CS-2102

Discrete Math

Problem Set 4, Due Friday February 24, 2016 by 5 pm.

Remember that you can work one other person. Be sure to give adequate explanation for your solutions, lack of clarity and completeness may result in points being deducted. <u>Answers given</u> with no work or justification may have points taken off.

(5 pts) 1. Use rules of inference to show that if $\forall x (P(x) \lor Q(x))$ and $\forall x (\neg P(x) \land Q(x)) \rightarrow R(x)$ are true, then $\forall x (\neg R(x) \rightarrow P(x))$ is also true, where the domain is the same for each statement. Hint: you don't have to use Resolution for this problem but it helps!

<u>Definition</u>: The floor of x denoted by |x|, is defined as follows:

$$|x|$$
 = the unique integer such that $x - 1 < |x| \le x$.

That is
$$|x| = n \Leftrightarrow x - 1 < n \le x$$
.

Definition: The ceiling of x denoted by [x], is defined as follows:

$$[x]$$
 = the unique integer n such that $x \le [x] < x + 1$.

That is
$$[x] = n \Leftrightarrow x \le n < x + 1$$
.

(12 pts, 6 each) 2. Prove the following facts about the floor of odd and even integers.

- (a) Prove that for all odd integers, n, $\left\lfloor \frac{n}{2} \right\rfloor = \frac{n-1}{2}$.
- (b) Prove that for all even integers, n, $\left\lfloor \frac{n}{2} \right\rfloor = \frac{n}{2}$.

<u>Definition:</u> The set of rational numbers is defined to be $\mathbb{Q} = \left\{ \frac{p}{q} \middle| p \in \mathbb{Z} \text{ and } q \in \mathbb{Z} \text{ with } q \neq 0 \right\}$

(12 pts, 4 each) 3. Prove the following statements.

- (a) If r and s are any two rational numbers, then $\frac{r+s}{2}$ is rational.
- (b) For all real numbers a and b, if a < b then $a < \frac{a+b}{2} < b$.
- (c) Given any two rational numbers r and s with r < s, there is another rational number between r and s. (Hint: use the two previous statements.)

(4 pts) 4. Prove that there are infinitely many solutions in positive integers x, y, and z to the equation $x^2 + y^2 = z^2$, ie there are infinitely many Pythagorean triples! (Good thing for Fermat that this proof doesn't extend to larger exponents! See Fermat's last theorem). [Hint let $x = m^2 - n^2$ and y = 2mn]

<u>Definition:</u> An integer, p, is prime if and only if p > 1 and the only integer factors of p are p and p.

(6 pts, 2 each) 5. Prove or disprove the following:

- (a) There exists an integer n such that $-3n^2 14n 8$ is a prime number.
- (b) If *m* and *n* are positive integers and *mn* is a perfect square then *m* and *n* are perfect squares.
- (c) The difference of the squares of any two consecutive integers is odd. Hint think about what it means for two integers to be consecutive.

(15 pts, 3 each) 6. Prove or disprove the following:

- (a) If m and n are perfect squares, then $m + n + 2\sqrt{mn}$ is also a perfect square.
- (b) If p is a prime number, then $2^p 1$ is also a prime number.
- (c) Any product of four consecutive integers is one less than a perfect square.
- (d) For all nonnegative real numbers a and b, $\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}$. Not that if x is a nonnegative real number, then there is a unique nonnegative real number y, denoted \sqrt{x} , such that $y^2 = x$.
- (e) For all nonegative real numbers a and b, $\sqrt{a+b} = \sqrt{a} + \sqrt{b}$.

(10 pts, 1 for part b and 3 for each of the rest) 7. When expressions of the form (x-r)(x-s) are multiplied out, a quadratic polynomial is obtained. For instance, $(x-2)(x-(-7)) = (x-2)(x+7) = x^2 + 5x - 14$.

- a. What can be said about the coefficients of the polynomial obtained by multiplying out (x-r)(x-s) when both r and s are odd integers? When both r and s are even integers? When one is odd and the other even?
- b. It follows from part (a) that $x^2 1253x + 255$ cannot be written as a product of two polynomials with integer coefficients. Explain why this is so.
- c. Observe that

$$(x-r)(x-s)(x-t) = x^3 - (r+s+t)x^2 + (rs+rt+st)x - rst$$

Derive a result for cubic polynomials similar to the result in part (a).

d. Can $x^3 + 7x^2 - 8x - 27$ be written as a product of three polynomials with integer coefficients? Explain.

<u>Definition:</u> We say that integer a divides integer b if and only if there exists an integer k such that b=ak. We symbolize this by $a|b \Leftrightarrow \exists k \in \mathbb{Z}, b=ak$, where a|b is short hand for a divides b.

(12 pts, 2 pts each) 8. Determine if the following statements are true or false. Prove the statement directly from the definition(s) if true, and give a counterexample if it is false.

- (a) For all integers a, b, and c, if a divides b then a divides bc.
- (b) 4 divides the product of any two even integers. (Note the definition of even is: an integer n is even if and only if $\exists k \in \mathbb{Z}$ such that n = 2k.)
- (c) A sufficient condition for an integer to be divisible by 8 is that it be divisible by 16.
- (d) For all integers a, b, and c, if a|b and a|c then a|(2b-3c).
- (e) For all integers a, b, and c, if ab|c then a|c and b|c.
- (f) For all integers a, b, and c, if a|(b+c) then a|b or a|c.

(6 pts, 3 pts each) 9. Prove the following statements:

- a. Suppose x is a real number and $x \neq 0$. Prove that if $\frac{\sqrt[3]{x+5}}{x^2+6} = \frac{1}{x}$ then $x \neq 8$.
- b. Suppose x and y are real numbers, and $3x + 2y \le 5$. Prove that if x > 1 then y < 1.