МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа аэрокосмических технологий

Лабораторная работа №4.4.4 Интерферометр Фабри-Перо

> Работу выполнил Лохматов Арсений Игоревич Б03-303

1 Теоретическая часть

Цель работы: измерение длины волны жлтых линий ртути, определение спектральных характеристик интерферометра Фабри-Перо.

Оборудование: интерферометр Фабри-Перо, линзы, светофильтры, ртутная лампа, катетометр.

Рис. 1: Схема экспериментальной установки

Экспериментальная установка: Схема экспериментальной установки приведеена на рисунке 1. Свет от лампы S, пройдя через линзу Π_0 и светофильтр C, попадает ена интерферометр Фабри-Перо (ИФЛ). Линза Π_0 служит для формиравания пучка лучей (слегка сходящегося или слегка расходящегося). Интерференционные кольца наблюдаются в фокальной плоскости линзы Π . Картина рассматривается через зрительную трубу T, сфокусированную на эту плоскость. Диаметр ыколец измеряются с помощью микроскопа катетометра.

Зрительная труба Т, отсчётный микроскоп - элементы катетометра - прибора, предназначенного для измерения расстояний в вертикальной плоскости вдоль вертикальной оси.

При достаточной яркости лампы можно увидеть, что зелёная линия ртути состоит из нескольких компонентов. Расщепление этой спектральной линии связано с дополнительной энергией, возникающей как в результате взаимодействия магнитных моментов ядра и электрона - сверхтонкая структура (магнитное поле ядра действует на спиновый магнитный момент электрона), так и с изотропическим сдвигом (в парах ртути присутствуют в заметных количествах изотопы с атомными массами от 198 до 204 а.е.м) Каждое зелёное кольцо содержит более десятка близко расположенных компонентов, но разрешение нашего приборане позволяет всех их рассмотреть.

2 Практическая часть

- 1. Включили ртутную лампу, оптическая система была отюстирована.
- 2. Расположили в системе фильтр зелёного цвета. С помощью катетометра, систематическая погрешность которого примем за $\sigma_{\text{катет}} = 0.3$ мм, измерим диаметра 5-6 колец для спектральной линии. Для этого, монотонно перемещая зрительную трубу снизу вверх, определим координаты диаметров колец, начиная с самого дальнего от центра. Пройдя центр, последовательно определим вторые координаты тех же колец. В центре системы колец наблюдается яркий максимум, его мы исключили из нашего эксперимента. Поскольку кольца имеют определённую толщину, будем измерять расстояние до внутренней и до

внешней окружностей, ограничивающих данное кольцо. Результаты измерений представлены в таблице 1.

$$d = |d_1 - d_2|$$

N	$l_{1 \text{ внутр}}, \text{ мм}$	$l_{1 \text{ внеш}}, \text{ мм}$	$l_{2 \text{ внутр}}, \text{ мм}$	$l_{2 \text{ внеш}}, \text{ мм}$	$d_{\text{внутр}}$, мм	$d_{\text{внеш}}$, мм	\overline{d} , mm
1	183.865	184.044	146.205	145.912	37.660	38.132	37.896
2	182.062	182.472	147.899	147.691	34.163	34.781	34.472
3	180.109	180.731	149.871	149.559	30.238	31.172	30.705
4	178.119	178.625	152.084	151.592	26.035	27.033	26.534
5	176.159	175.334	154.636	154.075	20.698	22.084	21.391
6	171.808	172.901	158.275	157.305	13.533	15.596	14.565

Таблица 1: Результаты измерений для фильтра зелёного цвета

N	l_1 , MM	l_2 , MM	d, mm
1	184.715	145.362	39.353
2	184.101	145.859	38.242
3	182.908	147.141	35.767
4	182.322	147.742	34.580
5	181.055	149.029	32.026
6	180.379	149.655	30.724
7	178.939	151.208	27.731
8	178.112	152.009	26.103
9	176.485	153.735	22.750
10	175.491	154.781	20.710
11	172.659 - 173.761	156.568 - 157.429	15.230 - 17.193
12	171.189 - 172.259	157.966 - 158.985	12.204 - 14.293

