Introduction to Statistics (MAT 283)

Dipti Dubey

Department of Mathematics Shiv Nadar University

Table of Contents

Bivariate Random Variable

PRODUCT MOMENTS OF BIVARIATE RANDOM VARIABLE

CONDITIONAL DISTRIBUTION:

Let X and Y be any two random variables with joint pdf (or pmf) f and marginals f_X and f_Y . The conditional probability density function (or pmf) g of X, given (the event) Y = y, is defined as

$$g(x|y) = \frac{f(x,y)}{f_Y(y)},$$

provided $f_Y(y) > 0$.

CONDITIONAL DISTRIBUTION:

Let X and Y be any two random variables with joint pdf (or pmf) f and marginals f_X and f_Y . The conditional probability density function (or pmf) g of X, given (the event) Y = y, is defined as

$$g(x|y) = \frac{f(x,y)}{f_Y(y)},$$

provided $f_Y(y) > 0$.

Similarly, the conditional probability density function (or pmf) h of Y, given (the event) X = x, is defined as

$$h(y|x) = \frac{f(x,y)}{f_X(x)},$$

provided $f_X(x) > 0$

Example: Let X and Y be discrete random variables with joint probability mass function

$$f(x,y) = \begin{cases} \frac{1}{21}(x+y) & \text{if } x = 1,2,3, y = 1,2\\ 0 & \text{otherwise,} \end{cases}$$

What is the conditional probability mass function of X, given Y=2?

INDEPENDENCE OF RANDOM VARIABLES:

Let X and Y be any two random variables with joint cdf F and marginals F_X and F_Y . The random variables X and Y are independent if and only if

$$F(x,y) = F_X(x)F_Y(y),$$

for all $(x, y) \in \mathbb{R}^2$.

Theorem:

(a) A necessary and sufficient condition for random variables X and Y of the discrete type to be independent is that

$$P(X = x_i, Y = y_i) = P(X = x_i)P(Y = y_i)$$

for all $(x_i, y_i) \in R_X \times R_Y$.

(b) Two random variables X and Y of the continuous type are independent if and only if

$$f(x,y) = f_X(x)f_Y(y)$$

for all $(x, y) \in \mathbb{R}^2$, where f, f_X , f_Y , respectively, are the joint and marginal pdfs of X and Y.

Example: Let X and Y be continuous random variables with joint pdf

$$f(x,y) = \begin{cases} e^{-(x+y)} & \text{if } 0 < x, y < \infty \\ 0 & \text{otherwise,} \end{cases}$$

Are X and Y independent?

Theorem: Let X and Y be independent random variables and $\phi, \psi : \mathbb{R} \to \mathbb{R}$ are Borel measurable functions. Then the random variables $\phi(X)$ and $\psi(Y)$ are also independent.

Proof: We have

$$P(\phi(X) \le x, \psi(Y) \le y) = P(X \in \phi^{-1}(-\infty, x], Y \in \psi^{-1}(-\infty, y])$$

$$= P(X \in \phi^{-1}(-\infty, x]) \ P(Y \in \psi^{-1}(-\infty, y])$$

$$= P(\phi(X) \le x) \ P(\psi(Y) \le y).$$

Hence the proof.

IID Random Variables:

The random variables X and Y are said to be independent and identically distributed (IID) if and only if they are independent and have the same distribution.

Table of Contents

Bivariate Random Variable

PRODUCT MOMENTS OF BIVARIATE RANDOM VARIABLE

PRODUCT MOMENT ABOUT THE ORIGIN:

Let X and Y be any two random variables with joint pdf or pmf f. The product moment of X and Y about the origin, denoted by E(XY), is defined as

$$E(XY) = \begin{cases} \sum_{x \in R_X} \sum_{y \in R_Y} xy \ f(x,y) & \text{if } X, \ Y \text{ are discrete} \\ \\ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy \ f(x,y) dx dy & \text{if } X, \ Y \text{ are continuous,} \end{cases}$$

provided $E(XY) < \infty$.

COVARIANCE: The covariance between X and Y , denoted by Cov(X,Y) (or σ_{XY}), is defined as

$$Cov(X, Y) = E((X - \mu_X)(Y - \mu_Y))$$

where μ_X and μ_Y are mean of X and Y respectively.

COVARIANCE: The covariance between X and Y , denoted by Cov(X,Y) (or σ_{XY}), is defined as

$$Cov(X, Y) = E((X - \mu_X)(Y - \mu_Y))$$

where μ_X and μ_Y are mean of X and Y respectively.

• For an arbitrary random variable, the product moment and covariance may or may not exist. Further, note that unlike variance, the covariance between two random variables may be negative.

