

Latent Variable Models of Lexical Semantics

Alan Ritter

aritter@cs.washington.edu

Agenda

- Topic Modeling Tutorial
- Quick Overview of Lexical Semantics
- Examples & Practical Tips
 - Selectional Preferences
 - Argument types for relations extracted from the web
 - Event Type Induction
 - Induce types for events extracted from social media
 - Weakly Supervised Named Entity Classification
 - Classify named entities extracted from social media into types such as PERSON, LOCATION, PRODUCT, etc...

TOPIC MODELING

Useful References:

Parameter estimation for text analysis

- Gregor Heinrich
- http://www.arbylon.net/publications/text-est.pdf

Gibbs Sampling for the Uninitiated

- Philip Resnik, Eric Hardisty
- http://www.cs.umd.edu/~hardisty/papers/gsfu.pdf

Bayesian Inference with Tears

- Kevin Knight
- http://www.isi.edu/natural-language/people/bayeswith-tears.pdf

Topic Modeling: Motivation

- Uncover Latent Structure
- Lower Dimensional Representation

- Probably a good fit if you have:
 - Large amount of grouped data
 - Unlabeled
 - Not even sure what the labels should be?

Topic Modeling: Motivation

"Disease" "Computers" disease computer models host information bacteria diseases data resistance computers bacterial system network new strains systems model control infectious parallel malaria methods networks parasite parasites software united new tuberculosis simulations

Figure 2: **Real inference with LDA.** We fit a 100-topic LDA model to 17,000 articles from the journal *Science*. At left is the inferred topic proportions for the example article in Figure 1. At right are the top 15 most frequent words from the most frequent topics found in

Terminology

- I'm going to use the terms:
 - Documents / Words / Topics
- Really these models apply to any kind of grouped data:
 - Images / Pixels / Objects
 - Users / Friends / Groups
 - Music / Notes / Genres
 - Archeological Sites / Artifacts / Building Type

Estimating Parameters from Text

Consider document as a bag of random words:

$$P(D|\theta) = \prod_{j} P(w_{j}|\theta) = \prod_{j} \theta_{w_{j}} = \prod_{w} \theta_{w}^{N_{w}}$$

• How to estimate θ ?

$$P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)}$$

Posterior =
$$\frac{\text{Likelihood} \times \text{Prior}}{\text{Evidence}}$$

Dirichlet Distribution (Dir $(\theta | \alpha)$):

$$P(\theta|\alpha) = \frac{1}{Z(\theta)} \times \prod \theta_j^{\alpha_j - 1}$$

$$(\theta|D,\alpha) = \frac{\prod_{w} \theta_{w}^{n_{w}} P(\theta|\alpha)}{P(D)}$$
$$= Dir(\theta|n+\alpha)$$

• Dirichlet Distribution (Dir($\theta | \alpha$)):

$$P(\theta|\alpha) = \frac{1}{Z(\theta)} \times \prod \theta_j^{\alpha_j - 1}$$

The Dirichlet distribution over three variables μ_1, μ_2, μ_3 is confined to a simplex (a bounded linear manifold) of the form shown, as a consequence of the constraints $0 \le \mu_k \le 1$ and $\sum_k \mu_k = 1$.

• Dirichlet Distribution (Dir($\theta | \alpha$)):

$$P(\theta | \alpha) = \frac{\Gamma(\sum \theta_j)}{\prod \Gamma(\theta_j)} \prod \theta_j^{\alpha_j - 1}$$

Examples:

Dir(6,2,2)

Dir(3,7,5)

Dir(6,2,6)

Dir(2,3,4)

• Sparse Prior: $0 < \alpha < 1$ $\log(Dir(\theta | \alpha, \alpha, \alpha))$

Generative Latent Variable Models

- Make up a story about how the data were generated
 - Involves Latent Variables which we never see
- Apply Bayesian inference to invert generative model
- Generative Story:

$$\theta \sim \text{Dir}(\theta | \alpha)$$

 $w \sim \text{Mult}(w | \theta)$

Graphical Models: Plate Notation

Naïve Bayes Mixture Model

- Data is a set of "documents"
- Hidden Variables are categories
- Inference typically performed using EM
 - Maximize lower bound on likelihood

