p.	roject: 16 hit Koggo Stone od		Planning																				
	roject: 16 bit Kogge-Stone ad		Data: 160004									D-	ال د		الم								
	roject group: 5		Date: 160204									Reviewed:											
	ustomer: Martin Nielsen-Lön		Version: P1B						Johannes Klasson														
C	ourse: TSEK06		Author: JI	_																			
	ACTIVITIES	TIME	WHO					TI	ME	: Pl	LAI	V (we	ek	nι	umb	er)					
no	Description	nours	Initials	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20 2	21		
1	Define structure of the SPI unit	10	JI, JK		9,5																	0,	
2	Implement counters in Verilog-A	10	JI, JK		4																		
3	Implement control logic in Verilog-A	10	JI, JK			10																	
4	Implement 1:4 decoder in Verilog-A	10	JI, JK			5,																4,	
5	Integrate to high level design of SPI	10	JI, JK			17										Ш						-	
6	Simulation and test of high level design (SPI)	5	JI, JK				13									Ш						-	
7	Implement transistor level design of the SPI unit	30	JI, JK					15	15							Ш							
8	Simulation and test of transistor design (SPI)	20	JI, JK							20										\perp			
9	Implement layout level design of SPI unit	30											25	25								-	
10	Simulation and test of layout (SPI)	20												2	20	Ш							
11	Define structure of the generator	10	AY		0			Ц								Ц	\Box		\Box	\perp		1	
12	Implement linear feedback shift registers in Verilog-A	10	AY			0										Ш						1	
13	Integrate to high level design of the generator	10	AY			0										Ш				\perp		1	
14	Simulation and test of the high level design (generator)	5	AY				0						\Box	\perp		Ш				\perp	_		
15	Implement transistor level design of the generator unit	15	JI, JK					10	5							Ш							
16	Simulation and test of the transistor design (generator)	10	JI, JK							10						Ш							
17	Implement layout level design of generator unit	15										·	10	5		Ш							
18	Simulation and test of layout (generator)	10												ľ	10	$oxed{oxed}$							
19	Define structure of the adder	10	JT, AY		3																		
20	Implement Generate calculation logic in Verilog-A	10	JT, AY		1											Ш							
21	Implement Propagate calculation logic in Verilog-A	10	JT, AY		1											Ш							
22	Implement Sum calculation logic in Verilog-A	10	JT, AY		1																		
23	0 0	20	JT, AY				17									Ш				\perp			
24	Simulation and test of high level design (adder)	20	JT, AY				3,															1	
25	Implement transistor level design of the adder unit	40	JT, AY					20	20											\perp			
26	Simulation and test of the transistor design (adder)	20	JT, AY						10	10													
27	Implement layout level design of adder unit	40										_	10	13	15	15						-	
28	Simulation and test of layout (adder)	20															20						
29	Define structure of the comparator	5	JT		0											Ш				\perp			
30	Implement bit comparator in Verilog-A	5	JI			0																	
31	Integrate to high level design of the comparator	10	JI			2																	
32	Simulation and test of the high level design (comparator)	5	JI				2																
33	Implement transistor level design of the comparator unit	20	JT, AY					5	5							Ш						1	
34	Simulation and test of the transistor design (comparator)	10	JT, AY							10						Ш							
35	Implement layout level design of comparator unit	20										·	15	15								-	
36	Simulation and test of layout (comparator)	10												ľ	10								
37	Off-chip hardware interface	30																15	15				
38	Documentation and presentation	60		28			35		20	20									10	20		-	
39	Meetings	60			11	0	0	4	4	4			4	4	4	4	4	4	4	4	4		
40	Buffer time	80						15	10	10			5	5	5	5	5	5	5	10	0		
41	High level integration	15	JI, JH, JT, AY				14	Ш				\perp		\perp		Ц	\Box		\Box	\perp			
42	Transistor level integration	10						Ц		10				\perp		Ц	\Box			\perp			
43	Layout level integration	15						Ц				[\prod		30	\Box		\Box	\perp			
44	Implementation of test bench for SPI	5	JH			0										\Box			\prod	\prod			
45	Implementation of test bench for generator	5	JI		0	Ĺ					$ _ $	$ _ $	_]	$oxed{J}$		$oxedsymbol{oxed}$							
46	Implementation of testbench for adder	10	AY		0						\Box	\prod		\Box		\Box		\Box		\prod			
47	Implementation of test bench for comparator	5	JT		0							\prod		\prod		\Box		$oxed{\int}$		\prod			
48	Implementation of test bench for the complete system	20					15					$ _ $		\prod		$oxedsymbol{oxed}$		$oxed{ egin{array}{c} oxed{ }}$					
	Sum, number of hours	755			30,5				_		0				_				34		4		