Сьогодні 12.02.2024 *Ypoκ №42*

Поняття про оксиди. Номенклатура і фізичні властивості оксидів

Повідомлення мети уроку

Ви зможете:

- називати оксиди за сучасною науковою українською номенклатурою;
- складати за назвою оксиду його хімічну формулу;
- характеризувати фізичні властивості оксидів.

Пригадаємо

Які сполуки називаються оксидами?

Оксиди – бінарні сполуки, що складаються з двох хімічних елементів, один з яких Оксиген.

Де знаходиться Оксиген в оксидах та яка його валентність?

 E_xO_y

Мотивація навчальної діяльності

3 поділом речовин на 2 великі групи — органічні та неорганічні речовини — ви знайомі ще з природознавства та уроків хімії в 7 класі.

Хоча неорганічних речовин у десятки разів менше ніж органічних, їхній якісний склад порівняно з органічними речовинами набагато різноманітніший. Майже всі металічні та неметалічні елементи трапляються у складі неорганічних речовин. Неорганічні речовини класифікують на основі їх складу, будови і властивостей.

Вивчення нового матеріалу

Неорганічні сполуки — це сполуки, які утворюються всіма хімічними елементами (крім більшості органічних сполук Карбону), хімічні речовини не рослинного і не тваринного походження.

Прості речовини — це речовини, утворені атомами одного хімічного елемента.

Поняття про складні речовини

<u>Складні речовини утворені атомами різних хімічних</u> елементів:

основи

натрій гідроксид NaOH

КИСЛОТИ

Ортофосфатна H_3PO_4

Хлоридна HCI

солі

кальцій карбонат СаСО₃

натрій хлорид NaCl

Поняття про оксиди

Оксиди - складні речовини, які складаються з двох хімічних елементів, один з яких є Оксиген.

Алгоритм складання формули оксиду:

- 1. Записуємо два елементи, символ Оксигену завжди пишеться на другому місці.
- 2. Над символами елементів ставимо валентності.

III II O

Поняття про оксиди

Оксиди – це складні речовини, бінарні сполуки.

загальна формула E_xO_v

Якщо валентність елемента постійна, то в назві оксиду його валентність не вказується. Наприклад:

Na₂O – натрій оксид

ZnŌ - цинк оксид

Якщо валентність змінна, то в назві оксиду після назви елемента вказують значення його валентності римською цифрою в дужках. Наприклад:

 SO_3 — сульфур (VI) оксид Mn_2O_7 — манган (VII) оксид

Номенклатура оксидів

Назва елемента

Валентність (якщо змінна)

Оксид

Дайте назви оксидам:

 N_2O_3 K_2O AI_2O_3 CO_2

нітроген (III) оксид

калій оксид

алюміній оксид

карбон (IV) оксид

Виконай завдання

Як можна розділити ці оксиди?

MgO

K₂O

 P_2O_5

 Al_2O_3

SO₃

Na₂O

Cl₂O7

 V_2O_5

 NO_2

Оксиди металів

Оксиди неметалів

Види оксидів

Солетворні

Oсновні (Me<IV) Кислотні (HeMe, Me > IV) Амфотерні $(Al_2O_3, ZnO, BeO, SnO, Cr_2O_3)$

Несолетворні

(CO, N₂O, NO)

Фізичні властивості оксидів

За агрегатним станом

Газоподібні

CO₂

NO

SO₂

SO₃

<u>Тверді</u>

 Al_2O_3

BaO

CuO

MgO

<u>Рідкі</u>

Cl₂O₇

 H_2O

Кольорові оксиди:

магній оксид — білий нікол (II) оксид — темно-зелений ферум (III) оксид — бурий нітроген (IV) оксид — бурий газ, "лисячий хвіст" хлор (IV) оксид — зеленкувато-жовтий силіцій (IV) оксид — безбарвний.

