On Embeddings for Numerical Features in Tabular Deep Learning

Overview

Dobrosovestnov Ivan Anastasia Rudenko Ekaterina Strakhova

MLP in tabular data

Contextual Embeddings in tabular data

Contextual Embeddings in tabular data

Purposes

- research of embedding schemes for numerical features in tabular DL
- test new solution on public benchmarks
- achieve the new state-of-the-art of tabular DL

PLE for numerical features (MLP)

1. Binarization

$$B_t^i = [b_{t-1}^i, b_t^i)$$

2. Embedding

$$\text{PLE}(x) = [e_1, \dots, e_T] \in \mathbb{R}^T$$

$$e_t = \begin{cases} 0, & x < b_{t-1} \text{ AND } t > 1 \\ 1, & x \ge b_t \text{ AND } t < T \\ \frac{x - b_{t-1}}{b_t - b_{t-1}}, & \text{otherwise} \end{cases}$$

PLE (peicewise linear encoding)

PLE for numerical features (Transformer)

1. Binarization

$$B_t^i = [b_{t-1}^i, b_t^i)$$

2. Embedding

$$\operatorname{PLE}(x) = [e_1, \dots, e_T] \in \mathbb{R}^T$$

$$e_t = \begin{cases} 0, & x < b_{t-1} \text{ AND } t > 1\\ 1, & x \ge b_t \text{ AND } t < T\\ \frac{x - b_{t-1}}{b_t - b_{t-1}}, & \text{otherwise} \end{cases}$$

- Positional Encoding
 - Weighted embedding

$$f_{i}\left(x\right)=v_{0}+\sum_{t=1}^{T}e_{t}\cdot v_{t}=\operatorname{Linear}\left(\operatorname{PLE}\left(x\right)\right)$$

Embeddings for numerical features (benchmark)

Synthetic GBDT-friendly dataset

Periodic Activation Functions for numerical features

$$f_i(x) = \operatorname{Periodic}(x) = \operatorname{concat}[\sin(v), \cos(v)],$$

 $v = [2\pi c_1 x, \dots, 2\pi c_k x]$

(c_i are trainable parameters initialized from N(0, σ))

Binarization

- obtaining bins from quantiles

$$b_t = Q_{\frac{t}{T}} \left(\{ x_i^{j(num)} \}_{j \in J_{train}} \right)$$

- building target-aware bins

$$b_0^i = \min_{j \in J_{train}} x_i^j \qquad b_T^i = \max_{j \in J_{train}} x_i^j$$

Benchmark datasets

- Gesture Phase Prediction (GE)
- Churn Modeling (CH)
- Eye Movements (EY)
- California Housing (CA)
- House 16H (HO)
- Adult (AD)
- Otto Group Product Classification (OT)
- Higgs (the version with 98K samples available at the OpenML repository (Vanschoren et al., 2014))

- Facebook Comments (FA)
- Santander Customer Transaction
 Prediction (SA)
- Covertype (CO)
- Microsoft (MI)

Benchmark datasets

Name	Embedding function (f_i)
L	Linear
LR	ReLU o Linear
LRLR	ReLU o Linear o ReLU o Linear
Q	PLE_q
Q-T	$ ext{Linear} \circ ext{PLE}_{ ext{q}}$
Q-LR	$\mathtt{ReLU} \circ \mathtt{Linear} \circ \mathtt{PLE}_\mathtt{q}$
Q-LRLR	ReLU o Linear o ReLU o Linear o PLE $_{ m q}$
T	PLEt
T-L	${ t Linear \circ PLE_t}$
T-LR	$\mathtt{ReLU} \circ \mathtt{Linear} \circ \mathtt{PLE}_\mathtt{t}$
T-LRLR	$\texttt{ReLU} \circ \texttt{Linear} \circ \texttt{ReLU} \circ \texttt{Linear} \circ \texttt{PLE}_{\texttt{t}}$
Р	Periodic
PL	Linear o Periodic
PLR	ReLU o Linear o Periodic
PLRLR	ReLU o Linear o ReLU o Linear o Periodic
AutoDis	Linear o SoftMax o Linear o LReLU o Linear

PLE_q - PLE quantiles

PLE_t - PLE target aware bins

Benchmark datasets (PLE)

	GE ↑	СН↑	EY↑	CA ↓	НО↓	AD↑	ОТ↑	НІ↑	FB↓	SA↑	CO↑	MI↓
MLP	0.632	0.856	0.615	0.495	3.204	0.854	0.818	0.720	5.686	0.912	0.964	0.747
MLP-Q	0.653	0.854	0.604	0.464	3.163	0.859	0.816	0.721	5.766	0.922	0.968	0.750
MLP-T	0.647	0.861	0.682	0.447	3.149	0.864	0.821	0.720	5.577	0.923	0.967	0.749
MLP-Q-LR	0.646	0.857	0.693	0.455	3.184	0.863	0.811	0.720	5.394	0.923	0.969	0.747
MLP-T-LR	0.640	0.861	0.685	0.439	3.207	0.868	0.818	0.724	5.508	0.924	0.968	0.747
Transformer-L	0.632	0.860	0.731	0.465	3.239	0.858	0.817	0.725	5.602	0.924	0.971	0.746
Transformer-Q-L	0.659	0.856	0.753	0.451	3.319	0.867	0.812	0.729	5.741	0.924	0.973	0.747
Transformer-T-L	0.663	0.861	0.775	0.454	3.197	0.871	0.817	0.726	5.803	0.924	0.974	0.747
Transformer-Q-LR	0.659	0.857	0.796	0.448	3.270	0.867	0.812	0.723	5.683	0.923	0.972	0.748
Transformer-T-LR	0.665	0.860	0.789	0.442	3.219	0.870	0.818	0.729	5.699	0.924	0.973	0.747

