MACHINE LEARNING AND BAYESIAN NONPARAMETRICS

Tamara Broderick · Peter Orbanz

MIT and Columbia University

OVERVIEW

Morning Machine Learning
Afternoon Bayesian Nonparametrics

OVERVIEW

Machine Learning

- Many latent variable models (finite mixtures, HMMs, ...)
- Linear classifiers can be regarded as boundary cases of models with hidden variables

Bayesian nonparametrics in Machine Learning

- Useful way to impose structure on latent variables
- BNP can be used as building blocks in hierarchies

Graphical models

Grouping dependent variables into layers is *a good thing*.

A neural network represents a function $f: \mathbb{R}^{d_1} \to \mathbb{R}^{d_2}$.

$$y_i = \phi\left(\sum_j v_{ij}x_j\right)$$

Typically: $\phi = \sigma$ or $\phi(x) = \mathbb{I}\{\pm x > \tau\}$ or $\phi(x) = x$

$$y_i = \phi\left(\sum_j v_{ij}x_j\right)$$
Typically:
$$\phi(x) = \begin{cases} \sigma(x) \text{ (sigmoid)} \\ \mathbb{I}\{\pm x > \tau\} \\ c \text{ (constant)} \\ x \end{cases}$$

$$y_i = \phi\left(\sum_j v_{ij}x_j - c\right)$$
Typically:
$$\phi(x) = \begin{cases} \sigma(x) \text{ (sigmoid)} \\ \mathbb{I}\{\pm x > \tau\} \\ c \text{ (constant)} \\ x \end{cases}$$

LOGISTIC REGRESSION

Sigmoid function

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

- $\sigma(\theta x)$ is smooth approximation to indicator function $\mathbb{I}\{x \geq 0\}$.
- θ larger \rightarrow closer approximation

Recall: Logistic regression

Covariates $\mathbf{x} \in \mathbb{R}^d$, binary observations y, regressor is logistic function.

$$p(y|\mathbf{x};\theta) = \text{Bernoulli}(\sigma(\theta^t\mathbf{x}))$$

 $\theta \in \mathbb{R}^d$ is parameter to estimate.

NNS AND GRAPHICAL MODELS

Neural networks

- Representation of function using a graph
- Layers:

"f depends on x only through g"

v_{11} v_{12} v_{22} v_{33} v_{34} v_{35} v_{35} v_{35} v_{37} v_{38} v_{39} v_{31} v_{31} v_{31} v_{32} v_{33} v_{33} v_{34} v_{35} v

Graphical models

- Representation of a distribution using a graph
- Layers:

"Z is conditionally independent of X given Y"

Graphical models

LINEAR CLASSIFICATION

HISTORICAL PERSPECTIVE: PERCEPTRON

McCulloch-Pitts neuron model (1943)

$$y = \mathbb{I}\{\mathbf{v}^t \mathbf{x} > c\}$$
 for some $c \in \mathbb{R}$.

Perceptron (Rosenblatt, 1957)

"Train" McCulloch-Pitts model (that is: estimate (c, \mathbf{v})) by applying gradient descent to the function

$$C_p(c, \mathbf{v}) := \sum_{i=1}^n \mathbb{I}\{\operatorname{sgn}(\langle \mathbf{v}, \tilde{\mathbf{x}}_i \rangle - c) \neq \tilde{y}_i\} \left| \left\langle \begin{pmatrix} c \\ \mathbf{v} \end{pmatrix}, \begin{pmatrix} 1 \\ \tilde{\mathbf{x}}_i \end{pmatrix} \right\rangle \right|,$$

called the ${\bf Perceptron}\ {\bf cost}\ {\bf function}.$

PERCEPTRON TRAINING

- The neuron model $\mathbb{I}\{\mathbf{v}^t\mathbf{x}>c\}$ is a linear classifier.
- For parameter estimation by optimization, we need an optimization target.
- Choose 0-1 loss as simplest loss for classification.
- Minimize empirical risk (on training data) under this loss.

