Rfor

MBA

Presented by MBA students JKSHIM, NITTE

Prof. Mohsin Ahmed

TECHBUGS 2014-09-16

Topics

Part 1, Introduction to R, by

- Jovita Monteiro and
- Nikitha Jackline Fernandes

Part 2, The R Language, by

- Kavya M Nagraj and
- Nishita Rai

Part 3 and 4 Stats and Finance in R, by

- Laxmi Nayak and
- Meet Amrutia

Introduction to R

Part 1. Introduction by by Jovita Monteiro and Nikitha Fernandes

What is R?

- R is a powerful language and environment for Statistical computing and graphics.
- R was created by Ross Ihaka and Robert Gentleman at the University of Auckland, New Zealand in 1993.
- It is the successor to S, the statistics language S, developed by John Chambers at Bell Labs in 1976.

Advantages of R

R is

- freeware
- runs on windows and linux
- lot of online help
- user friendly for basic users
- accurate for advanced users

Why MBA students should learn R?

- R is free open source language (free to download).
- R is cross platform compatible (can use on windows, linux, etc)
- Most advanced statistical package (better than spss, excel, stata).
- Outstanding graphical output.

Why MBA students should learn R?

Used in financial and fortune 500 companies for:

- Financial analysis on Wall St
- Pricing by sales teams
- Marketing and advertising
- HR for performance evaluation
- Researchers in Universities.

Why MBA students should learn R?

- R is extremely comprehensive.
- R support extensions users can add new functions
- R has vast community.
- R can be used with other packages like Excel, SPSS, STATA.
- Higher Pay

The R Language

Part 2
by Kavya Nagraj and Nishita Rai

History of R

- R is a Statistical Programming Language
- R is the programming language and environment that you write your commands and run in.
- R is the successor to the S language from Bell Labs in 1976.
- R created by Ross Ihaka and Robert Gentleman at University of Auckland, New Zealand in 1993.

Installing R

- Google "R stats windows download"
- 2. Download R and R-Studio
- 3. Install R and R-Studio
- 4. Start R by clicking on it

R Studio

Workflow in R

- 1.Read Data into R
- 2. Analyze Data
- 3. Visualize Data
- 4. Make Conclusions from Data

Help in R Studio

> ?runif

Use Google search for "Runif R statistics"

R Command Prompt

Start R by clicking on its icon

> # Comment lines are ignored by R

```
2+2 # You type commands at the R prompt.4 # Result '4' printed by R
```

R as a calculator

R as a Scientific calculator


```
> sqrt(2i) # Complex numbers
1+1i
```

```
> 1/0 # Divide by zero
Inf # Infinite
```

```
> 0/0
NaN # NaN = Not-A-Number, undefined
```

Data: Vector of numbers

Sequence of numbers from 1 to 5

```
> 1:5
1 2 3 4 5
```

Create 4 numbers and # save it in a vector named u. > u <- c(1, 4, 0, -2)

Sequences and vector

```
# 12345
> 1:5
            # 12345
> c(1,2,3,4,5)
> seq(0, 4, len=3) # 024
> seq(0, 4, by=2) # 024
> c(a=1, b=5, c=10) # Named vector
 1 5 10
```

summary(data)

```
> u < - c(1, 4, 0, -2)
```

> summary(u)

```
Min. 1Q. Median Mean 3Q. Max.
```

-2 -0.5 0.5 0.75 1.75 4

quantile(data)

```
> u < -c(1, 4, 0, -2)
> quantile(u)
 0% 25% 50% 75% 100%
-2 -0.5 0.5 1.75 4
> quantile(u, c(0, 0.33, 0.66, 1))
 0% 33% 66% 100%
-2 -0.02 0.98 4
```

plot(data)

> u < -c(1, 4, 0, -2)

> plot(u)

boxplot(data)

> u < -c(1, 4, 0, -2)

> boxplot(u)

> median(u)

0.5

> summary(u)

Min. 1Q. Median Mean 3Q. Max.

