

Politechnika Wrocławska

Katedra Mechaniki i Inżynierii Materiałowej

Badania elektrochemiczne. Analiza krzywych potencjodynamicznych.

mgr inż. Anna Zięty promotor: dr hab. inż. Jerzy Detyna, prof. nadzw. Pwr

Wrocław, dn. 25.11.2015r.

KOROZJA, RODZAJE KOROZJI

✓ niezamierzone niszczenie metali pod wpływem reakcji elektrochemicznej bądź chemicznej z otaczającym środowiskiem

✓ proces samorzutny

elektrochemiczna

chemiczna

bodziec: wilgoć bodziec: obecność suchych gazów

Płyny ustrojowe to środowisko agresywne (występowanie chlorków)

KOROZJA, RODZAJE KOROZJI

ogólna

(równomiernie na całej powierzchni materiału)

- √ najbardziej bezpieczna
- ✓ monitoring

lokalna

(w konkretnych miejscach materiału)

✓ wżerowa (przy metalach pasywujących)

METODY BADAŃ KOROZYJNYCH

BADANIA ELEKTROCHEMICZNE

(zaburzenie stanu równowagi poprzez prąd elektryczny)

TRÓJELEKTRODOWY UKŁAD POMIAROWY

RE <u>elektroda odniesienia</u>

Elektroda wodorowa (NEW)
Elektroda kalomelowa (NEK, nasycony KCl)
nasycona elektroda
Ag/AgCl

CE
<u>elektroda pomocnicza</u>
(przeciwelektroda)

platyna, grafit, stal austenityczna

WE elektroda badana

Badany material

ELEKTRODA (półogniwo)

 na granicy faz występuje różnica potencjałów
 (stan równowagi dynamicznej pomiędzy procesem przechodzenia jonów z metalu do roztworu a procesem przeciwnym)

OGNIWO GALWANICZNE

- ✓ układ 2 elektrod
- ✓ możliwe przenoszenie ładunków elektrycznych pomiędzy elektrodami przez obecne w roztworach jony
- ✓ przenoszenie jonów → procesy utlenienia i redukacji na powierzchni elektord

Anoda: $Fe \rightarrow Fe^{+2} + 2e$ - Katoda: $2H^+ + 2e \rightarrow H_2$

SZEREG NAPIĘCIOWY METALI

Półogniwo	[V]	Półogniwo	[V]
Li Li ⁺	-3,01	Co Co ²⁺	-0,28
K K ⁺	-2,92	Ni Ni ²⁺	-0,22
Ba Ba ²⁺	-2,92	Sn Sn ²⁺	-,014
Sr Sr ²⁺	-2,89	Pb Pb ²⁺	-0,13
Ca Ca ²⁺	-2,84	Fe Fe ³⁺	-0,04
Na Na ⁺	-2,71	H ₂ H ⁺	0,00
Mg Mg ²⁺	-2,38	Bi Bi ³⁺	+0,20
Be Be ²⁺	-1,70	Sb Sb ³⁺	+0,20
AL AL.3+	-1,66	As As ³⁺	+0,30
Mn Mn ²⁺	-1,05	Cu Cu ²⁺	+0,34
Zn Zn ²⁺	-0,76	Ag Ag ⁺	+0,80
Cr Cr ³⁺	-0,71	Hg Hg ²⁺	+0,87
Fe Fe ²⁺	-0,44	Pt Pt ²⁺	+1,20
Cd. Cd. ²⁺	-0,40	Au Au ³⁺	+1,42

POTENCJAŁ ELEKTROCHEMICZNY

- ✓ duża odporność na działanie chemiczne
- ✓ nie ulega wpływom atmosferycznym (tlen, wilgoć)
- ✓ np. złoto, platyna, srebro, rtęć (przeciwelektroda)

TRÓJELEKTRODOWY UKŁAD POMIAROWY

- ✓ wartość natężenia prądu reakcji
- ✓ prąd pwoduje zmiany potencjału elektrody WE

ELEKTRODA ODNIESIENIA (RE)

✓ ściśle zdefiniowana wartość potencjału (elek. wodorowa tzw. Standardowa E = 0,00 [V],

e. kalomelowa E=242 [mV] (względem elektrody standardowej)

✓ umożliwia wyznaczenie potencjału elektrody WE poprzez pomiar siły elektromotorycznej:

SEM = Ekat - Ean

ocena zachowania korozyjnego materiału

1. KRZYWA GALWANOSTATYCZNA

- ✓ Korozja swobodna dla obwodu otwartego → przepływ stałego prądu (I=const).
- ✓ Rejestrowanie przebiegu zmian potencjału elektrody WE w funkcji czasu

INFORMACJE

- ✓ tendencja materiału do korodowania /odporności korozyjnej
- ✓ ocena ochronnych warstw pasywnych
- ✓ określenie szacunkowego czasu, po jakim stop osiąga wartość stabilną
- √(tj. osiągnięcie równowagi termicznej)
- ✓ uzyskanie wartości POTENCJAŁU STACJONARNEGO (KOROZYJNEGO) E_{kor}

ocena zachowania korozyjnego materiału

✓ przy potencjałach niższych od E_{kor} (E_0) reakcje utleniania metalu zachodzą bardzo wolno i można przyjąć, że jest to **potencjałowy zakres odporności metalu**,

