基于决策树模型和神经网络模型的降雨量问题研究

李沐阳 钟绍恒 易领程

2024年5月8日

基于决策树模型和神经网络模型的降雨量问题研究

论文标题: 基于决策树模型和神经网络模型的降雨量问题研究

代码链接: https://github.com/limuy2022/math_model

发表年份: 2024

作者信息: 李沐阳¹, 钟绍恒², 易领程³

● 东莞市东华高级中学 120 班学生

② 东莞市东华高级中学 120 班学生

◎ 东莞市东华高级中学 120 班学生

目录

① 研究背景与前提假设

② 模型尝试 • 线性回归模型

研究背景

研究背景

现如今,气候无不影响着人类的生活,探寻其中各种因素的关系成为了当务之急. 在此前提下,我们决定着手降水量的研究,试图为气象研究提供参考. 考虑到现实因素的复杂性,我们决定简化问题,将其转化为 5 个自变量和 1 个因变量之间的函数关系. 本篇论文主要研究欧洲"降水量"与"气温"、"海平面气压"、"风速"、"湿度"、"云层覆盖"之间的关系. 同时,为了方便表达,我们规定了一下符号以及其中的单位,如下表所示:

符号说明

表 1: 符号说明

	14 4 00 74	
符号	说明	单位
r	降雨量	$_{ m mm}$
\mathbf{t}	温度	$0.1^{\circ}\mathrm{C}$
f	风速	$0.1 \rm m s^{-1}$
h	湿度	0.1%
\mathbf{c}	云层覆盖	octas
p	气压	$0.1 \mathrm{hPa}$

前提假设

前提假设

- 排除一切人为影响气候因素,如工业排放,热岛效应等.
- 排除次要因素对降水量的影响, 如辐射、空气污染等.
- 假设降水量只与气温、气压、风速、湿度、云层覆盖有关.
- 降水量准确的标准为: 得出的降水量 r 和正确的降水量 r_0 满足关系 $r_0 10 \le r \le r_0 + 10$.

目录

1 研究背景与前提假设

- ② 模型尝试
 - 线性回归模型

线性回归模型

模型假设

- 降水量与气温、气压、风速、湿度、云层覆盖之间存在线性关系.
- 线性关系式导致的误差可忽略.

研究方法

考虑到拟合线性关系, 我们决定采用较为常见的最小二乘法进行模型拟合.

最小二乘法简介

基本概念

最小二乘法是一种求解线性方程组的方法,该方法的基本思想是将线性方程组表示为如下形式的最小二乘方程组:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \beta_5 x_5$$
 (1)

其中 x₁、x₂、x₃、x₄、x₅ 分别代表云层覆盖、湿度、气温、气压、风速.

求解公式

最小二乘法的求解公式如下所示:

$$\begin{cases}
\beta_{0} = \bar{y} - \beta_{1}\bar{x}_{1} - \beta_{2}\bar{x}_{2} - \beta_{3}\bar{x}_{3} - \beta_{4}\bar{x}_{4} - \beta_{5}\bar{x}_{5} \\
\beta_{1} = \frac{\sum_{i=1}^{n}(x_{1_{i}} - \bar{x}_{1})(y_{i} - \bar{y})}{\sum_{i=1}^{n}(x_{1_{i}} - \bar{x}_{1})^{2}} \\
\beta_{2} = \frac{\sum_{i=1}^{n}(x_{2_{i}} - \bar{x}_{2})(y_{i} - \bar{y})}{\sum_{i=1}^{n}(x_{2_{i}} - \bar{x}_{2})^{2}} \\
\beta_{3} = \frac{\sum_{i=1}^{n}(x_{3_{i}} - \bar{x}_{3})(y_{i} - \bar{y})}{\sum_{i=1}^{n}(x_{3_{i}} - \bar{x}_{3})^{2}} \\
\beta_{4} = \frac{\sum_{i=1}^{n}(x_{4_{i}} - \bar{x}_{4})(y_{i} - \bar{y})}{\sum_{i=1}^{n}(x_{4_{i}} - \bar{x}_{4})^{2}} \\
\beta_{5} = \frac{\sum_{i=1}^{n}(x_{5_{i}} - \bar{x}_{5})(y_{i} - \bar{y})}{\sum_{i=1}^{n}(x_{5_{i}} - \bar{x}_{5})^{2}}
\end{cases}$$
(2)

其中 \bar{y} 、 $\bar{x_1}$ 、 $\bar{x_2}$ 、 $\bar{x_3}$ 、 $\bar{x_4}$ 、 $\bar{x_5}$ 分别代表降水量的均值、云层覆盖的均值、湿度的均值、气温的均值、气压的均值、风速的均值。

最小二乘法结果

结果展示

最小二乘法的求解结果如下所示:

$$\begin{cases} \beta_0 = 315.80363888548624 \\ \beta_1 = 6.197181723408759 \\ \beta_2 = 0.15411116711110595 \\ \beta_3 = 0.16901104754961455 \\ \beta_4 = -0.03432027705042855 \\ \beta_5 = 0.17773547386441546 \end{cases}$$
(3)

模型误差

正确率为 60% 左右, 最小二乘法的拟合图像如下所示:

图 1: 拟合降水量和真实降水量的折线统计图