- 1. Draw a simple connected directed graph with 8 vertices and 16 edges such that the in-degree and the out-degree of each vertex is 2. Show that there is a single non-simple cycle that includes all the edges of your graph.
- 2. Suppose we are given an undirected graph G with n vertices and m edges. How many back edges will the DFS on G produce.
- 3. Is it possible to draw a graph G with 12 vertices, 66 edges, and 3 connected components. Give a brief explanation in support of your answer.
- 4. Explain why the DFS traversal runs in $\Theta(n^2)$ time on an *n*-vertex simple graph that is represented with an adjacency matrix.
- 5. Let G be an undirected graph with n vertices and m edges. Prove that if G is connected then $m \geq (n-1)$.
- 6. Prove that after performing DFS on an undirected connected graph, the discovery-edges form a spanning tree.
- 7. Given a directed graph G = (V, E), how will you determine in O(|V| + |E|) time whether the graph is strongly connected or not.
- 8. Give two different algorithms for finding the transitive closure of a graph, and compare their complexities.
- 9. Prove that a digraph admits a topological ordering iff it is a DAG.

IT-301 (Design & Analysis of Algorithms): La	ıb #8
10. Let T be the spanning tree rooted at the start vertex pr	oduced by the
DFS of a connected, undirected graph G . Argue why even	ery edge of G ,
not in T , is a back-edge.	