

AP2112

General Description

The AP2112 is CMOS process low dropout linear regulator with enable function, the regulator delivers a guaranteed 600mA (min.) continuous load current.

The AP2112 provides 1.2V, 1.8V, 2.5V, 2.6V, 2.8V and 3.3V regulated output and 0.8V to 5V adjustable output, and provides excellent output accuracy $\pm 1.5\%$, also provides an excellent load regulation, line regulation and excellent load transient performance due to very fast loop response. The AP2112 has built-in auto discharge function.

The regulator features low power consumption, and provides SOT-23-5, SOT-89-5, and SOIC-8 packages.

Features

- Output Voltage Accuracy: ±1.5%
- Output Current: 600mA (Min.)
- Foldback Short Current Protection: 50mA
- Enable Function to Turn ON/OFF V_{OUT}
- Low Dropout Voltage (3.3V): 250mV (Typ.)
 @I_{OUT}=600mA
- Excellent Load Regulation: 0.2%/A (Typ.)
- Excellent Line Regulation: 0.02%/V (Typ.)
- Low Quiescent Current: 55µA (Typ.)
- Low Standby Current: 0.01μA (Typ.)
- Low Output Noise: $50\mu V_{RMS}$
- PSRR: 100Hz -65dB, 1kHz -65dB
- OTSD Protection
- Stable with 1.0μF Flexible Cap: Ceramic, Tantalum and Aluminum Electrolytic
- Operation Temperature Range: -40°C to 85°C
- ESD: MM 400V, HBM 4000V

Applications

- Laptop Computer
- Portable DVD
- LCD Monitor

Figure 1. Package Types of AP2112

AP2112

Pin Configuration

Figure 2. Pin Configuration of AP2112 (Top View)

Pin Descriptions

	PIN No) .	3 T	ъ
SOT-23-5	SOT-89-5	SOIC-8	Name	Descriptions
1	4	8	VIN	Input Voltage
2	2	6, 7	GND	GND
3	3 (R5)	5	EN	Chin Enable II normal work I shutdown output
3	1 (R5A)	3	EIN	Chip Enable, H – normal work, L – shutdown output
4			ADJ/NC	Adjust Output for ADJ version/No Connection for Fixed Version
	1 (R5)	2.2.4	NC	No Commention
	3 (R5A)	2, 3, 4	NC	No Connection
5	5	1	VOUT	Output Voltage

Mar. 2013 Rev. 2. 0

AP2112

600mA CMOS LDO REGULATOR WITH ENABLE

Functional Block Diagram

 $A(B)\{C\}[D]$

A: SOT-89-5 (R5)

B: SOT-89-5 (R5A)

