Algèbre 1

Gaëtan Chenevier

5th December 2023

Contents

1	Ens	embles Quotients 4									
	1.1	Partitions et Relations d'Equivalence									
	1.2	Passage au Quotient									
	1.3	Sections et systèmes de représentants									
	1.4	Lemme de Zorn									
2	Gér	néralités sur les Groupes 6									
	2.1	Exemples de Groupes									
	2.2	Morphismes									
	2.3	Groupes Cycliques et Monogènes									
	2.4	Théorème de Lagrange									
	2.5	Sous-groupes finis de k^{\times} et $(\mathbb{Z}/n\mathbb{Z})^{\times}$									
	2.6	Groupes Quotients									
3	Gro	oupes Abéliens de Type Fini 10									
•	3.1	Caractères									
	3.2	Décomposition de Fourier finie									
	$\frac{3.2}{3.3}$	Structure des groupes abéliens finis									
	3.4	Existence									
	$\frac{3.4}{3.5}$										
		Exemple									
	3.6	Unicité									
	3.7	Groupes Abéliens de Type Fini									
4	Groupe Symétrique et Dévissage 12										
	4.1	Actions de Groupes									
	4.2	Groupes Symétriques et Alternés									
	4.3	Les suites exactes									
	4.4	Dévissage de S_n									
	4.5	Commutateur et Groupes Dérivés									
	4.6	Dévissage en Produit Semi-Direct									
5	Gro	Groupes et Symétries 15									
	5.1	Sous-groupes Finis de $O(2)$ et $SO(3)$									
	5.2	Le Groupe $SP(1)$									
		5.2.1 L'algèbre des quaternions de Hamilton									
		5.2.2 Le groupe $Sp(1)$									
		5.2.3 L'espace euclidien \mathbb{H}									
	5.3	Groupes Linéaires et Simplicité de $PSL_n(k)$									
	0.0	5.3.1 Transvections									
		5.3.2 Centre et Groupe Dérivé de $SL_n(k)$									
		5.3.3 Le critère de Simplicité d'Iwasawa									
		•									
	5.4	5.3.4 Groupes Linéaires sur les Corps Finis									
_											
6	Ele 1 6.1	ments de structures des groupes finis p -groupes									
	6.1										
		· ·									
	6.3	Le Théorème de Schur-Zassenhaus									
	6.4	Théorèmes de Hall									
	6.5	Extensions et Cohomologie									

7	Ari	Arithmétique des Anneaux								
	7.1	Les anneaux $\mathbb{Z}[\sqrt{d}]$	21							
	7.2	Divisibilité	22							
	7.3	Anneaux Factoriels	22							

1 Ensembles Quotients

1.1 Partitions et Relations d'Equivalence

Définition 1.1.1. Une partition d'un ensemble X est un ensemble de parties non vides de X de réunion disjointe X.

Définition 1.1.2. On appelle fibre d'une application $f: X \to Y$ en $y \in Y$ l'ensemble $f^{-1}(y) = \{x \in X \mid f(x) = y\}$. Il s'agit d'une partition de X indexée par Y. Toute partition de X s'obtient ainsi.

Définition 1.1.3. Une relation d'arité n sur un ensemble X est la donnée d'un ensemble $R \subseteq X^n$. Une relation binaire R i.e. une partie de $X \times X$ est dite d'équivalence si elle est réflexive, transitive et symétrique. On appelle classe de R-équivalence de x l'ensemble $[x]_R = \{y \in X \mid \{x,y\} \in R\}$

Proposition 1.1.1. Les classes d'équivalences d'une relation R sur X forment une partition de X.

Définition 1.1.4. Si R est une relation d'équivalence sur X, le sous-ensemble de P(X) constitué des classes de R-équivalence est appelé ensemble quotient de X par R, noté X/R. L'application $\pi_R: X \to X/R, x \mapsto [x]_R$ est appelée projection canonique associée à R. C'est une surjection dont les fibres sont par définition les classes d'équivalences de R.

Exemple 1.1.1. On définit $\mathbb{Z}/n\mathbb{Z}$ l'ensemble quotient de \mathbb{Z} pour la relation $n \mid b-a$. On note \overline{k} la classe de k.

1.2 Passage au Quotient

Théorème 1.2.1 (Propriété Universelle du Quotient). Soient $f: X \to Y$ une application et R une relation d'équivalence sur X. On suppose que f est constante sur chaque classe d'équivalence sur X. Alors, il existe une unique application $g: X/R \to Y$ telle que $g([x]_R) = f(x)$ pour tout $x \in X$, i.e. vérifiant $g \circ \pi_R = f$.

Proof. Par surjectivité de π_R , g est unique. De plus, si C est une classe de R-équivalence, il y a un sens à poser g(C) = f(x) car C est une classe d'équivalence sur laquelle f est constante.

1.3 Sections et systèmes de représentants

Définition 1.3.1. Une section de $f: X \to Y$ est une application $s: Y \to X$ telle que $f \circ s = id_Y$

Proposition 1.3.1. f possède une section $\Rightarrow f$ est surjective

Définition 1.3.2 (Axiome du Choix). Pour tout ensemble X il existe une application $\tau : P(X) \setminus \{\emptyset\} \to X$ telle que $\tau(E) \in E$ pour toute partie non vide E de X. On appelle τ fonction de choix sur X.

Proposition 1.3.2. Les propositions suivantes sont équivalentes à l'axiome du choix (donc fausses):

- 1. Toute surjection admet une section.
- 2. Pour toute famille d'ensembles non vides $\{X_i\}_{i\in I}$, $\pi_{i\in I}X_i$ est non vide.

Définition 1.3.3. Un représentant d'une classe de R-équivalence d'un ensemble X est un élément de cette classe. Un système de réprésentants de (X,R) est la donnée d'une partie de X contenant un et un seul représentant de chaque classe de R-équivalence. C'est l'image d'une section de π_R .

Remarque 1.3.0.1. Ceci est également équivalent à 1.3.2

1.4 Lemme de Zorn

Définition 1.4.1. • Un relation d'ordre sur un ensemble X est une relation binaire \leq réfléxive, transitive et antisymétrique. On dit alors que X est ordonné.

- L'ordre \leq est total quand tous deux éléments de X sont comparables.
- On appelle majorant d'une partie Y de X, tout élément $x \in X$ tel que $y \le x$ pour tout $y \in Y$. On parle de plus grand élément dans le cas Y = X.
- $x \in X$ est un élément maximal si le seul $y \in X$ tel que $y \le x$ est x. Un plus grand élément est nécessairement maximal, et unique s'il existe.
- $\bullet \ \ On \ appelle \ X \ inductif \ si \ tout \ sous-ensemble \ totalement \ ordonn\'e \ admet \ et \ majorant.$
- On appelle bon ordre un ordre pour lequel toute partie non vide admet un plus petit élément.

Théorème 1.4.1 (Lemme de Zorn). Un ensemble ordonné inductif possède au moins un élément maximal. Ceci est équivalent à l'axiome du choix 1.3.2.

Corollaire 1.4.1.1. Tout espace vectoriel possède une base.

Corollaire 1.4.1.2 (Théorème de Zermelo). Tout ensemble peut être muni d'un bon ordre.

Proof. C'est équivalent à l'axiome du choix donc faux et les preuves prennent trois plombes.

2 Généralités sur les Groupes

2.1 Exemples de Groupes

Définition 2.1.1. Une loi de composition interne est une application $\star : X \times X \to X$.

Définition 2.1.2 (Groupe). Un groupe est un ensemble G muni d'une loi de composition associative, unifère et inversible, i.e.:

- 1. $\forall (x, y, z) \in G, \ x \star (y \star z) = (x \star y) \star z$
- 2. $\exists e \in G, \forall x \in G, e \star x = x \star e = x$.
- 3. $\forall x \in G, \exists y \in G, x \star y = y \star x = e$

Remarque 2.1.0.1. Le neutre est unique.

Exemple 2.1.1 (Groupe Symétrique). On note : $\mathfrak{S}_X = X^X$ le groupe muni de la loi \circ de composition des applications, appelé groupe symétrique de X, de neutre id_X . L'inverse d'une bijection σ est sa bijection réciproque σ^{-1} . On note $\mathfrak{S}_n = |1, n|^{|1, n|}$ et alors $|\mathfrak{S}_n| = n!$.

Définition 2.1.3. Un groupe est dit abélien lorsque tous deux élements commutent.

Définition 2.1.4. Une partie H d'un groupe G est un sous-groupe de G lorsque la loi induite par le produit dans G fait de H un groupe. On le notera ici $H \leq G$.

