ChE 492

UNDERSTANDING SUPERCAPACITOR CHARGE/DISCHARGE RATES USING MICROSTRUCTURE IMAGE PROCESSING

Prepared by

B. Can KOBAN

Project Advisor: Asst. Prof. Betül Uralcan

Presentation date: 07.07.2021

1- INTRODUCTION

- Statement of Purpose
- Supercapacitors
- Machine Learning Models

Outlines

3-FEATURE SELECTION

- Correlation Matrix & Heat Map
- F-Test
- Trial & Error Method

2-PRE-PROCESSING

- Data
- Image Processing: SEM
- Filtering Data
- Normalization
- Dummy Coding

4-RESULTS

- Parameter Tuning and Model Training
- Regression Models
- Conclusion
- Future Thoughts

1- INTRODUCTION

- Statement of Purpose
- Supercapacitors
- Machine Learning Models

Statement of Purpose

Problem

Performance parameters of supercapacitors are highly dependent on material properties of supercapacitors. Therefore, **material selection** process is very important step during supercapacitor design. However, since material selection process is handled by using **trial and error experiments in real life**, material selection is very time and money consuming process for researchers.

Purpose

The project aims to design machine learning algorithm which is able to predict energy densities of supercapacitors by using input data that is enriched from the results came from image processing techniques.

Supercapacitors

- Energy Storage Devices
- Potential Difference
- New technology compared to other energy storage devices
- Great number of charge/discharge rates
- Long-life span
- Solving problems where batteries insufficient

Machine Learning Models

Linear Regression

Ridge Regression

Lasso Regression

Regression Tree

Artificial Neural Network

2- PRE-PROCESSING

- Data Introduction
- Image Processing
- Filtering Data
- Normalization
- Dummy Coding

Data Introduction

- 22 Features
- 1 Response Variable
- 2189 Observations

	Real Name		
	Electrode Material Group		
	Heat Treatment Temperature		
	Specific Surface Area		
	D- Raman Peak and G- Raman Peak Ratio		
	Nitrogen Concentration		
	Oxygen Concentration		
	Phosphor Concentration		
	Boron Concentration		
S	Porosity		
ഉ	Pore Volume		
Features	Preparation Method for Electrode		
at	Electrolyte Type		
Ö	Electrolyte Concentration		
ш.	Normalized Scan Rate		
	Absolute Potential Window		
	Separator		
	Current collector		
	Salt Anion Volume		
	Salt Cation Volume		
	Solvent Dipole Moment		
	Solvent Volume		
	Binder Concentration		
Response Variable	Energy Density		
	0		

Image Processing: SEM

- Depth Map: 3D visualization
- Pore Space Segmentation: Average Pore Size
- Binary Segmentation: Porosity
- Data Collection: 107 Articles
- Result: 84 of the 628 missing observations filled and dataset is enriched

Filtering Data

Filtering Data

Percentage of the Data Maintained	Linear Regression Test RMSE	Regression Tree Test RMSE	Threshold Value
100	36.42	20.82	Not Exist
95	25.23	14.13	178
90	14.81	10.77	107
85	11.42	8.31	80
80	7.92	7.39	58
75	5.83	4.32	42
70	5.37	3.96	31

Normalization & Dummy Coding

Min-Max Normalization

 Numerical columns are bounded between 0 and 1

$$X' = \frac{X - X_{min}}{X_{max} - X_{min}}$$

Dummy Coding

4 Categories = 4 New Columns

Categorical Feature	Column For A	Column For B	Column For C	Column For D
А	1	0	0	0
А	1	0	0	0
D	0	0	0	1
В	0	1	0	0
С	0	0	1	0
А	1	0	0	0
D	0	0	0	1

3- Feature Selection

- Correlation Matrix and Heat Map
- F-Test
- Trial and Error Method

Correlation Matrix & Heat Map

- Pore volume & P concentration 0.85
- Solvent cation volume & absolute potential window= 0.68
- Solvent cation volume & salt anion volume= 0.66
- Solvent cation volume & solvent dipole moment = 0.64
- Solvent cation volume & solvent volume= 0.75
- Solvent volume & solvent cation volume= 0.85

