Commutative Algebra Facts for Algebraic Geometry

March 21, 2022

Contents

1	Definitions	2
2	Domains	2
3	Principal Ideal Domains	2
4	Unique Factorization Domains 4.1 Height One Prime Ideals	3
5	Simple Modules	4
6	Artinian Modules	5
7	Artinian Rings	5
8	Weakly Associated Points 8.1 Weakly Associated Primes 8.2 Associated Primes 8.3 Primary Decomposition 8.4 Weakly Associated Points 8.5 Associated Points: the Noetherian Case	8 12 13 16 17
9	Depth9.1 Definitions9.2 The Cohomological Criterion9.3 Vanishing Criteria on Ext9.4 Locality of Depth9.5 Additional Lemmas9.6 Cohen-Macaulay Rings9.7 Dimension9.8 Properties	177 177 188 199 199 200 200
10	Finite Projective Modules over Local Rings	20
11	Integral and Finite Extensions	2 3

12 Normal Domains 23 12.1 Normalization		
13 Projective and Global Dimension 24 13.1 Projective Dimension 24 13.2 Global Dimension 27 13.3 Auslander-Buchsbaum 28 13.4 Regular Rings 28		
14 Pseudomorphisms 29 14.1 Annhiliators 30		
15 Singularities of Curves 30		
Remark. Unless otherwise stated, all rings are commutative and unital.		
1 Definitions		
Definition 1.0.1. An element $p \in A$ is prime if (p) is a prime ideal. Equivalently p is prime if whenever $p \mid xy$ either $p \mid x$ or $p \mid y$.		
Definition 1.0.2. An element $r \in A$ which is nonzero and not a unit is irreducible if whenever $r = xy$ either $x \in A^{\times}$ or $y \in A^{\times}$.		
2 Domains		
Definition 2.0.1. A ring A is a domain if A has no zero divisors i.e. if $ab = 0$ then $a = 0$ or $b = 0$		
Proposition 2.0.2. Let A be a domain then any nonzero prime element is irreducible.		
<i>Proof.</i> Let $p \in A$ be a prime. Now suppose that $p = xy$ for $x, y \in A$. Thus, $p \mid xy$ so (WLOG) we have $p \mid x$ so $x = pz$ and thus $p = pzy$. However, p is nonzero and A is a domain so $zy = 1$ and thus $y \in A^{\times}$ proving that p is irreducible.		
3 Principal Ideal Domains		
Definition 3.0.1. A principal ideal domain (PID) is a domain A such that every ideal is principal		
Lemma 3.0.2. If A is a PID then A is Noetherian.		
<i>Proof.</i> Every ideal is principal and thus finitely generated.		
Lemma 3.0.3. Let A be a PID and $r \in A$ irreducible then (r) is maximal and thus r is prime.		
<i>Proof.</i> Consider an intermediate ideal $(r) \subset J \subset A$ then since A is a PID we have $J = (a)$ so $r \in (a)$ and thus $r = ac$ so either $a \in A^{\times}$ in which case $J = A$ or $c \in A^{\times}$ in which case $J = (r)$ so (r) is maximal and thus a prime ideal.		

Theorem 3.0.4. Let A be a PID and not a field then $\dim A = 1$.

Proof. Any prime ideal $\mathfrak{p} \subset A$ is principal so $\mathfrak{p} = (p)$ and p is prime. Either p = 0 which is prime since A is a domain or p is irreducible and so we have shown (p) is maximal. So every prime ideal is zero or maximal and thus dim $A \leq 1$. If dim A = 0 then (0) is maximal so A is local and any nonzero element is thus invertible so A is a field.

Theorem 3.0.5 (Kaplansky). Let A be Noetherian then A is a principal ideal ring iff every maximal ideal is prime.

Theorem 3.0.6 (Cohen). A ring A is Noetherian iff every prime ideal is finitely generated.

Corollary 3.0.7. A ring A is a principal ideal ring iff every prime ideal is principal.

4 Unique Factorization Domains

Definition 4.0.1. A domain A is a unique factorization domain (UFD) if every nonzero element has a unique factorization into irreducible elements.

Definition 4.0.2. A factorization ring A is a ring such that every nonzero element has a factorization into irreducible elements.

Lemma 4.0.3. If A is a Noetherian domain then it is a factorization domain.

Proof. Take $a_0 \in A$. If a is irreducible, zero, or a unit then we are done. Then we can write, $a = a_1^{(1)} a_2^{(1)}$ for $a_1, b_1 \notin A^{\times}$. Continuing in this manner we get,

$$(a) \subsetneq (a_1^{(1)}, a_2^{(1)}) \subsetneq (a_1^{(2)}, a_2^{(2)}, a_3^{(2)}, a_4^{(3)}) \subsetneq \cdots$$

(CHECK THIS) This sequence is proper since if a = bc and $b \in (a)$ then a = arc so rc = 1 and thus $c \in A^{\times}$ contradicting our construction. However, A is Noetherian then the sequence must terminate so at some point the factorization must become irreducible.

Theorem 4.0.4. Let A be a factorization domain. Then A is a UFD iff every irreducible is prime.

Proof. If A is a UFD and p an irreducible. Let $x, y \in A$ and $p \mid xy$ then p is in the factorization of xy and thus, by uniqueness must be in the factorization of either x or y so $p \mid x$ or $p \mid y$.

Conversely, if A is a factorization domain and every irreducible is prime then given two factorizations of x each irreducible must, by primality, divide an irreducible in the other factorization so they are equal. (DO THIS BETTER)

Corollary 4.0.5. If A is a PID then A is a UFD.

Proof. If A is a PID then it is Noetherian and thus a factorization domain. Furthermore, every irreducible is prime so A is a UFD. \Box

4.1 Height One Prime Ideals

Proposition 4.1.1. Let A be Noetherian. Then any principal prime ideal has height at most one.

Proof. Let $\mathfrak{p} = (p) \subset A$ be a principal prime ideal. Then consider the localization which is $A_{(p)}$ Noetherian and the unique maximal ideal $pA_{(p)}$ is principal. Take $N = \operatorname{nilrad}(A_{(p)})$ then,

$$\dim A_{(p)}/N = \dim A_{(p)} = \mathbf{ht}(\mathfrak{p})$$

but $A_{(p)}/N$ is a Noetherian domain and the unique maximal ideal $pA_{(p)}$ is principal so $A_{(p)}/N$ is a PID and thus dim $A_{(p)}/N \leq 1$.

Proposition 4.1.2. If A is a UFD then every prime ideal of height one is principal.

Proof. Let $\mathfrak{p} \subset A$ be a prime ideal with $\mathbf{ht}(\mathfrak{p}) = 1$. Take any nonzero element $x \in \mathfrak{p}$ and consider its factorization into irreducibles. Since \mathfrak{p} is prime some irreducible factor $p \mid x$ must be in \mathfrak{p} so $(p) \subset \mathfrak{p}$. Since A is a UFD all irreducibles are prime so $(p) \subset \mathfrak{p}$ is prime. However $\mathbf{ht}(\mathfrak{p}) = 1$ and $(p) \neq (0)$ so $(p) = \mathfrak{p}$ and thus \mathfrak{p} is principal.

Theorem 4.1.3. Let A be a Noetherian domain. Then A is a UFD iff every height one prime ideal is principal.

Proof. We showed one direction above. Conversely, suppose every height one prime ideal is principal. Since A is a Noetherian domain, it suffices to show that each irreducible is prime. Let r be irreducible and consider a minimal prime $\mathfrak{p} \supset (r)$. Then by Krull's Hauptidealsatz, \mathfrak{p} has height one so by our assumption $\mathfrak{p} = (p)$ is principal. However, $(r) \subset (p)$ so $p \mid r$ but r is irreducible so we must have $(r) = (p) = \mathfrak{p}$ and thus r is prime.

Theorem 4.1.4 (Krull's Hauptidealsatz). Let $I \subset A$ be an ideal in a Noetherian ring A with n generators then any minimal prime ideal $\mathfrak{p} \supset I$ has height at most n.

5 Simple Modules

Definition 5.0.1. A nonzero *R*-module is *simple* if it has no nontrivial submodules.

Proposition 5.0.2. Let R be a ring and M an R-module. Then the following are equivalent,

- (a) M is simple
- (b) $\ell_R(M) = 1$
- (c) $M = R/\mathfrak{m}$ for some maximal ideal $\mathfrak{m} \subset R$.

Proof. The first two are equivalent by definition. Clearly if $\mathfrak{m} \subset R$ is maximal then R/\mathfrak{m} is simple. Now suppose that M is simple and take a nonzero $x \in M$. Then (x) = M by simplicity so consider $I = \ker(R \xrightarrow{x} M) = \operatorname{Ann}_A(x) = \{r \in R \mid rx = 0\}$. Since M = Rx we know that $M \cong R/I$. However, by the lattice isomorphism theorem, submodules of R/I correspond to ideals above I so since M is simple we must have I maximal.

6 Artinian Modules

Definition 6.0.1. An R-module M is noetherian/artinian if it satisfies the ascending/descending chain condition on submodules.

Theorem 6.0.2. An R-module M has finite length iff it is both noetherian and artinian.

Proof. If M has finite length then clearly it is noetherian and artinian since chains of submodules are bounded in length. Alternatively, simple modules are noetherian and artinian so given a composition series we see that M is noetherian and artinian by repeated extension. Now, conversely, assume that M is noetherian and artinian. By the artinian property we can take a minimal nonzero submodule $M_1 \subset M$. Then M_1 is simple. Either M/M_1 is simple or we may repeat to get $M_2 \supset M_1$ and M_2/M_1 is simple. Thus we get an ascending chain $0 = M_0 \subset M_1 \subset M_2 \subset M_3 \subset \cdots$ with M_{i+1}/M_i simple. Since M is Noetherian, this must terminate at $M_n = M$ so we get a finite length composition series showing that M has finite length.

7 Artinian Rings

Definition 7.0.1. A ring A is *artinian* if it satisfies the descending chain condition on ideals: given a chain of ideals,

$$I_0 \supset I_1 \supset I_2 \supset \cdots$$

the chain stabilizes $I_{n+i} = I_n$.

Remark. A is artinian iff it is artinian as a module over itself.

Proposition 7.0.2. An artinian ring has finitely many maximal ideals.

Proof. Let $\mathfrak{m}_1, \mathfrak{m}_2, \mathfrak{m}_3, \ldots$ be a list of maximal ideals. Then consider the chain,

$$\mathfrak{m}_1 \supset \mathfrak{m}_1 \mathfrak{m}_2 \supset \mathfrak{m}_1 \mathfrak{m}_2 \mathfrak{m}_3 \supset \cdots$$

By the artinian condition, we must have $\mathfrak{m}_1 \cdots \mathfrak{m}_n = \mathfrak{m}_1 \cdots \mathfrak{m}_n \mathfrak{m}_{n+1}$ for some n. But then by prime avoidence \mathfrak{m}_{n+1} must be one of $\mathfrak{m}_1, \ldots, \mathfrak{m}_n$ since $\mathfrak{m}_{n+1} \supset \mathfrak{m}_1 \cdots \mathfrak{m}_n$ so $\mathfrak{m}_{n+1} \supset \mathfrak{m}_i$ and \mathfrak{m}_i is maximal.

Proposition 7.0.3. Let A be an artinian ring. Then every prime ideal is maximal so dim A=0.

Proof. Let \mathfrak{p} be prime and $x \notin \mathfrak{p}$. Consider the chain,

$$(x)\supset (x^2)\supset (x^3)\supset \cdots$$

By the artinian condition $(x^n)=(x^{n+1})$ for some n so $x^n=rx^{n+1}$ for some $r\in A$. Thus,

$$x^n(rx-1) = 0$$

However, $x^n \notin \mathfrak{p}$ so $rx - 1 \in \mathfrak{p}$ and thus $x \in A/\mathfrak{p}$ is invertible so A/\mathfrak{p} is a field and thus \mathfrak{p} is maximal.

Proposition 7.0.4. Let A be artinian. Then nilrad (A) is a nilpotent ideal.

Proof. Let I = nilrad(A). Consider the chain of ideals,

$$I \supset I^2 \supset I^3 \supset \cdots$$

By the artinian condition, $I^{n+1} = I^n$ for some n. Consider $J = \{x \in A \mid xI^n = 0\}$. If $J \neq R$ we can choose $J' \supsetneq J$ minimal (using the artinian property). Then take $y \in J'$ so by minimality J' = J + (y). Suppose J + I(y) = J' then, since $J \subset \operatorname{Jac}(A)$ and (y) is finitely generated, by Nakayama, J' = J + I(y) = J which is false so $J \subset J + I(y) \subsetneq J'$ and thus J = J + I(y) by minimality so $I(y) \in J$. Therefore, $y \cdot I^{n+1} = 0$ but $I^{n+1} = I^n$ so $y \cdot I^n = 0$ and thus $y \in J$ contradicting our situation so J = R and thus $I^n = 0$.

Proposition 7.0.5. Every artinian ring is a product of local artinian rings: $A_{\mathfrak{m}_i} = A/\mathfrak{m}_i^n$.

Proof. Let $\mathfrak{m}_1, \ldots, \mathfrak{m}_r$ be the maximal ideals. Then we know that $\mathfrak{m}_1^{n_1} \cdots \mathfrak{m}_r^{n_r} = 0$ for some integers $n_1, \ldots, n_r \in \mathbb{Z}$. Therefore, by the Chinese remainder theorem,

$$A = A/(\mathfrak{m}_1^{n_1} \cdots \mathfrak{m}_r^{n_r}) = \prod_{i=1}^r A/\mathfrak{m}_i^{n_i}$$

Furthermore, $A/\mathfrak{m}_i^{n_i}$ is local because \mathfrak{m}_i is the only maximal ideal above $\mathfrak{m}_i^{n_i}$. Furthermore,

$$A_{\mathfrak{m}_i} = (A/\mathfrak{m}_i^{n_i})_{\mathfrak{m}_i} = A/\mathfrak{m}_i^{n_i}$$

since $A \setminus \mathfrak{m}_i$ is not contained in any maximal ideal of $A/\mathfrak{m}_i^{n_i}$ and thus is invertible.