Exemple 2.1.2 (Groupes d'ordre n). Pour $n \geq 1$, on note μ_n le sous-groupe de \mathbb{C}^{\times} composé des racines n-ièmes de l'unité. C'est un sous-groupe d'ordre n. L'application $\mathbb{Z}/n\mathbb{Z} \to \mu_n, \overline{k} \mapsto e^{2ik\pi/n}$ est un isomorphisme de groupe.

Définition 2.1.5. Un anneau est un groupe abélien (A, +) muni d'une loi associative unifère et distributive sur +, notée \times . Il est dit commutatif lorsque la loi produit est commutative.

Définition 2.1.6. On note A^{\times} le groupe des inversibles du monoïde (A, \cdot) .

Proposition 2.1.1. La loi d'un groupe vérifie les propriété de la loi produit usuelle sur \mathbb{R} .

Définition 2.1.7. On appelle groupe engendrée par une partie X de G le plus petit sous groupe de G contenant X. C'est l'ensemble des produits de puissances d'éléments de X.

2.2 Morphismes

Définition 2.2.1. On appelle morphisme une application entre deux groupes qui préserve le produit. On note Hom(G,G') l'ensemble des morphismes de G dans G'. Ce n'est à priori pas naturellement un groupe si G' n'est pas abélien.

On dit que G et G' sont isomorphes lorsqu'il existe un morphisme bijectif de l'un vers l'autre. La réciproque d'un isomorphisme est un isomorphisme. On note alors $G \simeq G'$.

Proposition 2.2.1 (Transport de Structure). Si G est un groupe, $\varphi: X \to G$ une bijection, il existe une unique loi de groupe sur X telle que φ soit un isomorphisme, à savoir $x \star y = \varphi^{-1}(\varphi(x)\varphi(y))$. On dit que la loi est déduite de celle de G par transport de structure via φ .

Définition 2.2.2. On appelle automorphisme de G un isomorphisme de G dans G. L'ensemble des automorphismes Aut(G) est un sous groupe de S_G . On appelle automorphisme intérieur associé à $g \in G$ l'application : $h \in G \mapsto ghh^{-1}$.

Définition 2.2.3. On appelle noyau d'un morphisme $\ker(f) = f^{-1}(1) = \{g \in G \mid f(g) = 1\}$. C'est un sous-groupe de G.

Proposition 2.2.2. Si $f \in Hom(G, G')$:

1.
$$H \leq G \Rightarrow f(H) \leq G'$$

- 2. $H \leq G' \Rightarrow f^{-1}(H) \leq G$ Avec \mathcal{A} l'ensemble des sous-groupes de G contenant $\ker f$ et \mathcal{B} celui des sous-groupes de G' inclus dans Imf, alors :
- 3. $A \to B, H \mapsto f(H)$ est une bijection croissante.

Proposition 2.2.3. Les fibres non vides de f sont en bijection avec ker f. En particulier:

- f injective $\Leftrightarrow \ker f = \{1\}.$
- $Si\ G\ est\ fini,\ |G| = |Im\ f| |\ker f|.$

Théorème 2.2.1 (Cayley). Tout groupe d'ordre fini n est isomorphe à un sous-groupe de S_n .

Lemme 2.2.2. Si $\varphi: X \to Y$ est bijective, l'application : $\varphi_{X,Y}: S_X \to S_Y, \sigma \mapsto \varphi \circ \sigma \circ \varphi^{-1}$ est un isomorphisme de groupes.

Définition 2.2.4. Un morphisme d'anneau est un morphisme des groupes additifs et des monoïdes multiplicatifs (en particulier, il envoie 1 sur 1).

2.3 Groupes Cycliques et Monogènes

Proposition 2.3.1. Les sous-groupes de \mathbb{Z} sont les $n\mathbb{Z}$.

Proposition 2.3.2. Si $g \in G$ est d'ordre fini n, alors $\langle g \rangle$ a exactement n éléments et est isomorphe à $\mathbb{Z}/n\mathbb{Z}$.

Définition 2.3.1. Un groupe G est monogène s'il est engendré par un seul élément, appelé générateur. Il est cyclique s'il est fini.

Corollaire 2.3.0.1. Un groupe G est monogène infini si et seulement si il est isomorphe à \mathbb{Z} . Il est cyclique d'ordre $n \geq 1$ si et seulement si isomorphe à $\mathbb{Z}/n\mathbb{Z}$.

Proposition 2.3.3 (Générateurs d'un Groupe Cyclique). • Les générateurs de \mathbb{Z} , + sont les $k \in \mathbb{Z}$ tels que $\mathbb{Z} = k\mathbb{Z}$, i.e. $k = \pm 1$.

- Pour $k \in \mathbb{Z}$, $G = \langle g \rangle$ un groupe cyclique d'ordre n, on a équivalence entre :
 - 1. $\langle g^k \rangle = G$
 - 2. $g \in \langle g^k \rangle$
 - 3. $\exists k' \in \mathbb{Z}, \ kk' = 1 \ mod \ n$
 - 4. $\overline{k} \in (\mathbb{Z}/n\mathbb{Z})^{\times}$
 - 5. $k \wedge n = 1$

Corollaire 2.3.0.2. Un groupe cyclique d'ordre n a exactement $\varphi(n)$ générateurs.

Corollaire 2.3.0.3. Si G est cyclique d'ordre $n: Aut(G) = \{g \mapsto g^k \mid k \in (\mathbb{Z}/n\mathbb{Z})^{\times} \}$. On a alors un isomorphisme de $(\mathbb{Z}/n\mathbb{Z})^{\times}$ dans Aut(G).

Remarque 2.3.0.1. Si $g \in G$ est d'ordre fini n, si $d \ge 1$, g^d est d'ordre fini $\frac{n}{n \wedge d}$.

Proposition 2.3.4. Si G est cyclique d'ordre n, $d \mapsto G_d = \{g^d \mid g \in G\}$ est une bijection de l'ensemble des diviseurs de n sur l'ensemble des sous-groupes de G.

Théorème 2.3.1 (Chinois). Soient $m, n \in \mathbb{Z}$ premiers entre eux. L'application $\mathbb{Z} \to (\mathbb{Z}/n\mathbb{Z}) \times (\mathbb{Z}/m\mathbb{Z})$, $k \mapsto (k \mod n, k \mod m)$ définit un isomorphismepar par passage au quotient de par la propriété universelle 1.2.1.

2.4 Théorème de Lagrange

Définition 2.4.1. Si A, B sont deux parties d'un groupe, $AB = \{ab \mid a \in A, b \in B\}$. Si $A = \{g\}$, on le note gB.

Lemme 2.4.1. $H \leq G \Leftrightarrow (H \neq \varnothing, HH = H, H^{-1} = H)$.

Définition 2.4.2. On pose $g \sim_H g^{'}$ si $g^{'} \in gH$. C'est une relation d'équivalence. On note G/H son ensemble quotient, et on appelle indice de H dans G son cardinal noté [G:H].

Théorème 2.4.2 (Lagrange). ?? Si H est un sous-groupe de G, $G \sim H \times (G/H)$. En particulier, si deux des trois ensembles G, H, G/H sont finis, |G| = |H| [G:H].

Corollaire 2.4.2.1. • Si H est un sous-groupe du groupe fini G, |H| | |G|.

- Si G est fini, $g \in G$, $g^{|G|} = 1$.
- $n^{p-1} \cong 1 \mod p \text{ pour } n \in \mathbb{Z}, p \in \mathbb{P}.$
- Tout groupe d'ordre premier p est isomorphe à $\mathbb{Z}/p\mathbb{Z}$.

Théorème 2.4.3 (Cauchy). Soit G un groupe fini, p un nombre premier divisant |G|. G possède un élément d'ordre p. Si G est abélien, on peut généraliser immédiatement à tout $p \in \mathbb{Z}$.

2.5 Sous-groupes finis de k^{\times} et $(\mathbb{Z}/n\mathbb{Z})^{\times}$

Théorème 2.5.1. Si k est un corps, tout sous-groupe fini de k^{\times} est cyclique.

Lemme 2.5.2 (Cauchy). Soit G un groupe, x, y deux éléments qui commutent d'ordres a et b premiers entre eux. Alors, xy est d'ordre ab.

Théorème 2.5.3 (Gauss). Pour p premier, le groupe $(\mathbb{Z}/p\mathbb{Z})^{\times}$ est cyclique.

Définition 2.5.1. Un isomorphisme de groupes $(\mathbb{Z}/p\mathbb{Z})^{times} \simeq \mathbb{Z}/(p-1)\mathbb{Z}$ est appelé un logarithme discret.

Définition 2.5.2. Pour un groupe, on note $G^{(n)}$ le groupe des puissances n-ièmes.

