United States Airlines Analysis

Problem Statement:

According to air travel consumer reports, a large proportion of consumer complaints are about frequent flight delays. Out of all the complaints received from consumers about airline services, 32% were related to cancellations, delays, or other deviations from the airlines' schedules. There are unavoidable delays that can be caused by air traffic, no passengers at the airport, weather conditions, mechanical issues, passengers coming from delayed connecting flights, security clearance, and aircraft preparation.

Objectives:

The objective of this project is to identify the factors that contribute to avoidable flight delays. You are also required to build a model to predict if the flight will be delayed.

Dataset Description:

Airlines.xlsx airports.xlsx runways.xlsx

ANALYSIS:

Applied data science with Python:

1. Import and aggregate data:

```
1]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
2]: import warnings
    warnings.filterwarnings('ignore')
      1. Import and aggregate data:
3]: df1 = pd.read excel('Airlines.xlsx')
1]: df1.head()
1]:
       id Airline Flight AirportFrom AirportTo DayOfWeek Time Length Delay
     0 1
             CO
                  269
                             SFO
                                      IAH
                                                       15
                                                             205
             US 1558
                             PHX
                                      CLT
                                                       15
                                                             222
             AA 2400
                             LAX
                                     DFW
                                                       20
                                                             165
             AA 2466
                             SFO
                                     DFW
                                                  3
                                                       20
                                                             195
                                                                     1
                             ANC
                                     SEA
                                                       30
                                                             202
                                                                     0
             AS 108
```

: df1.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 518556 entries, 0 to 518555 Data columns (total 9 columns): Non-Null Count # Column id 518556 non-null int64 Airline 518556 non-null object Flight 518556 non-null int64 0 AirportFrom 518556 non-null object AirportTo 518556 non-null object DayOfWeek 518556 non-null int64 Time 518556 non-null int64 518556 non-null int64 Time 518556 non-null int64 518556 non-null int64 Length Delay dtypes: int64(6), object(3) memory usage: 35.6+ MB : df1.describe()

:		id	Flight	DayOfWeek	Time	Length	Delay
	count	518556,000000	518556,000000	518556.000000	518556,000000	518556,000000	518556.000000
	mean	269563.584330	2499.380728	3.927088	801.506969	132.219201	0.451232
	std	155686.677958	2075.181658	1.914558	277.634360	70.926564	0.497616
	min	1.000000	1.000000	1.000000	10.000000	0.000000	0.000000
	25%	134696.750000	756,000000	2.000000	565,000000	80.000000	0.000000
	50%	269465.500000	1915.000000	4.000000	795.000000	115.000000	0.000000
	75%	404318.250000	3839.000000	5.000000	1030.000000	163.000000	1.000000
	max	539383.000000	7814.000000	7.000000	1439.000000	655.000000	1.000000

	2 - pa.ii	ead_ex	cel('airport	s.xlsx')								
df:	2.head()											
	id	ident	type	name	latitude_deg	longitude_deg	elevation_ft	continent	iso_country	iso_region	municipality	scheduled_service
0	6523	00A	heliport	Total Rf Heliport	40.070801	-74,933601	11.0	NaN	US	US-PA	Bensalem	no
1	323361	00AA	small_airport	Aero B Ranch Airport	38.704022	-101.473911	3435.0	NaN	US	US-KS	Leoti	no
2	6524	00AK	small_airport	Lowell Field	59.947733	-151.692524	450.0	NaN	US	US-AK	Anchor Point	no
3	6525	00AL	small_airport	Epps Airpark	34.864799	-86.770302	820.0	NaN	US	US-AL	Harvest	no
4	6526	00AR	closed	Newport Hospital & Clinic Heliport	35.608700	-91.254898	237.0	NaN	US	US-AR	Newport	no

```
: df2.info()
      <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 73805 entries, 0 to 73804
     Data columns (total 18 columns):
                                           Non-Null Count Dtype
               Column
                 -----
                                                             -----
                                                          73805 non-null int64
       0
                id
                                                        73805 non-null object
73805 non-null object
       1
                 ident
       2 type

      2
      type
      73895 non-null object

      3
      name
      73895 non-null object

      4
      latitude_deg
      73895 non-null float64

      5
      longitude_deg
      73895 non-null float64

      6
      elevation_ft
      59683 non-null float64

      7
      continent
      38986 non-null object

      8
      iso_country
      73546 non-null object

      9
      iso_region
      73895 non-null object

      10
      municipality
      68739 non-null object

      11
      scheduled_service
      73895 non-null object

      12
      gps code
      42996 non-null object

      dtypes: float64(3), int64(1), object(14)
     memory usage: 10.1+ MB
```

df2.describe()

	id	latitude_deg	longitude_deg	elevation_ft
count	73805.000000	73805.000000	73805.000000	59683.000000
mean	150714.755572	25.786389	-28.880235	1299.934370
std	155134.635662	26.232686	86.121515	1672.759483
min	2.000000	-90.000000	-179.876999	-1266.000000
25%	18593.000000	12.536100	-94.170097	205.000000
50%	39585.000000	35.160179	-69.893898	730.000000
75%	332266.000000	42.720901	23.934668	1608.000000
max	504544.000000	82.750000	179.975700	17372.000000

df3 = pd.read_excel('runways.xlsx')

df3.head()

	id	airport_ref	airport_ident	length_ft	width_ft	surface	lighted	closed	le_ident	le_latitude_deg	le_longitude_deg	le_elevation_ft le_l	_headin(
0 269	9408	6523	00A	80.0	80.0	ASPH- G	1	0	H1	NaN	NaN	NaN	
1 255	5155	6524	00AK	2500.0	70.0	GRVL	0	0	N	NaN	NaN	NaN	
2 254	4165	6525	00AL	2300.0	200.0	TURF	0	0	1	NaN	NaN	NaN	
3 270	0932	6526	00AR	40.0	40.0	GRASS	0	0	H1	NaN	NaN	NaN	
4 322	2128	322127	00AS	1450.0	60.0	Turf	0	0	1	NaN	NaN	NaN	

```
df3.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 43977 entries, 0 to 43976
Data columns (total 20 columns):
#
    Column
                                   Non-Null Count Dtype
---
                                   -----
0
     id
                                   43977 non-null
                                                    int64
                                   43977 non-null int64
     airport_ref
1
     airport_ident
                                   43977 non-null object
 2
    length_ft
                                   43753 non-null float64
4
    width_ft
                                   41088 non-null float64
                                   43520 non-null object
43977 non-null int64
 5
     surface
     lighted
 6
                                   43977 non-null int64
 7
    closed
                                  43793 non-null object
15016 non-null float64
     le ident
     le_latitude_deg
 9
10 le_longitude_deg
11 le_elevation_ft
                                   15000 non-null float64
12781 non-null float64
                                   14624 non-null float64
 12
     le_heading_degT
 13 le_displaced_threshold_ft 2883 non-null
                                                    float64
 14 he_ident
                                   37332 non-null object
                                  14971 non-null float64
14973 non-null float64
12620 non-null float64
 15 he_latitude_deg
     he_longitude_deg
 16
 17
     he_elevation_ft
                                   16428 non-null float64
 18 he_heading_degT
 19 he_displaced_threshold_ft 3176 non-null
                                                    float64
dtypes: float64(12), int64(4), object(4)
memory usage: 6.7+ MB
```

