Examen final de SIN: Test del bloc 2 (1,75 punts)

ETSINF, Universitat Politècnica de València, 26 de gener de 2023

Grup, cognoms i nom: 1,

Marca cada requadre amb una única opció. Puntuació: $\max(0, (\text{encerts} - \text{errors}/3) \cdot 1, 75/6)$.

1 B Donada la següent taula de probabilitats conjuntes de les 3 variables de interés:

A	0	0	0	0	1	1	1	1
В	0	0	1	1	0	0	1	1
C	0	1	0	1	0	1	0	1
P(A,B,C)	0.035	0.089	0.085	0.054	0.215	0.161	0.165	0.196

Quin és el valor de $P(A = 1, B = 1 \mid C = 1)$? $P(A = 1, B = 1 \mid C = 1) = 0.392$

A)
$$P(A=1, B=1 \mid C=1) \le 0.25$$

B)
$$0.25 < P(A=1, B=1 \mid C=1) \le 0.50$$

C)
$$0.50 < P(A=1, B=1 \mid C=1) \le 0.75$$

D)
$$0.75 < P(A=1, B=1 \mid C=1) \le 1.00$$

2 A Donat el classificador en 2 classes definit pels seus vectors de pesos $\mathbf{w}_1 = (1, 1, 2)^t$, $\mathbf{w}_2 = (2, 0, 3)^t$ en notació homogènia, quin dels següents conjunts de vectors **no** definix un classificador equivalent al donat?

A)
$$\mathbf{w}_1 = (-1, -1, -2)^t, \mathbf{w}_2 = (-2, 0, -3)^t$$

B)
$$\mathbf{w}_1 = (2, 1, 2)^t, \mathbf{w}_2 = (3, 0, 3)^t$$

C)
$$\mathbf{w}_1 = (3, 2, 4)^t, \, \mathbf{w}_2 = (5, 0, 6)^t$$

D)
$$\mathbf{w}_1 = (2, 2, 4)^t, \, \mathbf{w}_2 = (4, 0, 6)^t$$

- 3 D Suposeu que estem aplicant l'algorisme d'aprenentatge d'arbres de classificació per a un problema de quatre classes, c=1,2,3,4. L'algorisme ha arribat a un node t el qual inclou les següents dades: 4 de la classe 1, 64 de la 2, 32 de la 3 i 64 de la 4. La impuresa de t, $\mathcal{I}(t)$, mesurada com l'entropia de la distribució empírica de les probabilitats a posteriori de les classes en t, és: I=1.65
 - A) $0.00 \le \mathcal{I}(t) < 0.50$.
 - B) $0.50 \le \mathcal{I}(t) < 1.00$.
 - C) $1.00 \le \mathcal{I}(t) < 1.50$.
 - D) $1.50 \le \mathcal{I}(t)$.

- 4 B Es té una partició d'un conjunt de dades 3-dimensionals en un nombre de clústers donat, $C \ge 2$. Considereu la transferència de la dada $\mathbf{x} = (1,6,9)^t$ d'un clúster j a altre $i, j \ne i$. Se sap que el clúster j conté 2 dades (comptant \mathbf{x}) i el i 3. Així mateix, se sap que la mitjana del clúster j és $\mathbf{m}_j = (8,2,8)^t$ i la del i $\mathbf{m}_i = (10,8,9)^t$. Si es realitza la dita transferència, es produirà un increment de la suma d'errors quadràtics, ΔJ , tal que: $\Delta J = -68.2$
 - A) $\Delta J < -70$
 - B) $-70 \le \Delta J < -30$
 - C) $-30 \le \Delta J < 0$
 - D) $\Delta J \geq 0$
- 5 C Siga M un model de Markov de representació gràfica:

Quina probabilitat P acumulen totes les cadenes que comencen pel símbol b que pot generar M? 0.6

- A) $P \le 0.25$
- B) $0.25 < P \le 0.50$
- C) $0.50 < P \le 0.75$
- D) $0.75 < P \le 1.00$
- 6 C Siga M un model de Markov de conjunt d'estats $Q = \{1, 2, F\}$; alfabet $\Sigma = \{a, b\}$; probabilitats inicials $\pi_1 = \frac{2}{3}, \pi_2 = \frac{1}{3}$; matriu de probabilitats de transició entre estats A i d'emissió de símbols B, i matriu de Viterbi V:

- 1				
	A	1	2	F
	1	$\frac{2}{6}$	$\frac{2}{6}$	$\frac{2}{6}$
	2	$\frac{3}{7}$	$\frac{1}{7}$	$\frac{3}{7}$

B	a	b
1	$\frac{3}{4}$	$\frac{1}{4}$
2	$\frac{1}{3}$	$\frac{2}{3}$

V	a	a
1	$\frac{1}{2}$	V_{12}
2	$\frac{1}{9}$	V_{22}

Quins són els valors de V_{12} i V_{22} ? $V_{12} = \max(\frac{1}{2} \cdot \frac{2}{6} \cdot \frac{3}{4}, \frac{1}{9} \cdot \frac{3}{7} \cdot \frac{3}{4}) = \frac{1}{8}, V_{22} = \max(\frac{1}{2} \cdot \frac{2}{6} \cdot \frac{1}{3}, \frac{1}{9} \cdot \frac{1}{7} \cdot \frac{1}{3}) = \frac{1}{18}$

- A) $V_{12} = \frac{1}{8}$, $V_{22} = \frac{23}{378}$
- B) $V_{12} = \frac{9}{56}$, $V_{22} = \frac{23}{378}$
- C) $V_{12} = \frac{1}{8}, V_{22} = \frac{1}{18}$
- D) $V_{12} = \frac{9}{56}$, $V_{22} = \frac{1}{18}$

Examen final de SIN: Problema del bloc 2 (2 punts)

ETSINF, Universitat Politècnica de València, 26 de gener de 2023

Grup, cognoms i nom: 1,

Problema sobre Perceptró

En la taula següent es proporciona un conjunt de 4 mostres bidimensionals d'aprenentatge de 3 classes, c = 1, 2, 3.

n	x_{n1}	x_{n2}	c_n
1	5	2	1
2	1	2	3
3	1	1	2
4	4	1	1

Es demana:

1. (1.5 punts) Realitzeu una traça d'execució d'una iteració de l'algorisme Perceptró, amb factor d'aprenentatge $\alpha = 1$, marge b = 0.1 i els següents pesos inicials de cada classe per columnes:

d	w_{d1}	w_{d2}	w_{d3}
0	-3	0	-1
1	1	-4	-5
2	-4	-2	0

2. (0.5 punts) Classifiqueu la mostra de test $\mathbf{x} = (5,5)^t$ mitjançant un classificador lineal amb els vectors de pesos obtinguts en l'apartat anterior.

Solució:

1. Una iteració de Perceptró amb 1 mostra mal classificada i pesos resultants:

d	w_{d1}	w_{d2}	w_{d3}
0	-4	1	-2
1	0	-3	-6
2	-5	-1	-1

2. Classificació de la mostra de test.

$$g_1(\mathbf{x}) = -29$$

$$g_2(\mathbf{x}) = -19$$

$$g_3(\mathbf{x}) = -37$$

$$c(\mathbf{x}) = 2$$