Proposition 2.5.1. Soient $p \in \mathbb{P}$, $n \ge 1$ et $m = (p-1) \land n$.

- 1. $(\mathbb{Z}/p\mathbb{Z})^{\times,(n)}$ est cyclique d'ordre $\frac{p-1}{m}$ et égal à $(\mathbb{Z}/p\mathbb{Z})^{\times,(m)}$
- 2. Pour $x \in (\mathbb{Z}/p\mathbb{Z})^{\times}$, on a $x \in (\mathbb{Z}/p\mathbb{Z})^{\times,(n)}$ si et seulement si $x^{\frac{p-1}{m}} = 1$, i.e. $X^{\frac{p-1}{m}}$ a au plus $\frac{p-1}{m}$ racines dans $\mathbb{Z}/p\mathbb{Z}$ et donc ses racines sont exactement les puissances n-èmes.

Proposition 2.5.2. Si p est premier impair, $m \geq 1$, alors $(\mathbb{Z}/p^m\mathbb{Z})^{\times}$ est cyclique. Si $m \geq 2$, $(\mathbb{Z}/2^m\mathbb{Z})^{\times} \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2^{n-2}\mathbb{Z}$

2.6 Groupes Quotients

Définition 2.6.1. Un sous-groupe H de G est dit distingué, noté $H \triangleleft G$ si l'une des conditions équivalentes suivantes est vérifiée :

- 1. $gHg^{-1} \subset H, \forall g \in G$
- 2. $gHg^{-1} = H, \ \forall g \in G$
- 3. qH = Hq, $\forall q \in G$.

Remarque 2.6.0.1. Tous les sous-groupes d'un groupe abélien sont distingués. Un groupe d'indice 2 dans G est distingué.

Définition 2.6.2. Le normalisateur de H dans G est le sous-groupe de G défini par $N_G(H) = \{g \in G \mid gHg^{-1} = H\}$.

Théorème 2.6.1. Soit H un sous groupe d'un groupe G.

- 1. Il existe au plus une loi de groupe sur G/H telle que la projection canonique $G \to G/H$ soit une loi de groupe.
- 2. Une telle loi existe si, et seulement si, on a $H \triangleleft G$, auquelle cas c'est la loi induite par le produit sur P(G).

Définition 2.6.3. Si $H \triangleleft G$, le groupe quotient G/H est la donnée de l'ensemble G/H muni de son unique loi de groupe telle que la projection canonique est un morphisme de groupes.

Définition 2.6.4. On pose $\left(\frac{x}{p}\right) = 1$ si x est un carré non nul, 0 si x est nul et -1 sinon. $x \mapsto \left(\frac{x}{p}\right)$ est un morphisme multiplicatif.

On va étudier les groupes en chercher à étudier des groupes plus simples : étant donné un groupe G, on cherche $H \subsetneq G$ un groupe distingué non trivial pour étudier H et G/H, d'ordres plus petits.

Définition 2.6.5. Un groupe G est dit simple S ses seuls groupes distingués sont $\{1\}$ et G.

Théorème 2.6.2 (Propriété Universelle des Groupes Quotients). Si $H \triangleleft G$, et si $f: G \rightarrow G'$ est un morphisme, $g = f \circ \pi$ est un morphisme de G/H dans G' tel que g(H) = 1.

Théorème 2.6.3 (Premier Théorème d'Isomorphisme). Si f est un morphisme de G dans G', alors f induit par passage au quotient un isomorphisme de groupes de $G/\ker f$ dans $\operatorname{Im} f$

Proposition 2.6.1 (Troisième Théorème d'Isomorphisme). Soit $H \triangleleft G$:

- 1. $H \mapsto K/H$ induit une bijection croissante entre sous groupes de G contenant H et sous-groupes de G/H.
- 2. Dans cette bijection, $K/H \triangleleft G/H \Leftrightarrow K \triangleleft G$ auquel cas le morphisme naturel $G/H \rightarrow G/K$ induit un isomorphisme $(G/H)/(K/H) \rightarrow G/K$.

3 Groupes Abéliens de Type Fini

3.1 Caractères

Définition 3.1.1. Un caractère d'un groupe G est un morphisme de G dans \mathbb{C}^{\times} .

Proposition 3.1.1. Soit $G = \langle g \rangle$ un groupe cyclique d'ordre n. Pour $\zeta \in \mu_n$, il existe un unique caractère χ_{ζ} de G tel que $\chi_{\zeta}(g) = \zeta$. De plus, $\zeta \mapsto \chi_{\zeta}$ est un isomorphisme de groupes.

3.2 Décomposition de Fourier finie

Définition 3.2.1. Si G est un groupe fini, on note $L^2(G)$ le \mathbb{C} -espace vectoreil des fonctions $G \to \mathbb{C}$ muni du produit hermitien. C'est un espace de dimension finie |G|. On note \hat{G} l'ensemble des caractères de G. On rappelle que \mathbb{C}^{\times} étant abélien, $\hat{G} = Hom(G, \mathbb{C}^{\times})$

Théorème 3.2.1. Soit G un groupe fini.

- 1. L'ensemble \hat{G} est une famille livre et orthonormée de $L^2(G)$ (Orthogonalité des Caractères)
- 2. Si G est abélien, \hat{G} est une base de $L^2(G)$.

Corollaire 3.2.1.1. Soit G abélien fini

- 1. On $a\left|\hat{G}\right| = |G|$
- 2. Pour toute fonction $f: G \to \mathbb{C}$ on a $f = \sum_{\chi \in \hat{G}} \langle f, \chi \rangle \chi$

Proposition 3.2.1. Soit G abélien fini, $H \subset G$ un sous-groupe. Pour tout caractère χ de H, il existe $\tilde{\chi}$ de G tel que $\chi_{|H} = \chi$

Définition 3.2.2. Un groupe abélien D est divisible si le morphisme de groupes $x \mapsto x^n$ est surjectif pour tout $n \ge 1$.

Proposition 3.2.2 (Prolongement des Morphismes). Soient G, H, D des groupes abéliens avec D divisible, $H \subset G$ et $f: H \to D$ un morphisme de groupes. Alors il existe un morphisme de groupes $\tilde{f}: G \to D$ tel que $\tilde{f}|_{H} = f$.

3.3 Structure des groupes abéliens finis

Théorème 3.3.1. Soit G abélien fini, il existe un unique entier $n \geq 0$ et des uniques entiers $a_i > 1$ vérifiant $a_1 \mid a_2 \mid \ldots \mid a_n$ et $G \simeq \prod_{i=1}^n \mathbb{Z}/a_i\mathbb{Z}$.

Définition 3.3.1. L'exposant d'un groupe fini G est le plus petit entier $e \ge 1$ vérifiant $g^e = 1$ pour tout $g \in G$. C'est le ppcm des ordres des éléments de G.

3.4 Existence

Lemme 3.4.1. Si G est abélien fini, il existe un élément d'ordre l'exposant.

Proposition 3.4.1. Soit G un groupe, $H \leq G, K \leq G$. On suppose $H \cap K = 1$, G = HK et enfin hk = kh pour tout $h \in H$, $k \in K$. L'application produit sur $H \times K$ définit un isomorphisme de groupes.

De ces deux propositions, on peut prouver la partie existence du théorème.

3.5 Exemple

Définition 3.5.1. Soit p un nombre premier. Un groupe abélien fini est p-élémentaire si on a $g^p = 1$ pour tout $g \in G$.

Définition 3.5.2. On définit G^{\sharp} le $\mathbb{Z}/p\mathbb{Z}$ -espace vectoriel dont G est le groupe additif.

Proposition 3.5.1. Soit p premier, G abélien fini. G est p-élémentaire si et seulement si $G \simeq (\mathbb{Z}/p\mathbb{Z})^n$ pour un certain $n \geq 1$. Le nombre minimal de générateurs de G est $\dim_{\mathbb{Z}/p\mathbb{Z}} G^{\sharp}$.

3.6 Unicité

Définition 3.6.1. On note min(G) le nombre minimal de générateurs de G. Il est fini si et seulement si G est de type fini.

Proposition 3.6.1. Supposons qu'on écrit une décomposition de G comme dans le théorème 3.3.1. On a $n = \min(G)$

Définition 3.6.2. Soit G abélien. Le sous-ensemble $G[n] = \{g^n = 1\}$ est un sous groupe de G appelé n-torsion de G.

Lemme 3.6.1. Soit G et H abéliens et $n \geq 1$.

