Generated on 2015-01-08 17:53:20 by gEcon version 0.8.3 (2015-01-08) Model name: rbc_mc

1 CONSUMER

1.1 Optimisation problem

$$\max_{C_t, L_t^s} U_t = \beta \mathcal{E}_t \left[U_{t+1} \right] + \left(1 - \eta \right)^{-1} \left(C_t^{\ \mu} (1 - L_t^s)^{1 - \mu} \right)^{1 - \eta} \tag{1.1}$$

s.t.:

$$C_t P_t^{\text{FIN}} = \pi_t + \pi_t^{\text{ps}} + L_t^{\text{s}} W_t \quad (\lambda_t^{\text{c}})$$

$$\tag{1.2}$$

1.2 First order conditions

$$\beta - \lambda_t^{\mathrm{U}} = 0 \quad (U_t) \tag{1.3}$$

$$-\lambda_t^c P_t^{\text{FIN}} + \mu C_t^{-1+\mu} (1 - L_t^s)^{1-\mu} \left(C_t^{\mu} (1 - L_t^s)^{1-\mu} \right)^{-\eta} = 0 \quad (C_t)$$
 (1.4)

$$\lambda_t^c W_t + (-1 + \mu) C_t^{\mu} (1 - L_t^s)^{-\mu} \left(C_t^{\mu} (1 - L_t^s)^{1 - \mu} \right)^{-\eta} = 0 \quad (L_t^s)$$
(1.5)

2 INTERMEDIATE FIRM

2.1 Optimisation problem

$$\max_{K_t, L_t^{\rm d}, Y_t, I_t, \pi_t} \Pi_t = \pi_t + \lambda_t^{\rm c-1} E_t \left[\lambda_{t+1}^{\rm U} \lambda_{t+1}^{\rm c} \Pi_{t+1} \right]$$
(2.1)

s.t. :

$$\pi_t = -I_t - L_t^{\mathrm{d}} W_t + P_t Y_t \quad \left(\lambda_t^{\mathrm{INTERMEDIATE}^{\mathrm{FIRM}^1}}\right) \tag{2.2}$$

$$Y_t = K_{t-1}^{\alpha} \left(L_t^{\mathrm{d}} Z_t \right)^{1-\alpha} \quad \left(\lambda_t^{\mathrm{INTERMEDIATE}^{\mathrm{FIRM}^2}} \right)$$
 (2.3)

$$K_{t} = I_{t} + K_{t-1} (1 - \delta) \quad \left(\lambda_{t}^{\text{INTERMEDIATE}^{\text{FIRM}^{3}}}\right)$$
(2.4)

2.2 First order conditions

$$-\lambda_t^{\text{INTERMEDIATE}^{\text{FIRM}^{\Pi}}} + \lambda_{t-1}^{\text{c}}^{-1} \lambda_t^{\text{U}} \lambda_t^{\text{c}} = 0 \quad (\Pi_t)$$
(2.5)

$$-\lambda_{t}^{\text{INTERMEDIATE}^{\text{FIRM}^{3}}} + \text{E}_{t} \left[\lambda_{t+1}^{\text{INTERMEDIATE}^{\text{FIRM}^{\Pi}}} \left(\lambda_{t+1}^{\text{INTERMEDIATE}^{\text{FIRM}^{3}}} \left(1 - \delta \right) + \alpha \lambda_{t+1}^{\text{INTERMEDIATE}^{\text{FIRM}^{2}}} K_{t}^{-1+\alpha} \left(L_{t+1}^{\text{d}} Z_{t+1} \right)^{1-\alpha} \right) \right] = 0 \quad (K_{t})$$

$$(2.6)$$

$$-\lambda_t^{\text{INTERMEDIATE}^{\text{FIRM}^1}} W_t + \lambda_t^{\text{INTERMEDIATE}^{\text{FIRM}^2}} Z_t (1 - \alpha) K_{t-1}^{\alpha} (L_t^{\text{d}} Z_t)^{-\alpha} = 0 \quad (L_t^{\text{d}})$$
(2.7)

