Probabilistic Method and Random Graphs

Lecture 5. Bins&Balls: Poisson Approximation and Applications 1

Xingwu Liu

Institute of Computing Technology Chinese Academy of Sciences, Beijing, China

¹The slides are mainly based on Chapter 5 of *Probability and Computing*.

Preface

 $\label{eq:Questions} Questions, \ comments, \ or \ suggestions?$

Review: bins-and-balls

General model: m balls independently randomly placed in n bins

Distribution of the load X of a bin: Bin(m, 1/n)

When $m, n \gg r$, $\Pr(X = r) \approx e^{-\mu} \frac{\mu^r}{r!}$ with $\mu = \frac{m}{n}$.

Poisson distribution

Poisson distribution: $\Pr(X_{\mu} = r) = e^{-\mu} \frac{\mu^r}{r!}$.

Law of rare events

Rooted at Law of Small Numbers

Review: Basic Properties of Poisson distribution

Low-order moments

$$\mathbb{E}[X_{\mu}] = Var[X_{\mu}] = \mu.$$

Additive

By uniqueness of moment generation functions,

 $X_{\mu_1} + X_{\mu_2} = X_{\mu_1 + \mu_2}$ if independent.

Chernoff-like bounds

- 1. If $x > \mu$, then $\Pr(X_{\mu} \ge x) \le \frac{e^{-\mu}(e\mu)^x}{x^x}$.
- 2. If $x < \mu$, then $\Pr(X_{\mu} \le x) \le \frac{e^{-\mu}(e\mu)^x}{x^x}$.

Review: Joint Distribution of Bin Loads

Basic observation

Loads of multiple bins are not independent.

Hard to handle

Maximum load

- $\Pr(L \ge 2) \ge 0.5$ if $m \ge \sqrt{2n \ln 2}$
 - Birthday paradox
- $\Pr(L \geq 3 \frac{\ln n}{\ln \ln n}) \leq \frac{1}{n}$ if m = n

Let's be ambitious

Is there a closed form of $Pr(X_1 = k_1, ..., X_n = k_n)$?

Hard? Easy when n=2.

Joint Distribution of Bin Loads

Theorem

$$\Pr(X_1 = k_1, \dots, X_n = k_n) = \frac{m!}{k_1! k_2! \dots k_n! n^m}$$

Proof.

By the chain rule,

$$\Pr(X_1=k_1,\cdots,X_n=k_n)\\ = \prod_{i=0}^{n-1}\Pr(X_{i+1}=k_{i+1}|X_1=k_1,\cdots,X_i=k_i)$$
 Note that $X_{i+1}|(X_1=k_1,\cdots,X_i=k_i)$ is a binomial r.v. of $m-(k_1+\cdots+k_i)$ trials with success probability $\frac{1}{n-i}$.

Remark

- You can also prove by counting
- Multinomial coefficient $\frac{m!}{k_1!k_2!\cdots k_n!}$: the number of ways to allocate m distinct balls into groups of sizes k_1, \dots, k_n

Silver bullet for Bins&Balls problems?

In principle

Yes, since it can be computed

In practice

Usually No, since too hard to compute.

Example: what's the probability of having empty bins?

In need

Approximation for computing or insights for analysis

Poisson Approximation

At the first glance

The (marginal) load $X_i \sim Bin(m,\frac{1}{n})$ for each bin i . $\{X_1,\cdots,X_n\}$ are not independent.

But seemingly the only dependence is that their sum is m. So,

A applausible conjecture

The joint distribution $(X_1,\cdots,X_n)\sim (Y_1,\cdots,Y_n|\sum Y_i=m)$, where $Y_i\sim Bin(m,\frac{1}{n})$ are mutually independent

If this is true, good simplification is obtained.

However

It is NOT the case!

 $(Y_1,\cdots,Y_n|\sum Y_i=m)$ doesn't have marginal distr. as Y_i 's.

General Fact

 $\begin{array}{ll} Y_i: \text{ mutual independent, } 1 \leq i \leq n. \\ (Y_1,...,Y_n|g(\overrightarrow{Y})) \text{ doesn't have marginal distr. as } Y_i\text{'s.} \end{array}$

Figure: f_X and f_Y

Figure: The joint distribution $f_X * f_Y$ conditioned on X + Y = 1 (the sick line)

Recall the false conjecture

The joint distribution $(X_1, \dots, X_n) \sim (Y_1, \dots, Y_n | \sum Y_i = m)$, where $Y_i \sim Bin(m, \frac{1}{n})$ are mutually independent

Is the conjecture true for any distribution other than binomial?

Yes!

Poisson distribution again. (Better than the conjecture)

Poisson Approximation Theorem

Notation

 $X_i^{(m)}$: the load of bin i in (m, n)-model, $1 \le i \le n$.

