NRP : 6022xxxxxxx

MATA KULIAH : PENGAMAN STL CERDAS

DOSEN: DR. Ir. MARGO PUJIANTARA, M.T.

MATERI : UAS – KOORDINASI PENGAMAN DENGAN MODIFIED PARTICLE SWARM

OPTIMIZATION

Tipikal single line diagram

Data Transformator

Pada sistem single line yang digunakan ada beberapa tegangan yang digunakan yaitu: 0,4 kV, 6 kV, 20 kV, dan 150 kV. Untuk mengkonversi tegangan tersebut, terdapat transformator *step-up* dan transformator *step-down*. Data transformator ditunjukkan pada table ini.

ID Trafo	MVA	FLA primer (A)	FLA sekunder (A)	kV	%Z	X/R	Hubungan
T-2	5	144,3	481,1	20/6	10	8,5	Delta/wye
T-1	60	230,9	1732	150/20	12,5	45	wye/wye
T-5	120	3849	461.9	18/150	14	42	Delta/wye

NRP : 6022xxxxxxx

MATA KULIAH : PENGAMAN STL CERDAS

DOSEN : DR. Ir. MARGO PUJIANTARA, M.T

MATERI : UAS – KOORDINASI PENGAMAN DENGAN MODIFIED PARTICLE SWARM

OPTIMIZATION

Pasangan Rele primer dan backup

Rele primer berfungsi sebagai pengaman utama ketika terjadi gangguan pada titik tersebut, sedangkan rele *backup* berfungsi sebagai rele kedua jika rele primer gagal dalam mengisolasi gangguan. Pasangan rele primer dan rele *backup* dapat ditentukan melalui arah arus yang mengalir pada sistem.

No	Letak gangguan	Rele primer	Rele backup
1.	Bus 19 (6 kV)	RCB-10	RCB-8
2.	Bus 4 (6 kV)	RCB-8	RCB-3
3.	T-2 (20 kV)	RCB-3	RCB-2
4.	Bus 2 (20 kV)	RCB-2	RCB-1
5.	T1 (150 kV)	RCB-1	RCB-U1
6.	Bus 1 (150 kV)	RCV-U1	-

Data Arus hubung singkat maksimum

Arus hubung singkat yang ditampilkan pada tabel ini merupakan arus hubung singkat 3 fasa ½ cycle pada tiap bus.

No	ID	Tegangan (kV)	Iscmax ½ Cycle (A)
1.	Bus 19	6	4970
2.	Bus 4	6	4380
3.	Bus T-2	20	15360
4.	Bus 2	20	13230
5.	Bus T-1	150	39840
6.	Bus 1	150	38490

Data arus hubung singkat maksimum yang mengalir pada rele

Arus hubung singkat yang ditampilkan yaitu hubung singkat 3 fasa ½ cycle. Data arus hubung singkat ini digunakan untuk menghitung TDS setiap rele.

No	ID	Tegangan (kV)	Iscmax Primer (A)	Iscmax Backup (A)
1.	RCB-10	6	4970	-
2.	RCB-8	6	4380	1380
3.	RCB-3	20	15360	13230
4.	RCB-2	20	13230	1810
5.	RCB-1	150	39840	38490
6.	RCB-U1	150	38190	38190

NRP : 6022xxxxxxx

MATA KULIAH : PENGAMAN STL CERDAS

DOSEN : DR. Ir. MARGO PUJIANTARA, M.T

MATERI : UAS – KOORDINASI PENGAMAN DENGAN MODIFIED PARTICLE SWARM

OPTIMIZATION

Perhitungan TDS menggunakan MPSO

Pada proses perhitungan *Time Dial Setting (TDS)* menggunakan *Modified Particle Swarm Optimization (MPSO)* perlu menentukan parameter-parameter PSO, meliputi:

a. Jumlah populasi = 10

b. Iterasi makimum = 50

c. Wmax = 0.9

d. Wmin = 0.4

e. C1 = 0,5

f. C2 = 0.5

g. C3 min = 0,4

h. C3 max = 0.6

Perhitungan TDS pada program ini dilakukan secara seri, yaitu tahap awal memasukkan data rele untuk dikoordinasikan, kemudian setelah didapatkan TDS yang baik, maka rele selanjutnya akan dimasukkan dan dilakukan pemrosesan lanjutan. Perhitungan ini sampai rele ke-n.

