CSE 7350 – Test 3 November 30, 2022

Name:

• This exam is closed book and closed notes .
• Only the approved TI-30Xa calculator
• No cell phones, or other electronics.
• Pencil and/or pen only are permitted.
• Two Scratch Pages are on the back.
• It is 3 hours in duration.
 You should have 13 problems. Pay attention to the point value of each problem and dedicate time as appropriate.
On my honor, I have neither given nor received unauthorized aid on this exam.
SIGNED:
DATE:

CSE 5/7350 – Test #3 November 30, 2022

Name:			
ID:			

- 1. [8 pts] Answer the following questions:
 - (i) A program requires 1000s to process an input size of C = 7 and S = 700. If the running time is Θ (C * S) about how long would it take to process an input size of C=14 and S=700?
 - (ii) A program requires 1000s to process an input size of C = 7 and S = 700. If the running time is Θ (C * S) about how long would it take to process an input size of C=7 and S=1400?
 - (iii) A program requires 1000s to process an input size of C = 7 and S = 700. If the running time is Θ (C + S) about how long would it take to process an input size of C = 7 and S = 1400?
 - (iv) A program requires 1000s to process an input size of C = 7 and S = 700. If the running time is Θ ($C * S^2$) about how long would it take to process an input size of C=7 and S=1400?
 - (v) A program requires 1000s to process an input size of C = 7 and S = 700. If the running time is Θ (2^{CS}) about how long would it take to process an input size of C=7 and S=1400?

2. [6 pts] Use the DGT algorithm discussed in class to determine how to represent the value 689 using the number system $\beta=5$, D = { -1, 0, 2, 3, 6}. Show your work.

3. [8 pts] Give the asymptotic running time supported by the following tables:

a.	n	time (ms)	b	n	time (ms)	С	n	time (ms)	d	n	time (ms)
	1	1		1	2		1	3		2	3
	2	4		2	4		2	48		3	4.754888
	3	27		3	12		3	243		4	6
	4	256		4	48		4	768		5	6.965784
	5	3125		5	240		5	1875		6	7.754888
	6	46656		6	1440		6	3888		7	8.422065
	7	823543		7	10080		7	7203		8	9
	8	16777216		8	80640		8	12288		9	9.509775
	9	3.87E+08		9	725760		9	19683		10	9.965784
	10	1E+10		10	7257600		10	30000		11	10.37829
	11	2.85E+11		11	79833600		11	43923		12	10.75489

- 4. [10 pts] Consider the following NP completeness questions. Answer them with the best answer of "some" "all" "none" or "unknown"
 - (i) Which Problems in P are also in NP? ("some" "all" "none" or "unknown")
 - (ii) Which Problems in NP are also in P? ("some" "all" "none" or "unknown")
 - (iii) Which Problems in NP-Hard are also in NP? ("some" "all" "none" "unknown")
 - (iv) Which Problems in NP-Hard are also in NP-Complete ("some" "all" "none" or "unknown")
 - (v) The set of problems matching question (iii) is exactly the same as the set of problems matching question (iv) (true or false)
 - (vi) If someone can solve an NP-Hard problem in Polynomial Time, then all NP problems can be solved in polynomial time. (true or false)
 - (vii) If someone can solve an NP-Complete problem in Polynomial Time, then all NP and all NP-Complete problems can be solved in polynomial time. (true or false)
 - (viii) At least 1 NP problem can be solved in polynomial time? (True or False)
 - (ix) Which NP-Hard Problems are also NP-Complete? ("some" "all" "none" or "unknown")
 - (x) To show a problem is NP-Complete, you must show it is NP and that a solver for that problem can also solve some other NP-Complete problem with polynomial extra time. (True or False)

5. [8 pts] Set up a table to compute the length of the Longest Common Subsequence for the following two strings:

 $A\ C\ T\ T\ C\ G\ C\ C \quad and \quad C\ T\ A\ C\ G\ A\ C$

	1	1	1		

6. [6 pts] Two people need to establish a secret key for encrypting communications. They agree to use a Diffie-Hellman key exchange with a modulus of 11 and decide on 2 as the base. Person A chooses a random value of 9 and performs the appropriate computations. Person B chooses a random value of 3 and performs the appropriate computations:

- a. What is the value Person A sends to Person B
- b. What is the value Person B sends to Person A
- c. What is the shared secret key between Person A and Person B

- 7. [8 pts] You have 5 different dice. The table for the summation of the dice is listed below for die 1,2 and 3. Die #4 has 4 sides of values {1, 2, 3, 4} and Die #5 has 4 sides of values {-1, -1, 0, 0}.
 - a. Fill in the table for Die 4 and Die 5.
 - b. How many sides and of what values is Die #1?
 - c. What is the probability of rolling a 6 with these dice?

0	0	0	0	
1	1	1	0	
2	2	4	2	
3	2	7	11	
4	1	7	28	
5	0	4	43	
6	0	1	43	
7	0	0	28	
8	0	0	11	
9	0	0	2	
10	0	0	0	
11	0	0	0	
12	0	0	0	

10 pts] Determine a Huffman encoding for each symbol in a message that contains:
oding
20 As,
20 Bs,
7 Ds,
7 Es,
3 Fs,
3 Gs,
2 Hs
2 Ks
How many bits are in the entire message if each symbol is encoded with 3 bits? How many bits are in the entire Huffman coded message? How much entropy is in the entire message (Give a number)?
[6 pts] Argue that the problem of sorting an array of numbers is just as hard or cossibly harder (within $\Theta(1)$) than the problem of finding a median of an array of numbers.

a. b.	In-or Pre-0	oted tree has an order Traversal of X Q K H N F M W B Y G P D S Z Order Traversal of G M H Q X K N F Y M B P D Z S e Tree
and k	vertice	mplete bi-partite graph $B_{j,k}$ is a graph which has j vertices in one partition es in another partition and all possible edges are present. Answer the lestions: For which values of j and k does $B_{j,k}$ have an Euler Tour?
	(ii)	For which values of j and k is $B_{j,k}$ two-colorable?
	(iii)	For which values of j and k is $B_{j,k}$ a tree?
	(iv)	If every edge of tree of $B_{j,k}$ has a weight of $w,$ what is the weight of the minimum spanning tree of $B_{j,k}$
	(v)	If every edge of tree of $B_{j,k}$ has a weight of w , what is the maximum

flow between the two partitions of $B_{j,\boldsymbol{k}}$

 $\label{eq:continuous} \mbox{(vi)} \ \ \mbox{For which values of j and k does $B_{j,k}$ have a Hamiltonian Cycle?}$

- 12. [10 pts] Consider an RSA encryption system that has a public key of 1109 for the value of e and 2881 for the value of the modulus n. A message was encrypted with this key and this encrypted message has the value 2.
 - (i) [6 pts] With a quantum computer, you were able to factor the modulus 2881 into the product of two primes: 43*67. Using this information, determine the private key. Be sure to show your table for the Extended Euclidian Algorithm
 - (ii) [2 pts] What is the unencrypted message?

13. [6 pts] Answer the Following:					
(i)	-3 mod 7 =				
(ii)	1/3 mod 11 =				
(iii)	$-(1/3) \mod 13 =$				

(iv) $2^{122} \mod 11$

- (vi) A message has 160 symbols in it. The symbol Z occurs 10 times. How much entropy does each 'Z' contain in the message?
- (vii) What is the length of the longest common subsequence of the two strings: AABBBBCC and ZZBBBBYY
- (viii) What are the maximum number of swaps might be necessary to insert an element into a heap that has 16 elements in it already?
- (ix) What is 2 + 2?

Scratch Paper

Scratch Paper