ECE4110: Random Processes

MMSE and Linear **MMSE** Estimation

Qing Zhao
School of Electrical and Computer Engineering
Cornell University, Ithaca, NY 14850
qz16@cornell.edu

Outline

- Correlation and covariance.
- Orthogonality and uncorrelatedness.
- The Hilbert space of random variables.
- MMSE estimation:
 - The Orthogonality principle.
 - Unconstrained MMSE estimator.
 - Linear MMSE estimator.
 - MMSE estimator for jointly Gaussian random variables.
 - MMSE estimator for random vectors.

Correlation and Covariance

Correlation and Covariance:

- Correlation: $\mathbb{E}[XY]$
- Covariance:

$$\begin{aligned} \mathsf{Cov}(X,Y) \;&\stackrel{\Delta}{=}\; \mathbb{E}\left[(X-\mathbb{E}(X))(Y-\mathbb{E}(Y))\right] \\ &=\; \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y] \end{aligned}$$

• Correlation coefficient:

$$\rho_{XY} = \frac{\mathsf{Cov}(X,Y)}{\sqrt{\mathsf{Var}(X)\mathsf{Var}(Y)}}$$

Orthogonality and Uncorrelatedness:

- X and Y are orthogonal if $\mathbb{E}[XY] = 0$.
- ullet X and Y are uncorrelated if $\operatorname{Cov}(X,Y)=0$, or equivalently, $\mathbb{E}[XY]=\mathbb{E}[X]\mathbb{E}[Y]$.

Correlation and Covariance

Properties:

- Independence implies uncorrelatedness, but not vise versa.
- If at least one of X and Y has zero mean, then $\mathbb{E}[XY] = \mathsf{Cov}(X,Y)$. In this case, X and Y are orthogonal iff they are uncorrelated.
- $\bullet \ \mathsf{Cov}(X,aY+bZ) = a\mathsf{Cov}(X,Y) + b\mathsf{Cov}(X,Z).$
- $\bullet \ \operatorname{Cov}(X \mathbb{E}[X], Y \mathbb{E}[Y]) = \operatorname{Cov}(X, Y).$
- Cauchy-Schwarz inequality:

$$(\mathbb{E}[XY])^2 \le \mathbb{E}[X^2]\mathbb{E}[Y^2],$$

with equality iff Pr(X = cY) = 1 for some constant c (assuming $\mathbb{E}[Y^2] \neq 0$).

- $|\rho_{XY}| \le 1$ with equality iff X = aY + b for some constants a and b.
- If X_1, \ldots, X_m are pairwise uncorrelated, then

$$\operatorname{Var}(\sum_{i=1}^m X_i) = \sum_{i=1}^m \operatorname{Var}(X_i).$$

Geometric Interretation: Hilbert Space

Inner Product:

An inner product on a vector space \mathcal{V} is a map

$$<\cdot,\cdot>: \mathcal{V} \times \mathcal{V} \to \mathcal{R}$$

such that for all $\mathbf{x}, \mathbf{y} \in \mathcal{V}$ and $\alpha, \beta \in \mathcal{R}$,

- ullet < x, y > = < y, x >
- $\bullet < \mathbf{x}, \mathbf{x} > \ge 0$ with equality iff $\mathbf{x} = 0$.
- $\bullet < \mathbf{x}, \alpha \mathbf{y} + \beta \mathbf{z} > = \alpha < \mathbf{x}, \mathbf{y} > +\beta < \mathbf{x}, \mathbf{z} >$.

Hilbert Space:

A Hilbert space is a vector space that

- has an inner product $<\cdot,\cdot>$ defined
- and is complete with respect to the norm $||\mathbf{x}|| \stackrel{\Delta}{=} \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$ induced by the inner product.

