We are recovering from significant hosting issues. Much of the site is functional, but currently email delivery is not. Please bear with us as we validate site functionality.



MITx: 6.00.1x Introduction to Computer Science and Programming U..

<u>Help</u>



| <ul><li><u>Week 6:</u> <u>Algorithmic</u> <u>Complexity</u></li></ul>                                      | $\bigcirc O(n)$                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                            | $\bigcirc O(n \log n)$                                                                                                                                   |
| 11. Computational Complexity Finger Exercises                                                              | $\bigcirc O(n^2)$                                                                                                                                        |
| 12. Searching and Sorting Algorithms Finger Exercises  Problem Set 6 Problem Set due Mar 9, 2017 15:30 PST | 2. If the application is asked to find $x$ in $L$ exactly one time, what is the worst case time complexity for Application B? $O(1)$                     |
| <ul><li>► Week 7:     Plotting</li><li>► Exit Survey</li></ul>                                             | $\bigcirc O(\log n)$                                                                                                                                     |
|                                                                                                            | $\bigcirc O(n)$                                                                                                                                          |
| ► <u>Sandbox</u>                                                                                           | $\bigcirc O(n \log n)$                                                                                                                                   |
|                                                                                                            | $\bigcirc \ O(n^2)$                                                                                                                                      |
|                                                                                                            | 3. If the application is asked to find $x$ in $L$ $k$ times, what is the worst case time complexity for Application A? $O(1)$ $O(k + \log n)$ $O(k + n)$ |
|                                                                                                            | $\bigcirc O(kn)$                                                                                                                                         |
|                                                                                                            | $O(n + k \log n)$                                                                                                                                        |

| $\bigcirc O(kn)$                    |                                                                                                |
|-------------------------------------|------------------------------------------------------------------------------------------------|
| $\bigcirc O(n \log n)$              | $\log n)$                                                                                      |
| $\bigcirc O(n \dashv$               | $-k\log n)$                                                                                    |
| $\bigcirc O(n \log n)$              | $\log n + k \log n)$                                                                           |
| $\bigcirc$ $O(kn$                   | $\log n + \log n)$                                                                             |
|                                     | s) of <i>k</i> would make Application A be faster (i.e., ally grow slower than) Application B? |
| asymptotica                         | ally grow slower than) Application B?                                                          |
| asymptotica $oxedsymbol{arphi} k=1$ | ally grow slower than) Application B?                                                          |
| asymptotica $k=1$ $k=n$             | ally grow slower than) Application B? $oldsymbol{n}$                                           |

| $oxedsymbol{\square} \; k = n$                                                                              |                 |
|-------------------------------------------------------------------------------------------------------------|-----------------|
| $oxedsymbol{\square} \; k = \log n$                                                                         |                 |
| $oxedsymbol{\square} \; k = n^2$                                                                            |                 |
| $oxedsymbol{\square} k=2^n$                                                                                 |                 |
| 7. Which application should you choose if y going to be $n^3$ requests to find $\mathbf{x}$ in $\mathbf{L}$ |                 |
| Application A                                                                                               |                 |
| Application B                                                                                               |                 |
| Submit                                                                                                      |                 |
| Exercise 7 Topic: Lecture 12 / Exercise 7                                                                   | Show Discussion |

© All Rights Reserved



© 2012-2017 edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open EdX logos are registered trademarks or trademarks of edX Inc.





















