Probability (part 1)

Gaston Sanchez

Creative Commons Attribution Share-Alike 4.0 International CC BY-SA

Probability Basics

Flip a fair coin

What are the chances it lands heads?

Possible outcomes when flipping a coin

50%

50%

How do you know it is 50-50?

If I flip the coin repeatedly, I expect (in the long run) the proportion of heads to be (close to) 1/2

Frequentist Approach

Frequency Theory

Processes which can be repeated ...

- over and over again
- independently
- under the same conditions

Frequency Theory: typical examples

Precipitation: 40%

Humidity: 72%

Wind: 16 mph

Precipitation Temperature Wind Irrepeatable phenomenon 1% 1% 1% 0% 1% 10 AM 1 PM 4 PM 7 PM 10 PM 1 AM 4 AM 7 AM Fri Tue Thu Sat Sun Mon Wed Fri 72° 50° 65° 46° 68° 49° 73° 51° 72° 51° 60° 44°

50% chance a coin lands heads

Different types of probability

50% chance it will rain tomorrow

If I flip the coin repeatedly, I expect (in the long run) the proportion of heads to be (close to) 1/2

Frequency Theory

The chance of something gives the percentage of time is expected to happen, when the basic process is done over and over again, independently and under the same conditions

Preliminary concepts

Events

We designate events with capital letters: A, B, C, ...

A: number of new emails in your inbox

Events

Rolling 2 dice and counting the numbers of sides facing up

A: sum of the dice is seven

$$A = \{ (1,6), (2,5), (3,4), (4,3), (5,2), (6,1) \}$$

What is probability?

Probability is a numerical measure that describes the likelihood that an event will occur.

Notation

Probability of event A

Probability Rules

Equally likely outcomes

Equally Likely Outcomes

If all outcomes are **equally likely**, the chance an event happens is the number it can happen, divided by the total number of possible outcomes

Chance of an event

of ways it can happen

total # possible outcomes

Flip a fair coin

Chance coin lands heads

one possible heads

two possible outcomes

Chance coin lands tails

one possible tails

two possible outcomes

roll a *fair* die, what's the chance it lands 6?

Chance a die lands six

$$P(six) = \frac{1 \text{ possible six}}{6 \text{ possible outcomes}} = 1/6$$

Probability of each face

$$P(1) = 1/6$$

$$P(2) = 1/6$$

$$P(3) = 1/6$$

$$P(4) = 1/6$$

$$P(5) = 1/6$$

$$P(6) = 1/6$$

Probability Range

Chances are between 0% and 100%

0% 100% impossible sure

Complement Rule

The chance of something equals 100% minus the chance of the opposite thing complement

Venn Diagrams

Venn Diagrams

A^c = complement of A

area of A + area of $A^c = 100 \%$

roll a fair die, what's the chance you get 5 or less?

Chance of getting 5 or less

$$P(5 \text{ or less}) = P(5) + P(4) + P(3) + P(2) + P(1)$$

$$P(5 \text{ or less}) = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{5}{6}$$

Venn Diagrams

Chance of getting 5 or less

$$P(5 \text{ or less}) = 1 - P(six) =$$

$$P(5 \text{ or less}) = 1 - 1/6 = 5/6$$

$$P(5 \text{ or less}) = P(Not six)$$

Conditional Probability

Conditional Probability: The chance of one event given that another event happens

Conditional Probability

 $P(B \mid A)$

Probability of event B given that event A happens

Conditional Probability: alternative notation

P(A | B)

Probability of event A given that event B happens

Conditional Probability

$$P(A \mid B) \neq P(B \mid A)$$

not necessarily equal

Conditional Probability

$$A = \text{red die is 1}$$
 $B = \text{sum of dice is 2}$

$$P(B \mid A) = P(sum is 2 \mid red is 1)$$

$$P(B | A) = P(blue is 1) = 1/6$$