# Aprendizaje Basado en Instancias

Guillermo Henrión

### Temario

- Motivación
- K-Nearest Neighbor
- Locally weighted regression
- Case-based reasoning

# Motivación Formas de aprendizaje

| Day | Outlook  | Temperature | Humidity | Wind   | Play Tennis |  |
|-----|----------|-------------|----------|--------|-------------|--|
| 1   | Sunny    | Hot         | High     | Weak   | No          |  |
| 2   | Sunny    | Hot         | High     | Strong | No          |  |
| 3   | Overcast | Hot         | High     | Weak   | Yes         |  |
| 4   | Rain     | Mild        | High     | Weak   | Yes         |  |
| 5   | Rain     | Cool        | Normal   | Weak   | Yes         |  |
| 6   | Rain     | Cool        | Normal   | Strong | No          |  |
| 7   | Overcast | Cool        | Normal   | Strong | Yes         |  |
| 8   | Sunny    | Mild        | High     | Weak   | No          |  |
| 9   | Sunny    | Cool        | Normal   | Weak   | Yes         |  |
| 10  | Rain     | Mild        | Normal   | Weak   | Yes         |  |
| 11  | Sunny    | Mild        | Normal   | Strong | Yes         |  |
| 12  | Overcast | Mild        | High     | Strong | Yes         |  |
| 13  | Overcast | Hot         | Normal   | Weak   | Yes         |  |
| 14  | Rain     | Mild        | High     | Strong | No          |  |

# Motivación Reglas

| Day | Outlook  | Temperature | Humidity | Wind   | Play Tennis |  |
|-----|----------|-------------|----------|--------|-------------|--|
| 1   | Sunny    | Hot         | High     | Weak   | No          |  |
| 2   | Sunny    | Hot         | High     | Strong | No          |  |
| 3   | Overcast | Hot         | High     | Weak   | Yes         |  |
| 4   | Rain     | Mild        | High     | Weak   | Yes         |  |
| 5   | Rain     | Cool        | Normal   | Weak   | Yes         |  |
| 6   | Rain     | Cool        | Normal   | Strong | No          |  |
| 7   | Overcast | Cool        | Normal   | Strong | Yes         |  |
| 8   | Sunny    | Mild        | High     | Weak   | No          |  |
| 9   | Sunny    | Cool        | Normal   | Weak   | Yes         |  |
| 10  | Rain     | Mild        | Normal   | Weak   | Yes         |  |
| 11  | Sunny    | Mild        | Normal   | Strong | Yes         |  |
| 12  | Overcast | Mild        | High     | Strong | Yes         |  |
| 13  | Overcast | Hot         | Normal   | Weak   | Yes         |  |
| 14  | Rain     | Mild        | High     | Strong | No          |  |



# Motivación Probabilidades

| Day | Outlook  | Temperature | Humidity | Wind   | Play Tennis |  |
|-----|----------|-------------|----------|--------|-------------|--|
| 1   | Sunny    | Hot         | High     | Weak   | No          |  |
| 2   | Sunny    | Hot         | High     | Strong | No          |  |
| 3   | Overcast | Hot         | High     | Weak   | Yes         |  |
| 4   | Rain     | Mild        | High     | Weak   | Yes         |  |
| 5   | Rain     | Cool        | Normal   | Weak   | Yes         |  |
| 6   | Rain     | Cool        | Normal   | Strong | No          |  |
| 7   | Overcast | Cool        | Normal   | Strong | Yes         |  |
| 8   | Sunny    | Mild        | High     | Weak   | No          |  |
| 9   | Sunny    | Cool        | Normal   | Weak   | Yes         |  |
| 10  | Rain     | Mild        | Normal   | Weak   | Yes         |  |
| 11  | Sunny    | Mild        | Normal   | Strong | Yes         |  |
| 12  | Overcast | Mild        | High     | Strong | Yes         |  |
| 13  | Overcast | Hot         | Normal   | Weak   | Yes         |  |
| 14  | Rain     | Mild        | High     | Strong | No          |  |

| Temperature | Play Tennis |
|-------------|-------------|
| Hot         | No          |
| Hot         | No          |
| Hot         | Yes         |
| Mild        | Yes         |
| Cool        | Yes         |
| Cool        | No          |
| Cool        | Yes         |
| Mild        | No          |
| Cool        | Yes         |
| Mild        | Yes         |
| Mild        | Yes         |
| Mild        | Yes         |
| Hot         | Yes         |
| Mild        | No          |
|             |             |

Data

| Probability Table |                   |                  |             |  |  |  |  |
|-------------------|-------------------|------------------|-------------|--|--|--|--|
| Temperature       | Play Tennis : Yes | Play Tennis : No | Probability |  |  |  |  |
| Hot               | 2                 | 2                | 4/14 = 0.29 |  |  |  |  |
| Cool              | 3                 | 1                | 4/14 = 0.29 |  |  |  |  |
| Mild              | 4                 | 2                | 6/14 = 0.43 |  |  |  |  |
| All               | 9                 | 5                |             |  |  |  |  |
| Probability       | 9/14 = 0.64       | 5/14 = 0.36      |             |  |  |  |  |

