

复变函数与积分变换

张神星 (合肥工业大学)

办公室: 翡翠科教楼 B1810 东

Email: zhangshenxing@hfut.edu.cn

课件地址: https://zhangshenxing.github.io

第二章 解析函数

- 1 解析函数的概念
- 2 函数解析的充要条件
- 3 初等函数

第一节 解析函数的概念

- ■可导的函数
- ■可微的函数
- 解析的函数

由于 $\mathbb C$ 和 $\mathbb R$ 一样是域,因此我们可以像一元实变函数一样去定义复变函数的导数和微分。

由于 $\mathbb C$ 和 $\mathbb R$ 一样是域,因此我们可以像一元实变函数一样去定义复变函数的导数和微分。

定义

设 w = f(z) 的定义域是区域 $D, z_0 \in D$.

由于 $\mathbb C$ 和 $\mathbb R$ 一样是域,因此我们可以像一元实变函数一样去定义复变函数的导数和微分。

定义

设 w = f(z) 的定义域是区域 $D, z_0 \in D$. 如果极限

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$$

存在,

由于 $\mathbb C$ 和 $\mathbb R$ 一样是域,因此我们可以像一元实变函数一样去定义复变函数的导数和微分。

定义

设 w = f(z) 的定义域是区域 $D, z_0 \in D$. 如果极限

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$$

存在, 则称 f(z) 在 z_0 可导.

由于 $\mathbb C$ 和 $\mathbb R$ 一样是域,因此我们可以像一元实变函数一样去定义复变函数的导数和微分.

定义

设 w = f(z) 的定义域是区域 $D, z_0 \in D$. 如果极限

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$$

存在, 则称 f(z) 在 z_0 可导. 这个极限值称为 f(z) 在 z_0 的导数,

1/49

由于 $\mathbb C$ 和 $\mathbb R$ 一样是域,因此我们可以像一元实变函数一样去定义复变函数的导数和微分.

定义

设 w = f(z) 的定义域是区域 $D, z_0 \in D$. 如果极限

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$$

存在, 则称 f(z) 在 z_0 可导. 这个极限值称为 f(z) 在 z_0 的导数, 记作

$$f'(z_0) = \frac{\mathrm{d}w}{\mathrm{d}z}|_{z=z_0} = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}.$$

由于 $\mathbb C$ 和 $\mathbb R$ 一样是域,因此我们可以像一元实变函数一样去定义复变函数的导数和微分.

定义

设 w = f(z) 的定义域是区域 $D, z_0 \in D$. 如果极限

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$$

存在, 则称 f(z) 在 z_0 可导. 这个极限值称为 f(z) 在 z_0 的导数, 记作

$$f'(z_0) = \frac{\mathrm{d}w}{\mathrm{d}z}|_{z=z_0} = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}.$$

如果 f(z) 在区域 D 内处处可导, 称 f(z) 在 D 内可导.

典型例题: 线性函数的不可导性

例

函数 f(z) = x + 2yi 在哪些点处可导?

典型例题:线性函数的不可导性

例

函数 f(z) = x + 2yi 在哪些点处可导?

$$f'(z) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}$$

函数 f(z) = x + 2yi 在哪些点处可导?

$$f'(z) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}$$
$$= \lim_{\Delta z \to 0} \frac{(x + \Delta x) + 2(y + \Delta y)i - (x + 2yi)}{\Delta z}$$

函数 f(z) = x + 2yi 在哪些点处可导?

$$f'(z) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}$$

$$= \lim_{\Delta z \to 0} \frac{(x + \Delta x) + 2(y + \Delta y)i - (x + 2yi)}{\Delta z}$$

$$= \lim_{\Delta z \to 0} \frac{\Delta x + 2\Delta yi}{\Delta x + \Delta yi}.$$

函数 f(z) = x + 2yi 在哪些点处可导?

觯

$$f'(z) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}$$

$$= \lim_{\Delta z \to 0} \frac{(x + \Delta x) + 2(y + \Delta y)i - (x + 2yi)}{\Delta z}$$

$$= \lim_{\Delta z \to 0} \frac{\Delta x + 2\Delta yi}{\Delta x + \Delta yi}.$$

当 $\Delta x = 0, \Delta y \rightarrow 0$ 时, 上式 $\rightarrow 2$;

函数 f(z) = x + 2yi 在哪些点处可导?

觯

$$f'(z) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}$$

$$= \lim_{\Delta z \to 0} \frac{(x + \Delta x) + 2(y + \Delta y)i - (x + 2yi)}{\Delta z}$$

$$= \lim_{\Delta z \to 0} \frac{\Delta x + 2\Delta yi}{\Delta x + \Delta yi}.$$

当 $\Delta x = 0, \Delta y \to 0$ 时, 上式 $\to 2$; 当 $\Delta y = 0, \Delta x \to 0$ 时, 上式 $\to 1$.

典型例题:线性函数的不可导性

例

函数 f(z) = x + 2yi 在哪些点处可导?

觯

$$f'(z) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}$$

$$= \lim_{\Delta z \to 0} \frac{(x + \Delta x) + 2(y + \Delta y)i - (x + 2yi)}{\Delta z}$$

$$= \lim_{\Delta z \to 0} \frac{\Delta x + 2\Delta yi}{\Delta x + \Delta yi}.$$

当 $\Delta x=0, \Delta y\to 0$ 时, 上式 $\to 2$; 当 $\Delta y=0, \Delta x\to 0$ 时, 上式 $\to 1$. 因此该极限不存在, f(z) 处处不可导.

练习

函数 f(z) = x - yi 在哪些点处可导?

练习

函数 $\overline{f(z)} = x - yi$ 在哪些点处可导?

答案

处处不可导.

练习

函数 $\overline{f(z)} = x - yi$ 在哪些点处可导?

答案

处处不可导.

例

 $\overline{\dot{X}} f(z) = z^2$ 的导数.

练习

函数 f(z) = x - yi 在哪些点处可导?

答案

处处不可导.

例

求 $f(z) = z^2$ 的导数.

$$f'(z) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}$$

练习

函数 f(z) = x - yi 在哪些点处可导?

答案

处处不可导.

例

求 $f(z) = z^2$ 的导数.

$$f'(z) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z} = \lim_{\Delta z \to 0} \frac{(z + \Delta z)^2 - z^2}{\Delta z}$$

练习

函数 f(z) = x - yi 在哪些点处可导?

答案

处处不可导.

例

求 $f(z) = z^2$ 的导数.

$$f'(z) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z} = \lim_{\Delta z \to 0} \frac{(z + \Delta z)^2 - z^2}{\Delta z} = \lim_{\Delta z \to 0} (2z + \Delta z) = 2z.$$

和一元实变函数情形类似, 我们有如下求导法则:

和一元实变函数情形类似, 我们有如下求导法则:

定理

• (c)' = 0, 其中 c 为复常数;

和一元实变函数情形类似, 我们有如下求导法则:

- (c)' = 0, 其中 c 为复常数;
- $(z^n)' = nz^{n-1}$, 其中 n 为整数;

和一元实变函数情形类似, 我们有如下求导法则:

- (c)' = 0, 其中 c 为复常数;
- $(z^n)' = nz^{n-1}$, 其中 n 为整数;
- $(f \pm g)' = f' \pm g', \quad (cf)' = cf';$

和一元实变函数情形类似, 我们有如下求导法则:

- (c)' = 0, 其中 c 为复常数;
- $(z^n)' = nz^{n-1}$, 其中 n 为整数;
- $(f \pm g)' = f' \pm g'$, (cf)' = cf';
- $(fg)' = f'g + fg', \quad \left(\frac{f}{g}\right)' = \frac{f'g fg'}{g^2};$

和一元实变函数情形类似, 我们有如下求导法则:

- (c)' = 0, 其中 c 为复常数;
- $(z^n)' = nz^{n-1}$, 其中 n 为整数;
- $(f \pm g)' = f' \pm g'$, (cf)' = cf';
- $(fg)' = f'g + fg', \quad \left(\frac{f}{g}\right)' = \frac{f'g fg'}{g^2};$
- $[f(g(z))]' = f'[g(z)] \cdot g'(z);$

和一元实变函数情形类似, 我们有如下求导法则:

- (c)' = 0, 其中 c 为复常数;
- $(z^n)' = nz^{n-1}$, 其中 n 为整数;
- $(f \pm g)' = f' \pm g'$, (cf)' = cf';
- $(fg)' = f'g + fg', \quad \left(\frac{f}{g}\right)' = \frac{f'g fg'}{g^2};$
- $[f(g(z))]' = f'[g(z)] \cdot g'(z);$
- $g'(z) = \frac{1}{f'(w)}, g = f^{-1}, w = g(z).$

定理

若 f(z) 在 z_0 可导, 则 f(z) 在 z_0 连续.

定理

若 f(z) 在 z_0 可导, 则 f(z) 在 z_0 连续.

证明

该定理的证明和实变量情形完全相同.

定理

若 f(z) 在 z_0 可导, 则 f(z) 在 z_0 连续.

证明

该定理的证明和实变量情形完全相同. 设

$$\Delta w = f(z_0 + \Delta z) - f(z_0),$$

定理

若 f(z) 在 z_0 可导, 则 f(z) 在 z_0 连续.

证明

该定理的证明和实变量情形完全相同. 设

$$\Delta w = f(z_0 + \Delta z) - f(z_0),$$

则

$$\lim_{\Delta z \to 0} \Delta w = \lim_{\Delta z \to 0} \frac{\Delta w}{\Delta z} \cdot \Delta z$$

定理

若 f(z) 在 z_0 可导, 则 f(z) 在 z_0 连续.

证明

该定理的证明和实变量情形完全相同. 设

$$\Delta w = f(z_0 + \Delta z) - f(z_0),$$

则

$$\lim_{\Delta z \to 0} \Delta w = \lim_{\Delta z \to 0} \frac{\Delta w}{\Delta z} \cdot \Delta z$$
$$= \lim_{\Delta z \to 0} \frac{\Delta w}{\Delta z} \cdot \lim_{\Delta z \to 0} \Delta z$$

定理

若 f(z) 在 z_0 可导, 则 f(z) 在 z_0 连续.

证明

该定理的证明和实变量情形完全相同. 设

$$\Delta w = f(z_0 + \Delta z) - f(z_0),$$

则

$$\lim_{\Delta z \to 0} \Delta w = \lim_{\Delta z \to 0} \frac{\Delta w}{\Delta z} \cdot \Delta z$$
$$= \lim_{\Delta z \to 0} \frac{\Delta w}{\Delta z} \cdot \lim_{\Delta z \to 0} \Delta z = f'(z_0) \cdot 0 = 0.$$

复变函数的微分

复变函数的微分也和一元实变函数情形类似.

定义

如果存在常数 A 使得函数 w = f(z) 满足

$$\Delta w = f(z_0 + \Delta z) - f(z_0) = A\Delta z + o(\Delta z),$$

其中 $o(\Delta z)$ 表示 Δz 的高阶无穷小量,

定义

如果存在常数 A 使得函数 w = f(z) 满足

$$\Delta w = f(z_0 + \Delta z) - f(z_0) = A\Delta z + o(\Delta z),$$

其中 $o(\Delta z)$ 表示 Δz 的高阶无穷小量, 则称 f(z) 在 z_0 处可微,

定义

如果存在常数 A 使得函数 w = f(z) 满足

$$\Delta w = f(z_0 + \Delta z) - f(z_0) = A\Delta z + o(\Delta z),$$

其中 $o(\Delta z)$ 表示 Δz 的高阶无穷小量, 则称 f(z) 在 z_0 处可微, 称 $A\Delta z$ 为 f(z) 在 z_0 的微分, 记作 $\mathrm{d} w = A\Delta z$.

定义

如果存在常数 A 使得函数 w = f(z) 满足

$$\Delta w = f(z_0 + \Delta z) - f(z_0) = A\Delta z + o(\Delta z),$$

其中 $o(\Delta z)$ 表示 Δz 的高阶无穷小量, 则称 f(z) 在 z_0 处可微, 称 $A\Delta z$ 为 f(z) 在 z_0 的微分, 记作 $\mathrm{d} w = A\Delta z$.

和一元实变函数情形一样,复变函数的可微和可导是等价的,且 $\mathrm{d}w=f'(z_0)\Delta z,\,\mathrm{d}z=\Delta z.$

定义

如果存在常数 A 使得函数 w = f(z) 满足

$$\Delta w = f(z_0 + \Delta z) - f(z_0) = A\Delta z + o(\Delta z),$$

其中 $o(\Delta z)$ 表示 Δz 的高阶无穷小量, 则称 f(z) 在 z_0 处可微, 称 $A\Delta z$ 为 f(z) 在 z_0 的微分, 记作 $\mathrm{d} w = A\Delta z$.

和一元实变函数情形一样, 复变函数的可微和可导是等价的, 且

$$\mathrm{d}w = f'(z_0)\Delta z, \, \mathrm{d}z = \Delta z. \, \text{ if } \, \mathrm{d}w = f'(z_0)\,\mathrm{d}z, \, f'(z_0) = \frac{\mathrm{d}w}{\mathrm{d}z}.$$

定义

定义

• 若函数 f(z) 在 z_0 的一个邻域内处处可导, 则称 f(z) 在 z_0 解析.

定义

- 若函数 f(z) 在 z_0 的一个邻域内处处可导, 则称 f(z) 在 z_0 解析.
- 若 f(z) 在区域 D 内处处解析, 则称 f(z) 在 D 内解析, 或称 f(z) 是 D 内的一个解析函数.