Pada awal program MPSO secara seri, menetukan jumlah rele yang akan dikoordinasikan beserta tegangan base (kV)

Masukkan Jumlah Relay : 6 Masukkan kV Base : 6

Gambar 1. Tampilan Masukan Jumlah Rele Dan Kv Base

Selanjutnya, data rele RCB-10 dan RCB-8 dimasukkan ke program

❖ Data rele RCB-10 dan RCB-8

RCB-10

Manufacturer : Merlin Gerin

Model : Sepam Series 80

Tipe Kurva : IEC Extremely Inverse

Batas TDS : 0,1 – 12,5

Step TDS : 0,01

Isc max primer : 4970 A (6kV)

Isc max backup : -

FLA : 481.1 A (6kV)

Rasio CT : 600/5

RCB-8

Manufacturer : Merlin Gerin Model : Sepam Series 80

NRP : 6022xxxxxxx

MATA KULIAH : PENGAMAN STL CERDAS

DOSEN : DR. Ir. MARGO PUJIANTARA, M.T

MATERI : UAS – KOORDINASI PENGAMAN DENGAN MODIFIED PARTICLE SWARM

OPTIMIZATION

Tipe Kurva : IEC Extremely Inverse

Batas TDS : 0,1 – 12,5

Step TDS : 0,01

 Isc max primer
 : 4380 A (6kV)

 Isc max backup
 : 1380 A (6kV)

 FLA
 : 481.1 A (6kV)

Rasio CT : 600/5

Gambar 2. Tampilan masukan Data RCB-10 dan RCB-8 pada program

Target CTI (s) : 0.2

Data rele RCB-3

Untuk mengkoordinasikan RCB-8 dan RCB-3, maka dimasukkan data-data RCB-3, sebagai berikut.

RCB-3

Manufacturer: Merlin GerinModel: Sepam Series 80Tipe Kurva: IEC Extremely Inverse

Data TDC .01 12 F

Batas TDS : 0,1 – 12,5 *Step* TDS : 0,01

Isc max primer : 15360 A (20 kV)
Isc max backup : 13230 A (20 kV)
FLA : 144,3 A (20 kV)

Rasio CT : 200/5

NRP : 6022xxxxxx

MATA KULIAH : PENGAMAN STL CERDAS

DOSEN : DR. Ir. MARGO PUJIANTARA, M.T

MATERI : UAS – KOORDINASI PENGAMAN DENGAN MODIFIED PARTICLE SWARM

OPTIMIZATION

Gambar 3. Tampilan masukan Data RCB-3

RCB-3 dan RCB-8 berada pada satu line dengan tegangan yang berbeda. Ketika ada hubung singkat pada sisi sekunder trafo, jika *breaker* pada sisi sekunder trafo *trip* lebih dahulu atau *breaker* pada sisi sekunder dan primer *trip* secara bersamaan, menyebabkan daya tidak tersalur ke beban. Sehingga akan terjadi hubung singkat pada bus 4, CTI antar rele dapat dibuat menjadi 0 detik. Ketika program mendeteksi perbedaan tegangan, maka;

```
PERHATIAN

LEVEL TEGANGAN BERBEDA TELAH TERDETEKSI
Apakah CTI Ingin Diminimalkan?
YA = 1, TIDAK = 2
Masukkan Pilihan : 1
STATUS : CTI DIMINIMALKAN
```

Gambar 4. Tampilan ketika perbedaan tegangan terdeteksi program

❖ Data rele RCB-2

Untuk mengkoordinasikan RCB-3 dan RCB-2, maka dimasukkan data-data RCB-2, sebagai berikut.

RCB-2

Manufacturer: Merlin GerinModel: Sepam Series 80Tipe Kurva: IEC Extremely Inverse

Batas TDS : 0,1 – 12,5

Step TDS : 0,01

Rasio CT : 2000/5

NRP : 6022xxxxxx

MATA KULIAH : PENGAMAN STL CERDAS

DOSEN : DR. Ir. MARGO PUJIANTARA, M.T

MATERI : UAS – KOORDINASI PENGAMAN DENGAN MODIFIED PARTICLE SWARM

OPTIMIZATION

```
Masukkan Tegangan Relay ke 4 (kV): 20

Masukkan Primer CT ke 4: 2000

Masukkan FLA relay ke 4 (A): 1732

Masukkan Iscmax Relay Primer ke 4 (A): 13230

Masukkan Iscmax Relay Backup ke 4 (A): 1810

Jenis Kurva:
(1) Standard Inverse
(2) Very Inverse
(3) Long Time Inverse
(4) Extremely Inverse
(5) Ultra Inverse
Pilih Jenis Kurva: 4

Target CTI (s): 0.2
```

Gambar 5. Tampilan data masukan RCB-2

Data rele RCB-1

Untuk mengkoordinasikan RCB-2 dan RCB-1, maka dimasukkan data-data RCB-1, sebagai berikut.

