第3节空间向量的应用: 求距离 (★★★)

强化训练

- 1. $(2023 \cdot 山西模拟 \cdot \star \star \star \star)$ 如图,在四棱锥 P-ABCD 中,平面 $PAB \perp$ 平面 ABCD,底面 ABCD 为矩形, $PA=PB=\sqrt{5}$, AB=2 , AD=3 , M 是棱 AD 上一点,且 AM=2MD .
 - (1) 求点 B 到直线 PM 的距离;
 - (2) 求平面 PMB 与平面 PMC 的夹角余弦值.

 \mathbf{m} : (1) (条件中有平面 PAB 上平面 ABCD, 先找与交线 AB 垂直的直线,构造线面垂直,便于建系处理)

取 AB 中点 O,连接 OP,因为 $PA = PB = \sqrt{5}$, AB = 2 ,

所以
$$OP \perp AB$$
, 且 $OA = OB = 1$, $OP = \sqrt{PB^2 - OB^2} = 2$,

因为平面 $PAB \perp$ 平面 ABCD,平面 $PAB \cap$ 平面 ABCD = AB,

$$OP \subset$$
平面 PAB , $OP \perp AB$, 所以 $OP \perp$ 平面 $ABCD$,

建立如图所示的空间直角坐标系,则B(1,0,0),P(0,0,2),

因为AM = 2MD, AD = 3, 所以AM = 2, 故M(-1,2,0),

所以
$$\overrightarrow{BP} = (-1,0,2)$$
, $\overrightarrow{PM} = (-1,2,-2)$,

(算点到直线的距离要用直线的单位方向向量, 先求它)

直线
$$PM$$
 的一个单位方向向量为 $\mathbf{u} = \frac{\overrightarrow{PM}}{|\overrightarrow{PM}|} = (-\frac{1}{3}, \frac{2}{3}, -\frac{2}{3})$,

由内容提要第 1 点的公式,点 B 到直线 PM 的距离 $d=\sqrt{\overrightarrow{BP}^2-(\overrightarrow{BP}\cdot u)^2}=\sqrt{5-(-1)^2}=2$.

(2) C(1,3,0), 所以 $\overrightarrow{MC} = (2,1,0)$, 设平面 PMB, PMC 的法向量分别为 $m = (x_1,y_1,z_1)$, $n = (x_2,y_2,z_2)$,

$$\iiint \begin{cases} \mathbf{m} \cdot \overrightarrow{BP} = -x_1 + 2z_1 = 0 \\ \mathbf{m} \cdot \overrightarrow{PM} = -x_1 + 2y_1 - 2z_1 = 0 \end{cases}, \Leftrightarrow x_1 = 2, \quad \emptyset \begin{cases} y_1 = 2 \\ z_1 = 1 \end{cases},$$

所以平面 PMB 的一个法向量为 m = (2,2,1),

$$\begin{cases} \mathbf{n} \cdot \overrightarrow{PM} = -x_2 + 2y_2 - 2z_2 = 0 \\ \mathbf{n} \cdot \overrightarrow{MC} = 2x_2 + y_2 = 0 \end{cases}, \Leftrightarrow x_2 = 2, \text{ [I]} \begin{cases} y_2 = -4 \\ z_2 = -5 \end{cases},$$

所以平面 PMC 的一个法向量为 n = (2, -4, -5),

从而
$$|\cos \langle m, n \rangle| = \frac{|m \cdot n|}{|m| \cdot |n|} = \frac{\sqrt{5}}{5}$$

故平面 PMB 与平面 PMC 的夹角余弦值为 $\frac{\sqrt{5}}{5}$.

- 2. $(2022 ext{ •滕州模拟 •★★★})$ 如图,在三棱柱 $ABC A_1B_1C_1$ 中, $AA_1 \perp$ 平面 ABC, $AB \perp AC$, $AB = AC = AA_1 = 1$,M 为线段 A_1C_1 上一点.
 - (1) 求证: $BM \perp AB_1$;
 - (2) 若直线 AB_1 与平面 BCM 所成的角为 45° ,求点 A_1 到平面 BCM 的距离.