定义

- 若函数 f(z) 在 z_0 的一个邻域内处处可导, 则称 f(z) 在 z_0 解析.
- 若 f(z) 在区域 D 内处处解析, 则称 f(z) 在 D 内解析, 或称 f(z) 是 D 内的一个解析函数.
- <math><math>f(z) 在 z_0 不解析, 则称 z_0 为 f(z) 的一个奇点.

- 若函数 f(z) 在 z_0 的一个邻域内处处可导, 则称 f(z) 在 z_0 解析.
- 若 f(z) 在区域 D 内处处解析, 则称 f(z) 在 D 内解析, 或称 f(z) 是 D 内的一个解析函数.
- <math><math>f(z) <math>c0 <math>A<math>f(z) <math>f(z) <math>f(z) <math>f(z) <math>f(z)

由于区域 D 是一个开集, 其中的任意 $z_0 \in D$ 均存在一个包含在 D 的邻域.

- 若函数 f(z) 在 z_0 的一个邻域内处处可导, 则称 f(z) 在 z_0 解析.
- 若 f(z) 在区域 D 内处处解析, 则称 f(z) 在 D 内解析, 或称 f(z) 是 D 内的一个解析函数.
- <math><math>f(z) <math>c0 <math>A<math>f(z) <math>f(z) <math>f(z) <math>f(z) <math>f(z)

由于区域 D 是一个开集, 其中的任意 $z_0 \in D$ 均存在一个包含在 D 的邻域. 所以 f(z) 在 D 内解析和在 D 内可导是等价的.

- 若函数 f(z) 在 z_0 的一个邻域内处处可导, 则称 f(z) 在 z_0 解析.
- 若 f(z) 在区域 D 内处处解析, 则称 f(z) 在 D 内解析, 或称 f(z) 是 D 内的一个解析函数.
- <math><math>f(z) <math>c0 <math>A<math>f(z) <math>f(z) <math>f(z) <math>f(z) <math>f(z)

由于区域 D 是一个开集, 其中的任意 $z_0 \in D$ 均存在一个包含在 D 的邻域. 所以 f(z) 在 D 内解析和在 D 内可导是等价的.

如果 f(z) 在 z_0 解析, 则 f(z) 在 z_0 的一个邻域内处处可导, 从而在该邻域内解析.

- 若函数 f(z) 在 z_0 的一个邻域内处处可导, 则称 f(z) 在 z_0 解析.
- 若 f(z) 在区域 D 内处处解析, 则称 f(z) 在 D 内解析, 或称 f(z) 是 D 内的一个解析函数.
- 若 f(z) 在 z₀ 不解析, 则称 z₀ 为 f(z) 的一个奇点.

由于区域 D 是一个开集, 其中的任意 $z_0 \in D$ 均存在一个包含在 D 的邻域. 所以 f(z) 在 D 内解析和在 D 内可导是等价的.

如果 f(z) 在 z_0 解析, 则 f(z) 在 z_0 的一个邻域内处处可导, 从而在该邻域内解析. 因此 f(z) 解析点全体是一个开集.

练习

单选题: (2021 年 B 卷) 函数 f(z) 在点 z_0 处解析是 f(z) 在该点可导的 ()

(A) 充分条件

(B) 必要条件

(C) 充要条件

(D) 既非充分也非必要条件

练习

单选题: (2021 年 B 卷) 函数 f(z) 在点 z_0 处解析是 f(z) 在该点可导的 ()

(A) 充分条件

(B) 必要条件

(C) 充要条件

(D) 既非充分也非必要条件

答案

解析要求在 20 的一个邻域内都可导才行.

练习

单选题: (2021 年 B 卷) 函数 f(z) 在点 z_0 处解析是 f(z) 在该点可导的 (A).

(A) 充分条件

(B) 必要条件

(C) 充要条件

(D) 既非充分也非必要条件

答案

解析要求在 20 的一个邻域内都可导才行.

研究函数 $f(z) = |z|^2$ 的解析性.

研究函数 $f(z) = |z|^2$ 的解析性.

解

由于

$$\frac{f(z+\Delta z)-f(z)}{\Delta z}=\frac{(z+\Delta z)(\overline{z}+\overline{\Delta z})-z\overline{z}}{\Delta z}=\overline{z}+\overline{\Delta z}+z\frac{\Delta x-\Delta yi}{\Delta x+\Delta yi},$$

研究函数 $f(z) = |z|^2$ 的解析性.

解

由于

$$\frac{f(z+\Delta z)-f(z)}{\Delta z}=\frac{(z+\Delta z)(\overline{z}+\overline{\Delta z})-z\overline{z}}{\Delta z}=\overline{z}+\overline{\Delta z}+z\frac{\Delta x-\Delta yi}{\Delta x+\Delta yi},$$

若 z=0, 则当 $\Delta z \rightarrow 0$ 时该极限为 0.

研究函数 $f(z) = |z|^2$ 的解析性.

解

由于

$$\frac{f(z+\Delta z)-f(z)}{\Delta z}=\frac{(z+\Delta z)(\overline{z}+\overline{\Delta z})-z\overline{z}}{\Delta z}=\overline{z}+\overline{\Delta z}+z\frac{\Delta x-\Delta yi}{\Delta x+\Delta yi},$$

 $\ddot{z} = 0$, 则当 $\Delta z \rightarrow 0$ 时该极限为 0.

若 $z \neq 0$, 则当 $\Delta y = 0, \Delta x \rightarrow 0$ 时该极限为 $\overline{z} + z$;

研究函数 $f(z) = |z|^2$ 的解析性.

解

由于

$$\frac{f(z+\Delta z)-f(z)}{\Delta z} = \frac{(z+\Delta z)(\overline{z}+\overline{\Delta z})-z\overline{z}}{\Delta z} = \overline{z}+\overline{\Delta z}+z\frac{\Delta x-\Delta yi}{\Delta x+\Delta yi},$$

若 z=0, 则当 $\Delta z \to 0$ 时该极限为 0.

若 $z \neq 0$, 则当 $\Delta y = 0$, $\Delta x \rightarrow 0$ 时该极限为 $\overline{z} + z$; 当 $\Delta x = 0$, $\Delta y \rightarrow 0$ 时该极限为 $\overline{z} - z$.

研究函数 $f(z) = |z|^2$ 的解析性.

解

由于

$$\frac{f(z+\Delta z)-f(z)}{\Delta z}=\frac{(z+\Delta z)(\overline{z}+\overline{\Delta z})-z\overline{z}}{\Delta z}=\overline{z}+\overline{\Delta z}+z\frac{\Delta x-\Delta yi}{\Delta x+\Delta yi},$$

若 z=0, 则当 $\Delta z \to 0$ 时该极限为 0.

若 $z \neq 0$, 则当 $\Delta y = 0$, $\Delta x \to 0$ 时该极限为 $\overline{z} + z$; 当 $\Delta x = 0$, $\Delta y \to 0$ 时该极限为 $\overline{z} - z$. 因此此时极限不存在.

研究函数 $f(z) = |z|^2$ 的解析性.

解

由于

$$\frac{f(z+\Delta z)-f(z)}{\Delta z} = \frac{(z+\Delta z)(\overline{z}+\overline{\Delta z})-z\overline{z}}{\Delta z} = \overline{z}+\overline{\Delta z}+z\frac{\Delta x-\Delta yi}{\Delta x+\Delta yi},$$

若 z=0, 则当 $\Delta z \to 0$ 时该极限为 0.

若 $z \neq 0$, 则当 $\Delta y = 0$, $\Delta x \rightarrow 0$ 时该极限为 $\overline{z} + z$; 当 $\Delta x = 0$, $\Delta y \rightarrow 0$ 时该极限为 $\overline{z} - z$. 因此此时极限不存在.

12-2. 因此此时 极限不存在.

故 f(z) 仅在 z=0 处可导, 从而处处不解析.

第二节 函数解析的充要条件

- 柯西-黎曼方程
- 柯西-黎曼方程的应用

通过对一些简单函数的分析,我们会发现可导的函数往往可以直接表达为 z 的函数的形式,而不解析的往往包含 x,y,\overline{z} 等内容.

通过对一些简单函数的分析, 我们会发现可导的函数往往可以直接表达为 z 的函数的形式, 而不解析的往往包含 x,y,\overline{z} 等内容. 这种现象并不是孤立的.

通过对一些简单函数的分析,我们会发现可导的函数往往可以直接表达为 z 的函数的形式,而不解析的往往包含 x,y,\overline{z} 等内容. 这种现象并不是孤立的. 我们来研究二元实变量函数的可微性与复变函数可导的关系.

通过对一些简单函数的分析,我们会发现可导的函数往往可以直接表达为 z 的函数的形式,而不解析的往往包含 x,y,\overline{z} 等内容. 这种现象并不是孤立的. 我们来研究二元实变量函数的可微性与复变函数可导的关系.

为了简便我们用 u_x, u_y, v_x, v_y 等记号表示偏导数.

设 f 在 z 处可导, f'(z) = a + bi,

设
$$f$$
 在 z 处可导, $f'(z) = a + bi$, 则

$$\Delta u + i\Delta v = \Delta f = (a+bi)(\Delta x + i\Delta y) + o(\Delta z).$$

设
$$f$$
 在 z 处可导, $f'(z) = a + bi$, 则

$$\Delta u + i\Delta v = \Delta f = (a + bi)(\Delta x + i\Delta y) + o(\Delta z).$$

展开可知

$$\Delta u = a\Delta x - b\Delta y + o(\Delta z),$$

$$\Delta v = b\Delta x + a\Delta y + o(\Delta z).$$

设
$$f$$
 在 z 处可导, $f'(z) = a + bi$, 则

$$\Delta u + i\Delta v = \Delta f = (a + bi)(\Delta x + i\Delta y) + o(\Delta z).$$

展开可知

$$\Delta u = a\Delta x - b\Delta y + o(\Delta z),$$

$$\Delta v = b\Delta x + a\Delta y + o(\Delta z).$$

由于
$$o(\Delta z) = o(|\Delta z|) = o(\sqrt{x^2 + y^2}),$$

设
$$f$$
 在 z 处可导, $f'(z) = a + bi$, 则

$$\Delta u + i\Delta v = \Delta f = (a+bi)(\Delta x + i\Delta y) + o(\Delta z).$$

展开可知

$$\Delta u = a\Delta x - b\Delta y + o(\Delta z),$$

$$\Delta v = b\Delta x + a\Delta y + o(\Delta z).$$

由于
$$o(\Delta z) = o(|\Delta z|) = o(\sqrt{x^2 + y^2})$$
, 因此

$$u, v$$
 可微且 $u_x = v_y = a, v_x = -u_y = b.$

反过来,假设 u,v 可微且 $u_x=v_y,v_x=-u_y$.

反过来,假设 u,v 可微且 $u_x=v_y,v_x=-u_y$. 由全微分公式

$$du = u_x dx + u_y dy$$

$$du = u_x dx + u_y dy = u_x dx - v_x dy,$$

$$du = u_x dx + u_y dy = u_x dx - v_x dy,$$

$$dv = v_x dx + v_y dy$$

$$du = u_x dx + u_y dy = u_x dx - v_x dy,$$

$$dv = v_x dx + v_y dy = v_x dx + u_x dy,$$

$$du = u_x dx + u_y dy = u_x dx - v_x dy,$$

$$dv = v_x dx + v_y dy = v_x dx + u_x dy,$$

$$df = d(u + iv) = (u_x + iv_x) dx + (-v_x + iu_x) dy$$

$$du = u_x dx + u_y dy = u_x dx - v_x dy,$$

$$dv = v_x dx + v_y dy = v_x dx + u_x dy,$$

$$df = d(u + iv) = (u_x + iv_x) dx + (-v_x + iu_x) dy$$

$$= (u_x + iv_x) d(x + iy)$$

$$du = u_x dx + u_y dy = u_x dx - v_x dy,$$

$$dv = v_x dx + v_y dy = v_x dx + u_x dy,$$

$$df = d(u + iv) = (u_x + iv_x) dx + (-v_x + iu_x) dy$$

$$= (u_x + iv_x) d(x + iy)$$

$$= (u_x + iv_x) dz = (v_y - iu_y) dz.$$

反过来, 假设 u,v 可微且 $u_x=v_y,v_x=-u_y$. 由全微分公式

$$du = u_x dx + u_y dy = u_x dx - v_x dy,$$

$$dv = v_x dx + v_y dy = v_x dx + u_x dy,$$

$$df = d(u + iv) = (u_x + iv_x) dx + (-v_x + iu_x) dy$$

$$= (u_x + iv_x) d(x + iy)$$

$$= (u_x + iv_x) dz = (v_y - iu_y) dz.$$

故

$$f(z)$$
 在 z 处可导, 且 $f'(z) = u_x + iv_x = v_y - iu_y$.

