AD-BC-VUMPS

Contents

Why AD?

3D ising contract

Gradient to

$$\frac{\partial}{\partial A}$$
 () = 2

3D view

add envir

Quantum case

• 2D Energy

$$\min_{A} E(A) = \min_{A} \frac{\langle \Psi(A) | \hat{H} | \Psi(A) \rangle}{\langle \Psi(A) | \Psi(A) \rangle}$$

$$T_{uldr} = l - r = - r$$

CTMRG

Experimental optimization method

- (1) Compute E(1) (corresponding to the previous energy with the old tensor A' = A) and E(0.5) (corresponding to the energy with $A' = \tilde{A}$).
 - (2) If E(0.5) < E(1), take $A' = \tilde{A}$ as the solution and exit.
- (3) Define an initial step size Δ_0 (e.g., $\Delta_0 = 0.1$) and a tiny step size h (e.g., $h = 10^{-4}$).
 - (4) If E(1+h) < E(1), set $\Delta = \Delta_0$, else $\Delta = -\Delta_0$.
 - (5) For iter = 1 to maxiter
 - (a) If $E(1 + \Delta) < E(1)$, accept solution [44] with $\lambda = 1 + \Delta$ and exit.
 - (b) Else $\Delta = \Delta/2$.

Channel environments

Gradient

Big Cell CTMRG

• General case

Get P_1 and P_2

AD-VUMPS

VUMPS-algorithm

Initial orthonormal form MPS $M = classical 2 Disingmpo(\beta; J = 1.0, h = 0.)$ AL,C =leftorth (A)AR = rightorth (AL,C)while error(AC,FL,FR,M) > tol_error # Get environment FL = leftenv(AL, M)FR = rightenv(AR, M)# Get orthonormal form AC, C = vumpsstep(AL, C, AR, M, FL, FR)# calculate observable Obs = obser(O, AC, M, FL, FR)

QR to avoid inverse

$$A_{C} = Q_{A_{C}} \cdot R_{A_{C}}$$

$$C = Q_{C} \cdot R_{C}$$

$$\downarrow$$

$$A_{L} = A_{C} \cdot C^{-1}$$

$$= Q_{A_{C}} \cdot R_{A_{C}} \cdot R_{C}^{-1} \cdot Q_{C}^{-1}$$

$$= Q_{A_{C}} \cdot R_{A_{C}} \cdot R_{C}^{-1} \cdot Q_{C}^{-1}$$

$$= Q_{A_{C}} \cdot R_{A_{C}} \cdot R_{C}^{-1} \cdot Q_{C}^{-1}$$

$$= Q_{A_{C}} \cdot Q_{C} \cdot Q_{C}^{-1} \cdot Q_{C}^{-1}$$

$$= Q_{A_{C}} \cdot Q_{C} \cdot Q_{C}^{-1} \cdot Q_{C}^{-1}$$

$$\Rightarrow Q_{A_{C}} \cdot Q_{C}^{-1}$$

$$\downarrow$$

$$A_{L}^{T} \cdot A_{L} = Q_{C} \cdot Q_{A_{C}}^{T} \cdot Q_{A_{C}} \cdot Q_{C}^{-1} = 1$$
 inverse and orthogonality at the same time

Computation Graphs

Adjoint of eigsolve

•
$$\boldsymbol{l}^T A = \lambda \boldsymbol{l}^T$$
, $A \boldsymbol{r} = \lambda \boldsymbol{r}$, $\boldsymbol{l}^T \boldsymbol{r} = 1$,
$$(A - \lambda I)\boldsymbol{\xi}_l = (1 - \boldsymbol{r}\boldsymbol{l}^T)\bar{\boldsymbol{l}}, \quad \boldsymbol{l}^T \boldsymbol{\xi}_l = 0$$

$$(A^T - \lambda I)\boldsymbol{\xi}_r = (1 - \boldsymbol{l}\boldsymbol{r}^T)\bar{\boldsymbol{r}}, \quad \boldsymbol{r}^T \boldsymbol{\xi}_r = 0$$

$$\text{gauge invariant} \qquad \boldsymbol{l}^T \bar{\boldsymbol{l}} = \boldsymbol{r}^T \bar{\boldsymbol{r}} = 0$$

$$(A - \lambda I)\boldsymbol{\xi}_l = \bar{\boldsymbol{l}}, \quad \boldsymbol{l}^T \boldsymbol{\xi}_l = 0$$

