Basics of Computational Combustion Modelling

Dr. Gavin Tabor

Why study Combustion?

Combustion of hydrocarbons – important fuel source

- Power generation
- Aircraft, rocket propulsion
- Cars etc
- Marine applications

Combustion – rapid chemical reaction between fuel and oxidant (air). Usually involves fluid flow.

Understand + model processes → improve power generation, decrease polutants.

Physical basis

Complex area of investigation:

- Combustion affects fluid flow. Heat release $\to \Delta T \to \text{change physical properties. Also buoyancy drives flow$
- Fluid flow affects combustion. Brings reactants together, removes products. Can determine rate of combustion, and even extinguish flame.

Overall, combustion \equiv rapid chemical reaction between fuel and oxidiser.

However details vary – treat different regimes differently.

Combusion regimes

- Non-premixed combustion
 - Regions of fuel + oxidiser separate,
 - Combustion occurs at interface
- Premixed combustion
 - Fuel and oxidiser mixed at molecular level
 - Regions of burned and unburned gas, separated by (thin) flame
- Partially premixed combustion
 - somewhere between

Some examples

Premixed:

- Spark ignition (IC) petrol engines
- Lean burn gas turbines
- Household burners
- Bunsen burner (blue flame regime)

Partially premixed:

- Direct injection (DI) petrol engines
- Aircraft gas turbines

Examples – non-premixed

Non-premixed:

- Diesel engines
- Aircraft gas turbines
- Furnaces
- Candles, fires

Flame structure

Premixed combustion

Flame propagating in laminar flow is characterised by :

Laminar flame speed s_L ,

thickness l_F

Combustion rate controlled by molecular diffusion processes (D_L – diffusivity)

Chemistry

Dimensional analysis gives:

$$l_F = \frac{D_L}{s_L}$$

linking these processes.

Chemical reaction time

$$t_L = \frac{l_F}{s_L}$$

Turbulent flame structure

This is more complex. Turbulence characterised by

turbulence intensity u

Integral, Kolmogorov scales $l_I,~\eta$

Turbulent Reynolds number $\mathcal{R}e_T = \frac{u'l_I}{\nu}$

Characteristic turbulent eddy turnover time

$$t_T = \frac{l_I}{u'}$$

Combustion – p.

Damköhler number

Compare importance of turbulence and combustion – Damköhler number

$$\mathcal{D}a = \frac{t_T}{t_L} = \frac{l_I s_L}{u' l_F}$$

- ratio of eddy turnover time to burning
- effect of turbulence on chemical processes

Other measures:

 l_F/η Measure of local distortion of the flame u'/s_L Relative strength of turbulence.

Flame structure

In more detail, 3 regions:

Flame Propagation ————

Flame structure

- 1. a preheat zone,
- 2. an inner layer of fuel consumption,
- 3. the oxidation layer.

Thickness of the inner layer

$$l_{\delta} = l_F \delta$$

For stoichoimetric methane at 1 atmosphere,

$$l_F = 0.175 \; \mathrm{mm}$$
 and $\delta = 0.1$

Non-premixed combustion

- No obvious characteristic velocity scale
- Define a characteristic diffusion thickness l_D
- Flame still divided into fuel consumption and oxidation layers
- Oxidation layer

$$l_{\varepsilon} = \varepsilon l_D$$

of more importance.

Modelling – direct approach

We can approach the problem in a simple way:

- Combustion = chemical reaction process combining reactants to form products
- Write balance equations for species
- Solve together with continuity and momentum equations

Mass fraction

Define Mass fraction Y_i

 the mass of the species per unit mass of the mixture.

Transport equation

$$\frac{\partial \rho Y_i}{\partial t} + \nabla . \rho Y_i \underline{u} = \nabla . \rho D_i \nabla Y_i + \rho S_i$$

Source term represents addition/removal due to combustion

Temperature equation

Also need transport equation for some measure of the energy – say temperature T.

$$\frac{\partial \rho T}{\partial t} + \nabla . \rho T \underline{u} = \nabla . \rho D \nabla T + \rho S_T$$

Source term represents radiation, pressure work, energy release.