Example: 2-dimensional Euclidean plane with inner product $< \mathbf{x}, \mathbf{y} >$ (also referred to as dot product $\mathbf{x} \cdot \mathbf{y}$) defined as

$$<\mathbf{x},\mathbf{y}>=x_{1}y_{1}+x_{2}y_{2}$$

The Hilbert Space of Random Variables

The Hilbert Space of Random Variables:

All random variables with finite second moments form a Hilbert space with inner product

$$\langle X, Y \rangle \stackrel{\Delta}{=} \mathbb{E}[XY]$$

Geometry:

1. The length (norm) of X:

$$||X|| = \sqrt{\langle X, X \rangle} = \sqrt{\mathbb{E}[X^2]}$$

2. The angle θ_{XY} between X and Y is given by

$$\cos \theta_{XY} = \frac{\langle X, Y \rangle}{||X|| ||Y||} = \frac{\mathbb{E}[XY]}{\sqrt{\mathbb{E}[X^2]\mathbb{E}[Y^2]}}$$

- 3. CauchySchwarz inequality follows directly from $|\cos \theta_{XY}| \le 1$.
- 4. The projection $\sqcap_Y(X)$ of X onto Y is

$$\Box_Y(X) = ||X|| \cos \theta_{XY} \frac{Y}{||Y||} = \frac{\mathbb{E}[XY]}{\mathbb{E}[Y^2]} Y$$

- 5. X and Y are orthogonal if $\mathbb{E}[XY] = 0 (\sqcap_Y(X) = 0)$.
- 6. Pythagorean theorem: if X_1, \ldots, X_m are pairwise orthogonal, then

$$\mathbb{E}\left[\left(\sum_{i=1}^{m} X_i\right)^2\right] = \sum_{i=1}^{m} \mathbb{E}(X_i^2).$$

MMSE Estimation

Mean Square Error (MSE):

Let \hat{X} denote an estimate of X.

• The estimation error W is

$$W = X - \hat{X}$$

• The MSE of the estimate \hat{X} is

$$\mathbb{E}\left[(X - \hat{X})^2 \right] = \mathbb{E}[W^2] = ||W||^2 = \langle W, W \rangle,$$

which is the length of the error W squared, or equivalently, the distance $d(X,\hat{X})=||X-\hat{X}||$ between X and \hat{X} squared.

• The MMSE estimator of *X* is the one that minimizes the MSE:

$$\min_{\hat{X}} \mathbb{E}\left[(X - \hat{X})^2 \right]$$

• The MMSE estimator is the one that produces an error W that is the shortest in length ||W||. In other words, \hat{X}_{MMSE} is the closest to X.

MMSE Estimator of X using a Constant

MMSE Estimator of X using a constant:

• Choose a constant a to minimize MSE:

$$\hat{X} = a^*$$
 where $a^* = \arg\min_{a \in \mathcal{R}} \mathbb{E}\left[(X - a)^2 \right]$

• The estimator and the MSE:

$$a^* = \mathbb{E}[X], \quad \mathsf{MSE} = \mathbb{E}\left[(X - \mathbb{E}[X])^2\right] = \mathsf{Var}(X)$$

Proof:

$$\begin{split} \mathsf{MSE} &= \, \mathbb{E}[(X-a)^2] \\ &= \, \mathbb{E}\left[(X-\mathbb{E}[X]+\mathbb{E}[X]-a)^2\right] \\ &= \, \mathbb{E}\left[(X-\mathbb{E}[X])^2\right] + 2\mathbb{E}\left[(X-\mathbb{E}[X])(\mathbb{E}[X]-a)\right] + \mathbb{E}\left[(\mathbb{E}[X]-a)^2\right] \\ &= \, \mathsf{Var}(X) + (\mathbb{E}[X]-a)^2 \end{split}$$

which is minimized at $a = \mathbb{E}[X]$, resulting in an $\mathsf{MSE} = \mathsf{Var}(X)$.

MMSE Estimator of X using g(Y)

MMSE Estimator of X using g(Y):

• The MMSE estimator $g^*(Y)$:

$$g^*(Y) = \arg\min_{q} \mathbb{E}\left[(X - g(Y))^2 \right]$$

• For each given Y = y, the problem is reduced to estimating X using a constant g(y). The MMSE estimator is

$$g^*(y) = \mathbb{E}\left[X|Y=y\right]$$

• Given Y = y, the MSE is the conditional variance:

$$\mathsf{MSE}_{Y=y} = \mathbb{E}\left[(X - \mathbb{E}[X|Y=y])^2 | Y = y\right] = \mathsf{Var}(X|Y=y)$$

