* 57

ACTGTTAGCTAATTGG Refused

CAATCGGA Probe from first probes

CAAGCGAA Corresponding probes

CAAGCGAA from second, third and

CAAGCGAA fowth probe sets

Interrogation position

Fig. 1

Fig. 2

Fig. 3

ACTGTTAGCTAATTGG Ret. Seq.

WILL TGAC GACA ACAA CAAT AATIG

Fig. 4

Fig. 5

																To Company
	A 1	_		C	7	A	A	Ġ	A.	c.	4	4	Α	Α	C	Reference Sequence
14	A	Δ	<u> </u>	5		-	- }	Ľ			_	浮				A-Lane
1					苑								-	_	_	C-Lane
				響				1.5					_		_	1
	\equiv										}				-	G-Lane
		= 2				- <u>-</u>	-		بد.				نيز.	1.5		T-Lane
	:=	*	=				<u> </u>									1
									_	-	_			1 4	F	Reference Sequence
G	G	٦	+	G	A	C	G	T	C	4	G	2	A	A	₩	•
1			9					类						<u> </u>	*	A-Lane
1	-	-	-	-	-	-	:3:	_		一	=				Π	C-Lane
夢	Æ	<u> </u>	_	室	!			╀─	-	-	-	÷	-	\vdash	†	G-Lane
1		劈		<u> </u>	<u> </u>	×	_			_	 	133	-	┼╌	₩	· · · · · · · · · · · · · · · ·
	Π				粪		l			#≦	<u> </u>	L_		3	1	T-Lane
			<u> </u>	<u></u>	المائيس الم											
																_
						A										

FIG. 5: Tiled Array with Probes for the Detection of Point Mutations

3'-CCGACTACAGTCGTT

3'-CCGACTCCAGTCGTT

3'-CCGACTGCAGTCGTT

3'-CCGACTTCAGTCGTT

n corresponding nucleotide ACTGTTAGCTAATTGG Ref. Seq. CAATICGA - Probe from first set CAADCGALT]-Deletion probe CAATACG[A] C A A 団 C C G[A] { Probes C A A 団 G C G[A] } CAATTCG[A]

Fig. 6

no no no corresponding nucleotides ACTGTTAGCTAATTGG Reb. Seq. CAATICGA Probe from first set Il Iz I3 Interrogation positions COATCGA Corresponding probes COGATCGA Corresponding probes from second, third and fowth probe sets I, CAAGCGA Corresponding prohos CAAGCGA From fitth, sixth and CAAGCGA Seventy probe sets CAAGCGA 12 CAATCOA Convesponding probes from CAATCOA CINA winter and tenth

Fig. 7

In Interrogation positions

Fig. 8

ATTCCCGGGATC

AGGGCCAT — Probo from first probo

AGGCCCAT

Gomes fonding probes from

AGGTCCAT

Second, Hird and fourth

Hobe set

luterrention

HV 40 7A 130 x 140 15/8 7/9

Fig. 10 Page 1 of 2

9757

HV=074 (2)

A A A A A A	<u> </u>			A A A A A A A		
, , , , , , , , , , , , , , , , , , ,	5 5 5 A A A A A	: :: :: :: :: :: :: :: :: :: :: :: :: :	7 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4	, TT T T T T		5
, , , , , , , , , , , , , , , , , , ,		ື່ວ ລວັດແດດ ⁷⁷⁷ ^	'	·		
		**************************************	T T T T T T T T T T T T T T T T T T T	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	:	T T T T T T T T T T T T T T T T T T T
* * * * * * * * * * * * * * * * * * *		ີ. ຂ່‱ ^{ກາ}	20 2 22 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;		=
	: :::	- : :::				••••••
4 4 M	:	, , ,	25 2 35 ° 2		======================================	: æ : ; : æ : , æ :
A A A TAMA A A A TAME		C GG GGGG	50 0 00 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0	T T T T T T T T T T T T T T T T T T T	CC A A AAA	A AAA A
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		Too 11 To	T S ST S S S S S S S S S S S S S S S S	; = === ;; ; = === ;;	3 3	A AAAA AA
TOTAL AM	2	GG 7: 7: 5 A A A A		77; 77; 23; 37; 34; 34; 34; 34; 34; 34; 34; 34; 34; 34	7 7 7 A A A A A A A A A A A A A A A A A	

