Dr. Muhammad Amar Gul (Geoscientist/Data Scientist)

\(\) +966-530293372 | \(\) \(\

Career Objective

Aspiring to contribute my expertise in AI, machine learning, and geoscience to a dynamic organization, leveraging data-driven approaches for mineral exploration, geochemical analysis, and geospatial intelligence. Passionate about applying advanced data science techniques to solve complex geological challenges.

Professional Experience

Project Geologist (AI & ML/Big Data)

China National Geological & Mining

June, 2024-Present

Corporation, Jeddah KSA

Exploration Geologist

Mehta Brothers, Lahore

March 2022-April 2023

Pakistan

Academic Qualification

PhD Geology (AI & ML) 2024

MS Geological Sciences 2013-2016

BS (Hon.) Geology 2008-2012

University of Science & Technology China (USTC: THE World University Ranking 53)

University of Engineering &Technology (UET) Lahore-Pakistan (QS WUR: 791)

Federal Urdu University of Art, Science & Technology, Karachi-Pakistan

Professional Certifications & Skills

- **Geochemistry** (LA-ICP-MS, EPMA, XRD, XRF, ioGAS)
- **4** Critical Metals Exploration (Pb, Zn, Au, Cu, Ge, Ga, In, Sb)
- **Data Visualization** (Tableau, Power BI, SQL, Seaborn lib.)
- **Data Science** (Data Analysis, Data Mining, Python, Scikit-learn)
- **AI & ML** (ML/DL algorithms, Reinforcement Learning, TensorFlow, PyTorch)
- **Geospatial Analysis** (GIS, QGIS, GIS Pro, Geopandas, ArcPy)
- **Remote Sensing** (ENVI /Google Earth Engine)
- **Project Management** & Bid Proposal Writing

Key Professional Research Projects

- **Deep Learning-Based Classification of Pyrite Geochemistry for Discriminating Tectonic Settings in Sedimentary Environments**
- Developed a novel deep learning approach to classify sedimentary pyrite based on trace element geochemistry.
- Implemented CNN and XGBoost models to classify pyrite samples from nine distinct tectonic settings.
- Utilized LA-ICP-MS dataset (**1837 spot analyses**) from **43 global locations** for model training and validation.
- Addressed class imbalance using **SMOTE and** Random Undersampling with Clustering (**RUC**) techniques.
- Applied **t-SNE** and **UMAP** for data visualization and feature interpretation.
- Achieved >95% classification accuracy on unseen datasets using K-Fold Cross-Validation (CV) and AUC analysis.
- Identified key geochemical discriminators (Sb, Co, Se, Mo, Bi) using **SHAP** (Shapley Additive Explanations).
- Presented an AI-based application for automated tectonic setting classification.
- **4** AI-Driven Classification of Pb-Zn Deposits using Pyrite Geochemistry (Metallogenic Discrimination)
- Developed classification models based on pyrite trace element compositions using Random Forest (**RF**), Support Vector Machine (**SVM**), Gradient Boost (**GB**), and Multilayer Perceptron (**MLP**) algorithms.
- Trained models on 5400 data points from 134 mineral deposits.
- Applied leave-one-group-out (LOGO) cross-validation to ensure model generalization.
- Achieved high classification accuracy (> 90 %), demonstrating the effectiveness of machine learning in mineral deposit discrimination.
- Applied models to **newly collected geochemical data from the Gunga Pb-Zn deposit**, successfully identifying its source as **sedimentary-hydrothermal** with enrichment in Pb, Zn, Sb, Tl, As, and Ge.
- Deep Learning for Ore Genesis and Critical Metal Enrichment in Gunga Pb-Zn Deposit
- Investigated the Gunga Pb-Zn deposit using deep learning techniques to analyze **sphalerite** trace elements and isotopic compositions.
- Developed models trained on **3800** data points from **99** global mineral deposits.
- Applied **k-fold cross-validation** to validate model predictions.
- Results revealed that the Upper Mineralization Zone (UMZ) and Lower Mineralization Zone (LMZ) exhibit distinct geochemical signatures.
- The deep learning model confirmed that **the Gunga deposit is a Clastic-Dominant** (CD)-type deposit based on its low temperature, lack of magmatic sources, and sedimentary setting.

Let Provide the Partie of Partie Selection Selection4 Big Data Mining on Pyrite Geochemistry for Deposit type Discrimination

- Compiled **5200** pyrite spot analyses from **138 global deposits**, covering **six deposit types** (Sedimentary, SEDEX, Orogenic Gold, VMS, Skarn, and Porphyry).
- Applied **RF**, **SVM**, **GB**, and **MLP** algorithms to classify deposits using trace element geochemistry.
- Used t-distributed Stochastic Neighbor Embedding (**t-SNE**) for feature importance assessment.
- Achieved classification accuracy of >93% (GB & SVM models) with an AUC score of >0.99.
- Developed an **interactive web application** using Python **Gradio library** for real-time deposit classification.

