Advanced Robot Perception

Fortgeschrittene Konzepte der Wahrnehmung für Robotersysteme

Georg von Wichert, Siemens Corporate Technology

The Perception-Cognition-Action-Loop

The Perception-Cognition-Action-Loop

Wie geht es weiter?

- Wichtige Sensortypen und ihre Eigenschaften im Hinblick auf die Wahrnehmungsaufgabe
- Klassiker der Sensordatenverarbeitungsalgorithmik und dafür erforderliche mathematische Tools
- Thema Kalibrierung
- Fusion von Daten und Informationen aus unterschiedlichen Quellen
- Vom Sensordatum zur Interpretation
- Wahrnehmung als Prozess

Sensortypen 1: Was wird gemessen?

- Interne Sensorik (proprioceptive)
 - Messwerte aus den "Innereien": Beschleunigungen,
 Gelenkstellungen, Kräfte, Ströme/Spannungen,…
- Externe Sensorik (exteroceptive)
 - Messungen, die Umgebung betreffend: Distanz zu Objekten, Bilder, Kompass,...
- Messungen beider Sensorklassen müssen häufig kombiniert werden
 - Verwendung interner Sensoren, um die Lage eines externen Sensors zu bestimmen (Beispiel kommt später!)

Sensortypen 2: Wie wird gemessen?

- Passive Sensoren: Messen Energie aus der Umgebung
 - Beispiel: Kameras
- Aktive Sensoren: Senden Energie aus und messen Antwort
 - Beispiel: Sonar (Ultraschallsensoren)
 - Robustere Messungen (gegenüber Umwelteinflüssen),
 aber ggf. Störung der Umgebung
 - Prinzipiell begrenzte Reichweite

Es gibt zahllose Sensoren, die man in der Robotik einsetzen kann

- Gelenkstellung: Resistive (Potentiometer), optische, magnetische, induktive, kapazitive Sensoren
 - Inkrementelle Messungen / Absolute Messungen
- Berührung/Nähe: Mechanische Schalter, induktive/kapazitive Näherungssensoren, Druckmessungen
 - "taktile Sensoren"
- Kraft: Dehnungsmeßstreifen, Drucksensoren
- Abstand (aktiv): Sonar, Radar, Laserabstandssensoren, Strukturiertes Licht
- Abstand passiv: Optische Triangulation -> Stereokameras
- Richtung: Kompass, Neigungssensoren (Inclinometer), Gyroskop, Beschleunigungssensoren (Accelerometer)
- Position: Satellitennavigation (GPS / Glonass / Galileo)

Lage: Potentiometer

• Stellungsabhängiger Spannungsteiler

Lage: Resolver (Koordinatenwandler)

- Lage (Rotation) wird in ein elektrisches Signal umgewandelt (Phase)
- In der Regel mehrpolig

Lage: Absolutwertgeber

- Lage wird (optisch) kodiert und elektrisch ausgelesen
- Rotation/Translation

Lage: Inkrementalencoder

- Zählen von Impulsen,
 - Richtung aus phasenverschobenen Zählern
- Keine Absolute Messung: Referenzschalter für Nulllage

Kraft: Dehnungsmeßstreifen(DMS)

- Messung von Deformation
 - Resistiv
 - Dehnungsmeßstreifen
 z.B. aufgeklebt auf Metall
 - Elektrisch
 - piezoelektrische Sensoren
 - Induktiv
 - Optisch

Abstand: Ultraschall (Sonar)

- Messung der Schalllaufzeit
 - Reichweite einige Meter
 - Tote Zone von einigen Zentimetern
 - Störungen durch Luftbewegungen
 - Weiche Oberflächen absorbieren den Schall
 - Übersprechen zwischen Sensoren (Cross talk)
- Vergleichsweise billig!

Abstand: Laser

- Messung der Lichtlaufzeit
 - Reichweite einige 100Meter
 - Hohe Genauigkeit
 - Je nach Me
 ßverfahren quasi keine tote Zone
 - Schwarze Oberflächen absorbieren das Licht
- Vergleichsweise teuer!

Abstand: Laser

- Messung der Lichtlaufzeit
 - Reichweite einige 100Meter
 - Hohe Genauigkeit
 - Je nach Me
 ßverfahren quasi keine tote Zone
 - Schwarze Oberflächen absorbieren das Licht
- Vergleichsweise teuer!

