Problem Set 3

Problems marked (T) are for discussions in Tutorial sessions.

1. Draw and illustrate in \mathbb{R}^2 .

$$(a) \mathbf{e}_1 + \{ n\mathbf{e}_2 | n \in \mathbb{N} \}.$$

$$(b) \mathbf{e}_1 + \{ \alpha \mathbf{e}_2 | \alpha \in \mathbb{R} \}.$$

- 2. In \mathbb{R}^2 , Is $\{\alpha \mathbf{e}_1 | \alpha \in \mathbb{R}\} + \{\alpha \mathbf{e}_2 | \alpha \in \mathbb{R}\} = \mathbb{R}^2$? What about $\{\alpha \mathbf{e}_1 | \alpha \in \mathbb{R}\} + \{\alpha \begin{bmatrix} 1 \\ 1 \end{bmatrix} | \alpha \in \mathbb{R}\} = \mathbb{R}^2$?
- 3. In \mathbb{R}^3 prove that $\left\{\alpha \begin{bmatrix} 2\\1\\1 \end{bmatrix} | \alpha \in \mathbb{R} \right\} + \left\{\alpha \begin{bmatrix} 1\\1\\0 \end{bmatrix} | \alpha \in \mathbb{R} \right\} + \left\{\alpha \begin{bmatrix} 0\\1\\1 \end{bmatrix} | \alpha \in \mathbb{R} \right\} = \mathbb{R}^3$. Do you use Gauss-Jordan Elimination (GJE) method somewhere?

Let $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3$. We want to find α, β, γ s.t. $\alpha \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} + \beta \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + \gamma \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$. That is, need

to solve $\begin{bmatrix} 2 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$. We may use GJE to find the values of $\alpha = \frac{x_1 - x_2 + x_3}{2}, \beta = \frac{x_1 - x_2 + x_3}{2}$

 $x_2 - x_3, \gamma = \frac{-x_1 + x_2 + x_3}{2}$. But without doing so, we may find the determinant and conclude that the system has a unique solution. But, we will need GJE for higher order vectors.

- 4. Let L_1 and L_2 be two nonparallel lines passing through origin in \mathbb{R}^3 . What is $L_1 + L_2$?
- 5. **(T)** Fix a non-negative integer n and let $\mathbb{R}[x;n] = \left\{ \sum_{i=0}^{n} c_i x^i : c_0, c_1, \cdots, c_n \in \mathbb{R} \right\}$. Show that $\mathbb{R}[x;n]$ is a real vector space with respect to the usual addition and scalar multiplication.

Solution: For $p(x) = \sum_{i=0}^{n} a_i x^i$, $q(x) = \sum_{i=0}^{n} b_i x^i$, $r(x) = \sum_{i=0}^{n} c_i x^i$, we define

[Vector Addition:]
$$(p+q)(x) = \sum_{i=0}^{n} (a_i + b_i) x^i \in \mathbb{R}[x; n].$$
 (1)

[Scalar Multiplication:]
$$(\alpha p)(x) = \sum_{i=0}^{n} (\alpha a_i) x^i \in \mathbb{R}[x; n] \text{ for } \alpha \in \mathbb{R}.$$
 (2)

Then

i.
$$p+q=q+p$$
 as $(p+q)(x)=\sum_{i=0}^{n}(a_i+b_i)x^i=\sum_{i=0}^{n}(b_i+a_i)x^i=(q+p)(x)$.

