การทดลองที่ 6

ฟิสิกัลเพนดูลัมและทฤษฎีแกนขนาน

วัตถุประสงค์การทดลอง

- 1. เพื่อศึกษาหาค่าโมเมนต์ความเฉื่อยของวัตถุรูปทรงเรขาคณิต
- 2. เพื่อศึกษาหาโมเมนต์ความเฉื่อยของแท่งโลหะรอบจุดหมุนที่ไม่ใช่จุดศูนย์กลางมวล

ทฤษฎี

รูปที่ 1 ลูกตุ้มรูปร่างไม่แน่นอนเอียงทำมุม heta ใด ๆ กับแนวดิ่งรอบจุดหมุน O

ฟิสิกัลเพนดูลัม ดังรูปที่ 1 เอียงทำมุม θ ใด ๆ กับแนวดิ่งรอบจุดหมุน โดยไม่มีแรงเสียดทานจุดศูนย์ถ่วงอยู่ ต่ำกว่าและห่างจากจุดหมุน h ให้มวลของลูกตุ้ม = m โมเมนต์ความเฉื่อยรอบจุดหมุน = I จะได้

<u>ทอร์คบิดกลับ</u>

$$\Gamma = -(mg)(h\sin\theta) \tag{1}$$

หลังจากปล่อยมวล มวลจะแกว่งรอบจุดหมุน O เหมือนกับลูกตุ้มนาพิกา ถ้าให้ heta มีขนาดเล็กมาก $\sin heta \cong 0$ สมการ (1) จะเปลี่ยนเป็น

$$\Gamma = -(mgh)\theta$$
 $mgh =$ ค่าคงที่ แทนด้วย k'
 $k' = -\frac{\Gamma}{\theta} = mgh$

<u>ความถี่เชิงมุม</u>

$$\omega = \sqrt{\frac{k'}{I}} = \sqrt{\frac{mgh}{I}}$$
 (2)

คาบ

$$T = 2\pi \sqrt{\frac{I}{k'}} = 2\pi \sqrt{\frac{I}{mgh}}$$
 (3)

ขณะทดลองเราให้ heta เล็กมาก ๆ แต่ถ้า heta มีขนาดใหญ่ขึ้น คาบเวลา T จริง ๆ จะต้องแทนด้วย

$$T = 2\pi \sqrt{\frac{I}{mgh}} \left(1 + \frac{1^2}{2^2} \sin^2 \frac{\theta}{2} + \frac{1^2}{2^2} \frac{3^2}{4^2} \sin^4 \frac{\theta}{2} + \dots \right)$$

สำหรับโมเมนต์ความเฉื่อยของวัตถุรูปทรงต่างๆ รอบแกนที่ผ่านจุดศูนย์กลางมวล แทนด้วย I_{cm} ถ้าเราย้าย แกนหมุนไป ห่างจากจุดศูนย์กลางมวลออกไปเป็นระยะทาง (d) โดยมีแนวแกนขนานกับแนวเดิมโมเมนต์ความเฉื่อย จะมีค่าเปลี่ยนไปเป็น

$$I = I_{cm} + md^2$$

ตามทฤษฎีแกนขนาน (parallel axis theorem) และในการหาโมเมนต์ความเฉื่อยของวัตถุ (I) อีกวิธีหนึ่ง เราอาจหาได้โดยการนำเอาวัตถุนั้นมาแกว่งให้เคลื่อนที่แบบซิมเปิลฮาร์โมนิค แล้วคำนวณหาโมเมนต์ความเฉื่อยได้จาก สมการ

$$T = 2\pi \sqrt{\frac{I}{mgd}} \tag{4}$$

(หาข้อมูลเพิ่มเติมได้จากหนังสือฟิสิกส์ระดับมหาวิทยาลัย เรื่องทฤษฎีแกนขนานและฟิสิกัลแพนดูลัม)

ดังนั้น
$$I = \frac{mgdT^2}{4\pi^2}$$
 (5)