$$(A - \lambda I)\boldsymbol{\xi}_l = \bar{\boldsymbol{l}}, \quad \boldsymbol{l}^T \boldsymbol{\xi}_l = 0$$

$$(A^T - \lambda I)\boldsymbol{\xi}_r = \bar{\boldsymbol{r}}, \quad \boldsymbol{r}^T \boldsymbol{\xi}_r = 0$$

$$(A^T - \lambda I)\boldsymbol{\xi}_r = \bar{\boldsymbol{r}}, \quad \boldsymbol{r}^T \boldsymbol{\xi}_r = 0$$

$$(A - \lambda I)\boldsymbol{\xi}_l = 0, \quad \boldsymbol{l}^T \boldsymbol{\xi}_l = 0$$

$$(A - \lambda I)\boldsymbol{\xi}_l = 0, \quad \boldsymbol{l}^T \boldsymbol{\xi}_l = 0$$

$$(A - \lambda I)\boldsymbol{\xi}_l = 0, \quad \boldsymbol{l}^T \boldsymbol{\xi}_l = 0$$

$$(A - \lambda I)\boldsymbol{\xi}_l = 0, \quad \boldsymbol{l}^T \boldsymbol{\xi}_l = 0$$

$$(A - \lambda I)\boldsymbol{\xi}_r = \bar{\boldsymbol{r}}, \quad \boldsymbol{r}^T \boldsymbol{\xi}_r = 0$$

$$(A - \lambda I)\boldsymbol{\xi}_r = \bar{\boldsymbol{r}}, \quad \boldsymbol{r}^T \boldsymbol{\xi}_r = 0$$

Adjoint of VUMPS envirment

$$(A - \lambda I)\boldsymbol{\xi}_{l} = \bar{l}, \quad \boldsymbol{l}^{T}\boldsymbol{\xi}_{l} = 0$$

$$\overline{A} = -l \boldsymbol{\xi}_{l}^{T}$$

$$\overline{AL} = \overline{A} \cdot \frac{\partial A}{\partial AL}$$

$$\overline{M} = \overline{A} \cdot \frac{\partial A}{\partial M}$$

Adjoint of QR

 $egin{aligned} oldsymbol{\cdot} & A = QR \ & ar{A} = [ar{Q} + Q ext{copyltu}(M)]R^{-T} \ & M = Rar{R}^T - ar{Q}^TQ \ & [ext{copyltu}(M)]_{ij} = M_{ ext{max}(i,j), ext{min}(i,j)} \end{aligned}$

• Trick: add $\delta = 10^{-6}$ to R's diagonal element for the stability of inverse

2D Classical Ising Model

Finding the Ground State of infinite 2D Heisenberg model

ADVUMPS vs ADCTMRG $D = 2 \chi = 20 \delta = 10^{-12}$

33.76s vs 15.62s

Difference ~1e-14

29.11s vs 15.58s

Difference ~1e-9

Difference ~1e-9

		Time		Al	locatio	ns	-	
Tot / %	measured:	8.6	i6s / 10	10%	7.54	GiB / 1	.00%	
Section	ncalls	time	%tot	avg	alloc	%tot	avg	5
backward forward	61 61				6.11GiB 1.43GiB			

	Time			Al	location	ns		
	Tot / % i	measured:	30.	2s / 10	3%	26.2	GiB / 10	90%
vg	Section	ncalls	time	%tot	avg	alloc	%tot	avg
iB iB	backward forward	62 62		75.8% 24.2%	368ms 118ms	20.1GiB 6.13GiB	76.6% 23.4%	332MiB 101MiB

Problem of D=3

• QR isn't stable for R^{-1}

Problem of iPEPS symmetry

• When only require up and down symmetry, Heisenberg(1,1,1)

$$E_0 = -0.85 < -0.66$$

$$T_{uldr} = l - r =$$

 Vertical and horizontal bond energy should be optimized at the same time

AD-BC-VUMPS

BCVUMPS-algorithm

Initial orthonormal form MPS

$$\begin{aligned} &M_{ij} = \text{mpo}(\text{params}) \\ &AL_{ij}, C_{ij} = \text{leftorth } (A_{ij}) \\ &AR_{ij} = \text{rightorth } (AL_{ij}, C_{ij}) \end{aligned} = \begin{bmatrix} AL_{ij} & AR_{ij} & AR_{ij} \\ AR_{ij} & AR_{ij} & AR_{ij} & AR_{ij} \\ AR_{ij} &$$

