

Outline

Or: What can you expect today?

- Brief demonstration of the SDH
 - Watch the hand "in action"
- Presentation of technical features
 - Mechanical structure
 - Electronical structure
- Presentation of software
 - Overall Structure
 - Practical training
 - Integration into the customers system
- Outlook what's next
 - Future features

If you have questions: feel free to ask - any time!

Technical features

Or: Where to get more detailed information?

- Mechanical features
 - Data sheet
 - Tactile sensor system: <u>Sensor</u>, <u>Controller</u>
- Electrical features
 - <u>Common wiring</u> & wiring of the wooden <u>test board</u>
 - Components: see next slides
- Software features
 - Controller structure
 - Communication structure
 - SDHLibrary CD

SDH components

Or: What's inside that thing?

Control

External communication

Joint control

Absolute angle encoders

Tactile sensor system

Tactile sensor system

Each finger has 2 tactile sensor arrays

- Force (pressure-) and position resolving, modular measuring system
- 6x13 respectively 6x14 Texel
- 3.4 mm spatial resolution
- 250 kPa pressure measuring range
- Easily exchangeable

integrated tactile sensor controller DSACON32m

Sensor system: Weiss Robotics

Internal diagnosis bus

Overview

Software

Or: What do you need to operate that thing via C++?

Software

Or: What do you need to operate that thing via Python?

Communication

SCHUNK •

Or: How to talk to that thing – now and in the future

SDH configurable communication structure

Current configuration options:

configuration		tactile sensor commands and feedback
Α	RS232 channel 0	RS232 channel 1
В	CAN	RS232 channel 0
С	CAN	RS232 channel 1

Possible future configuration options:

configuration		tactile sensor commands and feedback
A	RS232 channel 0	RS232 channel 1
В	CAN	RS232 channel 0
С	CAN	RS232 channel 1
D	RS232 channel 0	RS232 channel 0
E	RS232 channel 1	RS232 channel 1
F	CAN	CAN
G	Ethernet	Ethernet

Practical training

Or: What can you do with that thing?

Basic tasks:

- Mechanical and electrical connection
- Predefined demo programs
- Compile your own programs

Advanced features:

- Recalibration of the joints (PDF)
- Firmware update procedure (PDF)
- Want to take a look inside?
 - Easy exchange of expendable parts
 - Fuse
 - Battery
 - Tactile sensors (PDF)
 - Assembly/disassembly instructions (avialable on request) (PDF)

Applications and customers

Or: Who else needs something like this?

Until now the SDH2 has bin used mainly in **research**, e.g. in the area of **service robotics**. Among the customers are:

- University of Wales, Aborystwyth (GB)
- IPA Fraunhofer Institut, Stuttgart (D)
- IBMT Fraunhofer Institut, Potsdam (D)
- RWTH Aachen (D)
- RoboCluster Forschungsinitiative (Dk)
- KTH University of Stockholm (S)
- SIR Soluzioni Industriali Robotizzate, Modena (I)
- Honda Research (D)
- FANUC Robotics (Jp)
- University of Edinburgh (GB)
- Google (USA)
- University of Georgia, Georgia Tech (USA)
- Karlsruher Institut f
 ür Technologie, KIT (D)
- Astrium, ESA-European Space Agency (NL)
- Universitat Politècnica de Catalunya UPC, Barcelona (E)
- Baumann Universität, Dimitrov (RU)

Mobile Plattform: Neobotix Arm: SCHUNK LWA

Hand: SCHUNK SDH

Outlook

Or: What to expect for the future?

- The potential of the SDH is not fully exploited yet!
 - Space is left for further tasks in the reprogrammable hardware (FPGA)!
 - There is still memory space and computing time available in the firmware for further duties!
- Possible future features:
 - Common communication for movement and sensor data
 - Use of the advanced communication protocol common to other SCHUNK products (SMP)
 - Extending the joint controllers
 - Direct usage of tactile sensor data for joint control
 - Execution of "grasp-skills" within the hand
- The development is going on
 - Feedback from customers is welcome (and is respected and taken into account!)
 - Support for customers is as a matter of course

Feedback

Or: What do you think?

What was the training like from your point of view?

- Was it like what you expected?

- Was it all too detailed / giving too much information?

- Has it been incomplete / insufficient in some area?

- Is something still missing?

- Any further suggestions?

- Finally: Thank you for your attention!

