Chapitre 12

Table des matières

Exercice 3	1
Exercice 2	1
Exercice 6	2
Exercice 7	2
Exercice 12	2
Exercice 19	3
Exercice 20	4
Exercice 10	4
Evergice 15	5

Exercice 3

Soit $f: \mathbb{C}_* \to \mathbb{R}_*$ un isomorphisme. $i^2 = -1$ donc $f(i^2) = f(-1)$ donc $f(i)^2 = f(-1)$ $(-1)^2 = 1$ donc $f\left((-1)^2\right) = f(1) = 1$ donc $f(-1)^2 = 1$ donc $f(-1) = \pm 1$ Or, $f(-1) = 1 \iff f(-1) = f(1) \iff -1 = 1$: une contradiction Donc, $\underbrace{f(i)^2}_{>0} = -1$ une contradiction aussi

Exercice 2

 $1. \ \ ``i \implies ii"$

$$\forall a, b \in G, (ab)^2 = abab$$
$$= aabb$$
$$= a^2b^2$$

" $ii \implies i$ "

$$\forall (a,b) \in G^2, abab = a^2b^2$$

$$\operatorname{donc} bab = ab^2$$

$$\operatorname{donc} ba = ab$$

' $\implies iii$ "

$$\forall a, b \in G, (a, b)^{-1} = b^{-1}a^{-1} = a^{-1}b^{-1}$$

" $iii \implies i$ "

$$\forall a, b \in G, ab = (b^{-1}a^{-1})^{-1} = (b^{-1})^{-1} = ba$$

2. Soit $a, b \in G$

$$-\ (a,b)^2=e$$

$$-\ a^2b^2=e\cdot e=e$$
 Donc, $(a,b)^2=a^2b^2$ donc G est abélien

Exercice 6

$$\langle 1 \rangle = \mathbb{Z}$$
 à prouver avec $\mathbb{Z} \subset \langle 1 \rangle \subset \mathbb{Z}$

$$\langle 2 \rangle = 2\mathbb{Z}$$

Exercice 7

Soit $f:(\mathbb{Q},+)\to(\mathbb{Q}_*,\times)$ un isomorphisme.

On pose

$$\begin{cases} a = f^{-1}(2) \in \mathbb{Q} \\ b = \frac{a}{2} \in \mathbb{Q} \end{cases}$$

Domme
$$a=2b,$$
 on a $2=f(a)=f(b+b)=f(b)\times f(b)=f(b)^2$
Donc, $f(b)=\pm\sqrt{2}.$ Or, $f(b)\in\mathbb{Q}_*.$ 4

Exercice 12

 $G \cap \mathbb{R}_*^+ \neq \varnothing$ minoré par 0 doncaexiste

1. $a=\min(G\cap\mathbb{R}^+_*)$. On adapte l'exercice 5. Soit $g\in G$ On pose $q=\left\lfloor\frac{g}{a}\right\rfloor\in\mathbb{Z}$ et $r=g-qa\in G$

On pose
$$q = \left| \frac{g}{g} \right| \in \mathbb{Z}$$
 et $r = g - qa \in G$

Or,
$$q \leqslant \frac{g}{r}$$
 donc $aq \leqslant g$ donc $r \geqslant 0$

Or,
$$q \leqslant \frac{g}{a}$$
 donc $aq \leqslant g$ donc $r \geqslant 0$

$$\frac{g}{a} < q + 1 \text{ donc } g < aq + a \text{ donc } r < a$$

a Si
$$r > 0$$
, alors
$$\begin{cases} r \in G \cap \mathbb{R}_*^+ \\ r < a \leqslant r : \text{une contradiction } \notin f \end{cases}$$
 Donc $f = 0$ donc $f = 0$ donc $f = 0$ donc $f \in \mathbb{Z}$ donc $f \in \mathbb{Z}$

