

UNIVERSIDADE FEDERAL DE JUIZ DE FORA

VALIDAÇÃO DOS CÁLCULOS E RELATÓRIO MAC015 - Resistência dos Materias

Júlia Zoffoli Caçador 202365520B

Robert Gonçalves Vieira de Souza 202365505B

Rubia Danielle Viol 202365515B

Link para o Colab

Juiz de Fora, 2025

Sumário

1	Intro	odução	2
2	Classes e Funções		
	2.1	Classe Inclinação e Deflexão	2
	2.2	Método aplicar condicoes contorno	2
		Método calcular inclinacao deflexao	2
		Método plotar viga deformada	2
		Método plotar inclinação	9
	2.6	Funçao analisar viga deformada	9
	2.7	Menu Interativo	3
3	Con	clusão	3
4	Exemplos		
	4.1	Exemplo 1	4
		Exemplo 2	6
		Exemplo 3	8
		Exemplo 4	11
		Exemplo 5	1.5

1 Introdução

O relatório tem como objetivo descrever o funcionamento do código para a análise da inclinação e deflexão de vigas isostáticas.

2 Classes e Funções

2.1 Classe Inclinação e Deflexão

A classe Inclinação tem como objetivo calcular e visualizar a inclinação e a deflexão de uma viga sujeita a momentos fletores. Ocorre a inicialização da viga, do momento de inércia e de elasticidade, e os vetores para os valores de inclinação e deflexão ao longo da viga.

2.2 Método aplicar condicoes contorno

def aplicar_condicoes_contorno(self, tipo_apoio):

Aplica condições de contorno de acordo com o tipo de apoio:

- Apoio simples: Garante que a deflexão seja zero no segundo apoio.
- Engaste: Garante que a inclinação e a deflexão sejam zero no ponto de engaste.

2.3 Método calcular inclinação deflexão

def calcular_inclinacao_deflexao(self):

Realiza a integração numérica para calcular:

- Inclinaçãao (θ) a partir do momento fletor.
- Deflexão (v_y) a partir da inclinação.

Aplica as condições de contorno após a integração.

2.4 Método plotar viga deformada

```
def plotar_viga_deformada(self, fator_escala=1000, passo_y=0.1):
```

Plota a viga antes e depois da deformação, destacando:

- Deflexão amplificada para melhor visualização.
- Ponto de máxima deflexão.
- Posicionamento dos apoios.

2.5 Método plotar inclinacao

def plotar_inclinacao(self):

Gera o gráfico da inclinação ao longo da viga, mostrando os valores em diferentes pontos.

2.6 Funçao analisar viga deformada

def analisar_viga_deformada(viga, I, E):

Realiza a análise completa:

- Calcula a inclinaçãao e a deflexão.
- Plota os resultados.
- Retorna valores de deflexão e inclinação máximos.

2.7 Menu Interativo

O programa inclui um menu interativo que guia o usuário no processo de definição dos parâmetros da viga. As principais funções deste menu são:

- Definição da viga: O usuário insere as informações sobre apoios e carregamentos.
- Escolha da seção transversal: Permite definir uma seção personalizada ou usar um padrão predefinido.
- Módulo de elasticidade: O usuário pode inserir um valor personalizado ou utilizar o padrão de 205 GPa.

Este menu interativo garante flexibilidade ao código, permitindo que diferentes configurações sejam testadas com facilidade.

3 Conclusão

O código apresentado permite uma análise detalhada do comportamento de vigas sujeitas a carregamentos, possibilitando a visualização gráfica das deformações e inclinações. A abordagem baseada em integração numérica torna o método eficiente e flexível para diferentes condições de contorno.

4 Exemplos

Observação: Para todos os cálculos realizados no FTool, foi utilizada como padrão a seção transversal mostrada na Figura 1 abaixo

Figura 1: Seção transversal utilizada como padrão no FTool.

4.1 Exemplo 1

Figura 2: Estrutura que será analisada.

Figura 3: Gráfico de deflexão da viga obtido pelo software FTool.

Resultados pontuais obtidos pelo software FTool:

 $x=0.00~m;\,L=3.00~m$ (1º apoio):

Dx: 0.000e+00 mm Dy: 0.000e+00 mm Rz: -1.076e-04 rad

x = 0.00 m; L = 2.00 m (carga pontual):

Dx: 0.000e+00 mm Dy: -2.763e-01 mm Rz: -6.119e-05 rad

x = 0.00 m; L = 2.00 m (início carregamento distribuído):

Dx: 0.000e+00 mm Dy: -3.356e-01 mm Rz: 2.498e-06 rad

x = 0.00 m; L = 3.00 m (final carregamento distribuído):

Dx: 0.000e+00 mm Dy: -2.669e-01 mm Rz: 6.369e-05 rad

x = 3.00 m; L = 3.00 m (2º apoio):

Dx: 0.000e+00 mm Dy: 0.000e+00 mm Rz: 1.016e-04 rad

Figura 4: Gráfico da deflexão de uma viga obtido pela rotina computacional desenvolvida.

Figura 5: Gráfico da inclinação de uma viga obtido pela rotina computacional desenvolvida.

4.2 Exemplo 2

Figura 5: Estrutura que será analisada.

Figura 6: Gráfico de deflexão da viga obtido pelo software FTool.

