Sets	Sets (Slide 1.1.3)			
\mathbb{N}	Set o All Natural Numbers	{0, 1, 2, 3, 4,}		
\mathbb{Z}	Set of All Integers	{, -1, 0, 1,}		
\mathbb{Z}^+	Set of All Positive Integers	{1, 2, 3, 4,}		
\mathbb{Q}	Set of All Rational Numbers	{, -0.5, 0, 0.5,}		
\mathbb{R}	Set of All Real Numbers	$\{, -1, \pi, \sqrt{2}, 4.5,\}$	٦	
\mathbb{C}	Set of All Complex Numbers	{, - <i>i</i> , 0, <i>i</i> ,}		

	Conjunction & Disjunction / Tautology & Contradiction			
Conjunction of p and q : $(p \land q)$		Disjunction of p and q : $(p \lor q)$		
	Tautology: Always true	Contradiction: Always false		

Logical Equivalence ≡		
$p \equiv q - p \& q$ have identical truth values \forall (possible substitution)		$p \& q$ have identical truth values \forall (possible substitutions)

Implication Law			
Statement Type	Statement	Equivalence	
Conditional	$p \rightarrow q$	$\sim p \vee q$	
Negation	$\sim (p \to q)$	<i>p</i> ∧ ~ <i>q</i>	
Converse	$q \rightarrow p$	~q \lor p	
Inverse	$\sim p \rightarrow \sim q$	<i>p</i> ∨ ~ <i>q</i>	
Contrapositive	$\sim q \rightarrow \sim p$	<i>q</i> ∨ ~ <i>p</i>	

If, Only If, Biconditional		
p if q / if q then p /	a . m	
p is a necessary condition for q	$q \rightarrow p$	
p only if q / only if q then p /	$\sim q \rightarrow \sim p$	
p is a sufficient condition for q	p o q	
p iff q / p if and only if q /	$p \leftrightarrow q$	
p is a necessary and sufficient	$(p \to q) \land (q \to p)$	
condition for q	$(\sim q \rightarrow \sim p) \land (\sim p \rightarrow \sim q)$	

Order of Operations (Left to Right)				
()	~	ΛV	$\rightarrow \leftrightarrow$	

Theorem 0.1.1				
Theorem 2.1.1				
Commutative Laws	$p \wedge q \equiv q \wedge p$	$p \lor q \equiv q \lor p$		
Associative Laws	$p \land q \land r \equiv (p \land q) \land r \equiv p \land (q \land r)$ $p \lor q \lor r \equiv (p \lor q) \lor r \equiv p \lor (q \lor r)$			
Distributive Laws		$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$ $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$		
Identity Laws	$p \wedge true \equiv p$	$p \lor false \equiv p$		
Negation Laws	$p \land \sim p \equiv false$	$p \lor \sim p \equiv true$		
Double Negative Laws	$\sim (\sim p) \equiv p$			
Idempotent Laws	$p \wedge p \equiv p$	$p \lor p \equiv p$		
Universal Bound Laws	$p \lor true \equiv true$	$p \land false \equiv false$		
De Morgan's Laws	$\sim (p \land q) \equiv \sim p \lor \sim q$	$\sim (p \lor q) \equiv \sim p \land \sim q$		
Absorption Laws	$p \lor (p \land q) \equiv p$	$p \land (p \lor q) \equiv p$		
Variant Absorption Laws (Assignment 1)	$p \vee (\sim p \wedge q) \equiv p \vee q$	$p \wedge (\sim p \vee q) \equiv p \wedge q$		

Negation of	T and F	\sim true \equiv false	$\sim false \equiv true$	
Arguments	(Valid and Sour	nd)		
Valid	All premises tr	rue ∧ Conclusion true		
Valid Conclusions in all critical row is true				
Invalid There is a critical row which the conclusion is false			lusion is false	
Critical Row: All premises are true				
Sound Valid ∧ All premises true				
Unsound Not sound ie ~Valid v Contradictory Premise				
Valid & Unsound: Contradictory Premise (Vacuously True)				

Rules of Inference				
Inference	Premise 1	Premise 2	Conclusion	
Modus Ponens	$p \rightarrow q$	р	∴ q	
Modus Tollens	$p \rightarrow q$	~q	∴ ~p	
Generalisation	p q			
Specialisation	$p \wedge q$ $p \wedge q$		∴ p ∴ q	
Conjunction	p	q	$\therefore p \land q$	
Elimination	<i>p</i> ∨ <i>q</i> <i>p</i> ∨ <i>q</i>	~p ~q	∴ q ∴ p	
Transitivity	$p \rightarrow q$	$q \rightarrow r$	$\therefore p \to r$	
Contradiction	$\sim p \rightarrow false$		∴ p	
Proof by Division into Cases	$p \lor q$	$(p \to r) \land (q \to r)$	∴ <i>r</i>	

Predicate Lo	Predicate Logic			
Predicate In the form of $P(x)$, becomes statement when x has value				
Domain	Domain Set of values that substitute x			
Truth Set $\{x \in D P(x)\}$ where D is Domain of x				

1	Universal Statements & Exister	tatements			
ł	Universal Statement		$\forall x \in D, P(x)$		
J	Existential Statement		$\exists x \in D, P(x)$		
	Unique Existential Statement		$\exists ! x \in D, P(x)$		
Negation of Universal Statement		$\exists x \in D(\sim P(x))$			
4	Negation of Existential Statement		$\forall x \in D(\sim P(x))$		
	Negation of UE Statement $(\forall x)$		$\in D, \sim P(x) \setminus \{\{x \in D, P(x)\}\} \geq 2$		

Rules of Inference for Quantified Statements					
Name Premise Conclusion			Conclusion		
Universal Instantiation	$\forall x \in D\big(P(x)\big)$		$\therefore P(a) \text{ if } a \in D$		
Universal Generalization	$P(a)$ for every $a \in D$		$\therefore \forall x \in D(P(x))$		
Existential Instantiation $\exists x \in D(P(x))$ $\therefore P(a)$ for some a		a) for some $a \in D$			
Existential Generalization $P(a)$ for some $a \in D$		$\therefore \exists x \in D\big(P(x)\big)$			

ı	
	Direct Proof & Counterexample
ı	Proving existential statements by constructive proof.

An existential statement: $\exists x \in D(Q(x))$ is true iff Q(x) is true for at least one x in D. To prove such statement, we may use constructive proofs of existence:

- 1) Find an x in D that makes Q(x) true; or
- 2) Give a set of directions for finding such an x.

Disproving universal statements by counterexample.

Given a universal (conditional) statement: $\forall x \in D(P(x) \to Q(x))$. Showing this statement is false is equivalent to showing that its negation is true. The negation of the above statement is an existential statement:

 $\exists x \in D(P(x) \land \sim Q(x)).$

Find a value of x in D for which the hypothesis P(x) is true but the conclusion Q(x) is false. Such an x is called a counterexample.

Proving universal statements by exhaustion.

Given a universal conditional statement: $\forall x \in D \ (P(x) \to Q(x))$. When D is finite or when only a finite number of elements satisfy P(x), we may prove the statement by the method of exhaustion.

Proving universal statements by generalizing from the generic particular (arbitrarily chosen element).

To show that every element of a set satisfies a certain property, suppose x is a particular but arbitrarily chosen element of the set, and show that x satisfies the property.

Indirect Proof

Proof by contradiction

- 1) Suppose the statement to be proved, S, is false. That is, the negation of the statement, $\sim S$, is true.
- 2) Show that this supposition leads logically to a contradiction.
- 3) Conclude that the statement S is true.

Proof by contraposition (Contrapositive of $p \to q$ is $\sim q \to \sim p$)

- 1) Statement to be proved: $\forall x \in D(P(x) \to Q(x))$.
- 2) Rewrite the statement into its contrapositive form:

 $\forall x \in D(\sim Q(x) \to \sim P(x)).$

- 3) Prove the contrapositive statement by a direct proof.
- 3.1) Suppose x is an (particular but arbitrarily chosen) element of D s.t. Q(x) is false.
- 3.2) Show that P(x) is false.
- 4) Therefore, the original statement $\forall x \in D (P(x) \to Q(x))$ is true.

Proven (Methods of Proof)					
n is even	$\exists k \in \mathbb{Z}(n=2k)$				
n is odd	$\exists k \in \mathbb{Z}(n=2k+1)$				
n is prime	$(n > 1) \land \forall r, s \in \mathbb{Z}^+$ $(n = rs \Rightarrow (r = 1 \land s = n) \lor (r = n \land s = 1))$				
n is prime (alt)	$(n > 1) \land (\forall r, s \in \mathbb{Z}((r > 1) \land (s > 1) \rightarrow rs \neq n))$				
n is prime (alt) (Lec 4 Slide 7)	$(n \neq 1) \land \forall y, z \in \mathbb{Z} (x = yz \rightarrow ((y = x) \lor (y = 1)))$				
n is composite	$\exists r, s \in \mathbb{Z}^+ \big(n = rs \land (1 < r < n) \land (1 < s < n) \big)$				
n is rational	$\exists a, b \in \mathbb{Z}^+ \left(n = \frac{a}{b} \land b \neq 0 \right)$				
$d n(d,n\in Z)$	$\exists k \in \mathbb{Z}(n = dk)$				

