

MODFLOW- Central Sands

Modflow-setup在美国Central Sands地下水研究中的具体应用。

地下水抽取与湖泊地下水的联系。

小范围的高分辨率的地下水模拟区域,覆盖研究的湖泊和河流;大范围的低分辨率的模拟,覆盖地下水抽取的位置。

因此,建立了3个地下水模型:一个区域模型(扩展至大部分的水 文边界)和2个inset模型(嵌套模型),集中在湖泊附近。

2012~2018用于参数估计(history matching),使用地下水位、湖水位和河流径流

通过一个土壤-水平衡水文模型,考虑气象数据。用于评估农业灌溉的需水量和区域模型的边界条件施加。

Hydrologic features from McKay and others, 2012

EXPLANATION

[WONE, Wisconsin Department of Natural Resources; LGR local grid refinement)

艰苦樸素求真务實

20 KILOMETERS

模型网格和分层

区域模型分为均匀的572行,533列(结构)网格,单元大小200m。模型分4层的水文地质单元,包括:

Layer 1---上部冰川层(表层含水层),表征不分选的冰川泥沙(东边)和更均匀的冰川泥沙(西边);

Layer 2---中间冰川层

Layer 3---底部冰川层

Layer4---基岩层,表征砂岩基岩。

Layer1是由10m DEM重采样,Layer1和Layer2的底部高程是由上部的粗砂层和中间细沙层的底部定义的。Layer3的底部是砂岩基岩单元的顶部,Layer4的底部是Precambrian基岩的顶部。其他的模型分层的地质信息参考技术报告。

边界条件

空间平均的净渗透(含水层补水)在3.9-23.6 in/y,如图4,净渗流使用MODFLOW RCH软件包定义。

区域模型中考虑抽水井,见图3,抽水井使用WEL软件包定义。 世的位置公园和模型公园。世的正园园里中有是真的优品度

井的位置分配到模型分层, 井的开阔间距内有最高的传导度。

侧向水流边界使用MODFLOW GHB软件包定义。这些水流边界包括:河流。GHB软件的传导度设置为0.5m²/d,假设1m厚河床,

等价于1.25x10⁻⁵m/d的垂向水力传导度。

侧向水流边界形成区域模型的活动区域,除了南边边界(没有河流,不影响湖泊附近的地下水)。因此,南边边界设置为no-flow边界。

河流使用MODFLOW-NWT的SFR2软件包表征。SFR2输入使用SFRmaker软件定义。河床垂向水力传导度需要率定,最终取值1m/d,取值范围: 0.03~80.5m/d。

图4水文模型计算的平均年净渗 流(2012-2018)

含水层特性

初始的水平水力传导度,使用粗细泥沙比例估算

Layer1-3的水平水力传导度在0.09~152m/d

垂向水力传导度在0.002~2.93m/d

经过率定的模型水平水力传导度的含水层特性,见图5

垂向水力传导度,见图6

Specific yield, 见图7

specific storage, 见图8

A Layer 1 horizontal hydraulic conductivity 100 200 300 EXPLANATION Discussion of the poster page.

Worlebow

Horizontal hydraulic conductivity, in meters per day

Horizontal hydraulic conductivity, in meters per day

经过率定的模型水平水力传导度的含水层特性,见图5

垂向水力传导度,见图6

Figure 7. Specific-yield values after history matching for each of the four regional model layers [A, layer 1 [upper glacial]; B, layer 2 [middle glacial layer including New Rome Member where present]; C, layer 3 [lower glacial]; and D, layer 4 [sandstone bedrock]] in the Central Sands region, central Wisconsin.

