Modelagem, Identificação e Controle de um VANT Quadrirotor

Marcelo De Lellis C. de Oliveira

lellis@das.ufsc.br

Universidade Federal de Santa Catarina Departamento de Automação e Sistemas Programa de Pós-Graduação em Engenharia e Sistemas

1 de Novembro de 2012

Sumário

- 📵 Introdução
- Modelagem
- Identificação
- Controle
 - Controle Clássico (PID) em Cascata
 - Controle Ótimo com Realimentação de Estados LQ(R)
 - ullet Controle Robusto \mathcal{H}_{∞} com Sensibilidade Mista
 - ullet Controle Robusto com Síntese μ e Iterações DK
- Referências Bibliográficas

Contextualização

- Contexto: dissertação de Master of Science pelas universidades Luleå
 University of Technology (Suécia) e Czech Technical University in Prague
 (Rep. Tcheca) pelo programa de pós-graduação Erasmus Mundus. Concluído
 em Junho de 2011;
- Objetivo: estudo de quadrirotores com foco nas estratégias de controle, incluindo considerações de robustez;
- Metodologia: modelagem da literatura; identificação do modelo realizada em protótipo real; testes de controle realizados por simulação;
- Contribuição: colaboração com Jaromír Dvořák em artigo intitulado "Advanced control of a quadrotor using eigenaxis rotation for large maneuvers" no congresso Multiconference on Systems and Control 2011, em Denver, USA.

Histórico & Definições

- Aeronave de asa rotativa → multicóptero com 4 rotores;
- Controle através do ângulo de arfagem das hélices e/ou da velocidade angular ω_i dos rotores;
- Primeiros projetos: 1920-1930;

(a) De Bothezat, 1923.

(b) Protótipo deste estudo.

Figura 1: Exemplo de configurações de quadrirotor.

- Vantagens: alta manobrabilidade, decolagem e pouso na vertical (VTOL) fácil pilotagem, grau de liberdade em yaw;
- Desvantagem: maior gasto de energia para mesma trajetória.

Sistemas de Coordenadas

Equações de torque (Moment, 1a) e Força (1b) no sistema local:

$${}^bec{M} = ec{I}\cdot\dot{ec{\Omega}} + ec{\Omega} imes \left(ec{I}\cdotec{\Omega}
ight)$$
 (1a)

$${}^{b}ec{F}=m\left(\dot{ec{V}}+ec{\Omega} imesec{V}
ight)$$
 (1b)

Figura 2: Sistemas de coordenadas local (b - body) e inercial (i).

Modelo Não-Linear Pré-Identificação

Quatro fontes externas de forças e torques consideradas: 1 – efeito giroscópico dos rotores; 2 – arrasto aerodinâmico nas hélices dos rotores; 3 – empuxo dos rotores; 4 – gravidade da terra.

Equações de torque (1a) e força (1b) tornam-se, respectivamente:

$$\begin{cases} \dot{p} = \frac{l_a}{l_x} \left(T_4 - T_2 \right) + \frac{1}{l_x} \sum_{j=1}^4 M_{j_x} + \frac{(l_y - l_z)}{l_x} q \, r \\ \dot{q} = \frac{l_a}{l_y} \left(T_1 - T_3 \right) + \frac{1}{l_y} \sum_{j=1}^4 M_{j_y} - \frac{(l_x - l_z)}{l_y} p \, r \\ \dot{r} = \frac{1}{l_z} \sum_{j=1}^4 M_{j_z} \end{cases}$$
(2a)

$$\begin{cases} \dot{u} = v \, r - w \, q - g \, \sin \theta \\ \dot{v} = w \, p - u \, r + g \, \sin \phi \, \cos \theta \\ \\ \dot{w} = u \, q - v \, p + g \, \cos \phi \, \cos \theta + \frac{1}{m} \sum_{j=1}^{4} T_j \end{cases}$$

Parâmetros Gerais – Estrutura

Parâmetro	Valor	Descrição
	0.694 kg	massa total da aeronave
l _a	0.18 m	braço de alavanca do CG do rotor ao CG da aeronave
$I_x = I_y$	$5.87 \cdot 10^{-3} \text{ kg m}^2$	momento de inércia da aeronave nos eixos X e Y
l _z	$10.73 \cdot 10^{-3} \mathrm{kg}\mathrm{m}^2$	momento de inércia da aeronave no eixo $oldsymbol{Z}$

Tabela 1: Parâmetros gerais do quadrirotor identificados.

