

Exercices de mathématiques

Énoncés : V. Gritsenko Corrections : J.-F. Barraud

Anneaux de polynômes III

Exercice 1. Soit $(x^3 - x + 2)$ l'idéal principal engendré par $x^3 - x + 2$ dans l'anneau $\mathbb{Q}[x]$.

- 1. Montrer que l'anneau quotient $\mathbb{Q}[x]/(x^3-x+2)$ est un corps.
- 2. Soit y l'image de x dans $\mathbb{Q}[x]/(x^3-x+2)$ par la surjection canonique. Calculer son inverse.
- 3. Montrer que $1 + y + y^2$ est non nul et calculer son inverse.

Exercice 2. Soit $f \in A[x]$ un polynôme primitif de degré positif sur l'anneau factoriel A. Soit $\pi \in A$ un élément irréductible. Supposons que le coefficient dominant de f ne soit pas divisible par π et que $f \mod \pi$ soit irréductible dans l'anneau quotient $A/(\pi)$. Montrer que f est irréductible dans A[x].

Exercice 3. Les polynômes suivants sont-ils irréductibles?

- 1. $X^5 + 121X^4 + 1221X^3 + 12221X^2 + 122221X + 222222$ dans $\mathbb{Q}[X]$.
- 2. $f(X,Y) = X^2Y^3 + X^2Y^2 + Y^3 2XY^2 + Y^2 + X 1$ dans $\mathbb{C}[X,Y]$ et $\mathbb{F}_2[X,Y]$.
- 3. $f(X,Y) = Y^7 + Y^6 + 7Y^4 + XY^3 + 3X^2Y^2 5Y + X^2 + X + 1$ dans $\mathbb{Q}[X,Y]$.

Exercice 4. L'idéal principal $(x^2 + y^2 + 1)$ est-il maximal dans les anneaux $\mathbb{C}[x, y], \mathbb{R}[x, y], \mathbb{Q}[x, y], \mathbb{Z}[x], \mathbb{Z}_2[x, y]$?

Exercice 5. 1. Soit $f \in \mathbb{Z}[x]$. Considérons la reduction du polynôme f modulo $m : f \mod m \in \mathbb{Z}_m[x]$. Montrer que

$$\mathbb{Z}[x]/(m,f) \cong \mathbb{Z}_m[x]/(f \mod m)$$

- où (m, f) est l'idéal engendré par m et f dans $\mathbb{Z}[x]$ et $(f \mod m)$ est l'idéal engendré par $f \mod m$ dans $\mathbb{Z}_m[x]$. (Indication: Utiliser l'exercice 10 de fiche 4.)
- 2. Si p est un nombre premier et f est un polynôme tel que f mod p est irréductible sur le corps \mathbb{Z}_p , alors l'idéal (p, f) est maximal dans $\mathbb{Z}[x]$.

Exercice 6. Soit A un anneau factoriel.

- 1. Pour $a, b \neq 0$ on a $(a) \cdot (b) = (a) \cap (b)$ ssi $\operatorname{pgcd}(a, b) \sim 1$.
- 2. Si (a, b) est principal, alors (a, b) = (pgcd(a, b)).

Exercice 7. 1. Montrer que les idéaux $(5, x^2 + 3)$, $(x^2 + 1, x + 2)$, $(x^3 - 1, x^4 - 1)$ ne sont pas principaux dans $\mathbb{Z}[x]$.

2. Les idéaux (x, x + 1), $(5, x^2 + 4)$ et $(x^2 + 1, x + 2)$ sont-ils premiers ou maximaux dans $\mathbb{Z}[x]$?

Exercice 8. Démontrer que si J est un idéal premier de l'anneau $\mathbb{Z}[x]$, alors

$$J = (0), (p), (f)$$
 ou $(p, g),$

où p est premier, $f \in \mathbb{Z}[x]$ est un polynôme irréductible de degré positif et g est un polynôme, tel que sa réduction modulo p est irréductible sur \mathbb{Z}_p . Le dernier cas, J = (p, g), nous donne la forme générale d'un idéal maximal dans $\mathbb{Z}[x]$. Le plan de la démonstration est le suivant.

