Chapitre 7 - Théorème de Thalès

Activité Introduction

On considère la figure ci-contre représentant la table de camping de Léon, dont les pieds [DE] et [CF] sont sécants en A.

On donne :

AD = 30 cm, AE = 50 cm, AC = 25 cm et AF = 40 cm. Léon voudrait savoir si le plateau (EF) de sa table est parallèle au sol (DC) qui est horizontal.

- $\frac{1}{1}$ a. Les quotients $\frac{AD}{AE}$ et $\frac{AC}{AF}$ sont-ils égaux?
 - **b**. Réaliser une figure à l'échelle $\frac{1}{10}$.
 - c. Les droites (EF) et (DC) semblent-elles parallèles ? Que peut-on en conclure pour le plateau de la table ?
 - d. Si les droites (EF) et (DC) étaient parallèles, que pourrait-on dire des rapports $\frac{AD}{AE}$ et $\frac{AC}{AE}$? D'après quelle propriété?
 - Lustifier alors la conjecture émise à la question 1. c.
- Léon décide de raccourcir le pied [AC] en coupant 1 cm. Le plateau est-il parallèle au sol

I - Théorème de Thalès:

1) Théorème:

Si, dans un triangle ABC, ou M est un point de [AB] et N un point de [AC], les droites (BC) et (MN) sont parallèles, alors on a l'égalité des rapports suivants :

$$\frac{AM}{AB} = \frac{AN}{AC} = \frac{MN}{BC}$$

Remarque:

Les côtés des triangles AMN et ABC sont respectivement proportionnels (les rapports sont égaux) ce sont donc des triangles semblables.

2) Différents cas de figures :

II - Calcul d'une longueur manquante :

1) Rappels Egalité des produits en croix :

Dans une égalité de quotient, on a égalité des produits en croix :

$$\operatorname{Si} \frac{a}{c} = \frac{b}{d}$$
, Alors : $a \times d = c \times b$

2) Application:

Dans la figure ci-contre, les droites (BC) et (AD) sont parallèles. On peut donc utiliser le théorème de Thalès pour calculer la longueur BC.

D'après le théorème de Thalès on a :

$$\frac{EA}{EB} = \frac{ED}{EC} = \frac{AD}{BC}$$

Soit $\frac{EA}{EB} = \frac{4}{5} = \frac{3,5}{BC}$ et, en utilisant l'égalité des produits en croix, BC = $\frac{5\times3,5}{4}$ = 4,375cm