# Model-Based RLI

**Basic Components of MBRL** 

• Only needed samples from the transition dynamics.

- Only needed samples from the transition dynamics.
  - Example: Policy gradients

$$\nabla_{\theta} J(\theta) \approx \sum_{t=0}^{T-1} R_{t:T-1} \nabla_{\theta} \log \pi_{\theta}(s_t, a_t)$$

- Only needed samples from the transition dynamics.
  - Example: Policy gradients

$$\nabla_{\theta} J(\theta) \approx \sum_{t=0}^{T-1} R_{t:T-1} \nabla_{\theta} \log \pi_{\theta}(s_t, a_t)$$

• Wasting data! A lot of information from (s, a, s') pairs that are independent of policy.

- Only needed samples from the transition dynamics.
  - Example: Policy gradients

$$\nabla_{\theta} J(\theta) \approx \sum_{t=0}^{T-1} R_{t:T-1} \nabla_{\theta} \log \pi_{\theta}(s_t, a_t)$$

• Wasting data! A lot of information from (s, a, s') pairs that are independent of policy.

Can we use (s, a, s') data to model  $p(s' \mid s, a)$ ?

What is model-based RL?

- What is model-based RL?
- What are the pros and cons of these methods?

- What is model-based RL?
- What are the pros and cons of these methods?
- What kinds of models can I use?

- What is model-based RL?
- What are the pros and cons of these methods?
- What kinds of models can I use?
- How do I used a learned model to solve the RL problem?

• Pro: Models are reward-function agnostic.

- Pro: Models are reward-function agnostic.
  - Can reuse models when changing reward function.

- Pro: Models are reward-function agnostic.
  - Can reuse models when changing reward function.
- Pro: Models can make more effective use of data.

- Pro: Models are reward-function agnostic.
  - Can reuse models when changing reward function.
- Pro: Models can make more effective use of data.
  - Model could potentially generalize beyond data distribution.

- Pro: Models are reward-function agnostic.
  - Can reuse models when changing reward function.
- Pro: Models can make more effective use of data.
  - Model could potentially generalize beyond data distribution.
- Con: Compounding model errors.

- Pro: Models are reward-function agnostic.
  - Can reuse models when changing reward function.
- Pro: Models can make more effective use of data.
  - Model could potentially generalize beyond data distribution.
- Con: Compounding model errors.
  - Similar to the distribution shift problem of imitation learning.

- Pro: Models are reward-function agnostic.
  - Can reuse models when changing reward function.
- Pro: Models can make more effective use of data.
  - Model could potentially generalize beyond data distribution.
- Con: Compounding model errors.
  - Similar to the distribution shift problem of imitation learning.
  - Big limiting factor!

# Part I: How to Train your Model

Can we use (s, a, s') data to model  $p(s' \mid s, a)$ ?

Can we use (s, a, s') data to model  $p(s' \mid s, a)$ ?

 Sounds like regression? But your standard regression model only outputs a single prediction, not a distribution:

Can we use (s, a, s') data to model  $p(s' \mid s, a)$ ?

• Sounds like regression? But your standard regression model only outputs a single prediction, not a distribution:

(s,a)

Can we use (s, a, s') data to model  $p(s' \mid s, a)$ ?

 Sounds like regression? But your standard regression model only outputs a single prediction, not a distribution:



Can we use (s, a, s') data to model  $p(s' \mid s, a)$ ?

• Sounds like regression? But your standard regression model only outputs a single prediction, not a distribution:



How do we get a distributional output?

- How do we get a distributional output?
  - Simple idea: fix a constant  $\sigma^2$ , and consider a **constant-variance Gaussian noise model**:

- How do we get a distributional output?
  - Simple idea: fix a constant  $\sigma^2$ , and consider a **constant-variance Gaussian noise model**:



- How do we get a distributional output?
  - Simple idea: fix a constant  $\sigma^2$ , and consider a **constant-variance Gaussian noise model**:



- How do we get a distributional output?
  - Simple idea: fix a constant  $\sigma^2$ , and consider a **constant-variance Gaussian noise model**:



$$\mathcal{N}(\mu_{\theta}(s,a),\sigma^2)$$

- How do we get a distributional output?
  - Simple idea: fix a constant  $\sigma^2$ , and consider a **constant-variance Gaussian noise model:**



•  $L_2$  regression = MLE with a constant-variance noise model!

