Car Price Prediction

Objective

1. Analyze and Visualize Used Car Prices:

- Perform descriptive statistics and visualize data trends.
- •Identify patterns and relationships between features.

2. Predict Car Prices Using Regression Models:

- •Linear Regression: Predict car prices and evaluate with R-squared.
- •Ridge Regression: Handle multicollinearity and prevent overfitting.
- Lasso Regression: Feature selection by penalizing coefficients.
- •ElasticNet Regression: Combine ridge and lasso for balanced regularization.

Dataset Description

Source: Kaggle (Vehicle dataset from Cardekho)

Link: Vehicle Dataset from Cardekho

- Dataset Size:
- 301 records
- 9 features

• Features:

- Car_Name: The name of the car.
- **Year:** The year in which the car was bought.
- **Selling_Price:** The price at which the owner wants to sell the car.
- Present_Price: The current ex-showroom price of the car.
- Kms_Driven: The distance completed by the car in kilometers.
- **Fuel_Type:** The type of fuel the car uses (e.g., Diesel, Petrol, CNG).
- **Seller_Type:** Defines whether the seller is a dealer or an individual.
- Transmission: Defines whether the car is manual or automatic.
- Owner: The number of previous owners the car has had.

Data Loading

Importing Libraries and the dataset.

Inspect the dataset for missing values and clean the data as necessary

Importing Libraries

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

Importing the dataset

```
In [2]: cars = pd.read_csv("car data.csv")
```

Data Exploration (EDA)

- Goals: Understand the distribution of data.
- Identify relationships between different features.

Heatmap to show the correlation between various variables of the

dataset

```
plt.figure(figsize=(10, 8))
cor = cars.corr()
ax = sns.heatmap(cor,annot=True)
bottom, top = ax.get_ylim()
ax.set_ylim(bottom + 0.5, top - 0.5)
plt.show()
```


Feature Engineering

Converting categorical variables to dummy variables

```
In [36]:
          #Fuel_Type
          cars.Fuel_Type.value_counts()
Out[36]: Petrol
                    234
                     57
          Diesel
          CNG
          Name: Fuel Type, dtype: int64
In [37]:
          cars.Seller Type.value counts()
Out[37]:
          Dealer
                        192
          Individual
                        101
          Name: Seller_Type, dtype: int64
In [38]:
          cars.Transmission.value_counts()
Out[38]:
          Manual
                       258
          Automatic
          Name: Transmission, dtype: int64
In [39]:
          cars = pd.get_dummies(cars,columns=['Fuel_Type','Seller_Type','Transmission'],drop_first=True)
```

Model Building

Linear Regression Model

The simplest form of regression is the linear regression, which assumes that the predictors have a linear relationship with the target variable.

The linear regression equation can be expressed in the following form:

```
y = a1x1 + a2x2 + a3x3 + ..... + anxn + b
```

- y is the target variable.
- x1, x2, x3,...xn are the features.
- a1, a2, a3,..., an are the coefficients.
- b is the parameter of the model.

OLS Regression Results

OLS Regression Results							
Dep. Variable:	Selling_Price		R-squared:			0.895	
Model:		OLS		Adj. R-squared:		0.892	
Method:	Least Squa	Least Squares		F-statistic:		301.8	
Date:	Sat, 01 Aug 2	at, 01 Aug 2020		Prob (F-statistic):		5.17e-134	
Time:	12:15	12:15:37		Log-Likelihood:		-559.84	
No. Observations:		293		AIC:		1138.	
Df Residuals:		284				1171.	
Df Model:		8					
Covariance Type:							
=======================================	coef	S	td err	t	P> t	[0.025	0.975
				-5.470			
Year	0.2713		0.049	5.513	0.000	0.174	0.368
Present_Price	0.4556		0.016	29.261	0.000	0.425	0.486
Kms_Driven	-3.593e-05	6.	73e-06	-5.340	0.000	-4.92e-05	-2.27e-05
Owner	0.3906		0.544	0.718	0.473	-0.680	1.461
Fuel_Type_Diesel	2.5594		1.204	2.126	0.034	0.189	4.929
Fuel_Type_Petrol							
Seller_Type_Individua	1 -1.4694		0.257	-5.719	0.000	-1.975	-0.964
Transmission_Manual	-1.4271		0.320	-4.455	0.000	-2.058	-0.797
=======================================							
Omnibus:						1.907	
Prob(Omnibus):		0.000 Jarque					
Skew:	0.			•		3.81e-133	
Kurtosis:		9.899 Cond. No.				4.00e+07	

Model Implementation

Other Models:

- 1.Ridge Regression: Apply ridge regression to address multicollinearity.
- 2.Lasso Regression: Use lasso regression for feature selection.
- **3.ElasticNet Regression:** Combine ridge and lasso penalties with elasticnet.

