Θεμελιώδη Θέματα Επιστήμης Υπολογιστών

ΣΗΜΜΥ – ΣΕΜΦΕ ΕΜΠ

1η ενότητα:

Αυτόματα, τυπικές γλώσσες, γραμματικές

Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής

Μηχανές πεπερασμένων καταστάσεων (FSM)

- Τρόπος κωδικοποίησης αλγορίθμων.
- Τρόπος περιγραφής συστημάτων πεπερασμένων καταστάσεων:
 - Μοντελοποιούν μια θεμελιώδη (φαινομενική) αντίφαση των υπολογιστικών (και άλλων) συστημάτων: πεπερασμένο μέγεθος συστήματος, απεριόριστο μέγεθος εισόδου.
 - Ορίζονται με εσωτερικές καταστάσεις και προκαθορισμένο τρόπο μετάβασης από μία κατάσταση σε άλλη με βάση την τρέχουσα κατάσταση και την είσοδο. Μπορεί να έχουν και έξοδο.
- Εφαρμογές σε πλήθος επιστημονικών πεδίων.

Παράδειγμα: μηχανή καφέ (i)

Προδιαγραφές

- Δύο είδη καφέ: ελληνικός ή φρέντο.
- Κόστος καφέ: 40 λεπτά.
- Επιτρέπονται κέρματα 10, 20, ή 50 λεπτών.

Σχεδίαση

• Πόσες καταστάσεις χρειαζόμαστε;

Παράδειγμα: μηχανή καφέ (ii)

Σχεδίαση του συστήματος

- Εσωτερικές καταστάσεις: q₀, q₁, q₂, q₃, q₄, q₅
 - *q*_i : έχουν δοθεί μέχρι στιγμής 10**i* λεπτά
- Δυνατές είσοδοι (ενέργειες): P1, P2, P5, K1, K2
 - P1, P2, P5 : εισαγωγή κέρματος 10, 20, ή 50 λεπτών
 - K1, K2 : κουμπί 1 για ελληνικό καφέ, 2 για φρέντο
- Δυνατές έξοδοι: Ε1, Ε2, Ε3, Ε4, Ε5, ΕΛ, ΦΡ
 - Ε_i: επιστροφή 10**i* λεπτών
 - ΕΛ : παροχή ελληνικού καφέ
 - ΦΡ : παροχή φρέντο

Παράδειγμα: μηχανή καφέ (iii)

Πίνακας καταστάσεων: δείχνει ποια είναι η επόμενη κατάσταση και η έξοδος για κάθε συνδυασμό τρέχουσας κατάστασης και εισόδου. Αρχική κατάσταση: q₀.

Είσοδος Κατάστ.	P1	P2	P5	K1	K2
9 0	<i>q</i> ₁ , -	<i>q</i> ₂ , -	q ₄ , E1	<i>q</i> ₀ , -	<i>q</i> ₀ , -
9 ₁	<i>q</i> ₂ , -	<i>q</i> ₃ , -	q ₄ , E2	<i>q</i> ₁ , -	<i>q</i> ₁ , -
q_2	q ₃ , -	q ₄ , -	q ₄ , E3	q ₂ , -	<i>q</i> ₂ , -
q ₃	q ₄ , -	q ₄ , E1	<i>q</i> ₄ , E4	q ₃ , -	<i>q</i> ₃ , -
q_4	q ₄ , E1	q ₄ , E2	q ₄ , E5	<i>q</i> ₀ , E∧	q ₀ , ФР

Παράδειγμα: μηχανή καφέ (iv)

Διάγραμμα καταστάσεων: παρέχει τις ίδιες πληροφορίες με τον πίνακα καταστάσεων με πιο εποπτικό τρόπο.
 Αρχική κατάσταση: q₀ (σημειώνεται με βέλος).

Παράδειγμα ΙΙ: αριθμητική modulo

- Κατασκευή μηχανής που να κάνει την πράξη n mod 3
- Πόσες καταστάσεις χρειαζόμαστε;
- **Σ**ρήση ιδιότητας: $n \mod 3 = (n_1 + ... + n_k) \mod 3$, n_i τα (δεκαδικά) ψηφία του n Aποδείξτε το!

Παράδειγμα ΙΙ: αριθμητική modulo

- Απλοποίηση: αν ενδιαφέρει μόνο η διαιρετότητα με το 3
 δεν χρειάζεται έξοδος
- Ορίζουμε καταστάσεις αποδοχής (διπλός κύκλος)

Αριθμητική modulo: ασκήσεις

Ασκηση 1: φτιάξτε μηχανή ελέγχου διαιρετότητας με το 5

Ασκηση 2: φτιάξτε μηχανή ελέγχου διαιρετότητας με το 7

Αυτόματα

- Μηχανές πεπερασμένων καταστάσεων χωρίς έξοδο: κάποιες καταστάσεις αποδέχονται, ενώ οι υπόλοιπες απορρίπτουν. Καταστάσεις αποδοχής συμβολίζονται με επιπλέον κύκλο.
- Ένα αυτόματο έχει κάποιες εσωτερικές καταστάσεις q₀, q₁, q₇, q₁₅, ..., και μια συνάρτηση μετάβασης δ που καθορίζει την επόμενη κατάσταση του αυτομάτου με βάση την τρέχουσα κατάσταση και την συμβολοσειρά εισόδου. Αποδέχεται ή απορρίπτει τη συμβολοσειρά εισόδου.
- **Αναγνωριστές γλωσσών (δηλαδή επιλύουν προβλήματα απόφασης, κατάλληλα κωδικοποιημένα).**

Αυτόματα και τυπικές γλώσσες

- Τυπικές γλώσσες: χρησιμοποιούνται για την κωδικοποίηση υπολογιστικών προβλημάτων αλλά και τον ορισμό γλωσσών προγραμματισμού.
 - $\Pi.\chi.\ L = \{x \in \{0,1\}^* \mid x \ δυαδική γραφή πρώτου αριθμού\}$
- Αυτόματα: χρησιμεύουν για την αναγνώριση τυπικών γλωσσών και για την κατάταξη της δυσκολίας των αντίστοιχων προβλημάτων:
 - Κάθε αυτόματο αναγνωρίζει μια τυπική γλώσσα: το σύνολο των συμβολοσειρών που το οδηγούν σε κατάσταση αποδοχής.

Παράδειγμα: αναγνώριση περιττών

- q_0 : τελευταίο ψηφίο διάφορο του 1
- q_1 : τελευταίο ψηφίο ίσο με 1
- η q₀ λέγεται αρχική κατάσταση ενώ η q₁ λέγεται κατάσταση αποδοχής (ή και τελική)
- εκτέλεση με είσοδο 0110: $(q_0)0110 \to 0 (q_0)110 \to 01 (q_1)10 \to 011 (q_1)0 \to 0110 (q_0) \quad \text{АПОРРІΨН}$
- **εκτέλεση με είσοδο 101:** $(q_0)101 \rightarrow 1(q_1)01 \rightarrow 10(q_0)1 \rightarrow 101(q_1)$ ΑΠΟΔΟΧΗ

Άλλα αυτόματα

- **Μηχανισμοί**: χωρίς είσοδο έξοδο: $\delta(q_i) = q_j$ εκτέλεση: $q_0 \rightarrow q_i \rightarrow q_k \rightarrow q_m$. . .
- Αυτόματα στοίβας (PDA, pushdown automata): έχουν πολύ περισσότερες δυνατότητες καθώς μπορούν να χρησιμοποιήσουν μνήμη (σε μορφή στοίβας).
- Μηχανές Turing (TM): έχουν ακόμη περισσότερες
 δυνατότητες καθώς έχουν απεριόριστη μνήμη (σε μορφή ταινίας, με δυνατότητα επιστροφής).
- Γραμμικά περιορισμένα αυτόματα (LBA): είναι TM με μνήμη γραμμικά περιορισμένη (ως προς το μήκος της εισόδου).

