Vivekanand Education Society's Institute of Technology Department of Computer Engineering Academic Year 2024-25

Name of the Course: Design and Analysis of Algorithms NCMPCL41

Year/Sem/Class: S.E.(Comp)- IV sem-D7A/B/C

Faculty Incharge: Mrs.Lifna C S, Mrs.Vidya Zope, Mrs.Yugchhaya Galphat

Email: <u>lifna.cs@ves.ac.in</u>, <u>vidya.zope@ves.ac.in</u>, <u>yugchhaya.dhote@ves.ac.in</u>

Assignment - II

Date of Preparation :4/04/25 Date of Submission : 15/04/25

No	Questions		Course Outcome
1	Solve the given knapsack problem with dynamic knapsack		CO4
	Selection of n=4 items, capacity of knapsack M=8		
	Item i Value v _i Weight w _i		
	1 15 1		
	2 10 5 3 9 3		
	4 5 4		
2	solve the sum of subset problem using backtracking w={1,3,4,5}, m=8 find all possible subsets of 'w' that sum 'm'		CO5
3	Explain Knuth Morris Pratt algorithm with a proper example?		CO5
4	Explain all pair shortest path with suitable example		CO5
5	Find the Longest Common Subsequence for P=(100101101101) and		CO4
	Q=(0110)		
6	Find the shortest path for given multistage graph using backward		CO4
	approach		

Vivekanand Education Society's Institute of Technology Department of Computer Engineering Academic Year 2024-25

