import numpy as np
import pandas as pd

#load the dataset

data = pd.read_csv("/content/titanic.csv")

data.head()

₹		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May	female	35.0	1	Λ	113803	53 1000	C123	S

data.shape

→ (891, 12)

data.describe()

→		PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
	count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
	mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
	std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
	min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
	25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
	50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
	75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
	max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

data.info()

Data	COTUMIS (COC	ai iz coiumns).				
#	Column	Non-Null Count	Dtype			
0	PassengerId	891 non-null	int64			
1	Survived	891 non-null	int64			
2	Pclass	891 non-null	int64			
3	Name	891 non-null	object			
4	Sex	891 non-null	object			
5	Age	714 non-null	float64			
6	SibSp	891 non-null	int64			
7	Parch	891 non-null	int64			
8	Ticket	891 non-null	object			
9	Fare	891 non-null	float64			
10	Cabin	204 non-null	object			
11	Embarked	889 non-null	object			
dtynes: float64(2), int64(5), object(5)						

dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB

data.isnull().sum()

```
<del>_</del>_
      Passengerld
                      0
        Survived
                      0
         Pclass
                      0
         Name
                      0
          Sex
                      0
          Age
                    177
         SibSp
                      0
         Parch
                      0
         Ticket
                      0
          Fare
                      0
         Cabin
                    687
       Embarked
                      2
     dtype: int64
data = data.drop(columns=['Name','Ticket'])
data.shape
→ (891, 10)
data.columns
Index(['PassengerId', 'Survived', 'Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Cabin', 'Embarked'],
            dtype='object')
data.isnull().sum()/data.shape[0]*100
₹
                            0
      Passengerld
                    0.000000
        Survived
                     0.000000
         Pclass
                     0.000000
                     0.000000
          Sex
                    19.865320
          Age
         SibSp
                     0.000000
                     0.000000
         Parch
                     0.000000
          Fare
         Cabin
                    77.104377
       Embarked
                    0.224467
     dtype: float64
data=data.drop(columns='Cabin')
data.shape
→ (891, 9)
data.dropna(subset=['Embarked'],axis=0,inplace=True)
data.shape
→ (889, 9)
data=data.fillna(data.Age.mean())
data.isnull().sum()
```


Text Analysis over Stack Overflow dataset-> kaggle

```
!pip install Kaggle
```

```
Requirement already satisfied: Kaggle in /usr/local/lib/python3.11/dist-packages (1.7.4.5)
     Requirement already satisfied: bleach in /usr/local/lib/python3.11/dist-packages (from Kaggle) (6.2.0)
     Requirement already satisfied: certifi>=14.05.14 in /usr/local/lib/python3.11/dist-packages (from Kaggle) (2025.7.14)
     Requirement already satisfied: charset-normalizer in /usr/local/lib/python3.11/dist-packages (from Kaggle) (3.4.2)
     Requirement already satisfied: idna in /usr/local/lib/python3.11/dist-packages (from Kaggle) (3.10)
     Requirement already satisfied: protobuf in /usr/local/lib/python3.11/dist-packages (from Kaggle) (5.29.5)
     Requirement already satisfied: python-dateutil>=2.5.3 in /usr/local/lib/python3.11/dist-packages (from Kaggle) (2.9.0.post0)
     Requirement already satisfied: python-slugify in /usr/local/lib/python3.11/dist-packages (from Kaggle) (8.0.4)
     Requirement already satisfied: requests in /usr/local/lib/python3.11/dist-packages (from Kaggle) (2.32.3)
     Requirement already satisfied: setuptools>=21.0.0 in /usr/local/lib/python3.11/dist-packages (from Kaggle) (75.2.0)
     Requirement already satisfied: six>=1.10 in /usr/local/lib/python3.11/dist-packages (from Kaggle) (1.17.0)
     Requirement already satisfied: text-unidecode in /usr/local/lib/python3.11/dist-packages (from Kaggle) (1.3)
     Requirement already satisfied: tqdm in /usr/local/lib/python3.11/dist-packages (from Kaggle) (4.67.1)
     Requirement already satisfied: urllib3>=1.15.1 in /usr/local/lib/python3.11/dist-packages (from Kaggle) (2.4.0)
     Requirement already satisfied: webencodings in /usr/local/lib/python3.11/dist-packages (from Kaggle) (0.5.1)
import os
os.environ['KAGGLE_CONFIG_DIR'] = "/content"
!kaggle datasets download stackoverflow/stack-overflow-2018-developer-survey
🚁 Warning: Your Kaggle API key is readable by other users on this system! To fix this, you can run 'chmod 600 /content/kaggle.json'
     Dataset URL: <a href="https://www.kaggle.com/datasets/stackoverflow/stack-overflow-2018-developer-survey">https://www.kaggle.com/datasets/stackoverflow/stack-overflow-2018-developer-survey</a>
     License(s): DbCL-1.0
     Downloading stack-overflow-2018-developer-survey.zip to /content
       0% 0.00/19.6M [00:00<?, ?B/s]
     100% 19.6M/19.6M [00:00<00:00, 1.03GB/s]
 !unzip /content/stack-overflow-2018-developer-survey.zip
Archive: /content/stack-overflow-2018-developer-survey.zip
       inflating: survey_results_public.csv
       inflating: survey_results_schema.csv
#import basic libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
df = pd.read_csv("/content/survey_results_public.csv")
df.shape
df.head()
```

