(https://stanford.edu/~shervine/teaching/cme-106/cheatsheet-probability#cme-106---introduction-to-probability-and-statistics-for-engineers)CME 106 - Introduction to Probability and Statistics for Engineers (teaching/cme-106)

English Français (l/fr/teaching/cme-106/pense-bete-probabilites)

Probability	Statistics
-------------	------------

(https://stanford.edu/~shervine/teaching/cme--106/cheatsheetprobability#cheatsheet)Probability cheatsheet

★ Star 102

By Afshine Amidi (https://twitter.com/afshinea) and Shervine Amidi (https://twitter.com/shervinea)

(https://stanford.edu/~shervine/teaching/cme-106/cheatsheetprobability#introduction) Introduction to Probability and Combinatorics

Sample space — The set of all possible outcomes of an experiment is known as the sample space of the experiment and is denoted by S.

Event — Any subset E of the sample space is known as an event. That is, an event is a set consisting of possible outcomes of the experiment. If the outcome of the experiment is contained in E, then we say that E has occurred.

Axioms of probability For each event E, we denote P(E) as the probability of event E occurring.

Axiom 1 — Every probability is between 0 and 1 included, i.e.

 $0 \leqslant P(E) \leqslant 1$

Axiom 2 — The probability that at least one of the elementary events in the entire sample space will occur is 1, i.e:

$$P(S) = 1$$

Axiom 3 — For any sequence of mutually exclusive events E_1,\dots,E_n , we have:

$$oxed{P\left(igcup_{i=1}^n E_i
ight) = \sum_{i=1}^n P(E_i)}$$

Permutation — A permutation is an arrangement of r objects from a pool of n objects, in a given order. The number of such arrangements is given by P(n, r), defined as:

$$P(n,r) = rac{n!}{(n-r)!}$$

Combination — A combination is an arrangement of r objects from a pool of n objects, where the order does not matter. The number of such arrangements is given by C(n,r), defined as:

$$oxed{C(n,r) = rac{P(n,r)}{r!} = rac{n!}{r!(n-r)!}}$$

Remark: we note that for $0 \leqslant r \leqslant n$, we have $P(n,r) \geqslant C(n,r)$.

(https://stanford.edu/~shervine/teaching/cme-106/cheatsheetprobability#conditional-probability) Conditional Probability

Bayes' rule — For events A and B such that P(B) > 0, we have:

$$P(A|B) = rac{P(B|A)P(A)}{P(B)}$$

Remark: we have $P(A \cap B) = P(A)P(B|A) = P(A|B)P(B)$.

Partition — Let $\{A_i, i \in [1, n]\}$ be such that for all i, $A_i \neq \emptyset$. We say that $\{A_i\}$ is a partition if we have:

$$oxed{ orall i
eq j, A_i \cap A_j = \emptyset \quad ext{ and } \quad igcup_{i=1}^n A_i = S }$$

Remark: for any event B in the sample space, we have $P(B) = \sum_{i=1}^n P(B|A_i)P(A_i)$.

Extended form of Bayes' rule — Let $\{A_i, i \in [\![1,n]\!]\}$ be a partition of the sample space. We have:

$$P(A_k|B) = rac{P(B|A_k)P(A_k)}{\displaystyle\sum_{i=1}^n P(B|A_i)P(A_i)}$$

Independence — Two events A and B are independent if and only if we have:

$$P(A \cap B) = P(A)P(B)$$

(https://stanford.edu/~shervine/teaching/cme-106/cheatsheetprobability#random-variables) Random Variables

Definitions

Random variable — A random variable, often noted X, is a function that maps every element in a sample space to a real line.

Cumulative distribution function (CDF) — The cumulative distribution function F, which is monotonically non-decreasing and is such that $\lim_{x\to -\infty} F(x)=0$ and $\lim_{x\to +\infty} F(x)=1$, is defined as:

$$F(x) = P(X \leqslant x)$$

Remark: we have $P(a < X \leqslant B) = F(b) - F(a)$.

Probability density function (PDF) — The probability density function f is the probability that X takes on values between two adjacent realizations of the random variable.

