COMPOSITIO MATHEMATICA

O. DEBARRE

Sur la démonstration de A. Weil du théorème de Torelli pour les courbes

Compositio Mathematica, tome 58, nº 1 (1986), p. 3-11.

http://www.numdam.org/item?id=CM_1986__58_1_3_0

© Foundation Compositio Mathematica, 1986, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http://http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ [1]

Compositio Mathematica 58 (1986) 3-11 © Martinus Nijhoff Publishers, Dordrecht - Printed in the Netherlands

SUR LA DÉMONSTRATION DE A. WEIL DU THÉORÈME DE TORELLI POUR LES COURBES

O. Debarre

Abstract

Let Θ_a be the translate of the theta divisor Θ of the Jacobian JC of a complex curve C, by a non zero element a of JC. If C is not a double cover of an elliptic curve and is of genus at least three, we prove that $\Theta \cdot \Theta_a$ is non-integral if and only if a corresponds to some $\mathcal{O}_C(p-q)$, p, $q \in C$.

Introduction

Dans [4], A. Weil démontrait le théorème de Torelli pour les courbes de la façon suivante. Désignant par Θ_a le translaté du diviseur Θ de la jacobienne JC d'une courbe C par un élément a non nul de JC, il remarquait que $\Theta \cdot \Theta_a$ avait deux composantes lorsque $a = \mathcal{O}_C(p-q)$, pour deux points p et q de C. Il démontrait ensuite que, si C est de genre supérieur ou égal à 5, et sauf dans un cas particulier (cas 2) de notre théorème), c'était le seul cas où $\Theta \cdot \Theta_a$ n'était pas intègre. Ceci lui permettait alors de caractériser la surface C-C dans la jacobienne, puis de démontrer le théorème de Torelli.

On expose dans cet article une démonstration géométrique élémentaire de ces résultats, valable en tout genre supérieur ou égal à 3, qui permet aussi de décrire les composantes de $\Theta \cdot \Theta_a$ dans tous les cas. Cette description permet en particulier de trouver toutes les trisécantes à la variété de Kummer associée à une jacobienne de courbe.

Notations

Dans toute la suite, C désignera une courbe complexe projective lisse, g son genre.

On notera J^dC le groupe des faisceaux inversibles de degré d sur C. Les variétés J^dC sont toutes isomorphes non canoniquement à $JC = J^0C$,

qui est une variété abélienne principalement polarisée. Un diviseur O associé peut être décrit dans $J^{g-1}C$ comme l'image de l'application:

$$C^{g-1} \to J^{g-1}C$$

$$(x_1, \dots, x_{g-1}) \mapsto \mathcal{O}_C(x_1 + \dots + x_{g-1})$$

Pour tout entier $n \ge 1$, on notera $C^{(n)}$ le quotient de C^n par l'action naturelle du groupe symétrique \mathfrak{S}_n et par $x_1 + x_2 + \ldots + x_n$ l'image de (x_1,\ldots,x_n) dans $C^{(n)}$.

Enfin, pour tous cycles X et Y sur JC se rencontrant proprement, on notera $X \cdot Y$ leur intersection en tant que cycles. Il nous arrivera de confondre une sous-variété réduite de JC avec le cycle associé.

Notre résultat est le suivant:

THÉORÈME: Soient C une courbe projective lisse de genre g supérieur ou égal à 3, Θ le diviseur thêta canonique de $J^{g-1}C$, a un diviseur de degré 0sur C, non équivalent à zéro. On note $\Theta_a = \Theta + a$. Alors $\Theta \cdot \Theta_a$ est intègre sauf dans les cas suivants:

- (1) Il existe deux points p et q de C tels que $a \equiv p a$.
- (2) Il existe une courbe elliptique lisse E, un morphisme fini de degré deux π : $C \to E$ et un diviseur e sur E tels que $a \equiv \pi^*e$.

Remarque 1: Dans le premier cas, $\Theta \cdot \Theta_a$ est somme des espaces irréductibles W_n^{g-2} et $(K_C - W^{g-2})_{-n}$, i.e.:

eductibles
$$W_p^{p-1}$$
 et $(K_C - W^{p-1})_{-q}$, i.e.:

$$\Theta \cdot \Theta_a = \{ \mathcal{O}_C(x_1 + \ldots + x_{g-2} + p) | x_i \in C \}$$

$$+ \{ \mathcal{O}_C(K_C - x_1 - \ldots - x_{g-2} - q) | x_i \in C \}.$$
En particulier, $\Theta \cdot \Theta_a$ est réduit sauf si C est hyperélliptique et (p,q) al p_{OC} RR $= \infty$ and p_{OC}

est une paire involutive.