THE PERCEPTRON CRITERION

- Piece-wise constant function not suitable for numerical optimization.
- ullet Approximate by piece-wise linear function o perceptron cost function

NNS AND LINEAR CLASSIFICATION

Linear classifier:

$$f(x) = \operatorname{sgn}(\mathbf{v}^t \mathbf{x} - c)$$

Equivalently:

$$\mathbb{I}\{\mathbf{v}^t\mathbf{x}-c>0\}$$

NNS AND LINEAR CLASSIFICATION

Linear classifier:

$$f(x) = \operatorname{sgn}(\mathbf{v}^t \mathbf{x} - c)$$

Equivalently:

$$\mathbb{I}\{\mathbf{v}^t\mathbf{x}-c>0\}$$

REMARKS

- The "neural network" only represents linear classifier, for fixed weights.
- It does not specify the training method.
- "Neural networks" as a field refers to large collection of algorithms and engeneering tricks for function estimation.
- These algorithms typically exploit the layered structure.
- Personally, I would recommend to beware of all claims of "neurologial plausibility".

ADDING LAYERS

$$y_i = \psi\left(\sum_j w_{ij}\phi\left(\sum_k v_{jk}x_k\right)\right)$$

TRAINING

$$y_i = \psi\left(\sum_j w_{ij}\phi\left(\sum_k v_{jk}x_k\right)\right)$$

Given: y_i, x_k Estimate: w_{ij}, v_{jk}

Error Backpropagation

- Use chain rule for differentiation to compute dependence of ψ on w, v
- Differential approximates the correction Δv and Δw we have to apply to produce a correction $\Delta \psi$.

Algorithm

- 1. For current weights, run network on input x
- 2. Compare output $\psi(...)$ to training values y
- 3. Make corrections Δv , Δw
- 4. Repeat

SAMPLE THEORETICAL RESULT

Theorem (Barron, 1993)

If $f: \mathbb{R}^d \to \mathbb{R}$ satisfies a smoothness conditions, namely

$$C_f = \int \|\omega\| \hat{f}(\omega) d\omega < \infty$$
 for Fourier transform \hat{f} ,

the restriction of f to a disk of radius r can be approximated using N hidden units of simple funcions (sigmoids, threshold or ramp functions) to precision $(2rC_f/\sqrt{N})$.

- Note the error rate $2rC_f/\sqrt{N}$ does not seem to depend on dimension d.
- In the wake of this result, a hype declared neural networks can beat the curse of dimensionality.
- Not so: The class of functions satisfying the smoothness condition shrinks with *d*.
- Much like a filter bank, a NN represents a function basis.

Feature interpretation

Think of applying a 3-layer NN to x as:

- 1. Applying a 2-layer NN to x.
- 2. Applying another 2-layer NN to the output.

The output of the first NN can be regarded as an intermediate representation.

Convolutional NNs

- Suppose NN is applied to an image.
- Each input vertex is a location in the image (a pixel, say).
- Now constrain the weights applied at different locations to be identical at all locations ("tied weights").
- Result: Output is translation invariant.
- One can also achieve rotation invariance.
- These invariance properties are very valuable in computer vision.

MAXIMUM MARGIN CLASSIFIERS

GENERALIZATION ERROR

Maximum margin idea

To achieve good generalization (low prediction error), place the hyperplane "in the middle" between the two classes.

Without distributional assumption: Max-margin classifier

- Philosophy: Without distribution assumptions, best guess is symmetric.
- In the Gaussian example, the max-margin solution would *not* be optimal.

LINEAR SEPARATION AND CONVEXITY

Sets can be separated by a hyperplane if and only if their convex hulls are disjoint.

The distance of the plain to the closest set is called the **margin**.

LINEAR CLASSIFIER WITH MARGIN

Recall: Specifying affine plane

Normal vector v_H.

$$\langle \mathbf{v}_{\mathrm{H}}, \mathbf{x} \rangle - c \begin{cases} > 0 & \mathbf{x} \text{ on positive side} \\ < 0 & \mathbf{x} \text{ on negative side} \end{cases}$$

Scalar $c \in \mathbb{R}$ specifies shift (plane through origin if c = 0).

