Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering / Science End Sem (Odd) Examination Dec-2022

BC3BS05 / CS3BS04 / IT3BS01 Discrete Mathematics

Programme: B.Tech.

Branch/Specialisation: CSE / IT /

/B.Sc.

Computer Science

Duration: 3 Hrs.

Maximum Marks: 60

1

1

1

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

- Q.1 i. The trivial subset of set $X=\{a, b, c\}$ is
 - (a) *X*
- (b) $\{ \emptyset, X \}$ (c) $\{ \emptyset \}$
- (d) None of these
- Let A and B be two disjoint sets then $|A \cup B|$ -
 - (a) $|A \cup B| = |A| + |B|$ (b) $|A \cup B| = |A| - |B|$
 - (c) $|A \cup B| = |A||B|$
- (d) None of these
- If $f: X \to Y$ and A, B are two subsets of Y then-
 - (a) $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$
 - (b) $f^{I}(A \cup B) = f^{-1}(A) \cap f^{-1}(B)$
 - (c) $f^{-1}(A \cap B) = f^{-1}(A) \cup f^{-1}(B)$
 - (d) None of these
- The number of maximal elements in the set $\{1,2,3,4,5\}$ under 1 relation divisibility is-
 - (a) 2
- (b) n
- (c) 3
- (d) None of these
- In group $G = \{1, -1, i, -i\}$ order of element i with respect to 1 multiplication is-
 - (a) 1 (b) 2
- (c) 4
- (d) None of these
- Let *I* be a set of integers under addition operation *H* is subgroup of 1 even integers then elements in coset of H in G is-
 - (a) $\{0, \pm 1, \pm 2 \dots \}$
 - (b) {1,2,3}
 - (c) $\{0,\pm 1,\pm 2 \dots \}$ and $\{1,2,3 \dots \}$
 - (d) None of these

P.T.O.

	vii.	Which is pla	nar graph?			1	
		(a) K_4	(b) K_5	(c) K_6	(d) None of these		
	viii.	The degree of	of pendant ver	tex is-		1	
		(a) 1	(b) 0	(c) 3	(d) 2		
	ix.	The homogeneous solution of $a_r + Aa_{r-1} + Ba_{r-2} = 0$, when					
		roots of axill	ary equation a	are real and dis	tinct-		
		(a) $c_1 m_1^r +$	$c_2 m_2^r$	(b) $(c_1 + r)$			
		(c) $c_1 e^{m1} +$	c_2e^{m2}	(d) None o	f these		
	х.	In recurrence	e relation ge	enerating funct	tion of sequence (y_n) is	1	
		given by-					
		(a) $\sum_{h=0}^{n} y_h t$					
		$(c) \sum_{h=0}^{n} y_{h+1}$					
Q.2		Attempt any	two:				
	i.	Define reflex	5				
	ii.	5					
		$0 \le x_i \le 5$, $i = 1, 2, 3, 4$					
	iii.	Show that if	f 5 points are	selected in a	square whose sides have	5	
		must be no more than $\sqrt{2}$					
		inches apart.					
Q.3		Attempt any					
	i.		-		of 30 i.e $B = \{1, 2, 3, 5, 6,$	5	
			=		on B are defined as $a+b$		
					and b , $a'=30/a$. Prove that		
		, , , , , ,	is Boolean A	· ·		_	
	ii. 				a partial order relation.	5	
	iii.	_			ctive normal form	5	
		f(x, y, z) = f(x, y, z)	$[x+(x^2+y)^2]$	[x + (y'. z')']			
Q.4		Attempt any	two:				
Q. 1	i.			rouns of a grou	up (G, $^{\circ}$), then $H_1 \cap H_2$ is	5	
			U		two subgroups is not		
		necessarily a					
	ii.	•			{1, 2, 3, 4, 5, 6} under	5	
		_	n modulo 7.	, ,			

	iii.	Prove that every cyclic group is abelian group.	5
Q.5		Attempt any two:	
	i.	Define following with example:	5
		(a) Graph colouring and chromatic number	
		(b) Vertex disjoint subgraph	
	ii.	Prove that number of edges in a tree with n vertices is n - 1 .	5
	iii.	If the number of vertices in a graph is 10 each of degree 3. Find	5
		number of edges and number of regions in the graph.	
Q.6		Attempt any two:	
	i.	Solve the recurrence relation $a_r + 5a_{r-1} + 5a_{r-2} = 2 + r$	5
	ii.	Find numeric function of generating function:	5
		$A(z) = (1+z)^n + (1-z)^n$	
	iii.	There are 10 students in the class, of which 8 are girls and 2 are	5
		boys. Find the number of ways to select:	
		(a) 2 girls and 1 boy	
		(b) 1 girl and 2 boys	
		(0) 2 8 4 2 00 9 0	