- $L_2$  regression = MLE with a constant-variance noise model!
- When modeling, need to consider three components explicitly:

- $L_2$  regression = MLE with a constant-variance noise model!
- When modeling, need to consider three components explicitly:

| Model Arch | Noise Model | Loss Function |
|------------|-------------|---------------|
|            |             |               |
|            |             |               |
|            |             |               |

- $L_2$  regression = MLE with a constant-variance noise model!
- When modeling, need to consider three components explicitly:

| Model Arch                                                                | Noise Model | Loss Function |
|---------------------------------------------------------------------------|-------------|---------------|
| Neural networks Linear Predictors Decision Trees Kernel Linear Regression |             |               |

- $L_2$  regression = MLE with a constant-variance noise model!
- When modeling, need to consider three components explicitly:

| Model Arch                                                                | Noise Model                               | Loss Function |
|---------------------------------------------------------------------------|-------------------------------------------|---------------|
| Neural networks Linear Predictors Decision Trees Kernel Linear Regression | Constant-variance Gaussian<br>noise model |               |

- $L_2$  regression = MLE with a constant-variance noise model!
- When modeling, need to consider three components explicitly:

| Model Arch                                                                | Noise Model                            | Loss Function      |
|---------------------------------------------------------------------------|----------------------------------------|--------------------|
| Neural networks Linear Predictors Decision Trees Kernel Linear Regression | Constant-variance Gaussian noise model | Maximum likelihood |

| Model Arch | Noise Model | Loss Function |
|------------|-------------|---------------|
|            |             |               |

| Model Arch     | Noise Model | Loss Function |
|----------------|-------------|---------------|
| Neural network |             |               |

| Model Arch     | Noise Model                          | Loss Function |
|----------------|--------------------------------------|---------------|
| Neural network | Heteroskedastic Gaussian noise model |               |

| Model Arch     | Noise Model                          | Loss Function      |
|----------------|--------------------------------------|--------------------|
| Neural network | Heteroskedastic Gaussian noise model | Maximum likelihood |

| Model Arch     | Noise Model                          | Loss Function      |
|----------------|--------------------------------------|--------------------|
| Neural network | Heteroskedastic Gaussian noise model | Maximum likelihood |

| Model Arch     | Noise Model                          | Loss Function      |
|----------------|--------------------------------------|--------------------|
| Neural network | Heteroskedastic Gaussian noise model | Maximum likelihood |



| Model Arch     | Noise Model                          | Loss Function      |
|----------------|--------------------------------------|--------------------|
| Neural network | Heteroskedastic Gaussian noise model | Maximum likelihood |



• Problem: Model subject to compounding errors.

- Problem: Model subject to compounding errors.
  - Would be nice if the model could tell us if it is "uncertain" about its prediction.

- Problem: Model subject to compounding errors.
  - Would be nice if the model could tell us if it is "uncertain" about its prediction.
- What is "uncertainty"?

- Problem: Model subject to compounding errors.
  - Would be nice if the model could tell us if it is "uncertain" about its prediction.
- What is "uncertainty"?
  - Leading question: is learning a noise model quantifying uncertainty?

- Problem: Model subject to compounding errors.
  - Would be nice if the model could tell us if it is "uncertain" about its prediction.
- What is "uncertainty"?
  - Leading question: is learning a noise model quantifying uncertainty?
    - Yes! But not the one we necessarily care about!







Where do we need more data?

Setting:

- Setting:
  - Randomly sampled dataset  $\mathscr{D}$ .

- Setting:
  - Randomly sampled dataset 2.
  - Some training procedure to get predictor  $\hat{f}_{\mathscr{D}}$

- Setting:
  - Randomly sampled dataset 2.
  - Some training procedure to get predictor  $\hat{f}_{\mathscr{D}}$
  - Want to evaluate error on a fixed test input x.

- Setting:
  - Randomly sampled dataset  $\mathscr{D}$ .
  - Some training procedure to get predictor  $\hat{f}_{\mathscr{D}}$
  - Want to evaluate error on a fixed test input x.
    - Label generated as  $f^*(x) + \epsilon_x$  (noise distribution depends on x).

