BROKE West Survey, Marine Science Cruise AU0603 - Oceanographic Field Measurements and Analysis

MARK ROSENBERG ACE CRC, Hobart, Australia July, 2006

1 INTRODUCTION

Oceanographic measurements around the "BROKE West" survey area along the Antarctic continental margin between 30° and 80° south were conducted aboard Aurora Australis cruise au0603 (voyage 3 2005/2006, 2nd January to 12th March 2006). A total of 120 CTD vertical profile stations were taken, most to within 15 m of the bottom. Over 2500 Niskin bottle water samples were collected for the measurement of salinity, dissolved oxygen, nutrients (phosphate, nitrate+nitrite, silicate and ammonia), ¹⁸O, dissolved inorganic carbon, alkalinity, particulate organic carbon/nitrogen/silicate, dimethyl sulphide, and biological parameters, using a 24 bottle rosette sampler. Full depth current profiles were collected by an LADCP attached to the CTD package, while near surface current profile data were collected by a ship mounted ADCP. Data from the array of ship's underway sensors are included in the data set.

This report describes the processing/calibration of the CTD and ADCP data, and details the data quality. An offset correction is derived for the underway sea surface temperature and salinity data, by comparison with near surface CTD data. LADCP data are not discussed in this report. Note that the data processor was not a cruise participant, thus this report does not describe all details of the shipboard field data collection or the problems encountered. CTD station positions are shown in Figures 1a and b, while CTD station information is summarised in Table 1. Niskin bottle sampling at each station is summarised in Table 2.

2 CTD INSTRUMENTATION

SeaBird SBE9plus CTD serial 704, with dual temperature and conductivity sensors and a single SBE43 dissolved oxygen sensor (on the primary sensor pump line), was used for the entire cruise, mounted on a SeaBird 24 bottle rosette frame, together with a SBE32 24 position pylon and 22 x 10 litre General Oceanics Niskin bottles. The following additional sensors were mounted:

- * Benthos model 2110 altimeter
- * Tritech 200 kHz and 500 kHz altimeters
- * Wetlabs fluorometer serial 296
- * photosynthetically active radiation (i.e. PAR) sensor
- * Wetlabs C-star transmissometer serial 899DR
- * Sontek lowered ADCP (i.e. LADCP) with upward and downward looking transducer sets

CTD data were transmitted up a 6 mm seacable to a SBE11plusV2 deck unit, at a rate of 24 Hz, and data were logged simultaneously on 2 PC's using SeaBird data acquisition software "Seasave". The LADCP was powered by a separate battery pack, and data were logged internally and downloaded after each CTD cast. Note that physical mounting of the upward looking LADCP transucer set requires removal of 2 Niskin bottles, thus only 22 Niskins were fitted for the cruise.

The CTD deployment method was as follows:

- * CTD initially deployed down to ~20 m
- * after confirmation of pump operation, CTD returned up to just below the surface (depth dependent on sea state)
- * after returning to just below the surface, downcast proper commenced

For most casts, the package was stopped for 5 minutes on the upcast at ~50 m above the bottom, for logging of LADCP bottom track data.

Pre cruise temperature, conductivity and pressure calibrations were performed by the CSIRO Division of Marine and Atmoshperic Research calibration facility (Table 3) (July to August 2005). Manufacturer supplied calibrations were used for the dissolved oxygen, fluorometer, transmissometer and altimeters. PAR data are uncalibrated. Final conductivity and dissolved oxygen calibrations derived from in situ Niskin bottle samples are listed later in the report.

3 CTD DATA PROCESSING AND CALIBRATION

CTD data were processed in Hobart. The first step is application of a suite of the SeaBird "Seasoft" processing programs to the raw data, in order to:

- * convert raw data signals to engineering units
- * remove the surface pressure offset for each station
- * realign the oxygen sensor with respect to time (note that conductivity sensor alignment is done by the deck unit at the time of data logging)
- * remove conductivity cell thermal mass effects
- * apply a low pass filter to the pressure data
- * flag pressure reversals
- * search for bad data (e.g. due to sensor fouling)

Further processing and data calibration were done in a UNIX environment, using a suite of fortran programs. Processing steps here include:

- * forming upcast burst CTD data for calibration against bottle data, where each upcast burst is the average of 10 seconds of data prior to each Niskin bottle firing
- * merging bottle and CTD data, and deriving CTD conductivity calibration coefficients by comparing upcast CTD burst average conductivity data with calculated equivalent bottle sample conductivities * forming pressure monotonically increasing data, and from there calculating 2 dbar averaged downcast CTD data
- * calculating calibrated 2 dbar averaged salinity from the 2 dbar pressure, temperature and conductivity values
- * deriving CTD dissolved oxygen calibration coefficients by comparing bottle sample dissolved oxygen values (collected on the upcast) with CTD dissolved oxygen values from the equivalent 2 dbar downcast pressures

Full details of the data calibration and processing methods are given in Rosenberg et al. (in preparation), referred to hereafter as the *CTD methodology*.

Final station header information, including station positions and sounder depths at the start, bottom and end of each CTD cast, were obtained from underway data for the cruise (see section 6 below). Note the following for the station header information:

- * All times are UTC.
- * "Start of cast" information is at the commencement of the downcast proper, as described above.
- * "Bottom of cast" information is at the maximum pressure value.
- * "End of cast" information is when the CTD leaves the water at the end of the cast, as indicated by a drop in salinity values.
- * "Start of cast" and "end of cast" sounder depths are calculated at a sound speed of 1456 m/s, with a ship's draught of 7.3 m added.
- * For cases where depth information is missing in the underway bathymetry data set, depth values recorded at the time of CTD logging are used (i.e. as read from the Echogram display, with sound speed 1456 m/s).
- * "Bottom of cast" depths are calulated from CTD maximum pressure and altimeter value at the bottom of the casts.

Lastly, data were converted to MATLAB format, and final data quality checking was done within MATLAB.

4 CTD AND BOTTLE DATA RESULTS AND DATA QUALITY

Data from the primary CTD sensor pair (temperature and conductivity) were used for this cruise.

4.1 Conductivity/salinity

The conductivity calibration and equivalent salinity results for the cruise are plotted in Figures 2 and 3, and the derived conductivity calibration coefficients are listed in Tables 4 and 5. International standard seawater batch numbers P144 and P146 were used for salinometer standardisation. The salinometer (Guildline Autosal serial 62549) appeared very stable throughout the cruise, however significant sample scatter occurred during calibration of the CTD conductivity, particularly for shallower samples. The problem was eventually traced to a poor refit of the salinometer, during servicing of the instrument by a contractor prior to the cruise. From Neale Johnston's cruise hydrochemistry report:

"....salinometer gave symptoms of the water bath overheating....when (salinometer) last serviced the sample inlet line was placed too close to the electronics inside the Guildline, which was heating the sample above the bath temperature before the sample was introduced into the bath. The inlet line was moved and the overheating problem did not reoccur."

In general, the problem was worse for shallower samples, as they were typically warmer already. As a result, large station groupings were required for the CTD calibration (Table 4), to ensure sufficient sample coverage for the lower conductivity values in the shallow part of the vertical profiles. Thus the salinity standard deviation value of ~0.0013 (PSS78) from the the salinity calibration in Figure 3 is considered an overestimate of CTD salinity accuracy. Overall, CTD salinity for the cruise should only be considered accurate to 0.002 (PSS78).

Prior to calibration, a small "step" in the CTD/bottle conductivity comparison was noted for stations 60 to 64. The reason for this step could not be determined (i.e. salinometer or CTD? real or error?), particularly as the profile shapes for these stations were different to surrounding stations. The samples were retained for the conductivity calibration, however CTD salinity for these stations should only be considered accurate to 0.0025 (PSS78).

Salinometer instabilities occurred for stations 15 and 48; salinity samples from these stations were rejected for the CTD calibration. In both cases there is sufficient sample coverage from surrounding stations, and thus there is no significant diminishing of salinity accuracy.

4.2 Temperature

Primary and secondary CTD temperature data (t_p and t_s respectively) are compared for the cruise in Figure 4. CTD upcast burst data, obtained at each Niskin bottle stop, are used for the comparison. From the figure, there is a very small pressure dependency of t_p - t_s for CTD704 of the order 0.0005°C over 5500 dbar. Without some temperature standard for comparison, it cannot be determined whether the 2 temperature sensors have the same or different pressure dependencies. Nevertheless, this pressure dependence lies within the assumed temperature accuracy of 0.001°C (i.e. the accredited temperature accuracy of the CSIRO calibration facility).

4.3 Pressure

Surface pressure offsets for each cast (Table 6) were obtained from inspection of the data before the package entered the water.

When creating the 2 dbar bin averages, a minimum attendance of 8 data scans per bin was required. Data transmission faults and buffer overloads resulted in pressure spikes and small data gaps for several stations. As a result several 2 dbar bins have no data, for the following stations:

7, 18, 37, 46, 76, 88, 95, 98

4.4 Dissolved oxygen

For casts deeper than 1400 dbar the profiles were split into a shallow and deep part for separate calculation of oxygen calibration coefficients, with a linear interpolation between the 2 calibrations around the split point (see the *CTD methodology* for full details). Casts shallower than 1400 dbar were calibrated as whole profile fits. The CTD oxygen calibration results are plotted in Figure 5, and the derived calibration coefficients are listed in Table 7. Overall the calibrated CTD oxygen agrees with the bottle data to well within 1% of full scale (where full scale is ~400 µmol/l above 750 dbar, and ~270 µmol/l below 750 dbar). Suspect bottle oxygen samples and 2 dbar CTD data (not deleted from the bottle and CTD files) are listed in Tables 8 and 9 respectively.

A significant number of bad bottle oxygen samples occurred for the first half of the CTD stations - specifically, 89 bad samples occurred up to station 58, a much higher bad sample rate than usual. Many of these bad samples were due to sampling error i.e insufficient shaking of samples following addition of reagents. The sampling problem was corrected, and after station 58 only a further 8 bad samples occurred. Bad samples were deleted from the data files. In most cases, sufficient bottle samples remained for calibration of CTD oxygen data.