Proposition 7.0.6. A ring A is artinian iff it has finite length as a module over itself.

Proof. If A has finite length as an A-module then it satisfies both the ascending and descending chain conditions on A-submodules i.e. ideals thus A is both noetherian and artinian. Conversely, let A be artinian. Since A is a finite product of local artinian rings we may reduce to the case that A is local artinian with maximal ideal \mathfrak{m} . Since nilrad $(A) = \mathfrak{m}$ then $\mathfrak{m}^n = 0$ for some n so we get a series,

$$0 = \mathfrak{m}^n \subset \mathfrak{m}^{n-1} \subset \cdots \subset \mathfrak{m} \subset A$$

Then $\mathfrak{m}^i/\mathfrak{m}^{i+1}$ is a A/\mathfrak{m} -module and,

$$\ell_A(\mathfrak{m}^i/\mathfrak{m}^{i+1}) = \ell_{A/\mathfrak{m}}(\mathfrak{m}^i/\mathfrak{m}^{i+1}) = \dim_{A/\mathfrak{m}} \mathfrak{m}^i/\mathfrak{m}^{i+1}$$

which must be finite since $\mathfrak{m}^i/\mathfrak{m}^{i+1}$ is an artinian module and thus must have finite dimension else there would be a nonterminating descending chains. Thus from the series A has finite length. \square

Theorem 7.0.7. A ring A is artinian iff A is noetherian and dim A = 0.

Proof. If A is artinian then it has finite length over itself and thus is noetherian. Also every prime is maximal so dim A = 0. Conversely, suppose that A is noetherian and dim A = 0. Then Spec (A) is a noetherian topological space which has finitely many irreducible componets so A has finitely many minimal primes which are also maximal since dim A = 0. Thus A has finitely many primes all of which are maximal. Since dim A = 0 we have I = Jac(A) = nilrad(A) so any $f \in I$ is nilpotent so I is nilpotent because A is noetherian so I is finitely generated. Thus by the Chines remainder theorem A is a finite product of local rings so we reduce to the case that A is local with maximal ideal \mathfrak{m} . Then we get a series,

$$0 = \mathfrak{m}^n \subset \mathfrak{m}^{n-1} \subset \cdots \subset \mathfrak{m} \subset A$$

but $\mathfrak{m}^i/\mathfrak{m}^{i+1}$ is a finite A/\mathfrak{m} -module since A is noetherian so,

$$\ell_A(\mathfrak{m}^i/\mathfrak{m}^{i+1}) = \ell_{A/\mathfrak{m}}(\mathfrak{m}^i/\mathfrak{m}^{i+1}) = \dim_{A/\mathfrak{m}} \mathfrak{m}^i/\mathfrak{m}^{i+1}$$

is finite and thus $\ell_A(A)$ is finite from the series showing that A is artinian.

Proposition 7.0.8. Let A be an artinian ring. Then,

$$\ell_A(A) = \sum_{i=1}^r \ell_{A_{\mathfrak{m}_i}}(A_{\mathfrak{m}_i})$$

Proof. We can write, $A = A_{\mathfrak{m}_1} \times \cdots \times A_{\mathfrak{m}_r}$ and thus the formula immediately follows.

Proposition 7.0.9. Any finite dimensional k-algebra is artinian.

Proof. By dimensionality arguments every descending chain stabilizes.

Proposition 7.0.10. Let $A \to B$ be a local map and M an B-module of finite length. Then,

$$\ell_A(M) = \ell_B(M) \cdot [\kappa(\mathfrak{m}_B) : \kappa(\mathfrak{m}_A)]$$

and in particular $\ell_A(M)$ is finite if $\kappa(\mathfrak{m}_B)$ is a finite extension of $\kappa(\mathfrak{m}_A)$.

Proof. Consider a composition series,

$$0 = M_0 \subset M_1 \subset \cdots \subset M_n = M$$

Then M_i/M_{i-1} is a simple B-module so $M_i/M_{i-1} \cong B/\mathfrak{m}_B = \kappa(\mathfrak{m}_B)$ since B is local. Therefore,

$$\ell_A(M) = \sum_{i=1}^n \ell_A(M_i/M_{i-1}) = \sum_{i=1}^n \ell_A(\kappa(\mathfrak{m}_B)) = n \cdot [\kappa(B_{\mathfrak{m}}) : \kappa(A_{\mathfrak{m}})]$$

where $\ell_A(\kappa(\mathfrak{m}_B)) = \ell_{\kappa(\mathfrak{m}_A)}(\kappa(\mathfrak{m}_B))$ because $A \to B$ is local and,

$$\ell_{\kappa(\mathfrak{m}_A)}(\kappa(\mathfrak{m}_B)) = \dim_{\kappa(\mathfrak{m}_A)}(\kappa(\mathfrak{m}_B)) = [\kappa(\mathfrak{m}_B) : \kappa(\mathfrak{m}_A)]$$

Corollary 7.0.11. If A is a local artinian finite type k-algebra. Then,

$$\dim_k A = \ell_A(A) \cdot \dim_k (A/\mathfrak{m})$$

in particular A is a finite k-module.

Proof. Viewing A as a module over itself we know it has finite length since A is artinian. Furthermore, A/\mathfrak{m} is a field finitely generated over k and thus a finite extension of k by the Nullstellensatz. Then applying the previous result we conclude.

Corollary 7.0.12. Let A be an artinian finite type k-algebra. Then,

$$\dim_k A = \sum_{i=1}^r \ell_{A_{\mathfrak{m}_i}}(A_{\mathfrak{m}_i}) \cdot \dim_k (A/\mathfrak{m}_i)$$

Proof. Since A is artinian we can write,

$$A = \prod_{i=1}^r A_{\mathfrak{m}_i}$$

where $A_{\mathfrak{m}_i}$ are the local artinian factors associated to the finitely many prime ideals $\mathfrak{m}_1, \ldots, \mathfrak{m}_r$. The result follows from above by additivity of the dimensions.

Remark. We can generalize this to the following proposition.

Proposition 7.0.13. Let A be local with maximal ideal \mathfrak{m} and B be semi-local with maximal ideals \mathfrak{m}_i . Let $A \to B$ be a homomorphism of rings such that \mathfrak{m}_i lie over \mathfrak{m} and $[\kappa(\mathfrak{m}_i) : \kappa(\mathfrak{m})]$ is finite. Let M be a finite length B-module. Then,

$$\ell_A(M) = \sum_{i=1}^n \ell_{B_{\mathfrak{m}_i}}(M_{\mathfrak{m}_i}) \cdot [\kappa(\mathfrak{m}_i) : \kappa(\mathfrak{m})]$$

8 Weakly Associated Points

8.1 Weakly Associated Primes

Definition 8.1.1. Let A be a ring and M an A-module. Then a prime $\mathfrak{p} \subset A$ is weakly associated to M if \mathfrak{p} is minimal over $\mathrm{Ann}_A(m)$ for some $m \in M$. We denote these primes $\mathrm{WAss}_A(M)$.

Lemma 8.1.2. Let M be an A module then the natural map,

$$M \to \prod_{\mathfrak{p} \in \mathrm{WAss}_A(M)} M_{\mathfrak{p}}$$

is injective.

Proof. Suppose that $m \in M$ maps to zero. Then $\mathfrak{p} \not\subset \operatorname{Ann}_A(m)$ for each $\mathfrak{p} \in \operatorname{WAss}_A(M)$ which implies $\operatorname{Ann}_A(m) = A$ since otherwise some associated prime will be minimal over $\operatorname{Ann}_A(m)$. Thus m = 0.

Lemma 8.1.3. Let M be an A-module. Then,

$$M = (0) \iff \text{WAss}_{A}(M) = \emptyset$$

Proof. If M=(0) then this is clear. Otherwise, by the previous lemma $M\hookrightarrow(0)$ is injective so M=(0).

Lemma 8.1.4. Let A be a ring and M an A-module. Then,

$$\mathfrak{p} \in \mathrm{WAss}_{A}(M) \iff \mathfrak{p}A_{\mathfrak{p}} \in \mathrm{WAss}_{A_{\mathfrak{p}}}(M_{\mathfrak{p}})$$

Proof. Consider the exact sequence for each $m \in M$,

$$0 \longrightarrow \operatorname{Ann}_{A}(m) \longrightarrow A \stackrel{m}{\longrightarrow} M$$

Since localization is exact, we get an exact sequence,

$$0 \longrightarrow (\operatorname{Ann}_A(m))_{\mathfrak{p}} \longrightarrow A_{\mathfrak{p}} \stackrel{m}{\longrightarrow} M_{\mathfrak{p}}$$

Therefore, $\operatorname{Ann}_{A_{\mathfrak{p}}}(m) = (\operatorname{Ann}_{A}(m))_{\mathfrak{p}}$. If $\mathfrak{p} \supset \operatorname{Ann}_{A}(m)$ is minimal then $\mathfrak{p}A_{\mathfrak{p}} \supset (\operatorname{Ann}_{A}(m))_{\mathfrak{p}} = \operatorname{Ann}_{A_{\mathfrak{p}}}(m)$ is minimal. Conversely, if $\mathfrak{p}A_{\mathfrak{p}} \supset \operatorname{Ann}_{A_{\mathfrak{p}}}(m/s)$ is minimal then,

$$\operatorname{Ann}_{A_n}(m/s) = \operatorname{Ann}_{A_n}(m) = (\operatorname{Ann}_A(m))_{\mathfrak{p}}$$

which implies that $\mathfrak{p} \supset \operatorname{Ann}_A(m)$ is minimal because if $x \in \operatorname{Ann}_A(m)$ and $x \notin \mathfrak{p}$ then $(\operatorname{Ann}_A(m))_{\mathfrak{p}} = A_{\mathfrak{p}}$ and any prime \mathfrak{q} such that $\mathfrak{p} \subset \mathfrak{q} \subset \operatorname{Ann}_A(m)$ implies that $\mathfrak{q}A_{\mathfrak{p}}$ is intermediate.

Lemma 8.1.5. Let A be a ring and M an A-module. Then $\operatorname{WAss}_A(M) \subset \operatorname{Supp}_A(M)$ furthermore any minimal element of $\operatorname{Supp}_A(M)$ is an element of $\operatorname{WAss}_A(M)$.

Proof. Since $\mathfrak{p} \supset \operatorname{Ann}_A(m)$ we know $M_{\mathfrak{p}} \neq 0$ since m is nonzero in $M_{\mathfrak{p}}$. Furthermore, suppose that $\mathfrak{p} \in \operatorname{Supp}_A(M)$ is minimal. Then $\operatorname{Supp}_{A_{\mathfrak{p}}}(M_{\mathfrak{p}}) = \{\mathfrak{p}A_{\mathfrak{p}}\}$ and $M_{\mathfrak{p}} \neq 0$ so $\operatorname{WAss}_{A_{\mathfrak{p}}}(M_{\mathfrak{p}}) = \{A_{\mathfrak{p}}\}$ and thus $\mathfrak{p} \in \operatorname{WAss}_A(M)$.

Proposition 8.1.6. Let M be finite or A finite-dimensional. Every element of $\operatorname{Supp}_A(M)$ is contained in a minimal element. Likewise for $\operatorname{WAss}_A(M)$ and the sets of minimal elements coincide.

Proof. For Zorn's lemma, we need to show that every downward chain in $\operatorname{Supp}_A(M)$ has a lower bound. If dim $A < \infty$ then any downward chain of primes stabilizes. Alternatively, assume that M is finite and consider a chain $\{\mathfrak{p}_i\}_{i\in I}$ then I claim that,

$$\mathfrak{q} = \bigcap_{i \in I} \mathfrak{p}_i \in \operatorname{Supp}_A(M)$$

First, \mathfrak{q} is prime because if $xy \in \mathfrak{q}$ then $xy \in \mathfrak{p}_i$ at each stage so either $x \in \mathfrak{p}_i$ or $y \in \mathfrak{p}_i$ but because I is totally ordered either there is a maximal $i \in I$ at which x appears in which case $y \in \mathfrak{q}$ or x lies is \mathfrak{p}_i for arbitrarily large i meaning that $x \in \mathfrak{p}_i$ for all i so $x \in \mathfrak{q}$. Now I claim that $M_{\mathfrak{q}} \neq 0$. Let $m_1, \ldots, m_r \in M$ generate. It suffices to show that $\mathfrak{q} \supset \operatorname{Ann}_A(m_j)$ for some j or equivalently that $\mathfrak{p}_i \supset \operatorname{Ann}_A(m_j)$ for some fixed j and all i. Indeed for each i there is some j so that $\mathfrak{p}_i \supset \operatorname{Ann}_A(m_j)$. Therefore, at least one j must satisfy $\mathfrak{p}_i \supset \operatorname{Ann}_A(m_j)$ for unbounded i and hence $\mathfrak{p}_i \supset \operatorname{Ann}_A(m_j)$ for all i.

Now let $\mathfrak{p} \in \operatorname{WAss}_A(M)$ then $\mathfrak{p} \in \operatorname{Supp}_A(M)$ so choose $\mathfrak{q} \subset \mathfrak{p}$ minimal in $\operatorname{Supp}_A(M)$ then we have shown that $\mathfrak{q} \in \operatorname{WAss}_A(M)$ and is minimal in $\operatorname{WAss}_A(M)$ because $\operatorname{WAss}_A(M) \subset \operatorname{Supp}_A(M)$ and it is minimal in $\operatorname{Supp}_A(M)$. We have shown that any minimal element of $\operatorname{Supp}_A(M)$ is in $\operatorname{WAss}_A(M)$ and hence is minimal in $\operatorname{WAss}_A(M)$. This discussion shows the converse.