Άλλες τυπικές γλώσσες

$$L_1 := \{w \in \{a,b\}^* \mid w$$
αρχίζει με $'a'\}$

$$L_2 := \{ w \in \{1,3\}^* \mid w$$
 περιέχει άρτιο πλήθος '1' \}

$$L_3 := \{ w \in \{a, b\}^* \mid w$$
είναι παλινδρομιχή $\}$

Παράδειγμα: DFA για L_1

$$L_1 := \{ w \in \{a, b\}^* \mid w \text{ arxive me } 'a' \}$$

$$\begin{array}{c|cccc} & a & b \\ \hline q_0 & q_1 & q_2 \\ \hline q_1 & q_1 & q_1 \\ q_2 & q_2 & q_2 \\ \end{array}$$

εκτέλεση με είσοδο abba:

 $(q_0)abba \rightarrow a(q_1)bba \rightarrow ab(q_1)ba \rightarrow abb(q_1)a \rightarrow abba(q_1)$

Τυπικός ορισμός DFA

- Nτετερμινιστικό πεπερασμένο αυτόματο (Deterministic Finite Automaton, DFA): πεντάδα $M = (Q, \Sigma, \delta, q_0, F)$
 - Q: το σύνολο των καταστάσεων του M (πεπερασμένο), π.χ. $Q = \{q_0, q_1, q_2\}$
 - **Σ** : πεπερασμένο αλφάβητο εισόδου (Σ ∩ Q = ∅), π.χ. $Σ = {a,b}$
 - $\delta: Q \times \Sigma \rightarrow Q$: συνάρτηση μετάβασης, π.χ. $\delta(q_0,a) = q_1$
 - $q_0 \in Q$: αρχική κατάσταση
 - $F \subseteq Q$: σύνολο τελικών καταστάσεων (αποδοχής), π.χ. $F = \{q_1\}$

Γλώσσα με DFA και γλώσσα χωρίς DFA

$$L_2 := \{ w \in \{a, b\}^* \mid w$$
 περιέχει άρτιο πλήθος 'a' \}

$$\begin{array}{c|cc} & a & b \\ \hline \hline q_0 & q_1 & q_0 \\ q_1 & q_0 & q_1 \end{array}$$

$$L_3 := \{w \in \{a, b\}^* \mid w$$
είναι παλινδρομική $\}$

Αποδεικνύεται ότι δεν υπάρχει DFA που να αναγνωρίζει την L_3 ! (χρειάζεται μνήμη με μέγεθος που εξαρτάται από την είσοδο)

Αποδοχή DFA: τυπικοί ορισμοί

- Επέκταση συνάρτησης δ: $Q \times \Sigma^* \to Q$ Η επεκτεταμένη δ δέχεται ως ορίσματα μια κατάσταση q και μια συμβολοσειρά u και δίνει την κατάσταση όπου θα βρεθεί το αυτόματο αν ξεκινήσει από την q και διαβάσει την u.
- Ορισμός επεκτεταμένης δ (σχήμα πρωταρχικής αναδρομής):

$$\begin{cases} \delta(q,\varepsilon) = q \\ \delta(q,wa) = \delta(\delta(q,w),a) \end{cases}$$

όπου w είναι συμβολοσειρά οποιουδήποτε μήκους, ενώ α απλό σύμβολο του αλφαβήτου

Αποδοχή DFA: τυπικοί ορισμοί

- Ένα DFA αποδέχεται μία συμβολοσειρά u ανν $\delta(q_0, u) \in F$
- Ένα DFA Μ αποδέχεται τη γλώσσα

$$L(M) = \{ w \mid \delta(q_0, w) \in F \}$$

 Οι γλώσσες που γίνονται αποδεκτές από DFA λέγονται κανονικές

Μη ντετερμινιστικά αυτόματα

- Ντετερμινιστικά αυτόματα: για κάθε συνδυασμό κατάστασης / συμβόλου εισόδου υπάρχει μοναδική επόμενη κατάσταση
- Μη-ντετερμινιστικά αυτόματα:
 - για κάθε συνδυασμό κατάστασης / συμβόλου εισόδου υπάρχει επιλογή από σύνολο δυνατών επόμενων κατάστασεων
 - αποδοχή αν κάποια σειρά επιλογών οδηγεί σε αποδοχή

Μη ντετερμινιστικά πεπερασμένα αυτόματα

- NFA (Non-deterministic Finite Automaton): για κάθε κατάσταση και σύμβολο εισόδου επιλέγεται μία από ένα σύνολο δυνατών επόμενων κατάστασεων.
- ΝΕΑε (ΝΕΑ με ε-κινήσεις): μπορεί να αλλάζει κατάσταση χωρίς ανάγνωση επόμενου συμβόλου.

Παράδειγμα NFA

 $L_4 := \{ w \in \Sigma^* \mid w \text{ περιέχει δύο συνεχόμενα } a \}$

	\boldsymbol{a}	b
$\overline{q_0}$	$\{q_0,q_1\}$	$\{q_0\}$
q_1	$\{q_2\}$	Ø
(q_2)	$\{q_2\}$	$\{q_2\}$

Στη συνάρτηση μετάβασης, κενό σύνολο σημαίνει ότι η τρέχουσα εκτέλεση απορρίπτει (προσοχή: μπορεί κάποια άλλη να αποδέχεται).

Παράδειγμα NFA

Τυπικός ορισμός NFA

```
πεντάδα M = (Q, \Sigma, \delta, q_0, F)
```

- Q : το σύνολο των καταστάσεων του M (πεπερασμένο)
- **Σ**: πεπερασμένο αλφάβητο εισόδου ($\Sigma \cap Q = \emptyset$)
- $δ: Q × Σ → Pow(Q) : συνάρτηση μετάβασης, π.χ. <math>δ(q_i, a) = \{ q_i, q_k, q_m \}$
- $q_0 \in Q$: αρχική κατάσταση
- $F \subseteq Q$: σύνολο τελικών καταστάσεων (αποδοχής)

Υπενθύμιση: στη συνάρτηση μετάβασης, κενό σύνολο σημαίνει ότι η συγκεκριμένη εκτέλεση απορρίπτει (προσοχή: μπορεί κάποια άλλη να αποδέχεται).

Αποδοχή NFA: τυπικοί ορισμοί

- Ένα NFA αποδέχεται συμβολοσειρά w αν $\delta(q_0, w) \cap F \neq \emptyset$
- Ένα NFA Μ αποδέχεται τη γλώσσα

$$L(M) = \{ w \mid \delta(q_0, w) \cap F \neq \emptyset \}$$

- Σημείωση: η συνάρτηση δ είναι επεκτεταμένη ώστε να δέχεται σαν ορίσματα μια κατάσταση q και μια συμβολοσειρά w και να δίνει το σύνολο των καταστάσεων όπου μπορεί να βρεθεί το αυτόματο αν ξεκινήσει από την q και διαβάσει την w
- Παράδειγμα: $\delta(q_0, aa) = \{q_0, q_1, q_2\}$, $\delta(q_0, ba) = \{q_0, q_1\}$

Ισοδυναμία NFA και DFA

- Θεώρημα Rabin-Scott: για κάθε NFA υπάρχει ένα DFA που αποδέχεται την ίδια γλώσσα.
- Επομένως τα DFA και τα NFA αναγνωρίζουν ακριβώς την ίδια κλάση γλωσσών: τις κανονικές γλώσσες (regular languages).
- Οι κανονικές γλώσσες αντιστοιχούν σε κανονικές παραστάσεις (regular expressions):

$$\pi.\chi. (a+b)*bbab(a+b)*$$

(i)

NFA για τη γλώσσα L_4 ("2 συνεχόμενα a")

Κατασκευάζουμε το δυναμοσύνολο των καταστάσεων. Αρχική κατάσταση: $\{q_0\}$. Τελικές: όσες περιέχουν τελική.

