Wstęp do sieci neuronowych, wykład 04. Skierowane sieci neuronowe. Algorytmy konstrukcyjne dla sieci skierowanych

Maja Czoków, Jarosław Piersa

Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika

2011-10-25

- Sieci skierowane
 - Motywacja
 - Sieć skierowana
 - Siła opisu sieci skierowanej
- Algorytmy konstrukcyjne
 - Algorytm wieżowy
 - Algorytm piramidalny
 - Algorytm kafelkowy
 - Algorytm upstart
- Podsumowanie wykładu
 - Zadania do przemyślenia

- Sieci skierowane
 - Motywacja
 - Sieć skierowana
 - Siła opisu sieci skierowanej
- 2 Algorytmy konstrukcyjne
 - Algorytm wieżowy
 - Algorytm piramidalny
 - Algorytm kafelkowy
 - Algorytm upstart
- 3 Podsumowanie wykładu
 - Zadania do przemyślenia

- Sieci skierowane
 - Motywacja
 - Sieć skierowana
 - Siła opisu sieci skierowanej
- 2 Algorytmy konstrukcyjne
 - Algorytm wieżowy
 - Algorytm piramidalny
 - Algorytm kafelkowy
 - Algorytm upstart
- 3 Podsumowanie wykładu
 - Zadania do przemyślenia

Ograniczenia pojedynczego neuronu

- Klasyfikacja wyłącznie problemów liniowo separowalnych,
- Co, gdy mamy trudniejszy problem?

Ograniczenia pojedynczego neuronu

- Albo bardzo zgrubne rozwiązania, albo perceptron całkowicie głupieje.
- Czy da się temu zaradzić?
- Znalezienie odpowiedzi zajęło ok 5 lat, jej spopularyzowanie kolejne 5.

Koncepcja sieci skierowanej

Koncepcja sieci skierowanej

- Wejścia (liczby całkowite, rzeczywiste...) $x_1, ..., x_n$
- Zbiór perceptronów, każdy z własnym zestawem wag,
- Graf sieci skierowany i acykliczny, rozpięty na perceptronach,
- Wejściami do perceptronów są: dane wejściowe do sieci oraz mogą być wyjścia z dowolnych perceptronów leżących wcześniej,
- Odpowiedzi perceptronów bez potomków (liście) są traktowane jako wyjścia z całej sieci.

Dynamika sieci skierowanej

- Działanie synchroniczne,
- Każdy neuron czeka, aż wszyscy rodzice zostaną obliczeni,
- Na koniec zwracana jest odpowiedź sieci (liczba lub wektor liczb),
- W implementacji: obliczenia po kolei według kolejności sortowania topologicznego,
- Jeżeli topologia na to pozwala, to można zrównoleglać obliczenia neuronów,

Przykład

Sieć rozwiązująca XOR

Funkcje logiczne

Koniunktywna postać normalna zdania logicznego.

- Zapis równoważnego zdania w postaci koniunkcji alternatyw zmiennych lub negacji zmiennych,
- $(A \lor B \lor \neg C) \land (C \lor \neg D \lor E) \land \neg A$
- Każde zdanie rachunku logiki boolowskiej da się zapisać w CNF (Conjunctive Normal Form),
- W szczególności A xor $B = (A \lor B) \land (\neg A \lor \neg B)$.

Funkcje logiczne

$$(A \lor B \lor \neg C) \land (C \lor \neg D \lor E) \land \neg A$$

$\overline{\mathsf{Funkcje}}$ na \mathbb{R}^d

Sieć bez warstw ukrytych jest w stanie przybliżać funkcje liniowo separowalne.

$\overline{\mathsf{Funkcje}}$ na $\mathbb{R}^{d'}$

Sieci z jedną warstwą ukrytą są w stanie przybliżać funkcje ciągłe.

$\overline{\mathsf{Funkcje}}$ na \mathbb{R}^d

Sieci z dwiema lub więcej warstwami ukrytymi są w stanie przybliżać funkcje nieciągłe.

