Desafio 1

Informa2 S.A.S

Victor Manuel Jimenez Garcia Jose Miguel Jaramillo Sanchez Sebastian Garcia Morales

Despartamento de Ingeniería Electrónica y Telecomunicaciones Universidad de Antioquia Medellín Febrero 17 de 2022

$\acute{\mathbf{I}}\mathbf{ndice}$

1.	Objetivos	2
2.	Introduccion	2
3.	Marco Teorico 3.1. Conocimientos previos	2
4.	Analisis del problema	3
5.	Conclusiones	3

1. Objetivos

2. Introduccion

3. Marco Teorico

3.1. Conocimientos previos

El sistema de encriptacion intercambia informacion por medio de la comunicacion serial, que es el proceso de enviar datos de caracter binario un bit a la vez

Para desencriptar, es necesario paralelizar dicha secuencia de bits que luego seran las entradas de un circuito de logica combinacional encargado de comparar los datos de acuerdo a los parametros de desencriptacion.

Paralelizar no es mas que llevar la secuencia de bits que se desplazan como una sola fila, y transformarla en una columna. De esta forma si se tiene una secuencia serial de n bits, al paralelizar, el resultado es una columna de bits de n filas.

Esta accion de paralelizar la llevará acabo el circuito integrado 74 HC595 tambien conocido como Registro de desplazamiento. Un chip con 3 entradas y 8 salidas digitales.

74HC595

16 V_{CC} Q1 1 Q2 2 15 Q0 Q3 3 14 DS 13 ŌE Q4 4 Q5 5 12 STCP 11 SHCP Q6 6 10 MR Q7 7 GND 8 9 Q7S

Figura 1: Pines IC 74HC595

Salidas:

Q0-Q7 (pines 1-7 y 15)

Entradas:

DS: entrada de datos (pin 14)

STCP: entrada de la señal de reloj (pin 12)

SHCP: entrada del pulso para liberar los datos (pin 11)

- 4. Analisis del problema
- 5. Conclusiones

Referencias