Problem

Consider 5 items along their respective weights and values I = <I1,I2,I3,I4,I5> W=<5,10,20,30,40> V=<30,20,100,90,160>

The capacity of knapsack W=60. Find the solution to the fractional knapsack problem using greedy method

Consider 5 items along their respective weights and values

I = <I1,I2,I3,I4,I5>

W=<5,10,20,30,40>

V=<30,20,100,90,160>

The capacity of knapsack W=60. Find the solution to the fractional knapsack problem.

ITEM	W _i	V _i
I1	5	30
12	10	20
13	20	100
14	30	90
15	40	160

Consider 5 items along their respective weights and values

 $I = \langle 11, 12, 13, 14, 15 \rangle$

W=<5,10,20,30,40>

V=<30,20,100,90,160>

The capacity of knapsack W=60. Find the solution to the fractional knapsack problem.

ITEM	W _i	V _i	$P_i = V_i / W_i$ Value per weight
I1	5	30	6
12	10	20	2
13	20	100	5
14	30	90	3
15	40	160	4

Consider 5 items along their respective weights and values

 $I = \langle 11, 12, 13, 14, 15 \rangle$

W=<5,10,20,30,40>

V=<30,20,100,90,160>

The capacity of knapsack W=60. Find the solution to the fractional knapsack problem.

In the sorted order of p

ITEM	W _i	V _i	$P_i = V_i / W_i$ Value per weight
I1	5	30	6
13	20	100	5
15	40	160	4
14	30	90	3
12	10	20	2

Consider 5 items along their respective weights and values

 $I = \langle 11, 12, 13, 14, 15 \rangle$

W=<5,10,20,30,40>

V=<30,20,100,90,160>

The capacity of knapsack W=60. Find the solution to the fractional knapsack problem.

ITEM	W _i	V _i	$P_{i} = V_{i}/W_{i}$ Value per weight
I1	5	30	6
13	20	100	5
15	40	160	4
14	30	90	3
12	10	20	2

Filling the knapsack, I1 + I3 + I5
Weight = 5+20+35 =60
Value = 30+100+35*4
= 30+100+140=270

35
20
5

W = 60

Problem

Consider 5 items along their respective weights and values I = <I1,I2,I3,I4,I5> W=<5,10,20,30,40> V=<30,20,100,90,160>

The capacity of knapsack W=60. Find the solution to the 0-1 knapsack problem using branch & bound method

Consider 5 items along their respective weights and values

 $I = \langle 11, 12, 13, 14, 15 \rangle$

W=<5,10,20,30,40>

V=<30,20,100,90,160>

The capacity of knapsack W=60. Find the solution to the 0-1 knapsack problem.

ITEM	W _i	V _i
I1	5	30
12	10	20
13	20	100
14	30	90
15	40	160

Consider 5 items along their respective weights and values

I = <I1,I2,I3,I4,I5>

W=<5,10,20,30,40>

V=<30,20,100,90,160>

The capacity of knapsack W=60. Find the solution to the 0-1 knapsack problem.

ITEM	W _i	V _i	$P_i = V_i / W_i$ Value per weight
I1	5	30	6
12	10	20	2
13	20	100	5
14	30	90	3
15	40	160	4

Consider 5 items along their respective weights and values

 $I = \langle 11, 12, 13, 14, 15 \rangle$

W=<5,10,20,30,40>

V=<30,20,100,90,160>

The capacity of knapsack W=60. Find the solution to the 0-1 knapsack problem.

In the sorted order of p

ITEM	W _i	V _i	$P_{i} = V_{i}/W_{i}$ Value per weight
I1	5	30	6
13	20	100	5
15	40	160	4
14	30	90	3
12	10	20	2

Consider 5 items along their respective weights and values

I = <I1,I2,I3,I4,I5>

W=<5,10,20,30,40>

V=<30,20,100,90,160>

The capacity of knapsack W=60. Find the solution to the 0-1 knapsack problem.

