

WKH

Канальные водяные нагреватели для прямоугольных каналов

Применение

- Для подогрева приточного воздуха в системах вентиляции различных помещений.
- Возможно использование в качестве подогревателя воздуха в приточных или приточно-вытяжных установках.
- Устанавливаются только внутри помещений, если в качестве теплоносителя используется вода. Для наружного применения необходимо использовать в нагревателе незамерзающую смесь (например, раствор этиленгликоля).
- Совместимы с прямоугольными воздуховодами сечением от 400х200 до 1000х500 мм.

Конструкция

- Корпус изготавливается из оцинкованной стали.
- Трубные коллекторы выполнены из медных трубок.
- Поверхность теплообмена произведена из алюминиевых пластин.
- Оборудованы ниппелем для обезвоздушивания системы.
- На выходном коллекторе предусмотрен патрубок для установки погружного датчика измерения температуры или защиты от обмерзания калорифера.
- Выпускаются в двух-, трех- или четырехрядном исполнении трубок.
- Допускается эксплуатация при максимальном рабочем давлении 1,6 МПа (16 бар) и максимальной рабочей температуре воды +100 °С.

Монтаж

- Крепление с прямоугольными каналами с помощью фланцевого соединения.
- Допускается установка в любом положении, позволяющем выполнять обезвоздушивание.
- Перед нагревателем устанавливается фильтр, который защищает от загрязнения нагревательные элементы.
- Нагреватель монтируется перед или за вентилятором. Если нагреватель устанавливается за вентилятором, рекомендуется предусмотреть между ними расстояние не менее 1–1,5 м для стабилизации потока воздуха, а также не превышать максимально допустимую температуру воздуха внутри вентилятора.
- Подключение калорифера осуществляется по принципу противотока, иначе его производительность снижается на 5–15 %. Все номограммы в каталоге рассчитаны для такого подключения.
- Для правильной и безопасной работы нагревателя рекомендуется применять автоматическую систему комплексного управления и защиты:
 - регулировку мощности и температуры нагрева воздуха;
 - отслеживание состояния фильтра с помощью датчика дифференциального давления;
 - включение системы вентиляции с предварительным прогревом нагревателя;
 - применение воздушных заслонок, оборудованных сервоприводом с возвратной пружиной;
 - остановку вентилятора в случае угрозы замерзания нагревателя.

Подключение против направления потока воздуха

Подключение по направлению потока воздуха

Серия WKH Размер фланца (ШхВ), см

40x20; 50x25; 50x30; 60x30; 60x35; 70x40; 80x50; 90x50; 100x50

Количество рядов водяного нагревателя

- 2; 3; 4

Габаритные размеры, мм

Модель	В	B1	B2	В3	Н	H1	H2	Н3	L	L1	L2	К	Кол-во рядов трубок	Масса, кг
WKH 40x20-2	400	420	440	565	200	220	240	150	200	43	43	G 3/4"	2	7,6
WKH 40x20-4	400	420	440	565	200	220	240	150	200	38	65	G 3/4"	4	8,1
WKH 50x25-2	500	520	540	665	250	270	290	200	200	43	43	G 3/4"	2	15,8
WKH 50x25-4	500	520	540	665	250	270	290	200	200	38	65	G 3/4"	4	16,3
WKH 50x30-2	500	520	540	665	300	320	340	250	200	43	43	G 1"	2	11,5
WKH 50x30-4	500	520	540	665	300	320	340	250	200	38	65	G 1"	4	12,0
WKH 60x30-2	600	620	640	765	300	320	340	250	200	43	43	G 1"	2	21,8
WKH 60x30-4	600	620	640	765	300	320	340	250	200	38	65	G 1"	4	22,3
WKH 60x35-2	600	620	640	765	350	370	390	300	200	43	43	G 1"	2	22,4
WKH 60x35-4	600	620	640	765	350	370	390	300	200	38	65	G 1"	4	22,9
WKH 70x40-2	700	720	740	865	400	420	440	350	200	36	47	G 1"	2	27,8
WKH 70x40-3	700	720	740	865	400	420	440	350	200	42	58	G 1"	3	28,4
WKH 80x50-2	800	820	840	965	500	520	540	450	200	36	47	G 1"	2	36,5
WKH 80x50-3	800	820	840	965	500	520	540	450	200	42	58	G 1"	3	37,2
WKH 90x50-2	900	920	940	1065	500	520	540	450	200	36	47	G 1"	2	40,4
WKH 90x50-3	900	920	940	1065	500	520	540	450	200	42	58	G 1"	3	41,2
WKH 100x50-2	1000	1020	1040	1165	500	520	540	450	200	36	47	G 1"	2	44,3
WKH 100x50-3	1000	1020	1040	1165	500	520	540	450	200	42	58	G 1"	3	45,2

ПОТЕРИ ДАВЛЕНИЯ ВОЗДУХА ВОДЯНЫХ НАГРЕВАТЕЛЕЙ WKH

18

10 12

График расчета водяных нагревателей

WKH 40x20-2

Пример расчета параметров водяного нагревателя При расходе воздуха 950 ${\rm M}^3/{\rm H}$ скорость в сечении нагревателя будет составлять 3,35 м/с ①.

