CSCE 465 Computer & Network Security

Instructor: Sungmin Kevin Hong

Intrusion Detection System

Definitions

- Intrusion
 - A set of actions aimed to compromise the security goals, namely
 - Confidentiality, Integrity, or Availability, of a computing and networking resource
- Intrusion detection
 - The process of identifying and responding to intrusion activities

Why Is Intrusion Detection Necessary?

Security principles: layered mechanisms

Elements of Intrusion Detection

- Primary assumptions:
 - System activities are observable
 - Normal and intrusive activities have distinct evidence

- Components of intrusion detection systems:
 - From an algorithmic perspective:
 - Features capture intrusion evidences
 - Models piece evidences together
 - From a system architecture perspective:
 - Audit data processor, knowledge base, decision engine, alarm generation and responses

Components of Intrusion Detection System

Intrusion Detection Approaches

- Modeling
 - Features: evidences extracted from audit data
 - Analysis approach: piecing the evidences together
 - Misuse detection (signature-based, e.g., Snort, Bro)
 - Anomaly detection (e.g., statistical-based)
- Deployment: Network-based or Host-based
- Development and maintenance
 - Hand-coding of "expert knowledge"
 - Learning based on audit data

Misuse Detection

Example: *if*(src_ip == dst_ip) *then* "land attack"

Can't detect new attacks

Anomaly Detection

Relatively high false positive rate - anomalies can just be new normal activities.

Monitoring Networks and Hosts

Key Performance Metrics

- Algorithm
 - Alarm: A; Intrusion: I
 - Detection (true positive) rate: P(A|I)
 - False negative rate P(¬A|I)
 - False positive (alarm) rate: $P(A|\neg I)$
 - True negative rate P(¬A|¬I)
 - Bayesian detection rate: P(I|A)
- Architecture
 - Scalable
 - Resilient to attacks

Alarm (detection result)

T F
Intrusion (Reality)

T True False Negative

False Positive Negative

True Negative

Bayesian Detection Rate

$$P(I | A) = \frac{P(I)P(A | I)}{P(I)P(A | I) + P(\neg I)P(A | \neg I)}$$

Base-rate fallacy

- Even if false alarm rate $P(A | \neg I)$ is very low, Bayesian detection rate P(I | A) is still low if base-rate P(I) is low
- E.g. if P(A|I) = 1, $P(A|\neg I) = 10^{-5}$, $P(I) = 2 \times 10^{-5}$, P(I|A) = 66%

Implications to IDS

- Design algorithms to reduce false alarm rate
- Deploy IDS to appropriate point/layer with sufficiently high base rate

Example ROC Curve

% False Alarm

 Ideal system should have 100% detection rate with 0% false alarm

Host-Based IDSs (HIDS)

- Using OS auditing mechanisms
 - E.G., BSM on Solaris: logs all direct or indirect events generated by a user
 - strace for system calls made by a program
- Monitoring user activities
 - E.G., Analyze shell commands
- Monitoring executions of system programs
 - E.G., Analyze system calls made by sendmail

Example HIDS: A Sense of Self - Immunology Approach

- Prof. Forrest at University of New Mexico
 - Anomaly detection
 - Simple and short sequences of events to distinguish "self" from not
 - Currently looking at system calls (strace)
 - Apply to detection of *lpr* and *sendmail*

Some Details

- Anomaly detection for Unix processes
 - "Short sequences" of system calls as normal profile (Forrest et al. UNM)

...,open,read,mmap,mmap,open,getrlimit,mmap,close,...

Sliding window of length k

open,read,mmap,mmap
read,mmap,mmap,open
mmap,mmap,open,getrlimit
mmap,open,getrlimit,mmap
...

Network IDSs (NIDS)

- Deploying sensors at strategic locations
 - E.G., Packet sniffing via tcpdump at routers
- Inspecting network traffic
 - Watch for violations of protocols and unusual connection patterns
- Monitoring user activities
 - Look into the data portions of the packets for malicious command sequences
- May be easily defeated by encryption
 - Data portions and some header information can be encrypted
- Other problems ...

Architecture of Network IDS

Firewall Versus Network IDS

- Firewall
 - Active filtering
 - Fail-close
- Network IDS
 - Passive monitoring
 - Fail-open

Requirements of Network IDS

- High-speed, large volume monitoring
 - No packet filter drops
- Real-time notification
- Extensible
- Broad detection coverage
- Economy in resource usage
- Resilience to stress
- Resilience to attacks upon the IDS itself!

Eluding Network IDS

- What the IDS sees may not be what the end system gets.
 - Insertion and evasion attacks.
 - IDS needs to perform full reassembly of packets.
 - But there are still ambiguities in protocols and operating systems:
 - E.G. TTL, fragments.
 - Need to "normalize" the packets.

Insertion Attack

