Heavy water:

- Heavy water was discovered by Urey.
- Heavy water is Deuterium oxide
- Source of heavy water is normal water
- Natural water contains I part of heavy water in 6000 parts of ordinary water.
- Heavy water is also found in Himalayan snow melting areas and in the leaves of banyan trees, rain water.
- Theoretically possible number of water molecules by using all the 3 isotopes of hydrogen and all the 3 isotopes of oxygen (O¹⁶, O¹⁷, O¹⁸) are 18.

Theoretically possible number of heavy water molecules are six.

They are D_2O^{16} , D_2O^{17} , D_2O^{18} , HDO^{16} , HDO^{17} , HDO^{18} .

T₂O is super heavy water.

Preparation of D₂O

Preparation of D_2O can be obtained by two methods. They are

- a) Exhaustive electrolysis of alkaline water.
- b) Exchange process.
- Heavy water is prepared by the exhaustive electrolysis of water containing N/2 NaOH.
- In the preparation of heavy water by electrolytic method, the cathode is steel vessel and anode is a perforated cylindrical Nickel sheet.
- 30 litres of water on electrolysis gives 1 ml. of D₂O.

Electrolysis occurs in 7 stages.

At the end of 1^{st} stage, volume becomes 1/6. Alkali present in the water is neutralised by passing CO_2 gas.

During electrolysis bonds in H₂O are broken 18 times faster and H₂ gas is released about six times faster than that of D₂.

In the electrolysis, H_2 and D_2 are liberated at cathode and O_2 is liberated at anode.

At the end of 7th stage, 99% D₂O is obtained.

- D₂O can be prepared by exchange reactions. When H₂S gas is passed through hot water, the hydrogen atoms in H₂S exchange with deuterium from D₂O present in water. Thus H₂S becomes D₂S. On passing D₂S through cold water, the deuterium from D₂S and Hydrogen from H₂O exchange and the cold water becomes richer in D₂O. The process is repeated.
- The reaction in which interchange of the isotopes of an element take place between two
 compounds is known as an isotopic exchange reaction. Isotopic exchange reactions occur
 more readily with compounds containing active or labile Hydrogens.

```
Eg.: HCI + D_2O \rightarrow HDO + DCI

NaOH + D_2O \rightarrow NaOD + HDO
```

- $NH_4CI + D_2O \rightarrow NH_3DCI + HDO$
- The reaction of salt with D₂O is known as Deuterolysis
- Eg.: AlCl₃ + $3D_2O \rightarrow Al(OD)_3 + 3DCl$

- Salts like CuSO₄. 5H₂O, MgSO₄.7H₂O are known as deuterated salts or salt deuterates.
- Heavy water is toxic to micro organisms.
- Both H₂O and D₂O are associated liquids due to Hydrogen (or Deuterium) bonds. But the boiling point of water is less than that of D₂O. This is because the molecular weight of D₂O is greater than that of H₂O.
- Chemical Properties of D₂O:

Uses of D₂O:

- i) D₂O is used as a moderator in nuclear reactors to slow down the neutrons.
- ii) As tracer in studying reaction mechanisms. Ex.: Mechanism of electrophilic substitutions of Aromatic compounds, Metabolic processes.
- iii) The basicity and structures of H_3PO_2 & H_3PO_3 are studied by the exchange reactions of D_2O .
- iv) D₂O is used in the preparation of Deuterium.