

Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León

MATEMÁTICAS II

EJERCICIO

Nº Páginas: 2

INDICACIONES: 1.- OPTATIVIDAD: El alumno deberá escoger una de las dos opciones, pudiendo desarrollar los cuatro ejercicios de la misma en el orden que desee.

2.- CALCULADORA: Se permitirá el uso de **calculadoras no programables** (que no admitan memoria para texto ni representaciones gráficas).

CRITERIOS GENERALES DE EVALUACIÓN: Cada ejercicio se puntuará sobre un máximo de 2,5 puntos. Se observarán fundamentalmente los siguientes aspectos: Correcta utilización de los conceptos, definiciones y propiedades relacionadas con la naturaleza de la situación que se trata de resolver. Justificaciones teóricas que se aporten para el desarrollo de las respuestas. Claridad y coherencia en la exposición. Precisión en los cálculos y en las notaciones. Deben figurar explícitamente las operaciones no triviales, de modo que puedan reconstruirse la argumentación lógica y los cálculos.

OPCIÓN A

E1.- a) Resolver la siguiente ecuación matricial $X \cdot A = B - C$, siendo $A = \begin{pmatrix} 5 & 2 \\ 3 & 1 \end{pmatrix}$,

$$B = \begin{pmatrix} 2 & 1 \\ 3 & -2 \end{pmatrix}$$
 y $C = \begin{pmatrix} 1 & -1 \\ 1 & 2 \end{pmatrix}$. (1,5 puntos)

b) Sean F_1, F_2 y F_3 las filas de una matriz cuadrada de orden 3 cuyo determinante vale 5. Calcular razonadamente el valor del determinante de la matriz cuyas filas son respectivamente $3F_1 - F_3, F_2$, y $2F_3$. (1 punto)

E2.- Sea el punto A(1,1,3) y la recta de ecuación $r = \begin{cases} x - y + 2 = 0 \\ z = 2 \end{cases}$.

- a) Calcular el plano perpendicular a la recta r que pase por A. (1 punto)
- b) Calcular la distancia del punto A a la recta r. (1,5 puntos)

E3.- Sea la función $f(x) = x^2 e^{-x}$. Determinar sus intervalos de crecimiento y decrecimiento, extremos relativos, intervalos de concavidad y convexidad, puntos de inflexión y asíntotas. Esbozar su gráfica. (2,5 puntos)

E4.- a) Hallar el punto en el que la recta tangente a la gráfica de la función $f(x) = x^2 - x + 4$ es paralela a la recta de ecuación y = 5x - 7. (1 punto)

b) Calcular el área delimitada por la parábola de ecuación $y = 2x^2$ y la recta y = 2x + 4.

(1,5 puntos)

OPCIÓN B

E1.- Sea el sistema de ecuaciones lineales
$$\begin{cases} mx - y = 1 \\ -x + my = 1 - 2m \end{cases}$$

a) Discutir el sistema según los valores de m.

(1,5 puntos)

b) Hallar los valores de m para los que el sistema tenga alguna solución en la que x = 2.

(1 punto)

- **E2.-** a) Dados el punto A(3,5,1), la recta $r = \frac{x-1}{2} = y+2=z+1$ y el plano $\pi = 3x-2y+z+5=0$, determinar el punto B de π tal que la recta AB sea paralela a la recta r. (1,5 puntos)
- b) Hallar las coordenadas de un vector de módulo 1 que sea perpendicular a los vectores \overrightarrow{PQ} y \overrightarrow{PR} , siendo P(1,3,-1), Q(2,0,1) y R(-1,1,0). (1 punto)
- **E3.-** Se desea construir un depósito de chapa (en forma de prisma recto, abierto y de base cuadrada) con una capacidad de 32.000 litros. ¿Cuáles han de ser las dimensiones del depósito para que se precise la menor cantidad de chapa posible en su construcción?

(2,5 puntos)

- **E4.-** a) Enunciar e interpretar geométricamente el Teorema de Rolle. (1 punto)
- b) Hallar la primitiva de $f(x) = x^2 \ln x$ cuya gráfica pasa por el punto (1,2). (1,5 puntos)