Chapter 5: Syntax Analysis — BottomUp Parsing

Zhen Gao gaozhen@tongji.edu.cn

LR Parsing Method

LR parsing method: proposed in 1965 by Donald Knuth

*

Principle of LR Parsing

- During the shift-reduce process, the parser looks for the handle
 - ☐ **History**: the sequence of symbols already shifted and reduced in the parsing stack
 - Lookahead: predicting possible upcoming input symbols based on the current production being used
 - □ Current: the current input symbol

LR Parser Model

Combine **history** and **lookahead** into **state**

Each step is uniquely determined by the top state of the stack and the current input symbol

State Symbol

Analysis Stack

LR parsing table

Outline

- Basic Issues of Bottom-Up Parsing
- Canonical Reduction
- Operator-Precedence Parsing Method
- LR Parsing Method

(3) $T \rightarrow T^*F$ (4) $T \rightarrow F$ (5) $F \rightarrow (E)$ (6) $F \rightarrow i$

			GOTO						
状态	i	+	*	()	#	E	T	F
0	s5			s4			1	2	3
1		s6				acc			
2		r2	s7		r2	r2			
3		r4	r4		r4	r4			
4	s5			s4			8	2	3
5		r6	r6		r6	r6			
6	s 5			s4				9	3
7	s 5			s4					10
8		s6			s11				
9		r1	s7		r1	r1			
10		r3	r3		r3	r3			
11		r5	r5		r5	r5			

			ACT	GOTO					
状态	i	+	*	()	#	E	T	F
0	s5			s4			1	2	3
1		s6				acc			
2		r2	s7		r2	r2			
3		r4	r4		r4	r4			
4	s5			s4			8	2	3
5		r6	r6		r6	r6			
6	s5			s4				9	3
7	s5			s4					10
8		s6			s11				
9		r1	s7		r1	r1			
10		r3	r3		r3	r3			
11		r5	r5		r5	r5			

- Four Actions of ACTION[s, a]:
 - □ Shift Push next state s' and symbol a onto the stack; advance input.
 - □ **Reduce** Apply A \rightarrow β: pop |β| items, push (GOTO[s_{m-|β|}, A], A).
 - □ Accept Parsing succeeds; stop.
 - □ Error Report an error.

LR Parsing Process

Changes of the Triple (Stack State Sequence, Shift-Reduce String, Input String):

```
• Start: (S_0, \#, a_1 a_2 \dots a_n \#)
  Current Step: (S_0S_1...S_m, \#X_1X_2...X_m, a_i a_{i+1}...a_n \#)
   Next Step: ACTION [S<sub>m</sub>, a<sub>i</sub>]
      If ACTION [S_m, a_i] is Shift and GOTO [S_m, a_i] = S
           Triple becomes
            (S_0S_1...S_mS, #X_1X_2...X_ma_i, a_{i+1}...a_n#)
      If ACTION [S<sub>m</sub>, a_i] is Reduce { A \rightarrow \beta},
           and |\beta| = r, \beta = X_{m-r+1} \dots X_m, GOTO [S_{m-r}, A] = S,
           Triple becomes:
            (S_0S_1...S_{m-r}.S, #X_1X_2...X_{m-r}.A, a_i a_{i+1}...a_n #)
       If ACTION [S<sub>m</sub>, a<sub>i</sub>] is Accept, Stop
       If ACTION [S<sub>m</sub>, a<sub>i</sub>] is Error, Handle error
```

LR Parser Control Program

```
let a be the first symbol of w$;
while(1) { /* repeat forever */
       let s be the state on top of the stack;
       if (ACTION[s, a] = shift t) {
              push t onto the stack;
              let a be the next input symbol;
       } else if ( ACTION[s, a] = reduce A \to \beta ) {
              pop |\beta| symbols off the stack;
              let state t now be on top of the stack;
             push GOTO[t, A] onto the stack;
              output the production A \to \beta;
       } else if ( ACTION[s, a] = accept ) break; /* parsing is done */
       else call error-recovery routine;
```

