MATH 8090: Univariate Volatility Modeling

Whitney Huang, Clemson University

10/24-10/26/2023

Contents

Introductory Example: Apple Stock Data	2
Load the Apple stock data via quantmod	2
Visualize the Apple stock time series	3
ARCH Engle (1982)	Ĝ
Simulation	Ĉ
Intel Stock Example	11
Load and plot the monthly log returns of Intel stock	11
Examine the mean structure	12
Testing ARCH effect	14
Fitting ARCH	15
$\operatorname{ARCH}(1)$ with Student-t Innovations for 5-step predictions	21
GARCH Bollerslev (1986)	25
Simulation	25
IGARCH	31
Simulation	31
EGARCH Nelson (1991)	34
IBM monthly returns	34
Fit EGARCH using ugarch	36
Stochastic Volatility (SV) Model Melino and Turnbull (1990); Harvey, Ruiz, and Shephard (1994); Jacquier, Polson, and Rossi (2002)	38
	38
	39
Perform Markov Chain Monte Carlo (MCMC) sampling for the Stochastic Volatility (SV) Model	40
References	44

Introductory Example: Apple Stock Data

Load the Apple stock data via quantmod

```
library(quantmod)
getSymbols("AAPL", src = "yahoo")
## [1] "AAPL"
dim(AAPL)
## [1] 4232
               6
head(AAPL); tail(AAPL)
##
              AAPL.Open AAPL.High AAPL.Low AAPL.Close AAPL.Volume AAPL.Adjusted
## 2007-01-03 3.081786
                         3.092143 2.925000
                                              2.992857
                                                        1238319600
                                                                        2.540326
## 2007-01-04 3.001786
                         3.069643 2.993571
                                              3.059286
                                                         847260400
                                                                        2.596712
## 2007-01-05
               3.063214
                         3.078571 3.014286
                                              3.037500
                                                         834741600
                                                                        2.578219
## 2007-01-08
               3.070000
                         3.090357 3.045714
                                              3.052500
                                                         797106800
                                                                        2.590951
## 2007-01-09
               3.087500
                         3.320714 3.041071
                                              3.306071
                                                        3349298400
                                                                        2.806181
## 2007-01-10 3.383929 3.492857 3.337500
                                              3.464286
                                                        2952880000
                                                                        2.940474
##
              AAPL.Open AAPL.High AAPL.Low AAPL.Close AAPL.Volume AAPL.Adjusted
## 2023-10-17
                 176.65
                           178.42
                                    174.80
                                                177.15
                                                          57549400
                                                                          177.15
## 2023-10-18
                 175.58
                           177.58
                                    175.11
                                                175.84
                                                                          175.84
                                                          54764400
## 2023-10-19
                 176.04
                           177.84
                                                          59302900
                                    175.19
                                                175.46
                                                                          175.46
## 2023-10-20
                 175.31
                           175.42
                                    172.64
                                                172.88
                                                                          172.88
                                                          64189300
## 2023-10-23
                 170.91
                           174.01
                                    169.93
                                                173.00
                                                          55980100
                                                                          173.00
## 2023-10-24
                 173.05
                           173.67
                                    171.45
                                                173.44
                                                          43816600
                                                                          173.44
summary(AAPL)
##
```

```
Index
                           AAPL.Open
                                             AAPL.High
                                                                AAPL.Low
##
   Min.
           :2007-01-03
                         Min.
                              : 2.835
                                           Min. : 2.929
                                                             Min. : 2.793
##
   1st Qu.:2011-03-15
                         1st Qu.: 12.101
                                           1st Qu.: 12.216
                                                             1st Qu.: 11.971
##
   Median :2015-05-30
                         Median : 26.704
                                           Median : 26.916
                                                             Median : 26.407
   Mean
           :2015-05-29
                         Mean
                               : 48.687
                                           Mean
                                                 : 49.223
                                                             Mean
                                                                   : 48.171
                                           3rd Qu.: 55.645
##
   3rd Qu.:2019-08-12
                         3rd Qu.: 55.043
                                                             3rd Qu.: 54.331
##
   Max.
           :2023-10-24
                         Max.
                                :196.240
                                           Max.
                                                  :198.230
                                                             Max.
                                                                    :195.280
##
      AAPL.Close
                       AAPL.Volume
                                          AAPL.Adjusted
##
   Min.
          : 2.793
                     Min.
                             :3.146e+07
                                          Min.
                                                 : 2.371
   1st Qu.: 12.099
                                          1st Qu.: 10.270
##
                     1st Qu.:1.045e+08
## Median : 26.684
                     Median :2.069e+08
                                          Median : 24.331
## Mean
          : 48.719
                     Mean :3.608e+08
                                          Mean
                                                : 46.977
   3rd Qu.: 55.119
                      3rd Qu.:4.875e+08
                                          3rd Qu.: 53.181
## Max.
          :196.450
                     Max. :3.373e+09
                                          Max.
                                                 :196.185
```

chartSeries(AAPL)

Visualize the Apple stock time series.

First, let's plot the daily closing values

closing <- AAPL\$AAPL.Close
plot(closing)</pre>

Next, apply a log transformation to stabilize the variance.

Perform first-order differencing to make the series approximately stationary

plot(diff(log(closing)))

These series of operations lead to the log-return $r_t = \log(y_t) - \log(y_{t-1})$

```
temp <- diff(log(closing))
return <- temp[!is.na(temp)]

par(las = 1, mgp = c(2.2, 1, 0), mar = c(3.6, 3.6, 0.8, 0.6))
plot(return)</pre>
```



```
date <- time(return)
par(las = 1, mgp = c(2.5, 1, 0), mar = c(3.6, 3.6, 0.8, 0.6))
plot(date, return, type = "l")
abline(h = 0, col = "blue", lwd = 1)</pre>
```


The resulting series is nearly uncorrelated but clearly dependent

library(forecast)
Acf(return)

Series return

Acf(return^2)

Series return^2

ARCH Engle (1982)