Remark. The condition that M is finite is necessary if A is not finite dimensional (in which case downward chains of primes always stabilize). For example, let $A = k[x_0, x_1, \dots]$ and,

$$M = \bigoplus_{i=0}^{\infty} A/\mathfrak{p}_i$$
 where $\mathfrak{p}_i = (x_i, x_{i+1}, \dots)$

Then,

$$\operatorname{Supp}_{A}(M) = \bigcup_{i=0}^{\infty} V(\mathfrak{p}_{i})$$

Thus if $\mathfrak{q} \in \operatorname{Supp}_A(M)$ then $\mathfrak{q} \supset \mathfrak{p}_i$ for some i but then $\mathfrak{q} \supset \mathfrak{p}_i \supsetneq \mathfrak{p}_{i+1}$ so $\operatorname{Supp}_A(M)$ has no minimal elements.

Remark. The set WAss_A (M) need not be a downward set (even when every element is contained in a minimal element) even in the best situations of A a finite-dimensional noetherian ring and M a finite A-module. For example let $A = k[x, y, z]/(x^2, xy, xz)$ and M = A then WAss_A (M) = $\{(x), (x, y, z)\}$ so the intermediate prime (x, y) is not associated.

Lemma 8.1.7. Let A be a ring and M an A-module and $S \subset A$ a multiplicative subset. Then.

- (a) $WAss_A(S^{-1}M) = WAss_{S^{-1}A}(S^{-1}M)$
- (b) $\operatorname{WAss}_A(M) \cap \operatorname{Spec}(S^{-1}A) = \operatorname{WAss}_A(S^{-1}M)$.

Proof. We have,

$$\mathfrak{p} \in \mathrm{WAss}_A\left(S^{-1}M\right) \iff \mathfrak{p}A_{\mathfrak{p}} \in \mathrm{WAss}_{A_{\mathfrak{p}}}\left(S^{-1}M_{\mathfrak{p}}\right)$$

For $\mathfrak{p} \in \operatorname{Spec}(S^{-1}A)$ (i.e. $S \subset A \setminus \mathfrak{p}$) we have $S^{-1}M_{\mathfrak{p}} = M_{\mathfrak{p}}$ and $(S^{-1}A)_{\mathfrak{p}} = A_{\mathfrak{p}}$ so both equalities hold. Otherwise, $\mathfrak{p}A_{\mathfrak{p}}$ contains an element of S so $\mathfrak{p}A_{\mathfrak{p}}$ has some nonzero divisor on $S^{-1}M_{\mathfrak{p}}$ and thus $\mathfrak{p} \notin \operatorname{WAss}_A(S^{-1}M)$.

Proposition 8.1.8. Let A be a ring M an A-module then $\mathfrak{p} \in \operatorname{Supp}_A(M)$ if and only if there exists $\mathfrak{q} \subset \mathfrak{p}$ with $\mathfrak{q} \in \operatorname{WAss}_A(M)$. Therefore,

$$\bigcap_{\mathfrak{p}\in \operatorname{Supp}_A(M)}\mathfrak{p}=\bigcap_{\mathfrak{p}\in \operatorname{WAss}_A(M)}\mathfrak{p}\quad \text{ and }\quad \operatorname{Supp}_A\left(M\right)=\bigcup_{\mathfrak{p}\in \operatorname{WAss}_A(M)}V(\mathfrak{p})$$

Proof. Take $\mathfrak{p} \in \operatorname{Supp}_A(M)$ so $M_{\mathfrak{p}} \neq 0$ and then $\operatorname{Ass}_A(M_{\mathfrak{p}}) \neq \emptyset$. Using the previous lemma, there exists $\mathfrak{q} \in \operatorname{Ass}_A(M_{\mathfrak{p}}) = \operatorname{Ass}_A(M) \cap \{\mathfrak{q} \mid \mathfrak{q} \subset \mathfrak{p}\}$. Furthermore, the support is an upward set (if $\mathfrak{q} \subset \mathfrak{p}$ and $M_{\mathfrak{q}} \neq 0$ then $M_{\mathfrak{p}} \neq 0$ since $M_{\mathfrak{p}} \to M_{\mathfrak{q}}$ is localization). Thus, if we have $\mathfrak{q} \subset \mathfrak{p}$ with $\mathfrak{q} \in \operatorname{Ass}_A(M) \subset \operatorname{Supp}_A(M)$ then $\mathfrak{p} \in \operatorname{Supp}_A(M)$.

Lemma 8.1.9. Let $M \hookrightarrow N$ be an injection of A-modules. Then $\operatorname{WAss}_A(M) \subset \operatorname{WAss}_A(N)$.

Proof. This follows because the set of annihilators of elements of M is a subset of the set of annihilators of elements of N.

Lemma 8.1.10. Consider an exact sequence of A-modules,

$$0 \longrightarrow M_1 \longrightarrow M_2 \longrightarrow M_3$$

then,

$$WAss_A(M_2) \subset WAss_A(M_1) \cup WAss_A(M_3)$$

Proof. Let $\mathfrak{p} \in \operatorname{WAss}_A(M_2)$ and $\mathfrak{p} \notin \operatorname{WAss}_A(M_1)$. Using the previous lemma it suffices to consider the case that A is local with maximal ideal \mathfrak{p} (since we may localize the exact sequence at \mathfrak{p}). Then \mathfrak{p} is minimal over $\operatorname{Ann}_A(m)$ for some $m \in M_2$ not in the image of $M_1 \to M_2$ (else $\mathfrak{p} \in \operatorname{WAss}_A(M_1)$). Therefore $\overline{m} \in M_3$ is nonzero and $\operatorname{Ann}_A(\overline{m}) \supset \operatorname{Ann}_A(m)$ but $\operatorname{Ann}_A(\overline{m})$ is proper since \overline{m} is nonzero and thus contained in \mathfrak{p} . Since \mathfrak{p} is minimal over $\operatorname{Ann}_A(m)$ it must also be minimal over $\operatorname{Ann}_A(\overline{m})$ and thus we conclude that $\mathfrak{p} \in \operatorname{WAss}_A(M_3)$.

Lemma 8.1.11. Let A be a ring and M and A-module. Then,

$$\bigcup_{\mathfrak{p}\in \mathrm{WAss}_A(M)}=\{\text{zero divisors on }M\}$$

Proof. Let $m \in M$ have zero divisors then there is exists a minimal prime (by Zorn's Lemma) above $\operatorname{Ann}_A(m)$ which must be associated. Conversely, if $f \in \mathfrak{p} \in \operatorname{WAss}_A(M)$ then \mathfrak{p} is minimal over $\operatorname{Ann}_A(m)$ for some $m \in M$. Then $R = (A/\operatorname{Ann}_A(m))_{\mathfrak{p}}$ has a unique minimal prime \mathfrak{p} so $\mathfrak{p} = \operatorname{nilrad}(R)$ and thus $gf^n \in \operatorname{Ann}_A(m)$ for some least n > 0 and $g \notin \mathfrak{p}$. Thus $gf^n = 0$ so $f(gf^{n-1}m) = 0$ but $gf^{n-1}m \neq 0$ because n is minimal so f is a zero divisor.

Proposition 8.1.12. Let A be reduced then $WAss_A(A)$ are exactly the minimal primes of A.

Proof. The minimal primes are in WAss_A (A) by Lemma 8.1.5. Because $\mathfrak{p} \in \text{WAss}_A(A) \iff \mathfrak{p}A_{\mathfrak{p}} \in \text{WAss}_{A_{\mathfrak{p}}}(A_{\mathfrak{p}})$ is suffices to consider the case of a reduced local ring (R,\mathfrak{m}) and $\mathfrak{m} \in \text{WAss}_R(R)$. Then \mathfrak{m} is minimal over $\text{Ann}_R(x)$ for some $x \in \mathfrak{m}$ so $\mathfrak{m} = \sqrt{\text{Ann}_R(x)}$. Thus $x^n \in \text{Ann}_R(x)$ so $x^{n+1} = x^n \cdot x = 0$ so x = 0 because R is reduced a contradiction unless $\mathfrak{m} = 0$ so R is a field so \mathfrak{m} is minimal showing that $\mathfrak{p}A_{\mathfrak{p}} \subset A_{\mathfrak{p}}$ and thus $\mathfrak{p} \subset A$ are minimal primes and that $A_{\mathfrak{p}}$ is a field. \square

Lemma 8.1.13. Let A be a ring and $\mathfrak{p} \subset A$ a prime then WAss_A $(A/\mathfrak{p}) = \{\mathfrak{p}\}.$

Proof. For nonzero $a \in A/\mathfrak{p}$ (i.e. $a \notin \mathfrak{p}$) the set $\operatorname{Ann}_A(a) = \{r \in A \mid ra \in \mathfrak{p}\} = \mathfrak{p}$ since \mathfrak{p} is prime and therefore therefore \mathfrak{p} is the unique minimal prime over an annihilator.

Proposition 8.1.14. Let A be a ring and M a Noetherian A-module. Then,

(a) there exists a finite filtration,

$$(0) = M_0 \subsetneq M_1 \subsetneq M_2 \subsetneq \cdots \subsetneq M_n = M$$

such that each $M_i/M_{i-1} \cong A/\mathfrak{p}_i$ for some $\mathfrak{p}_i \in \operatorname{Supp}_A(M)$

- (b) for any such filtration, $\operatorname{WAss}_A(M) \subset \{\mathfrak{p}_1, \mathfrak{p}_2, \dots, \mathfrak{p}_n\}$
- (c) $WAss_A(M)$ is finite.

Proof. Since $M \neq (0)$ there is some $\mathfrak{p} \in \operatorname{WAss}_A(M)$ so we have an injection $A/\mathfrak{p} \to M$ let $M_1 \subset M$ be the image of this map so $M_1/M_0 \cong A/\mathfrak{p}_1$. Now take M/M_1 and $\mathfrak{p}_2 \in \operatorname{WAss}_A(M/M_1)$ then we have an injection $A/\mathfrak{p}_2 \to M/M_1$ so take M_2 to be the image inside M/M_1 and M_2 its preimage in M. Then $M_2/M_1 \cong A/\mathfrak{p}_2$ and continuing by induction we construct a sequence,

$$0 \subseteq M_1 \subseteq M_2 \subseteq M_3 \subseteq \cdots$$

with $M_i/M_{i-1} = A/\mathfrak{p}_i$ and

$$\mathfrak{p}_i \in \operatorname{WAss}_A(M/M_{i-1}) \subset \operatorname{Supp}_A(M/M_{i-1}) \subset \operatorname{Supp}_A(M)$$

However, M is Noetherian so this sequence must stabilize but it is strictly increasing when $M_i \subset M$ is proper. Thus, $M_n = M$ for some n.

For any such filtration we get exact sequences,

$$0 \longrightarrow M_i \longrightarrow M_{i+1} \longrightarrow A/\mathfrak{p}_{i+1} \longrightarrow 0$$

Assume for induction that $\operatorname{Ass}_A(M_i) \subset \{\mathfrak{p}_1, \dots, \mathfrak{p}_i\}$ then, by Lemma 8.1.10,

$$\operatorname{WAss}_{A}(M_{i+1}) \subset \operatorname{WAss}_{A}(M_{i}) \cup \operatorname{WAss}_{A}(A/\mathfrak{p}_{i+1}) \subset \{\mathfrak{p}_{1}, \dots, \mathfrak{p}_{i+1}\}\$$

proving (b) by induction. (c) follows directly from (a) and (b).

8.2 Associated Primes

Definition 8.2.1. Let A be a ring and M an A-module. We say that $\mathfrak{p} \subset A$ is an associated prime of M if $\mathfrak{p} = \operatorname{Ann}_A(m)$ for some $m \in M$. We write $\operatorname{Ass}_A(M)$ for the set of associated primes of M.

Remark. Note $\mathfrak{p} = \operatorname{Ann}_A(m) \iff A/\mathfrak{p} \hookrightarrow M \text{ via } a \mapsto a \cdot m.$

Remark. Clearly $\operatorname{Ass}_A(M) \subset \operatorname{WAss}_A(M)$. We will see equality holds when A is Noetherian.

Lemma 8.2.2. Given an exact sequence of A-modules,

$$0 \longrightarrow M_1 \longrightarrow M_2 \longrightarrow M_3$$

we have,

$$\operatorname{Ass}_{A}(M_{2}) \subset \operatorname{Ass}_{A}(M_{1}) \cup \operatorname{Ass}_{A}(M_{3})$$

Proof. If $\mathfrak{p} \in \mathrm{Ass}_A(M)$ then we have an embedding

$$A/\mathfrak{p} \longleftrightarrow M_2$$

which is injective and $\iota(A/\mathfrak{p}) \cap N_1 = (0)$ then we get an injective map $A/\mathfrak{p} \to M_3$ so $\mathfrak{p} \in \mathrm{Ass}_A(M_3)$. If $\iota(A/\mathfrak{p}) \cap M_1 \neq (0)$ then take nonzero $n \in \iota(A/\mathfrak{p}) \cap M_1$. Then $\mathrm{Ann}_A(n) = \mathrm{Ann}_A(\iota(x))$ for $x \in A/\mathfrak{p}$ nonzero. However, if $a \cdot \iota(x) = 0$ then $\iota(a \cdot x) = 0$ but ι is injective so $a \cdot x = 0$ and thus $\mathrm{Ann}_A(\iota(x)) = \mathrm{Ann}_A(x) = \mathfrak{p}$ because if $a \cdot x \in \mathfrak{p}$ for $x \notin \mathfrak{p}$ then $a \in \mathfrak{p}$.

