Low Level Design

Credit Card Default Prediction

Contents

- 1. Introduction
- 1.1. What is Low-Level design document?
- 1.2. Scope
- 2. Architecture
- 3. Architecture Description
- 3.1 Dataset Information
- 3.2. Content
- 3.3. Data Pre-processing
- 3.4. Data scaling
- 3.5. Model Building
- 3.6. Model selection
- 3.7. Data from User
- 3.8. Data Validation
- 3.9. Model selection
- 3.10. Deployment
- 4. Website Preview

1. Introduction

1.1. What is Low-Level design document?

The goal of LLD or a low-level design document (LLDD) is to give the internal logical design of the actual program code for Food Recommendation System. LLD describes the class diagrams with the methods and relations between classes and program specs. It describes the modules so that the programmer can directly code the program from the document.

1.2. Scope

Low-level design (LLD) is a component-level design process that follows a stepby step refinement process. This process can be used for designing data structures, required software architecture, source code and ultimately, performance algorithms. Overall, the data organization may be defined during requirement analysis and then refined during data design work

2. Architecture

3. Architecture Description

3.1 Dataset Information

This dataset contains information on default payments, demographic factors, credit data, history of payment, and bill statements of credit card clients in Taiwan from April 2005 to September 2005.

3.2. Content

There are 25 variables:

- ID: ID of each client
- LIMIT_BAL: Amount of given credit in NT dollars (includes individual and family/supplementary credit
- SEX: Gender (1=male, 2=female)
- EDUCATION: (1=graduate school, 2=university, 3=high school, 4=others, 5=unknown, 6=unknown)
- MARRIAGE: Marital status (1=married, 2=single, 3=others)
- AGE: Age in years
- PAY_0: Repayment status in September, 2005 (-1=pay duly, 1=payment delay for one month, 2=payment delay for two months, ... 8=payment delay for eight months, 9=payment delay for nine months and above)
- PAY_2: Repayment status in August, 2005 (scale same as above)
- PAY 3: Repayment status in July, 2005 (scale same as above)
- PAY 4: Repayment status in June, 2005 (scale same as above)
- PAY 5: Repayment status in May, 2005 (scale same as above)
- PAY 6: Repayment status in April, 2005 (scale same as above)
- BILL_AMT1: Amount of bill statement in September, 2005 (NT dollar)
- BILL AMT2: Amount of bill statement in August, 2005 (NT dollar)

- BILL_AMT3: Amount of bill statement in July, 2005 (NT dollar)
- BILL AMT4: Amount of bill statement in June, 2005 (NT dollar)
- BILL AMT5: Amount of bill statement in May, 2005 (NT dollar)
- BILL AMT6: Amount of bill statement in April, 2005 (NT dollar)
- PAY AMT1: Amount of previous payment in September, 2005 (NT dollar)
- PAY AMT2: Amount of previous payment in August, 2005 (NT dollar)
- PAY AMT3: Amount of previous payment in July, 2005 (NT dollar)
- PAY_AMT4: Amount of previous payment in June, 2005 (NT dollar)
- PAY_AMT5: Amount of previous payment in May, 2005 (NT dollar)
- PAY_AMT6: Amount of previous payment in April, 2005 (NT dollar)
- default.payment.next.month: Default payment (1=yes, 0=no)

