1. 设 $\{X_{ij}, i \geq 0\}$ 是时齐的 Markov 链,状态空间 i=(1,2,3),初始分布为 $P(X_0=1)=P(X_0=2)=P(X_0=3)=1/3$ 。其一步转移矩阵是

$$\begin{bmatrix} \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ \frac{2}{3} & 0 & \frac{1}{3} \\ \frac{3}{5} & \frac{2}{5} & 0 \end{bmatrix}$$

则下列叙述正确的是

选项:

- A. $f_{23} = 1/2$
- B. 状态1是零常返的
- C. $\mu_2 = 93/20$
- D. $\mu_3 = 93/20$

答案: D

2. 设 $X(t)=A+Bt,\;t\geq 0$ 。 这里随机变量 A 和 B 服从相同的 0-1 分布, $P(A=1)=p\in (0,1)$ 。 若 E[A(B-1)]=0。

则该过程的所有样本函数

选项:

- A. 有两条,且分别为 $x_1(t) = 1 + t$, $x_2(t) = 0$.
- B. 有四条,且分别为 $x_1(t) = 1 + t$, $x_2(t) = 0$, $x_3(t) = t$, $x_4(t) = 1$.
- C. 有三条,且分别为 $x_1(t) = 1 + t$, $x_2(t) = 0$, $x_3(t) = t$.
- D. 有三条,且分别为 $x_1(t) = 1 + t$, $x_2(t) = 0$, $x_3(t) = 1$.

答案: A

3. 设 $X(t)=5\sin(\pi t+\Theta),\ t\geq 0$,其中 Θ 是随机变量,且满足 $P(\Theta=0)=0.2,\ P(\Theta=\pi/2)=0.8$ 。则 $R_X(0,1)=$

选项:

- A. -20
- B. 16
- C. 0
- D. -4

答案: A

4. 设 $\{X_n, n \geq 0\}$ 是时齐的 Markov 链,状态空间 $S = \{0, 1, 2, 3, 4\}$,一步转移概率为:

•
$$P_{00} = P_{21} = 1$$

•
$$P_{12} = P_{13} = P_{32} = P_{33} = \frac{1}{2}$$

•
$$P_{40} = P_{42} = P_{44} = \frac{1}{3}$$

初始分布为
$$P(X_0=0)=P(X_0=3)=P(X_0=4)=rac{1}{3}$$
。则

$$P_{33}^{(4)} =$$

选项:

- A. 1/8
- B. 1/4
- C. 3/16
- D. 5/16

答案: D

5. 已知 X(t)=At+|B|, $-\infty < t < \infty$,其中 A 和 B 相互独立,A 服从 0-1 分布,且 P(A=1)=0.5, $B\sim \mathcal{N}(0,1)$ 。则该过程的均值函数 $\mu_X(t)$ 和自协方差函数 $R_X(t,s)$ 分别为:

A.
$$\mu_X(t)=0.5t+rac{2}{\sqrt{2\pi}},\quad R_X(t,s)=ts+rac{2}{\sqrt{2\pi}}(t+s)+1$$

B.
$$ightharpoonup \mu_X(t)=0.5t+rac{2}{\sqrt{2\pi}}, \quad R_X(t,s)=0.5ts+rac{2}{\sqrt{2\pi}}(t+s)+1$$

C.
$$\mu_X(t) = 0.5t + rac{1}{\sqrt{2\pi}}, \quad R_X(t,s) = 0.5ts + rac{2}{\sqrt{2\pi}}(t+s) + 1$$

D.
$$\mu_X(t)=0.5t+rac{1}{\sqrt{2\pi}}, \quad R_X(t,s)=0.5ts+rac{1}{\sqrt{2\pi}}(t+s)+1$$

答案: B

6. 设 $\{X_n, n \geq 0\}$ 是时齐的Markov链,状态空间 $S = \{0,1,2,3,4\}$,一步转移概率为:

•
$$P_{00} = P_{21} = 1$$

•
$$P_{12} = P_{13} = P_{32} = P_{33} = \frac{1}{2}$$

•
$$P_{40} = P_{42} = P_{44} = \frac{1}{3}$$

初始分布为 $P(X_0=0)=P(X_0=3)=P(X_0=4)=\frac{1}{3}$ 。则

$$\lim_{n\to\infty} P_{40}^{(n)} =$$

选项:

- A. 1/3
- B. 1/5
- C. 1/2
- D. 1/6

答案: C

7. 设 $\{X_n, n \geq 0\}$ 是时齐的Markov链,状态空间 $I = \{0, 1, 2, 3, 4\}$,一步转移概率为:

•
$$P_{00} = P_{21} = 1$$

•
$$P_{12} = P_{13} = P_{32} = P_{33} = \frac{1}{2}$$

•
$$P_{40} = P_{42} = P_{44} = \frac{1}{3}$$

初始分布为 $P(X_0=0)=P(X_0=3)=P(X_0=4)=\frac{1}{3}$ 。则关于正常返态的平均回转时的叙述错误的是:

• A.
$$\mu_0 = 1$$

• B.
$$\mu_1 = 3$$

• C.
$$\mu_2 = 3$$

• D.
$$\mu_3 = \frac{3}{2}$$

答案: D

8. 设 $\{X(t), t \geq 0\}$ 是正态过程,且 E[X(t)] = 0, $Cov(X(t), X(s)) = ts + \min(t, s)$,则 X(2) - X(1) 服从

选项:

- A. N(0,4)
- B. N(0,5)
- C. N(0,2)
- D. N(0,3)

答案: C

9. 假设 $\{X(t), t \geq 0\}$ 和 $\{Y(t), t \geq 0\}$ 二阶矩都存在且相互独立,令 Z(t) = X(t)Y(t), $t \geq 0$ 。则下列等式中恒成立的是

选项:

- A. $C_Z(t,t+ au)=C_X(t,t+ au)C_Y(t,t+ au)$
- B. $R_Z(t,t+ au)=R_X(t,t+ au)R_Y(t,t+ au)$
- C. $D_Z(t) = D_X(t)D_Y(t)$
- D. $\mu_Z(t) = \mu_X(t)\mu_Y(t)$

答案: B、D

10. 设 $\{X_n, n \geq 0\}$ 是时齐的Markov链,状态空间 $S = \{0, 1, 2, 3, 4\}$,一步转移概率为:

- $P_{00} = P_{21} = 1$
- $P_{12} = P_{13} = \frac{1}{2}$
- $P_{32} = P_{33} = \frac{1}{2}$
- $P_{40} = P_{42} = P_{44} = \frac{1}{3}$

初始分布为 $P(X_0=0)=P(X_0=3)=P(X_0=4)=\frac{1}{3}$ 。则下列选项中正确的值是:

选项:

- A. $\lim_{n o \infty} p_{22}^{(n)} = rac{1}{3}$
- B. $\lim_{n o \infty} p_{02}^{(n)} = 0$
- C. $\lim_{n \to \infty} P(X_n = 1) = \frac{1}{6}$
- D. $\lim_{n\to\infty} P(X_n=0)=\frac{1}{2}$

答案: A、B、C、D