Universidade Federal Rural de Pernambuco Unidade Acadêmica de Garanhuns

Grafos Ponderados

Igor Medeiros Vanderlei

Igor.vanderlei@gmail.com

Grafos Ponderados

Frequentemente precisamos modelar problemas utilizando grafos cujas

arestas possuem pesos ou custos associados;

- No problema do trasporte rodoviário, o peso poderia representar o custo (ou o tempo gasto, ou a distância) de cada rota;
- No problema do circuito elétrico, o peso poderia representar o custo do condutor para ligar dois componente;
- Observe que nem sempre o peso está associado diretamente à distância entre os vértices.

Grafos Ponderados

Nestes problemas geralmente surgem questões relativas à minimização de custo.

- Qual a forma mais barata de conectar todos os vértices?
- Qual é o caminho mais barato entre dois pontos?

Grafos Ponderados

O primeiro é conhecido como **árvores espalhadas mínimas**;

• O segundo, menor caminho.

Grafos Ponderados

No grafo abaixo, os vértices que formam a árvore espalhada mínima estão representados com linhas duplas.

 Observe que o menor caminho não utiliza necessariamente os vértices da árvore, ex: qual o menor caminho entre A e G?

Arvores Espalhadas Mínimas

Seja G=(V,E) um grafo conectado, ponderado e não orientado. Seja w(u, v) o peso da aresta (u,v). O problema da árvore espalhada mínima consiste em encontrar o subconjunto acíclico

 $T \subseteq E$, que conecte todos os

vértices e cujo peso total

seja minimizado.

Árvores Espalhadas Mínimas

Representação dos pesos:

 Na matriz: Cada elemento da matriz passará a armazenar um valor inteiro(representando o peso) em vez do valor booleano.

- Na lista: Cada nó da lista deve acrescentar o valor do peso.
- Obs: Assumiremos que todos os pesos são positivos.

Árvores Espalhadas Mínimas

A árvore mínima pode não ser única, observe mais três árvores mínimas para o grafo de exemplo

Algoritmo Genérico

Algoritmo de Kruskal

Inicialmente faz com que cada vértice seja uma árvore mínima.

- Em cada passo, escolhe-se uma aresta para conectar duas árvores.
- As arestas são ordenadas pelo peso.
- Obs. É preciso tomar cuidado para não criar ciclos.

Algoritmo de Kruskal

Algoritmo de Kruskal

Algoritmo de Kruskal

Algoritmo de Prim

As arestas do conjunto A sempre formam uma árvore única, que começa a partir de um vértice

arbitrário e aumenta em cada iteração, até atingir todos os vértices.

 Em cada etapa, é adicionada uma aresta, que conecta a árvore a um vértice isolado.

Algoritmo de Prim

Algoritmo de Prim

Algoritmo de Prim

Todos os vértices que não estão na árvore são organizados em uma fila de prioridade, baseada em um campo chave. Para cada vértice v, chave[v] é o peso mínimo de qualquer aresta que conecta v a um vértice da árvore.

 A cada vértice v adicionado, as chaves de todos os vértices u que possuem conectividade com v precisa ser atualizada.

Algoritmo de Prim