• The MMSE estimator of X using a function g of Y is the conditional mean (a random variable):

$$\hat{X}_{\text{MMSE}} = g^*(Y) = \mathbb{E}[X|Y]$$

- The error W has zero mean $(\mathbb{E}[W] = 0)$, i.e., \hat{X}_{MMSE} is an unbiased estimator.
- The overall MSE achieved by $g^*(Y) = \mathbb{E}(X|Y)$ is the expectation (over Y) of the conditional variance:

$$\begin{split} \mathsf{MSE} &= \ \mathbb{E}_Y \left[\mathsf{Var}(X|Y) \right] = \int_y \mathsf{Var}(X|Y=y) f_Y(y) dy \\ &= \ \mathbb{E}[X^2] - \mathbb{E}[(\hat{X}_{\mathsf{MMSE}})^2] \quad (\mathsf{Pythagorean:} \ W \perp \hat{X}_{\mathsf{MMSE}}) \\ &= \ \mathsf{Var}(X) - \mathsf{Var}(\hat{X}_{\mathsf{MMSE}}) \quad (\because \mathbb{E}[X] = \mathbb{E}[\hat{X}_{\mathsf{MMSE}}]) \end{split}$$

The Orthogonality Principle

The Orthogonality Principle:

Let $\mathcal{L}^2(\Omega, \mathcal{F}, \Pr)$ denote the set of all random variables on $(\Omega, \mathcal{F}, \Pr)$ with finite second moments. Let \mathcal{V} be a closed (in the mean square sense) linear subspace of $\mathcal{L}^2(\Omega, \mathcal{F}, \Pr)$, and let $X \in \mathcal{L}^2(\Omega, \mathcal{F}, \Pr)$.

• Existence and uniqueness: There exists a unique element $Y^* \in \mathcal{V}$ such that, for all $Y \in \mathcal{V}$,

$$\mathbb{E}\left[(X - Y^*)^2\right] \le \mathbb{E}\left[(X - Y)^2\right].$$

- Characterization: Let Z be a random variable in \mathcal{V} . Then $Z=Y^*$ if and only if $\mathbb{E}\left[(X-Z)Y\right]=0$ for all $Y\in\mathcal{V}$, i.e., $X-Z\perp\mathcal{V}$.
- ullet Error expression: The MMSE for estimating X using ${\mathcal V}$ is given by

$$\mathsf{MSE} = \mathbb{E}\left[(X - Y^*)^2\right] = \mathbb{E}[X^2] - \mathbb{E}[(Y^*)^2]$$

Remarks:

- The MMSE estimator of X using $\mathcal V$ is the random variable Y^* in $\mathcal V$ that results in an error $X-Y^*$ being orthogonal to $\mathcal V$ (i.e., orthogonal to all random variables in $\mathcal V$).
- It is easy to check that the error $W = X \mathbb{E}[X|Y]$ of the MMSE estimator $g^*(Y) = \mathbb{E}[X|Y]$ is orthogonal to g(Y) for all functions $g(\cdot)$.

MMSE Estimator of X using aY

MMSE Estimator of X using aY:

• Choose a to minimize MSE:

$$\hat{X} = a^*Y$$
 where $a^* = \arg\min_{a \in \mathcal{R}} \mathbb{E}\left[(X - aY)^2 \right]$

• From the geometric interpretation, the best estimate is given by the projection of *X* onto *Y*:

$$a^* = \frac{\mathbb{E}[XY]}{\mathbb{E}[Y^2]}$$

• The error $W = X - a^*Y$ is orthogonal to Y:

$$\mathbb{E}[WY] = \mathbb{E}\left[(X - a^*Y)Y\right] = 0$$

When Y is a constant (Y = c):

$$\begin{split} a^* &= \frac{\mathbb{E}[X]}{c}, \quad \hat{X} = a^*c = \mathbb{E}[X] \\ \mathsf{MSE} &= \mathbb{E}\left[(X - \mathbb{E}[X])^2\right] = \mathsf{Var}(X) \end{split}$$

Linear MMSE Estimators

Linear MMSE Estimator:

• Estimate X using affine functions of Y:

$$\hat{X} = aY + b$$

• Choose a and b to minimize MSE:

$$\{a^*, b^*\} = \arg\min_{a,b} \mathbb{E}\left[(X - (aY + b))^2 \right]$$

• By the orthogonality principle, the error $W \stackrel{\Delta}{=} X - (a^*Y + b^*)$ is orthogonal to all affine functions of Y:

$$W \perp aY + b, \quad \forall a, b$$

• It suffices to have

$$W \perp 1 \ (\mathbb{E}[W] = 0)$$
 and $W \perp Y \ (\mathbb{E}[WY] = 0)$

The above leads to

$$b^* = \mathbb{E}[X] - a^* \mathbb{E}[Y], \quad a^* = \frac{\mathsf{Cov}(X, Y)}{\mathsf{Var}(Y)}$$

