Import Required Libraries

```
In [1]: import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        from sklearn.model_selection import train_test_split
        from sklearn.linear_model import LogisticRegression
        from sklearn.svm import SVC
        from sklearn.neighbors import KNeighborsClassifier
        from sklearn.tree import DecisionTreeClassifier
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.ensemble import GradientBoostingClassifier
        from sklearn.metrics import accuracy_score
        from sklearn.metrics import precision_score
        from sklearn.metrics import recall_score
        from sklearn.metrics import f1_score
        import pickle
In [2]: import warnings
        warnings.filterwarnings('ignore')
```

Reading The Dataset

```
In [3]: df = pd.read_csv('C:\\Users\\prasa\\VsCode\\Campus Placement Predictor Weba
```

The Shape Of Data

```
In [4]: df.shape
Out[4]: (2966, 8)
In [5]: print('Number Of Rows : ',df.shape[0])
    print('Number Of Columns : ',df.shape[1])

    Number Of Rows : 2966
    Number Of Columns : 8
```

The First 5 Rows Of Dataset

In [6]: df.head()

Out[6]:

	Age	Gender	Stream	Internships	CGPA	Hostel	HistoryOfBacklogs	PlacedOrNot
0	22	Male	Electronics And Communication	1	8	1	1	1
1	21	Female	Computer Science	0	7	1	1	1
2	22	Female	Information Technology	1	6	0	0	1
3	21	Male	Information Technology	0	8	0	1	1
4	22	Male	Mechanical	0	8	1	0	1

The Last 5 Rows Of Dataset

In [7]: df.tail()

Out[7]:

	Age	Gender	Stream	Internships	CGPA	Hostel	HistoryOfBacklogs	PlacedOrNot
2961	23	Male	Information Technology	0	7	0	0	0
2962	23	Male	Mechanical	1	7	1	0	0
2963	22	Male	Information Technology	1	7	0	0	0
2964	22	Male	Computer Science	1	7	0	0	0
2965	23	Male	Civil	0	8	0	0	1

5 Rows Of The Dataset At Random

In [8]: df.sample(5)

Out[8]:

	Age	Gender	Stream	Internships	CGPA	Hostel	HistoryOfBacklogs	PlacedOrN
1886	24	Male	Electronics And Communication	0	6	0	0	
2758	21	Male	Civil	0	8	0	0	
1986	19	Male	Electronics And Communication	0	8	0	0	
1798	22	Male	Computer Science	0	6	0	1	
1322	24	Male	Electrical	1	7	0	0	

The Datatype Of Columns That Are In The Dataset

```
In [9]: df.dtypes
Out[9]: Age
                            int64
       Gender
                           object
                           object
        Stream
        Internships
                           int64
       CGPA
                            int64
       Hostel
                           int64
       HistoryOfBacklogs int64
       PlacedOrNot
                            int64
        dtype: object
```

The Detailed Information Of The Features In Dataset

```
In [10]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2966 entries, 0 to 2965
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	Age	2966 non-null	int64
1	Gender	2966 non-null	object
2	Stream	2966 non-null	object
3	Internships	2966 non-null	int64
4	CGPA	2966 non-null	int64
5	Hostel	2966 non-null	int64
6	HistoryOfBacklogs	2966 non-null	int64
7	PlacedOrNot	2966 non-null	int64

dtypes: int64(6), object(2)
memory usage: 185.5+ KB

In [11]: df.isnull()

Out[11]:

	Age	Gender	Stream	Internships	CGPA	Hostel	HistoryOfBacklogs	PlacedOrNot
0	False	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False	False
3	False	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False	False
2961	False	False	False	False	False	False	False	False
2962	False	False	False	False	False	False	False	False
2963	False	False	False	False	False	False	False	False
2964	False	False	False	False	False	False	False	False
2965	False	False	False	False	False	False	False	False

2966 rows × 8 columns

In [12]: df.isnull().sum()

Out[12]: Age

Age 0
Gender 0
Stream 0
Internships 0
CGPA 0
Hostel 0
HistoryOfBacklogs 0
PlacedOrNot 0

dtype: int64

Overall Statistics About The Dataset

In [13]: df.describe()

Out[13]:

	Age	Internships	CGPA	Hostel	HistoryOfBacklogs	PlacedOrNot
count	2966.000000	2966.000000	2966.000000	2966.000000	2966.000000	2966.000000
mean	21.485840	0.703641	7.073837	0.269049	0.192178	0.552596
std	1.324933	0.740197	0.967748	0.443540	0.394079	0.497310
min	19.000000	0.000000	5.000000	0.000000	0.000000	0.000000
25%	21.000000	0.000000	6.000000	0.000000	0.000000	0.000000
50%	21.000000	1.000000	7.000000	0.000000	0.000000	1.000000
75%	22.000000	1.000000	8.000000	1.000000	0.000000	1.000000
max	30.000000	3.000000	9.000000	1.000000	1.000000	1.000000

Exploratory Data Analysis (EDA)