- ✓ podział krzywej na dwa obszary katodowy (na lewo) i anodowy (na prawo; roztwarzanie materiału),
- √im wyższy E_{kor}, tym wyższa odporność korozyjna (**porównywanie materiałów**),
- √ wskazuje, kiedy rozpoczną się (ewentualne) procesy korozyjne na badanym materiale

ocena zachowania korozyjnego materiału

1. KRZYWA POTENCJOKINETYCZNA (POTENCJODYNAMICZNA)

- ✓ Potencjał elektrody badanej jest zmieniany (polaryzowanie elektrody) w czasie zgodnie z zadanymi wcześniej parametrami
- ✓ Prąd jest rejestrowany w funkcji i = f(E), bądź log |i| = f(E)

ocena zachowania korozyjnego materiału

PARAMETR

 $E_p = E_F$

E_{kor} - E_F

INFORMACJE

	Gęstość prądu krytycznego pasywacji
i _{pk}	√ miara łatwości nasywacji - mniejszy

- miarą łatwości pasywacji mniejszy prąd, tym łatwiejsza jest pasywacja,
- ✓ obniża się, gdy pH staje się bardziej zasadowe

✓ początek obszaru pasywacji

Obszar aktywny

√ metal roztwarza się, tworząc jony proste

Gęstość prądu pasywacji

✓ prędkość roztawrzania metalu osiąga minimum

A/cm2 1pk Gestość prądu anodowego | lp stan aktywnyl przej

stan

PARAMETR	INFORMACJA	
E _{np}	Potencjał przebicia (potencjał zarodkowania (inicjacji) wżerów) ✓ zainicjowanie korozji wżerowej, ✓ zwany też potencjałem krytycznym korozji wżerowej , ✓ leżący na granicy obszaru pasywnego.	
E _F - E _{np}	Obszar pasywacji ✓ spadek prądu ze względu na uwalniane jony metali → powierzchnia jest całkowicie pokryta warstwą tlenku	
E _{cp}	Potencjał repasywacji (potencjał krytyczny korozji wżerowej) ✓ gęstość prądu obniża się do wartości zbliżonych do gęstości prądu pasywacji, ✓ punkt przecięcia się krzywej z obszaru pasywacji z krzywą "odwróconą"	

ocena zachowania korozyjnego materiału

HISTEREZA (krzywa odwrócona)

- ✓ obniżenie wartości potencjału (już po zainicjowaniu korozji wżerowej)
- ✓ może zachodzić odbudowa warstwy pasywnej (repasywacja) metalu
- √ wąskie pętle histerezy, które wskazują na niewielką podatność badanych warstw
 tlenkowych na korozję wżerową w roztworze
- ✓ metastabilny charakter powstałych wżerów oraz bardzo szybka repasywacja warstwy
 wierzchniej potwierdzają zdolność badanych materiałów do samoleczenia w środowisku
 agesywnym

Wielkość pętli histerezy oraz wartość potencjału Ecp (repasywacji) są miarą zdolności metalu do repasywacji. W wyniku repasywacji proces korozji wżerowej zostaje zahamowany.

ocena zachowania korozyjnego materiału

ocena zachowania korozyjnego materiału

GĘSTOŚC PRĄDU KOROZJI

Ekstrapolacja prostych metodą Tafela

OPÓR POLARYZACJI

$$R_p = \frac{\Delta E}{\Delta i} = \frac{b_a * b_k}{2,303 * i_{kor}(b_a + b_k)} = tg\alpha$$

Gdzie

R_p - opór polaryzacji [Ω*cm²],

i_{kor} – gęstość prądu korozyjnego,

ba-nachylenie tafelowskich prostoliniowych odcinków krzywej anodowej,

bk - nachylenie tafelowskich prostoliniowych odcinków krzywej katodowej

CELOWOŚĆ KOROZYJNYCH BADAŃ ELEKTROCHEMICZNYCH

- ✓ znalezienie ewentualnych wżerów (badania korozji wżerowej),
- ✓ ocena zdolności materiału do spontanicznej pasywacji w danym medium,
- ✓ ocena szybkości korozji w regionie pasywnym,
- ✓określenie, jakim reakcjom korozyjnym ulega metal w badanym roztworze w różnych zakresach potencjału,
- ✓ porównanie materiałów między sobą pod kątem ich odpornośći korozyjnej w danym elektrolicie

Producent implantów i narzędzi dla ortopedii i traumatologii.

"Majówka Młodych Biomechaników" im. prof. Dagmary Tęjszerskiej

- założona przez Mikołaja Charkiewicza w 1981 roku.
- producent specjalistycznych implantów i narzędzi dla ortopedii i traumatologii
- posiada własne działy produkcji, marketingu, dział badawczo-rozwojowy, a także sieć dystrybucyjną w kraju i za granicą.

Mikolaj Charkiewicz Założyciel Firmy i Przewodniczący Rady Nadzorczej

Staż w firmie ChM®

Producent implantów i narzędzi dla ortopedii i traumatologii.

16-061 Juchnowiec Kościelny

Politechnika Wrocławska

Katedra Mechaniki i Inżynierii Materiałowej

DZIĘKUJĘ ZA UWAGĘ!

mgr inż. Anna Zięty promotor: dr hab. inż. Jerzy Detyna, prof. nadzw. Pwr

Wrocław, dn. 25.11.2015r.