Latent Dirichlet Allocation

- Admixture Model
- Grouped Data
 - Each group is a mixture of underlying causes

Latent Dirichlet Allocation

Topics

0.04 gene dna 0.02 0.01 genetic

life 0.02 0.01 evolve organism 0.01

brain 0.04 neuron 0.02 nerve 0.01

0.02 data 0.02 number computer 0.01

Documents

Topic proportions and assignments

Seeking Life's Bare (Genetic) Necessities

COLD SPRING HARBOR, NEW YORK— How many genes does an organism need to survive? Last week at the genome meeting here,* two genome researchers with radically different approaches presented complementary views of the basic genes needed for life. One research team, using computer analyses to compare known genomes, concluded that today's organisms can be sustained with just 250 genes, and that the earliest life forms

required a mere 128 genes. The other researcher mapped genes in a simple parasite and estimated that for this organism, 800 genes are plenty to do the job-but that anything short of 100 wouldn't be enough.

Although the numbers don't match precisely, those predictions

May 8 to 12.

* Genome Mapping and Sequencing, Cold Spring Harbor, New York,

"are not all that far apart," especially in comparison to the 75,000 genes in the human genome, notes Siv Andersson o University in Swed ... -ho arrived at 800 number. But coming up with a co sus answer may be more than just a numbers game, particularly as more and more genomes are completely mapped an sequenced. "It may be a way of organiz any newly sequenced genome," explains

Arcady Mushegian, a computational molecular biologist at the National Center for Biotechnology Information (NCBI) in Bethesda, Maryland, Comparing

Stripping down. Computer analysis yields an estimate of the minimum modern and ancient genomes.

SCIENCE • VOL. 272 • 24 MAY 1996

Inference

- Exact Inference is Generally Intractable
- Instead, use approximate inference:
 - Collapsed Gibbs Sampling
 - Mean-Field Variational Inference
 - Expectation Propagation

Markov Chain Mote Carlo (MCMC)

- 1. Hidden Variables assignments are state space
- 2. Design a transition function
- 3. Start with arbitrary assignment to hidden variables
- 4. Randomly transition around the state space
- 5. After sufficient "burn in" samples come from the desired posterior

Gibbs Sampling

- Start with random assignment to hidden variables
- Iteratively sample each hidden variable
 - Forget the value of z_i
 - Condition on assignment to all other z's
 - Analytically integrate out parameters
- Want to sample from:

$$z_j \sim P(z_j | Z_{-j}, W)$$

Sampling $z_j \sim P(z_i | Z_{-i}, W)$

•
$$P(z_j|Z_{-j},W) = \frac{P(z_j,Z_{-j},W)}{P(Z_{-j},W)}$$

- Note: parameters integrated out
 - A bunch of gamma functions cancel out...

$$P(z_{j} = z | Z_{-j}, W) = \frac{n_{w_{-j}}^{z} + \beta_{w_{j}}}{n^{z} + \beta} \times \frac{n_{z_{-j}}^{d} + \alpha_{z_{j}}}{n^{d} + \alpha}$$

Collapsed Gibbs Sampling for LDA

- Maintain counts:
 - $-n_d^z$ = Document topic counts
 - $-n_z^w = \text{Topic word counts}$
- For each word position j in document i:
 - Forget z_i :
 - Decrement $n_{d_i}^{z_j}$
 - Decrement $n_{z_j}^{\vec{w_j}}$
 - Sample new z_i :
 - $z_j \sim P(z_j | Z_{-j}, W)$
 - Increment counts for new z_i :
 - Increment $n_{d_i}^{z_j}$
 - Increment $n_{z_j}^{w_j}$

Collapsed Gibbs Sampling for LDA

- Maintain counts:
 - $-n_d^z$ = Document topic counts
 - $-n_z^w = \text{Topic word counts}$
- For each word position j in document i: __
 - Forget z_i :
 - Decrement $n_{d_i}^{z_j}$
 - Decrement $n_{z_j}^{w_j}$
 - Sample new z_i :
 - $z_j \sim P(z_j | Z_{-j}, W)$
 - Increment counts for new z_i :
 - Increment $n_{d_i}^{z_j}$
 - Increment $n_{z_i}^{w_j}$

One Gibbs Iteration

Gibbs Sampling in Practice

- Start out with random assignment to z_j 's
- Run gibbs sampling for some number of "burn in iterations"
 - No way to really tell when the markov chain has converged to the posterior distribution
 - 1000 iterations often works well in practice...
- Use final assignment to z_j 's to estimate θ_i 's and β_k 's