可导的等价刻画: 柯西-黎曼方程

由此我们得到

可导的等价刻画: 柯西-黎曼方程

由此我们得到

柯西-黎曼方程 (C-R 方程)

 $\overline{f(z)}$ 在 z 可导当且仅当在 z 点 u,v 可微且满足 C-R 方程:

$$u_x = v_y, \quad v_x = -u_y.$$

此时

$$f'(z) = u_x + iv_x = v_y - iu_y.$$

可导的等价刻画: 柯西-黎曼方程

由此我们得到

柯西-黎曼方程 (C-R 方程)

f(z) 在 z 可导当且仅当在 z 点 u,v 可微且满足 C-R 方程:

$$u_x = v_y, \quad v_x = -u_y.$$

此时

$$f'(z) = u_x + iv_x = v_y - iu_y.$$

注意到
$$x = \frac{1}{2}z + \frac{1}{2}\overline{z}, y = -\frac{i}{2}z + \frac{i}{2}\overline{z}.$$

注意到 $x=\frac{1}{2}z+\frac{1}{2}\overline{z}, y=-\frac{i}{2}z+\frac{i}{2}\overline{z}.$ 仿照着二元实函数偏导数在变量替换下的变换规则, 我们定义 f 对 z 和 \overline{z} 的偏导数为

$$\begin{cases} \frac{\partial f}{\partial z} = \frac{\partial x}{\partial z} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial z} \frac{\partial f}{\partial y} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y}, \\ \frac{\partial f}{\partial \overline{z}} = \frac{\partial x}{\partial \overline{z}} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial \overline{z}} \frac{\partial f}{\partial y} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y}. \end{cases}$$

注意到 $x=\frac{1}{2}z+\frac{1}{2}\overline{z}, y=-\frac{i}{2}z+\frac{i}{2}\overline{z}.$ 仿照着二元实函数偏导数在变量替换下的变换规则, 我们定义 f 对 z 和 \overline{z} 的偏导数为

$$\begin{cases} \frac{\partial f}{\partial z} = \frac{\partial x}{\partial z} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial z} \frac{\partial f}{\partial y} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y}, \\ \frac{\partial f}{\partial \overline{z}} = \frac{\partial x}{\partial \overline{z}} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial \overline{z}} \frac{\partial f}{\partial y} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y}. \end{cases}$$

如果把 z,\overline{z} 看成独立变量, 那么当 f 在 z 处可导时, $\mathrm{d}f=f'\,\mathrm{d}z$. 当 f 关于 z,\overline{z} 可微时 (即 u,v 可微),

$$\mathrm{d}f = \frac{\partial f}{\partial z} \, \mathrm{d}z + \frac{\partial f}{\partial \overline{z}} \, \mathrm{d}\overline{z}.$$

注意到 $x=\frac{1}{2}z+\frac{1}{2}\overline{z}, y=-\frac{i}{2}z+\frac{i}{2}\overline{z}$. 仿照着二元实函数偏导数在变量替换下的变换规则, 我们定义 f 对 z 和 \overline{z} 的偏导数为

$$\begin{cases} \frac{\partial f}{\partial z} = \frac{\partial x}{\partial z} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial z} \frac{\partial f}{\partial y} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y}, \\ \frac{\partial f}{\partial \overline{z}} = \frac{\partial x}{\partial \overline{z}} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial \overline{z}} \frac{\partial f}{\partial y} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y}. \end{cases}$$

如果把 z,\overline{z} 看成独立变量, 那么当 f 在 z 处可导时, $\mathrm{d}f=f'\,\mathrm{d}z$. 当 f 关于 z,\overline{z} 可微时 (即 u,v 可微),

$$\mathrm{d}f = \frac{\partial f}{\partial z} \, \mathrm{d}z + \frac{\partial f}{\partial \overline{z}} \, \mathrm{d}\overline{z}.$$

所以 f 在 z 处可导当且仅当 u,v 可微且 $\frac{\partial f}{\partial \overline{z}}=0$.

由于二元函数的偏导数均连续蕴含可微, 因此我们有:

由于二元函数的偏导数均连续蕴含可微, 因此我们有:

定理

由于二元函数的偏导数均连续蕴含可微, 因此我们有:

定理

• 如果 u_x, u_y, v_x, v_y 在 z 处连续, 且满足 C-R 方程, 则 f(z) 在 z 可导.

由于二元函数的偏导数均连续蕴含可微, 因此我们有:

定理

- 如果 u_x, u_y, v_x, v_y 在 z 处连续, 且满足 C-R 方程, 则 f(z) 在 z 可导.
- 如果 u_x, u_y, v_x, v_y 在区域 D 上处处连续, 且满足 C-R 方程, 则 f(z) 在 D 上可导 (从而解析).

例

(1) 函数 $f(z) = \overline{z}$ 在何处可导, 在何处解析?

例

 $\overline{(1)}$ 函数 $f(z) = \overline{z}$ 在何处可导, 在何处解析?

由
$$u = x, v = -y$$
 可知

$$u_x = 1,$$

$$v_x = 0,$$

$$u_y = 0,$$

$$v_y = -1.$$

例

(1) 函数 $f(z) = \overline{z}$ 在何处可导, 在何处解析?

解

由 u=x,v=-y 可知

$$u_x = 1,$$
 $u_y = 0,$ $v_x = 0,$ $v_y = -1.$

因为 $u_x = 1 \neq v_y = -1$, 所以该函数处处不可导, 处处不解析.

例

(1) 函数 $f(z) = \overline{z}$ 在何处可导, 在何处解析?

解

由 u = x, v = -y 可知

$$u_x = 1,$$
 $u_y = 0,$ $v_x = 0,$ $v_y = -1.$

因为 $u_x = 1 \neq v_y = -1$, 所以该函数处处不可导, 处处不解析.

或由
$$\frac{\partial f}{\partial \overline{z}} = 1 \neq 0$$
 看出.

例 (续)

(2) 函数 $f(z) = z \operatorname{Re} z$ 在何处可导, 在何处解析?

例 (续)

(2) 函数 $f(z) = z \operatorname{Re} z$ 在何处可导, 在何处解析?

例 (续)

(2) 函数 $f(z) = z \operatorname{Re} z$ 在何处可导, 在何处解析?

由
$$f(z) = x^2 + ixy, u = x^2, v = xy$$
 可知

$$u_x = 2x,$$

$$v_x = y$$

$$u_y = 0,$$

$$v_y = x$$
.

例 (续)

(2) 函数 $f(z) = z \operatorname{Re} z$ 在何处可导, 在何处解析?

由
$$f(z) = x^2 + ixy, u = x^2, v = xy$$
 可知

$$u_x = 2x,$$
 $u_y = 0,$ $v_x = y,$ $v_y = x.$

由
$$2x = x, 0 = -y$$
 可知只有 $x = y = 0, z = 0$ 满足 C-R 方程.

例 (续)

(2) 函数 $f(z) = z \operatorname{Re} z$ 在何处可导, 在何处解析?

解

由
$$f(z) = x^2 + ixy, u = x^2, v = xy$$
 可知

$$u_x = 2x,$$
 $u_y = 0,$ $v_x = y,$ $v_y = x.$

由 2x = x, 0 = -y 可知只有 x = y = 0, z = 0 满足 C-R 方程. 因此该函数只在 0 可导, 处处不解析且

$$f'(0) = u_x(0) + iv_x(0) = 0.$$

例 (续)

(2) 函数 $f(z) = z \operatorname{Re} z$ 在何处可导, 在何处解析?

解

由 $f(z) = x^2 + ixy, u = x^2, v = xy$ 可知

$$u_x = 2x,$$
 $u_y = 0,$ $v_x = y,$ $v_y = x.$

由 2x=x,0=-y 可知只有 x=y=0,z=0 满足 C-R 方程. 因此该函数只在 0 可导, 处处不解析且

$$f'(0) = u_x(0) + iv_x(0) = 0.$$

或由
$$f = \frac{1}{2}z(z + \overline{z}), \frac{\partial f}{\partial \overline{z}} = \frac{1}{2}z$$
 看出.

例 (续)

(3) 函数 $f(z) = e^x(\cos y + i \sin y)$ 在何处可导, 在何处解析?

例 (续)

(3) 函数 $f(z) = e^x(\cos y + i \sin y)$ 在何处可导, 在何处解析?

解

由 $u = e^x \cos y, v = e^x \sin y$

例 (续)

(3) 函数 $f(z) = e^x(\cos y + i \sin y)$ 在何处可导, 在何处解析?

由
$$u = e^x \cos y, v = e^x \sin y$$
 可知

$$u_x = e^x \cos y,$$

$$v_x = e^x \sin y,$$

$$u_y = -e^x \sin y,$$

$$v_y = e^x \cos y.$$

例 (续)

(3) 函数 $f(z) = e^x(\cos y + i \sin y)$ 在何处可导, 在何处解析?

解

由 $u = e^x \cos y, v = e^x \sin y$ 可知

$$u_x = e^x \cos y,$$
 $u_y = -e^x \sin y,$
 $v_x = e^x \sin y,$ $v_y = e^x \cos y.$

因此该函数处处可导, 处处解析, 且

$$f'(z) = u_x + iv_x = e^x(\cos y + i\sin y) = f(z).$$

例 (续)

(3) 函数 $f(z) = e^x(\cos y + i \sin y)$ 在何处可导, 在何处解析?

解

由 $u = e^x \cos y, v = e^x \sin y$ 可知

$$u_x = e^x \cos y,$$
 $u_y = -e^x \sin y,$
 $v_x = e^x \sin y,$ $v_y = e^x \cos y.$

因此该函数处处可导, 处处解析, 且

$$f'(z) = u_x + iv_x = e^x(\cos y + i\sin y) = f(z).$$

实际上, 这个函数就是复变量的指数函数 e^z .

练习

单选题: (2022 年 A 卷) 下面哪个函数在 z=0 处不可导? (

(A)
$$2x + 3yi$$
 (B) $2x^2 + 3y^2i$

(C)
$$e^x \cos y + ie^x \sin y$$
 (D) $x^2 - xyi$

练习

单选题: (2022 年 A 卷) 下面哪个函数在 z=0 处不可导? (

(A)
$$2x + 3yi$$
 (B) $2x^2 + 3y^2i$

(C)
$$e^x \cos y + ie^x \sin y$$
 (D) $x^2 - xyi$

答案

根据 C-R 方程可知对于 A, $u_x(0) = 2 \neq v_y(0) = 3$.

练习

单选题: (2022 年 A 卷) 下面哪个函数在 z=0 处不可导? (

(A)
$$2x + 3yi$$
 (B) $2x^2 + 3y^2i$

(C)
$$e^x \cos y + ie^x \sin y$$
 (D) $x^2 - xyi$

答案

根据 C-R 方程可知对于 A, $u_x(0) = 2 \neq v_y(0) = 3$. 对于 BD, 各个偏导数在 0 处取 值都是 0.

练习

单选题: (2022 年 A 卷) 下面哪个函数在 z=0 处不可导? (A)

(A) 2x + 3yi (B) $2x^2 + 3y^2i$

(C) $e^x \cos y + ie^x \sin y$ (D) $x^2 - xyi$

答案

根据 C-R 方程可知对于 A, $u_x(0) = 2 \neq v_y(0) = 3$. 对于 BD, 各个偏导数在 0 处取 值都是 0. C 则是处处都可导.

设函数 $f(z) = (x^2 + axy + by^2) + i(cx^2 + dxy + y^2)$ 在复平面内处处解析. 求实常数 a,b,c,d 以及 f'(z).

例

设函数 $f(z)=(x^2+axy+by^2)+i(cx^2+dxy+y^2)$ 在复平面内处处解析. 求实常数 a,b,c,d 以及 f'(z).

解

由于

$$u_x = 2x + ay,$$
 $u_y = ax + 2by,$
 $v_x = 2cx + dy,$ $v_y = dx + 2y,$

例

设函数 $f(z)=(x^2+axy+by^2)+i(cx^2+dxy+y^2)$ 在复平面内处处解析. 求实常数 a,b,c,d 以及 f'(z).

解

由于

$$u_x = 2x + ay,$$
 $u_y = ax + 2by,$ $v_x = 2cx + dy,$ $v_y = dx + 2y,$

因此

$$2x + ay = dx + 2y$$
, $ax + 2by = -(2cx + dy)$,

例

设函数 $f(z)=(x^2+axy+by^2)+i(cx^2+dxy+y^2)$ 在复平面内处处解析. 求实常数 a,b,c,d 以及 f'(z).

解

由于

$$u_x = 2x + ay,$$
 $u_y = ax + 2by,$ $v_x = 2cx + dy,$ $v_y = dx + 2y,$

因此

$$2x + ay = dx + 2y$$
, $ax + 2by = -(2cx + dy)$, $a = d = 2$, $b = c = -1$,

例

设函数 $f(z) = (x^2 + axy + by^2) + i(cx^2 + dxy + y^2)$ 在复平面内处处解析. 求实常数 a,b,c,d 以及 f'(z).

解

由于

$$u_x = 2x + ay,$$
 $u_y = ax + 2by,$
 $v_x = 2cx + dy,$ $v_y = dx + 2y,$

因此

$$2x + ay = dx + 2y, \quad ax + 2by = -(2cx + dy),$$

 $a = d = 2, \quad b = c = -1,$
 $f'(z) = u_x + iv_x = 2x + 2y + i(-2x + 2y) = (2 - 2i)z.$

例

如果 f'(z) 在区域 D 内处处为零, 则 f(z) 在 D 内是一常数.

例

如果 f'(z) 在区域 D 内处处为零, 则 f(z) 在 D 内是一常数.

证明

由于
$$f'(z) = u_x + iv_x = v_y - iu_y = 0$$
,

例

如果 f'(z) 在区域 D 内处处为零, 则 f(z) 在 D 内是一常数.

