

Silicon N-Channel Power MOSFET

CS150N03 A8

General Description:

CS150N03 A8, the silicon N-channel Enhanced VDMOSFETs, is obtained by the high density Trench technology which reduce the conduction loss, improve switching performance and enhance the avalanche energy. This device is suitable for use as a load switch and PWM applications. The package form is TO-220AB, which accords with the RoHS standard.

17	_	_	4			_ ~	
H	e	a	L	u	r	es	•

- I Fast Switching
- I Low ON Resistance (Rdson \leq 3.5 m Ω)
- **I Low Gate Charge**
- **I** Low Reverse transfer capacitances
- I 100% Single Pulse avalanche energy Test

Applications:

Power switch circuit of adaptor and charger.

V_{DSS}	30	V
I _D (Silicon limited current)	150	A
I _D (Package limited)	90	A
PD	120.1	W
$R_{DS(ON)Typ}$	2.4	mΩ

Absolute ($Tc=25^{\circ}C$ unless otherwise specified)

Symbol	Parameter	Rating	Units
V _{DSS}	Drain-to-Source Voltage	30	V
T	Continuous Drain Current	150	A
I_D	Continuous Drain Current T _C = 100 °C	104	A
I_{DM}^{a1}	Pulsed Drain Current	600	A
V_{GS}	Gate-to-Source Voltage	±20	V
E_{AS}^{a2}	Avalanche Energy	328	mJ
D	Power Dissipation	120.1	W
$P_{\rm D}$	Derating Factor above 25°C	0.96	W/℃
T _J , T _{stg}	Operating Junction and Storage Temperature Range	150, -55 to 150	$^{\circ}$
T_{L}	MaximumTemperature for Soldering	300	${\mathbb C}$

Electrical Characteristics (Tc= 25° C unless otherwise specified):

OFF Characteristics								
Symbol	Parameter	Test Conditions		Rating				
	rarameter	Test Conditions	Min.	Тур.	Max.	Units		
V_{DSS}	Drain to Source Breakdown Voltage	V_{GS} =0V, I_D =250 μ A	30			V		
T	During Committee Commit	$V_{DS} = 30V$, $V_{GS} = 0V$, $T_c = 25$ °C			1			
I_{DSS}	Drain to Source Leakage Current	$V_{DS} = 24V, V_{GS} = 0V,$ $T_{C} = 125 ^{\circ}C$			100	μΑ		
$I_{GSS(F)}$	Gate to Source Forward Leakage	V _{GS} =20V			100	nA		
$I_{GSS(R)}$	Gate to Source Reverse Leakage	$V_{GS} = -20V$			-100	nA		

ON Characteristics								
Symbol	Parameter	Test Conditions		Rating				
	rarameter	Test Conditions	Min.	Typ.	Max.	Units		
R _{DS(ON)}	Ducin to Sauras On Besistants	$V_{GS} = 10V, I_D = 50A$		2.4	3.5	mΩ		
	Drain-to-Source On-Resistance	V _{GS} =4.5 V,I _D =40 A		5.0	6.5	mΩ		
$V_{\rm GS(TH)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250\mu A$	1.0	1.7	3.0	V		
Pulse width $tp \le 300 \mu s$, $\delta \le 2\%$								

Dynamic Characteristics								
Symbol	Parameter	Test Conditions		TT				
	rarameter	Test Conditions	Min.	Typ.	Max.	Units		
$R_{\rm g}$	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz		0.95		Ω		
Ciss	Input Capacitance			7901				
C_{oss}	Output Capacitance	$V_{GS} = 0V V_{DS} = 15V$ f = 1.0MHz		940		pF		
C_{rss}	Reverse Transfer Capacitance			817				

Resistive Switching Characteristics								
Symbol	Parameter	Test Conditions		Rating				
Symbol	r ai ailietei	Test Conditions	Min.	Тур.	Max.	Units		
$t_{d(ON)}$	Turn-on Delay Time			30.4		ns		
tr	Rise Time	$V_{GS}=10V$, $R_{G}=6\Omega$		30.9				
$t_{d(OFF)}$	Turn-Off Delay Time	$V_{DD}=15V$, $I_{D}=50A$		121				
t_{f}	Fall Time			56				
Q_{g}	Total Gate Charge			145.8				
Q_{gs}	Gate to Source Charge	$I_D = 50A$ $V_{DD} = 15V$ $V_{GS} = 10V$		25.3		nC		
Q_{gd}	Gate to Drain ("Miller")Charge			34.6				