An ARCH(m) model:

$$a_t = \sigma_t \epsilon_t, \quad \sigma_t^2 = \alpha_0 + \alpha_1 a_{t-1}^2 + \dots + \alpha_m a_{t-m}^2,$$

where $\{\epsilon_t\}$ is a sequence of i.i.d. r.v. with

- $\mathbb{E}(\epsilon_t) = 0$
- $Var(\epsilon_t) = 1$
- $\alpha_i \geq 0$ for $1 \leq i \leq m$
- Distribution: standard normal, standardize Student-t, generalized error distribution, or their skewed counterparts

Simulation

We will use both the fGarch and rugarch packages for volatility modeling.

```
library(fGarch)
mod_spec <- garchSpec(model = list(ar = c(.35), omega = 0.01))
set.seed(124)
x <- garchSim(spec = mod_spec, n = 2000)
par(las = 1, mgp = c(2.2, 1, 0), mar = c(3.6, 3.6, 0.8, 0.6))
ts.plot(x)
abline(h = 0, col = "blue")</pre>
```



```
par(las = 1, mgp = c(2.2, 1, 0), mar = c(3.6, 3.6, 0.8, 0.6), mfrow = c(1, 2))
hist(x, nclass = 40, col = "lightblue", border = "gray", prob = T)
den <- density(x)
rg <- 1.2 * range(x)
xg <- seq(rg[1], rg[2], .001)
yg <- dnorm(xg, mean(x), stdev(x))
lines(den$x, den$y, xlab = "", ylab = "Density", type = "l")
lines(xg, yg, lty = 2)
qqnorm(x, col = "blue", cex = 0.4); qqline(x)</pre>
```



```
library(rugarch)
par(las = 1, mgp = c(2.2, 1, 0), mar = c(3.6, 3.6, 0.8, 0.6))
mod_spec <- ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1, 0)), mean.model = list
sim <- ugarchpath(mod_spec, n.sim = 2000)
ts.plot(sim@path$seriesSim)</pre>
```


Intel Stock Example

Load and plot the monthly log returns of Intel stock

```
url <- "https://www.chicagobooth.edu/-/media/faculty/ruey-s-tsay/teaching/fts2//m-intc7303.txt"
dat1 <- read.table(url)</pre>
names(dat1) <- c("Date", "Return"); head(dat1)</pre>
##
         Date
                Return
## 1 19730131 0.01005
## 2 19730228 -0.13930
## 3 19730330 0.06936
## 4 19730430
               0.08649
## 5 19730531 -0.10448
## 6 19730629 0.13333
intc <- log(dat1$Return + 1)</pre>
return <- ts(intc, frequency = 12, start = c(1973, 1))</pre>
par(las = 1, mgp = c(2.2, 1, 0), mar = c(3.6, 3.6, 0.8, 0.6))
plot(return, type = "1", xlab = "Year", ylab = "")
abline(h = 0, lty = 2, col = "blue")
```


Examine the mean structure

```
par(las = 1, mgp = c(2.6, 1, 0), mar = c(3.6, 3.6, 0.8, 0.6), mfrow = c(2, 1))
Acf(intc); pacf(intc)
```



```
Box.test(intc, lag = 24, type = "Ljung-Box")
```

```
##
## Box-Ljung test
##
## data: intc
## X-squared = 32.764, df = 24, p-value = 0.1092
```

t.test(intc)

```
##
## One Sample t-test
##
## data: intc
## t = 2.5944, df = 371, p-value = 0.00985
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 0.004354971 0.031624693
## sample estimates:
## mean of x
## 0.01798983
```

```
y <- intc - mean(intc)
```

Testing ARCH effect

```
Box.test(y^2, lag = 24, type = 'Ljung')
##
## Box-Ljung test
##
## data: y^2
## X-squared = 79.837, df = 24, p-value = 6.459e-08
# LM test for ARCH effects
source("archTest.R")
archTest(y, 12)
##
## Call:
## lm(formula = atsq ~ x)
## Residuals:
       Min
                 1Q
                    Median
                                  3Q
## -0.07368 -0.01295 -0.00729 0.00450 0.35621
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.007029 0.002752 2.554 0.01107 *
## x1
               0.090001
                          0.052911
                                   1.701 0.08984 .
## x2
               0.155741
                          0.052830
                                   2.948 0.00342 **
## x3
               0.148341
                          0.053414 2.777 0.00578 **
## x4
               0.020289 0.053994 0.376 0.70732
## x5
               0.004670
                          0.053971
                                   0.087 0.93110
## x6
               0.007733
                          0.051753 0.149 0.88131
## x7
                          0.051756 1.070 0.28552
               0.055361
## x8
               0.009982
                          0.051805
                                   0.193 0.84731
## x9
               0.002042
                          0.051674
                                   0.040 0.96850
## x10
              -0.021888
                         0.051218 -0.427 0.66939
                          0.050622 -1.141 0.25481
## x11
              -0.057741
               0.162048
                          0.050563
                                   3.205 0.00148 **
## x12
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 0.03689 on 347 degrees of freedom
## Multiple R-squared: 0.1189, Adjusted R-squared: 0.0884
## F-statistic: 3.901 on 12 and 347 DF, p-value: 1.236e-05
library(FinTS)
##
## Attaching package: 'FinTS'
## The following object is masked from 'package:forecast':
##
##
      Acf
```

ArchTest(y)

```
##
## ARCH LM-test; Null hypothesis: no ARCH effects
##
## data: y
## Chi-squared = 42.794, df = 12, p-value = 2.446e-05

par(las = 1, mgp = c(2.6, 1, 0), mar = c(3.6, 3.6, 0.8, 0.6), mfrow = c(2, 1))
Acf(y^2)
pacf(y^2)

0.20
0.15
0.10
0.10
0.005
```