Relationships involving the PDF and CDF

Discrete case — Here, X takes discrete values, such as outcomes of coin flips. By noting f and F the PDF and CDF respectively, we have the following relations:

$$oxed{F(x) = \sum_{x_i \leqslant x} P(X = x_i)} \quad ext{and} \quad oxed{f(x_j) = P(X = x_j)}$$

On top of that, the PDF is such that:

$$oxed{0\leqslant f(x_j)\leqslant 1} \quad ext{and} \quad oxed{\sum_j f(x_j)=1}$$

Continuous case — Here, X takes continuous values, such as the temperature in the room. By noting f and F the PDF and CDF respectively, we have the following relations:

$$oxed{F(x) = \int_{-\infty}^x f(y) dy} \quad ext{and} \quad egin{bmatrix} f(x) = rac{dF}{dx} \end{bmatrix}$$

On top of that, the PDF is such that:

$$oxed{f(x)\geqslant 0} \quad ext{and} \quad egin{bmatrix} \int_{-\infty}^{+\infty}f(x)dx=1 \end{bmatrix}$$

(https://stanford.edu/~shervine/teaching/cme-106/cheatsheetprobability#expectation)

Expectation and Moments of the Distribution

In the following sections, we are going to keep the same notations as before and the formulas will be explicitly detailed for the discrete **(D)** and continuous **(C)** cases.

Expected value — The expected value of a random variable, also known as the mean value or the first moment, is often noted E[X] or μ and is the value that we would obtain by averaging the results of the experiment infinitely many times. It is computed as follows:

$$ext{(D)} \quad \overline{\left[E[X] = \sum_{i=1}^n x_i f(x_i)
ight]} \quad ext{ and } \quad ext{(C)} \quad \overline{\left[E[X] = \int_{-\infty}^{+\infty} x f(x) dx
ight]}$$

Generalization of the expected value — The expected value of a function of a random variable g(X) is computed as follows:

$$(\mathrm{D}) \quad \overline{\left[E[g(X)] = \sum_{i=1}^n g(x_i) f(x_i)
ight]} \quad ext{ and } \quad (\mathrm{C}) \quad \overline{\left[E[g(X)] = \int_{-\infty}^{+\infty} g(x) f(x) dx
ight]}$$

 k^{th} moment — The k^{th} moment, noted $E[X^k]$, is the value of X^k that we expect to observe on average on infinitely many trials. It is computed as follows:

$$(\mathrm{D}) \quad \overline{\left[E[X^k] = \sum_{i=1}^n x_i^k f(x_i)
ight]} \quad ext{ and } \quad (\mathrm{C}) \quad \overline{\left[E[X^k] = \int_{-\infty}^{+\infty} x^k f(x) dx
ight]}$$

Remark: the k^{th} moment is a particular case of the previous definition with $g:X\mapsto X^k$.

Variance — The variance of a random variable, often noted Var(X) or σ^2 , is a measure of the spread of its distribution function. It is determined as follows:

$${
m Var}(X) = E[(X-E[X])^2] = E[X^2] - E[X]^2$$

Standard deviation — The standard deviation of a random variable, often noted σ , is a measure of the spread of its distribution function which is compatible with the units of the actual random variable. It is determined as follows:

$$\sigma = \sqrt{\operatorname{Var}(X)}$$

Characteristic function — A characteristic function $\psi(\omega)$ is derived from a probability density function f(x) and is defined as:

$$ext{(D)} \quad \boxed{\psi(\omega) = \sum_{i=1}^n f(x_i) e^{i\omega x_i}} \quad ext{ and } \quad ext{(C)} \quad \boxed{\psi(\omega) = \int_{-\infty}^{+\infty} f(x) e^{i\omega x} dx}$$

Euler's formula - For $\theta \in \mathbb{R}$, the Euler formula is the name given to the identity:

$$e^{i heta}=\cos(heta)+i\sin(heta)$$

Revisiting the k^{th} **moment** — The k^{th} moment can also be computed with the characteristic function as follows:

$$oxed{E[X^k] = rac{1}{i^k}iggl[rac{\partial^k \psi}{\partial \omega^k}iggr]_{\omega=0}}$$

Transformation of random variables — Let the variables X and Y be linked by some function. By noting f_X and f_Y the distribution function of X and Y respectively, we have:

$$f_Y(y) = f_X(x) \left| rac{dx}{dy}
ight|$$

Leibniz integral rule — Let g be a function of x and potentially c, and a, b boundaries that may depend on c. We have:

$$\left[rac{\partial}{\partial c}igg(\int_a^b g(x)dxigg) = rac{\partial b}{\partial c}\cdot g(b) - rac{\partial a}{\partial c}\cdot g(a) + \int_a^b rac{\partial g}{\partial c}(x)dx
ight]$$

(https://stanford.edu/~shervine/teaching/cme-106/cheatsheetprobability#probability-distributions) Probability Distributions

Chebyshev's inequality — Let X be a random variable with expected value μ . For $k, \sigma > 0$, we have the following inequality:

$$P(|X-\mu|\geqslant k\sigma)\leqslant rac{1}{k^2}$$

Discrete distributions — Here are the main discrete distributions to have in mind:

Distribution	P(X=x)	$\psi(\omega)$	E[X]	$\operatorname{Var}(X)$	Illustration
$X \sim \mathcal{B}(n,p)$	$\binom{n}{x}p^xq^{n-x}$	$(pe^{i\omega}+q)^n$	np	npq	
$X \sim ext{Po}(\mu)$	$\frac{\mu^x}{x!}e^{-\mu}$	$e^{\mu(e^{i\omega}-1)}$	μ	μ	

Continuous distributions — Here are the main continuous distributions to have in mind:

Distribution	f(x)	$\psi(\omega)$	E[X]	$\operatorname{Var}(X)$	I
$X \sim \mathcal{U}(a,b)$	$\frac{1}{b-a}$	$rac{e^{i\omega b}-e^{i\omega a}}{(b-a)i\omega}$	$rac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{1}{a}$
$X \sim \mathcal{N}(\mu, \sigma)$	$rac{1}{\sqrt{2\pi}\sigma}e^{-rac{1}{2}\left(rac{x-\mu}{\sigma} ight)^2}$	$e^{i\omega\mu-rac{1}{2}\omega^2\sigma^2}$	μ	σ^2	
$X \sim ext{Exp}(\lambda)$	$\lambda e^{-\lambda x}$	$rac{1}{1-rac{i\omega}{\lambda}}$	$\frac{1}{\lambda}$	$rac{1}{\lambda^2}$	0

(https://stanford.edu/~shervine/teaching/cme-106/cheatsheetprobability#joint-rv) Jointly Distributed Random Variables

Joint probability density function — The joint probability density function of two random variables X and Y, that we note f_{XY} , is defined as follows:

$$\text{(D)} \quad \boxed{f_{XY}(x_i,y_j) = P(X=x_i \text{ and } Y=y_j)}$$

$$\text{(C)} \quad \boxed{f_{XY}(x,y) \Delta x \Delta y = P(x \leqslant X \leqslant x + \Delta x \text{ and } y \leqslant Y \leqslant y + \Delta y)}$$

Marginal density — We define the marginal density for the variable X as follows:

$$ext{(D)} \quad \boxed{f_X(x_i) = \sum_j f_{XY}(x_i, y_j)} \quad ext{ and } \quad ext{(C)} \quad \boxed{f_X(x) = \int_{-\infty}^{+\infty} f_{XY}(x, y) dy}$$

Cumulative distribution — We define cumulative distrubution F_{XY} as follows:

$$\text{(D)} \quad \boxed{F_{XY}(x,y) = \sum_{x_i \leqslant x} \sum_{y_j \leqslant y} f_{XY}(x_i,y_j)} \quad \text{ and } \quad \text{(C)} \quad \boxed{F_{XY}(x,y) = \int_{-\infty}^x \int_{-\infty}^y f_{XY}(x',y') \epsilon}$$

Conditional density — The conditional density of X with respect to Y, often noted $f_{X|Y}$, is defined as follows:

$$\left|f_{X|Y}(x)=rac{f_{XY}(x,y)}{f_{Y}(y)}
ight|$$

Independence — Two random variables X and Y are said to be independent if we have:

$$\boxed{f_{XY}(x,y) = f_X(x) f_Y(y)}$$

Moments of joint distributions — We define the moments of joint distributions of random variables X and Y as follows:

$$\text{(D)} \quad \boxed{E[X^pY^q] = \sum_i \sum_j x_i^p y_j^q f(x_i, y_j)} \quad \text{ and } \quad \text{(C)} \quad \boxed{E[X^pY^q] = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x^p y^q f(x_i, y_j)}$$

Distribution of a sum of independent random variables — Let $Y=X_1+\ldots+X_n$ with X_1,\ldots,X_n independent. We have:

$$\left|\psi_Y(\omega) = \prod_{k=1}^n \psi_{X_k}(\omega)
ight|$$

Covariance — We define the covariance of two random variables X and Y, that we note σ_{XY}^2 or more commonly $\mathrm{Cov}(X,Y)$, as follows:

$$oxed{\operatorname{Cov}(X,Y) riangleq\sigma^2_{XY}=E[(X-\mu_X)(Y-\mu_Y)]=E[XY]-\mu_X\mu_Y}$$

Correlation — By noting σ_X, σ_Y the standard deviations of X and Y, we define the correlation between the random variables X and Y, noted ρ_{XY} , as follows:

$$ho_{XY} = rac{\sigma_{XY}^2}{\sigma_X \sigma_Y}$$

Remark 1: we note that for any random variables X,Y , we have $ho_{XY}\in [-1,1].$

Remark 2: If X and Y are independent, then $ho_{XY}=0$.

(https://twitter.com/shervinea) (https://linkedin.com/in/shervineamidi)

(https://github.com/shervinea) (https://scholar.google.com/citations?user=nMnMTm8AAAAJ)

