

$$R = CTS * FS$$

$$CTS = \frac{R}{FS}$$

$$R$$

Tensión En Maniobra Ahorcada

$$CTS = CTS \ axial * \frac{3}{4} * \frac{A}{L} * 2$$

Pérdida del 75% en esta maniobra

La distancia se toma desde el fulcro al centro del contrapeso (d1).

$$t_1 = contrapeso * d_1$$

 $t_2 = peso \ carga * d_2$
 $t_1 < t_2 = volcamiento$

$$CT = \frac{d1 * contrapeso}{d2}$$

CARGA MAXIMA SEGURA (Capacidad de maniobra)

$$CMS = N^{\circ} maniobras * CTS * Fa$$

Calculo de la TENSION de la maniobra

$$CMS = N^{\circ} \ maniobras * CTS * \frac{1}{sena}$$

En donde: = Cosec α =

Calcular en base al Fa, no transformar a valor en grados

$$Peso = \left(\frac{\pi * d_{ext}^2 * L}{4}\right) - \left(\frac{\pi * d_{int}^2 * L}{4}\right) * PE$$

$$Peso = 0,785 * L * \Delta d^2 * PE$$

Según Radio

$$Peso = \Delta r^2 * L * PE$$

peso = v * PE

peso = v * PE

Fierro de Construcción $PESO = d^2 * 6, 17 * L$ Formula Exacta

PESO =* L * PE * N°barras

Pertenece a Iván Calizario +56 9 50896977

Tension en maniobra ahorcada

Pérdida del 75% en esta

 $Wll = capacidad \ 1 \ eslinga * \frac{\pi}{2} * 3$

3 es el numero de piernas

Cilindro macizo

(según el diámetro)

$$peso = \frac{\emptyset * \pi * largo}{4} * PE$$
Según el radio

 $peso = r^2 * \pi * largo * PE$

Perfil de Angulo peso = largo * ancho * espesor * 2 * PE

CAPACIDAD DE UNA ESLINGA

$$wll = \frac{mm \, eslinga * N^{\circ} capas * 700}{Fa}$$

Calcular cada segmento por separado

x = distancia * peso

 $\begin{aligned}
 x &= peso \ 1 * d1 \\
 y &= peso \ 2 * d2
 \end{aligned}$ z = peso 3 * d3

 $CG\ general = \frac{x+y+z}{peso\ total}$

Tension en eslingas en 90° con CG desplazado

GRAMIL Gramil * espesor * 12,5

 $f_{multiplicador} =$ $\frac{peso}{2} * f_{multiplicador}$

 $tension = Fa \frac{peso}{radio}$

mm eslinga * N°capas * 700

CONVERSIÓN DE DISTANCIAS

	mm	cm	inch	pie	yarda	mt	milla
Mm	1	0,1	0,03937	0,003281	0,001094	0,001	
Cm	10	1	0,3937	0,032808	0,010936	0,01	
Inch	25,4	2,54	1	0,0833	0,0277	0,0254	
Pie	304,8	30,48	12	1	0,333	0,3048	
Yarda	914,4	91,44	36	3	1	0,9144	
Mt	1000	100	39,37	3,281	1,094	1	
km				3280,8	1093,6	1000	0,6214
milla				5280	1760	1609,35	1

CONVERSIÓN DE pesos

	gr	oz	lb	kg	ton	ton c	newt
gr	1	196,87	0,002205	0,001			
oz	28,35	1	0,0625	0,02835			
lb	453,592	16	1	0,4536			4,44822
kg	1000	352.740	2,2046	1			9,81
ton			2204,62	1000	1	1,1023	
ton c			2000	907.185	0,90719	1	
newt			0,2248lb/f	0,102kg/f			1

SUPERFICIE ATAQUE VIENTO AW = Ap * CW

Ap, superficie expuesta al viento.

CW, coeficiente resistencia carga

(regularmente es 1,2. Puede variar)

AW, superficie ataque del viento.

MAGNITUD DE LA CARGA

$$Mg = \frac{Aw}{peso}$$

 $si Mg > 1,2mt^2/tn$

Entonces hay que recalcular la velocidad máxima de

CALCULO VELOCIDAD MAXIMA VIENTO

$$V_{max} = V_{maxTabla} * \sqrt{\frac{1,2^{mt^2}/_{ton} * mh}{Aw}}$$

1,2 es una constante general de la carga (puede variar) mh, capacidad de carga de elevación (incluye aparejos) aw, superficie de ataque del viento

VmaxTabla, velocidad máxima viento según tabla de

COEFICIENTE **RESISTENCIA AL VIENTO** Drag Coefficient Half-sphere 0.42 0.50 Cube 1.05 Angled 0.80 Long 0.82 Cylinder Body Streamlined Half-body

