Prof. Dr. Leandro Alves Neves

Pós-graduação em Ciência da Computação

Processamento de Imagens Digitais

Aula 02

^a Sumário

Tipos de Sinais

- Digitalização
 - Discretização, Amostragem e Quantização
 - Imagens Multibanda, Multiespectral e Multidimensional
- Relacionamento entre elementos de uma imagem
- Medidas de Distância

- De um ponto de vista geral, um Sinal é:
 - Manifestação de um fenômeno ⇒ expresso de forma quantitativa.
 - Meio de Representação: Função*
 - Variáveis independentes (uma ou mais)
 - Buscam definir informações da natureza ou comportamento do fenômeno
 - Sinal de voz: função de uma variável (tempo)
 - Imagem: pode ser definido por uma função de duas variáveis (espaço)
- *Situações em que sinais não podem ser modelados por uma equação: sinais aleatórios

Sinal:

- Contínuo estados definidos em qualquer instante, sem interrupção
- Discreto valores enumeráveis ou inteiros, definidos a partir de um intervalo.
- Sinal Analógico
 - Variações contínuas no tempo (Ex., onda sonora)
- Sinal Digital
 - □ Pode assumir apenas valores discretos (Ex., Código Morse)

Técnicas de análise de imagens

Requerem:

■ Funções $\implies f(x)$ ou f(x,y) \implies formatos discretos

Representações

Representação Contínua

Estados podem ser definidos em qualquer instante de *x* (sem interrupção)

Necessidade de:

Observar a frequência de Amostragem

Amostragem: Domínio do Tempo

Sinal em tempo contínuo x(t)

 \Box Aplicar um trem* de impulsos p(t), em períodos T

^{*}Função de amostragem, representada pelo símbolo Ш (letra cirílica *sha*) - Pente de Dirac (Físico Paul Adrien Maurice Dirac)

Amostragem: Domínio do Tempo

□ Sinal Amostrado $x_p(t)$: Produto entre x(t) e p(t)

- x(t) sinal entrada, tempo contínuo
- p(t) função de amostragem ou trem de impulsos (1 amostra a cada 0,001s) ←
- $x_{p}(t)$ sinal amostrado no tempo discreto

[‡] Tipos de Sinais

Amostragem: Domínio do Tempo

- Sinal Amostrado $x_p(t)$: Produto entre x(t) e p(t)
 - $\neg x(t)$, sinal continuo em t

Intervalo T, período de amostragem

Em $Hertz:T=\frac{1}{f}$, sendo f a frequência

Em radianos por amostra: $\omega_s = \frac{2\pi}{T}$, frequência de amostragem

 $x_n(t)$, sinal amostrado

² Digitalização

- Definir apropriadamente a frequência de amostras
 - Sinal contínuo recuperado a partir dos valores amostrados
 - Considerar
 - □ Frequência espacial de amostragem (F_a) (Δx : intervalo em x)

$$F_a = \frac{1}{\Delta x}$$

- □ Teorema da amostragem de Nyquist-Shannon:
 - Sinal pode ser totalmente reconstruído se $\Delta x \leq \frac{1}{2B}$ ou $F_a \geq 2B$
- \Box f(x) tem banda limitada no domínio da frequência [-B,B], sendo B um número real.
 - Sinal f(x) com banda limitada: a Transformada de Fourier F(u) fornece valores muito baixos para u fora do intervalo [-B,B].
- Na prática: Pelo menos uma amostra a cada meio período do sinal

^E Digitalização

- \Box O limite de amostragem $\frac{1}{2}B$ conhecido como:
 - Limite de Nyquist (1928)
- Aplicou nas áreas de telefonia e telegrafia
 - Mostrou que não era necessário transmitir o sinal de voz completo para que a conversação fosse compreendida

^a Digitalização

- Caso $\Delta x \le \frac{1}{2B}$ não satisfeita: **aliasing**
- Comprometimento da completa recuperação do sinal
- Exemplo: sinal $f(t) = asen(2\pi f_0 t)$, com frequência f_0 , amplitude a que varia no tempo t

