${\bf Cryptography-Question naire}~{\bf 1}$

Name:
Matr.:
"One-liners"
Exercise 1.1 2H
Let k be a positive integer and let $K_1 := \{0, 1, 2, 3\}^k$ and $K_2 := \{A \mid A \subseteq \{1,, k\}, A = 5\}$. Give closed-form expression for $ K_1 $ and $ K_2 $.
Answer:
Exercise 1.2
Often, encryption schemes (ES) are based on block ciphers which can only process inputs of a fixed size l (called the block length). If we want to process messages $m \in \{0,1\}^*$ of arbitrary length, we need to pad the message to a multiple of l in suitable way. Briefly describe one possible way to do so. (We want to be able to recover m in the end!)
Answer:
Exercise 1.3
Briefly state the meaning of the sufficient keyspace principle:
Answer:
Exercise 1.4 2I
Name a major disadvantage of publice-key schemes compared to private-key schemes.
Answer:
<u>Exercise 1.5</u> 2H
Name one ES from the lecture that satisfies $Enc_k = Dec_k$ for a given key k .
Answer:

Cryptography – Questionnaire 2

Name:				
Matr.:				
m "One/Two-liners"-5P				
Exercise 2.1				2
How many injective functions $f: \{0,1\}^n \to \{0,1\}^{2n}$ are there? Give a closed-form	n express	sion!		
Answer:				
Exercise 2.2				1
State the name of a computationally secret fixed-length ES such that every PPT-algorithms c , tries to compute the parity of the original message m , succeeds with probable $ x_1 \ldots x_n \in \{0,1\}^n$ is just the xor of all bits $\bigoplus_i x_i$				
Answer:				
Exercise 2.3				2
Let $f: \{0,1\}^n \to \{0,1\}^n$ be a DPT-computable function such that f is a permuta	tion on {	$[0,1]^n$ for	or all n .	
Show that $G: \{0,1\}^n \to \{0,1\}^{2n}$ with $G(x) = f(x) x \oplus f(x) $ is never a PRG of sta PPT distinguisher, and (roughly) estimate its success probability.	retch $l(n$)=2n.	To this end	l, <u>briefly</u> descri
Questions—1P each = $5P$				
	true	false		
$f \colon \mathbb{N} \to \mathbb{R}$ is negligible with $f(n) := \begin{cases} \frac{1}{2^n} & \text{if } n \text{ is even,} \\ \frac{1}{\log_2(n)} & \text{otherwise.} \end{cases}$.				
Let $f: \mathbb{N} \to \mathbb{N}$ and $g: \mathbb{N} \to \mathbb{N}$. If $(f \circ g)$ is negligible, then f and g are both negligible.				
If $\varepsilon : \mathbb{N} \to \mathbb{R}^+$ is negligible, then $f : \mathbb{N} \to \mathbb{R}^+$ with $f(n) := \varepsilon(\lceil \log n \rceil)$ is also negligible.				

Let $\mathcal{E} = (\text{Gen}, \text{Enc}, \text{Dec})$ be a computationally secret fixed-length PPT-ES. Every PPT-algorithm \mathcal{A} , which, on input 1^n and ciphertext c, tries to compute the parity of the original message m, succeeds with probability exactly

There exists a PRG G with strech l(n) > n such that $\Pr\left[\mathsf{Win}_{n,G}^{\mathsf{IndPRG}}(\mathcal{D})\right] = \frac{1}{2}$ for every probabilistic exponential time distinguisher \mathcal{D} and all $n \in \mathbb{N}$.

1/2.

Cryptography – Questionnaire 3

Name:	
Matr.:	

"One-liners"

Exercise 3.1 Feistel-Networks

1P+1P+1P = 3P

Consider the two-round Feistel-Network drawn below, with $f_1, f_2 : \{0, 1\}^n \to \{0, 1\}^n$.

