CAPÍTULO 12

Aplicaciones lineales

Como elementos constitutivos esenciales de muchas teorías matemáticas se cuentan una clase de objetos – en el caso del álgebra lineal, los espacios vectoriales – y una clase de aplicaciones (llamadas también morfismos), que respeten la estructura interna de los objetos de la clase. En álgebra tales aplicaciones se suelen llamar homomorfismos. Este capítulo lo dedicaremos a estudiar los propios de nuestro objeto de estudio, que son las aplicaciones *lineales* (u homomorfismos de espacios vectoriales).

Definición. Sea K un cuerpo, y sean V, W dos K-espacios vectoriales. Una aplicación $\varphi: V \to W$ se llama K-lineal (o un homomorfismo de K-espacios vectoriales, o simplemente lineal si no se necesita especificar el cuerpo), si verifica que:

(L1)
$$\varphi(u+v) = \varphi(u) + \varphi(v)$$
 para todo $u, v \in V$,
(L2) $\varphi(\lambda u) = \lambda \varphi(u)$ para todo $u \in V, \lambda \in K$.

Las dos propiedades siguientes son fáciles de comprobar:

- (i) $\varphi(0) = 0$, ya que: $\varphi(0) = \varphi(0 \cdot 0) = 0 \cdot \varphi(0) = 0$.
- (ii) $\varphi(-v) = -\varphi(v)$ para todo vector $v \in V$, puesto que: $\varphi(-v) = \varphi(-1 \cdot v) = -1 \cdot \varphi(v) = -\varphi(v)$.

Ejemplos. (a) La aplicación identidad id_V es K-lineal.

- (b) La aplicación cero $\varphi: V \to \{0\}, \varphi(v) = 0$ para todo $v \in V$ es K-lineal.
- (c) Es sencillo comprobar que para cualquier aplicación lineal $\varphi: V \to W$, cualesquiera vectores $v_1, \dots, v_n \in V$ y cualesquiera escalares $\lambda_1, \dots, \lambda_n \in K$ se verifica

$$\varphi(\lambda_1 v_1 + \cdots + \lambda_n v_n) = \lambda_1 \varphi(v_1) + \cdots + \lambda_n \varphi(v_n).$$

(d) La aplicación $\varphi: \mathbb{R}^2 \to \mathbb{R}$ dada por $\left(\begin{array}{c} x \\ y \end{array} \right) \mapsto x + y$ es \mathbb{R} -lineal, porque:

(L1)
$$\varphi\begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} x' \\ y' \end{pmatrix} = \varphi\begin{pmatrix} x+x' \\ y+y' \end{pmatrix} = x+x'+y+y' = x+y+x'+y' = \varphi\begin{pmatrix} x \\ y \end{pmatrix} + \varphi\begin{pmatrix} x' \\ y' \end{pmatrix}$$

(L2)
$$\varphi(\lambda \begin{pmatrix} x \\ y \end{pmatrix}) = \varphi(\begin{pmatrix} \lambda x \\ \lambda y \end{pmatrix}) = \lambda x + \lambda y = \lambda (x + y) = \lambda \varphi(\begin{pmatrix} x \\ y \end{pmatrix})$$
 para todo $\lambda \in \mathbb{R}$.

- (e) La aplicación $\varphi: \mathbb{R}^2 \to \mathbb{R}$ dada por $\begin{pmatrix} x \\ y \end{pmatrix} \mapsto x + y + 2$ no es \mathbb{R} -lineal, porque $\varphi(\begin{pmatrix} 0 \\ 0 \end{pmatrix}) = 2 \neq 0$.
- (f) La aplicación $\varphi : \mathbb{C} \to \mathbb{C}$ dada por $z \mapsto \overline{z}$ (donde $\overline{z} = a bi$ es complejo conjugado de z = a + bi) es \mathbb{R} -lineal, ya que para todos z = a + bi, z' = a' + b'i se tiene:
 - (L1) $\varphi(z+z') = (a+a') (b+b')i = \varphi(z) + \varphi(z')$
 - (L2) $\varphi(\lambda z) = \varphi(\lambda a + \lambda bi) = \lambda x \lambda bi = \lambda \varphi(z)$ para $\lambda \in \mathbb{R}$.
- (g) La aplicación $\varphi: \mathbb{C} \to \mathbb{C}$ dada por $z \mapsto \overline{z}$ *no* es \mathbb{C} -lineal, porque

$$\varphi(i \cdot i) = \varphi(i^2) = \varphi(-1) = -1 \neq 1 = -(-1) = -i^2 = i \cdot (-i) = i \cdot \varphi(i).$$

Las aplicaciones lineales están determinadas por la elección de una base de la manera siguiente:

Teorema 12.1. Sean V,W dos K-espacios vectoriales. Sea (v_1,\ldots,v_n) una base de V. Entonces, para cada elección arbitraria de vectores $w_1,\ldots,w_n \in W$ existe exactamente una aplicación K-lineal $\varphi:V\to W$ con $\varphi(v_i)=w_i$ para todo $i=1,\ldots,n$.

