Effects of severe weather events in US on health and economy

Synopsis

In this analysis I explore the effects of severe weather events in the US on health and economy.

Data Processing

First I load the StormData.

```
#Download and unzip the data file
#https://d396qusza40orc.cloudfront.net/repdata%2Fdata%2FStormData.csv.bz2
address <- "https://d396qusza40orc.cloudfront.net/repdata%2Fdata%2FStormData.csv.bz2"
address <- sub("^https", "http", address) #https does not work
zipname <- "StormData.csv.bz2"
download.file(address,zipname)

#No need to unzip, R can is smart enough to read a zipped csv
stormdata <- read.csv(zipname)

#housekeeping - remove the zip as it is no longer needed
file.remove(zipname)</pre>
```

[1] TRUE

```
#housekeeping
rm(address, zipname)
```

Some more data preparation. I add a column called HEALTH that contains the number of people affected. I include both the fatalities and the injuries, i.e. the fataly and non-fataly injured. Secondly I add a column for the damages in dollars. For this I need to combine the columns with numbers and columns with alphabetical indictation, for the severity, "K" for thousands of dollars, "M" for millions, "B" for billions. Thirdly, I add a column for year. The first years a scarcely filled with data and inculde only data for a small number of event types. From the nineties onwards, there is a more complete set.

```
#Add a health column

#This includes all those that are affected, i.e. killed or injured

stormdata$HEALTH <- stormdata$FATALITIES + stormdata$INJURIES

#Add a column that adds up the prop and crop damage

#Start with all zeros and then add propdmg and cropdmg multiplied by

#the correct number depending on "K", "M" or "B"

K <- 1000

M <- 1000000

B <- 1000000000

#Set damage to all zeros

stormdata$DAMAGE <- 0
```

```
#Add PROPDMG thousands, millions and billions
stormdata$DAMAGE[toupper(stormdata$PROPDMGEXP)=="K"] <-</pre>
  stormdata$DAMAGE[toupper(stormdata$PROPDMGEXP)=="K"] +
  stormdata$PROPDMG[toupper(stormdata$PROPDMGEXP)=="K"] * K
stormdata$DAMAGE[toupper(stormdata$PROPDMGEXP)=="M"] <-</pre>
  stormdata$DAMAGE[toupper(stormdata$PROPDMGEXP)=="M"] +
  stormdata$PROPDMG[toupper(stormdata$PROPDMGEXP)=="M"] * M
stormdata$DAMAGE[toupper(stormdata$PROPDMGEXP)=="B"] <-</pre>
  stormdata$DAMAGE[toupper(stormdata$PROPDMGEXP)=="B"] +
  stormdata$PROPDMG[toupper(stormdata$PROPDMGEXP)=="B"] * B
#Add CROPDMG thousands, millions and billions
stormdata$DAMAGE[toupper(stormdata$CROPDMGEXP)=="K"] <-</pre>
  stormdata$DAMAGE[toupper(stormdata$CROPDMGEXP)=="K"] +
  stormdata$CROPDMG[toupper(stormdata$CROPDMGEXP)=="K"] * K
stormdata$DAMAGE[toupper(stormdata$CROPDMGEXP)=="M"] <-</pre>
  stormdata$DAMAGE[toupper(stormdata$CROPDMGEXP)=="M"] +
  stormdata$CROPDMG[toupper(stormdata$CROPDMGEXP)=="M"] * M
stormdata$DAMAGE[toupper(stormdata$CROPDMGEXP)=="B"] <-</pre>
  stormdata$DAMAGE[toupper(stormdata$CROPDMGEXP)=="B"] +
  stormdata$CROPDMG[toupper(stormdata$CROPDMGEXP)=="B"] * B
#house keeping
rm(K, M, B)
#Use library lubridate
#Only the data for more recent years is relevant
library(lubridate)
#Add a YEAR colum to the data
stormdata$YEAR <- year(mdy_hms(stormdata$BGN_DATE))</pre>
#Take into account only the years for which we have more complete data
#I set the year to be larger or equal to 1994
complete_year <- 1994</pre>
stormdata <- stormdata[which(stormdata$YEAR >= complete_year),]
#house keeping
rm(complete year)
```

Explore the health data

```
#aggregate over health effects i.e. injuries
#fatalities do no have an effect on population health
#use !is.na or na.rm to exclude NA's
health_count <- aggregate(HEALTH ~ EVTYPE, data=stormdata, function(x) length(!is.na(x)))
health_sum <- aggregate(HEALTH ~ EVTYPE, data=stormdata, function(x) sum(x, na.rm = TRUE))
health_mean <- aggregate(HEALTH ~ EVTYPE, data=stormdata, function(x) mean(x, na.rm = TRUE))

names(health_count)[2] <- "number_events"
names(health_sum)[2] <- "number_affected"
names(health_mean)[2] <- "mean_number_affected"</pre>
```

##		EVTYPE	number_events	${\tt number_affected}$	mean_number_affected
##	781	TORNADO	25274	24164	0.95608135
##	115	EXCESSIVE HEAT	1678	8428	5.02264601
##	154	FLOOD	24906	7228	0.29021119
##	425	LIGHTNING	15287	5910	0.38660300
##	804	TSTM WIND	128970	3872	0.03002249
##	254	HEAT	759	3025	3.98550725
##	139	FLASH FLOOD	53396	2705	0.05065923
##	398	ICE STORM	1972	2057	1.04310345
##	712	THUNDERSTORM WIND	82482	1609	0.01950729
##	918	WINTER STORM	11403	1493	0.13093046

Explore the economic damage data

```
#aggregate over economic damage
#fatalities do no have an effect on population health
#use !is.na or na.rm to exclude NA's
damage_count <- aggregate(DAMAGE ~ EVTYPE, data=stormdata, function(x) length( !is.na(x)))</pre>
damage_sum <- aggregate(DAMAGE ~ EVTYPE, data=stormdata, function(x) sum(x, na.rm = TRUE))</pre>
damage_mean <- aggregate(DAMAGE ~ EVTYPE, data=stormdata, function(x) mean(x, na.rm = TRUE))</pre>
names(damage_count)[2] <- "number"</pre>
names(damage_sum)[2] <- "damage"</pre>
names(damage_mean)[2] <- "mean_damage"</pre>
#combine in one dataframe
damage <- data.frame(damage_count,</pre>
                      damage_sum[2],
                      damage_mean[2]
#house keeping
rm(damage_count,damage_sum, damage_mean)
#calculate top10
damage_top10 <- damage[order(damage$damage, decreasing = TRUE),][1:10,]</pre>
```

damage_top10

##		EVTYPE	${\tt number}$	damage	mean_damage
##	154	FLOOD	24906	149686551250	6010059.88
##	381	HURRICANE/TYPHOON	88	71913712800	817201281.82
##	620	STORM SURGE	253	43193541000	170725458.50
##	781	TORNADO	25274	25982192520	1028020.60
##	224	HAIL	222616	18317742770	82284.04
##	139	FLASH FLOOD	53396	17119054960	320605.57
##	83	DROUGHT	2478	14968172000	6040424.54
##	373	HURRICANE	171	14604229010	85404848.01
##	398	ICE STORM	1972	8854491310	4490107.16
##	794	TROPICAL STORM	686	8381226550	12217531.41

Results