Banda limitada

$$f(t):[-f_0, f_0]$$

Exemplo de frequência de amostragem

$$B_1 = 2/16$$

$$B_2 = 4/16$$

$$B_3 = 8/16$$

$$B_4 = 16/16$$

$$\Delta x \le \frac{1}{2B_1} = 4$$

$$\Delta x \le \frac{1}{2B_2} = 2$$

$$\Delta x \le \frac{1}{2B_3} = 1$$

$$\Delta x \le \frac{1}{2B_4} = \frac{1}{2}$$

PID

Digitalização

- Extensão do teorema de Nyquist-Shannon
- Sinais n-dimensionais

- Um sinal $f(x_1, x_2,...x_n)$

$$\Delta x_1 \leq \frac{1}{2B_1}, \dots, \Delta x_n \leq \frac{1}{2B_n}$$

- □ f(x, y) banda limitada $2W_x$ e $2W_y$ direções x e y
- □ Sinal reconstruído se: $\Delta x \le \frac{1}{2W_x}$ e $\Delta y \le \frac{1}{2W_y}$

Definição: (Amostra igualmente espaçada: matriz)

	<i>X</i>	/	Pixel (picture	element)
	f(0,0)	f(1,0)		f(0,M-1)
y	f(0,1)			
f(x,y)				
·				
	f(0,4)	f(2,4)		f(N-1,M-1)

Imagem Digital Cada elemento f(x,y): **nomeado pixel** (acrônimo do inglês *picture element*), com $0 \le x \le M - 1$ e $0 \le y \le N - 1$.

Exemplo:

Amostragem: Discretização do domínio de definição da imagem nas direções x e y

[§] Digitalização

Resolução espacial

□ Quanto menor o intervalo de amostragem (Δx) \Longrightarrow maior a densidade de pixels e maior resolução espacial.

Resolução espacial x Número de pixels

Exemplo:

- 1ª. Imagem com 100x100 pixels: adquirida de uma área de 100cm x 100cm
- 2ª. Imagem 50x50 pixels: adquirida de uma área de 20cm x
 20cm
 - 1ª imagem cada pixel 1cm x 1cm
 - 2ª imagem cada pixel 0,4cm x 0,4cm

Amostragem Exemplos

^a Digitalização

Luminância

- □ Valor associado a cada pixel $L_{min} \le f(x,y) \le L_{max}$
- Convenção:
 - preto = L_{\min} (0)
 - branco = L_{max} (255, por exemplo)

- Profundidade da Imagem (Taxa de Quantização)
 - Definida pelo Número de níveis de cinza L
 - Em que, $L = 2^b$
 - Exemplo:

$$\Box$$
 L = 64 = 2⁶

6 bits por pixel

(f) 2

Reticulado uniforme da representação matricial da imagem.

Quantização ou Profundidade: 8 bits

47	52	64	132	153
51	58	121	149	142
49	99	143	144	164
94	135	161	170	199
138	165	180	212	213

Visualização da Profundidade

Relação

315x260 – 256 cores

15	15	15	15	15	15	15
15	10	12	13	5	15	15
15	15	10	09	11	15	15
15	15	13	12	10	15	15
15	15	08	06	12	15	15
15	15	15	15	15	15	15

Amostragem

Codificação

64x53 – 256 cores

64x53 - 16 cores

PID

Digitalização

- Representação de Imagens Digitais
- Múltiplas resoluções com uma pirâmide
 - Representações hierárquicas.

- Exemplo, Imagem NxN
 - Imagem original
 - k versões reduzidas,

 Pixel em um nível representa informação agregada de vários pixels no nível seguinte

nível 3

Diferentes critérios podem ser adotados para o processo de redução

PID

Imagem Multibanda ou Multiespectral

- Imagem monocromática:
 - □ Pixel com valor escalar: $L_{min} \le f(x,y) \le L_{max}$
- Imagens multibandas ou multiespectrais
 - Pixel associado ao valor vetorial:
 - $f(x,y) = (L_1, L_2, ..., L_n)$, em que $L_{min} \le L_i \le L_{max}$.
 - \Box L_i pode representar grandezas e intervalos diferentes
 - □ Representação de imagens coloridas
 - Matiz (Hue): comprimento de onda dominante
 - Saturação (Saturation): pureza do matiz
 - Valor (value): brilho da luz
 - Ou, três cores primárias (R, G, B) com 1 byte por banda/pixel

Imagem Multibanda ou Multiespectral

- Imagens Coloridas (Multibandas)
 - Cada pixel pode possuir n bandas espectrais.

Uso de três bandas visíveis (RGB): imagem colorida aos

olhos humanos.

