LIGADURAS

Los problemas marcados con (*) tienen alguna dificultad adicional, no dude en consultar.

1. Máquina de Atwood simple

Obtenga a partir de la ecuación de Euler-Lagrange la aceleración que presentan las pesas de masas m_1 y m_2 que cuelgan de una cuerda de longitud ℓ que pasa por sobre una polea de radio R_p y masa m_p .

- a) Resuelva el caso en que se considera m_p irrelevante.
- b) Resuelva ahora considerando m_p , y que la polea presenta una sección cilíndrica. El momento de inercia de tal cilindro de masa m ante rotaciones en torno a su eje de simetría longitudinal es $(m/2)R^2$.

2. Péndulo de pesas desilzantes y acopladas

Dos pesas de masa m_1 y m_2 están unidas por una barra rígida inextensible de longitud ℓ y masa despreciable frente a las anteriores. La de m_1 puede deslizar sin rozamiento sobre un eje horizontal y la de m_2 en uno vertical. Las coordenadas que definen sus posiciones son $x \in y$, respectivamente.

- a) Escriba las posiciones de ambas pesas en función de una única coordenada haciendo uso de la ligadura que impone la barra rígida. Exprésalas primero en función de: 1) y y luego hágalo en función de 2) θ
- b) Obtenga las aceleraciones y responda: ¿con cuál coordenada generalizada las expresiones de energía fueron más "informativas"? Resultado: $\ddot{y} = \frac{-\ell^2 m_1 y \dot{y}^2 + g m_2 (\ell^2 - y^2)^2}{\ell^4 m_2 + \ell^2 m_1 y^2 - 2\ell^2 m_2 y^2 - m_1 y^4 + m_2 y^4}$ $\ddot{\theta} = \frac{\left(\ell m_1 \cos(\theta) \dot{\theta}^2 - \ell m_2 \cos(\theta) \dot{\theta}^2 - g m_2\right) \sin(\theta)}{\ell \left(m_1 \cos^2(\theta) + m_2 \sin^2(\theta)\right)}$

c) Realice las sustituciones que corresponden a una aproximación de pequeñas oscilaciones para el caso $m_1 = m_2 = m$. ¿La expresión de qué sistema obtiene?

3. Aro y polea

Una pesa de masa m_{pesa} pende de sección de cuerda que sobresale a la derecha de una polea de radio R_{polea} y masa m_{polea} . Tal cuerda, que gira solidaria con la polea, tiene un longitud total ℓ y su masa es despreciable. Su otro extremo se ata con un nudo de masa m a un aro de masa m_{aro} , enrollándose parcialmente en torno a éste. El centro de la polea está a una altura h_{polea} por sobre el del aro de radio R_{aro} que como puede rotar libremente presenta un momento de inercia $m_{aro}R_{aro}^2$.

El arco de cuerda enrollada en torno al aro mide un ángulo θ . Tenga en cuenta para escribir la función de ligadura que por el sentido de enrolamiento, al medirse desde la horizontal, tal ángulo presentará valores negativos.

- a) Escriba la posición de las partículas con masa en función de y_{pesa} , ℓ y θ en un sistema de referncia con origen en el centro del aro.
- b) Describa la función de ligadura y utilícela para expresar las posiciones en función de θ . Verifique su solución revisando que una variación de θ "hacia su cero" implique que la pesa "baja".
- c) Obtenga la ecuación de Euler-Lagrange para la dinámica sin olvidar los momentos involucrados.

Mecánica Analítica Computacional

- 4. Maquina de Atwood compuesta [Marion (english) ex. 7.8]
 - a) Escriba la posición de las tres pesas y de la polea inferior en función de las cuatro coordenadas generalizadas indicadas en la figura: y_i con i = 1, 2, 3, p.

- c) Haciendo uso de estas últimas reemplace en las posiciones para expresarles en función de solo dos y_i .
- d) Calcule energías potenciales y cinéticas contemplando los momentos de inercia de las poleas. Recuerde la relación entre el perímetro (circunferencia) de un círculo y su radio para escribir la velocidad angular en función del \dot{y}_i correspondiente.

e) Obtenga las dos ecuaciones de Euler-Lagrange.

Resultados:

$$-gm_1 + gm_2 + gm_3 + gm_p + m_1\ddot{y}_1 + m_2\ddot{y}_1 - m_2\ddot{y}_2 + m_3\ddot{y}_1 + m_3\ddot{y}_2 + \frac{3m_p\ddot{y}_1}{2} = 0$$

$$-gm_2 + gm_3 - m_2\ddot{y}_1 + m_2\ddot{y}_2 + m_3\ddot{y}_1 + m_3\ddot{y}_2 + \frac{m_p\ddot{y}_2}{2} = 0$$

f) Resuelva este sistema de ecuaciones para obtener las dos correspondientes aceleraciones generalizadas y con estas escribir las aceleraciones de los cuatro cuerpos en cuestión.

Resultados:
$$\ddot{y}_1 = \frac{4gm_1m_2 + 4gm_1m_3 + 2gm_1m_p - 16gm_2m_3 - 6gm_2m_p - 6gm_3m_p - 2gm_p^2}{4m_1m_2 + 4m_1m_3 + 2m_1m_p + 16m_2m_3 + 8m_2m_p + 8m_3m_p + 3m_p^2}$$

$$\ddot{y}_2 = \frac{8gm_1m_2 - 8gm_1m_3 + 2gm_2m_p - 2gm_3m_p}{4m_1m_2 + 4m_1m_3 + 2m_1m_p + 16m_2m_3 + 8m_2m_p + 8m_3m_p + 3m_p^2}$$