Microprocessor and Computer Architecture

Dr. Trần Thị Anh Xuân Department of Instrumentation and Industrial Informatics

School of Electrical Engineering

Documents

MCS-51 Microcontroller Family Users Manual – Intel 1994

Requirements for students

- Experiments/Practice
- Evaluation (EE3480E):
 - Midterm Exam: Writing (can be combined with MCQ) or/combine with Project
 - Final Exam: Writing or Oral exam
- Students need to participate fully in lectures (online and offline)

Syllabus

- Chapter 1: Computer Architecture
- Chapter 2: MCS-51 Microcontroller
- Chapter 3: Assembler language
- Chapter 4: Digital Input/Output
- Chapter 5: Basic peripheral connection

1.1. Numbering and Coding Systems

In this subjects:

Number Systems	Base (Radix)	Used Symbols
Decimal	10	0,1,2,,9
Binary	2	0,1
Octal	8	0,1,2,,7
Hexa-Decimal	16	0,1,2,,9, A, B,,F

1.2. Number Systems and Conversion

Conversion of other Base-R to Decimal

$$N = (a_4 a_3 a_2 a_1 a_0 . a_{-1} a_{-2} a_{-3})_R$$

$$= a_4 \times R^4 + a_3 \times R^3 + a_2 \times R^2 + a_1 \times R^1 + a_0 \times R^0$$

$$+ a_{-1} \times R^{-1} + a_{-2} \times R^{-2} + a_{-3} \times R^{-3}$$

1.2. Number Systems and Conversion

Conversion of other Base-R to Decimal

$$\begin{split} N &= (a_4 a_3 a_2 a_1 a_0. a_{-1} a_{-2} a_{-3})_R \\ &= a_4 \times R^4 + a_3 \times R^3 + a_2 \times R^2 + a_1 \times R^1 + a_0 \times R^0 \\ &\quad + a_{-1} \times R^{-1} + a_{-2} \times R^{-2} + a_{-3} \times R^{-3} \end{split}$$

Example:

$$1011.101_2 = (1 \times 2^3) + (0 \times 2^2) + (1 \times 2^1) + (1 \times 2^0) + (1 \times 2^{-1}) + (0 \times 2^{-2}) + (1 \times 2^{-3})$$

$$= 8 + 0 + 2 + 1 + 0.5 + 0 + 0.125$$

$$= 11.625_{10}$$

1.2. Number Systems and Conversion

Conversion of other Base-R to Decimal

$$\begin{split} N &= (a_4 a_3 a_2 a_1 a_0.a_{-1} a_{-2} a_{-3})_R \\ &= a_4 \times R^4 + a_3 \times R^3 + a_2 \times R^2 + a_1 \times R^1 + a_0 \times R^0 \\ &\quad + a_{-1} \times R^{-1} + a_{-2} \times R^{-2} + a_{-3} \times R^{-3} \end{split}$$

Example:

- $365,25_{10} = 3x10^2 + 6x10^1 + 5x10^0 + 2x10^{-1} + 5x10^{-2}$
- $11011.01_2 = 1x2^4 + 1x2^3 + 0x2^2 + 1x2^1 + 1x2^0 + 0x2^{-1} + 1x2^{-2}$ = $(27.25)_{10}$
- $123.35_8 = 1x8^2 + 2x8^1 + 3x8^0 + 3x8^{-1} + 5x8^{-2} = (85.453125)_{10}$
- $26.15_{16} = 2x16^{1} + 6x16^{0} + 1x16^{-1} + 5x16^{-2} = (38.08203125)_{10}$

1.2. Number Systems and Conversion

- Conversion of Decimal to other Base-R
 - Integer part:
 - Repeated division by Base-R
 - Fraction part:
 - Repeated multiplication with Base-R

1.2. Number Systems and Conversion

- Conversion of Decimal to other Base-R
 - Integer part:
 - Repeated division by Base-R
 - Fraction part:
 - Repeated multiplication with Base-R

Example: $(23.25)_{10} = ?_2$ Integer part

Fraction part

1.2. Number Systems and Conversion

Conversion of Hexa-decimal to Binary

Conversion of Octal to Binary

$$705_8 = ?_2$$
 7
 0
 5
 $705_8 = 111000101_2$

1.2. Number Systems and Conversion

- Conversion of Binary to Octal, Hexa-decimal
 - Example:

```
(11010111110.0111)_2 = ?_8

(0110101111110.011100)_2 = (3276.34)_8

3 2 7 6 3 4
```


1.2. Number Systems and Conversion

- Conversion of Binary to Octal, Hexa-decimal
 - Example:

$$(11010111110.0011)_2 = (6BE.3)_{16}$$

 $(0110101111110.0011)_2 = (6BE.3)_{16}$
 $6 \quad B \quad E \quad 3$

13

1.2. Number Systems and Conversion

Conversion of Binary to Octal, Hexa-decimal

Octal	Decimal	Binary
0	0	000
1	1	001
2	2	010
3	3	011
4	4	100
5	5	101
6	6	110
7	7	111

Hexadecimal	Decimal	Binary	
0	0	0000	
1	1	0001	
2	2	0010	
3	3	0011	
4	4	0100	
5	5	0101	
6	6	0110	
7	7	0111	
8	8	1000	
9	9	1001	
A	10	1010	
В	11	1011	
С	12	1100	
D	13	1101	
E	14	1110	
F	15	1111	

1.2. Number Systems and Conversion

Practice: Given Base-R number. Convert into other Base-R?

