Intégration et théorie

de la mesure

Intégrales à paramètre

Question 1/2

Dérivation d'une intégrale à paramètre

$$F(x) = \int_{X} f(x, t) d\mu(t)$$
$$f: I \times (X, \mathcal{A}, \mu) \to \mathbb{C}$$
$$I \text{ intervalle de } \mathbb{R}$$

Réponse 1/2

Si pour tout
$$x \in I$$
, $f(x, \cdot) \in \mathcal{L}^1(\mu)$, $\frac{\partial f}{\partial x}(x_0, t)$ existe μ -pp, il existe $g: X \to \mathbb{R}_+$ intégrable telle que pour tout $(x, t) \in I \times X$, $|f(x, t) - f(x_0, t)| \leq g(t)|x - x_0| \mu$ -pp Alors F est dérivable en x_0 et $F'(x_0) \int_{\mathbf{v}} \frac{\partial f}{\partial x}(x_0, t) \, \mathrm{d}\mu(t)$

Question 2/2

Continuité d'une intégrale à paramètre

$$F(x) = \int_{X} f(x, t) d\mu(t)$$
$$f: I \times (X, \mathcal{A}, \mu) \to \mathbb{C}$$
$$I \text{ intervalle de } \mathbb{R}$$

Réponse 2/2

Si pour tout $x \in I$, $f(x, \cdot)$ est mesurable de (X, \mathcal{A}) dans $(\mathbb{C}, \mathcal{B}(\mathbb{C})), f(\cdot, t)$ est continue en $x_0 \mu$ -pp, il existe $g: X \to \mathbb{R}_+$ intégrable telle que pour tout $(x,t) \in I \times X$, $|f(x,t)| \leq g(t)$ Alors F est continue en x_0