Chapter 14: Inference for Correlation

DSCC 462 Computational Introduction to Statistics

> Anson Kahng Fall 2022

 Teams are due by Friday: Use the Google Sheet (see Announcements) to sign up / find teammates

- Teams are due by Friday: Use the Google Sheet (see Announcements) to sign up / find teammates
- Final project description is up on Blackboard

- Teams are due by Friday: Use the Google Sheet (see Announcements) to sign up / find teammates
- Final project description is up on Blackboard
 - Setup: Ad dataset, company wants to understand their data...

- Teams are due by Friday: Use the Google Sheet (see Announcements) to sign up / find teammates
- Final project description is up on Blackboard
 - Setup: Ad dataset, company wants to understand their data...
 - Some open-ended questions, some less so (room for interpretation!)

- Teams are due by Friday: Use the Google Sheet (see Announcements) to sign up / find teammates
- Final project description is up on Blackboard
 - Setup: Ad dataset, company wants to understand their data...
 - Some open-ended questions, some less so (room for interpretation!)
- Datasets will be released once teams are formed (Friday)

Plan for Today

Plan for Today

• Introduce tools that allow us to go past our previous assumptions of independence when comparing random variables

Plan for Today

- Introduce tools that allow us to go past our previous assumptions of independence when comparing random variables
- In particular, learn how to infer whether or not a linear relationship exists between two variables, X and Y

 Recall that correlation tells us the degree to which two random variables are (linearly) associated or related

- Recall that correlation tells us the degree to which two random variables are (linearly) associated or related
- We denote the true population correlation of X and Y as ρ ("rho")

- Recall that correlation tells us the degree to which two random variables are (linearly) associated or related
- We denote the true population correlation of X and Y as ρ ("rho")
- We estimate ρ with Pearson's coefficient of correlation, r (Chapter 3)

- Recall that correlation tells us the degree to which two random variables are (linearly) associated or related
- We denote the true population correlation of X and Y as ρ ("rho")
- We estimate ρ with Pearson's coefficient of correlation, r (Chapter 3)

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\left[\sum_{i=1}^{n} (x_i - \bar{x})^2\right] \left[\sum_{i=1}^{n} (y_i - \bar{y})^2\right]}} = \frac{1}{(n-1)} \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{s_x}\right) \left(\frac{y_i - \bar{y}}{s_y}\right)$$

- Recall that correlation tells us the degree to which two random variables are (linearly) associated or related
- We denote the true population correlation of X and Y as ho ("rho")

• We estimate ρ with Pearson's coefficient of correlation, r (Chapter 3)

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\left[\sum_{i=1}^{n} (x_i - \bar{x})^2\right] \left[\sum_{i=1}^{n} (y_i - \bar{y})^2\right]}} = \frac{1}{(n-1)} \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{s_x}\right) \left(\frac{y_i - \bar{y}}{s_y}\right)$$

• Note that $-1 \le r \le 1$

Correlation: Example

Correlation: Example

• Setup: Suppose we examine n=7 subjects for which we have age and weight measurements

Correlation: Example

- Setup: Suppose we examine n=7 subjects for which we have age and weight measurements
- We want to determine whether a significant linear relationship exists between age (X) and weight (Y)

• Question: Is the population correlation, ρ , between two variables, X and Y, different from 0?

- Question: Is the population correlation, ρ , between two variables, X and Y, different from 0?
- In other words, we're investigating whether a linear relationship exists between X and Y (age and weight)

- Question: Is the population correlation, ρ , between two variables, X and Y, different from 0?
- In other words, we're investigating whether a linear relationship exists between X and Y (age and weight)
- Use the sample correlation r for our statistic in hypothesis testing

• Hypotheses: $H_0: \rho = 0$ vs. $H_1: \rho \neq 0$

- Hypotheses: $H_0: \rho = 0 \text{ vs. } H_1: \rho \neq 0$
- If pairs (x_i, y_i) come from normally distributed X and Y, then if we standardize r, we get a statistic that has a t distribution with n-2 degrees of freedom

- Hypotheses: $H_0: \rho=0$ vs. $H_1: \rho\neq 0$
- If pairs (x_i, y_i) come from normally distributed X and Y, then if we standardize r, we get a statistic that has a t distribution with n-2 degrees of freedom

• Test statistic:
$$t = \frac{r - \rho}{SE(r)}$$
, where $SE(r) = \sqrt{\frac{1 - r^2}{n - 2}}$

- Hypotheses: $H_0: \rho = 0 \text{ vs. } H_1: \rho \neq 0$
- If pairs (x_i, y_i) come from normally distributed X and Y, then if we standardize r, we get a statistic that has a t distribution with n-2 degrees of freedom