df3.de	scribe()								
	id	airport_ref	length_ft	width_ft	lighted	closed	le_latitude_deg	le_longitude_deg	le_elevation_ft
count	43977.000000	43977.000000	43753.000000	41088.000000	43977.000000	43977.000000	15016.000000	15000.000000	12781.000000
mean	262432.747823	47566.936853	3248.773570	109.191735	0.256771	0.016645	31.130250	-39.997233	1057.835694
std	30153.409893	91960.607079	2699.390401	227.428278	0.436857	0.127939	23.088749	79.760396	1454.298792
min	232758.000000	2.000000	0.000000	0.000000	0.000000	0.000000	-75.597198	-178.302994	-1246.000000
25%	243772.000000	9058.000000	1640.000000	59.000000	0.000000	0.000000	28.812327	-96.477581	120.000000
50%	254774.000000	19486.000000	2700.000000	75.000000	0.000000	0.000000	37.559450	-80.225750	578.000000
75%	265788.000000	29702.000000	4200.000000	100.000000	1.000000	0.000000	44.276277	15.339312	1248.000000
max	504524.000000	430861.000000	30000.000000	9000.000000	1.000000	1.000000	82.512802	179.337006	13202.000000
4	_	_)

a. Collect information related to flights, airports (e.g., type of airport and elevation), and runways (e.g., length_ft, width_ft, surface, and number of runways). Gather all fields you believe might cause avoidable delays in one dataset.

a. Collect information related to flights, airports (e.g., type of airport and elevation), and runways (e.g., length_ft, width_ft, surface, and number of

```
runways). Gather all fields you believe might cause avoidable delays in one dataset.
: df3.head()
      id airport_ref airport_ident length_ft width_ft surface lighted closed
          6523 00A 80.0 80.0 ASPH-G
  0 269408
  1 255155
                 00AK 2500.0 70.0 GRVL
  2 254165 6525
                    00AL 2300.0 200.0 TURF
  3 270932
                     00AR
                            40.0
                                  40.0 GRASS
  4 322128 322127
                     00AS 1450.0 60.0 Turf
: df2.head()
      id ident
                                     name latitude_deg longitude_deg elevation_ft iata_code
                  type
                                           40.070801
     6523 00A
                heliport
                               Total Rf Heliport
                                                     -74.933601
                                                                 11.0
  1 323361 00AA small_airport
                            Aero B Ranch Airport
                                          38.704022
                                                    -101.473911
                                                               3435.0
                                                                        NaN
                                Lowell Field
                                          59.947733
     6524 00AK small_airport
                                                    -151.692524
                                                                450.0
                                                                        NaN
                                 Epps Airpark
                                           34.864799
                                                     -86.770302
                                                                820.0
     6525 00AL small airport
                                                                        NaN
     6526 00AR closed Newport Hospital & Clinic Heliport
                                           35.608700
                                                    -91.254898
                                                                237.0
                                                                        NaN
```

df	= pd.m	erge(df2, df3,]	left_on	= 'ident',	right_on = '	airport_id	lent')						
df	.head()													
	id_x	ident	type	name	latitude_deg	longitude_deg	elevation_ft	iata_code	id_y	airport_ref	airport_ident	length_ft	width_ft	surface
0	6523	00A	heliport	Total Rf Heliport	40.070801	-74.933601	11.0	NaN	269408	6523	00A	80.0	80.0	ASPH- G
1	6524	00.AK	small_airport	Lowell Field	59.947733	-151.692524	450.0	NaN	255155	6524	00.AK	2500.0	70.0	GRVL
2	6525	00AL	small_airport	Epps Airpark	34.864799	-86.770302	820.0	NaN	254165	6525	00AL	2300.0	200.0	TURF
3	6526	00AR	closed	Newport Hospital & Clinic Heliport	35.608700	-91.254898	237.0	NaN	270932	6526	00AR	40.0	40.0	GRASS
4	322127	00AS	small_airport	Fulton Airport	34.942803	-97.818019	1100.0	NaN	322128	322127	00AS	1450.0	60.0	Turf
4														>

```
: df = df.drop(['id_x','id_y'],axis = 1)
: data = pd.merge(df1, df, how = 'inner', left_on = 'AirportFrom', right_on = 'iata_code')
: data.head()
     id Airline Flight AirportFrom AirportTo DayOfWeek Time Length Delay ident ... longitude_deg elevation_ft iata_code airport_ref airport_idenf
               269
                                    IAH
                                                                                  -122,375
                                                                                                                            KSFC
   0 1
          CO
                           SFO
                                                3 15
                                                          205
                                                                 1 KSFO ...
                                                                                               13.0
                                                                                                        SFO
                                                                                                                 3878
                269
                                                                 1 KSFO ...
                                                                                  -122,375
                                                                                                        SFO
                                                                                                                            KSFC
   1 1
          CO
                           SFO
                                    IAH
                                                3 15
                                                          205
                                                                                               13.0
                                                                                                                 3878
   2 1
          CO 269
                           SFO
                                    IAH
                                                                  1 KSFO ...
                                                                                  -122,375
                                                                                               13.0
                                                                                                        SFO
                                                                                                                 3878
                                                                                                                            KSFC
                                                3 15
                                                          205
                                                                 1 KSFO ...
                                                                                                        SFO
   3 1
                           SFO
                                    IAH
                                                                                  -122,375
                                                                                               13.0
                                                                                                                 3878
                                                                                                                            KSFC
          CO
                269
                                                3 15
                                                          205
           AA 2466
                           SFO
                                   DFW
                                                3 20
                                                          195
                                                                 1 KSFO ...
                                                                                  -122,375
                                                                                               13.0
                                                                                                        SFO
                                                                                                                 3878
                                                                                                                            KSFC
  5 rows × 23 columns
```

ta														
	id	Airline	Flight	AirportFrom	AirportTo	DayOfWeek	Time	Length	Delay	ident	 longitude_deg	elevation_ft	iata_code	airport_re
0	1	CO	269	SFO	IAH	3	15	205	1	KSFO	 -122.375000	13.0	SFO	3878
4	4	AA	2466	SFO	DFW	3	20	195	1	KSFO	 -122.375000	13.0	SFO	3878
8	9	DL	2606	SFO	MSP	3	35	216	1	KSFO	 -122.375000	13.0	SFO	3878
12	129	DL	1580	SFO	DTW	3	345	270	0	KSFO	 -122,375000	13.0	SFO	3878
16	150	UA	756	SFO	DEN	3	348	158	0	KSFO	 -122,375000	13.0	SFO	387
160266	451344	CO	2	GUM	HNL	1	400	430	1	PGUM	 144.796005	298.0	GUM	543
160268	469866	CO	2	GUM	HNL	2	400	430	1	PGUM	 144.796005	298.0	GUM	543
160270	488365	CO	2	GUM	HNL	3	400	430	0	PGUM	 144.796005	298.0	GUM	543
160272	506855	CO	2	GUM	HNL	4	400	430	1	PGUM	 144.796005	298.0	GUM	543
160274	525138	CO	2	GUM	HNL	5	400	430	1	PGUM	 144.796005	298.0	GUM	543

b. When it comes to on-time arrivals, different airlines perform differently based on the amount of experience they have. The major airlines in this field include US Airways Express (founded in 1967) Continental Airlines (founded in 1934), and Express Jet (founded in 19860. Pull such information specific to various airlines from the Wikipedia page link given below.

https://en.wikipedia.org/wiki/List_of_airlines_of_the_United States.

