Контрольная работа по теме «Методы нахождения интегралов. Приложения определенного интеграла»

$$1. \int \frac{2-5x}{\sqrt{x^2-6x}} dx.$$

$$2. \int \frac{3x^2 + 4}{(x+2)(x^2 - 4)} dx.$$

$$3. \int \left(1 - 2\sin\frac{x}{2}\right)^2 dx.$$

4.
$$\int \frac{2 \operatorname{tg} x + 3}{2 \sin^2 x + 3} dx$$
.

5.
$$\int_{1}^{17} \frac{\sqrt[4]{x-1} + \sqrt{x-1}}{\sqrt{x-1} + 1} dx.$$

6.
$$\int_{-4}^{4} (2-x) \cos \frac{\pi x}{4} dx$$
.

7. Найти площадь фигуры, ограниченной линиями $y^2 = x + 2$, x + y = 0.

8. Найти объем тела, образованного вращением вокруг оси Oy фигуры, ограниченной линиями $y = x^3$, x + y = 2, y = 0.

Вычислить несобственные интегралы (или установить их расходимость):

9.
$$\int_{-\infty}^{-2} \frac{dx}{x^2 + 4x + 8}.$$

10.
$$\int_{1}^{e} \frac{dx}{x \ln^{3} x}$$
.

Ответы. **1.** $-5\sqrt{x^2-6x}-13\ln\left|x-3+\sqrt{x^2-6x}\right|+C$.

2.
$$2\ln|x+2| + \ln|x-2| + \frac{4}{x+2} + C$$
. **3.** $3x + 8\cos\frac{x}{2} - 2\sin x + C$.

4.
$$\frac{1}{5}\ln(5 \operatorname{tg}^2 x + 3) + \sqrt{\frac{3}{5}} \operatorname{arctg} \frac{\sqrt{5} \operatorname{tg} x}{\sqrt{3}} + C$$
. **5.** $\frac{32}{3} + 2\ln 5 + 4 \operatorname{arctg} 2$. **6.** 0.

7. 5,5 кв. ед. 8. $\frac{26\pi}{15}$ куб. ед. 9. $\frac{\pi}{4}$. 10. Расходится.