Abstand: Laser 3D (ToF-) Kameras

- Lichtlaufzeitmessung
 - Lichtpulse
- Auflösung typisch 200 x 200 Pixel
- Reichweite: wenige Meter
- Abstandsmessung stark vom Ziel anhängig
- Starke systematische Fehler insbesondere in Ecken (Mehrfachreflexion)
- Cross Talk bei mehreren Sensoren
- Empfindlich gegen Fremdlicht

- Die Linse fokussiert das Licht auf den Film
 - Strahlen durch das optische Zentrum werden nicht abgelenkt

- Bei falscher Fokussierung wird das Bild unscharf
 - Strahlen die von einem Punkt ausgehen treffen sich nicht

Parallele Strahlen treffen sich im Brennpunkt

 Linsenverzerrung durch "nichtideale" Abbildung (im Vergleich zur Lockkamera)

Rohbild, aufgenommen mit starkem Weitwinkel (sehr kurze Brennweite)

Bild nach der Entzerrung durch den Rechner

- 2 verschiedene Sensortypen: CMOS und CCD
 - Früher lieferten CCD Sensoren bessere Qualität (Lichtempfindlichkeit/Rauschen)
 - Fotodioden als lichtempfindlichesElement (Picture Element = Pixel)
- Farbwahrnehmung (über Filter)
 - 3 Sensoren: jeweils für Rot/Grün/Blau
 - 1 Sensor mit Filterpattern: meist Bayer

Farbfilterschemata

"De-Bayering"

Störende Effekte

- De-Bayering (vorherige Folie)
- Bewegungsunschärfe (Motion Blur)
- "Rolling Shutter"
 - Zeilenweise Belichtung
 - Billige CMOS-Kameras
- Bildrauschen bei zu niedriger Belichtung der Sensoren

Abstand: Stereokameras

Abstand: Stereokameras

- Hohe Auflösung (Kameraabhängig)
- Korrespondenzsuche erfordert Struktur im Bild
- Keine 3D-Daten von homogenen Flächen

Abstand: Strukturiertes Licht

- Stereo: 2 Kameras + Korrespondenzsuche
- Strukturiertest Licht: Ersetze eine Kamera durch einen Projektor
 - Der Projektor projiziert einen Code, der dann im Bild die Korrespondenzsuche vereinfacht
- Sehr hohe Auflösungen möglich

Abstand: RGB-D Kameras

- Microsoft / Primesense
 - Infrarotprojektor
 - Infrarotkamera
 - Farbkamera
- Hohe Auflösung (640x480 -> 320x240)
- Bildfrequenz 30 Hz
- Reichweite: 0.8m bis etwa 4m
- gute Tiefendaten
- sehr winkeltreu
- Pixelgenaues Farbbild
- aber empfindlich gegen Fremdlicht (Sonne)
- Farbbild etwa wie bei billigen Webcams

Kodiertes Strukturmuster (Infrarot)

Abstand: RGB-D Kameras

Ausgabe: Farbige Punktewolke, d.h. Punktewolke mit pixelgenau registriertem Farbbild)

Abstand: RGB-D Kameras

- Mit dem Messabstand steigender Distanzfehler
 - Ähnliche Fehler machen alle Stereokameras
 - Kinect hat deutliches Diskretisierungsrauschen

Kinect-Abstandsfehler

Trotzdem kann man daraus größere Karten zusammenbauen

Diplomarbeit Dong Chen

• Siemens, Neuperlach, 60m x 60m

2D- UND 3D-GEOMETRIE

Geometrische Primitive in 2D

• 2D-Punkt

$$\mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2$$

Augmentierter Vektor

$$\bar{\mathbf{x}} = \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} \in \mathbb{R}^3$$

Homogene Koordinaten

$$\tilde{\mathbf{x}} = \begin{pmatrix} \tilde{x} \\ \tilde{y} \\ \tilde{w} \end{pmatrix} \in \mathbb{P}^2$$

