2.6 Случайные величины

Случайная величина

СВ является числовой характеристикой результата эксперимента.

<u>Формально</u>:

СВ X – это числовая функция $X = X(\omega)$, определенная на множестве элементарных событий Ω . $\omega \in \Omega$.

$$X:\Omega\to R$$
.

В частности,

$$X: \Omega \to Z$$
 или $X: \Omega \to N$,

и т. п.

Случайная величина

Случайной называется величина, которая в результате испытания может принять то или иное значение, заранее не известное, и зависящее от случайных причин, которые заранее не могут быть учтены.

Сокращенное обозначение:

СВ - случайная величина.

Случайная величина

Пример 1.

Рассмотрим СВ X – число «гербов», выпавших при подбрасывании двух монет. В зависимости от исхода испытания, это число может оказаться равным 0, 1 или 2.

Выберем в качестве элементарный событий:

- $\omega_1 = \Gamma\Gamma$ (на первой монете выпал «герб», на второй монете выпал «герб»);
- $\omega_2 = \mathsf{P}\mathsf{\Gamma}$ (на первой монете выпала «решка», на второй монете выпал «герб»);
- $\omega_3 = \Gamma P$ (на первой монете выпал «герб», на второй монете выпала «решка»);
- $\omega_4 = PP$ (на первой монете выпала «решка», на второй монете выпала «решка»).

Случайная величина

Пример 1 (продолжение).

Число выпавших «гербов» X является функцией, определенной на множестве

$$\Omega = \{\omega_1, \omega_2, \omega_3, \omega_4\}$$
:

$$X(\omega_1) = X(\Gamma\Gamma) = 2$$
, $X(\omega_2) = X(\Gamma\Gamma) = 1$,

$$X(\omega_3) = X(\Gamma P) = 1$$
, $X(\omega_4) = X(PP) = 0$.

Результат испытания является случайным, поэтому $X = X(\omega_i)$ – случайная величина.

Случайная величина

Пример 1 (продолжение).

Если монеты симметричны и однородны, то исходы ω_i равновозможны, и можно считать

$$P(\omega_i) = \frac{1}{4}, \qquad i = 1, 2, 3, 4.$$

Тогда можно найти вероятности того, что $CB\ X$ примет то или иное значение:

$$P(X = 2) = P(\omega_1) = \frac{1}{4},$$
 $P(X = 0) = P(\omega_4) = \frac{1}{4},$ $P(X = 1) = P(\{\omega_2, \omega_3\}) = P(\omega_2) + P(\omega_3) = \frac{1}{2}.$

Случайная величина

Пример 2.

Пусть испытание состоит в определении времени безотказной работы прибора.

Выберем в качестве элементарный событий: ω_t – прибор проработал безотказно время t и в момент времени t отказал.

Функция $X = X(\omega_t) = t$ является CB.

Случайная величина

Пример 2 (продолжение).

Предположим: известно, что прибор заведомо откажет в течение промежутка времени $[0,\ \mathcal{T}]$, причем можно считать, что вероятность его отказа в интервале времени $(t,t+\Delta t),\qquad t\in [0,T]$ пропорциональна длине интервала Δt и не зависит от t.

Тогда вероятность события ω_t , $t \in \Delta$ (Δ – любой промежуток, содержащийся в [0, T]) в соответствии с геометрической схемой (2.2) можно определить как $\underline{|\Delta|}$

где $|\Delta|$ – длина интервала Δ .

Случайные величины: обозначения

СВ обозначают прописными латинскими буквами (из конца алфавита):

$$X, Y, Z, \dots$$

а возможные значения СВ – строчными латинскими буквами:

Случайные величины: основные классы

В зависимости от природы множества Ω все CB можно разделить на два основных класса:

- дискретные;
- непрерывные.

1

Дискретные случайные величины

Дискретной называется СВ, которая принимает отдельные, изолированные возможные значения с определенными вероятностями.

Более строго:

СВ X называется μ искретной, если существует конечное или счетное множество чисел

$$X_1, X_2, X_3, \ldots,$$

таких что

$$P(X = X_i) = p_i \ge 0, \quad i = 1, 2, 3, ...,$$

 $p_1 + p_2 + p_3 + ... = 1.$

Число возможных значений дискретной СВ может быть конечным или счетным

Дискретные случайные величины

Примеры:

- 1. Число «гербов», выпавших при подбрасывании двух монет (см. пример выше); возможные значения 0, 1, 2.
- 2. Число попаданий в мишень при 5 произведенных выстрелах; возможные значения 0, 1, 2, 3, 4, 5.
- 3. Число родившихся мальчиков среди 1000 новорожденных; возможные значения 0, 1, ..., 1000.
- 4. Число вызовов, поступивших на АТС за определенный промежуток времени; возможные значения 0, 1, 2, ...

Непрерывные случайные величины

Непрерывной назовем (пока нестрого) СВ, которая может принимать все значения из некоторого конечного или бесконечного промежутка.

Позднее определение будет уточнено.

Число возможных значений непрерывной СВ бесконечно (несчетно)

D

Закон распределения случайной величины

Законом распределения СВ называется всякое соотношение, устанавливающее связь между возможными значениями СВ и соответствующими им вероятностями.

Говорят: СВ подчинена данному закону распределения.

Формы закона распределения для дискретных и непрерывных СВ различны.