Gibbs Sampling: Scalability

- For each word, have to enumerate distribution over possible topics before sampling:
 - $-O(w \times t)$
- Parallelization (Newmann et. al. 2009)
 - Simple approach to parallelization
 - Approximation (to approximate inference technique)
 - Works great in practice

LEXICAL SEMANTICS

Semantics

- Semantic Parsing:
 - Translate sentences into meaning representations

Semantics

- Semantic Parsing:
 - Translate sentences into meaning representations

What	states	border	Texas	
$\frac{(S/(S\backslash NP))/N}{\lambda f. \lambda g. \lambda x. f(x) \wedge g(x)}$	\overline{N}	$\frac{(S\backslash NP)/NP}{\lambda x. \lambda y. borders(y, x)}$	\overline{NP}	
$\lambda f.\lambda g.\lambda x.f(x) \wedge g(x)$	$\lambda x.state(x)$	$\lambda x. \lambda y. borders(y, x)$	texas	
$\frac{S/(S\backslash NP)}{\lambda g.\lambda x.state(x) \land g(x)}$		$\overline{(S\backslash NP)}$	>	
$\lambda g.\lambda x.state(x) \land g(x)$		$(S \backslash NP) \ \lambda y.borders(y, texas)$		
S				

 $\lambda x.state(x) \wedge borders(x, texas)$

Semantics

- Semantic Parsing:
 - Translate sentences into meaning representations

What	states	border	Texas		
$\frac{(S/(S\backslash NP))/N}{\lambda f.\lambda g.\lambda x. f(x) \wedge g(x)}$	\overline{N}	$\frac{(S\backslash NP)/NP}{\lambda x. \lambda y. borders(y, x)}$	\overline{NP}		
$\frac{\lambda f. \lambda g. \lambda x. f(x) \wedge g(x)}{}$	$\lambda x.state(x)$	$\lambda x.\lambda y.borders(y,x)$	texas		
$\frac{S/(S\backslash NP)}{\lambda g.\lambda x.state(x) \land g(x)}$		$(S \backslash NP)$			
$\lambda g.\lambda x.state(x) \wedge g(x)$		$\lambda y.borders(y, texas)$			
S $\lambda x state(x) \wedge borders(x) texas(x) texas(x)$					
$\lambda x state(x) \wedge borders(x, texas)$					

S: (n) state, province (the territory occupied by one of the constituent administrative districts of a nation) "his state is in the deep south"

<u>S:</u> (n) **state** (the way something is with respect to its main attributes) "the current state of knowledge"; "his state of health"; "in a weak financial state"

<u>S: (n)</u> **state** (the group of people comprising the government of a sovereign state) "the state has lowered its income tax"

S: (n) state, nation, country, land, commonwealth, res publica, body politic (a politically organized body of people under a single government) "the state has elected a new president"; "African nations"; "students who had come to the nation's capitol"; "the country's largest manufacturer"; "an industrialized land"
S: (n) state of matter, state ((chemistry) the three traditional states of matter are solids (fixed shape and volume) and liquids (fixed volume and shaped by the container) and gases (filling the container)) "the solid state of water is called ice"
S: (n) state (a state of depression or agitation) "he was in such a state you just couldn't reason with him"

 \underline{S} : (n) country, **state**, land (the territory occupied by a nation) "he returned to the \underline{S} land of his birth"; "he visited several European countries"

S: (n) Department of State, United States Department of State, State Department, State, DoS (the federal department in the United States that sets and maintains foreign policies) "the Department of State was created in 1789"

$$\lambda g.\lambda x.state(x) \wedge g(x)$$

 $\lambda y.borders(y, texas)$

$$\lambda x state(x) \land borders(x, texas)$$

ons

Texas

NP texas

texas

Why Latent Variable Models?