Lecture 4 Slide 16				Pairwise Disjoint S	Sets A	$A_i \cap A_i = \emptyset$ whenever $i = \emptyset$	≠ i			$\forall x \in A, \forall y \in B((y,x) \in R^{-1} \Leftrightarrow (x,y) \in R)$	
(Example #4) The sum of any two even integers is even.			I.A. A. A. I where A. A. are mutually disjoint			"Divides" Relation	nns•l f	$\forall (d, n) \in \mathbb{Z} \times \mathbb{Z}[(d n \Leftrightarrow \exists k \in \mathbb{Z}(n = dk))]$			
Lecture 4 Slide 19	(Theorem 4.2.1)			Partition of Set $\{A_1, A_2,, A_n\}$ where $A_1, A_2,, A_n$ are mutually disjoint subsets of A and $\bigcup_{i=0}^{n} A_i = A$			Relation on a se		$\forall (a_1, a_h) \in A \times A$		
(5 th : 4.3.1)	,	Every integ	er is a rational number.		0000000.11	. aa ∪ _{l=0} _l		A^n	C 71	$A^n = A \times A \times \times A(n \text{ times})$	
Lecture 4 Slide 20	(Theorem 4.2.2)	The sum of	any two rational numbers	Theorem 6.2.1 (So	me Subset B	Relations) *For all sets A	1 R and C	1	D itala. C	$\forall x \in A, \forall z \in C$	
(5th: 4.3.2)	,	is rational.	•	Inclusion of Inters		(a) $A \cap B \subseteq A$ (b) A		Composition of $R \subseteq A \times B$,		$(xS \circ Rz \Leftrightarrow (\exists y \in B(xRy \land ySz)))$	
Lecture 4 Slide 21	Th			Inclusion in Union		(a) $A \subseteq A \cup B$ (b) B		1			
(Corollary 4.2.3)			ational number is rational.	Transitive Property		$A \subseteq B \land B \subseteq C \rightarrow A$		Composition is Associative $T \circ (S \circ R) = (T \circ S) \circ R = T \circ S \circ R$		(-) (-)	
(5th: 4.2.3)	(Cord	ollary: Simple	e deduction from theorem.)	$a \in X \cup Y$	$a \in X \vee a$		$a \in X \land a \in Y$	Inverse of Comp	osition	$(S \circ R)^{-1} = R^{-1} \circ S^{-1}$	
Lecture 4 Slide 24	(Theorem 4.3.1)	For all posi	tive integers, a and b , if	$a \in X \cup Y$	$a \in X \land a$		$a \notin X$				
(5 th : 4.4.1)		a b, then a	$\leq b$.	$(a,b) \in X \times Y$	$a \in X \land b$		u ∉ Λ	Properties of Re	lations (Rela	ation R on set A)	
Lecture 4 Slide 25	(Theorem 4.3.2)	The only di	visors of 1 are 1 and -1.	$(u, v) \in X \times I$	$u \in X \cap D$			Reflexive		$\forall x \in A(xRx)$	
(5th: 4.4.2)		-		Th C O O C	. lala :: 4: a a + F	Tanallasta A.D. and C		Symmetric		$\forall x, y \in A(xRy \Rightarrow yRx)$	
Lecture 4 Slide 26	(Theorem 4.3.3)	For all integ	gers a , b and c , if $a b$ and			For all sets A,B and C	4 o D D o 4	Transitive		$\forall x, y, z \in A(xRy \land yRz \Rightarrow xRz)$	
(5th: 4.4.3)		b c then $a $	<i>c</i> .	Commutative Law	/S	$A \cup B = B \cup A$	$A \cap B = B \cap A$	Equivalence (~)		ve, Symmetric, Transitive	
Lecture 4 Slide 29	(Theorem 4.6.1)	There is no	greatest integer.	Associative Laws		$(A \cup B) \cup C =$	/	Class of a ([a])		$\{x \in A a \sim x\} \qquad \forall x \in A (x \in [a]_{\sim} \Leftrightarrow a \sim x)$	
(5th: 4.7.1)				-		$(A \cap B) \cap C =$ $A \cup (B \cap C) = (A \cap B)$		Quotient of set A	1 by Set of a	all equivalence classes wrt ~	
Lecture 4 Slide 32			n , if n^2 is even then n is	Distributive Laws		$A \cup (B \cap C) = (A \cap (B \cup C)) = (A \cap (B \cup C)) = (A \cap (B \cup C))$		~		$A/\sim = \{[x]_\sim : x \in A\}$	
(Proposition 4.6.4				Identity Laws		$A \cap (B \cup C) = (A$ $A \cup \emptyset = A$	$A \cap U = A$	Antisymmetric		$\forall x, y \in A(xRy \land yRx \Rightarrow x = y)$	
Tutorial 1 Q10			integers is an odd integer.	Complement Law	9	$A \cup \emptyset = A$ $A \cup \bar{A} = U$	$A \cap \bar{A} = \emptyset$	~ Antisymmetric	;	$\exists x, y \in A(xRy \land yRx \land x \neq y)$	
Tutorial 1 Q11	For all integers a	n,n^2 is odd i	ff n is odd.	Double Complement		$\bar{A} = A$	Λ11Λ – Ψ	Asymmetric		$\forall x, y \in A(xRy \Rightarrow yRx)$	
Tutorial 2 Q11			ive integers a and b , then	Idempotent Laws	ent Laws	$A = A$ $A \cup A = A$	$A \cap A = A$	Tutorial 4 Qn 8		Asymmetric relation is Antisymmetric	
Tutoriat 2 Q 1 1	$a < n^{1/2}$ or $b <$			Universal Bounds	Lawe	$A \cup U = U$		Partial Order		ve, Antisymmetric, Transitive	
Tutorial 2 Q4	Futorial 2 Q4 Rational numbers are closed under addition.		1117		$\overline{A \cap B} = \overline{A} \cup \overline{B}$	Tartiat Order	((ℝ,≤)	(U,\subseteq) ((\mathbb{Z}^+ ,): Proven)			
Tutorial 2 Q8 $\forall x \in \mathbb{R}((x^2 > x) \to (x < 0) \lor (x > 1))$		Absorption Laws		$A \cup B = A \cap B$ $A \cup (A \cap B) = A$	$A \cap (A \cup B) = A$	+					
			Complements of U and \emptyset $\overline{U} = \emptyset$ $\overline{\emptyset} = U$ Transitive Closure of $R: R^t$								
Sets			Set Difference Lav		Relation obtained with least ordered pairs added to ensure training $A \setminus B = A \cap \overline{B}$			t ordered pairs added to ensure transitivity in			
Set-Roster Notation	on {1, 2,	3,}		* Note that Logical Equivalence and Set Properties are similar, as they are $\frac{1}{2}$							
Set-Builder Notati	ion $\{x \in A\}$	U P(x)		special cases of the same general structure Boolean Algebra			Transitive R	$\subseteq R^t$	$dS \in U((S \text{ is transitive}) \land (R \subseteq S) \rightarrow R^t \subseteq S)$		
Replacement Not	ation $\{t(x)\}$	$ x \in A $		special cases of th	e same gene	rai structure Boolean A	ugebra				
Membership of Se	- , ,	: x is an eler	ment of S				Reflexive Closure of R (Tutorial 4 Qn 7)				
Cardinality of Set	(ISI) SI: S	size of set S		Proven (Sets)			The smallest relation on A that is reflexive and contains R as a subset.				
	$x \in A \Rightarrow x \in B$	$A \subsetneq B$	$A \subseteq B \land A \neq B$	Lecture 5 Slide 22	`	$\mathbb{Z} x^2=1\} = \{1,-1\}$		$\forall x, y \in A(xSy \Leftrightarrow (x = y) \lor (xRy))$			
	$x \in A \land x \notin B$	A = B	$\{ \forall x \in A \Leftrightarrow x \in B \}$	Lecture 5 Slide 31	Quo	tient-Remainder Theo		Reflexive F		$S' \in U((S' \text{is reflexive}) \land (R \subseteq S') \rightarrow S \subseteq S')$	
	$ a \in A \land b \in B $	$A \setminus B$	$\{x \in U x \in A \land x \notin B\}$	(Theorem 4.4.1)		$\forall n \in \mathbb{Z}, d \in \mathbb{Z}^+$	**				
• • • •	$U x \in A \lor x \in B$		$\{x \in U x \in A \land x \in B\}$,	(1)	$((n = dq + r) \wedge (0$		Partition of a set	. 1		
	$U \mid x \notin A$	$\mathcal{P}(A)$	$\{S \subseteq U S \subseteq A\}$	Lecture 5 Slide 46		$(A \setminus B) \cup (A \setminus B) = A \text{ for al}$				ho following holds	
	$U x \in A_i$ for at l			Tutorial 3 Qn 3	Let	Let $ A = n$, $ B = k$, then $ \mathcal{P}(A \times B) = 2^{nk}$		C is a partition of a set A if the following hold: (1) C is a set of which all elements are non-empty subsets of A, i.e.,			
	$U x \in A_i$ for all			Tutorial 3 Qn 5				$\emptyset \neq S \subseteq A$ for all.		ements are non-empty subsets of A, i.e.,	
Lecture 5 Slide 34			Tutorial 3 Qn 6				11.		evactly one element of C i.e.		
(Cardinality of Power Set of Cardinality		Tutorial 3 Qn 7 $A \otimes B = (A \setminus B) \cup (B \setminus A)$		(2) Every element of A is in exactly one element of C , i.e., $\forall x \in A \exists S \in C (x \in S)$ and							
a Finite Set) $ \mathcal{P}(A) = 2^n$			$A \otimes B = (A \cup B) \setminus (A \cap B)$		$\forall x \in A \ \forall S1, S2 \in C \ (x \in S1 \land x \in S2 \Rightarrow S1 = S2).$						
•	Supp	ose A is a fir	nite set with n elements,	Tutorial 3 Qn 8		$A \subseteq B \Leftrightarrow A \cup$	B = B	Partition Definiti	•	$\forall x \in A \exists ! S \in C(x \in S)$	
Lecture 5 Slide 35 (Theorem 6.3.1) the $\mathcal{P}(A)$ has 2^n elements. In other words, $ \mathcal{P}(A) = 2^{ A }$.						Induced Relatio		$\in A(xRy \Leftrightarrow \exists S \in C(x,y \in S))$			
		Relations			partition	-	reflexive, symmetric, and transitive (proven)				
Equality of Ordere	Equality of Ordered <i>n</i> -tuples, $\forall n \in \mathbb{Z}^+$ $(x_1 = y_1) \land (x_2 = y_2)$			Relation (binary) xRy $\forall (x,y) \in A \times B(xRy \Leftrightarrow (x,y) \in R)$			Partition	V 19.1	choose, symmetric, and transitive (proven)		
$(x_1, x_2,, x_n) = (y_1, y_2,, y_n)$ $\wedge \wedge (x_n = y_n)$			"x is R-related to y" $\forall (x,y) \in A \times B(xRy \Leftrightarrow (x,y) \notin R)$			Double Ondoned Cat (Doort)					
Cartesian Product of Sets $A_1 \times A_2 \times \cdots \times A_n = \{a_1, a_2, \cdots, a_n\}$			Domain of R: $Dom(R)$ { $a \in A aRb \ for \ some \ b \in B$ }			Partial Ordered Set (Poset) A set A is called a partially ordered set (or poset) with respect to a partial					
$\begin{vmatrix} A_1, A_2, \dots, A_n \\ A_1 \in A_1 \land a_2 \in A_2 \land \dots \land a_n \in A_n \end{vmatrix}$			Co-Domain of R: $coDom(R)$ B					,			
If A is a set, then			$. \times A $ ($n $ many A 's)	Range of R: $Range(R)$ $\{b \in B \mid aRb \text{ for some } a \in A\}$				order relation R	on A, aenot	eu by (A, K).	
Disisist Cata	107			Inverse Poletion: I	2-1	$x > C D \times A_1(x, y) \subset D$		1			

