IBM Ponder - Dec, 2024

Mohit Garg

December 21, 2024

1 Problem Statement

We define $\omega_d(n)$ to be the number of integers k in $\{1, 2, ..., n\}$ whose (usual decimal) representation contains the digit d. That is:

$$\omega_d(n) = \#\{k : 1 \le k \le n, k \text{ has digit } d \text{ somewhere}\}.$$

The ratio

$$\frac{\omega_d(n)}{n}$$

represents the probability (for an integer uniformly chosen from $\{1, \ldots, n\}$) of containing the digit d.

• Main Goal: For each $d \in \{1, 2, \dots, 9\}$, find

$$\max\{\,n: \frac{\omega_d(n)}{n} = \frac{1}{2}\}.$$

- Optional Goal: Find as simple a formula as possible in d for these maximum values.
- Bonus Goal: Find the unique maximal n such that

$$\frac{\omega_1(n)}{n} = \frac{3}{4}.$$

2 Step 1: Brute Force Approach for the Main Goal

We start by noting that for very large n, the ratio $\omega_d(n)/n$ approaches 1. Hence if there is an n such that $\omega_d(n)/n = 1/2$, it must be below a certain threshold (since eventually the ratio grows beyond 1/2 and never returns).

2.1 Brute-Force Implementation for Smaller Ranges

A direct way to locate that threshold for each digit d is to:

- 1. Iterate n from 1 up to some high limit (e.g. 10^8 or 10^9).
- 2. For each n, compute $\omega_d(n)$ by checking every integer up to n for digit d.
- 3. Identify the last n for which $\omega_d(n)/n = 1/2$.

Although naive, this is feasible up to about $n \approx 10^8$ if implemented in a suitably optimized manner which we have done using cumulative counts (check Appendix).

2.2 Numerical Results Up to 10⁸

Using such a brute force count up to 10^8 , we found that for each $d \in \{1, 2, ..., 9\}$, the ratio $\omega_d(n)/n$ crosses 1/2 at some point and then remains above 1/2 once n gets sufficiently large. Specifically, the maximum n (below 10^8) for which the ratio equals 1/2 was determined as follows (listed as pairs (d, n_{max})):

(1, 1062880), (2, 2125762), (3, 3188644), (4, 4251526), (5, 5314408), (6, 6377290), (7, 17006110), (8, 18068992), (9, 19131874).

Further checks (still by brute force) up to n = 100 million confirm that none of these values increases beyond the above points: past these n_{max} , the ratio remains strictly above 1/2.

Bounding the Maximum n Below 10⁸: A simple bound for $\omega_1(n)$ near 10^k uses the approximation

$$1-\left(\frac{9}{10}\right)^k$$
,

so that, by k=7, we already exceed 1/2. Additionally, from Figure 1, we observe that even the troughs of the lines for the different digits do not cross the 0.5 barrier. This ensures that the maximum n satisfying $\frac{\omega_d(n)}{n} = \frac{1}{2}$ does not exceed 10^8 .

2.3 Piecewise Linear Relationship in d

Plotting the maximum $n_{\text{max}}(d)$ against d (for d = 1, 2, ..., 9) reveals an unexpected *piecewise linear* pattern with a large jump between d = 6 and d = 7. A simple fitting to the points produced a function of the form:

$$f(d) = \begin{cases} 1062880 + 1062882 (d-1), & \text{if } 1 \le d \le 6, \\ 1062880 + 1062882 (d+8), & \text{if } 7 \le d \le 9. \end{cases}$$

Though numeric coincidence (like 1062882) appears, I was unable to uncover a deeper combinatorial explanation for it. Empirically, this function perfectly matches the brute-force findings. This can be seen in Figure 2.

Figure 1: Ratio $\omega_d(n)/n$ vs. n for $d=1,\ldots,9$ up to $n=10^8$. The black dashed line is the ratio 0.5, and the upper gray dashed line is 0.75. We see each curve eventually stays above 0.5 after crossing it.

Figure 2: Piecewise linear fit to the maximum n where $\omega_d(n)/n=1/2$, showing a jump between d=6 and d=7. We keep n in the range $[10^0,10^8]$.

