

A Multi-modal Global Instance Tracking Benchmark (MGIT): Better Locating Target in Complex Spatio-temporal and Causal Relationship

Shiyu Hu^{1,2}, Dailing Zhang^{1,2}, Meiqi Wu³, Xiaokun Feng^{1,2}, Xuchen Li⁴, Xin Zhao^{1,2}, Kaiqi Huang^{1,2,5}

PROCESSING 1 School of Artificial Intelligence, University of Chinese Academy of Sciences; 2 Institute of Automation, Chinese Academy of Sciences; 3 School of Computer Science and Technology, University of Chinese Academy of Sciences; 4 School of Computer Science, Beijing University of Posts and Telecommunications; 5 Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences

Long sequences with complex spatial-

Video temporal variation and casual relationship

multi-modal information

Language description: the second arrow from left to right

Simple semantic descriptions Lang- (multiple qualified targets, no qualified target)

Existing trackers always perform poorly in complex environments (e.g., longer videos with more complicated narrative content)

Contributions

- We propose a new multimodal benchmark named MGIT. It consists of 150 long videos with a total of 2.03 million frames, and the average length of a single sequence is 5-22 times longer than existing multimodal benchmarks.
- We design a multi-granular annotation strategy for providing scientific semantic information.
- We execute comparative experiments on other Multi-granular annotation strategy based on benchmarks, and conduct Language the hierarchical structure of human cognitive detailed experimental analyses on MGIT.

Helping algorithms understand video Coupling human causal reasoning ability into content from a multi-modal perspective Experiments Results on different multi-modal benchmarks (mechanism A)

Tracker	OTB-Lang [1]		TNL2k [3]		LaSOT [2]		LaSOText [17]		LaSOTSub		LaSOTNLC		MGIT	
	PRE	SR	PRE	SR	PRE	SR	PRE	SR	PRE	SR	PRE	SR	PRE	SR
SNLT [46]	0.848	0.666	0.081	0.100	0.475	0.459	0.306	0.262	0.527	0.495	0.513	0.483	0.004	0.036
VLT_SCAR 42	0.898	0.739	0.556	0.497	0.677	0.630	0.503	0.428	0.670	0.633	0.659	0.633	0.124	0.177
VLT_TT 42	0.931	0.764	0.583	0.539	0.714	0.670	0.549	0.465	0.707	0.660	0.721	0.662	0.324	0.474
JointNLT [18]	0.856	0.653	0.598	0.552	0.640	0.607	0.457	0.398	0.624	0.583	0.707	0.651	0.433	0.603

Tracker

SiamCAR [1]

PrDiMP [12

TransT [39]

KeepTrack [1]

SiamRCNN [10

Bad case analysis

LaSOT zebra-1	l6 sequence:	zebra running	on dry gra	ss with other zebras
C	#001159		004077	- #006024

MGIT 012 sequence (mechanism A): A pink cartoon pig wearing red clothes talks to her family members on the grassland.

MGIT 006 sequence (mechanism A): A skateboard is slid by a man in black on the playground.

VLT_TT (NeurIPS22) SNLT (CVPR21)

MixFormer [14] **Fransformer** OSTrack [15] Γransforme **GRM** [16] **Fransformer** Action (B) SNLT 46 **SNN** NL&BBox Activity (C) VLT_SCAR [42] SNN NL&BBox Activity (C) **VLT_TT** [42] NL&BBox Activity (C)

Results of different trackers on MGIT

(mechanism B-E)

Architecture

SNN+CF

SNN+CF

Transformer

Conclusions

 MGIT is a complex environment, the annotation strategy is a feasible solution for coupling human understanding into semantic labels.

NL&BBox

Activity (C)

 Existing trackers should improve the capability for processing long text and aligning multi-modal information.