Further dissolved oxygen data processing notes:

- * For station 31, a split point of 1300 dbar was used for the split profile calibration.
- * For station 43, all oxygen bottle samples were bad, therefore the CTD oxygen data were unusable.
- * For station 58, the top 5 oxygen bottle samples were bad, so the top 36 dbar of CTD oxygen data were unusable.
- * For station 97, the bottom 8 bottle oxygen samples were bad, thus the CTD oxygen data below 228 dbar were unusable.
- * No bottle oxygen samples were taken at station 119 and 120, thus the CTD oxygen data were unusable.

4.5 Fluorescence, PAR, transmittance

All fluorescence and transmittance data have a calibration as supplied by the manufacturer (Table 3). PAR sensor data are uncalibrated. The data have **not** been verified by linkage to other data sources (e.g. chlorophyll-a concentration data, particulate data, etc). For example, unusually high CTD fluorescence values evident at stations 100, 101 and 102 must be verified from Niskin bottle pigment data (P.I. Simon Wright).

4.6 Nutrients

Nutrients measured on the cruise were phosphate, total nitrate (i.e. nitrate+nitrite), silicate, and ammonia (only up to station 85). At the time of writing, all phosphate data for the cruise are bad.

Initial phosphate analysis results, using a phosphate standard made in the lab prior to the cruise (referred to as "lab standard" in the following discussion), were all $\sim 10\%$ low. During phosphate analysis runs on the Lachat instrument, samples of standard reference material (SRM) were inserted into each run. Following analysis a "phosphate recovery" correction was attempted for each station, on the assumption that the lab standard was low and the SRM was correct. Note that these corrected phosphate values still showed a scatter of $\pm 3\%$ between different groups of stations. On return to Hobart, both the lab standard and SRM were checked - the lab standard appeared to be correct, and the SRM gave incosistent results on repeat checks. Thus no explanation was found for the low results on the ship, and all phosphate data were unrecoverable.

Suspect nitrate+nitrate and silicate values not deleted from the bottle data files are listed in Table 10. Further data quality notes:

- * Nitrate+nitrite values for stations 82 to 88 were all low by ~5 to 8%, and have been removed from the files.
- * Nitrate+nitrite values for station 46 are all low by ~3%.
- * All nutrient data for station 20 were bad.
- * Ammonia data are unverified, and should be used with caution.

4.7 Additional CTD data processing/quality notes

- * Station 10 The final elevation at the bottom of the cast is unknown, as the altimeter never came in range. Future processing of the LADCP bottom track data may reveal whether the bottom was within 192 m (i.e. bottom detection range of the LADCP).
- * Station 95 The minimum reliable altimeter reading at the bottom of the cast was 1.6 m, however the CTD operators from the cruise believe there may have been bottom contact. There is no noticeable shift in temperature and conductivity sensor data at the bottom, thus the data are unaffected.
- * Station 103 The CTD was lifted out of the water prematurely, before bottle 24 was fired. It was lowered back down to 10 dbar to fire the bottle.

5 ADCP

The hull mounted ADCP on the Aurora Australis is described in Rosenberg (unpublished report, 1999), with the following updates:

- (i) There is no longer a Fugro differential GPS system all GPS data, including heading, come from the Ashtech 3D system.
- (ii) Triggering of the 12 kHz sounder and the higher frequency hydroacoustics array are now separate, resulting in a higher ping rate for the ADCP (linked to the higher frequency hydroacoustics array).

Logging parameters and calibration coefficients for the cruise are summarised in Table 11. Current vectors for the cruise are plotted in Figures 6a and b; the apparent vertical current shear error for different ship speed classes is plotted in Figure 7.

Several gaps in the ADCP data occur over the cruise, due to GPS and/or ADCP logging failure. The main gaps are:

```
1600 on 27th January to 0200 on 28th January 0033 on 31st January to 2233 on 31st January 0000 on 5th February to 2227 on 5th February 1728 on 18th February to 0706 on 19th February
```

These data gaps cover the times of the following CTD's: 46, 59, 66 (upcast), 67, 68, 69, 70, 71, 91 and 92.

In general, ADCP data are contaminated by ship's motion when the ship accelerates i.e. changes direction or speed. Noise and turbulence often diminish ADCP data quality when the ship travels at speeds greater than ~13 knots, or during rough sea states. Thus the best quality ADCP data is when the ship is steaming in a straight line at a suitable constant speed, and during milder sea conditions. The most reliable data are collected when the ship is "on station" (on station data is defined here as data where ship speed ≤ 0.35 m/s).

An erroneous vertical ADCP current shear occurs when the ship is underway. This shear has a magnitude for this cruise of up to ~0.08 m/s over the ADCP current profile (Figure 7). A likely cause

for this error is acoustic ringing against a small air/water interface inside the transducer seachest. From Figure 7, when the ship is underway the effect is most significant over bins 1 to 10, and data from these bins should be treated with caution. Also from the figure, when the ship is travelling at \leq 1 m/s the effect is no longer significant.

6 UNDERWAY MEASUREMENTS

Underway data were logged to an Oracle database on the ship. For more information, see the AADC (Antarctic Division Data Centre) website, and the cruise dotzapper (i.e. data quality controller) report for AU0603:

Marine Science Support Data Quality Report, RSV Aurora Australis Voyage 1 2005-2006, Voyage 2 2005-2006, Voyage 3 2005-2006 (BROKE WEST), Belinda Ronai, March 2006. Antarctic Division unpublished report.

1 minute averaged underway data are contained in the files *brokewest.ora* (column formatted text file) and *brokewestora.mat* (matlab format). 10 second instantaneous position and depth data are contained in the files *brokewestbath.alf* (column formatted text file) and *brokewestbathalf.mat* (matlab format).

Bathymetry data were processed by Esmee Van Wijk (Antarctic Division). A sound speed of 1456 m/s was used for ocean depth calculation, and the ship's draught of 7.3 m was accounted for (i.e. depths are from the water surface). Data were only processed from along the transect lines in the BROKE West survey area. In addition, during the cruise 12 kHz data below 5000 m were not logged. As a result, there are many gaps in the underway bathymetry data.

Underway temperature data from the Antarctic Division hull mounted temperature sensor near the sea water inlet are considered reliable. Underway salinity data from the Antarctic Division thermosalinograph in the oceanographic lab have a significant error in colder waters, due to iceing effects in the debubbler (Bronte Tilbrook, CSIRO, personal communication); these salinity data should not be used. Alternative underway salinity data were obtained from a separate CSIRO thermosalinograph in lab 1 (P.I. Bronte Tilbrook, CSIRO), and these data are considered reliable. A correction for the hull mounted temperature sensor and the lab 1 salinity was derived by comparing the underway data to CTD temperature and salinity data at 8 dbar (Figures 8a and b). The following corrections were then applied to the underway data:

for corrected underway temperature and salinity T and S respectively, and uncorrected values T_{dls} and S_{dls} .

REFERENCES

Rosenberg, M., unpublished. *Aurora Australis ADCP data status.* Antarctic Cooperative Research Centre, unpublished report, November 1999. 51 pp.

Rosenberg, M., Fukamachi, Y., Rintoul, S., Church, J., Curran, C., Helmond, I., Miller, K., McLaughlan, D., Berry, K., Johnston, N. and Richman, J., in preparation. *Kerguelen Deep Western Boundary Current Experiment and CLIVAR I9 transect, marine science cruises AU0304 and AU0403 - oceanographic field measurements and analysis.* ACE CRC Research Report.

ACKNOWLEDGEMENTS

Thanks to all scientific personnel who participated in the cruise, and to the crew of the RSV Aurora Australis. Special thanks to the oceanography team for a great job collecting the data.

<u>Table 1:</u> Summary of station information for cruise au0603. All times UTC; "leg" = BROKE West CTD leg number, "TEST" = test cast, "FSIcal" = calibration cast for the FSI CTD from the Amery Ice Shelf borehole work; "alt" = minimum altimeter value (m), "maxp" = maximum pressure (dbar).

