Norway Wind Energy Case Study: Policy Impact on LCOE and Recommendations

Sandeep Sahu Centre for Atmospheric and Oceanic Sciences (IISc Bengaluru) February 25, 2025

Introduction:

Norway has established itself as a leader in renewable energy, with significant investments in wind power. However, policy decisions have directly impacted the **Levelized Cost of Electricity (LCOE)** for both onshore and offshore wind projects. This case study evaluates how Norway's policies influence wind energy costs and provides recommendations to enhance competitiveness.

Current State of Wind Energy in Norway:

- Norway's total wind power capacity reached **5,130 MW** in 2023, with **101 MW** offshore.
- Wind power generation contributes 13.9 TWh annually, accounting for 10.3% of Norway's electricity mix.
- The government has announced **35 billion NOK (\$3.3B) in subsidies** for offshore wind development.
- A 25% resource rent tax on onshore wind was introduced in 2024.
- Norway is part of the EU Emissions Trading System (ETS), increasing carbon pricing on fossil fuels.

LCOE Analysis: Before and After Norway-Specific Policy Adjustments (refer to fig(a) & fig(b)):

Wind Onshore

- Before policy adjustments, the average LCOE for onshore wind was \$60-70/MWh.
- After applying the 25% resource rent tax, LCOE increased to \$120–180/MWh.
- The tax significantly impacts cost competitiveness, making Norway's onshore wind less attractive for investors.

Wind Offshore

- Before policy adjustments, the average LCOE for offshore wind was \$130–140/MWh.
- After applying **subsidies and adjusted financing**, LCOE was expected to decrease but instead rose to **\$250–350/MWh** due to high operational costs.
- Some offshore projects have LCOE values exceeding \$600/MWh, highlighting project-specific risks.

fig.(a) Comparison of LCOE before & after adjustment fig.(b) Distribution of LCOE before (Normal) & after adjustment

Key Policy Issues Impacting LCOE:

High Taxation on Onshore Wind

- The 25% resource rent tax has led to a sharp increase in LCOE.
- While designed to generate government revenue, the tax discourages new onshore wind investments.

Subsidies for Offshore Wind Are Not Effectively Reducing Costs

- The 35B NOK subsidy mainly targets CAPEX, but O&M costs remain high.
- Floating offshore wind, necessary for Norway's deep waters, has **higher maintenance expenses** than fixed-bottom turbines.

Grid Infrastructure Limitations

- Offshore wind expansion faces **grid bottlenecks**, increasing transmission costs.
- Norway exports much of its renewable power, but transmission infrastructure is not optimized for large-scale offshore wind projects.

Indigenous Land Conflicts Affect Onshore Wind Expansion

- Several wind projects have faced legal challenges from Sami reindeer herding communities.
- Delays and lawsuits add to project costs, further raising LCOE.

Floating Wind Technology is Still in Early Development

- High costs and limited large-scale deployment keep LCOE elevated for floating offshore wind.
- Without innovation, floating wind may remain uncompetitive against fixed-bottom offshore wind and onshore wind.

Policy Recommendations to Reduce LCOE and Improve Wind Energy Competitiveness:

Reform the 25% Resource Rent Tax on Onshore Wind

- Reduce or eliminate the tax to restore LCOE to \$60-80/MWh.
- Introduce a phased tax system, applying only after 10 years of operation.
- Offer tax credits for developers investing in grid improvements or community development.

Shift Offshore Wind Subsidies Toward O&M Cost Reductions

- Provide **direct support for offshore wind maintenance**, such as AI-driven monitoring and automated servicing.
- Establish **low-interest financing** for O&M upgrades, rather than only subsidizing installation.
- Encourage **local manufacturing** of offshore wind components to reduce long-term costs.

Expand Grid Infrastructure for Offshore Wind Integration

- Develop offshore energy hubs that can connect multiple wind farms to the grid efficiently.
- Invest in high-voltage direct current (HVDC) transmission lines to reduce transmission losses.
- Provide **grid investment incentives** for wind developers.

Establish a Fair Land Use Policy for Onshore Wind

- Implement mandatory consultation with Sami communities before project approvals.
- Develop profit-sharing agreements where indigenous groups receive a portion of wind farm revenues.
- Create land restoration programs to reduce the environmental impact of wind farms.

Increase Investment in Floating Wind R&D

- Support large-scale demonstration projects to lower floating wind technology costs.
- Encourage **public-private partnerships** for technology innovation in mooring, materials, and maintenance.
- Expand **export opportunities for Norwegian floating wind expertise** to make it a global leader in the sector.

Establish a Long-Term Wind Energy Roadmap

- Define clear targets for wind energy expansion by 2030, 2040, and 2050.
- Ensure **stable subsidies and tax policies** to attract long-term investors.
- Develop a leasing framework for offshore wind projects to streamline approvals.

Conclusion:

Norway has the potential to become a global leader in **both onshore and offshore wind energy**, but current policies are **increasing LCOE** instead of reducing it.

- Onshore wind is losing competitiveness due to taxation. A tax reform could restore its cost advantage.
- Offshore wind remains expensive despite subsidies. Policy changes should focus on lowering O&M costs, not just CAPEX.
- Grid expansion and land policies need urgent reforms to prevent project delays and cost increases.
- Long-term investment in floating wind R&D will determine whether Norway becomes a leader or remains a high-cost player.

By adjusting policies and focusing on cost reductions, Norway can build a sustainable, competitive, and scalable wind energy sector that benefits both investors and the public.