CLAIMS

1. (+)-Trans-isomers of (1-phosphonomethoxy-2-alkylcyclopropyl)methyl nucleoside derivatives represented by the following formula (1):

5

10

15

wherein,

 R^1 represents C_1 - C_7 alkyl,

R² and R³ independently of one another represent hydrogen, or represent C₁-C₄-alkyl optionally substituted by one or more substituents selected from a group consisting of halogen, C₁-C₄-alkoxy, phenoxy, C₇-C₁₀-phenylalkoxy, and C₂-C₅-acyloxy, or represent C₂-C₇-acyl, C₆-C₁₂-aryl, C₁-C₇-alkylaminocarbonyl, di(C₁-C₇-alkyl)aminocarbonyl or C₃-C₆-cycloalkylaminocarbonyl, or represent -(CH₂)m-OC(=O)-R⁴ wherein m denotes an integer of 1 to 12 and R⁴ represents C₁-C₁₂-alkyl, C₂-C₇-alkenyl, C₁-C₅-alkoxy, C₁-C₇-alkylamino, di(C₁-C₇-alkyl)amino, C₃-C₆-cycloalkyl, or 3- to 6-membered heterocycle having 1 or 2 hetero atoms selected from a group consisting of nitrogen and oxygen,

Q represents a group having the following formulae:

wherein,

5

10

 X^1 , X^2 , X^3 and X^4 independently of one another represent hydrogen, amino, hydroxy, or halogen, or represent C_1 - C_7 -alkyl, C_1 - C_5 -alkoxy, allyl, hydroxy- C_1 - C_7 -alkyl, phenyl, or phenoxy, each of which is optionally substituted by nitro or C_1 - C_5 -alkoxy, or represent C_6 - C_{10} -arylthio which is optionally substituted by nitro, amino, C_1 - C_6 -alkyl, or C_1 - C_4 -alkoxy, or represent C_6 - C_{12} -arylamino, C_1 - C_7 -alkylamino, di(C_1 - C_7 -alkyl)amino, C_3 - C_6 -cycloalkylamino, or a structure of wherein n denotes an integer of 1 or 2 and Y^1 represents C_1 - C_7 -alkyl or C_6 - C_{12} -aryl), pharmaceutically acceptable salts, hydrates or solvates thereof.

- 2. The compounds of claim 1 wherein the pharmaceutically acceptable salt is salt with sulfuric acid, methanesulfonic acid or hydrohalic acid.
- 15 3. The compounds of claim 1 wherein

R¹ represents C₁-C₃ alkyl,

 R^2 and R^3 independently of one another represent hydrogen, or represent C_1 - C_4 -alkyl optionally substituted by one or more substituents selected from a group consisting of fluorine, C_1 - C_4 -alkoxy, and phenoxy, or represent -(CH₂)m-OC(=O)- R^4 wherein m denotes an integer of 1 to 12, and R^4 represents C_1 - C_5 -alkyl or C_1 - C_5 -alkoxy,

Q represents Wherein, X¹ represents hydrogen, hydroxy, amino or 4-methoxyphenylthio, or 4-nitrophenylthio, and X² represents hydrogen or amino.

4. The compounds of claim 1 which are selected from the group consisting of the compounds described in the following Tables 1a and 1b:

10 Table 1a

x ¹				
N X N X2				
R1 O P-OR'	(+)-trans-optic	cal isomer(enanti	omer)	
COM. NO.	R ¹	R ² & R ³	X ¹	X ²
1	CH₃	Н	OH	NH ₂
2	CH ₃	Н	Н	NH ₂
3	CH ₃	Н	NH ₂	Н
4	CH ₃	Н	s—————————————————————————————————————	NH ₂
5	CH ₃	Н	C1	NH ₂
6	CH ₃	*.\\ *.\.\ *.\\	н	NH ₂
7	CH ₃	×.أ.ل	Н	NH ₂
8	СН₃	,	S——OMe	NH ₂
9	CH ₃	×,l,\ ×,l,<	s—————————————————————————————————————	NH ₂
10	СН₃		NH ₂	Н
11	СН₃	×Ĵ.L	NH ₂	Н
12	C ₂ H ₅	Н	ОН	NH ₂
13	C ₂ H ₅	Н	Н	NH ₂
14	C ₂ H ₅	Н	NH ₂	Н
15	C₂H₅	Н	S———OMe	NH ₂

