## Week 5 assignment

Gabriele Manganelli

Quantum Information and Computation

2021-2022

## Time-dependent Schrödinger equation

Harmonic oscillator, potential moving to the right with  $v = \frac{1}{T}$ .

$$\hat{H} = \frac{\hat{p}^2}{2} + \frac{\left(\hat{q} - \frac{t}{T}\right)^2}{2} \quad t \in [0, T]$$

Compute

$$|\psi(t)\rangle = U(t)|\psi(0)\rangle$$
  
 $\langle x|\psi(0)\rangle = \mathcal{N}e^{-\frac{x^2}{2}}$ 

Discretizing  $T = N_t \Delta t$ , with  $N_t = 1000$ 

$$U(t) = e^{-i\int_{t_0}^t \left[\hat{K} + \hat{V}\right] dt'} \to e^{-i\left[\hat{K} + \hat{V}\right] \Delta t}$$

## Split Operator Method

$$e^{-i(\hat{K}+\hat{V})\Delta t} \approx e^{-i\hat{V}\frac{\Delta t}{2}}e^{-i\hat{K}\Delta t}e^{-i\hat{V}\frac{\Delta t}{2}} + \mathcal{O}(\Delta t^3)$$

- ullet When applied  $N_t=rac{T}{\Delta t}$  times, error becomes  $N_t\mathcal{O}(\Delta t^3)=\mathcal{O}(\Delta t^2)$
- In momentum basis  $\hat{K}$  can be represented as  $diag(p_1^2, \dots, p_{N_x}^2)$ , the operator above becomes  $diag(e^{-ip_1^2\Delta t}, \dots)$
- With L=40, we choose  $N_x=12000$  for [-L,L]. Particle in a box:  $p_i \in [-\frac{\pi}{L}, \frac{\pi}{L}]$  with  $N_p=N_x$ .
- Switching between x, p representation:  $\mathcal{F}$
- Time evolution

$$\psi(t+\Delta t) = e^{-\frac{i}{2}V\Delta t}\mathcal{F}^{-1}e^{-iK\Delta t}\mathcal{F}e^{-\frac{i}{2}V\Delta t}\psi(t)$$



Compile: gfortran tdse.f90 -o simulation -llapack -lfftw3 -lfftw3f Installation: sudo apt-get install -y fftw3-dev

```
function fft(psi) result(psi_p)
call dfftw_plan_dft_1d(plan, size(psi), psi, psi_p, -1)
call dfftw_execute_dft(plan, psi, psi_p)
call dfftw_destroy_plan(plan)
```





Notice that  $\langle x(T) \rangle = 1$ , since  $\langle x(t) \rangle = vt = \frac{t}{T}$ 



## Only T = 25,50 end with peak at x = 1



Heisenberg principle:  $\sigma_x \sigma_p \ge \frac{1}{2}$ . Ground state of harmonic oscillator falls



in equality case.

 $\Delta t^2 \approx 0.6 \cdot 10^{-4}$