Fundamental Anomalies

Erica X.N. Li CKGSB Guoliang Ma

lowa State

University

Shujing Wang
Tongji
University

Cindy Yu

lowa State

University

2022 FMA Annual Meeting Atlanta, October 20, 2022

Introduction

Table of Contents

Introduction

Model and Estimation

Main Results

Parameter estimation

Fundamental anomalies

Robustness Analysis

Out-of-Sample Forecasts

Conclusion

Introduction

In this paper, we

- 1. study the *q*-theory investment CAPM
- 2. propose a portfolio-independent method
- estimate model parameters with Bayesian Markov Chain Monte Carlo (MCMC)
- replicate the size, momentum, profitability, investment, and intangibles premiums
- 5. miss the value and accruals anomalies

Motivation

Hayashi (1982)

If production and costs are homogenous of degree one in capital and investment:

$$\underbrace{\text{return on investment}}_{\equiv f(X|\theta)} = \underbrace{\text{return on assets}}_{\equiv WACC}$$

where

- 1. $\it X$ is the vector of observable firm fundamentals, such as $\it I/K, \it Y/K$
- 2. θ is the vector of model parameters to be estimated
- 3. WACC = $(1 w^B) r^{Stock} + w^B r^{Debt}$ is observable

Fundamental leveraged stock returns: $f(X|\hat{\theta})$

Research Question

Do Fundamental Returns Exhibit Anomalies?

- Liu, Whited, and Zhang (2009):
 - apply Hayashi (1982) at portfolio level
 - GMM target moments: average portfolio returns
- Gonçalves, Xue, and Zhang (2020):
 - apply Hayashi (1982) at firm level
 - GMM target moments: average **portfolio** returns

Research Question

Do Fundamental Returns Exhibit Anomalies?

- Liu, Whited, and Zhang (2009):
 - apply Hayashi (1982) at portfolio level
 - GMM target moments: average portfolio returns
 - anomaly construction: parameter estimated for specific portfolio
- Gonçalves, Xue, and Zhang (2020):
 - apply Hayashi (1982) at firm level
 - GMM target moments: average portfolio returns
 - anomaly construction: parameter estimated for specific **portfolio**

Critique (Campbell (2017)): The parameter values of the model are chosen to fit a specific set of anomalies, and different values are required for different anomalies.

Do Fundamental Returns Exhibit Anomalies?

- apply Hayashi (1982) at firm level
- target of conditional likelihood (MCMC): the entire panel of firm-level stock returns

Do Fundamental Returns Exhibit Anomalies?

- apply Hayashi (1982) at firm level
- target of conditional likelihood (MCMC): the entire panel of firm-level stock returns
- construct fundamental firm-level stock returns based on the estimated parameters
- construct fundamental returns of 12 anomalies (potentially ANY anomalies)

Do Fundamental Returns Exhibit Anomalies?

- apply Hayashi (1982) at firm level
- target of conditional likelihood (MCMC): the entire panel of firm-level stock returns
- construct fundamental firm-level stock returns based on the estimated parameters
- construct fundamental returns of 12 anomalies (potentially ANY anomalies)

Yes

Do Fundamental Returns Exhibit Anomalies?

- apply Hayashi (1982) at firm level
- target of conditional likelihood (MCMC): the entire panel of firm-level stock returns
- construct fundamental firm-level stock returns based on the estimated parameters
- construct fundamental returns of 12 anomalies (potentially ANY anomalies)

Yes, except the Value and Accruals anomalies

Model and Estimation

Two Capital q-model

Mostly same as in Gonçalves, Xue, and Zhang (2020): Cobb-Douglas production function (parameter γ) with physical and working capital (K and W), plus quadratic adjustment cost of investment in physical capital (parameter a).

Extended for firm i in industry j at t + 1.