• Test statistic:
$$t = \frac{r - \rho}{SE(r)}$$
, where $SE(r) = \sqrt{\frac{1 - r^2}{n - 2}}$

• We thus get
$$t = r - p$$

$$SE(r) = r \sqrt{\frac{n-2}{1-r^2}}$$

• Returning to setup: Suppose we examine n=7 subjects for which we have age and weight measurements

- Returning to setup: Suppose we examine n=7 subjects for which we have age and weight measurements
- We want to determine whether a significant linear relationship exists between age (X) and weight (Y)

- Returning to setup: Suppose we examine n=7 subjects for which we have age and weight measurements
- We want to determine whether a significant linear relationship exists between age (X) and weight (Y)
 - $H_0: \rho = 0 \text{ vs. } H_1: \rho \neq 0$

- Returning to setup: Suppose we examine n=7 subjects for which we have age and weight measurements
- We want to determine whether a significant linear relationship exists between age (X) and weight (Y)
 - $H_0: \rho = 0 \text{ vs. } H_1: \rho \neq 0$
- We know that the correlation between weight and age for this sample is r=0.865

- Returning to setup: Suppose we examine n=7 subjects for which we have age and weight measurements
- We want to determine whether a significant linear relationship exists between age (X) and weight (Y)
 - $H_0: \rho = 0 \text{ vs. } H_1: \rho \neq 0$
- We know that the correlation between weight and age for this sample is r=0.865
- Test this null hypothesis at the $\alpha=0.05$ significance level

• $H_0: \rho = 0$ vs. $H_1: \rho \neq 0$, test at $\alpha = 0.05$

- $H_0: \rho = 0$ vs. $H_1: \rho \neq 0$, test at $\alpha = 0.05$
- The correlation between weight and age for this sample is r = 0.865

- $H_0: \rho = 0$ vs. $H_1: \rho \neq 0$, test at $\alpha = 0.05$
- The correlation between weight and age for this sample is r = 0.865
- Test statistic:

- $H_0: \rho = 0$ vs. $H_1: \rho \neq 0$, test at $\alpha = 0.05$
- The correlation between weight and age for this sample is r = 0.865
- Test statistic:

p-value:

- $H_0: \rho = 0$ vs. $H_1: \rho \neq 0$, test at $\alpha = 0.05$
- df = 7 2 = 5
- The correlation between weight and age for this sample is r = 0.865
- Test statistic:

$$t = r \cdot \sqrt{\frac{n-L}{1-r^2}} = 0.865 \cdot \sqrt{\frac{7-2}{1-(0.665)^2}} = 3.856$$

p-value:

• Conclusion:

Correlation: Inference in R

Correlation: Inference in R

• We can also calculate directly in R using the cor.test() function

Correlation: Inference in R

• We can also calculate directly in R using the cor.test() function

Only describes linear relationships

- Only describes linear relationships
 - We could be missing a nonlinear relationship if we don't examine the scatterplot

- Only describes linear relationships
 - We could be missing a nonlinear relationship if we don't examine the scatterplot
- Hypothesis testing only works for the null hypothesis $H_0: \rho=0$

- Only describes linear relationships
 - We could be missing a nonlinear relationship if we don't examine the scatterplot
- Hypothesis testing only works for the null hypothesis $H_0: \rho=0$
 - For any $\rho \neq 0$, normality assumptions are not met and our hypothesis testing procedures are invalid

- Only describes linear relationships
 - We could be missing a nonlinear relationship if we don't examine the scatterplot
- Hypothesis testing only works for the null hypothesis $H_0: \rho=0$
 - For any $\rho \neq 0$, normality assumptions are not met and our hypothesis testing procedures are invalid
- Correlation can be very sensitive to outliers and can thus give misleading results when outliers are present

Suppose we have another subject who is 30 years old with a weight of 350 pounds

• Suppose we have another subject who is 30 years old with a weight of 350

pounds


```
> x<-c(220,215,179,145,145,177,136, 350)
> y<-c(68,58,43,37,20,58,36, 30)
> plot(x,y)
> cor(x,y)
[1] 0.06260467
```

• Need a more robust measure that isn't as sensitive to outliers

- Need a more robust measure that isn't as sensitive to outliers
- Instead of using the actual observations, we rank the data and then use the *ranks* as our data

- Need a more robust measure that isn't as sensitive to outliers
- Instead of using the actual observations, we rank the data and then use the *ranks* as our data
 - If multiple values are the same, assign the average rank

- Need a more robust measure that isn't as sensitive to outliers
- Instead of using the actual observations, we rank the data and then use the *ranks* as our data
 - If multiple values are the same, assign the average rank
- Rank all the x values, and call these ranks x_r