- Чтобы найти температуру, до которой возможен нагрев воздуха, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (нисходящая синяя линия, например, -15 °C) провести влево линию ② до пересечения с температурным перепадом воды (например, +90/+70) и поднять перпендикуляр на ось температуры воздуха после нагревателя (+23
- °C) ③.
 Для того чтобы, определить мощность нагревателя, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (восходящая красная линия, например,
- -15 °C) провести вправо линию ④ до пересечения с температурным перепадом воды (например, +90/+70) и поднять перпендикуляр на ось мощности нагревателя (13,5 кВт) (\$\frac{1}{5}\$.
- Для определения необходимого расхода воды через нагреватель необходимо опустить перпендикуляр ⑥ на ось расхода воды через нагреватель (0,14 л/с).
- Для определения падения давления воды в нагревателе необходимо найти точку пересечения линии ⑥ с графиком потери давления и провести перпендикуляр 7 вправо, на ось падения давления воды (1,5 кПа).

WKH 40x20-4

Пример расчета параметров водяного нагревателя При расходе воздуха 950 м³/ч скорость в сечении нагревателя

будет составлять 3,35 м/с ①.

- Чтобы найти температуру, до которой возможен нагрев воздуха, необходимо от точки пересечения расхода воздуха 1 с линией расчетной зимней температуры (нисходящая синяя линия. например, -15 °C) провести влево линию ② до пересечения с температурным перепадом воды (например, +70/+50) и поднять перпендикуляр на ось температуры воздуха после нагревателя
- Для того, чтобы определить мощность нагревателя, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (восходящая красная линия, например,
- -15 °C) провести вправо линию ④ до пересечения с температурным перепадом воды (например, +70/+50) и поднять перпендикуляр на ось мощности нагревателя (16,0 кВт) ⑤.
- Для определения необходимого расхода воды через нагреватель необходимо опустить перпендикуляр ⑥ на ось расхода воды через нагреватель $(0,2 \pi/c)$.
- Для определения падения давления воды в нагревателе необходимо найти точку пересечения линии 6 с графиком потери давления и провести перпендикуляр 7 вправо, на ось падения давления воды (2.1 кПа).

28

90/10

324

WKH 50x25-2

Пример расчета параметров водяного нагревателя При расходе воздуха 1450 м³/ч скорость в сечении нагревателя будет составлять 3,2 м/с ①.

- Чтобы найти температуру, до которой возможен нагрев воздуха, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (нисходящая синяя линия, например, -15 °C) провести влево линию ② до пересечения с температурным перепадом воды (например, +90/+70) и поднять перпендикуляр на ось температуры воздуха после нагревателя (+24
- °C) ③.
 Для того, чтобы определить мощность нагревателя, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (восходящая красная линия, например,
- -15 °C) провести вправо линию ④ до пересечения с температурным перепадом воды (например, +90/+70) и поднять перпендикуляр на ось мощности нагревателя (21,5 кВт) ⑤.
- Для определения необходимого расхода воды через нагреватель необходимо опустить перпендикуляр ⑥ на ось расхода воды через нагреватель (0,27 л/с).
- Для определения падения давления воды в нагревателе необходимо найти точку пересечения линии ⑥ с графиком потери давления и провести перпендикуляр ⑦ вправо, на ось падения давления воды (3,2 кПа).

WKH 50x30-4

Пример расчета параметров водяного нагревателя При расходе воздуха 2000 м³/ч скорость в сечении нагревателя будет составлять 3,75 м/с ①.

- перпендикуляр на ось температуры воздуха после нагревателя
- Для того, чтобы определить мощность нагревателя, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (восходящая красная линия, например,
- -15 °C) провести вправо линию 4 до пересечения с температурным перепадом воды (например, +70/+50) и поднять перпендикуляр на ось мощности нагревателя (35,0 кВт) 5.
- Для определения необходимого расхода воды через нагреватель необходимо опустить перпендикуляр ⑥ на ось расхода воды через нагреватель (0,43 л/с).
- Для определения падения давления воды в нагревателе необходимо найти точку пересечения линии 6 с графиком потери давления и провести перпендикуляр 7 вправо, на ось падения давления воды (9,0 кПа).

