FERMILAB ENGINEERING NOTE	PROJECT	SERIAL-CAT	PAGE PAGE		
SUBJECT	-	NAME			
Physics 2C 3/10		DATE	REVISION DATE		
① Lens makers Eq. ② Cameras ③ Human Vision: 2 problems					
(2) Cameras					
f: focal length D: apeture size /diame					
"Apeture" () a pe	eture dian umber) =	neter D			
Facts:					
"200m" m af		02	1		
exposure ("bright	ness") «	fr =	(f-number	01)	

Suppose a camera's exposure is correct when the lens has a focal length of 8.0 mm. Will the picture be overexposed or underexposed or still correct if the focal length is "zoomed" to 16.0 mm without changing the aperture or shutter speed?

(A) Overexposed (100 bright)
(B) Underexposed (100 darle)
(C) Still correct

To fix the exposure, what could we do to either the aperture diameter D or the shutter time Δt ?

- (A) Increase D and/or increase Δt
- (B) Increase D and/or decrease Δt
- (C) Decrease D and/or increase Δt
- (D) Decrease D and/or decrease Δt

*	ENGINEERING N	OTE	SECTION	PROJECT	SERIAL	CATEGORY	PAGE
SUBJECT				DAT		REVISION	DATE
•	Lensmakers						
	converging (n	rider	in cent	er)			
(Do	uble) - convex	Plano	-Convex	C	nvex -	Menisca	25
	Diverging (nav	nter)	inder	raction	7		
10	1101 = 6	7					
	outle) - concave	Pos. R	lano-con	.a√e	Concav	e-Meni	rcw
5: 1: 1et 2: ria	ide ((teft) 1	7	[Ra]	side 2 for t	(right Rice Rice Rice	Damb	les
	Lensmakers	Eq.	1	= (n	-1)[7	<u> </u>	$\left[\frac{1}{2}\right]$

A meniscus lens, made of glass with n=1.5, is overall diverging. The radii of curvature have magnitudes 50 cm and 25 cm. What is the focal length of this lens?

(A)
$$-400 \text{ cm} < f < -200 \text{ cm}$$

$$\frac{1}{f} = (n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$

$$\frac{1}{f} = 0.5\left(\frac{1}{-25cm} + \frac{1}{50cm}\right) = -\frac{1}{160cm}$$

$$\frac{1}{f} = -100cm$$

A photographer focuses their camera on an object. Suppose the object moves closer to the camera. To refocus, should the camera lens move closer to or farther from the detector?

(A) Closer to the detector

(B) Farther from the detector

(cereen)

5/2 f

W						
* ENGINEERING NOTE	SECTION	PROJECT		SERIAL-CATEGORY	-	PAGE
SUBJECT			DATE	REV	VISION DAT	Ē
3 Human Vision: 2 pro	blems		n Pre	sbyopio	\\ : a	ge contain
Neur-sighted (myopia)	F	ar-si	yhte	d (nyp	x10p	ia)
	_		_		5	\rightarrow
cornea	-			len com	SIL	
- focus before retin	_	focu	s out	te ret	ting	ret
-Need diverging lens	- N	leed	CON	renging	101	ک
to "spread out" ligh	†					
- People with good .	vision	can	sec	any	الله	ect
S = 00	and	<u> </u>	S=	25 cm	2	
far point			^	ear p	oil	+
(for point) < 00		(near	poi	n+) > 2	Sc	m
(myopic)		()	hyper	opic)		
Goal: Take an obj. @00 and have its image be at far point.		Goal	: _C	see licker		

hyperopia /presbyopia

Grandma's near point is at 100 cm. She buys glasses so that she can take an object _____ and instead have its image at _____.

- (A) At infinity, 25 cm
- (B) At her near point, 25 cm
- (C) At 25 cm, infinity
- (D) At 25 cm, her near point

stop to think 35.3 You need to improvise a magnifying glass to read some very tiny print. Should you borrow the eyeglasses from your hyperopic friend or from your myopic friend?

- (a) The hyperopic friend
- c. Either will do.

- b. The myopic friend
- d. Neither will work.

for vertical

M for horizontal

A certain eyeglass lens is thin at its center, even thinner at its top and bottom edges, and relatively thick at its left and right edges. What defects of vision is this lens intended to correct?

- (A) hyperopia for objects oriented both vertically and horizontally
- (B) myopia for objects oriented both vertically and horizontally
- (C) hyperopia for objects oriented vertically and myopia for objects oriented horizontally
- (D) hyperopia for objects oriented horizontally and myopia for objects oriented vertically