Ejercicios de Ampliación de Probabilidad

Paco Mora Caselles

21 de febrero de 2022

CAPÍTULO 1

Relación 1

Ejercicio 1.

$$C = \{(x, y) \in \mathbb{R}^2 : 0 < x < 1, 0 < y < 1, y < (1 - x)^2\}$$

Dejamos por ahora f en función de k, más tarde calculamos su valor:

$$f(x,y) = \left\{ \begin{array}{ll} k & (x,y) \in C \\ 0 & (x,y) \not\in C \end{array} \right.$$

Para $x \in (0,1)$:

$$f_1(x) = \int f(x,y)dy = \int_0^{(1-x)^2} kdy = k(1-x)^2$$

 $Entonces\ tenemos:$

$$f_1(x) = \begin{cases} k(1-x)^2 & x \in (0,1) \\ 0 & x \notin (0,1) \end{cases}$$

Pasamos ahora a $f_2(y)$, cuando $y \in (0,1)$:

$$f_2(y) = \int f(x,y)dx = \int_0^{1-y^{1/2}} = k(1-y)^{1/2}$$

$$f_2(y) = \begin{cases} k(1 - \sqrt{y}) & y \in (0, 1) \\ 0 & y \notin (0, 1) \end{cases}$$

Calculamos ahora $E(X^n(1-X)^m)$ usamos $f_1(x)$:

$$E(X^{n}(1-X)^{m}) = \int x^{n}(1-x)^{m}f_{1}(x)dx = \int_{0}^{1} x^{n}(1-x)^{m}k(1-x)^{2}dx = k \int_{0}^{1} x^{n}(1-x)^{m+2} =$$

$$= kB(n+1, m+3) = k \frac{\Gamma(n+1)\Gamma(m+3)}{\Gamma(n+m+4)} = k \frac{n!(m+2)!}{(n+m+3)!}$$

Los momentos de orden n respecto del origen, la esperanza y la varianza de X las podemos calcular con esta expresión. Para los primeros casos tomamos m=0 y para la varianza podemos usar que $Var(X)=E(X^2)-E(X)^2$

$$k = 3$$
 $E(X) = \frac{1}{4}$ $E(X^2) = \frac{1}{10}$ $Var(X) = \frac{3}{80}$

Calculamos $f_{2|1}(y|x)$, si $x \in (0,1)$:

$$f_{2|1}(y|x) = \frac{f(x,y)}{f_1(x)} = \begin{cases} \frac{3}{3(1-x)^2} = \frac{1}{(1-x)^2} & y \in (0, (1-x)^2) \\ 0 & y \notin (0, (1-x)^2) \end{cases}$$

Podemos calcular ahora $f_{2|1}(y|x=1/2)$:

$$f_{2|1}(y|1/2) = \begin{cases} 4 & y \in (0, \frac{1}{4}) \\ 0 & y \notin (0, \frac{1}{4}) \end{cases}$$

Para calcular $F\left(\frac{1}{4}, \frac{9}{16}\right)$ nos apoyamos en la figura para saber que basta con calcular el área del rectángulo y multiplicar por k:

$$F\left(\frac{1}{4}, \frac{9}{16}\right) = 3\frac{1}{4} \cdot \frac{9}{16} = \frac{3^3}{2^6}$$

Para $F\left(\frac{1}{2}, \frac{9}{16}\right) = F\left(\frac{1}{4}, \frac{9}{16}\right) + 3 \cdot Area\ T$, siendo T la intersección con C. Sabemos entonces que:

$$\int_{1/4}^{1/2} (1-x)^2 dx = \int_{1/4}^{1/2} (x^2 - 2x + 1) dx = \frac{x^3}{3} - x^2 + x \Big|_{1/4}^{1/2} = \frac{19}{2^6 3}$$
$$F\left(\frac{1}{2}, \frac{9}{16}\right) = \frac{3^3}{2^6} + 3\frac{19}{2^6 3} = \frac{23}{32}$$