 $\{(y,x)\in B\times A\colon (x,y)\in R\}$

Inverse Relation: R^{-1}

Disjoint Sets

 $A \cap B = \emptyset$

Lecture 6 Slide 71 (Notation ≼)	Because of the special paradigmatic role played by the \leq relation in the study of partial order relations, the symbol \leq is often used to refer to a general partial order, and the notation $x \leq y$ is read "x is curly less than or equal to y".
Hasse Diagram	Let \leq be a partial order on a set A . A Hasse diagram of \leq satisfies the following condition for all distinct x , y , $m \in A$: If $x \leq y$ and no $m \in A$ is such that $x \leq m \leq y$, then x is placed below y with a line joining them, else no line joins x and y .
x, y comparable	$(x \le y) \lor (y \le x)$
x, y noncomparable	$\sim (x \le y) \land \sim (y \le x)$
x, y compatible	$\exists z \in A \big((x \leqslant z) \land (y \leqslant z) \big)$
Tutorial 5 Qn 11	Any two comparable elements are compatible. Any two compatible elements are not always comparable. Eg (\mathbb{Z}^+ ,): 2,3
Maximal Element	$\forall x \in A(c \leqslant x \Rightarrow c = x)$
Minimal Element	$\forall x \in A(x \leqslant c \Rightarrow c = x)$
Largest Element	$\forall x \in A(x \leqslant c)$
Smallest Element	$\forall x \in A(c \leq x)$
_	atest Element = Maximum east Element = Minimum
Chain	$(C \subseteq A) \land (\forall x, y \in C(x \le y \lor y \le x))$
Maximal Chain	$\operatorname{Chain}(C) \land (t \notin C \Rightarrow \sim \operatorname{Chain}(C) \cup \{t\})$
Total Order Relation	R is a partial order and $\forall x, y \in A(xRy \lor yRx)$
Linearization	Let \leq be a partial order on a set A . A linearization of \leq is a total order \leq * on A : $\forall x, y \in A(x \leq y \Rightarrow x \leq^* y)$
Well-Ordered Set	$\forall S \in \mathcal{P}(A), S \neq \emptyset \Rightarrow \big(\exists x \in S \forall y \in S (x \leqslant y)\big)$ le Every non-empty subset of A has a smallest element. Eg (\mathbb{N}, \leq) is well-ordered, (\mathbb{Z}, \leq) is not.

Kahn's Algorithm to finding Linearization on a partial order set Input: A finite set A and a partial order \leq on A.

- 1. Set $A_0 := A$ and i := 0.
- 2. Repeat until $A_i = \emptyset$
- 2.1. find a minimal element c_i of A_i wrt \leq
- 2.2. set $A_i + 1 = A_i \setminus \{c_i\}$ 2.3. set i := i + 1

Output: A linearization $\leq *$ of \leq defined by setting, for all indices $i, j, c_i \leq *$ $c_j \Leftrightarrow i \leq j$.

Proven (Relations)					
Tutorial 4 Qn 2	(i) R is symmetric, ie $\forall x, y \in A(xRy \Rightarrow yRx)$ (ii) $\forall x, y \in A(xRy \Leftrightarrow yRx)$ (iii) $R = R^{-1}$				
Tutorial 4 Qn 5	(i) R is an equivalence relation				

		Teh Xu An			
٦		$(ii) R^{-1} \circ R = R \circ R^{-1}$	ίſ		
l		(iii) $R \subseteq R \circ R$	Ш		
l		$(iv) R \circ R \subseteq R$	lF		
l		$(V) R \circ R^{-1} = R$			
	Tutorial 4 Qn 6	R is an equivalence relation $\Leftrightarrow R \circ R = R$			
1	Tatoriat 4 Qir o	$S = \{(m, n) \in \mathbb{Z}^2 : m^3 + n^3\}$	ŀ		
		$S = \{(m, n) \in \mathbb{Z} : m + n \}$ $S^{-1} = S$	ŀ		
	Tutorial 4 Qn 9	S - S $S \circ S = S$			
l			H		
ı		$S \circ S^{-1} = S$ $\forall a, b \in \mathbb{Z} \setminus \{0\} (a \sim b \Leftrightarrow ab > 0)$	H		
l	Tutorial 4 Qn 10	$\sim is$ an equivalence relation.	H		
1		Congruence module 3 defined as:	١,		
-	Lecture 6 Slide 27	•			
_	(Example #12)	$\forall x, y \in z(xRy \Leftrightarrow 3 (x-y))$ is reflexive,	ı		
		symmetric and transitive.	Ш		
	Lecture 6 Slide 39	Relation Induced by a Partition is reflexive,	lŀ		
l	(Theorem 8.3.1)	symmetric and transitive.	11		
	Lecture 6 Slide 47	(i) $x \sim y$ equivalent $\forall x, y \in A$			
]	(Lemma Rel.1	(ii) [x] = [y]	lt		
	Equivalence classes)	$[(iii)[x] \cap [y] \neq \emptyset$	╟		
1		If A is a set and R is an equivalence relation on A ,	╟		
1	Lecture 6 Slide 50	then the distinct equivalence classes of $\it R$ form a			
	(Theorem 8.3.4)	partition of A ; that is, the union of the equivalence	1		
l	(1110010111 0.0.4)	classes is A , and the intersection of any two			
1		distinct classes is empty.	ŀ		
1	Lecture 6 Slide 52	Congruence module <i>n relation</i> :	Ш		
1	Locitare o otrac oz	$\forall x, y \in \mathbb{Z} \left(xRy \Leftrightarrow n \middle (x - y) \right) \text{ iff } a \equiv b \pmod{n}$			
1	Lecture 6 Slide 54	Congruence-mod n is an equivalence relation on ${\mathbb Z}$	Ľ		
	(Proposition)	for every $n \in \mathbb{Z}^+$	ļ		
	Lecture 6 Slide 57	Equivalence classes for a partition.	Ц		
1	(Theorem Rel.2)	ie A/\sim is a partition of A .	-		
l	Summary				
	Informal descr	riptions of the terms $\int_{a}^{b} \mathbf{Y}_{k}$	ľ		
_		$f = \frac{p}{m}$	L		
ı	 underlying set components 	A the set to be "partitioned" S subsets of A, mutually disjoint,	lĽ		
ł	3. partition	together union to A $A = \{b, e, f, k, m, p\}$ To the set of all components	ال		
١	4. same-component		lŀ		
	 underlying set relation 	A the set of all vertices R the set of all arrows	IF		
١	3. equivalence relat	ion ~ if ignoring directions of arrows	١ŀ		
I		one can walk from x to y , then $\nabla = \{\{b, p\}, \{f, m\}, \{k\}, \{e\}\}\}$ there is an arrow from x to y	Ī		
l	 equivalence class quotient 	tes $[x]$ connected components A/\sim the set of all connected components			
		1000	ŀ		
			١Į		
l		Can Sec	Ī		
l	Lecture 6 Slide 69	is a partial order relation on $A \in \mathbb{Z}^+$	١,		
J	(Example #20)		Ī		
		Consider a partial order \leq on a set A . Any smallest	١		
١	Lecture 6 Slide 83	element is minimal.	lt		
		Likewise, any largest element is maximal.	ij		
١			ď		
1	Functions		lŀ		
ı	Francisco Daginisi	C V V V - V-I - V() - C	11		