- 0.6

- 0.4

- 0.2

- 0.0

F-Test

- MATLAB function: frftest()
- Filter type feature selection method
- Suitable for regression problems
- Suitable for both categorical and numerical data
- The last three features eliminated

Trial & Error Method

	Root Mean Squared Error				
	Linear Lasso Ridge Reg			Regression	Neural
Features	Regression	Regression	Regression	Tree	Network
All Features	5.0253	4.8308	5.0233	3.9170	3.6983
-Heat T	5.0214	4.8351	5.0219	3.6739	4.2678
-SSA	5.1657	5.0062	5.1663	4.0361	4.1242
-IDIG	5.0802	4.9325	5.0801	3.9275	4.1200
-N Concentration	5.0643	4.9115	5.0647	3.7589	4.4974
-O Concentration	5.0183	4.8312	5.0281	3.6636	4.1665
-Porosity	5.0032	4.8229	5.0074	3.7748	3.9573
-Pore Volume	4.9974	4.8405	5.0197	3.6411	4.0805
-Electrolyte					
Concentration	5.0988	4.8962	5.0978	3.7907	4.2861
-Absolute Potential					
Window	5.2498	5.0273	5.2524	3.9560	4.0126
-Salt Anion Volume	5.0004	4.8413	5.0020	3.8218	4.1896
-Salt Cation Volume	5.0190	4.8963	5.0199	3.7958	4.2326
-Solvent Dipole					
Moment	5.0674	4.8789	5.0698	3.7208	3.8870
-Solvent Volume	5.1866	4.8907	5.0739	4.0393	4.1894
-Binder					
Concentration	5.0323	4.8538	5.0318	3.6654	3.7445
-Elect MG	5.0637	4.8854	5.0626	3.7469	4.5221
-Preparation MG	5.2444	5.1532	5.2442	3.7080	4.2128
-Electrolyte Type	5.0315	4.8425	5.0306	3.8413	4.1675
-Separator	5.2076	5.0415	5.2102	3.8505	5.3960
-Current Collector	5.0444	4.9015	5.0443	3.7158	6.1616

$$\Delta RMSE = \frac{RMSE_i - RMSE_{all}}{RMSE_{all}} \times 100$$

	Percentage Differences between RMSE values				
	Linear Lasso Ridge Regression				Neural
Features	Regression	Regression	Regression	Tree	Network
Heat T	-0.08	0.09	-0.03	-6.21	15.40
SSA	2.79	3.63	2.85	3.04	11.52
IDIG	1.09	2.11	1.13	0.27	11.40
N Concentration	0.78	1.67	0.82	-4.04	21.61
O Concentration	-0.14	0.01	0.10	-6.47	12.66
Porosity	-0.44	-0.16	-0.32	-3.63	7.00
Pore Volume	-0.56	0.20	-0.07	-7.04	10.33
Electrolyte	1.46	1.35	1.48	-3.22	15.89
Concentration					
Absolute Potential	4.47	4.07	4.56	1.00	8.50
Window					
Salt Anion Volume	-0.50	0.22	-0.42	-2.43	13.28
Salt Cation Volume	-0.13	1.36	-0.07	-3.09	14.45
Solvent Dipole	0.84	1.00	0.93	-5.01	5.10
Moment					
Solvent Volume	3.21	1.24	1.01	3.12	13.28
Binder	0.14	0.48	0.17	-6.42	1.25
Concentration					
Elect MG	0.76	1.13	0.78	-4.34	22.27
Preparation MG	4.36	6.67	4.40	-5.34	13.91
Electrolyte Type	0.12	0.24	0.15	-1.93	12.69
Separator	3.63	4.36	3.72	-1.70	45.90
Current Collector	0.38	1.46	0.42	-5.14	66.60