```
In [14]: df.columns
Out[14]: Index(['Age', 'Gender', 'Stream', 'Internships', 'CGPA', 'Hostel',
                'HistoryOfBacklogs', 'PlacedOrNot'],
               dtype='object')
In [15]: | df['Age'].unique()
Out[15]: array([22, 21, 23, 24, 28, 30, 25, 26, 20, 19, 29], dtype=int64)
In [16]: df['Gender'].unique()
Out[16]: array(['Male', 'Female'], dtype=object)
In [17]: |df['Stream'].unique()
Out[17]: array(['Electronics And Communication', 'Computer Science',
                'Information Technology', 'Mechanical', 'Electrical', 'Civil'],
               dtype=object)
In [18]: df['Internships'].unique()
Out[18]: array([1, 0, 2, 3], dtype=int64)
In [19]: df['CGPA'].unique()
Out[19]: array([8, 7, 6, 9, 5], dtype=int64)
In [20]: df['Hostel'].unique()
Out[20]: array([1, 0], dtype=int64)
In [21]: df['HistoryOfBacklogs'].unique()
Out[21]: array([1, 0], dtype=int64)
In [22]: df['PlacedOrNot'].unique()
Out[22]: array([1, 0], dtype=int64)
         How Many Students Got Placed?
In [23]: df['PlacedOrNot'].value_counts()
Out[23]: 1
              1639
              1327
         Name: PlacedOrNot, dtype: int64
```

```
print("The Number Of Students Not Placed : ", df['PlacedOrNot'].value_count
         The Number Of Students Placed: 1639
         The Number Of Students Not Placed: 1327
In [25]: plt.figure(figsize = (10,5))
         plt.pie(df['PlacedOrNot'].value_counts(), labels =['Placed','NotPlaced'], a
         plt.title("Placed Or Not")
         plt.show()
                           Placed Or Not
```

In [24]: print("The Number Of Students Placed : ", df['PlacedOrNot'].value_counts()[

Maximum And Minimum Age Of Placed Person

```
In [26]: Max = df[(df['Age'] == df['Age'].max()) & (df['PlacedOrNot'] == 1)]['Age'].
         print("Max Age Of Placed Person : ", Max)
         Min = df[(df['Age'] == df['Age'].min()) & (df['PlacedOrNot'] == 0)]['Age'].
         print("Min Age Of Placed Person : ", Min)
```

Max Age Of Placed Person : 30 Min Age Of Placed Person:

```
In [27]: plt.figure(figsize=(10,5))
sns.countplot(x='Age', data = df, palette = 'hls')
plt.show()
```


Male Students Who Got Placed

```
In [28]: M = df[df['Gender'] == 'Male']['Gender'].count()
print("Total Number Of Male Student : ",M)
```

Total Number Of Male Student: 2475

```
In [29]: M_P = df[(df['Gender'] == 'Male') & (df['PlacedOrNot'] == 1)]['PlacedOrNot'
    print("Total Number Of Male Student Who Got Placed : ",M_P)
    print("Number Of Male Student Who Are Not Placed : ", M - M_P)
```

Total Number Of Male Student Who Got Placed : 1364 Number Of Male Student Who Are Not Placed : 1111

```
In [30]: plt.figure(figsize = (10,5))
sns.countplot(x='Gender', data=df)
plt.show()
```


Female Students Who Got Placed

```
In [31]: F = df[df['Gender'] == 'Female']['Gender'].count()
print("Total Number Of Female Student : ",F)
```

Total Number Of Female Student: 491

```
In [32]: M_F = df[(df['Gender'] == 'Female') & (df['PlacedOrNot'] == 1)]['PlacedOrNo
    print("Total Number Of Female Student Who Got Placed : ",M_F)
    print("Number Of Female Student Who Are Not Placed : ", F - M_F)
```

Total Number Of Female Student Who Got Placed : 275 Number Of Female Student Who Are Not Placed : 216

Data Regarding Students In Various Streams

1.Data Regarding Electronics And Communication Student

Total Number Of Students In Electronics And Communication: 424