- Automatically Induce dictionaries
 - Similar to topics in topic models
 - Matches the domain
- Little Supervision/Annotation Required
 - Annotate/Train/Test paradigm doesn't scale well to problems is Lexical Semantics
- Generative Models Provide Principled Answers:
 - How to learn dictionaries from corpora?
 - How to disambiguate words in context?
 - Answer a wide variety of task-specific queries

Latent Variables in Lexical Semantics: Selected Work

Word Sense Induction

```
(Brody and Lapata 2009)
(Reisinger and Mooney 2011)
```

Selectional Preferences

```
(Ritter, Mausam, Etzioni 2010)
(O Seaghda 2010)
```

Named Entity Classification

```
(Elsner, Charniak, Johnson 2009)
(Ritter, Clark, Mausam, Etzioni 2011)
```

Event Type Induction

(Ritter, Mausam, Etzioni, Clark 2012)

Selectional Preferences

- Encode admissible arguments for a predicate
 - − E.g. "eat X"

Plausible	Implausible
chicken	Windows XP
eggs	physics
cookies	the document
•••	

Selectional Preferences

- Encode admissible arguments for a predicate
 - E.g. "eat X"

Plausible	Implausible
FOOD	Windows XP
	physics
	the document

Motivating Examples

• "...the **Lions defeated** the Giants...."

Motivating Examples

• "...the **Lions defeated** the Giants...."

Motivating Examples

"...the Lions defeated the Giants...."

- X defeated Y => X played Y
 - Lions defeated the Giants
 - Britian defeated Nazi Germany

Topic Modeling For Selectional Preferences

```
born in (Sergey Brin, Moscow)
headquartered in (Microsoft, Redmond)
born in (Bill Gates, Seattle)
born in (Einstein, March)
                          1998)
founded in (Google,
headquartered in (Google,
                              Mountain View)
born in (Sergey Brin, 1973)
founded in (Microsoft, Albuquerque)
born in (Einstein, Ulm)
founded in (Microsoft,
                          1973)
```

Topic Modeling For Selectional Preferences

```
headquartered in (Google,
                               Mountain View)
headquartered in (Microsoft, Redmond)
born in (Sergey Brin, 1973)
born in (Einstein, March)
born in (Einstein, Ulm)
born in (Sergey Brin, Moscow)
born in (Bill Gates, Seattle)
founded in (Microsoft,
                          Albuquerque)
founded in (Google,
                          1998)
founded in (Microsoft,
                          1973)
```

Verbs as "Documents"

```
headquartered_in(Google,
headquartered_in(Microsoft,
```

Mountain View) Redmond)

```
born_in (Sergey Brin 1973)
born_in (Einstein, March)
born_in (Einstein, Ulm)
born_in (Sergey Brin Moscow)
born_in (Bill Gates, Seattle)
```

```
founded_in Microsoft,
founded_in Google,
founded_in Microsoft,
```

Albuquerque) 1998) 1973)

Args can have multiple Types

```
headquartered_in (Google, headquartered_in (Microsoft,
```

Mountain View) Redmond)

```
born_in (Sergey Brin 1973)
born_in (Einstein, March)
born_in (Einstein, Ulm)
born_in (Sergey Brin Moscow)
born_in (Bill Gates, Seattle)
```

```
founded_in Microsoft,
founded_in Google,
founded_in Microsoft,
```

```
Albuquerque)
1998)
1973)
```

LDA Generative "Story"

LDA Generative "Story" α R θ zaFor each type, pick a random distribution over words η_2

(α) LDA Generative "Story"

 η_2

For each type, pick a random distribution over words Type 1: Location
P(New York|T1)= 0.02
P(Moscow|T1)= 0.001

Type 2: **Date**P(June | T2)=0.05
P(1988 | T2)=0.002

LDA Generative "Story"

For each relation, randomly pick a distribution over types

 α

 θ

z

a

 η_2

R

For each type, pick a random distribution over words Type 1: **Location** Type
P(New York|T1)= 0.02 P(J
P(Moscow|T1)= 0.001 P(J
...

Type 2: **Date**P(June|T2)=0.05
P(1988|T2)=0.002

LDA Generative "Story"

 η_2

 α

For each relation, randomly pick a distribution over types

born_in X
P(Location|born_in)= 0.5
P(Date|born_in)= 0.3
...

For each type, pick a random distribution over words

 α

 θ

z

a

 η_2

R

For each
extraction, first
pick a type

born in X

P(Location|born_in)= 0.5

P(Date|born in)= 0.3

...

