

HUMAN ACTIVITY RECOGNITION WITH SMARTPHONE DATA

Submitted By : Abhilash Basaru Yethesh Kumar,
Adarsh Vijayaraghavan &
Gokulramanan Soundararajan
Submitted To : Farid Alizadeh
Course: Algorithmic Learning Theory

CONTENT

Data Collection Methodology

Exploring the data

- Dimensions
- Correlation
- Distribution
- Variance

Classification # I – Naïve Bayes

- Naïve Bayes
- Naïve Bayes with Laplace Smoothening

Classification # 2 - Logistic Regression

- Logistic regression
- Lasso regression A primer
- Lasso regression Tuning parameters
- Lasso regression Confusion table

Classification # 3 – Neural Networks

Future Work

Conclusions

DATA COLLECTION METHODOLOGY

- Identify the activity carried out by a person from a set of observations about them.
- Use data from accelerometer and gyrometer sensors which can be collected from most modern smartphones
- Data collected from 30 volunteers and released to public domain by researchers.
- Available in UCI Machine Learning repository
- 6 activities: Stand, Sit, Walk, Lay Down, Walk Upwards, Walk Downwards
- Noise reduction using techniques like median filter, Butterworth filter. Signals mapped into frequency domain using FFT
- 561 features were extracted in total

EXPLORING THE DATA

df1.describe()

- Data pre-divided into training and test sets
- 7352 records in training set, 2947 in test set
- 563 attributes in total

df1.shape

(7352, 563)

df2.shape

(2947, 563)

df1.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7352 entries, 0 to 7351

Columns: 563 entries, tBodyAcc-mean()-X to Activity

dtypes: float64(561), int64(1), object(1)

 As per 5-number statistic, all values have been normalized to be between -1 and 1

No null values, clean dataset

tBodyAcctBodyAcctBodyAcctBodyAcctBodyAcctBodyAcctBodyAcctBodyAcctBodyAccmad()-Y std()-X std()-Y mean()-X mean()-Y mean()-Z std()-Z mad()-X mad()-Z max()-X 7352.000000 7352.000000 7352.000000 7352.000000 7352.000000 7352.000000 7352.000000 7352.000000 7352.000000 7352.000000 mean 0.274488 -0.017695 -0.109141 -0.605438 -0.510938 -0.604754 -0.630512 -0.526907 -0.606150 -0.468604 std 0.070261 0.040811 0.056635 0.448734 0.502645 0.418687 0.424073 0.485942 0.414122 0.544547 -0.999873 -1.000000-1.000000-1.000000-1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 min 0.262975 -0.992754 -0.978129 -0.980233 -0.993591 25% -0.024863 -0.120993-0.978162 -0.980251-0.936219 -0.859365 50% 0.277193 -0.017219 -0.108676-0.946196 -0.851897 -0.950709 -0.857328-0.857143 -0.881637 -0.262415 75% 0.288461 -0.010783-0.097794 -0.242813 -0.034231 -0.292680 -0.066701 -0.265671 -0.017129 1.000000 1.000000 1.000000 0.916238 1.000000 1.000000 0.967664 1.000000 1.000000 max 1.000000 8 rows x 562 columns

