ĐẠI HỌC QUỐC GIA TP. HỒ CHÍ MINH TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN KHOA KỸ THUẬT MÁY TÍNH

BÁO CÁO MÔN HỌC THỰC HÀNH THIẾT KẾ LUẬN LÝ SỐ LAB 03 – THIẾT KẾ ASIC CE118.L21.2

GIẢNG VIÊN HƯỚNG DẪN: TRẦN ĐẠI DƯƠNG

SINH VIÊN THỰC HIỆN: ĐÀO CÔNG NHẬT TÂN - 19522168

TP. HÒ CHÍ MINH, 05/2021

MỤC LỤC

I. Thiết kế khối dữ liệu	1
1. Thiết kế Mux2_16Bit	1
2. Thiết kế Register File	3
3. Thiết kế ALU	3
4. Thiết kế Barrel Shifter	8
5. Thiết kế khối đọc Output Register 16 Bit	10
II. Thiết kế khối điều khiển	10
1. Khối Next State	10
2. Khối Current State	11
3. Khối Output Controll Word	
4. Thiết kế ASIC tính tổng: D3*I3 – D2*I2 + D1*I1 – D0*I0	15
4.1. Khối điều khiển	
4.2. Khối dữ liệu	15
5. Khối ASIC	
III. Hiện thực thiết kế ASIC với D3D2D1D0 là 4 số cuối MSSV: 2168	
1. Các bước giải quyết bài toán	
2. Kết quả mô phỏng thiết kế	

DANH MỤC HÌNH VỄ

Hình 1 - Mux2_16Bit	1
Hình 2 - Mux2_8Bit	2
Hình 3 - Mux2to1	3
Hình 4 - Register File	3
Hình 5 - Full Adder	4
Hình 6 - ACong B 16 bit	5
Hình 7 - ACong1 _16bit	5
Hình 8 - ATruB_16bit	5
Hình 9 - Atru1_16bit	5
Hình 10 - Khối LU 16 bit	6
Hình 11 - AANDB 16 bit	6
Hình 12 - AORB 16 bit	6
Hình 13 - NOTA 16bit	7
Hình 14 - AXORB 16bit	7
Hình 15 - Mux4 16 bit	7
Hình 16 - ALU 16bit	8
Hình 17 - Barrel Shifter	9
Hình 18 - Read Output 16bit	10
Hình 19 - Trạng thái kế tiếp	11
Hình 20 - Trạng thái hiện tại	12
Hình 21 - Mạch khối Control Word	14
Hình 22 - Khối điều khiển	15
Hình 23 - Khối dữ liệu	15
Hình 24 - Khối ASIC tính tổng D3I3 - D2I2 + D1I1 - D0I0	16
Hình 25 - Mô phỏng thiết kế	17

DANH MỤC BẢNG BIỂU

Bång 1 – Bång trạng thái Full Adder	4
Bảng 2 - Bảng chân trị TTKT	10
Bång 3 - Khối Control Word	12
Bảng 4 - Mã hóa trang thái Control Word	13

I. Thiết kế khối dữ liệu

1. Thiết kế Mux2_16Bit

Mux2_16Bit được thiết kế từ Mux2_8Bit

Hình 1 - Mux2_16Bit

Mux2_8Bit được thiết kế từ Mux2_1Bit

Hình 2 - Mux2_8Bit

Thiết kế Mux2_1Bit

Hình 3 - Mux2to1

2. Thiết kế Register File

Thiết kế Register File 8x16

Theo slide lý thuyết với:

- +3 bộ giải mã địa chỉ: 1 để đọc và 2 để ghi
- +8x16: 8 thanh ghi 16 bit gồm 2 địa chỉ read và 1 địa chỉ write
- +Input 16 bit và output 16 bit
- +Read Enable và Write Enable

Hình 4 - Register File

3. Thiết kế ALU

Khối ALU 16 bit gồm 8 chức năng chia làm 2 khối AU và LU

+ AU: A + B, A + 1, A - B, A - 1

+ LU: A AND B, A OR B, NOT A, A XOR B

Bộ AU:

Thiết kế Full Adder A + B:

Bảng 1 – Bảng trạng thái Full Adder

Cin	A	В	S	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Hình 5 - Full Adder

 $S = Cin \land (A \land B)$

 $Cout = A.B + Cin(A^B)$

Thiết kế A + B 16 bit từ Full Adder 1 bit:

Hình 6 - ACong B 16 bit

Thiết kế A + 1 từ bộ A + B (Cho B = 1):