- 1. On $a(G \times H)[n] = G[n] \times H[n]$
- 2. Tout (iso-)morphisme $G \to H$ induit un (iso-)morphisme $G[n] \to H[n]$.
- 3. Supposons G cyclique d'ordre m et p premier. Alors $G[p] = \{1\}$ sauf si $p \mid m$ auquel cas $G[p] \simeq \mathbb{Z}/p\mathbb{Z}$ et $G/G[p] \simeq \mathbb{Z}/m/p\mathbb{Z}$.

3.7 Groupes Abéliens de Type Fini

On note ici G un groupe abélien additif

Définition 3.7.1. Soit $\mathcal{F} = \{g_1, \dots, g_n\}$ une famille d'éléments de G et

$$f: \mathbb{Z}^n \to G, (m_i) \mapsto \sum_{i=1}^n m_i g_i$$

On dit que \mathcal{F} est libre (ou \mathbb{Z} -libre) si f est injectif. On dit que \mathcal{F} est génératrice si f est surjectif, et est une base si f est bijectif.

Définition 3.7.2. Un groupe abélien est dit libre de rang n s'il possède une \mathbb{Z} base à n éléments, i.e. s'il est isomorphe à \mathbb{Z}^n . Par conventions, $\{0\}$ est libre de rang 0.

Lemme 3.7.1. Pour tout entier $n \ge 0$, min $(\mathbb{Z}^n) = n$. En particulier, $\mathbb{Z}^n \simeq \mathbb{Z}^m \Leftrightarrow n = m$.

Définition 3.7.3. On appelle sous-groupe de torsion de G, le sous-groupe de G noté $G_{tor} = \{g \in G \mid \exists n \geq 1, ng = 0\}$

Théorème 3.7.2 (Dirichlet). Si G est abélien de type fini, G_{tor} est fini et il existe un unique $n \in \mathbb{N}$ tel que $G \simeq G_{tor} \times \mathbb{Z}^n$.

Corollaire 3.7.2.1. Un groupe abélien de type fini sans torsion est libre

Lemme 3.7.3. Si $f: G \to \mathbb{Z}$ est surjectif, $G \simeq \mathbb{Z} \times \ker f$.

Lemme 3.7.4. Si A, B sont deux groupes abéliens avec A fini et B libre de rang fini, alors, avec $G = A \times B$: $G_{tor} = A \times \{0\}$ et $G/G_{tor} \simeq B$.

4 Groupe Symétrique et Dévissage

4.1 Actions de Groupes

Définition 4.1.1. Une action de G sur X est une application $: \cdot : G \times X \to X$ vérifiant $: 1 \cdot x = x$ et $g \cdot (h \cdot x) = (gh) \cdot x$.

Définition 4.1.2. Soit G agissant sur X, et $x \in X$.

- $O_x = \{gx \mid g \in G\} \subset X$ est l'orbite de x sous G, aussi notée Gx.
- Le sous-groupe $G_x = \{g \in G \mid gx = x\}$ est appelé stabilisateur de x ou groupe d'isotropie de x, noté $Stab_G(x)$.

Lemme 4.1.1. On $a: G_{qx} = gG_xg^{-1}$.

Proposition 4.1.1. • Les orbites sous G forment une partition de X.

• Pour tout $x \in X$, on a une bijection $G/G_x \xrightarrow{\sim} O_x$ envoyant gG_x sur gx. En particulier, si G est fini, on a $|G| = |G_x| |O_x|$

Corollaire 4.1.1.1. On note x_i des représentants des orbites de G dans X. On a:

$$|X| = \sum_{i \in I} |O_{x_i}| = \sum_{i \in I} |G| / |G_{x_i}|$$

Théorème 4.1.2 (Premier Théorème de Sylow). Soit G fini d'ordre $p^n m$ avec p premier et $m \wedge p = 1$. Alors G possède un sous-groupe d'ordre p^n , appelé un p-Sylow de G.

Définition 4.1.3. Une action de G sur X est transitive si on a $X \neq \emptyset$ et $si \forall x, y \in X$, $\exists g \in G$, y = gx, i.e. que X a une et une seule orbite sous l'action de G.

Définition 4.1.4. Le noyau d'une action est le noyau du morphisme $G \to S_X$ associé à l'action. C'est un sous-groupe distingué de G. Une action est dite fidèle si son noyau est $\{1\}$.

Définition 4.1.5. Une action est libre si on a toujours $G_x = \{1\}$.

Définition 4.1.6. Deux actions d'un même groupe sur deux ensembles X et Y sont isomorphes s'il existe une bijection f vérifiant $f(g \cdot x) = g \star f(x)$.

Proposition 4.1.2. Une action transitive (X,\cdot) est isomorphe à l'action par translations de G sur G/G_x

Proposition 4.1.3. Deux actions transitives sont isomorphes si et seulement si elles ont les mêmes stabilisateurs.

4.2 Groupes Symétriques et Alternés

Proposition 4.2.1. Toute permutation σ de S_n s'écrit comme un produit de cycles à supports disjoints. L'ordre de σ est alors le ppcm des longueurs des cycles.

Proposition 4.2.2. Les transpositions engendrent S_n

Lemme 4.2.1. Si $\sigma \in S_n$, $c = (i_1, \dots, i_k)$ est un k-cycle : $\sigma c \sigma^{-1} = (\sigma(i_1), \dots, \sigma(i_k))$.

Proposition 4.2.3. • Les (i, i+1) engendrent S_n . Ils sont appelés générateurs de Coxeter.

• La transposition (1,2) et le cycle (12...n) engendrent S_n . En particulier, $\min S_n = 2$.

Définition 4.2.1. • Une partition de l'entier n est une suite décroissante $n_1 \geq \ldots \geq n_r$ d'entiers strictement positifs de somme n.

• Le type de $\sigma \in S_n$ est la partition de l'entier n définie par les cardinaux des orbites de σ .

Proposition 4.2.4. Deux éléments de S_n sont conjugués si et seulement si ils ont même type.

Définition 4.2.2. Pour $k \ge 1$ entier, G agissant sur X avec $|X| \ge k$, G agit k-transitivement sur X si pour deux k-uplets d'éléments distincts de X il existe $g \in G$ tel que $gx_i = y_i$ pour tout i.

Définition 4.2.3. La signature $de \ \sigma \in S_n \ est$:

$$\varepsilon(\sigma) = \prod_{\{i,j\}} \frac{\sigma(i) - \sigma(j)}{i - j}$$

C'est un morphisme de groupes $S_n \to \{\pm 1\}$ valant -1 sur les transpositions. On note A_n son noyau. C'est un sous-groupe distingué.

Proposition 4.2.5. Pour $n \geq 3$, A_n agit (n-2)-transitivement sur |1,n|. Les k-cycles sont conjugués sous l'action de A_n pour $k \in [2, n-2]$.

4.3 Les suites exactes

Définition 4.3.1. Une suite de $n \geq 2$ morphismes de groupes (f_1, \ldots, f_n) est exacte si Im $f_i = \ker f_{i+1}$ pour tout i.

Définition 4.3.2. Une suite exacte de la forme $1 \to H \xrightarrow{i} G \xrightarrow{\pi} K \to 1$ est une suite exacte courte.

Proposition 4.3.1. Il est équivalent de se donner :

- Une suite exacte $1 \to H \xrightarrow{i} G \xrightarrow{\pi} K \to 1$
- Un sous-groupe distingué $H^{'} \subset G$ et des isomorphismes $i^{'}: H \xrightarrow{\sim} H^{'}$ et $\pi^{'}: G/H^{'} \xrightarrow{\sim} K$.

Définition 4.3.3 (Groupe diédral). Pour $n \geq 3$, on définit le groupe diédral D_{2n} comme le sous groupe de S_n engendré par (12...n) et l'élément τ défini par $\tau(i) = n + 1 - i$.

Définition 4.3.4. Si G, H, K sont des groupes donnés, G est extension de K par H s'il existe une suite exacte courte $1 \to H \to G \to K \to 1$.

4.4 Dévissage de S_n

Théorème 4.4.1. Les seuls sous-groupes distingués de S_n sont $\{1\}$, A_n , S_n et K_4 dans le cas n=4

Théorème 4.4.2. Pour $n \geq 5$, A_n est simple non abélien.

Corollaire 4.4.2.1. • Pour $n \neq 4$, toute action de A_n est fidèle ou triviale.

• Une action transitive de S_n sur un ensemble à m > 2 éléments est fidèle, sauf peut-être si n = 4 et m = 3 ou 6.

4.5 Commutateur et Groupes Dérivés

Définition 4.5.1. Le groupe dérivé d'un groupe G est le sous-groupe D(G) = [G, G] engendré par les $[x, y] = xyx^{-1}y^{-1}$. On a $D(G) = \{1\}$ si et seulement si G est abélien.

Corollaire 4.5.0.1. D(G) est un sous-groupe caractéristique de G.