$$-\lambda_t^{\text{INTERMEDIATE}^{\text{FIRM}^2}} + \lambda_t^{\text{INTERMEDIATE}^{\text{FIRM}^1}} P_t = 0 \quad (Y_t)$$
 (2.8)

$$-\lambda_t^{\text{INTERMEDIATE}^{\text{FIRM}^1}} + \lambda_t^{\text{INTERMEDIATE}^{\text{FIRM}^3}} = 0 \quad (I_t)$$
 (2.9)

$$1 - \lambda_t^{\text{INTERMEDIATE}^{\text{FIRM}^1}} = 0 \quad (\pi_t)$$
 (2.10)

2.3 First order conditions after reduction

$$-\lambda_t^{\text{INTERMEDIATE}^{\text{FIRM}^{\Pi}}} + \lambda_{t-1}^{\text{c}}^{-1} \lambda_t^{\text{U}} \lambda_t^{\text{c}} = 0 \quad (\Pi_t)$$
(2.11)

$$-1 + E_t \left[\lambda_{t+1}^{\text{INTERMEDIATE}^{\text{FIRM}^{\Pi}}} \left(1 - \delta + \alpha \lambda_{t+1}^{\text{INTERMEDIATE}^{\text{FIRM}^2}} K_t^{-1+\alpha} \left(L_{t+1}^{\text{d}} Z_{t+1} \right)^{1-\alpha} \right) \right] = 0 \quad (K_t)$$

$$(2.12)$$

$$-W_t + \lambda_t^{\text{INTERMEDIATE}^{\text{FIRM}^2}} Z_t (1 - \alpha) K_{t-1}^{\alpha} (L_t^{\text{d}} Z_t)^{-\alpha} = 0 \quad (L_t^{\text{d}})$$
(2.13)

$$-\lambda_t^{\text{INTERMEDIATE}^{\text{FIRM}^2}} + P_t = 0 \quad (Y_t)$$
 (2.14)

3 PRICE SETTING

 $^{\circ}$

3.1 Optimisation problem

$$\max_{\pi_t^{\rm ps}, Y_t^{\rm MON}, P_t^{\rm MON}} \Pi_t^{\rm PS} = \pi_t^{\rm ps}$$
(3.1)

 $\mathrm{s.t.}$

$$\pi_t^{\text{ps}} = Y_t^{\text{MON}} \left(-P_t + P_t^{\text{MON}} \right) \quad \left(\lambda_t^{\text{PRICE}^{\text{SETTING}^1}} \right)$$
(3.2)

$$Y_t^{\text{MON}} = Y_t^{\text{FIN}} \left(P_t^{\text{FIN}^{-1}} P_t^{\text{MON}} \right)^{-\rho} \quad \left(\lambda_t^{\text{PRICE}^{\text{SETTING}^2}} \right)$$
(3.3)

3.2 First order conditions

$$1 - \lambda_t^{\text{PRICE}^{\text{SETTING}^1}} = 0 \quad (\pi_t^{\text{ps}})$$
(3.4)

$$-\lambda_t^{\text{PRICE}^{\text{SETTING}^2}} + \lambda_t^{\text{PRICE}^{\text{SETTING}^1}} \left(-P_t + P_t^{\text{MON}} \right) = 0 \quad \left(Y_t^{\text{MON}} \right)$$
(3.5)

$$\lambda_t^{\text{PRICE}^{\text{SETTING}^1}} Y_t^{\text{MON}} - \rho \lambda_t^{\text{PRICE}^{\text{SETTING}^2}} P_t^{\text{FIN}^{-1}} Y_t^{\text{FIN}} \left(P_t^{\text{FIN}^{-1}} P_t^{\text{MON}} \right)^{-1-\rho} = 0 \quad \left(P_t^{\text{MON}} \right)$$
(3.6)