- Setting:
  - Randomly sampled dataset 2.
  - Some training procedure to get predictor  $\hat{f}_{\mathscr{D}}$
  - Want to evaluate error on a fixed test input x.
    - Label generated as  $f^*(x) + \epsilon_x$  (noise distribution depends on x).
- Bias-variance decomposition:

$$\mathbb{E}_{\mathcal{D},\epsilon_{x}}\left[(y-\hat{f}_{\mathcal{D}}(x))^{2}\right] = \left(f^{*}(x) - \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)]\right)^{2} + \operatorname{Var}_{\mathcal{D}}\left[\hat{f}_{\mathcal{D}}(x)\right] + \mathbb{E}[\epsilon_{x}^{2}]$$

- Setting:
  - Randomly sampled dataset D.
  - Some training procedure to get predictor  $\hat{f}_{\mathscr{D}}$
  - Want to evaluate error on a fixed test input x.
    - Label generated as  $f^*(x) + \epsilon_x$  (noise distribution depends on x).
- Bias-variance decomposition:

$$\mathbb{E}_{\mathscr{D},\epsilon_{x}}\left[(y-\hat{f}_{\mathscr{D}}(x))^{2}\right] = \frac{\left(f^{*}(x)-\mathbb{E}_{\mathscr{D}}[\hat{f}_{\mathscr{D}}(x)]\right)^{2}}{\mathsf{Bias}} + \mathrm{Var}_{\mathscr{D}}\left[\hat{f}_{\mathscr{D}}(x)\right] + \mathbb{E}[\epsilon_{x}^{2}]$$

- Setting:
  - Randomly sampled dataset 2.
  - Some training procedure to get predictor  $\hat{f}_{\mathscr{D}}$
  - Want to evaluate error on a fixed test input x.
    - Label generated as  $f^*(x) + \epsilon_x$  (noise distribution depends on x).
- Bias-variance decomposition:

$$\mathbb{E}_{\mathcal{D},\epsilon_{x}}\left[(y-\hat{f}_{\mathcal{D}}(x))^{2}\right] = \underbrace{\left(f^{*}(x)-\mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)]\right)^{2}}_{\text{Bias}} + \underbrace{\operatorname{Var}_{\mathcal{D}}\left[\hat{f}_{\mathcal{D}}(x)\right]}_{\text{Variance}} + \mathbb{E}[\epsilon_{x}^{2}]$$

- Setting:
  - Randomly sampled dataset 2.
  - Some training procedure to get predictor  $\hat{f}_{\mathscr{D}}$
  - Want to evaluate error on a fixed test input x.
    - Label generated as  $f^*(x) + \epsilon_x$  (noise distribution depends on x).
- Bias-variance decomposition:

$$\mathbb{E}_{\mathcal{D},\epsilon_{x}}\left[(y-\hat{f}_{\mathcal{D}}(x))^{2}\right] = \underbrace{\left(f^{*}(x)-\mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)]\right)^{2}}_{\text{Bias}} + \underbrace{\operatorname{Var}_{\mathcal{D}}\left[\hat{f}_{\mathcal{D}}(x)\right]}_{\text{Variance}} + \underbrace{\mathbb{E}[\epsilon_{x}^{2}]}_{\text{Irreducible}}$$

# Bias-Variance Decomposition in MBRL

$$\mathbb{E}_{\mathcal{D}, e_x} \left[ (y - \hat{f}_{\mathcal{D}}(x))^2 \right] = \underbrace{ \left( f^*(x) - \mathbb{E}_{\mathcal{D}} [\hat{f}_{\mathcal{D}}(x)] \right)^2}_{\text{Bias}} + \underbrace{ \text{Var}_{\mathcal{D}} \left[ \hat{f}_{\mathcal{D}}(x) \right]}_{\text{Variance}} + \underbrace{ \mathbb{E}[e_x^2]}_{\text{Irreducible}}$$

# Bias-Variance Decomposition in MBRL

$$\mathbb{E}_{\mathcal{D},\epsilon_{x}}\left[(y-\hat{f}_{\mathcal{D}}(x))^{2}\right] = \underbrace{\left(f^{*}(x)-\mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)]\right)^{2}}_{\text{Bias}} + \underbrace{\operatorname{Var}_{\mathcal{D}}\left[\hat{f}_{\mathcal{D}}(x)\right]}_{\text{Variance}} + \underbrace{\mathbb{E}[\epsilon_{x}^{2}]}_{\text{Irreducible}}$$

Bias: Error from choosing a model class that cannot capture the real dynamics.