Fundamental Returns

Model-implied fundamental stock return

$$r_{it+1}^{F} \equiv f(X_{it}, X_{it+1} | \gamma, a)$$

$$= \left\{ (1 - \tau_{t+1}) \left[\frac{\gamma}{K_{it+1}} \left(\frac{Y_{it+1}}{K_{it+1}} \right) + \frac{a}{2} \left(\frac{I_{it+1}}{K_{it+1}} \right)^{2} \right] + \tau_{t+1} \delta_{it+1} \right\}$$

$$+ (1 - \delta_{it+1}) \left[1 + (1 - \tau_{t+1}) a \left(\frac{I_{it+1}}{K_{it+1}} \right) \right]$$

$$+ \frac{W_{it+1}}{K_{it+1}} \right\} / \left\{ (1 - w_{it}^{B}) \left[1 + (1 - \tau_{t}) a \left(\frac{I_{it}}{K_{it}} \right) + \frac{W_{it+1}}{K_{it+1}} \right] \right\}$$

$$- \frac{w_{it}^{B} r_{it+1}^{Ba}}{1 - w_{it}^{B}}. \tag{1}$$

Note: shares of capitals γ^K and γ^W are identifiable up to $\gamma \equiv \gamma^K + \gamma^W$.

Fundamental Returns

Model-implied fundamental stock return

$$r_{it+1}^{F} \equiv f(X_{it}, X_{it+1} | \gamma_{jt+1}, a_{jt+1}, a_{jt})$$

$$= \left\{ (1 - \tau_{t+1}) \left[\frac{\gamma_{jt+1}}{K_{it+1}} + \frac{a_{jt+1}}{2} \left(\frac{I_{it+1}}{K_{it+1}} \right)^{2} \right] + \tau_{t+1} \delta_{it+1} + (1 - \delta_{it+1}) \left[1 + (1 - \tau_{t+1}) a_{jt+1} \left(\frac{I_{it+1}}{K_{it+1}} \right) \right] + \frac{W_{it+1}}{K_{it+1}} \right\} / \left\{ (1 - w_{it}^{B}) \left[1 + (1 - \tau_{t}) a_{jt} \left(\frac{I_{it}}{K_{it}} \right) + \frac{W_{it+1}}{K_{it+1}} \right] \right\} - \frac{w_{it}^{B} r_{it+1}^{Ba}}{1 - w_{it}^{B}}.$$
(1)

Note: shares of capitals γ^K and γ^W are identifiable up to $\gamma \equiv \gamma^K + \gamma^W$.

Models we estimate

We estimate four models to study the time effect and industry effect, along with several models with different adjustment cost functions.

- 1. θ : constant γ and a
- 2. θ_j : industry-specific γ_j and a_j
- 3. θ_t : time-varying γ_t and a_t
- 4. θ_{jt} : baseline with time-varying and industry-specific γ_{jt} and a_{jt}

Main Results

Outline

Introduction

Model and Estimation

Main Results

Parameter estimation

Fundamental anomalies

Robustness Analysis

Out-of-Sample Forecasts

Conclusion

Parameter Estimates: Baseline

	Posterior mean	95% CI	Posterior mean	95% CI		
Industry	γ	[2.5%, 97.5%]γ	а	[2.5%, 97.5%] _a	\overline{q}	
Consumer Nondurables	0.13	[0.12, 0.14]	0.42	[0.30, 0.55]	1.05	

Parameter Estimates: Baseline

	Posterior mean	95% CI	Posterior mean	95% CI	
Industry	γ	$[2.5\%, 97.5\%]_{\gamma}$	а	$[2.5\%, 97.5\%]_a$	\overline{q}
Consumer Nondurables	0.13	[0.12, 0.14]	0.42	[0.30, 0.55]	1.05
Consumer Durables	0.17	[0.14, 0.19]	1.15	[0.84, 1.48]	1.21
Manufacturing	0.16	[0.15, 0.17]	0.57	[0.52, 0.64]	1.08
Energy	0.20	[0.19, 0.22]	0.45	[0.41, 0.49]	1.00
Business Equipment	0.23	[0.21, 0.25]	1.78	[1.71, 1.86]	1.53
Telecom	0.28	[0.25, 0.31]	0.71	[0.66, 0.77]	1.09
Wholesale & Retail	0.08	[0.08, 0.09]	0.87	[0.79, 0.97]	1.13
Healthcare	0.19	[0.17, 0.21]	0.59	[0.46, 0.74]	1.10
Utilities	0.29	[0.26, 0.33]	0.25	[0.21, 0.32]	1.02
Others	0.17	[0.15, 0.19]	0.48	[0.47, 0.51]	1.09