Geometrische Primitive in 2D

- Homogene Vektoren, die sich nur in der Skalierung unterscheiden, repräsentieren denselben 2D-Punkt
- Konvertierung in inhomogene Koordinaten über Division durch das letzte Element

$$\tilde{\mathbf{x}} = \begin{pmatrix} \tilde{x} \\ \tilde{y} \\ \tilde{w} \end{pmatrix} = \begin{pmatrix} \tilde{x}/\tilde{w} \\ \tilde{y}/\tilde{w} \\ 1 \end{pmatrix} = \tilde{w} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \tilde{w}\bar{\mathbf{x}}$$

• Punkte mit $\tilde{w}=0$ werden als "ideale Punkte" bezeichnet, sie liegen im Unendlichen und repräsentieren eine Richtung

• 2D Gerade

$$\tilde{\mathbf{l}} = (a, b, c)^{\top}$$

2D Geradengleichung

$$\bar{\mathbf{x}} \cdot \tilde{\mathbf{l}} = ax + by + c = 0$$

Vektorielle Darstellung über die normierte Normale

$$\tilde{\mathbf{l}} = (\hat{n}_x, \hat{n}_y, d)^{\top} = (\hat{\mathbf{n}}, d)^{\top} \quad \text{with} \quad \|\hat{\mathbf{n}}\| = 1$$

wobei d der Abstand der Gerade zum Ursprung ist

• Polarkoordinaten der Gerade: $(\theta,d)^{\top}$ (wird z.B. bei der Houghtransformation verwendet)

$$\hat{\mathbf{n}} = (\cos \theta, \sin \theta)^{\top}$$

Gerade durch zwei Punkte

$$\mathbf{\tilde{l}} = \mathbf{\tilde{x}}_1 \times \mathbf{\tilde{x}}_2$$

• Schnittpunkt zweier Geraden

$$\mathbf{\tilde{x}} = \mathbf{\tilde{l}}_1 \times \mathbf{\tilde{l}}_2$$

• 3D-Punkt

$$\mathbf{x} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3$$

Augmentierter Vektor

$$\bar{\mathbf{x}} = \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} \in \mathbb{R}^4$$

Homogene Koordinaten

$$\tilde{\mathbf{x}} = \begin{pmatrix} \tilde{x} \\ \tilde{y} \\ \tilde{z} \\ \tilde{w} \end{pmatrix} \in \mathbb{P}^3$$

• 3D Ebene

$$\tilde{\mathbf{m}} = (a, b, c, d)^{\top}$$

• 3D Ebenengleichung
$$\mathbf{\bar{x}} \cdot \mathbf{\tilde{m}} = ax + by + cz + d = 0$$

 Normalisierte Ebene mit normalenvektor

$$\mathbf{m}=(\hat{n}_x,\hat{n}_y,\hat{n}_z,d)^{ op}=(\mathbf{\hat{n}},d)$$
 ($\|\mathbf{\hat{n}}\|=1$) und Abstand d

• 3D Gerade $\mathbf{r} = (1 - \lambda)\mathbf{p} + \lambda\mathbf{q}$ durch die Punkte \mathbf{p}, \mathbf{q}

• Unendliche Gerade: $\lambda \in \mathbb{R}$

• Geradenstück zwischen p, q :

$$0 \le \lambda \le 1$$

Planare Transformationen in 2D

Translation

$$\mathbf{x}' = \mathbf{x} + \mathbf{t}$$

$$\mathbf{x}' = \underbrace{\left(\mathbf{I} \quad \mathbf{t}\right)}_{2 \times 3} \mathbf{\bar{x}}$$

$$\mathbf{\bar{x}}' = \underbrace{\begin{pmatrix} \mathbf{I} & \mathbf{t} \\ \mathbf{0}^{\top} & 1 \end{pmatrix}}_{3 \times 3} \mathbf{\bar{x}}$$

wobei $\mathbf{t} \in \mathbb{R}^2$ Translationsvektor, und \mathbf{I} die Einheitsmatrix ist. $\mathbf{0}$ ist der Nullvektor

Translation

$$\mathbf{x}' = \mathbf{x} + \mathbf{t}$$

$$\mathbf{x}' = \underbrace{\left(\mathbf{I} \quad \mathbf{t}\right)}_{2 \times 3} \mathbf{\bar{x}}$$

$$\bar{\mathbf{x}}' = \underbrace{\begin{pmatrix} \mathbf{I} & \mathbf{t} \\ \mathbf{0}^\top & 1 \end{pmatrix}}_{3 \times 3} \bar{\mathbf{x}}$$