EXPLORING THE DATA - CORRELATION

corr = df1[df1.columns].corr()
corr

	tBodyAcc- mean()-X			tBodyAcc- std()-X	tBodyAcc- std()-Y	tBodyAcc- std()-Z	tBodyAcc- mad()-X	tBodyAcc- mad()-Y	tBodyAcc- mad()-Z	tBodyAcc- max()-X	fB
tBodyAcc-mean()-X	1.000000	0.148061	-0.256952	0.000619	-0.021903	-0.044617	0.006290	-0.022754	-0.047558	0.044062	
tBodyAcc-mean()-Y	0.148061	1.000000	-0.078769	-0.045160	-0.044920	-0.049746	-0.044180	-0.045049	-0.050402	-0.038108	
tBodyAcc-mean()-Z	-0.256952	-0.078769	1.000000	-0.020217	-0.016641	-0.008410	-0.018747	-0.015203	-0.001988	-0.037197	
tBodyAcc-std()-X	0.000619	-0.045160	-0.020217	1.000000	0.927461	0.851668	0.998632	0.920888	0.846392	0.980844	
tBodyAcc-std()-Y	-0.021903	-0.044920	-0.016641	0.927461	1.000000	0.895510	0.922803	0.997347	0.894509	0.917366	
tBodyAcc-std()-Z	-0.044617	-0.049746	-0.008410	0.851668	0.895510	1.000000	0.844469	0.891441	0.997418	0.853884	
tBodyAcc-mad()-X	0.006290	-0.044180	-0.018747	0.998632	0.922803	0.844469	1.000000	0.916106	0.839267	0.973216	
tBodyAcc-mad()-Y	-0.022754	-0.045049	-0.015203	0.920888	0.997347	0.891441	0.916106	1.000000	0.891178	0.910411	
tBodyAcc-mad()-Z	-0.047558	-0.050402	-0.001988	0.846392	0.894509	0.997418	0.839267	0.891178	1.000000	0.847870	
tBodyAcc-max()-X	0.044062	-0.038108	-0.037197	0.980844	0.917366	0.853884	0.973216	0.910411	0.847870	1.000000	
tBodyAcc-max()-Y	-0.007875	0.090189	-0.027803	0.895217	0.953573	0.866820	0.889934	0.949550	0.865312	0.885533	
tBodyAcc-max()-Z	-0.075881	-0.057029	0.110455	0.844993	0.884490	0.937802	0.838920	0.879898	0.931937	0.839990	
tBodyAcc-min()-X	0.078354	0.058568	0.006544	-0.966500	-0.937918	-0.860691	-0.962235	-0.933135	-0.856964	-0.941451	
tBodyAcc-min()-Y	0.021214	0.132042	0.013678	-0.904539	-0.957736	-0.853346	-0.900336	-0.941377	-0.848485	-0.898652	
tBodyAcc-min()-Z	-0.003283	0.037539	0.119078	-0.828170	-0.838818	-0.939072	-0.821987	-0.830013	-0.921870	-0.837620	
tBodyAcc-sma()	-0.029204	-0.046390	-0.008180	0.973155	0.971500	0.928042	0.970683	0.968444	0.926489	0.956887	
fBodyBodyGyroJer mean	kMag- nFreq() 0.	030681 -0.0	022395 -0.02	20481 -0.065	5987 -0.105	621 -0.0979	78 -0.05997	72 -0.10290	8 -0.10186	4 -0.076599	
fBodyBodyGyroJer skew	kMag- ness() -0.	017557 -0.0	0.02	20091 0.148	3034 0.206	227 0.1577	92 0.14925	0.20089	0 0.15793	7 0.154220	
fBodyBodyGyroJerkMag-ku	ırtosis ()	015613 -0.0	004459 0.01	9127 0.115	5565 0.176	946 0.1267	01 0.11780	0.17280	9 0.12735	9 0.120023	
angle(tBodyAccMean,g	ravity) -0.	544320 0.0	070559 0.05	2841 -0.035	5011 -0.020	379 -0.0067	69 -0.04271	13 -0.02372	2 -0.00876	8 -0.033048	
(tBodyAccJerkMean),gravity	angle 0.0 Mean)	012173 -0.0	013541 -0.03	9836 -0.021	1633 -0.012	505 -0.0200	36 -0.02153	37 -0.01231	0 -0.02050	8 -0.021895	
(tBodyGyroMean,gravity	angle 0. Mean)	037444 0.0	017967 -0.06	3609 0.018	3985 -0.008	507 -0.0184	29 0.01938	9 -0.01254	6 -0.02352	5 0.025066	
(tBodyGyroJerkMean,gravity	angle 0.0 Mean)	028844 0.0	075679 -0.03	34037 -0.024	1810 -0.014	592 -0.0064	71 -0.02495	51 -0.01234	1 -0.00723	1 -0.028871	
angle(X,gravity	Mean) -0.	035257 -0.0	0.00	08587 -0.371	1653 -0.380	531 -0.3450	11 -0.36819	91 -0.37702	5 -0.34738	9 -0.384192	
angle(Y,gravity	Mean) 0.	034371 0.0	001053 -0.01	15288 0.471	1065 0.523	600 0.4760	06 0.46642	24 0.52508	1 0.47760		
angle(Z,gravity	Mean) 0.	028242 -0.0	013903 -0.02	2643 0.394	1825 0.433	169 0.4828	28 0.39092	22 0.43145	9 0.47975	1 0.405023	
s	ubject 0.	024181 -0.0	003144 -0.00	00637 -0.064	1345 -0.115	524 -0.0501	23 -0.06344	10 -0.11475	3 -0.05545	7 -0.055633	