Hình 7 - ACong1 _16bit

Thiết kế A - B từ A - B 1 bit (A - B 1 bit chính là khối Full Adder 1 bit với B = -B):

Hình 8 - ATruB_16bit

Thiết kế A-1 từ Bộ A-B (cho B=1):

Hình 9 - Atru1_16bit

Bộ LU:

Hình 10 - Khối LU 16 bit

Thiết kế AND2 16 Bit:

Hình 11 - AANDB 16 bit

Thiết kế OR2 16 Bit:

Hình 12 - AORB 16 bit

Thiết kế NOT 16 Bit:

Hình 13 - NOTA 16bit

Thiết kế XOR 16 Bit:

Hình 14 - AXORB 16bit

Thiết kế Mux4 16 Bit dùng để chọn 1 phép toán trong 8 phép toán ALU:

Hình 15 - Mux4 16 bit

Kết hợp khối AU, LU và Mux4_16Bit ta được khối ALU 16 Bit:

Hình 16 - ALU 16bit

4. Thiết kế Barrel Shifter

Thiết kế Barrel Shifter bằng cách ghép các khối Mux2to1 với nhau Barrel Shifter dịch trái tối đa 7bit với số bit dịch đưa vào S[2..0]

Hình 17 - Barrel Shifter

5. Thiết kế khối đọc Output Register 16 Bit

Thiết kế gồm 16 D-FF và các cổng TRI

Khi đọc địa chỉ, tín hiệu OE bật lên 1 thì Output tương ứng sẽ được xuất ra

Hình 18 - Read Output 16bit

II. Thiết kế khối điều khiển

Khối điều khiển là một máy trạng thái hữu hạn (đã học ở Lab2). Trong bài thiết kế dùng Moore FSM gồm 3 khối chính: Next State, Current State và Control Word (Output)

1. Khối Next State

Thiết kế tương tự như bộ đếm lên 1 đơn vị

Q3	Q2	Q1	Q0	D3	D2	D1	D0
0	0	0	0	0	0	0	1
0	0	0	1	0	0	1	0
0	0	1	0	0	0	1	1
0	0	1	1	0	1	0	0
0	1	0	0	0	1	0	1
0	1	0	1	0	1	1	0
0	1	1	0	0	1	1	1
0	1	1	1	1	0	0	0
1	0	0	0	1	0	0	1
1	0	0	1	1	0	1	0
1	0	1	0	1	0	1	1
1	0	1	1	1	1	0	0
1	1	0	0	1	1	0	1
1	1	0	1	0	0	0	0
1	1	1	0	0	0	0	0
1	1	1	1	0	0	0	0

Bảng 2 - Bảng chân trị TTKT

$$\begin{split} D3 &= Q3.Q2' + Q3.Q1'.Q0' + Q3'.Q2.Q1.Q0 \\ D2 &= Q2.Q1'.Q0' + Q3'.Q2.Q1' + Q2'.Q1.Q0 + Q3'.Q2.Q0' \\ D1 &= (Q3' + Q2') \ . \ (Q1 \land Q0 \) \\ D0 &= Q0'. \ (Q3' + Q2' + Q1' \) \end{split}$$

Hình 19 - Trạng thái kế tiếp

2. Khối Current State

Gồm 4 Dff liên kết với nhau tạo ra trạng thái hiện tại, đầu ra đưa vào khối Control Word

Hình 20 - Trạng thái hiện tại

3. Khối Output Controll Word

Khối ngõ ra Controll Word

Bảng 3 - Khối Control Word

	Cho	Địa chỉ ghi	Địa chỉ	Địa chỉ	Thao tác	Dịch	Cho phép
	phép	(WE, WA)	đọc A	đọc B	ALU	trái	xuất
	nhập		(REA,	(REB,	(OPCODE	(Shift)	(OE)
	(IE)		RAA)	RAB)			
0	0	None	X	X	X	X	0
1	1	Data0	X	X	X	X	0
2	1	Data1	X	X	X	X	0
3	1	Data2	X	X	X	X	0
4	1	Data3	X	X	X	X	0
5	0	Data0	Data0	Data0	&	3	0
6	0	Temp	Data1	Data1	+	0	0
7	0	Data1	Data1	Data1	&	2	0
8	0	Data1	Data1	Temp	+	0	0
9	0	Data3	Data3	Data3	+	0	0
10	0	Sum	Data3	Data1	+	0	0
11	0	Temp	Data2	Data0	+	0	0
12	0	Sum	Sum	Temp	-	0	0
13	0	Out	Sum	Sum	&	0	1

