

Modul TA.PR+SY Lagerungen und Führungen

Gleitlager

FH Zentralschweiz

Hochschule Luzern

Inhalt

- Funktion und Wirkung von Gleitlagern
- Wartungsarme und wartungsfreie Gleitlager
- Anwendungen von wartungsfreien und wartungsarmen Gleitlagern

Weiterführende Literatur:

- [1] Roloff / Matek; Maschinenelemente: Normung, Berechnung, Gestaltung; 22. Auflage, Verlag Vieweg, Wiesbaden 2015
- [2] Schlecht, B.; Maschinenelemente 2: Getriebe Verzahnungen Lagerungen; Pearson, München 2010

Funktion und Wirkung von Gleitlagern

Arten von Lagerungen und Führungen

Funktion von Lagerungen und Führungen

Abbildungen: [2]

© HSLU PR+SY_H16: Lagerungen und Führungen

3

Hochschule Luzern Technik & Architektu

Funktion und Wirkung von Gleitlagern

- Reibungszustände
 - Festkörperreibung
 - Mischreibung
 - Flüssigkeitsreibung

- a) Örtliche Flüssigkeitsreibung
- b) Abrieb durch Abscheren
- c) Verschweißung oder Ausschmelzen
- d) Elastische oder plastische Verformung

u Umfangsgeschwindigkeit

h₀ Schmierfilmdicke

 R_z Rautiefe

 W_t Welligkeit

Abbildungen: [2]

Funktion und Wirkung von Gleitlagern

Grundlagen hydrodynamische und hydrostatische Schmierung

Abbildungen: [2]

© HSLU PR+SY_H16: Lagerungen und Führungen

Hochschule Luzern

Funktion und Wirkung von Gleitlagern

Schmierdruckausbildung in hydrodynamisch und hydrostatisch geschmierten Gleitlagern

Abbildungen: [2]

Funktion und Wirkung von Gleitlagern

• Grundsätzlicher Verlauf der Stribeck-Kurve

Abbildung: [2]

© HSLU PR+SY_H16: Lagerungen und Führungen

7

Hochschule Luzern Technik & Architektur

Gleitlagerung - Beispiele Turbokompressor

Wartungsarme und wartungsfreie Gleitlager

© HSLU PR+SY_H16: Lagerungen und Führungen

Bilder: INA, igus

9

Hochschule Luzern

Wartungsarme und wartungsfreie Gleitlager

- Ölfreie Gleitlager werden als wartungsfreie
 Trockenlauflager bezeichnet. Sie werden vor
 allem bei kleineren Lasten und Geschwindigkeiten
 eingesetzt. Der Einsatz kann wirtschaftliche Gründe
 haben oder es sind Schmierstoffe wegen
 Verunreinigungen unerwünscht. (Nahrungsmittel-,
 Textil- oder Papiermaschinen)
- Wartungsarme Lager werden zusätzlich mit Fett oder Öl geschmiert. Dabei speichern Schmiertaschen den Schmierstoff. In vielen Fällen genügt eine Erstschmierung oder es sind grosse Nachschmierintervalle vorzusehen.

Werkstoffe und Lagertypen

- Sinterlager (flüssige oder feste Schmierstoffe)
- Trockengleitlager (gerollte Gleitlager)
- Kunststoff Gleitlager
- Kohlenstoff Gleitlager
- Gleitlager mit Festschmierstoffen
- Faserverbund Gleitlager

© HSLU PR+SY_H16: Lagerungen und Führungen

11

Hochschule Luzern
Technik & Architektur

Herstellung von Sinterlagern

• 1. Schritt – Mischen

• 2. Schritt – Pulverpressen

• 3. Schritt – Sintern

• 4. Schritt – Kalibrieren und Prägen

• 5. Schritt - Schmierstofftränken

Bilder: GGT

Toleranzen und Einbaurichtlinien für Sinterlager

Laurenita D	Herstellungstoleranz des Lagers d/D	Zum Einbau des Lagers wird ein Einpressdorn d _e verwendet		Wellendurchmesser da
Lagersitz D₅		mit einer Toleranz von	Bohrung d, Toleranz nach dem Einpressen	für Laufsitz
H7	E7/r7	s5	F7	h6-h9
4	Q P	•	5	Quelle: GGT

- Das Porenvolumen von Sinterlagern beträgt 15-20 % des Gesamtvolumens
- Werkstoffe: Sinterbronze, Graphitbronze, MoS₂ Sinterbronze, Ferrobronze

© HSLU PR+SY_H16: Lagerungen und Führungen

Hochschule Luzern Technik & Architektu

Lageraufbau Trockengleitlager (gerollte Lager)

wartungsfrei

- 1: Gleitschicht PTFE und Schmierstoffadditive
- 2: poröse Schicht aus Sinterbronze
- 3: Trägerblech aus Stahl
- 4: Oberflächenschutz, Kupfer oder Zinn

wartungsarm

- 1: Gleitschicht, z.B. POM, PTFE
- 2: poröse Schicht aus Sinterbronze
- 3: Trägerblech aus Stahl
- 4: Oberflächenschutz, Kupfer oder Zinn
- 5: Schmiertaschen
- s₄: Bearbeitungszugaben