Отруйні оксиди арсен (III) оксид карбон (II) оксид чадний газ

Мінерали та гірські породи

Рутил (TiO₂)

(Закарпаття, Центральне Придніпров'я)

Kаситерит (SnO_2) (Придніпров'я)

Піролюзит (MnO_2) (Придніпров'я, Карпати)

Корунд (Al₂O₃) (Придніпров'я, Побужжя, Західне Приазов'я)

Гематит (Fe_2O_3) (Кривий Ріг, Керч, Приазов'я)

Мінерали та гірські породи

Xалцедон (SiO₂) (Крим, Карпати)

Опал (SiO_2) (Придніпров'я, Закарпаття, Приазов'я)

Магнетит (Fe_3O_4) (Кривий Ріг, Крим)

манганіт(Придніпров'я) гетит (FeO)(Крим)

Кварц (Донбас, Волинь, Закарпаття)

Застосування оксидів неметалів

Діоксид кремнію застосовують у виробництві скла, кераміки, бетонних виробів, для отримання кремнію, як наповнювач у виробництві гум. Кристали кварцу володіють п'єзоелектричними властивостями і тому використовуються в радіотехніці, ультразвукових установках, в запальничках.

Діоксид кремнію - головний компонент майже всіх земних гірських порід. З кремнезему і силікатів складається 87% маси літосфери.

Застосування оксидів неметалів

Діоксид сірки застосовують у різних галузях промисловості. Найбільші його кількості йдуть на виробництво сульфатної кислоти. Діоксид сірки має здатність убивати різні мікроби, тому ним обкурюють складські приміщення, підвали, винні бочки тощо, а також овочі і фрукти, щоб запобігти їх загниванню.

Діоксид сірки знебарвлює різні органічні барвники і застосовується для відбілювання вовняних і шовкових тканин, соломи

Застосування оксидів неметалів

Рідка вуглекислота (рідка харчова вуглекислота) — зріджений вуглекислий газ, що зберігається під високим тиском. Безбарвна рідина. При випуску рідкої вуглекислоти з балона в атмосферу частина її випаровується, а інша частина утворює пластівці сухого льоду.

Балони з рідкою вуглекислотою широко застосовуються як вогнегасники і для виробництва газованої води і лимонаду.

Робота в групах

Визначте й запишіть у зошит валентність елементів у поданих на початку параграфа формулах оксидів, назвіть їх.

Потренуйтеся у складанні назв оксидів на прикладі розглянутих формул.

Складіть формули оксидів, про які йдеться в частині параграфа «Фізичні властивості оксидів».

Складіть таблицю «Фізичні властивості оксидів». Для її заповнення скористайтесь навчальним матеріалом підручника та додатковою інформацією.

Перевір свої знання

Сформулюйте визначення оксидів, наведіть приклади.

Назвіть правила номенклатури оксидів, наведіть приклади.

На прикладі двох-трьох оксидів схарактеризуйте фізичні властивості оксидів.

Як за складом молекули оксиди відрізняються від пероксидів? Наведіть приклади.

Знайдіть помилки, допущені в назвах деяких оксидів, і виправте їх відповідно до сучасної наукової української номенклатури: К₂О — калій(I) оксид; СаО — кальцій оксид; СО — карбон оксид; SO₃ — сульфур(VI) оксид; Na₂O — оксид натрію; AI₂O₃ — алюміній(III) оксид.

Перевір свої знання

Зазначте пари хімічних формул оксидів з однаковою валентністю елементів.

A. CaO i N₂O;
Б. Al₂O₃ i BaO;
Β. NO₂ i MnO₂;
Γ. MgO i CO.

Зазначте рядок оксидів, що мають твердий агрегатний стан (н.у.).

- А. натрій оксид, купрум(II) оксид), карбон(II) оксид;
- Б. карбон(IV) оксид, карбон(II) оксид, сульфур(VI) оксид;
- В. фосфор(V) оксид, кальцій оксид, силіцій(IV) оксид;
- Г. нітроген(IV) оксид, магній оксид, гідроген оксид.

У запропонованому переліку зазначте формули оксидів, класифікуйте їх на оксиди металічних й оксиди неметалічних елементів:

 SiO_2 , MgO, SiH_4 , SO_3 , NO, FeO, Cl_2O_7 , N_2O_3 , $CaCl_2$, Fe_2O_3 , CO, CaO, Na_2O_7 , KOH, HCl, K_2O_2 .