Figura 3: Modelagem da estrutura do quadrirotor.

Torque dos Rotores

$$M_i(\omega_i) = \left(\frac{m_i - m_0}{1000}\right) \mid \vec{g} \mid d = I_G \,\dot{\omega}_i + k_D \,\omega_i^2 + B_a \,\omega_i \,[\text{N m}]$$
 (3)

Figura 4: Experimento de identificação $\omega_i \to M_i$.

Dinâmica dos Rotores

Rotor modelado como motor BLDC (4) + propelente (Fig. 5a).

$$\frac{\omega(s)}{u(s)} = \frac{\frac{k_t}{l_t L_a}}{s^2 + \frac{l_t R_a + B_a L_a}{l_t L_a} s + \frac{B_a R_a + k_v k_t}{l_t L_a}} = \frac{264360}{s^2 + 133, 8s + 3115}$$
(4)

(a) Ganho estático $u_i \rightarrow \omega_i$ sem anel de inércia e com propelente.

(b) Dinâmica $u_i \to \omega_i$ com anel de inérica e sem propelente.

Figura 5: Experimento de identificação da dinâmica do rotor.

Validação da Dinâmica dos Rotores

Variável	Valor	Descrição
k _D	$1.18 \cdot 10^{-7} \text{N m s}^2$	coeficiente de arrasto do propelente
B_a	1.23 · 10 ⁻⁶ N m s	coeficiente de atrito linear do propelente
k _t	3.7 · 10 ⁻³ N m/A	constante de torque elétrico
k_{v}	7.8 · 10 ⁻³ V s	constante de velocidade
La	1.9 ⋅ 10 ^{−3} H	impedância da armadura
I_G	$1.5 \cdot 10^{-5} \text{ kg m}^2$	inércia do rotor
R_a	$260 \cdot 10^{-3} \Omega$	resistência da armadura

Tabela 2: Parâmetros do rotor identificados.

Figura 6: Experimento de validação da dinâmica do rotor.

Identificação do Empuxo dos Rotores

Hovering point: $(u, \omega)_{hov} = (10.1 \text{ V}, 668 \text{ rad/s}).$

$$T(\omega) = \sum_{i=0}^{3} \gamma_i \,\omega^i$$

$$T(\omega) = -47.7 \cdot 10^{-3} + 1.3 \cdot 10^{-3} \omega - 1.44 \cdot 10^{-6} \omega^2 + 5.19 \cdot 10^{-9} \omega^3$$
 [N]

Figura 7: Identificação de ganhos estáticos de empuxo.

Modelagem do Rotor - Resultado

Modelo linear simplificado:

$$G_{R_s}(s) = \frac{K_s}{s + \lambda_s} = \frac{885, 6}{s + 16.7}$$
 (6)

- (a) Diagrama Simulink do modelo não-linear.
- (b) Resposta temporal do modelo linear.

Figura 8: Resultado da modelagem do rotor.

Modelo Não-Linear Pós-Identificação

Equações de torque (2a) e força (2b) são detalhadas, respectivamente:

$$\begin{cases} \dot{p} = \frac{l_{a}}{l_{x}} \sum_{i=0}^{3} \gamma_{i} \left(\omega_{2}^{i} - \omega_{4}^{i} \right) + \frac{l_{G}}{l_{x}} q \sum_{j=1}^{4} \omega_{j} (-1)^{j} + \frac{(l_{y} - l_{z})}{l_{x}} q r \\ \dot{q} = \frac{l_{a}}{l_{y}} \sum_{i=0}^{3} \gamma_{i} \left(\omega_{3}^{i} - \omega_{1}^{i} \right) - \frac{l_{G}}{l_{y}} p \sum_{j=1}^{4} \omega_{j} (-1)^{j} - \frac{(l_{x} - l_{z})}{l_{y}} p r \end{cases}$$