Plane with margin

Demand

$$\langle \mathbf{v}_{\mathrm{H}}, \mathbf{x} \rangle - c > 1 \text{ or } < -1$$

 $\{-1,1\}$ on the right works for any margin: Size of margin determined by $\|\mathbf{v}_H\|$. To increase margin, scale down \mathbf{v}_H .

Classification

Concept of margin applies only to training, not to classification. Classification works as for any linear classifier. For a test point \mathbf{x} :

$$y = sign\left(\langle \mathbf{v}_{\mathsf{H}}, \mathbf{x} \rangle - c\right)$$

SUPPORT VECTOR MACHINE

Finding the hyperplane

For *n* training points $(\tilde{\mathbf{x}}_i, \tilde{y}_i)$ with labels $\tilde{y}_i \in \{-1, 1\}$, solve optimization problem:

$$\begin{aligned} & \min_{\mathbf{v}_{\mathrm{H}},c} & & \|\mathbf{v}_{\mathrm{H}}\| \\ & \text{s.t.} & & \tilde{y}_{i}(\langle \mathbf{v}_{\mathrm{H}}, \tilde{\mathbf{x}}_{i} \rangle - c) \geq 1 & \text{for } i = 1, \dots, n \end{aligned}$$

Definition

The classifier obtained by solving this optimization problem is called a **support vector machine**.

DUAL OPTIMIZATION PROBLEM

Solving the SVM opimization problem

$$\begin{aligned} & \min_{\mathbf{v}_{\mathrm{H}},c} & & \|\mathbf{v}_{\mathrm{H}}\| \\ & \text{s.t.} & & \tilde{y}_{i}(\langle \mathbf{v}_{\mathrm{H}}, \tilde{\mathbf{x}}_{i} \rangle - c) \geq 1 & \text{for } i = 1, \dots, n \end{aligned}$$

is difficult, because the constraint is a function. It is possible to transform this problem into a problem which seems more complicated, but has simpler constraints:

$$\max_{\boldsymbol{\alpha} \in \mathbb{R}^n} \qquad W(\boldsymbol{\alpha}) := \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j \tilde{y}_i \tilde{y}_j \left\langle \tilde{\mathbf{x}}_i, \tilde{\mathbf{x}}_j \right\rangle$$
s.t.
$$\sum_{i=1}^n \tilde{y}_i \alpha_i = 0$$

$$\alpha_i \ge 0 \quad \text{for } i = 1, \dots, n$$

This is called the optimization problem **dual** to the minimization problem above. It is usually derived using Lagrange multipliers. We will use a more geometric argument.

DERIVING THE DUAL PROBLEM

Idea

As a consequence of duality on previous slide, we can find the maximum-margin plane as follows:

- 1. Find shortest line connecting the convex hulls.
- 2. Place classifier orthogonal to line in the middle.

Convexity of sets ensures that this classifier has correct orientation.

DUAL OPTIMIZATION PROBLEM

Dual problem

$$\begin{split} \| \sum_{i \in \mathcal{X}_{\Theta}} \alpha_{i} \tilde{\mathbf{x}}_{i} - \sum_{i \in \mathcal{X}_{\Phi}} \alpha_{i} \tilde{\mathbf{x}}_{i} \|_{2}^{2} &= \| \sum_{i \in \mathcal{X}_{\Theta}} \tilde{y}_{i} \alpha_{i} \tilde{\mathbf{x}}_{i} + \sum_{i \in \mathcal{X}_{\Phi}} \tilde{y}_{i} \alpha_{i} \tilde{\mathbf{x}}_{i} \|_{2}^{2} \\ &= \left\langle \sum_{i=1}^{n} \tilde{y}_{i} \alpha_{i} \tilde{\mathbf{x}}_{i}, \sum_{i=1}^{n} \tilde{y}_{i} \alpha_{i} \tilde{\mathbf{x}}_{i} \right\rangle = \sum_{i,j} \tilde{y}_{i} \tilde{y}_{j} \alpha_{i} \alpha_{j} \left\langle \tilde{\mathbf{x}}_{i}, \tilde{\mathbf{x}}_{j} \right\rangle \end{split}$$

Note: Minimizing this term under the constraints is equivalent to maximizing

$$\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \tilde{y}_{i} \tilde{y}_{j} \alpha_{i} \alpha_{j} \langle \tilde{\mathbf{x}}_{i}, \tilde{\mathbf{x}}_{j} \rangle$$

under the same constraints, since $\sum_i \alpha_i = 2$ is constant. That is just the dual problem defined four slides back.

