ESP32-S3-MINI-1 ESP32-S3-MINI-1U

Datasheet

Small-sized module supporting 2.4 GHz Wi-Fi (802.11 b/g/n) and Bluetooth[®] 5 (LE) Built around ESP32-S3 series of SoCs, Xtensa[®] dual-core 32-bit LX7 microprocessor Flash up to 8 MB, optional 2 MB PSRAM in chip package 39 GPIOs, rich set of peripherals

On-board PCB antenna or external antenna connector

ESP32-S3-MINI-1

ESP32-S3-MINI-1U

1 Module Overview

Note:

Check the link or the QR code to make sure that you use the latest version of this document: https://www.espressif.com/sites/default/files/documentation/esp32-s3-mini-1_mini-1u_datasheet_en.pdf

1.1 Features

CPU and On-Chip Memory

- ESP32-S3 embedded, Xtensa[®] dual-core 32-bit LX7 microprocessor, up to 240 MHz
- 384 KB ROM
- 512 KB SRAM
- 16 KB SRAM in RTC
- Up to 8 MB Quad SPI flash
- 2 MB PSRAM (ESP32-S3FH4R2 only)

Wi-Fi

- 802.11 b/g/n
- Bit rate: 802.11n up to 150 Mbps
- A-MPDU and A-MSDU aggregation
- 0.4 μ s guard interval support
- Center frequency range of operating channel: 2412 ~ 2484 MHz

Bluetooth

- Bluetooth LE: Bluetooth 5, Bluetooth mesh
- Speed: 125 Kbps, 500 Kbps, 1 Mbps, 2 Mbps
- Advertising extensions
- Multiple advertisement sets
- Channel selection algorithm #2
- Internal co-existence mechanism between Wi-Fi and Bluetooth to share the same antenna

Peripherals

 GPIO, SPI, LCD interface, Camera interface, UART, I2C, I2S, remote control, pulse counter, LED PWM, USB 1.1 OTG, USB Serial/JTAG controller, MCPWM, SDIO host, GDMA, TWAI[®] controller (compatible with ISO 11898-1, i.e. CAN Specification 2.0), ADC, touch sensor, temperature sensor, timers and watchdogs

Integrated Components on Module

• 40 MHz crystal oscillator

Antenna Options

- On-board PCB antenna (ESP32-S3-MINI-1)
- External antenna via a connector (ESP32-S3-MINI-1U)

Operating Conditions

- Operating voltage/Power supply: 3.0 ~ 3.6 V
- Operating ambient temperature:
 - 85 °C version: -40 ~ 85 °C
 - 105 °C version: -40 ~ 105 °C

Certification

- RF certification: See certificates for ESP32-S3-MINI-1 and ESP32-S3-MINI-1U
- Green certification: RoHS/REACH

Test

• HTOL/HTSL/uHAST/TCT/ESD

1.2 Description

ESP32-S3-MINI-1 and ESP32-S3-MINI-1U are two powerful, generic Wi-Fi + Bluetooth LE MCU modules that feature a rich set of peripherals, yet an optimized size. They are an ideal choice for a wide variety of application scenarios related to Internet of Things (IoT), such as embedded systems, smart home, wearable electronics, etc.

ESP32-S3-MINI-1 comes with a PCB antenna. ESP32-S3-MINI-1U comes with an external antenna connector. The variants and ordering information for the module are shown in Table 1.

PSRAM (MB) **Ordering Code** Chip Embedded Flash (MB) Dimensions (mm) ESP32-S3-MINI-1-N8 (85 °C) ESP32-S3FN8 8 (Quad SPI) 0 ESP32-S3-MINI-1-N4R2 (85 °C) ESP32-S3FH4R2 4 (Quad SPI) 2 (Quad SPI) $15.4 \times 20.5 \times 2.4$ ESP32-S3-MINI-1-H4R2 (105 °C) ESP32-S3FH4R2 4 (Quad SPI) 2 (Quad SPI) ESP32-S3-MINI-1U-N8 (85 °C) ESP32-S3FN8 8 (Quad SPI) 0 ESP32-S3-MINI-1U-N4R2 (85 °C) ESP32-S3FH4R2 4 (Quad SPI) 2 (Quad SPI) $15.4 \times 15.4 \times 2.4$ ESP32-S3-MINI-1U-H4R2 (105 °C) ESP32-S3FH4R2 4 (Quad SPI) 2 (Quad SPI)

Table 1: Ordering Information

At the core of the modules is an ESP32-S3, an Xtensa® 32-bit LX7 CPU that operates at up to 240 MHz. You can power off the CPU and make use of the low-power co-processor to constantly monitor the peripherals for changes or crossing of thresholds.

ESP32-S3 integrates a rich set of peripherals including SPI, LCD, Camera interface, UART, I2C, I2S, remote control, pulse counter, LED PWM, USB Serial/Jtag, MCPWM, SDIO host, GDMA, TWAI[®] controller (compatible with ISO 11898-1, i.e., CAN Specification 2.0), ADC, touch sensor, temperature sensor, timers and watchdogs, as well as up to 45 GPIOs. It also includes a full-speed USB 1.1 On-The-Go (OTG) interface to enable USB communication.

Note:

1.3 Applications

- Generic Low-power IoT Sensor Hub
- Generic Low-power IoT Data Loggers
- Cameras for Video Streaming
- Over-the-top (OTT) Devices
- USB Devices
- Speech Recognition
- Image Recognition

- Mesh Network
- Home Automation
- Smart Building
- Industrial Automation
- Smart Agriculture
- Audio Applications
- Health Care Applications

¹ The ESP32-S3FH4R2 chip is not yet in mass production, so modules embedded with this chip are still in sample status.

^{*} For more information on ESP32-S3, please refer to ESP32-S3 Series Datasheet .

- Wi-Fi-enabled Toys
- Wearable Electronics

• Retail & Catering Applications

Contents

1	Module Overview	2
1.1	Features	2
1.2	Description	3
1.3	Applications	3
2	Block Diagram	8
3	Pin Definitions	9
3.1	Pin Layout	9
3.2	Pin Description	10
3.3	Strapping Pins	11
4	Electrical Characteristics	14
4.1	Absolute Maximum Ratings	14
4.2	Recommended Operating Conditions	14
4.3	DC Characteristics (3.3 V, 25 °C)	14
4.4	Current Consumption Characteristics	15
4.5	Wi-Fi RF Characteristics	15
	4.5.1 Wi-Fi RF Standards	15
	4.5.2 Wi-Fi RF Transmitter (TX) Specifications	16
	4.5.3 Wi-Fi RF Receiver (RX) Specifications	17
4.6	Bluetooth LE Radio	18
	4.6.1 Bluetooth LE RF Transmitter (TX) Specifications	18
	4.6.2 Bluetooth LE RF Receiver (RX) Specifications	20
5	Module Schematics	23
6	Peripheral Schematics	25
7	Physical Dimensions and PCB Land Pattern	26
7.1	Physical Dimensions	26
7.2	Recommended PCB Land Pattern	28
7.3	Dimensions of External Antenna Connector	30
8	Product Handling	31
8.1	Storage Conditions	31
8.2	Electrostatic Discharge (ESD)	31
8.3	Reflow Profile	31
9	Related Documentation and Resources	32
Re	vision History	33

List of Tables

1	Ordering Information	3
2	Pin Definitions	10
3	JTAG Signal Source Selection	12
4	Strapping Pins	12
5	The Default Value for VDD_SPI Voltage	13
6	Parameter Descriptions of Setup and Hold Times for the Strapping Pin	13
7	Absolute Maximum Ratings	14
8	Recommended Operating Conditions	14
9	DC Characteristics (3.3 V, 25 °C)	14
10	Current Consumption Depending on RF Modes	15
11	Current Consumption Depending on Work Modes	15
12	Wi-Fi RF Standards	16
13	TX Power with Spectral Mask and EVM Meeting 802.11 Standards	16
14	TX EVM Test	16
15	RX Sensitivity	17
16	Maximum RX Level	17
17	RX Adjacent Channel Rejection	18
18	Bluetooth LE Frequency	18
19	Transmitter Characteristics - Bluetooth LE 1 Mbps	18
20	Transmitter Characteristics - Bluetooth LE 2 Mbps	19
21	Transmitter Characteristics - Bluetooth LE 125 Kbps	19
22	Transmitter Characteristics - Bluetooth LE 500 Kbps	19
23	Receiver Characteristics - Bluetooth LE 1 Mbps	20
24	Receiver Characteristics - Bluetooth LE 2 Mbps	21
25	Receiver Characteristics - Bluetooth LE 125 Kbps	21
26	Receiver Characteristics - Bluetooth LE 500 Kbps	22

List of Figures

1	ESP32-S3-MINI-1 Block Diagram	8
2	ESP32-S3-MINI-1U Block Diagram	8
3	Pin Layout (Top View)	9
4	Setup and Hold Times for the Strapping Pin	13
5	ESP32-S3-MINI-1 Schematics	23
6	ESP32-S3-MINI-1U Schematics	24
7	Peripheral Schematics	25
8	ESP32-S3-MINI-1 Physical Dimensions	26
9	ESP32-S3-MINI-1U Physical Dimensions	26
10	ESP32-S3-MINI-1 Recommended PCB Land Pattern	28
11	ESP32-S3-MINI-1U Recommended PCB Land Pattern	29
12	Dimensions of External Antenna Connector	30
13	Reflow Profile	31

2 Block Diagram

Figure 1: ESP32-S3-MINI-1 Block Diagram

Figure 2: ESP32-S3-MINI-1U Block Diagram

Pin Definitions

3.1 Pin Layout

The pin diagram below shows the approximate location of pins on the module. For the actual diagram drawn to scale, please refer to Figure 7.1 Physical Dimensions.

The pin diagram is applicable for ESP32-S3-MINI-1 and ESP32-S3-MINI-1U, but the latter has no keepout zone.

Figure 3: Pin Layout (Top View)

Pin Description 3.2

The module has 65 pins. See pin definitions in Table 2.

For explanations of pin names and function names, as well as configurations of peripheral pins, please refer to ESP32-S3 Series Datasheet .

Table 2: Pin Definitions

Name	No.	Type ^a	Function
GND	1, 2, 42, 43, 46-65	Р	GND
3V3	3	Р	Power supply
IO0	4	I/O/T	RTC_GPIO0, GPIO0
IO1	5	I/O/T	RTC_GPIO1, GPIO1, TOUCH1, ADC1_CH0
102	6	I/O/T	RTC_GPIO2, GPIO2, TOUCH2, ADC1_CH1
IO3	7	I/O/T	RTC_GPIO3, GPIO3, TOUCH3, ADC1_CH2
IO4	8	I/O/T	RTC_GPIO4, GPIO4 , TOUCH4, ADC1_CH3
IO5	9	I/O/T	RTC_GPIO5, GPIO5, TOUCH5, ADC1_CH4
106	10	I/O/T	RTC_GPIO6, GPIO6, TOUCH6, ADC1_CH5
107	11	I/O/T	RTC_GPIO7, GPIO7, TOUCH7, ADC1_CH6
IO8	12	I/O/T	RTC_GPIO8, GPIO8, TOUCH8, ADC1_CH7, SUBSPICS1
109	13	I/O/T	RTC_GPIO9, GPIO9 , TOUCH9, ADC1_CH8, FSPIHD, SUBSPIHD
IO10	14	I/O/T	RTC_GPIO10, GPIO10, TOUCH10, ADC1_CH9, FSPICS0, FSPIIO4,
1010	14	1/0/1	SUBSPICS0
IO11	15	I/O/T	RTC_GPIO11, GPIO11, TOUCH11, ADC2_CH0, FSPID, FSPIIO5,
1011	10	1/0/1	SUBSPID
IO12	16	I/O/T	RTC_GPIO12, GPIO12, TOUCH12, ADC2_CH1, FSPICLK, FSPIIO6,
1012	10	1/0/1	SUBSPICLK
IO13	17	I/O/T	RTC_GPIO13, GPIO13, TOUCH13, ADC2_CH2, FSPIQ, FSPIIO7,
1010	17	1/ 0/ 1	SUBSPIQ
IO14	18	I/O/T	RTC_GPIO14, GPIO14 , TOUCH14, ADC2_CH3, FSPIWP, FSPIDQS,
1014	10	1/ 0/ 1	SUBSPIWP
IO15	19	I/O/T	RTC_GPIO15, GPIO15, U0RTS, ADC2_CH4, XTAL_32K_P
IO16	20	I/O/T	RTC_GPIO16, GPIO16, U0CTS, ADC2_CH5, XTAL_32K_N
IO17	21	I/O/T	RTC_GPIO17, GPIO17, U1TXD, ADC2_CH6
IO18	22	I/O/T	RTC_GPIO18, GPIO18, U1RXD, ADC2_CH7, CLK_OUT3
IO19	23	I/O/T	RTC_GPIO19, GPIO19, U1RTS, ADC2_CH8, CLK_OUT2, USB_D-
1020	24	I/O/T	RTC_GPIO20, GPIO20, U1CTS, ADC2_CH9, CLK_OUT1, USB_D+
1021	25	I/O/T	RTC_GPIO21, GPIO21
IO26 ^b	26	I/O/T	SPICS1, GPIO26
IO47	27	I/O/T	SPICLK_P_DIFF, GPIO47 , SUBSPICLK_P_DIFF
1033	28	I/O/T	SPIIO4, GPIO33 , FSPIHD, SUBSPIHD
IO34	29	I/O/T	SPIIO5, GPIO34 , FSPICS0, SUBSPICS0
IO48	30	I/O/T	SPICLK_N_DIFF, GPIO48, SUBSPICLK_N_DIFF
IO35	31	I/O/T	SPIIO6, GPIO35 , FSPID, SUBSPID
IO36	32	I/O/T	SPIIO7, GPIO36 , FSPICLK, SUBSPICLK

Type a **Function** Name No. IO37 33 I/O/T SPIDQS, GPIO37, FSPIQ, SUBSPIQ **IO38** 34 I/O/T GPIO38, FSPIWP, SUBSPIWP 1039 35 I/O/T MTCK, GPIO39, CLK OUT3, SUBSPICS1 IO40 36 I/O/T MTDO, GPIO40, CLK_OUT2 IO41 37 I/O/T MTDI, GPIO41, CLK OUT1 IO42 38 I/O/T MTMS, GPIO42 TXD0 39 I/O/T U0TXD, GPIO43, CLK_OUT1 RXD0 40 I/O/T UORXD, GPIO44, CLK OUT2 IO45 41 I/O/T **GPIO45 GPIO46** IO46 44 I/O/T High: on, enables the chip. FΝ 45 Low: off, the chip powers off. Τ Note: Do not leave the EN pin floating.

Table 2 - cont'd from previous page

3.3 Strapping Pins

Note:

The content below is excerpted from Section Strapping Pins in <u>ESP32-S3 Series Datasheet</u>. For the strapping pin mapping between the chip and modules, please refer to Chapter 5 <u>Module Schematics</u>.

ESP32-S3 has four strapping pins:

- GPI00
- GPIO45
- GPIO46
- GPIO3

Software can read the values of corresponding bits from register "GPIO_STRAPPING".

During the chip's system reset (power-on-reset, RTC watchdog reset, brownout reset, analog super watchdog reset, and crystal clock glitch detection reset), the latches of the strapping pins sample the voltage level as strapping bits of "0" or "1", and hold these bits until the chip is powered down or shut down.

GPIO0, GPIO45 and GPIO46 are connected to the chip's internal weak pull-up/pull-down during the chip reset. Consequently, if they are unconnected or the connected external circuit is high-impedance, the internal weak pull-up/pull-down will determine the default input level of these strapping pins.

GPIO3 is floating by default. Its strapping value can be configured to determine the source of the JTAG signal inside the CPU, as shown in Table 4. In this case, the strapping value is controlled by the external circuit that cannot be in a high impedance state. Table 3 shows more configuration combinations of

^a P: power supply; I: input; O: output; T: high impedance. Pin functions in bold font are the default pin functions. For pin $28 \sim 29$, $31 \sim 33$, the default function is decided by eFuse bit.

^b For modules with ordering codes ending with -N4R2 and -H4R2, IO26 connects to the embedded PSRAM and is not available for other uses.

EFUSE_DIS_USB_JTAG, EFUSE_DIS_PAD_JTAG, and EFUSE_STRAP_JTAG_SEL that determine the JTAG signal source.

Table 3: JTAG Signal Source Selection

EFUSE_STRAP_JTAG_SEL	EFUSE_DIS_USB_JTAG	EFUSE_DIS_PAD_JTAG	JTAG Signal Source
1	0	0	Refer to Table 4
0	0	0	USB Serial/JTAG controller
don't care	0	1	USB Serial/JTAG controller
don't care	1	0	On-chip JTAG pins
don't care	1	1	N/A

To change the strapping bit values, users can apply the external pull-down/pull-up resistances, or use the host MCU's GPIOs to control the voltage level of these pins when powering on ESP32-S3.

After reset, the strapping pins work as normal-function pins.

Refer to Table 4 for a detailed configuration of the strapping pins.

Table 4: Strapping Pins

VDD_SPI Voltage						
Pin	Default	3.3 V	1.8 V			
GPIO45	Pull-down	0	1			
		Booting Mode ¹				
Pin	Default	SPI Boot	Download Boot			
GPIO0	Pull-up	1	0			
GPIO46	Pull-down	Don't care	0			
E	Enabling/Disabling ROM Messages Print During Booting ² ³					
Pin	Default	Enabled	Disabled			
GPIO46	Pull-down	See the fourth note	See the fourth note			
		JTAG Signal Selection				
Pin	Default	EFUSE_DIS_USB_JTAG = 0, EFUS	SE_DIS_PAD_JTAG = 0,			
1 111	EFUSE_STRAP_JTAG_SEL=1					
GPIO3	N/A	0: JTAG signal from on-chip JTA	AG pins			
GI 100	1 1 7 7 3	1: JTAG signal from USB Serial/	JTAG controller			

Note:

- 1. The strapping combination of GPIO46 = 1 and GPIO0 = 0 is invalid and will trigger unexpected behavior.
- 2. By default, the ROM boot messages are printed over UART0 (U0TXD pin) and USB Serial/JTAG controller together. The ROM code printing can be disabled through configuration register and eFuse. For detailed information, please refer to Chapter Chip Boot Control in ESP32-S3 Technical Reference Manual.

VDD_SPI voltage is determined either by the strapping value of GPIO45 or by EFUSE_VDD_SPI_TIEH. When EFUSE_VDD_SPI_FORCE is 0, VDD_SPI voltage is determined by the strapping value of GPIO45; when EFUSE_VDD_SPI_FORCE is 1, VDD_SPI voltage is determined by EFUSE_VDD_SPI_TIEH. Please refer to the

following table for default configurations:

Table 5: The Default Value for VDD_SPI Voltage

Chip Variant	EFUSE_VDD_SPI_FORCE	EFUSE_VDD_SPI_TIEH	VDD_SPI Voltage
ESP32-S3	0	0	Determined by GPIO45
ESP32-S3R2	1	1	Force to 3.3 V
ESP32-S3R8	1	1	Force to 3.3 V
ESP32-S3R8V	1	0	Force to 1.8 V
ESP32-S3FN8	1	1	Force to 3.3 V
ESP32-S3FH4R2	1	1	Force to 3.3 V

Figure 4 shows the setup and hold times for the strapping pin before and after the CHIP_PU signal goes high. Details about the parameters are listed in Table 6.

Figure 4: Setup and Hold Times for the Strapping Pin

Table 6: Parameter Descriptions of Setup and Hold Times for the Strapping Pin

Parameter	Description	Min (ms)
t_{SU}	Setup time before CHIP_PU goes from low to high	0
t_{HD}	Hold time after CHIP_PU goes high	3

Electrical Characteristics

Absolute Maximum Ratings 4.1

Stresses above those listed in Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Table 7: Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Unit
VDD33	Power supply voltage	-0.3	3.6	V
T_{STORE}	Storage temperature	-40	105	°C

Recommended Operating Conditions

Table 8: Recommended Operating Conditions

Symbol	Parameter		Min	Тур	Max	Unit
VDD33	Power supply voltage			3.3	3.6	V
I_{VDD}	Current delivered by external power supply			_	_	Α
T Operating ambient temperature		85 °C version	-40		85	°C
	Operating ambient temperature	105 °C version	-4 0		105	C

DC Characteristics (3.3 V, 25 °C) 4.3

Table 9: DC Characteristics (3.3 V, 25 °C)

Symbol	Parameter	Min	Тур	Max	Unit
C_{IN}	Pin capacitance	_	2	_	рF
V_{IH}	High-level input voltage	0.75 × VDD ¹	_	VDD ¹ + 0.3	V
V_{IL}	Low-level input voltage	-0.3		$0.25 \times VDD^1$	V
$ I_{IH} $	High-level input current	_	_	50	nA
_{IL}	Low-level input current	_	_	50	nA
V_{OH}^2	High-level output voltage	0.8 × VDD ¹	_	_	V
V_{OL}^2	Low-level output voltage	_	_	$0.1 \times VDD^1$	V
1	High-level source current (VDD 1 = 3.3 V, V $_{OH}$ >=		40		mA
$ _{OH}$	2.64 V, PAD_DRIVER = 3)		40	_	
1	Low-level sink current (VDD1 = 3.3 V, V_{OL} =		28		mΛ
$ I_{OL} $	0.495 V, PAD_DRIVER = 3)		20	_	mA
R_{PU}	Internal weak pull-up resistor	_	45	_	kΩ
R_{PD}	Internal weak pull-down resistor	_	45	_	kΩ
\/	Chip reset release voltage (EN voltage is within	0.75 × VDD ¹		VDD ¹ + 0.3	V
V_{IH_nRST}	the specified range)	0.75 x VDD		0.3 + טטע	V

Table 9 – cont'd from previous page

Symbol	Parameter	Min	Тур	Max	Unit
V_{IL_nRST}	Chip reset voltage (EN voltage is within the	-0.3		$0.25 \times VDD^1$	\/
	specified range)	-0.3		0.23 x VDD	v

¹ VDD is the I/O voltage for pins of a particular power domain.

4.4 Current Consumption Characteristics

With the use of advanced power-management technologies, the module can switch between different power modes. For details on different power modes, please refer to Section Low Power Management in ESP32-S3 Series Datasheet.

Table 10: Current Consumption Depending on RF Modes

Work mode	Desc	cription	Peak (mA)
Active (RF working)		802.11b, 1 Mbps, @20.5 dBm	355
	TX	802.11g, 54 Mbps, @18 dBm	297
		802.11n, HT20, MCS 7, @17.5 dBm	286
		802.11n, HT40, MCS 7, @17 dBm	285
		802.11b/g/n, HT20	95
	RX	802.11n, HT40	97

¹ The current consumption measurements are taken with a 3.3 V supply at 25 °C of ambient temperature at the RF port. All transmitters' measurements are based on a 100% duty cycle.

Note that the data in Table 11 only applies to the module variants that embed the chip variant ESP32-S3.

Table 11: Current Consumption Depending on Work Modes

Work mode	Description	Typ ²	Unit
Light-sleep	_	240 ¹	μΑ
Doop cloop	RTC memory and RTC peripherals are powered on.	8	μ A
Deep-sleep	RTC memory is powered on. RTC peripherals are powered off.	7	μΑ
Power off	CHIP_PU is set to low level. The chip is powered off.	1	μΑ

 $^{^{1}}$ An extra PSRAM consumption of 40 μ A should be added for modules embedded with ESP32-S3FH4R2 chip.

4.5 Wi-Fi RF Characteristics

4.5.1 Wi-Fi RF Standards

 $^{^{2}}$ V_{OH} and V_{OL} are measured using high-impedance load.

² The current consumption figures for in RX mode are for cases when the peripherals are disabled and the CPU idle.

² Please refer to ESP32-S3 Series Datasheet if there are any inconsistencies.

Table 12: Wi-Fi RF Standards

Name		Description		
Center frequency range of operating channel ¹		2412 ~ 2484 MHz		
Wi-Fi wireless standard		IEEE 802.11b/g/n		
		11b: 1, 2, 5.5 and 11 Mbps		
Data rate	20 MHz	11g: 6, 9, 12, 18, 24, 36, 48, 54 Mbps		
Data Tale		11n: MCS0-7, 72.2 Mbps (Max)		
	40 MHz	11n: MCS0-7, 150 Mbps (Max)		
Antenna type		PCB antenna, external antenna via the connector ²		

¹ Device should operate in the center frequency range allocated by regional regulatory authorities. Target center frequency range is configurable by software.

4.5.2 Wi-Fi RF Transmitter (TX) Specifications

Target TX power is configurable based on device or certification requirements. The default characteristics are provided in Table 13.

Table 13: TX Power with Spectral Mask and EVM Meeting 802.11 Standards

Rate	Min	Тур	Max
Hate	(dBm)	(dBm)	(dBm)
802.11b, 1 Mbps	_	20.5	_
802.11b, 11 Mbps	_	20.5	_
802.11g, 6 Mbps	_	20.0	_
802.11g, 54 Mbps	_	18.0	_
802.11n, HT20, MCS 0	_	19.0	_
802.11n, HT20, MCS 7	_	17.5	_
802.11n, HT40, MCS 0	_	18.5	_
802.11n, HT40, MCS 7	_	17.0	_

Table 14: TX EVM Test

Rate	Min	Тур	SL ¹
nate	(dB)	(dB)	(dB)
802.11b, 1 Mbps, @20.5 dBm	_	-24.5	-10
802.11b, 11 Mbps, @20.5 dBm		-24.5	-10
802.11g, 6 Mbps, @20 dBm	_	-23.0	-5
802.11g, 54 Mbps, @18 dBm	_	-29.5	-25
802.11n, HT20, MCS 0, @19 dBm	_	-24.0	-5
802.11n, HT20, MCS 7, @17.5 dBm	_	-30.5	-27
802.11n, HT40, MCS 0, @18.5 dBm	_	-25.0	-5
802.11n, HT40, MCS 7, @17 dBm	_	-30.0	-27

¹ SL stands for standard limit value.

² For the modules that use external antennas, the output impedance is 50 Ω . For other modules without external antennas, the output impedance is irrelevant.

4.5.3 Wi-Fi RF Receiver (RX) Specifications

Table 15: RX Sensitivity

Rate	Min	Тур	Max
	(dBm)	(dBm)	(dBm)
802.11b, 1 Mbps	_	-98.2	
802.11b, 2 Mbps		-95.6	
802.11b, 5.5 Mbps		-92.8	
802.11b, 11 Mbps		-88.5	_
802.11g, 6 Mbps	_	-93.0	
802.11g, 9 Mbps	_	-92.0	
802.11g, 12 Mbps	_	-90.8	_
802.11g, 18 Mbps		-88.5	_
802.11g, 24 Mbps		-85.5	_
802.11g, 36 Mbps		-82.2	_
802.11g, 48 Mbps		-78.0	_
802.11g, 54 Mbps		-76.2	_
802.11n, HT20, MCS 0		-93.0	
802.11n, HT20, MCS 1		-90.6	_
802.11n, HT20, MCS 2		-88.4	
802.11n, HT20, MCS 3		-84.8	_
802.11n, HT20, MCS 4		-81.6	
802.11n, HT20, MCS 5		-77.4	_
802.11n, HT20, MCS 6	_	-75.6	
802.11n, HT20, MCS 7		-74.2	_
802.11n, HT40, MCS 0		-90.0	_
802.11n, HT40, MCS 1	_	-87.5	
802.11n, HT40, MCS 2		-85.0	_
802.11n, HT40, MCS 3	_	-82.0	
802.11n, HT40, MCS 4	_	-78.5	_
802.11n, HT40, MCS 5		-74.4	
802.11n, HT40, MCS 6	_	-72.5	
802.11n, HT40, MCS 7	_	-71.2	_

