程序代写代做 CS编程辅导

Copyright Copyright University of New South Wales 2020. All rights reserved.

Course materials subject to Copyright UNSW Sydney owns copyright in these m

overseas under international treaties.

The materials are provided for use by enrolling print or digitally, outside the course without Students may only copy a reasonable polling cumstances may these materials be copied or revolutions.

otherwise). The material is subject to copyright under Australian law and

. The materials, or any part, may not be copied, shared or distributed, in

for personal research or study or for criticism or review. Under no cir-

Statement on class recording

To ensure the free and open discussion of Westwinstown Stellar on Stellar of Message means, classroom lectures, discussion and/or activities without the advance written permission of the instructor, and any such recording properly approved in advance can be used solely for the student?'s own private use.

WARNING: Your failure to comply with the Solign myon to Picpolic Line and gilled pacivil action or a criminal offence under the law.

THE ABOVE INFORMATION MUST NOT BE REMOVED FROM THIS MATERIAL.

Email: tutorcs@163.com

QQ: 749389476

程序代写代做 CS编程辅导

Econometrics

Slides-03 Example Series Slides-03 Example Series Diagnostics Costs, Nobust Inference Model Stability

WeChat: cstutorcs

Assignmenti Projecte Exam Help School of Economics 1

Email: tutorcs@163.com

¹©Copyright University of New South Wales 2020. All rights reserved. This copyright notice must not be

QQ: 749389476

Testing the CAPM: Mobil Exxon

The CAPM implies that the market rewards investors for the market risk $E(R_i) - R_f = \beta_i \left[E(R_m - R_f) \right]$

where R_i is the return on \mathbb{R}_m and R_m is the return on the market index.

• To estimate the CA $_{i,t}$ OLS regression of excess returns on asset $i, X_{i,t}$, on the mark \bullet turn $X_{m,t}$

Dependent Variable: E_IV	IOBIL			
Method: Least Squares			01.00	
Sample: 1978M01 1987N	112 Hm:	ail: tutorc	163 (a)	com
Included observations: 12	20	uii. tutoic	05 C 105	·COIII
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	0.004241	0.005881	0.721087	0.4723
E_MARKET	0.714695	7 9 9855060	178 347761	0.0000
R-squared	0.37 1787	: 749389	1 (/ 1 ()	0.009353
Adjusted R-squared	0.365959	S.D. dependent	var	0.080468
S.E. of regression	0.064074	Akaike info crit	erion	-2.641019
Sum squared resid	0.484452	Schwarz criteri		-2.594561
Log likelihood	160.4612	SE SETETORE	e com	69.68511
Durbin-Watson stat	2.087124	Problestatistic	p.com	0.000000

observed value $\hat{t} = 0.721$, p-value = 0.472: decision: Do not reject the null.

• Joint hypothesis: $H_0: \alpha_i = 0, \beta_i = 1$: observed $\hat{F} = 5.623, df = (2,118)$ p-value= $P\left(F_{2,118} > \hat{F}\right) = 0.0046 \Longrightarrow$ decision: Reject the null. PythonCode

Arbitrage Pricing Theory (APT)

程序代写代做 CS编程辅导

What determines the return of an asset?

Excess returns: $-R_{f,t}$ and $X_{m,t} = R_{m,t} - R_{f,t}$

CAPM:

WeChat: cstutorcs
$$E(X_{i,t}) = \alpha_i + \beta_i E(X_{m,t})$$
Assignment Project Fram Help

where RP_i : risk premium: fortages @ 16B_nComarket risk premium

APT (Arbitrage Pricing Theory) 749389476

$$E(X_{i,t}) = RP_i = \alpha_i + \beta_i RP_m + \beta_{other} RP_{otherfactors}$$
 https://tutorcs.com

Arbitrage Pricing Theory (APT)

程序代写代做 CS编程辅导

What determines the return of an asset?

