Adversarial Variational Optimization of Non-Differentiable Simulators

Gilles Louppe¹ and Kyle Cranmer¹

New York University

In this note, ... [GL: todo.]

I. INTRODUCTION

[GL: Prescribed vs. implicit. See case of non-diff models in Balaji et al.]

II. PROBLEM STATEMENT

We consider a family of parameterized densities $p_{\theta}(\mathbf{x})$ defined implicitly through the simulation of a stochastic generative process, where $\mathbf{x} \in \mathbb{R}^d$ is the data and θ are the parameters of interest. The simulation may involve some complicated latent process, such that

$$p_{\theta}(\mathbf{x}) = \int p_{\theta}(\mathbf{x}|\mathbf{z})p(\mathbf{z})d\mathbf{z}$$
 (1)

where $\mathbf{z} \in \mathbb{R}^m$ is a latent variable providing an external source of randomness.

We assume that we already have an accurate simulation of the stochastic generative process that defines $p_{\theta}(\mathbf{x}|\mathbf{z})$, as specified through a deterministic function $g(\cdot;\theta):\mathbb{R}^m \to \mathbb{R}^d$. That is, we consider

$$\mathbf{x} \sim p_{\theta} \equiv \mathbf{z} \sim p_z, \mathbf{x} = g(\mathbf{z}; \theta)$$
 (2)

such that the likelihood $p_{\theta}(\mathbf{x})$ can be rewritten as

$$p_{\theta}(\mathbf{x}) = \frac{\partial}{\partial x_1} \dots \frac{\partial}{\partial x_d} \int_{\{\mathbf{z}: a(\mathbf{z}:\theta) < \mathbf{x}\}} p(\mathbf{z}) d\mathbf{z}.$$
 (3)

Importantly, the simulator g is assumed to be a non-invertible function, that can only be used to generate data in forward mode. For this reason, evaluating the integral in Eqn. 3 is intractable. As commonly found in science, we finally assume the lack of access to or existence of derivatives of g with respect to θ , e.g. as when g is specified as a computer program.

Given some observed data $\{\mathbf{x}_i|i=1,\ldots,N\}$ drawn from the (unknown) true distribution p_r , our goal is the inference of the parameters of interest θ^* that minimize the divergence between p_r and the modeled data distribution p_{θ} induced by $g(\cdot;\theta)$ over \mathbf{z} . That is,

$$\theta^* = \arg\min_{\theta} \rho(p_r, p_{\theta}), \tag{4}$$

where ρ is some distance or divergence.

III. BACKGROUND

A. Generative adversarial networks

Generative adversarial networks (GANs) were first proposed by [4] as a way to build an implicit generative model capable of producing samples from random noise **z**. More specifically, a generative model $q(\cdot; \theta)$ is pit against an adversarial classifier $d(\cdot; \phi) : \mathbb{R}^d \to [0, 1]$ with parameters ϕ and whose antagonistic objective is to recognize real data \mathbf{x} from generated data $\tilde{\mathbf{x}} = g(\mathbf{z}; \theta)$. Both models g and d are trained simultaneously, in such a way that q learns to maximally confuse its adversary d (which happens when q produces samples comparable to the observed data), while d continuously adapts to changes in q. When d is trained to optimality before each parameter update of the generator, it can be shown that the original adversarial learning procedure amounts to minimizing the Jensen-Shannon divergence $JSD(p_r \parallel p_\theta)$ between p_r and p_{θ} .

As thoroughly explored in [1], GANs remain remarkably difficult to train because of vanishing gradients as d saturates, or because of unreliable updates when the training procedure is relaxed. As a remedy, Wasserstein GANs [2] reformulate the adversarial setup in order to minimize the Wasserstein-1 distance $W(p_r, p_\theta)$ by replacing the adversarial classifier with a 1-Lipschitz adversarial critic $d(\cdot; \phi) : \mathbb{R}^d \to \mathbb{R}$. Under the WGAN-GP formulation of [5] for stabilizing the optimization procedure, training d and g results in alternating gradient updates on ϕ and θ in order to respectively minimize

$$\mathcal{L}_{d} = \mathbb{E}_{\tilde{\mathbf{x}} \sim p_{\tilde{\mathbf{x}}}}[d(\tilde{\mathbf{x}}; \phi)] - \mathbb{E}_{\mathbf{x} \sim p_{r}}[d(\mathbf{x}; \phi)] + \lambda \mathbb{E}_{\hat{\mathbf{x}} \sim p_{\tilde{\mathbf{x}}}}[(||\nabla_{\hat{\mathbf{x}}} d(\hat{\mathbf{x}}; \phi)||_{2} - 1)^{2}]$$

$$\mathcal{L}_{q} = -\mathbb{E}_{\tilde{\mathbf{x}} \sim p_{\tilde{\mathbf{x}}}}[d(\tilde{\mathbf{x}}; \phi)]$$
(6)

where $\hat{\mathbf{x}} := \epsilon \mathbf{x} + (1 - \epsilon)\tilde{\mathbf{x}}$, for $\epsilon \sim U[0, 1]$, $\mathbf{x} \sim p_r$ and $\tilde{\mathbf{x}} \sim p_\theta$.

B. Variational optimization

Following [6], variational optimization (VO) (also known as the search gradient algorithm [7] related to evolution strategies) is a general optimization technique that can be used to form a differentiable bound on the optima of a non-differentiable function. Given a function f to minimize, VO is based on the simple fact that

$$\min_{\mathbf{c} \in \mathcal{C}} f(\mathbf{c}) \le \mathbb{E}_{\mathbf{c} \sim q_{\psi}(\mathbf{c})}[f(\mathbf{c})] = U(\psi), \tag{7}$$

where q_{ψ} is a proposal distribution with parameters ψ over input values \mathbf{c} . That is, the minimum of a set of function values is always less than or equal to any of their average. Provided that the proposal is flexible enough, the parameters ψ can be updated to place its mass arbitrarily tight around the optimum $\mathbf{c}^* = \min_{\mathbf{c} \in \mathcal{C}} f(\mathbf{c})$.

