

Chemical kinetics Procida June 2015

Module 4

Module 4

- Challenges in combustion chemistry (PG)
- Future modeling possibilities in OpenSMOKE (AC)
- Task 3: Flame inhibitors
 - Introduction (AC)
 - Solving using OpenSMOKE++ (AC, PG)

Research issues

- Control pollutant formation
 - Unburned hydrocarbons
 - PAH
 - Soot
 - Nitrogen oxides
- Abate global warming
 - Use of biomass and bio-derived fuels
 - Formation of liquid bio-derived fuels
 - Kinetics of bio-derived fuels
 - Use of alcohols such as ethanol in diesel engines
 - Chemistry of KCl
 - Oxy-fuel combustion
 - Formation and oxidation of soot

Challenges in fuel oxidation chemistry

- Extend fuel range to large hydrocarbons and oxygenated hydrocarbons ("practical fuels")
- Secure the modeling foundation: H₂ and small hydrocarbons
- Extend range of characterization to high pressure

Current challenges in combustion chemistry

- Extend fuel range to large hydrocarbons and oxygenated hydrocarbons ("practical fuels")
- Secure the modeling foundation: H₂ and small hydrocarbons
- Extend range of characterization to high pressure

High-pressure flow reactor

• Temperature: <925 K

• Pressure: 10–100 bar

Flow: 1−5 NL/min

• Reaction zone: \sim 50 cm

Residence time: 2-60 s

 Quartz reactor to minimize surface reactions

Measurable species: H₂, O₂, N₂,
 CO, CO₂, most hydrocarbons/oxygenates, SO₂, H₂S, NO_x, CH₃NO₂

High-pressure chemistry program: Background

- Generally few data available for hydrocarbon oxidation at high pressure
 - Shock tubes and rapid compression engines (mostly > 1000 K and < 50 bar)
 - Flow reactors and jet-stirred reactors (mostly < 15 bar)
 - Laminar premixed flames (diagnostic limitations at high pressure)
 - Super-critical oxidation reactors
- High pressure, medium temperature chemistry important for
 - Gas-to-liquid processes
 - Ignition in engines
 - Extension of the boundaries of kinetic model development and validation

High-pressure H₂ ignition and oxidation

Objectives of high-pressure program

- Characterize experimentally high-pressure oxidation at 600-925 K, varying the following parameters
 - Fuels
 - H₂
 - CH₄, C₂H₆, CH₄/C₂H₆ blends, C₂H₄, C₂H₂
 - CH₃OH, C₂H₅OH, DME
 - Diesel surrogates
 - Pressure (20-100 bar)
 - Temperature (600-925 K)
 - Stoichiometry (0.2 $< \lambda < 20$)
 - Presence / absence of NO_x
- Analyze results in terms of a detailed reaction mechanism

H₂ oxidation at 50 bar

Third explosion limit for H₂

Chain-branching:

$$H_2+HO_2 \rightarrow H_2O_2+H$$

 $H_2O_2(+M) \rightarrow OH+OH(+M)$

Termination:

$$HO_2+HO_2 \rightarrow H_2O_2+O_2$$

 $HO_2+OH \rightarrow H_2O+O_2$

Explosion limits

Effect of high pressure on fuel oxidation

- The $H+O_2+M=HO_2+M$ reaction is promoted compared to $H+O_2=O+OH$
- Rate constants for pressure-dependent reactions approach high-pressure limit
- Addition reactions may become more important
 - Addition of OH to fuel molecule
 - Addition of HO₂ to fuel molecule
 - Addition of O₂ to fuel-derived radicals

High-pressure oxidation of CH₄ (100 atm)

 CH_4/C_2H_6

CH₄/NO_x

Reaction pathways for CH₄ at high pressure

High-pressure oxidation of C₂H₂

- and related chemistry

Flow reactor (60 atm)
Gimenez et al. (unpublished)

$$C_2H_2 \xrightarrow{+OH} C_2H_2OH \xrightarrow{+O_2} OCHCHO + OH$$
 $HOCHO + HCO$