$$\dot{r} = \frac{1}{l_{z}} \sum_{j=1}^{4} \left(l_{G} \dot{\omega}_{j} + k_{D} \omega_{j}^{2} + B_{a} \omega_{j} \right) (-1)^{j}$$

$$(7a)$$

$$\begin{cases} \dot{u} = v \, r - w \, q - g \, \sin \theta \\ \dot{v} = w \, p - u \, r + g \, \sin \phi \, \cos \theta \\ \\ \dot{w} = u \, q - v \, p + g \, \cos \phi \, \cos \theta - \frac{1}{m} \sum_{i=1}^{4} \sum_{j=0}^{3} \gamma_{i} \, \omega_{j}^{i} \end{cases}$$

$$(7b)$$

Modelo Linearizado Pós-Identificação

As equações de torque (8) no ponto de linearização (p_0, q_0, r_0) e as de força (9) no ponto (u_0, v_0, w_0) and (ϕ_0, θ_0) são, respectivamente:

$$\begin{cases}
\Delta \dot{p} = \frac{l_{a}}{l_{x}} \left(\dot{T}_{2_{0}} \Delta \omega_{2} - \dot{T}_{4_{0}} \Delta \omega_{4} \right) + \frac{l_{G}}{l_{x}} \left[q_{0} \sum_{j=1}^{4} \Delta \omega_{j} (-1)^{j} + \Delta q \sum_{j=1}^{4} \omega_{j_{0}} (-1)^{j} \right] + \frac{l_{y} - l_{z}}{l_{x}} \left(r_{0} \Delta q + q_{0} \Delta r \right) \\
\Delta \dot{q} = \frac{l_{a}}{l_{y}} \left(\dot{T}_{3_{0}} \Delta \omega_{3} - \dot{T}_{1_{0}} \Delta \omega_{1} \right) - \frac{l_{G}}{l_{y}} \left[p_{0} \sum_{j=1}^{4} \Delta \omega_{j} (-1)^{j} + \Delta p \sum_{j=1}^{4} \omega_{j_{0}} (-1)^{j} \right] - \frac{l_{x} - l_{z}}{l_{y}} \left(r_{0} \Delta p + p_{0} \Delta r \right) \\
\Delta \dot{r} = \frac{1}{l_{z}} \sum_{j=1}^{4} \left[l_{G} \Delta \dot{\omega}_{j} + (2 k_{D} \omega_{j_{0}} + B_{a}) \Delta \omega_{j} \right] (-1)^{j}
\end{cases} \tag{8}$$

$$\left\{ \begin{array}{l} \Delta \dot{u} = v_0 \, \Delta r + r_0 \, \Delta v - w_0 \, \Delta q - q_0 \, \Delta w - g \, \cos \theta_0 \, \Delta \theta \\ \Delta \dot{v} = w_0 \, \Delta p + p_0 \, \Delta w - u_0 \, \Delta r - r_0 \, \Delta u + g \, \cos \phi_0 \, \cos \theta_0 \, \Delta \phi - g \, \sin \phi_0 \, \sin \theta_0 \, \Delta \theta \\ \Delta \dot{w} = u_0 \, \Delta q + q_0 \, \Delta u - v_0 \, \Delta p - p_0 \, \Delta v - g \, \sin \phi_0 \, \cos \theta_0 \, \Delta \phi - g \, \cos \phi_0 \, \sin \theta_0 \, \Delta \theta - \frac{1}{m} \sum_{j=1}^4 \, \dot{T}_{j_0} \, \Delta \omega_j \, \psi_0 \, \psi_0 \, \Delta \phi + \psi_0$$

Quadrirotor como Sistema MIMO

(a) Dinâmicas consideradas.

(b) Funções de transferência – sistema *MIMO*

Figura 9: Diagramas de bloco do quadrirotor.

