Introdução aos Modelos Biomatemáticos - Alguns pré-requisitos

2006/2007

1 Regra de Ruffini

1. a) Considere a equação

$$-x^3 + 2x - 1 = 0.$$

Determine as soluções da equação. (Descubra a primeira por inspecção directa da equação. Utilize a regra de Ruffini para determinar as outras).

b) Calcule o quociente e o resto da divisão do polinómio $x^4 - 4x^2 - x + 2$ pelo polinómio $x^2 - x - 2$.

2 Derivadas e gráficos de funções

2. Calcule as derivadas das seguintes funções:

a)
$$f(x) = 2x - 3x^2$$
; b) $f(x) = \frac{x+2}{2x+1}$; c) $f(x) = \frac{2x}{1+x^2}$;
d) $f(N) = \frac{rN}{N+A}$ $A, r > 0$; e) $f(N) = 2Ne^{-3N}$; f) $f(x) = \log(2x)$.

- 3. Esboce o gráfico das funções das alíneas a), b), e) do exercício 2 para $x, N \ge 0$.
- 4. a) Calcule a aproximação linear L(x) da função da alínea a) do exercício 2 no ponto $x_0 = \frac{2}{3}$.
 - b) Faça o mesmo com a função $f(x) = \sqrt{x}$ no ponto $x_0 = 1$ e utilize o resultado para calcular uma aproximação de $\sqrt{1.1}$.

3 Curvas de nível, derivadas parciais, linearização

5. Esboce as curvas de nível f(x,y) = C, C = 0,1,2, das seguintes funções:

a)
$$f(x,y) = x - 2y$$
, b) $f(x,y) = x^2 + \frac{y^2}{4}$.

- 6. Dada a função $f(x,r) = x^2 + r$, esboce no plano (r,x) a curva de nível f(x,r) = 0.
- 7. Calcule as derivadas parciais das seguintes funções:

a)
$$f(x,y) = 2x - 6y + 1$$
, b) $f(x,y) = x^2 - y$, c) $f(x,y) = x(80 - x - y)$,
d) $f(x,y) = \frac{xy}{x+1}$.

- 8. Seja f(x,y) uma função que admite derivadas parciais em \mathbb{R}^2 e tal que, qualquer que seja $y \in \mathbb{R}$, f(1,y) = 0, f(x,y) < 0 se x < 1 e f(x,y) > 0 se x > 1. O que pode dizer sobre as derivadas parciais de f nos pontos do tipo $(1,y_0)$?
- 9. Calcule DF(x,y) para os seguintes campos vectoriais:

a)
$$F(x,y) = \begin{pmatrix} x^2 - y \\ x - y \end{pmatrix}$$
, b) $F(x,y) = \begin{pmatrix} x(80 - x - y) \\ y(120 - x - 3y) \end{pmatrix}$,
c) $F(x,y) = \begin{pmatrix} 3x\left(2 - \frac{x}{20}\right) - \frac{xy}{x+10} \\ y\left(\frac{x}{x+10} - \frac{1}{2}\right) \end{pmatrix}$.

4 Determinantes, valores e vectores próprios

10. Calcule o determinante das seguintes matrizes:

a)
$$A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$$
, b) $A = \begin{bmatrix} -1 & 6 \\ 0 & 5 \end{bmatrix}$, c) $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$.

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

é a equação da elipse com centro na origem, eixos coincidentes com os eixos coordenados e de comprimento 2a (o eixo horizontal) e 2b (o eixo vertical)

¹Recorde que

- 11. Mostre que o vector $x=\begin{bmatrix}1\\2\end{bmatrix}$ é um vector próprio da matriz $A=\begin{bmatrix}3&0\\8&-1\end{bmatrix}$. Qual o valor próprio correspondente ?
- 12. Calcule os valores próprios das matrizes do exercício 10 e, para cada valor próprio das matrizes das alíneas a), b), calcule um vector próprio.

Bibliografia

- C. Nehauser, Calculus for Biology and medicine (PRENTICE HALL)
- H. Anton, C. Rorres, Elementary linear Algebra, Applications Version (JOHN WI-LEY & SONS INC)