	start of CTD		bottom of	f CTD	end o		
station	date time latitude	longitude depth	time latitude	longitude depth	time latitude	longitude depth	alt maxp
001 TEST	06 Jan 2006 064038 43 38.10 S	093 04.95 E -	074348 43 38.26 S	093 05.67 E 2679	084817 43 38.34 S	093 06.19 E 2761	17.4 2701
002 leg12.1	10 Jan 2006 154918 60 36.08 S		165713 60 36.01 S	078 32.51 E 3037	181920 60 35.98 S	078 32.96 E -	10.6 3078
003 leg12.2	11 Jan 2006 003342 60 12.10 S	077 03.89 E 2478	013525 60 12.16 S	077 04.14 E 2432	024403 60 12.08 S	077 04.40 E 2481	8.1 2462
004 leg12.3	11 Jan 2006 070804 59 47.89 S	075 36.03 E 1730	074107 59 47.82 S	075 35.88 E 1685	084210 59 47.68 S	075 35.77 E 1722	10.2 1698
005 leg12.4	11 Jan 2006 120219 59 59.68 S	075 13.12 E 2091	124037 59 59.62 S	075 12.97 E 2048	134622 59 59.64 S	075 12.43 E 2081	10.4 2068
006 leg12.5	11 Jan 2006 164931 60 19.24 S	074 35.55 E 2554	174018 60 19.24 S	074 35.26 E 2486	185632 60 19.22 S	074 35.22 E 2553	11.9 2513
007 leg12.6	11 Jan 2006 203923 60 23.51 S	074 27.76 E 2944	214155 60 23.53 S	074 28.03 E 2898	230923 60 23.29 S	074 28.20 E 2921	14.2 2932
008 leg12.7	12 Jan 2006 013236 60 40.69 S	073 54.17 E -	025055 60 40.69 S	073 53.98 E 3247	040712 60 40.57 S	073 54.29 E 3341	13.3 3290
009 leg12.8	12 Jan 2006 074519 61 12.11 S	072 53.99 E -	090423 61 12.23 S	072 54.14 E 4118	103725 61 12.36 S	072 54.73 E 4237	14.6 4184
010 leg12.9	12 Jan 2006 160632 61 18.80 S	070 20.63 E -	173156 61 18.59 S	070 20.93 E -	192316 61 18.02 S	070 21.58 E 4163	- 4105
011 leg12.10	13 Jan 2006 014127 61 25.60 S	067 47.35 E 4360	025647 61 25.20 S	067 47.50 E 4359	044708 61 24.70 S	067 47.74 E 4356	9.6 4437
012 leg12.11	13 Jan 2006 101028 61 32.60 S	065 13.78 E 4458	113208 61 32.63 S	065 14.41 E 4459	132912 61 32.55 S	065 15.10 E 4459	18.5 4532
013 leg12.12	13 Jan 2006 185254 61 39.49 S	062 40.29 E 4447	201125 61 39.59 S	062 40.22 E 4450	221628 61 39.58 S	062 40.28 E 4447	7.5 4534
014 leg12.13	14 Jan 2006 032913 61 46.19 S	060 07.01 E 4698	050051 61 46.19 S	060 07.04 E 4699	070755 61 45.68 S	060 07.77 E 4697	5.7 4793
015 leg12.14	14 Jan 2006 122433 61 53.07 S	057 33.33 E 4805	135303 61 53.06 S	057 33.76 E 4829	155024 61 52.96 S	057 34.37 E 4827	15.4 4917
016 leg12.15	14 Jan 2006 211615 62 00.06 S	055 00.25 E 4984	225735 62 00.05 S	055 00.89 E 4990	011530 62 00.16 S	055 01.42 E 4986	9.4 5089
017 leg12.16	15 Jan 2006 063034 61 59.94 S	052 30.31 E -	081138 62 00.25 S	052 30.83 E 5137	101125 62 00.37 S	052 31.05 E -	14.9 5235
018 leg12.17	15 Jan 2006 202144 61 59.99 S	049 59.64 E -	220350 62 00.34 S	049 59.58 E 5123	235206 62 00.72 S	049 59.76 E -	10.6 5225
019 leg12.18	16 Jan 2006 074621 61 59.99 S	047 30.10 E 5067	091326 62 00.06 S	047 30.64 E 5069	111625 62 00.03 S	047 31.29 E 5068	13.7 5167
020 leg12.19	16 Jan 2006 180138 61 59.99 S	045 00.02 E 5012	193227 62 00.14 S	044 59.99 E 5016	212621 62 00.50 S	045 00.44 E 5004	10.5 5114
021 leg12.20	17 Jan 2006 033135 61 59.93 S	042 30.22 E -	051555 62 00.04 S	042 29.89 E 5142	071647 62 00.02 S	042 29.20 E -	13.0 5243
022 leg12.21	17 Jan 2006 131310 62 00.02 S	040 00.10 E -	143957 61 59.95 S	040 00.04 E 5170	164100 61 59.68 S	040 00.31 E 5170	14.8 5270
023 leg12.22	17 Jan 2006 232628 61 59.87 S	037 30.05 E 5159	011938 61 59.53 S	037 30.35 E 5163	031332 61 59.34 S	037 30.98 E 5166	12.2 5265
024 leg12.23	18 Jan 2006 085024 62 00.02 S	034 59.90 E 5094	101957 62 00.23 S	034 59.71 E 5090	120034 62 00.40 S	034 59.24 E 5086	15.7 5186
025 leg12.24	18 Jan 2006 175539 61 59.71 S	032 29.16 E -	191628 61 59.30 S	032 29.83 E 5150	211809 61 58.79 S	032 31.80 E -	12.4 5252
026 leg12.25	19 Jan 2006 042454 62 00.01 S	030 00.05 E -	060130 62 00.05 S	030 00.27 E 5175	075423 62 00.30 S	030 01.01 E -	15.9 5274
027 leg1.1	19 Jan 2006 133538 62 40.00 S	030 00.36 E -	150715 62 40.05 S	030 01.31 E 5160	164552 62 40.06 S	030 02.09 E -	15.8 5258
028 leg1.2	19 Jan 2006 213013 63 19.91 S	030 00.64 E -	231114 63 19.87 S	030 01.52 E 5131	005803 63 19.90 S	030 02.60 E -	7.3 5238
029 leg1.3	20 Jan 2006 062621 64 00.00 S	030 00.05 E 5088	080606 64 00.02 S	030 00.19 E 5086	093902 64 00.07 S	030 00.66 E 5083	14.5 5184
030 leg1.4	20 Jan 2006 150417 64 39.99 S	030 00.20 E 4965	163110 64 40.03 S	030 00.02 E 4972	180408 64 40.05 S	029 59.96 E 4964	13.9 5067
031 leg1.5	20 Jan 2006 231322 65 20.03 S	030 00.26 E 4804	004732 65 19.91 S	030 01.06 E 4811	023217 65 19.66 S	030 01.61 E 4806	6.9 4908
032 leg1.6	21 Jan 2006 073819 65 59.96 S	030 00.01 E 4484	085619 65 59.83 S	029 59.76 E 4500	102438 65 59.59 S	029 59.38 E 4486	16.5 4577
033 leg1.7	21 Jan 2006 144415 66 30.01 S	029 59.89 E 4224	160607 66 29.93 S	029 59.51 E 4271	173612 66 29.88 S	029 59.05 E 4250	14.6 4343
034 leg1.8	21 Jan 2006 211339 66 59.97 S	029 59.93 E 4029	223530 66 59.87 S	029 59.42 E 4092	000114 66 59.87 S	029 59.12 E 4080	8.4 4166
035 leg1.9	22 Jan 2006 044146 67 30.04 S	029 59.97 E 3559	055128 67 29.93 S	029 59.38 E 3584	071223 67 29.92 S	029 58.94 E 3591	11.5 3640
036 leg1.10	22 Jan 2006 112726 67 59.84 S	030 00.81 E 3707	123040 67 59.90 S	030 00.88 E 3716	135912 67 59.93 S	030 00.56 E 3713	15.6 3772
037 leg1.11	22 Jan 2006 204954 68 29.92 S	029 59.88 E -	215754 68 29.98 S	029 59.51 E 3506	231859 68 30.01 S	029 59.49 E -	10.8 3561
038 leg1.12	23 Jan 2006 020457 68 41.71 S		030214 68 41.50 S	030 00.56 E 3000	042041 68 41.24 S	030 00.79 E 2956	10.1 3043
039 leg1.13	23 Jan 2006 062654 68 49.86 S	030 00.08 E 2512	071854 68 49.80 S	030 00.40 E 2593	083310 68 49.74 S	030 00.56 E 2532	10.0 2626

