

Vision par ordinateur Techniques d'amélioration d'images

2ème année GI et 3ème année AE3S – ENSMR

I. BENMILOUD & N. ZRIRA

Master Intelligent Processing Systems -FSR

Plan de la séance

- Traitement de bas niveau d'une image
 - Définition de l'histogramme d'une image
 - Expansion dynamique
 - Egalisation d'histogramme
- Opérations arithmétiques
- Opérations logiques ET/OU/XOR
- Transformation géométrique

But

- Modifier la dynamique de l'image qui est trop claire ou trop foncée
- Faire apparaître des régions et rendre visible certains détails
- Rendre les images plus facile à interpréter par l'être humain et par la machine

Amélioration d'images

Principe

- Changer la valeur de chaque pixel d'une image I pour obtenir une nouvelle image I^{\prime} .
- Cette image résultat a la même taille que I, mais des propriétés plus intéressantes.

Types d'amélioration d'images (1)

- Transformation ponctuelle: $I(x,y) \stackrel{t}{\rightarrow} I'(x,y) = t(I(x,y))$
 - Seuillage, ajustement luminosité/Contraste
 - Manipulation d'histogramme

Types d'amélioration d'images (2)

- Transformation locale: $I(x,y) \stackrel{t}{\rightarrow} I'(x,y) = t(I(V(x,y)))$
 - Filtrage

Types d'amélioration d'images (3)

- Transformation globale: $I(x,y) \stackrel{t}{\rightarrow} I'(x,y) = t(I)$
 - Transformation dans l'espace de Fourier
 - Méthodes markoviennes

Propriétés de l'image: Brillance/Luminance

Elle est définie comme la moyenne de tous les pixels de l'image

$$B = \frac{1}{MxN} \sum_{i=1}^{M} \sum_{j=1}^{N} I(i,j)$$

B=76

B=173

Propriétés de l'image: Contraste

Définition 1: Ecart type de la variance des niveaux de gris

$$C = \sqrt{\frac{1}{MxN}} \sum_{i=1}^{M} \sum_{j=1}^{N} (I(i,j) - B)^{2}$$

Définition 2: Variation entre niveaux de gris min et max

$$C = \frac{\max(I(i,j)) - \min(I(i,j))}{\max(I(i,j)) + \min(I(i,j))}$$

Propriétés de l'image: Contraste

Contraste faible

Contraste fort

Comment agir sur le contraste?

- Transformation linéaire
- Transformation linéaire avec saturation
- Transformation linéaire par morceau
- Transformation non-linéaire

Histogramme d'images: Définition et notation

- L'histogramme d'une image en niveau de gris dénombre les occurrences de chacun des niveaux.
- h(i)= nombre de pixels dans l'image I ayant le niveau de gris i.

Histogramme d'images: Exemple

Les valeurs des pixels

Pixel x	0	1	2	3	4	5	6	7	8	9	10	11	12	13
h	0	0	1	2	3	4	3	2	2	9	12	12	11	3

Histogramme d'images: En pratique

Le pseudo code pour calculer l'histogramme h d'une image l codée sur 8 bits

```
int h[256]=0, x,y,I;
for (x =0; x < M; x++)
for(y =0; y < N; y++)
h[I[x,y]]++
```

En Matlab

```
l=imread('rice.png');
h=imhist(I);
```


Histogramme d'images: Interprétation (1)

- Luminance de l'image= moyenne μ des niveaux de gris
- Ecart-type σ=amplitude moyenne de la variation des niveaux de gris d'une part et d'autre part de la moyenne

Histogramme d'images: Interprétation (2)

- Dynamique de l'image= nombre de niveaux $\left[i_{min},i_{max}\right]$ réellement présents
- Contraste de l'image= peut être estimé par l'écart type σ

Histogramme d'images: Interprétation (3)

 Présence de pics significatifs pour certaines plages de niveaux de gris (appelées modes), correspondent à des ensembles de pixels intéressants.

Histogramme d'images: Interprétation (4)

Présence de deux pics Histogramme bimodal

Image mal contrastée

Histogramme d'images: Interprétation (5)

Question: Quelles sont les images qui ont le même histogramme?

