

Impact of half-wave plate systematics on the measurement of cosmic birefringence from CMB polarization

Marta Monelli

Max Planck Institut für Astrophysik Garching (Germany)

May 23th, 2023

CMB anisotropies

Inhomogeneities at photon decoupling imprint anisotropies on the CMB.

CMB anisotropies

Inhomogeneities at photon decoupling imprint anisotropies on the CMB.

image credit: Jonathan Aumont

new physics from CMB polarization

► Inflation-sourced tensor perturbations are expected to leave a distinctive signature (*B*-modes) on CMB polarization.

This is driving the development of a number of new missions:

- ☐ Simons Observatory,
- South Pole Observatory,
- ☐ CMB Stage-4,
- LiteBIRD.

new physics from CMB polarization

► Inflation-sourced tensor perturbations are expected to leave a distinctive signature (*B*-modes) on CMB polarization.

This is driving the development of a number of new missions:

- ☐ Simons Observatory,
- South Pole Observatory,
- CMB Stage-4,
- LiteBIRD.

Parity-violating physics could also imprint features on CMB polarization.

image credit: LiteBIRD Collaboration (2022) PTEP

signatures of parity violation

signatures of parity violation

Coupling a pseudoscalar χ to EM via a Chern-Simons term:

$$\mathcal{L}_{\mathsf{CS}} = -\frac{\alpha}{4f} \chi F_{\mu\nu} \widetilde{F}^{\mu\nu},$$

with $F_{\mu\nu} \propto \epsilon^{\mu\nu\rho\sigma} F_{\rho\sigma}$, makes + and - photon helicity states propagate differently:

$$A''_{\pm} + \left(k^2 \mp \frac{k\alpha\chi'}{f}\right)A'_{\pm} = 0.$$

Difference in phase velocity \rightarrow rotation of the plane of linear polarization.

signatures of parity violation

Coupling a pseudoscalar χ to EM via a Chern-Simons term:

$$\mathcal{L}_{\mathsf{CS}} = -\frac{\alpha}{4f} \chi F_{\mu\nu} \widetilde{F}^{\mu\nu},$$

with $F_{\mu\nu} \propto \epsilon^{\mu\nu\rho\sigma} F_{\rho\sigma}$, makes + and - photon helicity states propagate differently:

$$A''_{\pm} + \left(k^2 \mp \frac{k\alpha\chi'}{f}\right)A'_{\pm} = 0.$$

Difference in phase velocity \rightarrow rotation of the plane of linear polarization.

why "cosmic birefringence"?

Birefringence: property of a material whose refractive index depends on the polarization and propagation direction of light.

Thinner slabs, normal incidence: no double refraction, only retardance.

Both optical and cosmic birefringence rotate polarization vectors.

why "cosmic birefringence"?

Birefringence: property of a material whose refractive index depends on the polarization and propagation direction of light.

Thinner slabs, normal incidence: no double refraction, only retardance.

Both optical and cosmic birefringence rotate polarization vectors.

effect in harmonic space

Mixing of E and B modes:
$$\begin{cases} a_{\ell m, \text{obs}}^E = a_{\ell m}^E \cos 2\beta - a_{\ell m}^B \sin 2\beta, \\ a_{\ell m, \text{obs}}^B = a_{\ell m}^E \sin 2\beta + a_{\ell m}^B \cos 2\beta. \end{cases}$$

image credit: Yuto Minami

hints of cosmic birefringence

$$\begin{cases} C_{\ell,\text{obs}}^{TT} = C_{\ell}^{TT}, \\ C_{\ell,\text{obs}}^{EE} = \cos^{2}(2\beta)C_{\ell}^{EE} + \sin^{2}(2\beta)C_{\ell}^{BB} - \sin(4\beta)C_{\ell}^{EB}, \\ C_{\ell,\text{obs}}^{BB} = \cos^{2}(2\beta)C_{\ell}^{BB} + \sin^{2}(2\beta)C_{\ell}^{EE} + \sin(4\beta)C_{\ell}^{EB}, \\ C_{\ell,\text{obs}}^{TE} = \cos(2\beta)C_{\ell}^{TE} - \sin(2\beta)C_{\ell}^{TB}, \\ C_{\ell,\text{obs}}^{EB} = \sin(4\beta)(C_{\ell}^{EE} - C_{\ell}^{BB})/2 + \cos(4\beta)C_{\ell}^{EB}, \\ C_{\ell,\text{obs}}^{TB} = \sin(2\beta)C_{\ell}^{TE} + \cos(2\beta)C_{\ell}^{TB}. \end{cases}$$

