CMPT-825 Natural Language Processing

Anoop Sarkar

http://www.cs.sfu.ca/~anoop

Supervised Models for Parsing: History-based models

- Parsing can be framed as a supervised learning task
- Induce function $f: \mathcal{S} \to \mathcal{T}$ given $S_i \in \mathcal{S}$, pick best T_i from $\mathcal{T}(S)$
- Statistical parser builds model P(T, S) for each (T, S)
- $\bullet \ \ \text{The best parse is then} \quad \underset{T \,\in\, \mathcal{T}(S)}{\arg\, \max} \ P(T,S)$

History-based models and PCFGs

- History-based approaches maps (T, S) into a decision sequence d_1, \ldots, d_n
- Probability of tree T for sentence S is:

$$P(T,S) = \prod_{i=1...n} P(d_i \mid \phi(d_1,\ldots,d_{i-1}))$$

ullet ϕ is a function that groups histories into equivalence classes

History-based models and PCFGs

 PCFGs can be viewed as a history-based model using leftmost derivations

• A tree with rules $\langle \gamma_i \to \beta_i \rangle$ is assigned a probability $\prod_{i=1}^n P(\beta_i \mid \gamma_i)$ for a derivation with n rule applications

Generative models and PCFGs

$$T_{best} = \prod_{T}^{arg \max} P(T \mid S)$$

$$= \prod_{i=1...n}^{arg \max} \frac{P(T,S)}{P(S)}$$

$$= \prod_{i=1...n} P(RHS_i \mid LHS_i)$$

Evaluation of Statistical Parsers: EVALB

Bracketing recall $= \frac{\text{num of correct constituents}}{\text{num of constituents in the goldfile}}$

Bracketing precision $= \frac{\text{num of correct constituents}}{\text{num of constituents in the parsed file}}$

Complete match = % of sents where recall & precision are both 100%

Average crossing = num of constituents crossing a goldfile constituent num of sents

No crossing = % of sents which have 0 crossing brackets

2 or less crossing = % of sents which have \leq 2 crossing brackets

Statistical Parsing and PCFGs

Bilexical CFG: (Collins 1997)

<u>Bilexical CFG</u>: VP{indicate} → VB{+H:indicate} NP{difference} PP{in}

$$P_h({\tt VB} \mid {\tt VP}, {\tt indicated}) \times P_l({\tt STOP} \mid {\tt VP}, {\tt VB}, {\tt indicated}) \times P_r({\tt NP}({\tt difference}) \mid {\tt VP}, {\tt VB}, {\tt indicated}) \times P_r({\tt PP}({\tt in}) \mid {\tt VP}, {\tt VB}, {\tt indicated}) \times P_r({\tt STOP} \mid {\tt VP}, {\tt VB}, {\tt indicated})$$

Independence Assumptions

Independence Assumptions

Also violated in cases of coordination.

e.g. NP and NP; VP and VP

- Processing facts like attach low in general.
- Also, English parse trees are generally right branching due to SVO structure.
- Language specific features are used heavily in the statistical model for parsing: cf. (Haruno et al. 1999)

Bilexical CFG with probabilistic 'features' (Collins 1997)

Statistical Parsing Results using Lexicalized PCFGs

	\leq 40 wds	\leq 40 wds	$\leq 100wds$	$\leq 100wds$
System	LP	LR	LP	LR
(Magerman 95)	84.9	84.6	84.3	84.0
(Collins 99)	88.5	88.7	88.1	88.3
(Charniak 97)	87.5	87.4	86.7	86.6
(Ratnaparkhi 97)			86.3	87.5
(Charniak 99)	90.1	90.1	89.6	89.5
(Collins 00)	90.1	90.4	89.6	89.9
(LSJ 03)	90.2	90.5	89.7	90.0
Voting §22 (HB99)	92.09	89.18		

Tree Adjoining Grammars

- Locality and independence assumptions are captured elegantly.
- Simple and well-defined probability model.
- Parsing can be treated in two steps:
 - 1. Classification: structured labels (elementary trees) are assigned to each word in the sentence.
 - 2. Attachment: the elementary trees are connected to each other to form the parse.

Tree Adjoining Grammars: Different Modeling of Bilexical Dependencies

Probabilistic TAGs: Substitution

$$\sum_{t'} \mathcal{P}(t, \eta
ightarrow t') = 1$$

Probabilistic TAGs: Adjunction

$$\mathcal{P}(t, \eta \to NA) + \sum_{t'} \mathcal{P}(t, \eta \to t') = 1$$

Tree Adjoining Grammars

Simpler model for parsing.

Performance(Chiang 2000): 86.9% LR 86.6% LP (≤ 40 words)

Latest results: \approx 88% average P/R

- Parsing can be treated in two steps:
 - 1. Classification: structured labels (elementary trees) are assigned to each word in the sentence.
 - 2. Attachment: Apply substitution or adjunction to combine the elementary trees to form the parse.

Tree Adjoining Grammars

- Produces more than the phrase structure of each sentence.
- A more embellished parse in which phenomena such as predicateargument structure, subcategorization and movement are given a probabilistic treatment.

Practical Issues: Beam Thresholding and Priors

- Probability of nonterminal X spanning $j \dots k$: N[X, j, k]
- \bullet Beam Thresholding compares N[X,j,k] with every other Y where N[Y,j,k]
- But what should be compared?
- Just the *inside probability*: $P(X \stackrel{*}{\Rightarrow} t_j \dots t_k)$? written as $\beta(X, j, k)$
- Perhaps $\beta(FRAG, 0, 3) > \beta(NP, 0, 3)$, but NPs are much more likely than FRAGs in general

Practical Issues: Beam Thresholding and Priors

• The correct estimate is the *outside probability*:

$$P(S \stackrel{*}{\Rightarrow} t_1 \dots t_{j-1} X t_{k+1} \dots t_n)$$

written as $\alpha(X, j, k)$

• Unfortunately, you can only compute $\alpha(X, j, k)$ efficiently after you finish parsing and reach (S, 0, n)

Practical Issues: Beam Thresholding and Priors

- ullet To make things easier we multiply the prior probability P(X) with the inside probability
- In beam Thresholding we compare every new insertion of X for span j,k as follows:

Compare $P(X) \cdot \beta(X, j, k)$ with every $Y P(Y) \cdot \beta(Y, j, k)$

Other more sophisticated methods are given in (Goodman 1997)