

Cartografía de enfermedades: modelización espacial multivariante de enfermedades

María José Caballero

Dirección General de Salut Pública

5 de Octubre de 2017

- Introducción
 - Introducción al Disease Mapping
 - Problema de estimación en áreas pequeñas
 - Indicador epidemiológico
 - Propuesta de Besag York y Mollié
- 2 Modelización Espacial Multivariante
 - Marco de Modelización Espacial Multivariante
 - Propuestas más relevantes
 - M-model
 - Variaciones del M-model
- 3 Aplicación a la incidencia de ERC en la C. Valenciana
 - Descripción del estudio
 - Resultados
- 4 Conclusiones

- Introducción
 - Introducción al Disease Mapping
 - Problema de estimación en áreas pequeñas
 - Indicador epidemiológico
 - Propuesta de Besag York y Mollié
- 2 Modelización Espacial Multivariante
 - Marco de Modelización Espacial Multivariante
 - Propuestas más relevantes
 - M-model
 - Variaciones del M-model
- 3 Aplicación a la incidencia de ERC en la C. Valenciana
 - Descripción del estudio
 - Resultados
- 4 Conclusiones

- Introducción
 - Introducción al Disease Mapping
 - Problema de estimación en áreas pequeñas
 - Indicador epidemiológico
 - Propuesta de Besag York y Mollié
- 2 Modelización Espacial Multivariante
 - Marco de Modelización Espacial Multivariante
 - Propuestas más relevantes
 - M-model
 - Variaciones del M-model
- Aplicación a la incidencia de ERC en la C. Valenciana
 - Descripción del estudio
 - Resultados
- 4 Conclusiones

- Introducción
 - Introducción al Disease Mapping
 - Problema de estimación en áreas pequeñas
 - Indicador epidemiológico
 - Propuesta de Besag York y Mollié
- Modelización Espacial Multivariante
 - Marco de Modelización Espacial Multivariante
 - Propuestas más relevantes
 - M-model
 - Variaciones del M-model
- Aplicación a la incidencia de ERC en la C. Valenciana
 - Descripción del estudio
 - Resultados
- 4 Conclusiones

Introducción

- Estudio de la distribución geográfica del riesgo de enfermedades.
- Asociación espacial de los diferentes eventos en salud.
- Establecer prioridades y formulación de políticas sociales y sanitarias efectivas.

Para describir el patrón geográfico de un evento resulta conveniente desagregar la información en unidades geográficas del menor tamaño posible.

- Ventajas:
 - Cuanto más pequeñas las regiones, más información de las poblaciones.
 - Mayor precisión de los indicadores.
- Inconvenientes:
 - Menor cantidad de datos.
 - Valores extremos.

Para describir el patrón geográfico de un evento resulta conveniente desagregar la información en unidades geográficas del menor tamaño posible.

- Ventajas:
 - Cuanto más pequeñas las regiones, más información de las poblaciones.
 - Mayor precisión de los indicadores.
- Inconvenientes:
 - Menor cantidad de datos.
 - Valores extremos.

Para describir el patrón geográfico de un evento resulta conveniente desagregar la información en unidades geográficas del menor tamaño posible.

- Ventajas:
 - Cuanto más pequeñas las regiones, más información de las poblaciones.
 - Mayor precisión de los indicadores.
- Inconvenientes:
 - Menor cantidad de datos.
 - Valores extremos.

• 542 municipios y 2328 casos incidentes.

Ranking	Municipio	Obs
1	Valencia	499
2	Alicante	131
3	Castellón	106
541	Vall de Ebo	
542	Benicull	

Cuadro: Casos incidentes observados por ERC vascular en la CV.

- El mapa refleja la distribución de la población
- Razón de Incidencia estandarizada.

• 542 municipios y 2328 casos incidentes.

Ranking	Municipio	Obs
1	Valencia	499
2	Alicante	131
3	Castellón	106
541	Vall de Ebo	0
542	Benicull	0

Cuadro: Casos incidentes observados por ERC vascular en la CV.

- El mapa refleja la distribución de la población
- Razó

• 542 municipios y 2328 casos incidentes.