Dans le second cas, $\Theta \cdot \Theta_a$ est réduit et a en général deux composantes que l'on peut décrire explicitement (Remarques 2 et 3), sauf dans un cas particulier au genre trois (Remarque 3), où il y a trois composantes.

On peut déduire de ce théorème le théorème de Torelli, de facon analogue à celle employée dans [2].

COROLLAIRE 1: Soient C et C' deux courbes projectives lisses de même genre g supérieur ou égal à 3. On suppose qu'il existe un isomorphisme de variétés abéliennes principalement polarisées $v: JC \rightarrow JC'$. Alors il existe un isomorphisme u: $C' \rightarrow C$ tel que $v = +u^*$.

L'ensemble $Z_C = \{a \in JC \mid \Theta \cdot \Theta_a \text{ n'est pas intègre}\}$ ne dépend pas du diviseur Θ choisi dans JC pour le définir. En particulier:

$$\begin{split} v\big(Z_C\big) &= \big\{v\big(a\big) \in JC' |\, \Theta \cdot \Theta_a \text{ non intègre} \big\} \\ &= \big\{v\big(a\big) \in JC' |\, v\big(\Theta\big) \cdot v\big(\Theta\big)_{v(a)} \text{ non intègre} \big\} = Z_{C'}. \end{split}$$

Or il découle du théorème que Z_C est la réunion de C-C et de, éventuellement, la ou les courbes elliptiques $\pi^*JE \subset JC$. Comme C-Cest de dimension 2 dans JC, on en déduit que dans tous les cas, v(C-C)=C'-C'. Pour $L\in J^{g-1}C$, on définit le diviseur thêta $\Theta_{r}\subset JC$ par $\Theta_L = \{x \in JC \mid H^0(x \otimes L) \neq 0\}$. On obtient ainsi, pour $H^0(L) \neq 0$, tous les diviseurs thêta passant par 0. Si $h^0(L) > 1$, on a $h^0(L \otimes \mathcal{O}_C(p - 1))$ $q) \geqslant 1$ pour tous p, q sur C, donc $\Theta_L \supset C - C$. Si par contre $h^0(L) = 1$. alors $h^0(K-L) = 1$, et si on note $|L| = \{x_1 + ... + x_{g-1}\}, |K-L| =$ $\{y_1 + \dots + y_{g-1}\}$, on a:

$$\Theta_L \cap (C-C) = \bigcup_{i=1}^{g-1} \left[(C-x_i) \cup (y_i-C) \right].$$

On choisit $L \in J^{g-1}C$ avec $h^0(L) = 1$. Alors $v(\Theta_L \cap (C - C)) = \Theta_L \cap (C - C)$ (C'-C') est réductible donc, par ce qui précède, réunion de (g-1)translatés de C' et de (g-1) translatés de (-C'). On en déduit:

$$\exists x \in C, \exists x' \in C', v(C-x) = \pm (C'-x'),$$

ce qui prouve le corollaire.

dore me comporte mystercature qui est a seconde ici

[3]

Une autre conséquence de ce théorème est la suivante. Soit K la variété de Kummer associée à (JC, \Theta), c'est-à-dire l'image de JC par le morphisme ψ associé au système linéaire sans point base $|2\Theta|$. Il est facile de vérifier que pour $(p, q, r, s) \in C^4$ et $\zeta \in J^{-1}C$ tel que $2\zeta \equiv s - 1$ p-q-r, les points $\psi(\zeta+p)$, $\psi(\zeta+q)$, $\psi(\zeta+r)$ sont alignés (cf. [3] page 80). Réciproquement, si $\psi(a)$, $\psi(b)$, $\psi(c)$ sont alignés, alors $\Theta \cdot \Theta_{a+b} \leq \Theta \cdot \Theta_{a-c} + \Theta \cdot \Theta_{a+c}$, au sens que la différence de ces deux cycles de codimension deux est un cycle effectif. Le corollaire suivant montre donc que les seules trisécantes à K sont celles que l'on vient d'expliciter. Q.E.D.