Frage: Wieviele Freiheitsgrade hat diese Transformation?

wobei $\mathbf{t} \in \mathbb{R}^2$ Translationsvektor, und \mathbf{I} die Einheitsmatrix ist. $\mathbf{0}$ ist der Nullvektor

 Strarre Bewegung or Euklidische Transformation (Rotation + Translation)

$$\mathbf{x}' = \mathbf{R}\mathbf{x} + \mathbf{t}$$
 bzw. $\mathbf{ar{x}}' = egin{pmatrix} \mathbf{R} & \mathbf{t} \\ \mathbf{0}^ op & 1 \end{pmatrix} \mathbf{ar{x}}$

wobei
$$\mathbf{R} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

die orthonormale Rotationsmatrix ist, d.h. $\mathbf{R}\mathbf{R}^{ op}=\mathbf{I}$

Abstände und Winkel bleiben erhalten

 Ähnlichkeitstransformation (Skalierung, Rotation und Verschiebung)

$$\mathbf{x}' = s\mathbf{R}\mathbf{x} + t$$
 $\mathbf{\bar{x}}' = \begin{pmatrix} s\mathbf{R} & \mathbf{t} \\ \mathbf{0}^{\top} & 1 \end{pmatrix} \mathbf{\bar{x}}$

Winkel zwischen Geraden bleiben erhalten

Affine Transformation

$$\mathbf{\bar{x}}' = A\mathbf{\bar{x}} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & 0 & 1 \end{pmatrix} \mathbf{\bar{x}}$$

Parallele Geraden bleiben parallel

Projektive/perspektivische Transformation

$$\tilde{\mathbf{x}}' = \tilde{H} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \tilde{\mathbf{x}}$$

- Beachte \hat{H} ist homogen (only defined up to scale)
- Resultierende Koordinaten sind homogen
- Geraden bleiben Geraden, immerhin.... ;-)

Transformation	Matrix	# DoF	Preserves	Icon
translation	$\left[egin{array}{c c} I & t \end{array} ight]_{2 imes 3}$	2	orientation	
rigid (Euclidean)	$\left[egin{array}{c c} R & t \end{array} ight]_{2 imes 3}$	3	lengths	\Diamond
similarity	$\left[\begin{array}{c c} s R \mid t\end{array}\right]_{2 imes 3}$	4	angles	\Diamond
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2 imes 3}$	6	parallelism	
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$	8	straight lines	

BEISPIEL: VERWENDUNG EUKLIDISCHER TRANSFORMATIONEN IN DER ROBOTIK

Koordinatensysteme

• Ein Roboter irgendwo in der Ebene

Koordinatensysteme

Ein Roboter irgendwo in der Ebene

$$WT_B = \begin{pmatrix} R & \mathbf{t} \\ \mathbf{0} & 1 \end{pmatrix} = \begin{pmatrix} \cos \psi & -\sin \psi & x \\ \sin \psi & \cos \psi & y \\ 0 & 0 & 1 \end{pmatrix} \in SE(2) \subset \mathbb{R}^{3x3}$$

Koordinatensysteme

Roboter an der Stelle x=0.7, y=0.5, yaw=45deg

$${}^{W}T_{B} = \begin{pmatrix} \cos 45 & -\sin 45 & 0.7 \\ \sin 45 & \cos 45 & 0.5 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0.71 & -0.71 & 0.7 \\ 0.71 & 0.71 & 0.5 \\ 0 & 0 & 1 \end{pmatrix}$$

- Roboter an der Stelle x=0.7, y=0.5, yaw=45deg
- Roboter detektiert Objekt 1m voraus
- Was ist die Position des Objekts in W-Koordinaten?