ITEM	W _i	V _i	$P_i = V_i / W_i$ Value per weight
I1	5	30	6
13	20	100	5
15	40	160	4
14	30	90	3
12	10	20	2

What will be the answer?

Consider 5 items along their respective weights and values

I = <I1,I2,I3,I4,I5>

W=<5,10,20,30,40>

V=<30,20,100,90,160>

The capacity of knapsack W=60. Find the solution to the 0-1 knapsack problem.

ITEM	W _i	V _i	$P_i = V_i / W_i$ Value per weight
I1	5	30	6
13	20	100	5
15	40	160	4
14	30	90	3
12	10	20	2

What will be the answer?

I = <I1,I2,I3,I4,I5> Final solution=<0,0,1,0,1>

Consider 5 items along their respective weights and values I = <11,I2,I3,I4,I5> W=<5,10,20,30,40> V=<30,20,100,90,160> The capacity of knapsack W=60. Find the solution to the 0-1 knapsack problem.

Step 1: Calculate the upper bound (ub) using fractional knapsack

ITEM	W _i	V _i	$P_i = V_i / W_i$ Value per weight
l1	5	30	6
13	20	100	5
15	40	160	4
14	30	90	3
12	10	20	2

Filling the knapsack, I1 + I3 + I5 Weight = 5+20+35 =60 Value = 30+100+35*4 = 30+100+140=270

IT E M	W _i	V _i	P i
l1	5	30	6
13	20	100	5
15	40	160	4
14	30	90	3
12	10	20	2

Root

IT E M	W _i	V _i	P
I1	5	30	6
13	20	100	5
15	40	160	4
14	30	90	3
12	10	20	2

IT E M	W _i	V _i	P
I1	5	30	6
13	20	100	5
15	40	160	4
14	30	90	3
12	10	20	2

IT E M	W _i	V _i	P
I1	5	30	6
13	20	100	5
15	40	160	4
14	30	90	3
12	10	20	2

Calculate ub I1 + I3 + I5

Weight = 5+20+35 =60 Value = 30+100+35*4

IT E M	W _i	V _i	P			Roc	ot
11	5	30	6			W-0 V-0	
13	20	100	5			w=0,v=0 ub=270	
15	40	160	4			UD-210	
14	30	90	3		l1=1 /		l1=0
12	10	20	2				
	11 + Weic	$\dot{e} = 3$	5 5+2 30+	20+35 =60 -100+35*4)+100+140=2	w=5,v=30 ub=270		w=0,v=0 ub=

Next, Explore the highest ub node (270,260) – highest is 270

IT E M	W _i	V _i	P
I1	5	30	6
13	20	100	5
15	40	160	4
14	30	90	3
12	10	20	2

IT E M	W _i	V _i	P i
I1	5	30	6
13	20	100	5
15	40	160	4
14	30	90	3
12	10	20	2

IT E W v v P 11=1 ub=270 I1=0	
Ub=270 W=5,v=30 Ub=270 Ub=),v=0 = 260
I3 20 100 5 Ub=270 Ub=	: 260
I5 40 160 4	
14 30 90 3 w=25,v=130	
12 10 20 2 ub=	

IT E M	W _i	V _i	P i
I1	5	30	6
13	20	100	5
15	40	160	4

The capacity of knapsack W=60. Find the solution to the 0-1 knapsack problem

IT E M	W _i	V _i	P
I1	5	30	6
13	20	100	5
15	40	160	4
14	30	90	3
12	10	20	2

IT E M	W _i	V _i	P
I1	5	30	6
13	20	100	5
15	40	160	4
14	30	90	3
12	10	20	2

Next, Explore the highest ub node (270,235,260) – highest is 270

Next, Explore the highest ub node (230,235,260) – highest is 260

Next, Explore the highest ub node (230,235,260,220) – highest is 260

The capacity of knapsack W=60. Find the solution to the 0-1 knapsack problem

Thank You