Math 300 Homework 4

Sathvik Chinta

February 4th, 2022

1. Recall that in the textbook, a function $f:A\to B$ is said to be invertible f is one-to-one and onto. (This is also called bijection in some literature.) Show that a function $f:A\to B$ is invertible if and only if there is a function $g:B\to A$ such that $g\circ f=$ identity function on A and $f\circ g=$ identity function on B.

A function F is called the identity function given that F(x) = x. We are given that f(g(x)) = x and g(f(x)) = x. We want to prove that f is both one-to-one and onto.

Let f(g(x)) = f(g(y)). Given that this is the identity function, we know that f(g(x)) = x and f(g(y)) = y. As such, x = y. So, f(g(x)) is one-to-one.

We know that f(g(x)) = x. Let $y \in B$. We want to show that for some $x \in A$, f(g(x)) = y. Since f(g(x)) is the identity function, we know that f(g(y)) = y. As such, when x = y, f(g(x)) = y. So, f(g(x)) is onto.

- 2. Let $f\colon A\to B$ and $g\colon B\to C$ be functions. (a) Prove that f and g are injective, then so is $g\circ f.$ Test
 - (b) Suppose g \circ f is surjective. Does it follow that f is surjective?
 - (c) Suppose $g \circ f$ is surjective. Does it follow that g is surjective?