Таблица 2: Результаты измерений для фильтра жёлтого цвета

3. Для оценки annapamhoй разрешающей способности (характеристики установки в целом), измерим ширину δr колец. Результаты вычислений рапишем в таблицу 3.

$$\delta r = |r_{\text{внутр}} - r_{\text{внеш}}|$$

	Зелён	ый фильт				
N	δr_1 , MM	δr_2 , mm	$\overline{\delta r}$, mm			
1	0.179	0.293	0.236		Жёлтый фил	ьтр
2	0.410	0.208	0.309	N	δr , mm	$\overline{\delta r}$, mm
3	0.622	0.312	0.467	11	0.861 - 1.102	0.981
4	0.506	0.492	0.499	12	1.019 - 1.070	1.044
5	0.825	0.561	0.693			
6	1.093	0.970	1.032			

Таблица 3: Результаты измерений для различных фильтров

Так же запишем параметры установки: фокусное расстояние линзы Π составляет (фокусное расстояние этой линзы мы измеряли самостоятельно с помощью экрана и линейки с систематической погрешностью $\sigma_f=1$ мм) $f=(120\pm1)$ мм и расстояние между зеркалами интерферометра (база интерферометра) L=0.1 мм.

4. Оценим

(a) максимальный порядок интерференции m (номер центрального кольца) для зелёной линии ртути по формуле

$$2L\cos\Theta_m=m\lambda$$
, где $r=d/2$, $\cos\Theta_m=rac{f}{\sqrt{f^2+r^2}}$.

где Θ_m - угол падения волны, длина которой λ . Полагаем, что $\lambda_{\text{зел}}=56\cdot 10^{-5}$ мм, $\lambda_{\text{жел}}=58\cdot 10^{-5}$ мм, тогда

$$m = \left\lceil \frac{2L\cos\Theta_m}{\lambda} \right\rceil$$
 — целое число.

Результаты вычислений представлены в таблице 4 для зелёной линии ртути и в таблице 5 для жёлтой линии ртути.

N	r_1 , MM	r_2 , MM	\overline{r} , MM	$\cos\Theta_m$	m	$\Delta\lambda,~\mathring{A}$
1	18.830	19.066	18.948	0.988	353	15.864
2	17.082	17.391	17.236	0.990	354	15.819
3	15.119	15.586	15.353	0.992	355	15.775
4	13.018	13.517	13.267	0.994	356	15.730
5	10.349	11.042	10.696	0.996	356	15.730
6	6.766	7.798	7.282	0.998	357	15.686

Таблица 4: Результаты вычислений для фильтра зелёного цвета

Видим, что максимальный порядок интерференции для зелёной линии ртути достигается в самом близком к центру кольцу и равен m = 357.

N	<i>r</i> , mm	$\cos\Theta_m$	m	$\Delta\lambda, \ \mathring{A}$	N	r, MM	$\cos\Theta_m$	m	$\Delta\lambda, \ \mathring{A}$
1	19.676	0.987	340	17.059	7	13.865	0.993	342	16.959
2	19.121	0.988	340	17.059	8	13.051	0.994	342	16.959
3	17.883	0.989	341	17.009	9	11.375	0.996	343	16.960
4	17.290	0.990	341	17.009	10	10.355	0.996	343	16.960
5	16.013	0.991	342	16.959	11	8.106	0.998	344	16.860
6	15.362	0.992	342	16.959	12	6.624	0.998	344	16.860

Таблица 5: Результаты вычислений для фильтра жёлтого цвета

Видим, что максимальный порядок интерференции для жёлтой линии ртути достигается в самом близком к центру кольцу и равен m = 344.

(b) дисперсионную область $\Delta \lambda$ по формуле:

$$m(\lambda + \Delta \lambda) = (m+1)\lambda \iff \Delta \lambda = \frac{\lambda}{m}.$$

Результаты вычислений представлены в таблице 4 для зелёной линии ртути и в таблице 5 для жёлтой линии ртути.

