Physics-Informed Deep-Learning Emulators for Type Ia Supernovae

John O'Brien
Wolfgang Kerzendorf
TARDIS Collaboration

Background

Type la supernovae, the thermonuclear explosions of Carbon-Oxygen white dwarfs, remain poorly understood despite decades of investigation. A variety of sub-classes of Type la supernovae exist and the connection between these populations is an active area of research.

What is the cause of the observational differences between Type Ia sub-classes?

Do different Type Ia sub-classes share a common progenitor scenario?

Massive computationally intensive hydrodynamic simulations have been developed to model an ever-growing number of theoretical explosion scenarios with increasing computational fidelity. However, connecting individual supernovae observations to theoretical models through physical simulations remains computationally intractable.

Solution

Radiative Transfer Emulators

Bayesian Inference

Probabilistically Inferring the Abundance Distributions of Type Ia Supernovae Ejecta from Spectral Observations