• APT (Arbitrage P \blacksquare : APT): if there are r risk factors priced in the fiunancial market, then:

WeChat: cstutorcs
$$RP_i = \alpha_i + \beta_i RP_m + \beta_{i,1} RP_1 + \cdots \beta_{i,r} RP_r$$
Assignment Project Exam Help

- RP_j is the **risk premium** for exposure to factor j risk;, $j=1,\cdots,r$. $\beta_{i,j}$ is the sensitivity of the asset to factor j, it also measures asset i's
- exposure to the factor risk j

OO: 749389476

So what are the other risk factors in the APT?

程序代写代做 CS编程辅导

A well established APT three factor model: Fame

finance literature is the Fama&French

$$RP_i = \alpha_i + \square \beta_{i.s} RP_s + \beta_{i.h} RP_h + \beta_{i.u} RP_u$$
 (1)

WeChat: cstutorcs

- RP_m is the market risk premium
- RPs is the size factor sistepremium Project Fream Helipation)
- RP_h is the value factor risk premium (high book-to-market stocks)
- RP_u is the momentum risk factor premium (prior gains)
- $\beta_{i.m}, \beta_{i.s}, \beta_{i.h}$ and QQare4be8e4s7for the market risk, size factor, value factor and momentum respectively

Example 1: Expected Return

程序代写代做 CS编程辅导

Help

_			1001777	40 les 60 et 1	
Г		Beta of each	fa 🔳 🔭	y or	Risk Premium
Г	$\beta_{i.m}$	1.2		RP_m	5.1
Г	$\beta_{i.s}$	0.8	We(Ch&tP.scs	tutorc ^{9.5}
Г	$\beta_{i.h}$	0.2		RP_h	0.95
	$\beta_{i.u}$	-0.1	Assi	granent	Project Exan

Solution:

$$E(R_i) = R_f + \alpha_i + \beta_{i.m}RP_m + \beta_{i.s}RP_s + \beta_{i.h}RP_h + \beta_{i.u}RP_u$$

$$= 2\% + 1.2*5 \cancel{6}\% + \cancel{6}\cancel{8}\cancel{8}\cancel{9}\cancel{3}\cancel{8}\cancel{9}\cancel{4}\cancel{6}\cancel{0}\cancel{2})^*0.95\% + (-0.1)^*2.5\%$$

$$E(R_i) = 8.46\%$$

Question 1: NIKE

程序代写代做 CS编程辅导

Given the risk-free rate of return of 1.0%, average return of Nike (i.e. S&P 500 company with small mar 15.88% p.a and the data provided in table below:

- Q1(a) Compute the experiment of the NIKE under APT model;
- Q1(b) Determine the alp
- Q1(c) Construct a portfolio comprising S&P500 index fund (market portfolio), Wilshire 5000 index fund WRugsell 1000 realized fund and US T-Bills to replicate the expected return of Nike.

Assignment Project Exam Help

Table 1: Factor beta, returns and risk premium

Factor	Beta	Enfai	com.	
RP_m	0.7877	14.5%	13.49%	
RP_s	0.6701	14.65%:	74938949 <i>6</i> 5%	
RP_v	-0.0288	10.38%	-4.12%	

- (i) RP_m is the market risk premium, i.e. excess of S&P500 return over the risk-free rate of return;
- (ii) RP_S is the size factor risk premium , i.e: excess of Wilshire 5000 index returns over the S&P500 returns (iii) RP_v is the value factor risk premium , i.e: excess of Russell 1000 index returns over the S&P500 returns.

