Аппроксимация обратных функций распределения вероятностей с помощью полиномов Чебышёва

Доброгодин Евгений Сергеевич, гр. 522

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: к.ф.-м.н., доцент Христинич В.Б. Рецензент: д.ф.-м.н., профессор Ермаков С.М.

- Формула обращения: $\xi = F^{-1}(\alpha)$.
- Нахождение обратной функции распределения вероятностей F.
- Почти точная аппроксимация и табличные методы.
- Общий метод для аппроксимации обратных к распределениям вероятностей.
- Расчет функций на ЭВМ и особенности при построении приближений.

- ullet Формула обращения: $\xi = F^{-1}(lpha)$.
- Нахождение обратной функции распределения вероятностей F.
- Почти точная аппроксимация и табличные методы.
- Общий метод для аппроксимации обратных к распределениям вероятностей.
- Расчет функций на ЭВМ и особенности при построении приближений.

- Формула обращения: $\xi = F^{-1}(\alpha)$.
- Нахождение обратной функции распределения вероятностей F.
- Почти точная аппроксимация и табличные методы.
- Общий метод для аппроксимации обратных к распределениям вероятностей.
- Расчет функций на ЭВМ и особенности при построении приближений.

- Формула обращения: $\xi = F^{-1}(\alpha)$.
- Нахождение обратной функции распределения вероятностей F.
- Почти точная аппроксимация и табличные методы.
- Общий метод для аппроксимации обратных к распределениям вероятностей.
- Расчет функций на ЭВМ и особенности при построении приближений.

- Формула обращения: $\xi = F^{-1}(\alpha)$.
- Нахождение обратной функции распределения вероятностей F.
- Почти точная аппроксимация и табличные методы.
- Общий метод для аппроксимации обратных к распределениям вероятностей.
- Расчет функций на ЭВМ и особенности при построении приближений.

- Формула обращения: $\xi = F^{-1}(\alpha)$.
- Нахождение обратной функции распределения вероятностей F.
- Почти точная аппроксимация и табличные методы.
- Общий метод для аппроксимации обратных к распределениям вероятностей.
- Расчет функций на ЭВМ и особенности при построении приближений.

Постановка задачи

- Построение обратных функций к распределениям вероятностей.
- Учитывать разные способы задания прямой функций: в явном и табличном виде.
- Интерполяция обратной функции в узлах Чебышёва.
- Расчет коэффициентов разложения Чебышёва для обратной функции.
- Построение Чебышёвского приближения для обратной функции.
- Проверка точности аппроксимации.

Интерполирование функций. Системы Чебышёва.

- ullet Задача интерполирования функции f(x) по заданной таблице $f_i = \{f(x_i)\}_{i=0}^n.$
- Интерполирующая функция: $P_n(x) = \sum_{k=0}^n a_k \varphi_k(x)$.
- $\bullet \sum_{k=0}^{n} a_k \varphi_k(x_j) = f(x_j).$

Определение (Система Чебышёва)

Систему непрерывных вещественных функций $\{\varphi_k(x)\}_{k=0}^n$, удовлетворяющую (1) называют системой Чебышёва или T-системой.

$$\begin{vmatrix} \varphi_0(x_0) & \varphi_1(x_0) & \dots & \varphi_n(x_0) \\ \varphi_0(x_1) & \varphi_1(x_1) & \dots & \varphi_n(x_1) \\ \dots & \dots & \dots & \dots \\ \varphi_0(x_n) & \varphi_1(x_n) & \dots & \varphi_n(x_n) \end{vmatrix} \neq 0.$$
 (1)

Интерполирование функций. Интерполирование по Лагранжу

Теорема (Вейерштрасса)

Если функция f(x) непрерывна на отрезке [a;b], тогда для любого $\varepsilon>0$ можно найти такой многочлен P(x), что

$$| f(x) - P(x) | < \varepsilon, \quad \forall x \in [a, b].$$

Многочленом Лагранжа называется многочлен вида:

$$L_n(x) \approx \sum_{k=0}^n l_k(x) f(x).$$
 (2)

 $l_k(x)$ — коэффициент Лагранжа:

$$l_j(x) = \frac{\omega_{n+1}(x)}{(x - x_k)\omega'_{n+1}(x_k)},$$
(3)

где
$$\omega_{n+1}(x) = \prod_{i=0}^{n} (x - x_i).$$

Определение и свойства многочленов Чебышёва

Определение (Многочлены Чебышёва)

Многочленами Чебышёва называются многочлены вида $T_n(x) = \cos(n\arccos(x))$, $n = 0, 1, 2, \dots$