Tamara Broderick · Peter Orbanz 34/73

CONVEX DUALITY

Sets and Planes

Many dual relations in convex optimization can be traced back to the following fact:

The closest distance between a point **x** and a convex set A is the maximum over the distances between **x** and all hyperplanes which separate **x** and A.

$$d(\mathbf{x}, A) = \sup_{H \text{ separating }} d(\mathbf{x}, H)$$

Tamara Broderick · Peter Orbanz 35/73

Ensemble Classifiers

ENSEMBLES

A randomly chosen hyperplane classifier has an expected error of 0.5 (i.e. 50%).

ENSEMBLES

A $\it randomly$ chosen hyperplane classifier has an $\it expected$ error of 0.5 (i.e. 50%).

Tamara Broderick · Peter Orbanz 37/73

ENSEMBLES

A randomly chosen hyperplane classifier has an expected error of 0.5 (i.e. 50%).

- Many random hyperplanes combined by majority vote: Still 0.5.
- A single classifier slightly better than random: $0.5 + \varepsilon$.
- What if we use *m* such classifiers and take a majority vote?

Tamara Broderick · Peter Orbanz 37/73

VOTING

Decision by majority vote

- *m* individuals (or classifiers) take a vote. *m* is an odd number.
- They decide between two choices; one is correct, one is wrong.
- After everyone has voted, a decision is made by simple majority.

Note: For two-class classifiers f_1, \ldots, f_m (with output ± 1):

majority vote =
$$\operatorname{sgn}\left(\sum_{j=1}^{m} f_j\right)$$

Assumptions

Before we discuss ensembles, we try to convince ourselves that voting can be beneficial. We make some simplifying assumptions:

- Each individual makes the right choice with probability $p \in [0, 1]$.
- The votes are independent, i.e. stochastically independent when regarded as random outcomes.

Tamara Broderick · Peter Orbanz 38/73

DOES THE MAJORITY MAKE THE RIGHT CHOICE?

Condorcet's rule

If the individual votes are independent, the answer is

$$\Pr\{ \text{ majority makes correct decision } \} = \sum_{j=\frac{m+1}{2}}^{m} \frac{m!}{j!(m-j)!} p^{j} (1-p)^{m-j}$$

This formula is known as Condorcet's jury theorem.

Probability as function of the number of votes

Tamara Broderick · Peter Orbanz

39/73

ENSEMBLE METHODS

Terminology

- An ensemble method makes a prediction by combining the predictions of many classifiers into a single vote.
- The individual classifiers are usually required to perform only slightly better than random. For two classes, this means slightly more than 50% of the data are classified correctly. Such a classifier is called a weak learner.

Strategy

- We have seen above that if the weak learners are random and independent, the
 prediction accuracy of the majority vote will increase with the number of weak
 learners.
- Since the weak learners all have to be trained on the training data, producing random, independent weak learners is difficult.
- Different ensemble methods (e.g. Boosting, Bagging, etc) use different strategies to train and combine weak learners that behave relatively independently.