COROLLAIRE 2: Soit C une courbe projective lisse de genre supérieur ou égal à 3. On suppose qu'il existe trois éléments non nuls a, x, et y de JC vérifiant:

$$\{0, a\} \cap \{x, y\} = \emptyset, \quad \Theta \cdot \Theta_a \leqslant \Theta \cdot \Theta_x + \Theta \cdot \Theta_y.$$

 $\Theta_L \cap (C-C) = \bigcup_{i=1}^{g-1} [(C-x_i) \cup (y_i-C)].$ $O_L \cap (C-C) = \bigcup_{i=1}^{g-1} [(C-x_i) \cup (y_i-C)].$

olcomo P(K-D)=1 ord doc p Ely11.

Alors il existe p, q, r, s sur C tels que:

$$a \equiv p - q$$
, $x \equiv p - r$, $y \equiv s - q$.

Les intersections $\Theta \cdot \Theta_a$, $\Theta \cdot \Theta_x$, $\Theta \cdot \Theta_y$ sont toutes réductibles. On va comparer, à l'aide des remarques 1, 2 et 3, les composantes possibles, et montrer que le cas 2) du théorème ne peut se produire pour aucun des éléments a, x, y de JC.

On suppose d'abord $g \ge 4$. Si on est dans le cas 2) du théorème, on note σ l'involution de C associée à π et Z_{σ}^{a} , Z_{σ} les deux composantes de $\Theta \cap \Theta_a$, pour $a \in \pi^*$ Pic E (cf. Remarque 2). On note "-" l'involution canonique $L \to K_C \otimes L^{-1}$ de $J^{g-1}C$.

Par le lemme 1, un élément générique L de Z_a ou Z_a^a vérifie $h^0(L) = 1$, donc Z_{σ} et Z_{σ}^a sont distincts de tous les W_p^{g-2} , $p \in C$. On a $-Z_{\sigma}=Z_{\sigma}$, d'où $-Z_{\sigma}^{a}=Z_{\sigma}^{-a}$, donc Z_{σ} et Z_{σ}^{a} sont aussi distincts de tous les $-W_{-q}^{g-2}$, $q \in C$.

D'autre part, si on avait $Z_{\tau} = Z_{\sigma}^{a}$ pour une autre involution τ , on aurait pour (x_1, \ldots, x_{g-2}) générique dans C^{g-2} , $\mathcal{O}_C(x_1 + \ldots x_{g-2} + \ldots + x_{g-2})$ $\sigma \tau x_{\sigma-2} \in Z_{\tau}$, ce qui est impossible. De même, Z_{σ} est distinct de Z_{τ} si σ l'est de τ . On a montré que les W_p^{g-2} , $-W_{-q}^{g-2}$, Z_{σ} , Z_{τ} , Z_{σ}^a , Z_{σ}^b sont distincts pour $\sigma \neq \tau$, $a \not\equiv b$, $g \geqslant 3$. Ceci permet de conclure pour $g \geqslant 4$.

Le cas g = 3 se traite de facon similaire: les composantes sont du type Z_{σ} (cas 1 et 2 de la Remarque 3) ou Z_{σ}^{a} (cas 3). Si a relève du cas 1 de la remarque, de sorte que $\Theta \cdot \Theta_a = Z_{\sigma_1} \cup Z_{\sigma_2} \cup Z_{\sigma_3}$, deux de ces composantes sont par exemple dans $\Theta \cdot \Theta_x$. Donc x relève aussi du cas 1 et $\Theta \cdot \Theta_{x} = Z_{q_{1}} \cup Z_{q_{2}} \cup Z_{\tau}$. Les groupes de Galois de $\phi_{|K+q|}$ et $\phi_{|K+x|}$, tous deux engendrés par σ_1 et σ_2 , sont alors égaux et $K + a \equiv K + x$. Le cas 2 se traite de facon identique. Si a relève du cas 3 de la remarque, Z_{σ}^{a} est composante de $\Theta \cdot \Theta_x$, donc x relève aussi de ce cas, pour la même involution σ , et $a \equiv x$. Q.E.D.

