CLAIMS:

1. A process for preparing an exathiclane of formula

(I), pharmaceutically acceptable salts or esters, and geometric and optical isomers thereof:

$$HOCH_2$$
 O R_2

wherein:

 R_2 is a purine or pyrimidine base or an/analogue or derivative thereof; and Z is S, S=0 oy SO₂;

-the process comprising the step of reacting a mercaptoacetaldehyde with a compound having formula $R_{W}OCH_{2}CHO$, wherein R_{W} is hydrogen or a hydroxyl protecting group R_{1} ,

under neutral or basic conditions to obtain an intermediate of formula (XII):

20

2. The process/according to claim 1, wherein in formula (I), R_2 is sg4ected from the group consisting of:

X is oxygen or sulfur; Y is oxygen or sulfur;

 R_3 and R_4 are independently selected from the group consisting of hydrogen, hydroxyl, amino, substituted or unsubstituted $C_{1.6}$ alkyl, or $C_{1.6}$ alkynyl, and substituted or unsubstituted $C_{1.70}$ acyl or aracyl;

 $R_{\rm 5}$ and $R_{\rm 6}$ are independently selected from the group consisting of hydrogen, halogen, hydroxyl, amino, cyano, carboxy, carbamoyl, alkoxycarbonyl, hydroxymethyl, trifluoromethyl, thioaryl substituted or unsubstituted $C_{\rm 1-6}$ alkyl or $C_{\rm 1-6}$ alkenyl or $C_{\rm 1-6}$ alkynyl, and substituted or unsubstituted $C_{\rm 1-10}$ acyloxy; and

20

 R_7 and R_θ are independently selected from the group consisting of hydrogen, hydroxy, alkoxy, thiol, thioalkyl, amino, substituted amino, halogen, cyano, carboxy, alkoxycarbonyl, carbamoyl, substituted or unsubstituted $C_{1-\theta}$ alkyl, or alkenyl, or alkynyl, and substituted or unsubstituted $C_{1-\theta}$ acytoxy; and

 $R_{\rm 9}$ and $R_{\rm 10}$ are independently selected from the group consisting of hydrogen, hydroxy, alkoxy, amino, substituted amino, halogen, azido, substituted or unsubstituted $C_{\rm 1.6}$ alkyl or alkenyl or alkynyl, and substituted or unsubstituted $C_{\rm 1.6}$ acyloxy.

3. The process according to claim 1, wherein $\ensuremath{R_2}$ is selected from the group consisting of:

20

20

wherein each R_{11} is independently selected from hydrogen, acetyl, and $C_{1.6}$ alkyl groups; R_{12} and R_{13} are independently selected from hydrogen, hydroxymethyl, trifluoromethyl substituted or unsubstituted $C_{1.6}$ alkyl or alkenyl, bromine, chlorine, fluorine, and iodine; R_{14} is selected from hydrogen, cyano, carboxy, ethoxycarbonyl, carbamoyl, and thiocarbamoyl; and each W is independently selected from hydrogen, bromine, chlorine, fluorine, iodine, amino, and hydroxyl groups.

4. The process according to claim 1, 2 or 3, wherein the hydroxyl of the intermediate of formula (XIII) is converted to a spitable leaving function L to obtain an intermediate of formula (XIV):

(XIV)

wherein, R_w is hydrogen or R_1 , wherein R_1 is a hydroxy protecting group, and L is a leaving group.

5/The process according to claim 4, wherein L is OR_2 , herein R_2 is selected from the group consisting of:

hydrogen, a substituted or unsubstituted saturated or unsaturated alkyl group, a substituted or unsubstituted aliphatic or aromatic acyl group, a substituted or unsubstituted saturated or unsaturated alkoxy carbonvl group, a substituted or unsubstituted sulphonyly imidazolide, a substituted or unsubstituted carbonyl imidazolide, a substituted or unsubstituted aliphatic or aromatic amino carbonyl group, a substituted or unsubstituted alkyl imidate group, a substituted or unsubstituted saturated or unsaturated shosphinoyl, and a substituted or unsubstituted aliphatic or aromatic sulphonvl group.

6. The process according to claim 4, further comprising the step of reacting the intermediate of formula (XIV) with a silylated pyrimidine or purine base or an analogue thereof, in the presence of a Lewis acid to produce a compound of the formula (IX):

$$R_w O H_2$$
 Z
 (IX)

wherein R_2 and R_4 have the same meaning as in claim 4, and Z is S.

