ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΜΠ

"Αρχιτεκτονική Υπολογιστών"

Ορφανουδάκης Φίλιππος 03113140

<u>1η Άσκηση</u>

x = 0 , επομένως πρότυπο κινητής υποδιαστολής 27 bit , με εκθέτη μήκους 6 bit και κλάσμα 20 bits.

Άρα έχουμε το εξής:

πρόσημο-s	εκθέτης-e	κλάσμα-f
1 bit	6 bit	20 bit

α) Για να έχουμε την αναπαράσταση για κάθε περίπτωση πρέπει αρχικά να έχουμε την πόλωση η οποία υπολογίζεται ως εξής p = 2^(e-1) -1 = 31 = 11111.

Προκύπτει το εξής:

ΣΥΝΘΗΚΗ	ТІМН
0 <e<63< td=""><td>(-1)^s * 2^(e-31) * 1,f</td></e<63<>	(-1)^s * 2^(e-31) * 1,f
e=0,f ≠ 0	(-1)^s * 2^(-30) * 0,f
e=0,f=0	0

s=0,e=63,f=0	+INF
s=1,e=63,f=0	-INF
s=x,e=63,f ≠ 0	NaN

β) Πρεπει να βρώ τον μέγιστο και τον ελάχιστο αριθμό κατα απόλυτη τιμή ο μέγιστος θα είναι:

ο ελάχιστος θα είναι:

γ) Η ακρίβεια , δηλαδή η ελάχιστη διαφορά μεταξύ 2 διαδοχικών αριθμών είναι η διαφορά του ελάχιστου απο τον αμέσως μεγαλύτερο του δηλαδή ,

2η Άσκηση

Αρχικά πριν αρχίσουμε το διάγραμμα χρονισμού αριθμούμε με τον παρακάτω τρόπο τις εντολές έτσι ώστε να μπορέσουμε να τις τοποθετήσουμε στο διάγραμμα.

```
1. addi $t3, $t2, 100
L: 2. lw $t0, 0($t2)
3. addi $t0, $t0, 1
4. lw $t1, 4($t2)
5. sub $t0, $t0, $t1
6. sw $t0, 0($s0)
7. addi $t2, $t2, 4
```

```
8. sub $t4, $t3, $t2
```

9. bne \$t4, \$zero, L

Έπειτα στον κάθετο άξονα τοποθετούμε τις εντολές και στον οριζόντιο τον αριθμό των κύκλων.

α) Χωρίς προώθηση

	1	2	3	4	5	6	7	8	9	10	11	12	13
1	IF	ID	EX	MEM	WB								
2		IF	ID	EX	MEM	WB							
3			IF	ID	-	+	EX	MEM	WB				
4				IF	-	1	ID	EX	MEM	WB			
5					-	1	IF	ID	-	+	EX	MEM	WB
6								IF	-	1	ID	-	+
7											IF	-	-
8													
9													

	14	15	16	17	18	19	20	21	22	23	24	25	26
1													
2													
3													
4													
5													
6	EX	MEM	WB										
7	ID	EX	MEM	WB									
8	IF	ID	-	+	EX	MEM	WB						

9	IF	-	-	ID	1	+	EX	MEM	WB			
2		-	-		-	-	-	IF	ID	EX	MEM	WB

Παρατηρούμε ότι εμφανίζονται καθυστερήσεις στο διάγραμμα μας . Οι λόγοι εμφάνισης καθυστέρησης ειναι για την αποφυγή 3 κινδύνων :

- Κίνδυνος δομής
- Κίνδυνος δεδομένων
- Κίνδυνος ελέγχου

ΚΑΘΥΣΤΕΡΉΣΕΙΣ

- Εντολη 3: Κίνδυνος δεδομένων καθώς χρειαζόμαστε τον t0
- Εντολή 4: Κινδυνος δομής λόγω καθυστέρησης της προηγούμενης εντολής
- Εντολη 5: Κίνδυνος δεδομένων καθώς χρειαζόμαστε τον t1
- Εντολη 6:
 - Κινδυνος δομής λόγω καθυστέρησης της προηγούμενης εντολής
 - Κίνδυνος δεδομένων καθώς χρειαζόμαστε τον t0
- Εντολή 7: Κινδυνος δομής λόγω καθυστέρησης της προηγούμενης εντολής
- Εντολή 8: Κίνδυνος δεδομένων καθώς χρειαζόμαστε τον t2
- Εντολή 9:
 - ο Κινδυνος δομής λόγω καθυστέρησης της προηγούμενης εντολής
 - ο Κίνδυνος δεδομένων καθώς χρειαζόμαστε τον t2
- Εντολή 2: Κίνδυνος ελέγχου καθώς πρέπει να παρθεί η απόφαση ποια θα είναι η επόμενη εντολή

