Применение обратного метода Маслова и параллельных вычислений для решения задач искусственного интеллекта¹

Петухова Н.Д., ст. преп. кафедры математики СПб ГМТУ, ndpetukhova@gmail.com.

Аннотация

Статья посвящена изложению разработанного алгоритма IAPTA решения задач искусственного интеллекта, допускающих формализацию в исчислении предикатов, с помощью модификации обратного метода Маслова и идей параллельных вычислений.

Введение

Решение многих задач искусственного интеллекта, допускающих формализацию средствами языка исчисления предикатов, сводится к доказательству формул вида:

$$(\&S(\omega)) \Rightarrow \exists \overline{x}_{\neq} A(\overline{x}),$$

где $\omega=\{a_1,...,a_k\}$ – набор констант, $S(\omega)$ – набор постоянных атомарных формул или их отрицаний, $A(\overline{x})$ – элементарная конъюнкция вида $P_{k_i}(\overline{x})$ [3]. Такое логическое следование равносильно истинности формулы:

$$(\&S(\omega)) \to \exists \overline{x}_{\neq} A(\overline{x})$$

при любых наборах значений ω , которую, используя равносильные преобразования аппарата математической логики, можно свести к формуле вида:

$$\exists (x_1...x_n) \neq (\&_{i=1}^{\delta} \lor \neg S(a_1,...,a_k) \lor P_{k_i}(x_1,...,x_n))$$
 (1)

Эта формула выводима тогда и только тогда, когда существуют подстановки термов $t_1,...,t_{n_i}$ вместо переменных $x_1,...,x_{n_i}$ такие, что в каждом конъюнктивном члене найдется контрарная пара. Поиск таких термов требует экспоненциального числа шагов. Обратный метод ориентирован на существенное сокращение числа шагов поиска термов при переборе вариантов.

¹Работа выполнена при поддержке гранта РФФИ 14-08-01276-а.

Применение идей параллельных вычислений для решения задач логико-предметного распознавания образов

Создаем многопроцессорную систему, в которой действия между процессорами распределены поровну. Равное разделение действий необходимо для того, чтобы каждое действие имело возможность стать первым выполненным. Каждый процессор может выполнять следующие простые действия:

- 1. присвоение значения переменным;
- 2. замена всех вхождений переменной на её значение;
- 3. проверка формул на графическое совпадение;
- 4. отмена присвоения значения переменным;
- 5. отмена замены всех вхождений переменной;
- 6. изменение приоритета данного действия на 0.

Для начала работы алгоритма необходимо выбрать количество процессоров. Их, вообще говоря, может быть любое количество, но так как формула (1) содержит δ не повторяющихся дизъюнктов, то логично использовать δ процессоров.

Сформулируем алгоритм IAPTA (Inverse Ant Parallel Tactic Algorithm) решения задач логико-предметного распознавания образов, основанный на идеях параллельного вычисления и тактиках обратного метода Маслова. При этом при этом при каждом присвоении переменным значений процессоры связываются друг с другом и сравнивают результаты.

Алгоритм ІАРТА

Определение 1. Список Γ неповторяющихся формул вида $\vee \neg S(\omega) \vee P_{k_i}(x_1....x_{n_i})$ называется **F-набором** для формул типа (1) [2], [4].

Определение 2. F-набор называется **пустым** \square , если все формулы, вхо-дящие в него, не имеют переменных и тавтологичны [2], [4].

Определение 3. *F-набор называется тупиковым*, если в него входит хотя бы одна формула, не имеющая переменных и являющаяся ложной или не являющаяся ни тавтологией, ни противоречием [2].

1. Строим δ -членный F-набор, формулы в котором не повторяются. То есть переписываем без конъюнкций все дизъюнкты вида $\vee \neg S(\omega) \vee P_{k_i}(x_1,...,x_{n_i})$ при $i=1,...,\delta$. Создаем популяцию из δ процессоров.

Каждой паре потенциально контрарных формул $P_{k_i}(x_1,...,x_{n_i})$ и $\neg P_{k_i}(a_{j_1},...,a_{j_{n_i}})$, входящих в один F-набор, назначаем приоритет их отождествления равным 1. Остальные приоритеты назначаем равными 0.

2. Копируем δ -членный F-набор $\delta-1$ раз. Получаем ровно δ одинаковых F-наборов.

Назначаем i-му процессору $(i=1,...,\delta)$ свою начальную формулу $P_{k_i}(x_1,...,x_{n_i})$ – формулу, с которой данный процессор начинает свой итерационный цикл, и потенциально контрарную ей постоянную формулу из $S(\omega)$, имеющую приоритет, равный 1.

Если какие-то два процессора начинают работу с формулой, начинающейся с одного и того же предикатного символа (таких формул не более δ), то назначаем для них разные формулы из $S(\omega)$, потенциально контрарные данной. Если для каких-то двух процессоров не существует разных потенциально контрарных формул, то формула не выводима. Алгоритм заканчивает работу. Иначе, переходим к п. 3.3.

