НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ВЫСШАЯ ШКОЛА ЭКОНОМИКИ

Факультет физики

Лабораторная работа

«Кислотно-основное титрование»

Работу выполнил студент 3 курса Захаров Сергей Дмитриевич

Москва 12 сентября 2020

Содержание

1.	Опыт 1: Гидролиз солей				
	1.1. Реактивы и оборудование:				
	1.2. Порядок выполнения опыта				
	1.3. Дополнительное задание				
2.	Опыт 2: Факторы, влияющие на степень гидролиза				
	2.1. Реактивы и оборудование				
	2.2. Порядок выполнения				
3.	Буферные растворы				
	3.1. Реактивы и оборудование				

1. Опыт 1: Гидролиз солей

1.1. Реактивы и оборудование:

- Сухие соли: CH₃COONa, MgCl₂, Na₂CO₃, (NH₄)₂CO₃, NaCl, CH₃COONH₄, Na₂SO₃, ZnCl₂
- Раствор универсального индикатора
- Пробирки
- Шпатель для реактивов
- Стеклянная палочка

1.2. Порядок выполнения опыта

В 8 пробирок были добавлены по одному микрошпателю указанных сухих солей, после чего они были разбавлены одинаковым небольшим количеством дистиллированной воды. К полученным растворам был также добавлен в небольшом объеме (2-3 капли). Все растворы были тщательно перемешаны стеклянной палочкой.

В результате были получены следующие значения для рН:

В-во	CH ₃ COONa	$MgCl_2$	Na_2CO_3	$(NH_4)_2CO_3$	NaCl	CH ₃ COONH ₄	Na ₂ SO ₃	$ZnCl_2$
pН	8	7	10	9.5	7	8	10	4.5

1.3. Дополнительное задание

• CH₃COONa — сильное основание и слабая кислота, гидролиз по аниону:

$$CH_3COO^- + HOH \Longrightarrow CH_3COOH + OH^-$$

 $CH_3COONa + HOH \Longrightarrow CH_3COOH + NaOH$

- $MgCl_2$ среднее основание и сильная кислота, гидролиз в целом не идет (но если бы шел, то был бы по катиону)
- Na_2CO_3 сильное основание и слабая кислота, гидролиз по аниону

1 ступень

$$CO_3^{2-} + HOH \Longrightarrow HCO_3^- + OH^-$$

 $Na_2CO_3 + HOH \Longrightarrow NaHCO_3 + NaOH$

2 ступень

$$\mathrm{HCO_3}^- + \mathrm{HOH} \Longrightarrow \mathrm{H_2CO_3} + \mathrm{OH}^-$$

 $\mathrm{NaHCO_3} + \mathrm{HOH} \Longrightarrow \mathrm{H_2CO_3} + \mathrm{NaOH}$

• $(NH_4)_2CO_3$ — слабое основание и слабая кислота, гидролиз и по аниону, и по катиону:

$$NH_4^+ + CO_3^{2-} + HOH \Longrightarrow HCO_3^- + NH_4OH$$

 $(NH_4)_2CO_3 + HOH \Longrightarrow NH_4CO_3 + NH_4OH$

• NaCl — сильное основание и сильная кислота, гидролиз не идет.

• CH_3COONH_4 — слабое основание и слабая кислота, гидролиз и по аниону, и по катиону:

$$NH_4^+ + COOCH_3^- + HOH \Longrightarrow NH_4OH + CH_3COOH$$

 $CH_3COONH_4 + HOH \Longrightarrow NH_4OH + CH_3COOH$

• Na₂SO₃ — сильное основание и слабая кислота, гидролиз по аниону

1 ступень

$$SO_3^{2-} + HOH \Longrightarrow HSO_3^- + OH^-$$

 $Na_2SO_3 + HOH \Longrightarrow NaHSO_3 + NaOH$

2 ступень

$$\mathrm{HSO_3}^- + \mathrm{HOH} \Longrightarrow \mathrm{H_2SO_3} + \mathrm{OH}^-$$