3.3 First order conditions after reduction

$$Y_t^{\text{MON}} - \rho P_t^{\text{FIN}^{-1}} Y_t^{\text{FIN}} \left(-P_t + P_t^{\text{MON}} \right) \left(P_t^{\text{FIN}^{-1}} P_t^{\text{MON}} \right)^{-1-\rho} = 0 \quad \left(P_t^{\text{MON}} \right)$$
(3.7)

4 FINAL FIRM

4.1 Identities

$$Y_t^{\text{FIN}} = Y_t^{\text{MON}} \tag{4.1}$$

5 EQUILIBRIUM

5.1 Identities

$$L_t^{\rm d} = L_t^{\rm s} \tag{5.1}$$

$$P_t^{\text{FIN}} = 1 \tag{5.2}$$

$$Y_t^{\text{MON}} = Y_t \tag{5.3}$$

6 EXOG

6.1 Identities

$$Z_t = e^{\epsilon_t^Z + \phi \log Z_{t-1}} \tag{6.1}$$

7 Equilibrium relationships (after reduction)

$$-1 + \beta \left(C_t^{-1+\mu} \right)^{-1} \left(\left(1 - L_t^{\rm s} \right)^{1-\mu} \right)^{-1} \left(\left(C_t^{\mu} (1 - L_t^{\rm s})^{1-\mu} \right)^{-\eta} \right)^{-1} E_t \left[\left(1 - \delta + \alpha P_{t+1} K_t^{-1+\alpha} \left(L_{t+1}^{\rm s} Z_{t+1} \right)^{1-\alpha} \right) C_{t+1}^{-1+\mu} \left(1 - L_{t+1}^{\rm s} \right)^{1-\mu} \left(C_{t+1}^{\mu} \left(1 - L_{t+1}^{\rm s} \right)^{1-\mu} \right)^{-\eta} \right] = 0$$

$$(7.1)$$

$$-\pi_t^{\text{ps}} + \Pi_t^{\text{PS}} = 0 \tag{7.2}$$

$$-\pi_t^{\text{ps}} + Y_t \left(-P_t + P_t^{\text{MON}} \right) = 0 \tag{7.3}$$

$$-W_t + P_t Z_t (1 - \alpha) K_{t-1}{}^{\alpha} (L_t^s Z_t)^{-\alpha} = 0$$
(7.4)

$$-Y_t + Y_t P_t^{\text{MON}-\rho} = 0 \tag{7.5}$$

$$-Y_t + K_{t-1}{}^{\alpha} (L_t^s Z_t)^{1-\alpha} = 0 (7.6)$$

$$Y_t - \rho Y_t \left(-P_t + P_t^{\text{MON}} \right) P_t^{\text{MON}^{-1-\rho}} = 0 \tag{7.7}$$

$$Z_t - e^{\epsilon_t^Z + \phi \log Z_{t-1}} = 0 \tag{7.8}$$

$$(-1+\mu)C_t^{\mu}(1-L_t^{\rm s})^{-\mu}\left(C_t^{\mu}(1-L_t^{\rm s})^{1-\mu}\right)^{-\eta} + \mu W_t C_t^{-1+\mu}(1-L_t^{\rm s})^{1-\mu}\left(C_t^{\mu}(1-L_t^{\rm s})^{1-\mu}\right)^{-\eta} = 0 \tag{7.9}$$

$$-\pi_t + \Pi_t - \beta \left(C_t^{-1+\mu} \right)^{-1} \left(\left(1 - L_t^{\rm s} \right)^{1-\mu} \right)^{-1} \left(\left(C_t^{\mu} (1 - L_t^{\rm s})^{1-\mu} \right)^{-\eta} \right)^{-1} E_t \left[\Pi_{t+1} C_{t+1}^{-1+\mu} \left(1 - L_{t+1}^{\rm s} \right)^{1-\mu} \left(C_{t+1}^{\mu} \left(1 - L_{t+1}^{\rm s} \right)^{1-\mu} \right)^{-\eta} \right] = 0$$
 (7.10)

