CPU Management: Process Scheduling

23 Aug 2018

Process State Transition Diagram

If the scheduler is non-preemptive, then the "interrupt" transition would not exist!

Process Execution Cycle

- As requested by the user/s and/or syste
 - One or two or more processes can become ready
 - So there would be a READY queue of READY processes WAITING to RUN on the CPU
- From the READY queue, the scheduler selects the process to be RUN
 - Based on the scheduling algorithm
 - Two types: Non-Preemptive Vs Preemptive
 - Several variants: FCFS, SJF, SRJT, RR, PBS, SCS, HS, etc.

Process Execution Cycle

- Round Robin: RR
- **Time Quanta:** Duration of time for which a process is allocated CPU uniterruptedly
- ON expiry of TQ, a timer interrupt occurs, which:
 - Moves the process either to I/O wait or Ready Q

Process Execution Cycle

- As requested by the user/s and/or syste
 - One or two or more processes can become ready
 - So there would be a READY queue of READY processes WAITING to RUN on the CPU
- From the READY queue, the scheduler selects the process to be RUN
 - Based on the scheduling algorithm
 - Two types: Non-Preemptive Vs Preemptive
 - Several variants: FCFS, SJF, SRJT, RR, PBS, SCS, HS, etc.

Execution Cycle: An abstraction

- Process execution
 - involves RUNNING on the CPU (CPU Burst time)
 - if has I/O, might include I/O operation time (plus I/O waiting) (I/O-burst time)
- Processes are of two types:
 - CPU-bound processes: demand more time on CPU than on I/O op
 - I/O-bound processes: demand more time on I/O than CPU

Priority Based Scheduling