Lemma 8.2.3. Let $S_{M,\mathfrak{p}} = \{ \operatorname{Ann}_A(m) \subset \mathfrak{p} \mid m \in M \setminus \{0\} \}$ then any maximal element in $S_{M,\mathfrak{p}}$ is a prime ideal.

Proof. Let $\mathfrak{q} \in S_{M,\mathfrak{p}}$ be maximal with $\mathfrak{q} = \operatorname{Ann}_A(m)$ for $m \neq 0$. Suppose $ab \in \mathfrak{q}$ and $a, b \notin \mathfrak{q}$. Then $\mathfrak{q} \subsetneq \operatorname{Ann}_A(am)$ since $b \in \operatorname{Ann}_A(am) \setminus \operatorname{Ann}_A(m)$ so by maximality $\operatorname{Ann}_A(am) \not\subset \mathfrak{p}$. Choose $s \in \operatorname{Ann}_A(am) \setminus \mathfrak{p}$. Then $a \in \operatorname{Ann}_A(sm)$ so $\operatorname{Ann}_A(m) \subsetneq \operatorname{Ann}_A(sm)$ and thus by maximality we can choose $t \in \operatorname{Ann}_A(sm) \setminus \mathfrak{p}$ so $st \in \operatorname{Ann}_A(m) \subset \mathfrak{p}$ but $s, t \notin \mathfrak{p}$ contradicting the primality of \mathfrak{p} . Thus \mathfrak{q} is prime.

Proposition 8.2.4. Let A be Noetherian and M be an A-module. Then,

$$Ass_A(M) = WAss_A(M)$$

In particular, $\operatorname{Ass}_A(M) \neq \emptyset$ and all other properties of $\operatorname{WAss}_A(M)$ apply to $\operatorname{Ass}_A(M)$.

Proof. Ass_A $(M) \subset WAss_A (M)$ is obvious. If $\mathfrak{p} \in WAss_A (M)$ then $\mathfrak{p} \supset Ann_A (m)$ for some $m \in M$ and thus m is nonzero in $M_{\mathfrak{p}}$ so $\mathfrak{p} \in Supp_A (M)$. Let A be Noetherian then ascending chains in $S_{M,\mathfrak{p}}$ stabilize and thus by Zorn's Lemma every annhilator $Ann_A (m) \subset \mathfrak{p}$ is contained in some maximal $Ann_A (m') \subset \mathfrak{p}$. Thus, if $\mathfrak{p} \in WAss_A (M)$ then \mathfrak{p} is a minimal prime over some $Ann_A (m)$ so $\mathfrak{p} = Ann_A (m')$ since $Ann_A (m')$ is prime and $Ann_A (m) \subset Ann_A (m') \subset \mathfrak{p}$.

Lemma 8.2.5. Let A be a ring and M an A-module and $S \subset A$ a multiplicative subset. Then.

- (a) $\operatorname{Ass}_{A}(S^{-1}M) = \operatorname{Ass}_{S^{-1}A}(S^{-1}M)$
- (b) $\operatorname{Ass}_A(M) \cap \operatorname{Spec}(S^{-1}A) \subset \operatorname{Ass}_A(S^{-1}M)$ with equality when A is Noetherian.

Proposition 8.2.6. Let A be a Noetherian ring and M a finite A-module. Then,

(a) there exists a finite filtration,

$$(0) = M_0 \subseteq M_1 \subseteq M_2 \subseteq \cdots \subseteq M_n = M$$

such that each $M_i/M_{i-1} \cong A/\mathfrak{p}_i$ for some $\mathfrak{p}_i \in \operatorname{Supp}_A(M)$

- (b) for any such filtration, $\operatorname{Ass}_{A}(M) \subset \{\mathfrak{p}_{1},\mathfrak{p}_{2},\ldots,\mathfrak{p}_{n}\}$
- (c) $\operatorname{Ass}_{A}(M)$ is finite.

Proof. M is a Noetherian module so this applies directly from Prop. 8.1.14.

Proposition 8.2.7. Let A be a Noetherian ring and $I \subset A$ an ideal and M a finite A-module. Then the following are equivalent,

- (a) $I \subset \mathfrak{p}$ for some $\mathfrak{p} \in \mathrm{Ass}_A(M)$
- (b) $I \subset \{\text{zero divisors on } M\}$

Proof. If $I \subset \mathfrak{p}$ for $\mathfrak{p} \in \mathrm{Ass}_A(M)$ then,

$$I \subset \mathfrak{p} \subset \{\text{zero divisors on } M\}$$

Conversely, if $I \subset \{\text{zero divisors on } M\}$ then,

$$I \subset \{\text{zero divisors on } M\} = \bigcup_{\mathfrak{p} \in \mathrm{Ass}_A(M)} \mathfrak{p}$$

By Proposition 8.2.6, the set $\mathrm{Ass}_A(M)$ is finite so by prime avoidance $I \subset \mathfrak{p}$ for some $\mathfrak{p} \in \mathrm{Ass}_A(M)$.

Corollary 8.2.8. Let $\mathfrak{m} \subset A$ be a maximal ideal with A noetherian and M a finite A-module. Then $\mathfrak{m} \in \mathrm{Ass}_A(M)$ if and only if $\mathfrak{m} \subset \{\text{zero divisors on } M\}$.

Corollary 8.2.9. Let (A, \mathfrak{m}) be a noetherian local ring then $\mathfrak{m} \in \mathrm{Ass}_A(A)$ iff $\mathfrak{m} = \{\text{zero divisors}\}.$

Proof. Immediate from the above since zero divisors are not units and thus contained in \mathfrak{m} .

Corollary 8.2.10. Let A be noetherian and M be a finite A-module then for all $\mathfrak{p} \in \operatorname{Spec}(A)$,

$$\mathfrak{p} \in \mathrm{Ass}_A(M) \iff \mathfrak{p}A_{\mathfrak{p}} = \{\text{zero divisors on } M_{\mathfrak{p}}\}$$

8.3 Primary Decomposition

Remark. In this section we let A be a Noetherian ring.

Definition 8.3.1. An A-module M is called coprimary if $\operatorname{Ass}_A(M) = \{\mathfrak{p}\}$ and if $N \subset M$ we say that N is \mathfrak{p} -primary if M/N is coprimary with $\operatorname{Ass}_A(M/N) = \{\mathfrak{p}\}$.

Lemma 8.3.2. M is coprimary iff any zero divisor of M is locally nilpotent i.e. if $a \cdot m = 0$ for some $m \in M \setminus \{0\}$ then $\forall m' \in M : a^n \cdot m' = 0$ for some n.

Proof. Assume that M is coprimary, $\operatorname{Ass}_A(M) = \{\mathfrak{p}\}$. If $x \in M$ is nonzero then Ax is a nonzero submodule of M so $\operatorname{Ass}_A(Ax) = \{\mathfrak{p}\}$ since it is nonempty. Therefore, \mathfrak{p} is a minimal element in $\operatorname{Supp}_A(Ax) = V(\operatorname{Ann}_A(x))$ because $Ax \cong A/\operatorname{Ann}_A(x)$. Thus, $\sqrt{\operatorname{Ann}_A(x)} = \mathfrak{p}$. If a is a zero divisor of M then $a \in \mathfrak{p}$ so $a^n \in \operatorname{Ann}_A(x)$ so a is locally nilpotent. Converely, assume that the set of zero divisors equals the set of locally nilpotent elements. Take \mathfrak{p} to be the ideal of all locally nilpotents. Take $\mathfrak{q} \in \operatorname{Ass}_A(M)$ then $\mathfrak{q} = \operatorname{Ann}_A(x)$ for some x. If $a \in \mathfrak{p}$ then $a^n \cdot x = 0$ for some n implies that $a^n \in \mathfrak{q}$ so $a \in \mathfrak{q}$. so $\mathfrak{p} \subset \mathfrak{q}$. Furthermore,

$$\bigcup_{\mathfrak{q}\in \mathrm{Ass}_A(M)}\mathfrak{q}=\{\text{zero divisors}\}=\mathfrak{p}$$

so for any $\mathfrak{q} \in \mathrm{Ass}_A(M)$ we have $\mathfrak{q} \subset \mathfrak{p}$. Thus, $\mathfrak{p} = \mathfrak{q}$ so $\mathrm{Ass}_A(M)$ constains a unique prime.

Corollary 8.3.3. If $I \subset A$ is an ideal then $\operatorname{Ass}_A(A/I) = \{\mathfrak{p}\}$ if and only if I is a primary ideal and in that case $\sqrt{I} = \mathfrak{p}$.

Proof. Consider $I \subset A$ and A/I is coprimary then take $x, y \in A$ such that $y \notin I$ and $\bar{x} \cdot \bar{y} = 0$ in A/I. Then \bar{x} is a zero divisor of A/I so it is locally nilpotent by the above. Thus, $\bar{x}^n \cdot 1 = 0$ for some n so $x^n \in I$ so $x \in \sqrt{I}$ and thus I is primary. Furthermore,

$$\sqrt{I} = \bigcap_{\mathfrak{p} \in V(I)} \mathfrak{p} = \bigcap_{\mathfrak{p} \in \operatorname{Supp}_A(A/I)} \mathfrak{p} = \bigcap_{\mathfrak{p} \in \operatorname{Ass}_A(A/I)} \mathfrak{p} = \mathfrak{p}$$

since $\operatorname{Ass}_A(M)$ is the set of minimal primes of $\operatorname{Supp}_A(M)$ and $\operatorname{Ass}_A(A/I) = \mathfrak{p}$.

Definition 8.3.4. Let M be an A-module and $N \subset M$. We say N has a primary decomposition if,

$$N = Q_1 \cap Q_2 \cap \cdots \cap Q_n$$

where each Q_i is primary. Moreover, we say that this decomposition is irredundant if

- (a) if $i \neq j$ then $\operatorname{Ass}_A(M/Q_i) \neq \operatorname{Ass}_A(M/Q_j)$
- (b) we cannot remove any Q_j from the intersection.

Lemma 8.3.5. Let M be an A-module then,

- (a) If $Q_1, Q_2 \subset M$ are \mathfrak{p} -primary then $Q_1 \cap Q_2$ is \mathfrak{p} -primary.
- (b) If $N = Q_1 \cap \cdots \cap Q_n$ is a irredundant primary decomposition and for each i, Q_i is \mathfrak{p}_i -primary then,

$$\operatorname{Ass}_{A}(M/N) = \{\mathfrak{p}_{1}, \dots, \mathfrak{p}_{n}\}\$$

Proof. Consider the injection,

$$0 \longrightarrow M/Q_1 \cap Q_2 \hookrightarrow M/Q_1 \oplus M/Q_2$$

which implies that,

$$\operatorname{Ass}_{A}(M/Q_{1} \cap Q_{2}) \subset \operatorname{Ass}_{A}(M/Q_{1} \oplus M/Q_{2}) = \operatorname{Ass}_{A}(M/Q_{1}) \cup \operatorname{Ass}_{A}(M/Q_{2}) = \{\mathfrak{p}\}$$

proving the first. For the second, consider the injection,

$$M/N \hookrightarrow M/Q_1 \oplus \cdots \oplus M/Q_n$$

which implies that,

$$\operatorname{Ass}_A(M/N) \subset \operatorname{Ass}_A(M/Q_1) \cup \cdots \cup \operatorname{Ass}_A(M/Q_n) \subset \{\mathfrak{p}_1, \ldots, \mathfrak{p}_n\}$$

We need to show that $\mathfrak{p}_i \in \mathrm{Ass}_A(M/N)$ for each i. We have the exact sequence,

$$0 \longrightarrow N \longrightarrow Q_2 \cap \cdots \cap Q_n \longrightarrow M/Q_1$$

and therefore,

$$(Q_2 \cap \cdots \cap Q_n)/N \longrightarrow M/Q_1$$

which implies that,

$$\operatorname{Ass}_{A}((Q_{2}\cap\cdots\cap Q_{n})/N)\subset\operatorname{Ass}_{A}(M/Q_{1})=\{\mathfrak{p}_{1}\}$$

so since it is nonempy we have,

$$\{\mathfrak{p}_1\} = \operatorname{Ass}_A((Q_2 \cap \cdots \cap Q_n)/N) \subset \operatorname{Ass}_A(M/N)$$

where the inclusion holds via the exact sequence,

$$0 \longrightarrow N \longrightarrow Q_2 \cap \cdots \cap Q_n \longrightarrow M/N$$

The same argument holds for each i.