Ranking	Municipio	Obs
1	Valencia	499
2	Alicante	131
3	Castellón	106
541	Vall de Ebo	0
542	Benicull	0

Cuadro: Casos incidentes observados por ERC vascular en la CV.

- El mapa refleja la distribución de la población.
- Razón de Incidencia estandarizada.

• 542 municipios y 2328 casos incidentes.

Ranking	Municipio	Obs
1	Valencia	499
2	Alicante	131
3	Castellón	106
541	Vall de Ebo	0
542	Benicull	0

Cuadro: Casos incidentes observados por ERC vascular en la CV.

- El mapa refleja la distribución de la población.
- Razón de Incidencia estandarizada.

Razón de Incidencia Estandarizada

- Método de Estandarización Indirecta (Esteve et al., 1994).
- Características de la población: estructuras de edad o sexo.

La *Razón de Incidencia Estandarizada (RIE)* en la región *i*-ésima con $i=1,\ldots,n$ se define como:

$$RIE_i = \frac{O_i}{E_i}$$

donde

$$E_{i} = \sum_{l=1}^{L} p_{il} \left(\frac{\sum_{i=1}^{n} O_{il}}{\sum_{i=1}^{n} p_{il}} \right)$$

Razón de Incidencia Estandarizada

- Método de Estandarización Indirecta (Esteve et al., 1994).
- Características de la población: estructuras de edad o sexo.

La *Razón de Incidencia Estandarizada (RIE)* en la región *i*-ésima con i = 1, ..., n se define como:

$$RIE_i = \frac{O_i}{E_i}$$

donde

$$E_i = \sum_{l=1}^{L} p_{il} \left(\frac{\sum_{i=1}^{n} O_{il}}{\sum_{i=1}^{n} p_{il}} \right).$$

Razón de Incidencia Estandarizada

- Método de Estandarización Indirecta (Esteve et al., 1994).
- Características de la población: estructuras de edad o sexo.

La Razón de Incidencia Estandarizada (RIE) en la región i-ésima con i = 1, ..., n se define como:

$$RIE_i = \frac{O_i}{E_i},$$

donde

$$E_i = \sum_{l=1}^{L} p_{il} \left(\frac{\sum_{i=1}^{n} O_{il}}{\sum_{i=1}^{n} p_{il}} \right).$$

Mapa RIEs brutas

Ranking	Municipio	RIE
1	Guardamar de la Safor	1922.60
2	Toga	778.42
3	Benafer	777.87
541	Benifla	0
542	Benicull	0

Cuadro: RIEs para la ERC vascular en la CV.

En este caso:

- Incorpora información demográfica.
- Refleja mejor el riesgo de la enfermedad.

Pero..

- Produce valores extremos en poblaciones con pocos casos.
- Las RIE más similares corresponden a municipios más lejanos.
- Por lo tanto la RIE también representa la distribución de la población .

En este caso:

- Incorpora información demográfica.
- Refleja mejor el riesgo de la enfermedad.

Pero...

- Produce valores extremos en poblaciones con pocos casos.
- Las RIE más similares corresponden a municipios más lejanos.
- Por lo tanto la RIE también representa la distribución de la población .

La RIE desde un punto de vista estadístico

Las unidades de estudio compartan información combinando el uso de

Los casos observados se modelizan como

$$O_i \sim Po(E_i R_i),$$

cuyo estimador de máxima verosimilitud se corresponde con:

$$\hat{R}_i = \frac{O_i}{E_i}$$

La RIE desde un punto de vista estadístico

Las unidades de estudio compartan información combinando el uso de

AREAS PEQUEÑAS + RELACIÓN DE VECINDADES

Los casos observados se modelizan como

$$O_i \sim Po(E_i R_i),$$

cuyo estimador de máxima verosimilitud se corresponde con:

$$\hat{R}_i = \frac{O_i}{E_i}$$

La RIE desde un punto de vista estadístico

Las unidades de estudio compartan información combinando el uso de

AREAS PEQUEÑAS + RELACIÓN DE VECINDADES

Los casos observados se modelizan como:

$$O_i \sim Po(E_iR_i)$$
,

cuyo estimador de máxima verosimilitud se corresponde con:

$$\hat{R}_i = \frac{O_i}{E_i}.$$

Modelo de Besag York y Mollié (Besag, et al., 1991)

$$\log(R_i) = \mu + \phi_i + \theta_i$$

- \bullet μ es el valor promedio del logaritmo de los riesgos.
- ullet ϕ efecto aleatorio espacial,

$$\phi_i | \phi_{-\mathbf{i}} \sim N \left(n_i^{-1} \sum_{j:j \sim i} \phi_j, \frac{\sigma^2}{n_i} \right)$$

• θ efecto heterogéneo $\theta_i \sim N(0, \sigma^2)$

Modelo de Besag York y Mollié (Besag, et al., 1991)

$$\log(R_i) = \mu + \phi_i + \theta_i$$

- μ es el valor promedio del logaritmo de los riesgos.
- \bullet ϕ efecto aleatorio espacial,

$$\phi_i | \phi_{-\mathbf{i}} \sim N \left(n_i^{-1} \sum_{j:j \sim i} \phi_j, \frac{\sigma^2}{n_i} \right)$$

• θ efecto heterogéneo $\theta_i \sim N(0, \sigma^2)$

Modelo de Besag York y Mollié (Besag, et al., 1991)

$$log(R_i) = \mu + \phi_i + \theta_i$$

- μ es el valor promedio del logaritmo de los riesgos.
- \bullet ϕ efecto aleatorio espacial,

$$\phi_i | \phi_{-i} \sim N \left(n_i^{-1} \sum_{j:j \sim i} \phi_j, \frac{\sigma^2}{n_i} \right).$$

• θ efecto heterogéneo $\theta_i \sim N(0, \sigma^2)$.

Modelo de Besag York y Mollié (Besag, et al., 1991)

$$\log(R_i) = \mu + \phi_i + \theta_i$$

- μ es el valor promedio del logaritmo de los riesgos.
- ullet ϕ efecto aleatorio espacial,

$$|\phi_i|\phi_{-\mathbf{i}} \sim N\left(n_i^{-1}\sum_{j:j\sim i}\phi_j, \frac{\sigma^2}{n_i}\right).$$

• θ efecto heterogéneo $\theta_i \sim N(0, \sigma^2)$.

Modelo de Besag York y Mollié (Besag, et al., 1991)

$$log(R_i) = \mu + \phi_i + \theta_i$$

- μ es el valor promedio del logaritmo de los riesgos.
- \bullet ϕ efecto aleatorio espacial,

$$|\phi_i|\phi_{-\mathbf{i}} \sim N\left(n_i^{-1}\sum_{j:j\sim i}\phi_j, \frac{\sigma^2}{n_i}\right).$$

• θ efecto heterogéneo $\theta_i \sim N(0, \sigma^2)$.

Marco de Modelización Espacial Multivariante Propuestas más relevantes M-model Variaciones del M-model

Modelización Espacial Multivariante

Técnica que nos permite estudiar la distribución geográfica de un conjunto de enfermedades con el fin de investigar y mejorar los patrones de riesgos subyacentes de las mismas, aprovechando además la posible dependencia espacial de los datos.

$$O_{ij} \sim Po(E_{ij} \cdot R_{ij}), \quad i = 1, \dots, n; \quad j = 1, \dots, k$$

$$log(R_{ij}) = \mu_j + \theta_{ij}.$$

- Estructura espacial de las enfermedades
- Dependencia entre enfermedades

Técnica que nos permite estudiar la distribución geográfica de un conjunto de enfermedades con el fin de investigar y mejorar los patrones de riesgos subyacentes de las mismas, aprovechando además la posible dependencia espacial de los datos.

$$O_{ij} \sim Po(E_{ij} \cdot R_{ij}), \quad i = 1, \dots, n; \quad j = 1, \dots, k$$
 $log(R_{ij}) = \mu_j + \theta_{ij}.$

- Estructura espacial de las enfermedades,
- Dependencia entre enfermedades.

