Assignment: MATH 3490 Numerical Analysis

Instructor: Dr. Puneet Rana

Issue Date: Oct 03, 2021 **Deadline:** Oct 09, 2021

UNIT 3: AS 1 Interpolation and Polynomial Approximation (30 Points) *Note: All questions are of equal marks*

Question 1: Let $f(x) = x^3 - e^{-x}$, $x_0 = 0$, $x_1 = 0.7$, $x_2 = 1.0$.

(a) Find the Lagrange polynomial, $P_2(x)$, of degree at most 2 for f(x) using x_0, x_1 and x_2 .

(b) Evaluate $P_2(0.8)$ and compute the actual error, $|f(0.8) - P_2(0.8)|$.

Question 2: Let $f(x) = x^4 - 2x^3 + x^2 - 3$, $x_0 = 0$, $x_1 = 0.5$, $x_2 = 1.0$, $x_3 = 1.5$.

- (a) Compute the interpolating polynomial, $P_3(x)$, of degree at most 3 for f(x) using given nodes.
- (b) Find the maximum error in using $P_3(x)$ to approximate f(x) on the interval [0, 2].

Question 3: Find the missing term in the following table using Lagrange's interpolation:

		-			
x:	0	1	2	3	4
<i>y</i> :	1	3	9		81

Question 4: Let $f(x) = x \sin 2x - x^2$, $x_0 = 0$, $x_1 = 0.3$, $x_2 = 0.7$.

- (a) Find Newton's Divided-Difference form of the interpolating polynomial $P_2(x)$ for f(x) using the three given nodes.
- (b) Add a fourth node $x_3 = 0.9$ and compute the next interpolating polynomial $P_3(x)$.

Question 5: Let $f(x) = xe^{-x/2}$, $x_0 = 1$, $x_1 = 2$.

- (a) Construct the Hermite interpolating polynomial $H_3(x)$ for f(x) using the given nodes.
- (b) Approximate f(1.4) using $H_3(1.4)$.
- (c) Find the absolute error $|f(1.4) H_3(1.4)|$
- (d) Find a bound for the error using the error bound formula.

Question 6: The following values of x and y are given:

x:	1	2	3	4
y:	1	2	5	11

Find the natural cubic splines and evaluate y(1.5) and y'(3).