• The best linear estimator and its MSE:

$$\begin{split} \hat{X}_{\text{LMMSE}} &= \ \mathbb{E}[X] + \frac{\mathsf{Cov}(X,Y)}{\mathsf{Var}(Y)} [Y - \mathbb{E}(Y)] \\ \mathsf{MSE} &= \mathbb{E}\left[W^2\right] = \ \mathbb{E}[X^2] - \mathbb{E}[\hat{X}_{\text{LMMSE}}^2] \quad (\text{Pythagorean: } W \perp \hat{X}_{\text{LMMSE}}) \\ &= \ \mathsf{Var}(X) - \mathsf{Var}(\hat{X}_{\text{LMMSE}}) \quad (\because \mathbb{E}[X] = \mathbb{E}[\hat{X}_{\text{LMMSE}}]) \\ &= \ \mathsf{Var}(X) - \frac{\mathsf{Cov}^2(X,Y)}{\mathsf{Var}(Y)} \\ &= \ \mathsf{Var}(X) (1 - \rho_{XY}^2) \end{split}$$

Jointly Gaussian Random Variables

Gaussian Random Variable:

A random variable X is Gaussian with mean μ and variance $\sigma^2 > 0$ if X has PDF

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Jointly Gaussian Random Variables:

X and Y are jointly Gaussian if every linear combination of them is Gaussian, i.e., $a_1X + a_2Y$ is Gaussian for all a_1, a_2 .

Properties

Properties of Jointly Gaussian Random Variables:

- Uncorrelated jointly Gaussian random variables are independent.
- Jointly Gaussian implies marginally Gaussian, but not vise versa.
- Independent Gaussian random variables are jointly Gaussian.
- If X and Y are jointly Gaussian, then $a_1X + b_1Y + c_1$ and $a_2X + b_2Y + c_2$ are jointly Gaussian for all a_i, b_i, c_i .
- ullet For jointly Gaussian X and Y with $|
 ho_{XY}| < 1$, their joint PDF $f_{XY}(x,y)$ is given by

$$\frac{1}{(2\pi)\sqrt{|\mathbf{K}|}}exp\left\{-\frac{1}{2}\left(\begin{pmatrix}X\\Y\end{pmatrix}-\begin{pmatrix}\mu_X\\\mu_Y\end{pmatrix}\right)^T\mathbf{K}^{-1}\left(\begin{pmatrix}X\\Y\end{pmatrix}-\begin{pmatrix}\mu_X\\\mu_Y\end{pmatrix}\right)\right\}$$

where \mathbf{K} is the covariance matrix of $\begin{pmatrix} X \\ Y \end{pmatrix}$:

$$\mathbf{K} = \begin{pmatrix} \mathsf{Cov}(X,X) & \mathsf{Cov}(X,Y) \\ \mathsf{Cov}(Y,X) & \mathsf{Cov}(Y,Y) \end{pmatrix} = \begin{pmatrix} \sigma_X^2 & \rho_{XY}\sigma_X\sigma_Y \\ \rho_{XY}\sigma_X\sigma_Y & \sigma_Y^2 \end{pmatrix}$$

ullet For jointly Gaussian X and Y, we have $\hat{X}_{\mathrm{MMSE}} = \hat{X}_{\mathrm{LMMSE}}$, i.e.,

$$\begin{split} \mathbb{E}(X|Y) &= \hat{X}_{\mathsf{LMMSE}} = \frac{\mathsf{Cov}(X,Y)}{\mathsf{Var}(Y)}[Y - \mathbb{E}(Y)] + \mathbb{E}(X) \\ \mathsf{MMSE} &= \mathsf{Var}(X) - \frac{\mathsf{Cov}^2(X,Y)}{\mathsf{Var}(Y)} = \mathsf{Var}(X)(1 - \rho_{XY}^2) \end{split}$$

ullet For jointly Gaussian X and Y, the conditional distribution of X given Y=y is Gaussian with mean and variance given by

$$\begin{split} \mathbb{E}(X|Y=y) &= \frac{\mathsf{Cov}(X,Y)}{\mathsf{Var}(Y)}[y-\mathbb{E}(Y)] + \mathbb{E}(X) \\ \mathsf{Var}(X|Y=y) &= \mathsf{Var}(X) - \frac{\mathsf{Cov}^2(X,Y)}{\mathsf{Var}(Y)} = \mathsf{Var}(X)(1-\rho_{XY}^2) \end{split}$$