- 3. Параллельно работают δ процессоров. i-й процессор ($i=1,...,\delta$) осуществляет присвоение значений переменным.
- 3.1. Если в рабочей формуле данного процессора нет переменных, то в качестве рабочей для этого процессора выбираем формулу из следующей элементарной дизьюнкции, содержащую хоть одну переменную.
- 3.2. Ищем среди формул в $S(\omega)$ формулу $\neg P_{k_i}(a_{j_1},...,a_{j_{n_i}})$, имеющую приоритет, равный 1, и потенциально контрарную формуле $P_{k_i}(t_1,...,t_{n_i})$, с которой работает этот процессор. Если нашли подходящую формулу, то переходим к п. 3.3. Если ее нет, то переходим к п. 4.
- 3.3. Решаем систему уравнений вида $t_l=a_{j_l}\ (l=1,...,n_i)$, унифицирующую список переменных и констант со списком констант. В случае, если эта система имеет решение, то переходим к п. 3.4. Если система решений не имеет, то понизить приоритет этого действия до 0 и переходим к п. 3.2.
- 3.4. Записываем результаты, полученные разными процессорами, и проверяем их на непротиворечивость следующим образом. Если процессоры одновременно присваивают одним и тем же переменным разные значения, то такие результаты считаются противоречивыми. Если результаты действий двух процессоров не противоречат друг другу, то присвоение полученных значений переменных осуществляется в формулах обоих процессоров.
- 3.5. Заменяем в F-наборе каждого процессора вхождения переменных из списка на их значения, полученные в п. 3.3 и 3.4, если успешно пройдена проверка на непротиворечивость.
- 3.6. Если для какого-либо процессора получился пустой F-набор, то алгоритм заканчивает работу. Формула выводима и найден набор значений переменных, существование которых утверждалось в формуле.

- 3.7. Если получился тупиковый F-набор, то переходим к п. 4.
- $3.8. \$ Если для всех процессоров приоритеты всех действий равны 0, то формула не выводима. Алгоритм заканчивает работу.
- 3.9. Если в F-наборе какого-либо процессора существуют формулы, имеющие переменные, которым еще не присвоено значение, то переходим к п. 3.1.
 - 4. Возвратная часть алгоритма.
- 4.1. Отменяем последнее действие п. 3.5, если это возможно, и переходим к п. 3.2.
- 4.2. Если для какого-либо процессора отмена последнего действия п. 3.5 невозможна, то алгоритм заканчивает работу.
- 4.3. Если все процессоры закончили работу, но пустой F-набор не получен, то алгоритм заканчивает работу. Формула не выводима.

Теорема 1. (Нижняя оценка числа шагов работы алгоритма.) Количество шагов решения любой из задач распознавания образов при использовании алгоритма IAPTA, основанного на тактиках обратного метода не менее $O(\delta s)$.

Теорема 2. (Верхняя оценка числа шагов работы алгоритма.) Количество шагов, затрачиваемых на решение любой из задач распознавания образов с помощью алгоритма IAPTA, а так же нахождения значений для переменных, существование которых утверждается в антацеденте задачи не превосходит $O(l(\max_k s_k)^\delta)$.

Где δ — количество дизьюнктивных членов в исходной формуле, s+1 — общее число атомарных формул в каждом дизьюнкте, s_k — количество вхождений в исходную формулу атомарных формул с k-м предикатным символом, l — наибольшее количество аргументов в атомарных формулах.

Использование обратного метода для решения задачи выделения максимальной общей подформулы

Понятие неполной выводимости предикатной формулы было введено в [1] для распознавания объектов с неполной информацией. При этом рассматривается задача проверки того, что из истинности всех формул множества $S(\omega)$ следует истинность $A(\overline{y})$ или некоторой её максимальной подформулы $\tilde{A}(\overline{y})$ на наборе различных констант из ω , где список переменных \overline{y} является подсписком списка переменных \overline{x} .

Выражение $A(\overline{x}) \Rightarrow_p \exists \overline{y}_{\neq} \tilde{A}(\overline{y})$ означает не логическое следование, а то, что проводится выделение максимальной общей с точностью до имён переменных подформулы двух заданных элементарных конъюнкций $A(\overline{x})$ и $\tilde{A}(\overline{y})$, с нахождением такой подформулы $\tilde{A}'(\overline{y}')$ формулы $\tilde{A}(\overline{y})$, что имеет место

следствие $A(\overline{x})\Rightarrow\exists\overline{y}'_{\neq}\tilde{A}'(\overline{y}')$, а также общего унификатора λ формул $A(\overline{x})$ и $\tilde{A}'(\overline{y}')$.

Очевидно, что в этом следствии наборы \overline{x} и \overline{y}' являются наборами переменных. Тем не менее, алгоритм IAPTA можно применить и для решения задачи выделения максимальной общей подформулы, если внести следующие изменения:

- заменить действие «присвоение значений переменным» на «отождествление переменных»;
- «зациклить» алгоритм на полном переборе всех вариантов отождествлений переменных;
- ввести «хранилище» для длин фрагментов и самих фрагментов, соответствующих этим длинам.

Литература

- [1] Косовская Т. М. Частичная выводимость предикатных формул как средство распознавания объектов с неполной информацией // Вестник СПбГУ. Сер. 10. 2009. Вып. 1. С. 74-84.
- [2] Косовская Т.М., Петухова Н.Д. Решение задач логико-предметного распознавания образов с использованием тактик обратного метода Маслова // Компьютерные инструменты в образовании 2014. Вып. 3. С. 9-20.
- [3] Косовская Т.М., Тимофеев А.В. Об одном новом подходе к формированию логических решающих правил Вестник ЛГУ, 1985, №8.с.22-27.
- [4] Оревков В.П., Обратный метод поиска вывода // В кн.: Адаменко А.Н., Кучуков А.М., Логическое программирование и Visual Prolog Санкт-Петербург, БХВ, 2003, с. 952-965.