

Cód. ST0247

Estructuras de Datos 2

Laboratorio Nro. 1 Implementación de Grafos

Objetivos:

- Comparar las ventajas y desventajas de implementaciones dinámicas y estáticas de estructuras de datos
- 2. Escoger la estructura de datos apropiada para resolver un problema dado
- 3. Resolver problemas fundamentales de grafos, incluyendo búsqueda DFS y BFS

Consideraciones iniciales

Leer la Guía

Antes de comenzar a resolver el presente laboratorio, leer la "Guía Metodológica para la realización y entrega de laboratorios de Estructura de Datos y Algoritmos" que les orientará sobre los requisitos de entrega para este y todos los laboratorios, las rúbricas de calificación, el desarrollo de procedimientos, entre otros aspectos importantes.

Registrar Reclamos

En caso de tener **algún comentario** sobre la nota recibida en este u otro laboratorio, pueden **enviarlo** a través de http://bit.ly/2g4TTKf, el cual será atendido en la menor brevedad posible.

Traducción de Ejercicios

En el GitHub del docente, encontrarán la traducción al español de los enunciados de los Ejercicios en Línea.

Cód. ST0247

Estructuras de Datos 2

Visualización de Calificaciones

A través de *Eafit Interactiva* encontrarán un enlace que les permitirá ver un registro de las calificaciones que emite el docente para cada taller de laboratorio y según las rubricas expuestas. *Véase sección 3, numeral 3.7.*

GitHub

1. Crear un repositorio en su cuenta de GitHub con el nombre st0247-suCodigoAqui. 2. Crear una carpeta dentro de ese repositorio con el nombre laboratorios.
3. Dentro de la carpeta laboratorio, crear una carpeta con nombre lab01. 4. Dentro de la carpeta lab01, crear tres carpetas: informe, codigo y ejercicioEnLinea.
5. Subir el informe pdf a la carpeta infome, el código del ejercicio 1 a la carpeta codigo y el código del ejercicio en línea a la carpeta ejercicioEnLinea. Así:

```
st0247-suCodigoAqui
laboratorios
lab01
informe
codigo
ejercicioEnLinea
lab02
```


Cód. ST0247

Estructuras de Datos 2

Intercambio de archivos

Los archivos que **ustedes deben entregar** al docente son: **un archivo PDF** con el informe de laboratorio usando la plantilla definida, y **dos códigos**, uno con la solución al numeral 1 y otro al numeral 2 del presente. Todo lo anterior se entrega en **GitHub**.

Porcentajes y criterios de evaluación para el laboratorio

Cód. ST0247

Estructuras de Datos 2

Resolver Ejercicios

1. Códigos para entregar en GitHub:

En la vida real, la documentación del software hace parte de muchos estándares de calidad como CMMI e ISO/IEC 9126

Véase Guía en Sección 3, numeral 3.4

Código de laboratorio en GitHub. Véase Guía en Sección 4, numeral 4.24

Es opcional entregar documentación. Si lo hace, utilice **Javadoc** o equivalente. No suba el HTML a GitHub.

No se reciben archivos en .**RAR** ni en .**ZIP**

En la vida real, los grafos se utilizan para representar redes sociales como *Facebook*, sistemas de información geográfica como *Google Earth* o enrutadores, como un enrutador ISR 4000 de Cisco

- 1.1 Teniendo en cuenta lo anterior:
 - a) Realicen una implementación de la clase abstracta *Digraph*, llámela *DigraphAM* e implementen grafos con la estructura de datos Matrices de Adyacencia Etiquetadas

Cód. ST0247

Estructuras de Datos 2

- b) Posteriormente, creen la clase *DigraphAL* e implementen grafos con la estructura de datos Listas de Adyacencia. Ambas clases heredan de la clase abstracta *Digraph* (digrafo o grafo dirigido)
- 1.2 En la clase *GraphAlgorithms*, implementen un método que reciba como parámetro un grafo dirigido y que retorne cuál es el vértice que tiene más sucesores (vecinos). Debe funcionar para ambas implementaciones de grafo.

