

CITY ENGINEERING COLLEGE

Approved by AICTE New Delhi & Affiliated by VTU, Belagavi Doddakallasandra, Off Kanakapura Main Road, Next to Next to Gokulam Apartment, Bangalore - 560 062.

Mathematics Assignment - 02 Vector Calculus

&

Vector Space and Linear Transformation

- 1. Find the directional derivative of,
 - a. $\varphi = 4xz^3 3x^2y^2z$ at (2, -1, 2) along vector $2\hat{\imath} 3\hat{\jmath} + 6\hat{k}$.
 - b. $\varphi = xy^3 yz^3$ at the point (2, -1, 1) in the direction of the vector $\hat{\imath} + 2\hat{\jmath} + 2\hat{k}$.
- 2. Show that the cylindrical coordinate system is orthogonal.
- 3. Prove that the spherical coordinate system is orthogonal.
- 4. Show that the two surfaces $xz + y + z^2 = 9$ and z = 4 4xy at (1,-1,2) are orthogonal.
- 5. Verify whether the vector $\vec{F} = \frac{x\hat{\imath} + y\hat{\jmath}}{x^2 + y^2}$ is both solenoidal and irrotational.
- 6. If $\vec{F} = \nabla(x^3 + y^3 + z^3 3xyz)$, find $div \vec{F}$ and $curl \vec{F}$.
- 7. Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 3$ at the point (2, -1, 2).
- 8. Define Vector space, Subspace and Linear dependent.
- 9. Show that the vectors (1,0,1), (1,1,0), (-1,0,-1) are linearly dependent in $V_3(R)$.
- 10. State Rank Nullity Theorem. For the matrix $\begin{bmatrix} 1 & -4 & 9 & -7 \\ -1 & 2 & -4 & 1 \\ 5 & -6 & 10 & 7 \end{bmatrix}$ Find:
 - a. Rank of A b. Dim (Nul A) c. Bases
- 11. Prove that the subset $W = \{(x, y, z): x 3y + 4z = 0\}$ of the vector space \mathbb{R}^3 is a subspace of \mathbb{R}^3 .
- 12. Determine whether the matrix $A = \begin{bmatrix} 3 & -1 \\ 1 & -2 \end{bmatrix}$ is a linear combination of $B = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix}$ and $D = \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}$ in the vector space M_{22} of 2×2 matrices.
- 13. Express the vector (3,5,2) as a linear combination of the vectors (1,1,0), (2,3,0), (0,0,1) of $V_3(R)$.
- 14. Show that the set $S = \{(1,2,4),(1,0,0),(0,1,0),(0,0,1)\}$ is linearly dependent.
- 15. Find the linear transformation $T: V_2(R) \to V_3(R)$ such that T(1,1) = (0,1,2), T(-1,1) = (2,1,0).
- 16. State the rank-nullity theorem and verify the theorem for the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by T(x,y,z) = (x+2y-z,y+z,x+y-2z).
- 17. Define an inner product space. Consider f(t) = 4t + 3, $g(t) = t^2$, the inner product $\langle f, g \rangle = \int_0^1 f(t)g(t)dt$. Find $\langle f, g \rangle$ and ||g||
- 18. Express the matrix $M = \begin{bmatrix} 4 & 7 \\ 7 & 9 \end{bmatrix}$ is a linear combination of matrices, $P = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, $Q = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and $R = \begin{bmatrix} 1 & 1 \\ 4 & 5 \end{bmatrix}$.
- 19. Determine whether or not each of the following $x_1 = (2,2,1)$, $x_2 = (1,3,7)$ and $x_3 = (1,2,3)$ forms a basis in \mathbb{R}^3 .
- 20. Find the dimension and basis of the subspace spanned by the vectors (2,4,2), (1,-1,0), (1,2,1) and (0,3,1) in $V_3(R)$.