Table 1: (entd)start of CTD		bottom of CTD	end of CTD	
station	•				alt mayn
	date time latitude 23 Jan 2006 103800 68 55.36	longitude depth	time latitude longitude depth 111114 68 55.47 S 029 59.69 E 1977	time latitude longitude depth 121113 68 55.67 S 029 59.74 E 1922	alt maxp 16.8 1990
040 leg1.14	23 Jan 2006 133853 69 00.69		140309 69 00.80 S 029 58.15 E 1333	145526 69 01.15 S 029 56.85 E 1437	15.7 1336
041 leg1.15	23 Jan 2006 162058 69 04.72		140309 09 00.80 3 029 38.13 E 1333 163835 69 04.73 S 029 59.62 E 865	172005 69 04.76 S 029 59.12 E 908	15.1 860
042 leg1.16					10.8 260
043 leg1.17	23 Jan 2006 185502 69 06.64 3 23 Jan 2006 235015 69 12.43		190110 69 06.66 S 029 59.87 E 267 235830 69 12.45 S 029 56.05 E 228	193530 69 06.77 S 029 59.32 E 279 002731 69 12.41 S 029 55.81 E 252	7.6 223
044 leg1.18					
045 leg3.1	27 Jan 2006 121931 62 39.96		140627 62 40.03 S 040 00.32 E 5017	155628 62 40.07 S 040 00.37 E 5014	13.8 5112 9.0 5035
046 leg3.2	27 Jan 2006 202659 63 19.89		220401 63 19.58 \$ 039 59.55 E 4936	233924 63 19.25 S 039 59.56 E 4933	
047 leg3.3	28 Jan 2006 044749 63 59.98		062059 63 59.89 \$ 040 00.52 E 4830	075821 63 59.81 S 040 01.58 E 4807	7.5 4926
048 leg3.4	28 Jan 2006 132711 64 40.06		145146 64 40.07 S 040 00.42 E 4726	164601 64 39.91 S 040 00.60 E 4719	14.4 4812
049 leg3.5	28 Jan 2006 215940 65 20.28		233258 65 20.41 S 040 00.69 E 4745	011222 65 20.56 S 040 01.03 E 4740	10.4 4836
050 leg3.6	29 Jan 2006 053407 66 00.05		065903 66 00.20 S 040 00.30 E 4488	084702 66 00.04 S 039 59.75 E 4489	7.4 4575
051 leg3.7	29 Jan 2006 125754 66 30.03		141935 66 30.00 S 040 00.09 E 4524	160250 66 29.93 S 040 00.02 E 4519	9.4 4610
052 leg3.8	29 Jan 2006 193243 67 00.08		204614 66 59.98 S 039 59.17 E 3656	222118 67 00.05 S 039 57.74 E 3704	8.8 3716
053 leg3.9	30 Jan 2006 030751 67 29.96		041051 67 30.10 S 039 58.99 E 3244	054327 67 30.16 S 039 58.22 E 3207	8.4 3294
054 leg3.10	30 Jan 2006 094828 67 56.49		102545 67 56.47 S 039 59.96 E 2244	112404 67 56.51 S 039 59.68 E 2141	13.0 2267
055 leg3.11	30 Jan 2006 132348 68 02.87		140339 68 03.08 S 039 59.68 E 1804	144947 68 03.21 S 039 59.58 E 1800	14.1 1817
056 leg3.12	30 Jan 2006 164232 68 07.89		170149 68 07.98 S 040 00.04 E 999	174236 68 08.21 S 040 00.04 E 798	10.6 1001
057 leg3.13	30 Jan 2006 191333 68 08.66		192922 68 08.77 S 039 59.91 E 485	201311 68 08.83 S 039 59.58 E 415	10.8 480
058 leg3.14	30 Jan 2006 215649 68 11.83		220832 68 11.83 S 040 00.20 E 323	224556 68 11.68 S 040 00.34 E 313	6.9 320
059 leg3.15	31 Jan 2006 003447 68 20.86		004549 68 20.86 S 039 59.63 E 315	011755 68 20.78 S 039 59.33 E 315	9.0 310
060 leg5.1	03 Feb 2006 014151 62 40.06		032859 62 40.37 S 049 59.96 E 4994	051629 62 40.58 S 049 59.59 E 4992	10.4 5093
061 leg5.2	03 Feb 2006 094942 63 20.08		112128 63 19.99 S 049 59.74 E 4845	132041 63 19.87 S 049 59.42 E 4842	15.8 4933
062 leg5.3	03 Feb 2006 185425 64 00.13		202249 63 59.92 S 049 59.44 E 4392	215300 63 59.62 S 049 59.17 E 4410	10.8 4471
063 leg5.4	04 Feb 2006 031904 64 30.65		044527 64 30.73 S 049 58.99 E 4272	061244 64 30.66 S 049 58.52 E -	10.8 4348
064 leg5.5	04 Feb 2006 115030 65 00.05		123726 64 59.97 S 049 59.54 E 2563	134342 64 59.98 S 049 59.15 E 2542	15.7 2588
065 leg5.6	04 Feb 2006 183056 65 22.80		190657 65 22.76 S 049 59.74 E 2029	201805 65 22.78 S 049 58.97 E -	4.3 2055
066 leg5.7	04 Feb 2006 231535 65 37.14		235949 65 37.24 S 049 59.10 E 2018	010113 65 37.40 S 049 59.04 E 1999	10.6 2038
067 leg5.8	05 Feb 2006 025740 65 51.76		033807 65 52.03 S 049 59.09 E 1658	043509 65 52.30 S 049 58.45 E 1685	10.4 1671
068 leg5.9	05 Feb 2006 061618 66 00.47		063955 66 00.57 S 049 59.02 E 934	072103 66 00.68 S 049 58.19 E 854	13.6 932
069 leg5.10	05 Feb 2006 085454 66 01.63		090909 66 01.66 S 049 59.65 E 514	094447 66 01.73 S 049 59.32 E 496	7.7 512
070 leg5.11	05 Feb 2006 130609 66 05.57		131208 66 05.53 S 049 59.24 E 265	133829 66 05.45 S 049 58.93 E 253	12.6 255
071 leg5.12	05 Feb 2006 160834 66 20.35		161414 66 20.35 S 050 09.23 E 181	164429 66 20.32 S 050 09.22 E 172	12.1 171
072 leg7.1	08 Feb 2006 045508 62 19.91		063043 62 19.98 S 060 00.14 E 4672	082722 62 20.44 S 060 00.24 E -	16.1 4754
073 leg7.2	08 Feb 2006 153231 62 59.96		164924 62 59.95 S 060 00.42 E 4466	184222 63 00.20 S 060 00.94 E -	10.1 4548
074 leg7.3	09 Feb 2006 010614 63 40.07	S 060 00.11 E 4368	023022 63 40.20 S 060 00.28 E 4375	040756 63 40.26 S 060 00.52 E 4376	10.4 4454
075 leg7.4	09 Feb 2006 090136 64 19.99		101920 64 20.23 S 059 59.98 E 4229	120327 64 20.62 S 060 00.05 E 4224	10.8 4304
076 leg7.5	09 Feb 2006 182418 65 00.14		194401 65 00.32 S 060 00.56 E 4042	211210 65 00.66 S 060 00.94 E 4040	4.9 4117
077 leg7.6	10 Feb 2006 005654 65 29.95	S 059 59.86 E 3801	021117 65 29.97 S 059 59.87 E 3812	034101 65 30.06 S 059 59.77 E 3799	6.0 3879
078 leg7.7	10 Feb 2006 083215 65 59.99		092259 66 00.17 S 059 59.68 E 2675	103404 66 00.18 S 059 59.53 E 2657	11.5 2708
079 leg7.8	10 Feb 2006 141345 66 18.89	S 059 59.95 E -	150809 66 18.86 S 059 59.97 E 2675	163150 66 18.82 S 059 59.95 E 2686	12.9 2706
080 leg7.9	10 Feb 2006 193215 66 30.03	S 059 59.61 E 1783	201230 66 30.01 S 059 58.87 E 1845	211812 66 29.90 S 059 57.64 E 1717	15.7 1856

Table 1. (antd	`	start of CTD		bottom	of CTD	end o	f CTD	
Table 1: (cntd station	,							alt mayn
	date	time latitude 230902 66 33.41 S	longitude depth	time latitude 234538 66 33.41 S	longitude depth	time latitude 003852 66 33.43 S	longitude depth	alt maxp 9.4 1400
081 leg7.10		021048 66 39.70 S		023431 66 39.63 S		032215 66 39.68 S		
082 leg7.11								11.1 937 10.0 468
083 leg7.12		051757 66 40.94 S		053148 66 40.94 S 081321 66 54.04 S		060511 66 40.84 S 085250 66 54.14 S		15.7 465
084 leg7.13		080532 66 54.04 S						
085 leg7.14		104905 66 55.94 S		111141 66 55.96 S		115829 66 55.99 S		15.8 936 8.4 4196
086 leg9.1		003704 61 59.95 S		015426 61 59.90 S		032828 62 00.01 S		
087 leg9.2		100350 62 40.04 S		120702 62 40.03 S		135135 62 40.04 S		11.3 4113
088 leg9.3		202006 63 20.21 S		213831 63 20.24 S		225856 63 20.17 S		6.2 3907
089 leg9.4		063006 63 59.77 S		073553 63 59.49 S		090639 63 59.34 S		6.8 3568
090 leg9.5		123138 64 29.99 S		133424 64 29.98 S		144642 64 29.90 S		12.1 3287
091 leg9.6		222317 64 59.87 S		231658 64 59.68 S		002859 64 59.56 S		4.7 2963
092 leg9.7		035616 65 30.10 S		045337 65 30.13 S		061229 65 30.17 S		9.4 2763
093 leg9.8		113534 66 00.04 S		121638 66 00.07 S		132119 66 00.05 S		11.0 2451
094 leg9.9		154312 66 14.99 S		162819 66 14.96 S		172624 66 14.90 S		8.6 2322
095 leg9.10		202839 66 30.38 S		210058 66 30.35 S		220604 66 30.20 S		1.6 2020
096 leg9.11		235953 66 43.68 S		002536 66 43.64 S		011742 66 43.70 S		8.1 1546
097 leg9.12		041205 66 49.19 S		043051 66 49.24 S		051558 66 49.39 S		7.1 1037
098 leg9.13		072453 66 52.56 S		073712 66 52.59 S		080950 66 52.67 S		13.4 501
099 leg9.14		105028 67 10.84 S		105652 67 10.81 S		112915 67 10.61 S		15.6 260
100 leg9.15		181730 67 18.80 S		182619 67 18.73 S		190957 67 18.25 S		9.4 390
101 leg9.16		234408 67 19.29 S		235826 67 19.29 S		003611 67 19.19 S		8.1 570
102 leg9.17		042559 67 19.16 S		043559 67 19.19 S		051852 67 19.29 S		7.8 553
103 leg11.1		030200 60 59.97 S		035022 60 59.72 S		045617 60 59.46 S		6.6 2670
104 leg11.2		101434 61 39.77 S		110047 61 39.77 S		120214 61 39.74 S		16.2 2352
105 leg11.3		174755 62 20.01 S		183019 62 20.04 S		193957 62 20.14 S		6.1 2513
106 leg11.4		102953 63 00.07 S		113437 63 00.16 S		125337 63 00.16 S		10.6 3558
107 leg11.5		172259 63 29.98 S		182226 63 30.09 S		194037 63 30.11 S		9.8 3593
108 leg11.6		232200 64 00.05 S		001935 64 00.13 S		013636 64 00.20 S		8.2 3710
109 leg11.7		060242 64 30.03 S		071538 64 29.99 S		084047 64 29.92 S		13.5 3662
110 leg11.8		124756 65 00.02 S		135709 65 00.08 S		151217 65 00.36 S		13.4 3598
111 leg11.9		194141 65 30.28 S		203655 65 30.64 S		220027 65 31.07 S		7.9 3277
112 leg11.10		014929 65 49.13 S		022701 65 49.28 S		033324 65 49.54 S		11.0 2246
113 leg11.11		053254 65 51.10 S		061503 65 51.10 S		070824 65 51.01 S		6.9 2026
114 leg11.12		095456 65 57.10 S		102646 65 57.18 S		112255 65 57.37 S		9.4 1567
115 leg11.13		131325 66 01.42 S		133422 66 01.47 S		141618 66 01.54 S		10.3 1101
116 leg11.14		161113 66 07.91 S		163012 66 07.97 S		170942 66 08.06 S		5.0 526
117 leg11.15		210958 66 24.63 S		211702 66 24.59 S		215023 66 24.50 S		11.7 219
118 leg11.16		014437 66 44.71 S		015103 66 44.72 S		022204 66 44.83 S		7.7 324
119 FSIcal		073651 66 04.97 S		080319 66 05.04 S		084731 66 05.10 S		10.3 1552
120 FSIcal	03 Mar 2006 (092302 66 05.11 S	079 27.58 E 1476	095403 66 05.24 S	079 27.24 E 1522	104741 66 05.45 S	079 27.03 E 1570	12.1 1531