Tamara Broderick · Peter Orbanz 40/73

ADABOOST

Input

- Training data $(\tilde{\mathbf{x}}_1, \tilde{y}_1), \dots, (\tilde{\mathbf{x}}_n, \tilde{y}_n)$
- Algorithm parameter: Number M of weak learners

Training algorithm

- 1. Initialize the observation weights $w_i = \frac{1}{n}$ for i = 1, 2, ..., n.
- 2. For m = 1 to M:
 - 2.1 Fit a classifier $g_m(x)$ to the training data using weights w_i .
 - 2.2 Compute

$$\operatorname{err}_m := \frac{\sum_{i=1}^n w_i \mathbb{I}\{y_i \neq g_m(x_i)\}}{\sum_i w_i}$$

- 2.3 Compute $\alpha_m = \log(\frac{1 \operatorname{err}_m}{\operatorname{err}_m})$
- 2.4 Set $w_i \leftarrow w_i \cdot \exp(\alpha_m \cdot \mathbb{I}(y_i \neq g_m(x_i)))$ for i = 1, 2, ..., n.
- 3. Output

$$f(x) := \operatorname{sign}\left(\sum_{m=1}^{M} \alpha_m g_m(x)\right)$$

Tamara Broderick · Peter Orbanz

ILLUSTRATION

Dashed line: Current weak learner. Green line: Aggregate decision boundary.

BOOTSTRAPPING WEAK LEARNERS

Idea

- Recall Boosting: Weak learners are deterministic, but selected to exhibit high variance.
- Strategy now: Randomly distort data set by resampling.
- Train weak learners on resampled training sets.
- Resulting algorithm: **Bagging** (= **B**ootstrap **agg**regation)

Bagging tree classifiers

- Draw a bootstrap resample of the traninig data
- Train a tree classifier on the resample
- Repeat

Tamara Broderick · Peter Orbanz 43/7

TREES

- Each leaf of the tree corresponds to a region R_m of \mathbb{R}^d .
- Classes $k \in \{1, ..., K\}$ (not restricted to two classes).
- Training: Greedy splits

BAGGED TREES

- Two classes, each with Gaussian distribution in \mathbb{R}^5 .
- Note the variance between bootstrapped trees.

RANDOM FORESTS

Bagging vs. Boosting

- Bagging works particularly well for trees, since trees have high variance.
- Boosting typically outperforms bagging with trees.
- The main culprit is usually dependence: Boosting is better at reducing correlation between the trees than bagging is.

Random Forests

Modification of bagging with trees designed to further reduce correlation.

- Tree training optimizes each split over all dimensions.
- Random forests choose a different subset of dimensions at each split.
- Optimal split is chosen within the subset.
- The subset is chosen at random out of all dimensions $\{1, \ldots, d\}$.

Tamara Broderick · Peter Orbanz 46/73

RANDOM FORESTS: ALGORITHM

Training

Input parameter: m (positive integer with m < d)

For b = 1, ..., B:

- 1. Draw a bootstrap sample \mathcal{B}_b of size n from training data.
- 2. Train a tree classifier f_b on \mathcal{B}_b , where each split is computed as follows:
 - Select *m* axes in \mathbb{R}_d at random.
 - Find the best split (j^*, t^*) on this subset of dimensions.
 - Split current node along axis j^* at t^* .

Classification

Exactly as for bagging: Classify by majority vote among the *B* trees. More precisely:

- Compute $f_{\text{avg}}(\mathbf{x}) := (p_1(\mathbf{x}), \dots, p_k(\mathbf{x})) := \frac{1}{B} \sum_{b=1}^B f_b(\mathbf{x})$
- The Random Forest classification rule is

$$f_{\text{Bagging}}(\mathbf{x}) := \arg \max_{k} \{p_1(\mathbf{x}), \dots, p_k(\mathbf{x})\}$$

Tamara Broderick · Peter Orbanz 47/

RANDOM FORESTS

Remarks

- Recommended value for m is $m = \lfloor \sqrt{d} \rfloor$ or smaller.
- RF typically achieve similar results as boosting. Implemented in most packages, often as standard classifier.

Example: Synthetic Data

- This is the RF classification boundary on the synthetic data we have already seen a few times.
- Note the bias towards axis-parallel alignment.