 $f: X \to Y \Leftrightarrow \forall x \in X \exists ! y \in Y(x, y) \in f$

Function Definition

Function Type In the form $f:(X_1, X_2,) \rightarrow ($						
	(Y)					
Signature Male Islam (M ₁ , M ₂ ,)						
$f: x \mapsto y \to x$ is argument of						
Image, Preimage $f(x)$, the output of f for the input of f for the						
f(x) = y, y is image of x under f/x is p						
Setwise Image $f: X \to Y \Rightarrow f: \mathcal{P}(X) \to \mathcal{P}(Y)/f(A) = \{$	$f(x): x \in A$					
Setwise Preimage $f: X \to Y$	v (() = D)					
$\Rightarrow f^{-1}: \mathcal{P}(Y) \to \mathcal{P}(X)/f^{-1}(B) = \{x \in A : B : B : A \in B : A \in B : B : A : A \in B : A : A \in B : A : A : A : A : A : A : A : A : A :$						
Domain/Codomain $f: A \rightarrow B \Rightarrow Domain: A, Co-Domain B \Rightarrow Domain: A, Co-Domain: A, Co-Domai$						
Range $f: A \to B \Rightarrow \text{Range}: \{b \in B: b = f(a)\}$						
A sequence $a_0, a_1, a_2,$ can be represented	by a function					
Sequences $a \text{ whose domain is } Z_{\geq 0} \text{ that satisfies } a(n) = A^{\infty} - Saa(A) - \exists n \in \mathbb{Z} $	a whose domain is $Z_{\geq 0}$ that satisfies $a(n) = a_n \forall n \in Z_{\geq 0}$ $A^{\infty} = Seq(A) = \exists n \in Z. Z_{\geq n} \to A$					
Fibonacci $\forall n \in Z_{\geq 0}, F_0 = 0, F_1 = 2, F_{n+2} = F_n$	- A					
11-						
String over $A: a_0 a_1 \dots a_{l-1}, l \in \mathbb{Z}_{\geq 0}, a_0,$						
String $\in A$ where l is length of string, Empty $A^* = Str(A) = \exists m \in \mathbb{Z}, l \in \mathbb{Z} [m, m]$						
$A^* = Str(A) = \exists m \in Z, l \in Z_{\geq 0}. [m, m]$ Equality of Seq. $(g(n) = g_n) = (h(n) = h_n) \forall m \in Z_{\geq 0}.$						
Equality of Seq $(a(n) = a_n) = (b(n) = b_n) \forall n \in \mathbb{R}$	$L \leq L_{\geq 0}$					
Equality of String $s_1 = s_2 \Leftrightarrow (a_i = b_i) \forall i \in \{0, 1,, f: A \rightarrow B, g: C \rightarrow D \text{ then}$	l - 1}					
Function Equality $f: A \to B, g: C \to D$ then						
$J = g \Leftrightarrow (A = C) \land (B = D) \land (J(x) = C)$						
Injection (1 to 1) $\forall x_1, x_2 \in X(f(x_1) = f(x_2) \Rightarrow x_1$	$= x_2$)					
Surjection (Onto) $\forall y \in Y \exists x \in X \big(y = f(x) \big)$						
Bijection (Inj + Sur) $\forall y \in Y \exists ! x \in X (y = f(x))$						
a/f^{-1} inverse of $f \Leftrightarrow$						
Inverse $\forall x \in X \forall y \in Y (y = f(x) \Leftrightarrow x = f(x))$	q(v)					
Uniqueness of						
Inverse g_1 and g_2 are inverses of $f: X \to Y =$	g_1 and g_2 are inverses of $f: X \to Y \Rightarrow g_1 = g_2$					
Theorem 7.2.3 $f: X \to Y$ is bijective $\Leftrightarrow f^{-1}: Y \to X$ is	s bijective					
$f: X \to Y$ is bijective $\Leftrightarrow f$ has an i	nverse					
Composition of $(g \circ f)(x) = g(f(x)) \forall x \in \mathbb{R}$	$(a \circ f)(x) = a(f(x)) \forall x \in Y$					
FullCuon						
Theorem 7.3.1 $id_X(x) = x, f \circ id_X = f, id_Y \circ f$						
Theorem 7.3.2 $f^{-1} \circ f = id_X \text{ and } f \circ f^{-1} = id_X$	id_Y					
Theorem 7.3.4 $(h \circ g) \circ f = h \circ (g \circ f)$						
Lecture 7 Slide 53 Function Composition is not commutat	ive					
Theorem 7.3.3 $f: X \to Y \text{ and } g: Y \to Z \text{ inj} \Rightarrow g \hookrightarrow X$						
Theorem 7.3.4 $f: X \to Y \text{ and } g: Y \to Z \text{ sur } \Rightarrow g \hookrightarrow G$						
Well Defined						
Function $\forall x_1, x_2 \in X, \forall f: X \to Y, x_1 = x_2 \Rightarrow f(x)$	$a_1 j = f(x_2)$					
Well Defined Prop	\ (()					
wrt Eq Relation ~ $\forall x_1, x_2 \in X, \forall f: X \to Y, x_1 \sim x_2 \Rightarrow f(x_1, x_2) \Rightarrow f(x_2, x_3) \Rightarrow f(x_3, x_4) \Rightarrow f(x_1, x_2) \Rightarrow f(x_2, x_3) \Rightarrow f(x_3, x_4) \Rightarrow f(x_4, x_4) $	$(x_1) \sim f(x_2)$					
Well Defined Prop $\forall x_1, x_2 \in X, \forall f: X \rightarrow Y, [x_1] = [x_2] = 0$	$\Rightarrow [f(x_1)]$					
wrt Eq Class [x] $= [f(x_2)]$	0 6.151					
Quotient Z/\sim_n $Z_n = Z/\sim_{n, \text{ where }} \sim_n$ is congruence-mod- n r	elation on Z					
Addition on Z_n $\begin{bmatrix} z_1 \\ z_2 \end{bmatrix}$ $\begin{bmatrix} z_1 \\ z_3 \end{bmatrix}$ $\begin{bmatrix} z_2 \\ z_3 \end{bmatrix}$ $\begin{bmatrix} z_3 \\ z_$						
Multiplication on Z_n $ [x], [y] \in Z_n \Rightarrow [x] + [y] = [x] $ $ [x], [y] \in Z_n \Rightarrow [x] \cdot [y] = [x] $						
i n						
Lecture 7 Slide 64 Proposition: Multiplication on Z_n is we						
Sequence 2.0 $a_m, a_{m+1}, a_{m+2},, a_n$: when	re ndov					
$k \text{ in } a_k \text{ is called subscript of is}$	nuex					

Seq Explicit Form	$a_k = f(k) \forall k \in \mathbb{Z}$	
Seq Comprehension	$a = [(f(k): k \in Z]]$ Type Signature Seg(0) = ([1, m),, 0)	
	Type Signature: $Seq(Q) = ([1, \infty) \to Q)$ $\{k \in U: R(x)\}: P(U),$	4
Set Builder	$\{k \in U: R(x)\}: P(U),$ Where $R(x)$ is predicate/ $R: U \rightarrow Bool$	ļ
	$\{f(k): k \in S\}: P(B) \text{ Where } k \in S \text{ and }$	+
Set Replacement	$f(k)$ is replacement $f(S) \rightarrow B$	ļ
	$\{f(k_1, k_2): k_1 \in S_1, k_2 \in S_2, R(k_1, k_2)\}: P(S_3)$	7
	$R: S_1 \times S_2 \to Bool, f: S_1 \times S_2 \to S_3$	
Set Comprehension	1 replacement, multiple generators and	
	predicates	
	$\sum_{k=m}^{n} a_k = \begin{cases} a_m + a_{m+1} + \dots + a_n & m \le n \\ 0 & m > n \end{cases}$	_
Summation Notation		
	$\Sigma : (Int, Int, Seq(Q)) \to Q$	
	k:Index, m:lower limit, n:upper limit	_
	$\prod_{k=m}^{n} a_k = \begin{cases} a_m \cdot a_{m+1} \cdot \dots \cdot a_n & m \le n \\ 1 & m > n \end{cases}$	
Product Notation	$ \Pi_{k=m}^{k} a_k = \begin{cases} \dots & \dots \\ 1 & m > n \end{cases} $ $ \Pi_{k=m}^{n} a_k = (\prod_{k=m}^{n-1} a_k) \cdot a_n $	
	$\prod_{k=m}^{\lfloor n \rfloor} a_k = (\prod_{k=m} a_k) a_k$ $= (\lfloor n \rfloor, \lfloor n \rfloor, \lfloor s \rfloor, \lfloor s \rfloor) \rightarrow Q$	
	$\sum_{k=m}^{n} a_k + \sum_{k=m}^{n} b_k = \sum_{k+m}^{n} (a_k + b_k)$	-
Theorem 5.1.1	$ \begin{array}{ll} \sum_{k=m}^{k} a_k & \sum_{k=m}^{k} b_k - \sum_{k+m} (a_k + b_k) \\ c \cdot \sum_{k=m}^{n} a_k & = \sum_{k=m}^{n} c \cdot a_k \end{array} $	
Lecture 7 Slide 17	$\prod_{k=m}^{n} a_k \cdot \prod_{k=m}^{n} b_k = \prod_{k=m}^{n} (a_k \cdot b_k)$	
Lecture 7 Slide 20	$\sum_{k=m}^{n} f(k) = \sum_{i=m}^{n} f(i), \prod_{k=m}^{n} f(k) = \prod_{i=m}^{n} f(i)$	
	$a_k = a_{k-1} + d \Leftrightarrow a_n = a_0 + dn,$	
Arithmetic Seq	$\sum_{k=0}^{n-1} a_k = \frac{n}{2} (2a_0 + (n-1)d)$	
	$a_k = ra_{k-1}, \forall k \ge 1 \Leftrightarrow a_n = a_0 r^n, \forall n \ge 0$	-
Geometric Seq		
	$\sum_{k=0}^{n-1} a_k = a_0 \left(\frac{1-r^n}{1-r} \right), r \neq 1$	
Squares Seq	$[k * k : k \in [1]] = 1,4,9,16,$	
	$[tri(k): k \in [1]] = 1,3,6,10,$ where	
Triangle Seq	$tri(n) = \begin{cases} 1 & n = 1\\ n + tri(n-1) & n > 1 \end{cases}$	
	(n + tri(n-1) n > 1	
	$[F(k): k \in [1]] = 1,1,2,3,$ where	
Fibonacci Seq	$F(n) \begin{cases} 1 & n=1 \\ 1 & n=2 \end{cases}$	
•	$F(n) \begin{cases} 1 & n=2 \\ F(n-1) + F(n-2) & n > 2 \end{cases}$	
	$\begin{cases} F(n-1) + F(n-2) & n \ge 3 \\ [cuts(k): k \in [0 \dots]] = 1,2,4,7,11, \dots \text{ where} \end{cases}$	_
Lazy Caterer's Seq		
	$cuts(k) = (k^2 + k + 2)/2$	_

D (E ::)								
Proven (Functions)								
Tutorial 6 qn 4	$f: A \to B, g: B \to C$ then $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$							
Left Inverse	g left inv of $f \Leftrightarrow g(f(a)) = a \forall a \in A$							
Left Inverse (Not Proven)	g left inv of $f \Leftrightarrow f$ is injective							
Right Inverse	h right inv of $f \Leftrightarrow f(h(b)) = b \forall b \in B$							
Right Inverse (Not Proven)	h right inv of $f \Leftrightarrow f$ is injective							
Tutorial 6 qn 7	$g \circ f$ is inj $\Rightarrow f$ is inj							
Order of Bijection	smallest $n \in Z^+ (f \circ f \circ \circ f) = id_A$							
Tutorial 6 qn 8	n-many f							
Tutorial 6 gn 9	$f: A \to B, X \subset A, Y \subset B \Rightarrow X \subseteq f^{-1}(f(X))$							
יונטוומנ ס קוו פ	$f: A \to B, X \subset A, Y \subset B \Rightarrow f(f^{-1}(Y)) \subseteq Y$							

