# Logic Optimization Heuristic Based

#### Virendra Singh

**Professor** 



Department of Electrical Engineering & Dept. of Computer Science & Engineering Indian Institute of Technology Bombay http://www.ee.iitb.ac.in/~viren/

E-mail: viren@{ee, cse}.iitb.ac.in



EE-677: Foundations of VLSI CAD



Lecture 26 on 11 Oct 2021

**CADSL** 

#### **Logic Minimization**

Exact Methods.

Redundant faults

2- Leve





# Heuristic based 2-Level Logic Minimization





#### **Unateness**



- Function f (x<sub>1</sub>, x<sub>2</sub>, ...., x<sub>i</sub>, ...., x<sub>n</sub>)
- Positive unate in x<sub>i</sub> when:

$$-f_{xi} \ge f_{xi'}$$



$$-f_{xi} \leq f_{xi'}$$





#### **Operators**

- Function f (x<sub>1</sub>, x<sub>2</sub>, ...., x<sub>i</sub>, ...., x<sub>n</sub>)
- Boolean difference of f w.r.t. variable x<sub>i</sub>:
  - $-\partial f/\partial x_i \equiv f_{xi} \oplus f_{xi'}$
- Consensus of f w.r.t. variable x<sub>i</sub>:

$$-C_{xi} \equiv f_{xi} \cdot f_{xi'}$$
 intersection

• *Smoothing* of f w.r.t. variable x<sub>i</sub>:

$$-S_{xi} \equiv f_{xi} + f_{xi'}$$

#### Generalized Expansion

f= xifni + xefno

= ni fni D di fai

- Given:
  - A Boolean function f.
  - Orthonormal set of functions:

$$\frac{\phi_i}{m}$$
, i = 1, 2, ..., k

• Then:

$$- f = \sum_{i}^{k} \underline{\phi_{i}} \cdot f_{\underline{\phi_{i}}}$$

- Where  $f_{\phi_i}$  is a generalized cofactor.
- The generalized <u>cofactor</u> is not <u>unique</u>, but satisfies:

$$-f \cdot \phi_i \subseteq f_{\phi_i} \subseteq f + \phi_i'$$



# Example

• Function: f = ab + bc + ac

- Basis:  $\phi_1 = ab$  and  $\phi_2 = a' + b'$ .
- Bounds:

$$-ab \subseteq f_{\phi_1} \subseteq 1$$

$$-$$
 a'bc + ab'c  $\subseteq$  f $_{\phi_2}$   $\subseteq$  ab + bc + ac



• Cofactors:  $f_{\phi_1} = 1$  and  $f_{\phi_2} = a'bc + ab'c$ .

$$f = \phi_1 f_{\phi_1} + \phi_2 f_{\phi_2}$$

$$= \underline{ab\cdot 1} + (a' + b')(a'bc + ab'c)$$

$$= \underline{ab \cdot 1} + bc + \underline{ac} \checkmark$$

#### Generalized expansion theorem

#### • Given:

- Two function f and g.
- Orthonormal set of functions:  $\phi_i$ , i=1,2,...,k
- Boolean operator ⊙
- Then:

$$-f\odot g=\sum_{i}^{k}\phi_{i}\cdot(f_{\phi_{i}}\odot g_{\phi_{i}})$$

Corollary:

$$-\underbrace{f\odot g=x_{i}\cdot (f_{x_{i}}\odot g_{x_{i}})+x_{i}'\cdot (f_{x_{i}'}\odot g_{x_{i}'})}$$





#### Matrix representation of logic covers

- Representations used by logic minimizers
- Different formats
  - Usually one row per implicant







positional representation

#### Advantages of positional cube notation

- Use binary values:
  - Two bits per symbols
  - More efficient than a byte (char)
- Binary operations are applicable
  - Intersection bitwise AND
  - Supercube bitwise OR
- Binary operations are very fast and can be parallelized





#### Example

• 
$$f = a'd' + a'b + ab' + ac'd$$

10 11 11 10

10 01 11 11

01 11 10 01

14×2 Implicant



#### Cofactor computation

- Cofactor of α w.r.t β
  - Void when  $\alpha$  does not intersect  $\beta$

$$-a_1 + b_1' a_2 + b_2' \dots a_n + b_n'$$

- Cofactor of a set  $C = \{\gamma_i\}$  w.r.t  $\beta$ :
  - Set of cofactors of  $\gamma_i$  w.r.t  $\beta$