Jakie grafy sieci?

- Dające dobre rezultaty,
- Proste w implementacji (regularne, niezbyt gęste),
- Zdatne do zrównoleglenia (warstwowe).

Sieć (wielo) warstwowa ((multi) layer network)

- Sieci skierowane
 - Motywacja
 - Sieć skierowana
 - Siła opisu sieci skierowanej
- Algorytmy konstrukcyjne
 - Algorytm wieżowy
 - Algorytm piramidalny
 - Algorytm kafelkowy
 - Algorytm upstart
- 3 Podsumowanie wykładu
 - Zadania do przemyślenia

Daną mamy listę przykładów uczących tj.

- punkt $E^k \in \mathbb{R}^n$,
- ullet odpowiadającą mu poprawną klasyfikację $C^k \in \{-1,+1\}.$

Daną mamy listę przykładów uczących tj.

- punkt $E^k \in \mathbb{R}^n$,
- ullet odpowiadającą mu poprawną klasyfikację $C^k \in \{-1,+1\}$.

Chcemy znaleźć skierowaną **sieć neuronów**, to jest graf wraz z wagami, który klasyfikuje poprawnie możliwie najwięcej spośród danych uczących.

Daną mamy listę przykładów uczących tj.

- punkt $E^k \in \mathbb{R}^n$,
- odpowiadającą mu poprawną klasyfikację $C^k \in \{-1, +1\}$.

Chcemy znaleźć skierowaną **sieć neuronów**, to jest graf wraz z wagami, który klasyfikuje poprawnie możliwie najwięcej spośród danych uczących.

$$w_{i,j} = ?$$

Daną mamy listę przykładów uczących tj.

- punkt $E^k \in \mathbb{R}^n$,
- ullet odpowiadającą mu poprawną klasyfikację $C^k \in \{-1, +1\}$.

Chcemy znaleźć skierowaną **sieć neuronów**, to jest graf wraz z wagami, który klasyfikuje poprawnie możliwie najwięcej spośród danych uczących.

- Rozpocznij od sieci składającej się z pojedynczego perceptronu z progową funkcją aktywacji,
- Naucz jedyny perceptron algorytmem kieszonkowym (z zapadką),
- Powtarzaj aż do uzyskania zadowalającego rezultatu (tj. zadowalający poziom klasyfikacji, limit czasowy itp.)
 - Na szczyt wieży dodaj kolejny neuron. Jego wejściami będą dane uczące E₁,.., E_n oraz wyjście neuronu leżącego bezpośrednio niżej,
 - Naucz szczytowy neuron algorytmem kieszonkowym (z zapadką),
 za n + 1-sze wejścia przyjmij wyniki z neuronu niższego,
 - Jako wynik całej sieci zwracany będzie wynik nowo-dodanego perceptronu,
- Zwróć wynikową sieć.

Przyjmijmy oznaczenia:

- O_j jednostka j-ta,
- ullet O_{j+1} jednostka j+1-sza, ta jednostka będzie uczona,
- ullet E^k k-ty przykład uczący, źle klasyfikowany przez O_j ,
- n ilość wejść (wymiar danych),
- θ_{j+1} próg jednostki O_{j+1} ,
- $0 < \varepsilon \ll 1$ mała stała dodatnia,
- $w_{i,j+1}$ wagi neuronu O_{j+1} stowarzyszone z danymi wejściowymi,
- $w_{j,j+1}$ waga neuronu O_{j+1} stowarzyszona wejściem pochodzącym z jednostki O_i .

Przypiszmy:

•
$$w_{i,j+1} := C^k E_i^k$$

•
$$w_{j,j+1}:=n-\varepsilon$$

$$\bullet \ \theta_{j+1} := - \ \frac{1}{2} C^k$$

Przypiszmy:

•
$$w_{i,j+1} := C^k E_i^k$$

•
$$w_{j,j+1}$$
:= $n-\varepsilon$

•
$$\theta_{j+1} := -\frac{1}{2}C^k$$

Pokażemy, że sieć z dodanym neuronem \mathcal{O}_{j+1} jest w stanie zaklasyfikować poprawnie przynajmniej o jeden przykład uczący więcej.