解: (1) (第 1 问能用几何法,只需证 $AB_1 \perp$ 面 A_1BM ,但考虑到图中有 3 条两两垂直的直线,故也可直接建系证明,这样有关点的坐标第(2)问可以接着用)

以 A 为原点建立如图所示的空间直角坐标系,

则 A(0,0,0), $B_1(1,0,1)$, B(1,0,0), 因为 M 在线段 A_1C_1 上运动,所以可设 M(0,a,1), 其中 $0 \le a \le 1$,

从而
$$\overrightarrow{AB_1} = (1,0,1)$$
, $\overrightarrow{BM} = (-1,a,1)$,

故 $\overline{AB_1} \cdot \overline{BM} = 1 \times (-1) + 0 \times a + 1 \times 1 = 0$, 所以 $BM \perp AB_1$.

(2)(给出了 AB_1 与平面BCM所成的角,可由向量法求出该线面角的余弦值,从而建立方程,求得M的坐标)

由图可知
$$C(0,1,0)$$
, $\overrightarrow{BC}=(-1,1,0)$, 设平面 BCM 的法向量为 $\boldsymbol{n}=(x,y,z)$, 则 $\begin{cases} \boldsymbol{n}\cdot\overrightarrow{BC}=-x+y=0\\ \boldsymbol{n}\cdot\overrightarrow{BM}=-x+ay+z=0 \end{cases}$

x = 1, y = 1, z = 1 - a,

所以n = (1,1,1-a)是平面BCM的一个法向量,

因为 AB_1 与平面BCM所成的角为 45° ,

所以
$$\left|\cos \langle \overrightarrow{AB_1}, \boldsymbol{n} \rangle \right| = \frac{\left|\overrightarrow{AB_1} \cdot \boldsymbol{n}\right|}{\left|\overrightarrow{AB_1}\right| \cdot \left|\boldsymbol{n}\right|} = \frac{\left|2 - a\right|}{\sqrt{2} \cdot \sqrt{2 + (1 - a)^2}} = \frac{\sqrt{2}}{2}$$

解得:
$$a = \frac{1}{2}$$
, 所以 $n = (1, 1, \frac{1}{2})$,

又 $A_1(0,0,1)$, 所以 $\overrightarrow{BA_1} = (-1,0,1)$,

故点 A_1 到平面 BCM 的距离 $d = \frac{|\overrightarrow{BA_1} \cdot \mathbf{n}|}{|\mathbf{n}|} = \frac{1}{3}$.

- 3.(2023·乾县模拟·★★★)如图,直三棱柱 $ABC A_1B_1C_1$ 中, $AC = BC = AA_1$,D 为 CC_1 的中点.
- (1) 证明: 平面 A₁BD 上 平面 ABB₁A₁;
- (2) 若 $\angle ACB = 90^{\circ}$, AB = 2,求点 B_1 到平面 A_1BD 的距离.

 \mathbf{m} : (1)(证面面垂直,利用逆推的思路,上一步是找线面垂直,先过 D 或 A 作交线 $A_{1}B$ 的垂线,分析已知条件不难发现 $A_1D = BD$, 故选前者更易证)

取
$$A_1B$$
 中点 E , 连接 DE , 设 $AC = BC = AA_1 = 2a$, 则 $CD = C_1D = a$, $A_1D = \sqrt{A_1C_1^2 + C_1D^2} = \sqrt{5}a$,

$$BD = \sqrt{BC^2 + CD^2} = \sqrt{5}a$$
,所以 $A_1D = BD$,故 $DE \perp A_1B$ ①,

 $(另一条直线选谁呢? AB 和 AA, 均可,不妨选 AB. 由三垂线定理,只需证 <math>AB \perp DE$ 在面 ABC 内的射影,故先作射影,可 发现 E 在面 ABC 内的射影是 AB 中点 F)

