Low Level Protocols

Embedded Interface Design with **Bruce Montgomery**

Learning Objectives

- Students will be able to...
 - Recognize common low level protocols and interfaces common to SBCs and Microcontrollers
 - Compare and contrast their applications

Low Level Protocols

- Short distance communications interfaces within (or adjacent to) a single device
- Examples
 - I2C Inter-Integrated Circuit
 - SPI Serial Peripheral Interface
 - UART Universal Asynchronous Receiver/Transmitter
 - 1-Wire
 - GPIO General Purpose Input/Output
- The ones we review at some detail are common to SBCs like the Pi, there are many others

I2C (Inter-Integrated Circuit)

- Protocol introduced by Philips Semiconductor in 1982
- Lower speed devices
- Standard mode: 100 kbit/s
- Full speed: 400 kbit/s
- Fast mode: 1 Mbit/s
- High speed: 3.2 Mbit/s
- Master/Slave half-duplex communication
- Slaves have unique address bits
- 112 devices addressable with 7 bit addresses
- 1008 devices with 10 bit addresses
- Two data lines serial clock (SCL) and serial data (SDA)
- Best application: Intermittently accessed devices Example: an RFID reader
- Reference [1]

SPI (Serial Peripheral Interface)

- Protocol introduced by Motorola in late 1980s
- Full duplex serial communications
- 4 line protocol Clock from master, Master Out Slave In, Master In Slave Out, Slave Select
- Higher throughput (and usually lower power) than I²C
- Slaves do not need a unique address
- Not limited to a maximum clock speed in practice varies from 12 to 100 MHz
- Best for devices that provide data streams – Examples: sensors, SD cards
- Reference [2]

UART (Universal Asynchronous Receiver/Transmitter)

- First UART was designed by Gordon Bell of DEC in 1960s
- UARTs implement asynchronous serial communication from parallel data (sender does not have to send a clock signal)
- Usually implemented internally in microcontrollers
- Often used for RS-232 or other standard serial communication, usually with buffering FIFO queues to speed communications
- On the Pi, Raspian uses the UART for the serial console, but this can be used for your own applications
- Good interface for interconnecting to local serial devices (vs. on-board distances for I2C or SPI)
- Reference [3]

UART vs SPI vs I2C

Data rate	As this is is asynchronous communication, data rate between two devices wanting to communicate should be set to equal value. Maximum data rate supported is about 230 Kbps to 460kbps	Maximum data rate limit is not specified in SPI interface. Usually supports about 10 Mbps to 20 Mbps	I2C supports 100 kbps, 400 kbps, 3.4 Mbps. Some variants also supports 10 Kbps and 1 Mbps.	
Distance	Lower about 50 feet	highest	Higher	
Type of communication	Asynchronous	Synchronous	Synchronous	
Number of masters	Not Application	One One or more than One		
Clock	No Common Clock signal is used. Both the devices will use there independent clocks.	There is one common serial clock signal between master and slave devices.	There is common clock signal between multiple masters and multiple slaves.	
Hardware complexity	lesser	less	more	

Reference [4]

UART vs SPI vs I2C

Advantages - It is simple communication and most popular which is available due to UART support in almost all the devices with 9 pin connector. It is also referred as RS232 interface. - They are suitable for communication between only two devices It supports fixed data rate agreed upon between devices initially before communication otherwise data will be garbled. - It is simple protocol and hence so not require processing overheads Supports fixed data rate agreed upon between devices initially before communication otherwise data will be garbled. - It is simple protocol and hence so not require processing overheads Supports fixed data rate agreed upon between devices initially before communication otherwise data will be garbled. - It is simple protocol and hence so not require processing overheads Supports full duplex communication Due to open collector design, limited slew rates can be achieved More than one masters can be used in the circuit design Needs fewer i.e. only 2 wires for communication Ica addressing is on serious data and longer and suspensible It is also possible Needs fewer i.e. only 2 wires for communication Ica addressing is concept Needs fewer i.e. only				
communication between only two devices. • It supports fixed data rate agreed upon between devices initially before communication otherwise data will be garbled. increases, number of CS lines increases, this results in hardware complexity as number of pins required will increase. • To add a device in SPI requires one to add extra CS line and changes in software for particular device addressing is concerned. • Master and slave relationship can not be changed as usually done in I2C interface. • No flow control	Advantages	communication and most popular which is available due to UART support in almost all the devices with 9 pin connector. It is also referred as RS232	and hence so not require processing overheads. •Supports full duplex communication. •Due to separate use of CS lines, same kind of multiple chips can be used in the circuit design. •SPI uses push-pull and hence higher data rates and longer ranges are possible. •SPI uses less power	limited slew rates can be achieved. •More than one masters can be used in the electronic circuit design. •Needs fewer i.e. only 2 wires for communication. •12C addressing is simple which does not require any CS lines used in SPI and it is easy to add extra devices on the bus. •It uses open collector bus concept. Hence there is bus voltage flexibity on the interface bus.
	Disadvantages	communication between only two devices. • It supports fixed data rate agreed upon between devices initially before communication otherwise data will be	increases, number of CS lines increases, this results in hardware complexity as number of pins required will increase. • To add a device in SPI requires one to add extra CS line and changes in software for particular device addressing is concerned. •Master and slave relationship can not be changed as usually done in I2C interface. •No flow control	circuit when number of slaves and masters increases. •I2C interface is half duplex. •Requires software stack to control the protocol and hence it needs some processing overheads on