DÉMONSTRATION DU THÉORÈME: L'idée de base, due à Weil, est de considérer le système linéaire |K+a|. Sa dimension projective est g-2si a est non équivalent à 0, par Riemann-Roch. Weil remarque alors que si |K+a| a un point base p, on a $h^0(K+a-p)=g-1$ et, par Riemann-Roch, $h^0(p-a)=1$, soit $a \equiv p-q$, où p, q sont deux points de C. On supposera par la suite que |K+a| est sans point base. Il définit donc un morphisme $\phi: C \to |K + a|^v \simeq \mathbb{P}^{g-2}$.

Soit $p: \Theta \cap \Theta_{a} \rightarrow |K+a|$ l'application rationnelle définie de la façon suivante: pour tout L de $\Theta \cap \Theta_a$ tel que $h^0(L) = h^0(L-a) = 1$, on a $h^{0}(K-L+a)=1$ et on pose, si $|L|=\{D\}$ et $|K-L+a|=\{D'\}$, p(L) = D + D'.

LEMME 1: L'application p est définie sur un ouvert dense de $\Theta \cap \Theta_a$ et sa restriction à chaque composante est dominante. Le cycle $\Theta \cdot \Theta_a$ est réduit.

Comme $\Theta \cap \Theta_a$ est défini localement par deux équations dans $J^{g-1}C$, chacune de ses composantes est de dimension g-2. Or on a dim $(\Theta_{\text{sing}} \cup$ $\Theta_{a, \text{sing}}$) $\leq g - 3$, donc, pour toute composante Z de $\Theta \cap \Theta_a$ et L générique dans Z, L est lisse sur Θ et sur Θ_a , i.e. $h^0(L) = h^0(L - a) = 1$. L'applica- \rightarrow tion p est génériquement finie, donc $p_{\perp Z}$ est dominante. Il existe donc $L \in \mathbb{Z}$ tel que p(L) se compose de 2g-2 points distincts. L'espace tangent $T_L\Theta$ correspond au point $D+D^*$ de $|K| \simeq \mathbb{P}T_L^*(JC)$, où $D^* \in |K-L|$, et l'espace $T_i\Theta_a$ à $D' + D'^*$, où $D'^* \in |L-a|$. Comme a est non nul, D n'est pas égal à D'^* et, par construction, D et D' sont sans point commun. Les espaces $T_I\Theta$ et $T_I\Theta_a$ sont distincts et Z est réduit.

On se restreint donc à l'étude de l'ensemble $\Theta \cap \Theta_a$, que l'on va décrire de façon géométrique. Son image réciproque par l'application:

$$\begin{split} &C^{(g-1)} \twoheadrightarrow \Theta \subset J^{g-1}C \\ &x_1 + x_2 + \dots + x_{g-1} \mapsto \mathcal{O}\big(x_1 + x_2 + \dots + x_{g-1}\big) \end{split}$$

est le diviseur:

$$\overline{W} = \left\{ x_1 + x_2 + \dots + x_{g-1} \in C^{(g-1)} | \right.$$
$$H^0 \left(x_1 + x_2 + \dots + x_{g-1} - a \right) \neq 0 \right\}$$

égal par Riemann-Roch à:

$$\overline{W} = \left\{ x_1 + \dots + x_{g-1} \in C^{(g-1)} \mid \right.$$

$$H^0 \left(K + a - x_1 - x_2 - \dots - x_{g-1} \right) \neq 0 \right\}.$$

L'espace \overline{W} est donc l'ensemble des $x_1 + \ldots + x_{g-1}$ dans $C^{(g-1)}$ tels que les (g-1) points $\phi x_1, \dots, \phi x_{g-1}$ soient "sur" un même hyperplan. Plus précisément, soit U l'ouvert de |K+a| des hyperplans de $|K+a|^{\vee}$ coupant la courbe $\phi(C) = C'$ tranversalement, en des points au-dessus desquels ϕ est étale. Grâce au lemme précédent, l'étude des composantes de $\Theta \cap \Theta$, se ramène à celle de:

 $W = \{x_1 + \dots + x_{g-1} \in C^{(g-1)} | \text{Les } x_i \text{ sont deux à deux distincts, } \phi \text{ est} \}$ lisse au-dessus des ϕx , et il existe un élément H de U tel que $\phi x \in H$ pour tout i }.