# Example f = a'b' + ab

- at wrt a
- •Cofactor w.r. t 01 11
  - First row void
  - Second row 11 01

| 10<br>01    | 10<br>01 |   | D    |
|-------------|----------|---|------|
| 10          | 10       | • |      |
| 01          | 11       | • |      |
| <u>00</u> ° | 10       |   | void |



# Example f = a'b' + ab

- •Cofactor w.r. t 01 11
  - First row void
  - Second row 11 01
- •Cofactor  $f_a = b$

| 10   | 10 |   |
|------|----|---|
| 01   | 01 |   |
|      |    |   |
| 01   | 01 | • |
| 01   | 11 | • |
| .01° | 01 |   |
| 10   | 00 |   |
| 11   | 01 | ~ |

#### Multiple-valued-input functions

- Input variables can take many values
- Representations:
  - Literals: set of valid values
  - Function = sum of products of literals
- Positional cube notation can be easily extended to mvi
- Key fact
  - Multiple-output binary-valued functions represented as mvi single-output functions





#### Example

#### •2-input, 3-output function:

$$- f_1 = a'b' + ab$$

$$- f_2 = ab$$

$$- f_3 = ab' + a'b$$





#### **Fundamental Operation**

#### Objective

- Operations on logic covers
- Application of the recursive paradigm
- Fundamental mechanisms used inside minimizers



#### Operations on logic covers

- Recursive paradigm
  - Expand about a mv-variable
  - Apply operation to co-factors
  - Merge results
- Unate heuristics
  - Operations on unate functions are simpler
  - > Select variables so that cofactors become unate functions
- Recursive paradigm is general and applicable to different data structures
  - Matrices and binary decision diagrams



# Tautology ~

- Check if a function is always TRUE
- Recursive paradigm:
  - > Expend about a mvi variable



- ➤ If all cofactors are TRUE, then the function is a tautology
- Unate heuristics
  - If cofactors are unate functions, additional criteria to determine tautology
  - > Faster decision



Was trained and the same of th

CAD@IITB

20 CADSL

#### Recursive tautology

- TAUTOLOGY:
  - The cover matrix has a row of all 1s. (Tautology cube)
- NO TAUTOLOGY:
  - The cover has a column of 0s. (A variable never takes a value)
- TAUTOLOGY:
  - The cover depends on one variable, and there is no column of 0s in that field
- Decomposition rule:
  - When a cover is the union of two subcovers that depend on disjoint sets of variables, then check tautology in both subcovers

Example 
$$f = ab + ac + ab'c' + a'$$



- Select variable a
- •Cofactor w.r. to a' is

| ab   |
|------|
| ac   |
| 05 [ |
| ā    |
|      |

| ^                    | b                          | <u>C</u>                             |
|----------------------|----------------------------|--------------------------------------|
| 01<br>01<br>01<br>10 | 01<br>11<br>10<br>11       | 11 ·<br>01<br>10<br>11 }             |
| 00<br>00<br>00<br>10 | 01<br>11<br>10<br>11<br>00 | 11 · ]<br>10 · ]<br>10 · ]<br>11 · ] |
| 11                   | 11                         | 11                                   |



Example 
$$f = ab + ac + ab'c' + a'$$



- Select variable a
- •Cofactor w.r. to a' is

#### Cofactor w.r. to a is:

| 11 | 01 | 11  |
|----|----|-----|
| 11 | 11 | 01  |
| 11 | 10 | 10  |
| 1  |    |     |
|    | G  | c b |

| ٨        | Ь         | C                 |
|----------|-----------|-------------------|
| 01       | 01        | 11 •              |
| 01       | 11        | 01                |
| 01<br>10 | 10<br>11  | 10<br>11 <b>1</b> |
| 01       | 11        | 11                |
| 01       | 01        | 11 7              |
| 01       | 11        | 01                |
| 01       | 10        | 10 -              |
| 00       | 11        | 11 7              |
| <u> </u> | <u>00</u> | ر 00              |
| 11       | 01        | 11                |
| 11       | 11        | 01                |
| 11       | 10        | 10                |

#### Example (2)

- Select variable b.
- Cofactor w.r.t b' is

No column of 0 - Tautology



$$f_{C} = 1$$

$$f_{C} = 1$$

# Example (2)

- Select variable b.
- •Cofactor w.r.t b' is

- No column of 0 Tautology
- Cofactor w.r.t b is:

• Function is a *TAUTOLOGY*.

# Thank You



