0.1. Introducción

Para el estudio del modo discontinuo de la fuente estudiada anteriormente, se calculó la corriente media $I_{L_b} = I_{o_b}$ de boundary de la bobina, la cual es la misma que la corriente media de salida. El valor anterior de ΔI_L fue de 494.404mA por lo que la corriente media de boundary será

$$I_{L_b} = \frac{\Delta I_L}{2} = 247.202 mA \tag{1}$$

Por esta razón, si la corriente de salida es menor que I_{L_b} , la fuente trabajará en modo discontinuo. Se seleccionó una resistencia de salida de $R_o=500\Omega>R_{o_{min}}=\frac{V_o}{I_{L_b}}=97.1\Omega$ para obtener resultados más significantes y se utilizó un duty cycle D=0.665 para conservar los 24V de salida requeridos. A continuación se detallan las curvas simuladas.

Figura 1: Tensión V_{gs} en modo discontinuo.

Figura 2: Corriente I_g en modo discontinuo.