	Method			Dataset			
		ASCADv1 (fixed)	ASCADv1 (random)	DPAv4 (Zaid version)	AES-HD	OTiAiT	OTP
	Random	112 ± 1	108 ± 4	11.5 ± 0.4	127 ± 1	1.20 ± 0.05	1.048 ± 0.008
First-order	SNR	111.0 ± 0.2	123 ± 2	126 ± 1	128.5 ± 0.3	4.26 ± 0.07	1.33 ± 0.04
parametric	SOSD	111.6 ± 0.2	125.6 ± 0.6	105.7 ± 0.9	128.3 ± 0.3	3.94 ± 0.08	1.34 ± 0.04
methods	CPA	118.2 ± 0.4	114 ± 2	111.5 ± 0.9	128.4 ± 0.3	2.7 ± 0.2	1.32 ± 0.04
	GradVis	124.9 ± 0.3	127 ± 1	121 ± 1	127 ± 1	1.8 ± 0.2	1.31 ± 0.05
Neural net	Saliency	124.8 ± 0.3	127 ± 1	124 ± 1	127 ± 1	2.8 ± 0.2	1.29 ± 0.05
attribution	Input $*$ Grad	124.8 ± 0.3	127 ± 1	124 ± 1	127 ± 1	3.1 ± 0.2	1.29 ± 0.05
	LRP	124.8 ± 0.3	127 ± 1	124 ± 1	127 ± 1	3.1 ± 0.2	1.29 ± 0.05
	1-Occlusion	124.8 ± 0.3	127 ± 1	124 ± 1	127 ± 1	3.2 ± 0.2	1.29 ± 0.05
	5-Occlusion	125.0 ± 0.4	127.1 ± 0.6	124.9 ± 0.8	128 ± 1	4.4 ± 0.1	1.27 ± 0.03
	17-Occlusion	124.5 ± 0.2	127.1 ± 0.7	123.1 ± 0.7	128 ± 1	4.5 ± 0.1	1.23 ± 0.02
	65-Occlusion	122.4 ± 0.3	126 ± 2	119.5 ± 0.8	127 ± 2	4.1 ± 0.1	1.17 ± 0.02
	257-Occlusion	121.4 ± 0.6	122 ± 3	104.4 ± 0.6	127 ± 2	3.9 ± 0.1	$1/16 \pm 0.02$
	2 nd -order 1-Occlusion	124.8 ± 0.3	127 ± 1	$\frac{125 \pm 1}{70000}$	127 ± 1	3.6 ± 0.2	1.29 ± 0.05
	OccPOI GradVis (ZaidNet)	$\begin{array}{c} {\rm TODO} \\ 119 \pm 3 \end{array}$	TODO n/a	TODO 113 ± 2	$\begin{array}{c} \text{TODO} \\ 128.0 \pm 0.5 \end{array}$	$_{ m n/a}^{ m TODO}$	$_{ m n/a}^{ m TODO}$
	Saliency (ZaidNet)	119 ± 3 119 ± 3	n/a	113 ± 2 113 ± 2	128.0 ± 0.5 128.0 ± 0.5	n/a	n/a
	Input * Grad (ZaidNet)	119 ± 3 119 ± 2	n/a n/a	113 ± 2 113 ± 2	128.0 ± 0.5 128.0 ± 0.5	n/a	n/a
	1-Occlusion (ZaidNet)	119 ± 2	n/a	113 ± 2	128.0 ± 0.5	n/a	n/a
	5-Occlusion (ZaidNet)	121 ± 2	n/a	120 ± 1	128.3 ± 0.4	n/a	n/a
	17-Occlusion (ZaidNet)	121 ± 2	n/a	119 ± 2	128.3 ± 0.3	n/a	n/a
	65-Occlusion (ZaidNet)	120 ± 1	n/a	114 ± 4	$\underline{128.3 \pm 0.4}$	n/a	n/a
	257-Occlusion (ZaidNet)	122 ± 1	n/a	101 ± 2	128.4 ± 0.4	n/a	n/a
	2 nd -order 1-Occlusion (ZaidNet)	120 ± 2	n/a	113 ± 2	128.0 ± 0.5	n/a	n/a
	OccPOI (ZaidNet)	TODO	n/a	TODO	TODO	n/a	n/a
	GradVis (WoutersNet)	119.2 ± 0.9	n/a	112 ± 7	128.1 ± 0.6	n/a	n/a
	Saliency (WoutersNet)	119.3 ± 0.9	n/a	112 ± 7	128.1 ± 0.5	n/a	n/a
	Input * Grad (WoutersNet) 1-Occlusion (WoutersNet)	119.3 ± 0.9	n/a	112 ± 7 112 ± 7	$\frac{128.1 \pm 0.6}{128.1 \pm 0.6}$	n/a	n/a
	5-Occlusion (WoutersNet)	119.3 ± 0.9 120 ± 1	n/a n/a	112 ± 7 119 ± 3	128.1 ± 0.0 128.3 ± 0.4	n/a n/a	n/a n/a
	17-Occlusion (WoutersNet)	120 ± 1 121 ± 1	n/a n/a	119 ± 3 120 ± 2	128.4 ± 0.3	n/a	n/a n/a
	65-Occlusion (WoutersNet)	121.4 ± 0.7	n/a	114 ± 3	128.4 ± 0.3	n/a	n/a
	257-Occlusion (WoutersNet)	121.4 ± 0.7 122.0 ± 0.7		104 ± 4	128.4 ± 0.3 128.4 ± 0.3	n/a	n/a n/a
	,		n/a		128.4 ± 0.5 128.1 ± 0.6	,	,
	2 nd -order 1-Occlusion (WoutersNet) OccPOI (WoutersNet)	119.7 ± 0.9 TODO	n/a n/a	112 ± 7 TODO	TODO	n/a n/a	n/a n/a
	,						
	ALL (ours)	125.5 ± 0.4	127.6 ± 0.3	124.5 ± 0.8	128.4 ± 0.3	4.3 ± 0.1	1.38 ± 0.04
Table 1: Performance of leakage localization algorithms according to the Rev-DNNO (reverse DNN occlusion) test. To compute this metric, we first train a supervised DNN classifier to map emission traces to the sensitive variable. We then incrementally occlude its inputs from least- to most-leaky as estimated by the baseline, and at each step compute its performance (quantified by rank, lower is better) on the test dataset. The Rev-DNNO metric is given by the average value of these performance assessments (higher is better, because it indicates that claimed nonleaky features indeed had little utility to the classifier). Of the two DNN occlusion metrics, this is more sensitive to true/false negative leakiness measurements because the performance of							
the classifier tends to jump and stay up as soon as it sees leaky measurements. Best result is boxed and							
best deep learning result is <u>underlined</u> . Results are reported as mean \pm std. dev. over 5 random seeds.							
Observe that our method is superior or comparable to all deep learning methods on 5 of the 6 datasets and							
slightly worse on the remaining dataset. Additionally, deep learning methods perform better in comparison							
to parametric methods on the first-ordered datasets relative to their performance under the oSNR metric.							
o parametric methods on the first-ordered datasets relative to their performance under the oSNR metric.							