Demostración. Como (v_1, \ldots, v_n) es una base de V, para cada $v \in V$ existen $\lambda_1, \ldots, \lambda_n \in K$ únicos tales que

$$v = \lambda_1 v_1 + \cdots + \lambda_n v_n$$

Queremos probar la existencia y unicidad de la aplicación K-lineal anterior. Para ello definamos $\varphi(v) := \lambda_1 w_1 + \dots + \lambda_n w_n$; de esta manera obtenemos una aplicación K-lineal $\varphi: V \to W$ tal que $\varphi(v_i) = w_i$ para $i = 1, \dots, n$. La unicidad casi está ya vista: Si φ es una tal aplicación K-lineal, se sigue que

$$\varphi(v) = \varphi(\lambda_1 v_1 + \dots + \lambda_n v_n) = \lambda_1 \varphi(v_1) + \dots + \lambda_n \varphi(v_n) = \lambda_1 w_1 + \dots + \lambda_n w_n.$$

Ejemplo. Sea (b_1,b_2) una base de \mathbb{R}^2 con $b_1=\left(\begin{array}{c}1\\1\end{array}\right)$ y $b_2=\left(\begin{array}{c}1\\0\end{array}\right)$. Sean $c_1=$

$$\begin{pmatrix} 3 \\ 5 \\ 0 \end{pmatrix}$$
 y $c_2 = \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix}$ dos vectores de \mathbb{R}^3 . Por el Teorema 12.1, la aplicación φ :

 $\mathbb{R}^2 \to \mathbb{R}^3$ dada por $\varphi(b_1) = c_1$ y $\varphi(b_2) = c_2$ es \mathbb{R} -lineal y está univocamente determinada. Además podemos dar una expresión explícita $\varphi(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix})$, para cualquier

 $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2$. Para ello observamos que

$$e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = b_2 \text{ y } e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = b_1 - b_2.$$

Entonces $\varphi(e_1) = \varphi(b_2) = c_2$ y

$$\varphi(e_2)=\varphi(b_1-b_2)=\varphi(b_1)-\varphi(b_2)=\left(\begin{array}{c}3\\5\\0\end{array}\right)-\left(\begin{array}{c}0\\0\\2\end{array}\right)=\left(\begin{array}{c}3\\5\\-2\end{array}\right).$$

Con ello tenemos la expresión explícita buscada:

$$\varphi(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}) = x_1 \varphi(e_1) + x_2 \varphi(e_2) = x_1 \cdot \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix} + x_2 \cdot \begin{pmatrix} 3 \\ 5 \\ -2 \end{pmatrix} = \begin{pmatrix} 3x_2 \\ 5x_2 \\ 2x_1 - 2x_2 \end{pmatrix}.$$

Las aplicaciones lineales respetan los subespacios vectoriales:

Teorema 12.2. Sea $\varphi: V \to W$ una aplicación lineal. Entonces, para cualquier subespacio vectorial U de V el conjunto imagen $\varphi(U)$ es un subespacio vectorial de W. Recíprocamente, para cualquier subespacio vectorial N de M el conjunto contraimagen $\varphi^{-1}(N)$ es un subespacio vectorial de V.

De especial interés en el estudio de una aplicación lineal $\varphi \colon V \to W$ son los subespacios vectoriales

Kern
$$\varphi = \varphi^{-1}(0) = \{ v \in V : \varphi(v) = 0 \}$$
 de V y
Bild $\varphi = \varphi(V) = \{ w \in W : \exists v \in V \text{ con } \varphi(v) = w \}$ de W .

Al subespacio vectorial Kern φ se le denomina el *núcleo* de φ , y a Bild φ la *imagen* de φ .

Teorema 12.3. Sean V, W dos K-espacios vectoriales, y sea $\varphi : V \to W$ una aplicación K-lineal. Tanto Kern como Bild son subespacios vectoriales de V y W respectivamente.

Demostración. El núcleo de φ es un subespacio vectorial de V:

- (i) $0 \in \text{Kern}(\varphi)$, pues $\varphi(0) = 0$.
- (ii) Sean $u, v \in \text{Kern}(\varphi)$. Entonces $0 = 0 + 0 = \varphi(u) + \varphi(v) = \varphi(u + v)$, y así $u + v \in \text{Kern}(\varphi)$.

