Значајне тачке, ток и график функције

- 1) нуле функције x_1, x_2, x_3 (пресеци графика функције са x-осом) добијају се решавањем једначине: f(x) = 0.
- 2) екстремне вредности (тіп, тах) A_{max} , B_{min} .
- 3) монотоност $(f \uparrow, f \downarrow)$ Одређивање интервала на којима функција расте (опада)
- 4) знак функције (f(x) > 0, f(x) < 0) одређивање интервала на којима је функција позитивна (негативна)
- 5) превојна тачка C у којој функција из конвексности прелази у конкавност и обратно

Извод полинома

Екстремне вредности, као и превојна тачка функције, одређују се применом извода. За произвољну функцију f(x) извод се обележава са f'(x) (ово је *први извод* функције, видећемо касније да постоји и *други* извод).

Уколико изаберемо $f(x) = x^n$, у том случају важиће

$$(x^n)' = nx^{n-1}.$$

Пример1:

- 1) $(x^{100})' = 100x^{100-1} = 100x^{99}$
- 2) $(x^{2020})' = 2020x^{2020-1} = 2020x^{2019}$
- 3) $(x^3)'=3x^2$
- 4) $(x^2)'=2x$
- 5) $(x)'=(x^1)'=1$
- 6) (-12)'=0 (извод сваког броја је једнак 0).

У наредном примеру користи се формула:

$$(const \cdot f(x))' = const \cdot f'(x),$$

при чему *const* означава константу, односно, број. Неформално речено, у случају када број множи функцију, извод тог производа се добија тако што се број помножи са њеним изводом.

Пример2:

- 1) $(2x^3)'=2 \cdot (x^3)'=2 \cdot 3x^2=6x^2$
- 2) $(-7x^4)' = -7(x^4)' = -7.4x^3 = -28x^3$
- 3) $(11x^2)'=11 \cdot (x^2)'=11 \cdot 2x = 22x$
- 4) $(-5x)' = -5 \cdot (x)' = -5 \cdot 1 = -5$.

Такође, приликом решавања задатака користићемо формуле за извод збира и разлике функција:

$$(f(x) + g(x))' = f'(x) + g'(x),$$

$$(f(x) - g(x))' = f'(x) - g'(x).$$

На основу формуле можемо видети да је извод збира (разлике) функција једнак збиру (разлици) извода тих функција.

Пример3:

1)
$$(x^5 + x^3)' = (x^5)' + (x^3)' = 5x^4 + 3x^2$$

2)
$$(x^2 - x^4)' = (x^2)' - (x^4)' = 2x - 4x^3$$

3)
$$(3x^2 - 6x + 12)' = (3x^2)' - (6x)' + (12)' = 3(x^2)' - 6(x)' = 3 \cdot 2x - 6 \cdot 1 = 6x - 6$$

4)
$$(x^3 - 5x^2 + 7x - 9)' = (x^3)' - (5x^2)' + (7x)' - (9)' = 3x^2 - 5 \cdot 2x + 7 \cdot 1$$

= $3x^2 - 10x + 7$

5)
$$(-x^3 + 14x^2 - 9x + 23)' = (-x^3)' + (14x^2)' - (9x)' + (23)'$$

= $-3x^2 + 14 \cdot 2x - 9 \cdot 1 = -3x^2 + 28x - 9$.

Извод другог реда функције f(x) (други извод функције), у ознаци f''(x), представља извод првог извода функције f(x), односно,

$$f''(x) = (f'(x))'$$

Пример4:

За функцију $f(x) = x^3 - 11x^2 + 24x - 19$, одредити први и други извод.

Решење:

$$f'(x) = (x^3 - 11x^2 + 24x - 19)' = (x^3)' - (11x^2)' + (24x)' - (19)'$$

$$= 3x^2 - 22x + 24.$$

$$f''(x) = (f'(x))' = (3x^2 - 22x + 24)' = (3x^2)' - (22x)' + (24)'$$

$$= 6x - 22.$$

Испитивање функција

График *кубне* функције $f(x) = ax^3 + bx^2 + cx + d$, $a \ne 0$, као и у случају квадратне функције, зависи од знака коефицијента a, тако да опет разликујемо два случаја:

Касније, приликом израчунавања разних вредности функције, од значаја ће нам бити особина да се свака кубна функција може приказати у факторисаном облику

$$f(x) = a(x - x_1)(x - x_2)(x - x_3),$$

где су x_1 , x_2 и x_3 нуле функције f(x) (пресечне тачке са x -осом).

Задаци:

1. Дата је функција $f(x) = x^3 + 5x^2 - 8x - 12 = (x+1)(x^2 + 4x - 12)$.

- а) одредити нуле функције,
- *b)* скицирати график,
- с) одредити екстремне вредности,
- *d)* испитати монотоност,
- е) одредити знак,
- *f*) одредити превојну тачку.

