Yiqiao Wang

Chicago, IL | (651) 363-5740 | vigiao1@uchicago.edu | linkedIn

EDUCATION

University of Chicago, M.S. in Computational and Applied Mathematics, Expected Dec 2024

Chicago, IL

Courses: Machine Learning, Modern Applied Optimization, Stochastic Processes , Monte Carlo Simulation

Macalester College, Bachelor of Arts (GPA: 3.94/4.0), May 2023

St. Paul, MN

- Courses: Topology, Mathematical Statistics, Data Structures, Mathematical Modeling, Computational Linear Algebra
- Awards: Dean's List (Fall 2021, Spring 2022)

SKILLS

Programming Languages: Matlab, R, Python, Java, C++, SQL, Ripser, HTML, CSS

Analysis Skills: Time Series Analysis, Multiple Regression Models, Support Vector Machines, Optimization, SVD and PCA, Agent-based modeling, Topological Data Analysis

Other Skills: Figma, SquareSpace, A-Frame, Prototype and Product Design; Familiarity with Machine Learning libraries/frameworks (e.g., TensorFlow, PyTorch)

INTERNSHIP EXPERIENCE

Natural Science, LLC Business Analyst Intern

Big Rock, IL

Jun 2024 - Sep 2024

- Gathered industry data to uncover trends, demand shifts, and competitor strategies for MATTM technology.
- Applied ML algorithms (regression, time series forecasting, classification) to predict market behavior with validated models.
- Performed **equity valuation** through Discounted Cash Flow (DCF) and comparable company analysis, crafting funding strategies aligned with the company's financial objectives.

Xiyu Private Equity Fund Management Co., Ltd.

Quantitative Data Analyst

Nanjing, China Jun 2023 - Aug 2023

- Analyzed macroeconomic data using Python and MATLAB to identify correlations with market behavior, guiding strategic portfolio decisions for major asset classes and resulting in a 15% increase in annual returns.
- Conducted analysis of target funds, back-tested and implemented trading models and signals, achieving a 10% increase in portfolio returns by fine-tuning parameters within an existing trading model and optimizing asset allocation strategies.

MacProject Corps Program (Virtual), Career Exploration

MN

Web Developer Intern

Jan 2022

- Collaborated to promote the Career Development site and the training framework for the City of St. Paul, grounded on the idea of diversity, inclusion, and equality.
- Engineered a dynamic Career Development intranet site on Squarespace, enhancing user experience and engagement; crafted a comprehensive communication strategy with draft emails and social media posts to bolster team connectivity.

RESEARCH & PROJECTS

Topological Data Analysis for Emotion Recognition

- Extract facial landmarks and perform *Delaunay Triangulation* for 2K inputting images.
- Utilized **R** and **Python** to calculate persistent entropy based on knowledge from *persistent homology*.
- Trained machine learning models to classify emotions from the AffectNet dataset, tuned the hyperparameters of the **XGBoost** model to get an accuracy of 75%.

Integer Linear Programming Optimization of Crew Scheduling Problem

- Addressed the legalistic issue by optimizing routes, disassembled flight schedules from four major U.S. airports, and formulated an ILP problem using a Set-Covering Model, reducing potential crew scheduling conflicts by 30%.
- Utilized **MATLAB** to solve the integer programming problem, achieving a 20% reduction in crew costs while adhering to the specified constraints.
- Authored a research paper accepted for publication at the International Conference on Business and Policy Studies (CONF-BPS 2023).

PCA in Breast Cancer Classification

- Employed the **Min-Max scaling** method to preprocess the data.
- Applied PCA to the Breast Cancer Gene Expression dataset obtained from CuMiDa to discern principal variables.
- Conducted classification using pre-trained models from the **AutoGluon package**, resulting in an impressive accuracy of 91.67% on the validation set and 87.09% on the testing set.

Performance Data Analysis For Wordle Dataset

- Conducted exploratory data analysis for over 400 solution words, performed data preprocessing, and employed **Dynamic Programming** and **GloVe** for semantic analysis.
- Utilized XGBoost and LSTM for result prediction, achieving a 43% reduction in MSE with LSTM over XGBoost.
- Designed a novel XGBoost model with a 4th-order polynomial curve, improving prediction accuracy and reducing error margin to 5%.
- Applied k-means clustering for word difficulty, using Elbow Method and Silhouette plot for optimal clusters, enhancing
 insights into gameplay dynamics.