

Reguläre Sprachen

A regular language can be thought of as a collection of sentences in a secret code. This secret code has a set of rules that determine which sentences are valid. You can think of it like a secret handshake, where only certain movements are allowed to be performed in a particular order.

- ChatGPT

1 Reguläre Sprachen

1.1 Definition (Äquivalenzrelation)

Sei A eine Menge. Eine Äquivalenzrelation auf A ist eine Relation $\leq A^2$, so dass die folgende Eigenschaft erfüllt sind. (wie bei Relationen üblich verwenden wir Infixnotation)

- (i) $a \sim a \forall a \in A$ (Reflexivität)
- (ii) $a \sim b \Rightarrow b \sim a \forall a, b, c \in A$ (Symetrie)
- (iii) $a \sim b, b \sim c \rightarrow a \sim c$ (Transitivität)

Die Äquivalenzklasse eines Elements $a \in A$ bezüglich \sim ist die Menge $[a] := a' \in A : a'$ a. Der Index von \sim ist die Kardinalität der Menge $A_{/\sim} := [a]_{\sim} : a \in A$ falls diese endlich ist und ∞ andernfalls.

1.2 Definition (A-Äquivalenz)

Sei $A = (Q, \Sigma, \Delta, s, F)$ ein DEA mit erweiterter Übergangsfunktion $\delta^* : Q \times \Sigma \to Q$. Die A-Äquivalenz ist die Relation A auf $\Sigma^* \cdots$

1.3 Bemerkung

Sei $A = (Q, \Sigma, \Delta, s, F)$ eine DEA.

- (i) Die A-Äquivalenz ist eine Äquivalenzrelation.
- (ii) Der Index von \sim_A ist höchstens |Q|.
- (iii) Es gilt $L(A) = \bigcup_{w \in L(A)} [w]_{\sim A}$.

1.4 Definition (Rechtskongruenz)

Sei Σ ein Alpha. Eine Rechtskongruenz auf Σ^* ist eine Äquivalenzrelation $\sim ? \leq ?(\Sigma^*)^2$ mit $u \sim v \Rightarrow uw \sim vw \forall u, v, w \in Sigma^*$.

1.5 Proposition

Sei $A = (Q, \Sigma, \Delta, s, F)$ ein DEA. Die A-Äquivalenz \sim_A ist eine Rechtskongruenz auf Σ^* .

Proof. Seien $u, v, w \in \Sigma^*$ mit $u \sim_A v$. Dann gilt

$$\delta_{det,A}^*(s,uw) = \delta_{det,A}^*(\delta_{det,A}^*(s,u),w) = \delta_{det,A}^*(\delta_{det,A}^*(s,v),w)$$
$$= \delta_{det,A}^*(s,vw).$$

(hier benutzen wir Bem 4.3 und 4.5)

Dann gilt $uw \sim_A vw$. \square Zu jedem DEA A gibt es also eine dazugehärige Rechtskonguenz \sim auf Σ^* mit endlichem Index so dass L(A) die Vereinigung von Äquivalenzklasse von \sim_A ist. Tatsächlich gilt auch die Umkehrung: Ist L die Vereinigung von Äquivalenzklasse einer Rechtskongruenz \sim mit endlichem Index, so gibt es einen DEA A mit L(A) = L

1.6 Definition

Sei Σ eine Alphabet und L Vereinigung von Äquivalenzklasse einer Rechtskongruenz \sim auf Σ^* mit endlichem Index. Es bezeichne

$$A_{\sim,L} := (\Sigma_{/\sim}^*, \Sigma, \Delta, [\lambda]_{\sim}, [w]_{\sim} : w \in L$$

den DEA mit $\delta_{det,A_{\sim},L}([w]_{\sim},a) = [wa]_{\sim} \forall w \in \Sigma^*$ und $a \in \Sigma$. Die Wohldefiniertheit von $\delta_{det,A_{\sim},L}$ ergibt sich daraus, dass \sim eine Rechtskongruenz ist. Um uns davon zu überzeugen, dass $L(A_{\sim,L}) = L$ gilt betrachten wr zunächst die Arbeitsweise von $A_{\sim,L}$.

1.7 Lemma

Sei Σ ein Alphabet, L Vereinigung von Äquivalenzklassem einer Rechtskongruenz \sim auf Σ^* mit endlichem Index und sei $\delta^*: \Sigma_{/\sim}^* \times \Sigma^* \to \Sigma_{/\sim}^*$ die erweiterte Übergangsfunktion von $A_{\sim,L}$. Dann gilt $\delta^*([\lambda]_{\sim}, w) = [w]_{\sim} \forall w \in \Sigma^*$. **Beweis** Wir verwenden vollständige Induktion über |w|. Es gilt $\delta^*([\lambda]_{\sim}, \lambda) = [\lambda_{\sim}]$. Sei nun $w \in \Sigma^+ \cdots$

