

Сопоставление названий товаров из ассортимента аптек

Новицкая Мария, 2025 год

cs.hse.ru/dpo

Введение

Проблема:

- Ручное сопоставление товаров в аптеках приводит к ошибкам и временным затратам (минимум 30% рабочего времени)
- Необходимость автоматизации для повышения эффективности

Цель работы:

Разработка алгоритма для автоматического сопоставления названий товаров.

Актуальность и преимущества автоматизации:

- Сокращение времени на 80-90%
- Уменьшение ошибок.

Постановка задачи и Методы решения

Входные данные:

- Краткий каталог товаров аптеки
- Полный каталог товаров аптеки

Предобработка данных:

• Очистка текста, токенизация, лемматизация.

Векторизация:

TF-IDF, CountVectorizer.

Модели машинного обучения:

- Логистическая регрессия,
- Случайный лес,
- CatBoost,
- Нейронные сети

Что мы могли еще использовать и почему не использовали:

Альтернативы векторизации: BERT vs. TF-IDF

- Вычислительная сложность:
 - BERT требует GPU и значительного времени для обработки даже небольших датасетов
 - TF-IDF обучился за минуты на CPU.
- Объем данных:
 - ВЕКТ эффективен на больших текстах (например, статьи), а названия товаров это короткие строки (3-5 слов)
 - TF-IDF в нашем случае отлично выявляет ключевые слова в названиях

BERT не использован из-за избыточности для коротких текстов и высоких требований к ресурсам. TF-IDF + классические ML показали достаточную эффективность.

Обоснование выбора метрики (Accuracy)

- Простота интерпретации Ассигасу показывает долю верно классифицированных товаров, что легко понять.
- Сбалансированные данные После предобработки распределение классов стало близким к равномерному, поэтому Ассигасу корректно отражает качество модели.
- Сравнение с другими метриками Precision и Recall важны для задач с дисбалансом, но здесь их F1-score (среднее гармоническое) также близок к Accuracy (разница ≤2%)

Предобработка данных

Этапы:

- Удаление спецсимволов и цифр.
- Токенизация и приведение к нижнему регистру.
- Лемматизация (например, "таблетки" \to "таблетка").

Итог - Улучшение качества данных для анализа

Векторизация текста и Обучение моделей

Методы:

- TF-IDF: Учитывает важность слов в документе.
- CountVectorizer: Подсчёт частоты слов.

Получаем очищенный текст, подходящий для моделей обучения

Логистическая регрессия:

Accuracy: 82.9%, время: 1 мин.

Случайный лес:

Accuracy: 85.1%, время: 15 мин.

CatBoost:

Accuracy: 87.3%, время: 45 мин.

Нейронная сеть:

Accuracy: 88.1%, время: более 2 ч.

Нейронная сеть. Архитектура

Структура:

- Тип сети: Полносвязная (FNN Feedforward Neural Network).
- Слои:
 - Входной: 5000 нейронов (по числу TF-IDF фичей)
 - Скрытые:
 - \blacksquare 8192 \to 4096 \to 2048 \to 1024 \to 512 нейронов
 - После каждого слоя активация ReLU (для нелинейности)
 - Выходной: Число нейронов = количеству категорий товаров.

Почему так много слоев?

Глубокая сеть лучше улавливает сложные зависимости в текстах (например, связь "нимесил" → "нимесулид").

Обучение и результаты

Процесс обучения:

- Данные:
 - Векторы TF-IDF \rightarrow преобразованы в тензоры PyTorch и загружаются через DataLoader
- Настройки:
 - Функция потерь: Cross-Entropy (для классификации, Считает loss)
 - Оптимизатор: Adam (скорость обучения = 0.01), Обновляет веса через Adam.
 - Батчи: По 1024 примера (для экономии памяти)

Результаты:

- Ассигасу: 88.1% (лучший показатель среди всех моделей)
- Время обучения: минимум 2 часа

Плюсы и минусы:

- **V** Точность: Ha 0.8% лучше CatBoost
- **X** Ресурсы: Требует GPU и много времени

Сравнение моделей

Метод	Accuracy	Время обучения	Примечания
Логистическая регрессия	82.9%	1 мин	Быстро, но менее точно
Случайный лес	85.1%	15 мин	Хорош для небольших данных
CatBoost	87.3%	45 мин	Лучший баланс точности и времени
Нейронная сеть	88.1%	2 ч	Максимальная точность, но ресурсоёмка

Примеры предсказаний

Успешные случаи:

- "Нимесил гранулы 100 мг" ightarrow "НИМЕСУЛИД ГРАН 100 МГ"
- "пошел в магаизн за огурцами, а купил капусту" ightarrow "unknown"

Ошибки:

- Редкие названия (например, "Эмоцивит капс 440 мг" → "unknown").
- Опечатки (например, "Парацеатол" \rightarrow не распознан).

Заключение

Итоги:

- CatBoost показал наилучший баланс точности (87.3%) и времени обучения.
- Нейронные сети лидеры по точности (88.1%), но требуют слишком больших ресурсов.

Рекомендации:

- Для production: Logistic Regression или CatBoost.
- Для исследований: нейронные сети.