$$I_t - K_t + K_{t-1} (1 - \delta) = 0 (7.11)$$

$$U_t - \beta E_t [U_{t+1}] - (1 - \eta)^{-1} \left(C_t^{\mu} (1 - L_t^s)^{1 - \mu} \right)^{1 - \eta} = 0$$
(7.12)

$$-\pi_t - I_t - L_t^s W_t + P_t Y_t = 0 (7.13)$$

$$\pi_t + \pi_t^{\text{ps}} - C_t + L_t^{\text{s}} W_t = 0 \tag{7.14}$$

8 Steady state relationships (after reduction)

$$-1 + \beta \left(1 - \delta + \alpha P_{\rm ss} K_{\rm ss}^{-1 + \alpha} (L_{\rm ss}^{\rm s} Z_{\rm ss})^{1 - \alpha}\right) C_{\rm ss}^{-1 + \mu} C_{\rm ss}^{1 - \mu} (1 - L_{\rm ss}^{\rm s})^{-1 + \mu} (1 - L_{\rm ss}^{\rm s})^{1 - \mu} = 0$$

$$(8.1)$$

$$-\pi_{\rm ss}^{\rm ps} + \Pi_{\rm ss}^{\rm PS} = 0 \tag{8.2}$$

$$-\pi_{\rm ss}^{\rm ps} + Y_{\rm ss} \left(-P_{\rm ss} + P_{\rm ss}^{\rm MON} \right) = 0 \tag{8.3}$$

$$-W_{\rm ss} + P_{\rm ss} Z_{\rm ss} (1 - \alpha) K_{\rm ss}^{\alpha} (L_{\rm ss}^{\rm s} Z_{\rm ss})^{-\alpha} = 0$$
(8.4)

$$-Y_{\rm ss} + Y_{\rm ss} P_{\rm ss}^{\rm MON^{-\rho}} = 0 (8.5)$$

$$-Y_{\rm ss} + K_{\rm ss}{}^{\alpha} (L_{\rm ss}^{\rm s} Z_{\rm ss})^{1-\alpha} = 0 \tag{8.6}$$

$$Y_{\rm ss} - \rho Y_{\rm ss} \left(-P_{\rm ss} + P_{\rm ss}^{\rm MON} \right) P_{\rm ss}^{\rm MON^{-1-\rho}} = 0$$
 (8.7)

$$Z_{\rm ss} - e^{\phi \log Z_{\rm ss}} = 0 \tag{8.8}$$

$$(-1+\mu)C_{\rm ss}^{\mu}(1-L_{\rm ss}^{\rm s})^{-\mu}\left(C_{\rm ss}^{\mu}(1-L_{\rm ss}^{\rm s})^{1-\mu}\right)^{-\eta} + \mu W_{\rm ss}C_{\rm ss}^{-1+\mu}(1-L_{\rm ss}^{\rm s})^{1-\mu}\left(C_{\rm ss}^{\mu}(1-L_{\rm ss}^{\rm s})^{1-\mu}\right)^{-\eta} = 0 \tag{8.9}$$

$$-\pi_{\rm ss} + \Pi_{\rm ss} - \beta \Pi_{\rm ss} 1 (1 - L_{\rm ss}^{\rm s})^{-1+\mu} (1 - L_{\rm ss}^{\rm s})^{1-\mu} = 0$$
(8.10)

$$I_{\rm ss} - K_{\rm ss} + K_{\rm ss} (1 - \delta) = 0 \tag{8.11}$$

$$U_{\rm ss} - \beta U_{\rm ss} - (1 - \eta)^{-1} \left(C_{\rm ss}^{\ \mu} (1 - L_{\rm ss}^{\rm s})^{1 - \mu} \right)^{1 - \eta} = 0 \tag{8.12}$$

$$-\pi_{\rm ss} - I_{\rm ss} - L_{\rm ss}^{\rm s} W_{\rm ss} + P_{\rm ss} Y_{\rm ss} = 0 \tag{8.13}$$

$$\pi_{\rm ss} + \pi_{\rm ss}^{\rm ps} - C_{\rm ss} + L_{\rm ss}^{\rm s} W_{\rm ss} = 0 \tag{8.14}$$