Value-weighted average marginal q of industry j:

$$\bar{q}_{j} = \frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{N_{jt}} \frac{V_{it-1}}{\sum_{i=1}^{N_{jt-1}} V_{it-1}} \left[1 + a_{jt} \left(1 - \tau_{it} \right) \frac{l_{it}}{K_{it}} \right]$$

Realized vs. Fundamental Firm-Level Returns

Figure 1: Fundamental returns are less volatile and less skewed, and have thinner tails than the realized returns.

Overall Fit

	Data	θ	$\boldsymbol{\theta}_{j}$	$oldsymbol{ heta}_t$	$oldsymbol{ heta}_{jt}$	
Mean	14.45	15.47	15.47	14.97	15.65	
		[15.60, 15.83]	[15.36, 15.57]	[14.87, 15.06]	[15.55, 15.75]	
StdDev	60.78	19.76	18.49	27.36	34.17	
		[19.67, 19.85]	[18.39, 18.59]	[27.26, 27.46]	[34.06, 34.27]	
Skewness	2.15	2.12	1.68	1.66	1.68	
		[2.11, 2.14]	[1.66, 1.70]	[1.64, 1.67]	[1.67, 1.70]	
Kurtosis	11.05	13.33	10.66	10.74	11.20	
		[13.26, 13.41]	[10.59, 10.73]	[10.66, 10.82]	[11.11, 11.29]	
Correlation	na	0.09	0.12	0.12	0.20	
		[0.09, 0.10]	[0.12, 0.12]	[0.12, 0.12]	[0.20, 0.20]	
m.a.e	na	42.45	41.85	40.85	40.10	
		[42.42, 42.48]	[41.82, 41.89]	[40.82, 40.88]	[40.06, 40.13]	

Realized and Fundamental Market Returns

Figure 2: Posterior distributions of the differences in m.a.e. among the four specifications.

Outline

Introduction

Model and Estimation

Main Results

Parameter estimation

Fundamental anomalies

Robustness Analysis

Out-of-Sample Forecasts

Conclusion

Fundamental anomalies

We consider 12 anomalies from six classes as in Hou, Xue, and Zhang (2020):

- 1. momentum: R11 (Prior 11-month returns)
- 2. value versus growth: BM
- investment: I/A (change in total assets), NSI (net stock issues), ΔPI/A (changes in gross property, plant, and equipment plus inventory), Accruals
- 4. profitability: ROE, ROA, GP/A (total revenue minus cost of goods sold)
- 5. intangibles: RD/M (R&D expenses), Ad/M (advertising expenses)
- 6. trading frictions: Size

Fundamental anomalies

Anomaly	r ^S	$t(r^S)$	r ^F	$t(r^F)$
ВМ	6.74	2.57	0.46	0.26
			[0.31, 0.60]	[0.18, 0.35]
R11	13.75	4.15	11.82	12.51
			[11.74, 11.90]	[12.38, 12.65]
I/A	-6.30	-3.23	-3.08	-2.25
			[-3.17, -2.99]	[-2.32, -2.18]
ROE	7.69	3.06	4.62	5.72
			[4.53, 4.70]	[5.58, 5.85]
Size	-4.84	-1.37	-5.99	-5.63
			[-6.07, -5.90]	[-5.73, -5.54]
Accruals	-5.58	-3.14	4.74	4.45
			[4.65, 4.84]	[4.34, 4.56]
NSI	-7.65	-4.26	-3.05	-3.36
			[-3.14, -2.96]	[-3.48, -3.25]
$\Delta PI/A$	-5.79	-2.85	-5.79	-4.81
			[-5.88, -5.69]	[-4.93, -4.71]
GP/A	3.87	2.00	7.26	5.84
			[7.08, 7.44]	[5.63, 6.07]
ROA	6.46	2.52	3.80	3.99
			[3.70, 3.89]	[3.86, 4.11]
RD/M	8.70	2.26	5.24	2.12
			[5.04, 5.43]	[2.04, 2.21]
Ad/M	6.10	1.87	7.46	2.82
			[7.28, 7.65]	[2.74, 2.90]

