Math 110A Homework 4

Jiaping Zeng

2/15/2021

- 1. Let F be a field. We say that $a \in F$ is a multiple root of f(x) if $(x-a)^k$ is a factor of f(x) for some $k \ge 2$.
 - (a) Prove that $a \in F$ is a multiple root of $f(x) \in F[x]$ if and only if a is a root of both f(x) and f'(x).

Answer:

- \Rightarrow : Since a is a multiple root, $(x-a)^2$ is a factor of f(x). Let $f(x) = (x-a)^2 g(x)$, then $f'(x) = 2(x-a)g + (x-a)^2 g(x)$; clearly (x-a) is a factor of both f(x) and f'(x).
- \Leftarrow : Since a is a root of f(x), (x-a) is a factor of f(x). Let f(x)=(x-a)g(x), we have f(a)=(a-a)g(a)=0 and f'(a)=(a-a)g(a)+(a-a)g'(a)=0, so (x-a) is a factor of both f(x) and f'(x). By Factor Theorem a is a root.
- (b) If $f(x) \in F[x]$ and f(x) and f'(x) are relatively prime, prove that f has no multiple root in F. **Answer**: Since f(x) and f'(x) are relatively prime, (x - a) is not a root of both f(x) and f'(x) for any $a \in F$. Therefore by part (a) f has no multiple root in F.
- (c) Let f(x) ∈ ℚ[x] be a irreducible in ℚ[x]. Prove that f(x) has no multiple roots in ℂ.
 Answer: Since f(x) is irreducible and deg(gcd(f, f')) ≤ deg f'(x) ≤ deg f(x), f(x) has no common factor with f'(x). Therefore gcd(f, f') = 1 and there exists g₁, g₂ ∈ ℚ[x] ⊂ ℂ[x] such that fg₁ + f'g₂ = 1, which is also true in ℂ[x]. Therefore f and f' are relatively prime in ℂ[x] and by part (b) f has no multiple root in ℂ.
- 2. $\mathbb{Q}[\pi]$ be the set of all real numbers of the form:

$$r_0 + r_1 \pi + \dots + r_n \pi^n,$$

with $n \geq 0$ and each $r_i \in \mathbb{Q}$.

- (a) Show that $\mathbb{Q}[\pi]$ is a subring of \mathbb{R} .
 - Answer: We have $(r_0+r_1\pi+\cdots+r_n\pi^n)-(s_0+s_1\pi+\cdots+s_n\pi^n)=(r_0-s_0)+(r_1-s_1)\pi+\cdots+(r_n-s_n)\pi^n\in\mathbb{Q}[\pi]$ and $(r_0+r_1\pi+\cdots+r_n\pi^n)(s_0+s_1\pi+\cdots+s_n\pi^n)=(r_0s_0)+(r_1s_1)\pi^2+\cdots+(r_ns_n)\pi^{2n}\in\mathbb{Q}[\pi]$. Therefore $\mathbb{Q}[\pi]$ is closed under both subtraction and multiplication, so it is a subring of \mathbb{R} by Theorem 3.6.
- (b) Show that the function $\theta: \mathbb{Q}[x] \to \mathbb{Q}[\pi]$ defined by $\theta(f(x)) = f(\pi)$ is an isomorphism.

Answer:

i. Suppose that $\theta(f(x)) = \theta(g(x)) \implies f(\pi) = g(\pi)$, we have $r_0 + r_1 \pi + \dots + r_n \pi^n = s_0 + s_1 \pi + \dots + s_n \pi^n$. Since $\pi^k \notin \mathbb{Q}$ for any power of k, we must have $r_0 = s_0, r_1 = s_1, \dots, r_n = s_n$. Therefore f(x) = g(x) since equal coefficients implies equal polynomials, so θ is injective.

- ii. We can take $f(x) = r_0 + r_1 x + \dots + r_n x^n \in \mathbb{Q}[x]$ such that $\theta(f(x)) = r_0 + r_1 \pi + \dots + r_n \pi^n$ for every element in $\mathbb{Q}[\pi]$. Therefore θ is surjective.
- iii. Let $f(x), g(x) \in \mathbb{R}[x], p(x) = f(x) + g(x)$ and q(x) = f(x)g(x), we have

$$\theta(f(x) + g(x)) = \theta(p(x)) = p(\pi) = f(\pi) + g(\pi) = \theta(f(x)) + \theta(g(x))$$

and

$$\theta(f(x)g(x)) = \theta(q(x)) = q(\pi) = f(\pi)g(\pi) = \theta(f(x))\theta(g(x)).$$

3. Let $\mathbb{Q}[\sqrt{2}]$ be the set of all real numbers of the form:

$$r_0 + r_1(\sqrt{2}) + \cdots + r_n(\sqrt{2})^n$$

with $n \geq 0$ and each $r_i \in \mathbb{Q}$.