Figure 4.36: LR-parsing program

Book: Compilers Principles Techniques and Tools (2nd Edition) P251

*

LR Parsing Table

- Control Program: Same for all LR parsers
- Parsing Table: Key to automatically generating a syntax parser
 - □ LR(0) Table: Basic, limited
 - □ SLR Table: Simple LR, practical
 - □ Canonical LR Table: Powerful, costly
 - □ LALR Table: Lookahead LR, between SLR and Canonical LR

Next

How to Construct States for LR(0)

The reduction process of a statement 'ad'

 $E \rightarrow aAb$

A→Aa|c

- $A \rightarrow \alpha$ is called a "reduction item"
- S' $\rightarrow \alpha$ · is called an "accepting item"
- $A \rightarrow \alpha$ · $\alpha\beta$ ($\alpha \in VT$) is called a "shift item"
- $A \rightarrow \alpha$ · $B\beta$ ($B \in VN$) is called a "pending item"/"item waiting for reduction"

LR(0) Grammar

- An automaton never contains the following situations:
- E->E · *E E->E+E ·
- Both shift items and reduction items at the same time
- **Multiple reduction items** | P->A· Q->A·
- Then G is called an LR(0) grammar.
 - □ That is: each LR(0) items set in the canonical collection contains no conflicting items

ACTION and GOTO table construction

- $A \rightarrow \alpha \cdot a\beta \in I_k$, $GO(I_k, a) = I_j$, a terminal $\rightarrow ACTION[k, a] = s_j$
- $A \rightarrow \alpha \cdot \in I_k \rightarrow ACTION[k, a] = r_j$ for all terminals a (including #)
- $S' \rightarrow S' \in I_k \rightarrow ACTION[k, #] = acc$
- $GO(I_k, A) = I_j, A nonterminal \rightarrow GOTO[k, A] = j$
- Other entries → error

		P		GOTO)			
S	а	b	С	d	#	E	Α	В
0	s2	s3				1		
1					acc			
2			s4	s10			6	
3			s5	s11				7
4			s4	s10			8	
5			s5	s11				9
6	r1	r1	r1	r1	r1			
7	r2	r2	r2	r2	r2			
8	r3	r3	r3	r3	r3			
9	r5	r5	r5	r5	r5			
10	r4	r4	r4	r4	r4			
11	r6	r6	r6	r6	r6			

SLR

SLR Parsing Table

- LR(0) grammars are simple and rarely practical.
- Conflict not always present in shift/reduce or reduce/reduce items.
 - □ Example: $I = \{ X \rightarrow \alpha \cdot b\beta, A \rightarrow \alpha \cdot, B \rightarrow \alpha \cdot \}$, with FOLLOW(A) ∩ FOLLOW(B) = Ø, b ∉ FOLLOW(A) ∪ FOLLOW(B)
- For input **a**:
 - \Box a = b \rightarrow shift
 - \square a \in FOLLOW(A) \rightarrow reduce A $\rightarrow \alpha$
 - \Box a ∈ FOLLOW(B) \rightarrow reduce B \rightarrow α
 - \square Else \rightarrow error
- Key: FOLLOW sets determine whether a conflict occurs.

SLR Parsing Table

■ Suppose an LR(0) item set:

$$\textbf{I} = \{ \text{ A}_1 \rightarrow \alpha \cdot \text{a}_1 \beta_1, \, ..., \, \text{A}_m \rightarrow \alpha \cdot \text{a}_m \beta_m, \, \text{B}_1 \rightarrow \alpha \cdot, \, ..., \, \text{B}_n \rightarrow \alpha \cdot \, \}$$

- If {a₁,...,a_m}, FOLLOW(B₁),...,FOLLOW(B_n) are pairwise disjoint, then:
 - \square a = $a_i \rightarrow shift$
 - \square a \in FOLLOW(B_i) \rightarrow reduce B_i \rightarrow α
 - □ Otherwise → error
- This conflict-resolution method is called SLR(1).