(iii) Sean $\lambda \in K, v \in \text{Kern}(\varphi)$. Entonces

$$\varphi(\lambda v) = \lambda \varphi(v) = \lambda 0 = 0.$$

con lo que $\lambda v \in \text{Kern}(\varphi)$.

Análogamente, la imagen $Bild(\varphi)$ de φ es un subespacio vectorial de W:

- (i) $0 \in Bild(\varphi)$, pues para $0 \in W$ es $\varphi(0) = 0$.
- (ii) Sean $u, v \in Bild(\varphi)$. Entonces existen $u', v' \in V$ con $\varphi(u') = u$ y $\varphi(v') = v$. De ello es $u + v = \varphi(u' + v')$ y así $u + v \in Bild(\varphi)$.
- (iii) Sean $\lambda \in K$, $v \in Bild(\varphi)$. Entonces existe $v' \in V$ con $\varphi(v') = v$, y así $\lambda v = \lambda \varphi(v') = \varphi(\lambda v')$, esto es, $\lambda v \in Bild(\varphi)$.

Ejemplos. (i) Sea $\varphi: V \to \{0\}$, $v \mapsto 0$ la aplicación cero. Es claro que $\operatorname{Kern}(\varphi) = V$ y $\operatorname{Bild}(\varphi) = \{0\}$.

(ii) Sea $\varphi : \mathbb{R}^2 \to \mathbb{R}$ dada por $\begin{pmatrix} x \\ y \end{pmatrix} \mapsto x + y$. Entonces

$$\operatorname{Kern}(\boldsymbol{\varphi}) = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 : x + y = 0 \right\},\,$$

es decir, la recta de \mathbb{R}^2 de ecuación x + y = 0, y

$$Bild(\boldsymbol{\varphi}) = \left\{ t \in \mathbb{R} : \exists \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \text{ con } x + y = t \right\} = \mathbb{R}.$$

Por definición de sobreyectividad, φ es sobreyectiva si y sólo si Bild $\varphi = W$. La inyectividad se puede comprobar con ayuda del núcleo. Resumiéndolo:

Teorema 12.4. Sean V,W dos K-espacios vectoriales, sea $\varphi:V\to W$ una aplicación K-lineal. Se tiene que:

- (i) φ es inyectiva si y sólo si $\operatorname{Kern}(\varphi) = \{0\}.$
- (ii) φ es sobreyectiva si y sólo si $Bild(\varphi) = W$.

Demostración. La segunda afirmación es evidente. Mostraremos sólo la primera. Sea φ inyectiva. Veamos que $\operatorname{Kern}(\varphi) = \{0\}$. La inclusión $\{0\} \subseteq \operatorname{Kern}(\varphi)$ se da siempre, pues el núcleo es subespacio vectorial. Hay que ver también que $\operatorname{Kern}(\varphi) \subseteq \{0\}$. Para ello, sea $v \in \operatorname{Kern}(\varphi)$. Entonces $\varphi(v) = 0 = \varphi(0)$, y de la inyectividad de φ se colige que v = 0.

Recíprocamente, sean $v, v' \in V$ con $\varphi(v) = \varphi(v')$. Veamos que v = v'. De $\varphi(v) = \varphi(v')$ y de la linealidad de φ se sigue que $0 = \varphi(v) - \varphi(v') = \varphi(v - v')$. Esto es, $v - v' \in \text{Kern}(\varphi) = \{0\}$, y así v - v' = 0, luego v = v', como se quería. \square

Las dimensiones de núcleo e imagen asuman la dimensión de todo el espacio:

Teorema 12.5. Sea V un K-espacio vectorial de dimensión finita, y sea W un K-espacio vectorial arbitario. Sea $\varphi: V \to W$ una aplicación lineal. Entonces

$$\dim_K \operatorname{Kern} \varphi + \dim_K \operatorname{Bild} \varphi = \dim_K V.$$

Demostración. Escogemos una base (u_1,\ldots,u_m) de Kern φ , una base (w_1,\ldots,w_r) de Bild φ , así como elementos $v_1,\ldots,v_r\in V$ tales que $\varphi(v_i)=w_i$ para todo $i=1,\ldots,r$. Basta probar que $(u_1,\ldots,u_m,v_1,\ldots,v_r)$ es una base de V. Sea $v\in V$. Entonces existen $\mu_1,\ldots,\mu_r\in K$ con

$$\varphi(v) = \mu_1 w_1 + \cdots + \mu_r w_r.$$

De aquí,

$$\varphi(\nu - (\mu_1 \nu_1 + \dots + \mu_r \nu_r)) = \varphi(\nu) - \varphi(\mu_1 \nu_1 + \dots + \mu_r \nu_r)
= (\mu_1 w_1 + \dots + \mu_r w_r) - (\mu_1 w_1 + \dots + \mu_r w_r)
= 0.$$

