(In Progress)

TC2: Optimization for Machine Learning

Master of Science in Al and Master of Science in Data Science @ UPSaclay 2024/2025.

Faïcel Chamroukhi

week 5: December 05, 2024.

Constrained optimization (Equality and Inequality constraints, Duality/Lagrangian, KKT optimality conditions)

Constrained Optimization Problem

- **Objective**: Minimize or maximize a function f(x) subject to constraints.
- General Form :

$$\begin{aligned} & \min_{x \in \mathbb{R}^n} & f(x) \\ & \text{s.t.} & g_i(x) \leq 0, \quad i = 1, \dots, m \\ & & h_j(x) = 0, \quad j = 1, \dots, p \end{aligned}$$

- f(x): Objective function.
- $g_i(x)$: Inequality constraints.
- $h_j(x)$: Equality constraints.
- Budget limits in economics.
- Physical constraints in engineering.
- sparcity or regularity constraints in machine learning
- etc

Feasible Sets and Feasible Solutions I

1. Feasible Set:

- The feasible set (or feasible region) is the set of all points that satisfy the constraints of an optimization problem.
- Formally, for a problem with constraints $g_i(x) \leq 0$ and $h_j(x) = 0$, the feasible set S is :

$$S = \{x \in \mathbb{R}^n \mid g_i(x) \le 0, \ h_j(x) = 0, \ \forall i, j\}$$

- Only points within this set can be considered as potential solutions to the optimization problem.
- Constraints narrow down the feasible region to search for the optimum.

2. Feasible Solution:

- lacksquare A feasible solution is any point $x \in S$ that satisfies all problem constraints.
- An optimal solution, if it exists, is a feasible solution that minimizes (or maximizes) the objective function within the feasible set.

example

Example of feasible region for a set of linear inequality constraints.

■ Constraints for the feasible region :

$$x + y \le 4$$
$$x \ge 0$$
$$y \ge 0$$
$$y \le 3$$

- Plots of each constraint line :
 - y = 4 x: Boundary for $x + y \le 4$.
 - x = 0: Vertical line for x > 0.
 - y = 3: Horizontal line representing $y \le 3$.

Example

- The feasible region is the intersection of the regions defined by each constraint.
- The feasible region, represented by the shaded area, satisfies all specified constraints. Only points within this shaded area are feasible solutions

FIGURE - Feasible region for a set of linear inequalities : the constraints limit the solution space.

Mathematically

Mathematical tools help us handle constraints effectively.

Optimization with Equality Constraints

Consider the problem (will be referred to as the **primal problem**)

$$\min_{x \in \mathbb{R}^n} \quad f(x)$$
 s.t. $h_j(x) = 0, \quad j = 1, \dots, p$

Lagrange Multipliers Method:

■ The Lagrangian function is defined as :

$$\mathcal{L}(x,\lambda) = f(x) + \sum_{j=1}^{p} \lambda_j h_j(x),$$

where λ_i are the Lagrange multipliers.

- **Dual problem**: minimize w.r.t x and λ_i 's the lagrangian $\mathcal{L}(x,\lambda)$
- Optimality conditions :

$$\nabla \mathcal{L}(x,\lambda) = 0$$
, $h_j(x) = 0$ for all j .

Theorem: First-Order Optimality Conditions I

Theorem : Let x^* be a local minimum of f(x) subject to equality constraints $h_j(x)=0$ for $j=1,\ldots,p$. If x^* is a *regular point* (the gradients $\nabla h_1(x^*),\ldots,\nabla h_p(x^*)$ are linearly independent), there exist Lagrange multipliers $\lambda_1,\lambda_2,\ldots,\lambda_p$ such that :

$$\nabla f(x^*) + \sum_{j=1}^p \lambda_j \nabla h_j(x^*) = 0, \quad h_j(x^*) = 0, \quad j = 1, \dots, p.$$

- The condition $\nabla f(x^*) + \sum_{j=1}^p \lambda_j \nabla h_j(x^*) = 0$ ensures that the gradients of f(x) and the constraints $h_j(x)$ align to define a critical point of the Lagrangian function.
- The equality constraints $h_j(x^*) = 0$ ensure feasibility of the solution x^* .
- A regular point implies the linear independence of the gradients of the constraints, which ensures that x^* is not on a "degenerate" surface.

