

CPU Scheduling Algorithms

Didem Unat Lecture 7

COMP304 - Operating Systems (OS)

Project 1

- Project 1 will be up in two days
- There is a PS on Monday related to Project 1
- Fill the project partner form online
- Start EARLY
 - You won't finish the project in a week
 - Do not ask for an extension
 - You will encounter a lot of issues related to your system
- Add to your CV

Terminology

- CPU utilization keep the CPU as busy as possible
- Throughput # of processes that complete their execution per time unit
- Turnaround time amount of time to execute a particular process
- Waiting time amount of time a process has been waiting in the ready queue
- Response time amount of time it takes from when a request was submitted until the first response is produced, not output (for time-sharing environment)

1. First-Come, First Served (FCFS)

Process	Burst Time
\mathbf{P}_1	24
P_2	3
P_3	3

• Suppose that the processes arrive in the order: P_1 , P_2 , P_3 The Gantt Chart for the schedule is:

- Waiting times for: $P_1 = 0$; $P_2 = 24$; $P_3 = 27$
- Average waiting time: (0 + 24 + 27)/3 = 17

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order

$$P_2, P_3, P_1$$

• The Gantt chart for the schedule is:

- Waiting time for $P_1 = 6$; $P_2 = 0$; $P_3 = 3$
- Average waiting time: (6+0+3)/3 = 3
- Much better than previous case.
- Convoy effect: short process behind long process

2. Shortest Job First (SJF) Scheduling

- Associate with each process the length of its next CPU burst.
 Use these lengths to schedule the process with the shortest time.
- Two schemes:
 - Non-preemptive once CPU given to the process it cannot be preempted until completes its CPU burst.
 - preemptive if a new process arrives with CPU burst length less than remaining time of current executing process, preempt. This is known as the Shortest-Remaining-Time-First (SRTF).
- SJF is optimal gives minimum average waiting time for a given set of processes.

Non-preemptive (SJF) Scheduling

Process	Arrival Time	Burst Time
P_1	0.0	7
P_2	2.0	4
P_3	4.0	1
P_4	5.0	4

• SJF (non-preemptive)

• Average waiting time?

$$=(0+6+3+7)/4=4$$

Example of Preemptive SJF

<u>Process</u>	Arrival Time	Burst Time
\mathbf{P}_1	0.0	7
P_2	2.0	4
P_3	4.0	1
P_4	5.0	4

• SJF (preemptive)

• Average waiting time?

$$=(9+1+0+2)/4=3$$

3. Priority Scheduling

- A priority number (integer) is associated with each process
- The CPU is allocated to the process with the highest priority (smallest integer = highest priority).
- Can be preemptive and nonpreemptive
- FCFS and SJF are special cases of priority scheduling
 - Why?
 - In FCFS priority is based on the arrival time
 - SJF is a priority scheduling where priority is the predicted next CPU burst time.

Priority Scheduling

Pid
$$\tau(p_i)$$
 Priority • Nonpreemptive example 0 350 5 1 125 2 2 2 475 3 3 250 1 4 75 4 0 250 375 850 925 1275 p_3 p_1 p_2 p_4 p_0

$$\begin{array}{l} T_{TRnd}(p_0) = \tau(p_0) + \tau(p_4) + \tau(p_2) + \tau(p_1) \) + \tau(p_3) = 350 + 75 + 475 + 125 + 250 \\ = 1275 \\ T_{TRnd}(p_1) = \tau(p_1) + \tau(p_3) = 125 + 250 = 375 \\ T_{TRnd}(p_2) = \tau(p_2) + \tau(p_1) + \tau(p_3) = 475 + 125 + 250 = 850 \\ T_{TRnd}(p_3) = \tau(p_3) = 250 \\ T_{TRnd}(p_4) = \tau(p_4) + \tau(p_2) + \tau(p_1) + \tau(p_3) = 75 + 475 + 125 + 250 = 925 \\ \end{array} \qquad \begin{array}{l} R(p_0) = 925 \\ R(p_1) = 250 \\ R(p_2) = 375 \\ R(p_3) = 0 \\ R(p_4) = 850 \\ R(p_4) = 850 \\ \end{array}$$

Average response time $R_{avg} = (925+250+375+0+850)/5 = 2400/5 = 480$

Problem with Priority Scheduling

 Problem = Starvation – low priority processes may never execute.

 Solution
 = Aging – as time progresses, increase the priority of the process.

Rumor has it that,

IBM 7094 operator's console

 when they shut down the IBM 7094 at MIT in 1973, they found a low-priority process that had been submitted in 1967 and had not yet been run.