MCO7060: = 407 water chip lybridized with fragmented pfol 19 RNA

11/57

Figure of Commence THE STATE OF THE S Charter at the construction of the constructio 17072804.cq2 17072804.cq2 17072804.cq3 17072805.cq3 17072805.cq3 17072805.cq3 19072804.cq1 19072804.cq2 19072804.cq4 19072805.cq1 19072805.cq1 19072804.cq1 19072804.cq2 19072804.cq3 19072805.cq1 19072805.cq2 19072805.cq2 17072804 17072804 17072804 17072804 17072805 17072805 17072804 17072804 17072804 17072805 17072805 17072805

Figure 12 (Page 2 of 2)

NIAC BAAA	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CAGCTGGAC 800	Cogottoliac Cogottoliac Cogottoliac Cogottoliac Cogottoliac Cogottoliac		
ATTACCACATE	atttaccacacacacacacacacacacacacacacacac	SCCAGAAAAGA	សារសស្ត្រសារសស្ត្រសារសស្ត្រសារសស្ត្រសារសស្ត្រសារស្ត្រសារស្ត្រសារស្ត្រសារស្ត្រសារស្ត្រសារសស្ត្រសារសស្ត្រសារសស្ត សត្តសារស្ត្រសារសុខសារសារស្ត្រសារសុខសារសុខសារសុខសារសុខសារសុខសារសុខសារសុខសារសុខសារសុខសារសុខសារសុខសារសុខសារសុខសារ សត្តស្ត្រសារស្ត្រសារសុខសារសុខសារសុខសារសុខសារសុខសារសុខសារសុខសារសុខសារសុខសារសុខសារសុខសារសុខសារសុខសារសុខសារសុខសារ សត្តស្ត្រសារសុខសារសុខសារសុខសារសុខសារសុខសារសុខសារសុខសារសុខសារសុខសារសុខសារសុខសារសុខសារសុខសារសុខសារសុខសារសុខសារសុ		
7.11) CTTGAGGTGGGG	9 t gaag 4 gag 6 et ta a cata	CCTATAATGCTG	SCHRINGEGE SCHRINGEGE SCHRINGEGE SCHRINGEGE SCHRINGEGE SCHRINGEGE SCHRINGEGE SCHRINGEGE		
89 190 ATTACACTTAGAATTAGGGCAGCATAGAAGCAAAATTAGAGGAACTGAGACAGCATCTGTTGAGGTGGGGATTTAGCACATTATAGAATTAAAAAAAA	title generation of the control of t	AACATCAGAAAGAACGTCCATTCCTTTGGATGGGTTATGAACTCCTGAATAAAATGGACAGTACAATGGTGTGTATAATGGTGCCAGAAAAAAAA	Sacat cagaaagaacc <u>tuninnnnninjagat goot tatganii chimhinninaaat gaacagtacaginininin</u> get gecagla labbacagut lijau aacat cagaaagaacctc uninninin goot goot tatgaact cea <u>tinnininaaat goocagtacagctinina tate processaaaacagcinininaaa</u> aacat cagaaagaact conninninin goot tatgaact ceatinninaaat goocagtacagcinina got gecagaaaaagacagtiggac Sacat cagaaagaact conninnining goot tatgaact ceatinnin aaat goocag cagactanin gecagaaaaaagacagtiggac aacat cagaaagaact conninnining goot tatgaact ceatinnin aaat goocag acagachinin aaat goocagaaaaaaga goocagaaaaaaaaaaaaaaaaaa		
AAATAGAGGAACT 650	100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CCATCCTOAINA 750	CCMININING CCCANNING A CCCANNING A CCCANNING A CCCANNING A CCCAN CONNING A CCCAN CONNING A CCCAN CONNING A CCCAN CONNING A		
AGCATAGAACAA 640	egcatagaaga egcatagaaga egcatagaaga egcatagaaca egcatagaaga egcatagaaga egcatagaaga	CGGTTATGBACT	1999ttatgalik 1999ttatgaac 1999ttatgaac 1999ttatgaac 1999ttatgaac 1999ttatgaac	4 1 -	18.003413 9 91
TAGAAATAGGGC	Cagasataggg Cagasataggg Cagasataggg Cagasataggg Cagasataggg Cagasataggg	CCATICCITIGG&	MANAGAMANA GOO CANAGAMA COO CANAGAMA COO CANAGAMANA COO CANAGAMANA COO CANAGAMA COO CONTRACTOR CONTRACTOR COO CONTRACTOR CONTRACTOR CO	H NATUNÇATAK'AGAAGTTAGTGGGAAAA 810 620 630	tot Chining acet acage agt tagt godging to the control of the control of the control of tagt godging to the control of tagt godging ta
190 TAGGATCTGACT	reggatctgact teaggatctgact teaggatctgact teaggatctgact teaggatctgact teaggatctgact teaggatctgact	AGABAGAACCIC		TOAÇATAC'AGAA B10	Migacatacago Minacatacago algacatacago Minacatacago Minacatacago Minacatacago Minacatacago algacatacago
188 TTOTATOTT	11111111111111111111111111111111111111	AACATC	Ny e a a sy a e c	TOTTON C.	
111 Type	Y072804.cq1 Y072804.cq3 Y072804.cq3 Y072804.cq4 Y072805.cq2 Y072805.cq3	ii lel Type	y072804.cq1 y072804.cq2 y072804.cq3 y072804.cq4 y072805.cq1 y072805.cq1	iiid Type	1 V 072804 CQ 1 V 072804 CQ 1 V 072804 CQ 1 V 072805 CQ 1 V 072805 CQ 1 V 072805 CQ

