ST5202: Applied Regression Analysis

Department of Statistics and Applied Probability National University of Singapore

> 22-Jan-2018 Week 2

Announcement

Announcement

- Assignment 1 will be released tomorrow morning
 - Due on 29 January (in-class)
 - No late submission

Week 2: Inference in Regression Analysis (Part 1)

Week 2: Inference in Regression Analysis (Part 1)

Week 2: Inference in Regression Analysis (Part 1)

- Review of Week 1
- ullet Inferences on eta_1
 - Confidence interval

Model:
$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

- Y_i : value of the response variable of the i^{th} observation
- β_0 , β_1 : parameters β_1 : slope, β_0 : intercept
- ϵ_i are independent $N(0, \sigma^2)$ Thus, $Y_i \sim N(\beta_0 + \beta_1 X_i, \sigma^2)$

Freshmen's GPA and their college entrance test

- Study: 120 students at random from the new freshman class
- Goal: Can we predict GPA from ACT test score ?
- Y GPA, X ACT score; Normal error regression model
 - Data:

i:	1	2	3	 118	119	120
X_i :	21	14	28	 28	16	28
Y_i :	3.897	3.885	3.778	 3.914	1.860	2.948

Freshmen's GPA and their college entrance test

The least squares estimate of the regression line (red) is $b_0 + b_1 X$, with $b_0 = 2.11$ and $b_1 = 0.04$

Simple linear regression vs. Single population

- Simple linear regression: $Y_i \sim N(\beta_0 + \beta_1 X_i, \sigma^2)$ independently for each i
- Single population: $Y_1, \dots, Y_n \sim N(\mu, \sigma^2)$ independently (special case of simple linear regression with $\beta_1 = 0$ and $\beta_0 = \mu$)

Simple linear regression

Least squares estimator

- Minimize $Q = \sum_{i=1}^{n} (Y_i \beta_0 \beta_1 X_i)^2$
- LS estimator b_0 , b_1 solves two **normal equations**:

$$\frac{\partial Q}{\partial \beta_0} = -2 \sum_{i=1}^n (Y_i - \beta_0 - \beta_1 X_i) = 0$$

$$\frac{\partial Q}{\partial \beta_1} = -2 \sum_{i=1}^n X_i (Y_i - \beta_0 - \beta_1 X_i) = 0$$

Least squares estimators of β_1, β_0

•
$$b_1 = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^{n} (X_i - \bar{X})^2}$$

$$\bullet \ b_0 = \bar{Y} - b_1 \bar{X}$$

Estimator of σ^2

•
$$s^2 = MSE = \frac{SSE}{n-2} = \frac{\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2}{n-2} = \frac{\sum_{i=1}^{n} e_i^2}{n-2}$$

Properties of estimators

- Gauss-Markov theorem ((1.11) in the text): the LS estimators b_1 and b_0 are the Best Linear Unbiased Estimator (BLUE).
 - Here, "best" means giving the lowest variance among all unbiased linear estimators.
- s^2 is an unbiased estimator: $E[s^2] = \sigma^2$

Inference on β_1

- Often, we want to test whether there exists linear association between *X* and *Y*.
- The test would look like

$$H_0: \beta_1 = 0$$
$$H_a: \beta_1 \neq 0$$

• Under the null, the means of Y_i 's for all i's are equal at all levels of X_i (simple population)

Sampling dist. of b_1

• The point estimator of b_1 : $b_2 = \sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})$

$$b_1 = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^{n} (X_i - \bar{X})^2}$$

 The sampling distribution of b₁ implies the distribution of the different values of b₁ that would be obtained over repeated sampling with the values of X fixed

Sampling dist. of b_1

- For normal error regression model, the sampling distribution of $b_1 = \frac{\sum_{i=1}^{n} (X_i \bar{X})(Y_i \bar{Y})}{\sum_{i=1}^{n} (X_i \bar{X})^2}$ is **normal**
- $E(b_1) = \beta_1$
- $Var(b_1) = \frac{\sigma^2}{\sum_{i=1}^n (X_i \bar{X})^2}$

Quick notes

•
$$b_1 = \sum_{i=1}^n k_i Y_i$$

where $k_i = \frac{X_i - \bar{X}}{\sum_{i=1}^n (X_i - \bar{X})^2}$

• Note that $\sum_{i=0}^{\infty} k_i = 0$ $\sum_{i=0}^{\infty} k_i X_i = 1$

$$\sum_{i} k_i X_i = 1$$

$$\sum_{i} k_i^2 = \frac{1}{\sum_{i} (X_i - \bar{X})^2}$$

•
$$b_1 = \sum k_i(Y_i - \bar{Y}) = \sum k_i Y_i - \bar{Y} \sum k_i = \sum k_i Y_i$$