MIMO - Desacoplamento de Saídas

Desprezando o efeito giroscópico dos rotores em (8), considerando $\omega_i = \omega_0$, definindo as constantes no modelo linearizado

$$\alpha = \frac{I_a \dot{T}_0}{I_x}, \ \beta = 2 k_D \omega_0 + B_a e \ \sigma = \frac{\dot{T}_0}{m}$$
 (10)

e considerando o ponto de linearização **zero** (pairar no ar), obtém-se as saídas desacopladas

$$\begin{cases}
\dot{p} = \alpha \left(\Delta \omega_{2} - \Delta \omega_{4}\right) \\
\dot{q} = \alpha \left(\Delta \omega_{3} - \Delta \omega_{1}\right) \\
\dot{r} = \frac{1}{l_{z}} \sum_{j=1}^{4} \left[l_{G} \Delta \dot{\omega}_{j} + (\beta + B_{a}) \Delta \omega_{j}\right] (-1)^{j}
\end{cases}
\begin{cases}
\dot{u} = -g \Delta \theta \\
\dot{v} = g \Delta \phi \\
\dot{w} = -\frac{\dot{\tau}_{0}}{m} \sum_{j=1}^{4} \Delta \omega_{j}
\end{cases}$$
(11)

MIMO – Matriz de Transferência

Aplicando a transformada de Laplace a (11), considerando a dinâmica dos rotores $\Delta \omega = G_{R_s} \Delta u_r$ em (6), definindo o vetor de saída $\vec{Y} = \begin{bmatrix} u & v & w & p & q & r \end{bmatrix}^T$ e de entrada¹ $\vec{U}_r = \begin{bmatrix} \Delta u_{r1} & \Delta u_{r2} & \Delta u_{r3} & \Delta u_{r4} \end{bmatrix}^T$, a matriz de transferência *MIMO* é

$$H_{i,j}(s) = G_{i,j}(s) \cdot G_{R_{s}}(s) = \begin{bmatrix} \frac{g \cdot \alpha}{s^{3}} & 0 & -\frac{g \cdot \alpha}{s^{3}} & 0\\ 0 & \frac{g \cdot \alpha}{s^{3}} & 0 & -\frac{g \cdot \alpha}{s^{3}} \\ -\frac{\sigma}{s} & -\frac{\sigma}{s} & -\frac{\sigma}{s} & -\frac{\sigma}{s} \\ 0 & \frac{\alpha}{s} & 0 & -\frac{\alpha}{s} \\ -\frac{l \cdot \alpha}{s} & 0 & \frac{\alpha}{s} & 0 \\ -\frac{l \cdot \alpha}{s} + \beta & \frac{l \cdot \alpha}{s} + \beta & \frac{l \cdot \alpha}{s} + \beta & \frac{l \cdot \alpha}{s} + \beta \\ \frac{l \cdot \alpha}{s} & \frac{l \cdot \alpha}{s} + \beta & \frac{l \cdot \alpha}{s} + \beta & \frac{l \cdot \alpha}{s} + \beta \end{bmatrix} \cdot G_{R_{s}}(s) (12)$$

¹Entradas acopladas.

MIMO - Desacoplamento de Entradas

Redefinindo o vetor de entrada como $\vec{U}_c = \begin{bmatrix} u_{c1} & u_{c2} & u_{c3} & u_{c4} \end{bmatrix}^T$ onde $u_{c1} = \Delta u_{r2} - \Delta u_{r4}, \ u_{c2} = \Delta u_{r3} - \Delta u_{r1}, \ u_{c3} = \Delta u_{r2} + \Delta u_{r4} - \Delta u_{r1} - \Delta u_{r3}$ e $u_{c4} = \sum_{j=1}^4 \Delta u_j$, um desacoplamento das entradas também é alcançado e o problema MIMO pode ser abordado como 6 problemas SISO:

$$H'_{i,j}(s) = \begin{bmatrix} 0 & -\frac{g \alpha K_s}{s^3(s+\lambda_s)} & 0 & 0\\ \frac{g \alpha K_s}{s^3(s+\lambda_s)} & 0 & 0 & 0\\ 0 & 0 & 0 & -\frac{\sigma K_s}{s(s+\lambda_s)}\\ \frac{\alpha K_s}{s(s+\lambda_s)} & 0 & 0 & 0\\ 0 & \frac{\alpha K_s}{s(s+\lambda_s)} & 0 & 0\\ 0 & 0 & \frac{(I_G s+\beta)K_s}{I_z s(s+\lambda_s)} & 0 \end{bmatrix}$$
(13)

