Exercise 10.2

Prove that a point, which is equidistant from the end points of a line segment, is on the right bisector of the line segment.

Given

 \overline{AB} is a line segment. Point P is such that $\overline{PA} \cong \overline{PB}$

To Prove

Point P is on the right bisector of \overline{AB} .

Construction

Join P to C, the midpoint of \overline{AB}

Proof

Statements	Reasons
In $\triangle ACP \leftrightarrow \triangle BCP$ $\overline{PA} \cong \overline{PB}$ $\overline{PC} \cong \overline{PC}$ $\overline{AC} \cong \overline{BC}$ $\triangle ACP \cong \triangle BCP$ $\triangle ACP \cong \triangle BCP$ $\triangle ACP \cong \triangle BCP$ $\triangle ACP = BCP$ $\triangle ACP = BCP$ $\triangle ACP = BCP$ or $\overline{PC} \perp \overline{AB}$ $Also$ $\overline{CA} \cong \overline{CB}$ $\overline{CA} \cong \overline{CB}$ \overline{CB} $\overline{CA} \cong \overline{CB}$ \overline{CB}	supplementary angles, From (i) and (ii) m∠ACP = 90° (proved) construction

Theorem

In a correspondence of two triangles, if three sides of one triangle are congruent to the corresponding three sides of the other, then the two triangles are congruent.

$$(S.S.S. \cong S.S.S.)$$

In
$$\triangle ABC \leftrightarrow \triangle DEF$$

 $AB \cong \overline{DE}, \overline{BC} \cong \overline{EF}$ and $\overline{CA} \cong \overline{FD}$

To Prove

 $\triangle ABC \cong \triangle DEF$

Construction

Suppose that in ΔDEF the side \overline{EF} is not smaller than any of the remaining two sides. On \overline{EF} construct a ΔMEF in which, \angle $FEM \cong \angle B$ and $\overline{ME} \cong \overline{AB}$. Join D and M. As shown in the above figures we label some of the angles as 1,2,3 and 4.

	Statements	Reasons
In	ΔABC ↔ ΔMEF	
; 	BC≡EF	Given
	$\angle B \cong \angle FEM$	Construction
	AB≅ME	Construction
<i>∴</i>	$\triangle ABC \cong \triangle MEF$	S.A.S postulate
and	CA≅FM(i)	(Corresponding sides of congruent triangles)
Also	CA≅FD(ii)	Given
<i>:</i> .	FM≅FD	From (i) and (ii)
In	ΔFDM	
	∠2 ≅ ∠4(iii)	FM≅FD (proved)
Similarly $\angle 1 \cong \angle 3$ (iv)		
: .	$m \angle 2 + m \angle 1 = m \angle 4 + m \angle 3$	{from (iii) and (iv)}
••	$m\angle EDF = m\angle EMF$	
Now, In∆DEF ↔ ΔMEF		
	FD≅FM	Proved
And	$m\angle EDF \cong m\angle EMF$	Proved
	DE≅ME	Each one $\cong \overline{AB}$
	ΔDEF ≅ ΔMEF	S.A.S postulate
Also	$\triangle ABC \cong \triangle MEF$	Proved
Hence	: ΔABC ≅ ΔDEF	Each $\Delta \cong \Delta MEF$ (Proved)

Example

If two isosceles triangles are formed on the same side of their common base, the line through their vertices would be the right bisector of their common base.

Given

 \triangle ABC and \triangle DBC are formed on the same side of \overline{BC} such that

 $\overline{AB} \cong \overline{AC}, \overline{DB} \cong \overline{DC}, \overline{AD}$ meets \overline{BC} at E.

Lo prove

BE≅CE, AE⊥BC

Proof

,,	Statements	Reasons
In	$\triangle ADB \leftrightarrow \triangle ADC$	
	$\overline{AB} \cong \overline{AC}$	Given
	DB≘DC	Given
	$\overline{AD} \cong \overline{AD}$	Common
: :	$\Delta ADB \cong \Delta ADC$	S.S.S ≅ S.S.S.
· .	∠1 ≅ ∠2	Corresponding angles of $\cong \Delta s$
In	$\triangle ABE \leftrightarrow \triangle ACE$	
	AB≅AC	Given
	∠1 ≅ ∠2	Proved
	$\overline{AE} \cong \overline{AE}$	Common
: .	ΔABE ≅ ΔACE	S.A.S. postulate
∴	BE≅CE	Corresponding sides of $\cong \Delta s$
	∠3 ≅ ∠4I	Corresponding angles of $\cong \Delta s$
	$m \angle 3 + m \angle 4 = 180^{\circ}$ II	Supplementary angles Postulate
<i>:</i> .	$m\angle 3 = m\angle 4 = 90^{\circ}$	From I and II
Hence	e ĀĒ⊥BC	

Corollary: An equilateral triangle is an equiangular triangle.