Pokażemy, że sieć z dodanym neuronem O_{j+1} jest w stanie zaklasyfikować poprawnie przynajmniej o jeden przykład uczący więcej.

ullet Dla przykładu E^k neuron O_{j+1} otrzyma na wejściu

$$(n-\varepsilon)(-1)C^k + \sum_i C^k E_i^k \cdot E_i^k = nC^k - nC^k + \varepsilon C^k = \varepsilon C^k$$

$$\theta_{j+1} = -\frac{1}{2}C^k,$$

więc sieć zwróci oczekiwaną odpowiedź na E^k .

• Dla pozostałych przykładów $E^j, j \neq k$ neuron O_{j+1} zwróci tę samą odpowiedź co neuron O_j :

$$(n-\varepsilon)O_j + \sum_i C^j E_i^j \cdot E_i^k,$$

• Dla pozostałych przykładów $E^j, j \neq k$ neuron O_{j+1} zwróci tę samą odpowiedź co neuron O_j :

$$(n-\varepsilon)O_j+\sum_i C^j E_i^j\cdot E_i^k,$$

• Jeżeli dla każdego $i E_i^j = E_i^k$ oraz $C^k = C^k$, to oba przykłady E^k oraz E^j są te same i E^j też będzie poprawnie klasyfikowany,

• Dla pozostałych przykładów $E^j, j \neq k$ neuron O_{j+1} zwróci tę samą odpowiedź co neuron O_j :

$$(n-\varepsilon)O_j+\sum_i C^j E_i^j\cdot E_i^k,$$

- Jeżeli dla każdego $i E_i^j = E_i^k$ oraz $C^k = C^k$, to oba przykłady E^k oraz E^j są te same i E^j też będzie poprawnie klasyfikowany,
- Jeżeli dla każdego i zachodzi $E_i^j = E_i^k$ oraz $C^k \neq C^k$, to oba E^k oraz E^j są te same, ale mają oczekiwane różne odpowiedzi dane są sprzeczne i stuprocentowa klasyfikacja możliwa nie jest,

• Dla pozostałych przykładów $E^j, j \neq k$ neuron O_{j+1} zwróci tę samą odpowiedź co neuron O_j :

$$(n-\varepsilon)O_j + \sum_i C^j E_i^j \cdot E_i^k,$$

- Jeżeli dla każdego $i E_i^j = E_i^k$ oraz $C^k = C^k$, to oba przykłady E^k oraz E^j są te same i E^j też będzie poprawnie klasyfikowany,
- Jeżeli dla każdego i zachodzi $E_i^j = E_i^k$ oraz $C^k \neq C^k$, to oba E^k oraz E^j są te same, ale mają oczekiwane różne odpowiedzi dane są sprzeczne i stuprocentowa klasyfikacja możliwa nie jest,

Poza powyższymi przypadkami mamy

$$\left|\sum_{i} C^{j} E_{i}^{j} \cdot E_{i}^{k}\right| \leq n - 1.$$

Suma ważona w jednostce O_{i+1} wyniesie zatem:

$$(n-\varepsilon)O_j + \sum_i C^j E_i^j \cdot E_i^k \leq (n-\varepsilon)O_j + (n-1)C^j,$$

Suma ważona w jednostce O_{i+1} wyniesie zatem:

$$(n-\varepsilon)O_j + \sum_i C^j E_i^j \cdot E_i^k \leq (n-\varepsilon)O_j + (n-1)C^j,$$

Oraz próg:

$$\theta_{j+1} = -\frac{1}{2}C^k,$$

Suma ważona w jednostce O_{i+1} wyniesie zatem:

$$(n-\varepsilon)O_j + \sum_i C^j E_i^j \cdot E_i^k \leq (n-\varepsilon)O_j + (n-1)C^j,$$

Oraz próg:

$$\theta_{j+1} = -\frac{1}{2}C^k,$$

Jeżeli zatem ε nie będzie za duży, to zwrócona przez O_{j+1} odpowiedź będzie taka sama jak ta, którą zwrócił O_j .