Solution to Question 1

程序代写代做 CS编程辅导

$$E(R_{NKE}) = R_f + \beta_{NKE}$$
(i) $E(R_{NKE}) = 1.0\% + (0.7877)(13.49\%)$
(ii) $E(R_{NKE}) = 1.15\% + (-0.0288)(-4.12\%) = 11.85\%$

- (ii) $\alpha_{NKE} =$ Actual return Expected return = 15.88% 11.85% = 4.03% WeChat: cstutorcs
- (iii) Replicating portfolios' weights:

Assignment Project Exam Help

$$\begin{array}{lll} E(R_i) & = & R_f + \beta_{i,m} E\left(R_m - R_f\right) + \beta_{i,s} E\left(R_s - R_m\right) + \beta_{i,v} E\left(R_v - R_m\right) \\ & = & R_f\left(1 - \beta_{i,m}\right) + \beta_{i,m} \underbrace{\text{tupres}}_{i,s} \underbrace{\beta_{i,v} \circ \beta_{i,v} \circ \beta_{i,v}}_{j_{i,v} \circ \beta_{i,v} \circ \beta_{i,v}}_{j_{i,s} \circ \beta_{i,v} \circ \beta_{i,v}$$

Solution to Question 1 continued

程序代写代做 CS编程辅导

Replicating portfolio: (a) Replicating portfolio: (a) Replicating portfolio: (b) Replicating portfolio: (c) Replicating portfolio: (c) Replicating portfolio: (c) Replicating portfolio: (d) Replicating portfolio

- (b) long position: 14.64% portfolio (or S&P500 market index fund), (c) long position: 67.01% be 5000 index fund, and
- (d) short 2.88% in Russell 1000 Value index fund.

Computing the expected return of replicating portfolio:

$$\begin{array}{ll} R_f = 1.0\% & W_{Rf} = 0.2123 \\ E(R_m) = 14.5\% & W_m = 0.2464 \\ E(R_s) = 14.65\% & W_s = 0.6701 \\ E(R_v) = 10.38\% & W_v = 0.6701 \\ W_v$$

$$E(R_v) = 10.38\%$$
 $W_v = -0.0288$ To 3.com

$$E(R_{AAPL}) = 0.2123*1.0\% + 0.1464*14.5\% + 0.6761*47.65\% - 0.0288*10.38\% = 11.85\%$$

Estimating & Testing the APT: Exxon Example

程序代写代做 CS编程辅导

What determines the greature of Exxon Mobil?

The APT extends the low for additional risk factors $X_{u,t}(\operatorname{eg.}$ unexpected macro every cted changes in firm profits, etc)

$$X_{u,t} = (INF, OIL) \stackrel{\bullet}{H_0} : \gamma_{INF} = \gamma_{OIL} = 0,$$

Do we reject?	WeChat: o	estutores		
Variable	Coefficient		t-Statistic	Prob.
С	0.004	0,006	0.721	0.472
E_MKT	Assignme	nt Proj es t	Exam Help	0.000
INF	0.440	0.641	0.687	0.494
OIL	Ema913414	orcs@f63	com 0.536	0.593
	Linaii. tut	0103@103	.com	
Test Statistic	Value	df	Probability	
F-statistic	\bigcirc	0017616)	0.5004	

1 PythonCodeAPT

https://tutorcs.com

Test for Autocorrelation

程序代写代做 CS编程辅导

- H_0 : No autocorrelat
- Durbin-Watson tes Reject H_0 if DW is
- LM test for autocorrelation (Breush-Godfrey):
 - Run OLS on the wriging regression torcs

$$Y_t = \beta_0 + \beta_1 X_{1t} + \dots + \beta_K X_{Kt} + \mu_t$$
 (2)

and save residual signment Project Exam Help

Run OLS on the auxiliary regression

$$\frac{QQ: 749389476}{49389476}$$
and save R -squared R_a^2 ;
$$\frac{P_a = 1 + \cdots + \delta_q e_{t-q} + error_t}{R_a^2}, \qquad (4)$$

• Reject H_0 if $(T-q)R^2 > \chi^2$ -critical value.

