

Kaj določa način "plavanja"?

- Upor, ki ga čuti "plavalec":
 - zaradi gostote tekočine (odrivanje mase z vztrajnostjo)

$$\propto \rho R^2 v^2$$

$$\propto \eta R v$$

Katera sila je pomembnejša?

Kaj določa način "plavanja"?

Odloča razmerje obeh sil (Reynoldsovo število Re):

$$\frac{\text{upor zaradi gostote}}{\text{upor zaradi viskoznosti}} \propto \frac{\rho R^2 v^2}{\eta R v} = \frac{\rho R v}{\eta} = Re$$

- Re > 1000: prevladuje kvadratni upor, tekočina se močno vrtinči ("turbulenten tok")
- Re < 1: gibanje omejuje viskoznost, tekočina teče brez vrtincev ("laminaren tok")
 - → bakterije in molekule ne poznajo vztrajnosti!

 ρ - gostota tekočine η - koef. viskoznosti

Difuzija

• Naključno Brownovo gibanje je posledica trkov med molekulami s termično kinetično energijo $\sim k_B T$

$$\langle x \rangle = 0$$

delci vseeno nekam pridejo
(D - koeficient difuzije, t - čas)

$$\langle x^2 \rangle \propto Dt$$

 Difuzijo poganja entropija (osmotski tlak) v smeri večjega števila možnih stanj

Difuzija

 Hitrost difuzije določa koeficient difuzije D, ki je odvisen od

$$D \propto \frac{\text{energija}}{\text{upor}} \propto \frac{k_B T}{\eta R}$$

- Izmerimo lahko le efektivno velikost delcev! (skupaj s hidratacijskim plaščem)
- Viskoznost je makroskopski parameter! (uporaben za delce z m₁ > 1 kDa)
 Kako se gibljejo delci, primerljivi z velikostjo molekul topila? (m₁ < 100 Da)

Fluorescence Recovery After Photobleaching - FRAP

"Obnavljanje fluorescence po fotoslepljenju"

čas

nemobilni delež

mobilni delež

$$D = \frac{w_D^2}{4\tau_D}$$

Centrifuga

- V disperziji nenabitih delcev tekmujeta urejevalna sila (težnost) in termično gibanje
 → stabilnost disperzije določa teža delcev
- swinging-arm rotor

 centrifugal force
 tube

 CENTRIFUGATION

 metal bucket

- Usedanje lahkih delcev v centrifugi pospešimo s "povečanjem njihove teže", sorazmerno s (frekvenco vrtenja ω)²
- Hitrost posedanja $\propto \frac{\text{centrif.}}{\text{upor}} \propto \frac{\omega^2 m^4}{\eta R}$

(m' - masa delca, zmanjšana za vzgon)

Več izvedb: diferenčna, gradientna ...

Elektroforeza

- Nabite delce lahko ločujemo tudi z električnim poljem - E
- Hitrost potovanja odvisna od gibljivosti delcev - μ

$$\mu \propto \frac{\text{naboj}}{\text{upor}} \propto \frac{Ze_0}{\eta R}$$

 Izvedbe: gelska, kapilarna, 2D ef., isoelektrično fokusiranje, ef. na mikročipu ...

 Ze_0 - neto naboj delcev

Meritev ζ-potenciala

- Vedno posredno izračunan iz elektroforetske gibljivosti
- Merjenje hitrosti z "laserskim radarjem"