							le[0]	[34]: tab]
Notes	Founded	Primary hubs, Secondary hubs	Callsign	ICAO	IATA	Image	Airline	[34]:
Founded as McGee Airways and commenced operati	1932	Seattle/TacomaAnchoragePortland (OR)San Franci	ALASKA	² ASA	o hide	le click t	oll output; doub	k to unscro
Founded as WestJet Express and commenced opera	1997	Las VegasCincinnatiFort Walton BeachIndianapol	ALLEGIANT	AAY	64	NaN	Allegiant Air	1
Founded as American Airways and commenced oper	1926	Dallas/Fort WorthCharlotteChicago-O'HareLos An	AMERICAN	AAL	AA	NaN	American Airlines	2
First did business as Casino Express Airlines	1987	BurbankNew HavenOrlando	AVELO	VXP	ΧP	NaN	Avelo Airlines	3
NaN	2018	CharlestonHartfordNew OrleansNorfolkProvoTampa	MOXY	MXY	ΜX	NaN	Breeze Airways	4
ounded as Huff Daland Dusters and commenced o	1924	AtlantaBostonDetroitLos AngelesMinneapolis/St	DELTA	DAL	DL	NaN	Delta Air Lines	5
NaN	2010	MiamiNew York-JFK	EASTERN	EAL	2D	NaN	Eastern Airlines	6

							le[1]	tabl	Cn [35]:
Notes	Founded	Primary Hubs, Secondary Hubs	Callsign	ICAO	IATA	Image	Airline		Out[35]:
Operates as United Express	1965	AppletonChicago- O'HareColumbiaMilwaukeeWashing	WISCONSIN	AWI	ZW	NaN	Air Wisconsin	0	
NaN	1988	HyannisBillingsBostonNantucketSt. LouisSan Jua	CAIR	KAP	9K	NaN	Cape Air	1	
Operates as United Express.	1989	DenverNewarkWashington-Dulles	COMMUTAIR	UCA	C5	NaN	CommutAir	2	
NaN	1982	Smyrna (TN)	VOLUNTEER	VTE	LF	NaN	Contour Airlines	3	
Commenced operations in 2014.	2006	Melbourne/OrlandoNewarkPortland (Maine)	MAINER	MNU	70	NaN	Elite Airways	4	
Founded as Express Airlines I. Operates as Del	1985	Minneapolis/St. PaulAtlanta CincinnatiDetroitN	ENDEAVOR	EDV	9E	NaN	Endeavor Air	5	
Founded as American Eagle Airlines. Operates a	1984	Dallas/Fort WorthChicago-O'Hare Miami	ENVOY	ENY	ΜQ	NaN	Envoy Air	6	
Commenced operations in 2005.	2004	Chicago, O'Haro Donyor	LINDBERGH	AIS	67	N = N	Go lot Sirlinac	7	

In [36]: table[2] Out[36]: Airline Image IATA ICAO Callsign Primary Hubs, Secondary Hubs Founded Notes Has the EAS contract to serve Grant County Air... 0 Advanced Air NaN AN WSN WINGSPAN Hawthorne 2005 AIR SUNSHINE Air Sunshine YI RSI San Juan NaN 1 NaN 1982 2 Bering Air NaN 8E BRG BERING AIR NomeKotzebueUnalakleet 1979 NaN Boutique Air NaN 48 BTQ BOUTIQUE Dallas/Fort WorthDenverPhoenix-Sky Harbor Founded as Tatonduk Flying NaN 5V VTS EVERTS 1978 Everts Air FairbanksAnchorage NaN NaN NaN NaN 5 Gem Air NaN Salmon 2014 CANYON VIEW Grand Canyon Airlines NaN Boulder CityGrand CanyonPage 1927 Founded as Scenic Airways. Grand Canyon Scenic Airlines SCENIC NaN YR SCE Grand Canyon 1967 Founded as Scenic Airlines.

[37]:	table[3]							
t[37]:		Airline	Image	IATA	ICAO	Callsign	Primary Hubs, Secondary Hubs	Founded	Notes
	0	Air Charter Bahamas	NaN	NaN	NaN	NaN	NaN	NaN	NaN
	1	Air Flight Charters	NaN	NaN	FLL	NaN	Fort Lauderdale	1987.0	NaN
	2	Airshare	NaN	NaN	XSR	AIRSHARE	NaN	2000.0	Founded as Executive Flight Services
	3	Berry Aviation	NaN	NaN	BYA	BERRY	San Marcos	1983.0	NaN
	4	Bighorn Airways	NaN	NaN	BHR	BIGHORNAIR	Sheridan	1947.0	NaN
	5	Charter Air Transport	NaN	VC	SRY	STINGRAY	Cleveland-Lakefront	1997.0	NaN
	6	Choice Airways	NaN	NaN	CSX	CHOICE AIR	Fort Lauderdale-Executive	2009.0	NaN
	7	ExcelAire	NaN	NaN	XLS	EXCELAIRE	Long Island/Islip	1993.0	NaN
	8	Global Crossing Airlines	NaN	G6	GXA	GEMINI	Atlantic CityLas VegasMiami	2019.0	NaN
	9	Great Lakes Air	NaN	NaN	NaN	NaN	St. Ignace	NaN	NaN

n [38]:	tabl	le[4]							
out[38]:		Airline	Image	IATA	ICAO	Callsign	Primary Hubs, Secondary Hubs	Founded	Notes
	0	21 Air	NaN	21	CSB	CARGO SOUTH	Miami	2014.0	NaN
	1	ABX Air	NaN	GВ	ABX	ABEX	Wilmington (OH)CincinnatiMiami	1980.0	Founded as Airborne Express. Operates some Ama
	2	Air Cargo Carriers	NaN	20	SNC	NIGHT CARGO	MilwaukeeCincinnati	1986.0	Commenced operations in 1980.
	3	AirNet Express	NaN	NaN	usc	STAR CHECK	Columbus-Rickenbacker	1974.0	Founded as Financial Air Express.
	4	Air Transport International	NaN	8C	ATN	AIR TRANSPORT	Wilmington (OH)Cincinnati	1978.0	Founded as US Airways and commenced operations
	5	Alaska Central Express	NaN	KO	AER	ACE AIR	Anchorage	1996.0	NaN
	6	Aloha Air Cargo	NaN	KH	ААН	ALOHA	Honolulu	1946.0	Founded as Trans-Pacific Airlines and separate

9]:	tab	le[5]							
9]:		Airline	Image	IATA	ICAO	Callsign	Primary Hubs, Secondary Hubs	Founded	Notes
	0	AirMed International	NaN	NaN	NaN	NaN	Birmingham-Shuttlesworth	1987.0	Founded as MEDjet International.
	1	Air Methods	NaN	NaN	NaN	NaN	Denver-Centennial	1980.0	NaN
	2	Critical Air Medicine	NaN	NaN	NaN	NaN	NaN	1984.0	NaN
	3	Lifestar	NaN	NaN	NaN	NaN	NaN	NaN	NaN
	4	Life Lion	NaN	NaN	NaN	NaN	NaN	NaN	NaN

