

Algoritmos e Lógica de Programação II Revisão

Prof. MSc. Rafael Staiger Bressan rafael.bressan@docentes.unicesumar.edu.br

- Introdução
- Conceituando Algoritmos
- Como Construir Algoritmos
- Tipos de Algoritmos
- Estudando Variáveis
- Tipos de Variáveis
- Constante

- Expressões
- Funções Intrínsecas
- Atribuições
- Entrada de Dados
- Saída de Dados
- Construindo Algoritmos
- Considerações Finais

Introdução

Algoritmo e Lógica de Programação

- O que é Informática?
- Informação + Automática. (Século XXI)
- Processamento da informação por meios automáticos em simples impulsos binários.
- Computador
- Equipamento que faz o Tratamento **automático** de **informações** ou processamento de dados. (1550-1617, John Napier)
- Classificação:
 - Capacidade de armazenar informação durante o processamento e para uso posterior;
 - Capacidade de processamento das informações;

Introdução Unidades Básicas do Computador

Introdução **Hardware** | Software

2020

Introdução Hardware | **Software**

- Toda <u>Hardware</u> necessita de um **Software** que o gerencie.
 - Software é a parte lógica do computador.
 - "Sequência de instruções a serem seguidas e/ou executadas, na manipulação, redirecionamento ou modificação de um dado/informação acontecimento."

Introdução Tabela de bits / Bytes

0	1 bit	0 ou 1 (b)
0	8 bits	1 Byte (B)
	1024 Bytes	1 Quilobyte (KB)
0	1024 Quilobyte	1 Megabytes (MB)
5	1024 Megabytes	1 Gigabytes (GB)
0	1024 Gigabytes	1 Terabyte (TB)
0	1024 Terabyte	1 Petabyte (PB)

Quando queremos criar ou **desenvolver um software** para realizar determinado tipo de processamento de dados, devemos escrever um programa ou vários programas interligados. No entanto, para que o computador compreenda e execute esse programa, devemos escrevê-lo usando uma linguagem que tanto o computador quanto o criador de software entendam.

Introdução Existe Lógica no dia a dia?

Disponível em:http://ospontosdevista2.blogspot.com/2018/02/imagens-do-facebook-preguica-e-mae-de.html Acesso em: 09 jul. 2019

Introdução Sequência Lógica

- Sequência Lógica
 - Sequência lógica são passos executados até atingir um objetivo ou solução de um problema.
 - **Exemplos**
 - Receita de um bolo
 - Manual montagem

Desafio "O Lobo e a Ovelha"

https://rachacuca.com.br/jogos/o-lobo-e-a-ovelha/

- O barquinho do camponês comporta apenas um item, além dele próprio. O barquinho pode levar e trazer itens
- Você deve ficar atento às seguintes regras:
 - O lobo devora a ovelha se os dois ficarem sozinhos e;
 - A ovelha come o couve se ficar sozinha com ele.

Desafio "Missionários e Canibais"

 Os missionários não podem ficar em menor número, em qualquer uma das margens, ou os canibais os devorarão.

https://rachacuca.com.br/jogos/missionarios-e-canibais/

- As etapas para o desenvolvimento de um programa são:
 - Análise Estuda-se o enunciado do problema para definir os dados de entrada, o processamento e os dados de saída.
 - Algoritmo Ferramentas do tipo descrição narrativa, fluxograma ou português estruturado são utilizadas para descrever o problema com suas soluções.
 - Codificação O algoritmo é transformado em códigos da linguagem de programação escolhida para se trabalhar.

2020

Conceituando Algoritmos

- "Algoritmo é uma sequência de passos que visa atingir um objetivo bem definido." (FORBELLONE, 1999)
- "Algoritmo é uma sequência finita de instruções ou operações cuja execução, em tempo finito, resolve um problema computacional, qualquer que seja sua instância." (SALVETTI, 1999)
- "Algoritmo são regras formais para a obtenção de um resultado ou da solução de um problema, englobando fórmulas de expressões aritméticas." (MANZANO, 1997)

- "Ação é um acontecimento que, a partir de um estado inicial, após um período de tempo finito, produz um estado final previsível e bem definido. Portanto, um algoritmo é a descrição de um conjunto de comandos que, obedecidos, resultam numa sucessão finita de ações." (FARRER, 1999)
- "Informalmente, um algoritmo é qualquer procedimento computacional bem definido que toma algum valor ou conjunto de valores como entrada e produz algum valor ou conjunto de valores como saída. Portanto, um algoritmo é uma sequência de passos computacionais que transformam a entrada na saída." (CORMEN, 2002)

 Analisando as definições percebemos que executamos no dia a dia vários algoritmos.