Bilder: INA

Bilder: bornebusch.de caspar-gleitlager.de ttv-gmbh.de

© HSLU PR+SY_H16: Lagerungen und Führungen

Technische Daten von Trockengleitlagern

max. pv-Wert (trocken)	Dauerbetrieb	pv	1.8 N/mm ² ×m/s
	kurzzeitig	pv	3.6 N/mm ² ×m/s
zulässige Lagerbelastung	statisch	p max	250 N/mm ²
	dynamisch	p max	140 N/mm²
zulässige Gleitgeschwindigkeit	trocken	v max	2 m/s
	Mit Schmierung	v max	> 2 m/s
Temperaturbereich			−195 °C bis +280 °C
Wärmeausdehnungskoeffizient	Stahlrücken	α	11*10 ⁻⁶ K ⁻¹
Wärmeleitzahl	Stahlrücken	λ	42 W (m*K) ⁻¹
Reibungskoeffizient		μ	0.03 bis 0.20

Quelle: GGT

 Einbautoleranzen: Gehäuse H7 Welle h8 bis f7

Innendurchmesser D_i nach Montage für \emptyset 10 mm: 9.990 bis 10.058 mm

© HSLU PR+SY_H16: Lagerungen und Führungen

15

Hochschule Luzern Technik & Architektur

Kunststoff Gleitlager

- Werkstoffe und Aufbau
- Die Basispolymere sind entscheidend für die Verschleissfestigkeit.
- Fasern und Füllstoffe verstärken die Lager, so dass auch hohe Kräfte oder Kantenbelastungen aufgenommen werden.
- Festschmierstoffe schmieren die Lager selbständig und vermindern die Reibung des Systems.
- Einbautoleranzen:
 Gehäuse H7
 Welle h9
 Innendurchmesser D nach Montage E10

© HSLU PR+SY_H16: Lagerungen und Führungen

16

Diverse Gleitlager

Kohlenstoff Gleitlager

- Gute Gleit und Trockenlaufeigenschaften
- · Geringer Reibungskoeffizient
- Sehr gute elektrische Leitfähigkeit

Gleitlager mit Festschmierstoffen

- · Selbstschmierend mit Festschmierstoffen
- Temperaturbereich -40°C 400°C
- seewasserbeständig

Faserverbund Gleitlager

- Glasfaser mit Epoxidharz und PTFE
- Hohe Verschleiss- und Schlagfestigkeit
- Hohe Korrosionsbeständigkeit

© HSLU PR+SY_H16: Lagerungen und Führungen

Bilder: GGT

17

Hochschule Luzern Technik & Architektur

Einsatzgrenzen

- Beim Einsatz von wartungsarmen und wartungsfreien Gleitlagern, müssen die folgenden Parameter beachtet werden:
 - Gleitgeschwindigkeit
 - Lagerbelastung
 - · Genauigkeit
 - Temperaturbereich
 - Wärmeleitfähigkeit
 - Reibwert
 - Verschleiss
- Der Verschleiss in wartungsfreien Lagern hängt im Wesentlichen

von den folgenden Parametern ab:

- spezifische Lagerbelastung
- Gleitgeschwindigkeit
- pv-Wert
- Lagermaterial
- Rauhtiefe der Gegenlauffläche
- Material der Gegenlauffläche
- Temperatur

© HSLU PR+SY_H16: Lagerungen und Führungen

18

Einsatzgrenzen

- Einen wesentlichen Einfluss auf den Einsatzbereich und auf die Gebrauchsdauer eines Lagers hat der **pv-Wert**. Die erreichbaren Werte sind von den Werkstoffen und der Bauart abhängig.
 - Erreichbare pv-Werte: 3 N/mm²*m/s wartungsarm (Werte INA) 1.8 N/mm²*m/s wartungsfrei Erreichbaren Geschwindigkeiten: 3 m/s wartungsarm (Werte INA) 2 m/s wartungsfrei
- Spezifische Belastung statisch (Werte INA)
 Spezifische Belastung statisch (Werte INA)
 Z50 N/mm² wartungsarm wartungsarm
- Zulässige Betriebsbereiche für verschiedene wartungsfreie bzw. wartungsarme Gleitlager.

- 1 Gleitlager aus Sinterbronze
- 2 Gleitlager aus Sintereisen
- 3 metallkeramische Gleitlager
- 4 Verbundgleitlager mit Acetatharz
- 5 Verbundgleitlager mit PTFE-Schicht
- 6 Vollkunststoff-Gleitlager (Polyamid)

© HSLU PR+SY_H16: Lagerungen und Führungen

Diagramm: [2]

19

Hochschule Luzern Technik & Architektu

Anwendung Gleitlager in SRAM Kettenwechsler

IGUS Kunststofflager für vier Gelenkpunkte

© HSLU PR+SY_H16: Lagerungen und Führungen

Bilder: igus

Anwendung Pneumatikzylinder

Bilder: igus, INA, SMC

 \odot HSLU PR+SY_H16: Lagerungen und Führungen 1: Permaglide-Buchse PAP...P20

21

Hochschule Luzern

Anwendung Ramm- und Bohrsystem

Betriebsdaten					
Mäklerlänge (ausgefahren)	I _{max}	17 m			
Mäklergewicht	m _{max}	8 700 kg			
Schwenkbereich	φ	±92,5°			
Druckkraft	F _{d max}	85 kN			
Ziehkraft	F _{z max}	280 kN			