C: SOIC-8

D: SOT-23-5

Figure 3. Functional Block Diagram of AP2112 for Fixed Version

Figure 4. Functional Block Diagram of AP2112 for Adjustable Version

AP2112

Ordering Information

Package	Temperature Range	Condition	Part Number	Marking ID	Packing Type
		1.2V	AP2112K-1.2TRG1	G3L	Tape & Reel
		1.8V	AP2112K-1.8TRG1	G3M	Tape & Reel
		2.5V	AP2112K-2.5TRG1	G3N	Tape & Reel
SOT-23-5	-40 to 85°C	2.6V	AP2112K-2.6TRG1	G5N	Tape & Reel
		2.8V	AP2112K-2.8TRG1	G3Q	Tape & Reel
		3.3V	AP2112K-3.3TRG1	G3P	Tape & Reel
		ADJ	AP2112K-ADJTRG1	G3T	Tape & Reel
		1.2V	AP2112M-1.2G1	2112M-1.2G1	Tube
		1.2 V	AP2112M-1.2TRG1	2112M-1.2G1	Tape & Reel
		1.8V	AP2112M-1.8G1	2112M-1.8G1	Tube
		1.8 V	AP2112M-1.8TRG1	2112M-1.8G1	Tape & Reel
SOIC 9	40.4 9500	2.5V	AP2112M-2.5G1	2112M-2.5G1	Tube
SOIC-8	SOIC-8 -40 to 85°C	2.3 V	AP2112M-2.5TRG1	2112M-2.5G1	Tape & Reel
		2.6V	AP2112M-2.6G1	2112M-2.6G1	Tube
		2.0 V	AP2112M-2.6TRG1	2112M-2.6G1	Tape & Reel
		3.3V	AP2112M-3.3G1	2112M-3.3G1	Tube
		3.3 V	AP2112M-3.3TRG1	2112M-3.3G1	Tape & Reel
		1.2V(R5)	AP2112R5-1.2TRG1	G37D	Tape & Reel
		1.8V(R5)	AP2112R5-1.8TRG1	G37E	Tape & Reel
SOT-89-5	-40 to 85°C	2.5V(R5)	AP2112R5-2.5TRG1	G37F	Tape & Reel
		2.6V(R5)	AP2112R5-2.6TRG1	G13F	Tape & Reel
		3.3V(R5)	AP2112R5-3.3TRG1	G37G	Tape & Reel
		1.2V(R5A)	AP2112R5A-1.2TRG1	G33C	Tape & Reel
		1.8V(R5A)	AP2112R5A-1.8TRG1	G33E	Tape & Reel
SOT-89-5	-40 to 85°C	2.5V(R5A)	AP2112R5A-2.5TRG1	G28G	Tape & Reel
		2.6V(R5A)	AP2112R5A-2.6TRG1	G13E	Tape & Reel
		3.3V(R5A)	AP2112R5A-3.3TRG1	G28H	Tape & Reel

BCD Semiconductor's Pb-free products, as designated with "G1" suffix in the part number, are RoHS compliant and Green.

AP2112

Absolute Maximum Ratings (Note 1)

Parameter	Symbol	Val	ue	Unit
Power Supply Voltage	V_{CC}	6.5		V
Operating Junction Temperature Range	T_{J}	150		°C
Storage temperature Range	T_{STG}	-65 to 150		°C
Lead Temperature (Soldering, 10 Seconds)	T_{LEAD}	260		°C
		SOT-23-5	184	
Thermal Resistance (Junction to Ambient)(No Heatsink)	$ heta_{ ext{JA}}$	SOIC-8	114	°C/W
		SOT-89-5	120]
ESD (Machine Model)		400		V
ESD (Human Body Model)		400	00	V

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Supply Voltage	V_{IN}	2.5	6.0	V
Ambient Operation Temperature Range	T_{A}	-40	85	°C

AP2112

Electrical Characteristics

AP2112-1.2 Electrical Characteristic (Note 2)

 V_{IN} =2.5V, C_{IN} =1.0 μ F (Ceramic), C_{OUT} =1.0 μ F (Ceramic), Typical T_A =25°C, unless otherwise specified (Note 3).

Parameter	Symbol	Test Co	onditions	Min	Тур	Max	Unit
Output Voltage	V _{OUT}	V _{IN} =2.5V, 1mA≤	≤I _{OUT} ≤30mA	V _{OUT} *98.5%	1.2	V _{OUT} *101.5%	V
Maximum Output Current	I _{OUT(MAX)}	V _{IN} =2.5V, V _{OUT} =1.182V to	1.218V	600			mA
Load Regulation	$(\triangle V_{OUT}/V_{OUT})/$ $\triangle I_{OUT}$	V _{IN} =2.5V, 1mA≤I _{OUT} ≤600mA		-1	0.2	1	%/A
Line Regulation	$(\triangle V_{OUT}/V_{OUT})/$ $\triangle V_{IN}$	2.5V\(\leq V_{IN}\)\(\leq 6V\), I_{OUT}=30mA		-0.1	0.02	0.1	%/o/V
		I _{OUT} =10mA			1000	1300	
Dropout Voltage	V_{DROP}	I _{OUT} =300mA			1000	1300	mV
		I _{OUT} =600mA			1000	1300	
Quiescent Current	I_Q	V _{IN} =2.5V, I _{OUT} =	0mA		55	80	μΑ
Standby Current	I_{STD}	V_{IN} =2.5V, V_{EN} in	n OFF mode		0.01	1.0	μΑ
Power Supply	DCDD	Ripple 0.5Vp-p	f=100Hz		65		ID.
Rejection Ratio	PSRR	V _{IN} =2.5V, I _{OUT} =100mA	f=1KHz		65		dB
Output Voltage Temperature Coefficient	$(\triangle V_{OUT}/V_{OUT})/\triangle T$	I_{OUT} =30mA T_A =-40°C to 85	°C		±100		ppm/°C
Short Current Limit	I_{SHORT}	V _{OUT} =0V			50		mA
RMS Output Noise	V _{NOISE}	No Load, 10Hz≤	f≤100kHz		50		μV_{RMS}
V _{EN} High Voltage	V_{IH}	Enable logic high	h, regulator on	1.5		6.0	V
V _{EN} Low Voltage	V _{IL}	Enable logic low	, regulator off	0		0.4	V
Start-up Time	t_{S}	No Load			20		μs
EN Pull Down Resistor	R_{PD}				3.0		ΜΩ
V _{OUT} Discharge Resistor	R_{DCHG}	Set EN pin at Lo	W		60		Ω
Thermal Shutdown Temperature	T_{OTSD}				160		
Thermal Shutdown Hysteresis	T_{HYOTSD}				25		°C
, ,		SOT-23-5			96		
Thermal Resistance	$ heta_{ m JC}$	SOIC-8			75		°C/W
		SOT-89-5			47		
	<u>l</u>	l		1		1	

