# Operator Algebras Generated by Left Invertibles

Derek Desantis

University of Nebraska, Lincoln

GPOTS, May 2018

## Background

■ A sequence  $\{f_n\}$  in a Hilbert space  $\mathscr{H}$  is called a **frame** if there exists constants 0 < A < B such that for each  $x \in \mathscr{H}$ ,

$$|A||x||^2 \le \sum_{n} |\langle x, f_n \rangle|^2 \le B||x||^2$$

## Background

■ A sequence  $\{f_n\}$  in a Hilbert space  $\mathscr{H}$  is called a **frame** if there exists constants 0 < A < B such that for each  $x \in \mathscr{H}$ ,

$$|A||x||^2 \le \sum_{n} |\langle x, f_n \rangle|^2 \le B||x||^2$$

■ We can associate to each frame  $\{f_n\}$  a dual frame  $\{g_n\}$  such that

$$x = \sum_{n} \langle x, g_n \rangle f_n$$

## Background

■ A sequence  $\{f_n\}$  in a Hilbert space  $\mathcal{H}$  is called a **frame** if there exists constants 0 < A < B such that for each  $x \in \mathcal{H}$ ,

$$|A||x||^2 \le \sum_{n} |\langle x, f_n \rangle|^2 \le B||x||^2$$

■ We can associate to each frame  $\{f_n\}$  a dual frame  $\{g_n\}$  such that

$$x = \sum_{n} \langle x, g_n \rangle f_n$$

■ If  $\{f_k\}$  frame for  $\mathcal{H}$ , and T has closed range, then  $\{Tf_k\}$  is a frame for  $T\mathcal{H}$ .

Let  $T \in \mathcal{B}(\mathcal{H})$  have closed range. There is a unique operator  $T^{\dagger} \in \mathcal{B}(\mathcal{H})$  called the **Moore-Penrose inverse of T** such that

- $T^{\dagger}Tx = x \text{ for all } x \in \ker(T)^{\perp}$
- $T^{\dagger}y = 0 \text{ for all } y \in (T\mathscr{H})^{\perp}.$

Let  $T \in \mathcal{B}(\mathcal{H})$  have closed range. There is a unique operator  $T^{\dagger} \in \mathcal{B}(\mathcal{H})$  called the **Moore-Penrose inverse of T** such that

- $T^{\dagger}Tx = x \text{ for all } x \in \ker(T)^{\perp}$
- $T^{\dagger}y = 0 \text{ for all } y \in (T\mathscr{H})^{\perp}.$

## Example

Let  $T \in \mathcal{B}(\ell^2)$  be given by  $Te_n = w_n e_n$ ,  $n \ge 0$ . If  $0 < c < |w_n|$ , then T is left invertible and

$$T^{\dagger} e_n = \begin{cases} 0 & n = 0 \\ w_n^{-1} e_{n-1} & n \ge 1 \end{cases}$$

Let  $T \in \mathcal{B}(\mathcal{H})$  have closed range. There is a unique operator  $T^{\dagger} \in \mathcal{B}(\mathcal{H})$  called the **Moore-Penrose inverse of T** such that

- 1  $T^{\dagger}Tx = x$  for all  $x \in \ker(T)^{\perp}$
- $T^{\dagger}y = 0 \text{ for all } y \in (T\mathscr{H})^{\perp}.$

## Example

■ Let  $T \in \mathcal{B}(\ell^2)$  be given by  $Te_n = w_n e_n$ ,  $n \ge 0$ . If  $0 < c < |w_n|$ , then T is left invertible and

$$T^{\dagger} e_n = \begin{cases} 0 & n = 0 \\ w_n^{-1} e_{n-1} & n \ge 1 \end{cases}$$

■ If T is an isometry, then  $T^{\dagger} = T^*$ .

Operator Algebras Generated by Left Invertibles

Program Outline
Research Program

## Remark

C\*-algebras generated by partial isometries (graph algebras) are well studied.