Ø	PESO
cable	LINEA
_	Kgr/mt
1/4	0.2
5/16	0.3
3/8	0.4
7/16	0.7
1/2	0.9
9/16	1.1
5/8	1.6
3/4	2.1
7/8	2.8
1	3.5
1 1/8	4.3
1 1/4	5.2
13/8	6.2
1 ½	7.3
15/8	8.4
1 ¾	9.7
2	11.0
2 1/8	12.4
2 1/4	13.9
2 3/8	15.5
2 ½	17.3
2 5/8	19.0
2 ¾	20.8

PE

1 LOOD LOI LCII ICOD		
material	KG/mt ²	
Acero	7,85	
Aluminio bronce	2,7	
Cobre	8,9	
Estaño	7,4	
Latón	8,5	
Plomo	11,4	
zinc	7,2	
Hormigón normal	2,2	
Hormigón armado	2,4	
bronce	8,5	
_		

material	KG/mt ²
Acero	7,85
Aluminio bronce	2,7
Cobre	8,9
Estaño	7,4
Latón	8,5
Plomo	11,4
zinc	7,2
Hormigón normal	2,2
Hormigón armado	2,4
bronce	8,5

ESOS ESPECÍFIC		
material	KG/mt ²	L1
cero	7,85	
luminio bronce	2,7	
obre	8,9	
staño	7,4	7
atón	8,5	noso
omo	11,4	peso
nc	7,2	▼
ormigón normal	2,2	D1
ormigón armado	2,4	
ronce	8,5	

	h_1) + (h_2)	T2	
11	h2	2 h1 \\	1
peso		•	
◆ D1		D2	٠
			_

3 KNOTS : 1,5 m/s - 5,5 km/hr6 KNOTS : 3,0m/s - 11km/hr 9 KNOTS : 4.5m/s – 16km/hr 12 KNOTS: 6,0m/s - 22km/hr 15 KNOTS: 7,7m/s - 28km/hr

 $t_1 = \frac{peso*d_2*l_1}{(d_2*h_1) + (d_1*h_2)}$

LÍNEAS ELÉC

	LINEAS ELEC.				
	Kv	Mts			
	3	3			
	6	3			
	10	3			
	15	3			
	20	3			
	30	3			
	45	3			
	66	3			
_	110	5			
	132	5			
	220	5			
	380	7			

Tabla fricción				
al 3%				
N	R			
1	0.97			
2	1.91			
3	2.83			
4	3.72			
5	4.58			
6	5.42			
7	6.23			
8	7.02			
9	7.79			
10	8.53			
11	9.25			
12	9.95			

FUNCIONES TRIGONOMETRICAS

$$\sin \alpha = \frac{cateto \ opuesto}{hipotenusa} = \frac{a}{c}$$

$$\cos \alpha = \frac{cateto \ adyacente}{hipotenusa} = \frac{b}{c}$$

$$\tan \alpha = \frac{cateto \ opuesto}{cateto \ adyacente} = \frac{a}{b}$$

$$\csc \alpha = \frac{hipotenusa}{cateto\ opuesto} = \frac{1}{sen\ \alpha} = \frac{c}{a}$$

$$c \sec \alpha = \frac{hipotenusa}{cateto \ adyacente} = \frac{1}{cos \ \alpha} = \frac{c}{b}$$

$$c \sec \alpha = \frac{hipotenusa}{cateto \ adyacente} = \frac{1}{cos \ \alpha} = \frac{c}{b}$$

$$c \tan \alpha = \frac{cateto \ adyacente}{cateto \ opuesto} = \frac{1}{tang \ \alpha} = \frac{c}{a}$$

Calculo carga por ramal en la pluma Peso carga

Capacidad cable segun Ø

R se aproxima a N más alta en la tabla de fricción.

 $Para R \rightarrow N$

Peso deducible = d gancho pluma * Peso lineal segun $\emptyset * N^{\circ}$ ramales

Calculo Viga H

Se calculan partes por Separado.

 $PESO\ 1 = a * e * d * PE * 2$ $PESO\ 2 = c * f * d * PE$

Empuje del viento

Viento	Empuje	Empuje
km/hr	kg/mt2	corregido
10	0,4	0,53
15	0,9	1,193
20	1,61	2,134
25	2,51	3,328
30	3,62	4,8
40	6,44	8,638
48	9,27	12,292
50	10,06	13,339
60	14,5	19,227
70	19,73	26,161
80	25,77	34,171
90	32,62	43,254
100	40,27	53,398
120	57,99	76,894
		<u> </u>