Lets first merge all wikipedia table. wiki_table = [table[0],table[1],table[2],table[3],table[4],table[5],table[6]] wiki_tables = pd.concat(wiki_table, ignore_index=True) wiki_tables Primary Hubs, Airline Image IATA ICAO Callsign Primary hubs, Secondary hubs Founded Notes Secondary Hubs Founded as McGee Seattle/Tacoma/AnchoragePortland ALASKA 1932.0 Alaska Airlines NaN ASA Airways and commenced (OR)San Franci... Founded as WestJet Las Vegas Cincinnati Fort Walton Allegiant Air NaN G4 AAY ALLEGIANT 1997.0 Express and commenced NaN Founded as American Dallas/Fort Worth Charlotte Chicago-AAL AMERICAN NaN NaN Airways and commenced O'HareLos An... First did business as Avelo Airlines NaN VXP A/EL0 Burbank New Haven Orlando 1987.0 NaN Casino Express Airlines ... Charleston Hartford New Breeze Airways NaN NaN NaN Orleans Norfolk Provo Tampa 136 Lifestar NaN NaN NaN NaN NaN NaN NaN NaN 137 Life Lion NaN NaN NaN NaN NaN NaN NaN NaN 138 2002.0 Comco Janet NaN NaN WWW JANET 1972.0 NaN 139 NaN Las Vegas Justice Prisoner and Alien Oklahoma City Transportation System 141 rows × 9 columns

wiki_df = wiki_tables[['IATA', "Founded"]]
wiki_df.head()

IATA Founded
0 AS 1932.0
1 G4 1997.0
2 AA 1926.0
3 XP 1987.0
4 MX 2018.0

c. You should then get all the information gathered so far in one place

Now we gather all the information that we got from wiki pedia link and the data that we have. data_frame = data.merge(wiki_df, left_on ='Airline', right_on = "IATA") data frame.head() id Airline Flight AirportFrom AirportTo DayOfWeek Time Length Delay ident ... iata_code airport_ref airport_ident length_ft width_ft SFO DFW 3 20 1 KSFO ... SFO 3878 AA 2466 KSFO 7500.0 200.0 3 360 D KSFO ... 3878 KSFO 7500.0 200.0 3878 MIA 552 SFO 3 360 315 1 KSFO ... SFO KSFO 7500.0 2 234 AA 200.0 SFO ORD 3 385 D KSFO ... SFO 3878 905 7500.0 200.0 325 1 KSFO ... SFO 4 1739 AA 24 SFO JFK 3 425 3878 KSEO 7500.0 200.0 5 rows x 25 columns

d. The total passenger traffic may also contribute to flight delays. The term hub refers to busy commercial airports. Large hubs are airports that account for at least 1 percent of the total passenger enplanements in the United States. Airports that account for 0.25 percent to 1 percent of total passenger enplanements are considered medium hubs. Pull passenger traffic data from the Wikipedia page given below using web scraping and collate it in a table.

https://en.wikipedia.org/wiki/List_of_the_busiest_airports_in_t he_United_States

d. The total passenger traffic may also contribute to flight delays. The term hub refers to busy commercial airports. Large hubs are airports that account for at least 1 percent of the total passenger enplanements in the United States. Airports that account for 0.25 percent to 1 percent of total passenger enplanements are considered medium hubs. Pull passenger traffic data from the Wikipedia page given below using web scraping and collate it in a table. https://en.wikipedia.org/wiki/List_of_the_busiest_airports_in_the_United_States_

Ir	n [51]:	table	es[0]													
OL	ut[51]:	F	Rank(2021)	Airports (large hubs)	IATACode	Major cities served	State	2021[3]	2020[4]	2019[5]	2018[6]	2017[7]	2016[8]	2015[9]	2014[10]	20
		0	1	Hartsfield–Jackson Atlanta International Airport	ATL	Atlanta	GA	36676010	20559866	53505795	51865797	50251964	50501858	49340732	46604273	453
		1	2	Dallas/Fort Worth International Airport	DFW	Dallas & Ft. Worth	TX	30005266	18593421	35778573	32821799	31816933	31283579	31589839	30804567	290
		2	3	Denver International Airport	DEN	Denver	co	28645527	16243216	33592945	31362941	29809097	28267394	26280043	26000591	254
		3	4	O'Hare International Airport	ORD	Chicago	IL	26350976	14606034	40871223	39873927	38593028	37589899	36305668	33843426	323
		4	5	Los Angeles International Airport	LAX	Los Angeles	CA	23663410	14055777	42939104	42624050	41232432	39636042	36351272	34314197	324
1 6		5	6	Charlotte Douglas International Aimort	СЦТ	Charlotte	NC	20900875	12952869	24199688	22281949	22011251	21511880	21913166	21537725	213 ^Ψ

tables[0]['Hubs']	= str('Large Hub')
-------------------	--------------------

tal	bles[0].he	ad()													
	Rank(2021)	Airports (large hubs)	IATACode	Major cities served	State	2021[3]	2020[4]	2019[5]	2018[6]	2017[7]	2016[8]	2015[9]	2014[10]	2013[11]	2012[12]
0	1	Hartsfield– Jackson Atlanta International Airport	ATL	Atlanta	GA	36676010	20559866	53505795	51865797	50251964	50501858	49340732	46604273	45308407	45798928
1	2	Dallas/Fort Worth International Airport	DFW	Dallas & Ft. Worth	TX	30005266	18593421	35778573	32821799	31816933	31283579	31589839	30804567	29038128	28022904
2	3	Denver International Airport	DEN	Denver	СО	28645527	16243216	33592945	31362941	29809097	28267394	26280043	26000591	25496885	25799841
3	4	O'Hare International Airport	ORD	Chicago	IL	26350976	14606034	40871223	39873927	38593028	37589899	36305668	33843426	32317835	32171795
4	5	Los Angeles International Airport	LAX	Los Angeles	CA	23663410	14055777	42939104	42624050	41232432	39636042	36351272	34314197	32425892	31326268

ab	les[1]														
	Rank(2021)	Airports (medium hubs)	IATACode	City served	State	2021[3]	2020[4]	2019[5]	2018[6]	2017[7]	2016[8]	2015[9]	2014[10]	2013[11]	20.
0	31	Dallas Love Field	DAL	Dallas	TX	6487563	3669930	8408457	8134848	7876769	7554596	7040921	4522341	4023779	39
1	32	Daniel K. Inouye International Airport	HNL	Honolulu	ні	5830928	3126391	9988678	9578505	9743989	9656340	9656340	9463000	9466995	92
2	33	Portland International Airport	PDX	Portland	OR	5759879	3455877	9797408	9940866	9435473	9071154	8340234	7878760	7452603	71
3	34	William P. Hobby Airport	нои	Houston	TX	5560780	3127178	7069614	6937061	6741870	6285181	5937944	5800726	5377050	50
4	35	Southwest Florida International Arport	RSW	Fort Myers	FL	5080805	2947139	5144467	4719568	4461304	4350650	4231134	4025959	3788870	36
		St. Louis Lambort													

tables[1]['Hubs'] = str('Medium Hub') tables[1].head() Rank(2021) Airports (medium IATACode hubs) City served State 2021 [3] 2020 [4] 2019 [5] 2018 [6] 2017 [7] 2016 [8] 2015 [9] 2014 [10] 2013 [11] 2012 [12] Hubs 31 Dallas Love Field TX 6487563 3669930 8408457 8134848 7876769 7554596 7040921 4522341 4023779 3902628 Dallas Daniel K. 32 Inouye International Medium HNL Honolulu HI 5830928 3126391 9988678 9578505 9743989 9656340 9656340 9463000 9466995 9225848 Airport Portland PDX Portland OR 5759879 3455877 9797408 9940866 9435473 9071154 8340234 7878760 7452603 7142620 Medium 33 International Airport William P. TX 5560780 3127178 7089614 6937061 6741870 6285181 5937944 5800726 5377050 5043737 Medium HOU Houston Hobby Airport Southwest FL 5080805 2947139 5144467 4719568 4461304 4350650 4231134 4025959 3788870 3634152 Medium Hub Florida Fort 35 International Myers