Histogramme d'images: Interprétation (6)

- L'allure de *h* peut traduire des images trop sombres, trop claires ou encore mal contrastées.
- On peut agir sur la forme de l'histogramme
 - Transformation/modification (linéaire / par morceaux)
 - Egalisation

Deux images différentes (en termes de contenu sémantique) peuvent aussi avoir le même histogramme

Histogramme d'images: normalisé

La probabilité d'apparition d'un niveau de gris i dans l'image est

$$h_n(i) = \frac{h(i)}{MxN}$$
 avec $h_n(i) \in [0,1]$

 $h_n(i)$ = histogramme normalisé

Histogramme d'images: cumulé

 L'histogramme cumulé dénombre les occurrences cumulées de chacun des niveaux

$$h_c(i) = \sum_{k=0}^{i} h(k)$$
 avec $h_c(i) \in [0, MxN]$

- Il est défini de façon récursive par $\begin{cases} h_c(0) = h(0) \\ h_c(i) = h_c(i-1) + h(i) \end{cases}$
- La probabilité qu'un pixel ait un niveau de gris inférieur ou égal à i est

$$\frac{h_c(i)}{MxN}$$
 avec $\frac{h_c(255)}{MxN}$ =1 pour une image codée sur 1 octet

Histogramme d'images: normalisé et cumulé

Revenons à notre problème du départ!

- Des images trop claires ou trop foncées
- D'une manière générale: l'histogramme est trop concentré

Solution: application des méthodes ponctuelles travaillant sur les niveaux de gris ou sur les histogrammes, en général, ne modifiant pas l'information contenue dans les images

Transformation linéaire simple

- Soit $[i_{min}, i_{max}]$ la dynamique de l'image
- Fonction de la transformation est:

$$i' = \frac{255}{(i_{max} - i_{min})} (i - i_{min})$$

avec
$$\frac{i-i_{min}}{(i_{max}-i_{min})} \in [0,1]$$

- Effet:
 - rehaussement du contraste par expansion de la dynamique

Expansion dynamique : Exemple Matlab

En Matlab:

I = imread('pout.tif');

J =imadjust(I);

figure, subplot(1,2,1), imshow(I); subplot(1,2,2), imshow(J); figure, subplot(1,2,1), imhist(I); subplot(1,2,2), imhist(J);

Limite de la transformation linéaire

Si la dynamique est déjà maximale, la transformation n'apporte aucun changement $[i_{min}=0,i_{max}=255]$

Transformation linéaire avec saturation

Définir deux seuils S_{max} et S_{min}

Tel que:
$$i_{min} < S_{min} < S_{max} < i_{max}$$

$$i' = \frac{255}{(S_{max} - S_{min})}(i - S_{min})$$

Effets:

- rehaussement du contraste pour $S_{min} < i < S_{max}$
- saturation
 - à 0 pour $i_{min} < i < S_{min}$
 - à 255 pour $S_{max} < i < i_{max}$

Transformation non-linéaire

x'= exp(x) pour l'assombrissement global de l'image: utilisé pour traiter des images trop claires

Autres transformations (1)

Quantification

- Transformation linéaire par morceaux utilisant des paliers
- Exemple: paliers de mêmes largeurs et de hauteurs réparties uniformément
- Résultat: seuls les niveaux de ces paliers sont conservés dans le résultat

Autres transformations (2)

Translation de l'histogramme

- Permet de faire varier la luminosité de l'image sans en changer le contraste

$$I' = I + t \text{ avec } t \in \mathbb{R}$$

Egalisation d'histogramme

- On cherche à obtenir une image où les niveaux de gris sont répartis de manière la plus égalitaire possible (contraste maximal)
- Homogénéisation de la répartition des intensités des pixels
- Amplification des fluctuations dans les zones où elles sont faibles
- Etalement des détails concentrés dans un petit intervalle de niveaux de gris

Egalisation d'histogramme

On cherche une fonction de transformation $t: i \mapsto i'$

- croissante (i.e. préservant l'ordre des niveaux de gris)
- qui génère (autant que possible) un histogramme h(I') «plat», c'est-à-dire une distribution uniforme des niveaux de gris

Egalisation d'histogramme

- Calcul de l'histogramme $h_n(k)$ avec $k \in [0,255]$
- Histogramme cumulé normalisé:

$$h_c(\mathbf{k}) = \sum_{i=0}^k h_n(\mathbf{i})$$

Transformation des niveaux de gris de l'image par:

$$I'(x,y) = h_c(I(x,y)) \times 255$$

- Avantages:
 - Permet d'augmenter le contraste de l'image
 - Pour chaque niveau de gris, il y a approximativement le même nombre de pixels.