Mapy klasyfikacyjne

click

Przykład 1/4

Przykład 2/4

Przykład 3/4

Przykład 4/4

Przestrzeń wag

click

- Rozpocznij od sieci składającej się z pojedynczego perceptronu z progową funkcją aktywacji,
- Naucz jedyny preceptron algorytmem kieszonkowym (z zapadką),
- Powtarzaj aż do uzyskania zadowalającego rezultatu (tj. zadowalający poziom klasyfikacji, limit czasowy itp.)
 - Na szczyt wieży dodaj kolejny neuron. Jego wejściami będą dane uczące E₁,.., E_n oraz wyjście wszystkich leżących niżej neuronów,
 - Naucz szczytowy neuron algorytmem kieszonkowym (z zapadką), za n+1,...,n+l-te wejścia przyjmij wyniki z neuronów niższych,
 - Jako wynik całej sieci zwracany będzie wynik nowo-dodanego perceptronu,
- Zwróć wynikową sieć.

Algorytm kafelkowy

Algorytm kafelkowy

- ullet Rozpocznij od sieci składającej się z warstwy wejściowej L=1,
- ullet Dodaj do sieci L+1 kafel, na razie składający się tylko z jednego neuronu. Dodany neuron za wejścia przyjmuje wszystkie wyjścia z kafla L. Za wyjście sieci przyjmij wyjście z nowego neuronu,
- Naucz dodaną jednostkę algorytmem kieszonkowym z zapadką. Jeżeli sieć klasyfikuje poprawnie wszystkie przykłady, to zakończ zwracając wynikową sieć,
- ullet Jeżeli nie, to dodaj do L+1-go kafla kolejny neuron. Naucz go algorytmem kieszonkowym z zapadką, ale tylko na takim zbiorze, że:
 - poprzednie neurony w L+1 kaflu dają na tych przykładach tę samą kombinację odpowiedzi (tj. z punktu widzenia sieci jest to ta sama klasa),
 - oczekujemy, że mają być to przykłady z różnych klas,
 - spośród wszystkich podzbiorów spełniających dwa powyższe warunki wybrany powinien być najliczniejszy.

Algorytm kafelkowy cd.

- Jeżeli kafel poprawnie klasyfikuje wszystkie przykłady (tj. różnym kategoriom przypisuje różne zestawy odpowiedzi), to wróć do 2 (dodaj nowy kafel), jeżeli nie to wróć do 4 (dodaj nową jednostkę w tym samym kaflu),
- Zwróć wynikową sieć (oczekujemy odpowiedzi binarnej, więc ostatni kafel powinien liczyć tylko jedną jednostkę).

Przykład 1/8

Sieć U_1 out

Przykład 2/8

Sieć U_1 out

Przykład 3/8

Sieć

Dane

Przykład 4/8

Sieć

Dane

Przykład 5/8

Sieć

Dane

Przykład 6/8

Przykład 6/8

Przykład 7/8

Przykład 8/8

Dane Sieć (0 1 1) U_1 x_1 U_2 U_4 U_3 U_4

Algorytm upstart

Algorytm upstart

- Tworzymy pojedynczą jednostkę U, która widzi wszystkie wejścia. Jej wyjście jest wyjściem całej sieci,
- ullet Odkładamy U na stos wraz ze wszystkimi przykładami uczącymi,
- Dopóki stos jest niepusty, powtarzamy:
 - ullet zdejmujemy ze stosu jednostkę U_i i zbiór stowarzyszonych z nią przykładów uczących,
 - ullet uczymy U_i na jej przykładach algorytmem zapadkowym,
 - jeżeli klasyfikacja U_i jest w pełni zgodna, to rozpocznij następną iterację pętli (continue).

