

 $T_1, T_2$ 

## Regelungstechnik

für BEI4, BMEI4 und IBT

Prof. Dr. B. Wagner

$$\underline{\underline{G_R(s)}} = \frac{\underline{Z_W(s)}}{\underline{Z_S(s)}} = \frac{\underline{Z_W(s)}}{\underline{Z_S(s)}(s) \cdot \left(1 - \underline{Z_W(s)}\right)} = \frac{\underline{Z_W(s) \cdot N_S(s)}}{\underline{Z_S(s) \cdot (N_W(s) - Z_W(s))}}$$







± 10

Kap. 5 Regler und Regelkreise

Teil 1: Standard-Regler (P, I, PI, PD / PDT<sub>1</sub>, PID / PIDT<sub>1</sub>)



#### **Stabilität**

=> Klingen alle Eigenschwingungen des Regelkreises ab?

#### Robustheit

=> lst der Regelkreis unempfindlich gegen Parameterschwankungen?

## Stationäre Eigenschaften

- => Strebt die Regelgröße für  $t \Rightarrow \infty$  gegen den Sollwert?
- => Oder gibt es eine bleibende Regelabweichung?
- => (Getrennte) Betrachtung bei Störungen und Sollwertänderungen!

## **Dynamische Eigenschaften**

- => Wie schnell sind Übergangsvorgänge abgeklungen?
- => Sind Überschwinger akzeptabel?



## Software-Tools (BORIS, Matlab-Simulink, TIA-Portal...)



### "Kompaktregler"

Wachendorff URDR PID Temperaturregler, 2 x Relais Ausgänge, 24  $\rightarrow$  230 V ac/dc, 72 x 90mm

RS Best.-Nr.: 819-9735 Herst. Teile-Nr.: URDR0001 Marke: Wachendorff

## Kfz-Steuergerät (z. B. Getriebesteuergerät)



### In dieser Lehreinheit: Wirkungsweise von "Standard-Reglern"



"Standard-Regler" = PID-Familie

P-Regler mit PT<sub>1</sub>-/ PT<sub>2</sub>-/ PT<sub>n</sub>- Strecke

⇒ Stationäres und dynamisches Verhalten

### **I-Regler**

⇒ Stationär genau, jedoch (sehr) langsamer Regelkreis

### Der PI-Regler

⇒ DER Standard-Regler überhaupt

Der PD- und der PDT<sub>1</sub>-Regler

- ⇒ Das Prinzip der "Pol-Nullstellen-Kompensation"
- ⇒ Beschleunigung einer Regelung

Der PID- und der PIDT<sub>1</sub>-Regler

⇒ Unterschiedliche Formen (additiv / multiplikativ)



| PID Blockname: PID             |            |               | OK      |
|--------------------------------|------------|---------------|---------|
| PID-Parameter Begrenz          | ung        |               | Abbrech |
| P-Anteil                       |            |               | Hilfe   |
| Proportionalbeiwert KP:        | 1          | ☑ <u>E</u> in |         |
| I-Anteil                       |            |               |         |
| Nachstellzeit Ti (TN):         | 1          | ☐ ☑ Ein       |         |
| Anfangswert:                   | 0          | _ Crin        |         |
| D-Anteil                       |            |               |         |
| Vorhaltezeit Td (TV):          | 1          | ☐ M Ein       |         |
| Ver <u>z</u> ögerungszeit TVz: | 0.001      |               |         |
|                                | Festwert   | _             |         |
|                                | ○*Td       |               |         |
| Exportieren                    | Aus Zwisch | nenablage     |         |
|                                |            |               |         |
| Blockkommentar                 | _          |               |         |
| Aus Parametern erzei           |            | gende)        |         |
| O Benutzerdefinierter T        | ext:       |               |         |



Füllstands-Regelstrecke "LEVELPLANT" aus BORIS (Bibliothek "Regelstrecken")



Eingangsgröße: Ventilansteuersignal 0 ... 10 V

Ausgangsgröße: Füllstands-Messsignal 0 ... 10 V

Störgröße: Abflussventil 0 ... 10 V

**Verhalten:** "nichtlineares PT<sub>1</sub>" (bei geöffnetem Ausfluss)

Regelung mit einem P-Regler





#### Zunächst eine einfache Regelungsaufgabe: Füllstandsregelung mit P-Regler – Simulation in BORIS





stationäres Verhalten wird mit steigendem VR besser, die bleibende Regelabweichung sinkt

dynamisches Verhalten wird mit steigendem VR besser, schnelleres Einschwingen, kein Überschwinger