- Roboter an der Stelle x=0.7, y=0.5, yaw=45deg
- Roboter detektiert Objekt 1m voraus

Inhomogene Koordinaten

$$B_{\mathbf{v}} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad y$$
 Homogene Koordinaten
$$B_{\mathbf{\tilde{v}}} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

- Roboter an der Stelle x=0.7, y=0.5, yaw=45deg
- Roboter detektiert Objekt 1m voraus

$${}^{W}\mathbf{\tilde{v}} = {}^{W}T_{B}{}^{B}\mathbf{\tilde{v}}$$

- Roboter an der Stelle x=0.7, y=0.5, yaw=45deg
- Roboter detektiert Objekt 1m voraus

- Roboter an der Stelle x=0.7, y=0.5, yaw=45deg
- Roboter detektiert Objekt 1m voraus

- Roboter an der Stelle x=0.7, y=0.5, yaw=45deg
- Roboter detektiert Objekt 1m voraus

- Wir haben Roboter- in Weltkoordinaten transformiert
- Manchmal muss man das Umgekehrte tun
- Wie transformiert man Welt- in Roboterkoordinaten?

$${}^{W}\tilde{\mathbf{v}} = {}^{W}T_{B}{}^{B}\tilde{\mathbf{v}}$$

- Wir haben Roboter- in Weltkoordinaten transformiert
- Manchmal muss man das Umgekehrte tun
- Wie transformiert man Welt- in Roboterkoordinaten?

$${}^{W}\tilde{\mathbf{v}} = {}^{W}T_{B}{}^{B}\tilde{\mathbf{v}}$$

$${}^{B}\mathbf{\tilde{v}}={}^{B}T_{W}{}^{W}\mathbf{\tilde{v}}$$

- Wir haben Roboter- in Weltkoordinaten transformiert
- Manchmal muss man das Umgekehrte tun
- Wie transformiert man Welt- in Roboterkoordinaten?

$${}^{W}\tilde{\mathbf{v}} = {}^{W}T_{B}{}^{B}\tilde{\mathbf{v}}$$
 ${}^{B}\tilde{\mathbf{v}} = {}^{B}T_{W}{}^{W}\tilde{\mathbf{v}}$
 ${}^{B}\tilde{\mathbf{v}} = ({}^{W}T_{B})^{-1}{}^{W}\tilde{\mathbf{v}}$

- Wir haben Roboter- in Weltkoordinaten transformiert
- Manchmal muss man das Umgekehrte tun
- Wie transformiert man Welt- in Roboterkoordinaten?

$${}^{W}\tilde{\mathbf{v}} = {}^{W}T_{B}{}^{B}\tilde{\mathbf{v}} = \begin{pmatrix} R & \mathbf{t} \\ \mathbf{0} & 1 \end{pmatrix} {}^{B}\tilde{\mathbf{v}}$$

$${}^{B}\tilde{\mathbf{v}} = \left({}^{W}T_{B}\right)^{-1}{}^{W}\tilde{\mathbf{v}} = \left({}^{R^{+}} - R^{+}\mathbf{t} \atop \mathbf{0} \right){}^{W}\tilde{\mathbf{v}}$$

Gegeben: Zweites Objekt

Position relativ zum Ersten: 0.2m in x-Richtung, 0.1m in y-

 Position relativ zum ersten Objekt:
 0.2m in x-Richtung, 0.1m in y-Richtung, 10deg verdreht

$${}^{B}T_{O} = \begin{pmatrix} \cos 10 & -\sin 10 & 0.2 \\ \sin 10 & \cos 10 & 0.1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0.98 & -0.17 & 0.2 \\ 0.17 & 0.98 & 0.1 \\ 0 & 0 & 1 \end{pmatrix}$$

Die Position des zweiten Objekts in W-Koordinaten?

$$^{W}T_{O} = ^{W}T_{B}{}^{B}T_{O} =$$

$$= \begin{pmatrix} 0.71 & -0.71 & 0.7 \\ 0.71 & 0.71 & 0.5 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0.98 & -0.17 & 0.2 \\ 0.17 & 0.98 & 0.1 \\ 0 & 0 & 1 \end{pmatrix} = \cdots$$

Beachte: Auf die Reihenfolge kommt es an!!!

- 1m gehen, 90 Grad drehen
- 90 Grand drehen, 1m gehen

$$AB \neq BA$$

Translation

$$\bar{\mathbf{x}}' = \underbrace{\begin{pmatrix} \mathbf{I} & \mathbf{t} \\ \mathbf{0}^\top & 1 \end{pmatrix}}_{4 \times 4} \bar{\mathbf{x}}$$

• Euklidische Transformation (Translation + Rotation),

$$\mathbf{ar{x}}' = egin{pmatrix} \mathbf{R} & \mathbf{t} \\ \mathbf{0}^{\top} & 1 \end{pmatrix} \mathbf{ar{x}}$$

• Ähnlichkeitstransformation, Affine Transformation, ...