For each type, pick a random distribution over words

Type 1: Location

P(New York|T1) = 0.02

P(Moscow|T1) = 0.001

•••

Type 2: Date

P(June | T2)=0.05

P(1988|T2)=0.002

 α

 θ

z

a

 η_2

R

For each extraction, first pick a type

born_in X
P(Location|born_in)= 0.5
P(Date|born in)= 0.3

born_in Location

For each type, pick a random distribution over words

z

a

 η_2

R

LDA Generative "Story"

For each relation, randomly pick a distribution over types

For each extraction, first pick a type

Then pick an argument based on type

born_in X

born in Location

For each type, pick a random distribution over words Type 1: Location Type 1: P(New York|T1) = 0.02P(Moscow|T1) = 0.001

Type 2: **Date**P(June | T2)=0.05
P(1988 | T2)=0.002

z

a

 η_2

R

LDA Generative "Story"

For each relation, randomly pick a distribution over types

For each extraction, first pick a type

Then pick an argument based on type

For each type, pick a random distribution over words born in X

born in Location

born in New York

Type 1: Location

$$P(New York|T1) = 0.02$$

$$P(Moscow|T1) = 0.001$$

• • •

Type 2: Date

P(June | T2)=0.05

P(1988|T2)=0.002

z

a

 η_2

R

LDA Generative "Story"

For each relation, randomly pick a distribution over types

For each extraction, first pick a type

Then pick an argument based on type

For each type, pick a random distribution over words born in X

• • •

born_in Location

born in Date

born in New York

Type 1: Location

. . . .

Type 2: Date

P(June | T2)=0.05

P(1988 | T2)=0.002

z

a

 η_2

R

LDA Generative "Story"

For each relation, randomly pick a distribution over types

For each extraction, first pick a type

Then pick an argument based on type

For each type, pick a random distribution over words

born in X

•••

born_in Location

born_in Date

born_in New York born_in 1988

Type 1: Location

P(New York|T1) = 0.02P(Moscow|T1) = 0.001

...

Type 2: **Date**P(June | T2)=0.05
P(1988 | T2)=0.002

...

α |R| θ za η_2

LinkLDA

[Erosheva et. al. 2004]

[Erosheva et. al. 2004]

Both arguments share a distribution over topics

[Erosheva et. al. 2004]

Both arguments share a distribution over topics

Likely that z1 = z2 (Both drawn from same distribution)

Example inferred topics

Topic t	Arg1	Relations which assign	Arg2
		highest probability to t	
18	The residue - The mixture - The reaction	was treated with, is	EtOAc - CH2Cl2 - H2O - CH.sub.2Cl.sub.2
	mixture - The solution - the mixture - the re-	treated with, was	- H.sub.2O - water - MeOH - NaHCO3 -
	action mixture - the residue - The reaction -	poured into, was	Et2O - NHCl - CHCl.sub.3 - NHCl - drop-
	the solution - The filtrate - the reaction - The	extracted with, was	wise - CH2Cl.sub.2 - Celite - Et.sub.2O -
	product - The crude product - The pellet -	purified by, was di-	Cl.sub.2 - NaOH - AcOEt - CH2C12 - the
	The organic layer - Thereto - This solution	luted with, was filtered	mixture - saturated NaHCO3 - SiO2 - H2O
	- The resulting solution - Next - The organic	through, is disolved in,	- N hydrochloric acid - NHCl - preparative
	phase - The resulting mixture - C.)	is washed with	HPLC - to0 C
151	the Court - The Court - the Supreme Court	will hear, ruled in, de-	the case - the appeal - arguments - a case -
	- The Supreme Court - this Court - Court	cides, upholds, struck	evidence - this case - the decision - the law
	- The US Supreme Court - the court - This	down, overturned,	- testimony - the State - an interview - an
	Court - the US Supreme Court - The court	sided with, affirms	appeal - cases - the Court - that decision -
	- Supreme Court - Judge - the Court of Ap-		Congress - a decision - the complaint - oral
	peals - A federal judge		arguments - a law - the statute
211	President Bush - Bush - The President -	hailed, vetoed, pro-	the bill - a bill - the decision - the war - the
	Clinton - the President - President Clinton	moted, will deliver,	idea - the plan - the move - the legislation -
	- President George W. Bush - Mr. Bush -	favors, denounced,	legislation - the measure - the proposal - the
	The Governor - the Governor - Romney -	defended	deal - this bill - a measure - the program -
	McCain - The White House - President -		the law - the resolution - efforts - the agree-
	Schwarzenegger - Obama		ment - gay marriage - the report - abortion
224	Google - Software - the CPU - Clicking -	will display, to store, to	data - files - the data - the file - the URL -
	Excel - the user - Firefox - System - The	load, processes, cannot	information - the files - images - a URL - the
	CPU - Internet Explorer - the ability - Pro-	find, invokes, to search	information - the IP address - the user - text
	gram - users - Option - SQL Server - Code	for, to delete	- the code - a file - the page - IP addresses -
	- the OS - the BIOS		PDF files - messages - pages - an IP address

