State-space coverage: Consider the underlying state transition system

State que

- Suppose the simulation is run for time T at (approximate) equilibrium and spends time T_s in state s
 T_s/T is then an estimate, β̂_s, of (the unknown) state
- probability p_s Remark: Measures such as W could be computed directly, or
- in terms of $\hat{\rho}_s$ the answer will be the same • How good is the estimate $\hat{\rho}_s=T_s/T$? It clearly depends on

Filled states: largest subset $S' \subseteq S$ s.t. $inf\{p_i \mid i \in S'\} \ge sup\{p_j \mid j \in S - S'\}$

and $\sum_{i \in S'} p_i \leq p_{max}$ for some p_{max} . For the same simulation time the C.I. for the left model (light load) should be narrower than the right (heavy load)