Algoritmo 1 - Trocar uma lâmpada queimada

- Passo 1 Pegar uma escada;
- Passo 2 Posicionar a escada debaixo da lâmpada;
- Passo 3 Buscar uma lâmpada nova;
- Passo 4 Subir na escada;
- Passo 5 Retirar a lâmpada queimada;
- Passo 6 Colocar lâmpada nova;

Algoritmo 2 – Somar três números.

- Passo 1 Receber os três números;
- Passo 2 Somar os três números;
- Passo 3 Mostrar o resultado da soma.

Algoritmo 3 – Fazer um lanche.

- Passo 1 Pegar o pão;
- Passo 2 Cortar o pão ao meio;
- Passo 3 Pegar a maionese;
- Passo 4 Passar a maionese no pão;
- Passo 5 Pegar e cortar alface e tomate;
- Passo 6 Colocar alface e tomate no pão;
- Passo 7 Pegar o hambúrguer;
- Passo 8 Fritar o hambúrguer;
- Passo 9 Colocar o hambúrguer no pão;

Algoritmo 4 – Sacar dinheiro no banco.

- Passo 1 Ir até o banco 24h;
- Passo 2 Colocar o cartão;
- Passo 3 Digitar a senha;
- Passo 4 Solicitar a quantia desejada;
- Passo 5 Se o saldo for maior ou igual a quantia desejada, sacar; senão mostrar mensagem de impossibilidade de saque;
- Passo 6 Retirar o cartão;
- Passo 7 Sair do banco 24h.

- Você pode estar pensando: "Mas eu realizo essas atividades de maneira diferente!"
 - Esse pensamento é correto, pois às vezes um problema pode ser resolvido de diversas maneiras, porém, gerando a mesma resposta, ou seja, podem existir vários algoritmos para solucionar o mesmo problema.

- Para a construção de qualquer tipo de algoritmo, é necessário seguir estes passos:
- **Compreender completamente o problema** a ser resolvido, destacando os pontos mais importantes e os objetos que o compõem.
- Definir os **dados de entrada**, ou seja, quais dados serão fornecidos.
- **Definir o processamento**, ou seja, quais cálculos serão efetuados. O processamento é responsável pela transformação dos dados de entrada em dados de saída.
- Definir os dados de saída.

2020

Construir o algoritmo e testar o algoritmo realizando simulações.

Tipos de Algoritmos

- Os três tipos mais utilizados de algoritmos são:
 - Descrição Narrativa
 - Fluxograma
 - Pseudocódigo ou Portugol ou Português Estruturado

Descrição Narrativa:

- Consiste em analisar o enunciado do problema e escrever, utilizando uma linguagem natural (por exemplo, a língua portuguesa), os passos a serem seguidos para sua resolução.
- **Vantagem:** Não é necessário aprender nenhum conceito novo, pois é a linguagem natural.
- **Desvantagem:** A língua natural abre espaço para várias interpretações;

Descrição Narrativa - Exemplo: **Algoritmo 2 – Somar três números.**

- Passo 1 Receber os três números;
- Passo 2 Somar os três números;
- Passo 3 Mostrar o resultado.

Fluxograma

- **Utiliza símbolos gráficos** predefinidos para a resolução do problema.
- **Vantagem**: O entendimento de elementos gráficos é mais simples que o entendimento de texto;
- **Desvantagem**: É necessário aprender a simbologia dos fluxogramas e, além disso, o algoritmo resultante não apresenta muitos resultados, dificultando sua transcrição para o programa (Codificação)

Tipos de Algoritmos

Símbolo	Descrição	
	Utilizado para indicar o início e o fim do algoritmo	
	Utilizado para representar a entrada de dados	
	Utilizado para representar a saída de dados	
	Utilizado para indicar os cálculos e atribuição de valores	
\Diamond	Utilizado para indicar a tomada de decisão e os possíveis desvios	
	Utilizado para indicar o fluxo de dados, conectando os blocos existentes	

Tipos de Algoritmos

Exemplo Fluxograma – Somar três números

Pseudocódigo

- Consiste em analisar o enunciado do problema e escrever, por meio de regras predefinidas, os passos a serem seguidos para sua resolução.
- **Vantagem:** A passagem do algoritmo para qualquer linguagem de programação é quase imediata, bastando conhecer as palavras reservadas dessa linguagem que serão utilizadas.
- **Desvantagem**: É necessário aprender as regras do pseudocódigo.

```
algoritmo "Soma"
         // Função : Soma três números inteiros
         // Autor : Prof. Rafael S. Bressan
         // Data : 16/02/2014
         // Seção de Declarações
         var
            N1, N2, N3, RESULTADO: inteiro
         inicio
         // Seção de Comandos
            escreva("Digite o valor do N1 = ")
            leia(N1)
            escreva("Digite o valor do N2 = ")
            leia(N2)
            escreva("Digite o valor de N3 = ")
            leia(N3)
            RESULTADO:=N1+N2+N3
            escreva("Resultado
                                            = ", RESULTADO)
         fimalgoritmo
2020
                     Algoritmo e Lógica de Programação II
```

