

Sistemas Inteligentes

Tema 2: Resolución de problemas mediante búsqueda

Contenido

- Introducción
- Búsqueda no informada
- Búsqueda heurística
- Búsqueda entre adversarios

- La resolución de problemas es una capacidad que se considera inteligente.
 - Encontrar el camino en un laberinto.
 - Resolver un crucigrama.
 - Jugar a un juego.
 - Diagnosticar una enfermedad.
 - Decidir si invertir en bolsa.
 - •
- El objetivo es que un programa sea capaz de resolver estos problemas.

- Es necesario definir cualquier tipo de problema de manera que se pueda resolver automáticamente.
- Para ello hace falta:
 - Una representación común para todos los problemas.
 - Algoritmos que usen alguna estrategia para resolver problemas definidos en esa representación común.

Definición de un problema

- En un problema se pueden identificar los siguientes elementos:
 - Punto de partida.
 - Objetivo a alcanzar.
 - Acciones disponibles.
 - Restricciones sobre el objetivo.
 - Elementos relevantes definidos por el tipo de dominio.

Representación de problemas

- Representaciones generales:
 - Espacio de estados: un problema se divide en un conjunto de pasos de resolución desde el inicio hasta el objetivo.
 - Reducción a subproblemas: un problema se descompone en subproblemas.
- Representaciones para problemas específicos:
 - Resolución de juegos.
 - Satisfacción de restricciones.

Representación de problemas: estados

- Un <u>estado</u> es la representación de los elementos que describen el problema en un determinado momento.
- Hay dos estados especiales:
 - Estado inicial: punto de partida
 - Estado final: objetivo del problema

Modificación del estado: operadores

- Para moverse entre los estados hacen falta operadores de transformación.
- Operador: función de transformación sobre un estado que lo convierte en otro estado.
- Los operadores definen una relación de accesibilidad entre estados.
- Representación de un operador:
 - Condiciones de aplicabilidad.
 - Función de transformación.

Espacio de estados

- Los estados y su relación de accesibilidad definen el espacio de estados.
- Representa todos los caminos que hay entre todos los estados posibles de un problema.
- Es parecido a un mapa de carreteras de un problema.
- La solución del problema está dentro de ese mapa.

Solución de un problema en un espacio de estados

- Solución: secuencia de pasos que llevan del estado inicial al final (secuencia de operadores) o también el estado final.
- <u>Tipos de solución</u>: una cualquiera, la mejor, todas.
- Coste de una solución: gasto en recursos de la aplicación de los operadores a los estados.
 Puede ser importante según el tipo de problema y la solución buscada.

Descripción de un problema en un espacio de estados

- Conjunto de estados del problema.
- Estado inicial.
- Estado final o las condiciones que cumple.
- Operadores de cambio de estado (condiciones de aplicabilidad y función de transformación).
- Tipo de solución:
 - Secuencia de operadores o estado final.
 - Una solución cualquiera, la mejor, ...

Ejemplo: 8 puzzle

- Espacio de estados: configuraciones de 8 fichas en el tablero.
- Estado inicial: cualquier configuración.
- Estado final: fichas ordenadas.
- Operadores: mover hueco.
 - · Condiciones: el movimiento está dentro del tablero.
 - Transformación: intercambio entre el hueco y la ficha en la posición del movimiento.
- Solución: los pasos + el mejor número.

Ejemplo: 8 reinas

- Espacio de estados: configuraciones de 0 a 8 reinas en el tablero.
- Estado inicial: tablero vacío.
- Estado final: 8 reinas que no se matan entre ellas.
- Operadores: colocar una reina.
 - Condiciones: la reina no debe ser matada por otra ya colocada.
 - <u>Transformación</u>: colocar una reina más en el tablero en una fila y columna.
- Solución: una cualquiera, no importan los pasos.

Búsqueda en el espacio de estados

- Para resolver un problema de búsqueda hay que explorar el espacio de estados.
- Se parte del estado inicial evaluando cada paso hasta encontrar un estado final.
- En el <u>caso peor</u> se explorarán todos los posibles caminos entre el estado inicial y el final.