Random Vectors

Random Vector:

A random vector \mathbf{X} of dimension m consists of m random variables defined on the same probability space:

$$\mathbf{X} = \begin{pmatrix} X_1 \\ \vdots \\ X_m \end{pmatrix}$$

Expectation, Correlation and Covariance Matrixes:

$$\mathbb{E}(\mathbf{X}) = \begin{pmatrix} \mathbb{E}(X_1) \\ \vdots \\ \mathbb{E}(X_m) \end{pmatrix} \quad \mathbb{E}(\mathbf{X}\mathbf{X}^T) = \begin{pmatrix} \mathbb{E}(X_1^2) & \cdots & \mathbb{E}(X_1X_m) \\ \vdots & \vdots & \vdots \\ \mathbb{E}(X_mX_1) & \cdots & \mathbb{E}(X_m^2) \end{pmatrix}$$

$$\mathsf{Cov}(\mathbf{X}) = \begin{pmatrix} \mathsf{Var}(X_1) & \cdots & \mathsf{Cov}(X_1, X_m) \\ \vdots & \vdots & \vdots \\ \mathsf{Cov}(X_m, X_1) & \cdots & \mathsf{Var}(X_m) \end{pmatrix}$$

Cross Correlation and Covariance Matrixes:

Let X (dimension m) and Y (dimension n) be two random vectors defined on the same probability space.

$$\mathbb{E}(\mathbf{X}\mathbf{Y}^T) = \left\{ \mathbb{E}(X_iY_j) \right\}_{m \times n} \quad \mathsf{Cov}(\mathbf{X}, \mathbf{Y}) = \left\{ \mathsf{Cov}(X_i, Y_j) \right\}_{m \times n}$$

Gaussian Random Vectors

Gaussian Random Vector:

- X is a Gaussian random vector if its coordinate random variables are jointly Gaussian.
- $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \mathbf{K})$ denotes a Gaussian random vector with mean vector $\boldsymbol{\mu}$ and covariance matrix \mathbf{K} .

Properties: Suppose that $X \sim \mathcal{N}(\mu, K)$.

ullet Jointly Gaussian implies marginally Gaussian: any sub-vector of ${\bf X}$ is Gaussian. In particular,

$$X_i \sim \mathcal{N}(\mu_i, \mathbf{K}_{i,i}).$$

 \bullet For any matrix ${\bf A}$ and vector ${\bf b},\ {\bf Y}={\bf A}{\bf X}+{\bf b}$ is Gaussian and

$$\mathbf{Y} \sim \mathcal{N}(\mathbf{A}\boldsymbol{\mu} + \mathbf{b}, \mathbf{A}\mathbf{K}\mathbf{A}^T).$$

ullet If old K is nonsingular, then old X has a PDF given by

$$f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^m |\mathbf{K}|}} exp\{-\frac{1}{2}(\mathbf{X} - \boldsymbol{\mu})^T \mathbf{K}^{-1}(\mathbf{X} - \boldsymbol{\mu})\}$$

- If K is a diagonal matrix, then the coordinates X_1, \ldots, X_m are independent.
- \bullet If ${\bf X}$ and ${\bf Y}$ are jointly Gaussian vectors, then they are independent iff $\mathsf{Cov}({\bf X},{\bf Y})={\bf 0}.$

MMSE Estimation of Random Vectors

MMSE Estimation of X using g(Y):

 MSE for estimation of X is the sum of the MSEs of the coordinates:

$$\mathbb{E}(||\mathbf{X} - \mathbf{g}(\mathbf{Y})||^2) = \sum_{i=1}^{m} \mathbb{E}[(X_i - g_i(\mathbf{Y}))^2]$$

Thus finding the MMSE estimator of X decomposes into finding the MMSE estimators of each X_i separately.

