Cardinality

MA 1201

Shibananda Biswas

IISER Kolkata

January 09, 2024

References

Books

- A Foundation Course in Mathematics by Ajit Kumar, S. Kumaresan and B. K. Sharma
- *Analysis I* by T. Tao
- Schaum's Outline Of Set Theory and Related Topics by S. Lipschutz
- Introduction to real analysis by S. K. Mapa
- Proof from the book by Martin Aigner, Gunter M. Ziegler, et al.

Notations

Usual notations

 \mathbb{N} : Natural numbers, $\{1, 2, 3, \dots, \}$

 \mathbb{Z} : Integers

Q: Rational numbers

 \mathbb{R} : Real numbers

 \mathbb{C} : Complex numbers

Given a set A, let $\mathcal{P}(A)$ denotes its power set.

When A contains n many elements, then $\mathcal{P}(A)$ contains 2^n many elements.

Finite set

Natural intuitions

Finite set: One can count and finish counting!

We say the set contains those many elements!

A natural question: When two sets have same number of elements?

For finite set, the answer could be found by simply counting the number of elements. All the sets below

$${a,b,c,d}, {2,3,5,7}, {x,y,z,t}$$

have 4 elements.

Alternate way

However, it is not always necessary to know the number of elements in two sets to know that they have same number of elements!

Suppose a number of people board a bus.

When we will say that the number of people is the same as the number of seats in the bus?

Let all the people sit down.

If everyone finds a seat and no seat remains empty, then and only then two sets have same number of elements - basically 1 - 1, onto correspondence from people to seat.

Nothing new

In fact, we learnt to count object by forming an 1-1 correspondence between objects and fingers or the lines on the finger.

If one asks the question:

How many days are there until Saturday?

The response is often to actually pair the remaining days with one's finger.

Mathematically, we make a 1-1, onto correspondence with the set of objects to

$$I_n := \{1, 2, \ldots, n\}.$$

This lead us to the following definition.

Same cardinality

Definition. Two sets A and B are said to have *same cardinality* (that is, same no of elements or same size) if \exists a function $f: A \rightarrow B$ which is bijective, that is, both 1-1 and onto.

Exc. Let X be a set and $A, B \subseteq X$. Let $A \sim B$ if and only if A and B have same cardinality. Show that \sim is an equivalence relation on $\mathcal{P}(X)$.

Why suddenly we put the sets inside a set X - to avoid a logical fallacy.

Russell's paradox

A barber in a city shaves only those who do not shave themselves. The questions is whether the barber shaves himself or not!

Finite set and cardinal number

Definition. A set *A* is said to be *finite* if *A* is either \emptyset or $\exists n \in \mathbb{N}$ and a bijection $f: I_n \to A$ (or equivalently, \exists a bijection $g: A \to I_n$).

In this case, we say A has cardinality n.

We say cardinality is 0 if A is an empty set.

Though the earlier exercise allows us to define cardinality, there might be one problem with this definition: a set might have two different cardinalities!!! (well-definedness)

BUT, this is not possible!

A Lemma

Lemma

Suppose $n \in \mathbb{N}$ and A has cardinality n. Then A is non-empty, and if a is an element of A, then the set $A \setminus \{a\}$ has cardinality n-1.

Proof. A is non-empty as there is no bijection (function) from a non-empty set to an empty set.

Let $g: A \to I_n$ be a bijection. As $g(a) \in \mathbb{N}$ and g is 1-1, the either g(x) < g(a) or g(x) > g(a). Define $h: A \setminus \{a\} \to I_{n-1}$ by

$$h(x) = \begin{cases} g(x), & \text{if } g(x) < g(a), \\ g(x) - 1, & \text{if } g(x) > g(a). \end{cases}$$

Proof ctd.

Note h is 1 - 1 as if h(y) = h(z) = i, then for i < g(a), g(y) = g(z) gives y = z and if $i \ge g(a)$ (this case may not appear as well), g(y) - 1 = g(z) - 1 gives y = z.

h is onto since for i < g(a), $h^{-1}(i) = x$ if g(x) = i and for $i \ge g(a)$, $h^{-1}(i) = x$ if g(x) = i + 1.