com a matriz de desacoplamento W:

$$ec{U}_c = W \ ec{U}_r = \left[egin{array}{cccc} 0 & 1 & 0 & -1 \ -1 & 0 & 1 & 0 \ -1 & 1 & -1 & 1 \ 1 & 1 & 1 & 1 \end{array}
ight] ec{U}_r \ \Rightarrow \ ec{U}_r = W^{-1} \ ec{U}_c$$

Controle Clássico (PID) em Cascata

Figura 10: Esquema de controle em cascata

Malha	Controlador	Tempo de acomodação (s)
Taxa de subida Altitude Vel. angulares Orientação Translação Posição	$\begin{split} & K_{\boldsymbol{w}}(s) = -\frac{12(s+1)}{s} \\ & K_{\boldsymbol{h}}(s) = 2 \\ & \begin{bmatrix} K_{\boldsymbol{p}} & K_{\boldsymbol{q}} & K_{\boldsymbol{r}} \\ K_{\boldsymbol{\phi}} & K_{\boldsymbol{\theta}} & K_{\boldsymbol{\psi}} \end{bmatrix} = \begin{bmatrix} 0.66 & 0.66 & 22.4 \\ 2.85 & 2.85 & 7.3 \end{bmatrix} \\ & \begin{bmatrix} K_{\boldsymbol{u}} & K_{\boldsymbol{v}} \\ K_{\boldsymbol{x}} & K_{\boldsymbol{y}} \end{bmatrix} = \begin{bmatrix} -0.129 & -0.129 \\ 0.56 & 0.56 \end{bmatrix} \end{split}$	2.29 6.7 [0.34

Tabela 3: Ajuste dos controladores clássicos em cascata.

19/46

Controle PID - Teste no Sistema Linear

Figura 11: Desmpenho dos controladores clássicos em cascata no sistema linear

Controle PID – Teste "Extremo" no Sistema Não-Linear

Figura 12: Desmpenho dos controladores clássicos em cascata no sistema não-linear:

Controle PID – Desempenho Típico no Sistema Não-Linear

(c) Sinal de controle \vec{U}_r .

Figura 13: Desmpenho típico dos controladores clássicos em cascata no sistema não-linear com referências de velocidade e ruído.

Controle Ótimo LQ(R) – Definições

Exige a representação do sistema no espaço de estados

$$\dot{\vec{x}} = A \vec{x} + B \vec{u}
\vec{v} = C \vec{x} + D \vec{u}$$
(15)

A matriz de ganhos de realimentação é calculada como

$$K_{\mathsf{lqr}}(\infty) = R^{-1} B^{\mathsf{T}} S(\infty) \tag{16}$$

onde $S(\infty) = S$ é a solução da Equação Algébrica de Riccati (ARE)

$$0 = A^{T} S + S A - S B R^{-1} B^{T} S + Q$$
 (17)

e o critério ótimo de minimização, em um horizonte infinito, é definido por

$$J_{\infty} = \frac{1}{2} \int_{0}^{\infty} \left(\vec{x}^{T} Q \vec{x} + \vec{u} R \vec{u} \right) dt$$

Controle LQ – Seguimento de Referência

Para *regulagem* (trazer sistema para origem) temos o vetor de estados do sistema linearizado

$$\vec{x} = \begin{bmatrix} x & \Delta u & y & \Delta v & z & \Delta w & \Delta \phi & \Delta \rho & \Delta \theta & \Delta q & \psi & \Delta r & \Delta \omega_1 & \Delta \omega_2 & \Delta \omega_3 & \Delta \omega_4 \end{bmatrix}^T$$
(19)

