Saw Stop

Switch-controlled Saw (without Saw Stop)

Inputs

A0 – On/off switch

Outputs

B0 – Run the saw

Functionality

• The switch (A0) turns the saw on/off

Solution with Two States (Output on States – Moore Machine)

Don't forget to initialize the output

Solution with Two States (Output on Transitions – Mealy Machine)

```
// 0 = Off; 1 = On
unsigned char run_saw;
```


Solution with One State
(Moore Machine)
(List and initialize variables)

```
// 0 = Off; 1 = On
unsigned char run_saw;
```


Solution with One State
(Mealy Machine)
(List and initialize variables)

Button vs. Switch

- Switch
 - Turn On Actuate
 - Turn Off Deactuate

- Button
 - Press Actuate/Deactuate
 - Release Signifies end of press

Button-controlled Saw (without Saw Stop)

On/Off

Button

Input

A0 – On/off button

/11

B3

Output

B0 – Run the saw

Functionality

Each <u>distinct</u> button press turns the saw on/off

Turn the Saw On/Off with a Button

Turn the Saw On/Off with a Button

Now, Add the Saw Stop

Problem Statement

Inputs

- A0 On/off <u>switch</u>
- A1 Finger sensor (capacitive touch)

Outputs

- B0 Run the saw
- B1 Initiate a hard stop

Functionality

- The switch (A0) turns the saw on/off
- The finger sensor (A1) triggers a hard stop
- If a hard stop occurs, wait and do nothing
 - The repairperson turns the saw off to replace the saw blade and crumpled metal
 - The state machine re-initializes when the repairperson turns the system back on

Design an SM to Implement the Saw If the system is not Stop Functionality

engaged while someone touches the saw, keep it off; $A0\overline{A1}$ A0 | A1 rather than immediately initiating Saw Stop $A0\overline{A1}$ and wasting \$60. OFF ON AOA1 B = 0x01B = 01 **A1** HARD Wait for the repairperson **STOP** B = 0x02

Saw Stop with Persistent Microcontroller

Failsafe sensor

Goal:

Return from the HARD STOP to the OFF state without resetting the microcontroller

Problem Statement

Inputs

- A0 On/off switch
- A1 Finger sensor (capacitive touch)
- A7 Failsafe sensor

Outputs

- B0 Run the saw
- B1 Initiate a hard stop

Functionality

- The switch (A0) turns the saw on/off
- The finger sensor (A1) triggers a hard stop
- The failsafe sensor (A7) detects the hard stop
 - It is triggered by physical phenomena, not the hard stop (B1) signal
 - It turns off when the repairperson successfully replaces the saw blade and crumpled metal and closes the door to the machine
- The failsafe sensor (A7) never misfires
 - It can be ignored in the ON/OFF states

Design an SM to Implement the Saw Stop Functionality

