Consumption Heterogeneity: Micro Drivers and Macro Implications

Edmund Crawley & Andreas Kuchler

SAIS October 10, 2018

What Do We Do?

We estimate the **sensitivity of consumption** to permanent and transitory shocks to income for different groups of households

Liquid Wealth

Hasn't This Been Done Before?

Yes, but...

Our **method** addresses bias in previous results

Our data allows sharp focus on household heterogeneity

Liquid Wealth

Hasn't This Been Done Before?

Yes, but...

Our **method** addresses bias in previous results

Our **data** allows sharp focus on household heterogeneity

Sample size in millions

Detailed balance sheet

Why Do We Care? (as macroeconomists)

- 1) Heterogenous agent models have testable micro behavior
- 2) Quantify Macro Implications

Why Do We Care? (as macroeconomists)

e.g. Consumption smoothing requires liquid wealth

- 1) Heterogenous agent models have testable micro behavior
- 2) Quantify Macro Implications

e.g. Redistribution in Monetary Policy

Medium MPX ≈ 0.5

High MPX ≈ 0.8

Low MPX ≈ 0.25

MPX: Marginal Propensity to eXpend (includes durables)

Liquid Wealth

Decrease spending a *lot*

Increase spending a *little*

 $\begin{array}{c} \text{1yr rate} ~\uparrow ~1\% \\ \text{Aggregate Spending} ~\downarrow ~26 \text{ basis points} \end{array}$

Through this redistribution channel alone

Identifying Restrictions on

Income

and

Consumption

In Continuous Time

Liquid Wealth

Identifying Restrictions on

Income — Permanent (random walk) shocks
Transitory (<2 years) shocks

Consumption

In Continuous Time

and

Identifying Restrictions on

In Continuous Time

Identifying Restrictions on

```
Income \longrightarrow Permanent (random walk) shocks Transitory (<2 years) shocks
```

and

Consumption
$$\longrightarrow$$
 Permanent (random walk) response (<2 years) response

In Continuous Time

Time Aggregation Problem

Liquid Wealth

Identifying Restrictions on

But first some intuition: Naïvely Regress

Change in Consumption on Change in Income (over N years)

Identification Restrictions: Income Process

- Permanent Income (random walk)
- Transitory Income (persistence < 2 years)

$$y_t = p_t +$$

Permanent income flow

Transitory income flow

Identification Restrictions: Income Process

- Permanent Income (random walk)
- Transitory Income (persistence < 2 years)

Observed Income

$$\frac{\uparrow}{\bar{y}_T} = \int_{T-1}^T y_t dt = \int_{T-1}^T p_t dt + \int_{T-1}^T \int_{t-2}^t f(t-s) dq_s dt$$

Time Aggregation

Identification Restrictions: Consumption Response

- ullet Permanent: Moves by fraction ϕ of shock
- Transitory: Persistence < 2 years

Evidence

$$c_t = \phi p_t +$$

 $\int_{t-2}^{t} g(t-s)dq_{s}$

Permanent consumption flow

Transitory consumption flow

Identification Restrictions: Consumption Response

- ullet Permanent: Moves by fraction ϕ of shock
- Transitory: Persistence < 2 years

Evidence

Observed Consumption

$$\hat{c}_{T} = \int_{T-1}^{T} c_{t} dt = \int_{T-1}^{T} \phi p_{t} dt + \int_{T-1}^{T} \int_{t-2}^{t} g(t-s) dq_{s} dt$$

Time Aggregation

Full Identification

We use GMM on the equations:

$$\operatorname{Var}(\Delta^{N}\bar{y_{T}}) = (N - \frac{1}{3})\sigma_{p}^{2} + 2\sigma_{\tilde{q}}^{2}$$
$$\operatorname{Cov}(\Delta^{N}\bar{c_{T}}, \Delta^{N}\bar{y_{T}}) = \phi(N - \frac{1}{3})\sigma_{p}^{2} + 2\psi\sigma_{\tilde{q}}^{2}$$

with N = 3, 4, 5 (and T = 2007, ..., 2015) to identify:

- σ_p^2 : Permanent shock variance
- $\sigma_{\tilde{q}}^2$: (Time aggregated) transitory shock variance
- ullet ϕ : MPX out of permanent income shocks
- ullet ψ : MPX out of transitory income shocks

where ψ is the regression coefficient of 'transitory' consumption on transitory income

Key to BPP Identification

Transitory shock year t

$$\Delta y_{t+1} = \Delta p_{t+1} + \Delta \varepsilon_{t+1}$$
 is a valid instrument for ε_t

Key to BPP Identification

Transitory shock year t

$$\Delta y_{t+1} = \Delta p_{t+1} + \Delta \varepsilon_{t+1}$$
 is a valid instrument for ε_t

ullet Negatively correlated with transitory shocks in year t

Key to BPP Identification

Transitory shock year *t*

$$\Delta y_{t+1} = \Delta p_{t+1} + \Delta \varepsilon_{t+1}$$
 is a valid instrument for ε_t

Negatively correlated with transitory shocks in year t

Uncorrelated with permanent shocks in year t

Key to BPP Identification

Transitory shock year t

$$\Delta y_{t+1} = \Delta p_{t+1} + \Delta \varepsilon_{t+1}$$
 is a valid instrument for ε_t

Negatively correlated with transitory shocks in year t

Uncorrelated with permanent shocks in year t

Fails due to the Time Aggregation Problem

Observed permanent income growth is *positively* autocorrelated

BPP misinterprets *positive* permanent income shocks as *negative* transitory shocks

→ Thinks negative transitory shocks result in consumption increasing

Observed permanent income growth is *positively* autocorrelated

BPP misinterprets *positive* permanent income shocks as *negative* transitory shocks

→ Thinks negative transitory shocks result in consumption increasing

If the Permanent Income Hypothesis holds, BPP will estimate the MPC to be -0.6

Data

What we need:

- Panel Data on Income and Expenditure
- Household Balance Sheets

Data

What we need:

- Panel Data on Income and Expenditure
- Household Balance Sheets

What we have: Registry data for all Danish households

Income

Third party reported After-tax, restrict to heads aged 30-55

Balance Sheet

Wealth on 31 Dec Asset category, mortgage tenure

Expenditure

No direct measure of spending

Data: Expenditure

Intertemporal budget constraint

 ${\sf Expenditure} \qquad = \qquad {\sf Income} \qquad - \qquad {\sf Saving}$

Liquid Wealth

Data: Expenditure

Intertemporal budget constraint

Expenditure = Income - Saving

= Change in Net Worth
(adj. for capital gains)

Data: Expenditure

Intertemporal budget constraint

```
Expenditure = Income - Saving

= Change in Net Worth
(adj. for capital gains)
```

- Works well for households with simple financial lives
- Problem: Capital gains
 - Houses off balance sheet (exclude transaction years)
 - Exclude business owners
 - Capital gains based on a diversified index
- Noisy, but perhaps better than surveys (Kuchler et al. 2018)
- Huge sample size advantage: sample covers 7.6 million observations over 2004-2015

Data: When is Measurement Error a Problem?

We have the same issues as the regression:

$$\Delta c_i = \alpha + \beta \Delta y_i + \varepsilon_i$$

That is measurement error in:

 Δy_i leads to attenuation bias

 Δc_i should be uncorrelated with Δy_i

Data: When is Measurement Error a Problem?

We have the same issues as the regression:

$$\Delta c_i = \alpha + \beta \Delta y_i + \varepsilon_i$$

That is measurement error in:

High quality income data

 Δy_i leads to attenuation bias

 Δc_i should be uncorrelated with Δy_i

When might this fail?