(ii)

NFA για τη γλώσσα L_4

$$a, b$$
 q_0 a q_1 a q_2 a, b

$$\begin{array}{c|cc} & a & b \\ \hline q_0 & \{q_0, q_1\} & \{q_0\} \\ q_1 & \{q_2\} & \emptyset \\ \hline q_2 & \{q_2\} & \{q_2\} \end{array}$$

(111)

NFA για τη γλώσσα L_4

$$a,b$$
 q_0 a q_1 a q_2 a,b

$$\begin{array}{c|cc} & a & b \\ \hline q_0 & \{q_0, q_1\} & \{q_0\} \\ q_1 & \{q_2\} & \emptyset \\ \hline q_2 & \{q_2\} & \{q_2\} \end{array}$$

DFA για τη γλώσσα L₄

$$\sqrt{\{q_0,q_1\}} \qquad | \{q_0,q_1,q_2\} \qquad \{q_0\}$$

NFA → DFA

(iv)

NFA για τη γλώσσα L_4

$$a,b$$
 q_0 a q_1 a q_2 a,b

$$\begin{array}{c|cc} & a & b \\ \hline q_0 & \{q_0, q_1\} & \{q_0\} \\ q_1 & \{q_2\} & \emptyset \\ \hline q_2 & \{q_2\} & \{q_2\} \end{array}$$

DFA για τη γλώσσα L₄

$$\sqrt{\{q_0,q_1\}} \qquad | \{q_0,q_1,q_2\} \qquad \{q_0\}$$

$$lack {q_0,q_1,q_2} ig| \{q_0,q_1,q_2\} ig| \{q_0,q_2\}$$

(v)

NFA για τη γλώσσα L_4

$$\begin{array}{c|cccc} & a & b \\ \hline q_0 & \{q_0, q_1\} & \{q_0\} \\ q_1 & \{q_2\} & \emptyset \\ \hline q_2 & \{q_2\} & \{q_2\} \end{array}$$

DFA για τη γλώσσα L₄

NFA → DFA

(vi)

NFA για τη γλώσσα L_4 a,b $\bigcirc q_0$

	a	b
q_0	$\{q_0,q_1\}$	$\{q_0\}$
q_1	$\{q_2\}$	Ø
(q_2)	$\{q_2\}$	$\{q_2\}$

DFA για τη γλώσσα L₄

$$Q'ackslash \Sigma$$
 a b

$$igvee \{q_0\} \hspace{1cm} |\hspace{1cm} \{q_0,q_1\} \hspace{1cm} \{q_0\}$$

$$egin{array}{c|c} \sqrt{q_0,q_1} & \{q_0,q_1,q_2\} & \{q_0\} \ \sqrt{q_0,q_2} & \{q_0,q_1,q_2\} & \{q_0,q_2\} \ \end{array}$$

$$\sqrt{\{q_0,q_1,q_2\}} \mid \{q_0,q_1,q_2\} \quad \{q_0,q_2\}$$

NFA → DFA

(vii)

NFA για τη γλώσσα L_4

		a	b
	q_0	$\{q_0,q_1\}$	$\{q_0\}$
	q_1	$\{q_2\}$	Ø
((q_2)	$\{q_2\}$	$\{q_2\}$

DFA για τη γλώσσα L₄

Οι μη προσβάσιμες καταστάσεις δεν παίζουν ρόλο!

NFA - DFA: η μέθοδος τυπικά

Έστω το NFA $M = (Q, \Sigma, q_0, F, \delta)$.

Ένα ισοδύναμο DFA $M'=(Q', \Sigma, q'_0, F', \delta')$, ορίζεται ως εξής:

- Q' = Pow(Q), δηλαδή οι καταστάσεις του M' είναι όλα τα υποσύνολα καταστάσεων του M.
- $q'_0 = \{q_0\},$
- $F' = \{R ∈ Q' \mid R \cap F \neq \emptyset\}$, δηλαδή μια κατάσταση του M' είναι τελική αν περιέχει μια τελική κατάσταση του M.
- δ'(R, a) = { $q \in Q \mid q \in \delta(r, a)$ για $r \in R$ }, είναι δηλαδή το σύνολο των καταστάσεων όπου μπορεί να βρεθεί το M ξεκινώντας από οποιαδήποτε κατάσταση του συνόλου R και διαβάζοντας το σύμβολο a (a-κίνηση).

Αυτόματα με ε-κινήσεις: NFA_ε

- Επιτρέπουν μεταβάσεις χωρίς να διαβάζεται σύμβολο (ισοδύναμα: με είσοδο το κενό string ε).
- Αποδέχονται τις συμβολοσειρές που μπορούν να οδηγήσουν σε τελική κατάσταση, χρησιμοποιώντας ενδεχομένως και ε-κινήσεις.

Παράδειγμα: NFA $_{\varepsilon}$ για $L_5:=\{a^*b^*\}=\{a^nb^m\mid n,m\in\mathbb{N}\}$

Ισοδυναμία NFA_ε με DFA: παράδειγμα

NFA $_{\varepsilon}$ για $\overline{L_4}$ (δηλαδή "όχι δύο συνεχόμενα a"):

DFA yia $\overline{L_4}$:

$NFA_{\varepsilon} \rightarrow DFA$: η μέθοδος τυπικά

Έστω το NFA_ε $M = (Q, \Sigma, q_0, F, \delta)$.

Ένα ισοδύναμο DFA $M'=(Q',\Sigma,q'_0,F',\delta')$, ορίζεται ως εξής:

- Q' = Pow(Q), δηλαδή οι καταστάσεις του M' είναι όλα τα υποσύνολα καταστάσεων του M.
- $q'_0 = ε$ -κλείσιμο (q_0) (ε-κλείσιμο $(q_i) = \{p \mid p \text{ προσβάσιμη} \}$ κατάσταση από την q_i μόνο με ε-κινήσεις $\}$)
- $F' = \{R ∈ Q' \mid R \cap F \neq \emptyset\}$, δηλαδή μια κατάσταση του M' είναι τελική αν περιέχει μια τελική κατάσταση του M.
- $\delta'(R,a) = \{q \in Q \mid q \in \epsilon\text{-Kλείσιμο}(\delta(r, a)) για r \in R\}$, δηλαδή $\delta'(R, a)$ είναι το σύνολο των καταστάσεων όπου μπορεί να βρεθεί το M ξεκινώντας από οποιαδήποτε κατάσταση του R, κάνοντας μία a-κίνηση και χρησιμοποιώντας στη συνέχεια οσεσδήποτε $\epsilon\text{-κινήσεις}$.

$NFA_{\varepsilon} \rightarrow DFA$: παράδειγμα

ε-κλείσιμο της $q_1 = \{q_1, q_2, q_5\}$ ε-κλείσιμο της $q_2 = \{q_2\}$ ε-κλείσιμο της $q_3 = \{q_3\}$ ε-κλείσιμο της $q_4 = \{q_2, q_4\}$ ε-κλείσιμο της $q_5 = \{q_5\}$ ε-κλείσιμο της $q_6 = \{q_5, q_6\}$

Αρχική κατάσταση $\{q_1,q_2,q_5\}$ Τελικές οι μπλέ

Q'	0	1
$>\{q_1,q_2,q_5\}$	{}	$\{q_3,q_5,q_6\}$
$\{q_3,q_5,q_6\}$	$\{q_2,q_4\}$	$\{q_5,q_6\}$
$\{q_2,q_4\}$	{}	$\{q_3\}$
$\{q_5,q_6\}$	{}	$\{q_5,q_6\}$
$\{q_3\}$	$\{q_2,q_4\}$	{}
{}	{}	{}

NFA $_{\varepsilon}$ DFA: εναλλακτική μέθοδος (σε NFA πρώτα)

- \square Έστω το NFA, $M = (Q, \Sigma, q0, F, \delta)$.
- Κατασκευάζουμε πρώτα ισοδύναμο NFA $M'=(Q,\Sigma,q_0,F',\delta')$ ως εξής:
 - $F' = F \cup \{q_0\}$ αν ε-κλείσιμο (q_0) περιέχει τελική, F' = F αλλιώς.
 - $\delta'(q, a) = ε$ -κλείσιμο $(\delta(ε$ -κλείσιμο(q), a)), (δεπεκτ/νη)
- δηλαδή δ'(q, a) είναι το σύνολο των καταστάσεων όπου μπορεί να βρεθεί το M ξεκινώντας από την κατάσταση q, χρησιμοποιώντας οσεσδήποτε ε-κινήσεις, μία a-κίνηση, και χρησιμοποιώντας ξανά οσεσδήποτε ε-κινήσεις.
- Από το M' κατασκευάζουμε ισοδύναμο DFA.