EXPLORING THE DATA - DISTRIBUTION

200 STANDING WALKING WALKING UPSTAIRS **LAYING**

30 subjects randomly distributed in test and training sets

Activities approximately uniformly distributed

EXPLORING THE DATA - DISTRIBUTION

Activity subject	LAYING	SITTING	STANDING	WALKING	WALKING_DOWNSTAIRS	WALKING_UPSTAIRS
1	50	47	53	95	49	53
3	62	52	61	58	49	59
5	52	44	56	56	47	47
6	57	55	57	57	48	51
7	52	48	53	57	47	51
8	54	46	54	48	38	41
11	57	53	47	59	48	54
14	51	54	60	59	45	54
15	72	59	53	54	42	48
16	70	69	78	51	47	51
17	71	64	78	61	46	48
19	83	73	73	52	39	40
21	90	85	89	52	45	47
22	72	62	63	46	36	42
23	72	68	68	59	54	51
25	73	65	74	74	58	65
26	76	78	74	59	50	55
27	74	70	80	57	44	51
28	80	72	79	54	46	51
29	69	60	65	53	48	49
30	70	62	59	65	62	65

Activities distributed by subject

EXPLORING THE DATA - VARIANCE

```
sub21 = df1.loc[df1['subject']==21]
```

```
fig = plt.figure(figsize=(32,24))
ax1 = fig.add_subplot(221)
ax1 = sns.stripplot(x='Activity', y=sub21.iloc[:,0], data=sub21, jitter=True)
ax2 = fig.add_subplot(222)
ax2 = sns.stripplot(x='Activity', y=sub21.iloc[:,1], data=sub21, jitter=True)
plt.show()
```


So, the mean body acceleration is more variable for walking activities than for passive ones especially in the X direction.

Plotting maximum acceleration with activity.

```
fig = plt.figure(figsize=(32,24))
ax1 = fig.add_subplot(221)
ax1 = sns.stripplot(x='Activity', y='tBodyAcc-max()-X', data=sub15, jitter=True)
ax2 = fig.add_subplot(222)
ax2 = sns.stripplot(x='Activity', y='tBodyAcc-max()-Y', data=sub15, jitter=True)
plt.show()
```


Passive activities fall mostly below the active ones. It actually makes sense that maximum acceleration is higher during the walking activities.

	WALKING	WALKING_UPSTAIRS	WALKING_DOWNSTAIRS	SITTING	STANDING	LAYING
WALKING	534	471	490	0	0	0
WALKING_UPSTAIRS	0	0	0	0	0	0
WALKING_DOWNSTAIRS	0	11	25	0	0	0
SITTING	0	0	0	374	35	10
STANDING	0	0	0	78	311	19
LAYING	3	9	17	44	74	442

pred	LAYING	SITTING	STANDING	WALKING	WALKING_DOWNSTAIRS	WALKING_UPSTAIRS
LAYING	322	5	8	0	0	0
SITTING	212	368	54	0	0	0
STANDING	0	111	455	0	0	0
WALKING	0	0	0	416	80	9
WALKING_DOWNSTAIRS	0	0	0	42	257	11
WALKING_UPSTAIRS	3	7	15	38	83	451

Python (SKLearn): Accuracy of

57.2107 %

R (NaiveBayes): Accuracy of

76.9935 %

CLASSIFICATION: NAÏVE BAYES

NAÏVE BAYES WITH LAPLACE SMOOTHING

No change observed with alpha = I, beta = I0; and alpha = I, beta = 1000.