Theorem 8.3.6. Let M be Noetherian. For each $\mathfrak{p} \in \mathrm{Ass}_A(M)$, there exist $Q_{\mathfrak{p}} \subset M$ which are \mathfrak{p} -primary such that,

$$\bigcap_{\mathfrak{p}\subset \mathrm{Ass}_A(M)}Q_{\mathfrak{p}}=0$$

Proof. Fix $\mathfrak{p} \in \mathrm{Ass}_A(M)$ and consider the set $S_{\mathfrak{p}} = \{Q \subset M \mid \mathfrak{p} \notin \mathrm{Ass}_A(Q)\} \neq \emptyset$ since the zero module is contained in this set. Since M is Noetherian ascending chains stabilize so by Zorn's lemma there exists a maximal element $Q_{\mathfrak{p}} \in S_{\mathfrak{p}}$. We know,

$$\operatorname{Ann}_A(M/Q_{\mathfrak{p}}) \neq \emptyset$$

since we have $M/Q_{\mathfrak{p}} \neq (0)$. Otherwise, $M = Q_{\mathfrak{p}}$ which implies $\mathfrak{p} \in \mathrm{Ass}_A(Q_{\mathfrak{p}})$ but $Q_{\mathfrak{p}} \in S_{\mathfrak{p}}$. Let $\mathfrak{p}' \in \mathrm{Ass}_A(M/Q_{\mathfrak{p}})$ and suppose that $\mathfrak{p}' \neq \mathfrak{p}$ then we have,

$$A/\mathfrak{p}' \longrightarrow M/Q_{\mathfrak{p}}$$

The image of this embedding is a submodule, $Q_{\mathfrak{p}} \subsetneq Q' \subset M$ such that $Q'/Q_{\mathfrak{p}} \cong A/\mathfrak{p}'$ implying that,

$$\operatorname{Ass}_{A}(Q'/Q_{\mathfrak{p}}) = \{\mathfrak{p}'\}$$

Thus we have an exact sequence,

$$0 \longrightarrow Q_{\mathfrak{p}} \longrightarrow Q' \longrightarrow A/\mathfrak{p} \longrightarrow 0$$

which implies that $\operatorname{Ass}_A(Q') \subset \operatorname{Ass}_A(Q_{\mathfrak{p}}) \cup \operatorname{Ass}_A(A/\mathfrak{p}') = \operatorname{Ass}_A(Q_{\mathfrak{p}}) \cup \{\mathfrak{p}'\}$. However, this contradicts the fact that $Q_{\mathfrak{p}}$ is maximal in $S_{\mathfrak{p}}$ since $Q' \in S_{\mathfrak{p}}$ as long as $\mathfrak{p}' \neq \mathfrak{p}$. Therefore, $\mathfrak{p}' = \mathfrak{p}$ so $\operatorname{Ass}_A(A/Q_{\mathfrak{p}}) = \{\mathfrak{p}\}$. Now consider,

$$\operatorname{Ass}_{A}\left(\bigcap_{\mathfrak{p}\in\operatorname{Ass}_{A}(M)}Q_{\mathfrak{p}}\right)\subset\bigcap_{\mathfrak{p}\in\operatorname{Ass}_{A}(M)}\operatorname{Ass}_{A}\left(Q_{\mathfrak{p}}\right)=\varnothing$$

because for any \mathfrak{p} we know $\mathfrak{p} \notin \mathrm{Ass}_A(Q_{\mathfrak{p}})$. Therefore,

$$\bigcap_{\mathfrak{p}\in \mathrm{Ass}_A(M)}Q_{\mathfrak{p}}=(0)$$

since it has no associated primes.

Corollary 8.3.7. If M is a finite A-module then any submodule has a primary decomposition.

Proof. Let $N \subset M$ be a submodule. Apply the theorem to $\overline{M} = M/N$ which has finite type so $\operatorname{Ass}_A(M/N)$ is finite. Write, $\operatorname{Ass}_A(M/N) = \{\mathfrak{p}_1, \dots, \mathfrak{p}_r\}$. Therefore, there exist primary ideals Q_i such that,

$$Q_{\mathfrak{p}_1} \cap \dots \cap Q_{\mathfrak{p}_r} = (0)$$

in M/N. Take Q_i to be the preimage of $Q_{\mathfrak{p}_i}$. Thus,

$$Q_1 \cap \cdots \cap Q_r = N$$

and

$$M/Q_i \cong \bar{M}/Q_{\mathfrak{p}_i} \implies \operatorname{Ass}_A(M/Q_i) = \{\mathfrak{p}_i\}$$

8.4 Weakly Associated Points

Definition 8.4.1. Let X be a scheme and \mathscr{F} a quasi-coherent \mathcal{O}_X -module. Then we define,

- (a) $x \in X$ is weakly associated to \mathscr{F} if $\mathfrak{m}_x \subset \mathcal{O}_{X,x}$ is weakly associated to \mathscr{F}_x
- (b) WAss_{\mathcal{O}_X} (\mathscr{F}) is the set of weakly associated points of \mathscr{F}
- (c) the (weakly) associated points of X are WAss_{\mathcal{O}_X} (\mathcal{O}_X).

Proposition 8.4.2. Let $X = \operatorname{Spec}(A)$ and $\mathscr{F} = \widetilde{M}$ be a quasi-coherent \mathcal{O}_X -module then we have,

$$\operatorname{WAss}_{\mathcal{O}_X}(\mathscr{F}) = \operatorname{WAss}_A(M)$$

Proof. Immediate consequence of Lemma 8.1.4.

Proposition 8.4.3. Let X be a scheme and \mathscr{F} a quasi-coherent sheaf. Then,

$$\mathscr{F} = 0 \iff \operatorname{WAss}_{\mathcal{O}_X} (\mathscr{F}) = 0$$

Proof. Choose an affine open cover $U_i = \operatorname{Spec}(A_i)$ such that $\mathscr{F}|_{U_i} = \widetilde{M}_i$. Then $\operatorname{WAss}_A(M_i) = \operatorname{WAss}_{\mathcal{O}_X}(\mathscr{F}) \cap U_i = \varnothing$ so $M_i = 0$ and thus $\mathscr{F} = 0$.

Proposition 8.4.4. Let X be a scheme and $\mathscr{F} \to \mathscr{G}$ a morphism of quasi-coherent \mathcal{O}_X -modules. If $\mathscr{F}_x \to \mathscr{G}_x$ is injective for each $x \in \operatorname{WAss}_{\mathcal{O}_X}(\mathscr{F})$ then $\mathscr{F} \to \mathscr{G}$ is injective.

Proof. Consider the sequence,

$$0 \longrightarrow \mathscr{K} \longrightarrow \mathscr{F} \longrightarrow \mathscr{G}$$

Since $\mathscr{F}_x \to \mathscr{G}_x$ is an injection $\mathscr{K}_x = 0$ for each $x \in \operatorname{WAss}_{\mathcal{O}_X}(\mathscr{F})$. Furthermore, $\operatorname{WAss}_{\mathcal{O}_X}(\mathscr{K}) \subset \operatorname{WAss}_{\mathcal{O}_X}(\mathscr{F})$ and thus $\operatorname{WAss}_{\mathcal{O}_X}(\mathscr{K}) = \emptyset$ so $\mathscr{K} = 0$.

8.5 Associated Points: the Noetherian Case

Remark. By analogy, we might define an associated point of \mathscr{F} on X to be a point $x \in X$ such that $\mathfrak{m}_x \subset \mathcal{O}_{X,x}$ is an associated prime of \mathscr{F}_x . However, this definition is problematic because, in general, associated primes do not play nicely with localization. In particular $\mathfrak{p} \in \mathrm{Ass}_A(M) \Longrightarrow \mathfrak{p} A_{\mathfrak{p}} \in \mathrm{Ass}_{A_{\mathfrak{p}}}(M_{\mathfrak{p}})$ but the converse may not hold. Therefore, we may have a scheme X and a quasi-coherent sheaf \mathscr{F} such that on an affine open $U = \mathrm{Spec}(A)$ with $\mathscr{F}|_U = \widetilde{M}$ we have $\mathfrak{p} \in \mathrm{Ass}_A(M)$ but $\mathfrak{p} = x \in X$ is not as associated point of \mathscr{F} on X. To recify this pathology, we only consider associated points on locally noetherian schemes in which case there is no difference between weakly associated points and associated points.

Definition 8.5.1. Let X be a locally noetherian scheme and \mathscr{F} a quasi-coherent \mathcal{O}_X -module. We say $x \in X$ is an associated point of \mathscr{F} if x is a weakly associated point. Likewise we write,

$$Ass_{\mathcal{O}_X}(\mathscr{F}) = WAss_{\mathcal{O}_X}(\mathscr{F})$$

Remark. Notice this definition is purely notational. In the locally noetherian case we simply will write $\operatorname{Ass}_{\mathcal{O}_X}(\mathscr{F})$ for $\operatorname{WAss}_{\mathcal{O}_X}(\mathscr{F})$ as a reminder that these sets behave as expected for associated points in the case of Noetherian rings.

Proposition 8.5.2. Let X be noetherian and \mathscr{F} a coherent \mathcal{O}_X -module. Then $\mathrm{Ass}_{\mathcal{O}_X}(\mathscr{F})$ is finite.

Proof. Since X is quasi-compact we may choose a finite open cover $U_i = \operatorname{Spec}(A_i)$ with A_i Noetherian on which $\mathscr{F}|_{U_i} = \widetilde{M}_i$ for finite A_i -modules. Then $\operatorname{Ass}_{\mathcal{O}_X}(\mathscr{F}) \cap U = \operatorname{Ass}_{A_i}(M_i)$ each of which is finite since M_i is a Noetherian module.

9 Depth

9.1 Definitions

Definition 9.1.1. Let A be a ring $I \subset A$ an ideal and M a finite A-module. Then $x_1, \ldots, x_r \in I$ are an M-regular sequence in I if

- (a) x_i is a nonzerodivisor on $M/(x_1,\ldots,x_{i-1})M$ for each $i\in\{1,\ldots,r\}$
- (b) $M/(x_1, \ldots, x_r)M$ is nonzero.

We say that depth_I (M) is the supremum of the lengths of M-regular sequence in I unless IM = M in which case depth_I $(M) = \infty$.

Remark. If $IM \subseteq M$ then depth_I (M) = 0 iff $I \subset \{\text{zero divisors on } M\}$.

Remark. If (A, \mathfrak{m}) is a local ring then we define depth $(M) := \operatorname{depth}_{\mathfrak{m}}(M)$.

9.2 The Cohomological Criterion

Lemma 9.2.1. Let A be a Noetherian ring, $I \subset R$ an ideal, and M a finite A-module with $IM \neq M$. Then the following are equivalent,

- (a) $\operatorname{Ext}_{A}^{i}(N, M) = 0$ for all i < n and all finite A-modules N with $\operatorname{Supp}_{A}(N) \subset V(I)$
- (b) $\operatorname{Ext}_A^i(A/I, M) = 0$ for all i < n

- (c) there exists a finite A-module N with $\operatorname{Supp}_{A}(N) = V(I)$ and $\operatorname{Ext}_{A}^{i}(N, M) = 0$ for all i < n
- (d) there exists an M-regular sequence $x_1, \ldots, x_n \in I$ of length n

and therefore $\operatorname{depth}_{I}(M) = \inf\{n \in \mathbb{Z} \mid \operatorname{Ext}_{A}^{i}(A/I, M) \neq 0\}.$

Proof. Clearly (a) \Longrightarrow (b) \Longrightarrow (c). Now we show that (c) \Longrightarrow (d).

Finally, we need to show that (d) \implies (a). (DOOOOOOOOOOOOOOOOO!! OR SPLIT UP THIS PROOF!!)

Remark. From here on, let A be a Noetherian ring and $I \subset A$ an ideal and M a finite A-module with $IM \neq M$.

Lemma 9.2.2. Consider an exact sequence of finite A-modules such that $IM_i \neq M_i$,

$$0 \longrightarrow M_1 \longrightarrow M_2 \longrightarrow M_3 \longrightarrow 0$$

Then the following hold,

- (a) $\operatorname{depth}_{I}(M_{2}) \geq \min \{ \operatorname{depth}_{I}(M_{1}), \operatorname{depth}_{I}(M_{3}) \}$
- (b) $\operatorname{depth}_{I}(M_{1}) \geq \min \{ \operatorname{depth}_{I}(M_{2}), \operatorname{depth}_{I}(M_{3}) + 1 \}$
- (c) $\operatorname{depth}_{I}(M_{3}) \geq \min \{ \operatorname{depth}_{I}(M_{1}) 1, \operatorname{depth}_{I}(M_{2}) \}$

Proof. Apply the functor $\operatorname{Hom}_A(A/I, -)$ to give the long exact sequence,

$$\operatorname{Ext}_{A}^{i}\left(A/I,M_{1}\right) \longrightarrow \operatorname{Ext}_{A}^{i}\left(A/I,M_{2}\right) \longrightarrow \operatorname{Ext}_{A}^{i}\left(A/I,M_{3}\right) \longrightarrow \operatorname{Ext}_{A}^{i+1}\left(A/I,M_{1}\right)$$

If $i < n = \min\{\operatorname{depth}_{I}(M_{1}), \operatorname{depth}_{I}(M_{3})\}$ then $\operatorname{Ext}_{A}^{i}(A/I, M_{2}) = 0$ applying the cohomological criterion and the exact sequence so $\operatorname{depth}_{I}(M_{3}) \geq n$. The other parts follow similarly.

Lemma 9.2.3. Let x be a nonzerodivisor on M then depth_I $(M/xM) = \operatorname{depth}_I(M) - 1$.

Proof. Applying the previous Lemma to the exact sequence,

$$0 \longrightarrow M \stackrel{\times x}{\longrightarrow} M \longrightarrow M/xM \longrightarrow 0$$

gives $\operatorname{depth}_{I}(M/xM) \geq \operatorname{depth}_{I}(M) - 1$. However, for any M/xM-regular sequence $x_{1}, \ldots, x_{n} \in I$ we get a M-regular sequence $x_{1}, \ldots, x_{n} \in I$ and thus $\operatorname{depth}_{I}(M) \geq \operatorname{depth}_{I}(M/xM) + 1$.

Corollary 9.2.4. Any M-regular sequence $x_1, \ldots, x_r \in I$ can be extended to a regular sequence of length depth_I (M) and thus all maximal regular sequences have the same length.

Proof. Given an M-regular sequence $x_1, \ldots, x_r \in I$ we apply the previous Lemma to show that,

$$\operatorname{depth}_{I}(M/(x_{1},\ldots,x_{r})M) = \operatorname{depth}_{I}(M) - r$$

and thus there exists a regular sequence $x_{r+1}, \ldots, x_d \in I$ for $M/(x_1, \ldots, x_r)M$ meaning that $x_1, \ldots, x_r, \cdots, x_d \in \text{gives a } M$ -regular sequence of length depth_I (M) extending x_1, \ldots, x_r .

9.3 Vanishing Criteria on Ext

(GRADE AND (Ischebeck))

9.4 Locality of Depth

Proposition 9.4.1. Let A be a noetherian ring, $I \subset A$ an ideal, and M a finite A-module. Then,

$$\operatorname{depth}_{I}(M) = \inf \{ \operatorname{depth}(M_{\mathfrak{p}}) \mid \mathfrak{p} \in V(I) \}$$

Proof. DOOOOOOOO!!!!

