MATH 8301 Homework XI

David DeMark

6 December 2017

Collaborators: Sarah Brauner.

All references to theorems come from Allen Hatcher's Algebraic Topology unless otherwise stated.

1.)

We let \overline{X} be path connected, G a group action on X, and $p: \overline{X} \to X := \overline{X}/G$ a covering map

a.)

Proposition. For covering space maps $\overline{X} \to \tilde{X} \to X$, $\tilde{X} \cong \overline{X}/H$ for some H < G.

Proof. We let $\hat{X} \to X$ be the universal cover of X and first restrict our attention to the case $\overline{X} = \hat{X}$. Then, proposition 1.39 implies that $F := \operatorname{Aut}(\hat{X}/X) \cong \pi_1(X,x_0)$. We note that for any H < F, we may construct a covering map $\tilde{X} := \hat{X}/H \to X$, which is unique up to based isomorphism by the observation that for $\tilde{X}_1 := \hat{X}/H_1$ and $\tilde{X}_2 := \hat{X}/H_2$, we then have that $\operatorname{Aut}(\hat{X}/\tilde{X}_1) = \operatorname{Aut}(\hat{X}/\tilde{X}_2)$ if and only if $H_1 = H_2$. Then, proposition 1.38 shows our special case, as we have shown that covering maps $\hat{X}/H \to X$ are in bijection with subgroups of F, and proposition 1.38 associates subgroups of F with covering maps $\overline{X} \to X$. Proposition 1.39 then states that for $\tilde{X} = \hat{X}/H$, $\pi_1(\tilde{X}, \tilde{x}_0) = H$, so indeed our association and that of proposition 1.38 one and the same.

We now consider the case of a general covering map $\overline{X} \to X := \overline{X}/G$ with intermediate covering maps $\overline{X} \to \tilde{X} \to X$. As before, we let $\hat{X} \to X$ be a universal cover with $F := \operatorname{Aut}(\hat{X}/X) \cong \pi_1(X,x_0)$. Then, our previous work shows $\overline{X} = \hat{X}/N$ for some N < F with $N \cong \pi_1(\overline{X},\overline{x_0})$. We have by proposition 1.40a that $\overline{X} \to X$ is normal and $G \cong F/N$. Then, as the subgroup poset of F is dual to the covering space poset of X (where $\tilde{X} \geq \overline{X}$ iff there exists a covering $\tilde{X} \to \overline{X}$), we have by our special case that intermediate coverings $\overline{X} \to \tilde{X} \to X$ are in bijection with subgroups \hat{H} such that $N < \hat{H} < F$, which are in bijection with subgroups H < G = F/N by the map $\hat{H} \mapsto \hat{H}/N$. As each of the covering spaces $\overline{X}/H \to X$ exist uniquely by the same argument of above, our proof is now complete.

b.)

Proposition 1.1. $\overline{X}/H_1 \cong \overline{X}/H_2$ if and only if H_1 and H_2 are conjugate

Proof. Proposition 1.38 states that for covering spaces $p_1: \tilde{X}_1 \to X$ and $p_2: \tilde{X}_2 \to X$, $\tilde{X}_1 \cong \tilde{X}_2$ if and only if $\pi_1(\tilde{X}_1)$ and $\pi_1(\tilde{X}_2)$ are conjugate. We showed that $\tilde{X}_i = \hat{X}/\pi_1(\tilde{X}_i) := H_i$, and it is the case that all covering spaces \hat{X}/H exist. Thus, the proposition follows trivially from part a.

c.)

Proposition 1.2. $\tilde{X} := \overline{X}/H \to X$ is normal if and only if $H \subseteq G$ in which case $\operatorname{Aut}(\tilde{X}/X) = G/H$.

Proof. We have that $\tilde{X} = \overline{X}/H = \hat{X}/\hat{H}$ for some $\hat{H} < F$ with $N \leq \hat{H} \cong \pi_1(\tilde{X}, \tilde{x}_0)$ and $H = \hat{H}/N$. We have by proposition 1.39 that $\tilde{X} \to X$ is normal if and only if $p_*(\pi_1(\tilde{X}, \tilde{x}_0) \cong \hat{H})$ is normal in $\pi_1(X, x_0)$. Finally, we note that $H \leq G$ if and only if $\hat{H} \leq F$. This completes our proof.

2.)

Proposition. For any group G and $N \subseteq G$, there exists a normal covering space $\overline{X} \to X$ with $\pi_1(X) \cong G$, $\pi_1(\overline{X}) \cong N$ and $\operatorname{Aut}(\overline{X}/X) \cong G/N$.