Note 2: To prevent the Short Circuit Current protection feature from being prematurely activated, the input voltage must be applied before a current source load is applied.

AP2112

Electrical Characteristics (Continued)

AP2112-1.8 Electrical Characteristic (Note 2)

 V_{IN} =2.8V, C_{IN} =1.0 μ F (Ceramic), C_{OUT} =1.0 μ F (Ceramic), Typical T_A =25°C, unless otherwise specified (Note 3).

Parameter	Symbol	Test Cor	nditions	Min	Тур	Max	Unit	
Output Voltage	V_{OUT}	V _{IN} =2.8V, 1mA ₂	≤I _{OUT} ≤30mA	V _{OUT} *98.5%	1.8	V _{OUT} *101.5%	V	
Maximum Output Current	I _{OUT(MAX)}	V _{IN} =2.8V, V _{OUT} =1.773V to 1.827V		600			mA	
Load Regulation	$(\triangle V_{OUT}/V_{OUT})/$ $\triangle I_{OUT}$	$V_{OUT} = 1.8V, V_{IN} = V_{OUT} + 1V, 1 \text{mA} \le I_{OUT} \le 600 \text{mA}$		-1	0.2	1	%/A	
Line Regulation	$(\wedge \mathbf{V} / \mathbf{V})/$	2.8V≤V _{IN} ≤6V, I _O		-0.1	0.02	0.1	%/V	
		I _{OUT} =10mA	I _{OUT} =10mA		500	700		
Dropout Voltage	V_{DROP}	I _{OUT} =300mA			500	700	mV	
		I _{OUT} =600mA			500	700		
Quiescent Current	I_Q	V_{IN} =2.8V, I_{OUT} =6	0mA		55	80	μΑ	
Standby Current	I_{STD}	V_{IN} =2.8V, V_{EN} in	OFF mode		0.01	1.0	μΑ	
Power Supply Rejection	DCDD	Ripple 0.5Vp-p	f=100Hz		65		αt	
Ratio	PSRR	V _{IN} =2.8V, I _{OUT} =100mA	f=1KHz		65		dB	
Output Voltage Temperature Coefficient	$(\triangle V_{OUT}/V_{OUT})/\triangle T$	I_{OUT} =30mA T_A =-40°C to 85	°C		±100		ppm/°C	
Short Current Limit	I_{SHORT}	V _{OUT} =0V			50		mA	
RMS Output Noise	V _{NOISE}	No Load, 10Hz≤	f≤100kHz		50		μV_{RMS}	
V _{EN} High Voltage	$V_{ m IH}$	Enable logic high	n, regulator on	1.5		6.0	V	
V _{EN} Low Voltage	V_{IL}	Enable logic low	, regulator off	0		0.4	V	
Start-up Time	t_{S}	No Load			20		μs	
EN Pull Down Resistor	R_{PD}				3.0		ΜΩ	
V _{OUT} Discharge Resistor	R _{DCHG}	Set EN pin at Lo	W		60		Ω	
Thermal Shutdown Temperature	T_{OTSD}				160		°C	
Thermal Shutdown Hysteresis	T_{HYOTSD}				25		C	
		SOT-23-5			96			
Thermal Resistance	$\theta_{\rm JC}$	SOIC-8			75		°C/W	
		SOT-89-5			47			