-2 -0.5 0.5 0.75 1.75 4

histogram(data)

```
> u <- c(1, 4, 0, -2)
```

> hist(u)

Histogram of u

Statistical functions

```
> u <- c(1, 4, 0, -2)
> mean(u)
    0.75
> sd(u); max(u); min(u); median(u); var(u)
    2.5,    4,    -2,    0.5,    6.25
> sum(u); length(u)
    3,    4,
```

Not Available: NA and NaN

Dealing with Missing Values

```
> x < -c(1,5,9,NA,2)
> mean(x)
 NA # NA = Not Available
# Find mean after removing NA
> mean(x, na.rm=T)
4.25
# Find NA in x
> is.na(x)
FFFTF
```

Make some random numbers

```
# Make 3 random uniform numbers
> runif(3)
     0.428     0.142      0.877
```

Make 3 numbers between 5 to 10

```
> runif(3, 5,10)
6.749 8.611 8.108
```

Random numbers

```
# Generate 3 random numbers in # the range 5 to 10, # round them to 1 decimal digit.
```

```
> round( runif(3, 5, 10), digits=1)
[1] 5.5 9.7 9.5
```

Save the numbers in variable y

```
# Save 3 numbers in a variable named y
> y <- runif(3)
# See what's in y
> y
[1] 0.179 0.384 0.176
```

Histogram

- # Save100 numbers in a # variable named x
- > x <- runif(100)
- # Plot the histogram
- > hist(x)

Histogram of x

Histogram of normally distributed random numbers

- # 100 normal distributed random numbers
- > hist(rnorm(100), col="light blue")

Histogram of rnorm(100)

Data sharing with Excel, SPSS

```
# Reading excel csv data files sales <- read.csv( file.choose() )
```

```
# Import the spss data file read.spss("newData.sav")
```

Data sharing with Excel, SPSS

```
# Reading excel csv data files
sales <- read.csv( file.choose() )</pre>
prices <- read.csv("prices-2012.csv")</pre>
# Load the foreign package
library(foreign)
# Import the spss data file
read.spss("newData.sav")
```

Data frame (excel sheet)

```
# 3 columns: a, b c
> x < - data.frame(a=1:3, b=5:7,
 c=11:13)
> x
    a b c
1 1 5 11
2 2 6 12
3 3 7 13
> x$a # Get column 'a' of x, same as x[['a']]
 123
```

Columns of a data frame

Combine two sheets with cbind

```
> y <- 31:33
> cbind( x, y)
   a b d y
1 1 5 21 31
2 2 6 22 32
3 3 7 23 33
```

Omit rows with missing data

```
> x < -c(1,2,NA,4)
> d <- data.frame(x, y=rev(x))</pre>
> d
2 2 NA
3 NA 2
4 4 1
> na.omit(d) # Remove rows with NA
```

Matrix

```
> m <- matrix( c(1,2,3,4), nrow=2)
> m
     [,1] [,2]
[1,] 1 3 # Row 1
[2,] 2 4 #Row 2
# Determinant of m = 1x4-2x3 = 4 - 6 = -2
> det(m)
 -2
```

Define your own function

Create a function.

> Gamble = function(n)
sample(1:6, n, replace=T)

Call Gamble with n=4

> Gamble(4) [1] 3 4 3 6

Plot Gamble

> hist(Gamble(100), col="pink")

Histogram of Gamble(100)

Builtin Data and Examples in R

Try these examples in R

> example(plot)

> example(boxplot)

> example(hist)

Playing with Builtin Data

- > data() # see the list of builtin datasets
 > data(trees)
- > ? trees # see info about trees data

 This data set provides measurements of the girth, height and volume of timber ...

Correlation in tree data

plots correlation of girth, height volume of trees.

> pairs(trees)

Tree Variables Ordered and Colored by Correlation

- > library(gclus)

Scatterplot Matrices from the car Package

> library(car)

> scatterplotMatrix(~mpg +disp + drat +wt | cyl,

data=mtcars)

Use R Commander

> library(Rcmdr)

3D graphs

- > library(Rcmdr)
- > attach(mtcars)
- > ?mtcars # help on car data
- > scatter3d(wt, disp, mpg)

Statistical Tests and Regression in R

Part 3. by Laxmi Nayak

To roll a Dice (Die) 10 times.

> sample(1:6, 1) # one throw 2

Throw dice 10 times

> sample(1:6, 10, replace=T) 5 6 3 2 5 5 3 4 1 6

Replace=T means, the same number can repeat.
Replace=F means, each number can appear only once.