¹Well, technically to bridge that gap we also need the fact that for $p: \tilde{X} \to X$ a covering map, $p_*: \pi_1(\tilde{X}, \tilde{x}_0) \to \pi_1(X, x_0)$ is an injection, which is given by proposition 1.31.

²We haven't quite justified this, but it is an immediate corollary of proposition 1.38 in conjunction with proposition 1.31.

Proof. We let $G = \langle g_{\alpha} \mid r_{\beta} \rangle$ with generators g_{α} indexed over A and relations r_{β} indexed over B. We then recall Hatcher's construction of a space X_G with $\pi_1(X_G, x_0) = G$: we let $Y = \left(\bigwedge_{\alpha \in A} S^1\right) \sqcup \left(\bigsqcup_{\beta \in B} D^2\right)$, and define an equivalence relation \sim wich associates the boundary of the copy of D^2 indexed by β to the copies of S^1 associated to the letters in the word r_{β} . Then, $X := Y/\sim$ fulfills the desired property, and the universal cover \hat{X} of X has $\operatorname{Aut}(\hat{X}/X) = G$. Our argument for question 1 then ensures the existence of \overline{X} and gives its fundamental group and $\operatorname{Aut}(\overline{X}/X)$.

3.)

We let C_{\bullet} and D_{\bullet} be chain complexes and $f, g, h : C_{\bullet} \to D_{\bullet}$ chain maps. If there exists a homotopy map $P : C_n \to D_{n+1}$ such that $P\partial + \partial P = f - g$, we say $f \sim g$.

Proposition. Chain homotopy (\sim) is an equivalence relation.

Proof. Reflexivity: We wish to show $f \sim f$. We let $P: C_n \to D_{n+1}$ be the 0 map. Then, $P\partial + \partial P = 0 = f - f$, so $f \sim f$.

Symmetry We suppose $f \sim g$ and let $P: C_n \to D_n$ be a chain homotopy between them. We let P' = -P and then have that $P' \partial + \partial P' = -(P \partial + \partial P) = -(f - g) = g - f$ so $g \sim f$.

Transitivity We suppose $f \sim g$ and $g \sim h$. We let P_i be such that $P_1\partial + \partial P_1 = f - g$ and $P_2\partial + \partial P_2 = g - h$. We let $P = P_1 + P_2$ and then have that $P\partial + \partial P = (P_1 + P_2)\partial + \partial (P_1 + P_2) = (P_1\partial + \partial P_1) + (P_2\partial + \partial P_2) = (f - g) + (g - h) = f - h$ so $f \sim h$.

4.)

Proposition. We suppose $A \subset X$ with inclusion map $\iota : A \to X$ and that X retracts onto A. Then, $\iota_* : H_*(A) \to H_*(X)$ is an injection.

Proof. We suppose X retracts onto A via the map τ , i.e. $\tau: X \to A$ is such that $\tau \circ \iota = \mathrm{id}_A$. We recall that $H_*(-)$ is functorial, that is, it preserves composition and the identity map. Thus, $\mathrm{id}_{H_*(A)} = H_*(\mathrm{id}_A) = H_*(\tau \circ \iota) = \tau_* \circ \iota_*$. We recall the following category-theoretic fact with obvious proof: if $\phi \in \mathrm{Hom}(A,B)$, $\psi \in \mathrm{Hom}(B,C)$ and $\psi \circ \phi$ is an isomorphism, then ϕ is a monomorphism and ψ is an epimorphism. Hence, ι_* is an injection, and though we have already completed our proof, we may as well note that τ_* is surjective.

5.)

Prompt. Let A be a finitely generated Abelian group. Construct a chain complex C_{\bullet} such that $H_0(C_{\bullet}) = A$ but $H_i(C_{\bullet}) = 0$ for $i \neq 0$.

Response. By the structure theorem for Abelian groups, $A = \bigoplus_{k=1}^n \mathbb{Z}/m_k$ for some $m_k \geq 0$. We let $N = \langle (0, \dots, m_k, \dots, 0) \mid k \in [n] \rangle$, so that $A = \mathbb{Z}^n/N$. Then, we claim that the following chain complex fulfils the desired properties: we let

$$C_i = \begin{cases} N & i = 1\\ \mathbb{Z}^n & i = 0\\ 0 & \text{otherwise} \end{cases}$$
 (1)

Now, we have that ∂_1 is injective (the inclusion $N \to \mathbb{Z}^n$), so $H_1(C_*) = 0/0 = 0$. im $\partial_1 = N$ and $\ker \partial_0 = \mathbb{Z}^n$ as $\operatorname{im} \partial_0 = 0$. Thus, $H_0(C_*) = \mathbb{Z}^n/N = A$. For all other i, we have that $C_i = 0$ so ∂_i is the 0 map and hence $H_i(C_*) = 0$.