Radomized Algorithms Solution to Hw4*.

- [22.-] This was not (*) but a couple of people asked me for a solution to (b)
- (a) For $i=1,2,\ldots,10^6$, let X_i be the i.r.v. such that $X_i=1$ iff the ith. ballot was not misrecorded, then $X=\sum_{i=1}^{10^6}X_i$. Then if we denote $N=10^6$, $X_i\in B(N,p)$, with p=0.02. Moreover the X_i are independent. We want to bound $\mathbf{Pr}\left[\sum_{i=1}^N(4/100)N\right]$. As $\mu=Np=0.02N$ and $\delta=1$, using Chernoff: $\mathbf{Pr}\left[\sum_{i=1}^N0.04N\right]\leq\mathbf{Pr}\left[X\geq(1+\delta)\mu\right]\leq e^{-\frac{0.02N}{3}}\sim10^{-2895.30}$.
- (b) Let X be the number of votes for candidate A that are misrecorded and let Y be the number of votes for candidate B that are misrecorded. Then, candidate B wins iff 510000-X+Y<490000+X-Y, i.e. 10000+Y< X. As $0 \le X \le 510000$ and $O \le Y \le 490000$, for any $0 \le l \le 490000$, the following holds

```
\begin{aligned} &\mathbf{Pr}\left[10000 + Y < X\right] = \mathbf{Pr}\left[(10000 + Y < X) \cap (0 \le Y \le 490000)\right] \\ &= \mathbf{Pr}\left[(10000 + Y < X) \cap ((0 \le Y \le l) \cup (l < Y \le 490000))\right] \\ &= \mathbf{Pr}\left[((10000 + Y < X) \cap (0 \le Y \le l)) \cup ((10000 + Y < X) \cap (l < Y \le 490000))\right] \\ &= \mathbf{Pr}\left[((10000 + Y < X) \cap (0 \le Y \le l))\right] \cup \mathbf{Pr}\left[((10000 + Y < X) \cap (l < Y \le 490000))\right] \\ &= \mathbf{Pr}\left[((10000 + Y < X) \cap (0 \le Y \le l))\right] \cup \mathbf{Pr}\left[((10000 + Y < X) \cap (l < Y \le 490000))\right] \\ &\leq \mathbf{Pr}\left[0 \le Y \le l\right] + \mathbf{Pr}\left[10000 + l < X\right] \le \mathbf{Pr}\left[Y \le l\right] + \mathbf{Pr}\left[10000 + l \le X\right] \end{aligned} For i = 1, \cdots, 510000 and j = 1, \cdots, 490000 let X_i and Y_j be the indicator random variables defined as X_i = 1 if the ith ballot for candidate A was misrecorded, and Y_i = 1 if the ith ballot for candidate A was misrecorded. Then, X = \sum_{i=1}^{510000} X_i \ Y = \sum_{j=1}^{490000} Y_j and the X_i and Y_j are independent. Let \mu_X = \sum_{1}^{510000} p_i = 0.02 \times 510000 = 10200, \mu_Y \sum_{1}^{490000} p_j = 0.02 \times 490000 = 9800 and \delta = 0.48. Using Chernoff, \mathbf{Pr}\left[X \ge 10000 + 5096\right] = \mathbf{Pr}\left[X \ge (1 + 0.48) \cdot 10200\right] = \mathbf{Pr}\left[X \ge (1 + \delta)\mu_X\right] \le \exp(\mu_X \delta^2/3) \sim 10^{-340.2089} \mathbf{Pr}\left[Y \le 5096\right] = \mathbf{Pr}\left[Y \le (1 - 0.48) \cdot 9800\right] = \mathbf{Pr}\left[Y \le (1 - \delta)\mu_Y\right] \le \exp(-\mu_Y \delta^2/2) \sim 10^{-490.3011}
```

If we take l=5096, we can give an UB to the probability that B wins the election owing to misrecorded ballots:

 $\mathbf{Pr} \left[10000 + Y < X \right] \le \mathbf{Pr} \left[Y \le 5096 \right] + \mathbf{Pr} \left[10000 + 5096 \le X \right] \sim 10^{-340.2089} + 10^{-490.3011}$

[23.-]

1. First, we process ϕ so that every variable appears at most once in each clause (eliminate repeated occurrences of a literal, and delete a clause if both a literal and its negation occur). Let n denote the number of variables, and c_i the number of variables in clause C_i .

