

Appendix D List of Formulas

After-tax IRR:

 $IRR_{after-tax} \cong IRR_{before-tax} \times (1 - t)$

After-tax MARR:

 $MARR_{after-tax} \cong MARR_{before-tax} \times (1 - t)$

Benefit-Cost Ratio:

$$BCR = \frac{PW(benefits)}{PW(costs)}$$

Book Value, Declining-Balance:

$$BV_{dh}(n) = P(1-d)^n$$

Book Value, Straight-Line:

$$BV_{sl}(n) = P - n\left(\frac{P-S}{N}\right)$$

Capital Tax Factor:

CTF =
$$1 - \frac{td(1 + i/2)}{(i + d)(1 + i)}$$

Capital Salvage Factor:

$$CSF = 1 - \frac{td}{(i+d)}$$

Capitalized Value:

$$P = \frac{A}{i}$$

Capital Recovery Formula:

$$A = (P - S)(A/P,i,N) + Si$$

Compound Interest:

$$F = P(1 + i)^N$$

Compound Interest Factors:

• Compound Amount Factor

$$(F/P,i,N) = (1+i)^N$$

• Present Worth Factor

$$(P/F,i,N) = \frac{1}{(1+i)^N}$$

• Sinking Fund Factor

$$(A/F,i,N) = \frac{i}{(1+i)^N-1}$$

• Uniform Series Compound Amount Factor

$$(F/A,i,N) = \frac{(1+i)^N - 1}{i}$$

• Capital Recovery Factor

$$(A/P,i,N) = \frac{i(1+i)^N}{(1+i)^N-1}$$

• Series Present Worth Factor

$$(P/A,i,N) = \frac{(1+i)^N - 1}{i(1+i)^N}$$

Arithmetic Gradient to Annuity Conversion Factor

$$(A/G,i,N) = \frac{1}{i} - \frac{N}{(1+i)^N - 1}$$

Geometric Gradient Series to Present Worth Conversion Factor

$$(P/A,g,i,N) = \frac{(P/A,i^{\circ},N)}{1+g}$$

$$(P/A,g,i,N) = \left(\frac{(1+i^{\circ})^{N}-1}{i^{\circ}(1+i^{\circ})^{N}}\right)\frac{1}{1+g}$$

$$i^{\circ} = \frac{1+i}{1+g} - 1$$

Depreciation Amount, Straight Line:

$$D_{sl}(n) = \frac{P - S}{N}$$

Depreciation Amount, Declining Balance:

$$D_{dh}(n) = BV_{dh}(n-1) \times d$$

Depreciation Rate:

$$d = 1 - \sqrt[n]{\frac{S}{P}}$$

Effective Interest Rate:

$$i_e = \left(1 + \frac{r}{m}\right)^m - 1 \text{ or}$$

$$i_e = \left(1 + i_s\right)^m - 1$$

Effective Interest Rate for Continuous Compounding:

$$i_e = e^r - 1$$

Expected Value of the Discrete Random Variable:

$$E(x) = \sum x_i p(x_i)$$

Financial Ratios:

- Acid test ratio = $\frac{\text{Quick assets}}{\text{Current liabilities}}$
- Current ratio = $\frac{\text{Current assets}}{\text{Current liabilities}}$
- Equity ratio = $\frac{\text{Total equity}}{\text{Total assets}}$
- Inventory turnover = $\frac{\text{Sales}}{\text{Inventories}}$
- Return on total assets = Profits after taxes Total assets

Growth-Adjusted Interest Rate:

$$i^{\circ} = \frac{1+i}{1+g} - 1$$

Internal Rate of Return:

$$\sum_{t=0}^{T} \frac{(R_t - D_t)}{(1 + i^*)^t} = 0 \text{ or }$$

$$\sum_{t=0}^{T} \frac{R_t}{(1+i^*)^t} = \sum_{t=0}^{T} \frac{D_t}{(1+i^*)^t}$$

Linear Interpolation:

$$x^* = x_1 + (x_2 - x_1) \left[\frac{y^* - y_1}{y_2 - y_1} \right]$$

Modified Benefit-Cost Ratio:

$$BCRM = \frac{PW(benefits) - PW(operating costs)}{PW(capital costs)}$$

Payback Period:

$$Payback period = \frac{First cost}{Annual savings}$$

Real Dollars:

$$R_{0,N} = \frac{A_N}{I_{0,N}/100}$$

$$R_N = \frac{A_N}{(1+f)^N}$$

$$R_N = A_N(P/F,f,N)$$

Real MARR:

$$MARR_{R} = \frac{1 + MARR_{C}}{1 + f} - 1$$

Real Interest Rate:

$$i' = \frac{1+i}{1+f} - 1$$

Real IRR:

$$IRR_{R} = \frac{1 + IRR_{C}}{1 + f} - 1$$

Simple Interest Amount:

$$I_s = PiN$$

