Diseño mecánico drone multirotor USB

Clavijo Leguizamon Juan Sebastian Universidad de San Buenaventura Bogotá, Colombia jsclavijol@academia.usbbog.edu.co Diego Felipe López Poveda Universidad de San Buenaventura Bogotá, Colombia dflopezp@academia.usbbog.edu.co Gonzalez Cardozo Esaú Jose Universidad de San Buenaventura Bogotá, Colombia ejgonzalez@academia.usbbog.edu.co

I. INTRODUCCIÓN

El diseño de drones involucra una variedad de cálculos que permiten garantizar que el vehículo aéreo no tripulado funcione de manera segura y eficiente. El desarrollo de este documento se concentrará en los cálculos a detalle del diseño mecánico, teniendo en cuenta las teorías y conceptos aerodinámicos correspondientes para determinar factores como las potencias requeridas para el correcto comportamiento de la aeronave en cada una de las fases del vuelo. Los cálculos se realizarán para un drone multirotor con el que cuenta la universidad de San Buenaventura con el objetivo de determinar si dicha aeronave tiene la capacidad de efectuar un vuelo de manera segura y eficiente.

II. DESARROLLO

A. Condiciones de diseño requeridas

- Carga
- Autonomía
- Altura máxima de vuelo
- Ubicación
- Radio de las hélices

B. Análisis aerodinámico

Para el desarrollo de los cálculos aerodinámicos es necesario inicialmente determinar la potencia requerida para cumplir cada una de las distintas condiciones de vuelo como lo son: vuelo a punto fijo, vuelo en ascenso, vuelo en descenso y vuelo en avance, estos cálculos se pueden realizar siguiendo dos teorías diferentes, por un lado, la teoría de cantidad de movimiento (TCM) y por otro la teoría de elemento de la hélice (TEP). Para el obtener los datos para la aeronave requerida se aplicará la TCM usando factores de corrección que permitan obtener datos más cercanos a la realidad.

Para el desarrollo según la TCM se deben tener en cuenta algunas consideraciones como:

- Consideración del movimiento en estado estacionario.
- No existe la transferencia de calor debido a que es un proceso de tipo adiabático.
- Consideración del movimiento uniforme y unidireccional.
- Fluido incompresible, se considera densidad constante.
- Efectos de viscosidad despreciables.

Para obtener los resultados presentados en la tabla Fue necesario realizar el proceso presentado a continuación

Inicialmente se definen los parámetros iniciales y de operación de la aeronave presentados en la *tabla 1*.

Altura	h	2800	m
Dens. 0	$\rho _{-}0$	1,225	
Temp. 0	T_0	288,15	C°
Const	R	0,0065	
Tracción	T	16,35	N
Radio	r	0,2413	m
Pala			
V. Ascen	V_c	6	m/s
V. Desce	V_cd	-3	m/s
#Palas	b	2	m
Cuerda	c	0,06	m
Masa	m	1,6667	kg
Gravedad	g	9,81	m/s^2
Diametro	D	0,4826	m
Vel.	ω	544	rad/s
Angul			
CL	Cl	5,73	
	$\delta_{_}0$	0,0085	
	δ_2	0,263	

Además, es importante tener en cuenta la nomenclatura que se utilizara en el desarrollo la cual se presenta en la *tabla 2*.

			Velocidad
h	Altura	v_i	indicada de ascenso
$ ho_0$	Densidad al nivel del mar	v_{i0}	Velocidad inducida de vuelo en punto fijo
T_0	Temperatura al nivel del mar	C_T	Coeficiente de tracción
T	Tracción	C _{P00}	Coeficiente de potencia parásita
r	Radio Pala	θ_{00}	Paso colectivo para vuelo en punto fijo
v_c	Velocidad de ascenso	P_{iC}	Potencia de vuelo en ascenso corregida
v_{cd}	Velocidad de descenso	C_{Po}	Coeficiente de potencia

