Ma/CS 6a

Class 21: Counting with Permutations

By Adam Sheffer

Repeating the Basics

- We have a set of numbers
 X = {1,2,3, ..., n} and a permutation group G of X.
- For example,

$$X = \{1,2,3,4,5,6\}$$

 $G = \{id, (12), (34), (12)(34)\}$

Equivalence Classes

- The group G partitions X into equivalence classes.
 - Two elements $x, y \in X$ are in the same class iff there exists a permutation $g \in G$ such that g(x) = y.

$$X = \{1,2,3,4,5,6\}$$

 $G = \{id, (12), (34), (12)(34)\}$

The classes in this case are {1,2}, {3,4}, {5}, {6}.

Orbits

 The equivalence classes are also called orbits.

• For every
$$x \in X$$
 the orbit of x is $Gx = \{\text{The equivalence class that contains } x\} = \{y \in X \mid g(x) = y \text{ for some } g \in G\}.$

Another Example: Orbits

- Let $X = \{1,2,3,4\}$ and let $G = \{id, (1\ 2\ 3\ 4), (1\ 3)(2\ 4), (1\ 4\ 3\ 2), (2\ 4), (1\ 3), (1\ 2)(3\ 4), (1\ 4)(2\ 3)\}.$
- What are the orbits/equivalence classes that G induces on X?
 - There is a single class $G1 = G2 = G3 = G4 = \{1,2,3,4\}.$

Stabilizers

- The *stabilizer* of $x \in X$ is the set of all permutations that take x to itself (x is "stable" in them). We denote this set as G_x .
- Example.

$$X = \{1,2,3,4,5,6\}$$

 $G = \{id, (12), (34), (12)(34)\}$

• $G_1 = \{id, (3 4)\}.$

Example: Stabilizer

 Consider the following permutation group of {1,2,3,4}:

$$G = \{ id, (1234), (13)(24), (1432), (24), (13), (12)(34), (14)(23) \}.$$

- The stabilizers are
 - $G_1 = \{id, (24)\}.$
 - $G_2 = \{id, (13)\}.$
 - $G_3 = \{id, (24)\}.$
 - $G_4 = \{id, (13)\}.$

Stabilizers are Subgroups

- Claim. G_x is a subgroup of G.
 - Closure. If $g, h \in G_x$ then g(x) = x and h(x) = x. Since gh(x) = x we have $gh \in G_x$.
 - \circ **Associativity.** Implied by the associativity of G.
 - **Identity.** Since id(x) = x, we have $id \in G_x$.
 - Inverse. If $g \in G_x$ then g(x) = x. This implies that $g^{-1}(x) = x$ so $g^{-1} \in G_x$.

Recall: Sizes of Orbits and Stabilizers

• Theorem. Let G be a group of permutations of the set X. For every $x \in X$ we have

Example: Orbits and Stabilizers

 Consider the following permutation group of {1,2,3,4}:

$$G = \{ id, (1234), (13)(24), (1432), (24), (13), (12)(34), (14)(23) \}.$$

- We have |G| = 8.
- We have the orbit $G1 = \{1,2,3,4\}$. So |G1| = 4.
- We have the stabilizer $G_1 = \{id, (2 4)\}$. So $|G_1| = 2$.
- Combining the above yields $|G| = 8 = |G1| \cdot |G_1|.$

Warm-up Problem

- **Problem.** Consider a group of permutations G of the set X. Prove that if $x, y \in X$ are in the same orbit, then $|G_x| = |G_y|$.
- Proof.
 - By the assumption, we have |Gx| = |Gy|.
 - By the previous theorem

$$|G_x| = \frac{|G|}{|Gx|} = \frac{|G|}{|Gy|} = |G_y|.$$

Distinct Identity Cards

- (Silly) Problem. A company produces identity cards that are 3 × 3 grids with holes in exactly two of the squares.
- How many distinct cards can be produced?

$$\binom{9}{2} = 36.$$

Distinct Identity Cards 2

- Problem (part 2). The identity cards are given to mathematicians, which might wear them upside down, sideways, back to front, etc.
- How many distinct cards can produced, without a chance of confusing two?

Rephrasing the Problem

- Let *X* be the set of the original 36 cards.
- Let G be the group of symmetries of a card (combinations of rotations and reflections taking the 3 × 3 grid to itself).
- Consider a symmetry $g \in G$.
 - Notice that *g* is a **bijection** from *X* to itself.
 - We think of g as a permutation of the set X.

Rephrasing the Problem (2)

- Let X be the set of the original 36 cards.
- Let G be the group of symmetries of a card.
- We think of G is a group of permutations of X.
- The number of distinct cards under the new definition is the number of different orbits of G on X.
 - We would like a simple way for computing the number of orbits.

Number of Fixed Elements

- For every $g \in G$, we define $F(g) = |\{x \in X : g(x) = x\}|.$
 - F(g) is the number of **stabilizers** that contain g.
- **Example.** Consider the following permutation group of {1,2,3,4}.

$$G = \{ id, (1 2 3 4), (1 3)(2 4), (1 4 3 2), (2 4), (1 3), (1 2)(3 4), (1 4)(2 3) \}.$$

- $\circ F(id) = 4.$
- $\circ F((13)) = 2.$
- F((12)(34)) = 0.

