Assignment 9 Solutions:
Equations/statements marked in blue casey point each.
Alternate solutions are accepted (as long as they are well
Alternate solutions are accepted (as long as they are well hossoned). Message any of the TAS if you have a problem
1. Let Morn be a materix which when multiplied with a
vecter 2nx1 produces zeros on components [k+1:n].
Fuether, let 34 + 0 and ex be the 1th column of In.
@ Write down the elements of M in terms of
the elements of x .
(b) Verify that M can be nevither as In - text.
What are the elements of t?
© Obtain an expression for M-1.
(Hint: Voily that $(I+w^{T})^{-1}=I-uv^{T}$, $I+v^{T}u\neq 0$)
1 + vTn
A. @ Let $y = Mx$. It is given that $y_i = 0$, $k+1 \le i \le n$
=) = Mij xj = 0, k+1 \(i \le n \)
=> 2 is orthogonal to the k+1, k+2,, n rowg of M
=> M= IR-1: () is one such materiz which has
the above mentioned proporty.
$-\frac{\lambda_{k+1}}{\lambda_{k+1}}$
N-K+1 1 7 1 7 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
11-12 July July — (2)

$$=) M = I - tek = \begin{bmatrix} 1 & \cdots & -t_1 \\ \vdots & \vdots & \vdots \\ 0 & \cdots & 1 - t_k \end{bmatrix}$$

$$= \begin{cases} M = I - tek \\ 0 & \cdots & 1 - t_k \end{cases}$$

$$= \begin{cases} M = I - tek \\ 0 & \cdots & 1 - t_k \end{cases}$$

$$= \begin{cases} M = I - tek \\ 0 & \cdots & 1 - t_k \end{cases}$$

$$= \begin{cases} M = I - tek \\ 0 & \cdots & 1 - t_k \end{cases}$$

$$= \begin{cases} M = I - tek \\ 0 & \cdots & 1 - t_k \end{cases}$$

$$= \begin{cases} M = I - tek \\ 0 & \cdots & 1 - t_k \end{cases}$$

$$= \begin{cases} M = I - tek \\ 0 & \cdots & 1 - t_k \end{cases}$$

$$= \begin{cases} M = I - tek \\ 0 & \cdots & 1 - t_k \end{cases}$$

$$= \begin{cases} M = I - tek \\ 0 & \cdots & 1 - t_k \end{cases}$$

$$= \begin{cases} M = I - tek \\ 0 & \cdots & 1 - t_k \end{cases}$$

$$= \begin{cases} M = I - tek \\ 0 & \cdots & 1 - t_k \end{cases}$$

$$= \begin{cases} M = I - tek \\ 0 & \cdots & 1 - t_k \end{cases}$$

$$= \begin{cases} M = I - tek \\ 0 & \cdots & 1 - t_k \end{cases}$$

$$= \begin{cases} M = I - tek \\ 0 & \cdots & 1 - t_k \end{cases}$$

$$= \begin{cases} M = I - tek \\ 0 & \cdots & 1 - t_k \end{cases}$$

$$= \begin{cases} M = I - tek \\ 0 & \cdots & 1 - t_k \end{cases}$$

$$= \begin{cases} M = I - tek \\ 0 & \cdots & 1 - t_k \end{cases}$$

Similarly,
$$\left(\frac{I-uu^{T}}{I+v^{T}u}\right)$$
 $\left(\frac{I+uv^{T}}{I+v^{T}u}\right) = I$

$$\Rightarrow M^{-1}\left(I-teu^{T}\right)^{-1}$$

$$= I - \frac{(-t)ev^{T}}{I+ev^{T}(-t)} = I + \frac{tev^{T}}{I-tv}$$

$$\Rightarrow M^{-1} = I + \frac{tev^{T}}{I-tv} = I + tev^{T} - 6$$

$$= I + \frac{tev^{T}}{I-tv} = I + tev^{T} - 6$$

$$= I + \frac{tev^{T}}{I-tv} = I + \frac{tev^{T}}{I-tv} = I + \frac{tev^{T}}{I-tv}$$

$$\Rightarrow B^{H} = I - A^{H}$$

$$\Rightarrow B^{H} = I - A^{H} - A^{H}$$

$$= I - A - A^{H} - A^{H}A = B^{H}B$$
Thus B is normal & nilpotent.

If k is the index of B, $B^{R} = 0$

$$B^{R} = \lambda \times B^{R} = \lambda \times B^{R} = 0$$

$$\Rightarrow G(B) = \{0, ..., 0\}$$
Since B is normal, it is unitarity diagraph, $B = UDU^{H}$

Since Bis normal, it is unitarily diagble, B = UDUH D= diag {0, ..., 0} => D=0 -3

(Aux: $B^{R} = VD^{R}V^{H} = 0 \Rightarrow D^{R} = 0 \Rightarrow D = 0$)