# Visual Analysis of Submodular Point and Feature Selection for Data-Efficient Machine Learning

## **Outline of the Talk**

- Motivation
- Contributions
- Our Framework
- Datasets
- Results
- Conclusions

## Motivation

- Lots of data are required to train machine learning models
- Theoretically the more the data, the better the performance
- More data means more compute times required
- Data also normally contains redundant and irrelevant data points
- This projects aims to train machine learning models by selecting the most important important points without sacrificing performance
- We achieve this with submodular data selection combined with clustering

## Our contributions

- 1. We propose a two-stage subset selection algorithm that combines clustering and importance sampling to induce diversity with subsets and reduce computational requirements
- 2. We perform experimental evaluation of different point selection methods and their effect on the performance of machine learning models
- 3. We demonstrate the effect of sampling method on the lower dimensional spaces using multi-dimensional projections

## **Our Framework**



### **Datasets**

#### **IMDB Dataset (Text)**

- Large Movie Review Dataset. This is a dataset for binary sentiment classification
- Dataset contains a set of 25,000 highly polar movie reviews for training, and 25,000 for testing

#### **Fashion MNIST (Image)**

- Fashion-MNIST is a dataset of Zalando's article images
- Dataset consists of a training set of 60,000 examples and a test set of 10,000 examples.
- Each example is a 28x28 grayscale image, associated with a label from 10 classes.

## Models Used for classification

**IMDB** (Text Classification)

Used RoBERTa (Robustly Optimised BERT)

**Fashion MNIST (Image Classification)** 

Used CNN (Convolutional Neural Network)

#### **RESULTS AND DISCUSSION**

## **Experiment Results on IMDB Dataset**

| Percentage | Accuracy | f1      | Precision | Recall  |
|------------|----------|---------|-----------|---------|
| 1          | 82.8760  | 82.5571 | 84.1236   | 81.0480 |
| 5          | 84.2480  | 84.7163 | 82.2705   | 87.3120 |
| 10         | 85.6280  | 86.1205 | 83.2673   | 89.1760 |
| 20         | 86.4480  | 86.9521 | 83.8333   | 90.3120 |
| 30         | 86.2960  | 85.7724 | 89.1796   | 82.6160 |
| 40         | 87.6160  | 87.4462 | 88.6614   | 86.2640 |
| 50         | 86.7840  | 87.4886 | 92.4160   | 86.7940 |
| 60         | 87.2000  | 87.6760 | 84.5314   | 91.0640 |
| 70         | 88.6640  | 88.7486 | 88.0911   | 89.0640 |
| 80         | 88.6960  | 88.4935 | 90.1078   | 86.9360 |
| 90         | 87.7160  | 88.2034 | 84.8371   | 91.8480 |
| 100        | 88.3000  | 88.2090 | 88.9006   | 87.5280 |

## **Experimental Results on Fashion MNIST**

| Percentage | Accuracy | f1    | Precision | Recall |
|------------|----------|-------|-----------|--------|
| 10         | 90.33    | 88.00 | 88.00     | 88.00  |
| 20         | 90.95    | 90.00 | 90.00     | 90.00  |
| 30         | 90.45    | 90.00 | 91.00     | 90.00  |
| 40         | 91.92    | 91.00 | 91.00     | 91.00  |
| 50         | 93.86    | 92.00 | 92.00     | 92.00  |
| 60         | 94.89    | 93.00 | 93.00     | 93.00  |
| 70         | 95.43    | 93.00 | 93.00     | 93.00  |
| 80         | 96.25    | 93.00 | 93.00     | 93.00  |
| 90         | 96.47    | 93.00 | 93.00     | 93.00  |
| 100        | 92.76    | 93.00 | 93.00     | 93.00  |

## **Does Selection Method Matter**



## **Experiment Results on Fashion MNIST**





## **Experiment Results on IMDB Dataset**







## Multidimensional projections on subsets



## Conclusion

- The choice of the selection matters
- Submodular data selection functions effectively select subsets that maintain acceptable performance on the ground set
- Submodular selections often select better subsets compared to random baseline
- Our two-stage sampling method reduces the memory required to run subset selection algorithms

## THANK YOU

**END**