Homework Assignment 1

Bailey Wickham & Alex MacLean CSC530

May 21, 2021

1 Propositional Logic and Normal Forms

2. (5 points) Convert the following formula to an equisatisfiable one in CNF using Tseitin's encoding:

$$\neg(\neg r \rightarrow \neg(p \land q))$$

Write the final CNF as the answer. Use a_{ϕ} to denote the auxiliary variable for the formula ϕ ; for example, $a_{p \wedge q}$ should be used to denote the auxiliary variable for $p \wedge q$. Your conversion should not introduce auxiliary variables for negations.

Substitutions:

$$a_{\phi} \leftrightarrow \neg(\neg r \to \neg a_{p \wedge q})$$
$$a_{p \wedge q} \leftrightarrow (p \wedge q)$$

Conjunction:

$$a_{\phi} \wedge (a_{\phi} \leftrightarrow \neg(\neg r \rightarrow \neg a_{p \wedge q})) \wedge (a_{p \wedge q} \leftrightarrow (p \wedge q))$$

$$where$$

$$(a_{\phi} \leftrightarrow \neg(\neg r \rightarrow \neg a_{p \wedge q})) \equiv (\neg a_{\phi} \vee \neg r) \wedge (\neg a_{\phi} \vee a_{p \wedge q}) \wedge (r \vee \neg a_{p \wedge q} \vee a_{\phi})$$

$$and$$

$$(a_{p \wedge q} \leftrightarrow (p \wedge q)) \equiv (\neg a_{p \wedge q} \vee p) \wedge (\neg a_{p \wedge q} \vee q) \wedge (\neg p \vee \neg q \vee a_{p \wedge q})$$

$$so$$

$$\phi \equiv a_{\phi} \wedge (\neg a_{\phi} \vee \neg r) \wedge (\neg a_{\phi} \vee a_{p \wedge q}) \wedge (r \vee \neg a_{p \wedge q} \vee a_{\phi}) \wedge (\neg a_{p \wedge q} \vee p) \wedge (\neg a_{p \wedge q} \vee q) \wedge (\neg p \vee \neg q \vee a_{p \wedge q})$$

3. (10 points) Let ϕ be a propositional formula in NNF, and let I be an interpretation of ϕ . Let the positive set of I with respect to ϕ , denoted $pos(I,\phi)$, be the literals of ϕ that are satisfied by I. As an example, for the NNF formula $\phi = (\neg r \land p) \lor q$ and the interpretation $I = [r \mapsto \bot, p \mapsto \top, q \mapsto \bot]$, we have $pos(I,\phi) = \{\neg r,p\}$. Prove the following theorem about the monotonicity of NNF:

Monotonicity of NNF: For every interpretation I and I' such that $pos(I, \phi) \subseteq pos(I', \phi)$, if $I \models \phi$, then $I' \models \phi$.

(**Hint:** Use structural induction.)

Proof. Proceed by structural induction.

Base case: Suppose that ϕ is of the form: p or $\neg p$ and $I \models \phi$. Then $pos(I, \phi)$ must contain p or $\neg p$ respectively. Since $pos(I, \phi) \subseteq pos(I', \phi)$ then that element must also be in $pos(I', \phi)$. Therefore $I' \models \phi$.

Inductive hypothesis: Suppose there exists a ϕ_1 and ϕ_2 such that for every interpretation I and I' such that $pos(I, \phi_i) \subseteq pos(I', \phi_i)$, if $I \models \phi_i$, then $I' \models \phi_i$.

Inductive step: Let $\phi = \phi_1 \land \phi_2$ and I satisfy ϕ . Let $pos(I, \phi) \subseteq pos(I', \phi)$ for some interpretation I'. Then $I \models \phi_1$ and $pos(I, \phi_1) \subseteq pos(I, \phi) \subseteq pos(I', \phi)$ so by the inductive hypothesis $I' \models \phi_1$. A similar argument can be applied to ϕ_2 . Since $I' \models \phi_1$ and $I' \models \phi_2$, $I' \models \phi$. The case for $\phi = \phi_1 \lor \phi_2$ follows similarly.

Conclusion: By induction, every interpretation I and I' such that $pos(I, \phi) \subseteq pos(I', \phi)$, if $I \models \phi$, then $I' \models \phi$.

