Linear Methods for Regression: Risk estimation

-STATISTICAL MACHINE LEARNING-

Lecturer: Darren Homrighausen, PhD

Subset selection and regularization

For now, let's assume we are doing ordinary least squares, and hence the design (feature) matrix is $\mathbb{X} \in \mathbb{R}^{n \times p}$.

We want to do model selection for at least three reasons:

- PREDICTION ACCURACY: Can essentially always be improved by introducing some bias
- Interpretation: A large number of features can sometimes be distilled into a smaller number that comprise the "big (little?) picture"
- COMPUTATION: A large *p* can create a huge computational bottleneck.

Subset selection and regularization

We will address three related ideas

- MODEL SELECTION: Selection of only some of the original p features
- DIMENSION REDUCTION/EXPANSION: Creation of new features to help with prediction
- REGULARIZATION: Add constraints to optimization problems to provide stabilization

RISK ESTIMATION

REMINDER: Prediction risk is

$$R(f) = \mathbb{P}\ell_f \leftrightarrow \text{Bias} + \text{Variance}$$

The overridding theme is that we would like to add a judicious amount of bias to get lower risk

As R isn't known, we need to estimate it

As discussed, the training error $\hat{R} = \hat{\mathbb{P}}\ell_f$ isn't very good (In fact, one tends to not add bias when estimating R with $\hat{\mathbb{P}}\ell_f$)

 \hat{R} tends to underestimate R, hence we can call it optimistic

RISK ESTIMATION: A GENERAL FORM

Assume that we get a new draw of the training data, $\mathcal{D}^0,$ such that $\mathcal{D}\sim\mathcal{D}^0$ and

$$\mathcal{D} = \{(X_1,Y_1),\dots,(X_n,Y_n)\} \quad \mathrm{and} \quad \mathcal{D}^0 = \{(X_1,Y_1^0),\dots,(X_n,Y_n^0)\}$$

If we make a small compromise to risk, we can form a sensible suite of risk estimators

To wit, letting $Y^0 = (Y_1^0, \dots, Y_n^0)^{\top}$, define

$$R_{in} = \mathbb{P}_{Y^0|\mathcal{D}} \hat{\mathbb{P}}_{\mathcal{D}^0} \ell_{\hat{f}} = \frac{1}{n} \sum_{i=1}^n \mathbb{P}_{Y^0|\mathcal{D}} \ell(\hat{f}(X_i), Y_i^0)$$

Then the average optimism is

$$opt = \mathbb{P}_{Y}[R_{in} - \hat{R}]$$

Typically, opt is positive as \hat{R} will underestimate the risk $\operatorname{span}_{\mathbb{R}}$

RISK ESTIMATION: A GENERAL FORM

It turns out for a variety of ℓ (such as squared error and 0-1)

$$opt = \frac{2}{n} \sum_{i=1}^{n} Cov(\hat{f}(X_i), Y_i)$$

Therefore, we get the following expression of risk

$$\mathbb{P}_{Y}R_{in} = \mathbb{P}_{Y}\hat{R} + \frac{2}{n}\sum_{i=1}^{n}\operatorname{Cov}(\hat{f}(X_{i}), Y_{i}),$$

which has unbiased "estimator"

$$R_{\text{gic}} = \hat{R} + \frac{2}{n} \sum_{i=1}^{n} \text{Cov}(\hat{f}(X_i), Y_i)$$

(i.e.
$$\mathbb{P}_Y R_{\mathrm{gic}} = \mathbb{P}_Y R_{in}$$
)

DEGREES OF FREEDOM

We call the term (where $\sigma^2 = \mathbb{V}Y_i$)

$$df = \frac{1}{\sigma^2} \sum_{i=1}^n Cov(\hat{f}(X_i), Y_i)$$

the degrees of freedom

(This is really the effective number of parameters, with some caveats. Addendum: After a student's question, I wanted to add Kaufman, Rosset (2015) and Janson, Fithian, Hastie (2015) as references)

Our task now is to either estimate or compute opt to produce opt and form:

$$\hat{R}_{\rm gic} = \hat{R} + \widehat{\rm opt}$$

This leads to Mallows Cp/Stein's unbiased risk estimator (SURE), as well as forms for AIC, BIC, and others

Degrees of Freedom: Example

Sometimes the df is exactly computable.

