

University of Colombo, Sri Lanka

UCSC University of Colombo School of Computing

DEGREE OF BACHELOR OF INFORMATION TECHNOLOGY (EXTERNAL)

Academic Year 2021 — 1st Year Examination — Semester 2

IT2106 — Mathematics for Computing I

Multiple Choice Question Paper (2 Hours)

Important Instructions

- The duration of the paper is 2 Hours.
- The medium of instructions and questions is English.
- This paper has 40 questions on 9 pages. Answer all questions.
- All questions are of the MCQ (Multiple Choice Questions) type.
- Each question will have 5 (five) choices with one or more correct answers.
- This paper consists of 100 marks and all the questions will earry equal marks.
- There will be a penalty for incorrect responses to discourage guessing.
- The mark given for a question will vary from -1 (All the incorrect choices are marked & no correct choices are marked) to +1 (All the correct choices are marked & no incorrect choices are marked). However, the minimum mark per question would be zero.
- Answers should be marked on the **special answer sheet** provided.
- Note that questions appear on both sides of the paper. If a page is not printed, please inform the supervisor/invigilator immediately.
- Mark the correct choices on the question paper first and then transfer them to the given answer sheet which will be machine marked. Please completely read and follow the instructions given on the other side of the answer sheet before you shade your correct choices.
- Calculators are not allowed.
- All Rights Reserved. This question paper can NOT be used without proper permission from the University of Colombo School of Computing.

Notations:

Z – set of integers

N – set of positive integers

R – set of real numbers

 \emptyset - (null) empty set

U - Universal set

R+ - set of positive real numbers

1)

Which of the following is/are equal to $x^{\frac{p}{q}}$

(d) $\sqrt[q]{x^p}$.

2)

(a) xyz^{-2}

(b) $x^{-1}y^{-1}z^2$ (c) $x^5y^3z^4$

(e) $\frac{xy}{z^2}$

3)

log₄ 32 is equal to

(a) 2.5.

(b) $\log_2 4 - \log_2 8$.

(d) $\frac{2}{3}$. (e) $1 + \frac{\log_2 8}{\log_2 4}$.

Which of the following is/are correct?

4)

- (a) $\forall a, u, v \in N \text{ and } a \neq 1, \log_a uv = \log_a u + \log_a v$.
- (b) $\forall a, u, v \in N \text{ and } a \neq 1 \log_a uv = \log_a u \log_a v$.
- (c) $\forall a \in N \setminus \{1\}, \log_a 1 = 0$.
- (d) $\forall a \in N \setminus \{1\}, \log_a 1 = 1$.
- (e) $\forall a, u, v \in N \text{ and } a \neq 1 \log_a uv = (\log_a u) (\log_a v)$

5)

Let $A = \{x \mid x \in R \text{ and } 2x^2-3x+1=0 \}$ and $B = \{x \mid x \in R \text{ and } x^2+5x-6=0 \}$.

 $A \cap B$ is equal to

(a) {1}.

(b) {2}.

(c) {3}.

(d) {1,2}.

(e) {1,2,3}.

6)

Let N be the set of all natural number set. A = $\{0\} \cup \{-n \mid n \in N\}$.

 $A \cup N$ is equal to

(a) N.

(b) Z.

(c) A.

(d) $N \{-1\}$.

(e) $N \cup \{-n \mid n \in N\}$.