Uniqueness of cardinality

Proposition

Let A be a set with cardinality n. Then A can not have any other cardinality, that is, if there is another bijection between I_m and A, then m = n.

Proof. Induction on n. Suppose n = 1. If there exist a bijection from I_m for some m, then there is a bijection f from I_m to I_n . So if m > 1, f(1) = f(m) = 1 contradicts that f is 1 - 1. Hence m = 1.

Induction hypothesis: the statement is true for n = k.

Let n = k + 1. Suppose it has cardinality m as well. Then A is non-empty and for $a \in A$, the set $A \setminus \{a\}$ has cardinality k and m - 1. By induction hyothesis, k = m - 1 and hence, we are done.

Well Ordering Principle in $\mathbb N$

Theorem

Every non-empty subset of \mathbb{N} has a least element.

Proof. Let $A \subseteq \mathbb{N}$ be a non-empty subset.

Proof by contradiction. Suppose *A* doesn't have a least element.

Consider $S = \mathbb{N} \setminus A$. We shall show $S = \mathbb{N}$.

We will use induction.

 $1 \in S$, otherwise A has a least element.

Induction hypothesis: $\{1, \ldots, k\} \subseteq S$

 $k+1 \in S$.

By induction, $S = \mathbb{N}$ contradiction to the fact that A is non-empty.

Interesting Proposition

Let us denote cardinality of a set A by |A|.

Proposition

If $f: A \to I_m$ is 1-1, then A is finite and $|A| \le m$.

Proof. By well ordering principle, let

$$m_1 := \min_{a \in A} f(a).$$

Clearly, $m_1 \geq 1$. Then consider

$$m_2 := \min f(A) \setminus \{m_1\} = \min\{y : y \in f(A) \text{ such that } y \neq m_1\}.$$

Note that, we have $m_2 \geq 2$.

Proof continued

So at k-th step, we have $m_k \ge k$ such that

$$m_k := \min f(A) \setminus \{m_1, \ldots, m_{k-1}\}.$$

We claim that $\exists \ell$ such that $f(A) = \{m_1, \dots, m_\ell\}$ with $\ell \leq m$. Otherwise, if $\ell > m$, then $m_\ell \geq \ell > m$ contradicts $m_\ell \in I_m$.

Define $g: A \to I_{\ell}$ by g(a) = i if $f(a) = m_i$.

g is onto by construction.

Since f is 1 - 1, the map g is 1 - 1 and hence is a bijection.

Therefore, A is a finite set with $|A| \leq m$.

on. $f(A) \ni m_{\ell}$ $\downarrow \qquad \qquad \downarrow \qquad$

Corollary

If there exists a 1-1 map $f:I_n \to I_m$, then $n \le m$, that is, if n > m, then there is no 1-1 map from I_n into I_m

The proposition on onto

Proposition

If $f: I_n \to A$ *is onto, then* A *is finite and* $|A| \le n$.

Proof. Define $g: A \to I_n$ by setting

$$g(a) = \min f^{-1}(a) = \min_{x \in I_n: f(x) = a} x.$$

Then g is 1 - 1 map as $g(a_1) = g(a_2)$ implies $a_1 = f(x) = a_2$, and we are done by the previous proposition.

Note that in the proof above it is not neccessary to choose the minimum, you can choose exactly one from the pre-image set $f^{-1}(a)$ for each $a \in A$.

Corollary

If there exists a onto map $f: I_n \to I_m$, then $m \le n$, that is, if m > n, then there is no onto map from I_n to I_m .

Cardinal arithmetic

Exc. If A is a finite set and $B \subseteq A$, then B is finite and $|B| \leq |A|$.

Hint. Consider the inclusion map of B tp A and compose it with the bijection of A to I_n .

Exc. If A is a finite set and B is a proper subset of A, then |B| < |A|.

Hint. $\exists a \in A \text{ such that } B \subseteq A \setminus \{a\}.$

Exc. If A is a finite set, then $|A \cup \{a\}| = |A| + 1$.