C\*-algebras generated by partial isometries (graph algebras) are well studied.

$$E = \{r, s, E^0, E^1\}:$$



## Program

Choose a closed range operator  $T_e$  for each directed edge  $e \in E^1$ , subject to constraints of directed graph. What is the structure of the operator algebra

$$\overline{\mathrm{Alg}}(T_e, T_e^{\dagger})$$

## Program

Choose a closed range operator  $T_e$  for each directed edge  $e \in E^1$ , subject to constraints of directed graph. What is the structure of the operator algebra

$$\overline{\mathrm{Alg}}(T_e, T_e^{\dagger})$$

### Remark

Our focus is on representations afforded by the graph



### Notation

Given a left (but not right) invertible  $T \in \mathcal{B}(\mathcal{H})$ , let

$$\mathfrak{A}_T := \overline{\mathrm{Alg}}(T, T^{\dagger})$$

### Notation

Given a left (but not right) invertible  $T \in \mathcal{B}(\mathcal{H})$ , let

$$\mathfrak{A}_T := \overline{\mathrm{Alg}}(T, T^{\dagger})$$

## Example

If  $T = M_z$  on  $H^2(\mathbb{T})$ , then  $\mathfrak{A}_T$  is the classic Toeplitz algebra

$$\mathcal{T} = \{ T_f + K : f \in C(\mathbb{T}), K \in \mathcal{K}(H^2(\mathbb{T})) \}$$

### Notation

Given a left (but not right) invertible  $T \in \mathcal{B}(\mathcal{H})$ , let

$$\mathfrak{A}_T := \overline{\mathrm{Alg}}(T, T^{\dagger})$$

### Example

If  $T = M_z$  on  $H^2(\mathbb{T})$ , then  $\mathfrak{A}_T$  is the classic Toeplitz algebra

$$\mathcal{T} = \{ T_f + K : f \in C(\mathbb{T}), K \in \mathcal{K}(H^2(\mathbb{T})) \}$$

#### Remark

General left invertibles have no Wold decomposition:

$$\mathscr{H} \neq \left(\bigcap_{n} T^{n} \mathscr{H}\right) \oplus \left(\bigvee_{n} T^{n} \ker(T^{*})\right)$$

A left invertible operator T is called **analytic** if

$$\bigcap_n T^n \mathscr{H} = 0$$

A left invertible operator T is called **analytic** if

$$\bigcap_{n} T^{n} \mathcal{H} = 0$$

## Theorem (D-)

Let T be an analytic left invertible with ind(T) = -n for some positive integer n. Let  $\{x_{i,0}\}_{i=1}^n$  be an orthonormal basis for  $\ker(T^*)$ . Then

A left invertible operator T is called **analytic** if

$$\bigcap_{n} T^{n} \mathcal{H} = 0$$

## Theorem (D-)

Let T be an analytic left invertible with ind(T) = -n for some positive integer n. Let  $\{x_{i,0}\}_{i=1}^n$  be an orthonormal basis for  $\ker(T^*)$ . Then

$$x_{i,j} := (T^{\dagger *})^j (x_{i,0})$$

 $i = 1, \ldots, j = 0, 1, \ldots$  is a Schauder basis for  $\mathcal{H}$ 

An operator  $R \in \mathcal{B}(\mathcal{H})$  is called **Cowen-Douglas** if there exists open subset  $\Omega \subset \sigma(R)$  such that

$$2 \dim(\ker(R-\lambda)) = n \text{ for all } \lambda \in \Omega.$$

We denote this by  $R \in B_n(\Omega)$ .

An operator  $R \in \mathcal{B}(\mathcal{H})$  is called **Cowen-Douglas** if there exists open subset  $\Omega \subset \sigma(R)$  such that

- $2 \dim(\ker(R-\lambda)) = n \text{ for all } \lambda \in \Omega.$

We denote this by  $R \in B_n(\Omega)$ .

### Theorem (D-)

Let  $T \in \mathcal{B}(\mathcal{H})$  be left invertible operator with ind(T) = -n, for  $n \geq 1$ . Then the following are equivalent:

An operator  $R \in \mathcal{B}(\mathcal{H})$  is called **Cowen-Douglas** if there exists open subset  $\Omega \subset \sigma(R)$  such that

- $2 \dim(\ker(R-\lambda)) = n \text{ for all } \lambda \in \Omega.$

We denote this by  $R \in B_n(\Omega)$ .

