Indexing the Bijective BWT

Hideo Bannai (Kyushu University),

Juha Kärkkäinen (Helsinki Institute of Information Technology),

Dominik Köppl (TU Dortmund),

Marcin Piątkowski (Nicolaus Copernicus University)

This presentation received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 690941.

FM Index

ingredients

- BWT
- wavelet tree

FM Index

ingredients

- BWT
- wavelet tree

operation: backward search

- locate pattern
- #occ: number of occurrences
- time independent on #occ

FM Index on bijective BWT

ingredients

- bijective BWT
- wavelet tree

operation: backward search

- locate pattern
- #occ: number of occurrences
- time independent on #occ

FM Index on bijective BWT

ingredients

- bijective BWT
- wavelet tree

operation: backward search

- locate pattern
- #occ: number of occurrences
- time independent on #occ

reason: bijective BWT is cool

Lyndon words

- a
- aabab

Lyndon word is smaller than

- any proper suffix
- any rotation

Lyndon words

- a
- aabab

Lyndon word is smaller than

- any proper suffix
- any rotation

not Lyndon words:

- abaab (rotation aabab smaller)
- abab (abab not smaller than suffix ab)

Lyndon factorization

- input: text T
- output: factorization $T_1...T_t$ with
 - T_i is Lyndon word
 - $-T_i \geq_{\text{lex}} T_{i+1}$
 - factorization uniquely defined
 - linear time [Duval'88]

(Chen-Fox-Lyndon theorem)

properties [Duval' 88]

- *T_t*:
 - smallest Lyndon word
 - smallest suffix of T
- T_i primitive
- T₁ longest Lyndon prefix of T[1..]
- T_{i+1} longest Lyndon prefix of $T[|T_1 \cdots T_i| + 1...]$

- $u <_{\omega} w : \iff uuuuu ... <_{lex} wwww...$
- ab < aba but aba $<_{\omega}$ ab

ababababam abaabaabam

```
s enes cen ce
nese enc ec
esen nce
sene
```


result: enccsneees

```
e
           e
S
           e
n
           e
           n
```

```
S
           e
n
           e
```


s enes cen ce	F	L
	С	ce
	C	cen
	e	ec
	e	enc
	e	enes
	e	esen
	n	nce
	n	nese
	S	sene
	S	S

```
s enes cen ce
                              ce
                             cen
                              ec
                             enc
                     e
                            enes
                            esen
                             nce
                            nese
                            sene
```

s enes cen ce ce cen ec enc enes range esen nese sene

s enes cen ce ce cen ec encenes range esen nese sene

s enes cen ce	F	L
	С	ce
	C	cen
	e	ec
	e	enc
	e	enes
	e	esen
	n	nce
	n	nese
	S	sene
	9	S

s enes cen ce	F	L
	C	ce
	C	cen
	e	ec
	e	enc
	e	enes
	e	esen
	n	nce
	n	nese
	(S)	sene
	S	S

```
s enes cen ce
                                ce
                               cen
                                ec
                      e
                               enc
                      e
                             enes
                      e
                      e
                             esen
                               nce
                      n
                      n
                             nese
                             sene
```

```
s enes cen ce
                                ce
                               cen
                                ec
                      e
                               enc
                      e
                             enes
                      e
                      e
                             esen
                               nce
                      n
                      n
                             nese
                             sene
```

backward search 'ss'

s enes cen ce ce cen ec enc enes e esen e cen is Lyndon word nce n nese n • ss is not sene S

pattern is Lyndon word

- ⇒ occurrences inside factors
- ⇒ found within cycles

backward search ≅ FM-index

pattern *P* is not a Lyndon word

- Lyndon factorization: $P = \overline{P_1 \cdots P_m}$
- P_i substring of T_i or equal to T_i
- search P_m
- take care when starting with P_{m-1} !

F	L
C	ce
C	cen
e	ec
e	enc
e	enes
e	esen
n	nce
n	nese
S	sene
S	S

•
$$P_2 = e$$

C ce
C cen
e ec
e enc
e enes
e esen
n nce
n nese
s sene
s

•
$$P_2 = e$$

C

C

C

C

C

e

e

e

e

e

n

n

n

n

n

n

s

s

s

s

s

•
$$P_2 = e$$
 F L
• $P_1 = s$ c c ce cen

•
$$P_2 = e$$

 $P_1 = S$

• backward search P_m

• backward search P_m

- backward search P_m
- continue search $P_{m-1}P_m$

location of factors T_i

- after finding range of P_m :
 - for border $P_{m-1}P_m$ maintain
 - pointer to not-counted occurrence
 - pointer to false occurrence
- in total backward search on
 - range
 - at most 2*m* individual values

conclusion

- FM index with bijective BWT
- uses properties of Lyndon factorization on
 - text
 - pattern $P = P_1 \cdots P_m$
- currently O(m) times slower than FM index
- extended BWT does not seem to be a good candidate (no Lyndon word properties)

conclusion

- FM index with bijective BWT
- uses properties of Lyndon factorization on
 - text
 - pattern $P = P_1 \cdots P_m$
- currently O(m) times slower than FM index
- extended BWT does not seem to be a good candidate (no Lyndon word properties)

Thank you for your attention. Any questions are welcome!