Precalculus Homework Lecture 6

- 1. Find each of the following values. Express your answers precisely, not as decimals.
 - (a) $\arcsin(\sin 4)$.
 - (b) $\arcsin(\sin 0.5)$.
 - (c) $\arcsin(\cos 120^\circ)$.
 - (d) $\arccos(\cos(3))$.
 - (e) $\arccos(\cos(-2))$.
 - (f) $\arcsin(\sin(-4))$.
 - answer $\frac{\pi \epsilon}{2} 4 \approx 0.712389$
 - (g) $\arctan(\tan 5)$.

Solution. 1.g $\frac{3\pi}{2} \approx 4.71$ and $2\pi \approx 6.28$, so

$$\frac{3\pi}{2} < 5 < 2\pi$$
 Therefore
$$-\frac{\pi}{2} < 5 - 2\pi < 0 < \frac{\pi}{2}.$$

Therefore $5-2\pi$ is in the restricted domain of the tangent function. Moreover, the tangent function is π -periodic, so $\tan 5 = \tan(5-2\pi)$. Therefore $\arctan(\tan 5) = 5-2\pi$.

- 2. Express as the following as an algebraic expression of x. In other words, "get rid" of the trigonometric and inverse trigonometric expressions.
 - (a) $\cos^2(\arctan x)$.
 - (b) $-\sin^2(\operatorname{arccot} x)$. $\frac{z^{x+1}}{1} : \operatorname{idensure}$ (d) $-\frac{1}{\sin(\operatorname{arccos} x)}$. $\frac{z^{x+1}}{1} : \operatorname{idensure}$

$$\frac{1}{z_{x+1}}$$
 . However, $\frac{1}{z_{x-1}}$. However, $\frac{1}{z_{x-1}}$. However, $\frac{1}{z_{x-1}}$. However, $\frac{1}{z_{x-1}}$

(c) $\frac{1}{\cos(\arcsin x)}$.

Solution. 2.b. We follow the strategy outlined in the end of the solution of Problem 3.c. We set $y = \operatorname{arccot} x$. Then we need to express $-\sin^2 y$ via $\cot y$. That is a matter of algebra:

$$-\sin^{2}(\operatorname{arccot} x) = -\sin^{2} y$$

$$= -\frac{\sin^{2} y}{\sin^{2} y + \cos^{2} y}$$

$$= -\frac{1}{\frac{\sin^{2} y + \cos^{2} y}{\sin^{2} y}}$$

$$= -\frac{1}{1 + \cot^{2} y}$$

$$= -\frac{1}{1 + x^{2}}$$
Set $y = \operatorname{arccot} x$

$$use $\sin^{2} y + \cos^{2} y = 1$
Substitute back $\cot y = x$$$

3. Let $x \in (0,1)$. Express the following using x and $\sqrt{1-x^2}$.

Solution. 3.b. Let $y = \arcsin x$. Then $\sin y = x$, and we can draw a right triangle with opposite side length x and hypotenuse length 1 to find the other trigonometric ratios of y.

Then $\cos y = \frac{\sqrt{1-x^2}}{1} = \sqrt{1-x^2}$. Now we use the double angle formula to find $\sin(2\arcsin x)$.

$$\sin(2\arcsin x) = \sin(2y)$$

$$= 2\sin y \cos y$$

$$= 2x\sqrt{1 - x^2}.$$

Solution. 3.c. Use the result of Problem 3.b. This also requires the addition formula for sine:

$$\sin(A+B) = \sin A \cos B + \sin B \cos A,$$

and the double angle formula for cosine:

$$\cos(2y) = \cos^2 y - \sin^2 y.$$

$$\sin(3\arcsin x) = \sin(3y)$$

$$= \sin(2y + y)$$

$$= \sin(2y)\cos y + \sin y\cos(2y)$$

$$= (2\sin y\cos y)\cos y + \sin y(\cos^2 y - \sin^2 y)$$
Use addition formula
$$= 2\sin y\cos^2 y + \sin y\cos^2 y - \sin^3 y$$

$$= 3\sin y\cos^2 y - \sin^3 y$$

$$= 3\sin y(1 - \sin^2 y) - \sin^3 y$$

$$= 3x(1 - x^2) - x^3$$

$$= 3x - 4x^3.$$

The solution is complete. A careful look at the solution above reveals a strategy useful for problems similar to this one.

- (a) Identify the inverse trigonometric expression- $\arcsin x$, $\arccos x$, $\arctan x$, In the present problem that was $y = \arcsin x$.
- (b) The problem is therefore a trigonometric function of y.
- (c) Using trig identities and algebra, rewrite the problem as a trigonometric expression involving only the trig function that transforms y to x. In the present problem we rewrote everything using $\sin y$.

(d) Use the fact that $\sin(\arcsin x) = x$, $\cos(\arccos x) = x$, ..., etc. to simplify.

Solution. 3.f We use the same strategy outlined in the end of the solution of Problem 3.c. Set $y = \arccos x$ and so $\cos(y) = x$. Therefore:

$$\begin{array}{lll} \sin(3y) & = & \sin(2y+y) \\ & = & \sin(2y)\cos y + \sin y \cos(2y) \\ & = & 2\sin y \cos y \cos y + \sin y (2\cos^2 y - 1) \\ & = & 2\sin y \cos^2 y + \sin y (2\cos^2 y - 1) \\ & = & \sin y (4\cos^2 y - 1) \\ & = & \sqrt{1 - x^2} (4x^2 - 1) \end{array} \quad \text{use} \begin{array}{l} \cos y & = & x \\ \sin y & = & \sqrt{1 - x^2} \end{array}$$