Title of the Document

Author Name

June 22, 2024

Contents

Title of the Document 2

1 Exercises

- **2.1.** Let (x,d) be a metric space and $S \subseteq X$. Show that $0 < S^{int} = \emptyset$.
- **2.2.** Show that for an arbitrary choice of $a, b, r \in \mathbb{R}$, the closed disk $\{x = a^2 + (y b)^2 \le r^2\}$ is a bounded set in \mathbb{R}^2 .
- **2.3.** Let (x,d) be a metric space and for $x,y,\epsilon\in X$, show that if $d(x,y)<\epsilon$ for every $\epsilon>0$, then x=y.
- (i) Assume $S \neq \emptyset$. Then $\exists x \in S, B_{\epsilon}(x) \subseteq S^{int}$.

Then by $x \in S^{int}$, $\exists \epsilon > 0, B_{\epsilon}(x) \subseteq S$.

However, by $x \in S^{int}$, this value of $\epsilon > 0$ implies $B_{\epsilon}(x) \cap S^{C} = \emptyset \implies B_{\epsilon}(x) \nsubseteq S$ which is a contradiction, implying our assumption that $x \in S \cap S^{int}$ must be false and $S^{int} = \emptyset$.

(ii) A set S is bounded iff $\exists M \in \mathbb{R}^+ 0 \forall x, y \in Sd(x, y) \leq M$.

Let $a, b, r \in \mathbb{R}$.

$$S := \{(x,y) \in \mathbb{R}^2 | (x-a)^2 + (y-b)^2 = r^2 \}$$

$$\implies x^2 - 2ax + a^2 + y^2 - 2yb + b^2 \le r^2$$

$$\implies x^2 - 2ax + y^2 - 2yb \le r^2 - a^2 - b^2$$

$$\implies x^2 + y^2 \le r^2 - a^2 - b^2 + 2ax + 2yb$$

need to show x^2 is bounded.

$$(x-a)^2 \le r^2$$

$$\implies |x-a| \le |r|$$

$$\implies |x-a| \le |r| + |a|$$

$$\implies |x| = |x-a+a| \le |x-a| + |a| \le r + |a|$$

$$\Rightarrow |y| \le r + |a|$$
$$\Rightarrow x^2 \le (r + |a|)^2$$

Same for y: $y^2 \le (r + |b|)^2$

$$\begin{split} \forall z &= (x,y) \in D_{a,b}^2 : \\ \|z\| &= \sqrt{x^2 + y^2} \\ &\leq \sqrt{(r + |a|)^2 + (r + |b|)^2} \end{split}$$

Thus, if $M = \sqrt{(r+|a|)^2 + (r+|b|)^2}$, the band holds.

1S normed boundless = distance boundless.

Let
$$\mathbf{x} = (\mathbf{x}_1, x_2), \ y = (y_1, y_2) \in D_{a,b}$$
:
 $z_i \in \{x, y\}^i$
 $(x_i - a)^2 + (y_i - b)^2 = r^2$
 $\Rightarrow d(z_i, (a, b)) = \sqrt{(x_i - a)^2 + (y_i - b)^2} \le r$
 $\Rightarrow d(x, y) \le d(x, (a, b)) + d(y, (a, b))$
 $= \sqrt{(x_1 - a)^2 + (x_2 - b)^2} + \sqrt{(y_1 - a)^2 + (y_2 - b)^2}$
 $\le r + r = 2r$.

Title of the Document 3

(iii) Suppose that $x \neq y$. Then $d(x,y) \neq 0$. Thus if we choose $\varepsilon = d(x,y) \Rightarrow \varepsilon > 0$ but $d(x,y) \in \varepsilon$ (contradiction).

Proof. (Contradiction) Suppose x = y and so d(x, y) = 0.

Choose $\varepsilon > 0$ such that $\varepsilon = d(x,y)$. Then we must have $d(x,y) < \varepsilon = \frac{d(x,y)}{2} = \frac{0}{2}$, which is a contradiction, as this implies if $d(x,y) = 0 \Rightarrow d(x,y) = 0 < \varepsilon = \frac{\varepsilon}{2} \Rightarrow 0 < \frac{\varepsilon}{2} \Rightarrow 2(0) < \varepsilon$.

Thus
$$x = y$$
.

(iv) Let $(V, ||\cdot||)$ be a normed vsp.

Then let r > 0 and $x \in V$. Then $B_r(x) = \{u \in V \mid d(x, u) < r\}$ $B_{\|\cdot\|+r}(0) = \{v \in V \mid d(0, v) < r + \|x\|\}$

Let $y \in B_r(x)$. $d(0,y) \le d(0,x) + d(x,y) \le ||x|| + r \Rightarrow B_r(x) \subseteq B_{\|\cdot\|+r}(0)$.

(v) Suppose S is bounded. Then $\exists M \in \mathbb{R} > 0 \exists v \in S ||v|| \leq M$.

(Equiv to $\exists M > 0 : \forall x \in V \text{ and } x \in B_M(0)$).