Egalisation d'histogramme: Exemple

0	0	0	1	1	1	2	2	2	2
3	3	3	3	4	4	6	6	6	6
7	7	7	7	4	5	6	6	6	6
7	7	7	7	7	7	6	6	6	6
7	7	7	7	7	7	6	6	6	6
7	7	7	7	7	7	6	6	6	6
8	8	8	8	8	9	9	9	9	9
8	8	8	8	8	8	10	10	10	10
8	8	8	8	8	8	11	11	11	11
8	8	8	8	8	8	11	11	11	11
8	8	8	8	11	11	11	11	11	11
8	8	8	8	11	11	11	11	11	11

х	histogramme	Histogramme cumulé h _c	h _c normalisé	Nouvelle valeur	Valeur entière	
0	3	3	0.03	0.3	0	
1	3	6	0.05	0.6	1	
2	4	10	0.08	1	1	
3	4	14	0.12	1.4	1	
4	3	17	0.14	1.7	2	
5	1	18	0.15	1.8	2	
6	20	38	0.32	3.8	4	
7	22	60	0.50	6	6	
8	31	91	0.76	9.1	9	
9	5	96	0.80	9.6	10	
10	4	100	0.83	10	10	
11	20	120	1	12	12	

Egalisation d'histogramme: Exemple Matlab

En Matlab:

```
I = imread('pout.tif');
J = histeq(I);
figure, subplot(1,2,1), imshow(I); subplot(1,2,2), imshow(J);
```

figure, subplot(1,2,1), imhist(I); subplot(1,2,2), imhist(J);

Egalisation d'histogramme: Exemple

38

Egalisation d'histogramme: Exemple

Expansion d'histogramme!

Egalisation d'histogramme

Intérêt d'égalisation d'histogramme (1)

L'égalisation d'histogramme sur une même image avec des contrastes différents, donne le même résultat pour toutes les images.

Intérêt d'égalisation d'histogramme (2)

- Un problème des variations d'illumination au sein de la base
- Normaliser l'ensemble des histogrammes pour que les images aient la même dynamique

Opérations arithmétiques: Addition

 Soient f et g sont deux images, on peut définir l'addition R pixel à pixel de ces deux images par:

$$R(x,y) = f(x,y) + g(x,y)$$

- L'addition d'images peut permettre:
 - De diminuer le bruit d'une vue dans une série d'images
 - D'augmenter la luminance en additionnant une image avec elle-même

Opérations arithmétiques: Soustraction

 On peut définir la soustraction S pixel à pixel de deux images f et g par:

$$S(x,y) = f(x,y) - g(x,y)$$

- La soustraction d'images peut permettre:
 - Détection de défauts (par comparaison avec une image de référence)
 - Détection de mouvements

Opérations arithmétiques: Multiplication

• La multiplication d'une image f par un ratio (facteur) peut se définir par:

• Permet d'améliorer le contraste ou la luminosité

Opérations arithmétiques: Division

 La division de deux images permet de corriger une illumination non homogène:

$$D(x,y) = \frac{f(x,y)}{g(x,y)}$$

• Exemple d'application: la suppression de l'ombre sur une image

f(x,y)

g(x,y)

D(x,y)

Opérations logiques: ET/OU/XOR

Nous avons les deux images binaires 11 et 12

I1 I2

OU logique: union

OU exclusif logique: exclusion

46

Opérations logiques: ET/OU/XOR

Application: Masquage

Image 1

Image 2 (masque)

ET (Image 1, Image 2)

OU (Image 1, Image 2)

