Corrigé: Examen novembre 2017

Solution Exercice 1 1. le modèle géométrique est dominé par la mesure discrète $\mu = \sum_{n \in \mathbb{N}^*} \delta_n.$

— La densité par rapport à cette mesure est la loi donnée dans l'énoncé,

$$p_{\theta}(x) = \mathbb{1}_{\mathbb{N}^*}(x)\mathbb{P}_{\theta}\{X = x\} = \theta(1 - \theta)^{x-1}, x \in \mathbb{R}.$$

NB: Puisqu'on a choisi μ ne chargeant que \mathbb{N}^* , on peut omettre l'indicatrice dans l'expression de p_{θ} .

- Pour un échantillon i.i.d. de taille n,

$$\log p_{\theta}^{\otimes n}(x_1,\ldots,x_n) = n\log\theta + \sum_{i=1}^n (x_i-1)\log(1-\theta).$$

2. max de vraisemblance : On le trouve en annulant la dérivée de la log-vraisemblance. Pour $x = (x_1, ..., x_n),$

$$\frac{\partial}{\partial_{\theta}} \log p_{\theta}^{\otimes n}(x) = \frac{n}{\theta} - \frac{\sum x_i - n}{1 - \theta} = \frac{n - \theta \sum x_i}{\theta (1 - \theta)}$$

cette quantité s'annule en $\theta = n/\sum x_i$, elle est positive à gauche et négative à droite de cette valeur, qui est donc bien un maximiseur de la vraisemblance. Ainsi $\theta_{MV} = n / \sum x_i$.

- 3. **risque quadratique** pour $g(\theta) = 1/\theta$, on considère $g_n(X) = \frac{1}{n} \sum X_i$.
 - biais : on a $\mathbb{E}(g_n(X)) = \mathbb{E}(X) = 1/\theta$. L'estimateur est donc non biaisé.
 - variance: $\mathbb{V}\operatorname{ar} g_n(X) = \frac{1}{n}\operatorname{var} X = \frac{1-\theta}{n\theta^2}$. Le risque vaut donc $R(g_n,\theta) = \frac{1-\theta}{n\theta^2}$.

— Efficacité : g_n étant non biaisé, il est efficace si et seulement s'il atteint la borne de Cramér-Rao $B(\theta)=g'(\theta)^2/(nI_1(\theta))$ avec I_1 l'information de Fisher pour 1 observation. On a

$$I_1(\theta) = \mathbb{E}_{\theta}[\partial_{\theta} \log p_{\theta}(X_1)^2]) = \mathbb{V}ar_{\theta}[\partial_{\theta} \log p_{\theta}(X_1)]$$

car d'après le cours, l'espérance du score est nulle. D'où

$$I_1(\theta) = \mathbb{V}\operatorname{ar}\left[\frac{1-\theta X_1}{\theta(1-\theta)}\right] = \frac{\theta^2}{\theta^2(1-\theta)^2} \mathbb{V}\operatorname{ar}(X_1) = \frac{1}{\theta^2(1-\theta)}$$

de plus $q'(\theta)^2 = 1/\theta^4$, d'où

$$B(\theta) = \partial (1 - \theta)n\theta^2 = R(g_n, \theta)$$

 g_n est donc efficace.

Approche bayésienne : prior $\pi(\cdot) = \mathcal{U}_{[0,1]}$.

4. La densité a posteriori peut se calculer à une constante de normalisation près (ne dépendant pas de θ)

$$\pi(\theta|x) \propto \pi(\theta)p_{\theta}^{\otimes n}(x) = \mathbb{1}_{[0,1[}(\theta)\theta^{n}(1-\theta)^{\sum x_{i}-n} \propto \text{beta}(\theta|a_{n},b_{n})$$

où beta $(\theta|a,b)$ est la densité de la loi Beta e paramètres a et b, et où

$$a_n = n+1 \; ; \; b_n = \sum x_i - n + 1$$

Ainsi la loi a posteriori est une loi beta de paramètres a_n, b_n comme ci-dessus.

