Segundo parcial de Lógica

5 de julio 2022

Indicaciones generales

- Apagar los celulares.
- La duración del parcial es de **tres (3)** horas.
- En esta prueba **no** se permite consultar material alguno.
- Puntaje: 60 puntos.
- Toda respuesta debe estar fundamentada. Pueden usarse los resultados que aparecen en el texto del curso, en el teórico y en el práctico del mismo. En esos casos debe describirse con precisión el enunciado que se utiliza.
- Numerar todas las hojas e incluir en cada una su nombre y cédula de identidad, utilizar las hojas de un solo lado, escribir con lápiz, iniciar cada ejercicio en hoja nueva y poner en la primera hoja la cantidad de hojas entregadas.

Ejercicio 1 (15 puntos)

Considere un lenguaje \mathcal{L} de fórmulas de primer orden **sin igualdad** de tipo de similaridad $\langle 1; -; 0 \rangle$ y que tiene sólo los conectivos \rightarrow , \forall

- a. Escriba definiciones inductivas libres de $TERM_{\mathcal{L}}$ y de \mathcal{L} .
- b. Defina una función MV : $\mathcal{L} \to \mathbb{N}$ que devuelva el máximo índice de variable que aparece en la fórmula. Ej: MV $((P(x_2) \to (\forall x_1)P(x_1))) = 2$ o MV $((P(x_1) \to (\forall x_2)P(x_1))) = 2$
- c. Pruebe por inducción que para todo $\varphi \in \mathcal{L}$ se cumple que $x_{MV(\varphi)} \in V(\varphi)$

Solución

a. Dado que el tipo de similaridad es $\langle 1; -; 0 \rangle$, el lenguaje de los términos sólo va a tener variables y el de las fórmulas un predicado con un sólo parámetro. De esta forma, los lenguajes son los siguientes:

```
Term_{\mathcal{L}}
\text{I } x_i \in Term_{\mathcal{L}} \text{ si } i \in \mathbb{N}
\mathcal{L}
\text{I } P(x_i) \in \mathcal{L}, \text{ si } i \in \mathbb{N}
\text{II } (\varphi \to \psi) \in \mathcal{L}, \text{ si } \varphi, \psi \in \mathcal{L}
\text{III } ((\forall x_i)\varphi) \in \mathcal{L}, \text{ si } i \in \mathbb{N} \text{ y } \varphi, \psi \in \mathcal{L}
```

b. La función pedida es la siguiente:

$$MV : \mathcal{L} \to \mathbb{N}$$

 $MV(P(x_i)) = i$
 $MV(\varphi \to \psi) = max(MV(\varphi), MV(\psi))$
 $MV((\forall x_i)\varphi) = max(i, MV(\varphi))$

c. Pruebe que para cualquier $\varphi \in \mathcal{L}$ se cumple que $x_{MV(\varphi)} \in V(\varphi)$.

Se probará la afirmación por inducción en \mathcal{L} , utilizando la propiedad $\mathcal{P}(\varphi) := x_{MV(\varphi)} \in V(\varphi)$.

PB.

T)
$$x_{MV(P(x_i))} \in V(P(x_i))$$

Dem.

Por definición de MV se cumple que:

$$MV(P(x_i)) = i$$

Por lo tanto:

$$x_{MV(P(x_i))} = x_i$$

Por definición de V entonces se cumple se cumple que:

$$x_i \in V(P(x_i))$$

y por lo tanto se cumple la tesis:

$$x_{MV(P(x_i))} \in V(P(x_i))$$

$$\mathbf{PI_1}:
ightarrow$$

$$x_{MV(\varphi)} \in V(\varphi) \tag{1}$$

$$x_{MV(\psi)} \in V(\psi) \tag{2}$$

T)
$$x_{MV(\varphi \to \psi)} \in V(\varphi \to \psi)$$

Dem.

