先建立邊界的值

之後根據以下公式可知當前某點的相鄰係數關係

$$\alpha u_{i,j-1} + u_{i-1,j} - 2(1+\alpha)u_{i,j} + u_{i+1,j} + \alpha u_{i,j+1} = h^2 f_{i,j}$$

且 $F = h^2 f_{i,j}$ 並依據公式做F邊界的修正

Case 1
$$j=1$$
: $u_{i-1,1}-2(1+\alpha)u_{i,1}+u_{i+1,1}+\alpha u_{i,2}=h^2f_{i,1}-\alpha u_{i,0}$

a.
$$i = 1$$
: $-2(1+\alpha)u_{1,1} + u_{2,1} + \alpha u_{1,2} = h^2 f_{1,1} - \alpha u_{i,0} - u_{0,1} \triangleq F_{1,1}$

Case 3
$$j = m$$
: $\alpha u_{i,m-1} + u_{i-1,m} - 2(1+\alpha)u_{i,m} + u_{i+1,m} = h^2 f_{i,m} - \alpha u_{i,m+1}$

a.
$$i = 1$$
: $\alpha u_{1,m-1} - 2(1+\alpha)u_{1,m} + u_{2,m} = h^2 f_{1,m} - \alpha u_{1,m+1} - u_{0,m} = F_{1,m}$

輸出結果:

PS C:\Users\yunyu\Documents\大學\三下\數值方法\Numerical_class\F74114095_numerical_hw12> ./1											
y/x	0	0.314159	0.628319	0.942478	1.25664	1.5708	1.88496	2.19911	2.51327	2.82743	3.14159
1.5708	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
1.2566	0.3090	0.1728	0.0531	-0.0589	-0.1667	-0.2699	-0.3642	-0.4413	-0.4863	-0.4679	-0.3090
0.9425	0.5878	0.3681	0.1763	-0.0050	-0.1823	-0.3539	-0.5116	-0.6420	-0.7244	-0.7255	-0.5878
0.6283	0.8090	0.5646	0.3476	0.1326	-0.0869	-0.3056	-0.5112	-0.6862	-0.8099	-0.8589	-0.8090
0.3142	0.9511	0.7532	0.5559	0.3332	0.0858	-0.1732	-0.4243	-0.6452	-0.8145	-0.9158	-0.9511
0.0000	1.0000	0.9511	0.8090	0.5878	0.3090	0.0000	-0.3090	-0.5878	-0.8090	-0.9511	-1.0000

和第一題概念類似,只是公式不太一樣

$$\alpha u_{i,j-1} + (r_i^2 - \frac{h}{2}r_i)u_{i-1,j} - 2(\alpha + r_i^2)u_{i,j} + (r_i^2 + \frac{h}{2}r_i)u_{i+1,j} + \alpha u_{i,j+1} = r_i^2 h^2 f_{i,j}$$

Case 1.
$$j=1$$
: $(r_i^2 - \frac{h}{2}r_i)u_{i-1,1} - 2(\alpha + r_i^2)u_{i,1} + (r_i^2 + \frac{h}{2}r_i)u_{i+1,1} + \alpha u_{i,2} = r_i^2 h^2 f_{i,1} - \alpha u_{i,0}$

a.
$$i = 1$$
: $-2(\alpha + r_1^2)u_{1,1} + (r_1^2 + \frac{h}{2}r_1)u_{2,1} + \alpha u_{1,2} = r_1^2 h^2 f_{1,1} - \alpha u_{1,0} - (r_1^2 - \frac{h}{2}r_1)u_{0,1} \triangleq F_{1,1}$

Case 3 j = m:

$$\alpha u_{i,m-1} + (r_i^2 - \frac{h}{2}r_i)u_{i-1,m} - 2(\alpha + r_i^2)u_{i,m} + (r_i^2 + \frac{h}{2}r_i)u_{i+1,m} = r_i^2 h^2 f_{i,m} - \alpha u_{i,m+1}$$

a. i = 1:

$$\alpha u_{1,m-1} - 2(\alpha + r_1^2)u_{1,m} + (r_1^2 + \frac{h}{2}r_1)u_{2,m} = r_1^2 h^2 f_{1,m} - \alpha u_{1,m+1} - (r_1^2 - \frac{h}{2}r_1)u_{0,m} \triangleq F_{1,m}$$

但是這題比較有問題的是他的邊界條件在四個交點的地方會有衝突,我是依照他邊界條件給的順序依序做的,所以那四個點會是50或100而非0

•	•								
PS C:\Users\yunyu\Documents\大學\三下\數值方法\Numerical_class\F74114095_numerical_hw12> ./3									
t/r	0.5	0.6	0.7	0.8	0.9	1			
1.0472	50.0000	0.0000	0.0000	0.0000	0.0000	100.0000			
0.8727	50.0000	32.2567	32.9444	43.1044	63.5365	100.0000			
0.6981	50.0000	45.8602	50.5938	62.4550	79.7182	100.0000			
0.5236	50.0000	49.6786	55.8351	67.7253	83.3054	100.0000			
0.3491	50.0000	45.8602	50.5938	62.4550	79.7182	100.0000			
0.1745	50.0000	32.2567	32.9444	43.1044	63.5365	100.0000			
0.0000	50.0000	0.0000	0.0000	0.0000	0.0000	100.0000			

我覺得這題比較符合講義這段的內容,但是邊界 $p(0, t) \neq p(1, t) \neq 0$

$$\begin{cases} \frac{\partial^{2} u}{\partial t^{2}} = \alpha^{2} \frac{\partial^{2} u}{\partial x^{2}}, & 0 < x < l, \quad t > 0, \quad u(0,t) = u(l,t) = 0, \quad u(x,0) = f(x), \quad \frac{\partial u}{\partial t} = g(x) \end{cases}$$

$$\frac{1}{k^{2}} (u_{i,j+1} - 2u_{i,j} + u_{i,j-1}) = \alpha^{2} \frac{1}{h^{2}} (u_{i+1,j} - 2u_{i,j} + u_{i-1,j}),$$

$$u_{i,j+1} = \lambda^{2} u_{i-1,j} + 2(1 - \lambda^{2}) u_{i,j} + \lambda^{2} u_{i+1,j} - u_{i,j-1}, \quad \lambda^{2} = \alpha^{2} \frac{k^{2}}{h^{2}},$$

$$u_{1,j+1} = 2(1 - \lambda^{2}) u_{1,j} + \lambda^{2} u_{2,j} - u_{1,j-1},$$

$$u_{i,j+1} = \lambda^{2} u_{i-1,j} + 2(1 - \lambda^{2}) u_{i,j} + \lambda^{2} u_{i+1,j} - u_{i,j-1},$$

$$u_{n,j+1} = \lambda^{2} u_{n-1,j} + 2(1 - \lambda^{2}) u_{n,j} - u_{n,j-1}.$$

$$\left[u_{1} \right] \quad \left[2(1 - \lambda^{2}) \quad \lambda^{2} \quad 0 \quad 0 \quad \right] \left[u_{1} \right] \quad \left[u_{1} \right]$$

$$\begin{bmatrix} u_1 \\ \bullet \\ u_n \end{bmatrix}_{j+1} = \begin{bmatrix} 2(1-\lambda^2) & \lambda^2 & 0 & 0 \\ \lambda^2 & 2(1-\lambda^2) & \lambda^2 & 0 \\ 0 & \lambda^2 & 2(1-\lambda^2) & \lambda^2 \\ 0 & 0 & \lambda^2 & 2(1-\lambda^2) \end{bmatrix} \begin{bmatrix} u_1 \\ \bullet \\ u_n \end{bmatrix}_j - \begin{bmatrix} u_1 \\ \bullet \\ u_n \end{bmatrix}_j - \begin{bmatrix} u_1 \\ \bullet \\ u_n \end{bmatrix}_{j-1}$$

教授上課沒有特別說這種問題怎麼處理,所以我只能仿造 forward-difference 的方式做邊界修正不知道這樣對不對 ouo

$$\begin{bmatrix} u_1 \\ \bullet \\ u_n \end{bmatrix}_{j+1} = \begin{bmatrix} 1 - 2\lambda & \lambda & 0 & 0 \\ \lambda & \bullet & \bullet & 0 \\ 0 & \bullet & \bullet & \lambda \\ 0 & 0 & \lambda & 1 - 2\lambda \end{bmatrix} \begin{bmatrix} u_1 \\ \bullet \\ u_n \end{bmatrix}_j + k \begin{bmatrix} g_1 \\ \bullet \\ g_n \end{bmatrix}_j + \lambda \begin{bmatrix} q \\ 0 \\ 0 \\ r \end{bmatrix}_j$$

然後它的 t 只說≥0, 沒說到多少所以我先假設跟 x 一樣

PS C:\Us	sers\yunyu	\Document:	s\大學\三	下\數值方	法\Numeri	cal class	\F7411409	5 numeric	al hw12>	./4	
t\x	0.00	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00
0.00	1.00	0.81	0.31	-0.31	-0.81	-1.00	-0.81	-0.31	0.31	0.81	2.00
0.10	1.00	1.02	0.85	0.35	-0.29	-0.81	-1.02	-0.85	-0.35	0.29	2.00
0.20	1.00	1.04	1.06	0.87	0.35	-0.31	-0.85	-1.06	-0.87	0.84	2.00
0.30	1.00	1.04	1.06	1.06	0.85	0.31	-0.35	-0.87	0.13	0.84	2.00
0.40	1.00	1.02	1.04	1.04	1.02	0.81	0.29	0.84	0.84	1.29	2.00
0.50	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00	2.00	2.00
0.60	1.00	0.98	0.96	0.96	0.98	2.19	2.71	3.16	3.16	2.71	2.00
0.70	1.00	0.96	0.94	0.94	2.15	2.69	3.35	3.87	3.87	3.16	2.00
0.80	1.00	0.96	0.94	2.13	2.65	3.31	3.85	4.06	3.87	3.16	2.00
0.90	1.00	0.98	2.15	2.65	3.29	3.81	4.02	3.85	3.35	2.71	2.00
1.00	1.00	2.19	2.69	3.31	3.81	4.00	3.81	3.31	2.69	2.19	2.00