Laporan Tugas Kecil 2 IF2211 Strategi Algoritma

Implementasi Convex Hull untuk Visualisasi Tes *Linear Separability Datase*t dengan Algoritma Divide and Conquer Semester II Tahun 2021/2022

Disusun oleh:

Jevant Jedidia Augustine 13520133

SEKOLAH TEKNIK ELEKTRO DAN INFORMATIKA **INSTITUT TEKNOLOGI BANDUNG** 2022

Algoritma Divide and Conquer

Untuk mencari *convex hull* dari kumpulan beberapa titik, akan dicari terlebih dahulu titik yang memiliki absis terkecil (P1) dan yang terbesar (P2). Kemudian kumpulan titik yang dimasukan akan dibagi menjadi 2 bagian, titik yang berada di atas garis P1P2 dan titik yang berada dibawah garis P1P2. Berdasarkan titik-titik yang telah dibagi, akan dicari *convex hull* pada bagian atas garis dan bagian bawah garis.

Fungsi untuk mencari *convex hull* dari bagian bawah dan atas garis merupakan fungsi rekursif. Basis:

- Bila tidak terdapat titik pada bagian tertentu yang akan dicari, maka akan dikembalikan pasangan titik [P1,P2]
- Bila hanya terdapat 1 titik (P3) pada bagian tertentu yang dicari, maka akan dikembalikan pasangan titik [P1.P3] dan [P3.P2]

Rekurens:

- Dari kumpulan titik pada bagian tertentu, akan dicari titik yang terjauh (Pn) dari garis P1P2
- Kumpulan titik pada bagian tersebut kemudian akan dibagi menjadi bagian A, B, C, dan D berdasarkan titik P1, titik terjauh, dan P2. Pembagian dapat dilihat dari gambar dibawah.

- Convex hull pada bagian A dan D akan dicari menggunakan fungsi rekursif. Untuk bagian A, P2 akan diganti dengan titik terjauh, sedangkan untuk bagian B, P1 akan diganti dengan titik terjauh. Bagian B dan C akan dihiraukan karena berada di dalam garis convex hull.
- Hasil gabungan dari *convex hull* bagian A dan D merupakan *convex hull* dari masukan kumpulan titik.

Source Code Program

MyConvexHull.py

Fungsi bagiTitik

Fungsi findFar

```
def findFar(P,I,P1,P2): #Cari titik terjauh dari garis P1P2
    distance = []
    numArray = np.array(P)
    A = np.linalg.norm(numArray[P2]-numArray[P1])
    for i in I: #Hitung jarak tiap titik
        d = np.linalg.norm(np.cross(numArray[P2]-numArray[P1],numArray[P1]-numArray[i]))/A
        distance.append(d)
    furthest = max(distance) #Cari jarak terjauh
    for i in range(len(distance)): #Cari indeks dari titik dengan jarak terjauh
        if distance[i] == furthest:
            loc = i
                 break
    return I[loc]
```

Fungsi findHull

Fungsi ConvexHull

main.py

Visualisasi data Iris

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn import datasets
from MyConvexHull import ConvexHull

#Visualisasi data iris
data = datasets.load_iris()
#Buat DataFrame
df = pd.DataFrame(data.data, columns=data.feature_names)
df['Target'] = pd.DataFrame(data.target)
```

Sepal Width vs Sepal Length

Petal Width vs Petal Length

Visualisasi data wine

```
#Visualisasi data wine
data = datasets.load_wine()
#Buat DataFrame
df = pd.DataFrame(data.data, columns=data.feature_names)
df['Target'] = pd.DataFrame(data.target)
```

Malic Acid vs Alcohol

Total Phenols vs Magnesium

Visualisasi data breast cancer

```
#Visualisasi data breast_cancer
data = datasets.load_breast_cancer()
#Buat DataFrame
df = pd.DataFrame(data.data, columns=data.feature_names)
df['Target'] = pd.DataFrame(data.target)
```

Perimeter vs Area

Compactness vs Smoothness

```
#Visualisasi Compactness vs Smoothness
plt.figure(figsize = (10, 6))
colors = ['b','r','g']
plt.title('Compactness vs Smoothness')
plt.xlabel(data.feature_names[4])
plt.ylabel(data.feature_names[5])
for i in range(len(data.target_names)):
    bucket = df[df['Target'] == i]
    bucket = bucket.iloc[:,[4,5]].values
    hull = ConvexHull(bucket) #Penggunaan pustaka MyConvexHull
    plt.scatter(bucket[:, 0], bucket[:, 1], label=data.target_names[i])
    for simplex in hull:
        plt.plot(bucket[simplex, 0], bucket[simplex, 1], colors[i])
plt.legend()
plt.show()
```

Screenshot Percobaan

Dataset Petal Length vs Petal Width (Iris)

Dataset Sepal Length vs Sepal Width (Iris)

Dataset Malic Acid vs Alcohol (wine)

Dataset Total Phenol vs Magnesium

Dataset Area vs Perimeter (breast cancer)

Dataset Compactness vs Smoothness

Link Source Code

Github: https://github.com/JevantJedidia/Tucil2_13520133

Poin	Ya	Tidak
1. Pustaka myConvexHull berhasil dibuat	/	
dan tidak ada kesalahan	·	
2. Convex hull yang dihasilkan sudah	/	
benar	·	
3. Pustaka myConvexHull dapat		
digunakan untuk menampilkan convex	/	
hull setiap label dengan warna yang		
berbeda.		
4. Bonus : program dapat menerima input		
dan menuliskan output untuk dataset	/	
lainnya.		