Posterior Distribution of Fundamental Anomalies

Summary of the Main Results

- The fundamental firm-level stock returns closely resemble the realized ones in terms of mean, skewness, and kurtosis and capture over half of the std.
- Time variation and industry variation improves estimation in terms of smaller MAEs.
- The estimated 2-capital model is able to generate significant factor premiums for 10 out of 12 anomalies.

Robustness Analysis

Where the Model Fails

- The value premium:
 - · Our estimated adjustment cost parameter is small.
 - The small investment rate is not able to generate large enough return spread.
- The accruals anomaly:
 - The concept of accruals is absent in our model.
 - · Cash and accruals basis accountings are treated the same.

Robustness Analysis of Adjustment Cost Functions

• Value premium: asymmetric adjustment costs of investment:

$$\Phi(I_{it}, K_{it}) = \frac{a_{jt}^+ \mathbb{I}_{I_{it} > = 0} + a_{jt}^- (1 - \mathbb{I}_{I_{it} > = 0})}{2} \left(\frac{I_{it}}{K_{it}}\right)^2 K_{it}$$

$$\Phi_{it} \equiv \frac{\theta_{jt}}{\nu_{jt}^2} \left[\exp\left(-\nu_{jt} \frac{I_{it}}{K_{it}}\right) + \nu_{jt} \frac{I_{it}}{K_{it}} - 1 \right]$$

· Accruals: adjustment cost of working capital

$$\Phi(\Delta W_{it}, W_{it}) = \frac{b_{jt}}{2} \left(\frac{\Delta W_{it}}{W_{it}}\right)^2$$

Possible Future Directions

- Value: explicitly modeling intangible capital
- · Accruals: explicitly modeling earnings quality

Out-of-Sample Forecasts

Expanding-Window Estimates

		$\alpha \equiv r^S - r^F$						
	Baseline	Expanding-Window Estimates						
ВМ	7.27***	9.63***						
	(2.86)	(3.25)						
R11	-2.81	6.63						
	(-0.71)	(1.69)						
I/A	-1.11	-5.27**						
	(-0.57)	(-2.21)						
ROE	-0.14	0.21						
	(-0.05)	(0.06)						
Size	2.16	0.88						
	(0.56)	(0.23)						
Accruals	-8.14***	-7.72***						
	(-5.11)	(-4.08)						
NSI	-3.87**	-5.31**						
	(-2.00)	(-2.00)						
ΔPI/A	1.28	-0.73						
	(0.85)	(-0.38)						
GP/A	-3.78***	-2.49						
	(-2.91)	(-1.12)						
ROA	-0.74	0.38						
	(-0.25)	(0.12)						
RD/M	3.38	8.06						
	(1.45)	(1.76)						
Ad/M	-1.09	1.33						
	(-0.33)	(0.37)						

