MATH 231 : Numerical ODEs Random Examples

Pratham Lalwani

March 12, 2025

Question 1: Eigenvalues of special tridiagonal matrices

This question is about finding eigenvalues of tridiagonal linear systems arising from applications, specifically finding the eigenvalues of an $n \times n$ matrix of the form,

$$A = \left(\begin{array}{cccc} a & b & & \\ c & a & b & & \\ & \ddots & \ddots & \ddots & \\ & & c & a & b \\ & & c & a \end{array}\right)$$

where a, b, c are real numbers with bc > 0 (i.e. b and c have the same signs).

(a) Show that the eigenvalue problem of A is equivalent to the equations

$$cv_{j-1} + (a - \lambda)v_j + bv_{j+1} = 0, \quad j = 1, \dots, n$$

 $v_0 = 0 = v_{n+1}$

where $\mathbf{v} = (v_1, \dots, v_n)^T$ is an eigenvector of A associated with the eigenvalue λ .

(b) The recurrence relation (1) is a second order linear difference equation and can be solved similar to second order linear differential equations. By guessing $v_j = r^j$ for some constant r, show that r satisfies

$$r_{\pm} = \frac{\lambda - a \pm \sqrt{(\lambda - a)^2 - 4bc}}{2b}$$
, with $r_{+}r_{-} = \frac{c}{b}$

(c) Show by contradiction that r_{+} must be distinct.

Hint: if $r_{\pm} = r$ are repeated, then $v_j = Ar^j + Bjr^j$ for some constants A, B.

(d) Since r_{\pm} are distinct, the general solution for (1) is $v_j = Ar_+^j + Br_-^j$ for constants A, B. Use this to conclude from (2) and (3) that,

$$\left(\frac{br_+^2}{c}\right)^{n+1} = 1$$

(e) From part (c), (3) and (4), show that r_{\pm} must be complex valued and conclude that (4) has the solutions for k = 1, ..., n,

$$r_{\pm,k} = \sqrt{\frac{c}{b}} \exp\left(\frac{\pm ik\pi}{n+1}\right), \quad \text{where } i = \sqrt{-1}$$

(f) Using part (e), conclude that the eigenvalues of A is given by

$$\lambda_k = a + 2 \operatorname{sgn} \sqrt{bc} \cos \left(\frac{\pi k}{n+1} \right), \quad k = 1, \dots, n$$

(g) (g) Find the eigenvalues of the $n \times n$ finite difference matrix $A_h = \frac{1}{h^2} \begin{pmatrix} -1 & 2 & \ddots & \\ & \ddots & \ddots & \\ & & -1 & 2 & -1 \\ & & & -1 & 2 \end{pmatrix}$,

where $h = \frac{1}{n+1}$.

Conclude that A_h is symmetric positive definite and find its condition number $\kappa(A_h)$ with respect to $\|\cdot\|_2$. Show that $\kappa(A_h) = O(h^{-2})$ as number of grid points n increases. What does this mean for solving $A_h \mathbf{x} = \mathbf{b}$ when n is large?

1

Solution

(a) Let (λ, \vec{v}) be an eigenpair of A

Question 2: Classical iterative methods for strictly diagonally dominant matrices

- (a) Show that the diagonal part of any strictly diagonally dominant (S.D.D.) matrix is invertible.
- (b) Recall the Gershgorin's theorem below, which can give useful information about the eigenvalues of a matrix. The eigenvalues of a complex valued matrix A lies in the union of n discs $\bigcup_{i=1}^{n} D_i$ on the complex plane, where

$$D_i = \left\{ z \in \mathbb{C} : |z - a_{ii}| \le \sum_{j \ne i} |a_{ij}| \right\}$$

Using Gershgorin's theorem, conclude S.D.D. matrices are invertible. Hint: Show that $0 \notin D_i$ for all i = 1, ..., n. The next two parts are about showing convergence of Jacobi and Gauss-Seidel iterations for S.D.D. matrices.