Reactive scalars

Often group everything together as "reactive scalars"

$$\psi_i = \{Y_1, Y_2, \dots, Y_n, T\}$$

with transport equation

$$\frac{\partial \rho \psi_i}{\partial t} + \nabla . \rho \psi_i \underline{u} = \nabla . \rho D_i \nabla \psi_i + \rho S_{\psi_i}$$

Problems

Problems with this approach:

- n often quite large!
 Elementary reaction mechanisms detail 100's of reactions for combustion process. Invoke QSSA to reduce to manageable proportions (1-5).
- Turbulence still unaccounted for!!
 Turbulence introduces too many details to calculate. Use Reynolds averaging to eliminate details, replace by a model.

Moment methods

Turbulence modelling – replace 'small scale' detail of turbulence with (cheaper) turbulence model.

Similar process used in combustion modelling – average to remove details, then substitute a model.

Density of fluid variable ⇒ use *Favre* averaging.

$$u_x(\underline{x},t) = \widetilde{u_x} + u_x''$$

Here

$$\overline{\rho u_x} = 0$$
 and thus $\widetilde{u_x} = \frac{\overline{\rho u_x}}{\overline{\rho}}$

Favre averaging

Useful for modelling when density varies: NSE contain terms such as

$$\overline{\rho u_x u_y}$$

Using Favre averaging this becomes

$$\overline{\rho u_x u_y} = \overline{\rho} \widetilde{u_x} \widetilde{u_y} + \overline{\rho} \widetilde{u_x'' u_y''}$$

Use this to derive mean flow equations (Favre-averaged NSE) and equations for k and ϵ – a turbulence model for compressible flow.

Moment methods cont.

Favre averaged equation for reactive scalars:

$$\frac{\partial \overline{\rho}\widetilde{\psi_i}}{\partial t} + \nabla.\overline{\rho}\widetilde{\psi_i}\underline{\widetilde{u}} = \nabla.\overline{\rho}D_i\nabla\psi_i - \nabla.\overline{\rho}\underline{u''\psi_i''} + \overline{\rho}\widetilde{S_{\psi_i}}$$

High $\mathcal{R}e$, so molecular diffusivity D can be ignored. Two terms cause problems :

$$-\nabla.\overline{\rho}\underline{\tilde{u''}\psi_i''}$$
 representing turbulent transport and

$$\overline{\rho}\widetilde{S_{\psi_i}}$$
 the mean chemical source term

Specific models

Different combustion models arrise from different approaches to these terms – range from cheap and inaccurate to precise and expensive.

E.g. Eddy Breakup Model – Spalding (1971)

- assumes turbulent mixing determines chemical reaction rate
- gives simple model for chemical source term
- combine with $k \epsilon$ model for turbulence
- cheap to compute. Requires extensive tuning.

PDF Transport

Probability Distribution Function methods

- turbulence can be described/modelled in terms of correlation functions
- turbulent processes combustion can also be described/modelled in terms of correlations
- joint PDF of velocity and reactive scalars

$$P(\underline{u},\underline{\psi};\underline{x},t)$$

Potentially more accurate. Also very expensive.

Flamelet methods

Main alternative methodology.

High $\mathcal{R}e, \mathcal{D}a \Rightarrow$ flame fronts very thin – consider as 2d sheet which :

- separates burnt and unburnt gas (premixed combustion)
- separates fuel and air (non-premixed)
- is distorted by mean flow and by turbulence
- propagates by burning.

Location of flame sheet specified by indicator function.

Indicator function

Premixed combustion: progress variable

$$c = rac{T - T_u}{T_b - T_u}$$
 or $c = rac{Y_P}{Y_{P,b}}$

0 < c < 1: 1 represents burned gas, 0 unburned.

Some intermediate value represents flame centre.

1-d representation

Plotting c across the flame:

Flame wrinking

Flame will be wrinkled by turbulence on scales too small to simulate

Averaging

Average equation

$$\frac{\partial \overline{\rho}\widetilde{c}}{\partial t} + \nabla . \overline{\rho}\widetilde{c}\underline{u} = -\nabla . \overline{\rho}\underline{\widetilde{u''}}\underline{c''} + \overline{\rho}\widetilde{S}_c$$

Need to model:

 $\underline{\widetilde{u''}c''}$ turbulent transport term

 \widetilde{S}_c reaction term

- but now have a manageable set of equations.

Other models

Other versions

- flame surface density Σ
- G-equation
- Non-premixed combustion
 - use mixture fraction Z.

Counter-gradient transport

Final note: modelling of $\underline{u''}c''$ often uses *gradient* transport assumption

$$\widetilde{\underline{u''}c''} = -D_t \nabla \widetilde{c}$$

However this is frequently wrong – *counter-gradient transport*.