Técnica que nos permite estudiar la distribución geográfica de un conjunto de enfermedades con el fin de investigar y mejorar los patrones de riesgos subyacentes de las mismas, aprovechando además la posible dependencia espacial de los datos.

$$O_{ij} \sim Po(E_{ij} \cdot R_{ij}), \quad i = 1, \dots, n; \quad j = 1, \dots, k$$
 $log(R_{ij}) = \mu_j + \theta_{ij}.$

- Estructura espacial de las enfermedades,
- Dependencia entre enfermedades.

Suele ser muy habitual modelizar:

$$\textit{vec}(\Theta) = (\Theta_{\cdot 1}^{'}, \dots, \Theta_{\cdot K}^{'}) \sim \textit{N}(0, \Sigma).$$

¿Cómo definimos Σ?

- Contempla tanto la dependencia espacial (dentro de cada enfermedad) Σ_w , como la dependencia entre enfermedades, Σ_b .
- Ha de ser válida ⇒ simétrica y definida positiva.

Suele ser muy habitual modelizar:

$$\textit{vec}(\Theta) = (\Theta_{\cdot 1}^{'}, \dots, \Theta_{\cdot K}^{'}) \sim \textit{N}(0, \Sigma).$$

¿Cómo definimos Σ ?

- Contempla tanto la dependencia espacial (dentro de cada enfermedad) Σ_w , como la dependencia entre enfermedades Σ_b .
- Ha de ser válida ⇒ simétrica y definida positiva.

Suele ser muy habitual modelizar:

$$\textit{vec}(\Theta) = (\Theta_{.1}^{'}, \ldots, \Theta_{.K}^{'}) \sim \textit{N}(0, \Sigma).$$

¿Cómo definimos Σ ?

- Contempla tanto la dependencia espacial (dentro de cada enfermedad) Σ_w , como la dependencia entre enfermedades, Σ_b .
- Ha de ser válida ⇒ simétrica y definida positiva.

La mayoría de trabajos en este campo modelizan Σ con estructuras de covarianza separables tal que:

$$\Sigma = \Sigma_w \otimes \Sigma_b$$
.

- Como Σ_b y Σ_w son simétricas y definidas positivas, Σ se asegura que también lo es.
- Los productos de Kronecker computacionalmente son muy exigentes.

La mayoría de trabajos en este campo modelizan Σ con estructuras de covarianza separables tal que:

$$\Sigma = \Sigma_w \otimes \Sigma_b$$
.

- Como Σ_b y Σ_w son simétricas y definidas positivas, Σ se asegura que también lo es.
- Los productos de Kronecker computacionalmente son muy exigentes.

La mayoría de trabajos en este campo modelizan Σ con estructuras de covarianza separables tal que:

$$\Sigma = \Sigma_w \otimes \Sigma_b$$
.

- Como Σ_b y Σ_w son simétricas y definidas positivas, Σ se asegura que también lo es.
- Estructuras separables

 misma estructura espacial para todas las enfermedades.
- Los productos de Kronecker computacionalmente son muy exigentes.

$$\Theta = \Phi(\tilde{\Sigma}_b P)^T = \Phi P^T \tilde{\Sigma}_b^T.$$

- Φ es una matriz cuyas columnas tienen la estructura espacial deseada dentro de las enfermedades.
- P matriz ortogonal.
- $\dot{\Sigma}_b$ es la matriz triangular inferior de la descomposición de Cholesky de Σ_b .

$$\Theta = \Phi(\tilde{\Sigma}_b P)^T = \Phi P^T \tilde{\Sigma}_b^T.$$

- Φ es una matriz cuyas columnas tienen la estructura espacial deseada dentro de las enfermedades.
- P matriz ortogonal.
- $\tilde{\Sigma}_b$ es la matriz triangular inferior de la descomposición de Cholesky de Σ_b .

$$\Theta = \Phi(\tilde{\Sigma}_b P)^T = \Phi P^T \tilde{\Sigma}_b^T.$$

- Φ es una matriz cuyas columnas tienen la estructura espacial deseada dentro de las enfermedades.
- P matriz ortogonal.
- $\ddot{\Sigma}_b$ es la matriz triangular inferior de la descomposición de Cholesky de Σ_b .

$$\Theta = \Phi(\tilde{\Sigma}_b P)^T = \Phi P^T \tilde{\Sigma}_b^T.$$

- Φ es una matriz cuyas columnas tienen la estructura espacial deseada dentro de las enfermedades.
- P matriz ortogonal.
- $\ddot{\Sigma}_b$ es la matriz triangular inferior de la descomposición de Cholesky de Σ_b .