- Need a more robust measure that isn't as sensitive to outliers
- Instead of using the actual observations, we rank the data and then use the *ranks* as our data
 - If multiple values are the same, assign the average rank
- Rank all the x values, and call these ranks x_r
- Rank all the y values, and call these ranks y_r

- Need a more robust measure that isn't as sensitive to outliers
- Instead of using the actual observations, we rank the data and then use the *ranks* as our data
 - If multiple values are the same, assign the average rank
- Rank all the x values, and call these ranks x_r
- Rank all the y values, and call these ranks y_r
- Compute the Pearson's correlation coefficient for this ranked data (x_r, y_r) instead of the actual data

- Need a more robust measure that isn't as sensitive to outliers
- Instead of using the actual observations, we rank the data and then use the *ranks* as our data
 - If multiple values are the same, assign the average rank
- Rank all the x values, and call these ranks x_r
- Rank all the y values, and call these ranks y_r
- Compute the Pearson's correlation coefficient for this ranked data (x_r, y_r) instead of the actual data
- This is Spearman's correlation coefficient

Calculate Spearman's correlation coefficient as follows:

• Calculate Spearman's correlation coefficient as follows:

$$r_{s} = \frac{\sum_{i=1}^{n} (x_{ri} - \bar{x}_{r})(y_{ri} - \bar{y}_{r})}{\sqrt{\left[\sum_{i=1}^{n} (x_{ri} - \bar{x}_{r})^{2}\right] \left[\sum_{i=1}^{n} (y_{ri} - \bar{y}_{r})^{2}\right]}}$$

• Calculate Spearman's correlation coefficient as follows:

$$r_{s} = \frac{\sum_{i=1}^{n} (x_{ri} - \overline{x}_{r})(y_{ri} - \overline{y}_{r})}{\sqrt{\left[\sum_{i=1}^{n} (x_{ri} - \overline{x}_{r})^{2}\right] \left[\sum_{i=1}^{n} (y_{ri} - \overline{y}_{r})^{2}\right]}}$$

• Note that $-1 \le r_s \le 1$

• Calculate Spearman's correlation coefficient as follows:

$$r_{s} = \frac{\sum_{i=1}^{n} (x_{ri} - \bar{x}_{r})(y_{ri} - \bar{y}_{r})}{\sqrt{\left[\sum_{i=1}^{n} (x_{ri} - \bar{x}_{r})^{2}\right] \left[\sum_{i=1}^{n} (y_{ri} - \bar{y}_{r})^{2}\right]}}$$

- Note that $-1 \le r_s \le 1$
- ullet Same interpretations of association between X and Y

Patient	Weight	Rank	Age	Rank
1	220	7	68	3
2	215	6	58	- 5.5
3	179	5	43	4
4	145	2.5	37	3
5	145	2.5	- 20	
6	_ 177	4	58	5.5
7	_ 136		36	2

Consider the following age and weight measurements for the 7 subjects

Patient	Weight	Rank	Age	Rank
1	220		68	
2	215		58	
3	179		43	
4	145		37	
5	145		20	
6	177		58	
7	136		36	

• Using this information, we can calculate $r_{\scriptscriptstyle S}$ as follows:

- Using this information, we can calculate r_s as follows:
 - $\overline{x}_r =$

- Using this information, we can calculate r_s as follows:
 - $\overline{x}_r =$
 - $\overline{y}_r =$

Spearman's Rank Correlation Coefficient

- Using this information, we can calculate $r_{\scriptscriptstyle S}$ as follows:
 - $\overline{x}_r =$
 - $\overline{y}_r =$
 - \bullet $r_s =$

Spearman's Rank Correlation Coefficient

• Using this information, we can calculate $r_{\scriptscriptstyle S}$ as follows:

•
$$\overline{x}_r = 4$$

• $\overline{y}_r = 4$
• $r_s = \sqrt[2]{(x_{r_i} - 4)(y_{r_i} - 4)} = 0.873$

• Recall that Pearson's correlation coefficient was given as 0.865. How does Spearman's rank correlation coefficient compare?