- Off balance sheet saving
- Returns correlated with changes in income (e.g. stock compensation)
- When insurance is provided by friends and family

Results by Liquid Wealth

Permanent and Transitory Variance by Liquid Wealth Quantile

MPX by Liquid Wealth Quantile

MPX Results are Robust to Misspecification

MPX by Net Wealth

How does Monetary Policy Effect Aggregate Consumption?

- Intertemporal Substitution
- Aggregate Income

Representative Agent Channels

Liquid Wealth

Dominates in Rep. Agent NK models

How does Monetary Policy Effect Aggregate Consumption?

- Intertemporal Substitution
- Aggregate Income

Representative Agent Channels

Large in Spender-Saver, or TANK models

How does Monetary Policy Effect Aggregate Consumption?

- Intertemporal Substitution
- Aggregate Income
- Fisher (Inflationary debt relief)
- Earnings Heterogeneity
- Interest Rate Exposure

Representative Agent Channels

Redistribution Channels

How does Monetary Policy Effect Aggregate Consumption?

- Intertemporal SubstitutionAggregate Income
 - Fisher (Inflationary debt relief)
 - Earnings Heterogeneity
 - Interest Rate Exposure

Representative Agent Channels

Redistribution Channels

How can we *empirically* measure the size of the redistribution channels?

Need to know the distribution of MPCs along the relevant dimension of redistribution

Interest Rate Exposure: Auclert's Experiment

Key assumption:

Households treat redistribution like an income shock

Interest Rate Exposure: Auclert's Experiment

Key assumption:

Households treat redistribution like an income shock

Experiment

Short term real interest rate $\uparrow 1\%$ for 1 year Hold constant income and inflation

How does subsequent **redistribution** impact **aggregate consumption**?

Dimension of Redistribution: Unhedged Interest Rate Exposure

Interest Rate Exposure: Dimension of Redistribution

Define **Unhedged Interest Rate Exposure** for household *i* as the total savings the household will invest at this year's interest rate:

$$URE_i = Y_i - C_i + A_i - L_i$$

Where

- Y_i = Total after tax income
- C_i = Total Expenditure, including interest payments
- A_i = Maturing assets
- L_i = Maturing liabilities

Following a change in the interest rate dR, the size of the Interest Rate Exposure channel on household i's expenditure is:

$$dc_i = MPC_iURE_i\frac{dR}{R}$$

Interest Rate Exposure: Aggregation

Aggregate to find size of channel:

$$dc_{i} = MPC_{i}URE_{i} \frac{dR}{R}$$

$$\implies \frac{dC}{C} = \mathbb{E}_{I} \left(MPC_{i} \frac{URE_{i}}{\mathbb{E}_{I}(c_{i})} \right) \frac{dR}{R}$$

Define sufficient statistic:

$$\mathcal{E}_{R} = \mathbb{E}_{I} \left(MPC_{i} \frac{URE_{i}}{\mathbb{E}_{I}(c_{i})} \right)$$

 \implies Need to know the distribution of MPC_i with URE_i

We can do that!

Interest Rate Exposure: MPX Distribution

MPX by URE Decile

URE/Mean Expenditure

Interest Rate Exposure: MPX Distribution

MPX by URE Decile

URE/Mean Expenditure

Interest Rate Exposure: MPX Distribution

MPX by URE Decile

URE/Mean Expenditure

Interest Rate Exposure: Out of Sample

Total URE sums to zero - this is not true for our household sample

MPX	URE	\mathcal{E}_R component
See Distribution	-61	-0.29
0.5	-15	-0.06
0.5	6	0.02
0.1	37	0.03
0.0	-23	0.00
0.1	-13	-0.01
0.1	61	0.05
0.0	9	0.00
	0	-0.26
	See Distribution 0.5 0.5 0.1 0.0 0.1 0.1 0.1	See Distribution -61 0.5 -15 0.5 6 0.1 37 0.0 -23 0.1 -13 0.1 61 0.0 9

Notes: URE numbers are in billions of 2015 USD.