Test for Heteroskedasticity

程序代写代做 CS编程辅导

- H_0 : Homoskedastici
- LM test (White)
 - Suppose the original in the suppose t
 - Run OLS on the ession

$$Y_t = \beta_0 + \beta_1 X_{1t} + \beta_2 X_{2t} + \mu_t \tag{5}$$

and save residual Ver Chat: cstutorcs Run OLS on the auxiliary regression

$$e_t^2$$
 Assignment Project Exam Help (6)

and save R-squared R_a^2 ;

Reject H_0 if $TR_0^2 \chi_m^2 \chi_m^2$ critical χ_m where m is the number of regressors in the auxiliary regression, here (m=5)

Notice the problem $\max_{k \in \mathcal{W}} \sup_{k \in \mathcal{W}} \sup_{k \in \mathcal{W}} \sup_{k \in \mathcal{W}} (m = 2K + \frac{K(K-1)}{2})$

Test for Heteroskedasticity

程序代写代做 CS编程辅导

- Alternative method
 - Run OLS on the original regression

We have
$$\mathbf{t}$$
 sturforts $\cdots + \beta_K X_{Kt} + \mu_t$ (8)

and save residuals e_t , and predicted values \hat{Y}_t

Run OLS on the Aussignments Project Exam Help

$$\begin{array}{c} \text{Email:} \\ \text{Email:} \\ \text{and save } R - \text{squared } R_a^2; \\ \text{Reject } H_0 \text{ if } TR_0^2 \underbrace{\begin{array}{c} \chi_0^2 + \gamma_1 \hat{Y}_t + \gamma_2 \hat{Y}_t^2 + error_t, \\ 2 \text{ Com} \end{array} }_{\text{Note that } TR_0^2 \underbrace{\begin{array}{c} \chi_0^2 + \gamma_1 \hat{Y}_t + \gamma_2 \hat{Y}_t^2 + error_t, \\ 2 \text{ Com} \end{array} }_{\text{Note that } TR_0^2 \underbrace{\begin{array}{c} \chi_0^2 + \gamma_1 \hat{Y}_t + \gamma_2 \hat{Y}_t^2 + error_t, \\ 2 \text{ Com} \end{array} }_{\text{Note that } TR_0^2 \underbrace{\begin{array}{c} \chi_0^2 + \gamma_1 \hat{Y}_t + \gamma_2 \hat{Y}_t^2 + error_t, \\ 2 \text{ Com} \end{array} }_{\text{Note that } TR_0^2 \underbrace{\begin{array}{c} \chi_0^2 + \gamma_1 \hat{Y}_t + \gamma_2 \hat{Y}_t^2 + error_t, \\ 2 \text{ Com} \end{array} }_{\text{Note that } TR_0^2 \underbrace{\begin{array}{c} \chi_0^2 + \gamma_1 \hat{Y}_t + \gamma_2 \hat{Y}_t^2 + error_t, \\ 2 \text{ Com} \\ 2 \text{ Com} \end{array} }_{\text{Note that } TR_0^2 \underbrace{\begin{array}{c} \chi_0^2 + \gamma_1 \hat{Y}_t + \gamma_2 \hat{Y}_t^2 + error_t, \\ 2 \text{ Com} \\ 2 \text{ Com} \end{array} }_{\text{Note that } TR_0^2 \underbrace{\begin{array}{c} \chi_0^2 + \gamma_1 \hat{Y}_t + \gamma_2 \hat{Y}_t^2 + error_t, \\ 2 \text{ Com} \\ 2 \text{ Com} \\ 2 \text{ Com} \end{aligned} }_{\text{Note that } TR_0^2 \underbrace{\begin{array}{c} \chi_0^2 + \gamma_1 \hat{Y}_t + \gamma_2 \hat{Y}_t^2 + error_t, \\ 2 \text{ Com} \\ 2 \text{ Com} \end{aligned} }_{\text{Note that } TR_0^2 \underbrace{\begin{array}{c} \chi_0^2 + \gamma_1 \hat{Y}_t + \gamma_2 \hat{Y}_t^2 + error_t, \\ 2 \text{ Com} \\ 2 \text{ Com} \end{aligned} }_{\text{Note that } TR_0^2 \underbrace{\begin{array}{c} \chi_0^2 + \gamma_1 \hat{Y}_t + \gamma_2 \hat{Y}_t^2 + error_t, \\ 2 \text{ Com} \\ 2 \text{ Com} \end{aligned} }_{\text{Note that } TR_0^2 \underbrace{\begin{array}{c} \chi_0^2 + \gamma_1 \hat{Y}_t + \gamma_2 \hat{Y}_t^2 + error_t, \\ 2 \text{ Com} \\ 2 \text{ Com} \end{aligned} }_{\text{Note that } TR_0^2 \underbrace{\begin{array}{c} \chi_0^2 + \gamma_1 \hat{Y}_t + \gamma_2 \hat{Y}_t^2 + error_t, \\ 2 \text{ Com} \\ 2 \text{ Com} \end{aligned} }_{\text{Note that } TR_0^2 \underbrace{\begin{array}{c} \chi_0^2 + \gamma_1 \hat{Y}_t + \gamma_2 \hat{Y}_t^2 + error_t, \\ 2 \text{ Com} \\ 2 \text{ Com} \end{aligned} }_{\text{Note that } TR_0^2 \underbrace{\begin{array}{c} \chi_0^2 + \gamma_1 \hat{Y}_t + \gamma_2 \hat{Y}_t^2 + error_t, \\ 2 \text{ Com} \\ 2 \text{ Com} \end{aligned} }_{\text{Note that } TR_0^2 \underbrace{\begin{array}{c} \chi_0^2 + \gamma_1 \hat{Y}_t + \gamma_2 \hat{Y}_t^2 + error_t, \\ 2 \text{ Com} \\ 2 \text{ Com} \end{aligned} }_{\text{Note that } TR_0^2 \underbrace{\begin{array}{c} \chi_0^2 + \gamma_1 \hat{Y}_t + \gamma_2 \hat{Y}_t^2 + error_t, \\ 2 \text{ Com} \\ 2 \text{ Com} \end{aligned} }_{\text{Note that } TR_0^2 \underbrace{\begin{array}{c} \chi_0^2 + \gamma_1 \hat{Y}_t + \gamma_2 \hat{Y}_t^2 + error_t, \\ 2 \text{ Com} \\ 2 \text{ Com} \end{aligned} }_{\text{Note that } TR_0^2 \underbrace{\begin{array}{c} \chi_0^2 + \gamma_1 \hat{Y}_t + \gamma_1 \hat{Y}_t^2 + error_t, \\ 2 \text{ Com} \\ 2 \text{ Com} \end{aligned} }_{\text{Note that } TR_0^2 \underbrace{\begin{array}{c} \chi_0^2 + \gamma_1 \hat{Y}_t + \gamma_1 \hat{Y}_t^2 + error_t, \\ 2$$

