Intractability

Reading: Kleinberg & Tardos Ch. 8

What could be going on?

You've been asked to solve a *problem* by writing a *program*.

You:

- 1. come up with your solution
- 2. implement it
- 3. cross your fingers while you execute the code

No errors print out, but it also doesn't complete execution, even after a couple minutes!

What could be going on?

What could be going on?

You've been asked to solve a problem by writing a program.

You:

- 1. come up with your solution
- 2. implement it
- 3. cross your fingers while you execute the code

No errors print out, but it also doesn't complete execution, even after a couple minutes!

Your program might have an infinite loop or recursion or it might just need some more time running...

Complexity CardLine

Building intuition

EmptyList

Given a list, determine if it has no elements.

EmptyList(()) \rightarrow true EmptyList((a,b)) \rightarrow false

SubsetSum

Given a list of integers and target sum, determine if a subset adds to the target.

SubsetSum((1, 3, 4), 5) \rightarrow true SubsetSum((1, 3, 4), 6) \rightarrow false

SimplePath

Given a graph and vertices *s* and *t*, determine if there is a path from *s* to *t* that does not visit any vertex more than once.

SimplePath(a, d) \rightarrow true SimplePath(b, c) \rightarrow false

Complexity classes

- A problem belongs to *complexity class* TIME(T(n)) if there exists an O(T(n)) time algorithm that solves it
 - EmptyList \subseteq TIME(1)
 - SimplePath \subseteq TIME(n)
 - SUBSET-SUM \subseteq TIME(2ⁿ)
- Note: here, "abuse" notation n is complete input size (edges + vertices)
- TIME(1) \subseteq TIME(log n) \subseteq TIME(n) \subseteq TIME(n log n)
 - \subseteq TIME(n^2) \subseteq ... TIME(n^k)
 - \subseteq TIME(2^n) ...

How hard can a problem be?

Unsolvable!

The Halting Problem

How hard can a problem be?

Perfect matchings for bipartite graphs

- Bipartite graph G = (V, E)
- V can be partitioned into disjoint vertex sets: X and Y
- Edges: one endpoint in each set

- Matching: set M of family-animal pairs each family/animal participates in at most one pair
- Perfect matching: assuming n families and n animals,
 each family/animal in exactly one pair

Maximum flow in a network

- Input:
 - Directed graph G = (V,E) with edge capacities c_{ρ} for each edge e
 - Source vertex *s*
 - Sink vertex *t*
- Find maximum "flow" from source to target
 - \circ **s-t flow** $f:E \to \mathbb{R}^+$ such that
 - (capacity) $0 \le f(e) \le c_e$ for each edge e
 - \blacksquare (conservation) for each **internal** vertex v (not s or t)

CS 312 - Algorithms - Mount Holyoke College

Which problem is harder?

Perfect matching in bipartite graphs

Maximum flow in networks

Can we compare problems?

- Claim: bipartite matching is "no harder than" network flow
- Bipartite matching ≤ Network flow
 - Reduce the problem of bipartite matching to the problem of network flow
 - How long does this take?
- Edmonds-Karp specialization of Ford-Fulkerson Network Flow: O(VE^2)
 - Network Flow is polynomial time
- Then *Bipartite matching is polynomial time*

Reductions

- *Reduction* from problem *A* to problem *B*
 - function f such that $x \in A$ if and only if $f(x) \in B$
 - f converts "yes" instance of A to "yes" instance f(x) of B, and
 - f converts "no" instance of A to "no" instance f(x) of B
 - \blacksquare A < B means "A is reducible to B" if reduction exists
- \blacksquare $A \leq p B$
 - "reducible in polynomial time"
 - if there is reduction that can be computed in poly. time

P and NP

- Problem belongs to complexity class TIME(T(n)) if there exists an O(T(n)) time algorithm that solves it
- TIME(1) \subseteq TIME(log n) \subseteq TIME(n) \subseteq TIME(n log n) \subseteq TIME(n^2) \subseteq ... TIME(n^k) \subseteq TIME(2^n) ...
- **P** = class of problems for which poly. time algorithm exists
- NP = class of problems that are *verifiable* in polynomial time

P and NP

- P: class of problems for which poly. time algorithm exists
- NP: class of problems verifiable in poly. time
 - examples: IsSorted, Hamiltonian path, Subset-Sum
 - equivalent to class of problems for which a nondeterministic polynomial time algorithm exists
 - nondeterministic: power of "lucky" guessing
 - can make guesses in the algorithm
 - if correct guess exists, guaranteed to choose it
- \blacksquare P \subseteq NP

NP-completeness

- Problem S is *NP-hard* if:
 - $T \le p S \text{ for all } T \subseteq NP$
- Problem S is *NP-complete* if:
 - $S \subseteq NP$
 - $T \le p S \text{ for all } T \subseteq NP$

NP-complete problems

- NP's "hardest problems"
- 3SAT: boolean formulas for which satisfying truth assignment exists
 - conjunctive normal form with 3 literals per clause
 - (a OR b OR c) AND (d OR !e OR f) AND ...
 - literal: variable or its negation
- 3SAT is NP-complete
 - $3SAT \subseteq NP$
 - $T \le p$ 3SAT for all $T \subseteq NP$ [via Cook-Levin Theorem]

How hard is Subset-Sum?

k: # of literals per clause

- Show 3SAT \leq p SUBSET-SUM:
 - Given boolean formula in 3Chr form with n variables and m clauses
 - Create a set of 2n + (k-1)m decimal numbers
 - each number has n + k digits
 - table schematic: rows are numbers, columns are digits
 - two types of columns
 - first n columns labeled by variables
 - last m columns labeled by clauses
 - two types of rows
 - 2n variable value rows
 - one row for variable x and one for negation !x
 - variable columns: 1 if column for x, 0 otherwise
 - clauses columns: 1 in column if clause contains literal, 0 otherwise
 - 2m [generally (k-1)m] "slack" rows
 - 2 rows for each clause c
 - variable columns: 0
 - clauses columns: 1 if column for c, 0 otherwise
 - target value is decimal number: n 1's, followed by m 3's
 - sum to 1 in variable columns <=> each variable assigned true or false
 - sum to 3 in clause columns <=> at least one literal certify truth
 - (may need to pad with slack variables)

CS 312 - Algorithms - Mount Holyoke College

Example: B = (x or y or z) and (!x or y or !z)

```
y z c1 c2
     Х
        0 0 1 0
                           // x = T
     1
x:
                           // x = F
     1 0 0 0 1
! x :
                           // y = T
     0 1 0 1 1
у:
! y :
     0 1 0 0 0
                           // y = F
     0 0 1 1 0
                            //z = T
 z:
     0 0 1 0 1
!z:
                           //z = F
                           // slack for c1 if <3 true literals
c1:
     0 0 0 1 0
     0 0 0 1 0
                            // slack for c1 if <3 true literals
c1:
c2:
     0 0 0 0 1
                            // slack for c2 if <3 true literals
                            // slack for c2 if <3 true literals
c2:
        0
t:
    1 1 1 3 3
```

- - solution to Subset-sum instance gives: {10, 10, 101, 1011, 10001}
 - corresponding to: both c1 slack rows, !z, y and !x
 - truth assignment is: x F, y T, z F
 - clause 1 only has one true literal (y), so needs both slack rows to get to 3
 - clause 2 has all three literals (!x, y, !z), so uses no slack rows
 CS 312 Algorithms Mount Holyoke College

Does P = NP?

solve any NP-complete problem in polynomial time