Spearman's Rank Correlation Coefficient: R

```
> x<-c(220,215,179,145,145,177,136)
> y<-c(68,58,43,37,20,58,36)
> cor(x,y, method="spearman")
[1] 0.8727273
>
> x1 <- rank(x)
> y1 <- rank(y)
> x1; y1
[1] 7.0 6.0 5.0 2.5 2.5 4.0 1.0
[1] 7.0 5.5 4.0 3.0 1.0 5.5 2.0
> cor(x1,y1)
[1] 0.8727273
```

Spearman's Rank Correlation Coefficient: R

• In R:

```
> x<-c(220,215,179,145,145,177,136)
> y<-c(68,58,43,37,20,58,36)
> cor(x,y, method="spearman")
[1] 0.8727273
> x1 <- rank(x)
> y1 <- rank(y)
> x1; y1
[1] 7.0 6.0 5.0 2.5 2.5 4.0 1.0
   7.0 5.5 4.0 3.0 1.0 5.5 2.0
[1] 0.8727273
```

• Spearman's rank correlation coefficient is a measure of concordance of ranks for the outcomes \boldsymbol{x} and \boldsymbol{y}

- Spearman's rank correlation coefficient is a measure of concordance of ranks for the outcomes \boldsymbol{x} and \boldsymbol{y}
- If measurements of X and Y are ranked in the same order for each variable, then $r_{\rm s}=1$

- Spearman's rank correlation coefficient is a measure of concordance of ranks for the outcomes \boldsymbol{x} and \boldsymbol{y}
- If measurements of X and Y are ranked in the same order for each variable, then $r_{\rm s}=1$
- If measurements of X and Y are ranked in the reverse order from each other, then $r_{\rm s}=-1$

- Spearman's rank correlation coefficient is a measure of concordance of ranks for the outcomes \boldsymbol{x} and \boldsymbol{y}
- If measurements of X and Y are ranked in the same order for each variable, then $r_{\rm s}=1$
- If measurements of X and Y are ranked in the reverse order from each other, then $r_{\rm s}=-1$
- If there is no linear correspondence between the ranks, then $r_{\scriptscriptstyle S}=0$

Spearman's Rank Correlation Coefficient: Outliers

Spearman's Rank Correlation Coefficient: Outliers

• What is the Spearman rank correlation coefficient when we have an outlier in our data?

Spearman's Rank Correlation Coefficient: Outliers

• What is the Spearman rank correlation coefficient when we have an outlier in our data?

• We can similarly perform hypothesis tests for ho based on r_s

- We can similarly perform hypothesis tests for ho based on r_{s}
- If the sample size is large enough (generally $n \ge 10$) and if we can assume that pairs of ranks (x_{ri}, y_{ri}) are chosen randomly, then we can test the null hypothesis $H_0: \rho = 0$ vs. the alternative hypothesis $H_1: \rho \ne 0$

Penn
$$t_s = \frac{s-c}{\sqrt{1-s^2}}$$

- We can similarly perform hypothesis tests for ho based on r_s
- If the sample size is large enough (generally $n \ge 10$) and if we can assume that pairs of ranks (x_{ri}, y_{ri}) are chosen randomly, then we can test the null hypothesis $H_0: \rho = 0$ vs. the alternative hypothesis $H_1: \rho \ne 0$
- Use a similar test statistic: $t_s = r_s \cdot \sqrt{\frac{n-2}{1-r_s^2}}$

- We can similarly perform hypothesis tests for ho based on r_{s}
- If the sample size is large enough (generally $n \ge 10$) and if we can assume that pairs of ranks (x_{ri}, y_{ri}) are chosen randomly, then we can test the null hypothesis $H_0: \rho = 0$ vs. the alternative hypothesis $H_1: \rho \ne 0$
- Use a similar test statistic: $t_s = r_s \cdot \sqrt{\frac{n-2}{1-r_s^2}}$
- Compare t_s to a t distribution with n-2 degrees of freedom

• Although we only have n=7, let's test $H_0: \rho=0$ vs. $H_1: \rho\neq 0$ at $\alpha=0.05$

- Although we only have n=7, let's test $H_0: \rho=0$ vs. $H_1: \rho\neq 0$ at $\alpha=0.05$
- Calculating our t-statistic:

- Although we only have n=7, let's test $H_0: \rho=0$ vs. $H_1: \rho\neq 0$ at $\alpha=0.05$
- Calculating our t-statistic:

Calculating the p-value:

- Although we only have n=7, let's test $H_0: \rho=0$ vs. $H_1: \rho\neq 0$ at $\alpha=0.05$
- Calculating our t-statistic:

$$t_s = r_s \sqrt{\frac{n-2}{1-s^2}} = 0.873 \sqrt{\frac{7-2}{1-0.873^2}} = 3.997$$

Calculating the p-value:

$$P = 2 \cdot Pr(T > 3.997) = --- = 0.0103$$

Conclusion:

Spearman's Rank Correlation Coefficient: R

```
" N 2 10"
> x<-c(220,215,179,145,145,177,136)
> y<-c(68,58,43,37,20,58,36)
> cor.test(x,y,method="spearman",exact=FALSE)
    Spearman's rank correlation rho
data: x and y
S = 7.1273, p-value = 0.01035
alternative hypothesis: true rho is not equal to 0
sample estimates:
      rho
```