Zadanie 1. 1 punkt

Wykaż, że dla wielomianów

$$\lambda_k(x) = \prod_{j=0, j \neq k}^n \frac{x - x_j}{x_k - x_j} \ (k = 0, 1, ..., n)$$

zachodzi

a)
$$\sum_{k=0}^{n} \lambda_k(x) = 1$$

b)
$$\sum_{k=0}^{n} \lambda_k(0) x_k^{j} = 0 \ (j = 1, 2, ..., n)$$

a) Wiemy, że zachodzi $w_n(x)=\sum_{i=0}^n f(x_i)*\lambda_k(x)$ Skoro $w_n(x)=\sum_{i=0}^n f(x_i)*\lambda_k(x)=\sum_{i=0}^n \lambda_k(x)$, to f(x) = 1 Z jednoznaczności wielomianu interpolacyjnego:

$$1 = f(x) = w_n(x) = \sum_{k=0}^{n} \lambda_k(x) \blacksquare$$

$$x(0) * \sum_{k=0}^{n} x_k^j = \sum_{k=0}^{n} x_k^j$$

b)
$$\sum_{k=0}^{n} \lambda_k(0) x_k^{\ j} = \sum_{k=0}^{n} \lambda_k(0) * \sum_{k=0}^{n} x_k^{\ j} = \sum_{k=0}^{n} x_k$$
 Stąd $f(x) = x^n$

Zatem z jednoznaczności wielomianu interpolacyjnego:

$$x^{j} = w_{n}(x) = \sum_{i=0}^{n} y_{i} \lambda_{i}(x) = \sum_{i=0}^{n} x_{i}^{j} \lambda_{i}(x)$$

Stad dla x = 0 mamy

$$0^j = \sum_{i=0}^n 0 * \lambda_i(0) = 0 \blacksquare$$

Zadanie 2. 1 punkt

Sprawdź, że wielomian $Ln \in \Pi n$ interpolujący funkcję f w parami różnych n+1 węzłach x0, ..., xn można zapisać w postaci

$$L_n(x) = \sum_{k=0}^{n} f(x_k) \frac{p_{n+1}(x)}{(x - x_k) * p'_{n+1}(x_k)}$$

gdzie $p_{n+1}(x) = (x - x_0)(x - x_1) \dots (x - x_n)$

Najpierw wyliczmy pochodną:

$$p'_{n+1}(x_k) = \sum_{i=0}^{n} (x_k - x_i)' * \prod_{j=0, j \neq i}^{n} (x_k - x_j) = \sum_{i=0}^{n} \prod_{j=0, j \neq i}^{n} (x_k - x_j)$$

(bo dla każdego k,i $(x_k - x_i)' = 1$, zatem można to pominąć przy mnożeniu) Stąd otrzymujemy:

$$L_{n}(x) = \sum_{k=0}^{n} f(x_{k}) \frac{(x - x_{0})(x - x_{1}) \dots (x - x_{n})}{(x - x_{k}) * \sum_{i=0}^{n} \prod_{j=0, j \neq i}^{n} (x_{k} - x_{j})} =$$

$$= \sum_{k=0}^{n} f(x_{k}) \frac{(x - x_{0}) \dots (x - x_{k-1})(x - x_{k+1}) \dots (x - x_{n})}{\sum_{i=0}^{n} \prod_{j=0, j \neq i}^{n} (x_{k} - x_{j})} = (*) =$$

$$= \sum_{k=0}^{n} f(x_{k}) \frac{\prod_{i=0, i \neq k}^{n} (x - x_{i})}{\prod_{j=0, j \neq k}^{n} (x_{k} - x_{j})} = \sum_{k=0}^{n} f(x_{k}) \prod_{i=0, i \neq k}^{n} \frac{x - x_{i}}{x_{k} - x_{i}} \blacksquare$$

(pomijamy sumę w mianowniku, bo k = i oraz i≠j)