 $Y_i^{(\mu)}$: independent Poisson r.v.s with expectation μ , $1 \leq i \leq n$.

Theorem

$$\left(X_1^{(m)},X_2^{(m)},...X_n^{(m)}\right) \sim \left(Y_1^{(\mu)},Y_2^{(\mu)},...Y_n^{(\mu)}|\sum Y_i^{(\mu)} = m\right).$$

Remarks

- The equation is independent of μ : For any m, the same Poisson distribution works.
- Since $\Pr\left(X_1^{(m)}, X_2^{(m)}, ... X_n^{(m)}\right) \propto \Pr\left(Y_1^{(\mu)}, Y_2^{(\mu)}, ... Y_n^{(\mu)}\right)$, the X_i 's are **decoupled**.
- The two distributions are exactly equal, not approximate.

Proof

By straightforward calculation.

Example

Coupon Collector Problem

X: the number of purchases until n types are collected.

For any constant c, $\lim_{n\to\infty} \Pr(X > n \ln n + cn) = 1 - e^{-e^{-c}}$

Remark: $Pr(n \ln n - 4n \le X \le n \ln n + 4n) \ge 0.98$

Basic idea of the proof

Use bins-and-balls model and the Poisson approximation.

It holds under the Poisson approximation.

The approximation is actually accurate.

Proof

Modeling

 $X>n\ln n+cn$ is equivalent to event $\overline{\mathcal{E}}$, where \mathcal{E} means that there is no empty bin in the $(n\ln n+cn,n)$ -Bins&Balls model.

It holds under the Poisson approximation

Approximation experiment: n bins, each having a Poisson number Y_i of balls with the expectation $\ln n + c$.

Event \mathcal{E}' : No bin is empty.

$$\Pr(\mathcal{E}') = (1 - e^{-(\ln n + c)})^n = (1 - \frac{e^{-c}}{n})^n \to e^{-e^{-c}}.$$

The approximation is accurate

Obj.: Asymptotically, $Pr(\mathcal{E}) = Pr(\mathcal{E}')$.

By Poisson Approximation, $\Pr(\mathcal{E}) = \Pr(\mathcal{E}' | \sum_{i=1}^n Y_i = n \ln n + cn)$, so we prove $\Pr(\mathcal{E}') = \Pr(\mathcal{E}' | Y = n \ln n + cn)$ with $Y = \sum_{i=1}^n Y_i$.

Proof: $Pr(\mathcal{E}') = Pr(\mathcal{E}'|Y = n \ln n + cn)$

Further reduction

Since $\Pr(\mathcal{E}') = \Pr(\mathcal{E}'|Y \in \mathbb{Z})$, there should be $\mathcal{N} \subset \mathbb{Z}$ s.t $n \ln n + cn \in \mathcal{N}$ and $\Pr(\mathcal{E}') \approx \Pr(\mathcal{E}'|Y \in \mathcal{N})$.

If $\mathcal N$ is not too small or too big, i.e.

- $\Pr(Y \in \mathcal{N}) \approx 1$;
- $\Pr(\mathcal{E}'|Y \in \mathcal{N}) \approx \Pr(\mathcal{E}'|Y = n \ln n + cn).$

We finish the proof by total probability formula.

Does such \mathcal{N} exist?

Yes! Try the $\sqrt{2m \ln m}$ -neighborhood of $m = n \ln n + cn$.

Proof: $\Pr(|Y - m| \le \sqrt{2m \ln m}) \to 1$

$$\begin{split} Y \sim Poi(m). \\ \text{By Chernoff bound } \Pr(Y \geq y) & \leq \frac{e^{-m}(em)^y}{y^y} = e^{y-m-y\ln\frac{y}{m}}, \\ \Pr\left(Y > m + \sqrt{2m\ln m}\right) & \leq e^{\sqrt{2m\ln m} - (m+\sqrt{2m\ln m})\ln(1+\sqrt{\frac{2\ln m}{m}})} \\ & \text{by } \ln(1+z) \geq z - z^2/2 \text{ for } z \geq 0 \end{split}$$

 $< e^{-\ln m + \frac{\ln^{3/2} m}{\sqrt{m}}} \to 0.$

Likewise,
$$\Pr(Y < m - \sqrt{2m \ln m}) \to 0$$
.