$$C_{\ell,\text{obs}}^{EB} = \sin(2\beta)C_{\ell}^{TE} + \cos(2\beta)C_{\ell}^{TB}.$$

$$C_{\ell,\text{obs}}^{EB} = \tan(4\beta)(C_{\ell,\text{obs}}^{EE} - C_{\ell,\text{obs}}^{BB})/2.$$

hints of cosmic birefringence

$$\begin{cases} C_{\ell,\text{obs}}^{TT} = C_{\ell}^{TT}, \\ C_{\ell,\text{obs}}^{EE} = \cos^{2}(2\beta)C_{\ell}^{EE} + \sin^{2}(2\beta)C_{\ell}^{BB} - \sin(4\beta)C_{\ell}^{EB}, \\ C_{\ell,\text{obs}}^{BB} = \cos^{2}(2\beta)C_{\ell}^{BB} + \sin^{2}(2\beta)C_{\ell}^{EE} + \sin(4\beta)C_{\ell}^{EB}, \\ C_{\ell,\text{obs}}^{TE} = \cos(2\beta)C_{\ell}^{TE} - \sin(2\beta)C_{\ell}^{TB}, \\ C_{\ell,\text{obs}}^{EB} = \sin(4\beta)(C_{\ell}^{EE} - C_{\ell}^{BB})/2 + \cos(4\beta)C_{\ell}^{EB}, \\ C_{\ell,\text{obs}}^{TB} = \sin(2\beta)C_{\ell}^{TE} + \cos(2\beta)C_{\ell}^{TB}. \end{cases}$$

$$C_{\ell,\text{obs}}^{EB} = \tan(4\beta)(C_{\ell,\text{obs}}^{EE} - C_{\ell,\text{obs}}^{BB})/2.$$

$$\beta = 0.35 \pm 0.14 (68\%\text{CL})$$

To be confirmed (or not) by future polarization observations!

measuring polarization

describing polarization: Stokes vectors

Stokes vector
$$\vec{S} \equiv \begin{pmatrix} I \\ Q \\ U \\ V \end{pmatrix} \equiv \begin{pmatrix} |E_x|^2 + |E_y|^2 \\ |E_x|^2 - |E_y|^2 \\ 2\text{Re}(E_x E_y^*) \\ -2\text{Im}(E_x E_y^*) \end{pmatrix}$$

describing polarization: Stokes vectors

Stokes vector
$$\vec{S} \equiv \begin{pmatrix} I \\ Q \\ U \\ V \end{pmatrix} \equiv \begin{pmatrix} |E_x|^2 + |E_y|^2 \\ |E_x|^2 - |E_y|^2 \\ 2\text{Re}(E_x E_y^*) \\ -2\text{Im}(E_x E_y^*) \end{pmatrix}$$

describing polarization: Stokes vectors

Stokes vector
$$\vec{S} \equiv \begin{pmatrix} I \\ Q \\ U \\ V \end{pmatrix} \equiv \begin{pmatrix} |E_x|^2 + |E_y|^2 \\ |E_x|^2 - |E_y|^2 \\ 2\text{Re}(E_x E_y^*) \\ -2\text{Im}(E_x E_y^*) \end{pmatrix}$$

matrix methods for computing polarization

Mueller calculus: radiation described as S = (I, Q, U), effect of polarization-altering devices parametrized by \mathcal{M} so that $S' = \mathcal{M} \cdot S$.

$$\mathcal{M}_{\mathsf{pol}} = \frac{1}{2} \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \mathcal{M}_{\theta} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos{(2\theta)} & \sin{(2\theta)} \\ 0 & -\sin{(2\theta)} & \cos{(2\theta)} \end{pmatrix}, \quad \dots$$

Given two optical elements in series with \mathcal{M}_1 and \mathcal{M}_2 , their combined effect can be described by $\mathcal{M}_2\mathcal{M}_1$.