```
In [35]: placed = df[(df['Stream'] == 'Electronics And Communication') & (df['Placed'])
         print("Electronics And Communication Students Who Got Placement : " , place
         Electronics And Communication Students Who Got Placement: 251
In [36]: n placed = df[(df['Stream'] == 'Electronics And Communication') & (df['Plac']
         print("Electronics And Communication Students Who Are Not Placed : " , n pl
         Electronics And Communication Students Who Are Not Placed: 173
         2.Data Regarding Computer Science Student
In [37]: cs = df[df['Stream'] == 'Computer Science'].shape[0]
         print("Total Number Of Students In Computer Science : ", cs)
         Total Number Of Students In Computer Science: 776
In [38]: placed = df[(df['Stream'] == 'Computer Science') & (df['PlacedOrNot'] == 1)
         print("Computer Science Students Who Got Placement : " , placed)
         Computer Science Students Who Got Placement: 452
In [39]: |n_placed = df[(df['Stream'] == 'Computer Science') & (df['PlacedOrNot'] ==
         print("Computer Science Students Who Are Not Placed : " , n_placed)
         Computer Science Students Who Are Not Placed: 324
         3.Data Regarding Information Technology Student
In [40]: | it = df[df['Stream'] == 'Information Technology'].shape[0]
         print("Total Number Of Students In Information Technology : ",it)
         Total Number Of Students In Information Technology: 691
In [41]: placed = df[(df['Stream'] == 'Information Technology') & (df['PlacedOrNot']
         print("Information Technology Students Who Got Placement : " , placed)
         Information Technology Students Who Got Placement: 409
In [42]: n_placed = df[(df['Stream'] == 'Information Technology') & (df['PlacedOrNot
         print("Information Technology Students Who Are Not Placed : " , n_placed)
         Information Technology Students Who Are Not Placed : 282
```

4.Data Regarding Mechanical Student

```
In [43]: |mc = df[df['Stream'] == 'Mechanical'].shape[0]
         print("Total Number Of Students In Mechanical : ",mc)
         Total Number Of Students In Mechanical: 424
In [44]: placed = df[(df['Stream'] == 'Mechanical') & (df['PlacedOrNot'] == 1)].shap
         print("Mechanical Students Who Got Placement : " , placed)
         Mechanical Students Who Got Placement: 200
In [45]: n_placed = df[(df['Stream'] == 'Mechanical') & (df['PlacedOrNot'] == 0)].sh
         print("Mechanical Students Who Are Not Placed : " , n placed)
         Mechanical Students Who Are Not Placed: 224
         5.Data Regarding Electrical Student
In [46]: el = df[df['Stream'] == 'Electrical'].shape[0]
         print("Total Number Of Students In Electrical : ",el)
         Total Number Of Students In Electrical: 334
In [47]: placed = df[(df['Stream'] == 'Electrical') & (df['PlacedOrNot'] == 1)].shap
         print("Electrical Students Who Got Placement : " , placed)
         Electrical Students Who Got Placement: 181
In [48]: n placed = df[(df['Stream'] == 'Electrical') & (df['PlacedOrNot'] == 0)].sh
         print("Electrical Students Who Are Not Placed : " , n placed)
         Electrical Students Who Are Not Placed: 153
         6.Data Regarding Civil Student
In [49]: cv = df[df['Stream'] == 'Civil'].shape[0]
         print("Total Number Of Students In Civil : ",cv)
         Total Number Of Students In Civil: 317
In [50]: placed = df[(df['Stream'] == 'Civil') & (df['PlacedOrNot'] == 1)].shape[0]
         print("Civil Students Who Got Placement : " , placed)
         Civil Students Who Got Placement: 146
```

```
In [52]: cv + ec + it + el + cs + mc
```

Out[52]: 2966

```
In [53]: fig = df ['Stream'].value_counts().plot.bar()
    plt.figure(figsize = (10,5))
    fig.set_title('Stream')
    plt.show()
```


<Figure size 720x360 with 0 Axes>

```
In [54]: plt.figure(figsize = (10,10))
    plt.pie(df['Stream'].value_counts(), labels = df['Stream'].value_counts().i
    plt.show()
```