5 Fluoresce1	esceln-AAAGAAAAAGACAGTACTAAATGGAGAAAT wildtyne	wildtvne
PROBE 3'	tttttt•tatcat	1 Amers
PROBE 3'	ctttttetatcata	15mers
PROBE 3'	tcttttt•tatcataa	17mers
PROBE 3'	ttctttttetatcataat	19mers
5'Fluorescei	PSCPIN-AAAGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	#14041

Fig. 13

PCT/US94/12305

44/57

Fig. 14

nucleofido 207

Fig. 15

Genetyping of HIV-1 Protessione IV pre and post-ddI troated Patients

Array Design for the R553X Point Mutation

Wild-Type Pattern

Position

Wild-Type Sequence: 5'-AGGTCAACGAGCAA-3'

Mutant Sequence: 5'-AGGTCAATGAGCAA-3'

Array Design for the R553X Point Mutation

Heterozygote Pattern

Position

Wild-Type Sequence: 5'-AGGTCAACGAGCAA-3'

Mutant Sequence: 5'-AGGTCAATGAGCAA-3'

Fig. 18

Fig. 19 Page 1 of 3

Fig. 19 Page 2 of 3

Fig. 19 Page 3 of 3

Fig. 20

Fig. 21 Page 1 of 3

Fig. 21 Page 2 of 3

25/57 .

Fig. 21 Page 3 of 3

Fig. 22

Fig. 23 Page 1 of 2

Fig. 23
Page 2 of 2

29/57.

Α

В

Fig. 24

30.07

A

Fig. 25 Page 1 of 2

. .

