

CaPAN: Class-aware Prototypical Adversarial Networks for Unsupervised Domain Adaptation

Zhenyu Yu^{1,4}, Pei Wang^{2,3*},

¹Guangzhou University, China

²National Pilot School of Software, Yunnan University, China

³School of Information Science and Engineering, Yunnan University, China

⁴ Universiti Malaya, Malaysia

Contributions

- Class-aware adversarial learning: single multi-class classifier is served as a discriminator to align class-level feature distributions
- ➤ Prototypical-based domain discriminator: generate more compact features in an adversarial paradigm
- > Gradient analysis for different adversarial learning paradigm

Code@: https://github.com/YuZhenyuLindy/CaPAN

Class-aware Prototypical Adversarial Networks

Fig. 1: The architecture of the proposed Class-aware Prototypical Adversarial Networks (CaPAN), where \mathbf{p} is the predicted output. The connection with \mathbf{p} and \mathcal{L}_{ca} is represented by a dashed line with a weighted meaning.

Class-aware Prototypical Adversarial Networks

Class-Aware Adversarial Learning

$$\min_{G} \max_{D} L_{ca} = \frac{1}{n_s} \sum_{i=1}^{n_s} \log \left[D_{\mathbf{y}_i^s} \left(G\left(\mathbf{x}_i^s \right) \right) \right] + \frac{1}{n_t} \sum_{j=1}^{n_t} \sum_{k=1}^{K} \mathbf{p}_k^t(\mathbf{x}_j^t) \log \left[1 - D_k \left(G\left(\mathbf{x}_i^t \right) \right) \right]$$

Prototypical domain discriminator

weight
$$\mathbf{W} = [w_1, w_2, \dots, w_K]$$

probability
$$p(x) = \sigma(\frac{\mathbf{W}^{\mathsf{T}} \mathbf{z}}{T \|\mathbf{z}\|}) \in \mathbb{R}^{K}$$

Class-aware Prototypical Adversarial Networks

Overall Formulation

$$\min_{G,C} \max_{D} \mathsf{L}_{CaPAN} = \mathsf{L}_{cls} + \beta \mathsf{L}_{ca} - \lambda \mathsf{L}_{MI}$$

$$\max_{G,C} \mathsf{L}_{MI} = H(\boldsymbol{y}) - H(\boldsymbol{y} \mid \boldsymbol{x})$$

$$= -\sum_{k=1}^{K} \overline{\boldsymbol{p}}_{k}^{t} \log \overline{\boldsymbol{p}}_{k}^{t} + \frac{1}{N_{t}} \sum_{j=1}^{N_{t}} \sum_{k=1}^{K} \boldsymbol{p}_{jk}^{t} \log \boldsymbol{p}_{jk}^{t},$$

Regularizer Loss

$$L_{reg} = L_{CaPAN} + \gamma L_{spe}$$

L_{spe}: specific losses used in existing methods

Gradient analysis

Gradient for DANN

$$\frac{\partial \log[1 - D(z)]}{\partial z} = \frac{-1}{1 - D(z)} D(z) (1 - D(z)) \frac{\partial \phi_D(z)}{\partial z}$$
$$= -D(z) \frac{\partial \phi_D(z)}{\partial z} = -D(z) w_D$$

Gradient for Class-Aware adversarial Learning

$$\frac{\partial \log[1 - D_k(z)]}{\partial z} = \frac{-1}{1 - D_k(z)} \frac{\partial D_k(z)}{\partial z}$$
$$= \frac{-D_k(z)}{1 - D_k(z)} \left(\mathbf{w}_k - \sum_{k'=1}^K \mathbf{w}_{k'} D_{k'}(z) \right)$$

Theoretical Insight

generalization error upper bound on target domain

$$\mathfrak{S}(h) \leq {}_{s}(h) + \frac{1}{2}d_{\mathsf{H}\triangle\mathsf{H}}(P_{s}, P_{t}) + {}_{ideal}(h^{*})$$

 $\grave{Q}(h)$: expected error on source domain

 $d_{H\Delta H}(P_s, P_t)$: distribution discrepancy

 $\dot{Q}_{deal}(h^*)$: joint error of the ideal hypothesis

Results

TABLE I: Accuracy (%) on (a) Office-31 (ResNet-50) and (b) VisDA-2017 (ResNet-101) for UDA. † denotes that the results are cited from [26]. * denotes that the results are reproduced using the publicly released code.

