1. Definition of a sentence of PL

Rule 0: All capital English letters on their own are sentences of PL.

Rule 1: If ϕ is a PL-sentence, then $\neg \ \phi$ is a PL-sentence.

Rule 2: If ϕ and ψ are PL-sentences, then:

- + $(\phi \land \psi)$ is a PL-sentence
- + $(\phi \lor \psi)$ is a PL-sentence
- + $(\phi \supset \psi)$ is a PL-sentence
- + $(\phi \equiv \psi)$ is a PL-sentence

Rule 3: Nothing else is a PL-sentence.

2. Truth table definitions of the logical operators

р	q	7	р	(р	٨	q)	(р	٧	q)	(р	⊃	q)	(р	=	q)
Т	Т	F				Т					Т					Т					T		
Т	F	F				F					Т					F					F		
F	Т	Т				F					Т					Т					F		
F	F	Т				F					F					Т					Т		

3. Inference Rules

MP p ⊃ q p ∴ q	MT p ⊃ q ¬q ∴ ¬p	HS p ⊃ q q ⊃ r ∴ p ⊃ r	Simp p ∧ q ∴ p	Simp p ∧ q ∴ q	Conj p q ∴ p ∧ q
Dil p ⊃ q r ⊃ s p ∨ r ∴ q ∨ s	DS p ∨ q ¬q ∴ p	DS p ∨ q ¬p ∴ q	Add p ∴ p ∨ q	Add q ∴ q ∨ p	

4. Replacement Rules

Dup p :: (p ∨ p) P :: (p · p)	Comm (p ∨ q) :: (q ∨ p)	Assoc ((p ∨ q) ∨ r) :: (p ∨ (q ∨ r)) ((p ∧ q) ∧ r) :: (p ∧ (q ∧ r))
CE (p ⊃ q) :: ¬p ∨ q	DeM ¬(p ∨ q) :: (¬p ∧ ¬q) ¬(p ∧ q) :: (¬p ∨ ¬q)	BE $(p = q) :: ((p \supset q) \land (q \supset p))$
DN p :: ¬¬p	Contrap (p ⊃ q) :: (¬q ⊃ ¬p)	Dist $(p \cdot (q \lor r)) :: ((p \land q) \lor (p \land r))$ $(p \lor (q \land r)) :: ((p \lor q) \land (p \lor r))$

Indirect Proof

IP n-m

5. Condition Proof and Indirect Proof

Conditional Proof

m+1

m+1