

SINUS & FREUNDE

Fragen?

GAGA

Utid AG

it is too too too too

* Werte von Sinus am Dreieck. Was ist $\sin(45^\circ) = \sin(\frac{\pi}{4})$? Bestimmen Sie den Wert durch Überlegung an einem geeigneten Dreieck im Einheitskreis!)

Lösung.

Pytagoras
$$(\cos(45))^2 + (\sin(45))^2 = \cos^2(45) + \sin^2(45) = 1^2 =)$$
 $\lim_{s \to \infty} (45^\circ) = 1$ $\lim_{s \to \infty} (45^\circ) = 1$ $\lim_{s \to \infty} (45^\circ) = 1$

Winkel α (Grad)	0°	30°	45°	60°	90°	180°	270°	360°
Bogenmaß	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
Sinus	$\frac{1}{2}\sqrt{0}=0$	$\frac{1}{2}\sqrt{1} = \frac{1}{2}$	$\frac{1}{2}\sqrt{2} = \frac{1}{\sqrt{2}}$	$\frac{1}{2}\sqrt{3}$	$\frac{1}{2}\sqrt{4}=1$	0	-1	0
Kosinus	$\frac{1}{2}\sqrt{4}=1$	$\frac{1}{2}\sqrt{3}$	$\frac{1}{2}\sqrt{2} = \frac{1}{\sqrt{2}}$	$\frac{1}{2}\sqrt{1} = \frac{1}{2}$	$\frac{1}{2}\sqrt{0}=0$	-1	0	1

* Sinus skizzieren. Skizzieren Sie

$$f(x) = 2 \cdot \sin(3x - \frac{\pi}{6}) = 2 \cdot \sin(3(x - \frac{\pi}{18}))$$

Geben Sie alle lokalen Maxima/Minima, sowie alle NST und die Periode/Amplitude an,

Lösung.

→ 13 ← 1+ /

$$\frac{\sqrt{3}}{3} \cdot \frac{\sqrt{3}}{6} = \frac{1}{7} \cdot \left(2\sqrt{3} + \frac{\sqrt{3}}{6}\right)$$

sin4-4/

2 sin (3x - 6)

Trigonometrische Gleichungen. Finden Sie alle Lösungen der Gleichungen

1.
$$5\sin(2x+5) = 2$$

2.
$$2\cos(x) + \sin^2(x) = 1,75$$

2.
$$2\cos(x) + \sin^2(x) = 1,75$$

Lösung.

1.) $5\sin(2x+5) = \lambda$
 $= \arcsin(\frac{\lambda}{5})$
 $= \arcsin(\frac{\lambda}{5}) \Rightarrow \lambda = \arcsin(\frac{\lambda}{5}) = \lambda$
 $= 2x+5 = \arcsin(\frac{\lambda}{5}) \Rightarrow \lambda = \frac{\arcsin(\frac{\lambda}{5})-5}{2}$

2.)
$$L\cos(x) + \sin(x) = (175) = 7 - \cos^2 x + L\cos x - 0.75 = 0$$

 $u=\cos x$
 $\Rightarrow -4^2 + 2\pi - 0.75 = 0 \Rightarrow u_{1/2} = s(2) - u_{1/2} = 4$
 $L=1 \times 1 + k - 2\pi$

Arcus-Funktionen. Berechnen Sie:

- 1. $\arcsin(1)$
- 2. $\arcsin(\frac{\sqrt{2}}{2})$
- 3. $\arcsin(-\frac{\sqrt{3}}{2})$

Lösung.

