MT222: Calculus II

Miraj Samarakkody

Tougaloo College

03/26/2025

7.3 - Trigonometric Substitution

Why we need this?

Think about finding the area under the curve of a semi-circle

Table of Trigonometric Substitution

Table of Trigonometric Substitutions

Expression	Substitution	Identity
$\sqrt{a^2-x^2}$	$x = a \sin \theta, -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$	$1 - \sin^2 \theta = \cos^2 \theta$
$\sqrt{a^2+x^2}$	$x = a \tan \theta, -\frac{\pi}{2} < \theta < \frac{\pi}{2}$	$1 + \tan^2\theta = \sec^2\theta$
$\sqrt{x^2-a^2}$	$x = a \sec \theta$, $0 \le \theta < \frac{\pi}{2}$ or $\pi \le \theta < \frac{3\pi}{2}$	$\sec^2\theta - 1 = \tan^2\theta$

Example 1

Evaluate

$$\int \frac{\sqrt{9-x^2}}{x^2} \ dx$$

Example 2

Find the area enclosed by the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$