Big Data Mining on Galena Geochemistry for Metallogenic Discrimination

- Classified galena samples from 37 Pb-Zn deposits worldwide using RF, GB, MLP, and SVM models.
- Addressed dataset imbalance using **SMOTE** and **RUC** resampling techniques.
- Applied **K-fold cross-validation** to ensure robustness.
- Achieved highest accuracy of **98.19%** (GB model) and **97.62%** (RF model).
- Identified **Sn, Tl, and Ag** as key trace elements for deposit differentiation.
- Used **t-SNE visualization** to validate clustering of galena samples based on geochemistry.

Mineral Alteration Mapping of Arabian Shield using Remote Sensing Data

- Conducted remote sensing-based mineral alteration mapping across 600,000 km² of the Arabian Shield.
- Utilized satellite imagery (Landsat-8/9) and GIS techniques to detect mineral alterations.
- Implemented **supervised classification methods** and spectral indices to differentiate lithological units.
- Developed a **predictive model for mineral prospectivity**, aiding future exploration efforts.

Research Articles (Under Review in SCI Journals)

- 1. Gul, M.A., Kanwal, A., Faisale, M., Akhtar, S., Zhang, H., Sun, C., Awan, R.S., Nawaz, A., and Yang, X., (2025) Machine learning-based classification of pyrite geochemistry for discriminating tectonic settings in sedimentary environments: Insights from big data analysis and interpretable SHAP model, Gondwana Research, IF: 7.2
- 2. Gul, M.A., Asia Kanwal., Yang, X., Zhang, H.S., Faisal, M., (2025) Big Data mining on Pyrite geochemistry using machine learning algorithms: Implications for Metallogenic Discrimination, *Lithos*, **IF: 2.9**
- 3. Gul, M.A., Asia Kanwal., Yang, X., Zhang, H.S., Faisal, M., (2025) Big Data mining on Galena geochemistry using machine learning algorithms: Implications for Metallogenic Discrimination, *Mathematical Geosciences*, *IF*: 2.8

- 4. Faisal, M., Li, H., Sun, C., Gul, M. A., Amuda, A. K., Sun, W., Ullah, J., Khalifa, I. H., and Mustafa, S., 2024, Geodynamic record of Rodinia breakup to Gondwanaland formation: Insights from bulk geochemistry, whole-rock Sr-Nd isotopes, and zircon U-Pb-Hf data: *Geoscience Frontiers*, **IF: 8.5**
- 5. Faisal, M., Li, H., Yang, X., Gul, M. A., Amuda, A. K., Zhou, Z., Tende, A. W., Cheng, G., Ullah, J., and Seif, R. A., 2024, Exploring auriferous VMS prospective zones in the South Eastern Desert, Egypt, using integrated remote sensing data, field studies, EPMA chemistry, and XRD analysis: *Journal of Geochemical Exploration*, IF: 3.4
- 6. Awan, S, R., Liu, B., Yasin, Q., Wood, D. A., Gul, M. A., Ali, S., Altaf, K. H., and Khan, A., 2024, Paleoenvironmental conditions and key drivers of organic matter accumulation in the Early Cretaceous Talhar Shale, Lower Indus Basin, Pakistan: *Marine and Petroleum Geology*, IF: 3.7