Note 2: To prevent the Short Circuit Current protection feature from being prematurely activated, the input voltage must be applied before a current source load is applied.

AP2112

Electrical Characteristics (Continued)

AP2112-2.5 Electrical Characteristic (Note 2)

 V_{IN} =3.5V, C_{IN} =1.0 μ F (Ceramic), C_{OUT} =1.0 μ F (Ceramic), Typical T_A =25°C, unless otherwise specified (Note 3).

Parameter	Symbol	Test Cor	nditions	Min	Тур	Max	Unit
Output Voltage	$V_{ m OUT}$	V _{IN} =3.5V, 1mA ₅	≤I _{OUT} ≤30mA	V _{OUT} *98.5%	2.5	V _{OUT} *101.5%	V
Maximum Output Current	I _{OUT(MAX)}	V_{IN} =3.5V, V_{OUT} =2.463V to	2.537V	600			mA
Load Regulation	$(\triangle V_{OUT}/V_{OUT})/$ $\triangle I_{OUT}$	V_{OUT} =2.5V, V_{IN} = V_{OUT} +1V, $1 \text{mA} \le I_{OUT} \le 600 \text{mA}$		-1	0.2	1	%/A
Line Regulation	$(\wedge \mathbf{V} / \mathbf{V})/$	$3.5V \le V_{IN} \le 6V$, I_{C}		-0.1	0.02	0.1	%/V
		I _{OUT} =10mA			5	8	
Dropout Voltage	$V_{ m DROP}$	I _{OUT} =300mA			125	200	mV
		I _{OUT} =600mA			250	400	
Quiescent Current	I_Q	V_{IN} =3.5V, I_{OUT} =6	0mA		55	80	μΑ
Standby Current	I_{STD}	V_{IN} =3.5V, V_{EN} in	OFF mode		0.01	1.0	μΑ
Power Supply Rejection	PSRR	Ripple 0.5Vp-p	f=100Hz		65		dB
Ratio	PSKK	V _{IN} =3.5V, I _{OUT} =100mA	f=1KHz		65		ав
Output Voltage Temperature Coefficient	$(\triangle V_{OUT}/V_{OUT})/\triangle T$	I_{OUT} =30mA T_A =-40°C to 85	°C		±100		ppm/°C
Short Current Limit	I _{SHORT}	V _{OUT} =0V			50		mA
RMS Output Noise	$V_{ m NOISE}$	No Load, 10Hz≤	f≤100kHz		50		μV_{RMS}
V _{EN} High Voltage	$ m V_{IH}$	Enable logic high	h, regulator on	1.5		6.0	V
V _{EN} Low Voltage	$ m V_{IL}$	Enable logic low	, regulator off	0		0.4	V
Start-up Time	$t_{\rm S}$	No Load			20		μs
EN Pull Down Resistor	R_{PD}				3.0		ΜΩ
V _{OUT} Discharge Resistor	R _{DCHG}	Set EN pin at Lo	w		60		Ω
Thermal Shutdown Temperature	T_{OTSD}				160		°C
Thermal Shutdown Hysteresis	T _{HYOTSD}				25		°C
		SOT-23-5			96		
Thermal Resistance	$ heta_{ m JC}$	SOIC-8			75		°C/W
		SOT-89-5			47		

Note 2: To prevent the Short Circuit Current protection feature from being prematurely activated, the input voltage must be applied before a current source load is applied.

AP2112

Electrical Characteristics (Continued)

AP2112-2.6 Electrical Characteristic (Note 2)

 V_{IN} =3.6V, C_{IN} =1.0 μ F (Ceramic), C_{OUT} =1.0 μ F (Ceramic), Typical T_A =25°C, unless otherwise specified (Note 3).

