CIS*4720 Image Processing and Vision

Assignment 2 Part 1 & 2

Maneesh Wijewardhana (1125828)

I have read and understood the Academic Misconduct section in the course outline. I assert this work is my own.

1a)

- Let $h = G_1 + G_2$ which by definition, is infinite
- Then for any $(x,y) \in 0..M-1 \rightarrow 0..N-1$ we have

$$\diamond \ T_f(h)(x,y) = \sum_{u=0}^{m-1} \sum_{v=0}^{n-1} f(u,v)h(x+u-\tfrac{m-1}{2},y+v-\tfrac{n-1}{2})$$

$$\diamond = \sum_{u=0}^{m-1} \sum_{v=0}^{n-1} f(u,v) \left(G_1(x+u-\frac{m-1}{2},y+v-\frac{n-1}{2}) + G_2(x+u-\frac{m-1}{2},y+v-\frac{n-1}{2}) \right)$$

♦ Then by distributing the sum over addition we get:

$$\diamond = \sum_{u=0}^{m-1} \sum_{v=0}^{n-1} f(u,v) \left(G_1(x+u-\frac{m-1}{2},y+v-\frac{n-1}{2}) + f(u,v) G_2(x+u-\frac{m-1}{2},y+v-\frac{n-1}{2}) \right)$$

$$\diamond = \sum_{u=0}^{m-1} \sum_{v=0}^{n-1} f(u,v) G_1(x+u-\frac{m-1}{2},y+v-\frac{n-1}{2}) + \sum_{u=0}^{m-1} \sum_{v=0}^{n-1} f(u,v) G_2(x+u-\frac{m-1}{2},y+v-\frac{n-1}{2})$$

$$\diamond = T_f(G_1)(x,y) + T_f(G_2)(x,y)$$

$$\diamond :: T_f(G_1 + G_2) = T_f(G_1) + T_f(G_2)$$

1b)

• Consider a zero padded infinite image
$$G_1 = \begin{bmatrix} 3 & 9 & 5 \\ 3 & 3 & 6 \\ 4 & 5 & 3 \end{bmatrix} \land G_2 = \begin{bmatrix} 8 & 6 & 9 \\ 3 & 10 & 15 \\ 6 & 1 & 20 \end{bmatrix}$$

 Consider the neighborhood
$$f = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\diamond :: S_f\{(0,1), (1,0), (1,2), (2,1)\}$$

• Then
$$G_1 + G_2 = \begin{bmatrix} 11 & 15 & 14 \\ 6 & 13 & 21 \\ 10 & 6 & 23 \end{bmatrix}$$

- When we apply our neighborhood f, we get the set $MIN_f(G_1+G_2)\{15,6,21,6\}=\mathbf{6}$
- When we calculate $MIN_f(G_1) + MIN_f(G_2)$, we get 3 + 1 = 4
- : $MIN_f(G_1 + G_2) \neq MIN_f(G_1) + MIN_f(G_2)$ due to a counterexample

1c)

- Consider the same zero padded infinite images and neighborhood defined in 1b)
- When we apply our neighborhood f, we get the set $MED_f(G_1 + G_2)\{6, 6, 15, 21\} = 13.5$
- When we calculate $MED_f(G_1) + MED_f(G_2)$, we get 5.5 + 4.5 = 10
- : $MED_f(G_1 + G_2) \neq MED_f(G_1) + MED_f(G_2)$ due to a counterexample

1d)

- Consider the same zero padded infinite images and neighborhood defined in 1b)
- When we apply our neighborhood f, we get the set $MAX_f(G_1+G_2)\{15,6,21,6\}=21$
- When we calculate $MAX_f(G_1) + MAX_f(G_2)$, we get 9 + 15 = 24
- : $MAX_f(G_1+G_2) \neq MAX_f(G_1) + MAX_f(G_2)$ due to a counterexample

2a)

• Let's consider the case where k = 0, then $T_f(k * G)(x, y) = \sum_{u=0}^{m-1} \sum_{v=0}^{n-1} f(u, v)(k * G)(x + u - \frac{m-1}{2}, y + v - \frac{n-1}{2}) = 0 \ \forall (x, y) \in 0...M - 1 \times 0..N - 1 \text{ since } k * G \text{ is zero everywhere}$