- 1. Soit B un sous-anneau de l'anneau A, I un idéal premier de A. Montrer que $B \cap I$ est soit un idéal premier de B, soit l'anneau B lui-même.
- 2. Soit J un id'eal premier de $\mathbb{Z}[x]$. Montrer que $\mathbb{Z} \cap J = (0)$ ou (p) où p est premier.
- 3. Supposons que $\mathbb{Z} \cap J = (0)$. Montrer que si $J \neq (0)$, alors J est engendré par un polynôme primitif de J de degré minimal.
- 4. Supposons que $\mathbb{Z} \cap J = (p)$. Soit $r_p : \mathbb{Z}[x] \to \mathbb{Z}_p[x]$ la réduction modulo p. Montrer que l'idéal $r_p(J)$ est premier et que J = (p, g).
- 5. Montrer que J est maximal ssi J=(p,g) où p est premier et $r_p(g)$ est irréductible dans $\mathbb{Z}_p[x]$.

- **Correction 1.** 1. Soit $P = x^3 x + 2$. Sa réduction $\bar{P} = x^3 x 1$ modulo 3 est de degré 3 et n'a pas de racine, donc \bar{P} est irréductible dans $\mathbb{Z}_3[x]$. Comme P est primitif, on en déduit que P est irréductible dans $\mathbb{Z}[x]$, puis dans $\mathbb{Q}[x]$. Comme $\mathbb{Q}[x]$ est principal, on en déduit que (P) est maximal, et donc que $\mathbb{Q}[x]/(P)$ est un corps.
 - 2. Dans $\mathbb{Q}[x]/(P)$, on a $y^3-y+2=0$, donc $y(y^2-1)=-2$ et finalement $y(\frac{1}{2}(1-y^2))=1$. Ainsi $y^{-1}=\frac{1}{2}(1-y^2)$.
 - 3. $1 + y + y^2 = \pi(1 + x + x^2)$. On a pgcd $(P, 1 + x + x^2) = 1$, et plus précisément, en utilisant l'algorithme d' Euclide : $13 = (x + 4)P (x^2 + 3x 5)(x^2 + x + 1)$ donc $(y^2 + y + 1)^{-1} = \frac{-1}{13}(y^2 + 3y 5)$.

Correction 2. Notons $f = \sum_{i=0}^d a_i x^i$. On a pgcd $(a_0, \ldots, a_d) \sim 1$ et $\pi \not | a_d$. Notons $\bar{f} \in A/(\pi)[X]$ la réduction de f modulo π . Soit f = gh une factorisation de f dans A[x]. Alors $\bar{f} = \bar{g}\bar{h}$, et donc (quitte à échanger g et h) $\bar{g} \sim 1$ et $\bar{h} \sim \bar{f}$. Comme $\pi \not | a_d$, on a $\deg(\bar{f}) = d$, et donc $\deg(\bar{h}) = d$ puis $\deg(h) \geq d$, et finalement $\deg(h) = d$. Par conséquent $\deg(g) = 0 : g \in A$. Comme g|f, on a $g|c(f) \sim 1$ donc $g \sim 1$. Ainsi, toute factorisation de f dans A[x] est triviale : f est irréductible.

- **Correction 3.** 1. Ce polynôme est unitaire donc primitif. 11 est nombre premier qui divise tous les coefficients sauf le dominant. $11^2 = 121$ ne divise pas le coefficient de degré 0, donc, d'après le critère d'Eisenstein, c'est un polynôme irréductible de $\mathbb{Q}[X]$.
 - 2. $f(X,Y) = (X^2 + 1)Y^3 + (X 1)^2Y^2 + (X 1)$. Regardons f comme un polynôme de A[Y] avec $A = \mathbb{C}[X]$. Alors, f est primitif sur A, et (X 1) est un irréductible de A qui divise tous les coefficients de f sauf le dominant, et dont le carré ne divise pas le terme constant. D'après le critère d'Eisenstein, on en déduit que f est irréductible dans $A[Y] = \mathbb{C}[X,Y]$.
 - Dans $\mathbb{Z}_2[X, Y]$, on a $(X^2 + 1) = (X + 1)^2$ et $f = (X + 1)((X + 1)(Y^3 + Y^2) + 1)$, donc f n'est pas irréductible..
 - 3. $f(X,Y) = Y^7 + Y^6 + 7Y^4 + XY^3 + 3X^2Y^2 5Y + X^2 + X + 1$. Considérons f comme un polynôme de A[X] où $A = \mathbb{Q}[Y]$. Alors f est primitif sur A. Soit $\pi = Y \in A$. π est irréductible, π ne divise pas le coefficient dominant de f, et la réduction \bar{f} modulo π est $\bar{f} = X^2 + X + 1 \in A/(\pi)[X] = \mathbb{Q}[X,Y]/(Y) \simeq \mathbb{Q}[X]$. \bar{f} est donc irréductible dans $A/(\pi)$, donc d'après l'exercice précédent, f est irréductible dans $\mathbb{Q}[X,Y]$.

