Statystyka dla Inżynierów Laboratorium 7

Rozkład Normalny oraz Centralne Twierdzenie Graniczne

- 1. Wzrost *X* ma rozkład normalny z średnią 170cm a wariancją 144cm².
 - a) Wyznaczyć i) (X < 164), ii) P(X > 188), iii) P(158 < X < 185).
 - b) Wyznaczyć wzrost k, taki że 15% populacji ma wzrost większy od k.
- 2. (Generowanie liczb z rozkładu normalnego standardowego)
 - i) Za pomocą odpowiedniego programu wylosować 10 000 realizacji następującej zmiennej losowej ${\it Z}$

$$Z = \cos(2\pi U_1) \sqrt{-2 \mathrm{ln}(U_2)} \text{, gdzie } U_1, \ U_2 \sim U \big[0,1 \big] \ .$$

- ii) Sporządzić estymator jądrowy gęstości dla zmiennej *Z.* Porównać to z gęstością rozkładu normalnego standardowego.
- iii) Niech Y=100+15Z. Sporządzić estymator jądrowy gęstości dla zmiennej Y. Porównać to z gęstością rozkładu normalnego o średniej Y00 oraz odchyleniu Y15.
- 3. (Rozkład normalny standardowy)

Wzrost X ma rozkład normalny z średnią 170cm a odchyleniem standardowym 12cm.

- i) Za pomocą generatora wbudowanego w R wygenerować *n*=2000 realizacji z tego rozkładu.
- ii) Niech $Z = \frac{X 170}{12}$. Sporządzić estymator jądrowy gęstości dla zmiennej Z. Porównać to z gęstością rozkładu normalnego standardowego.
- iii) Powtórzyć podpunkty i)-ii) dla *n*=500, *n*=100.
- 4. (Centralne twierdzenie graniczne): Niech X_i ma rozkład wykładniczy z parametrem intensywności $\lambda=0.5$ (wartość oczekiwana oraz odchylenie standardowe $\mu=\sigma=1/\lambda$).

Niech
$$S_n = X_1 + X_2 + ... + X_n$$
.

- i) Za pomocą generatora wbudowanego w R wygenerować 1000 realizacji z każdego z następujących zmiennych: a) S_1 b) S_{20} c) S_{200} . Dla każdej realizacji wyznaczyć Z_n , relatywne odchylenia od średniej, $Z_n = \frac{S_n E(S_n)}{\sigma(S_n)}, \text{ (czyli } Z_n \text{ mierzy ile odchyleń standardowych realizacja się różni od wartości oczekiwanej).}$
- ii) Porównać estymator jądrowy dla realizacji zmiennej Z_n z gęstości rozkładu normalnego standardowego, $n \in \{1,20,200\}$.
- 5. Za pomocą generatora w R wygenerować 10000 realizacji z rozkładu Bin(n,p) dla a) $n=30, p=0.5,\ b)\ n=1000, p=0.5,\ c)\ n=30, p=0.05\ ,\ d)\ n=1000, n=0.05$. W każdym przypadku za pomocą odpowiedniego wykresu porównać relatywne frekwencje realizacji o wartości $x\in\{0,1,2,...,2np\}$ z gęstością rozkładu normalnego o średniej np oraz odchyleniu standardowym $\sqrt{np(1-p)}$ w tych punktach.