```
In [55]: plt.figure(figsize = (10,5))
    sns.barplot(data=df, x="Stream", y="PlacedOrNot", hue ="Gender").set_xtickla
    plt.show()
```


Maximum And Minimum Internships Done By Placed Student

```
In [56]:
        Max_In = df[(df['Internships'] == df['Internships'].max())
                   & (df['PlacedOrNot'] == 1)]['Internships'].values[0]
         print("Max Internships Done By The Placed Student : ", Max_In)
         Max_In_Pl = df[(df['Internships'] == df['Internships'].max())
                      & (df['PlacedOrNot'] == 1)]['Internships'].value_counts().valu
         print("No. Of Student Who Did Max Internships And Are Placed : " , Max_In_P
         Max Internships Done By The Placed Student : 3
         No. Of Student Who Did Max Internships And Are Placed: 41
In [57]: Min_In = df[(df['Internships'] == df['Internships'].min())
                   & (df['PlacedOrNot'] == 1)]['Internships'].values[0]
         print("Min Internships Done By The Placed Student : ", Min_In)
         Min_In_Pl = df[(df['Internships'] == df['Internships'].min())
                      & (df['PlacedOrNot'] == 1)]['Internships'].value_counts().valu
         print("No. Of Student Who Did Min Internships And Are Placed : " , Min_In_P
         Min Internships Done By The Placed Student :
         No. Of Student Who Did Min Internships And Are Placed: 654
```

```
In [58]: plt.figure(figsize=(10,5))
sns.barplot(x = df.Internships, y = df.PlacedOrNot)
plt.show()
```


Maximum And Minimum CGPA Obtained By Placed Student

Max CGPA Obtained By The Placed Student: 9
No. Of Student Who Has Max CGPA And Are Placed: 165

Min CGPA Obtained By The Placed Student : 5
No. Of Student Who Has Min CGPA And Are Placed : 7

```
In [61]: plt.figure(figsize=(10,5))
    sns.countplot(x='CGPA', data = df, palette = 'hls')
    plt.show()
```


In [62]: plt.figure(figsize=(10,5))
sns.barplot(x = df.CGPA, y = df.PlacedOrNot)
plt.show()


```
In [63]: plt.figure(figsize = (10,10))
plt.pie(df['CGPA'].value_counts(),labels = df['CGPA'].value_counts().index,
plt.show()
```


Number Of Student Who Live In Hostel And Got Placed

Number Of Student Who Live In Hostel And Got Placed: 416

```
In [66]: H_NP = df[(df['Hostel'] == 1) & (df['PlacedOrNot'] == 0)].shape[0]
print("Number Of Student Who Live In Hostel And Not Placed : ", H_NP)
```

Number Of Student Who Live In Hostel And Not Placed: 382

```
In [67]: sns.barplot(x = df.Hostel, y = df.PlacedOrNot)
plt.show()
```


Number Of Student Who Don't Live In Hostel And Got Placed

```
In [68]: NH = df[df['Hostel'] == 0].shape[0]
print("Number Of Students Who Don't Live In Hostel : ",NH)
```

Number Of Students Who Don't Live In Hostel: 2168

Number Of Student Who Don't Live In Hostel And Got Placed: 1223

Number Of Student Who Don't Live In Hostel And Not Placed: 945

Number Of Student Who Had History Of Backlogs And Still Got Placed

```
In [71]: B = df[df['HistoryOfBacklogs'] == 1].shape[0]
         print("Number Of Students Who Had Backlogs : ", B)
         print("Number Of Students Who Had No Backlogs : ", df[df['HistoryOfBacklogs
         Number Of Students Who Had Backlogs : 570
         Number Of Students Who Had No Backlogs: 2396
In [72]: B_P = df[(df['HistoryOfBacklogs'] == 1) & (df['PlacedOrNot'] == 1)].shape[0]
         print("Number Of Students Who Had Backlogs And Got Placed : ",B P)
         Number Of Students Who Had Backlogs And Got Placed: 302
In [73]: B_NP = df[(df['HistoryOfBacklogs'] == 1) & (df['PlacedOrNot'] == 0)].shape[
         print("Number Of Students Who Had Backlogs And Didn't Get Placed : ",B_NP)
         Number Of Students Who Had Backlogs And Didn't Get Placed:
In [74]: sns.barplot(x = df.HistoryOfBacklogs, y = df.PlacedOrNot)
         plt.show()
            0.6
            0.5
            0.4
          PlacedOrNot
            0.3
```

Number Of Student Who Didn't Had History Of Backlogs And Got Placed

i

