R2, MLR

Week 04 - Day 01

RZ, R Squared, Coefficient of Determination

"In statistics, the **coefficient of determination**, denoted R^2 or r^2 and pronounced "R squared", is the proportion of the variance in the dependent variable that is predictable from the independent variable(s)."

Wikipedia

What is blue_area / red_area?

Meaning?

blue_area == red_area

Meaning?

blue_area < red_area

Meaning?

blue_area > red_area

R2 = 1 - (blue_area / red_area)

Multiple Linear Regression

```
Salary =
+ b0
+ b1 * years_of_experience
+ b2 * ability_to_negotiate
- b3 * is_startup
+ b4 * is_finance
+ b5 * responsibilities
```

New assumptions:

independence of predictors

Multicollinearity

```
Salary =
+ b0
+ b1 * years_of_experience
+ b2 * months_of_experience
+ b3 * days_of_experience
```

Interpretation

```
Salary =
+ b0
+ b1 * years_of_experience
+ b2 * ability_to_negotiate
- b3 * is_startup
+ b4 * is_finance
+ b5 * responsibilities
```

What is b1?

Optimization Using Derivative

Prediction = b0 + (b1 * input)

Time = $10 + 3 * mrt_stops$

Optimization

Finding b0,b1 that give us

the smallest error

Derivative = minimum

NICE GIF ON WIKIPEDIA

Error

Coefficient b1

Error

Coefficient b1

Error

Coefficient b1

Quick note on matrices

Matrices on python = Numpy arrays

Solve the exercise

or

Review matrix multiplication, transpose, inverse, dot product, array-matrix multiplication, etc.