https://tutorcs.com

Example: Mobil

程序代写代做 CS编程辅导

- No evidence for AC in the error term (large p-value).
- Strong evidence for heteroskedasticity (small p-value).
- Strong evidence for non-normality (small p-value).

Robust Standard Errors

程序代写代做 CS编程辅导

- The key assumption
- The key assumption $X_t = 0$ (which my be weak $X_t = 0$).
 - Can we test for this 'key assumption'? How would the test look like?

 WeChat: certiforce
- Even when there is heteroskedasticity or autocorrelation in μ_t , the OLS estimators are still consistent. However, the standard errors of the estimators are incorrect and MOST be corrected.
- In practice, we should always use robust standard errors that correct the
 effect of heteroskedasticity and/or autocorrelation.
 - White standard errors (correct heteroskedasticity)
 - 2 Newey-West (HAQQta/daya) & Was/Correct jointly heteroskedasticity and autocorrelation.)

https://tutorcs.com

Example: Mobil

程序代写代做 CS编程辅导

	200				
	E 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
Coeffi	d. Error	t-Statistic	Prob.		
0.00 +2 +1	0.005881	0.721087	0.4723		
0.714695	0.085615	8.347761	0.0000		
WeC	hat estuto	rcs			
*****	mat. Cstato	103			
Coefficient	Std. Error	t-Statistic	Prob.		
0.0042491	gnn96995 4290	iecto Examp 2H	en 0.4520		
0.714695	0.086243	8.287035	0.0000		
	.,	1.00			
Newey-West s.e. Email: tutorcs@163.com					
Coefficient	Std. Error	t-Statistic	Prob.		
0.004241	718295439	0.826596	0.4101		
0.714695	142799499	7.871135	0.0000		
	0.00 450 0.714695 Coefficient 0.004881 0.714695 e. Ema	0.00 0.00 0.005881 0.714695 0.085615 WeChat: cstuto Coefficient Std. Error 0.004343 gnn4075 0.086243 e. Email: tutorcs@ Coefficient Std. Error	0.00		

回點線端回

https://tutorcs.com

Miscellaneous issues

程序代写代做 CS编程辅导

- Dynamics: the lags (1) Lage included in the RHS of the regression eg. Mobil" $X_{i,t} = \alpha + \beta X_{m,t} + \gamma X_{i,t-1} + \mu_{i,t}$
- Stock market event: weChat: cstutorcs **Dummy variable**

Assignment Project Exam Help

(10)

 $D_t = 0$ pre crisis and $D_t = 1$ post crisis.

The effect of X_t on X_t is by the fore the figure by the period $(\beta_1 + \beta_2)$ after the crisis

Day-of-the-week 0.5749389476 t is not on a Friday t is on a Friday

https://tutorcs.com

Model Stability

程序代写代做 CS编程辅导

Model stability: Does In the changes over time?

- - Monitor changes in stimates over time.
 - Start from an in $\widehat{\boldsymbol{\beta}}$ $\widehat{\boldsymbol{\beta}}$ $\widehat{\boldsymbol{\tau}}$ f size τ , estimate the model, get $\widehat{\boldsymbol{\beta}}(\tau)$, add one observation to the sample, estimate the model, get the $\widehat{\boldsymbol{\beta}}(\tau+1)$,
 - ullet Continue recursively entire estimate with full sample $\hat{eta}(T)$
 - eg. Mobil: Stability of the CAPM Model $X_{i,t} = \alpha + \beta X_{m,t} + \mu_{i,t}$ Recursive estimates Assignment Project Exam Help

Model Stability

程序代写代做 CS编程辅导

- Recursive residuals
 - Estimate recursive $\hat{\beta}(\tau), \hat{\beta}(\tau+1), \dots$ sel parameters:
 - estimate recursivity $\mathbf{x}_{\tau+1|\tau} = Y_{\tau+1} \mathbf{X}_{\tau+1}\hat{\boldsymbol{\beta}}(\tau)$ of $e_{\tau+1|\tau}, e_{\tau+2|\tau+1}$ if the model is correct (stable),

$$\frac{\text{WeChat: cstutorcs}_{1|\tau}}{W_{\tau+1|\tau}} = \frac{se(e_{\tau+1|\tau})}{se(e_{\tau+1|\tau})} \sim N(0,1) \tag{11}$$

Assignment Project Éxam Help

Model Stability

程序代写代做 CS编程辅导

(12)

 $t = K+1, K+2, \cdots, T-1$ WeChat: cstutorcs

Reject Stability if it goes outside the 95% bands

eg. Mobil CUSUM tessignment Project Exam Help

Summary

程序代写代做 CS编程辅导

- Linear regression
 - What are the basic assumptions about linear regression
 - What are OLS estimators and their properties
 - What are the dialynestinstatistics we have covered
 - Why we should use robust standard errors
 - What are recursive estimates of Broject Exam Help
 What is the CUSON Fleximent Project Exam Help
- Applications in finance
 - CAPM is about the relationship of
 - APT is an extension of · · ·
 - These can be evaluated 14389476 del.

https://tutorcs.com