RCB-1

Manufacturer: Merlin GerinModel: Sepam Series 80Tipe Kurva: IEC Extremely Inverse

Batas TDS : 0,1 – 12,5

Step TDS : 0,01

 Isc max primer
 : 38490 A (150 kV)

 Isc max backup
 : 38490 A (150 kV)

 FLA
 : 230,9 A (150 kV)

Rasio CT : 500/5

```
Masukkan Tegangan Relay ke 5 (kV): 150
Masukkan Primer CT ke 5: 500
Masukkan FLA relay ke 5 (A): 230.9
Masukkan Iscmax Relay Primer ke 5 (A): 39840
Masukkan Iscmax Relay Backup ke 5 (A): 38490
Jenis Kurva:
(1) Standard Inverse
(2) Very Inverse
(3) Long Time Inverse
(4) Extremely Inverse
(5) Ultra Inverse
Pilih Jenis Kurva: 4
```

Gambar 6. Tampilan data masukan RCB-1

NRP : 6022xxxxxx

MATA KULIAH : PENGAMAN STL CERDAS

DOSEN: DR. Ir. MARGO PUJIANTARA, M.T.

MATERI : UAS – KOORDINASI PENGAMAN DENGAN MODIFIED PARTICLE SWARM

OPTIMIZATION

PERHATIAN

LEVEL TEGANGAN BERBEDA TELAH TERDETEKSI
Apakah CTI Ingin Diminimalkan?

YA = 1, TIDAK = 2

Masukkan Pilihan : 1

STATUS : CTI DIMINIMALKAN

Gambar 7. Ketika program mendeteksi perbedaan tegangan

Ketika program selesai dimasukkan, program akan mendeteksi bahwa waktu operasi rele primer lebih dari 0,9 detik, sehingga akan diberikan dara untuk mengubah kurva menjadi jenis kurva nomor 4 atau *extremely inverse*.

WARNING!!!

Waktu Operasi Rele > 0,9 detik

Program Akan Mencari Jenis Kurva Lain

Setuju = 1, Tidak = 0

Masukkan Pilihan : 1

Jenis Kurva Akan Diubah Menjadi Jenis Nomor (4)

Gambar 8. Saran untuk mengubah jenis kurva

Data rele RCB-U1

Untuk mengkoordinasikan RCB-1 dan RCB-U1, maka dimasukkan data-data RCB-U1, sebagai berikut.

RCB-U1

Manufacturer: Merlin GerinModel: Sepam Series 80Tipe Kurva: IEC Extremely Inverse

Batas TDS : 0,1 - 12,5

Step TDS : 0,01

| Isc max primer | : 39190 A (150 kV) | Isc max backup | : 38190 A (150 kV)

FLA : 1536.6 Rasio CT : 1500/5

NRP : 6022xxxxxx

MATA KULIAH : PENGAMAN STL CERDAS

DOSEN : DR. Ir. MARGO PUJIANTARA, M.T

MATERI : UAS – KOORDINASI PENGAMAN DENGAN MODIFIED PARTICLE SWARM

OPTIMIZATION

Gambar 9. Tampilan data masukan RCB-U1

Rangkuman Perhitungan

Untuk keseluruhan rele, distribusi partikel pada iterasi ditampilkan pada gambar 10 sebagai berikut.

Gambar 10. Distribusi partikel TDS pada iterasi terakhir

Keterangan:

❖ Partikel 1 − 10 = RCB-10

NRP : 6022xxxxxx

MATA KULIAH : PENGAMAN STL CERDAS

DOSEN : DR. Ir. MARGO PUJIANTARA, M.T

MATERI : UAS – KOORDINASI PENGAMAN DENGAN MODIFIED PARTICLE SWARM

OPTIMIZATION

❖ Partikel 11 – 20 = RCB-8
 ❖ Partikel 21 – 30 = RCB-3
 ❖ Partikel 31 – 40 = RCB-2
 ❖ Partikel 41 – 50 = RCB-1
 ❖ Partikel 51 – 60 = RCB-U1