This is probably because the activities are uniformly distributed.

The data is from a controlled experiment

LOGISTIC REGRESSION

Python (SKLearn): Accuracy of 96.4031 %

	WALKING	WALKING_UPSTAIRS	WALKING_DOWNSTAIRS	SITTING	STANDING	LAYING
WALKING	537	0	0	0	0	0
WALKING_UPSTAIRS	0	426	16	0	0	0
WALKING_DOWNSTAIRS	0	64	516	0	0	0
SITTING	0	0	0	487	1	6
STANDING	0	0	0	3	412	1
LAYING	0	1	0	6	7	464

R (glmnet): Accuracy of 95.7245 %

pred_class	LAYING	SITTING	STANDING	WALKING	WALKING_DOWNSTAIRS	WALKING_UPSTAIRS
LAYING	536	2	0	0	0	0
SITTING	1	431	13	0	0	0
STANDING	0	57	518	0	3	0
WALKING	0	0	1	496	2	28
WALKING_DOWNSTAIRS	0	0	0	0	398	1
WALKING_UPSTAIRS	0	1	0	0	17	442
>						

LASSO REGRESSION - A PRIMER

We try to minimize the quantity

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| = RSS + \lambda \sum_{j=1}^{p} |\beta_j|.$$

- Add a penalty term that ensures that coefficients "shrink". For instance, the modified least square cost function is shown above
- Contrast with Ridge regression, where we use L2-norm, $|\beta_i|^2$
- In both Ridge regression and Lasso regression, the variance decreases, but the bias increases by a little
- The effect in lasso regression is that some of the coefficients end up being zero
- Allows "variable selection", resulting in sparser models.
- Helps with model interpretability

LASSO-TUNING THE PARAMETER

LASSO – CROSS VALIDATION FOR λ

Training Accuracy for penalty 1: 0.9952393906420022
Testing Accuracy for penalty 1: 0.9640312181879878
Training Accuracy for penalty 0.5: 0.9933351468988031
Testing Accuracy for penalty 0.5: 0.9636918900576857
Training Accuracy for penalty 0.1: 0.986126224156692
Testing Accuracy for penalty 0.1: 0.9589412962334578
Training Accuracy for penalty 0.01: 0.9465451577801959
Testing Accuracy for penalty 0.01: 0.9317950458092976
Training Accuracy for penalty 0.003: 0.9073721436343852
Testing Accuracy for penalty 0.003: 0.9161859518154055
Training Accuracy for penalty 0.0003: 0.16675734494015235
Testing Accuracy for penalty 0.0003: 0.168306752629793

Optimum Penalty value: 0.003

Maximum Testing Accuracy: 0.9161859518154055 Maximum Training Accuracy: 0.9073721436343852