Непрерывные случайные величины

Примеры:

- 1. Время безотказной работы прибора (см. пример выше).
- 2. Ошибка измерительного прибора.
- 3. Время ожидания автобуса пассажиром, пришедшим на остановку в случайный момент времени (не связанный с расписанием движения автобуса).
- 4. Отклонение контролируемого размера детали, изготавливаемой на станке-автомате, от номинала.

Закон распределения дискретной СВ

Предположим:

возможными значениями дискретной СВ являются числа x_1, x_2, \ldots, x_n (или x_1, x_2, x_3, \ldots), причем $P(X=x_i)=p_i\geq 0, \quad i=1,2,\ldots,n$ (или $i=1,2,\ldots$),

$$\sum_{i} p_{i} = 1$$
 . События $X = x_{i}$ несовместны и образуют полную группу

Таким образом, 1 (вероятность достоверного события) каким-то образом *распределена* между возможными значениями CB.

Закон распределения дискретной СВ

Законом распределения дискретной СВ называется соответствие между возможными значениями этой СВ и их вероятностями.

Способы задания закона распределения дискретной СВ:

- табличный;
- графический,

Только для дискретных СВ

- аналитический;
- функция распределения (интегральная функция).

Для дискретных и непрерывных СВ

Закон распределения дискретной СВ

□ Табличный способ.

Рядом распределения дискретной СВ X называется таблица, в первой строке которой содержатся возможные значения этой СВ, а во второй – соответствующие этим значениям вероятности.

X	<i>X</i> ₁	<i>X</i> ₂	•••	X _n
p	p_1	p_2		p_n

$$\sum_{i} p_i = 1.$$

Закон распределения дискретной СВ

□Графический способ.

Для наглядного представления ряд распределения изображают графически.

Многоугольником распределения называется ломаная, соединяющая точки с координатами $(x_1, p_1), (x_2, p_2), \dots, (x_n, p_n)$.

Закон распределения дискретной СВ

□ Аналитический способ.

Предполагает наличие формулы, позволяющей определить вероятности возможных значений СВ

$$P(X=X_i)=f(X_i).$$

Закон распределения дискретной СВ

Пример.

Производится три независимых выстрела по мишени. Вероятность попадания в каждом выстреле равна 0.4. За каждое попадание стрелку засчитывается 5 очков.

Пусть CB X - число набранных очков.

Возможные значения СВ: 0, 5, 10 и 15.

Испытания производятся по схеме Бернулли, поэтому вероятность числа попаданий, равного 0, 1, 2 и 3 можно определить по формуле Бернулли (2.10):

$$P_3(i) = C_3^i(0,4)^i(1-0,4)^{3-i}, i = 0, 1, 2, 3.$$

Закон распределения дискретной СВ

Пример (продолжение).

Поэтому

$$P(X = 5 \cdot i) = C_3^i(0,4)^i(1-0,4)^{3-i}, i = 0, 1, 2, 3.$$

Аналитический способ задания СВ

Выполнив вычисления, получим ряд распределения СВ X:

X	0	5	10	15
р	0.216	0.432	0.288	0.064

Табличный способ задания СВ

Контроль:
$$p_1 + p_2 + p_3 + p_4 =$$

= $0.216 + 0.432 + 0.288 + 0.064 = 1$.

Закон распределения дискретной СВ

Пример (продолжение).

Многоугольник распределения:

Графический способ задания СВ

Функция распределения СВ

Функцией распределения (интегральной функцией) СВ X называется функция $F_X(x)$:

$$F_X(X) = P(X < X).$$

В тех случаях, когда это не приводит к недоразумениям, вместо $F_X(X)$ пишут F(X).

Функция распределения является самой универсальной характеристикой СВ:

она существует как для дискретных, так и для непрерывных СВ и полностью характеризует СВ с вероятностной точки зрения

Свойства функции распределения

- 1) Для любого x $0 \le F(x) \le 1$.
- 2) Функция распределения неубывающая:

из
$$X_1 < X_2$$
 следует $F(X_1) \le F(X_2)$;

Доказательство.

При
$$x_1 < x_2$$

$$X < X_2 = (X < X_1) + (X_1 \le X < X_2).$$

События ($X < X_1$) и ($X_1 \le X < X_2$) несовместны, поэтому

$$F(x_2) = P(X < x_2) = P(X < x_1) + P(x_1 \le X < x_2) = F(x_1) + P(x_1 \le X < x_2) \ge F(x_1).$$

Свойства функции распределения

Пример (продолжение).

X	0	5	10	15
р	0.216	0.432	0.288	0.064

2) При $0 < x \le 5$

$$F(X) = P(X < X) = P(X = 0) = 0.216.$$

Событие X < x при $0 < x \le 5$ наступает только в случае X = 0

3) При $5 < x \le 10$

$$F(x) = P(X < x) = P(X = 0) + P(x = 5) =$$

= 0.216 + 0.432 = 0.648.

Событие X < x при $5 < x \le 10$ наступает в случае, когда X = 0 или X = 5

Свойства функции распределения

- 3) $\lim_{x\to -\infty} F(x) = 0$, $\lim_{x\to +\infty} F(x) = 1$.
- 4) Функция распределения непрерывна слева в каждой точке *x*:

$$\lim_{x\to 0-} F(x+\Delta x) = F(x)$$

для любого *х*.

Замечание.

При доказательстве свойства 2) установлен важный результат: для любых $x_1 < x_2$

$$P(x_1 \le X < x_2) = F(x_2) - F(x_1). \tag{2.13}$$

Свойства функции распределения

X	0	5	10	15
p	0.216	0.432	0.288	0.064