Proof: $\Pr(\mathcal{E}'||Y-m| \leq \sqrt{2m \ln m}) \approx \Pr(\mathcal{E}'|Y=m)$

$$\begin{split} \Pr(\mathcal{E}'|Y=k) \text{ increases with } k, \text{ so} \\ \Pr(\mathcal{E}'|Y=m-\sqrt{2m\ln m}) \\ \leq & \Pr(\mathcal{E}'||Y-m| \leq \sqrt{2m\ln m}) \\ \leq & \Pr(\mathcal{E}'|Y=m+\sqrt{2m\ln m}). \end{split}$$

$$|\Pr(\mathcal{E}'||Y-m| \le \sqrt{2m \ln m}) - \Pr(\mathcal{E}'|Y=m)|$$

$$\le \Pr(\mathcal{E}'|Y=m+\sqrt{2m \ln m}) - \Pr(\mathcal{E}'|Y=m-\sqrt{2m \ln m})$$

$$= \Pr(A)(\text{By Poisson approximation}).$$

Event A: In the $(m+\sqrt{2m\ln m})$ -Bins&Balls model, the first $m-\sqrt{2m\ln m}$ balls leave a bin empty, but at least one among the next $2\sqrt{2m\ln m}$ balls goes into this bin.

$$\Pr(A) \le \frac{2\sqrt{2m\ln m}}{n} \to 0$$

Poisson approximation is nice but ...

Hard to use due to conditioning.

Can we remove the condition?

Condition-free Poisson Approximation

Notation

 $X_i^{(m)}$: the load of bin i in (m, n)-model.

 $Y_i^{(m)}$: independent Poisson r.v.s with expectation $\frac{m}{n}$.

Theorem

For any non-negative n-ary function f, we have

$$\mathbb{E}\left[f\left(X_1^{(m)},...X_n^{(m)}\right)\right] \le e\sqrt{m}\mathbb{E}\left[f\left(Y_1^{(m)},...Y_n^{(m)}\right)\right].$$

Remark

Unlike $\left(X_1^{(m)},X_2^{(m)},...X_n^{(m)}\right)\sim \left(Y_1^{(\mu)},Y_2^{(\mu)},...Y_n^{(\mu)}|Y=m\right)$, the mean of the Poisson distribution is $\frac{m}{n}$, not arbitrary.

Condition-freedom at the cost of approximation.

Proof

$$\begin{split} & \mathbb{E}[f(Y_1^{(m)},...Y_n^{(m)})] \\ &= \sum_k \mathbb{E}[f(Y_1^{(m)},...Y_n^{(m)})| \sum_i Y_i^{(m)} = k] \Pr(\sum_i Y_i^{(m)} = k) \\ &\geq \mathbb{E}[f(Y_1^{(m)},...Y_n^{(m)})| \sum_i Y_i^{(m)} = m] \Pr(\sum_i Y_i^{(m)} = m) \\ &= \mathbb{E}[f(X_1^{(m)},...X_n^{(m)})] \Pr(\sum_i Y_i^{(m)} = m). \end{split}$$

$$\sum_i Y_i^{(m)} \sim Poi(m) \Rightarrow \Pr(\sum_i Y_i^{(m)} = m) = \frac{m^m e^{-m}}{m!} \geq \frac{1}{e\sqrt{m}}$$
 since $m! < e\sqrt{m}(me^{-1})^m$.

Remark

 $\mathbb{E}[f(X_1^{(m)},...X_n^{(m)})] \leq 2\mathbb{E}[f(Y_1^{(m)},...Y_n^{(m)})]$ if f is monotonic in m

In Terms of Probability

Any event that takes place with probability p in the independent Poisson approximation experiment takes places in Bins&Balls setting with probability at most $pe\sqrt{m}$

If the probability of an event in Bins&Balls is monotonic in m, it is at most twice of that in the independent Poisson approximation experiment

Remark

Powerful in bounding the probability of rare events in Bins&Balls.

Application

Lower bound of max load in (n, n)-model

Asymptotically, $\Pr(\mathcal{E}) \leq \frac{1}{n}$, where \mathcal{E} is the event that the max load in the (n,n)-Bins&Balls model is smaller than $\frac{\ln n}{\ln \ln n}$.

Remark: In fact, the max load is $\Theta\left(\frac{\ln n}{\ln \ln n}\right)$ w.h.p.

Proof

 \mathcal{E}' : Poisson approx. experiment has max load $\leq M = \frac{\ln n}{\ln \ln n}$. $\Pr(\mathcal{E}') \leq \left(1 - \frac{1}{eM!}\right)^n \leq e^{-\frac{n}{eM!}}$.

$$\begin{aligned} M! &\leq e\sqrt{M}(e^{-1}M)^M \leq M(e^{-1}M)^M \\ \Rightarrow &\ln M! \leq \ln n - \ln \ln n - \ln(2e) \Rightarrow M! \leq \frac{n}{2e \ln n}. \end{aligned}$$

Altogether,
$$\Pr(\mathcal{E}) \le e\sqrt{n}\Pr(\mathcal{E}') \le \frac{e\sqrt{n}}{n^2} \le \frac{1}{n}$$
.