Th.
$$A' = T_{e \to e'} A T_{e \to e'}^{-1}$$

Nota. $C = A + \lambda B$

Следствия:

- 1) $TCT^{-1} = T(A + \lambda B)T^{-1} = TAT^{-1} + \lambda TBT^{-1}$
- 2) B = I $TBT^{-1} = TIT^{-1} = I$, T. K. TI = T, $TT^{-1} = I$
- 3) $\det A^{-1} = \det(TAT^{-1}) = \det T \det A \det T^{-1} = \det A \cdot 1$

Nota: То есть характеристика нашего объекта - инвариант при преобразовании T

Def: Матрица A называется ортогональной если $A^{-1} = A^T$

Следствие: $AA^{-1} = AA^T = I$

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \cdots \begin{pmatrix} a_{11} & a_{21} & \dots & a_{n1} \\ a_{12} & a_{22} & \dots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \dots & a_{nn} \end{pmatrix} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

$$\forall i \sum_{j=1}^{n} a_{ij} a_{ij} = (A_i, A_i) = 1 \ \forall i, j (i \neq j) \sum_{k=1}^{n} a_{ik} a_{jk} = (A_i, A_j) = 0$$

В общем
$$(A_i, A_j) = \begin{bmatrix} 1, i = j \\ 0, i \neq j \end{bmatrix}$$

 Def . Оператор $\mathcal A$ называется ортогональным, если его матрица ортогональна

? А ортогональна в каком-либо базисе или во всех?

Свойство. \mathcal{A} - ортогонален, то $\det A = \pm 1$ (следует из определения $\det(AA^T) = \det^2(A) = \det(I)$)

 $Th.\ T_{e \to e'}$ - преобразование координат в $V^n.$ Тогда T - ортогональный оператор Базис e - ортонормированный базис

$$\square$$
 \square в базисе e матрица $T=\begin{pmatrix} au_{11}&\ldots& au_{1n}\\ \vdots&\ddots&\vdots\\ au_{n1}&\ldots& au_{nn} \end{pmatrix}$ - неортогональна

Тогда
$$e_1' = \sum_{i=1}^n \tau_{1i} e_i \quad \middle| \cdot e_1'$$

 $1=(e_1',e_1')=(\Sigma_{i=1}^n\tau_{1i}e_i)^2= au_{11}^2e_1^2+ au_{11}e_1 au_{12}e_2+\cdots= au_{11}^2+\cdots+ au_{1n}^2=1$ - то есть строка - единичный вектор

 $0=(e_1',e_2')=(au_{11}e_1+ au_{12}e_1+\dots)\cdot(au_{21}e_1+ au_{22}e_2+\dots)=$ произведение 1-ой строки на 2-ую, то есть строки ортогональны

Таким образом, матрица T - ортогональна

Nota. Тогда $A' = TAT^{-1} = TAT^T$

2.7. Собственные векторы и значения оператора

Def. Инвариантное подпространство оператора $\mathcal{A}:V\to V$ - это $U=\{x\in V_1\in V|\mathcal{A}x\in V_1\}$

 $Ex.\ V = \mathcal{P}_n(t)$ - пространство многочленов степени $\leq n$ на $[a;b],\ \mathcal{D} = \frac{d}{dt}$

 $Nota.\ Ker\mathcal{A}, Im\mathcal{A}$ - инвариантные $(A:V \to V)$

Def. Характеристический многочлен оператора $\mathcal{A}:V\to V$ ($\mathcal{A}x=Ax,A$ - матрица в неком базисе)

$$\xi(\lambda) = \det(A - \lambda I)$$

$$Nota$$
. Матрица $A - \lambda I$:

$$\begin{vmatrix} a_{11} - \lambda & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} - \lambda \end{vmatrix}$$

Nota. Уравнение $\xi(\lambda) = 0$ называется вековым

Def. Собственным вектором оператора \mathcal{A} , отвечающим собственному значению λ , называется $x \neq 0 \mid \mathcal{A}x = \lambda x$

 $\mathit{Def}.$ Собственное подпространство оператора $\mathcal{A},$ отвечающее числу $\lambda_i,$

$$U_{\lambda_i} = \{ x \in V \mid \mathcal{A}x = \lambda_i x \} \cup \{0\}$$

 $Def. \dim U_{\lambda_i} = \beta$ - геометрическая кратность число λ_i

Th.
$$\mathcal{A}x = \lambda x \iff \det(A - \lambda I) = 0$$
, $A: V^n \to V^n$

$$\square \iff |A - \lambda I| = 0 \iff rang(A - \lambda I) < n \iff \dim Im(A - \lambda I) < n \iff \dim Ker(A - \lambda I) \ge 1$$
$$\exists x \in Ker(A - \lambda I), x \ne 0 \mid (A - \lambda I)x = 0 \iff Ax - \lambda Ix = 0 \iff Ax = \lambda x$$

Nota. По основной теореме алгебры вековое уравнение имеет n корней (не всех из них вещественные). В конкретном множестве $\mathcal{K} \ni \lambda$ их может не быть

 $\mathit{Def}.$ Кратность корня λ_i называется алгебраической кратностью

 $Th. \ \lambda_1 \neq \lambda_2(\mathcal{A}x_1=\lambda_1x_1,\mathcal{A}x_2=\lambda_2x_2) \Longrightarrow x_1,x_2$ - линейно независимы

$$\square$$
 Составим комбинацию: $c_1x_1 + c_2x_2 = 0$ $|\cdot\mathcal{A}|$

$$\lambda_1 \neq \lambda_2 \Longrightarrow \lambda_1^2 + \lambda_2^2 \neq 0, \exists \lambda_2 \neq 0$$

$$c_1 \mathcal{A} x_1 + c_2 \mathcal{A} x_2 = 0 \iff c_1 \lambda_1 x_1 + c_2 \lambda_2 x_2 = 0$$

Умножим $c_1x_1 + c_2x_2 = 0$ на λ_2 : $c_1\lambda_2x_1 + c_2\lambda_2x_2 = 0$

$$c_1\lambda_1x_1 + c_2\lambda_2x_2 - c_1\lambda_2x_1 - c_2\lambda_2x_2 = 0$$

$$c_1 x_1 (\lambda_1 - \lambda_2) = 0$$

Так как $\lambda_1 \neq \lambda_2$ по условию, $x_1 \neq 0$ - собственный вектор, поэтому $c_1 = 0$, а комбинация линейно независима

Если
$$\lambda_1 = 0, \lambda_2 \neq 0$$
: $c_2\lambda_2x_2 = 0 \Longrightarrow c_2 = 0$

Nota. Приняв доказательство за базу индукции, можно доказать линейную независимость для k-ой системы собственных векторов для попарно различных k чисел λ