5. Построим график $d_i^2 = F(i)$ для зелёной линии ртути, приняв $\lambda(Hg) = 5461$ Å. Результат представлен на рисунке 2.

Диаметр интерференционного кольца d и угол падения световой волны θ для малых θ связаны соотношением $\theta = \frac{d}{2f}$, где f - фокусное расстояние линзы Π .

Рис. 2: График зависимости функции $d_i^2 = F(i)$

Для малых углов θ для условия возникновения интерференционного кольца верно следующее преобразование:

$$\Delta = 2L \left(\frac{1}{\cos \theta} - \tan \theta \sin \theta \right) = 2L \cos \theta \iff \theta_m^2 = 2 - \frac{\lambda}{L} m.$$

При переходе от любого кольца к соседнему с большим диаметром порядок интерференции уменьшается на 1. Так как кольца пронумерованы $i=1\to 6$, возникает зависимость угла на максимума интерференции от его номера или диаметра кольца:

$$\frac{d^2(i)}{4f^2} = \theta^2(i) = const + \frac{\lambda}{L}i \Longleftrightarrow d^2(i) = 4f^2\frac{\lambda}{L}i + const'.$$

Из этого следует, что есть экспериментальную зависимость аппроксимировать прямой, то, зная коэффициент наклона этой прямой, можно найти базу интерферометра L (знак минус показывает, что зависимость уменьшается).

$$4f^2\frac{\lambda}{L} = |k| = 244.309 \Longleftrightarrow L = \frac{4f^2\lambda}{|k|} \Longrightarrow L = \frac{4\cdot 120^2\cdot 5461\cdot 10^{-10}}{244.309} = 0.129 \text{ mm} \approx 0.1 \text{ mm},$$

то есть значение базы интерферометра, указанное на установке, совпадает со значением, полученным экспериментально с учётом погрешности.

6. Рассчитаем средние диаметры \overline{d} для жёлтых пар колец Hg и разности диаметров Δd для колец одного порядка. Результаты вычислений представлены в таблице 6.

Построим график $\overline{d} = F(1/\Delta d)$. Результат представлен на рисунке 3.

По углу наклона получившейся прямой рассчитаем разность длин волн $\Delta\lambda$ для жёлтой пары линий ртути $[\overline{\lambda}=5780\mathring{A}]$, используя формулу:

N	d, MM	\overline{d} , MM	Δd , mm	N	d, mm	\overline{d} , mm	Δd , mm
1	39.353	38.798	1.111	7	27.731	26.917	1.628
2	38.242	30.190	1.111	8	26.103	20.917	1.028
3	35.767	35.174	1.187	9	22.750	21.730	2.040
4	34.580	30.174	1.101	10	20.710	21.730	2.040
5	32.026	31.375	1.302	11	16.212	14.730	2.964
6	30.724	31.373	1.302	12	13.248	14.730	2.904

Таблица 6: Результаты вычислений для фильтра жёлтого цвета

Рис. 3: График зависимости функции $\overline{d} = F(1/\Delta d)$

$$\Delta\lambda = \lambda\Theta\Delta\Theta = \frac{\lambda\overline{d}\Delta d}{4f^2} \Longleftrightarrow \overline{d} = \frac{4f^2\Delta\lambda}{\lambda}\frac{1}{\Delta d}$$

$$\frac{4f^2\Delta\lambda}{\lambda} = k = 40.665~\text{mm}^2 \Longleftrightarrow \Delta\lambda = \frac{\lambda k}{4f^2} \Longrightarrow \Delta\lambda = \frac{5780\cdot 10^{-7}\cdot 40.665}{4\cdot 120^2} = 4.081~\mathring{A}.$$

7. Оценим экспериментальное значение линейной дисперсии интерферометра, использу разность диаметров и разность длин волн жёлтых пар полец ртути и сравним с теоретическим значением по формулам:

$$D_{\text{эксп}}^* = f \frac{d\theta}{d\lambda} = \frac{\Delta d}{2 \cdot \Delta \lambda}, \ D_{\text{эксп}}^* = \frac{2f^2}{\lambda \cdot d}.$$

Результаты вычислений представлены в таблице 7.

