Lezione 22 Geometria I

Federico De Sisti 2024-04-29

1 Boh non ero a lezione

 $W \subseteq V$ sottospazio $g \in Bi(V)$ $g|_W$ è non degenere $\Leftrightarrow V = W \oplus W^{\perp}$

Cosa dimostreremo oggi

Sia V spazio vettoriale di dimensione finita e $g \in Bi_s(V)$ (forma bilineare simmetrica

 \mathbb{K} qualsiasi, esiste una base g-ortogonale

 \mathbb{K} algebricamente chiuso ($\mathbb{K} \cong \mathbb{C}$), esiste una base di V rispetto alla quale la

matrice di $g
in \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$ r = rg(g)

 $\mathbb{K} = \mathbb{R}$ esiste una base di V rispetto alla quale la matrice di $g \in \begin{pmatrix} I_r & 0 & 0 \\ 0 & -I_s & 0 \\ 0 & 0 & 0 \end{pmatrix}$ r+

s = rg(g) n - r - s indice di nullità, ker della forma V spazio vettoriale $(\dim(V) < +\infty), g \in Bi_s(V)$

Definizione 1

la forma quadrativi associata a V è l'applicazione $q:V\to\mathbb{K}$ definita da q(v) = g(v, v) e questa è una funzione omogenea di grado 2

Esempio

 $V \cong \mathbb{K}^n$, g = prodotto scalare standard

$$g\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \sum_{i=1}^n x_i^2$$

Osservazione

Valgono:

1)
$$q(kv) = k^2 q(v)$$

2)
$$2g(v, w) = q(v + w) - q(v) - q(w)$$

dove g(v, w) è la forma polare di q

Dimostrazione

1.
$$q(kv) = g(kv, kv) = k^2 g(v, v) = k^2 q(v)$$

$$2.\frac{q(v+w) - q(v) - q(w)}{2} = g(v+w, v+w) - g(v, v) - g(w, w) = g(v, v) + 2g(w, v) + g(w, w) - g(v, v) - g(w, w) = \frac{2g(w, v)}{2}$$

Osservazione

V =
$$\mathbb{R}^4$$
 e sia $q\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = x_1^2 + 2x_2^2 - x_4^2 + x_1x_4 + 6x_2x_3 - 2x_1x_2$

Voglio trovare la matrice della forma polare di q rispetto alla base canonica

$$\begin{pmatrix} 1 & -1 & 0 & 1/2 \\ -1 & 2 & 3 & 0 \\ 0 & 3 & 0 & 0 \\ 1/2 & 0 & 0 & -1 \end{pmatrix}$$

Sulla diagonale ci sono i coefficienti delle componenti al quadrato $(x_i)^2$ gli altri li ottieni dividendo per 2 ogni altro coefficiente

Teorema 1 ((Caratteristica di \mathbb{K}) \neq 2)

Dato V spazio vettoriale di dimensione $n \geq 1$ e g forma bilineare simmetrica su V, allora esiste una base g-ortogonale.

Dimostrazione

Per induzione su dim V = n. Se n = 1 non c'è nulla da dimostrare.

se g è la forma bilineare nulla $(g(v, w) = 0 \ \forall v, w \in V)$ ogni base è g-ortogonale. Altrimenti esistono, $v, w \in V$ con $g(v, w) \neq 0$.

Assumo che almeno uno tra v, w, v + w è non isotropo. Infatti se v, w sono isotropi

$$g(v + w, v + w) = g(v, v) + g(v, w) + g(w, w) = 2g(v, w) \neq 0.$$

quindi $\exists v_1 \in V \ t.c \ g(v_1,v_1) \neq 0$. Allora $g|_{\mathbb{K}v_1}$ è non degenere quindi V = $\mathbb{K}v_1 \oplus W \ con \ W = (\mathbb{K}v_1)^{\perp}$

$$\dim(W) = n - 1$$
, per induzione \exists una base $\{v_2, \ldots, v_n\}$ di W con $g(v_1, v_j) = 0$ se $2 \le j \le n, \{v_1, \ldots, v_n\}$ è una base g -ortogonale di V

Teorema 2

Supponiamo \mathbb{K} algebricamente chiuso. Sia V spazio vettoriale dimensione $n \ge 1$ e g forma bilineare simmetrica su V, esiste una base di V rispetto alla quale la matrice di g è $D = \begin{pmatrix} I_r & 0 \\ 0 & O_{n-r} \end{pmatrix}$ r = rg(D)

In modo equivalente, ogni matrice simmetrica a coefficienti in \mathbb{K} è congru $ente\ a\ D$

Dimostrazione

Per il teorema precedente, esiste una base $B = \{v'_1, \dots, v'_n\}$ di V rispetto alla

quale
$$(g)_{B'} = \begin{pmatrix} a_{11} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & a_{nn} \end{pmatrix}$$

Possiamo assumere che a_{11}, \dots, a_{rr} siano non nulli e che $a_{r+i,r+i} = 0$ con 1 < i < n - r.

