

Компьютерное зрение

Практический курс Савельева Юлия Олеговна <u>i.o.saveleva.kpfu@gmail.com</u> 2-й семестр, 22.02.2020 г.

Harris Corner Detector

Вычисления градиента изображения

dx

dy

Prewitt

ı	0	-1
_	0	-1
_	0	-1

I	1 1	
0	0	0
-	-1 -1 -	

Sobel

Ι	0	-1
2	0	-2
Ī	0	-1

Ι	2	Ι	
0	0	0	
-1	-2	-1	

Lucas-Canade

```
    1
    8
    0
    -8
    1
    8

    0
```

Algorithm 1: Filter

Data: $img_{H\times W}$, $filter_{h\times w}$ begin

$$padsize = (H + h - 1, W + w - 1)$$

 $img = MirrorPad(img, padsize)$
 $result = zeros(H, W)$
 $for i := 1 to h do$
 $for j := 1 to w do$
 $result += filter[i][j] \circ$
 $img[i : i + H, j : j + W]$

return result

Harris Corner Detector

Вычисление интересных точек

W

Ones

 $\frac{1}{25}$

1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1

Gaussian

1 273

1	4	7	4	1
4	16	26	16	4
7	26	41	26	7
4	16	26	16	4
1	4	7	4	1

Algorithm 2: Harris Corner Detector

Data: $dx_{H\times W}$, $dy_{H\times W}$, $w_{h\times w}$, t begin

$$I_x^2 = dx^2$$

$$I_y^2 = dy^2$$

$$I_x I_y = dx \times dy$$

$$S_x^2 = \text{Filter}(I_x^2, w)$$

$$S_y^2 = \text{Filter}(I_x^2, w)$$

$$S_{xy} = \text{Filter}(I_x I_y, w)$$

$$det = S_x^2 * S_y^2 - (S_{xy})^2$$

$$trace = S_x^2 + S_y^2$$

$$R = det - k * trace^2$$

$$R = \text{NMS}(R)$$

return where $(R \ge t)$

Harris Corner Detector

Разные способы оценки интересности точки

Harris: $det(A) - \kappa \operatorname{trace}^2(A)$

Shi-Tomasi: $min(\lambda_1, \lambda_2)$

FAST Corner Detector

Короткое описание алгоритма

- 1. Выбираем пиксель $\,p\,$ на изображении для определения, является ли он интересной точкой. Значение яркости этого пикселя обозначим $\,{
 m I}_p\,$
- 2. Выбираем пороговое значение $\,t\,$
- 3. Рассмотрим 16 пикселей вокруг p

FAST Corner Detector

Короткое описание алгоритма

- 4. Пиксель p считается углом, если последовательно 12/16 пикселей:
- ullet все ярче чем $\, {
 m I}_p + \, t \,$
- ullet все тусклее чем $\, {
 m I}_p$ $\, t \,$
- 5. Быстрая проверка, чтобы исключить точно не углы проверить только пиксели под номерами 1, 5, 9, 13. Если хотя бы для 3 из них не выполняется одно и то же условие из пункта 4, то этот пиксель не может быть углом.
- 6. После быстрой проверки для оставшихся пикселей можно осуществить полную проверку на поиск 12 последовательных пикселей, для которых выполняется одно и то же условие из пункта 4.

На следующее занятие

1. Harris Corner Detector

2. FAST Corner Detector

- 3. Oriented FAST
- 4. BRIEF Descriptor
- 5. Rotated BRIEF
- 6. ORB
- 7. Object Localization with Key Points
- 8. Bag of Visual Words