(In other cases, it needs to be estimated)

EXAMPLE: Least squares regression onto X, with

- $\mathbb{V}Y_i = \sigma^2$
- $\operatorname{Cov}(Y_i, Y_{i'}) = 0$ for $i \neq i'$

Degrees of freedom: Stein's Rule

Suppose that $Y \sim \mathcal{N}(\mu, \sigma^2)$ and $f : \mathbb{R} \to \mathbb{R}$ is absolutely continuous

$$\frac{1}{\sigma^2}\mathbb{P}(Y-\mu)f(Y)=\mathbb{P}f'(Y)$$

(Start with standard normal, use integration by parts and differentiate the density)

This extends to the multivariate scenario: $Y \sim N(\mu, \sigma^2 I)$, $f: \mathbb{R}^n \to \mathbb{R}^n$

$$\frac{1}{\sigma^2} \mathbb{P}(Y_i - \mu_i) f_i(Y) = \mathbb{P}\left[\frac{\partial f_i}{\partial Y_i}\bigg|_{Y}\right]$$

This gives us a powerful result

$$df = \mathbb{P}\left[\sum_{i=1}^{n} \frac{\partial f_i}{\partial Y_i}\bigg|_{Y}\right]$$

Information Criteria

Of course, this isn't the usual way to introduce/conceptualize information criteria

For me, thinking of the training error as overly optimistic and correcting for that optimism is conceptually appealing

For others, forming a metric¹ on probability measures is more appealing

Let's go over this now for completeness

Comparing probability measures

KULLBACK-LEIBLER

Suppose we have data Y that comes from the probability density function ρ .

What happens if we use the probability density function γ instead?

EXAMPLE: Suppose $Y \sim N(\mu, \sigma^2) = \rho$. We want to predict a new Y_* , but we model it as $Y_* \sim N(\mu_*, \sigma^2) = \gamma$

How far away are we? We can either compare μ to μ_* or Y to Y^* (This is the approach taken via the optimism)

Or, we can compute how far ρ is from γ (far indicates we need a notion of distance)

Kullback-Leibler

One central idea is Kullback-Leibler discrepancy (This has many features of a distance, but is not a true distance as $KL(\rho, \gamma) \neq KL(\gamma, \rho)$)

$$\begin{aligned} \textit{KL}(\rho, \gamma) &:= \int \log \left(\frac{\rho(y)}{\gamma(y)} \right) \rho(y) dy \\ &\propto - \int \log(\gamma(y)) \rho(y) dy \qquad \text{(ignore term without } \gamma) \\ &= -\mathbb{P}_{\rho}[\log(\gamma(Y))] \\ &= \mathbb{P}\ell_{\gamma} \end{aligned}$$

(Here, $\mathbb{P}\ell_{\gamma}$ indicates $\ell_{\gamma} = -\log(\gamma(Y))$)

This gives us a sense of the loss incurred by using γ instead of ρ

Kullback-Leibler discrepancy

Usually, γ will depend on some parameters, call them θ

EXAMPLE: In regression, we let $\gamma_{\theta} = N(X^{\top}\beta, \sigma^2)$ over all $\theta \in \mathbb{R}^p \times \mathbb{R}^+$

As $\mathit{KL}(\rho, \gamma_{\theta}) = -\mathbb{P}_{\rho}[\log(\gamma_{\theta}(Y))]$, we minimize this over θ

Again, $\mathbb{P}_{
ho}$ is unknown, so we can minimize $-\hat{\mathbb{P}}\log(\gamma_{ heta}(Y))$ instead

This is the maximum likelihood estimator

$$\hat{ heta}_{\mathit{ML}} = rg\max_{ heta} \prod_{i} \gamma_{ heta}(Y_i)$$

Kullback-Leibler discrepancy

Now, to get an operational characterization of the KL divergence at the ML solution

$$-\mathbb{P}_{\rho}[\log(\gamma_{\hat{\theta}_{MI}}(Y))]$$

we need an approximation (don't know ρ , still)

This approximation² is exactly AIC:

$$AIC = \log(\gamma_{\hat{\theta}_{MI}}(Y)) + p$$

Example: Let
$$\log(\gamma_{\theta}(y)) = -\frac{n}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2}||Y - \mathbb{X}\beta||_2^2$$