 $\mathrm{NaHSO_3} + \mathrm{HOH} \Longrightarrow \mathrm{H_2SO_3} + \mathrm{NaOH}$

• ZnCl₂ — слабое основание и сильная кислота, гидролиз по катиону

1 ступень

$$Zn^{2+} + HOH \Longrightarrow ZnOH^+ + H^+$$
 $ZnCl_2 + HOH \Longrightarrow ZnOHCl + HCl$
2 ступень
 $ZnOH^+ + HOH \Longrightarrow Zn(OH)_2 + H^+$
 $ZnOHCl + HOH \Longrightarrow Zn(OH)_2 + HCl$

2. Опыт 2: Факторы, влияющие на степень гидролиза

2.1. Реактивы и оборудование

- \bullet Сухие соли: CH3COONa, MgCl2, Na2CO3, NaHCO3, Na2SO3, ZnCl2
- Раствор универсального индикатора
- Индикаторная бумага
- Пробирки
- Шпатель для реактивов
- Стеклянная палочка
- Спиртовка

2.2. Порядок выполнения

Влияние силы кислоты и основания, образующих соль, на степень ее гидролиза

В одну пробирку был внесен Na_2SO_3 , во вторую — Na_2CO_3 . К обеим солям было прилито одно и то же небольшое количество воды и несколько капель универсального индикатора, после чего они были размешаны с помощью стеклянной палочки.

Полученные результаты приведены в таблице ниже:

В-во	Na ₂ SO ₃	Na ₂ CO ₃
рН	10	11

H₂CO₃ более сильная, чем H₂SO₃, поэтому степень гидролиза будет выше у Na₂CO₃.

 \bullet Na₂SO₃ — сильное основание и слабая кислота, гидролиз по аниону

1 ступень

$$SO_3^{2-} + HOH \Longrightarrow HSO_3^- + OH^-$$

 $Na_2SO_3 + HOH \Longrightarrow NaHSO_3 + NaOH$

2 ступень

$$HSO_3^- + HOH \Longrightarrow H_2SO_3 + OH^-$$

 $NaHSO_3 + HOH \Longrightarrow H_2SO_3 + NaOH$

• Na_2CO_3 — сильное основание и слабая кислота, гидролиз по аниону

1 ступень

$$CO_3^{2^-} + HOH \Longrightarrow HCO_3^- + OH^-$$

 $Na_2CO_3 + HOH \Longrightarrow NaHCO_3 + NaOH$

2 ступень

$$\mathrm{HCO_3}^- + \mathrm{HOH} \Longrightarrow \mathrm{H_2CO_3} + \mathrm{OH}^-$$

 $\mathrm{NaHCO_3} + \mathrm{HOH} \Longrightarrow \mathrm{H_2CO_3} + \mathrm{NaOH}$

То же самое было проделано для ZnCl₂ и MgCl₂. Результаты:

В-во	$ZnCl_2$	$MgCl_2$
рН	5	8

• ZnCl₂ — слабое основание и сильная кислота, гидролиз по катиону

1 ступень

$$Zn^{2+} + HOH \Longrightarrow ZnOH^+ + H^+$$

 $ZnCl_2 + HOH \Longrightarrow ZnOHCl + HCl$

2 ступень

$$ZnOH^+ + HOH \Longrightarrow Zn(OH)_2 + H^+$$

 $ZnOHCl + HOH \Longrightarrow Zn(OH)_2 + HCl$

• $MgCl_2$ — слабое основание и сильная кислота, гидролиз по катиону:

1 ступень

$$Mg_2^+ + HOH \Longrightarrow MgOH^+ + H^+$$

 $MgCl_2 + HOH \Longrightarrow MgOHCl + HCl$

2 ступень

$$MgOH^+ + HOH \Longrightarrow Mg(OH)_2 + H^+$$

 $MgOHCl + HOH \Longrightarrow Mg(OH)_2 + HCl$

Влияние температуры на степень гидролиза

В пробирку был внесен CH₃COONa, к которому был прилит небольшой объем воды и несколько капель фенолфталеина, после чего раствор был перемешан. Раствор при этом оставался прозрачным. После этого пробирка с раствором была постепенно нагрета на спиртовой горелке, в ходе чего было отмечено изменение оттенка раствора с бесцветного на нежно-розовый, что свидетельствует о появлении в пробирке щелочной среды. Это неудивительно: гидролиз – эндотермическая среда, поэтому повышение температуры смещает равновесие в сторону продуктов.

Гидролиз средних и кислых солей

В одну пробирку был внесен Na₂CO₃, во вторую — NaHCO₃. К обеим солям было прилито одно и то же небольшое количество воды и несколько капель универсального индикатора, после чего они были размешаны с помощью стеклянной палочки.

Результаты рН полученных растворов приведены ниже:

В-во	Na_2CO_3	NaHCO ₃
рН	9.5	7.5

• Na₂CO₃ — сильное основание и слабая кислота, гидролиз по аниону

1 ступень

$$CO_3^{2-} + HOH \Longrightarrow HCO_3^- + OH^-$$

 $Na_2CO_3 + HOH \Longrightarrow NaHCO_3 + NaOH$

2 ступень

$$\mathrm{HCO_3}^- + \mathrm{HOH} \Longrightarrow \mathrm{H_2CO_3} \left(\mathrm{H_2O} + \mathrm{CO_2} \right) + \mathrm{OH}^-$$

 $\mathrm{NaHCO_3} + \mathrm{HOH} \Longrightarrow \mathrm{H_2CO_3} \left(\mathrm{H_2O} + \mathrm{CO_2} \right) + \mathrm{NaOH}$

• NaHCO₃ — сильное основание и слабая кислота, гидролиз по аниону

$$\mathrm{HCO_3}^- + \mathrm{H_2O} \Longrightarrow \mathrm{H_2CO_3} \left(\mathrm{H_2O} + \mathrm{CO_2} \right) + \mathrm{OH}^ \mathrm{NaHCO_3} + \mathrm{H_2O} \Longrightarrow \mathrm{H_2CO_3} \left(\mathrm{H_2O} + \mathrm{CO_2} \right) + \mathrm{NaOH}$$

3. Буферные растворы

3.1. Реактивы и оборудование

• Сухие соли: NaH₂PO₄ · 2 H₂O, NaOH

• Растворы: HCl 0.1M, NaOH 0.1M

• Раствор универсального индикатора

• Индикаторная бумага

• Мерная колба на 100 мл

• Весы

• Шпатель для реактивов

- Стеклянная палочка
- Два стаканчика на 100 мл

Расчет навесок

 $NaH_2PO_4 + NaOH \longrightarrow Na_2HPO_4 + H_2O$

По условию $\nu({\rm NaH_2PO_4})=2\nu({\rm Na_2HPO_4}).$ Положим индекс 1 для ${\rm NaH_2PO_4},$ индекс 2 — для ${\rm Na_2HPO_4}.$ Тогда:

$$c = \frac{1/2\nu_1 + \nu_2}{V}$$

$$\nu_2 = \frac{cV}{2}$$

$$\nu_1 = cV$$

$$m(\text{NaH}_2\text{PO}_4 \cdot 2\text{ H}_2\text{O}) = cVM = 0.01 \cdot 0.1 \cdot 120 = 0.156 \text{ r}$$

$$m(\text{NaHPO}_4) = \frac{cVM}{2} = \frac{0.01 \cdot 0.1 \cdot 40}{2} = 0.02 \text{ r}$$

Подготовленные навески $NaH_2PO_4 \cdot 2H_2O$, NaOH были внесены в мерную колбу, после чего она была залита водой до отметки, а полученный раствор — тщательно перемешан. pH полученного буферного раствора оказалась близка к нейтральной.