COMPARISON: CLASSIFIERS

Linear SVM

Random forest

COMPARISON: CLASSIFIERS

Perhaps best off-the-shelve choices

- SVM (with RBF kernel)
- Random Forest

Every method has its idiosyncrasies

- SVM: Treats feature space geometrically
- RF:
 - Approximates correlation by piece-wise constant decision surface
 - Applicable to almost any type of data
 - · Works naturally with multiple classes
- Boosting (with decision stumps = AdaBoost): Weights provide built-in feature selection

Tamara Broderick · Peter Orbanz 50/73

	Decision boundary	Feature space	Tuning parameters
Perceptron SVM (linear)	Linear Linear	Euclidean Euclidean	"Learning rate" Slack
SVM (RBF)	Nonlinear	Euclidean	Slack Bandwidth
Random forest	Nonlinear	Flexible	Tree depth # resamples # dimensions

MARKOV MODELS

MARKOV MODELS

Markov models

The sequence $(X_n)_n$ is called a (first-order) **Markov chain** if

$$P(X_n|X_{n-1},\ldots,X_1) = P(X_n|X_{n-1})$$
.

Example: Random binary sequence

Tamara Broderick · Peter Orbanz 53/73

Parametrization

$$P_{\text{init}} := \begin{pmatrix} \Pr\{X_0 = 1\} \\ \dots \\ \Pr\{X_0 = d\} \end{pmatrix} \qquad \qquad \mathbf{p} := (p_{i \to j})_{j,i \le d} = \begin{pmatrix} p_{1 \to 1} & \dots & p_{d \to 1} \\ \vdots & & \vdots \\ p_{1 \to d} & \dots & p_{d \to d} \end{pmatrix}$$

The chain $(X_n)_{n\in\mathbb{N}}$ is **stationary** if $p_{s\to t}$ does not depend on n.

General case

If X_n takes values in infinite set, **p** becomes a probability kernel.

Tamara Broderick · Peter Orbanz 54/7:

STATE PROBABILITIES

Probability after n = 1 steps

$$P_1(s_1) = \sum_{s_0 \in \mathbf{X}} p_{s_0 \to s_1} P_{\text{init}}(s_0)$$
 hence $P_1 = \mathbf{p} \cdot P_{\text{init}}$.

Probability after n steps

$$P_n = \mathbf{p}^n P_{\text{init}}$$

Limiting distribution

$$P_{\infty} := \lim_{n \to \infty} P_n = \lim_{n \to \infty} \mathbf{p}^n P_{\text{init}}$$

(need not exist!)

Tamara Broderick · Peter Orbanz 55/73

INVARIANT DISTRIBUTION

Observation

If the limit P_{∞} exists, then

$$\mathbf{p} \cdot P_{\infty} = \mathbf{p} \cdot \lim_{n \to \infty} \mathbf{p}^n P_{\text{init}} = \lim_{n \to \infty} \mathbf{p}^n P_{\text{init}} = P_{\infty}.$$

Therefore, P_{∞} is called an **equilibrium** or **invariant distribution** of the chain.

Theorem

Suppose a Markov chain $(\mathbf{p}, P_{\text{init}})$ is stationary, and for each state $s \in \mathbf{X}$:

- 1. There is a path (with non-zero probability) from *s* to every other state (i.e. the chain is irreducible).
- 2. $p_{s \to s} > 0$ (i.e. the chain is aperiodic).

Then:

- The limit distribution P_{∞} exists.
- The limit distribution is also the equlibrium distribution.
- The equilibrium distribution is unique.

Tamara Broderick · Peter Orbanz 56/73

WHAT CAN GO WRONG?

Problem 1: The limit may not exist

$$P_n$$
 oscillates between $P_{ ext{even}} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $P_{ ext{odd}} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

Calculus analogy: $\lim_{n} (-1)^{n}$ does not exist.

Problem 2: The equilibrium distribution may not be unique

Both P = (0, 1, 0) and P' = (0, 0, 1) are valid equilibria.

Tamara Broderick · Peter Orbanz 57/73

APPLICATION: INTERNET SEARCH

Random walks as Markov chains

- Simple random walk on a connected graph is a Markov chain.
- Its state space is the vertex set.
- Its equilibrium is the degree-biased distribution.