证明

由于 $f'(z) = u_x + iv_x = v_y - iu_y = 0$, 因此 $u_x = v_x = u_y = v_y = 0$, u, v 均为常数,

例

如果 f'(z) 在区域 D 内处处为零, 则 f(z) 在 D 内是一常数.

证明

由于
$$f'(z) = u_x + iv_x = v_y - iu_y = 0$$
, 因此 $u_x = v_x = u_y = v_y = 0$, u, v 均为常数, 从而 $f(z) = u + iv$ 是常数.

例

如果 f'(z) 在区域 D 内处处为零, 则 f(z) 在 D 内是一常数.

证明

由于
$$f'(z) = u_x + iv_x = v_y - iu_y = 0$$
, 因此 $u_x = v_x = u_y = v_y = 0$, u, v 均为常数, 从而 $f(z) = u + iv$ 是常数.

类似地可以证明, 若 f(z) 在 D 内解析, 则下述条件等价:

例

如果 f'(z) 在区域 D 内处处为零, 则 f(z) 在 D 内是一常数.

证明

由于 $f'(z) = u_x + iv_x = v_y - iu_y = 0$, 因此 $u_x = v_x = u_y = v_y = 0$, u, v 均为常数, 从而 f(z) = u + iv 是常数.

类似地可以证明, 若 f(z) 在 D 内解析, 则下述条件等价:

- f(z) 是一常数,
- |f(z)| 是一常数,
- Re f(z) 是一常数,
- $v = u^2$.

- f'(z) = 0,
- arg f(z) 是一常数,
- Im f(z) 是一常数,
- $u = v^2$.

例

如果 f(z) 解析且 f'(z) 处处非零, 则曲线族 $u(x,y)=c_1$ 和曲线族 $v(x,y)=c_2$ 互相正交.

例

如果 f(z) 解析且 f'(z) 处处非零, 则曲线族 $u(x,y)=c_1$ 和曲线族 $v(x,y)=c_2$ 互相正交.

证明

由于 $f'(z) = u_x - iu_y$, 因此 u_x, u_y 不全为零.

例

如果 f(z) 解析且 f'(z) 处处非零, 则曲线族 $u(x,y)=c_1$ 和曲线族 $v(x,y)=c_2$ 互相正交.

证明

由于 $f'(z) = u_x - iu_y$, 因此 u_x, u_y 不全为零. 对 $u(x,y) = c_1$ 使用隐函数求导法则得 $u_x dx + u_y dy = 0$,

例

如果 f(z) 解析且 f'(z) 处处非零, 则曲线族 $u(x,y)=c_1$ 和曲线族 $v(x,y)=c_2$ 互相正交.

证明

由于 $f'(z) = u_x - iu_y$, 因此 u_x, u_y 不全为零. 对 $u(x,y) = c_1$ 使用隐函数求导法则得 $u_x dx + u_y dy = 0$, 从而 $(u_y, -u_x)$ 是该曲线在 z 处的非零切向量.

例

如果 f(z) 解析且 f'(z) 处处非零, 则曲线族 $u(x,y)=c_1$ 和曲线族 $v(x,y)=c_2$ 互相正交.

证明

由于 $f'(z) = u_x - iu_y$, 因此 u_x, u_y 不全为零. 对 $u(x,y) = c_1$ 使用隐函数求导法则得 $u_x dx + u_y dy = 0$, 从而 $(u_y, -u_x)$ 是该曲线在 z 处的非零切向量. 同理 $(v_y, -v_x)$ 是 $v(x,y) = c_2$ 在 z 处的非零切向量.

例

如果 f(z) 解析且 f'(z) 处处非零, 则曲线族 $u(x,y)=c_1$ 和曲线族 $v(x,y)=c_2$ 互相正交.

证明

由于 $f'(z) = u_x - iu_y$, 因此 u_x, u_y 不全为零. 对 $u(x,y) = c_1$ 使用隐函数求导法则得 $u_x dx + u_y dy = 0$, 从而 $(u_y, -u_x)$ 是该曲线在 z 处的非零切向量. 同理 $(v_y, -v_x)$ 是 $v(x,y) = c_2$ 在 z 处的非零切向量. 由于

$$u_y v_y + u_x v_x = u_y u_x - u_x u_y = 0,$$

例

如果 f(z) 解析且 f'(z) 处处非零, 则曲线族 $u(x,y)=c_1$ 和曲线族 $v(x,y)=c_2$ 互相正交.

证明

由于 $f'(z) = u_x - iu_y$, 因此 u_x, u_y 不全为零. 对 $u(x,y) = c_1$ 使用隐函数求导法则得 $u_x dx + u_y dy = 0$, 从而 $(u_y, -u_x)$ 是该曲线在 z 处的非零切向量.

同理 $(v_y, -v_x)$ 是 $v(x,y) = c_2$ 在 z 处的非零切向量. 由于

$$u_y v_y + u_x v_x = u_y u_x - u_x u_y = 0,$$

因此二者正交.

当 $f'(z_0) \neq 0$ 时,

这是因为 $\mathrm{d}f = f'(z_0)\,\mathrm{d}z$.

这是因为 $df = f'(z_0) dz$. 局部来看 f 把 z_0 附近的点以 z_0 为中心放缩 $f'(z_0)$ 倍 并逆时针旋转 $\arg f'(z_0)$.

这是因为 $\mathrm{d}f=f'(z_0)\,\mathrm{d}z$. 局部来看 f 把 z_0 附近的点以 z_0 为中心放缩 $f'(z_0)$ 倍 并逆时针旋转 $\mathrm{arg}\,f'(z_0)$. 上述例子是该结论关于 w 复平面上曲线族 $u=c_1,v=c_2$ 的一个特殊情形

这是因为 $\mathrm{d}f=f'(z_0)\,\mathrm{d}z$. 局部来看 f 把 z_0 附近的点以 z_0 为中心放缩 $f'(z_0)$ 倍 并逆时针旋转 $\mathrm{arg}\,f'(z_0)$. 上述例子是该结论关于 w 复平面上曲线族 $u=c_1,v=c_2$ 的一个特殊情形.

最后我们来看复数在求导中的一个应用.

设
$$f(z) = \frac{1}{1+z^2}$$
, 则它在除 $z = \pm i$ 外处处解析.

设
$$f(z) = \frac{1}{1+z^2}$$
, 则它在除 $z = \pm i$ 外处处解析. 当 $z = x$ 为实数时,

设 $f(z) = \frac{1}{1+z^2}$, 则它在除 $z = \pm i$ 外处处解析. 当 z = x 为实数时,

$$\left(\frac{1}{1+x^2}\right)^{(n)} = f^{(n)}(x) = \frac{i}{2} \left[\frac{1}{x+i} - \frac{1}{x-i} \right]^{(n)}$$

设 $f(z) = \frac{1}{1+z^2}$, 则它在除 $z = \pm i$ 外处处解析. 当 z = x 为实数时,

$$\left(\frac{1}{1+x^2}\right)^{(n)} = f^{(n)}(x) = \frac{i}{2} \left[\frac{1}{x+i} - \frac{1}{x-i} \right]^{(n)}$$
$$= \frac{i}{2} \cdot (-1)^n n! \left[\frac{1}{(x+i)^{n+1}} - \frac{1}{(x-i)^{n+1}} \right]$$

$$\overline{\mathcal{U}}_{z} = \frac{1}{1+z^2}$$
,则它在除 $z = \pm i$ 外处处解析. 当 $z = x$ 为实数时,

$$\left(\frac{1}{1+x^2}\right)^{(n)} = f^{(n)}(x) = \frac{i}{2} \left[\frac{1}{x+i} - \frac{1}{x-i} \right]^{(n)}$$
$$= \frac{i}{2} \cdot (-1)^n n! \left[\frac{1}{(x+i)^{n+1}} - \frac{1}{(x-i)^{n+1}} \right]$$
$$= (-1)^{n+1} n! \operatorname{Im} \frac{1}{(x+i)^{n+1}}$$

$$\overline{\mathcal{G}}(z) = \frac{1}{1+z^2}$$
,则它在除 $z = \pm i$ 外处处解析. 当 $z = x$ 为实数时,

$$\left(\frac{1}{1+x^2}\right)^{(n)} = f^{(n)}(x) = \frac{i}{2} \left[\frac{1}{x+i} - \frac{1}{x-i} \right]^{(n)}$$

$$= \frac{i}{2} \cdot (-1)^n n! \left[\frac{1}{(x+i)^{n+1}} - \frac{1}{(x-i)^{n+1}} \right]$$

$$= (-1)^{n+1} n! \operatorname{Im} \frac{1}{(x+i)^{n+1}}$$

$$= \frac{(-1)^n n! \sin[(n+1) \operatorname{arccot} x]}{(x^2+1)^{\frac{n+1}{2}}}.$$

第三节 初等函数

- ■指数函数
- 对数函数
- ■幂函数
- 三角函数和反三角函数

指数函数

我们将实变函数中的初等函数推广到复变函数.

指数函数

我们将实变函数中的初等函数推广到复变函数. 多项式函数和有理函数的解析性质已经介绍过, 这里不再重复.

指数函数

我们将实变函数中的初等函数推广到复变函数. 多项式函数和有理函数的解析性质已经介绍过, 这里不再重复. 现在我们来定义指数函数.

指数函数有多种等价的定义方式:

(1) $\exp z = e^x(\cos y + i\sin y)$ (欧拉恒等式);

(1)
$$\exp z = e^x(\cos y + i\sin y)$$
 (欧拉恒等式);

(2)
$$\exp z = \lim_{n \to \infty} \left(1 + \frac{z}{n}\right)^n$$
 (极限定义);

(1)
$$\exp z = e^x(\cos y + i\sin y)$$
 (欧拉恒等式);

(2)
$$\exp z = \lim_{n \to \infty} \left(1 + \frac{z}{n}\right)^n$$
 (极限定义);

(3)
$$\exp z = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots = \lim_{n \to \infty} \sum_{k=0}^{n} \frac{z^k}{k!}$$
 (级数定义);

- (1) $\exp z = e^x(\cos y + i\sin y)$ (欧拉恒等式);
- (2) $\exp z = \lim_{n \to \infty} \left(1 + \frac{z}{n}\right)^n$ (极限定义);
- (3) $\exp z = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots = \lim_{n \to \infty} \sum_{k=0}^{n} \frac{z^k}{k!}$ (级数定义);
- (4) $\exp z$ 是唯一的一个处处解析的函数, 使得当 $z=x\in\mathbb{R}$ 时, $\exp z=e^x$ (e^x 的解析 延拓).

有些人会从 e^x , $\cos x$, $\sin x$ 的泰勒展开

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \cdots$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \cdots$$

形式地带入得到欧拉恒等式 $e^{ix} = \cos x + i \sin x$.

有些人会从 e^x , $\cos x$, $\sin x$ 的泰勒展开

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \cdots$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \cdots$$

形式地带入得到欧拉恒等式 $e^{ix} = \cos x + i \sin x$. 事实上我们可以把它当做复指数函数的定义, 而不是欧拉恒等式的证明.

有些人会从 e^x , $\cos x$, $\sin x$ 的泰勒展开

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \cdots$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \cdots$$

形式地带入得到欧拉恒等式 $e^{ix} = \cos x + i \sin x$. 事实上我们可以把它当做复指数函数的定义, 而不是欧拉恒等式的证明. 我们在学习了幂级数之后就可知(1)和(3)是等价的.

指数函数的定义

$$\lim_{n \to \infty} \left| 1 + \frac{z}{n} \right|^n = \lim_{n \to \infty} \left(1 + \frac{2x}{n} + \frac{x^2 + y^2}{n^2} \right)^{\frac{r}{2}}$$

$$\lim_{n \to \infty} \left| 1 + \frac{z}{n} \right|^n = \lim_{n \to \infty} \left(1 + \frac{2x}{n} + \frac{x^2 + y^2}{n^2} \right)^{\frac{n}{2}} \quad (1^\infty \text{ 型不定式})$$

$$\lim_{n \to \infty} \left| 1 + \frac{z}{n} \right|^n = \lim_{n \to \infty} \left(1 + \frac{2x}{n} + \frac{x^2 + y^2}{n^2} \right)^{\frac{n}{2}} \quad (1^{\infty} \text{ 型不定式})$$

$$= \exp \left[\lim_{n \to \infty} \frac{n}{2} \left(\frac{2x}{n} + \frac{x^2 + y^2}{n^2} \right) \right] = e^x.$$

$$\lim_{n \to \infty} \left| 1 + \frac{z}{n} \right|^n = \lim_{n \to \infty} \left(1 + \frac{2x}{n} + \frac{x^2 + y^2}{n^2} \right)^{\frac{n}{2}} \quad (1^{\infty} \text{ 型不定式})$$

$$= \exp\left[\lim_{n \to \infty} \frac{n}{2} \left(\frac{2x}{n} + \frac{x^2 + y^2}{n^2} \right) \right] = e^x.$$

不妨设 n > |z|, 这样 $1 + \frac{z}{n}$ 落在右半平面,

$$\lim_{n \to \infty} \left| 1 + \frac{z}{n} \right|^n = \lim_{n \to \infty} \left(1 + \frac{2x}{n} + \frac{x^2 + y^2}{n^2} \right)^{\frac{n}{2}} \quad (1^{\infty} \text{ 型不定式})$$

$$= \exp \left[\lim_{n \to \infty} \frac{n}{2} \left(\frac{2x}{n} + \frac{x^2 + y^2}{n^2} \right) \right] = e^x.$$

不妨设 n > |z|, 这样 $1 + \frac{z}{n}$ 落在右半平面,

$$\lim_{n \to \infty} n \arg \left(1 + \frac{z}{n} \right) = \lim_{n \to \infty} n \arctan \frac{y}{n+x}$$

$$\lim_{n \to \infty} \left| 1 + \frac{z}{n} \right|^n = \lim_{n \to \infty} \left(1 + \frac{2x}{n} + \frac{x^2 + y^2}{n^2} \right)^{\frac{n}{2}} \quad (1^{\infty} \text{ 型不定式})$$

$$= \exp\left[\lim_{n \to \infty} \frac{n}{2} \left(\frac{2x}{n} + \frac{x^2 + y^2}{n^2} \right) \right] = e^x.$$

不妨设 n > |z|, 这样 $1 + \frac{z}{n}$ 落在右半平面,

$$\lim_{n \to \infty} n \arg \left(1 + \frac{z}{n} \right) = \lim_{n \to \infty} n \arctan \frac{y}{n+x} = \lim_{n \to \infty} \frac{ny}{n+x} = y.$$

$$\lim_{n \to \infty} \left| 1 + \frac{z}{n} \right|^n = \lim_{n \to \infty} \left(1 + \frac{2x}{n} + \frac{x^2 + y^2}{n^2} \right)^{\frac{n}{2}} \quad (1^{\infty}$$
 型不定式)
$$= \exp \left[\lim_{n \to \infty} \frac{n}{2} \left(\frac{2x}{n} + \frac{x^2 + y^2}{n^2} \right) \right] = e^x.$$

不妨设 n > |z|, 这样 $1 + \frac{z}{n}$ 落在右半平面,

$$\lim_{n \to \infty} n \arg\left(1 + \frac{z}{n}\right) = \lim_{n \to \infty} n \arctan\frac{y}{n+x} = \lim_{n \to \infty} \frac{ny}{n+x} = y.$$

故 $\exp z = e^x(\cos y + i\sin y)$.

定义指数函数

$$\exp z := e^x(\cos y + i\sin y).$$

定义指数函数

$$\exp z := e^x(\cos y + i\sin y).$$

定义指数函数

$$\exp z := e^x(\cos y + i\sin y).$$

定义指数函数

$$\exp z := e^x(\cos y + i\sin y).$$

我们已知 $\exp z$ 是一个处处解析的函数, 且 $(\exp z)' = \exp z$. 不难看出

• $\exp z \neq 0$;

定义指数函数

$$\exp z := e^x(\cos y + i\sin y).$$

- $\exp z \neq 0$;
- $\exp(z_1 + z_2) = \exp z_1 \cdot \exp z_2$;

定义指数函数

$$\exp z := e^x(\cos y + i\sin y).$$

- $\exp z \neq 0$;
- $\exp(z_1 + z_2) = \exp z_1 \cdot \exp z_2$;
- $\exp(z + 2k\pi i) = \exp z$, 即 $\exp z$ 周期为 $2\pi i$;

定义指数函数

$$\exp z := e^x(\cos y + i\sin y).$$

- $\exp z \neq 0$;
- $\exp(z_1 + z_2) = \exp z_1 \cdot \exp z_2$;
- $\exp(z + 2k\pi i) = \exp z$, 即 $\exp z$ 周期为 $2\pi i$;
- $\exp z_1 = \exp z_2$ 当且仅当 $z_1 = z_2 + 2k\pi i, k \in \mathbb{Z}$.

定义指数函数

$$\exp z := e^x(\cos y + i\sin y).$$

我们已知 $\exp z$ 是一个处处解析的函数, 且 $(\exp z)' = \exp z$. 不难看出

- $\exp z \neq 0$;
- $\exp(z_1 + z_2) = \exp z_1 \cdot \exp z_2$;
- $\exp(z + 2k\pi i) = \exp z$, 即 $\exp z$ 周期为 $2\pi i$;
- $\exp z_1 = \exp z_2$ 当且仅当 $z_1 = z_2 + 2k\pi i, k \in \mathbb{Z}$.

为了方便, 我们也记 $e^z = \exp z$.

指数函数将直线族 $\operatorname{Re} z = c$ 映为圆周族 $|w| = e^c$,

指数函数将直线族 $\operatorname{Re} z=c$ 映为圆周族 $|w|=e^c$, 将直线族 $\operatorname{Im} z=c$ 映为射线族 $\operatorname{Arg} w=c$.

指数函数将直线族 $\operatorname{Re} z=c$ 映为圆周族 $|w|=e^c$, 将直线族 $\operatorname{Im} z=c$ 映为射线族 $\operatorname{Arg} w=c$.

例

函数 $f(z) = e^{z/6}$ 的周期是_____.

指数函数将直线族 $\operatorname{Re} z=c$ 映为圆周族 $|w|=e^c$, 将直线族 $\operatorname{Im} z=c$ 映为射线族 $\operatorname{Arg} w=c$.

例

函数 $f(z) = e^{z/6}$ 的周期是_____.

解

设 $f(z_1) = f(z_2)$, 则 $e^{z_1/6} = e^{z_2/6}$.

指数函数将直线族 $\operatorname{Re} z=c$ 映为圆周族 $|w|=e^c$, 将直线族 $\operatorname{Im} z=c$ 映为射线族 $\operatorname{Arg} w=c$.

例

函数 $f(z) = e^{z/6}$ 的周期是_____

解

设 $f(z_1)=f(z_2)$, 则 $e^{z_1/6}=e^{z_2/6}$. 因此存在 $k\in\mathbb{Z}$ 使得

$$\frac{z_1}{6} = \frac{z_2}{6} + 2k\pi i,$$

指数函数将直线族 $\operatorname{Re} z = c$ 映为圆周族 $|w| = e^c$, 将直线族 $\operatorname{Im} z = c$ 映为射线族 $\operatorname{Arg} w = c$.

例

函数 $f(z) = e^{z/6}$ 的周期是_____.

解

设 $f(z_1)=f(z_2)$, 则 $e^{z_1/6}=e^{z_2/6}$. 因此存在 $k\in\mathbb{Z}$ 使得

$$\frac{z_1}{6} = \frac{z_2}{6} + 2k\pi i,$$

从而 $z_1 - z_2 = 12k\pi i$.

指数函数将直线族 $\operatorname{Re} z=c$ 映为圆周族 $|w|=e^c$, 将直线族 $\operatorname{Im} z=c$ 映为射线族 $\operatorname{Arg} w=c$.

例

函数 $f(z) = e^{z/6}$ 的周期是 $12\pi i$.

解

设 $f(z_1)=f(z_2)$, 则 $e^{z_1/6}=e^{z_2/6}$. 因此存在 $k\in\mathbb{Z}$ 使得

$$\frac{z_1}{6} = \frac{z_2}{6} + 2k\pi i,$$

从而 $z_1 - z_2 = 12k\pi i$. 所以 f(z) 的周期是 $12\pi i$.

指数函数将直线族 $\operatorname{Re} z=c$ 映为圆周族 $|w|=e^c$, 将直线族 $\operatorname{Im} z=c$ 映为射线族 $\operatorname{Arg} w=c$.

例

函数 $f(z) = e^{z/6}$ 的周期是 $12\pi i$.

解

设 $f(z_1)=f(z_2)$, 则 $e^{z_1/6}=e^{z_2/6}$. 因此存在 $k\in\mathbb{Z}$ 使得

$$\frac{z_1}{6} = \frac{z_2}{6} + 2k\pi i,$$

从而 $z_1 - z_2 = 12k\pi i$. 所以 f(z) 的周期是 $12\pi i$.

一般地, $\exp(az+b)$ 的周期是 $\frac{2\pi i}{a}$ (或写成 $-\frac{2\pi i}{a}$), $a\neq 0$.

对数函数

对数函数定义为指数函数的反函数.

对数函数

对数函数定义为指数函数的反函数. 设 $z \neq 0$, 满足方程 $e^w = z$ 的 w = f(z) 被称为对数函数. 记作 $w = \operatorname{Ln} z$.

对数函数

对数函数定义为指数函数的反函数. 设 $z \neq 0$, 满足方程 $e^w = z$ 的 w = f(z) 被称为对数函数, 记作 $w = \operatorname{Ln} z$.

为什么我们用大写的 Ln 呢?

对数函数定义为指数函数的反函数. 设 $z \neq 0$, 满足方程 $e^w = z$ 的 w = f(z) 被称为对数函数, 记作 $w = \operatorname{Ln} z$.

为什么我们用大写的 Ln 呢? 在复变函数中, 很多函数是多值函数.

对数函数

对数函数定义为指数函数的反函数. 设 $z \neq 0$, 满足方程 $e^w = z$ 的 w = f(z) 被称为对数函数, 记作 $w = \operatorname{Ln} z$.

为什么我们用大写的 Ln 呢? 在复变函数中, 很多函数是多值函数. 为了便于研究, 我们会固定它的一个单值分支.

对数函数定义为指数函数的反函数. 设 $z \neq 0$, 满足方程 $e^w = z$ 的 w = f(z) 被称为对数函数, 记作 $w = \operatorname{Ln} z$.

为什么我们用大写的 Ln 呢? 在复变函数中, 很多函数是多值函数. 为了便于研究, 我们会固定它的一个单值分支. 我们将多值的这个开头字母大写, 而对应的单值的则是开头字母小写.

对数函数定义为指数函数的反函数. 设 $z \neq 0$, 满足方程 $e^w = z$ 的 w = f(z) 被称为对数函数, 记作 $w = \operatorname{Ln} z$.

为什么我们用大写的 Ln 呢? 在复变函数中, 很多函数是多值函数. 为了便于研究, 我们会固定它的一个单值分支. 我们将多值的这个开头字母大写, 而对应的单值的则是 开头字母小写. 例如 Arg z 和 arg z.

设
$$e^w=z=re^{i\theta}=e^{\ln r+i\theta}$$
,

设
$$e^w=z=re^{i\theta}=e^{\ln r+i\theta}$$
, 则

$$w = \ln r + i\theta + 2k\pi i, \quad k \in \mathbb{Z}.$$

设
$$e^w=z=re^{i\theta}=e^{\ln r+i\theta}$$
, 则

$$w = \ln r + i\theta + 2k\pi i, \quad k \in \mathbb{Z}.$$

对数函数

设
$$e^w=z=re^{i\theta}=e^{\ln r+i\theta}$$
, 则

$$w = \ln r + i\theta + 2k\pi i, \quad k \in \mathbb{Z}.$$

对数函数

(1) 定义对数函数

$$\operatorname{Ln} z = \ln|z| + i\operatorname{Arg} z.$$

它是一个多值函数.

设
$$e^w=z=re^{i\theta}=e^{\ln r+i\theta}$$
, 则

$$w = \ln r + i\theta + 2k\pi i, \quad k \in \mathbb{Z}.$$

对数函数

(1) 定义对数函数

$$\operatorname{Ln} z = \ln|z| + i\operatorname{Arg} z.$$

它是一个多值函数.

(2) 定义对数函数主值

$$ln z = ln |z| + i \arg z.$$

设
$$e^w=z=re^{i\theta}=e^{\ln r+i\theta}$$
, 则

$$w = \ln r + i\theta + 2k\pi i, \quad k \in \mathbb{Z}.$$

对数函数

(1) 定义对数函数

$$\operatorname{Ln} z = \ln|z| + i\operatorname{Arg} z.$$

它是一个多值函数.

(2) 定义对数函数主值

$$ln z = ln |z| + i \arg z.$$

对于每一个 k, $\ln z + 2k\pi i$ 都给出了 $\operatorname{Ln} z$ 的一个单值分支.

设
$$e^w = z = re^{i\theta} = e^{\ln r + i\theta}$$
, 则

$$w = \ln r + i\theta + 2k\pi i, \quad k \in \mathbb{Z}.$$

对数函数

(1) 定义对数函数

$$\operatorname{Ln} z = \ln|z| + i\operatorname{Arg} z.$$

它是一个多值函数.

(2) 定义对数函数主值

$$ln z = ln |z| + i \arg z.$$

对于每一个 k, $\ln z + 2k\pi i$ 都给出了 $\ln z$ 的一个单值分支. 特别地, 当 z = x > 0 是正实数时, $\ln z$ 就是实变的对数函数.

求 Ln 2, Ln(-1) 以及它们的主值.

求 Ln 2, Ln(-1) 以及它们的主值.

例

求 Ln 2, Ln(-1) 以及它们的主值.

$$(1) \operatorname{Ln} 2 = \ln 2 + 2k\pi i, k \in \mathbb{Z},$$

求 Ln 2, Ln(-1) 以及它们的主值.

解

(1) $\operatorname{Ln} 2 = \operatorname{ln} 2 + 2k\pi i, k \in \mathbb{Z}$, 主值就是 $\operatorname{ln} 2$.

例

求 Ln 2, Ln(-1) 以及它们的主值.

- (1) $\operatorname{Ln} 2 = \operatorname{ln} 2 + 2k\pi i, k \in \mathbb{Z}$, 主值就是 $\operatorname{ln} 2$.
- (2) $\operatorname{Ln}(-1) = \ln 1 + i \operatorname{Arg}(-1) = (2k+1)\pi i, k \in \mathbb{Z},$

例

求 Ln 2, Ln(-1) 以及它们的主值.

