Métodos Numéricos

Guía 6: Ecuaciones diferenciales

FORTRAN

Problema 1: Escriba un programa que le permita resolver numéricamente el problema de valores iniciales de la forma,

$$\frac{dy}{dt} = f(t, y), \quad a \le t \le b, \quad y(a) = \alpha$$

utilizando los métodos de Euler, Runge Kutta de 2° orden y Runge Kutta de 4° orden en el intervalo $a \le t \le b$ con un paso de integración h. El programa debe usar un módulo de precisión y un módulo que contenga tres subrutinas, una para el paso de integración de cada método, y la función f(t,y). Utilice una variable entera para seleccionar el método a utilizar, y de acuerdo a éste, el programa debe generar un archivo de salida (con nombre indicativo del método) con dos columnas separadas por 3 espacios, en formato exponencial, con 7 cifras significativas: $t_i = a + i h$ y la correspondiente aproximación w_i a la solución exacta $y(t_i)$.

Problema 2: Utilizando el programa realizado en el problema 1, resuelva con los tres métodos dados en el teórico (Euler, Runge Kutta de segundo orden y Runge Kutta de cuarto orden) el siguiente problema de valores iniciales:

$$\frac{dy}{dt} = -y + \sin(2\pi t), \quad 0 \le t \le 1, \quad y(0) = 1.0$$

en el intervalo $0 \le t \le 1$ con un paso de integración h = 0.1. Sabiendo que la solución exacta es:

$$y_e(t) = \left(1 + \frac{2\pi}{1 + 4\pi^2}\right)e^{-t} + \frac{\sin(2\pi t) - 2\pi\cos(2\pi t)}{1 + 4\pi^2},$$

modifique el programa de forma tal que calcule, para cada método, también el error absoluto a cada paso, $\epsilon(t)$ $|y(t)-y_e(t)|$. Usando gnuplot observe que su solución se aproxima a la solución exacta. Grafique $\epsilon(t)$ usando h = 0.01 y h = 0.005 para cada método (no olvide hacer gráficas completas, en color, con leyendas apropiadas, título, ejes y rangos adecuados que muestren claramente la conclusión del problema). Discuta los resultados.

Problema 3: Considere el problema de valor inicial:

$$\frac{dy}{dx} = \sin(y), \qquad 0 \le t \le 20.0, \qquad y(0) = \alpha$$

Resuélvalo para los siguientes valores iniciales $\alpha_1 = 0.5$, $\alpha_2 = 2.0$, $\alpha_3 = \pi$, $\alpha_4 = 3.6$ $\alpha_5 = 5.5$ y $\alpha_6 = 2\pi$, en todos los casos con h=0.1. Para cada valor inicial genere un archivo de salida como el indicado en el problema 1 (sólo para RK4). Luego grafique simultáneamente las seis curvas aproximadas a las soluciones de los seis problemas de valores iniciales (no olvide hacer un gráfico de calidad, completo). Analice.

Problema 4: Considere el problema de valores iniciales para la ecuación de la dinámica de un péndulo simple de longitud l

$$\frac{d^2\theta}{dt^2} = -\frac{g}{l}\sin(\theta), \quad \theta(0) = \theta_0, \quad \frac{d\theta}{dt}(0) = \dot{\theta}_0,$$

donde g es la acelaración de la gravedad. Definiendo $u = \dot{\theta}$ esta ecuación de segundo orden se puede escribir como un sistema de dos ecuaciones de primer orden

$$\frac{d\theta}{dt} = u \tag{1}$$

$$\frac{du}{dt} = -\frac{g}{l}\sin(\theta) \tag{2}$$

$$\frac{du}{dt} = -\frac{g}{l}\sin\left(\theta\right) \tag{2}$$

mientras que las condiciones iniciales transformadas quedan $(u(0), \theta(0)) = (\dot{\theta}_0, \theta_0)$.

- a) Modifique la subrutina de Runge Kutta de 4° orden del problema 1 de forma tal que resuelva en general un sistema de n ecuaciones diferenciales ordinarias acopladas.
- b) Utilice este programa modificado para resolver ahora este sistema de dos ecuaciones diferenciales ordinarias acopladas con $g = 10m/s^2$ y l = 1m. Ahora la salida debe ser un archivo de tres columnas t, $\theta(t)$ y u(t).

- c) Grafique θ vs. t, para $0 \le t \le 10$, con las siguientes condiciones iniciales: a) u(0) = 0 y $\theta(0) = 0.5$ y b) u(0) = 0 y $\theta(0) = 0.25$
- d) Modifique el programa para que calcule la energía del sistema en cada paso, y la escriba en un archivo de salida. Para las condiciones del inciso anterior grafique la energía vs. t. Analice la conservación para distintos valores de h.
- e) Para las condiciones iniciales $\theta(0) = \theta_0$, y u(0) = 0, y sólo cuando $\theta_0 \ll 1$, las ecuaciones de movimiento del péndulo se pueden aproximar por las siguientes:

$$\frac{d\theta}{dt} = u \tag{3}$$

$$\frac{d\theta}{dt} = u$$

$$\frac{du}{dt} = -\frac{g}{l}\theta.$$
(3)

Modifique el programa para resolver estas ecuaciones y compare con la solución exacta $(\theta(t) = \theta_0 \cos(\sqrt{10}t))$. Para verificar esto graficar la diferencia $\theta(t) - \theta_0 \cos(\sqrt{10}t)$, para $0 \le t \le 10$, en los casos $\theta_0 = 1$ y $\theta_0 = 10^{-2}$. En los mismos gráficos comparar con la solución exacta del problema, i.e. con la solución numérica de las ecuaciones (1) y (2).

