Lecture Notes

2301107 Calculus I for Engineering Section 4

First Semester, Academic Year 2024

Chapter 7 Techniques of Integration

Paisan Nakmahachalasint

Department of Mathematics and Computer Science Faculty of Science, Chulalongkorn University

Chapter 7 Techniques of Integration

7.1	Integration by Parts	1
	Integration by Parts: Indefinite Integrals	1
	Integration by Parts: Definite Integrals	8
7.2	Trigonometric Integrals	9
	Integrals of Powers of Sine and Cosine	9
	Integrals of Powers of Secant and Tangent	14
	Using Product Identities	20
7.3	Trigonometric Substitution	23
7.4	Integration of Rational Functions by Partial Fractions	32
7.8	Improper Integrals	39
	Type 1: Infinite Intervals	39
	Type 2: Discontinuous Integrands	43

7.1 Integration by Parts

Integration by Parts: Indefinite Integrals

The Product Rule states that if u and v are differentiable functions, then

$$d(uv) = u \, dv + v \, du$$

We can rearrange this equation as

$$uv = \int u \, dv + \int v \, du,$$

which can be rewritten in the notation of indefinite integrals as

$$\int u \, dv = uv - \int v \, du$$

This formula is call the formula for integration by parts.

Example 1 Find $\int \ln x \, dx$.

Example 2 Find
$$\int x \cos x \, dx$$
.

Remark

Our aim in using integration by parts is to obtain a simpler integral than the one we started with. Therefore we have to make a good choice on u and v.

1. Choose dv such that we can integrate to find v easily. The constant of integration is never needed and in any case will never affect the final answer.

$$\int u \, d(v + C) = u(v + C) - \int (v + C) \, du$$

$$= uv + uC - \int v \, du - \int C \, du$$

$$= uv + uC - \int v \, du - uC$$

$$= uv - \int v \, du$$

2. Try choosing u to give a simple derivative u'.

A polynomial may be a first try, but it does not necessarily have to be so, as a proper choice of u may as well depends on the choice of dv.

Example 3 Find
$$\int x^n \ln x \, dx$$
, where $n \neq -1$.

Example 4 Evaluate $\int x^2 e^x dx$ by using integration by parts twice.

Example 5 Evaluate
$$\int e^x \cos x \, dx$$
.

Integration by Parts: Definite Integrals

If the formula for integration by parts is combined with FTC2, we obtain

$$\int_{x=a}^{x=b} u \, dv = uv \Big|_{x=a}^{x=b} - \int_{x=a}^{x=b} v \, du$$

Example 6 Evaluate $\int_0^1 \arctan x \ dx$.

7.2 Trigonometric Integrals

Integrals of Powers of Sine and Cosine

Try a substitution $u = \sin x$ or $u = \cos x$ along with the identity $\sin^2 x + \cos^2 x = 1$.

Note that $d(\sin x) = \cos x \, dx$ and $d(\cos x) = -\sin x \, dx$.

Example 7 Find $\int \cos^3 x \, dx$.

Example 8 Evaluate $\int_0^{\pi} \sin^3 x \cos^4 x \, dx$.

Example 9 Find
$$\int \frac{\sin^3 x}{(\cos x)^{1/3}} dx$$
.

If the powers of both sine and cosine are even, we could use a half-angle trigonometric formula

$$\cos^2 x = \frac{1}{2} (1 + \cos 2x)$$
 and $\sin^2 x = \frac{1}{2} (1 - \cos 2x)$

to reduce the integrand first, then proceed as is.

Example 10 Find
$$\int \sin^2 x \cos^2 x \, dx$$
.

Strategy for Evaluating $\int \sin^m x \cos^n x \, dx$

1. If *n* is odd, i.e. n = 2k + 1, substitute $u = \sin x$.

$$\int \sin^m x \, \cos^{2k+1} x \, dx = \int \sin^m x \, \left(\cos^2 x\right)^k \cdot \cos x \, dx$$
$$= \int \sin^m x \, \left(1 - \sin^2 x\right)^k \, d(\sin x)$$

2. If m is odd, i.e. m = 2k + 1, substitute $u = \cos x$.

$$\int \sin^{2k+1} x \cos^n x \, dx = \int \left(\sin^2 x\right)^k \cos^n x \cdot \sin x \, dx$$
$$= -\int \left(1 - \cos^2 x\right)^k \cos^n x \, d(\cos x)$$

3. If both m and n are even, use the half-angle identities

$$\cos^2 x = \frac{1}{2} (1 + \cos 2x)$$
 and $\sin^2 x = \frac{1}{2} (1 - \cos 2x)$.

