Andy Klise's Speedcubing Guide

Algorithms by Dan Harris and Erik Akkersdijk

First 2 Layers

You must solve the cross first. It can be done in 6 moves or less ~82% of the time and ≤7 moves 99.95% of the time These are just optimal example solves; F2L should be solved intuitively.

Easy Cases (1-4)

Reposition Edge (5-8)

U (R U' R') Use (R' F R F') if no U face edges are oriented properly on final slot

y' (**R'** U' R) Note – this image is blue and red because a cube rotation is required y' U' (R' U R)

(**R** U R')

Use (FR'F'R) if no U face edges are oriented properly on final slot

Edge in Place, Corner in U face (31-36)

Corner in Place, Edge in U Face (25-30)

y U' (L' U **L**) d (R U' R')

R' F' R U (R U' R') F

(R U' R' U)(R U' R')

y' (R' U' R U)(**R'** U' R)

U' (F' U F) U (R U' R')

(R U' R' U')(R U' R' U)(R U R')

(R U' R') y' U (R' U R)(R U' R' U)(F' U F)

(U' R U R') y' (U R' U' R) \dot{U}^2 (R U' R') \dot{U}' (**F'** U' F)

 $U' (R U^{2}' R') U (\mathbf{R} U R')$ $U(RUR')U^2(RUR')$ $d(R'UR)U^2(R'UR)$

 $U(RU'R') \vee U'(L'UL)$

Note - (y U') and (d') are interchangeable

U (R U' **R'**) U' (F' U F)

 $(\mathbf{R} \ U' \ R') \ U^2 \ (F' \ U \ F)$

(R U R' U')(**R** U R')

y' (R' **U** R U')(R' U R)

(R U R' U')(R U R' U')(**R** U R')

Reposition Edge and Flip Corner (9-14)

y' U (R' U' R U')(**R'** U' R) y² U' (L U') d' (**L'** U' L)

U' (R U^{2_1} R') y' U (**R'** U' R)

y' U (R' U R U')(**R'** U' R)

 $(U' R U R') U^2 (R U' R')$

 $U' (R U^{2} R') U^{2} (R U' R')$

U' (R U R' U)(**R** U R')

 $y' (U R' U' R) U^2 (R' U R)$

 $y' U (R' U^2 R) U^2 (R' U R)$

Note - (y' U) and (d) are interchangeable

 $d(R'U'R)U^{2}(R'UR)$

 $d(R'U^2R)U^{2'}(R'UR)$

Solved Pair

 $y (L' U' L U)(L' U L) U^{2} (F U F')$

(R U' R' U) y' (R' U' R U')(**R'** U' R)

 $(R U' R') d (R' U^2 R) U^{2'} (R' U R)$ $(R \cup R') \cup (R \cup R') \cup (R' \cup R')$

(R U' R' U) d (R' U' R U')(R' U R)

 $(R \cup R' \cup U')(R \cup U' R') \cup U^2 (F' \cup U' F)$

Split Pair by Going Over (15-18)

 $(R U^2 R') U' (\mathbf{R} U R')$

d (R' U R U')(R' U' R)

y' (R' U R U') y U' (**R** U R') $(R \ U \ R') \ U^2 \ (R \ U' \ R' \ U) (R \ U' \ R') *$ $y(L'UL)U^2y(RUR')$

 $y'(R'U^2R)U(R'U'R)$

Color Codina Green = R U R' U' Family **Blue** = $R U R' U R U^2 R'$ Family Orange = R F' R' F Family

Pair Made on Side (19-22)

 $U(R U^2 R') U(R U' R')$

 $y' U' (R' U^2 R) U' (R' U R)$

$U^2 (R \cup R' \cup)(R \cup R')$

Credits

Dan Harris - http://www.cubestation.co.uk/ Erik Akkersdijk - http://www.erikku.110mb.com Nathan Christie - http://my.fit.edu/~dchristi/cube/ Joël van Noort - http://solvethecube.110mb.com/ Conrad Rider - http://cube.crider.co.uk/ And everyone else

For more guides just like this, visit my website http://www.kungfoomanchu.com/

(R U R' U') U' (R U R' U')(**R** U R') $\dot{U}^2 R^2 U^2 (R' U' R U') R^2$

y' (R' U' R U) U (R' U' R U)(**R'** U' R) $y' U^2 R^2 U^2 (R U R' U) R^2$ F U (R U' R' F')(R U' R')