Entonces existen $\lambda_1, \ldots, \lambda_m \in K$ con

$$v-(\mu_1v_1+\cdots+\mu_rv_r)=\lambda_1u_1+\cdots+\lambda_mu_m,$$

tal que

$$v = \lambda_1 u_1 + \dots + \lambda_m u_m + \mu_1 v_1 + \dots + \mu_r v_r.$$

Con ello $(u_1, \ldots, u_m, v_1, \ldots, v_r)$ es un sistema generador de V. Para comprobar la independencia lineal aplicamos φ a la igualdad

$$\lambda_1 u_1 + \cdots + \lambda_m u_m + \mu_1 v_1 + \cdots + \mu_r v_r = 0$$

y se obtiene

$$\mu_1 \varphi(v_1) + \cdots + \mu_r \varphi(v_r) = 0.$$

Como w_1, \ldots, w_r son linealmente independientes, tendremos que $\mu_1 = \cdots = \mu_r = 0$ y también que $\lambda_1 = \cdots = \lambda_m = 0$ independencia lineal de los vectores u_1, \ldots, u_m .

A la dimensión $\dim_K \operatorname{Bild} \varphi$ del subespacio vectorial $\operatorname{Bild} \varphi$ también se le llama rango de φ ; se escribe

rang
$$\varphi = \dim_K \operatorname{Bild} \varphi$$
.

Definición. Una aplicación *K*-lineal se llama

- (a) monomorfismo si es inyectiva.
- (b) epimorfismo si es sobreyectiva
- (c) isomorfismo si es biyectiva.

Las aplicaciones lineales $\varphi: V \to V$ de un espacio vectorial V en sí mismo se denominan *endomorfismos* de V. Los endomorfismos biyectivos se llaman *automorfismos*.

La caracterización de la inyectividad y de la sobreyectividad del Teorema 12.4, junto con la fórmula de las dimensiones 12.5, permiten probar:

Teorema 12.6. Sean V, W dos K-espacios vectoriales de dimensión finita tales que $\dim_K V = \dim_K W$. Para toda aplicación K-lineal $\varphi: V \to W$ son equivalentes:

- (1) φ es un monomorfismo,
- (2) φ es un epimorfismo,
- (3) φ es un isomorfismo.

Demostración. "(1) \Longrightarrow (2)" De la inyectividad de φ se sigue que $\operatorname{Kern}(\varphi) = \{0\}$ por 12.4. De la fórmula de las dimensiones 12.5 y de las hipótesis se deduce que

$$\dim_K \operatorname{Bild}(\varphi) = \dim_K V = \dim_K W.$$

Del Teorema 11.9 se sigue entonces que Bild $(\phi) = W$, esto es, que la aplicación ϕ es sobreyectiva.

"(2) \Longrightarrow (1)" De la sobreyectividad de φ y de las hipótesis se sigue que

$$\dim_K \operatorname{Bild}(\varphi) = \dim_K W = \dim_K V.$$

Por el Teorema 12.5 es $\dim_K \operatorname{Kern}(\varphi) = 0$, y así φ es inyectiva por 12.4.

"(3)
$$\Longrightarrow$$
 (1)" es claro por lo anterior y la definición de biyectividad.

Teorema 12.7. Sean U, V, W tres K-espacios vectoriales, $\varphi: U \to V, \psi: V \to W$ aplicaciones K-lineales.

- (a) La aplicación $\psi \circ \varphi : U \to W$ también es K-lineal.
- (b) Si φ y ψ son isomorfismos, también lo serán $\psi \circ \varphi$, φ^{-1} y ψ^{-1} .

