Algebra Qualifying Exam September 14, 1995

Instructions: You are given 10 problems from which you are to do 8. Please indicate 8 problems which you would like to be graded by circling the problem numbers on the problem sheet. Your reasoning and proof should be literally clear. **Note:** All rings in this exam are associative and with 1 and all integral domains are commutative. \mathbb{Q} and \mathbb{C} are the sets of rational and complex numbers respectively.

- 1. Let G be a group and H a subgroup of G. Then G acts on the set, G/H, of all left cosets of H in G and this action defines a group homomorphism $\phi: G \to \operatorname{Sym}(G/H)$. Here $\operatorname{Sym}(G/H)$ is the group of all permutations on the set G/H. Show that $\ker(\phi)$ is the largest subgroup of H that is normal in G.
- 2. Let G be a group of order 385. Show that every element of order 7 in G is in the center of the group G.
- 3. Let R be a ring with identity $1 \neq 0$. Suppose that R has a central element $e \neq 0, 1$ such that $e^2 = e$. Show that there exist two rings R_1 and R_2 both with identity $1 \neq 0$ such that $R \cong R_1 \times R_2$.
- 4. Let $f: R \to S$ be a homomorphism of commutative rings R and S.
 - (a). Show that $f^{-1}(P)$ is a prime ideal of R if P is a prime ideal of S.
 - (b). Is it possible to change the word "prime" into "maximal" in the above statement? Prove or give a counter example.
- 5. Let R be a commutative ring and N be the set of all nilpotent elements in R. (An element x in a ring is called nilpotent if $x^n = 0$ for some nonnegative integer n.)
 - (a). Show that N is an ideal of R.
 - (b). Is the statement (a) still correct without the commutativity condition on R? Prove or give an example.

- 6. Let R be a ring and M, N be left R-modules. Show that if N is a free R-module, then for any onto R-module homomorphism $\phi: M \to N$ there exists an R-module homomorphism $\psi: N \to M$ such that $\phi \circ \psi = \operatorname{Id}_N$ and then prove that $M = \ker(\phi) \oplus \psi(N)$.
- 7. Let R be a commutative ring and M be a free R-module of rank n. Show that for any idea I of R and any R-module homomorphism ϕ : $M \to M$ such that $\phi(M) \subseteq IM$, then there exists $a_0, a_1, \ldots, a_{n-1} \in I$ such that $\phi^n + a_{n-1}\phi^{n-1} + \cdots + a_1\phi + a_0 \operatorname{Id} = 0$ as a homomorphism $M \to M$.
 - Can you prove the above statement for M being just finitely generated? If yes, explain briefly how to prove.
- 8. Let $GL_n(\mathbb{C})$ be the group of all $n \times n$ invertible matrices with entries in complex numbers \mathbb{C} . Show that every element of finite order in $GL_n(\mathbb{C})$ is conjugate to a diagonal matrix in $GL_n(\mathbb{C})$
- 9. Let n > 1 be a positive integer. Calculate the degree of the splitting field of $f(x) = x^n 2$ over the field of rational numbers \mathbb{Q} .
- 10. Let \mathbb{F} be a finite field of characteristic p. Show that the multiplicative group $\mathbb{F}^{\times} = \mathbb{F} \setminus \{0\}$ is a cyclic group.