Poiché \mathbb{K} è algebricamente chiuso, esistono $\alpha_1, \ldots, \alpha_r \in \mathbb{K}$ t.c. $\alpha_i^2 = a_{ii}, 1 \leq$

$$\begin{aligned} &i \leq r \ \textit{poniamo}. \\ &v_i = \begin{cases} \frac{1}{\alpha_i} v_i', \ 1 \leq i \leq r \\ v_i' \quad r+1 \leq i \leq n \end{cases} \end{aligned}$$

Osservazione

Se g è non degenere, esiste una base B rispetto alla quale $(g)_B = Id_n$

Caso Reale $\mathbb{K} = \mathbb{R}$

V spazio vettoriale reale (dim $V = n \ge 1$)

$$g \in Bi_s(V)$$

Sia B una base g-ortogonale. Definiamo

Definizione 2

Chiamiamo $i_{+}(g), i_{-}(g), i_{0}(g)$ indice di positività, negatività e nullità di g, e sono rispettivamente

$$i_{+}(g) = \{v \in B | g(v, v) > 0\}$$

$$i_{-}(g) = \{v \in B | g(v, v) < 0\}$$

$$i_0(g) = \{ v \in B | g(v, v) = 0 \}$$

Teorema 3 (Sylvester)

Gli indici non dipendono dalla scelta di B. Posto $p = i_+(g), q = i_-(g)$ allora 1 + q = n - r (r = rg(g))

ed esiste una base di V rispetto alla quale la matrice E di g è tale che

$$E = \begin{pmatrix} Id_p & \dots & 0 \\ \vdots & -Id_q & \vdots \\ 0 & \dots & O_{n-r} \end{pmatrix}.$$

equivalentemente, ogni matrice simmetrica reale A è congruente ad una matrice della forma E in cui r = rg(A) e p dipende solo da A

Dimostrazione

Dal teorema di esistenza di una base g-ortogonale deduciamo che esiste una base $\{f_1,\ldots,f_n\}$ di V rispetto alla quale, se $v=\sum_{i=1}^n y_i f_i$

$$q(v) = a_{11}y_1^2 + a_{22}y_2^2 + \ldots + a_{nn}y_n^2$$

 $q(v) = a_{11}y_1^2 + a_{22}y_2^2 + \ldots + a_{nn}y_n^2$ con esattamente n coefficienti diversi da 0, che possiamo supporre essere a_{11}, \ldots, a_{rr} Siano $a_{11}, \ldots, a_{pp} > 0, \quad a_{p+1,p+1}, \ldots, a_{rr} < 0$

$$\exists \alpha_1, \ldots, \alpha_r, \alpha_{r+1}, \ldots, \alpha_r \in \mathbb{R} \ t.c.$$

$$\alpha_i^2 = a_{ii}$$
 $1 \le i \le p$ $\alpha_i^2 = -a_{ii}$ $p+1 \le i \le r$

$$\exists \alpha_1, \dots, \alpha_p, \alpha_{p+1}, \dots, \alpha_r \in \mathbb{R} \ t.c.$$

$$\alpha_i^2 = a_{ii} \ 1 \le i \le p \quad \alpha_i^2 = -a_{ii} \ p+1 \le i \le r$$

$$Allora \ posto \ e_i = \begin{cases} \frac{1}{\alpha_i} f_i \ 1 \le i \le r \\ f_i \ r+1 \le i \le n \end{cases}$$

la matrice di g rispetto a $\{e_1, \dots, e_n\}$ è $\begin{pmatrix} Id_p & \dots & 0 \\ \vdots & -Id_q & \vdots \\ 0 & \dots & O_{n-r} \end{pmatrix}$

Resta da dimostrare che p dipende solo da g e non dalla base B usata per definir lo

Supponiamo che rispetto ad un'altra base g-ortogonale $\{b_1,\ldots,b_n\}$, risulti, per

$$v = \sum_{i=1}^{n} z_i b_i$$

$$q(v) = z_1^2 + \ldots + z_t^2 - z_{t+1}^2 - \ldots - z_r^2.$$

 $mostriamo\ che\ p=t$

se per assurdo $p \neq t$ assumo $t \leq p$ considero quindi i sottospazi $S = \langle e_1, \dots, e_n \rangle$ $T = \langle b_{t+1}, \dots, b_n \rangle$

