

Schallschutzwande (1)							
Aufgabennummer: B_029							
Technologieeinsatz:		möglich □	erforderlic	h 🗵			
Schallschu	Schallschutzwände dämmen den Lärm, der von einer Straße ausgeht.						
De	· =	Maß zur Beschreibung der S mit zunehmendem Abstand v ben werden:			_		
$L_{\rho}($	$L_{\rho}(x) = 75 - 10 \cdot \lg(x)$						
x Abstand von der Schallquelle in m (x > 1 m) $L_p(x)$ Schalldruckpegel in dB im Abstand x von der Schallquelle							
 Ermitteln Sie, um wie viel Dezibel der Schalldruckpegel abnimmt, wenn die Entfernung verdoppelt wird. 							
Wi		weise mit der Funktion L_p^* nauf die berechneten Werte ae Aussage an. [1 aus 5]		– 10 ·	ln(x).		
	Die Funktionswerte des kleiner als die des Zehr	s natürlichen Logarithmus sir nerlogarithmus.	nd für <i>x</i> > 1				
		s Schalldruckpegels der Funlab als jene der Funktion L_{ρ} .	ktion L^*_{ρ}				
	Die Funktionswerte des Zehnerlogarithmus sind	s natürlichen Logarithmus un d für <i>x</i> > 1 gleich.	d des				
	Die Funktionswerte des nehmen rascher ab als	s Schalldruckpegels der Funljene der Funktion L_p .	ktion L^*_{ρ}				
	Die Funktionswerte des nehmen gleich ab wie j	s Schalldruckpegels der Funlene der Funktion L_{ρ} .	ktion <i>L*_p</i>				
mi	t dem Erwartungswert μ u	itzwänden eines bestimmten ind der Standardabweichung mittlere Länge von \bar{x} = 3 99	g σ = 3,5 mm.	Bei eir	ner Stich-		
– E	Ermitteln Sie das 98-%-Ko	onfidenzintervall für μ .					
De	r Hersteller gibt eine Läng	ge von μ = 4 000 mm an.					

– Beurteilen Sie die Angabe des Herstellers aufgrund dieses Konfidenzintervalls.

- c) Die Längen von Lärmschutzwänden eines bestimmten Herstellers sind normalverteilt mit dem Erwartungswert μ = 3 999,5 mm und der Standardabweichung σ = 3,4 mm. Lärmschutzwände mit einer Länge größer als 4 010 mm werden nicht ausgeliefert. Eine Produktion umfasst 10 000 Stück.
 - Berechnen Sie, mit welcher Anzahl von Lärmschutzwänden, die nicht ausgeliefert werden können, in dieser Produktion zu rechnen ist.
 - Ordnen Sie den beiden Abbildungen jeweils denjenigen Ausdruck aus A bis D zu, der durch die Abbildung veranschaulicht wird (X ... Länge der Lärmschutzwände in mm).
 [2 zu 4]

А	<i>P</i> (<i>X</i> ≥ 3 995)
В	$P(\mu - \sigma \leq X \leq \mu + \sigma)$
С	<i>P</i> (<i>X</i> ≤ 3 995)
D	$P(\mu - 2\sigma \le X \le \mu + 2\sigma)$

d) Die nachstehende Abbildung zeigt 2 geradlinige Schallschutzwände, die durch einen Kreisbogen ineinander übergeführt werden sollen. Die Bestimmung des Schnittpunktes P mithilfe der Funktionen y_1 und y_2 ergibt: P = (-12,842|57,878).

- Stellen Sie die Funktionsgleichungen für die Funktionen y_1 und y_2 auf.
- Berechnen Sie die Länge des Kreisbogens zwischen den Punkten A und B.

Hinweis zur Aufgabe:

Lösungen müssen der Problemstellung entsprechen und klar erkennbar sein. Ergebnisse sind mit passenden Maßeinheiten anzugeben.

Möglicher Lösungsweg

a)
$$L_{\rho}(2 \cdot x) - L_{\rho}(x) = 75 - 10 \cdot \lg(2 \cdot x) - \left(75 - 10 \cdot \lg(x)\right) = 10 \cdot \lg\left(\frac{x}{2 \cdot x}\right) = 10 \cdot \lg\left(\frac{1}{2}\right) \approx -3$$

Bei einer Verdoppelung der Entfernung nimmt der Schalldruckpegel um rund 3 dB ab.

