Report: Comparison of Dimensionality Reduction and Classifier Performance on Breast Cancer Dataset

Dataset Features

- 1. Number of Instances (Samples):
 - o 569 samples

2. Number of Features:

 30 numeric features (all float type), describing the characteristics of the cell nuclei.

3. Target Variable:

- Binary classification:
 - 0: Malignant (Cancerous)
 - 1: Benign (Non Cancerous)

Objective:

The goal of this experiment was to apply three dimensionality reduction techniques—Self-Organizing Maps (SOM), Restricted Boltzmann Machines (RBM), and Autoencoders—and compare their performance against the original dataset using three classifiers: XGBoost, LightGBM, and Cat Boost. Performance was measured in terms of classification accuracy and execution time.

Result

	121102 11030203			
	Dataset	Classifier	Accuracy	Time (s)
0	Original	XGBoost	0.980952	0.096054
1	Original	LightGBM	0.976190	0.216141
2	Original	CatBoost	0.985714	3.448707
3	SOM	XGBoost	0.966667	0.063982
4	SOM	LightGBM	0.957143	0.027295
5	SOM	CatBoost	0.957143	1.013347
6	RBM	XGBoost	0.976190	0.046851
7	RBM	LightGBM	0.961905	0.062937
8	RBM	CatBoost	0.966667	1.964469
9	Autoencoder	XGBoost	0.966667	0.046875
16	Autoencoder	LightGBM	0.976190	0.068369
11	l Autoencoder	CatBoost	0.971429	1.919503

Observations:

1. Accuracy:

 Original Dataset achieved the highest accuracy for all classifiers, with CatBoost performing best at 98.57%.

Dimensionality-Reduced Datasets:

- RBM and Autoencoder consistently outperformed SOM in terms of accuracy.
- Autoencoder-based reduction achieved competitive accuracy, closely matching the original dataset.

2. Execution Time:

- XGBoost and LightGBM demonstrated faster training times compared to CatBoost across all datasets.
- SOM was the fastest dimensionality reduction technique due to its simplicity but slightly lagged in classification accuracy.
- Autoencoders and RBMs showed moderate training times, balancing complexity and accuracy effectively.

3. Dimensionality Reduction Techniques:

- SOM: Efficient but limited in maintaining feature importance, resulting in lower accuracy compared to RBM and Autoencoder.
- o **RBM:** Achieved higher accuracy with moderately faster training times.
- Autoencoder: Delivered a balance between accuracy and training time, making it a suitable choice for classification tasks.

Conclusion:

- For high accuracy and acceptable training time, the **original dataset** with CatBoost performed best, albeit at a higher computational cost.
- Among dimensionality reduction techniques, Autoencoder emerged as the most effective, providing a trade-off between accuracy and speed.
- For scenarios prioritizing speed, LightGBM with SOM provided the quickest solution, although with slightly lower accuracy.

This experiment highlights the trade-offs between dimensionality reduction methods and classifiers, emphasizing the importance of selecting techniques based on task-specific requirements such as accuracy and computational efficiency.