Já para seguimento de referência, incrementamos este vetor com os estados da integral dos erros de controle dos 4 graus de liberdade

$$x_{17} = \int (X_{\text{ref}} - X) \Rightarrow \dot{x}_{17} = x_{1_{\text{ref}}} - x_{1}$$

$$x_{18} = \int (Y_{\text{ref}} - Y) \Rightarrow \dot{x}_{18} = x_{3_{\text{ref}}} - x_{3}$$

$$x_{19} = \int (Z_{\text{ref}} - Z) \Rightarrow \dot{x}_{19} = x_{5_{\text{ref}}} - x_{5}$$

$$x_{20} = \int (\psi_{\text{ref}} - \psi) \Rightarrow \dot{x}_{20} = x_{20_{\text{ref}}} - x_{20}$$
(20)

Controle LQ – Estrutura e Ajuste de Ganhos

Figura 14: Diagrama de blocos do controlador LQ.

Controle LQ – Desempenho no Sistema Não-Linear

Figura 15: Desmpenho do controle LQ no sistema não-linear.

Controle LQ – Instabilidade com Manobras Simultâneas

- (a) Pos. XY e altitude.
- (b) Orientação ⊖ Figura 16: Instabilidade no controle LQ com manobra simultânea em ψ , com ruído.

(a) Pos XY e altitude

(b) Orientação ⊖.

Figura 17: Controle LQ estável com manobra separada em ψ , sem ruído.

Controle Baseado em Sensibilidade Mista \mathcal{H}_{∞}

- Técnica de controle no domínio da frequência. Ojetivo: minimizar a norma \mathcal{H}_{∞} de alguma configuração do sistema SISO G(s);
- Caso MIMO: pico da amplificação $\vec{U}
 ightarrow \vec{Y}$ no gráfico de valores singulares da matriz H(s);
- Requisito: filtros $W_i(s)$ devem ser causais e FTs estáveis.

Figura 18: Configuração S/K S/T para cálculo do controle \mathcal{H}_{∞} de sensibilidade m

Controle Sens. Mista \mathcal{H}_{∞} – Critério e Filtros

• Algoritmo: encontrar $K(\omega)$ estabilizador que minimize

- $W_1(s) \rightarrow$ "modelagem" (shaping) da FT de sensibilidade S = 1/(1+H). Seguimento de referência: $w \rightarrow u$; rejeição de perturbação: $d \rightarrow y$. Filtro passa-baixa;
- $W_3(s) \rightarrow$ "modelagem" (shaping) da FT de sensibilidade complementar T = H/(1+H). Representa como a incerteza do modelo age em u. Incerteza cresce com a frequência \Rightarrow filtro passa-alta;
- $W_2(s)$ (opcional): penaliza ação de controle K S. Se K_∞ obtido exigir alta frequência \Rightarrow filtro passa alta;
- Ao fechar loop de F = S ou F = T com respectivos filtros, deve valer

$$\mid W_i F \mid \leq 1 \Rightarrow \mid F \mid \leq \frac{1}{\mid W_i \mid}$$

Controle Sens. Mista \mathcal{H}_{∞} – Cenário de Incerteza

- Acoplada câmera com $m_p=150\,\mathrm{g}$ alinhada em Z, distante $I_p=11.73\,\mathrm{cm}$ do $\mathrm{CG}\Rightarrow\Delta I_x=m_p\,I_p^2=17.6\cdot 10^{-3}\,\mathrm{kg\,m^2}=3\,I_{x_0}$, portanto $I_x'=I_y'=4\,I_{x_0}=23.5\cdot 10^{-3}\mathrm{kg\,m^2}$. Cenário possível já que $m_{\mathrm{max}}=1062\,\mathrm{g}$ enquanto com m_p a massa total é $m'=844\,\mathrm{g}$;
- Malhas u e v, p e q diretamente afetadas pois dependem de $\alpha = \frac{l_a \dot{T}_0}{l_x}$ em, respectivamente, $H'_{1,2}$ e $H'_{2,1}$, $H'_{4,1}$ and $H'_{5,2}$ em (13);
- Projeto de controlador robusto para malhas p e q deve ser suficiente para estabilização das respectivas malhas superiores u e v.