(a) Show that $\mathbb{Q}[\sqrt{2}]$ is a subring of \mathbb{R} .

Answer: We have $(r_0 + r_1(\sqrt{2}) + \cdots + r_n(\sqrt{2})^n) - (s_0 + s_1(\sqrt{2}) + \cdots + s_n(\sqrt{2})^n) = (r_0 - s_0) + (r_1 - s_1)(\sqrt{2}) + \cdots + (r_n - s_n)(\sqrt{2})^n \in \mathbb{Q}[\sqrt{2}]$ and $(r_0 + r_1(\sqrt{2}) + \cdots + r_n(\sqrt{2})^n)(s_0 + s_1(\sqrt{2}) + \cdots + s_n(\sqrt{2})^n) = (r_0s_0) + (r_1s_1)(\sqrt{2})^2 + \cdots + (r_ns_n)(\sqrt{2})^{2n} \in \mathbb{Q}[\sqrt{2}]$. Therefore $\mathbb{Q}[\sqrt{2}]$ is closed under both subtraction and multiplication, so it is a subring of \mathbb{R} by Theorem 3.6.

(b) Show that the function $\theta: \mathbb{Q}[x] \to \mathbb{Q}[\sqrt{2}]$ defined by $\theta(f(x)) = f(\sqrt{2})$ is a surjective homomorphism, but not an isomorphism.

Answer:

- i. Take f(x) = 2 and $g(x) = x^2$, we have $\theta(f(x)) = 2 = \theta(g(x))$ for $f(x) \neq g(x)$. Therefore θ is not injective.
- ii. We can take $f(x) = r_0 + r_1 x + \dots + r_n x^n \in \mathbb{Q}[x]$ such that $\theta(f(x)) = r_0 + r_1(\sqrt{2}) + \dots + r_n(\sqrt{2})^n$ for every element in $\mathbb{Q}[\sqrt{2}]$. Therefore θ is surjective.
- iii. Let $f(x), g(x) \in \mathbb{R}[x], p(x) = f(x) + g(x)$ and g(x) = f(x)g(x), we have

$$\theta(f(x) + g(x)) = \theta(p(x)) = p(\sqrt{2}) = f(\sqrt{2}) + g(\sqrt{2}) = \theta(f(x)) + \theta(g(x))$$

and

$$\theta(f(x)g(x)) = \theta(g(x)) = g(\sqrt{2}) = f(\sqrt{2})g(\sqrt{2}) = \theta(f(x))\theta(g(x)).$$

- 4. Use the rational root test to write each polynomial as a product of irreducibles in $\mathbb{Q}[x]$:
 - (b) $x^5 + 4x^4 + x^3 x^2$

Answer: We have $r = \pm 1$ and $s = \pm 1$, so the only possible roots are 1 and -1. However, substituting 1 and -1 gives us 5 and 1 respectively, therefore neither is a root and $x^5 + 4x^4 + x^3 - x^2$ is irreducible in $\mathbb{Q}[x]$.

(d) $2x^4 - 5x^3 + 3x^2 + 4x - 6$

Answer: We have $r = \pm 1, \pm 2, \pm 3$ and $s = \pm 1, \pm 2$, so the possible roots are $\pm 1, \pm 2, \pm 3, \pm \frac{1}{2}, \pm \frac{3}{2}$. We can substitue them into $2x^4 - 5x^3 + 3x^2 + 4x - 6$ as follows:

a	f(a)	is root?
-1	0	yes
1	-2	no
-2	70	no
2	6	no
-3	306	no
3	60	no
$-\frac{1}{2}$	$-\frac{13}{2}$	no
$\frac{1}{2}$	$-\frac{15}{4}$	no
$-\frac{3}{2}$	$\frac{87}{4}$	no
$\frac{3}{2}$	0	yes

Therefore x + 1 and $x - \frac{3}{2}$ are factors; then $\frac{2x^4 - 5x^3 + 3x^2 + 4x - 6}{(x+1)(x-\frac{3}{2})} = 2(x^2 - 2x + 2)$, so $2x^4 - 5x^3 + 3x^2 + 4x - 6 = (x+1)(2x-3)(x^2 - 2x + 2)$.