			parásita para ascenso
m	Masa	P_{i0}	Potencia requerida para vuelo en punto fijo
g	Gravedad	P_{i0C}	Potencia corregida para vuelo en punto fijo
D	Diámetro	А	Área de influencia de la hélice
ω	Velocidad Angular	FM	Factor de mérito para vuelo en ascenso
$c_{p_{in}}$	Coeficiente de potencia parasita vuelo en punto fijo	FM0	Factor de mérito para vuelo en punto fijo
C_{Pi}	Coeficiente de potencia parasita vuelo en ascenso	C_{Pi0}	Coeficiente de potencia inducida para vuelo en punto fijo
λ_i	Coeficiente de velocidad indicada normal	λ_{i0}	Coeficiente de velocidad inducida para vuelo en punto fijo

También es importante conocer los pesos de la aeronave que se tuvieron en cuenta los cuales se presentan en la *tabla 3*.

Ítem	Peso [kg]	Unidades	Total[kg]
Estructura	1.02	1	1.02
Motor	0.148	6	0.888
Hélice	0.04	6	0.24
Aviónica	0.8	1	0.8
Carga Útil- Baterías	7	1	7
Total			10

Posteriormente se calcula la densidad del aire dependiendo la altitud a la que operar la aeronave aplicando la *ecuación I*.

$$\rho(h) = \rho_0 \cdot \left(\frac{T_0 + \lambda \cdot h}{T_0}\right)^{\frac{g}{R\lambda} - 1}$$
Ecuación I.

Para obtener el resultado de potencia para vuelo en un punto fijo se aplica la *ecuación* 2.

$$P_{i0} = Tv_{i0}$$

Ecuación 2.

$$v_{i0} = \sqrt{\frac{T}{2\rho A}}$$
Founción 3

Teniendo en cuenta que el método TCM no considera algunos parámetros se aplica el siguiente factor de corrección que permite obtener valores más acercados.

Por lo que para determinar los valores corregidos tanto de la potencia requerida en punto fijo se aplica la *ecuación 4*.

$$\begin{split} P_{i0C} &= \frac{P_{i0}}{FM0} \\ Ecuación~4. \end{split}$$

$$FM0 = \frac{\frac{C_T^{\frac{3}{2}}}{\sqrt{2}}}{C_{Pi0} + C_{P00}}$$
Ecuación 5.

$$c_{p_{i0}} = rac{C_T^{rac{3}{2}}}{\sqrt{2}}$$

Ecuación 6.

$$C_T = \frac{4mg}{\rho \pi D^2 (\omega R)^2}$$
 Ecuación 7.

$$\begin{split} C_{P00} &= \frac{\sigma \delta_0}{8} \left[1 + \frac{\delta_2}{\delta_0} \left(\theta_{00}^2 - \frac{8}{3} \lambda_{i0} \theta_{00} + 2 \lambda_{i0}^2 \right) \right] \\ &\quad Ecuación~8. \end{split}$$

$$\lambda_{i0} = \frac{v_{i0}}{\omega R}$$
Ecuación 9.

$$\theta_{00} = \frac{6C_T}{\sigma c_L} + \frac{3}{2} \sqrt{\frac{C_T}{2}}$$
 Ecuación 10.

A continuación, se realiza el cálculo de la potencia en vuelo axial ascendente aplicando la *ecuación 11*.

$$P_i = T(v_c + v_i)$$
Ecuación 11.

$$\begin{aligned} v_i = & \left(-\frac{1}{2} \left(\frac{v_i}{v_{i0}} \right) + \sqrt{\frac{1}{4} \left(\frac{v_c}{v_i} \right)^2 + 1} \right) v_{i0} \\ & Ecuación \ 12. \end{aligned}$$

De la misma manera se debe realizar una corrección aplicando la *ecuación 13*.

$$P_{iC} = \frac{P_i}{FM}$$
Ecuación 13.