Exc. If A, B are finite sets, then

$$|A \cup B| = |A| + |B| - |A \cap B|.$$

Infinite set

Infinite set

Definition. A set is *infinite* if it is not finite.

Now - an example of an infinite set.

Theorem

 \mathbb{N} is infinite.

Proof. Proof by contradiction. Suppose \exists a bijection from $f: I_n \to \mathbb{N}$ for some $n \in \mathbb{N}$.

Let
$$M := \max\{f(1), \dots, f(n)\}.$$

But then the natural number $M + 1 \notin f(I_n)$ contradicting that f is a bijection.

Theorem

The set of prime numbers is infinite.

The first type of infinity

Theorem

A set A is an infinite set if and only if $\exists a \ 1 - 1 \ map \ f : \mathbb{N} \to A$.

Proof. (Only if) If A is an infinite set, then there exist a 1-1 map $f: \mathbb{N} \to A$.

Choose an element from A, name it a_1 and define $f(1) = a_1$.

Choose $a_k \in A \setminus \{a_1, \dots, a_{k-1}\}$ (we can do so as A is infinite) and define $f(k) = a_k$.

(If) Suppose A is not infinite, then $f(\mathbb{N}) \subseteq A$ is finite.

Since $f: \mathbb{N} \to f(\mathbb{N})$ is a bijection, we have \mathbb{N} finite - a contradiction.

Countable set

Definition.

- A set *A* is said to be *countably infinite* or just *countable* if it has same cardinality with \mathbb{N} , that is, \exists a bijection between \mathbb{N} and *A*.
- A set is called *atmost countable* if it is finite or countable.
- An infinite set is called *uncountable* if it is not countable.

The previous Theorem says that every infinite set contains a countable subset.

Examples of countable sets

- Obviously, \mathbb{N} is countable.
- $\mathbb{N} \setminus \{1\}$ is countable as $f : \mathbb{N} \to \mathbb{N} \setminus \{1\}$ given by f(n) = n + 1 is a bijection example of first departure from finite set a proper subset having the same cardinality with the set itself.
- $2\mathbb{N}$ the set of even numbers countable: $f: \mathbb{N} \to 2\mathbb{N}$ given by f(n) = 2n is a bijection.

First observation

Theorem

A set is infinite if and only if it has a proper subset with same cardinality to itself.

Proof. Note if a set is finite then it can not have same cardinality with any of its proper subset.

So contrapositively, we have the if part.

(Only if) Let A be an infinite set. We have already seen that \exists a 1-1 map from $f: \mathbb{N} \to A$.

$$\operatorname{Let} f(n) = a_n.$$

Define $g: A \to A \setminus \{a_1\}$ by

$$g(x) = \begin{cases} x, & \text{if } x \in A \setminus \{a_1, a_2, \dots, a_n \dots\}, \\ a_{n+1}, & \text{if } x = a_n \text{ for some } n \in \mathbb{N}. \end{cases}$$

g is a bijection.

2nd observation

Theorem

Any infinite subset of \mathbb{N} *is countable.*

Proof. Let *A* be an infinite subset of \mathbb{N} . Thus, we can construct $m_k \geq k$ such that

$$m_k := \min A \setminus \{m_1, \ldots, m_{k-1}\}.$$

Define $f : \mathbb{N} \to A$ by $f(k) = m_k$. Clearly, f is 1 - 1.

To prove f onto, we need to show that for each $a \in A \exists n$ such that $a = m_n$.

Note $A \cap I_k \subseteq \{m_1, \dots, m_k\}$. Since $a \in \mathbb{N}$, there exist a natural number N such that $a \leq N$ (?).

So $a \in A \cap I_N$ and hence we are done.

Exc. Any subset of a countable set is atmost countable.

Adjoining an element

Take x a new element, $\mathbb{N} \cup \{x\}$ is countable: $f : \mathbb{N} \to \mathbb{N} \cup \{x\}$ given by f(1) = x and f(n) = n - 1, $n \ge 2$, is a bijection.