(f)
$$6x^4 - 31x^3 + 25x^2 + 33x + 7$$

Answer: We have $r=\pm 1,\pm 7$ and $s=\pm 1,\pm 2,\pm 3$, so the possible roots are $\pm 1,\pm \frac{1}{2},\pm \frac{1}{3},\pm 7,\pm \frac{7}{2},\pm \frac{7}{3}$. We can substitute them into $6x^4-31x^3+25x^2+33x+7$ as follows:

a	f(a)	is root?
-1	36	no
1	40	no
$-\frac{1}{2}$	1	no
$\frac{1}{2}$	$\frac{105}{4}$	no
$-\frac{1}{3}$	0	yes
$\frac{1}{3}$	$\frac{532}{27}$	no
-7	26040	no
7	5236	no
$-\frac{7}{2}$	9709 4	no
$\frac{7}{2}$	0	yes
$-\frac{7}{3}$	$\frac{5740}{9}$	no
$\frac{7}{3}$	$\frac{112}{27}$	yes

Therefore
$$x + \frac{1}{3}$$
 and $x - \frac{7}{2}$ are factors; then $\frac{6x^4 - 31x^3 + 25x^2 + 33x + 7}{(x + \frac{1}{3})(x - \frac{7}{2})} = 6(x^2 - 2x - 1)$, so $6x^4 - 31x^3 + 25x^2 + 33x + 7 = (2x - 7)(3x + 1)(x^2 - 2x - 1)$.

5. Show that each polynomial is irreducible in $\mathbb{Q}[x]$, using the method of Example 3 from Section 4.5 (page 115):

(a)
$$x^4 + 2x^3 + x + 1$$

Answer: By contradiction. Let $f(x) = x^4 + 2x^3 + x + 1$; if f(x) is reducible, it can be factored as the product of two nonconstant polynomials in $\mathbb{Q}[x]$. If either of these factors has degree 1, then f(x) has a root in \mathbb{Q} . But the Rational Root Test shows that f(x) has no roots in \mathbb{Q} (The only possibilities aree ± 1 and neither is a root). This if f(x) is reducible, the only possible factorization is as a product of two quadratics, by Theorem 4.2. In this case Theorem 4.23 shows that there is such a factorization in $\mathbb{Z}[x]$.

Furthermore, there is a factorization as a product of monic quadratics in $\mathbb{Z}[x]$, i.e.

$$(x^2 + ax + b)(x^2 + cx + d) = x^4 + 2x^3 + x + 1,$$

with $a, b, c, d \in \mathbb{Z}$. Multiplying out the left-hand side, we have

$$x^{4} + (a+c)x^{3} + (ac+b+d)x^{2} + (ad+bc)x + bd = x^{4} + 2x^{3} + 0x^{2} + x + 1.$$

Equal polynomials have equal coefficients; hence,

$$a + c = 2$$
, $ac + b + d = 0$, $ad + bc = 1$, $bd = 1$.

Since bd = 1 in \mathbb{Z} implies that b = d = 1 or b = d = -1, using the third equation we have two possibilities: $ad + bc = 1 \implies a + c = \pm 1$. But this contradicts with the first equation, so a factorization of f(x) as a product of quadratics in $\mathbb{Z}[x]$, and, hence in $\mathbb{Q}[x]$, is impossible. Therefore, f(x) is irreducible in $\mathbb{Q}[x]$.

(b)
$$x^4 - 2x^2 + 8x + 1$$

Answer: By contradiction. Let $f(x) = x^4 - 2x^2 + 8x + 1$; if f(x) is reducible, it can be factored as the product of two nonconstant polynomials in $\mathbb{Q}[x]$. If either of these factors has degree 1, then f(x) has a root in \mathbb{Q} . But the Rational Root Test shows that f(x) has no roots in \mathbb{Q} (The only possibilities aree ± 1 and neither is a root). This if f(x) is reducible, the only possible factorization is as a product of two quadratics, by Theorem 4.2. In this case Theorem 4.23 shows that there is such a factorization in $\mathbb{Z}[x]$. Furthermore, there is a factorization as a product of monic quadratics in $\mathbb{Z}[x]$, i.e.

$$(x^2 + ax + b)(x^2 + cx + d) = x^4 - 2x^2 + 8x + 1,$$

with $a, b, c, d \in \mathbb{Z}$. Multiplying out the left-hand side, we have

$$x^{4} + (a+c)x^{3} + (ac+b+d)x^{2} + (ad+bc)x + bd = x^{4} + 0x^{3} - 2x^{2} + 8x + 1.$$

Equal polynomials have equal coefficients; hence,

$$a + c = 0$$
, $ac + b + d = -2$, $ad + bc = 8$, $bd = 1$.

Since bd = 1 in \mathbb{Z} implies that b = d = 1 or b = d = -1, using the third equation we have two possibilities: $ad + bc = 1 \implies a + c = \pm 8$. But this contradicts with the first equation, so a factorization of f(x) as a product of quadratics in $\mathbb{Z}[x]$, and, hence in $\mathbb{Q}[x]$, is impossible. Therefore, f(x) is irreducible in $\mathbb{Q}[x]$.