<u>Table 2:</u> Cruise au0603 summary of samples drawn from Niskin bottles at each station, including salinity (sal), dissolved oxygen (do), nutrients (nut) (i.e. phosphate, nitrate+nitrite, silicate), ammonia (NH₃), dissolved inorganic carbon (dic) and alkalinity (alk), oxygen-18 (¹⁸O), particulate carbon and particulate nitrogen and particulate silicate (POC/N/Si), dimethyl sulphide (dms), HPLC (i.e. pigments), lugols iodine fixed algal counts (lug), gluteraldehyde fixed samples for electron microscopy (em), gluteraldehyde fixed samples for bacteria (gbac), carbon-14 (¹⁴C), and viruses from Wright et al. group (vir). Note that 1=samples taken, 0=no samples taken, 2=surface sample only. Additional biological parameters not listed in the table include samples for flow cytometry, bacteria genetics, viruses sampled by Danny Ashcroft, viscosity, and bio-optics.

viscos					cs.		40							4.4	
station	sal	do	nut	NH_3	dic	alk	¹⁸ O	POC/N/Si	dms	HPLC	lug	em	gbac	¹⁴ C	vir
1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
2	1	1	1	1	1	2	1	0	1	1	0	0	0	0	0
3	1	1	1	1	0	0	1	1	0	1	0	0	0	0	0
4	1	1	1	1	1	2	1	0	1	1	1	0	0	0	0
5	1	1	1	1	0	0	1	1	0	1	0	0	0	0	0
6	1	1	1	1	1	2	1	0	Ö	1	1	Ö	0	0	0
7	1	1	1	1	0	0	1	1	Ö	1	0	Ö	Ö	Ö	Ö
8	1	1	1	1	1	2	1	0	Ö	1	1	Ö	Ö	Ö	1
9	1	1	1	0	Ö	0	1	1	1	1	0	0	Ö	0	Ö
10	1	1	1	1	1	2	i	Ö	Ö	i 1	1	1	0	0	1
11	1	1	1	1	Ö	0	i	1	0	1	Ö	0	0	0	Ö
12	1	1	i	1	1	2	i	Ö	1	i	1	0	0	0	1
13	1	1	1	1	Ó	0	i	1	Ó	1	Ó	0	0	0	Ó
14	1	1	1	1	1	2	1	0	0	1	1	0	0	0	1
15	1	1	1	0	0	0	1	1	0	1	Ó	0	0	0	Ó
16		1	1	1		2	1		0	1	1			0	
17	1				1 0			0				0	0		1
	-	1	1	1		0	1	1	0	1	0	0	0	0	0
18	1	1	1	1	1	2	1	0	1	1	0	0	0	0	1
19	1	1	1	1	0	0	1	1	0	1	0	0	0	0	0
20	1	1	1	1	1	2	1	0	0	1	0	1	0	0	1
21	1	1	1	1	0	0	1	1	0	1	0	0	0	0	0
22	1	1	1	1	1	2	1	0	1	1	0	0	0	0	0
23	1	1	1	1	0	0	1	1	0	1	0	0	0	0	0
24	1	1	1	1	1	2	1	0	0	1	1	1	0	0	1
25	1	1	1	1	0	0	1	1	0	1	0	0	0	0	0
26	1	1	1	1	1	2	1	0	1	1	1	1	0	0	1
27	1	1	1	1	0	0	1	1	0	1	0	0	0	1	0
28	1	1	1	1	1	2	1	0	0	1	1	0	0	0	1
29	1	1	1	0	1	0	1	1	0	1	0	0	0	0	0
30	1	1	1	1	1	1	1	0	0	1	1	1	0	1	1
31	1	1	1	1	1	0	1	1	1	1	0	0	0	0	0
32	1	1	1	1	1	2	1	0	0	1	0	0	0	1	1
33	1	1	1	1	1	0	1	1	0	1	0	0	0	0	0
34	1	1	1	1	1	2	1	0	0	1	0	0	0	1	1
35	1	1	1	1	1	0	1	1	1	1	0	0	0	0	0
36	1	1	1	1	1	2	1	0	0	1	1	1	0	1	1
37	1	1	1	1	1	0	1	1	0	1	0	0	0	0	0
38	1	1	1	1	1	2	1	0	0	1	0	0	0	0	0
39	1	1	1	1	1	0	1	1	1	1	0	0	0	0	0
40	1	1	1	1	1	2	1	0	0	1	0	1	0	1	0
41	1	1	1	1	1	0	1	1	0	1	0	0	0	0	0
42	1	1	1	1	1	2	1	0	1	1	0	0	0	0	0
43	1	1	1	1	1	0	1	1	0	1	0	0	0	0	0
44	1	1	1	1	1	2	1	1	1	1	0	0	0	0	0
45	1	1	1	1	1	0	1	1	Ö	1	Ö	Ö	Ö	1	Ö
46	1	1	1	1	1	2	1	0	Ö	1	1	1	Ö	0	1
47	1	1	1	1	1	0	1	1	Ö	1	Ö	Ö	Ö	1	Ö
48	1	1	1	1	1	2	1	0	1	1	Ö	Ö	Ö	Ö	1
49	1	1	1	1	1	0	1	1	Ö	1	Ö	0	0	1	Ö
50	1	1	1	1	1	2	1	0	0	1	1	1	0	0	1
51	1	1	1	1	1	0	1	1	0	1	Ó	0	0	1	0
51 52	1	1	1	1	1	2	1	0	0	1	0	0	0	0	0
52 53	1	1	1	1	1	0	1	1	1	1	0	0	0	0	
															0
54 55	1	1	1	1	1	2 0	1	0	0	1	1	0	0	1	1
55	1	1	1	1	1	U	1	1	1	1	0	0	0	0	0

Table :	<u>2:</u> (c sal		inue nut		dic	alk	¹⁸ O	POC/N/Si	dms	HPLC	lug	em	gbac	¹⁴ C	vir
56	1	1	1	1	1	2	1	0	0	111 LO	0	1	0	0	1
57	1	1	1	1	1	0	1	1	0	1	0	0	0	0	0
58	1	1	1	1	1	0	1	0	0	1	1	1	0	1	1
59 60	1 1	1 1	1 1	1 1	1 1	0 2	1 1	1 1	1 0	1 1	0 0	0 0	0 0	0 1	0 0
61	1	1	1	1	1	0	1	0	0	1	0	0	0	0	1
62	1	1	1	1	1	Ö	1	1	Ö	1	Ö	Ö	Ö	Ö	Ö
63	1	1	1	1	1	2	1	0	0	1	0	1	0	1	0
64	1	1	1	1	1	0	1	1	0	1	0	0	0	0	0
65 66	1 1	1 1	1 1	1 1	1 1	2 0	1 1	0 1	0 0	1 1	0 0	0 0	0 0	0 1	1 0
67	1	1	1	1	1	2	1	Ó	0	1	0	0	0	Ö	0
68	1	1	1	1	1	0	1	1	0	1	0	0	0	1	0
69	1	1	1	1	1	2	1	0	0	1	1	1	0	0	1
70	1	1	1	1	1	0 2	1	1	0	1	0	0	0	0	0
71 72	1 1	1 1	1 1	1 1	1 1	0	1	1 1	0 0	1 1	1 0	1 0	0 0	1 1	1 0
73	1	1	1	1	1	2	1	Ö	0	1	0	0	Ő	Ö	1
74	1	1	1	1	1	0	1	1	0	1	0	0	0	1	0
75 70	1	1	1	1	1	1	1	0	0	1	1	1	0	0	1
76 77	1	1 1	1 1	1 1	1 1	0 2	1	1 0	0 0	1 1	0 0	0 0	0 0	1 0	0 0
7 <i>7</i> 78	1	1	1	1	1	0	1	1	0	1	0	0	0	0	0
79	1	1	1	1	1	2	1	Ö	Ö	1	Ö	Ö	Ö	1	1
80	1	1	1	1	1	0	1	1	0	1	0	0	0	0	0
81	1	1	1	1	1	2	1	0	0	1	0	0	0	0	0
82 83	1 1	1 1	1 1	1 1	1 1	0 2	1 1	1 0	0 0	1 1	0 1	0 0	0 0	1 0	0 1
84	1	1	1	1	1	0	1	1	1	1	1	0	0	0	Ó
85	1	1	1	1	1	2	1	Ô	0	1	0	1	Ö	1	Ö
86	1	1	1	0	1	0	1	1	1	1	0	0	0	1	0
87 88	1	1 1	1	0	1	2 0	1	0	0 0	1	1 0	0 0	0	0	1 0
89	1 1	1	1 1	0	1 1	2	1 1	1 0	0	1 1	1	0	0 0	1 0	1
90	1	1	1	Ö	i 1	0	1	1	1	1	Ö	0	0	1	Ö
91	1	1	1	0	1	2	1	0	0	1	0	1	0	0	1
92	1	1	1	0	1	0	1	1	0	1	0	0	0	0	0
93 94	1 1	1 1	1 1	0	1 1	2 0	1 1	0 1	0 1	1 1	1 0	0 0	0 0	1 0	1 0
9 5	1	1	1	0	1	2	1	Ó	Ó	1	0	0	0	0	1
96	1	1	1	0	1	0	1	1	0	1	0	0	0	1	0
97	1	1	1	0	1	2	1	0	0	1	1	1	0	0	1
98 99	1	1	1	0	1	0	1	1	1	1	0	0	0	0	0
99 100	1 1	1 1	1 1	0 0	1 1	2 0	1 1	1 1	1 0	1 1	0 0	0 0	0 0	1 0	0 0
101	1	1	1	Ö	1	2	1	1	Ö	1	0	0	Ö	Ö	Ö
102	1	1	1	0	1	0	1	1	0	1	0	0	0	0	0
103	1	1	1	0	1	1	1	1	0	1	0	0	1	0	1
104 105	1 1	1 1	1 1	0	1 1	1 0	1 1	0 1	1 0	1 1	0 0	0 0	1 1	1 0	1 1
106	1	1	1	0	1	2	1	Ó	0	1	1	1	1	1	1
107	1	1	1	0	1	0	1	1	0	1	0	0	1	0	1
108	1	1	1	0	1	1	1	0	0	1	0	0	1	0	1
109 110	1	1 1	1 1	0 0	1 1	0 2	1 1	1 0	1 0	1 1	0	0 0	1 1	1 0	1 1
111	1 1	1	1	0	1	0	1	1	0	1	0	0	1	1	1
112	1	1	1	Ö	1	1	1	Ö	Ö	1	0	Ö	1	Ö	1
113	1	1	1	0	1	0	1	1	1	1	0	0	1	0	1
114	1	1	1	0	1	2	1	0	0	1	0	0	1	1	1
115 116	1 1	1 1	1 1	0	1 1	1 1	1 1	1 1	1 0	1 1	0 1	0 1	1 1	0 0	1 1
117	1	1	1	0	1	1	1	1	1	1	0	0	1	1	1
118	i	1	1	Ö	1	1	1	1	Ö	1	1	0	1	Ö	1
119	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
120	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0

<u>Table 3:</u> CTD serial 704 calibration coefficients and calibration dates for cruise au0603. Note that platinum temperature calibrations are for the ITS-90 scale. Pressure slope/offset, temperature and conductivity values are from the CSIRO Division of Marine and Atmospheric Research calibration facility. Remaining values are manufacturer supplied.