Tenemos que calcular ahora la recta de regresión de Y respecto de X:

$$y - \mu_y = \frac{\sigma_{xy}}{\sigma_x^2}(x - \mu_x)$$

$$\mu_y = E(Y) = \int_0^1 y 3(1 - y^{1/2}) dy = 3 \int_0^1 (y - y^{3/2}) = \frac{3}{10}$$

$$E(XY) = \int_0^1 \int_0^{(1-x)^2} 3xy dy dx = 3 \int_0^1 x \left[\frac{y^2}{2}\right]_0^{(1-x)^2} d = \frac{3}{2} \int_0^1 x (1 - x)^4 dx =$$

$$= B(2, 5) = \frac{3}{2} \frac{\Gamma(2)\Gamma(5)}{\Gamma(7)} = \frac{3}{2} \frac{1!4!}{6!} = \frac{1}{20}$$

Recordemos que $\mu_X = E(X) = \frac{1}{4}$, entonces:

$$\sigma_{XY}Cov(X,Y) = \frac{1}{2^2 \cdot 5} - \frac{1}{2^2} \cdot \frac{3}{2 \cdot 5} = \frac{2-3}{2^3 \cdot 5} = -\frac{1}{2^3 \cdot 5}$$

Podemos expresar ya la recta de regresión (recordando que $\sigma_X = \frac{3}{80}$):

$$y - \frac{3}{10} = \frac{-1/(5 \cdot 2^3)}{3/(2^4 \cdot 5)} (x - \frac{1}{4})$$
$$y = -\frac{2}{3}x + \frac{7}{15}$$

Calculamos ahora $E(Y|X=x)=m_{2|1}(x)$:

$$E(Y|X=x) = \int y f_{2|1}(y|x) dy = \int_{0}^{(1-x)^{2}} y \frac{1}{(1-x)^{2}} dy =$$

$$= \frac{1}{(1-x)^{2}} \frac{y^{2}}{2} \Big|_{0}^{(1-x)^{2}} = \frac{1}{(1-x)^{2}} \frac{(1-x)^{4}}{2} = \frac{(1-x)^{2}}{2}$$

Ejercicio 2.

$$E(X) = 2$$
, $Var(X) = 3$ X $sim\'etrica$

$$\alpha_3 = E(X^3) = E((X - 2 + 2)^3) = E((X - 2)^3 + 3(X - 2)^2 2 + 3(X - 2)^2 2 + 2^3) =$$

$$= E((X - 2)^3) + 6E((X - 2)^2) + 12E(X - 2) + E(2^3) = 0 + 6Var(X) + 0 + 2^3 = 6 \cdot 3 + 8 = 26$$

Ejercicio 3.

El número de de posibilidades totales es claramente $\binom{N}{n}$, la distribución de probabilidad es entonces:

$$P(X_1 = r_1, X_2 = r_2, X_3 = r_3) = \frac{\binom{n_1}{r_1} \binom{n_2}{r_2} \binom{n_3}{r_3}}{\binom{N}{n}}$$

Claramente necesitamos $n \le N$, $r_1 + r_2 + r_3 = n$

Calculamos ahora $\alpha_{(3)}$:

$$E(X_1^{(3)}) = E(X_1(X_1 - 1)(X_1 - 2)) = \sum_{\substack{r_1 + r_2 + r_3 = r}} r_1(r_1 - 1)(r_1 - 2) \frac{\binom{n_1}{r_1}\binom{n_2}{r_2}\binom{n_3}{r_3}}{\binom{n_1}{n_2}}$$

Nos fijamos que:

$$r_1(r_1-1)(r_1-2)\binom{N_1}{r_1} = r_1(r_1-1)(r_1-2)\frac{N_1^{(r_1)}}{r_1(r_1-1)(r_1-2)\cdots 2\cdot 1} = \frac{N_1^{(r_1)}}{(r_1-3)!} = N_1(N_1-1)(N_1-2)\frac{(N_1-3)^{(r_1-3)}}{(r_1-3)!} = N_1(N_1-1)(N_1-2)\binom{N_1-3}{r_1-3}$$

Entonces volviendo a la igualdad anterior:

$$P(X_1 = r_1) = \sum_{r_1 + r_2 + r_3 = n} N_1(N_1 - 1)(N_1 - 2) \frac{\binom{N_1 - 3}{r_1 - 3} \binom{N_2}{r_2} \binom{N_3}{r_3}}{\binom{N}{n}} = N_1(N_1 - 1)(N_1 - 2) \sum_{r_1 + r_2 + r_3 = n} \frac{\binom{N_1 - 3}{r_1 - 3} \binom{N_2}{r_2} \binom{N_3}{r_3}}{\binom{N}{n}} = N_1(N_1 - 1)(N_1 - 2) \frac{\binom{N - 3}{n - 3}}{\binom{N}{n}} = N_1(N_1 - 1)(N_1 - 2) \frac{\binom{N - 3}{n - 3}}{\binom{N}{n}} = N_1(N_1 - 1)(N_2 - 2) \frac{(N_1 - 3)(n - 3)n!}{(n - 3)!N^{(n)}} = \frac{N_1^{(3)}n^{(3)}}{N^{(3)}}$$

Ejercicio 4.