	7						
	Mathematical Induction						
	Principle of MI		To prove that $P(n)$ is true $\forall n \in \mathbb{Z}^+$				
	(PMI)		Basic Step: Show that $P(1)$ is true				
	(1 1 11)		Inductive Step: Show that $P(k) \Rightarrow P(K+1) \forall k \in \mathbb{Z}^+$				
_	Induction Prince	ciple	$P(a) \land (\forall k \ge a \ (P(k) \Rightarrow P(k+1))$				
			$\Rightarrow \forall k \ge a \ (P(k))$				
_			$(P(a) \land P(a+1) \land \land P(b)) \land$				
	Strong MI		$(\forall k \ge b, P(a) \land P(a+1) \land \dots \land P(k) \Rightarrow P(k+1))$				
			$\Rightarrow \forall k \geq a, P(k)$				
	Strong	P(a)	$) \land (\forall k \ge a, P(a) \land P(a+1) \land \land P(k) \Rightarrow P(k+1))$				
_	Induction		$\Rightarrow \forall k \geq a, P(k)$				
			$(P(a) \land P(a+1) \land \land P(b))$				
	Strong MI Var 1	1	$(\forall k \ge a, P(k) \Rightarrow P(k+b-a+1))$				
			$\Rightarrow \forall k \ge a, P(k)$				
			$(P(a) \land P(a+1) \land \land P(b))$				
7	Strong MI Var 2	2	$(\forall k \ge b \exists i, a \ge i \ge k, P(i) \Rightarrow P(k+1))$				
			$\Rightarrow \forall k \ge a, P(k)$				
	Well Ordering		Every nonempty subset of $Z_{\geq 0}$ has a smallest				
	Principle for In	teger					
	Recurrence						
	Relation for Se	ea	a_0, a_1, \dots where a_k is affected by some of $a_0, a_1, \dots a_{k-1}$				
_		•	I. Base/Founder: certain element(s) $c \in S$				
_	Recursive		II. Recursion/Constructor: $x \in S \Rightarrow f(x) \in S$				
			III. Restriction/Minimality: Membership for S can				
	Definition of se	o+ C	always be demonstrated by (finitely many) successive				
	Delililition of Se	513	applications of the clauses above				
			$S ::= c_1 c_2 \dots f_1(S) f_2(S) \dots$				
=			where c_i are founders and f_i are constructors				
-	Structural		Base: \forall founder $c(P(c))$				
	Induction over	set	Induction: $\forall x \in S(P(x) \Rightarrow P(f(x)), \forall \text{ constructor } f$				
	S		Conclusion: $\forall x \in S(P(x))$				
ᅦ	Recursive Defi	ined	$S = \{c_1, \dots, c_n\}, Str(S) ::= \epsilon c (Str(S) (c \in S))$				
	Set of Strings						
			I. Base/Founder: () is in P				
	Recursive		II. Recursion/Constructor: $ \begin{cases} (E) \in P & E \in P \ (a) \\ EF \in P & E, F \in P \ (b) \end{cases} $				
	Definition of						
	Parentheses		III. Restriction/Minimality: No other configs are in <i>P</i>				
	Churchinal		except those derived from above $Nat ::= 0 1 + Nat$				
	Structural Induction on Nat		· ·				
-1	muuction on N	idl	$(P(0) \land \forall k \ge 0, P(k) \Rightarrow P(k+1)) \Rightarrow \forall k \ge 0, P(k)$				
ᅦ	Structural		$Str(A) ::= \epsilon A.Str(A) $				
ᅱ	Induction on S	tr(A)	$(P(\epsilon) \land \forall a \in A, s \in Str(A), P(s) \Rightarrow P(a.s))$				
ᅱ			$\Rightarrow \forall s \in Str(A), P(s)$				
-							

Proven (Mathematical Induction)				
Proposition 5.3.1		$\forall n \ge 0.3 2^{2n} - 1$		
Proposition 5.3.2		$\forall n \ge 3, 2n+1 \le 2^n$		
Sum of Geometric S (Theorem 5.2.3)	equence	$\sum_{i=0}^n r^i = \frac{r^{n+1}-1}{r-1}, \forall n \ge 0$		
Transitivity of Divisib	oility	$\forall a, b, c \in Z(a b \land b c \Rightarrow a c)$		

	Lecture 8 Sl	ide 47	Any	integers >1 is divisible by a prime number		
	Lecture 8 SI	Any		whole amount of \geq \$12 can be formed by a		
	Lociule 0 of	140 40	con	nbination of \$4 and \$5 coins		
	Lecture 8 Sl	ide 50		$\forall n \in Z_{\geq 12} \big(\exists a, b \in N (n = 4a + 5b) \big)$		
	Well Orderin	ng Princi	nla	R^+ :No smallest but principle refers to only Z^+		
	for Integers	_		$\{n \in \mathbb{N}: n^2 \le n\}$:No smallest but principle		
	(Lecture 8 Slide 54/55)			does not include non-empty set		
	(Lootalo o o		,	$\{n \in N : n = 46 - 7k, k \in Z\}: 4 \text{ is smallest}$		
				(())() is in P		
)	Lecture 8 Sl	ide 64		$(1) \text{ By I, } () \in P$		
				(2) By (1) and IIa, (()) $\in P$		
				(3) By (2),(1), and IIb,(())() $\in P$ I: Base: $0 \in Z_{\geq 0}$		
	Recursive			II: Recursive: $x \in Z_{\geq 0}$ $\Rightarrow x + 1 \in Z_{\geq 0}$		
	Definition	111	I. Re	striction: Membership for $Z_{\geq 0}$ can always be		
	of $Z_{\geq 0}$	demons	strat	ed by successive applications of the clauses above		
	D			I: Base: $0 \in 2Z$		
	Recursive		II	: Recursion: $x \in 2Z \Rightarrow x - 2, x + 2 \in 2Z$		
1	Definition	III		striction: Membership for 2Z can always be		
	of 2 <i>Z</i>	demons	strat	ed by successive applications of the clauses above		
	Tutorial 7			$n = \sum_{n=1}^{n} n(n+1)$		
·1	Qn 1			$\forall n \in Z^+, \sum_{k=1}^n k = \frac{n(n+1)}{2}$		
				n k=1		
	Tutorial 7			$\forall n \in Z^+, \sum_{k=1}^n k^2 = \frac{1}{6}n(n+1)(2n+1)$		
	Qn 2			k=1		
re	Tutorial 7		Ηn	$\in Z^+, 2^{n+2} (a^{2^n} - 1), a \in \{2z + 1: z \in Z\}$		
	Qn 4		VIι	$\{22,2\}$		
	Tutorial 7			$\forall n \in Z_{\ge 8} \exists x, y \in N (n = 3x + 5y)$		
	Qn 5					
.				$\forall n \in Z^+ \exists l \in Z^+ \exists i_1, i_2, \dots, i_l \in N$		
	Tutorial 7	l		$< i_2 < \dots < i_l \land n = 2^{i_1} + 2^{i_2} + \dots + 2^{i_l})$		
7	Qn 6			itive int can be written as a sum of distinct non-		
		negativ	e int	eger powers of 2		
	Tutorial 7		٥.	Let a_0, a_1, a_2, \dots be seq where		
	Qn 7	$a_0 =$	$0, a_1$	$= 2, a_2 = 7, \forall n \in N(a_{n+3} = a_{n+2} + a_{n+1} + a_n)$		
				Then $\forall n \in N(a_n < 3^n)$		
)				Fib Seq: $F(0) = 0, F(1) = 1,$ $\forall n \in Z^+F(n+1) = F(n) + F(n+1)$		
	Tutorial 7			Let $P(a,b) \equiv F(a+b) =$		
	Qn 8	(FC	7 + 1	$1) \times F(b) + F(a) \times F(b-1) \forall a \in \mathbb{Z}_{\geq 0}, b \in \mathbb{Z}^+$		
				$N, \forall n \in Z^+(P(n-1,b) \land P(n,b) \Rightarrow P(n+1,b))$		
				ive definition of set H of Hamming Numbers:		
	Tutorial 7	inc	cuis	$1 \in H, n \in H \Rightarrow 2n, 3n, 5n \in H$		
	Qn 9			Canonical representation:		
			P(n	$(1) \equiv \exists! i \exists! j \exists! k(i, j, k \in \mathbb{Z}_{\geq 0} \land n = 2^i 3^j 5^k)$		
	1		ζ.,	, , , , , , , , , , , , , , , , , , , ,		

Cardinality	
Pigeonhole Principle	$\exists f: A \to B \ injective \Rightarrow A \leq B $ Contrapositive: $m, n \in Z^+, m > n, m \ pigeons,$ $n \ pigeonholes, then \exists \geq 1 \ pigeonhole \ with \geq 2 \ pigeons$
Dual Pigeonhole Principle	$\exists f: A \to B \ surjective \Rightarrow A \ge B $ Contrapositive: $m, n \in \mathbb{Z}^+, m < n, m$ pigeons, n pigeonholes, then $\exists \ge 1$ pigeonhole with 0 pigeons

General	$\forall f: X \to Y, \forall k \in Z^+ (k < X / Y)$	
Pigeonhole	$\Rightarrow \exists y \in Y(y = f(x) \text{ for } \geq k + 1 \text{ distinct } x \in X))$	
Principle	Contrapositive: $\forall f: X \to Y, \forall k \in Z^+$	
rillicipie	$(\forall y \in Y, f^{-1}(\{y\}) \text{ at most } k \Rightarrow X \le k Y)$	ľ
Equality of	Same Cardinality (Cantor) $ A = B $	l
Cardinality	$ A = B \Leftrightarrow \exists f : A \to B \ Bijection$	
Finite Definition	S is finite \Leftrightarrow $(S = \emptyset) \lor (\exists f: S \to Z_n \ Bijection, n \in Z^+)$	
i iiiite Deiiiiitioii	where $Z_n = \{1, 2, \dots, n\}$ $S = \emptyset$	
Cardinality of S	$ S = \begin{cases} 0 & S = \emptyset \\ n & \exists f : S \to Z_n \text{ Bijection} \end{cases}$	
Caldinatity of 5	$ S = \{n \mid \exists f: S \to Z_n \text{ Bijection }\}$	4
Properties of	The same-cardinality relation is an equivalence relation	
Cardinality	Reflexive: $ A = A $	
(Theorem 7.4.1)	Symmetric: $ A = B \Rightarrow B = A $	
(11100101117.4.1)	Transitive: $(A = B) \land (B = C \Rightarrow A = C)$	
	Any subset of a finite set is finite	
Theorem	$A \subseteq B, finite(B) \Rightarrow finite(A)$	
Cardinality 1	Contrapositive: Any set with an infinite subset is infinite	
	$A \subseteq B$, $infinite(A) \Rightarrow infinite(A)$	
Countably Infinite	CountablyInfinite(A) \Leftrightarrow $ A = Z^+ / N / Z_{\geq 0} = \aleph_0$	
Countable	$Countable(A) \Leftrightarrow finite(A) \lor CountablyInfinite(A)$	
Proposition 9.1	Infinite set B is countable $\Leftrightarrow \exists a \text{ sequence } b_0, b_1, b_2, \dots$	
rioposition 9. i	$\in B$ in which every element of B appears exactly once	
	Countability via Sequence	
Lemma 9.2	Infinite set B is countable $\Leftrightarrow \exists a \text{ sequence } b_0, b_1, b_2, \dots$	
	$\in B$ in which every element of B appears	
Theorem 7.4.2 (c	antor) $(0,1) = \{x \in R 0 < x < 1\}$ is uncountable	
Theorem 7.4.3	Any subset of any countable set is countable	
Corollary 7.4.4	Any set with an uncountable subset is uncountable	1
Proposition 9.3	Every infinite set has a countable infinite subset	1
		11