Integrals of Powers of Secant and Tangent

Try a substitution $u = \tan x$ or $u = \sec x$ along with the identity $\sec^2 x = 1 + \tan^2 x$.

Note that $d(\tan x) = \sec^2 x \, dx$ and $d(\sec x) = \sec x \tan x \, dx$.

Example 11 Find $\int \sec^4 x \tan^8 x \, dx$.

Example 12 Evaluate $\int \sec^5 x \tan^3 x \, dx$.

Strategy for Evaluating $\int \sec^m x \tan^n x \ dx$

1. If m is even, i.e. m = 2k, substitute $u = \tan x$.

$$\int \sec^{2k} x \tan^n x \, dx = \int \left(\sec^2 x\right)^{k-1} \tan^n x \cdot \sec^2 x \, dx$$
$$= \int \left(1 + \tan^2 x\right)^{k-1} \tan^n x \, d(\tan x)$$

2. If *n* is odd, i.e. n = 2k + 1, substitute $u = \sec x$.

$$\int \sec^m x \tan^{2k+1} x \, dx = \int \sec^{m-1} x \, \left(\tan^2 x\right)^k \cdot \sec x \tan x \, dx$$
$$= \int \sec^{m-1} x \, \left(\sec^2 x - 1\right)^k \, d(\sec x)$$

3. If m is odd and n is even, use the identity $\sec^2 x = 1 + \tan^2 x$ to reduce the integrand first, then we may apply integration by parts.

Example 13 Find
$$\int \sec^4 x (\tan x)^{1/3} dx$$
.

Example 14 Evaluate $\int \sec^3 x \ dx$.

Integrals of powers of cosecant and cotangent can be done by a substitution $u = \cot x$ or $u = \csc x$ along with the identity $\csc^2 x = 1 + \cot^2 x$. If necessary, we may use integration by parts. Note that $d(\cot x) = -\csc^2 x \, dx$ and $d(\csc x) = -\csc x \cot x \, dx$.

Example 15 Evaluate
$$\int \cot^3 x \ dx$$
.

Using Product Identities

To evaluate the integrals

- (a) $\int \sin mx \cos nx \, dx$, (b) $\int \sin mx \sin nx \, dx$, or (c) $\int \cos mx \cos nx \, dx$, use the corresponding identity:
 - (a) $\sin A \cos B = \frac{1}{2} [\sin(A B) + \sin(A + B)]$
 - (b) $\sin A \sin B = \frac{1}{2} [\cos(A B) \cos(A + B)]$
 - (c) $\cos A \cos B = \frac{1}{2} [\cos(A B) + \cos(A + B)]$

Example 16 Evaluate $\int \sin 3x \cos 5x \ dx$.

Example 17 Evaluate
$$\int_0^{\pi} \sin \frac{x}{2} \cos \frac{x}{6} dx$$
.

7.3 Trigonometric Substitution

Example 18

Show that the area of a circle of radius a is πa^2 .

Expression	Substitution	Identity
$\sqrt{a^2 - x^2}$	$x = a\sin\theta, \ -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$	$1 - \sin^2 \theta = \cos^2 \theta$
$\sqrt{a^2 + x^2}$	$x = a \tan \theta, -\frac{\pi}{2} < \theta < \frac{\pi}{2}$	$1 + \tan^2 \theta = \sec^2 \theta$
$\sqrt{x^2-a^2}$	$x = a \sec \theta, 0 \le \theta < \frac{\pi}{2} \text{ or } \pi \le \theta < \frac{3\pi}{2}$	$\sec^2\theta - 1 = \tan^2\theta$

Integrands with $\sqrt{a^2 - x^2}$ where a > 0

1. Substitute $x = a \sin \theta$ where $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$.

We have $dx = a \cos \theta \ d\theta$ and $\sqrt{a^2 - x^2} = a \cos \theta$.

