

Implicit Temporal Modeling with Learnable Alignment for Video Recognition

Shuyuan Tu, Qi Dai, Zuxuan Wu, Zhi-Qi Cheng, Han Hu, Yu-Gang Jiang

Fudan University, Microsoft Research, CMU

Motivation

Divided Space-Time Attention (TimeSformer)

Local Space-Time Attention (VideoSwin)

Cross-frame Attention (X-CLIP)

Implicit Temporal Modeling (Ours)

• These methods have suffered from either high computation cost or insufficient modeling abilities.

Motivation

• Important motion and action clues can be derived when performing alignment of pairwise frames.

• Simple implicit and coarse alignment is sufficient.

• Temporal attention is unnecessary.

Method

Implicit Mask-based Alignment

$$\begin{aligned} \boldsymbol{p}_{t}^{(\ell)}, \ \boldsymbol{p}_{t-1}^{(\ell)} = \text{Conv}(\text{Concat}(\mathbf{z}_{t}^{(\ell-1)}, \mathbf{z}_{t-1}^{(\ell-1)})) \end{aligned} = \begin{cases} s = \text{dist}(\boldsymbol{u}, \boldsymbol{p}_{t}^{(\ell)}), \\ \boldsymbol{m}_{u} = \begin{cases} \eta, & \text{if } s \leq \delta, \\ \max\left(0, \eta - \beta\left(s - \delta\right)\right), & \text{if } s > \delta, \end{cases} \end{aligned}$$

Method

Block Design

Implicit Spatio-Temporal attention block

Pairwise Alignment:
$$\mathbf{a}_t^{(\ell)}, \ \mathbf{a}_{t-1}^{(\ell)} = \mathtt{Align}(\mathbf{z}_t^{(\ell-1)}, \mathbf{z}_{t-1}^{(\ell-1)})$$

Average Pooling:

$$\mathbf{\hat{z}}_{t,mut}^{(\ell)} = \mathtt{Avg}(\mathbf{a}_t^{(\ell)}),$$

Spatial Attention:

$$[\tilde{\mathbf{z}}_t^{(\ell)},\ \tilde{\mathbf{z}}_{t,mut}^{(\ell)}] = \mathtt{MSA}(\mathtt{LN}([\mathbf{z}_t^{(\ell-1)},\hat{\mathbf{z}}_{t,mut}^{(\ell)}])) + [\mathbf{z}_t^{(\ell-1)},\hat{\mathbf{z}}_{t,mut}^{(\ell)}])$$

Feed-Forward:

$$\mathbf{z}_t^{(\ell)} = \mathtt{MLP}(\mathtt{LN}(\mathbf{ ilde{z}}_t^{(\ell)})) + \mathbf{ ilde{z}}_t^{(\ell)}.$$

Results on Kinetics-400

Model	Pretrain	Frames	Top-1	Top-5	Views	FLOPs (G)
TimeSformer-L	IN-21K	96	80.7	94.7	1x3	2380
Swin-L@384	IN-21K	32	84.9	96.7	10x5	2107
MViTv2-L@312	IN-21K	40	86.1	97.0	5x3	2828
EVL-B/16	CLIP-400M	16	83.6	-	1x3	296
EVL-L/14@336	CLIP-400M	32	87.7	-	1x3	6068
XCLIP-B/16	CLIP-400M	16	84.7	96.8	4x3	287
XCLIP-L/14@336	CLIP-400M	16	87.7	97.4	4x3	3086
AIM-L/14	CLIP-400M	16	87.3	97.6	1x3	1868
ST-Ada-L/14	CLIP-400M	16	86.9	97.6	1x3	1375
ILA-B/16	CLIP-400M	16	85.7	97.2	4x3	295
ILA-L/14	CLIP-400M	8	88.0	98.1	4x3	673
ILA-L/14@336	CLIP-400M	16	88.7	97.8	4x3	3130

Results on Something-Something V2

Model	Pretrain	Frames	Top-1	Top-5	Views	FLOPs (G)
ViViT-L	IN-21K+K400	16	65.4	89.8	1x3	903
TimeSformer-L	IN-21K	96	62.4	81.0	1x3	2380
MViTv1-B	K400	16	64.7	89.2	1x3	70.5
EVL-B/16	CLIP-400M	16	61.7	-	1x3	345
EVL-L/14	CLIP-400M	32	66.7	-	1x3	3216
EVL-L/14@336	CLIP-400M	32	68.0	-	1x3	8090
XCLIP-B/16	CLIP-400M	8	57.8	84.5	4x3	145
AIM-B/16	CLIP-400M	8	66.4	90.5	1x3	208
AIM-L/14	CLIP-400M	32	69.4	92.3	1x3	3836
ILA-B/16	CLIP-400M	16	66.8	90.3	4x3	438
ILA-L/14	CLIP-400M	8	67.8	90.5	4x3	907
ILA-L/14@336	CLIP-400M	16	70.2	91.8	4x3	3723

Ablation Study

Generalization to different backbones

Model	Pre-training	Acc. (%)	FLOPs
EVL [35]	CLIP-400M	82.9	150G
EVL + ILA	CLIP-400M	83.5	162G
TimeSformer [5]	IN-21K	78.0	196G
TimeSformer + ILA	IN-21K	79.8	164G

Effectiveness of implicit alignment

Model	Acc. (%)	FLOPs
Baseline	79.8	37G
X-CLIP [38]	80.4	39G
CLIP + Divided ST Attention [5]	80.6	58G
CLIP + Temporal Shift [56]	80.1	37G
CLIP + ATA [70]	81.0	60G
CLIP + Average Pooling	80.4	39G
CLIP + ILA	81.3	40G

Comparison of mutual information

Model	Acc. (%)	MI (EMD)
Baseline	79.8	0.56
X-CLIP [38]	80.4	0.51
CLIP + Divided ST Attention [5]	80.6	0.47
CLIP + ATA [70]	81.0	0.30
CLIP + ILA	81.3	0.13

Impact of different aligning strategies

Aligning Strategy	Top1. (%)	Top5. (%)
Align-First	80.7	94.5
Align-Middle	80.8	94.6
Adjacent frame	81.3	95.0

Visualization of Interactive Points over time

Figure 2. Visualization of the last feature map of different temporal modeling approaches on Kinetics-400. (a) refers to raw frames. (b), (c) and (d) refer to Divided ST Attention, ATA and ILA respectively.

Code & Models Available at

https://github.com/Francis-Rings/ILA

Thanks!