- (a) Compute the outputs y_1, y_2 of the network for $x_1 = 0^n$ and $x_2 = 0^n$ Answer:
- (b) Compute the outputs y_1, y_2 of the network for $x_1 = 0^n$ and $x_2 = f_1(0^n)$ Answer:
- (c) Does the two-round Feistel-Network realize a PRP if used with two PRFs f_{k_1}, f_{k_2} ? Why/why not? Answer:

Exercise 3.2 PRG from PRF

2P

Let F be a PRF with $l_{in}(n) = l_{out}(n) = n$. Construct from F a PRG G of stretch 2n.

Answer: G(k) :=

Questions– 1P each = 5P

	true	false
Let F be a PRP, F -rCBC is computationally secret.		
Let G be a PRG of stretch $s \cdot n$, then $F_k : \{0,1\}^{sn} \to \{0,1\}^{sn}$ defined by $F_k(x) = G(k) \oplus x$ is a PRF.		
Let F be a PRF of block length $l(n) = n$. We define \widetilde{F} for every $n \in \mathbb{N}$, $k \in \{0,1\}^n$ and $x_1 \dots x_{2n} \in \{0,1\}^{2n}$ by using F in a one-round Feistel-network: $\widetilde{F}_k(x_1 \dots x_{2n}) = FN_{F_k}(x_1 \dots x_n, x_{n+1} \dots x_{2n}).$ \widetilde{F} is a PRP of block length $2n$.		
Let RO be a random function oracle of input and output length n . Then $G(k) := RO(k) RO(k)$ is a PRG of stretch $2n$.		
Let F be a PRF. Then F -rCTR is CCA-secure.		

Cryptography – Questionnaire 4

Name:	
Matr.:	

"One-liners" -1+2+4=7P

Exercise 4.1

Let F be a PRP. How do you obtain a PRF from F? Answer:

Exercise 4.2

Let F be a PRP. Sketch graphically the computation of F-NMAC.

Exercise 4.3 2P+2P

Let F be a PRF with block length l(n) = n. Consider the following two MAC schemes where in both cases $\mathsf{Gen}(1^n)$ outputs $k \in \{0,1\}^n$ and $\mathsf{Vrf}_k(t,m)$ outputs 1 iff $\mathsf{Mac}_k(m) = t$. The message space is $(\{0,1\}^n)^+$. We can write every message m as $m = m^{(1)}||\cdots||m^{(|m|/n)}|$ with $m^{(i)} \in \{0,1\}^n$ for $1 \le i \le |m|/n$. Show for each of the following two choices of Mac_k how Eve can use her oracle access to Mac_k to forge a tag for the message 0^n0^n in the MAC-experiment:

- (a) $\operatorname{\mathsf{Mac}}_k(m) := F_k(m^{(1)}) \oplus \cdots \oplus F_k(m^{(|m|/n)})$ Answer:
- (b) $\operatorname{\mathsf{Mac}}_k(m) := F_k^*(m)$ <u>Answer:</u>

Recall that $F_k^*(m)$ for $m = m^{(1)} || \cdots || m^{(d)}$ is the "cascading-construction" defined by the algorithm:

- Set $k^{(0)} := k$
- For i = 1 to d: set $k^{(i)} := F_{k^{(i-1)}}(m^{(i)})$.
- Output $F_k^*(m) := k^{(d)}$

Questions-1P each = 3P

	true	false
Let F be a PRP of block length n . Define an ES $\mathcal{E} = (Gen, Enc, Dec)$		
with $Gen(1^n)$ choosing a key k uniformly at random from $\{0,1\}^n$ and $Enc_k(x_1\ldots x_{2n})=F_k(x_1\ldots x_n) F_k(x_{n+1}\ldots x_{2n})$. $\mathcal E$ is CPA-secure.		
Let F be a PRP. Then there is a PPT adversary which can distinguish F from a random-permutation-oracle with non-zero advantage.		
Let F be a PRF. F -rCTR Mode, i.e. $Mac_k(m) := ctr m^{(1)} \oplus F_k([ctr+1]) \dots m^{(t)} \oplus F_k([ctr+t]) $ yields a secure MAC.		

