Group SBS, Sheet 03, Exercise 03

November 19, 2021

Contributors

Binoy Chacko (chacko@uni-potsdam.de), Sreyas Sony (sony@uni-potsdam.de), Dinesh Kumar (kumar@uni-potsdam.de) Sanika Nair (nair@uni-potsdam.de)

Solution

Statistical modeling

A statistical model associated to that statistical experiment is a pair of

$$(\mathcal{X}, \mathcal{A}, (\mathbb{P}_{\theta})_{\theta \in \Theta})$$

where \mathcal{X} is the sample space, $(\mathbb{P}_{\theta})_{\theta \in \Theta}$ is a family of probability measures on $(\mathcal{X}, \mathcal{A})$, where \mathcal{A} is the σ -algebra Θ is the parameter set.

In the given statistical experiment, humans can have one of the three genotypes AA, Aa, aa with corresponding probabilities $(1-p)^2$, 2p(1-p) and p^2 .

$$\mathcal{X} = \{AA, Aa, aa\}$$

$$\Theta$$
 or $p \in (0,1)$

The distribution is unknown and we are assuming that it is a multinomial distribution because in every trial we are getting one of the three possibilities. For a multinomial distribution the individual probabilities should sum to one

$$\sum P(AA) + P(Aa) + P(aa) = (1-p)^2 + 2p(1-p) + p^2$$

$$= (p+1-p)^2$$

$$= 1$$

Let X_1, X_2, X_3 be the random variables that denotes the number of times getting the genotype AA, Aa, aa in n i.i.d. trials respectively.

Then,

$$X_1 \sim Binomial(n, (1-p)^2)$$

 $X_2 \sim Binomial(n, 2p(1-p))$
 $X_3 \sim Binomial(n, p^2)$

Then,

$$X(X_1, X_2, X_3) \sim Multinominal(n, (p_1, p_2, p_3))$$

where $p_1 = (1-p)^2$, $p_2 = 2p(1-p)$ and $p_3 = p^2$ are the respective probabilities

Therefore, our statistical model for n independent trials of the experiment is

$$\left(\mathcal{X} = \{AA, Aa, aa\}, \\ \mathcal{A} = \{\phi, \{AA\}, \{Aa\}, \{aa\}, \{AA, Aa\}, \{AA, aa\}, \{Aa, aa\}, \mathcal{X}\}, \\ Multinomial \left(n, (p_1, p_2, p_3)_{p_i \in (0,1)} \right) \right)$$

Now, we have

$$P(X_1 = x, X_2 = y, X_3 = z) = \binom{n}{x, y, z} (p_1^x p_2^y p_3^z)$$
$$= \binom{N}{x, y, z} ((1 - p)^{2x} 2p(1 - p)^y p^{2z})$$

The likelihood function is given by

$$L(X_1 = x, X_2 = y, X_3 = z | p) = \left(\binom{n}{x, y, z} ((1 - p)^{2x} (2p(1 - p))^y p^{2z}) \right)$$
$$= \left(\binom{n}{x, y, z} (1 - p)^{2x + y} p^{2z + y} \right)$$

Taking log-likelihood is given by

$$log(L(X_i|p)) = log(\binom{n}{x,y,z}) + log((1-p)^{2x+y}) + log(p^{2z+y})$$
$$= log(\binom{n}{x,y,z}) + (2x+y)log(1-p) + (2z+y)log(p)$$

Taking the derivative w.r.t p

$$\frac{\mathrm{d}log(L(X_i|p))}{\mathrm{d}p} = \frac{-(2x+y)}{1-p} + \frac{2z+y}{p} = 0$$
$$-2xp - 2yp + 2z + y - 2zp - py = 0$$
$$2(x+y+z)p = y + 2z$$
$$\hat{p} = \frac{y+2z}{2(x+y+z)} = \frac{y+2z}{2n}$$

In order to check if \hat{p} maximizes the likelihood, taking the second derivative of $\log(L(X_i|p))$, w.r.t. p,

$$\frac{\partial^2}{\partial p^2} \log(L(p)) = \frac{\partial}{\partial p} \left[\frac{-2x - y}{1 - p} + \frac{2z + y}{p} \right]$$
$$= -\left[\frac{(2x + y)}{(1 - p)^2} + \frac{2z + y}{p^2} \right]$$

Substituting \hat{p} in p,

$$= -\frac{2x+y}{\left(1 - \frac{2z+y}{2(x+y+z)}\right)^2} - \frac{2z+y}{\left(\frac{2z+y}{2(x+y+z)}\right)^2}$$

$$= -\frac{(2(x+y+z))^2}{2x+y} - \frac{(2(x+y+z))^2}{2z+y}$$

$$= -\left[\frac{4(x+y+z)^2}{2x+y} + \frac{4(x+y+z)^2}{2z+y}\right] < 0$$

Thus, \hat{p} maximizes the likelihood.

Therefore the estimate of \hat{p} is

$$\hat{p} = \frac{y + 2z}{2n}$$

Therefore the estimates of p_1, p_2, p_3 are

$$\hat{p_1} = \left(1 - \hat{p}\right)^2$$

$$\hat{p_2} = 2\left(\hat{p}\right)\left(1 - \hat{p}\right)$$

$$\hat{p_3} = \hat{p}^2$$