

MSR-GCN: Multi-Scale Residual Graph Convolution Networks for Human Motion Prediction

Lingwei Dang ¹, Yongwei Nie ^{1*}, Chengjiang Long ², Qing Zhang ³, Guiqing Li ¹

¹ South China University of Technology, ² JD Finance America Corporation, ³ Sun Yat-sen University

JDT京东科技

Applications

autonomous driving

human-computer interaction

intelligent security

Introduction & Problem

Observed Seq

Future Seq

spatiotemporal dependencies

Related Works

- Prior efforts neglect the inner-frame kinematic dependencies
- Frame-by-frame prediction manner causes error accumulation
- Graph Convolution Networks (GCNs) exhibit promising results, but not sufficient for more high-quality human motion prediction.

Key Insights

- Stabilize the motion pattern by gradually abstracting body parts
- Predict the poses in the coarsest level firstly, and then go up to finer levels gradually

multi-scale joints groping manner from finer levels (left) to coarser levels (right)

Key Insights

- GCNs based on learnable fully connected graph
- Start GCN, Residual GCNs, End GCN
- Residual connection helps to simplify the prediction process

the basic GCN model

MSR-GCN Architecture

- Descending Path
- Ascending Path
- End GCNs and Intermediate Loss
- Residual Connections

loss function:

Mean Per Joint Position Error (MPJPE)

$$\mathcal{L}_{ ext{MPJPE}} \, = rac{1}{J imes T} \sum_{t=1}^{T} \sum_{j=1}^{J} \left\| \hat{p}_{j,t} - p_{j,t}
ight\|^2$$

Short-term errors on Human3.6M (H3.6M)

scenarios	walking				eating				smoking				discussion			
millisecond (ms)	80	160	320	400	80	160	320	400	80	160	320	400	80	160	320	400
Residual sup. [34]	29.36	50.82	76.03	81.51	16.84	30.60	56.92	68.65	22.96	42.64	70.14	82.68	32.94	61.18	90.92	96.19
DMGNN [27]	17.32	30.67	54.56	65.20	10.96	21.39	36.18	43.88	8.97	17.62	32.05	40.30	17.33	34.78	61.03	69.80
Traj-GCN [33]	12.29	23.03	39.77	46.12	8.36	16.90	33.19	40.70	7.94	16.24	31.90	38.90	12.50	27.40	58.51	71.68
MSR-GCN	12.16	22.65	38.64	45.24	8.39	17.05	33.03	40.43	8.02	16.27	31.32	38.15	11.98	26.76	57.08	69.74
scenarios	directions				greeting				phoning				posing			
millisecond (ms)	80	160	320	400	80	160	320	400	80	160	320	400	80	160	320	400
Residual sup. [34]	35.36	57.27	76.30	87.67	34.46	63.36	124.60	142.50	37.96	69.32	115.00	126.73	36.10	69.12	130.46	157.08
DMGNN [27]	13.14	24.62	64.68	81.86	23.30	50.32	107.30	132.10	12.47	25.77	48.08	58.29	15.27	29.27	71.54	96.65
Traj-GCN [33]	8.97	19.87	43.35	53.74	18.65	38.68	77.74	93.39	10.24	21.02	42.54	52.30	13.66	29.89	66.62	84.05
MSR-GCN	8.61	19.65	43.28	53.82	16.48	36.95	77.32	93.38	10.10	20.74	41.51	51.26	12.79	29.38	66.95	85.01

Residual sup. Martinez J, et al., CVPR 2017

DMGNN Li M, et al., CVPR 2020

Traj-GCN Mao W, et al., ICCV 2019

Short-term errors on CMU Mocap

scenarios	basketball				basketball signal					directi	ng traffic		jumping			
millisecond (ms)	80	160	320	400	80	160	320	400	80	160	320	400	80	160	320	400
Residual sup. [34]	15.45	26.88	43.51	49.23	20.17	32.98	42.75	44.65	20.52	40.58	75.38	90.36	26.85	48.07	93.50	108.90
DMGNN [27]	15.57	28.72	59.01	73.05	5.03	9.28	20.21	26.23	10.21	20.90	41.55	52.28	31.97	54.32	96.66	119.92
Traj-GCN [33]	11.68	21.26	40.99	50.78	3.33	6.25	13.58	17.98	6.92	13.69	30.30	39.97	17.18	32.37	60.12	72.55
MSR-GCN	10.28	18.94	37.68	47.03	3.03	5.68	12.35	16.26	5.92	12.09	28.36	38.04	14.99	28.66	55.86	69.05
scenarios	running				soccer					wa	lking		washwindow			
millisecond (ms)	80	160	320	400	80	160	320	400	80	160	320	400	80	160	320	400
Residual sup. [34]	25.76	48.91	88.19	100.80	17.75	31.30	52.55	61.40	44.35	76.66	126.83	151.43	22.84	44.71	86.78	104.68
DMGNN [27]	17.42	26.82	38.27	40.08	14.86	25.29	52.21	65.42	9.57	15.53	26.03	30.37	7.93	14.68	33.34	44.24
Traj-GCN [33]	14.53	24.20	37.44	41.10	13.33	24.00	43.77	53.20	6.62	10.74	17.40	20.35	5.96	11.62	24.77	31.63
MSR-GCN	12.84	20.42	30.58	34.42	10.92	19.50	37.05	46.38	6.31	10.30	17.64	21.12	5.49	11.07	25.05	32.51

Residual sup. Martinez J, et al., CVPR 2017

DMGNN Li M, et al., CVPR 2020

Traj-GCN Mao W, et al., ICCV 2019

performance gain over **Traj-GCN** Mao W, et al., ICCV 2019

MSR-GCN can better handle high-frequency motions

Traj-GCN Mao W, et al., ICCV 2019 DMGNN Li M, et al., CVPR 2020 Res. Sup. Martinez J, et al., CVPR 2017

QR Code for our project:

https://github.com/Droliven/MSRGCN

Thank you!

Acknowledgement

This research is sponsored in part by the National Natural Science Foundation of China (62072191, 61802453, 61972160), in part by the Natural Science Foundation of Guangdong Province (2019A1515010860, 2021A1515012301), and in part by the Fundamental Research Funds for the Central Universities (D2190670).