

COMP 472 — PROJECT 2

Deus Ex Machina

Sobhan Mehrpour Kevishahi - 40122438

HEURISTICS

HEURISTIC 4

 Description: Counts the number of blocks between A and the exit block. Then divides it by 4

• Pros:

- Incentivizes moving to the exit block once there are no cars.
- Is admissible.
- Is only 0 at the goal state.

Cons:

• Does not help remove blocking cars.

Example 1:

	a	\boldsymbol{b}	c	d	e	f
1	I	I	В	_	_	
2	\mathbf{C}		\mathbf{B}	H A	\mathbf{H}	\mathbf{H}
3	\mathbf{C}		\mathbf{A}	\mathbf{A}	D	
4				G	\mathbf{D}	
5	\mathbf{E}	\mathbf{E}	\mathbf{G}	\mathbf{G}	\mathbf{G}	\mathbf{F}
_6						F

h(Example 1)=2/4=0.5

Example 2:

	a	\boldsymbol{b}	c	d	e	f
1	C		В			
2	C		В	\mathbf{H}	\mathbf{H}	\mathbf{H}
3	C C A	\mathbf{A}	D	\mathbf{D}		
4						
5	E	\mathbf{E}	\mathbf{G}	\mathbf{G}	\mathbf{G}	\mathbf{F}
6						\mathbf{F}

h(Example 2)=4/4=1

HEURISTIC 5

• **Description:** Counts the number of blocking cars and adds it to heuristic 4 (number of positions from A divided by 4).

Pros:

- Incentivizes moving to the exit block once there are no cars.
- Incentivizes moving blocked cars out of the way which has more weight than moving to the exit.
- Is admissible.
- Is only 0 at the goal state.

Cons:

Takes longer to compute.

Example 1:

	\boldsymbol{a}			d		f
1	I	I	В			
2	\mathbf{C}		\mathbf{B}	Н А	\mathbf{H}	\mathbf{H}
3	\mathbf{C}		\mathbf{A}	A	\mathbf{D}	
4				А G	D	
5	\mathbf{E}	$^{\cdot}$	\mathbf{G}	\mathbf{G}	\mathbf{G}	\mathbf{F}
6						F

h(Example 1)=1 + 2/4=1.5

Example 2:

	a	\boldsymbol{b}	\boldsymbol{c}	d	e	f
1	C		В			
2	C C A		В	\mathbf{H}	\mathbf{H}	Η
3	A	\mathbf{A}	\mathbf{D}	D		
				G		
4 5	\mathbf{E}	\mathbf{E}	\mathbf{G}	\mathbf{G}	\mathbf{G}	\mathbf{F}
6						\mathbf{F}

h(Example 2)=1 + 4/4=2

ANALYSIS

SOLUTION TIME ANALYSIS

- Uniform Cost Search: Tends to be one of the most time-consuming algorithms because it methodically searches for the solution. It often has large spikes.
- Algorithm A/A*: Also tends to be very timeconsuming, because the admissible heuristics try to find the optimal solution.
- Greedy Best First Search: Tends to be the least time-consuming algorithm, because it doesn't care about the optimal solution.

AVERAGE SOLUTION TIMES - 1

AVERAGE SOLUTION TIMES - 2

TOTAL SOLUTION TIMES

SEARCH PATH ANALYSIS

- Uniform Cost Search: Tends to search the most nodes when finding a solution, as this is a very meticulous algorithm.
- Greedy Best First Search: Tends to search the least nodes, as this doesn't strive to find the optimal solution.
- Algorithm A/A*: Tends to be somewhere in the middle.

SEARCH PATHS

HEURISTIC ANALYSIS

• **Heuristic 4:** Seems to search the most nodes. This lines up with the results seen with solution times as well.

