

Notes

Group Theory

Sylow Theorems: Write $(\abs{G} = p^n m)$ where $(m {\notdivides} p)$, (S_p) a sylow $(\ash p)$ subgroup, and (n_p) the number of sylow $(\ash p)$ subgroups.

- - Corollary: \(\forall p \divides \abs{G}\), there exists an element of order \((p\)).
- All sylow\(\dash p\) subgroups are conjugate for a given \(p\).
 - Corollary: \(n p = 1 \)implies S p \(normal G\)
- \(n_p \divides m\)
- \(n_p \equiv 1 \mod p\)
- (n p = [F : N(S p)]) where (N) is the normalizer.

Useful facts:

- $\ZZ_p, \ZZ_q \subset G \subset \ZZ_p \subset \ZZ_q = \ZZ_{(p,q)}\)$, so coprime order subgroups are disjoint.
- $((p, q) = 1 \times ZZ_p \times ZZ_q \subset ZZ_{pq})$
- Characterizing direct products: \(G \cong H \times K\) when

 - \(H, K \normal G\)
 - Can relax to only \(H\normal G\) to get a semidirect product instead

Semidirect Products:

Note $(\Delta ut(ZZ_n) \subset (ZZ^n)\setminus (ZZ^n))$ where $(\Delta ZZ^n)\cup (ZZ^n)\cup (ZZ^n)\cup$

Class Equation: $\[\abs{G} = \abs{Z(G)} + \sum_{\substack{\text{One x_i}} from } \ \text{each conjugacy class} \] [G: C_G(x_i)] \] where <math>\(C_G(x)\)$ is the centralizer of $\(x\)$, given by $\(C_G(x) = \text{g \suchthat } [g, x] = e \)$.

Fields: $(GF(p^n))$ is obtained as $(\langle FF_p \} \{ generators \{f\} \})$ where $(f \in Fp[x])$ is irreducible of degree (n).

Eisenstein's Criterion: If $(f(x) = \sum_{i=0}^n \alpha_i x^i \in QQ[x])$ and $(\exp x)$ such that both $(p \cdot a_n)$ and $(p^2 \cdot a_n)$ but $(p \cdot a_n)$, then (f()) is irreducible.

Linear Algebra

Finding the minimal polynomial (m(x)) of (A):

- 1. Find the characteristic polynomai $(\chi(x))$; this annihilates (A) by Cayley-Hamilton. Then $(m(x) \choose x)$, so just test the finitely many products of irreducible factors.
- 2. Pick any \(\vector v\) and compute \(T\vector v, T^2\vector v, \cdots T^k\vector v\) until a linear dependence is introduced. Write this as (p(T) = 0); then $(\chi(x) \ p(x))$.

Proof that when (A_i) are diagonalizable, (θ_i) commutes (θ_i) are simultaneously diagonalizable: induction on number of operators

- $\(A_n\)$ is diagonalizable, so $\(V = \beta E_i\)$ a sum of eigenspaces
- Restrict all \(n-1\) operators \(A\) to \(E_n\).
 - $\circ~$ The commuted in \(V\) so they commute here too
 - (Lemma) They were diagonalizable in \(\text{V\}\), so they're diagonalizable here too
 - \(\implies\) they're simultaneously diagonalizable by I.H.
- But these eigenvectors for the \(A_i\) are all in \(E_n\), so they're eigenvectors for \(A_n\) too.
- Can do this for each eigenspace. \(\qed\)
- Full Details: here