Out-of-sample performance

	L	2	3	4	5	6	7	8	9	Н	H-L
R-rf	0.36	0.69	0.69	0.76	0.62	0.76	0.72	0.77	0.54	0.80	0.45
	(1.26)	(3.16)	(3.54)	(3.70)	(3.14)	(3.81)	(3.39)	(3.63)	(2.27)	(3.20)	(2.45)
α_{CAPM}	-0.36	0.09	0.10	0.15	0.05	0.17	0.09	0.11	-0.17	0.07	0.43
	(-2.40)	(1.04)	(1.47)	(1.79)	(0.72)	(1.94)	(1.12)	(1.31)	(-1.72)	(0.61)	(2.38)
α_{FF3}	-0.46	0.05	0.11	0.17	0.05	0.19	0.11	0.21	-0.14	0.12	0.58
	(-3.02)	(0.54)	(1.56)	(2.21)	(0.77)	(2.22)	(1.34)	(2.54)	(-1.53)	(1.00)	(3.25)
$\alpha_{Carhart}$	-0.39	0.04	0.11	0.16	0.08	0.17	0.09	0.19	-0.09	0.13	0.52
	(-2.59)	(0.46)	(1.64)	(2.06)	(1.12)	(1.93)	(1.11)	(1.93)	(-0.92)	(1.06)	(2.87)
α_{FF5}	-0.41	0.05	0.04	0.07	-0.07	0.02	0.00	0.11	-0.14	0.20	0.61
	(-2.63)	(0.53)	(0.50)	(0.85)	(-1.09)	(0.28)	(-0.05)	(1.30)	(-1.26)	(1.45)	(3.08)
α_{q4}	0.13	0.40	0.38	0.44	0.25	0.35	0.30	0.50	0.28	0.60	0.47
	(0.87)	(4.02)	(4.98)	(4.54)	(3.27)	(4.01)	(3.18)	(4.76)	(2.46)	(3.99)	(2.22)

- · Estimate time-invariant parameters with expanding window
- Predict firm-level fundamentals $(\hat{\mathbf{X}}'s)$
- · Predict one-month ahead firm-level returns
- Form 10 portfolios based on the predicted returns

Conclusion

Conclusion

- 1. A novel estimation strategy: estimate a 2-capital model using firm-level stock returns.
- The model is able to generate economically and statistically significant anomalies in all major categories, except for the value and accrual anomalies.
- 3. The model shows robust out-of-sample forecast capability, largely due to the imposed economic structure.

Thank You!

Appendix

Economic connotations of parameter estimates

1. γ_{jt}

 γ_{jt} reflects industry j's profit margin as $\Pi_{it} = \gamma_{jt} Y_{it}$.

1.1
$$\overline{\Pi/Y}_{jt} = c_{\gamma} + b_{\gamma}\gamma_{jt} + \epsilon_{jt}^{\gamma}$$

- 1.2 $\hat{b}_{\gamma} = 0.13 (6.10)$
- $2. a_{jt}$

 a_{jt} reflects both the marginal costs and marginal benefits of investing one dollar in physical capital and has a positive relation with Tobin's q

$$2.1 \ \bar{q}_{jt} = c_a + b_a a_{jt} + \epsilon^a_{jt}$$

2.2
$$\hat{b}_a = 0.19 (3.60)$$

Realized and Fundamental Market Returns

Figure 3: $Corr(R_{mt}^{S}, R_{mt}^{F}) = 0.77$

Persistence of factor premiums

Persistence of factor premiums

Market states and factor premiums

	В	М	R	11	1/	'A	ROE		
Market State	r.S	r ^F	rS	r.F	r.S	r ^F	rS	rF	
Down	14.24	7.68	-12.99	8.77	-12.97	-3.50	-6.67	1.01	
	(5.19)	(1.83)	(-1.03)	(3.05)	(-6.07)	(-1.66)	(-1.31)	(0.39)	
Up	5.40	-0.82	18.51	12.43	-5.11	-3.08	10.25	5.29	
	(1.81)	(-0.52)	(8.30)	(11.74)	(-2.58)	(-2.08)	(4.35)	(5.09)	
	Si	ze	Acc	ruals	N	SI	ΔΡΙ/Α		
Market State	r.S	r ^F	rS	r.F	s	r ^F	rS	rF	
Down	-22.71	-8.31	-7.55	3.15	-4.99	-1.70	-14.60	-9.13	
	(-3.40)	(-3.56)	(-2.71)	(1.18)	(-1.09)	(-1.18)	(-3.76)	(-3.27)	
Up	-1.66	-5.57	-5.23	5.04	-8.13	-3.34	-4.22	-5.24	
	(-0.47)	(-5.09)	(-2.65)	(4.87)	(-4.57)	(-3.49)	(-2.11)	(-4.38)	
	GP/A		ROA		RD/M		Ad/M		
Market State	rS	r ^F	r.S	r.F	s	r ^F	rS	rF	
Down	-4.66	3.02	-7.19	-2.21	9.35	-1.54	17.17	8.28	
	(-2.06)	(0.96)	(-1.04)	(-0.55)	(1.87)	(-0.63)	(4.05)	(1.88)	
Up	5.39	8.02	8.89	4.90	8.61	6.12	4.07	7.34	
•	(2.85)	(6.34)	(3.85)	(4.12)	(1.99)	(2.28)	(1.15)	(2.48)	

