Simulação e Teste de Software (CC8550)

Aula 06 - Teste de Caixa Preta Baseado no material desenvolvido pelo prof. Calebe de Paula Bianchini.

Prof. Luciano Rossi

Ciência da Computação Centro Universitário FEI

1° Semestre de 2025

Características do Teste de Caixa-Preta

- Baseado em requisitos e especificações
- **2** Foca no comportamento do software
- Útil para testes funcionais e de aceitação
- ▶ Teste baseado em requisitos, sem exigir conhecimento do código.
- Qualquer profissional pode validar o comportamento do software.

Características do Teste de Caixa-Preta

- Baseado em requisitos e especificações
- Foca no comportamento do software
- Útil para testes funcionais e de aceitação
- ▶ Avalia entradas e saídas sem examinar o processamento interno.
- ▶ Foca no "o quê", não no "como".

Características do Teste de Caixa-Preta

Baseado em requisitos e especificações

- Foca no comportamento do software
- Útil para testes funcionais e de aceitação
- ▶ Valida se o sistema atende aos critérios do usuário.
- ▶ Garante o funcionamento correto das funcionalidades.

Flexibilidade na Execução

Automação ou Execução Manual

Testes podem ser feitos manualmente, simulando ações reais dos usuários.

Ferramentas de Automação

Scripts automatizados garantem repetição consistente e economia de tempo.

Abordagem Híbrida

Combina automação para testes repetitivos e execução manual para testes exploratórios.

Categorias de Erros no Teste de Caixa-Preta

- ▶ Funções incorretas ou omitidas.
- ▶ Erros de interface.
- ▶ Problemas em estruturas de dados ou acesso a dados.
- Erros de comportamento e desempenho.
- Falhas na iniciação ou término.

Teste de Caixa Preta

Teste Baseado em Grafo

Teste Baseado em Grafo

- ▶ Define objetos do sistema (funções, componentes, módulos, dados).
- ► Analisa a relação entre os objetos.
- ▶ Cria casos de teste para validar a relação entre os objetos.

Métodos de Teste Baseados em Grafo

- ▶ Criar um grafo dos objetos e suas relações.
- Definir uma série de testes cobrindo todas as relações.
- ▶ Os nós representam os objetos e as arestas suas conexões.

Teste Baseado em Grafo

Definição dos Objetos - Exemplo

- ▶ Página Inicial (A) Entrada do sistema.
- ▶ Busca de Voos (B) Usuário pesquisa voos disponíveis.
- Seleção e Pagamento (C) Preenchimento dos dados e pagamento.
- ▶ Compra Confirmada (D) Reserva concluída com sucesso.
- ► Erro no Pagamento (E) Tentativa de pagamento falhou.

Relação Entre os Objetos - Exemplo

- \triangleright (A) \rightarrow (B) : O usuário inicia a busca de voos.
- ightharpoonup (B) ightharpoonup (C) : O usuário seleciona um voo e preenche os dados.
- ightharpoonup (C) ightharpoonup (D) : Pagamento aprovado, reserva confirmada.
- ightharpoonup (C) ightharpoonup (E) : Erro no pagamento.
- \triangleright (E) \rightarrow (C) : O usuário tenta novamente.
- ightharpoonup (E) ightharpoonup (A) : O usuário cancela a compra e volta à página inicial.

Definição dos Casos de Teste - Exemplo

CT	Entrada Fluxo Percorrido		Saída Esperada	
CT-01	Busca e compra bem-sucedida	$A \rightarrow B \rightarrow C \rightarrow D$	Reserva Confirmada	
CT-02	Erro no pagamento, tentativa bem-sucedida	$A \rightarrow B \rightarrow C \rightarrow E \rightarrow C \rightarrow D$	Reserva Confirmada	
CT-03	Erro no pagamento e cancelamento	$A \to B \to C \to E \to A$	Retorno à Página Inicial	

Verificação das Relações

- ▶ Confirma se todas as transições funcionam corretamente.
- ▶ Garante que o usuário pode navegar entre estados sem erro.
- ▶ Valida se todas as saídas correspondem às entradas fornecidas.