Aparado a)

Observemos primero que no hay dos pares de la forma (a,b), (a,c) de forma que ambos tengan probabilidad no nula. Igual forma, no hay pares (b,a), (c,a) tales que se tomen ambos valores con probabilidad no nula. Por tanto, para ver la distribución marginal de X podemos omitir los valores que toma Y:

$$P(X = 0) = P(X = 1) = P(X = 2) = \frac{1}{3}$$

De forma análoga para la v.a. Y:

$$P(Y = 1) = P(Y = 2) = P(Y = 3) = \frac{1}{3}$$

Las esperanzas entonces de estas vvaa son:

$$E(X) = (0+1+2) \cdot \frac{1}{3} = 1$$

$$E(Y) = (1+2+3) \cdot \frac{1}{3} = 2$$

Hacemos también los cálculos necesarios para hacer la recta de regresión:

$$E(XY) = (0 \cdot 1 + 1 \cdot 2 + 2 \cdot 3)\frac{1}{3} = \frac{8}{3}$$

$$Cov(X,Y) = E(XY) - E(X)E(Y) = \frac{8}{3} * 2 = \frac{2}{3}$$

$$E(X^2) = (0 + 1 + 4)\frac{1}{3} = \frac{5}{3}$$

$$Var(X) = E(X^2) - E(X)^2 = \frac{5}{3} - 1 = \frac{2}{3}$$

La recta de regresión de Y sobre X es entonces:

$$y-2 = \frac{\frac{2}{3}}{\frac{2}{3}}(x-1) \implies y-2 = x-1 \implies y = x+1$$

Calculamos ahora el coeficiente de correlación para poder ver $Var(Y-X^*)$:

$$\rho = \frac{\sigma_{XY}}{\sigma_X \sigma_Y} = \frac{\frac{2}{3}}{\sqrt{\frac{2}{3}\sqrt{\frac{2}{3}}}} = 1$$

Este valor de ρ nos indica que X y Y son dependientes linealmente. Calculamos ahora $Var(Y-X^*)$

$$Var(Y - X^*) = \sigma_Y^2 (1 - \rho^2) = 0$$

Aparado b)

Para calcular las vvaa marginales solo tenemos que sumar los elementos de la misma fila o columna. Por ejemplo:

$$P(X = 0) = \frac{1}{3} + \frac{1}{6} + \frac{1}{9} = \frac{11}{18}$$

Obtenemos así:

$$P(X = 0) = \frac{11}{18}$$
 $P(X = 1) = \frac{5}{18}$ $P(X = 2) = \frac{2}{18}$
 $P(Y = 0) = \frac{11}{18}$ $P(Y = 1) = \frac{5}{18}$ $P(Y = 2) = \frac{2}{18}$

También podemos obtener $E(X)=E(Y)=\frac{1}{2},\ Var(X),Var(Y)=\frac{17}{36}\ y\ Cov(X,Y)=-\frac{5}{36}.$

Entonces la recta de regresión de X sobre Y es:

$$Y - \mu_Y = \frac{\sigma_{XY}}{\sigma_X^2} (x - \mu_X)$$
$$y - \frac{1}{2} = \frac{-\frac{5}{36}}{\frac{17}{36}} \left(x - \frac{1}{2} \right)$$
$$y = -\frac{5}{17} x + \frac{11}{17}$$

Como las esperanzas y las varianzas son iguales, obtenemos que el cálculo de la recta de regresión de Y sobre X es igual:

$$x = -\frac{5}{17}y + \frac{11}{17}$$

Calcularemos ahora $Var(Y - X^*)$:

$$Var(Y - X^*) = \sigma_Y^2 (1 - \rho^2) = \frac{17}{36} \left(1 - \frac{25/36^2}{17^2/36} \right) = \frac{17}{36} \left(\frac{17^2 - 25}{17^2} \right) = \frac{11}{3 \cdot 17}$$

 $Para\ la\ varianza\ residual\ de\ X\ sobre\ Y,\ vemos\ que\ es\ igual\ porque\ coinciden\ sus\ esperanzas\ y\ sus\ varianzas.$

Relación 2

Ejercicio 1.