- (1) $\operatorname{Ln} 2 = \ln 2 + 2k\pi i, k \in \mathbb{Z}$, 主值就是 $\ln 2$.
- (2) $\operatorname{Ln}(-1) = \ln 1 + i \operatorname{Arg}(-1) = (2k+1)\pi i, k \in \mathbb{Z}, \text{ £d} \notin \pi i.$

例

 $\overline{\mathbf{X}} \operatorname{Ln}(-2+3i), \operatorname{Ln}(3-\sqrt{3}i).$

 $\overline{\mathbb{X} \operatorname{Ln}}(-2+3i), \operatorname{Ln}(3-\sqrt{3}i).$

求 $Ln(-2+3i), Ln(3-\sqrt{3}i).$

$$(1) \operatorname{Ln}(-2+3i) = \ln|-2+3i| + i\operatorname{Arg}(-2+3i)$$

求
$$Ln(-2+3i), Ln(3-\sqrt{3}i).$$

(1)
$$\operatorname{Ln}(-2+3i) = \ln|-2+3i| + i\operatorname{Arg}(-2+3i)$$

= $\frac{1}{2}\ln 13 + \left(-\arctan\frac{3}{2} + \pi + 2k\pi\right)i$, $k \in \mathbb{Z}$.

求 $Ln(-2+3i), Ln(3-\sqrt{3}i).$

(1)
$$\operatorname{Ln}(-2+3i) = \ln|-2+3i| + i\operatorname{Arg}(-2+3i)$$

= $\frac{1}{2}\ln 13 + \left(-\arctan\frac{3}{2} + \pi + 2k\pi\right)i, \quad k \in \mathbb{Z}.$

(2)
$$\operatorname{Ln}(3 - \sqrt{3}i) = \ln |3 + \sqrt{3}i| + i \operatorname{Arg}(3 - \sqrt{3}i)$$

求 $Ln(-2+3i), Ln(3-\sqrt{3}i).$

(1)
$$\operatorname{Ln}(-2+3i) = \ln|-2+3i| + i\operatorname{Arg}(-2+3i)$$

= $\frac{1}{2}\ln 13 + \left(-\arctan\frac{3}{2} + \pi + 2k\pi\right)i, \quad k \in \mathbb{Z}.$

(2)
$$\operatorname{Ln}(3 - \sqrt{3}i) = \ln |3 + \sqrt{3}i| + i \operatorname{Arg}(3 - \sqrt{3}i)$$

= $\ln 2\sqrt{3} + \left(-\frac{\pi}{6} + 2k\pi\right)i = \ln 2\sqrt{3} + \left(2k - \frac{1}{6}\right)\pi i$, $k \in \mathbb{Z}$.

解方程 $e^z - 1 - \sqrt{3}i = 0$.

解方程 $e^z - 1 - \sqrt{3}i = 0$.

由于
$$1 + \sqrt{3}i = 2e^{\frac{\pi i}{3}}$$
,

解方程 $e^z - 1 - \sqrt{3}i = 0$.

由于
$$1 + \sqrt{3}i = 2e^{\frac{\pi i}{3}}$$
, 因此

$$z = \operatorname{Ln}(1 + \sqrt{3}i) = \ln 2 + \left(2k + \frac{1}{3}\right)\pi i, \quad k \in \mathbb{Z}.$$

例

解方程 $e^z - 1 - \sqrt{3}i = 0$.

解

由于 $1 + \sqrt{3}i = 2e^{\frac{\pi i}{3}}$, 因此

$$z = \text{Ln}(1 + \sqrt{3}i) = \ln 2 + \left(2k + \frac{1}{3}\right)\pi i, \quad k \in \mathbb{Z}.$$

练习

求 $\ln(-1-\sqrt{3}i) =$

例

解方程 $e^z - 1 - \sqrt{3}i = 0$.

解

由于 $1 + \sqrt{3}i = 2e^{\frac{\pi i}{3}}$, 因此

$$z = \text{Ln}(1 + \sqrt{3}i) = \ln 2 + \left(2k + \frac{1}{3}\right)\pi i, \quad k \in \mathbb{Z}.$$

练习

$$\vec{X} \ln(-1 - \sqrt{3}i) = \frac{\ln 2 - \frac{2\pi i}{3}}{3}$$

$$\operatorname{Ln} z = \operatorname{ln} z + \operatorname{Ln} 1 = \operatorname{ln} z + 2k\pi i, \quad k \in \mathbb{Z}.$$

$$\operatorname{Ln} z = \operatorname{ln} z + \operatorname{Ln} 1 = \operatorname{ln} z + 2k\pi i, \quad k \in \mathbb{Z}.$$

根据辐角以及主辐角的相应等式, 我们有

$$\operatorname{Ln}(z_1 \cdot z_2) = \operatorname{Ln} z_1 + \operatorname{Ln} z_2, \quad \operatorname{Ln} \frac{z_1}{z_2} = \operatorname{Ln} z_1 - \operatorname{Ln} z_2,$$

$$\operatorname{Ln} \sqrt[n]{z} = \frac{1}{n} \operatorname{Ln} z.$$

$$\operatorname{Ln} z = \operatorname{ln} z + \operatorname{Ln} 1 = \operatorname{ln} z + 2k\pi i, \quad k \in \mathbb{Z}.$$

根据辐角以及主辐角的相应等式, 我们有

$$\operatorname{Ln}(z_1 \cdot z_2) = \operatorname{Ln} z_1 + \operatorname{Ln} z_2, \quad \operatorname{Ln} \frac{z_1}{z_2} = \operatorname{Ln} z_1 - \operatorname{Ln} z_2,$$

$$\operatorname{Ln} \sqrt[n]{z} = \frac{1}{n} \operatorname{Ln} z.$$

而当 $|n| \ge 2$ 时, $\operatorname{Ln} z^n = n \operatorname{Ln} z$ 不成立.

$$\operatorname{Ln} z = \operatorname{ln} z + \operatorname{Ln} 1 = \operatorname{ln} z + 2k\pi i, \quad k \in \mathbb{Z}.$$

根据辐角以及主辐角的相应等式, 我们有

$$\operatorname{Ln}(z_1 \cdot z_2) = \operatorname{Ln} z_1 + \operatorname{Ln} z_2, \quad \operatorname{Ln} \frac{z_1}{z_2} = \operatorname{Ln} z_1 - \operatorname{Ln} z_2,$$

$$\operatorname{Ln} \sqrt[n]{z} = \frac{1}{n} \operatorname{Ln} z.$$

而当 $|n| \ge 2$ 时, $\operatorname{Ln} z^n = n \operatorname{Ln} z$ 不成立. 以上等式换成 $\ln z$ 均不一定成立.

设 x 是正实数,

设 x 是正实数,则

$$\ln(-x) = \ln x + \pi i, \quad \lim_{y \to 0^{-}} \ln(-x + yi) = \ln x - \pi i,$$

设 x 是正实数,则

$$\ln(-x) = \ln x + \pi i, \quad \lim_{y \to 0^{-}} \ln(-x + yi) = \ln x - \pi i,$$

因此 $\ln z$ 在负实轴和零处不连续.

设 x 是正实数,则

$$\ln(-x) = \ln x + \pi i, \quad \lim_{y \to 0^{-}} \ln(-x + yi) = \ln x - \pi i,$$

因此 ln z 在负实轴和零处不连续.

而在其它地方 $-\pi < \arg z < \pi$, $\ln z$ 是 e^z 在区域 $-\pi < \operatorname{Im} z < \pi$ 上的单值反函数,

设 x 是正实数,则

$$\ln(-x) = \ln x + \pi i, \quad \lim_{y \to 0^{-}} \ln(-x + yi) = \ln x - \pi i,$$

因此 ln z 在负实轴和零处不连续.

而在其它地方 $-\pi < \arg z < \pi$, $\ln z \in e^z$ 在区域 $-\pi < \operatorname{Im} z < \pi$ 上的单值反函数,

从而 $(\ln z)' = \frac{1}{z}$, $\ln z$ 在除负实轴和零处的区域解析.

对数函数的导数

设 x 是正实数,则

$$\ln(-x) = \ln x + \pi i, \quad \lim_{y \to 0^{-}} \ln(-x + yi) = \ln x - \pi i,$$

因此 $\ln z$ 在负实轴和零处不连续.

而在其它地方 $-\pi < \arg z < \pi$, $\ln z$ 是 e^z 在区域 $-\pi < \operatorname{Im} z < \pi$ 上的单值反函数,

从而 $(\ln z)' = \frac{1}{z}$, $\ln z$ 在除负实轴和零处的区域解析.

也可以通过 C-R 方程来得到 $\ln z$ 的解析性和导数: 当 x > 0 时,

$$\ln z = \frac{1}{2}\ln(x^2 + y^2) + i\arctan\frac{y}{x},$$

设 x 是正实数, 则

$$\ln(-x) = \ln x + \pi i$$
, $\lim_{y \to 0^{-}} \ln(-x + yi) = \ln x - \pi i$,

因此 $\ln z$ 在负实轴和零处不连续.

而在其它地方 $-\pi < \arg z < \pi$, $\ln z$ 是 e^z 在区域 $-\pi < \operatorname{Im} z < \pi$ 上的单值反函数, 从而 $(\ln z)' = \frac{1}{z}$, $\ln z$ 在除负实轴和零处的区域解析.

也可以通过 C-R 方程来得到 $\ln z$ 的解析性和导数: 当 x > 0 时,

$$\ln z = \frac{1}{2} \ln(x^2 + y^2) + i \arctan \frac{y}{x},$$

$$u_x = v_y = \frac{x}{x^2 + y^2}, \qquad v_x = -u_y = -\frac{y}{x^2 + y^2},$$

$$(\ln z)' = (x - yi)/(x^2 + y^2) = \frac{1}{z}.$$

其它情形可取虚部为 $\operatorname{arccot} \frac{x}{y}$ 或 $\operatorname{arccot} \frac{x}{y} - \pi$ 类似证明.

幂函数

幂函数

幂函数

(1) 设 $a \neq 0$, $z \neq 0$, 定义幂函数

$$w = z^a = e^{a \operatorname{Ln} z} = \exp[a \operatorname{ln} |z| + ia(\arg z + 2k\pi)], \quad k \in \mathbb{Z}.$$

幂函数

(1) 设 $a \neq 0$, $z \neq 0$, 定义幂函数

$$w = z^a = e^{a \operatorname{Ln} z} = \exp[a \ln |z| + ia(\arg z + 2k\pi)], \quad k \in \mathbb{Z}.$$

(2) 它的主值为

$$w = e^{a \ln z} = \exp(a \ln |z| + ia \arg z).$$

根据 a 的不同, 这个函数有着不同的性质.

根据 a 的不同, 这个函数有着不同的性质.

当 a 为整数时, 因为 $e^{2ak\pi i}=1$, 所以 $w=z^a$ 是单值的.

根据 a 的不同, 这个函数有着不同的性质.

当 a 为整数时, 因为 $e^{2ak\pi i}=1$, 所以 $w=z^a$ 是单值的. 此时 z^a 就是我们之前定义的乘幂.

根据 a 的不同, 这个函数有着不同的性质.

当 a 为整数时, 因为 $e^{2ak\pi i}=1$, 所以 $w=z^a$ 是单值的. 此时 z^a 就是我们之前定义的乘幂.

当 a 是非负整数时, z^a 在复平面上解析;

根据 a 的不同, 这个函数有着不同的性质.

当 a 为整数时, 因为 $e^{2ak\pi i}=1$, 所以 $w=z^a$ 是单值的. 此时 z^a 就是我们之前定义的乘幂.

当 a 是非负整数时, z^a 在复平面上解析; 当 a 是负整数时, z^a 在 $\mathbb{C}-\{0\}$ 上解析.

当
$$a=\frac{p}{q}$$
 为分数, p,q 为互质的整数且 $q>1$ 时,

当 $a=rac{p}{q}$ 为分数, p,q 为互质的整数且 q>1 时,

$$z^{\frac{p}{q}} = |z|^{\frac{p}{q}} \exp\left[\frac{ip(\arg z + 2k\pi)}{q}\right], \quad k = 0, 1, \dots, q - 1$$

具有 q 个值.

当 $a = \frac{p}{q}$ 为分数, p, q 为互质的整数且 q > 1 时,

$$z^{\frac{p}{q}} = |z|^{\frac{p}{q}} \exp\left[\frac{ip(\arg z + 2k\pi)}{q}\right], \quad k = 0, 1, \dots, q-1$$

具有 q 个值. 去掉负实轴和 0 之后, 它的主值 $w = \exp(a \ln z)$ 是处处解析的.

当 $a=\frac{p}{q}$ 为分数, p,q 为互质的整数且 q>1 时,

$$z^{\frac{p}{q}} = |z|^{\frac{p}{q}} \exp\left[\frac{ip(\arg z + 2k\pi)}{q}\right], \quad k = 0, 1, \dots, q-1$$

具有 q 个值. 去掉负实轴和 0 之后, 它的主值 $w=\exp(a\ln z)$ 是处处解析的. 事实上它就是 $\sqrt[q]{z^p}=(\sqrt[q]{z})^p$.

当 $a = \frac{p}{q}$ 为分数, p, q 为互质的整数且 q > 1 时,

$$z^{\frac{p}{q}} = |z|^{\frac{p}{q}} \exp\left[\frac{ip(\arg z + 2k\pi)}{q}\right], \quad k = 0, 1, \dots, q-1$$

具有 q 个值. 去掉负实轴和 0 之后, 它的主值 $w=\exp(a\ln z)$ 是处处解析的. 事实上它就是 $\sqrt[q]{z^p}=(\sqrt[q]{z})^p$.

