TODO:

- 1. Beweis Satz 2.1. umstrukturieren
- 2. Beweis Satz 3.2. ausschreiben
- 3. Bekannte Ergebnisse notieren
- 4. Alg für außenplanare aufarbeiten
- 5. Alg. für beliebige C_i -Bäume
- 6. Alg. für Halin Graphen

1 Definition

Gegeben sei ein Baum B=(V,E) mit $deg(v_i) \leq 3$ für $v_i \in V$. Der Graph $G=(V_G,E_G)$ sei wie folgt aus dem Baum B entstanden:

$$V' = \{v_k | v_k \in V \land deg(v_k) = 3\} \subseteq V$$

eine Menge bestehend aus einer Teilmenge der Knoten in dem Baum B. Ersetze jedes Element $v_j \in V'$ durch einen C_3 (bezeichne diesen Teilgraphen als $\underline{C_{3,j}}$), so dass jeder Knoten im $C_{3,j}$ mit genau einem der Nachbarn von v_j verbunden ist. Die drei Nachbarn vom $C_{3,j}$ werden dann als die $\underline{C_{3,j}}$ -Kinder bezeichnet. Sind mind. zwei von den $C_{3,j}$ -Kindern Blätter, so bezeichne den $\overline{C_{3,j}}$ und seine Nachbarn als ein $\underline{Baumblatt(BB)}$. Der $\underline{Bifurkator}$ von x,y,z ist ein Knoten der auf dem kürzesten Wegen von x zu y und zu z liegt, und dabei am weitesten von x entfernt ist.

1.1 Satz

Hat ein Graph zwei Teilgraphen G_R und G_L , welche durch eine Kante verbunden sind. Gibt es in jedem Teilgraphen mind. einen Knoten aus dem Resolving Set, so ist jedes Knotenpaar x, y getrennt mit der Eigenschaft $x \in G_R$ und $y \in G_L$.

1.1.1 Beweis

Angenommen, es gibt ein nicht getrenntes Knotenpaar x, y. Sei d_1 der Bifurkator von y, x, r_L und d_2 der Bifurkator von x, y, r_R . Dann gilt:

$$dist(r_L, x) \leq dist(r_L, d_1) + dist(d_1, x)$$

$$dist(r_R, y) \le dist(r_R, d_2) + dist(d_2, y)$$
$$dist(r_L, y) > dist(r_L, d_1) + dist(d_2, y)$$
$$dist(r_R, x) > dist(r_R, d_2) + dist(d_1, x)$$

Außerdem gilt, da x und y nicht getrennt werden:

$$dist(r_R, y) = dist(r_R, x), dist(r_L, x) = dist(r_L, y)$$

Nun kann eingesetzt und umgeformt werden zu folgendem Widerspruch:

$$\Rightarrow dist(r_L, d_1) + dist(d_1, x) \ge dist(r_L, x) = dist(r_L, y) > dist(r_L, d_1) + dist(d_2, y)$$

$$\Leftrightarrow dist(r_L, d_1) + dist(d_1, x) > dist(r_L, d_1) + dist(d_2, y)$$

$$\Leftrightarrow dist(d_1, x) > dist(d_2, y)$$

$$\Rightarrow dist(r_R, y) \leq dist(r_R, d_2) + dist(d_2, y) < dist(r_R, d_2) + dist(d_1, x) < dist(r_R, x)$$

$$\Leftrightarrow dist(r_R, y) < dist(r_R, y) \neq$$

$$\Leftrightarrow dist(r_R, y) < dist(r_R, y) \neq$$

1.2 Satz

Die Kontraktion von Separationsknoten mit Grad zwei oder das Erweitern mit Separationsknoten mit Knotengrad zwei hat keinen Einfluss auf die Metrische Dimension eines Graphen.

1.2.1 Beweis

Gegeben seien ein Separationsknoten v_s mit $deg(v_s) = 2$, ein Resolving Set R_k und der Graph G mit Metrischer Dimension k. Durch die Separation entstehenden Graphen bezeichne man als G_R und G_L . Der Graph G' entsteht durch die Knotenkontraktion von v_s mit einem anderen Knoten. Angenommen es gibt ein Knotenpaar x, y, welche im Graphen G unterschiedliche Markierungen hat, und im G' nicht. In G gibt es mind. einen Knoten im R_K , der x, y trennt. Sei dies der Knoten r_k .