31/57

В

Fig. 25 Page 2 of 2

Fig. 26

WO 95/11995 PCT/US94/12305

33/57

 \vdash

0

000

C

0000

5 000000000

७ 0.000000000

~ < < < < < < < < < < <

000000000000

000000000000

00000000000

~ < < < < < < < <

000000

EFFFF

+ + + + +

ပ ပ

Fig. 27

S

P53 EXON 6 CODON 192 REGION: 12MER PROBES

5

◀

5

Fig. 28

34/57

(-

C

H

C

5

H

⋖

 \mathcal{O}

C C C

0000

0000

0 000000

0 00000000

0 000000000

4 1111111

44444444

00000000000

444444

 $\overline{}$

<u>_</u> _ _

< <

__

EXON 6 CODON 192 REGION: 10MER PROBES

1.53

35/57.

Figs. 29 and 31

Detection of 12-mer One-Base Sustitution P53 Targets

Fig. 29

"A Substitution 12-mer Target

"A" Substitution 12-mer 4:1 Mixture of WT and

Targets

Fig. 31

"C"Substitution Target 12-mer

Target 12-mer

WT ("G" Substitution)

"T" Substitution Target 12-mer

P53 EXON 6 CODON 192 REGION

Fig. 30

153 EXON 6 CODON 192 REGION

37/57

Fig. 32

Fig. 33

		w :	1451 1	: <u> </u>	<u> </u>	<u>.</u> -	1	
		<u>- ! ! </u>		!		IV I		
	<u> </u>		10	10		0:		
	∢: '		 - 		<u>; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; </u>	V	; <u> </u>	
	⋖ ' ! !	[Φ]	V	10	<u> </u>	101		
	01	- K	0		1 1 1		 	
	0	- K	0	1 0	<u> </u>)	
	9	0	<u> 0 </u>		<u> </u>	10	1 1	
	1	0	101 1	0	! ! !	0	1 1	
	1	0 :	10		1		<u>ا ا</u>	
	-	- O	101	1 101		101		
	-	(O):	101	-		10	11-	4
	0	- K	-		1 1 1	10		
>	-	0 :	101	0		101		
Key	4 1	0	101			<u> </u>	-	
	0:	∢:	O	1 10		<u> 0: </u>	_ ! _ ! !	
<u>ب</u>	4	()	101	1 101		<u> - </u>	! ! !	
n	4	0.	O			4	_	
Sequencing	0	-	O	1 0		O		
Ď	41	O .	∢			O	11	
	41	- :	1011		1 1 1		_	A
S	01	U _i	01	1 10		Oi	! !	
O	F- :	O :	10	-	111	10.	1	
Exon	O : i :	U :	. 10. !	1 10	<u> </u>	U	<u> </u>	
3	U: : :	10	· O!			10	_	
p53	O! ! !	- :	10	1 101	<u> </u>	<u> U </u>		
	O: '	10	(O)	ויין		<u>:</u> 0		
	-	10	;O. :	, ; I < :		11-	<u> </u>	
	O	! ≮	10	· : I <		!O		
	U. I	10	÷Ο	: io		10	·	
	U i	ı∢	10!	<u> </u>			. !	10
	U:	i∢	:U	i I —		10.		F O
	- · · ·	. 10	.∢.	<u> </u>	:	ίΩ.	<u>:</u>	
	U .	U	٠.ن	: '	!	<u>.</u> .	<u>: :</u>	101 10.
		: , (0	.∢.	, ₁≪			• ! :	101
	-	10	,٠,	١٥		: 1	<u> 0 </u>	101
		-	.U.	: ; iO	: ; ;	<u>;⊕:</u>	: ,	
	SIAIOI0	1 <u>-1</u> 5 < 0 0) <u>_:≶:∢</u>	<u>∪וטו∟¦≶</u>	141010	<u>-:3!</u> ∢	10:01-	- \$ O.0:F</td

