Worksheet W2Thu: Path Integrals

Problem 1. Calculate the length of each of the following paths.

- (a) The rectange with vertices $\pm 1 \pm 2i$.
- (b) The top half of the circle C[1 + i, 1].
- (c) $\gamma(t) = t ie^{-it}$ for $t \in [0, 2\pi]$.

Problem 2. Calculate the integral of the indicated function over the indicated path.

- (a) f(z) = Re(z) Im(z) over C[0, 2].
- (b) f(z) = Im(z) over the line segment from 0 to 1 i.
- (c) $f(z) = \exp(3z)$ over the line segment from 1 to i.
- (d) $f(z) = \exp(3z)$ over C[0, 3].
- (e) $f(z) = \exp(3z)$ over the arc of the parabola $\gamma(t) = t + it^2$ for $t \in [0, 1]$.
- (f) $f(z) = z^{1/2}$ over C[0, 2].

Problem 3. Let γ be the semicircle centered at 0 of radius 1 from 1 to -1. Calculate

$$\int_{\gamma} \left(\operatorname{Re}(z)^2 - i \operatorname{Im}(z)^2 \right) dz.$$

Problem 4. Let $I(k) = \frac{1}{2\pi} \int_0^{2\pi} e^{ikt} dt$. Calculate the following.

(a) I(0).

- (b) I(k) for $k \in \mathbb{Z} \setminus \{0\}$.
- (c) I(1/2).

Problem 5. Suppose $\sigma : [c, d] \to \mathbb{C}$ is a reparametrization of $\gamma : [a, b] \to \mathbb{C}$.

- (a) Prove that $\int_{\gamma} f = \int_{\sigma} f$ for any continuous function f defined on an open neighborhood of γ .
- (b) Prove that γ and σ have the same length.

Hint. u-substitution!

Problem 6. Let γ be the straight line path from 4 to 4i. Calculate $\int_{\gamma} f$ for each of the following functions f.

(a)
$$f(z) = 1$$
.

(b)
$$f(z) = \frac{1}{z}$$
.

(c)
$$f(z) = \frac{1}{z^2 + z}$$
.

Problem 7. Calculate $\int_{\gamma} z^i dz$ for $\gamma(t) = e^{it}$ where $t \in [\pi/2, 3\pi/2]$. *Caution*. The path crosses the negative real axis!