SEMAINE DU 10/10 AU 14/10

1 Cours

Notion d'application

Définitions Ensembles d'arrivée et de départ, graphe, image.

Composition Définition, associativité, application identité.

Injectivité Définition. Composition et injectivité.

Surjectivité Définition. Composition et surjectivité.

Bijectivité Définition. Bijection réciproque. Si $f: E \to F$ et $g: F \to G$ sont bijectives, alors $g \circ f$ est bijective et $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$. $f: E \to F$ est bijective si et seulement si il existe $g: F \to E$ telle que $g \circ f = \operatorname{Id}_E$ et $f \circ g = \operatorname{Id}_F$ et dans ce cas, $f^{-1} = g$.

Image directe et réciproque Définitions. Image directe et réciproque d'une union, d'une intersection.

Restriction et prolongement Définitions. Bijection induite.

2 Cours

Fonctions d'une variable réelle

Généralités Ensemble de définition. Représentation graphique. Fonctions associées $(x \mapsto f(x) + a, x \mapsto f(x+a), x \mapsto \lambda f(x), x \mapsto f\left(\frac{x}{\lambda}\right), x \mapsto a - f(x)$ et $x \mapsto f(x-a)$). Parité, périodicité. Monotonie. Fonctions majorées, minorées, bornées. Minimum et maximum d'une fonction.

Continuité Théorème des valeurs intermédiaires et son corollaire pour les fonctions strictement monotones. Théorème de la bijection.

3 Méthodes à maîtriser

- ▶ Savoir prouver l'injectivité en pratique : « Soit (x, x') tel que $f(x) = f(x') \dots$ ».
- ▶ Savoir prouver la surjectivité en pratique : recherche d'un antécédent (résolution d'une équation).
- ► Savoir prouver la bijectivité en pratique :
 - Existence et unicité d'une solution de l'équation y = f(x) où y est fixé et x est l'inconnue.
 - Déterminer q telle que $q \circ f = Id$ et $f \circ q = Id$.
 - Montrer que f est injective et surjective.
- ► Automatismes :
 - $--y \in f(A) \iff \exists x \in A, \ y = f(x)$
 - $-x \in f^{-1}(B) \iff f(x) \in B$
- ▶ Majorer, minorer, borner (majorer en valeur absolue) une fonction.
- ► Savoir déterminer le minimum ou le maximum éventuel d'une fonction par une étude de cette fonction.
- ▶ Déterminer le sens de variation d'une composée sans forcément calculer la dérivée.
- ▶ Justifier la continuité d'une composée.

4 Questions de cours

- ▶ Soit $f: E \to F$. Montrer que pour $(A, B) \in \mathcal{P}(E)^2$, $f(A \cup B) = f(A) \cup f(B)$ et que $f(A \cap B) \subset f(A) \cap f(B)$. Donner un contre-exemple montrant que l'inclusion réciproque est fausse en général.
- $\blacktriangleright \text{ Soit } f: E \to F. \text{ Montrer que pour } (A,B) \in \mathcal{P}(F)^2, f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B) \text{ et que } f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B).$
- ▶ Soit $f: E \to F$. Montrer que pour $A \in \mathcal{P}(E)$, $A \subset f^{-1}(f(A))$ puis montrer que f est injective \mathbf{si} et seulement \mathbf{si} $\forall A \in \mathcal{P}(E)$, $f^{-1}(f(A)) = A$.
- ▶ Soit $f: E \to F$. Montrer que pour $B \in \mathcal{P}(F)$, $f(f^{-1}(B)) \subset B$. Montrer que f est surjective \mathbf{si} et seulement \mathbf{si} $\forall B \in \mathcal{P}(F)$, $f(f^{-1}(B)) = B$.
- ▶ Soit $f: A \to \mathbb{R}$ où A est une partie de \mathbb{R} . Montrer que f est bornée sur A si et seulement si |f| est majorée sur A.