Example: The canonical collection of sets of LR(0) items for the following grammar is

- (0) S'→E
- (1) E→E+T
- (2) E→T
- (3) **T**→**T*****F**
- **(4) T**→**F**
- (5) $F \rightarrow (E)$
- (6) F→i

- $I_0: S' \rightarrow \cdot E$ $E \rightarrow \cdot E + T$
 - $E \rightarrow T$
 - $T \rightarrow T * F$
 - $T \rightarrow T*F$
 - $T \rightarrow \cdot F$
 - $F \rightarrow \cdot (E)$
 - $F \rightarrow i$
- $I_1: S' \rightarrow E \cdot E \cdot + T$
- $I_2: E \rightarrow T \cdot T \rightarrow T \cdot F$
- I_3 : $T \rightarrow F$

- I₄: $F \rightarrow (\cdot E)$ $E \rightarrow \cdot E + T$ $E \rightarrow \cdot T$
 - $T \rightarrow T^*F$
 - $T \rightarrow \cdot F$ $F \rightarrow \cdot (E)$
 - $\mathbf{F} \rightarrow \mathbf{i}$
- I_5 : $F \rightarrow i$
- I₆: $E \rightarrow E + \cdot T$ $T \rightarrow \cdot T * F$ $T \rightarrow \cdot F$ $F \rightarrow \cdot (E)$ $F \rightarrow \cdot i$

- I₇: $T \rightarrow T^* \cdot F$ $F \rightarrow \cdot (E)$ $F \rightarrow \cdot i$
- $I_8: F \rightarrow (E \cdot)$ $E \rightarrow E \cdot + T$
- I_9 : $E \rightarrow E + T \cdot T \cdot *F$
- I_{10} : $T \rightarrow T*F$
- I_{11} : $F \rightarrow (E)$

■ I₁, I₂, and I₉ all contain "shift-reduce" conflicts.

$$I_1: S' \rightarrow E \cdot E \cdot + T$$

$$I_2$$
: $E \rightarrow T$ ·
 $T \rightarrow T \cdot *F$

$$I_9$$
: $E \rightarrow E + T \cdot T \rightarrow T \cdot *F$

$$E \rightarrow T$$
·
 $T \rightarrow T \cdot * F$

Since FOLLOW(E) = {#,) ,+}, action[2, #]=action[2, +]=action[2,)]=r2action[2, *] = s7

	ACTION									
状态	i	+	*	()	#				
2		r2	s7		r2	r2				

- (0) S'→E
- (1) E→E+T
- (2) E→T
- (3) **T**→**T*****F**
- **(4) T**→**F**
- (5) F→(E)
- (6) F→i

			GOTO						
状态	i	+	*	()	#	\mathbf{E}	T	F
0	s 5			s4			1	2	3
1		<u>s6</u>				acc			
2		r2	s7		r2	(r2)			
3		r4	r4		r4	r4			
4	s 5			s4			8	2	3
5		r6	r6		r6	r6			
6	s 5			s4				9	3
7	s 5			s4					10
8		s6			s11				
9		(r1)	s7		(r1)	(r1)			
10		r3	r3		r3	r3			
11		r5	r5		r5	r5			,

Construction for SLR(1) parsing table

- If $A \rightarrow \alpha \cdot a\beta \in I_k$ and $GO(I_k, a) = I_j$, a terminal $\rightarrow ACTION[k, a] = s_j$ (shift)
- If $A \rightarrow \alpha \cdot \in I_k$, then for each $a \in FOLLOW(A) \rightarrow ACTION[k, a] = r_j$ (j = production number in G')
- If $S' \rightarrow S' \in I_k \rightarrow ACTION[k, #] = acc$
- If GO(I_k, A) = I_j, A nonterminal → GOTO[k, A]
 = j
- Any table entry not filled by rules 1–4 → error

Exercise

- **A->aAb** ε
 - □ Construct LR parsing table
 - □ analyze whether aabb is a valid sentence

LR(1)

м

Problem with SLR: The FOLLOW sets used may include more lookahead symbols than actually possible in practice.