:[tabl	es[2]									
:		Rank	Rank change	Airport name	Location	IATA Code		Traffic		Aircraft	1
		Rank	Rank change	Airport name	Location	IATA Code	Passengers	% chg.2019/20	Movements	% chg.2019/20	l
	0	1	NaN	Hartsfield–Jackson Atlanta International Airport	College Park, Georgia	ATL	42918685	61.2	NaN	0.0	
	1	2	2.0	Dallas/Fort Worth International Airport	Irving, Texas	DFW	39364990	47.6	NaN	NaN	
	2	3	2.0	Denver International Airport	Denver, Colorado	DEN	33741129	51.1	NaN	NaN	
	3	4	1.0	O'Hare International Airport	Chicago, Illinois	ORD	30860251	63.5	NaN	NaN	
	4	5	3.0	Los Angeles International Airport	Los Angeles, Califomia	LAX	28779527	67.3	NaN	NaN	
	5	6	5.0	Charlotte Douglas International Airport	Charlotte, North Carolina	CLT	27205082	45.8	NaN	NaN	
	6	7	2.0	Harry Reid International Airport	Paradise, Nevada	LAS	22201479	56.9	NaN	NaN	
	7	8	5.0	Phoenix Sky Harbor International Airport	Phoenix, Arizona	PHX	21978708	52.5	NaN	NaN	,
:	tabl	es[2].	columns								

```
]: final_tables = [tables[0],tables[1]]
1: final tables
                         L) Airports (large hubs) IATACode
1 Hartsfield-Jackson Atlanta International Airport ATL
2 Dallas/Fort Worth International Airport DFW
            Rank (2021)
      2
                                                           Denver International Airport
O'Hare International Airport
                                                                                                               DEN
                                           Los Angeles International Airport
Charlotte Douglas International Airport
      4
                                                                                                               LAX
                                                                                                               CLT
      5
                                                      Orlando International Airport
Harry Reid International Airport
                                                                                                              MCO
LAS
                                          Phoenix Sky Harbor International Airport
Miami International Airport
      8
9
                                                                                                               PHX
                        10
                                                                                                               MIA
                                              Seattle-Tacoma International Airport
George Bush Intercontinental Airport
John F. Kennedy International Airport
Newark Liberty International Airport
      10
11
                        11
12
                                                                                                               SEA
                        13
14
      12
                                                                                                               JFK
      13
                                                                                                               EWR.
      14
15
                        15
16
                               Fort Lauderdale-Hollywood International Airport
Minneapolis-Saint Paul International Airport
                                                                                                               FLL
                                                 San Francisco International Airport
      16
                        17
                                                                                                               SEO
                                                            Detroit Metropolitan Airport
                        18
: wiki_tables2 = pd.concat(final_tables, ignore_index=True)
: wiki tables2
                        Airports
(large IATACode
hubs)
                                             Major
cities State 2021[3] 2020[4] 2019[5] 2018[6] 2017[7] 2016[8] 2015[9] 2014[10] 2013[11] 2012
served
        Rank(2021)
                      Hartsfield-
                        Jackson
                     Jackson
Atlanta
International
Airport
                                       ATL
                                             Atlanta
                                                       GA 36676010 20559866 53505795 51865797 50251964 50501858 49340732 46604273 45308407 45798
                      Dallas/Fort
                                              Dallas
& Ft.
                          Worth
                                                        TX 30005266 18593421 35778573 32821799 31816933 31283579 31589839 30804567 29038128 28022
                                      DFW
                     International
                                              Worth
                          Airport
                         Denver
                                      DEN Denver CO 28645527 16243216 33592945 31362941 29809097 28267394 26280043 26000591 25496885 25795
                 3 International
     2
                         Airport
                         0'Hare
: wiki tables2.columns
```

```
data = data_frame.merge(wiki_tables2,left_on = 'iata_code', right_on = 'IATACode')
data.head()
     id Airline Flight AirportFrom AirportTo DayOfWeek Time Length Delay ident ... 2018[6] 2017[7] 2016[8] 2015[9] 2014[10] 2013[11]
               2466
                                    DFW
                                                                    1 KSFO ... 27790717 26900048 25707101 24190560 22770783 21704626
           AA
                            SFO
                                                 3
                                                     20
                                                            195
                                                                    0 KSFO ... 27790717 26900048 25707101 24190560 22770783 21704626
                            SFO
                                    DFW
                                                 3 360
1 231
           AA
                 526
                                                            215
2 234
           AA
                 552
                            SFO
                                     MIA
                                                 3 360
                                                            315
                                                                    1 KSFO ... 27790717 26900048 25707101 24190560 22770783 21704626
                                                                    0 KSFO ... 27790717 26900048 25707101 24190560 22770783 21704626
3 905
                 810
                            SFO
                                    ORD
                                                 3 385
           AA
                                                            255
                            SFO
                                     JFK
                                                 3 425
                                                                    1 KSFO ... 27790717 26900048 25707101 24190560 22770783 21704626
4 1739
           AA
                 24
                                                            325
5 rows × 43 columns
```

2. You should then examine the missing values in each field, perform missing value treatment, and justify your actions

2. You should then examine the missing values in each field, perform missing value treatment, and justify your actions.

data.isnull().sum()	
Airline	0
Flight	0
DayOfWeek	0
Time	0
Length	0
Delay	0
type	0
latitude_deg	0
longitude_deg	0
elevation_ft	0
airport_ref	0
length_ft	0
width_ft	0
lighted closed	0 0
Founded	9
Rank (2021)	9
Airports (large hubs)	94324
Major cities served	94324
State	9
2021[3]	ø
2020[4]	ő
2019[5]	0
2018[6]	o o
2017[7]	o o
2016[8]	ő
2015[9]	0
2014[10]	0
2013[11]	0
2012[12]	0
Hubs	0
Airports (medium hubs)	269953

3.Perform data visualization and share your insights on the following points:

a. According to the data provided, approximately 70% of Southwest Airlines flights are delayed. Visualize it to compare it with the data of other airlines.

3. Perform data visualization and share your insights on the following points:

a. According to the data provided, approximately 70% of Southwest Airlines flights are delayed. Visualize it to compare it with the data of other airlines.

VVN in plot indicates the Southwest Airlines flights

b. Flights were delayed on various weekdays. Which day of the week is the safest for travel?

c. Which airlines should be recommended for short-, medium-, and long-distance travel?

c. Which airlines should be recommended for short-, medium-, and long-distance travel?

The below Airlines recommend short diffance travel.

```
data['Airline'][data['Length']>=200].value_counts()
DL
      13848
ΑА
      13015
UA
      10147
WN
       9126
       3869
AS
       3127
HΑ
       1003
\infty
         878
F9
         774
ΧE
         452
OH
         248
         232
         118
Name: Airline, dtype: int64
```

The below Airlines recommend long distance travel

And remaning Airlines recomend mid distance travel.

```
data['Airline'][data['Length']>400].value_counts()

UA     549
AA     304
DL     226
B6     83
AS     31
HA     14
Name: Airline, dtype: int64
```

d. Do you notice any patterns in the departure times of long-duration flights?

d. Do you notice any patterns in the departure times of long-duration flights?

```
data['Time'][data['Length']>400]
46348
          1045
46356
          1045
46364
          1045
46367
          1045
315043
          1416
315049
          1416
315055
          1416
315061
          1416
315067
          1416
Name: Time, Length: 1207, dtype: int64
```

The departure time for long-duration flights starts at 1045 minutes, which is 5 PM onwards.