- 7. The process according to claim 6, wherein the sulfur of the intermediate of formula (IX) may optionally be oxidized to give an intermediate of formula (IX) wherein Z is S=0 or SO_2 .
- 8. The process according to claim 1, 2 or 3, wherein the merraptoacetaldehyde is obtained from a mercaptoacetaldehyde dimer dissolved in an inert

9. The process according to claim 3, whorein the inert solvent is selected from the group consisting of: pyridine, toluene and DMSO.

10. A process for preparing an oxathiolane of formula (I), pharmaceutically acceptable salts or esters, and geometric isomers thereof, and mixtures of those isomers:

10

wherein: R_2 is a purine or pyrimidine base or an analogue or derivative thereof; and Z is selected from a group consisting of S, S=0 and SO_2 ;

-the process comprising the step of reacting a mercaptoacetaldehyde with a compound having formula RyOOCCHO, wherein Ry is substituted or unsubstituted C_{1-12} alkyl or substituted or unsubstituted C_{6-20} aryl to obtain an intermediate of formula (XV):

$$R_y O_2 C$$
 OH

11. The process according to claim 10, wherein, in the formula (I), R_2 is selected from the group consisting of

X is oxygen or sulfur; Y/is oxygen or sulfur;

 R_3 and R_4 are independently selected from the group consisting of hydrogen, hydroxyl, amino, substituted or unsubstituted $C_{1.6}$ alkyl, or $C_{1.6}$ alkenyl or $C_{1.6}$ alkynyl, and substituted or unsubstituted $C_{1.10}$ acyl or aracyl;

 R_{6} and R_{6} are independently selected from the group consisting of hydrogen, halogen, hydroxyl, amino, cyano, carboxy, carbamoyl, alkoxycarbonyl, hydroxymethyl, trifluoromethyl, thioaryl, substituted or unsubstituted C_{1-6} alkyl or C_{1-6} alkynyl, and substituted or unsubstituted C_{1-10} acyloxy; and

20

 R_7 and R_8 are independently selected from the group consisting of hydrogen, hydroxy, alkoxy, thiol, thioalkyl, amino, substituted amino, halogen, cyano, carboxy, alkoxycarbonyl, carbamoyl, substituted or unsubstituted $C_{1.6}$ alkyl, or alkenyl, or alkynyl, and substituted or unsubstituted $C_{1.10}$ acyloxy; and

 R_{9} and R_{10} are independently selected from the group consisting of hydrogen hydroxy, alkoxy, amino, substituted amino, halogen, azido, substituted or unsubstituted $C_{1.6}$ alkyl or alkenyl or alkynyl, and substituted or unsubstituted $C_{1.6}$ alkyl or alkenyl acyloxy.

12. The process according to claim 10, wherein ${\bf R}_2$ is selected from the group consisting of:

20

wherein each R₁₁ is independently selected from hydrogen, acetyl, and C_{1.6} alkyl groups;
R₁₂ and R₁₃ are independently selected from hydrogen,
hydroxymethyl, trifluorofethyl, substituted or unsubstituted C_{1.6} alkyl or alkenyl, bromine, chlorine, fluorine, and iodine;
R₁₄ is selected from hydrogen, cyano, carboxy, ethoxycarbonyl, carbamoyl, and thiocarbamoyl; and each W is independently selected from hydrogen, bromine, chlorine, fluorine, iodine, amino, and hydroxyl groups.

13. The process according to claim 10, 11 or 12, further comprising the step of converting the hydroxyl of the intermediate of formula (XV) to a suitable leaving function L to obtain an intermediate of formula (XVI):

wherein \mathbf{R}_y is as defined in claim 10, and \mathbf{L} is a leaving group.

- 14. The process according to claim 13, wherein L is OR_Z , wherein R_Z is selected from the group consisting of: hydrogen, a substituted or unsubstituted saturated or unsaturated alkyl group, a substituted or unsubstituted aliphatic or aromatic acyl group, a substituted or unsubstituted saturated or unsubstituted saturated or unsubstituted saturated or unsubstituted sulphonyl group, a substituted or unsubstituted carbonyl imidazolide, a substituted or unsubstituted aliphatic or aromatic amino carbonyl group, a substituted or unsubstituted or unsubstituted alkyl imidate group, a substituted or unsubstituted saturated or unsubstituted or aromatic substituted or unsubstituted alkyl imidate group, a substituted or unsubstituted or unsubstituted alkyl imidate group, a substituted or unsubstituted or unsubstituted alkyl imidate group, a substituted alkyl imidate group alk
- 15. The process according to claim 13 or 14, further comprising the step of reacting the intermediate of formula (XVI) with a sixylated base or an analogue thereof, in the presence of a Lewis acid to produce a compound of formula (XVII):

(XVII)

wherein Z is S, and $R_{\rm y}$ has the same meaning as in claim 13, and $R_{\rm y}$ is a purine or pyrimidine base, an analogue or derivative thereof.