### Theorem (D-)

Let  $T \in \mathcal{B}(\mathcal{H})$  be left invertible operator with ind(T) = -n, for  $n \geq 1$ . Then the following are equivalent:

1 T is an analytic

An operator  $R \in \mathcal{B}(\mathcal{H})$  is called **Cowen-Douglas** if there exists open subset  $\Omega \subset \sigma(R)$  such that

- $2 \dim(\ker(R-\lambda)) = n \text{ for all } \lambda \in \Omega.$

We denote this by  $R \in B_n(\Omega)$ .

### Theorem (D-)

Let  $T \in \mathcal{B}(\mathcal{H})$  be left invertible operator with ind(T) = -n, for  $n \geq 1$ . Then the following are equivalent:

- 1 T is an analytic
- **2** There exists  $\epsilon > 0$  such that  $T^* \in B_n(\Omega)$  for  $\Omega = \{z : |z| < \epsilon\}$

An operator  $R \in \mathcal{B}(\mathcal{H})$  is called **Cowen-Douglas** if there exists open subset  $\Omega \subset \sigma(R)$  such that

- $2 \dim(\ker(R-\lambda)) = n \text{ for all } \lambda \in \Omega.$

We denote this by  $R \in B_n(\Omega)$ .

### Theorem (D-)

Let  $T \in \mathcal{B}(\mathcal{H})$  be left invertible operator with ind(T) = -n, for  $n \geq 1$ . Then the following are equivalent:

- 1 T is an analytic
- **2** There exists  $\epsilon > 0$  such that  $T^* \in B_n(\Omega)$  for  $\Omega = \{z : |z| < \epsilon\}$
- **3** There exists  $\epsilon > 0$  such that  $T^{\dagger} \in B_n(\Omega)$  for  $\Omega = \{z : |z| < \epsilon\}$

If  $R \in B_n(\Omega)$ , then R is unitarily equivalent to  $M_z^*$  on a RKHS of analytic functions  $\widehat{\mathscr{H}}$  on  $\Omega^* = \{\overline{z} : z \in \Omega\}$ .

If  $R \in B_n(\Omega)$ , then R is unitarily equivalent to  $M_z^*$  on a RKHS of analytic functions  $\widehat{\mathscr{H}}$  on  $\Omega^* = \{\overline{z} : z \in \Omega\}$ .

## Analytic Model

Let T be an analytic left invertible with  $\operatorname{ind}(T) = -n$  for some positive integer n,  $\{x_{i,j}\}$  the basis associated with  $T^{\dagger *}$ , and  $\Omega = \{z : |z| < \epsilon\}$  as in previous theorem.

If  $R \in B_n(\Omega)$ , then R is unitarily equivalent to  $M_z^*$  on a RKHS of analytic functions  $\widehat{\mathscr{H}}$  on  $\Omega^* = \{\overline{z} : z \in \Omega\}$ .

### Analytic Model

Let T be an analytic left invertible with  $\operatorname{ind}(T) = -n$  for some positive integer n,  $\{x_{i,j}\}$  the basis associated with  $T^{\dagger *}$ , and  $\Omega = \{z : |z| < \epsilon\}$  as in previous theorem. Then for each  $\lambda \in \Omega$ ,

$$x_{\lambda} = \sum_{i=1}^{n} \sum_{j \ge 0} \lambda^{j} x_{i,j}$$

exists in  $\mathcal{H}$ .

If  $R \in B_n(\Omega)$ , then R is unitarily equivalent to  $M_z^*$  on a RKHS of analytic functions  $\widehat{\mathscr{H}}$  on  $\Omega^* = \{\overline{z} : z \in \Omega\}$ .