Resultados pontuais obtidos pelo software FTool:

 $x=0.00~m;\,L=1.00~m$ (1º apoio):

Dx: 0.000e+00 mm Dy: 0.000e+00 mm Rz: -2.085e-04 rad

x = 1.00 m; L = 1.00 m (início carregamento distribuído):

Dx: 0.000e+00 mm Dy: -1.928e-01 mm Rz: -1.639e-04 rad

x = 0.00 m; L = 1.00 m (final carregamento distribuído):

Dx: 0.000e+00 mm Dy: -2.883e-01 mm Rz: 6.968e-05 rad

x = 0.00 m; L = 1.00 m (carga pontual):

Dx: 0.000e+00 mm Dy: -1.741e-01 mm Rz: 1.526e-04 rad

$x = 1.00 \text{ m}; L = 1.00 \text{ m } (2^{\underline{0}} \text{ apoio}):$

Dx: 0.000e+00 mm Dy: 0.000e+00 mm Rz: 1.849e-04 rad

Figura 7: Gráfico da deflexão de uma viga obtido pela rotina computacional desenvolvida.

Figura 7: Gráfico da inclinação de uma viga obtido pela rotina computacional desenvolvida.

4.3 Exemplo 3

Figura 8: Estrutura que será analisada.

Figura 9: Gráfico de deflexão da viga obtido pelo software FTool.

Resultados pontuais obtidos pelo software FTool:

$$x=0.00$$
 m; $L=1.00$ m (1º apoio):
Dx: 0.000e+00 mm

Dy: 0.000e+00 mm Rz: -1.608e-03 rad

x = 0.00 m; L = 1.00 m (início carregamento retangular):

Dx: 0.000e+00 mm Dy: -1.571e+00 mm Rz: -1.497e-03 rad

x = 0.00 m; L = 1.00 m (final carregamento retangular):

Dx: 0.000e+00 mm Dy: -2.925e+00 mm Rz: -1.186e-03 rad

x = 0.00 m L = 2.00 m (início carregamento triangular):

Dx: 0.000e+00 mm Dy: -3.905e+00 mm Rz: -7.585e-04 rad

x = 0.00 m; L = 1.00 m (final carregamento triangular):

Dx: 0.000e+00 mm Dy: -4.413e+00 mm Rz: 2.549e-04 rad

x = 0.00 m; L = 3.00 m (início carregamento trapezoidal):

Dx: 0.000e+00 mm Dy: -3.915e+00 mm Rz: 7.356e-04 rad

x = 0.00 m; L = 3.00 m (final da viga):

Dx: 0.000e+00 mm Dy: 0.000e+00 mm Rz: 1.648e-03 rad

Figura 10: Gráfico da deflexão de uma viga obtido pela rotina computacional desenvolvida.

Figura 10: Gráfico da deflexão de uma viga obtido pela rotina computacional desenvolvida.

4.4 Exemplo 4

Figura 11: Estrutura que será analisada.

Figura 12: Gráfico de deflexão da viga obtido pelo software FTool.

Resultados pontuais obtidos pelo software FTool:

```
x = 0.00 \text{ m}; L = 2.00 \text{ m} (1º apoio):
Dx: 0.000e+00 \text{ mm}
Dy: 0.000e+00 \text{ mm}
Rz: -1.769e-05 rad
x = 0.00 \text{ m}; L = 4.00 \text{ m} (carga pontual):
Dx: 0.000e+00 \text{ mm}
Dy: -2.664e-02 mm
Rz: -4.579e-06 rad
x = 0.00 \text{ m}; L = 2.00 \text{ m} (2º apoio):
Dx: 0.000e+00 \text{ mm}
Dy: 0.000e+00 \text{ mm}
Rz: 2.914e-06 rad
x = 2.00 \text{ m}; L = 2.00 \text{ m} (final da viga):
Dx: 0.000e+00 \text{ mm}
Dy: -6.660e-03 mm
Rz: -6.452e-06 rad
```


Figura 13: Gráfico da inclinação de uma viga obtido pela rotina computacional desenvolvida.

Figura 13: Gráfico da deflexão de uma viga obtido pela rotina computacional desenvolvida.

4.5 Exemplo 5

Figura 17: Estrutura que será analisada.

Figura 18: Gráfico de deflexão da viga obtido pelo software FTool.

Resultados pontuais obtidos pelo software FTool:

```
x = 0.00 \text{ m}; L = 1.00 \text{ m} (1º apoio):
Dx: 0.000e+00 \text{ mm}
Dy: 0.000e+00 \text{ mm}
Rz: -2.085e-04 rad
x = 1.00 \text{ m}; L = 1.00 \text{ m} (início carregamento triangular):
Dx: 0.000e+00 \text{ mm}
Dy: -1.935e-01 mm
Rz: -1.635e-04 rad
x = 0.00 \text{ m}; L = 1.00 \text{ m} (final carregamento triangular):
Dx: 0.000e+00 \text{ mm}
Dy: -2.880e-01 mm
Rz: 7.011e-05 rad
x = 0.00 \text{ m}; L = 1.00 \text{ m} (carregamento pontual):
Dx: 0.000e+00 \text{ mm}
Dy: -1.736e-01 mm
Rz: 1.528e-04 rad
```

x = 0.00 m; L = 1.00 m (2º apoio):

Dx: 0.000e+00 mmDy: 0.000e+00 mmRz: 1.849e-04 rad

x = 3.00 m; L = 3.00 m (final da viga):

Dx: 0.000e+00 mm Dy: 5.546e-01 mm Rz: 1.849e-04 rad

Resultados obtido pela rotina computacional desenvolvida:

Max: 0.57 mm @ x=8.00m

Figura 19: Gráfico da deflexão de uma viga obtido pela rotina computacional desenvolvida.

 $\label{eq:Figura 19: Gráfico da deflexão de uma viga obtido pela rotina computacional desenvolvida.$