Oxidation in static reactor (603 K) Hay and Norrish (1965)

Laminar flame speed (433 K) De Wilde and van Tiggelen (1968) Marshall and Glarborg (2014)

Hydrocarbon oxidation – high pressure

High pressure, medium temperature chemistry: Ignition in engines

Gas-to-liquid processes Extension of the boundaries of kinetic model development and validation

Flow reactor, 50 bar (Hashemi et al., 2013)

Formation of PAH and soot

CH₄/air co-flow flame

Couci et al. (2012)

CH₄/C₃H₄ oxidation in flow reactor

DTU Chemical Engineering, Technical University of Denmark

Combine flow reactor and advanced diagnostics:

- Increase temperature in steps
- Step through fuel $\rightarrow C_6H_6 \rightarrow PAH \rightarrow soot$

Nitrogen chemistry

- Emissions of nitrogen oxides have been a concern since the 1970's
- Extensive R&D has lead to efficient measures
- New challenges
 - Regulations increasingly stringent
 - New fuels and fuel mixtures
 - Natural gas (Thermal NO, prompt NO)
 - Biomass (Fuel-NO, mostly from amines)
 - -Low- NO_x burners and Selective Catalytic Reduction of NO (SCR) not applicable for range of fuels and technologies

Formation mechanisms for NO

Fixation of atmospheric N₂

$$O + N_2 \rightarrow NO + N$$
 (>1800 K)
 $CH + N_2 \rightarrow HCN + N$
 $O + N_2 + M \rightarrow N_2O + M$ (High pressure)

Conversion of fuel nitrogen

Thermal NO formation

- Mechanism well known
- O+N₂ = N+NO rate limiting
- The rate constant accurate only within a factor of two
- Present work:
 - N_2/O_2 in a flow reactor
 - Compare model with literature data

Abian et al. (2014)

Prompt NO formation

- Mechanism:
 - $CH+N_2 = NCN+H$
 - $NCN+O_x \rightarrow NO, N_2$
- Uncertainties:
 - Heat of formation of NCN
 - NCN+H rate constant
 - Formation and destruction of CH_i radicals
- Present work:
 - High level theory
 - $\Delta H_{f,298}(NCN)$
 - NCN+H, CH₂+O₂, CH+H₂O
 - Compare model with literature data

Klippenstein et al. (2014)

 $CH_2+H \rightarrow CH+H_2$

Jet-stirred reactor results (CH₄/air; Bartok et al., 1972)

Homogeneous fuel nitrogen chemistry

 $CH_4/O_2/Ar$ flames doped with NH_3 Tian et al. (2009)

- Expand species range
 - fuels
 - diagnostics

Sulfur chemistry

- Gas-phase sulfur chemistry is important in a variety of industrial processes
- Homogeneous oxidation of SO₂ to SO₃, as well as the interaction with the O/H radical pool, is fairly well understood

• Challenges:

- -The chemistry of reduced sulfur species like H₂S, COS, and CS₂ is not understood in detail
- -The interaction of sulfur species with alkali and halogen species is under investigation
- The interaction of sulfur with hydrocarbons is a mystery

Influence of SO₂ on the radical pool

Flow reactor data: Dagaut et al., 2004

Batch reactor data (784 K): Webster and Walsh, 1965

Inhibition mechanism:

$$H+SO_2(+M) \rightarrow HOSO(+M)$$

 $HOSO+H \rightarrow SO+H_2O$
 $SO+OH \rightarrow SO_2+H$

Post-flame [H] decay

Laminar premixed flames Kallend, 1972

Sensitization by SO₂

Swirl-stabilized natural gas flame (35 kW, Φ ~ 1.0)

DTU Chemical Engineering, Technical University of Denmark

Oxidation chemistry of reduced sulphur species

Batch reactor (490 K)