Решење:

а) Нуле функције се добијају решавајући једначину f(x) = 0, односно, у овом задатку решавајући $(x+1)(x^2+4x-12) = 0$. Претходна једначина се своди на решавање линеарне једначине x+1=0, односно, квадратне једначине $x^2+4x-12=0$. У првом случају лако добијамо $x_1=-1$, док су решења квадратне једначине дата са

$$x_{2,3} = \frac{-4 \pm \sqrt{4^2 - 4 \cdot 1 \cdot (-12)}}{2 \cdot 1} = \frac{-4 \pm \sqrt{64}}{2} = \frac{-4 \pm 8}{2} = -2 \pm 4,$$

то јест, $x_2 = -6$, $x_3 = 2$.

Користећи особину факторизације кубне функције, полазна функција може се записати у облику

$$f(x) = 1 \cdot (x - (-1))(x - (-6))(x - 2) = (x + 1)(x + 6)(x - 2).$$

b) График функције пролази кроз нуле $x_1=-1$, $x_2=-6$, $x_3=2$ и водећи рачуна да је a=1>0 добијамо:

c) За одређивање екстремних вредности (min, max) неопходно је решити једначину f'(x) = 0. Из тог разлога, израчунајмо најпре први извод функције:

$$f'(x) = (x^3 + 5x^2 - 8x - 12)' = (x^3)' + (5x^2)' - (8x)' - (12)'$$

$$=3x^2+10x-8$$
,

што нас доводи до квадратне једначине $3x^2 + 10x - 8 = 0$. Њеним решавањем добијамо:

$$x_{4,5} = \frac{-10 \pm \sqrt{10^2 - 4 \cdot 3 \cdot (-8)}}{2 \cdot 3} = \frac{-10 \pm \sqrt{196}}{6} = \frac{-10 \pm 14}{6}$$

односно,

$$x_4 = \frac{-10 - 14}{6} = \frac{-24}{6} = -4$$

И

$$x_5 = \frac{-10+14}{6} = \frac{4}{6} = \frac{2}{3}$$
.

Будући да $x_4 = -4 \in (-6, -1)$, на основу графика закључујемо да функција за $x_4 = -4$ достиже (локални) *максимум*, што записујемо:

$$A_{max}(-4, f(-4)).$$

Слично, због $x_5 = \frac{2}{3} \in (-1,2)$, функција достиже (локални) *минимум*:

$$B_{min}\left(\frac{2}{3}, f\left(\frac{2}{3}\right)\right).$$

Остаје још да се израчунају вредности f(-4), односно, $f(\frac{2}{3})$. У ту сврху ће нам послужити факторизација полазне кубне функције:

$$f(-4) = (-4+1)(-4+6)(-4-2) = -3 \cdot 2 \cdot (-6) = 36,$$

$$f\left(\frac{2}{3}\right) = \left(\frac{2}{3}+1\right)\left(\frac{2}{3}+6\right)\left(\frac{2}{3}-2\right) = \left(\frac{2}{3}+\frac{3}{3}\right)\left(\frac{2}{3}+\frac{18}{3}\right)\left(\frac{2}{3}-\frac{18}{3}\right)$$

$$= \frac{5}{3} \cdot \frac{20}{3} \cdot \left(-\frac{4}{3}\right) = -\frac{400}{27}.$$

На крају, тражене екстремне вредности су

$$A_{max}(-4,36),$$
 $B_{min}\left(\frac{2}{3}, -\frac{400}{27}\right).$

d) Уцртавајући добијене екстремне вредности A_{max} , односно, B_{min} на претходно добијени график имамо:

одакле записујемо интервале монотоности:

$$f(x) \uparrow \Leftrightarrow x \in (-\infty, -4) \cup \left(\frac{2}{3}, +\infty\right),$$

 $f(x) \downarrow \Leftrightarrow x \in \left(-4, \frac{2}{3}\right).$

a) Функција је позитивна (негативна) над интервалима на којима се њен график налази испод (изнад) x —осе. Користећи наведени критеријум, са графика добијамо

$$f(x) > 0 \Leftrightarrow x \in (-6, -1) \cup (2, +\infty),$$

 $f(x) < 0 \Leftrightarrow x \in (-\infty, -6) \cup (-1, 2).$

b) Превојна тачка се добија преко другог извода функције, односно, решавајући једначину f''(x) = 0.

$$f''(x) = (3x^2 + 10x - 8)' = (3x^2)' + (10x)' - (8)' = 6x + 10.$$
$$6x + 10 = 0 \Leftrightarrow 6x = -10 \Leftrightarrow x = -\frac{10}{6} = -\frac{5}{3}.$$

Према томе, превојна тачка је $C\left(-\frac{5}{3}, f(-\frac{5}{3})\right)$, па као у случају екстремних вредности

$$f\left(-\frac{5}{3}\right) = \left(-\frac{5}{3} + 1\right)\left(-\frac{5}{3} + 6\right)\left(-\frac{5}{3} - 2\right) = \left(-\frac{5}{3} + \frac{3}{3}\right)\left(-\frac{5}{3} + \frac{18}{3}\right)\left(-\frac{5}{3} - \frac{6}{3}\right)$$
$$= -\frac{2}{3} \cdot \frac{13}{3} \cdot \left(-\frac{11}{3}\right) = \frac{286}{27}.$$

Коначно, превојна тачка је $C\left(-\frac{5}{3},\frac{286}{27}\right)$.