分裂する短完全系列の双対も分裂する短完全系列

1

A,B,C で適当な環 R 上の加群を, $A^{\sharp},B^{\sharp},C^{\sharp}$ でそれぞれの双対加群を表す.

命題 1.1.

$$A \stackrel{f}{\longrightarrow} B \stackrel{g}{\longrightarrow} C \longrightarrow 0$$

を加群の完全系列とする. このとき、

$$0 \longrightarrow C^{\sharp} \stackrel{g^{\sharp}}{\longrightarrow} B^{\sharp} \stackrel{f^{\sharp}}{\longrightarrow} A^{\sharp}$$

も加群の完全系列である.

証明. Step: g^{\sharp} は単射である.

(::) $g^{\sharp}c'=0$ である $c'\in C^{\sharp}$ をとる. 任意に $c\in C$ をとり, gb=c となる $b\in B$ をとると, $c'(c)=c'(gb)=(g^{\sharp}c')(b)=0$ なので, c'=0 である

Step: $\operatorname{Im} g^{\sharp} \subset \operatorname{Ker} f^{\sharp}$

$$(\cdot;\cdot) f^{\sharp} \circ g^{\sharp} = (g \circ f)^{\sharp} = 0$$

Step: $\operatorname{Ker} f^{\sharp} \subset \operatorname{Im} g^{\sharp}$

(::) $b' \in \operatorname{Ker} f^{\sharp}$ をとる, $c' \in C^{\sharp}$ を $c \in C$ に対して, gb = c をみたす $b \in B$ を好きにとって, $c'(c) \coloneqq b'(b)$ と することで定める. (もし, $gb_1 = gb_2 = c$ となる $b_1, b_2 \in B$ で $b'(b_1) \neq b'(b_2)$ なるものがあると不良定義となる. b', $0 = g(b_1 - b_2)$ より $b_1 - b_2 \in \operatorname{Ker} g$ であるので, $b_1 - b_2 \in \operatorname{Im} f$ なので, $a \in A$ で $f(a) = b_1 - b_2$ となるものをとると, $b'(b_1 - b_2) = b'(f(a)) = (f^{\sharp}b')(a) = 0$ となるので, $b'(b_1) = b'(b_2)$ となりきちんと定義されている.) すると, $c'(c) = c'(gb) = (g^{\sharp}c')(b)$ 故に, $g^{\sharp}c' = b'$ となる.

命題 1.2.

$$0 \longrightarrow A \stackrel{f}{\longrightarrow} B \stackrel{g}{\longrightarrow} C \longrightarrow 0$$

が分裂する短完全系列であるならば,

$$0 \longrightarrow C^{\sharp} \stackrel{g^{\sharp}}{\longrightarrow} B^{\sharp} \stackrel{f^{\sharp}}{\longrightarrow} A^{\sharp} \longrightarrow 0$$

も分裂する短完全系列である.

証明・ $h \circ f = \mathrm{id}_A$ を満たす h が存在するので, $f^\sharp \circ h^\sharp = \mathrm{id}_A$ より, f^\sharp が全射である. 前述の命題と合わせると, 主張が従う.