Donc
$$r = 0$$
 donc $q = aq$ avec $q \in \mathbb{Z}$ donc $q \in a\mathbb{Z}$

Donc,
$$G \subset a\mathbb{Z}$$

$$a \in G$$
donc $a \mathbb{Z} \subset G$

Donc
$$G = a\mathbb{Z}$$

2. Soit $g \in G \cap \mathbb{R}_*^+$. Comme $a \notin (G \cap \mathbb{R}_*^+), g \neq a$

Or, $g \geqslant a$ donc g > a donc g ne minore pas $G \cap \mathbb{R}_*^+$ donc il existe $g_1 \in G \cap \mathbb{R}_*^+$ tel que

De cette façon, on fabrique une suite (g_n) strictement décroissante minorée par a. Donc (g_n) converge. On pose $\ell = \lim_{n \to +\infty} g_n$

Donc
$$\underbrace{g_{n+1} - g_n}_{\in G} \xrightarrow[n \to +\infty]{} \ell - \ell = 0$$

Donc $\underbrace{g_{n+1} - g_n}_{\in G} \xrightarrow[n \to +\infty]{n \to +\infty} \ell \stackrel{n \to +\infty}{-\ell = 0}$ On vient de trouver une suite $(g_{n+1} - g_n)_{n \in \mathbb{N}_*}$ de G qui converge vers 0. Donc a = 0Soit I =]a, b[et $g \in G$ tel que 0 < g < b - a

On pose
$$n = \left\lfloor \frac{a}{g} \right\rfloor$$
. On a donc

$$n \leqslant \frac{a}{q} < n+1$$

donc
$$ng \leqslant a < g(n+1)$$
.

$$g(n+1) = ng + g \leqslant a + g < a+b-a < b$$

donc
$$(n+1) \in]a, b[\cap G$$

Exercice 19

Soit $a \in A \setminus \{0\}$

$$f:A\longrightarrow A$$

$$x \longmapsto ax$$

 $1 \in \operatorname{Im}(f)$?

— Soient $x, y \in A$

$$f(x+y) = a(x+y)ax + ay = f(x) + f(y)$$

donc f est un endomorphisme de (A, +)

Soit $x \in A$

$$\begin{aligned} x \in \mathrm{Ker}(f) &\iff f(x) = 0 \\ &\iff ax = 0 \\ &\iff a = 0 \text{ ou } x = 0 \end{aligned}$$

$$\iff x = 0$$

 $Ker(f) = \{0\}$ donc f est injective.

Comme A est fini, f est bijective donc $\text{Im} = A \ni 1$

Exercice 20

<u>Analyse</u> : Soit $\mathbb{K} = (\{0,1,a,b\}\,,+,\times)$ un corps à 4 éléments.

+	0	1	a	b
0	0	1	a	b
1	1	b 0	0	a
a	a	0	b 1	1
b	b	a	1	0

×	0	1	a	b
0	0	0	0	0
1	0	1	a	b
a	0	a	b	1
b	0	b	1	a

$$a^{2} = b \neq 1$$

$$b^{2} = a \neq 1$$

$$\implies -1 \notin \{0, a, b\}$$

$$\implies -1 = 1$$

$$\implies 1 + 1 = 0$$

$$a + a = a(1+1)$$
$$= a \times 0$$
$$= 0$$

Donc, $\mathbb{K} = \left\{0, 1, a, a^{-1}\right\}$: le sous-corps engendré par a

+	0	1	a	a^{-1}
0	0	1	a	a^{-1}
1	1	0	a^{-1}	a
a	a	a^{-1}	0	1
a^{-1}	a^{-1}	a	1	0

×	0	1	a	a^{-1}
0	0	0	0	0
1	0	1	a	a^{-1}
a	0	a	a^{-1}	1
a^{-1}	0	a^{-1}	1	a

Synthèse : Il faut vérifier que

- + est associative
 × est associative
 la distributivité

Exercice 10

$$\mathbb{Z}[i] = \{a + ib \mid (a, b) \in \mathbb{Z}^2\}$$

—
$$\mathbb{Z}[i] \subset \mathbb{C}$$
 — Soient $u, v \in \mathbb{Z}[i]$. On pose $u = a + ib$ et $v = c + id$ avec $(a, b, c, d) \in \mathbb{Z}^4$.