- (a) size(S_i): return 2^{n-c_i} . The variables in clause i must be fixed to values that satisfy the clause, and the remaining variables may be assigned any value, ex..: if we have 5 variables and $(\bar{x}_1 \wedge x_2 \wedge \bar{x}_3)$ then $c_i = 3$ and we must have fixed $A(x_1) = 0 = A(x_3)$ and $A(x_2) = 1$, the other 2 variables can take all combination of 0,1, so we have $2^2 = 4$ values.
- (b) select(S_i): fix the variables in clause C_i to values that satisfy the clause; choose the values of the remaining variables independently and u.a.r.
- (c) lowest(x): for i = 1, 2, ... test if x satisfies C_i (this test is easy); return the index of the first clause that x satisfies (undefined if it does not satisfies no clauses).
- 2. The problem is that S may occupy only a tiny fraction of all possible assignments in U. Thus the number of samples t would need to be huge in order to get a good estimate of q. A concrete example to make this precise. Consider $\phi = x_1 \wedge x_2 \wedge \cdots \wedge x_n$. Then |S| = 1 (the only satisfying assignment is when all n variables are 1). The given algorithm will output zero unless it happens to choose this assignment in one of its t samples, i.e., it outputs zero with probability $(1/2^n)^t \to 0$ for any t that is only polynomial in t. Thus the relative error of the algorithm will be arbitrarily large with probability arbitrarily close to 1.
- 3. Note that the first two lines of the algorithm select each pair $(x, S_i), x \in S_i$ with probability $\frac{|S_i|}{\sum_{j=1}^m |S_j|} \cdot \frac{1}{|S_i|} = \frac{1}{\sum_{j=1}^m |S_j|}$. In other words, the first 2 lines pick an element u.a.r. from the disjoint union of the sets S_i . (We really want to pick an element u.a.r. from $\bigcup_i S_i$). Let $\Gamma = \{(S_i, x) | \text{lowest}(x) = i\}$. (For instance in the above example, $\Gamma = \{((1011), S_2), ((0001), S_1), \ldots\})$). Therefore the algorithm outputs 1 with probability $\sum_{(S_i, x) \in \Gamma} \frac{1}{\sum_{j=1}^m |S_j|} = \frac{|\Gamma|}{\sum_{j=1}^m |S_j|}$. To see that $|\Gamma| = |S|$, simply observe that every element $x \in S$ corresponds to exactly one lowest S_i , or equivalently $\Gamma = \{(x, S_{\text{lowest}(x)}) | x \in S\}$. It follows that the algorithm outputs 1 with probability $p = \frac{|S|}{\sum_{j=1}^m |S_j|}$.
- 4. For i = 1, 2, ..., m we have $|S_i| \le |S|$, so that $\sum_{i=1}^m |S_j| \le m|S|$, so that $p = \frac{|S|}{\sum_{j=1}^m |S_j|} \ge 1/m$.
- 5. Note that X_1, \ldots, X_t are independent 0-1 r.v.'s with mean p, so $\mathbf{E}[X] = pt$ and by Chernoff we get $\mathbf{Pr}[|X pt| \ge \epsilon pt] \le 2e^{\epsilon^2 pt/3}$. The quantity on the right is bounded above by δ provided we take $t = \lceil \frac{3}{\epsilon^2 p} \ln(2/\delta) \rceil \le \lceil \frac{3m}{\epsilon^2 p} \ln(2/\delta) \rceil$ using the fact from part (d) that $p \ge m$. Hence it suffices to take $t = O(\frac{m}{\epsilon^2} \ln \frac{1}{\delta})$.
- 6. Each iteration of the algorithm in (3) requires O(1) operations, so the final algorithm takes $O(t) = O(\frac{m}{\epsilon^2} \ln \frac{1}{\delta})$ time. By definition we have |S| =

 $\frac{\sum_{j=1}^m |S_j|}{t} \cdot tp \text{ and } Y = \frac{\sum_{j=1}^m |S_j|}{t} \cdot X. \text{ This implies } Y \in [(1-\epsilon)|S|, (1-\epsilon)|S|)]$ iff $X \in [(1-\epsilon)tp, (1-\epsilon)tp)].$ Therefore, $\Pr\left[Y \in [(1-\epsilon)|S|, (1-\epsilon)|S|]\right] = \Pr\left[X \in [(1-\epsilon)tp, (1-\epsilon)tp]\right]$

It follows by part (5) that $\mathbf{Pr}[Y \in [(1-\epsilon)|S|, (1-\epsilon)|S|]] \ge 1-\delta$.