Reference [4]

1-Wire

- Protocol introduced by Dallas semiconductors (now Maxim)
- Interfacing to 1-Wire devices on a RPi3
 can use a single GPIO pin for data, and
 often provide a unique serial code to
 identify the device
- Two contacts, data and ground, provide for half-duplex bidirectional communication
- Designed for contact applications
- Disconnecting from the 1-Wire bus (or a loss of contact) puts the 1-Wire slaves into a defined reset state
- When the voltage returns, the slaves wake up and signal their presence

GPIO (General Purpose Input/Output)

- GPIO interfaces represent generic pins that can be controlled at run time
- GPIO pins can be configured:
 - as input or output
 - as enabled or disabled
 - as interrupts
- On the RPi3 for example, the GPIO header provides for I2C, SPI, and 1-Wire interfaces

	Raspberry Pi 3 GPIO Header							
Pin#	NAME		NAME	Pin#				
01	3.3v DC Power	00	DC Power 5v	02				
03	GPIO02 (SDA1 , I ² C)	00	DC Power 5v	04				
05	GPIO03 (SCL1 , I ² C)	00	Ground	06				
07	GPIO04 (GPIO_GCLK)	00	(TXD0) GPIO14	08				
09	Ground	00	(RXD0) GPIO15	10				
11	GPIO17 (GPIO_GEN0)	00	(GPIO_GEN1) GPIO18	12				
13	GPIO27 (GPIO_GEN2)	00	Ground	14				
15	GPIO22 (GPIO_GEN3)	00	(GPIO_GEN4) GPIO23	16				
17	3.3v DC Power	00	(GPIO_GEN5) GPIO24	18				
19	GPIO10 (SPI_MOSI)	00	Ground	20				
21	GPIO09 (SPI_MISO)	00	(GPIO_GEN6) GPIO25	22				
23	GPIO11 (SPI_CLK)	00	(SPI_CE0_N) GPIO08	24				
25	Ground	00	(SPI_CE1_N) GPIO07	26				
27	ID_SD (I2C ID EEPROM)	00	(I2C ID EEPROM) ID_SC	28				
29	GPIO05	00	Ground	30				
31	GPIO06	00	GPIO12	32				
33	GPIO13	00	Ground	34				
35	GPIO19	00	GPIO16	36				
37	GPIO26	00	GPIO20	38				
39	Ground	00	GPIO21	40				
v. 2 02/2016								

GPIO Example

Reference [7]

import RPi.GPIO as GPIO

```
# Pin Setup:
GPIO.setmode(GPIO.BCM) # Broadcom pin-numbering scheme
GPIO.setup(ledPin, GPIO.OUT) # LED pin set as output
GPIO.setup(pwmPin, GPIO.OUT) # PWM pin set as output
pwm = GPIO.PWM(pwmPin, 50) # Initialize PWM on pwmPin 100Hz frequency
GPIO.setup(butPin, GPIO.IN, pull up down=GPIO.PUD_UP) # Button pin set as input w/ pull-up
print("Here we go! Press CTRL+C to exit")
try:
    while 1:
        if GPIO.input(butPin): # button is released
            pwm.ChangeDutyCycle(dc)
            GPIO.output(ledPin, GPIO.LOW)
        else: # button is pressed:
            pwm.ChangeDutyCycle(100-dc)
            GPIO.output(ledPin, GPIO.HIGH)
            time.sleep(0.075)
            GPIO.output(ledPin, GPIO.LOW)
            time.sleep(0.075)
except KeyboardInterrupt: # If CTRL+C is pressed, exit cleanly:
    pwm.stop() # stop PWM
    GPIO.cleanup() # cleanup all GPIO
```

Other Common Board/Chip-Level Protocols

- ADC/DAC Analog-Digital Converter often used for digital microprocessor interfaces to analog devices [8]
- One oft-sited difference between Arduinos and Pis, the Pi must have an ADC/DAC add-on board for such interfaces
- JTAG Test/verification interface and protocol [9]
- PCI, PCI-X, AGP, PCI Express for video, sound, network, controller specific interfaces [10]
- AXI Advanced eXtensible Interface, APB Advanced Peripheral Bus, and AHB Advanced High-performance Bus – connects blocks on SoC (System on Chip) chip-level designs [11,12]
- More on these in other ESE classes

References

- [1] https://learn.sparkfun.com/tutorials/i2c
- [2] https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi
- [3] https://learn.sparkfun.com/tutorials/serial-communication
- [4] http://www.rfwireless-world.com/Terminology/UART-vs-SPI-vs-I2C.html
- [5] https://www.maximintegrated.com/en/app-notes/index.mvp/id/1796
- [6] https://learn.sparkfun.com/tutorials/raspberry-gpio
- [7] https://learn.sparkfun.com/tutorials/raspberry-gpio#python-rpigpio-example
- [8] https://www.digikey.com/en/articles/techzone/2017/sep/adc-dac-tutorial
- [9] https://www.xjtag.com/about-jtag/jtag-a-technical-overview/
- [10] https://www.lifewire.com/pci-express-pcie-2625962
- [11] http://www.iosrjournals.org/iosr-jece/papers/Vol8-Issue5/A0850109.pdf
- [12] https://www.design-reuse.com/articles/24123/amba-ahb-to-axi-bus-comparison.html