МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМ. ТАРАСА ГРИГОРОВИЧА ШЕВЧЕНКА Київ

Основи електротехніки

Звіт до лабораторної роботи №5

Роботу виконав:

Федорович Д.Д.

Група: 5-Б

Викладачі:

Р. Єрмоленко

Ю. Мягченко

Київ 2021

1. Вступ	4
1.1. Об'єкт дослідження	4
1.2. Мета роботи	4
1.3. Методи дослідження	4
2. Теоретичні відомості	5
2.1. Означення	5
3. Практична частина	6
3.1. Емітерний повторювач	
3.2. Парафазний підсилювач	7
3.3. Підсилювач зі спільним емітором	8
3.4. Висновки	9

1. Вступ

1.1. Об'єкт дослідження

Біполярні та уніполярні транзистори, залежність від часу їхня вольтамперна характеристика.

1.2. Мета роботи

Дослідити вхідні та вихідні сигнали для різних типів підсилювачів і сигналів.

1.3. Методи дослідження

Метод співставлення: одночасне спостереження вхідного та вихідного сигналів на екрані двоканального осцилографа із наступним вимірюванням і порівнянням їх параметрів.

Змодельовано підсилювачі: емітерний повторювач, парафазний підсилювач, підсилювач зі спільним емітором, диференціальний підсилювач, синфазний диференціальний підсилювач. Використано математичне моделювання. Оброблено отримані результати.

2. Теоретичні відомості

2.1. Означення

Підсилювач електричних сигналів — це радіоелектронний пристрій, що перетворює вхідний електричний сигнал, який являє собою залежність від часу напруги Uвх(t) або струму Iвх(t), у пропорційний йому вихідний сигнал Uвих(t) або Iвих(t), потужність якого перевищує потужність вхідного сигналу.

Підсилювальний каскад — підсилювач, який містить мінімальне число підсилювальних елементів (1–2 транзистори) і може входити до складу багатокаскадного підсилювача.

Коефіцієнт передачі за напругою К — відношення амплітуди вихідного напруги підсилювача до амплітуди вхідної.

3. Практична частина

3.1. Емітерний повторювач

3.2. Парафазний підсилювач

3.3. Підсилювач зі спільним емітором

3.4. Висновки

За допомогою даної лабораторної роботи вдалось отримати графіки залежності напруги від часу вибраних підсилювачів, а саме: емітерний повторювач, парафазний підсилювач, підсилювач зі спільним емітором, диференціальний підсилювач, синфазний диференціальний підсилювач. Для підсилювача зі спільним емітором було досліджено два різних стани: з та без під'єднаного конденсатора, а також лдя двох типіх сигналів (гармонічного та імпульсного). Із отриманих графіків 8 можна судити про зміну фази за рахунок підсилювача та його амплітуди.