• Корни многочленов Чебышёва:

$$x_j = \cos\left(\frac{2j-1}{2n}\pi\right), j = 1, \dots, n.$$
 (4)

• Рекуррентное соотношение:

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$$
. (5)

• Симметричность многочленов Чебышёва:

$$T_{2m}(-x) = T_{2m}(x).$$

ullet Экстремальное значение: $\mid T_n(x) \mid \leq 1 \,, \quad x \in [-1;1] \,.$

Изменение интервала

Изменение переменной для перевода задачи с интервала [a;b] на интервал [-1;1].

$$x = \left(\frac{b-a}{2}\right)t + \frac{a+b}{2}, \qquad t = 2\frac{x-a}{b-a} - 1,$$
 (6)

где $a \leq x \leq b$ и $-1 \leq t \leq 1$.

Узлы Чебышёва на [-1;1] для $T_{n+1}(t)$ имеют вид:

$$t_j = \cos\left((2n+1-2j)\frac{\pi}{2n+2}\right), \quad j = 0, 1, \dots, n.$$
 (7)

По формуле (6) узлы Чебышёва на [a;b] для $T_{n+1}(x)$ имеют вид:

$$x_j = t_j \frac{b - a}{2} + \frac{a + b}{2} \,. \tag{8}$$

Ортогональность многочленов Чебышёва

Многочлены Чебышёва ортогональны с весом $p(x) = \frac{1}{\sqrt{1-x^2}}$ на интервале [-1;1].

$$I_{ij} = \int_{-1}^{1} \frac{T_i(x)T_j(x)}{\sqrt{1 - x^2}} dx =$$

замена: $x = \cos(\theta), \theta = \arccos(x), dx = -\sin(\theta)d\theta$:

$$= \int_0^\pi \frac{\cos i\theta \cos j\theta \sin \theta}{\sqrt{1 - \cos^2 \theta}} d\theta = \int_0^\pi \cos i\theta \cos j\theta d\theta =$$

$$= \begin{cases} \frac{\pi}{2}, & i = j \neq 0; \\ \pi, & i = j = 0; \\ 0, & i \neq j. \end{cases}$$
(9)

Разложение функции по многочленам Чебышёва

Разложение функции f(x) в ряд по ортогональной системе многочленов Чебышёва $\{T_k(x)\}_{k=0}^n$:

$$f(x) \approx P_n(x) = \sum_{k=0}^{n} c_k T_k(x)$$
, (10)

где $T_k(x)$ — многочлены Чебышёва степени k, а c_k — коэффициенты разложения, которые считаются по формуле:

$$c_k = \frac{\int_{-1}^1 \frac{1}{\sqrt{1-x^2}} f(x) T_k(x) dx}{\int_{-1}^1 \frac{1}{\sqrt{1-x^2}} T_k(x) T_k(x) dx}.$$
 (11)

Расчет коэффициентов Чебышёва

Пользуясь ортогональностью многочленов Чебышёва

$$\sum_{k=0}^{n} T_i(x_k) T_j(x_k) = \begin{cases} \frac{n}{2}, & i = j \neq 0; \\ n, & i = j = 0; \\ 0, & i \neq j, \end{cases}$$
 (12)

получим выражение для коэффициентов разложения:

$$c_k = \frac{\sum_{j=1}^n f(x_j) T_k(x_j)}{\sum_{j=1}^n T_k^2(x_j)},$$
(13)

где

$$c_0 = \frac{1}{n} \sum_{j=1}^n f(x_j) T_0(x_j) = \frac{1}{n} \sum_{j=1}^n f(x_j), \ k = 0;$$

$$c_k = \frac{2}{n} \sum_{j=1}^n f(x_j) T_k(x_j) = \frac{2}{n} \sum_{j=1}^n f(x_j) \cos\left(\frac{k(2j-1)}{2n}\pi\right), \ k = 1, \dots, n$$

Алгоритм работы программы расчета коэффициентов Чебышёва

- Предусмотрена работа с функциями, заданными в явном или табличном виде.
- Используется интерполяция по Лагранжу для получения значений обратной функции в узлах Чебышёва.
- Построение Чебышёвской аппроксимации:
 - Обращение таблицы прямой функции.
 - Нахождение узлов Чебышёва.
 - Вычисление обратной функции в узлах.
 - Расчет коэффициентов Чебышёва для обратной функции.
 - Построение Чебышёвского приближения для обратной функции.