En la vida real, una aplicación de los grafos es para describir mapas, como los usados por Google Maps. El archivo medellin_colombia-grande.txt que está en el ZIP que el docente les entregó, contiene un grafo que representa todas las calles de Medellín, es un grafo de aproximadamente 300.000 nodos

- 1.3 Teniendo en cuenta lo anterior, implementen un método que permita crear un grafo a partir de ese archivo del texto *medellin_colombia-grande.txt*
- 2) Ejercicios en línea sin documentación HTML en GitHub

Cód. ST0247

Estructuras de Datos 2

Código del ejercicio en línea en GitHub. Véase Guía en Sección 4, numeral 4.24

NOTA: Recuerden que, si toman la respuesta de alguna fuente, deben referenciar según el tipo de cita correspondiente. Véase *Guía en Sección 4, numerales 4.16 y 4.17*

2.1 Resuelvan el siguiente ejercicio:

En 1976, el teorema de colorear un mapa con 4 colores fue probado con la ayuda de un computador. Este teorema muestra que un mapa puede ser coloreado solamente con 4 colores, de tal forma que no haya una región coloreada usando el mismo color que un vecino. Aquí hay un problema similar a ese problema, pero es mucho más simple.

Ustedes tienen que decidir si dado un grafo conexo arbitrario, ese grafo se puede colorear con 2 colores. Esto quiere decir, si uno puede asignar colores (de una paleta de 2 colores) a los nodos, de tal forma que no haya 2 nodos adyacentes del mismo color. Para simplificar el problema ustedes pueden asumir que:

- 1. No hay un nodo que tenga un arco a sí mismo
- **2.** El grafo es no dirigido, es decir que, si un nodo a está conectado a un nodo b, usted puede asumir que el nodo *b* también está conectado al nodo *a*.
- 3. El grafo será fuertemente conexo. Esto quiere decir, que hay al menos un camino de un nodo de grafo a cualquier otro nodo.

Cód. ST0247

Estructuras de Datos 2

Entrada

La entrada consiste en varios casos de prueba. Cada caso de prueba comienza con una línea que tiene un número n (1 < n < 200) de nodos diferentes. La siguiente línea contiene el número de arcos.

Posteriormente, las siguientes líneas, cada una contiene 2 número que especifican que existe un arco entre dos nodos.

Un nodo en el grafo se representa con un número a (0 < a < n). Una entrada con n = 0 simboliza el fin de la entrada y no debe ser procesada.

Salida

Ustedes tienen que decidir si el grafo de entrada puede ser coloreado con dos colores o no, y deben imprimirlo como se muestra a continuación.

Entrada de los ejemplos

0

Cód. ST0247
Estructuras de Datos 2

Salida de los ejemplos

NOT BICOLORABLE. BICOLORABLE. BICOLORABLE.

- 2.2 [Ejercicio Opcional] Resuelvan el siguiente problema http://bit.ly/2gTLZ53
- 2.3 [Ejercicio opcional] Resuelvan el siguiente ejercicio http://bit.ly/2hGqJPB
- 2.4 [Ejercicio Opcional]: Resuelvan el siguiente ejercicio http://bit.ly/2hrrCfS
- 2.5 [Ejercicio Opcional]: Resuelvan el siguiente ejercicio http://bit.ly/2k8CGSG
- 3) Simulacro de preguntas de sustentación de Proyectos

Cód. ST0247

Estructuras de Datos 2

- 3.1 Escriban una explicación entre 3 y 6 líneas de texto del código del numeral 1.1. Digan cómo funciona, cómo está implementado el grafo con matrices y con listas que hizo, destacando las estructuras de datos y algoritmos usados
- 3.2 ¿En qué grafos es más conveniente utilizar la implementación con matrices de adyacencia y en qué casos en más convenientes listas de adyacencia? ¿Por qué?
- 3.3 Para representar el mapa de la ciudad de Medellín del ejercicio del numeral 1.4, ¿qué es mejor usar, Matrices de Adyacencia o Listas de Adyacencia? ¿Por qué?

En la vida real para una red social como *Facebook*, donde hay al menos 100 millones de usuarios, pero cada usuario tiene en promedio 200 amigos,

3.4 Teniendo en cuenta lo anterior, respondan: ¿Qué es mejor usar, Matrices de Adyacencia o Listas de Adyacencia? ¿Por qué?