(a) $A \subseteq B$.	(b) A ≠ B.	(c) $A = B$.	(d) $B \subseteq A$.	(e) $A = \emptyset$.
Let A and B be	two non-empty	disjoint sets. W	hich of the foll	owing is/are not true?
(a) $A^c \cup B^c =$	$=(A\backslash B)^c\cap A$.	(b) $A^c \cup B^c =$	$(A \cap B)^{c}$.	$(c) A^{c} \cup B^{c} = (A \backslash B)^{c} \cup$
$(d) A^{c} \cup B^{c} =$	$(A\backslash B)^c \cup B$.	(e) $A^c \cup B^c =$	$(B\backslash A)^c\cup B$.	
Let A and B be must be true?	any two non-er	npty sets. If A is	a proper subse	t of B, which of the following
(a) $A \cap B = A$	•	(b) A ∪ B = A		(c) B ⊂ A.
(d) $A \cup B = B$	3.	(e) $A \cap B = \emptyset$.		
(a) A ∪ (B ∩ 0	$C) = (A \cup B) \cap C$	(A ∪ C).		g is/are not correct? $B \cap C = (A \cap B) \cup (A \cap B)$
	$C) = (B \cup A) \cap (C)$ $C) = A \cap (B \cup C)$			$B \cap C$) = $(B \cap A) \cup (C \cap A)$
T . X7 1	two sets. Which	h of the following	is/are correct	9
(c) $X \cap Y = \{a$	$ a \in X \land a \in Y $ $ a \in X \land a \in Y $ $= \{a \mid a \notin X \land a \in Y\}$	•	(b) X \cup	$Y = \{a \mid a \in X \lor a \in Y\}.$ $Y = \{a \mid a \in X \lor a \in Y\}.$
(a) $X \cup Y = \{a \in X \cap Y = \{a \inX \cap Y = \{a \in X \cap Y = \{a \in $	$ a \in X \land a \in Y $ $ a \in X \land a \in Y $ $= \{a \mid a \notin X \land A \land a \notin X \land a \land A$	•	(b) X \cup	$Y = \{a \mid a \in X \lor a \in Y\}.$
(a) $X \cup Y = \{a \in X \cap Y = \{a \in X \cap Y = \{a \in X \cap Y = \{a \in X \cup Y\}^c = a \in X \cap Y = \{a \in X \cap Y = a \cap Y = a \in X \cap Y = A \cap Y = $	$ a \in X \land a \in Y $ $ a \in X \land a \in Y $ $= \{a \mid a \notin X \land A \land a \notin X \land a \land A$	•	(b) X ∪ (d) X ∩	$Y = \{a \mid a \in X \lor a \in Y\}.$
(a) $X \cup Y = \{a \in X \cap Y = \{a \in X \cap Y = \{a \in X \cap Y = \{a \in X \cup Y\}^c = \{a \in X \cap Y \cap B\}\}$	$ a \in X \land a \in Y $ $ a \in X \land a \in Y $ $= \{a \mid a \notin X \land A \land a \notin X \land a \land A$	· · <u>·</u> <u>·</u> Y}.	(b) X ∪ (d) X ∩	$Y = \{a \mid a \in X \lor a \in Y\}.$ $Y = \{a \mid a \in X \lor a \in Y\}.$
(a) $X \cup Y = \{a \in X \cap Y \cap B\}\}$ (a) $(A \cap C) \cap B$	$ a \in X \land a \in Y $ $ a \in X \land a \in Y $ $= \{a \mid a \notin X \land A \land a \notin X \land a \land A$	· · · · · · · · · · · · · · · · · · ·	(b) X ∪ (d) X ∩	$Y = \{a \mid a \in X \lor a \in Y\}.$ $Y = \{a \mid a \in X \lor a \in Y\}.$
(a) $X \cup Y = \{a \in X \cap Y \cap B\}\}$ (b) $(A \cap C) \cap B$ (c) $(A \cap C) \cap B$ (d) $(A \cap C) \setminus B$	$ a \in X \land a \in Y$ $ a \in X \land a \in Y$ $ a \in X \land a \notin X$ is not equal to	(b) (A∩B) (e) (A∩B)	(b) X ∪ (d) X ∩	$Y = \{a \mid a \in X \lor a \in Y\}.$ $Y = \{a \mid a \in X \lor a \in Y\}.$
(a) $X \cup Y = \{a \in X \cap Y \}^c = \{a \in X \cap Y \cap B\}\}$ (b) $(A \cap C) \setminus B$ (c) $(A \cap C) \setminus B$ (d) $(A \cap C) \setminus B$ (d) $(A \cap C) \setminus A$ Let $A = \{x, y, z\}$ (a) $x \notin B$.	$ a \in X \land a \in Y$ $ a \in X \land a \in Y$ $ a \in X \land a \notin X$ is not equal to	(b) (A∩B) (e) (A∩B) Which of the following the followin	(b) X ∪ (d) X ∩	$Y = \{a \mid a \in X \lor a \in Y\}.$ $Y = \{a \mid a \in X \lor a \in Y\}.$ (c) $(B \cap C) \setminus A^{c}$ (d) A \subseteq A.