Optimization with Equality Constraints I

Example:

$$\begin{split} \min_{x \in \mathbb{R}^2} \quad f(x_1, x_2) &= x_1^2 + x_2^2 \\ \text{s.t.} \quad h(x_1, x_2) &= x_1 + x_2 - 1 = 0. \end{split}$$

Using Lagrange Multipliers:

■ The Lagrangian function is :

$$\mathcal{L}(x_1, x_2, \lambda) = x_1^2 + x_2^2 + \lambda(x_1 + x_2 - 1),$$

where λ is the Lagrange multiplier.

■ Optimality conditions : $\nabla \mathcal{L}(x_1, x_2, \lambda) = \mathbf{0}$. Compute partial derivatives :

$$\frac{\partial \mathcal{L}}{\partial x_1} = 2x_1 + \lambda = 0,$$

$$\frac{\partial \mathcal{L}}{\partial x_2} = 2x_2 + \lambda = 0,$$

$$\frac{\partial \mathcal{L}}{\partial \lambda} = x_1 + x_2 - 1 = 0.$$

Optimization with Equality Constraints II

I From $\frac{\partial \mathcal{L}}{\partial x_1}=0$ and $\frac{\partial \mathcal{L}}{\partial x_2}=0$, we have :

$$2x_1 + \lambda = 0 \quad \Longrightarrow \quad \lambda = -2x_1,$$

$$2x_2 + \lambda = 0 \quad \Longrightarrow \quad \lambda = -2x_2.$$

Equating the two expressions for λ :

$$-2x_1 = -2x_2 \quad \Longrightarrow \quad x_1 = x_2.$$

2 Substitute $x_1 = x_2$ into the constraint $x_1 + x_2 - 1 = 0$:

$$x_1 + x_1 = 1$$
 \implies $x_1 = x_2 = \frac{1}{2}$.

The solution is :

$$x_1^* = \frac{1}{2}, \quad x_2^* = \frac{1}{2}, \quad \lambda^* = -1.$$

Remarks:

- If the regularity condition (linear independence of $\nabla h_j(x^*)$) is not satisfied, additional tools such as the Karush-Kuhn-Tucker (KKT) conditions are required to analyze the problem.
- Karush-Kuhn-Tucker (KKT) extend the method of Lagrange multipliers to handle inequality constraints.

Optimization with Inequality Constraints

Consider the optimization problem (primal form) :

$$\begin{aligned} & \min_{x \in \mathbb{R}^n} & f(x) \\ & \text{s.t.} & g_i(x) \leq 0, \quad i = 1, \dots, m \\ & & h_j(x) = 0, \quad j = 1, \dots, p \end{aligned}$$

Karush-Kuhn-Tucker (KKT) Conditions

The Karush-Kuhn-Tucker (KKT) Conditions are necessary conditions to check optimality in problems involving both equality and inequality constraints. They extend the method of Lagrange multipliers to handle inequality constraints.

the Lagrangian :
$$\mathcal{L}(x,\lambda,\mu) = f(x) + \sum_{i=1}^m \lambda_i g_i(x) + \sum_{j=1}^p \mu_j h_j(x)$$
.

Stationarity : The gradient of the Lagrangian w.r.t solution x must be zero :

$$\nabla \mathcal{L}(x,\lambda,\mu) = \nabla f(x) + \sum_{i=1}^{m} \lambda_i \nabla g_i(x) + \sum_{j=1}^{\ell} \mu_j \nabla h_j(x) = 0.$$

Primal feasibility: The solution x must satisfy all the constraints:

$$g_i(x) \le 0, \quad h_j(x) = 0.$$

- Dual feasibility : The Lagrange multipliers $\lambda_i \ge 0$ for inequality constraints.
- Complementary slackness : For each i, either $\lambda_i = 0$ or $g_i(x) = 0$:

$$\lambda_i \cdot g_i(x) = 0, \quad \forall i = 1, \dots, m.$$

Stationarity Condition

Stationarity:

$$\nabla \mathcal{L}(x,\lambda,\mu) = \nabla f(x) + \sum_{i=1}^{m} \lambda_i \nabla g_i(x) + \sum_{j=1}^{p} \mu_j \nabla h_j(x) = 0.$$

- At the optimal solution x^* , the gradient of the objective function f(x) is balanced by the gradients of the active constraints $g_i(x)$ and $h_j(x)$.
- This condition ensures no further improvement in f(x) is possible while satisfying the constraints.