Normality of b_1

- \bullet The Y_i 's are independently, normally distributed
- A linear combination of Y_i 's is also normally distributed as follows: For constants c_1, \dots, c_n ,

$$\sum_{i=1}^{n} c_i Y_i \sim N(\sum c_i E[Y_i], \sum c_i^2 Var(Y_i))$$

• b_1 is a linear combination of the Y_i 's $(b_1 = \sum k_i Y_i)$ $\rightarrow b_1 \sim N(\sum k_i E[Y_i], \sum k_i^2 Var(Y_i))$

Mean of b_1

$$E(b_1) = E\left(\sum k_i Y_i\right)$$

$$= \sum k_i E(Y_i)$$

$$= \sum k_i (\beta_0 + \beta_1 X_i)$$

$$= \beta_0 \sum k_i + \beta_1 \sum k_i X_i$$

$$= \beta_0 \cdot 0 + \beta_1 \cdot 1$$

$$= \beta_1$$
(Unbiased)

Variance of b_1

$$Var(b_1) = Var\left(\sum k_i Y_i\right)$$

$$= \sum k_i^2 Var(Y_i)$$

$$= \sum k_i^2 \sigma^2$$

$$= \sigma^2 \sum k_i^2$$

$$= \sigma^2 \frac{1}{\sum (X_i - \bar{X})^2}$$

Estimated variance of b_1

- Usually, we do not know the value of σ^2 , and thus use the estimator s^2 in place of σ^2 where $s^2 = \frac{\sum (Y_i \hat{Y}_i)^2}{n-2}$
- The estimated variance of b_1 is

$$\widehat{Var}(b_1) = \frac{s^2}{\sum (X_i - \bar{X})^2}$$

Recap

The sampling distribution of b_1 is

$$b_1 \sim N\left(\beta_1, \frac{\sigma^2}{\sum (X_i - \bar{X})^2}\right)$$

Digression: Gauss-Markov Theorem

Theorem

In a regression model $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$ with $E(\epsilon_i) = 0$, $Var(\epsilon_i) = \sigma^2$ for all i's, and $Cov(\epsilon_i, \epsilon_j) = 0$ for all $i \neq j$, the LS estimators b_0 and b_1 are unbiased and have minimum variance among all unbiased linear estimator.

Proof of minimum variance among all unbiased linear estimator

• Let $\hat{\beta}_1$ be an unbiased linear estimator so that

$$\hat{eta}_1 = \sum c_i Y_i$$
 for some constants c_i 's and $E(\hat{eta}_1) = eta_1$

We show that

$$Var(\hat{\beta}_1) \geq Var(b_1)$$

Proof cont.

ullet Being an unbiased estimator, \hat{eta}_1 need to satisfy $E(\hat{eta}_1)=eta_1$, which is

$$E(\hat{\beta}_1) = \sum_i c_i E(Y_i)$$

$$= \sum_i c_i (\beta_0 + \beta_1 X_i)$$

$$= \beta_0 \sum_i c_i + \beta_1 \sum_i c_i X_i = \beta_1$$

• Thus, $\sum c_i = 0$ and $\sum c_i X_i = 1$ should hold

Proof cont.

ullet The variance of \hat{eta}_1 is

$$Var(\hat{\beta}_1) = \sum c_i^2 Var(Y_i) = \sigma^2 \sum c_i^2$$

• Letting $c_i = k_i + d_i$ where $k_i = \frac{(X_i - \bar{X})}{\sum (X_i - \bar{X})^2}$,

$$Var(\hat{\beta}_1) = \sigma^2 \sum (k_i + d_i)^2$$

$$= \sigma^2 \left(\sum k_i^2 + \sum d_i^2 + 2 \sum k_i d_i \right)$$

$$= Var(b_1) + \sigma^2 \left(\sum d_i^2 + 2 \sum k_i d_i \right)$$

Proof cont.