Matrix methods are extremely convenient to manipulate polarization, since one does not work with the electromagnetic field itself.

an example: pair-differencing systematics

Polarization can be measured by comparing the readings of pairs of (orthogonal) detectors:

$$\det_1$$
 \det_2

$$egin{aligned} d_1 &= a \cdot \mathcal{M}_{\mathsf{pol}} \cdot \mathcal{S} = egin{pmatrix} 1 & 0 & 0 \end{pmatrix} rac{1}{2} egin{pmatrix} 1 & 1 & 0 \ 1 & 1 & 0 \ 0 & 0 & 0 \end{pmatrix} egin{pmatrix} I \ Q \ U \end{pmatrix} = I + Q \,, \ d_2 &= a \cdot \mathcal{M}_{\mathsf{pol}} \mathcal{M}_{\pi/2} \cdot \mathcal{S} &= I - Q \,. \end{aligned}$$

This method can lead to detection of spurious polarization.

the path forward

How will next generation CMB experiments deal with this?

- ☐ LiteBIRD,
- ☐ Simons Observatory,
- ☐ South Pole Observatory,
- CMB Stage-4.

the path forward

How will next generation CMB experiments deal with this?

- ✓ LiteBIRD,
- ✓ Simons Observatory,
- ✓ South Pole Observatory,
- ✓ CMB Stage-4.

They all plan to employ rotating half-wave plates (HWPs) as polarization modulators.

the HWP: reducing systematics

A **rotating** half-wave plate (HWP) as first optical element can help to control systematics.

► The intrinsic signal is modulated to 4 f_{HWP} and can be distinguished from spurious signal (no/different modulation).

the HWP Mueller matrix

For an ideal HWP, $\mathcal{M}_{\text{ideal}} = \text{diag}(1, 1, -1, -1)$, but let's look at a realistic case:

$$\mathcal{M}_{\text{HWP}} = \begin{pmatrix} 1.05 & 0.05 & 0.01 & 0.05 & 0.0$$

How does this affect the observed maps?

modeling the HWP effect

how to propagate systematics

image credit: Planck collaboration

how to propagate systematics

TOD: collection of the signal detected by *each of the* (4508) detectors during the whole (3-year) mission.

how to propagate systematics

TOD: collection of the signal detected by each of the (4508) detectors during the whole (3-year) mission.

Simulating and modeling TOD is crucial in the planning of any CMB experiment: it helps studying potential systematic effects.

HWP impact on CB: working assumptions

To focus on the impact of HWP non-idealities we consider a simplified problem:

- no noise,
- single frequency,
- CMB-only,
- simple beams,
- HWP aligned to the detector line of sight.

modeling the TOD

(minimal) TOD: signal detected by 4 detectors.

$$\begin{pmatrix} d^{(0)} \\ d^{(90)} \\ d^{(45)} \\ d^{(135)} \end{pmatrix} = \begin{pmatrix} (1\ 1\ 0) \cdot \mathcal{R}_{0-\phi} \mathcal{M}_{\mathsf{HWP}} \mathcal{R}_{\phi+\psi} \\ (1\ 1\ 0) \cdot \mathcal{R}_{90-\phi} \mathcal{M}_{\mathsf{HWP}} \mathcal{R}_{\phi+\psi} \\ (1\ 1\ 0) \cdot \mathcal{R}_{45-\phi} \mathcal{M}_{\mathsf{HWP}} \mathcal{R}_{\phi+\psi} \\ (1\ 1\ 0) \cdot \mathcal{R}_{135-\phi} \mathcal{M}_{\mathsf{HWP}} \mathcal{R}_{\phi+\psi} \end{pmatrix} \cdot \begin{pmatrix} I_{\mathsf{in}} \\ Q_{\mathsf{in}} \\ U_{\mathsf{in}} \end{pmatrix}$$

modeling the TOD

(minimal) TOD: signal detected by 4 detectors.

$$\begin{pmatrix} d^{(0)} \\ d^{(90)} \\ d^{(45)} \\ d^{(135)} \end{pmatrix} = \begin{pmatrix} (1\ 1\ 0) \cdot \mathcal{R}_{0-\phi} \mathcal{M}_{\text{HWP}} \mathcal{R}_{\phi+\psi} \\ (1\ 1\ 0) \cdot \mathcal{R}_{30} & \text{matrix } \mathcal{A} \\ (1\ 1\ 0) \cdot \mathcal{R}_{135-\phi} \mathcal{M}_{\text{HWP}} \mathcal{R}_{\phi+\psi} \end{pmatrix} \cdot \begin{pmatrix} I_{\text{in}} \\ Q_{\text{in}} \\ U_{\text{in}} \end{pmatrix}$$

modeling the observed maps

map-maker: bin-averaging $\hat{S} = (\hat{A}^T \hat{A})^{-1} \hat{A}^T A \cdot S$ assuming ideal HWP.

