Common Regression Methods

Name	Formula	Definition	Significance
Ordinary Least Squares (OLS)	$\min_{\beta} \sum_{i=1}^{n} (y_i - X_i \beta)^2$	Minimizes the sum of squared residuals between observed and predicted values	Provides unbiased, efficient estimates under classical assumptions; foundation for many statistical models
Ridge Regression	$\min_{\beta} \sum_{i=1}^{n} (y_i - X_i \beta)^2 + \lambda \ \beta\ _2^2$	OLS with ℓ_2 penalty on coefficients	Shrinks coefficients to reduce variance; useful for multicollinearity and high-dimensional data
Lasso Regres- sion		OLS with ℓ_1 penalty on coefficients	Promotes sparsity; performs variable selection and regularization
Elastic Net	$ \min_{\beta} \sum_{i=1}^{n} (y_i - X_i \beta)^2 + \lambda_1 \ \beta\ _1 + \lambda_2 \ \beta\ _2^2 $	Combines ℓ_1 and ℓ_2 penalties	Balances sparsity and shrinkage; effective when predictors are correlated
Least Absolute Deviations (LAD)		Minimizes the sum of absolute residuals	Robust to outliers; estimates the conditional median
Huber Regression	$\min_{\beta} \sum_{i=1}^{n} L_{\delta}(y_i - X_i \beta), L_{\delta}(r) = \begin{cases} \frac{1}{2}r^2 & r \leq \delta \\ \delta(r - \frac{1}{2}\delta) & r > \delta \end{cases}$	Hybrid loss: quadratic for small residuals, linear for large	Robust to outliers while retaining effi- ciency for small errors
Quantile Regres- sion	$\min_{\beta} \sum_{i=1}^{n} \rho_{\tau}(y_i - X_i \beta), \rho_{\tau}(r) = r(\tau - \mathbb{I}\{r < 0\})$	Estimates conditional quantiles (e.g., median)	Useful for modeling heterogeneous effects and non-normal errors
Principal Component Regression (PCR)	OLS on principal components of \boldsymbol{X}	Projects predictors onto principal components before regression	Reduces dimensionality and multi- collinearity; interpretable in terms of variance explained
Partial Least Squares (PLS)	OLS on latent variables maximizing covariance between \boldsymbol{X} and \boldsymbol{y}	Finds components that explain both predictors and response	Useful when predictors are highly collinear and $p>n$