Vemos en primer lugar cómo es el recinto del ejercicio:

$$\alpha_{n.m} = E(X^n Y^m) = \int x^n y^m \cdot \frac{1}{y} = \int_0^1 \int_0^y = x^n x^{m-1} dx dy =$$

$$= \int_0^1 y^{m-1} \left(\frac{x^{n+1}}{n+1} \right) \Big|_0^y dy = \frac{1}{n+1} \int_0^1 y^{m-1} y^{n+1} dy = \frac{1}{n+1} \frac{1}{m+n+1}$$

Con este resultado podemos obtener los valores:

$$E(Y) = \frac{1}{2}$$
 $E(Y^3) = \frac{1}{3}$ $E(XY) = \frac{1}{6}$ $E(X) = \frac{1}{4}$

Entonces tenemos que $Var(Y) = \frac{1}{3} - \frac{1}{4} = \frac{1}{12} \ y \ Cov(X,Y) = \frac{1}{6} - \frac{1}{4} \cdot \frac{1}{2} = \frac{1}{24}$

Para calcular la recta de regresión obtenemos primero:

$$\beta_{X/Y} = \frac{\sigma_{XY}}{\sigma_Y^2} = \frac{1/24}{1/12} = \frac{1}{2}$$

Y la recta de regresión que nos piden queda:

$$x - \frac{1}{4} = \frac{1}{2} \left(y - \frac{1}{2} \right)$$
$$x = \frac{1}{2} y$$

Calcularemos ahora la curva de regresión de X sobre Y:

$$x = m_{1|2}(y)$$
 $m_{1|2}(y) = E(X|Y = y) = \int x f_{1|2}(x|y) dx$

Entonces, para los valores de y para los que $f_2(y) > 0$ tendremos:

$$f_{1|2}(x|y) = \frac{f(x,y)}{f_2(y)}$$

Calcularemos ahora $f_2(y)$:

Si
$$y \in (0,1)$$
: $f_2(y) = \int f(x,y)dx = \int_0^y \frac{1}{y}dx = \frac{1}{y}x \Big|_0^1 = 1$

$$f_2(y) = I_{(0,1)}(y)$$

Volvemos ahora al cálculo de $f_{1|2}(x|y)$. Dado $y \in (0,1)$:

$$f_{1|2}(x|y) = \frac{1/y}{1} = \frac{1}{y}$$
 $x \in (0, y)$

$$f_{1|2}(x|y) = 0 \qquad x \not\in (0,y)$$

Podemos calcular ahora $m_{1|2}(y)$:

$$E(X|Y=y) = \int_{0}^{y} x \frac{1}{y} dx = \frac{1}{y} \frac{x^{2}}{2} \Big|_{0}^{y} = \frac{y}{2}$$

Entonces la curva de regresión es $x = \frac{y}{2}$. Notemos que es una recta, en este caso **necesariamente** coincidirá con la recta de regresión. Entonces, si hubiéramos calculado primero la curva de regresión, no tendríamos que calcular la recta porque sabemos que coincidiría.

Ejercicio 2.

$$f(t_1, t_2, t_3, t_4) = \frac{1}{4}(t_1 + t_2 + t_3 + t_1 t_2 t_3) = E(t_1^{X_1} t_2^{X_2} t_3^{X_3}) = \sum_{i_1, i_2, i_3} t_1^{i_1} t_2^{i_2} t_3^{i_3}$$

De este último término, en cada sumando, $p_{i_1i_2i_3}$ representa $P(X_1=i_1,X_2=i_2,X_3=i_3)$

Viendo el valor de f, sabemos que la vvaa (X_1, X_2, X_3) toma los valores (1,0,0), (0,1,0), (0,0,1), (1,1,1) con probabilidad de $\frac{1}{4}$ en cada una de ellas.