对于其它的 a, z^a 具有无穷多个值.

对于其它的 a, z^a 具有无穷多个值. 这是因为此时当 $k \neq 0$ 时, $2k\pi ai$ 不可能是 $2\pi i$ 的整数倍.

对于其它的 a, z^a 具有无穷多个值. 这是因为此时当 $k \neq 0$ 时, $2k\pi ai$ 不可能是 $2\pi i$ 的整数倍. 从而不同的 k 得到的是不同的值.

对于其它的 a, z^a 具有无穷多个值. 这是因为此时当 $k \neq 0$ 时, $2k\pi ai$ 不可能是 $2\pi i$ 的整数倍. 从而不同的 k 得到的是不同的值. 去掉负实轴和 0 之后.

对于其它的 a, z^a 具有无穷多个值. 这是因为此时当 $k \neq 0$ 时, $2k\pi ai$ 不可能是 $2\pi i$ 的整数倍. 从而不同的 k 得到的是不同的值. 去掉负实轴和 0 之后, 它的主值 $w = \exp(a \ln z)$ 也是处处解析的.

对于其它的 a, z^a 具有无穷多个值. 这是因为此时当 $k \neq 0$ 时, $2k\pi ai$ 不可能是 $2\pi i$ 的整数倍. 从而不同的 k 得到的是不同的值. 去掉负实轴和 0 之后, 它的主值 $w=\exp(a\ln z)$ 也是处处解析的.

a	z^a 的值	z^a 的解析区域
整数 n	单值	$n\geqslant 0$ 时处处解析
		n < 0 时除零点外解析
分数 p/q	<i>q</i> 值	除负实轴和零点外解析
无理数或虚数	无穷多值	除负实轴和零点外解析

例

求 $1^{\sqrt{2}}$ 和 i^i .

例

求 $1^{\sqrt{2}}$ 和 i^i .

解

(1)
$$1^{\sqrt{2}} = e^{\sqrt{2} \ln 1}$$

例

求 $1^{\sqrt{2}}$ 和 i^i .

解

$$(1) \ 1^{\sqrt{2}} = e^{\sqrt{2} \ln 1} = e^{\sqrt{2} \cdot 2k\pi i}$$

例

求 $1^{\sqrt{2}}$ 和 i^i .

解

$$\overline{(1) \ 1^{\sqrt{2}}} = e^{\sqrt{2} \ln 1} = e^{\sqrt{2} \cdot 2k\pi i} = \cos(2\sqrt{2}k\pi) + i\sin(2\sqrt{2}k\pi), k \in \mathbb{Z}.$$

(1)
$$1^{\sqrt{2}} = e^{\sqrt{2} \operatorname{Ln} 1} = e^{\sqrt{2} \cdot 2k\pi i} = \cos(2\sqrt{2}k\pi) + i\sin(2\sqrt{2}k\pi), k \in \mathbb{Z}.$$
(2) $i^i = e^{i\operatorname{Ln} i}$

(2)
$$i^i = e^{i \ln i}$$

(1)
$$1^{\sqrt{2}} = e^{\sqrt{2} \operatorname{Ln} 1} = e^{\sqrt{2} \cdot 2k\pi i} = \cos(2\sqrt{2}k\pi) + i\sin(2\sqrt{2}k\pi), k \in \mathbb{Z}.$$

(2) $i^i = e^{i \operatorname{Ln} i} = \exp\left[i \cdot \left(2k + \frac{1}{2}\right)\pi i\right]$

(2)
$$i^i = e^{i \operatorname{Ln} i} = \exp \left[i \cdot \left(2k + \frac{1}{2} \right) \pi i \right]$$

(1)
$$1^{\sqrt{2}} = e^{\sqrt{2} \ln 1} = e^{\sqrt{2} \cdot 2k\pi i} = \cos(2\sqrt{2}k\pi) + i\sin(2\sqrt{2}k\pi), k \in \mathbb{Z}$$

(1)
$$1^{\sqrt{2}} = e^{\sqrt{2} \operatorname{Ln} 1} = e^{\sqrt{2} \cdot 2k\pi i} = \cos(2\sqrt{2}k\pi) + i\sin(2\sqrt{2}k\pi), k \in \mathbb{Z}.$$

(2) $i^i = e^{i \operatorname{Ln} i} = \exp\left[i \cdot \left(2k + \frac{1}{2}\right)\pi i\right] = \exp\left(-2k\pi - \frac{1}{2}\pi\right), k \in \mathbb{Z}.$

(1)
$$1^{\sqrt{2}} = e^{\sqrt{2} \ln 1} = e^{\sqrt{2} \cdot 2k\pi i} = \cos(2\sqrt{2}k\pi) + i\sin(2\sqrt{2}k\pi), k \in \mathbb{Z}.$$

(1)
$$1^{\sqrt{2}} = e^{\sqrt{2}\operatorname{Ln} 1} = e^{\sqrt{2}\cdot 2k\pi i} = \cos(2\sqrt{2}k\pi) + i\sin(2\sqrt{2}k\pi), k \in \mathbb{Z}.$$

(2) $i^i = e^{i\operatorname{Ln} i} = \exp\left[i\cdot\left(2k + \frac{1}{2}\right)\pi i\right] = \exp\left(-2k\pi - \frac{1}{2}\pi\right), k \in \mathbb{Z}.$

练习

填空题: (2021 年 A 卷) 3ⁱ 的主辐角是

(1)
$$1^{\sqrt{2}} = e^{\sqrt{2} \ln 1} = e^{\sqrt{2} \cdot 2k\pi i} = \cos(2\sqrt{2}k\pi) + i\sin(2\sqrt{2}k\pi), k \in \mathbb{Z}.$$

(1)
$$1^{\sqrt{2}} = e^{\sqrt{2} \operatorname{Ln} 1} = e^{\sqrt{2} \cdot 2k\pi i} = \cos(2\sqrt{2}k\pi) + i\sin(2\sqrt{2}k\pi), k \in \mathbb{Z}.$$

(2) $i^i = e^{i \operatorname{Ln} i} = \exp\left[i \cdot \left(2k + \frac{1}{2}\right)\pi i\right] = \exp\left(-2k\pi - \frac{1}{2}\pi\right), k \in \mathbb{Z}.$

练习

填空题: $(2021 \ \text{F A } \ \text{卷}) \ 3^i \ \text{的主辐角是 } \ln 3$.

幂函数的性质

幂函数与其主值有如下关系:

$$z^a = e^{a \ln z} \cdot 1^a = e^{a \ln z} \cdot e^{2ak\pi i}, \quad k \in \mathbb{Z}.$$

$$z^a = e^{a \ln z} \cdot 1^a = e^{a \ln z} \cdot e^{2ak\pi i}, \quad k \in \mathbb{Z}.$$

对于幂函数的主值,

$$(z^a)' = (e^{a \ln z})' = \frac{ae^{a \ln z}}{z} = az^{a-1}.$$

$$z^a = e^{a \ln z} \cdot 1^a = e^{a \ln z} \cdot e^{2ak\pi i}, \quad k \in \mathbb{Z}.$$

对于幂函数的主值,

$$(z^a)' = (e^{a \ln z})' = \frac{ae^{a \ln z}}{z} = az^{a-1}.$$

一般而言, $z^a \cdot z^b = z^{a+b}$ 和 $(z^a)^b = z^{ab}$ 都是不成立的.

$$z^a = e^{a \ln z} \cdot 1^a = e^{a \ln z} \cdot e^{2ak\pi i}, \quad k \in \mathbb{Z}.$$

对于幂函数的主值,

$$(z^a)' = (e^{a \ln z})' = \frac{ae^{a \ln z}}{z} = az^{a-1}.$$

一般而言, $z^a \cdot z^b = z^{a+b}$ 和 $(z^a)^b = z^{ab}$ 都是不成立的.

最后, 注意 e^a 作为指数函数 $f(z)=e^z$ 在 a 处的值和作为 $g(z)=z^a$ 在 e 处的值是不同的.

$$z^a = e^{a \ln z} \cdot 1^a = e^{a \ln z} \cdot e^{2ak\pi i}, \quad k \in \mathbb{Z}.$$

对于幂函数的主值,

$$(z^a)' = (e^{a \ln z})' = \frac{ae^{a \ln z}}{z} = az^{a-1}.$$

一般而言, $z^a \cdot z^b = z^{a+b}$ 和 $(z^a)^b = z^{ab}$ 都是不成立的.

最后, 注意 e^a 作为指数函数 $f(z) = e^z$ 在 a 处的值和作为 $g(z) = z^a$ 在 e 处的值是不同的. 因为后者在 $a \notin \mathbb{Z}$ 时总是多值的.

幂函数与其主值有如下关系:

$$z^a = e^{a \ln z} \cdot 1^a = e^{a \ln z} \cdot e^{2ak\pi i}, \quad k \in \mathbb{Z}.$$

对于幂函数的主值,

$$(z^a)' = (e^{a \ln z})' = \frac{ae^{a \ln z}}{z} = az^{a-1}.$$

一般而言, $z^a \cdot z^b = z^{a+b}$ 和 $(z^a)^b = z^{ab}$ 都是不成立的.

最后, 注意 e^a 作为指数函数 $f(z)=e^z$ 在 a 处的值和作为 $g(z)=z^a$ 在 e 处的值是不同的. 因为后者在 $a\not\in\mathbb{Z}$ 时总是多值的. 前者实际上是后者的主值.

幂函数与其主值有如下关系:

$$z^a = e^{a \ln z} \cdot 1^a = e^{a \ln z} \cdot e^{2ak\pi i}, \quad k \in \mathbb{Z}.$$

对于幂函数的主值,

$$(z^a)' = (e^{a \ln z})' = \frac{ae^{a \ln z}}{z} = az^{a-1}.$$

一般而言, $z^a \cdot z^b = z^{a+b}$ 和 $(z^a)^b = z^{ab}$ 都是不成立的.

最后, 注意 e^a 作为指数函数 $f(z)=e^z$ 在 a 处的值和作为 $g(z)=z^a$ 在 e 处的值是不同的. 因为后者在 $a\not\in\mathbb{Z}$ 时总是多值的. 前者实际上是后者的主值. 为避免混淆,以后我们总默认 e^a 表示指数函数 $\exp a$.

我们知道

$$\cos x = \frac{e^{ix} + e^{-ix}}{2}, \quad \sin x = \frac{e^{ix} - e^{-ix}}{2i}$$

对于任意实数 x 成立,

我们知道

$$\cos x = \frac{e^{ix} + e^{-ix}}{2}, \quad \sin x = \frac{e^{ix} - e^{-ix}}{2i}$$

对于任意实数 x 成立, 我们将其推广到复数情形.

我们知道

$$\cos x = \frac{e^{ix} + e^{-ix}}{2}, \quad \sin x = \frac{e^{ix} - e^{-ix}}{2i}$$

对于任意实数 x 成立, 我们将其推广到复数情形.

余弦和正弦函数

定义余弦和正弦函数

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}, \quad \sin z = \frac{e^{iz} - e^{-iz}}{2i}.$$

我们知道

$$\cos x = \frac{e^{ix} + e^{-ix}}{2}, \quad \sin x = \frac{e^{ix} - e^{-ix}}{2i}$$

对于任意实数 x 成立, 我们将其推广到复数情形.

余弦和正弦函数

定义余弦和正弦函数

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}, \quad \sin z = \frac{e^{iz} - e^{-iz}}{2i}.$$

那么欧拉恒等式 $e^{iz} = \cos z + i \sin z$ 对任意复数 z 均成立.

不难得到

$$\cos(iy) = \frac{e^y + e^{-y}}{2},$$

不难得到

$$\cos(iy) = \frac{e^y + e^{-y}}{2}, \qquad \sin(iy) = i\frac{e^y - e^{-y}}{2}.$$

不难得到

$$\cos(iy) = \frac{e^y + e^{-y}}{2}, \qquad \sin(iy) = i\frac{e^y - e^{-y}}{2}$$

当 $y \to \infty$ 时, $\cos(iy)$ 和 $\sin(iy)$ 都 $\to \infty$.

不难得到

$$\cos(iy) = \frac{e^y + e^{-y}}{2}, \qquad \sin(iy) = i\frac{e^y - e^{-y}}{2}.$$

当 $y \to \infty$ 时, $\cos(iy)$ 和 $\sin(iy)$ 都 $\to \infty$. 因此 $\sin z$ 和 $\cos z$ 并不有界.

不难得到

$$\cos(iy) = \frac{e^y + e^{-y}}{2}, \qquad \sin(iy) = i\frac{e^y - e^{-y}}{2}.$$

当 $y \to \infty$ 时, $\cos(iy)$ 和 $\sin(iy)$ 都 $\to \infty$. 因此 $\sin z$ 和 $\cos z$ 并不有界. 这和实变情形 完全不同.

不难得到

$$\cos(iy) = \frac{e^y + e^{-y}}{2}, \qquad \sin(iy) = i\frac{e^y - e^{-y}}{2}.$$

当 $y \to \infty$ 时, $\cos(iy)$ 和 $\sin(iy)$ 都 $\to \infty$. 因此 $\sin z$ 和 $\cos z$ 并不有界. 这和实变情形 完全不同.

容易看出 $\cos z$ 和 $\sin z$ 的零点都是实数.

