Kapitel 4 – Sequentielle Logik

- 1. Speichernde Elemente
- 2. Sequentielle Schaltkreise
- 3. Entwurf sequentieller Schaltkreise
- 4. SRAM
- 5. Anwendung: Datenpfade von ReTI

Albert-Ludwigs-Universität Freiburg

Prof. Dr. Christoph Scholl Institut für Informatik WS 2015/16

Entwurf sequentieller Schaltkreise

Sequentieller Schaltkreis:

Entwurfsschritte

- Optimierung des Zustandsdiagramms: Zustandsminimierung
 - Identifikation der äquivalenten Zustände.
 - Ergebnis: Ein (evtl. kleineres) Zustandsdiagramm.
- Wahl der Zustandskodierung.
 - Ergebnis: Anzahl der Flipflops im Register, Funktionen δ und λ (Zustands- und Ausgangstafel).
- Implementierung von δ und λ .
 - Kombinatorische Logiksynthese, z.B. Quine-McCluskey.

Zustandsminimierung

Idee:

Bestimme und verschmelze äquivalente Zustände.

Zwei Zustände sind äquivalent, wenn der Automat von ihnen aus bei gleichen Eingabefolgen stets die gleichen Ausgabefolgen produziert.

Weiteres Beispiel (1/4)

- Hinreichende Bedingung: Wenn bei zwei Zuständen bei gleicher Eingabe auch die gleiche Ausgabe erzeugt wird und der gleiche Folgezustand angenommen wird, dann sind die Zustände sicherlich äquivalent.
- Äquivalente Zustände können durch einen einzigen Zustand ersetzt werden (siehe nächste Folie).

Weiteres Beispiel (2/4)

Zustand e und d sind äquivalent.

Weiteres Beispiel (3/4)

Zustand e eliminiert. Zustand b und c sind äquivalent.

Weiteres Beispiel (4/4)

Zustand c eliminiert.

Entwurfsschritte

- Optimierung des Zustandsdiagramms: Zustandsminimierung
 - Identifikation der äquivalenten Zustände.
 - Ergebnis: Ein (evtl. kleineres) Zustandsdiagramm.
- Wahl der Zustandskodierung.
 - **E**rgebnis: Anzahl der Flipflops im Register, Funktionen δ und λ (Zustands- und Ausgangstafel).
- Implementierung von δ und λ .
 - Kombinatorische Logiksynthese, z.B. Quine-McCluskey.

Zustandskodierung

Kodierung $S_1 \equiv 00, S_3 \equiv 10, S_4 \equiv 01:6$ bzw. 5 Gatter

$$\delta_{1}(s_{1}, s_{2}, i) = s_{2}i + s_{1}\bar{i}
\delta_{2}(s_{1}, s_{2}, i) = \overline{s_{1}}\overline{s_{2}}i
\lambda(s_{1}, s_{2}, i) = \overline{s_{2}}i$$

Kodierung $S_1 \equiv 01, S_3 \equiv 11, S_4 \equiv 10:8$ Gatter

$$\delta_{1}(s_{1}, s_{2}, i) = s_{1} s_{2} \overline{i} + \overline{s_{1}} i + \overline{s_{2}} i$$

$$\delta_{2}(s_{1}, s_{2}, i) = s_{1} + i$$

$$\lambda(s_{1}, s_{2}, i) = s_{2} i$$

- **Ziel:** Wähle Zustandskodierung, die nachfolgende kombinatorische Synthese erleichtert.
- Dafür gibt es (heuristische) Verfahren.

Entwurf eines einfachen sequentiellen Schaltkreises am Beispiel

- Aufgabenbeschreibung (Textspezifikation): Modulo-4 Vorwärts/Rückwärtszähler
 - Der Zähler soll von 0 bis 3 zählen können.
 - Ist der Steuereingang x auf 1 gesetzt, so soll vorwärts gezählt werden, d.h. die Zahlenfolge 0,1,2,3 durchlaufen werden.
 - Ist x auf 0 gesetzt, so soll rückwärts gezählt werden, d.h. die Zahlenfolge 3,2,1,0 durchlaufen werden.
 - Am Ausgang ist der Zählerstand anzugeben (Ausgabevektor v_0, v_1).

Von der Textspezifikation zum Zustandsdiagramm

- 4 Zustände erforderlich.
- Startzustand 0.

Vom Zustandsdiagramm zur Zustands- und Ausgangstafel

- \blacksquare Zustandsminimierung \Rightarrow Keine äquivalente Zustände.
- \blacksquare Zustandskodierung: 0 \rightarrow 00, 1 \rightarrow 01, 2 \rightarrow 10, 3 \rightarrow 11.

	Х	z_1^t	z_0^t	z_1^{t+1}	z_0^{t+1}	<i>y</i> ₁	<i>y</i> ₀
Vorwärts-	1	0	0	0	1	0	0
zählen	1	0	1	1	0	0	1
	1	1	0	1	1	1	0
	1	1	1	0	0	1	1
Rückwärts-	0	1	1	1	0	1	1
zählen	0	1	0	0	1	1	0
	0	0	1	0	0	0	1
	0	0	0	1	1	0	0

Eingänge

Ausgänge

Implementierung des kombinatorischen Kerns

	Х	z_1^t	z_0^t	z_1^{t+1}	z_0^{t+1}	<i>y</i> ₁	<i>y</i> ₀
Vorwärts-	1	0	0	0	1	0	0
zählen	1	0	1	1	0	0	1
	1	1	0	1	1	1	0
	1	1	1	0	0	1	1
Rückwärts-	0	1	1	1	0	1	1
zählen	0	1	0	0	1	1	0
	0	0	1	0	0	0	1
	0	0	0	1	1	0	0

Übergangsfunktion:
$$z_0^{t+1} = x\overline{z}_1^t\overline{z}_0^t + xz_1^t\overline{z}_0^t + \overline{x}z_1^t\overline{z}_0^t + \overline{x}\overline{z}_1^t\overline{z}_0^t$$

$$z_1^{t+1} = x\overline{z}_1^t z_0^t + xz_1^t \overline{z}_0^t + \overline{x}z_1^t z_0^t + \overline{x}\overline{z}_1^t \overline{z}_0^t$$

Implementierung des komb. Kerns: Logikminimierung

Ausgangsfunktion:
$$y_0^t = z_0^t$$
, $y_1^t = z_1^t$

Übergangsfunktion:
$$z_0^{t+1} = x\overline{z}_1^t \overline{z}_0^t + xz_1^t \overline{z}_0^t + \overline{x}z_1^t \overline{z}_0^t + \overline{x}\overline{z}_1^t \overline{z}_0^t$$

$$z_1^{t+1} = x\overline{z}_1^t z_0^t + xz_1^t \overline{z}_0^t + \overline{x}z_1^t z_0^t + \overline{x}\overline{z}_1^t \overline{z}_0^t$$

Minimierung:
$$z_0^{t+1} = \overline{z}_0^t$$

$$z_1^{t+1} = x\overline{z}_1^t z_0^t + xz_1^t \overline{z}_0^t + \overline{x} z_1^t z_0^t + \overline{x} \overline{z}_1^t \overline{z}_0^t$$

$$= \overline{x \oplus z_1^t \oplus z_0^t}$$

Beispiel: Ergebnis