Κάθε φορά που έχει + αντί για - είναι ο δεύτερος μισός κύκλος της ID που γίνεται η ανάγνωση του καταχωρητή , αφου έχει γίνει η εγγραφή του στο πρώτο μισό κύκλο της WB.

Το loop θα ολοκληρωθεί όταν ο t4 ισούται με το μηδέν , όμως η αποπάνω εντολή λέει ότι ο t4 = t3 - t2 , απο την 1η εντολή βλέπουμε ότι t3 = t2 + 100 και μέσα στη loop t2 = t2 + 4. Άρα t2+100 - 4*i - t2 = 0 => i = 25 φορες θα γίνει η loop.

αρα 1+25*(21-1)+2 = 503 κύκλοι για την εκτέλεση του κώδικα.

β) Με όλα τα σχήματα προώθησης.

	1	2	3	4	5	6	7	8	9	10	11	12	13
1	IF	ID	EX	MEM	WB								
2		IF	ID	EX	MEM	WB							
3			IF	ID	-	EX	MEM	WB					
4				IF	-	ID	EX	MEM	WB				
5						IF	ID	-	Z	MEM	WB		
6							IF	-	ID	EX	MEM	WB	
7								-	IF	ID	K	MEM	WB
8										IF	ID	×	MEM
9											IF	ID	EX

	14	15	16	17	18	19	20
1							
2							
3							
4							
5							

6						
7						
8						
9	MEM	WB				
2	IF	ID	EX	MEM	WB	

Στο παραπάνω διάγραμμα θεωρούμε ότι δεν έχει εφαρμοστεί καμία τεχνική για βελτιστοποίηση του branch με είτε με συγκριτή είτε με πρόβλεψη των 2 bit.

Πάλι θα χρειαστούμε 25 επαναλήψεις της loop , άρα: 1+13*25+2 = 328 κύκλους για την εκτέλεση του κώδικα.

Οι προωθήσεις φαίνονται με βέλη.

γ) Αν στον αρχικό μου κώδικα αλλάξω την 3η με την 4η εντολή έχω το εξής αποτέλεσμα:

```
1. addi $t3, $t2, 100
L: 2. lw $t0, 0($t2)
3. lw $t1, 4($t2)
4. addi $t0, $t0, 1
5. sub $t0, $t0, $t1
6. sw $t0, 0($s0)
7. addi $t2, $t2, 4
8. sub $t4, $t3, $t2
9. bne $t4, $zero, L
```

	1	2	3	4	5	6	7	8	9	10	11	12	13
1	IF	ID	EX	MEM	WB								
2		IF	ID	EX	MEM	WB							
3			IF	ID	EX	MEM	WB						
4				IF	ID	×Z	MEM	WB					
5					IF	ID	× _A	MEM	WB				
6						IF	ID	EX	MEM	WB			
7							IF	ID	EX	MEM	WB		

					7				
8				Ŀ	ID	X	MEM	WB	
9					IF	ID	EX	MEM	WB

	12	13	14	15	16	17	18			
2	IF	ID	EX	MEM	WB					

Οι προωθήσεις φαίνονται και με βέλη αλλά και στις πρώτες 2 περιπτώσεις που είχαμε προώθηση 2 εντολές παρακάτω δεν μπορουσε να σχεδιαστεί αλλιώς και φαίνεται με το ίδιο χρώμα δηλαδή έχω από το 2 MEM \rightarrow 4 EX και 3 MEM \rightarrow 5 EX.

Τώρα θα έχω 1+9*25+2 = 228 κύκλους για την εκτέλεση του κώδικα.