9.5 Additional Lemmas

Proposition 9.5.1. Let A be Noetherian ring, $I \subset A$ an ideal, and M a finite A-module. Then there exists an exact sequence of finite A-modules,

$$0 \longrightarrow K \longrightarrow F_{r-1} \longrightarrow \cdots \longrightarrow F_1 \longrightarrow F_0 \longrightarrow M \longrightarrow 0$$

where F_i are finite free A-modules and r = depth(A) - depth(M). Furthermore, given any such sequence, depth (K) = depth(A).

Proof. There always exists a surjection $F_0 woheadrightarrow M$ from a finite free module F_0 because M is finite. Extending to an exact sequence,

$$0 \longrightarrow K_1 \longrightarrow F_0 \longrightarrow M \longrightarrow 0$$

gives $\operatorname{depth}_{I}(K) \geq \min\{\operatorname{depth}_{I}(A), \operatorname{depth}_{I}(M) + 1\}$ because F_{0} is free so clearly $\operatorname{depth}_{I}(F_{0}) = \operatorname{depth}_{I}(A)$ by the cohomological criterion. Thus either $\operatorname{depth}_{I}(K) \geq \operatorname{depth}_{I}(A)$ already or $\operatorname{depth}_{I}(K) \geq \operatorname{depth}_{I}(M) + 1$. Therefore, repeating this process r times we see that $\operatorname{depth}_{I}(K_{r}) \geq \operatorname{depth}_{I}(M)$ \square

9.6 Cohen-Macaulay Rings

(IS THIS CORRECT AS STATED!!)

Proposition 9.6.1. Let A be a ring, $I \subset A$ an ideal, and M a finite A-module. Then,

$$\operatorname{depth}_{I}\left(M\right) \leq \min_{\mathfrak{p} \in \operatorname{WAss}_{A}\left(M\right)} \dim A/\mathfrak{p} \leq \dim \operatorname{Supp}_{A}\left(M\right)$$

Definition 9.6.2. Let A be a Noetherian local ring. A finite A-module M is Cohen-Macaulay if,

$$\operatorname{depth}\left(M\right) = \dim \operatorname{Supp}_{A}\left(M\right)$$

We say that A is Cohen-Macaulay if it is Cohen-Macaulay as an A-module i.e. if depth $(A) = \dim A$.

Lemma 9.6.3. If A is a Cohen-Macaualy Noetherian local ring then for any prime $\mathfrak{p} \in \operatorname{Spec}(A)$ the local ring $A_{\mathfrak{p}}$ is Cohen-Macaulay.

Remark. This Lemma allows for the following definition.

Definition 9.6.4. A ring A is Cohen-Macaulay if A is Noetherian and $A_{\mathfrak{p}}$ is Cohen-Macaulay for each $\mathfrak{p} \in \operatorname{Spec}(A)$.

(UNIVERSALLY CATENARY ETC..)

(FIX THIS STATEMENT!!)

Proposition 9.6.5. Let R be a regular local ring and M a finite A-module. Then any exact sequence of finite A-modules

9.7 Dimension

Proposition 9.7.1. Let (A, \mathfrak{m}) be a Noetherian local ring and $f \in \mathfrak{m}$. Then,

$$\dim A/(f) \ge \dim A - 1$$

with equality iff f is a nonzero divisor.

Proof. https://math.stackexchange.com/questions/2085779/the-dimension-modulo-a-principal-ideal-in-a-noetherian-local-ring $\hfill\Box$

9.8 Properties

Proposition 9.8.1. Let (A, \mathfrak{m}) be a Noetherian local ring and $f \in \mathfrak{m}$ a nonzero divisor. Then A is Cohen-Macaulay iff A/(f) is Cohen-Macaulay.

Proof. We have depth $(A/(f)) = \operatorname{depth}(A) - 1$ and $\dim A/(f) = \dim A - 1$.

10 Finite Projective Modules over Local Rings

Remark. It is well know that if $\phi: M \to M$ is an endomorphism of Noetherian R-modules which is surjective then it is injective. However, we can remove the Noetherian hypothesis and only require M to be finitely generated (which does not imply Noetherian unless R is Noetherian).

Remark. The following proposition crucially only holds for *commutative* rings.

Theorem 10.0.1. Let M be a finite R-module and $\phi: M \to M$ a surjective endomorphism then ϕ is injective.

Proof. We consider M as a R[X]-module with $X \cdot m = f(m)$. Let $I = (X) \subset R[X]$ then $I \cdot M = M$ since f is surjective. Thus, by Nakayama, $\exists P(X) \in I$ such that $(1 - P(X)) \cdot M = 0$. Thus, for all $m \in M$ we have $P(X) \cdot m = m$ i.e. m = P(f)(m) so if f(m) = 0 then m = 0 since $P(X) \in I$ and thus has no constant terms.

Lemma 10.0.2. Let $(R, \mathfrak{m}, \kappa)$ be a local ring and M a finite R-module with $M \otimes_R \kappa = 0$. Then M = 0.

Proof. If $M \otimes_R \kappa = M/\mathfrak{m}M = 0$ then $\mathfrak{m}M = M$. However, since R is local $\mathfrak{m} = \operatorname{Jac}(R)$ and M is finite so by Nakayama, M = 0.

Lemma 10.0.3. Let $(R, \mathfrak{m}, \kappa)$ be a local ring and $\phi : M \to N$ a map of R modules with N finite such that $\phi \otimes \mathrm{id}_{\kappa} : M \otimes_R \kappa \to N \otimes_R \kappa$ is surjective. Then ϕ is surjective.

Proof. Consider the exact sequence,

$$M \xrightarrow{\phi} N \longrightarrow \operatorname{coker} \phi \longrightarrow 0$$

Since $-\otimes_R \kappa$ is right-exact, we get an exact sequence,

$$M \otimes_R \kappa \xrightarrow{\phi \otimes \mathrm{id}_{\kappa}} N \otimes_R \kappa \longrightarrow \mathrm{coker} \, \phi \otimes_R \kappa \longrightarrow 0$$

However, $\phi \otimes id_{\kappa}$ is surjective so by exactness coker $\phi \otimes_R \kappa = 0$. However, since N is finite so is coker ϕ and thus coker $\phi = 0$ by the lemma showing that ϕ is surjective.

Lemma 10.0.4. Let $(R, \mathfrak{m}, \kappa)$ be a local ring. Suppose that M is a finite R-module with an endomorphism $\phi: M \to M$ such that $\phi \otimes \mathrm{id}: M \otimes_R \kappa \to M \otimes_R \kappa$ is an isomorphism then ϕ is an isomorphism.

Proof. Consider the exact sequence,

$$M \xrightarrow{\phi} M \longrightarrow \operatorname{coker} \phi \longrightarrow 0$$

and apply the right-exact functor $(-) \otimes_R \kappa$ to get,

$$M \otimes_R \kappa \xrightarrow{\phi \otimes \mathrm{id}} M \otimes_R \kappa \longrightarrow (\operatorname{coker} \phi) \otimes_R \kappa \longrightarrow 0$$

But $\phi \otimes$ id is an isomorphism and the sequence is exact so $(\operatorname{coker} \phi) \otimes_R \kappa = 0$ and thus, by the previous lemma, $\operatorname{coker} \phi = 0$ so ϕ is surjective. Now we apply the previous theorem to get that ϕ is an isomorphism.

Lemma 10.0.5. Let M be a finite module over R a local ring then bases of $M \otimes_R \kappa$ lift to generating sets $R^n \to M$ giving,

$$rank(M) = \dim_{\kappa} (M \otimes_{R} \kappa)$$

Proof. If M is generated by m_1, \ldots, m_n then $M \otimes_R \kappa = M/\mathfrak{m}M$ is generated by $\bar{m}_1, \ldots, \bar{m}_n$ over $\kappa = R/\mathfrak{m}R$ since surjectivity of $R^n \to M$ is preserved after applying $(-) \otimes_R \kappa$. Thus,

$$\operatorname{rank}(M) = \dim_{\kappa} M \otimes_{R} \kappa \leq n$$

Now suppose that v_1, \ldots, v_n is a κ -basis of $M \otimes_R \kappa = M/\mathfrak{m}M$ then choose lifts $m_1, \ldots, m_n \in M$. I claim that m_1, \ldots, m_n generate M as an R-module. Let $N \subset M$ be the R-submodule generated by the m_1, \ldots, m_n and let K = M/N. Then I claim that $\mathfrak{m}K = K$. To see this it suffices to show that $K \subset \mathfrak{m}K$. For any $M \in M$ we know that its image $\bar{m} \in M/\mathfrak{m}M$ is in the span of the basis v_1, \ldots, v_n so,

$$\bar{m} = r_1 v_1 + \cdots + r_n v_n$$

for $r_i \in R$. Thus,

$$m - (r_1 m_1 + \cdots r_n m_n) \in \mathfrak{m} M$$

This implies that in K we have $m \in \mathfrak{m}K$ so $K = \mathfrak{m}K$. Then since $\operatorname{Jac}(R) = \mathfrak{m}$ (because R is local) by Nakayama K = 0 so M is generated by m_1, \ldots, m_n .

Theorem 10.0.6. Every finite projective module over a local ring is free.

Proof. Let P be a finite projective R-module where $(R, \mathfrak{m}, \kappa)$ is a local ring. Then there is a surjection $R^n \to P$ which we may assume gives a basis $\kappa^n \stackrel{\sim}{\to} P \otimes_R \kappa$. We extend to a short exact sequence,

$$0 \longrightarrow K \longrightarrow R^n \longrightarrow P \longrightarrow 0$$

but P is projective so the sequence splits giving $R^n \cong K \oplus P$ and a surjection $R^n \to K$ making K finitely generated. Since split exact sequences are preserved under additive functors,

$$0 \longrightarrow K \otimes_R \kappa \longrightarrow \kappa^n \longrightarrow P \otimes_R \kappa \longrightarrow 0$$

but the second map is an isomorphism so $K \otimes_R \kappa = 0$ and K is finite so by the lemma K = 0. Thus $R^n \xrightarrow{\sim} P$ is an isomorphism so P is free.

Lemma 10.0.7. Let P be a projective R-module and $S \subset R$ a multiplicative subset. Then $S^{-1}P$ is a projective $S^{-1}R$ -module.

Proof. Let M, N be $S^{-1}R$ -modules and consider a diagram in the category of R-modules,

$$P \xrightarrow{\phi} S^{-1}P \xrightarrow{\tilde{\phi}} N$$

then $P \to N$ lifts to $\phi: P \to M$ since P is projective. Now we define $\tilde{\phi}: S^{-1}P \to M$ via $\tilde{\phi}(x \otimes r/s) = (r/s) \cdot \phi(x)$ using the decomposition $S^{-1}P = P \otimes_R S^{-1}R$. This makes the diagram commute.

Remark. We can also use the fact that (See Tag 05G3),

$$\operatorname{Hom}_{S^{-1}R}\left(S^{-1}P,-\right) = \operatorname{Hom}_{S^{-1}R}\left(P \otimes_{R} S^{-1}R,-\right) = \operatorname{Hom}_{R}\left(P,\operatorname{Res}_{R}^{S^{-1}R}(-)\right)$$

and that projective ity of P is equivalent to $\operatorname{Hom}_R\left(P,\operatorname{Res}_R^{S^{-1}R}(-)\right)$ being exact showing that $S^{-1}P$ is $S^{-1}R$ -projective.

Lemma 10.0.8. Let M be a finitely-presented R-module such that $M_{\mathfrak{p}}$ is a free $R_{\mathfrak{p}}$ -module at each prime $\mathfrak{p} \in \operatorname{Spec}(R)$. Then M is a localy free R-module.

Proof. Take a prime $\mathfrak{p} \in \operatorname{Spec}(R)$ then $M_{\mathfrak{p}}$ is a finite free $R_{\mathfrak{p}}$ -module say $M_{\mathfrak{p}} \cong R_{\mathfrak{p}}^n$. Lift the basis to give a map $R^n \to M$ and an exact sequence,

$$0 \longrightarrow C \longrightarrow R^n \longrightarrow M \longrightarrow K \longrightarrow 0$$

Since M is finitely-presented, both K and C are finitely generated. Furthermore, localizing at \mathfrak{p} gives,

$$0 \longrightarrow C_{\mathfrak{p}} \longrightarrow R_{\mathfrak{p}}^{n} \longrightarrow M_{\mathfrak{p}} \longrightarrow K_{\mathfrak{p}} \longrightarrow 0$$

but $R_{\mathfrak{p}}^n \to M_{\mathfrak{p}}$ is an isomorphism so $C_{\mathfrak{p}} = 0$ and $K_{\mathfrak{p}} = 0$. Since they are finitely generated, there is an element $f \notin \mathfrak{p}$ killing both generating sets and thus $C_f = 0$ and $K_f = 0$. Therefore,

$$0 \longrightarrow C_f \longrightarrow R_f^n \longrightarrow M_f \longrightarrow K_f \longrightarrow 0$$

is exact so $R_f^n \xrightarrow{\sim} M_f$ is an isomorphism so M is free on $D(f) \subset \operatorname{Spec}(R)$ for $\mathfrak{p} \in D(f)$ so M is locally free.

Theorem 10.0.9. Let R be a ring. Then finite projective R-modules are exactly the finite locally free R-modules.

Proof. If P is finite projective then $P_{\mathfrak{p}}$ is finite projective over $R_{\mathfrak{p}}$ and thus free. Furthermore, P is finitely presented because there is an exact sequence,

$$0 \longrightarrow K \longrightarrow R^n \longrightarrow P \longrightarrow 0$$

which splits $R^n \cong K \oplus P$ since P is projective giving a surjection $R^n \to K$ thus showing that K is finite and giving a finite presentation,

$$R^n \longrightarrow R^n \longrightarrow P \longrightarrow 0$$

Therefore, by the previous lemma, P is locally free.