Specific yield, unidess

0.35

Specific yield, unitless

艰苦樸素求真务實

Specific yield, 见图7

Figure 8. Specific-storage values after history matching for each of the four regional model layers (A, layer 1 [upper glacial]; B, layer 2 [middle glacial] and D, layer 4 Member where present]; C, layer 3 [lower glacial]; and D, layer 4

Specific storage, per meter

[sandstone bedrock]] in the Central Sands region, central Wisconsin.

specific storage, 见图8

模型率定

地下水水头和河流的测量值用于模型率定,见表1

数据共收集至177条河流和464个井,以及湖泊水位观测。

参数估计PEST++

实测值与计算值的比较,湖水位和地下水位,见图9

河流流量比较见图10

表1实测的地下水头和河流数据(模型率定用)

Group name in the PEST files	Target type	Description	Number of locations	Data source
hds_wgnhs_tr, heads_wgnhs	Head	Well-construction report groundwater elevation measured after a well was drilled. Locations were determined by the WGNHS.	299	WDNR, 2022
nwis_dvs, nwis- dvs_tr	Head	Groundwater elevations at locations with daily data that were collected by the USGS.	31	USGS, 2021
nwis_fm, nwisfm_tr	Head	Groundwater elevations at locations with miscellaneous measurements that were measured by the USGS.	23	USGS, 2021
wdnr_wells	Head	Wells installed for this study and measured by WGNHS and WDNR.	36	WDNR, 2022
wdnr_lakes, wdn- rlks_tr	Head	Lake elevations measured by the WDNR.	70	WDNR, 2022
usgs_stages	Head	Lake elevation measured by the USGS.	5	USGS, 2021
nr_diff	Head difference (vertical)	Hydraulic-head difference measurement across New Rome Member.	1	Hart and others (2015)
hd_diff	Head difference (temporal)	Calculated as the difference between two hydraulic-head measurments made at the same location for any hydraulic-head dataset where two or more measurements were made.	1,573 differences; some locations have multiple differences if more than 2 groundwater elevations were collected.	All hydraulic-head target datasets in this table.
nwis_dv_flx, nwisd- vflx_tr	Streamflow	Streamflow measurements at USGS streamgages with daily data. Data have been adjusted using base-flow separation techniques to reflect base-flow condi- tions.	6	USGS, 2021
nwis_fm_flx, nwis- fmflx_tr	Streamflow	Miscellaneous streamflow measurements collected by the USGS. Data have been adjusted to base-flow conditions using streamgages with daily data.	5	USGS, 2021
wdnr_miscflx, wdn- rflx_tr	Streamflow	WDNR streamflow measurements made during base-flow conditions. No adjust- ments made.	166	WDNR, 2022

实测值与计算值的比较,湖水位和地下水位,见图9

河流流量比较见图10

艰苦樸素 求真务實

Figure 11. Steady-state hydraulic-head (water-level) target residuals displayed by calibration group for the regional model, Central Sands region, central Wisconsin.

恒定态水头和河流的实测值与计算值之差,如图11和图12

艰苦樸素求真务實

过渡水头和河流的实测值(选择部分的井和河流),见图13和图14

Simulated

图13 模拟的地下 水位(选择的部分 井,井位置见图11)

图14 在研究湖泊附近选择河流位置的模拟的过渡性河道流量(用于率定区域模型)

图16 在恒定态stress period内模拟 的水位线和河流流量, 表征 2012~2018年的平均情况

艰苦樸素求真务實

图17区域模型地下水收 支,显示主要的模型 Inflow与outflow,对各 stress period 入流和出流使用 MODFLOW列表文件约 定

重点区域的inset模型(嵌套模型)

嵌套模型区域和水平向离散

湖泊周围区域使用**20m**水平网格分辨率可充分表征细节地形和湖泊的海岸线几何形状。但这样嵌套模型的运行时间很长(数个小时)。

因此,使用LGR方法,使用MODFLOW6的多中模型功能。重点研究湖泊的模型由2个子模型组成:

inset模型,与区域模型网格平行,相同的网格分辨率200m

一个局部细化的LGR子模型,使用均匀的20m网格分辨率,包围湖泊的矩形区域。Pleasant湖见图19.

