Econometric Homework 2

Tom Augspurger

September 12, 2012

Problem 1: Suppose Y_i i.i.d. $N(0, \sigma^2)i = 1, 2, ..., n$

a.)

$$\sigma^2 = E[Y_i^2] - E^2[Y_i]$$
$$= E[Y_i^2]$$

since $E[Y_i] = 0$, the square of the expectation is also zero. So,

$$E\left[\frac{Y_i^2}{\sigma^2}\right] = E\left[\frac{\sigma^2}{\sigma^2}\right] = 1$$

b.) Let $W=(1/\sigma^2)\sum_i^n Y_i^2$. Show that W is distributed according to χ_n^2 . Let $X=\frac{1}{\sigma^2}Y_i$. We want to show that $X\sim N(0,1)$. First note that X is a linear transformation of Y with a=0 and $b=\frac{1}{\sigma^2}$. So $X\sim N(a+b\mu,b^2\sigma^2)$. Simplifying $a+b\mu=0+\frac{1}{\sigma^2}0=0$, and $b^2\sigma^2=\frac{1}{\sigma^4}\sigma^2=\sigma^2$. This gives us the desired result, $X\sim N(0,1)$. Therefore,

$$W = \sum_{i}^{n} X_{i}^{2} = (1/\sigma^{2}) \sum_{i}^{n} Y_{i}^{2} \sim \chi^{2}(n)$$

c.) Show that E[W] = n $E[W] = E[(1/\sigma^2) \sum_{i=1}^{n} Y_i^2] = (1/\sigma^2) E[\sum_{i=2}^{n} Y_i^2] = n \frac{\sigma^2}{\sigma^2} = n$

d.) We want to show that $V \equiv Y_1/\sqrt{\frac{\sum_i^n Y_i^2}{n-1}}$

Let $W \equiv \frac{1}{\sigma^2} \sum_{i=2}^n$. Then $W \sim \chi^2(n-1)$. Let $Z \equiv (Y_1 - \mu)/\sigma$. Since $E(Y_1) = \mu$, $\mu = 0$, and $V(Y_1) = \sigma^2$, $Z \sim N(0,1)$. So we have

$$V = Z/\sqrt{1/\sigma^2 \frac{W}{n-1}}$$

$$= \frac{1}{\sigma} Y_1 / (\frac{1}{\sigma} \frac{\sum_{i=2}^n Y_i^2}{n-1})$$

$$= Y_1 / \sqrt{\frac{\sum_{i=2}^n Y_i^2}{n-1}}$$

so $V \sim t_{n-1}$.

Problem 2:

- **a.)** Find E[X], V[X], and Pr(A) where A is the event $\{0.3 < X \le 0.7\}$ for:
- $X \sim \text{Bernoulli}(p)$: $E[x] = p = 0.5 \ V(X) = p(1-p) = 0.25 \ Pr(A) = 0 \text{ since } x \in \{0, 1\}$
- $X \sim N(0.5, 0.25) E[X] = \mu = 0.5 V[X] = \sigma^2 = 0.25$

$$Pr(A) = Pr(\frac{0.3 - 0.5}{(1/16)} \le Z \le \frac{0.7 - 0.5}{(1/16)})$$
$$= 1 - 2 * Pr(Z \le 3.2)$$
$$= 1 - 0.26 = 0.974$$

• $X \sim \text{Exponential}(2) \ E[X] = \lambda^{-1} = \frac{1}{2} \ V(X) = \lambda^{-2} = \frac{1}{4}$

$$Pr(A) = (1 - e^{-2(0.7)}) - (1 - e^{2(0.3)})$$

= 0.3221

Problem 3: $Y_i \sim i.i.d.$ N(10,4). Find $Pr(9.6 \leq \overline{Y} \leq 10.4)$. Note that $\overline{Y} \sim N(\mu, \sigma^2/n)$.

- n = 20. $|Z_{9.6}| = Z_{10.4} = \sqrt{20} \frac{9.6 10}{(2)} = .894427$ so $Pr(9.6 \le \overline{Y} \le 10.4)) \approx 1 2(.1867) = .6266$
- n = 100 $Z_{9.6} \approx -2.00$ so $Pr(9.6 \le \overline{Y} \le 10.4) \approx 1 2(.0228) = .9544$
- n = 1000 $Z_{9.6} \approx -6.325$ so $Pr(9.6 \le \overline{Y} \le 10.4) \approx 0$
- **b.**) Let c > 0. $E[\overline{Y_n}] = 10$ and $V(\overline{Y_n}) = \sigma^2/n$ so $\lim E[\overline{Y_n}] = 10$ and $\lim V(\overline{Y_n}) = 0$. This is an application of the LLN.
- **c.**) This means that $\overline{Y_n}$ converges in mean square to 10. That is $\lim E(\overline{Y_n} c^2) = 0$ so if $A_n = \{|\overline{Y_n} c| \ge \epsilon\}, \ 0 \le Pr(A_n) \le E(\overline{Y_n} c)^2/\epsilon^2$. In the limit we have $0 \le \lim Pr(\overline{Y_n}) \le 0$. That is $\overline{Y} \stackrel{p}{\sim} 10$.

Problem 4 Let $\overline{X} \sim \text{exponential}(\lambda)$. Let $\theta = E[X] = 1/\lambda$. Let $U = 1/\overline{X}$.

- **a.)** We want to show that plim $U = \lambda$ Using S1, plim $\overline{X} = (1/\lambda)$ and $E[\overline{X}] = \theta \ \forall \ n$ so plim $U = 1/\overline{X} = 1/\theta = \lambda$.
- **b.)** Find the limiting distribution of $\sqrt{n}(U-\lambda)$. Since $X_n \sim \text{exponential}(\lambda)$, $\sqrt{n}(\overline{X}-\theta)$ converges in distribution to $N(0,\theta^2)$. And since $U=1/\overline{X}$ is continuously differentiable at θ , $\sqrt{n}(U-\lambda) \stackrel{\text{D}}{\sim} N(0,[U'(\theta)]^2\theta^2)$, or alternatively

$$\overline{X} \stackrel{\text{A}}{\sim} N(\theta, \theta^{-2}/n) \equiv \overline{X} \stackrel{\text{A}}{\sim} N(1/\lambda, \lambda^2/n)$$

c.) Approximate $Pr(U \le 5/2)$ for $n = 16, \lambda = 2$.

 $Pr(U \le 5/2)$ normalizes to the probability that Z is less than $c^* = \sqrt{n}(\frac{5/2-\mu}{\sigma}) = 4(\frac{(5/2-2)}{(1/2)}) = 1$. From a standard normal table (or integration) we find that this is 0.8413.

d.)

Problem 5 The following table contains the results from a Monte Carlo simulation. X is a sample of 100 draws from a uniform distribution over [0,10]. Y is draw from a conditional distribution given by $E[Y_i|x_i] = 10 - x_i$, with a conditional variance of 25 for every x_i (homoskedasticity). \overline{X} is the sample mean for the independent variable, \overline{Y} is the mean of the sample means for the dependent variable. That is the mean of the unconditional expectation of Y over the 1000 simulations. β_0 is the coefficient on the intercept and $beta_1$ is the coefficient on X. Finally, we have s^2 , the conditional variance.

	\overline{X}	\overline{Y}	β_0	β_1	s^2
Expected	5	5	10	-1	25
Observed	5.26	4.77	10.05	-1.002	24.79

So we can see that the Monte Carlo simulation approximates the population distribution very well.