อุปกรณ์การทดลอง

- 1. แท่งอลูมิเนียมยาว 0.60 เมตร เจาะรูทั้งสองด้าน
- 2. แผ่นไม้สี่เหลี่ยมผืนผ้า, แผ่นไม้กลม, วงแหวน
- 3. ชุดทดลองอเนกประสงค์ทางกลศาสตร์

รูปที่ 2 ภาพแสดงอุปกรณ์การทดลอง

วิธีการทดลอง

ตอนที่ 1

- 1. นำเอาวัตถุรูปทรงต่างๆ ที่เตรียมไว้สำหรับใช้ทำการทดลองหาค่าโมเมนต์ความเฉื่อย (I) ทั้งหมดมาชั่งเพื่อ หาค่ามวล (m) และวัดความสูง (l) ความกว้าง (a) ความยาว (b) หรือรัศมี (R) แล้วแต่รูปทรงของ วัตถุ บันทึกค่าต่างๆ ในตารางลงบันทึกผลการทดลอง (ตารางที่ 1)
- 2. คำนวณหาค่าโมเมนต์ความเฉื่อยรอบจุดศูนย์กลางมวลของวัตถุรูปทรงต่างๆ โดยดูสูตรในการคำนวณจาก ตารางบันทึกผลการรทดลอง (ตารางที่ 1) ช่องที่ 2 แล้วบันทึกค่าโมเมนต์ความเฉื่อยรอบจุดศูนย์กลางมวล (I_{cm}) ของวัตถุรูปทรงต่างๆ ทั้งหมดลงในตารางบันทึกผลการทดลอง (ตารางที่ 1) ช่องที่ 3
- 3. นำเอาแท่งอลูมิเนียมมาแขวนในที่แขวนที่กำหนดให้ บนชุดทดลองอเนกประสงค์ทางกลศาสตร์ แล้วล็อคบน บานพับดังรูปที่ 3

รูปที่ 3 นำวัตถุรูปทรงต่างๆมาแขวนไว้

- 4. วัดระยะห่างระหว่างจุดศูนย์กลางมวล (cm) กับจุดแขวนหรือจุดหมุน (d) บันทึกค่า d ในตารางบันทึกผล การทดลอง (ตารางที่ 1) ช่องที่ 4
- 5. คำนวณหาค่า md^2 แล้วบันทึกค่า md^2 ในตารางบันทึกผลการทดลอง (ตารางที่ 1) ช่องที่ 5
- 6. คำนวณหาค่าโมเมนต์ความเฉื่อยรอบจุดหมุนหรือจุดแขวนโดยใช้ทฤษฎีแกนขนาน $I=I_{cm}+md^2$ นำค่าจาก ตารางบันทึกผลการทดลอง (ตารางที่ 1) ช่องที่ 3 รวมกับช่องที่ 5 แล้วบันทึกค่าในช่องที่ 6
- 7. นำเอาแท่งอลูมิเนียม มาแขวนในที่แขวนตามจุดที่กำหนดให้ดึงแท่งอลูมิเนียมออกมาเล็กน้อย (ประมาณ 5 องศา) แล้วล็อคบนบานพับ

- 8. ปรับ Reset ให้อยู่ในตำแหน่ง 00 แล้วกดปุ่ม Start ปล่อยให้แท่งอลูมิเนียมแกว่งครบ 10 รอบ แล้วกดปุ่ม Stop หยุดเวลาบันทึกผลลงในตารางที่ 2 คำนวณหาคาบเวลา (*T*) แล้วบันทึกผลการทดลอง
- 9. นำเอาแท่งอลูมิเนียมออกจากจุดแขวน แล้วนำเอาวัตถุรูปทรงอื่นๆ มาแขวนแทน (เรียงลำดับตามข้อมูลใน ตารางบันทึกผลการทดลอง) แล้วทำตามข้อ 7. ถึงข้อ 8.
- 10. คำนวณหาค่าโมเมนต์ความเฉื่อยรอบจุดหมุนหรือจุดแขวน (I) ของแท่งวัตถุโดยใช้สมการ (5) แล้วบันทึก ผลการคำนวณ
- 11. หาเปอร์เซ็นต์ความแตกต่างระหว่างโมเมนต์ความเฉื่อยที่ได้จากการคำนวณในตารางที่ 1 (เป็นค่าคำนวณจาก สูตร) กับโมเมนต์ความเฉื่อยที่ได้จากตารางที่ 2 (เป็นค่าคำนวณจากการแกว่ง)