Transformation	Matrix	# DoF	Preserves	Icon
translation	$\left[egin{array}{c c} oldsymbol{I} & oldsymbol{t} \end{array} ight]_{3 imes 4}$	3	orientation	
rigid (Euclidean)	$\left[egin{array}{c c} R & t \end{array} ight]_{3 imes 4}$	6	lengths	\Diamond
similarity	$\left[\begin{array}{c c} sR & t\end{array}\right]_{3 imes 4}$	7	angles	
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{3 imes 4}$	12	parallelism	
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{4 imes 4}$	15	straight lines	

Euklidische Transformation in 3D

- Translation t hat 3 Freiheitsgrade
- Rotation R hat 3 Freiheitsgrade

$$X = \begin{pmatrix} R & \mathbf{t} \\ \mathbf{0} & 1 \end{pmatrix} = \begin{pmatrix} r_{11} & r_{12} & r_{13} & t_1 \\ r_{21} & r_{22} & r_{23} & t_2 \\ r_{31} & r_{32} & r_{33} & t_3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

3D-Rotationen

- Rotationsmatrix
- Euler-Winkel
- Rodriguez-Darstellung (Drehachse / Winkel)
- Einheitsquaternionen

Rotationsmatrix

Orthonormale 3x3 Matrix

$$R = \begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix}$$

• Spaltenvektoren entsprechen den Koordinatenachsen

Rotationsmatrix

Orthonormale 3x3 Matrix

$$R = \begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix}$$

- Vorteil: Einfache Verkettung
- Nachteil: Überparametrisiert (9 Parameter statt 3)

Euler-Winkel

- Rotation durch Verkettung von 3 Achsrotationen (z.B., um X-Y-Z Achsen)
- Aus der Luftfahrt: Roll-Pitch-Yaw Konvention

Roll-Pitch-Yaw Konvention

ullet Yaw Ψ , Pitch Θ , Roll Φ in Rotationsmatrix umrechnen

$$R = R_Z(\Psi)R_Y(\Theta)R_X(\Phi)$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\Phi & \sin\Phi \\ 0 & -\sin\Phi & \cos\Phi \end{pmatrix} \begin{pmatrix} \cos\Theta & 0 & -\sin\Theta \\ 0 & 1 & 0 \\ \sin\Theta & 0 & \cos\Theta \end{pmatrix} \begin{pmatrix} \cos\Psi & \sin\Psi & 0 \\ -\sin\Psi & \cos\Psi & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} \cos\Theta\cos\Psi & \cos\Theta\sin\Psi & -\sin\Theta \\ \sin\Phi\sin\Theta\cos\Psi - \cos\Phi\sin\Psi & \sin\Phi\sin\Psi + \cos\Phi\cos\Psi & \sin\Phi\cos\Theta \\ \cos\Phi\sin\Theta\cos\Psi + \sin\Phi\sin\Psi & \cos\Phi\sin\Psi - \sin\Phi\cos\Psi \end{pmatrix}$$

Rotation matrix nach Yaw-Pitch-Roll

$$\phi = \operatorname{Atan2}\left(-r_{31}, \sqrt{r_{11}^2 + r_{21}^2}\right)$$

$$\psi = -\operatorname{Atan2}\left(\frac{r_{21}}{\cos(\phi)}, \frac{r_{11}}{\cos(\phi)}\right)$$

$$\theta = \operatorname{Atan2}\left(\frac{r_{32}}{\cos(\phi)}, \frac{r_{33}}{\cos(\phi)}\right)$$

Euler-Winkel

Vorteil:

- Minimale Repräsentation (3 Parameter)
- "Einfach" interpretierbar

Nachteile:

- Es gibt viele "alternative" Euler-Winkel-Darstellungen (XYZ, ZXZ, ZYX, ...)
- Schwierig zu Verketten
- Singularitäten (sog. "gimbal lock")

