Proximity Measure for Binary Attributes

A contingency table for binary data

Distance measure for symmetric binary variables $d(i,j) = \frac{r+s}{q+r+s+t}$

- - Distance measure for asymmetric binary variables: $d(i, j) = \frac{r+s}{a+r+s}$
- Jaccard coefficient (similarity measure for asymmetric binary variables):

 $sim_{Jaccard}(i, j) = \frac{q}{q + r + s}$

Note: Jaccard coefficient is the same as

(a concept discussed in Pattern Discovery)

$$coherence(i,j) = \frac{sup(i,j)}{sup(i) + sup(j) - sup(i,j)} = \frac{q}{(q+r) + (q+s) - q}$$

Name	Gender	Fever	C	ough	Test-1	Test-2	Test-3	Test-4		
Jack	M ¹	Y٦	N		P 1	N ₀	N º	No		
Mary	F °	Y 1	N		P 1	N o	P 1	N ₀		
Jim	M 1	Y 1	P	1	N 0	N ₀	N ₀	N ₀		
		M34,			+) o 1 M	10) Jan	
		1	0	Sum	d(i, j)	$) = \frac{r + r}{q + r}$	$\frac{-s}{+s+t}$	2 = 2		
Jack	1	2 a	1 1	3	-7 \frac{1+1}{7} = \frac{\rho}{7}					
	0	1 5	3 t	4	= 2					
	SWM	3	4	7						
					_					

Example: Dissimilarity between Asymmetric Binary Variables

Proximity Measure for Categorical Attributes

- Categorical data, also called nominal attributes
 - Example: Color (red, yellow, blue, green), profession, etc.
- <u>Method 1</u>: Simple matching
 - ☐ m: # of matches, p: total # of variables

- <u>Method 2</u>: Use a large number of binary attributes
 - □ Creating a new binary attribute for each of the *M* nominal states

ಕ	ontro	1		7 P	3 G	ž B	מונרת	^₀.0\.	3.3	lesan
638	પ ∙થ⁻		न्वती न	1	0	0	0	1	0	O
			2 017	1	0	0	0	0	1	O
Ned	จำงาน		व्वर्त 3	0	1	0	0	٩	0	0
grun	W- 61.		٦							
٧ ٢,٩,٢	₩ , 2.4.4.	' wand muzh								

64

Ordinal Variables

- An ordinal variable can be discrete or continuous
- Order is important, e.g., rank (e.g., freshman, sophomore, junior, senior)

 Can be treated like interval-scaled
- Can be treated like interval-scaled
 - Replace an ordinal variable value by its rank: $r_{if} \in \{1,...,M_f\}$
 - Map the range of each variable onto [0, 1] by replacing i-th object in the f-th variable by $z_{ij} = \frac{1}{M_f - 1}$ Example: freshman: 0; sophomore: 1/3) junior: 2/3; senior 1 $\frac{2 - \frac{1}{3}}{2 - \frac{1}{3}}$
 - - Then distance: d(freshman, senior) = 1, d(junior, senior) = 1/3
 - Compute the dissimilarity using methods for interval-scaled variables

$$(1-0)$$
 $(\frac{2}{3}-\frac{5}{3})=\frac{1}{3}$

Attributes of Mixed Type

- A dataset may contain all attribute types
 - □ Nominal, symmetric binary, asymmetric binary, numeric, and ordinal
- One may use a weighted formula to combine their effects:

$$d(i,j) = \frac{\sum_{f=1}^{p} w_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} w_{ij}^{(f)}} \bigvee_{b \in \mathcal{B}} \underbrace{\begin{pmatrix} (4) + 1/2 \\ b \end{pmatrix} \begin{pmatrix} 4/2 \\ b \end{pmatrix}}_{\mathsf{Y}} \bigvee_{\mathsf{Y}} \underbrace{\begin{pmatrix} 4/2 \\ b \end{pmatrix}}_{\mathsf{Y}} \bigvee_{\mathsf{Y}} \bigvee_{\mathsf{Y}} \underbrace{\begin{pmatrix} 4/2 \\ b \end{pmatrix}}_{\mathsf{Y}} \bigvee_{\mathsf{Y}} \bigvee_{\mathsf{Y}} \underbrace{\begin{pmatrix} 4/2 \\ b \end{pmatrix}}_{\mathsf{Y}} \bigvee_{\mathsf{Y}} \bigvee_{\mathsf{Y}}$$

- \Box If f is numeric: Use the normalized distance
- ☐ If f is binary or nominal: $d_{ij}^{(f)} = 0$ if $x_{if} = x_{jf}$; or $d_{ij}^{(f)} = 1$ otherwise
- \Box If f is ordinal
 - Compute ranks z_{if} (where $z_{if} = \frac{r_{if} 1}{M_f 1}$)
 - Treat z_{if} as interval-scaled

Cosine Similarity of Two Vectors

□ A **document** can be represented by a bag of terms or a long vector, with each attribute recording the *frequency* of a particular term (such as word, keyword, or phrase) in the document

Document	teamcoach		hockey	baseball	soccer	penalty	score	win	loss	season	
Document1	5	0	3	0	2	0	0	2	0	0	
Document2	3	0	2	0	1	1	0	1	0	1	
Document3	0	7	0	2	1	0	0	3	0	0	
Document4	0	1	0	0	1	2	2	0	3	0	

- Other vector objects: Gene features in micro-arrays
- □ Applications: Information retrieval, biologic taxonomy, gene feature mapping, etc.
- \square Cosine measure: If d_1 and d_2 are two vectors (e.g., term-frequency vectors), then

$$cos(d_1, d_2) = \frac{d_1 \bullet d_2}{\|d_1\| \times \|d_2\|}$$

where \bullet indicates vector dot product, ||d||: the length of vector d