Металічні:

MgO, FeO, $CaCl_2$, Fe_2O_3 , CaO, Na_2O , K_2O_2 .

Hemetaлічні: SiO₂, SO₃, NO, Cl₂O₇, N₂O₃, CO, KOH, HCl. BCIM

Назвіть оксиди, формули яких зазначено у завданні 91, за сучасною науковою українською номенклатурою.

 SiO_2 - сіліцій (IV) оксид, MgO — магній (II) оксид, SO_3 — сульфур (VI) оксид, NO — нітроген (II) оксид, FeO — ферум (II) оксид, Cl₂O7 — хлор (VII) оксид

 N_2O_3 — нітроген (III) оксид, Fe_2O_3 — ферум (III) оксид, CO — карбон (II) оксид, CaO — кальцій (II) оксид, Na_2O — натрій (I) оксид, K_2O — калій (I) оксид.

Складіть формули: калій оксиду, сульфур(VI) оксиду, фосфор(III) оксиду, хлор(I) оксиду, плюмбум(IV) оксиду. Чому в одних назвах оксидів зазначено валентність, а в інших — ні?

Калій оксиду - K_2O , сульфур(VI) оксиду - SO_3 , фосфор(III) оксиду - P_2O_3 , хлор(I) оксиду - Cl_2O , плюмбум(IV) оксиду - PbO_2

Чому в одних назвах оксидів зазначено валентність, а в інших — ні?

Є змінна і постійна валентність.

Заповніть у зошитах таблицю формулами оксидів поданих елементів. Назвіть ці оксиди.

Елемент	Формула оксиду	Назва оксиду
Li	Li ₂ O	Літій оксид
Ва	BaO	Барій оксид
S (VI)	SO ₃ (VI)	Сульфур(VI)оксид
P (V)	P_2O_5	Фосфор (V) оксид

Обчисліть густину за повітрям таких оксидів:

- а) нітроген(IV) оксиду;
- б) карбон(II) оксиду;
- в) сульфур(IV) оксиду.

$$D_{\text{HOB}}(\text{NO}_2) = \frac{46}{29} = 1,6$$

 $D_{\text{HOB}}(\text{CO}) = \frac{28}{29} = 0,96$
 $D_{\text{HOB}}(\text{SO}_2) = \frac{64}{29} = 2,2$

$$D_{\text{пов}}(\text{CO}) = \frac{28}{29} = 0.96$$

$$D_{\text{HOB}}(SO_2) = \frac{64}{29} = 2,2$$

Склад смарагдово-зеленого мінералу малахіту позначається хімічною формулою $Cu_2CH_2O_5$. Напишіть рівняння реакції розкладу цієї речовини, якщо відомо, що всі продукти реакції належать до оксидів, а валентність Купруму — II.

 $Cu_2CH_2O_5 \rightarrow 2 CuO + CO_2 + H_2O$

Установіть відповідність між речовиною й типом кристалічних ґраток.

Речовина		Типи кристалічних ґраток	
1	кисень	Α	у йонний
2	силіцій(IV) ок <u>сид</u>	5	молекулярний
3	алюміній оксид	В	атомний
		Γ	інший

Гра «Прийми естафету»

Що таке оксиди?

Яка загальна формула оксидів?

Як дати назву оксидам?

Назвіть речовину СО

Назвіть речовину MgO

Де поширені оксиди?

Де застосовують оксиди?

Формулюємо висновки

Оксид — це бінарна сполука будь-якого елемента з Оксигеном.

Загальна формула оксидів $E_2 \times O_x II$, або $E_2 +_x O_{x-2}$.

В оксидах Оксиген проявляє валентність II.

Більшість хімічних елементів періодичної системи здатні сполучатися з Оксигеном з утворенням оксидів.

Номенклатура оксидів — перелік правил, яких дотримуються, коли потрібно назвати ці сполуки. Назва оксиду складається з двох слів, записаних у називному відмінку з малої літери: назви хімічного елемента (із зазначенням валентності, якщо вона в нього змінна) і слова «оксид».

1. 3 різних джерел інформації дізнайтесь, які оксиди називають чадним газом, сірчистим газом та яка фізіологічна дія цих речовин на організм людини.