Por definición de V, se cumple que

$$V(\varphi \to \psi) = V(\varphi) \cup V(\psi) \tag{3}$$

Por definición de MV se cumple que:

$$MV(\varphi \to \psi) = max(MV(\varphi), MV(\psi))$$

Entonces, por definición de max se cumple uno de los siguientes casos:

$$MV(\varphi \to \psi) = MV(\varphi) \tag{4}$$

$$MV(\varphi \to \psi) = MV(\psi)$$
 (5)

Si se está en el caso (4), entonces $x_{MV(\varphi \to \psi)} = x_{MV(\varphi)}$ y por 1 y 3 se cumple que¹:

$$x_{MV(\varphi)} \in V(\varphi \to \psi)$$

Si se está en el caso (5), entonces $x_{MV(\varphi \to \psi)} = x_{MV(\psi)}$ y por 2 y 3 se cumple que²:

$$x_{MV(\psi)} \in V(\varphi \to \psi)$$

En cualquiera de los dos casos se cumple la tesis:

$$x_{MV(\varphi \to \psi)} \in V(\varphi \to \psi)$$

¹Observar que $V(\varphi) \subseteq V(\varphi \to \psi)$

²Observar que $V(\psi) \subseteq V(\varphi \to \psi)$

 $\mathbf{PI_2}: \forall$

H) $x_{MV(\varphi)} \in V(\varphi)$

T) $x_{MV((\forall x_i)\varphi)} \in V((\forall x_i)\varphi)$

Dem.

Por definición de MV se cumple que:

$$MV((\forall x_i)\varphi) = max(i, MV(\varphi))$$

Entonces, por definición de max se cumple que uno de los siguientes casos:

$$MV((\forall x_i)\varphi) = i \tag{1}$$

$$MV((\forall x_i)\varphi) = MV(\varphi)$$
 (2)

Si se está en el caso (1), entonces $x_{MV((\forall x_i)\varphi)} = x_i$ y por definición de V se cumple que:

$$x_i \in V((\forall x_i)\varphi)$$

Si se está en el caso (2), entonces $x_{MV((\forall x_i)\varphi)} = x_{MV(\varphi)}$ y por hipótesis se cumple que:

$$x_{MV(\varphi)} \in V((\forall x_i)\varphi)$$

En cualquiera de los casos se cumple la tesis:

$$x_{MV((\forall x_i)\varphi)} \in V((\forall x_i)\varphi)$$

Las demostraciones anteriores prueban que la propiedad está en las hipótesis del PIP de \mathcal{L} por lo que se cumple que:

$$(\bar{\forall}\varphi\in\mathcal{L})(x_{MV(\varphi)}\in V(\varphi))$$

Ejercicio 2 (15 puntos)

Considere un lenguaje con tipo de similaridad $\langle 1; -; 0 \rangle$ con igualdad y símbolo de predicado P.

Considere las siguientes estructuras:

$$\mathcal{M}_1 = \langle \{0\}, \emptyset \rangle$$
 y $\mathcal{M}_2 = \langle \{0, 1, 2\}, \emptyset \rangle$

Considere además la siguiente fórmula:

$$\varphi = (\exists x) P(x) \land (\exists x) \neg P(x)$$

- a. Dé $\alpha \in FORM$ tal que $\mathcal{M}_1 \models \alpha$ y $\mathcal{M}_2 \not\models \alpha$.
- b. Dé $\beta \in FORM$ tal que $\mathcal{M}_1 \not\models \beta$ y $\mathcal{M}_2 \not\models \beta$ y β no equivalente a \perp .
- c. Dé \mathcal{M}_3 estructura de tipo adecuado que cumpla que $\mathcal{M}_3 \models \varphi$.
- d. Sea \mathcal{M}_4 cualquier estructura de tipo adecuado que cumpla $\mathcal{M}_4 \models \varphi$. ¿Cuál es la cardinalidad mínima que debe tener el universo de \mathcal{M}_4 ? Justifique.

Solución

a. Dé $\alpha \in \text{FORM}$ tal que $\mathcal{M}_1 \models \alpha \text{ y } \mathcal{M}_2 \not\models \alpha$. Damos $\alpha = (\exists x)(\forall y)x =' y$.