5. l'espérance a posteriori est

$$\mathbb{E}(\theta|X=x) = \mathbb{E}(U)$$

où $U \sim \pi(\cdot|x) = \mathcal{B}eta(a_n, b_n)$ D'après le résultat de l'encadré sur l'espérance des lois Beta, $\mathbb{E}(U) = a_n/(a_n + b_n)$, d'où

$$d'où\widehat{\theta}_{EP}(x_1,\dots,x_n) = \mathbb{E}(\theta|X=x) = \frac{n+1}{\sum x_i + 2}$$

6. D'après la loi des grands nombres, si $X_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{G}(\theta)$, on a, presque sûrement, $\frac{1}{n} \sum_{i=1}^n X_i \to \mathbb{E}_{\theta}(X_1) = 1/\theta$. Ainsi

$$\widehat{\theta}_{EP}(X_1, \dots, X_n) = \frac{1 + \frac{1}{n}}{\frac{1}{n} \sum X_i + \frac{2}{n}} \to \frac{1}{1/\theta} = \theta$$
 presque sûrement.

Solution Exercice 2 [paramètre de translation]

1. l'espérance de X_1 vaut

$$\mathbb{E}_{\theta}(X_1) = \int_{0}^{+\infty} x e^{\theta - x} dx \stackrel{\text{calcul simple}}{=} \theta + 1.$$

En prenant $\widehat{\theta}_n(X) = \frac{1}{n} \sum_{i=1}^{n} (X_i) - 1$, on a bien par linéarité de l'espérance

$$\mathbb{E}_{\theta}(\widehat{\theta}_n(X)) = \frac{1}{n} \sum_{i} \mathbb{E}(X_i) - 1 = \theta.$$

Ainsi $\hat{\theta}_n$ est non biaisé.

2. Risque quadratique : Pour $\theta > 0$, il est donnée par

$$R(\theta, \widehat{\theta}_n) = \mathbb{E}\left[(\widehat{\theta}_n(X) - \theta)^2\right]$$

et puisque $\mathbb{E}(\widehat{\theta}_n(X)) = \theta$, on a $R(\theta, \widehat{\theta}_n) = \mathbb{V}ar_{\theta}(\widehat{\theta}_n(X))$. De plus, pour une observation $X_1 \sim P_{\theta}$,

$$\operatorname{Var}_{\theta}(X_{1}) = \int_{\theta}^{\infty} (x - \theta - 1)^{2} e^{\theta - x} dx$$

$$= \int_{0}^{\infty} (t - 1)^{2} e^{-t} dt$$

$$= \left[-(t - 1)^{2} e^{-t} \right]_{0}^{\infty} + 2 \underbrace{\int_{0}^{\infty} (t - 1) e^{-t}}_{0}$$

$$= 1.$$

Ainsi, par indépendance des X_i ,

$$\operatorname{Var}_{\theta}(\widehat{\theta}_n(X)) = \frac{1}{n} \operatorname{Var}_{\theta}(X_1) = \frac{1}{n}.$$

3. On considère $\tilde{\theta}_n(X) = \min_{i=1}^n X_i$.

Remarque: l'idée de choisir $\tilde{\theta}_n$ vient du fait que θ est la borne inférieur des $\{x: p_{\theta}(x) > 0\}$. Ainsi, pour $x > \theta$ on a $\mathbb{P}_{\theta}(X_1 \leq x) > 0$ alors que pour $x < \theta, \mathbb{P}_{\theta}(X \leq x) = 0$. Dans ce sens, θ est la plus petite valeur « possible » pour les X_i . Pour calculer la loi de $\tilde{\theta}_n(X)$, il est dans ce cas plus facile de calculer sa fonction de répartition que sa densité (à supposer que cette dernière existe). En effet, si on appelle \tilde{F}_{θ} cette fonction de répartition,

$$\tilde{F}_{\theta}(x) = \mathbb{P}_{\theta}(\tilde{\theta}_n(X) \le x),$$

on a

$$1 - \tilde{F}_{\theta}(x) = \mathbb{P}_{\theta}(\tilde{\theta}_{n}(X) > x)$$

$$= \mathbb{P}_{\theta} \left[\bigcap_{i=1}^{n} X_{i} > x \right]$$

$$= \prod_{i=1}^{n} \mathbb{P}_{\theta}(X_{i} > n) \qquad \text{(indépendance)}$$

$$= \mathbb{P}_{\theta}(X_{1} > x)^{n}.$$

Reste à calculer cette dernière quantité en intégrant la densité de X_1 , ce qui donne

$$\forall x \ge \theta, \mathbb{P}_{\theta}(X_1 > x) = \int_x^{\infty} e^{\theta - t} dt = e^{\theta - x},$$