取 AB 中点 F,连接 EF, CF,则 EF// AA_1 且 $EF = \frac{1}{2}AA_1$,

又 D 为 CC_1 的中点,所以 $CD//AA_1$ 且 $CD = \frac{1}{2}AA_1$,

故 EF//CD 且 EF = CD ,所以 CDEF 是平行四边形,

故 DE//CF, 因为 AC = BC, 所以 $AB \perp CF$,

结合 DE // CF 可得 $AB \perp DE$ ②,

由①②以及 A_1B ,AB是平面 ABB_1A_1 内的相交直线可得DE 上平面 ABB_1A_1 ,

又 $DE \subset$ 平面 A_1BD ,所以平面 $A_1BD \perp$ 平面 ABB_1A_1 .

(2) (算点到平面的距离, 建系, 用内容提要第2点的公式计算即可)

建立如图所示的空间直角坐标系,由 AB = 2 , AC = BC ,

 $\angle ACB = 90^{\circ}$ 可得 $AC = BC = \sqrt{2}$, 所以 $AA_1 = \sqrt{2}$,

故 $B_1(0,\sqrt{2},\sqrt{2})$, $A_1(\sqrt{2},0,\sqrt{2})$, $B(0,\sqrt{2},0)$, $D(0,0,\frac{\sqrt{2}}{2})$,

所以 $\overrightarrow{BB_1} = (0,0,\sqrt{2})$, $\overrightarrow{BD} = (0,-\sqrt{2},\frac{\sqrt{2}}{2})$, $\overrightarrow{DA_1} = (\sqrt{2},0,\frac{\sqrt{2}}{2})$,

设平面 A_1BD 的法向量为 n = (x, y, z),

$$\iint \begin{cases}
\boldsymbol{n} \cdot \overrightarrow{BD} = -\sqrt{2}y + \frac{\sqrt{2}}{2}z = 0 \\
\boldsymbol{n} \cdot \overrightarrow{DA}_1 = \sqrt{2}x + \frac{\sqrt{2}}{2}z = 0
\end{cases}, \Leftrightarrow y = 1, \quad \text{則} \begin{cases} x = -1 \\ z = 2 \end{cases},$$

所以n = (-1,1,2)是平面 A_1BD 的一个法向量,

故点 B_1 到平面 A_1BD 的距离 $d = \frac{|\overrightarrow{BB_1} \cdot \boldsymbol{n}|}{|\boldsymbol{n}|} = \frac{2\sqrt{3}}{3}$.

【反思】取中点连线是最常见的作辅助线方法,若没有思路,不妨尝试取中点.

- 4. $(2023 \cdot i)$ 县模拟 ★★★)如图,在多面体 ABCDE 中, ΔABC , ΔBCD , ΔCDE 都是边长为 2 的正三角形,平面 ABC 上平面 BCD,平面 CDE 上平面 BCD.
- (1) 求证: AE//BD;
- (2) 求点 B 到平面 ACE 的距离.

解:(1)(有两个面面垂直,想到作交线的垂线构造线面垂直,作出来就发现有平行四边形)

如图,取BC中点G,CD中点F,连接EF,FG,AG,

因为 $\triangle ABC$, $\triangle CDE$ 是边长为 2 的正三角形,

所以 $AG = EF = \sqrt{3}$,且 $AG \perp BC$, $EF \perp CD$,

又平面 $ABC \perp$ 平面 BCD, 平面 $ABC \cap$ 平面 BCD = BC,

 $AG \subset$ 平面 ABC,所以 $AG \perp$ 平面 BCD,同理,由平面 $CDE \perp$ 平面 BCD 可得 $EF \perp$ 平面 BCD,

所以 EF//AG 且 EF = AG ,从而四边形 AEFG 是平行四边形,故 AE//FG,又 FG//BD,所以 AE//BD.