On note encore ϕ : $C \to C'$ le morphisme induit par ϕ de C sur son image. A cause des formules $2g - 2 = \deg \phi \cdot \deg C'$, $\deg C' \ge g - 2$, on

 $-\phi$ est de degré 3 et g=4

que l'on analyse dans cet ordre.

est dans l'un des cas suivants: φ est birationnelle φ est de degré 2 dego" deg C

an hyperfordo 1K+R/

also l(K+a-D)>0

ce a n'est pendle qu'avre deg De

der deg c' 2 g-2

pen RRJE

(a) φ birationnelle

L'espace W, donc aussi l'espace $\Theta \cap \Theta_a$, est irréductible grâce au théorème suivant, tiré de [1], dont on reproduit ici la démonstration.

THÉORÈME DE POSITION UNIFORME: Soient C une courbe irréductible dans \mathbb{P}' , U l'ouvert de $(\mathbb{P}^r)^{\vee}$ formé des hyperplans coupant C transversalément. Alors, pour tout entier positif m,

$$I(m) = \{(x_1, \dots, x_m, H) \in C^m \times U \mid A \cap U \mid A \in C^m \times U \mid A \in C^m \times U \mid A \in C^m \times U \mid A \cup U \mid A$$

x, deux à deux distincts et $x \in H$

est irréductible.

La projection pr^m: $I(m) \rightarrow U$ est un revêtement étale. On choisit un point base H_0 de U, et on note F_m sa fibre $(pr^m)^{-1}(H_0)$. L'irréductibilité de I(m) est alors équivalente au fait que $\pi_1(U, H_0)$ opère transitivement sur F_m par monodromie, c'est-à-dire que $\pi_1(U, H_0)$ opère m fois transitivement sur F_1 par la monodromie de pr¹: $I(1) \rightarrow U$. Le théorème sera démontré si on montre que le groupe de Galois G de pr¹ est le groupe symétrique \mathfrak{S}_d , où d est le degré de C. Or cela résulte des deux remarques suivantes:

G est 2 fois transitif: c'est équivalent par ce qui précède à l'irréductibilité de I(2). Or la projection pr₁: $I(2) \rightarrow C \times C$ est dominante et les fibres sont des ouverts denses d'espaces projectifs de dimension r-2, donc I(2) est irréductible.

G contient une transposition: si H_1 est un hyperplan simplement tangent à C en un point et si $\{H\}_{t \in \mathbb{C}, |t-1| < \epsilon}$ est une famille à un paramètre d'hyperplans avec $H_t \in U$ si $t \neq 1$, on voit que $H_t \cap C$ contient deux points qui se confondent en le point de tangence de H_1 avec Cquand t tend vers 1. Ces deux points sont interchangés quant t tourne autour de 1. Q.E.D.

Il suffit alors de remarquer que $W \simeq pr(I(g-1))$, où

$$\operatorname{pr} \colon C^{g-1} \times U \to C^{g-1} \to C^{(g-1)}.$$

(b) φ est de degré 2

LEMME 2: Si \(\phi \) est de degr\(\phi \) 2, ou plus g\(\text{eneralement s'il existe une} \) involution σ sur C telle que ϕ se factorise par π : $C \to C/\sigma$, alors C/σ est une courbe elliptique lisse E et il existe un diviseur e sur E tel que $a \equiv \pi^*e$.

Le revêtement ramifié π : $C \rightarrow C/\sigma = E$ est associé à un élément δ de

Pic E défini par $\pi_* \mathcal{O}_C = \mathcal{O}_E \oplus \mathcal{O}_E(-\delta)$. Le morphisme ϕ se factorise par π si et seulement si il existe un diviseur e sur E, de degré 0, et tel que:

$$a \equiv \pi^* e \text{ et } (H^0(E, K_E + e) = 0 \text{ ou } H^0(E, K_E + \delta + e) = 0).$$

Comme δ est de degré positif ou nul, le théorème de Riemann-Roch donne g(E) égal à 0 ou 1. Comme a n'est pas équivalent à 0, il en est de même pour e et E n'est pas rationnelle. Q.E.D.

