# Economics 144 Economic Forecasting

Lecture 3
Modeling and Forecasting Trend
(Part II)

Dr. Randall R. Rojas

# Today's Class

- Forecasting Challenges
- Forecasting Environments
- Model Selection
  - MSE
  - AIC
  - SIC
- Trend Fitting via Periodic Functions
- Trend Fitting via Holt-Winters Filtering
- R Example

# **Forecasting Environments**

- The data sample is divided into two parts: usually 2/3 are used for estimation and 1/3 for prediction.
- Def: Estimation Sample

This sample is used for estimating the model and respective parameters.

Def: Prediction Sample

This sample is used to assess the accuracy of the forecast.

- Forecasting Methods:
  - Recursive
  - Rolling
  - Fixed

# Forecasting Challenges

Lack of understanding of the phenomenon

Lack of statistical methods

High uncertainty

Lack of integration of skills

## Recursive Scheme



# Rolling Scheme



# Fixed Scheme



## Model Selection 10f9

 Among the various model fits, how do we select the best one?

Need a measure of "best fit model".

- There are many metrics used for model selection such as e.g., MSE, AIC, SIC, Mallows CP, etc.
- Depending on the Forecast problem on hand, certain metrics will be better suited than others for choosing an optimal model.

## Model Selection 3 of 9

Mean Squared Error (MSE):

$$MSE = rac{1}{T}\sum_{t=1}^T e_t^2$$
 where  $\hat{y} = \hat{eta}_0 + \hat{eta}_1TIME$  and  $e_t = y_t - \hat{y}_t$ 

• The model with the smallest MSE is also the model with the smallest sum of squared residuals (maximizes  $\mathbb{R}^2$ ).

$$R^2 = 1 - \frac{\frac{1}{T} \sum_{t=1}^T e_t^2}{\sum_{t=1}^T (y_t - \bar{y})^2}$$
 Total sum of squares

# Model Selection 4 of 9

- As the number of parameters increases, the MSE performance deteriorates (overfitting)!
- The out-of-sample forecast will not necessarily improve. However, it will improve the model's fit on the historical data.
- MSE is a biased estimator of the out-of-sample 1-step-ahead prediction error variance.
  - → The variance increases as the number of variables increases.

Need to include a penalty for including more degrees of freedom (variables)!

# Model Selection 5 of 9

• MSE (adjusted for df):  $s^2 = \frac{\sum_{t=1}^{T} e_t^2}{T-k}$ 

where k is the number of degrees of freedom (df) used in model fitting.

• Adjusted 
$$R^2$$
:  $\overline{R}=1-rac{\frac{\sum_{t=1}^T e_t^2}{T-k}}{\frac{\sum_{t=1}^T (y_t-\bar{y})^2}{T-1}}$ 

# Model Selection 6 of 9

• Since: 
$$s^2 = \left(\frac{T}{T-k}\right) \frac{\sum_{t=1}^T e_t^2}{T}$$

$$\longrightarrow s^2 = \left(\frac{T}{T-k}\right) MSE$$

Penalty Factor

## Model Selection 70f9

Two popular model selection metrics are:

$$AIC = e^{rac{2k}{T}} rac{\sum_{t=1}^{T} e_t^2}{T}$$
 Akaike Information Criterion

$$SIC = T^{\frac{k}{T}} \frac{\sum_{t=1}^{T} e_t^2}{T}$$
 Schwarz Information Criterion

Note: SIC is more commonly known as the Bayesian Information Criterion (BIC).