 \circ

9 Parameter settings

$$\alpha = 0.33 \tag{9.1}$$

$$\beta = 0.99 \tag{9.2}$$

$$\delta = 0.025 \tag{9.3}$$

$$\eta = 2 \tag{9.4}$$

$$\mu = 0.3 \tag{9.5}$$

$$\phi = 0.95 \tag{9.6}$$

$$\rho = 11 \tag{9.7}$$

10 Steady-state values

	Steady-state values
π	0.0619
π^{ps}	0.0652
C	0.5638
I	0.1532
K	6.1285
$L^{\mathbf{s}}$	0.2492
P	0.9091
P^{MON}	1
П	6.1904
Π^{PS}	0.0652
U	-145.144
W	1.7524
Y	0.7171
Z	1

11 The solution of the perturbation

11.1 P

$$\begin{array}{ccc}
K_{t-1} & Z_{t-1} \\
K & 0.958 & 0.0744 \\
Z & 0 & 0.95
\end{array}$$

11.2 Q

$$\begin{array}{c}
\epsilon^{Z} \\
K \left(\begin{array}{c} 0.0783 \\ I \end{array} \right)
\end{array}$$

11.3 R

$$\begin{array}{c} K_{t-1} & Z_{t-1} \\ \pi \\ \pi^{\mathrm{ps}} & \begin{pmatrix} 2.4086 & -4.1777 \\ 0.2085 & 0.9179 \\ 0.45 & 0.3585 \\ -0.6804 & 2.9768 \\ -0.1813 & 0.42 \\ P \\ P^{\mathrm{MON}} & 0 & 0 \\ 0 & 0 \\ \Pi & 0.9725 & 0.0319 \\ \Pi^{\mathrm{PS}} & 0.2085 & 0.9179 \\ U & -0.0343 & -0.0442 \\ W & 0.3898 & 0.4979 \\ Y & 0.2085 & 0.9179 \\ \end{array}$$

11.4 S

	$\epsilon^{ m Z}$
π	/-4.3976
π^{ps}	0.9662
C	0.3773
I	3.1334
L^{s}	0.4421
P	0
P^{MON}	0
Π	0.0336
Π^{PS}	0.9662
U	-0.0465
W	0.5241
Y	\setminus 0.9662 $/$

12 Statistics of the model

12.1 Moments

	Steady-state value	Std. dev.	Variance	Loglinear
C	0.5638	0.5188	0.2691	Y
I	0.1532	4.0905	16.732	Y
K	6.1285	0.3617	0.1308	Y
$L^{\rm s}$	0.2492	0.5797	0.336	Y
U	-145.144	0.0619	0.0038	Y
W	1.7524	0.6982	0.4875	Y
Y	0.7171	1.262	1.5927	Y
Z	1	1.3034	1.699	Y

12.2 Correlation matrix

	C	I	K	$L^{\rm s}$	U	W	Y	Z
π	-0.8915	-0.9959	-0.1395	-0.9993	0.9384	-0.9379	-0.9779	-0.9886
π^{ps}	0.9666	0.9928	0.3436	0.985	-0.9899	0.9897	1	0.9982
C	1	0.9289	0.5729	0.9079	-0.9931	0.9933	0.9666	0.9495
I	0.9289	1	0.2287	0.9986	-0.9659	0.9655	0.9928	0.9982
K	0.5729	0.2287	1	0.1766	-0.4731	0.4744	0.3436	0.2868
L^{s}	0.9079	0.9986	0.1766	1	-0.9507	0.9503	0.985	0.9936
P	0	0	0	0	0	0	0	0
P^{MON}	0	0	0	0	0	0	0	0
П	0.4328	0.0682	0.9868	0.0151	-0.3243	0.3257	0.1871	0.1281
Π^{PS}	0.9666	0.9928	0.3436	0.985	-0.9899	0.9897	1	0.9982
U	-0.9931	-0.9659	-0.4731	-0.9507	1	-1	-0.9899	-0.9797
W	0.9933	0.9655	0.4744	0.9503	-1	1	0.9897	0.9794
Y	0.9666	0.9928	0.3436	0.985	-0.9899	0.9897	1	0.9982
Z	0.9495	0.9982	0.2868	0.9936	-0.9797	0.9794	0.9982	1

