

ECE 68000: MODERN AUTOMATIC CONTROL

Professor Stan Żak

Mathematical Modeling

Mathematical modeling—Outline

- Mathematical model
- Simulation and design models
- Review of work and energy
- The work-energy theorem for a particle
- Newton's second law
- The Lagrangian
- The Lagrange equations of motion

Mathematical model—Section 1.4

- A mathematical model is a mathematical representation of the significant, relevant, aspects of a given physical system
- Significance and relevance being in relation to an application where the model is to be used
- A physical system and its model are not the same things
- For brevity, refer to the physical system's model as the system
- A mathematical model of a system used to design a controller is one of the four essential elements of the control problem

Two models

- Simulation model also called truth model
- Design model

Simulation model

- The truth model is the simulation model that should include all the relevant characteristics of the physical system to be controlled
- The control designs are being simulated using the truth model
- The simulation model usually to complex for the controller design purpose

Design model

- A design model is developed by eliminating all unpleasant nonlinear effects while capturing all the essential features of the process
- A design model is much more amenable to use for the design of a control system than a simulation model

Review of work and energy—Newton's second law

- Suppose we are given a particle of a constant mass m subjected to a force F
- By Newton's second law, we have

$$F = m\frac{d\mathbf{v}}{dt} = m\mathbf{a},$$

where the force F and the velocity v are vectors

Newton's second law in 3D

$$egin{align} oldsymbol{F} &=& egin{bmatrix} F_{x_1} \ F_{x_2} \ F_{x_3} \end{bmatrix} = m egin{bmatrix} rac{d^2 x_1}{dt^2} \ rac{d^2 x_2}{dt^2} \ rac{d^2 x_3}{dt^2} \end{bmatrix} \ &=& m egin{bmatrix} rac{dv_{x_1}}{dt} \ rac{dv_{x_2}}{dt} \ rac{dv_{x_3}}{dt} \end{bmatrix} = m egin{bmatrix} a_{x_1} \ a_{x_2} \ a_{x_3} \end{bmatrix} \end{split}$$

Suppose that a force *F* is acting on a particle located at a point *A* and the particle moves to a point *B*

Work along infinitesimally small distance

• The work δW done by \boldsymbol{F} along infinitesimally small distance $\delta \boldsymbol{s} = \begin{bmatrix} \delta x_1 & \delta x_2 & \delta x_3 \end{bmatrix}^\top$ is

$$\delta W = \mathbf{F}^{\top} \delta \mathbf{s}$$

$$= \begin{bmatrix} F_{x_1} & F_{x_2} & F_{x_3} \end{bmatrix} \begin{bmatrix} \delta x_1 \\ \delta x_2 \\ \delta x_3 \end{bmatrix}$$

$$= F_{x_1} \delta x_1 + F_{x_2} \delta x_2 + F_{x_3} \delta x_3$$

• The work W_{AB} done on the path from A to B is obtained by integrating the above equation

Work W_{AB} done on the path from A to B

$$W_{AB} = \int_{A}^{B} (F_{x_1} dx_1 + F_{x_2} dx_2 + F_{x_3} dx_3)$$

 We should like to establish a relation between work and kinetic energy

Work W_{AB} in a different format

Observe that

$$\ddot{x} dx = \frac{d\dot{x}}{dt} dx = \dot{x} d\dot{x}$$

• Express W_{AB} as

$$W_{AB} = \int_{A}^{B} (m\ddot{x}_{1}dx_{1} + m\ddot{x}_{2}dx_{2} + m\ddot{x}_{3}dx_{3})$$

$$= \int_{A}^{B} m(\dot{x}_{1}d\dot{x}_{1} + \dot{x}_{2}d\dot{x}_{2} + \dot{x}_{3}d\dot{x}_{3})$$

$$= m\left(\frac{\dot{x}_{1}^{2}}{2} + \frac{\dot{x}_{2}^{2}}{2} + \frac{\dot{x}_{3}^{2}}{2}\right)\Big|_{A}^{B}$$

Work W_{AB} —contd.

- Let $\boldsymbol{v}_A = \begin{bmatrix} \dot{x}_{1A} & \dot{x}_{2A} & \dot{x}_{3A} \end{bmatrix}^{\top}$ and $\boldsymbol{v}_B = \begin{bmatrix} \dot{x}_{1B} & \dot{x}_{2B} & \dot{x}_{3B} \end{bmatrix}^{\top}$
- Recall that $\| {\pmb v} \|^2 = {\pmb v}^{\top} {\pmb v} = \dot{x}_1^2 + \dot{x}_2^2 + \dot{x}_3^2$
- Then,

$$W_{AB} = m \left(\frac{\dot{x}_1^2}{2} + \frac{\dot{x}_2^2}{2} + \frac{\dot{x}_3^2}{2} \right) \Big|_A^B$$

$$= m \left(\frac{\|\boldsymbol{v}_B\|^2}{2} - \frac{\|\boldsymbol{v}_A\|^2}{2} \right)$$

$$= \frac{m \|\boldsymbol{v}_B\|^2}{2} - \frac{m \|\boldsymbol{v}_A\|^2}{2}$$

W_{AB} and kinetic energy

• $\frac{m\|\boldsymbol{v}_B\|^2}{2}$ is the kinetic energy of the particle at the point B and $\frac{m\|\boldsymbol{v}_A\|^2}{2}$ is its kinetic energy at the point A

$$W_{AB} = \frac{m\|\boldsymbol{v}_B\|^2}{2} - \frac{m\|\boldsymbol{v}_A\|^2}{2} = K_B - K_A$$

is the work required to change particle's velocity from some value v_A to a final value v_B

• $W_{AB} = K_B - K_A = \Delta K$ is the work-energy theorem for a particle

The work-energy theorem for a particle

 The work is equal to the change in the kinetic energy,

$$W_{AB} = K_B - K_A = \Delta K$$

• Now, if the kinetic energy K changes by ΔK , the potential energy U must change by an equal but opposite amount,

$$\Delta K + \Delta U = 0.$$

 The work done by a conservative force depends only on the starting and the end points of motion and not on the path followed between them

The work-energy theorem for a particle—contd.

