UML 2.0

Une association entre des classes correspond à une structure statique. C'est également le support de la collaboration entre les objets des classes.

Par une seule association, plusieurs messages passeront.

Diagrammes de séquence vs diagrammes de communication

Diagrammes de séquence :

Structuration en termes de

- temps → axe vertical
- objets → axe horizontal

Diagrammes de communication :

Structuration en multigraphe

 Numérotation des arcs pour modéliser l'ordre des interactions

Exemple:

Exemple:

UML 2

Diagrammes de communication (collaboration UML 1)

Diagramme De Collaboration

Montre les objets, les liens qui les unissent et les messages qu'ils s'échangent.

Mise en évidence des relations entre objets.

Diagramme de communication

- Le diagramme de communication constitue une autre représentation des interactions que celle du diagramme de séquence.
- Le diagramme de communication met plus l'accent sur l'aspect spatial des échanges que l'aspect temporel.
- Ce diagramme est une autre représentation des scénarios des cas d'utilisation qui met plus l'accent sur les objets et les messages échangés (la communication)

Représente les interactions entre objets.

Exemple

Diagrammes de communication

Formalisme de base du diagramme de communication

- Différences avec diagrammes de séquence
 - pas d'axe temporel
 - temps modélisé par numérotation

Exemple : Appel téléphonique

NB. 6. la et 6. lb pour deux messages envoyés en même temps.

Diagrammes de communication

Éléments d'une interaction

Instances

pui collaborent avec d'autres objets en échangeant des informations

:Classe

Objet:Classe

informations

Représentés par

liens

- qui sont des supports de messages
- Représentés comme des associations

messages

- déclenchant les opérations
- Indiqués par des flèches

Diagrammes de communication

- Mêmes types contraintes que pour les diagrammes de séquence
 - Itération : *[condition]
 - Conditions : [condition]
- Exemple : réservation d'articles

Exemple: Ascenseur (Séquence)

Exemple Ascenseur (Diagramme de communication)

UML 2

Diagramme d'états transitions

UML 2

Décrivent <u>le comportement</u> complet <u>du système ou d'un composant</u> du système ou une une classe à la différence des diagrammes de séquences qui décrivent des cas d'utilisation (scénarios).

- But:
- Dans le Cahier des charges: Décrire le comportement d'un système complexe.
- Lors de la phase d'Analyse et de Conception: Décrire le comportement d'un objet (classe) complexe.

- L'enchaînement de tous les états caractéristiques d'un objet constitue le diagramme d'état.
- Le formalisme des diagrammes d'états est celui des automates à états finis.
 - des multigraphes (liens multiples) étiquetés, les sommets étant les états, les arcs étant étiquetés.

- Les diagrammes d'états sont basés sur 3 notions :
 - Etat d'un objet: situation d'un objet
 - Transition/événement
 - Comportement des objets: leurs actions et leurs activités

Exemple

Diagramme d'état-transition de l'objet client d'une gestion commerciale

□ Présenter les séquences possibles d'états qu'un objet peut prendre au cours de son cycle de vie en <u>réaction à des événements</u>.

Transition

• Les états sont reliés par des connexions unidirectionnelles appelées transitions.

•Exemple : place de parking

Diagrammes d'états-transitions: Objectifs

- •Les diagrammes d'états-transitions permettent d'effectuer une vérification du système :
 - •On déclenche un événement, et on observe les changements d'états des objets du système.
 - •En cas d'incohérence, il faut recommencer l'analyse.

Toutes les classes ne nécessitent pas un diagramme d'états.

- S'utilise pour la modélisation de certaines classes:
 - Les classes qui ont <u>un comportement dynamique</u> <u>complexe.</u>

l'état d'un objet

L'état d'un objet est défini par la valeur instantanée de ses attributs et de ses liens avec d'autres objets

Etat d'un objet

• Plusieurs façons de définir un état.

On peut déduire l'état des opérations aussi.

Etat d'un objet

- •Les personnes ne possèdent pas toutes un emploi et se trouvent, à un moment donné, dans un des états suivants : en activité, au chômage, à la retraite.
- •L'état d'une personne donnée est déterminé selon son âge et la présence ou non d'un lien vers une société.

Etat d 'un objet (Notation)

- Un état est représenté au moyen d'un rectangle à coins arrondis
- Le nom de l'état est positionné à l'intérieur du rectangle
- Le nom de l'état est en général un adjectif ou une petite phrase le décrivant

ETATS SPECIAUX:

- 2 états prédéfinis :
 - <u>Etat de démarrage</u>: <u>Obligatoire</u>, unique
 - Etat de fin : Optionnel, peut-être multiple

Transitions entre états (Notation)

- Une transition est modélisée sous la forme d'une flèche reliant les deux états, étiquetée par une description textuelle de la transition
- La description textuelle est constituée de trois éléments :
 - Un événement déclencheur
 - Une condition de garde
 - Une action

Transition

Une transition représente <u>le passage instantané</u> d'un état vers un autre.

- Une transition est déclenchée par un événement.
- Un événement est une information instantanée.