Conversely, if P is locally free so there exists a finite (Spec (R) is quasi-compact) open cover $D(f_i)$ of Spec (R) such that $P_{f_i} \cong R_{f_i}^n$. Then we need to show that $\operatorname{Hom}_R(P,-)$ is exact. We use that $\operatorname{Hom}_R(P,-)_{f_i} = \operatorname{Hom}_{R_{f_i}}(P_{f_i},(-)_{f_i})$ which is exact since P_{f_i} is free and localization $(-)_{f_i}$ is an exact functor. Then $\operatorname{Hom}_R(P,-)$ is exact since we can check exactness of the hom sequence locally. \square

Remark. Look at Tag 00NV for more detailed version.

11 Integral and Finite Extensions

Definition 11.0.1. Let $\varphi : A \to B$ be a map of rings. We say that an element $x \in B$ is *integral* over A if it satisfies a monic polynomial,

$$x^{n} + \varphi(a_{n-1})x^{n-1} + \dots + \varphi(a_{0}) = 0$$

for $a_i \in A$. We say that φ is *integral* if every element $x \in B$ is integral over A.

(DO THIS STUFF).

12 Normal Domains

Definition 12.0.1. Let R be a domain. We say that R is *normal* if R is integrally closed in Frac (R).

Lemma 12.0.2. Let R be a domain. The following are equivalent,

- (a) R is a normal domain
- (b) for each multiplicative subset $S \subset R$, the localization $S^{-1}R$ is a normal domain
- (c) for each prime $\mathfrak{p} \subset R$ the localization $R_{\mathfrak{p}}$ is a normal domain
- (d) for each maximal ideal $\mathfrak{p} \subset R$ the localization $R_{\mathfrak{m}}$ is a normal domain.

Proof. Let R be a normal domain and $x \in K = \operatorname{Frac}(R)$ satisfying the monic polynomial,

$$x^{n} + \frac{r_{n-1}}{s_{n-1}}x^{n-1} + \dots + \frac{r_0}{s_0}$$

for $\frac{r_i}{s_i} \in S^{-1}R$. Then let $s = s_{n-1} \cdots s_0$ and,

$$(sx)^n + s_0 \cdots s_{n-2} r_{n-1} (sx)^{n-1} + \cdots + s^{n-1} s_1 \cdots s_{n-1} r_0 = 0$$

and therefore $sx \in K$ is integral over R so $sx \in R$ and thus $x \in S^{-1}R$ showing that $S^{-1}R$ is integrally closed.

Clearly, (b) \implies (c) \implies (d). Finally, suppose that each $R_{\mathfrak{m}}$ is integrally closed. Then,

$$R = \bigcap R_{\mathfrak{m}}$$

inside K. Suppose that $x \in K$ is integral over R then x is integral over each $R_{\mathfrak{m}}$ and thus $x \in R_{\mathfrak{m}}$ for each \mathfrak{m} by integral closure so $x \in R$ proving that R is an integrally closed domain.

12.1 Normalization

Lemma 12.1.1. Let $\varphi: A \to B$ be a ring map. Then,

$$B' = \{b \in B \mid b \text{ is integral over } A\}$$

is an integrally closed A-subalgebra of B called the integral closure of A in B.

$$Proof.$$
 (DO THIS!!!)

Proposition 12.1.2. Let A be a noetherian normal domain with $K = \operatorname{Frac}(A)$ and L/K a finite seperable extension. Let A' be the normalization of A in L. Then $A \subset A'$ is a finite extension of rank n = [L : K].

Proof. Consider the trace pairing,

$$L \times L \to K \quad (x,y) \mapsto \langle x,y \rangle := \operatorname{Tr}_{L/K}(xy)$$

Since L/K is separable this is nondegenerate (see algebra review). Furthermore, if $x \in L$ is integral over A then $\operatorname{Tr}_{L/K}(x) \in K$ is integral over A so because A is normal $\operatorname{Tr}_{L/K}(x) \in A$. Therefore, choosing an integral K-basis $x_1, \ldots, x_n \in L$ (which we can always do by clearing denominators since L/K is algebraic) then $A' \subset L$ is contained in,

$$M = \{ \alpha \in L \mid \langle \alpha, x_i \rangle \in A \text{ for all } i \}$$

which is an A-module because $\langle -, x_i \rangle$ is linear. However, $M \cong A^{\oplus n}$ via choosing the dual basis of x_1, \ldots, x_n . Thus $A' \subset A^{\oplus n}$ so A' is a finite A-module since A is noetherian. Furthermore,

$$N = Ax_1 \oplus \cdots \oplus Ax_n \subset A'$$

by definition because each $x_i \in L$ is integral. Therefore, $A^{\oplus n} \subset A' \subset A^{\oplus n}$ so by tensoring with K we see that rank (A') = n.

13 Projective and Global Dimension

13.1 Projective Dimension

Definition 13.1.1. Let M be an A-module. Then the projective dimension $\operatorname{pd}_A(M)$ is the minimal length r of a projective resolution of M,

$$0 \longrightarrow P_r \longrightarrow \cdots \longrightarrow P_1 \longrightarrow P_0 \longrightarrow M \longrightarrow 0$$

and $\operatorname{pd}_A(M) = \infty$ if there does not exist a finite-length projective resolution of M.

Lemma 13.1.2 (Schanuel's lemma). Let A be a ring and M an A-module. Let,

$$0 \longrightarrow K \stackrel{c_1}{\longrightarrow} P_1 \stackrel{p_1}{\longrightarrow} M \longrightarrow 0 \qquad \qquad 0 \longrightarrow L \stackrel{c_2}{\longrightarrow} P_2 \stackrel{p_2}{\longrightarrow} M \longrightarrow 0$$

be two short exact sequences of A-module where P_i are projective. Then there exists an isomorphism of short exact sequences,

$$0 \longrightarrow K \oplus P_2 \xrightarrow{(c_1 \text{ id})} P_1 \oplus P_2 \xrightarrow{(p_1 0)} M \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \parallel$$

$$0 \longrightarrow P_1 \oplus L \xrightarrow{(\text{id } c_2)} P_1 \oplus P_2 \xrightarrow{(p_2 0)} M \longrightarrow 0$$

Proof. Using projectivity of P_1 and P_2 we get maps $a: P_1 \to P_2$ and $P_2 \to P_1$ over M meaning that $p_2 \circ a = p_1$ and $p_1 \circ b = p_2$. Therefore, we get a diagram,

$$0 \longrightarrow K \oplus P_2 \xrightarrow{(c_1 \text{ id})} P_1 \oplus P_2 \xrightarrow{(p_1 0)} M \longrightarrow 0$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

where t(x, y) = (x + b(y), y) and s(x, y) = (x, y + a(x)) such that,

$$(p_1, 0) \circ t = p_1 \circ (\mathrm{id} + b) = p_1 + p_2$$
 and $(0, p_2) \circ s = p_2 \circ (\mathrm{id} + a) = p_1 + p_2$

so the diagram commutes inducing maps $N \to K \oplus P_2$ and $N \to P_1 \oplus L$ where $N = \ker (P_1 \oplus P_2 \to M)$. It is clear that t and s are isomorphisms and thus the induced maps are also isomorphisms proving the claim.

Lemma 13.1.3. Let A be a ring and M an A-module with finite projective dimension. Then for any projective resolution,

$$\cdots \longrightarrow P_2 \longrightarrow P_1 \longrightarrow P_0 \longrightarrow M \longrightarrow 0$$

the module $\ker (P_k \to P_{k-1})$ is projective for $k \ge \operatorname{pd}_A(M) - 1$.

Proof. We proceed by induction on $\operatorname{pd}_A(M)$. For the case $\operatorname{pd}_A(M) = 0$ then M is projective so the exact sequence,

$$0 \longrightarrow K \longrightarrow P_0 \longrightarrow M \longrightarrow 0$$

splits so $P_0 = K \oplus M$ proving that K is also projective giving the case k = 0. Replacing M by $K = \ker(P_0 \to M)$ we prove $\ker(P_k \to P_{k-1})$ is projective for all k.

Now for induction suppose $\operatorname{pd}_A(M) = d + 1$ and let,

$$0 \longrightarrow \tilde{P}_{d+1} \longrightarrow \cdots \longrightarrow \tilde{P}_1 \longrightarrow \tilde{P}_0 \longrightarrow M \longrightarrow 0$$

be a minimal length projective resolution. By Schanuel's lemma,

$$\tilde{P}_0 \oplus \ker (P_0 \to M) \cong P_0 \oplus \ker (\tilde{P}_0 \to M)$$

If $\operatorname{pd}_A(M) = 1$ and k = 0 then $\ker(\tilde{P}_0 \to M)$ is projective meaning that $\ker(P_0 \to M)$ is projective as well. Otherwise let k > 0 and consider the projective resolutions,

$$\cdots \longrightarrow P_3 \longrightarrow P_2 \longrightarrow P_1 \longrightarrow \ker(P_0 \to M) \longrightarrow 0$$

$$0 \longrightarrow \tilde{P}_{d+1} \longrightarrow \cdots \longrightarrow \tilde{P}_1 \longrightarrow \ker (\tilde{P}_0 \to M) \longrightarrow 0$$

We cannot directly apply induction because these are not resolutions of the same module. However, applying $-\oplus \tilde{P}_0$ to the first sequence and $-\oplus P_0$ to the second we get projective resolutions of $M' = \tilde{P}_0 \oplus \ker (P_0 \to M) \cong P_0 \oplus \ker (\tilde{P}_0 \to M)$

$$\cdots \longrightarrow P_3 \oplus \tilde{P}_0 \longrightarrow P_2 \oplus \tilde{P}_0 \longrightarrow P_1 \oplus \tilde{P}_0 \longrightarrow M' \longrightarrow 0$$

$$0 \longrightarrow \tilde{P}_{d+1} \oplus P_0 \longrightarrow \cdots \longrightarrow \tilde{P}_1 \oplus P_0 \longrightarrow M' \longrightarrow 0$$

because direct sum is exact and preserves projectives. From the second sequence $\operatorname{pd}_A(M') \leq d$ so we may apply induction and find that $\ker(P_k \oplus \tilde{P}_0 \to P_{k-1} \oplus \tilde{P}_0) = \ker(P_{k+1} \to P_k) \oplus \tilde{P}_0$ is projective for $k \geq d-1$ and thus $\ker(P_k \to P_{k-1})$ is projective for $k \geq d$ completing the proof.

Lemma 13.1.4. Let A be a Noetherian ring and M a finite A-module. Then the following are equivalent,

- (a) $\operatorname{pd}_{A}(M) \leq d$
- (b) there exists a resolution of M by finite modules F_i and P_d ,

$$0 \longrightarrow P_d \longrightarrow F_{d-1} \longrightarrow \cdots \longrightarrow F_1 \longrightarrow F_0 \longrightarrow M \longrightarrow 0$$

where the F_i are finite free and P_d is finite projective.

Proof. Clearly the second implies the first since F_i are projective. Given $\operatorname{pd}_A(M) \leq d$ we know $d-1 \geq \operatorname{pd}_A(M) - 1$. Since A is Noetherian and M is finite we can build a finite free resolution,

$$0 \longrightarrow P_d \longrightarrow F_{d-1} \longrightarrow \cdots \longrightarrow F_1 \longrightarrow F_0 \longrightarrow M \longrightarrow 0$$

by taking a generating set for M and the kernel ker $(F_k \to F_{k-1})$ is again a finite A-module by the Noetherian property. Then let $P_d = \ker (F_{d-1} \to F_{d-2})$. Since the F_k are projective, by the previous lemma P_d is projective and finite as a submodule of a finite module.

Lemma 13.1.5. Let A be a Noetherian local ring and M a finite A-module. Then the following are equivalent,

- (a) $\operatorname{pd}_{A}(M) \leq d$
- (b) there exists a resolution of M by finite free modules F_i ,

$$0 \longrightarrow F_d \longrightarrow F_{d-1} \longrightarrow \cdots \longrightarrow F_1 \longrightarrow F_0 \longrightarrow M \longrightarrow 0$$

Proof. This follows from above noting that finite projective A-modules are free because A is local.

Proposition 13.1.6. Let A be a ring and M an A-module. Then the following are equivalent,

- (a) $\operatorname{pd}_{\Delta}(M) < n$
- (b) $\operatorname{Ext}_{A}^{i}(N, M) = 0$ for all A-modules A and all $i \geq n+1$
- (c) $\operatorname{Ext}_{A}^{n+1}(N, M) = 0$ for all A-modules.

Proof. (DO THIS!!!)

Lemma 13.1.7. Consider an exact sequence of A-modules,

$$0 \longrightarrow M_1 \longrightarrow M_2 \longrightarrow M_3 \longrightarrow 0$$

- (a) if $\operatorname{pd}_{A}(M_{2}) \leq n$ then $\operatorname{pd}_{A}(M_{1}) \leq n$ and $\operatorname{pd}_{A}(M_{3}) \leq n+1$
- (b) if $\operatorname{pd}_{A}(M_{1}) \leq n$ and $\operatorname{pd}_{A}(M_{3}) \leq n$ then $\operatorname{pd}_{A}(M) \leq n$
- (c) if $\operatorname{pd}_{A}(M_{1}) \leq n$ and $\operatorname{pd}_{A}(M) \leq n+1$ then $\operatorname{pd}_{A}(M_{3}) \leq n+1$.

Proof. Combine the long exact sequence of Ext groups and the previous result.

13.2 Global Dimension

Definition 13.2.1. Let A be a ring. The global dimension gldim (A) is the supremum of $\operatorname{pd}_A(M)$ over all A-modules M.