Instabilidade no PID Cascata com Variação em Parâmetro

Figura 19: Instabilidade gerada por variação paramétrica $\Delta l_x = 3 \, l_{x_0}$.

Controle Sens. Mista \mathcal{H}_{∞} – Templates p/ Filtros

• $W_1(s)$: M — magnitude em altas frequências; A_S — ganho estático em baixas frequências \Rightarrow erro em reg. permanente

$$W_1(s) = \frac{s/M_S + \omega_S}{s + A_S \,\omega_S} \tag{24}$$

• $W_3(s)$: de acordo com \mathbb{E} – erro de modelagem

$$\mathbb{E}(s) = \frac{H_{\text{var}(s)} - H_{\text{nom}}(s)}{H_{\text{nom}}(s)}$$
 (25)

 r_0 – incerteza em reg. permanente; 1/ au – incerteza atinge 100%; r_∞ – incerteza em altas frequências. r_∞ muito alto $\Rightarrow W_3$ perde causalidade

$$W_3(s) = \frac{\tau \, s + r_0}{(\tau/r_\infty) \, s + 1} \tag{26}$$

Obs.: $W_3(s)$ deve modelar incertezas paramétricas e de modelagem (dinâmica desconhecida).

Controle Sens. Mista \mathcal{H}_{∞} – Tuning

Controle Sens. Mista \mathcal{H}_{∞} – Robustez Alcançada

(c) Sinal de controle \vec{U}_r .

Figura 21: Sis. malha fechada robusto com $K(MS-\mathcal{H}_{\infty})$, $\Delta I_x=3\,I_{x_0}$.

Controle Sens. Mista \mathcal{H}_{∞} – Observações

- Sempre haverá $e(\infty)>0$, por menor que seja. Exceção: integrador em H(s);
- Funções em Matlab: mixsyn (algoritmo) e sigma (graficar $\sigma(H(j\omega))$;
- Controladores $K_{p_{\infty}}$ e $K_{q_{\infty}}$ obtidos: 4ª ordem;
- Problema: alta frequência exigida do atuador;
- Solução: penalizar controle com $W_2=0.1$ (ordem do controlador foi mantida). Com $W_2=1$ a robustez é perdida neste cenário;

(b) Com $W_2 = 0.1$.

Figura 22: Espectro de frequência da potência de u_n .

35/46

Controle com Síntese μ e Iterações DK

ullet Incertezas de parâmetro e modelagem são "extraídas" da planta e representadas na matriz Δ , bloco-diagonal com

Figura 23: Configurações da planta com incerteza Δ .

• Técnica combina síntese de controlador \mathcal{H}_{∞} com análise do valor singular estruturado μ .

Controle μ -DK – Estabilidade Robusta

Condição de estabilidade robusta (RS):

$$\bar{\sigma}\left(M(j\omega)\right) < 1, \, \forall \omega$$
 (28)

Figura 24: Configuração para algoritmo de síntese μ -DK.

Agora, com $D = \text{diag}\{d_i I_i\}$, temos uma condição menos conservativa de RS:

$$\min_{D(\omega)\in\mathcal{D}}\bar{\sigma}\left(D(\omega)M(j\omega)D(\omega)^{-1}\right)<1,\,\forall\omega$$

Controle μ -DK – Algoritmo

O valor singular estruturado de M é

$$\mu(M) \triangleq \frac{1}{\min\{k_m \mid \det(I - k_m M \Delta) = 0 \text{ para } \Delta \text{ estruturada}, \bar{\sigma}(\Delta) \leq 1\}}$$
 (30)

Algoritmo:

- Passo **K**: Calcular um controlador \mathcal{H}_{∞} para o problema redimensionado (scaled) $\min_{K} \| D N(K) D^{-1} \|_{\infty}$ com D(s) fixo;
- ② Passo **D**: Encontrar D(jw) que minimize, em cada frequência, $\bar{\sigma}(D N D^{-1}(jw))$ com N fixo;
- **3** Ajustar a magnitude de cada elemento de $D(j\omega)$ para uma FT D(s) de mínima fase e estável. Voltar ao passo 1.