Python (SKLearn): Optimum at 0.003

```
> fit
call: glmnet(x = x, y = y, family = "multinomial")
       0 -0.00000000000004157399 0.38331630000
        1 0.04141737000000000196 0.34926350000
        1 0.07203302999999999789 0.31823590000
        2 0.09651331000000000493 0.28996470000
        2 0.11703879999999999839 0.26420500000
        3 0.14749750000000000361 0.24073380000
        3 0.1798705999999999160 0.21934770000
        5 0.20648649999999998950 0.19986140000
        9 0.2523890999999997735 0.18210630000
       11 0.30734909999999998620 0.16592850000
      12 0.3557879999999999315 0.15118780000
      12 0.3992090999999998341 0.13775670000
      12 0.43746920000000000250 0.12551880000
       14 0.47325610000000001287 0.11436800000
       17 0.50743930000000003755 0.10420790000
      20 0.5393426999999995271 0.09495036000
       21 0.57018950000000001577 0.08651524000
       23 0.59759940000000000282 0.07882946000
       26 0.62297539999999995697 0.07182647000
      27 0.64614050000000000651 0.06544560000
       28 0.6671032999999995465 0.05963160000
       30 0.6868400999999995344 0.05433409000
       33 0.7051663999999997102 0.04950720000
       36 0.72194219999999997839 0.04510912000
       37 0.73763869999999998051 0.04110175000
       39 0.75195149999999999491 0.03745038000
       40 0.76546840000000004878 0.03412339000
      45 0.77797349999999998449 0.03109196000
      46 0.78962140000000002882 0.02832984000
 [30,] 48 0.8005018999999998847 0.02581309000
       51 0.81063169999999995508 0.02351993000
       53 0.82063580000000002634 0.02143048000
       56 0.8302302999999997663 0.01952666000
       64 0.8394663999999994597 0.01779196000
       68 0.8482872999999996636 0.01621138000
       68 0.85659459999999998381 0.01477120000
       74 0.86430919999999999970 0.01345897000
      79 0.8718432999999998773 0.01226331000
       82 0.87902919999999995504 0.01117387000
       86 0.88572139999999999205 0.01018122000
       90 0.8922061000000000195 0.00927674500
       90 0.89839329999999995024 0.00845262500
       93 0.90406350000000001987 0.00770171700
       98 0.9095613000000001701 0.00701751700
 [45,] 105 0.91467229999999999368 0.00639410100
 [46,] 108 0.9196290000000002976 0.00582606600
 [47.] 111 0.9241964000000002900 0.00530849500
 [48,] 117 0.92845639999999995950 0.00483690300
 [49,] 117 0.93243909999999996518 0.00440720500
 [50.] 119 0.9361152999999998353 0.00401568200
```

R (glmnet): Optimum value at 0.0003

LASSO - FINDING THE BEST LAMBDA

Python (SKLearn) : Plot of λ with MSE

R (glmnet) : Plot of $log(\lambda)$ with MSE

LASSO - CONFUSION TABLE

Python (SKLearn) : Accuracy 91.6186 %

	WALKING	WALKING_UPSTAIRS	WALKING_DOWNSTAIRS	SITTING	STANDING	LAYING
WALKING	537	1	0	0	0	0
WALKING_UPSTAIRS	0	430	38	0	0	2
WALKING_DOWNSTAIRS	0	57	494	0	0	0
SITTING	0	0	0	490	2	16
STANDING	0	0	0	6	402	9
LAYING	0	3	0	0	16	444

R (glmnet) : Accuracy 94.9440 %

ı	nax_Levels	LAYING	SITTING	STANDING	WALKING	WALKING_DOWNSTAIRS	WALKING_UPSTAIRS
	LAYING	535	0	0	0	0	0
	SITTING	0	428	13	0	0	1
	STANDING	2	60	518	0	0	0
%	WALKING	0	0	1	494	4	34
/0	WALKING_DOWNSTAIRS	0	0	0	1	391	4
	WALKING_UPSTAIRS	0	3	0	1	25	432

NEURAL NETWORKS

	WALKING	WALKING_UPSTAIRS	WALKING_DOWNSTAIRS	SITTING	STANDING	LAYING
WALKING	531	4	0	0	0	0
WALKING_UPSTAIRS	0	467	70	0	0	0
WALKING_DOWNSTAIRS	6	19	462	0	0	0
SITTING	0	0	0	487	3	4
STANDING	0	0	0	7	399	1
LAYING	0	1	0	2	18	466

Accuracy – 91.4191 % using Python

Error convergence using Stochastic Gradient Descent and ADAM Convergence using Python

FUTURE WORK: PCA

PCA using Python – Around 100 features cover 90 % of variance

PCA using R – Upto 100 features cover 95 % of variance

LEARNINGS AND CONCLUSIONS

Naïve Bayes does not perform well for this dataset. It may be because of the linear dependence of some columns

Even though Logistic regression without any reduction of features performs slightly better, we may want to go with a reduced model such as Lasso regression for better interpretability

We picked Lasso regression over Ridge regression because it shrinks some coefficients to 0

Principal Component Analysis shows that around 80 to 100 components are enough to explain about 95 % of variance

THANKYOU