Die Funktionswerte des Schalldruckpegels der Funktion L^*_{ρ} nehmen rascher ab als jene der Funktion L_{ρ} .	\boxtimes

b) $\bar{x} = 3998,9 \text{ mm}$ $\sigma = 3,5 \text{ mm}$

$$1 - \alpha = 0.98$$
; $\alpha = 0.02$; $1 - \frac{\alpha}{2} = 0.99$

$$\mu_{\text{un}}^{\text{ob}} = \overline{x} \pm u_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}$$

$$\mu_{\text{un}}^{\text{ob}} = 3998.9 \pm 2.326... \cdot \frac{3.5}{\sqrt{20}}$$

$$\mu_{\text{un}} = 3 997,07... \approx 3 997,0 \text{ mm}$$

$$\mu_{\text{ ob}} = 4\ 000,72... \approx 4\ 000,8\ \text{mm}$$

Konfidenzintervall für μ : 3 997,0 mm $\leq \mu \leq$ 4 000,8 mm

Aufgrund der vorliegenden Stichprobe liegt der Erwartungswert μ der Grundgesamtheit mit einer Wahrscheinlichkeit von 98 % im Bereich von 3 997,0 mm bis 4 000,8 mm.

Auf Basis einer Irrtumswahrscheinlicheit von 2 % kann die Angabe des Herstellers als richtig angesehen werden.

c) $P(X > 4010) = 1 - P(X \le 4010) = 0,00101...$

Man muss bei einer Produktion von 10000 Stück mit 10 Stück rechnen, die nicht ausgeliefert werden können.

А	<i>P</i> (<i>X</i> ≥ 3 995)
В	$P(\mu - \sigma \leq X \leq \mu + \sigma)$
С	<i>P</i> (<i>X</i> ≤ 3 995)
D	$P(\mu - 2\sigma \le X \le \mu + 2\sigma)$

y(x) in m

60

d) Funktion y_1 :

 $k = \tan(45^{\circ}) = 1$

 $57,878 = 1 \cdot (-12,842) + d$

 \Rightarrow d = 70,72

 $y_1(x) = x + 70,72$

Funktion y_2 :

 $k = -\tan(20^\circ) = -0.363...$

 $57,878 = -\tan(20^\circ) \cdot (-12,842) + d$

 \Rightarrow *d* = 53,203...

 $y_2(x) = -\tan(20^\circ) \cdot x + 53.2$

Länge des Kreisbogens: Im Punkt A schneiden sich die Funktionen $y_1(x) = x + 70,72$ und

$$y(x) = -x$$
.

Koordinaten des Punktes A = (-35,36|35,36):

$$r = \sqrt{2 \cdot 35,36^2}$$

r = 50,006... m

$$b = \frac{r \cdot \pi \cdot 65^{\circ}}{180^{\circ}}$$

 $b \approx 56,73 \text{ m}$

Klassifikation

Wesentlicher Bereich der Inhaltsdimension:

- a) 2 Algebra und Geometrie
- b) 5 Stochastik
- c) 5 Stochastik
- d) 3 Funktionale Zusammenhänge

Nebeninhaltsdimension:

- a) 3 Funktionale Zusammenhänge
- b) —
- c) —
- d) 2 Algebra und Geometrie

Wesentlicher Bereich der Handlungsdimension:

- a) B Operieren und Technologieeinsatz
- b) B Operieren und Technologieeinsatz
- c) C Interpretieren und Dokumentieren
- d) A Modellieren und Transferieren

Nebenhandlungsdimension:

- a) C Interpretieren und Dokumentieren, A Modellieren und Transferieren
- b) C Interpretieren und Dokumentieren, A Modellieren und Transferieren
- c) B Operieren und Technologieeinsatz
- d) B Operieren und Technologieeinsatz

Schwierigkeitsgrad:

Punkteanzahl:

a) mittel
 b) mittel
 c) leicht
 d) schwer
 a) 3
 b) 3
 c) 2
 d) 4

Thema: Sonstiges

Quellen: Willems, W. M. et al. (2007): Formeln und Tabellen Bauphysik. 1. Auflage. Wiesbaden: Vieweg + Teubner.

http://de.wikipedia.org/wiki/Schalldruckpegel