Teste de Caixa Preta

Tabela de Decisão

O que é uma Tabela de Decisão?

- ▶ Alguns sistemas possuem regras de negócio complexas.
- ▶ A Tabela de Decisão permite **especificar essas regras de forma** compacta.
- Útil para programas que envolvem muitas decisões lógicas.

Desconto em Compras - Exemplo

Cenário: Um sistema de e-commerce concede descontos com base no tipo de cliente e no valor da compra.

Objetivo: Determinar o percentual de desconto conforme as regras de negócio.

Cliente VIP?	Compra > R\$500?	Desconto Aplicado
Não	Não	0%
Não	Sim	5%
Sim	Não	10%
Sim	Sim	20%

Definição dos Casos de Teste - Exemplo

СТ	Entrada	Fluxo Percorrido	Saída Esperada
CT-01	Cliente não VIP, compra abaixo de R\$500	Cliente realiza a compra sem benefícios adicionais	Desconto de 0%
CT-02	Cliente não VIP, compra acima de R\$500	Cliente atinge valor mínimo para desconto	Desconto de 5%
CT-03	Cliente VIP, compra abaixo de R\$500	Cliente recebe desconto apenas por ser VIP	Desconto de 10%
CT-04	Cliente VIP, compra acima de R\$500	Cliente VIP recebe o desconto máximo disponível	Desconto de 20%

Vantagens da Tabela de Decisão

- Organização: Regras de negócio representadas de forma clara e compacta.
- ▶ Cobertura: Ajuda a identificar combinações de condições ainda não testadas.
- ▶ Eficiência: Reduz a complexidade dos testes, tornando-os mais eficazes.

Teste de Caixa Preta

Teste de Matriz Ortogonal

O que é um Teste de Matriz Ortogonal?

- Utilizado para testar regiões ou componentes do sistema.
- ▶ Baseia-se em uma visão geométrica das entradas (cubo).
- ▶ Distribui os casos de teste nesse espaço de forma balanceada.
- Essa distribuição é definida pela Matriz Ortogonal L9.

Teste de Matriz Ortogonal

One input item at a time

L9 orthogonal array

Teste de Autenticação de Usuário - Exemplo

Cenário: Um sistema de login suporta diferentes métodos de autenticação e variáveis de ambiente.

Parâmetros e valores possíveis:

- ▶ P1 (Método): 1 = Senha, 2 = Biometria, 3 = 2FA.
- ▶ P2 (Dispositivo): 1 = Desktop, 2 = Smartphone, 3 = Tablet.
- ▶ **P3** (Conexão): 1 = Wi-Fi, 2 = 4G, 3 = VPN.
- ▶ P4 (Status do Usuário): 1 = Ativo, 2 = Suspenso, 3 = Bloqueado.

Quantidade de Casos de Teste:

- ightharpoonup Se combinarmos todas as possibilidades: $3^4=81$ testes.
- Usando a Matriz Ortogonal L9, reduzimos para apenas 9 testes balanceados.

Matriz Ortogonal L9 - Casos de Teste

Teste	P1 (Método)	P2 (Dispositivo)	P3 (Conexão)	P4 (Status)
1	Senha	Desktop	Wi-Fi	Ativo
2	Senha	Smartphone	4G	Suspenso
3	Senha	Tablet	VPN	Bloqueado
4	Biometria	Desktop	4G	Bloqueado
5	Biometria	Smartphone	VPN	Ativo
6	Biometria	Tablet	Wi-Fi	Suspenso
7	2FA	Desktop	VPN	Suspenso
8	2FA	Smartphone	Wi-Fi	Bloqueado
9	2FA	Tablet	4G	Ativo

Vantagens da Matriz Ortogonal:

- ▶ Redução significativa do número de testes (de 81 para 9).
- ▶ Mantém a cobertura eficiente das combinações possíveis.
- ▶ Balanceamento otimizado entre os testes realizados.

Como Funciona a Seleção dos Testes?

