yyyy/mm/dd サブタイトル

タイトルタイトルタイトルタイ トル

池田研究室 名前

3/14

本論

まとめ

おまけ②

おまけ①

 $e^{i\bar{\theta}} = \cos\theta + i\sin\theta$

次の方程式も有名である。

$$abla \cdot oldsymbol{E} = rac{
ho}{arepsilon_0}$$
 $abla imes oldsymbol{E} = -rac{\partial oldsymbol{B}}{\partial t}$
 $abla \cdot oldsymbol{B} = 0$
 $abla imes oldsymbol{B} = \mu_0 igg(oldsymbol{j} + arepsilon_0 rac{\partial oldsymbol{E}}{\partial t} igg)$

この連立1階偏微分方程式は電磁気学分野の基礎方程式である。

目次

導入

おまけ2

IKEDA Lab., Kyushu Univ.

本論1枚目

導入で示した式はそれぞれ次の名前で呼ばれている。覚え ておくと何処かで役に立つ……かもしれない。

- ●Euler の等式
- ●Maxwell 方程式
 - 1.hoge
 - 2.foo

私が最も好きな定理は<mark>留数定理(residue theorem)</mark>で ある。

Theorem

内部で比較的良い性質を持つならば,
$$\oint_C f(z)\,dz = 2\pi i \sum_{k=1}^n \mathrm{Res}\,(f;\,z_k)$$

複素関数 f(z) が正の向きを持つ Jordan 曲線 $C\subset \mathbb{C}$ の上と

が成り立つ。

おまけ①

まとめ

おまけ②

私は数学が大好きだ!

目次

11/14

あああああああああああああああああああああああああ

あああああああああああああああああああああああああ

あああああああああああああああああああああああああ

あああああああああああああああああああああああああ

foo

しいしいしいしいしいしいしいしいしい

Appendix

表の作り方

16/14

表 1 これは表です。			「表です。
		あ	い
0	1.3	36538	0.74289
1	5.8	84792	7.74682

表1はこうやって作れるんだよ!