4. (10 points) Let ϕ be an NNF formula. Let $\hat{\phi}$ be a formula derived from ϕ using a modified version of Tseitin's encoding in which the CNF constraints are derived from implications rather than biimplications. For example, given the formula

$$a_1 \wedge (a_2 \vee \neg a_3),$$

the new encoding is the CNF equivalent of the following, where x_0, x_1, x_2 are fresh auxiliary variables:

$$\begin{array}{ccc} x_0 & \wedge \\ (x_0 \to a_1 \wedge x_1) & \wedge \\ (x_1 \to a_2 \vee x_2) & \wedge \\ (x_2 \to \neg a_3) & \end{array}$$

Note that Tseitin's encoding to CNF starts with the same formula, except that \rightarrow is replaced with \leftrightarrow . As a result, the new encoding has roughly half as many clauses as the Tseitin's encoding.

Prove that $\hat{\phi}$ is satisfiable if and only if ϕ is satisfiable.

(**Hint**: Use the theorem from Problem 3.)

2 Graph Coloring with SAT (40 points)

A graph is k-colorable if there is an assignment of k colors to its vertices such that no two adjacent vertices have the same color. Deciding if such a coloring exists is a classic NP-complete problem with many practical applications, such as register allocation in compilers. In this problem, you will develop a CNF encoding for graph coloring and apply them to graphs from various application domains, including course scheduling, N-queens puzzles, and register allocation for real code.

A finite graph $G = \langle V, E \rangle$ consists of vertices $V = \{v_1, \dots, v_n\}$ and edges $E = \{\langle v_{i_1}, w_{i_1} \rangle, \dots, \langle v_{i_m}, w_{i_m} \rangle\}$. Given a set of k colors $C = \{c_1, \dots, c_k\}$, the k-coloring problem for G is to assign a color $c \in C$ to each vertex $v \in V$ such that for every edge $\langle v, w \rangle \in E$, $\mathsf{color}(v) \neq \mathsf{color}(w)$.

- 1. (10 points) Show how to encode an instance of a k-coloring problem into a propositional formula F that is satisfiable iff a k-coloring exists.
 - (a) Describe a set of propositional constraints asserting that every vertex is colored. Use the notation $\operatorname{color}(v) = c$ to indicate that a vertex v has the color c. Such an assertion is encodable as a single propositional variable p_v^c (since the set of vertices and colors are both finite).

$$\bigwedge_{v \in V} (\bigvee_{c \in C} p_v^c)$$

(b) Describe a set of propositional constraints asserting that every vertex has at most one color.

$$\bigwedge_{v \in V} (\bigwedge_{c \in C} p_v^c \to \neg (\bigvee_{c' \in C - \{c\}} p_v^{c'}))$$

(c) Describe a set of propositional constraints asserting that no two adjacent vertices have the same color.

$$\bigwedge_{\langle v,w\rangle\in E} \bigwedge_{c\in C} (\neg p_v^c \vee \neg p_w^c)$$

- (d) Identify a significant optimization in this encoding that reduces its size asymptotically. (**Hint:** Can any constraints be dropped? Why?)

 *Drop constraint b.
- (e) Specify your constraints in CNF. For |V| vertices, |E| edges, and k colors, how many variables and clauses does your encoding require?

$$\bigwedge_{\langle v,w\rangle \in E} \bigwedge_{c \in C} (\neg p_v^c \vee \neg p_w^c) \wedge \bigwedge_{v \in V} (\bigvee_{c \in C} p_v^c)$$

Total clauses: k(|V| + |E|)

- 2. (20 points) Implement the above encoding in Racket, using the provided solution skeleton. See the README file for instructions on obtaining solvers and the database of graph coloring problems. Your program should generate the encoding for a given graph (see graph.rkt), call a SAT solver on it (solver.rkt), and then decode the result into an assignment of colors to vertices (see examples.rkt and k-coloring.rkt).
 - Your implementation should be able to solve all of the easy and medium instances in under 15 minutes on an ordinary laptop. (The reference implementation does so in about 7 minutes.)
- 3. (5 points) Describe a CNF encoding for k-coloring that uses $O(|V| \log k + |E| \log k)$ variables and clauses.
- 4. (5 points) Most modern SAT solvers support incremental solving—that is, obtaining a solution to a CNF, adding more constraints, obtaining another solution, and so on. Because the solver keeps (some) learned clauses between invocations, incremental solving is generally the fastest way to solve a series of related CNFs. How would you apply incremental solving to your encoding from Problem 2 to find the smallest number of colors needed to color a graph (i.e., its chromatic number)?