Data mining & Machine Learning

CS 373 Purdue University

Dan Goldwasser dgoldwas@purdue.edu

Today's Lecture

Descriptive modeling:

evaluation

Cluster validity

- For prediction tasks there are a variety of external evaluation metrics
 - Accuracy, squared loss, area under ROC, etc.
- For cluster analysis the external evaluation should evaluate the "goodness" of the resulting clusters
- Why do we want external validation?
 - To avoid finding patterns in noise
 - To compare clustering algorithms
 - To compare two sets of clusters

Random data

Cluster Evaluation

- Evaluating the quality of the obtained clusters is very difficult!
- By definition, unsupervised learning entails a "fuzzy" evaluation criterion
 - Since there is no supervision, there is no clear goal to optimize for
- Is all hope lost?
- Our next step would be to find ways to formalize these intuitions

Evaluation approaches

- Determine the clustering tendency of the data
 - Are there good clusters in the data? (regardless of specific ones you find)
- Evaluate the clusters using known class labels
 - Match between clusters and annotated data (meaningful if the labels and clusters should be correlated)
- Evaluate how well the clusters "fit" the data
- Determine which of two different clustering results is better
- Determine the "correct" number of clusters

Evaluation measures

Supervised

Measures the extent to which clusters match external class label values

Unsupervised

Measures goodness of fit without class labels

Unsupervised

Clustering tendency

- Evaluate whether a dataset has clusters without clustering
- Most common approach (for low-dimensional Euclidean data)
 - Use a statistical test for spatial randomness
 - **Hopkins statistic**: sample 20 points from dataset, generate 20 random points in same space

$$H = rac{\sum_{i=1}^p w_i}{\sum_{i=1}^p u_i + \sum_{i=1}^p w_i}$$
 u_i : distance from random point to NN in data w_i : distance from sample point to NN in data

 Values near 0.5 indicate random data 0 indicates highly clustered, and 1.0 indicates uniformly distributed

Correlation

- Construct an "ideal" similarity matrix based on cluster membership
 - Entry i,j is 1 if i and j are in the same cluster, 0 otherwise
- Compute the correlation between the initial similarity matrix and the "ideal" similarity matrix that corresponds to the cluster results
 - High correlation indicates that points in same cluster are close to each other

Example

Corr = -0.9235

Corr = -0.5810

Visual inspection

- Order the proximity matrix with respect to cluster labels
- Inspect visually
- Good clustering exhibit clear block pattern

Example 1

Example II

Cohesion and separation

Cluster Separation: Measure how distinct or well- separated a cluster is from other clusters

Cluster Cohesion: Measures how closely related are objects in a cluster

Cohesion

- Measures how closely related the objects are within each cluster
- Within cluster sum of squared errors (SSE)
 - For each point, the error is the distance to the centroid
- Within cluster pairwise weighting
 - Sum distance between all pairs of points in same cluster

Separation

- Measures how distinct a cluster is from the other clusters
- Between cluster SSE (for cluster C)
 - For each cluster C', the error is the distance from the centroid c to the other centroid c'
 - The error is multiplied by the cluster size |C'|
- Between cluster pairwise weighting
 - Sum distance between all pairs of points in different clusters

Silhouette coefficient

- Combines both cohesion and separation
- For an individual point i:
 - A = average distance of i to points in same cluster
 - *B* = average distance of *i* to points in other clusters
 - S = (B-A) / max(A,B)
- Can calculate average S for a cluster or clustering
 - Closer to 1 is better

Determining k

 Approach: evaluate over a range of k, look for peak, dip, or knee in evaluation measure

Supervised

Class-label evaluation

- If you have class labels why cluster?
 - Usually small hand-labeled dataset for evaluation
 - But large dataset to cluster automatically
 - May want to assess how close clusters correspond to classes but still allow for more variation in the clusters

Classification-oriented

- Purity: a measure of the extent to which a cluster contains objects of a single class
 - The purity of cluster i is p_i=max p_{ij}

$$p_{ij} = m_{ij} / m_i$$

$$purity = \sum_{i=1}^{K} \frac{N_i}{N} p_i$$

- High purity is easy to achieve when the number of clusters is large
- Entropy: the degree to which each cluster consists of objects of a single class
 - For each cluster i compute the probability of class j

$$e_i = -\sum_{i=1}^C p_{ij} log \; p_{ij}$$

Classification-oriented

Normalized mutual information gain:

 Measures the amount of information by which our knowledge about the classes increases when we are told what the clusters are

- NMI score is between 0 (min) and 1 (max).
- Denominator (normalization) adjusts for problem that entropy tends to increase with the number of clusters

Classification-oriented

Precision

 The fraction of a cluster that consists of objects of a specified class

Recall

 The extent to which a cluster contains all objects of a specified class

Accuracy

 Why is it hard to measure the accuracy of a clustering if you know class labels?

Similarity-oriented

- Based on premise that any pair of objects in the same cluster should have the same class and vice versa
- Construct the "ideal" similarity matrix based on cluster membership
 - Entry i,j is 1 if i and j are in the same cluster, 0 otherwise
- Construct the "ideal" similarity matrix based on class values
 - Entry i,j is 1 if i and j are in the same class, 0 otherwise
- Compare the two ideal similarity matrices

Approaches

- Correlation between two ideal matrices
- Measures of binary similarity between two ideal matrices
 - $f_{00} = \#$ pairs of objects having diff class and diff cluster
 - f₀₁ = # pairs of objects having diff class and same cluster
 - f₁₀ = # pairs of objects having same class and diff cluster
 - f₁ = # pairs of objects having same class and same cluster

$$Rand = \frac{f_{00} + f_{11}}{f_{00} + f_{01} + f_{10} + f_{11}} \quad Jaccard = \frac{f_{11}}{f_{01} + f_{10} + f_{11}}$$