Pleasant湖嵌套子模型由100行和100列网格组成,LGR模型包含100行和120列。

艰苦樸素 求真务實

湖泊周围区域使用**20m**水平网格分辨率可充分表征细节地形和湖泊的海岸线几何形状。但这样嵌套模型的运行时间很长(数个小时)。

因此,使用LGR方法,使用MODFLOW6的多中模型功能。重点研究湖泊的模型由2个子模型组成:

inset模型,与区域模型网格平行,相同的网格分辨率200m

一个局部细化的LGR子模型,使用均匀的20m网格分辨率,包围湖泊的矩形区域。

Pleasant湖嵌套子模型由100行和100列网格组成,LGR模型包含100行和120列。这样基准运行时间约10分钟。

艰苦樸素求真务實

嵌套模型垂向分层

inset模性的垂向分层与区域模型的数据源相同,除了layer1分为2层,调整为湖泊地形。模型顶层(layer1顶部)基于从LiDAR DEM的重采样的平均高程赋给各单元,除了湖泊地形。湖泊地形是从DEM高程减去,实现模型顶部。inset模型的底部表面层,没有湖泊。Layer1和Layer2均分,更好地表征湖泊水面附近的水力梯度。

MODFLOW6允许不连续分层,意味着模型残垣可以从没有水文地质单元的去删去。Pleasant湖嵌套模型,单元从layer3删去,此处没有New Rome Member或Layer2。单元也从陆地下面1m内的地层删去,接近基岩表面的点或沿着湖泊底部。

时间离散

嵌套模型的时间离散与区域模型一致,除了初始恒定态期间表征从2012~2015的平均条件。

嵌套模型的时间步长是1.2,与区域模型的1.5不同,因为嵌套模型更难收敛,较小的时间乘子改善模型收敛。

边界条件

嵌套模型的边界条件包括区域地下水流过模型周长。来自降雨、 融雪和灌溉的补水。来自湖泊和河流的地下水-地表水交互。模型周长边界模拟为指定水头值(从区域模型获得)。

补水

嵌套模型的补水是来自SWB模拟的净渗流,使用最邻近方法施加到模型单元中心。该方法质量守恒。2012~2015施加初始恒定态周期的补水,然后在月stress period施加月平均净渗流。

MODFLOW6使用Recharge (RCH)软件模拟补水,使用基于数组的输入。

河流

MODFLOW6使用SFR软件模拟河流。SFR输入使用与区域模型相同的方法,除了使用flowline更精确第表征河流水源处的泉水(图19)。Pleasant湖模型,嵌套子模型中的泉水流出,这些溪流在2个子模型间连接,使用Water Mover (MVR)软件。

湖泊

MODFLOW6使用LAK软件描述嵌套模型中的LGR部分,耦合湖水平衡与地下水模型的湖水位模拟。Pleasant湖模型使用LAK软件,所有嵌套模型中的其他湖泊都使用高水力传导度区域,与区域父模型一样。

湖泊范围从遥感数据获取,与模型网格相交,表述为湖泊联系的单元。在湖泊范围内,模型顶部设置为湖底,基于地形表面。

LAK软件的水平衡需要湖泊的直接降雨输入和湖面蒸发。降雨从。。。获取,同时还包含平均气温评估。平均月湖面蒸发速率使用Hamon方法基于气温评估得到。

水利用

在2012~2018期间的井操作在MODFLOW6中表述为WEL软件。 抽水井的位置见图19 (Pleasant湖模型)。WEL软件的输入从报告的 抽水数据获得,与区域模型使用相同的方法。井分配带模型层,在 井之间使用最高的传导度。没有间距信息的水井,在其位置上分配 给最高的传导度。

含水层特性

水平向和垂向水力传导度初始值设置根据区域模型的率定给出。 Specific Storage(Ss)初始设置为1x10-6 m-1 Specific yield (Sy)初始设置为0.15(无量纲)