Genome assembly and annotation

Day 5: Genome annotation

Igor Pessi

Department of Microbiology – UH

igor.pessi@helsinki.fi

Aims for this part of MMB-114

Day 1: Basics of UNIX and working with the command line

Day 2: Handling of Illumina data

Day 3: Genome assembly

Day 4: Check-up and report

Day 5: Genome annotation

Day 6: Metabolic pathway analysis

Get reads

Sequence quality trimming

Genome assembly

Genome annotation

Metabolic pathways

Before we start...

How does the assembly look like?

How many contigs?

What is the longest contig?

Total size of the assembly? Is this more or less in the ballpark of what you expected for this genome?

Three genomes

Statistics without reference	\equiv SPADES_ALVAR_contigs	\equiv SPADES_ANTTON_contigs	\equiv SPADES_SUVI_contigs
# contigs	44	27	1443
# contigs (>= 0 bp)	212	31	1777
# contigs (>= 1000 bp)	35	25	146
# contigs (>= 5000 bp)	30	20	1
# contigs (>= 10000 bp)	29	19	0
# contigs (>= 25000 bp)	27	18	0
# contigs (>= 50000 bp)	25	16	0
Largest contig	437 575	1 424 057	5980
Total length	4 663 117	5 299 459	1 038 776
Total length ($>= 0$ bp)	4 694 984	5 300 564	1 197 053
Total length (>= 1000 bp)	4 656 217	5 298 339	185 195
Total length (>= 5000 bp)	4 642 389	5 288 949	5980
Total length (>= 10000 bp)	4 634 843	5 283 472	0
Total length (>= 25000 bp)	4 593 937	5 262 819	0
Total length (>= 50000 bp)	4 522 542	5 206 047	0
N50	227 477	429 888	702
N75	136 681	242 271	584
L50	8	4	554
L75	14	8	962
GC (%)	48.06	56.02	59.41

Recap from last week:

Annotation

Adding biological information to sequences (contigs)
Information that there is a gene x in contig y at location z

- Size of the gene
- · Name of the gene
- Protein product

Contig y = 2,035 bp

Bacterial genes

Promoter

Ribosome binding site (RBS)

Coding sequence (CDS)

Terminator

Also non-coding genes

- tRNA
- rRNA

Two ways to identify proteincoding genes

Sequence alignment (e.g. BLAST)

Search contigs against a database Computationally-intensive

Gene finding

Start codon

ATG

Open reading frame (ORF)

Stop codon

• TAA, TAG, TGA

^{1.} ATG CAA TGG GGA AAT GTT ACC AGG TCC GAA CTT ATT GAG GTA AGA CAG ATT TAA

^{2.} A TGC AAT GGG GAA ATG TTA CCA GGT CCG AAC TTA TTG AGG TAM GAC AGA TTT AA

^{3.} AT GCA ATG GGG AAA TGT TAC CAG GTC CGA ACT TAT TGA GGT AAG ACA GAT TTA A

Annotating genes

Homology

Similarity search against an annotated database

- NCBI
- KEGG
- COG
- SEED
- GO
- UNIPROT
- INTERPRO
- PFAM
- TIGR

PROKKA: Rapid prokaryotic genome annotation

Let's annotate our genome

https://github.com/igorspp/MMB-114

(**Day 5:** Genome annotation)