☑ Flow reactor (1273 K)

OCS oxidation at 1273 K; sensitivity coefficients (Glarborg and Marshall, 2013)

CS₂ explosion limits and ignition delay (Glarborg, Marshall, Troe, et al., 2013)

Halogen chemistry

- Gas-phase halogen chemistry is important in a variety of industrial processes
- Brominated hydrocarbons used as flame retardants and (still) important in incineration
- Most solid fuels contain considerable amounts of chlorine
 - Deposition and corrosion
 - Pollutant formation (HCl, dioxin, aerosols)
 - Chlorinated species other than HCl may represent a challenge in gasification gas clean-up
- Detailed models for high-temperature halogen chemistry are available, but only with limited predictive capabilities

Recent work in halogen chemistry: bromine

H₂/Br₂ flame speeds

H₂/O₂/HBr explosion limits

H₂/air/Br₂ flame speeds

Dixon-Lewis et al., 2012 (Sugden Prize 2013)

Collaboration:

Leeds University (GB)
University of North Texas (US)
Argonne National Laboratory (US)
Technion (Israel)
DLR (Germany)
Politecnico di Milano (Italy)

DTU Chemical Engineering, Technical University of Denmark

Recent work in halogen chemistry: chlorine

 H_2/Cl_2 flame speeds Data: Leylegian et al., 2005

H₂/Cl₂ ignition delay times Lifshitz and Schechner, 1975

Oxidation of $CO/HCI/H_2O/O_2/N_2$ in a flow reactor

Data:Roesler et al., 1992

Pelucchi et al., 2015

Alkali chemistry: KCI related issues in biomass combustion

DTU Chemical Engineering, Technical University of Denmark

Gas-phase K/S/CI transformations

Proposed KCI sulfation mechanism:

$$SO_2 + \frac{1}{2}O_2 \rightarrow SO_3$$
 (global, rate limiting)

 $KCI + SO_3 (+M) \rightarrow KSO_3CI (+M)$ (fast)

 $KSO_3CI + H_2O \rightarrow KHSO_4 + HCI$ (fast)

 $KHSO_4 + KCI \rightarrow K_2SO_4 + HCI$ (fast)

 $2KCI+SO_2+\frac{1}{2}O_2+H_2O\rightarrow K_2SO_4+2HCI$ (net)

Post-flame sulphation of KCI

Li et al. (2012)

- No experimental data for key intermediates
- Mechanism only a hypothesis

DTU Chemical Engineering, Technical University of Denmark

A mechanism for sulfation of KCI

Sulphation of KCI

Entrained flow reactor Data: Iisa et al., 1999

Homogeneous KCI sulfation

Gas-phase mechanism:

$$SO_2+O_X \rightarrow SO_3$$

 $KCI + SO_3 (+M) \rightarrow KSO_3CI (+M)$
 $KSO_3CI + H_2O \rightarrow KHSO_4 + HCI$
 $KHSO_4 + KCI \rightarrow K_2SO_4 + HCI$
 $K_2SO_4 \rightarrow aerosol$

Post-flame sulphation of KCl

DTU Chemical Engineering, Technical University of Denmark

Li et al. (2012)

Wu et al.

(2013a)

Sulphate additives for KCI control

Additive temperature windows Wu et al. (2013b)

Temperature (°C)

DTU Chemical Engineering, Technical University of Denmark

Collaboration:

Some concluding remarks

- Novel challenges in thermal fuel conversion
 - Production of bio-fuels (pyrolysis, gasification)
 - -Use and kinetics of bio-derived fuels
 - Combustion of alternative fuels
- And an old challenge, still not resolved
 - Prediction of PAH and soot formation and destruction
- Measures:
 - Combine advanced diagnostics with new experimental settings
 - Refine and extend modelling tools
- Bridging fundamental research and application is required to meet the challenges