2. For indefinite integrals, we can return to the original variable x by the aid of the following diagram.

$$\theta = \arcsin \frac{x}{a}$$
 $\sin \theta = \frac{x}{a}$

$$\cos \theta = \frac{\sqrt{a^2 - x^2}}{a}$$
 $\tan \theta = \frac{x}{\sqrt{a^2 - x^2}}$

Example 19 Find
$$\int \frac{\sqrt{9-x^2}}{x^2} dx$$
.

Example 20 Find
$$\int_0^1 \sqrt{x-x^2} dx$$
.

Example 21 Find
$$\int_0^1 \sqrt{x^3 - x^8} dx$$
.

Integrands with $\sqrt{x^2 + a^2}$ where a > 0

1. Substitute $x = a \tan \theta$ where $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$.

We have $dx = a \sec^2 \theta \ d\theta$ and $\sqrt{x^2 + a^2} = a \sec \theta$.

2. For indefinite integrals, we can return to the original variable x by the aid of the following diagram.

$$\theta = \arctan \frac{x}{a}$$
 $\tan \theta = \frac{x}{a}$ $\sin \theta = \frac{x}{\sqrt{x^2 + a^2}}$ $\cos \theta = \frac{a}{\sqrt{x^2 + a^2}}$

Example 22 Evaluate
$$\int \frac{1}{\sqrt{4x^2+9}} dx$$
.

Integrands with $\sqrt{x^2 - a^2}$ where a > 0

1. Substitute $x = a \sec \theta$ where $0 \le \theta < \frac{\pi}{2}$ or $\pi \le \theta < \frac{3\pi}{2}$.

We have $dx = a \sec \theta \tan \theta \ d\theta$ and $\sqrt{x^2 - a^2} = a \tan \theta$.

2. For indefinite integrals, we can return to the original variable xby the aid of the following diagram.

$$\theta = \operatorname{arcsec} \frac{x}{a}, \qquad \cos \theta = \frac{a}{x},$$

 $\theta = \operatorname{arcsec} \frac{x}{a}, \qquad \cos \theta = \frac{a}{x},$ $\sin \theta = \frac{\sqrt{x^2 - a^2}}{x}, \qquad \tan \theta = \frac{\sqrt{x^2 - a^2}}{a}$

Example 23 Evaluate
$$\int_{2\sqrt{2}}^{4} \frac{x}{\sqrt{x^2 - 4}} dx$$
.

7.4 Integration of Rational Functions by Partial Fractions

The method of partial fractions is decomposition of rational expressions into simpler fractions.

One of well-known examples is the observation that

$$\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$

which can be applied to the evaluation of the following summation:

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{n(n+1)}$$

$$= \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

$$= \frac{1}{1} - \frac{1}{n+1}$$

$$= \frac{n}{n+1}$$

The method of partial fractions allows us to integrate a rational expression by first decomposing the integrand into simpler fractions and then integrating each fraction in the decomposition.

Example 24 Evaluate
$$\int \frac{1}{x^2 + x} dx$$
.

Example 25 Find constants A and B such that $\frac{x+4}{x^2+3x+2} = \frac{A}{x+1} + \frac{B}{x+2}$ for all x.

Definition 1 (Rational Functions)

Let P(x) and Q(x) be polynomial functions.

We will call the rational function $\frac{P(x)}{Q(x)}$

- proper if deg(P) < deg(Q), or
- improper if $deg(P) \ge deg(Q)$.

Remark

An improper rational function $\frac{P(x)}{Q(x)}$ can be written as

$$\frac{P(x)}{Q(x)} = S(x) + \frac{R(x)}{Q(x)},$$

where $\frac{R(x)}{Q(x)}$ is proper, i.e. $\deg(R) < \deg Q$.

Example 26 Find
$$\int \frac{x^3 - 2x}{x+1} dx$$
.

The Method of Partial Fractions

Factorize the denominator, then add partial fractions corresponding to each factor.

- 1. Distinct Factors: Add a partial fraction for each individual factor in the following manner.
 - Linear Factor ax + b: add $\frac{A}{ax + b}$.
 - Quadratic Factor $ax^2 + bx + c$: add $\frac{Ax + B}{ax^2 + bx + c}$.
- 2. Repeated Factors: Add partial fractions up to the number of times it is repeated., e.g.
 - Linear Factor $(ax + b)^3$: add $\frac{A_1}{ax + b} + \frac{A_2}{(ax + b)^2} + \frac{A_3}{(ax + b)^3}$.
 - Quadratic Factor $(ax^2 + bx + c)^2$: add $\frac{A_1x + B_1}{ax^2 + bx + c} + \frac{A_2x + B_2}{(ax^2 + bx + c)^2}$.