Event Type Induction

Entity	Event Phrase	Date
Steve Jobs	died	10/6/11
iPhone	announcement	10/4/11
GOP	debate	9/7/11

Event Type Induction

Entity	Event Phrase	Date	Type
Steve Jobs	died	10/6/11	Death
iPhone	announcement	10/4/11	Product Launch
GOP	debate	9/7/11	Political Event

Classifying Events: Challenges

- Many Different Types
- Not sure what is the right set of types
- Set of types might change
 - Might start talking about different things
 - Might want to focus on different groups of users

is modeled as a mixture of types

Each Event Phrase is modeled as a mixture of types

P(SPORTS | cheered) = 0.6

P(POLITICS | cheered) = 0.4

is modeled as a mixture of types

P(SPORTS | cheered) = 0.6

P(POLITICS | cheered) = 0.4

Each **Event Type** is Associated with a Distribution over Entities and Dates

Topic t	Entity	Event Phrases which assign highest proba-	Date
		bility to t	
60	obama, gop, anna, president obama, in- dia, reuters, libya, congress, perry, cnn, is- rael, anna hazare, china, pakistan, delhi, washington, republican, senate, new delhi, rick perry, white house, america tripoli, #bahrain, romney, parliament, syria, ians, egypt, #syria, cairo, ron paul, gaddafi, #libya, ontario, iran, president barack obama, florida, united states	accused - address - addressing - advised - approved - arrested - attack - attacked - backs - bill - bombing - boost - briefing - campaign - charged - debate - discuss - elected - election - endorsed - fast - fasting - fired - meets - movement - plan - plea - poll - proposed - protests - reform - rejected - scam - seeks - sends - speaks - speech - talks - urged - violence - visits - vote - voted - voting - warned	20110922, 20110907, 20110912, 20110919, 20110913, 20110926, 20110927, 20110920, 20110928, 20110923, 20111004, 20111006, 20110908, 20110921, 20111003, 20110915, 20111005, 20110816, 20110906, 20110929, 20110826, 20110914, 20110825, 20110824, 20110817, 20111011, 20111007, 20110930, 20111017, 20110909, 20110827, 20110901
4	itunes, ipod, cole, drake, carter iv, pan- dora, wayne, cd, christmas, uk, ep, carter, unbroken, cole world, amazon, nirvana, nevermind, mv, j cole, mixtape, aus- tralia, blink, rihanna, walmart, midnight, lil wayne, japan, madden, blue slide park, kung fu panda 2, prince	album - bumping - cop - copy - download - downloaded - downloading - droppin - dropping - drops - leaked - preordered - produced - release - released - releases - re- leasing - single	20110927, 20110920, 20111004, 20110829, 20110926, 20110913, 20110919, 20110923, 20110921, 20110928, 20111003, 20110816, 20110916, 20111007, 20110922, 20110914, 20110912, 20111005, 20111024, 20110906, 20110929, 20110915, 20110924, 20110823
50	england, eagles, arsenal, nfl, chelsea, espn, yankees, ireland, wales, red sox, packers, stoke, michigan, dallas, lsu, saints, jets, united, good luck, detroit, spurs, barcelona, liverpool, rangers, colts, auburn, falcons, scotland, miami, cow- boys, lions, bolton, tigers, ravens, al- abama, rugby, mlb, the lions, phillies, bears, romo, the game, florida, redskins, manchester united, france, college, texas, tom brady, clemson, ortiz, torres	#football - action - assist - baseball - beat - beaten - beating - beats - betting - bounce back - career - cheer - cheering - choke - clash - clinch - clinched - coaching - col- lapsed - combined - comeback - completed - conceded - crush - crushing - debut - defeat - defeated - defending - destroy - destroyed - dissapointing - dominate - dominated - dominating - draft - draw - drew - elimi- nated - facing - football - game - gameday - games - goals - great result - great win - hopping - improve - injured - injury - in- ning - kick	20110917, 20110924, 20110918, 20110925, 20110910, 20110911, 20111001, 20111002, 20110923, 20110916, 20111007, 20110926, 20111009, 20111008, 20110912, 20110903, 20110919, 20110927, 20110902, 20110908, 20110828, 20110920, 20110901, 20110928, 20110909, 20110930, 20110827, 20110921, 20110906, 20110913, 20111003, 20110922, 20110915, 20110826, 20110914, 20111006, 20111004, 20110821, 20110825, 20110904
79	jersey shore, glee, netflix, uk, america, mtv, abc, fox, nbc, true blood, dexter, big brother, hbo, cbs, vmas, charlie sheen, espn, vma, vampire diaries, bbc, x factor, harry potter, nfl, twilight, bb, grey, dvr, sons of anarchy, sky, big bang, terra nova, towie	air - airing - airs - breaking - cast - caught up - documentary - episode - new season - premier - premiere - premiered - premieres - premiering - premiers - returns - season - seasons - series - shore - shown - starts - stream - tuning - watch - watched - watch- ing	20110919, 20110922, 20110925, 20110920, 20110923, 20110926, 20110924, 20110921, 20110915, 20110828, 20111002, 20110912, 20110917, 20110913, 20110918, 20110927, 20111004, 20110914, 20110928, 20111003, 20110829, 20111005