Inconvenientes de esta propuesta

Matriz P

- Productos de matrices de rotación de Givens. Implica un ángulo y un producto matricial para cada combinación de enfermedades. ¡Problemas de escalabilidad!
- Se desconoce el efecto que pueden tener las previas sobre el conjunto de matrices P.
- Matriz Σ_b
 - Para cada par de correlaciones entre enfermedades se muestrea sobre una U(-1,1), lo cual no asegura que el resultado de una matriz definida positiva.
 - Conforme más enfermedades, más difícil encontrar una matriz definida positiva. Se encuentra en una parte del cubo más pequeña que $[-1,1]^{k(k-1)/2}$.

Inconvenientes de esta propuesta

Matriz P

- Productos de matrices de rotación de Givens. Implica un ángulo y un producto matricial para cada combinación de enfermedades. ¡Problemas de escalabilidad!
- Se desconoce el efecto que pueden tener las previas sobre el conjunto de matrices P.
- Matriz $\tilde{\Sigma}_b$
 - Para cada par de correlaciones entre enfermedades se muestrea sobre una U(-1,1), lo cual no asegura que el resultado de una matriz definida positiva.
 - Conforme más enfermedades, más difícil encontrar una matriz definida positiva. Se encuentra en una parte del cubo más pequeña que $[-1,1]^{k(k-1)/2}$.

M-model

Cualquier matriz $M \in \mathcal{M}_{n \times m}(\mathbb{R})$ con $n \geq m$ se puede descomponer como M = QR, donde $Q_{n \times m}$ es una matriz ortogonal y $R_{m \times m}$ una matriz triangular superior.

- P^T se trata de una matriz ortogonal $\sim Q$.
- \bullet $\tilde{\Sigma}_b^T$ es una matriz triangular superior $\leadsto R$

M-model

Cualquier matriz $M \in \mathcal{M}_{n \times m}(\mathbb{R})$ con $n \geq m$ se puede descomponer como M = QR, donde $Q_{n \times m}$ es una matriz ortogonal y $R_{m \times m}$ una matriz triangular superior.

Trasladando estas ideas a $\Theta = \Phi P^T \tilde{\Sigma}_b^T$:

• P^T se trata de una matriz ortogonal $\leadsto Q$.

• $\tilde{\Sigma}_b^T$ es una matriz triangular superior $\leadsto R$.

M-model

Cualquier matriz $M \in \mathcal{M}_{n \times m}(\mathbb{R})$ con $n \geq m$ se puede descomponer como M = QR, donde $Q_{n \times m}$ es una matriz ortogonal y $R_{m \times m}$ una matriz triangular superior.

- P^T se trata de una matriz ortogonal $\rightsquigarrow Q$.
- $\tilde{\Sigma}_b^T$ es una matriz triangular superior $\sim R$.

M-model

Cualquier matriz $M \in \mathcal{M}_{n \times m}(\mathbb{R})$ con $n \geq m$ se puede descomponer como M = QR, donde $Q_{n \times m}$ es una matriz ortogonal y $R_{m \times m}$ una matriz triangular superior.

- P^T se trata de una matriz ortogonal $\sim Q$.
- ullet $\tilde{\Sigma}_b^T$ es una matriz triangular superior $\leadsto R$

M-model

Cualquier matriz $M \in \mathcal{M}_{n \times m}(\mathbb{R})$ con $n \geq m$ se puede descomponer como M = QR, donde $Q_{n \times m}$ es una matriz ortogonal y $R_{m \times m}$ una matriz triangular superior.

