UNIVERSIDADE FEDERAL DA PARAÍBA - UFPB
CENTRO DE INFORMÁTICA - CI
DEPARTAMENTO DE COMPUTAÇÃO CIENTÍFICA - DCC
DISCIPLINA: Métodos Matemáticos I

Aluno(a):

Lista de Exercícios.

Subsequências e Pontos e Acumulação. Sequências Limitadas.

- 1. Ilustre exemplos (não dados em aula) expressando o termo geral e fornecendo pelo menos os 10 primeiros termos (indique a referência de onde pesquisou cada exemplo, ou se foi construído por conta própria).
 - (a) de uma sequência limitada convergente;
 - (b) de uma sequência limitada e divergente;
 - (c) de uma sequência não limitada e divergente
 - (d) de uma sequência limitada com mais de um ponto de acumulação.
 - (e) de uma sequência não limitada com mais de um ponto de acumulação.
 - (f) de uma sequência com um **único** um ponto de acumulação e que seja divergente.
- 2. (Livro do Prof. Marivaldo, Seção 1.4, pg. 20)

Responda se cada uma das afirmações a seguir é falsa ou verdadeira. Se for falsa dê um contra-exemplo. Se for verdadeira, justifique.

- (a) Toda sequência limitada é convergente.
- (b) Toda sequência divergente não é limitada.
- (c) Se uma sequência $\{a_n\}$ possui uma subsequência não limitada, então $\{a_n\}$ é divergente.
- (d) Se uma sequência $\{a_n\}$ possui uma subsequência convergente, então $\{a_n\}$ é convergente.
- (e) A sequência cujo termo geral é dado pela soma dos termos gerais de duas sequências divergentes é divergente.

- (f) Se $\{a_n\}$ é uma sequência convergente e possui uma subsequência nula, então $\{a_n\}$ tem limite zero.
- (g) Se uma sequência $\{a_n\}$ possui uma subsequência convergente, então $\{a_n\}$ é convergente.
- (h) Toda sequência de sinais alternados é divergente.
- (i) Se uma sequência $\{a_n\}$ diverge, então $\{|a_n|\}$ também diverge.
- (j) Se a sequência $\{|a_n|\}$ converge para zero, então $\{a_n\}$ também converge para zero.
- (k) Se $\{a_n\}$ é convergente, então $\{(-1)^n a_n\}$ também é convergente.
- (l) A sequência $\{a_n\}$ definida recursivamente por $a_1 = 1$, $a_{n+1} = \frac{na_n}{n+1}$ é convergente (exiba os 10 primeiros termos desta sequência).
- (m) Se $\{(-1)^n a_n\}$ é convergente e se $a_n > 0$, $\forall n \in \mathbb{N}$, então $\lim a_n = 0$.
- (n) Se $\{a_n\}$ e $\{b_n\}$ são duas sequências e se $\lim a_n = 0$, então a sequência produto $\{s_n\}$ com termo geral $s_n = a_n \cdot b_n$ é convergente.

Referências.

- [1] E. L. Lima (2020); Análise Real vol 1 Funções de uma Variável.
- [2] M. P. Matos (2020); Séries e Equações Diferenciais.

http://www.mpmatos.com.br/Serie_EDO/Series_EDO_2020.pdf

- [3] A. L. Madureira(2017); Introdução à Análise Real em uma Dimensão.
- http://www.lncc.br/~alm/cursos/analiseI17/analiseI.pdf
- [4] E. Swokowski (1995); Cálculo com Geometria Analítica, vol 2.
- [5] G. B. Thomas et al. (2012) Cálculo, vol 2.