4. How many flights were delayed at large hubs compared to medium hubs? Use appropriate visualization to represent your findings.

4. How many flights were delayed at large hubs compared to medium hubs? Use appropriate visualization to represent your findings.

```
: sns.countplot(data['Hubs'],hue=data['Delay'])
: <AxesSubplot:xlabel='Hubs', ylabel='count'>
     140000
     120000
     100000
      80000
      60000
      40000
      20000
                   Large Hub
                                         Medium Hub
: data.to_excel('master_data.xlsx', sheet_name='master_data', index=False)
```

As we can see from the plot that Large hubs have most delayed flights and medium hubs have least delayed flights.

5. Use hypothesis testing strategies to discover:

a. If the airport's altitude has anything to do with flight delays for incoming and departing flights

```
5. Use hypothesis testing strategies to discover:

a. If the airport's altitude has anything to do with flight delays for incoming and departing flights

: from scipy.stats import chi2_contingency
table = [data['latitude_deg'],data['Delay']]
stat, p, dof, expected = chi2_contingency(table)
print('stat=%.3f, p=%.3f' % (stat, p))
if p > 0.05:
    print('Probably independent')
else:
    print('Probably dependent')
stat=194730.438, p=1.000
Probably independent
```

b. If the number of runways at an airport affects flight delays

The airport's attitude has anything to do with flight delays for incoming and departing flights

b. If the number of runways at an airport affects flight delays

```
from scipy.stats import chi2_contingency
table = [data['airport_ref'],data['Delay']]
stat, p, dof, expected = chi2_contingency(table)
print('stat=%.3f, p=%.3f' % (stat, p))
if p > 0.05:
    print('Probably independent')
else:
    print('Probably dependent')

stat=200241.469, p=1.000
Probably independent
The number of runways at an airport do not affects flight delays
```

d. If the duration of a flight (length) affects flight delay

```
c. If the duration of a flight (length) affects flight delay

| from scipy.stats import spearmanr | d1 = data['Length'] | d2 = data['Delay'] | stat, p = spearmanr(d1, d2) | print('stat=%.3f, p=%.3f' % (stat, p)) | if p > 0.05: | print('Probably independent') | else: | print('Probably dependent') | stat=0.002, p=0.203 | Probably independent | The duration of a flight (length) do not affects flight delay.
```

6. Find the correlation matrix between the flight delay predictors, create a heatmap to visualize this, and share your findings

6. Find the cor	relation m	atrix between	the flight o	delay predic	ctors, creat	e a heatmap	to visualize this	s, and share	your finding	gs		
or = data.co	rr()											
or												
	Flight	DayOfWeek	Time	Length	Delay	latitude_deg	longitude_deg	elevation_ft	airport_ref	length_ft	 2020[4]	2019[
Flight	1.000000	0.003249	0.034959	-0.311840	-0.052901	0.168127	0.061268	0.124437	-0.042421	0.016064	 0.026304	0.0407
DayOfWeek	0.003249	1.000000	0.002218	0.013059	-0.026675	-0.010100	-0.005075	0.000010	0.002675	0.004768	 0.005839	0.0057
Time	0.034959	0.002218	1.000000	-0.045729	0.145368	-0.024743	-0.002804	0.039522	-0.014048	0.029940	 0.093418	0.0910
Length	-0.311840	0.013059	-0.045729	1.000000	0.001991	0.028905	0.068559	-0.070187	-0.012986	0.083335	 0.044740	0.0883
Delay	-0.052901	-0.026675	0.145368	0.001991	1.000000	0.027395	-0.030393	0.023891	-0.003285	-0.060340	 -0.024517	-0.0236
latitude_deg	0.168127	-0.010100	-0.024743	0.028905	0.027395	1.000000	0.087885	0.208233	-0.095324	0.004430	 -0.061321	0.0078
longitude_deg	0.061268	-0.005075	-0.002804	0.068559	-0.030393	0.087885	1.000000	-0.208175	-0.190519	0.114385	 0.008585	0.0231
elevation_ft	0.124437	0.000010	0.039522	-0.070187	0.023891	0.208233	-0.208175	1.000000	0.224565	0.225928	 0.246739	0.1178
airport_ref	-0.042421	0.002675	-0.014048	-0.012986	-0.003285	-0.095324	-0.190519	0.224565	1.000000	0.015333	 -0.198712	-0.1911
length_ft	0.016064	0.004768	0.029940	0.083335	-0.060340	0.004430	0.114385	0.225928	0.015333	1.000000	 0.249796	0.2156
width_ft	0.010186	0.003414	0.038049	0.062138	-0.020959	-0.034404	0.024904	-0.155231	-0.027424	0.211039	 0.205157	0.1883
lighted	0.064012	-0.004520	-0.001339	0.029629	0.020765	0.205215	0.325019	-0.141753	-0.667705	0.076685	 0.164374	0.15993

plt.figure(figsize=(20,20)) sns.heatmap(cor,annot=True)