```
In [75]: NB = df[df['HistoryOfBacklogs'] == 0].shape[0]
print("Number Of Student Who Had No Backlogs : ",NB)
```

HistoryOfBacklogs

Number Of Student Who Had No Backlogs: 2396

Ó

0.2

0.1

0.0

Encoding Categorical Data Into Numerical Values

For Gender Column

Technology

Mechanical

```
In [78]: df['Gender'].unique()
Out[78]: array(['Male', 'Female'], dtype=object)
In [79]: df['Gender'].map({'Male' : 1 , 'Female' : 0})
Out[79]: 0
                   1
          1
                   0
          2
                   0
          3
                   1
          4
                   1
          2961
                   1
          2962
                   1
          2963
                   1
          2964
                   1
          2965
          Name: Gender, Length: 2966, dtype: int64
In [80]: | df['Gender'] = df['Gender'].map({'Male' : 1 , 'Female' : 0})
In [81]: | df.head()
Out[81]:
              Age Gender
                                 Stream Internships CGPA Hostel HistoryOfBacklogs PlacedOrNot
                           Electronics And
                                                        8
           0
               22
                                                 1
                                                               1
                                                                                1
                                                                                            1
                           Communication
                               Computer
               21
                        0
                                                 0
                                                        7
                                                               1
                                                                                1
                                                                                            1
                                 Science
                              Information
               22
                        0
                                                 1
                                                                                0
           2
                                                        6
                                                              0
                                                                                            1
                              Technology
                              Information
```

For Stream Column

```
In [82]: df['Stream'].unique()
Out[82]: array(['Electronics And Communication', 'Computer Science',
                  'Information Technology', 'Mechanical', 'Electrical', 'Civil'],
                dtype=object)
In [83]: |df['Stream'].map({'Electronics And Communication' : 1,
                             'Computer Science' : 2,
                             'Information Technology' : 3,
                             'Mechanical' : 4,
                             'Electrical' : 5,
                             'Civil' : 6
                            })
Out[83]: 0
                  1
                  2
          1
          2
                  3
          3
                  3
          4
                  4
          2961
                  3
          2962
                  4
          2963
                  3
          2964
                  2
          2965
                  6
          Name: Stream, Length: 2966, dtype: int64
In [84]: | df['Stream'] = df['Stream'].map({'Electronics And Communication' : 1,
                             'Computer Science' : 2,
                             'Information Technology' : 3,
                             'Mechanical' : 4,
                             'Electrical' : 5,
                             'Civil' : 6
                            })
In [85]: df.head()
Out[85]:
             Age Gender Stream Internships CGPA Hostel HistoryOfBacklogs PlacedOrNot
          0
              22
                       1
                              1
                                         1
                                               8
                                                      1
                                                                      1
                                                                                  1
              21
                       0
                              2
                                         0
                                               7
                                                                      1
           1
                                                      1
                                                                                  1
          2
              22
                       0
                              3
                                         1
                                               6
                                                      0
                                                                      0
                                                                                  1
                                        0
          3
              21
                       1
                              3
                                               8
                                                      0
                                                                      1
                                                                                  1
           4
              22
                       1
                              4
                                        0
                                               8
                                                      1
                                                                      0
                                                                                  1
```

In [86]:	df.dtypes	
Out[86]:	Age	int64
	Gender	int64
	Stream	int64
	Internships	int64
	CGPA	int64
	Hostel	int64
	HistoryOfBacklogs	int64
	PlacedOrNot dtype: object	int64

PairPlot To ShowCase RelationShip Between Each Feature In The Dataset

Correlation Matrix And HeatMap Between Each Feature Of Dataset

Store Feature Matrix In X and Response(Target) In Vector y

X = Independent Variables

y = Dependent Variable

