UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

ALGEBRA Y ALGEBRA LINEAL 520142 PRACTICA 1. LOGICA

Problema 1. Considere las fórmulas proposicionales

(a)
$$(p \longleftrightarrow q) \longleftrightarrow [(p \land q) \lor (\sim p \land \sim q)]$$
 (En práctica)

(b)
$$(p \to q) \longleftrightarrow (q \to p)$$

(c)
$$[(p \rightarrow q) \land \sim q] \rightarrow p$$

(d)
$$[(p \Rightarrow \sim q) \land (\sim r \lor q) \land r)] \rightarrow \sim p$$

Se pide:

- (i) usar una tabla de verdad para determinar si corresponden a equivalencias lógicas, o a implicaciones lógicas.
- (ii) usar la equivalencia lógica de (a) para obtener una equivalencia para $\sim (p \longleftrightarrow q)$ que sólo tenga conectivos \sim , \wedge o \vee .
- (iii) dar un contra-ejemplo para hacer ver que (c) no es una implicación lógica.

Problema 2. Probar las siguientes implicaciones lógicas que son algunas de las llamadas reglas de inferencia.

(a)
$$p \Longrightarrow (p \lor q)$$
 (Adición)

(b)
$$(p \land q) \Longrightarrow p$$
 (Simplificación)

(c)
$$[p \land (p \rightarrow q)] \Longrightarrow q$$
 (Modus ponens)

(d)
$$[(p \to q) \land \sim q] \Longrightarrow \sim p$$
 (Modus tollens)

(e)
$$[(p \lor q) \land \sim p] \Longrightarrow q$$
 (Silogismo disyuntivo) (En práctica)

(f)
$$[(p \to q) \land (q \to r)] \Longrightarrow (p \to r)$$
 (Silogismo hipotético)

Problema 3. Se define el conectivo \downarrow ("ni" p "ni" q) por la siguiente tabla de verdad:

$$\begin{array}{c|ccc} p & q & p \downarrow q \\ \hline V & V & F \\ V & F & F \\ F & V & F \\ F & F & V \\ \end{array}$$

Pruebe que $\sim p \iff p \downarrow p \;\; \text{y que } (p \lor q) \iff \sim (p \downarrow q)$. Exprese las proposiciones $p \to q \; \text{y} \; p \land q \; \text{usando solo} \downarrow \text{y} \sim$. (En práctica)

Problema 4. Escriba los siguientes enunciados en forma simbólica y determine si corresponden o no a una tautología.

- (a) Si el Sistema Solar está formado sólo por estrellas y la Tierra no es una estrella entonces la Tierra no está en el Sistema Solar.
- (b) Si n es par, entonces 3 no divide a n. Pero 3 divide n o 1993 no es primo; sin embargo 1993 no es primo. Luego n es impar.
- (c) Para que la actual economía en Chile sea sustentable es necesario y suficiente que ella respete los equilibrios naturales.Luego, si la economía no respeta los equilibrios naturales no es sustentable.

Problema 5. Considere la implicación lógica

$$[p \land (p \rightarrow q)] \Longrightarrow q$$

y las proposiciones p: La Luna es un queso blanco y q: La Luna es un queso de cabra.

Comente sobre el significado de la implicación lógica y respecto del valor de verdad del consecuente lógicamente implicado.

Problema 6. Considere los teoremas:

- (a) Si T es un triángulo, entonces la suma de sus ángulos interiores es 180 grados sexagesimales.
- (b) Si $x \in \mathbb{R}$ entonces $x^2 \neq -1$.

Enuncie las proposiciones correspondientes a los teoremas derivados de cada uno de los teoremas anteriores. Además, escriba la negación de los teoremas dados en (a) y (b).

Problema 7. Escriba la negación de las siguientes proposiciones.

- (a) Estoy en práctica de álgebra si y sólo si hoy es viernes. (En práctica)
- (b) Una condición necesaria para que esté en práctica de álgebra es que hoy sea día martes. (En práctica)
- (c) Existe al menos un político honesto
- (d) Todos los estudiantes de Álgebra estudian clase a clase.
- (e) Existe un único sol en nuestra galaxia.

Problema 8. Niegue cada una de las proposiciones que siguen

(a)
$$(\exists x \in \mathbb{R})(\forall y \in \mathbb{R}) : x < y$$

(b)
$$(\forall x \in \mathbb{R})(\forall y \in \mathbb{R}) : x \ge y$$

(c)
$$(\exists! n \in \mathbb{N})$$
 tal que $\forall x \in \mathbb{R}: x \leq n$

(d)
$$\exists x \in \mathbb{R}, \ \exists y \in \mathbb{R}: \quad x^2 + y^2 < 0.$$

(e)
$$\exists \epsilon > 0, \exists x \in \mathbb{R}, \forall y \in \mathbb{R} : |x - y| > \epsilon$$

(f)
$$\forall x \in \mathbb{R}, \exists ! y \in \mathbb{R} : xy \leq 0 \land |x-y| = 2x$$

Problema 9. Sea S un conjunto de números reales. Se dice que x es un punto aislado de S si existe un número real positivo d tal que para todo punto $y \in S$ la distancia entre x e y es mayor o igual a d.

- (a) Escribir la definición de punto aislado usando cuantificadores.
- (b) ξ Cuándo un número real x no es un punto aislado de S ? Si $x \in S$ entonces ξ es x un punto aislado de S?.

Problema 10. Dada la red de interruptores:

determinar qué interruptores deben estar cerrados y cuales abiertos para que circule la corriente.

Problema 11. Diseñe una red de interruptores de modo que la corriente circule en los casos indicados por la tabla

p	q	r	Red
V	V	V	F
V	V	\mathbf{F}	\mathbf{F}
V	\mathbf{F}	V	\mathbf{F}
V	\mathbf{F}	\mathbf{F}	V
\mathbf{F}	V	V	\mathbf{F}
\mathbf{F}	V	\mathbf{F}	V
\mathbf{F}	\mathbf{F}	V	V
\mathbf{F}	F	F	F

Problema 12. En una sala de teatro se desea poder encender o apagar las luces desde cualesquiera de tres interruptores. Diseñar una red que cumpla este objetivo.

Problema 13. Un comité de tres personas requiere un circuito que indique el resultado de sus votaciones. Para votar, cada miembro del comité presiona un botón. La ampolleta del circuito debe prenderse si y sólo si la proposición elegida es mayoritaria. Diseñe un circuito que describa este sistema de votación.