Matriz Ortogonal L9 (3^4) é construída para garantir que:

- ▶ Cobertura Balanceada: Cada valor de cada parâmetro aparece uniformemente nos testes.
- ▶ Interações Abrangentes: Todas as combinações de pares de valores são testadas ao menos uma vez.
- Distribuição Equilibrada: Nenhum parâmetro domina os testes, garantindo diversidade.

Exemplo - Distribuição do Parâmetro P1 (Método de Autenticação)

Teste		P1 (Método de Autenticação)	
1, 2,	3	Senha	
4, 5,	6	Biometria	
7, 8,	9	2FA	

Conclusão: Cada método foi testado em diferentes cenários, cobrindo todas as interações possíveis de forma otimizada.

Teste de Matriz Ortogonal

- ▶ Testa diferentes combinações de entrada de forma balanceada.
- ▶ Garante a cobertura eficiente dos testes.
- ▶ Detecta falhas individuais e múltiplas.

Teste de Caixa Preta

Exercícios para Entrega

Teste Baseado em Grafo

Cenário: Um sistema de gestão de reembolsos permite que funcionários solicitem reembolsos por despesas corporativas.

Regras do Sistema:

- ▶ Solicitações até R\$500 são aprovadas automaticamente.
- ▶ Acima de R\$500, o pedido vai para aprovação do gestor.
- ▶ Se o gestor aprovar e o valor for maior que R\$2000, o pedido é enviado ao diretor.
- ▶ Tanto o gestor quanto o diretor podem aprovar ou rejeitar o reembolso.
- O funcionário pode ajustar e reenviar ou cancelar uma solicitação rejeitada.

Tabela de Decisão

Cenário: Um sistema bancário processa solicitações de empréstimos, avaliando diversos critérios para determinar se o pedido será aprovado e qual taxa de juros será aplicada.

Objetivo: Garantir que todas as regras de decisão sejam corretamente aplicadas, validando diferentes combinações de condições de aprovação e rejeição.

Critérios de Avaliação:

- Renda Mensal: Baixa, Média ou Alta.
- ▶ Histórico de Crédito: Ruim, Regular ou Bom.
- ▶ Valor Solicitado: Baixo, Médio ou Alto.
- ▶ Possui Garantia? Sim ou Não.

Tabela de Decisão

Critérios para Aprovação:

- Clientes com renda alta e bom histórico de crédito têm maior probabilidade de aprovação e taxas de juros menores.
- ▶ Clientes com **renda média** e **histórico regular** podem ser aprovados para valores médios se tiverem garantia.
- Clientes com renda baixa e histórico ruim dificilmente terão empréstimos aprovados, especialmente para valores altos.
- ▶ A garantia pode compensar um histórico de crédito ruim e aumentar a chance de aprovação.

Resultado Esperado:

- Aprovação do empréstimo com uma taxa de juros baseada no risco do cliente.
- Rejeição da solicitação caso os critérios não sejam atendidos.

Matriz Ortogonal para Teste de Reservas Aéreas

Cenário: Um sistema de reservas de passagens aéreas permite que usuários escolham diferentes opções de voo, tarifas e métodos de pagamento.

Parâmetros e Valores Possíveis:

- ▶ P1 (Tipo de Passageiro): 1 = Adulto, 2 = Criança, 3 = Idoso.
- ▶ P2 (Classe do Voo): 1 = Econômica, 2 = Executiva, 3 = Primeira Classe.
- ▶ P3 (Tipo de Tarifa): 1 = Flexível, 2 = Restrita, 3 = Promocional.
- ▶ P4 (Método de Pagamento): 1 = Cartão de Crédito, 2 = PayPal.

Quantidade de Casos de Teste:

- ▶ Se combinarmos todas as possibilidades: $3 \times 3 \times 3 \times 2 = 54$ testes.
- Usando a Matriz Ortogonal L9, reduzir para apenas 9 testes balanceados.

Simulação e Teste de Software (CC8550)

Aula 06 - Teste de Caixa Preta Baseado no material desenvolvido pelo prof. Calebe de Paula Bianchini.

Prof. Luciano Rossi

Ciência da Computação Centro Universitário FEI

1° Semestre de 2025