(2)连接 DG,则 $DG \perp BC$,结合平面 $ABC \perp$ 平面 BCD 可得 $DG \perp$ 平面 ABC,所以 AG, GB, GD 两两垂直,以 G 为原点建立如图所示的空间直角坐标系,

则 B(0,1,0) , $A(\sqrt{3},0,0)$, C(0,-1,0) , $D(0,0,\sqrt{3})$,

所以 $\overrightarrow{CB} = (0,2,0)$, $\overrightarrow{CA} = (\sqrt{3},1,0)$,

(求平面 \overrightarrow{ACE} 的法向量还需 \overrightarrow{AE} 或 \overrightarrow{CE} ,不妨用 \overrightarrow{AE} ,若写 \overrightarrow{E} 的坐标,就得找它在面 \overrightarrow{ABC} 内的投影,较为麻烦,可借助平行关系将 \overrightarrow{AE} 转化为好算的向量来求,如 \overrightarrow{BD})

由(1)可得
$$\overrightarrow{AE} = \overrightarrow{GF} = \frac{1}{2}\overrightarrow{BD} = \frac{1}{2}(0,-1,\sqrt{3}) = (0,-\frac{1}{2},\frac{\sqrt{3}}{2}),$$

设平面 ACE 的法向量为 n = (x, y, z),

$$\iint_{\mathbf{n} \cdot \overrightarrow{CA}} \mathbf{n} \cdot \overrightarrow{CA} = \sqrt{3}x + y = 0$$

$$\mathbf{n} \cdot \overrightarrow{AE} = -\frac{1}{2}y + \frac{\sqrt{3}}{2}z = 0$$

$$\Rightarrow x = 1, \quad \emptyset \begin{cases} y = -\sqrt{3} \\ z = -1 \end{cases}$$

所以 $n = (1, -\sqrt{3}, -1)$ 是平面 ACE 的一个法向量,

故点 B 到平面 ACE 的距离 $d = \frac{\left|\overrightarrow{CB} \cdot \mathbf{n}\right|}{\left|\mathbf{n}\right|} = \frac{2\sqrt{15}}{5}$.

【反思】在求向量坐标时,若遇到某些点的坐标不好找,不妨考虑借助平行关系转化为好求的向量来算.

- 5. $(2023 \cdot 全国甲卷 \cdot \star \star \star \star \star)$ 在三棱柱 $ABC A_1B_1C_1$ 中, $AA_1 = 2$, $A_1C \perp$ 底面 ABC, $\angle ACB = 90^\circ$, A_1 到平面 BCC_1B_1 的距离为 1.
- (1) 证明: $AC = A_1C$; 《一数• 高考数学核心方法》
- (2) 若直线 AA_1 与 BB_1 的距离为 2,求 AB_1 与平面 BCC_1B_1 所成角的正弦值.

解:(1)(题干给出 A_1 到面 BCC_1B_1 的距离为 1,此条件怎么用?由题意不难发现 $BC \perp$ 面 ACC_1A_1 ,于是面 $BCC_1B_1 \perp$ 面 ACC_1A_1 ,故由面面垂直的性质定理,过 A_1 易作面 BCC_1B_1 的垂线,只需作交线 CC_1 的垂线即可)

如图,作 $A_1D \perp CC_1$ 于点D,由题意, $A_1C \perp$ 平面ABC, $BC \subset$ 平面ABC,所以 $BC \perp A_1C$,

又 $BC \perp AC$,且 AC , $A_1C \subset$ 平面 ACC_1A_1 , $AC \cap A_1C = C$, 所以 $BC \perp$ 平面 ACC_1A_1 ,

因为 A_1D \subset 平面 ACC_1A_1 , 所以 $A_1D \perp BC$,

结合 $A_1D \perp CC_1$ 可得 $A_1D \perp$ 平面 BCC_1B_1 ,

(由 A_1D 的长恰为 CC_1 的一半可联想到直角三角形斜边上的中线等于斜边的一半,由此能证 A_1D 是中线,根据三线合一就可证得 $A_1C = A_1C_1$,故结论成立)

因为 A_1 到平面 BCC_1B_1 的距离为1,所以 $A_1D=1$,

又 $AA_1 = 2$, 所以 $CC_1 = 2$,

由 $A_1C \perp$ 平面 ABC 可得 $A_1C \perp AC$,又 $A_1C_1 //AC$,

所以 $A_1C \perp A_1C_1$,结合 $A_1D = \frac{1}{2}CC_1$ 可得D为 CC_1 的中点,

又 $A_1D \perp CC_1$, 所以 $A_1C = A_1C_1$,

因为 $AC = A_1C_1$, 所以 $A_1C = AC$.