### Analytic Model

Let T be an analytic left invertible with  $\operatorname{ind}(T) = -n$  for some positive integer n,  $\{x_{i,j}\}$  the basis associated with  $T^{\dagger *}$ , and  $\Omega = \{z : |z| < \epsilon\}$  as in previous theorem. Then for each  $\lambda \in \Omega$ ,

$$x_{\lambda} = \sum_{i=1}^{n} \sum_{j>0} \lambda^{j} x_{i,j}$$

exists in  $\mathcal{H}$ . Moreover, for each  $f \in \mathcal{H}$ ,

$$\hat{f}(\lambda) = \langle f, x_{\overline{\lambda}} \rangle = \sum_{i=1}^{n} \sum_{j \ge 0} \lambda^{j} \langle f, x_{i,j} \rangle$$

## Assumption

- The Fredholm index: ind(T) = -1
- Analytic:  $\bigcap T^n \mathcal{H} = 0$ .

## Assumption

- The Fredholm index: ind(T) = -1
- Analytic:  $\bigcap T^n \mathcal{H} = 0$ .

## Theorem (D-)

If T is a left invertible, then  $\mathfrak{A}_T$  contains the compact operators  $\mathscr{K}(\mathscr{H})$ . Moreover,  $\mathscr{K}(\mathscr{H})$  is a minimal ideal of  $\mathfrak{A}_T$ .

## Assumption

- The Fredholm index: ind(T) = -1
- Analytic:  $\bigcap T^n \mathcal{H} = 0$ .

## Theorem (D-)

If T is a left invertible, then  $\mathfrak{A}_T$  contains the compact operators  $\mathscr{K}(\mathscr{H})$ . Moreover,  $\mathscr{K}(\mathscr{H})$  is a minimal ideal of  $\mathfrak{A}_T$ .

## Corollary

Let L be any left inverse of T. Then

$$\mathfrak{A}_T = \overline{Alg}(T, L)$$

## Theorem (D-)

Let  $T_i$ , i = 1, 2 be left invertible with  $\mathfrak{A}_i := \mathfrak{A}_{T_i}$ . Suppose that  $\phi : \mathfrak{A}_1 \to \mathfrak{A}_2$  is a bounded isomorphism. Then  $\phi = Ad_V$  for some invertible  $V \in \mathscr{B}(\mathscr{H})$ . That is, for all  $A \in \mathfrak{A}_1$ ,

$$\phi(A) = VAV^{-1}$$

## Theorem (D-)

Let  $T_i$ , i = 1, 2 be left invertible with  $\mathfrak{A}_i := \mathfrak{A}_{T_i}$ . Suppose that  $\phi : \mathfrak{A}_1 \to \mathfrak{A}_2$  is a bounded isomorphism. Then  $\phi = Ad_V$  for some invertible  $V \in \mathscr{B}(\mathscr{H})$ . That is, for all  $A \in \mathfrak{A}_1$ ,

$$\phi(A) = VAV^{-1}$$

#### Remark

To distinguish these algebras by isomorphism classes, we need to classify the similarity orbit:

$$S(T) := \{VTV^{-1} : V \in \mathcal{B}(\mathcal{H}) \text{ is invertible}\}$$

■ To determine S(T), suffices to identify  $S(T^*)$ .

- To determine S(T), suffices to identify  $S(T^*)$ .
- Recall that  $T^* \in B_1(\Omega)$  for some disc  $\Omega$  centered at the origin.

- To determine S(T), suffices to identify  $S(T^*)$ .
- Recall that  $T^* \in B_1(\Omega)$  for some disc  $\Omega$  centered at the origin.
- Determining the similarity orbit of Cowen-Douglas operators is a classic problem.

- To determine S(T), suffices to identify  $S(T^*)$ .
- Recall that  $T^* \in B_1(\Omega)$  for some disc  $\Omega$  centered at the origin.
- Determining the similarity orbit of Cowen-Douglas operators is a classic problem.

## Theorem (Jiang, Wang, Guo, Ji)

Let  $A, B \in B_1(\Omega)$ . Then A is similar to B if and only if

$$K_0(\{A \oplus B\}') \cong \mathbb{Z}$$

An operator  $S \in \mathcal{B}(\mathcal{H})$  is **subnormal** if it has a normal extension:

$$N = \begin{pmatrix} S & A \\ 0 & B \end{pmatrix} \in \mathscr{B}(\mathscr{K})$$

### Definition

An operator  $S \in \mathcal{B}(\mathcal{H})$  is **subnormal** if it has a normal extension:

$$N = \begin{pmatrix} S & A \\ 0 & B \end{pmatrix} \in \mathcal{B}(\mathcal{K})$$

The operator N is said to be a **minimal normal extension** if  $\mathscr K$  has no proper subspace reducing N and containing  $\mathscr H$ .

