

METHODS AND APPARATI USING SINGLE
POLYMER ANALYSIS
Inventors: Zhao et al.
Serial No.: TBD
Docket No. C0989.70049US01

Express Mail Label No. EV 292458974US
Date of Deposit: February 5, 2004
Docket No. C0989.70049US01

Figure 1

Figure 2

Figure 3

METHODS AND APPARATI USING SINGLE
POLYMER ANALYSIS
Inventors: Zhao et al.
Serial No.: TBD
Docket No. C0989.70049US01

Figure 4

Figure 5

Figure 6

Figure 7

METHODS AND APPARATI USING SINGLE
POLYMER ANALYSIS
Inventors: Zhao et al.
Serial No.: TBD
Docket No. C0989.70049US01

Figure 8

Figure 9

Figure 10

Figure 11

METHODS AND APPARATI USING SINGLE
POLYMER ANALYSIS
Inventors: Zhao et al.
Serial No.: TBD
Docket No. C0989.70049US01

Figure 12

Figure 13

Fluorescent nucleotide incorporation
with polymerase incorporation.

Figure 14

Figure 15

METHODS AND APPARATI USING SINGLE
POLYMER ANALYSIS
Inventors: Zhao et al.
Serial No.: TBD
Docket No. C0989.70049US01

Figure 16

A/G SNP detected through primer extension-spFRET and differential termination using ddATP

Figure 17

Figure 18

TWO-COLOR PRIMER EXTENSION ASSAY

Figure 19

TWO-COLOR EXTENSION AND LIGATION ASSAY

METHODS AND APPARATUS USING SINGLE
POLYMER ANALYSIS
Inventors: Zhao et al.
Serial No.: TBD
Docket No. C0989.70049US01

Figure 20

spFRET-BASED ASSAY OR PRIMER EXTENSION ASSAY-BASED CLEAVAGE OF PRODUCT (LIKE TAQMAN)

Figure 21

spFRET-BASED ASSAY BASED ON COINCIDENT HYBRIDIZATION

Figure 22

spFRET-BASED ASSAY WITH COMBINATION OF SINGLE-BASE EXTENSION REACTION

Figure 23

TWO-COLOR DETECTION ASSAY IN COMBINATION WITH PRIMER EXTENSION

METHODS AND APPARATI USING SINGLE
POLYMER ANALYSIS
Inventors: Zhao et al.
Serial No.: TBD
Docket No. C0989.70049US01

Figure 24

Figure 25

Figure 26

Single Molecule Fluorescent Tagging and Coincident Counting of Molecules

Figure 27.

Titration of Dual Labeled Oligonucleotide

Figure 28.

Dual Labeled 40nt Oligonucleotide Concentration (pM)

METHODS AND APPARATI USING SINGLE
POLYMER ANALYSIS
Inventors: Zhao et al.
Serial No.: TBD
Docket No. C0989.70049US01

Figure 22.

Two Assays Validated

- **Dual Probe Hybridization:** Hybridize two oligos (20 - 30 nt) to RNA target

- **Probe Extension:** Hybridize one Cy5 labeled oligo and incorporate TAMRA by reverse transcription

Figure 30.

Dual Probe Hybridization

- Sense vs. Antisense *E.coli* spike in total human RNA background

Probe Extension Assay

Figure 32.

Figure 23

Lamin A/C and β -Actin Levels in Human RNA

Figure 24. 2 ug HeLa

Quantitating Poly(A)⁺ Levels

Figure 35.

Amount of Total RNA (ng)

Assessing mRNA Degradation

Total RNA Samples

Ratio of Green/Red Average Peak Areas by DirectRNA™

	G/R Avg. Peak Areas	Std Dev
Non-degraded RNA	2.64	0.02
Degraded RNA	0.88	0.10
Dual-labelled 40 mer	0.79	0.02

Figure 3C.

Gene X analyzed by *DirectRNA*™ and by Real Time-PCR

Figure 37

Quantitation in RNA Analysis by DirectRNA™

INPUT

TOOLS & ANALYSES

OUTPUT

First-pass analysis across thousands of genes

Detailed analysis of specific genes of interest

Figure 38.

Fig. 39A

Fig. 39B

Fig. 40

Fig. 4/A

Fig. 4/B

Fig. 42A

Fig. 42B

Fig. 43

Fig. 44

Fig. 45

Fig. 46

Fig. 47

Fig. 48A

Fig. 48B

Fig. 49

Fig. 50

Fig. 51

Fig. 52

Fig. 53

Fig. 54

Fig. 55

Fig. 56

Fig. 57

Fig. 58

Target

