Assignment 06

Name: Manav Kothari

UIN: 133008008

Problem 10.8.1

Inputs

Parameter	Value				
Simula	ion Input				
Problem	1				
NONLIN	0 (Linear)				
ITERMAX	25				
Epsilon	0.001				
GAMA1 (Acceleration Parameter)	0.5				
GAMA2 (Penalty Term)	10^8				
Doma	ain Input				
X0	0				
YO	0				
X_length	6				
Y_length	2				
Mes	h Input				
NX	10				
NY	6				
NPE	4				
DX	[1 1 1 1 0.5 0.5 0.25 0.25 0.25 0.25]				
DY	[0.25 0.25 0.5 0.5 0.25 0.25]				
NDF	2				
IEL	1				
NGPF	2				
NGPR	1				
Loading	Condition				
DP	1				
F = [FX FY]	[0 0]				
MU	1				
Essential Bou	ndary Conditions				
NSPV	39				
ISPV	[1 77 76 75 74 73 72 71 70 69 68 67 56 45 34 23				
	12 1 2 34 5 6 7 8 9 10 11 77 76 75 74 73 72 71 70				
	69 68 67; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2				
	22222222222222]'				
VSPV	000000000000000000000000000000000000000				
	0 -1 -1 -1 -1 -1 -1 -1 -1 -1]'				

Natural Boundary Condition						
NSSV 31						
ISSV	[1 2 3 4 5 6 7 8 9 10 11 22 33 44 55 66 77 1 11 22					
	33 44 55 66 77 67 56 45 34 23 12; 1 1 1 1 1 1 1 1					
	1111111112222222222222]					
VSSV	zeros(max(size(ISSV)),1)					

Results

х	Gar	ma = 1	Gama	= 100	Gama = 10^8		
	10*6 - L4	5*3 - Q9	10*6 - L4	5*3 - Q9	10*6 - L4	5*3 - Q9	
1.00	0.0303	0.0310	0.6563	0.6513	0.7576	0.7505	
2.00	0.0677	0.0691	1.3165	1.3062	1.5135	1.4992	
3.00	0.1213	0.1233	1.9911	1.9769	2.2756	2.2557	
4.00	0.2040	0.2061	2.6960	2.6730	3.0541	3.0238	
4.50	0.2611	0.2631	3.0718	3.0463	3.4648	3.4307	
5.00	0.3297	0.3310	3.4347	3.3956	3.8517	3.8029	
5.25	0.3674	0.3684	3.6120	3.5732	4.0441	3.9944	
5.50	0.4060	0.4064	3.7388	3.6874	4.1712	4.1085	
5.75	0.4438	0.4443	3.8316	3.7924	4.2654	4.2160	
6.00	0.4793	0.4797	3.8362	3.7862	4.2549	4.1937	

Table 1: Vx (x,0)

	10 ³	*6 - L4	5*3 - Q9			
У	Vx (x = 4)	Vx (x = 6)	Vx (x = 4)	Vx (x = 6)		
0	3.0541	4.2549	3.0238	4.1937		
0.25	3.0074	4.2127	2.9796	4.1719		
0.5	2.8526	4.0360	2.8250	3.9621		
1	2.2655	3.4093	2.2446	3.3808		
1.5	1.3051	2.1793	1.2897	2.1208		
1.75	0.6979	1.5183	0.6893	1.4559		
2	0.0000	0.0000	0.0000	0.0000		

Table 2: Horizontal velocity Vx (x,y) vs vertical distance y

	10*6	6 - L4		5*3 - Q9			
x	Top Plate	Centerline	x	Top Plate	Centerline		
	Pressure	Pressure		Pressure	Pressure		
0.500	8.0304	7.3828	0.423	7.9839	7.3238		
1.500	7.7064	6.9978	1.577	7.5964	6.8854		
2.500	6.8346	6.2573	2.423	6.8666	6.2635		
3.500	5.8653	5.0972	3.577	5.7138	4.9424		
4.250	4.4726	4.0086	4.211	4.5390	4.0165		
4.750	4.3387	3.0012	4.789	4.2338	2.8925		
5.125	2.9554	2.2705	5.106	3.1200	2.2742		
5.375	4.5657	1.4866	5.394	4.4606	1.4509		
5.625	2.9580	0.8717	5.606	3.0684	0.9609		
5.875	7.5452	0.0069	5.894	7.2777	-0.0140		