### Bias-Variance Decomposition in MBRL

$$\mathbb{E}_{\mathcal{D},\epsilon_{x}}\left[(y-\hat{f}_{\mathcal{D}}(x))^{2}\right] = \underbrace{\left(f^{*}(x)-\mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)]\right)^{2}}_{\text{Bias}} + \underbrace{\operatorname{Var}_{\mathcal{D}}\left[\hat{f}_{\mathcal{D}}(x)\right]}_{\text{Variance}} + \underbrace{\mathbb{E}[\epsilon_{x}^{2}]}_{\text{Irreducible}}$$

- Bias: Error from choosing a model class that cannot capture the real dynamics.
- Variance: How much the prediction varies over different possible datasets.

### Bias-Variance Decomposition in MBRL

$$\mathbb{E}_{\mathcal{D},\epsilon_{x}}\left[(y-\hat{f}_{\mathcal{D}}(x))^{2}\right] = \underbrace{\left(f^{*}(x)-\mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)]\right)^{2}}_{\text{Bias}} + \underbrace{\operatorname{Var}_{\mathcal{D}}\left[\hat{f}_{\mathcal{D}}(x)\right]}_{\text{Variance}} + \mathbb{E}[\epsilon_{x}^{2}]$$

- Bias: Error from choosing a model class that cannot capture the real dynamics.
- Variance: How much the prediction varies over different possible datasets.
- Irreducible Error: Inherent environment noise.







• We want to estimate  $\mathrm{Var}_{\mathscr{D}}[\hat{f}_{\mathscr{D}}(x)].$ 

- We want to estimate  $Var_{\mathscr{D}}[\hat{f}_{\mathscr{D}}(x)]$ .
  - How?? We only have one dataset.

- We want to estimate  $Var_{\mathscr{D}}[\hat{f}_{\mathscr{D}}(x)]$ .
  - How?? We only have one dataset.
- Trick from classical statistics: pretend the uniform distribution over  $\mathscr{D}$  is a good proxy for the real dataset-generating distribution!

- We want to estimate  $Var_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)]$ .
  - How?? We only have one dataset.
- Trick from classical statistics: pretend the uniform distribution over  $\mathscr{D}$  is a good proxy for the real dataset-generating distribution!
  - Known as bootstrapping.

- We want to estimate  $Var_{\mathscr{D}}[\hat{f}_{\mathscr{D}}(x)]$ .
  - How?? We only have one dataset.
- Trick from classical statistics: pretend the uniform distribution over  $\mathscr{D}$  is a good proxy for the real dataset-generating distribution!
  - Known as bootstrapping.
    - 1. Sample datasets  $\mathcal{D}_1, \ldots, \mathcal{D}_m$  from  $\mathcal{D}$  with replacement.

- We want to estimate  $Var_{\mathscr{D}}[\hat{f}_{\mathscr{D}}(x)]$ .
  - How?? We only have one dataset.
- Trick from classical statistics: pretend the uniform distribution over  ${\mathcal D}$  is a good proxy for the real dataset-generating distribution!
  - Known as bootstrapping.
    - 1. Sample datasets  $\mathcal{D}_1, \ldots, \mathcal{D}_m$  from  $\mathcal{D}$  with replacement.
    - 2. Train an *ensemble of models*  $\hat{p}_i := \hat{p}_{\mathcal{D}_i}$  for i = 1, ..., m.

- We want to estimate  $Var_{\mathscr{D}}[\hat{f}_{\mathscr{D}}(x)]$ .
  - How?? We only have one dataset.
- Trick from classical statistics: pretend the uniform distribution over  ${\mathcal D}$  is a good proxy for the real dataset-generating distribution!
  - Known as bootstrapping.
    - 1. Sample datasets  $\mathcal{D}_1, \ldots, \mathcal{D}_m$  from  $\mathcal{D}$  with replacement.
    - 2. Train an *ensemble of models*  $\hat{p}_i := \hat{p}_{\mathcal{D}_i}$  for i = 1, ..., m.

Key Takeaway: Train an ensemble of models to allow the agent to quantify "addressable" uncertainty when it needs to.

# Part III: Trajectory Prediction

RL algorithms all model the effect of applying a policy to an environment

- RL algorithms all model the effect of applying a policy to an environment
  - e.g. Q-functions model the return of a particular policy.

- RL algorithms all model the effect of applying a policy to an environment
  - e.g. Q-functions model the return of a particular policy.
  - With models, we can go beyond modeling returns to modeling whole trajectories.