En la vida real, los enrutadores tienen una tabla de enrutamiento. Una tabla de enrutamiento guarda la distancia más corta para ir de un dispositivo a otro en la red. Un ejemplo de un enrutador es el ISR 4000 de Cisco. Otro ejemplo, es el que tiene en su casa para el Wifi

3.5 Teniendo en cuenta lo anterior, para representar la tabla de enrutamiento, respondan: ¿Qué es mejor usar, Matrices de Adyacencia o Listas de Adyacencia?

Cód. ST0247

Estructuras de Datos 2

Versiones mejoradas de algoritmos como BFS y DFS son usando para calcular las rutas óptimas que toman los personajes en videojuegos o vehículos autónomos en las carreteras

- 3.6 Expliquen con sus propias palabras la estructura de datos que utilizan para resolver los problemas, y cómo funcionan los algoritmos realizados en el numeral 2.1 y los ejercicios opcionales que hayan hecho del punto 2.
- 3.7 Calculen la complejidad del ejercicio 2.1 y, voluntariamente, los Ejercicios Opcionales.
- 3.8 Expliquen con sus palabras las variables (qué es 'n', qué es 'm', etc.) del cálculo de complejidad del numeral 3.7
- 4) Simulacro de Parcial en el informe PDF

Para este simulacro, agreguen sus respuestas en el informe PDF.

El día del Parcial no tendrán computador, JAVA o acceso a internet.

Cód. ST0247

Estructuras de Datos 2

1. Considere el siguiente grafo y complete la representación de **matrices de adyacencia**. Si no hay arco, por simplicidad, deje el espacio en blanco.

	0	1	2	3	4	5	6	7
0				1	1			
1								
2								
3								
4								
5								
6								
7								

2. Para el mismo grafo, completen la representación de **listas de adyacencia**. Como el grafo no tiene pesos, sólo se colocan los sucesores en la lista de adyacencia.

- $0 \rightarrow [3,4]$
- 1 ->
- 2 ->
- 3 ->
- 4 ->
- 5 ->

Cód. ST0247
Estructuras de Datos 2

6 ->

7 ->

- **3.** ¿Cuánta memoria (ojo, no tiempo sino memoria) ocupa una representación usando listas de adyacencia para el peor grafo dirigido con *n* vértices?
 - **a)** O(n)
 - **b)** $O(n^2)$
 - **c)** O(1)
 - **d)** O(*log n*)
 - **e)** O(n.log n)

5. [Ejercicio Opcional] Lecturas recomendadas

"Quienes se preparan para el ejercicio de una profesión requieren la adquisición de competencias que necesariamente se sustentan en procesos comunicativos. Así cuando se entrevista a un ingeniero recién egresado para un empleo, una buena parte de sus posibilidades radica en su capacidad de comunicación; pero se ha observado que esta es una de sus principales debilidades..."

Tomado de http://bit.ly/2gJKzJD

Véase Guía en **Sección 3, numeral 3.5 y 4.20** de la Guía Metodológica, "Lectura recomendada" y "Ejemplo para realización de actividades de las Lecturas Recomendadas", respectivamente

Posterior a la lectura del texto "Robert Lafore, Data Structures and Algorithms in Java (2nd edition), Chapter 13: Graphs. 2002" realicen las siguientes actividades que les permitirán sumar puntos adicionales:

Cód. ST0247
Estructuras de Datos 2

- a) Escriban un resumen de la lectura que tenga una longitud de 100 a 150 palabras
- b) Hagan un mapa conceptual que destaque los principales elementos teóricos.

Otras sugerencias de lectura

Si desean otras lecturas, consideren las siguientes:

- ☑ Thomas Cormen, Introduction to Algorithms (3th edition), Sections 23.2, 23.3 y 23.5. 2009, que pueden encontrar en biblioteca
- ☑ "John Hopcroft et al., Estructuras de Datos y Algoritmos, Capítulo 7: Grafos no dirigidos. 1983" que pueden encontrar en biblioteca.