Таблицы результатов: экспоненциальное распределение

Чеб. узел	Чеб. коэфф.	Знач.функц.	Знач.Чеб.прибл.
0.0030779	0.633388735	0.003082661373228	0.00308266137322 9
0.0272484	0.343145751	0.027626490380672	0.02762649038067 5
0.0732233	0.029437252	0.076042632082494	0.07604263208249 3
0.1365024	0.003367089	0.146764131908871	0.14676413190887 2
0.2108914	0.000433276	0.236851304416981	0.23685130441698 2
0.2891086	0.000059471	0.341235626334045	0.34123562633404 4
0.3634976	0.000008503	0.451767129546056	0.45176712954605 3
0.4267767	0.000001250	0.556479926661016	0.55647992666101 9
0.4727516	0.00000188	0.640083553126553	0.640083553126553
0.4969221	0.000000028	0.687010220577582	0.687010220577582

Таблица: Таблица коэффициентов Чебышёва для обратной функции экспоненциального закона распределения

Таблицы результатов: нормальное распределение

Чеб. узел	Чеб. коэфф.	Знач.функц.	Знач.Чеб.прибл.
0.1021545	-1.29446407	-1.269374739668190	-1.26937473966819 9
0.1190738	0.56268976	-1.179629502538860	-1.17962950253886 7
0.1512563	-0.05264566	-1.031060263662650	-1.03106026366265 5
0.1955516	0.01417721	-0.857618203639942	-0.85761820363994 5
0.2476239	-0.00343997	-0.681985772789788	-0.6819857727897 91
0.3023760	0.00095801	-0.517578934405627	-0.51757893440562 9
0.3544483	-0.00029793	-0.373337943219595	-0.37333794321959 7
0.3987436	0.00007127	-0.256597907167357	-0.25659790716735 9
0.4309261	-0.00003702	-0.173970634833759	-0.173970634833759
0.4478454	0.00000177	-0.131166450004216	-0.131166450004216

Таблица: Таблица коэффициентов Чебышёва для обратной функции нормального закона распределения

Таблицы результатов: распределение χ^2

Чеб. узел	Чеб. коэфф.	Знач.функц.	Знач.Чеб.прибл.
0.102154540	0.3098905075	0.016482332166664	0.0164823321666 72
0.119073858	0.1690758485	0.022438622720633	0.02243862272063 8
0.151256313	0.0313967963	0.036374742460273	0.03637474246027 9
0.195551663	0.0016654452	0.061302927106019	0.0613029271060 23
0.247623969	0.0002053261	0.099545253109589	0.0995452531095 92
0.302376031	0.0000167712	0.150955444156601	0.15095544415660 3
0.354448337	0.0000014339	0.211554507228433	0.211554507228433
0.398743687	-0.0000001261	0.273104809646659	0.2731048096466 61
0.430926142	-0.000001517	0.324231651828509	0.3242316518285 11
0.447845460	-0.0000000703	0.353462247277977	0.35346224727797 8

Таблица: Таблица коэффициентов Чебышёва для обратной функции к распределению χ^2

Таблицы результатов: распределение Стьюдента

Чеб. узел	Чеб. коэфф.	Знач.функц.	Знач.Чеб.прибл.
0.09135428	3.07886849	2.06362118341363	2.063621183413 74
0.10198928	-0.46403427	2.00081545047362	2.000815450473 71
0.12221825	0.06466546	1.85831045812815	1.858310458128 22
0.15006105	-0.01091185	1.69907322944448	1.699073229444 55
0.18279221	-0.00092870	1.54590744113804	1.5459074411380 9
0.21720779	0.00149613	1.41139731103564	1.4113973110356 7
0.24993895	-0.00374416	1.30105503655437	1.301055036554 42
0.27778175	0.00121590	1.21768571313697	1.2176857131369 5
0.29801072	-0.00236486	1.16559405455129	1.1655940545512 2
0.30864572	0.00041255	1.13088257228764	1.130882572287 58

Таблица: Таблица коэффициентов Чебышёва для обратной функции к распределению Стьюдента

Результаты

- Разработан метод построения обратных функций к распределениям вероятностей, основанный на приближении Чебышёва.
- Рассмотрены методы интерполяции функций.
- Изучены многочлены Чебышёва и их основные свойства.
- Рассмотрены вопросы Чебышёвской аппроксимации функций.
- Предложены алгоритм и программа вычисления коэффициентов разложения Чебышёва и построения Чебышёвского приближения.
- Рассчитаны коэффициенты Чебышёва для обратных функций распределения вероятностей для ряда законов распределения: экспоненциального, нормального, χ^2 и Стьюдента.

Спасибо за внимание!