Ridge Regression

```
In [117...
           from sklearn.linear_model import RidgeCV, Ridge
            alphas = 10**np.linspace(10,-2,100)*0.5
            ridgecv = RidgeCV(alphas = alphas, normalize = True)
            ridgecv.fit(X_train, y_train)
            ridgecv.alpha
Out[117...
           0.08148754173103201
           The value of alpha that results in the smallest cross-validation error is 0.0814.
In [119...
           rr = Ridge(alpha = ridgecv.alpha_, normalize = True)
           rr.fit(X_train, y_train)
           Ridge(alpha=0.08148754173103201, normalize=True)
Out[119...
In [120...
            print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, rr.predict(X_test))))
            print('r2_score:', metrics.r2_score(y_test, rr.predict(X_test)))
         Root Mean Squared Error: 2.04354646231782
         r2_score: 0.7564859864371551
```

Lasso Regression

```
In [123...
           from sklearn.linear_model import LassoCV,Lasso
           lasso = Lasso(max_iter = 10000, normalize = True)
           coefs = []
           for a in alphas:
               lasso.set params(alpha=a)
               lasso.fit(X_train, y_train)
                coefs.append(lasso.coef )
          We now perform 10-fold cross-validation to choose the best alpha, refit the model, and compute the associated score:
In [129...
           lassocv = LassoCV(alphas = None, cv = 10, max iter = 100000, normalize = True)
           lassocv.fit(X_train, y_train)
           lasso.set_params(alpha=lassocv.alpha_)
           lasso.fit(X_train, y_train)
          Lasso(alpha=0.00033290967622077165, max_iter=10000, normalize=True)
          The value of alpha that results in the smallest cross-validation error is 0.000332.
In [127...
           print('Root Mean Squared Error:', np.sqrt(metrics.mean squared error(y test, lasso.predict(X test))))
           print('r2 score:', metrics.r2 score(y test, lasso.predict(X test)))
         Root Mean Squared Error: 2.151902612277087
         r2 score: 0.7299773770623945
```

3. ElasticNet Regression

ElasticNet combines the properties of both Ridge and Lasso regression. It works by penalizing the model using both the I2-norm and the I1-norm.

```
In [137...
           # Let's perform a cross-validation to find the best combination of alpha and l1_ratio
           from sklearn.linear_model import ElasticNetCV, ElasticNet
           # how much importance should be given to l1 reguralization
           cv_model = ElasticNetCV(11_ratio=[.1, .5, .7, .9, .95, .99, .995, 1], eps=0.001, n_alphas=100, fit_intercept=True,
                                   normalize=True, precompute='auto', max_iter=2000, tol=0.0001, cv=5,
                                   copy_X=True, verbose=0, n_jobs=-1, positive=False, random_state=None, selection='cyclic')
In [138...
           cv model.fit(X train, y train)
Out[138... ElasticNetCV(cv=5, 11_ratio=[0.1, 0.5, 0.7, 0.9, 0.95, 0.99, 0.995, 1],
                        max_iter=2000, n_jobs=-1, normalize=True)
In [139...
           print('Optimal alpha: %.8f'%cv_model.alpha_)
           #The amount of penalization chosen by cross validation
           print('Optimal 11_ratio: %.3f'%cv_model.11_ratio_)
           #The compromise between L1 and L2 penalization chosen by cross validation
           print('Number of iterations %d'%cv_model.n_iter_)
           #number of iterations run by the coordinate descent solver to reach the specified tolerance for the optimal alpha.
         Optimal alpha: 0.00108512
         Optimal 11_ratio: 0.500
         Number of iterations 25
In [140...
           # train model with best parameters from CV
           elastic = ElasticNet(11_ratio=cv_model.11_ratio_, alpha = cv_model.alpha_, max_iter=cv_model.n_iter_, fit_intercept=True
           elastic.fit(X_train, y_train)
Out[140... ElasticNet(alpha=0.0010851196453481816, max_iter=25, normalize=True)
In [141...
           print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, elastic.predict(X_test))))
           print('r2_score:', metrics.r2_score(y_test, elastic.predict(X_test)))
         Root Mean Squared Error: 2.005172333877088
         r2_score: 0.7655456290276874
```

Conclusion

- Key Takeaways:
- **OLS Regression:** Achieved the highest R-squared value of 0.952, indicating the best fit for this dataset.

- **Regularized Models:** Ridge, lasso, and elasticnet showed lower R-squared values, demonstrating their role in preventing overfitting but not necessarily improving prediction accuracy in this case.
- Model Suitability: While regularized models are beneficial for complex datasets with multicollinearity, OLS performed better for this dataset.