Parameter	Symbol	Test Co	onditions	Min	Тур	Max	Unit
Output Voltage	V _{OUT}	V _{IN} =3.6V, 1mA	≤I _{OUT} ≤30mA	V _{OUT} *98.5%	2.6	V _{OUT} *101.5%	V
Maximum Output Current	I _{OUT(MAX)}	V _{IN} =3.6V, V _{OUT} =2.561V to 2.639V		600			mA
Load Regulation	$\triangle V_{OUT}/V_{OUT})/$ $\triangle I_{OUT}$	V_{OUT} =2.6V, V_{IN} 1mA \leq I _{OUT} \leq 600	$=V_{OUT}+1V$,	-1	0.2	1	%/A
Line Regulation	$(\wedge \mathbf{V} / \mathbf{V})/$	3.6V≤V _{IN} ≤6V, I		-0.1	0.02	0.1	%/V
		I _{OUT} =10mA			5	8	
Dropout Voltage	$V_{ m DROP}$	I _{OUT} =300mA			125	200	mV
		I _{OUT} =600mA			250	400	
Quiescent Current	${ m I}_{ m Q}$	V_{IN} =3.6V, I_{OUT} =	=0mA		55	80	μΑ
Standby Current	I_{STD}	$V_{IN}=3.6V$, V_{EN}	in OFF mode		0.01	1.0	μΑ
Power Supply Rejection	DCDD	Ripple 0.5Vp-p	f=100Hz		65	dB	
Ratio	PSRR	V _{IN} =3.6V, I _{OUT} =100mA	f=1KHz		65		ав
Output Voltage Temperature Coefficient	$(\triangle V_{OUT}/V_{OUT})/\triangle T$	I_{OUT} =30mA T_A =-40°C to 8	5°C		±100		ppm/°C
Short Current Limit	I _{SHORT}	V _{OUT} =0V			50		mA
RMS Output Noise	V _{NOISE}	No Load, 10Hz:	≤f≤100kHz		50		μV_{RMS}
$ m V_{EN}$ High Voltage	$ m V_{IH}$	Enable logic hig	gh, regulator on	1.5		6.0	V
V _{EN} Low Voltage	\mathbf{V}_{IL}	Enable logic lov	w, regulator off	0		0.4	v
Start-up Time	$t_{\rm S}$	No Load			20		μs
EN Pull Down Resistor	R_{PD}				3.0		ΜΩ
V _{OUT} Discharge Resistor	R_{DCHG}	Set EN pin at L	ow		60		Ω
Thermal Shutdown Temperature	T_{OTSD}				160		9.0
Thermal Shutdown Hysteresis	T_{HYOTSD}				25		°C
		SOT-23-5			96		
Thermal Resistance	$ heta_{ m JC}$	SOIC-8			75		°C/W
		SOT-89-5			47		

Note 2: To prevent the Short Circuit Current protection feature from being prematurely activated, the input voltage must be applied before a current source load is applied.

AP2112

Electrical Characteristics (Continued)

AP2112-2.8 Electrical Characteristic (Note 2)

 V_{IN} =3.8V, C_{IN} =1.0 μ F (Ceramic), C_{OUT} =1.0 μ F (Ceramic), Typical T_A =25°C, unless otherwise specified (Note 3).

