King Mongkut's University of Te Mid-Term Examination of the 1 Selected Topics is Course: CPE4523) (Acoustics of Musical: Date: Thursday 29th July 2010 Time: 9.00-12.00 a.m. For: CPE 3-4 (A-D)	สานกายสมุด Jean No บาลัยเทคโนโลยีพระจอมเกล้าธนุมุรี echnology Thomburi st/2010 Semester £ Computer Eng. II Instrument and PA Systems)
Instruction: 1. Closed-Book Examina 2. A calculator is allowed 3. A ScFormulae is 4. There are 5 problem 5. Do all problems for	ed. allowed. ms in 10 pages.
Student's ID:	(dapital Letter)
Problem 1 (10 marks) Problem 2 (10 marks) Problem 3 (10 marks) Problem 4 (10 marks) Problem 5 (10 marks)	

Assoc, Rof. Boonruk CHIPIPOP Designer (1) An octave band analysis of sound in a machine shop was made and the following results ของเกล้าธนบุรี

Octave band Hz	20-75	75-150	150-300	300600	600-1200	1200-2400	2400-4800	4800–10 000
S.P.L. in dB	68	72	90	87	86	88	90	84

Calculate the loudness in phons.

(2) Find the perceived noise level in PNdB of the analysis in Question (1).

(3) The noise level from a factory with ten identical machines measured near some residential property was found to be 54 dB. The maximum permitted is 50 dB at night. How many machines could be used during the night?

(4) Find the total sound pressure level in dB for a sound with the following analysis. Calculate also the total intensity in W/m².

Centre Frequency Hz	Level dB
125	55
250	63
500	71
1000	68
2000	59

(5) A motor car was found to produce the following noise. Calculate the total noise level in dB (linear) and dB (A).

	()-
Octave Band Hz	Level dB
20–75	95
75–150	84
150-300	80
300–600	68
600-1200	65
1200–2400	61
2400–4800	60
4800-10 000	60

Fig. 1. Scale for combining sound pressure levels

Fig. 2 Equals loudness contours

Fig. 4 Loudness index in sones from the S.P.L. of the frequency band dB

Page 10 มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี

Fig. 6. Contours of perceived noisiness