Comparative statics

	ВМ	R11	I/A	ROE	Size	Accruals	NSI	$\Delta PI/A$	GP/A	ROA	RD/M	Ad/M
Baseline	6.27	1.87	-3.16	3.05	1.14	-10.33	-4.56	0.04	-3.39	2.63	3.47	-1.39
	(3.33)	(0.57)	(-2.06)	(1.33)	(0.34)	(-6.29)	(-2.90)	(0.03)	(-2.64)	(1.11)	(1.42)	(-0.59)
Ii+/Ki+	13.36	-0.63	-9.88	2.35	1.42	-9.54	-6.91	-5.73	-7.07	1.79	3.90	3.46
	(5.90)	(-0.19)	(-5.47)	(0.96)	(0.40)	(-5.29)	(-3.64)	(-3.92)	(-4.69)	(0.73)	(1.17)	(1.38)
Lit 1/Kit 1	-0.12	8.29	0.92	5.36	0.51	-11.67	-3.26	3.75	0.40	4.36	5.13	-5.42
	(-0.06)	(2.24)	(0.55)	(1.93)	(0.15)	(-7.01)	(-2.15)	(2.31)	(0.29)	(1.59)	(2.07)	(-2.16)
$\overline{Y_{it+1}/K_{it+1}}$	-62.26	14.88	5.53	25.52	-14.71	11.17	-36.32	-8.33	109.05	31.19	27.80	6.91
	(-7.47)	(3.69)	(1.72)	(7.62)	(-4.23)	(4.08)	(-5.14)	(-2.36)	(11.25)	(6.67)	(8.17)	(2.54)
$\overline{W_{it+1}/K_{it+1}}$	12.25	1.19	-1.79	2.52	15.83	-19.60	-4.04	9.41	-7.58	3.03	-2.81	-0.44
	(6.03)	(0.32)	(-0.48)	(1.06)	(3.95)	(-7.90)	(-2.00)	(2.48)	(-3.68)	(1.35)	(-0.83)	(-0.13)
$\boldsymbol{\theta}_{j}$	7.38	10.16	-6.24	3.80	0.98	-10.48	-4.85	-1.58	-2.90	3.40	6.18	-0.29
	(3.25)	(4.06)	(-3.42)	(2.10)	(0.28)	(-5.96)	(-2.44)	(-0.87)	(-1.47)	(1.77)	(1.49)	(-0.10)
$\boldsymbol{\theta}_t$	10.52	8.00	-5.62	2.36	2.73	-14.38	-3.07	-2.67	-11.61	2.35	8.22	-7.79
	(4.20)	(2.93)	(-3.18)	(1.29)	(0.73)	(-7.68)	(-1.49)	(-1.48)	(-5.41)	(1.24)	(2.07)	(-2.42)

- We close the I/K channel by setting it to a constant (cross-sectional median) to find the importance of I/K.
- $\bullet~$ We close time or industry channels of the parameters to evaluate the importance of parameters.
- We calculate anomaly premiums using the same parameters.

