Prerequisite Information

- Properties of Random Variables
 - o If X and Y are two continuous random variables described by probability density functions $f_X(x)$ and $f_Y(y)$ respectively, then the joint distribution is defined as follows.

$$f_{XY}(x,y) \stackrel{\text{def}}{=} \mathbb{P}\left(X = X \bigcap Y = y\right) = f_X(x|Y = y)f_Y(y) = f_X(x)f_Y(y|X = x)$$

o If X and Y are three continuous random variables described by probability density functions $f_X(x)$ and $f_Y(y)$ respectively, then the following property holds

$$f_X(x) = \int_{y \in \Omega_Y} f_{XY}(x, y) dy$$

where Ω_Y is the set of all possible values of the variable Y. This leads to the next property.

o If X, Y, and Z are three continuous random variables described by probability density functions $f_X(x)$, $f_Y(y)$, and $f_Z(z)$ respectively, then the following property holds

$$f_{XY}(x,y) = \int_{z \in \Omega_Z} f_{XYZ}(x,y,z)dz$$

- Ratio Distribution density function
 - o If X and Y are two continuous random variables described by probability density functions $f_X(x)$ and $f_Y(y)$ respectively, then the ratio distribution defined as Z = X/Y has a density function that can be calculated through the following formula. (See Proof)

$$f_Z(z) = \int_{t \in \Omega_Y} |t| f_{XY}(zt, t) dt$$

Proof of Density function for the Yield variable

In the current model of the Yield, the random variable is given by the following expression

$$Y = \frac{\varepsilon N + X_Q}{E_r + X_P + \left(\frac{V}{\varepsilon}\right) X_Q}$$

where E_r , V, and ε are constants and N, X_Q , and X_P are independent normally distributed variables distributed as $N \sim N(\mu_N, \sigma_N^2)$, $X_Q \sim N(0, \sigma_Q^2)$, and $X_P \sim N(0, \sigma_P^2)$. Thus, the known density functions are

$$f_N(x) = \frac{1}{\sigma_N \sqrt{2\pi}} e^{-\frac{(x-\mu_N)^2}{2\sigma_N^2}}, f_{X_Q}(x) = \frac{1}{\sigma_Q \sqrt{2\pi}} e^{-\frac{x^2}{2\sigma_Q^2}}, \text{ and } f_{X_P}(x) = \frac{1}{\sigma_P \sqrt{2\pi}} e^{-\frac{x^2}{2\sigma_P^2}}.$$

A variable switch was introduced where $A = \varepsilon N + X_Q$ and $B = E_r + X_P + \left(\frac{V}{\varepsilon}\right)X_Q$. Thus,

$$Y = \frac{\varepsilon N + X_Q}{E_r + X_P + \left(\frac{V}{\varepsilon}\right) X_Q} = \frac{A}{B}$$

Using the Ratio distribution density function formula gives the distribution of the Yield as

$$f_Y(y) = \int_{-\infty}^{\infty} |t| f_{AB}(yt, t) dt$$

Now, the joint distribution $f_{AB}(a, b)$ must be calculated. Using the third listed property of random variables, we have that

$$f_{AB}(a,b) = \int_{-\infty}^{\infty} f_{ABX_Q}(a,b,q) dq$$

In order to calculate the joint distribution $f_{ABX_Q}(a, b, q)$, we use the first listed property of random variables, where

$$f_{ABX_Q}(a, b, q) = f_{AB}(a, b|X_Q = q) * f_{X_Q}(q)$$

Then, because A and B are independent without X_Q , the conditional joint distribution can be calculated as

$$f_{AB}(a,b|X_Q=q) = f_A(a|X_Q=q) * f_B(b|X_Q=q)$$

The remaining conditional variables are then

$$A \mid (X_Q = q) = \varepsilon N + q \sim N(\varepsilon \mu_N + q, \varepsilon^2 \sigma_N^2)$$

$$B \mid (X_Q = q) = E_r + X_P + \left(\frac{V}{\varepsilon}\right) q \sim N\left(E_r + \left(\frac{V}{\varepsilon}\right) q, \sigma_P^2\right)$$