Corollaire 4.5.0.2. Soit G un groupe.

- Tout morphisme $f: G \to G'$ avec G' abélien vérifie $D(G) \subset \ker f$.
- Pour $H \triangleleft G$ alors G/H est abélien si et seulement si, $D(G) \subset H$.

Proposition 4.5.1. On a:

- $\bullet \ D(S_n) = A_n$
- $D(A_n) = A_n \text{ pour } n \geq 5.$
- $D(A_4) = K_4$ et $D(A_n) = \{1\}$ pour $n \leq 3$

Définition 4.5.2. Un groupe G est résoluble s'il existe n tel que $D^n(G) = \{1\}$. Le plus petit n est appelé classe de résolubilité de G.

Proposition 4.5.2. Si G est un groupe et $H \triangleleft G$, G est résoluble si et seulement si H et G/H le sont. Alors, la classe de G est inférieure à la somme des classes de H et de G/H.

Proposition 4.5.3. Le groupe $T_n(k)$ est résoluble de classe $\leq 1 + \lceil \log_2(n) \rceil$.

4.6 Dévissage en Produit Semi-Direct

Définition 4.6.1. Si $H \leq G$, un complément de H dans G est $K \leq G$ tel que G = HK et $H \cap K = \{1\}$

Remarque 4.6.0.1. Soit $N \triangleleft G$, et K un complément de N dans G. Pour tout $n, n' \in N$, $k, k' \in K$, on a:

$$(nk)(n'k') = n(kn'k^{-1})kk' \text{ avec } kn'k^{-1} \in N$$

Autrement dit:

$$(nk)(n'k') = nint_k(n')kk'$$

La structure de groupe de G se déduit de celle de N, K et de la connaissance de l'application : $\alpha: k \in K \mapsto int_{k|N}$

On se fixe dans la suite deux tels groupes N et K, et un morphisme de groupe α de K dans $\operatorname{Aut}(N)$.

Définition 4.6.2. La loi $\star_{\alpha} : (N \times K) \times (N \times K) \to N \times K, (n, k), (n', k') \mapsto (n\alpha_k(n'), kk')$ est une loi de groupe, qui munit $N \times K$ d'une structure de groupe noté $N \rtimes_{\alpha} K$ et appelé produit semi-direct (externe) de K par N associé à α .

Proposition 4.6.1. Soit G un groupe, $N \triangleleft G$ et K un complément de N dans G. Soit $\alpha: K \to Aut(N), \ k \mapsto \alpha_k$. La bijection $N \times K \to G, (n,k) \mapsto nk$ est un isomorphisme de groupes : $N \rtimes_{\alpha} K \xrightarrow{\sim} G$. On dit aussi que G est produit semi-direct interne de K par N

Proposition 4.6.2 (Suivi des Isomorphismes). Soit $G = N \rtimes_{\alpha} K$, $a : N' \xrightarrow{\sim} N$ et $b : K' \xrightarrow{\sim} K$ des isomorphismes. La bijection $N' \times K' \to G$, $(n', k') \mapsto a(n')b(k')$ est un isomorphisme de groupes de $N' \rtimes_{\alpha'} K'$ dans G, où $\alpha' : k' \mapsto \alpha_{k'} = a^{-1} \circ \alpha_{b(k')} \circ a$.

Proposition 4.6.3. Un groupe d'ordre 2p avec p premier impair est soit isomorphe à $\mathbb{Z}/p\mathbb{Z}$ soit à D_{2p} .

Proposition 4.6.4. Les groupes non abéliens d'ordre ≤ 8 sont S_3 , D_8 et H_8 .

5 Groupes et Symétries

5.1 Sous-groupes Finis de O(2) et SO(3)

. Ici, E est un espace euclidien de dimension $n \ge 1$

Définition 5.1.1. On définit la réflexion par rapport à H un hyperplan de E, l'application $s_H \in O(E)$ définie par : $s_H(h+d) = h-d$ où $h, d \in H \times H^{\perp}$. Pour $v \in E$ non nul, on appelle aussi réflexion de vecteur v la réflexion $s_v = s_{v^{\perp}}$.

Théorème 5.1.1 (Cartan-Dieudonné). Tout élément de O(E) est produit d'au plus n réflexions. En particulier, tout élément de SO(E) est produit d'au plus n/2 produits de deux réflexions.

Remarque 5.1.1.1. SO(2) est isomorphe au groupe S^1 des rotations du plan. On peut également montrer que $O(2) \simeq SO(2) \rtimes_{\alpha} \mathbb{Z}/2\mathbb{Z}$ avec $\alpha_{\bar{1}}(g) = g^{-1}$.

Corollaire 5.1.1.1. Tout élément non trivial de SO(3) possède une et une seule droite fixe dans E.

Lemme 5.1.2. Si $g \in O(E)$ préserve $F \subset E$, il préserve F^{\perp} .

Définition 5.1.2. Pour $P \subset E$, on note $Iso(P) = \{g \in O(E) \mid g(P) = P\}$ le sous-groupe des isométries orthogonales de P.

Définition 5.1.3. On note \mathscr{P}_m un polygone régulier du plan à $m \geq 3$ côtés centré en 0.

Proposition 5.1.1. $Iso(\mathscr{P}_m)$ agit sur l'ensemble \mathscr{S} des sommets de \mathscr{P}_m , puisque ce sont les points à distance maximale de 0. Cette action définit un morphisme f qui induit un isomorphisme $Iso(\mathscr{P}_m) \xrightarrow{\sim} D_{2m}$. De plus, $Iso^+(\mathscr{P}_m) \simeq \mathbb{Z}/m\mathbb{Z}$.

En considérant les groupes d'isométries de figures planes bien choisies, on trouve trois autres classes de conjugaison.

Proposition 5.1.2. Soit $G \leq O(2)$ fini. Alors, soit G est isomorphe à 1, $\mathbb{Z}/2\mathbb{Z}$ ou $(\mathbb{Z}/2\mathbb{Z})^2$, soit il existe un polygone régulier \mathscr{P} du plan euclidien tel que $G = Iso(\mathscr{P})$ ou $G = Iso^+(\mathscr{P})$

Remarque 5.1.2.1. Le groupe des isométries de $[-1,1] \times \{0\}$ est isomorphe à $(\mathbb{Z}/2\mathbb{Z})^2$, qu'on note parfois D_4 .

Définition 5.1.4. $G \leq O(E)$ est dit irréductible, s'il n'existe aucun sous-espace non-dégénéré stable par G.

On suppose désormais n=3.

Remarque 5.1.2.2. Un groupe est irréductible s'il stabilise un plan ou, de manière équivalente, une droite. On a donc un morphisme injectif diagonal : $O(2) \rightarrow SO(3)$

$$g \mapsto \begin{array}{ccc} g & 0 \\ 0 & \det g \end{array}$$

Définition 5.1.5. Soit $P \subset E$ un solide de Platon¹. On définit ses sommets, ses arêtes et ses faces comme ses parties extrémales de dimension 0, 1 et 2 :

$$\forall x,y \in P, \]x,y[\ \cap F \neq \varnothing \Rightarrow [x,y] \subset F$$

L'action de Iso(P) préserve l'ensemble $\mathscr S$ des sommets, celui $\mathscr A$ des arêtes et celui $\mathscr F$ des faces. On note que l'action de Iso(P) sur $\mathscr S$ engendre E. Notons que dès que $-1 \in Iso(P)$, $Iso(P) = \{\pm 1\} \times Iso^+(P)$.

ullet LE TÉTRAÈDRE RÉGULIER T: En regardant l'action sur les sommets, on obtient :

Proposition 5.1.3. $Iso(T) \simeq S_4$ et $Iso^+(T) \simeq A_4$.

¹polyèdre régulier

Le déterminant sur Iso(T) correspond à la signature sur S_4 . En regardant de plus les paires d'arêtes orthogonales, on fournit un morphisme $Iso(T) \to S_3$.

• LE CUBE ou HEXAÈDRE RÉGULIER C: En regardant l'action sur les paires de sommets, on obtient :

Proposition 5.1.4.
$$Iso^{+}(C) \simeq S_4 \ et \ Iso(C) = \{\pm 1\} \times Iso^{+}(C).$$

En considérant l'action sur les paires de faces opposées, on retrouverait un morphisme $S_4 \rightarrow S_3$.

• L'OCTAÈDRE RÉGULIER O: En regardant les centres des faces, on trouve un cube C appelé cube dual et dont les centres des faces sont les sommets d'un nouvel octaèdre O. On en déduit que :

Proposition 5.1.5.
$$Iso(O) = Iso(C) = Iso(O')$$

• LE DODÉCAÈDRE RÉGULIER D: En regardant l'action sur les sommets, et en regardant les triplets de diarête² deux à deux orthogonales, on obtient :

Proposition 5.1.6. $Iso^+(D) \simeq A_5$ et on conclut $car - 1 \in Iso(P)$.

