Pip install keras
Pip install Numpy
Pip install Matplotlib
Pip install opency-python

1. MLP vs CNN

(0) Overview

1. MLP vs CNN

(1) 기존 Multi-Layered Neural Network의 문제점

- 1. Did not consider spatial, temporal relationship.
- → Need many training data to deal with many variation.

1. MLP vs CNN

(1) 기존 Multi-Layered Neural Network의 문제점

2. Number of free parameters

1. MLP vs CNN

(2) Why CNN?

- 1. Feature Extraction (Convolution + Pooling)
- → Translation invariant

1. MLP vs CNN

(2) Why CNN?

1. Number of free parameters

- Locality (Local Connectivity) →
 Sparse matrix
- Shared Weights

1. MLP vs CNN

(2) Why CNN? (실습)

MLP Correct prediction data

$$R = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

1. MLP vs CNN

(2) Why CNN? (실습)

CNN
Correct prediction data

Translation

$$R = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

0. Overview of CNN Structure

0. Input Image

The role of the ConvNet is to

- reduce the images into a form which is easier to process,
- without losing features which are critical for getting a good prediction

(이미지 개수 ,이미지 Height,이미지 Width,이미지 Channel)

1. Feature Extraction - Convolution Layer - The Kernel

Image

Convolved Feature

Input: 5*5*1

Kernel: 3*3*1*1

Strides: (1,1)

Padding: valid

```
Conv2D(filters = 필터갯수,
kernel_size=(가로,세로),
strides = (가로 이동수,세로 이동수),
padding='same ' or padding="valid")
```

1. Feature Extraction - Convolution Layer - The Kernel

1. Feature Extraction - Convolution Layer - The Kernel - Stride

1. Feature Extraction - Convolution Layer - The Kernel - Stride

Conv2D(filters = 필터갯수, kernel_size=(가로,세로), strides = (가로 이동수,세로 이동수), padding='same ' or padding="valid")

1. Feature Extraction - Convolution Layer - The Kernel - Padding

Conv2D(filters = 필터갯수, kernel_size=(가로,세로), strides = (가로 이동수,세로 이동수), padding='same ' or padding="valid")

Stride 1 with Padding

Feature Map

1. Feature Extraction - Pooling Layer

- Decrease the computational power
- Extracting dominant features (rotational, positional invariant)
- Noise Suppressant

MaxPooling2D(pool_size=(2, 2), strides=None, padding='valid', data_format=None

1. Feature Extraction - Pooling Layer

MaxPooling2D(pool_size=(2, 2), strides=None, padding='valid', data_format=None

AveragePooling2D(pool_size=(2, 2), strides=None padding='valid', data_format=None)

실습

0.0625	0.125	0.0625
0.125	0.25	0.125
0.0625	0.125	0.0625

+	1 0	-1
+	2 0	-2
+	1 0	-1

Let's have intuition first!

http://scs.ryerson.ca/~aharley/vis/conv/

Convolutional Neural Network - Mnist Dataset

size : 28 * 28

of trainingset : 60000 # of test set : 10000

Keras, tensorflow → Default로 (N,H,W,C) 순서로. Y는 One hot-encoding

60000,28,28,1