Primal Feasibility

Primal Feasibility:

$$g_i(x) \le 0, \quad h_j(x) = 0.$$

- The solution x^* must satisfy :
 - ▶ All inequality constraints $(g_i(x) \le 0)$,
 - All equality constraints $(h_j(x) = 0)$.
- Primal feasibility ensures the solution lies in the feasible region of the optimization problem.

Dual Feasibility

Dual Feasibility:

$$\lambda_i \geq 0, \quad \forall i = 1, \dots, m.$$

- The Lagrange multipliers λ_i associated with the inequality constraints must be non-negative.
- If $\lambda_i > 0$ this indicates the corresponding constraint $g_i(x)$ is active $(g_i(x) = 0)$.
- If $\lambda_i = 0$, the corresponding inequality constraint $g_i(x)$ is inactive $(g_i(x) < 0)$.

Complementary Slackness

Complementary Slackness:

$$\lambda_i \cdot g_i(x) = 0, \quad \forall i = 1, \dots, m.$$

- If $\lambda_i > 0$, then $g_i(x) = 0$, meaning the constraint is **active** and **binding** at the solution.
- If $g_i(x) < 0$, then $\lambda_i = 0$, meaning the constraint is **inactive** and does not affect the optimality condition.
- Complementary slackness ensures that inactive constraints do not influence the solution.

Summary

Summary of KKT Conditions :

- Stationarity : Ensures that the gradient of the objective function is aligned with the gradients of the active constraints.
- Primal Feasibility: Guarantees the solution lies within the feasible region.
- Dual Feasibility : Ensures the Lagrange multipliers λ_i are meaningful (non-negative).
- Complementary Slackness : Eliminates the influence of inactive constraints on the solution.

Optimality Check:

lacktriangle Together, these conditions provide a framework to verify whether a candidate solution x^* is optimal in constrained optimization problems.

Summary

- Inequality constraints become **active** when $g_i(x^*) = 0$, contributing to the optimality conditions through $\lambda_i > 0$.
- Inactive constraints $(g_i(x^*) < 0)$ have $\lambda_i = 0$, meaning they do not influence the solution.
- Complementary slackness ensures that inactive constraints (those with $g_i(x^*) < 0$) do not contribute to the optimality condition.
- Equality constraints $(h_j(x^*) = 0)$ are always active and satisfied exactly.
- The gradient of the resulting objective function is a linear combination of the gradients of the active constraints: The gradients of f(x), $g_i(x)$, and $h_j(x)$ at x^* reflecting a balance between optimizing the objective function and respecting the constraints.

Theorem: KKT Conditions

Theorem: Let f(x), $g_i(x)$, and $h_j(x)$ be continuously differentiable. If x^* is a local minimum and satisfies certain regularity conditions, then there exist $\lambda_i \geq 0$ and μ_j such that the KKT conditions hold.

Duality and Lagrangian Function

Dual Problem:

lacktriangle The dual problem is derived by minimizing the Lagrangian over x:

$$g(\lambda, \mu) = \inf_{x} \mathcal{L}(x, \lambda, \mu).$$

■ The dual problem is :

$$\max_{\lambda \geq 0, \mu} g(\lambda, \mu).$$

Weak Duality:

$$f(x^*) \ge g(\lambda, \mu).$$

Strong Duality

Strong Duality:

 $\blacksquare \mbox{ If strong duality holds, } f(x^*) = g(\lambda^*, \mu^*).$

Theorem: (Slater's Condition) For a convex optimization problem, if there exists a strictly feasible point x (one that satisfies $g_i(x) < 0, h_j(x) = 0$), then strong duality holds.

- Strong duality ensures that solving the dual problem gives the exact same result as solving the primal problem :
 - ightharpoonup primal problem (minimizing the original objective function, i.e. f s.t. the constraints),
 - dual problem (maximizing the dual function, ie. the Lagrangian \mathcal{L}).

Exercices : in TD today