LIMIT_BALISEX	EE	DUCATIO MAR	RIAGEAGE	PAY_0	PAY_2	PAY_3	PAY_4	PAY_5	PAY_6	BILL_A	MT:BILL_A	MT: BILL_AN	IT: BILL_	_AMT4B	ILL_AMT!	BILL_AMT(P	AY_AMT1P	AY_AMT2PA	AY_AMTEPAY	Y_AMT4PA	AY_AMTS PAY	_AMT6	default payment nex	t month
20000	2	2	1	24	2	2 -	1	-1	-2 -	2 3	913 31	102 6	39	0	0	0	0	689	0	0	0	0	1	
120000	2	2	2	26	-1	2	0	0	0	2 2	582 17	25 26	32	3272	3455	3261	0	1000	1000	1000	0	2000	1	
90000	2	2	2	34	0	0	D	0	0	0 29	239 140	27 135	59 1	14331	14948	15549	1518	1500	1000	1000	1000	5000	0	
50000	2	2	1	37	0	0	D	0	0	0 46	990 482	33 492	91 2	28314	28959	29547	2000	2019	1200	1100	1069	1000	0	
50000	1	2	1	57	-1	0 -	1	0	0	0 8	517 56	70 358	35 2	20940	19146	19131	2000	36681	10000	9000	689	679	0	
50000	1	1	2	37	0	0	0	0	0	0 64	400 570	69 576	08 1	19394	19619	20024	2500	1815	657	1000	1000	800	0	
500000	1	1	2	29	0	0	D	0	0	0 367	965 4120	23 4450	07 54	42653	483003	473944	55000	40000	38000	20239	13750	13770	0	
100000	2	2	2	23	0	-1 -	1	0	0 -	1 11	376	80 6	01	221	-159	567	380	601	0	581	1687	1542	0	
140000	2	3	1	28	0	0	2	0	0	0 11	285 140	96 121	08 1	12211	11793	3719	3329	0	432	1000	1000	1000	0	
20000	1	3	2	35 -	-2	-2 -	2	-2	-1 -	1	0	0	0	0	13007	13912	0	0	0	13007	1122	0	0	
200000	2	3	2	34	0	0	2	0	0 -	1 11	073 97	787 55	35	2513	1828	3731	2306	12	50	300	3738	66	0	
260000	2	1	2	51	-1	-1 -	1	-1	-1	2 12	261 216	70 99	56	8517	22287	13668	21818	9966	8583	22301	0	3640	0	
630000	2	2	2	41 -	-1	0 -	1	-1	-1 -	1 12	137 65	650	00	6500	6500	2870	1000	6500	6500	6500	2870	0	0	
70000	1	2	2	30	1	2	2	0	0	2 65	802 673	657	01 6	56782	36137	36894	3200	0	3000	3000	1500	0	1	
250000	1	1	2	29	0	0	D	0	0	0 70	887 670	635	51 5	59696	56875	55512	3000	3000	3000	3000	3000	3000	0	
50000	2	3	3	23	1	2	0	0	0	0 50	514 291	73 281	16 2	28771	29531	30211	0	1500	1100	1200	1300	1100	0	
20000	1	1	2	24	0	0	2	2	2	2 15	376 180	174	28 1	18338	17905	19104	3200	0	1500	0	1650	0	1	
320000	1	1	1	49	0	0	D	-1	-1	1 253	286 2465	36 1946	53 7	70074	5856	195599	10358	10000	75940	20000	195599	50000	0	
360000	2	1	1	49	1	-2 -	2	-2	-2 -	2	0	0	0	0	0	0	0	0	0	0	0	0	0	
180000	2	1	2	29	1	-2 -	2	-2	-2 -	2	0	0	0	0	0	0	0	0	0	0	0	0	0	
130000	2	3	2	39	0	0	D	0	0 -	1 38	358 276	88 244	39 2	20616	11802	930	3000	1537	1000	2000	930	33764	0	
120000	2	2	1	39	-1	-1 -	1	-1	-1	1	316 3	316 3	16	0	632	316	316	316	0	632	316	0	1	
70000	2	2	2	26	2	0	0	2	2	2 41	087 424	145 450	20 4	44006	46905	46012	2007	3582	0	3601	0	1820	1	
450000	2	1	1	40 -	-2	-2 -	2	-2	-2	2 5	512 194	120 14	73	560	0	0	19428	1473	560	0	0	1128	1	
90000	1	1	2	23	0	0	D	-1	0	0 4	744 70	70	0	5398	6360	8292	5757	0	5398	1200	2045	2000	0	
50000	1	3	2	23	0	0	0	0	0	0 47	520 418	360	23 2	28967	29829	30046	1973	1426	1001	1432	1062	997	0	
60000	1	1	2	27	1	-2 -	1	-1	-1 -	1 -	109 -4	25 2	59	-57	127	-189	0	1000	0	500	0	1000	1	

3.3. Data Pre-processing

In data Pre-processing we have made dummy columns of education, gender and married. We also removed all negative values from our data set.

3.4. Data scaling

We have used Minmax to Transform features by scaling each feature to a given range.

3.5. Model Building

After scaling of data, we divided train data set and test data set in 80:20 ratio. And tested these data set on different Machine learning models like

- 1. Linear Regression
- 2. Support Vector Regressor
- 3. Decision Tree Regressor
- 4. Random Forest Regressor Random Forest Regressor
- 5. Logistic Regression

3.6. Model selection

After considering factors like Mean Absolute Error, Mean Squared Error and Root Mean Squared Error we found that Logistic Regression performed best.

3.7. Data from User

Here we will collect client data from user like limit_bal,age,pay_0,pay_2,pay_3,pay_4,pay_5,pay_6,bill_amt1,bill_amt2,bill_a mt3,bill_amt4,bill_amt5,bill_amt6,pay_amt1,pay_amt2,pay_amt3,pay_amt4,pay_amt5,pay_amt6,grad_school,university,high_school,male and married .

3.8. Data Validation

Here Data Validation will be done, given by the user

3.9. Model selection

The model created during training will be loaded, and user data will be predicted.

3.10. Deployment

We will be deploying the model to Heroku.

4. Website Preview

Output