Vamos a comprobar si X_1, X_2 son independientes. Para ello, vemos si $f_{12}(t_1, t_2) = f_1(t_1) \cdot f_2(t_2)$. Estas funciones no las conocemos, pero como sabemos que f se puede representar como $E(t_1^{X_1}t_2^{X_2}t_3^{X_3})$, si hacemos $t_3 = 1$:

$$f_{12}(t_1, t_2) = E(t_1^{X_1}, t_2^{X_2}) = E(t_1^{X_1} t_2^{X_2} 1^{X_3}) = \frac{1}{4}(t_1 + t_2 + 1 + t_1 t_2)$$

De igual forma podemos hacer:

$$f_1(t_1) = E(t_1^{X_1}) = E(t_1^{X_1} 1^{X_2} 1^{X_3}) = \frac{1}{4}(t_1 + 1 + 1 + t_1) = \frac{1 + t_1}{2}$$

$$f_2(t_2) = \frac{1 + t_2}{2}$$

Para comprobar la independencia solo tenemos que ver si $f_{12} = f_1 f_2$:

$$f_1 f_2 = \frac{1}{2} (1 + t_1) \cdot \frac{1}{2} (1 + t_2) = \frac{1}{4} (t_1 + t_2 + 1 + t_1 t_2) = f_{12}$$

Luego X_1, X_2 son independientes y de forma análoga: X_2, X_3 son independientes y X_2, X_3 son independientes. Es decir, son independientes dos a dos.

Para comprobar que son independientes, tendremos que ver si $f(t_1, t_2, t_3) = f_1(t_1) \cdot f_2(t_2) \cdot f_3(t_3)$:

$$f_1 f_2 f_3 = \frac{1}{2^3} (1 + t_1)(1 + t_2)(1 + t_3) = \frac{1}{2^3} (1 + t_1 + t_2 + t_1 t_2)(1 + t_3) =$$

$$= \frac{1}{2^3} (1 + t_1 + t_2 + t_1 t_2 + t_3 + t_1 t_3 + t_2 t_3 + t_1 t_2 t_3) \neq f(t_1, t_2, t_3)$$

Por tanto, las vvaa no son independientes.

Para calcular el apartado c), haremos las parciales:

$$\frac{\partial f}{\partial t_1} = \frac{1}{4}(t_1 + t_2 t_3)$$

$$\frac{\partial f}{\partial t_1}(1,1,1) = E(X_1) = \frac{1}{2}$$

Por la simetría de f, $E(X_2) = E(X_3) = \frac{1}{2}$. Vamos ahora con las varianzas, que de nuevo bastará con calcular la de X_1 :

$$\frac{\partial^2 f}{\partial t_1^2} = E(X_1^{(2)}) = E(X_1^2 - X_1) = 0 = E(X_1^2) - E(X_1) \implies E(X_1^2) = \frac{1}{2}$$

$$Var(X_2) = Var(X_3) = Var(X_1) = E(X_1^2) - E(X_1)^2 = \frac{1}{2} - \frac{1}{4} = \frac{1}{4}$$

El cálculo de la covarianza es rápido, como X_1, X_2, X_3 son independientes **por parejas**, tenemos que:

$$Cov(X_1, X_2) = Cov(X_1, X_3) = Cov(X_2, X_3) = 0$$

En el caso general, es decir, si no fueran independientes:

$$\frac{\partial f}{\partial t_1 \partial t_2} = \frac{1}{4} t_3$$

$$\frac{\partial f}{\partial t_1 \partial t_2} (1, 1) = E(X_1 X_2) = \frac{1}{4}$$

$$Cov(X_1, X_2) = E(X_1 X_2) - E(X_1) E(X_2) = \frac{1}{4} - \frac{1}{4} = 0$$

Anotación importante)

Es importante notar las diferencias entre X + Y + Z y (X, Y, Z):

Sean X_1, X_2, X_3 independientes con funciones:

$$f_1(t) = \frac{1}{2}(1+t)$$

$$f_2(t) = \frac{1}{3}(1+t+t^2)$$

$$f_3(t) = \frac{1}{2}(1+t)$$

Entonces la vvaa $Z = X_1 + X_2 + X_3$ es unidimensional, y además $f_Z(t) = \frac{1}{2}(1+t)\frac{1}{3}(1+t+t^2)\frac{1}{2}(1+t)$ con un solo parámetro.