- P^T se trata de una matriz ortogonal $\rightsquigarrow Q$.
- $\tilde{\Sigma}_b^T$ es una matriz triangular superior $\leadsto R$.

M-model

Cualquier matriz $M \in \mathcal{M}_{n \times m}(\mathbb{R})$ con $n \geq m$ se puede descomponer como M = QR, donde $Q_{n \times m}$ es una matriz ortogonal y $R_{m \times m}$ una matriz triangular superior.

- P^T se trata de una matriz ortogonal $\rightsquigarrow Q$.
- $\tilde{\Sigma}_b^T$ es una matriz triangular superior $\rightsquigarrow R$.

M-model

Cualquier matriz $M \in \mathcal{M}_{n \times m}(\mathbb{R})$ con $n \geq m$ se puede descomponer como M = QR, donde $Q_{n \times m}$ es una matriz ortogonal y $R_{m \times m}$ una matriz triangular superior.

- P^T se trata de una matriz ortogonal $\rightsquigarrow Q$.
- $\tilde{\Sigma}_b^T$ es una matriz triangular superior $\rightsquigarrow R$.

M-Model (Botella-Rocamora et al., 2015)

$$\Theta = \Phi \cdot M$$
.

$$M^{T}M = (QR)^{T}(QR) = R^{T}Q^{T}QR = R^{T}R$$
$$= (\tilde{\Sigma}_{b}^{T})^{T}\tilde{\Sigma}_{b}^{T} = \tilde{\Sigma}_{b}\tilde{\Sigma}_{b}^{T} = \Sigma_{b}.$$

M-Model (Botella-Rocamora et al., 2015)

$$\Theta = \Phi \cdot M$$
.

$$M^{T}M = (QR)^{T}(QR) = R^{T}Q^{T}QR = R^{T}R$$
$$= (\tilde{\Sigma}_{b}^{T})^{T}\tilde{\Sigma}_{b}^{T} = \tilde{\Sigma}_{b}\tilde{\Sigma}_{b}^{T} = \Sigma_{b}.$$

M-Model (Botella-Rocamora et al., 2015)

$$\Theta = \Phi \cdot M$$
.

$$M^{T}M = (QR)^{T}(QR) = R^{T}Q^{T}QR = R^{T}R$$
$$= (\tilde{\Sigma}_{b}^{T})^{T}\tilde{\Sigma}_{b}^{T} = \tilde{\Sigma}_{b}\tilde{\Sigma}_{b}^{T} = \Sigma_{b}.$$

M-Model (Botella-Rocamora et al., 2015)

$$\Theta = \Phi \cdot M$$
.

$$M^{T}M = (QR)^{T}(QR) = R^{T}Q^{T}QR = R^{T}R$$
$$= (\tilde{\Sigma}_{b}^{T})^{T}\tilde{\Sigma}_{b}^{T} = \tilde{\Sigma}_{b}\tilde{\Sigma}_{b}^{T} = \Sigma_{b}.$$

Características del M-model:

- Fácilmente implementable en software de simulación como WinBugs.
- Se pueden considerar tantos patrones espaciales como enfermedades se quieran estudiar, y que al combinarlos con los valores de cada columna de M, se obtenga el patrón espacial de cada una de las enfermedades.

Características del M-model:

- Fácilmente implementable en software de simulación como WinBugs.
- Se pueden considerar tantos patrones espaciales como enfermedades se quieran estudiar, y que al combinarlos con los valores de cada columna de M, se obtenga el patrón espacial de cada una de las enfermedades.

```
\label{eq:formula}  \mbox{ for (i in 1:Nareas)} \{ \\  \mbox{ for (k in 1:Ndiseases)} \{ \\  \mbox{ Theta[i,k]<-inprod2(tPhi[,i],M[,k])} \\ \} \\ \Theta = \Phi \cdot M \\ \mbox{ } \}
```

Donde:

- Φ se modeliza con una estructura espacial. En este caso modelizamos dicha matriz haciendo uso de la propuesta de modelización de BYM: patrones espaciales y heterogéneos.
- M se le asigna una previa vaga.