Fitting ARCH

First, let's fit an ARCH(3) model

```
# fGarch
Intel_m1 <- garchFit(~ 1 + garch(3, 0), data = intc, trace = F)
summary(Intel_m1)</pre>
```

```
##
## Title:
## GARCH Modelling
##
```

```
## Call:
   garchFit(formula = ~1 + garch(3, 0), data = intc, trace = F)
## Mean and Variance Equation:
## data ~ 1 + garch(3, 0)
## <environment: 0x7faad5d989e8>
## [data = intc]
##
## Conditional Distribution:
## norm
##
## Coefficient(s):
                        alpha1
                                  alpha2
                                            alpha3
        mu
               omega
## 0.016572 0.012043 0.208649 0.071837 0.049045
##
## Std. Errors:
## based on Hessian
##
## Error Analysis:
          Estimate Std. Error t value Pr(>|t|)
## mu
          0.016572 0.006423
                                2.580 0.00988 **
## omega
          0.012043
                      0.001579
                                7.627 2.4e-14 ***
                                1.615 0.10626
## alpha1 0.208649
                      0.129177
## alpha2 0.071837
                      0.048551
                                  1.480 0.13897
## alpha3 0.049045
                      0.048847
                                  1.004 0.31536
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Log Likelihood:
## 233.4286
               normalized: 0.6274962
##
## Description:
## Wed Oct 25 21:37:41 2023 by user:
##
## Standardised Residuals Tests:
##
                                  Statistic p-Value
## Jarque-Bera Test R
                           Chi^2 169.773
                                           0
## Shapiro-Wilk Test R
                                  0.960696 1.970626e-08
                           W
## Ljung-Box Test
                           Q(10) 10.97025 0.3598405
                      R
## Ljung-Box Test
                           Q(15) 19.59024 0.1882211
                      R
## Ljung-Box Test
                      R
                           Q(20) 20.82192 0.40768
## Ljung-Box Test
                      R^2 Q(10) 5.376602 0.8646439
## Ljung-Box Test
                      R<sup>2</sup> Q(15) 22.7346
                                            0.08993974
## Ljung-Box Test
                      R<sup>2</sup> Q(20) 23.70577 0.255481
## LM Arch Test
                           TR^2
                                  20.48506 0.05844884
                      R
## Information Criterion Statistics:
        AIC
                  BIC
                            SIC
                                     HQIC
## -1.228111 -1.175437 -1.228466 -1.207193
M1 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(3, 0)),
                     mean.model = list(armaOrder = c(0, 0), include.mean = T),
```

```
distribution.model = "norm", fixed.pars = list())
(Intel_m1 <- ugarchfit(M1, data = intc))
##
## *----*
       GARCH Model Fit *
## *----*
##
## Conditional Variance Dynamics
## -----
## GARCH Model : sGARCH(3,0)
## Mean Model : ARFIMA(0,0,0)
## Distribution : norm
##
## Optimal Parameters
## -----
        Estimate Std. Error t value Pr(>|t|)
        0.016560 0.006419 2.57981 0.009885
## mu
## omega 0.012050 0.001591 7.57490 0.000000
## alpha1 0.212953 0.131646 1.61763 0.105743
## alpha2 0.071933 0.048928 1.47016 0.141519
## alpha3 0.049129 0.049221 0.99813 0.318219
##
## Robust Standard Errors:
       Estimate Std. Error t value Pr(>|t|)
##
## mu
       0.016560 0.006895 2.4016 0.016322
## omega 0.012050 0.002493 4.8345 0.000001
## alpha1 0.212953 0.193580 1.1001 0.271297
## alpha2 0.071933 0.036720 1.9590 0.050118
## alpha3 0.049129 0.031957 1.5373 0.124211
##
## LogLikelihood : 233.4331
##
## Information Criteria
## -----
##
            -1.2281
## Akaike
           -1.1755
## Bayes
## Shibata
           -1.2285
## Hannan-Quinn -1.2072
## Weighted Ljung-Box Test on Standardized Residuals
## -----
##
                      statistic p-value
## Lag[1]
                       0.03327 0.8553
## Lag[2*(p+q)+(p+q)-1][2] 0.06686 0.9435
## Lag[4*(p+q)+(p+q)-1][5] 2.04550 0.6077
## d.o.f=0
## HO : No serial correlation
##
## Weighted Ljung-Box Test on Standardized Squared Residuals
## -----
##
                       statistic p-value
```

```
## Lag[1]
                           0.5564 0.4557
## Lag[2*(p+q)+(p+q)-1][8] 1.4875 0.9287
## Lag[4*(p+q)+(p+q)-1][14] 6.7064 0.5442
## d.o.f=3
## Weighted ARCH LM Tests
## -----
             Statistic Shape Scale P-Value
## ARCH Lag[4] 0.5757 0.500 2.000 0.4480
## ARCH Lag[6] 0.8634 1.461 1.711 0.7873
## ARCH Lag[8] 1.7352 2.368 1.583 0.7945
## Nyblom stability test
## -----
## Joint Statistic: 1.8622
## Individual Statistics:
        0.04824
## mu
## omega 0.31431
## alpha1 0.25826
## alpha2 0.57419
## alpha3 0.20981
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic: 1.28 1.47 1.88
## Individual Statistic: 0.35 0.47 0.75
## Sign Bias Test
                  t-value prob sig
## Sign Bias
                 0.22799 0.8198
## Negative Sign Bias 0.07266 0.9421
## Positive Sign Bias 0.27306 0.7850
## Joint Effect 0.10621 0.9911
##
## Adjusted Pearson Goodness-of-Fit Test:
## -----
## group statistic p-value(g-1)
## 1 20
            32.95
                   0.02439
       30 44.29
## 2
                     0.03444
## 3 40 47.78
                     0.15799
## 4
     50 64.29
                     0.07027
##
## Elapsed time : 0.110934
Let's fit an ARCH(1) model
Intel_m2 <- garchFit(~ 1 + garch(1, 0), data = intc, trace = F)</pre>
## Warning: Using formula(x) is deprecated when x is a character vector of length > 1.
    Consider formula(paste(x, collapse = " ")) instead.
```

summary(Intel_m2)

```
##
## Title:
## GARCH Modelling
##
## Call:
   garchFit(formula = ~1 + garch(1, 0), data = intc, trace = F)
## Mean and Variance Equation:
## data ~ 1 + garch(1, 0)
## <environment: 0x7faae6967b00>
## [data = intc]
##
## Conditional Distribution:
## norm
##
## Coefficient(s):
       mu
              omega
                      alpha1
## 0.01657 0.01249 0.36345
##
## Std. Errors:
## based on Hessian
##
## Error Analysis:
           Estimate Std. Error t value Pr(>|t|)
## mu
           0.016570
                       0.006161
                                   2.689 0.00716 **
           0.012490
                       0.001549
                                   8.061 6.66e-16 ***
## omega
## alpha1 0.363447
                       0.131598
                                   2.762 0.00575 **
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Log Likelihood:
               normalized: 0.6189309
## 230.2423
##
## Description:
## Wed Oct 25 21:37:41 2023 by user:
##
##
## Standardised Residuals Tests:
##
                                   Statistic p-Value
## Jarque-Bera Test
                           Chi^2 122.404
                      R
## Shapiro-Wilk Test R
                                   0.9647625 8.273101e-08
                            W
## Ljung-Box Test
                            Q(10) 13.72604 0.1858587
                      R
## Ljung-Box Test
                      R
                            Q(15) 22.31714 0.09975386
## Ljung-Box Test
                      R
                            Q(20) 23.88257 0.2475594
## Ljung-Box Test
                      R<sup>2</sup> Q(10) 12.50025 0.25297
## Ljung-Box Test
                       R<sup>2</sup> Q(15) 30.11276 0.01152131
## Ljung-Box Test
                      R<sup>2</sup> Q(20) 31.46404 0.04935483
## LM Arch Test
                       R
                            TR^2
                                   22.036
                                             0.0371183
## Information Criterion Statistics:
##
         AIC
                  BIC
                             SIC
                                      HQIC
```

```
par(las = 1, mgp = c(2.2, 1, 0), mar = c(3.6, 3.6, 0.8, 0.6))
plot(Intel_m2, which = 9)
```


plot(Intel_m2, which = 13)

ARCH(1) with Student-t Innovations for 5-step predictions

```
Intel_m3 <- garchFit(~ 1 + garch(1, 0), data = intc, cond.dist = "std", trace = F)

## Warning: Using formula(x) is deprecated when x is a character vector of length > 1.
## Consider formula(paste(x, collapse = " ")) instead.

summary(Intel_m3)
```

```
##
## Title:
##
   GARCH Modelling
##
## Call:
    garchFit(formula = ~1 + garch(1, 0), data = intc, cond.dist = "std",
##
##
       trace = F)
##
## Mean and Variance Equation:
    data \sim 1 + garch(1, 0)
## <environment: 0x7faaf18ca390>
##
    [data = intc]
##
## Conditional Distribution:
```

```
##
   std
##
## Coefficient(s):
        mu
               omega
                        alpha1
                                    shape
## 0.021571 0.013424 0.259867 5.985979
##
## Std. Errors:
## based on Hessian
##
## Error Analysis:
          Estimate Std. Error t value Pr(>|t|)
                                   3.563 0.000366 ***
          0.021571
                       0.006054
## mu
## omega
          0.013424
                       0.001968
                                   6.820 9.09e-12 ***
                                   2.167 0.030209 *
## alpha1 0.259867
                       0.119901
                       1.660030
                                   3.606 0.000311 ***
## shape
          5.985979
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Log Likelihood:
## 242.9678
               normalized: 0.6531391
##
## Description:
   Wed Oct 25 21:37:42 2023 by user:
##
##
## Standardised Residuals Tests:
##
                                   Statistic p-Value
## Jarque-Bera Test
                           Chi^2 130.8931 0
                      R
                                   0.9637533 5.744995e-08
## Shapiro-Wilk Test R
                            W
## Ljung-Box Test
                      R
                            Q(10) 14.31288 0.1591926
## Ljung-Box Test
                            Q(15) 23.34043 0.07717449
                       R
## Ljung-Box Test
                      R
                            Q(20) 24.87286 0.2063387
## Ljung-Box Test
                      R^2 Q(10) 15.35917
                                            0.1195054
                      R<sup>2</sup> Q(15) 33.96318 0.003446127
## Ljung-Box Test
## Ljung-Box Test
                      R^2
                           Q(20) 35.46828
                                            0.01774746
## LM Arch Test
                            TR^2
                                   24.11517 0.01961957
##
## Information Criterion Statistics:
##
         AIC
                  BIC
                            SIC
                                      HQIC
## -1.284773 -1.242634 -1.285001 -1.268039
predict(Intel_m3, 5)
     meanForecast meanError standardDeviation
## 1
        0.021571 0.1207911
                                    0.1207911
## 2
        0.021571 0.1312069
                                    0.1312069
        0.021571 0.1337810
                                    0.1337810
## 4
        0.021571 0.1344418
                                    0.1344418
## 5
        0.021571 0.1346130
                                    0.1346130
M3 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1, 0)),
                     mean.model = list(armaOrder = c(0, 0), include.mean = T),
                      distribution.model = "std", fixed.pars = list())
(Intel_m3 <- ugarchfit(M3, data = intc))
```

```
##
      GARCH Model Fit *
##
## Conditional Variance Dynamics
## -----
## GARCH Model : sGARCH(1,0)
## Mean Model : ARFIMA(0,0,0)
## Distribution : std
##
## Optimal Parameters
## -----
        Estimate Std. Error t value Pr(>|t|)
        ## mu
## omega 0.013476 0.001996 6.7508 0.000000
## alpha1 0.263910 0.121752 2.1676 0.030189
        5.937781 1.655116 3.5875 0.000334
## shape
##
## Robust Standard Errors:
       Estimate Std. Error t value Pr(>|t|)
        ## mu
## omega 0.013476 0.002132 6.3203 0.000000
## alpha1 0.263910 0.153254 1.7220 0.085061
## shape 5.937781 1.475958 4.0230 0.000057
##
## LogLikelihood : 242.9753
##
## Information Criteria
## -----
## Akaike
           -1.2848
## Bayes
           -1.2427
         -1.2850
## Shibata
## Hannan-Quinn -1.2681
## Weighted Ljung-Box Test on Standardized Residuals
## -----
##
                     statistic p-value
## Lag[1]
                     0.003118 0.9555
## Lag[2*(p+q)+(p+q)-1][2] 0.193986 0.8579
## Lag[4*(p+q)+(p+q)-1][5] 3.649143 0.3012
## d.o.f=0
## HO : No serial correlation
## Weighted Ljung-Box Test on Standardized Squared Residuals
## -----
##
                     statistic p-value
## Lag[1]
                       0.5263 0.46815
## Lag[2*(p+q)+(p+q)-1][2] 3.5205 0.10150
## Lag[4*(p+q)+(p+q)-1][5] 6.6637 0.06253
## d.o.f=1
```

```
##
## Weighted ARCH LM Tests
## -----
           Statistic Shape Scale P-Value
## ARCH Lag[2] 5.924 0.500 2.000 0.01493
## ARCH Lag[4] 7.325 1.397 1.611 0.02349
## ARCH Lag[6] 8.323 2.222 1.500 0.03480
## Nyblom stability test
## -----
## Joint Statistic: 1.2181
## Individual Statistics:
       0.05211
## omega 0.48258
## alpha1 0.37199
## shape 0.13634
##
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic: 1.07 1.24 1.6
## Individual Statistic: 0.35 0.47 0.75
##
## Sign Bias Test
## -----
                 t-value prob sig
             0.18119 0.8563
## Sign Bias
## Negative Sign Bias 0.39211 0.6952
## Positive Sign Bias 0.06475 0.9484
## Joint Effect 0.16040 0.9837
##
##
## Adjusted Pearson Goodness-of-Fit Test:
## -----
## group statistic p-value(g-1)
## 1 20 32.95 0.02439
## 2 30 38.48
## 3 40 42.62
                    0.11195
                    0.31802
## 4 50 55.42
                    0.24547
##
##
## Elapsed time : 0.08172512
ugarchforecast(Intel_m3, n.ahead = 5)
##
## *----*
       GARCH Model Forecast
## *-----*
## Model: sGARCH
## Horizon: 5
## Roll Steps: 0
## Out of Sample: 0
## 0-roll forecast [T0=1971-01-07 19:00:00]:
## Series Sigma
```

```
## T+1 0.02156 0.1211
## T+2 0.02156 0.1317
## T+3 0.02156 0.1344
## T+4 0.02156 0.1351
## T+5 0.02156 0.1352
```

GARCH Bollerslev (1986)

$$a_t = \sigma_t \epsilon_t, \quad \sigma_t^2 = \alpha_0 + \sum_{i=1}^m \alpha_i a_{t-i}^2 + \sum_{j=1}^s \beta_j \sigma_{t-j}^2.$$

Simulation

Fit a GARCH(1,1)

```
Intel_m4 <- garchFit(~ 1 + garch(1, 1), data = intc, trace = F)</pre>
## Warning: Using formula(x) is deprecated when x is a character vector of length > 1.
     Consider formula(paste(x, collapse = " ")) instead.
summary(Intel_m4)
##
## Title:
##
  GARCH Modelling
##
   garchFit(formula = ~1 + garch(1, 1), data = intc, trace = F)
##
##
## Mean and Variance Equation:
## data ~ 1 + garch(1, 1)
## <environment: 0x7faae0f40ef0>
   [data = intc]
##
## Conditional Distribution:
## norm
##
## Coefficient(s):
         mu
                 omega
                            alpha1
                                       beta1
## 0.0163276 0.0010918 0.0802716 0.8553014
##
## Std. Errors:
## based on Hessian
##
## Error Analysis:
##
          Estimate Std. Error t value Pr(>|t|)
         0.0163276
                     0.0062624
                                  2.607 0.00913 **
## mu
## omega 0.0010918
                     0.0005291
                                  2.063 0.03907 *
## alpha1 0.0802716
                     0.0281162
                                  2.855 0.00430 **
## beta1 0.8553014
                     0.0461374
                                 18.538 < 2e-16 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Log Likelihood:
  239.5189
               normalized: 0.6438681
##
## Description:
   Wed Oct 25 21:37:42 2023 by user:
##
##
## Standardised Residuals Tests:
##
                                   Statistic p-Value
                            Chi^2 156.5138 0
##
   Jarque-Bera Test
                       R
## Shapiro-Wilk Test R
                                   0.9676933 2.471139e-07
                           W
## Ljung-Box Test
                            Q(10) 9.805485 0.4577215
## Ljung-Box Test
                      R
                            Q(15) 16.54435 0.346824
## Ljung-Box Test
                            Q(20) 17.8005
                                            0.6005484
```

```
## Ljung-Box Test
                        R<sup>2</sup> Q(10) 0.5130171 0.9999925
   Ljung-Box Test
                        R<sup>2</sup> Q(15) 10.24557 0.8040151
##
                                     11.77988
   Ljung-Box Test
                             Q(20)
                                               0.9234441
   LM Arch Test
                              TR<sup>2</sup>
                                     9.334459
                                                0.6741288
##
## Information Criterion Statistics:
##
         AIC
                    BIC
                               SIC
                                        HQIC
## -1.266231 -1.224092 -1.266459 -1.249496
mu <- Intel_m4@fit$par[1]</pre>
v1 <- volatility(Intel_m4)</pre>
resi <- residuals(Intel_m4, standardize = T)</pre>
vol <- ts(v1, frequency = 12, start = c(1973, 1))</pre>
res \leftarrow ts(resi, frequency = 12, start = c(1973, 1))
par(las = 1, mgp = c(2.4, 1, 0), mar = c(3.6, 3.8, 0.8, 0.6), mfcol = c(2, 1))
plot(vol, xlab = 'Year', ylab = 'Volatility',type = 'l')
plot(res, xlab = 'Year', ylab = 'Std. resi', type = 'l')
 0.25
0.20
0.15
 0.10
               1975
                           1980
                                        1985
                                                    1990
                                                                 1995
                                                                             2000
                                                                                         2005
                                                 Year
               1975
                           1980
                                        1985
                                                    1990
                                                                 1995
                                                                             2000
                                                                                         2005
                                                 Year
par(las = 1, mgp = c(2.4, 1, 0), mar = c(3.6, 3.8, 0.8, 0.6), mfcol = c(2, 2))
acf(resi, lag = 24)
pacf(resi, lag = 24)
acf(resi^2, lag = 24)
pacf(resi^2, lag = 24)
```



```
par(las = 1, mgp = c(2.4, 1, 0), mar = c(3.6, 3.8, 0.8, 0.6))
upp = mu + 2 * v1; low = mu - 2 * v1
tdx <- (1:length(intc)) / 12 + 1973
plot(tdx, intc, xlab = 'Year', ylab = 'Series', type = 'l', ylim = c(-0.6, 0.6))
lines(tdx, upp, lty = 2, col = 'red'); lines(tdx, low, lty = 2, col = 'red')
abline(h = mu)</pre>
```



```
##
              GARCH Model Fit
##
## Conditional Variance Dynamics
## GARCH Model : sGARCH(1,1)
## Mean Model : ARFIMA(0,0,0)
## Distribution : norm
##
## Optimal Parameters
##
##
           Estimate
                    Std. Error t value Pr(>|t|)
## mu
           0.016330
                       0.006262
                                  2.6079 0.009111
## omega
           0.001091
                       0.000529
                                  2.0619 0.039214
                                  2.8471 0.004412
## alpha1
           0.079785
                       0.028023
## beta1
           0.855460
                       0.046223
                                 18.5074 0.000000
##
## Robust Standard Errors:
           Estimate Std. Error t value Pr(>|t|)
##
```

```
## mu 0.016330 0.007332 2.2272 0.025934
## omega 0.001091 0.000636 1.7159 0.086184
## alpha1 0.079785 0.032726 2.4379 0.014772
## beta1 0.855460 0.050233 17.0297 0.000000
## LogLikelihood: 239.5281
## Information Criteria
## -----
##
## Akaike
            -1.2663
## Bayes
            -1.2241
## Shibata -1.2665
## Hannan-Quinn -1.2495
## Weighted Ljung-Box Test on Standardized Residuals
##
                      statistic p-value
## Lag[1]
                         0.1307 0.7177
## Lag[2*(p+q)+(p+q)-1][2] 0.2414 0.8293
## Lag[4*(p+q)+(p+q)-1][5] 1.8780 0.6475
## d.o.f=0
## HO : No serial correlation
## Weighted Ljung-Box Test on Standardized Squared Residuals
## -----
##
                       statistic p-value
## Lag[1]
                         0.1505 0.6981
## Lag[2*(p+q)+(p+q)-1][5] 0.1792 0.9940
## Lag[4*(p+q)+(p+q)-1][9] 0.2349 0.9999
## d.o.f=2
##
## Weighted ARCH LM Tests
## -----
            Statistic Shape Scale P-Value
## ARCH Lag[3] 0.04014 0.500 2.000 0.8412
## ARCH Lag[5] 0.04586 1.440 1.667 0.9956
## ARCH Lag[7] 0.05466 2.315 1.543 0.9998
##
## Nyblom stability test
## -----
## Joint Statistic: 1.6271
## Individual Statistics:
## mu 0.04707
## omega 0.19694
## alpha1 0.10765
## beta1 0.20534
##
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic: 1.07 1.24 1.6
## Individual Statistic: 0.35 0.47 0.75
##
## Sign Bias Test
## -----
```

```
##
                       t-value
                                 prob sig
## Sign Bias
                       0.04526 0.9639
## Negative Sign Bias 0.43619 0.6630
## Positive Sign Bias 0.25615 0.7980
##
  Joint Effect
                       0.25672 0.9680
##
##
## Adjusted Pearson Goodness-of-Fit Test:
##
##
     group statistic p-value(g-1)
## 1
        20
               24.67
                            0.1718
               36.06
                            0.1717
## 2
        30
##
  3
        40
               50.58
                            0.1013
                            0.3804
## 4
        50
               51.39
##
##
## Elapsed time : 0.06037498
```

IGARCH

Simulation

```
par(las = 1, mgp = c(2.2, 1, 0), mar = c(3.6, 3.6, 0.8, 0.6))
mod_spec <- ugarchspec(variance.model = list(model = "iGARCH", garchOrder = c(1, 1)), mean.model = list
sim <- ugarchpath(mod_spec, n.sim = 2000)
ts.plot(sim@path$seriesSim)</pre>
```



```
source("Igarch.R")
IGARCH_fit <- Igarch(intc, include.mean = T)</pre>
## Estimates: 0.01518916 0.930005
## Maximized log-likehood: -231.7141
## Coefficient(s):
        Estimate Std. Error t value Pr(>|t|)
      0.01518916  0.00625338  2.42895  0.015143 *
## beta 0.93000501 0.01661928 55.95940 < 2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
names(IGARCH_fit)
## [1] "par"
                 "volatility"
Intel_m5 = ugarchspec(variance.model = list(model = "iGARCH", garchOrder = c(1, 1)), mean.model = list(
(Intel_m5 <- ugarchfit(Intel_m5, data = intc))
##
## *----*
        GARCH Model Fit
##
## Conditional Variance Dynamics
## -----
## GARCH Model : iGARCH(1,1)
## Mean Model : ARFIMA(0,0,0)
## Distribution : norm
## Optimal Parameters
## -----
##
         Estimate Std. Error t value Pr(>|t|)
## mu
        0.015365 0.006210 2.4741 0.013357
## omega 0.000336 0.000206 1.6318 0.102719
## alpha1 0.113395 0.035860 3.1621 0.001566
## beta1
         0.886605
                     NA
                               NA
## Robust Standard Errors:
##
         Estimate Std. Error t value Pr(>|t|)
         0.015365 0.007326 2.0973 0.035968
## omega 0.000336 0.000213 1.5765 0.114903
## alpha1 0.113395 0.037279
                            3.0418 0.002352
## beta1
         0.886605
                        NA
                                 NA
## LogLikelihood : 236.014
## Information Criteria
##
```

```
-1.2528
## Akaike
## Bayes
          -1.2212
-1.2529
## Shibata
## Hannan-Quinn -1.2402
## Weighted Ljung-Box Test on Standardized Residuals
## -----
##
                      statistic p-value
## Lag[1]
                        0.1910 0.6621
## Lag[2*(p+q)+(p+q)-1][2]
                        0.3424 0.7726
## Lag[4*(p+q)+(p+q)-1][5] 1.7669 0.6744
## d.o.f=0
## HO : No serial correlation
##
## Weighted Ljung-Box Test on Standardized Squared Residuals
## -----
##
                      statistic p-value
## Lag[1]
                       0.1677 0.6822
## Lag[2*(p+q)+(p+q)-1][5] 0.3334 0.9801
## Lag[4*(p+q)+(p+q)-1][9] 0.4189 0.9991
## d.o.f=2
##
## Weighted ARCH LM Tests
## -----
## Statistic Shape Scale P-Value
## ARCH Lag[3] 0.01600 0.500 2.000 0.8993
## ARCH Lag[5] 0.07147 1.440 1.667 0.9918
## ARCH Lag[7] 0.12253 2.315 1.543 0.9990
##
## Nyblom stability test
## -----
## Joint Statistic: 1.5876
## Individual Statistics:
## mu
     0.05671
## omega 0.13078
## alpha1 0.49311
##
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic: 0.846 1.01 1.35
## Individual Statistic: 0.35 0.47 0.75
## Sign Bias Test
## -----
##
                 t-value prob sig
## Sign Bias
                 0.00311 0.9975
## Negative Sign Bias 0.03265 0.9740
## Positive Sign Bias 0.02437 0.9806
## Joint Effect 0.00404 0.9999
##
##
## Adjusted Pearson Goodness-of-Fit Test:
## -----
## group statistic p-value(g-1)
## 1 20 29.08 0.06481
```

```
0.18120
       30 35.74
## 2
## 3
       40 46.28
                       0.19700
             55.42
## 4
       50
                       0.24547
##
## Elapsed time : 0.03690696
ugarchforecast(Intel_m5, n.ahead = 10, data = intc)
## Warning in 'setfixed<-'('*tmp*', value = as.list(pars)): Unrecognized Parameter
## in Fixed Values: beta1...Ignored
##
## *----*
        GARCH Model Forecast
## Model: iGARCH
## Horizon: 10
## Roll Steps: 0
## Out of Sample: 0
## 0-roll forecast [T0=1971-01-07 19:00:00]:
       Series Sigma
## T+1 0.01536 0.1429
## T+2 0.01536 0.1441
## T+3 0.01536 0.1453
## T+4 0.01536 0.1464
## T+5 0.01536 0.1476
## T+6 0.01536 0.1487
## T+7 0.01536 0.1498
## T+8 0.01536 0.1510
## T+9 0.01536 0.1521
## T+10 0.01536 0.1532
```

EGARCH Nelson (1991)

IBM monthly returns

```
source("Egarch.R")
IBM <- read.table("m-ibmsp6709.txt", header = T)
ibm <- log(IBM$ibm + 1)
Box.test(ibm, lag = 12, type = 'Ljung')

##
## Box-Ljung test
##
## data: ibm
## X-squared = 7.4042, df = 12, p-value = 0.8298</pre>
```

```
EGARCH_fit <- Egarch(ibm)</pre>
##
## Estimation results of EGARCH(1,1) model:
## estimates: 0.006732389 -0.5983263 0.217603 -0.4243245 0.92015
## std.errors: 0.002877666 0.2349172 0.05916528 0.1683064 0.0388656
## t-ratio: 2.339531 -2.546967 3.677882 -2.521144 23.67518
names(EGARCH_fit)
## [1] "residuals" "volatility"
stresi <- EGARCH_fit$residuals / EGARCH_fit$volatility</pre>
tdx = (1:length(ibm)) / 12 + 1967
par(las = 1, mgp = c(2.2, 1, 0), mar = c(3.6, 3.6, 0.8, 0.6), mfcol = c(2, 1))
plot(tdx, ibm, xlab = 'Year', ylab = 'logrtn', type = 'l')
abline(h = 0, col = "blue")
plot(tdx,stresi, xlab = 'Year', ylab = 'stresi',type = 'l')
  0.3
  0.2
0.0
0.0
<del>으</del>0.1
 -0.2
 -0.3
              1970
                               1980
                                                1990
                                                                  2000
                                                                                   2010
                                              Year
    3
    2
   -2
              1970
                               1980
                                                1990
                                                                  2000
                                                                                   2010
                                              Year
Box.test(stresi, lag = 10, type = 'Ljung')
##
##
   Box-Ljung test
##
## data: stresi
## X-squared = 5.2866, df = 10, p-value = 0.8712
```

```
Box.test(stresi, lag = 20, type = 'Ljung')
##
## Box-Ljung test
## data: stresi
## X-squared = 20.983, df = 20, p-value = 0.3981
Box.test(stresi^2, lag = 10, type = 'Ljung')
##
## Box-Ljung test
##
## data: stresi^2
## X-squared = 5.0469, df = 10, p-value = 0.888
Box.test(stresi^2, lag = 20, type = 'Ljung')
##
## Box-Ljung test
##
## data: stresi^2
## X-squared = 14.261, df = 20, p-value = 0.817
Fit EGARCH using ugarch
IBM_egarch <- ugarchspec(variance.model = list(model = "eGARCH", garchOrder = c(1, 1)), mean.model = li</pre>
(IBM_egarch <- ugarchfit(IBM_egarch, data = ibm))
## *----*
          GARCH Model Fit
## *----*
##
## Conditional Variance Dynamics
## -----
## GARCH Model : eGARCH(1,1)
## Mean Model : ARFIMA(0,0,0)
## Distribution : norm
##
## Optimal Parameters
## -----
##
        Estimate Std. Error t value Pr(>|t|)
       0.006649 0.002963 2.2442 0.024820
## mu
## omega -0.423208 0.223673 -1.8921 0.058480
## beta1 0.920485 0.041729 22.0586 0.000000
## gamma1 0.218711 0.060802 3.5971 0.000322
```

```
##
## Robust Standard Errors:
       Estimate Std. Error t value Pr(>|t|)
         ## mu
## omega -0.423208 0.308230 -1.3730 0.169743
## beta1 0.920485 0.057270 16.0728 0.000000
## gamma1 0.218711 0.061770 3.5407 0.000399
##
## LogLikelihood : 651.634
## Information Criteria
##
            -2.5063
## Akaike
## Bayes
            -2.4652
           -2.5065
## Shibata
## Hannan-Quinn -2.4902
## Weighted Ljung-Box Test on Standardized Residuals
## -----
##
                      statistic p-value
                          1.237 0.2661
## Lag[1]
                       1.344 0.3989
## Lag[2*(p+q)+(p+q)-1][2]
## Lag[4*(p+q)+(p+q)-1][5] 1.867 0.6501
## d.o.f=0
## HO : No serial correlation
## Weighted Ljung-Box Test on Standardized Squared Residuals
##
                      statistic p-value
## Lag[1]
                       0.009633 0.9218
## Lag[2*(p+q)+(p+q)-1][5] 1.087446 0.8396
## Lag[4*(p+q)+(p+q)-1][9] 2.511467 0.8360
## d.o.f=2
##
## Weighted ARCH LM Tests
## -----
  Statistic Shape Scale P-Value
## ARCH Lag[3] 0.09128 0.500 2.000 0.7626
## ARCH Lag[5] 1.10479 1.440 1.667 0.7021
## ARCH Lag[7] 2.20197 2.315 1.543 0.6746
## Nyblom stability test
## Joint Statistic: 1.1719
## Individual Statistics:
## mu
       0.21948
## omega 0.61756
## alpha1 0.15868
## beta1 0.61824
## gamma1 0.06386
##
## Asymptotic Critical Values (10% 5% 1%)
```

```
## Joint Statistic: 1.28 1.47 1.88
## Individual Statistic: 0.35 0.47 0.75
##
## Sign Bias Test
## -----
##
                    t-value prob sig
                     0.1014 0.9192
## Sign Bias
## Negative Sign Bias 0.2560 0.7980
## Positive Sign Bias 0.1888 0.8503
## Joint Effect
                     0.3726 0.9458
##
##
## Adjusted Pearson Goodness-of-Fit Test:
## -----
    group statistic p-value(g-1)
## 1
       20
              13.07
                         0.8350
## 2
       30
              22.26
                         0.8094
## 3
       40
              28.03
                         0.9040
## 4
       50
              42.53
                         0.7314
##
##
## Elapsed time : 0.07054901
```

Stochastic Volatility (SV) Model Melino and Turnbull (1990); Harvey, Ruiz, and Shephard (1994); Jacquier, Polson, and Rossi (2002)

Simulation

Let's simulate realization from a stochastic volatility model where $\log(\sigma_t)$ follows an AR(1) process. That is

$$(1 - \phi B) \log(\sigma_t^2) = \mu + \nu_t,$$

where $\nu_t \sim N(0, \sigma_{\nu}^2)$.

```
library(stochvol)
sim <- svsim(2000, mu = -9, phi = 0.99, sigma = 0.1)
par(mfrow = c(2, 1), las = 1)
plot(sim)</pre>
```

Simulated data: 'log-returns' (in %)

Simulated volatilities (in %)

Euro exchange rate example

```
data(exrates)
# Computes the Log Returns
ret <- logret(exrates$USD, demean = TRUE)
par(mfrow = c(2, 1), mar = c(1.9, 1.9, 1.9, 0.5), mgp = c(2, 0.6, 0))
plot(exrates$date, exrates$USD, type = "l", main = "Price of 1 EUR in USD")
plot(exrates$date[-1], ret, type = "l", main = "Demeaned log returns")</pre>
```


Perform Markov Chain Monte Carlo (MCMC) sampling for the Stochastic Volatility (SV) $\operatorname{\mathsf{Model}}$

Prior

- $\pi(\mu) \sim N(-10, 1)$
- $\pi(\phi) \sim \text{Beta}(20, 1.1)$

```
res <- svsample(ret, priormu = c(-10, 1), priorphi = c(20, 1.1), priorsigma = 0.1)
```

Done!

Summarizing posterior draws...

```
summary(res, showlatent = FALSE)
```

```
~ Constant(value = 0)
##
## Stored 10000 MCMC draws after a burn-in of 1000.
## No thinning.
##
## Posterior draws of SV parameters (thinning = 1):
##
                           sd
                                     5%
                                             50%
                                                     95% ESS
                 mean
             -10.1343 0.21782 -10.4657 -10.1377 -9.8059 4836
## mu
## phi
               0.9937 0.00268
                                0.9889
                                          0.9939
                                                  0.9977
## sigma
               0.0645 0.00981
                                0.0503
                                          0.0637
                                                  0.0821
                                                          151
## exp(mu/2)
               0.0063 0.00072
                                0.0053
                                          0.0063
                                                  0.0074 4836
## sigma^2
               0.0043 0.00132
                                0.0025
                                          0.0041
                                                  0.0067
                                                          151
volplot(res, forecast = 100, dates = exrates$date[-1])
```

Estimated volatilities in percent (5% / 50% / 95% posterior quantiles)


```
par(mfrow = c(1, 3), las = 1, mar = c(3.5, 4, 1, 0.5))
paradensplot(res, showobs = FALSE, cex = 0.5)
```


plot(res, showobs = FALSE, cex = 0.5)

References

Bollerslev, Tim. 1986. "Generalized Autoregressive Conditional Heteroskedasticity." *Journal of Econometrics* 31 (3): 307–27.

Engle, Robert F. 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation." *Econometrica: Journal of the Econometric Society*, 987–1007.

Harvey, Andrew, Esther Ruiz, and Neil Shephard. 1994. "Multivariate Stochastic Variance Models." *The Review of Economic Studies* 61 (2): 247–64.

Jacquier, Eric, Nicholas G Polson, and Peter E Rossi. 2002. "Bayesian Analysis of Stochastic Volatility Models." Journal of Business & Economic Statistics 20 (1): 69–87.

Melino, Angelo, and Stuart M Turnbull. 1990. "Pricing Foreign Currency Options with Stochastic Volatility." Journal of Econometrics 45 (1-2): 239–65.

Nelson, Daniel B. 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach." *Econometrica: Journal of the Econometric Society*, 347–70.