

Reinforcement Learning Deep Reinforcement Learning

Mathieu Goutay, Nokia Bell Labs

mathieu.goutay@nokia.com

INSA Lyon, France

Follow the course at

mgoutay.github.io

→Blog → Machine Learning Course

(Deep) Reinforcement Learning
Lesson
Slides are available here

NOKIA Bell Labs

1. Reinforcement Learning, part I

- 1. Multi-armed Bandits
- 2. Action, reward, action-value, estimated action-value
- 3. Policies
- 4. Your turn ©

2. Renforcement Learning, part II

- 1. Classic RL problem and Markov Decision Process
- 2. Return, state-value, action-value
- 3. Temporal Difference Learning
- 4. Your turn ©

3. Deep Reinforcement Leaning

- 1. Q-network
- 2. Experience replay
- 3. Target Network
- 4. Your turn ©

Reinforcement Learning, Part I Multi-armed Bandit

Problem formulation:

- You have a Wi-Fi network with 7 different channels
- You need to transmit 10.000 packets
- → Which channel do you choose?

Framework:

- For each attempt, you choose a channel (action)
- If the packet was sent, you got a reward: 1
- If there was a collision, you got no reward: 0

Goal: Online training

→ Find the best action to maximize the total number of transmitted packets (received rewards)

Reinforcement Learning, Part I Action, reward, action-value, estimated action-value

Notations:

- The action and reward at times step t denoted in capital letters: A_t , R_t
- Their possible values are denoted in lower case : a, r

We evaluate each action with its action-value function:

• What is the expected return if we choose this channel (action)?

$$q_*(a) = E[R_t | A_t = a]$$

Problem: We don't know it ⊗

Reinforcement Learning, Part I Action, reward, action-value, estimated action-value

We need to estimate the action-value function:

- Test each channel many times
- Compute an average for each channel

$$Q_t(a) = \frac{\text{sum of rewards when we took the action } a}{\text{number of time we took the action } a}$$
$$= \frac{\sum_{i=1}^{N_t(a)} R_i^a}{N_t(a)}$$

Notations:

- The true action-value function is denoted in lower case : $q_*(a)$
- Its estimate at time t is denoted in capital letters : $Q_t(a)$
- $N_t(a)$ denotes the number of times action a has been selected at time t
- $[R_1^a, R_2^a, ..., R_{N_t(a)}^a]$ denotes the rewards we got when taking the action a

Reinforcement Learning, Part I Action, reward, action-value, estimated action-value

We can then choose the best action at time t:

$$A_t = \arg\max_{a} Q_t(a)$$

We chose the action that will most probably give the best reward

Tradeoff:

- We need to test each channel many times to have the best estimate $Q_t(a) o {\sf Exploration}$
- We need to take the best action to maximize the rewards → Exploitation

Reinforcement Learning, Part I Policies

How to both explore and exploit? We follow a policy π

• The policy define how we chose the action at each time step t

The most basic policy is the ϵ -greedy policy:

At each time step t:

- With a probability ϵ , take a random action
 - → Refine the action-value estimation for that action
- With a probability (1- ϵ), take the best action $A_t = \arg \max_a Q_t(a)$
 - → Maximize the reward

 ϵ defines the tradeoff exploration/exploitation

Reinforcement Learning, Part I Policies

Another one is the Upper-Confidence-Bound (UCB) policy:

 $N_t(a)$ denotes the number of times action a has been selected at time t Select the best action according to :

Often takes the best action but still refine the estimate $Q_t(a)$

Reinforcement Learning, Part I

Let's play ©

Exercise

Multiple Access Channel with Reinforcement Learning

NOKIA Bell Labs

1. Reinforcement Learning, part I

- 1. Multi-armed Bandits
- 2. Action, reward, action-value, estimated action-value
- 3. Policies
- 4. Your turn ©

2. Renforcement Learning, part II

- 1. Classic RL problem and Markov Decision Process
- 2. Return, state-value, action-value
- 3. Temporal Difference Learning
- 4. Your turn ©

3. Deep Reinforcement Leaning

- 1. Q-network
- 2. Experience replay
- 3. Target Network
- 4. Your turn ©

Reinforcement Learning, Part II Classic RL problem

Problem formulation:

- You are in an industrial environment with 7 different channels
- All existing machines transmit with a certain periodicity
- You install a new IoT sensor, and need to find on which channel to transmit 5 packets
- You can sense the channels before sending a packet(!)
- → Which channels do you choose?

