### Indexing big colored image bank: Texture 3.0

# Etienne CAILLAUD, Thomas LE BRIS, Ibrahima GUEYE, Gaetan ADIER

XLIM-SIC Laboratory UMR CNRS 7252, Poitiers, France







#### **Outline**

- 1 Introduction
- 2 Team presentation
- 3 User requirement
- Work achievement
- 6 Results and Discussion
- 6 Project Management
- Conclusion

# Image Indexing



FIGURE: Online image indexing

### Descriptor



FIGURE: Dense grid keypoints

# Descriptor



FIGURE: Points of interest keypoints

#### **Outline**

- 1 Introduction
- 2 Team presentation
- 3 User requirement
- Work achievement
- 6 Results and Discussion
- 6 Project Management
- Conclusion

#### **Deadlines**

#### XLIM-SIC Laboratory of University of Poitiers

- Noel Richard (Researcher in Color images): Supervisor
- David Helbert ( Researcher in Signal-Image-Communications) : Supervisor
- Thierry Urruty (Researcher in Color images): Customer

#### **Outline**

- 1 Introduction
- 2 Team presentation
- 3 User requirement
- Work achievement
- 5 Results and Discussion
- 6 Project Management
- 7 Conclusion

#### Software

- Design software programs : indexation of images database,calculate descriptor according to nature images
- Adapt the last up to date designed color and texture attributes to the current image classification
- Compare our results (using CLEF challenge metrics)
- Provide an abstract of the comparisons and a technical report

#### **Outline**

- 1 Introduction
- 2 Team presentation
- 3 User requirement
- Work achievement
- 6 Results and Discussion
- 6 Project Management
- Conclusion

### SIFT(Scale-Invariant Feature Transform)

#### Key-points detection $(x,y,\sigma)$

- Scale-space extrema detection
  Find the best locations which characterize well the image
- Key-point location
  Improve the position of the keypoints detected
- Orientation assignment
  Assign orientations to the key-points
- key-point descriptor
  Describe the key-point with with a vector of 128 dimension

### SIFT(Scale-Invariant Feature Transform)







FIGURE: SIFT test2

### $C_2O(1/3)$



- Conversion to L\*a\*b\* space
- C<sub>2</sub>O matrix calculation.
- C<sub>2</sub>O signature extraction.

### $C_2O(2/3)$

- The C<sub>2</sub>O matrix
  - The color difference computation (in the  $L^*a^*b^*$  space).



### $C_2O(2/3)$

- The C2O matrix
  - The color difference computation (in the  $L^*a^*b^*$  space).
  - The C<sub>2</sub>O matrix in a 3-D repository.



- The C2O feature extraction
  - Spherical from cartesian repository.



- The C<sub>2</sub>O feature extraction
  - Spherical from cartesian repository.
  - Quantization for one β interval.



- The C<sub>2</sub>O feature extraction
  - Spherical from cartesian repository.
  - Quantization for one β interval.
  - Histogram obtained for one β interval.



- The C<sub>2</sub>O feature extraction
  - Spherical from cartesian repository.
  - Quantization for one β interval.
  - Histogram obtained for one β interval.
  - Quantization for each β interval.



- The C<sub>2</sub>O feature extraction
  - Spherical from cartesian repository.
  - Quantization for one β interval.
  - Histogram obtained for one β interval.
  - Quantization for each β interval.
  - Final signature obtained.



### Classification (Bag of words)

Reducing the number of points.

- K-means
  - Attribute the vectors to centroid vectors.



FIGURE: K-means



- Signature
  - Design histogram in function of assignment of the vectors.

FIGURE: Signature

### Classification (K-nn(1/2))

- The k nearest neighbor method

Comparison to the dictionary.



### Classification (K-nn(1/2))

- The k nearest neighbor method
  - Comparison to the dictionary .



- 4 Occurrences of the 'red' class , 1 occurrence of the 'blue' class
- The new point is attributed to the 'red' class

### Classification (K-nn(1/2))

- Application for image classification
  - More complex data.
  - Distances on signature vectors extracted from the K-mean method.
  - One most adapted distance type for each descriptor.

#### **CLEF**

- What is CLEF?
- What did we gained from enrolling?



FIGURE: Points of interest keypoints

benchmark

#### Process flow

- Main function which control all the process
  - Create the tree structure.
  - Allows the choice of descriptors.



FIGURE: Tree structure

#### **Outline**

- Introduction
- 2 Team presentation
- 3 User requirement
- Work achievement
- 6 Results and Discussion
- 6 Project Management
- Conclusion

#### Results

- Reduce data-base of 100 images composed of only 4 species.
- Compare the two descriptors SIFT and C<sub>2</sub>O.

TABLE: SIFT result

|       |               | A ROSENT REME TO AM |         |          |
|-------|---------------|---------------------|---------|----------|
| ID    | Training Base | Test Base           | Correct | Accuracy |
| 173   | 17            | 8                   | 4       | 50%      |
| 1102  | 22            | 3                   | 1       | 33%      |
| 1889  | 16            | 9                   | 1       | 11%      |
| 2717  | 15            | 10                  | 7       | 70%      |
| Total | 70            | 30                  | 9       | 1        |

TABLE: C<sub>2</sub>O result

| ID    | Training Base | Test Base | Correct | Accuracy |
|-------|---------------|-----------|---------|----------|
| 173   | 17            | 8         | 1/1/1   | 12.5%    |
| 1102  | 22            | 3         | 1       | 33%      |
| 1889  | 16            | 9         | 0       | 0%       |
| 2717  | 15            | 10        | 7       | 70%      |
| Total | 70            | 30        | 9       | 1        |

#### Discussion

- Classification
  - To much reducing on the K-means (100 words).
  - Euclidean distance not the most efficient or adapt.
- C<sub>2</sub>O
  - The concatenation way is not optimal.

#### **Outline**

- 1 Introduction
- 2 Team presentation
- 3 User requirement
- Work achievement
- 5 Results and Discussion
- 6 Project Management
- Conclusion

### Project management (1/2)

- The scrum methodology
  - One sprint per week.
  - Daily scrum meeting.
  - Complete time repartition on the product backlog.



### Project management (2/2)

- The sprint backlog: Trello board
  - Progress on one sprint.



### Project management (2/2)

- The sprint backlog: Trello board
  - Progress on one sprint.



### Project management (2/2)

- The sprint backlog: Trello board
  - Progress on one sprint.



#### **Outline**

- 1 Introduction
- 2 Team presentation
- 3 User requirement
- 4 Work achievement
- 5 Results and Discussion
- 6 Project Management
- Conclusion

#### Conclusion