- ii. (p+q)+r=p+(q+r) as $(a_i+b_i)+c_i=a_i+(b_i+c_i)$ for $0 \le i \le n$.
- iii. The zero polynomial, z(x) = 0, satisfies p + z = p as $a_i + 0 = a_i$ for $0 \le i \le n$.
- iv. For all $p(x) \in \mathbb{R}[x; n]$, there is $(-p)(x) := \sum_{i=0}^{n} (-a_i)x^i$ such that (p + (-p))(x) = 0 = z(x).
- v. For all $\alpha, \beta \in \mathbb{R}$ and $p(x) \in \mathbb{R}[x; n]$, $(\alpha(\beta p))(x) = \sum_{i=0}^{n} \alpha(\beta a_i) x^i = \sum_{i=0}^{n} (\alpha \beta) a_i x^i = ((\alpha \beta) p)(x)$.
- vi. For all $\alpha \in \mathbb{R}$, $\alpha(p+q) = \alpha p + \alpha q$.
- vii. For all $\alpha, \beta \in \mathbb{R}$ $(\alpha + \beta)p = \alpha p + \beta p$.
- viii. For all $p(x) \in \mathbb{R}[x; n]$, 1(p) = p as $(1p)(x) = \sum_{i=0}^{n} (1a_i)x^i = \sum_{i=0}^{n} a_i x^i = p(x)$.
- 6. Recall that $\mathbb{M}_n(\mathbb{R})$ is the real vector space of all $n \times n$ real matrices. Now, prove the following:
 - (a) $\mathbb{S} = \{A \in \mathbb{M}_n(\mathbb{R}) : A^T = A\}$ is a subspace of $\mathbb{M}_n(\mathbb{R})$.
 - (b) Fix $A \in \mathbb{M}_n(\mathbb{R})$. Define $\mathbb{U} = \{B \in \mathbb{M}_n(\mathbb{R}) : AB = BA\}$. Then, \mathbb{U} is a subspace of $\mathbb{M}_n(\mathbb{R})$.
 - (c) Let $\mathbb{W} = \{a_0I + a_1A + \cdots + a_mA^m : m \text{ is a non-negative integer}, a_i \in \mathbb{R}\}$. Then, \mathbb{W} is a subspace of \mathbb{U} .
- 7. In \mathbb{R} , define $x \oplus y = x + y 1$ and $a \odot x = a(x 1) + 1$. Show that \mathbb{R} is a real vector space with respect to these operations with additive identity 1 (note that 0 is NOT the additive identity).

Solution: Again, an easy verification of all vector space requirements.

8. (T) Which of the following are subspaces of \mathbb{R}^3 :

(a)
$$\{(x, y, z) \mid x \ge 0\},$$
 (b) $\{(x, y, z) \mid x + y = z\},$ (c) $\{(x, y, z) \mid x = y^2\}.$

Solution:

- (a) Not a subspace : -1(1,0,0) does not belong to the set.
- (b) Is a subspace.
- (c) Not a subspace : (1,1,0) + (4,2,0) is not in the set. Since the relation is non-linear, closure is a problem.
- 9. Find the condition on $a, b, c, d \in \mathbb{R}$ so that $S = \{(x, y, z) \mid ax + by + cz = d\}$ is a subspace of \mathbb{R}^3 .

Solution: d = 0. S is subspace $\Rightarrow (0,0,0) \in S \Rightarrow d = 0$.

10. (T) Show that $S = \{(x_1, x_2, x_3, x_4) : x_4 - x_3 = x_2 - x_1\} = LS(\{(1, 0, 0, -1), (0, 1, 0, 1), (0, 0, 1, 1)\})$

Solution: $(x_1, x_2, x_3, x_4) \in S \Rightarrow x_4 = -x_1 + x_2 + x_3$. Thus, $(x_1, x_2, x_3, x_4) = (x_1, x_2, x_3, -x_1 + x_2 + x_3) = x_1(1, 0, 0, -1) + x_2(0, 1, 0, 1) + x_3(0, 0, 1, 1)$.

11. (T) Let W_1 and W_2 be subspaces of a vector space V such that $W_1 \cup W_2$ is also a subspace. Prove that one of the spaces W_i , i = 1, 2 is contained in the other.

Solution: Suppose W_1 is not a subset of W_2 . To show: W_2 is a subset of W_1 .

Let $\mathbf{w}_2 \in W_2$. To show that W_2 is contained in W_1 , we need to show that $\mathbf{w}_2 \in W_1$. Since $W_1 \not\subset W_2$, we can choose $\mathbf{w}_1 \in W_1$ such that $\mathbf{w}_1 \not\in W_2$. Then $\mathbf{w}_2 - \mathbf{w}_1 \in W_1 \cup W_2$ as it is a subspace but $\mathbf{w}_2 - \mathbf{w}_1 \not\in W_2$ because then $\mathbf{w}_1 = \mathbf{w}_2 - (\mathbf{w}_2 - \mathbf{w}_1) \in W_2$. So, $\mathbf{w}_2 - \mathbf{w}_1 \in W_1 \Rightarrow \mathbf{w}_2 = (\mathbf{w}_2 - \mathbf{w}_1) + \mathbf{w}_1 \in W_1$.