$$FM = \frac{\frac{C_T^{\frac{3}{2}}}{\sqrt{2}}}{C_{Pi} + C_{Po}}$$

$$Ecuación 14.$$

$$C_{Pi} = \lambda_i C_T$$

Ecuación 15.

$$\lambda_i = \frac{v_c + v_i}{\omega R}$$
Ecuación 16.

$$C_{P0} = \frac{\sigma \delta_0}{8} \left[1 + \frac{\delta_2}{\delta_0} \left(\theta_0^2 - \frac{8}{3} \lambda_i \theta_0 + 2 \lambda_i^2 \right) \right]$$
Ecuación 17.

$$\theta_0 = \frac{6C_T}{\sigma c_L} + \frac{3}{2}\lambda_i$$
Equation 18

Finalmente se calcula la potencia requerida para avance con la *ecuación 19*.

$$P_a = 2\rho(\pi r^2) \cdot v_i \cdot \sqrt{(v_a \cos \alpha_r)^2 + ((v_a \sin \alpha_r)^2 + v_i)^2} + (v_a \sin \alpha_r + v_i)$$
Frunction 19

Se asume una velocidad de avance de 4 m/s teniendo en cuenta que aeronaves de características similares manejas esta velocidad.

Al aplicar los pasos presentados anteriormente se obtienen los resultados presentados en la tabla

Resultados			
Pototencia punto fijo	279,211	W	
Potencia ascenso	373,132	W	
Potencia avance	371,56	W	

Se conoce que para este tipo de drones es común usar baterías de 22.2 v por lo que se propone la utilización de una batería Li-Po SKU CP-25C-22000-6S que tiene un peso unitario de 2.3 kg.

Apartir de la ley de ohm se obtienen los valores de corriente para cada una de las fases de vuelo obteniendo los resultados presentados en la tabla

Resultados			
Corriente punto fijo	12.57	A	
Corriente ascenso	16.8	A	
Corriente avance	16.73	A	

Se asume un ciclo de operación cuando se opera el 30% del tiempo en ascenso, el 40% en avance y el 30% restante en un punto fijo por lo que con los datos obtenidos anteriormente se realiza el cálculo que permite determinar la cantidad A que requiere la aeronave para operar una hora usando la *ecuación* 20.

$$c_r = n_r [0.4h \cdot i_{av} + 0.3h \cdot i_i + 0.3h \cdot i_{i0}] \eta$$
Ecuación 20.

Obteniendo un valor para corriente requerida de para una hora de operación es de 106.9707 A por lo que si se tiene en cuenta que cada batería posee una capacidad de 22A y un peso de 2.3 kg Se podrían instalar hasta 3 baterías en el drone si se tiene en cuenta la carga útil que se planteó en la *tabla 3.* y estos parámetros le darían una autonomía de 0.61699 horas lo equivalente a 37 minutos de autonomía.

III. CONCLUSIONES

El resultado de autonomía obtenido solo aplica para la condición de vuelo propuesta y con un peso de despegue de 10 kg además en condiciones atmosféricas como las planteadas que son aproximadamente las que se presentan en Bogotá.

Si se quisiera aumentar la autonomía del drone seria necesario aplicar alguna de las siguientes opciones:

- Conseguir una batería de las mismas características y menos peso
- Aumentar el % de tiempo que la aeronave permanece en un punto fijo

Se consideraron aspectos aerodinámicos del perfil de la hélice considerándolo como un perfil NACA

Es necesario realizar la corrección pertinente usando el factor de mérito con la finalidad de que los valores determinados sean mas cercanos a la realidad.

Se podría realizar un modelo de iteración que permita determinar la mejor configuración para la aeronave en donde se pueda maximizar la autonomía.

REFERENCIAS

Orna , J., & Davila, P. (2015, Abril). Diseño y construcción de un hexacoptero de monitoreo.

Quito.

Serrano, C., & Perez, O. (n.d.). Análisis, diseño estructural y construcción de un dron para la detección de minas antipersona. Cataluya.