MAT1830 - Discrete Mathematics for Computer Science Tutorial Sheet #8 and Additional Practice Questions

1. The sample space is {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT} (where HTH means heads on the first flip, tails on the second, heads on the third, and so on). Each of these outcomes occurs with probability $(\frac{1}{2})^3$ because the three flips are independent.

X = 0 if the outcome is TTT.

X = 1 if the outcome is in {HHT, HTH, THH}.

X = 2 if the outcome is in {HTT, THT, TTH}.

X = 3 if the outcome is HHH.

Thus the probability distribution of X is given by

- 2. (a) Without any further information, the best the doctor can answer is to say that about one in every three pairs of twins worldwide is a pair of identical twins and hence the probability is about $\frac{1}{3}$.
 - (b) Let I be the event the twins are identical and M be the event they're both male.

 $Pr(I) = \frac{1}{3}$ from the question.

 $Pr(M|I) = \frac{1}{2}$ from the question.

 $\Pr(M|\overline{I}) = \frac{1}{4}$ from the question.

By Bayes' theorem,

$$\Pr(I|M) = \frac{\Pr(M|I)\Pr(I)}{\Pr(M|I)\Pr(I) + \Pr(M|\overline{I})\Pr(\overline{I})}$$
$$= \frac{\frac{1}{2} \times \frac{1}{3}}{(\frac{1}{2} \times \frac{1}{3}) + (\frac{1}{4} \times (1 - \frac{1}{3}))}$$
$$= \frac{1}{2}.$$

So the doctor can say that the probability is about $\frac{1}{2}$.

- 3. For all $x \in \{1, 2, 3, 4, 5, 6\}$, $\Pr(X = x) = \frac{1}{6}$. For all $y \in \{1, 2, 3, 4, 5, 6\}$, $\Pr(Y = y) = \frac{1}{6}$. Note that X and Y are independent.
 - (a) $\Pr(Z = 7 \land Y = 2) = \Pr(X = 5 \land Y = 2) = \frac{1}{6} \times \frac{1}{6} = \frac{1}{36}$. $\Pr(Y = 2) = \frac{1}{6}$. So $\Pr(Z = 7 \mid Y = 2) = \frac{1}{36} / \frac{1}{6} = \frac{1}{6}$.
 - (b) Again $\Pr(Y=2 \land Z=7) = \Pr(X=5 \land Y=2) = \frac{1}{6} \times \frac{1}{6} = \frac{1}{36}$. Z=7 exactly when $(X,Y) \in \{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\}$ and each event in this set has probability $\frac{1}{36}$. So $\Pr(Z=7) = 6 \times \frac{1}{36} = \frac{1}{6}$. So $\Pr(Y=2 \mid Z=7) = \frac{1}{36} / \frac{1}{6} = \frac{1}{6}$.
 - (c) Yes. There are at least three ways to show this:
 - by noting that $Pr(Z = 7 \mid Y = 2) = Pr(Z = 7)$ from (a);
 - by noting that $Pr(Y = 2 \mid Z = 7) = Pr(Y = 2)$ from (b);
 - by noting that $Pr(Y = 2 \land Z = 7) = Pr(Y = 2) Pr(Z = 7)$.
 - (d) $\Pr(Z = 6 \land Y = 2) = \Pr(X = 4 \land Y = 2) = \frac{1}{6} \times \frac{1}{6} = \frac{1}{36}.$ $\Pr(Y = 2) = \frac{1}{6}.$ So $\Pr(Z = 6 \mid Y = 2) = \frac{1}{36} / \frac{1}{6} = \frac{1}{6}.$
 - (e) What is $Pr(Y = 2 \mid Z = 6)$?

Again $\Pr(Y = 2 \land Z = 6) = \Pr(X = 4 \land Y = 2) = \frac{1}{6} \times \frac{1}{6} = \frac{1}{36}$. Z = 6 exactly when $(X, Y) \in \{(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)\}$ and each event in this set has probability $\frac{1}{36}$. So $\Pr(Z = 6) = 5 \times \frac{1}{36} = \frac{5}{36}$. So $\Pr(Y = 2 \mid Z = 6) = \frac{1}{36} / \frac{5}{36} = \frac{1}{5}$.

- (f) No. There are at least three ways to show this:
 - by noting that $Pr(Z = 6 \mid Y = 2) \neq Pr(Z = 6)$ from (d);
 - by noting that $Pr(Y = 2 \mid Z = 6) \neq Pr(Y = 2)$ from (e);
 - by noting that $\Pr(Y = 2 \land Z = 6) \neq \Pr(Y = 2) \Pr(Z = 6)$.
- (g) No, this follows from our answer to (f). To show two random variables Y and Z are not independent it is enough to find some y and z such that

$$\Pr(Y = y \land Z = z) \neq \Pr(Y = y) \Pr(Z = z).$$

- 4. (a) $\Pr(X=8) = \frac{1}{256}$ because exactly when the string is 11111111. $\Pr(Y=8) = \frac{1}{256}$ because exactly when the string is 00000000. $\Pr(X=8 \land Y=8) = 0$ because there is no binary string of length 8 with 8 0s and 8 1s. Thus $\Pr(X=8 \land Y=8) \neq \Pr(X=8) \Pr(Y=8)$ and so X and Y are not independent. (There are many other examples that will show this, as well).
 - (b) Because the string has length 8, Z = X + Y is always 8. So the probability distribution of Z is given by

$$\begin{array}{c|c} z & 8 \\ \hline \Pr(Z=z) & 1 \end{array}$$