THE HUMAN MITOCHONDRIAL GENOME

Fig. 35

mt4

HYBRIDIZATION

mt5

HYBRIDIZATION

Fig. 37

PREDICTED DIFFERENCE IMAGE

Fig. 38

Fig. 39

NORMALIZED INTENSITIES

45/57

-- mt2 int4 mt5 mt3 mt1 12 Probe position in row 10 of array 9 · 10 4 mismatch position sample (mt1 -> 6) from 3' of probe probe position probe length base change 0.00 1.60 0.40 0.50 1.40 1.20 1.00 0.80 0.60 Normalized intensity

Fig. 40 Sheet 1 of 2

NORMALIZED INTENSITIES

			s	Fig hee	g. ≥t:	40 2 c	of :
13	12	2	3		g -> a		
12	12	2	9		g -> a		
=	13	2, 4, 5	11, 3,	double	g -> a	t -> c	double
10	14	3, 4, 5 2, 4, 5	4, 11,	double	o <- 1	double	
6	13	3, 6	11, 5		t-> c		
8	12	2, 5, 6	3,4	11	c -> t	1 -> c	
7	12	2, 5	9, 10		c -> t		
9	13	2	13		c -> t		
probe position	probe length	sample (mt1 -> 6)	mismatch position	from 3' of probe	base change		

47/57

Fig. 41

SEQUENCE

49/57

Fig. 43

ن CX C \mathcal{O} \mathcal{O} D D 1 gtgtgt Ü C Q g Ö ದ വ \mathcal{O} Q g Ŋ ttta d \circ CCC U Ö U ب Ø ω D L α لا ರ ಹ L U g \mathcal{O} D Lg ىد D \mathcal{O} Q Q \circ \mathcal{O} g D لد ب g ಥ \Box \mathcal{O} ಹ g L Ca ದ φ g Q α IJ Ø H α L ಹ ω Ď \mathcal{O} g ı Q U Ø Q g Ø g $\boldsymbol{\omega}$ ggT Ö g \mathcal{O} L g ι Q O ത ب ರ \mathcal{O} Ü ىد ದ u بد Q Ľ \mathcal{O} D Ţ T ¥ \mathcal{O} ิ่ U D Ü Ö Ω α Ø α Ø α Ċ ದ α g g \mathcal{O} Ø g atttcca d Ω g g ب S ct T ctccgtga Ö ര \mathcal{O} \mathcal{O} L ಹ catcT ىد ಥ \mathcal{O} α α α U d ಥ cattacagicaaatcccttctcgtc cccata ىد gacatc ctctcc tcctgc g cga ata Ca acagtacatagtac ctact α tg aC Ga ಹ α d ب gg Ü ىد ď ď tgaactgtatccgacatctggttc g بد α Q ರ ga ι ಹ α g α ಥ Ø ಥ b gggtcccttgaccacca Ū Ø ىد g Ω ¥ α cgg cgatag gg geneaagagigetactetetegetee gtcttt ದ \mathcal{O} Xetececegettetggecacagaatt ಹ Ø ď La Cal La cacacgttcccctta ctca ca tca ta Ø cggcagtatct gg ಹ tategeacctacgtteaatat ttaacca agccActttccacacagaca ccaccctt ticgtctggggggtatgca taattaattaatgettgta cta taci \mathcal{O} tagca Ď gcaccctatgt ata Ü S ນ ນ D gtctatca La ಹ D 5 ಡ ccctca σ cgtac Xaaca ctaaa J ct.aa

50/57-

Fig. 44

HYBRIDIZATION

		A C G H
344	T->C	
263	A->G	
152	T->C	
16519	T->C	
Position:	Change:	Result:

Fig. 45

Fig. 46

Fig. 47

Nucleoside Combinatorials

Fig. 48

Solid Phase DNA Synthesis

55 57

Fig. 49

Nucleoside Buildingblocks

MeNPOC-CI

56/5/

Fig. 50

HNO₃, 4"C

MeNPOC-CI

