CS4102 Algorithms

Nate Brunelle

Spring 2018

Warm up

Why is an algorithm's space complexity (how much memory it uses) important?

Why might a memory-intensive algorithm be a "bad" one?

Why lots of memory is "bad"

Today's Keywords

- Greedy Algorithms
- Choice Function
- Cache Replacement
- Hardware & Algorithms

CLRS Readings

• Chapter 16

Homeworks

- Hw5 Due Today
 - Dynamic Programming
 - Programming assignment (use Python!)
- HW6 Out Today
 - Dynamic Programming and Greedy
 - Written assignment (use Latex)

Caching Problem

Why is using too much memory a bad thing?

Von Neumann Bottleneck

- Named for John von Neumann
- Inventor of modern computer architecture
- Other notable influences include:
 - Mathematics
 - Physics
 - Economics
 - Computer Science

Von Neumann Bottleneck

- Reading from memory is VERY slow
- Big memory = slow memory
- Solution: hierarchical memory
- Takeaway for Algorithms: Memory is time, more memory is a lot more time

Caching Problem

- Cache misses are very expensive
- When we load something new into cache, we must eliminate something already there
- We want the best cache "schedule" to minimize the number of misses

Caching Problem Definition

Input:

- -k =size of the cache
- $-M = [m_1, m_2, ... m_n] =$ memory access pattern

Output:

 "schedule" for the cache (list of items in the cache at each time) which minimizes cache fetches

Our Problem vs Reality

- Assuming we know the entire access pattern
- Cache is Fully Associative
- Counting # of fetches (not necessarily misses)
- "Reduced" Schedule: Address only loaded on the cycle it's required
 - Reduced == Unreduced (by number of misses)

Greedy Algorithms

- Require Optimal Substructure
 - Solution to larger problem contains the solution to a smaller one
 - Only one subproblem to consider!
- Idea:
 - 1. Identify a greedy choice property
 - How to make a choice guaranteed to be included in some optimal solution
 - 2. Repeatedly apply the choice property until no subproblems remain

- Belady evict rule:
 - Evict the item accessed farthest in the future

- Belady evict rule:
 - Evict the item accessed farthest in the future

- Belady evict rule:
 - Evict the item accessed farthest in the future

- Belady evict rule:
 - Evict the item accessed farthest in the future

- Belady evict rule:
 - Evict the item accessed farthest in the future

4 Cache Misses

Greedy Algorithms

- Require Optimal Substructure
 - Solution to larger problem contains the solution to a smaller one
 - Only one subproblem to consider!
- Idea:
 - 1. Identify a greedy choice property
 - How to make a choice guaranteed to be included in some optimal solution
 - Repeatedly apply the choice property until no subproblems remain

Caching Greedy Algorithm

```
Initialize cache= first k accesses
                                    O(n)
For each m_i \in M:
                   n times
     if m_i \in cache: o(k)
           print cache O(k)
     else:
           m = \text{furthest-in-future from cache } o(kn)
           replace m_i with m
                                O(1)
           print cache o(k)
                                    O(kn^2)
```

Exchange argument

- Shows correctness of a greedy algorithm
- Idea:
 - Show exchanging an item from an arbitrary optimal solution with your greedy choice makes the new solution no worse
 - How to show my sandwich is at least as good as yours:
 - Show: "I can remove any item from your sandwich, and it would be no worse by replacing it with the same item

from my sandwich"

Belady Exchange Lemma

Let S_{ff} be the schedule chosen by our greedy algorithm Let S_i be a schedule which agrees with S_{ff} for the first i memory accesses.

We will show: there is a schedule S_{i+1} which agrees with S_{ff} for the first i+1 memory accesses, and has no more misses than S_i

(i.e. $misses(S_{i+1}) \le misses(S_i)$)

Belady Exchange Proof Idea

Proof of Lemma

Goal: find S_{i+1} s.t. $misses(S_{i+1}) \leq misses(S_i)$

Since S_i agrees with S_{ff} for the first i accesses, the state of the cache at access i+1 will be the same

Consider access $m_{i+1} = d$

Case 1: if d is in the cache, then neither S_i nor S_{ff} evict from the cache, use the same cache for S_{i+1}

Proof of Lemma

Goal: find S_{i+1} s.t. $misses(S_{i+1}) \leq misses(S_i)$

Since S_i agrees with S_{ff} for the first i accesses, the state of the cache at access i+1 will be the same

Consider access $m_{i+1} = d$

Case 2: if d isn't in the cache, and both S_i and S_{ff} evict f from the cache, evict f for d in S_{i+1}

Proof of Lemma

Goal: find S_{i+1} s.t. $misses(S_{i+1}) \leq misses(S_i)$

Since S_i agrees with S_{ff} for the first i accesses, the state of the cache at access i+1 will be the same

Consider access $m_{i+1} = d$

Case 3: if d isn't in the cache, S_i evicts e and S_{ff} evicts f from the cache

Case 3

Case 3

First place S_i involves e or f

$$S_{ff}$$

 $m_t =$ the first access after i+1 in which S_i involves with e or f

$$m_t = e$$
 or $m_t = f$ or $m_t = x \neq e$, f

Case 3, $m_t = e$

 m_t = the first access after i+1 in which S_i deals with e or f

Case 3, $m_t = e$

Goal: find S_{i+1} s.t. $misses(S_{i+1}) \leq misses(S_i)$

 S_i must load e into the cache, assume it evicts x

 S_{i+1} will load f into the cache, evicting x

The caches now match!

 S_{i+1} behaved exactly the same as S_i between i and t, and has the same cache after t, therefore $misses(S_{i+1}) = misses(S_i)$

Case 3, $m_t = f$

 $m_t=$ the first access after i+1 in which S_i deals with e or f $m_t=e$ or $m_t=f$ or $m_t=x\neq e$, f

Case 3, $m_t = f$

Cannot Happen!

Case 3, $m_t = x \neq e$, f

 $m_t=$ the first access after i+1 in which S_i deals with e or f $m_t=e$ or $m_t=f$ or $m_t=x\neq e$, f

Case 3, $m_t = x \neq e$, f

Goal: find S_{i+1} s.t. $misses(S_{i+1}) \leq misses(S_i)$

 S_i loads x into the cache, it must be evicting f

 S_{i+1} will load x into the cache, evicting e

The caches now match!

 S_{i+1} behaved exactly the same as S_i between i and t, and has the same cache after t, therefore $misses(S_{i+1}) = misses(S_i)$