(a) Imagem Colorida

(b) Banda Vermelha (Red)

(c) Banda Verde (Green)

(d) Banda Azul (Blue)

Imagem Multibanda ou Multiespectral

- Imagens Coloridas (Multibandas)
 - Profundidade: 1 byte por pixel para cada banda (24 bits por pixel)

25

Imagem Multibanda ou Multiespectral

- Ou, por meio de uma mapa de cores
 - Nível cinza: índice para um mapa de cores

Imagem Multidimensional

- Extensão dos conceitos de amostragem e quantização para um espaço n-dimensional
 - Sequência de imagens no eixo espacial z ou temporal t.
 - Imagens Monocromáticas
 - Multibandas
 - Outras informações

Um elemento f:

- Matriz bidimensional: pixel f(x,y)
- □ Matriz tridimensional: voxel f(x,y,z)

Relacionamentos entre elementos:

- Vizinhança
- Conectividade
- Adjacência
- Caminho
- Componentes Conexos
- Borda e Interior

Vizinhança-4:

- \Box Quatro pixels vizinhos horizontais e verticais do pixel f(x,y)
- □ Coordenadas: N₄ (f)
 - (x+1, y), (x-1, y), (x, y+1), (x, y-1)

Vizinhança-8:

- \Box Oito pixels vizinhos: horizontais, verticais e diagonais do pixel f(x,y)
- □ Coordenadas: N_8 (f)= N_4 (f) \cup N_d (f)

Vizinhança para f(x,y,z):

- Exemplo,

Conectividade

- Elementos conexos, se:
 - Vizinhos
 - Atendem algum critério de similaridade,
 - □ Por exemplo, mesma profundidade (1)

0	~	0
0	~	0
0	0	0

Adjacência

□ Dois elementos, f₁ e f₂ são adjacentes se:

0	1	0
0	1	0
1	0	0

- Conexos por alguma vizinhança
- □ Dois conjuntos de pixels, C₁ e C₂ são adjacentes se:
 - Pelo menos um elemento de C1 for adjacente a um elemento de C2.

<u></u>					
0	0	1	0	0	0
1	0	~	0	0	0
0	1	~	0	1	0
0	0	1	1	1	0
0	0	0	1	0	0

Caminho

- □ Sequência de pixels entre (x_0, y_0) e (x_n, y_n) :
 - $(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n), \text{ tal que:}$
 - \square *n* é o comprimento do caminho
 - \Box (x_i, y_i) e (x_{i+1}, y_{i+1}) são adjacentes
- Exemplos,
 - Caminho-4: comprimento 8 ==

	0	0	0	0	0	0
	0	1	1	0	1	0
⇒	0	0	1	0	1	0
•	0	0	1	1	1	0

Caminho-8: comprimento 6

0	0	0	0	0	0
0	1	1	0	1	0
0	0	1	0	1	0
0	0	0	1	0	0

Componentes Conexos

- Definição: Subconjunto de elementos C da imagem que são conexos entre si
 - Dois elementos, f₁ e f₂ são conexos se:
 - Existir caminho de f₁ a f₂ contido em C
 - 3 Componentes Conexos
 - Se vizinhança-4
 - □ 2 Componentes Conexos
 - Se vizinhança-8

Borda e Interior

Dado um conjunto C

Borda:

Pontos no contorno do componente conexo C.

Interior:

Pixels de C que não estão em sua borda

Considere os pixels:

$$\Box$$
 $f1(x_1,y_1), f2(x_2,y_2) e f3(x_3,y_3)$

Qualquer métrica de distância D deve satisfazer as seguintes propriedades:

```
□ D(f_1, f_2) \ge 0  (D(f_1, f_2) = 0 se, e somente se, f_1 = f_2)
□ D(f_1, f_2) = D(f_2, f_1)
□ D(f_1, f_3) \le D(f_1, f_2) + D(f_2, f_3)
```

Existem diferentes Métricas

■ Distância Euclidiana (D_E) entre $f_1(x_1,y_1)$ e $f_2(x_2,y_2)$ é dada por:

$$D_E(f_1, f_2) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

- Pixels D_E menor ou igual a algum valor d formam um disco de raio d centrado em f₁
 - □ Exemplo, considerando $D_E \le 3$ de um ponto central (x,y), temos:

■ Distância (D_4) ou City-block entre $f_1(x_1,y_1)$ e $f_2(x_2,y_2)$ é dada por:

$$D_4(f_1, f_2) = |x_1 - x_2| + |y_1 - y_2|$$

- Pixels D_E menor ou igual a algum valor d formam um losango centrado em f₁
 - Pontos com distância 1 são os pixels com vizinhança-4 do ponto central.
 - □ Exemplo, considerando $D_E \le 3$ de um ponto central (x,y), temos:

■ Distância (D_8) ou Chessboard entre $f_1(x_1,y_1)$ e $f_2(x_2,y_2)$ é dada por:

$$D_8(f_1, f_2) = \max(|x_1 - x_2|, |y_1 - y_2|)$$

- Pixels D_E menor ou igual a algum valor d formam um quadrado centrado em f₁
 - Pontos com distância 1 são os pixels com vizinhança-8 do ponto central.
 - \Box Exemplo, considerando $D_F \le 3$ de um ponto central (x,y), temos:

```
      3
      3
      3
      3
      3
      3
      3

      3
      2
      2
      2
      2
      2
      2
      3

      3
      2
      1
      1
      1
      2
      3

      3
      2
      1
      0
      1
      2
      3

      3
      2
      1
      1
      1
      2
      3

      3
      2
      2
      2
      2
      2
      3

      3
      3
      3
      3
      3
      3
```


Exercícios

- Qual a diferença entre resolução espacial e profundidade de uma imagem?
- Qual o tamanho de uma imagem gerada pela amostragem de uma região de 200x300cm² em intervalos de 0,1mm na direção x e 0,2 mm na direção y?
- Qual a profundidade em bits de uma imagem com 8192 níveis de cinza?
- 4. Considere um protocolo de transmissão de dados consistindo em pacotes com um bit de início, 8 bits de informação e um bit de parada. Qual o tempo (em segundos) necessário para se transmitir uma imagem de 1024x1024 pixels com 256 níveis de cinza à taxa de transmissão de 9600 bits/segundo?
- 5. Diferencie os conceitos de amostragem e quantização no processo de digitalização de imagens.
- Escreva uma programa para reproduzir as imagens apresentadas no slide 41. Considere que as imagens têm dimensões: 256x256 com 256 níveis de profundidade. Em seguida, o programa deve ser capaz de apresentar a taxa de amostragem e a profundidade de cada imagem.

Exercícios

^E Exercícios

Sabe-se que o ser humano é capaz de ouvir sons cujas frequências variam entre 20 Hz e 20 kHz. Portanto, segundo o teorema de Nyquist, para que todas as frequências audíveis sejam registradas, qual a taxa de amostragem que deve ser aplicada?

- Mostre que a distância D4 (city-block) entre dois pontos p e q é igual ao 8. caminho-4 mais curto entre estes pontos. Esse caminho é único?
- A distância semi-Euclidiana entre dois pontos bidimensionais f1 e f2 é definida como:

$$D_{(f_1,f_2)} = \begin{cases} |x_1 - x_2| + (\sqrt{2} - 1)|y_1 - y_2|, & \text{se } |x_1 - x_2| > |y_1 - y_2| \\ (\sqrt{2} - 1)|x_1 - x_2| + |y_1 - y_2|, & \text{caso contrário} \end{cases}$$

Compare a distância semi-Euclidiana com as distâncias Euclidiana, cityblock e chessboard.

^E Exercícios

Dados os dois subconjuntos de imagem S1 e S2 abaixo, determinar se S1 e S2 estão conectados por meio de (i) vizinhança-4 e (ii) vizinhança-8.

Considerando a região R = S1 ∪ S2 (conjuntos da questão 11), quantos componentes conexos (representados pelo pixel 1) existem em R com vizinhança-4 e com vizinhança-8?

^a Exercícios

Considere as imagens produzidas no Exercício 6 e implemente um programa para realizar a rotulagem de componentes conexos (cluster/aglomerado). A rotulagem deve ser realizada por meio do "Hoshen-Kopelman algorithm". O programa deve fornecer o total de componentes conexos e os rótulos atribuídos em cada região da imagem dada como entrada. Use vizinhança-8 como critério. Por fim, considerando a imagem (e) após a rotulagem, o programa deve apresentar as distâncias (D_E, D₄ e D₈) entre os centros de dois componentes conexos (definidos (sorteados) aleatoriamente).

PID

Referências

Pedrini, H., Schwartz, W. R. Análise de Imagens Digitais: Princípios Algoritmos e Aplicações. São Paulo: Thomson Learning, 2008.

Leitura: Capítulo 2, tópicos 2.1 a 2.8; tópicos 2.11.1 a

2.11.7

 González, R. C., Woods, R. E. Processamento de Imagens Digitais. São Paulo: Edgard Blücher Itda, 2000.

Leitura: Capítulo 2, tópicos 2.2 a 2.4.3; tópico 2.5

 Marques Filho, O., Vieira Neto, H. Processamento Digital de Imagens, Rio de Janeiro: Brasport, 1999.