[3]

	M_	T	W	T	F	S	S
Pa	ge l	10.:		1			
Dat	te:					10	UVA

			M T W T F S	S
			Date:	J
10.	Medi-Caps	University		Marks
	Faculty o	g Engg / Science		f
	End Sen	(odd) Examinal	hion Dec- 2022	
		5/ (53 B 504/		0.000
, ,	Discrete	Mathematics.		
Prog :	B Tech / B Sc		Branch: CSF/IT/ (mysci.
w.O. mc	Ŕs		3.7	(10)
1.	p)	ø, x3		
vi.		AUB 1 = (A) + (B)		
· iii	a) f	F- (AUB) = 5- (A)) U f (B)	
iv.	c) 3	Marian Carabana		
٧.	c) 4	6+13+ Y2 4-14-14-14-14-14-14-14-14-14-14-14-14-14	13.	
vi.		Yone of these	Noneof	
vii.	, a)	Ky	these	14
Viii	•	One 1		
IX.		m, + C m2		
γ.	<u> </u>	E y th		
	Cet R be as	relation in the	set A.	
	Reglexive rela			
R	is called r	reglexive relation	if every thing el	lement
2 A	is R-sulated	to itself		
	(a, a) e R	y atA		
0	aRa			
En.	If A= { 1,2	2,3} then a	L= { (1,1), (2,2), (3,3)	,(1,3)}
ii. Syn	metric relat	hon -	\$25 SEC. 175 1 175 1 175 1	
R	is called	symmetric erelati	om it a is R-on	clared
to b	then b is	also Reeleved	to a.	
	(a,b) E R =	⇒ (6,a) ∈ R	of ab EA	

. M	Γ	W	- T	F	S	S
Page	No.:					
Date:					YO	UVA

0:	En. If A= \$1,2,33 then R= { (1,2), (2,1)}	Marks.
	III. Fransitive relation. R is called transitive relation is a is R-related	
•	A related to C. (a,b) FR, (b,c) FR. => (9,0) FR # 9,b,c FA	
	aRb, bRc => aRc	
	Ex. If A= \$1,2,3} then R = \(\frac{7}{(1,2)}, \frac{12}{13}, \frac{1}{(1,3)} \}	+2
j)	ut S denotes the set of all integers solution	
	A; denote the set of integer. solution with regare then run of solution with $0 \le 20 \le 5$ will be $1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 $	+ 1
	By Principle q inclusion and inclusion- $ A_1' \cap A_2' \cap A_3' \cap A_3' = S - \frac{2}{5} A_1 + \frac{2}{5} A_1 \cap A_2 $ $= A_1' \cap A_2' \cap A_3' \cap A_3' = S - \frac{2}{5} A_1 + \frac{2}{5} A_2' \cap A_2' = A_1' \cap A_2' $	
	- = 1A; NA; NA; NA; NA; NA; NA; NA; NA;	+
	where $ S = \frac{ 3+4-1 }{C_{13}} = 560$ $ A = \frac{(19-6)+4-1}{C_{13-6}} = 120$	
	$ A; \Lambda A_j = \frac{(13-6-6)+4-1}{(13-6-6)} = 4$	+1
	A; NA; NAx) = 0 as sum of 2; 's would exceed 13	•
	$(A_1 \cap A_2 \cap A_3 \cap A_4) = 0$	+ #
	By eq a (A,' A A2' A A3' AA4') = 560-4C, x120 + 4(2 x 4-9C3 x0-	+ 0
	= 104	+1