Mã hóa trang thái

Bảng 4 - Mã hóa trạng thái Control Word

Mã h	nóa TT	TT		Ngõ ra									
		KT	ΙE	WE	WA	RE1	RA1	RE2	RA2	OP	S	OE	WK
					[20]		[20]		[20]	CODE	[10]		
S0	0000	S 1	0	X	X	X	X	X	X	X	X	0	0
S 1	0001	S2	1	1	000	0	000	0	000	000	00	0	1
S2	0010	S 3	1	1	001	0	000	0	000	000	00	0	1
S3	0011	S4	1	1	010	0	000	0	000	000	00	0	1
S4	0100	S5	1	1	011	0	000	0	000	000	00	0	1
S5	0101	S 6	0	1	000	1	000	1	000	100	11	0	0
S 6	0110	S7	0	1	100	1	001	1	001	000	00	0	0
S7	0111	S 8	0	1	001	1	001	1	001	100	10	0	0
S 8	1000	S 9	0	1	001	1	100	1	001	000	00	0	0
S 9	1001	S10	0	1	011	1	011	1	011	000	00	0	0
S10	1010	S11	0	1	101	1	011	1	001	000	00	0	0
S11	1011	S12	0	1	100	1	010	1	000	000	00	0	0
S12	1100	S13	0	1	101	1	101	1	100	010	00	0	0
S13	1101	S 0	0	0	000	1	101	1	101	100	00	1	1

Rút gọn:

IE = Q3'.Q2.Q1'.Q0' + Q3'.Q2'.(Q1 + Q0)

WE = Q3' + Q2' + (Q1', Q0')

WA[2] = Q3Q2Q1'Q0' + Q3'Q2Q1Q0' + Q3Q2'Q1

WA[1] = Q3'Q1'Q0' + Q3Q2'Q1'Q0 + Q3'Q2'Q1Q0

WA[0] = Q1'Q0' + Q3Q2'Q1' + Q2'Q0' + Q3'Q2Q1Q0

RE1 = Q3.Q1' + Q3.Q2' + Q2.Q1'.Q0 + Q3'.Q2.Q1 = RE2

RA1[2] = Q2'Q1'Q0' + Q3Q2Q1'

RA1[1] = Q3Q2'Q0 + Q3Q2'Q1 = Q3Q2'(Q0 + Q1)

RA1[0] = Q3Q2Q1' + Q3Q1'Q0 + Q3'Q2Q1 + Q3Q2'Q1Q0'

RA2[2] = Q3Q2Q1'

RA2[1] = Q3Q2'Q1'Q0

RA2[0] = Q3Q2'Q0' + Q3Q1'Q0 + Q3'Q2Q1

OPCODE[2] = Q2Q1'Q0 + Q3'Q2Q0

OPCODE[1] = Q3Q2Q1'Q0'

OPCODE[0] = 0

S[1] = Q3'Q2Q0

S[0] = Q3'Q2Q1'Q0

OE = Q3.Q2.Q1'.Q0

WK = Q3'.Q2.Q1'.Q0' + Q3.Q2.Q1'.Q0 + Q3'.Q2'. (Q1 + Q0)

Hình 21 - Mạch khối Control Word

4. Thiết kế ASIC tính tổng: D3*I3 - D2*I2 + D1*I1 - D0*I0

4.1. Khối điều khiển

Hình 22 - Khối điều khiển

4.2. Khối dữ liệu

Hình 23 - Khối dữ liệu

5. Khối ASIC

Hình 24 - Khối ASIC tính tổng D3I3 - D2I2 + D1I1 - D0I0

III. Hiện thực thiết kế ASIC với D3D2D1D0 là 4 số cuối MSSV: 2168

1. Các bước giải quyết bài toán

 $Data0 \le I_0$

 $Data1 \le I_1$

 $Data2 <= I_2$

Data $3 \le I_3$

Data0 <= Data0 & Data0 << 3

Temp <= Data1 + Data1

Data1 <= Data1 & Data1 << 2

Data1 <= Temp + Data1

Data3 <= Data3 + Data3

Sum <= Data3 + Data1

Temp <= Data2 + Data0

 $Sum \le Sum - Temp$

Out <= Sum & Sum

2. Kết quả mô phỏng thiết kế

Hình 25 - Mô phỏng thiết kế