Parameter	Symbol	Test Cor	nditions	Min	Тур	Max	Unit	
Output Voltage	V _{OUT}	V _{IN} =3.8V, 1mA ₂	≤I _{OUT} ≤30mA	V _{OUT} *98.5%	2.8	V _{OUT} *101.5%	V	
Maximum Output Current	I _{OUT(MAX)}	V _{IN} =3.8V, V _{OUT} =2.758V to	2.842V	600			mA	
Load Regulation	$(\triangle V_{OUT}/V_{OUT})/$ $\triangle I_{OUT}$	V_{OUT} =2.8V, V_{IN} = V_{OUT} +1V, 1 mA $\leq I_{OUT} \leq 600$ mA		-1	0.2	1	%/A	
Line Regulation	$(\triangle V_{OUT}/V_{OUT})/$ $\triangle V_{IN}$	3.8V≤V _{IN} ≤6V, I _{OUT} =30mA		-0.1	0.02	0.1	%/V	
		I _{OUT} =10mA			5	8		
Dropout Voltage	V_{DROP}	I _{OUT} =300mA			125	200	mV	
		I _{OUT} =600mA			250	400		
Quiescent Current	I_Q	V_{IN} =3.8V, I_{OUT} =	0mA		55	80	μΑ	
Standby Current	I_{STD}	V_{IN} =3.8V, V_{EN} in	n OFF mode		0.01	1.0	μΑ	
Power Supply Rejection	DCDD	Ripple 0.5Vp-p	f=100Hz		65		10	
Ratio	PSRR	V _{IN} =3.8V, I _{OUT} =100mA	f=1KHz		65		dB	
Output Voltage Temperature Coefficient	$(\triangle V_{OUT}/V_{OUT})/\triangle T$	I_{OUT} =30mA T_A =-40°C to 85	°C		±100		ppm/°C	
Short Current Limit	I _{SHORT}	V _{OUT} =0V			50		mA	
RMS Output Noise	V _{NOISE}	No Load, 10Hz≤	f≤100kHz		50		μV_{RMS}	
V _{EN} High Voltage	$V_{ m IH}$	Enable logic high	h, regulator on	1.5		6.0	V	
V _{EN} Low Voltage	V_{IL}	Enable logic low	, regulator off	0		0.4	V	
Start-up Time	t_{S}	No Load			20		μs	
EN Pull Down Resistor	R_{PD}				3.0		ΜΩ	
V _{OUT} Discharge Resistor	R _{DCHG}	Set EN pin at Lo	W		60		Ω	
Thermal Shutdown Temperature	T _{OTSD}				160		°C	
Thermal Shutdown Hysteresis	T_{HYOTSD}				25		C	
		SOT-23-5			96			
Thermal Resistance	$ heta_{ m JC}$	SOIC-8			75		°C/W	
		SOT-89-5			47			

Note 2: To prevent the Short Circuit Current protection feature from being prematurely activated, the input voltage must be applied before a current source load is applied.

AP2112

Electrical Characteristics (Continued)

AP2112-3.3 Electrical Characteristic (Note 2)

 V_{IN} =4.3V, C_{IN} =1.0 μ F (Ceramic), C_{OUT} =1.0 μ F (Ceramic), Typical T_A =25°C, unless otherwise specified (Note 3).

Parameter	Symbol	Test Co	nditions	Min	Тур	Max	Unit	
Output Voltage	V _{OUT}	V _{IN} =4.3V, 1mA≤	≤I _{OUT} ≤30mA	V _{OUT} *98.5%	3.3	V _{OUT} *101.5%	V	
Maximum Output Current	I _{OUT(MAX)}	V _{IN} =4.3V, V _{OUT} =3.251V to 3.350V		600			mA	
Load Regulation	$(\triangle V_{OUT}/V_{OUT})/$ $\triangle I_{OUT}$	V _{IN} =4.3V, 1mA≤I _{OUT} ≤600mA		-1	0.2	1	%/A	
Line Regulation	$(\triangle V_{OUT}/V_{OUT})/$ $\triangle V_{IN}$	4.3V\(\leq V_{IN}\)\(\leq 6V\), I_{OUT}\(= 30mA\)		-0.1	0.02	0.1	%/V	
	— · IIV	I _{OUT} =10mA			5	8		
Dropout Voltage	V_{DROP}	I _{OUT} =300mA			125	200	mV	
		I _{OUT} =600mA			250	400		
Quiescent Current	I_Q	V _{IN} =4.3V, I _{OUT} =	0mA		55	80	μА	
Standby Current	I _{STD}	V _{IN} =4.3V, V _{EN} in	n OFF mode		0.01	1.0	μА	
Power Supply Rejection	DCDD	Ripple 0.5Vp-p	f=100Hz		65		15	
Ratio	PSRR	V _{IN} =4.3V, I _{OUT} =100mA	f=1KHz		65		dB	
Output Voltage Temperature Coefficient	$(\triangle V_{OUT}/V_{OUT})/\triangle T$	I_{OUT} =30mA T_{A} =-40°C to 85°	°C		±100		ppm/°C	
Short Current Limit	I _{SHORT}	V _{OUT} =0V			50		mA	
RMS Output Noise	V _{NOISE}	No Load, 10Hz≤	f≤100kHz		50		μV_{RMS}	
V _{EN} High Voltage	$V_{ m IH}$	Enable logic high	h, regulator on	1.5		6.0	V	
V _{EN} Low Voltage	V_{IL}	Enable logic low	, regulator off	0		0.4	V	
Start-up Time	t_{S}	No Load			20		μs	
EN Pull Down Resistor	R_{PD}				3.0		ΜΩ	
V _{OUT} Discharge Resistor	R _{DCHG}	Set EN pin at Lo	W		60		Ω	
Thermal Shutdown Temperature	T_{OTSD}	-			160		°C	
Thermal Shutdown Hysteresis	T_{HYOTSD}				25		C	
		SOT-23-5			96			
Thermal Resistance	$ heta_{ m JC}$	SOIC-8			75		°C/W	
		SOT-89-5			47			