```
In [91]: X
Out[91]:
                 Age Gender Stream Internships CGPA Hostel HistoryOfBacklogs
              0
                  22
                           1
                                  1
                                             1
                                                    8
                                                                            1
                                                           1
              1
                  21
                           0
                                  2
                                             0
                                                    7
                                                           1
                                                                            1
                                  3
                                                                            0
              2
                  22
                           0
                                             1
                                                    6
                                                           0
              3
                  21
                           1
                                  3
                                             0
                                                    8
                                                           0
                                                                            1
              4
                  22
                           1
                                  4
                                             0
                                                    8
                                                                            0
                                                           1
           2961
                  23
                           1
                                  3
                                                    7
                                             0
                                                           0
                                                                            0
           2962
                  23
                                  4
                                                    7
                                                                            0
                           1
                                             1
                                                           1
                                                    7
           2963
                  22
                           1
                                  3
                                                           0
                                                                            0
           2964
                  22
                           1
                                  2
                                                    7
                                                           0
                                                                            0
           2965
                  23
                                  6
                                                    8
                                                                            0
          2966 rows × 7 columns
In [92]: y = df['PlacedOrNot']
In [93]: y
Out[93]: 0
                   1
          1
                   1
          2
                   1
          3
                   1
          4
                   1
          2961
                   0
          2962
                   0
          2963
                   0
          2964
                   0
          2965
                   1
          Name: PlacedOrNot, Length: 2966, dtype: int64
In [94]: X.shape
Out[94]: (2966, 7)
In [95]: y.shape
Out[95]: (2966,)
          Splitting The Dataset Into The Training Set And Test Set
```

```
In [96]: X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.33,random_
```

```
In [97]: X_train.shape
Out[97]: (1987, 7)
In [98]: X_test.shape
Out[98]: (979, 7)
In [99]: y_train.shape
Out[99]: (1987,)
In [100]: y_test.shape
Out[100]: (979,)
```

Training The Models

```
In [101]: lr = LogisticRegression()
lr.fit(X_train,y_train)

svc = SVC()
svc.fit(X_train,y_train)

knn = KNeighborsClassifier()
knn.fit(X_train,y_train)

dt = DecisionTreeClassifier()
dt.fit(X_train,y_train)

rf = RandomForestClassifier()
rf.fit(X_train,y_train)

gb = GradientBoostingClassifier()
gb.fit(X_train,y_train)
```

Prediction On Data

Out[101]: GradientBoostingClassifier()

```
In [102]: y_pred1 = lr.predict(X_test)
y_pred2 = svc.predict(X_test)
y_pred3 = knn.predict(X_test)
y_pred4 = dt.predict(X_test)
y_pred5 = rf.predict(X_test)
y_pred6 = gb.predict(X_test)
```

Evaluating The Models

3

4

5

DT

RF

GB

88.049030

88.253320

88.151175

```
In [103]:
          acc1 = accuracy_score(y_test,y_pred1)
          acc2 = accuracy_score(y_test,y_pred2)
          acc3 = accuracy_score(y_test,y_pred3)
          acc4 = accuracy_score(y_test,y_pred4)
           acc5 = accuracy_score(y_test,y_pred5)
          acc6 = accuracy_score(y_test,y_pred6)
In [104]: | prec1 = precision_score(y_test,y_pred1)
          prec2 = precision_score(y_test,y_pred2)
          prec3 = precision_score(y_test,y_pred3)
          prec4 = precision_score(y_test,y_pred4)
          prec5 = precision_score(y_test,y_pred5)
          prec6 = precision_score(y_test,y_pred6)
In [105]: |r1 = recall_score(y_test,y_pred1)
          r2 = recall_score(y_test,y_pred2)
          r3 = recall_score(y_test,y_pred3)
          r4 = recall_score(y_test,y_pred4)
          r5 = recall_score(y_test,y_pred5)
          r6 = recall_score(y_test,y_pred6)
In [106]: | f1 = f1_score(y_test,y_pred1)
          f2 = f1_score(y_test,y_pred2)
          f3 = f1_score(y_test,y_pred3)
          f4 = f1_score(y_test,y_pred4)
          f5 = f1_score(y_test,y_pred5)
          f6 = f1_score(y_test,y_pred6)
In [107]: | final_data = pd.DataFrame({'Models':['LR','SVC','KNN','DT','RF','GB'],
                       'ACCURACY':[acc1*100,acc2*100,acc3*100,acc4*100,acc5*100,acc6*1
                       'PRECISION':[prec1*100,prec2*100,prec3*100,prec4*100,prec5*100,
                       'RECALL' :[r1*100 , r2*100 , r3 * 100 , r4 * 100 , r5 * 100 , r
                       'F1_SCORE':[f1*100 , f2*100 , f3 * 100 , f4 * 100 , f5 * 100 ,
In [108]: final_data
Out[108]:
              Models ACCURACY PRECISION
                                           RECALL F1_SCORE
           0
                 LR
                      74.974464
                                 78.171642 76.599634
                                                    77.377655
           1
                SVC
                      76.608784
                                 82.056452 74.405850
                                                    78.044104
           2
                KNN
                      83.861083
                                 91.471215 78.427788
                                                    84.448819
```

94.057377 83.912249

93.902439 84.460695

95.948827 82.266910

88.695652

88.931665

88.582677