## Analytische Rechnung: P-Regler für PT<sub>1</sub>-Regelstrecke Betrachte Führungsverhalten G<sub>W</sub>(s)



Gegeben:

**Gesucht:** 

$$G_R(s) = V_R$$

$$G_{s}(s) = V_{s}/(1+sT_{s})$$

$$G_W(s) = (V_R * V_S) / (1 + sT_S + V_R * V_S)$$

- $\Rightarrow$  Systemtyp von G<sub>w</sub>(s)? PT1
- $\Rightarrow$  G<sub>W</sub>(s) auf Standardform bringen! (VR\*VS / (1+VR\*VS)) / (1 + s\*(TS/(1+VR\*VS)))

 $V_W = Z\ddot{a}hler (immer < 1)$   $T_W = TS/(1+VR*VS)) (immer kleiner TS)$ 

⇒ Ist der geschlossene Regelkreis stabil? mit V\_R steigendem sinkt T\_W

Z(s) = 0  $G_{R}(s)$   $G_{S}(s)$ 

⇒ Endwert der Führungssprungantwort?

stets kleiner 1 strebt für V\_R -> \infty gegen 1 mit steigendem V\_R sinkt bleibende Regelabweichung mit steigendem V\_R wird Regelkreis schneller



## Analytische Rechnung: P-Regler für $PT_2$ -Regelstrecke Betrachte Führungsverhalten $G_W(s)$



Gegeben:  $G_R(s) = V_R > 0$ 

Gesucht:

$$G_{S}(s) = \frac{V_{S}}{1 + s \frac{2D_{S}}{\omega_{0S}} + s^{2} \frac{1}{\omega_{0S}^{2}}} \rightarrow G_{W}(s) = \frac{\frac{V_{S}V_{R}}{1 + s \frac{2D_{S}}{\omega_{0S}} + s^{2} \frac{1}{\omega_{0S}^{2}}}}{1 + \frac{V_{S}V_{R}}{1 + s \frac{2D_{S}}{\omega_{0S}} + s^{2} \frac{1}{\omega_{0S}^{2}}}} = \frac{V_{S}V_{R}}{1 + V_{S}V_{R} + s \frac{2D_{S}}{\omega_{0S}} + s^{2} \frac{1}{\omega_{0S}^{2}}}$$

$$= ... \frac{\frac{V_S V_R}{1 + V_S V_R}}{1 + \frac{2D_S}{\omega_{0S}(1 + V_S V_R)} s + \frac{1}{\omega_{0S}^2(1 + V_S V_R)} s^2}$$

 $\Rightarrow$  Systemtyp von  $G_W(s)$ ? PT2

# Analytische Rechnung: P-Regler für $PT_2$ -Regelstrecke Betrachte Führungsverhalten $G_w(s)$

 $\Rightarrow$  G<sub>w</sub>(s) auf Standardform bringen (Koeffizientenvergleich)

$$V_{RK} = VS*VR/(1+VS*VR)$$
  $D_{RK} = DS*(1/sqrt(1+VS*VR))$  (wie PT1 mit P-Regler) Regelkreis schwächer gedämpft als die

Regelkreis schwächer gedämpft als die ungeregelte Strecke; mit steigendem VR sinkt DRK; Schwingneigung nimmt zu

⇒ Ist der geschlossene Regelkreis stabil?

ja für alle VR

⇒ Endwert der Führungssprungantwort?