Estudando Variáveis

- Um algoritmo e, posteriormente, um programa, recebe dados, que são armazenados na memória;
- Uma variável representa uma posição de memória. Possuindo um nome e tipo, cujo conteúdo pode variar ao longo do tempo, durante a execução de um programa.

- Os identificadores são os **nomes das variáveis**, dos programas, das constantes, das rotinas etc. As regras básicas são:
- Os caracteres que você pode utilizar são: os números, as letras maiúsculas, as letras minúsculas e o caractere sublinhado.
- O primeiro caractere deve ser sempre uma letra ou caractere sublinhado.
- Não são permitidos espaços em branco e caracteres especiais (@,\$,+,-, %,!).
- Não podemos usar palavras reservadas nos identificadores, ou seja, palavras que pertençam a uma linguagem de programação.

Exemplos de Identificadores

<u>Válidos</u>	<u>Não válidos</u>
A	5b – por começar com número
a	E 39 – por conter espaço em branco
nota	Case – por ser palavra reservada
numero_1	
x4	

Tipos de Variáveis

Numéricos:

Inteiro

- Podem ser positivos ou negativos e não possuem parte fracionária
- {-23, 98, 0, -3875, 230}

Real

- Podem ser positivos ou negativos e possuem parte fracionária
- {23,56 | -35,2 | 0,0 | 1 | 52}

Tipos de Variáveis

Literais ou Caracteres

 São formados por um caractere ou por uma cadeia de caracteres. Esses caracteres podem ser letras minúsculas, maiúsculas e caracteres especiais. {"aluno" | "\$5nh" | "Universidade" | "1 + 2" | "A"}

Lógico

• São também chamados de dados **booleanos** e podem assumir os valores FALSO ou VERDADEIRO.

algoritmo "Exemplo Caracter" // Função : Exemplo do uso de variáveis - caracteres // Autor : Prof. Rafael S. Bressan - CCET UNOPAR // Data : 2014 // Secão de Declarações var dias,idade:inteiro nome:caracter inicio // Seção de Comandos escreva("Digite seu nome = ") leia(nome) escreva("Digite sua idade = ") leia(idade) dias:=idade*365 escreva ("Olá ", nome, ", você viveu aproximadamente", dias, " dias") fimalgoritmo

Constantes

- Uma constante armazena dados que não variam com o tempo, ou seja, seu conteúdo é um valor fixo.
- Definição
 - CONST

<nome da constante> = <valor>

Operação	Operador	Prioridade
Soma	+	1 (menor)
Subtração	-	1
Multiplicação	*	2
Divisão	1	2
Exponenciação	**	3 (maior)
Resto	mod	3
Divisão Inteira	div	3

Operação	Operador	Significado
Igual	=	A=B B=A
Diferente	<>	A <> B
Maior	>	A > 5
Menor	<	A < 5
Maior ou igual a	>=	A >= 5
Menor ou igual a	<=	A <= 5

Expressões

OPERADORES LÓGICOS	PORTUGUÊS ESTRUTURADO	SIGNIFICADO	
Multiplicação lógica	E	Resulta verdadeiro se ambas as partes forem verdadeiras.	
Adição lógica	Ou	Resulta verdadeiro se uma das partes é verdadeira.	
Negação	I NAC	Nega uma afirmação, invertendo o seu valor lógico: se for VERDADEIRO torna-se FALSO, se for FALSO torna-se VERDADEIRO.	

A tabela abaixo – chamada *tabela-verdade* – mostra os resultados das aplicações dos operadores lógicos conforme os valores dos operadores envolvidos.