14) Which of the following propositions is/are logically equivalent to $(p \leftrightarrow q)$?

(a)
$$(p \rightarrow q) \land (q \rightarrow p)$$
.

(b)
$$(p \land \sim q) \lor (\sim p \land \sim q)$$
.

(c)
$$(p\rightarrow q) \lor (q\rightarrow p)$$
.

(d)
$$(\sim p \vee q) \wedge (\sim q \vee p)$$
.

(e)
$$\sim$$
 (p \rightarrow q) \vee \sim (q \rightarrow p).

15) Let p and q be two propositions. Which of the following is/are **not** tautologies?

(a)
$$(\sim p \lor q) \leftrightarrow \sim (p \land \sim q)$$
.

(b)
$$(p \rightarrow q) \leftrightarrow \sim (p \land q)$$
.

(c)
$$(\sim p \vee q) \leftrightarrow (p \rightarrow q)$$
.

(d)
$$(\sim p \land q) \leftrightarrow \sim (p \land \sim q)$$
.

(e)
$$(p \rightarrow q) \leftrightarrow (\sim p \land q)$$

Which of the following arguments is/are valid? (16)

(a)
$$p \rightarrow q$$
, $p + q$

(b)
$$p \lor q$$
, $\sim p \vdash \sim q$ (c) $p \Rightarrow q$, $\sim q \vdash p$

$$(c) p \Rightarrow q, \sim q \vdash p$$

(d)
$$\sim p \vee q$$
, $p \mid \sim q$

(e)
$$p \vee q$$
, $\sim p + q$

Which sets of the following statements is/are consistent? (17)

(a)
$$p \wedge q$$
, $p \vee q$, $\sim p$

(b)
$$p \vee q$$
, $\sim p$, q

(c)
$$\sim$$
(q \rightarrow p), q, \sim p

(d)
$$\sim$$
(q \rightarrow p), q, p

(e)
$$\sim$$
(q \rightarrow p), \sim q, \sim p

Consider the following truth tables for two different non-equivalent propositions P1 and P2 of 18) one variable p.

p	P1	P2	
T	T	F	
F	T	F	

Which of the following propositions correctly represents P1, P2 respectively.