Example 27 For the denominator $(2x+3)(4x+5)^2(2x^2+3x+2)(3x^2+4x+3)^2$, we construct the partial fractions as

$$\frac{A}{2x+3} + \frac{B_1}{4x+5} + \frac{B_2}{(4x+5)^2} + \frac{Cx+D}{2x^2+3x+2} + \frac{E_1x+F_1}{3x^2+4x+3} + \frac{E_2x+F_2}{(3x^2+4x+3)^2}.$$

Example 28 Evaluate
$$\int_2^3 \frac{x+1}{(x-1)^2} dx$$
.

Improper Integrals

An improper integral is a definite integral $\int_{a}^{b} f(x) dx$ where the interval [a, b] is infinite or f has an infinite discontinuity in [a, b]

Type 1: Infinite Intervals

Consider the unbounded region under the curve $y = \frac{1}{r^2}$ on the interval [1, t], where t > 1.

The area of the region is $A(t) = \int_1^t \frac{1}{x^2} dx = -\frac{1}{x} \Big|_1^t = 1 - \frac{1}{t}$.

As $t \to \infty$, we have $\lim_{t \to \infty} A(t) = \lim_{t \to \infty} \left(1 - \frac{1}{t}\right) = 1$.

We define
$$\int_{1}^{\infty} \frac{1}{x^2} dx = \lim_{t \to \infty} \int_{1}^{t} \frac{1}{x^2} dx = 1.$$

Definition 2 (Definition of an Improper Integral of Type 1)

1. If $\int_{a}^{t} f(x) dx$ exists for every number $t \geq a$, then

$$\int_{a}^{\infty} f(x) dx = \lim_{t \to \infty} \int_{a}^{t} f(x) dx$$
 provided this limit exists.

2. If $\int_{a}^{b} f(x) dx$ exists for every number $t \leq b$, then

$$\int_{-\infty}^{b} f(x) dx = \lim_{t \to -\infty} \int_{t}^{b} f(x) dx$$
 provided this limit exists.

The improper integrals $\int_a^\infty f(x) dx$ and $\int_{-\infty}^b f(x) dx$ are called convergent if the corresponding limit exists and divergent if the limit does not exist.

3. If both $\int_a^\infty f(x) dx$ and $\int_{-\infty}^a f(x) dx$ are convergent, then we define

$$\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{a} f(x) dx + \int_{a}^{\infty} f(x) dx \quad \text{where } a \text{ can be any real number.}$$

Example 29

Determine whether the integral

$$\int_{1}^{\infty} \frac{1}{\sqrt{x}} dx$$
 is convergent or divergent.

Example 30 Evaluate
$$\int_{-\infty}^{\infty} \frac{1}{x^2 + 4} dx$$
.

Type 2: Discontinuous Integrands

Definition 3 (Definition of an Improper Integral of Type 2)

1. If f is continuous on [a, b) and is discontinuous at b, then

$$\int_{a}^{b} f(x) dx = \lim_{t \to b^{-}} \int_{a}^{t} f(x) dx \quad \text{if this limit exists.}$$

2. If f is continuous on (a, b] and is discontinuous at a, then

$$\int_{a}^{b} f(x) dx = \lim_{t \to a^{+}} \int_{t}^{b} f(x) dx \quad \text{if this limit exists.}$$

The improper integrals $\int_a^b f(x) dx$ is called **convergent** if the corresponding limit exists and **divergent** if the limit does not exist.

3. If f has discontinuity at c, where a < c < b, and both $\int_a^c f(x) dx$ and $\int_c^b f(x) dx$ are convergent, then we define

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx.$$

Example 31 Evaluate $\int_{1}^{2} \frac{1}{\sqrt{x-1}} dx$.

Example 32

Determine whether $\int_0^2 \frac{1}{(x-1)^2} dx$ converges or diverges.

Example 33

(Improper Integral of Both Type 1 and Type 2)

Evaluate
$$\int_0^\infty \frac{1}{(x+1)\sqrt{x}} dx$$
.

