### "Hello, Quantum World"

Sansom Lee

Chief Scientist @ Zero Gravity Labs





#### About Me

- Toronto 20yrs+
- Trekkies
- Travel for Food
- Research, Experiment,
  Development Data







### Premise

- Different places at the same time
- Different states at the same time

# Analog

| Classical     | Quantum                            |
|---------------|------------------------------------|
| Computer      | Physical System                    |
| Computation   | Motion                             |
| Input (Bits)  | Initial State of the <b>Qubits</b> |
| Rules         | Law of Motion                      |
| Output (Bits) | Final State of the <b>Qubits</b>   |
| println()     | Measure                            |

### Qubit

- Qubit quantum version of a bit
- Simplest quantum system with 2 states - can be in both states at the same time
- Represented by Bloch Sphere
- Qubits can be the observables for quantum objects like photons, electrons, atoms...etc





## Superposition

Superposition can achieved by a quantum gate called

"Hadamard" Gate

• 
$$H(|0>) = 1/\sqrt{2} (|0> + |1>)$$

• 
$$H(|1>) = 1/\sqrt{2} (|0> - |1>)$$



### The power of coming together

- Bundle the qubits together and you've got a quantum computer
- Classical bits can only represent 1 value at one time
- Qubits can actualize 2<sup>n</sup> values at the same time!

- 1 Qubit has 2 states = { |0>, |1> }
- 2 Qubits has 4 states = { |00>, |01>, |10>, |11> }
  - Superposition for 2 qubits will be the linear combination of both, example:
  - $H(|0>)H(1>) = 1/\sqrt{2} (|0> + |1>) 1/\sqrt{2} (|0> |1>)$ = 1/2 (|00> - |01> + |10> - |11>)
- 3 Qubits has 8 states = { |000>, |001>, |010>, |011>, |100>, |101>, |110>, | 111> }
- n Qubits has 2 states express as the tensor product of the qubits

$$|A\rangle \otimes |B\rangle = \begin{bmatrix} lpha_0 \\ lpha_1 \end{bmatrix} \otimes \begin{bmatrix} eta_0 \\ eta_1 \end{bmatrix} = \begin{bmatrix} lpha_0 eta_0 \\ lpha_0 eta_1 \\ lpha_1 eta_0 \\ lpha_1 eta_1 \end{bmatrix}$$



#### Quantum Parallelism

Classical

Quantum



## What is it good for then?

Acting on all Realities at once!



#### One Little Detail

- Attempt to measure the state of the system will collapse the superposition and result in 1 of 4 possible answer
- Sharp —superposition—> Unsharp —measure—>Sharp



## Example - Deutsch's Algorithm

- **Puzzle**:- given binary f : {0,1} -> {0,1}, determine if it is a constant function or balanced function.
- Constant all output are 1s or 0s
  Doesn't depend on input
- Balanced half the time 0 and half the time 1
  Depends on input

#### Binary function: f(x) has four possibilities



- Need 2 tries for classical computers
- Using superpositions (quantum parallelism), determine in 1 try!









demonstrations.wolfram.com

## Example - Grover's Algorithm

- Puzzle:- given N keys, find the right key to the door
- Formal definition, X = {x1, x2,... xn}, f: X -> {0,1}, find x\* so that f(x\*) = 1
- Classical algorithm needs average N/2 tries
- Using quantum parallelism, only requires √ N times quadratic speed up
- Encode using L Qubits where 2<sup>L</sup> = N



## They are here!

- So far, simulation to help us learn
- There are companies currently implementing quantum computers such as:
  - D-Wave 512 qubits
  - IBM Q Public experimental playground 12 qubits

## Applications

- Al & ML optimization, linear equations...etc
- Biochemistry protein folding using simulation
- Security Quantum Key distribution

#### https://github.com/sansomlee/quantum.git

