MAT 12 CLASS NOTES

Estefany Gebert

Spring 2016

Contents

1	Types	s of Numbers	2	
	1.1 W	Vhole Numbers	2	
	1.2 N	Vatural Numbers	2	
	1.3 Ir	ntegers	2	
	1.4 E	Even Numbers	2	
	1.5 O	Odd numbers	2	
	1.6 P	Prime Number	2	
	1.7 Ir	rrational Number	2	
	1.8 R	Rational Number	2	
	1.9 N	Number Line	2	
2	Examples: Types of Numbers 3			
			3	
		- v	3	
			3	
3		Problems	3	
		0	3	
		8	4	
	3.3 N	Iultiply	4	
	3.4 D	Dividing	4	
4	Fracti	ions	4	
	4.1 R	Reducing Fractions	4	
			5	
	4.3 C	Complex Fractions	5	
	4.4 D	Dividing Fractions	5	
5	Exam	Examples: Fractions		
		•	6	
			6	
6	Expor	nents	6	
			_	
7		e Factors	7	

1 Types of Numbers

1.1 Whole Numbers

(0,1,2,3,4)

1.2 Natural Numbers

These are also known as "counting numbers".

(1, 2, 3, 4...)

1.3 Integers

Any whole number that does not have decimal or fractional part.

$$(-3, -2, -1, 0, 1, 2, 3, 4...)$$

1.4 Even Numbers

These numbers can be easily divisible by two.

(2, 4, 6, 8...)

1.5 Odd numbers

Number NOT easily divisible by two.

(1, 3, 5, 7...)

1.6 Prime Number

Numbers that are only evenly divisible by themselves or one.¹

1.7 Irrational Number

A decimal number that goes on forever and does not repeat. ²

 $(3.1415926..., \sqrt{2})$

1.8 Rational Number

The opposite of an irrational number. These numbers will eventually end or start repeating.

(3.5, 3.33333...)

1.9 Number Line

All real numbers can be found on the number line.

 $^{^{1}\}mathrm{Two}$ is the only even prime number.

 $^{^2\}pi$ is probably the most famous irrational number.

2 Examples: Types of Numbers

$$\sqrt{81} = 9$$

$$\sqrt{49} = 7$$

$$\sqrt{25} = 5$$

$$\sqrt{NegativeNumber} = NOTREAL$$

3

2.1 Simplify

$$6 \times (7-4) \div 3 + 8 - 3$$

$$6 \times (3) \div 3 + 8 - 3$$

$$18 \div 3 + 8 - 3$$

$$6 \div 3 + 8 - 3$$

$$14 - 3$$

$$11$$

2.2 Round the Numeral

- 85,379
 - Nearest Thousands Place: 85,000
 - Nearest Tens Place: 85,380

2.3 Expanded Notation

- This is the Standard Form: 85,379.
- This is the Expanded Notation:

80,000 5,000 300 70 9

3 Word Problems

3.1 Adding

These are words that you will want to recognize as addition when reading a Math problem.

- \bullet Add
- Sum
- Total
- Increase
- Plus

 $^{^3}$ Imaginary Numbers are for another lesson.

3.2 Subtracting

Same as addition, these are words to recognoze when reading a word problen dealing with subtraction.

- Subtract
- Minus
- Decrease
- Take Away
- Less than
- \bullet from

3.3 Multiply

Words that point to multiplication.

- \bullet Product
- Times
- \bullet Of

3.4 Dividing

Words to be recognized when one needs to divide.

- Divisible
- Divide
- Division
- Quotient
- Into
- Per

4 Fractions

These are part of a whole.

 $\frac{3}{5}$

4.1 Reducing Fractions

Common Multiple.

$$\frac{2 \div 2}{4 \div 2} = \frac{1}{2} \tag{1}$$

- 2 = (2,4,6,8,10,12,...)
- 4 = (4,8,12,16,20,24,...)

Common Factor.

- 2 = 1,2
- 4 = 1,2,4

2 is the Greatest Common Factor.

$$\frac{8}{4} = \frac{8 \div 8}{24 \div 8} = \frac{1}{3} \tag{2}$$

4.2 Simple Fractions

• Proper: Numerator is smaller than denominator.

_

• Improper: Numerator ia larger than Denominator.