Euler-Winkel

- Verkettung: Konversion in Rotationsmatrix, Multiplikation, Re-Konversion
- Invertierung: Konversion in Rotationsmatrix, Matrixinversion, Re-Konversion

$$R_Z(\psi_1)R_Y(\theta_1)R_X(\phi_1) \cdot R_Z(\psi_2)R_Y(\theta_2)R_X(\phi_2)$$

 $\neq R_Z(\psi_1 + \psi_2)R_Y(\theta_1 + \theta_2)R_X(\phi_1 + \phi_2)$

Singulatitäten

Verlust eines Freiheitsgrades

Rodriguez-Darstellung

(Drehachse / Winkel)

- Representiert Rotation durch
 - Drehachse $\hat{\mathbf{n}}$ und
 - Drehwinkel θ
- 4 Parameter $(\hat{\mathbf{n}}, \theta)$
- 3 Parameter $\boldsymbol{\omega} = \theta \hat{\mathbf{n}}$
 - Länge kodiert Winkel
 - Minimal aber nicht eindeutig (Warum?)

Konversion

Rodriguez-Formel

$$R(\hat{\mathbf{n}}, \theta) = I + \sin \theta [\hat{\mathbf{n}}]_{\times} + (1 - \cos \theta) [\hat{\mathbf{n}}]_{\times}^{2}$$

Inverse

$$\theta = \cos^{-1}\left(\frac{\operatorname{trace}(R) - 1}{2}\right), \hat{\mathbf{n}} = \frac{1}{2\sin\theta} \begin{pmatrix} r_{32} - r_{23} \\ r_{13} - r_{31} \\ r_{21} - r_{12} \end{pmatrix}$$

 see: An Invitation to 3D Vision, Y. Ma, S. Soatto, J. Kosecka, S. Sastry, Chapter 2 (available online)

Einheitsquaternionen

- Quaternion $\mathbf{q} = (q_x, q_y, q_z, q_w)^{\top} \in \mathbb{R}^4$
- Einheitsquaternionen $\|\mathbf{q}\|=1$
- Entgegengesetzte quaternionen repräsentieren dieselbe rotation $\mathbf{q} = -\mathbf{q}$
- Ansonsten eindeutig

Einheitsquaternionen

- Vorteil: Operationen für Multiplikation und Inversion sind effizient
- Quaternion-Quaternion Multiplikation

$$\mathbf{q}_0 \mathbf{q}_1 = (\mathbf{v}_0, w_0)(\mathbf{v}_1, w_1)$$

$$= (\mathbf{v}_0 \times \mathbf{v}_1 + w_0 \mathbf{v}_1 + w_1 \mathbf{v}_0, w_0 w_1 - \mathbf{v}_0 \mathbf{v}_1)$$

Inverse (Vorzeichenwechsel bei v oder w)

$$\mathbf{q}^{-1} = (\mathbf{v}, w)^{-1}$$
$$= (\mathbf{v}, -w)$$

Einheitsquaternionen

 Quaternion-Vektor Multiplikation (rotiert Punkt p mit Rotation q)

$$\mathbf{p}' = \mathbf{v}\mathbf{\bar{p}}\mathbf{q}^{-1}$$
 mit $\mathbf{\bar{p}} = (x,y,z,0)^{\top}$

Beziehung zu Rodriguez-Darstellung

$$\mathbf{q} = (\mathbf{v}, w) = (\sin \frac{\theta}{2} \hat{\mathbf{n}}, \cos \frac{\theta}{2})$$

3D Orientierung im Allgemeinen

- Beachte: "Lesen von Rotationen" im Allgemeinen schwierig, egal in welcher Darstellung
- Beobachtung: Rotationen sind einfach zu visualisieren und dann intuitiv verständlich
- Rat: Zum debuggen immer visualisieren!! Es gibt viele gute 3D Visualisierungstools

C++ Libraries für Lin. Alg./Geometry

 Es gibt viele C/C++ libraries für lineare Algebra und 3D- Geometry

Beispiele:

- C arrays, std::vector (no linear alg. functions)
- gsl (gnu scientific library, umfangreich, plain C)
- boost::array (ROS messages)
- Bullet library (3D-Geometry und Dynamik, ROS tf)
- Eigen (Sowohl lineare Algebra als auch Geometry, guter Tipp)