GMMs for Anomaly Detection

Back to our HPC Problem

Let's go back to our anomaly detection problem

```
In [2]: hpcsv = hpc.copy()
        hpcsv[inputs] = (hpcsv[inputs] - hpcsv[inputs].mean()) / hpcsv[inputs].std()
        labels = pd.Series(index=hpcsv.index, data=(hpcsv['anomaly'] != 0), dtype=int)
        util.plot_dataframe(hpcsv[inputs], labels, figsize=figsize)
          20
         100
         120
         140
                         1000
                                       2000
                                                     3000
                                                                    4000
                                                                                                6000
```

The colored line on the top identifies anomalies (in orange)

Preprocessing

We proceed to standardize the data again

- This is not strictly needed for GMMs
- ...but many optimization algorithms are designed for standardized data

```
In [4]: tr_end, val_end = 3000, 4500

hpcs = hpc.copy()
tmp = hpcs.iloc[:tr_end]
hpcs[inputs] = (hpcs[inputs] - tmp[inputs].mean()) / tmp[inputs].std()
```

We separate the training, validation, and test set

```
In [5]: trdata = hpcs.iloc[:tr_end]
  valdata = hpcs.iloc[tr_end:val_end]
  tsdata = hpcs.iloc[val_end:]
```

This time, we keep the validation set distinct from the training set

Training and Number of Components

We now need to pick a number of components

We'll do this by using grid search and cross validation

- We would have used other method (e.g. elbow method or BIC)
- There are also <u>variants of GMMs</u> that can infer the number of components

```
In [6]: %%time
    opt = GridSearchCV(GaussianMixture(), {'n_components': [2, 4, 8]}, cv=5)
    opt.fit(trdata[inputs])
    print(f'Best parameters: {opt.best_params_}')

Best parameters: {'n_components': 8}
    CPU times: user 1min, sys: 2min 16s, total: 3min 16s
    Wall time: 16.9 s
```

- While training is slow
- ...Generating the alarm signal is now much faster


```
In [7]: | ldens = opt.score_samples(hpcs[inputs])
    signal = pd.Series(index=hpcs.index, data=-ldens)
```

Inspecting the Alarm Signal

Let's have a look at the alarm signal

It's very similar to the one provided by KDE

Threshold Optimization

We can optimize the threshold in the usual fashion

The cost model is the same as before

```
In [9]: c alarm, c missed, tolerance = 1, 5, 12
        cmodel = util.HPCMetrics(c alarm, c missed, tolerance)
        th range = np.linspace(1e4, 1e9, 1000)
        th, val cost = util.opt threshold(signal[tr end:val end],
                                                valdata['anomaly'],
                                                th range, cmodel)
        print(f'Best threshold: {th:.3f}')
        tr_cost = cmodel.cost(signal[:tr_end], hpcs['anomaly'][:tr_end], th)
        print(f'Cost on the training set: {tr cost}')
        print(f'Cost on the validation set: {val cost}')
        ts_cost = cmodel.cost(signal[val_end:], hpcs['anomaly'][val_end:], th)
        print(f'Cost on the test set: {ts cost}')
        Best threshold: 258265675.676
        Cost on the training set: 0
        Cost on the validation set: 245
        Cost on the test set: 275
```


Behavior Clusters

Finally, we can have a look at how the model is using its components

- The results may vary, since some steps of the process are stochastic
- ...But typically one or more component will be use for a single, long job