Criterios de convergencia

Criterio	Serie	Converge	Diverge	Comentario
Termino n-esimo	$\sum_{n=1}^{\infty} a_n$	No se evalua	$\lim_{n \to \infty} a_n \neq 0$	No sirve para demostrar convergencia
Series geometricas	$\sum_{n=1}^{\infty} ar^n$	r < 1	$ r \ge 1$	Suma: $\frac{a}{1-r}$
Series telescopicas	$\sum_{n=1}^{\infty} (b_n - b_{n+1})$	$\lim_{n \to \infty} b_n = L$	Nunca diverge	Suma: $b_1 - L$
p-series	$\sum_{n=1}^{\infty} \frac{1}{n^p}$	p > 1	$p \le 1$	Ninguno
Series alternadas	$\sum_{n=0}^{\infty} (-1)^n a_n \vee \sum_{n=0}^{\infty} (-1)^{n+1} a_n$	$a_{n+1} \le a_n$ $\lim_{n \to \infty} a_n = 0$	No se cumplen las condiciones	Resto: $ R_N \leq a_{n+1}$
Integral $(f \text{ positiva y decreciente})$	$\sum_{n=1}^{n=1} a_n$ $a_n = f(n) \ge 0$	$\int_{1}^{\infty} f(n) dn \text{ converge}$	$\int_{1}^{\infty} f(n) dn \text{ diverge}$	Resto: $R < \int_{1}^{\infty} f(n) dn$
Raiz	$\sum_{n=1}^{\infty} a_n$	$\lim_{n \to \infty} \sqrt[n]{ a_n } < 1$	$\lim_{n \to \infty} \sqrt[n]{ a_n } > 1$	Si $\lim_{n \to \infty} \sqrt[n]{ a_n } = 1$ No se puede concluir nada
Cociente	$\sum_{n=1}^{\infty} a_n$	$\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right < 1$	$\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right > 1$	$\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right = 1$ No se puede concluir nada
Comparacion directa	$\sum_{n=1}^{\infty} a_n$	$\sum_{n=1}^{\infty} b_n \text{ converge}$ $a_n \le b_n$	$\sum_{n=1}^{\infty} b_n \text{ diverge}$ $b_n \le a_n$	Ninguno
Comparacion en el limite	$\sum_{n=1}^{\infty} a_n$	$\sum_{n=1}^{\infty} b_n \text{ convergea}$ $\lim_{n \to \infty} \frac{b_n}{a_n} > 0$	$\sum_{n=1}^{\infty} b_n \text{ diverge}$ $\lim_{n \to \infty} \frac{b_n}{a_n} > 0$	Ninguno