6. Show that $9x^4 + 4x^3 - 3x + 7$ is irreducible in $\mathbb{Z}[x]$ by finding a prime $p \neq 3$ such that f(x) is irreducible in $(\mathbb{Z}/p\mathbb{Z})[x]$.

Answer: Let p=2, we will first show that $9x^4+4x^3-3x+7=0$ has no solution in $\mathbb{Z}/2\mathbb{Z}[x]$:

Now we will show that $9x^4 + 4x^3 - 3x + 7 = 0$ does not have any quadratic factors in $\mathbb{Z}/2\mathbb{Z}[x]$ either. The

only possible quadratic factors in $\mathbb{Z}/2\mathbb{Z}[x]$ are $x^2, x^2 + x, x^2 + 1$ and $x^2 + x + 1$, however none of them divides $9x^4 + 4x^3 - 3x + 7$, so $9x^4 + 4x^3 - 3x + 7$ has no quadratic factor and therefore it is irreducible in $\mathbb{Z}/2\mathbb{Z}$.

- 7. Let F be a field.
 - (a) Let $\varphi: F[x] \to F[x]$ be an isomorphism such that $\varphi(a) = a$ for all $a \in F$. Prove that f(x) is irreducible in F[x] if and only if $\varphi(f(x))$ is.

Answer: We will show that $\varphi(g(x))$ is nonconstant if and only if g(x) is.

- \Rightarrow : If $\varphi(g(x))$ is nonconstant, g(x) cannot be constant since φ is surjective.
- \Leftarrow : Let $c = \varphi(g(x))$; If g(x) is nonconstant, $\varphi(g(x))$ cannot be constant as we would have $\varphi(g(x)) = c = \varphi(c)$ which would mean that φ would not be injective.

Therefore f(x) is irreducible in F[x] if and only if $\varphi(f(x))$ is.

(b) Take any $c \in F$. Show that the map $\varphi : F[x] \to F[x]$ given by $\varphi(f(x)) = f(x+c)$ is an isomorphism such that $\varphi(a) = a$.

Answer: Take $\varphi^{-1}(f(x)) = f(x-c)$, we have $\varphi^{-1}(\varphi(f(x))) = \varphi^{-1}(f(x+c)) = f(x)$ and $\varphi(\varphi^{-1}(f(x))) = \varphi(f(x-c)) = f(x)$. Therefore φ is invertible and is a bijection. Now let $f(x), g(x) \in F[x]$, p(x) = f(x) + g(x) and q(x) = f(x)g(x), we have

$$\varphi(f(x) + g(x)) = \varphi(p(x)) = \varphi(f(x)) + \varphi(g(x))$$

and

$$\varphi(f(x)g(x)) = \varphi(q(x)) = \varphi(f(x))\varphi(g(x)).$$

Therefore φ is an isomorphism.

 $a_0, f(x)$ is irreducible in $\mathbb{Q}[x]$.

- (c) Use parts (a) and (b) to show that f(x) is irreducible in F[x] if and only if f(x+c) is. **Answer**: By part (b), $\varphi(f(x)) = f(x+c)$ is an isomorphism that satisfies the condition of part (a),
- 8. Prove that for p prime, $f(x) = x^{p-1} + x^{p-2} + \cdots + x^2 + x + 1$ is irreducible in $\mathbb{Q}[x]$.

 Answer: By Eisenstein's criterion, if p prime and p divides $a_0, a_1, \ldots, a_{n-1}$ but not a_n and p^2 does not divide
- 9. Find a monic polynomial in $\mathbb{R}[x]$ of least possible degree with 1-i and 2i as roots.

therefore f(x) is irreducible in F[x] if and only if f(x+c) is.

Answer: Suppose $f(x) \in \mathbb{R}[x]$ is our polynomial; by Lemma 4.29 1+i and -2i are also roots in addition to 1-i and 2i. Therefore $f(x) = (x-1-i)(x-1+i)(x-2i)(x+2i) = x^4-2x^3+6x^2-8x+8$.

10. Show that a polynomial of odd degree in $\mathbb{R}[x]$ with no multiple roots must have an odd number of roots in $\mathbb{R}[x]$.

Answer: By Corollary 4.31 any polynomial of odd degree f(x) in \mathbb{R} has a root in \mathbb{R} ; by Lemma 4.29, for every copmlex root a+bi, its complex conjugate a-bi is also a root. Suppose r_k are the real roots of f(x) and $s_k, \overline{s_k}$ are the complex roots, we have $f(x) = (x-r_1) \dots (x-r_m)(x-s_1)(x-\overline{s_1}) \dots (x-s_n)(x-\overline{s_n})$. Therefore $\deg(f(x)) = m+2n$; since f(x) is a polynomial of odd degree m must be odd, therefore f(x) must have an odd number of real roots.