Estructura del espacio de estados

- Estructuras de datos: árboles y grafos
- Estados: nodos
- Operadores: arcos dirigidos entre nodos
- · Árboles: sólo un camino lleva a un nodo
- Grafos: varios caminos pueden llevar a un nodo

Algoritmo básico

- El espacio de estados puede ser infinito.
- Es necesaria una aproximación diferente para buscar y recorrer árboles y grafos (no podemos tener la estructura en memoria).
- La estructura se construye durante la búsqueda

Algoritmo básico

función: búsqueda_en_espacio_de_estados

datos: estado_inicial

resultado: una_solución

estado_actual ← estado_inicial

mientras estado_actual + estado_final

expansión: generar y guardar sucesores del

estado actual.

selección: escoger el siguiente estado entre

los pendientes.

fin

Algoritmo básico

- Nodos abiertos (frontera): estados generados pero todavía no visitados.
- Nodos cerrados: estados visitados y que ya se han expandido.
- Hace falta una estructura para almacenar los nodos abiertos.
- La política de inserción en la estructura determina el tipo de búsqueda.
- Si se explora un grafo puede ser necesario tener en cuenta los estados repetidos.

19

Características de los algoritmos

- · Completitud: ¿encontrará la solución?
- Complejidad temporal: ¿cuánto tardará?
- Complejidad espacial: ¿cuánta memoria será necesaria?
- Optimalidad: ¿encontrará la mejor solución?

Algoritmo general de búsqueda

```
función: búsqueda_general
abiertos.insertar(estado_inicial)
actual ← abiertos.primero()
mientras !esFinal(actual) && !abiertos.esVacia()
     abiertos.borrarPrimero()
     cerrados.insertar(actual)
     hijos ← generarSucesores(actual)
     hijos ← tratarRepetidos(hijos, cerrados, abiertos)
     abiertos.insertar(hijos)
     actual ← abiertos.primero()
```

Algoritmo general de búsqueda

- La estructura de <u>abiertos</u> determina el orden de visita de los nodos.
- La función generarSucesores seguirá el orden de generación de sucesores definido en el problema.
- El tratamiento de los nodos repetidos dependerá de cómo se visiten los nodos.

- Las estrategias de búsqueda no informada (búsqueda a ciegas) no saben si un estado no objetivo es mejor que otro.
- Siguen un orden de visitas establecido por la estructura del espacio de búsqueda hasta encontrar un estado objetivo.
- Algoritmos de búsqueda no informada:
 - Búsqueda primero en anchura.
 - Búsqueda primero en profundidad.
 - · Búsqueda en profundidad iterativa.

Búsqueda primero en anchura

- Visita los nodos y los genera por niveles.
- La estructura para los nodos abiertos es una cola (FIFO).
- Un nodo es visitado cuando todos los nodos de los niveles superiores y sus hermanos precedentes han sido visitados.

Búsqueda primero en anchura

- Completitud: el algoritmo encuentra una solución.
- Complejidad temporal: exponencial respecto al factor de ramificación y la profundidad de la solución O(r^p)
- Complejidad espacial: O(r^p)
- Optimalidad: la solución que se encuentra es óptima en número de niveles desde la raíz, en problemas de coste unitario. 25

Búsqueda primero en profundidad

- Visita los nodos y los genera profundizando y retrocede cuando no encuentra sucesores.
- La estructura para los nodos abiertos es una pila (LIFO).
- Para garantizar que el algoritmo acaba hay que imponer un <u>límite en la profundidad</u> de exploración.

Búsqueda primero en profundidad

- Completitud: el algoritmo encuentra una solución si ésta está dentro del límite de profundidad.
- <u>Complejidad temporal</u>: exponencial respecto al factor de ramificación y la profundidad de la solución O(r^p)
- Complejidad espacial:
 - controlando repetidos: O(r^p)
 - no controlando repetidos: O(rp)
 - recursivo sin controlar repetidos: O(p)
- Optimalidad: no se garantiza.

Búsqueda primero en profundidad

```
función: búsqueda_profundidad_limitada(límite: entero)
abiertos.insertar(estado_inicial)
actual ← abiertos.primero()
mientras !esFinal(actual) && !abiertos.esVacia()
    abiertos.borrarPrimero()
    cerrados.insertar(actual)
    si profundidad(actual) ≤ límite
        hijos ← generarSucesores(actual)
        hijos ← tratarRepetidos(hijos, cerrados, abiertos)
        abiertos.insertar(hijos)
    fin
    actual ← abiertos.primero()
                                                          28
```

- Combina las ventajas de la búsqueda primero en profundidad y primero en anchura.
- Realiza <u>búsquedas en profundidad sucesivas</u> con un límite de profundidad creciente en cada iteración.
- Consigue la optimalidad de la búsqueda en anchura pero sin su coste espacial.
- Para garantizar que el algoritmo acaba si no hay solución, hay que definir una cota máxima de profundidad.