/tmp/ipython-input-18-3914019911.py:1: DtypeWarning: Columns (8,12,13,14,15,16,50,51,52,53,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69, df = pd.read_csv("/content/survey_results_public.csv")

	Respondent	Hobby	OpenSource	Country	Student	Employment	FormalEducation	UndergradMajor	CompanySize	DevType	• • •	Ex
0	1	Yes	No	Kenya	No	Employed part-time	Bachelor's degree (BA, BS, B.Eng., etc.)	Mathematics or statistics	20 to 99 employees	Full-stack developer		tir
1	3	Yes	Yes	United Kingdom	No	Employed full-time	Bachelor's degree (BA, BS, B.Eng., etc.)	A natural science (ex. biology, chemistry, phy	10,000 or more employees	Database administrator;DevOps specialist;Full		ev
2	4	Yes	Yes	United States	No	Employed full-time	Associate degree	Computer science, computer engineering, or sof	20 to 99 employees	Engineering manager;Full-stack developer		
3	5	No	No	United States	No	Employed full-time	Bachelor's degree (BA, BS, B.Eng., etc.)	Computer science, computer engineering, or sof	100 to 499 employees	Full-stack developer		t €
4	7	Yes	No	South Africa	Yes, part- time	Employed full-time	Some college/university study without earning	Computer science, computer engineering, or sof	10,000 or more employees	Data or business analyst;Desktop or enterprise		tir

5 rows × 129 columns

df_1 = pd.read_csv("/content/survey_results_schema.csv")
df_1.shape
df_1.head()

₹		Column	QuestionText			
	0	Respondent	Randomized respondent ID number (not in order			
	1 Hobby		Do you code as a hobby?			
	2	OpenSource	Do you contribute to open source projects?			
	3	Country	In which country do you currently reside?			
	4	Student	Are you currently enrolled in a formal, degree			

df.shape

→ (98855, 129)

#Count the number of null values in each feacture
#Count the percentage of null values
#Draw the pie chart for the number of people who finds codding as hobby
#Determine the number of people contributing to open source projects
#Determine the top 20 countries where the resources are obtained
#Do other 5 analysis of own thinking (which involves different charts and graphs)

null_counts = df.isnull().sum()
print(null_counts)

df.shape

_	Respondent	0
	Hobby	0
	OpenSource	0
	Country	412
	Student	3954
	Age	34281
	Dependents	36259
	MilitaryUS	83074
	SurveyTooLong	32914
	SurveyEasy	32976

```
Length: 129, dtype: int64
     (98855, 129)
null_percentage = (df.isnull().sum() / len(df)) * 100
print(null_percentage)
→ Respondent
                       0.000000
     Hobby
                       0.000000
     OpenSource
                       0.000000
                       0.416772
     Country
     Student
                       3.999798
                      34.678064
     Age
     Dependents
                      36.678974
     MilitaryUS
                      84.036215
     SurveyTooLong
                      33.295230
     SurveyEasy
                      33.357949
     Length: 129, dtype: float64
hobby_counts = df['Hobby'].value_counts()
# Plot the pie chart
plt.figure(figsize=(6,6))
plt.pie(hobby_counts, labels=hobby_counts.index, autopct='%1.1f%%', colors=['#66b3ff', '#ff9999'], startangle=140)
plt.title("Do people consider coding as a hobby? (Stack Overflow 2018)")
plt.axis('equal')
plt.show()
print(df.columns)
```