NFA $_{\varepsilon}$ DFA: εναλλακτική μέθοδος (σε NFA πρώτα, ταχύτερα)

- \square Έστω το NFA_ε $M = (Q, \Sigma, q0, F, \delta)$.
- Κατασκευάζουμε πρώτα ισοδύναμο NFA $M'=(Q, \Sigma, q_0, F', \delta')$ ως εξής:
 - F': είναι το F μαζί με κάθε κατάσταση q για την οποία το ε-κλείσιμο(q) περιέχει κάποια τελική.
 - $\delta'(q, a) = \delta(ε-κλείσιμο(q), a),$ (δ επεκτ/νη)
- δηλαδή δ'(q, a) είναι το σύνολο των καταστάσεων όπου μπορεί να βρεθεί το M ξεκινώντας από την κατάσταση q, χρησιμοποιώντας οσεσδήποτε ε-κινήσεις πρώτα, και μετά μία a-κίνηση (δηλ. χωρίς ε-κινήσεις μετά το a).
- Από το Μ' κατασκευάζουμε ισοδύναμο DFA.

Ελαχιστοποίηση DFA: παράδειγμα

 $L_4 = \{ w \in \{a,b\}^* \mid w \text{ περιέχει 2 συνεχόμενα } a \}$:

Αρχικό DFA

Ελάχιστο DFA

Ελαχιστοποίηση DFA (i)

Δύο καταστάσεις DFA λέγονται μη ισοδύναμες, δηλαδή διακρίσιμες, αν υπάρχει συμβολοσειρά που να οδηγεί την μία από αυτές σε τελική κατάσταση, ενώ την άλλη όχι.

Ελαχιστοποίηση DFA (ii)

Δύο καταστάσεις μπορούν να συγχωνευτούν σε μία (είναι *ισοδύναμες*) αν:

οδηγούν με ίδιες συμβολοσειρές σε ίδιο αποτέλεσμα

Ελαχιστοποίηση DFA (iii)

Ελαχιστοποίηση DFA: 2° παράδειγμα

Αρχικό DFA

Ελάχιστο DFA

Ελαχιστοποίηση DFA: 3° παράδειγμα

Αρχικό DFA

Ελάχιστο DFA

Μέθοδος ελαχιστοποίησης DFA

- Δύο καταστάσεις λέγονται κ-διακρίσιμες αν με κάποια συμβολοσειρά μήκους ακριβώς κ οδηγούν σε διαφορετικό αποτέλεσμα (και δεν είναι i-διακρίσιμες για κανένα i<k). Έτσι, δύο καταστάσεις είναι:</p>
 - 0-διακρίσιμες ανν η μία είναι τελική ενώ η άλλη όχι.
 - (i+1)-διακρίσιμες ανν με κάποιο σύμβολο οδηγούν σε i-διακρίσιμες καταστάσεις.
- Δύο καταστάσεις λέγονται ισοδύναμες αν δεν είναι kδιακρίσιμες για οποιοδήποτε k.

Μέθοδος ελαχιστοποίησης DFA

- <u>Ιδέα μεθόδου</u>: για κάθε *i* = 0, 1, 2, ... εντοπίζουμε τα *i*-διακρίσιμα ζεύγη καταστάσεων έως ότου να μην προκύπτουν άλλα. Τα υπόλοιπα ζεύγη είναι ισοδύναμα.
- Γιατί δουλεύει:

δεν υπάρχουν (i+1)-διακρίσιμες καταστάσεις αν δεν υπάρχουν i-διακρίσιμες καταστάσεις

Η μέθοδος συστηματικά

Κατασκευάζουμε τριγωνικό πίνακα για να συγκρίνουμε κάθε ζεύγος καταστάσεων. Γράφουμε X_k στην αντίστοιχη θέση του πίνακα την πρώτη φορά που διαπιστώνουμε ότι δύο καταστάσεις είναι k-διακρίσιμες, ως εξής:

- Αρχικά γράφουμε X_0 σε όλα τα ζεύγη κατ/σεων που είναι 0-διακρίσιμες γιατί η μία είναι τελική και η άλλη όχι.
- Σε κάθε "γύρο" i+1, εξετάζουμε όλα τα μη σημειωμένα ζεύγη και γράφουμε X_{i+1} σε ένα ζεύγος αν από τις δύο καταστάσεις του με ένα σύμβολο το DFA πηγαίνει σε i-διακρίσιμες καταστάσεις (ήδη σημ/νες με X_i).
- Επαναλαμβάνουμε μέχρι που σε κάποιο γύρο k να μην υπάρχει ζεύγος που να σημειωθεί με X_k.
- Τα μη σημειωμένα ζεύγη αντιστοιχούν σε ισοδύναμες καταστάσεις (που επομένως συγχωνεύονται).

Γύρος 0:

εννέα ζεύγη 0-διακρίσιμων καταστάσεων

Γύρος 1:

δύο ζεύγη 1-διακρίσιμων καταστάσεων

Γύρος 2:

κανένα ζεύγος 2-διακρίσιμων καταστάσεων

Τελικά οι ισοδύναμες καταστάσεις είναι $a\equiv b,\ c\equiv d\equiv e.$ Το ελάχιστο αυτόματο φαίνεται στο παρακάτω σχήμα.

Γλώσσες, αυτόματα, γραμματικές

- Τυπικές γλώσσες: χρησιμοποιούνται για την περιγραφή υπολογιστικών προβλημάτων αλλά και γλωσσών προγραμματισμού.
- Αυτόματα: χρησιμεύουν για την αναγνώριση τυπικών γλωσσών και για την κατάταξη της δυσκολίας των αντίστοιχων προβλημάτων.
- Τυπικές γραμματικές: άλλος τρόπος περιγραφής
 τυπικών γλωσσών. Κάθε τυπική γραμματική παράγει μια τυπική γλώσσα.

Θεωρία γλωσσών και γραμματικών

Εφαρμογές σε:

- Ψηφιακή Σχεδίαση,
- Γλώσσες Προγραμματισμού,
- Μεταγλωττιστές,
- Τεχνητή Νοημοσύνη,
- Θεωρία Πολυπλοκότητας

Ιστορικά σημαντικοί ερευνητές:

Chomsky, Backus, Rabin, Scott, Kleene, Greibach, κ.α.

Τυπικές γλώσσες

- Πρωταρχικές έννοιες: σύμβολα, παράθεση.
- Αλφάβητο: πεπερασμένο σύνολο συμβόλων. Π.χ. {0,1}, {x,y,z}, {a,b}.
- Λέξη (ή συμβολοσειρά, ή πρόταση) ενός αλφαβήτου: πεπερασμένου μήκους ακολουθία συμβόλων του αλφαβήτου. Π.χ. 011001, abbbab.
- **μήκος** λέξης **w**.
- ε : κενή λέξη, $|\varepsilon| = 0$.
- Άλλες έννοιες: πρόθεμα (prefix), κατάληξη (suffix), υποσυμβολοσειρά (substring), αντίστροφη (reversal), παλινδρομική ή καρκινική (palindrome).

Τυπικές γλώσσες (συν.)

- νw = παράθεση λέξεων ν και w.
- Ισχύει: εx = xε = x, για κάθε συμβολοσειρά x.
- ορισμός χⁿ με πρωταρχική αναδρομή:

$$\begin{cases} x^0 = \varepsilon \\ x^{k+1} = x^k x \end{cases}$$

- Σ*: το σύνολο όλων των λέξεων του αλφαβήτου Σ.
- Γλώσσα από το αλφάβητο Σ: κάθε σύνολο συμβολοσειρών $L \subseteq \Sigma^*$.