6. [Ejercicio Opcional] Trabajo en Equipo y Progreso Gradual

El trabajo en equipo es una exigencia actual del mercado. "Mientras algunos medios retratan la programación como un trabajo solitario, la realidad es que requiere de mucha comunicación y trabajo con otros. Si trabajas para una compañía, serás parte de un equipo de desarrollo y esperarán que te comuniques y trabajes bien con otras personas"

Tomado de http://bit.ly/1B6hUDp

Véase Guía en **Sección 3, numeral 3.6** y **Sección 4, numerales 4.21, 4.22** y **4.23** de la Guía Metodológica

Cód. ST0247

Estructuras de Datos 2

- a) Entreguen copia de todas las actas de reunión usando el tablero Kanban, con fecha, hora e integrantes que participaron
- **b)** Entreguen el reporte de *git*, *svn* o *mercuria*l con los cambios en el código y quién hizo cada cambio, con fecha, hora e integrantes que participaron
- **c)** Entreguen el reporte de cambios del informe de laboratorio que se genera *Google docs* o herramientas similares

NOTA: Estas respuestas también deben incluirlas en el informe PDF

7. [Ejercicio Opcional] Laboratorio en inglés:

El inglés es un idioma muy importante en la Ingeniería de Sistemas porque la mayoría de los avances en tecnología se publican en este idioma y la traducción, usualmente se demora un tiempo y es sólo un resumen de la información original.

Adicionalmente, dominar el inglés permite conseguir trabajos en el exterior que son muy bien remunerados

Tomado de goo.gl/4s3LmZ

Entreguen el código y el informe traducido al inglés. Utilicen la plantilla dispuesta en este idioma para el laboratorio

Cód. ST0247

Estructuras de Datos 2

Resumen de ejercicios a resolver

- **1.1.a.** Realicen una implementación de la clase abstracta *Digraph*, llámela *DigraphAM* e implementen grafos con la estructura de datos Matrices de Adyacencia Etiquetadas
- **1.1.b.** Posteriormente, creen la clase *DigraphAL* e implementen grafos con la estructura de datos Listas de Adyacencia. Ambas clases heredan de la clase abstracta *Digraph* (digrafo o grafo dirigido)
- **1.2** En la clase *GraphAlgorithms*, implementen un método que reciba como parámetro un grafo dirigido y que retorne cuál es el vértice que tiene más sucesores (vecinos). Debe funcionar para ambas implementaciones de grafo.
- **1.3** Implementen un método que permita crear un grafo a partir de ese archivo del texto *medellin_colombia-grande.txt*
- 2.1 Resuelvan el ejercicio
- 2.2 Resuelvan el siguiente ejercicio http://bit.ly/2gTLZ53 [Ejercicio Opcional]
- 2.3 Resuelvan el siguiente ejercicio http://bit.ly/2hGqJPB [Ejercicio opcional]
- 2.4 Resuelvan el siguiente ejercicio http://bit.ly/2hrrCfS [Ejercicio Opcional]
- 2.5 Resuelvan el siguiente ejercicio http://bit.ly/2k8CGSG [Ejercicio Opcional]
- **3.1** Escriban una explicación entre 3 y 6 líneas de texto del código del numeral 1.4. Digan cómo funciona, cómo está implementado el grafo con matrices y con listas que hizo, destacando las estructuras de datos y algoritmos usados
- **3.2** ¿En qué grafos es más conveniente utilizar la implementación con matrices de adyacencia y en qué casos en más convenientes listas de adyacencia? ¿Por qué?
- **3.3** Para representar el mapa de la ciudad de Medellín del ejercicio del numeral 1.4, ¿qué es mejor usar, Matrices de Adyacencia o Listas de Adyacencia? ¿Por qué?
- 3.4 Respondan: ¿Qué es mejor usar, Matrices de Adyacencia o Listas de Adyacencia? ¿Por qué?

Cód. ST0247

Estructuras de Datos 2

- **3.5** Para representar la tabla de enrutamiento, respondan: ¿Qué es mejor usar, Matrices de Adyacencia o Listas de Adyacencia?
- **3.6** Expliquen con sus propias palabras la estructura de datos que utilizan para resolver los problemas y cómo funcionan los algoritmos realizados en el numeral 2.1 y, voluntariamente, todos los ejercicios opcionales del punto 2.
- **3.7** Calculen la complejidad del ejercicio 2.1 y, voluntariamente, todos los Ejercicios Opcionales del punto 2.
- **3.8** Expliquen con sus palabras las variables (qué es 'n', qué es 'm', etc.) del cálculo de complejidad del numeral 3.7
- 4. Simulacro de Parcial en el informe PDF
- 5. Lecturas recomendadas [Ejercicio Opcional]
- 6. Trabajo en Equipo y Progreso Gradual [Ejercicio Opcional]
- **7.** Entreguen el código y el informe traducido al inglés. Utilicen la plantilla dispuesta en este idioma para el laboratorio. **[Ejercicio Opcional]**