Comparative statics

	ВМ	R11	I/A	ROE	Size	Accruals	NSI	$\Delta PI/A$	GP/A	ROA	RD/M	Ad/M
Baseline	6.27	1.87	-3.16	3.05	1.14	-10.33	-4.56	0.04	-3.39	2.63	3.47	-1.39
	(3.33)	(0.57)	(-2.06)	(1.33)	(0.34)	(-6.29)	(-2.90)	(0.03)	(-2.64)	(1.11)	(1.42)	(-0.59)
Ii+/Ki+	13.36	-0.63	-9.88	2.35	1.42	-9.54	-6.91	-5.73	-7.07	1.79	3.90	3.46
	(5.90)	(-0.19)	(-5.47)	(0.96)	(0.40)	(-5.29)	(-3.64)	(-3.92)	(-4.69)	(0.73)	(1.17)	(1.38)
Litt 1/Kit 1	-0.12	8.29	0.92	5.36	0.51	-11.67	-3.26	3.75	0.40	4.36	5.13	-5.42
	(-0.06)	(2.24)	(0.55)	(1.93)	(0.15)	(-7.01)	(-2.15)	(2.31)	(0.29)	(1.59)	(2.07)	(-2.16)
$\overline{Y_{it+1}/K_{it+1}}$	-62.26	14.88	5.52	25.52	-14.71	11.17	-36.32	-8.33	109.05	31.19	27.80	6.91
	(-7.47)	(3.69)	(1.72)	(7.62)	(-4.23)	(4.08)	(-5.14)	(-2.36)	(11.25)	(6.67)	(8.17)	(2.54)
$\overline{W_{it+1}/K_{it+1}}$	12.25	1.19	-1.79	2.52	15.83	-19.60	-4.04	9.41	-7.58	3.03	-2.81	-0.44
	(6.03)	(0.32)	(-0.48)	(1.06)	(3.95)	(-7.90)	(-2.00)	(2.48)	(-3.68)	(1.35)	(-0.83)	(-0.13)
$\boldsymbol{\theta}_{j}$	7.38	10.16	-6.24	3.80	0.98	-10.48	-4.85	-1.58	-2.90	3.40	6.18	-0.29
	(3.25)	(4.06)	(-3.42)	(2.10)	(0.28)	(-5.96)	(-2.44)	(-0.87)	(-1.47)	(1.77)	(1.49)	(-0.10)
$\boldsymbol{\theta}_t$	10.52	8.00	-5.62	2.36	2.73	-14.38	-3.07	-2.67	-11.61	2.35	8.22	-7.79
	(4.20)	(2.93)	(-3.18)	(1.29)	(0.73)	(-7.68)	(-1.49)	(-1.48)	(-5.41)	(1.24)	(2.07)	(-2.42)

- We close the I/K channel by setting it to a constant (cross-sectional median) to find the importance of I/K.
- We close time or industry channels of the parameters to evaluate the importance of parameters.
- We calculate anomaly premiums using the same parameters.

Bayesian MCMC

For firm *i* in industry *j* (Fama-French 10 industries):

$$\underbrace{r_{it+1}^{S}}_{\text{realized return}} = \underbrace{f(X_{it}, X_{it+1} | \gamma_{jt+1}, a_{jt+1}, a_{jt})}_{\text{fundamental return: } r_{it+1}^{F}} + \underbrace{\varpi_{it}^{-1/2} \sigma_{r} e_{it+1}^{r}}_{\text{estimation error}}$$

$$e^{r} \sim \mathcal{N}(0, 1)$$

$$\varpi_{it} \equiv \frac{V_{it}}{\sum_{i=1}^{N_{it}} V_{it}}$$

• Assumption:
$$\gamma_{jt+1} = \gamma_{jt} + \sigma_{\gamma} e_{jt+1}^{\gamma}, e^{\gamma} \sim \mathcal{N}(0, 1)$$

$$a_{jt+1} = a_{jt} + \sigma_{a} e_{jt+1}^{a}, e^{a} \sim \mathcal{N}(0, 1)$$

$$e^{\gamma} \perp e^{a}$$

Bayesian MCMC

- Four specifications: use θ to denote a generic parameter vector.
 - constant parameters (θ)
 - parameters with industry variations (θ_i)
 - parameters with time variations (θ_t)
 - parameters with industry and time variations (θ_{jt})

```
Target
Obtain samples from a joint distribution.
```

```
1 Procedure
2 Observed data \{X\}
3 Set initial values \gamma_{jt+1}^{(0)}, a_{jt+1}^{(0)} for all j and t
4 for g = 1 to G do
5 for j = 1 to J, t = 1 to T do
6 \gamma_{jt+1}^{(g)} = f(\gamma_{jt+1}|X, \theta^{\max\{g,g-1\}}).
7 a_{jt+1}^{(g)} = f(a_{jt+1}|X, \theta^{\max\{g,g-1\}}).
8 end
9 end
10 end
11 \triangleright We use Metropolis-Hastings algorithm embedded Gibbs sampling.
```