$$a(infty) = GW(0) = VRK --> < 1$$

für steigendes VR: 1. bleibende Regelabweichung sinkt (gut)
2. Schwingneigung steigt (schlecht)

$$\frac{\frac{V_{S}V_{R}}{1 + V_{S}V_{R}}}{1 + \frac{2D_{S}}{\omega_{0S}(1 + V_{S}V_{R})}s + \frac{1}{\omega_{0S}^{2}(1 + V_{S}V_{R})}s^{2}}$$

$$\omega_{0RK} = \text{wos * sqrt(1+VS*VR)}$$



## Verallgemeinerung: P-Regler für $PT_n$ -Regelstrecke Betrachte Führungsverhalten $G_w(s)$ und Störverhalten $G_z(s)$



Gegeben:

$$G_R(s) = V_R$$

$$G_{S}(s) = \frac{V_{s}}{1 + sa_{1} + s^{2}a_{2} + \cdots}$$

$$S_{W}(s) = \frac{\frac{V_{S}V_{R}}{1 + sa_{1} + s^{2}a_{2} + \cdots}}{1 + \frac{V_{S}V_{R}}{1 + sa_{1} + s^{2}a_{2} + \cdots}} = \frac{\frac{V_{R}V_{S}}{1 + V_{R}V_{S}}}{1 + s\frac{a_{1}}{1 + V_{R}V_{S}} + s^{2}\frac{a_{2}}{1 + V_{R}V_{S}} + \cdots}$$

$$G_{z}(s) = \frac{\frac{V_{S}}{1 + sa_{1} + s^{2}a_{2} + \cdots}}{1 + \frac{V_{S}V_{R}}{1 + sa_{1} + s^{2}a_{2} + \cdots}} = \frac{\frac{V_{S}}{1 + V_{R}V_{S}}}{1 + s\frac{a_{1}}{1 + V_{R}V_{S}} + s^{2}\frac{a_{2}}{1 + V_{R}V_{S}} + \cdots}$$

 $\Rightarrow$  Systemtyp von  $G_W(s)$ 

- und von  $G_z(s)$
- $\Rightarrow$  Stationärer Endwert der Führungssprungantwort:  $\frac{V_R V_S}{1+V_R V_S}$  wie PT1 u. PT2 (mit P-Regler)
- $\Rightarrow$  Stationärer Endwert der Störsprungantwort:  $\frac{V_s}{1+V_RV_s}$









"Der P-Regler braucht eine Regelabweichung e(t) =/ 0, um am Ausgang ein Stellsignal y(t) =/ 0 auszugeben."

(Da e(t) einfach nur mit V\_R multipliziert wird)



#### Idee: verwende Integrator als Regler:

"Der Integrator integriert so lange, bis sein Eingangssignal e(t) = w(t) - v(t) = 0 ist!"

--> keine bleibende Regelabweichung (e(t) -> infty = 0) im Führungs- UND Störverhalten (gut)



## Analytische Rechnung: I-Regler für PT₁-Regelstrecke Betrachte Führungsverhalten G<sub>w</sub>(s)



#### Gegeben:

#### **Gesucht:**

$$G_R(s) = VR/s$$

$$G_s(s) = \frac{VS}{(1+sTS)}$$

$$G_S(s) = VS/(1+sTS)$$
  $G_W(s) = ... = 1/(s^2*(TS/VR*VS) + s*(1/VR*VS) + 1)$ 

$$G_Z(s) = \dots = (s*VS) / (s^2*(TS/VR*VS) + s*(1/VR*VS) + 1)$$

- $\Rightarrow$  Systemtyp von  $G_W(s)$ ?
- $\Rightarrow$  Systemtyp von  $G_7(s)$ ? DT2
- Endwert der Führungssprungantwort? a(infty) = GW(0) = 1 (unabh. v. VR!)
- ⇒ Endwert der Störsprungantwort? a(infty) = GW(0) = 0 (unabh. v. VR!)





P-Regler: schnellere Reaktion, aber nicht stationär genau

I-Regler: stationär genau, aber langsamere Reaktion

- ⇒ Kombination der Vorteile im PI-Regler
- ⇒ PI Regler: PARALLELschaltung von P- und I-Kanälen!
- ⇒ In der Praxis der mit Abstand am häufigsten eingesetzte Reglertyp!
- ⇒ Ungebräuchlich: Parallelstruktur



Bild 5-5: PI-Regler in Parallelstruktur

<mark>gebräuchliche Standardform:</mark> Verstärkung  $oldsymbol{V_R}$  und Nachstellzeit  $oldsymbol{T_N}$ 

$$G_R(s) = V_R \left(1 + \frac{1}{sT_N}\right) = V_R \frac{1 + sT_N}{sT_N}$$
 NS bei -1/TN Pol bei s = 0 ("I-Anteil")



