Machine Learning

Assignment 5.2

Submitted By: Ranji Raj

November 27, 2020

Rules for Pruning

- If the error on the tree after pruning is **same** as the previous/original, then retain the latest tree.
- If the error on the tree after pruning is **more** as the previous, then retain the previous tree.
- If the error on the tree after pruning is **less** as the previous, then accept the new tree and discard the previous tree.

Calculating Error for the first time

Figure 1: Original Tree

$\overline{\mathrm{id}}$	Forgot Pruning	Preciseness	Is Hasty	Full Points
1	yes	low	no	no
2	yes	high	yes	no
3	no	low	no	yes
4	no	med	no	no
5	no	high	yes	yes
6	yes	med	no	no

Table 1: Validation set

id	Forgot Pruning	Preciseness	Is Hasty	Full Points	Is Correct
1	yes	low	no	no	False
2	yes	high	yes	no	True
3	no	low	no	yes	True
4	no	med	no	no	False
5	no	high	yes	yes	True
6	yes	med	no	no	False

Table 2: Verification check 1

Calculating the error on the complete tree as,

ErrorRate,
$$e = \frac{FP + FN}{TP + FP + FN + TN}$$

 $\therefore e_1 = \frac{3}{6} = \mathbf{0.5}$

First Prune

The error rate is very high, so, we prune the left sub-tree at level 2 and recalculate the error, We look at the class distribution at node $Is\ Hasty?$, the majority class here is No hence, we replace it by a leaf.

id	Forgot Pruning	Preciseness	Is Hasty	Full Points	Is Correct
1	yes	low	no	no	False
2	yes	high	yes	no	True
3	no	low	no	yes	True
4	no	med	no	no	True
5	no	high	yes	yes	True
6	yes	med	no	no	False

Table 3: Verification check 2

Figure 2: First Pruned Tree

$$e_2 = \frac{2}{6} = \mathbf{0.33}$$

We observe the error has reduced significantly, so retain the first pruned tree.

Second Prune

We shall now prune the right sub-tree at level 1. We look at the class distribution at node *Is Hasty?*, the majority class here is *No* hence, we replace it by a leaf.

id	Forgot Pruning	Preciseness	Is Hasty	Full Points	Is Correct
1	yes	low	no	no	True
2	yes	high	yes	no	True
3	no	low	no	yes	True
4	no	med	no	no	True
5	no	high	yes	yes	True
6	yes	med	no	no	True

Table 4: Verification check 3

$$e_3 = \frac{0}{6} = \mathbf{0.0}$$

We observe no error, so accept the second pruned tree.

Third Prune

We shall now prune the left sub-tree at level 1 and recalculate the error, we look at the class distribution at node *Preciseness*?, the majority class here is *Yes* hence, we replace

Figure 3: Second Pruned Tree

it by a leaf.

id	Forgot Pruning	Preciseness	Is Hasty	Full Points	Is Correct
1	yes	low	no	no	True
2	yes	high	yes	no	True
3	no	low	no	yes	True
4	no	med	no	no	False
5	no	high	yes	yes	True
6	yes	med	no	no	True

Table 5: Verification check 4

$$e_4 = \frac{1}{6} = \mathbf{0.1667}$$

We observe a rise in the error rate, so reject the third pruned tree and keep the second pruned tree.

Fourth Prune

We shall now prune the root at level 0 and convert into a leaf node, we look at the class distribution at node $Forgot\ Pruning$?, the majority class here is No hence, we replace it by a leaf.

 $e_5 = \frac{2}{6} = \mathbf{0.333}$

Figure 4: Third Pruned Tree

Figure 5: Fourth Pruned Tree

We observe a rise in the error rate again, and moreover, it makes the tree look biased. So reject the fourth pruned tree and accept the second pruned tree as the final tree.

$\overline{\mathrm{id}}$	Forgot Pruning	Preciseness	Is Hasty	Full Points	Is Correct
1	yes	low	no	no	True
2	yes	high	yes	no	True
3	no	low	no	yes	False
4	no	med	no	no	True
5	no	high	yes	yes	False
6	yes	med	no	no	True

Table 6: Verification check 5

Figure 6: Final Tree