Réduire/ Augmenter la taille de l'image

- Plusieurs méthodes pour augmenter ou diminuer la taille d'une image:
 - Interpolation au plus proche voisin
 - Interpolation bilinéaire
 - Interpolation bicubique

Interpolation au plus proche voisin

Le pixel aura la valeur de son plus proche voisin

200x200

- + Rapide
- Problème d'aliasing

130 138 135 138

	1	2	3	4	5	6
1	134	134	141	141	143	143
2	134	134	141	141	143	143
3	136	136	140	140	139	139
4	136	136	140	140	139	139
5	129	129	136	136	137	137
6	129	129	136	136	137	137

	1	2	3				
1	134	141	143				
2	136	140	139				
3	129	136	137				

100x100

Interpolation bilinéaire

- Le pixel aura la valeur suivante :
- f(x,y) = dy1(dx1.f(x1,y1) + dx2.f(x2,y1)) + dy2(dx1.f(x1,y2) + dx2.f(x2,y2))

- + relativement rapide
- images floues

Interpolation bicubique

- Repose sur le même principe que l'interpolation bilinéaire
- Pour calculer les pixels interpolés, elle utilise les 16 pixels voisins au lieu de 4
 - + Peu de flou
 - le temps de calcul est plus lent

Interpolation bilinéaire

200x200

50x50 Interpolation au plus proche voisin

50x50

Interpolation bilinéaire

Interpolation bicubique

Le code en Matlab:

```
A = imread('pic_org.jpg');
Ippv= imresize(A,0.5,'nearest');
Ibilineaire = imresize(A, 0.5,'bilinear');
Ibicubic = imresize(A, 0.5,'bicubic');
```

Objectifs de la transformation géométrique 2D

- Aligner une image scannée sur l'image de référence
 - Translation et rotation pour corriger le mauvais alignement
- Stabiliser les images d'une séquence vidéo
 - Corriger le mouvement parasite dû au bougé

Translation

Transformation directe sur les coordonnées spatiales d'un pixel exprimée de manière générale par:

•
$$x' = x + t_x$$

•
$$y' = y + t_v$$

Translation

La translation d'un pixel (x,y) de vecteur (t_x , t_y) s'exprime:

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} t_x \\ t_y \end{pmatrix}$$

Code Matlab:

Homothétie

Les coordonnées sont multipliées par un facteur d'échelle selon l'axe des x et l'axe des y à partir d'une origine donnée

•
$$x' = s_x x$$

•
$$y' = s_y y$$

Homothétie

Une homothétie de rapport s_x et s_y par rapport à l'origine s'exprime:

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} s_x & 0 \\ 0 & s_y \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Code Matlab:

I = imread('cameraman.tif');
H = imresize(I, 0.25);
imshow(I), figure, imshow(H)

Rotation (1)

Une rotation d'un angle θ par rapport à l'origine s'exprime:

- $x' = \cos\theta x \sin\theta y$
- $y' = \sin\theta x + \cos\theta y$

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Rotation (2)

Rotation de 25° Plus proche voisin

Rotation de 25° bilinéaire

Rotation de 25° bicubique

Code Matlab:

angle = 25;
I = imread('cameraman.tif');
ppv=imrotate(I,angle,'nearest');
bilinear=imrotate(I,angle,'bilinear');
bicubic=imrotate(I,angle,'bicubic');

Rotation et translation

Les nouvelles coordonnées sont calculées comme suit

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} t_x \\ t_y \end{pmatrix}$$

```
Code Matlab:

I = imread('cameraman.tif');

J=imrotate(I,90);

imshow(J);

dx = 20;

dy = 10;

H=imtranslate(J, [dx dy]);

imshow(H);
```


Rappel: Opérations sur une image

- Chaque pixel de l'image est défini par sa position (x, y) et son intensité I(x,y) dans l'image
- Il existe deux types de transformations sur les pixels de l'image:
 - radiométriques qui modifient les intensités des pixels
 - géométriques qui modifient les positions des pixels

TP1: Traitements basiques d'images sous MATLAB

Le but de ce TP est d'appliquer les traitements qui permettent d'améliorer la qualité de l'image

- Algorithmes classiques de traitement
 - recadrage dynamique,
 - égalisation d'histogramme,
 - transformation géométrique.