• We show that $\sum k_i d_i = 0$:

$$\sum k_{i}d_{i} = \sum k_{i}(c_{i} - k_{i})$$

$$= \sum k_{i}c_{i} - \sum k_{i}^{2}$$

$$= \sum c_{i} \left(\frac{X_{i} - \bar{X}}{\sum (X_{i} - \bar{X})^{2}}\right) - \frac{1}{\sum (X_{i} - \bar{X})^{2}}$$

$$= \frac{\sum c_{i}X_{i}}{\sum (X_{i} - \bar{X})^{2}} - \frac{\bar{X} \sum c_{i}}{\sum (X_{i} - \bar{X})^{2}} - \frac{1}{\sum (X_{i} - \bar{X})^{2}}$$

$$= \frac{1 \cdot 1}{\sum (X_{i} - \bar{X})^{2}} - \frac{\bar{X} \cdot 0}{\sum (X_{i} - \bar{X})^{2}} - \frac{1}{\sum (X_{i} - \bar{X})^{2}}$$

since $\sum c_i = 0$ and $\sum c_i X_i = 1$

Proof cont.

We have

$$Var(\hat{eta}_1) = Var(b_1) + \sigma^2 \sum d_i^2 \ge Var(b_1)$$

• The minimum is attained when $\sum d_i^2 = 0$ which is equivalent to $d_i = 0$ for all i, in which case the unbiased linear estimator becomes $b_1 \Rightarrow b_1$ has the minimum variance among all linear unbiased estimators

Sampling dist. regarding b_1

ullet b_1 is normally distributed, and

$$rac{b_1 - ar{eta}_1}{\sqrt{Var(b_1)}} \sim \mathit{N}(0,1)$$
 where $\mathit{Var}(b_1) = rac{\sigma^2}{\sum (X_i - ar{X})^2}$

We show that

$$rac{b_1 - eta_1}{\sqrt{\widehat{Var}(b_1)}} \sim t(n-2)$$
 where $\widehat{Var}(b_1) = rac{\mathit{MSE}}{\sum (X_i - ar{X})^2}$

Quick review of t-distribution

• If z and y are independent random variables such that $z \sim N(0,1)$ and $y \sim \chi^2(\nu)$, then

$$\frac{z}{\sqrt{\frac{y}{
u}}} \sim t(
u)$$

(t distribution with degrees of freedom ν)

For the normal error regression model, we have

•
$$\frac{SSE}{\sigma^2} = \frac{\sum (Y_i - \hat{Y}_i)^2}{\sigma^2} = \frac{\sum e_i^2}{\sigma^2} \sim \chi^2(n-2)$$

• $\frac{\mathit{SSE}}{\sigma^2}$ is independent of b_0 and b_1

$$((2.11)$$
 in the text)

For the normal error regression model, we have

•
$$\frac{SSE}{\sigma^2} = \frac{\sum (Y_i - \hat{Y}_i)^2}{\sigma^2} = \frac{\sum e_i^2}{\sigma^2} \sim \chi^2(n-2)$$

• $\frac{SSE}{\sigma^2}$ is independent of b_0 and b_1

$$((2.11)$$
 in the text)

Quick note: why is the degrees of freedom n-2, not n-1 or n?

 \Rightarrow two parameters (β_1 and β_0) need to be estimated from n samples

Now, we have

- $\frac{b_1-\beta_1}{\sqrt{Var(b_1)}}\sim N(0,1)$ and independent of SSE (since SSE is independent of b_1 and b_0 from (2.11))
- $\frac{SSE}{\sigma^2} \sim \chi^2(n-2)$ (from (2.11))
- $\frac{\widehat{Var}(b_1)}{Varb_1} = \frac{MSE/\sum(X_i \bar{X})^2}{\sigma^2/\sum(X_i \bar{X})^2} = \frac{SSE/(n-2)}{\sigma^2}$

$$\Rightarrow \frac{b_1 - \beta_1}{\sqrt{\widehat{Var}(b_1)}} = \left(\frac{b_1 - \beta_1}{\sqrt{Var(b_1)}}\right) / \left(\frac{\sqrt{\widehat{Var}(b_1)}}{\sqrt{Var}(b_1)}\right)$$

$$\sim \frac{z}{\sqrt{y/n}} \quad \text{for } z \sim N(0, 1), \ y \sim \chi^2(n-2), \ x \perp y$$

$$\sim t(n-2)$$

Remark: sampling distribution of b_1

ullet For fixed X_i 's, suppose we repeatedly and independently sample Y_1,\cdots,Y_n

Remark: sampling distribution of b_1

• For fixed X_i 's, suppose we repeatedly and independently sample Y_1, \dots, Y_n