							* .				Page No.:	2 ,	S S YOUVA
dn /)	1	-1							Date:		Marks
40.	ili)	F	irst	0	livid	2	the	891	iare !	nto four	ν		1 14015
	1 %	ma		squ	lares		3	engr		inches.	1/2 1/	2	1
							, , (Ъ			1/2			
	4		m	all		gua	ne (nia	eanholi	5).			
	te	ena	by	F	ninc	iple	9	1,0	pigem	onhole.	some	mall	to
-	>	qua	re		mu	st	CO	ntai	<u>u</u> (alleast	2 poir	13	· ×
										of exc			
										g the			uş.
	0	1	le	ng H	1	= 1	171	2	(1)2	= 14	+1 -	1/3	V2
	-							7 - 1	(2)	0 4	4 -	V 4	2
				2.4		2	Va						+2
						11/2	01	0 1					
					ð.	B = 5	2112	3,5,	6,10,	15,30}			
au.(3) (i).	ej	nen						alb.			
			U							afb		2/12/5	
						a	=	30/	q O		L sal.		
	Reg	wir	ed	con	npor	hon	ta	bles			1. W 2.5 s		
	-	-		,		1		F			91.		
. 7	+	ı	2	3	5	6	10	15	30		a	a	
	j	ı.l	2	3	5	6	10	15	30	5/6493	1	30	
	२	2	2	6	10	6	10	30	30		2	15	
	3	3	6	3	15	6	30	15	30		3	lo	
	5	5	10	15	5	30	10	15	30		5	6	
	6	6	6	6	30	6	30	30	30	2600	6	5	
7/	10	10	10	30	10	30	10	30	30	Table 1	10	3	
	15	15	30	15	15	30	30	15	30		15	7	
	30	30	30	30 .	30	30	30	30	30		30)	
				1	co				1		-	1	
			1-0	v L	+					4	For comp	Memen	
								2 1			a		

			For	Н	CF	*				Page No.:	YOU	
0.	*	1	2	3	5	6	10	15	30		V	Marks.
	1	1 3	- 1	1	1	1	1	1	1	4		
	3	l	2	1	. 1	2	2	١	2	4		
	3	1	1-	3	(3	l	3	3		,	1
	5	(1	1	5	1	5	5	5			
	6	l	2	3	1	6	2	3	6	11.		
	10	1	2	1	5	2	10	5	10	-15.0	1	
	15	ſ	1,21	3	5	3	5	15	15			+-1
	30	1	2	3	5	6	(0	15	30			
	tables Communité in coth Communité Dishib	en which	law law	in (du)	set 4 a+b 3+5 en n h	B. a, b = 5 + 1 = 5 + 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1	i-e. GB 13 to a b, ()	15 CO	axb 10×15 5	a com w hold = b * a = 15 * 10 = 5 noting a		+0.5
-	en								0)		s le re i	Ny, Pr
		3 -	+ 5			15	* 3	0				
	0 1							h)+	(a+c)			•
	Somia	.18	L	4	CDT	ار ا	1	1 (0		91 9		9
	Taulil	nou	Die		De	ne	u.	mnoo	is him	table		+1
	30	dis	ide	ubity	ele	ment	k	ex	HCF	table (*) f	0	
	30	is	id	entito	1 0	lemei	1	her	Lim	(+)		
	Ident	ih	Dave		nold.		-				011	
							each		$a \in B$	there e	nists	+1
	Complement law - For each a + B, there exists										that	
	For LCM $+$ $a+a'=30$											
							a=			19 - I - n		

3 *10 =

3+10

M	Т	W	- _T •	F	S	S
Page N	lo.:		3			
Date:					YO	UVA

	Date:	1
No.	As all laws sorbisfied (B, +, *, ') is called Boolean algebra.	Marks
	Boolean aigebra.	
		1
	(ii) To show the "divides" relation is partial	
	order relation, relation should be -	
-	Reflexive - Y a EN	+1
	ala or aka	
	Hence relation is englexive.	
	A = A = A	
	Anhi symmetrice - Y aib EN	+2
	If alb there exist no patural number such that alb, blad = le trae parist na possible anti-	
	alb, bla = a=b sid raped nois	
	tence relation is anti-symmetric.	
	flence relation is out - symmetric.	
	Teams tire - + a,b,E EN	
-	alb, blc => alc	+2
	or aRb, bRc = aRc	
	Hence relation is transitive	
	Thus the culation "divides" on N is partial	
	order erelation.	
(iii). f(xy,z) = [x+(x'+y)']. [x+(y',z')']	
0	- [x+(x,y')] T [-1]	1 1
	$= \left[x + (x \cdot y') \right] \cdot \left[x + y + 3 \right]$	+1
	$= (x + x \cdot y') \cdot x + (x + x \cdot y') \cdot y + (x + x \cdot y') \cdot z$	<u> </u>
	= 21. 21 + 21. y	+1
	$= x + x \cdot y' + x \cdot y + 0 + x \cdot z + x \cdot y' \cdot z$	
	= 21.1.1. + 21.y. 1 + 21.y. 1 + 21.1.z + 21.y.z	4
	= 21. (y+y'). (3+3') + 21. y'(3+3') + 21.y. (3+3')+	
	2. (y+y'). 3 + 2.y. 3	
	= x.y.z + x.y.z + x.y.z + x.y.z + x.y.z + x.y.z + x.y.z	1. 41
	20.11. 2 + 20.11. 2 + 20.11. 2 + 20.11. 3 + 20.11. 3	+ TI
	2.y. 3 + 2.y. 3 + 2.y. 3 + 2.y. 3 + 2.y. 3	
	= x.y.z + x.y.z + x.y.z + x.y.z	L 40
		+ 7

. .