Si definimos ahora la vvaa $X = (X_1, X_2, X_3)$, es de tres dimensiones con función generatriz:

$$f_X(t_1, t_2, t_3) = \frac{1}{2}(1 + t_1)\frac{1}{3}(1 + t_2 + t_2^2)\frac{1}{2}(1 + t_3)$$

Ejercicio 3.

Sabemos que, para X, Y, Z tenemos:

$$f(x) = \begin{cases} 1 & x \in (0,1) \\ 0 & x \notin (0,1) \end{cases}$$

Entonces E(X) = E(Y) = E(Z) es:

$$\int_{0}^{1} x dx = \frac{x^{2}}{2} \bigg|_{0}^{1} = \frac{1}{2}$$

$$E(X^{2}) = E(Y^{2}) = E(Z^{2}) = \int_{0}^{1} x^{2} = \frac{s^{3}}{3} \Big|_{0}^{1} = \frac{1}{3}$$
$$Var(X) = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}$$

Entonces:

$$E(U) = a\frac{1}{2} + b\frac{1}{2} + c\frac{1}{2} = \frac{a+b+c}{2}$$

Como las variables son independientes:

$$Var(U) = Var(aX) + Var(bY) + Var(cZ) = (a^2 + b^2 + c^2) = \frac{1}{12}$$

Nos piden también los momentos de orden 3 y 4 respecto de la media. Utilizamos el subapartado de **Momentos de sumas**. Siguiendo un procedimiento como el de este subapartado llegamos a que solo necesitamos expresiones como $\mu_3(aX)=E\left(aX-\frac{a}{2}\right)=0$ ya que estas vvaa son simétricas respecto de su media. En definitiva:

$$E((U - E(U))^3) = \mu_3(aX) + \mu_3(bY) + \mu_3(cZ) = a\mu_3(X) + b\mu_3(Y) + c\mu_3(Z) = 0$$

$$\mu_4(U) = \mu_4(aX) + \mu_4(bY) + \mu_4(cZ) + 6(\mu_2(aX)\mu_2(bY) + \mu_2(aX)\mu_2(cZ) + \mu_2(bY)\mu_2(cZ))$$

Vamos a hacer el cálculo para un n general de:

$$\mu_n(X) = E\left(\left(X - \frac{1}{2}\right)^2\right) = \int_0^1 \left(x - \frac{1}{2}\right)^n dx = \frac{(x - 1/2)^{n+1}}{n+1} \Big|_0^1 = \frac{(1/2)^{n+1}}{n+1} - \frac{(-1/2)^{n+1}}{n+1} = \frac{1}{(n+1)2^{n+1}} (1 + (-1)^n)$$

Luego:

$$\mu_4(X) = \frac{1}{5 \cdot 2^4}$$

$$\mu_2(X) = \frac{1}{12}$$
 (como ya habíamos calculado antes)

Volviendo ahora a $\mu_4(U)$:

$$\mu_4(U) = (a^4 + b^4 + c^4) \frac{1}{5 \cdot 2^4} + 6(a^2b^2 + a^2c^2 + b^2c^2) \frac{1}{3^22^4}$$

Calculamos ahora la función generatriz de momentos (recordemos que la función generatriz no está definida porque X,Y,Z toman valores no enteros). Usaremos la independencia de las vvaa:

$$E(e^{tU}) = E(e^{atX})E(e^{btY})E(e^{ctZ})$$

Tendremos que calcular la función generatriz de momentos de cada vvaa (son todas iguales):

$$E(e^{tX}) = \int_{0}^{1} e^{tx} dx = \frac{e^{tx}}{t} \Big|_{0}^{1} = \frac{e^{t} - 1}{t}$$

En el caso de aX (análogamente para bY, cZ):

$$g_{aX}(t) = E(e^{taX}) = \frac{e^{at} - 1}{at}$$

Entonces volviendo a la vvaa U:

$$g_U(t) = \frac{e^{at} - 1}{at} \cdot \frac{e^{bt} - 1}{bt} \cdot \frac{e^{ct} - 1}{ct}$$