Orient Last Layer (Two Look) Step 1

Bonus

F (R U R' U') F' f (R U R' U') f' $(R' F R F') U^2 (R' F R F^{2'}) U^2 F$ Probability = 1/8

Move to Second Look Probability = 1/8

Orient Last Layer (Two Look) Step 2

All Edges Oriented Correctly

Probability = 4/27

Probability = 2/27

Notation

Permute Last Layer

* - indicates a faster alg. If this is included, then the previous alg is easier to learn

Permutations of Edges or Corners Only

x' F (R U' R' U)(D R')(D U')(R' U R) D2' (R' U' R U') R U (R U' R' U) R U R² U' R' (U²) * y (M²' U' M') U²' M²' U²' (M' U M²')

Z - Probability = 1/36

 $x (R' U R') D^2 (R U' R') (D^2 R^2)$

x' (R U' R') D (R U R') D' (R U R') D (R U' R') D' $R^{2}UR'y(RU'R'U)*3y'RU'R^{2}*$ $x' (R U' R') D (R U R') u^2 (R' U R) D (R' U' R)$ **E** -Probability = 1/36

R² U' (F B') R² (F' B) U' R²

 $y'(R^2U')(R'U'RU)(RU)(RU'R) *$ $y (M^2' U M) U^2 (M' U M^2')$

Ua - Probability = 1/18

 $(M^{2'} U' M^{2'}) U^2 (M^{2'} U' M^{2'})$

 $(R' M^{2'} R) U' (R' M^{2'} R) U^{2} (R' M^{2'} R) U' (R' M^{2'} R)$

 \mathbf{H} - Probability = 1/72

 $x (R^2 D^2)(R U R') D^2 (R U' R)$

Ab - Probability = 1/18

Probability = 1/72

Swap One Set of Adjacent Corners

(R U²')(R' U²)(R B')(R' U' R U)(R B R² U) y' (R U' R' U')(R U R) D (R' U' R) D' (R' U² R')(U') y² z (U R²')(Ú R²)(Ú F')(Ù R' U R)(Û F U²' R)

Ra - Probability = 1/18

 $(R \ U')(L' \ U)(R' \ U^2)(L \ U')(L' \ U^{2'}) \ L$ y^{2} (R' U^{2} R) U z D' (R^{2} ' U)(R^{1} D R U^{1}) z' *

Ja - Probability = 1/18

(R U R' U')(R' F)(R2 U')(R' U' R U) R' F'

T - Probability = 1/18

 $(R' U^2)(R U^{2'})(R' F)(R U R' U')(R' F' R^2 U')$

Rb - Probability = 1/18

(R' U R U') R² y' (R' U' R U) y x (R U R' U') R² B'

y (R' U' F')(R U R' Ù')(R' F)(R² Ú')(R' U' R U) R' U R * $y^{2}(R'U^{2}R')d'(R'F')(R^{2}U'R'U)(R'F)(R'U')F$

F - Probability = 1/18

Swap One Set of Corners Diagonally

(R' U R' U') y (R' F')(R² U')(R' U R' F)(R F) (R' U R' U') x² y' (R' U R' U') | (R U' R' U) R U

V - Probability = 1/18

[(L U') R U²' (L' U) R']*2 U' $z (R' U R') D (R^{2'} U' R)(U D')(R' D R^{2'} U' R D') *$

Na - Probability = 1/72

F (R U')(R' U' R U)(R' F')(R U R' U')(R' F R F') $F R U (R U^2 R')(L' U R U')(L U^2')(R^2 F')$

Y - Probability = 1/18

[(R' U) L' U² (R U') L]*2 U (R' U R U')(R' F' U')(F R U)(R' F R' F')(R U' R) *

Nb - Probability = 1/72

Double Spins

(R²' u)(R' U R' U')(R u') R² y' (R' U R)

Ga - Probability = 1/18

(R U R') y' (R² u')(R U' R' U)(R' u) R²

Gd - Probability = 1/18

(L² u')(L U' L U)(L' u) L² y' (R U' R') $y^{2} (R^{2} u')(R U' R U)(R' u) R^{2} y (R U' R') *$

Gc - Probability = 1/18

(L' U' L) y (L²' u)(L' U L U')(L u') L² y² (R' U' R)(U D')(R²' U)(R' U R U')(R U') R² D U' * (L' U' L) y' (R²' u)(R' U R U')(R u') R²

Gb - Probability = 1/18