Poiché $\dim S + \dim T = p+n-t > n$ perché t < p per Grassman vettoriale $S \cap T \neq \{0\}$ sia $0 \neq v \in S \cap T$

allora $r = x_1e_1 + \ldots + x_pe_p = z_{t+1}b_{t+1} + \ldots, z_nb_n$ contraddizione:

$$q(v) = \sum_{i=1}^{p} x_i^2 > 0.$$

$$q(v) = -\sum_{i=1}^{r} z_i^2 + z_{r+1}^2 + \dots + z_n^2 < 0.$$

Osservazioni

1. Esiste una definizione più intrinseca degli indici. Ricordiamo che $g \in Bil_S(V), V$ spazio vettoriale su /R è definita positiva se $g(v,v)>0, \ \forall v \in V \setminus \{0\}$ e che g è definita negativa se -g è definita positiva.

 $2. \mathrm{Il}$ teorema di Sylvester si estende, con la stessa dimostrazione alla forma hermitiana.

In particolare ogni matrice hermitiana è congruente a una matrice diagonale del del tipo

$$\begin{pmatrix} I_p & \dots & 0 \\ \vdots & I_{r-p} & \vdots \\ 0 & \dots & O_{n-r} \end{pmatrix}$$

Proposizione 1

Sia (V,g) uno spazio vettoriale su $\mathbb R$ dotati di una forma bilineare simmetrica g

Siano dati un prodotto scalare h e una forma bilineare simmetrica k Allora esiste una base di V che sia h-ortonormale e k-ortogonale

Dimostrazione

(V,h) è uno spazio euclideo, quindi per il teorema di rappresentazione delle forme bilineari, esiste un operatore $L \in End(V)$ tale che

$$h(L(v), w) = k(v, w).$$

Poiché k è simmetrica, L è simmetrica, per il teorema spettrale siste una base h-ortonormale costituita da autovettori per L.

Sia $\{v_1, \ldots, v_n\}$ tale base. Voglio dimostrare che $\{v_1, \ldots, v_n\}$ è k-ortogonale

$$k(v_r, v_s) = h(L(v_r), v_s) = h(\lambda_r v_r, v_s) = \lambda_r h(v_r, v_s) = \lambda_r \delta_{rs}.$$

Corollario 1

Sia (V,h) uno spazio euclideo, e k una forma bilineare simmetrica su V. Allora $i_+(k), i_-(k), i_0(k)$ corrispondono al numero di autovalori positivi, negativi, nulli, dell'endomorfismo di V che rappresenta k rispetto ad h

Dimostrazione

Sia come nella proposizione, $\{v_1, \ldots, v_n\}$ una h-ortonormale e k-ortogonale, per il teorema di Sylvester

$$i_{+}(k) = |\{v_{i}|k(v_{i}, v_{i}) > 0\}|.$$

Ma abbiamo visto che $k(v_i, v_i) = \lambda_i$ quindi $i_+(k) = |\{\lambda_i > 0\}|$. La dimostrazione non è terminata.

Definizione 3

 $\label{lem:constraint} Una\ matrice\ simmetrica\ reale\ si\ dice\ definita\ positiva\ se\ tutti\ gli\ autovalori\ sono\ positivi$

Definizione 4

Data una matrice quadrata $n \times n$, i minori principali leading, sono quelli ottenuti estraendo righe e colonne come segue

$$\{1\}, \{1, 2\}, \{1, 2, 3\}, \dots, \{1, 2, 3, \dots, n\}.$$

Esempio

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

$$|1| = 1$$

$$\det \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = -2$$

$$\det \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & 1 \end{pmatrix} = \det \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix} + \det \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = 1 - 1 - 1 = -1$$

Teorema 4

A è definita positiva se e solo se tutti i suoi autovalori principali leading sono positivi $\,$

$$q\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 3x_1^2 + 4x_1x_2 + 8x_1x_3 + 4x_2x_3 + 3x_3^2$$
1. Determinare gli indici

2. Calcolare $W\perp$ se $W=\mathbb{R}\left(\begin{array}{c}1\\-1\\0\end{array}\right)$ Scriviamo la matrice della forma bilineare associata rispetto alla base standard

$$A = \begin{pmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{pmatrix}.$$

$$\det \begin{pmatrix} \lambda - 3 & -2 & -4 \\ -2 & \lambda & -2 \\ -4 & -2 & \lambda - 3 \end{pmatrix} = 0 \quad i_{-} = 2$$