ตอนที่ 2 หาโมเมนต์ความเฉื่อยรอบจุดหมุนที่ไม่ใช่จุดศูนย์กลางมวล

- 1. แขวนแท่งอลุมิเนียมกับจุดหมุนที่ตำแหน่ง 0, 5, 10, 15, 20, 25 cm จากจุดกึ่งกลางมวล แล้วแกว่งด้วยมุม heta เล็กๆ (5 องศา) ปรับ Reset ให้อยู่ในตำแหน่ง 00 แล้วกดปุ่ม Start ปล่อยให้แท่งอลูมิเนียมแกว่งครบ 10 รอบ แล้วกดปุ่ม Stop หยุดเวลาบันทึกผลลงในตารางที่ 3 ตอนที่ 2 ทำการทดลองซ้ำตำแหน่งละ 3 ครั้งหา ค่าเวลาเฉลี่ย แล้วคำนวณหาคาบเวลา (T) บันทึกผลการทดลอง
- 2. คำนวณหาโมเมนต์ความเฉื่อยจากคาบและสูตร เทียบกัน และหาเปอร์เซนต์ความแตกต่าง

ใบบันทึกผลการทดลอง การทดลองที่ 6 ฟิสิกัลเพนดูลัมและทฤษฎีแกนขนาน

ชื่อผู้ทดลอง	1			รหัส			กลุ่ม	
ชื่อผู้ร่วมทดลอง	2			รหัส			กลุ่ม	
	3			รหัส			กลุ่ม	
	4			รหัส			กลุ่ม	
ทำการทดลองวัน	ที่			เวลา				
ผลการทดลอง	เตอน	ที่ 1						
แท่งอลูมิเนียม		สูง (l)	เมตร			มวล	(<i>m</i>)	กิโลกรัม
แผ่นไม้รูปสี่เหลี่ย	มฝืนผ้า	- า กว้าง (<i>a</i>)	เมตร	ยาว (<i>b</i>)	เมตร	มวล	(<i>m</i>)	กิโลกรัม
วงแหวน		รัศมี ($\mathit{R}_{\scriptscriptstyle m l}$)	เมตร	รัศมี (R_{2})	เมตร	มวล	(<i>m</i>)	กิโลกรัม
แผ่นไม้กลม		รัศมี (R)					(<i>m</i>)	กิโลกรัม
		านวณค่าโมเมนต์ควา		•	ง ๆ โดยใช้เ	ាฤษ <i>ร</i> ู	ปีแกนขนา น	Ь
วัตถุที่ต้องการ		สมการของโมเมนต์		มเมนต์ความ	จุดหมุนห	่าง		I a
โมเมนต์ความเจ็	นื่อย	ความเฉื่อยรอบจุด	เจ็	นื่อยรอบจุด	จากจุด	ศก.	md^2	$I_{nฤษฎีแกนขนาน} \ (I_{cm}+md^2)$
(I)		ศก.มวล ($I_{\it cm}$)	ศูนย์ก	เลางมวล ($m{I}_{cm}$)	มวล (<i>a</i>	!)		$(\mathbf{I}_{cm} + m\mathbf{u})$
แท่งอลูมิเนียม		$\frac{1}{12}ml^2$						
แผ่นไม้สี่เหลี่ยมผื	นผ้า	$\frac{1}{12}m(a^2+b^2)$						
วงแหวนหนา		$\frac{1}{2}m(R_1^2 + R_2^2)$						
แผ่นไม้กลม		$\frac{1}{2}mR^2$						
		ลงชื่อ			อาว	จารย์		
ตัวอย่างการคำนว	าณ							

ตารางที่ 2 แสดงการคำนวณหาค่าโมเมนต์ความเฉื่อยของวัตถุรูปทรงต่าง ๆ โดยใช้ทฤษฎีการแกว่งของฟิสิ กัลเพนดูลัม