Toss a coin 10 times.

> sample(c("H","T"), 10, replace=TRUE)

T H H T H T T

Select 4 different students from a class of 54 students

> sample(1:54, 4) # default is no replacement 27 5 10 29

Scatter plot of two variables

Generate 100 (x,y) pairs of random data

- > x <- rnorm(100)
- > y <- x + rnorm(100)
- > plot(x, y)

Add a Regression Line

```
> x <- rnorm(100)
> y <- x + rnorm(100)
> plot( x, y)
```

> abline(Im(y \sim x), col = "red")

Statistical tests

> apropos('test') # See all the tests

alt hypo: m1 != m2 (2 tailed)

> help('t.test') # details on t test
 test if means of two groups are equal
 assume groups are normal with same var
 null hypo: m1 = m2

Example: Effect of smoking

Performance before and after smoking.

- > nonsmokers = c(18,22,21,17,20,17,23,20,22,21)
- > smokers = c(16,20,14,21,20,18,13,15,17,21)
- > boxplot(nonsmokers, smokers)

t-test on data

```
> t.test( nonsmokers, smokers )
 Welch Two Sample t-test
data: nonsmokers and smokers
  mean: 20.1 and 17.5
t=2.25, df=16.3, p-value=0.038
alt hypo: diff in means is not 0
95% confidence interval: 0.16 .. 5.03
```

Power of a test

```
> power.t.test(n = 20, delta = 1)
  Two-sample t test power calculation
  n = 20
  delta = 1
  sd = 1
  sig.level = 0.05
  power = 0.86
  alternative = two.sided
```

Other tests

```
> t.test( nonsmokers, smokers,
  alternative="greater",
  var.equal=T,
  paired=T
> wilcox.test(...)
> chisq.test( ... ) # Chi Square test
> aov( ... ) # Anova (Analysis of variance)
```

R for Finance

Part 4. By Amrutia Meet

To get the share quotes

- Get historical stock prices easily
- Opening prices, closing prices, day high, day low
- Get numerous stocks at a time
- In 2 line of R code
- Useful for automated daily computation

Stock prices in R studio

Merged Stock graphs

- Comparing two or more stock (script)
- Helps in getting the growth of the stock
- The return can be obtained from the graph

Infosys/TCS stock 2007 to 2014

Infosys/TCS stock 2010 to 2014

Computing stock CAGR (Compound Annual Return)

 To obtain Compound Annual Return for any stock (share) is easy in R.

Publications using R and Statistics

- 1. "Psychic Ads: Identifying Students for Higher Education by Analysing Google Trends Time Series for Targeted Advertising on Google Adwords", by Kavya MN, Rai N, Mohsin A.
- 2. "Correlating Gender Sensitivity and Learning Traits in Higher Education", by Kavya MN, Rao S, Joseph V, Mohsin A,
- 3. "A Statistical Approach to Modernize the Indian Higher Education System for Rural and Vernacular", by Kavya MN, Jain S, K Vaishali, R. Krishnakumar, Mohsin.
- 4. "Exploratory Factor Analysis in R for MBA Students", by J Monteiro, N Fernandes, Mohsin A.
- 5. "Learning Financial Analysis in MBA with R." by Nayak L, Meet A, Mohsin A.
- In <u>Nitte University, Fourth International Conference on Higher Education:</u>
 <u>Special Emphasis on Management Education, 2014</u>

MBA Projects using Statistics and R

- 1. Market Research: Factor Analysis in R.
- 2. Marketing: Time series analysis in R for predicting Ads.
- 3. Finance: Analysing Stock market with R

Questions for Student Presenters?

- Nikhita
- Jovita
- Kavya
- Nishita
- Laxmi
- Meet

Thank you.

References

- Intro to R, Venables and Smith, http://cran.rproject.org/doc/manuals/R-intro.pdf http://cran.r-project.org/manuals.html
- 2. Basic Statistics tests in R, http://www.statmethods.net/stats/index.html
- 3. Advanced Probability/Statistics in R, http://zoonek2.free.fr/UNIX/48_R/all.html
- 4. More Statistics tests in R, http://www.ats.ucla.edu/stat/r/whatstat/whatstat.htm
- 5. 7 lectures on Financial Trading with R, http://www.rfortraders.com/