Differential Geometry Notes of 02/08/2013

Pramook Khungurn

April 1, 2013

1 Differentiable Functions on Surfaces

- We are interested in defining differential functions on a surface.
- A natural approach to defining differentiability on a surface is as follows. We say that a function $f: S \to \mathbb{R}$ is differentiable at point $p \in S$ if there is a coordinate neighborhood parameterized by u and v such that f's expression in terms of u and v admits partial derivatives of all orders.
- However, the problem with this approach is that there can be many coordinate neighborhoods around p. Some may satisfy the conditions. Some may not.
- For the above definition to make sense, the differentiability should not depend on the chosen coordinate neighborhood. As such, we must show that if p belongs to two coordinate neighborhoods—one with parameters (u, v) and other with (ξ, η) —it is possible to pass from one to the other by means of a differentiable transformation.
- Proposition 1.1 (Change of Parameters). Let p be a point of a regular surface S. Let $\mathbf{x}: U \subseteq \mathbb{R}^2 \to S$ and $\mathbf{y}: V \subseteq \mathbb{R}^2 \to S$ be two parameterizations of S such that $p \in \mathbf{x}(U) \cap \mathbf{x}(V) = W$. Then, the "change of coordinates"

$$h = \mathbf{x}^{-1} \circ \mathbf{y}$$
,

which maps $\mathbf{y}^{-1}(W)$ to $\mathbf{x}^{-1}(W)$, is a diffeomorphism. That is, it is differentiable and has a differentiable inverse h^{-1} .

Proof. First, we note that \mathbf{x} and \mathbf{y} are homeomorphisms. They are both one-to-one and have continuous inverses. Thus, $h = \mathbf{x}^{-1} \circ \mathbf{y}$ is a homeomorphism.

However, we cannot conclude that h is differentiable yet. The problem is that, while \mathbf{y} is differentiable by definition, we do not know how to differentiate $\mathbf{x}^{-1}: S \to U$ because its domain S is not an open set.

The trick is to extend \mathbf{x} so that we know that its inverse is differentiable. This is done by applying the inverse function theorem. So, let $\mathbf{x} = (x(u, v), y(u, v), z(u, v))$. We define $\bar{\mathbf{x}} : \mathbb{R}^3 \to \mathbb{R}^3$ as follows:

$$\bar{\mathbf{x}}(u,v,t) = (x(u,v), y(u,v), z(u,v) + t).$$

Let $r = \mathbf{y}^{-1}(p)$ and let q = h(r) so that $\mathbf{x}(q) = p$. Because $d\mathbf{x}_q$ is injective, one of its Jacobian determinant is not zero. WLOG, let us assume that

$$\left| \frac{\partial(x,v)}{\partial(u,v)} \right| = \left| \frac{\frac{\partial x}{\partial u} - \frac{\partial x}{\partial v}}{\frac{\partial y}{\partial u} - \frac{\partial y}{\partial v}} \right| \neq 0.$$

Hence, we have that the Jacobian $d\bar{\mathbf{x}}_q$ is given by:

$$\begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial t} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial v}{\partial t} \\ 0 & 0 & 1 \end{vmatrix} = \left| \frac{\partial (x, v)}{\partial (u, v)} \right| \neq 0.$$

As such, there's a neighborhood M around p such that $\bar{\mathbf{x}}^{-1}$ is defined and is differentiable.

Let $N = W \cap M$. Consider the function $F = \bar{\mathbf{x}}^{-1} \circ \mathbf{y}$ from $\mathbf{y}^{-1}(N) \to \mathbb{R}^3$. We have that F is differentiable, and $\mathbf{y}^{-1}(N)$ contains r. Now, for all point $n \in N$, we have that $\bar{\mathbf{x}}^{-1}$ is of the form (*,*,0) where the first two coordinates must agree with $\mathbf{x}^{-1}(n)$. Hence, in a neighborhood of q, we can say that $h = \pi \circ \bar{\mathbf{x}}^{-1} \circ \mathbf{y}$ where π is the projection that drops the last component. Since π , $\bar{\mathbf{x}}$, and \mathbf{y} are all differentiable, we have that h is differentiable.

- Definition 1.2. Let f: V ⊆ S → ℝ be a function defined on an open subset V of a regular surface S.

 Then f is said to be differentiable at point p ∈ V if, for some parameterization x: U ⊆ ℝ² → S with p ∈ x(U) ⊆ V, the composition f ∘ x: U ⊆ ℝ² → ℝ is differentiable at x⁻¹(p).

 We say that f is differentiable in V if it is differentiable at all points of V.
- From now on, when f is a function from a surface to the reals, we will sometimes write f(u, v) instead of $f(\mathbf{x}(u, v))$ for some coordinate function \mathbf{x} .