The Number of Distinct Orbits

 Claim. Let G be a group of permutations of the set X. The number of orbits of G on X is

$$\frac{1}{|G|} \sum_{g \in G} |F(g)|.$$

(= the average size of F(g))

Proof by Double Counting

- We *double count* the size of the set $E = \{(g, x) \mid g \in G, x \in X, g(x) = x\}.$
- For a fixed $g \in G$, the number of pairs in E that contain g is F(g). That is

$$|E| = \sum_{g \in G} F(g).$$

• For a fixed $x \in X$, the number of pairs that contain x is $|G_x|$. That is,

$$|E| = \sum_{x \in X} |G_x|.$$

Proof (cont.)

The double counting implies

$$\sum_{g\in G}|F(g)|=\sum_{x\in X}|G_x|.$$

- Recall that if $x, y \in X$ are in the same orbit, then $|G_x| = |G_v|$.
- An orbit Gx corresponds to |Gx| elements of the red sum, each of size $|G_x|$. Thus, the orbit contributes to the sum $|Gx||G_x| = |G|$.
- If there are t orbits then

$$\sum_{g \in G} |F(g)| = t|G| \quad \Rightarrow \quad t = \frac{\sum_{g \in G} |F(g)|}{|G|}.$$

Back to Identity Cards

- Recall. In the identity cards problem we have a set X of 36 cards. The number of distinct cards is the number of orbits under the group G of card symmetries.
 - That is, we need to calculate

$$\frac{\sum_{g \in G} |F(g)|}{|G|}.$$

Counting |G| and |F(g)|

 Symmetries of the square and the number of elements that they fix:

Symmetry g	F(g)					_
Identity	36	`	`\			
Rotation 90°	0					
Rotation 180°	4					
Rotation 270°	0 /					
Reflection: main diagonal	6					, 1
Reflection: other diagonal	6		_		_	
Reflection: vertical bisector	6			•		
Reflection: horizontal bisector	6 🖊					

More Counting

- There are eight symmetries of a card, so |G| = 8.
- We have

$$\sum_{g \in G} F(g) = 36 + 0 + 4 + 0 + 6 + 6 + 6 + 6.$$

• Therefore, the number of distinct cards/orbits is $\frac{1}{8} \cdot 64 = 8$.

Necklaces

 Problem. Necklaces are manufactured by arranging 13 blue beads and three red beads on a loop of string. How many such distinct necklaces are there?

Necklaces Solution

- Think of the necklace as a regular 16-gon.
 - $^{\circ}$ The number of general configurations is $\binom{16}{3} = 560.$
 - Two necklaces are identical if their 16-gons are identical under rotations and reflections (that is, under a symmetry).
 - The number of distinct necklaces is the number of orbits under the symmetry group of the 16-gon.

Necklaces Solution (cont.)

- To count distinct necklaces, we count the number of symmetries and the number of elements fixed by each symmetry.
- For example:
 - The identity symmetry fixes all 560 elements.
 - There are 15 rotations of angles $\frac{2\pi n}{16}$ where $1 \le n \le 15$. These do not fix any elements.
- The number of distinct necklaces/orbits is

$$\frac{\sum_{g} |F(g)|}{|G|} = \frac{672}{32} = \mathbf{21}.$$

Everything is a Permutation Group!

- Theorem (Cayley). Every finite group G is isomorphic to a permutation group G'.
- Proof.
 - \circ As a set of objects, we take X = G.
 - For every $a \in G$, we consider $\pi_a(x) = ax$. This is a *permutation* of X = G due to the *Latin square property* of G.
 - \circ We set $G' = \{\pi_a \mid a \in G\}$ and claim that it is a group.

Example

- Let G be the group $\mathbb{Z}_4 = \{0,1,2,3\}$ under addition $mod\ 4$.
- What is *X*?
 - $\circ X = \{0,1,2,3\}.$
- What is *G*′?
 - The set of bijections $\pi_a(x) = a + x \mod 4$.
- ullet For example, π_2 is the permutation

G' is a Group

- For every $a \in G$, we consider $\pi_a(x) = ax$.
- We set X = G and $G' = \{\pi_a \mid a \in G\}$.
 - \circ Closure. We have $\pi_a\pi_b=\pi_c$ where $ab=c\in G$. Thus $\pi_c\in G'$.
 - Associativity. We have $(\pi_a \pi_b)\pi_c = \pi_a(\pi_b \pi_c)$ since (ab)c = a(bc) in G.
 - **Identity.** If 1 is the identity of G then π_1 is the identity of G'.
 - **Inverse.** The inverse of π_a is $\pi_{a^{-1}}$, where a^{-1} is the inverse of a in G.

Completing the Proof

- It remains to prove that G and G' are isomorphic.
- We consider the isomorphism β such that for every $a \in G$, we have $\beta(a) = \pi_a$.
- This is an isomorphism since for every $a, b \in G$, we have

$$\beta(ab) = \pi_{ab} = \pi_a \pi_b = \beta(a)\beta(b).$$

Example: Isomorphic Permutation Group

- Consider the group $G = \{1, -1, i, -i\}$ under standard product.
 - Our set of objects is $X = \{1, -1, i, -i\}$.
 - The permutation group over X is $G' = \{\pi_1, \pi_{-1}, \pi_i, \pi_{-i}\}.$
 - We have $\pi_1 = id$.
 - $\pi_i(1) = i, \pi_i(-1) = -i, \pi_i(i) = -1,$ $\pi_i(-i) = 1.$
 - In cycle notation, $\pi_i = (1 \ i \ -1 \ -i)$.

The End: A Silly Joke