$$\widehat{A} = \begin{pmatrix} (1 \ 1 \ 0) \cdot \mathcal{R}_{\mathbf{0} - \phi} \mathcal{M}_{\mathsf{ideal}} \mathcal{R}_{\phi + \psi} \\ (1 \ 1 \ 0) \cdot \mathcal{R}_{\mathbf{90} - \phi} \mathcal{M}_{\mathsf{ideal}} \mathcal{R}_{\phi + \psi} \\ (1 \ 1 \ 0) \cdot \mathcal{R}_{\mathbf{45} - \phi} \mathcal{M}_{\mathsf{ideal}} \mathcal{R}_{\phi + \psi} \\ (1 \ 1 \ 0) \cdot \mathcal{R}_{\mathbf{135} - \phi} \mathcal{M}_{\mathsf{ideal}} \mathcal{R}_{\phi + \psi} \end{pmatrix}$$

estimated ouput maps

$$\begin{split} \widehat{I} &= \textit{m}_{ii} \textit{l}_{in} + \left(\textit{m}_{iq} \textit{Q}_{in} + \textit{m}_{iu} \textit{U}_{in} \right) \cos(2\alpha) + \left(\textit{m}_{iq} \textit{U}_{in} - \textit{m}_{iu} \textit{Q}_{in} \right) \sin(2\alpha) \,, \\ \widehat{Q} &= \frac{1}{2} \Big\{ \left(\textit{m}_{qq} - \textit{m}_{uu} \right) \textit{Q}_{in} + \left(\textit{m}_{qu} + \textit{m}_{uq} \right) \textit{U}_{in} + 2 \textit{m}_{qi} \textit{I}_{in} \cos(2\alpha) + 2 \textit{m}_{ui} \textit{I}_{in} \sin(2\alpha) \\ &+ \left[\left(\textit{m}_{qq} + \textit{m}_{uu} \right) \textit{Q}_{in} + \left(\textit{m}_{qu} - \textit{m}_{uq} \right) \textit{U}_{in} \right] \cos(4\alpha) \\ &+ \left[- \left(\textit{m}_{qu} - \textit{m}_{uq} \right) \textit{Q}_{in} + \left(\textit{m}_{qq} + \textit{m}_{uu} \right) \textit{U}_{in} \right] \sin(4\alpha) \Big\} \,, \\ \widehat{U} &= \frac{1}{2} \Big\{ \left(\textit{m}_{qq} - \textit{m}_{uu} \right) \textit{U}_{in} - \left(\textit{m}_{qu} + \textit{m}_{uq} \right) \textit{Q}_{in} - 2 \textit{m}_{ui} \textit{I}_{in} \cos(2\alpha) + 2 \textit{m}_{qi} \textit{I}_{in} \sin(2\alpha) \\ &+ \left[- \left(\textit{m}_{qq} + \textit{m}_{uu} \right) \textit{U}_{in} + \left(\textit{m}_{qu} - \textit{m}_{uq} \right) \textit{Q}_{in} \right] \cos(4\alpha) \\ &+ \left[\left(\textit{m}_{qu} - \textit{m}_{uq} \right) \textit{U}_{in} + \left(\textit{m}_{qq} + \textit{m}_{uu} \right) \textit{Q}_{in} \right] \sin(4\alpha) \Big\} \,, \end{split}$$

where $\alpha = \phi + \psi$. For **good** coverage and **rapidly spinning** HWP:

$$\widehat{\mathsf{S}} \simeq egin{pmatrix} m_{ii} I_{in} \ [(m_{qq} - m_{uu}) Q_{in} + (m_{qu} + m_{uq}) U_{in}]/2 \ [(m_{qq} - m_{uu}) U_{in} - (m_{qu} + m_{uq}) Q_{in}]/2 \end{pmatrix}.$$