Lemma 9.4	non or 2 countably infinite sets is countable	Probability of C
		Flobability of C
Proven (Cardinality)		Theorem 9.3.3
Lecture 9 Slide 17	2Z = Z	ineorem 9.3.3
Lecture 9 Slide 24	$ Z = Z^+ , f(n) = \begin{cases} n/2 & Even(n) \\ -(n-1)/2 & Odd(n) \end{cases}, f: Z^+ \to Z$	Theorem 9.5.1
Lecture 9 Slide 27	$ Q^+ = Z^+ \Rightarrow countable(Q^+)$	<i>r</i> -combination
Lecture 9 Slide 30 Theorem	$ Z^+ \times Z^+ = Z^+ \Rightarrow countable(Z^+ \times Z^+)$ $f(x,y) = \frac{(x+y-2)(x+y-1)}{2} + x$	Theorem 9.5.2
Theorem	CountablyInfinite(A) \land CountablyInfinite(B)	
(Cartesian Product)	\Rightarrow CountablyInfinite(A \times B)	
Corollary (General	$n \in Z_{\geq 2}, \forall i \in N_{\leq n} Countably Infinite(A_i)$	Multiset
Cartesian Product)	\Rightarrow CountablyInfinite $(A_0 \times A_1 \times \times A_{n-1})$	
Theorem (Unions) Lecture 9 Slide 32	$\forall A_n, n \in Z^+Countable(A) \Rightarrow Countable(\bigcup_{i=1}^{\infty} A_i)$	r-combination with repetition
Lecture 9 Slide 46	R = (0,1)	
Tutorial 8 Qn 2	CountablyInfinite(B) \land finite(C) \Rightarrow countable(B \cup C)	General
Tutorial 8 Qn 3a	$\forall n \in \mathbb{Z}^+, finite(A_n) \Rightarrow finite(\bigcup_{i=1}^n A_i)$	Formulas
Tutorial 8 Qn 3b	$\forall n \in Z^+, finite(A_n) \Rightarrow infinite(\bigcup_{i=1}^{\infty} A_i)$	Pascal's
Tutorial 8 Qn 4a	$\forall n \in \mathbb{Z}^+, countable(A_n) \Rightarrow countable(\bigcup_{i=1}^n A_i)$	Formula
Tutorial 8 Qn 5	$\forall n \in Z^+, countable(A_n) \Rightarrow countable(\bigcup_{i=1}^{\infty} A_i)$	Theorem 9.7.1

	$(infinite(X) \land finite(Y)) \Rightarrow \exists f: X \cup Y \to X \text{ bijection}$
Tutorial 8 Qn 7	$CountableInfinite(A) \Rightarrow uncountable((\mathcal{P})(A))$
Tutorial 8 Qn 8	$R \ reflexive \ on \ A \Rightarrow A \leq R $

	Counting and P	roba	bility
	Sample Space	Set	of all possible outcomes of a random process
	Event	A su	ıbset of a sample space
	A	For	a finite set A , $ A $ denotes the number of elements in A
	Equally Likely		Number of outcomes in E $ E $
1	Probability		$P(E) = \frac{\text{Total number of outcomes in S}}{\text{Total number of outcomes in S}} = \frac{ E }{ S }$
	Probability		1. $0 \le P(A) \le 1$
	Axioms		2. $P(\emptyset) = 0$ and $P(S) = 1$
	AXIOITIS		3. $(A \cap B = \emptyset) \Rightarrow P(A \cup B) = P(A) + P(B)$
	General Union		$P(A \cup B) = P(A) + P(B) - P(A \cap B)$
	of Two Events		
9	Theorem 9.1.1	m,	$n \in \mathbb{Z}, m \le n$ there are $n - m$
			+ 1 integers from m to n inclusive
	Possibility Tree		sible outcomes are represented by distinct paths
		fron	n "root" (the start) to "leaf" (a terminal point) in a tree
	Multiplication/	Siii	ppose an event with k steps, n_i ways for i^{th} step, then
	Product Rule		The are $\prod_{i=1}^k n_i$ ways for the event to happen
	Theorem 9.2.1	circi	
	Theorem 5.2.4		Suppose A is a finite set. Then $ \mathcal{P}(A) = 2^{ A }$
	Theorem 9.2.2		umber of Permutations of a set with n elements is $n!$
	Theorem 9.2.3	P(n)	$(r_n, r_n) = {n \choose r} = {n \choose r} = n(n-1) \dots (n-r+1) = \frac{n!}{(n-r)!}$
	Addition/Sum R	ule	Partitions A_1, A_2, A_k of $A, A $
	Theorem 9.3.1		$= A_1 + A_2 + \dots + A_k $
	Difference Rule Theorem 9.3.2		A is finite set and B C A then IA\ BI = IAI IBI
			A is finite set and $B \subseteq A$, then $ A \setminus B = A - A $
	Probability of C	omp	lement $P(\bar{A}) = 1 - P(A)$
			$ A \cup B = A + B - A \cap B $
	Theorem 9.3.3	A	$\cup \ B \cup C = A + B + C - A \cap B - A \cap C - B $
			$\cap C + A \cap B \cap C $
•	Theorem 0 F 1	$\binom{n}{n}$	$=C(n,r)={}_{n}C_{n}=C_{n,n}={}^{n}C_{n}=\frac{P(n,r)}{r}=$

		11.02.001 [11]	$\cap C + A \cap B \cap C $	
	Theorem 9.5.1	$\binom{n}{k} = C(n,r) = {}_{n}C$		$\frac{(n,r)}{r!} =$
	<i>r</i> -combination	$\frac{n!}{r!(n-r)!}$, where $r \leq r$	$n, r, n \in Z_{\geq 0}$	
	Theorem 9.5.2	$\forall i \in \{1,, k\} n_i$ a	on of n objects of k are indistinguishable	e from each other
		$\binom{n}{n_1}\binom{n-n_1}{n_2}\binom{n-n_1-n_2}{n_3}$	$\binom{n-n_1-n_2-\cdots-n_k}{n_k}$	$=\frac{n!}{n_1!n_2!n_k!}$
_	Multiset	$[x_{i_1}, x_{i_2}, x_{i_r}]$ w	where each x_{i_i} is in x_{i_i}	$X = x_1, x_2, \dots, x_n$
	Muttiset	and some	e of x_{i_j} may equal e	ach other
	r-combination		as their category, th $[1,3,4] \equiv x x x $, [•
	with repetition	r-combination with	$n \text{ types} = \binom{r+n-1}{r}$	
			Ordered	Unordered
	General Formulas	With Repetition	n^k	$\binom{k+n-1}{k}$
	Formulas	No Repetition	P(n,k)	$\binom{n}{k}$
	Pascal's Formula Theorem 9.7.1	(ⁿ	$\binom{+1}{r} = \binom{n}{r-1} + \binom{n}{r}$	$\binom{n}{r}$
_	1110010111 0.7.1			