- RL algorithms all model the effect of applying a policy to an environment
  - e.g. Q-functions model the return of a particular policy.
  - With models, we can go beyond modeling returns to modeling whole trajectories.
- Problem: Given an action sequence, a given starting state, and a model, how do we predict the resulting trajectory?

 Problem: Given an action sequence, a given starting state, and a model, how do we predict the resulting trajectory?

 Problem: Given an action sequence, a given starting state, and a model, how do we predict the resulting trajectory?

Need to incorporate two aspects of our trained models:

- Problem: Given an action sequence, a given starting state, and a model, how do we predict the resulting trajectory?
- Need to incorporate two aspects of our trained models:
  - We have an ensemble of models, each representing a distinct "belief" of the correct dynamics.

- Problem: Given an action sequence, a given starting state, and a model, how do we predict the resulting trajectory?
- Need to incorporate two aspects of our trained models:
  - We have an ensemble of models, each representing a distinct "belief" of the correct dynamics.
  - Each model in the ensemble models inherent environment noise.

• Given starting state  $s_0$ , action sequence  $(a_0, a_1, a_2)$ , models  $\hat{p}_1, \hat{p}_2, \hat{p}_3$ :

 $\bullet$   $S_0$ 

• Given starting state  $s_0$ , action sequence  $(a_0, a_1, a_2)$ , models  $\hat{p}_1, \hat{p}_2, \hat{p}_3$ :



 $\bullet$   $s_0$ 























• Given starting state  $s_0$ , action sequence  $(a_0, a_1, a_2)$ , models  $\hat{p}_1, \hat{p}_2, \hat{p}_3$ :



Known as particle-based sampling

## Part IV: From Prediction to Control

 Sample a bunch of action sequences, check which one does the best, and use that sequence for the entire episode!

 Sample a bunch of action sequences, check which one does the best, and use that sequence for the entire episode!

#### Algorithm 2 Open-Loop Control

**Require:** Number of sequences m, action sequence proposal distribution  $\mu$ , dynamics model  $\hat{p}$ .

- 1: Sample i.i.d. action sequences  $\{(a_0^{(i)}, a_1^{(i)}, \dots, a_{T-1}^{(i)})\}_{i=1,\dots,m}$  from  $\mu$ .
- 2: **for** i = 1, ..., m **do**
- 3: Sample from the model  $\hat{p}$  to perform Monte Carlo estimation of

$$R_i = \mathbb{E}\left[\sum_{t=0}^{T-1} r(s_t, a_t^{(i)})\right].$$

- 4:  $i^* \leftarrow \operatorname{argmax}_i R_i$ .
- 5: Apply action sequence  $(a_0^{(i^*)}, a_1^{(i^*)}, \dots, a_{T-1}^{(i^*)})$  to the environment.

 Sample a bunch of action sequences, check which one does the best, and use that sequence for the entire episode!

#### Algorithm 2 Open-Loop Control

**Require:** Number of sequences m, action sequence proposal distribution  $\mu$ , dynamics model  $\hat{p}$ .

1: Sample i.i.d. action sequences 
$$\{(a_0^{(i)}, a_1^{(i)}, \dots, a_{T-1}^{(i)})\}_{i=1,\dots,m}$$
 from  $\mu$ .

- 2: **for** i = 1, ..., m **do**
- 3: Sample from the model  $\hat{p}$  to perform Monte Carlo estimation of

$$R_i = \mathbb{E}\left[\sum_{t=0}^{T-1} r(s_t, a_t^{(i)})\right].$$

- 4:  $i^* \leftarrow \operatorname{argmax}_i R_i$ .
- 5: Apply action sequence  $(a_0^{(i^*)}, a_1^{(i^*)}, \dots, a_{T-1}^{(i^*)})$  to the environment.

"Open loop": not adapting response to observed environment state.

When would choosing a fixed sequence of actions be near-optimal?

- When would choosing a fixed sequence of actions be near-optimal?
  - 1. Dynamics have minimal stochasticity.

- When would choosing a fixed sequence of actions be near-optimal?
  - 1. Dynamics have minimal stochasticity.
    - If there is a lot of stochasticity, might want to replan actions if realized noise is unfavorable.

- When would choosing a fixed sequence of actions be near-optimal?
  - 1. Dynamics have minimal stochasticity.
    - If there is a lot of stochasticity, might want to replan actions if realized noise is unfavorable.
  - 2. Using a very accurate model.