Para que se cumpla $\mathcal{M} \models \alpha$, se debe cumplir lo siguiente (*¹) $\mathcal{M} \models \alpha$ $\Leftrightarrow (\text{def. de } \alpha)$ $\mathcal{M} \models (\exists x)(\forall y)x =' y$

$$\Leftrightarrow (\text{def. de } \alpha)$$

$$\mathcal{M} \models (\exists x)(\forall y)x =' y$$

$$\Leftrightarrow (2.4.5 \text{ x2})$$

$$(\bar{\exists} a \in |\mathcal{M}|)(\bar{\forall} b \in |\mathcal{M}|)(\mathcal{M} \models \bar{a} =' \bar{b})$$

$$\Leftrightarrow (\text{interpretación de fórmulas atómicas})$$

$$(\bar{\exists} a \in |\mathcal{M}|)(\bar{\forall} b \in |\mathcal{M}|)a = b$$

Probemos que α cumple lo pedido.

$$\mathcal{M}_1 \models \alpha$$

 $\Leftrightarrow \text{(por *}^1 \text{ y def de } \mathcal{M}_1\text{)}$
 $(\bar{\exists} a \in \{0\})(\bar{\forall} b \in \{0\}) a = b$
y esto se cumple ya que 0 es el único elemento del universo por tanto $a = b = 0$.

$$\mathcal{M}_2 \not\models \alpha$$

 $\Leftrightarrow (\text{por } *^1 \text{ y def de } \mathcal{M}_2)$
 $(\overline{\forall} a \in \{0, 1, 2\})(\overline{\exists} b \in \{0, 1, 2\})a \neq b$
Si $a = 0$ se toma $b = 1$,
si $a = 1$ se toma $b = 2$
y si $a = 2$ se toma $b = 0$

b. Dé $\beta \in FORM$ tal que $\mathcal{M}_1 \not\models \beta$ y $\mathcal{M}_2 \not\models \beta$ y β no equivalente a \bot . Damos $\beta = (\forall x)P(x)$.

Para que se cumpla $\mathcal{M} \models \beta$, se debe cumplir lo siguiente (*2)

$$\mathcal{M} \models \beta$$

$$\Leftrightarrow (\text{def. de } \beta)$$

$$\mathcal{M} \models (\forall x) P(x)$$

$$\Leftrightarrow (2.4.5)$$

$$(\forall a \in |\mathcal{M}|) (\mathcal{M} \models P(\bar{a})$$

$$\Leftrightarrow (\text{interpretación de fórmulas atómicas})$$

$$(\forall a \in |\mathcal{M}|) a \in P^{\mathcal{M}}$$

Probemos que β cumple lo pedido.

$$\mathcal{M}_1 \not\models \beta$$

$$\Leftrightarrow (por *^1 y \text{ def de } \mathcal{M}_1)$$

$$(\bar{\exists} a \in \{0\}) a \not\in \emptyset$$

$$\mathcal{M}_2 \not\models \beta$$

 $\Leftrightarrow \text{(por *}^1 \text{ y def de } \mathcal{M}_2\text{)}$
 $(\bar{\exists} a \in \{0, 1, 2\}) a \not\in \emptyset$
y esto se cumple ya que \emptyset no tiene elementos.

5 de julio 2022

Resta probar que β no es equivalente a \bot , para esto necesitamos probar que β no es una contradicción, es decir $\beta \not\vdash \bot$. Para demostrar que $\beta \not\vdash \bot$ vamos a dar una estructura \mathcal{M}_b tal que $\mathcal{M}_b \models \beta$.

Sea $\mathcal{M}_b \langle \{0\}, \{0\} \rangle$, veamos $\mathcal{M}_b \models \beta$.

$$\mathcal{M}_b \models \beta$$

$$\Leftrightarrow (\text{por } *^1 \text{ y def de } \mathcal{M}_b)$$

$$(\overline{\forall} a \in \{0\}) \quad a \in \{0\}$$
y esto se cumple ya que $0 \in \{0\}$.

c. Dé \mathcal{M}_3 estructura de tipo adecuado que cumpla que $\mathcal{M}_3 \models \varphi$.

