## **Motivation**

The game GeoGuessr has players guess their location in Street View based on their surroundings. Is it possible to train a computer vision model to do the same?



GE GUESSR

## Can you guess these countries?



## Goal

- Finetune advanced CNNs to correctly classify country and predict coordinates/distance from Street View images above chance levels
- 2. Compare performance of ConvNeXt and BiT at these tasks



## **Architectures**



From top to bottom: ConvNext model and ResNet model used with BiT

# Methodology





## Results



From left to right: Positive and negative examples from ConvNeXt's lat-Ing prediction.



Top from left to right: train acc1, test acc1, test acc5

Bottom from left to right: classification loss, coordinate error, coordinate ablation

| Method             | Acc@            | 1 Acc@5        | Acc@1 | Acc@5      |
|--------------------|-----------------|----------------|-------|------------|
| ConvNeXt-B         | 85.1%           | 97.9%          | 61.2% | 86.6%      |
| Bit-R50x1          | 63.4%           | 90.2%          | 59.0% | 87.7%      |
| BiT-R101x1         | 63.6%           | 91.0%          | 57.4% | 86.3%      |
|                    |                 |                |       |            |
|                    |                 |                |       |            |
| Method             |                 | error (degree) | loss  | ≤5 on Eval |
| Original from Imag | genet           | 8.8            | 63.6  | 24%        |
|                    | genet           |                |       |            |
| Original from Imag | genet<br>ntries | 8.8            | 63.6  | 24%        |

Testing

| Method        | error (degree) | Acc@1 | Acc@5 |
|---------------|----------------|-------|-------|
| Euclidean     | 4.56           | 5%    | 20%   |
| Discriminator | 2.93           | 11%   | 36%   |

From top to bottom: classification accuracies of different backbones, errors in coordinate prediction, errors in distance prediction.

### References

- Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, and Neil Houlsby. Big transfer (bit): General visual representation learning, 2020
- Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darriell, and Saining Xie. A convnet for the 2020s, 2022.
   Eric Müller-Budack, Kader Pustu-Iren, and Ralph Ewerth. Geolocation estimation of photos using a hierarchical model and scene classification. In Computer Vision ECCV 2018, pages 575–592. Springer International Publishing. 2018.

## Acknowledgements

We would like to thank Professor Tompkin, our mentor Alex Choi, and the entire staff of CSCI 1430.