Московский Физико-Технический Институт (государственный университет)

Лабораторная работа по курсу общей физики № 5.5.1

Измерение коэффициента ослабления потока γ -лучей в веществе и опредление их энерегии.

Автор:

Филиппенко Павел Б01-009

Долгопрудный, 2021

Теоретическая часть

Гамма-лучи возникают при переходе возбужденных ядер из одного энергетического состояния в другое, более низкое. Энергия γ -квантов обычно заключена между несколькими десятками килоэлектронвольт и несколькими миллионами электрон-вольт. Гамма-кванты не несут электрического заряда, их масса равна нулю. Проходя, через вещество, пучок γ -квантов постепенно ослабляется. Ослабление просходит по експоненциальному закону, который может быть записан в следующей форме:

$$I = I_0 e^{-\mu l}, \quad I_o e^{-\mu' m_1} \tag{1}$$

В этих формулах I, I_0 – интенсивности прошедшего и падающего излучений, l – длина пути, пройденного пучком γ -лучей, m_1 – масса пройденного вещества, приходящаяся на единицу площади, μ и μ' – константы, величина которых зависит от вещества, сквозь которое проходят γ -лучи.

Ослабление потока γ -лучей, происходящее при прохождении среды, связано с тремя эффектами:

- 1. фотоэлектрическим поглощением
- 2. комптоновским рассеянием
- 3. генерацией электрон-позитронных пар

В случае опытов, поставленных в хорошей геометрии, при прохождении γ -лучей через вещество меняет только количество, но не энергия γ -квантов в пучке, так что коэффициент μ , характеризующий поглощение γ -квантов в веществе, не зависит от длины пути. Обозначим через -dN число γ -квантов, выбывших их пучка на пути dl. Это число пропорционально имеющемуся их числу N и пройденному пути dl. Следовательно,

$$-dN = \mu N \, dl. \tag{2}$$

Интегрируя уравнение (2) от нулевой толщины до заданной, получим

$$N = N_0 e^{-\mu l}. (3)$$

Вообще говоря, в плохой геометрии, когда рассеянные под небольшими углами γ -кванты остаются в пучке, их спектр с прохождением вещества меняется, поэтому формула (1) непреминима. Однако в этом случае она работает лучше, чем можно было ожидать.

В данной работе коэффициент ослабления μ измеряется в хорошей геометрии. Из формулы (3) имеем:

$$\mu = \frac{1}{l} \ln \frac{N_0}{N}.\tag{4}$$

Для определения коэффициента ослабления нужно, таким образом, измерить толщтну образца l, число падающих частиц N_0 и число частиц N, прошедших через образец.

Эксперементальная установка

Схема установки, исползуемой в работе, показана на рис. 1. Свинцовый коллиматор выделяет узкий почти параллельный пучок γ -квантов, проходящий через набор поглотителей Π и регистрируемый сцинтиляцонным счетчиком. Сигналы от счетчика усиливаются и регистрируются пересчетным прибором $\Pi\Pi$. Высоковольтный выпрямитель BB обеспечивает питание сцинтилляционного счетчика.

Рис. 1: Блок-схема установки, используемой для измерения коэффициентов ослабления потока γ -лучей

Рис. 2: Схема рассеяния γ -квантов в поглотителе

При недостаточно хорошей геометрии в результаты опытов могут вкрасться существенные погрешности. В реальных установках всегда имеется конечная вероятность того, что γ -квант провзаимодействует в поглотителе несколько раз до того, как попадет в детектор (пути таких квантов показаны на рис. 2). Чтобы уменьшить число таких случаев, в данной работе сцинтилляционный счетчик расположен на большом расстоянии от источиника γ -квантов, а поглотители имеют небольшие размеры. Их следует устанавливать за коллиматорной щелью на некотором расстоянии друг от друга, чтобы испытавшие комптоновское рассеяние и выбывшие из прямого потока кванты с меньшей вероятностью могли в него вернуться.