• Therefore, for motion in one dimension,

$$\Delta U = U(x) - U(x_0)$$

$$= -W$$

$$= -\int_{x_0}^{x} F(s) ds$$

• Differentiate the above with respect to x noting that the derivative of the constant reference $U(x_0)$ is zero,

$$F(x) = -\frac{dU(x)}{dx}$$

Generalization to 3D

We have

$$\Delta U = -\int_{x_{10}}^{x_1} F_{x_1} ds - \int_{x_{20}}^{x_2} F_{x_2} ds - \int_{x_{30}}^{x_3} F_{x_3} ds,$$

Observe that

$$\nabla(\Delta U) = \nabla(U(\mathbf{x}) - U(\mathbf{x}_0))$$
$$= \nabla U(\mathbf{x})$$

because the gradient of the constant reference $U(\mathbf{x}_0)$ is zero

Generalization to 3D—contd.

Hence

$$F(\mathbf{x}) = -\nabla(\Delta U)$$

$$= -\begin{bmatrix} \frac{\partial U}{\partial x_1} \\ \frac{\partial U}{\partial x_2} \\ \frac{\partial U}{\partial x_3} \end{bmatrix}$$

$$= -\nabla U(\mathbf{x}),$$

where
$$\mathbf{x} = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}^{\top}$$
.

Newton's equation in an equivalent format

Note that

$$K = \frac{m \|\dot{\boldsymbol{x}}\|^2}{2} = \frac{m \dot{\boldsymbol{x}}^\top \dot{\boldsymbol{x}}}{2}$$

• Hence,

$$\frac{\partial K}{\partial \dot{x}_i} = m\dot{x}_i, \quad i = 1, 2, 3$$

Thus,

$$rac{d}{dt}\left(rac{\partial K}{\partial \dot{x}_i}
ight) + (\nabla U)_i = 0, \quad i = 1, 2, 3$$

Newton's equation in an equivalent format—contd.

$$L = K - II$$

- The function *L* is called the *Lagrangian function* or just the Lagrangian
- Note that

$$\frac{\partial L}{\partial \dot{x}_i} = \frac{\partial K}{\partial \dot{x}}$$

because $\frac{\partial U}{\partial \dot{x}_i} = 0$

Also

$$\frac{\partial L}{\partial x_i} = -\frac{\partial U}{\partial x}$$

because $\frac{\partial K}{\partial x_i} = 0$

The Lagrange equations of motion in Cartesian coordinates

Combining the above gives

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{x}_i}\right) - \frac{\partial L}{\partial x_i} = 0, \quad i = 1, 2, 3$$

• The above is an equivalent representation of Newton's equations

$$m\ddot{x}_i - F_{x_i} = 0, \quad i = 1, 2, 3$$

Example—the simple pendulum

- The simple pendulum is an idealized body consisting of a point mass m, suspended by a weightless inextensible cord of length l
- The simple pendulum is an example of a one degree of freedom system with a generalized coordinate being the angular displacement θ

The simple pendulum

Simple pendulum analysis

The Lagrangian for the simple pendulum

• The pendulum kinetic energy

$$K = \frac{1}{2}ml^2\dot{\theta}^2$$

- The potential energy of the pendulum is zero when the pendulum is at rest, that is, $\theta = 0$
- Hence, its potential energy

$$U = mgl(1 - \cos\theta),$$

where g is the acceleration due to gravity

• The Lagrangian function

$$L = K - U = \frac{1}{2}ml^2\dot{\theta}^2 - mgl(1 - \cos\theta)$$

The simple pendulum equations of motion—manipulations

We compute

$$\frac{\partial L}{\partial \theta} = -mgl\sin\theta$$

and

$$\frac{\partial L}{\partial \dot{\theta}} = ml^2 \dot{\theta}$$

Hence

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{\theta}}\right) = ml^2 \ddot{\theta}$$

The simple pendulum equations of motion—more manipulations

 Combining the above terms together, we obtain the Lagrange equation describing the pendulum motion,

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\theta}} \right) - \frac{\partial L}{\partial \theta} = ml^2 \ddot{\theta} + mgl \sin \theta$$
$$= 0$$

• Solving for $\ddot{\theta}$, we obtain

$$\ddot{\theta} = -\frac{g}{l}\sin\theta$$

State-space model of the simple pendulum

- Let $x_1 = \theta$ and $x_2 = \dot{x}_1 = \dot{\theta}$
- Recall the simple pendulum equation of motion

$$\ddot{\theta} = -\frac{g}{l}\sin\theta$$

• Then, we have

$$\left[\begin{array}{c} \dot{x}_1 \\ \dot{x}_2 \end{array}\right] = \left[\begin{array}{c} x_2 \\ -\frac{g}{l}\sin x_1 \end{array}\right]$$