

Constraining the Astrophysics of the Early Universe using the SARAS Instrumentation

Harry T. J. Bevins

Cavendish Astrophysics, University of Cambridge

In collaboration with; Eloy de Lera Acedo, Anastasia Fialkov, Will Handley, Saurabh Singh, Ravi Subrahmanyan and Rennan Barkana

Paper: https://arxiv.org/abs/2201.11531

The SARAS2 Data

Singh et al 2017, 2018

Previously:

This Work:

Polynomial Foregrounds Maximally Smooth Foregrounds (maxsmooth)

Previously:

This Work:

Polynomial Foregrounds

Maximally Smooth Foregrounds

(maxsmooth)

Combined
Systematic/Foreground
Modelling

Separate Systematic/Foreground
Modelling

Previously:	This Work:

Polynomial Foregrounds — Maximally Smooth Foregrounds (maxsmooth)

Combined
Systematic/Foreground
Modelling

Separate Systematic/Foreground
Modelling

Likelihood
Ratio/Frequentist Approach
Nested Sampling (PolyChord)

Duarrianalan

Previously:	This Work:
Polynomial Foregrounds	Maximally Smooth Foregrounds (maxsmooth)
Combined Systematic/Foreground Modelling	Separate Systematic/Foreground Modelling
Likelihood Ratio/Frequentist Approach	Nested Sampling (PolyChord)
264 Physical Signal	Broad Study of Physical Signals

This Martin

→ (globalemu)

Models

Duarrianalan

Gaussian Noise w/ Different σ

This Work:
Maximally Smooth Foregrounds (maxsmooth)
Separate Systematic/Foreground
Modelling
Nested Sampling (PolyChord)
Broad Study of Physical Signals
—▶ (globalemu)

This Martin

► Models

System Attributes

Gaussian Noise based on

Foreground Modelling

$$T_{\rm fg}^* = T_{\rm fg} \eta_t$$

$$\frac{d^m T_{\rm fg}^*}{dv^m} \le 0 \text{ or } \frac{d^m T_{\rm fg}^*}{dv^m} \ge 0$$

$$T_{\text{fg}}^* = \sum_{k=0}^{N-1} a_k (\nu - \nu_0)^k$$

Noise Modelling

$$\log \mathcal{L} = \sum_{i} \left(-\frac{1}{2} \log(2\pi\sigma^2) - \frac{1}{2} \left(\frac{T_{A}(\nu_i) - T_{M}(\nu_i)}{\sigma} \right)^2 \right)$$

Noise	σ	Prior	Prior Type
Model			
Constant	A_{σ}	$A_{\sigma} = 10^{-3} - 10^{-1} \mathrm{mK}$	Log Uniform
Frequency	$\left(\begin{array}{c} \lambda & \left(\begin{array}{c} \nu \end{array}\right)^{-\beta_{\sigma}} \end{array}\right)$	$A_{\sigma} = 10^{-4} - 10^{-1} \mathrm{mK}$	Log Uniform
Damped	$A_{\sigma}\left(\frac{\nu}{\nu_0}\right)$	$\beta_{\sigma} = 0 - 5$	Uniform
Relative	$A_{\sigma} W(\nu)$	$A_{\sigma} = 10^{-2} - 10^{-1} \mathrm{mK}$	Log Uniform
Weights			

Table 2. The tested frequency dependent and independent standard deviation models for the assumed Gaussian noise in the SARAS2 data. In the frequency damped noise model ν_0 is the central frequency in the band. The origin of the relative weights, $W(\nu)$, is discussed in section 3.1.

Signal Modelling

	Parameter	Prior	Prior Type
	τ	0.026 - 0.1 (STA) / 0.035 -	
		0.077 (ERB)	Uniform
	α	1.3 (STA only)	
Signal	Signal E _{min}	0.1 - 3 keV (STA only)	
Signal	R_{mfp}	30 (STA) / 40 (ERB) Mpc	
	f _*	0.001 - 0.5	
	V_c	4.2 - 100 km/s	Log-Uniform
	f_X	0.0001 - 1000	
	$f_{\rm radio}$	1 - 99500 (ERB only)	

Models from Reis et al. 2020 and 2021

Results

Results

$$P_{\text{combined}}(\theta|D, M) = \sum_{i} w_{i} P_{i}(\theta|D, M)$$
 $w_{i} = Z_{i} / \sum_{j} Z_{j}$

Results – Radio Galaxy Excess Background

Conclusions

- SARAS2 has provided constraints on the magnitude of any excess radio background from high redshift radio galaxies above the CMB.
- We have identified a systematic in the SARAS2 data (probably ground emission).
- The workflow used here could be applied to REACH data...

SARAS2 Foreground Modelling

Reproducibility

"Standard" Signals

Kavli Meeting/REACH All Hands – Harry Bevins (htjb2@cam.ac.uk)

Results – In the Context of HERA

Kavli Meeting/REACH All Hands – Harry Bevins (htjb2@cam.ac.uk)