Condições de parada: desempenho desejado é alcançado ou $\|\cdot\|_{\infty}$ não mais decresce. Obs.: controlador sintetizado pode ser de alta ordem \Rightarrow redução de ordem poder ser necessária.

Controle μ -DK – Cenário de Incerteza e Instabilidade

- Inércia do rotor varia positivamente como $I_{G_{nom}} \le I_G \le 4I_{G_{nom}}$;
- Malhas de posição XY e orientação ψ apenas levemente afetadas (compensação entre rotores da variação da dinâmica);
- Controle de h fortemente afetado. Com $l_G' = 3.1 l_{G_{nom}}$ o sistema não-linear com PID em cascata se torna instável.

Figura 25: Instabilidade gerada com $I'_{G} = 3.1I_{Gnom}$.

Controle μ -DK – Síntese do Controlador

Estratégia: calcular apenas controlador robusto p/ taxa de subida K_w , aproveitando a arquitetura em cascata \Rightarrow estabilização de h. Para isso tomamos $\frac{w}{\omega_{\text{tot}}} = G_w(s) = -\frac{\dot{T}_0}{s\,m}$ como $G_{3,j}$ em (12), com $\omega_{\text{tot}} = \sum_{i=1}^4 \omega_i$.

Figura 26: Arranjo da planta incerta P_{unc} para síntese do controlador μ -DK.

Controle μ -DK – *Tuning* dos Filtros

- W_p : filtro de desempenho, canal $w_r \to z$. Neste caso $e = w_r w \Rightarrow$ filtro passa-baixa (template 24) para minimizar erro em regime (não há integrador). Menor $A_S \Rightarrow$ menor e_∞ ; maior $\omega_S \Rightarrow$ mais rápida ação de controle; $M_S \Rightarrow$ ganho em alta frequência e pico em S;
- W_{l_j} : incerteza paramétrica dos rotores; ajuste baseado em erro de modelagem $\mathbb E$ (25), que aumenta com frequência, portanto filtro passa-alta.

Figura 27: Ajuste dos filtros para síntese μ -DK.

Controle µ-DK – Resultados no Cenário Nominal

Figura 28: Desempenho do controlador K_w calculado com μ -DK para $I_{G_{nom}}$.

Controle μ -DK – Resultados no Cenário Incerto

Figura 29: Desempenho do controlador K_w calculado com μ -DK para $I_G'=3.1I_{Gn}$

Controle μ -DK – Observações

- Funções Matlab: dksyn (algoritmo), ultidyn (incerteza Δ);
- Controlador sintetizado: 28ª ordem! Implementável, viável? Sem garantias de *RS* com redução de ordem...
- RS alcançada, mas desempenho em regime nominal deixou a desejar. Seria melhor se não houvesse saturação frequente do controle? Sugestão: usar rotores mais potentes;
- Por outro lado, exigiu-se demais do controlador com incerteza $I_{Gnom} \le I_G \le 4I_{Gnom}$ (difícil instabilizar PID em cascata!);
- Melhores resultados possíveis, e.g., com incerteza multiplicativa na saída, e/ou integrando malhas de w e h.

Děkuji vám za pozornost!

Bibliografia 1

S. Bouabdallah, P. Murrieri e R. Siegwart

Design and control of an indoor micro quadrotor.

Proceedings of IEEE International Conference on Robotics and Automation, 2004. ISBN 0780382323

M. De Lellis C. de Oliveira

Modeling, Identification and Control of a Quadrotor Aircraft.

Czech Technical University in Prague, Master's thesis.

J. Dvořák

Micro Quadrotor: Design, Modelling, Identification and Control.

Czech Technical University in Prague, Master's thesis.

G. V. Raffo

Robust Control Strategies for a QuadRotor Helicopter. An Underactuated Mechanical System. Universidad de Sevilla, Ph.D. thesis, 2011.

S. Skogestad, I. Postlethwaite

Multivariable Feedback Control Analysis and Design.

John Wiley and Sons, 2ª edição, 2005.

B I Stevens e F I Lewis

Aircraft Control and Simulation.

John Wiley and Sons, 2ª edição, 2003.

