Perm Number _____

Your Total.....

1. (7 points each). Find gcd(a, b) and find integers s and t such that

$$\gcd(a,b) = sa + tb.$$

- (i). a = 697, b = 391.
- (ii). a = 484, b = 136.
- (iii). a = 961, b = 620.
- 2. (i). (8 points). Prove that for every integer k, k(k+1) is even.
- (ii). (8 points). Prove that for every odd number $n, n^2 1$ is divisible by 8.
- 3. (22 points.) Suppose X > 2. Prove that

$$\sum_{1 \le n \le X} [\sqrt{X^2 - n^2}] = 2 \left(\sum_{1 \le n \le X/\sqrt{2}} [\sqrt{X^2 - n^2}] \right) - [X/\sqrt{2}]^2.$$

Hint: Count the number of lattice points in the first quadrant region

$$x > 0$$
, $y > 0$, $x^2 + y^2 \le X^2$.

- 4. (20 points). Prove that $\tau(n)$ is odd if and only if n is a complete square (there is a positive integer k such that $n = k^2$.)
 - 5. (i). (11 points). Prove that if n > 2, then $\varphi(n)$ is an even number.
- (ii). (11 points). Prove that if n is divisible by p_1p_2 , where p_1 and p_2 are primes satisfying $3 \le p_1 < p_2$, then n is not divisible by $\varphi(n)$.

Hint: Discuss the cases that n is odd and n is even respectively.