После этого полученный раствор был разделен поровну между двумя стаканчиками на 100 мл. В стаканчики было добавлено 2-3 капли универсального индикатора. Затем в один из стаканчиков по капле прибавлялся раствор HCl, в другой — NaOH

Наблюдения следующие: до добавления определенного объема раствора кислоты или щелочи окраска раствора менялась слабо, после чего резко поменялась. Пороговые значения приведены ниже:

В-во	HCl	NaOH
Объем, мл	2.5	2.4

Запишем формулу диссоциации:

$$H_2PO_4^- \rightleftharpoons H^+ + HPO_4^{2-}$$

Посчитаем константу:

$$K_A = \frac{[\text{HPO_4}^{2-}][\text{H}^+]}{[\text{HPO_4}^-]} \approx 6.2 \cdot 10^{-8} \quad \Rightarrow \quad pK_A = -\lg K_A = 7.2$$

Таким образом, рН изначального раствора оказывается равной:

$$pH = pK_A + lg \frac{[Na_2HPO_4]}{[NaH_2PO_4]} = 7.2$$

Реакция с основанием:

$$NaH_2PO_4 + NaOH \longrightarrow Na_2HPO_4 + H_2O$$

В таком случае рН:

$$pH = pK_A + \lg \frac{[\text{Na}_2 \text{HPO}_4] + \Delta}{[\text{NaH}_2 \text{PO}_4] - \Delta} = 7.7$$

Реакция с кислотой:

 $Na_2HPO_4 + HCl \longrightarrow NaH_2PO_4 + NaCl$ В таком случае pH:

$$pH = pK_A + lg \frac{[Na_2HPO_4] - \Delta}{[NaH_2PO_4] + \Delta} = 6.65$$

Вывод константы гидролиза

Выведем на примере CH_3COONa : $CH_3COO^- + HOH \Longrightarrow CH_3COOH + OH^ CH_3COONa + HOH \Longrightarrow CH_3COOH + NaOH$

$$\frac{[\mathrm{OH^-}][\mathrm{CH_3COOH}]}{[\mathrm{CH_3COO^-}][\mathrm{H_2O}]} = K \quad K_{\Gamma} = K[\mathrm{H_2O}]$$

Введем $K_{\text{H}_2\text{O}} = [\text{H}^+][\text{OH}^-]$,тогда:

$$\frac{K_{\rm H_2O}[{\rm CH_3COOH}]}{[{\rm H^+}][{\rm CH_3COO^-}]} = \frac{K_{\rm H_2O}}{K_{\rm CH_3COOH}} = K_{\Gamma} = 5.9 \cdot 10^{-10}$$

Вывод рН раствора

$$[\mathrm{H}^{+}] = K_{\mathrm{CH_{3}COOH}} \frac{[\mathrm{OH}^{-}]}{C_{\mathrm{salt}} - [\mathrm{OH}^{-}]} = \frac{K_{\mathrm{H_{2}O}}}{[\mathrm{OH}^{-}]} \quad \Rightarrow \quad [\mathrm{OH}^{-}] = \sqrt{\frac{K_{\mathrm{H_{2}O}}}{K_{\mathrm{CH_{3}COOH}}} (C_{\mathrm{salt}} - [\mathrm{OH}^{-}])}$$

В выражении под корнем понятно, что концентрация соли гораздо выше, чем ионов OH^- , поэтому последней мы пренебрежем. Учтя, что $pH = -\lg[H^+]$:

$$pH = -\lg H^{+} = -\lg \frac{K_{H_{2}O}}{[OH^{-}]} = -\lg K_{H_{2}O} + \frac{1}{2}\lg \left(\frac{K_{H_{2}O}}{K_{CH_{3}COOH}}C_{salt}\right)$$