12. Let $S = \{\mathbf{v_1}, \dots, \mathbf{v_n}\}$ be a subset of a real vector space V. Define **linear span** of S as

$$LS(\{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}\}) = \{c_1\mathbf{v_1} + c_2\mathbf{v_2} + \dots + c_n\mathbf{v_n} : c_1, c_2, \dots, c_n \in \mathbb{R}\},\$$

i.e., the set of all linear combinations of $\mathbf{v_1}, \dots, \mathbf{v_n}$. Then $\mathrm{LS}(\{\mathbf{v_1}, \dots, \mathbf{v_n}\})$ is a subspace of V.

Solution: If $\mathbf{u} = c_1 \mathbf{v_1} + c_2 \mathbf{v_2} + \cdots + c_n \mathbf{v_n}$ and $\mathbf{w} = d_1 \mathbf{v_1} + d_2 \mathbf{v_2} + \cdots + d_n \mathbf{v_n}$, then

$$\mathbf{u} + \mathbf{w} = (c_1 + d_1)\mathbf{v_1} + (c_2 + d_2)\mathbf{v_2} + \cdots + (c_n + d_n)\mathbf{v_n} \in \operatorname{span}(\{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}\})$$

and

$$\alpha \mathbf{u} = (\alpha c_1) \mathbf{v_1} + (\alpha c_2) \mathbf{v_2} + \cdots + (\alpha c_n) \mathbf{v_n} \in \operatorname{span}(\{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}\})$$

for $\alpha \in \mathbb{R}$. Rest is straightforward.

13. Suppose S and T are two subspaces of a vector space V. Define the sum

$$S + T = \{ \mathbf{s} + \mathbf{t} : \mathbf{s} \in S, \mathbf{t} \in T \}.$$

Show that S+T satisfies the requirements for a vector space. Moreover, $LS(S \cup T) = S+T$.

Solution: Straightforward to check all vector space requirements.

14. (T) Find all the subspaces of \mathbb{R}^2 .

Solution: $\{\mathbf{0}\}$ is a subspace of \mathbb{R}^2 . Let $W \neq \{\mathbf{0}\}$ be a subspace of \mathbb{R}^2 . Then there exists $(w_1, w_2) \in W$ with $(w_1, e_2) \neq \mathbf{0}$. If $LS(\{(w_1, w_2)\}) = W$, then W is a line through origin. If $LS(\{(w_1, w_2)\}) \subsetneq W$ then show that $W = \mathbb{R}^2$.

Let
$$(u_1, u_2) \in W \setminus LS(\{(w_1, w_2)\})$$
. So, $\begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \neq \alpha \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$ for all $\alpha \in \mathbb{R}$. So, $A = \begin{bmatrix} w_1 & u_1 \\ w_2 & u_2 \end{bmatrix}$ is

invertible. Therefore, the system $A\begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$ in the unknowns α, β has a solution for each $(x,y) \in \mathbb{R}^2$ as A is invertible.

15. **(T)** Let
$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$
, with $a_{ij} \in \mathbb{C}$. Then the 4 fundamental subspaces are:

(a) The column space of A:

$$\operatorname{col}(A) = \{A\mathbf{x} : \mathbf{x} \in \mathbb{C}^n\} = \operatorname{LS}(A[:,1], \dots, A[:,n]) = \operatorname{LS}\left(\left\{\begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix}, \dots, \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix}\right\}\right)$$

(b) The column space of A^* :

$$col(A^*) = LS(A^*[1,:],...,A^*[m,:]) = \{A^*\mathbf{x} : \mathbf{x} \in \mathbb{C}^m\}.$$

(c) The null space of A:

Null Space
$$(A) = \mathcal{N}(A) = \{ \mathbf{x} \in \mathbb{C}^n : A\mathbf{x} = \mathbf{0} \}.$$

(d) The null space of A^* :

Null Space
$$(A^*) = \mathcal{N}(A^*) = \{ \mathbf{x} \in \mathbb{C}^m : A^* \mathbf{x} = \mathbf{0} \}.$$

Important: In case $A \in \mathbb{M}_{m,n}(\mathbb{R})$, the spaces $\operatorname{col}(A^*)$ and Null Space (A^*) are called the row-space of A and the left-null space of A, respectively

Now, determine the above 4 mentioned fundamental spaces for the following matrices.