tin

```
función: busqueda_profundidad_iterativa(límite: entero)
prof \leftarrow 1
actual ← estado_inicial
mientras !esFinal(actual) && prof < límite
    abiertos.inicializar()
    abiertos.insertar(estado_inicial)
    actual ← abiertos.primero()
    mientras !esFinal(actual) && !abiertos.esVacia()
         abiertos.borrarPrimero()
          cerrados.insertar(actual)
          si profundidad(actual) ≤ prof
              hijos ← generarSucesores(actual)
              hijos ← tratarRepetidos(hijos, cerrados, abiertos)
              abiertos insertar(hijos)
         fin
         actual ← abiertos.primero()
    fin
    prof \leftarrow prof + 1
                                                                 32
```

- Completitud: el algoritmo siempre encontrará la solución.
- Complejidad temporal: como en la búsqueda en anchura. O(r^p)
 - → Generar el árbol en cada iteración sólo añade un factor constante a la función de coste.
- Complejidad espacial: como en la búsqueda en profundidad.
- Optimalidad: la solución que se encuentra es óptima, igual que en la búsqueda en anchura. 33

3. Búsqueda heurística

- Utiliza conocimiento específico del problema para encontrar soluciones de manera más eficiente.
- <u>Función de evaluación</u> de los nodos, f(n) = distancia desde n hasta un objetivo.
- Expande el nodo con f(n) más baja.
 - → Búsqueda primero el mejor.
- El cálculo de f(n) tiene dos efectos:
 - · Positivo: <u>ahorro</u> de esfuerzo de búsqueda.
 - Negativo: coste del cálculo de la función.
 - → Para que sea útil: ahorro > coste

3. Búsqueda heurística

- Función heurística, h(n) = coste estimado del camino más barato desde n hasta un objetivo.
 - \Rightarrow Si n es un nodo objetivo: h(n) = 0
- Las funciones heurísticas son la forma más común de transmitir el conocimiento adicional al algoritmo de búsqueda.
- Estrategias:
 - Voraz primero el mejor
 - A*, A* de profundidad iterativa
 - Búsqueda recursiva del primero mejor

3. Búsqueda heurística

Búsqueda voraz primero el mejor

Evalúa los nodos sólo con la función heurística:
 f(n) = h(n)

- Expande el nodo más cercano al objetivo, con la esperanza de que conduzca rápidamente a la solución → no es óptima y es incompleta.
- La estructura de nodos abiertos es una cola de prioridad donde los nodos están ordenados de menor a mayor según h(n).
- La complejidad temporal y espacial es en el peor de los casos: $O(r^p)$

Búsqueda voraz primero el mejor

Para encontrar el camino mas corto desde <u>Arad</u> hasta <u>Bucarest</u> se puede utilizar como heurística la distancia en línea recta.

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
Iasi	226	Vaslui	199
Lugoj	244	Zerind	374 ₃₈

Búsqueda A*

- Es la forma más conocida de búsqueda primero el mejor.
- Minimiza el coste estimado de la solución.
 - f(n) = g(n) + h(n) Coste estimado de la solución a través de n.
 - g(n) = coste real hasta el nodo n
 - h(n) = coste estimado hasta el objetivo
- En caso de empate se escoge el nodo con menor h.

- Si un nodo repetido está en la est. de abiertos:
 - Si su coste es menor, sustituimos el coste por el menor. Esto podrá variar su posición en la estructura.
 - Si su coste es igual o mayor se olvida el nodo.
- Si un nodo repetido está en la est. de cerrados:
 - Si su coste es menor
 - →el nodo es reabierto con el coste menor.
 - Si su coste es mayor o igual
 - →el nodo es olvidado.

Búsqueda A* - Tratamiento de nodos repetidos

Abiertos Cerrados B:1+1A:0+2C:1+1D:1+343

Búsqueda A* - Tratamiento de nodos repetidos

Cerrados Abiertos C:1+1A:0+2B:1+1E:2+1D:1+344

Búsqueda A* - Admisibilidad

- A* es <u>óptima</u> si h(n) es una <u>heurística admisible</u>:
 - → ∀n: 0 ≤ h(n) ≤ h*(n)
 Por tanto, h debe ser un estimador optimista, nunca debe sobrestimar el coste verdadero h*.
 - Como g(n) es el coste exacto hasta n,
 →f(n) ≤ coste verdadero.
- Cuanto más se aproxime h a h* mayor será la tendencia a explorar en profundidad.
- Si h = h* → A* converge directamente hacia el objetivo.

Búsqueda A* - Admisibilidad

h subestima h*

h(B)=2, no es real

Se pierde tiempo pero se consigue llegar al objetivo

Búsqueda A* - Admisibilidad

h sobrestima h*

Partiendo de D existe un camino más corto, pero no se alcanza.