Correction 4. Soit $f = x^2 + y^2 + 1 \in A[x, y]$ $(A = \mathbb{C}, \mathbb{R}, \mathbb{Q}, \mathbb{Z}, \mathbb{Z}_2)$. Soit B = A[y], et regardons f comme un polynôme de B[x]. Le coefficient dominant de f (qui est 1) est inversible dans B, donc on peut effectuer la division

euclidienne de tout polynôme par $f: \forall g \in B[y], \exists (q,r) \in B[x]^2, g = qf + r$ et $\deg_x r \leq 1$. Notons $r = a(y)x + b(y), a, b \in A[y]$. De plus, pour des raisons de degré, le quotient et le reste de cette division sont uniques. On peut donc identifier $A[x,y]/(x^2+y^2+1)$ à $\{a(y)x+b(y),\ a(y),b(y)\in A[y]\}$. Supposons que \bar{y} soit inversible dans cet quotient. Il existe $a,b\in A[y]$ tels que $y(a(y)x+b(y))=\bar{1}$. On a donc ya(y)=0 et yb(y)=1, ce qui est impossible.

Correction 6. Rappelons que $(a) \cdot (b) = \{\sum_{i=1}^n a_i b_i, n \in \mathbb{N}, a_i \in (a), b_i \in (b)\} = (ab)$. De plus $(ab) \subset (a) \cap (b)$ donc

$$(ab) = (a) \cap (b) \Leftrightarrow (a) \cap (b) \subset (ab)$$

$$\Leftrightarrow \forall m \in A, \ (a|m \text{ et } b|m \Rightarrow ab|m)$$

$$\Leftrightarrow \operatorname{ppcm}(a,b) \sim ab$$

$$\Leftrightarrow \operatorname{ppcm}(a,b) \sim \operatorname{pgcd}(a,b)\operatorname{ppcm}(a,b)$$

$$\Leftrightarrow \operatorname{pgcd}(a,b) \sim 1$$

Si A est principal, alors $\exists d \in A$, (a,b) = (d). Alors $a \in (d)$ et $b \in (d)$ donc d est un diviseur commun à a et b. Si de plus d' est un autre diviseur commun à a et b, alors $a \in (d')$ et $b \in (d')$ et comme (a,b) est le plus petit idéal contenant a et b, on en déduit que $(a,b) = (d) \subset (d')$, et donc que d'|d: finalement, $\operatorname{pgcd}(a,b) = d$.

Correction 7. 1. $I = (5, x^2 + 3)$. On a $\operatorname{pgcd}(5, x^2 + 3) = 1$, donc si I était principal, on aurait $1 \in I$, et donc $I = \mathbb{Z}[X]$. Si $1 \in I$, il existe $P, Q \in \mathbb{Z}[x]$, tels que $1 = 5P + (x^2 + 3)Q$. En considérant la réduction modulo 5 de ces polynômes, on obtient $(x^2 + \overline{3})\overline{Q} = \overline{1}$, ce qui est impossible pour des raisons de degré $(\mathbb{Z}/5\mathbb{Z}$ est intègre). Donc $1 \notin I$, et I n'est donc pas intègre.

 $x^2+1=(x+2)(x-2)+5$, donc $(x^2+1,x+2)=(x+2,5)$. Or (x+2,5) n'est pas principal pour les mêmes raisons que précédemment.

On a $(x-1)=(x^4-1)-x(x^3-1)$ donc $(x-1)\subset (x^4-1,x^3-1)$. Par ailleurs, $(x-1)|(x^4-1)$ et $(x-1)|(x^3-1)$ donc $x^4-1\in (x-1)$ et $x^3-1\in (x-1)$, donc $(x^4-1,x^3-1)\subset (x-1)$. Donc (x^4-1,x^3-1) est principal.

2. $I=(x,x+1)=\mathbb{Z}$ car 1=(x+1)-x. Donc I n'est pas propre. $I=(5,x^2+4)$. $\mathbb{Z}[X]/I\sim\mathbb{Z}_5/(x^2+\bar{4})$. Mais $(x^2+\bar{4})=(x-\bar{1})(x+\bar{1})$ est réductible dans $\mathbb{Z}_5[x]$, donc $\mathbb{Z}_5/(x^2+\bar{4})$ n'est pas intègre : I n'est pas premier.