Framework: At each time step

- You sense the channels (state)
- You see if the previously transmitted packet has been correctly received (reward)
- You decide on which channel you transmit next (action)

Reinforcement Learning, Part II Classic RL problem

The IoT sensor is a agent which interacts with an environment

At each time step t:

- The agent receives a state (sensed channels) and a reward (previous tx successful?)
- The agent takes an action (choose the next channel)

The sequence is defined by S_0 , A_0 , R_1 , S_1 , A_1 , R_2 , S_2 , A_2 , R_3 , ...

Reinforcement Learning, Part II Markov Decision Process

A Markov Decision Process (MDP) is a 4-tuple $(S, \mathcal{A}_S, \mathcal{P}_a, \mathcal{R}_a)$:

- \mathcal{S} is a finite set of states
- \mathcal{A}_s is the finite set of actions available from state s
- $\mathcal{P}_a(s,s') = \Pr(s_{t+1} = s' | s_t = s, a_t = a)$ is the probability that action a in state s at time t will lead to state s' at time t+1
- $\mathcal{R}_a(s,s')$ is the reward received after transitioning from state s to state s', due to action a

Reinforcement Learning, Part II Classic RL problem

For simplicity, let's have a known deterministic environment:

- The white boxes are free channels
- The black boxes are already used channels
- You have 5 different channel states
- You start at the "starting point"

Goal: Find the best channels for the 5 transmissions

The transmission of 5 packets is called an episode

Reinforcement Learning, Part II Classic RL problem

The state consists of:

- The state index we sense (5 possibilities)
- The channel in which we transmitted (7 possibilities)
- A Boolean to indicate if we reached the last state (5 transmissions)

The rewards are:

- 1 if the transmission was successful
- 0 otherwise

The possible actions are:

- Transmit in the channel above (mod 7): A
- Transmit in the same channel: S
- Transmit in the channel below (mod 7): B

State indices

Reinforcement Learning, Part II Classic RL problem

First state : $S_0 = [state_index, prev_channel, bool] = [4, 3, 0]$

Possible second state : $S_1 = [0, 2, 0], S_2 = [0, 3, 0], S_3 = [0, 4, 0]$

State indices

The discounted return is the sum of rewards after a time step t:

$$G_{t} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1}$$
$$= R_{t+1} + \gamma G_{t+1}$$

The discount factor γ , with $0 < \gamma < 1$, is used for:

- Having a finite return even if the number of future time steps k is infinite
- Maximizing short-term ($\gamma=0$) or long-term ($\gamma=1$) reward

Note that in our problem, the maximum time step is 5

For a given state s:

- The policy $\pi(a|s)$ is the probability of choosing an action a
- The state-value function is the expected return

$$v_{\pi}(s) = \mathbb{E}[G_t(\pi)|S_t = s]$$

• The action-value function is the expected return if we choose action a

$$q_{\pi}(s, a) = \mathbb{E}[G_t(\pi) | S_t = s, A_t = a]$$

But how do we estimate those $q_{\pi}(s, a_i)$?

The optimal policy is the one that maximizes $v_{\pi}(s)$ and $q_{\pi}(s)$:

The optimal action-value function is

$$q_*(s,a) = \max_{\pi} q_{\pi}(s,a)$$

The optimal state-value function is

$$v_*(s) = \max_{\pi} v_{\pi}(s)$$
$$= \max_{a} q_*(s, a)$$

Bellman optimality equation:

$$q_*(s, a) = \max_{\pi} E[G_t(\pi) | S_t = s, A_t = a]$$

$$= \max_{\pi} E[R_{t+1} + \gamma G_{t+1}(\pi) | S_t = s, A_t = a]$$

$$= E[R_{t+1} + \gamma v_*(S_{t+1}) | S_t = s, A_t = a]$$

$$= E \left[R_{t+1} + \gamma \max_{a'} q_*(S_{t+1}, a') | S_t = s, A_t = a \right]$$

Bellman optimality equation

Trick: when the latest reward is received, there is no more state "End" Boolean ξ : 1 if we reached the last state, 0 otherwise

$$q_*(s,a) = E\left[R_{t+1} + \gamma(1-\xi)\max_{a'} q_*(S_{t+1},a') | S_t = s, A_t = a\right] \quad q_{\pi}(s_2,a_4) q_{\pi}(s_2,a_5)$$