• L'ICOSAÈDRE RÉGULIER I: On vérifie comme pour le cube que le dual de I est un dodécaèdre et que l'on a :

Proposition 5.1.7. Iso(I) = Iso(D).

En regardant l'action sur les faces opposées, on retrouve l'action sur les pentagones mystiques.

Théorème 5.1.3 (Klein). Tout sous-groupe fini irréductible de SO(3) est le groupe des isométries directes d'un solide de Platon, et donc isomorphe à A_4, S_4 ou A_5 .

Lemme 5.1.4 (Burnside-Frobenius). Soit G fini agissant sur un ensemble fini X. On note r le nombre de G-orbites dans X et pour $g \in G$ on note Fix(g) l'ensemble des points fixes de g dans X. On a alors :

$$r = \frac{1}{|G|} \sum_{g \in G} |Fix(g)|$$

Lemme 5.1.5. Si $G \leq SO(3)$ est fini, soit $X \subset S^2$ l'ensemble des pôles³ des éléments non triviaux de G, soient x_1, \ldots, x_r des représentants des orbites de G dans X et $n_i = |G_{x_i}|$ triés dans l'ordre croissant. Alors, on a soit r = 2, |X| = 2 et $G = G_{x_1} = G_{x_2}$ soit r = 3 et |G| et les n_i sont données par :

G	n_1	n_2	n_3	$ O_{x_1} $	$ O_{x_2} $	$ O_{x_3} $	X
2m	2	2	m	m	m	2	2m + 2
12	2	3	3	6	4	4	14
24	2	3	4	12	8	6	26
60	2	3	5	30	20	12	60

5.2 Le Groupe SP(1)

5.2.1 L'algèbre des quaternions de Hamilton

Définition 5.2.1. On se place dans $\mathcal{M}_2(()\mathbb{C})$ et considère :

$$I = \begin{matrix} i & 0 \\ 0 & -i \end{matrix}, J = \begin{matrix} 0 & -1 \\ 1 & 0 \end{matrix}$$
 et $K = IJ = \begin{matrix} 0 & -i \\ -i & 0 \end{matrix}$

²couples d'arêtes parallèles

³couples de points fixes

On définit alors $\mathbb{H} = Vect_{1,I,J,K}(\mathbb{R}) \subset \mathscr{M}_2(\mathbb{C})$

On définit de plus :

$$t(q) = \operatorname{Tr}(q), n(q) = \det q \ et \ q^* = {}^{\mathsf{t}}\bar{q} = t(q)1 - q \in \mathbb{H}$$

Proposition 5.2.1. \mathbb{H} est un corps gauche de centre \mathbb{R} .

Proposition 5.2.2 (Cayley - Hamilton). Par théorème de Cayley-Hamilton sur $\mathcal{M}_2(\mathbb{C})$: $q^2t(q)q+n(q)1=0$ ce qui ici vaut :

$$qq^* = q^*q = n(q)1$$

5.2.2 Le groupe Sp(1)

Définition 5.2.2. On pose $Sp(1) = \{q \in \mathbb{H} \mid n(q) = 1\}$. C'est un sous-groupe de \mathbb{H}^{\times}

Remarque 5.2.0.1. L'application :

$$\begin{array}{ccc} \mathbb{R}^4 & \to & \mathbb{H} \\ (t,x,y,z) & \mapsto & t+xI+yJ+zK \end{array}$$

identifie la sphère unité euclidienne S^3 à Sp(1), ce qui munit S^3 d'une loi de groupe non commutative par transfert de structure. On sait que S^1 et S^3 sont les deux seules sphères euclidiennes que l'on peut munir d'une loi de groupe topologique.

Remarque 5.2.0.2.
$$Sp(1)$$
 s'identifie à $\begin{cases} \alpha & -\bar{\beta} \\ \beta & \bar{\alpha} \end{cases} | |\alpha|^2 + |\beta|^2 = 1$ de $SL_2(\mathbb{C})$.

Proposition 5.2.3. Par décomposition polaire : $\mathbb{H}^{\times} = \mathbb{R}_{>0} \times Sp(1)$

Proposition 5.2.4. L'élément -1 est l'unique élément d'ordre 2 de Sp(1)

Proposition 5.2.5. Un élément $q \in Sp(1)$ est d'ordre m > 2 si et seulement si $t(q) = 2\cos(2k/m)$ avec $k \in \mathbb{Z}$ et $k \wedge m = 1$

5.2.3 L'espace euclidien \mathbb{H}

Définition 5.2.3. On définit sur \mathbb{H} un produit scalair réel par $\langle (\rangle q, q') = \frac{1}{2}t(q^{\star}q')$

Proposition 5.2.6. L'application $Sp(1) \times Sp(1) \to O(\mathbb{H})$ qui à $(q_1, q_2) \mapsto L_{q_1} R_{q_2}$ est un morphisme d'image $SO(\mathbb{H})$ et de noyau $\langle (-1, -1) \rangle \simeq \mathbb{Z}/2\mathbb{Z}$ où L_q désigne la translation à gauche par q et R_q la translation à droite.

 $\textbf{Proposition 5.2.7.} \ \ L'application \ Sp(1) \rightarrow SO(\mathbb{H}^0), \ q \mapsto int_{q_{\mid \mathbb{H}^0}} \ \ ou \ \mathbb{H}^0 = 1^{\perp} = \{q \in \mathbb{H} \mid t(q) = 0\}.$

5.3 Groupes Linéaires et Simplicité de $PSL_n(k)$

- 5.3.1 Transvections
- **5.3.2** Centre et Groupe Dérivé de $SL_n(k)$
- 5.3.3 Le critère de Simplicité d'Iwasawa
- 5.3.4 Groupes Linéaires sur les Corps Finis

 $\textbf{Lemme 5.3.1.} \ \textit{Soit k un corps fini de cardinal q. Alors}, \\$

$$|GL_n(k)| = \prod_{i=0}^{n-1} (q^n - q^i) = q^{\frac{n(n-1)}{2}} \prod_{i=1}^n q^{i-1}$$

Corollaire 5.3.1.1.

$$|SL_n(k)| = \frac{|GL_n(k)|}{q-1}$$

Corollaire 5.3.1.2. $\mu_n(k)$ est cyclique d'ordre $n \wedge q - 1$ et donc : $|PSL_n(k)| = \frac{|SL_n(k)|}{n \wedge (q-1)}$

Définition 5.3.1. On pose $PGL_n(k) = GL_n(k)/k^{\times}I_n$. Ce groupe agit fidèlement sur $P^{n-1}(k) = \{ droites de k^n \}$.

5.4 Le groupe $PGL_2(k)$ et quelques (iso)morphismes miraculeux

Définition 5.4.1. On appelle $\hat{P}(k)$ l'ensemble des droites de k^2 . On définit $\hat{k} = k \sqcup \{\infty\}$. On définit :

$$\beta: \left\{ \begin{array}{ccc} \hat{k} & \longrightarrow & \hat{P}(k) \\ x \in k & \longmapsto & k \begin{pmatrix} x \\ 1 \end{pmatrix} \\ \infty & \longmapsto & k \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right.$$

Proposition 5.4.1. β est une bijection. Si on se donne une matrice $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ de $GL_2(k)$ envoie le point $x \in \hat{k}$ sur :

$$g.x = \beta^{-1} (g\beta(x)) = \frac{ax+b}{cx+d} \in \hat{k}$$

Définition 5.4.2. Les bijections de \hat{k} de la forme $x \mapsto \frac{ax+b}{cx+d}$ sont appelées homographies. Elles forment un sous-groupe de $S_{\hat{k}}$ isomorphe à $PGL_2(k)$.

Proposition 5.4.2. Pour tout triplet (α, β, γ) . Il existe une et une seule homographie $g \in PGL_2(k)$ telle que $(g(\alpha), g(\beta), g(\gamma)) = (0, 1, \infty)$

Proposition 5.4.3. Pour p premier, l'action fidèle de $PGL_2(\mathbb{Z}/p\mathbb{Z})$ induit un morphisme injectif de dans S_{p+1} .

