

exercise.and.assignment.M.4

Codebook and data files

a. = article (news, journal)	<pre>c. = cheatsheet code. = .py or .ipynb</pre>	g = graphic
howTo. = <u>explanandum</u>	<pre>py.M. exercise or assignment python file</pre>	r = reading

File Name	Purpose\Description
https://github.com/cosc-526/cosc.526.home.page/blob/main/code_notebook_cosc_526.ipynb	 Codebook in Jupyter Notebook name = code.notebook.cosc.526.ipynb save your own copy!
	Source data

- Note.1: The codebook is formatted differently, and below highlights expected outcomes.
- Note.2: The instructions below are an overview with additional details in the Notebook.
- **Note.3:** Perform your work in your Notebook and generate outcomes for each code block. Export the Notebook as a .pdf for submission. If issues, submit an .ipynb file at the very minimum.

=> exercise.M.x

Problem summary

Objectives:

1. Import and manipula

Mean Imputation with Pandas:

- Use the fillna() method in Pandas to replace missing values with the mean of the column: df.fillna(df.mean(), inplace=True).
- This method replaces missing values with the mean of the corresponding column, providing a simple imputation strategy.

K-Nearest Neighbors (KNN) Imputation with scikit-learn:

- Utilize the KNNImputer class from scikit-learn to impute missing values based on the values of the nearest neighbors: imputer = KNNImputer(n_neighbors=5); imputed_data = imputer.fit_transform(data).
- This approach imputes missing values by considering the values of the k nearest neighbors in the feature space.

Logistic Regression with scikit-learn:

- Import the necessary modules: from sklearn.linear_model import LogisticRegression.
- Create an instance of the LogisticRegression class: logreg = LogisticRegression().

=> assignment.M.x

Problem summary

Objectives:

2. Import and manipula

a2.Problem 0 - Import, inspect, and view descriptive statistics

Import data and view descriptive statistics with the pandas library.

• grab data from **Github** URL, .csv. or kaggle api

a2.Problem.1 - Description =>

The United S

Task.0 - Expected outcome:

a2.Problem.2 - Description =>

Which v

Task.0 - Expected outcome:

a2.Problem.3 - Description =>

Which cou

Task.0 - Expected outcome:

a2.Problem.4 - Description =>

Task.0 - Expected outcome:

a2.Problem.5 - Description =>

Determine e

Task.0 - Expected outcome:

a2.Problem.6 - Description =>

Determine

Task.0 - Expected outcome:

Additional resources

- <u>Jupyter Community Forum</u>
- Jupyter Notebook <u>documentation</u> (including <u>get started</u> guides).
- Install scientific packages.
- Python Package Index (pypi)