12.3 Autocorrelations

	t-1	t-2	t-3	t-4	t-5
C	0.7598	0.5448	0.3569	0.1964	0.0629
I	0.7097	0.4654	0.2644	0.1031	-0.0225
K	0.9593	0.8611	0.7252	0.5682	0.403
$L^{\rm s}$	0.708	0.4628	0.2614	0.1	-0.0253
U	0.7378	0.5101	0.3164	0.1556	0.0256
W	0.7381	0.5105	0.3169	0.1561	0.026
Y	0.7186	0.4796	0.2809	0.1198	-0.0072
\overline{Z}	0.7133	0.4711	0.2711	0.1098	-0.0163

13 Statistics of the model

13.1 Moments

	Steady-state value	Std. dev.	Variance	Loglinear
C	0.5638	0.5188	0.2691	Y
I	0.1532	4.0905	16.732	Y
K	6.1285	0.3617	0.1308	Y
L^{s}	0.2492	0.5797	0.336	Y
U	-145.144	0.0619	0.0038	Y
\overline{W}	1.7524	0.6982	0.4875	Y
Y	0.7171	1.262	1.5927	Y
Z	1	1.3034	1.699	Y

13.2 Correlation matrix

	C	I	K	$L^{\rm s}$	U	W	Y	Z
π	-0.8915	-0.9959	-0.1395	-0.9993	0.9384	-0.9379	-0.9779	-0.9886
π^{ps}	0.9666	0.9928	0.3436	0.985	-0.9899	0.9897	1	0.9982
C	1	0.9289	0.5729	0.9079	-0.9931	0.9933	0.9666	0.9495
I	0.9289	1	0.2287	0.9986	-0.9659	0.9655	0.9928	0.9982
K	0.5729	0.2287	1	0.1766	-0.4731	0.4744	0.3436	0.2868
$L^{\rm s}$	0.9079	0.9986	0.1766	1	-0.9507	0.9503	0.985	0.9936
P	0	0	0	0	0	0	0	0
P^{MON}	0	0	0	0	0	0	0	0
П	0.4328	0.0682	0.9868	0.0151	-0.3243	0.3257	0.1871	0.1281
Π^{PS}	0.9666	0.9928	0.3436	0.985	-0.9899	0.9897	1	0.9982
U	-0.9931	-0.9659	-0.4731	-0.9507	1	-1	-0.9899	-0.9797
W	0.9933	0.9655	0.4744	0.9503	-1	1	0.9897	0.9794
Y	0.9666	0.9928	0.3436	0.985	-0.9899	0.9897	1	0.9982
Z	0.9495	0.9982	0.2868	0.9936	-0.9797	0.9794	0.9982	1

13.3 Autocorrelations

	t-1	t-2	t-3	t-4	t-5
C	0.7598	0.5448	0.3569	0.1964	0.0629
I	0.7097	0.4654	0.2644	0.1031	-0.0225
K	0.9593	0.8611	0.7252	0.5682	0.403
$L^{\rm s}$	0.708	0.4628	0.2614	0.1	-0.0253
U	0.7378	0.5101	0.3164	0.1556	0.0256
W	0.7381	0.5105	0.3169	0.1561	0.026
Y	0.7186	0.4796	0.2809	0.1198	-0.0072
Z	0.7133	0.4711	0.2711	0.1098	-0.0163

14 Impulse response functions

14.1 Shock ϵ^{Z}

Figure 1: Impulse response function for $\epsilon^{\mathbf{Z}}$ shock

Figure 2: Impulse response function for $\epsilon^{\mathbf{Z}}$ shock

15 Random path simulation

Figure 3: Random path simulation for 100 periods

Figure 4: Random path simulation for 100 periods