ALGORITHM REGRESSION

In this session

- Regression Algorithms in Azure ML
- Create New ML Experiment
- Import auto data from UCI
- Add column name using python
- Clean missing data
- Select column (exclude column)
- Split data
- Add Linear Regression module
- Add Train Model
- Add Score Model
- Add Evaluate Model

Regression Algorithms in Azure ML

Over view

Algorithm Regression Working steps

Working Steps

- 1. Create New ML Experiment
- 2. Import auto data from UCI
- 3. Add column name using python
- 4. Clean missing data
- 5. Select column (exclude column)
- 6. Split data
- 7. Add Linear Regression module
- 8. Add Train Model
- 9. Add Score Model
- 10. Add Evaluate Model

Algorithm Regression Data set

Home

https://archive.ics.uci.edu/ml/datasets/Automobile

Data download

https://archive.ics.uci.edu/ml/machine-learning-databases/autos/imports-85.data

Element column names/values

https://archive.ics.uci.edu/ml/machine-learning-databases/autos/imports-85.names

Data attribute

- 1. symboling: -3, -2, -1, 0, 1, 2, 3
- 2. normalized-losses: continuous from 65 to 256
- 3. make: alfa-romero, audi, bmw, chevrolet, dodge, honda, isuzu, jaguar, mazda, mercedes-benz, mercury, mitsubishi, nissan, peugot, plymouth, porsche, renault, saab, subaru, toyota, volkswagen, volvo
- 4. fuel-type: diesel, gas
- 5. aspiration: std, turbo
- 6. num-of-doors: four, two
- 7. body-style: hardtop, wagon, sedan, hatchback, convertible
- 8. drive-wheels: 4wd, fwd, rwd
- 9. engine-location: front, rear
- 10. wheel-base: continuous from 86.6 120.9
- 11. length: continuous from 141.1 to 208.1
- 12. width: continuous from 60.3 to 72.3
- 13. height: continuous from 47.8 to 59.8

- 14. curb-weight: continuous from 1488 to 4066
- 15. engine-type: dohc, dohcv, l, ohc, ohcf, ohcv, rotor
- 16. num-of-cylinders: eight, five, four, six, three, twelve, two
- 17. engine-size: continuous from 61 to 326
- 18. fuel-system: 1bbl, 2bbl, 4bbl, idi, mfi, mpfi, spdi, spfi
- 19. bore: continuous from 2.54 to 3.94
- 20. stroke: continuous from 2.07 to 4.17
- 21. compression-ratio: continuous from 7 to 23
- 22. horsepower: continuous from 48 to 288
- 23. peak-rpm: continuous from 4150 to 6600
- 24. city-mpg: continuous from 13 to 49
- 25. highway-mpg: continuous from 16 to 54
- 26. price: continuous from 5118 to 45400

Add column name Python Script

```
#import pandas as pd
   □def azureml_main(dataframe1 = None, dataframe2 = None):
 3
         dataframe1.columns = [
             'symboling',
 4
             'normalized-losses',
 5
             'make',
 6
             'fuel-type',
 7
 8
             'aspiration',
             'num-of-doors',
9
             'body-style',
10
             'drive-wheels',
11
             'engine-location',
12
13
             'wheel-base',
             'length',
14
             'width',
15
16
             'height',
             'curb-weight',
17
             'engine-type',
18
             'num-of-cylinders',
19
             'engine-size',
20
             'fuel-system',
21
22
             'bore',
             'stroke',
23
             'compression-ratio',
24
             'horsepower',
25
26
             'peak-rpm',
27
             'city-mpg',
             'highway-mpg',
28
             'price'
29
30
         return dataframe1,
31
```

Algorithm Regression Clean missing data

▲ Clean Missing Data
Columns to be cleaned
Selected columns: All columns
Launch column selector
Minimum missing value ra
0
Maximum missing value ra
1
Cleaning mode
Custom substitution value ▼
Replacement value
0
Generate missing valu

Select (exclude) column

Algorithm Regression Split data

■ Split Data
Splitting mode
Split Rows ▼
Fraction of rows in the first
0.8
Randomized split
Random seed
0
Stratified split
False ▼

Evaluation Metrics

- Add Linear Regression module
- Add Train Model
- Add Score Model
- Add Evaluate Model
- Run
- Inspect Score
- Inspect Evaluate metrics

■ Metrics	
Mean Absolute Error	2728.117473
Root Mean Squared Error	4130.273478
Relative Absolute Error	0.388729
Relative Squared Error	0.200384
Coefficient of Determination	0.799616

Regression compare

Algorithm Regression More information

Using linear regression in Azure Machine Learning

https://docs.microsoft.com/en-us/azure/machine-learning/machine-learning-linear-regression-in-azure

This Experiment

https://gallery.cortanaintelligence.com/Experiment/Regression-3

Regression compare

https://gallery.cortanaintelligence.com/Experiment/Regression-compare