4-RESULTS

- Parameter Tuning and Model Training
- Models
- Conclusion
- Future Thoughts

Parameter Tuning and Model Training

- 3 Parameter Tuned
- 5-Fold Cross Validation
- Training, Validation and Test Sets

Data	Percentage of	Used Area	Cross
Name	the Data		Validation
Full Data	100	-	-
Training	72	Used for training models	Yes
Data			
Testing	18	Testing for the final model	Yes
Data			
Validatio	10	Testing the created model	No
n Data		for parameter tuning	

Models	Parameter Tuning	Tuned Variable	Tuned Values
Linear Regression	No	-	-
Ridge Regression	Yes	λ	4.9
Lasso Regression	Yes	α	1
Regression Tree	No	-	-
ANN	Yes	Hidden Layer Size	25

Regression Models: Linear Regression

Ridge Regression

Lasso Regression

Regression Tree

Artificial Neural Network

- The data set is enriched with the porosity and pore volume values come from SEM image processing results.
- 5 different machine learning models are trained which give accurate predictions.

Future Thoughts

There are also two different response variables that are power density and capacitance. The data for them is available. These two response variables can be used to train new models.

Model can be tested with new datasets to ensure model has low variability for different datasets.

Thank you for the listening

References

Breiman, L., Friedman, J., Stone, C. J. & Olshen, R., 1984. Classification and Regression Trees. s.l.:CRC Press.

Conway, B. E., 1999. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications. New York: Springer Science+Business Media.

Deringer, V. . L., 2020. Modelling and understanding battery materials with machine-learning-driven atomistic simulations. JPhys Energy, Volume 2.

Gu, W. & Yushin, G., 2013. Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon.

carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon, and graphene. WIREs Energy and Environment

Hoerl, A. E. & Kennard, R. W., 1970. Ridge Regression: Biased Estimation for Nonorthogonal Problems. Technometrics, Volume 12, pp. 55-67.

IBM , C. E., 2020. Neural Networks. [Online]

Available at: https://www.ibm.com/cloud/learn/neural-networks

[Accessed 06 07 2021].

Miller, J. R. & Simon, P., 2008. Electrochemical capacitors for energy management. Science, Volume 321, p. 651–652.

Montgomery, D. C. & Runger, G. C., 2014. Applied Statistics and Probability for Engineers. 6th ed. s.l.: John Wiley & Sons Singapore Pte. Ltd.

Moody, J., 2019. towards data science. [Online]

Available at: https://towardsdatascience.com/what-does-rmse-really-mean-806b65f2e48e

[Accessed 5 july 2021].

Naik, K., 2020. Complete-Feature-Selection. [Online]

Available at: https://github.com/krishnaik06/Complete-Feature-Selection

[Accessed 2021].

Nascimento, C. A. O., Giudici, R. & Guardani, R., 2000. Neural network based approach for optimization of industrial chemical processes.

Computers & Chemical Engineering, Volume 24, pp. 2303-2314.

Patro, R., 2021. towards data science. [Online]

Available at: https://towardsdatascience.com/cross-validation-k-fold-vs-monte-carlo-e54df2fc179b

[Accessed 04 July 2021].

Rabbani , A. & Salehi, S., 2017. Dynamic modeling of the formation damage and mud cake deposition using filtration theories coupled with SEM image processing.

Journal of Natural Gas Science and Engineering, Volume 42, pp. 157-168.

Salanne, M., Rotenberg, B., Naoi, K. & et al., 2016. Efficient storage mechanisms for building better supercapacitors. s.l.:Nat Energy.

Serway, R. A. & Jewett, J. W., 2013. Physics for Scientists and Engineers with Modern Phsics. 9th ed. s.l.:Cengage Learning.

Simon, P. & Gogotsi, Y., 2008. Materials for electrochemical capacitors. Nature Materials, Volume 7, pp. 845-854.

Tibshirani, R., 1996. Regression Shrinkage and Selection via the Lasso. J. R. Statist. Soc. B, Volume 58, pp. 267-288.

Wei, J. et al., 2019. Machine Learning in Material Science. Info Mat, I(3).

27