Mathematical Analysis Homework 5: Solutions

Cory Nezin

September 25, 2017

1. Let $\{a_n\}_{n=1}^{\infty}\subseteq [0,\infty)$ and assume $\lim_{n\to\infty}a_n=a, a\subseteq\mathbb{R}$. Prove that $a\geq 0$.

Proof:

$$a_n \ge 0 \implies a - a_n \le a \implies a_n - a \ge -a$$

Suppose
$$a < 0 \implies -a > 0 \implies a_n - a > 0$$

Thus
$$|a_n - a| \ge |a|$$

But since |a| > 0, $\lim_{n \to \infty} a_n \neq a$, a contradiction.

So
$$a \ge 0$$
.

2. Assume $\lim_{n\to\infty} b_n = b$ exists and $b \neq 0$. Prove that $b_n \neq 0$ for $n \geq N$ for some $N \in \mathbb{N}$.

Proof:

We give a proof by contrapositive:

If $b_n = 0$ for some $n \ge N$ for all $N \in \mathbb{N}$

Then $|b_n - b| = |b|$ for some $n > N, \forall N \in \mathbb{N}$

Either b = 0 or

If |b| > 0 we have $\lim_{n\to\infty} b_n \neq b$ which is the negation of the hypothesis.