3 Step 2: Extending to the Bonus Goal $\omega_1(n)/n = 3/4$

The "bonus" ratio 3/4 is a more extreme threshold. We expect that it will be achieved at a much larger n (around 13–14 digits), since asymptotically $\omega_1(n)/n \to 1$. Brute forcing up to 10^{14} or so is of course intractable on a normal machine.

3.1 Theoretical Bounds

We know that for $n = 10^k - 1$, the proportion of integers containing digit 1 is approximately

$$1 - (\frac{9}{10})^k$$
.

Hence once k is large, this quantity approaches 1. Specifically, to exceed 3/4, we need

$$1 - \left(\frac{9}{10}\right)^k \ge \frac{3}{4} \implies \left(\frac{9}{10}\right)^k \le \frac{1}{4},$$

which gives $k \approx 13.4$. Thus 10^{14} is definitely beyond the point at which $\omega_1(n)/n$ will exceed 3/4 and never return. So we only need to search up to around 10^{14} or 10^{15} .

3.2 Digit-DP + Binary Search

To exactly locate the unique integer n_{max} with $\omega_1(n_{\text{max}})/n_{\text{max}} = 3/4$, we adopt:

- 1. **Digit-DP:** A function $\rho_1(N)$ counts how many integers in [0, N] do *not* contain digit 1. This can be done by a standard dynamic-programming over the decimal digits of N. The complexity is on the order of $O(\text{number of digits} \times 10)$, extremely fast for up to 14 or 15 digits.
- 2. Binary Search: We do a binary search in $[1, 10^{15}]$ (or $[1, 10^{14}]$, depending on how conservative we want to be) looking for the largest n such that

$$\frac{\omega_1(n)}{n} = \frac{3}{4}.$$

In integer form, $\omega_1(n) = \frac{3}{4}n$ translates to

$$\omega_1(n) = (n+1) - \rho_1(n),$$

where $\rho_1(n)$ is the count of numbers in [0,n] missing digit 1. We check if

$$4 \times \omega_1(n) = 3 \times n \iff 4 [(n+1) - \rho_1(n)] = 3 n.$$

Because $\rho_1(n)$ can be computed in $O(\log n)$ time, and the binary search does $O(\log n)$ iterations, the entire procedure is efficient.

3.3 Final Answer for 3/4

Using this algorithm yields

$$n_{\text{max}} = 1,129,718,145,920$$
 such that $\frac{\omega_1(n_{\text{max}})}{n_{\text{max}}} = \frac{3}{4}$.

Once n exceeds this value, the ratio remains strictly above 3/4.

4 Why $n \le 10^{15}$ Suffices

As reasoned, the ratio approaches 1 as $n \to \infty$. Once it climbs above 3/4, it never dips back down (at large scales). A simple bound for $\omega_1(n)$ near 10^k uses the approximation

$$1 - \left(\frac{9}{10}\right)^k$$

so that, by k = 14, we already exceed 3/4. Thus $n = 10^{14}$ is an ample upper bound for searching the exact crossing. We extended to 10^{15} just for completeness.

5 Conclusion

Main Goal (ratio = 1/2): We confirmed (via brute force up to 10^8) that for each digit d, there is a unique maximal $n_{\text{max}}(d)$ with

$$\frac{\omega_d(n_{\max}(d))}{n_{\max}(d)} = \frac{1}{2},$$

and no larger n attains exactly 1/2. The values are:

$$(d=1)\; 1062880, \quad (d=2)\; 2125762, \quad (d=3)\; 3188644, \quad (d=4)\; 4251526,$$

$$(d=5)$$
 5314408, $(d=6)$ 6377290, $(d=7)$ 17006110,

$$(d=8)$$
 18068992, $(d=9)$ 19131874.

They exhibit an intriguing piecewise linear relationship with a large jump between d = 6 and d = 7.

Bonus Goal (ratio = 3/4): We used a digit-DP approach to count $\rho_1(n)$, the number of integers in [0, n] that omit the digit 1, in $O(\log_{10} n)$ time, and performed a binary search in the interval $[1, 10^{15}]$. The unique maximal n for which

$$\frac{\omega_1(n)}{n} = \frac{3}{4}$$

is

Beyond that n, the ratio remains above 3/4 indefinitely.

A Appendix

Find the code used in this document at the following GitHub repository:

https://github.com/Sp1cyJu1ce/IBM-Ponder-Solutions/tree/main/December2024