Corollaire 5.4.0.1. Comme (p+1)! = (p+1)p(p-1)(p-2)!, le morphisme de la proposition ci-dessus induit des isomorphismes $PGL_2(\mathbb{Z}/2\mathbb{Z}) \simeq S_3$ et $PGL_2(\mathbb{Z}/3\mathbb{Z}) \simeq S_4$. Les morphismes naturels :

$$PSL_2(\mathbb{Z}/2\mathbb{Z}) \leftarrow SL_2(\mathbb{Z}/2\mathbb{Z}) \rightarrow GL_2(\mathbb{Z}/2\mathbb{Z}) \rightarrow PGL_2(\mathbb{Z}/2\mathbb{Z})$$

De même, $PSL_2(\mathbb{Z}/3\mathbb{Z}) \simeq A_4$.

Proposition 5.4.4. Tout sous-groupe d'indice 2 de S_n est isomorphe à A_n . Tout sous-groupe d'indice n de S_n est isomorphe à S_{n-1} .

Corollaire 5.4.0.2. $PGL_2(\mathbb{Z}/5\mathbb{Z}) \simeq S_5$ et $A_n \simeq PSL_2(\mathbb{Z}/p\mathbb{Z})$ si et seulement si n = p = 5.

Remarque 5.4.0.1. Parmi les groupes simples de la forme A_n et $PSL_n(\mathbb{Z}/p\mathbb{Z})$ on a seulement :

$$A_5 \simeq PSL_2(\mathbb{Z}/5\mathbb{Z}), \ PSL_2(\mathbb{Z}/7\mathbb{Z}) \simeq PSL_3(\mathbb{Z}/2\mathbb{Z}) \ et \ PSL_4(\mathbb{Z}/2\mathbb{Z}) \simeq A_8$$

Pour des corps plus généraux :

$$A_5 \simeq PSL_2(\mathbb{F}_4), \ A_6 \simeq PSL_2(\mathbb{F}_9)$$

Théorème 5.4.1. $PSL_2(\mathbb{Z}/p\mathbb{Z})$ agit transitivement sur un ensemble à p éléments si et seulement si $p \leq 11$.

6 Elements de structures des groupes finis

6.1 p-groupes

On fixe $p \in \mathcal{P}$

Définition 6.1.1. Un p-groupe est un groupe fini d'ordre $p^n, n \ge 0$.

Proposition 6.1.1. Un sous-groupe d'un p-groupe est un p-groupe. Un produit fini de p-groupes est un p-groupe. Un p-sous-groupe d'un groupe G est un sous-groupe de G qui est un p-groupe. Si G est fini quelconque, $p \mid |G|$, les p-Sylow de G sont des p-sous-groupes.

Définition 6.1.2. Le sous-groupe unipotent supérieur $U_n(\mathbb{Z}/p\mathbb{Z})$ des matrices triangulaires supérieures de diagonale égale à 1 est d'ordre $p^{\frac{n(n-1)}{2}}$.

Proposition 6.1.2. Soit P un p-groupe agissant sur un ensemble fini X. On note $FixX = \{x \in X \mid gx = x \forall g\}$. Alors, $|X| \equiv |FixX| \mod p$.

Proposition 6.1.3. Pour tout p-groupe $P \subset GL_n(\mathbb{Z}/p\mathbb{Z})$, il existe $g \in GL_n(\mathbb{Z}/p\mathbb{Z})$ tel que gPg^{-1} est inclus dans $U_n(\mathbb{Z}/p\mathbb{Z})$.

Corollaire 6.1.0.1. Tout p-groupe fini est isomorphe à un sous-groupe de $U_n(\mathbb{Z}/p\mathbb{Z})$ pour n assez grand.

Proposition 6.1.4. Si P est un p-groupe non trivial, son centre est non trivial.

Corollaire 6.1.0.2. Un groupe d'ordre p^2 est abélien, donc isomorphe à $(\mathbb{Z}/p\mathbb{Z})^2$ ou $\mathbb{Z}/p^2\mathbb{Z}$.

Remarque 6.1.0.1. Il existe des groupes d'ordre p^3 non-abéliens, comme le p-groupe $U_3(\mathbb{Z}/p\mathbb{Z})$ appelé Groupe de Heisenberg.

Corollaire 6.1.0.3. Les p-groupes sont résolubles.

6.2 Les Théorèmes de Sylow

Rappel : Si $|G| = p^{\alpha}m$ avec $p \wedge m = 1$, un p-sylow de G est un p-sous-groupe de G de cardinal p^{α} .

Théorème 6.2.1 (Sylw). Soient G un groupe fini et p premier divisant |G|:

- 1. G possède des p-Sylow.
- 2. Tout p-sous-groupe de G est inclus dans un p-Sylow de G.
- 3. Deux p-Sylow de G sont conjugués (en particulier, isomorphes.)

Lemme 6.2.2 (Alignement des p-Sylow). Soient G un groupe fini, $H \leq G$ et $p \mid |H|$ premier. Si P est un p-Sylow de G, il existe $g \in G$ tel que $gPg^{-1} \cap H$ est un p-Sylow de H.

Définition 6.2.1. On notera $n_p(G)$ le nombre de p-Sylow de G et $Syl_p(G)$ l'ensemble des p-Sylow de G.

Corollaire 6.2.2.1. On $a: n_p(G) = 1 \Leftrightarrow G$ possède un p-Sylow distingué.

Théorème 6.2.3 (3ème Théorème de Sylow). Soit G un groupe fini de cardinal $p^{\alpha}m$. On a: $n_p(G) \mid m$ et $n_p(G) \equiv 1 \mod p$

Lemme 6.2.4 (Frattini). Soient G un groupe fini, $N \triangleleft G$, P un p-Sylow de N et $N_G(P)$ le normalisateur de P dans G. On a $G = NN_G(P)$.

6.3 Le Théorème de Schur-Zassenhaus

Théorème 6.3.1 (Schur-Zassenhaus). Soient G un groupe fini d'ordre mn avec $m \land n = 1$ et possédant $N \triangleleft G$ d'ordre n. Alors N admet un complément dans G (nécessairement d'ordre m).

Lemme 6.3.2. Le cas particulier où N est abélien du théorème implique le cas général.

6.4 Théorèmes de Hall

Théorème 6.4.1 (P.Hall). Soit G un groupe fini résoluble. Si $|G| = mn, m \land n = 1$, alors G possède un sous groupe d'ordre m.

Théorème 6.4.2 (P.Hall). Soit G un groupe fini d'ordre d. Si pour toute factorisation d = mn avec $m \land n = 1$, G possède un sous-groupe d'ordre m, alors G est résoluble.

6.5 Extensions et Cohomologie

Si A et G sont fixés, on veut classifier les suites exactes courtes :

$$1 \to A \xrightarrow{i} \tilde{G} \xrightarrow{\pi} G \to 1 \tag{1}$$

Etant donné une telle sec est-ce que i(A) admet un complément dans \tilde{G} ?

Lemme 6.5.1. Soit une extension comme ci-dessus. Il y a équivalence entre :

- 1. i(A) admet un complément dans \tilde{G}
- 2. π admet une section ensembliste qui est un morphisme de groupes.

Définition 6.5.1. On dit que la suite exacte courte est scindée si les conditions équivalentes du lemme précédent sont satisfaites.

Théorème 6.5.2 (Schur-Zassenhaus). Toute extension de G par A avec $|G| \wedge |A| = 1$ est scindée Dans la suite, on suppose que A est abélien.

Définition 6.5.2. Un G-module est la donnée d'un groupe abélien (A, +) muni d'une action de G sur A vérifiant g(a + b) = ga + gb ou, ce qui revient au même, telle que le morphisme $G \to S_A$ associé soit à valeurs dans Aut(A).

Proposition 6.5.1. La donnée de la suite exacte courte 1 munit le groupe abélien A d'une structure de G-module par :

$$g.a = i^{-1} \left(\tilde{g}i(a)\tilde{g}^{-1} \right)$$

où $\tilde{g} \in \tilde{G}$ est un relevé de g par π .

Exemple 6.5.1 (Extensions Centrales). Une extension 1 de G par A est dite centrale si $i(A) \subseteq Z(\tilde{G})$.

On fixe une extension 1 de G par A, et on considère une section ensembliste $s:G\to \tilde{G}$. Il existe un unique élément c(g,g') dans A tel que :

$$s(g)s(g^{'})=i(c(g,g^{'}))s(gg^{'})$$

On remarque qu'alors s est un morphisme si et seulement si c = Ob(s) est nulle.

Lemme 6.5.3. Soient s une section ensembliste de π et c = Ob(s). On a :

$$g.c(g^{'}g^{''}) - c(gg^{'},g^{''}) + c(g,g^{'}g^{''}) - c(g,g^{'}) = 0, \ \forall g,g^{'},g^{''} \in G$$

Définition 6.5.3. Si A est un G-module, on note $Z^2(G,A)$ l'ensemble des fonctions vérifiant l'identité du lemme précédent. Une telle fonction est appelée 2-cocycle de G à valeurs dans A.