• Then, for each sample, we get different values of b_1 's

Figure: E(Y) = 10 + 2X

Remark: sampling distribution of b_1

- b_1 is drawn from $N(eta_1, rac{\sigma^2}{\sum (X_i ar{X})^2})$ distribution
- $\frac{(b_1-\beta_1)}{\sqrt{MSE/\sum(X_i-\bar{X})^2}}$ is drawn from t(n-2) distribution

Confidence interval and hypothesis test

• Now we know the sampling distribution of b_1 , and can construct confidence intervals and hypothesis test on β_1

Quick review: confidence interval

- Interval estimate of a parameter
- $(1-\alpha)\cdot 100\%$ confidence interval implies that if we repeat sampling infinitely many times, then $(1-\alpha)\cdot 100\%$ of those confidence interval would contain the targeted population parameter

Quick review: confidence interval Single population example with known σ^2

Suppose weekly income of senior level assembly-line workers in a company is normally distributed as $N(\mu, \sigma^2)$.

In order to investigate the population mean μ , a researcher randomly samples nine employees and check their weekly income X_1, \dots, X_9 .

- ullet A point estimate of the mean: $ar{X} = rac{\sum_{i=1}^n X_i}{n}$
- We know $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}\sim N(0,1)$

Quick review: confidence interval Single population example with known σ^2

• To construct $(1 - \alpha)\%$ confidence interval, we want to find a and b such that

$$P\left(a \le \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \le b\right) = 1 - \alpha$$

Quick review: confidence interval Single population example with known σ^2

• We take $a=z_{\alpha/2}$ and $b=z_{1-\alpha/2}$ $(z_{\alpha/2}=-z_{1-\alpha/2}$ since standard normal distribution is symmetric around 0)

Quick review: confidence interval Single population example with known σ^2

We have

$$1 - \alpha = P\left(-z_{1-\alpha/2} \le \frac{X - \mu}{\sigma/\sqrt{n}} \le z_{1-\alpha/2}\right)$$
$$= P\left(\bar{X} - z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{X} + z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\right)$$

Our confidence interval becomes

$$\left(\bar{X}_{obs} - z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}, \ \bar{X}_{obs} + z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\right)$$

Quick review: confidence interval True or false?

For a random sample of nine employees, a researcher obtains a 95% confidence interval of (371,509) for the mean weekly income.

- We infer that the 95% of the employees in the population have income between \$371 and \$509
- The probability that (371,509) contains the population mean is 95%

Quick review: confidence interval True or false?

For a random sample of nine employees, a researcher obtains a 95% confidence interval of (371,509) for the mean weekly income.

- We infer that the 95% of the employees in the population have income between \$371 and \$509
 ⇒ False.
- The probability that (371, 509) contains the population mean is 95%
 ⇒ False.

Quick review: confidence interval True or false?

For a random sample of nine employees, a researcher obtains a 95% confidence interval of (371,509) for the mean weekly income.

- We infer that the 95% of the employees in the population have income between \$371 and \$509
 ⇒ False.
- The probability that (371, 509) contains the population mean is 95%
 ⇒ False.

Confidence interval for β_1

- We have $\frac{b_1-\beta_1}{s\{b_1\}}\sim t(n-2)$
- Therefore,

$$P\left(t_{\alpha/2}(n-2) \le \frac{b_1 - \beta_1}{s\{b_1\}} \le t_{1-\alpha/2}(n-2)\right) = 1 - \alpha$$

• $t_{\alpha/2}(n-2)$ and $t_{1-\alpha/2}(n-2)$ denotes $\alpha/2$ and $1-\alpha/2$ quantiles of t-distribution with d.f. n-2 respectively.

• $t_{\alpha/2}(n-2)$ and $t_{1-\alpha/2}(n-2)$ denotes $\alpha/2$ and $1-\alpha/2$ quantiles of t-distribution with d.f. n-2 respectively.

• $t_{\alpha/2}(n-2) = -t_{1-\alpha/2}(n-2)$ since t-dist. is symmetric around 0.

Confidence interval for β_1

Now,we have

$$1 - \alpha = P\left(-t_{1-\alpha/2}(n-2) \le \frac{b_1 - \beta_1}{s\{b_1\}} \le t_{1-\alpha/2}(n-2)\right)$$

= $P\left(b_1 - t_{1-\alpha/2}(n-2) \cdot s\{b_1\} \le \beta_1 \le b_1 + t_{1-\alpha/2}(n-2) \cdot s\{b_1\}\right)$

