Image segmentation

Applications

- High-throughput cytometry
 - Cell size
 - Cell counting
 - Cell-cycle determination
- Cell tracking

Methods

- Thresholding → Intensity clipping
- Region growing
- Machine learning
- etc.

Methods

Thresholding → Intensity clipping

Otsu thresholding

Procedure

Input 1: N2DH-GOWT1 cells

- GFP-Gowt1 mouse embryonic stem cells
- Time-laps confocal microscopy and GFP-staining
- Investigate genomic integrity of the cells
- Challenges:
 - Brightness of cells varies
 - Some cells hardly visible

Input 2: N2DL-HeLa cells

- human epithelial cells of cervical cancer
- live imaging of fluorescently labelled chromosomes
- Phenotypic profiling of the human genome
- Challenges:
 - Some cells hardly can be seen
 - Not easy to distinguish background and cells
 - Not much contrast

Input 3: NIH3T3 cells

- Several mouse embryonic fibroblast cells
- Fluorescence microscopy images
- Evaluation of image analysis pipelines
- Challenges:
 - Visible debris: light spots
 - Nuclei vary in brightness

Problems

Low contrast

Reflections

Random noise

Preprocessing

Solutions:

- Random noise
- → Gauss filter, median filter
- Reflections

Low contrast

Original

Gauss filter ($\sigma = 3$)

Preprocessing

Solutions:

- Random noise
- → Gauss filter, median filter
- Reflections
- **→** Thresholding
- Low contrast

Preprocessing

Low contrast image

Solutions:

- Random noise
- → Gauss filter, median filter
- Reflections
- **→** Thresholding
- Low contrast
- Histogram equalization

Contrast stretching

Histogram equalization

Threshold value $k \in [0,255]$

Between-class variance

$$\sigma_{\rm B} = \omega_0 \omega_1 (\mu_1 - \mu_0)^2$$

 $\omega_{0,1}=$ probability of class occurrence $\mu_{0,1}=$ mean intensity values

Threshold value $k \in [0,255]$

Criterion measure

$$\eta(k) = \frac{\sigma_B^2(k)}{\sigma_T^2}$$

 σ_B = between-class variance

 $\sigma_T = \text{total variance}$

 $\eta(k) \in [0,1]$

Threshold value $k \in [0,255]$

Image Clipping

$$g_{clip}(x,y) = \begin{cases} 0 & \text{if } g(x,y) \le k \\ 255 & \text{if } g(x,y) > k \end{cases}$$

Bad prediction

Good prediction

Very good prediction

$$DSC = \frac{2 \times A \cap B}{A + B}$$

A: Predicted shape

B: Ground truth

$$DSC = \frac{2 \times A \cap B}{A + B}$$

Our goal: compare ground truth images with our results

Further ideas

- 2D Otsu
- Median Otsu
- Algorithm for counting cells
- Algorithm for drawing cell trajectories

Timeline

Date	Milestone
Already done:	Researched Otsu thresholding and Dice scoring; Prepared project presentation
19.05.	Explore data with histograms and similar (All)
26.05.	Code algorithms for Otsu thresholding (H, E) and Dice scoring (L, V)
02.06.	Assemble the whole pipeline, test different preprocessing options (All)
09.06.	Research alternative evaluation methods
16.06.	 Test our pipeline on data from the BBBC Implement alternative evaluation methods: IoU, pixel accuracy (All) Hausdorff metric (H, E) NSD (L, V)
23.06.	Compare results with group 4.4 and 4.5
30.06.	Complete report in Jupyter Notebook (All)
07.07.	Complete final presentation (All)

Thank you for your attention!