Graphs

Graphs, formally

$$G = (V,E)$$

- Set of vertices V
- Set of edges E
 - E is a subset of pairs (v,v'): E ⊆ V x V
 - Undirected graph: (v,v') and (v',v) are the same edge
 - Directed graph:
 - (v,v') is an edge from v to v'
 - Does not guarantee that (v',v) is also an edge

Finding a route

- Find a sequence of vertices v₀, v₁, ..., v_k such that
 - v₀ is source
 - Each (v_i,v_{i+1})
 is an edge in
 E
 - vk is target

Adjacency matrix

								-		
	1	2	3	4	5	6	7	8	9	10
1	0	1	1	1	0	0	0	0	0	0
2	1	0	1	0	0	0	0	0	0	0
3	1	1	0	0	0	0	0	0	0	0
4	1	0	0	0	1	0	0	1	0	0
5	0	0	0	1	0	1	1	0	0	0
6	0	0	0	0	1	0	1	1	1	0
7	0	0	0	0	1	1	0	0	0	0
8	0	0	0	1	0	1	0	0	1	0
9	0	0	0	0	0	1	0	1	0	1
10	0	0	0	0	0	0	0	0	1	0

Adjacency list

 For each vertex, maintain a list of its neighbours

1	2,3,4
2	1,3
3	1,2
4	1,5,8
5	4,6,7
6	5,7,8,9
7	5,6
8	4,6,9
9	6,8,10
10	9

Finding a path

- Mark vertices that have been visited
- Keep track of vertices whose neighbours have already been explored
 - Avoid going round indefinitely in circles
- Two fundamental strategies: breadth first and depth first

- Explore the graph level by level
 - First visit vertices one step away
 - Then two steps away
 - * ...
- · Remember which vertices have been visited
- Also keep track of vertices visited, but whose neighbours are yet to be explored

- Recall that V = {1,2,...,n}
- Array visited[i] records whether i has been visited
- When a vertex is visited for the first time, add it to a queue.
 - Explore vertices in the order they reach the queue

Exploring a vertex i:

```
for each edge (i,j)
if visited[j] == 0
visited[j] = 1
append j to queue
```

- Initially, queue contains only source vertex
- At each stage, explore vertex at the head of the queue
- Stop when the queue becomes empty

Breadth first search **Visited** Queue

Breadth first search 2 5 6 7 8 9 **Visited** Queue

Breadth first search 2 4 5 **Visited** 6 8 9 Queue

Breadth first search **Visited** 9 10 Queue

Breadth first search **Visited** Queue

Visited

```
function BFS(i) // BFS starting from vertex i
 //Initialization
for j = 1...n \{ visited[j] = 0 \}; Q = []
 //Start the exploration at i
visited[i] = 1; append(0,i)
//Explore each vertex in Q
while 0 is not empty
   j = extract_head(Q)
   for each (j,k) in E
      if visited[k] == 0
         visited[k] = 1; append(0,k)
```

Complexity of BFS

- * Each vertex enters Q exactly once
- If graph is connected, loop to process Q iterated n times
 - For each j extracted from Q, need to examine all neighbours of j
 - In adjacency matrix, scan row j: n entries
- Hence, overall O(n²)

Complexity of BFS

- Let m be the number of edges in E. What if m << n²?
- Adjacency list: scanning neighbours of j takes time proportional to number of neighbours (degree of j)
- Across the loop, each edge (i,j) is scanned twice, once when exploring i and again when exploring j
 - Overall, exploring neighbours takes time O(m)
- Marking n vertices visited still takes O(n)
- Overall, O(n+m)

Complexity of BFS

- For graphs, O(m+n) is considered the best possible
 - Need to see each edge and vertex at least once
- O(m+n) is considered to be linear in the size of the graph