Sea $\mathcal{M}_3 = \langle \{0,1\}, \{1\} \rangle$, veamos que $\mathcal{M}_3 \models \varphi$.

$$\mathcal{M}_{3} \models \varphi$$

$$\Leftrightarrow (\text{def. de } \varphi)$$

$$\mathcal{M}_{3} \models (\exists x) P(x) \land (\exists x) \neg P(x)$$

$$\Leftrightarrow (2.4.5)$$

$$\mathcal{M}_{3} \models (\exists x) P(x) \text{ y } \mathcal{M}_{3}(\exists x) \neg P(x)$$

$$\Leftrightarrow (2.4.5 \text{ x3})$$

$$(\bar{\exists} a \in \{0,1\})(\mathcal{M}_{3} \models P(\bar{a}) \text{ y } (\bar{\exists} b \in \{0,1\})(\mathcal{M}_{3} \not\models P(\bar{b}))$$

$$\Leftrightarrow (\text{interpretación de fórmulas atómicas})$$

$$(\bar{\exists} a \in \{0,1\})(a \in \{1\}) \text{ y } (\bar{\exists} b \in \{0,1\})(b \not\in \{1\})$$
Se cumple tomando $a = 1 \text{ y } b = 0 \text{ como testigos}$

d. Sea \mathcal{M}_4 cualquier estructura de tipo adecuado que cumpla $\mathcal{M}_4 \models \varphi$, ¿cuál es la cardinalidad mínima que debe tener el universo de \mathcal{M}_4 ? Justifique.

Las estructuras que modelan a φ tienen que tener como mínimo dos elementos. Sabemos por parte c que existe una estructura que modela a φ cuyo universo tiene dos elementos. Vamos a probar que no puede haber una estructura con un universo unitario que modele a φ .

Por absurdo, supongamos que existe \mathcal{M}_4 tal que $|\mathcal{M}_4|$ tiene un solo elemento y $\mathcal{M}_4 \models \varphi$.

$$\mathcal{M}_4 \models \varphi$$

 $\Leftrightarrow \text{(por parte anterior)}$
 $(\bar{\exists} a \in |\mathcal{M}_4|)(a \in P^{\mathcal{M}_4}) \text{ y } (\bar{\exists} b \in |\mathcal{M}_4|)(b \notin P^{\mathcal{M}_4})$
Como $|\mathcal{M}_4|$ tiene un único elemento $a = b$
y se debería cumplir $a \in P^{\mathcal{M}_4}$ y $a \notin P^{\mathcal{M}_4}$
y esto es absurdo

Ejercicio 3 (15 puntos)

Nota: En este ejercicio no se aceptan consideraciones semánticas.

Escribir derivaciones para:

```
a. (\exists z)(t_1 = 'z \land t_2 = 'z) \vdash t_1 = 't_2
Considere que z \notin V(t_1) \cup V(t_2).
```

5 de julio 2022 5

b. $\vdash (\exists z)(t_1 =' z \land t_2 =' z) \leftrightarrow (\forall x)(t_1 =' x \rightarrow t_2 =' x)$ Considere que x y z no pertenecen a $V(t_1) \cup V(t_2)$.

Sugerencia: Use la derivación de la parte a para construir la derivación b.

Solución

a.

$$\frac{[t_1 =' z \wedge t_2 =' z]^{(1)}}{t_1 =' z} \to \frac{\frac{[t_1 =' z \wedge t_2 =' z]^{(1)}}{t_2 =' z}}{\frac{t_2 =' z}{z =' t_2}} \times \frac{RI_2}{RI_3}$$

$$\frac{(\exists z)(t_1 =' z \wedge t_2 =' z)}{t_1 =' t_2} \to \Xi_1^{(*_1)}$$

 $(*_1)$ $z \notin FV(t_1 = 't_2)$, ya que por letra $z \not\in V(t_1) \cup V(t_2)$.

b.