Next goal : find an estimate $Q_*(s,a)$ of $q_*(s,a)$

 $v_{\pi}(s_0)$

 $q_{\pi}(s_0, a_A)$

 $v_{\pi}(s_1)$

Reinforcement Learning, Part II Temporal Difference Learning

Estimate
$$q_*(s, a) = \mathbb{E}\left[\mathbb{R}_{t+1} + \gamma(1-\xi)\max_{a'} q_*(S_{t+1}, a') | S_t = s, A_t = a\right]_{q_\pi(s_0, a_A)}$$

Q-Learning: wait to finish a $S_t, A_t, R_{t+1}, S_{t+1}$ (with a policy π) (0. Initialize all $Q_*(s,a)$ randomly)

- Take the $Q_*(S_t, A_t)$ associated with your state and action
- When in S_{t+1} , take the best q-value: $\max_{a} Q_*(S_{t+1}, a)$
- Compute a better estimate $Q'_*(S_t, A_t) = R_{t+1} + \gamma(1 \xi) \max Q_*(S_{t+1}, a)$
- Compute an error $Q'_*(S_t, A_t) Q_*(S_t, A_t)$
- Update $Q_*(S_t, A_t) \leftarrow Q_*(S_t, A_t) + \alpha [Q'_*(S_t, A_t) Q_*(S_t, A_t)]$

 α is the learning rate

Temporal Difference (TD): use the time step t+1 to refine the time step t

 $v_{\pi}(s_0)$

 $q_{\pi}(s_0, a_A)$

Reinforcement Learning, Part II Temporal Difference Learning

With a policy
$$\pi$$
: $q_{\pi}(s, a) = \mathbb{E}[\mathbb{R}_{t+1} + \gamma(1 - \xi)q_{\pi}(S_{t+1}, A_{t+1}) | S_t = s, A_t = a]$

SARSA: wait to finish a $S_t, A_t, R_{t+1}, S_{t+1}, A_{t+1}$

(0. Initialize all Q(s, a) randomly)

- 1. Take the $Q_{\pi}(S_t, A_t)$ associated with your state and action
- 2. Compute a better estimate $Q_{\pi}'(S_t, A_t) = R_{t+1} + \gamma(1-\xi)Q_{\pi}(S_{t+1}, A_{t+1})$
- 3. Compute an error $Q'_{\pi}(S_t, A_t) Q_{\pi}(S_t, A_t)$
- 4. Update $Q_{\pi}(S_t, A_t) \leftarrow Q_{\pi}(S_t, A_t) + \alpha \left[Q'_{\pi}(S_t, A_t) Q_{\pi}(S_t, A_t) \right]$

 α is the learning rate

Here we estimated the $q_{\pi}(s,a)$ according to the same policy π

Reinforcement Learning, Part II Temporal Difference Learning

With a policy π , record S_t , A_t , R_{t+1} , S_{t+1} , A_{t+1}

SARSA: On-policy method

$$Q_{\pi}(S_t, A_t) \leftarrow Q_{\pi}(S_t, A_t) + \alpha[R_{t+1} + \gamma(1 - \xi)Q_{\pi}(S_{t+1}, A_{t+1}) - Q_{\pi}(S_t, A_t)]$$
Behavior policy i.e., ϵ -greedy i.e., ϵ -greedy

You estimate the Q_{π} according to the policy you are using

• Q-Learning : Off-policy method
$$Q_*(S_t,A_t) \leftarrow Q_*(S_t,A_t) + \alpha \left[R_{t+1} + \gamma (1-\xi) \underbrace{\max_a Q_*(S_{t+1},a)} - Q_*(S_t,A_t) \right]$$
 Optimal policy Optimal policy

You use the policy π to explore and estimate the optimal policy

Reinforcement Learning, Part II Classic RL problem

The state comprises both:

- The channel in which we transmitted (7 possibilities)
- The channel state index we sense (5 possibilities)
- The ξ Boolean (=1 if it's the end, =0 otherwise)

The rewards are:

- 1 if the transmission was successful
- 0 otherwise

The possible actions are :

- Tx in channel above (mod 7)
- Tx in same chanel
- Tx in channel below (mod 7)

Q-Learning : fill the Q-table following a ϵ -greedy policy

	State index 0			•••	State index 4		
	a_B : Below	a_S : Same	a_A : Above		a_B : Below	a_S : Stay	a_A : Above
•••							
Ch 3	$Q_*([3,0],a_B)$	$Q_*([3,0],a_S)$	$Q_*([3,0],a_A)$		$Q_*([3,4],a_B)$	$Q_*([3,4],a_S)$	$Q_*([3,4],a_A)$
•••							

