Instructor: Dr. Shijun Zheng 01/16/2020

§2.1 Rates of Change and Tangent Lines to Curves

Example 1. A rock breaks loose from the top of a tall cliff. What is its average speed

- (a) during the first 2 sec of fall?
- (b) during the 1-sec interval between second 1 and second 2?

Example 2. Find the speed of the falling rock in Example 1 at t=1 and t=2 sec.

Definition. The average rate of change of y = f(x) with respect to x over the interval $[x_1, x_2]$ is

$$\frac{\Delta y}{\Delta x} = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{f(x_1 + h) - f(x_1)}{h}, \qquad h \neq 0.$$

§2.2 Limit of a Function and Limit Laws

Example 1. How does the function $f(x) = \frac{x^2 - 1}{x - 1}$ behave near x = 1?

Definition (informal). Suppose that f(x) is defined on an open interval about c, except possibly at c itself. If f(x) is arbitrarily close to the number L (as close to L as we like) for all x sufficiently close to c, other than c itself, then we say that f approaches the **limit** L as x approaches c, and write $\lim_{x\to c} f(x) = L$.

†Typically we can observe the limit by checking the behavior of the function near x = c using graphing or numerical table methods.

Example 2. The limit of a function does not depend on how the function is defined at the point being approached. Consider the three functions

$$f(x) = \frac{x^2 - 1}{x - 1},$$
 $g(x) = \begin{cases} \frac{x^2 - 1}{x - 1}, & x \neq 1\\ 1, & x = 1 \end{cases},$ $h(x) = x + 1.$

Example 3. (a) If f is the **identity function** f(x) = x, then for any value of c, $\lim_{x\to c} f(x) = \lim_{x\to c} x = c$.

(b) If f is the **constant function** f(x) = k (function with constant value k), then for any value of c, $\lim_{x\to c} f(x) = \lim_{x\to c} k = k$.

Example 4. Discuss the behavior of the following functions, explaining why they have no limit as $x \to 0$.

$$\begin{array}{ll}
\text{mint as } x \to 0. \\
\text{(a) } U(x) = \begin{cases} 0, & x < 0 \\ 1, & x \ge 0 \end{cases} \\
\text{(b) } g(x) = \begin{cases} \frac{1}{x}, & x \ne 0 \\ 0, & x = 0 \end{cases} \\
\text{(c) } f(x) = \begin{cases} 0, & x \le 0 \\ \sin \frac{1}{x}, & x > 0 \end{cases}
\end{aligned}$$

Theorem 1 (Limit Laws). If L, M, c, and k are real numbers and $\lim_{x\to c} f(x) = L$ and $\lim g(x) = M$, then

1 & 2. Sum and Difference Rule:

3. Constant Multiple Rule:

 $\lim_{x \to c} (f(x) \pm g(x)) = L \pm M$ $\lim_{x \to c} (k \cdot f(x)) = k \cdot L$ $\lim_{x \to c} (f(x) \cdot g(x)) = L \cdot M$ 4. Product Rule:

5. Quotient Rule:

 $\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{L}{M}, \quad M \neq 0$ $\lim_{x \to c} [f(x)]^n = L^n, \quad n \text{ a positive integer}$ 6. Power Rule:

 $\lim_{x\to c} \sqrt[n]{f(x)} = \sqrt[n]{L} = L^{1/n}, \quad n \text{ a positive integer}$ 7. Root Rule:

(If n is even, we assume that $f(x) \ge 0$ for x in an interval containing c.)

Example 5. Use Example 3 and Theorem 1 to find the following limits.

(a)
$$\lim_{x \to c} (x^3 + 4x^2 - 3)$$
 (b) $\lim_{x \to c} \frac{x^4 + x^2 - 1}{x^2 + 5}$ (c) $\lim_{x \to -2} \sqrt{4x^2 + 3}$

Theorem 2. If $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$, then $\lim_{x \to c} P(x) = P(c)$.

Theorem 3. If P(x) and Q(x) are polynomials and $Q(c) \neq 0$, then $\lim_{x \to c} \frac{P(x)}{O(x)} = \frac{P(c)}{O(c)}$.

Example 6
$$\lim_{x \to -1} \frac{x^3 + 4x^2 - 3}{x^2 + 5} = \frac{(-1)^3 + 4(-1)^2 - 3}{(-1)^2 + 5} = 0$$

Exercise 79.* If $\lim_{x\to 4} \frac{f(x)-5}{x-2} = 1$, find $\lim_{x\to 4} f(x)$.

Example 7. Evaluate $\lim_{x\to 1} \frac{x^2+x-2}{x^2-x}$.

Example 9. Evaluate $\lim_{x\to 0} \frac{\sqrt{x^2+100}-10}{r^2}$.

Theorem 4 (The Sandwich Theorem). Suppose that $g(x) \leq f(x) \leq h(x)$ for all x in some open interval containing c, except possibly at x = c itself. Suppose also that $\lim_{x \to c} g(x) = \lim_{x \to c} h(x) = L. \text{ Then } \lim_{x \to c} f(x) = L.$

Example 11. (a) $\lim_{\theta \to 0} \sin \theta = 0$ (b) $\lim_{\theta \to 0} \cos \theta = 1$ (c) For any function f, $\lim_{x \to c} |f(x)| = 0$ implies $\lim_{x \to c} f(x) = 0$.

Proof. (a) Method I. From Figure 1 we see $\sin x \to 0$ as $x \to 0$ (x is in radiant).

Method II. A triangle-unit circle proof. From Figure 2 we observe that if $0 < x < \pi/2$ (with the notation $x = \theta$), then

$$0 \le \sin x \le x$$
.

By the Sandwich Theorem, letting g(x)=0 and h(x)=x and $f(x)=\sin x$, then for $x\in(0,\frac{\pi}{2})$, it holds $g(x)\leq f(x)\leq h(x)$. Since $\lim_{x\to 0_+}g(x)=0$ and $\lim_{x\to 0_+}h(x)=0$, we obtain

$$\lim_{x \to 0_+} f(x) = \lim_{x \to 0_+} \sin(x) = 0.$$

Now for $-\pi/2 < x < 0$, since $\sin x$ is odd function, we easily have $\lim_{x\to 0_-} \sin(x) = 0$. Since both side limits tends to 0, we conclude that $\lim_{x\to 0} \sin(x) = 0$.

FIGURE 1. $y = \sin x$. A graphing approach

FIGURE 2. $\sin \theta \to 0$ as $\theta \to 0$. A triangle-unit circle proof

(b)
$$\lim_{x\to 0} \cos x = \sqrt{1 - (\sin x)^2} = \sqrt{1 - (0)^2} = \sqrt{1} = 1$$

(c) Hint:
$$-|f(x)| \le f(x) \le |f(x)|$$
.

Example. $\lim_{x\to 0} x \sin(x) = 0$.