Primary Temperature, serial 4248, 26/07/2005 Secondary Temperature, serial 4246, 26/07/2005

G : 4.3871123e-003 G : 3.9792308e-003 Н : 6.5052040e-004 Н : 6.2199100e-004 : 2.2944734e-005 ı : 1.8925560e-005 ı : 1.7823539e-006 : 1.6721644e-006 J J : 1000.000 F0 : 1000.000 F0 : 1.00000000 : 1.00000000 Slope Slope Offset : 0.0000 Offset : 0.0000

Primary Conductivity, serial 2977, 26/07/2005 Secondary Conductivity, serial 2808, 26/07/2005

: -1.0699102e+001 : -9.2842298e+000 G G : 1.4736757e+000 Н : 1.4245489e+000 Н 1 : 3.3457988e-003 L : 1.1906212e-004 : -1.8473099e-004 : 7.4562350e-005 J. CTcor CTcor : 3.2500e-006 : 3.2500e-006 CPcor : -9.57000000e-008 CPcor : -9.5700000e-008 Slope : 1.00000000 Slope : 1.00000000 : 0.00000 : 0.00000 Offset Offset

Pressure, serial 89084, 23/07/2004 Oxygen, serial 0178, 26/07/2004

C1 : -5.337692e+004 Soc : 5.2230e-001 C2 : -5.768735e-001 Boc : 0.0000 C3 : 1.541700e-002 Offset : -0.4914 D1 : 3.853800e-002 Tcor : 0.0021 D2 : 0.000000e+000 Pcor : 1.35e-004 T1 : 2.984003e+001 Tau : 0.0

T2 : -4.090591e-004

T3 : 3.693030e-006 Fluorometer, serial 296, 23/05/2005

T4 : 3.386020e-009 Vblank : 0.12

T5 : 0.000000e+000 Scale factor : 7.000e+000 (22/08/2005 for pressure slope/offset)

 Slope
 : 1.00006101
 Transmissometer, serial 899DR

 Offset
 : 0.73719
 A0
 : -0.0130705

AD590M : 1.283280e-002 A1 : 0.214270 AD590B : -9.705660e+000

<u>Table 4:</u> CTD conductivity calibration coefficients. F_1 , F_2 and F_3 are respectively conductivity bias, slope and station-dependent correction calibration terms. n is the number of samples retained for calibration in each station grouping; σ is the standard deviation of the conductivity residual for the n samples in the station grouping.

stn grouping	F ₁	F_2	F ₃		n σ
001 to 008	0.60848557E-02	0.99970030E-03	-0.52078625E-08	151	0.000830
009 to 038	0.13009766E-01	0.99942691E-03	-0.88263702E-10	489	0.000794
039 to 059	0.11348442E-01	0.99958755E-03	-0.19812640E-08	303	0.001237
060 to 073	0.72429942E-02	0.99947385E-03	0.14586309E-08	248	0.001626
074 to 120	0.41993984F-02	0 99971942F-03	-0.95881876F-10	791	0.000816

<u>Table 5:</u> Station-dependent-corrected conductivity slope term $(F_2 + F_3 \cdot N)$, for station number N, and F_2 and F_3 the conductivity slope and station-dependent correction calibration terms respectively.

station (F ₂ + F ₃ . N) number		stati num	(= 0 ,		ion (F ₂ + F ₃ . N) mber	station (F ₂ + F ₃ . N) number		
1	0.99969510E-03	31	0.99942417E-03	61	0.99956282E-03	91	0.99970820E-03	
2	0.99968989E-03	32	0.99942408E-03	62	0.99956428E-03	92	0.99970811E-03	
3	0.99968468E-03	33	0.99942400E-03	63	0.99956574E-03	93	0.99970803E-03	
4	0.99967947E-03	34	0.99942391E-03	64	0.99956720E-03	94	0.99970794E-03	
5	0.99967427E-03	35	0.99942382E-03	65	0.99956866E-03	95	0.99970786E-03	
6	0.99966906E-03	36	0.99942373E-03	66	0.99957012E-03	96	0.99970777E-03	
7	0.99966385E-03	37	0.99942364E-03	67	0.99957157E-03	97	0.99970769E-03	
8	0.99965864E-03	38	0.99942356E-03	68	0.99957303E-03	98	0.99970761E-03	
9	0.99942611E-03	39	0.99951028E-03	69	0.99957449E-03	99	0.99970752E-03	
10	0.99942603E-03	40	0.99950830E-03	70	0.99957595E-03	100	0.99970744E-03	
11	0.99942594E-03	41	0.99950631E-03	71	0.99957741E-03	101	0.99970735E-03	
12	0.99942585E-03	42	0.99950433E-03	72	0.99957887E-03	102	0.99970727E-03	
13	0.99942576E-03	43	0.99950235E-03	73	0.99958033E-03	103	0.99970718E-03	
14	0.99942567E-03	44	0.99950037E-03	74	0.99970963E-03	104	0.99970710E-03	
15	0.99942559E-03	45	0.99949839E-03	75	0.99970955E-03	105	0.99970701E-03	
16	0.99942550E-03	46	0.99949641E-03	76	0.99970946E-03	106	0.99970693E-03	
17	0.99942541E-03	47	0.99949443E-03	77	0.99970938E-03	107	0.99970684E-03	
18	0.99942532E-03	48	0.99949245E-03	78	0.99970930E-03	108	0.99970676E-03	
19	0.99942523E-03	49	0.99949046E-03	79	0.99970921E-03	109	0.99970668E-03	
20	0.99942514E-03	50	0.99948848E-03	80	0.99970913E-03	110	0.99970659E-03	
21	0.99942506E-03	51	0.99948650E-03	81	0.99970904E-03	111	0.99970651E-03	
22	0.99942497E-03	52	0.99948452E-03	82	0.99970896E-03	112	0.99970642E-03	
23	0.99942488E-03	53	0.99948254E-03	83	0.99970887E-03	113	0.99970634E-03	
24	0.99942479E-03	54	0.99948056E-03	84	0.99970879E-03	114	0.99970625E-03	
25	0.99942470E-03	55	0.99947858E-03	85	0.99970870E-03	115	0.99970617E-03	
26	0.99942461E-03	56	0.99947660E-03	86	0.99970862E-03	116	0.99970608E-03	
27	0.99942453E-03	57	0.99947461E-03	87	0.99970853E-03	117	0.99970600E-03	
28	0.99942444E-03	58	0.99947263E-03	88	0.99970845E-03	118	0.99970591E-03	
29	0.99942435E-03	59	0.99947065E-03	89	0.99970837E-03	119	0.99970583E-03	
30	0.99942426E-03	60	0.99956136E-03	90	0.99970828E-03	120	0.99970575E-03	

 $\underline{\text{Table 6:}}$ Surface pressure offsets (i.e. poff, in dbar). For each station, these values are subtracted from the pressure calibration "offset" value from Table 3.

stn	poff	stn	poff		poff	stn	poff		poff	stn	poff
1 2 3 4 5 6 7 8	0.50 0.21 0.08 0.09 0.11 0.05 0.09 0.11	21 22 23 24 25 26 27 28	0.20 0.17 0.23 0.24 0.23 0.28 0.27 0.33	41 42 43 44 45 46 47 48	0.02 -0.02 0.04 0.32 0.27 0.16 0.14 0.06	61 62 63 64 65 66 67 68	0.07 0.12 0.12 0.24 0.23 0.17 0.16 0.14	81 82 83 84 85 86 87	0.10 0.15 0.13 0.15 0.13 0.18 0.26 0.23	101 102 103 104 105 106 107 108	0.37 0.33 0.18 0.21 0.19 0.20 0.22 0.16
9 10 11 12 13 14 15 16 17 18 19 20	0.16 0.26 0.27 0.29 0.33 0.28 0.36 0.30 0.33 0.21 0.10	29 30 31 32 33 34 35 36 37 38 39 40	0.28 0.33 0.21 0.28 0.18 0.30 0.21 0.27 0.33 0.16 0.17 0.08	49 50 51 52 53 54 55 56 57 58 59 60	0.14 0.17 0.18 0.17 0.26 0.28 0.16 0.14 0.22 0.19 0.17 0.15	69 70 71 72 73 74 75 76 77 78 79 80	0.22 0.26 0.26 0.18 0.20 0.18 0.16 0.26 0.17 0.18 0.16 0.11	89 90 91 92 93 94 95 96 97 98 99 100	0.26 0.18 0.09 0.14 0.20 0.12 0.17 0.17 0.07 0.21 0.25 0.29	109 110 111 112 113 114 115 116 117 118 119 120	0.21 0.23 0.22 0.21 0.20 0.23 0.23 0.23 0.30 0.29 0.30 0.53

