实验报告

此实验报告是加大测试图像后的实验分析,在实验中加入 lenaBright(128,50)、lenaBright(128,100)、lenaBright(128,150) 三张曝光图像,并加多了 β 的范围,总结为如下特点:

- 两参数实验报告中的特点基本吻合
- 对于三张曝光图, β₂、β₃ 处理能力比较乏力, 而 β₁ 处理能力比较出 色, 如图1所示。而对于正常图像, β₁ 为零时比较好。

- β_3 与 β_2 有互补性,对于噪声较强的情况 (snr 较大) 时,适当调整 β_3 的值会比较好,如图所示。
- 对于时间来说,噪声情况下 β_2 起主要作用,时间随 β_2 的增大而增大,同时加模糊噪声情况下 β_1 和 β_3 可以有效地加速计算过程,如图3所示。

 \boxtimes 2: psnr vs β_2 β_3 ; (a): snr=15; (b): snr=17; (c): snr=19; (d): snr=21; (e): snr=23; Image: cameraman

• 最佳 β_2 与 β_1 和 β_2 之间的成正比例函数,且比例系数小于 0,如图45所示。

下一步:

- 在后面 LVOC 中加入自然曝光图像进行测试,由于自然曝光图像无 Groudtruth,所以找一个其他指标进行评价。
- 在后面训练中,使得训练参数的变化大致符合 β 之间的正比例关系 (按图示方向搜索),并举例说明。
- 在后面训练中,调整 β 值 (β_1, β_3) 使得在减少 psnr 的情况下使得时间减少,并举例。

3: time vs β ; (a)(b): noise; (c)(d): noise and blur(type1,psf(p)=3); Image: lenaBright(128,150); snr=23

 \boxtimes 4: optimal β_2 vs β_1 or β_3 ; (a)(b): original data; (c)(d): polyfit function; Image: lenaBright(128,150); snr=23

图 5: optimal β_2 vs β_1 & β_3 ; Image:lenaBright(128,150); snr=23