- (c) Recall the matrix $-M^{-1}N$ associated with the Jacobi iteration takes the form $-D^{-1}(L+U)$, where A=L+D+U.
- (d) Let A be S.D.D. and λ be any eigenvalue of $-D^{-1}(L+U)$. Show that $\det(L+U+\lambda D)=0$ using part (a). (ii) Now suppose $|\lambda| \ge 1$. Deduce from A being S.D.D. that $L+U+\lambda D$ must also be S.D.D. (iii) Deduce a contradiction by applying the result from part (b) to $L+U+\lambda D$, and conclude that $|\lambda| < 1$. (iv) Combine parts (i)-(iii) to conclude that Jacobi iteration converges for S.D.D. matrices.
- (e) Follow a similar argument as part (c) to show that Gauss-Seidel iterations converges for S.D.D. matrices.

Question 3: Classical iterative methods for symmetric positive definite matrices

This question is about coding and comparing classical iterative methods for the S.P.D. matrix A_h from Q1(g).

- (a) Write a pseudocode for the classical iterative methods: Richardson, optimal Richardson, Jacobi, Gauss-Seidel, S.O.R., and optimal S.O.R.
- (b) Implement a program to solve $A_h \mathbf{x} = \mathbf{b}$ with $\mathbf{b} = (1, \dots, 1)^T \in \mathbb{R}^{20}$ and $\mathbf{x}_0 = (1, 0, \dots, 0)^T \in \mathbb{R}^{20}$ using Richardson (with $\omega = \lambda_{\text{max}}^{-1}$), optimal Richardson, Jacobi, Gauss-Seidel, S.O.R. (with $\theta = 1.2$) and optimal S.O.R. Generate a plot comparing the log of their residual in ℓ_2 norm versus iterations up to 5000. Rank the performance of each method by comparing the iterations needed to reach the residual tolerance of 10^{-14} . Use sparse representation when appropriate. Hint: Use Q1(g) to find parameters for Richardson and vary θ to find an approximate optimal parameter for S.O.R. (c) Comment on the decreases in performance when n = 1000. Explain briefly how this relates to $\kappa (A_h) = O(h^{-2})$.

Question 4: Steepest Descent and Conjugate Gradient

- (a) Let A be a S.P.D. matrix. Show that $(x,y)_A := x^T A y$ for $x,y \in \mathbb{R}^n$ forms an inner product on \mathbb{R}^n .
- (b) Using part (a), conclude that $\|x\| = (x, x)_A^{1/2}$ for $x \in \mathbb{R}^n$ is a norm on \mathbb{R}^n . Hint: You can assume the Cauchy-Schwarz inequality $|(x, y)_A| \leq \|x\|_A \|y\|_A$ holds.
- (c) For the method of Steepest Descent, show that $\nabla f(\mathbf{x}_k)$ and $\nabla f(\mathbf{x}_{k+1})$ are orthogonal (i.e. zig-zaging behavior), where $f(\mathbf{y}) = \frac{1}{2}\mathbf{y}^T A \mathbf{y} \mathbf{y}^T \mathbf{b}$. Hint: Recall how the step size for Steepest Descent is determined.
- (d) Repeat the experiment from $\mathbf{Q3}(\mathbf{b})$ with $\boldsymbol{b}=(1,\ldots,1)^T\in\mathbb{R}^{1000}$ and $\boldsymbol{x}_0=(1,0,\ldots,0)^T\in\mathbb{R}^{1000}$ using the method of Steepest Descent and Conjugate Gradient. Generate a plot comparing the log of their residual in ℓ_2 norm versus iterations up to 5000. Rank their performance by comparing the iterations needed to reach the residual tolerance of 10^{-14} , as well as versus the classical iterative methods. Verify your CG method terminates after the desired number of iterations. Use sparse representation when appropriate.