Implementation of an ECC with M-511 CS448 - Introduction to IT Security

Who? Yoann Kehler, Duong Ta

When? April 13, 2017

Outline

- Why is non-elliptic curve cryptography not enough?
- What is an elliptic curve?
- Why M-511?

Finite abelian Group, with multiplication

$$(P,Q) \mapsto P \cdot Q$$

Finite abelian Group, with multiplication

$$(P,Q)\mapsto P\cdot Q$$

An element ${\cal P}$ generates a cyclic Subgroup with order n

$$\langle P \rangle = \{ P^k : k \in \mathbb{Z} \}$$

$$n = ord(P) = |\langle P \rangle|$$

Finite abelian Group, with multiplication

$$(P,Q) \mapsto P \cdot Q$$

An element ${\cal P}$ generates a cyclic Subgroup with order n

$$\langle P \rangle = \{ P^k : k \in \mathbb{Z} \}$$

$$n = ord(P) = |\langle P \rangle|$$

The Discrete Logarithm Problem (DLP):

For a given P and $Q \in \langle P \rangle$ determine k s.t.

$$Q = P^k$$

Finite abelian Group, with addition

$$(P,Q)\mapsto P + Q$$

An element P generates a cyclic Subgroup with order n

$$\langle P \rangle = \{ kP : k \in \mathbb{Z} \}$$

$$n = ord(P) = |\langle P \rangle|$$

The Discrete Logarithm Problem (DLP):

For a given P and $Q \in \langle P \rangle$ determine k s.t.

$$Q = kP$$

Make the DLP hard

The Discrete Logarithm Problem (DLP):

For a given P and $Q \in \langle P \rangle$ determine k s.t.

$$Q = P^k$$

Brute-force attack: try every k < n

- big group
- $\bullet \quad \mathsf{big} \ n = ord(\langle P \rangle)$

Make the DLP hard

The Discrete Logarithm Problem (DLP):

For a given P and $Q \in \langle P \rangle$ determine k s.t.

$$Q = P^k$$

Brute-force attack: try every k < n

- big group
- $big \ n = ord(\langle P \rangle)$

$$(\mathbb{F}_p,\cdot)$$

Make the DLP hard

The Discrete Logarithm Problem (DLP):

For a given P and $Q \in \langle P \rangle$ determine k s.t.

$$Q = P^k$$

Brute-force attack: try every k < n

- big group
- $\bullet \quad \mathsf{big} \ n = ord(\langle P \rangle)$

$$(\mathbb{F}_p,\cdot)$$
 is used in:

- Digital Signature Algorithm (DSA)
- Diffie-Hellman (DH)
- El-Gamal
- RSA (on IFC)

RSA & DSA Keysize

Security strength	Symmetric algorithm	FFC(DSA)	IFC(RSA)
≤ 80	2TDEA	L = 1024 $N = 160$	K = 1024
112	3TDEA	L = 2048 $N = 224$	K = 2048
128	AES-128	L = 3072 $N = 256$	K = 3072
192	AES-192	L = 7680 $N = 384$	K = 7680
256	AES-256	L = 15360 $N = 512$	K = 15360

Table: Security Strength of DSA and RSA from NIST[2]

Figure: Two eliptic curves over \mathbb{R} [6]

Figure: Two eliptic curves over \mathbb{R} [6]

Symmetry axis: x-axis

Figure: Two eliptic curves over \mathbb{R} [6]

- Symmetry axis: x-axis
- Every line intersecting two points has a third intersection point

Figure: Two eliptic curves over \mathbb{R} [6]

- Symmetry axis: x-axis
- Every line intersecting two points has a third intersection point
- Vertical lines intersect "infinity"

Figure: Two eliptic curves over \mathbb{R} [6]

Figure: Two eliptic curves over \mathbb{R} [6]

■ Element: point on the curve

Figure: Two eliptic curves over \mathbb{R} [6]

- Element: point on the curve
- +: 3rd intersection of a line, reflect over the x-axis

Figure: Two eliptic curves over \mathbb{R} [6]

- Element: point on the curve
- +: 3rd intersection of a line, reflect over the x-axis
- Neutral element: "infinity", O

Figure: Two eliptic curves over \mathbb{R} [6]

- Rounding errors
 - Not suitable for cryptography

Eliptic curves over finite fields

- Make it discrete!
- "Random" jumps through a set of points

Figure: Set of affine points of elliptic curve $y^2 = x^3 - x$ over finite field \mathbb{F}_{61} .

ECC key sizes

Security strength	IFC(RSA)	ECC
≤ 80	k = 1024	f = 160 - 223
112	k = 2048	f = 224 - 255
128	k = 3072	f = 256 - 383
192	k = 7680	f = 384 - 511
256	k = 15360	f = 512 +

Table: Security Strength of ECC compared to RSA[2]

Handshake size of ECC compared to RSA

RSA key (bits)	X.509 certificate (bytes)	Handshake, no chain (bytes)	Handshake, chain (bytes)
1024	589	1225	2073
2048	845	1481	2585
3072	1101	1737	3097
4096	1357	1993	
ECC key (bits)	X.509 certificate (bytes)	Handshake, no chain (bytes)	Handshake, chain (bytes)
key	certificate	no chain	chain
key (bits)	certificate (bytes)	no chain (bytes)	chain (bytes)
key (bits)	certificate (bytes)	no chain (bytes)	chain (bytes)

Table: Sizes of handshakes and certificates with ECC and RSA[5]

NIST-Curves

The National Institute for Standards and Technology (NIST) proposed some cryptographic curves in 1999.

- Special characteristics for efficiency
- Chosen "randomly"

ECC might not as hard as ECDLP!

Some attacks can be performed on special classes of curves.

- Attacks on NIST-Curves have been found
- NIST-Curves were probably not tru4ly chosen at random
 [4]

Alternatives: Curve25519, M-511, M-383

Curve25519:

- Proposed by Daniel Bernstein [3]
- No security flaws found until today
- De facto standard implemented in most libraries

- M-511, M-383, M-221, E-521, E-382, E-222:
- Proposed by Diego F. Aranha et. al. [1]
- No security flaws found until today

Term Project

Goals for the semester:

- understand the maths behind ECC
- implement a library with M-511 with:
 - key generation
- en-/decryption
- signature and verification

"Never implement your own crypto"

We will not:

- Implement a library for real-world use
- Care about side-channel attacks

References I

- Diego F. Aranha et al. A note on high-security general-purpose elliptic curves. Cryptology ePrint Archive, Report 2013/647. http://eprint.iacr.org/2013/647. 2013.
- Elaine Barker et al. "Recommendation for key management part 1: General (revision 4)". In: NIST special publication 800.57 (2016), pp. 1–147.
- Daniel J Bernstein. "Curve25519: new Diffie-Hellman speed records". In: *International Workshop on Public Key Cryptography*. Springer. 2006, pp. 207–228.
- Daniel J. Bernstein and Tanja Lange. SafeCurves: choosing safe curves for elliptic-curve cryptography. URL: https://safecurves.cr.yp.to (visited on 03/13/2017).

References II

- Frédéric Cuppens et al. FPS 2014: 7th
 International Symposium on Foundations and
 Practice of Security: revised selected papers. 2015.
- Yassine Mrabet. URL: https://en.wikipedia.org/wiki/Elliptic_curve#/media/File:ECClines-3.svg (visited on 03/13/2017).
- Annette Werner. Elliptische Kurven in der Kryptographie. Springer-Verlag, 2013.