Búsqueda A* - Consistencia (monotonía)

Sea n un nodo.

Sea n' un sucesor de n generado por una acción a. Sea c(n,a,n') el coste de aplicar la acción a.

Una heurística h(n) es <u>consistente</u> si se cumple:

$$h(n) \le c(n,a,n') + h(n')$$
 (designaldad triangular)

 La distancia en línea recta es una heurística consistente para el problema del mapa de carreteras.

Búsqueda A* - Consistencia (monotonía)

- · Toda heurística consistente es también admisible.
- Con una heurística consistente se llega a los nodos por el camino mínimo, por tanto, ya no se podrán reexpandir. → No es necesario tratar los nodos duplicados cerrados.
- Los valores de f(n) a lo largo de cualquier camino no disminuyen:

$$f(n') = g(n') + h(n') = g(n) + c(n,a,n') + h(n')$$

 $f(n') \ge g(n) + h(n) = f(n)$

Búsqueda A* - Algoritmos más informados

- Dado un problema, existen tantos A* para resolverlo como estimadores se puedan definir.
- Sean h₁ y h₂ admisibles, si se cumple:
 ∀n ≠ final: 0 ≤ h₂(n) < h₁(n) ≤ h*(n)
 entonces A₁* es más informado que A₂*.
- Si el nodo n es expandido por A₁*
 - \Rightarrow n es expandido por A_2^* (pero no al revés)
- A₁* expande menos nodos que A₂*
 - → no expandir un nodo (subárbol) se llama <u>poda</u>. 59

Búsqueda A* - Algoritmos más informados

- ¿Siempre convienen algoritmos más informados?
- Compromiso entre:
 - Tiempo de cálculo de h:
 - $h_1(n)$ requerirá más tiempo que $h_2(n)$.
 - Número de reexpansiones:
 - A₁* puede que reexpanda más que A₂*.
 - Pero si A₁* es consistente no lo hará.

Búsqueda A* - Algoritmos más informados

Las siguientes heurísticas del <u>8 puzzle</u> son admisibles:

- $h_0(n) = 0$
 - Equivale a la búsqueda en anchura.
- $h_1(n) = n^o$ de piezas mal colocadas
 - A₁* está más informado que A₀*.
- $\bullet \ h_2(n) = \sum_{i \in [1,8]} d_i$
 - $d_i \equiv$ distancia de la pieza i hasta su pos. final.
 - A₂* está más informado que A₁*.

Búsqueda A* - Memoria acotada

- A* resuelve problemas en los que hay que encontrar la mejor solución.
- Su coste en espacio y tiempo en el caso medio es mejor que los algoritmos no informados.
- Hay problemas en los que el tamaño del espacio de búsqueda no permite la aplicación de A*.
- Para que el nº de nodos a almacenar no crezca exponencialmente:

$$|h(n) - h^*(n)| \le O(\log h^*(n))$$

- Permite decidir la mejor jugada en cada momento para cierto tipo de juegos.
- Los juegos tienen diferentes características:
 - Nº de jugadores, información conocida por todos los jugadores, cooperación/competición, azar, recursos limitados, ...
- Se analizarán los juegos con:
 - 2 jugadores (MIN y MAX).
 - Movimientos alternos.
 - Información perfecta.
 - · Por ejemplo: ajedrez, damas, go, ...

Representación del juego

- Se puede definir como un problema de espacio de estados:
 - <u>Estado</u> = elementos del juego
 - <u>Estados finales</u> = estados ganadores
 - Acciones/operadores = reglas del juego
- La accesibilidad de los estados depende de las acciones elegidas por el contrario.
- No hay optimalidad. Todas las soluciones son iguales sin importar la longitud del camino.

- La aproximación trivial es generar todo el árbol de jugadas.
- Las jugadas terminales se etiquetan con el valor +1 si gana MAX, -1 si gana MIN.
- El objetivo es encontrar un conjunto de movimientos accesible para que gane MAX.
- Los valores se propagan hasta la raíz para elegir una rama de una hoja ganadora accesible.
- Una búsqueda en profundidad minimiza el espacio.
- En muchos juegos esta búsqueda es impracticable. Por ejemplo en el ajedrez $O(2^{35})$, go $O(2^{300})$.

