Examen de Topología

NOTA IMPORTANTE: El espacio máximo para escribir las respuestas es de dos folios por las dos caras. Si se envían más de dos folios, solamente se leerán los dos primeros.

- 1.- a) Sea un espacio topológico (X,T). Demostrar que un subconjunto M de X es denso en (X,T) si y sólo si para todo abierto no vacío U de X se tiene que $U \cap M \neq \emptyset$. (1,5 puntos)
- b) Demostrar que en un espacio topológico (X,T), si A y B son dos subconjuntos de X, el interior de $(A \cap B)$ es igual a la intersección interior (A) e interior (B). (1 punto)

Solucción

- a) Proposición 13 del libro de teoría.
- b) Vamos a demostrar primero está implicación ←)

Si $x \in int(A) \cap int(B)$, entonces $x \in int(A)$ y $x \in int(B)$, luego existen abiertos U y V tales que $x \in U \subset A$ y $x \in V \subset B$, por lo tanto, el abierto $W = U \cap V \subset A \cap B$ y $x \in W$, entonces $x \in int(A \cap B)$.

Ahora vamos a demostrar la otra implicación ⇒)

Si $x \in int(A \cap B)$, se tiene que existe un abierto V tal que $x \in V \subset A \cap B$, luego $x \in V \subset A$ y $x \in V \subset B$, lo que implica que $x \in int(A)$ y $x \in int(B)$, por lo tanto, $x \in int(A) \cap int(B)$.

- 2.- En el conjunto *N* de los números naturales (se incluye el 0):
- a) Probar que $T = \{A \subset N \mid \text{ si } 2n+1 \notin A \text{ entonces } 2n, 2n+2 \notin A\}$ es una topología en N. (2 puntos)
- b) Estudiar si (N, T) es T_2 . (2 puntos)

Solucción

- a) Problema 1.2 del libro de problemas.
- b) Problema 2.34 del libro de problemas.
- 3.- a) Sean (X,T) un espacio topológico, $A \subset X$ y $r: X \to A$ una aplicación continua de (X,T) en (A,T_A) tal que $r/A=1_A$ (la identidad en A). Probar que T_A es la topología final en A para la aplicación r, de la topología T. (2 puntos)
- b) En el conjunto N de los números naturales (se incluye el 0), se considera la topología
- $T = \{M \subset N \mid \text{ si } n \in M \text{ entonces todo divisor de } n \text{ pertenece a } M\}.$

Estudiar si (X,T) es compacto. (1,5 puntos)

Solucción

- a) Denotemos a la topología final por T_r , tendremos que probar que $T_A = T_r$. $T_A \subset T_r$, puesto que la topología final es la más fina que hace f continua. Ahora, demostraremos que $T_A \supset T_r$. Si $U \in T_r$, entonces $r^{-1}(U) = V$, donde $V \in T$, entonces $U \in T_A$, ya que al ser $r/A = 1_A$, se tiene $U = V \cap A$.
- b) Consideremos $U_n = \{x \in N \mid x \le n\}$, se tiene que $U_n \in T$. Además $N = \bigcup U_n$,

luego los U_n forman un recubrimiento por abiertos de N, y de él no se puede extraer ninguno finito, porque N es infinito. Luego (X,T) no es compacto.