$$\begin{array}{c} [(\exists z)(t_{1}='z\wedge t_{2}='z)]^{(1)} \\ \vdots \text{ parte a} \\ \\ \frac{t_{1}='t_{2}}{t_{2}='t_{1}} RI_{2} \\ \hline \frac{t_{2}='x}{t_{1}='x\rightarrow t_{2}='x} \stackrel{[t_{1}='x]^{(2)}}{I\rightarrow_{2}} RI_{3} \\ \hline \frac{t_{1}='t_{1}}{(\forall x)(t_{1}='x\rightarrow t_{2}='x)} \stackrel{[t_{1}='t_{1}\rightarrow t_{2}='x)]^{(1)}}{I\rightarrow_{2}} \stackrel{E\forall^{(*1)}}{t_{1}='t_{1}} \stackrel{RI_{1}}{E\rightarrow} \\ \hline \frac{t_{1}='t_{1}\wedge t_{2}='t_{1}}{((\exists z)(t_{1}='x\rightarrow t_{2}='z)} \stackrel{[t_{1}='t_{1}\wedge t_{2}='x)}{((\exists z)(t_{1}='x\wedge t_{2}='z)} \stackrel{[t_{1}='t_{1}\wedge t_{2}='x)}{I\rightarrow_{1}} \\ \hline ((\exists z)(t_{1}='x\wedge t_{2}='z)\leftrightarrow ((\forall x)(t_{1}='x\rightarrow t_{2}='x)) \end{array}$$

- (*1) t_1 libre para x en $t_1 = 'x \rightarrow t_2 = 'x$.
- (*2) t_1 libre para z en $t_1 = 'z \wedge t_2 = 'z$.
- (*3) $x \notin FV((\exists z)(t_1 = 'z \land t_2 = 'z))$, porque por letra, $x \notin V(t_1) \cup V(t_2)$.

Ejercicio 4 (15 puntos)

a. Probar para toda $\varphi \in \mathtt{SENT}$ que:

Existe \mathcal{M} tal que $\mathcal{M} \not\models \varphi$ si y solo si $Cons(\{\neg \varphi\}) \neq SENT$.

- b. Probar que:
 - I. Para todo $\Gamma \subseteq \mathtt{SENT}$ y para toda estructura $\mathcal M$ del tipo adecuado:

Si Γ es consistente maximal y $\mathcal{M} \models \Gamma$ entonces $\Gamma = Th(\{\mathcal{M}\})$.

II. Para todo $\Gamma \subseteq SENT$:

 Γ es consistente maximal si y solo si existe una estructura \mathcal{M} tal que $\Gamma = Th(\{\mathcal{M}\})$

5 de julio 2022

Solución

a. Probamos el resultado por la siguiente cadena de equivalencias:

b. I. Consideramos Γ consistente maximal y $\mathcal{M} \models \Gamma$. Probaremos que $\Gamma = Th(\{\mathcal{M}\})$.

```
Primero probamos que: (\bar{\forall}\alpha \in \Gamma) \ \alpha \in Th(\{\mathcal{M}\})
 \alpha \in \Gamma
                                  \Rightarrow (hipótesis \mathcal{M} \models \Gamma)
 \mathcal{M} \models \alpha
                                  \Rightarrow
                                           (definición de Th)
 \alpha \in Th(\{\mathcal{M}\})
Luego probamos que : (\bar{\forall}\alpha \in Th(\{\mathcal{M}\})) \ \alpha \in \Gamma:
 \alpha \in Th(\{\mathcal{M}\})
                                                                                                  (definición de Th)
 \mathcal{M} \models \alpha
                                                     \Rightarrow
                                                                                                ( hipótésis: \mathcal{M} \models \Gamma)
 \mathcal{M} \models \Gamma \cup \{\alpha\}
                                                     \Rightarrow ( caracterización semántica de consistencia)
 \Gamma \cup \{\alpha\} es consistente
                                                                                      (\Gamma es consistente maximal)
 \alpha \in \Gamma
```

- II. (\Rightarrow) Γ es consistente por ser consistente maximal.
 - Por caracterización semántica de la consistencia: existe \mathcal{M} tal que $\mathcal{M} \models \Gamma$. Aplicando la parte anterior: $\Gamma = Th(\{\mathcal{M}\})$.
 - (\Leftarrow) Por ejercicio 10 del práctico 9, sabemos que $Th(\{\mathcal{M}\})$ es consistente maximal para cualquier estructura \mathcal{M} .
 - Por lo tanto, si existe \mathcal{M} tal que $\Gamma = Th(\{\mathcal{M}\})$ se concluye que Γ es consistente maximal.

5 de julio 2022 7