■ Example of a non-SLR grammar:

- (0) S'→S
- (1) S→L=R
- (2) S→R
- (3) L→*R
- (4) L→i
- (5) R→L

Canonical LR(0) collection

- (0) S′→S (1) S→L=R (2) S→R
 - (3) L→*R (4) L→i
 - (5) R→L

$$I_{0} \colon S' \rightarrow \cdot S$$

$$S \rightarrow \cdot L = R$$

$$S \rightarrow \cdot R$$

$$L \rightarrow \cdot *R$$

$$L \rightarrow \cdot i$$

$$R \rightarrow \cdot L$$

$$I_2$$
: $S \rightarrow L \cdot = R$
 $R \rightarrow L \cdot$

I₆:
$$S \rightarrow L = \cdot R$$
 $R \rightarrow \cdot L$
 $L \rightarrow \cdot *R$
 $L \rightarrow \cdot i$

$$I_4$$
: $L \rightarrow * \cdot R$

 $I_3: S \rightarrow R$

$$R \rightarrow L$$

$$L \rightarrow R$$

$$L \rightarrow i$$

$$I_7$$
: $L \rightarrow R$

$$I_8: R \rightarrow L$$

 $I_1: S' \rightarrow S$

$$I_5$$
: $L \rightarrow i$

$$I_9: S \rightarrow L = R$$

The FOLLOW sets provide overly broad lookahead information!

LR(k) Analysis

- We need to redefine items so that each item carries k terminal symbols.
- LR(k) item: [A $\rightarrow \alpha \cdot \beta$, $a_1 a_2 \dots a_k$]
- lookahead string : a₁a₂...a_k
- Notes:
 - The lookahead string is meaningful **only for** reduction items $[A \rightarrow \alpha \cdot, a_1 a_2 ... a_k]$.
 - □ For any shift or pending items [$A \rightarrow \alpha \cdot \beta$, $a_1a_2...a_k$] with $\beta \neq \epsilon$, the lookahead string has no effect.

Construction for LR(1) parsing table

- If $[A \rightarrow \alpha \cdot a\beta, b] \in I_k$ and $GO(I_k, a) = I_j$, a terminal $\rightarrow ACTION[k, a] = s_j$ (shift)
- If $[A \rightarrow \alpha \cdot, a] \in I_k \rightarrow ACTION[k, a] = r_j$ (j = production number in G')
- If $[S' \rightarrow S \cdot, \#] \in I_k \rightarrow ACTION[k, \#] = acc (accept)$
- If $GO(I_k, A) = I_j$, A nonterminal $\rightarrow GOTO[k, A] = j$
- Any table entry not filled by rules 1–4 → error

The LR(1) parsing table

	P	CTIO	GC	OTO	
状态	а	b	#	S	В
0	s3	s4		1	2
1			acc		
2	s6	s7			5
3	s3	s4			8
4	r3	r3			
5			r1		
6	s6	s7			9
7			r3		
8	r2	r2			
9			r2		

*

The LR(1) parsing table

- (0) S'→S
- (1) S→L=R
- (2) S→R
- (3) L→*R
- (4) L→id
- (5) R→L

*

- If the parsing table has no conflicts, it is a canonical LR(1) table.
- A parser using it is a canonical LR parser.
- Such a grammar is an LR(1) grammar.
- LR(1) usually has more states than SLR.

LALR

Constructing an LALR(1) parsing table

- Construction of LALR parsing table / Method:
 - □ Combine LR(1) states with the same LR(0) core
- Reason for studying LALR:
 - □ Canonical LR tables have too many states
- Features of LALR:
 - Same number of states as SLR, much smaller than canonical LR tables
 - □ Power is between SLR and canonical LR
 - □ In many cases, LALR is sufficient

- 1, LALR parsing tables have the same number of states as SLR tables
- 2, Merging compatible states does not introduce new shift-reduce conflicts, but may introduce new reduce-reduce conflicts
- 3, On errors, the parser may perform some extra reductions, but no extra shifts

м

Key features of LALR-2

Merging core-identical item sets may cause conflicts.

Such merging does not introduce new shiftreduce conflicts.

After Merging

Before Merging

Merging may introduce new reduce-reduce conflicts.

$$S' \rightarrow S$$

$$S \rightarrow aAd \mid bBd \mid$$

$$aBe \mid bAe$$

$$A \rightarrow c$$

$$B \rightarrow c$$

Before Merging

$$\begin{vmatrix} A \rightarrow c \cdot, d \\ B \rightarrow c \cdot, e \end{vmatrix}$$

$$\begin{vmatrix} A \rightarrow c \cdot, e \\ B \rightarrow c \cdot, d \end{vmatrix}$$

After Merging

$$A \rightarrow c \cdot, d/e$$

 $B \rightarrow c \cdot, d/e$

Key features of LALR-3 Merge 14,17

Key features of LALR-3 bbabba# accepted

bba# Error

Merging

bba#?