(i)
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 2 & 6 & 8 \\ 2 & 8 & 10 \end{bmatrix}$$
 (ii) $B = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 2 \\ 2 & 0 & 0 & 1 \end{bmatrix}$

(iii) Suppose $B, C \in \mathbb{M}_{m,n}(\mathbb{C})$ and $S = \operatorname{col}(B)$, $T = \operatorname{col}(C)$. Determine $M \in \mathbb{M}_{m,n}(\mathbb{C})$ such that $\operatorname{col}(M) = S + T$.

Solution: (i)
$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 2 & 6 & 8 \\ 2 & 8 & 10 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 4 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 2 \\ 0 & 0 & 0 \\ 0 & 4 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 & 3 \\ 0 & 2 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \leftarrow \text{RREF}(A). \text{ So, } \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -z \\ -z \\ z \end{bmatrix} = z \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix} \Rightarrow \mathcal{N}(A) = \text{LS} \left(\begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} \right).$$

(iii) Let $M = \begin{bmatrix} B & C \end{bmatrix} \in \mathbb{M}_{m,2n}(\mathbb{C})$. It is easy to see that if $\mathbf{u} \in \operatorname{col}(M)$ then $\mathbf{u} \in S + T$. Similarly, if $\mathbf{u} \in S + T$ then $\mathbf{u} = \mathbf{s} + \mathbf{t}$ where $\mathbf{s} \in \operatorname{col}(B)$ and $\mathbf{t} \in \operatorname{col}(C) \Rightarrow \mathbf{u} \in \operatorname{col}(M)$.

16. Construct A such that $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T \in \operatorname{col}(A)$ and $\mathcal{N}(A) = \operatorname{LS}(\begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^T)$.

Solution: Clearly, the matrix we are looking for is a 3×4 matrix with rank 3. Two such matrices are

$$\begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 1 & 1 & -3 \\ 1 & 2 & 3 & -6 \\ 1 & 4 & 9 & -14 \end{bmatrix}.$$

- 17. **(T)** Suppose A is an m by n matrix of rank r.
 - (a) If $A\mathbf{x} = \mathbf{b}$ has a solution for every right side \mathbf{b} , what is the column space of A?

Solution: There must be a pivot in every row, so r = m and so $col(A) = \mathbb{R}^m$.

(b) In part (a), what are all the relations between the numbers m, n and r?

Solution: Using (a), we know that r = m. The rank $r \leq n$. Hence $r = m \leq n$.

(c) Give a specific example of a 3 by 2 matrix A of rank 1 with first row $[2\ 5]$. Describe the column space, col(A), and the null space, N(A), completely.

Solution: Just use multiples of [2 5] for the other rows. For example, $\begin{bmatrix} 2 & 5 \\ 4 & 10 \\ 0 & 0 \end{bmatrix}$. Column space will be the line in \mathbb{R}^3 consisting of all multiples of your first column. The null space will be the line in \mathbb{R}^2 consisting of all multiples of the null space solution $\begin{bmatrix} -5/2 \\ 1 \end{bmatrix}$.

(d) Suppose the right side **b** is same as the first column in your example (part c). Find the complete solution to $A\mathbf{x} = \mathbf{b}$.

Solution: Adding the particular solution $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ to the null space solution from (c), we get the complete solution $\mathbf{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} + c \begin{bmatrix} -5/2 \\ 1 \end{bmatrix}$.

- 18. Suppose R = RREF(A), where $A = \begin{bmatrix} 1 & 2 & 1 & b \\ 2 & a & 1 & 8 \\ & (row & 3) \end{bmatrix}$ and $R = \begin{bmatrix} 1 & 2 & 0 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$.
 - (a) What can you say immediately about row 3 of A?

Solution: As $R[3,:] = [0,0,0,0], A[3,:] = \alpha A[1,:] + \beta A[2,:]$ for some $\alpha, \beta \in \mathbb{C}$.

(b) What are the numbers a and b?

