Project

SPI-Slave with single port RAM

Team members:

Ahmed Haitham Othman

Abdelrahman Khaled Fouad

Mohamed Adel Abdelrahem

1) Snippets from the waveforms captured from QuestaSim for the design with inputs assigned values and output values visible.

1st test the reset

2nd test the write address the ns will be 100 which is WRITE state

And the rx_data will change every clk cycle with 1 bit input seril and after 10 clk cycle (counter==10) the rx_data is now full with the wr_address

 3^{rd} now the rx_data is full and after 1 clk cycle the the rx_valid=1 .

And @ 2nd clk cycle the addr_wr=rx_data=60.

4th now write data begin

Here the bit control become zero and the next clk the rx[9]=0 so it's not changed and @53 ns the rx[8]=1 so it's changed to $rx_{data}=01....$ and so on the data in which is 100 decimal.

Here the rx_valid=1 and the next clk edge the mem changed @addr=60 to be 100 see next fig.

5th the read address test.

After we pass the address @rx_data the addr_rd changed to be 60

In next figure the cs changed to be 011 which is READ_DATA state

Now after 2 clk cycle the 2 bit is 11 which is read data so ram will read address 60 and send it to tx data and the slave after that convert it into serial output MISO

Now the MISO started to change one by one

0 1 1 0 0 1 0 0 >> which is 100 in decimal that is the data in address 60 we wrote before .

The remaining part of simulation is test with different numbers only but the same behavior .

2) Synthesis snippets for each encoding

• Schematic after the elaboration & synthesis

Gray encoding

One_hot encoding

Sequential encoding

• Synthesis report showing the encoding used

Gray encoding

```
(* fsm_encoding = "gray" *)
```

State	New Encoding	Previous Encoding	
IDLE	000	000	
CHK_CMD	001	001	
READ_ADD	011	010	
READ_DATA	010	011	
WRITE	111	100	

One hot encoding

```
:e (* fsm_encoding = "one_hot" *) [
ile 'RAM_SPI' [E:/Digital course/pr
```

.00				
.01	State	1	New Encoding	Previous Encoding
.02				
.03	IDLE	I	00001	000
.04	CHK_CMD	I .	00010	001
.05	READ_ADD	I .	00100	010
.06	READ_DATA	1	01000	011
.07	WRITE	I	10000	100
.08				
'				

Sequential encoding

(* fsm_encoding = "sequential" *)

Property (* fsm_encoding = "sequential" *)

Property (* fsm_encoding = "sequential" *)

State	New Encoding	Previous Encoding
IDLE	000	000
CHK_CMD	001	001
READ_ADD	010	010
READ_DATA	011	011
WRITE	100	100

• Timing report snippet

Gray encoding

Setup		Hold		Pulse Width	
Worst Negative Slack (WNS):	6.714 ns	Worst Hold Slack (WHS):	0.164 ns	Worst Pulse Width Slack (WPWS):	4.500 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	82	Total Number of Endpoints:	82	Total Number of Endpoints:	40

One_hot encoding

Setup		Hold		Pulse Width	
Worst Negative Slack (WNS):	6.714 ns	Worst Hold Slack (WHS):	0.164 ns	Worst Pulse Width Slack (WPWS):	4.500 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	82	Total Number of Endpoints:	82	Total Number of Endpoints:	42

Sequential encoding

Design Timing Summary

Setup		Hold		Pulse Width	
Worst Negative Slack (WNS):	6.714 ns	Worst Hold Slack (WHS):	0.164 ns	Worst Pulse Width Slack (WPWS):	4.500 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	82	Total Number of Endpoints:	82	Total Number of Endpoints:	40

• Snippet of the critical path highlighted in the schematic

Gray encoding

One hot encoding

Sequential encoding

3) Implementation snippets for each encoding

• Utilization report

Gray encoding

One hot encoding

Sequential encoding

• Timing report snippet

Gray encoding

◆ Design Timing Summary Hold **Pulse Width** Setup Worst Negative Slack (WNS): 6.494 ns Worst Hold Slack (WHS): Worst Pulse Width Slack (WPWS): 0.146 ns 4.500 ns Total Negative Slack (TNS): 0.000 ns Total Hold Slack (THS): 0.000 ns Total Pulse Width Negative Slack (TPWS): 0.000 ns Number of Failing Endpoints: 0 Number of Failing Endpoints: 0 Number of Failing Endpoints: 0 Total Number of Endpoints: Total Number of Endpoints: Total Number of Endpoints: 40 All user specified timing constraints are met.

One_hot encoding

Design Timing Summary

Setup		Hold		Pulse Width	
Worst Negative Slack (WNS):	6.257 ns	Worst Hold Slack (WHS):	0.118 ns	Worst Pulse Width Slack (WPWS):	4.500 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	83	Total Number of Endpoints:	83	Total Number of Endpoints:	42
All user specified timing constrai	nts are met.				

Sequential encoding

etup		Hold		Pulse Width	
Worst Negative Slack (WNS):	6.606 ns	Worst Hold Slack (WHS):	0.102 ns	Worst Pulse Width Slack (WPWS):	4.500 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 n
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	83	Total Number of Endpoints:	83	Total Number of Endpoints:	40

• FPGA device snippet

Gray encoding

One_hot encoding

Sequential encoding

4) Snippet of the "Messages" tab showing no critical warnings or errors after running elaboration,

synthesis, implementation and a successful bitstream generation.

Elaboration

From sequential encoding

Synthesis

From one_hot encoding

Implementation

From sequential encoding

bitstream generation

from sequential encoding

After debug choosing gray encoding:

Synthesis

Implementation

