ACM SIGCOMM 2017

Credit-Scheduled Delay-Bounded Congestion Control for Datacenters

Inho Cho, Keon Jang*, Dongsu Han

Datacenter Network

Small Latency

< 100 *μs*

Shallow Buffer

< 30 MB for ToR

High Bandwidth

10/40 ~ 100 Gbps

Large Scale

> 10,000 machines

Datacenter Network

Small Latency

< 100 μs

High Bandwidth

10/40 ~ 100 Gbps

Shallow Buffer

< 30 MB for ToR

Large Scale

> 10,000 machines

Challenge with small BDP

BDP*($100\mu s$, 40Gbps) ≈ 300 MTUs

N Senders

* BDP: Bandwidth-delay Product

Rate-based CC + incast traffic

Rate-based CC + incast traffic

Rate-based CC vs. credit-based CC

DCTCP

Credit-based Approach

Prior Work with Bounded Queue

Prior Work with Bounded Queue

Prior Work with Bounded Queue

- Credit-based
 Flow Control
 InfiniBand
 RoCE/DCQCN
 FastPass
- How can we get the benefits of credit-based flow control on Ethernet?
- Does not scale
 to datacenter
 Requires switch
 support
 Head of line
 Global time sync
 Single point of failure

Goal & Our Approach

Goal

To achieve **bounded queue** even with heavy incast using **Ethernet switches**.

ExpressPass

Proactive end-to-end credit-based congestion control using unreliable credits.

ExpressPassEnd host behavior

ExpressPassEnd host behavior

Switch behavior

Senders

Receivers

Switch behavior

Credit-scheduled data transmission

Challenges

	Challenges	Techniques to address		
٢	Signaling overhead	Piggybacking to handshake packets		
$\left\{ \right.$	Non-zero queueing	Bounded queue		
	Credit waste	Credit feedback control		
	Fair drop on switch	Jitter, variable-sized credits		
	Path symmetry	Deterministic ECMP, packet level loa balancing		
	Multiple traffic classes	Prioritizing credits rather than data		

Signaling Overhead

 $\max(buffer) = C * \{\max(delay) - \min(delay)\}$

^{*} Trident+ (10G), Trident II (40G), Tomahawk (100G)

Credit Waste

Credit Feedback Control

Proactive Congestion Control

Prevents the congestion <u>before</u> actual congestion happens using credits.

Cheap credit drop

We can increase rate aggressively.

Bandwidth probing is cheap.

Convergence can be faster.

Credit Waste & Convergence Time

Level of Aggressiveness

Level of Aggressiveness

Credit Waste & Convergence Time

Level of Aggressiveness

Level of Aggressiveness

Credit Waste & Convergence Time

Level of Aggressiveness

Level of Aggressiveness

Evaluation Setup

Testbed setup

- Dumbbell topology
- Implementation on SoftNIC
- 12 hosts (Xeon E3/E5) connected to single ToR (Quanta T3048)
- Each host has 10Gbps x 1port

NS-2 Simulation Setup

- Fat-tree topology
- 192 hosts / 32 ToR / 16 aggr. / 8 core switches
- Each host has 10Gbps x 1port

Evaluation

- (1) Does ExpressPass provides low & bounded queueing with realistic workloads?
- (2) Is the convergence fast and stable?
- (3) How low & bounded queuing and fast & stable convergence translate into the flow completion time?

Realistic Workloads

	Data Mining	Web Search	Cache Follower	Web Server
0 – 10KB (S)	78%	49%	50%	63%
10 - 100KB (M)	5%	3%	3%	18%
100KB-1MB (L)	8%	18%	18%	19%
1MB- (XL)	9%	20%	29%	-
Average flow size	7.41MB	1.6MB	701KB	64KB

Realistic Workloads

	Data Mining	Web Search	Cache Follower	Web Server
0 – 10KB (S)	78%	49%	50%	63%
10 - 100KB (M)	5%	3%	3%	18%
100KB-1MB (L)	8%	18%	18%	19%
1MB- (XL)	9%	20%	29%	-
Average flow size	7.41MB	1.6MB	701KB	64KB

Bounded Queue

cache follower workload / load 0.2 - 0.4 / 0KB ~ (All Size)

Low Average Queue

cache follower workload / load 0.6 / 0KB -

Low Average Queue

cache follower workload / load 0.6 / 0KB -

Fast & Stable Convergence

Fast & Stable Convergence

cache follower workload / load 0.6 / 0 - 10KB

cache follower workload / load 0.6 / 0 - 10KB

cache follower workload / load 0.6 / 1MB -

cache follower workload / load 0.6 / 1MB -

Conclusion

- ExpressPass is end-to-end, credit-scheduled, and delay-bounded congestion control for datacenter.
- ExpressPass propose a new **proactive** datacenter congestion control.
- Our evaluation on testbed and ns-2 simulation show that ExpressPass achieves
 - (1) Low & bounded queueing
 - (2) Fast & stable convergence
 - (3) Short flow completion time especially for small flows

Thanks

Happy to answer your questions