Homework 6

MAD4204

Carson Mulvey

1. Let $S = {\vec{v}_1, \dots \vec{v}_k} \subseteq \mathbb{F}_q^n$. Show that $\vec{x} \in \overline{S}$, the affine closure of S, if and only if

$$\vec{x} = \sum_{i=1}^{k} a_i \vec{v}_i$$
 with $\sum_{i=1}^{k} a_i = 1$.

2. (a) Prove the following identity stated in class:

$$\begin{bmatrix} n+1 \\ k \end{bmatrix}_q = \begin{bmatrix} n \\ k-1 \end{bmatrix}_q + q^k \begin{bmatrix} n \\ k \end{bmatrix}_q.$$

- (b) Using (a), give an inductive proof that $\begin{bmatrix} n \\ k \end{bmatrix}_q$ is a polynomial in the variable q. Solution.
- (a) Using the fact that $[n]_q! = [n]_q \cdot [n-1]_q!$, we have

$$\begin{split} \begin{bmatrix} n \\ k-1 \end{bmatrix}_q + q^k \begin{bmatrix} n \\ k \end{bmatrix}_q &= \frac{[n]_q!}{[k-1]_q![n-k+1]_q!} + \frac{q^k[n]_q!}{[k]_q![n-k]_q!} \\ &= [n]_q! \left(\frac{[k]_q}{[k]_q![n-k+1]_q!} + \frac{q^k[n-k+1]_q}{[k]_q![n-k+1]_q!} \right) \\ &= [n]_q! \left(\frac{1+q+\dots+q^{k-1}}{[k]_q![n-k+1]_q!} + \frac{q^k(1+q+\dots+q^{n-k}))}{[k]_q![n-k+1]_q!} \right) \\ &= [n]_q! \left(\frac{1+q+\dots+q^{k-1}+q^k+\dots+q^n}{[k]_q![n-k+1]_q!} \right) \\ &= [n]_q! \left(\frac{[n+1]_q}{[k]_q![n-k+1]_q!} \right) \\ &= \frac{[n+1]_q!}{[k]_q![n-k+1]_q!} \\ &= \begin{bmatrix} n+1 \\ k \end{bmatrix}_q \end{split}$$

as desired.

(b) We will prove by induction on n. For n=0, we either have $\begin{bmatrix} 0 \\ 0 \end{bmatrix}_q = 1$ for k=0 or $\begin{bmatrix} 0 \\ k \end{bmatrix}_q = 0$ for k>0.

Now assume for some $n \in \mathbb{Z}^+$ that for all $k \in \mathbb{Z}^+$, $\begin{bmatrix} n \\ k \end{bmatrix}_q$ is a polynomial in q. We need to show that $\begin{bmatrix} n+1 \\ k \end{bmatrix}_q$ is also a polynomial in q. But by (a), this is a linear

combination of $\begin{bmatrix} n \\ k-1 \end{bmatrix}_q$ and $\begin{bmatrix} n \\ k \end{bmatrix}_q$, which are each polynomials in q by our inductive hypothesis. Thus $\begin{bmatrix} n+1 \\ k \end{bmatrix}_q$ is also a polynomial in q for all $k \in \mathbb{Z}^+$, and our inductive step is complete.

3. Let H be a hyperplane in PG(n,q). Prove that PG(n,q) - H is isomorphic to AG(n,q). (This is Proposition 5.23 (b) from the alternate text states.)

Solution. We can algebraically map from AG(n,q) to PG(n,q)-H by adding another coordinate to all points with a value of 1, i.e. mapping

$$\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \mapsto \begin{bmatrix} 1 \\ x_1 \\ \vdots \\ x_n \end{bmatrix}.$$

PG(n,q) consists of these new points along with some "hyperplane at infinity" H. These hyperplane points will have a value of 0 first the first coordinate, so PG(n,q) - H will leave precisely the points from AG(n,q) with the new coordinate. This process by simply removing the first coordinate from all points in PG(n,q) - H, retrieving AG(n,q). Since all points can be mapped, the point incidences, line incidences, etc. will also be isomorphic. \square

2. Prove there are unique projective planes or orders two and three (up to relabeling X). Solution. Let (X, \mathcal{B}) be a projective plane of order two that isn't the Fano Plane. We claim that Y is a relabeling of a Fano Plane, showing that it is the unique projective plane of order 2. Representing the points of the Fano Plane in \mathbb{F}_2^3 , we can label our Y similarly

Challenge Problem (8 points extra credit)

1. Define

$$\begin{bmatrix} x \\ k \end{bmatrix}_q = \frac{x \cdot (x - [1]_q) \cdot \dots \cdot (x - [k-1]_q)}{q^{\binom{k}{2}} [k]!_q}.$$

Show that

$$\begin{bmatrix} x \\ m \end{bmatrix}_q \cdot \begin{bmatrix} x \\ n \end{bmatrix}_q = \sum_{k=\max m,n}^{m+n} \frac{q^{(k-m)(k-n)}[k]!_q}{[k-m]!_q[k-n]!_q[m+n-k]!_q} \begin{bmatrix} x \\ k \end{bmatrix}_q.$$

Solution. WLOG assume that $m \geq n$. We will prove by induction on m. For m = 0, clearly

$$\begin{bmatrix} x \\ 0 \end{bmatrix}_q \cdot \begin{bmatrix} x \\ 0 \end{bmatrix}_q = \frac{q^{(0)(0)}[0]!_q}{[0]!_q[0]!_q[0]!_q} \begin{bmatrix} x \\ 0 \end{bmatrix}_q = 1.$$

We now assume for some m that for all $n \leq m$, the identity above holds. Then

$$\sum_{k=\max m+1,n}^{m+n+1} \frac{q^{(k-m+1)(k-n)}[k]_q!}{[k-m+1]_q![k-n]_q![m+n-k+1]_q!} \begin{bmatrix} x \\ k \end{bmatrix}_q$$

$$= \sum_{k=m+1}^{m+n+1} \frac{q^{(k-m+1)(k-n)}[k]_q!}{[k-m+1]_q![k-n]_q![m+n-k+1]_q!} \begin{bmatrix} x \\ k \end{bmatrix}_q$$