Bild 5-6: PI-Regler

## Der PI-Regler im Zeit- und Frequenzbereich



$$G_R(s) = V_R \left(1 + \frac{1}{sT_N}\right)$$

## **Sprungantwort:**



Bild 5-7: Sprungantwort des PI-Reglers

"Nachstellzeit"

## Frequenzgang:







#### Ortskurve





z. B. im PD-Regler 
$$VR * (1 + sTV)$$

- ⇒ Schnelle Reaktion auf eine entstehende Regelabweichung auch: Bedämpfung des Regelverhaltens
- ⇒ T<sub>V</sub> = "Vorhaltzeit"
- ⇒ Idealer PD-Regler ist nicht realisierbar (Zählergrad > Nennergrad!)
- ⇒ Ideales Differenzieren wäre sowieso nicht wünschenswert (Messrausch-Verstärkung!)
  - VR(1+sTV) / (1+sTR)
- ⇒ Darum in der Praxis: PDT<sub>1</sub>-Regler
- ⇒ Meist wird Reglerzeitkonstante "klein" gewählt ⇔ T<sub>R</sub> ≅ (0,01 ... 0,2) T<sub>V</sub>
- ⇒ Wie wählt man die Reglernullstelle? Ein Konzept: "Kompensation" eines (langsamen) Streckenpols



Idee: wähle Reglernullstelle gleich einer Streckenzeitkonstante

Beispiel: PD-Regler ...

für PT2-Regelstrecke

... mit P-N-Kompensation

$$G_{R}(s) = V_{R} \cdot (1 + sT_{V})$$
hat NS
--> wird genutzt um
Pol zu kompensieren
$$G_{S}(s) = \frac{V_{S}}{(1 + sT_{S1})(1 + sT_{S2})}$$

$$T_{V} = T_{S2}$$

$$T_{V} = T_{S2}$$

Berechne  $G_w(s) =$ 

$$=\frac{\frac{V_{R}(1+sT_{V})\cdot V_{S}}{(1+sT_{S1})(1+sT_{S2})}}{1+\frac{V_{R}(1+sT_{V})\cdot V_{S}}{(1+sT_{S1})(1+sT_{S2})}}=\frac{\frac{V_{R}\cdot V_{S}}{(1+sT_{S1})}}{1+\frac{V_{R}\cdot V_{S}}{(1+sT_{S1})}}=\frac{V_{R}V_{S}}{1+V_{R}V_{S}+sT_{S1}} \xrightarrow{\text{--> entspricht PT1-Führungsverhalten mit P-Regler aperiodisch/nicht}}$$

--> Kompensation führt generell zu einem günstigen Führungsverhalten

--> Störverhalten? Getrennt betrachten, ggf. "Kriechen"

aperiodisch/nicht schwingfähig --> keine Überschwinger bei großem VR: kleine bleibende Regelabweichung mgl

## **Der PDT<sub>1</sub>-Regler im Zeit- und Frequenzbereich:**



$$G_{R}(s) = \frac{V_{R}(1 + sT_{V})}{(1 + sT_{R})}$$

## **Sprungantwort:**



## Frequenzgang:









Bild 5-21: Bode-Diagramm (Asymptoten) und Ortskurve des PDT<sub>1</sub>-Reglers



- ⇒ Parallelschaltung von P-, I- und D-Kanal mit Verzögerung 1. Ordnung
- ⇒ Vorteile: ermöglicht schnelle Reaktion und stationäre Genauigkeit
- ⇒ Darstellungsformen:

#### ⇒ Parallelstruktur (PID)

$$G_{PID}(s) = V_R^* + \frac{1}{sT_I^*} + sT_D^*$$



Bild 5-22: PID-Regler in Parallelstruktur

#### PIDT₁ additive Form

$$G_{RA}(s) = V_R^* \cdot \frac{1 + \frac{1}{sT_N^*} + sT_V^*}{1 + sT_R} = V_R^* \cdot \frac{s^2 T_N^* T_V^* + sT_N^* + 1}{sT_N^* (1 + sT_R)}$$



Bild 5-23: PIDT<sub>1</sub>-Regler in Parallelstruktur (additive Form)

hier auch Kompensation von komplexen Polen möglich

#### PIDT₁ multiplikative Form

$$G_{RM}(s) = V_R \cdot \frac{(1 + sT_N)(1 + sT_V)}{sT_N(1 + sT_R)}$$
 2 reelle NS