30 16. The process according to claim 15, wherein the sulfur of the intermediate of formula (XVII) may optionally be oxidized to give an intermediate of 17. The process according to claim 16, further comprising the step of reducing the intermediate of formula (XVII) to a compound of formula (I):

wherein:

10

20

 \mathbf{R}_2 is a purine or pyrimidine base or an Analogue or derivative thereof; and

Z is selected from a group consisting of S, S=0 and SO_2 .

18. The process according to claim 17, further comprising the steps of:

(a) protecting the hydroxyl group of the compound of formula (I) with a suitable protecting function R_1 to obtain an intermediate of formula (XIX):

wherein R_1 is selected from the group consisting of: C_{1-16} acyl, t-butyldimethylsilyl, and t-butyldiphenylsilyl,

(b) interconverying the purine or pyrimidine base substituent of analogue thereof R_2 of formula (XIX) to another pyrimidine or purine base or analogue thereof R_{2a} to obtain in intermediate of formula (XX):

(c)removing the protecting function R_1 of the intermediate of formula (XX) to obtain a compound \sqrt{f} formula (I):

(I)

wherein Z is as defined in claim 13.

- 19. The process according to claim 10, 11 or 12, wherein the mercaptoacetaldehyde is obtained from a mercaptoacetaldehyde dimer dissolved in an inert solvent.
- 20. The process according to c/aim 19, wherein the inert solvent is selected from the froup consisting of: pyridine, toluene, and DMSO
- (a)converting the hydroxyl of the intermediate of formula (XV) to a systable leaving function L to obtain an intermediate of formula (XXI):

wherein R $_{\rm r}$ is substituted or unsubstituted C_{1-12} alkyl or substituted or unsubstituted C_{6-20} aryl;

(b) converting the carboxyl to a hydroxymethyl function; and

(c) protecting the resulting hydroxymethyl with a surtable protecting function R_1 to obtain an intermediate of formula (XXII):

(XXII)

wherein R_1 is selected from the group consisting of: C_{1-16} acyl, t-butyldimethylsilyl, and t-butyldiphenylsilyl.

22. The process according to claim 21, wherein L is OR_z , wherein R_z is selected from the group consisting of: hydrogen, a substituted or unsubstituted saturated or unsaturated alkyl group, a substituted or unsubstituted aliphatic or aromatic acyl group, a substituted or unsubstituted saturated or unsubstituted saturated or unsubstituted saturated or unsubstituted sulphonyl group, a substituted or unsubstituted carbonyl imidazolide, a substituted or unsubstituted carbonyl imidazolide, a substituted or unsubstituted aliphatic or aromatic amino carbonyl group, a substituted or unsubstituted alkyl imidate group, a substituted or unsubstituted saturated or unsubstituted or unsubstituted or unsubstituted alkyl imidate group, a substituted or unsubstituted or unsubstituted aluphatic or aromatic sulphonyl group.

20

10

23. The process according to claim 21, further comprising the step of reacting the intermediate of formula (XXII) with a silylated pyrimidine or purine base or an analogue thereof, in the presence of a Lewis acid to obtain an intermediate of formula (XXIII):

(XXIII)

wherein \textbf{R}_1 is as defined in claim 21, \textbf{R}_2 is a purine or pyrimidine base, analogue or derivative thereof, and Z

24. The process according to claim 23, wherein the intermediate of formula (XXIII) is optionally oxidized to obtain an intermediate of formula (XXIII) wherein Z is S=0 or SO₂.

25. The process according to claim 24, further comprising the step of removing the hydroxyl protecting function R_1 from compound (XXIII) to obtain a compound of formula (I):

HOCH₂ O R₂

wherein Z is S, S=0, or SO_2 , and R_2 is a purine or pyrimidine base or an analogue or derivative thereof.

- 26. The process according to claim 6, wherein the Lewis acid is selected from the group consisting of: TMSOTf, TMSI, TiCl₄, and SnCl₄.
- 27. The process according to claim 15, wherein the 20 Lewis acid is selected from the group consisting of: TMSOTF, TMSI, TiO₄, and SnCl₄.
 - 28. The process according to claim 23, wherein the Lewis acid is selected from the group consisting of: TMSOTF, TMSI, TiCl₄, and SnCl₄.
 - 29. The process according to claim 13, further comprising the steps of:
 - a) reacting the intermediate of formula (XVI) with a hazogen-containing silyl Lewis acid to obtain an intermediate of formula (XXVI):

wherein hal is halogen, and b) coupling the intermediate of formula (XXVI) with a base or analogue thereof R_2 under basic conditions, to obtain an intermediate of formula (XVII):

