Twelve ways to fool the masses with machine learning

"IF YOU WANT TO TELL PEOPLE THE TRUTH, MAKE THEM LAUGH, OTHERWISE THEY'LL KILL YOU"

Machine Learning Lifecycle

Webserver

False Positive rate (100-Specificity)

Software Package

Machine Learning Lifecycle in Academia

Impacts of Overselling a

One pixel attack for fooling deep neural networks

Bad name to the field

Stunted growth of the field

Psychological impact on researchers

SHIP CAR(99.7%)

HORSE DOG(70.7%)

CAR AIRPLANE(82.4%)

NiN

FROG(99.9%)

DOG CAT(75.5%)

DEER DOG(86.4%)

VGG

DEER AIRPLANE(85.3%)

BIRD FROG(86.5%)

CAT BIRD(66.2%)

Artificial ignorance: The 10 biggest Al failures of 2017

From self-driving car accidents to Face ID hacks, artificial intelligence didn't have a flawless year.

By Olivia Krauth 🔰 I January 4, 2018, 4:00 AM PST

https://syncedreview.com/2017/12/23/2017-in-review-10-ai-failures/https://www.techrepublic.com/article/the-10-biggest-ai-failures-of-2017/

12 ways to oversell your method

1. Use a biased Accuracy Metric

Biased Performance Metric

Example

 Use Accuracy for a highly unbalanced dataset.

Accuracy= 98/100= 0.98

"Our method shows 98% accuracy on test data"

https://www.google.com.pk/url?sa=i&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwixma1wYreAhXH

60KHSiVR3s0iRx6BAqBEAU&url=https%3A%2F%2Ftheoldreader.com%2Fprofile%2FBipan/jesus%

-3Fpage%3D5&psig=AOvVaw0Os7PAOtdBGSvss0g68wNR&ust=1539763766998657

Biased Performance Metric

Example

 Use Accuracy for a highly unbalanced dataset.

Accuracy= 98/100= 0.98

"Our method shows 98% accuracy on test data"

https://www.google.com.pk/url?sa=i&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwixmLa1wYreAhXH-

60KHSiVB3s0iRx6BAgBEALl&url=https%3A%2F%2Ftheoldreader.com%2Fprofile%2FBinan/iesus%

3Fpage%3D5&psig=AOvVaw0Os7PAOtdBGSvss0g68wNR&ust=1539763766998657

2. Maximize the performance metric without cross-validation

Maximize the performance Metric

Choose hyper-parameters that maximize the performance metric on test data

Forget that you are not allowed direct/indirect use of test data labels while training

"If you torture the data long enough, it will confess to anything".

Ronald Coase

3. (Indirectly) use labeled information in validation

Use Labels

Present cross-validation results and use labels (directly or indirectly) as features

```
Initialize my_model, results=[] for fold in Folds:
    my_model.train(fold.train_data)
    p=my_model.evaluate_performance(fold.test_data) results.append(p)
final_score=average(results)
```

Report final_scoreas the average performance of your model

Fold #	Accuracy(%)
1	70
2	95
3	95
4	95
5	95
Average (The result to be reported)	90

4. Ignore the fact that examples may not be independent of each other

Train/ Test Overlap

There may be groups of closely related examples in the dataset

Random splitting may not ensure train/test disjoint-ness

 A closely related example to a test example may be a part of training Train Data 50% Hurricane A 50% Hurricane B Test Data 50% Hurricane A 50% Hurricane B

Over-estimation of generalization

5. Do not compare with a simple baseline classifier

Baseline Comparison

Start with the most complex and "in" method

Do not check if the simpler(not-so-in) methods perform at par

Locality Sensitive Deep Learning for Detection and Classification of Nuclei in Routine Colon Cancer Histology Images

Korsuk Sirinukunwattana, Shan E Ahmed Raza, Yee-Wah Tsang, David R. J. Snead, Ian A. Cree, and Nasir M. Rajpoot*, Senior Member, IEEE

IMAGE & SIGNAL PROCESSING

Correlation Filters for Detection of Cellular Nuclei in Histopathology Images

Asif Ahmad 1 · Amina Asif 1 · Nasir Rajpoot 2 · Muhammad Arif 3 · Fayyaz ul Amir Afsar Minhas 1

Table 1 2-fold cross validation results of detection approaches

Detection approach	Precision	Recall	F1 score
Baseline	0.45	0.74	0.55
RBF Correlation Filter	0.83	0.86	0.84
Linear MOSSE Filter	0.76	0.88	0.81
SC-CNN $(M=1)[3]$	0.76	0.83	0.79
SC-CNN $(M = 2)[3]$	0.78	0.82	0.80

6. Compare your model with unoptimized versions of other models or ones that have been trained using different data

Not Very Fair Comparison

Use best parameters for your model butforget to optimize other models

Different cross-validation protocols

Performance results over different data

7. Present your paper in a way that doesn't allow reproducibility

No Reproducibility

Do not provide detailed performance results, codes or a webserver

Keep the model a "black-box"

Nature, 2016, M. Baker, 1,500 scientists lift the lid on reproducibility

8. Choose a performance metric irrelevant to the problem domain

Irrelevant or uninterpretable metrics

Take problems from other domains

- Biology
- Chemistry
- Physics

Use metrics which the domain experts cannot interpret

ML Expert

9. Do NOT analyze the sensitivity of your model to changes in data, hyperparameter values or randomness

Sensitivity Analysis

Do not analyze the sensitivity of yoursystem to experimental conditions

- Minor change in hyperparameters
- Randomness in folds
- Changes in data

Save the seed if the model is too sensitive to randomness

10. Use statistical tests even when their underlying assumptions are not met.

Underlying Assumptions

Most statistical tests are valid only when certain conditions are true

Use statistical tests even if they might not beapplicable

"There are three kinds of lies: lies, damned lies, and statistics." (Mark

Twain)

ME: I WONDER WHICH STATISTICAL TEST WOULD BE SUITABLE FOR MY DATA

INNER ME: JUST PICK THAT EASY INCORRECT ONE

11. Use buzzwords and pretty plots to whip your readers into submission

Intimidate the Readers

"If you can't convince them, confuse them".

(Harry S. Truman)

Use buzzwords

Ambiguous or hard to understand terminologie

 Multimodal Hyperspectral Convo-residual Superr Blockchained Deep Learning

Lots of colorful plots

12. Care only about publishing and let go of the concept of generalization and practical use

Impact Factor is all that matters

Focus on publishable ε -improvement Stay away from new scary problems Do not consult domain experts

Just publish!!

13. Thirteen is the new twelve

Explainable Model

No need to worry if your model makes sense or not Interpretablility

Conclusion

When reviewing or supervising research studies, look out forthese tactics

"It's easier to fool people than to convince them that they have been fooled"

-Mark Twain

Required Reading

https://arxiv.org/ftp/arxiv/papers/1901/1901.01686.pdf