Experiment: Categorizing Events

- Randomly Sampled 100 (entity, date) pairs
- Annotated with event types
 - Using types discovered by the topic model
- Baseline:
 - Supervised classification using 10-fold cross validation
 - Treat event phrases like bag of words

Event Classification Performance

Named Entity Classification in Twitter: Challenges

- Plethora of distinctive, infrequent types
 - Bands, Movies, Products, etc...
 - Very Little training data for these
 - Can't simply rely on supervised classification
- Very terse (often contain insufficient context)

Named Entity Classification in Twitter: Challenges

- Plethora of distinctive, infrequent types
 - Bands, Movies, Products, etc...
 - Very Little training data for these
 - Can't simply rely on supervised classification
- Very terse (often contain insufficient context)

KKTNY in 45min.....

Weakly Supervised NE Classification

(Collins and Singer 99) (Etzioni et. al. 05) (Kozareva 06)

- Freebase lists provide a source of supervision
- But entities often appear in many different lists, for example "China" could be:
 - A country
 - A band
 - A person (member of the band "metal boys")
 - A film (released in 1943)

Weakly Supervised NE Classification

(Collins and Singer 99) (Etzioni et. al. 05) (Kozareva 06)

- Freebase lists provide a source of supervision
- But entities often appear in many different lists, for example "China" could be:
 - A country
 - A band
 - A person (member of
 - A film (release

We need Some way to disambiguate

Distant Supervision With Topic Models

- Treat each entity as a "document"
 - Words in document are those which co-occur with entity
- LabeledLDA (Ramage et. al. 2009)
 - Constrained Topic Model
 - Each entity is associated with a distribution over topics
 - Constrained based on FB dictionaries
 - Each topic is associated with a type (in Freebase)

za

Generative Story

Generative Story α R θ zaFor each type, pick a random distribution over words η_2

 η_2

Generative Story

For each type, pick a random distribution over words

 η_2

Generative Story

For each entity,
pick a distribution
over types
(constrained
by Freebase)

For each type, pick a random distribution over words

 η_2

Generative Story

For each entity, pick a distribution over types (constrained by Freebase)

Seattle

P(TEAM|Seattle)= 0.6 P(LOCATION|Seattle)= 0.4

For each type, pick a random distribution over words

Generative Story α For each entity,

pick a distribution over types (constrained by Freebase)

R

 θ

z

a

 η_2

For each position, first pick a type

Seattle

P(TEAM | Seattle)= 0.6 P(LOCATION|Seattle)= 0.4

For each type, pick a random distribution over words

Type 1: **TEAM** Type 2: **LOCATION** P(victory | T1)= 0.02 P(visiting | T2) = 0.05 P(airport | T2)=0.02 P(played | T1)= 0.01

a

 η_2

Generative Story

For each entity,
pick a distribution
over types
(constrained
by Freebase)