<u>Table 7:</u> CTD dissolved oxygen calibration coefficients for cruise au0603: slope, bias, tcor (= temperature correction term), and pcor (= pressure correction term). dox is equal to 2.8σ , for σ as defined in the *CTD Methodology*. Note that coefficients are given for both the shallow and deep part of the profile, according to the profile split used for calibration.

	shallow					deep				
stn	slope	bias	tcor	pcor	dox	slope	bias	tcor	pcor	do
1	0.652755	-0.416852	0.009799	0.000145	0.193244	0.497538	-0.218103	0.022524	0.000130	0.027116
2	0.653810	-0.429028	0.022044	0.000132	0.179887	0.794188	-0.607257	-0.001306	0.000130	0.013078
3	0.669730	-0.476656	0.046578	0.000158	0.161050	1.670758	-1.970783	0.015426	0.000364	0.043035
4	0.684011	-0.507804	0.031222	0.000216	0.152964	0.474102	-0.054474	-0.035472	0.000022	0.040387
5	0.660470	-0.458257	0.037197	0.000151	0.099698	0.200860	0.200178	0.057777	0.000107	0.040653
6	0.664130	-0.453189	0.029405	0.000138	0.110466	0.703574	-0.495252	0.013746	0.000133	0.022050
7 8	0.642075 0.616481	-0.403848 -0.356341	0.015855 0.015693	0.000133 0.000116	0.162404 0.134772	0.489549 0.495403	-0.213434 -0.205919	0.054644 0.038437	0.000125 0.000119	0.042457 0.066180
9	0.631571	-0.398517	0.013033	0.000110	0.118930	0.193519	0.198422	0.036437	0.000113	0.058706
10	0.620268	-0.359728	0.009063	0.000123	0.074635	0.801764	-0.597336	-0.019204	0.000131	0.028403
11	0.598171	-0.315438	0.002013	0.000120	0.136092	0.500658	-0.202125	0.031330	0.000125	0.028063
12	0.606874	-0.342114	0.010893	0.000147	0.102842	0.500524	-0.200491	0.034404	0.000134	0.011065
13	0.616549	-0.334505	0.008346	0.000152	0.083590	0.602834	-0.297027	-0.010808	0.000136	0.029179
14	0.609348	-0.309621	0.001007	0.000142	0.096908	0.547868	-0.256211	0.052547	0.000155	0.050806
15	0.620449	-0.330071	0.001473	0.000150	0.117867		-0.296561	-0.000917	0.000136	0.016490
16	0.600951	-0.287909	-0.005711	0.000131	0.162832	0.602477 0.603059	-0.296491	-0.000050	0.000137	0.010429
17 18	0.604975 0.611651	-0.298162 -0.310447	-0.005566 -0.000605	0.000137 0.000141	0.054926 0.082575	0.548465	-0.297845 -0.220194	0.000522 0.001507	0.000137 0.000128	0.012943 0.065723
19	0.624048	-0.338570	0.005064	0.000141	0.085900		-0.220194	0.001307	0.000128	0.003723
20	0.601953	-0.291331	-0.006036	0.000134	0.081647	0.604283	-0.295594	-0.006702	0.000135	0.016391
21	0.607320		-0.002029	0.000140	0.037882	0.571478	-0.243383	-0.015383	0.000126	0.017508
22	0.606933	-0.302108	-0.003926	0.000139	0.121606	0.679815	-0.435171	0.050391	0.000176	0.034819
23	0.497234	-0.129109	-0.019167	0.000106	0.037859	0.553805	-0.202877	-0.045724	0.000112	0.015802
24	0.604866	-0.296325	-0.005579	0.000137	0.075179	0.551469	-0.206584	-0.030505	0.000116	0.015895
25	0.611564	-0.303277	-0.008937	0.000133	0.175248	0.603739	-0.296462	-0.008397	0.000136	0.016062
26	0.607867	-0.305531	-0.001651	0.000142	0.193981	0.603659	-0.296155	0.005274	0.000137	0.016972
27	0.611695	-0.305354	-0.002364	0.000134	0.136342	0.604025	-0.296690 -0.278708	-0.002167	0.000136	0.019580
28 29	0.441625 0.606304	-0.040731 -0.298373	-0.038812 -0.005789	0.000088 0.000136	0.198870 0.076852	0.596224 0.604678	-0.276706	-0.012324 -0.001486	0.000129 0.000135	0.047241 0.012172
30	0.600504	-0.292956	-0.003769	0.000130	0.076632	0.482959	-0.293020	-0.001460	0.000133	0.012172
31	0.481758	-0.100581	-0.031258	0.000100	0.098810	0.605291	-0.297417	0.002152	0.000137	0.031703
32	0.605307	-0.305697	0.000708	0.000144	0.174340		-0.296606	-0.007932	0.000136	0.013205
33	0.506181	-0.141709	-0.023420	0.000109	0.078817	0.603142	-0.297267	0.009979	0.000138	0.013629
34	0.674393	-0.418004	0.014412	0.000163	0.201932	0.556595	-0.227713	0.003282	0.000128	0.044618
35	0.425775	-0.008091	-0.041782	0.000083	0.278395	0.600843	-0.295747	0.024181	0.000140	0.033884
36	0.572987	-0.250838	-0.002823	0.000131	0.187225		-0.295987	-0.007590	0.000135	0.013263
37	0.651226	-0.380097	0.003912	0.000161	0.261881		-0.261340	-0.033124	0.000121	0.020805
38 39	0.606917 0.542564	-0.304512 -0.199096	-0.007528 -0.015979	0.000144 0.000119	0.163422 0.248078	0.565429	-0.226094 -0.299401	-0.038219 0.105410	0.000118 0.000149	0.022693 0.019058
40	0.596777	-0.290404	-0.015373	0.000113	0.171317	0.603359	-0.295104	-0.010357	0.000149	0.013036
41	0.523074	-0.157965	-0.018801	0.000112	0.101439	0.523074	-0.157965	-0.018801	0.000100	0.101439
42	0.753569	-0.565740	0.030918	0.000250	0.244201	0.753569	-0.565740	0.030918	0.000250	0.244201
43	-	-	-	-	-	-	-	-	-	-
44	0.297723	0.666462	0.207927	0.000013	0.064569	0.297723	0.666462	0.207927	0.000013	0.064569
45	0.591743	-0.289417	0.001884	0.000142	0.107771	0.566507	-0.240407	-0.018413	0.000126	0.022519
			-0.020066	0.000106	0.132540		-0.480881	0.123670	0.000204	0.054072
47		-0.321984	0.001446	0.000148	0.160034		-0.297538		0.000137	0.009715
48 49		-0.299352 -0.249019	0.001393 0.000657	0.000145 0.000137	0.094305 0.114220		-0.296480 -0.446500	-0.014746 0.054654	0.000134 0.000177	0.019194 0.019897
50		-0.294675	-0.006552	0.000137	0.114220		-0.297353		0.000177	0.016019
51		-0.297996		0.000141	0.038654			-0.006161	0.000138	0.024874
52	0.577671	-0.264776		0.000138	0.187041		-0.301189	0.025205	0.000147	0.054034
53		-0.325717		0.000160	0.210539		-0.297796		0.000137	0.007939
54		-0.307178	-0.004542	0.000147	0.132689	0.299889	0.099303	0.097307	0.000131	0.009856
55		-0.294671	-0.003413	0.000143	0.145980		-0.696019	-0.057099	0.000139	0.006375
56		-0.285248	0.002495	0.000116	0.177874		-0.285248	0.002495	0.000116	0.177874
57 50	0.566481	-0.229158	-0.003994	0.000070	0.185430	0.566481	-0.229158	-0.003994	0.000070	0.185430
58 59		-0.205219 -0.463655	0.021613	0.000098 0.000269	0.128024		-0.205219 -0.463655	0.021613 -0.047252	0.000098 0.000269	0.128024
60		-0.463633		0.000269	0.059516 0.111865	0.647191 0.602583	-0.463655	-0.047252	0.000269	0.059516 0.014881
61		-0.299499	0.000837	0.000132	0.099733		-0.298521	-0.003734	0.000130	0.014001
62		-0.247515		0.000112	0.035156		-0.297368		0.000134	0.055011
63		-0.352013	0.024063	0.000163	0.184615		-0.298173	0.003797	0.000140	0.030850
64		-0.307364		0.000145	0.105261		-0.297417		0.000136	0.020213
65		-0.301313		0.000143	0.113575		-0.056124		0.000082	0.013079
66	0.600203	-0.297123	-0.007865	0.000139	0.143704	0.490932	-0.108626	-0.143385	0.000087	0.009735

