الثان UUULUU LJU 1 2 3 4 5 6 7 8 9 10 المان

2/15

80
1 2 3 4 5 6 7 8 9 10

82
1 2 3 4 5 6 7 8 9 10

84 1 2 3 4 5 6 7 8 9 10

CILIED CICILIENCE

3/15 58 2 3 4 5 6 7 8 9 10 LILILIN DO DO CO · LILILILIA UUUUUUUUUU ساساساساساساساسا 68 سان اسان س the state of the **70** 17 WILLIE CIED COLON 34 35 Edward H. J. J. J. Ulle Hastrick of

uuu . uuuu

4/15

36

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

Figure 1 illustrates the photocleavage of supercoiled pGBK by β -carboline derivatives.

Figure 2 illustrates the effect of binding by β -carboline derivatives on the thermal stability of the CT-DNA.

5/15

Figure 3 illustrates the effect of absorbance by β -carboline derivatives on the UV spectrum of the CT-DNA.

Figure 4 illustrates the effect of β -carboline derivatives on the activity of DNA topoisomerase I in a cell free system.

Figure 5 illustrates the effect of β -carboline derivatives on the activity of DNA topoisomerase II in a cell free system.

8/15

A. control

Histogram Statistics

File: 040414.001

Marker	% Gated	Peak Ch
All	100.00	285
M1	2.59	166
M2	66.62	285
М3	9.62	411
M4	18.86	561

B. 40ug/ml 48hr

Histogram Statistics

File: 040414.008

% Gated	Peak Ch
100.00	74
49.67	74
28.83	296
10.29	463
6.22	565
	100.00 49.67 28.83 10.29

C. 10ug/ml 48hr

Histogram Statistics

File: 040414.009

Marker	% Gated	Peak Ch
All	100.00	318
M1	14.84	85
M2	56.41	318
M3	10.53	418
M4	14.95	629

D. 2.5ug/ml 48hr

Histogram Statistics

File: 040414.010

Marker	% Gated	Peak Ch
All	100.00	288
M1	15.80	79
M2	51.80	288
М3	13.02	524
M4	12.30	581

Figure 6 illustrates the FCM analysis of apoptosis of HepG2 cells induced by $\beta\Box$ carboline derivative (Compound 60).

9/15

Figure 7 illustrates the TLC of harmine and 1,7,9-trisubstituted- β -carboline derivatives,

Figure 8 illustrates the FAB-MS spectrum of 9-phenylpropyl-7-methoxy-1-methyl- β -carboline.

Figure 9 illustrates the IR spectrum of 9-phenylpropyl-7-methoxy-1-methyl- β -carboline.

Figure 10 illustrates the UV spectrum of 9-phenylpropyl -7-methoxy-1-methyl- β -carboline.

Figure 11 illustrates the $^1\text{H- NMR}$ spectrum of 9-phenylpropyl -7-methoxy-1-methyl- β -carboline.

11/15

Figure 12 illustrates the photomicrographs of β -carboline derivatives to human tumor cell HepG2.

Figure 13 illustrates the anti-tumor effect of β -carboline derivatives on Lewis lung cancer.

13/15

Negative control (vehicle) Negative control (vehicle) Compound 42 100mg/kg Compound 42 50mg/kg Compound 36 100mg/kg Compound 36 50mg/kg Compound 16 100mg/kg Compound 16 50mg/kg Compound 48 100mg/kg Compound 48 50mg/kg Compound 86 20mg/kg Compound 86 10mg/kg Compound 33 100mg/kg Compound 33 50mg/kg positive control CTX 50mg/kg

Negative control (vehicle)
Negative control (vehicle)
Compound 37 50mg/kg
Compound 37 25mg/kg
Compound 55 100mg/kg
Compound 55 50mg/kg
Compound 84 100mg/kg
Compound 84 50mg/kg
Compound 11 50mg/kg
Compound 11 25mg/kg
Compound 33 100mg/kg
Compound 33 50mg/kg
positive control
CTX 50mg/kg

Figure 14 illustrates the anti-tumor effect of β -carboline derivatives on S180 sarcoma.

14/15

Synthesis Scheme I

Synthesis Scheme II

Synthesis Scheme III

Figure 15 illustrates the synthetic routes of the research of the modification to the structures of β -carboline derivatives.