Conclusion

- Bottom-up parsing methods:
 - □ LR(0) method
 - □SLR(1) method
 - □ Canonical LR(1) method
 - □ LALR(1) method
- **LR parsing program**

Construction for LR(0) parsing table

- If $A \rightarrow \alpha \cdot a\beta \in I_k$ and $GO(I_k, a) = I_j$, a terminal $\rightarrow ACTION[k, a] = s_j$ (shift)
- $A \rightarrow \alpha \cdot \in I_k \rightarrow ACTION[k, a] = r_j$ for all terminals a (including #)
- If $S' \rightarrow S' \in I_k \rightarrow ACTION[k, #] = acc$
- If $GO(I_k, A) = I_j$, A nonterminal $\rightarrow GOTO[k, A] = j$
- Any table entry not filled by rules 1–4 → error

Construction for SLR(1) parsing table

- If $A \rightarrow \alpha \cdot a\beta \in I_k$ and $GO(I_k, a) = I_j$, a terminal $\rightarrow ACTION[k, a] = s_j$ (shift)
- If $A \rightarrow \alpha \cdot \in I_k$, then for each $a \in FOLLOW(A) \rightarrow ACTION[k, a] = r_j$ (j = production number in G')
- If $S' \rightarrow S' \in I_k \rightarrow ACTION[k, #] = acc$
- If GO(I_k, A) = I_j, A nonterminal → GOTO[k, A]
 = j
- Any table entry not filled by rules 1–4 → error

Construction for LR(1) parsing table

- If $[A \rightarrow \alpha \cdot a\beta, b] \in I_k$ and $GO(I_k, a) = I_j$, a terminal $\rightarrow ACTION[k, a] = s_j$ (shift)
- If $[A \rightarrow \alpha \cdot, a] \in I_k \rightarrow ACTION[k, a] = r_j$ (j = production number in G')
- If $[S' \rightarrow S \cdot, #] \in I_k \rightarrow ACTION[k, #] = acc (accept)$
- If GO(I_k, A) = I_j, A nonterminal → GOTO[k, A] = j
- Any table entry not filled by rules 1–4 → error

LR Parsing Program

```
State Symbol
let a be the first symbol of w;
                                               Analysis Stack
while(1) { /* repeat forever */
       let s be the state on top of the stack;
       if (ACTION[s, a] = shift t) {
                                                                           LR parsing table
              push t onto the stack;
              let a be the next input symbol;
       } else if ( ACTION[s, a] = reduce A \rightarrow \beta ) {
              pop |\beta| symbols off the stack;
              let state t now be on top of the stack;
              push GOTO[t, A] onto the stack;
              output the production A \to \beta;
       } else if ( ACTION[s, a] = accept ) break; /* parsing is done */
       else call error-recovery routine;
```

Figure 4.36: LR-parsing program

Book: Compilers Principles Techniques and Tools (2nd Edition) P251

 $\mathbf{X}_{\mathbf{m}}$

 X_1

 S_1

Input

String

Output

*

goto

 $a_1a_2...a_i...a_n$ #

LR parsing

program

action

Conclusion

■ Differences:

- □ LR(0): Reduces without looking at stack contents or input (no lookahead).
- □ SLR: Reduces by checking only the next input symbol (via FOLLOW set).
- □ LR(1): Reduces by considering both stack contents and 1 lookahead symbol.
- □ LR(k): Reduces by considering both stack contents and k lookahead symbols.

CONSTRUCTION OF AUTOMATA

Method 1: NFA

- Method 1: NFA for viable prefixes
 - ☐ Start state: item 1; all other states are accepting.
 - □Rule 1: If "·" moves over a symbol Xi, add an edge labeled Xi. (X→X₁ ··· X_{i-1} · X_i ··· X_n)
 - Rule 2: If after "·" is a nonterminal **A**, add ε-edges to items of **A**. ($X\rightarrow \alpha \cdot A\beta$, $A\rightarrow \cdot \gamma$)
 - ☐ Then, convert the NFA to DFA.