(2) (条件中本身就有三条两两垂直的直线,故可直接建系处理)

以 C 为原点建立如图所示的空间直角坐标系,

由(1)的结论可得 $\Delta AA_{l}C$ 是等腰直角三角形,

因为 $AA_1 = 2$,所以 $AC = A_1C = \sqrt{2}$,

(要写涉及到的点的坐标,还差BC的长,可设为未知数,用直线 AA_1 与 BB_1 的距离为2来求解)

设 BC = a(a > 0) ,则 $A(\sqrt{2},0,0)$, $A_1(0,0,\sqrt{2})$, B(0,a,0) ,

所以
$$\overrightarrow{AA_1} = (-\sqrt{2}, 0, \sqrt{2}), \quad \overrightarrow{AB} = (-\sqrt{2}, a, 0),$$

故直线 AA_1 的单位方向向量为 $\mathbf{u} = (-\frac{\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2})$,

它也是直线 BB_1 的方向向量,所以点 A 到直线 BB_1 的距离

$$d = \sqrt{\overrightarrow{AB}^2 - (\overrightarrow{AB} \cdot u)^2} = \sqrt{2 + a^2 - 1} = \sqrt{a^2 + 1}$$
,

因为直线 AA_1 与 BB_1 的距离为 2,所以点 A 到直线 BB_1 的距离为 2,即 $\sqrt{a^2+1}=2$,从而 $a=\sqrt{3}$,故 $B(0,\sqrt{3},0)$,

(求目标需用 B_1 , C_1 的坐标, 找它们在面ABC的投影较麻烦, 可用向量的线性运算来回避这一难点)

所以
$$\overrightarrow{CB} = (0, \sqrt{3}, 0)$$
, $\overrightarrow{CC_1} = \overrightarrow{AA_1} = (-\sqrt{2}, 0, \sqrt{2})$,

$$\overrightarrow{AB_1} = \overrightarrow{AB} + \overrightarrow{BB_1} = \overrightarrow{AB} + \overrightarrow{AA_1} = (-\sqrt{2}, \sqrt{3}, 0) + (-\sqrt{2}, 0, \sqrt{2})$$

$$= (-2\sqrt{2}, \sqrt{3}, \sqrt{2}),$$

设平面 BCC_1B_1 的法向量为 n = (x, y, z),

$$\emptyset \begin{cases} \mathbf{n} \cdot \overrightarrow{CB} = \sqrt{3}y = 0 \\ \mathbf{n} \cdot \overrightarrow{CC}_1 = -\sqrt{2}x + \sqrt{2}z = 0 \end{cases}, \Leftrightarrow x = 1, \emptyset \begin{cases} y = 0 \\ z = 1 \end{cases},$$

所以n = (1,0,1)是平面 BCC_1B_1 的一个法向量,

从而
$$\left|\cos < \overrightarrow{AB_1}, \boldsymbol{n} > \right| = \frac{\left|\overrightarrow{AB_1} \cdot \boldsymbol{n}\right|}{\left|\overrightarrow{AB_1}\right| \cdot \left|\boldsymbol{n}\right|} = \frac{\sqrt{13}}{13}$$

故直线 AB_1 与平面 BCC_1B_1 所成角的正弦值为 $\frac{\sqrt{13}}{13}$.

【**反思**】其实第 1 问也可建系翻译所给的点到平面的距离,但在未证出 $AC = A_1C$ 前,AC, A_1C ,BC 长度都未知,需设三个未知数,较麻烦,故没用这种方法.