Validation of the blocks for flat collector with measured data for power tests (EN 12975)

Table of contents

1	Data us	sed for validation	2
		ption of the model	
		ock	
	2.1.1	Flat_plate_collector_EN12975	2
	2.1.2	Collector_flat_plate	5
	2.1.3	2xN_collector_flat_plate	7
	2.2 Mc	odel File	10
3	Results	S	12
4	Literatu	ure	14

Author

Faure Gaelle, Viessmann Faulquemont SAS, Faulquemont (France)

Version of Model, Carnot, Matlab and Operation system

coll12975.c (V 4.1.1), Carnot 4.7, Matlab R2010b, Windows XP unicol.c (V 4.1), Carnot 4.7, Matlab R2010b, Windows XP unicol_2xN.c (V 4.1), internal, Matlab R2010b, Windows XP

Complete path of the block in the Carnot Library

Carnot/heat_source/flat_plate_collector_EN12975
Carnot/heat_source/collector_flat_plate

Document	Project	Revision 0.1	Faure Gaelle
flatCollectors.docx	-	Date: 21/12/11	Page 1 / 14

1 Data used for validation

I used data from ISFH (Institut für Solarenergieforschung GmbH, Hameln/Emmerthal). These data are been stored during the EN 12975 test of the Vitosol 200F SV2B collector from Viessmann. They come from a test bench.

Time step: 30 seconds

• Duration: 8 hours

2 Description of the model

2.1 Block

2.1.1 Flat_plate_collector_EN12975

The block is built around the s-function coll12975.c which implements a model of a flat plate collector that includes thermal capacity of the collector and the incidence angle modifier.

The energy-balance for the collector is a differential equation:

mdot cp (Tout-Tin) /A = F'(TauAlfa) Kdir Idir

- + F'(TauAlfa) Kdfu Idfu c6 v_wind Iglb
- c1 (Tm-Tamb) c2 (Tm-Tamb)^2
- c3 v_wind (Tm-Ta)
- + c4 (ELongwave sigmaSB*(Tamb+273.15)^4)
- c5 dTm/dt

with the incidence angle modifier Kdir: Kdir = 1 - b0 * (1/cos(teta) - 1)

and.

- bo: constant for the calculation of the incident angle modifier
- c1: heat loss coefficient at (Tm Ta)=0 (W/(m².K))
- c2: temperature dependence of the heat loss coefficient (W/(m².K²))
- c3: wind speed dependence of the heat loss coefficient (J/(m³.K))
- c4: sky temperature dependence of the heat loss coefficient (W/m².K))
- c5: effective thermal capacity (J/(m².K))
- c6: wind dependence in the zero loss efficiency (s/m)
- F': collector efficiency factor

Document	Project	Revision 0.1	Faure Gaelle
flatCollectors.docx	-	Date: 21/12/11	Page 2 / 14

- TauAlfa: effective transmittance-absorptance product for direct solar radiation at normal incidence
- teta: incidence angle of the direct radiation on the collecor (radian)
- Tm: temperature of the collector node (Celsius degrees)
- Tamb: ambient temperature (Celsius degrees)
- v_wind: wind velocity (m/s)
- ELongwave: longwave irradiance with wave length > 3000 nm (set at -100) (W/m²)
- Iglb: global solar radiation (W/m²)
- Idir: direct solar radiation (W/m²)
- Idfu: diffuse solar radiation (W/m²)
- sigmaSB: Stefan-Boltzmann constant = 5.67e-8 W/(m².K⁴)

The blocks also contains a weather inclined block which transforms the weather data on a ground surface to data for the collector inclined surface. A other block performs the pressure drop calculus.

Warning: In this case, weather data do not need weather inclined blocks, so I removed it.

Document	Project	Revision 0.1	Faure Gaelle
flatCollectors.docx	-	Date: 21/12/11	Page 3 / 14

Figure 1: Parameters for the validation of the flat_plate_collector_EN12975 block

Document	Project	Revision 0.1	Faure Gaelle
flatCollectors.docx	-	Date: 21/12/11	Page 4 / 14

2.1.2 Collector_flat_plate

The block is built around the s-function unicol.c which implements a model of a flat plate collector that includes thermal capacity of the collector and the incidence angle modifier.

The collector is devided into "NODES" nodes. The energy-balance for every node is a differential equation:

where:

- cp: heat capacity of fluid (J/(kg.K))
- c_col: heat capacity of collector per surface (J/(m².K))
- mdot: mass flow rate (kg/s)
- qdot_solar: power input per surface from sun (W/m²)
- T: temperature (K)
- ULIN: linear heat loss coefficient (W/(m².K))
- UQUA: quadratic heat loss coefficient (W/(m.K)²)
- USKY: sky loss coefficient
- Uwind: wind speed dependant heat losses (W/((m/s).m².K))

The blocks also contains a weather inclined block which transforms the weather data on a ground surface to data for the collector inclined surface. An other block simulates the optics of a single glazing extra white glass and a last block performs the pressure drop calculus.

Warning: In this case, weather data do not need weather inclined blocks, so I removed it.

Document	Project	Revision 0.1	Faure Gaelle
flatCollectors.docx	-	Date: 21/12/11	Page 5 / 14

Figure 2: Parameters for the validation of the collector_flat_plate block

Document	Project	Revision 0.1	Faure Gaelle
flatCollectors.docx	-	Date: 21/12/11	Page 6 / 14

2.1.3 2xN_collector_flat_plate

The block is built around the s-function unicol_2xN.c which implements a model of a flat plate collector that includes thermal capacity of the collector and the incidence angle modifier.

The collector is divided in two parts:

- the absorber
- the fluid

Each part is divided into "NODES" nodes.

The energy-balance for every node in the absorber is a differential equation:

with:

- c_col: heat capacity of collector per surface (J/(m^{2*}K))
- qdot_solar: power input per surface from the sun (W/m²)
- T: temperature (K)
- t: time (s)
- ULIN: linear heat loss coefficient (W/(m²*K))
- UQUA: quadratic heat loss coefficient (W/(m*K)²)
- USKY: sky loss coefficient
- Uwind: wind speed dependant heat losses (W/((m/s)*m²*K))
- hi: heat transfer coefficent between absorber and fluid (W/(m^{2*}K))

The energy-balance for every node in the fluid is a differential equation:

with:

cp: heat capacity of fluid (J/(kg*K))

Document	Project	Revision 0.1	Faure Gaelle
flatCollectors.docx	-	Date: 21/12/11	Page 7 / 14

- \bullet c_fl: heat capacity of fluid per surface (J/(m²*K)). It is calculated with : c_fl = M * cp / Acoll, with:
 - o M: mass of fluid in collector (kg)
 - o mdot: mass flow rate (kg/s)
 - o T: temperature (K)
 - o t: time (s)
 - o hi: heat transfer coefficent between absorber and fluid (W/(m^{2*}K))

The blocks also contains a weather inclined block which transforms the weather data on a ground surface to data for the collector inclined surface. An other block simulates the optics of a single glazing extra white glass and a last block performs the pressure drop calculus.

Warning: In this case, weather data do not need weather inclined blocks, so I removed it.

Document	Project	Revision 0.1	Faure Gaelle
flatCollectors.docx	-	Date: 21/12/11	Page 8 / 14

Figure 3: Parameters for the validation of the 2xNcollector_flat_plate block

Document	Project	Revision 0.1	Faure Gaelle
flatCollectors.docx	-	Date: 21/12/11	Page 9 / 14

2.2 Model File

I used the following data:

- as input of the weather vector:
 - Sun height (degrees)
 - Sun azimuth (degrees)
 - o Diffuse irradiation (W/m²)
 - Global irradiation (W/m²)
 - Wind velocity (m/s)
 - Ambient temperature (Celsius degrees)
- as input of the collector:
 - Mass flow (kg/h)
 - Inlet temperature of the fluid in the collector (Celsius degrees)

I compared:

- o the outlet temperature of the fluid (Celsius degrees)
- the power and the energy provided by the collector to the fluid (Watts and Joules)

Document	Project	Revision 0.1	Faure Gaelle
flatCollectors.docx	-	Date: 21/12/11	Page 10 / 14

Figure 4: Model for the validation

Document	Project	Revision 0.1	Faure Gaelle
flatCollectors.docx	-	Date: 21/12/11	Page 11 / 14

3

Figure 5: Irradiation on the collector

The EN12975 model is valid for a global irradiation above 700 W/m². That is why I made the comparison on a shorter period than the data total duration.

Figure 6: Irradiation above 700 W/m²

Document	Project	Revision 0.1	Faure Gaelle
flatCollectors.docx	-	Date: 21/12/11	Page 12 / 14

Document	Project	Revision 0.1	Faure Gaelle
flatCollectors.docx	-	Date: 21/12/11	Page 13 / 14

The relative error on total produced energy is:

• For the collector_flat_plate : 1.16 %

• For the flat_plate_collector_EN12975 : 2.79 %

• For the 2xN collector_flat_plate: 4.25 %

The validation is succeed.

4 Literature

Any.

Document	Project	Revision 0.1	Faure Gaelle
flatCollectors.docx	-	Date: 21/12/11	Page 14 / 14