# Podstawowe elementy elektroniczne: część II – tranzystory - charakterystyki

| Data:              | Godz.:   |
|--------------------|----------|
| Osoby wykonujące ć | wiczenia |
| 1                  |          |
| 2                  |          |
| 3                  |          |
| 4                  |          |
| 5                  |          |
| 6                  |          |
| 7                  |          |
| 8                  |          |
| 9                  |          |
| 10                 |          |
| 11                 |          |

AGH, Katedra Automatyki ver. 12/03/08

#### Cel ćwiczenia

Celem ćwiczenia jest zapoznanie studentów z zachowaniem się tranzystorów: bipolarnego i polowego jfet (ang. *Junction Field Effect Transistor*) dla różnych warunków napięciowoprądowych. Ćwiczący zapoznają się z tranzystorami na podstawie zmierzonych charakterystyk statycznych tranzystorów: BC547B i BF245

### Wyposażenie stanowiska laboratoryjnego

- Panel Podstawowe elementy elektroniczne tranzystory
- Przewody do łączenia elementów na panelu oraz do podłączenia zasilania
- Dwa zasilacze laboratoryjne prądu stałego z:
  - płynną regulacją napięcia w zakresie 0-24V,
  - · możliwością ustawienia ograniczenia prądowego,
- Miernik podstawowych wielkości elektrycznych: napięcie i rezystancja

Elementy elektroniczne zamontowane są pod wierzchnią płytą panelu. Małe, czarne i czerwone gniazda przeznaczone są do łączenia elementów. Większe, czarne i czerwone gniazda przeznaczoen są do podłączenia zasilania.

# UWAGA! Ustawić ograniczenie prądowe zasilaczy na wartość max. 20 mA.

Pomiary napięcia wykonywać z dokładnością 0,01 V

### Instrukcja

1) Zmierzyć i uzupełnić wartości rezystorów w tabeli 1.

| $R_1[\Omega]$ | $R_2[\Omega]$ | $R_{C}\left[\Omega\right]$ | $R_E\left[\Omega\right]$ | $R_G[\Omega]$ | $R_D\left[\Omega\right]$ | $R_S\left[\Omega\right]$ | $R_{obc.} [\Omega]$ |
|---------------|---------------|----------------------------|--------------------------|---------------|--------------------------|--------------------------|---------------------|
|               |               |                            |                          |               |                          |                          |                     |

Tab. 1. Rezystory

- 1) Podczas montowania obwodu elektrycznego panele powinny być odłączone od zasilaczy.
- 2) Zasilanie można podłączyć do zmontowanego obwodu WYŁĄCZNIE po otrzymaniu zgody osoby prowadzącej zajęcia
- 2) Parametry tranzystorów: bipolarnego  $Q_1$  and polowego j-fet  $Q_2$  zidentyfikować na podstawie pomiarów otrzymanych w następnych ćwiczeniach (tab. 4 i 5). Wyniki identyfikacji zapisać w poniższej tabeli 2.

| <b>Q</b> <sub>1</sub> npn BC547 | Q <sub>2</sub> j-fet z kanałem typu "n" BF245 |                             |  |  |
|---------------------------------|-----------------------------------------------|-----------------------------|--|--|
| $\beta\left(Q_{1}\right)$       | $U_p(Q_2)$                                    | $I_{DSS}\left( Q_{2} ight)$ |  |  |
|                                 |                                               |                             |  |  |

Tab. 2. Podstawowe parametry tranzystora bipolarnego i polowego

- 3) Zmonotować układ zgodnie z rys. 1.
- 4) Ustawić napięcie U zgodnie z wartościami w tabeli 3. Zmierzyć  $U_{RG}$  dla każdej wartości U. Pomiary zanotować w tabeli 3. Nóżki tranzystora Q1: C i E powinny być pdłączone do



Rys. 1. Układ do pomiaru charakterystyki  $I_B = f(U_{BE})$ 

| U[V] | U <sub>RG</sub> [V] | $U_{BE}=U_{-}$ $U_{RG}$ [V] | $I_B=U_{RG}/R_1$ [mA] |
|------|---------------------|-----------------------------|-----------------------|
| 0.5  |                     |                             |                       |
| 1.0  |                     |                             |                       |
| 1.5  |                     |                             |                       |
| 2.0  |                     |                             |                       |
| 2.5  |                     |                             |                       |
| 3.0  |                     |                             |                       |
| 3.5  |                     |                             |                       |
| 4.0  |                     |                             |                       |
| 4.5  |                     |                             |                       |
| 5.0  |                     |                             |                       |

