- Implementar em VHDL duas architectures para o processador CORDIC
 - 1. Comportamental + estrutural (ControlPath + DataPath)
 - A descrição VHDL deve ser baseada no projeto implementado na parte 1 do trabalho com a restrição de um único somador para operações aritméticas e comparações
 - Removam todo o hardware desnecessário do projeto da parte 1 (e.g. demux, barrel-shifter)
 - 2. Totalmente comportamental
 - Deve-se explorar o paralelismo a partir da replicação consciente de hardware a fim de aumentar o desempenho em relação ao projeto da parte 1
 - Espera-se que o tempo de processamento caia para em torno de 1/6 do tempo do projeto da parte 1

- Architecture Comportamental + estrutural
 - Estrutura da descrição
 - □ 4 entidades: *CORDIC*, *ControlPath*, *DataPath* e *Memory*
 - ☐ Cada entidade corresponde a um arquivo .vhd de mesmo nome

- Architecture Comportamental + estrutural
 - Estrutura da descrição
 - Criar package CORDIC_pkg contendo a definição de uma record com todos sinais de controle do ControlPath para o DataPath

- Architecture Comportamental + estrutural
 - DataPath (DataPath.vhd)
 - □ Estrutural + comportamental
 - Registradores devem ser instâncias do registrador genérico RegisterNbits (RegisterNbits.vhd)

- Architecture Comportamental + estrutural
 - ControlPath (ControlPath.vhd)
 - □ Totalmente comportamental
 - ☐ Registrador de estados + circuitos de saídas e próximo estado

- Architecture Comportamental + estrutural
 - CORDIC (CORDIC.vhd)
 - □ Totalmente estrutural (ligação entre *DataPath* e *ControlPath*)
 - ☐ Utilizar a *record* definida no CORDIC_pkg na conexão dos blocos

- Architecture Totalmente comportamental
 - CORDIC (CORDIC.vhd)
 - □ Totalmente comportamental
 - Deve ser entregue o esquemático correspondente apenas ao data path da descrição implementada

- Memória (Memory.vhd)
 - Deve ter a mesma interface da memória ROM do Logisim com a adição de uma entrada de clock
 - A leitura deve ser síncrona
 - Deve estar habilitada (sel=1) apenas quando for utilizada
 - Quando sel=0 a saída deve ficar em alta impedância (Z)
 - Os barramentos devem ser parametrizáveis

- ☐ Memória (Memory.vhd)
 - A memória deve ser inicializada a partir de um arquivo texto
 - Será fornecida uma memória de exemplo contendo um procedimento que faz inicialização a partir de um arquivo
 - O arquivo deve ter o seguinte formato

- ☐ *Test bench* (CORDIC_tb.vhd)
 - Deve existir um único test bench no qual será instanciado as duas descrições do CORDIC e duas memórias
 - Os mesmos sinais de estímulos devem ser fornecidos aos dois processadores (clock, reset, angle...)
 - Na apresentação os dois devem ser simulados simultaneamente a fim de comparar o desempenho

- ☐ Será fornecido um processador que implementa o algoritmo BubbleSort, o qual apresenta algumas características em comum com o trabalho a ser feito
- □ A memória de exemplo é a deste projeto