Table 3: Pressure vs Horizontal distance x (Near top plate & centerline)

Figure 1: Horizontal Velocity field Vx at x = 4 & x = 6

Top Plate Pressure vs x

Figure 2: Top Plate Pressure vs x

Figure 3: Centerline Pressure vs x

Problem 10.8.4

Inputs

111					
Parameter	Value				
Simulati	on Input				
Problem	2				
NONLIN	1				
ITERMAX	25				
Epsilon	0.001				

GAMA1 (Acceleration Parameter)	0.5
GAMA2 (Penalty Term)	10^8
	Domain Input
X0	0
Y0	0
X_length	
Y_length	1
	Mesh Input
NX	8
NY	10
NPE	9
DX	0.125*ones(1,NX)
DY	[0.125 0.125 0.125 0.125 0.125 0.125 0.0625 0.0625 0.0625 0.0625]
NDF	2
IEL	2
NGPF	3
NGPR	2
	eding Condition
DP	[0 500 1000]
F = [FX FY]	[0 0]
MU	1
	Boundary Conditions
NSPV	144
ISPV	[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 34 51 68 85 102 119 136 153 170 187 204 221 238 255 272 289 306 323 340 357 356 355 354 353 352 351 350 349 348 347 346 345 344 343 342 341 324 307 290 273 256 239 222 205 188 171 154 137 120 103 86 69 52 35 18 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 34 51 68 85 102 119 136 153 170 187 204 221 238 255 272 289 306 323 340 357 356 355 354 353 352 351 350 349 348 347 346 345 344 343 342 341 324 307 290 273 256 239 222 205 188 171 154 137 120 103 86 69 52 35 18; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
VSPV	[0000000000000000000000000000000000000

Natural Boundary Condition						
NSSV 0						
ISSV	[]					
VSSV	[]					

Results

у	Mesh: 8*8 - L4								M	esh: 4*4 - 0	29	·		
Re ->	Linear	25	0	50	00 750		Linear	25	0	50	00	75	i0	
	Linear	DI	NI	DI	NI	DI	NI	Linear	DI	NI	DI	NI	DI	NI
0.125	-0.0579	-0.0367	-0.0367	-0.0239	-0.0235	-0.0128	-0.0121	-0.0615	-0.0412	-0.0410	-0.0131	-0.0120	0.0146	0.0151
0.250	-0.0988	-0.0688	-0.0689	-0.0502	-0.0498	-0.0320	-0.0310	-0.1039	-0.0851	-0.0848	-0.0520	-0.0502	0.0017	0.0031
0.375	-0.1317	-0.0944	-0.0947	-0.0733	-0.0732	-0.0533	-0.0526	-0.1393	-0.1283	-0.1283	-0.1133	-0.1119	-0.0481	-0.0459
0.500	-0.1471	-0.0911	-0.0915	-0.0696	-0.0701	-0.0569	-0.0573	-0.1563	-0.1305	-0.1311	-0.1284	-0.1295	-0.1086	-0.1079
0.625	-0.0950	-0.0176	-0.0177	0.0043	0.0037	0.0020	0.0010	-0.1118	-0.0437	-0.0442	-0.0494	-0.0517	-0.0901	-0.0908
0.750	0.0805	0.0469	0.0479	0.0414	0.0414	0.0323	0.0322	0.0481	0.0753	0.0753	0.1042	0.1042	0.0549	0.0517
0.875	0.4500	0.2616	0.2617	0.1712	0.1714	0.1207	0.1198	0.4186	0.2833	0.2838	0.2139	0.2133	0.1495	0.1482

Table 4: velocity Vx(0.5,y) for different Reynold's number

Figure 4: Horizontal Velocity Vx(0.5,y) vs y for Re = 0,500,1000

Pressure vs x

Figure 5: Plot of Pressure P along the top wall of the cavity