NE-1032

What is claimed is:

1	1.	A timeslot assignment method for a communication system in
2	which a plu	rality of end-user systems are connected to a timeslot assignment
3	unit via a common transmission medium, each of said end-user systems	
4	comprising a buffer for storing packets of either variable or constant length	
5	and forwarding packets from said buffer on assigned timeslots, the method	
6	comprising	the steps of:
7	a)	determining a first count number of said packets in the buffer of
8	each of said	end-user systems;
9	b)	determining a second, total count number of timeslots
10	previously a	ssigned to each end-user system during a delay time period of
11	said timeslo	t assignment unit;
12	c)	using said first and second count numbers for determining a
13	third count :	number of packets in said buffer to which timeslots are still not
14	assigned; an	d _.
	11	and min - timestate to markets of each and user system has and or

- d) assigning timeslots to packets of each end-user system based on said third count number.
- 2. A timeslot assignment method as claimed in claim 1, wherein said third count number equals a difference between said first and second count numbers.
- 3. A timeslot assignment method as claimed in claim 1, wherein
 the step (d) assigns said timeslots on a round-robin basis.

1	 A timeslot assignment method as claimed in claim 1, wherein
2	the step (d) assigns said timeslots in proportion to said third count number.

- A timeslot assignment method as claimed in claim 1, wherein 5. 1 the step (d) comprises the steps of: 2
- arranging the third count numbers of said end-user systems in 3 descending order of rank; 4
- setting integer N to one; d2) 5
- detecting a difference between the third count number arranged 6 in a rank represented by the integer N and the third count number arranged
- in a rank represented by integer (N + 1); 8
- assigning timeslots corresponding in number to said difference 9 to packets of N end-user systems whose third count numbers are arranged in 10 said descending order; and 11
- incrementing the integer N by one and repeating the steps (d_3) 12 and (d_4) . 13
- A timeslot assignment method as claimed in claim 1, wherein 1 said packets are ATM cells.
- A communication system comprising: 7. 1
- a plurality of end-user systems; and 2
- a timeslot assignment unit connected via a common transmission 3
- medium to said end-user systems,
- each of said end-user systems comprising: 5
- a buffer for storing packets of either variable or constant length; 6

NE-1032

- 19 -

7	a queue length detector for detecting a queue length indicating
8	a count number of said packets in the buffer; and
9	a controller for forwarding packets from said buffer on
10	timeslots assigned by said timeslot assignment unit and transmitting a signal
11	to said timeslot assignment unit for indicating the detected queue length,
12	said timeslot:assignment unit comprising:
13	a timeslot count table having a plurality of entries
14	corresponding to said end-user systems, each of the entries having a length
15	corresponding to a delay time period of said timeslot assignment unit for
16	storing a plurality of count numbers of assigned timeslots; and
17	a controller for (a) determining a total value of count numbers
18	stored in each entry of said timeslot count table, (b) receiving the queue
19	length indicating signal from each of said end-user systems, (c) using said
20	total count number and the received queue length for determining a virtual
2 1	queue length of each end-user system indicating a count number of packets
22	in said buffer to which timeslots are still not assigned, (d) assigning timeslots
23	to each end-user system based on said virtual queue length, and (e) storing a
24	count number of the assigned timeslots in an entry of said timeslot count
25	table corresponding to said each end-user system.

- 8. A communication system as claimed in claim 7, wherein said virtual queue length equals a difference between said total count number and the received queue length.
- 9. A communication system as claimed in claim 7, wherein the
 timeslot assignment unit assigns said timeslots on a round-robin basis.

12

NE-1032

- 20 -

1	10.	A communication system as claimed in claim 7, wherein the
2	timeslot assi	gnment unit assigns said timeslots in proportion to said virtual
3	queue lengti	n.

- A communication system as claimed in claim 7, wherein the 11. 1 timeslot assignment unit performs the functions of: 2 arranging the third count numbers of said end-user systems in 3 descending order of rank, setting integer N to one; detecting a difference between the third count number arranged in a 5 rank represented by the integer N and the third count number arranged in a 6 rank represented by integer (N + 1); 7 assigning timeslots corresponding in number to said difference to 8 packets of N end-user systems whose third count numbers are arranged in 9 10 said descending order; and incrementing the integer N by one and repeating the functions of 11
- 1 12. A communication system as claimed in claim 7, wherein said 2 packets are ATM cells.
 - 13. A communication system comprising:

detecting said difference and assigning said timeslots.

- 2 a plurality of end-user systems; and
- a timeslot assignment unit connected via a common transmission
- 4 medium to said end-user systems,
- 5 each of said end-user systems comprising:
- a buffer for storing packets of either variable or constant length;

7	a queue length detector for detecting a queue length indicating
8	a count number of said packets in the buffer;
9	a memory having a length corresponding to a delay time of said
10	timeslot assignment unit for storing a plurality of count numbers of assigned
11	timeslots; and
12	a controller for forwarding packets from said buffer on
13	timeslots assigned by said timeslot assignment unit, determining a total value
14	of the count numbers stored in said memory, determining, from said total
15	value and said queue length, a virtual queue length indicating a count
16	number of packets in said buffer to which timeslots are still not assigned, and
17	transmitting a signal to said timeslot assignment unit for indicating the
18	virtual queue length,
19	said timeslot assignment unit receiving the virtual queue length
20	indicating signal from each of said end-user systems and assigning timeslots
21	to each end-user system based on the received virtual queue length.

- A communication system as claimed in claim 13, wherein said 1 virtual queue length equals a difference between said queue length and said total value. 3
- A communication system as claimed in claim 13, wherein the 15. 1 timeslot assignment unit assigns said timeslots on a round-robin basis. 2
- A communication system as claimed in claim 13, wherein the 1 16. timeslot assignment unit assigns said timeslots in proportion to said virtual queue length.

NE-1032

1	17. A communication system as claimed in claim 13, wherein the
2	timeslot assignment unit performs the functions of:
3	arranging the third count numbers of said end-user systems in
4	descending order of rank, setting integer N to one;
5	detecting a difference between the third count number arranged in a
6	rank represented by the integer N and the third count number arranged in
7	rank represented by integer (N + 1);
8	assigning timeslots corresponding in number to said difference to
9	packets of N end-user systems whose third count numbers are arranged in
10	said descending order; and
11	incrementing the integer N by one and repeating the functions of
12	detecting said difference and assigning said timeslots.

- 1 18. A communication system as claimed in claim 13, wherein said 2 timeslot assignment unit comprises:
- a first controller for transmitting a signal to each of said end-user
- 4 systems for indicating a count number of said assigned timeslots for storing
- 5 the count number into the memory of each end-user system; and
- a second controller for transmitting a position signal representing
- 7 timeslot positions of the timeslots assigned by the first controller to each of
- 8 said end-user systems.
- 1 19. A communication system as claimed in claim 13, wherein said
- 2 packets are ATM cells.