Similarly if *A* is a countable set, then $A \cup \{x\}$ is countable.

If $f: \mathbb{N} \to A$ is a bijection and $f(n) = a_n$, then $A = \{a_1, \dots, a_n, \dots\}$. The map $g: \mathbb{N} \to A \cup \{x\}$ defined by

$$g(1) = x \text{ and } g(n) = a_{n-1} \text{ for } n \ge 2,$$

is a bijection.

Hilbert's hotel

Hilbert's hotel

Union of countable sets

Can we accommodate any finite no. of people?

Clearly, for a countable set A, the set $A \cup \{x_1, x_2, \dots, x_k\}$ is countable, since we have the bijection $g(i) = x_i$ for $1 \le i \le k$ and $g(n) = a_{n-k}$ for $n \ge k+1$.

What if a countable no. of people come?

Evidently, this question boils down to whether union of two countable set is countable!

Finite union of countable sets

Theorem

If A and B are countable sets, then $A \cup B$ is a countable set.

Proof. Without loss of generality (WLOG) one can assume $A = \{a_1, a_2, \ldots, a_n, \ldots\}$ and $B = \{b_1, b_2, \ldots, b_n, \ldots\}$. The map $g : \mathbb{N} \to A \cup B$ given by

$$g(n) = \begin{cases} a_k, & \text{if } n = 2k \text{ for some } k \in \mathbb{N}, \\ b_k, & \text{if } n = 2k - 1 \text{ for some } k \in \mathbb{N}. \end{cases}$$

is a bijection. Are we missing something?

• $\mathbb{N} \cup \{0\}, \mathbb{Z} = -\mathbb{N} \cup \{0\} \cup \mathbb{N}$ are countable.

Some more observations

Corollary

Finite union of countable sets is countable.

Exc. For any infinite set A and a countable set B, the sets A and $A \cup B$ are of same cardinality.

Hint. Let $\{a_1, a_2, \ldots, a_n \ldots\} \subseteq A$. Consider the map $g: A \to A \cup B$ given by

$$g(x) = \begin{cases} x, & \text{if } x \in A \setminus \{a_1, a_2, \dots, a_n \dots\}, \\ a_k, & \text{if } x = a_{2k} \text{ for some } k \in \mathbb{N}, \\ b_k, & \text{if } x = a_{2k-1} \text{ for some } k \in \mathbb{N}. \end{cases}$$

Countable union

Theorem

Countable union of countable sets is countable.

Proof. WLOG, let $A_1, A_2, \ldots, A_n, \ldots$ be a countable family of countable sets. Also let WLOG

$$A_1 = \{a_{11}, a_{12}, \dots, a_{1n,\dots}\}$$
 $A_2 = \{a_{21}, a_{12}, \dots, a_{2n,\dots}\}$
 $\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$
 $A_n = \{a_{n1}, a_{n2}, \dots, a_{nn,\dots}\}$
 $\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$

Let
$$A = \bigcup_{i=1}^{\infty} A_i$$
.

Case I. $A_i \cap A_j = \emptyset$ for all $i \neq j$.

Proof idea

Idea of bijection

Tweak a little for explicit bijection

The bijection

Note that

$$\mathbb{N} = \bigcup_{m \in \mathbb{N}} \left(\frac{m(m-1)}{2}, \frac{m(m+1)}{2} \right]$$

and that this union is disjoint.

Also note that the arrows are like slanting lines joining (1, m) to (m, 1) with any point (r, s) of the m points lying on it satisfies r + s = m + 1.

So given $n \in \mathbb{N}$, $\exists m$ such that

$$\frac{m(m-1)}{2} < n \le \frac{m(m+1)}{2}$$

Define $f : \mathbb{N} \to A$ by $f(n) = a_{rs}$ with r + s = m + 1 and $r = n - \frac{m(m-1)}{2}$, $r \ge 1$.

This proof is not yet complete, however, we observed that this might lead to countability of \mathbb{Q} and $\mathbb{N} \times \mathbb{N}$!