วัตถุที่ต้องการหาค่า โมเมนต์ความเฉื่อย (I)	เวลาการ แกว่ครบ 10 รอบ (<i>t</i>)(วินาที)	คาบเวลา $(T=rac{1}{t})$ (วินาที)	ระยะห่างระหว่าง จุด ศก.มวล กับ จุดแขวนหรือจุด หมุน (d) (เมตร)	I ฟิสิกัลเพ็นดูลัม $\left(mgdT^2 / 4\pi^2 ight)$	I _{ทฤษฎีแกนขนาน} (นำมาจาก ตารางที่ 1)	% ความ แตกต่าง
แท่งอลูมิเนียม						
ไม้สี่เหลี่ยมผืนผ้า						
วงแหวนหนา						
แผ่นไม้กลม						

占	6
ลงชื่อ	อาจารย์

ผลการทดลองตอนที่ 2

m แท่ปกละ	=	 .ka

ตารางที่ 3

			บ 10 รอบ (s	5)	0001			%
h (m)	ครั้งที่ 1	ครั้งที่ 2	ครั้งที่ 3	เวลา	คาบ _	I _{คาบ}	$I_{\ _{ m gros}}$	ความ
	t_1	t_2	t_3	เฉลี่ย $\it t$	T			แตกต่าง
0.00								
0.05								
0.10								
0.15								
0.20								
0.25								

	ลงชื่อ	อาจารย้	
ตัวอย่างการคำนวณ			

วิเคราะห์ผลการทดลอง

สรุปผลการทดลอง
อภิปรายผลการทดลอง
ข้อเสนอแนะ

คำถามท้ายการทดลอง

1. เมเมนตความเฉอย (Moment of Inertia) หรอความเฉอยของการหมุน (Rotational Inertia) หมายถงอะ เร สาเหตุใดสมการของโมเมนต์ความเฉื่อยรอบจุดศูนย์กลางมวล (I_{cm}) แท่งอลูมิเนียมที่มีมวล m ยาว I จึงมีค่า
$I_{cm} = \frac{1}{12}ml^2$
2. ให้อธิบายถึงทฤษฎีแกนขนาน ทำไมค่าโมเมนต์ความเฉื่อยรอบจุดหมุนหรือจุดแขวนโดยใช้ทฤษฎีแกน -
ขนาน จึงหาจากสมการ $I=I_{cm}+md^2$
3. การนำเอาวัตถุมาแกว่งให้เคลื่อนที่แบบซิมเปิลฮาร์โมนิค แล้วนำค่าคาบเวลาการแกว่งหาค่าโมเมนต์ความ $I=rac{mgdT^2}{4\pi^2}$ ได้อย่างไร (ให้พิสูจน์)

4. แขวนไม้เมตรที่ปลายข้างหนึ่ง ดังรูปที่ 1 จงหาคาบของการสั่น

ค้นคว้าเพิ่มเติมที่ http://203.158.100.140/labphysics1

	ท่านสามารถเลี้ยงแท่งมวลอยู่บนมือได้ โดยผ่านการ	ทดลองทางอินเทอร์เน็ตอย่างน่าม	มห ั ศจรรย์ ซึ่งฟิสิกส์ราว
มงค	จะเชื่อมโยงความสัมพันธ์ระหว่างโมเมนต์ความเฉื่อย	จุดศูนย์กลางมวล ของแท่งมวล	ให้ท่านได้ทราบในหน้า
ถัดไร	J <u>คลิกครับ</u>		