- Similarly, $k * T_f(G)(x,y) = k \sum_{u=0}^{m-1} \sum_{v=0}^{n-1} f(u,v)G(x+u-\frac{m-1}{2},y+v-\frac{n-1}{2}) = 0 \ \forall (x,y) \in 0..M-1 \times 0..N-1$ since k is zero
- $T_f(k*G) = k*T_f(G)$ holds when k=0
- Now let's consider the case where k is not zero, then we have:

• ... we have proven that $T_f(k*G) = k*T_f(G)$

2b)

- Consider a zero padded infinite image $G = \begin{bmatrix} 3 & 9 & 5 \\ 3 & 3 & 6 \\ 4 & 5 & 3 \end{bmatrix}$
- Consider the neighborhood $f = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$

$$\diamond :: S_f\{(0,1), (1,0), (1,2), (2,1)\}$$

- When we apply our neighborhood f, we get the set $MIN_f(k*G)\{-27, -9, -18, -15\} = -27$
- When we calculate $k * MIN_f(G)$, we get (-3) * 3 = -9
- : $MIN_f(k*G) \neq k*MIN_f(G)$ due to a counterexample

2c)

- We have $G(x+u-\frac{m-1}{2},y+v-\frac{n-1}{2})$
- We need to show that multiplying all the values by k does not change the number of values below or above the median
- Let's consider the set of values below the median of the unscaled values, suppose this set has m values
- Then, the set of scaled values below the median is:
 - $\diamond k * G(x + u \frac{m-1}{2}, y + v \frac{n-1}{2})$ for $(u, v) \in S_f$, sorted in increasing order where there are m values in this set
- Multiplying all these values by k does not change their order, so the value that was previously the median of the unscaled values is now the (m/2)-th largest value in the scaled set
- \therefore the number of values below the median is still m, and the number of values above the median is still the same as well
- \bullet The same argument applies to the set of values above the median, so the number of values below and above the median is unchanged when we scale the values by k
- : we have shown that $MED_f(k*G) = k*MED_f(G)$

2d)

- Consider the same zero padded infinite images and neighborhood defined in 2b)
- When we apply our neighborhood f, we get the set $MAX_f(k*G)\{-27, -9, -18, -15\} = -9$
- When we calculate $k * MAX_f(G)$, we get (-3) * (-9) = 27
- $\therefore MAX_f(k*G) \neq k*MAX_f(G)$ due to a counterexample

3a)

- Since $F(x,y) = 0 \ \forall (x,y) \in \mathbb{Z}^2$, any infinite image G where G R F must satisfy $G(x+a,y+b) = 0 \ \forall (x,y)$ and some $(a,b) \in \mathbb{Z}^2$
- This means that G(x,y) must also equal to $0 \ \forall (x,y) \in \mathbb{Z}^2$
- \therefore there is only one infinite image that is related to F, more specifically, the function $G(x,y)=0 \ \forall (x,y)\in\mathbb{Z}^2$

3b)

 \bullet Let H be an infinite image where H R G

- Then \exists a pair of integers $(a,b) \mid \forall (x,y) \in \mathbb{Z}^2, H(x+a,y+b) = G(x,y)$. In particular, we have H(a,b) = G(0,0) = 1
- If we consider the values of H in the first row (y=0) and the first column (x=0), we have:

$$\Leftrightarrow H(x+a,b) = G(x,0) = 0 \ \forall x \neq 0$$

$$\diamond \ H(a, y + b) = G(0, y) = 0 \ \forall y \neq 0$$

- \therefore H must be constant along each row and each column, with the value of 0 everywhere except for H(a,b)=1
- \bullet This means that any infinite image like above is related to G
- : the number of infinite images that are related to G is the same as the number of choices for the cell (a,b) which is infinite since \mathbb{Z}^2 is infinite

3c)