Problema 5: Considere el problema de estudiar la evolución de una epidemia, con el modelo SIR. Sea S=población de individuos susceptibles, I = población de individuos infectados y R = población de individuos recuperados (que tienen inmunidad y no pueden volver a contagiarse). Entonces las ecuaciones diferenciales asociadas a la evolución temporal de dichas poblaciones son:

$$\frac{dS}{dt} = -\beta SI/N \tag{5}$$

$$\frac{dI}{dt} = \beta SI/N - \gamma I \tag{6}$$

$$\frac{dS}{dt} = -\beta SI/N \tag{5}$$

$$\frac{dI}{dt} = \beta SI/N - \gamma I \tag{6}$$

$$\frac{dR}{dt} = \gamma I \tag{7}$$

donde N = S + I + R es la población total (constante).

- a) Considere las condiciones iniciales: N = 1000, $I_0 = 10$, $R_0 = 0$ y los parámetros $\gamma = 0.1$ y $\beta = 0.5$.
- b) Utilice el programa del problema 4 (runge Kutta de orden 4, para n ecuaciones diferenciales acopladas) para resolver este problema entre t=0 y t=200. Guarde el resultado en un archivo de salida con cuatro columnas: t, S, I y R.
- c) Grafique la evolución temporal de las tres poblaciones.

Problemas complementarios

Problema 6: La llamada ecuación logística

$$\frac{dN}{dt} = r N \left(1 - \frac{N}{K} \right)$$

describe el crecimiento autolimitado de una población dada (suponiendo que no interactúa con otras especies y que tiene fuentes limitadas de alimentos). Fue propuesta por Verhulst en 1838 y permite describir al menos cualitativamente varios fenómenos poblacionales observados en la naturaleza. En esta ecuación N(t) es el número de individuos de la colonia al tiempo t y K es una constante positiva.

Una solución N^* se dice estacionaria si se satisface que $dN^*/dt = 0$, y por ende no cambia en el tiempo. Para esta ecuación es fácil verificar que sólo existen dos soluciones estacionarias: $N_1^* = 0$ y $N_2^* = K$.

Determine cuál de las dos soluciones estacionarias es estable y cuál inestable resolviendo numéricamente la ecuación diferencial con el método Runge-Kutta de cuarto orden para r=2, K=100, en el intervalo $0 \le t \le 50$ con h=0.1

y considerando cinco condiciones iniciales diferentes: a) N(0) = 0, b) N(0) = 2, c) N(0) = 50, d) N(0) = 120 y d) N(0) = 200. Grafique simultáneamente las cinco soluciones t vs. N(t) en el intevalo $0 \le t \le 50$ en un gráfico completo.

Problema 7: Use el método del disparo para resolver los siguientes problemas de frontera con una tolerancia de 10^{-5} . Se da un valor tentativo inicial de h y la solución exacta para comparación.

a) $1 \le t \le 2$, comience con h = 0.5

$$\ddot{x} = -(\dot{x})^2$$
, $x(1) = 0$, $x(2) = \ln(2)$.

Solución exacta $x = \ln(t)$.

b) $-1 \le t \le 0$, comience con h = 0.25

$$\ddot{x} = 2x^3$$
, $x(-1) = \frac{1}{2}$, $x(0) = \frac{1}{3}$.

Solución exacta x = 1/(t+3).

c) $1 \le t \le 2$, comience con h = 0.05

$$\ddot{x} = \frac{(t \dot{x})^2 - 9x^2 + 4t^6}{t^5}, \quad x(1) = 0, \quad x(2) = \ln(256).$$

Solución exacta $x = t^3 \ln(t)$.

Problema 8: Método de Runge-Kutta de orden 4: Muestre que la elección dada en el teórico para los pesos \vec{b} , los nodos \vec{c} y la matriz **A** para el método RK4:

$$\vec{b} = (1/6, 1/3, 1/3, 1/6)$$
 ; $\vec{c} = (0, 1/2, 1/2, 1)$; $a_{2,1} = a_{3,2} = 1/2$; $a_{4,3} = 1$

conduce a las ecuaciones RK4 "clásicas" dadas en clase.

Problema 9: Considere la siguiente ecuación diferencial

$$y'' = \frac{1}{8} (32 + 2x^3 - yy')$$
 para $1 \le x \le 3$

- a) Utilice el método de Runge-Kutta de 4° orden en el intervalo $1 \le x \le 3$ para resolver esta ecuación con las condiciones iniciales y(1) = 17, y'(1) = 0. Encuentre, además y'(3).
- b) Repita el inciso anterior, pero con las condiciones iniciales y(1) = 17, y'(1) = -40.
- c) Use ahora el método de disparo para resolver la misma ecuación diferencial con las condiciones de borde y(1) = 17, y'(3) = 0. Con la información de los incisos anteriores implemente un método de bisección con una tolerancia de 10^{-10} . Escriba en archivo el número de la iteración y el valor de la derivada en x = 3, y una vez encontrada la solución, en otro archivo, escriba x, e y(x), para una grilla de 400 valores equiespaciados de x, entre 1 y 3. Grafique la convergencia y la solución.