 $\sigma^2 \text{ KNOWN: } \hat{\beta} = \mathbb{X}^{\dagger}Y$

$$AIC \propto n\hat{R}/(2\sigma^2) + p \propto \hat{R} + 2\sigma^2 n^{-1}p$$

$$\sigma^2$$
 UNKNOWN: $\hat{\beta} = \mathbb{X}^{\dagger} Y$, $n\hat{\sigma}^2 = (I - \mathbb{X} \mathbb{X}^{\dagger}) Y = n\hat{R}$
AIC $\propto n \log(\hat{R})/2 + p = \log(\hat{R}) + 2n^{-1}p$

²See "Multimodel Inference" Burnham, Anderson (2004) →

Summary

For \hat{R}_{gic} :

$$\hat{R} + \widehat{\text{opt}} = \hat{R} + 2\sigma^2 n^{-1} \text{df} = \begin{cases} \text{AIC, known } \sigma^2 & \text{if maximum likelihood} \\ \text{Mallows Cp} & \text{if } \hat{f}(X) = X^\top \hat{\beta}_{LS} \\ \text{SURE} & \text{most } \hat{f}(X), \text{ Normality} \end{cases}$$

For SURE, if $Y \sim N(\mu, \sigma^2 I)$, and $\hat{\mu} : \mathbb{R}^n \to \mathbb{R}^n$ is some procedure

$$\frac{1}{\sigma^2} \mathbb{P}(Y_i - \mu) \hat{\mu}_i = \mathbb{P} \frac{\partial \hat{\mu}_i}{\partial Y_i}$$

Alternatively:

$$\log(\hat{R}) + c_n n^{-1} df = \begin{cases} AIC, \text{ unknown } \sigma^2 & \text{if } c_n = 2\\ BIC & \text{if } c_n = \log(n) \end{cases}$$

Lastly,

$$GCV = n^{-1} \left(\frac{||Y - \mathbb{X}\beta||_2}{(1 - \mathrm{df}/n)} \right)^2 \Leftrightarrow \log(\hat{R}) - 2\log(1 - \mathrm{df}/n)$$

Cross-validation

A DIFFERENT APPROACH TO RISK ESTIMATION

Let (X_0, Y_0) be a test observation, identically distributed as an element in \mathcal{D} , but also independent of \mathcal{D} .

Prediction risk:
$$R(f) = \mathbb{P}(Y_0 - f(X_0))^2$$

Of course, the quantity $(Y_0 - f(X_0))^2$ is an unbiased estimator of R(f) and hence we could estimate R(f)

However, we don't have any such new observation

Or do we?

AN INTUITIVE IDEA

Let's set aside one observation and predict it

For example: Set aside (X_1, Y_1) and fit $\hat{f}^{(1)}$ on $(X_2, Y_2), \dots, (X_n, Y_n)$

(The notation $\hat{f}^{(1)}$ just symbolizes leaving out the first observation before fitting \hat{f})

$$R_1(\hat{f}^{(1)}) = (Y_1 - \hat{f}^{(1)}(X_1))^2$$

As the left off data point is independent of the data points used for estimation,

$$\mathbb{P}_{(X_1,Y_1)|\mathcal{D}_{(1)}}R_1(\hat{f}^{(1)}) \stackrel{D}{=} R(\hat{f}(\mathcal{D}_{n-1})) \approx R(\hat{f}(\mathcal{D}))$$

LEAVE-ONE-OUT CROSS-VALIDATION

Cycling over all observations and taking the average produces leave-one-out cross-validation

$$CV_n(\hat{f}) = \frac{1}{n} \sum_{i=1}^n R_i(\hat{f}^{(i)}) = \frac{1}{n} \sum_{i=1}^n (Y_i - \hat{f}^{(i)}(X_i))^2.$$

More General Cross-Validation Schemes

Let
$$\mathcal{N} = \{1, \dots, n\}$$
 be the index set for \mathcal{D}

Define a distribution ${\mathcal V}$ over ${\mathcal N}$ with (random) variable v

Then, we can form a general cross-validation estimator as

$$\mathrm{CV}_{\mathcal{V}}(\hat{f}) = \mathbb{P}_{\mathcal{V}} \hat{\mathbb{P}}_{\mathbf{v}} \ell_{\hat{f}^{(\mathbf{v})}}$$