Τυπικές γραμματικές

- Συστηματικός τρόπος μετασχηματισμού συμβολοσειρών μέσω κανόνων παραγωγής.
- Αλφάβητο: τερματικά και μη τερματικά σύμβολα και ένα αρχικό σύμβολο (μη τερματικό).
- Πεπερασμένο σύνολο κανόνων της μορφής $\alpha \to \beta$: ορίζουν δυνατότητα αντικατάστασης της συμβολοσειράς α με την συμβολοσειρά β .
- Κάθε τυπική γραμματική παράγει μια τυπική γλώσσα: το σύνολο των συμβολοσειρών (με τερματικά σύμβολα μόνο) που παράγονται από το αρχικό σύμβολο.
- Λέγονται και συστήματα μεταγραφής (rewriting systems) αλλά και γραμματικές δομής φράσεων (phrase structure grammars).

Παράδειγμα γραμματικής για την γλώσσα των περιττών αριθμών

$$S \rightarrow A 1$$

$$A \rightarrow A 0$$

$$A \rightarrow A 1$$

$$A \rightarrow \epsilon$$

S: το αρχικό σύμβολο

Α: μη τερματικό σύμβολο

0,1: τερματικά σύμβολα

ε: η κενή συμβολοσειρά

- Τα S και A αντικαθίστανται με βάση τους κανόνες.
- Κάθε περιττός προκύπτει από το S με κάποια σειρά έγκυρων αντικαταστάσεων.
- Κανονική παράσταση: (0+1)*1

Τυπικές γραμματικές: ορισμοί (i)

Μια τυπική γραμματική 🥝 αποτελείται από:

- ένα αλφάβητο V από μη τερματικά σύμβολα (μεταβλητές),
- ένα πεπερασμένο σύνολο P από κανόνες παραγωγής, δηλαδή διατεταγμένα ζεύγη (α,β), όπου $α,β \in (V \cup T)^*$ και $α \neq ε$ $(σύμβαση: γράφουμε <math>α \rightarrow β$ αντί για (α,β)),
- ένα αρχικό σύμβολο (ή αξίωμα) $S \in V$.

Τυπικές γραμματικές: ορισμοί (ii)

Σύμβαση για τη χρήση γραμμάτων:

- **a**, b, c, d, ... \in T : πεζά λατινικά, τα αρχικά του αλφαβήτου, συμβολίζουν τερματικά
- A, B, C, D, ... ∈ V: κεφαλαία λατινικά συμβολίζουν μη τερματικά
- **u**, v, w, x, y, z ... \in T^* : πεζά λατινικά, τα τελευταία του αλφαβήτου, συμβολίζουν συμβολοσειρές τερματικών
- $\alpha, \beta, \gamma, \delta, ... \in (V \cup T)^*$: ελληνικά συμβολίζουν οποιεσδήποτε συμβολοσειρές (τερματικών και μη)

Τυπικές γραμματικές: ορισμοί (iii)

Ορισμοί για τις παραγωγές:

- Λέμε ότι $\gamma_1 \alpha \gamma_2 \pi \alpha \rho \dot{\alpha} \gamma \varepsilon \iota \gamma_1 \beta \gamma_2$, και συμβολίζουμε με $\gamma_1 \alpha \gamma_2 \Rightarrow \gamma_1 \beta \gamma_2$, αν ο $\alpha \rightarrow \beta$ είναι κανόνας παραγωγής (δηλαδή $(\alpha,\beta) \in P$).
- Συμβολίζουμε με $\stackrel{*}{\Rightarrow}$ το ανακλαστικό, μεταβατικό κλείσιμο του \Rightarrow , δηλαδή, $\stackrel{*}{\alpha} \stackrel{*}{\Rightarrow} \beta$ («το α παράγει το β ») σημαίνει ότι υπάρχει μια ακολουθία:

$$\alpha \Rightarrow \alpha_1 \Rightarrow \alpha_2 \Rightarrow \dots \alpha_k \Rightarrow \beta$$
.

- Γλώσσα που παράγεται από τη γραμματική G: $L(G):=\{w ∈ T^* \mid S \xrightarrow{*} w\}$
- γραμματικές G_1 , G_2 ισοδύναμες αν $L(G_1) = L(G_2)$.

Παράδειγμα τυπικής γραμματικής

G:
$$V = \{S\}, T = \{a, b\}, P = \{S \to \varepsilon | aSb\}$$

 $S \rightarrow \varepsilon / \alpha Sb$: σύντμηση των $S \rightarrow \varepsilon$ και $S \rightarrow \alpha Sb$

Μία δυνατή ακολουθία παραγωγής:

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb \Rightarrow aaabbb$$

Γλώσσα που παράγεται:

$$L(G) = \{a^n b^n \mid n \in N\}$$

Ιεραρχία Γραμματικών Chomsky

• τύπου 0: γενικές γραμματικές (general, phrase structure, semi-Thue).

$$\alpha \to \beta, \alpha \neq \varepsilon$$

• τύπου 1: γραμματικές με συμφραζόμενα ή μονοτονικές (context sensitive, monotonic).

$$\alpha \to \beta$$
, $|\alpha| \le |\beta|$ (επιτρέπεται και: $S \to \varepsilon$)

• τύπου 2: γραμματικές χωρίς συμφραζόμενα (context free).

$$A \to \alpha \quad (A \in V)$$

• τύπου 3: κανονικές γραμματικές (regular).

δεξιογραμμικές:
$$A \to w, A \to wB \quad (w \in T^*, A, B \in V)$$
 ή αριστερογραμμικές: $A \to w, A \to Bw \quad (w \in T^*, A, B \in V)$

Γνήσια ιεράρχηση: τύπου $3 \subset τύπου 2 \subset τύπου 1 \subset τύπου 0$

Ιεραρχία Chomsky: μια εκπληκτική σύμπτωση (;)

- τύπου 0 ↔ TM (μηχανές Turing)
- τύπου 1 ↔ LBA (γραμμικά περιορισμένα αυτόματα)
- τύπου 3 ↔ DFA (και NFA)

Κανονικές Γραμματικές

- Οι κανονικές γραμματικές είναι γραμματικές όπου όλοι οι κανόνες είναι της μορφής:
 - Δεξιογραμμικοί (right linear)

$$A \rightarrow wB \ \dot{\eta} \ A \rightarrow w$$

Αριστερογραμμικοί (left linear)

$$A \rightarrow BW \ \dot{\eta} \ A \rightarrow W$$

(όπου w είναι μια ακολουθία από τερματικά σύμβολα της γλώσσας)

Θεώρημα: οι κανονικές γλώσσες ταυτίζονται με τις
 γλώσσες που παράγονται από κανονικές γραμματικές.

Ισοδυναμία κανονικών γραμματικών και DFA

Χρησιμοποιούμε τη δεξιογραμμική μορφή:

 $\blacksquare A \rightarrow WB$ αντιστοιχεί με

 $A \rightarrow W$ αντιστοιχεί με

• S αντιστοιχεί με q_0

Μία ακόμη ισοδυναμία!

Θεώρημα: οι κανονικές γλώσσες ταυτίζονται με τις γλώσσες που περιγράφονται από κανονικές παραστάσεις.

Κανονικές παραστάσεις (regular expressions)

Έστω L, L_1 , L_2 γλώσσες επί του ίδιου αλφαβήτου Σ .

- $L_1L_2 := \{uv \mid u \in L_1 \land v \in L_2\}$: παράθεση
- $L_1 \cup L_2 := \{ w \mid w \in L_1 \lor w \in L_2 \}$: ένωση
- $L_1 \cap L_2 := \{ w \mid w \in L_1 \land w \in L_2 \}$: τομή
- $\bullet L^0 := \{\varepsilon\}, L^{n+1} := LL^n$
- $L^* := \bigcup_{n=0}^{\infty} L^n$: άστρο του Kleene
- $\bullet L^+ := \bigcup_{n=1}^{\infty} L^n$

Ορισμός κανονικών παραστάσεων

Κανονικές παραστάσεις: παριστάνουν γλώσσες που προκύπτουν από απλά σύμβολα ενός αλφαβήτου με τις πράξεις παράθεση, ένωση, και άστρο του Kleene.

