Theory and Technology of Semiconductor Devices Assignment 2

Dr. Shooshtari

KN Toosi University of Technology

Due Date: Dec 20

Problem 1 Doing an Arsenic diffusion on a p-type wafer with background doping of $10^{17}cm^{-3}$ and limited $10^{14}cm^{-2}$ amount of Arsenic (constant-total-dopant) at $1100^{\circ}C$ for 1.5 hours, find the surface concentration and junction depth.

Note: $\dot{D} = 2.07 \times 10^{-14}~cm^2/s$ for Arsenic at $1100^{\circ}C$

Problem 2 A two-step Boron diffusion is used on an n-type wafer to form a p-type region; first 30 minutes with constant surface concentration of $1.1 \times 10^{20} cm^{-3}$ at $900^{\circ}C$ followed by 4 hours (the constant-total step) at $1100^{\circ}C$. find (a) junction depth at the end of each step (b) the gradient of concentration for $x = x_j$ at the end of each step (c) the surface concentration at the end of step 2

Note: $900^{\circ}C \rightarrow D = 1.45 \times 10^{-15}~cm^2/s$

Note: 900 $C \to D = 1.43 \times 10^{-3} \text{ cm}^{-3} / \text{s}^{-3}$ $1100^{\circ}C \to D = 2.96 \times 10^{-13} \text{ cm}^{-2} / \text{s}^{-3}$

Note: solving step 2 has Bonus mark (not required)

Problem 3 Drive the concentration equation (C(x,t)), solving the Fick's equation for (a) constant surface source (b) limited amount of dopant (constant-total-dopant)

Note: this Problem has Bonus mark (not required)

Note: Solving all bonus parts can boost the mark up to 120%