Machine Learning (IT3190E)

Quang Nhat NGUYEN

quang.nguyennhat@hust.edu.vn

Hanoi University of Science and Technology
School of Information and Communication Technology
Academic year 2020-2021

The course's structure

- Number of weeks: 15
 - Lectures: The first 12 weeks
 - Course projects' presentations: The last 3 weeks
- Time and Location
 - Thursday, 08:25-11:45, Building B1, Room 402
- The course's web page http://soict.hust.edu.vn/~quangnn/ml/ml_ay2021_s2.htm
- Student meeting
 - Prior arrangement via e-mail
 - Department of Information Systems, School of Information and Communication Technology (Building B1, Room 702)

Machine Learning

The course's goal

- Knowledge on core concepts in machine learning
- Knowledge on traditional and popular algorithms in machine learning, their advantages and disadvantages, and when to use them
- Introduction of very useful software frameworks and tools
- Experience on design, implementation and performance evaluation of machine learning system
 - Through the team work of the course project

The course's content

- Introduction of Machine learning, Software frameworks and tools
- Performance evaluation of machine learning system
- Supervised learning (Linear regression, Nearest neighbor learning, Probabilistic learning, Decision tree, Artificial neural network, Support vector machine)
- Unsupervised learning (Partition-based clustering, Hierarchical clustering)
- Ensemble learning
- Reinforcement learning

The course's grade

- Course project (P): Maximum 10 points
 - Each course project is implemented by a group of **2-3** students
 - Freely select and apply a machine learning approach to solve a real application problem
 - Implement a machine learning system and evaluate the system performance with appropriate datasets
- Final written exam (E): Maximum 10 points
- Course grade (G)
 - $G = 0.3 \times P + 0.7 \times E$

Course project – Proposal

- Freely select a real application problem, machine learning algorithm(s) to solve the problem, and dataset(s) used
- The course project proposal (stored in a .pdf file) must explain in details
 - Length of 1 or 2 pages
 - Description of the real application problem to be solved (goal, requirements, use scenario, etc.)
 - Clearly specify machine learning algorithm(s) used to solve the problem
 - Clearly explain the input and the output of the implemented machine learning system, and the representation of learning examples
 - Clearly specify the datasets to be used
- Each project group must send the proposal to <u>quang.nguyennhat@hust.edu.vn</u>/ quangnn@soict.hust.edu.vn not later than March 21, 2021
 - The project proposal of the group
 - The information of each team member: Full name, Student code, Email

Machine Learning

Course project – Requirements

- The results of the course project work must be presented
 All the project members must participate in the implementation and presentation
- The deliverables of the course project work include:
 - The source codes: stored in a .zip/.rar file
 - Readme file that describes in details how to install/compile/run the system (and also the other used software libraries/packages)
 - The final report (stored in a .pdf file):
 - Describes the real application problem to be solved
 - The details of the machine learning algorithm(s) and the used dataset(s)
 - The experimental results of the machine learning system's performance on the used dataset(s)
 - The system's main functions, and how to use them
 - The issues/difficulties occurs in the course project's implementation, and how you resolved them
 - The discussions/findings/conclusions, and the improvement proposals for the system in future

Machine Learning

7

Course project – Assessment

- The course project work is assessed by the following criteria:
 - The complexity/difficulty of the real application problem to be solved
 - The quality (correctness and adequacy) of the machine learning approach used to solve the problem
 - The quality of the experimental results, and the adequacy of the discussions (opinions, arguments) on the experimental results
 - The quality of the presentation of the course project work
 - The quality of the report documents
 - The implemented software system (functions, usability, etc.)
- The slides presentation should be inline with your conducted work and the report documents
- If any source codes/software packages/software tools are used/exploited, then they must be explicitly and fully cited in the report documents and in the presentation slides

Machine Learning

Course materials

- The lecture slides
- Reference books:
 - T. M. Mitchell. *Machine Learning*. McGraw-Hill, 1997.
 - T. Hastie, R. Tibshirani, J. Friedman. The Elements of Statistical Learning: Data Mining, Inference, and Prediction (2nd Edition). Springer, 2009.
- Software framework, libraries and tools for machine learning
- Datasets:
 - Kaggle
 - UCI
 - WEKA