- Interés en estudiar 2 períodos de tiempo.
- 6 Enfermedades Renales Crónicas.
- Desagregación municipal de la incidencia ⇒ pocos casos.

- Interés en estudiar 2 períodos de tiempo.
- 6 Enfermedades Renales Crónicas.
- Desagregación municipal de la incidencia ⇒ pocos casos.

	Ф fija	Φ varía
M fija	Χ	
<i>M</i> varía		

- Interés en estudiar 2 períodos de tiempo.
- 6 Enfermedades Renales Crónicas.
- Desagregación municipal de la incidencia ⇒ pocos casos.

	Φ fija	Φ varía
M fija		Х
<i>M</i> varía		

- Interés en estudiar 2 períodos de tiempo.
- 6 Enfermedades Renales Crónicas.
- Desagregación municipal de la incidencia ⇒ pocos casos.

	Ф fija	Φ varía
M fija		
M varía	X	

- Interés en estudiar 2 períodos de tiempo.
- 6 Enfermedades Renales Crónicas.
- Desagregación municipal de la incidencia ⇒ pocos casos.

	Φ fija	Φ varía
M fija		
M varía		Х

Descripción del estudio Resultados

Aplicación a la incidencia de ERC en la C. Valenciana

- Estudio de la incidencia de ERC en la C. Valenciana.
- Glomerulonefritis, intersticial, diabética, poliquística, vascular y otras.
- Períodos de tiempo: 2000-2007 y 2008-2014.
- Desagregación espacial: 542 municipios.

Enfermedad	Alicante	Castellón	Valencia	Total
Diabética	621	260	1059	1940
Glomerulonefritis	363	150	769	1282
Intersticial	336	118	555	1009
Otras	1156	513	1975	3644
Poliquística	228	62	341	631
Vascular	642	303	1383	2328
Total	3346	1406	6082	10834

Modelo de Besag York y Mollié

M-model

Figura: Matriz de correlaciones para cada ERC en cada período.

M-model

BYM vs. M-model

Selección de modelos con el criterio DIC

$$DIC = D + pD$$

Modelo	Período	D	рD	DIC
	2000-2007	5557.78	249.65	5807.44
BYM	2008-2014	5324.40	236.89	5561.09
	2000-2007	5401.87	373.78	5775.66
M-model	2008-2014	5192.33	360.59	5552.93

M fija Φ fija

M fija Φ varía

M varía Φ fija

M varía Φ varía

Modelo	D	рD	DIC
M fija Φ fija	10861.8	431.6153	11293.46
M fija Φ varía	10718.31	578.0714	11296.38
M varía Φ fija	10601.47	699.17	11300.64
<i>M</i> varía Φ varía	10589.38	735.2211	11324.6

Introducción Modelización Espacial Multivariante Aplicación a la incidencia de ERC en la C. Valenciana Conclusiones

Conclusiones

- Modelo flexible que permite la estimación simultánea de un gran número de patrones espaciales y enfermedades.
- Permite incorporar diferentes estructuras de tiempo y realizar variaciones sobre las estructuras Φ y M.
- Incorporación simultánea de posibles fuentes de dependencia:
 Modelización Multidimensional.

Referencias

- Besag, J., York, J., y Mollié, A. (1991). *Bayesian image restoration, with two applications in spatial statistics.* Annals of the Institute of Statistical Mathemathics, 43:1-21.
- Botella Rocamora, P., Martínez-Beneito, M. A., & Banerjee, S. (2015). A unifying modelling framework for highly multivariate disease mapping. Statistics in Medicine, 34(9), 1548-1559.
- Clayton, D. y Kaldor, J. (1987). Empirical bayes estimates of age-standardized relative risks for use in disease mapping. Biometrics, 43(3):671-681.

Referencias

- Esteve, J., Benhamou, E., Raymond, L. (1994). *Descriptive Epidemiology*. Statistical methods in cancer research. Volume IV. International Agency for Research on Cancer (WHO). IARC Scientific Publications N° 128, Lyon.
- Martínez-Beneito, M. A. (2013). A general modelling framework for multivariate disease mapping. Biometrika, 100(3), 539-553.