Α	В	AEB	A OU B	NÃO A	NÃO B
VERDADEIRO	VERDADEIRO	VERDADEIRO	VERDADEIRO	FALSO	FALSO
VERDADEIRO	FALSO	FALSO	VERDADEIRO	FALSO	VERDADEIRO
FALSO	VERDADEIRO	FALSO	VERDADEIRO	VERDADEIRO	FALSO
FALSO	FALSO	FALSO	FALSO	VERDADEIRO	VERDADEIRO

OPERADOR ARITMÉTICO	PRIORIDADE
Exponenciação	3 (maior)
Multiplicação	2
Divisão	2
Adição	1
Subtração	1 (menor)

OPERADOR LÓGICO	PRIORIDADE
е	3
ou	2
nao	1

OPERADOR	PRIORIDADE
Operadores aritméticos	3
Operadores relacionais	2
Operadores lógicos	1

Linearização de Expressões

Exemplo 3.1 $\left\{ \left[\frac{2}{3} - (5-3) \right] + 1 \right\} . 5$	((2/3-(5-3))+1)*5
Tradicional	Computacional

Funções Intrínsecas

	Função	Objetivo
	ABS(variável)	Valor Absoluto
	ARCTAN(variável)	Arco tangente de um ângulo
	COS(variável)	Valor do cosseno de um ânulo
)	EXP(variável)	Exponencial
	FRAC(variável)	Parte Fracionária
	LN(variável)	Logaritmo Natural
	PI	Valor de PI
0	SIN(variável)	Seno de um ângulo
	SQR(variável)	Elevado ao quadrado
)	SQRT(variável)	Raiz Quadrada

Atribuições

 O símbolo utilizado para a atribuição é (←) ou (:=) e a representação é dada por:

> Identificador ← expressão Identificador := expressão

> > . .

Num ← 20

Entrada de Dados

 A entrada de dados (dispositivo de entrada – teclado) permite receber os dados digitados pelo usuário e é realizada por meio do comando (leia)

leia <variável>

Saída de Dados

A saída de dados (dispositivo de saída – monitor) permite mostrar os dados ao usuário e é realizada por meio do comando (escreva)

escreva <variável> ou <literal>

```
algoritmo "Exemplo Caracter"
// Função : Exemplo do uso de variáveis - caracteres
// Autor : Prof. Rafael S. Bressan
// Data : 2014
// Seção de Declarações
var
dias,idade:inteiro
nome:caracter
inicio
// Seção de Comandos
escreva("Digite seu nome = ")
leia(nome)
escreva("Digite sua idade = ")
leia(idade)
dias:=idade*365
escreva ("Olá ", nome, ", você viveu aproximadamente", dias, " dias")
fimalgoritmo
```


Exercícios

- Defina: Algoritmo
- Quais são as etapas para desenvolvimento de um software (Programa)?
- Descreva os três tipos de algoritmos mais usados.
- Descreva como funcionam as declarações de variáveis em algoritmo e de exemplos.

Faça a linearização das expressões a baixo.

$$3xy^{2} - 2x^{2}y$$

$$2xy^{-2} - x^3 + 3$$

$$5x\sqrt{y^3} - 11$$

$$\frac{2}{7xy^{\frac{2}{3}}-x^{\frac{1}{4}}-2}$$

$$\frac{3111}{X-y}$$

$$\frac{7}{a^{-3}}$$

$$\frac{x^3y^2 - 2x^4y^3}{\sqrt{2}}$$

Leitura Recomendada

- Capitulo 1 e 3
 - ASCENCIO, Ana Fernanda Gomes; VENERUCHI, Edilene Aparecida. **Fundamentos de programação de computadores: algoritmos, Pascal e C/C++**. São Paulo: Prentice Hall, 2002.

Construindo Algoritmos Estrutura Sequencial

 Desenvolva um algoritmo em fluxograma e pseudocódigo que leia o nome e idade de uma pessoa, calcule e apresente na tela o nome digitado e a quantidade aproximada de dias vividos.

Símbolo	Descrição
	Utilizado para indicar o início e o fim do algoritmo
	Utilizado para representar a entrada de dados
	Utilizado para representar a saída de dados
	Utilizado para indicar os cálculos e atribuição de valores
\Diamond	Utilizado para indicar a tomada de decisão e os possíveis desvios
←	Utilizado para indicar o fluxo de dados, conectando os blocos existentes

MANZANO, José Augusto NG. **Algoritmos lógica para desenvolvimento de programação de computadores**. Saraiva Educação SA, 2010.

ASCENCIO, Ana Fernandes Gomes; CAMPOS, Edilene Aparecida Veneruchi de. **Fundamentos da programação de computadores: algoritmos, Pascal e C/C++ e Java**. São Paulo: Pearson Prentice Hall, 2010

CORMEN, Thomas H. et al. **Algoritmos: teoria e prática**. Editora Campus, v. 2, p. 2, 2002.

XAVIER, Gley Fabiano Cardoso. **Lógica de programação**. Senac, 2018.

"Só existem dois dias no ano que nada pode ser feito. Um se chama ontem e o outro se chama amanhã"

Dalai Lama