Определение доходности облигаций по данным ММВБ

Маричук Ю.В.

Осебе

- Маричук Юлия Владимировна
- Московский Энергетический институт (Технический университет). Ф-т Автоматики и вычислительной техники.
- SberData, руководитель направления, реализация проверок качества данных в АХД (TeraData)
- К переезду не готова
- Marichuk.y.v@sberbank.ru

Описание проекта

- Необходимо оценить рынок рублевых облигаций по распределению купонной доходности, разделить их на кластеры и рассчитать доходность на период год по ограниченному скоупу облигаций (условия в задании).
- Ссылка на репозиторий с кодом https://github.com/YuliaMV/da_homeworks/blob/main/Project/Proje ct_DA%20v4.ipynb

Бизнес-логика

- Подготовка данных
- Анализ распределения купонной доходности с помощью статистик и визуализаций
- Выделение группы облигаций для более детального исследования
- Подбор оптимальных параметров, кластеризация датасета и анализ получившихся кластеров
- Расчет доходности с периодом год по облигациям, удовлетворяющим условию в задании
- Подбор оптимальных параметров, кластеризация датасета и анализ доходности получившихся кластеров

Гистограмма и ядерная оценка плотности ставки купона

df.COUP	ONPERCE	NT.value_counts().head(10)
0.01	487	
13.00	37	
12.00	36	
9.50	31	
11.00	28	
12.50	27	
8.00	25	
9.00	25	
7.50	24	
10.00	24	

На графике и в цифрах видно, что значение ставки купона 0,01 сильно отличается от распределения остальных значений ставки. Далее введем дополнительный признак flag_001.

Зависимость признака flag_001 от категориальных признаков

Облигации со ставкой купона 0.01% низкорисковые (HIGH_RISK=0), только в 3-ем уровне листинга и без обеспечения (LISTLEVEL=3, IS_COLLATERAL=0)

Гистограммы числовых признаков с группировкой по флагу flag_001

У облигаций со ставкой купона 0.01% всегда маленькая сумма купона (COUPONVALUE), также длительный купонный период (COUPONLENGTH) наблюдается только у этих облигаций.

Матрица корреляций для flag_001 = 0

Положительная корреляция купонного дохода (COUPONPERCENT) с:

- частота выплаты купона (COUPONFREQUENCY)
- уровень риска (HIGH_RISK)
- уровнь листинга (LISTLEVEL)

Отрицательная корреляция с:

- длина купонного периода (COUPONLENGTH)
- наличие обеспечения (IS_COLLATERAL)

Pacпределение на boxplot в зависимости от категориальных переменных

Некоторые группы имеют очень плотное распределение, почти везде медиана отличается от среднего. Сохранилось много выбросов.

Разделение облигаций на кластеры с помощью метода k-Means

- Признаки PRICE, DURATION, COUPONPERCENT
- Гиперпараметр n_clusters = 4

	count	mean	std	min	25%	50%	75%	max
Cluster_Labels								
0	1061.0	7.225433	2.268766	0.016	6.5500	7.65	8.700	11.00
1	403.0	13.276660	2.924519	9.750	11.2500	12.50	14.000	26.00
2	41.0	11.271220	5.392743	1.400	6.5000	10.15	16.900	18.83
3	34.0	9.598824	5.926427	0.100	2.3825	12.00	13.875	16.00

Нулевой кластер самый многочисленный, в нем облигации с низкими ставками купона, среднее и медиана ниже, чем в других кластерах.

Первый кластер второй по величине, в нем облигации с высокими ставками купона, среднее и медиана выше, чем в других кластерах. Дисперсия у этих кластеров не велика, распределение достаточно плотное.

Два других кластера малочисленны и имеют большую дисперсию.

Графики распределения ставки купона и boxplot

Нулевой и первый кластеры имеют плотное распределение с выбросами, второй и третий "размазаны". Медиана второго больше смещена влево, медиана третьего вправо.

Зависимость ставки купона от дюрации, цены в %%, количества дней до погашения и частоты выплаты купонов

Расчет доходности

Формула доходности

$$Profit = \frac{((\text{Цена_номинальная--Цена_покупки})*(1\text{ЕСЛИ} \leq 0 \ \big|\ 0.87\text{ЕСЛИ} > 0) - \text{НКД} + 0.87*\text{Купонный_доход_руб} * X_\text{лет})*100}{((\text{Цена_покупки} + \text{НКД})*(1 + \text{Комиссия_брокера_в_процентах}/100 + \text{Комиссия_биржи}/100))}$$

Статистические характеристики полученной величины:

- Очень большая дисперсия
- Есть отрицательная доходность
- Есть очень большая доходность

Выборочное среднее = 12.1736 Дисперсия = 772.1726 Стандартное отклонение = 27.7880 Минимум = -47.3128 Максимум = 462.3648 Медиана = 7.6781 Мода = 0.0085

Гистограмма и ядерная оценка плотности доходности

Длинный правый хвост, что подтверждается множеством выбросов на boxplot.

Кластеризация облигаций с помощью метода k-Means и распределение доходности

- Признаки PRICE, COUPONPERCENT, PROFIT, DAYS_TO_MATDATE
- Гиперпараметр n_clusters = 4

У кластеров 1 и 3 плотное распределение с небольшой дисперсией. Кластера 2 и 4 имеют большую дисперсию и более плоское распределение. Доходность в них высокая, не пересекается с доходностью в других кластерах, даже в хвостах

	count	mean	std	min	25%	50%	75%	max
Cluster_Labels								
0	36.0	4.081484	4.180802	0.000816	0.008022	2.625633	7.802378	11.919662
1	176.0	8.572907	2.686294	2.537208	6.784533	7.775246	10.430601	15.638851
2	38.0	29.387916	6.569362	17.564409	23.313154	29.699392	35.901595	39.796517
3	40.0	2.930402	1.442007	0.277429	1.856311	2.829479	3.599282	6.135566
4	16.0	23.454193	5.938708	15.328116	18.383909	20.980474	30.352084	30.784134

Зависимость доходности от ставки купона и от цены в %%

- Нулевой кластер (черный) имеет низкие ставки купонов, цену ниже номинала и в среднем доходность ниже ключевой ставки ЦБ (красная линия).
- Первый кластер (синий) самый многочисленный имеет доходность вокруг ключевой ставки ЦБ от 5% до 16%
- Второй кластер (зеленый) имеет маленькую купонную ставку, цену сильно ниже номинала и большую доходность. Доходность высокая возможно за счет большой разницы между ценой номинала и ценой покупки, а возможно за счет высокого НКД
- Третий кластер (желтый) имеет доходность ниже ключевой ставки ЦБ
- Четвертый кластер (серый) имеет высокую купонную ставку, цену ниже номинала и высокую доходность

Доходность облигаций во 2-ом и 4-ом кластерах сильно выше ключевой ставки ЦБ

Используемые технологии

Проект реализован на Python в Jupyter-ноутбук. Использовались библиотеки Python:

- pandas, numpy для расчетов и подготовки данных
- matplotlib, seaborn для визуализаций
- кластеризация проведена методом k-Means

СПАСИБО ЗА ВНИМАНИЕ!