(a)
$$p \lor \sim p, \sim (p \lor \sim p)$$

(b)
$$p \vee \sim p$$
, $p \wedge p$

(c)
$$p \vee p$$
, $p \wedge p$

(d)
$$p \vee \sim p$$
, $p \wedge \sim p$

(e)
$$\sim$$
(p $\vee \sim$ p), p $\wedge \sim$ p

(a)
$$p \lor \sim p$$
, $p \land \sim p$

(a) $p(x_1) \wedge p(x_2) \wedge$	∧ p(xn).	b) $\exists x \sim p(x)$.
(c) $p(x_1) \vee p(x_2) \vee \dots$		d) $\exists x \ p(x)$.
(e) $\sim p(x_1) \vee \sim p(x_2) \vee \dots$		\mathbf{u}) $\exists \mathbf{x} \; \mathbf{p}(\mathbf{x})$.
Let $p(x)$ be a predicate defin) is false, which of the followir
MUST be true?		
(a) There is x_0 in D for y_0	which p(x ₀) is false.	<u> 148 radiomen yr 1975 - 1</u>
(b) For every x in D, p(x)	is false.	
(c) For every x in D, $\sim p(x)$	x) is true.	
(a) There are no elements	s in D for which $p(x)$ is true.	
(e) $\exists x \ p(x)$ is false.		
Let $p(x)$: $x-1 < 1$ and $q(x)$:	$x+1 \ge 3$ be two predicates of	of the variable x defined on N.
Which of the following pro		
	opositions is/are true?	
(a) $\forall x (p(x) \land q(x))$	(b) $\forall x (p(x) \lor q(x))$	(c) $\forall x p(x)$
(d) $\exists x (p(x) \lor q(x))$	(a) $\exists y (n(y) \cdot n(y))$	
(a) ¬x (p(x) v q(x))	(e) $\exists x (p(x) \land q(x))$	Milde de la setta de falla logar
	1 (6.12.1.1.1	
(5 00 00 10)	nd $v \in \{6, 12, 16, 24, 50\}$ Whi	ch of the following propositions is
Suppose $x \in \{5, 20, 30, 40\}$ a rue?	1. 10, 12, 10, 24, 30 ₃ . Will	and and any propositions i
rue?		propositions i
Suppose $x \in \{5, 20, 30, 40\}$ a rue? (a) $\forall x \exists y \ x < y$.	(b) $\forall y \exists x \ x < y$.	(c) ∃x ∀y x < y.
Suppose $x \in \{5, 20, 30, 40\}$ a true? (a) $\forall x \exists y \ x < y$. (d) $\exists x \exists y \ x < y$.	(b) $\forall y \exists x \ x < y$.	
(a) $\forall x \exists y \ x < y$.		
(a) ∀x ∃y x < y.(d) ∃x ∃y x < y.	(b) ∀y ∃x x < y .(e) ∀x ∀y x < y .	(c) $\exists x \ \forall y \ x < y$.
(a) $\forall x \exists y \ x < y$. (d) $\exists x \exists y \ x < y$. Let $p(x)$ be a predicate defining	(b) ∀y ∃x x < y .(e) ∀x ∀y x < y .	(c) $\exists x \ \forall y \ x < y$.
(a) $\forall x \exists y \ x < y$. (d) $\exists x \exists y \ x < y$. Let $p(x)$ be a predicate definition $\forall x \ p(x)$?	(b) $\forall y \exists x \ x < y$. (e) $\forall x \forall y \ x < y$. ed on a domain D. Which of	(c) $\exists x \ \forall y \ x < y$.
(a) $\forall x \exists y \ x < y$. (d) $\exists x \exists y \ x < y$. Let $p(x)$ be a predicate defining $\forall x p(x)$?	(b) $\forall y \exists x \ x < y$. (e) $\forall x \forall y \ x < y$. ed on a domain D. Which of	
(a) $\forall x \exists y \ x < y$. (d) $\exists x \exists y \ x < y$. Let $p(x)$ be a predicate definition $\forall x \ p(x)$?	(b) $\forall y \exists x \ x < y$. (e) $\forall x \forall y \ x < y$. ed on a domain D. Which of	(c) $\exists x \ \forall y \ x < y$. the following is/are equivalent.
(a) $\forall x \exists y \ x < y$. (d) $\exists x \exists y \ x < y$. Let $p(x)$ be a predicate define $\forall x \ p(x)$? (a) $\forall x \ p(x)$. (b) $\exists x \sim p(x)$	(b) $\forall y \exists x x < y$. (e) $\forall x \forall y x < y$. ed on a domain D. Which of (x) . (c) $\forall x \sim p(x)$. (d)	(c) $\exists x \ \forall y \ x < y$. the following is/are equivalent. $\neg \forall x \neg p(x)$. (e) $\neg \exists x \neg p(x)$
(a) $\forall x \exists y \ x < y$. (d) $\exists x \exists y \ x < y$. Let $p(x)$ be a predicate define $\forall x \ p(x)$? (a) $\forall x \ p(x)$. (b) $\exists x \sim p(x)$. Let $X = \{3, 4, 6\}$, $Y = \{1, 2, 4, 6\}$.	(b) $\forall y \exists x \ x < y$. (e) $\forall x \forall y \ x < y$. ed on a domain D. Which of (x) . (c) $\forall x \sim p(x)$. (d) (x) . (8, 9}, $\alpha = \{(x,y) x \in X, y \in Y, y \in Y,$	(c) $\exists x \ \forall y \ x < y$. the following is/are equivalent. $\neg \forall x \neg p(x)$. (e) $\neg \exists x \neg p(x)$
(a) $\forall x \exists y \ x < y$. (d) $\exists x \exists y \ x < y$. Let $p(x)$ be a predicate define $\forall x \ p(x)$? (a) $\forall x \ p(x)$. (b) $\exists x \sim p(x)$. Let $X = \{3, 4, 6\}$, $Y = \{1, 2, 4, 6\}$.	(b) $\forall y \exists x \ x < y$. (e) $\forall x \forall y \ x < y$. ed on a domain D. Which of (x) . (c) $\forall x \sim p(x)$. (d) (x) . (8, 9}, $\alpha = \{(x,y) x \in X, y \in Y, y \in Y,$	(c) $\exists x \ \forall y \ x < y$. the following is/are equivalent. $\neg \forall x \neg p(x)$. (e) $\neg \exists x \neg p(x)$
(a) $\forall x \exists y \ x < y$. (d) $\exists x \exists y \ x < y$. Let $p(x)$ be a predicate define $\forall x \ p(x)$? (a) $\forall x \ p(x)$. (b) $\exists x \sim p(x)$	(b) $\forall y \exists x \ x < y$. (e) $\forall x \forall y \ x < y$. ed on a domain D. Which of (x) . (c) $\forall x \sim p(x)$. (d) (x) . (8, 9}, $\alpha = \{(x,y) x \in X, y \in Y, y \in Y,$	(c) $\exists x \ \forall y \ x < y$. the following is/are equivalent. $\neg \forall x \neg p(x)$. (e) $\neg \exists x \neg p(x)$