- Ø : παριστάνει κενή γλώσσα
- ε : παριστάνει {ε}
- α : παριστάνει $\{\alpha\}$, $\alpha \in \Sigma$
- (r+s): παριστάνει $R \cup S$, R = L(r), S = L(s)
- (rs): παριστάνει RS, R = L(r), S = L(s)
- (r^*) : παριστάνει R^* , R = L(r)

όπου L(t) η γλώσσα που παριστάνεται από καν. παρ. t

Παραδείγματα κανονικών παραστάσεων

```
L_1 = a(a+b)^*
L_2 = (b^*ab^*a)^*b^* = (b+ab^*a)^*
L_3 \quad \text{den einal dunaton na pastabei me hanonikh pashatash}
L_4 = (a+b)^*aa(a+b)^* \qquad \text{(toulayiston duo sunexómena a)}
\overline{L_4} = (a+\varepsilon)(ba+b)^* \qquad \text{(dunator)}
L_5 = a^*b^*
```

Προτεραιότητα τελεστών:

- άστρο Kleene
- παράθεση
- **-**ένωση

Ισοδυναμία κανονικών παραστάσεων και αυτομάτων

Θεώρημα. Μια γλώσσα L μπορεί να παρασταθεί με *κανονική* παράσταση ανν είναι κανονική (δηλαδή L=L(M) για κάποιο πεπερασμένο αυτόματο M).

Ιδέα απόδειξης:

'=>': Επαγωγή στη δομή της κανονικής παράστασης *r*:

1. Επαγωγική Βάση:

$$r = \varepsilon : \longrightarrow q_0$$
, $r = \emptyset : \longrightarrow q_0$ q_f , $r = a \in \Sigma : \longrightarrow q_0$

2. Επαγωγικό βήμα. Έστω ότι για r_1 , r_2 έχουμε αυτόματα M_1 , M_2 , με τελικές καταστάσεις f_1 , f_2 :

Περίπτωση α: $r = r_1 + r_2$

Περίπτωση β : $r = r_1 r_2$

Ισοδυναμία κανονικών παραστάσεων και αυτομάτων (συν.)

'<=': Κατασκευή κανονικής παράστασης από FA (GNFA).

Απαλείφουμε ενδιάμεσες καταστάσεις σύμφωνα με το σχήμα:

Αρχικό DFA

Μετά από διαγραφή q_2

 $Διαγραφή q_3$

$$aa^*b$$
 q_0 $b+aa^*ab$ q_1 $a+bb$

$$aa*b \bigcirc q_0 \xrightarrow{b+aa*ab} q_1 \bigcirc a+bb$$

 $Διαγραφή q_0$

$$\underbrace{(aa^*b)^*(b+aa^*ab)}_{q_1} a+bb$$

$$\underbrace{(aa^*b)^*(b+aa^*ab)}_{q_1} a+bb$$

Τελική παράσταση

$$(aa^*b)^*(b + aa^*ab)(a + bb)^*$$

Ποιες γλώσσες είναι κανονικές;

- Όλες οι πεπερασμένες.
- Όσες σχηματίζονται από κανονικές με τις πράξεις:
 παράθεση, ένωση, άστρο Kleene,
- αλλά και συμπλήρωμα, τομή, αναστροφή (άσκηση), κ.ά.
- Γινόμενο αυτομάτων (product of automata): τρόπος κατασκευής DFA για τομή (αλλά και ένωση) κανονικών γλωσσών.

Γινόμενο αυτομάτων DFA

- Εστω δύο DFA M_1 , M_2 με n, m καταστάσεις αντίστοιχα $(Q_1 = \{q_0, ..., q_{n-1}\}, Q_2 = \{p_0, ..., p_{m-1}\})$ και κοινό αλφάβητο, που αναγνωρίζουν γλώσσες L_1 , L_2 αντίστοιχα.
- Το γινόμενο των M_1 , M_2 είναι ένα DFA με $m \cdot n$ καταστάσεις, μία για κάθε ζεύγος καταστάσεων του αρχικού αυτομάτου (σύνολο καταστάσεων $Q = Q_1 \times Q_2$), το ίδιο αλφάβητο και αρχική κατάσταση (q_0, p_0) .
- Συνάρτηση μετάβασης: $\delta'((q_i,p_k),\sigma)=(q_{i',p_k'}) \Leftrightarrow \delta(q_i,\sigma)=q_{i'} \wedge \delta(p_k,\sigma)=p_{k'}$
- Τελικές καταστάσεις: ανάλογα με την πράξη μεταξύ L₁, L₂ που θέλουμε. Για τομή θέτουμε ως τελικές ζεύγη όπου και οι δύο τελικές στα M₁, M₂, για ένωση ζεύγη που περιέχουν μία τουλάχιστον τελική.
- Παρατήρηση: εύκολη υλοποίηση και άλλων πράξεων μεταξύ L₁, L₂
 (διαφορά, συμμετρική διαφορά) με κατάλληλο ορισμό των τελικών καταστάσεων.

Γινόμενο αυτομάτων NFA

- Ορίζεται με παρόμοιο τρόπο.
- Χρειάζεται προσοχή στις ε-κινήσεις και στο συνδυασμό μεταβάσεων σε junk states με κανονικές μεταβάσεις.

Είναι όλες οι γλώσσες κανονικές;

- Η απάντηση είναι «όχι»
- Για να το αποδείξουμε χρησιμοποιούμε ένα σημαντικό θεώρημα που λέγεται Pumping Lemma (Λήμμα Άντλησης)

Pumping Lemma (διαίσθηση)

- Αν μια γλώσσα L είναι κανονική τότε την αποδέχεται ένα
 DFA με πεπερασμένο αριθμό καταστάσεων, έστω n.
- Εστω λέξη z με |z|>=n που ανήκει στη γλώσσα, άρα γίνεται αποδεκτή από το αυτόματο.
- Καθώς επεξεργαζόμαστε το z, το αυτόματο πρέπει να περάσει ξανά από κάποια κατάσταση (αρχή περιστερώνα):

$$z = \begin{bmatrix} q_0 & \dots & q & \dots & q_f \\ u & v & w \end{bmatrix} \begin{bmatrix} q_f & \dots & q_f \\ w & w \end{bmatrix}$$

$$\rightarrow \underbrace{q_0} \rightarrow \dots \rightarrow \underbrace{q_f} \rightarrow \dots \rightarrow \underbrace{q_f}$$

■ Αφού $z = uvw \in L$ θα πρέπει και $uv^iw \in L$, για κάθε $i \in N$

w

u

Pumping Lemma (με λόγια)

Έστω κανονική γλώσσα *L*. Τότε:

- υπάρχει ένας φυσικός n (= πλήθος καταστάσεων του DFA) ώστε:
- □πάρχει «σπάσιμο» του z σε u, v, w, δηλαδή z = uvw, με $|uv| \le n$ και |v| > 0
- ώστε για κάθε i = 0, 1, 2, ... :

$$UV^iW \in L$$

Απόδειξη ότι μια γλώσσα δεν είναι κανονική

Χρήση του Pumping Lemma για να δείξουμε ότι μια (μη πεπερασμένη) γλώσσα *L δεν είναι κανονική*:

Έστω η *L* κανονική. Τότε:

- το PL λέει ότι υπάρχει *n.* Εμείς για κάθε *n*
- -επιλέγουμε κατάλληλο <math>z ∈ L με μήκος |z| ≥ n
- − το PL λέει ότι υπάρχει «σπάσιμο» z = uvw, με $|uv| \le n$ και |v| > 0. Εμείς για κάθε «σπάσιμο» z = uvw, με $|uv| \le n$ και |v| > 0
- επιλέγουμε *i* ώστε η λέξη *uvⁱw* να μην είναι στη γλώσσα *L* ΑΤΟΠΟ

(adversary argument)

Παράδειγμα χρήσης Pumping Lemma (i)

- **Θεώρημα.** Η γλώσσα $L = \{z \mid z \text{ έχει το ίδιο πλήθος 0 και 1} δεν είναι κανονική.$
- Απόδειξη: Έστω L κανονική. Τότε:
 - το PL λέει ότι υπάρχει *n*. Εμείς για κάθε *n*
 - **επιλέγουμε** $z = 0^n 1^n \in L$ με μήκος |z| = 2n > n

■ το PL λέει ότι υπάρχει «σπάσιμο» z = uvw, με $|uv| \le n$ και |v| > 0. Εμείς για κάθε «σπάσιμο» z = uvw, με $|uv| \le n$ και |v| > 0

Παράδειγμα χρήσης Pumping Lemma (ii)

παρατηρούμε ότι αναγκαστικά $v = 0^k$ για κάποιο k:

$$w = 0...00...00...01111111111...1$$

και επιλέγουμε i = 2, διαπιστώνοντας ότι $uv^iw = uv^2w$ δεν ανήκει στην L.