Theorem 13.2.2. Let A be a ring. The following are equivalent,

- (a) gldim $(A) \leq n$
- (b) $\operatorname{pd}_A(M) \leq n$ for all A-modules M
- (c) $\operatorname{pd}_{A}(M) \leq n$ for all finite A-modules M
- (d) $\operatorname{pd}_{A}(M) \leq n$ for all cyclic A-modules M.

Proof. Tag 065T. \Box

Lemma 13.2.3. Let A be a ring, M an A-module, and $S \subset A$ a multiplicative subset then,

- (a) $\operatorname{pd}_{S^{-1}A}(S^{-1}M) \leq \operatorname{pd}_{A}(M)$
- (b) $\operatorname{gldim}(S^{-1}A) < \operatorname{gldim}(A)$

Proof. The functor $S^{-1}(-): \mathbf{Mod}_A \to \mathbf{Mod}_{S^{-1}A}$ is exact and preserves projectives because it is left-adjoint to restriction which is also exact. Therefore, if M has a projective A-resolution of length n then $S^{-1}M$ has a projective $S^{-1}A$ -resolution of length at most n so $\mathrm{pd}_{S^{-1}A}(S^{-1}M) \leq \mathrm{pd}_A(M)$. Notice that for any $S^{-1}A$ -module M, we have $M = S^{-1}M_A$ viewing M_A as an A-module under the restriction function. Thus, applying the first part

$$\operatorname{gldim}\left(S^{-1}A\right) = \sup\left\{\operatorname{pd}_{S^{-1}A}\left(M\right) \mid M \in \operatorname{\mathbf{Mod}}_{S^{-1}A}\right\} \leq \sup\left\{\operatorname{pd}_{A}\left(M_{A}\right) \mid M \in \operatorname{\mathbf{Mod}}_{S^{-1}A}\right\}$$
$$\leq \sup\left\{\operatorname{pd}_{A}\left(M\right) \mid M \in \operatorname{\mathbf{Mod}}_{A}\right\} = \operatorname{gldim}\left(A\right)$$

Proposition 13.2.4. Let R be a Noetherian ring. Then,

$$\operatorname{gldim}(R) = \sup \{ \operatorname{gldim}(R_{\mathfrak{p}}) \mid \mathfrak{p} \in \operatorname{Spec}(R) \} = \sup \{ \operatorname{gldim}(R_{\mathfrak{m}}) \mid \mathfrak{m} \in \operatorname{mSpec}(R) \}$$

Proof. DOO!!!!!!!!!!

13.3 Auslander-Buchsbaum

(MOST GENERAL VERSION!!)

13.4 Regular Rings

Remark. Throughout let $(R, \mathfrak{m}, \kappa)$ be a noetherian local ring.

Lemma 13.4.1. We always have,

$$\dim_{\kappa} \mathfrak{m}/\mathfrak{m}^2 > \dim R$$

Proof. By Nakayma, $n = \dim_{\kappa} \mathfrak{m}/\mathfrak{m}^2$ is the minimal number of generators of \mathfrak{m} . Then by Krull's ideal theorem, dim $R = \mathbf{ht}(\mathfrak{m}) \leq n$.

Corollary 13.4.2. When R is a Noetherian local ring, dim R is finite.

Proof. $\dim_{\kappa} \mathfrak{m}/\mathfrak{m}^2$ is finite because \mathfrak{m} is finitely generated since R is Noetherian.

Definition 13.4.3. We say that R is a regular local ring if $\dim_{\kappa} \mathfrak{m}/\mathfrak{m}^2 = \dim R$.

Proposition 13.4.4. Let R be a regular local ring. Then gldim $(R) \leq \dim R$.

Proof. DO!!!!

Proposition 13.4.5. Let $(R, \mathfrak{m}, \kappa)$ be a noetherian local ring then $\operatorname{pd}_R(\kappa) \geq \dim_{\kappa} \mathfrak{m}/\mathfrak{m}^2$.

Proof. Tag 00OA. \Box

Proposition 13.4.6. If $\operatorname{pd}_{R}(\kappa) < \infty$ then $\dim R \ge \operatorname{pd}_{R}(\kappa)$.

Proof. Tag 00OB. \Box

Proposition 13.4.7. Let R be a Noetherian local ring. If $\operatorname{pd}_{R}(\kappa) < \infty$ then R is a regular local ring.

Proof. The above propositions give dim $R \ge \operatorname{pd}_R(\kappa) \ge \dim_{\kappa} \mathfrak{m}/\mathfrak{m}^2$ but $\dim_{\kappa} \mathfrak{m}/\mathfrak{m}^2 \ge \dim R$. \square

Proposition 13.4.8. Let $(R, \mathfrak{m}, \kappa)$ be a noetherian local ring. Then $\operatorname{gldim}(R) < \infty$ if and only if R is a regular local ring in which case $\operatorname{gldim}(R) = \dim R$.

Proof. If R is regular local then gldim $(R) \le \dim R$. Conversely, if gldim (R) is finite then $\operatorname{pd}_R(\kappa) < \infty$ so R is reglar local. In this case, $\operatorname{pd}_R(\kappa) = \dim R$ and $\operatorname{gldim}(R) \le \dim R$ so $\operatorname{gldim}(R) = \dim R$.

Lemma 13.4.9. If R is reglar local then $R_{\mathfrak{p}}$ is regular local for each prime $\mathfrak{p} \in \operatorname{Spec}(R)$.

Proof. If R is regular local then $\operatorname{gldim}(R) < \infty$ and thus $\operatorname{gldim}(R_{\mathfrak{p}}) \leq \operatorname{gldim}(R) < \infty$. Since $R_{\mathfrak{p}}$ is local and noetherian, $R_{\mathfrak{p}}$ is regular local as well.

Definition 13.4.10. A noetherian ring R is regular if $R_{\mathfrak{p}}$ is regular local for each $\mathfrak{p} \in \operatorname{Spec}(R)$.

Remark. The preceding Lemma says that a regular local ring is regular.

Remark. It suffices to check regularity at $R_{\mathfrak{m}}$ for maximal ideals $\mathfrak{m} \in \mathrm{mSpec}(R)$ since $R_{\mathfrak{p}}$ is a localization of some $R_{\mathfrak{m}}$ and we have shown that localization preserves being regular local.

Proposition 13.4.11. Let R be a Noetherian ring. The following are equivalent for each $n \in \mathbb{N}$,

- (a) gldim $(R) \leq n$
- (b) for each $\mathfrak{m} \in \mathrm{mSpec}(R)$ the ring $R_{\mathfrak{m}}$ is regular and $\dim R_{\mathfrak{m}} \leq n$
- (c) for each $\mathfrak{p} \in \mathrm{mSpec}(R)$ the ring $R_{\mathfrak{p}}$ is regular and $\dim R_{\mathfrak{p}} \leq n$.

Therefore, if gldim $(R) < \infty$ then R is regular and if R is regular then

$$\operatorname{gldim}(R) = \sup \{ \dim R_{\mathfrak{m}} \mid \mathfrak{m} \in \operatorname{mSpec}(R) \} = \sup \{ \dim R_{\mathfrak{p}} \mid \mathfrak{p} \in \operatorname{Spec}(R) \}$$

Proof. This follows from,

$$\operatorname{gldim}(R) = \sup \{ \operatorname{gldim}(R_{\mathfrak{m}}) \mid \mathfrak{m} \in \operatorname{mSpec}(R) \}$$

and the fact that $\operatorname{gldim}(R_{\mathfrak{m}}) < \infty$ is equivalent to regularity of $R_{\mathfrak{m}}$ in which case $\operatorname{gldim}(R_{\mathfrak{m}}) = \dim R_{\mathfrak{m}}$.

Remark. Notice that even when R is regular gldim (R) may be infinite simply because the dimensions of $R_{\mathfrak{m}}$ for $\mathfrak{m} \in \mathrm{mSpec}(R)$ may be unbounded even when R is Noetherian. In this case, dim $R = \infty$ so if dim R is finite then gldim (R) is finite iff R is regular.

14 Pseudomorphisms

Lemma 14.0.1. Let $f: X \to Y$ be a morphism of schemes such that for each weakly associated point $y \in Y$ there exists a point $x \in X$ such that f(x) = y and $\mathcal{O}_{Y,y} \to \mathcal{O}_{X,x}$ is injective. Then the map on sheaves $\mathcal{O}_Y \to f_*\mathcal{O}_X$ is injective.

Proof. To show that $\mathcal{O}_Y \to f_*\mathcal{O}_X$ is injective, it suffices to show that $\mathcal{O}_{Y,y} \to (f_*\mathcal{O}_X)_y$ is injective on each weakly associated point $y \in Y$. Furthermore, we know there exists $x \in X$ with f(x) = y and the composition $\mathcal{O}_{Y,y} \to (f_*\mathcal{O}_X)_y \to \mathcal{O}_{X,x}$ is injective and thus $\mathcal{O}_{Y,y} \to (f_*\mathcal{O}_X)_y$ is injective. \square

Remark. In particular, if $f: X \to Y$ is a dominant map of integral schemes then $\mathcal{O}_Y \to f_*\mathcal{O}_X$ is injective.

Example 14.0.2. Consider the map Spec $(k[x]) \to \text{Spec}(k[x,y]/(xy,y^2))$. Although this map hits the generic point (y), it does not hit the embedded associated point (x,y^2) at the origin and thus $k[x,y]/(xy,y^2) \to k[x]$ is not injective since $y \mapsto 0$.

Definition 14.0.3. We say an immersion $\iota: Y \hookrightarrow X$ is scheme theoretically dense if the scheme theoretic image is X.

Lemma 14.0.4. An open immersion $\iota: U \to X$ is scheme theoretically dense iff U contained all weakly associated points of X.

When can we ensure that the coker of $\mathcal{O}_Y \to f_*\mathcal{O}_X$ is supported in codimension one.

14.1 Annhiliators

Remark. Here we let X be a scheme. Warning: many of these results do not hold for arbitrary locally ringed spaces. In particular, the kernel of quasi-coherent sheaves need not be quasi-coherent on an arbitrary locally ringed space. However, this holds locally on schemes because kernels and cokerns of sheaves associated to modules are associated to modules.

Definition 14.1.1. Let \mathscr{F} be a sheaf of \mathcal{O}_X -modules. Then we define the sheaf of annihilators:

$$\mathcal{A}nn_{\mathcal{O}_X}(\mathcal{F}) = \ker\left(\mathcal{O}_X \to \mathcal{H}om_{\mathcal{O}_X}(\mathcal{F}, \mathcal{F})\right)$$

Lemma 14.1.2. Let \mathscr{F}, \mathscr{G} be quasi-coherent \mathcal{O}_X -modules with \mathscr{F} finitely presented. Then $\mathscr{H}_{em_{\mathcal{O}_X}}(\mathscr{F}, \mathscr{G})$ is quasi-coherent.

Proof. Locally on $U \subset X$ we have a presentation,

$$\bigoplus_{i=1}^m \mathcal{O}_U \longrightarrow \bigoplus_{i=1}^n \mathcal{O}_U \longrightarrow \mathscr{F}|_U \longrightarrow 0$$

Applying the functor $\mathcal{H}om_{\mathcal{O}_U}(-,\mathcal{G})$ gives,

$$0 \longrightarrow \mathcal{H}om_{\mathcal{O}_U}(\mathcal{F}|_U, \mathcal{G}|_U) \longrightarrow \bigoplus_{i=1}^n \mathcal{G}|_U \longrightarrow \bigoplus_{i=1}^m \mathcal{G}|_U$$

Since \mathscr{G} is quasi-coherent and finite sums and kernels of quasi-coherent sheaves are quasi-coherent we see that $\mathscr{H}_{om\mathcal{O}_X}(\mathscr{F},\mathscr{G})$ is locally quasi-coherent and thus quasi-coherent.

Lemma 14.1.3. If \mathscr{F} is finitely presented then $\mathscr{A}nn_{\mathcal{O}_X}(\mathscr{F})$ is quasi-coherent.

Proof. From the previous lemma, $\mathcal{H}_{\mathcal{O}_{X}}(\mathcal{F}, \mathcal{F})$ is quasi-coherent. Therefore, the kernel,

$$\mathcal{A}nn_{\mathcal{O}_X}(\mathcal{F}) = \ker\left(\mathcal{O}_X \to \mathcal{H}om_{\mathcal{O}_X}(\mathcal{F}, \mathcal{F})\right)$$

is quasi-coherent.

Proposition 14.1.4. Let \mathscr{F} be finitely presented. Then $\operatorname{Supp}_{\mathcal{O}_X}(\mathscr{F})$ is closed and the quasi-coherent sheaf of ideals $\mathscr{A}nn_{\mathcal{O}_X}(\mathscr{F})$ gives a scheme structure on $\operatorname{Supp}_{\mathcal{O}_X}(\mathscr{F})$. Furthermore, \mathscr{F} is naturally a $\mathcal{O}_X/\mathscr{A}nn_{\mathcal{O}_X}(\mathscr{F})$ - module.

Lemma 14.1.5. Let $f: X \to Y$ be a morphism of schemes. Assume that \mathcal{O}_Y and $f_*\mathcal{O}_X$ are coherent on Y. Furthermore, for each generic point of an irreducible component $\xi \in Y$ assume that there exists some $x \in X$ with $f(x) = \xi$ and $\mathcal{O}_{Y,\xi} \to \mathcal{O}_{X,x}$ surjective. Then $\mathscr{C} = \operatorname{coker}(\mathcal{O}_Y \to f_*\mathcal{O}_X)$ has $Z = \operatorname{Supp}_{\mathcal{O}_Y}(\mathscr{C})$ in positive codimension.

15 Singularities of Curves

Definition 15.0.1. NORMALIZATION

Proposition 15.0.2. Normalization of a curve exists and is regular.

(CAN WE GET $H^0(O_X)$ is the same?)