REMARQUE 2: Dans le cas où ϕ est de degré 2, les composantes de $\Theta \cap \Theta_a$ sont:

$$\left\{ \mathcal{O}_{C}\left(x_{1}+\ldots+x_{g-1}\right) \mid \phi x_{1},\ldots,\phi x_{g-1} \right.$$

sont distincts et sur un hyperplan élément de U

[7]

$$\{ \mathcal{O}_C(x_1 + \ldots + x_{g-2} + \sigma x_{g-2}) | x_i \in C \text{ quelconques} \}.$$

Il suffit de montrer que le premier ensemble est irréductible. On considère:

pr:
$$I = \{(x, H) \in C \times U \mid \phi x \in H\} \rightarrow U$$
.

On choisit un point base H_0 de U, de fibre $\{a_1^1, \ldots, a_{g-1}^1, a_1^2, \ldots, a_{g-1}^2\}$, où $a_i^2 = \sigma a_i^1$. Il suffit alors de montrer que le groupe de Galois G de pr opére transitivement sur les (g-1)-uples ordonnés $(a_{i_1}^{\alpha_1}, \ldots, a_{i_{g-1}}^{\alpha_{g-1}})$, où (i_1, \ldots, i_{g-1}) est une permutation de $(1, \ldots, g-1)$ et $\alpha_i \in \{1, 2\}$.

Un raisonnement analogue à celui utilisé dans la démonstration du théorème de position uniforme montre que G est transitif sur les quadruplets $(a_i^{\alpha}, a_i^{\beta}, \sigma a_i^{\alpha}, \sigma a_i^{\beta})$ $i \neq j$; $\alpha, \beta \in \{1, 2\}$, et qu'il contient une double transposition $(a_i^1, a_i^1)(a_i^2, a_i^2)$. Le groupe G contient donc toutes les permutations du type $a_i^{\alpha} \to a_{\tau(i)}^{\alpha}$, pour $\tau \in \mathfrak{S}_{g-1}$.

On considère alors une famille d'hyperplans $(H_t)_{t \in \mathbb{C}, |t-1| < \epsilon}$ vérifiant $H_t \in U$ si $t \neq 1$, H_1 passe par un point de C' au-dessus duquel ϕ est ramifié. Lorsque $t \neq 1$, $\phi^{-1}(H_t \cap C')$ contient deux points que se confondent en le point de ramification lorsque t tend vers 1. Ceci montre que G contient une transposition (a_i^1, a_i^2) , et termine la démonstration de la remarque.

(c) Cas
$$g = 4$$
 et ϕ de degré 3

étale sur
$$\phi^{-1}\phi x_1$$
, et ϕx_1 , ϕx_2 , ϕx_3 sont alignés \}.

Ranchent rueman 11 mm :

Ka = 95 Ka/+ R mais la nomprahen Ryan un noviellenat de slag 2 est

Ka = 95 Ka/+ R mais la nomprahen Ryan un noviellenat de slag 2 est

agaba go B au Bet le division des

agaba portent hul a hul a no d'e.

Le morphisme $f \colon C \times C \to C^{(3)}$ qui à (x, y) associe $(\phi^{-1}\phi x - x) + y$ induit une surjection d'un sous-ensemble dense irréductible de $C \times C$ sur W, ce qui prouve l'irréductibilité de W donc celle de $\Theta \cap \Theta_a$.

(d)
$$Cas g = 3$$

Le morphisme ϕ est de degré 4 sur \mathbb{P}^1 , avec ramification Δ sur \mathbb{P}^1 . On choisit un point base $p_0 \in \mathbb{P}^1 - \Delta$, de fibre $F = \phi^{-1}p_0$.

Le groupe de Galois G de ϕ , qui est un sous-groupe de Aut $F \simeq \mathfrak{S}_4$, opère transitivement sur F puisque $C - \phi^{-1}(\Delta)$ est connexe. On rappelle que:

$$W = \left\{ x_1 + x_2 \in C^{(2)} \mid x_1 \neq x_2, \ \phi x_1 = \phi x_2 \notin \Delta \right\}.$$

Les composantes irréductibles de W sont en bijection avec les orbites dans ($F^{(2)}$ -diag) sous l'action de G. En particulier, W est irréductible si G est 2 fois transitif.