La función característica de U será entonces:

$$\varphi_U(t) = \frac{(e^{iat} - 1)(e^{ibt} - 1)(e^{ict} - 1)}{i \cdot a \cdot b \cdot ct^3} = \frac{-i(e^{iat} - 1)(e^{ibt} - 1)(e^{ict} - 1)}{a \cdot b \cdot c \cdot t^3}$$

Nos piden comprobar si es simétrica:

$$E(e^{itU}) = E(e^{it(aX+bY+cZ)}) = E(e^{iatX})E(e^{ibtX})E(e^{ictX}) = \frac{e^{iat}-1}{iat} \cdot \frac{e^{ibt}-1}{ibt} \cdot \frac{e^{ict}-1}{ict} = e^{iat/2}e^{ibt/2}e^{ict/2}2^3$$

Ejercicio 4.

Para calcular A:

$$1 = \sum_{r=0}^{+\infty} \frac{A}{(2r)!} = A \sum_{r=0}^{+\infty} \frac{1}{(2r)!} = A \frac{1}{2} \left(\sum_{k=0}^{+\infty} \frac{(1)^k}{k!} + \sum_{k=0}^{+\infty} \frac{(-1)^k}{k!} \right) = A \frac{1}{2} (e + e^{-1}) \implies A = \frac{2}{e + e^{-1}}$$

B se saca de forma análoga:

$$1 = \sum_{k=0}^{+\infty} \frac{B}{(2r+1)!} = B\frac{1}{2} \left(\sum_{k=0}^{+\infty} \frac{1^k}{k!} - \sum_{k=0}^{+\infty} \frac{(-1)^k}{k!} \right) = B\frac{1}{2} (e - e^{-1}) \implies B = \frac{2}{e - e^{-1}}$$

Calculamos ahora las funciones generatrices:

$$f_X(t) = \sum_{r=0}^{+\infty} \frac{A}{(2r)!} t^{2r} = \frac{2}{e+e^{-1}} \sum_{r=0}^{+\infty} \frac{t^{2r}}{(2r)!} = \frac{2}{e+e^{-1}} \cdot (e^t + e^{-t})$$

Igualmente:

$$f_Y(t) = \frac{e^t - e^{-t}}{e - e^{-1}}$$

 $Como\ X, Y\ son\ independientes:$

$$f_Z(t) = f_X(t) \cdot f_Y(t) = \frac{e^t + e^{-t}}{e + e^{-1}} \cdot \frac{e^t - e^{-t}}{e - e^{-1}} = \frac{e^{2t} - e^{-2t}}{e^2 - e^{-2}} =$$

$$= \frac{1}{e^2 - e^{-2}} \left(\sum_{k=0}^{+\infty} \frac{(2t)^k}{k!} - \sum_{k=0}^{+\infty} \frac{(-2t)^k}{k!} \right) = \frac{1}{e^2 - e^{-2}} \sum_{r=0}^{+\infty} \frac{2(2t)^{2r+1}}{(2r+1)!} = \frac{1}{e^2 e^{-2}} \sum_{r=0}^{+\infty} \frac{2 \cdot 2^{r+1}}{(2r+1)!} t^{2r+1}$$

Luego tenemos que, para r = 0, 1, 2, ...:

$$P(Z = 2r + 1) = \frac{1}{e^2 - e^{-2}} \frac{2 \cdot 2^{2r+1}}{(2r+1)!}$$

El último apartado lo haremos derivando la expresión sin desarrollar las exponenciales:

$$E(Z) = 2\frac{e^2 + e^{-2}}{e^2 - e^{e-2}}$$

$$E(Z(Z-1)) = f_Z''(1) = 4$$

$$Var(Z) = 2\frac{e^4 - 8 - e^{-4}}{(e^2 - e^{-2})^2}$$

Ejercicio 5.

Apartado a)

$$\alpha(t) = \frac{1 + \cos(t) + \cos(2t)}{3}$$

Comprobemos que es función característica. Si conseguimos expresar α de la forma $\sum p_n e^{itx_n}$ ($\sum p_n = 1$), tendríamos que α es función característica de una vvaa discreta.