Ayudas para resolver los ejercicios

Ayudas para el Ejercicio 1.2	<u>Pág. 20</u>
Ayudas para el Ejercicio 1.3	Pág. 20
Ayudas para el Ejercicio 1.4	Pág. 20
Ayudas para el Ejercicio 2.1	<u>Pág. 23</u>
Ayudas para el Ejercicio 2.2	<u>Pág. 23</u>
Ayudas para el Ejercicio 2.3	<u>Pág. 24</u>
Ayudas para el Ejercicio 2.4	<u>Pág. 24</u>
Ayudas para el Ejercicio 2.5	<u>Pág. 25</u>
Ayudas para el Ejercicio 3.2	<u>Pág. 25</u>
Ayudas para el Ejercicio 3.7	<u>Pág. 25</u>
Ayudas para el Ejercicio 3.8	<u>Pág. 25</u>
Ayudas para el Ejercicio 4.0	<u>Pág. 26</u>
Ayudas para el Ejercicio 5A	<u>Pág. 26</u>
Ayudas para el Ejercicio 5B	<u>Pág. 26</u>
Ayudas para el Ejercicio 6A	Pág. 27

Ayudas para el Ejercicio 6B	<u>Pág. 27</u>
Ayudas para el Ejercicio 6C	Pág. 27

Cód. ST0247

Estructuras de Datos 2

Ayudas para el Ejercicio 1.2

Numeral a)

PISTA 1: Un error común es retornar el peso de los arcos en lugar de los identificadores de los vértices en el método *getSuccessors*

Numeral b)

PISTA 1: Un error común es retornar el peso de los arcos en lugar de los identificadores de los vértices en el método *getSuccessors*

PISTA 2: Un error común es intentar acceder a una lista de listas con la instrucción listaDeListas.get(source).get(destination) porque el destino no se encuentra necesariamente en esa posición de la lista. No es una matriz.

PISTA 3: Una lista de listas de parejas se define en Java como
ArrayList<LinkedList<Pair<Integer,Integer>>> listaDeListas =
new ...

Ayudas para el Ejercicio 1.3

PISTA 1: Véase Guía en Sección 4, numeral 4.14 "Cómo hacer pruebas unitarias en BlueJ usando JUnit" y numeral 4.15 "Cómo compilar pruebas unitarias en Eclipse"

PISTA 2: Todos los ejercicios del numeral 1 deben ser documentados en formato HTML. Véase Guía en Sección 4, numeral 4.1 "Cómo escribir la documentación HTML de un código usando JavaDoc"

Ayudas para el Ejercicio 1.4

Cód. ST0247

Estructuras de Datos 2

- PISTA 1: Véase Guía en Sección 4, numeral 4.13 "Cómo usar Scanner o BufferedReader"
- PISTA 2: Hay información que sobra, por ejemplo, la latitud y la longitud de cada vértice y el nombre de cada arista.
- PISTA 3: Es mejor usar *BufferedReader* porque es más rápido que *Scanner*. La idea es leer en una cadena de caracteres el contenido de cada línea y usando el método *split* de la clase *String* o usando *StringTokenizer*, dividir la cadena en partes cada que hay una coma (,).
- **PISTA 4:** Como los códigos no son secuenciales, es decir, no empiezan en cero y tampoco están todos los números consecutivos, una forma de manejar los vértices es usar un mapa (en Java, *HashMap* o *TreeMap*).
- PISTA 5: En las diapositivas de la clase "Data Structures II: Graph Transversals" encontrará los algoritmos y el recorrido Deep-First Search, y en Eafit Interactiva, las implementaciones de grafos no dirigidos usando matrices de adyacencia y listas de adyacencia

Error Común

Cód. ST0247

Estructuras de Datos 2

Como un ejemplo, para el siguiente mapa, el archivo de entrada es el siguiente:

Vertices. Formato: ID, coordenada x, coordenada y, nombre

10000 2.00000 0.00000 School

1 4.00000 1.00000 Movies

2 5.00000 2.00000 Snell

3 2.00000 5.00000 Planters

4 0.00000 2.00000 Gym

Arcos. Formato: ID, ID, distancia, nombre

10000 1 10.0 Calle 1

10000 3 14.0 desconocido

10000 4 10.0 desconocido

1 10000 10.0 Calle 2a

1 2 7.0 desconocido

1 3 12.0 desconocido

1 4 15.0 desconocido

2 1 7.0 desconocido

Cód. ST0247

Estructuras de Datos 2

2 3 20.0 desconocido 3 10000 14.0 desconocido 3 1 12.0 desconocido 3 2 20.0 desconocido 3 4 8.0 desconocido 4 10000 10.0 desconocido 4 1 15.0 desconocido 4 3 8.0 desconocido

Ayudas para el Ejercicio 2.1

Ayudas para el Ejercicio 2.2

PISTA: El algoritmo *GroupSum* falla porque al llamarse recursivamente con el parámetro start se queda en una recursión infinita

PISTA 2: El algoritmo *GroupSum* falla porque al llamarse recursivamente con el parámetro start-1 se sale del arreglo cuando start = 0.

Cód. ST0247

Estructuras de Datos 2

ď

PISTA 3: El algoritmo *GroupSum* falla porque al llamarse recursivamente con el parámetro start se sale del arreglo cuando start = length-1

Ayudas para el Ejercicio 2.3

PISTA 1: Utilicen Búsqueda en Profundidad (Siglas en inglés DFS)

PISTA 2: Véase Guía en Sección 4, numeral 4.13 "Cómo usar Scanner o BufferedReader"

Ayudas para el Ejercicio 2.4

PISTA 1: Usen un algoritmo para corroborar si es un grafo bipartito. Léase qué es bipartito en http://bit.ly/2hGwAo2

Cód. ST0247

Estructuras de Datos 2

Ayudas para el Ejercicio 2.5

PISTA 1: Algoritmos para hallar componentes fuertemente conexos. Ordenamiento topológico. DFS. Léase en http://bit.ly/2qTeJKh

Ayudas para el Ejercicio 3.2

PISTA: http://bit.ly/2gzZPLD

PISTA 2: http://bit.ly/2gSMq1Z

Ayudas para el Ejercicio 3.7

PISTA: Véase Guía en Sección 4, numeral 4.11 "Cómo escribir la complejidad de un ejercicio en línea"

Ayudas para el Ejercicio 3.8

Errores Comunes

Cód. ST0247

Estructuras de Datos 2

Ayudas para el Ejercicio 4.0

PISTA 1: Véase Guía en Sección 4, Numeral 4.18 "Respuestas del Quiz"

PISTA 2: Lean las diapositivas tituladas "Data Structures II: Graph Implementation", encontrarán la mayoría de las respuestas

Ayudas para el Ejercicio 5A

PISTA 1: En el siguiente enlace, unos consejos de cómo hacer un buen resumen http://bit.ly/2knU3Pv

PISTA 2: Aquí le explican cómo contar el número de palabras en Microsoft Word

Ayudas para el Ejercicio 5B

Cód. ST0247

Estructuras de Datos 2

PISTA 1: Para que hagan el mapa conceptual se recomiendan herramientas como las que encuentran en https://cacoo.com/ o https://www.mindmup.com/#m:new-a-1437527273469

NOTA 1: Si desean otra lectura, consideren la siguiente: "John Hopcroft et al., Estructuras de Datos y Algoritmos, Capítulo 6: Grafos dirigidos. Páginas 267 – 276. 1983" que pueden encontrarla en biblioteca

NOTA 2: Estas respuestas también deben incluirlas en el informe PDF

Cód. ST0247

Estructuras de Datos 2

Ayudas para el Ejercicio 6A

PISTA 1: Véase Guía en Sección 4, Numeral 4.21 "Ejemplo de cómo hacer actas de trabajo en equipo usando Tablero Kanban"

Ayudas para el Ejercicio 6B

PISTA 1: Véase Guía en Sección 4, Numeral 4.23 "Cómo generar el historial de cambios en el código de un repositorio que está en svn"

Ayudas para el Ejercicio 6C

PISTA 1: Véase Guía en Sección 4, Numeral 4.22 "Cómo ver el historial de revisión de un archivo en Google Docs"