All Five Transmission Channels

Aggregate Income Channel
$$\frac{dC}{C} = \frac{dY}{M \frac{dY}{Y}} + \mathcal{E}_R \frac{dR}{R}$$

Interest Rate Exposure Channel

Earnings Heterogeity Channel
$$\overbrace{+\gamma\mathcal{E}_{Y}\frac{dY}{Y}}^{\text{Fisher Channel}} \underbrace{-\mathcal{E}_{P}\frac{dP}{P}}^{\text{Fisher Channel}}$$

Intertemporal Substitution Channel

$$\mathcal{M}$$
 0.52 \mathcal{E}_{Y} -0.03 \mathcal{E}_{P} -0.75 \mathcal{E}_{R} -0.26 \mathcal{S} 0.49

All Five Transmission Channels

Aggregate Income Channel
$$\frac{dC}{C} = \underbrace{\mathcal{M}\frac{dY}{Y}}_{\text{Interest Rate Exposure Channel}}$$
Interest Rate Exposure Channel

Earnings Heterogeity Channel
$$\overbrace{+\gamma\mathcal{E}_{Y}\frac{dY}{Y}}$$

Interest Rate Exposure Channel

Intertemporal Substitution Channel

$$\mathcal{M}$$
 0.52 \mathcal{E}_{Y} -0.03 \mathcal{E}_{P} -0.75 \mathcal{E}_{R} 0.26 \mathcal{S} 0.49

Compare \mathcal{E}_R to σS :

 $\sigma \approx 0.1$ Best, Cloyne, Ilzetzki, and Kleven (2018)

$$\sigma S \approx 0.05$$

Aim of Modeling Exercise

Can we calibrate a standard Buffer-Stock saving model to fit the distribution of MPC with liquid wealth?

Key features:

- High overall Transitory MPC
- Decreasing with liquid wealth

Benchmark Model

Households maximize expected utility

$$\mathbb{E}_t \sum_{i=t}^{\infty} \beta^i u(\mathbf{c}_i)$$

with:

- Permanent and Transitory shocks to income (calibrated to Danish data)
- Saving in one (liquid) asset
- No borrowing
- CRRA utility, $\rho = 2$

Benchmark Model: Fitting the Liquid Wealth Distribution

Ex-ante heterogeneity in the discount rate

 $\beta^i \sim \text{Unif}[\beta_{\text{low}}, \beta_{\text{high}}]$ Chosen to fit level and distribution of liquid wealth (especially at the low end)

Benchmark Model: Results

Simulate panel of data and estimate ϕ and ψ

Taste Shock Model

First order problem: Transitory MPCs are too low

Need to lower β 's without reducing savings

Is income risk the only source of precautionary saving?

- In the data, expenditure FAR for volatile than income
- Surprise expenses can be large

Simple extension - add large taste shocks

$$\mathbb{E}_t \sum_{i=t}^{\infty} \beta^i \mathcal{X}_i u(\mathbf{c}_i)$$

Taste Shock Model: Results

Conclusion

- We have designed a new method to estimate consumption responses to income shocks
- It appears to work well, both in theory and practice
- We can use it to show that heterogeneity plays a key role in monetary policy transmission

Thank you!

We have data on value of household cars

• Construct expenditure excluding car purchases and sales

$$C_T^{\mathsf{nocar}} = C_T - \Delta \mathsf{CarValue}$$

 \bullet Construct proxy for non durable consumption (Cars $\approx 42.1\%$ durable expenditure)

$$C_T^{\text{nondurable}} = C_T - \frac{1}{0.421} \Delta \text{CarValue}$$

Appendix

MPX by Liquid Wealth Quantile φ Permanent MPX

Evidence of Consumption Decay Within 2 Years

From Fagereng, Holm, and Natvik (2016)

From Gelman (2016)

Notes: 1,445,560 observations from 48,050 individuals. The vertical bars on each coefficient represent 95% confidence intervals using heteroskedasticity robust errors clustered at the individual level.

MPX by Net Wealth

Permanent and Transitory Variance by Net Wealth Quantile

MPX by Net Wealth Quantile

