Name:	Box #
	Physics 51.M Section
	Problem Set #10
	25 November 2019

1. HRK: E34.13 (a) As shown in the figure, a square loop of wire with side length b lies partially on top of an infinite straight wire (a distance a from one end) carrying a current $i(t) = At^2 - Bt$. Find the emf in the square loop as a function of time.

(b) Let $a=12\,\mathrm{cm}$, $b=16\,\mathrm{cm}$, $A=4.5\,\mathrm{A/s^2}$, $B=10\,\mathrm{A/s}$, and $t_0=3\,\mathrm{s}$. Sketch the emf as a function of time (with units), and indicate the emf at t_0 .

2. HRK: E34.30 A long solenoid has a diameter of d. When a current i is passed through its windings, a uniform magnetic field B_0 is produced in its interior. By decreasing i, the field is caused to decrease at a rate of $\alpha = dB/dt$. Calculate the magnitude of the induced electric field a distance d/6, and a distance 2d/3, from the axis of the solenoid.

- **3. HRK: P34.6** The figure shows two parallel loops of wire having a common axis. The smaller loop (radius r) is above the larger loop (radius R), by a distance $x \gg R$. Consequently the magnetic field, due to the current i in the larger loop, is nearly constant throughout the smaller loop and equal to the value on the axis. Suppose that x is increasing at the constant rate v = dx/dt.
- (a) Determine the magnetic flux across the area bounded by the smaller loop as a function of x.
- **(b)** Compute the emf generated in the smaller loop.
- (c) Determine the direction of the induced current flowing in the smaller loop.

- **4. HRK: P34.9** A rod with length L, mass m, and resistance R slides without friction down parallel conducting rails of negligible resistance, as in the figure. The rails are connected together at the bottom as shown, forming a conducting loop with the rod as the top member. The plane of the rails makes an angle θ with the horizontal, and a uniform magnetic field \vec{B} exists throughout the region.
- (a) Show that the rod acquires a steady-state terminal velocity whose magnitude is

$$v = \frac{mgR}{B^2L^2} \frac{\sin \theta}{\cos^2 \theta}.$$

- **(b)** Show that the rate at which internal energy of the rod is increasing is equal to the rate at which the rod is losing gravitational potential energy.
- (c) Discuss the situation if \vec{B} were directed down instead of up.

5. HRK: E36.P3 Two long, parallel wires, each of radius a, whose centers are a distance d apart carry equal currents in opposite directions. Show that, neglecting the flux within the wires themselves, the inductance of a length ℓ of such a pair of wires is given by

$$L = \frac{\mu_0 \ell}{\pi} \ln \left(\frac{d - a}{a} \right).$$

- *6. HRK: P36.9 (a) Find the magnetic field inside a toroid of rectangular cross section with inner radius a and outer radius b (see Figure 36-3 in your textbook). Make sure to specify magnitude and direction of the field.
- **(b)** Find an expression for the stored magnetic energy density as a function of the radial distance r inside the toroid of part (a).
- (c) Integrate the energy density over the volume of the toroid, and calculate the total energy stored in the magnetic field of the toroid.