# Model Selection 8019

- Consistency: A model selection criterion is consistent if
  - 1. (a) when the data-generating process (DGP) is among the models considered, the probability of selecting the true DGP approaches 1 as the sample size increases.
  - 2. (b) when the DGP is *not* among the models considered, the probability of selecting the best approximation to the true DGP, approaches 1 as the sample size increases.
  - MSE: inconsistent
  - AIC: biased towards overparameterized models
  - SIC: consistent
- Asymptotic Efficiency: Rate of the model selection process
  - AIC: asymptotically efficient
  - SIC: not asymptotically efficient

## Example: Modeling and Forecasting Trend 1 of 10

Monthly Beer Production in Australia from Jan 1956 – Aug 1995



## Example: Modeling and Forecasting Trend 2 of 10

Model 1:  $\log(y_t) = \alpha_0 + \alpha_1 t + \alpha_2 t^2 + \varepsilon_t$ 

(Quadratic)



## Example: Modeling and Forecasting Trend 3 of 10

### Model 1 (Quadratic): Summary

```
Call:
lm(formula = lbeer \sim t + t2)
Residuals:
              10 Median
    Min
                                30
                                        Max
-0.40087 -0.09857 -0.01225 0.09539 0.33826
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -3.869e+03 2.192e+02 -17.65 <2e-16 ***
            3.905e+00 2.220e-01 17.59 <2e-16 ***
           -9.840e-04 5.618e-05 -17.52 <2e-16 ***
t2
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.141 on 473 degrees of freedom
Multiple R-squared: 0.7176, Adjusted R-squared: 0.7164
F-statistic: 600.9 on 2 and 473 DF, p-value: < 2.2e-16
```

## Example: Modeling and Forecasting Trend 4 of 10

Model 2:  $\log(y_t) = \alpha_0 + \alpha_1 t + \alpha_2 t^2 + \beta \cos(2\pi t) + \gamma \sin(2\pi t) + \varepsilon_t$ (Quadratic + Periodic)



Year

Add a periodic term.

## Example: Modeling and Forecasting Trend 5 of 10

### Model 2 (Quadratic + Periodic): Summary

```
Call:
lm(formula = lbeer \sim t + t2 + sin.t + cos.t)
Residuals:
    Min
             10 Median 30
                                      Max
-0.33191 -0.08655 -0.00314 0.08177 0.34517
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -3.833e+03 1.841e+02 -20.815 <2e-16 ***
        3.868e+00 1.864e-01 20.751 <2e-16 ***
t
t2
          -9.748e-04 4.718e-05 -20.660 <2e-16 ***
sin.t -1.078e-01 7.679e-03 -14.036 <2e-16 ***
cos.t -1.246e-02 7.669e-03 -1.624 0.105
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.1184 on 471 degrees of freedom
Multiple R-squared: 0.8017, Adjusted R-squared:
F-statistic: 476.1 on 4 and 471 DF, p-value: < 2.2e-16
```

## Example: Modeling and Forecasting Trend 6 of 10

#### Model 1 vs. Model 2

| AIC (m1, m2) | df | AIC       |
|--------------|----|-----------|
| Model 1      | 4  | -509.3847 |
| Model 2      | 6  | -673.7203 |

Model 2 is better.

| BIC (m1, m2) | df | BIC       |
|--------------|----|-----------|
| Model 1      | 4  | -492.7230 |
| Model 2      | 6  | -648.7278 |

Model 2 is better.

## Example: Modeling and Forecasting Trend 7 of 10

### Holt-Winters Filter: Considerably better model!



## Example: Modeling and Forecasting Trend 8 of 10

### Holt-Winters Prediction/Forecast for next 4 years



Year

## Example: Modeling and Forecasting Trend 9 of 10

### Holt-Winters Point and Interval Forecast for next 4 years



## Example: Modeling and Forecasting Trend 10 of 10

### Trend + Seasonal Components Decoupled



# Modeling Trend Random Walk with Linear Time Trend



# Modeling Trend Cyclical or Seasonal Trends



# Modeling Trend Cyclical or Seasonal Trends

$$Y_t = \mu_t + X_t$$
 Represents the series, where  $E[X_t] = 0 \forall t$ 

$$\mu_{t} = \begin{cases} \beta_{1} & \text{for } t = 1, 13, 25, \dots \\ \beta_{2} & \text{for } t = 2, 14, 26, \dots \\ \vdots & & \\ \beta_{12} & \text{for } t = 12, 24, 36, \dots \end{cases}$$