Fall 1: Liege r_k im gleichen Teilgraphen wie x, y: Der Knoten v_s kann auf keinem kürzesten Weg gewesen sein. So hat seine Kontraktion keinen Einfluss auf die Markierungen und damit ist R_K ein Resolving Set in G genau dann wenn es auch ein Resolving Set in G' ist.

Fall 2: Sind x, y in einem anderen Teilgraphen als r_k , so liegt v_s auf beiden kürzesten Wegen und so verringern sich beide Markierungen um genau eins. Damit bleiben sie getrennt oder R_K in G ist kein Resolving Set.

Sei einer der ursprünglich getrennten Knoten und r_k in dem gleichen Teilgraphen. Sei dies o.B.d.A. der Knoten x.

Fall 3(a): G_R und G_L sind Wege. Dann gibt es genau einen Knoten im Resolving Set und die Knoten sind getrennt sofern sie zuvor getrennt waren, denn die Metrische Dimension eines Weges ist immer eins.

Fall 3(b): O.B.d.A. sei G_R der Teilgraph, der ein Weg ist. Damit besteht das Resolving Set R_K aus mind. 2 Knoten. Ist einer davon im G_R , dann gilt das gleiche Argument wie im Fall 3(a) und das Knotenpaar x, y ist getrennt.

Sind alle Knoten aus dem Resolving Set im G_L und ist die Entfernung von allen Knoten zu x und y gleich im G', so war die Entfernung zu x und zu dem Vorgänger von y gleich, und damit wäre R_k ursprünglich kein gültiges Resolving Set in G gewesen.

Fall 3(c): G_R und G_L sind keine Wege. Damit ist in jedem Teilgraphen mind. ein Element aus dem Resolving Set. Der Widerspruch folgt nach Satz 1.1. Für einen eingefügten Knoten geht der Beweis analog.

2 Separationsknoten mit Grad Zwei

Bei der Betrachtung, sowie bei der Berechnung der Metrischen Dimension, werden Wege (Knoten mit deg(v)=2) miteinander kontrahiert solange bis sie mit einem Knoten mit deg(v)=3 oder deg(v)=1 kontrahiert wurden. Damit müssen weniger für die Metrische Dimension äquivalente Fälle betrachtet werden, da Knoten mit deg(v)=2 nach Satz 1.2 keinen Einfluß auf die Metrische Dimension eines Graphens haben.

2.1 Beispiele für die Kontraktion

Beispiel für eine Kontraktion zwischen zwei Baumblättern

Beispiel für eine Kontraktion zwischen einem C_3 und einem Blatt

3 Hauptaussage

Die Metrische Dimension (MD) eines Graphen Gmit mindestens zwei
 $C_{3,j}$ ist gleich der Anzahl seiner Baumblätter.

3.1 Satz

Sei $C_{3,j}$ ein beliebiges Baumblatt. In jedem Resolving Set muss mind. einer der Knoten $\{v_{j,1},v_{j,2},v_{j,3},v_{j,4}\}$ enthalten sein.

3.1.1 Beweis

Angenommen keiner dieser Knoten ist im Resolving Set. Da die einzige Verbindung zu dem Restgraphen über einen Knoten geht, folgt aus Symmetriegründen, dass die Knoten $v_{j,3}$ und $v_{j,4}$, sowie $v_{j,1}$ und $v_{j,2}$ identische Markierungen haben. Dies widerspricht der Definition eines Resolving Sets.

Damit ist die Metrische Dimension(MD) eines Graphen G mit mindestens zwei $C_{3,j}$ mindestens die Anzahl seiner Baumblätter.

3.2 Satz

Die Metrische Dimension(MD) eines Graphen G mit mindestens zwei $C_{3,j}$ ist höchstens die Anzahl seiner Baumblätter. Es wird immer das linke Blatt aus jedem Baumblatt in das Resolving Set aufgenommen.

3.2.1 Beweis

Angenommen für einen gebenen Graphen G und sein Resolving Set aus Satz 3.2, gibt es ein nicht getrenntes Knotenpaar x, y.

4 Sonderfälle

Fall I: Der Baum besteht nur aus Knoten mit $deg(v) \leq 2$. Damit ist er ein Weg und seine Metrische Dimension ist eins.

Fall II: Der Baum beinhaltet genau einen Knoten mit deg(v)=3. Seine Metrische Dimension ist zwei.