Internet search

- Idea: Popularity of a web page is a good proxy for whether it is interesting.
- A web crawler can determine which web page links which.
- It cannot determine how often a link is followed.
- "Random surfer model": Popularity score = probability that a random web surfer would land on the page.
- Random surfer is modeled as simple random walk.
- Google's PageRank algorithm approximates the equilibrium distribution of simple random walk on the web graph.

Tamara Broderick · Peter Orbanz 58/73

APPLICATION: HMMS

- In a HMM, the *latent* variables (Z_n) form a Markov chain.
- Since these are not observed, the sequence (X_n) can exhibit long-range dependencies.
- This is another example of how multiple layers of simple structures express more complicated structures.

Tamara Broderick · Peter Orbanz 59/73

REVERSIBILITY

Reversible Markov chains

A Markov chain (X_1, \ldots, X_n) is **reversible** if

$$(X_1,\ldots,X_n)\stackrel{\mathrm{d}}{=} (X_n,\ldots,X_1)$$

Detailed balance condition

$$P_{\infty}(dx)P(X_n \in dx'|X_{n-1} = x) = P_{\infty}(dx')P(X_n \in dx|X_{n-1} = x')$$

If a stationary Markov chain satisfied detailed balance, it is reversible.

Tamara Broderick · Peter Orbanz 60/73

MANY HIDDEN LAYERS

DIRECTED GRAPHICAL MODEL

Tamara Broderick · Peter Orbanz 62/73

Graphical model distribution on $\{0,1\}^n$ with joint law

$$P(x_1,\ldots,x_n)=\frac{e^{\mathbf{x}'W\mathbf{x}+\mathbf{c}'\mathbf{x}}}{Z(W,\mathbf{c})}$$

- This is a Markov random field.
- The Markov blanket of X_i are those X_j with $W_{ij} \neq 0$.
- For $\mathbf{x} \in \{-1, 1\}^n$: "Potts model with external magnetic field".
- Statisticians might call this an exponential family with sufficient statistics $\mathbb{E}[X_iX_j]$ and $\mathbb{E}[X_i]$.

Tamara Broderick · Peter Orbanz 63

BOLTZMANN MACHINE

Graphical model distribution on $\{0,1\}^n$ with joint law

$$P(x_1,\ldots,x_n)=\frac{e^{\mathbf{x}'W\mathbf{x}+\mathbf{c}'\mathbf{x}}}{Z(W,\mathbf{c})}$$

- This is a Markov random field.
- The Markov blanket of X_i are those X_j with $W_{ij} \neq 0$.
- For $\mathbf{x} \in \{-1, 1\}^n$: "Potts model with external magnetic field".
- Statisticians might call this an exponential family with sufficient statistics $\mathbb{E}[X_iX_j]$ and $\mathbb{E}[X_i]$.

We dispense with tedious accuracy and call *P* a **Boltzmann machine**.

Tamara Broderick · Peter Orbanz 63/

RESTRICTED BOLTZMANN MACHINE

With observations

If some some vertices represent observation variables Y_i :

$$P(x_1,\ldots,x_n,y_1,\ldots,y_m)=\frac{e^{(\mathbf{x},\mathbf{y})^tW(\mathbf{x},\mathbf{y})+\mathbf{c}^t\mathbf{x}+\tilde{\mathbf{c}}^t\mathbf{y}}}{Z(W,\mathbf{c},\tilde{\mathbf{c}})}$$

Recall our hierarchical design approach

- Only permit layered structure.
- Obvious grouping: One layer for *X*, one for *Y*.
- As before: No connections within layers.
- Since the graph is undirected, that makes it bipartite.

A restricted Boltzmann machine (RBM) is a BM that is bipartite.