Ketika program selesai melakukan perhitungan, maka program akan menampilkan rangkuman setting rele yang ditunjukkan pada gambar 11,

			ys Data Summa			
Relay	Voltage(kV)	Primary CT	Ip (A)	Tap	TDS	Curve Type
1	6.00	600	505.16	0.84	0.10	Extremely Inverse
2	6.00	600	505.16	0.84	0.10	Extremely Inverse
3	20.00	200	151.52	0.76	0.41	Extremely Inverse
4	20.00	2000	1818.60	0.91	0.17	Extremely Inverse
5	150.00	500	242.45	0.48	0.93	Extremely Inverse
6	150.00	1500	1613.43	1.08	2.59	Extremely Inverse

Gambar 11. Rangkuman Setting Rele

Seluruh perhitungan untuk koordinasi rele konvergen pada iterasi ke-26, dengan *objective function* yang diperoleh sebesar 1, 7461 detik

Gambar 12. Kurva konvergensi

Plot Kurva TCC

NRP : 6022xxxxxx

MATA KULIAH : PENGAMAN STL CERDAS

DOSEN : DR. Ir. MARGO PUJIANTARA, M.T

MATERI : UAS – KOORDINASI PENGAMAN DENGAN MODIFIED PARTICLE SWARM

OPTIMIZATION

Selain hasil TDS dan waktu operasi rele yang ditampilkan, program juga menampilkan plot kurva TCC. Sebagai validasi dari program maka, akan dibandingkan denga plot menggunakan ETAP.

❖ Plot Kurva TCC RCB-10 dan RCB-8

Setting RCB-10 dan RCB-8

	RCB-10	RCB-8
Manfaktur	Merlin Gerin	Merlin Gerin
Model	Sepam Series 80	Sepam Series 80
Rasio CT	600/5	600/5
Tipe Kurva	IEC Extremely Inverse	IEC Extremely Inverse
TDS	0,10	0,15
lp	505,16	505,16
Tap Ip	0.84	0,84

Kurva TCC Matlab

Gambar 13. Kurva TCC RCB-10 dan RCB-8 matlab

Kurva TCC ETAP

NRP : 6022xxxxx

MATA KULIAH : PENGAMAN STL CERDAS

DOSEN : DR. Ir. MARGO PUJIANTARA, M.T

MATERI : UAS – KOORDINASI PENGAMAN DENGAN MODIFIED PARTICLE SWARM

OPTIMIZATION

Gambar 14. Kurva TCC Etap RCB-10 dan RCB-8

Ketika terjadi gangguan pada Bus 19, maka RCB-10 akan merasakan arus gangguan sebesar 4,317 kA, begitu juga pada RCB-8. Karena program mengganggap koordinasi RCB-10 dan RCB-8 berada pada satu garis maka kedua kurva primer dan backup berhimpit menjadi 1.

❖ Plot Kurva TCC RCB-8 dan RCB-3

Setting RCB-8 dan RCB-3

	RCB-8	RCB-3
Manfaktur	Merlin Gerin	Merlin Gerin
Model	Sepam Series 80	Sepam Series 80
Rasio CT	600/5	200/5
Tipe Kurva	IEC Extremely Inverse	IEC Extremely Inverse
TDS	0,15	0,41
lp	505,16	151,52
Tap Ip	0,84	0,76

Kurva TCC Matlab

NRP : 6022xxxxx

MATA KULIAH : PENGAMAN STL CERDAS

DOSEN : DR. Ir. MARGO PUJIANTARA, M.T

MATERI : UAS – KOORDINASI PENGAMAN DENGAN MODIFIED PARTICLE SWARM

OPTIMIZATION

Gambar 15. Kurva TCC Matlab RCB-8 dan RCB-3

Kurva TCC ETAP

NRP : 6022xxxxx

MATA KULIAH : PENGAMAN STL CERDAS

DOSEN : DR. Ir. MARGO PUJIANTARA, M.T

MATERI : UAS – KOORDINASI PENGAMAN DENGAN MODIFIED PARTICLE SWARM

OPTIMIZATION

Gambar 16. Kurva TCC ETAP RCB-8 dan RCB-3

Ketika terjadi gangguan pada Bus 4, RCB-8 merasakan arus gangguan sebesar 4,317 kA pada tegangan 6 kV dan RCB-3 merasakan arus sebesar 1,326 kA pada tegangan 20 kV. RCB-8 sebagai rele primer beroperasi pada waktu 0,137 detik dan RCB-3 beroperasi pada 0,539 detik.