Une autre section de π que s est de la forme $s_{\varepsilon}: g \mapsto i(\varepsilon(g))s(g)$ où ε est une fonction arbitraire de G dans A. Les deux 2-cocycles c = Ob(s) et $c_{\varepsilon} = Ob(s_{\varepsilon})$ sont alors liés par :

$$c_{\varepsilon}(\boldsymbol{g},\boldsymbol{g'}) = c(\boldsymbol{g},\boldsymbol{g'}) + g.\varepsilon(\boldsymbol{g'}) - \varepsilon(\boldsymbol{g}\boldsymbol{g'}) + \varepsilon(\boldsymbol{g})$$

Définition 6.5.4. Si A est un G-module, on note $B^2(G,A)$ l'ensemble des fonctions $\partial \varepsilon : G \times G \to A$ de la forme $g,g^{'} \mapsto g.\varepsilon(g^{'}) - \varepsilon(gg^{'}) + \varepsilon(g)$ avec $\varepsilon : G \to A$. Une telle fonction f est appelée 2-cobord de G à valeurs dans A.

Définition 6.5.5. Pour tout G-module A, le groupe $B^2(G,A)$ est un sous-groupe de $Z^2(G,A)$ et on définit le 2-ème groupe de cohomologie de G à valeurs dans A comme le groupe abélien quotient .

$$H^{2}(G, A) = Z^{2}(G, A)/B^{2}(G, A)$$

Proposition 6.5.2. Si s est une section de π , la classe de Ob(s) ne dépend pas du choix de la section s. On la note [E] et on l'appelle classe de cohomologie assoicée à 1. La sec 1 est scindée si, et seulement si sa classe [E] est nulle.

Théorème 6.5.4 (Schur-Zassenhaus, Cohomologique). Soient G un groupe et A un G-module:

- 1. Si G est fini, alors |G| x = 0 pour tout $x \in H^2(G, A)$
- 2. Si A est fini, alors |A| = 0 pour tout $x \in H^2(G, A)$

En particulier, si G et A sont finis avec $|G| \wedge |A| = 1$, on a $H^2(G, A) = 0$.

Proposition 6.5.3. Pour tout G-module A et $x \in H^2(G, A)$, il existe une extension de G par A $v\'{e}rifiant [E] = x.$

Proposition 6.5.4. Soient A un G-module et $E_k = (\tilde{G}_k, i_k, \pi_k)$ pour k = 1, 2 deux extensions de G par le même G-module A. On a $[E_1] = [E_2]$ si et seulement si il existe un isomorphisme $\varphi: \tilde{G}_1 \to \tilde{G}_2 \text{ v\'erifiant } \varphi \circ i_1 = i_2 \text{ et } \pi_2 \circ \varphi = \pi_1$

Corollaire 6.5.4.1. Soit A un G-module, l'application $(E) \mapsto [E]$ induit une bijection entre l'ensemble $\mathcal{E}(G,A)$ des classes d'isomorphisme d'extensions de G par le G-module A et l'ensemble $H^2(G,A)$.

Théorème 6.5.5 (Schur). Considérons $\mathbb{Z}/2\mathbb{Z}$ comme A_n -module trivial. On a, pour $n \geq 4$:

$$H^2(A_{n,\mathbb{Z}/2\mathbb{Z}}) \simeq \mathbb{Z}/2\mathbb{Z}$$

Arithmétique des Anneaux

Les anneaux $\mathbb{Z}[\sqrt{d}]$

On fixe dans la suite un entier $d \in \mathbb{Z}$ non carré⁴ dans \mathbb{Z} .

Définition 7.1.1. On définit, pour $z = x + y\sqrt{d}$:

$$\begin{cases} \bar{z} = x - y\sqrt{d} & \text{le conjugu\'e de } z \\ T(z) = z + \bar{z} = 2x & \text{la trace de } z \\ N(z) = z\bar{z} = x^2 - dy^2 & \text{la norme de } z \end{cases}$$

On a donc: $z^2 - T(z)z + N(z) = 0$, c'est l'identité de Cayley-Hamilton

Lemme 7.1.1. 1. $z \mapsto \bar{z}$ est un automorphisme

- 2. $\mathbb{Q}\left[\sqrt{(d)}\right]$ est le corps des fractions de $\mathbb{Z}[\sqrt{d}]$
- 3. $N: \mathbb{Q}[\sqrt{d}]^{\times} \mapsto \mathbb{Q}^{\times}$ est un morphisme de groupes et $N\left(\mathbb{Z}\left[\sqrt{d}\right]\right) \subseteq \mathbb{Z}$.

Lemme 7.1.2. On
$$a \mathbb{Z} \left[\sqrt{d} \right]^{\times} = \left\{ z \in \mathbb{Z} \left[\sqrt{d} \right] \mid N(z) = \pm 1 \right\}$$

Corollaire 7.1.2.1. On $a \mathbb{Z}[i]^{\times} = \{\pm 1, \pm i\}$ et $\mathbb{Z}\left[\sqrt{d}\right]^{\times} = \{\pm 1\}$ pour d < -1.

Remarque 7.1.2.1. On appelle équation de Pell-Fermat l'équation $x^2 - dy^2 = 1$ pour d > 0.

Proposition 7.1.1. Soit d > 0 non carré. Tout élément > 1 de $\mathbb{Z}\left[\sqrt{d}\right]^{\times}$ est de la forme $x + y\sqrt{d}$ avec $x, y \in \mathbb{Z}_{\geq 1}$. De plus il existe un plus petit tel élément η_d appelé unité fondamentale de $\mathbb{Z}\left[\sqrt{d}\right]$, $\frac{et\ on\ a\ \mathbb{Z}\left[\sqrt{d}\right]^{\times} = \langle -1, \eta_d \rangle \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}}{^{4}z\ \text{n\'egatif convient}}$

7.2 Divisibilité

Définition 7.2.1. Pour un anneau A commutatif intègre, si $a, b \in A$, on $a \mid b$ s'il existe $c \in A$ tel que b = ac. Les diviseurs de 1 sont appelés les unités de A.

Définition 7.2.2. On dit que $a, b \in A$ sont associés noté $a \sim b$ si $b \mid a$ et $a \mid b$.

Lemme 7.2.1. Pour $a, b \in A$, $a \sim b \Leftrightarrow \exists u \in A^{\times}, a = bu$

Définition 7.2.3. Un élément non nul $\pi \in A$ est dit irréductible si ce n'est pas une unité et si pour tout $a, b \in A$, $\pi = ab$ implique $a \in A^{\times}$ ou $b \in A^{\times}$.

Définition 7.2.4. Un élément non nul $\pi \in A$ est dit premier si ce n'est pas une unité et s'il satisfait la propriété d'Euclide-Gauss :

$$\forall a, b \in A, \pi \mid ab \Longrightarrow \pi \mid a \ ou \ \pi \mid b$$

7.3 Anneaux Factoriels

Définition 7.3.1. On convient qu'un produit vide dans un anneau vaut 1 et aussi que l'on a $a^0 = 1$ pour tout $a \in A$. On choisit un ensemble arbitraire \mathcal{P} de représentants des éléments irréductibles pour la relation d'association.

Définition 7.3.2. 1. On dit que A a la propriété de factorisation (PF) si tout élément de $A \setminus \{0\}$ est un produit fini d'éléments irréductibles et d'une unité.

2. On dit que A est factoriel si pour tout $a \in A \setminus \{0\}$, il existe un unique $u \in A^{\times}$ et une unique fonction $(\nu_{\pi}(a)) \in \mathbb{N}^{(\mathcal{P})}$

Exemple 7.3.1. 1. \mathbb{Z} et $\mathbb{K}[X]$ sont factoriels

- 2. Les $\mathbb{Z}\left[\sqrt{d}\right]$ sont (PF)
- 3. L'anneau $H(\mathbb{C})$ des séries entières convergentes sur \mathbb{C} est intègre par le principe des zéros isolés. On peut montrer que les unités de $H(\mathbb{C})$ sont exactement les fonctions qui ne s'annulent pas sur \mathbb{C} et ses irréductibles sont les associés des $z-a, a \in \mathbb{C}$. Mais certains éléments de $H(\mathbb{C})$ comme $\sin(\pi z)$ ont une infinité de zéros donc l'anneau $H(\mathbb{C})$ ne vérifie pas (PF).

Proposition 7.3.1. Supposons que A satisfait (**PF**). Alors, A est factoriel si et seulement si tout irréductible de A est premier.

Lemme 7.3.1. Les pgcd et ppcm existent dans un anneau factoriel.