DATA 442: Neural Networks & Deep Learning

Dan Runfola - danr@wm.edu

icss.wm.edu/data442/

147	115	3	29	10	2	13	1	48	3	45	28	39	14	14	20
149	137	122	36	50	19	24	45	16	30	2	47	2	35	29	50
122	142	127	131	143	8	47	4	0	31	39	18	46	1	50	25
106	142	108	138	137	111	38	36	32	1	19	44	34	4	38	49
135	133	137	108	140	144	135	120	118	137	125	43	8	31	45	10
30	105	147	102	126	118	108	101	140	131	124	136	47	27	26	38
21	35	19	30	14	143	146	147	142	103	109	127	108	148	20	23
42	10	15	19	24	18	111	123	118	104	119	122	117	140	138	28
4	39	0	29	15	6	50	2	21	10	8	45	150	145	106	46
14	37	19	25	6	9	14	17	4	46	20	7	38	6	29	28
34	40	34	3	8	30	50	26	16	28	41	6	23	2	24	0

CENTER FOR ACCELERATING OPERATIONAL EFFICIENCY

A DEPARTMENT OF HOMELAND SECURITY CENTER OF EXCELLENCE

																h .									
34	40	34	3	8	30	50	26	16	28	41	6	23	2	24	0										
14	37	19	25	6	9	14	17	4	46	20	7	38	6	29	28										
4	39	0	29	15	6	50	2	21	10	8	45	150	145	106	46										
42	10	15	19	24	18	111	123	118	104	119	122	117	140	138	28										
21	35	19	30	14	143	146	147	142	103	109	127	108	148	20	23										
30	105	147	102	126	118	108	101	140	131	124	136	47	27	26	38										
135	133	137	108	140	144	135	120	118	137	125	43	8	31	45	10										
106	142	108	138	137	111	38	36	32	1	34	40	34	3	8	30	50	26	16	28	41	6	23	2	24	0
100000000	142			143	8	47	4	0	31	14	37	19	25	6	9	14	17	4	46	20	7	38	6	29	28
	137		36		19	24	45	10000	30	28	6	31	39	0	23	36	34	21	10	8	45	6	29	45	46
	115				2	13	1	48	3.	71	6	9	44	41	23	36	61	4	104	119	122	117	140	138	28
	- F									8	60	45	11	12	165	122	115	142	103	109	127	108	148	100	23
										2	94	156	88	174	160	62	59	140	131	124	136	127	150	145	38
		\neg		\leq $_{I}$						183	94	160	101	108	163	135	119	118	137	125	43	8	31	45	10
		$\prod I$								128	179	74	122	89	140	59	22	32	1	19	44	34	4	38	49
										165	100	106	172	110	41	58	11	0	31	39	18	46	1	50	25
									ı II <i>IZ D</i>	154	175	158	76	53	58	61	69	16	30	2	47	2	35	29	50
								d/SE	cu	153	138	43	12	19	40	62	26	48	3	45	28	39	14	14	20

Differences

Center for Acceleration

Operational Efficiency

A DEPARTMENT OF HOMELAND SECURITY CENTER OF EXCELLENCE

Viewpoint

Differences

CENTER FOR ACCELERATIN

OPERATIONAL EFFICIENCY

A DEPARTMENT OF HOMELAND SECURITY CENTER OF EXCELLENCE

Viewpoint

Viewpoint

OF HOMELAND SECURITY CENTER OF EXCELLENCE

Viewpoint

Deformation

Viewpoint

Deformation

Occlusion

Recap: KNN

T we want to Recognize

Sum of Absolute Difference: 10

Building Blocks of Neural Nets:Linear Classification

- Parametric vs. Non Parametric
- Interpreting Linear Classifiers For Accelerating
- Limitations of Linear Classifiers
- Segway into Loss Functions

CIFAR10 Dataset

(random examples generated from lab 1 code -->)

Goal: Given a new image, identify the correct class.