🔾 หนังสือ	อิเล็กทรอนิกส์ 🧼		
ฟิสิกส์ 1 (ภาคกลศาสตร์(ฟิสิกส์ 1 (ความร้อน)		
พิสิกส์ 2	กลศาสตร์เวกเตอร์		
โลหะวิทยาฟิสิกส์	เอกสารคำสอนฟิสิกส์ 1		
ฟิสิกส์ 2 (บรรยาย(แก้ปัญหาฟิสิกส์ด้วยภาษา C		
ฟิสิกส์พิศวง	สอนฟิสิกส์ผ่านทางอินเตอร์เน็ต		
ทดสอบออนไลน์	วีดีโอการเรียนการสอน		
หน้าแรกในอดีต	แผ่นใสการเรียนการสอน		
เอกสารการสอน PDF	กิจกรรมการทดลองทางวิทยาศาสตร์		
แบบฝึกหัดออนไลน์	สุดยอดสิ่งประดิษฐ์		
🧼 การท	เดลองเสมือน 🥥		
บทความพิเศษ	ตารางธาตุ)ไทย1) 2 (Eng)		
พจนานุกรมฟิสิกส์	ลับสมองกับปัญหาฟิสิกส์		
ธรรมชาติมหัศจรรย์	สูตรพื้นฐานฟิสิกส์		
การทดลองมหัศจรรย์	ดาราศาสตร์ราชมงค		
🍑 แภภ	ฝึกหัดกลาง 🧼		
แบบฝึกหัดโลหะวิทยา	แบบทดสอบ		
ความรู้รอบตัวทั่วไป	อะไรเอ่ย ?		
ทดสอบ)เกมเศรษฐี(คดีปริศนา		
ข้อสอบเอนทรานซ์	เฉลยกลศาสตร์เวกเตอร์		
คำศัพท์ประจำสัปดาห์			
🧼 คว	ามรู้รอบตัว 🍚		
การประดิษฐ์แของโลก	ผู้ได้รับโนเบลสาขาฟิสิกส์		
นักวิทยาศาสตร์เทศ	นักวิทยาศาสตร์ไทย		
ดาราศาสตร์พิศวง	การทำงานของอุปกรณ์ทางฟิสิกส์		
การทำงานของอุปกรณ์ต่าง ๆ			

🔷 การเรียนการสอนพิ	ฟิสิกส์ 1 ผ่านทางอินเตอร์เน็ต 🍛
	2. เวกเตอร์
3. การเคลื่อนที่แบบหนึ่งมิติ	4. การเคลื่อนที่บนระนาบ
5. กฎการเคลื่อนที่ของนิวตัน	6. การประยุกต์กฎการเคลื่อนที่ของนิวตัน
7. งานและพลังงาน	8. การดลและโมเมนตัม
9. การหมุน	10. สมดุลของวัตถุแข็งเกร็ง
11. การเคลื่อนที่แบบคาบ	12. ความยืดหยุ่น
13. กลศาสตร์ของไหล	14. ปริมาณความร้อน และ กลไกการถ่ายโอนความร้อน
15. กฎข้อที่หนึ่งและสองของเทอร์โมไดนามิก	16. คุณสมบัติเชิงโมเลกุลของสสาร
17. คลื่น	18.การสั่น และคลื่นเสียง
🔷 การเรียนการสอนพิ	ฟิสิกส์ 2 ผ่านทางอินเตอร์เน็ต 🍑
1. ไฟฟ้าสถิต	2. สนามไฟฟ้า
3. ความกว้างของสายฟ้า	4. ตัวเก็บประจุและการต่อตัวต้านทาน
5. ศักย์ไฟฟ้า	6. กระแสไฟฟ้า
7. สนามแม่เหล็ก	8.การเหนี่ยวนำ
9. ไฟฟ้ากระแสสลับ	10. ทรานซิสเตอร์
11. สนามแม่เหล็กไฟฟ้าและเสาอากาศ	12. แสงและการมองเห็น
13. ทฤษฎีสัมพัทธภาพ	14. กลศาสตร์ควอนตัม
15. โครงสร้างของอะตอม	16. หิวเคลียร์
🗼 การเรียนการสอนฟิ	สิกส์ทั่วไป ผ่านทางอินเตอร์เน็ต 🍚
1. จลศาสตร์)kinematic)	2. จลพลศาสตร์ (kinetics)
3. งานและโมเมนตัม	4. ซิมเปิลฮาร์โมหิก คลื่น และเสียง
5. ของไหลกับความร้อน	6.ไฟฟ้าสถิตกับกระแสไฟฟ้า
7. แม่เหล็กไฟฟ้า	8. คลื่นแม่เหล็กไฟฟ้ากับแสง
9. ทฤษฎีสัมพัทธภาพ อะตอม และหิวเคลียร์	

