Organic Chemistry Chapter 2

Problem 2-6.

 $\frac{1}{4} \frac{1}{2} \frac{1}$

0 dipole moment.

(b)

net dipole moment.

(C) CI CKY

net dipole moment.

 $(d) \qquad || \overset{\times}{\chi} = \overset{\times}{\chi} \overset{Q}{\downarrow} \qquad || \overset{\times}{\chi} \overset{Q}{\downarrow} = \overset{\times}{\chi} \overset{Q}{\downarrow} \qquad || \overset{\times}{\chi} \overset{Q}{\downarrow} = \overset{\times}{\chi} \overset{Q}{\downarrow} \qquad || \overset{\times}{\chi} \overset{Q}{\downarrow} = \overset{\times}{\chi} \overset{Q}{\downarrow} \qquad || \overset{Z}{\chi} \overset{Q}{\downarrow} = \overset{Z}{\chi} \overset{Q}{\downarrow} \qquad || \overset{Z}{\chi} \overset{Q}{\downarrow} = \overset{Z}{\chi} \overset{Q}{\downarrow} \qquad || \overset{Z}{\chi} \overset{Q}{\downarrow} = \overset{Z}{\chi} \overset{Q}{\chi} \overset{Q}{\downarrow} \qquad || \overset{Z}{\chi} \overset{Q}{\chi} \overset{Q}{\downarrow} = \overset{Z}{\chi} \overset{Q}{\chi} \overset{Q}{\downarrow} \qquad || \overset{Z}{\chi} \overset{Q}{\chi} \overset{Q}{\chi$

net dipole moment.

(a)
$$H_1 C = H_1 = \tilde{H_2}$$
: (Diazome thane)

$$= 4 - \frac{8}{2} - 0$$

$$=$$
 5 $\frac{8}{2}$ $-0 = +1$

$$z$$
 $5 - \frac{4}{2} - 4 = -1$

$$H_{1} C = H_{1} = H_{1}$$

(b) AcetonHrile oxide.

$$=$$
 $4 - (\frac{8}{2}) - 0 = 0$

$$= 4 - (\frac{8}{2}) - 0 = 0$$

$$= 5 - \frac{8}{2} - 0 = +1$$

$$= 6 - \frac{2}{2} - 6 = -1$$

$$CH_3 - C = H - 0$$

$$= 4 - \frac{8}{2} - 0 = 0$$

$$= 5 - \frac{8}{2} - 0 = +1$$

$$=4-\frac{6}{2}-2=-1$$

$$\mathcal{H}_3 \subset -\stackrel{\oplus}{\mathcal{H}} \equiv \stackrel{\ominus}{\mathcal{C}}$$

Problem 2-10.

(a) Methyl phosphate.

$$\longleftrightarrow \mathcal{O}_{30} - \stackrel{\circ}{p} - \stackrel{\circ}{0} \stackrel{\circ}{0}$$

(b) Nitrate

(C)
$$|A||y|^{+}$$
 $|A|_{2}C = CH - CH_{2} \iff |A|_{2}C - CH = CH_{2}$

Pto blem 2-11

O'O O-H Wittic acld

proton bonor

Acid

 $+ \frac{1}{4} - \frac{$

proton Acceptor. loses a proton. yours a proton

Base Conjugated

conjugate acid.

Problem
$$2-17-1$$

(1)

 CH_3-CH_2-CH+H
 $E+hamol$
 $A=CH_3-CH_2-CH+H$
 CH_3-CH_2-CH+H
 CH_3-CH+H
 CH_3-CH+H

problem 2-17-2

(b)
$$9\ddot{g}H + 4-\ddot{\zeta}-H \rightarrow 4-\ddot{\zeta}-H$$

Methodol.

Methodol.

The Trimethyl borone

 $3\ddot{g}H + 3r-Mg-Bt \rightarrow Br-9Mg-Bt$

Magnesium bromide

Problem 2-18

Imidazole.

More basic

N2-11: N2 has lone-pair electrons.

When Imidazole is reacted with acid,

H Zight (B)

→ B-H + H + BBH ← H C N H