

코인(Coin)

[문제] PNU(부산대) 컴.공 졸업생이 개발한 암호 코인인 Pitcoin의 가격 변동을 살펴보고자 한다. 이 Pitcoin의 가격 변동을 분(min.) 단위로 기록한 파일 Pitcoin.txt이 존재한다. 이 파일의 각 줄은 하나의 정수와 실수로 구성되어 있다. 그 첫 번째 정수 t_i 는 기록 시점의 time point를 나타내는 정수로 $1 \le t_i \le 21,000,000$ 이며, $t_i < t_{i+1}$ 이다. 주의할 점은 t_i 는 연속되지(sequential)하지 않다는 점이다. 대략 수분 간격 단위로 측정되어 있다.1) 그 다음에 제시되는 실수 p_i 는 (real)는 해당 time point t_i 에서의 Pitcoin 가격(price in dollar)로 소수점 3자리로 표시되어 있다. 아래 표는 이 파일 Pitcoin.txt의 일부분을 보여주고 있다.

	(중략)	332	1050.127
269	1053.350	333	1052.012
273	1051.668	334	1052.140
279	1054.713	355	1052.090
282	1057.000	361	1051.859
283	1058.595	362	1052.759
284	1057.007	367	1053.105
295	1055.305	379	1053.385
296	1055.720	380	1053.979
307	1052.857	381	1055.901
318	1052.454	382	1054.860
319	1052.326	390	1054.119
320	1051.775		
331	1050.543		(중략)

그림-1. Pitcoin.txt 파일의 일부분

우리는 이 Pitcoin의 가격변동에 관심이 있다. 그 중에서도 어떤 관찰 구간 $[t_B,\,t_E]$ 동안의 변동 중에서 최고가(highest)와 최저가(lowest)를 알아보려고 한다. 단 $t_B < t_E$ 이다. 예를 들어 그림-1과 같은 변동일 경우, 구간이 [269, 355]이라면 최고 가격은 t=283일 때 t=283인 t=283

¹⁾ 여러 코인 거래소에서 수집한 가격을 종합하여 기록하기 때문에 매분 정확한 값을 구할 수 없다.

이 문제를 하나의 배열에 넣고 관찰 구간의 모든 값을 foor loop으로 검사하면 간단하게 해결할수 있다. 그러나 Query가 매우 많고 그 관찰 구간에 매우 큰 경우 이런 단순한 방법은 time limit을 넘게 되므로 여러분은 이 Pitcoin 가격을 그대로가 아닌 적절한 자료구조로 새롭게 구성해서 질문에 빠르게 답을 할 수 있도록 해야 한다. 즉 이전 Pitcoin의 가격이 변동하는 것은 아닌 static한 것이므로 이런 특성을 개발할 자료구조에 적절히 이용해야 한다.

[입출력] 표준 입출력을 사용한다. 이 문제에서 여러분은 2개의 파일을 이용해야 한다. 하나는 코인의 가격이 기록된 파일인 "Pitcoin.txt"이며, 다른 하나는 관찰 구간이 기록된 stdin이다. Pitcoin.txt 파일의 첫 줄에는 전체 time point의 개수 N이 주어진다. 단 N=2,000,078. 약 200만개의 값이 입력될 수 있다. 이어지는 N개의 각 줄에는 time point t_i 와 그 시점의 가격 p_i 가 주어진다. 이 파일은 모든 test case 에 공통적으로 적용된다. 그리고 추가로 관찰 구간이 기록된 입력 파일을 stdin으로 받는다.

하나의 stdin 파일의 첫 줄에는 관찰 구간의 수 M 이 주어진다. 단 $1000 \le M \le 10000$. 그리고 이어 지는 M개의 줄에는 각각의 관찰 구간이 2개의 정수 $'t_B$ t_E' 로 주어진다. 한 관찰 구간 $\left[t_B, t_E\right]$ 을 나타내는 두 정수 t_B (time for Begin)과 t_E (time for End)가 각 줄에 제시된다. 즉 여러분은 t_B 부터 t_E 까지의 기간 동안 나타난 p_i 의 최저값과 최고값을 출력해야 한다. 만일 $\left[t_B, t_E\right]$ 이 기간 동안 기록된 값이 "Pitcoin. txt" 없을 경우에는 t_B 와 t_E 모두는 t_B, t_E 이전에 가장 최근에 기록된 값으로 대 치한다. 예를 들어 설명해보자.

위 그림-1의 경우일 때 [310, 370]이 관찰 구간으로 설정된 경우 t=310일때의 가격은 그 이전 가장 최근 기록된 값인 t=307일때의 가격으로 처리된다. t_E 도 같은 방식으로 $t_{370}=t_{362}=1053.105$ 으로 처리된다. 출력은 작은 값, 큰 값 순으로 출력한다.

[예제] 위 그림-1에 제공된 파일이 Pitcoin.txt라고 가정할 때 입력에 따른 정답은 다음과 같다.

stdin	stdout	
3	1053.350 1054.713	
270 280	1052.090 1055.720	
300 350	1050.127 1058.595	
269 390		

[제한조건] 코드 이름은 coin. {c,cpp,py}이다. 윤리교육에서 설명한 것과 같이 다른 사람의 코드를 무단으로 사용해서는 안 된다. 마감 시간과 기타 주의사항(크기 제한)은 NESPA 사이트를 참고하면된다. 제출 횟수는 최대 15번이다.