Lab 2: Tw. o trzech funkcjach

Wprowadzenie

Czasami może być trudno wyznaczyć granicę funkcji, gdy *x* dąży do pewnej wartości *c*. Możemy jednak ją "wcisnąć" między dwie inne funkcje, których zachowanie w otoczeniu interesującej nas wartości znamy, aby określić granicę wyjściowej funkcji.

Twierdzenie o trzech funkcjachmówi, że jeśli $f(x) \le g(x) \le h(x)$ w sąsiedztwie x i $\lim_{x\to a} f(x) = \lim_{x\to a} h(x) = L$, to $\lim_{x\to a} g(x) = L$.

Uwaga: analogiczne twierdzenie zachodzi dla ciągów.

Ostatnio badaliśmy własności funkcji podobnej do $f(x) = x^n \sin(\frac{1}{x})$, gdy x dąży do ∞ . Jak ta funkcja będzie się zachowywała, dla wartości bliskich x=0? (demonstracja)

- 1. Dla n=1 sprawdź jakie funkcje ograniczają f(x) z góry i z dołu i wyznacz dla nich granice, gdy $x \rightarrow 0$.
- 2. Na podstawie ćwiczenia 1 i wykresu z demonstracji zapisz założenia i tezę twierdzenia o trzech funkcjach dla *f*(*x*).
- 3. Skorzystaj z demonstracji i wyznacz granice $\lim_{x\to 0} x^2 \sin\left(\frac{1}{x}\right)$ i $\lim_{x\to 0} x^3 \sin\left(\frac{1}{x}\right)$, (sprawdzając założenia twierdzenia).
- 4. Korzystając z wyniku ćwiczenia 2 wyznacz granicę $\lim_{x\to\infty}\frac{\sin x}{x}$.

Wykorzystując polecenie **Animate** narysuj animujący się wykres trzech funkcji $y = \frac{1}{x}$, $y = \frac{-1}{x}$, $y = \frac{-1}{x}$, $y = \frac{\sin x}{x}$ (chcemy animować położenie się wykresu w układzie współrzędnych, parametr \boldsymbol{u} w przedziale [0, 20] odpowiada za wyświetlanie się układu współrzędnych: wyświetlajmy ramkę [u, u+5] × [-1,1]). Zastosujemy teraz twierdzenie o trzech funkcjach do obliczenia kolejnej granicy.

- 5. Narysuj wykres funkcji $g(x) = \frac{\cos^2(2x)}{2x-3}$ dla dużych wartości x.
- 6. Znajdź funkcje ograniczające z góry i z dołu g(x), wyznacz ich granice dla $x\to\infty$ i korzystając z twierdzenia o

trzech funkcjach oblicz $\lim_{x\to\infty} \frac{\cos^2(2x)}{2x-3}$.