30

10

WKH 60x30-2

Пример расчета параметров водяного нагревателя При расходе воздуха 2500 м³/ч скорость в сечении нагревателя будет составлять 3,75 м/с ①.

- Чтобы найти температуру, до которой возможен нагрев воздуха, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (нисходящая синяя линия, например, -20 °C) провести влево линию ② до пересечения с температурным перепадом воды (например, +90/+70) и поднять перпендикуляр на ось температуры воздуха после нагревателя (+20
- °C) ③.
 Для того, чтобы определить мощность нагревателя, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (восходящая красная линия, например,
- -20°C) провести вправо линию ④ до пересечения с температурным перепадом воды (например, +90/+70) и поднять перпендикуляр на ось мощности нагревателя (37,0 кВт) (\$\frac{1}{3}\$).
- Для определения необходимого расхода воды через нагреватель необходимо опустить перпендикуляр ⑥ на ось расхода воды через нагреватель (0,46 л/с).
- Для определения падения давления воды в нагревателе необходимо найти точку пересечения линии ® с графиком потери давления и провести перпендикуляр 7 вправо, на ось падения давления воды (6,7 кПа).

WKH 60x30-4

Пример расчета параметров водяного нагревателя При расходе воздуха 2500 м³/ч скорость в сечении нагревателя

будет составлять 3,75 м/с ①.

- Чтобы найти температуру, до которой возможен нагрев воздуха, необходимо от точки пересечения расхода воздуха 1 с линией расчетной зимней температуры (нисходящая синяя линия, например, -20 °C) провести влево линию ② до пересечения с температурным перепадом воды (например, +70/+50) и поднять перпендикуляр на ось температуры воздуха после нагревателя
- Для того, чтобы определить мощность нагревателя, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (восходящая красная линия, например,
- -20 °C) провести вправо линию ④ до пересечения с температурным перепадом воды (например, +70/+50) и поднять перпендикуляр на ось мощности нагревателя (48,0 кВт) ⑤.
- Для определения необходимого расхода воды через нагреватель необходимо опустить перпендикуляр ⑥ на ось расхода воды через нагреватель (0,6 л/с).
- Для определения падения давления воды в нагревателе необходимо найти точку пересечения линии 6 с графиком потери давления и провести перпендикуляр 7 вправо, на ось падения давления воды (14,0 кПа).

Расход воды через нагреватель, л/с

WKH 60x35-2

Пример расчета параметров водяного нагревателя При расходе воздуха 3500 м³/ч скорость в сечении нагревателя будет составлять 4,65 м/с ①.

- перпендикуляр на ось температуры воздуха после нагревателя
- (+22,5°C) ③. Для того, чтобы определить мощность нагревателя, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (восходящая красная линия, например,
- -10 °C) провести вправо линию 4 до пересечения с температурным перепадом воды (например, +90/+70) и поднять перпендикуляр на ось мощности нагревателя (42,0 кВт) 5.
- Для определения необходимого расхода воды через нагреватель необходимо опустить перпендикуляр (6) на ось расхода воды через нагреватель (0,5 л/с).
- Для определения падения давления воды в нагревателе необходимо найти точку пересечения линии ⑥ с графиком потери давления и провести перпендикуляр ⑦ вправо, на ось падения давления воды (6,5 кПа).

WKH 60x35-4

Пример расчета параметров водяного нагревателя При расходе воздуха 3500 м³/ч скорость в сечении нагревателя

будет составлять 4,65 м/с ①.

- перпендикуляр на ось температуры воздуха после нагревателя (+24 °C) $\ \ \ \ \ \ \ \ \ \ \ \,$
- Для того, чтобы определить мощность нагревателя, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (восходящая красная линия, например,
- -25 °C) провести вправо линию 4 до пересечения с температурным перепадом воды (например, +70/+50) и поднять перпендикуляр на ось мощности нагревателя (68,0 кВт) 5.
- на ось мощности напревателя (оку, оку) ось мощности напреватель необходимо опустить перпендикуляр (б) на ось расхода воды через нагреватель (0,84 л/с).
- Для определения падения давления воды в нагревателе необходимо найти точку пересечения линии 6 с графиком потери давления и провести перпендикуляр 7 вправо, на ось падения давления воды (18,0 кПа).

