The product of the two signals is:

$$y(t) = \sin(\omega t)\sin(\omega t + heta)$$

We can use the product-to-sum trigonometric identity:

$$\sin(A)\sin(B) = \frac{1}{2}[\cos(A-B) - \cos(A+B)]$$

Applying this to our product, with $A=\omega t$ and $B=\omega t+ heta$:

$$y(t) = rac{1}{2}[\cos(\omega t - (\omega t + heta)) - \cos(\omega t + (\omega t + heta))]$$

$$y(t) = rac{1}{2}[\cos(- heta) - \cos(2\omega t + heta)]$$

Since $\cos(-\theta) = \cos(\theta)$, we have:

$$y(t) = rac{1}{2}[\cos(heta) - \cos(2\omega t + heta)]$$

Now, we integrate y(t) over one cycle from t=0 to $t=T=\frac{2\pi}{\omega}$:

$$\int_0^{2\pi/\omega} rac{1}{2} [\cos(heta) - \cos(2\omega t + heta)] \, dt$$

$$=rac{1}{2}\int_{0}^{2\pi/\omega}\cos(heta)\,dt-rac{1}{2}\int_{0}^{2\pi/\omega}\cos(2\omega t+ heta)\,dt$$

The first integral is straightforward since $\cos(\theta)$ is constant with respect to t:

$$rac{1}{2}\int_0^{2\pi/\omega}\cos(heta)\,dt = rac{1}{2}[\cos(heta)\cdot t]_0^{2\pi/\omega} = rac{1}{2}\cos(heta)\cdotrac{2\pi}{\omega} = rac{\pi}{\omega}\cos(heta)$$

For the second integral, let $u=2\omega t+\theta$, so $du=2\omega dt$, and $dt=\frac{du}{2\omega}$. The limits of integration change from t=0 to $u=\theta$, and from $t=\frac{2\pi}{\omega}$ to $u=2\omega\cdot\frac{2\pi}{\omega}+\theta=4\pi+\theta$.

$$rac{1}{2}\int_0^{2\pi/\omega}\cos(2\omega t+ heta)\,dt=rac{1}{2}\int_{ heta}^{4\pi+ heta}\cos(u)rac{du}{2\omega}=rac{1}{4\omega}[\sin(u)]_{ heta}^{4\pi+ heta}$$

 $= \frac{1}{4\omega}(\sin(4\pi+\theta)-\sin(\theta))$ \$Since $\sin(4\pi+\theta)=\sin(\theta)$, the second integral becomes:

$$\frac{1}{4\omega}(\sin(\theta) - \sin(\theta)) = \frac{1}{4\omega}(0) = 0$$

Combining the results of the two integrals, the integral of the product over one cycle is:

$$\frac{\pi}{\omega}\cos(\theta) - 0 = \frac{\pi}{\omega}\cos(\theta)$$

Final Answer: The final answer is $\boxed{\frac{\pi}{\omega}\cos(\theta)}$

This is the real part

Now correlate with 1.0cos(wt)

The product of the two signals is:

$$y(t) = \cos(\omega t)\sin(\omega t + \theta)$$

We can use the product-to-sum trigonometric identity:

$$\cos(A)\sin(B) = rac{1}{2}[\sin(A+B) - \sin(A-B)]$$

Applying this with $A=\omega t$ and $B=\omega t+\theta$:

$$y(t) = rac{1}{2}[\sin(\omega t + (\omega t + heta)) - \sin(\omega t - (\omega t + heta))]$$

$$y(t) = rac{1}{2}[\sin(2\omega t + heta) - \sin(- heta)]$$

Since $\sin(- heta) = -\sin(heta)$, we have:

$$y(t) = rac{1}{2}[\sin(2\omega t + heta) + \sin(heta)]$$

Now, we integrate y(t) over one cycle from t=0 to $t=T=rac{2\pi}{\omega}$:

$$\int_0^{2\pi/\omega} rac{1}{2} [\sin(2\omega t + heta) + \sin(heta)] \, dt$$

$$=rac{1}{2}\int_{0}^{2\pi/\omega}\sin(2\omega t+ heta)\,dt+rac{1}{2}\int_{0}^{2\pi/\omega}\sin(heta)\,dt$$

The second integral is straightforward since $\sin(\theta)$ is constant with respect to t:

$$rac{1}{2}\int_0^{2\pi/\omega}\sin(heta)\,dt = rac{1}{2}[\sin(heta)\cdot t]_0^{2\pi/\omega} = rac{1}{2}\sin(heta)\cdotrac{2\pi}{\omega} = rac{\pi}{\omega}\sin(heta)$$

For the first integral, let $u=2\omega t+\theta$, so $du=2\omega dt$, and $dt=\frac{du}{2\omega}$. The limits of integration change from t=0 to $u=\theta$, and from $t=\frac{2\pi}{\omega}$ to $u=2\omega\cdot\frac{2\pi}{\omega}+\theta=4\pi+\theta$.

$$rac{1}{2}\int_0^{2\pi/\omega}\sin(2\omega t+ heta)\,dt=rac{1}{2}\int_ heta^{4\pi+ heta}\sin(u)rac{du}{2\omega}=rac{1}{4\omega}[-\cos(u)]_ heta^{4\pi+ heta}$$

 $= \frac{1}{4\omega}(-\cos(4\pi+\theta)-(-\cos(\theta)))$ \$Since $\cos(4\pi+\theta)=\cos(\theta)$, the first integral becomes:

$$\frac{1}{4\omega}(-\cos(\theta)+\cos(\theta)) = \frac{1}{4\omega}(0) = 0$$

Combining the results of the two integrals, the integral of the product over one cycle is:

$$0+rac{\pi}{\omega}\sin(heta)=rac{\pi}{\omega}\sin(heta)$$

Final Answer: The final answer is $\frac{\pi}{\omega}\sin(\theta)$

This is the imaginary part.