1.8 Satz

Sei L die vereinigung von Äquivalenzklasse einer Rechtskongruenz \sim mit endlichem Index Es gibt $L(A_{\sim,L}) = L$ **Beweis:** Sei Σ das Alphabet, so dass \sim eine Rechtskongruenz auf Σ^* ist. Sei $\delta^* : \Sigma^*_{/\sim} \times \Sigma^* \to \Sigma^*_{/\sim}$ die erweiterte Übergangsfunktion von $A_{\sim,L}$ und sei $w \in \Sigma^*$. Aus Lemma 5.7 folgt

$$w \in L(A_{\sim,L}) \Leftrightarrow \delta^*([\lambda]_{\sim}, w) \in [v]_{\sim} : v \in L$$

$$\Leftrightarrow [w]_{\sim} \in [v]_{\sim} : v \in L$$

$$\Leftrightarrow \exists v \in L : [w]_{\sim} = [v]_{\sim}$$

$$\Leftrightarrow \exists v \in L : w \sim v$$

$$\Leftrightarrow w \in L$$

. . .

1.9 Korollar

Eine Sprache L ist genau dann regulär, wenn sie die Verienigung von Äquivalenzklasse einer Rechtskongruenz mit endlichem Index ist. **Beweis:** Folgt aus Bemerkung 5.3, Proposition 5.5 und Satz 5.8 □

Betrachten man nur deterministische endliche Automaten ohne unerreichbare Zustände, so entsprechen diese bis auf Unbenutzung von Zuständen sogar den Rechtskongruenz mit endlichem Index zusammen mit Vereinigung von Äquivalenzklassn dieser.

1.10 Definition(erreichbar)

Sei Σ ein Alphabet. Sei $A=(Q,\Sigma,\Delta,s,F)$ ein EA mit erweiterter Übergangsfunktion δ^* . Ein zustand $q\in Q$ heißt erreichbar in A wenn es ein Wort $w\in \Sigma^*$ mit $q\in \delta^*(s,w)$ gilt.

1.11 Definition(isomorph)

Sei $A_i = (Q_i, \Sigma, \Delta_i, s_i, F_i)$ für $i \in 1, 2$ ein EA mit Übergangsfunktion δ_i . Die endliche Automaten A_1 und A_2 sind **isomorph**, kurz A_1 ? \cong A_2 , wenn es eine Projektion $f: Q_1 \to Q_2$ gibt, sodass folgendes gilt:

(i)
$$f(s_1) = s_2$$

(ii)
$$\delta_2(f(q_1), a) = f(\delta_1(q_1), a)$$

(iii)
$$f(F_1) = F_2$$

1.12 Satz

- (i) Ist A eine DEA ohne unereichbare Zustände, so gilt $A \cong A_{\sim A, L(A)}$
- (ii) Ist L die Vereinuíngung von Äquivalenzklasse einer Rechtskongruenz \sim mit endlichem Index, so gilt $(\sim, L) = (\sim_{A_{\sim L}, L(A_{\sim L})})$.
- *Proof.* (i) Sei $A=(Q,\Sigma,\Delta,s,F)$ eine DEA mit erweiterte Übergangsfunktion $\delta^*:Q\times\Sigma^*\to Q$ ohne unereichbare Zustände , $\sim:=\sim_A$, $A':=A_{\sim,L(A)}$ und sei $\delta':\Sigma^*/\sim\times\Sigma^*\to\Sigma/\sim$ die erweiterte Übergangsfunktion von A'. Sei $f:Q\to\Sigma^*/\sim$ die Bijektive mit $f(q):=\{w\in\Sigma^*:\delta^*(s,w)=q\}$. Es gelte $f(s)=[\lambda]_\sim$ und $f(F)=\{[w]_\sim:w\in L(A)\}$. Es genügt somit zu zeigen , dass $\delta'(f(q),a)=f(\delta(q,a)) \forall q\in Q, a\in\Sigma$. Sei $q\in Q, a\in\Sigma^*$. Es genügt $w\in\delta'(f(q),a)\Leftrightarrow\delta^*(s,w)=\delta^*(q,a)$ zu zeigen. Sei $v\in\Sigma^*$ mit $\delta^*(s,v)=q$. Nun gilt $w\in\delta'(f(q),a)\Leftrightarrow w\in\delta'([v]_\sim,a)\Leftrightarrow w\sim va\Leftrightarrow\delta^*(s,w)=\delta^*(s,va)\leftrightarrow\delta^*(s,w)=\delta^*(g,a)$
 - (ii) Sei Σ ein Alphabet, \sim eine Rechtskongruenz aud Σ^* , L Vereinigung von Äquivalenzklassen von \sim , $A' := A_{\sim,L} = (\Sigma^*/\sim, \Sigma, A', [\lambda]_{\sim}, \uparrow)$, $\delta'^* : \Sigma^*/\sim \times \Sigma^* \to \Sigma^*/\sim$ die erweiterterte Übergangsfunktion von A' { $w \in \Sigma^* : w \in L$ } und $\sim' := \sim_{A'}$. Nach Satz 5.8 gilt L = L(A'), es genügt also $\sim = \sim'$ zu zeigen. Sei $u, v \in \Sigma^*$. Aus lemma 5.7 folgt $u \sim v \leftrightarrow [u]_{\sim} = [v]_{\sim} \leftrightarrow \delta'(...)$...