Solution: After one step of elimination, A reduces to $\begin{bmatrix} 1 & 2 & 1 & b \\ 0 & a-4 & -1 & 8-2b \\ (row & 3) \end{bmatrix}$. Then comparing with R gives a=4. Now, multiplying the second row by -1 and comparing gives b=5.

(c) Describe all solutions of $R\mathbf{x} = \mathbf{0}$. Which among row spaces, column spaces and null spaces are the same for A and for R.

Solution: Setting x_2 and x_4 as free variables gives the solution of $R\mathbf{x} = \mathbf{0}$ as

$$\mathbf{x} = c \begin{bmatrix} -2\\1\\0\\0 \end{bmatrix} + d \begin{bmatrix} -3\\0\\-2\\1 \end{bmatrix}.$$

The row space and the null space are always the same for A and R whereas column space is different (row operations preserve row space but change column space).

19. Let
$$A \in \mathbb{M}_n(\mathbb{R})$$
. Show that $\mathcal{N}(A) \subset \mathcal{N}(A^2) \subset \mathcal{N}(A^3) \cdots$. What if $A = \begin{bmatrix} 0 & 1 & -1 & 7 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$?

Solution: Let $\mathbf{x} \in \mathcal{N}(A)$. Then $A\mathbf{x} = \mathbf{0} \Rightarrow A^2\mathbf{x} = A(A\mathbf{x}) = \mathbf{0}$. Thus $\mathbf{x} \in \mathcal{N}(A^2)$. In general, it can be shown that $\mathcal{N}(A^n) = \mathcal{N}(A^{n+1}) = \dots$.

20. (T) Let
$$A \in \mathbb{M}_{m,n}(\mathbb{R})$$
. If $RREF(A) = \begin{pmatrix} I_r & F \\ 0 & 0 \end{pmatrix}$ then describe $col(A)$ and $\mathcal{N}(A)$.

Solution: $\operatorname{col}(A)$ is the space of all vectors whose last m-r coordinates are zero. This is clear since $\operatorname{rank}(A) = r$. Further, the first r columns of A are independent as $\operatorname{RREF}(A)$ has I_r in its first block. Denoting by f_{ij} the entry in the the (i,j) position in F. Then $\mathcal{N}(A)$ is the space of all linear combinations of the n-r vectors

$$\begin{bmatrix} -f_{11} \\ -f_{21} \\ \vdots \\ -f_{21} \\ \vdots \\ 0 \end{bmatrix}, \begin{bmatrix} -f_{12} \\ -f_{22} \\ \vdots \\ 0 \end{bmatrix}, \dots, \begin{bmatrix} -f_{1(n-r)} \\ -f_{2(n-r)} \\ \vdots \\ 0 \end{bmatrix}, \dots, \begin{bmatrix} -f_{1(n-r)} \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

Clearly, these vectors are linearly independent. Thus $\dim(\mathcal{N}(A)) = n - r$.

21. **(T)** Let $W_1 = \operatorname{span} \left\{ \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^T, \begin{bmatrix} -1 & 1 & 0 \end{bmatrix}^T \right\}$ and $W_2 = \operatorname{span} \left\{ \begin{bmatrix} 1 & 0 & 2 \end{bmatrix}^T, \begin{bmatrix} -1 & 0 & 4 \end{bmatrix}^T \right\}$. Show that $W_1 + W_2 = \mathbb{R}^3$. Give an example of a vector $\mathbf{v} \in \mathbb{R}^3$ such that \mathbf{v} can be written in two different ways in the form $\mathbf{v} = \mathbf{v}_1 + \mathbf{v}_2$, where $\mathbf{v}_1 \in W_1, \mathbf{v}_2 \in W_2$.

Solution:
$$\left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} \right\} \subseteq W_1 + W_2 \text{ and is linearly independent which means } W_1 + W_2 = \mathbb{R}^3. \text{ Since } \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} + \frac{1}{6} \begin{bmatrix} -1 \\ 0 \\ 4 \end{bmatrix} \in W_2, \text{ we have } \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \in W_1 + W_2. \text{ Note that } \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} \in W_1 \text{ and } \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \frac{5}{6} \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} - \frac{1}{6} \begin{bmatrix} -1 \\ 0 \\ 4 \end{bmatrix} \in W_2, \text{ so }$$

$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \in W_1 + W_2.$$