Lecture 11 Slide 30	
Lecture 11 Slide 31 For $0 \le k \le n, k \binom{n}{k} = n \binom{n-1}{k-1}$ Lecture 11 Slide 33 $\sum_{k=0}^{n} \binom{n}{k} = \mathcal{P}(S) = 2^{n}$ Binomial $(a+b)^{n} = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^{k},$ Theorem $(a+b)^{n} = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^{k},$ Expected $\sum_{k=1}^{n} a_{k} p_{k} = a_{1} p_{1} + a_{2} p_{2} + \dots + a_{n} p_{n},$ For when the possible outcomes are $a_{1}, a_{2}, \dots, a_{n}$ with probabilities $p_{1}, p_{2}, \dots, p_{n} respectively$ Linearity of Expectation $E[X+Y] = E[X] + E[Y] \text{ or } E\left[\sum_{i=1}^{n} c_{i} \cdot X_{i}\right] = \sum_{i=1}^{n} (c_{i} \cdot E[X] + E[X] + E[Y] + E[X] $	
Lecture 11 Slide 33 $\sum_{k=0}^{n} \binom{n}{k} = \mathcal{P}(S) = 2^{n}$ Binomial $(a+b)^{n} = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^{k},$ Theorem $(a+b)^{n} = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^{k},$ Expected $\sum_{k=1}^{n} a_{k} p_{k} = a_{1} p_{1} + a_{2} p_{2} + \dots + a_{n} p_{n},$ For when the possible outcomes are $a_{1}, a_{2}, \dots, a_{n}$ with probabilities $p_{1}, p_{2}, \dots, p_{n} respectively$ Linearity of Expectation $E[X+Y] = E[X] + E[Y] \text{ or } E\left[\sum_{i=1}^{n} c_{i} \cdot X_{i}\right] = \sum_{i=1}^{n} (c_{i} \cdot E[X] + E[X] + E[Y] + E[X] +$	
Lecture 11 Slide 33 $\sum_{k=0}^{n} \binom{n}{k} = \mathcal{P}(S) = 2^{n}$ Binomial $(a+b)^{n} = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^{k},$ Theorem $(a+b)^{n} = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^{k},$ Expected $\sum_{k=1}^{n} a_{k} p_{k} = a_{1} p_{1} + a_{2} p_{2} + \dots + a_{n} p_{n},$ For when the possible outcomes are $a_{1}, a_{2}, \dots, a_{n}$ with probabilities $p_{1}, p_{2}, \dots, p_{n} respectively$ Linearity of Expectation $E[X+Y] = E[X] + E[Y] \text{ or } E\left[\sum_{i=1}^{n} c_{i} \cdot X_{i}\right] = \sum_{i=1}^{n} (c_{i} \cdot E[X] + E[X] + E[Y] + E[X] +$	
Binomial $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$, where $\binom{n}{r}$ is binomial coefficient Expected $\sum_{k=1}^n a_k p_k = a_1 p_1 + a_2 p_2 + \cdots + a_n p_n$, For when the possible outcomes are a_1, a_2, \ldots, a_n with probabilities $p_1, p_2, \ldots, p_n respectively$ Linearity of Expectation $E[X+Y] = E[X] + E[Y]$ or $E\left[\sum_{i=1}^n c_i \cdot X_i\right] = \sum_{i=1}^n (c_i \cdot E[X])$	
Binomial $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$, where $\binom{n}{r}$ is binomial coefficient Expected Value $\sum_{k=1}^n a_k p_k = a_1 p_1 + a_2 p_2 + \cdots + a_n p_n$, For when the possible outcomes are a_1, a_2, \ldots, a_n with probabilities $p_1, p_2, \ldots, p_n respectively$ Linearity of Expectation $E[X+Y] = E[X] + E[Y]$ or $E[X+Y] = \sum_{i=1}^n c_i \cdot X_i] = \sum_{i=1}^n (c_i \cdot E[X+Y]) = \sum_{i=1}^n (c_i \cdot E[$	
Binomial $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$, where $\binom{n}{r}$ is binomial coefficient Expected Value $\sum_{k=1}^n a_k p_k = a_1 p_1 + a_2 p_2 + \cdots + a_n p_n$, For when the possible outcomes are a_1, a_2, \ldots, a_n with probabilities $p_1, p_2, \ldots, p_n respectively$ Linearity of Expectation $E[X+Y] = E[X] + E[Y]$ or $E[X+Y] = \sum_{i=1}^n c_i \cdot X_i] = \sum_{i=1}^n (c_i \cdot E[X+Y]) = \sum_{i=1}^n (c_i \cdot E[$	
Theorem where $\binom{n}{r}$ is binomial coefficient Expected Value $\sum_{k=1}^{n} a_k p_k = a_1 p_1 + a_2 p_2 + \dots + a_n p_n, \text{ For when the possible outcomes are } a_1, a_2, \dots, a_n \text{ with probabilities } p_1, p_2, \dots, p_n respectively$ Linearity of Expectation $E[X+Y] = E[X] + E[Y] \text{ or } E\left[\sum_{i=1}^{n} c_i \cdot X_i\right] = \sum_{i=1}^{n} (c_i \cdot E[X] + E[X]) + E[X] + $	
Expected Value	
Expected value possible outcomes are $a_1, a_2,, a_n$ with probabilities $p_1, p_2,, p_n respectively$ Linearity of Expectation $E[X + Y] = E[X] + E[Y]$ or $E\left[\sum_{i=1}^{n} c_i \cdot X_i\right] = \sum_{i=1}^{n} (c_i \cdot E[X])$	
Value possible outcomes are $a_1, a_2,, a_n$ with probabilities $p_1, p_2,, p_n$ respectively Linearity of Expectation $E[X + Y] = E[X] + E[Y]$ or $E\left[\sum_{i=1}^{n} c_i \cdot X_i\right] = \sum_{i=1}^{n} (c_i \cdot E[X])$	
Linearity of Expectation $E[X + Y] = E[X] + E[Y]$ or $E\left[\sum_{i=1}^{n} c_i \cdot X_i\right] = \sum_{i=1}^{n} (c_i \cdot E[X])$	$[X_i]$
Regardless of whether they are independent	$[X_i]$
Regardless of whether they are independent	$ X_i $
Regardless of whether they are independent	
Conditional Probability Theorem 9.9.1 $P(B A) = \frac{P(A \cap B)}{P(A)}$ Theorem 9.9.2 $P(A \cap B) = P(B A) \cdot P(A)$ $P(A \cap B) = P(B A) \cdot P(A)$	
Theorem 9.9.1 $P(B A) = \frac{P(A \cap B)}{P(A)}$ Theorem 9.9.2 $P(A \cap B) = P(B A) \cdot P(A)$ $P(A \cap B) = P(B A) \cdot P(A)$	
Theorem 9.9.1 $P(A \cap B) = P(B A) \cdot P(A)$ $P(A \cap B) = P(B A) \cdot P(A)$ $P(A \cap B)$	
Theorem 9.9.2 $P(A \cap B) = P(B A) \cdot P(A)$ $P(A \cap B)$	
$P(A \cap B)$	
Theorem 9.9.3 $P(A) = \frac{r(A \cap B)}{r(A \cap B)}$	
P(B A)	
Bayes' Theorem $P(B_{\nu} A) = \frac{P(A B_{\nu}) \cdot P(B_{\nu})}{P(B_{\nu} A)}$	
$\sum_{i=1}^{n} \left(P(A B_i) \cdot P(B_i) \right)$	
Independent	
Events A and B are independent \Leftrightarrow	
Lecture 11 $P(A B) = P(A), P(B A) = P(B), P(A \cap B) = P(A)P(B)$	(B)
Slide 72	
Pairwise Independent : 1 to 3, Mutually Independent:	t: All
Pairwise/ 1. $P(A \cap B) = P(A) \cdot P(B)$ Mutually 2. $P(A \cap C) = P(A) \cdot P(C)$	
Mutually 2. $P(A \cap C) = P(A) \cdot P(C)$	
Independent 3. $P(B \cap C) = P(B) \cdot P(C)$	
$4. P(A \cap B \cap C) = P(A) \cdot P(B) \cdot P(C)$	
Mutually $P(A_1 \cap A_2 \cap \cap A_n) = P(A_1) \cdot P(A_2) \cdot \cdot P(A_n)$,
independent)
Binomial Probabilities $P(X = x) = \binom{n}{x} p^{n-x} (1-p)^x$, where $0 \le p \le 1$)
Probabilities $I(X = X) = \begin{pmatrix} \chi \end{pmatrix}^p + \begin{pmatrix} 1 & p \end{pmatrix}$, where $0 \le p \le 1$	

Proven (Countabil	ity and Probability)
	Let $ A = n$, let each relation in $\mathcal{P}(A \times A)$
	is equally likely to be chosen
Tutorial 10 Qn 6	Prob of Reflexive Relation: $\frac{2^{n^2-n}}{2^{n^2}} = \frac{1}{2^n}$
	Prob of Symmetric Relation: $\frac{2^{\frac{n^2+n}{2}}}{2^{n^2}} = \frac{1}{\frac{n^2-n}{2}}$

Graph	
Edge	$e = \{v, w\}/(v, w)$ where e is incident on endpoints v, w
Undirected Edge	$e = \{v, w\}$ for undirected edge e from vector v to vector w
Directed Edge	e = (v, w) for directed edge e from vector v to vector w
Adjacent Vertices	$\exists e = \{v, w\}/(v, w) \Rightarrow v, w \text{ are adjacent vertices}$ $\exists e = \{v, v\}/(v, v) \Rightarrow v \text{ is adjacent to itself, } e \text{: loop}$

		_
Undirected	G = (V, E), where V is set of vertices and	
Graph	E is a set of undirected edges	
Directed Graph	G = (V, E), where V is set of vertices and	
Directed Graph	E is a set of directed edges	C
Vertex Colouring	Assignment of colours to vertices so that no two	C
vertex Cotouring	adjacent vertices have the same colour	L
Map Colouring	Four Colour Conjecture: Four colours are sufficient to	Е
Lecture 12 Slide	colour any map in a plane, such that regions that share	Ļ
11	a common boundary do not share the same colour	E
Simple Graph	Undirected graph with no loops or parallel edges	
	A complete graph on <i>n</i> vertices, $n > 0$, denoted K_n , is	Т
Complete Graph	simple graph with <i>n</i> vertices and exactly one edge	ľ
	connecting each pair of distinct vertices	
Graph	G (VE): dubu E (C.) G V · V (c.) d E)	Т
Complement	$\bar{G} = (V, \bar{E})$ is such that $\bar{E} = \{\{v, w\} \in V \times V : \{v, w\} \notin E\}$	Ľ
Graph Self-	Once the interest of the inter	Т
Complement	Graph is isomorphic with its complement ie $G \cong G$	Ľ
	A simple graph whose vertices can be divided into	ſ
Bipartite Graph	two disjoint sets U and V such that every edge	Е
	connects a vertex in <i>U</i> to one in <i>V</i>	ľ
	A Bipartite graph on two disjoint sets <i>U</i> and <i>V</i> such that	
Complete	every vertex in <i>U</i> connects to every vertex in <i>V</i>	
Bipartite Graph	If $ U = m$, $ V = n$, the complete	١,
	bipartite graph is denoted as $K_{m,n}$	C
Subgraph	<i>H</i> subgraph of $G \Leftrightarrow \forall v \in V_H(v \in V_G), \forall e \in E_H(e \in E_G)$	
Degree	deg(v) = Number of e incident to v , loop counts twice	
Total Degree	$TotalDeg(G) = \sum_{i=1}^{n} deg(v_i), V_G = \{v_1, v_2,, v_n\}$	Т
Theorem 10.1.1	Handshake Theorem: $TotalDeg(G) = 2 \times E_G $	
Corollary 10.1.2	The total degree of a graph is even	
Proposition	In any graph, there are an even number of vertices of	H
10.1.3	odd degree	c
Indegree	$deg^-(v)$ is number of e that end at v	
Outdegree	$deg^+(v)$ is number of e that originate at v	H
In/Outdegree	ucg (v) is number of a that originate at v	C
relationship	$\sum_{v \in V} deg^{-}(v) = \sum_{v \in V} deg^{+}(v) = E $	
тошнопопір	Has the form: $v_0e_1v_1e_2v_{n-1}e_nv_n$	L
Walk from v to w		F
walk from v to w	Trivial walk from v to v :	1
Trail from v to w	A walk from v to w does not contain a repeated edge	
Path from <i>v</i> to <i>w</i>	A trail that does not contain a repeated vertex	
Closed walk	A walk that starts and ends at the same vertex	Α
Circuit	A closed walk of length at least 3 vertex and is a trail	Ν
Simple Circuit	A circuit that has no repeated vertex but first and last	
ompte oneut	An undirected graph is cyclic if it contains a loop or a	L
Cyclic/Acyclic	cycle, acyclic otherwise	le
	Two vertices are connected iff there is a walk between	F
Connectedness		r
	Graph is connected iff $\forall v, w \in V \exists$ a walk from v to w	1
	If <i>G</i> is connected, any 2 vertices of <i>G</i> can be connected	T
l 10 0 1	by a path.	
Lemma 10.2.1	If vertices v and w are part of a circuit in G and one edge	H
	is removed from the circuit, then there still exists a trail	ŀ
	from v to w in G	G