Decimal	Binary	Octal	Hexa-decimal
33			
	1110101		
		703	
			1AF

1.3. Base-R number Arithmetic

Binary Addition

- Rule:

$$0+0=0$$

$$0+1=1$$

$$1+0=1$$

$$1+1=0$$
 and carry 1 to the next column

– Example:

$$1111 \leftarrow$$
 carries
$$13_{10} = 1101$$

$$11_{10} = \underline{1011}$$

$$11000 = 24_{10}$$

1.3. Base-R number Arithmetic

Binary Subtraction

- Rule:

$$0-0=0$$

 $0-1=1$ and return borrow 1 to the next column
 $1-0=1$
 $1-1=0$

– Example:

1.3. Base-R number Arithmetic

Binary Multiplication

- Rule: $0 \times 0 = 0$ $0 \times 1 = 0$ $1 \times 0 = 0$ $1 \times 1 = 1$

– Example:

1.3. Base-R number Arithmetic

Binary Division

1.4. Negative Numbers

Unsigned and Signed Number

(a) Unsigned number

(b) Signed number

1.4. Negative Numbers

- Method 1: Signed-Magnitude Representation
 - Rule:

$$\pm$$
 N = (s, an-1a₁ a₀)
s = 0 if N \geq 0
s = 1 if N \leq 0

Signed magnitude

– Range for n bits:

$$-(2^{n-1}-1)$$
 through $+(2^{n-1}-1)$

Example: 5 bit signed-magnitude Binary

$$N = +13_{10} = 01101$$

$$N = -13_{10} = 11101$$

1.4. Negative Numbers

Method 2: Two's-Complement Representation

- Binary Number : $N = a_{n-1}a_{n-2}...a_1a_0$

$$\begin{cases} 1 \rightarrow 0 \\ 0 \rightarrow 1 \end{cases}$$

– Example:

$$N_2 = 10110100 \longrightarrow B^{(1)}_N = ?$$
 $B^{(1)}_N = 01001011$

- 2's complement : 1st way: $B^{(2)}_{N} = B^{(1)}_{N} + 1$

1.4. Negative Numbers

Method 2: Two's-Complement Representation

- Binary Number : $N = a_{n-1}a_{n-2}...a_1a_0$

2's complement : 2nd way

$$N = 0 1 1 0 0 1 0 1$$

$$B^{(2)}_{N} = 10011011$$

$$N = 1 1 0 1 0 1 0 0$$

$$B^{(2)}_{N} = 00101100$$

1.4. Negative Numbers

- Method 2: Two's-Complement Representation
 - Positive number: the same Method 1
 - Negative number : = $B^{(2)}_N$
 - Range for n bits:

```
-2^{n-1} through + (2^{n-1}-1)
```


1.5. BCD code

- Binary-Coded-Decimal (BCD) Code:
 - Each digit of a decimal number is represented by its binary equivalent
 - Since a decimal digit from 0 to 9 → four bits are required to code
 each digit (0000 through 1001 are used)
- Example:

1.5. BCD code

- Depending on the store way of BCD code in digital system
 - Unpacked-BCD Code:
 - Each decimal digit is encoded into one byte,
 - Packed-BCD Code:
 - Two decimal digits are encoded into a single byte,
 - Example:

 Decimal
 :
 9
 1

 Unpacked BCD
 :
 0000 1001 0000 0001

 Decimal
 :
 9
 1

 Packed BCD
 :
 1001 0001

1.5. BCD code

- BCD Subtraction: the same way with Binary Subtraction
- BCD Addition: need adjust the result

1.6. ASCII

ASCII (American Standard Code for Information Interchange)

$b_3b_2b_1b_0$		b ₆ b ₅ b ₄ (column)							
	$b_3b_2b_1b_0$	Row (hex)	000	001	010 2	011 3	100 4	101 5	110 6
0000	0	NUL	DLE	SP	0	0	P	,	p
0001	1	SOH	DC1	1	1	A	Q	a	P
0010	2	STX	DC2		2	В	R	b	r
0011	3	ETX	DC3	#	3	C	S	c	s
0100	4	EOT	DC4	\$	4	D	T	đ	t
0101	5	ENQ	NAK	8	5	E	U	е	u
0110	6	ACK	SYN	δε	6	F	v	f	v
0111	7	BEL	ETB	,	7	G	W	g	W
1000	8	BS	CAN	(8	H	X	h	x
1001	9	HT	EM)	9	I	Y	i	У
1010	A	LF	SUB	*	:	J	Z	j	z
1011	В	VT	ESC	+	;	K	1	k	{
1100	C	FF	FS	,	<	L	1	1	1
1101	D	CR	GS	-	-	М	1	m	}
1110	E	so	RS		>	N	^	n	-
1111	F	SI	US	/	>	0		0	DEL