ΑΤΟΠΟ

Επομένως η L δεν είναι κανονική.

Δεύτερο παράδειγμα χρήσης PL (i)

Θεώρημα. Η γλώσσα $L = \{z \mid z=0^i 1^j, i > j\}$ δεν είναι κανονική.

Απόδειξη: Έστω L κανονική. Τότε:

- το PL λέει ότι υπάρχει *n*. Εμείς για κάθε *n*
- **επιλέγουμε** $z = 0^{n+1}1^n \in L$ με μήκος |z| = 2n+1 > n

■ το PL λέει ότι υπάρχει «σπάσιμο» z = uvw, με $|uv| \le n$ και |v| > 0. Εμείς για κάθε «σπάσιμο» z = uvw, με $|uv| \le n$ και |v| > 0

Δεύτερο παράδειγμα χρήσης PL (ii)

παρατηρούμε ότι αναγκαστικά $v = 0^k$ για κάποιο k:

$$Z = 0...00...00...01111111111...1$$

- όμως, η επανάληψη του ν δίνει λέξεις της γλώσσας
- από πρώτη άποψη αυτό φαίνεται προβληματικό...
- όμως το λήμμα ορίζει ότι θα πρέπει για κάθε $i \ge 0$: $uv^iw \in L$
- **επιλέγουμε** i = 0: η λέξη uv^0w δεν είναι στην L.

ΑΤΟΠΟ

Επομένως η L δεν είναι κανονική.

Προσοχή στη χρήση του PL

- Το Pumping Lemma είναι αναγκαία αλλά όχι και ικανή συνθήκη για να είναι μια γλώσσα κανονική.
- Υπάρχουν μη κανονικές γλώσσες που ικανοποιούν τις συνθήκες του!
- Επομένως χρησιμεύει μόνο για απόδειξη μη κανονικότητας.

Γραμματικές για μη κανονικές γλώσσες

- Χωρίς συμφραζόμενα (context free, CF): τύπου 2, αντιστοιχία με αυτόματα στοίβας (pushdown automata, PDA)
- Με συμφραζόμενα (context sensitive, CS): τύπου 1, αντιστοιχία με γραμμικά περιορισμένα αυτόματα (linear bounded automata, LBA)
- Γενικές (general): τύπου 0, αντιστοιχία με μηχανές
 Turing (Turing machines, TM)

Γραμματικές χωρίς συμφραζόμενα (Context Free) (i)

Εφαρμογές σε:

 συντακτικό γλωσσών προγραμματισμού (Pascal, C, C++, Java)

 συντακτικό γλωσσών περιγραφής σελίδων web (HTML, XML), editors, ...

Γραμματικές χωρίς συμφραζόμενα (Context Free) (ii)

- Μορφή κανόνων: $A \rightarrow \alpha$, A μη τερματικό, $\alpha \in (V \cup T)^*$
- Παράδειγμα:

$$G_1: V = \{S\}, T = \{a, b\}, P = \{S \to \varepsilon, S \to aSb\}$$

Δυνατή ακολουθία παραγωγής:

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb \Rightarrow aaabbb$$

Γλώσσα που παράγεται:

$$L(G_1) = \{a^n b^n | n \in \mathbb{N}^*\}$$

Γραμματικές χωρίς συμφραζόμενα (Context Free) (iii)

2º παράδειγμα:

$$G_2$$
: $T = \{0,1,2,3,4,5,6,7,8,9,+,*\}$ $V = \{S\}$

$$P: S \to S+S, \quad S \to S*S,$$

$$S \to 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9$$

Δυνατές ακολουθίες παραγωγής:

$$S \Rightarrow 3$$
, $S \Rightarrow S+S \Rightarrow 3+S \Rightarrow 3+S^*S \Rightarrow 3+4^*7$

Γραμματικές χωρίς συμφραζόμενα (Context Free) (iv)

3° παράδειγμα:

$$G_3$$
: $V = \{S, A, B\}, T = \{a, b\}$, και P περιέχει:

$$S \rightarrow aB \mid bA, \quad A \rightarrow a \mid aS \mid bAA, \quad B \rightarrow b \mid bS \mid aBB$$

Δυνατή ακολουθία παραγωγής:

$$S \Rightarrow aB \Rightarrow abS \Rightarrow abbA \Rightarrow abba$$

Γλώσσα που παράγεται (όχι προφανές):

$$L(G_3) = \{w \in T^+ \mid w$$
 έχει ίσο αριθμό a και $b\}$

Συντακτικά Δένδρα (parse trees) (i)

Φύλλωμα (leafstring): αααbbb και αbbα αντίστοιχα.

Συντακτικά Δένδρα (parse trees) (ii)

Έστω $G=\{V,T,P,S\}$ μια γραμματική χωρίς συμφραζόμενα. Ένα δένδρο είναι συντακτικό δένδρο της G αν:

- Κάθε κόμβος του δένδρου έχει επιγραφή, που είναι σύμβολο (τερματικό ή μη τερματικό ή ε).
- Η επιγραφή της ρίζας είναι το S.
- Αν ένας εσωτερικός κόμβος έχει επιγραφή A, τότε το A είναι μη τερματικό σύμβολο. Αν τα παιδιά του, από αριστερά προς τα δεξιά, έχουν επιγραφές $X_1, X_2, ..., X_k$ τότε ο $A \rightarrow X_1, X_2, ..., X_k$ είναι κανόνας παραγωγής.
- Αν ένας κόμβος έχει επιγραφή ε, τότε είναι φύλλο και είναι το μοναδικό παιδί του γονέα του.

Συντακτικά Δένδρα (parse trees) (iii)

Θεώρημα. Έστω $G=\{V,T,P,S\}$ μια γραμματική χωρίς συμφραζόμενα. Τότε $S \stackrel{*}{\Rightarrow} w$ αν και μόνο αν υπάρχει συντακτικό δένδρο της G με φύλλωμα w.

Απόδειξη:

'<=' : Με επαγωγή ως προς τον αριθμό των εσωτερικών κόμβων.

'=>' : Με επαγωγή ως προς των αριθμό των βημάτων της ακολουθίας παραγωγών (άσκηση).

Διφορούμενες γραμματικές

Μια γραμματική G ονομάζεται διφορούμενη (ambiguous) αν υπάρχουν δύο συντακτικά δένδρα με το ίδιο φύλλωμα $w \in L(G)$ Παράδειγμα:

$$G_2$$
: $T = \{0,1,2,3,4,5,6,7,8,9,+,*\}$ $V = \{S\}$
 $P: S \rightarrow S+S \mid S*S \mid 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9$

Αλγόριθμος αναγνώρισης για CF γραμματικές: CYK

- Με εξαντλητικό τρόπο μπορούμε να αποφασίσουμε αν μια συμβολοσειρά *x* παράγεται από μια γραμματική CF (χωρίς συμφραζόμενα) σε εκθετικό όμως χρόνο.
- Οι ιδιότητες της κανονικής μορφής Chomsky
 επιτρέπουν ταχύτερη αναγνώριση μιας συμβολοσειράς.
- Αλγόριθμος CYK (Cocke, Younger, Kasami): αποφασίζει αν μια συμβολοσειρά x παράγεται από μια γραμματική σε χρόνο O(|x|³), αρκεί η γραμματική να δίνεται σε Chomsky Normal Form.

