MECHANICAL ENGINEERING DEPARTMENT

Motilal Nehru National Institute of Technology Allahabad END SEMESTER EXAMINATION (2016-17)

Subject: ME-1607: Production and Operation Management B. Tech. VI Semester (Production and Industrial Engineering)

TIME: 3 Hour

MAX. MARKS: 60

Note: Attempt all questions. Assume any missing data and write clearly.

- Q.1 (a) Distinguish between design capacity and system capacity. Explain different capacity expansion strategies with their advantages and disadvantages.
 - (b) A company is setting up an assembly line to produce 192 units per eight-hour shift. The [6] following table identifies the work elements, times and immediate predecessors.

Work Element	Time (seconds)	Immediate Predecessor(s) None		
A	40			
В .	80	A		
C.	30	D, E, F		
D.	25	В.		
E	20	B B		
F	15			
G	120	A		
H	145	G		
I	130	Н		
J	115	C. I		

- i) What is the desired cycle time?
- ii) What is the theoretical minimum number of stations?
- iii) Use the largest work-element time rule to work out a solution, and show your solution on a precedence diagram.
- iv) What are the efficiency and balance delay of the solution found?
- Q.2 (a) An electronic manufacturer must expand by building a second facility. The search has been narrowed to four locations. Assessment of these sites in terms of seven location factors is shown in Table below.

		Factor Score for each location					
Location factor	Factor weight	A	В	С	D		
Labor climate	20 -	5	4	4	5		
Quality of life	16	2	3	4	1		
Transportation system	16	3	4	3	2		
Proximity to markets	14	5	3	4	4		
Proximity to materials	12	2	3	3	4		
Taxes	12	2	5	5	4		
Utilities	10	5	4	3	3		

Calculate the weighted score for each location. Which location should be recommended?

- (b) Explain the difference between job design and job standards. What are the different [4] parts of effective job design?
- Q.3 (a) Define supply chain management. State the objectives of supply chain.
 - (b) Indicate the characteristics of forecasts that would be concerned by the supply chain [6] managers.

A pipeline company wanted to schedule a pipeline construction project that is divided [10] into the 13 activities listed in Table 1.

Table	1:	P	peline	company	project

Activity	Predecessors	Nor			Crash		
70 K		Time (m)	Cost (\$)	Time (m)	Cost (\$)		
Α	None	2	250	1.5	300		
В	Α	4	620	3.0			
C	В	, -4	380		750		
D	Α	1		2.5	500		
E	Ċ	7	220	3.0	280		
F F	ç	3	900	4.0	1150		
Ġ	E	`.6	750	4.5	975		
	E	3	180	3.0	180		
H	F	3	340	2.0	450		
I	D,F	3	200	2.5	300		
J	F,G	5	700	3.5			
K	H	2	75		950		
L	Ĩ	2		1.5	125		
M	IVI	3	160	2.5	240		
. 6	I,K,L	1	60	1.0	60		

- Construct a PERT/CPM chart for this project. (a)
- Do a two-pass analysis to determine the earliest time the project will be completed **(b)** using the normal activity times, and identify the critical path activities.
- Suppose company wanted to completed the project in two months less time than that (c) found in part (b); which activities should it crash and by how much?

Consider the following production line in which tasks A through H Q.5 (a) must be performed.

Station	1	1	2	3	3	4	5	6
Task	Α	В	С	D	Е	F	G	H
Task Time (hr)	_ 2	1.5	4	2	2	3	2.5	3

- (i) Identify the bottleneck operation.
- (ii) What is the minimum cycle time?
- (iii) Assuming an eight hour work day, what is the maximum daily output?
- (iv) If the line uses one employee per station, how many hours of ideal time are there daily?

How many hours of productive time?

- (v) Calculate the efficiency of the line.
- Explain EOQ model. What are the different assumptions of EOQ model. (b)

[2]

Explain briefly the factors affecting the facility location. (c)

[2]

Explain in brief

[10]

- Wastes in production system (a)
- (b) JIT Manufacturing
- MPS (c)

Q.6

- Product reliability (d)
- The Malcolm Baldrige Quality Award (e)