_		
		If <i>G</i> is connected and <i>G</i> contains a circuit, then an edge
4	-	of the circuit can be removed without disconnecting <i>G</i> 1. <i>H</i> is a subgraph of <i>G</i>
	Connected	2. H is connected
4	Component	No connected subgraph of C has H as subgraph and
	Component	3. contains vertices or edges not in <i>H</i>
4		Circuit that contains every vertex and traverses every
	Euler Circuit	edges exactly once
	Eulerian Graph	A graph that contains an Euler Circuit
+		If a graph has an Euler Circuit, then every vertex of the
4		graph has positive even degree
	Theorem 10.2.2	Contrapositive: If come vertex of a graph has odd
		degree, then the graph does not have an Euler circuit
1	Th	If a graph is connected and the degree of every vertex is
ł	Theorem 10.2.3	a positive even integer, then it has an Euler Circuit
1	TI 1001	A graph has an Euler Circuit iff it is connected and every
	Theorem 10.2.4	vertex has positive even degree.
٦		An Euler trail/path from v to w is a sequence of adjacent
ı	Euler Trail	edges and vertices that starts at v, ends at w, passes
_	Luter Hall	through every vertex of G at least once, and traverses
t		every edge of G exactly once.
		Let G be a graph, and let v and w be two distinct
	Corollary 10.2.5	vertices of G. There is an Euler trail from v to w if and
	Colollary 10.2.3	only if G is connected, v and w have odd degree, and all
╛		other vertices of G have positive even degree.
		A graph G has an Euler circuit if and only if G is
	Theorem 10.2.4	connected and every vertex of G has positive even
		degree.
╛		Given a graph G, a Hamiltonian circuit for G is a simple
]	Hamiltonian	circuit that includes every vertex of G. (That is, every
	Circuit	vertex appears exactly once, except for the first and the
		last, which are the same.)
_]	Hamiltonian	A Hamiltonian graph (also called Hamilton graph) is a
	Graph	graph that contains a Hamiltonian circuit.
╛		Property of Hamiltonian graph H in G
ı	Proposition	1. <i>H</i> contains every vertex of <i>G</i>
ı	10.2.6	2. <i>H</i> is connected
4	1	3. <i>H</i> has the same number of edges as vertices
4	-	4. Every vertex of <i>H</i> has degree 2
4	A dia a a a a a a a a	$A = (a_{ij}) \text{ where}$
4	Adjacency	a_{ij} = Number of arrows from $v_{i \text{ to}} v_{j} \forall i, j \in \{1, 2,, V \}$
_	Matrix	Note that Adj Mat for undirected graph is symmetric ie
_		$a_{ji} = a_{ij} $
	Identity Matrix	$I_n = (\delta_{ij}), \delta_{ij} = \begin{cases} 1, & i = j \\ 0 & i \neq j \end{cases} \forall i, j = 1, 2, \dots, n$
+	Powers of Matrix	$A^0 = I, A^n = AA^{n-1} \forall n \ge 1$
		If G is a graph with vertices v_1, v_2, \dots, v_m and A is
\dashv	Theorem 10.2.2	the Adj Mat of G then $\forall n \in \mathbb{Z}^+, \forall i, j = 1, 2,, m$
ı	Theorem 10.3.2	\Rightarrow The <i>ij</i> -th entry of A^n
e		= the number of walks of length n from $v_{i \text{ to}} v_{j}$
ĭ	Isomorphic	$G \cong G' \Leftrightarrow \exists$ bijection $g: V_G \to V_{G'}$ and $h: E_G \to E_{G'}$
	Graph	such that $\forall v \in V_G, e \in E_G$,
	Старп	v is an endpoint of $e \Leftrightarrow g(v)$ is an endpoint of $h(e)$

Isomorphic	G and G' are simple graphs
Graph for Simple	$G \cong G' \Leftrightarrow \exists \pi: V_G \to V_{G'}$ such that
Graphs	$\{u,v\} \in E_G \Leftrightarrow \{\pi(u),\pi(v)\} \in E_{G'}$
Theorem 10.4.2	≅, Graph Isomorphism is an Equivalence Relation
Planar Graph	A graph that can be drawn on a plane without edges crossing
Kuratowski's Theorem	A finite graph is planar iff it does not contain a subgraph that is a subdivision of the complete graph K_5 or the complete bipartite graph $K_{3,3}$
Euler's Formula	For a connected planar simple graph $G = (V, E)$, Letting f be the number of face, then $f = E - V + 2$
Triangle	A simple circuit of length 3

Proven (Graphs)	
Tutorial 10 Qn 12	For any simple graph with 6 vertices, it or its
	complementary graph will contain a triangle
Tutorial 11 Qn 4	Let $G = (V, E)$ be a simple undirected graph, then
	G is connected $\Rightarrow E \ge V - 1$
Tutorial 11 Qn 5	Let $G = (V, E)$ be a simple undirected graph, then
	G is acyclic $\Rightarrow E \le V - 1$

_	
Trees	
Circuit-free	Graph has no circuits
Tree	Simple graph that is circuit-free and connected
Trivial Tree	Tree with 1 vertex
Forest	Simple graph that is circuit-free and not connected
Lemma 10.5.1	Any non-trivial tree has at least one vertex of degree 1
Terminal Vertex	Vertex of degree 0 or 1 in a tree
Internal Vertex	Vertex of degree greater that 1 in a tree
Theorem 10.5.2	Any tree with n vertices $(n > 0)$ has $n - 1$ edges $T = (V, E)$ is a tree $\Rightarrow E = V - 1$
Lecture 13 Slide 12	A non-trivial tree has at least 2 vertices of degree 1
Lemma 10.5.3	If G is any connected graph, C is any circuit in g and one of the edges of C is removed from G , then the graph that remains is still connected
Theorem 10.5.4	If G is a connected graph with n vertices and $n-1$ edges, then G is a tree
Theorem 10.5.5	If G is a simple undirect graph, and there are two distinct paths from a vertex v to a different vertex w , then G contains a cycle
Rooted Tree	A tree in which there is one vertex that is distinguished from the others and is called the root.
Level of Vertex	The level of a vertex is the number of edges along the
in Rooted Tree	unique path between it and the root
Height of	The height of a rooted tree is the maximum level of any
Rooted Tree	vertex of the tree.
Child	Given the root or any internal vertex v of a rooted tree, the children of v are all those vertices that are adjacent to v and are one level farther away from the root than v.
Parent	If w is a child of v, then v is called the parent of w,

Siblings	two distinct vertices that are both children of the same parent are called siblings.	
	Given two distinct vertices v and w, if v lies on the	
Ascendent / Descendent	unique path between w and the root, then v is an	
	ancestor of w, and w is a descendant of v.	
	A binary tree is a rooted tree in which every parent has at	
Binary Tree	most two children. Each child is designated either a left	
	child or a right child (but not both), and every parent has	Pr
	at most one left child and one right child.	Αl
	A full binary tree is a binary tree in which each parent	M
Full Binary Tree	has exactly two children.	'
	Given any parent v in a binary tree T, if v has a left child,	
	then the left subtree of v is the binary tree whose root is	
Left/Right	the left child of v, whose vertices consist of the left child	
Subtree	of v and all its descendants, and whose edges consist of	
	all those edges of T that connect the vertices of the left	
	subtree. The right subtree of v is defined analogously.	Pr
Theorem 10.6.1	T is full binary tree with k internal vertices	
meorem ro.s.r	\Rightarrow T has $2k + 1$ vertices and $k + 1$ leaves	Tu
Theorem 10.6.2	$\forall h \in N, T$ is a binary tree with height h and t leaves	
meorem 10.6.2	$\Rightarrow t \leq 2^h, log_2 t \leq h$	C
Binary Tree	The process of visiting each node in a tree data structure	Ni Ni
Traversal	exactly once in a systematic manner.	Se
Breadth-First	Starts at the root and visits its adjacent vertices, and	36
Search	then moves to the next level.	
Depth-First	Travarae subtrace by requiringly calling itself	
Search	Traverse subtrees by recursively calling itself	
Pre-Order	In the form: RT_LT_R	
In-Order	In the form: $T_L R T_R$	
Post-Order	In the form: $T_L T_R R$	
Coopping Troo	A spanning tree for a graph G is a subgraph of G that	
Spanning Tree	contains every vertex of G and is a tree.	
Duamasitian	Every connected graph has a spanning tree.	
Proposition 10.7.1	Any two spanning trees for a graph have the same	
10.7.1	number of edges.	
	A weighted graph is a graph for which each edge has an	
Weighted Graph	associated positive real number weight.	
	w(e) denotes the weight of e	
Total Weight of	The sum of the weights of all the edges, denoted by	
Graph	w(G)	
Minimum	A spanning tree that has the least possible total weight	
Spanning Tree	compared to all other spanning trees for the graph.	
	Input: G [a connected weighted graph with n vertices]	
	Algorithm:	
	1. Initialize T to have all the vertices of G and no edges.	
Kwa kalia	2. Let E be the set of all edges of G, and let m = 0.	
Kruskal's Algorithm for	3. While (m < n – 1)	
MST	3a. Find an edge e in E of least weight.	
1.101	3b. Delete e from E.	
	3c. If addition of e to the edge set of T does not produce	
	a circuit, then add e to the edge set of T and set m = m +	
	1	

TOTI / WIT		
	End while	
	Output: T [T is a minimum spanning tree for G]	
	Input: G [a connected weighted graph with n vertices] Algorithm:	
	Pick a vertex v of G and let T be the graph with this vertex only.	
	2. Let V be the set of all vertices of G except v.	
Prim's	3. For i = 1 to n – 1	
Algorithm for MST	3a. Find an edge e of G such that (1) e connects T to one of the vertices in V, and (2) e has the least weight of all edges connecting T to a vertex in V. Let w be the endpoint of e that is in V.	
	3b. Add e and w to the edge and vertex sets of T, and	
	delete w from V.	
	Output: T [T is a minimum spanning tree for G]	

Proven (Trees)	
Tutorial 11 Qn 6	Let $G = (V, E)$ be a simple undirected graph, then G is a tree \Leftrightarrow There is exactly one path between
	every pair of vertices
Catalan's Number Sequence	A convolution recurrence
	$C_{n+2} = C_0 C_n + C_1 C_{n-1} + C_2 C_{n-2} + \cdots + C_k C_{n-k} + C_n C_0$
	$C_n = \frac{1}{n+1} {2n \choose n} = 1,2,5,14,42,132$