$$\begin{split} u+v &= \underbrace{(a+c)}_{\in \mathbb{Z}} + i \underbrace{(b+d)}_{\in \mathbb{Z}} \in \mathbb{Z}[i] \\ uv &= \underbrace{(ac-bd)}_{\in \mathbb{Z}} + i \underbrace{(ad+bc)}_{\in \mathbb{Z}} \in \mathbb{Z}[i] \end{split}$$

$$\begin{aligned} -u &= -a - ib \in \mathbb{Z}[i] \\ 0 &= 0 + i \times 0 \in \mathbb{Z}[i]1 \end{aligned} = 1 + i \times 0 \in \mathbb{Z}[i]$$

— Soit
$$u \in \mathbb{Z}[i]^{\times}$$
. On sait qu'il existe $v \in \mathbb{Z}[i]$ tel que $uv = 1$. Donc, $|u|^2 |v|^2 = |uv|^2 = 1^2 = 1$ Comme $u \in \mathbb{Z}[i]$, $|u|^2 = \mathfrak{Re}(u)^2 + \mathfrak{Im}(u)^2 \in \mathbb{N}$ De même, $|v|^2 \in \mathbb{N}$ Donc, $|u|^2 = 1$. On pose $u = a + ib$, $(a, b) \in \mathbb{Z}^2$. On a $a^2 + b^2 = 1$

Comme
$$u \in \mathbb{Z}[i], |u|^2 = \mathfrak{Re}(u)^2 + \mathfrak{Im}(u)^2 \in \mathbb{N}$$

On pose
$$u = a + ib, (a, b) \in \mathbb{Z}^2$$
. On a $a^2 + b^2 = 1$

On pose
$$u = a + ib$$
, $(a, b) \in \mathbb{Z}^2$. On a $a^2 + donc \begin{cases} 0 \le a^2 \le 1 \\ 0 \le b^2 \le 1 \end{cases}$
Donc,
$$\begin{cases} a^2 \in \{0, 1\} \\ b^2 \in \{0, 1\} \\ a^2 + b^2 = 1 \end{cases}$$
Donc, $u \in \{\pm i, \pm 1\}$

$$1^{-1} = 1 \in \mathbb{Z}[i]$$
$$(-1)^{-1} = -1 \in \mathbb{Z}[i]$$
$$i^{-1} = -i \in \mathbb{Z}[i]$$
$$(-i)^{-1} = i \in \mathbb{Z}[i]$$

Autre méthode $u \in \mathbb{Z}[i] \setminus \{0\}$. u = a + ib avec $a, b \in \mathbb{Z}$.

$$\frac{1}{u} \in \mathbb{Z}[i] \iff \frac{1}{a+ib} \in \mathbb{Z}[i]$$

$$\iff \frac{a-ib}{a^2-b^2} \in \mathbb{Z}[i]$$

$$\iff \begin{cases} \frac{a}{a^2+b^2} \in \mathbb{Z} \\ \frac{-b}{a^2+b^2} \in \mathbb{Z} \end{cases} \iff \begin{cases} a^2+b^2 \mid a \\ a^2+b^2 \mid b \end{cases}$$

$$\implies \begin{cases} a^2+b^2 \leqslant |a| \\ a^2+b^2 \leqslant |b| \end{cases} \implies \begin{cases} a \in \{0,1,-1\} \\ b \in \{0,1,-1\} \\ a^2+b^2 = 1 \end{cases}$$

Exercice 15

 $f:\mathbb{C}\longrightarrow\mathbb{C}$ morphisme d'anneaux $f_{\mathbb{R}}=\mathrm{id}_{\mathbb{R}}$ Soit $z\in\mathbb{C}.$ On pose $z=a+ib,\,(a,b)\in\mathbb{R}^2$

$$f(z) = f(a+ib)$$

$$= f(a) + f(ib)$$

$$= a + f(i)f(b)$$

$$= a + bf(i)$$

$$i^2=-1$$
donc $f\left(i^2\right)=f(-1)=-1$ donc $f(i)^2=-1$ donc $f(i)\in\{i,-i\}$ Donc $f\in\{\mathrm{id}_{\mathbb C},z\mapsto\overline{z}\}$