

வடமாகாணக் கல்வித் திணைக்களத்தின் அனுசரணையுடன் தொண்டைமானாறு வெளிக்கள நிலையம் நடாத்தும்

Field Work Centre தவணைப் பரீட்சை, நவம்பர்- 2017

Term Examination, November - 2017

தரம் :- 13 (2018)

இணைந்த கணிதம் *–* I

பகுதி - B

- 11) (a) $P^2x^2 + 6pqx + pr + 8q^2 = 0$ என்னும் இருபடிச் சமன்பாட்டின் மூலங்கள் பொருந்துவனவாயின் $pr(x+1)^2 = 4q^2x$ என்னும் இருபடிச் சமன்பாட்டின் மூலங்களும் பொருந்தும் எனக்காட்டுக.
 - (b) $x^2 ax + b = 0$ இன் மூலங்கள் \propto , β எனக் கொள்வோம். $\propto (2 \propto +\beta)$, $\beta (\propto +2\beta)$ என்பவற்றை மூலங்களாகவுடைய இருபடிச் சமன்பாட்டை a, b இன் சார்பில் காண்க.
 - (c) f(x), g(x) என்பன x இலான இரு பல்லுறுப்பிகளாகும். f(x) ஐ $3x^2+x-2$ இனாலும் g(x) ஐ x^2-1 இனாலும் வகுக்க வரும் மீதிகள் முறையே 2x+1,x+2 ஆகும். பல்லுறுப்பி f(x)+g(x) இன் ஏகபரிமாணக் காரணி ஒன்றைக் கண்டு f(x). g(x) ஐ இவ் ஏகபரிமாணக் காரணியால் வகுக்க வரும் மீதி -1 எனக் காட்டுக.
- 12) (a)
- (i) x > 0 இற்கு $x + \frac{1}{x} \ge 2$ எனக் காட்டுக.
- (ii) a,b,c என்பன நேர்எண்கள் மேற்போந்த முடிவைப் பயன்படுத்தி (a+b+c) $\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\geq 9$ எனக் காட்டுக.
- $(iii)\,a+b+c=1$ எனில் (1-a),(1-b),(1-c) என்பன நேரானவை எனக்காட்டுக. $\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}\geq \frac{9}{2}$ என்பதை உய்தறிக. மேலும் $\frac{a}{1-a}+\frac{b}{1-b}+\frac{c}{1-c}\geq \frac{3}{2}$ என்பதையும் உய்தறிக.
- (b) Y=|2x-1| , Y=|x+1|+1 ஆகிய வரைபுகளை ஒரே வரிபடத்தில் வரைக. இதிலிருந்து, $|2x-1|-|x+1|\geq 1$ ஐத் தீர்க்க.

1

- 13) (a) $x \neq 1,4$ இற்கு $f(x) = \frac{x}{(x-1)(x-4)}$ எனக் கொள்வோம் $f^1(x) = \frac{4-x^2}{(x-1)^2(x-4)^2}$ எனக் காட்டுக. அணுகு கோடுகளையும் திரும்பற்புள்ளிகளையும் காட்டி y = f(x) இன் வரைபை பருமட்டாக வரைக.
 - (b) நீளம் a இனை உடைய சதுர அட்டைத் தாளை எடுத்து ஒவ்வொரு மூலையிருந்தம் ஒரே அளவான ஒவ்வொரு சதுரத்தை அகற்றியபின் வெட்டப்பட்ட விளிம்புகளை இணைப்பதன் மூலம் சதுர அடியுள்ள ஒரு திறந்த பெட்டி ஆக்கப்படுகின்றது. பெட்டியின் உயர் கனவளவு $\frac{2a^3}{27}$ எனக் காட்டுக.
- 14) (a) $t=x^{\frac{1}{2}}$ எனும் பிரதியீட்டைப் பயன்படுத்தி $\int_1^4 \frac{1}{1+x^{\frac{1}{2}}} \, dx$ ஐக் காண்க.
 - (b) பகுதிகளாகத் தொகையிடலைப் பயன்படுத்தி $\int x^3 \tan^{-1}x dx$ ஐக் காண்க.
 - (c) $\frac{2x+1}{(x+1)(x^2+4)}$ ஐ பகுதிப் பின்னங்களாக எடுத்துரைக்க. இதிலிருந்து $\int \frac{2x+1}{(x+1)(x^2+4)} \, dx$ ஐக் காண்க.
- 15) $(ax_1 + by_1 + c)(ax_2 + by_2 + c)$ என்பது நேர் அல்லது மறை என்பதற்கேற்ப $(x_1, y_1), (x_2, y_2)$ என்னும் புள்ளிகள் கோடு ax + by + c = 0 இற்கு ஒரே பக்கத்தில் அல்லத எதிர்பக்கங்களில் இருக்கும் என நிறுவுக.