Monelli et al. (2023) JCAP 03

angular power spectra

Expanding \widehat{S} in spherical harmonics:

$$\begin{split} \widehat{C}_{\ell}^{TT} &\simeq m_{ii}^2 C_{\ell, \text{in}}^{TT}, \\ \widehat{C}_{\ell}^{EE} &\simeq \frac{(m_{qq} - m_{uu})^2}{4} C_{\ell, \text{in}}^{EE} + \frac{(m_{qu} + m_{uq})^2}{4} C_{\ell, \text{in}}^{BB} + \frac{(m_{qq} - m_{uu})(m_{qu} + m_{uq})}{2} C_{\ell, \text{in}}^{EB}, \\ \widehat{C}_{\ell}^{BB} &\simeq \frac{(m_{qq} - m_{uu})^2}{4} C_{\ell, \text{in}}^{BB} + \frac{(m_{qu} + m_{uq})^2}{4} C_{\ell, \text{in}}^{EE} - \frac{(m_{qq} - m_{uu})(m_{qu} + m_{uq})}{2} C_{\ell, \text{in}}^{EB}, \\ \widehat{C}_{\ell}^{TE} &\simeq \frac{m_{ii}(m_{qq} - m_{uu})}{2} C_{\ell, \text{in}}^{TE} + \frac{m_{ii}(m_{qu} + m_{uq})}{2} C_{\ell, \text{in}}^{EB}, \\ \widehat{C}_{\ell}^{EB} &\simeq \frac{(m_{qq} - m_{uu})^2 - (m_{qu} + m_{uq})^2}{4} C_{\ell, \text{in}}^{EB} - \frac{(m_{qq} - m_{uu})(m_{qu} + m_{uq})}{2} (C_{\ell, \text{in}}^{EE} - C_{\ell, \text{in}}^{BB}), \\ \widehat{C}_{\ell}^{TB} &\simeq \frac{m_{ii}(m_{qq} - m_{uu})}{2} C_{\ell, \text{in}}^{TB} - \frac{m_{ii}(m_{qu} + m_{uq})}{2} C_{\ell, \text{in}}^{TE}. \end{split}$$

analytical vs simulated output spectra

Monelli et al. (2023) JCAP 03

impact on cosmic birefringence

HWP-induced miscalibration

Analytic \widehat{C}_{ℓ} s satisfy the relations:

$$\begin{cases} \widehat{C}_{\ell}^{\textit{EB}} \simeq \tan(4\widehat{\theta}) \left[\widehat{C}_{\ell}^{\textit{EE}} - \widehat{C}_{\ell}^{\textit{BB}} \right] / 2 \\ \widehat{C}_{\ell}^{\textit{TB}} \simeq \tan(2\widehat{\theta}) \widehat{C}_{\ell}^{\textit{TE}} \end{cases}$$

The HWP induces an additional miscalibration, degenerate with cosmic birefringence and polarization angle miscalibration!

HWP-induced miscalibration

Analytic \widehat{C}_{ℓ} s satisfy the relations:

our formulae suggest

$$\begin{cases} \widehat{C}_{\ell}^{EB} \simeq \tan(4\widehat{\theta}) \left[\widehat{C}_{\ell}^{EE} - \widehat{C}_{\ell}^{BB} \right] / 2 & \widehat{\theta} \equiv -\frac{1}{2} \arctan \frac{m_{qu} + m_{uq}}{m_{qq} - m_{uu}} \sim 3.8^{\circ}, \\ \widehat{C}_{\ell}^{TB} \simeq \tan(2\widehat{\theta}) \widehat{C}_{\ell}^{TE} & \text{compatibly with simulations.} \end{cases}$$

$$\widehat{\theta} \equiv -\frac{1}{2} \arctan \frac{m_{qu} + m_{uq}}{m_{qq} - m_{uu}} \sim 3.8^{\circ},$$

compatibly with simulations.

The HWP induces an additional miscalibration. degenerate with cosmic birefringence and polarization angle miscalibration!

This doesn't mean that the HWP will keep us from measuring β , but it shows how important it is to carefully calibrate \mathcal{M}_{HWP} .

conclusions and outlook

- much information is still hidden in CMB polarization (for instance, cosmic birefringence as a signature of parity-violating physics),
- new physics can be probed only if systematics are well under control,
- ➤ a rotating HWP can help, but it induces additional systematics which should be accounted for (HWP-induced miscalibration),
- we are now provided with an analytical model and a simulation pipeline that can be used to study the impact of the HWP in more realistic scenarios. this is key for the planning of the next generation of CMB experiments.