```
Завдання 1. Дані координати точок A, B, C і D. Знайти: 1) координати вектора \vec{a} = \alpha \stackrel{\rightarrow}{AD} + \beta \stackrel{\rightarrow}{CB};
```

2) напрямні косинуси та орт вектора \overrightarrow{AB} ; 3) координати точки M, яка ділить відрізок ℓ у відношенні λ ; 4) кут між векторами \overrightarrow{AB} і \overrightarrow{AD} ; 5) проекцію вектора \overrightarrow{AC} на вектор \overrightarrow{BD} ; 6) площу трикутника ABC; 7) об'єм піраміди ABCD.

- **1.** A(-1; 3; 1), B(2; 5; 4), C(3; 4; -2), D(1; 0; 3); $\alpha = -1/2$, $\beta = 3$; $\ell = [BA]$, $\lambda = 2/7$.
- **2.** A(5; 1; 4), B(0; 2; -1), C(4; 3; 2), D(-2; 0; 5); $\alpha = 4$, $\beta = -2/3$; $\ell = [AD]$, $\lambda = 1/9$.
- **3.** A(1; -1; 2), B(-2; 0; 3), C(2; -5; 4), D(2; 1; 7); $\alpha = 1/3$, $\beta = -2$; $\ell = \lceil CD \rceil$, $\lambda = 4/3$.
- **4.** A(3; 2; -1), B(0; 1; -2), C(1; 4; 2), D(5; -1; 1); $\alpha = 2/7$, $\beta = -5$; $\ell = [DA]$; $\lambda = 3/5$.
- **5.** A(-2; 3; 2), B(1; 5; 3), C(-3; 7; 4), D(3; 2; 0); $\alpha = -5$, $\beta = 2/3$; $\ell = [BA]$, $\lambda = 4/3$.
- **6.** $A(2; 1; 3), B(5; 2; 0), C(-1; 1; 6), D(4; 3; -1); \alpha = 3, \beta = -1/2; \ell = \lceil CA \rceil, \lambda = 2/5.$
- 7. A(1; 5; -2), B(4; 2; -1), C(0; 8; 2), D(-1; 6; 1); $\alpha = -2/3$, $\beta = 4$; $\ell = [DA]$, $\lambda = 3/7$.
- **8.** A(4; 1; -3), B(1; 0; -7), C(5; 2; 1), D(3; 5; 2); $\alpha = 5/2$, $\beta = -3$; $\ell = [AD]$, $\lambda = 2/9$.
- **9.** A(0; -1; 2), B(0; 2; 4), C(-2; 1; 6), D(2; 0; 8); $\alpha = -1/3$, $\beta = 2$; $\ell = [AC]$, $\lambda = 7/2$.
- **10.** $A(3; 1; 4), B(5; 0; 2), C(4; 2; -1), D(7; 3; -4); \alpha = 2/5, \beta = -3; \ell = [AD], \lambda = 5/9.$
- **11.** A(2; 5; -1), B(3; 1; -3), C(0; 4; 1), D(5; -2; 3); $\alpha = 4/3$, $\beta = -2$; $\ell = [AD]$, $\lambda = 3/5$.
- **12.** A(-1; -3; 1), B(2; 1; 2), C(-5; 0; 2), D(-3; -2; 4); $\alpha = -5/2$, $\beta = 3$; $\ell = [BA]$, $\lambda = 1/4$.
- **13.** A(-2; 1; 4), B(2; 3; 1), C(-3; 0; 2), D(5; 2; 0); $\alpha = -1/5$, $\beta = 7$; $\ell = [BA]$, $\lambda = 4/3$.
- **14.** A(2; 5; -1), B(3; 0; -5), C(0; 4; 2), D(7; -1; 1); $\alpha = 2$, $\beta = -4/3$; $\ell = [AD]$, $\lambda = 8/3$.
- **15.** A(3; -1; 1), B(0; 1; 5), C(-2; 2; 3), D(5; 0; 4); $\alpha = 3$, $\beta = -2$; $\ell = [CA]$, $\lambda = 5/9$.
- **16.** A(-3; 1; 4), B(0; 2; 3), C(-2; 5; 7), D(-1; 0; 6); $\alpha = 5/3$, $\beta = -4$; $\ell = [AC]$, $\lambda = 4/7$.