Table 16: Maximum RX Level

Rate	Min	Тур	Max
nate	(dBm)	(dBm)	(dBm)
802.11b, 1 Mbps		5	
802.11b, 11 Mbps		5	_
802.11g, 6 Mbps	_	5	_
802.11g, 54 Mbps	_	0	_
802.11n, HT20, MCS 0	_	5	_
802.11n, HT20, MCS 7	_	0	

Table 16 - cont'd from previous page

Rate	Min (dBm)	Typ (dBm)	Max (dBm)
802.11n, HT40, MCS 0	_	5	_
802.11n, HT40, MCS 7	_	0	_

Table 17: RX Adjacent Channel Rejection

Rate	Min (dB)	Typ (dB)	Max (dB)
802.11b, 1 Mbps	_	35	_
802.11b, 11 Mbps	_	35	_
802.11g, 6 Mbps	_	31	_
802.11g, 54 Mbps	_	14	_
802.11n, HT20, MCS 0	_	31	_
802.11n, HT20, MCS 7	_	13	_
802.11n, HT40, MCS 0	_	19	_
802.11n, HT40, MCS 7	_	8	

4.6 Bluetooth LE Radio

Table 18: Bluetooth LE Frequency

	Min	Тур	Max
Parameter	(MHz)	(MHz)	(MHz)
Center frequency of operating channel	2402	_	2480

4.6.1 Bluetooth LE RF Transmitter (TX) Specifications

Table 19: Transmitter Characteristics - Bluetooth LE 1 Mbps

Parameter	Description	Min	Тур	Max	Unit
DE transmit newer	RF power control range	-25.00	0	20.00	dBm
RF transmit power	Gain control step	_	3.00	_	dB
		_	2.50		kHz
	$ Max f_0 - f_n $	_	2.00	_	kHz
Carrier frequency offset and drift	$ \operatorname{Max} f_{n-} f_{n-5} $	_	1.40		kHz
	$ f_1 - f_0 $	_	1.00	_	kHz
	$\Delta f1_{avg}$	_	249.00		kHz
Modulation characteristics	Min Δ $f2_{\rm max}$ (for at least		198.00		kHz
	99.9% of all Δ $f2_{\text{max}}$)		190.00		NI IZ
	$\Delta~f2_{ m avg}/\Delta~f1_{ m avg}$	_	0.86		_

Table 19 - cont'd from previous page

Parameter	Description	Min	Тур	Max	Unit
In-band spurious emissions	±2 MHz offset	_	-37.00	_	dBm
	±3 MHz offset	_	-42.00		dBm
	>±3 MHz offset	_	-44.00	_	dBm

Table 20: Transmitter Characteristics - Bluetooth LE 2 Mbps

Parameter	Description	Min	Тур	Max	Unit
RF transmit power	RF power control range	-25.00	0	20.00	dBm
nr transmit power	Gain control step	_	3.00	_	dB
		_	2.50		kHz
Carrier frequency offset and drift	$ Max f_0 - f_n $	_	2.00	_	kHz
Carrier frequency offset and drift	$ \int Max f_{n-1} f_{n-5} $	_	1.40		kHz
	$ f_1 - f_0 $	_	1.00	_	kHz
	$\Delta f1_{ ext{avg}}$		499.00	_	kHz
Modulation characteristics	Min Δ $f2_{\rm max}$ (for at least		416.00		kHz
Modulation Characteristics	99.9% of all Δ $f2_{\text{max}}$)		410.00	_	KI IZ
	$\Delta f 2_{\rm avg}/\Delta f 1_{\rm avg}$		0.89	_	_
	±4 MHz offset	_	-42.00		dBm
In-band spurious emissions	±5 MHz offset	_	-44.00	_	dBm
	>±5 MHz offset		-47.00		dBm

Table 21: Transmitter Characteristics - Bluetooth LE 125 Kbps

Parameter	Description	Min	Тур	Max	Unit
DE transmit navver	RF power control range	-25.00	0	20.00	dBm
RF transmit power	Gain control step		3.00		dB
			0.80		kHz
Carrier frequency offset and drift	$ Max f_0 - f_n $	_	1.00	_	kHz
Carrier frequency offset and drift	$ f_{n}-f_{n-3} $	_	0.30	_	kHz
	$ f_0 - f_3 $		1.00		kHz
	$\Delta f1_{avg}$	_	248.00		kHz
Modulation characteristics	Min $\Delta f1_{ ext{max}}$ (for at least		222.00		kHz
	99.9% of all $\Delta f1_{\text{max}}$	_	222.00	_	NI IZ
	±2 MHz offset	_	-37.00		dBm
In-band spurious emissions	±3 MHz offset		-42.00	_	dBm
	>±3 MHz offset	_	-44.00		dBm

Table 22: Transmitter Characteristics - Bluetooth LE 500 Kbps

Parameter	Description	Min	Тур	Max	Unit
RF transmit power	RF power control range	-25.00	0	20.00	dBm
ni transmit power	Gain control step	_	3.00	_	dB

Table 22 - cont'd from previous page

Parameter	Description		Тур	Max	Unit
			0.80	_	kHz
Carrier frequency effect and drift	$ Max f_0 - f_n $	_	1.00	_	kHz
Carrier frequency offset and drift	$ f_{n}-f_{n-3} $		0.85	_	kHz
	$ f_0 - f_3 $	_	0.34	_	kHz
	$\Delta f 2_{avg}$	_	213.00		kHz
Modulation characteristics	Min Δ $f2_{\rm max}$ (for at least	_	196.00	_	kHz
	99.9% of all Δ $f2_{\text{max}}$)				NI IZ
	±2 MHz offset	_	-37.00		dBm
In-band spurious emissions	±3 MHz offset	_	-42.00	_	dBm
	>±3 MHz offset	_	-44.00	_	dBm

