2

Amendments to the Specification

Please add the following section on page 1 after the title and before the section "Field of the Invention":

Cross-Reference to Related Application

This application claims the benefit of U.S. provisional application no. 60/285,506 filed April 19, 2001.

In paragraph [0014] on pages 4-5, please correct structures (V) and (VI) as shown:

[0014] The drag reducing additives of this invention have the basic chemical structures of the maleated fatty acid drag reducers given below:

and esters of these maleated fatty acids may also be employed, having structures such as:

3

(III)
$$R_1C-OH_0$$
 R_1C-OH_0 (IV) R_1C-OH_0 R_1C-OH_0 R_1C-OH_0 R_1C-OH_0 R_2 $R_3CHR_4C-OH_0$ $R_3CHR_4C-OH_0$

where R is an organic moiety including alkyl, aryl, aralkyl, alkaryl or amine groups;

R₁ is a generally linear organic moiety of from about 2 to about 20 carbon atoms;

R₂ is hydrogen or a generally linear organic moiety of up to about 20 carbon atoms,

where the total number of carbon atoms in R₁ and R₂ are from about 10 to
about 20 carbon atoms;

R₃ is an alkylene or alkenylene group of from about 2 to about 15 carbons; and R₄ is an alkylene or alkenylene group of from about 2 to about 15 carbons; and inorganic, organic, and amine salts thereof. By "alkenylene" is meant a hydrocarbon moiety bonded on either end to the shown structures (similar to alkylene) but which is unsaturated with at least one C=C double bond.