

Avaliação de diferentes implementações do sistema de criptografia RSA

Ana Carla Quallio Rosa¹, Rodrigo Campiolo¹ ¹Universidade Tecnológica Federal do Paraná (UTFPR)

Introdução

- Os sistemas de criptografia tornam-se essenciais;
- Algoritmo RSA: amplamente adotado no contexto de criptografia assimétrica.

Objetivo principal

O objetivo principal deste trabalho é conduzir uma avaliação das implementações do RSA.

Objetivos específicos

Comparação do RSA para diferentes APIs Avaliar a eficiência de ajustes no processo matemático

Analisar
estruturas de
dados de
armazenamento

Trabalhos relacionados

Abordagem	Autores Proposta do trabal		
Algoritmos híbridos	Gupta e Sharma (2012)	RSA e sistema Diffie-Hellman	
	Jintcharadze e lavich (2020)	RSA e ElGamal	
Alterações matemáticas	Islam et al. (2018)	Generalização do RSA para <i>n</i> primos	
Desempenho	Singh <i>et al</i> . (2016)	RSA vs. curvas elípticas	

Método de pesquisa

Seleção de linguagens/bibliotecas e implementação do RSA

Comparação de desempenho entre as implementações

Interpretação dos resultados

Implementação do algoritmo com base nas documentações de cada biblioteca.

Linguagens e bibliotecas selecionadas

- C: OpenSSL e Libgcrypt;
- C++: Crypto++e Botan;
- Java: Bouncy Castle;
- Python: Cryptography e PyCryptodome;
- Rust: rust-crypto e ring;

Avaliação preliminar

Linguagem selecionada	Python (Cryptography e Pycryptodome)	
	Processador: AMD Ryzen 5 (64 bit)	
Contexto de avaliação	Memória RAM: 12 GB	
	Sistema Operacional: Debian 12 (64 bit)	
	Ambiente Gráfico: GNOME	
Comparação Pytest e versão sem ferramenta		
Tamanho da mensagem	190 bytes	

Resultados preliminares

Tamanho da chave	Biblioteca	Tempo médio (s)	Desvio padrão	Mediana
2048	Cryptography	0,16251	0,08277	0,13970
	Pycryptodome	0,42374	0,22434	0,41536
4096	Cryptography	1,04163	0,59759	0,86004
	Pycryptodome	5,21896	4,39681	4,41156

Geração de chaves

Resultados preliminares

Cenário de execução

Resultados preliminares

Cenário de execução

Decifração

Considerações

Diferenças significativas entre as implementações do algoritmo neste contexto de avaliação.

Próximos passos

- Explorar outras linguagens de programação e abordagens;
- Identificar questões de desempenho e oportunidades de otimização;
- Avaliar os possíveis impactos na segurança.

Obrigada!

- Ana Carla Quallio Rosa
 (anacarlarosa@alunos.utfpr.edu.br)
- Rodrigo Campiolo
 (rcampiolo@utfpr.edu.br).

Acesse o repositório por meio do QR Code