Обработка эксперементаьных даних

По условиям эксперемента, точность измерений не должна быть хуже 1~% для определения фона и не хуже 0.3~% для всех остальных измерений.

Вспомним, что погрешность среднего соотносится с погрешностью отдельного измерения как

$$\sigma_{\overline{x}} = \frac{\sigma_x}{\sqrt{N}}$$

где N — число измерений. Тогда относительная погрешность измерений ε :

$$\varepsilon \sim \frac{1}{\sqrt{N}}$$

Из этих соображений, получаем, чтобы получить точность не хуже чем 1 % необходимо регистрировать не менее 10000 частиц, чтобы получить точность не хуже 0.3~% необходимо регистрировать не менее 100000 частиц.

В условиях нашего эксперемента необходимо учитывать фоновое излучение. Поэтому введем обозначения:

$$N = n - n_{\text{don}}$$
 $N_0 = n_0 - n_{\text{don}}$

Кроме того, в процессе вычислений мы будем брать количество частиц, зарегистрированных в секунду. Поэтому, введем обозначения: N – количество частиц, зарегистрированных за промежуток времени $t,\ N'=N/t$ – количество частиц, зарегистрированных в секунду.

$$n_{\text{фон}} = 10015 \text{ (за 100 c)}$$

 $n_0 = 291115 \text{ (за 10 c)}$

Алюминий	Железо	Свинец	Пробка
$(20 \pm 0.05) \text{ mm}$	(10 ± 0.05) mm	(4.8 ± 0.05) MM	$(20 \pm 0.05) \text{ mm}$

Таблица 1: Толщина заглушек для разных материалов

Таблица исходных данных 2. Будем считать, что погрешность измерения частиц $\sqrt{N'}$.

	1 шт	2 шт	3 шт	4 шт	5 шт
Алюминий	12482.5	6790.3	3832.06	2302.06	1402.93
Железо	10371.5	4706.9	2224.46	1112.21	616.01
Свинец	11093.8	4950.75	2447.51	1243.05	682.98

Таблица 2: Количество частиц в секунду n' для разного числа заглушек

Поскольку дальше нам придется работать с величиной $\ln \frac{N_0}{N}$, посчитаем ее погрешность. Косвенную погрешность величины u=f(x,y) можно посчитать по формуле

$$\sigma_u = \sqrt{(f_x')^2 \cdot \sigma_x^2 + (f_y')^2 \cdot \sigma_y^2}$$

Тогда для погрешности натурального логарифма получим

$$\sigma = \sqrt{\left(\frac{\sigma_{N_0}}{N_0}\right)^2 + \left(\frac{\sigma_N}{N}\right)^2}$$

Однако, вспомним, что относительная погрешность задана нам условиями эксперемента и составляет 0.003 (0.3 %). Поэтому $\sigma \approx 0.0774$.

Построим графики зависимости величины $\ln \frac{N_0}{N}$ от l (длины пути, пройденного через рассеиватель). По наклону прямой найдем величину коэффициента μ (4).

Как видно из графика 6, свинец имеет самую высокую задержку. Это подтверждает следующий график:

Запишем коэффициенты μ для всех метеллов:

$$\mu_{Al} = (280.74 \pm 5.92) \cdot 10^{-3} \text{ cm}^{-1}$$
 $\mu_{Fe} = (749.81 \pm 14.28) \cdot 10^{-3} \text{ cm}^{-1}$
 $\mu_{Pb} = (1524.98 \pm 31.10) \cdot 10^{-3} \text{ cm}^{-1}$

Используя найденные коэффициенты ослабления по таблице определим среднюю энергию γ -лучей, испускаемых источником.

Воспользовавшись таблицей, определим энергию γ -кванта.

Рис. 3: График для алюминия

Рис. 4: График для железа

Рис. 5: График для свинца

Рис. 6: График сравнения

по Al $E\approx 0.3$ МэВ по Fe $E\approx 0.4$ МэВ по Pb $E\approx 0.5-0.6$ МэВ