Informatics 1 Introduction to Computation Lecture 10

Rates of Growth

Philip Wadler
University of Edinburgh

Associativity and Efficiency: Left vs. Right

Consider m lists, xs_1, \ldots, xs_m , each of length n.

Associated to the left, foldl (++) []

$$((([]++xs_1)++xs_2)++xs_3)\cdots++xs_m)$$

computing takes

$$0 + n + 2n + 3n + \dots + (m-1)n$$
m times

steps. If we have m lists of length n, it takes $O(m^2n)$ steps.

Associated to the right, foldr (++) []

$$xs_1 + \cdots (xs_{m-2} + (xs_{m-1} + (xs_m + + [])))$$

computing takes

$$\underbrace{n+n+n+\cdots+n}_{m \text{ times}}$$

steps. If we have m lists of length n, it takes O(mn) steps. When m = 1000, the first is a thousand times slower than the second!

$t = n \text{ vs } t = n^2$

$t = 2n \text{ vs } t = 0.5n^2$

Big-O notation

Definition We say f is O(g) when g is an upper bound for f, for big enough inputs. To be precise, f is O(g) if there are constants c and m such that $f(n) \leq cg(n)$ for all $n \geq m$.

For instance: 2n + 10 is O(n) because $2n + 10 \le 4n$ for all $n \ge 5$.

Big-O notation

Definition We say f is O(g) when g is an upper bound for f, for big enough inputs. To be precise, f is O(g) if there are constants c and m such that $f(n) \leq cg(n)$ for all $n \geq m$.

For instance: 2n + 10 is O(n) because $2n + 10 \le 4n$ for all $n \ge 5$.

Constant factors don't matter

$$O(n) = O(an+b)$$
, for any a and b

$$O(n^2) = O(an^2+bn+c)$$
, for any a , b , and c

$$O(n^3) = O(an^3+bn^2+cn+d)$$
, for any a , b , c , and d

$$O(log_2(n)) = O(log_{10}(n))$$

$O(n), O(n^2), O(n^3), O(n^4)$

$O(\log n), O(n), O(n\log n), O(2^n)$

Associativity and Efficiency: Sequential vs. Parallel

Sequential:

$$(((((((x_1+x_2)+x_3)+x_4)+x_5)+x_6)+x_7)+x_8)$$

Summing 8 numbers takes 7 steps. If we have m numbers it takes O(m) steps.

Parallel:

$$((x_1+x_2)+(x_3+x_4))+((x_5+x_6)+(x_7+x_8))$$

Summing 8 numbers takes 3 steps.

Full Binary Tree

If we have m numbers it takes $O(\log(m))$ steps. When m = 1000, the first is a hundred times slower than the second!

$O(\log n), O(n \log n), O(2^n)$

 $O(\log n)$ "logarithmic": parallel sum, divide and conquer search algorithms

O(n) "linear": ordinary sum

 $O(n \log n)$: sorting algorithms

 $O(2^n)$ "exponential": tautology checking