- **17.** A(4; -2; 3), B(5; 1; 2), C(7; 0; 5), D(3; -1; 0); $\alpha = -3$, $\beta = 1/4$; $\ell = [BA]$, $\lambda = 2/9$.
- **18.** A(-1; 2; 4), B(0; 1; -2), C(1; 3; 2), D(-2; 0; 6); $\alpha = -2$, $\beta = 3/5$; $\ell = [CA]$, $\lambda = 5/3$.
- **19.** A(3; 0; -1), B(2; -4; 1), C(0; 5; -2), D(-2; 3; 2); $\alpha = 1/3$, $\beta = -2$; $\ell = [BD]$, $\lambda = 3/7$.
- **20.** A(2; -1; 5), B(4; 3; 2), C(1; 0; 7), D(3; -2; 0); $\alpha = -5$, $\beta = 2/3$; $\ell = [BA]$, $\lambda = 3/4$.
- **21.** A(2; 1; 7), B(-1; 3; 5), C(5; -4; 1), D(2; 5; 1); $\alpha = -3/2$, $\beta = 5$; $\ell = \lceil BA \rceil$, $\lambda = 5/3$.
- **22.** A(4; 3; -2), B(7; 0; -4), C(0; 4; 1), D(-1; 5; 3); $\alpha = 4$, $\beta = -1/2$; $\ell = [AD]$, $\lambda = 2/9$.
- **23.** A(0; -2; 4), B(-2; -2; 1), C(3; -3; 2), D(3; 3; 4); $\alpha = 5/2$, $\beta = -3$; $\ell = [CD]$, $\lambda = 3/7$.
- **24.** A(-1; 3; 2), B(3; 1; 3), C(-2; 0; 5), D(3; 7; 0); $\alpha = -4$, $\beta = 2/3$; $\ell = [BA]$, $\lambda = 4/3$.
- **25.** A(5; 2; -1), B(8; 0; -2), C(0; 7; 2), D(3; -1; 1); $\alpha = 1/2$, $\beta = -5$; $\ell = [DA]$; $\lambda = 2/7$.
- **26.** A(3; -1; 5), B(0; 2; 4), C(-2; 1; 6), D(2; 0; 8); $\alpha = -4$, $\beta = 3/5$; $\ell = [AC]$, $\lambda = 7/3$.
- **27.** A(-2; 4; 1), B(0; 5; 3), C(-4; 7; 5), D(2; 0; -1); $\alpha = 3/2$, $\beta = -2$; $\ell = [CA]$, $\lambda = 6/5$.
- **28.** A(3; -5; 4), B(2; 6; -7), C(-1; 3; 2), D(-1; -4; 1); $\alpha = -5$, $\beta = 2/3$; $\ell = [BA]$, $\lambda = 3/4$.
- **29.** A(1; 3; -2), B(7; 0; -4), C(0; 5; 2), D(-1; 4; 2); $\alpha = -1/3$, $\beta = 4$; $\ell = [DA]$, $\lambda = 8/3$.
- **30.** A(2; -1; 1), B(1; 0; 2), C(0; 3; -1), D(2; 3; -4); $\alpha = 3/4$, $\beta = -5$; $\ell = [AD]$, $\lambda = 9/7$.
- **31.** A(1; 5; -3), B(0; 3; -2), C(-1; 4; 0), D(3; -2; 4); $\alpha = 5$, $\beta = -7/2$; $\ell = \lceil AD \rceil$, $\lambda = 2/9$.
- **32.** A(2; 0; -3), B(3; -4; 1), C(0; 2; -5), D(-1; 3; 4); $\alpha = 4/3$, $\beta = -3$; $\ell = [BD]$, $\lambda = 7/9$.

Завдання 2. Переконатися, що вектори

$$\vec{a}_1 = (3; -2; m+1), \ \vec{a}_2 = (n+2; m+1; 2), \ \vec{a}_3 = (-1; -3; n+2)$$

утворюють базис в R^3 і знайти координати вектора $\vec{a} = (1 - m + n; 5 + m + 2n; 8)$ в цьому базисі.

Примітка: m – остання цифра, n – передостання цифра порядкового номера студента в журналі групи.