Demostración. (a) Basta casi con escribir las definiciones: Para $u, v \in U$, $\alpha \in K$ se deduce que

$$(\psi \circ \varphi)(u+v) = \psi(\varphi(u+v)) = \psi(\varphi(u)+\varphi(v)) = \psi(\varphi(u))+\psi(\varphi(v))$$
$$= (\psi \circ \varphi)(u) + (\psi \circ \varphi)(v),$$

igual que

$$(\psi \circ \varphi)(\lambda v) = \psi(\varphi(\lambda v)) = \psi(\lambda \varphi(v)) = \lambda \psi(\varphi(u)) = \lambda (\psi \circ \varphi)(v).$$

(b) La biyectividad de $\psi \circ \varphi$, φ^{-1} y de φ^{-1} está clara. Con ella y por (a), $\psi \circ \varphi$ es un isomorfismo. La linealidad de φ^{-1} se ve así: Para ν , $\nu' \in V$ se tiene

$$\begin{split} \varphi(\varphi^{-1}(v+v')) &= v+v' = \varphi(\varphi^{-1}(v)) + \varphi(\varphi^{-1}(v')) \\ &= \varphi(\varphi^{-1}(v) + \varphi^{-1}(v')). \end{split}$$

Aplicando φ^{-1} a esta igualdad se obtiene $\varphi^{-1}(v+v')=\varphi^{-1}(v)+\varphi^{-1}(v')$. De la misma manera se deduce que $\varphi^{-1}(\lambda v)=\lambda \varphi^{-1}(v)$ para todo $\lambda \in K$.

Definición. Sean V, W K-espacios vectoriales. Si hay un isomorfismo $\varphi: V \to W$ se dice que V y W son *isomorfos*, y se escribe $V \cong W$.

La palabra "isomorfo" significa "con la misma forma", y transmite de forma muy precisa el significado matemático de este concepto: espacios vectoriales isomorfos poseen idéntica estructura. Cualquier afirmación de álgebra lineal que sea cierta para V será cierta también para cada espacio vectorial W isomorfo a V y al revés: se las "transporta" por medio de un isomorfismo φ de V a W, de la misma manera que φ^{-1} , que también es un isomorfismo que transmite la "estructura lineal" de W a V. Objetos isomorfos de una teoría algebraica son, dentro de esa teoría, equivalentes. Se pueden substituir el uno por el otro, y muchas veces no se necesita ni distinguirlos.

Ejemplo. \mathbb{R}^2 y \mathbb{C} son isomorfos como \mathbb{R} -espacios vectoriales. ¿Por qué?

Para terminar demostramos que todo K-espacio vectorial n-dimensional es isomorfo a K^n . Esto viene a decirnos que, en el álgebra lineal, todos los espacios vectoriales de dimensión n poseen la misma estructura. En este sentido se habla de "clasificación de espacios vectoriales de dimensión finita".

Teorema 12.8. Sean V,W dos K-espacios vectoriales de dimensión finita. Entonces

$$\dim_K V = \dim_K W \iff V \cong W.$$

En particular, todo K-espacio vectorial de dimensión n es isomorfo a K^n .

Demostración. Sea $\mathcal{B} = (v_1, \dots, v_n)$ una base de V.

" \Longrightarrow " Sea $\mathscr{C} = (w_1, \ldots, w_n)$ una base de W. Por 12.1 existe exactamente una aplicación K-lineal $f: V \to W$ tal que $f(v_i) = w_i$ para todo $i = 1, \ldots, n$. Como \mathscr{C} es un sistema generador de W, para cada $w \in W$ existen escalares $\lambda_1, \ldots, \lambda_n \in K$ tales que

$$w = \lambda_1 w_1 + \cdots + \lambda_n w_n$$
.

De ello se deduce que w=f(v) con $v=\lambda_1v_1+\cdots+\lambda_nv_n\in V$; entonces f es sobreyectiva. La aplicación f es también inyectiva: Si w=0 entonces $\lambda_1=\ldots=\lambda_n=0$, y así v=0, ya que los vectores de $\mathscr C$ son linealmente independientes. Con ello f es inyectiva por 12.4, y los espacios vectoriales V y W son isomorfos, i.e. $V\cong W$.

"\(\subseteq \text{ Sea } f: V \rightarrow W \) un isomorfismo. Si $w \in W$ entonces existe $v \in V$ con w = f(v) por ser f sobreyectiva. Por otro lado v se puede escribir como

$$v = \lambda_1 v_1 + \dots + \lambda_n v_n$$
 para $\lambda_1, \dots, \lambda_n \in K$,

pues ${\mathcal B}$ es un sistema generador de V. De ello se deduce que

$$w = f(v) = \lambda_1 f(v_1) + \dots + \lambda_n f(v_n)$$

y $\mathscr{B}' = (f(v_1), \ldots, f(v_n))$ es un sistema generador de W. Si además f(v) = 0, entonces v = 0 por la inyectividad de f. Como los vectores v_1, \ldots, v_n son linealmente independientes, los vectores $f(v_1), \ldots, f(v_n)$ también han de serlo. De aquí se colige que $\dim_K W = n = \dim_K V$.

