

proof of Lebesgue number lemma

 ${\bf Canonical\ name} \quad {\bf ProofOfLebesgueNumberLemma}$

Date of creation 2013-03-22 13:09:20 Last modified on 2013-03-22 13:09:20

Owner scanez (1021) Last modified by scanez (1021)

Numerical id 7

Author scanez (1021)

Entry type Proof

Classification msc 54E45

By way of contradiction, suppose that no Lebesgue number existed. Then there exists an open cover \mathcal{U} of X such that for all $\delta > 0$ there exists an $x \in X$ such that no $U \in \mathcal{U}$ contains $B_{\delta}(x)$ (the open ball of radius δ around x). Specifically, for each $n \in \mathbb{N}$, since 1/n > 0 we can choose an $x_n \in X$ such that no $U \in \mathcal{U}$ contains $B_{1/n}(x_n)$. Now, X is compact so there exists a subsequence (x_{n_k}) of the sequence of points (x_n) that converges to some $y \in X$. Also, \mathcal{U} being an open cover of X implies that there exists $\lambda > 0$ and $U \in \mathcal{U}$ such that $B_{\lambda}(y) \subseteq U$. Since the sequence (x_{n_k}) converges to y, for k large enough it is true that $d(x_{n_k}, y) < \lambda/2$ (d is the metric on X) and $1/n_k < \lambda/2$. Thus after an application of the triangle inequality, it follows that

$$B_{1/n_k}(x_{n_k}) \subseteq B_{\lambda}(y) \subseteq U,$$

contradicting the assumption that no $U \in \mathcal{U}$ contains $B_{1/n}(x_n)$. Hence a Lebesgue number for \mathcal{U} does exist.