Αυτόματα Στοίβας (PDA) (i)

- Έχουν ταινία εισόδου μιας κατεύθυνσης (όπως και τα FA) αλλά επιπλέον μνήμη υπό μορφή στοίβας.
- Πρόσβαση μόνο στην κορυφή της στοίβας με τις λειτουργίες:
 - push(x): τοποθετεί στοιχείο x στην κορυφή της στοίβας
 - pop: διαβάζει και αφαιρεί στοιχείο από την κορυφή της στοίβας

Αυτόματα Στοίβας (PDA) (ii)

Παράδειγμα: PDA για αναγνώριση της γλώσσας

$$L \, = \, \{ w c w^R \, \mid \, w \, \in \, (0+1)^* \}$$

Περιγραφή αυτομάτου

- ■push(a) στη στοίβα για κάθε 0 στην είσοδο, push(b) στη στοίβα για κάθε 1 στην είσοδο, συνέχισε μέχρι να διαβαστεί c
- μετά pop: εφόσον πάνω στοιχείο στοίβας συμφωνεί με είσοδο (*a* με 0, *b* με 1) συνέχισε
- Αποδοχή με κενή στοίβα

Τυπικός ορισμός PDA

```
Αυτόματο στοίβας (Pushdown Automaton, PDA): 
επτάδα M = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)
```

- \bigcirc : το σύνολο των καταστάσεων του M (πεπερασμένο)
- Σ : αλφάβητο εισόδου
- Γ : αλφάβητο στοίβας
- $\delta: Q \times \Sigma \cup \{\epsilon\} \times \Gamma \rightarrow Pow(Q \times \Gamma^*)$: συνάρτηση μετάβασης (μη ντετερμινισμός, ε-κινήσεις)
- $q_0 \in Q$: αρχική κατάσταση
- Ζ₀ ∈ Γ : αρχικό σύμβολο στοίβας
- F ⊂ Q : σύνολο τελικών καταστάσεων

Αυτόματα Στοίβας (PDA) (iv)

Είδη αποδοχής PDA

- Αν βρεθεί σε τελική κατάσταση (δηλ. αποδοχής) μόλις διαβαστεί όλη η είσοδος, ανεξαρτήτως περιεχομένου στοίβας
- Αν βρεθεί με κενή στοίβα μόλις διαβαστεί όλη η είσοδος, ανεξαρτήτως κατάστασης

Αντίστοιχα ορίζονται οι γλώσσες:

- L_f (M): αποδοχή με τελική κατάσταση
- L_e (M): αποδοχή με κενή στοίβα

Αυτόματα Στοίβας (PDA) (v)

Για να γίνει αποδεκτή η γλώσσα

$$L_1 = \{ww^R \mid w \in (0+1)^*\}$$

χωρίς δηλαδή ειδικό μεσαίο σύμβολο *c* χρειαζόμαστε απαραίτητα μη ντετερμινιστικό PDA.

- Τα μη ντετερμινιστικά PDA είναι γνησίως πιο ισχυρά από τα ντετερμινιστικά.
- Με τον όρο PDA αναφερόμαστε συνήθως στα μηντετερμινιστικά PDA.

Ισοδυναμία CF γραμματικών και PDA

Θεώρημα. Τα παρακάτω είναι ισοδύναμα για μια γλώσσα *L:*

- L = $L_f(M)$, $M \in \text{ival PDA}$.
- $L = L_e(M)$, M' είναι PDA.
- Η L είναι γλώσσα χωρίς συμφραζόμενα (c.f.)

Ποιες γλώσσες είναι Context Free;

- Όλες οι κανονικές.
- Επίσης όσες σχηματίζονται από γλώσσες CF με τις πράξεις: παράθεση, ένωση, άστρο Kleene.
- Αλλά όχι απαραίτητα με τις πράξεις τομή, συμπλήρωμα:

```
π.χ. η γλώσσα \{a^nb^nc^n\mid n\in \mathbb{N}\} δεν είναι CF, ενώ είναι τομή δύο CF γλωσσών:
```

 $\{a^n b^n c^n \mid n \in \mathbb{N}\} = \{a^n b^n c^m \mid n, m \in \mathbb{N}\} \cap \{a^k b^n c^n \mid k, n \in \mathbb{N}\}$

Είναι όλες οι γλώσσες Context Free;

- Η απάντηση είναι «όχι».
- Για να το αποδείξουμε χρησιμοποιούμε ένα άλλο λήμμα άντλησης, το Pumping Lemma για γλώσσες χωρίς συμφραζόμενα.
- Βασίζεται στο συντακτικό δένδρο (περισσότερα στο μάθημα «Υπολογισιμότητα»).

Γενικές Γραμματικές (i)

τύπου 0: γενικές γραμματικές (general, phrase structure, semi-Thue). $\alpha \to \beta, \ \alpha \neq \varepsilon$

Παράδειγμα: $\{a^{2^n} \mid n \in \mathbb{N}\}$

$$S
ightarrow AaCB$$
 $CB
ightarrow E \mid DB$
 $aE
ightarrow Ea$
 $AE
ightarrow \varepsilon$
 $aD
ightarrow Da$
 $AD
ightarrow AC$
 $Ca
ightarrow aaC$

Γενικές Γραμματικές (ii)

Θεώρημα. Τα παρακάτω είναι ισοδύναμα:

- 1. Η γλώσσα *L* γίνεται αποδεκτή από μια μηχανή Turing
- 2. L=L(G), όπου G είναι γενική γραμματική

Μια τέτοια γλώσσα λέγεται και αναδρομικά αριθμήσιμη (recursively enumerable).

Μηχανές Turing

Αυτόματα με απεριόριστη ταινία. Η είσοδος είναι αρχικά γραμμένη στην ταινία, η κεφαλή μπορεί να κινείται αριστεράδεξιά, καθώς και να αλλάζει το σύμβολο που διαβάζει.

Παράδειγμα συνάρτησης μετάβασης:

Γραμματικές με Συμφραζόμενα (context sensitive) (i)

τύπου 1: γραμματικές με συμφραζόμενα ή μονοτονικές (context sensitive, monotonic).

$$\alpha \to \beta$$
, $|\alpha| \le |\beta|$ (επιτρέπεται και: $S \to \varepsilon$) $\alpha \ne \varepsilon$

Λέγονται «με συμφραζόμενα» γιατί μπορούν να τεθούν στην εξής κανονική μορφή:

$$\alpha_1 A \alpha_2 \to \alpha_1 \beta \alpha_2,$$
 όπου A : μη τερματικό και $\beta \neq \varepsilon$ context

Γραμματικές με Συμφραζόμενα (context sensitive) (ii)

Γραμματική c.s. για τη γλώσσα 1ⁿ0ⁿ1ⁿ:

$$S \rightarrow 1Z1$$

$$Z \rightarrow 0 \mid 1Z0A$$

$$A0 \rightarrow 0A$$

$$A1 \rightarrow 11$$

Μετατροπή σε κανονική μορφή:

$$A0 \rightarrow H0$$
 $H0 \rightarrow HA$ $HA \rightarrow 0A$

Άλλα παραδείγματα:
$$\{1^{i} 0^{j} 1^{k} : i <= j <= k\},\$$
 $\{ww \mid w \in \Sigma^{*}\}, \quad \{a^{n} b^{n} a^{n} b^{n} \mid n \in \mathbb{N}\}$

Ισοδυναμία γραμματικών CS και LBA

Γραμμικά φραγμένο αυτόματο (Linear Bounded Automaton, LBA):

είναι μια μη ντετερμινιστική μηχανή Turing που η κεφαλή της είναι περιορισμένη να κινείται μόνο στο τμήμα που περιέχει την αρχική είσοδο.

Θεώρημα. Τα παρακάτω είναι ισοδύναμα (*L* χωρίς ε):

- 1. Η γλώσσα L γίνεται αποδεκτή από LBA.
- 2. Η γλώσσα L είναι context sensitive.

Ιεραρχία κλάσεων γλωσσών

Θεώρημα Ιεραρχίας.

```
regular \subseteq context free \subseteq context sensitive \subseteq r.e. (r.e. = recursiverly enumerable)
```

- τύπου $0 \leftrightarrow TM$ (μηχανές Turing)
- τύπου 1 ↔ LBA (γραμμικά περιορισμένα αυτόματα)
- TÚπου 2 ↔ PDA (pushdown automata)
- τύπου 3 ↔ DFA (και NFA)