PARCIAL II DE INTRODUCCIÓN A LA LÓGICA Y LA COMPUTACIÓN 21 / 10 / 2011

- 1. [1.5 pto] Sea $at(\varphi)$ la cantidad de átomos que ocurren en φ y sea $bin(\varphi)$ la cantidad de conectivos binarios que ocurren en φ . Pruebe por inducción en PROP: para toda φ , $at(\varphi) \leq 2 bin(\varphi) + 1$.
- 2. Hallar derivaciones que muestren:

 $\checkmark b$) [1 pto] $\{\neg \varphi\} \vdash \varphi \lor \psi \leftrightarrow \psi$.

 ψ' c) [1 pto] $\vdash (\varphi \rightarrow \psi) \lor (\varphi \rightarrow \neg \psi)$.

- Decida cuáles de los siguientes conjuntos son consistentes. Justifique dando una valuación o una derivación según sea el caso.
 - a) [1 pto] $\{p_0, p_0 \rightarrow (p_1 \wedge p_2), p_1 \rightarrow (p_3 \wedge (p_4 \wedge (p_5 \wedge p_6))), p_2 \rightarrow (p_3 \rightarrow \bot)\}.$
 - b) [1.5 pto] $\{\varphi \in PROP : (p_0 \to \varphi) \text{ es una tautología}\}$. Es decir, el conjunto de todas las φ tal que $\models p_0 \to \varphi$.
- 4. [1.5 pto] Probar que si Γ es consistente maximal, entonces realiza la implicación: para todas $\varphi, \psi \in PROP$, $(\varphi \to \psi) \in \Gamma$ si y sólo si $[\varphi \in \Gamma]$ implica $\psi \in \Gamma$].
- 5. [1.5 pto] Definamos una relación ≼ en PROP de la siguiente manera:

 $\varphi \preccurlyeq \psi$ si y sólo si $\vdash \varphi \rightarrow \psi$.

Pruebe, transformando derivaciones, que ≼ es transitiva.