### **Der PIDT₁-Regler im Zeit- und Frequenzbereich:**



$$G_{RA}(s) = V_R^* \cdot \frac{1 + \frac{1}{sT_N^*} + sT_V^*}{1 + sT_R} = V_R^* \cdot \frac{s^2 T_N^* T_V^* + sT_N^* + 1}{sT_N^* (1 + sT_R)}$$

## **Sprungantwort (additive Form):**



Bild 5-24: Sprungantwort des PIDT<sub>1</sub>-Reglers

$$V_R^* = V_R \left( 1 + \frac{T_V}{T_N} \right)$$

$$T_N^* = T_N \left( 1 + \frac{T_V}{T_N} \right)$$

$$T_V^* = \frac{T_V}{1 + \frac{T_V}{T_N}}$$

 $V_R^* = V_R \left( 1 + \frac{T_V}{T_N} \right)$   $T_N^* = T_N \left( 1 + \frac{T_V}{T_N} \right)$   $T_V^* = \frac{T_V}{1 + \frac{T_V}{T_N}}$  --> Umrechnung von additiver in multiplikative Form

$$G_{RM}(s) = V_R \cdot \frac{(1 + sT_N)(1 + sT_V)}{sT_N(1 + sT_R)}$$

## Frequenzgang (multiplikative Form):





Bild 5-25: Bode-Diagramm (Asymptoten) des PID- und PIDT<sub>1</sub>-Reglers

$$T_{N} = 0.5 \cdot T_{N}^{*} \left[ 1 + \sqrt{1 - 4 \frac{T_{V}^{*}}{T_{N}^{*}}} \right] \qquad T_{V} = 0.5 \cdot T_{N}^{*} \left[ 1 - \sqrt{1 - 4 \frac{T_{V}^{*}}{T_{N}^{*}}} \right]$$

--> Umrechnung von additiver in multiplikative Form

#### **Zusammenfassung: Standard-Regler**



P-Regler:  $V_R$  + einfach in der Implementierung

+ rasche Reaktion

- bleibende Regelabweichung bei PT<sub>n</sub>-Strecken (G<sub>w</sub>(s) und G<sub>z</sub>(s))

- bei größeren Verstärkungen Schwingneigung (bei n>1)

I-Regler: VR bzw. TIR + stationär genaue Regelung ( $G_w(s)$  und  $G_z(s)$ ) durch Integration

- in den meisten Anwendungen zu langsamer / zu schwach gedämpfter Regelkreis

PI-Regler: VR, TN + rasche Reaktion durch P-Anteil

+ stationär genaue Regelung (G<sub>w</sub>(s) und G<sub>7</sub>(s)) durch I-Anteil

+ DER Standard-Regler überhaupt (!!!)

- Für manche Anwendungen zu langsamer / zu schwach gedämpfter Regelkreis

PDT<sub>1</sub>-Regler: VR, TV, TR + sehr rasche Reaktion durch D-Anteil => sehr schnelle Regelung

+ Reduktion der Schwingneigung

- bleibende Regelabweichung

- in manchen Anwendungen (bei Messrauschen) unruhige Regelung

PIDT<sub>1</sub>-Regler:  $V_R$ ,  $T_N$ ,  $T_V$ ,  $T_R$  + sehr rasche Reaktion durch P-und D-Anteil => sehr schnelle Regelung

+ Reduktion der Schwingneigung durch D-Anteil

+ stationär genau durch I-Anteil

- aufwändigster Standard-Regler

- in manchen Anwendungen (bei Messrauschen) unruhige Regelung



### **Umgang mit Stellsignalbegrenzungen**

sehr wichtig für die Praxis

für PI-Regler – in der nächsten Lehreinheit Kapitel 5, Teil b

für PIDT1-Regler – im Praktikumsversuch 3

#### **Der Kompensationsregler**

Beispiel für einen "Nicht-Standard-Regler"

Vielmehr "modellbasierte Regelungsmethode" ⇔ Reglertyp wird an Regelstrecke angepasst

=> in der nächsten Lehreinheit Kapitel 5, Teil b

=> in Praktikumsversuch 3

#### Kapitel 6 + 7: Stabilität von Regelkreisen und Reglerentwurf