et pour $x \leq \theta$, $\mathbb{P}_{\theta}(X_1 > x) = 1$. Finalement $\mathbb{P}_{\theta}(X_1 > x) = e^{-\max(x - \theta, 0)}$. D'où

$$\tilde{F}_{\theta}(x) = 1 - e^{-n \max(x - \theta, 0)}.$$

- 4. Puisque $\tilde{F}_{\theta}(\theta) = 0$, on a, avec probabilité 1, $\tilde{\theta}_n(X) \geq \theta$. Ainsi, la variable aléatoire $Z = \tilde{\theta}_n(X) \theta$ est presque sûrement positive. Comme elle n'est pas constante, sont espérance est strictement positive. D'où : $\tilde{\theta}_n$ est biaisé.
- 5. Le risque quadratique de $\tilde{\theta}_n$ est $R(\theta, \tilde{\theta}_n) = \mathbb{E}[(\theta \tilde{\theta}_n(X))^2]$. On utilise le fait que pour une variable aléatoire $Y: \Omega \to \mathbb{R}^+, \mathbb{E}(Y) = \int_{t=0}^+ \infty \mathbb{P}(Y > t) dt$. On pose $Y = (\tilde{\theta}_n \theta)^2$. Alors, pour $t \geq 0$, $\mathbb{P}_{\theta}(Y > t) = \mathbb{P}(\tilde{\theta}_n \theta > \sqrt{t})$ car avec probabilité

 $1, \, \tilde{\theta}_n - \theta \ge 0. \, \text{Ainsi},$

$$\begin{split} R(\theta,\tilde{\theta}_n) &= \mathbb{E}(Y) \\ &= \int_{t=0}^{\infty} \mathbb{P}_{\theta}(Y > t) \mathrm{d}t \\ &= \int_{t=0}^{\infty} \mathbb{P}_{\theta}(\tilde{\theta}_n - \theta > \sqrt{t}) \mathrm{d}t \\ &= \int_{t=0}^{\infty} \mathbb{P}_{\theta}(\tilde{\theta}_n - \theta > \sqrt{t}) \mathrm{d}t \\ &= \int_{t=0}^{\infty} e^{-n\sqrt{t}} \mathrm{d}t \quad (\text{ cf question précédente}) \\ &= \int_{u=0}^{\infty} e^{-nu} 2u \mathrm{d}u \\ &= \frac{2}{n^2} \int_{r=0}^{\infty} e^{-r} r \mathrm{d}r \\ &= \frac{2}{n^2} \end{split}$$

6. Lorsque n est plus grand que 2, on a

$$\forall \theta, \quad R(\theta, \tilde{\theta}_n) = 2/n^2 < 1/n = R(\theta, \hat{\theta}_n).$$

Le risque du deuxième estimateur (qui est pourtant biaisé) est uniformément plus faible que celui du premier estimateur. $\tilde{\theta}_n$ est donc préférable à $\hat{\theta}_n$.

- 7. le modèle n'est pas régulier car l'ensemble des points x tels que $p_{\theta}(x) > 0$ dépend de θ (c'est ensemble est $[\theta, +\infty[)$).
- 8. D'après la question 3., on a $\mathbb{P}_{\theta}[\tilde{\theta}_n > x] = e^{-n(x-\theta)}$ pour $x > \theta$. En inversant la relation $\delta = e^{-n(x-\theta)}$ on obtient

$$x(n, \theta, \delta) = \theta + \frac{1}{n}\log(1/\delta).$$

Ainsi

$$\mathbb{P}_{\theta}[\tilde{\theta}_n > \theta + \frac{1}{n}\log(1/\delta)] = \delta, \quad \text{d'où}$$

$$\mathbb{P}_{\theta}[\theta > \tilde{\theta}_n - \frac{1}{n}\log(1/\delta)] = 1 - \delta$$

d'autre part on a $\mathbb{P}_{\theta}(\tilde{\theta}_n \geq \theta) = 1$. Ainsi en posant $I = [a_n, \tilde{\theta}_n]$ avec

$$a_n = \tilde{\theta}_n - \frac{1}{n}\log(1/\delta),$$

I est un intervalle de confiance pour θ de niveau $1-\delta$. Avec $\delta=0.05$, on obtient $a_n=\tilde{\theta}_n-\log(1/0.05)/10\approx\tilde{\theta}_n-0.3$.