Let α and β be two relations defined by $\alpha = \{(x,y) \mid x \in Z, y \in Z, x \le y \}$ and $\beta = \{(x,y) \mid x \in Z, y \in Z, x > y \}$.

Which of the following is/are not true?

- (a) α and β are not symmetric.
- (b) α and β are reflexive.
- (c) α is symmetric and β is not symmetric.
- (d) α is reflexive and β is not reflexive.
- (e) α is transitive and β is not transitive.
- Let α be a relation defined on Z by $\alpha = \{(x,y) \mid x \in Z, y \in Z, x \le y\}$.

What is α^{-1} ?

(a)
$$\alpha^{-1} = \{(x,y) \mid x \in Z, y \in Z, y > x \}.$$

(b)
$$\alpha^{-1} = \{(x,y) \mid (y,x) \in \alpha\}.$$

(c)
$$\alpha^{-1} = \{(x,y) \mid x \in Z, y \in Z, x > y \}.$$

(d)
$$\alpha^{-1} = \{(x,y) \mid x \in \mathbb{Z}, y \in \mathbb{Z}, \sim (x < y) \}.$$

(e)
$$\alpha^{-1} = \{(x,y) \mid x \in Z, y \in Z, x \ge y \}.$$

Let α be a relation defined on a non-empty set D by $\alpha = \{(x,y) \mid x,y \in D\}$. Then α is said to be symmetric if and only if

(a)
$$\forall x (x,x) \in \alpha$$
.

(b)
$$\forall x \forall y \forall z (x,y) \in \alpha \land (z,y) \in \alpha \rightarrow (x,z) \in \alpha$$
.

(c)
$$\forall x \forall y (x,y) \in \alpha \rightarrow (y,x) \in \alpha$$
.

(d)
$$\exists x, x \in D(\alpha) \land (x,x) \in \alpha$$
.

- (e) $\forall x \forall y (x,y) \notin \alpha \lor (y,x) \in \alpha$.
- 28) Suppose $A=\{10,15,20\}$.

