LUNDS TEKNISKA HÖGSKOLA MATEMATIK

TENTAMENSSKRIVNING System och Transformer 2014–06–02 Svar och anvisningar

1. a) Systemmatrisen har egenvärden $\lambda_1 = -1$ och $\lambda_2 = 5$ med motsvarande egenvektorer $\mathsf{S}_1 = c(1,-1)$ och $\mathsf{S}_2 = c(1,1)$ där $c \neq 0$. Matrisen är alltså diagonaliserbar och systemet har den allmänna lösningen

$$\begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = c_1 e^{-t} \begin{bmatrix} 1 \\ -1 \end{bmatrix} + c_2 e^{5t} \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

Systemet är inte stabilt, eftersom det finns lösningar som går mot ∞ då $t \to \infty$ (t.ex. $c_1 = 0, c_2 = 1$).

b) En partikulärlösning bestäms enklast via resolventen (den generaliserat stationära lösningen). Svar:

$$\begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = e^{-t} \begin{bmatrix} 1 \\ -1 \end{bmatrix} + e^{5t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + e^{2t} \begin{bmatrix} -2 \\ -1 \end{bmatrix}.$$

- **2.** a) Svar: $f'(t) = \begin{cases} e^t, & t < 0 \\ -e^{-t}, & t > 0 \end{cases}$, $f''(t) = e^{-|t|} 2\delta(t)$.
 - b) Svar: $g*g(t) = \frac{1}{6}t^3\theta(t), g*f''(t) = e^{-|t|}$ (enklast via g*f'' = g''*f.)
- **3.** a) Matrisens egenvärden är $-\frac{1}{2}$ och -2, så den är diagonaliserbar (olika egenvärden).
 - b) Ett egenvärde har belopp större än 1, så systemet är instabilt.
 - c) Enklast utnyttjar man att (1,1) är en egenvektor till A. Svar: $v_n = (-1/2)^n \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.
- **4.** a) Svar: $F(s) = \frac{e}{(s-1)^2 + 1}$, definitionsstrimla Re s > 1.
 - b) Svar: $g(t) = (e^{t+1} \sin t)(\theta(t) 1)$, definitionsstrimla Re s < 1. (Någon motivering krävs!)
- 5. Överföringsfunktionen bestäms via Laplacetransformer: $H(s) = \frac{s^2 + 1}{(s+1)^2}$. Den sökta insignalen måste alltså ha Laplacetransformen

$$\frac{(s+1)^2}{(s^2+1)^2} = \frac{1}{s^2+1} + \frac{2s}{(s^2+1)^2}.$$

Inverstransformation ger $w(t)=(t+1)\sin t\,\theta(t)$. Alla funktioner kausala, och alla definitionsstrimlor högerhalvplan.

- **6.** a) Svar: $\pi(\theta(\omega + a) \theta(\omega a))$.
 - b) Parsevals formel, gränsövergång och invers Fouriertransform visar att

$$\lim_{a \to \infty} \int_{-\infty}^{\infty} \frac{f(t)\sin at}{t} dt = \pi f(0).$$