<AxesSubplot:>

Flight	- 1	0.0032 (0.035	-0.31	-0.053	0.17	0.061	0.12	-0.042	0.016	0.01	0.064	0.029	0.39	0.0046	0.025	0.026	0.041	0.042	0.042	0.04	0.038	0.041	0.042	0.044	-0.048		- 1.00
DayOfWeek	-0 0032	1 0		0.013	-0 027	-0.01	0 0051	1e-05	0 0027	0.0048	0.0034	0 0045	50 0048	0 0058	0 0067	0 0061	0.0058	0 0058	0.0057	0 0056	0 0056	0.0056	0 0057	0 0056	0 0056	0 0054		
Time	0.035 (0.0022	1	-0.046	0.15	-0.025	0.0028	0.04	-0.014	0.03	0.038-	0.0013	30.0069	0.034	-0.089	0.095		0.091	0.09	0.091	0.092	0.093	0.094	0.095	0.096	-0.085		- 0.75
Length	0.31		0.046	1	0.002			-0.07					-0.062	-0.32	-0.1		0.045					0.084				-0.11		- 0.75
Delay	-0.053 -	0.027	0.15		1	0.027	-0.03		-0.0033	3 -0.06			0.0066	0.043			-0.025	-0.024	-0.021	-0.021	-0.022	-0.024	-0.026	-0.026	-0.026	0.022		
latitude_deg	0.17	-0.01 4	0.025			1			-0.095	0.0044	-0.034			0.042		-0.06	-0.061	0.0078				-0.0019	0.0031	0.0034	0.0038	3-0.053		
longitude_deg	- 0.061 -	0.00510	0.0028		-0.03	0.088	1	-0.21	-0.19				-0.057				0.0086					0.041				-0.032		- 0.50
elevation_ft	0.12	le-05	0.04				-0.21	1	0.22		-0.16	-0.14	-0.0095	0.0092	-0.14											-0.026		
airport_ref	-0.0420		0.014	-0.013	0.0033	-0.095	-0.19	0.22	1	0.015		-0.67	-0.02		0.28	-0.2	-0.2	-0.19	-0.19	-0.19	-0.19	-0.18	-0.18	-0.18	-0.18	0.18		
length_ft	0.016	0.0048			-0.06	0.0044			0.015	1	0.21	0.077	-0.23		-0.19											-0.18		- 0.25
width_ft	- 0.01 (0.0034 (0.038			-0.034		-0.16		0.21	1		-0.28	-0.057	-0.23											-0.17		0.25
lighted	- 0.064 -	0.00450	0.0013					-0.14	-0.67		0.13	1	-0.13	0.043	-0.23											-0.15		
dosed	0.029-0	0.00480	0.0069	-0.062	0.0066		-0.057	0.0095	-0.02	-0.23	-0.28	-0.13	1	0.099		-0.17	-0.16	-0.16	-0.17	-0.17	-0.17	-0.17	-0.17	-0.17	-0.17	0.16		
Founded	- 0.39 -0	0.00580	0.034	-0.32	0.043	0.042		0.0092			-0.057	0.043	0.099	1	0.13	-0.17	-0.17	-0.17	-0.17	-0.18	-0.18	-0.18	-0.18	-0.18	-0.18	0.17		- 0.00
Rank(2021)	-0.0046-0	0.00674	0.089	-0.1	0.006	0.02	-0.035	-0.14	0.28	-0.19	-0.23	-0.23	0.23	0.13	1	-0.88	-0.88	-0.87	-0.86	-0.86	-0.86	-0.86	-0.86	-0.86	-0.85	0.82		
2021[3]	0.025	0.0061 (0.095	0.05	-0.025	-0.06	0.026	0.26	-0.2	0.26	0.16	0.16	-0.17	-0.17	-0.88	1	1	0.95	0.94	0.94	0.94	0.95	0.95	0.95	0.95	-0.87		
2020[4]																	1		0.94		0.93	0.94	0.95	0.95	0.95	-0.87		0.25
2019[5]																	0.95	1	,	1	1	0.99	0.99	0.99	0.99			
																		1	1	_								
2018[6]																		1	1	1	1	0.99	0.99	0.99	0.99			
2017[7]	0.042 (0.0056			-0.021				-0.19				-0.17	-0.18	-0.86	0.94	0.94	1	1	1	1	1	0.99	0.99	0.99	-0.99		0.50
2016[8]	0.04 (-0.19				-0.17	-0.18	-0.86	0.94	0.93	1	1	1	1	1	1	1	0.99	-0.98		
2015[9]	0.038 (0.0056			-0.024	0.0019	0.041		-0.18				-0.17	-0.18	-0.86	0.95	0.94	0.99	0.99	1	1	1	1	1	1	-0.98		
2014[10]	0.041	0.0057			-0.026	0.0031			-0.18				-0.17	-0.18	-0.86	0.95	0.95	0.99	0.99	0.99	1	1	1	1	1	-0.97		0.75
2013[11]	0.042	0.0056			-0.026	0.0034			-0.18				-0.17	-0.18	-0.86	0.95	0.95	0.99	0.99	0.99	1	1	1	1	1	-0.97		3.73
2012[12]	0.044 0	0.0056				0.0038			-0.18				-0.17	-0.18	-0.85	0.95	0.95	0.99	0.99	0.99	0.99	1	1	1	1	-0.97		
Traffic_2019/20	-0.048-0	0.00544	0.085	-0.11		-0.053				-0.18	-0.17	-0.15			0.82	-0.87	-0.87	-0.98	-0.99	-0.99	-0.98	-0.98	-0.97	-0.97	-0.97	1		
	Flight -	eek -	Time -	ength -	Delay -	deg -	- Gap	n_ft-	ref -	- H	width_ft -	lighted -	- pasop	- pap	- (12)	1[3] -	0[4] -	- [5]6	- [9]8	- [7]/	- [8]9	- [6]9	- [01]	- [11]	[12] -	9/20 -		
	Ē	DayOfWeel	_	Len	ă	latitude_deg	ongitude_deg	elevation_ft	airport_ref	length_ft	widt	ligh	op	Founded	Rank(2021)	2021[3]	2020[4]	2019[5]	2018[6]	2017[7]	2016[8]	2015[9]	2014[10]	2013[11]	2012[12]	raffic_2019/20		
		_				<u>.0</u>	lon								-											Traff		

Machine learning

1. Use OneHotEncoder and OrdinalEncoder to deal with categorical variables

```
1. Use OneHotEncoder and OrdinalEncoder to deal with categorical variables

| # Now using the ordinal encoder.
| from sklearn.preprocessing import LabelEncoder

| le = LabelEncoder()

| data['type'].unique()
| array(['large_airport', 'medium_airport'], dtype=object)

| data['type'] = le.fit_transform(data['type'])

| data['Hubs'].unique()
| array(['Large Hub', 'Medium Hub'], dtype=object)

| data['Hubs'] = le.fit_transform(data['Hubs'])

| data['Airline'].unique()
| array(['AA', 'DL', 'UA', 'WN', 'F9', 'AS', 'B6', 'OO', 'YV', 'HA', 'XE', 'MQ', 'OH', '9E'], dtype=object)
```

	Airline	Flight	DayOfWeek	Time	Length	Delay	type	latitude_deg	longitude_deg	elevation_ft	 2019[5]	2018[6]	2017[7]	2016[8]	2015[
0	1	2466	3	20	195	1	0	37.618999	-122.375	13.0	 27779230	27790717	26900048	25707101	2419056
1	1	526	3	360	215	0	0	37.618999	-122.375	13.0	 27779230	27790717	26900048	25707101	241905
2	1	552	3	360	315	1	0	37.618999	-122.375	13.0	 27779230	27790717	26900048	25707101	241905
3	1	810	3	385	255	0	0	37.618999	-122.375	13.0	 27779230	27790717	26900048	25707101	241905
4	1	24	3	425	325	1	0	37.618999	-122.375	13.0	 27779230	27790717	26900048	25707101	241905
5 m	ows × 31	n colun	nne												
4	J1973 ~ J1	o colali	1110	_	_						_				

```
data.dtypes
Airline
                      int32
Flight
                      int64
DayOfWeek
                      int64
                      int64
Time
                      int64
Length
Delay
                      int64
                      int32
type
latitude_deg
                    float64
longitude_deg
                    float64
elevation_ft
                    float64
airport_ref
                      int64
length_ft
                    float64
width_ft
                    float64
lighted
                      int64
closed
                      int64
Founded
                    float64
Rank (2021)
                     int64
State
                     object
2021[3]
                     int64
2929[4]
                      int64
2019[5]
                      int64
2018[6]
                      int64
2017[7]
                      int64
2016[8]
                      int64
2015[9]
                      int64
2014[10]
                      int64
2013[11]
                      int64
2012[12]
                      int64
                      int32
Hubs
Traffic_2019/20
                      int64
dtype: object
```

```
data['State'].unique()
array(['CA', 'AZ', 'NV', 'UT', 'CO', 'HI', 'NJ', 'MA', 'NE', 'WA', 'FL', 
'MN', 'LA', 'MD', 'TX', 'TN', 'PA', 'GA', 'OR', 'IL', 'OH', 'NY', 
'VA', 'CT', 'MO', 'NC', 'NM', 'MI', 'IN', 'PR', 'AK', 'WI', 'SC', 
'OH/KY', 'ID'], dtype=object)
data.columns
dtype='object')
data.head()
    Wirline Flight DayOfWeek Time Length Delay type latitude_deg longitude_deg elevation_ft airport_ref length_ft width_ft lighted closed Found
                          3
                              20
                                     195
                                                  0
                                                       37.618999
                                                                                                       7500.0
                                                                                                                                        192
 0
            2466
                                                                       -122.375
                                                                                      13.0
                                                                                                3878
                                                                                                                 200.0
                                                                                                                                   ٥
                                     215
                                                  ٥
                                                       37.618999
                                                                       -122.375
                                                                                     13.0
                                                                                                3878
                                                                                                       7500.0
                                                                                                                 200.0
                                                                                                                                   ٥
                                                                                                                                        192
             526
                            360
                          3
                                                       37.618999
                                                                       -122,375
                                                                                     13.0
                                                                                                3878
                                                                                                       7500.0
                                                                                                                 200.0
                                                                                                                                        192
             552
                            360
                                     315
                                                  0
                                                                                                                                   ٥
                          3
                                             ٥
                                                       37.618999
                                                                       -122,375
                                                                                      13.0
                                                                                                3878
                                                                                                       7500.0
                                                                                                                 200.0
                                                                                                                                        192
              24
                          3 425
                                     325
                                                  0
                                                       37.618999
                                                                       -122,375
                                                                                      13.0
                                                                                                3878
                                                                                                       7500.0
                                                                                                                 200.0
                                                                                                                                        192
```