Table 7: (continued)

			hallow				d	eep		
stn	slope	bias	tcor	pcor	dox	slope	bias	tcor	pcor	do
67	0.605310	-0.304206	-0.009937	0.000138	0.118820	0.370663	0.102580	-0.307390	0.000035	0.019258
68	0.697366	-0.506755	-0.011861	0.000260	0.102049	0.697366	-0.506755	-0.011861	0.000260	0.102049
69	0.375713	0.190276	0.026137	0.000003	0.092151	0.375713	0.190276	0.026137	0.000003	0.092151
70	0.303615	0.363771	0.052605	0.000015	0.065590	0.303615	0.363771	0.052605	0.000015	0.065590
71	0.508509	-0.085413	0.009181	0.000058	0.050672	0.508509	-0.085413	0.009181	0.000058	0.050672
72	0.605223	-0.304944	-0.006197	0.000143	0.132656	0.687225	-0.449278	0.043325	0.000177	0.034410
73	0.599973	-0.304178	-0.005388	0.000147	0.105875	0.607212	-0.294662	-0.030051	0.000133	0.050940
74	0.618572	-0.352913	0.022386	0.000165	0.024913	0.599063	-0.300304	-0.001880	0.000139	0.016806
75	0.618511	-0.346235	0.011201	0.000160	0.105645	0.596940	-0.303263	0.005534	0.000143	0.027972
76	0.620842	-0.349926	0.012375	0.000167	0.175265	0.598596	-0.299286	0.007775	0.000141	0.035382
77	0.597980	-0.298170	0.003350	0.000140	0.100016		-0.338363	-0.000071	0.000142	0.035386
78	0.588936	-0.281352	-0.004631	0.000137	0.159051		-0.298390	-0.007297	0.000136	0.009556
79	0.588599	-0.272385	-0.001915	0.000120	0.132707		-0.065108	-0.068371	0.000103	0.105367
80	0.604353	-0.310046	-0.000709	0.000147	0.158210		-0.216431	-0.008198	0.000120	0.017316
81	0.570763	-0.247056	-0.004529	0.000128	0.137514		-0.247056	-0.004529	0.000128	0.137514
82	0.511558	-0.096292	0.005107	0.000023	0.227326		-0.096292	0.005107	0.000023	0.227326
83	0.510396	-0.072678	0.027873	0.000085	0.068433		-0.072678	0.027873	0.000085	0.068433
84	0.570697	-0.230352	-0.002830	0.000108	0.124031		-0.230352		0.000108	0.124031
85	0.547824	-0.183512	0.004795	0.000117	0.064202		-0.183512	0.004795	0.000117	0.064202
86	0.591769	-0.286439	-0.002960	0.000131	0.129514		-0.299521	-0.009938	0.000137	0.012667
87	0.625004	-0.356896	0.008294	0.000168	0.160091		-0.296711	-0.007172	0.000135	0.010458
88	0.601416	-0.306277	0.004289	0.000142	0.114731		-0.297657	-0.004480	0.000137	0.015879
89	0.602600	-0.310617	0.005244	0.000148	0.101107		-0.297947	-0.007258	0.000136	0.007543
90	0.607763	-0.314725	0.000526	0.000148	0.097458	0.602825	-0.297146	-0.007817	0.000135	0.007344
91	0.586840	-0.268034	-0.003737	0.000121	0.174229	0.601409	-0.298020	0.004027	0.000137	0.005347
92	0.597519	-0.293590	-0.004623	0.000139	0.093166		-0.295883	-0.015066	0.000132	0.014515
93	0.599533	-0.297223	-0.009178	0.000141	0.165715	0.946965	-0.859477	0.084971	0.000265	0.004955
94	0.597052	-0.290942	0.004882	0.000134	0.108387	0.603024		-0.009702	0.000134	0.031953
95	0.612679	-0.321346	-0.003832	0.000149	0.113507	0.574600	-0.136006	-0.175431	0.000021	0.027745
96	0.605893	-0.308061	-0.006174	0.000143	0.054024	0.288212	0.267549	-0.140394	0.000001	0.016164
97	1.454430	-2.126514	-0.153056	0.000784	0.121560	-	- 0.405004	0.004044		- 0 470470
98	0.546056	-0.185231	-0.001644	0.000053	0.172478	0.546056	-0.185231	-0.001644	0.000053	0.172478
99	0.572271	-0.248816	-0.000119	0.000208	0.165633	0.572271	-0.248816	-0.000119	0.000208	0.165633
100	0.517196	0.001072	0.079250	0.000165	0.101136	0.517196	0.001072	0.079250	0.000165	0.101136
101	0.625130	-0.246245	0.063866	0.000166	0.118148	0.625130	-0.246245	0.063866	0.000166	0.118148
102	0.555191	-0.211816	-0.004539	0.000134	0.085224	0.555191	-0.211816	-0.004539	0.000134	0.085224
103	0.592115 0.614509	-0.283174 -0.350635	-0.010276 0.014669	0.000129 0.000165	0.125568 0.187176		-0.298428 -1.049072	-0.011751	0.000131 0.000244	0.031424
104 105	0.604459	-0.318983	-0.000385	0.000103	0.107176	0.602151	-0.298807	-0.058620 -0.007945	0.000244	0.004938 0.024139
105	0.596318	-0.324288	0.021392	0.000146	0.121636	0.596474	-0.296607	-0.007945	0.000130	0.024139
107	0.587203	-0.324266	-0.009392	0.000130	0.140396	0.596474	-0.303039	-0.003464	0.000140	0.010927
107	0.595608	-0.304058	0.009392	0.000129	0.096931	0.601981	-0.298302	-0.001003	0.000141	0.013331
100	0.600617	-0.307316	-0.002693	0.000147	0.075135	0.600348	-0.290502	-0.009992	0.000133	0.009200
110	0.597901	-0.299653	-0.002093	0.000143	0.109043	0.601728	-0.298972	-0.009992	0.000137	0.014360
111			-0.0001403	0.000140	0.114000			-0.000000	0.000133	0.023704
112		-0.277070		0.000133				0.491995	0.000703	0.013503
		-0.277070		0.000132	0.098578 0.120229		-1.100285 -0.297967		0.000703	0.013312
114		-0.303330		0.000133	0.120229		-0.297907	0.009988	0.000134	0.004760
115		-0.293862		0.000136	0.148337	0.594604			0.000113	0.017344
		-0.302078		0.000140	0.133443	0.600301			0.000140	0.137565
117		-0.679434		0.000122	0.137303		-0.679434		0.000122	0.137303
118		-0.122527		0.000341	0.119947		-0.122527		0.0000341	0.119947
119	-	-	-	-	-	-	-	-	-	-
120	_	_	_	_	_	_	_	_	_	_
0										

<u>Table 8:</u> Suspect dissolved oxygen bottle values (not deleted from bottle data file).

station number	rosette positior
3	. 6
28	3
85	11
116	10. 12

<u>Table 9:</u> Suspect CTD 2 dbar averages (not deleted from the CTD 2dbar average files) for the indicated parameters: T=temperature; S=salinity and conductivity; O=oxygen; F=fluorsecence.

station	questionable	parameters
number	2 dbar value(dbar)	
23	2-28	0
31	2-18	0
39	2-20	0
41	2-18	0
42	2-18	0
62	34-64	0
73	50-56	0
83	2-12	0
97	38-62	0
101	2-18	0
102	2-24	0
115	2-16	0
117	2-20	0

Table 10: Suspect nutrient sample values (not deleted from bottle data file) for cruise au0603.

PHOSPHATE		NITRATE		SILICATE	
station number	rosette position	station number	rosette position	station number	rosette position
5	5	5	5		
7	4			6 7	9,14 4
9	3			9	3
9	3			11	3 2
				13	16
		15	19,20,21	13	10
		19	21,24	19	15
22	5	22	5	22	5
26	5	26	5	26	5
28	21	20	5	20	3
30	5				
00	J			34	5
				41	7
				45	, 12
		46	whole stn	46	15
47	14	47	14	47	14
50	8				
52	20				
65	8,11				
73	10			73	10
-	-	82	whole stn	-	-
		83	whole stn		
		84	whole stn		
		85	whole stn		
		86	whole stn		
108	4,6	108	7	108	4
110	20	110	21		

Table 11: ADCP logging and calibration parameters for cruise au0603.

ping parameters bottom track ping parameters

no. of bins: 60 no. of bins: 128 bin length: 8 m bin length: 4 m pulse length: 8 m pulse length: 32 m

delay: 4 m

ping interval: minimum ping interval: same as profiling pings

reference layer averaging: bins 8 to 20

XROT: 822

ensemble averaging duration: 3 min. (for logged data)

30 min. (for final processed data)

calibration

 α (\pm standard deviation) 1+ β (\pm standard deviation) no. of calibration sites

 2.436 ± 0.525 1.0509 ± 0.010 229

Figure 1a: CTD station positions and ship's track for cruise au0603.

<u>Figure 1b:</u> CTD station positions and ship's track for cruise au0603, BROKE West survey area, including depth contours from GEBCO2003 bathymetry.

Conductivity s.d. = 0.00003 Number of bottles used = 1990 out of 2505 Mean ratio for all bottles = 1.00000

<u>Figure 2:</u> Conductivity ratio c_{bti}/c_{cal} versus station number for cruise au0603. The solid line follows the mean of the residuals for each station; the broken lines are \pm the standard deviation of the residuals for each station. c_{cal} = calibrated CTD conductivity from the CTD upcast burst data; c_{bti} = 'in situ' Niskin bottle conductivity, found by using CTD pressure and temperature from the CTD upcast burst data in the conversion of Niskin bottle salinity to conductivity.

<u>Figure 3:</u> Salinity residual (s_{btl} - s_{cal}) versus station number for cruise au0603. The solid line is the mean of all the residuals; the broken lines are \pm the standard deviation of all the residuals. s_{cal} = calibrated CTD salinity; s_{btl} = Niskin bottle salinity value.

<u>Figure 4:</u> Difference between primary and secondary temperature sensor $(t_p - t_s)$ for CTD upcast burst data from Niskin bottle stops, for cruise au0603.

<u>Figure 5:</u> Dissolved oxygen residual (o_{btl} - o_{cal}) versus station number for cruise au0603. The solid line follows the mean residual for each station; the broken lines are \pm the standard deviation of the residuals for each station. o_{cal} =calibrated downcast CTD dissolved oxygen; o_{btl} =Niskin bottle dissolved oxygen value. Note: values outside vertical axes are plotted on axes limits.

<u>Figure 6a and b:</u> au0603 hull mounted ADCP 30 minute ensemble data, for (a) whole cruise track, and (b) BROKE West survey area.

<u>Figure 7:</u> au0603 apparent ADCP vertical current shear, calculated from uncorrected (i.e. ship speed included) ADCP velocities. The data are divided into different speed classes, according to ship speed during the 30 minute ensembles. For each speed class, the profile is an average over the entire cruise.

<u>Figure 8a and b:</u> au0603 comparison between (a) CTD and underway temperature data (i.e. hull mounted temperature sensor), and (b) CTD and underway salinity data (i.e. Tilbrook's lab 1 SeaBird), including bestfit lines. Note: dls refers to underway data.