coordinates are not natural
- Summaries are more valuable than individual parameter choices

4 / 20

Figure 1: $S_2 \& T_2$

Using Homology, we can distinguish two spaces by examining their holes.

5/20

Simplicial Complex

Definition

A simplicial complex K is a collection of simplices such that

- Every face of a simplex of K is in K
- Every pair of distinct simplices of K have disjoint interiors

Simplicial Complex

Figure 2: Simplicial Complex

Intuitively, a simplicial complex structure on a space is an expression of the space as a union of points, intervals, triangles, tetrahedrons and higher dimensional analogues

Definition

A p-chain on K, $C_p(K)$ is the of formal linear combinations of (oriented) p-simplices

8/20

Definition

A *p*-chain on K, $C_p(K)$ is the of formal linear combinations of (oriented) *p*-simplices

Definition

We now define a homomorphism

$$\partial_p: C_p(K) \to C_{p-1}(K)$$

$$\partial_p[v_0, \dots, v_p] = \sum_{i=0}^p (-1)^i [v_0, \dots, \hat{v_i}, \dots, v_p]$$

is called the boundary operator

$$\begin{array}{c} \mathsf{Lemma} \\ \partial_{p-1} \circ \partial_p = 0 \end{array}$$

Lemma

$$\partial_{p-1}\circ\partial_p=0$$

Corollary

 $\mathsf{Image}(\partial_{p+1})\subseteq\mathsf{Kernel}(\partial_p)$

Lemma

$$\partial_{p-1} \circ \partial_p = 0$$

Corollary

 $\mathsf{Image}(\partial_{p+1})\subseteq\mathsf{Kernel}(\partial_p)$

Definition

The p^{th} homology group of K is defined by

$$H_p(K) = \text{Kernel}(\partial_p)/\text{Image}(\partial_{p+1})$$

Definition

The p^{th} betti number $\beta_p(K)$ is the rank of p^{th} homology group $H_p(K)$

Intuitively, the p^{th} Betti number refers to the number of k-dimensional holes on a topological surface.

10 / 20

Figure 3: WorkFlow

Point Cloud Data

Figure 3: WorkFlow

- Point Cloud Data
- Filtered Complex

11/20

Figure 3: WorkFlow

- Point Cloud Data
- Filtered Complex
- Persistent Homology

11/20

Figure 3: WorkFlow

- Point Cloud Data
- Filtered Complex
- Persistent Homology
- Barcode/Diagram

Definition

The nerve of \mathcal{U} , denoted by $N\mathcal{U}$, will be the abstract simplicial complex with vertex set A, and where a family $\{\alpha_0,\ldots,\alpha_k\}$ spans a k-simplex if and only if $U_{\alpha_0}\cap\cdots\cap U_{\alpha_k}\neq\emptyset$

Definition

The nerve of \mathcal{U} , denoted by $N\mathcal{U}$, will be the abstract simplicial complex with vertex set A, and where a family $\{\alpha_0,\ldots,\alpha_k\}$ spans a k-simplex if and only if $U_{\alpha_0}\cap\cdots\cap U_{\alpha_k}\neq\emptyset$

Theorem

Suppose that X and U are as above, and suppose that the covering consists of open sets and is numerable. Suppose further that for all $\emptyset \neq S \subseteq A$, we have that $\bigcap_{s \in S} U_s$ is either contractible or empty. Then $N\mathcal{U}$ is homotopy equivalent to X

Definition

For any subset $V \subseteq X$ or which $X = \bigcup_{v \in V} B_{\epsilon}(v)$, one can construct the nerve of the covering $B_{\epsilon}(v)$. We will denote this construction by $\check{C}(V, \epsilon)$, and is called \check{C} ech complex attached to V and ϵ

13 / 20

Definition

Let X denote a metric space, with metric d. Then the Vietoris-Rips complex for X, attached to the parameter ϵ , denoted by $VR(X,\epsilon)$, will be the simplicial complex whose vertex set is X, and where $\{x_0,\ldots,x_k\}$ spans a k-simplex if and only if $d(x_i,x_i) \leq \epsilon$ for all $0 \leq i,j \leq k$

Theorem

If $\epsilon \leq \epsilon'$. then we have an inclusion of complexes $\check{C}(X,\epsilon) \subseteq \check{C}(X,\epsilon')$

15 / 20

Theorem

If $\epsilon \leq \epsilon'$, then we have an inclusion of complexes $\check{C}(X,\epsilon) \subseteq \check{C}(X,\epsilon')$

Definition

Let K be a finite simplicial complex, and let $K_1 \subset K_2 \subset \cdots \subset K_l = K$ be a finite sequence of nested subcomplexes of K

Figure 4: Filtered Complex

Persistent Homology

Definition

The inclusion map $K_i \to K_j$ induce linear maps $f_{i,j}: H_p(K_i) \to H_p(K_j)$ The *pth* persistent homology of K is the pair $(\{H_p(K_i)\}_{1 \le i \le l}, \{f_{i,j}\}_{1 \le i \le j \le l})$

17/20

Figure 5: Barcode

Thank You

Reference

Ghrist, R. (2008).

Barcodes: the persistent topology of data.

Bulletin of the American Mathematical Society, 45(1):61–75.

Otter, N., Porter, M. A., Tillmann, U., Grindrod, P., and Harrington, H. A. (2017).

A roadmap for the computation of persistent homology. *EPJ Data Science*, 6(1).