```
In [109]: |final_data[final_data['ACCURACY'] == final_data['ACCURACY'].max()]
Out[109]:
              Models ACCURACY PRECISION
                                            RECALL F1_SCORE
                                 93.902439 84.460695
           4
                 RF
                        88.25332
                                                     88.931665
In [110]: final_data[final_data['PRECISION'] == final_data['PRECISION'].max()]
Out[110]:
              Models ACCURACY PRECISION RECALL F1_SCORE
           5
                 GB
                       88.151175
                                 95.948827 82.26691
                                                    88.582677
In [111]: final_data[final_data['RECALL'] == final_data['RECALL'].max()]
Out[111]:
              Models ACCURACY PRECISION
                                            RECALL F1_SCORE
                 RF
                        88.25332
                                 93.902439 84.460695
                                                     88.931665
In [112]: final_data[final_data['F1_SCORE'] == final_data['F1_SCORE'].max()]
Out[112]:
              Models ACCURACY PRECISION
                                            RECALL F1_SCORE
                 RF
                        88.25332
                                 93.902439 84.460695
                                                     88.931665
In [113]: sns.barplot(final_data['Models'],final_data['ACCURACY'])
Out[113]: <AxesSubplot:xlabel='Models', ylabel='ACCURACY'>
              80
              60
           ACCURACY
              40
```

20

ĽŔ

svc

KŃN

DΤ

Models

RF

GΒ

```
In [114]: sns.barplot(final_data['Models'],final_data['PRECISION'])
```

Out[114]: <AxesSubplot:xlabel='Models', ylabel='PRECISION'>

In [115]: sns.barplot(final_data['Models'],final_data['RECALL'])

Out[115]: <AxesSubplot:xlabel='Models', ylabel='RECALL'>


```
In [116]: | sns.barplot(final_data['Models'],final_data['F1_SCORE'])
```

Out[116]: <AxesSubplot:xlabel='Models', ylabel='F1_SCORE'>

Random Forest Model Is Selected For **Prediction**

Training The Best Model On Whole Dataset

```
In [117]: rf = RandomForestClassifier()
          rf.fit(X,y)
Out[117]: RandomForestClassifier()
```

Prediction On New Data

```
In [118]: | new_data = pd.DataFrame({'Age' : 20,
                                      'Gender' : 1,
                                     'Stream' : 2,
                                     'Internships' : 0,
                                     'CGPA' : 9,
                                     'Hostel' : 0,
                                     'HistoryOfBacklogs' : 0},index = [0])
          new_data
```

Out[118]:

	Age	Gender	Stream	Internships	CGPA	Hostel	HistoryOfBacklogs
0	20	1	2	0	9	0	0

```
In [119]: p = rf.predict(new_data)
          if p == 1:
              print('Placed')
          else:
              print("Not-placed")
          Placed
In [120]: prob = rf.predict_proba(new_data)
          prob
Out[120]: array([[0., 1.]])
In [121]: |print(f"You will be placed with probability of {prob[0][1]:.3f}")
          You will be placed with probability of 1.000
          Save Model Using Pickle Library
In [122]: pickle.dump(rf, open('model.pkl','wb'))
In [123]: model = pickle.load(open('model.pkl','rb'))
In [124]: model.predict(new_data)
Out[124]: array([1], dtype=int64)
In [125]: if(model.predict(new_data) == 1):
              print('Placed')
          else:
              print('Not Placed')
          Placed
In [126]: new_data = pd.DataFrame({'Age' : 22,
                                     Gender': 1,
                                    'Stream' : 2,
                                    'Internships' : 0,
                                    'CGPA' : 7,
                                    'Hostel' : 0,
                                    'HistoryOfBacklogs' : 0},index = [0])
          new_data
Out[126]:
              Age Gender Stream Internships CGPA Hostel HistoryOfBacklogs
               22
                              2
                                              7
                                                    0
```