

2013中国数据库技术大会

DATABASE TECHNOLOGY CONFERENCE CHINA 2013 大数据数据库架构与优化数据治理与分析

基于SQL Server的大数据解决方案 设计及实现

> 孙巍 高级项目经理 Customer Advisory Team 微软亚太研发集团云创新中心

About CAT

议程 Agenda

- 大数据时代
- 你真的需要大数据吗?
- 关于大数据的一些事
- 微软有大数据方案吗?

大数据到底意味着什么

大数据的一些统计

你真的需要大数据吗?

IT领域目前最热门的话题

你真的需要大数据吗?

• Yes, 我们所有人都需要

我们的品牌和产品的口碑如何?

我如何基于天气和交通 流量的模式优化我的车 队?

但是。。。

- 构建 OR 使用
 - 构建一个大数据平台或解决方案
 - 使用大数据平台或解决方案
 - 80/20
- 大数据是一项系统工程,不能仅仅是购买或使用某个产品就可以解决问题
- 大数据需要很多很多资源和技术
- 大数据离我们很远吗?

关于大数据的一些事

希望你还没有晕

NOSQL 为什么是这个名字...

这个不是在说SQL不应该再被使用或者说SQL已死

NOT Only SQL

应该是重新认识一些问题找到更好的方法

Why? Nosql?

- 更好的数据模型灵活性
 - · 将JSON作为一种数据模型
 - 没有"schema first"的需求
- 从采集的数据中快速获得洞察力
- 宽松的一致性模型例如 eventual consistency
- •除了C/Java,在学校没学过什么其他的东西
 - · 讨厌例如SQL这类声明式的语言

2类主流的NOSQL 系统

•键/值存储

- 例如: MongoDB, CouchBase, Cassandra Wind
- 灵活的数据模型,
- 通过键的Hash支持
- 基于键获取单一的

NOSQL OLTP

Hadoop

- 为存储和处理海量数据而设计的可扩展容错框架
- 典型的没有数据模
- 记录存储在分布式

NOSQL data warehousing

WHY?? REDUCE TIME TO INSIGHT

NoSQL:

数据到达

应用程序

有时被称为"Schema Later"

不需要清洗

不需要ETL!

不需要装载!

当数据落地之后就可以分析

现实中存在的2个世界

结构化数据已知schema

ACID

Transactions

SQL

强制一致性

ETL

需要长时间获得洞察力

成熟并且稳定

非结构化或半结构化数据,没有schema

No ACID

No transactions

No SQL

最终一致性

No ETL

快速获得洞察力

Beta, alpha, 0.x···

微软的HADOOP策略 MAKE HADOOP ENTERPRISE READY

● 构建微软自己的Hadoop分 ____发版本 • 向 Apache 基金会提交变更

免费下载

● 为Windows和Azure而优化

• AD与Systems Center的集成

Hadoop-as-a-service-on-Azure

● 专注于 .NET 开发者

Visual Studio集成

• 支持C#

● 企业就绪的差异化

• 性能和可扩展

高可用

易于使用

关系型数据库还是Hadoop?

(未来谁是主宰?)

这是一个错误的问题

关系型数据库和Hadoop是基于<mark>不同的需求</mark>而设计出 的系统

SQL Server 2012 Parallel Data Warehouse 软硬件整合优化的并行数据仓库一体机

- 从TB到PB 的高可扩展性平台
- 使用MPP架构实现卓越的可扩展性
- 硬件厂商的选择

- · 通过使用遵循行业标准的硬件降低成本
- 与Microsoft 商业智能工具的深度集成
- 充分利用最新软件技术
 - Windows Server 2012 Storage Spaces
 - Windows Server 2012 Hyper-V
 - ➤ SQL Server 2012 xVelocity 列存储

数据仓库一体机并行处理架构 多节点、分布式、无共享

列存储技术提供新一代性能

列存储技术提供强大性能

- 可更新的聚集列存储
- 数据以列形式存储
- · 内存优化技术提供新一代性能
- · 灵活可更新,同时满足批量导入或小量数据的加载更新需求

庭50X 性能提升 高至 王缩比例 节省时间和 成本

实时 数据仓库

PDW**数据仓库一体机** VS. HADOOP**数据仓库** (HIVE)

性難测试

- 基于9台HP服务器的集群, 双路CPU, 4核心, 16GB内存, 4块 SAS 数据磁盘
- 软件
 - SQL Server PDW Version "next"
 - 1台控制节点, 8 计算节点
 - Windows Hadoop Version 0.20.203, Hive Version 0.7.1
 - 1 命名节点, 8 数据节点
 - Windows Server 2008
- 基于TPC-H (SF 800)的测试表
 - lineitem: 612GB, 48亿条记录
 - orders: 140GB, 12亿条记录

PDW数据仓库一体机 VS. HADOOP数据仓库(HIVE)

	数据仓库一体机系统	Hadoop
计算模型	- 具有交易的概念 - 面向交易的工作特性 - 强制ACID	- 具有任务的概念 - 面向任务的工作特性 - 没有并发控制
数据模型	- 带有已知架构的结构化数据 - 读写模式	- 所有的数据都可以是任何格式 - 非结构化或半结构化 - 只读模式
一种性性	- 以一体机形式购买	- 通过廉价硬件自行组装
容错	- 假设极少发生故障 - 没有查询级别的容错	- 假设经常发生故障 - 简单且高效的容错
关键特性	- 效率 , 优化	- 可扩展性和灵活性

单纯的关系型数据库系统或单纯的Hadoop 将不再是默认的选择

我们有没有更好的选择?

我们可以断言

POLYBASE: 数据处理的突破性技术

统一查询,结构化和非结构化数据

- · 查询关联Hadoop表和关系型数据库表
- ・ 采用标准SQL语言
 - Select, From Where

沿用现有 SQL技能

道了. · 关系型与半结构化的整合

总结

- 大数据这个话题不仅仅只是Hadoop
- 未来并不是一个某一个架构或方案能够一统天下的格局,需要对大数据有一个清晰的认识
- 微软积极参与大数据的方案和设计