$$R_y CO_2$$
 Z
 $(XVII)$

- 10 30. The process according to claim \$\hat{\rho}\$9, wherein said halogen is iodine.
 - 31. The process according to calaim 29, wherein said Lewis acid is TMSI.
 - 32. The process according to claim 29, 30 or 31, wherein the $\rm R_2$ base or analogue thereof is a purine.
- 33. The process according to claim 32, wherein the 20 purine is 6-chloroparine.
 - 34. Intermediates useful for the production of oxathiolane compounds, said intermediates selected from the group consisting of:
 - trans-2-hydroxymethyl-5-acetoxy-1,3-oxathiolane;
 - cis-2-benzoyloxymethyl-5-hydroxy-1,3-oxathiolane,
 - trans-2-Venzoyloxymethyl-5-hydroxy-1,3-oxathiolane and
 mixtures thereof;
 - cis-2 benzoyloxymethyl-5-(4',5'-dichlorobenzoyloxy)-1,3oxamiolane, trans-2-benzoyloxymethyl-5-(4',5'-
 - dirhlorobenzoyloxy)-1,3-oxathiolane and mixtures

```
cis-2-benzoyloxymethyl-5-trimethylacetoxy-1,3-
    oxathiolane, trans-2-benzoyloxymethyl-5-
    trimethylacetoxy-1,3-oxathiolane and mixtures themeof;
    cis-2-benzoyloxymethyl-5-(2',2',2'-
    trichloroethoxycarbonyloxy)1,3-oxathiolane, trans-2-
    benzoyloxymethyl-5-(2',2',2'-trichloroethoxy
    carbonyloxy) 1, 3-oxathiolane and mixtures the reof;
     cis-2-benzoyloxymethyl-5-ethoxycarbonyloxy/1,3-
    oxathiolane, trans-2-benzoyloxymethyl-5-
    ethoxycarbonyloxy-1,3-oxathiolane and maxtures thereof;
10
    cis-2-benzoyloxymethyl-5-methoxycarboxyloxy-1,3-
    oxathiolane, trans-2-benzoyloxymethy 1-5-
    methoxycarbonyloxy-1,3-oxathiolane and mixtures thereof;
     cis-2-benzoyloxymethyl-5-acetoxy-1,3-oxathiolane, trans-
     2-benzoyloxymethyl-5-acetoxy-1, 2-oxathiolane and
     mixtures thereof;
     cis-2-benzoyloxymethyl-5-(N4/-acetylcytosin-1'-yl)-1,3-
     oxathiolane, trans-2-benzoy oxymethyl-5-(N4'-
     acetylcytosin-1'-yl)-1,3-xathiolane and mixtures
     thereof:
2.0
     cis-2-benzoyloxymethyl f5-(cytosin-1'-yl)-1,3-
     oxathiolane, trans-2-benzoyloxymethyl-5-(cytosin-1'-yl)-
     1,3-oxathiolane and mixtures thereof;
     cis-2-carboethoxy-5-hydroxy-1,3-oxathiolane, trans-2-
     carboethoxy-5-hydroxy-1,3-oxathiolane and mixtures
     thereof:
     cis-2-carboetpoxy-5-methoxycarbonyloxy-1,3-oxathiolane,
     trans-2-carbethoxy-5-methoxycarbonyloxy-1,3-oxathiolane
     and mixtures thereof;
     cis-2-carpoethoxy-5-acetoxy-1,3-oxathiolane, trans-2-
     carboetboxy-5-acetoxy-1,3-oxathiolane and mixtures
     thereof:
      cis-2-carboethoxy-5-(N4'-acetylcytosin-1'-yl)-1,3-
     oxazhiolane;
      cis-2-carboethoxy-5-(cytosin-1'-yl)-1,3-oxathiolane;
     £is-2-carboethoxy-5-(uracil-1'-yl)-1,3-oxathiolane;
```

cis-2-benzoyloxymethyl-5-(cytosin-1'-yl)-1,3oxathiolane;
cis-ethyl-5-iodo-1,3-oxathiolan-2-carboxylate, transethyl-5-iodo-1,3-oxathiolan-2-carboxylate and mixtures
thereof;
cis-ethyl-5-(6'-chloropurix-9'-yl)-1,3-oxathiolan-2carboxylate, trans-ethyl-5-(6'-chloropurin-9'-yl)-1,3oxathiolan-2-carboxylate and mixtures thereof; and
cis-ethyl-5-(6'-chloropurin-7'-yl)-1,3-oxathiolan-2carboxylate, trans-ethyl-5-(6'-chloropurin-7'-yl)-1,3oxathiolan-2-carboxylate and mixtures thereof.