| U [V] | $U_{RG}\left[ \mathrm{V} ight]$ | $U_{BE}=U-U_{RG}$ [V] | $I_B=U_{RG}/R_1$ [mA] |
|-------|---------------------------------|-----------------------|-----------------------|
| 5.5   |                                 |                       |                       |
| 6.0   |                                 |                       |                       |
| 6.5   |                                 |                       |                       |
| 7.0   |                                 |                       |                       |
| 7.5   |                                 |                       |                       |
| 8.0   |                                 |                       |                       |
| 8.5   |                                 |                       |                       |
| 9.0   |                                 |                       |                       |
| 9.5   |                                 |                       |                       |
| 10.0  |                                 |                       |                       |

Tab. 3. Dane pomiarowe charakterystyki wejściowej tranzystora bipolarnego

- 5) Narysować charakterystykę  $I_B = f(U_{BE})$  na podstawie danych z tabeli 3 wykres 1 .
- 6) Zmontować obwód jak na rysunku 2. Obliczyć wartość napięcia  $U_B$ , dla którego prąd bazy wynosi  $10\mu$ A. Napięcie  $U_B$  określone jest przez następujące wyrażenie:  $U_B = I_B \cdot R_1 + 0.7$ .
- 7) Ustawić wartość napięcia  $U_C$  zgodnie z tabelą 4. Dla każdej wartości  $U_C$  zmierzyć napięcie na rezystorze  $R_S$ . Pomiary zanotować w tabeli 4.
- 8) Zwiększyć prąd bazy tranzystora do wartości 20  $\mu$ A przez zmianę napięcia  $U_B$ .
- 9) Ustawić wartość napięcia  $U_C$  zgodnie z tabelą 4. Dla każdej wartości  $U_C$  zmierzyć napięcie na rezystorze  $R_S$ . Pomiary zanotować w tabeli 4.
- 10) Zgodnie z wyrażeniami umieszczonymi w nagłówku tabeli 4, obliczyć i zapisać pozostałe wartości.

#### **UWAGA!**

Parametr tranzystora bipolarnego  $\beta = \frac{I_c}{I_B}$  można zidentyfikować na podstawie danych pomiarowych z tabeli 4. Wzór na parametr  $\beta$  jest właściwy tylko wtedy, gdy tranzystor znajduje się w aktywnym obszarze charakterystyki. Jest to spełnione gdy  $U_{CE} \ge 5 \text{V}$  - tab. 4. Zidentyfikowaną wartość parametru  $\beta$  wpisać do tabeli 2.

11) Narysować charakterystykę wyjściową tranzystora  $I_C = f(U_{CE})$  – wykres 2.



Rys. 2. Układ do pomiaru charakterystyki  $I_C = f(U_{CE})$ 

|                 | $I_B = 10 \mu A$ |                               |                         |                 | $I_{l}$     | $_{3}=20\mu\mathrm{A}$        |                         |
|-----------------|------------------|-------------------------------|-------------------------|-----------------|-------------|-------------------------------|-------------------------|
| $U[\mathbf{v}]$ | $U_{Rs}[V]$      | $U_{CE}$ = $U$ - $U_{Rs}$ [V] | $I_C = U_{RS}/R_S$ [mA] | $U[\mathbf{v}]$ | $U_{Rs}[V]$ | $U_{CE}$ = $U$ - $U_{Rs}$ [V] | $I_C = U_{RS}/R_S$ [mA] |
| 0               |                  |                               |                         | 0               |             |                               |                         |
| 0.1             |                  |                               |                         | 0.1             |             |                               |                         |
| 0.2             |                  |                               |                         | 0.2             |             |                               |                         |
| 0.3             |                  |                               |                         | 0.3             |             |                               |                         |
| 0.4             |                  |                               |                         | 0.4             |             |                               |                         |
| 0.5             |                  |                               |                         | 0.5             |             |                               |                         |
| 0.8             |                  |                               |                         | 0.8             |             |                               |                         |
| 1               |                  |                               |                         | 1               |             |                               |                         |
| 2               |                  |                               |                         | 2               |             |                               |                         |
| 5               |                  |                               |                         | 5               |             |                               |                         |
| 10              |                  |                               |                         | 10              |             |                               |                         |

Tab. 4. Dane pomiarowe charakterystyki wyjściowej dla tranzystora bipolarnego

12) Zmontować obwód jak na rys. 3. Ustawić U=10V. Ustawić wartość  $U_{GS}$  zgodnie z tabelą 5. Dla każdej wartości  $U_{GS}$  zmierzyć napięcie na rezystorze  $U_{Rs}$  oraz obliczyć prąd  $I_D$  metodą pośrednią korzystając z prawa Ohm'a:  $I_D=U_{R_s}/R_S$ . Obliczenia zamieścić w tabeli 5.