2. Perform the following model building steps:

a. Apply logistic regression (use stochastic gradient descent optimizer) and decision tree models

```
a. Apply logistic regression (use stochastic gradient descent optimizer) and decision tree models
1]: x = data.drop(['Delay'], axis= 1)
    y = data['Delay']
2]: from sklearn import preprocessing
    scaler = preprocessing.MinMaxScaler()
    x = scaler.fit_transform(x)

    # First SpLit the data into the training and testing set before performing the further operation.

    from sklearn.model_selection import train_test_split
    x_train, x_test, y_train, y_test = train_test_split(x, y, train_size=0.7, random_state=10)
4]: # Logistic Regression
    from sklearn.model_selection import RandomizedSearchCV
    from sklearn.linear_model import LogisticRegression
    lr = LogisticRegression()
# Cross Validation
    folds = 5
    rscv = RandomizedSearchCV(estimator = 1r,
                            param_distributions = params,
                            scoring = "accuracy",
verbose = 1,
                             cv= folds)
    rscv.fit(x_train, y_train)
    Fitting 5 folds for each of 4 candidates, totalling 20 fits
5]: RandomizedSearchCV(cv=5, estimator=LogisticRegression(),
                       param_distributions={'penalty': ['11', '12'],
                                            'solver': ['newton-cg', 'liblinear']},
                       scoring='accuracy', verbose=1)
```

```
]: print(rscv.best_params_)
   print(rscv.best_score_)
   {'solver': 'newton-cg', 'penalty': '12'}
   0.59283197912616
]: | lr = LogisticRegression(penalty= '12', solver= 'newton-cg')
   lr.fit(x_train,y_train).score(x_train,y_train)
1: 0.592969218762868
]: |lr.score(x_test, y_test)|
1: 0.5937923209252955
]: # DecisionTreeCLassifier
   from sklearn.tree import DecisionTreeClassifier
   dt = DecisionTreeClassifier()
   params = {'criterion': ["gini", "entropy"],
             'min_samples_leaf' : [2,3,4,5,6,7,8,9],
            "max_depth": [2,3,4,5,6,7,8,9]}
   rscv = RandomizedSearchCV(estimator = dt,
                                param_distributions= params,
                                scoring = "accuracy",
                                cv= 5,
                                verbose=1)
   rscv.fit(x_train, y_train)
   Fitting 5 folds for each of 10 candidates, totalling 50 fits
]: RandomizedSearchCV(cv=5, estimator=DecisionTreeClassifier(),
                      param_distributions={'criterion': ['gini', 'entropy'],
                                            'max_depth': [2, 3, 4, 5, 6, 7, 8, 9],
                                            'min_samples_leaf': [2, 3, 4, 5, 6, 7,
                      scoring='accuracy', verbose=1)
```

```
print(rscv.best_params_)
print(rscv.best_score_)

{'min_samples_leaf': 3, 'max_depth': 9, 'criterion': 'entropy'}
0.6471079720974683

dt.fit(x_train, y_train).score(x_train, y_train)
0.8343680022588855

dt.score(x_test, y_test)
0.6031990044288277
```

**g. Compare the results of logistic regression and decision tree classifier

After comparing the results, we can conclude that Decission Tree Algorithm is optimal

3. Use the stratified five-fold method to build and validate the models using the XGB classifier, compare all methods, and share your findings

3. Use the stratified five-fold method to build and validate the models using the XGB classifier, compare all methods, and share your findings

```
: xgb = XGBClassifier(n_estimators=14, max_depth=9, learning_rate=0.45, colsample_bytree=0.9)
xgb.fit(x_train,y_train).score(x_train,y_train)
: 0.689528732161275
: lr.score(x_test, y_test)
: 0.5937923209252955
: dt.score(x_test, y_test)
: 0.6831990044288277
: xgb.score(x_test, y_test)
: 0.660050876615058
After comparing the accuracy of the all three models XGBclassifier is optimal.
```

Tableau:

Airline:

Port type:

Avg time of Airline:

Total delay acc to day of week:

Dashboard:

Story:

United States Airlines Analysis

Excel

Create an Excel dashboard showcasing the following (use form controls to make a dynamic chart):

S2	0	+ ; [;	× ✓	f _x						
1	А	В	С	D	E	F	G	Н	1	J
1	id	Airline	Flight	AirportFro	AirportTo	DayOfWe	Time	Length	Delay	
2	1	CO	269	SFO	IAH	3	15	205	1	
3	2	US	1558	PHX	CLT	3	15	222	1	
4	3	AA	2400	LAX	DFW	3	20	165	1	
5	4	AA	2466	SFO	DFW	3	20	195	1	
6	5	AS	108	ANC	SEA	3	30	202	0	
7	6	CO	1094	LAX	IAH	3	30	181	1	
8	7	DL	1768	LAX	MSP	3	30	220	0	
9	8	DL	2722	PHX	DTW	3	30	228	0	
10	9	DL	2606	SFO	MSP	3	35	216	1	
11	10	AA	2538	LAS	ORD	3	40	200	1	
12	11	CO	223	ANC	SEA	3	49	201	1	
13	12	DL	1646	PHX	ATL	3	50	212	1	
14	13	DL	2055	SLC	ATL	3	50	210	0	
15	14	AA	2408	LAX	DFW	3	55	170	0	
16	15	AS	132	ANC	PDX	3	55	215	0	
17	16	US	498	DEN	CLT	3	55	179	0	
18	17	B6	98	DEN	JFK	3	59	213	0	
19	18	CO	1496	LAS	IAH	3	60	162	0	
20	19	DL	1450	LAS	MSP	3	60	181	0	
21	20	CO	507	ONT	IAH	3	75	167	0	
22	21	AS	128	FAI	SEA	3	80	206	0	
22	າາ		วาวว	1	SIC .	9	05	270	0	
	← →	Airline	s Hub d	lata 1	2 3	4 Das	hboard	(+)		
n	🖶	4								

a. Compare different airlines based on their on-time performance

b. Compare the percentage of delayed flights for different days of the week

c. Create a trend chart for the number of passengers at large and medium hubs

- e. Visualize the count of delayed and on-time flights for different pairs of source and destination airports
 - *Create a dynamic chart that allows users to select a source and destination airport.

Dashboard:

