Answers:

I. Partial Differentiation

MCQ: 1. (b) 2. (b)

Structured questions:

1. (a)
$$\frac{\partial f}{\partial x} = 5x^4 + 3x^2y^2 + 3y^4$$
; $\frac{\partial f}{\partial y} = 2x^3y + 12xy^3$

(b)
$$\frac{\partial f}{\partial x} = 3x^2 + 10xy$$
; $\frac{\partial f}{\partial y} = 5x^2 + 6y^2$

(c)
$$\frac{\partial f}{\partial x} = 3x^2y^2 - \frac{y}{x^2}$$
; $\frac{\partial f}{\partial y} = 2x^3y + \frac{1}{x}$

2. (a)
$$f_x(1,2) = 1$$
; (b) $h_y(1,0) = 4$

3. (a)
$$f_r(r,s) = \ln(r^2 + s^2) + \frac{2r^2}{r^2 + s^2}$$
; $f_s(r,s) = \frac{2rs}{r^2 + s^2}$

(b)
$$h_u = \frac{u}{u^2 - v^2}$$
; $h_v = \frac{-v}{u^2 - v^2}$

(c)
$$\frac{\partial z}{\partial x} = 2x \sin(xy) + x^2 y \cos(xy); \quad \frac{\partial z}{\partial y} = x^3 \cos(xy) - 9y^2$$

4.
$$3.3\pi$$

5.
$$L \approx 8.096 \times 10^{-4} \pm 6.6 \times 10^{-6}$$
 microhenrys

II. Integration Techniques

MCO

Structured questions

1.(a) (i)
$$-\frac{1}{8(2x-3)^4} + C$$
 (ii) $-\frac{2}{9}(4-3x)^{\frac{3}{2}} + C$ (iii) $\frac{1}{8}\ln|8x+3| + C$

(ii)
$$-\frac{2}{9}(4-3x)^{\frac{3}{2}} + C$$

(iii)
$$\frac{1}{8} \ln \left| 8x + 3 \right| + C$$

1.(b) (i)
$$\frac{1}{10}(x^2+1)^5 + C$$
 (ii) $\frac{1}{3}\sin^3 x + C$ (iii) $\ln|\ln x| + C$ (iv) $-5\sqrt{1-e^{2x}} + C$

(ii)
$$\frac{1}{3}\sin^3 x + C$$

(iii)
$$\ln \left| \ln x \right| + C$$

(iv)
$$-5\sqrt{1-e^{2x}}+C$$

1.(c) (i)
$$-\ln|x+3| + \frac{2}{3}\ln|3x-1| + C$$

(ii)
$$\ln |x+1| - \frac{3}{4} \ln |2x-1| + \frac{1}{4(2x-1)} + C$$

(iii)
$$2 \ln |s| + \frac{1}{2} \ln |s^2 + 4| - \frac{1}{2} \tan^{-1} \frac{s}{2} + C$$

1.(d) (i)
$$2 \tan^{-1}(x-1) + C$$
 (ii) $\frac{1}{5} \tan^{-1} \left(\frac{x-5}{5} \right) + C$

1.(e) (i)
$$\frac{1}{2} \left(\frac{\cos 2x}{2} - \frac{\cos 8x}{8} \right) + C$$
 (ii) $\frac{1}{2} \left(x - \frac{\sin 4x}{4} \right) + C$ (iii) $\frac{1}{2} \left(x + \frac{\sin 6x}{6} \right) + C$

(ii)
$$\frac{1}{2} \left(x - \frac{\sin 4x}{4} \right) + C$$

(iii)
$$\frac{1}{2}\left(x + \frac{\sin 6x}{6}\right) + C$$

1.(f) (i)
$$\frac{1}{2}x^2e^{2x} + C$$

1.(f) (i)
$$\frac{1}{2}x^2e^{2x} + C$$
 (ii) $-\frac{x^2}{3}\cos 3x + \frac{2}{9}x\sin 3x + \frac{2}{27}\cos 3x + C$ (iii) $\frac{1}{29}e^{5x}(2\sin 2x + 5\cos 2x) + C$

(iii)
$$\frac{1}{29}e^{5x}(2\sin 2x + 5\cos 2x) + C$$

- 2. (a) (i) 4 (ii) 0.2882
- (b) (i) 1/24 (ii) 1.07
- (c) (i) 0.0384 (ii) 4.575

- 3. (a) 6.25 (b) 2.41 (c) 2
- 4. (a) $2\ln(1+\sqrt{x})+C$ (b) $\frac{\sin 3\theta}{6} \frac{\sin 5\theta}{20} \frac{\sin \theta}{4} + C$
- 5. (a) 13.33 (b) $\frac{3\pi}{16}$

III. Simpson's Rule & Fourier Series

MCQ

- 2. b 1. b
- 3. d 4. b 5. c 6. a
- 7. d

Structured Questions

- 1. (a) 1.11; (b) 1.19; (c) 0.24 (d) 17.35

- 2. 0.390 mC
- 3. (a) $\frac{1}{2}$ (b) $\frac{1}{\pi}\sin(\pi t)$ (c) $\frac{2}{\pi}\cos\left(\frac{3\pi}{2}t\right)$
- 4. (a) 2 (b) $\frac{8}{\pi}$, 0, $-\frac{8}{3\pi}$ (c) $f(t) = 2 + \frac{8}{\pi} \cos \omega t \frac{8}{3\pi} \cos 3\omega t + \cdots$
- 5. even
- 6. (a) odd (b) $f(t) = -\frac{4}{\pi^2} \sin\left(\frac{\pi}{2}t\right) + \frac{1}{\pi} \sin(\pi t) + \frac{4}{9\pi^2} \sin\left(\frac{3\pi}{2}t\right) + \cdots$

IV. 1st ODE & Applications

MCO

- 1. d
- 2. a
- 3. b
- 4. b 5. d
- 6. b

Structured Questions

- 1. (a) $-\frac{1}{y} = \frac{1}{2} \tan^{-1} 2x + C$ (b) $\frac{y^2}{2} + 3y = \frac{1}{2} \left(-\frac{\cos 4x}{4} \frac{\cos 2x}{2} \right) + C$
- - (c) $-\frac{1}{2}\ln\left|\csc(2y) + \cot(2y)\right| = \frac{1}{3}\tan^{-1}\left(\frac{x}{3}\right) + C$ (d) $\frac{1}{2}\ln\left|y^2 1\right| = \ln x + C$
 - (e) $\ln |y| = \frac{1}{2} \ln |1 + x^2| + C$ or $y = A\sqrt{1 + x^2}$ (f) $y = \frac{x^3}{3} x + C$

- (g) $2(y-\ell n|y+1|)=\frac{1}{x}-1$

- 2. (a) $ye^{2x} = \frac{1}{2}e^{3x} + C$ (b) $yx = x^2 + 1$ (c) $y(x+1) = x 2\ln|x+3| + C$ (d) $ye^{2x} = \frac{1}{6}e^{6x-1} \frac{1}{6}e^{6x-1}$

- (e) $y = x^3 + Cx^{-3}$ (f) $y = (x^3 + C)e^{-3x}$

3. (a)
$$(1+e^x)\sec y = 2\sqrt{2}$$
 or $(1+e^x) = 2\sqrt{2}\cos y$ (b) $yx = \frac{1}{4}(x^2 - x\sin 2x - \frac{1}{2}\cos 2x) + C$

(c)
$$y = 5e^{-\frac{x^2}{2}} - 4$$

4. (b)
$$T = 25 + 75e^{-0.155t}$$
 (°C) (c) 46.7 °C

5. (b)
$$T = 20 + 80e^{-0.029t}$$
 (°C) (c) 14.1 min

6. (i)
$$q = 0.00001(1 - e^{-1000t})$$
 coulombs, $i = \frac{dq}{dt} = 0.01e^{-1000t}$ amperes (ii) 0.0674 volts

V. Laplace Transform & Inverse Laplace Transform

MCQ

1. c 2. d 3. d 4. c 5. c 6. c

Structured Questions

1. (a)
$$\frac{4}{s} - \frac{9}{s+4}$$
 (b) $\frac{30}{s^4} + \frac{6}{s^2+4}$ (c) $\frac{(s-2)^2 - 25}{\left\lceil (s-2)^2 + 25 \right\rceil^2}$ (d) $\frac{2}{s^3} + \frac{3}{s^2} + \frac{2}{s}$ (e) $\frac{e^3}{s-2}$

(f)
$$\frac{\sqrt{3}+s}{2(s^2+1)}$$
 or $\frac{0.866+0.5s}{s^2+1}$ (g) $\frac{1}{2}\left[\frac{1}{s^2}+\frac{s^2-36}{(s^2+36)^2}\right]$ (h) $\frac{1}{2}\left[\frac{s^2-9}{(s^2+9)^2}-\frac{s^2-49}{(s^2+49)^2}\right]$

2. (a)
$$2-4t^2+\frac{2}{3}t^4$$
 (b) $e^{-6t}-3\cos 5t+\frac{1}{7}\sin 7t$ (c) $t\cos 10t-\frac{2}{9}t\sin 9t$ (d) $\frac{1}{2}e^{\frac{3}{2}t}$

(e)
$$\frac{1}{8}t^4 + \frac{1}{2}t^3$$
 (f) $3\cos 6t + \frac{1}{3}\sin 6t$ (g) $3t^2e^t$ (h) $e^{2t}\sin 3t$ (i) $e^{-2t}\cos 5t$

(j)
$$\frac{3}{2} - 2e^t + \frac{3}{2}e^{2t}$$
 (k) $\frac{2}{3}e^t + \frac{1}{3}\left(\cos\sqrt{2}t + \frac{1}{\sqrt{2}}\sin\sqrt{2}t\right)$

3. (a)
$$(s+3)\mathcal{L}\{v\}-6-\frac{26}{s^2+4}$$
 (b) $(s^2+2s+5)\mathcal{L}\{y\}-s-\frac{s+2}{(s+2)^2+9}$

(c)
$$e^{2t} \left(\cos 4t + \frac{1}{4} \sin 4t \right)$$
 (d) $e^{-3t} (1-t)$

VI. 2nd ODE & Applications

MCQ

1. (c) 2. (c) 3. (b)

Structured Questions

1. (a)
$$y = Ae^{3x} + Be^{-2x}$$
 (b) $y = (A + Bx)e^{2x}$ (c) $y = e^{-2x} (A\cos 3x + B\sin 3x)$

2. (a)
$$y = (5-14x)e^x$$
 (b) $y = \frac{1}{4}(3e^{-2x} + e^{2x})$ (c) $y = e^{-\frac{1}{2}x}\left(\cos\frac{3}{2}x + \sin\frac{3}{2}x\right)$

(d)
$$y = -3 - 2t + 2e^{2t}$$

$$3. \quad q = \frac{2}{3}\sin 3t$$

4. (a)
$$\frac{1}{2(s+2)} + \frac{1}{(s+2)^2} - \frac{s}{2(s^2+4)}$$
 (b) $v = \frac{3}{2}e^{-2t} + 3te^{-2t} - \frac{1}{2}\cos 2t$

- 5. (a) Simple Harmonic Motion, (b) 3 cm below equilibrium position (c) 2.9 Hz
- 6. (b) 10.4 above equilibrium position (c) 0.15m., 1.15s, 0.87 Hz

7. (b)
$$x = -\frac{1}{40}\cos 5t + \frac{1}{40}e^{-4t}[\cos 3t + \frac{4}{3}\sin 3t]$$
 (c) $\frac{1}{40}$ m (d) 4.22

8. (b)
$$x = e^{-3t} [0.2\cos(4t) + 0.15\sin(4t)]$$
 $x' = -1.25 e^{-3t} \sin(4t)$

9.
$$q(t) = 6e^{-20t} - 2e^{-60t}$$
 C

10. (b)
$$i(t) = 60e^{-3t} \sin 3t$$
 A

11. (b)
$$q(t) = \frac{3}{2} - \frac{1}{2}e^{-10t}(\cos 10t + \sin 10t)$$
 C