For each position, first pick a type

Seattle

P(TEAM|Seattle)= 0.6 P(LOCATION|Seattle)= 0.4

Is a **TEAM**

For each type, pick a random distribution over words

 α

 θ

z

a

 η_2

R

For each position, first pick a type

Then pick an word based on type

Seattle

P(TEAM|Seattle)= 0.6 P(LOCATION|Seattle)= 0.4

Is a TEAM

For each type, pick a random distribution over words

Generative Story

For each entity,
pick a distribution
over types
(constrained
by Freebase)

 α

 θ

z

a

 η_2

R

For each position, first pick a type

Then pick an word based on type

For each type, pick a random distribution over words

Seattle

P(TEAM|Seattle)= 0.6 P(LOCATION|Seattle)= 0.4

Is a TEAM

victory

Generative Story

For each entity,
pick a distribution
over types
(constrained
by Freebase)

 α

 θ

z

a

 η_2

R

For each position, first pick a type

Then pick an word based on type

For each type, pick a random distribution over words

Seattle

P(TEAM|Seattle)= 0.6 P(LOCATION|Seattle)= 0.4

Is a **TEAM**

Is a LOCATION

victory

Generative Story

For each entity,
pick a distribution
over types
(constrained
by Freebase)

 α

 θ

z

a

 η_2

R

For each position, first pick a type

Then pick an word based on type

For each type, pick a random distribution over words

Seattle

P(TEAM|Seattle)= 0.6 P(LOCATION|Seattle)= 0.4

Is a TEAM

Is a LOCATION

victory

Type 1: **TEAM**

P(victory | T1) = P(played | T1) =

...

airport

Type 2: **LOCATION**

P(visiting | T2) = 0.05

P(airport | T2)=0.02

...

0.02

0.01

Type Lists

Type	Top 20 Entities not found in Freebase dictionaries
PRODUCT	nintendo ds lite, apple ipod, generation black, ipod nano, ap-
	ple iphone, gb black, xperia, ipods, verizon media, mac app
	store, kde, hd video, nokia n8, ipads, iphone/ipod, galaxy tab,
	samsung galaxy, playstation portable, nintendo ds, vpn
TV-SHOW	pretty little, american skins, nof, order svu, greys, kktny, rhobh,
	parks & recreation, parks & rec, dawson 's creek, big fat gypsy
	weddings, big fat gypsy wedding, winter wipeout, jersey shores,
	idiot abroad, royle, jerseyshore, mr . sunshine, hawaii five-0,
	new jersey shore
FACILITY	voodoo lounge, grand ballroom, crash mansion, sullivan hall,
	memorial union, rogers arena, rockwood music hall, amway cen-
	ter, el mocambo, madison square, bridgestone arena, cat club,
	le poisson rouge, bryant park, mandalay bay, broadway bar, ritz
	carlton, mgm grand, olympia theatre, consol energy center

Type Lists

Type	Top 20 Entities not found in Freebase dictionaries
PRODUCT	nintendo ds lite, apple ipod, generation black, ipod nano, ap-
	ple iphone, gb black, xperia, ipods, verizon media, mac app
	store, kde, hd video, nokia n8, ipads, iphone/ipod, galaxy tab,
	samsung galaxy, playstation portable, nintendo do, vpn
TV-SHOW	pretty little, american skins, nof, order svu, greys, kktny, rhobh,
	parks & recreation, parks & rec, dawson 's creek, big fat gypsy
	weddings, big fat gypsy wedding, winter wipeout, jersey shores,
	idiot abroad, royle, jerseyshore, mr . sunshine, hawaii five-0,
	new jersey shore
FACILITY	voodoo lounge, grand ballroom, crash mansion, sullivan hall,
	memorial union, rogers arena, rockwood music hall, amway cen-
	ter, el mocambo, madison square, bridgestone arena, cat club,
	le poisson rouge, bryant park, mandalay bay, broadway bar, ritz
	carlton, mgm grand, olympia theatre, consol energy center

- KKTNY = Kourtney and Kim Take New York
- RHOBH = Real Housewives of Beverly Hills

Evaluation

- Manually Annotated the 2,400 tweets with the 10 entity types
 - Only used for testing purposes
 - No labeled examples for LLDA & Cotraining

Classification Results: 10 Types (Gold Segmentation)

Summary

- Latent Variable Models can be Useful If:
 - Your problem has many classes
 - You don't have good labeled data
 - Unlabeled data is plentiful
- Automatically induce useful structure
 - Generative models useful for many tasks
 - Principled way to infer latent structure using only a large sample of data