In the video titled "MSE as MLE", at 0:56, we are computing a quantity ϵ_i . This quantity is

- (A) The perpendicular distance of the points from the line
- (B) The distance of the points from the line along X-axis
- (C) The distance of the points from the line along Y-axis
- (D) [Ans] None of these

In the video titled "Data from Multivariate Gaussians", at 06:39, we are talking about isocontours. Consider for a 2-D gaussian, the isocontours are circular. Suppose we have two such circles c_1, c_2 , with radii r_1 and r_2 respectively. The probabilities of each point on c_1 is p_1 and that on c_2 is p_2 . Then, given that $r_1 > r_2$, we can say that (A) $p_1 < p_2$

- (B) **[Ans]** $p_1 > p_2$
- (C) $p_1 = p_2$
- (D) Cant be said from given information

In the video titled "Bias and variance", we talk about "underfitting" and "overfitting". Suppose we have are trying to fit a polynomial on a given data and we are overfitting in our problem. Which of these could be a possible solution

- (A) [Ans] Collect more data
- (B) Increase the degree of the polynomial $\ensuremath{\mathsf{B}}$
- (C) ${\bf [Ans]}$ Decrease the degree of the polynomial
- (D) None of these

In the video titled "Decision Boundaries for Multivariate Gaussians", at 2:09, we are talking of a closed form expression for θ .

Given $(X|\omega_1) \sim N(\mu_1, \sigma_1)$ and $(X|\omega_2) \sim N(\mu_2, \sigma_2)$ Derive the expression for θ in a 1-dimensional scenario

- (A) θ is the solution of a linear equation
- (B) [Ans] θ is the solution of a quadratic equation
- (C) θ is the solution of an exponential equation
- (D) θ cannot be calculated in closed form

In the video titled "Regularization in Regression" we assert that L1 regularization leads to sparsity while L2 does not. We want to prove/disprove this:

Consider the vector $x=(1,\epsilon)\in R^2$ where $\epsilon>0$ is small. Suppose that as part of some regularization procedure, we have to reduce one of the elements of x by δ .

This gives two options: x_1 : $(1 - \delta, \epsilon)$ and x_2 : $(1, \epsilon - \delta)$

- (A) [Ans] L1 norm of x_1 and x_2 are same
- (B) L2 norm of x_1 and x_2 are same
- (b) L2 norm of x_1 and x_2 are sair
- (C) **[Ans]** Decrease in L2 norm from x to x_1 is more than that from x to x_2 (D) This proves that L1 norm promotes decrease of the larger quantity in x rather
- (D) This proves that L1 norm promotes decrease of the larger quantity in x rather than reducing the smaller one to zero(E) [Ans] This proves that L2 norm promotes decrease of the larger quantity in x
- rather than reducing the smaller one to zero