, M	r w	· T	F	S	S	*
Page No	.:			YOUVA		s
Date:						

				,			-		Date:	
911.	4.0	. H.	& H2	0	ire	two	sub	group	g (G, °)	Marks.
	0	Then	H	A Ha	# C	Ø		0 1	0	
					-		seub ge	earp.	we have t	0
	Char	1 0	FH.	ЭН,	ber	1 11	\Rightarrow	aby 6	- HIPM2	+1
									a CH2	
10	1700								b tHz	
	Buk								subgecoups	
	Thousand	gy	a F	1	1	H.	-)	abt E	H	1
	(new	Close								
	1.0							ab (-		
									ot EH, MH2	1-1
	1 1 1				bEA	111012		00 (- HIPH2	++
•		ua.			L .	c.l.		• ;	+	
	Der	CMI	(01/1	7	100	Swag	Leaup	L	not recessarily	
	<u>a</u>	Sub gero	rep.	10	r es	e. Co	7	De a	additive gray	g I am
-									={0, ±3, ±6, ±	9-1-5+
									3	
	Obri	ously	—H,	UH2	(150	es not		sanszy	closure po	perty
					4 6	H, U	12	but	7 € H1 UH2	
	Hu		TUH	_	S			especa		++
	1	ever			2=}	0, ±	2, I	6,	f 15 a	
	sub	georep	9	4.						
G		Compos	itio	4	table	to	Sus.	X		
(1		•		2	3	4	5	6		
-		Xy	1			-	5	6		1 0
	**		2	2	6	4	1	5		+2
-		3	2	6	2	5	3	4		
			3			2	1	3		
		4	4	. 1	5		6			
2		5	5	3	1	6	4	2		
		6	6	5	4	3	2	1	· · · · · · · · · · · · · · · · · · ·	

M	Т	W	T	F	S	S
Page I	10.:	4	,			
Date:		-			YO	UVA

	Date:	4
No.	Given cyclic georp 9 = \$ 1,2,3,4,5,6}	Marks
	If there exists an element a EG then	
	o(a) = o(4) = 6	
	Clear that for 3,5 EG with multiplication	
	modulo we can find all evernaining llements	- 1
	3=3 $5=5$	94.
	$3^2 = 2$ $4^2 = 4$	
	$3^3 = 6$ $5^3 = 6$	
	$3^{4} = 4$ $5^{4} = 5$ $5^{5} = 3$	(
	$3^{5} = 5$ $5^{5} = 3$ $5^{6} = 1$	+2
	i.e. 3 & 5 are generators of G.	
	While yor 1, 2, 4, 6 Eh we can not find	
	all elements of Gunder multiplication mo	dello 7 to
	Means 1,2,4 and 6 are not generatores g G.	1
	- A Comment of Language Maria Marine and the second second	
(iii)	() Your and ()	+1
	1.e G=704	
	let fry &6 then x = a y = a3	+1
	where & & E I	* 1
	There fore my = a as	
	0 9+1	
	= a (by low g indices) = a s+r (as integers obeys w	mm. law)
	= a ⁸ a ^r	
	= 4 ×	+2
	As sy = 42 commutative law hold.	
3-	1 Community New Mola.	+ 1
:	Hence Gelic george G is abelian group	
		ì

Page No.: YOUWA

1	(i). a). By colouring a a graph. we	Marks.
1. (5)	mean to colour all the vertices of the	X 1
	graph with colours such that no two	
	adjacent vertices have the same colour.	
	After proper (dowing , graph is called	
	posperty coloured graph.	8
	The chromatic number of a graph	
	is the minimum number of colours enquire	+1
	jer proper colouring the vertices of graph.	terr
	and denoted by $\chi(G)$.	
	and denoted by X (G).	
	2 - colours are used -	+0.5
	Red Red H(4) = 2.	NA .
b)- Wr G=(V, E) be a graph, then two	ah
	subgraphs H&K g G are called vertex	+ 1
	disjoint subgraphs is H&K have no	
	restex in common	
	$\exists H = (V', E')$	a)
	$K = (V^{M}, E^{"})$	
	then $V' \cap V'' = \emptyset$	+0.5
	clearly E'DE" = d	
	1	
	Ь	
	e 8 g	
a	a d c	
		+1
e	t g	