KNN approach: Record all of the images, and when a new image comes compare it to all images and select the most similar. Classify accordingly.

nn.predict(image)

nal Effici	Probability
Bird	0.2 ^{NCE}
Dog	0.1
	•••
Cat	0.15
Plane	0.19

Parameters
(generally
referred to as
Weights)

nn.predict(image, W)

CENTER FOR ACCELERATING

nal Effici	Probability
Bird of Exc	0.2
Dog	0.1
	•••
Cat	0.15
Plane	0.19

def predict(image, W): W*image

nn.predict(image, W)

CENTER FOR ACCELERATING

nal Effici	Probability
Bird	0.2
Dog	0.1
	•••
Cat	0.15
Plane	0.19

image: A vector of length 3072 - [0,12,3,2, 392] - where each value represents a pixel in one of the three color bands.

def predict(image, W): W*image

W: A 10x3072 matrix, with each of ten "columns" indicating the value to multiply by each pixel to generate a probability.

def predict(image, W):
W*image

W*image: A 10 x 1 matrix in which each value is the probability of class inclusion.

0.2	-0.5	0.1	2.0	Cat
1.5	1.3	2.1	0.0	Bird
0	0.25	0.2	-0.3	Plane

Cat Score =
$$(56 * 0.2) + (231 * -0.5) + (24 * 0.1) + (2 * 2.0) = -97.9$$

def predict(image, W):

W*image

0.2	-0.5	0.1	2.0	Cat
1.5	1.3	2.1	0.0	Bird
0	0.25	0.2	-0.3	Plane

Cat Score =
$$(56 * 0.2) + (231 * -0.5) + (24 * 0.1) + (2 * 2.0) = -97.9$$

def predict(image, W):

W*image

0.2	-0.5	0.1	2.0	Cat
1.5	1.3	2.1	0.0	Bird
0	0.25	0.2	-0.3	Plane

Cat Score =
$$-97.9$$

I WPERATIONAL EFFICIENCY

A DEPARTMENT OF HOMELAND SECURITY CENTER OF EXCELLENCE

Bird Score = 434.7

Plane Score = 63.15

Loss Function

A single score that quantifies how bad a classification is.

Cat Score = -97.9

Bird Score = 3.5

Plane Score = 63.15

So you need 3072 weights per class (in a linear classifier)!

32 Rows of Pixels

32 Columns of Pixels

Optimization Strategy

Finding the Weights that minimize the loss function.

CENTER FOR ACCELERATING

Cat OPERAT3.2NAL EFFICIENCIA

A DEPARTMENT OF HOVERAND SECURIS.1 CENTER OF EXCELLE 4.9E

Frog -1.7 2.0 -3.1

f(image, W) = scores

	Frog	-1.7	2.0	-3.1
HOI	v Gar and	securi <mark>5y</mark> center	of excelle 4.9	2.5
		PERAT <mark>32</mark> NAL E		2.2
		entiem fiunk an		

$$\sum_{i=1}^{N=3} \{(x_i, y_i)\}$$

3 images (indexed i=1, i=2, i=3). Each image has image data (xi) and a label (yi).

For example:

x1 =

f(image, W) = scores

Cat 0	perat io nal E	EFFICIENC <mark>1/3</mark>	2.2
v Gar and	securi <mark>5y1</mark> center	of excelle 49 e	2.5
Frog	-1.7	2.0	-3.1

Total Loss= $\frac{1}{N} \sum_{i}^{N} Loss_{i}(f(x_{i}, W), y_{i})$

where **N** is the total number of images (i.e., 3), **i** is a unique index for each image, **x_i** is the image itself, **y_i** is the image label, **Loss_i** is the loss for that image, and **W** is the weights being tested.

f(image, W) = scores

		perat <mark>ion al</mark>	/ 	2.2
)]	v Gar and	securi <mark>51</mark> center	of excelle 4.9 e	2.5
	Frog	-1.7	2.0	-3.1

Total Loss=
$$\frac{1}{N} \sum_{i}^{N} Loss_{i}(f(x_{i}, W), y_{i})$$

where **N** is the total number of images (i.e., 3), **i** is a unique index for each image, **x_i** is the image itself, **y_i** is the image label, **Loss_i** is the loss for that image, and **W** is the weights being tested.

	perat <mark>32</mark> nal [2.2
v Gar and	SECURI <mark>51</mark> CENTER	of excelle 4.9 e	2.5
Frog	-1.7	2.0	-3.1