Zadanie 3. 1 punkt

Używając postaci Newtona, podaj wielomian interpolacyjny dla następujących danych:

a)	x_k	-3	0	3	4
	y_k	4	-5	22	11

x_k	3	4	-3	-4	0
y_k	22	11	4	43	-5

Do rozwiązania tych zadań skorzystamy z rekurencyjnego wzoru na ilorazy różnicowe:

zania tych zadań skorzystamy z rekurencyjnego wzoru na ilorazy różnicowe:
$$\begin{cases} f[x_i] = y_i \\ f[x_i, x_{i+1}, \dots, x_{i+n-1}, x_{i+n}] = \frac{f[x_{i+1}, \dots, x_{i+n-1}, x_{i+n}] - f[x_i, x_{i+1}, \dots, x_{i+n-1}]}{x_{i+n} - x_i} \end{cases}$$

a)

x_k	y_k	$f[x_i, x_{i+1}]$	$f[x_i, x_{i+1}, x_{i+2}]$	$f[x_i, x_{i+1}, x_{i+2}, x_{i+3}]$
-3	4	-	-	-
0	-5	-3	-	-
3	22	9	2	-
4	11	-11	-5	-1

Zatem wielomian a) w postaci Newtona wygląda następująco:

$$4-3(x+3)+2(x+3)x-(x+3)x(x-3)$$

b)

x_k	y_k	$f[x_i, x_{i+1}]$	$f[x_i, x_{i+1}, x_{i+2}]$	$f[x_i, x_{i+1}, x_{i+2}, x_{i+3}]$	$f[x_i, x_{i+1}, x_{i+2}, x_{i+3}, x_{i+4}]$
-3	4	-	-	-	-
0	-5	-3	-	-	-
3	22	9	2	-	-
4	11	-11	-5	-1	-
-4	43	-4	-1	-1	0

Zatem wielomian b) w postaci Newtona wygląda tak samo jak ten z a)

c)

x_k	y_k	$f[x_i, x_{i+1}]$	$f[x_i, x_{i+1}, x_{i+2}]$	$f[x_i - x_{i+3}]$	$f[x_i - x_{i+4}]$	$f[x_i - x_{i+5}]$
-4	8	-	-	-	-	-
-3	6	-2	-	-	-	-
-2	4	-2	0	-	-	-
2	-4	-2	0	0	-	-
3	-6	-2	0	0	0	-
4	1977	1983	1985	1985	1985	1985
			2	12	84	672

Zatem wielomian c) w postaci Newtona wygląda następująco:

$$8 - 2(x+4) + \frac{1985}{672}(x+4)(x+3)(x+2)(x-2)(x-3)$$

Zadanie 5. 1 punkt

Niech $t_{nk}^{[a,b]}$ $(0 \le k \le n; n \in N)$ oznacza węzły Czebyszewa w przedziale [a, b] (a < b).

Podaj jawny wzór dla tych węzłów. Jaką wartość przyjmuje wyrażenie

$$max_{x\in[a,b]}\big|\big(x-t_{n0}{}^{[a,b]}\big)\big(x-t_{n1}{}^{[a,b]}\big)\ldots\big(x-t_{nn}{}^{[a,b]}\big)\big|$$

$$w(x) = (x - x_0)(x - x_1) \dots (x - x_n), x \in [a, b]$$

$$v(t) = (t - t_0)(t - t_1) \dots (t - t_n), x \in [-1, 1]$$

ti to miejsca zerowe n+1 szego wielomianu Czebyszewa.

Z poprzedniej listy wiemy, że współczynnik wiodący wielomianu Czebyszewa to 2^n.

Zatem skoro $\max |T_{n+1}(x)| = 1$ to $\max |v(t)| = \frac{1}{2^n}$

$$\operatorname{St}{\operatorname{qd}} x = a + \frac{b-a}{2}(t+1)$$

Zatem otrzymujemy:

$$\max_{[a,b]} \left| \prod_{j=0}^{n} (x - x_j) \right| = \max_{t \in [-1,1]} \left| \prod_{j=0}^{n} \left(a + \frac{b - a}{2} (t + 1) \right) - \left(a + \frac{b - a}{2} (t_j + 1) \right) \right| =$$

$$= \max_{t \in [-1,1]} \left| \prod_{j=0}^{n} \left(\frac{b - a}{2} (t - t_j) \right) \right| = \left(\frac{b - a}{2} \right)^{n+1} * \max_{t \in [-1,1]} \left| \prod_{j=0}^{n} (t - t_j) \right| = \left(\frac{b - a}{2} \right)^{n+1} * \frac{1}{2^n}$$

Zadanie 6. 1 punkt

Funkcję f(x) = ln(2x-3) interpolujemy wielomianem Ln \in Π n w pewnych n + 1 różnych punktach przedziału [4, 5]. Znajdź wartość n, dla której $\max_{x \in [4,5]} |f(x) - L_n(x)| \le 10^{-10}$.

