1 Problem 2-2: OCD

Lemma 1.1. Given the previous algorithm, the result will always be the smallest number of containers you can fill L gallons of oil in.

Proof. By Induction: A natural number L, where $L \geq 1$.

Base Case: L=1

Given the algorithm, a 1 gallon container will be used. The base case olds true that the smallest number of containers you can fill L gallons of oil in since only one container is used.

Induction Hypotheses: Given k gallons of oil, there exists a method to store the k gallons of oil in as few different containers as possible while ensuring that every container you store the oil in is full.

Induction Step: For k + 1 gallons of oil, we want to show that there also exists a method to store the k + 1 gallons of oil in as few different containers as possible while ensuring that every container you store the oil in is full.

It is possible to find such an i where i is between 0 to 1000 where $2^i \le k+1$. $Z=k+1-2^i$

Z is greater than or equal to 0 and it is less than or equal to k.

By Induction Hypotheses , there exists a method to store the Z gallons of oil in as few different containers as possible while ensuring that every container you store the oil in is full. Thus, we conclude the lemma is true.

Lemma 1.2. Given the previous algorithm, this algorithm finds the optimal solution.

Proof. Assume there is an optimal solution θ .

By Induction: A natural number L, where $L \leq 1$, the solution returned by the previous algorithm is the same as θ .

Base Case: L=1

The previous algorithm will therefore return 1 container of size 1-gallon.

 θ will also return 1 container of size 1-gallon since that is the optimal solution.

Induction Hypotheses: Given k gallons of oil, the previous algorithm and θ will return the same count and sizes of containers to store the k gallons of oil.

Induction Step: For k+1 gallons of oil, we want to show that the previous algorithm and θ will return the same count and sizes of containers to store the k+1 gallons of oil.

It is possible to find such an i where i is between 0 to 1000 where $2^i \le k+1$. $Z=k+1-2^i$

Z is greater than or equal to 0 and it is less than or equal to k.

Both θ and the previous algorithm will choose the 2^i container because that is the maximum container that can be chosen given the rule that holds the

most oil and contains no empty space. Since $Z \geq 0$ and $Z \leq k$, both θ and the previous algorithm will choose the same sequence of containers by the Induction Hypotheses. Thus, we conclude that the lemma is true.