Target

Obtain samples from a high dimensional joint posterior distribution.

```
Procedure
          Observed data {X}
2
          Set initial values \gamma_{it+1}^{(0)}, a_{it+1}^{(0)} for all j and t
         for g = 1 to G do
                for j = 1 to J, t = 1 to T do
                       egin{aligned} m{\gamma}_{jt+1}^{(g)} &= f(m{\gamma}_{jt+1} | m{X}, m{	heta}^{\max\{g,g-1\}}). \ a_{it+1}^{(g)} &= f(a_{jt+1} | m{X}, m{	heta}^{\max\{g,g-1\}}). \end{aligned}
                end
          end
  end
```

- prior belief $\pi(\boldsymbol{\theta})$
- conditional likelihood $f(\mathbf{r}|\boldsymbol{\theta})$
- posterior $f(\theta|\mathbf{r}) \propto \pi(\theta) f(\mathbf{r}|\theta)$

$$\theta_1^{(0)}, \theta_2^{(0)}, \cdots, \theta_d^{(0)}$$

- prior belief $\pi(\boldsymbol{\theta})$
- conditional likelihood $f(\mathbf{r}|\boldsymbol{\theta})$
- posterior $f(\theta|\mathbf{r}) \propto \pi(\theta) f(\mathbf{r}|\theta)$

$$\theta_1^{(1)}, \theta_2^{(0)}, \cdots, \theta_d^{(0)}$$

- prior belief $\pi(\boldsymbol{\theta})$
- conditional likelihood $f(r|\theta)$
- posterior $f(\boldsymbol{\theta}|\boldsymbol{r}) \propto \pi(\boldsymbol{\theta}) f(\boldsymbol{r}|\boldsymbol{\theta})$

$$\theta_1^{(1)}, \theta_2^{(1)}, \cdots, \theta_d^{(0)}$$

- prior belief $\pi(\boldsymbol{\theta})$
- conditional likelihood $f(r|\theta)$
- posterior $f(\theta|\mathbf{r}) \propto \pi(\theta) f(\mathbf{r}|\theta)$

$$\theta_1^{(1)}, \theta_2^{(1)}, \cdots, \theta_d^{(1)}$$

- prior belief $\pi(\boldsymbol{\theta})$
- conditional likelihood $f(r|\theta)$
- posterior $f(\theta|\mathbf{r}) \propto \pi(\theta) f(\mathbf{r}|\theta)$

$$\theta_1^{(1)}, \theta_2^{(1)}, \cdots, \theta_d^{(1)}$$

- Bayesian MCMC is an iterative sampling method
- Hammersley-Clifford theorem guarantees the MCMC draws from conditional marginals converge to the joint
- We use the posterior mean as the final parameter estimation

References i

References

Campbell, John Y. 2017. *Financial Decisions and Markets: A Course in Asset Pricing.* Princeton University Press.

Gonçalves, Andrei S, Chen Xue, and Lu Zhang. 2020. "Aggregation, capital heterogeneity, and the investment CAPM." *The Review of Financial Studies* 33 (6):2728–2771.

Hayashi, Fumio. 1982. "Tobin's marginal q and average q: A neoclassical interpretation." *Econometrica* 8:213–224.

Hou, Kewei, Chen Xue, and Lu Zhang. 2020. "Replicating anomalies."

References ii

Liu, Laura X.L., Toni W. Whited, and Lu Zhang. 2009. "Investment-Based Expected Stock Returns." *Journal of Political Economy* 117 (6):1105–1139.