Twelve constant parameters giving the expected average temperature for each of the 12 months

**Seasonal Means** 

# Modeling Trend Cyclical or Seasonal Trends

|           | Estimate | Std. Error | <i>t</i> -value | Pr(> t ) |
|-----------|----------|------------|-----------------|----------|
| Intercept | 16.608   | 0.987      | 16.83           | < 0.0001 |
| February  | 4.042    | 1.396      | 2.90            | 0.00443  |
| March     | 15.867   | 1.396      | 11.37           | < 0.0001 |
| April     | 29.917   | 1.396      | 21.43           | < 0.0001 |
| May       | 41.483   | 1.396      | 29.72           | < 0.0001 |
| June      | 50.892   | 1.396      | 36.46           | < 0.0001 |
| July      | 55.108   | 1.396      | 39.48           | < 0.0001 |
| August    | 52.725   | 1.396      | 37.78           | < 0.0001 |
| September | 44.417   | 1.396      | 31.82           | < 0.0001 |
| October   | 34.367   | 1.396      | 24.62           | < 0.0001 |
| November  | 20.042   | 1.396      | 14.36           | < 0.0001 |
| December  | 7.033    | 1.396      | 5.04            | < 0.0001 |

# Modeling Trend CosineTrends



Difficult to estimate because the parameters  $\beta$ , f and  $\Phi$  are not linear



# Modeling Trend CosineTrends

$$\mu_t = \beta_0 + \beta_1 \cos(2\pi f t) + \beta_2 \sin(2\pi f t)$$

#### Easier model to estimate

$$\beta \cos(2\pi ft + \Phi) = \beta_1 \cos(2\pi ft) + \beta_2 \sin(2\pi ft)$$

$$\beta = \sqrt{\beta_1^2 + \beta_2^2}$$
,  $\Phi = \operatorname{atan}(-\beta_2/\beta_1)$ 

$$\beta_1 = \beta \cos(\Phi), \qquad \beta_2 = \beta \sin(\Phi)$$

# Modeling Trend CosineTrends



| Coefficient       | Estimate | Std. Error | <i>t</i> -value | Pr(> t ) |
|-------------------|----------|------------|-----------------|----------|
| Intercept         | 46.2660  | 0.3088     | 149.82          | < 0.0001 |
| cos(2πt)          | -26.7079 | 0.4367     | -61.15          | < 0.0001 |
| sin(2π <i>t</i> ) | -2.1697  | 0.4367     | -4.97           | < 0.0001 |

# Modeling Trend CosineTrends

#### **EXAMPLE 2.2** Consider the time sequence

$$Z_t = A\sin(\omega t + \theta), \tag{2.1.9}$$

where A is a random variable with a zero mean and a unit variance and  $\theta$  is a random variable with a uniform distribution on the interval  $[-\pi, \pi]$  independent of A. Then

$$E(Z_t) = E(A)E[\sin(\omega t + \theta)] = 0$$

$$E(Z_t Z_{t+k}) = E\{A^2 \sin(\omega t + \theta) \sin[\omega(t+k) + \theta]\}$$

$$= E(A^2)E\left\{\frac{1}{2}[\cos(\omega k) - \cos(\omega(2t+k) + 2\theta)]\right\}$$

$$= \frac{1}{2}\cos(\omega k) - \frac{1}{2}E\{\cos(\omega(2t+k) + 2\theta)\}$$

$$= \frac{1}{2}\cos(\omega k) - \frac{1}{2}\int_{-\pi}^{\pi}\cos(\omega(2t+k) + 2\theta) \cdot \frac{1}{2\pi}d\theta$$

$$= \frac{1}{2}\cos(\omega k) - \frac{1}{8\pi}[\sin(\omega(2t+k) + 2\theta)]_{-\pi}^{\pi}$$

$$= \frac{1}{2}\cos(\omega k), \qquad (2.1.10)$$

which depends only on the time difference k. Hence, the process is covariance stationary.