

ShopMiner:

Mining Customer Shopping Behavior in Physical **Clothing Stores with COTS RFID Device**

Longfei Shangguan, Zimu Zhou, Xiaolong Zheng, Lei Yang, Yunhao Liu, Jinsong Han

> **Tsinghua University** Hong Kong University of Science and Technology Xi'an Jiaotong University

Shopping is something we do almost every day!

Thousands of excuses for shopping:

- Paper accepted,
- Get promoted,
- Down,
- Lonely,
- Angry,
- Just hungry...

People spend 150+ hours / month and 2000 hours / year on shopping!

Huge market

More retailers

Less profit

Trading strategy optimization!

Data collection

Data mining

Online shopping

Cookies

Shopping cart

Offline shopping

Cameras Expensive/LOS

Bills
Lack detailed info.

Focus: shopping behaviors before final purchase

Goal:

Design an effective, low-cost, non-intrusive system for customer shopping behavior mining

Solution:

Passive Radio Frequency Identification (RFID) Technology

Typical shopping process:

Turning over or picking up interested items

Typical shopping process:

Turning over or picking up interested items

Matching and trying on

Popular category

Hot items

Shopping behavior semantics

Correlated items

Information accessible on standard APIs:

RSS

Unstable

Phase

Doppler

Inaccurate

Phase measurements as the only input

ShopMiner Architecture

Task: discover popular category

Behavior: detect customer presence in front of items

Idea: exploit body shadowing on RF links

Task: discover popular category

Behavior: detect customer presence in front of items

Idea: exploit body shadowing on RF links

(b): moving trail of a user

Task: discover popular category

Behavior: detect customer presence in front of items

Idea: exploit body shadowing on RF links

How about interference caused by other customers nearby?

Task: discover popular category

Behavior: detect customer presence in front of items

Idea: exploit body shadowing on RF links

(b): moving trail of a user

Task: discover popular category

Behavior: detect customer presence in front of items

Idea: exploit body shadowing on RF links

Detection scheme: similar to object tracking in CV

Step 1: Composing phase frames

Detection scheme: similar to object tracking in CV

Step 2: Foreground detection

$$\begin{cases} H_0: r_{i,j} \notin (\mu_i \pm \frac{\sigma_i}{\sqrt{k_i}} \cdot z_{\alpha/2}) \\ H_1: r_{i,j} \in (\mu_i \pm \frac{\sigma_i}{\sqrt{k_i}} \cdot z_{\alpha/2}) \end{cases}$$

Phase reading of the i-th tag collected within the j-th window

Detection scheme: similar to object tracking in CV

Step 3: Popular category discovery

$$\begin{cases} H_0: s_i \geq \theta \\ H_1: s_i < \theta \end{cases}$$

of consecutive frames that the links of the i-th tag are blocked

Task: identify hot items

Behavior: detect turn-over / pick-up actions

Idea: exploit phase trends among nearby tags

Task: identify hot items

Behavior: detect turn-over / pick-up actions

Idea: exploit similarity of pick-up and turn-over

Dramatic phase changes for both pick-up and turn-over

Task: identify hot items

Behavior: detect turn-over / pick-up actions

Idea: exploit dissimilarity of pick-up and turn-over

Turn-over leads to similar phase changes among nearby tags

Detection scheme

Step 1: Segmentation (sliding window + KL divergence)

Filter out silent periods (no pick-up or turn-over actions)

Detection scheme

Step 2: Calibration (de-periodicity)

Eliminate abrupt phase jumps

Detection scheme

Step 2: Calibration (normalization)

Keep the changing trend only

Detection scheme

Step 3: Auto-correlation

$$\chi(m,\tau) = \frac{\sum_{k=0}^{k=\tau-1} [s_{m+k} - \mu(m,\tau)][s_{m+k+\tau} - \mu(m+\tau,\tau)]}{\tau \cdot \sigma(m,\tau) \cdot \sigma(m+\tau,\tau)}$$

- if $\chi(m,\tau) \geq \delta$, then action = turn-over;
- if $\chi(m,\tau) < \delta$, then action = pick-up;

Design: Extract Correlated Items

Task: extract correlated items

Idea: correlated items have similar spatial-temporal

correlation of signal trend due to similar moving trail

Design: Extract Correlated Items

Task: extract correlated items

Idea: correlated items have similar spatial-temporal

correlation of signal trend due to similar moving trail

Cluster phase traces using dynamic time warping

Implementation

Antenna Yeon YAP-100CP antenna

Reader ImpinJ R240 reader

Tags Alier

Alien AZ-9634 passive tags

All commercial off-the-shelf devices!

Evaluation

20 items per rack, adjacent space 5cm

Evaluation

Evaluation

3 different item-customer distances 1 to 3 customers with nearby interferences

Performance: Popular Category

Granularity vs. # antennas

Granularity vs. # nearby users

More antennas bring higher accuracy Relatively robust to interference from nearby users

Performance: Hot Items

	Predicted					
Ground-truth	Turn over			Pick up		
	1	2	3	1	2	3
Turn over	187	184	178	13	16	22
Pick up	9	10	13	191	190	187

Detection accuracy: 94% (pick-up), 87% (turn-over)

Relatively insensitive to # of customers

Performance: Correlated Items

Accuracy vs. distance

Accuracy vs. # customers

Detection accuracy: 93% (1 user), 85% (6 users)
Robust to antenna-customer distance

Conclusion

Conclusion:

- Design an RFID-based customer shopping behavior mining system for physical clothing stores.
- Analyze phase patterns to extract shopping semantics for three shopping behaviors

Conclusion

Conclusion:

- Design an RFID-based customer shopping behavior mining system for physical clothing stores.
- Analyze phase patterns to extract shopping semantics for three shopping behaviors

Limitations:

- Deployment cost for full coverage
- Crowded stores
- Beyond clothing stores