Total Loss=
$$\frac{1}{N} \sum_{i}^{N} Loss_{i}(f(x_{i}, W), y_{i})$$

where **N** is the total number of images (i.e., 3), **i** is a unique index for each image, **x_i** is the image itself, **y_i** is the image label, **Loss_i** is the loss for that image, and **W** is the weights being tested.

		perat <mark>ion al</mark>	/ 	2.2
)]	v Gar and	securi <mark>51</mark> center	of excelle 4.9 e	2.5
	Frog	-1.7	2.0	-3.1

Total Loss=
$$\frac{1}{N} \sum_{i}^{N} Loss_{i}(f(x_{i}, W), y_{i})$$

where **N** is the total number of images (i.e., 3), **i** is a unique index for each image, **x_i** is the image itself, **y_i** is the image label, **Loss_i** is the loss for that image, and **W** is the weights being tested.

			EFFICIENC <mark>Y3</mark>	2.2
)	vGarand	SECURI <mark>57</mark> CENTER	of excelle 49 e	2.5
	Frog	-1.7	2.0	-3.1

Total Loss= $\frac{1}{N} \sum_{i}^{N} Loss_{i}(f(x_{i}, W), y_{i})$

where **N** is the total number of images (i.e., 3), **i** is a unique index for each image, **x_i** is the image itself, **y_i** is the image label, **Loss_i** is the loss for that image, and **W** is the weights being tested.

Cat ①	PERATIONAL E	Efficienc <mark>iy3</mark>	2.2
v Gar and	SECURI <mark>51</mark> CENTER	of excelle 4.9	2.5
Frog	-1.7	2.0	-3.1

s is the score for a given category. For the first image (the Cat), s_1 would be 3.2, s_2 would be 5.1, and s_3 would be -1.7.

Epsilon (ε) is a tolerance term, essentially defining how sure the algorithm needs to be about a class before we call it right.

Multiclass SVM Loss

$y_i + c$		$max(0, s_j)$	$-s_{y_i} +$	$\varepsilon)$
-----------	--	---------------	--------------	----------------

 $j \neq y_i$

		perat <mark>ion al</mark>	/ 	2.2
)]	v Gar and	securi <mark>51</mark> center	of excelle 4.9 e	2.5
	Frog	-1.7	2.0	-3.1

s is the score for a given category. For the first image (the Cat), s_1 would be 3.2, s_2 would be 5.1, and s_3 would be -1.7.

Epsilon (ε) is a tolerance term, essentially defining how sure the algorithm needs to be about a class before we call it right.

Multiclass SVM Loss

$$max(0, s_j - s_{y_i} + \varepsilon)$$

Frog	-1.7	2.0	-3.1
v Car and	SECURI <mark>51</mark> CENTER	of excelle 4.9	2.5
	PERAT <mark>ie</mark> nal E		2.2
	INTEK FUK AU		

s is the score for a given category. For the first image (the Cat), s_1 would be 3.2, s_2 would be 5.1, and s_3 would be -1.7.

Epsilon (ε) is a tolerance term, essentially defining how sure the algorithm needs to be about a class before we call it right.

Multiclass SVM Loss

	$max(0, s_j)$	$-s_{y_i} +$	arepsilon)
--	---------------	--------------	------------

 $j \neq y_i$

		Perat <mark>32</mark> nal E		2.2
) I	v Gar and	SECURI <mark>51</mark> CENTER	of excelle 4.9 e	2.5
	Frog	-1.7	2.0	-3.1

s is the score for a given category. For the first image (the Cat), s_1 would be 3.2, s_2 would be 5.1, and s_3 would be -1.7.

Epsilon (ε) is a tolerance term, essentially defining how sure the algorithm needs to be about a class before we call it right.

$\sum_{j \neq y_i}^{\text{Multiclass SVM Loss}} \max(0, s_j - s_{y_i} + \varepsilon)$

		eniek fwk au Perational I		2.2
) N	Garand	securi <mark>5y1</mark> center	of excelle 4.9	2.5
	Frog	-1.7	2.0	-3.1

Epsilon (ϵ) is a tolerance term, essentially defining how sure the algorithm needs to be about a class before we

call it right.

