Unsupervised Neural Text Simplification

```
Sai Surya<sup>†</sup> Abhijit Mishra<sup>‡</sup> Anirban Laha<sup>‡</sup> Parag Jain<sup>‡</sup> Karthik Sankaranarayanan<sup>‡</sup>

<sup>†</sup>IIT Kharagpur, India <sup>‡</sup>IBM Research

subramanyamdvss@gmail.com

{abhijimi,anirlaha,pajain34,kartsank}@in.ibm.com
```

2020/02/17 Paper reading Slides made by Song

Overview

- Introduction
- Related work
- Motivation
- Proposed method
- Experiment setting
- Result
- Conclusion

Introduction

Text Simplification (TS):

Original Text

Amnesty International accused the U.S. authorities of providing an "inhuman" treatment to Bradley Manning, a soldier accused of leaking "wires" of American diplomacy to the website Wikileaks.

Adapted Text (by <u>trained editor)</u>

United States treats a soldier in prison very badly.

The soldier is called Bradley Manning.

Bradley Manning is in prison for giving information about the Government of the United States to Wikileaks.

Wikileaks is a website which provides information on matters of public interest.

Simplify aspects:

- 1) Lexical: Complex words
- 2) Syntactic: Hierarchical structures

Related work

- 1. Rule based: Chandrasekar and Srinivas (1997)
- 2. Modular system: Canning and Tait (1999)
- 3. Data-driven:
 - Statistical: Phrase-based SMT (Specia, 2010; Stajner et al., 2015)
 - Neural: (Wang et al., 2016; Nisioi et al., 2017)

Motivation

Supervised VS Unsupervised

Method	Data	Limitation (Solution)
Supervised Neural TS (NTS) (Wang et al., 2016; Nisioi et al., 2017)	Parallel Original-Simplified data	 No (less) parallel data for new language Noise in current parallel dataset
Unsupervised Neural TS (UNTS)	Complex sentence dataset + Simple sentence dataset	1) Do not need original- simplified parallel data

Motivation

Previous unsupervised method VS proposed

Method	Limitation (Solution)
Unsupervised lexical simplification (Paetzold and Specia, 2016)	Only complex → simple words No syntactic level simplification.
UNTS	Both lexical and syntactic level.

Encode-attend-decode architecture

 Input and output $A_s(X)$ Output: Context vector Output: Simple sentence Decoder Simple sentence Y=[y1, ...yn]Input: sentence X=[x1, ...xn] G_{s} Encoder E $A_d(X)$ Output: Context vector Output: Complex sentence Decoder Complex sentence Y=[y1, ...yn] G_d

• Final goal:

Training goal (task): (1 Reconstruction

• Training goal: (1 Reconstruction

Loss:
$$\mathcal{L}_{rec}(\boldsymbol{\theta_E}, \boldsymbol{\theta_{G_s}}, \boldsymbol{\theta_{G_d}}) = -\mathbb{E}_{X_s \sim \boldsymbol{\mathcal{S}}}[\log P_{\boldsymbol{E} - \boldsymbol{G_s}}(X_s)] - \mathbb{E}_{X_d \sim \boldsymbol{\mathcal{D}}}[\log P_{\boldsymbol{E} - \boldsymbol{G_d}}(X_d)]$$

Training goal: (2 Denoise

$$\mathcal{L}_{denoi} = -\mathbb{E}_{X_s \sim \mathcal{S}}[\log P_{E-G_s}(X_s|noise(X_s))] - \mathbb{E}_{X_d \sim \mathcal{D}}[\log P_{E-G_d}(X_d|noise(X_d))]$$

- Training goal:
 - (3 Simple decoder can process complex sentence

Training goal:

different data distribution

• (4 Context vector of simple sentence should be different from that of complex sentence

Input: Simple sentence Encoder Simple sentence Decoder Context vector As (Xs) E G_{s} Classifier Input: Complex sentence Complex sentence Decoder Encoder Context vector Ad (Xd) \boldsymbol{E} G_d Make As(Xs) and Ad(Xd) with $\mathcal{L}_{div,C}(\boldsymbol{\theta_C}) = -\mathbb{E}_{X_s \sim \boldsymbol{s}}[\log\left(\boldsymbol{C}(A_s(X_s))\right)] - 1$

 $\mathbb{E}_{X_d \sim \mathcal{D}}[\log \left(1 - C(A_d(X_d))\right)] \tag{5}$

 $\mathcal{L}_{div,G_s}(\boldsymbol{\theta_E},\boldsymbol{\theta_{G_s}}) = -\mathbb{E}_{X_d \sim \mathcal{D}}[\log\left(\boldsymbol{C}(A_d(X_d))\right)] \tag{6}$

Graph from the paper

Training process

Algorithm 1 Unsupervised simplification algorithm using denoising, reconstruction, adversarial and diversification losses.

Input: simple dataset S, complex dataset D.

Initialization phase:

repeat

Update θ_E , θ_{G_s} , θ_{G_d} using \mathcal{L}_{denoi}

Update $\theta_E, \theta_{G_s}, \theta_{G_d}$ using \mathcal{L}_{rec}

Update θ_D , θ_C using $\mathcal{L}_{adv,D}$ $\mathcal{L}_{div,C}$

until specified number of steps are completed *Adversarial phase:*

repeat

Update θ_E , θ_{G_s} , θ_{G_d} using \mathcal{L}_{denoi}

Update $\theta_{E}, \theta_{G_s}, \theta_{G_d}$ using \mathcal{L}_{adv,G_s} ,

 $\mathcal{L}_{div,G_s},\mathcal{L}_{rec}$

Update θ_D , θ_C using $\mathcal{L}_{adv,D}$, $\mathcal{L}_{div,C}$

until specified number of steps are completed

Experiment setting

Dataset

	Dataset	Description
Train	en-wikipedia	Readability score: categorize complex simple sentences
Dev (Xu et al., 2016)	2000 sentences	each with 8 references
Test (Xu et al., 2016)	359 sentences	each with 8 references

Experiment setting

Evaluation

	Metric
Model selection	Automatic metric such as: BLEU and Word Difference
Test set evaluation	Human evaluation: 1) Simpleness: [0-1] 2) Grammaticality: fluency [1-5] 3) Relatedness: meaning [1-5] (higher->better)

Results

X% sentences are simplified

The higher, the better

Proposed	semi-supervised
Proposed	Unsupervised

Unsupervised NMT

Supervised Neural TS

Syntax based MT

Phrase-based SMT

Unsupervised lexical simplification system

System	Simpleness	Fluency	Relatedness
UNTS+10K UNTS	57 % 47%	4.13 3.86	3.93 3.73
UNMT	40%	3.8	4.06
NTS SBMT PBSMT	49% 53% 53%	4.13 4.26 3.8	3.26 4.06 3.93
LIGHTLS	6%	4.2	3.33

Table 3: Average human evaluation scores for simpleness and grammatical correctness (fluency) and semantic relatedness between the output and input.

Conclusion:

- Novel attempt towards unsupervised text simplification.
- (Including) Novel model and training process.
- Better than or competitive to these baselines