(a) Office-31.								(b) VisDA-2017.	
Method	A→W	$D\rightarrow W$	$W\rightarrow D$	A→D	$D\rightarrow A$	W→A	AVG	Method	AVG
ResNet-50 [1]	68.4±0.5	96.7±0.5	99.3±0.1	68.9±0.2	62.5±0.3	60.7±0.3	76.1	ResNet-101	52.4
DAN [3]	83.8±0.4	96.8±0.2	99.5 ± 0.1	78.4 ± 0.2	66.7±0.3	62.7 ± 0.2	81.3	DAN 3	61.1
DANN 17	82.0±0.4	96.9 ± 0.2	99.1±0.1	79.7±0.4	68.2±0.4	67.4±0.5	82.2	DANN [7] DWL [20]	57.4 77.1
DWL 20	89.2	99.2	100.0	91.2	73.1	69.8	87.1	MCD [9]	71.9
MADA [13]	90.0±0.1	97.4±0.1	99.6±0.1	87.8±0.2	70.3±0.3	66.4±0.3	85.2	CDAN [8]	73.9
DPN 27	91.5±0.4	99.5±0.5	100.0±0.0	94.0±0.9	72.2±1.3	68.1±0.1	87.6	GATE 21	74.8
GATE [21]	90.5	98.7	100.0	91.3	73.4	75.9	88.3	DSAN [16]	75.1
DSAN 116	93.6±0.2	98.3±0.1	100.0±0.0	90.2±0.7	73.5±0.5	74.8±0.4	88.4	SWD [10] TSA [23]	76.4 78.6
MDD [18]	94.5±0.3	98.4 ± 0.1	100.0 ± 0.0 100.0 ± 0.0	93.5±0.7	74.6 ± 0.3	72.2 ± 0.1	88.9	SCDA† [26]	79.7
MCC 22		98.6	100.0±0.0	94.4	72.9	74.9	89.4	DADA [15]	79.8
SCDA [24]	95.5 94.2	98.7	99.8	95.2	75.7	76.2	90.0	CaPAN(Ours)	80.5
			1.00,00000		20000			MDD*	77.3
CaPAN(w/ classifier)	95.7	98.7	99.9	94.0	76.1	75.3	90.0	MDD+CaPAN	81.3(4.0↑
CaPAN(w/ sigmoid)	94.8	98.8	99.9	94.2	77.0	75.8	90.1	MCC 22	78.8
CaPAN(Ours)	94.8 ± 0.5	98.7 ± 0.3	100.0 ± 0.0	95.4 ± 0.6	77.1 ± 0.7	76.1 ± 0.1	90.3	MCC+CaPAN	83.5(4.7

A→C

34.9

45.6

45.9

54.4

54.9

55.1

51.8

54.6

57.5

56.6

A→P

50.0

59.3

61.2

70.8

73.7

75.2

75.3

76.9

76.9

77.0

 $A \rightarrow R$

58.0

70.1

68.9

75.4

77.8

79.5

79.4

79.8

80.3

81.2

47.0

50.4

60.4

60.0

63.3

66.6

66.1

65.7

66.7

TABLE II: Accuracy (%) on Office-Home for UDA (ResNet-50).

 $C \rightarrow R$

46.2

60.9

61.0

68.0

71.8

75.8

74.6

74.2

74.5

75.8

 $P \rightarrow A$

38.5

46.1

45.8

62.6

61.2

66.1

63.8

65.3

65.5

65.2

 $P \rightarrow C$

31.2

43.7

43.4

55.9

53.6

52.1

51.7

54.8

53.6

56.5

 $P \rightarrow R$

60.4

68.5

70.3

78.5

78.1

76.9

81.5

80.6

79.8

81.4

 $R \rightarrow A$

53.9

63.2

63.9

73.8

72.5

73.8

74.0

73.9

74.5

74.3

 $R \rightarrow C$

41.2

51.8

52.4

60.6

60.2

58.4

58.0

59.5

59.6

59.3

 $R \rightarrow P$

59.9

76.8

76.8

83.1

82.3

83.6

84.3

83.7

83.7

84.5

AVG

46.1

57.6

58.3

67.6

68.1

69.4

69.7

70.2

70.5

71.3

 $C \rightarrow P$

41.9

58.5

59.7

67.8

71.4

73.2

74.8

73.5

74.9

76.8

Method

MDD [18]

MCC 22

DPN [27]

GATE 21

SCDA 24

CaPAN(Ours)

Analysis

Ablation study

TABLE I: Accuracy (%) on (a) Office-31 (ResNet-50)

Method	$A{ ightarrow}W$	$D{\rightarrow}W$	$W{\rightarrow}D$	$A{\rightarrow}D$	$D{\rightarrow}A$	$W \rightarrow A$	AVG
CaPAN(w/ classifier)	95.7	98.7	99.9	94.0	76.1	75.3	90.0
CaPAN(w/ sigmoid)	94.8	98.8	99.9	94.2	77.0	75.8	90.1
CaPAN	94.8±0.5	98.7±0.3	100.0±0.0	95.4±0.6	77.1±0.7	76.1±0.1	90.3

Feature Visualization & Distribution Discrepancy

Fig. 2: (a)-(c) Feature visualization of different methods of the target domain on task $D\rightarrow A$. (d) Distribution analysis of task $D\rightarrow A$ and $W\rightarrow A$.

CaPAN: Class-aware Prototypical Adversarial Networks for Unsupervised Domain Adaptation

Zhenyu Yu, Pei Wang*

Email