1. (2 points) Given a map between sets $f: A \to B$, define what it means for f to be injective, and also what it means for f to be surjective.

$$f$$
 is injective if $\forall x,y \in A$ $x \neq y \Rightarrow f(x) \neq f(y)$.

 f is surjective if $\forall z \in B$ $\exists x \in A$ such that $f(x) = z$.

2. (2 points) Define the set $\mathbb{R}_{2\pi}$. Next, define the operation $+_{2\pi}$ called addition modulo 2π on the set $\mathbb{R}_{2\pi}$.

$$IR_{2\pi}:= [0,2\pi)$$

Given $a,b \in IR_{2\pi}$ we define $a+_{2\pi}b := \begin{cases} a+b & \text{if } a+b < 2\pi \\ a+b-2\pi & \text{if } a+b \geq 2\pi \end{cases}$

3. (2 points) Define an equivalence relation \mathcal{R} on a set S.

Find equivalence relation
$$R$$
 on a set S .

An equivalence relation R on a set S is a subset of $S \times S$ that satisfies the following properties for all $x, y, z \in S$:

$$\begin{bmatrix}
Elb & (a,b) \in R & \text{can doo be written} \\
& as a Rb.
\end{bmatrix}$$
1. $(x,x) \in R$
2. $(x,y) \in R \Rightarrow (y,x) \in R$
2. $(x,y) \in R \Rightarrow (y,x) \in R$
3. $(x,y) \in R$ and $(y,z) \in R \Rightarrow (x,z) \in R$
3. $(x,y) \in R$ and $(y,z) \in R \Rightarrow (x,z) \in R$
3. $(x,y) \in R$ and $(y,z) \in R \Rightarrow (x,z) \in R$
3. $(x,y) \in R$ and $(y,z) \in R \Rightarrow (x,z) \in R$
3. $(x,y) \in R$ and $(y,z) \in R \Rightarrow (x,z) \in R$
3. $(x,y) \in R$ and $(y,z) \in R$ and $(y,z) \in R$ and $(x,z) \in R$
3. $(x,y) \in R$ and $(x,z) \in R$ and $(x,z) \in R$
3. $(x,y) \in R$ and $(x,z) \in R$