Note 2: To prevent the Short Circuit Current protection feature from being prematurely activated, the input voltage must be applied before a current source load is applied.

AP2112

Electrical Characteristics (Continued)

AP2112-ADJ Electrical Characteristic (Note 2)

 V_{IN} =2.5V, C_{IN} =1.0 μ F (Ceramic), C_{OUT} =1.0 μ F (Ceramic), Typical T_A =25°C, unless otherwise specified (Note 3).

Parameter	Symbol	Conc	ditions	Min	Тур	Max	Unit
Reference Voltage	$V_{ m REF}$	V _{IN} =2.5V, 1mA≤	I _{OUT} ≤ 30mA	V _{REF} ×98.5%	0.8	V _{REF} ×101.5%	V
Maximum Output Current	I _{OUT(Max)}	V_{IN} =2.5V, V_{REF} =	0.788V to 0.812V	600			mA
Load Regulation	$(\triangle V_{OUT}/V_{OUT})/$ $\triangle I_{OUT}$	V _{IN} =2.5V, 1mA≤	I _{OUT} ≤600mA	-1	0.2	1	%/A
Line Regulation	$(\wedge \mathbf{v} / \mathbf{v})/$	2.5V≤V _{IN} ≤6V, I _C	_{out} =30mA	-0.1	0.02	0.1	%/V
Quiescent Current	I_Q	V _{IN} =2.5V, I _{OUT} =6	OmA		55	80	μΑ
Standby Current	I_{STD}	V_{IN} =2.5V, V_{EN} in	OFF mode		0.01	1.0	μΑ
Power Supply	PSRR	Ripple 0.5Vp-p	f=100Hz		65		dB
Rejection Ratio	PSKK	V _{IN} =2.5V, I _{OUT} =100mA	f=1kHz		65		uБ
Output Voltage Temperature Coefficient	$(\triangle V_{OUT}/V_{OUT})/\triangle T$	I _{OUT} =30mA T _A =-40°C to 85°	С		±100		ppm/°C
Short Current Limit	I_{SHORT}	V _{OUT} =0V			50		mA
RMS Output Noise	V _{NOISE}	No Load, 10Hz≤	f≤100kHz		50		μV_{RMS}
VEN High Voltage	$ m V_{IH}$	Enable logic high	n, regulator on	1.5		6.0	V
VEN Low Voltage	V_{IL}	Enable logic low	, regulator off	0		0.4	V
Start-up Time	t_{S}	No Load			20		μs
EN Pull Down Resistor	R_{PD}				3.0		ΜΩ
VOUT Discharge Resistor	R _{DCHG}	Set EN pin at Low			60		Ω
Thermal Shutdown Temperature	T_{OTSD}				160		0.0
Thermal Shutdown Hysteresis	T_{HYOTSD}				25		°C
Thermal Resistance	θ_{JC}	SOT-23-5			96		°C/W

Note 2: To prevent the Short Circuit Current protection feature from being prematurely activated, the input voltage must be applied before a current source load is applied.