$\sum_{j \neq y_i}^{\text{Multiclass SVM Loss}} \max(0, s_j - s_{y_i} + \varepsilon)$

	1 1 Gr	enter for Ag		
		perat <mark>ie</mark> nal E		2.2
f HOI	v Gar and	securi <mark>5y</mark> center	of excelle 4.9	2.5
	Frog	-1.7	2.0	-3.1

Image X_1 (Cat) Loss:

$$max(0, 5.1 - 3.2 + 1) = max(0, 2.9) = 2.9$$

J	Multiclass SVM Loss
	$max(0, s_j - s_{y_i} + \varepsilon)$
$\overline{j} \neq y_i$	

M(O)	Garand	securi <mark>5.1</mark> center	of excelle49e	2.5
JAN 15	Cat ①	PERAT <mark>3.2</mark> NAL	FFICIENCI (3	2.2

Image X_1 (Cat) Loss:

<u>Car</u>

$$max(0, 5.1 - 3.2 + 1) = max(0, 2.9) =$$

2.9

<u>Frog</u>

$$max(0, -1.7 - 3.2 + 1) =$$

$$max(0, -3.9) =$$

0

Cat OPERAT <mark>3.2</mark> NAL	/ 	2.2
v Car nd securi <mark>5.1</mark> center	of excelle 4.9	2.5
Frog -1.7	2.0	-3.1

 $j \neq y_i$

Multiclass SVM Loss

 $max(0, s_j - s_{y_i} + \varepsilon)$

Image X_2 (Car) Loss:

<u>Cat</u>

$$max(0, \frac{1.3}{4.9} + 1) =$$

max(0, -2.6) =

0

Гиол	
Frog	
max(0, <mark>2.0</mark> - <mark>4.9</mark>	+ 1) =
max(0, -1.9) =	
0	

J	Multiclass SVM Loss
	$max(0, s_j - s_{y_i} + \epsilon$
$j\neq y_i$	

Cat (bebasaana [EFFICIENC <mark>1.3</mark>	2.2
Garand	securi 5 y1center	of excelle <mark>4.9</mark> e	2.5
Frog	-1.7	2.0	-3.1

Image X_2 (Car) Loss:

<u>Cat</u>

$$max(0, 2.2 - -3.1 + 1) =$$

$$max(0, 6.3) =$$

6.3

<u>Car</u>

$$\max(0, \frac{2.5}{2.5} - \frac{-3.1}{2.5} + 1) = 0$$

$$max(0, -6.6) =$$

6.6

	enter for Ac		
	PERAT 3.2 NAL [2.2
Gar and	SECURI 5:1 CENTER	of excelle 4.9	2.5
Frog	-1.7	2.0	<mark>-3.1</mark>

 $j \neq y_i$

Multiclass SVM Loss

 $max(0, s_j - s_{y_i} + \varepsilon)$

Total Loss= $\frac{1}{N} \sum_{i}^{N} Loss_{i}(f(x_{i}, W), y_{i})$

$$\sum_{j \neq y_i}^{J} \max(0, s_j - s_{y_i} + \varepsilon)$$

	Loss	2.9	0	12.9
	Cat	PERATIONAL I	FEEGIENCY	2.2
HO	Car	security center	of excellence	<mark>2.5</mark>
	Frog	-1.7	2.0	<mark>-3.1</mark>

Total Loss= $\frac{1}{N} \sum_{i}^{N} Loss_{i}(f(x_{i}, W),$

$$Loss_i(f(x_i, W), y_i)$$

$$(2.9 + 0 + 12.9) / 3 =$$
 ~ 5.27

$\sum_{j \neq y_i}^{J} \max(0, s_j - s_{y_i} + \varepsilon)$
--

Loss	2.9	0	12.9
Cat	enien iven a. Perational F	FFICIENCY	2.2
Car	securi ^{5,1} center	of excellence	2.5
Frog	-1.7	2.0	<mark>-3.1</mark>

Wrap Up

- Parametric Models
- Linear Classifier
 - Solving
 - Visualizing A DEPARTMENT OF HOWELAND SECURITY CENTER OF EXCELLENCE
- Loss Functions
 - Multiclass SVM Loss