Do people consider coding as a hobby? (Stack Overflow 2018)


```
'Exercise', 'Gender', 'SexualOrientation', 'EducationParents',
          'RaceEthnicity', 'Age', 'Dependents', 'MilitaryUS', 'SurveyTooLong',
        'SurveyEasy'],
dtype='object', length=129)
open_source_counts = df['OpenSource'].value_counts()
print(open_source_counts)
→ OpenSource
         55769
    No
   Yes
         43086
    Name: count, dtype: int64
```

top_countries = df['Country'].value_counts().head(20) print("Top 20 countries by number of respondents:")

print(top_countries)

plt.figure(figsize=(12, 6))

```
sns.barplot(x=top_countries.values, y=top_countries.index, palette="viridis")
plt.xlabel("Number of Respondents")
plt.ylabel("Country")
plt.title("Top 20 Countries by Number of Survey Respondents (Stack Overflow 2018)")
plt.tight_layout()
plt.show()
Top 20 countries by number of respondents:
     Country
     United States
                            20309
     India
                            13721
     Germany
                             6459
     United Kingdom
                             6221
     Canada
                             3393
     Russian Federation
                             2869
     France
                             2572
     Brazil
                             2505
     Pol and
                             2122
     Australia
                             2018
     Netherlands
                             1841
                             1769
     Spain
     Italy
                             1535
     Ukraine
                             1279
     Sweden
                             1164
     Pakistan
                             1050
     China
                             1037
     Switzerland
                             1010
     Turkey
                             1004
     Israel
                             1003
```

/tmp/ipython-input-30-1501666556.py:6: FutureWarning:

Name: count, dtype: int64

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `y` variable to `hue` and set `lege

 $\verb|sns.barplot(x=top_countries.values, y=top_countries.index, palette="viridis")| \\$

1. Which programming language is most popular?

```
from collections import Counter

lang_series = df['LanguageWorkedWith'].dropna().str.split(';')
all_languages = Counter([lang for sublist in lang_series for lang in sublist])

top_langs = pd.Series(dict(all_languages)).sort_values(ascending=False).head(10)
plt.figure(figsize=(10,6))
sns.barplot(x=top_langs.values, y=top_langs.index, palette="cubehelix")
```

```
plt.title("Top 10 Programming Languages Used")
plt.xlabel("Number of Developers")
plt.ylabel("Languages")
plt.tight_layout()
plt.show()A
```

/tmp/ipython-input-32-3636385984.py:9: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `y` variable to `hue` and set `legenc sns.barplot(x=top_langs.values, y=top_langs.index, palette="cubehelix")

2. Salary Distribution

```
salary = df['ConvertedSalary'].dropna()
salary = salary[salary < 200000] # Remove outliers above $200K

plt.figure(figsize=(10,6))
sns.histplot(salary, bins=50, kde=True, color="skyblue")
plt.title("Worldwide Salary Distribution (under $200K)")
plt.xlabel("Salary (USD)")
plt.ylabel("Number of Respondents")
plt.show()</pre>
```


3. Which Formal Education Level is Most Common?

```
edu_counts = df['FormalEducation'].value_counts().head(7)
plt.figure(figsize=(10,6))
sns.barplot(x=edu_counts.values, y=edu_counts.index, palette="pastel")
plt.title("Most Common Formal Education Levels")
plt.xlabel("Number of Respondents")
plt.ylabel("Education Level")
plt.show()
```

/tmp/ipython-input-34-1444516669.py:4: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `y` variable to `hue` and set `legenc sns.barplot(x=edu_counts.values, y=edu_counts.index, palette="pastel")

4. Do Developers Who Code as Hobby Earn More on Average?

```
hobby_salary = df[['Hobby', 'ConvertedSalary']].dropna()
hobby_salary = hobby_salary[hobby_salary['ConvertedSalary'] < 200000]

plt.figure(figsize=(8,6))
sns.boxplot(x='Hobby', y='ConvertedSalary', data=hobby_salary, palette="Set2")
plt.title("Salary Comparison: Coding as a Hobby vs Not")
plt.xlabel("Hobby")
plt.ylabel("Salary (USD)")
plt.show()</pre>
```

/tmp/ipython-input-35-348128815.py:6: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legenc sns.boxplot(x='Hobby', y='ConvertedSalary', data=hobby_salary, palette="Set2")

5. Which Developer Role is Most Common?

```
# Count developer roles
roles_series = df['DevType'].dropna().str.split(';')
all_roles = Counter([role for sublist in roles_series for role in sublist])
top_roles = pd.Series(dict(all_roles)).sort_values(ascending=False).head(10)

plt.figure(figsize=(8,8))
plt.pie(top_roles.values, labels=top_roles.index, autopct='%1.1f%%', startangle=140)
plt.title("Top 10 Developer Roles")
plt.axis('equal')
plt.show()
```