- \bullet Consider the infinite image H defined as follows:
 - $\Leftrightarrow H(x,y)=0 \text{ if } (x,y)\in\{(2n,2m)|n,m\in\mathbb{Z}\} \text{ (i.e. } H \text{ is } 0 \text{ at all even coordinates)}$
 - $\Leftrightarrow H(x,y)=1 \text{ if } (x,y)\in \{(2n+1,2m+1)|n,m\in\mathbb{Z}\} \text{ (i.e. } H \text{ is } 1 \text{ at all odd coordinates)}$
- We claim that H is related to exactly $F \wedge G$
- To see this, note that for any $(x,y) \in \mathbb{Z}^2$, either (x,y) is even or odd
 - \diamond If (x, y) is even:
 - * (x-2n, y-2m) is also even for any $(n, m) \in \mathbb{Z}^2$
 - * : for any $(a,b) \in \mathbb{Z}^2$ we have H(x+a,y+b) = 0 = F(x+a-a,y+b-b)
 - \diamond If (x,y) is odd:
 - * (x-2n-1,y-2m-1) is also odd for any $(n,m)\in\mathbb{Z}^2$
 - * : for any $(a,b) \in \mathbb{Z}^2$ we have H(x+a,y+b) = 1 = G(x+a-a,y+b-b)
- Thus, H is related to both $F \wedge G$
- To show that H is not realted to any other infinite image, let's take another image K such that H R K
- This means H(x+a,y+b) = K(x,y)
- Consider the case where (a,b)=(0,0), then $\forall (x,y)\in\mathbb{Z}^2$ we have H(x,y)=K(x,y)
- In particular, this implies that for all odd $(x,y) \in \mathbb{Z}^2$, K(x,y) = 1 and for all even $(x,y) \in \mathbb{Z}^2$, K(x,y) = 0
- However, this means that K has the same pattern as G which we have already shown is related to H

4a)

• f^C can be formally defined as follows:

$$\forall (x,y) \in 0..M - 1 \times 0..N - 1, f^{C}(x,y) = f(x,y)$$

$$\Leftrightarrow \forall (x,y) \notin 0..M - 1 \times 0..N - 1, \forall (i,j) \in \mathbb{Z}^2, f^C(x+iM,y+jN) = f(x,y)$$

4b)

- f^R can be formally defined as follows:
 - $\Leftrightarrow f^R(x,y) = f(|x'|,|y'|)$ where $x' \wedge y'$ are defined as follows:

*
$$x' = x \text{ if } 0 < x < M$$

*
$$x' = -x \text{ if } -M \le x < 0$$

*
$$x' = 2M - x - 1$$
 if $x > M$

*
$$y' = y$$
 if $0 \le y < N$

*
$$y' = -y \text{ if } -N \le y \le 0$$

*
$$y' = 2N - x - 1$$
 if $y > N$

5a)

- ullet There is only 1 Z-image that are also C-images which is the 0 image
- [...0 0 0...]

5b)

- There is only 1 Z-image that are also R-images which is the 0 image
- [...0 0 0...]

5c)

- R-images are also C-images due to this concept:
- If we take an R-image like $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}^R$, we can expand it out to $\begin{bmatrix} ... & 1 & 2 & 3 & 3 & 2 & 1 & 1 & 2 & 3 ... \end{bmatrix}^R$
- We can see that in this case, the values [3 2 1] are seen when $2m \times 2n$ which is reflected
- However, we can also see that the values [1 2 3] are seen when $4m \times 4n$ which corresponds to the C-image because the original was [1 2 3]^R

5d)

• If we take a C-image defined as $[1\ 2\ 3]^C$, expanding it out gets us $[1\ 2\ 3\ 1\ 2\ 3]^C$ which is not reflected and thus, not an R-image

6a)

- The infinite image that has no discernible patterns such as zero padding, circular indexing, or reflected indexing, but rather consists of random values would allow for no minimum generator
- For example, if we add 1s in random spots:
 - \diamond [...1 3 1 1 2 1 1...] does not have a minimum generator
 - ♦ The 1 values can be replaced by any integer which would allow for it to be an infinite image

6b)

- An infinite image with 1 value in it would by definition have exactly 1 minimum generator which would be itself
- For example:
 - \diamond The infinite image $[...1...]^C$
 - ♦ This image has exactly 1 minimum generator defined as [1]

6c)

- An infinite image with 2 values repeating would by definition have exactly 2 minimum generators which would be the 2 values in either direction
- For example:
 - \diamond The infinite image [...1 0 1 0 1 0...]^C
 - \diamond This image has exactly 2 minimum generators defined as [1 0] and [0 1]