If
$$\alpha = \{(x,y) \mid x,y \in A, x < y\}$$
 and $\beta = \{(x,y) \mid x,y \in A, n \in N, y = nx\},$

which of the following is/are true?

(a)
$$\beta$$
 o $\alpha = \{(10,15),(10,20),(15,20)\}.$

- (b) β o $\alpha = \{(10,15),(10,20)\}.$
- (c) β o $\alpha = \{(10,10),(10,20),(15,20)\}.$
- (d) β o $\alpha = \{(10,20)\}.$
- (e) β o $\alpha = \beta$.

29) Let ρ be the relation defined on $A=\{a,b,c\}$ by

 $\rho = \{(a,a),(b,b),(c,c),(a,b),(b,a),(b,c),(c,b),(a,c),(c,a)\}.$

Find [a] $\rho \cap [b] \rho$.

```
(a) {a,b}.

(b) {b,c}.

(c) Ø.

(d) {a,c}.
```

Let f be a function defined on $A=\{1,2,3\}$. Which of the following do/does not represent f?

```
(a) f(1)=10, f(2)=10, f(3)=10. (b) f(1)=8, f(2)=8, f(3)=10. (c) f(1)=7, f(1)=8, f(2)=9, f(3)=10. (d) f(1)=8, f(2)=9. (e) f(1)=1, f(2)=2, f(3)=3.
```

Suppose g is a 1-1 function and $x,y \in D(g)$. Which of the following is/are correct about g?

- (a) $\forall x \forall y \ x \neq y \Rightarrow g(x) = g(y)$.
- (b) $\forall x \forall y \sim (x = y) \Rightarrow \sim (g(x) = g(y)).$
- (c) $\forall x \forall y \ g(x) = g(y) \Rightarrow x = y$.
- (d) $\forall x \forall y \sim (g(x) = g(y)) \Rightarrow x \neq y$.
- (e) $\exists x \exists y \sim (x = y) \land g(x) = g(y)$.

Let the functions f and g be defined by f(x) = 2x-1 and g(x) = 3x+1 where $x \in \mathbb{R}$. Then $(f \circ g)(x)$ is equal to

- (a) 6x-3.
- (b) 6x-2.
- (c) 6x+1.
- (d) 3x-1.
- (e) 3x-2.