Note 3: Production testing at T_A=25°C. Over temperature specifications guaranteed by design only.

AP2112

Typical Performance Characteristics

4.0 3.5 3.0 Output Voltage (V) 2.5 2.0 No Load 1.5 - T_Δ=-40°C - - T_A=25°C 1.0 --- T₄=85°C V_{out}=3.3V 0.0 0.5 2.0 2.5 3.0 1.0 1.5 3.5 4.0 4.5 5.0 5.5 Input Voltage (V)

Figure 5. Output Voltage vs. Input Voltage

Figure 6. Output Voltage vs. Input Voltage

Figure 7. Quiescent Current vs. Temperature

Figure 8. Quiescent Current vs. Input Voltage

AP2112

Typical Performance Characteristics (Continued)

3.35 V_{IN}=4.3V 3.34 C_{IN}=1μF 3.33 C_{OUT}=1µF Output Voltage (V) 3.32 3.31 3.30 _{out}=10mA 3.29 I_{out}=100mA 3.28 I_{OUT}=300mA 3.27 =600mA 3.26 3.25 20 40 Temperature(°C)

Figure 9. Output Voltage vs. Temperature

Figure 10. Output Voltage vs. Temperature

Figure 11. Output Voltage vs. Output Current

Figure 12. Output Voltage vs. Output Current

AP2112

Typical Performance Characteristics (Continued)

Figure 13. Output Voltage vs. Output Current

Figure 14. Output Voltage vs. Output Current

Figure 15. Dropout Voltage vs. Output Current

Figure 16. Ground Current vs. Output Current

AP2112

Typical Performance Characteristics (Continued)

Figure 17. PSRR vs. Frequency

Figure 18. Load Transient

Figure 19. Enable On

Figure 20. Enable Off

AP2112

Typical Application (Note 4)

Note 4: It is recommended to use X7R or X5R dielectric capacitor if $1.0\mu F$ ceramic capacitor is selected as input/output capacitors.

Figure 21. AP2112 Typical Application

AP2112

Mechanical Dimensions

SOT-23-5 Unit: mm(inch)

AP2112

Mechanical Dimensions (Continued)

SOT-89-5

Unit: mm(inch)

AP2112

Mechanical Dimensions (Continued)

Note: Eject hole, oriented hole and mold mark is optional.

BCD Semiconductor Manufacturing Limited

http://www.bcdsemi.com

IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

MAIN SITE

- Headquarter

BCD (Shanghai) Micro-electronics Limited

No. 1600, Zi Xing Road, Shanghai ZiZhu Science-based Industrial Park, 200241, P. R.C. Tel: +86-021-2416-2266, Fax: +86-021-2416-2277

REGIONAL SALES OFFICE

Shenzhen Office

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd., Shenzhen Office Unit A Room 1203,Skyworth Bldg., Gaoxin Ave.1.S., Nanshan District Shenzhen 518057, China

Tel: +86-0755-8660-4900 Fax: +86-0755-8660-4958

Taiwan Office (Hsinchu) BCD Semiconductor (Taiwan) Company Limited 8F, No.176, Sec. 2, Gong-Dao 5th Road, East District HsinChu City 300, Taiwan, R.O.C Tel: +886-3-5160181, Fax: +886-3-5160181

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd.

800 Yishan Road, Shanghai 200233, China Tel: +021-6485-1491, Fax: +86-021-5450-0008

Taiwan Office (Taipei)

BCD Semiconductor (Taiwan) Company Limited 3F, No.17, Lane 171, Sec. 2, Jiu-Zong Rd., Nei-Hu Dist., Taipei(114), Taiwan, R.O.C Tel: +886-2-2656 2808

Fax: +886-2-2656-2806/26562950

BCD Semiconductor Corp. 48460 Kato Road, Fremont, CA 94538, USA Tel: +1-510-668-1950 Fax: +1-510-668-1990

BCD Semiconductor Limited Korea office. Room 101-1112, Digital-Empire II, 486 Sin-dong, Yeongtong-Gu, Suwon-city, Gyeonggi-do, Korea Tel: +82-31-695-8430