### Definition

An operator  $S \in \mathcal{B}(\mathcal{H})$  is **subnormal** if it has a normal extension:

$$N = \begin{pmatrix} S & A \\ 0 & B \end{pmatrix} \in \mathcal{B}(\mathcal{K})$$

The operator N is said to be a **minimal normal extension** if  $\mathcal{K}$  has no proper subspace reducing N and containing  $\mathcal{H}$ .

### Definition

Let  $\mu$  be a scalar-valued spectral measure associated to N, and  $f \in L^{\infty}(\sigma(N), \mu)$ .

### Definition

An operator  $S \in \mathcal{B}(\mathcal{H})$  is **subnormal** if it has a normal extension:

$$N = \begin{pmatrix} S & A \\ 0 & B \end{pmatrix} \in \mathcal{B}(\mathcal{K})$$

The operator N is said to be a **minimal normal extension** if  $\mathcal{K}$  has no proper subspace reducing N and containing  $\mathcal{H}$ .

## Definition

Let  $\mu$  be a scalar-valued spectral measure associated to N, and  $f \in L^{\infty}(\sigma(N), \mu)$ . Define  $T_f \in \mathcal{B}(\mathcal{H})$  via

$$T_f := P(f(N)) \mid_{\mathscr{H}}$$

where P is the orthogonal projection of  $\mathcal{K}$  onto  $\mathcal{H}$ .

# Theorem (Keough, Olin and Thomson )

If S is an irreducible, subnormal, essentially normal operator, then:

$$C^*(S) = \{T_f + K : f \in C(\sigma(N)), K \in \mathcal{K}(\mathcal{H})\}\$$

Moreover, if  $\sigma(N) = \sigma_e(S)$ , then each element has  $A \in C^*(S)$  has a unique representation of the form  $T_f + K$ .

## Theorem (D-)

Let S be an analytic left invertible, ind(S) = -1, essentially normal, subnormal operator with N := mne(S) such that  $\sigma(N) = \sigma_e(S)$ .

## Theorem (D-)

Let S be an analytic left invertible, ind(S) = -1, essentially normal, subnormal operator with N := mne(S) such that  $\sigma(N) = \sigma_e(S)$ . Set

$$\mathscr{B} = \overline{Alg}\{z, z^{-1}\}$$

on  $\sigma_e(S)$ . Then

## Theorem (D-)

Let S be an analytic left invertible, ind(S) = -1, essentially normal, subnormal operator with N := mne(S) such that  $\sigma(N) = \sigma_e(S)$ . Set

$$\mathscr{B} = \overline{Alg}\{z, z^{-1}\}$$

on  $\sigma_e(S)$ . Then

$$\mathfrak{A}_S = \{ T_f + K : f \in \mathscr{B}, K \in \mathscr{K}(\mathscr{H}) \}$$

Moreover, the representation of each element as  $T_f + K$  is unique.

■ Are the spectral pictures "general", and do they determine the isomorphism classes?

- Are the spectral pictures "general", and do they determine the isomorphism classes?
- Does there exist a representing measure for  $\partial\Omega$ ?

- Are the spectral pictures "general", and do they determine the isomorphism classes?
- Does there exist a representing measure for  $\partial\Omega$ ?
- Determine the isomorphism classes for ind(T) < -1.

- Are the spectral pictures "general", and do they determine the isomorphism classes?
- Does there exist a representing measure for  $\partial\Omega$ ?
- Determine the isomorphism classes for ind(T) < -1.
- Any hope for non-analytic left invertibles?

- Are the spectral pictures "general", and do they determine the isomorphism classes?
- Does there exist a representing measure for  $\partial\Omega$ ?
- Determine the isomorphism classes for ind(T) < -1.
- Any hope for non-analytic left invertibles?
- Investigate other algebras that arise from graphs e.g. "Cuntz algebra".