Algorytm upstart cd.

- Dopóki stos jest niepusty, powtarzamy:
 - (...)
 - ullet jeżeli istnieją źle sklasyfikowane przykłady z oczekiwaną odpowiedzią +1 dla jednostki U_i , to
 - tworzymy nową jednostkę U_{i+} , jej wejściami są wszystkie wejścia, jej wyjście wchodzi do U_i z dużą wagą dodatnią,
 - odkładamy U_{i+} na stos z następującym zbiorem uczącym: $\left\{E^k: U_i^k = -1, C_{U_i}^k = +1\right\} \cup \left\{E^k: C_{U_i}^k = -1\right\}$, to jest przykłady, które są klasyfikowane przez U_i jako -1, a powinny +1 oraz przykłady, która powinny być klasyfikowane przez U_i jako -1, Zbiór uczący dla U_{i+} jest mniejszy od U_i o przykłady dodatnie, które są dobrze klasyfikowane,

Algorytm upstart cd.

- Dopóki stos jest niepusty, powtarzamy:
 - (...)
 - ullet jeżeli istnieją źle sklasyfikowane przykłady z oczekiwaną odpowiedzią +1 dla jednostki U_i , to
 - (...)
 - ullet jeżeli istnieją źle sklasyfikowane przykłady z oczekiwaną odpowiedzią -1 dla U_i , to
 - tworzymy nową jednostkę U_{i-} , jej wejściami są wszystkie wejścia, jej wyjście wchodzi do U_i z dużą wagą dodatnią,
 - odkładamy U_{i-} na stos z następującym zbiorem uczącym: $\left\{E^k: U_i^k=+1, C_{U_i}^k=-1\right\} \cup \left\{E^k: C_{U_i}^k=+1\right\}$, to jest przykłady, które są klasyfikowane przez U_i jako +1, a powinny -1 oraz przykłady, która powinny być klasyfikowane przez U_i jako +1,
 - zdejmujemy ze stosu następny neuron (continue),
- Zwracamy uzyskaną sieć.

Przykład 1/6

Przykład 2/6

Przykład 3/6

Przykład 4/6

Przykład 5/6

Przykład 6/6

- Sieci skierowane
 - Motywacja
 - Sieć skierowana
 - Siła opisu sieci skierowanej
- 2 Algorytmy konstrukcyjne
 - Algorytm wieżowy
 - Algorytm piramidalny
 - Algorytm kafelkowy
 - Algorytm upstart
- Podsumowanie wykładu
 - Zadania do przemyślenia

Zadania domowe

- Opisz różnice mięszy siecią wieżową, a piramidalną.
- Która z sieci ma większe możliwości opisu: wieżowa czy piramidalna?
- Skonstruuj sieć warstwową rozwiązującą problem IFF (if and only if).
- Skonstruuj dane jednowymiarowe / dwuwymiarowe, których nie będzie wstanie rozwiązać perceptron, a których nauczy się sieć. Podaj wagi sieci.

Zadania domowe

- Dla sieci wieżowej, piramidalnej lub / i warstwowej wyświetl profil klasyfikacji fragmentu płaszczyzny. Wagi wygeneruj losowo. Przetestuj wykresy dla kilku sieci z różną ilością neuronów / warstw i neuronów w warstwie.
- (*) Skonstruuj dane dwuwymiarowe składające się z trzech przykładów uczących, którego nie będzie wstanie rozwiązać perceptron, a który rozwiąże sieć. Podaj wagi sieci.
- (*) Do tego samego zestawu danych zastosuj różne algorytmy konstrukcyjne. Porównaj uzyskaną jakość uczenia. Porównaj również czas uczenia oraz zużycie pamięci (ilość neuronów i wag).