Table 1b

16	C ₂ H ₅	Н	CI	NH ₂
17	C ₂ H ₅	×°°,	Н	NH ₂
18	C ₂ H ₅	×,1,1	Н	NH ₂
19	C₂H ₅	×.\.\ ×.\.\	NH ₂	Н
20	C₂H₅		NH ₂	Н
21	C₂H₅	\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.	s—————————————————————————————————————	NH ₂
22	C₂H₅	×°, ,	S———OMe	NH ₂
23	C ₃ H ₇	Н	ОН	NH ₂
24	C ₃ H ₇	Н	Н	NH ₂
25	C ₃ H ₇	Н	Cl	NH ₂
26	C ₃ H ₇	Н	NH ₂	Н
27	C₃H ₇	Н	s———оме	NH ₂
28	C₃H ₇	×۰ ^۱ /	Н	NH ₂
29	C₃H ₇	×°°L°Y	Н	NH ₂
30	C ₃ H ₇	×,1,1 ×,1,1	NH ₂	Н
31	C₃H ₇	×.أ.↓	NH ₂	Н
32	C ₃ H ₇	×.1\	S—COMe	Н
33	C₃H ₇	×°°L°Y	S——OMe	Н
34	CH ₃	iso-propyl	Cı	NH ₂
35	C₂H₅	iso-propyl	CI	NH ₂

5. A process for preparing a compound represented by the following formula (2):

$$R^3O$$
 R^3O
 R^2
 R^1
 R^1
 R^2
 R^3
 R^3

in which R¹, R² and R³ are defined as in claim 1, and L represents methanesulfonyloxy, p-toluenesulfonyloxy, or halogen, characterized in that

(a) an ethylglycolate, the alcohol group of which is protected, as represented by the
 following formula (6):

in which P¹ represents an alcohol-protecting group selected from a group consisting of benzyl(Bn), tetrahydropiranyl(THP), t-butydiphenylsilyl(TBDPS) and t-butyldimethylsilyl(TBDMS), is reacted with alkyl magnesium halide represented by the following formula (7):

$$R^7$$
-MgX (7)

10

in which R^7 represents C_3 - C_7 alkyl and X represents halogen, in the presence of titanium tetraisopropoxide[Ti(OiPr)₄],

(b) the resulting two cyclopropanol diastereoisomers represented by the following formulae (8) and (9):

$$P'O$$
OH (±)-trans-isomer (8)

in which R¹ is defined as in claim 1 and P¹ is defined as previously described, are resolved with a silica gel column,

(c) each compound resolved in the step (b) is subjected to an ether-forming reaction with a compound represented by the following formula (10):

$$R^2O_{R^3O}^{O}$$

in which R² and R³ are defined as in claim 1, and L is defined as in claim 5, in the presence of base to produce a phosphonate compound represented by the following formula (11) or (12):

$$P^{1}O$$
 $P^{-}OR^{3}$
 $O^{*}OR^{2}$
 $O^{*}OR^{$

in which R^1 , R^2 and R^3 are defined as in claim 1, and P^1 is defined as previously described, and

(d) an alcohol-protecting group of the resulting compound of formula (11) or
 (12) is removed and a leaving group (L) is introduced to produce a compound represented by the following formula (2a) or (2b):

in which R^1 , R^2 and R^3 are defined as in claim 1, and L is defined as previously described.

6. A compound represented by the following formula (8):

in which R^1 is defined as in claim 1, and P^1 is defined as in claim 5, and stereoisomers thereof.

7. A process for preparing stereoisomer of the compound of formula (1) as defined in claim

1 characterized in that a compound represented by the following formula (4a) or (4b):

in which R^1 is defined as in claim 1, L is defined as in claim 5, and R^5 and R^6 independently of one another represent C_1 - C_7 -alkyl, is reacted with a compound represented by the following formula (3):

QH (3)

5

10

15

in which Q is defined as in claim 1, and each compound thus obtained is resolved with a chiral column or chiral reagents to produce (+), (-) two optical isomers, each of which is present as an enantiomer enriched isomer, and then each of them is treated with

trimethylsilylbromide(TMSBr) to produce the corresponding (+), (-) two optical isomers of a compound represented by the following formula (1a):

in which R¹ and Q are defined as in claim 1, and if necessary, groups R^{2'} and R^{3'} are introduced into the compound thus obtained to produce the corresponding optical isomers of a compound represented by the following formula (1b):

in which R^1 and Q are defined as in claim 1, and $R^{2'}$ and $R^{3'}$ represent R^2 and R^3 with the exception of hydrogen, respectively.