Channels

State indices

Reinforcement Learning, Part II

Let's play ©

Exercise

Multiple Access Channel with Reinforcement Learning

NOKIA Bell Labs

1. Reinforcement Learning, part I

- 1. Multi-armed Bandits
- 2. Action, reward, action-value, estimated action-value
- 3. Policies
- 4. Your turn ©

2. Renforcement Learning, part II

- 1. Classic RL problem and Markov Decision Process
- 2. Return, state-value, action-value
- 3. Temporal Difference Learning
- 4. Your turn ©

3. Deep Reinforcement Leaning

- 1. Q-network
- 2. Experience replay
- 3. Target Network
- 4. Your turn ©

Deep Reinforcement Learning Q-Network

Previously, we knew that there were only 5 channel states

→ What if we don't know that?

One state is now defined by the state vector :

State indices

And the ξ boolean

NOKIA Bell Labs

Deep Reinforcement Learning Q-Network

We don't want to store a huge Q-table.

We can use a Q-Network instead :

S_t vector

The Q-Network outputs all the Q values for a given states

State indices

Deep Reinforcement Learning Q-Network

Estimate
$$q_*(s, a) = \mathbb{E}\left[R_{t+1} + \gamma(1 - \xi) \max_{a'} q_*(S_{t+1}, a') | S_t = s, A_t = a\right]$$

Q-Learning: wait to finish a $S_t, A_t, R_{t+1}, S_{t+1}$

(0. Initialize all $Q_*(s,a)$ randomly)

- 1. Take the $Q_*(S_t, A_t)$ associated with your state and action
- 2. When in S_{t+1} , take the best q-value : $\max_{a} Q_*(S_{t+1}, a)$
- 3. Compute a better estimate $Q'_*(S_t, A_t) = R_{t+1} + \gamma \max_{a} Q_*(\overline{S_{t+1}, a})$
- 4. Compute loss: $MSE(Q'_*(S_t, A_t), Q_*(S_t, A_t))$
- 5. Update parameters of the Q-Network by SGD to minimize the loss

Deep Reinforcement Learning Q-Network

Target Prediction
$$loss = MSE\left(R_{t+1} + \gamma(1-\xi) \max_{a} Q_*(S_{t+1},a) - Q_*(S_t,A_t)\right)$$

Each time we update for one prediction, every parameters in the NN changes! Two problems arises :

- Correlation: when you follow the trajectory, your NN will be optimized only for the last few (s,a) that you took
- Nonstationary target: each time we update the NN, the target change as well
 not stable

Deep Reinforcement Learning Experience Replay

To remove *correlation*, we store all experiences $(S_t, A_t, R_{t+1}, S_{t+1})$ in a dataset.

Then, at each iteration, we perform experience replay:

- We take a random batch of experiences
- We compute the predictions and targets
- We evaluate the loss and update the Q-Network

Circular buffer (FIFO)

S_1, A_1, R_2, S_2
S_2, A_2, R_3, S_3
S_3, A_3, R_4, S_4
S_4, A_4, R_5, S_5

Deep Reinforcement Learning Experience Replay

To remove *correlation*, we store all samples $(S_t, A_t, R_{t+1}, S_{t+1})$ in a dataset.

$$loss = MSE(predictions, targets)$$

The targets can only reflect the action chosen in the sample If at state S_t , the action taken was a_A :

Deep Reinforcement Learning Target Network

To alleviate the *nonstationary target*, we maintain a target Q-Network :

- The targets are computed according to the target network
- The parameters of the target network are updated every C iterations

Deep Reinforcement Learning Target Network

Main algorithm:

Initialize the pred.NN and the targ.NN with the same params

Play actions according to a policy π to populate the datasets

For a given number of episodes:

- While $\xi \neq 1$:
 - Choose an action A_t according to the state S_t and the policy π
 - Receive R_{t+1} , S_{t+1} and store $(A_t, S_t, R_{t+1}, S_{t+1})$ in the database
 - Take a random batch from the database (B = batch size)
 - Compute the loss using targets from the target network
 - Update the (prediction) Q-Network
- ullet Every ${\mathcal C}$ iterations, copy the parameters of the pred.NN to the targ.NN

Deep Reinforcement Learning

Let's play ©

Exercise

Multiple Access Channel with Reinforcement Learning

Thank you

Everything is available on mgoutay.github.io