 $B\!\!\to {}^{{}^{{}^{{}}}}\!\!cB$

B→c ·B

B→cB ·

Method 2: Canonical LR (0) Collection

- The complete set of item sets (states) forming a DFA that recognizes all viable prefixes of a grammar is called the **canonical LR(0) collection** of the grammar.
 - $\square A \rightarrow \alpha$ is called a reduction item
 - \square S' $\rightarrow \alpha$ · is called an accepting item
 - $\square A \rightarrow \alpha \cdot a\beta$ (a $\in VT$) is called a **shift item**
 - $\square A \rightarrow \alpha \cdot B\beta$ (B \in VN) is called a **pending (goto) item**

Augment Grammar

- Assume G is a grammar with start symbol S. We construct G' as follows:
 - ☐ G' includes all of G.
 - □ Add a new nonterminal S' (not in G), with S' as the start symbol.
 - \square Add the production S' \rightarrow S.
- G' is the augmented grammar of G, and it has the accepting state S' → S.

- CLOSURE(I), is defined and constructed as follows:
 - ☐ All items in I are included in CLOSURE(I).
 - □ If A → α·Bβ is in CLOSURE(I), then for every production B → γ , the item B → ·γ is added to CLOSURE(I).
 - □ Repeat steps 1 and 2 until CLOSURE(I) no longer increases.

w

State transition function GO

■ GO is a state transition function. Let I be an item set and X be a grammar symbol. The value of the function GO(I, X) is defined as:

GO(I,X) = CLOSURE(J)

where J

= {any item of the form $\cdot A \cdot \rightarrow \alpha X\beta \mid A \rightarrow \alpha X\beta \in I$ }

Construction of Canonical LR(0) Collection

The transition function **GO** connects the item sets into a DFA transition graph.

*

Ambiguous Grammar

Ambiguous Grammar

- Ambiguous Grammar Characteristics:
 - Not LR grammars
 - Concise and natural
 - Ambiguity can be eliminated with additional information
 - □ Higher parsing efficiency after disambiguation

Ambiguous
$$E \rightarrow E + E \mid E * E \mid (E) \mid id$$
Non-ambiguous
$$E \rightarrow E + T \mid T$$

$$T \rightarrow T * F \mid F$$

$$F \rightarrow (E) \mid id$$

Ambiguous Grammar

Using information beyond the grammar to resolve parsing action conflicts

$$E \rightarrow E + E \mid E * E \mid (E) \mid id$$

Using information beyond the grammar

$$\blacksquare E \rightarrow E + E \mid E * E \mid (E) \mid id$$

Rule: * has higher precedence than +, both are left-associative.

Exercise

How about the following item set?

LR(0) item set I_8

$$E \rightarrow E * E \cdot$$

 $E \rightarrow E \cdot * E \cdot$
 $E \rightarrow E \cdot * E \cdot$

$$extstyle extstyle extstyle extstyle E extstyle extstyle extstyle extstyle E$$

Outline

- Bottom-up Parsing Methods
 - Basic issues in bottom-up parsing
 - □ Canonical reduction
 - Operator-precedence parsing
 - □ LR parsing methods:
 - LR(0) method
 - SLR(1) method
 - Canonical LR(1) method
 - LALR(1) method
 - □ Applying LR methods to ambiguous grammars

Quiz-Canvas

ch5 Syntax Analysis - LR Parsing Table

Dank u

Dutch

Merci French

Спасибо

Russian

Gracias

Spanish

Arabic

감사합니다 धन्यवाद

Hebrew

Tack så mycket

Swedish

Obrigado

Brazilian **Portuguese**

Dankon

Esperanto

Hindi

Thank You!

谢谢

Chinese

ありがとうございます **Japanese**

Trugarez **Breton**

Danke German

Tak **Danish**

Grazie

Italian

நன்றி

Tamil

děkuji Czech

ขอบคุณ

Thai

go raibh maith agat Gaelic

*