முக்கோணி ABC இன் பக்கங்கள் AB,BC,CA என்பன முறையே

2x - y = 0, 2x - 4y + 1 = 0, 11x - 2y + 1 = 0 என்னும் நேர்கோடுகள் வழியே உள்ளன.

- (i) $A\hat{B}C$ இன் இருசம கூறாக்கியின் சமன்பாட்டைக் காண்க.
- (ii) $A\hat{C}B$ இன் இருசமகூறாக்கியின் சமன்பாட்டைக் காண்க.
- (iii) முக்கோணி ABC இன் உள் மையத்தின் ஆள்கூறுகளையும் உள்வட்ட ஆரையையும் காண்க.
- $S_1 \equiv x^2 + y^2 2x 32y + 1 = 0$, $S_2 \equiv x^2 + y^2 + 12x + 16y + 19 = 0$ எனக் கொள்வோம்.
 - (i) S_1,S_2 என்பன ஒன்றையொன்று வெளியே தொடுமெனக் காட்டுக.
 - (ii) தொடுபுள்ளியின் ஆள்கூறுகளைக் காண்க.
 - (iii) தொடுபுள்ளியில் உள்ள இரு வட்டங்களுக்குமான தொடலியின் சமன்பாட்டைக் காண்க.
 - (iv) S_1 , S_2 என்பன உட்புறமாகத் தொடுகின்ற வட்டங்களுள் மிகச்சிறிய வட்டத்தின் மையத்தையும் ஆரையையும் கண்டு வட்டத்தின் சமன்பாட்டையும் எழுதுக.

- 17) (a) நேர் நிறைவெண்கள் p,q இங்கு $tan^{-1}\left(\frac{1}{p}\right) + tan^{-1}\left(\frac{1}{q}\right) = \frac{\pi}{4}$ எனின் (p-1)(q-1) = 2 எனக் காட்டுக.
 - இதிலிருந்து p,q இன் பெறுமானங்களைக் காண்க.
 - மேலே உள்ள முடிவைப் பயன்படுத்தி
 - $tan^{-1}\left(rac{1}{x+2y}
 ight)+tan^{-1}\left(rac{1}{x+y}
 ight)=rac{\pi}{4}$ என்னும் சமன்பாட்டைத் திருப்திப்படுத்தும்
 - நேர்நிறைவெண்கள் x,y இன் பெறுமானங்களைக் காண்க.
 - (b) $\cos x + \cos 2x + \cos 3x = \sin x + \sin 2x$ ஐத் தீர்க்க.
 - (c) வழமையான குறியீடுகளுடன் சைன்விதியைக் கூறுக. வழமையான குறியீடுகளுடன்

$$a\cos\left(\frac{B-C}{2}\right) = (b+c)\sin\frac{A}{2}$$
 ஐ நிறுவுக.

இதிலிருந்து $tan \frac{B}{2} tan \frac{C}{2} = \frac{b+c-a}{b+c+a}$ என்பதை உய்த்தறிக.