 $\begin{array}{c} - \\ \frac{4}{3} \\ - \\ \frac{2}{1} \end{array}$

4.3 Complex Fractions

 \bullet Mixed Numbers:

$$3\frac{2}{5} \tag{3}$$

- Turning Mixed Numbers into an Improper Fraction:

$$W\frac{N}{D} = D \times W + N = \text{Improper Fraction}$$

 $\overline{4}$

 $\frac{1}{2}$

• Decimals: 3.5, 5.975

4.4 Dividing Fractions

• Reciprocal "multiplicative inverse"

$$\frac{A}{B} \div \frac{N}{D} = \frac{A}{B} \times \frac{D}{B}$$

•

$$10 \div 10 = 1$$

$$10 \div 5 = 2$$

$$10 \div 2 = 5$$

$$10 \div 1 = 10$$

$$10 \div \frac{1}{2} = 20$$

$$10 \div \frac{1}{5} = 50$$

$$10 \div \frac{1}{10} = 100$$

$$10 \div 20 = \frac{1}{2}$$

$$10 \div 30 = \frac{1}{3}$$
(4)

5 Examples: Fractions

$$\frac{10+7}{0} = \frac{17}{0} \tag{5}$$

• Anything Divided by Zero will always be Zero.

5.1 Adding Fractions

•

$$\frac{2}{5} + \frac{3}{5} = 1\tag{6}$$

• Same Denominator.

$$\frac{5}{8} + \frac{1}{8} = \frac{6}{8} = \frac{3}{4} \tag{7}$$

•

$$\frac{8}{5} + 2\frac{1}{5} (=INTO >) \frac{8}{5} + \frac{11}{5} (=EQUALS =) \frac{19}{5} (=OR >) 3\frac{4}{5}$$
 (8)

• Different Denominator.

$$\frac{1}{2} + \frac{1}{5} = \text{Find LCM} \tag{9}$$

• 2 = 2, 4, 6, 8, 10...

• 5 = 5, 10, 15... = 10

$$\frac{5}{10} + \frac{2}{10} = \frac{7}{5}$$
Cannot be Reduced (10)

5.2 Subtracting Fractions

• Most of the steps for Subtraction are similar to Addition:

• Ex: 1

$$\frac{8}{13} - \frac{1}{13} = \frac{7}{13} \tag{11}$$

• Ex: 2

$$\frac{5}{8} - \frac{3}{8} = \frac{2}{8} \tag{12}$$

• Ex: 3

$$\frac{7}{9} - \frac{2}{3} (= INTO >) \frac{7}{9} - \frac{6}{9} = \frac{1}{9}$$
 (13)

(14)

• Ex: 4

First turn mixed number into improper fraction.

$$8\frac{1}{2} - 3\frac{2}{5} (= INTO >)$$
LCM: $(2=2,4,6,8,10...), (5=5,10,15...)$

$$\frac{17 \times 5}{2 \times 5} - \frac{17 \times 2}{5 \times 2} (= INTO >) \frac{85}{10} - \frac{34}{10} (= EQUALS >) \frac{51}{10}$$

This answer can be turned into a Proper Fraction(Mixed Number)

$$=5\frac{1}{10}$$

6 Exponents

• An exponent is a quantity representing the power to which a given number or expression is to be raised, usually expressed as a raised symbol beside the number or expression (e.g., 3 in $23 = 2 \times 2 \times 2$).

$$\left(\frac{2}{5}\right)^{3} \left(=INTO>\right)\left(\frac{2}{5}\right) \times \left(\frac{2}{5}\right) \times \left(\frac{2}{5}\right) = \frac{8}{125} (\text{No GCF, Cannot be Reduced})$$
 (15)

- Base = $\frac{N=2}{D=3}$

- Exponent(power) = 3

•

$$(\frac{4}{9})^2 (= INTO >) (\frac{4}{9}) \times (\frac{4}{9}) = \frac{16}{81} (\text{No GCF})$$
 (16)

$$(\frac{2}{8})^3 (= INTO >)(\frac{2}{8}) \times (\frac{2}{8}) \times (\frac{2}{8}) = \frac{1}{64}$$
 (17)

- OR: Reduce First

$$(\frac{1}{4})(=INTO>)(\frac{1}{4})\times(\frac{1}{4})\times(\frac{1}{4})=\frac{1}{64}$$
 (18)

7 Prime Factors

• A Prime Factor is...

7.1 Ugh I'm Sleepy...