Theorem: Let X and Y be any two random variables. Then

$$Cov(X, Y) = E(XY) - E(X)E(Y).$$

Proof:

$$Cov(X, Y) = E((X - \mu_X)(Y - \mu_Y))$$

$$= E(XY - \mu_X Y - \mu_Y X + \mu_X \mu_Y)$$

$$= E(XY) - \mu_X E(Y) - \mu_Y E(X) + \mu_X \mu_Y$$

$$= E(XY) - \mu_X \mu_Y - \mu_Y \mu_X + \mu_X \mu_Y$$

$$= E(XY) - \mu_X \mu_Y$$

$$= E(XY) - E(X)E(Y).$$

Corollary: $Cov(X, X) = \sigma_X^2$.

Proof:

EXAMPLE: Let X and Y be discrete random variables with joint pmf

$$f(x,y) = \begin{cases} \frac{x+2y}{18} & \text{for} \quad x = 1,2; y = 1,2\\ 0 & \text{otherwise}, \end{cases}$$

What is the covariance σ_{XY} between X and Y.

Theorem: If X and Y are any two random variables and a, b, c, and d are real constants, then

$$Cov(aX + b, cY + d) = ac\ Cov(X, Y).$$

Theorem: If X and Y are any two random variables and a, b, c, and d are real constants, then

$$Cov(aX + b, cY + d) = ac\ Cov(X, Y).$$

Proof: We have

$$Cov(aX + b, cY + d) = E((aX + b)(cY + d)) - E(aX + b)E(cY + d)$$

$$= E(acXY + adX + bcY + bd)$$

$$- (aE(X) + b)(cE(Y) + d)$$

$$= acE(XY) + adE(X) + bcE(Y) + bd$$

$$- [acE(X)E(Y) + adE(X) + bcE(Y) + bd]$$

$$= ac[E(XY) - E(X)E(Y)]$$

= ac Cov(X, Y).

EXAMPLE: If the product moment of X and Y is 3 and the mean of X and Y are both equal to 2, then what is the covariance of the random variables 2X + 10 and $-\frac{5}{2}Y + 3$?

Theorem: If X and Y are independent random variables, then

$$E(XY) = E(X)E(Y).$$

Proof: Let us assume that X and Y are continuous. Therefore

$$E(XY) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy \ f(x, y) dxdy$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy \ f_X(x) f_Y(y) dxdy$$

$$= \left(\int_{-\infty}^{\infty} x \ f_X(x) dx \right) \ \left(\int_{-\infty}^{\infty} y \ f_Y(y) dy \right)$$

$$= E(X)E(Y).$$

If X and Y are discrete, then replace the integrals by appropriate sums to prove the same result.

Corollary: If X and Y are independent random variables, then Cov(X,Y)=0.

EXAMPLE: Let the random variables X and Y have the joint pmf

$$f(x,y) = \begin{cases} \frac{1}{4} & \text{if } (x,y) = \{(0,1), (0,-1), (1,0), (-1,0)\} \\ 0 & \text{otherwise,} \end{cases}$$

What is the covariance of X and Y? Are the random variables X and Y independent?

	Y=-1	Y=0	Y=1	P(X=x)	
X= -1	0	$\frac{1}{4}$	0	$\frac{1}{4}$	
X= 0	$\frac{1}{4}$	0	$\frac{1}{4}$	$\frac{2}{4}$	
X= 1	0	$\frac{1}{4}$	0	$\frac{1}{4}$	
P(Y=y)	$\frac{1}{4}$	<u>2</u> 4	$\frac{1}{4}$		

Theorem: Let X and Y be any two random variables and let a and b be any two real numbers. Then

$$Var(aX + bY) = a^{2}Var(X) + b^{2}Var(Y) + 2abCov(X, Y).$$

Theorem: Let X and Y be any two random variables and let a and b be any two real numbers. Then

$$Var(aX + bY) = a^{2}Var(X) + b^{2}Var(Y) + 2abCov(X, Y).$$

Proof

$$Var(aX + bY) = E([aX + bY - E(aX + bY)]^{2})$$

$$= E([aX + bY - aE(X) - bE(Y)]^{2})$$

$$= E([a(X - E(X)) + b(Y - E(Y))]^{2})$$

$$= E(a^{2}(X - E(X))^{2} + b^{2}(Y - E(Y))^{2} + 2ab(X - E(X))(Y - E(Y)))$$

$$= a^{2}E([X - E(X)]^{2}) + b^{2}E([Y - E(Y)]^{2}) + 2ab E[(X - E(X))(Y - E(Y))]$$

$$= a^{2}Var(X) + b^{2}Var(Y) + 2ab Cov(X, Y).$$

• In case of three random variables X, Y, Z, we have

$$Var(X + Y + Z) = Var(X) + Var(Y) + Var(Z)$$
$$+ 2Cov(X, Y) + 2Cov(Y, Z) + 2Cov(Z, X)$$