Rys. 3. Układ do pomiaru charakterystyki przejściowej tranzystora polowego

| - <i>U</i> <sub>GS</sub> [V] | $I_D=U_{Rs}/R_S$ [mA] |
|------------------------------|-----------------------|
| 0                            |                       |
| 0.2                          |                       |
| 0.4                          |                       |
| 0.6                          |                       |
| 0.8                          |                       |

| - <i>U</i> <sub>GS</sub> [V] | $I_D=U_{Rs}/R_S$ [mA] |
|------------------------------|-----------------------|
| 1.0                          |                       |
| 1.2                          |                       |
| 1.4                          |                       |
| 1.6                          |                       |
| 1.8                          |                       |

| -U <sub>GS</sub> [V] | $I_D=U_{Rs}/R_S$ [mA] |
|----------------------|-----------------------|
| 2.0                  |                       |
| 2.2                  |                       |
| 2.4                  |                       |
| 2.6                  |                       |
| 2.8                  |                       |

| -U <sub>GS</sub> [V] | $I_D=U_{Rs}/R_S$ [mA] |
|----------------------|-----------------------|
| 3.0                  |                       |
| 3.2                  |                       |
| 3.4                  |                       |
| 3.6                  |                       |
| 3.8                  |                       |

Tab. 5. Dane pomiarowe charakterystyki przejściowej tranzystora polowego

- 13) Narysować charakterystykę tranzystora polowego wykres 3. Zidentyfikować i zaznaczyć na charakterystyce napięcie odcięcia  $U_p$  oraz prąd nasycenia  $I_{DSS}$ . Wyniki umieścić w tabeli 2.
- 14) Ustawić  $U_{GS}=0$  (rys. 3). Ustawić napięcie  $U_{DS}$  zgodnie z tabelą 6. Dla każdej wartości  $U_{DS}$  zmierzyć napięcie  $U_{RS}$  i obliczyć prąd drenu  $I_D$  stosując prawo Ohm'a  $I_D=U_{R_s}/R_S$ . Obliczenia zamieścić w tabeli 6.
- 15) Powtórzyć powyższy krok dla następujących wartości napięcia źródło-bramka:  $U_{GS} = -0.5, -1, -2$  and -3 V.
- 16) Narysować charakterystyki wyjściowe  $I_D = f(U_{DS})$  na podstawie danych z tabeli 6 wykres 4.

| 17 (37)                         | $I_D[mA]$      |                            |                          |                |                |  |  |
|---------------------------------|----------------|----------------------------|--------------------------|----------------|----------------|--|--|
| $U_{DS}\left[ \mathbf{V} ight]$ | $U_{GS} = 0$ V | $U_{GS} = -0.5 \mathrm{V}$ | $U_{GS} = -1 \mathrm{V}$ | $U_{GS} = -2V$ | $U_{GS} = -3V$ |  |  |
| 0                               |                |                            |                          |                |                |  |  |
| 0.1                             |                |                            |                          |                |                |  |  |
| 0.2                             |                |                            |                          |                |                |  |  |
| 0.3                             |                |                            |                          |                |                |  |  |
| 0.4                             |                |                            |                          |                |                |  |  |
| 0.5                             |                |                            |                          |                |                |  |  |
| 0.8                             |                |                            |                          |                |                |  |  |
| 1                               |                |                            |                          |                |                |  |  |
| 2                               |                |                            |                          |                |                |  |  |
| 5                               |                |                            |                          |                |                |  |  |
| 10                              |                |                            |                          |                |                |  |  |

Tab. 6. Dane pomiarowe charakterystyki wyjściowej

### Tranzystor bipolarny BC545B



Wykres 1 Charakterystyka wejściowa tranzystora bipolarnego  $I_{BE} = f(U_{BE})$ 

## Tranzystor bipolarny BC545B



Wykres 2 Rodzina charakterystyk wyjściowych tranzystora bipolarnego  $I_C = f(U_{CE})$  dla  $I_B = const$ 

## Tranzystor JFET - BF245C



Wykres 3 Charakterystyka przejściowa tranzystora polowego  $I_D = f(U_{GS})$ 

## Tranzystor JFET - BF245C



Wykres 4 Rodzina charakterystyk wyjściowych tranzystora polowego  $I_D = f(U_{DS})$  dla  $U_{GS} = constant$