Research Publications

- Gul, M.A., Zhang, H.S., Yang, X., Yu, Y., Sun, C., Faisal, M., (2025) Machine Learning-Driven Classification of Pb-Zn Ore Deposits Using Pyrite Trace Elements and Isotopic Signatures: A Case Study of the Gunga Deposit, *Journal of Geochemical Exploration*, https://doi.org/10.1016/j.gexplo.2025.107693
 IF: 3.4
- 2. Gul, M.A., Zhang, H.S., Yu, Y., Sun, C., Faisal, M., Yang, X., (2025) Ore genesis and critical metal enrichment using deep learning algorithms in Gunga Pb-Zn deposit, Southern Pakistan: Constraints from geochemistry and isotopic compositions, Journal of Geochemical Exploration, https://doi.org/10.1016/j.gexplo.2025.107771
- 3. Faisal, M., Li, H., Heritier, R.N., Gul, M.A., Khedr, F.A., Zhou, Z., and Ghoneim, S.M., 2025, Geological and geochemical evolution of the Derhib sulfide-talc deposit in the South Eastern Desert, Egypt: Insights into ore genesis and metasomatic alteration: *Lithos*, https://doi.org/10.1016/j.lithos.2025.108049 IF: 2.9
- 4. Awan, S, R., Liu, B., Li, H., Ali, S., Gul, M. A., and Khan, A., 2024, Unlocking paleolatitudinal secrets of the Early Cretaceous by rare earth element imprints: Implications for seawater chemistry, depositional environments, and paleoclimate in the Talhar Shale, Lower Indus Basin, Pakistan: *Palaeogeography, Palaeoclimatology, Palaeoecology, https://doi.org/10.1016/j.palaeo.2025.112985*, *IF: 2.6*
- 5. Mujtaba, A., Gilani, S. N., Hafeez, M., Khan, I., Shah, A., Khan, S., Ahmed Gillani, S. A., and **Gul**, **M. A.***, 2024, Geochemical and petrographic analysis of hydrothermal mineralization in the Chitral region, Northern Pakistan: Implications for tectonic and diagenetic processes: *Advancements in Mining & Mineral Engineering*, v. 1, no. 3, p. 1-22, DOI:10.33552/AMME.2024.01.00051.
- Faisal, M.; Li, H.; Yang, X.Y.; Sun, C.; Amuda, A.K.; Khalifa, I.H., Gul, M.A. (2025). Gold in volcanogenic massive sulfide deposits in Egypt. In: Hamimi, Z.; Goldfarb, R.J.; Pradhan, B.; Abd El-Rahman, Y.; Fowler, A.; Abdelnasser, A.; Abd El Monsef, M. (eds). Gold Deposits in Egypt: Geology, Settings, Types, Genesis and Spatiotemporal Distribution. SLPNRM. Springer, Cham. https://link.springer.com/book/97830317597.
- 7. **Gul, M.A.,** Yang, X., Zhang, H., Faisal, M., and Akhtar, S., 2022, Sediment Hosted Pb-Zn Deposits in Pakistan, *36th International Geological Congress, India.*

- 8. **Gul, M.A.,** Khan, M.S., and Sohail, GMD. 2016, Evaluation of Shale Gas Prospect in Datta Formation Upper Indus Basin Evaluation of Shale Gas Prospect in Datta Formation Upper Indus Basin, Pakistan: www.piche.org.pk/journal.
- Awan, R.S., Liu, C., Aadil, N., Yasin, Q., Salaam, A., Hussain, A., Yang, S., Jadoon, A.K., Wu, Y., and Gul, M.A., 2021, Organic geochemical evaluation of Cretaceous Talhar Shale for shale oil and gas potential from Lower Indus Basin, Pakistan: *Journal of Petroleum Science and Engineering*, v. 200, doi: 10.1016/j.petrol.2021.108404.
- 10. Faisal, M., Yang, X., Zhang, H., Amuda, A.K., Sun, C., Mustafa, S., and **Gul, M.A.**, 2022, Mineralization styles, alteration mineralogy, and sulfur isotope geochemistry of volcanogenic massive sulfide deposits in the Shadli Metavolcanics Belt, South Eastern Desert, Egypt: Metallogenic implications: *Ore Geology Reviews*, v. 140, doi: 10.1016/j.oregeorev.2021.104402.
- 11. Akram, N., Ahmed, N., Khan, M.S., Ehsan, M.I., **Gul**, **M.A.**, and Ahmad, M., 2020, Reservoir Characterization by using Petrophysical-Electrofacies Analyses and Subsurface Structural Interpretation of the Nandpur Gas Field, Middle Indus Basin, Pakistan, *Himalayan Geology*.
- 12. Awan, R.S., Liu, C., Khan, A., Iltaf, K.H., Zang, Q., Wu, Y., Ali, S., and **Gul, M.A.**, 2023, Geochemical Characterization of Organic Rich Black Rocks of the Niutitang Formation to Reconstruct the Paleoenvironmental Settings during Early Cambrian Period from Xiangxi Area, Western Hunan, China: *Journal of Earth Science*, v. 34, p. 1827–1850, doi:10.1007/s12583-021-1524-x.
- 13. Khan, A.U.R., **Gul, M.A.,** Awan, R.S., Khan, A., Iltaf, K.H., and Butt, S.E.H., 2023, 2D seismic interpretation of Sawan gas field integrated with petrophysical analysis: A case study from Lower Indus Basin, Pakistan: *Energy Geoscience*, v. 4, doi: 10.1016/j.engeos.2022.100143.

Communication Skills

♣ English♣ Urdu

♣ Excellent Presentation Skill

Chinese

: Pakistani

: 38101-1327597-7

Personal Information

Father Name : Gul Muhammad
 Date of Birth : 21st October, 1988.

★ Marital Status: Married

References

Dr Yang Xiaoyong Professor

School of Earth and Space Sciences University of Science and Technology of China (USTC)

Hefei, China.

Phone: +86-551-63606871 **E-mail:** xyyang555@163.com

Dr. Qamar Yasin Associate Professor

♣ Nationality

C.N.I.C No.

School of Earth sciences and Engineering Northeast Petroleum University,

Daqing, China.

Phone: +86-18546595033 E-mail: gyasin@nepu.edu.cn