М	T	W		F	S	S
Page I	10.:	6	5.			
Date:		-			YO	UVA

(ii). We shall prove by induction method.	Mark
In n=1, then tous T has no edges	
In = 2, then toue I has one edge.	
De la constant de la	And the second s
How suppose that the theorem is true	1
all trees having less than n vertices.	+1
let T be a true with n resticus. and	
there exists only one path between every	
pair g vertices. If we delete one edge	
from tour T then graph will be disconn	ched
and will have two components	
T-e= T1+T2	+1
let n, & n2 be the number g vertices g	
Ti & T2 every sectively whose n, < n & n < n	
such that $n_1 + n_2 = n$.	
As nu g edges in T, = n,-1	7
$T_2 = \eta_2 - 1$	+1
Number y edges in T-e = T, + T2	
$T-e = (n_1-1) + (n_2-1)$	-
$= (n_1 + n_2) - 2$	
= N-2	+ 1
To we explace the edge, then	
Number g edges in T = m-2+1	
= n - 1	-
Hence the theorem holds for all values a	+1
M and hence tree has not edges with	()
n vertices	

, M	T	W	 Г	F	S	S
Pagel						
Date:					YO	UY3.

10. (ii) liven number q vertices = h = 10	Marks
o. (iii) given number q vertices = h = 10 degene q each = 3	
Total degrees = 3×10=30.	+1
By Hand shaking theorem	
$\Xi d(v_i) = 2e$	
30 = 20	
e= 15	t 2
By Geiler's formula of planar gray	rh
n = 2 - n + e	
= 2-10+15	
= 7	+2
Ans number g edger = 15	
number g regjons = 7	1
Que 6 (i). Total sol = an + an - 0	
Homogeneous 401 - m2 + 5m + 5 = 0, m = -5 + 1	15 +1
$g_{21} = C_{1}\left(\frac{-5+\sqrt{5}}{2}\right) + C_{2}\left(\frac{-5-\sqrt{5}}{2}\right) - C_{2}$	+1
Particular sol	
Total sol corresponding to 2+2 = Ao+A12	+
Put in given eg	
(Ao + A, 2) + 5 [Ao + A, (2-1)] + 5 [Ao + A, (2-2)] = 2	+ 2
11 A0 + 11 A1 22 - 15 A, = 2+12	
Companing both sides 11 Ao = 15 A1 = 2	
11 A, & = 92 or 1	11A = 1 +
Hence A, = /11 3 Ao = 37	,
How we get $q = \frac{37}{121} + \frac{1}{11} = \frac{3}{3}$	+ 1
Required sol q = C1(-5+ \(\sigma\) + (1 (-5+ \sigma\) + (1)	2

Page No.: C YOUVA

Date:	YOUVA
$A(3) = (1+3)^m + (1+3)^m$	Max
By Binomial expansion	
$\frac{(1+3)^{n}-\frac{n}{2}}{2(2n)^{2}-\frac{n}{2}} = \frac{n}{2} = $	
= 1+ nq3+ nc232+ ncn3n	+1
$(1-3)^{m} = \frac{\pi}{2} \binom{m}{n} \frac{(-3)^{n}}{(-3)^{n}} + \frac{\pi}{2} \binom{m}{2} \binom{m}{2} + \frac{\pi}{2} \binom{m}{2} \binom{m}{2} + \frac{\pi}{2} \binom{m}{2} \binom{m}$	(-3)
$=1-\frac{n}{(13+\frac{n}{2})^2++(-1)^n}$ $=\frac{n}{(n-3)}$	+1
By adding A137 = 2 + 2 n 22+ + 2 n 3+-	t
an = 50 if or is even	+
(iii). Total students = 10	
Number g girls = 8 Number g boys = 2	
Humber g ways to select	
d) 2 girls and 1 bay	
8 C2 × 2 C1	1.5
28 × 2 = 56 mays	+1
b) girl and 2 boys	
. 84 x 8(2	1.5
8 x) = 8 way	+1