CONCEPTOS BÁSICOS. REPRESENTACIÓN DE LA INFORMACIÓN

ÍNDICE

•	<u>Ej</u>	<u>ercicios</u>	2
	0	Ejercicio 1	
	0	Ejercicio 2	2
	0	Ejercicio 3	2
	0	Ejercicio 4	2
	0	Ejercicio 5	2
	0	Ejercicio 6	
	0	Ejercicio 7	3
	0	Ejercicio 8	3
	0	Ejercicio 9	3
	0	Ejercicio 10	3
•	Re	eferencias	Δ

Ejercicios

1. Realizar detallando los pasos seguidos, las siguientes conversiones entre decimal y binario.

> 453

 $453 = 256 + 128 + 64 + 4 + 1 \rightarrow 11000101$

256	128	64	32	16	8	4	2	1
1	1	1	0	0	0	1	0	1

▶ 1225

 $1225 = 1024 + 128 + 64 + 8 + 1 \rightarrow 10011001001$

1024	512	256	128	64	32	16	8	4	2	1
1	0	0	1	1	0	0	1	0	0	1

> 11

 $11 = 8 + 2 + 1 \rightarrow 1011$

8	4	2	1
1	0	1	1

> 347

 $347 = 256+64+16+8+2+1 \rightarrow 101011011$

256	128	64	32	16	8	4	2	1
1	0	1	0	1	1	0	1	1

2. Realizar detallando los pasos seguidos, las siguientes conversiones de números binarios a decimales.

> 11001110

 $11001110 \rightarrow 128+64+8+4+2 = 206$

128	64	32	16	8	4	2	1	
1	1	0	0	1	1	1	0	

> 10101100

 $10101100 \rightarrow 128+32+8+4 = 172$

128	64	32	16	8	4	2	1
1	0	1	0	1	1	0	0

> 10100100

 $10100100 \rightarrow 128+32+4=$ **164**

128	64	32	16	8	4	2	1
1	0	1	0	0	1	0	0

> 00101111

 $00101111 \rightarrow 32+8+4+2+1 = 47$

•	128	64	32	16	8	4	2	1
(C	0	1	0	1	1	1	1

> 10101001

 $10101001 \rightarrow 128+32+8+1 = 169$

128	64	32	16	8	4	2	1	
1	0	1	0	1	0	0	1	

> 11100011

 $11100011 \rightarrow 128+64+32+2+1 = 227$

128	64	32	16	8	4	2	1	
1	1	1	0	0	0	1	1	

3. Convertir los siguientes números de base octal a base binaria, detallando los pasos seguidos.

> 544

544 → **101** 100 100 = **101100100**

4	2	1	4	2	1	4	2	1
1	0	1	1	0	0	1	0	0

> 623

 $623 \rightarrow 110\ 010\ 011 = 110010011$

4	2	1	4	2	1	4	2	1
1	1	0	0	1	0	0	1	1

> 123

 $123 \rightarrow 001 \ 010 \ 011 = 001010011$

4	2	1	4	2	1	4	2	1
0	0	1	0	1	0	0	1	1

≻ 660

 $660 \rightarrow 110 \ 110 \ 000 = 110110000$

4	2	1	4	2	1	4	2	1	Ì
1	1	0	1	1	0	0	0	0	ı

4. Convertir los siguientes números de base hexadecimal a base binaria, indicando los pasos seguidos.

> FFA2

 $FFA2 \rightarrow 15 \ 15 \ 10 \ 2 \rightarrow 1111 \ 1111 \ 1010 \ 0010 \rightarrow 1111111110100010$

	8	4	2	1
15	1	1	1	1
15	1	1	1	1
10	1	0	1	0
2	0	0	1	0

➤ E9C3

E9C3 \rightarrow 14 9 12 3 \rightarrow 1110 1001 1100 0011 \rightarrow 1110100111000011

	8	4	2	1
14	1	1	1	0
9	1	0	0	1
12	1	1	0	0
3	0	0	1	1

➤ AB14

AB14 \rightarrow 10 11 1 4 \rightarrow 1010 1011 0001 0100 \rightarrow 1010101100010100

		8	4	2	1
1	0	1	0	1	0
1	1	1	0	1	1
1	1	0	0	0	1
	1	0	1	0	0

> 01B6

 $01B6 \rightarrow 0 \ 1 \ 11 \ 6 \rightarrow 0000 \ 0001 \ 1011 \ 0110 \rightarrow \ 0000000110110110$

	8	4	2	1
0	0	0	0	0
1	0	0	0	1
11	1	0	1	1
6	0	1	1	0

- 5. Convertir los siguientes números de base hexadecimal a base decimal por medio del teorema general de numeración:
- > FADC

FADC
$$\rightarrow$$
 15 10 13 12 \rightarrow 15*16³ + 10*16² + 13*16¹ + 12*16⁰ \rightarrow 61440 + 2560 + 208 + 12 = **64220**

> 3412

$$3412 \rightarrow 3412 \rightarrow 3^{*}16^{3} + 4^{*}16^{2} + 1^{*}16^{1} + 2^{*}16^{0} \rightarrow 12288 + 1024 + 16 + 2 = 13330$$

➤ 11AF

$$11AB \rightarrow 1 \ 1 \ 15 \ 16 \rightarrow \ 1*16^3 + 1*16^2 + 15*16^1 + 16*16^0 \rightarrow 4096 + 256 + 240 + 15 = 4607$$

2189

$$2189 \rightarrow 2189 \rightarrow 2^{*}16^{3} + 1^{*}16^{2} + 8^{*}16^{1} + 9^{*}16^{0} \rightarrow 8192 + 256 + 128 + 9 = 8585$$