Jak zmieni się sytuacja, gdy użyjemy węzłów Czebyszewa odpowiadającym przedziałowi [4, 5]?

Oznaczenie z repetytorium: $||f|| = \max(f)$ na danym przedziale (tu na przedziale [4,5])

Wiemy, że (*)
$$\|f(x) - L_n(x)\| \le \frac{|f^{(n+1)}(x)|}{(n+1)!} \|p_{n+1}(x)\|$$

Wyliczmy kolejne pochodne f(x):

$$f'(x) = \frac{2}{2x - 3}$$

$$f''(x) = -\frac{4}{(2x - 3)^2}$$

$$f^{(3)}(x) = \frac{16}{(2x - 3)^3}$$

$$f^{(4)}(x) = -\frac{96}{(2x - 3)^4}$$

W ogólności można zauważyć:

$$f^{(n)}(x) = (-1)^{n-1} \frac{2^n * (n-1)!}{(2x-3)^n}$$
$$f^{(n+1)}(x) = (-1)^n \frac{2^{n+1} * n!}{(2x-3)^{n+1}}$$

Wstawiając to do (*) otrzymujemy:

$$||f(x) - L_n(x)|| \le \frac{\left| (-1)^n \frac{2^{n+1} * n!}{(2x-3)^{n+1}} \right|}{(n+1)!} ||p_{n+1}(x)||$$

$$||f(x) - L_n(x)|| \le \frac{\left| \frac{2^{n+1}}{(2x-3)^{n+1}} \right|}{n+1} ||p_{n+1}(x)||$$

$$||f(x) - L_n(x)|| \le \left| \frac{2^{n+1}}{(n+1)(2x-3)^{n+1}} \right| * \frac{1}{2^n}$$

Skoro $\max_{x \in [4,5]} |f(x) - L_n(x)| \le 10^{-10}$ to znaczy, że szukamy $x \in [4,5]$ dla którego wartość $\left| \frac{2^{n+1}}{(n+1)(2x-3)^{n+1}} \right|$ jest jak największa, czyli mianownik $(n+1)(2x-3)^{n+1}$ jest jak najmniejszy, zatem niech x = 4, wtedy:

$$\frac{2^{n+1}}{(n+1)5^{n+1}} * \frac{1}{2^n} \le 10^{-10}$$

$$\frac{2}{5^{n+1}(n+1)} \le 10^{-10}$$

$$\frac{2}{5^{n+1}} \le (n+1)10^{-10}$$

$$n \ge \frac{2 * 10^{10}}{5^{n+1}} - 1$$

Zatem $n \ge 13$

Część z węzłami Czebyszewa:

Dla węzłów Czebyszewa zachodzi

$$||f(x) - L_n(x)|| \le \frac{2^{n+1}}{(n+1)5^{n+1}} ||p_{n+1}(x)||$$

$$||f(x) - L_n(x)|| \le \frac{2^{n+1}}{(n+1)5^{n+1}} * \frac{1}{2^n} * \frac{1}{2^{n+1}} \le 10^{-10}$$

$$\frac{1}{(n+1)5^{n+1}} * \frac{1}{2^n} \le 10^{-10}$$

$$\frac{1}{(n+1) * 5 * 10^n} \le 10^{-10}$$

$$\frac{10^{10}}{5 * 10^n} \le n + 1$$

$$n \ge \frac{10^{10-n}}{5} - 1$$

Zatem $n \ge 9$

Wniosek:

Używając węzłów Czebyszewa możemy otrzymać podobne przybliżenie przy mniejszej ilości punktów.