60

WKH 70x40-2

Пример расчета параметров водяного нагревателя При расходе воздуха 4500 м³/ч скорость в сечении нагревателя будет составлять 4,45 м/с ①.

- Чтобы найти температуру, до которой возможен нагрев воздуха, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (нисходящая синяя линия, например, -10 °C) провести влево линию ② до пересечения с температурным перепадом воды (например, +90/+70) и поднять перпендикуляр на ось температуры воздуха после нагревателя (+24
- °C) ③.
 Для того, чтобы определить мощность нагревателя, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (восходящая красная линия, например,
- -10 °C) провести вправо линию ④ до пересечения с температурным перепадом воды (например, +90/+70) и поднять перпендикуляр на ось мощности нагревателя (55,0 кВт) ⑤.
- Для определения необходимого расхода воды через нагреватель необходимо опустить перпендикуляр ⑥ на ось расхода воды через нагреватель (0,68 л/с).
- Для определения падения давления воды в нагревателе необходимо найти точку пересечения линии ⑥ с графиком потери давления и провести перпендикуляр ⑦ вправо, на ось падения давления воды (9,2 кПа).

Расход воды через нагреватель, л/с

Мощность нагревателя, кВт

WKH 70x40-3

Пример расчета параметров водяного нагревателя При расходе воздуха 4500 м³/ч скорость в сечении нагревателя

будет составлять 4,45 м/с ①.

- Чтобы найти температуру, до которой возможен нагрев воздуха, необходимо от точки пересечения расхода воздуха 1 с линией расчетной зимней температуры (нисходящая синяя линия, например, -20 °C) провести влево линию ② до пересечения с температурным перепадом воды (например, +90/+70) и поднять перпендикуляр на ось температуры воздуха после нагревателя (+27
- Для того, чтобы определить мощность нагревателя, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (восходящая красная линия, например,
- -20 °C) провести вправо линию ④ до пересечения с температурным перепадом воды (например, +90/+70) и п на ось мощности нагревателя (82,0 кВт) (5). и поднять перпендикуляр
- Для определения необходимого расхода воды через нагреватель необходимо опустить перпендикуляр ⑥ на ось расхода воды через нагреватель (1,02 л/c).
- Для определения падения давления воды в нагревателе необходимо найти точку пересечения линии 6 с графиком потери давления и провести перпендикуляр 7 вправо, на ось падения давления воды (13.0 кПа).

Расход воды через нагреватель, л/с

WKH 80x50-2

будет составлять 3,8 м/с ①.

- Чтобы найти температуру, до которой возможен нагрев воздуха, необходимо от точки пересечения расхода воздуха. ① с линией расчетной зимней температуры (нисходящая синяя линия, например, -10 °C) провести влево линию ② до пересечения стемпературным перепадом воды (например, +90/+70) и поднять перпендикуляр на ось температуры воздуха после нагревателя
- (+24,5°C) ③. Для того, чтобы определить мощность нагревателя, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (восходящая красная линия, например,
- -10 °C) провести вправо линию 4 до пересечения с температурным перепадом воды (например, +90/+70) и поднять перпендикуляр на ось мощности нагревателя (73,0 кВт) 5.
- Для определения необходимого расхода воды через нагреватель необходимо опустить перпендикуляр (6) на ось расхода воды через нагреватель (0,9 л/с).
- Для определения падения давления воды в нагревателе необходимо найти точку пересечения линии ⑥ с графиком потери давления и провести перпендикуляр ⑦ вправо, на ось падения давления воды (11,0 кПа).

WKH 80x50-3

Пример расчета параметров водяного нагревателя При расходе воздуха 6750 м³/ч скорость в сечении нагревателя будет составлять 4,7 м/с ①.

- перпендикуляр на ось температуры воздуха после нагревателя (+26 $^{\circ}$ C) ③.
- Для того, чтобы определить мощность нагревателя, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (восходящая красная линия, например,
- -20 °C) провести вправо линию ④ до пересечения с температурным перепадом воды (например, +90/+70) и поднять перпендикуляр на ось мощности нагревателя (123,0 кВт) ⑤.
- Для определения необходимого расхода воды через нагреватель необходимо опустить перпендикуляр ⑥ на ось расхода воды через нагреватель (1,54 л/с).
- Для определения падения давления воды в нагревателе необходимо найти точку пересечения линии 6 с графиком потери давления и провести перпендикуляр 7 вправо, на ось падения давления воды (27,0 кПа).