Source-Drain Diode Characteristics								
G 1 1	P	Test		Rating	5	** .		
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units		
I_S	Continuous Source Current (Body Diode)				150	A		
I_{SM}	Maximum Pulsed Current (Body Diode)				600	A		
V_{SD}	Diode Forward Voltage	I _S =50A,V _{GS} =0V			1.2	V		
trr	Reverse Recovery Time	di/dt=100A/us		37		ns		
Qrr	Reverse Recovery Charge	IF=50A		35		nC		
Pulse width	$tp \leq 300 \mu s, \delta \leq 2\%$	-	·	•				

Symbol	Parameter	Max.	Units
R _f JC	Junction-to-Csae	1.04	°C/W
R в ЈА	Junction-to-Ambient	62.5	°C/W

Characteristics Curve:

140
120

M 100

N 100

60

0

25

50

75

100

125

150

Tc,Case Temperature, C

Figure 1 . Maximum Safe Operating Area

Figure 2. Maximum Power Dissipation vs Case Temperature

Figure 3. Maximum Continuous Drain Current vs Case Temperature

Figure 4. Typical output Characteristics

 V_{DS} , Drain-to-Source Voltage [V]

Figure 5 Maximum Effective Thermal Impedance, Junction to Case

Figure 6 Typical Transfer Characteristics

Figure 7 Typical Body Diode Transfer Characteristics

Figure 8. Drain-to-Source On Resistance vs Drain Current

Figure 9. Normalized On Resistance vs Junction Temperature

Figure 10. Normalized Threshold Voltage vs Junction Temperature

Figure 11. Normalized Breakdown Voltage vs Junction Temperature

Figure 13 Typical Gate Charge vs Gate to Source Voltage

Test Circuit and Waveform

Figure 14. Gate Charge Test Circuit

Figure 15. Gate Charge Waveforms

Figure 16. Resistive Switching Test Circuit

Figure 17. Resistive Switching Waveforms

Figure 18. Diode Reverse Recovery Test Circuit

Figure 19. Diode Reverse Recovery Waveform

Figure 20. Unclamped Inductive Switching Test Circuit

Figure 21. Unclamped Inductive Switching Waveform

Package Information:

Itomag	Values(mm)					
Items	MIN	MAX				
A	9.60	10.6				
В	15.0	16.0				
B1	8.90	9.50				
С	4.30	4.80				
C1	2.30	3.10				
D	1.20	1.40				
Е	0.70	0.90				
F	0.30	0.60				
G	1.17	1.37				
Н	2.70	3.80				
L*	12.6	14.8				
N	2.34	2.74				
Q	2.40	3.00				
ΦР	3.50	3.90				

^{*}adjustable

TO-220AB Package

The name and content of poisonous and harmful material in products

		Hazardous Substance								
	Pb	Hg	Cd	Cr(VI)	PBB	PBDE	DIBP	DEHP	DBP	BBP
Limit	≤0.1%	≪0.1%	€ 0.01%	≪0.1%	≪0.1%	≪0.1%	≪0.1%	≪0.1%	≪0.1%	≪0.1%
Lead Frame	0	0	0	0	0	0	0	0	0	0
Molding	0	0	0	0	0	0	0	0	0	0
Chip	0	0	0	0	0	0	0	0	0	0
Wire Bonding	0	0	0	0	0	0	0	0	0	0
Solder	×	0	0	0	0	0	0	0	0	0
Note	Means the hazardous material is under the criterion of 2011/65/EU. Means the hazardous material exceeds the criterion of 2011/65/EU. The plumbum element of solder exist in products presently, but within the allowed range of Eurogroup's RoHS.									

Warnings

- 1. Exceeding the maximum ratings of the device in performance may cause damage to the device, even the permanent failure, which may affect the dependability of the machine. It is suggested to be used under 80 percent of the maximum ratings of the device.
- **2.** When installing the heatsink, please pay attention to the torsional moment and the smoothness of the heatsink.
- **3.** VDMOSFETs is the device which is sensitive to the static electricity, it is necessary to protect the device from being damaged by the static electricity when using it.
- **4.** This publication is made by Huajing Microelectronics and subject to regular change without notice.

WUXI CHINA RESOURCES HUAJING MICROELECTRONICS CO., LTD.

Add: No.14 Liangxi RD. Wuxi, Jiangsu, China Mail:214061 http://www.crhj.com.cn
Tel: +86 0510-85807228 Fax: +86- 0510-85800864

Marketing Part: Post: 214061 Tel: +86 0510-81805277/81805336

Fax: +86 0510-85800360/85803016

Application and Service: Post: 214061 Tel/Fax: +86-0510-81805243/81805110