Usaremos que:

$$\cos(t) = \frac{1}{2} \left(e^{it} + e^{-it} \right)$$
$$\cos(2t) = \frac{1}{2} \left(e^{ixt} + e^{-ixt} \right)$$

Entonces nos queda:

$$\alpha(t) = \frac{1}{3}e^{0} + \frac{1}{3}\frac{1}{2}(e^{it} + e^{-it}) + \frac{1}{3}\frac{1}{2}(e^{2it} + e^{-2it}) =$$

$$= \frac{1}{3}e^{0} + \frac{1}{6}e^{it} + \frac{1}{6}e^{-it} + \frac{1}{6}e^{2it} + \frac{1}{6}e^{-2it}$$

Entonces todas las constantes que multiplican a exponenciales son no negativas y suman 1. Entonces α es la función característica de la vvaa que toma valores $\{0,1,-1,2,-2\}$ con probabilidades:

$$P(X = 0) = \frac{1}{3}$$
 $P(X = 1) = P(X = -1) = P(X = 2) = P(X = -2) = \frac{1}{6}$

Apartado b)

$$\alpha(t) = \frac{1}{1 + t^3}$$

Esta función no esta acotada en -1 por lo que no puede ser función característica.

Apartado c)

$$\alpha(t) = \frac{1}{1 + t^4}$$

Recordemos la relación entre la existencia de los momentos de orden n y la existencia de la derivada de orden n en el origen.

$$\alpha'(t) = -(1+t^4)^{-2}4t^3$$
 $\alpha'(0) = 0$
 $\alpha''(t) = \dots$ $\alpha''(0) = 0$

Entonces si existe X, E(X) = 0 $E(X^2) = i^2\alpha''(0) = 0$, entonces la varianza sería nula y la función sería constante, pero la función característica de una distribución uniforme no es α

Ejercicio 6. Primer ejercicio de la primera tarea

$$f(x,y) = kyI_D$$
 $D = \{(x,y) \in \mathbb{R}^2 : 0 < x < 1, 0 < y < x\}$

Apartado a)

Calcular k, $y E(Y^n(1-Y)^m)$ y con esto los momentos α_r . Con esto calcular, si se puede, la función generatriz de momentos.

Dejamos el cálculo de k para luego. Vamos con f_2 :

$$f_2(y) = \int_{\mathbb{R}} f(x, y) dx = \int_{y}^{1} ky dx = ky(1 - y) \ y \in (0, 1)$$

$$E(Y^{n}(1-y)^{m}) = \int_{0}^{1} ky^{m}(1-y)^{n}y(1-y)dy = kB(m+2, n+2) = k\frac{\Gamma(m+2)\Gamma(n+2)}{\Gamma(m+n+4)} = k\frac{(m+1)!(n+1!)}{(m+n+3)!}$$

Haciendo n = 0 obtenemos $\alpha_r = E(Y^r)$

$$\alpha_r = k \frac{(r+1)!}{(r+3)!} = \frac{k}{(r+3)(r+2)}$$

Para obtener el valor de k podemos haciendo m = n = 0:

$$m = n = 0 \implies \int_{0}^{1} k f_2(y) dy = k \frac{1}{3!} = \frac{k}{6} = 1 \implies k = 6$$

Como Y es acotada entre 0 y 1, $E(e^{aY}) = E(e^{-aY})$ son finitos, con lo que podemos expresar g(t) como la siguiente serie que será convergente:

$$g(t) = 6\sum_{r=0}^{+\infty} \frac{1}{(r+3)(r+2)r!} t^r$$

Apartado b)

Calcular la curva de regresión de X sobre Y

$$x = m_{1|2}(y) = E(X|Y = y) = \int x f_{1|2(x|y)} dx$$

Dado
$$y \in (0,1)$$

$$f_{1|2}(x|y) = \begin{cases} \frac{6y}{6y(1-y)} = \frac{1}{1-y} & x \in (y,1) \\ 0 & x \notin (y,1) \end{cases}$$

$$\int x f_{1|2(x|y)} dx = \int_{y}^{1} \frac{x}{1-y} dx = \frac{1}{2} \frac{1-y^2}{1+y} = \frac{1}{2} (1+y)$$

Sabiendo la recta de regresión de Y sobre X, $x = \frac{2}{3}x$ y la anterior curva, calcular E(X), ρ

 $Ambas\ rectas\ se\ cortan\ en\ el\ punto\ (E(X),E(Y)).$

Utilizando las dos anteriores rectas tenemos las pendientes $\beta_{X/Y}$, $\beta_{Y/X}$, con esto podemos calcular ρ despejando.