22F CS-559 A HW 1

Jiangrui Zheng

December 1, 2022

Problem 1

1. Suppose initially we assign A_1, B_1 , and C_2 as the center of each cluster. Cluster Assignment:

Distance (d^2)	A_1	B_1	C_2
A_1	0	13	5
A_2	25	18	20
A_3	72	25	41
B_1	13	0	2
C_1	65	52	58
C_2	5	2	0

Then we can know minimums of distance between 3 centers. After the first iteration,

Cluster 1: A_1

Cluster 2: A_2, A_3, B_1, C_1

Cluster 3: C_2

2. Cluster 1: (2, 10)

Cluster 2: (4, 4.75)

Cluster 3: (4,9)

$\mathbf{2}$ Problem 3

1. X = (Gender = M, CarType = Family, ShirtSize = Large)

$$P(X|Class = C0)$$

$$=P(Gender=M|Class=C0)*P(CarType=Family|Class=C0)*P(ShirtSize=Large|Class=C0)*P(Shirt$$

$$= 6/10 * 1/10 * 2/10 = 0.012$$

$$P(X|Class = C1)$$

$$= P(Gender = M|Class = C1) * P(CarType = Family|Class = C1) * P(ShirtSize = Large|Class = C1) = 4/10 * 3/10 * 2/10 = 0.024$$

Since
$$P(C1) = P(C0) = 0.5, then P(X|Class = C)$$

Since
$$P(C1) = P(C0) = 0.5$$
, $then P(X|Class = C1)P(C1) > P(X|Class = C1)P(C1)$ So $P(Class = C0|X) < P(Class = C1|X)$, $Class = C1$.

2. Let X1 denote Car Type, X2 denote Gender, X3 denote Shirt Size.

Bayesian Network for classification:

$$P(C \mid X_1, X_2, ..., X_n) = \frac{P(X_1, X_2, ..., X_n \mid C) P(C)}{P(X_1, X_2, ..., X_n)}$$

 $P\left(X_{1}=Family,X_{2}=M,X_{3}=Large\mid C0\right)P(C0)=6/10*1/6*0*5/10=0$ $P\left(X_{1}=Family,X_{2}=M,X_{3}=Large\mid C1\right)P(C1)=4/10*3/4*1/10*5/10=0.06$ Since 0.06>0, so Class=C1.

3 Problem 4

Compresen graph:

$$\begin{array}{l}
\lambda \to W' X \quad \delta(3') \longrightarrow W^{2}a; \quad \delta(2^{2}) \longrightarrow W^{3}a; \quad \delta(2^{3}) \longrightarrow L(\hat{y}, y) \\
\delta ack \quad Pragatua; \quad \partial_{x} = \frac{1}{3} \frac{3\hat{y}}{3\hat{z}}, \frac{3\hat{y}}{3\hat{z}}, \frac{3\hat{y}}{3\hat{w}} \\
\frac{\partial L}{\partial w} = \frac{3}{3} \frac{1}{3} \frac{3\hat{y}}{3\hat{z}}, \frac{3\hat{y}}{3\hat{w}} \\
\frac{\partial L}{\partial w} = \frac{3}{3} \frac{1}{3} \frac{3\hat{y}}{3\hat{z}}, \frac{3\hat{y}}{3\hat{w}} \\
\frac{\partial L}{\partial w} = \frac{3}{3} \frac{1}{3} \frac{3\hat{y}}{3\hat{z}}, \frac{3\hat{y}}{3\hat{w}} \\
\frac{\partial L}{\partial w} = \frac{3}{3} \frac{1}{3} \frac{3\hat{y}}{3\hat{z}}, \frac{3\hat{z}}{3\hat{w}} \\
\frac{\partial L}{\partial w} = \frac{3}{3} \frac{1}{3} \frac{3\hat{y}}{3\hat{z}}, \frac{3\hat{z}}{3\hat{w}} \\
\frac{\partial L}{\partial w} = \frac{3}{3} \frac{1}{3} \frac{3\hat{z}}{3\hat{z}}, \frac{3\hat{z}}{3\hat{z}}, \frac{3\hat{z}}{3\hat{z}}, \frac{3\hat{z}}{3\hat{w}} \\
\frac{\partial L}{\partial w} = \frac{3}{3} \frac{1}{3} \frac{3\hat{z}}{3\hat{z}}, \frac{3\hat{z}}{3\hat{z}}, \frac{3\hat{z}}{3\hat{z}}, \frac{3\hat{z}}{3\hat{w}} \\
\frac{\partial L}{\partial w} = \frac{3}{3} \frac{1}{3} \frac{3\hat{z}}{3\hat{z}}, \frac{3\hat{z}}{3\hat{z}}, \frac{3\hat{z}}{3\hat{z}}, \frac{3\hat{z}}{3\hat{z}}, \frac{3\hat{z}}{3\hat{w}} \\
\frac{\partial L}{\partial w} = \frac{3}{3} \frac{1}{3} \frac{3\hat{z}}{3\hat{z}}, \frac{3\hat{z}}{3\hat{z}},$$