Comparison by Conversion

Reverse-Engineering UCCA from Syntax and Lexical Semantics

Daniel Hershcovich Nathan Schneider Jakob Prange

Dotan Dvir Omri Abend[♡]

Miryam de Lhoneux[♦] dh@di.ku.dk

- ♦ University of Copenhagen
- Georgetown University
- ^{\rightarrow} Hebrew University of Jerusalem

Linguistic and supervised conversion enable deep comparison between meaning representations.

UD [4]: cross-linguistic syntactic representation.

STREUSLE [5]: English corpus of web reviews with comprehensive annotation of lexical semantics.

Converted UCCA STREUSLE	Gold UCCA
tap_water (unanalyzable) n.Substance	[E tap] [C water]
[P road_construction] n.Event	[A road] [P construction]
<pre>[F a] [C meal] [E [R on] [F the]</pre>	[F a] [C meal] [E [R on] [F the] [C menu]]]
[P answered] [A [Q all] [A v.Communication my] [C questions]] p.Originator n.Communication p.Gestalt	[P answered] [A [D all] [A my] [P questions]]

Rule-Based Conversion

Parser state

no record of aa ...

cross

Blue cross has

reversal

aa

Delexicalized Parsing

Transition-based parsers: TUPA [3], HIT-SCIR [2].

ation	F	1	Pre	edict			gory A S	_	D	דוח	Е		_	d C H	_	gory N F	_	R	R S
	Primary	Remote	A	758	4	7	12	17	11	ווט	9	4	1	6	1	14	_	1	1
ased	71.7	44.2	A I A S				1 8	1 2											
	69.5	46.4	C D	50 10		7	12	457 12	27 280		11 40	1 8	1 12	12 2	3 2	3.	2 4	5 1	1
	64.4	35.9	E F	48	1			20	42	1	294	3 613	_	17		3 1	7 1	1	2
JSLE only	62.4	27.5	G		2							2	6	2					
IR, delex	67.9	41.6	H L	40	2		1	29	6 7		13 1	1 19		450	221	22 14 1	2	2 27	
-UD+GloVe	71.7	47.0	P	3				1 16	1 15	1	1 2	13	12	1	10 1	31 34	1 5	2	2
(BERT)	71.9	41.8	Q R	3				8	5		1				13	1	40	211	1
(GloVe)	67.0	42.4	S	6				48	49	2	4	26		6		10) 1	1	2
D+STREUSLI	E 72.2	46.9	Ø	2 148	1	3	6	4 136	2 60	3	100	32	1	124	9	2 65	1 5 12	2 34	2

Blue

References

[3] Daniel Hershcovich, Omri Abend, and Ari Rappoport. A transition-based directed acyclic graph parser for UCCA. In ACL, pages 1127–1138, July 2017.