MORE GENERAL CROSS-VALIDATION SCHEMES: EXAMPLES

$$\mathrm{CV}_{\mathcal{V}}(\hat{f}) = \mathbb{P}_{\mathcal{V}} \hat{\mathbb{P}}_{v} \ell_{\hat{f}^{(v)}}$$

• K-FOLD: Fix $V = \{v_1, \dots, v_K\}$ such that $v_j \cap v_k = \emptyset$ and $\bigcup_i v_j = \mathcal{N}$

$$CV_{K}(\hat{f}) = \frac{1}{K} \sum_{v \in V} \frac{1}{|v|} \sum_{i \in v} (Y_{i} - \hat{f}^{(v)}(X_{i}))^{2}$$

- BOOTSTRAP: Let $\mathcal V$ be given by the bootstrap distribution over $\mathcal N$ (that is, sampling with replacement many times)
- FACTORIAL: Let V be given by all subsets (or a subset of all subsets) of N (that is, putting mass 1/(2ⁿ 2) on each subset)

More general cross-validation schemes: A comparison

- CV_K gets more computationally demanding as $K \to n$
- \bullet The bias of $\mathrm{CV}_{\mathcal K}$ goes down, but the variance increases as ${\mathcal K} \to n$
- The factorial version isn't commonly used except when doing a 'real' data example for a methods paper
- There are many other flavors of CV. ("consistent cross validation", "modified cross-validation",...)

Summary time

RISK ESTIMATION METHODS

- CV Prediction risk consistent (Dudoit, van der Laan (2005)). Generally selects a model larger than necessary (unproven)
- AIC Minimax optimal risk estimator (Yang, Barron (1998)). Model selection inconsistent*
- BIC Model selection consistent (Shao (1997) [low dimensional]. Wang, Li, Leng (2009) [high dimensional]). Slow rate for risk estimation*

(Stone (1977) shows that CV_n and AIC are asymptotically equivalent.) (*Yang (2005) gives an impossibility theorem: for a linear regression problem it is impossible for a model selection criterion to be both consistent and achieve minimax optimal risk estimation)

DIFFERING NOTIONS OF RISK

Compare

$$\underbrace{\mathbb{P}_{Z}\ell_{\hat{f}}}_{Z|\mathcal{D}} = \mathbb{P}_{Z|\mathcal{D}}\ell_{\hat{f}} \qquad \text{Versus} \qquad \underbrace{\mathbb{P}_{Z,\mathcal{D}}\ell_{\hat{f}}}_{\text{This is actually of interest}} \qquad \text{This is actually what gets estimated}$$

NOTE: The X in Z doesn't in general equal any X_i

Hence, we look to a risk that is composed of predicting a new supervisor at every X_i :

$$R_{in} = \mathbb{P}_{Y^0|\mathcal{D}} \hat{\mathbb{P}}_{\mathcal{D}^0} \ell_{\hat{f}} = \frac{1}{n} \sum_{i=1}^n \mathbb{P}_{Y^0|\mathcal{D}} \ell(\hat{f}(X_i), Y_i^0)$$

RISK ESTIMATION IN A DATA RICH ENVIRONMENT

If we have a large amount of data, we can split into three parts:

- Training: Used to fit (or train) the considered procedures
- VALIDATION: Used to score these trained procedures
- TESTING: Used to estimate the prediction risk for the selected procedure

(A typical split might be 50%/25%/25%)

THEORETICAL RISK BOUNDS

Suppose we have a set of procedures ${\mathcal F}$

We have some notation of how complex $\mathcal F$ is, called $\operatorname{complexity}$

Specify some $\eta \in [0,1]$

Then, with probability at least $1-\eta$ for any $f\in\mathcal{F}$

$$\mathbb{P}_{Z}\ell_{f} \leq \frac{\mathbb{\tilde{P}}_{\mathcal{D}}\ell_{f}}{(1-\sqrt{\delta})_{+}}$$

where

$$\delta = \frac{1}{n} \left(\text{complexity} \left(1 + \log \left(\frac{n}{\text{complexity}} \right) \right) - \log(\eta/4) \right)$$

(This is out of the Vladimir Vapnik "empirical risk minimization" line of research)