LCA Tool — Output CSV Examples & Field Explanations (No-Emulator Mode)

This report contains concrete example rows for each `record_type` in the output CSV `scenario_output_.csv` and a detailed, field-by-field explanation for each row. These examples assume NO emulator is used — final metrics are produced by a deterministic LCA engine (Brightway2/OpenLCA) with optional Monte Carlo sampling. Imputed inputs are documented in PROVENANCE rows. Use these examples as copy/paste-ready templates for SIH and documentation.

1. SCENARIO_META (one row)

```
CSV example row:
```

SCENARIO_META, scen-AL-001, "Al Sheet Baseline", "1 kg Al sheet", "kg", "cradle-to-cradle", "IN", 2025, "IR

Field-by-field explanation:

record_type: 'SCENARIO_META' — fixed token identifying this row as scenario metadata.

scenario_id: scen-AL-001 — unique scenario identifier.

scenario_name: 'Al Sheet Baseline' — human readable title for the scenario.

functional_unit: '1 kg Al sheet' — the reference unit for all results.

functional_unit_base: kg — canonical unit for normalization.

system boundary: cradle-to-cradle — scope; chosen by user (not imputed).

geography: IN — regionalization used for grid and transport factors.

year: 2025 — study reference year.

Icia_method: IPCC2013_GWP100a — LCIA method used (user choice; not imputed).

allocation_method: recycled_content — allocation rule chosen by user (not imputed).

currency / units_system / author: metadata fields.

run_id: run-20250916-001 — backend job id (generated).

run_status: done — run completed successfully (final deterministic metrics present).

mc_samples: 1000 — Monte Carlo sample count used to propagate uncertainty.

run_started_at / run_finished_at: ISO timestamps for run timing.

emulator_used: false — explicit: NO emulator used; deterministic engine produced final metrics.

notes_results: free-text summary; mention imputed inputs & provenance IDs (e.g. prov-002).

2. PROCESS (one row)

CSV example row:

PROCESS,scen-AL-001,p_smelt_01,"Primary Smelting - Plant A",smelting,"Hall-Héroult","IN-OR",1,15000

Field-by-field explanation:

Inputs (user-provided or accepted):

- process_id: p_smelt_01 unique identifier for this process.
- process name: 'Primary Smelting Plant A' human label.
- process_type: smelting grouping for templates and ML.
- technology: 'Hall-Héroult' recommended; can be ML-predicted if missing (lower confidence).
- **location**: IN-OR regionalization for grid and transport factors.
- functional_unit_multiplier: 1 how many FU this process yields per operation (required).
- plant_capacity_tpa, plant_efficiency, labour_hours_per_FU, labour_cost_per_hour, capex_annuity_per_FU, opex_per_FU: operational & economic metadata (some imputation-eligible).
- data_source, confidence_score, notes: provenance & Q information.

Appended computed fields (deterministic LCA results):

- **GWP_contribution_kgCO2e**: 9.82 sum of this process's flows × CFs + allocated upstream burdens. Not directly imputed (but depends on any imputed flows).
- Energy_contribution_MJ: 51.70 total energy attributed to process per FU (derived).
- Water_contribution_m3: 0.32 water consumption for this process per FU (derived).
- **Circularity_contribution**: 0.12 kg/FU mass recovered; imputer may predict recycling yields if missing.
- process_uncertainty_ci_low / ci_high: 8.00 / 11.60 95% CI for process GWP from MC traces.
- notes_result: explanatory caveats (e.g., electricity was imputed; check meters).

3. FLOW — Electricity (imputed)

CSV example row:

FLOW, scen-AL-001, f_elec_01, p_smelt_01, "electricity - grid", input, 14.36, kWh, energy, , , , , "predicted", (

Field-by-field explanation:

Core fields:

- flow_id: f_elec_01 unique flow id.
- process id: p smelt 01 FK to the PROCESS row.
- flow_name: 'electricity grid' mapping to energy flow.
- direction: input consumed by the process.
- quantity: 14.36 kWh per FU THIS WAS IMPUTED by the imputer (measurement_type='predicted').
- unit: kWh (backend will normalize to MJ for energy calculations).
- flow_category: energy.

Imputation details:

- imputation_method: XGBoost_imputer_v1.5 model used to predict the quantity.
- confidence_score: 0.62 model confidence.
- notes: 'Predicted by imputer; accept/edit/reject in UI' UI must prompt accept/edit/reject.

Appended computed fields:

- GWP_contribution_kgCO2e: 8.62 computed as quantity × CF for regional electricity.
- Energy_contribution_MJ: 51.70 14.36 kWh × 3.6.
- ci_95_low / ci_95_high: 7.85 / 9.45 95% CI for the flow's GWP contribution (propagated from imputer CI).
- provenance_id: prov-002 link to the PROVENANCE row documenting the imputation.

4. FLOW — Alumina (reference dataset)

CSV example row:

FLOW, scen-AL-001, f_alumina_01, p_smelt_01, "alumina", input, 1.90, kg, material,, "Al203", road, 120, 0.00,,,

Field-by-field explanation:

Core fields:

• flow_id: f_alumina_01.

• process_id: p_smelt_01.

• flow_name: 'alumina'.

• direction: input.

• quantity: 1.90 kg per FU — provided by reference dataset (not imputed).