4.6.2 Bluetooth LE RF Receiver (RX) Specifications

Table 23: Receiver Characteristics - Bluetooth LE 1 Mbps

Parameter	Description	Min	Тур	Max	Unit
Sensitivity @30.8% PER	_	_	-96.5	_	dBm
Maximum received signal @30.8% PER	_	_	8	_	dBm
Co-channel C/I	F = F0 MHz	_	8	_	dB
	F = F0 + 1 MHz	_	4	_	dB
	F = F0 – 1 MHz	_	4	_	dB
	F = F0 + 2 MHz	_	-23	_	dB
Adjacent channel selectivity C/I	F = F0 – 2 MHz	_	-23	_	dB
Adjacent channel selectivity C/1	F = F0 + 3 MHz	_	-34	_	dB
	F = F0 - 3 MHz	_	-34	_	dB
	F > F0 + 3 MHz	_	-36	_	dB
	F > F0 – 3 MHz	_	-37	_	dB
Image frequency	_	_	-36	_	dB
Adjacent channel to image frequency	$F = F_{image} + 1 \text{ MHz}$	_	-39	_	dB
Adjacent channel to image frequency	$F = F_{image} - 1 \text{ MHz}$	_	-34	_	dB
	30 MHz ~ 2000 MHz	_	-12	_	dBm
Out-of-band blocking performance	2003 MHz ~ 2399 MHz	_	-18	_	dBm
	2484 MHz ~ 2997 MHz	_	-16	_	dBm
	3000 MHz ~ 12.75 GHz	_	-10	_	dBm
Intermodulation	_	_	-29	_	dBm

Table 24: Receiver Characteristics - Bluetooth LE 2 Mbps

Parameter	Description	Min	Тур	Max	Unit
Sensitivity @30.8% PER	_	_	-92	_	dBm
Maximum received signal @30.8% PER	_	_	3	_	dBm
Co-channel C/I	F = F0 MHz	_	8	_	dB
	F = F0 + 2 MHz	_	4	_	dB
	F = F0 - 2 MHz	_	4	_	dB
	F = F0 + 4 MHz	_	-27	_	dB
Adjacent channel calcutivity C/I	F = F0 – 4 MHz	_	-27	_	dB
Adjacent channel selectivity C/I	F = F0 + 6 MHz	_	-38	_	dB
	F = F0 – 6 MHz	_	-38	_	dB
	F > F0 + 6 MHz	_	-41		dB
	F > F0 - 6 MHz	_	-41	_	dB
Image frequency	_	_	-27		dB
Adjacent channel to image frequency	$F = F_{image} + 2 \text{ MHz}$	_	-38	_	dB
Adjacent charmer to image frequency	$F = F_{image} - 2 \text{ MHz}$	_	4		dB
	30 MHz ~ 2000 MHz	_	-15	_	dBm
Out-of-band blocking performance	2003 MHz ~ 2399 MHz	_	-21	_	dBm
	2484 MHz ~ 2997 MHz	_	-21	_	dBm
	3000 MHz ~ 12.75 GHz	_	-9	_	dBm
Intermodulation	_		-29		dBm

Table 25: Receiver Characteristics - Bluetooth LE 125 Kbps

Parameter	Description	Min	Тур	Max	Unit
Sensitivity @30.8% PER	_	_	-103.5	_	dBm
Maximum received signal @30.8% PER	_	_	8	_	dBm
Co-channel C/I	F = F0 MHz	_	4	_	dB
	F = F0 + 1 MHz	_	1	_	dB
	F = F0 – 1 MHz	_	2	_	dB
	F = F0 + 2 MHz	_	-26	_	dB
Adjacent channel selectivity C/I	F = F0 - 2 MHz		-26		dB
Adjacent channel selectivity C/1	F = F0 + 3 MHz	_	-36	_	dB
	F = F0 - 3 MHz		-39		dB
	F > F0 + 3 MHz	_	-42	_	dB
	F > F0 – 3 MHz	_	-43		dB
Image frequency	_		-42		dB
Adia and about all to impage from the street	$F = F_{image} + 1 \text{ MHz}$	_	-43	_	dB
Adjacent channel to image frequency	$F = F_{image} - 1 \text{ MHz}$		-36	_	dB

Table 26: Receiver Characteristics - Bluetooth LE 500 Kbps

Parameter	Description	Min	Тур	Max	Unit
Sensitivity @30.8% PER	_	_	-100	_	dBm
Maximum received signal @30.8% PER	_	_	8	_	dBm
Co-channel C/I	F = F0 MHz	_	4	_	dB
	F = F0 + 1 MHz	_	1	_	dB
	F = F0 – 1 MHz	_	0	_	dB
	F = F0 + 2 MHz	_	-24	_	dB
Adjacent channel selectivity C/I	F = F0 - 2 MHz	_	-24	_	dB
Adjacent channel selectivity C/1	F = F0 + 3 MHz	_	-37	_	dB
	F = F0 - 3 MHz	_	-39	_	dB
	F > F0 + 3 MHz	_	-38	_	dB
	F > F0 – 3 MHz	_	-42	_	dB
Image frequency	_	_	-38		dB
Adjacent channel to image frequency	$F = F_{image} + 1 \text{ MHz}$	_	-42		dB
Adjacent channel to image frequency	$F = F_{image} - 1 \text{ MHz}$	_	-37	_	dB

5 Module Schematics

This is the reference design of the module.

S

Module Schematics

Figure 5: ESP32-S3-MINI-1 Schematics

S

Figure 6: ESP32-S3-MINI-1U Schematics

6 Peripheral Schematics

This is the typical application circuit of the module connected with peripheral components (for example, power supply, antenna, reset button, JTAG interface, and UART interface).