Then, the probability density functions to plug in are

$$f_{X_Q}(x) = \frac{1}{\sigma_Q \sqrt{2\pi}} e^{-\frac{x^2}{2\sigma_Q^2}}$$

$$f_A(x|X_Q = q) = \frac{1}{\varepsilon \sigma_N \sqrt{2\pi}} e^{-\frac{\left(x - (\varepsilon \mu_N + q)\right)^2}{2\varepsilon^2 \sigma_N^2}}$$

$$f_B(x|X_Q = q) = \frac{1}{\sigma_D \sqrt{2\pi}} e^{-\frac{\left(x - \left(E_r + \left(\frac{V}{\varepsilon}\right)q\right)\right)^2}{2\sigma_P^2}}$$

Thus, summarizing previous steps

$$\begin{split} f_Y(y) &= \int_{-\infty}^{\infty} |t| f_{AB}(yt,t) dt = \int_{-\infty}^{\infty} |t| \int_{-\infty}^{\infty} f_{ABX_Q}(yt,t,q) dq \, dt \\ &= \int_{-\infty}^{\infty} |t| \int_{-\infty}^{\infty} f_{AB}(yt,t|X_Q = q) * f_{X_Q}(q) dq \, dt \\ &= \int_{-\infty}^{\infty} |t| \int_{-\infty}^{\infty} f_A(yt|X_Q = q) * f_B(t|X_Q = q) * f_{X_Q}(q) dq \, dt \\ &= \frac{1}{\varepsilon \sigma_D \sigma_O \sigma_N (2\pi)^{\frac{3}{2}}} \int_{-\infty}^{\infty} |t| \int_{-\infty}^{\infty} e^{-\frac{1}{2} \left(\frac{q^2}{\sigma_Q^2} + \frac{\left(yt - (\varepsilon \mu_N + q)\right)^2}{\varepsilon^2 \sigma_N^2} + \frac{\left(\varepsilon t - (\varepsilon E_r + Vq)\right)^2}{\varepsilon^2 \sigma_P^2}\right)} dq \, dt \end{split}$$

Evaluating this expression gives the result of

$$f_Y(y) = \frac{e^{-\gamma}}{2 * \alpha(y) * \sqrt{\pi k}} * g\left(\frac{\beta(y)}{2\sqrt{\alpha(y)}}\right)$$

Where

$$k = \sigma_{P}^{2} \sigma_{Q}^{2} + V^{2} \sigma_{N}^{2} \sigma_{Q}^{2} + \varepsilon^{2} \sigma_{P}^{2} \sigma_{N}^{2}$$

$$\alpha(x) = \frac{1}{2k} \left(\sigma_{Q}^{2} \left(x \left(\frac{V}{\varepsilon} \right) + 1 \right)^{2} + \sigma_{P}^{2} x^{2} + \varepsilon^{2} \sigma_{N}^{2} \right)$$

$$\beta(x) = \frac{1}{k} \left(\left(\frac{V}{\varepsilon} \right) \sigma_{Q}^{2} (E_{r} x + \varepsilon \mu_{N}) + x \varepsilon \mu_{N} \left(\left(\frac{V}{\varepsilon} \right)^{2} \sigma_{Q}^{2} + \sigma_{P}^{2} \right) + E_{r} (\sigma_{Q}^{2} + \varepsilon^{2} \sigma_{N}^{2}) \right)$$

$$\gamma = \frac{1}{2k} \left(\sigma_{Q}^{2} (E_{r} + V \mu_{N})^{2} + \varepsilon^{2} \left(\mu_{N}^{2} \sigma_{P}^{2} + E_{r}^{2} \sigma_{N}^{2} \right) \right)$$

$$g(x) = \frac{1}{\sqrt{\pi}} + x e^{x^{2}} \operatorname{erf}(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{\Gamma \left(n + \frac{1}{2} \right)} = \frac{1}{\sqrt{\pi}} \sum_{n=0}^{\infty} \frac{n! (2x)^{2n}}{(2n)!}$$