Мощность нагревателя, кВт

140

40

80 100

Расход воды через нагреватель, л/с

WKH 90x50-2

Пример расчета параметров водяного нагревателя При расходе воздуха $7000\,\mathrm{m}^3/\mathrm{4}$ скорость в сечении нагревателя будет составлять 4,4 м/с ①.

- Чтобы найти температуру, до которой возможен нагрев воздуха, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (нисходящая синяя линия, например, -20 °C) провести влево линию ② до пересечения с температурным перепадом воды (например, +90/+70) и поднять перпендикуляр на ось температуры воздуха после нагревателя (+18
- °C) ③.
 Для того, чтобы определить мощность нагревателя, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (восходящая красная линия, например,
- -20 °C) провести вправо линию ④ до пересечения с температурным перепадом воды (например, +90/+70) и поднять перпендикуляр на ось мощности нагревателя (102,0 кВт) ⑤.
- Для определения необходимого расхода воды через нагреватель необходимо опустить перпендикуляр ⑥ на ось расхода воды через нагреватель (1,23 л/с).
- Для определения падения давления воды в нагревателе необходимо найти точку пересечения линии ® с графиком потери давления и провести перпендикуляр 7 вправо, на ось падения давления воды (21,0 кПа).

Расход воды через нагреватель, л/с

Мощность нагревателя, кВт

WKH 90x50-3

Пример расчета параметров водяного нагревателя При расходе воздуха 7000 м³/ч скорость в сечении нагревателя

будет составлять 4,4 м/с ①.

- Чтобы найти температуру, до которой возможен нагрев воздуха, необходимо от точки пересечения расхода воздуха ⊕ с линией расчетной зимней температуры (нисходящая синяя линия, например, -20 °C) провести влево линию ② до пересечения с температурным перепадом воды (например, +90/+70) и поднять перпендикуляр на ось температуры воздуха после нагревателя (+28
- Для того, чтобы определить мощность нагревателя, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (восходящая красная линия, например,
- -20 °C) провести вправо линию ④ до пересечения с температурным перепадом воды (например, +90/+70) и поднять перпендикуляр на ось мощности нагревателя (124,0 кВт) ⑤.
- Для определения необходимого расхода воды через нагреватель необходимо опустить перпендикуляр ⑥ на ось расхода воды через нагреватель (1,55 л/с).
- Для определения падения давления воды в нагревателе необходимо найти точку пересечения линии 6 с графиком потери давления и провести перпендикуляр 7 вправо, на ось падения давления воды (28.0 кПа).

Расход воды через нагреватель, л/с

WKH 100x50-2

Пример расчета параметров водяного нагревателя При расходе воздуха 7000 м 3 /ч скорость в сечении нагревателя будет составлять 4,1 м/с ①.

- Чтобы найти температуру, до которой возможен нагрев воздуха, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (нисходящая синяя линия, например, -20 °C) провести влево линию ② до пересечения с температурным перепадом воды (например, +90/+70) и поднять перпендикуляр на ось температуры воздуха после нагревателя (+20
- °C) ③.
 Для того, чтобы определить мощность нагревателя, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (восходящая красная линия, например,
- -20 °C) провести вправо линию ④ до пересечения с температурным перепадом воды (например, +90/+70) и поднять перпендикуляр на ось мощности нагревателя (101,0 кВт) ⑤.
- нагреватель (1,25 л/с).
- Для определения падения давления воды в нагревателе необходимо найти точку пересечения линии ⑥ с графиком потери давления и провести перпендикуляр ⑦ вправо, на ось падения давления воды (22,0 кПа).

WKH 100x50-3

Пример расчета параметров водяного нагревателя При расходе воздуха 7000 м³/ч скорость в сечении нагревателя будет составлять 4,1 м/с ①.

- перпендикуляр на ось температуры воздуха после нагревателя (+30 °C) ③.
- Для того, чтобы определить мощность нагревателя, необходимо от точки пересечения расхода воздуха ① с линией расчетной зимней температуры (восходящая красная линия, например,
- -20 °C) провести вправо линию (4) до пересечения с температурным перепадом воды (например, +90/+70) и поднять перпендикуляр на ось мощности нагревателя (135,0 кВт) ⑤.
- Для определения необходимого расхода воды через нагреватель необходимо опустить перпендикуляр ⑥ на ось расхода воды через нагреватель (1,7 л/с).
- Для определения падения давления воды в нагревателе необходимо найти точку пересечения линии 6 с графиком потери давления и провести перпендикуляр 7 вправо, на ось падения давления воды (34,0 кПа).

Расход воды через нагреватель, л/с