不难得到

$$\cos(iy) = \frac{e^y + e^{-y}}{2}, \qquad \sin(iy) = i\frac{e^y - e^{-y}}{2}.$$

当 $y \to \infty$ 时, $\cos(iy)$ 和 $\sin(iy)$ 都 $\to \infty$. 因此 $\sin z$ 和 $\cos z$ 并不有界. 这和实变情形 完全不同.

容易看出 $\cos z$ 和 $\sin z$ 的零点都是实数. 于是我们可类似定义其它三角函数

$$\tan z = \frac{\sin z}{\cos z}, z \neq \left(k + \frac{1}{2}\right)\pi, \qquad \cot z = \frac{\cos z}{\sin z}, z \neq k\pi,$$
$$\sec z = \frac{1}{\cos z}, z \neq \left(k + \frac{1}{2}\right)\pi, \qquad \csc z = \frac{1}{\sin z}, z \neq k\pi.$$

这些三角函数的奇偶性, 周期性和导数与实变情形类似,

$$(\cos z)' = -\sin z, \quad (\sin z)' = \cos z,$$

这些三角函数的奇偶性, 周期性和导数与实变情形类似,

$$(\cos z)' = -\sin z, \quad (\sin z)' = \cos z,$$

且在定义域范围内是处处解析的.

这些三角函数的奇偶性, 周期性和导数与实变情形类似,

$$(\cos z)' = -\sin z, \quad (\sin z)' = \cos z,$$

且在定义域范围内是处处解析的.

三角函数的各种恒等式在复数情形也仍然成立,

这些三角函数的奇偶性, 周期性和导数与实变情形类似,

$$(\cos z)' = -\sin z, \quad (\sin z)' = \cos z,$$

且在定义域范围内是处处解析的.

三角函数的各种恒等式在复数情形也仍然成立, 例如

这些三角函数的奇偶性, 周期性和导数与实变情形类似,

$$(\cos z)' = -\sin z, \quad (\sin z)' = \cos z,$$

且在定义域范围内是处处解析的.

三角函数的各种恒等式在复数情形也仍然成立, 例如

• $\cos(z_1 \pm z_2) = \cos z_1 \cos z_2 \mp \sin z_1 \sin z_2$,

这些三角函数的奇偶性, 周期性和导数与实变情形类似,

$$(\cos z)' = -\sin z, \quad (\sin z)' = \cos z,$$

且在定义域范围内是处处解析的.

三角函数的各种恒等式在复数情形也仍然成立, 例如

- $\cos(z_1 \pm z_2) = \cos z_1 \cos z_2 \mp \sin z_1 \sin z_2$,
- $\sin(z_1 \pm z_2) = \sin z_1 \cos z_2 \pm \cos z_1 \sin z_2$,

这些三角函数的奇偶性, 周期性和导数与实变情形类似,

$$(\cos z)' = -\sin z, \quad (\sin z)' = \cos z,$$

且在定义域范围内是处处解析的.

三角函数的各种恒等式在复数情形也仍然成立, 例如

- $\cos(z_1 \pm z_2) = \cos z_1 \cos z_2 \mp \sin z_1 \sin z_2$,
- $\sin(z_1 \pm z_2) = \sin z_1 \cos z_2 \pm \cos z_1 \sin z_2$,
- $\sin^2 z + \cos^2 z = 1$.

双曲函数

双曲函数

$$\operatorname{ch} z = \frac{e^z + e^{-z}}{2} = \cos iz$$

$$\operatorname{ch} z = \frac{e^z + e^{-z}}{2} = \cos iz$$

$$\operatorname{sh} z = \frac{e^z - e^{-z}}{2} = -i \sin iz,$$

$$\operatorname{ch} z = \frac{e^z + e^{-z}}{2} = \cos iz,$$

$$\operatorname{sh} z = \frac{e^z - e^{-z}}{2} = -i \sin iz,$$

th
$$z = \frac{e^z - e^{-z}}{e^z + e^{-z}} = -i \tan iz$$
, $z \neq \left(k + \frac{1}{2}\right) \pi i$.

$$\operatorname{ch} z = \frac{e^z + e^{-z}}{2} = \cos iz,$$

$$\operatorname{sh} z = \frac{e^z - e^{-z}}{2} = -i \sin iz,$$

th
$$z = \frac{e^z - e^{-z}}{e^z + e^{-z}} = -i \tan iz$$
, $z \neq (k + \frac{1}{2}) \pi i$.

它们的奇偶性和导数与实变情形类似, 在定义域范围内是处处解析的.

$$\operatorname{ch} z = \frac{e^z + e^{-z}}{2} = \cos iz,$$

$$\operatorname{sh} z = \frac{e^z - e^{-z}}{2} = -i \sin iz,$$

th
$$z = \frac{e^z - e^{-z}}{e^z + e^{-z}} = -i \tan iz$$
, $z \neq \left(k + \frac{1}{2}\right) \pi i$.

它们的奇偶性和导数与实变情形类似,在定义域范围内是处处解析的。

 $\operatorname{ch} z, \operatorname{sh} z$ 的周期是 $2\pi i, \operatorname{th} z$ 的周期是 πi .

设
$$z = \cos w = \frac{e^{\imath w} + e^{-\imath w}}{2}$$
,

设
$$z=\cos w=rac{e^{iw}+e^{-iw}}{2}$$
,则
$$e^{2iw}-2ze^{iw}+1=0,$$

设
$$z = \cos w = \frac{e^{iw} + e^{-iw}}{2}$$
, 则

$$e^{2iw} - 2ze^{iw} + 1 = 0$$
, $e^{iw} = z + \sqrt{z^2 - 1}$ (双值).

设
$$z = \cos w = \frac{e^{iw} + e^{-iw}}{2}$$
, 则

$$e^{2iw} - 2ze^{iw} + 1 = 0$$
, $e^{iw} = z + \sqrt{z^2 - 1}$ (双值).

因此反余弦函数为

$$w = \operatorname{Arccos} z = -i\operatorname{Ln}(z + \sqrt{z^2 - 1}).$$

设
$$z = \cos w = \frac{e^{iw} + e^{-iw}}{2}$$
,则

$$e^{2iw} - 2ze^{iw} + 1 = 0$$
, $e^{iw} = z + \sqrt{z^2 - 1}$ (双值).

因此反余弦函数为

$$w = \operatorname{Arccos} z = -i\operatorname{Ln}(z + \sqrt{z^2 - 1}).$$

显然它是多值的.

设
$$z = \cos w = \frac{e^{iw} + e^{-iw}}{2}$$
, 则

$$e^{2iw} - 2ze^{iw} + 1 = 0$$
, $e^{iw} = z + \sqrt{z^2 - 1}$ (双值).

因此反余弦函数为

$$w = \operatorname{Arccos} z = -i\operatorname{Ln}(z + \sqrt{z^2 - 1}).$$

设
$$z = \cos w = \frac{e^{iw} + e^{-iw}}{2}$$
,则

$$e^{2iw} - 2ze^{iw} + 1 = 0$$
, $e^{iw} = z + \sqrt{z^2 - 1}$ (双值).

因此反余弦函数为

$$w = \operatorname{Arccos} z = -i\operatorname{Ln}(z + \sqrt{z^2 - 1}).$$

显然它是多值的. 同理, 我们有:

• 反正弦函数 $Arcsin z = -i Ln(iz + \sqrt{1-z^2});$

设
$$z = \cos w = \frac{e^{iw} + e^{-iw}}{2}$$
, 则

$$e^{2iw} - 2ze^{iw} + 1 = 0$$
, $e^{iw} = z + \sqrt{z^2 - 1}$ (双值).

因此反余弦函数为

$$w = \operatorname{Arccos} z = -i\operatorname{Ln}(z + \sqrt{z^2 - 1}).$$

- 反正弦函数 $Arcsin z = -i Ln(iz + \sqrt{1-z^2});$
- 反正切函数 $\arctan z = -\frac{i}{2} \ln \frac{1+iz}{1-iz}, z \neq \pm i;$

设
$$z = \cos w = \frac{e^{iw} + e^{-iw}}{2}$$
, 则

$$e^{2iw} - 2ze^{iw} + 1 = 0$$
, $e^{iw} = z + \sqrt{z^2 - 1}$ (双值).

因此反余弦函数为

$$w = \operatorname{Arccos} z = -i\operatorname{Ln}(z + \sqrt{z^2 - 1}).$$

- 反正弦函数 $Arcsin z = -i Ln(iz + \sqrt{1-z^2});$
- 反正切函数 $\arctan z = -\frac{i}{2} \ln \frac{1+iz}{1-iz}, z \neq \pm i;$
- 反双曲余弦函数 $\operatorname{Arch} z = \operatorname{Ln}(z + \sqrt{z^2 1});$

设
$$z = \cos w = \frac{e^{iw} + e^{-iw}}{2}$$
, 则

$$e^{2iw} - 2ze^{iw} + 1 = 0$$
, $e^{iw} = z + \sqrt{z^2 - 1}$ (双值).

因此反余弦函数为

$$w = \operatorname{Arccos} z = -i\operatorname{Ln}(z + \sqrt{z^2 - 1}).$$

- 反正弦函数 $Arcsin z = -i Ln(iz + \sqrt{1-z^2});$
- 反正切函数 $\arctan z = -\frac{i}{2} \operatorname{Ln} \frac{1+iz}{1-iz}, z \neq \pm i;$
- 反双曲余弦函数 $\operatorname{Arch} z = \operatorname{Ln}(z + \sqrt{z^2 1});$
- 反双曲正弦函数 $\operatorname{Arsh} z = \operatorname{Ln}(z + \sqrt{z^2 + 1});$

设
$$z = \cos w = \frac{e^{iw} + e^{-iw}}{2}$$
, 则

$$e^{2iw} - 2ze^{iw} + 1 = 0$$
, $e^{iw} = z + \sqrt{z^2 - 1}$ (双值).

因此反余弦函数为

$$w = \operatorname{Arccos} z = -i\operatorname{Ln}(z + \sqrt{z^2 - 1}).$$

- 反正弦函数 $Arcsin z = -i Ln(iz + \sqrt{1-z^2});$
- 反正切函数 $\arctan z = -\frac{i}{2} \operatorname{Ln} \frac{1+iz}{1-iz}, z \neq \pm i;$
- 反双曲余弦函数 $\operatorname{Arch} z = \operatorname{Ln}(z + \sqrt{z^2 1});$
- 反双曲正弦函数 $\operatorname{Arsh} z = \operatorname{Ln}(z + \sqrt{z^2 + 1});$
- 反双曲正切函数 $\operatorname{Arth} z = \frac{1}{2} \operatorname{Ln} \frac{1+z}{1-z}, z \neq \pm 1.$

例

解方程 $\sin z = 2$.

解方程 $\sin z = 2$.

由于
$$\sin z = \frac{e^{iz} - e^{-iz}}{2i} = 2$$
,

例

解方程 $\sin z = 2$.

由于
$$\sin z = \frac{e^{iz} - e^{-iz}}{2i} = 2$$
, 我们有

$$e^{2iz} - 4ie^{iz} - 1 = 0.$$

例

解方程 $\sin z = 2$.

由于
$$\sin z = \frac{e^{iz} - e^{-iz}}{2i} = 2$$
, 我们有

$$e^{2iz} - 4ie^{iz} - 1 = 0.$$

于是
$$e^{iz}=(2\pm\sqrt{3})i$$
,

例

解方程 $\sin z = 2$.

由于
$$\sin z = \frac{e^{iz} - e^{-iz}}{2i} = 2$$
, 我们有

$$e^{2iz} - 4ie^{iz} - 1 = 0.$$

于是
$$e^{iz}=(2\pm\sqrt{3})i$$
,

$$z = -i \operatorname{Ln}[(2 \pm \sqrt{3})i] = \left(2k + \frac{1}{2}\right)\pi \pm i \ln(2 + \sqrt{3}), \quad k \in \mathbb{Z}.$$

另解

由 $\sin z = 2$ 可知

$$\cos z = \sqrt{1 - \sin^2 z} = \pm \sqrt{3}i.$$

另解

由 $\sin z = 2$ 可知

$$\cos z = \sqrt{1 - \sin^2 z} = \pm \sqrt{3}i.$$

于是
$$e^{iz} = \cos z + i \sin z = (2 \pm \sqrt{3})i$$
,

另解

由 $\sin z = 2$ 可知

$$\cos z = \sqrt{1 - \sin^2 z} = \pm \sqrt{3}i.$$

于是
$$e^{iz} = \cos z + i \sin z = (2 \pm \sqrt{3})i$$
,

$$z = -i \operatorname{Ln}[(2 \pm \sqrt{3})i] = (2k + \frac{1}{2})\pi \pm i \ln(2 + \sqrt{3}), \quad k \in \mathbb{Z}.$$

另解

由 $\sin z = 2$ 可知

$$\cos z = \sqrt{1 - \sin^2 z} = \pm \sqrt{3}i.$$

于是 $e^{iz} = \cos z + i \sin z = (2 \pm \sqrt{3})i$,

$$z = -i \operatorname{Ln}[(2 \pm \sqrt{3})i] = (2k + \frac{1}{2})\pi \pm i \ln(2 + \sqrt{3}), \quad k \in \mathbb{Z}.$$

我们总有形式

$$Arcsin z = (2k + \frac{1}{2})\pi \pm \theta,$$

 $Arccos z = 2k\pi \pm \theta,$

 $Arctan z = k\pi + \theta.$