If b is an el	ement of the s	et B, what is	/are the dual o	of the Boolean	expression $b + 1 = 1$?
(a) b * 1 = (d) b * A =		, ,	0 = 0. 1 = 1.	(c) t	y + 0 = 0.
Find the nur		ments that can	n be made by ta	king all the lette	rs in the word
(a) $\frac{6}{(2!)(2!)}$	$\frac{6!}{(2!)(2!)}$ (b) $\frac{1}{(2!)}$	9! 2!)(2!)(2!)	(c) $\frac{9!}{8}$	(d) $\frac{9!}{4!}$	(e) (2!)(2!)
The sample	e space refers t	to			
	between two s	samples.			
An experin	nent consists o	of three steps.	d four possib		lts on the first step, the third step. The total
An experin	nent consists o	of three steps.	There are two d four possible omes is:		
An experin possible renumber of (a) 9 In an examinformation	nent consists of sults on the se possible experience (b) 10	of three steps. cond step, an rimental outc (c) ents can sele he subjects S	There are two d four possible omes is:	(d) 24	(e) 36
An expering possible results and the control of the	nent consists of sults on the se possible experience (b) 10 mination, studin is given on t	of three steps. cond step, an rimental outc (c) ents can sele he subjects S take STAT	There are two d four possible omes is: 18 ect three subj	(d) 24	(e) 36
An experin possible renumber of (a) 9 In an examinformation 50%	nent consists of sults on the se possible experience (b) 10 mination, studin is given on the following of students the sults of students of students of sults of students of sults of students of sults of students of sults o	of three steps. cond step, and rimental outce (c) ents can sele the subjects S ake STAT	There are two d four possible omes is: 18 ect three subject TATS and IT	(d) 24	(e) 36
An experin possible renumber of (a) 9 In an examinformation 50% 20% 5%	ment consists of sults on the se possible experion (b) 10 mination, studing is given on the following of students the following take IT and	of three steps. cond step, and rimental outce (c) ents can selethe subjects Stake STAT STATS but manual outcests of the subjects of the subject of the subj	There are two d four possible omes is: 18 ect three subject TATS and IT and MATHS and STAT	(d) 24 ects out of ma	(e) 36
An expering possible renumber of (a) 9 In an examination 50% 20% 5% 90%	ment consists of sults on the se possible experion (b) 10 mination, studing is given on the first of students the take IT and the take IT and the stake IT and	of three steps. cond step, and rimental outce (c) ents can sele he subjects Stake STAT STATS but not an entered one of STAT	There are two d four possible omes is: 18 ect three subject TATS and IT and MATHS	(d) 24 ects out of ma	(e) 36
An expering possible renumber of (a) 9 In an examination 50% 20% 5% 90% 10%	ment consists of sults on the se possible experience (b) 10 mination, studing is given on the first of students the take IT and the take IT and the stake at least	of three steps. cond step, and rimental outce (c) ents can sele the subjects Stake STAT STATS but not an and MATHS one of STAT and MATHS	There are two d four possible omes is: 18 ect three subject TATS and IT and MATHS	(d) 24 ects out of ma	(e) 36
An experin possible renumber of (a) 9 In an examinformation 50% 20% 5% 90% 10% 10%	ment consists of sults on the se possible experience (b) 10 mination, studing is given on the first of students the take IT and the take IT and the take at least the first take at least the first take STATS	of three steps. cond step, and rimental outce (c) ents can selected be subjects Stake STAT STATS but in MATHS but in one of STAT and MATHS	There are two d four possible omes is: 18 ect three subject TATS and IT and MATHS	(d) 24 ects out of ma	(e) 36
An experin possible renumber of (a) 9 In an examinformation 50% 20% 5% 90% 10% 45%	ment consists of sults on the se possible experience (b) 10 mination, studing is given on the first of students the take IT and the take IT and the take at least the first take at least the first take STATS take only ST	of three steps. cond step, and rimental outce (c) ents can selected he subjects Stake STAT State one of STAT and MATHS and MATHS	There are two d four possible omes is: 18 ect three subject TATS and IT and MATHS and STAT TS, IT and MATHS but not IT	(d) 24 ects out of ma	(e) 36
An experin possible renumber of (a) 9 In an examinformation 50% 20% 5% 90% 10% 45%	ment consists of sults on the se possible experion (b) 10 mination, studing is given on the factor of students the take IT and the take IT and the take at least the factor of take STATS take only STATS take MATH	of three steps. cond step, and rimental outce (c) ents can selected he subjects Stake STAT State one of STAT and MATHS and MATHS	There are two d four possible omes is: 18 ect three subject TATS and IT and MATHS and STAT TS, IT and MATHS but not IT only IT is	(d) 24 ects out of matand MATHS.	(e) 36

If A and B are independent events with P(A) = 0.4 and P(B) = 0.75, then $P(A \cup \overline{B})$ is:

(a) 0.10 (b) 0.55 (c) 0.65 (d) 0.75 (e) 0.85

A six-sided fair die numbered from 1 to 6 and a four-sided fair die numbered from 1 to 4 are rolled simultaneously. The probability of getting a total of two face values is 4 or less given that both-face values are different is:

(a) $\frac{2}{20}$ (b) $\frac{4}{20}$ (c) $\frac{4}{24}$ (d) $\frac{6}{24}$ (e) $\frac{20}{24}$

If 40% of boys opted for maths and 20% of girls opted for maths, then what is the probability that maths is chosen if one fourth of the class's population are girls??

(a) 0.25 (b) 0.30 (c) 0.35 (d) 0.60 c (e) 1.00