▶ 0000

 $0000 \rightarrow \textbf{0}$

- 6. Convertir los siguientes números hexadecimales a sistema octal, detallando los pasos seguidos.
- ➤ FE1E

 $FE1E_{16} \rightarrow 15 \ 14 \ 1 \ 14 \rightarrow 1111 \ 1110 \ 0001 \ 1110 \rightarrow 1111111000011110_2$

	8	4	2	1
15	1	1	1	1
14	1	1	1	0
1	0	0	0	1
14	1	1	1	0

1111111000011110₂ \rightarrow 001 111 111 000 011 110 \rightarrow 1 7 7 0 3 6 \rightarrow 177036₈

4	2	1	
0	0	1	1
1	1	1	7
1	1	1	7
0	0	0	0
0	1	1	3
1	1	0	6

> 3254

 $3254_{16} \rightarrow 3254 \rightarrow 0011001001010100 \rightarrow 0011001001010100_2$

	8	4	2	1
3	0	0	1	1
2	0	0	1	0
5	0	1	0	1
4	0	1	0	0

 $0011001001010100_2 \rightarrow 0 \ 011 \ 001 \ 001 \ 010 \ 100 \rightarrow 0 \ 3 \ 1 \ 1 \ 2 \ 4 \rightarrow 31124_8$

4	2	1	
0	0	0	0
0	1	1	3
0	0	1	1
0	0	1	1
0	1	0	2
1	0	0	4

➤ 12A5

 $12A5_{16} \rightarrow 12105 \rightarrow 000100101010101 \rightarrow 00010010101010101_2$

	8	4	2	1
1	0	0	0	1
2	0	0	1	0
10	1	0	1	0
5	0	1	0	1

 $0001001010100101_2 \rightarrow 000 \ 001 \ 001 \ 010 \ 100 \ 101 \rightarrow 0 \ 1 \ 1 \ 2 \ 4 \ 5 \rightarrow 11245_8$

4	2	1	
0	0	0	0
0	0	1	1
0	0	1	1
0	1	0	2
1	0	0	4
1	0	1	5

➤ AC34

 $AC34_{16} \rightarrow 10\ 12\ 3\ 4 \rightarrow 1010\ 1100\ 0011\ 0100 \rightarrow 1010110000110100_2$

	8	4	2	1
10	1	0	1	0
12	1	1	0	0
3	0	0	1	1
4	0	1	0	0

1010110000110100₂ \rightarrow **001** 010 110 000 110 100 \rightarrow 1 2 6 0 6 4 \rightarrow 126064₈

4	2	1	
0	0	1	1
0	1	0	2
1	1	0	6
0	0	0	0
1	1	0	6
1	0	0	4

➤ BDCE

12				
	8	4	2	1
11	1	0	1	1
13	1	1	0	1
12	1	1	0	0
14	1	1	1	0

1011110111001110₂ \rightarrow **001 011 110 111 001 110** \rightarrow **1 3 6 7 1 6** \rightarrow **136716**₈

4	2	1	
0	0	1	1
0	1	1	3
1	1	0	6
1	1	1	7
0	0	1	1
1	1	0	6

7. Realiza las siguientes sumas binarias.

> 11101 + 10100

11101 + 10100 = **110001**

1	1	1			
	1	1	1	0	1
	1	0	1	0	0
1	1	0	0	0	1

> 11101010101 + 111011101

11101010101 + 111011101 = **100100110010**

1	4	4	4	4		4	4	4		4	
	1	1	1	0	1	0	1	0	1	0	1
			1	1	1	0	1	1	1	0	1
1	0	0	1	0	0	1	1	0	0	1	0

> 1110101110 + 1010000011

1110101110 + 1010000011 = **11000110001**

1	1	0	0	0	1	1	0	0	0	1
	1	0	1	0	0	0	0	0	1	1
	1	1	1	0	1	0	1	1	1	0
4	4	4				4	4	4		

8. Resuelve las siguientes restas binarias

➤ 101010110 - 100101001

101010110 - 10010100 = 1000010

4								
1	0	1	0	1	0	1	1	0
	1	0	0	1	0	1	0	0
0	1	1	0	0	0	0	1	0

➤ 110101101 - 110010101

110101101 - 110010101 = 11000

			1					
1	1	0	1	0	1	1	0	1
1	1	0	0	1	0	1	0	1
0	0	0	0	1	1	0	0	0

➤ 10101010 - 01101010

10101010 - 01101010 = 1000000

	0	1	0	0	0	0	0	0
	0	1	1	0	1	0	1	0
	1	0	1	0	1	0	1	0

9. Resuelve las siguientes multiplicaciones binarias.

101101 * 101

101101 * 101 = **11100001**

1	1	1	0	0	0	0	1
1	0	1	1	0	1		
	0	0	0	0	0	0	
		1	0	1	1	0	1
					1	0	1
		1	0	1	1	0	1

1110101 * 1101

1110101 * 1101 = **10111110001**

				•••						
				1	1	1	0	1	0	1
							1	1	0	1
				1	1	1	0	1	0	1
			0	0	0	0	0	0	0	
		1	1	1	0	1	0	1		
	1	1	1	0	1	0	1			
1	0	1	1	1	1	1	0	0	0	1

10. Explica por qué es necesaria la existencia del código ASCII.

Es necesario para representar caracteres en el ordenador. Este código fue el primer estándar a nivel internacional e impulso el desarrollo de la computación. Actualmente hay códigos más completos como ISO/IES 8859-1.

Referencias

x Apuntes