Passons en revue rapidement les sous-groupes G de \mathfrak{S}_4 opérant transitivement. On remarque que Card G est alors divisible par 4:

- (1) $G \simeq (\mathbb{Z}/2)^2$. On voit facilement que G ne peut contenir de transposition (sans quoi il ne serait pas transitif); donc G est nécessairement le groupe de Klein {id; (1, 2)(3, 4); (1, 3)(2, 4); (1, 4)(2, 3)}.
- (2) G ≈ Z/4. Alors G est conjugué au sous-groupe engendré par (1, 2, 3, 4).
- (4) G est d'ordre 12. Alors G est d'indice 2, donc distingué et égal à A.

On rappelle enfin que si $x \in F$ et si G_x est le stabilisateur de x dans G, on a:

Aut
$$C/\mathbb{P}^1 \simeq \operatorname{Norm}_G G_x/G_x$$
.

Les résultats dont on a besoin sont résumés dans le tableau page suivante. Il en ressort que soit W est irréductible, soit le groupe Aut C/\mathbb{P}^1 contient un élément d'ordre 2. Ceci, joint au lemme 2, achève la démonstration du théorème.

REMARQUE 3: L'étude ci-dessus permet de préciser les composantes irréductibles de $\Theta \cdot \Theta_a$ lorsqu'on est dans le cas 2 du théorème et que g=3. Le revêtement double $\pi\colon C \to C/\sigma = E$ est associé à la donnée de $\delta \in \operatorname{Pic}^2 E$ et de $\Delta \in |2\delta|$, sans point multiple. On note σ' l'involution de E associée au morphisme de degré deux $\phi_{|\delta+e|}\colon E \to \mathbb{P}^1$, où $a=\pi^*e$, et R la ramification de $\phi_{|\delta+e|}$ sur E. On rappelle que $\phi = \phi_{|\delta+e|} \circ \pi$ (Lemme 2). On est alors dans un seul des cas suivants:

TABLE 1

[9]

G	Stabilisateur de 1	Aut C/P¹	Nombre d'orbites dans $F^{(2)}$ -diag.
$({\bf Z}/2)^2$	id	$(\mathbb{Z}/2)^2$	3
$(\mathbb{Z}/2)^2$ $\mathbb{Z}/4$	id	Z /4	2
D_4	(2, 4)	Z /2	2
A4, S4	2-transitifs		1

(1) $\Delta = x + y + \sigma' x + \sigma' y$, où $x, y \notin \text{Supp } R$. Alors a est d'ordre 2, le groupe de Galois G de ϕ est isomorphe à $(\mathbb{Z}/2)^2$. Si on note $G = \{\text{id}, \sigma_1, \sigma_2, \sigma_3\}$, les trois composantes de $\Theta \cdot \Theta_a$ sont:

$$\{\mathcal{O}_C(x+\sigma_i x) \mid x \in C\}$$
 $i=1,2,3.$

- (2) $\Delta = R$. Alors a est d'ordre 2, le groupe de Galois G de ϕ est isomorphe à $\mathbb{Z}/4$. Les deux composantes de $\Theta \cdot \Theta_a$ sont $\{\mathcal{O}_C(x + \sigma x) | x \in C\}$ et $\{\mathcal{O}_C(x + \sigma^2 x) | x \in C\}$, où σ engendre G.
- (3) Si Δ n'est pas de l'un des types ci-dessus, le groupe de Galois de ϕ est isomorphe à D_4 . Le groupe des automorphismes de C sur \mathbb{P}^1 est engendré par une involution σ et:

$$\Theta \cdot \Theta_{\sigma} = \{ \mathcal{O}_{C}(x + \sigma x) \mid x \in C \} + \{ \mathcal{O}_{C}(x_{1} + x_{2}) \mid \pi x_{2} = \sigma' \pi x_{1} \}.$$

Références

- [1] E. Arbarello, M. Cornalba, P. Griffiths, J. Harris: The geometry of algebraic curves, 1 (à paraître).
- [2] C. Ciliberto: On a proof of Torelli's Theorem, Ravello, Springer Lecture notes no. 997 (1983) 113-123.
- [3] D. Mumford: Curves an their Jacobians, Ann. Arbor, The University of Michigan Press, 1978
- [4] A. Weil: Zum Beweis des Torellischen Satzes, Nachr. Akad. Wiss. Göttingen Math. Phys. Kl. 2 (1957) 33-53.

(Oblatum 12-VII-1984 & 1-X-1984)

Université de Paris-sud Centre d'Orsay F-91405 Orsay Cédex France