# Motivación Cercanía

|  | Day      | Outlook  | Temperature | Humidity | Wind        | <b>Play Tennis</b> | _     |               |
|--|----------|----------|-------------|----------|-------------|--------------------|-------|---------------|
|  | 1        | Sunny    | Hot         | High     | Weak        | No                 |       |               |
|  | 2        | Sunny    | Hot         | High     | Strong      | No                 |       |               |
|  | 3        | Overcast | Hot         | High     | Weak        | Yes                |       |               |
|  | 4        | Rain     | Mild        | High     | Weak        | Yes                |       |               |
|  | 5        | 5 Rain   | Cool        | Normal   | Normal Weak | Yes                |       |               |
|  | 6        | Rain     | Cool        | Normal   | Strong      | No                 |       |               |
|  | 7        | Overcast | Cool        | Normal   | Strong      | Yes                | Entr  | conomionto    |
|  | 8        | Sunny    | Mild        | High     | Weak        | No                 | LIILI | Entrenamiento |
|  | 9        | Sunny    | Cool        | Normal   | Weak        | Yes                |       |               |
|  | 10       | Rain     | Mild        | Normal   | Weak        | Yes                |       |               |
|  | 11       | Sunny    | Mild        | Normal   | Strong      | Yes                |       |               |
|  | 12<br>13 | Overcast | Mild        | High     | Strong      | Yes                |       |               |
|  |          | Overcast | Hot         | Normal   | Weak        | Yes                |       |               |
|  | 14       | Rain     | Mild        | High     | Strong      | No                 |       |               |
|  | -        |          |             |          |             |                    |       |               |
|  |          | Overcast | Mild        | High     | Weak        | Yes                |       |               |

# Motivación Cercanía



### Motivación Cercanía



- Es el más simple de los métodos basados en instancias
- Supervisado
- Asume que todas las instancias están en un espacio n-dimensional
- Difiere el proceso de clasificar hasta que una nueva instancia deba ser clasificada
- Puede aprender funciones complejas
- No pierde información
- Puede ser "engañado" por atributos irrelevantes

### Dada una instancia x y ai sus atributos

$$\langle a_1(x), a_2(x), \ldots a_n(x) \rangle$$

$$d(x_i, x_j) \equiv \sqrt{\sum_{r=1}^n (a_r(x_i) - a_r(x_j))^2}$$

### funciones discretas

$$f: \mathbb{R}^n \to V \{v_1, \dots v_s\}$$

Luego el K-nn retorna para f(xq) el valor más común de f entre los k ejemplos más cercanos a xq



#### Training algorithm:

• For each training example  $\langle x, f(x) \rangle$ , add the example to the list training\_examples

#### Classification algorithm:

- Given a query instance  $x_q$  to be classified,
  - Let  $x_1 ldots x_k$  denote the k instances from training examples that are nearest to  $x_q$
  - Return

$$\hat{f}(x_q) \leftarrow \underset{v \in V}{\operatorname{argmax}} \sum_{i=1}^k \delta(v, f(x_i))$$

where  $\delta(a, b) = 1$  if a = b and where  $\delta(a, b) = 0$  otherwise.

# K-NN Diagrama de Voronoi



La superficie de decisión es una combinación poliedros convexos rodeando cada uno de los ejemplos de entrenamiento

### funciones continuas

$$f:\mathfrak{R}^n\to\mathfrak{R}$$

$$\hat{f}(x_q) \leftarrow \frac{\sum_{i=1}^k f(x_i)}{k}$$

# K-NN Distance-weigthed

Se pesa el voto de cada vecino de acuerdo a la inversa de su distancia a la instancia a clasificar

$$w_i \equiv \frac{1}{d(x_q, x_i)^2}$$

#### <u>Discreto</u>

$$\hat{f}(x_q) \leftarrow \underset{v \in V}{\operatorname{argmax}} \sum_{i=1}^k w_i \delta(v, f(x_i))$$

#### <u>Continuo</u>

$$\hat{f}(x_q) \leftarrow \frac{\sum_{i=1}^k w_i f(x_i)}{\sum_{i=1}^k w_i}$$

K-NN Distance-weigthed



### Locally weighted regression

Knn forma una aproximación local para cada xq.

Podemos formar una aproximación explícita f(x) para la región alrededor de  $x_q$ . ajustando una función (lineal, cuadrática u otra) a sus k vecinos cercanos, pesada por su distancia, y evaluar la nueva instancia  $x_q$  con esa función local.

# Locally weighted regression

$$\hat{f}(x) = w_0 + w_1 a_1(x) + \dots + w_n a_n(x)$$

$$E \equiv \frac{1}{2} \sum_{x \in D} (f(x) - \hat{f}(x))^2$$

### Locally weighted regression

$$E_1(x_q) \equiv \frac{1}{2} \sum_{x \in k \text{ near est nbrs of } x_q} (f(x) - \hat{f}(x))^2$$

$$E_2(x_q) \equiv \frac{1}{2} \sum_{x \in D} (f(x) - \hat{f}(x))^2 K(d(x_q, x))$$

$$E_3(x_q) \equiv \frac{1}{2} \sum_{x \in k \text{ nearest nbrs of } x_q} (f(x) - \hat{f}(x))^2 K(d(x_q, x))$$

### Case-based reasoning

Usa una representación más rica y por ende medidas de distancia más elaboradas

Por ejemplo clasificando textos, debería comparar la similitud de los textos para clasificar un nuevo texto (mediante similitud semántica que usan el significado de las palabras).

O un sistema de toma de decisiones dando respuestas de acuerdo a la similitud con la preguntas. Resuelve problemas basándose en la solución de problemas ya vistos. En este último ejemplo la complejidad pasa por determinar cuándo dos preguntas son parecidas.

# Case-based reasoning



## Bibliografía

Machine Learning cap. 8 - T. Mitchell

https://web.archive.org/web/20080312053714/http://www.iii a.csic.es/People/enric/AICom.html

https://towardsdatascience.com/how-to-rank-text-content-by-semantic-similarity-4d2419a84c32