Prova tipo B. Respostas

- 1) Considere os vetores $\bar{v} = (1, 1, 0)$ e $\bar{w} = (1, -1, 1)$.
- a) Determine um vetor \bar{a} de módulo igual a $\sqrt{6}$ tal que $\bar{a} \times \bar{v} = \bar{w}$.
- b) Determine o valor de c para que se verifique a igualdade

$$(1, c, 2) \cdot ((1, 1, 0) \times (1, -1, 1)) = 6.$$

 \mathbf{c}) Determine o valor de d para que se verifique a igualdade

$$(1,d,2)\cdot ((1,1,0)\times (1,-1,1))=(1,d,2)\cdot ((1,-1,1)\times (1,1,0)).$$

Respostas:

a)
$$\bar{a} = (2, 1, -1)$$
 ou $\bar{a} = (-1, -2, -1)$

b)
$$c = -9$$

c)
$$d = -3$$

2) Considere o ponto P=(-2,3,2) e a reta r e o plano π de equações

$$r: (1-t, 2+t, t) \quad t \in \mathbb{R}, \qquad \pi: x-y+z=3.$$

- a) Determine o ponto Q da reta r mais próximo de P.
- b) Determine a distância d entre o ponto P e a reta r.
- c) Determine um ponto A de r tal que a distância entre P e A seja $\sqrt{29}$.
- d) Determine o ponto B da reta r tal que B, P e o ponto (1, 2, 0) da reta r sejam os vértices de um triângulo de área $\sqrt{6}$.
- e) Determine o ponto C do plano π mais próximo de P.
- f) Determine a distância d' entre o ponto P e o plano π .

Respostas:

- a) Q = (-1, 4, 2)
- $\mathbf{b)} \qquad d = \sqrt{2}$
- c) A = (2, 1, -1) ou A = (-4, 7, 5)
- d) B = (-1, 4, 2) ou B = (3, 0, -2)
- e) C = (0, 1, 4)
- $\mathbf{f)} \qquad d' = \sqrt{12}$

- 3) Considere o ponto P=(1,1,2) e as retas r_1 e r_2 de equações paramétricas $r_1:(1+t,2t,1-t), \quad t\in\mathbb{R}, \qquad r_2:(5-2t,2+2t,-2+t), \quad t\in\mathbb{R}.$
- a) Escreva a reta r_1 como interseção de dois planos (escritos de forma cartesiana) π e ρ , onde π é paralelo ao eixo \mathbb{Y} e ρ é paralelo ao plano

$$\tau$$
: $2x + y + 4z = 0$.

- b) Determine a equação cartesiana do plano β que contém o ponto P e a reta r_1 .
- c) As retas r_1 e r_2 são concorrentes. Determine o ponto C de interseção destas duas retas.
- d) Determine as equações paramétricas da reta r_3 perpendicular comum a r_1 e r_2 (isto é, r_3 intercepta as retas r_1 e r_2 e é perpendicular a ambas retas).

Respostas:

a)
$$\pi: x + z = 2$$
 $\rho: 2x + y + 4z = 6$

$$\beta \colon 3x - y + z = 4$$

c)
$$C = (3, 4, -1)$$

d)
$$r_3 = (3+4t, 4+t, -1+6t), t \in \mathbb{R}$$