Les événements

- Il existe quatre types d'évènements:
- •Evènement sur condition (de changement): Changement d'une condition booléenne
 - •Ex: le feu est vert:
- •Evènement temporel: Epuisement d'un délai temporel ou occurrence d'une certaine date ou heure.
 - Après (15s)
 - •Quand (date = '11-01-2011')
- •Réception d'un signal envoyé par un autre objet.
 - •Ex: « Bouton souris = down »
- •Demande d'opération

Notion de garde

• Une garde est une condition booléenne <u>qui permet ou non le déclenchement d'une</u> transition lors de l'occurrence d'un événement.

- •Ex: Objet Voiture de location
 - •Pour que la transition soit franchie il faut que l'évènement survienne et que la condition soit vraie.

Garde

- La condition porte sur des informations accessibles de l'objet : paramètres, attributs.
- Les gardes doivent être mutuellement exclusives.
- Exemple: Police d'assurance

Les traitements

Actions sur transitions:

- action élémentaire, supposée instantanée
- formée d'un une ou plusieurs opérations de la classe.

PoliceAssurance

- nombreSinistres
- tauxEchec

+comptabiliserEchec()

. . .

Transition automatique

- Une transition peut ne pas avoir d'événement associé
 On parle alors de transition automatique
- Une transition automatique se déclenche lorsque l'activité de son état source est terminée
- Une transition automatique peut être conditionnée par une garde

Actions dans un état

Un état peut être représenté par un ensemble d'action :

- ► Entry / action : Action exécutée à l'entrée de l'état
- **Exit** / action : Action exécutée à la sortie de l'état
- On événement / action : Action exécutée lors de l'occurrence d'un événement <u>qui ne conduit pas à un autre état.</u>
- Do / activité : l'activité dure tant que l'objet est dans l'état concerné. Elle n'est interrompue que par des transitions internes et ne s'arrête qu'à la sortie de l'état

Actions dans un état

Représentation :

Nom d'un état

entry / action d'entrée
On/ nom_événement : action
do / activité:
exit /action de sortie

Exemple1: Classe « Commande »

En préparation

Entry / choisir un fournisseur

Entry / déterminer quantité à commander

Entry / calculer montant

On nouveau tarif / calculer montant

On nouveau besoin / Mettre à jour la commande

Exit / Envoyer la commande

Do: publier détail commande

expédition En attente

Commande

Actions et Activités

- •Une action est une opération instantanée qui <u>ne peut être interrompue.</u>
- •Une activité est une opération d'une certaine durée <u>qui peut être</u> <u>interrompue.</u>
- Les activités sont associées aux états:
 - commencent quand on est entré dans l'état
 - s'exécutent jusqu'à la fin si elles ne sont pas interrompues.
 - peuvent être interrompues car elles ne modifient pas l'état de l'objet

État composite

Généralisation d'états: Difficulté de construction de diagramme pour des traitements complexes.

- •Un super-état ou état composite est un état qui englobe d'autres états appelés sous-états.
- •Le nombre d'imbrication n'est pas limité (ne pas abuser sinon problème de lisibilité).

La généralisation d'états Exemple: Classe Avion

Les alternatives

- Représenter des alternatives pour le franchissement d'une transition
- Utilisation de deux pseudo-états particuliers :
 - point de jonction

point de choix

Les points de choix ou les points de décision (représentés par un losange ou un cercle vide)

Les alternatives

Points de jonction

- Factorisation de l'événement déclencheur (ex. : validation)
- Les gardes doivent être mutuellement exclusives pour que l'automate soit déterministe
- Point de jonction est statique : gardes après le point de jonction évaluées avant que la transition soit empruntée
- Ces deux représentations sont équivalentes :

Points de jonction

- Le point de jonction est un artefact graphique (un pseudo-état en l'occurrence) qui permet de <u>partager</u> des segments de transition,
- Un point de jonction peut <u>avoir plusieurs segments de transition entrante</u> et plusieurs segments de transition sortantes.

Points de décision

- Un point de décision possède <u>une entrée</u> et au moins deux sorties et permet de choisir une transition.
- •Les gardes situées après le point de décision sont évaluées <u>au moment où il</u> <u>est atteint</u>.
- <u>Si aucun segment n'est franchissable</u>, quand le point de décision est atteint, c'est que le modèle est mal formé.

Concurrences

Pour représenter la concurrence dans un diagramme d'états/transitions, on utilise :

- États concurrents
- ▶ Transitions concurrentes

États concurrents

- État composite pour représenter l'exécution de plusieurs sous-états.
- On utilise un séparateur en pointillés.
- Chaque région peut posséder un état initial et final.

Transitions concurrentes

Les deux représentations sont équivalentes

Transitions simultanées

- Les états A et C sont atteints simultanément ;
- Les états B et D sont quittés simultanément.

Transitions concurrentes

- Deux transitions particulières : fork et join
- La transition fork: correspond à la création de deux états concurrents
- La transition join: permet de supprimer la concurrence.

État historique

Si un état composite est atteint puis abandonné prématurément, il peut être utile de recommencer un état composite par le sous-état qui était actif en dernier.

L'état historique permet de revenir au dernier sous-état visité lors du retour à un état englobant.

Exemple