Benchmark datasets (periodic activation functions)

	GE↑	СН↑	EY↑	CA↓	НО↓	AD↑	ОТ↑	HI↑	FB↓	SA ↑	CO↑	MI↓
MLP	0.632	0.856	0.615	0.495	3.204	0.854	0.818	0.720	5.686	0.912	0.964	0.747
MLP-P	0.631	0.860	0.701	0.489	3.129	0.869	0.807	0.723	5.845	0.923	0.968	0.747
MLP-PL	0.641	0.859	0.866	0.467	3.113	0.868	0.819	0.727	5.530	0.924	0.969	0.746
MLP-PLR	0.674	0.857	0.920	0.467	3.050	0.870	0.819	0.728	5.525	0.924	0.970	0.746
Transformer-L												
Transformer-PLR	0.646	0.863	0.940	0.464	3.162	0.870	0.814	0.730	5.760	0.924	0.972	0.746

Benchmark datasets

					1000000000				19-00-0	MESO SATE AND			r man a man a man a man a man a
	GE ↑	CH↑	EY↑	CA ↓	НО↓	AD↑	OT ↑	HI↑	FB↓	SA ↑	CO ↑	MI↓	Avg. Rank
CatBoost	0.692	0.861	0.757	0.430	3.093	0.873	0.825	0.727	5.226	0.924	0.967	0.741	6.8 ± 4.9
XGBoost	0.683	0.859	0.738	0.434	3.152	0.875	0.827	0.726	5.338	0.919	0.969	0.742	9.0 ± 5.7
MLP	0.665	0.856	0.637	0.486	3.109	0.856	0.822	0.727	5.616	0.913	0.968	0.746	15.6 ± 2.4
MLP-LR	0.679	0.861	0.694	0.463	3.012	0.859	0.826	0.731	5.477	0.924	0.972	0.744	10.2 ± 4.4
MLP-Q-LR	0.682	0.859	0.732	0.433	3.080	0.867	0.818	0.724	5.144	0.924	0.974	0.745	10.7 ± 4.6
MLP-T-LR	0.673	0.861	0.729	0.435	3.099	0.870	0.821	0.727	5.409	0.924	0.973	0.746	10.3 ± 3.8
MLP-PLR	0.700	0.858	0.968	0.453	2.975	0.874	0.830	0.734	5.388	0.924	0.975	0.743	4.9 ± 4.8
ResNet	0.690	0.861	0.667	0.483	3.081	0.856	0.821	0.734	5.482	0.918	0.968	0.745	12.1 ± 4.7
ResNet-LR	0.672	0.862	0.735	0.450	2.992	0.859	0.822	0.733	5.415	0.923	0.971	0.743	9.8 ± 4.3
ResNet-Q-LR	0.674	0.859	0.794	0.427	3.066	0.868	0.815	0.729	5.309	0.923	0.976	0.746	9.2 ± 4.8
ResNet-T-LR	0.683	0.862	0.817	0.425	3.030	0.872	0.822	0.731	5.471	0.923	0.975	0.744	7.8 ± 3.6
ResNet-PLR	0.691	0.861	0.925	0.443	3.040	0.874	0.825	0.734	5.400	0.924	0.975	0.743	5.2 ± 2.3
Transformer-L	0.668	0.861	0.769	0.455	3.188	0.860	0.824	0.727	5.434	0.924	0.973	0.743	10.6 ± 3.3
Transformer-LR	0.666	0.861	0.776	0.446	3.193	0.861	0.824	0.733	5.430	0.924	0.973	0.743	9.4 ± 4.1
Transformer-Q-LR	0.690	0.857	0.842	0.425	3.143	0.868	0.818	0.726	5.471	0.924	0.975	0.744	8.5 ± 5.5
Transformer-T-LR	0.686	0.862	0.833	0.423	3.149	0.871	0.823	0.733	5.515	0.924	0.976	0.744	7.2 ± 4.6
Transformer-PLR	0.686	0.864	0.977	0.449	3.091	0.873	0.823	0.734	5.581	0.924	0.975	0.743	6.0 ± 4.5

Results

- MLP can benefit from embedding modules
- the simple LR module leads to modest, but consistent improvements when applied to MLP
- The piecewise linear encoding is often beneficial for both types of architectures (MLP and Transformer) and the profit can be significant
- For most datasets, embeddings for numerical features can provide noticeable improvements