The Chain Rule

November 13, 2006

The Chain Rule (case 1)

• Suppose that z=f(x,y) is a differentiable function of x and y, where x=g(t) and y=h(t) are both differentiable functions of t. Then z is a differentiable function of t and

$$\frac{\mathrm{d}z}{\mathrm{d}t} = \frac{\partial f}{\partial x} \frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial f}{\partial y} \frac{\mathrm{d}x}{\mathrm{d}t}.$$

• If $z=x^2y+xy^3$, where $x=\cos t$, $y=\sin t$, find $\mathrm{d}z/\mathrm{d}x$ when $t=\pi/2$.

- If $z=x^2y+xy^3$, where $x=\cos t$, $y=\sin t$, find $\mathrm{d}z/\mathrm{d}x$ when $t=\pi/2$.
- The pressue P (in kilopascals), volume V (in liters), and temperature T (in kelvins) of a mole of an ideal gas are related by the equation PV=8.31T. Find the rate at which the pressure is changing when the temperature is 300K and increasing at a rate of 0.1K/s and the volume is $100\ L$ and increasing at a rate of $0.2\ L/s$.

The Chain Rule (Case 2)

• Suppose t hat z=f(x,y) is a differentiable function of x and y, where x=g(x,t) and y=h(s,t) are differentiable functions of s and t. Then

$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s}$$

$$\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t}$$

- Find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$ for the following examples:
- $z = e^{xy} \sin x$, where x = 2s + 4t, $y = \frac{2s}{3t}$.

• Find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$ for the following examples:

- $z = e^{xy} \sin x$, where x = 2s + 4t, $y = \frac{2s}{3t}$.
- $z = \ln(x^2 + y^2)$, where $x = e^s \sin t$ and $y = e^s \sin t$.

• Find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$ for the following examples:

- $z = e^{xy} \sin x$, where x = 2s + 4t, $y = \frac{2s}{3t}$.
- $z = \ln(x^2 + y^2)$, where $x = e^s \sin t$ and $y = e^s \sin t$.
- w = xy + xz + yz, where x = st, $y = e^{st}$, z = x + t.

Implicit differentiation (revisited)

Suppose that

$$F(x,y) = 0$$

defines y implicitly as a differentiable function of x.

ullet If F is differentiable, using the Case 1 of Chain Rule

$$\frac{\partial F}{\partial x} \frac{\mathrm{d}x}{\mathrm{d}x} + \frac{\partial F}{\partial y} \frac{\mathrm{d}y}{\mathrm{d}x} = 0.$$

• If $F_y \neq 0$,

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{F_x}{F_y}.$$

• Find y' if $x^3 + y^3 = 6xy$.

Implicit differentiation (Case 2)

ullet If z is given implicitly by an equation of the form

$$F(x, y, z) = 0,$$

and F is differentiable, Case 2 of the Chain Rule tells us

$$\frac{\partial F}{\partial x}\frac{\partial x}{\partial x} + \frac{\partial F}{\partial y}\frac{\partial y}{\partial x} + \frac{\partial F}{\partial z}\frac{\partial z}{\partial x} = 0.$$

• If $F_z \neq 0$

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} \quad \frac{\partial z}{\partial y} = -\frac{F_y}{F_x}.$$

• Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if $x^3+y^3+z^3+6xyz=1$.