1.13 Satz

Bedeutet insbesondere folgendes: Ist A_i , $i \in \{1,2\}$ ein DEA ohne unereichbare Zustände, so gilt $A_1 \cong A_2 \leftrightarrow (\sim_{A_1}, L(A_1)) = (\sim_{A_2}, L(A_2))$ und ist L_i für $i \in \{1,2\}$. Vereinigung von Äquivalenzklassen einer Rechtskongruenz \sim_i mit endlichem Index, so gilt $(\sim_1, L_1) = (\sim_2, L_2) \leftrightarrow A_{\sim_1, L_1} \cong A_{\sim_2, L_2}$.

Ist L eine reguläre Sprache, so gibt es verschiedene endliche Automaten (ohne unereichbare Zustände) mit L(A) = L. Äquivalenzklassen verschiedener Rechtskongruenz mit endlichem Index. Für alle solche Rechtskongruenz \sim und $\forall u, v, w \Sigma^*$ mit $u \sim v$ gilt aber

$$uw \in L \leftrightarrow \delta_{det A}^*(s, uw) \in F \leftrightarrow \delta_{det A}^*(s, vw) \in F \leftrightarrow vw \in L$$

Dies führt zum Begriff der L-Äquivalenz und zeigt, dass die Parition in die Äquivalenzklassen von \sim Vereinfacht der Parition in die Äquivalenzklasse der L-Äquivalenz ist.

1.14 Definition (L-Äquivalenz)

Sei L eine Sprache über einem Alphabet Σ . Die L-Äquivalenz von L als Sprache ist die Relation \sim_L auf Σ^* mit

$$u \sim_L v \leftrightarrow (uw \in L \leftrightarrow vw \in L \forall w \in \Sigma^*)$$

1.15 Bemerkung

Sei L eine Sprache über Σ .

- (i) Die L-Äquivalenz ist eine Rechtskongruenz.
- (ii) Es gilt $L = \bigcup_{w \in L} [w]_{\sim L}$.

1.16 Definition (Parition)

Sei A eine Menge. Eine Parition von A ist eine Menge $\mathscr{A}=A_1,\cdots,A_n$ paarweise disjunkt nichtleere Teilmengen von A mit $\bigcup_{i\in[n]}A_i=A$.

4

1.17 Definition (Verefeinerung)

Seien \mathscr{A}_1 und \mathscr{A}_2 Paritionen einer Menge A. Die Parition \mathscr{A}_2 Verefeinert \mathscr{A}_1 (heißt Verefeinerung von \mathscr{A}_1), wenn es $\forall A_2 \in \mathscr{A}_2$ ein $A_1 \in \mathscr{A}_1$, mit $A_2 \subseteq A_1$ gibt.

1.18 Bemerkung

Seien \mathcal{A}_1 und \mathcal{A}_2 Paritionen einer Menge A_1 , so dass A_2 die Parition \mathcal{A}_1 verefeinert.

(i) $\forall A' \in \mathscr{A}_1$, gibt es eine Teilmengen $\mathscr{A}_2' \subseteq \mathscr{A}_2$, die eine Parition von A' ist.

1.19 Proposition

Sei Σ eine Alphabet und L eine Sprache über Σ und \sim eine Rechtskongruenz auf Σ^* mit $L = \bigcup_{w \in L} [w]_{\sim}$. Die Parition Σ^*/\sim ist eine Verefeinerung der partition $\Sigma^*/\sim L$.

Proof. Seien $u, v \in \Sigma^*$ mit $u \sim v$. Es genügt zu zeigen, dass $u \sim_L v$. Sei $w \in \Sigma^*$. Es genügt $uw \in L \leftrightarrow vw \in L$ zu zeigen. Da \sim eine Rechtskongruenz ist dolgt $uw \sim vw$. Ist $u, w \in L$, so folgt aus $L = \bigcup_{w' \in L} [w']_{\sim}$ auch $vw \in L$ (analog folgt auch auch $vw \in L \Rightarrow uw \in L$).

$$\Rightarrow u \sim_L v$$
.

Das heißt \sim_L ist die größte Parition, die L darstellen kann.

1.20 Definition (Minimalautomat)

Sei L eine reguläre Sprache über Σ . Der Minimalautomat von L als Sprache über Σ ist der DEA $A_{\sim L,L}$.

1.21 Satz

Sei L eine reguläre Sprache über Σ und sei $M = (Q, \Sigma, \Delta, s, F)$ der Minimalautomat von L. Dann gilt:

- (i) L(M) = L
- (ii) Ist A ein DEA mit Zustandsmenge Q_A und L(A) = L, so gilt $|Q_A| \le |Q|$.
- (iii) Ist A ein DEA mit |Q| Zuständen und L(A) = L, so gilt $A \cong M$.