 $I = (x^2 + 1, x + 2) = (x + 2, 5)$. $\mathbb{Z}[x]/I \simeq \mathbb{Z}_5[x]/(x + \bar{2})$. $x + \bar{2}$ est irréductible dans $\mathbb{Z}_5[x]$, qui est principal, donc $(x + \bar{2})$ est maximal, donc le quotient est un corps, et I est maximal.

- **Correction 8.** 1. Soit $a, b \in B$, $ab \in I \cap B$. Alors $ab \in I$ donc $a \in I$ ou $b \in I$. Comme $a, b \in B$, on a $a \in I \cap B$ ou $b \in I \cap B$. Donc, si $I \cap B$ est propre, $I \cap B$ est premier.
 - 2. Soit J un idéal premier de $\mathbb{Z}[X]$. Alors $J \cap \mathbb{Z}$ est soit \mathbb{Z} soit un idéal premier de \mathbb{Z} . Si $J \cap \mathbb{Z} = \mathbb{Z}$, alors $1 \in J$, et donc $J = \mathbb{Z}[X]$, ce qui est exclu. On en déduit que J = (0) ou J = (p) avec p premier.
 - 3. On suppose $J \cap \mathbb{Z} = (0)$ et $J \neq (0)$. Soit alors f un polynôme de $J \setminus \{0\}$ de degré minimal. Notons $f = c(f)f_0$ où $f_0 \in \mathbb{Z}[x]$ est primitif. Comme J est premier, on a $c(f) \in J$ ou $f_0 \in J$. Comme $J \cap \mathbb{Z} = \{0\}$, le premier cas est exclu, donc $f_0 \in J$.
 - Soit maintenant $g \in J$. Soit $g = f_0 q + r$ la division euclidienne de g par f_0 dans \mathbb{Q} $(q, r \in \mathbb{Q}[x])$. Notons $q = \frac{a}{b}q_0$ avec $q_0 \in \mathbb{Z}[x]$ primitif, et $r = \frac{a'}{b'}r_0$, avec $r_0 \in \mathbb{Q}[x]$ primitif.
 - Alors $bb'g = ab' q_0 f_0 + a'b r_0$ On en déduit que $a'b r_0 \in J$, et pour des raisons de degré, $r_0 = 0$. Finalement, $bb'g = ab' q_0 f_0$, et en considérant les contenus, on en déduit que bb'|ab', donc b|a, et donc $q \in \mathbb{Z}[x]$. On en déduit que $g \in (f_0)$, et finalement $J = (f_0)$.
 - 4. On suppose que $J \cap \mathbb{Z} = (p)$. Soit r_p la projection $\mathbb{Z}[x] \to \mathbb{Z}_p[x]$. Soit $\alpha, \beta \in \mathbb{Z}_p[x]$ tels que $\alpha\beta \in r_p(J)$. Soit f, g des représentants de α et β (i.e. $r_p(f) = \alpha$, $r_p(g) = \beta$). Alors $fg \in r_p^{-1}(r_p(J)) = J + (p) = J$. Donc $f \in J$ ou $g \in J$, et donc $\alpha \in r_p(J)$ ou $\beta \in r_p(J) : r_p(J)$ est premier. $\mathbb{Z}_p[x]$ est principal, donc il existe un polynôme π irréductible dans $\mathbb{Z}_p[x]$ tel que $r_p(J) = (\pi)$. Soit g un représentant de π . Alors J = (p, g): en effet, on a vu que $J = r_p^{-1}((\pi))$ et $r_p^{-1}((\pi)) = (g) + (p) = (p, g)$.
 - 5. Supposons J maximal dans $\mathbb{Z}[x]$. J est en particulier premier, donc a une des deux formes ci dessus. Supposons J=(f), avec f irréductible et primitif. Soit p un nombre premier ne divisant pas le coefficient dominant de f. Alors $J\subset (p,f)\subset \mathbb{Z}[x]$, mais $(p,f)\neq \mathbb{Z}[x]$. En effet, sinon, il existerait $g,h\in \mathbb{Z}[x]$ tels que 1=pg+fh, et en considérant la réduction modulo p,\bar{f} serait inversible dans $\mathbb{Z}_p[x]$: comme deg $\bar{f}>0$, c'est impossible. On en déduit que J n'est pas maximal.

J est donc de la forme (p,g), avec $r_p(g)$ irréductible dans $\mathbb{Z}_p[x]$.