- Valor-minimax(n) =
 - utilidad(n)
 si n es un estado terminal
 - $\max_{s \in sucesores(n)} valor-minimax(s)$ sin es MAX
 - $min_{s \in sucesores(n)} valor-minimax(s)$ si n es MIN

- Aproximación heurística:
 - Función que indique lo cerca que se está de una jugada ganadora (o perdedora).
 - Intervendrá información del dominio.
 - No representa coste ni distancia en pasos.
 - Las jugadas ganadoras se evalúan a +∞ y las perdedoras a -∞.
- El algoritmo busca con profundidad limitada y decide la siguiente jugada a partir del nodo raíz.
- · Cada nueva jugada implicará repetir la búsqueda.
- · Cuanta más profundidad, mejor juego.

```
función: minimax(estado) devuelve: una acción
      v ← maxValor(estado)
      devolver la acción de sucesores(estado) con valor v
función: maxValor(estado) devuelve: valor de utilidad
      si esTerminal(estado) devolver utilidad(estado)
      V \leftarrow -\infty
      para s ∈ sucesores(estado) hacer
            v \leftarrow max(v, minValor(s))
      devolver v
función: minValor(estado) devuelve: valor de utilidad
      si esTerminal(estado) devolver utilidad(estado)
      V \leftarrow +\infty
      para s ∈ sucesores(estado) hacer
            v \leftarrow min(v, maxValor(s))
                                                              68
      devolver v
```

Ejemplo: 3 en raya

- e = n^o de filas, columnas y diagonales completas disponibles para MAX – las disponibles para MIN.
- MAX juega con X y desea maximizar e.
- MIN juega con O y desea minimizar e.
- Se pueden controlar las simetrías para reducir el tamaño del árbol.
- Se establece la profundidad de parada 2.

Ejemplo: 3 en raya

Ejemplo: 3 en raya

Minimax con poda αβ

- El problema de Minimax es que el nº de nodos a explorar es exponencial con el número de movimientos.
- Es posible calcular la decisión minimax correcta sin mirar todos los nodos en el árbol de juegos.
- α = valor de la mejor opción para MAX a lo largo del camino.
- β = valor de la mejor opción para MIN a lo largo del camino.

Minimax con poda αβ

Caso general:

Si m es mejor que n para el jugador, nunca hay que ir a n en el juego.


```
función: minimaxAlfaBeta(estado) devuelve: una acción
      v \leftarrow maxValor(estado, -\infty, +\infty)
      devolver la acción de sucesores(estado) con valor v
función: maxValor(estado, α, β) devuelve: valor de utilidad
       si esTerminal(estado) devolver utilidad(estado)
       para s ∈ sucesores(estado) hacer
             \alpha \leftarrow \max(\alpha, \min Valor(s, \alpha, \beta))
             si \alpha \geq \beta devolver \alpha
       devolver \alpha
función: minValor(estado, \alpha, \beta) devuelve: valor de utilidad
      si esTerminal(estado) devolver utilidad(estado)
       para s ∈ sucesores(estado) hacer
              \beta \leftarrow \min(\beta, \max Valor(s, \alpha, \beta))
             si \alpha \geq \beta devolver \beta
                                                                      75
      devolver B
```

Minimax con poda αβ

- La eficacia de la poda αβ es muy dependiente del orden en el que se examinan los sucesores.
- Si se generan primero los sucesores peores no se podrá realizar podas.
- Es conveniente tratar de examinar primero los sucesores que probablemente sean los mejores.
- En el mejor caso se explorarán $O(r^{p/2})$ nodos en lugar de $O(r^p)$ para minimax.

Minimax con poda αβ

B es un nodo MIN, su valor es 3 como máximo.

Minimax con poda αβ

La segunda hoja de B vale 12. MIN evitará este movimiento. B todavía vale 3 como máximo.

Minimax con poda αβ

La tercera hoja de B vale 8. Ya se han visitado todos los sucesores, así que B vale 3 exactamente. El valor de la raíz es al menos 3.

Minimax con poda αβ

La primera hoja de C vale 2. Como C es un nodo MIN, vale 2 como máximo. Como B vale 3, MAX nunca elegiría C. No hay que seguir explorando C.

Minimax con poda αβ

La primera hoja de D vale 14. D vale 14 como máximo. Como es mayor que 3, hay que seguir explorando D. La raíz también es 14 como máximo. 81

Minimax con poda αβ

La segunda hoja de D vale 5, así que hay que seguir. La 3ª hoja vale 2. D vale exactamente 2. MAX decide moverse a B dando el valor 3.

Minimax con poda αβ

Otra forma de verlo:

```
MiniMax(raíz)

= max(min(3, 12, 8), min(2, x, y), min(14, 5, 2))

= max(3, min(2, x, y), 2)

= max(3, z, 2), donde z \le 2

= 3
```