${\bf Cryptography-Question naire}~{\bf 5}$

Name:	
Matr.:	

Questions -1P each =4P

	true	false
\mathbb{Z}_{35}^* is cyclic.		
There exists a prime p such that $\lambda(2 \cdot p^k) < \varphi(2 \cdot p^k)$ for some $k > 0$.		
Every cyclic group is commutative.		
Let G be cyclic and $H \leq G$ be a subgroup of G. Then H is cyclic as well.		

"One-liners" - 2P each = 6P

Exercise 5.1

- When is a prime p a "safe prime"?
- Let p be a safe prime. Compute $\varphi(p-1)$.

Answer:

Exercise 5.2

Compute 3^{158} in Z_{53}^* . Answer:

Exercise 5.3

How many generators does \mathbb{Z}_{47}^* have? ($\mathit{Hint}\colon 47$ is prime) Answer:

$Cryptography-Question naire\ 6$

Name:	
Matr.:	

Questions– 1P each= 5P

	true	false
If RSA (i.e. $f(x) = x^e \mod N$ with modulus $N = pq$) is an OWF then		
computing a $z < N$ with $gcd(z, N) > 1$ has to be hard.		
Let $f: \mathbb{Z}_{77}^* \to \mathbb{Z}_{77}^*$ with $f(x) = x^{13} \mod 77$ and $g: \mathbb{Z}_{77}^* \to \mathbb{Z}_{77}^*$ with $g(x) = x^{13} \mod 77$		
$x^{43} \mod 77$. Then f and g define the same map.		
If OWP with hard-core predicate exist then PRGs of variable stretch exist.		
If $\mathcal{P} = \mathcal{NP}$ then there are no CPA-secure ES.		
OWF exist if and only if CCA-secure ES exist.		

"One-liners" -2P+2P+1P = 5P

Exercise 6.1

Compute the least positive integer d such that $g(x) := x^d \mod (5 \cdot 17)$ is the inverse of $f(x) := x^3 \mod (5 \cdot 17)$. Answer:

Exercise 6.2 2P

Show (i.e. sketch the argument briefly) that $f_n: \{0,1\}^{42} \times \{0,1\}^n \to \{0,1\}^{(n+44)}$ defined as $f(x,y) = (x||0) \cdot (y||1)$ is not an OWF (the multiplication \cdot is to be interpreted in $Z_{2^{(n+44)}}^*$). Answer:

Exercise 6.3

How many solutions does the quadratic equation $X^2 \equiv 1 \mod 51$ have? (*Hint*: $51 = 3 \cdot 17$) Answer:

Name:

2P

$Cryptography-Question naire\ 6$

Matr.:			
Questions			
	true	false	
OWF exist if and only if CCA-secure ES exist.			
RSA "works" for $N=35$ and $e=3$, i.e. $x\mapsto x^e \mod N$ is a permutation (in particular: invertible).			
The ElGamal-PKES is CCA-secure.			
If DDH is hard w.r.t. $Gen\mathbb{G}_cyc$ then ElGamal based on $Gen\mathbb{G}_cyc$ is CPA-secure.			
$"({ m One} { m two}) ext{-liners"}$			
Exercise 6.1			2P
Briefly state why the DDH over \mathbb{Z}_p^* (p prime) is not hard. Answer:			
Exercise 6.2			2P
Suppose Bob's public ElGamal key is $(\mathbb{G}, q, g, h_b) = (\mathbb{Z}_{17}^*, 16, 6, 5)$. Alice wants to sthe ElGamal PKES. Compute the ciphertext $c = (c_1, c_2)$ that is sent to Bob assur Answer:	send him ning Alio	the me	ssage $m = 7$ encrypted using generated $a = 3$ as her secret.

Briefly state

Exercise 6.3

- why RSA-based PKES use a probabilistic padding scheme and
- $\bullet\,$ name one of these schemes used in practice.

Answer: