

planetmath.org

Math for the people, by the people.

nilpotent group

 $\begin{array}{lll} {\rm Canonical\ name} & {\rm NilpotentGroup} \\ {\rm Date\ of\ creation} & 2013\text{-}03\text{-}22\ 12\text{:}47\text{:}50 \\ {\rm Last\ modified\ on} & 2013\text{-}03\text{-}22\ 12\text{:}47\text{:}50 \end{array}$

Owner djao (24) Last modified by djao (24)

Numerical id 8

Author djao (24) Entry type Definition Classification msc 20F18 Defines nilpotent

Defines upper central series
Defines lower central series
Defines nilpotency class
Defines nilpotent class

We define the *lower central series* of a group G to be the filtration of subgroups

$$G = G^1 \supset G^2 \supset \cdots$$

defined inductively by:

$$\begin{array}{rcl} G^1 & := & G, \\[1mm] G^i & := & [G^{i-1},G], & i>1, \end{array}$$

where $[G^{i-1}, G]$ denotes the subgroup of G generated by all commutators of the form $hkh^{-1}k^{-1}$ where $h \in G^{i-1}$ and $k \in G$. The group G is said to be nilpotent if $G^i = 1$ for some i.

Nilpotent groups can also be equivalently defined by means of upper central series. For a group G, the *upper central series* of G is the filtration of subgroups

$$C_0 \subset C_1 \subset C_2 \subset \cdots$$

defined by setting C_0 to be the trivial subgroup of G, and inductively taking C_i to be the unique subgroup of G such that C_i/C_{i-1} is the center of G/C_{i-1} , for each i > 1. The group G is nilpotent if and only if $G = C_i$ for some i. Moreover, if G is nilpotent, then the length of the upper central series (i.e., the smallest i for which $G = C_i$) equals the length of the lower central series (i.e., the smallest i for which $G^{i+1} = 1$).

The *nilpotency class* or *nilpotent class* of a nilpotent group is the length of the lower central series (equivalently, the length of the upper central series).

Nilpotent groups are related to nilpotent Lie algebras in that a Lie group is nilpotent as a group if and only if its corresponding Lie algebra is nilpotent. The analogy extends to solvable groups as well: every nilpotent group is solvable, because the upper central series is a filtration with abelian quotients.