Get orthonormal form

AR[i, j] = rightenv(AR[i, :], M[i, :])

AC[i, j], C[i, j] = vumpsstep(AL[:, j], C[:, j], AR[:, j], M[:, j], FL[:, j], FR[:, j])

AD for array of array

```
# example to solve differential of array of array
# use `[]` list then reshape
A = Array{Array, 2}(undef, 2, 2)
for j = 1:2, i = 1:2
    A[i,j] = rand(2,2)
end
function foo2(x)
    \# B[i,j] = A[i,j].*x \# mistake
    B = reshape([A[i].*x for i=1:4],2,2)
    return sum(sum(B))
end
@test Zygote.gradient(foo2, 1)[1] ≈ num grad(foo2, 1)
```

Be careful of index and replaced function!

AD-BC-VUMPS

Contents

some Tricks

some tricks to accelerate

- Save vumps environment
- Optimize the contract order

For Julia OMEinsum optimize_greedy(; method=MinSpaceDiff())

- Set maxiter = 1 for linsolve but eigsolve not
- GPU

Finding the Ground State of infinite 2D Heisenberg model

ADVUMPS vs ADCTMRG $D = 2 \chi = 20 \delta = 10^{-12}$

33.76s vs 15.62s

29.11s vs 15.58s

16.61s vs 4.94s

Difference ~1e-14

Backward forward

9.91s 72.3% 3.79s 27.7%

Difference ~1e-9

10.7s 77.1% 3.19s 22.9%

Difference ~1e-9

6.14s 76.9% 1.84s 23.1% 3

Heisenberg model D = 4,5,6

one RTX2060-6G

D	χ	iteration	time	E	error
4	30	44	22.7 min	-0.6689534	7.3×10^{-4}
5	30	513	6.6h	-0.6693341	1.6×10^{-4}
6	30	355	16.1h	-0.6693380	1.56×10^{-4}

MC: -0.6694421

2×2 AD-BC-VUMPS

symmetry environment

•
$$H = \sum_{ij} S_i^z S_j^z + \frac{1}{2} (S_i^+ S_j^- + S_i^- S_j^+)$$

$$\downarrow S_j \leftarrow \sigma_x S_j \sigma_x'$$
• $H = -\sum_{ij} S_i^z S_j^z + \frac{1}{2} (S_i^+ S_j^+ + S_i^- S_j^-)$

•
$$H = -\sum_{ij} S_i^z S_j^z + \frac{1}{2} (S_i^+ S_j^+ + S_i^- S_j^-)$$

Up-and-down-symmetry assumption

$$ACd_{11} = ACu_{12}$$

$$ACd_{12} = ACu_{11}$$

D	χ	iteration	time	E
2	20	25	122.9s	-0.6602265
4	32	134	5.5h	-0.6689648
4	32	86	2.5h	-0.6689539
4	30	513	22.7 min	-0.6689534

Honeycomb lattice to square

Honeycomb Heisenberg

D	χ	E	M
2	20	-0.5400	0.243
3	20	-0.5430	0.222
4	20	-0.5440	0.200

\overline{D}	E	M
3	-0.5365	0.249
4	-0.5456	0.228
5	-0.5488	0.220
6	-0.5513	0.206
7	-0.5490	0.216
8	-0.5506	0.212

Method	E	M
Spin wave [12]	-0.5489	0.24
Series expansion [13]	-0.5443	0.27
Monte Carlo [14]	-0.5450 ± 0.001	0.22 ± 0.03
Ours $D = 8$	-0.5506	0.21 ± 0.01

Honeycomb Kitaev

Computation Graphs

result

D	chi	En	M
3	50	-0.3795995949421732	0.27211012905099785
4	80	-0.3931735662139908	0.0001872923118720
5	100	-0.3934970101949562	0.0000972301264798
6	100	-0.3935976940110233	0.0002659684803263

D	χ	E	M
4	20	-0.3933225282386825	0.0005
4	30	-0.39343584624314554	0.002

VUMPS up error $\approx 1e-6$ down error $\approx 1e-6$

VUMPS up error $\approx 1e-7$ down error $\approx 1e-2$

$$E = -0.3933 \sim -0.3929$$

Some arguments for up and down VUMPS

Differential for observable

Contradictory result for up and down