 The MMSE estimator is given by the conditional mean:

$$\mathbf{g}^*(\mathbf{Y}) = \mathbb{E}(\mathbf{X}|\mathbf{Y}) = \begin{pmatrix} \mathbb{E}(X_1|\mathbf{Y}) \\ \vdots \\ \mathbb{E}(X_m|\mathbf{Y}) \end{pmatrix}$$

Linear MMSE Estimation of X:

• Estimate X using a linear transform of Y:

$$\hat{\mathbf{X}} = \mathbf{A}\mathbf{Y} + \mathbf{b}$$

By the orthogonality principle,

$$\begin{split} \hat{\mathbf{X}}_{\text{LMMSE}} &= \mathbb{E}(\mathbf{X}) + \text{Cov}(\mathbf{X}, \mathbf{Y}) \text{Cov}^{-1}(\mathbf{Y}) (\mathbf{Y} - \mathbb{E}(\mathbf{Y})) \\ \text{Cov}(\mathbf{X} - \hat{\mathbf{X}}_{\text{LMMSE}}) &= \text{Cov}(\mathbf{X}) - \text{Cov}(\mathbf{X}, \mathbf{Y}) \text{Cov}^{-1}(\mathbf{Y}) \text{Cov}(\mathbf{Y}, \mathbf{X}) \end{split}$$

When X and Y are jointly Gaussian:

$$\hat{\mathbf{X}}_{\text{LMMSE}} = \mathbf{g}^*(\mathbf{Y}) = \mathbb{E}(\mathbf{X}|\mathbf{Y})$$

Example: Gaussian Signal in Gaussian Noise

$$Y_i = X + W_i, \quad i = 1, \dots, n,$$

where $X \sim \mathcal{N}(\mu_x, \sigma_x^2)$ is the signal, $W_i \sim \mathcal{N}(0, \sigma_w^2)$ is noise, and X, W_1, \dots, W_n are independent.

ullet X and Y are jointly Gaussian. In particular,

$$\mathbf{Y} \sim \mathcal{N}(\mu_x \mathbf{1}, \sigma_w^2 \mathbf{I} + \sigma_x^2 \mathbf{1} \mathbf{1}^T), \text{ where } \mathbf{1} = [1, \dots, 1]^T.$$

Compute all required statistics:

$$\begin{split} \mathbb{E}(X) &= \ \mu_x, \quad \mathbb{E}(\mathbf{Y}) = \mu_x \mathbf{1} \\ \mathsf{Cov}(X, \mathbf{Y}) &= \ \sigma_x^2 \mathbf{1}^T, \quad \mathsf{Cov}(\mathbf{Y}) = \sigma_w^2 \mathbf{I} + \sigma_x^2 \mathbf{1} \mathbf{1}^T \\ \mathsf{Cov}^{-1}(\mathbf{Y}) &= \ \frac{1}{\sigma_w^2} [\mathbf{I} - \frac{\sigma_x^2}{\sigma_w^2 + n\sigma_x^2} \mathbf{1} \mathbf{1}^T] \end{split}$$

where the Matrix Inversion Lemma was used to obtain $Cov^{-1}(\mathbf{Y})$:

$$(\mathbf{A} + \mathbf{b}\mathbf{b}^T)^{-1} = \mathbf{A}^{-1} - \frac{1}{1 + \mathbf{b}^T \mathbf{A}^{-1} \mathbf{b}} \mathbf{A}^{-1} \mathbf{b} \mathbf{b}^T \mathbf{A}^{-1}$$

• The MMSE estimator:

$$\begin{split} \hat{X} &= & \mathbb{E}(X|\mathbf{Y}) = \mathbb{E}(X) + \mathsf{Cov}(X,\mathbf{Y})\mathsf{Cov}^{-1}(\mathbf{Y})(\mathbf{Y} - \mathbb{E}(\mathbf{Y})) \\ &= & \mu_x + \frac{\sigma_x^2}{\sigma_x^2 + \frac{\sigma_w^2}{n}}(\overline{\mathbf{Y}} - \mu_x) = \mu_x + \frac{\mathsf{SNR}}{1 + \mathsf{SNR}}(\overline{\mathbf{Y}} - \mu_x) \\ &\approx & \left\{ \frac{\mu_x}{\mathbf{Y}}, \; \mathsf{SNR} << 1 \\ \overline{\mathbf{Y}}, \; \mathsf{SNR} >> 1 \right. \end{split}$$

where

$$\overline{\mathbf{Y}} \stackrel{\Delta}{=} \frac{1}{n} \sum_{i=1}^{n} Y_i, \quad \mathsf{SNR} \stackrel{\Delta}{=} \frac{n\sigma_x^2}{\sigma_w^2}$$