PROBLEM SOLVING__

```
Agenda:

Log(n) complexity

Log(n) complexity

Log(n) complexity

(optimize)

Log(n) complexity

(optimize)
```

Worst Case Time Complexity:

$$128 \rightarrow 2^{7}$$

$$\downarrow 64$$

$$\downarrow 32$$

$$\downarrow 16$$

$$\downarrow 8$$

$$\downarrow 4$$

$$\downarrow 2$$

$$\downarrow 1$$

How many times you divide a number by 2 to get 1.

$$\# \qquad \log^{128} = 7$$

$$\# \qquad \log^{2} = 7$$

In here base is 2 because in Binary Seasch we always divide our search space intol 2 parts.

Q.1)

$$n = 50$$

$$a = 0$$

$$c = n$$

while
$$i > 1$$
:
$$a + = 1$$

$$i \parallel = 2$$

$$\dot{c} = 50 \xrightarrow{12} 25 \xrightarrow{72} 12 \xrightarrow{12} 6 - \cdots 1$$
$(\log n)$ $||\mathbf{x}||_{\mathbf{x}}$:

Question

for i in range (1, n): $\approx n$ times

for j in range (1, n): $\approx n/4$ for k in range (1, n): ≈ 1 break

$$T(c) = nx \frac{n}{4} x^{1} = n^{2}$$
$T(c) = 0 (n^{2})$
$n = 10^{8}$
 $n/2 = 5 \times 10^{7}$
$n = 10^{16}$
 $n/4 = 2.5 \times 10^{15}$

Question:

for i in range
$$(1, n+1)$$
: $\approx n$
for j in range $(1, n+1)$: $\approx n$
for k in sange $(n||2, n+1, n||2)$:
 $c + = 1$ $\approx o(1)$

After 1st jump there will be no range left for you to jump.

$$TC = n \times n \times 1$$
 \Rightarrow n^2

$$\# TC = O(n^2)$$

.....

* Prime Number:

$$n = 10$$

10: 1, 2, 5, 10 No

If a number has any factors between
$$2-(n-1)$$
: Not prime. else prime.

$$n = 20$$

20: 1, 2, 4, 5, 10, 20
40: 1, 2, 4, 5, 8, 10, 20, 40

$$# n = 100$$

$$77 \rightarrow 7$$
 not prime $76 \rightarrow 2$ not prime $99 \rightarrow 3$ not prime $48 \rightarrow 2$ not prime $73 \rightarrow ---$ Prime

* Euclidean distance :

$$P_{A}(x,y)$$
$A(2,3) \rightarrow x_{1} = 2 , y_{1} = 3$
$B(10,5) \rightarrow x_{2} = 10 , y_{2} = 5$

$$d = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2}$$

$$d = \sqrt{(10-2)^2 + (5-3)^2}$$

$$d = \sqrt{(8)^2 + (2)^2}$$

$$d = \sqrt{64 + 4}$$

$$d = \sqrt{68}$$

* KNN: K- neavest neighbors