Under mild restrictions outlined in [6], the bound $U(\psi)$ is differentiable, and using the log-likelihood trick it comes:

$$\nabla_{\psi} U(\psi) = \nabla_{\psi} \mathbb{E}_{\mathbf{c} \sim q_{\psi}(\mathbf{c})}[f(\mathbf{c})]$$

$$= \nabla_{\psi} \int f(\mathbf{c}) q_{\psi}(\mathbf{c}) d\mathbf{c}$$

$$= \int f(\mathbf{c}) \nabla_{\psi} q_{\psi}(\mathbf{c}) d\mathbf{c}$$

$$= \int [f(\mathbf{c}) \nabla_{\psi} \log q_{\psi}(\mathbf{c})] q_{\psi}(\mathbf{c}) d\mathbf{c}$$

$$= \mathbb{E}_{\mathbf{c} \sim q_{\psi}(\mathbf{c})}[f(\mathbf{c}) \nabla_{\psi} \log q_{\psi}(\mathbf{c})]$$
(8)

Effectively, this means that provided that the score function $\nabla_{\psi} \log q_{\psi}(\mathbf{c})$ of the proposal is known and that one can evaluate $f(\mathbf{c})$ for any \mathbf{c} , then one can construct empirical estimates of Eqn. 8, which can in turn be used to perform stochastic gradient descent (or a variant thereof) in order to minimize $U(\psi)$.

IV. ADVERSARIAL VARIATIONAL OPTIMIZATION

The alternating stochastic gradient descent on \mathcal{L}_d and \mathcal{L}_g in GANs inherently assume that the generator g is a differentiable function. In the setting where we are not interested in learning an implicit model but are rather interested in the inference of parameters of a fixed non-differentiable simulator (as outlined in Section II), gradients $\nabla_\theta g$ either do not exist or cannot be accessed. As a result, gradients $\nabla_\theta \mathcal{L}_g$ cannot be constructed and the optimization procedure cannot be carried out.

In this work, we propose to perform variational optimization on \mathcal{L}_d and \mathcal{L}_g , thereby bypassing the non-differentiability of g. More specifically, we consider a proposal distribution $q_{\psi}(\theta)$ over the parameters of g and minimize in alternance the variational upper bounds

$$U_d = \mathbb{E}_{\theta \sim q_{ib}}[\mathcal{L}_d] \tag{9}$$

$$U_q = \mathbb{E}_{\theta \sim q_{sh}}[\mathcal{L}_q] \tag{10}$$

respectively over ϕ and ψ . When updating d, unbiased gradient estimates of $\nabla_{\phi}U_d$ can be obtained by sampling mini-batches of true and generated data, as ordinarily done in stochastic gradient descent. When updating g, gradient estimates of $\nabla_{\psi}U_g$ can be derived as described in Eqn. 8, which gives

$$\nabla_{\psi} U_g = \mathbb{E}_{\theta \sim q_{\psi}(\theta), \mathbf{z} \sim p_z} [-d(g(\mathbf{z}; \theta); \phi) \nabla_{\psi} \log q_{\psi}(\theta)].$$
 (11)

[GL: Smarter approach by exploiting the fact that $\partial d/\partial x$ is known exactly.]

Practically, the variational objectives 9-10 have the effect of replacing the modeled data distribution of Eqn. 2 with a distribution parameterized in terms of ψ :

$$\mathbf{x} \sim p_{\psi} \equiv \mathbf{z} \sim p_z, \theta \sim q_{\psi}, \mathbf{x} = g(\mathbf{z}; \theta).$$
 (12)

Intuitively, this corresponds to a family of simulators, each configured with randomly sampled parameters $\theta \sim q_{\psi}$, whose collection of generated samples is optimized to approach the real data distribution p_r .

V. EXPERIMENTS

A. Toy problem

B. Physics example

VI. RELATED WORKS

[GL: Implicit generative models.] [GL: ABC.] [GL: carl [3].] [GL: Wood's papers.] [GL: CMA-ES.]

VII. SUMMARY

ACKNOWLEDGMENTS

GL and KL are both supported through NSF ACI-1450310, additionally KC is supported through PHY-1505463 and PHY-1205376.

ARJOVSKY, M., AND BOTTOU, L. Towards Principled Methods for Training Generative Adversarial Networks. ArXiv e-prints (Jan. 2017).

^[2] Arjovsky, M., Chintala, S., and Bottou, L. Wasserstein GAN. *ArXiv e-prints* (Jan. 2017).

^[3] Cranmer, K., Pavez, J., and Louppe, G. Approximat-

ing likelihood ratios with calibrated discriminative classifiers. arXiv preprint arXiv:1506.02169 (2015).

^[4] GOODFELLOW, I., POUGET-ABADIE, J., MIRZA, M., XU, B., WARDE-FARLEY, D., OZAIR, S., COURVILLE, A., AND BENGIO, Y. Generative adversarial nets. In Advances in Neural Information Processing Systems (2014), pp. 2672–

2680.

- [5] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A. Improved Training of Wasserstein GANs. ArXiv e-prints (Mar. 2017).
- [6] Staines, J., and Barber, D. Variational Optimization.
- ArXiv e-prints (Dec. 2012).
 [7] WIERSTRA, D., SCHAUL, T., GLASMACHERS, T., SUN, Y., AND SCHMIDHUBER, J. Natural Evolution Strategies. $ArXiv\ e ext{-}prints$ (June 2011).