Видим, что порядок значений совпадает.

N	$D^*_{ m эксп},{ m mm}/\mathring{A}$	$D^*_{ m reop},{ m mm}/\mathring{A}$	$\overline{D}_{ ext{reop}}^*,{ ext{mm}}/\mathring{A}$
1	0.136	0.127	0.128
2	0.100	0.130	0.120
3	0.145	0.139	0.142
4	0.140	0.144	0.142
5	0.160	0.156	0.159
6	0.100	0.162	0.103
7	0.199	0.180	0.185
8	0.133	0.191	0.100
9	0.250	0.219	0.230
10	0.200	0.241	0.290
11	0.363	0.307	0.342
12	0.000	0.376	0.042

Таблица 7: Результаты вычислений для фильтра жёлтого цвета

8. Оценим аппаратную разрешающую способность, рассчитав $\delta\lambda$ через диаметр кольца d и его ширину $\delta r.$

$$2L\cos\Theta=m\lambda\longrightarrow (\text{дифференцируем})\longrightarrow$$

$$\longrightarrow -2L\sin\Theta\delta\Theta=m\delta\lambda\longrightarrow (\text{делим одно на другое по модулю})\longrightarrow$$

$$\longrightarrow R_{\text{анп}}=\frac{\delta\lambda}{\lambda}=\frac{\cos\Theta}{\sin\Theta\delta\Theta}\simeq\frac{1}{\Theta\cdot\delta\Theta}\simeq\frac{4f^2}{d\cdot\delta r}.$$

Оценим число интерферирующих лучей по аналогии с решёткой по формуле $R_{\text{апп}} = m \cdot N$. А так же рассчитаем теоретические значения добротности интерферометров по формуле:

$$R_{
m ann}^{
m reop}=rac{\lambda}{\delta\lambda}=rac{\pi\sqrt{r}}{1-r}m,$$
 где $r\simeq 0.85$ - коэффициент отражения.

Так же оценим теоретическое значение числа интерферирующих лучей. Результаты вычислений преведены в таблице 8.

Зелёный фильтр							
N	$R_{\rm ann}$	$N_{\rm инт.луч.}$	$R_{\rm ann}^{\rm reop}$	$N_{\text{инт.луч.}}^{\text{теор}}$			
1	6440.463	18	6816.207	19			
2	5407.512	15	6835.517	19			
3	4016.951	11	6854.826	19			
4	4350.300	12	6874.135	19			
5	3885.601	10	6874.135	19			
6	3832.060	10	6893.445	19			

Жёлтый фильтр						
N	$R_{\rm ann}$	$N_{\rm инт.луч.}$	$R_{\rm ann}^{ m reop}$	$N_{\text{инт.луч.}}^{\text{теор}}$		
11	3621.960	10	6642.423	19		
12	4164.584	12	6642.423	19		
	•		,			

Таблица 8: Результаты измерений для различных фильтров

Видим, что значения, полученные в ходе эксперимента, совпадают с теоретическими значениями с учётом погрешности при рассмотрении дальних колец. Такой результат, предположительно, связан с тем, что интерферометр был настроен не на центр колец, а на их дуги.

3 Вывод

В ходе работы мы измеряли спектральные характеристики интерферометра Фабри-Пето в случае наблюдения натриевой лампы.

Мы определили Линейную дисперсию D интерферометра, сравнили его с теоретическим. Значения достаточно близки друг к другу и совпадают с учётом погрешности.

Мы измерили дисперсионную область интерферометра $\Delta \lambda$. Результат согласуется с действительностью, потому что интерферометр Фабри-Перо имеет достаточно большую аппаратную разрешающую способность, но он использовался для анализа довольно узких спектров.

Была определена аппаратная разрешающая способность $R_{\rm ann}$ интерферометра и число интерферирующих лучей. Полученные значения совпадают с теоретическими по порядку величины и в частных случаях.