❖ Plot Kurva TCC RCB-3 dan RCB-2

Setting RCB-3 dan RCB-2

	RCB-3	RCB-2
Manfaktur	Merlin Gerin	Merlin Gerin
Model	Sepam Series 80	Sepam Series 80
Rasio CT	200/5	2000/5
Tipe Kurva	IEC Extremely Inverse	IEC Extremely Inverse
TDS	0,41	0,17
lp	151,52	1818,60
Tap Ip	0,76	0,91

NRP : 6022xxxxx

MATA KULIAH : PENGAMAN STL CERDAS

DOSEN: DR. Ir. MARGO PUJIANTARA, M.T

MATERI : UAS – KOORDINASI PENGAMAN DENGAN MODIFIED PARTICLE SWARM

OPTIMIZATION

Kurva TCC Matlab

Gambar 17. Kurva TCC Matlab RCB-3 dan RCB-2

Kurva TCC ETAP

Gambar 18. Kurva TCC ETAP RCB-3 dan RCB-2

NRP : 6022xxxxx

MATA KULIAH : PENGAMAN STL CERDAS

DOSEN : DR. Ir. MARGO PUJIANTARA, M.T

MATERI : UAS – KOORDINASI PENGAMAN DENGAN MODIFIED PARTICLE SWARM

OPTIMIZATION

❖ Plot Kurva TCC RCB-2 dan RCB-1

Setting RCB-2 dan RCB-1

	RCB-2	RCB-1
Manfaktur	Merlin Gerin	Merlin Gerin
Model	Sepam Series 80	Sepam Series 80
Rasio CT	2000/5	500/5
Tipe Kurva	IEC Extremely Inverse	IEC Extremely Inverse
TDS	0,17	0,93
lp	1818,60	242,45
Tap Ip	0,91	0,49

Kurva TCC Matlab

Gambar 19. Kurva TCC Matlab RCB-2 dan RCB-1

NAMA

NRP : 6022xxxxxx

MATA KULIAH : PENGAMAN STL CERDAS

DOSEN: DR. Ir. MARGO PUJIANTARA, M.T.

MATERI : UAS – KOORDINASI PENGAMAN DENGAN MODIFIED PARTICLE SWARM

OPTIMIZATION

Kurva TCC ETAP

Gambar 20. Kurva TCC ETAP RCB-2 dan RCB-1

Ketika terjadi gangguan pada Bus 2, RCB-2 merasakan arus gangguan sebesar 13,221 kA pada tegangan 20 kV. RCB-1 merasakan arus sebesar 1,808 kA pada tegangan 150 kV. RCB-2 sebagai rele primer beroperasi pada waktu 0,325 detik dan RCB-1 sebagai rele bakcup beroperasi pada waktu 1,06 detik.

NRP : 6022xxxxxx

MATA KULIAH : PENGAMAN STL CERDAS

DOSEN: DR. Ir. MARGO PUJIANTARA, M.T.

MATERI : UAS – KOORDINASI PENGAMAN DENGAN MODIFIED PARTICLE SWARM

OPTIMIZATION

❖ Plot Kurva TCC RCB-1 dan RCB-U1

Setting RCB-1 dan RCB-U1

	RCB-1	RCB-U1
Manfaktur	Merlin Gerin	Merlin Gerin
Model	Sepam Series 80	Sepam Series 80
Rasio CT	500/5	500/5
Tipe Kurva	IEC Extremely Inverse	IEC Extremely Inverse
TDS	0,93	2,59
lp	242,45	1613,43
Tap Ip	0,49	1,08

Kurva TCC Matlab

Gambar 21. Kurva TCC Matlab RCB-1 dan RCB-U1

NRP : 6022xxxxxx

MATA KULIAH : PENGAMAN STL CERDAS

DOSEN : DR. Ir. MARGO PUJIANTARA, M.T

MATERI : UAS – KOORDINASI PENGAMAN DENGAN MODIFIED PARTICLE SWARM

OPTIMIZATION

Kurva TCC ETAP

Gambar 22. Kurva TCC ETAP RCB-1 dan RCB-U1

Ketika terjadi gangguan pada T-1 pada sisi tegangan 150 kV, RCB-1 merasakan arus gangguan sebesar 39,551 kA pada 150 kV. RCB-U1 merasakan arus sebesar 38,49 kA pada 150 kV. RCB-1 sebagai rele primer beroperasi pada waktu 0,71 detik dan RCB-U1 beroperasi pada waktu 0,81 detik.

NRP : 6022xxxxxx

MATA KULIAH : PENGAMAN STL CERDAS

DOSEN: DR. Ir. MARGO PUJIANTARA, M.T.

MATERI : UAS – KOORDINASI PENGAMAN DENGAN MODIFIED PARTICLE SWARM

OPTIMIZATION

Plot kurva TCC Keseluruhan

Gambar 23. Plot kurva TCC secara keseluruhan