Tamara Broderick · Peter Orbanz 64/73

GIBBS SAMPLING BOLTZMANN MACHINES

Full conditionals: General case

$$P(\mathbf{X} = \mathbf{x}) = \frac{e^{\mathbf{x}'W\mathbf{x} + \mathbf{c}'\mathbf{x}}}{Z(W, \mathbf{c})}$$
$$P(X_i = 1 | x_{(i)}) = \sigma(W_i'\mathbf{x} + c_i)$$

Full conditionals: RBM

- X's are conditional independent given Y's and vice versa
- Two groups of conditionals: X|Y and Y|X
- Blocked Gibbs samplers

$$P(\mathbf{X} = \mathbf{x} | \mathbf{Y} = \mathbf{y}) = \sigma(W^t \mathbf{y} + \mathbf{c}')$$

$$P(\mathbf{Y} = \mathbf{v} | \mathbf{X} = \mathbf{x}) = \sigma(W^t \mathbf{x} + \mathbf{c})$$

Tamara Broderick · Peter Orbanz 65/73

DIRECTED GRAPHICAL MODEL

Tamara Broderick · Peter Orbanz 66/73

RECALL: EXPLAINING AWAY

Conditioning on Z makes X and Y dependent.

Tamara Broderick · Peter Orbanz 67/73

COMPLEMENTARY PRIOR

Observation

 $X^{(1)}, X^{(2)}, \dots, X^{(N)}$ is a Markov chain.

Complementary prior idea

- Suppose Markov chain is reversible.
- Then all arrows can be reversed.
- Now: Inference easy.

COMPLEMENTARY PRIOR

Observation

 $X^{(1)}, X^{(2)}, \dots, X^{(N)}$ is a Markov chain.

Complementary prior idea

- Suppose Markov chain is reversible.
- Then all arrows can be reversed.
- Now: Inference easy.

BUILDING A COMPLEMENTARY PRIOR

• Find reversible Markov chain with

$$P^{(1)}=P_{\infty}$$

- Let \mathbf{p}_T be its transition kernel
- Choose

$$P^{(n+1)}(\bullet|X^{(n)}=\mathbf{x})=\mathbf{p}_{\mathrm{T}}(\bullet|\mathbf{x})$$

- Then $P^{(2)} = \ldots = P^{(n)} = P_{\infty}$
- Since chain is reversible,

$$P^{(n)}(\bullet|X^{(n+1)}=\mathbf{x})=\mathbf{p}_{\mathrm{T}}(\bullet|\mathbf{x})$$

and edges flip.

BUILDING A COMPLEMENTARY PRIOR

• Find reversible Markov chain with

$$P^{(1)} = P_{\infty}$$

- Let \mathbf{p}_T be its transition kernel
- Choose

$$P^{(n+1)}(\bullet|X^{(n)}=\mathbf{x})=\mathbf{p}_{\mathrm{T}}(\bullet|\mathbf{x})$$

- Then $P^{(2)} = \ldots = P^{(n)} = P_{\infty}$
- Since chain is reversible,

$$P^{(n)}(\bullet|X^{(n+1)}=\mathbf{x})=\mathbf{p}_{\mathrm{T}}(\bullet|\mathbf{x})$$

and edges flip.

WHERE DO WE GET THE MARKOV CHAIN?

Blocked Gibbs sampling alternates between *X* and *Y*

$$X^{(1)} \to Y^{(1)} \to X^{(2)} \to Y^{(2)} \to \dots \to X^{(N)} \to Y^{(N)}$$

"Roll off" this chain into a graphical model

The Gibbs sampler for the RBM becomes the model for the directed network.

REMARKS

- "Deep learning" refers to hierarchies with multiple hidden layers.
- There are other methods to build/train "deep" hierarchies.
- Many training methods are of the form: Initialize with method (a), fine-tune with method (b), etc
- "Deep" now refers to everything that is hierarchical and has more than two layers.
- Some deep networks are indeed deep: ImageNet now has >100 layers

How deep is deep?

- Hinton/Osindero/Teh, 2006: Input + output + 3 hidden layers.
- Models currently used for computer vision problems: >100 layers.

Tamara Broderick · Peter Orbanz 71/

AUTOENCODERS

Prediction = f(Input)

Tamara Broderick · Peter Orbanz 72/73

AUTOENCODERS

Prediction = f(Input)

Tamara Broderick · Peter Orbanz 72/73

AUTOENCODERS