Figure 7: Peripheral Schematics

- Soldering the EPAD to the ground of the base board is not a must, however, it can optimize thermal performance. If you choose to solder it, please apply the correct amount of soldering paste.
- To ensure that the power supply to the ESP32-S3 chip is stable during power-up, it is advised to add an RC delay circuit at the EN pin. The recommended setting for the RC delay circuit is usually R = 10 k Ω and C = 1 μ F. However, specific parameters should be adjusted based on the power-up timing of the module and the power-up and reset sequence timing of the chip. For ESP32-S3's power-up and reset sequence timing diagram, please refer to Section *Power Scheme* in *ESP32-S3 Series Datasheet*.

7 Physical Dimensions and PCB Land Pattern

7.1 Physical Dimensions

Figure 8: ESP32-S3-MINI-1 Physical Dimensions

Figure 9: ESP32-S3-MINI-1U Physical Dimensions

Note:

For information about tape, reel, and product marking, please refer to *Espressif Module Package Information*.

7.2 Recommended PCB Land Pattern

Figure 10: ESP32-S3-MINI-1 Recommended PCB Land Pattern

Figure 11: ESP32-S3-MINI-1U Recommended PCB Land Pattern

ESP32-S3-MINI-1U uses the third generation external antenna connector as shown in Figure 12. This connector is compatible with the following connectors:

- W.FL Series connector from Hirose
- MHF III connector from I-PEX
- AMMC connector from Amphenol

Figure 12: Dimensions of External Antenna Connector

8 Product Handling

8.1 Storage Conditions

The products sealed in moisture barrier bags (MBB) should be stored in a non-condensing atmospheric environment of < 40 °C and /90%RH. The module is rated at the moisture sensitivity level (MSL) of 3.

After unpacking, the module must be soldered within 168 hours with the factory conditions 25±5 °C and /60%RH. If the above conditions are not met, the module needs to be baked.

8.2 Electrostatic Discharge (ESD)

Human body model (HBM): ±2000 V

• Charged-device model (CDM): ±500 V

8.3 Reflow Profile

Solder the module in a single reflow.

Figure 13: Reflow Profile

9 Related Documentation and Resources

Related Documentation

- ESP32-S3 Series Datasheet Specifications of the ESP32-S3 hardware.
- ESP32-S3 Technical Reference Manual Detailed information on how to use the ESP32-S3 memory and peripherals.
- ESP32-S3 Hardware Design Guidelines Guidelines on how to integrate the ESP32-S3 into your hardware product.
- Certificates
 - https://espressif.com/en/support/documents/certificates
- Documentation Updates and Update Notification Subscription https://espressif.com/en/support/download/documents

Developer Zone

- ESP-IDF Programming Guide for ESP32-S3 Extensive documentation for the ESP-IDF development framework.
- ESP-IDF and other development frameworks on GitHub.
 - https://github.com/espressif
- ESP32 BBS Forum Engineer-to-Engineer (E2E) Community for Espressif products where you can post questions, share knowledge, explore ideas, and help solve problems with fellow engineers.
 - https://esp32.com/
- The ESP Journal Best Practices, Articles, and Notes from Espressif folks.
 - https://blog.espressif.com/
- See the tabs SDKs and Demos, Apps, Tools, AT Firmware.
 https://espressif.com/en/support/download/sdks-demos

Products

- ESP32-S3 Series SoCs Browse through all ESP32-S3 SoCs.
 - https://espressif.com/en/products/socs?id=ESP32-S3
- ESP32-S3 Series Modules Browse through all ESP32-S3-based modules.
 - https://espressif.com/en/products/modules?id=ESP32-S3
- ESP32-S3 Series DevKits Browse through all ESP32-S3-based devkits.
 - https://espressif.com/en/products/devkits?id=ESP32-S3
- ESP Product Selector Find an Espressif hardware product suitable for your needs by comparing or applying filters. https://products.espressif.com/#/product-selector?language=en

Contact Us

- See the tabs Sales Questions, Technical Enquiries, Circuit Schematic & PCB Design Review, Get Samples (Online stores), Become Our Supplier, Comments & Suggestions.
 - https://espressif.com/en/contact-us/sales-questions

Revision History

Date	Version	Release notes
2022-05-24	v1.0	 Update information about flash and PSRAM on the title page and in Section 1.1 Add certification and test information Add information of new module variants and their ambient operating temperature versions in Table 1 Add the second note in Table 2 Add Table 5 and update description of ROM code printing in Section 3.3 Add notes in Table 11 Update Bluetooth LE RF data Update module schematics in Section 5 Other minor updates
2021-11-16	v0.6	Overall update for chip revision 1
2021-03-30	v0.1	Preliminary release, for chip revision 0

Disclaimer and Copyright Notice

Information in this document, including URL references, is subject to change without notice.

ALL THIRD PARTY'S INFORMATION IN THIS DOCUMENT IS PROVIDED AS IS WITH NO WARRANTIES TO ITS AUTHENTICITY AND ACCURACY.

NO WARRANTY IS PROVIDED TO THIS DOCUMENT FOR ITS MERCHANTABILITY, NON-INFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, NOR DOES ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

All liability, including liability for infringement of any proprietary rights, relating to use of information in this document is disclaimed. No licenses express or implied, by estoppel or otherwise, to any intellectual property rights are granted herein.

The Wi-Fi Alliance Member logo is a trademark of the Wi-Fi Alliance. The Bluetooth logo is a registered trademark of Bluetooth SIG.

All trade names, trademarks and registered trademarks mentioned in this document are property of their respective owners, and are hereby acknowledged.

Copyright © 2022 Espressif Systems (Shanghai) Co., Ltd. All rights reserved.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Espressif:

ESP32-S3-MINI-1-N8