BYOL

Bootstrap Your Own Latent A New Approach to Self-Supervised Learning

Temirlan Turysbek

Roadmap

1. Key concepts

Key concepts:

"a new approach to self-supervised image representation learning"

Key concepts:

"a new approach to self-supervised image representation learning"

neural network learns in two steps:

- unsupervised pseudo-labelling to initialize weights
- solving the actual downstream task

Key concepts:

"a new approach to self-supervised image representation learning"

Contrastive SSL (SimCLR)

positive example

negative example

Non-contrastive SSL

positive example

positive example

2. BYOL

why BYOL is better?

Figure: performance of BYOL

- performs better than state-of-the-art model (SimCLR)
- doesn't use negative pairs
- avoids collapsed representations by stop_gradient

why BYOL is better?

Figure: performance of BYOL

- performs better than state-of-the-art model (SimCLR)
- doesn't use negative pairs
- avoids collapsed representations by stop_gradient

and also:

- more robust to view augmentations
- more stable for low batch sizes

Architecture

Cute architecture

3. DRAC22

Diabetic Retinopathy Analysis Challenge

• Task 1: Segmentation of Diabetic Retinopathy Lesions

• Task 2: Image Quality Assessment

Task 3: Diabetic Retinopathy Grading

DRAC dataset

(1024, 1024)

tasks statistics

	Training samples	# classes
Task 2	665	3
Task 3	611	3

tasks 3 statistics

	# samples		
Class 0	328		
Class 1	213		
class 2	70		

4. Solution

My Approach

My Approach

My Approach

(1024, 1024) -> (512, 512) -> convert('RGB') -> BATCH_SIZE=8

Results

BYOL-pretrained

random-init

ImageNet-pretrained

Results

# 🏗	User (Team)	15	Created	16	Quadratic Weighted Kappa
1st	kwongitack (FAI)		10 Aug. 2022		0.8158
2nd	iustin.engelmann@ed.ac.uk (MINT Brewery)		10 Aug. 2022		0.8048
3rd	arapodcho (KT Bio Health)		11 Aug. 2022		0.8038
4th	YuboTan (noodles)		10 Aug. 2022		0.7018
5th	hrishikeshps94 🔐 (Team_SCF)		9 Aug. 2022		0.6883
6th	Riccc		11 Aug. 2022	!	0.6749
7th	actingwizard 🔐		11 Aug. 2022	!	0.3342
8th	⊕ Balamurali ♣ (DiagnosETS)		10 Aug. 2022		0.1654

What else?

What else?

Results

```
Epoch 1/10
31/31 [===== ETA: 0s - loss: 64.6040 - acc: 0.5644
Epoch 1: vall.51639, saving model to /content/drive/MyDrive/BYOL/C. Diabetic Retinopathy Gradin
31/31 [====- 110s 3s/step - loss: 64.6040 - acc: 0.5644 - val loss: 37.4639 - val acc: 0.5164
Epoch 2/10
31/31 [===== ETA: 0s - loss: 10.2821 - acc: 0.7935
Epoch 2: valo 0.61475, saving model to /content/drive/MyDrive/BYOL/C. Diabetic Retinopathy Grad
31/31 [====- 75s 2s/step - loss: 10.2821 - acc: 0.7935 - val loss: 26.1210 - val acc: 0.6148
Epoch 3/10
31/31 [===== ETA: 0s - loss: 3.5219 - acc: 0.8834
Epoch 3: val.61475
31/31 [====- 57s 2s/step - loss: 3.5219 - acc: 0.8834 - val loss: 28.4779 - val acc: 0.4754
Epoch 4/10
31/31 [==== ETA: Os - loss: 2.7538 - acc: 0.9325
Epoch 4: valo 0.68033, saving model to /content/drive/MyDrive/BYOL/C. Diabetic Retinopathy Grad
31/31 [===== 87s 3s/step - loss: 2.7538 - acc: 0.9325 - val loss: 17.3893 - val acc: 0.6803
Epoch 5/10
31/31 [===== ETA: Os - loss: 0.3543 - acc: 0.9836
Epoch 5: val68033
31/31 [====- 61s 2s/step - loss: 0.3543 - acc: 0.9836 - val loss: 30.3389 - val acc: 0.5984
Epoch 6/10
31/31 [===== ETA: 0s - loss: 0.1854 - acc: 0.9898
Epoch 6: val68033
31/31 [====- 55s 2s/step - loss: 0.1854 - acc: 0.9898 - val loss: 18.6631 - val acc: 0.5656
Epoch 7/10
31/31 [==== ETA: 0s - loss: 0.4610 - acc: 0.9775
Epoch 7: val68033
31/31 [====- 57s 2s/step - loss: 0.4610 - acc: 0.9775 - val_loss: 24.6816 - val_acc: 0.6639
```


5. Conclusion

Conclusion

- BYOL interesting, novel idea for semi-supervised representation learning task
- However, its benefits in other domains should be verified

Conclusion

- BYOL interesting, novel idea for semi-supervised representation learning task
- However, its benefits in other domains should be verified

Work in progress

- increase MLP complexity
- use lower level embeddings e.g 48th layer from resnet50 (ImageNet-pretrained)
- check relevant data augmentations to DRAC domain
- increase projection layer's size in BYOL

Temirlan Turysbek
MSc. in Data Science @ LMU
temirlan.turysbek@campus.lmu.de

References

- "Bootstrap Your Own Latent A New Approach to Self-Supervised Learning" Grill, Strub, et. al, 2020
- https://en.wikipedia.org/wiki/Self-supervised_learning
- https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html#train_n-and-evaluate
- https://github.com/lucidrains/byol-pytorch
- https://drac22.grand-challenge.org/
- https://medium.com/@kenneth.ca95/a-guide-to-transfer-learning-with-keras-using-resnet50-a81a4a28084b