Confidence interval for β_1

• Thus, $(1-\alpha)\cdot 100\%$ confidence interval for β_1 is

$$\begin{array}{l} \left(b_1-t_{1-\alpha/2}(n-2)\cdot s\{b_1\},\ b_1+t_{1-\alpha/2}(n-2)\cdot s\{b_1\}\right)\\ \text{i.e.,}\qquad b_1\pm t_{1-\alpha/2}(n-2)\cdot s\{b_1\} \end{array}$$

- Note that this quantity can be used to calculate confidence intervals given n and α
 - \bullet Fixing α can guide the choice of sample size if a particular confidence interval is desired
 - Given a sample size n, vice versa.
- Also useful for hypothesis testing

How to interpret confidence interval

- With 95% confidence interval, we can be 95% **confident** that β_1 , the true slope of the regression line, is within the 95% CI
- But what does "being confident" actually mean?
 - β_1 is an unknown but fixed parameter, so you CANNOT state that "the probability that β_1 is in its 95% CI is 0.95"! β_1 is either in its CI, or its not!
 - Instead: if we select n random samples (with X_i 's fixed) repeatedly, then 95% of the time the CIs for β_1 cover the true parameter β_1 in the long run

Simulation example to illustrate "coverage" of Cls

- Each horizontal line gives a 95% CI for $\beta_1 = 2$
- For 100 simulations, we see that the Cl's cover β_1 96 times.

Intro to R


```
- - X
R Console
> # importing GPA data and saving as "gpa.example"
> gpa.example = read.table("C:/Users/STACHOIY/Documents/CH01PR19.txt", header=FALS$
> # assinging names
> colnames(gpa.example)=c("Y","X")
> # viewing the data
> head(gpa.example)
      Y X
1 3.897 21
2 3.885 14
3 3,778 28
4 2.540 22
5 3.028 21
6 3.865 31
> tail(gpa.example)
115 1.486 31
116 3.885 20
117 3.800 29
118 3.914 28
119 1.860 16
120 2.948 28
> 1
```

```
___
R Console
> # accessing the data
 ## accessing the element in the 2nd row, 1st column
    accessing the 100th row
> gpa.example[100,]
    accessing the 2nd column
  [1] 3.897 3.885 3.778 2.540 3.028 3.865 2.962 3.961 0.500 3.178 3.310 3.538 3.083
 [14] 3.043 3.245 2.963 3.522 3.013 2.947 2.118 2.563 3.357 3.731 3.925 3.556 3.101
 [40] 3.646 2.978 2.654 2.540 2.250 2.069 2.617 2.183 2.000 2.952 3.806 2.871 3.352
 [53] 3.305 2.952 3.547 3.691 3.160 2.194 3.323 3.936 2.922 2.716 3.370 3.606 2.642
 [66] 2.452 2.655 3.714 1.806 3.516 3.039 2.966 2.482 2.700 3.920 2.834 3.222 3.084
 [79] 4.000 3.511 3.323 3.072 2.079 3.875 3.208 2.920 3.345 3.956 3.808 2.506 3.886
[105] 2.914 3.716 2.800 3.621 3.792 2.867 3.419 3.600 2.394 2.286 1.486 3.885 3.800
```

```
- - X
R Console
> #running linear regression
> lm.gpa = lm(Y~X, data=gpa.example)
> lm.gpa
Call:
lm(formula = Y ~ X, data = gpa.example)
Coefficients:
(Intercept)
   2.11405 0.03883
> |
```

```
R Console
                                                                     - - X
> summary(lm.gpa)
Call:
lm(formula = Y ~ X, data = gpa.example)
Residuals:
    Min
           10 Median 30
-2.74004 -0.33827 0.04062 0.44064 1.22737
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
                   0.32089 6.588 1.3e-09 ***
(Intercept) 2.11405
x
           0.03883 0.01277 3.040 0.00292 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.6231 on 118 degrees of freedom
Multiple R-squared: 0.07262, Adjusted R-squared: 0.06476
F-statistic: 9.24 on 1 and 118 DF. p-value: 0.002917
> 1
```


63 / 65

```
R Console
                                                                          - - X
> # constructing 95% confidence interval
> ## 0.975 quantile of t-dist. with d.f 118
> at(1-0.05/2, df=118)
[1] 1.980272
> width = qt(1-0.05/2, df=118)*s/sqrt(xx)
> ## confidence interval
> c(b1-width, b1+width)
[1] 0.01353307 0.06412118
> ## or alternatively
> confint(lm.gpa, level=0.95)
                 2.5 %
(Intercept) 1.47859015 2.74950842
            0.01353307 0.06412118
> |
```

Constructing CI for β_1

Reading: entire chapter 1