- When would choosing a fixed sequence of actions be near-optimal?
  - 1. Dynamics have minimal stochasticity.
    - If there is a lot of stochasticity, might want to replan actions if realized noise is unfavorable.
  - 2. Using a very accurate model.
    - If action sequence is not well-modeled, may want to replan actions based on new states seen.

Easy fix: Replan actions at every step!

• Easy fix: Replan actions at every step!

#### Algorithm 3 Model-Predictive Control

**Require:** Number of sequences m, action sequence proposal distribution  $\mu$ , dynamics model  $\hat{p}$ .

- 1: for every timestep t do
- 2: Sample i.i.d. action sequences  $\{(a_t^{(i)}, a_{t+1}^{(i)}, \dots, a_{t+T-1}^{(i)})\}_{i=1,\dots,m}$  from  $\mu$ .
- 3: **for** i = 1, ..., m **do**
- 4: Sample from the model  $\hat{p}$  to perform Monte Carlo estimation of

$$R_i = \mathbb{E}\left[\sum_{s=0}^{T-1} r(s_{t+s}, a_{t+s}^{(i)}) \mid s_t\right].$$

Easy fix: Replan actions at every step!

#### **Algorithm 3** Model-Predictive Control

**Require:** Number of sequences m, action sequence proposal distribution  $\mu$ , dynamics model  $\hat{p}$ .

- 1: for every timestep t do
- 2: Sample i.i.d. action sequences  $\{(a_t^{(i)}, a_{t+1}^{(i)}, \dots, a_{t+T-1}^{(i)})\}_{i=1,\dots,m}$  from  $\mu$ .
- 3: **for** i = 1, ..., m **do**
- 4: Sample from the model  $\hat{p}$  to perform Monte Carlo estimation of

$$R_i = \mathbb{E}\left[\sum_{s=0}^{T-1} r(s_{t+s}, a_{t+s}^{(i)}) \mid s_t\right].$$

#### Is the loop closed?

#### **Algorithm 3** Model-Predictive Control

**Require:** Number of sequences m, action sequence proposal distribution  $\mu$ , dynamics model  $\hat{p}$ .

- 1: for every timestep t do
- 2: Sample i.i.d. action sequences  $\{(a_t^{(i)}, a_{t+1}^{(i)}, \dots, a_{t+T-1}^{(i)})\}_{i=1,\dots,m}$  from  $\mu$ .
- 3: **for** i = 1, ..., m **do**
- 4: Sample from the model  $\hat{p}$  to perform Monte Carlo estimation of

$$R_i = \mathbb{E}\left[\sum_{s=0}^{T-1} r(s_{t+s}, a_{t+s}^{(i)}) \mid s_t\right].$$

#### Is the loop closed?

Is there something that looks weird here?

#### **Algorithm 3** Model-Predictive Control

**Require:** Number of sequences m, action sequence proposal distribution  $\mu$ , dynamics model  $\hat{p}$ .

- 1: for every timestep t do
- 2: Sample i.i.d. action sequences  $\{(a_t^{(i)}, a_{t+1}^{(i)}, \dots, a_{t+T-1}^{(i)})\}_{i=1,\dots,m}$  from  $\mu$ .
- 3: **for** i = 1, ..., m **do**
- 4: Sample from the model  $\hat{p}$  to perform Monte Carlo estimation of

$$R_i = \mathbb{E}\left[\sum_{s=0}^{T-1} r(s_{t+s}, a_{t+s}^{(i)}) \mid s_t\right].$$

#### Is the loop closed?

Is there something that looks weird here?

#### **Algorithm 3** Model-Predictive Control

**Require:** Number of sequences m, action sequence proposal distribution  $\mu$ , dynamics model  $\hat{p}$ .

- 1: for every timestep t do
- 2: Sample i.i.d. action sequences  $\{(a_t^{(i)}, a_{t+1}^{(i)}, \dots, a_{t+T-1}^{(i)})\}_{i=1,\dots,m}$  from  $\mu$ .
- 3: **for** i = 1, ..., m **do**
- 4: Sample from the model  $\hat{p}$  to perform Monte Carlo estimation of

$$R_i = \mathbb{E}\left[\sum_{s=0}^{T-1} r(s_{t+s}, a_{t+s}^{(i)}) \mid s_t\right].$$

## Closed loops only!

#### Closed loops only!

How to specify closed-loop behaviors? Policies!

#### Closed loops only!

How to specify closed-loop behaviors? Policies!

