

Varianta 28

Subiectul I.

- **a)** $|1+i| = \sqrt{2}$.
- **b**) 0.
- c) Ecuația tangentei este x + 2y 10 = 0.
- **d**) $LM = \sqrt{2} = MN = NP = PL$, $M = \frac{\pi}{2}$, deci patrulaterul LMNP este un pătrat.
- e) O(0,0) este punctul de intersecție al diagonalelor.
- **f)** a = 13 şi b = 0.

Subjectul II.

- 1.
- **a**) $a_6 = 243$.
- **b)** Probabilitatea căutată este $p = \frac{3}{5}$
- c) g(2)=1.
- **d**) $x \in \{-2, 2\}.$
- **e)** $x_1^3 + x_2^3 + x_3^3 = 18$.
- 2
- **a)** $f'(x) = 2^x \cdot \ln 2 + 3^x \cdot \ln 3, x \in \mathbb{R}$.
- **b)** $\int_{0}^{1} f(x) dx = \frac{1}{\ln 2} + \frac{2}{\ln 3}$.
- c) f''(x) > 0, $\forall x \in \mathbf{R}$, deci funcția f este convexă pe \mathbf{R} .
- **d)** $\lim_{x \to 1} \frac{f(x) f(1)}{x 1} = 2 \cdot \ln 2 + 3 \cdot \ln 3$.
- e) Dreapta Ox: y = 0 este asimptota orizontală spre $-\infty$ la graficul funcției f.

Subjectul III.

- a) Se verifică prin calcul direct.
- **b**) $\det(A) = -1$, rang (A) = 2.
- c) $\det(B) = -4 + 3 \neq 0$, aşadar B este inversabilă. Obținem $B^{-1} = \begin{pmatrix} 2 & -3 \\ 1 & -2 \end{pmatrix} = B$.
- **d**) $AB = \begin{pmatrix} 4 & -7 \\ -1 & 2 \end{pmatrix}$ și $BA = \begin{pmatrix} 2 & 7 \\ 1 & 4 \end{pmatrix}$, așadar $AB \neq BA$.

e) Notăm
$$C = BA = \begin{pmatrix} 2 & 7 \\ 1 & 4 \end{pmatrix}$$
.

Pentru orice $n \in \mathbf{N}^*$, există $a_n, b_n, c_n, d_n \in \mathbf{R}$ astfel încât $C^n = \begin{pmatrix} a_n & b_n \\ c_n & d_n \end{pmatrix}$.

mai mult, $\begin{cases} a_{n+1} = 2a_n + b_n \\ b_{n+1} = 7a_n + 4b_n \end{cases}, \ \forall \ n \in \mathbf{N}^* \ \ \text{si se arată prin inducție că} \ \ \forall \ n \in \mathbf{N}^* \ , \ b_n > 0 \ ,$ deci $\forall \ n \in \mathbf{N}^* \ , \ \ C^n \neq I_n \ .$

f) Pentru
$$n \in \mathbb{N}^*$$
, considerăm matricele $X_n = \begin{pmatrix} 1 & n \\ 0 & -1 \end{pmatrix}$, pentru care $X_n^2 = I_2$.

Așadar ecuația $X^2 = I_2$ are o infinitate de soluții, deci mai mult de 2007.

g) În grupul $(Gl_2(\mathbf{R}), \cdot)$ al matricelor inversabile de ordinul 2 cu coeficienți reali, avem $A, B \in Gl_2(\mathbf{R}), A^2 = B^2 = I_2$ și matricea BA are ordinul infinit.

Subjectul IV.

- a) Calcul direct.
- b) Evident, deoarece funcția sinus este periodică, de perioadă principală 2π .
- c) Dacă pentru orice $x \in \mathbf{R}$, $f(x) = F'(x) \ge 0$, atunci funcția F este crescătoare pe \mathbf{R} și fiind periodică (din punctul \mathbf{b})), rezultă că F este constantă pe \mathbf{R} . Deoarece F(0) = 0, deducem că $\forall x \in \mathbf{R}$, F(x) = 0.
- d) Se arată prin calcul direct.
- e) Se arată prin calcul direct.
- **f**) Dacă pentru orice $x \in \mathbf{R}$, $f(x) \ge 0$, din **c**) rezultă $\forall x \in \mathbf{R}$, f(x) = F'(x) = 0. Atunci, pentru orice $p \in \{1, 2, ..., n\}$, avem:

$$0 = \int_{0}^{2\pi} \cos px \cdot f(x) dx \stackrel{\text{d}, e}{=} a_{p} \cdot S(p, p) = a_{p} \cdot \pi, \text{ deci } a_{p} = 0.$$

$$\mathbf{g}) \int_{0}^{2\pi} f^{2}(x) dx = 0 \iff$$

$$\Leftrightarrow 0 = \sum_{p=1}^{n} a_p^2 \cdot \int_0^{2\pi} \cos^2 px \, dx + 2 \sum_{1 \le p < q \le n} a_p \cdot a_q \cdot \int_0^{2\pi} \cos px \cdot \cos qx \, dx = \pi \sum_{p=1}^{n} a_p^2.$$

Rezultă că $a_1 = a_2 = ... = a_n = 0$