8. A process for preparing stereoisomer of the compound of formula (1) as defined in claim1 characterized in that a compound represented by the following formula (13) or (14):

in which R^1 , R^2 and R^3 are defined as in claim 1, that is obtained by removing an alcohol-protecting group in a compound represented by the following formula (11) or (12):

$$\mathbb{R}^{1}$$
 \mathbb{O} $\mathbb{P}^{-\mathbb{O}\mathbb{R}^{3}}$ $\mathbb{O}^{\mathbb{P}^{2}}$ (±)-trans-isomer (11)

in which R¹, R² and R³ are defined as in claim 1, and P¹ is defined as in claim 5, is resolved with a hydrolase (lipase) to produce enantiomer enriched compounds represented by the following formulae (13a) and (13b) or (14a) or (14b):

HO

$$P^{-}OR^{2}$$

O'OR³ (+)-trans-isomer (13a)

HO
$$P - OR^2$$
O'OR³
(-)-trans-isomer (13b)

in which R¹, R² and R³ are defined as in claim 1, and further an alcohol group in the compound of formula (13a), (13b), (14a) or (14b) thus obtained is replaced with a leaving group (L) to produce a compound represented by the formula (2aa), (2ab), (2ba) or (2bb):

$$R^{1}$$
 $O \cap_{P} \cap OR^{2}$
 $O' \cap OR^{3}$ (+)-trans-isomer (2aa)

$$R^{1}$$
 $O \cap_{P} \cap OR^{2}$
 $O \cap OR^{3}$
 O

in which R^1 , R^2 and R^3 are defined as in claim 1, and L is defined as in claim 5, and the resulting compound is reacted with a compound represented by the formula (3):

10 QH (3)

5

in which Q is defined as in claim 1, to produce the enantiomer enriched compound of formula (1).

- 9. A process for preparing stereoisomer of the compound of formula (1) as defined in claim1 characterized in that
- aa) an alcohol-protecting group (P²) is introduced into (+)(methylenecyclopropyl)carbinol or (-)-(methylenecyclopropyl)carbinol, whose absolute
 configuration is known,
 - bb) the resulting compound is subjected to dihydroxylation reaction,
- cc) an alcohol-protecting group (P¹) is introduced into the primary hydroxy group in the compound obtained in the above bb) step and an alcohol-protecting group (P³) is introduced into the tertiary hydroxy group to produce a compound represented by the formula (15a), (15b), (16a) or (16b):

$$OP^2$$
 (+)-trans-isomer (15a)

15

5

$$OP^2$$
 (+)-cis-isomer (16a)

in which P¹ is defined as in claim 7, P² represents benzyl, benzoyl, 4-methoxybenzyl, methyloxybenzyl, methyloxymethyl or trityl and P³ represents 1-methoxyacetyl, acetyl or 2-(trimethylsilyl)-1-ethanesulfony,

- dd) the protecting group (P^2) in the resulting compound is removed selectively, the leaving group (L) is introduced, and the compound thus obtained is subjected to a reduction reaction or substituted with C_1 - C_7 -alkyl group,
- ee) the protecting group (P³) in the compound thus obtained in the above dd) step is removed to produce a compound represented by the following formula (8a), (8b), (9a) or (9b):

$$P^{1}O$$
OH (+)-trans-isomer (8a)

in which R¹ is defined as in claim 1, and P¹ is defined as in claim 5,

ff) the resulting compound in the above step ee) is reacted with a phosphonate compound represented by the following formula (10):

in which R² and R³ are defined as in claim 1, and L is defined as in claim 5, and
the protecting group (P¹) of the compound thus obtained is removed to produce a
compound represented by the following formula (13a), (13b), (14a) or (14b):

in which R¹, R² and R³ are defined as in claim 1,

gg) an alcohol group of the resulting compound is replaced with the leaving group (L) to produce a compound represented by the following formula (2aa), (2ab), (2ba) or (2bb):

in which $R^1,\,R^2$ and R^3 are defined as in claim 1, and L is defined as in claim 5, and

hh) the resulting compound is reacted with a compound represented by the following formula (3):

10 QH (3)

5

in which Q is defined as in claim 1, to produce the enantiomer enriched compound of formula (1).

10. A composition for the treatment of viral diseases, which comprises as an active ingredient (+)-trans-isomer of (1-phosphonomethoxy-2-alkylcyclopropyl)methyl nucleoside derivative of formula (1) as defined in claim 1, pharmaceutically acceptable salt, hydrate, or solvate thereof together with the pharmaceutically acceptable carrier.

5

11. A composition for the treatment of hepatitis B, which comprises as an active ingredient (+)-trans-isomer of (1-phosphonomethoxy-2-alkylcyclopropyl)methyl nucleoside derivative of formula (1) as defined in claim 1, pharmaceutically acceptable salt, hydrate, or solvate thereof together with the pharmaceutically acceptable carrier.