#### **Algorithm 4** Model-Predictive Control with Policies

**Require:** Number of policy candidates m, policy proposal distribution  $\mu$ , dynamics model  $\hat{p}$ .

- 1: for every timestep t do
- 2: Sample m policy candidates  $\pi_{\theta_1}, \ldots, \pi_{\theta_m}$  from  $\mu$ .
- 3: **for** i = 1, ..., m **do**
- 4: Sample from the model  $\hat{p}$  to perform Monte Carlo estimation of

$$R_i = \mathbb{E}\left[\sum_{s=0}^{T-1} r(s_{t+s}, a_{t+s}) \mid s_t\right], \quad a_{t+s} \sim \pi_{\theta_i}(s_{t+s}).$$

5: Apply the action from the best policy.

| Control Policy | Improvement |
|----------------|-------------|
|                |             |
|                |             |
|                |             |

| Control Policy    | Improvement |
|-------------------|-------------|
| Open-loop control |             |
|                   |             |
|                   |             |

| Control Policy                            | Improvement |
|-------------------------------------------|-------------|
| Open-loop control                         |             |
| (Closed-loop) Model<br>Predictive Control |             |
|                                           |             |

| Control Policy                            | Improvement                                                  |
|-------------------------------------------|--------------------------------------------------------------|
| Open-loop control                         |                                                              |
| (Closed-loop) Model<br>Predictive Control | Replanning at every step to take into account current state. |
|                                           |                                                              |

| Control Policy                            | Improvement                                                  |
|-------------------------------------------|--------------------------------------------------------------|
| Open-loop control                         |                                                              |
| (Closed-loop) Model<br>Predictive Control | Replanning at every step to take into account current state. |
| MPC with (Adaptive) Policies              |                                                              |

| Control Policy                            | Improvement                                                                                |
|-------------------------------------------|--------------------------------------------------------------------------------------------|
| Open-loop control                         |                                                                                            |
| (Closed-loop) Model<br>Predictive Control | Replanning at every step to take into account current state.                               |
| MPC with (Adaptive) Policies              | Fixes mismatch between evaluated policies (openloop) and the overall policy (closed-loop). |

# Part V: Putting Everything Together Suddenly (PETS)

#### Probabilistic Ensembles with Trajectory Sampling (PETS)

#### Probabilistic Ensembles with Trajectory Sampling (PETS)

Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynamics Models

#### Probabilistic Ensembles with Trajectory Sampling (PETS)

# Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynamics Models

**Kurtland Chua** 

Roberto Calandra

**Rowan McAllister** 

**Sergey Levine** 

Berkeley Artificial Intelligence Research
University of California, Berkeley
{kchua, roberto.calandra, rmcallister, svlevine}@berkeley.edu

| Component | PETS choice |
|-----------|-------------|
|           |             |
|           |             |
|           |             |

| Component | PETS choice |
|-----------|-------------|
| Model     |             |
|           |             |
|           |             |

| Component | PETS choice                                                       |
|-----------|-------------------------------------------------------------------|
| Model     | Ensemble of neural networks<br>Heteroskedastic noise model<br>MLE |
|           |                                                                   |
|           |                                                                   |

| Component  | PETS choice                                                       |
|------------|-------------------------------------------------------------------|
| Model      | Ensemble of neural networks<br>Heteroskedastic noise model<br>MLE |
| Controller |                                                                   |
|            |                                                                   |

| Component  | PETS choice                                                       |
|------------|-------------------------------------------------------------------|
| Model      | Ensemble of neural networks<br>Heteroskedastic noise model<br>MLE |
| Controller | Basic MPC                                                         |
|            |                                                                   |

| Component            | PETS choice                                                       |
|----------------------|-------------------------------------------------------------------|
| Model                | Ensemble of neural networks<br>Heteroskedastic noise model<br>MLE |
| Controller           | Basic MPC                                                         |
| Extras/Useful Tricks |                                                                   |

| Component            | PETS choice                                                                          |
|----------------------|--------------------------------------------------------------------------------------|
| Model                | Ensemble of neural networks<br>Heteroskedastic noise model<br>MLE                    |
| Controller           | Basic MPC                                                                            |
| Extras/Useful Tricks | Cross-entropy method-based optimization; Model predicts state change; Warm-start MPC |

#### Some experimental results



#### Some experimental results



#### PETS on HalfCheetah



#### PETS on HalfCheetah



You may not like it, but this is what peak performance looks like