• unit: kg.

• flow_category: material.

Context / provenance:

- data_source: ecoinvent:Alumina_v3 this flow pulls upstream embodied impacts from a reference dataset.
- transport_mode/distance: road / 120 km used to calculate transport emissions.

Appended computed fields:

- GWP_contribution_kgCO2e: 1.20 includes alumina production + transport burdens.
- Energy_contribution_MJ: 20.00.
- Water_contribution_m3: 0.05.
- **provenance_id**: prov-003 link to reference dataset provenance.

5. METRIC — GWP (scenario-level)

CSV example row:

METRIC,scen-AL-001,m_gwp,"Global Warming Potential","GWP","kg CO2e / FU",9.82,9.95,8.10,11.20,8.00,

Field-by-field explanation:

Purpose: scenario-level aggregated LCIA result for GWP.

Fields:

• metric_id: m_gwp.

• metric_name: 'Global Warming Potential'.

• unit: 'kg CO2e / FU'.

• median: 9.82 — median of MC samples (deterministic LCA engine + MC).

• mean: 9.95 — arithmetic mean (optional).

• p10 / p90: 8.10 / 11.20 — percentiles.

• ci_95_low / ci_95_high: 8.00 / 11.60 — 95% Cl.

• mc_sample_count: 1000 — draws used.

• Icia_method: IPCC2013_GWP100a.

• provenance_id: prov-manifest-001 — points to the manifest of provenance entries for the scenario.

6. MC_TRACE (sample rows)

CSV example row:

MC_TRACE,scen-AL-001,1,m_gwp,9.10,57431
MC_TRACE,scen-AL-001,2,m_gwp,10.05,57431

Field-by-field explanation:

Purpose: raw Monte Carlo sample outputs for reproducibility or in-depth analysis.

Each MC_TRACE row records one draw's metric value. For large MC sets we store traces zipped and reference via traces_url in SCENARIO_META.

Fields: record_type, scenario_id, sample_id, metric_id, sample_value, seed.

7. SENSITIVITY (OAT example)

CSV example row:

SENSITIVITY, scen-AL-001, smelt_elec_kWh_per_FU,14.36,11.49,17.23,8.53,11.10,OAT, "±20% OAT on electrical contents of the cont

Field-by-field explanation:

Purpose: document single-parameter perturbation results (One-At-a-Time) or variance-based indices (Sobol).

Fields:

- param_name: the parameter tested (smelt_elec_kWh_per_FU).
- param_baseline: 14.36 baseline value.
- param_low / param_high: tested low/high values (here ±20%).
- metric_impact_low / metric_impact_high: resulting metric values (GWP) when parameter is set to low/high and deterministic LCA is re-run.
- method: OAT (here).
- note: explains deterministic re-run and provenance.

8. RECOMMENDATION (deterministic verification)

CSV example row:

RECOMMENDATION, scen-AL-001, rec-001, "Increase recycled feed to 40% in smelter", "Replace 40% of virging to the same of the s

Field-by-field explanation:

Purpose: actionable, ranked recommendations with estimated benefit and uncertainty.

Fields:

- rec_id: unique recommendation id.
- title / description: what to change operationally.
- delta_metric_id: which metric is impacted (m_gwp).
- delta_median / delta_ci_low / delta_ci_high: expected change and uncertainty after deterministic verification (snapshot + full LCA).
- effort and confidence: qualitative metadata.
- how_computed: 'deterministic' means recommendation was tested by running the full deterministic LCA on a scenario snapshot.

9. PROVENANCE (imputed input audit)

CSV example row:

PROVENANCE, prov-002, scen-AL-001, flows[f_elec_01].quantity,14.36,kWh,predicted, "XGBoost_imputer_v1.5

Field-by-field explanation:

Purpose: audit trail entry for an imputed value. ISO-style traceability must show: which field was imputed, value used, unit, model, CI, SHAP explanation, who accepted it and when.

Fields explained:

- provenance_id: prov-002 unique id referenced by FLOW rows (provenance_id field).
- field_path: flows[f_elec_01].quantity identifies the exact field imputed.
- value / unit: 14.36 kWh value accepted and used in LCA.
- **source_type**: predicted indicates ML imputation.
- source / imputation_method: XGBoost_imputer_v1.5 (model/version).
- ci_95_low / ci_95_high: 13.15 / 15.25 imputer uncertainty bounds.
- shap_top: JSON with top SHAP drivers (signed contributions).
- last_updated_by / last_updated_ts: who accepted and when.

10. Final checklist and remarks

- All imputed inputs must have PROVENANCE rows with model/version, CI, and SHAP explainability.
- Final METRIC rows are authoritative deterministic-LCA outputs (no emulator). Show median & 95% CI from MC.
- SCENARIO_META.emulator_used must be false (explicit) if you do not use emulator.
- UI must present imputer predictions with Accept/Edit/Reject and display SHAP reasons.
- Large MC_TRACE sets should be stored zipped and referenced by traces_url in SCENARIO_META.
- Recommendations that claim final deltas should be verified by deterministic snapshot runs (how_computed=deterministic).

Report generated for SIH LCA tool documentation. The examples show exact CSV rows and field explanations suitable for judges and developers. All values above are illustrative; replace with real data for production runs.