Priority

- What if a high-priority process needs to access the data that is currently being held by a low- priority process?
- The high-priority process is blocked by the lowpriority process. This is priority inversion.
- This can be solved with priority-inheritance protocol.
 - The low priority process accessing the data inherits the high priority until it is done with the resource.
 - When the low-priority process finishes, its priority reverts back to the original.

4. Round Robin (RR)

- Each process gets a small unit of CPU time (time quantum), usually 10-100 milliseconds.
- After this time has elapsed, the process is preempted and added to the end of the ready queue.
- If there are *n* processes in the ready queue and the time quantum is *q*, then each process gets 1/*n* of the CPU time in chunks of at most *q* time units at once.
- No process waits more than (n-1)q time units.

Example of RR with Time Quantum = 20

<u>Process</u>	Burst Time
\mathbf{P}_1	53
P_2	17
P_3	68
P_4	24

• The Gantt chart is:

Typically, higher average turnaround than SJF, but better response.

$$R(p_0) = 0$$

$$R(p_0) = 0$$
$$R(p_1) = 50$$

$$R(p_0) = 0$$

 $R(p_1) = 50$
 $R(p_2) = 100$

$$R(p_0) = 0$$

 $R(p_1) = 50$
 $R(p_2) = 100$
 $R(p_3) = 150$
 $R(p_4) = 200$

```
i \quad \tau(p_i)
0 350
   125
2 475
                       100
                                200
                                           300
                                                    400
                                                            475
                                                                    550
3 250
                     p_1
                                                  p_2 | p_3 | p_4 | p_0 | p_1
                         p_2
                p_0
                              p_3
                                   p_4
                                        p_0 \mid p_1
4
  75
```

$$R(p_0) = 0$$
 $T_{TRnd}(p_1) = 550$
 $R(p_1) = 50$
 $R(p_2) = 100$
 $R(p_3) = 150$
 $R(p_4) = 475$
 $R(p_4) = 200$

```
i \quad \tau(p_i)
0 350
   125
2 475
                        100
                                  200
                                             300
                                                       400
                                                               475
                                                                        550
                                                                                  650
3 250
                                          p_0
                                                     p_2 \mid p_3
                                                              |p_4| p_0 |p_1| p_2
                p_0
                      p_1
                          p_2
                                p_3
                                     p_4
                                               \mathsf{p}_1
                                                                                 p_3
4
     75
                650
                           750
                                     850
                                               950
                   p_0
                        p_2
                                   p_0 \mid p_2
                                             p_3
                             p_3
```

$$R(p_0) = 0$$
 $T_{TRnd}(p_1) = 550$
 $R(p_1) = 50$
 $R(p_2) = 100$
 $R(p_3) = 950$
 $R(p_3) = 150$
 $R(p_4) = 475$

```
i \quad \tau(p_i)
0 350
   125
2 475
                        100
                                 200
                                             300
                                                      400
                                                               475
                                                                       550
                                                                                  650
3 250
                                                     p_2 | p_3 | p_4 | p_0 | p_1 | p_2
                p_0
                      p_1
                          p_2
                                p_3
                                          p_0
                                    p_4
                                               \mathsf{p}_1
                                                                                 p_3
4
     75
                650
                          750
                                     850
                                               950
                                                         1050
                   p_0
                        p_2
                                  p_0 \mid p_2
                                             p_3
                                                       p_2
                                                            p_0
                                                 p_0
             T_{TRnd}(p_0) = 1100
                                                       R(p_0) = 0
                                                       R(p_1) = 50
              T_{TRnd}(p_1) = 550
                                                       R(p_2) = 100
                                                       R(p_3) = 150
```

 $R(p_4) = 200$

 $T_{TRnd}(p_3) = 950$

 $T_{TRnd}(p_4) = 475$

```
\tau(p_i)
0 350
   125
2 475
                        100
                                 200
                                            300
                                                     400
                                                             475
                                                                      550
                                                                                650
3 250
                                                    p_2 | p_3 | p_4 | p_0 | p_1 | p_2
                     p_1
                          p_2
                               p_3
                                         p_0
                p_0
                                    p_4
                                              \mathsf{p}_1
                                                                               p_3
     75
4
                                                                   1150
                650
                          750
                                    850
                                              950
                                                        1050
                                                                           1250 1275
                   p_0
                        p_2
                                  p_0 \mid p_2
                                            p_3
                                                      p_2
                                                          p_0
                                                                p_2
                                                                     p_2
                                                                          p_2 | p_2
                                                p_0
```

$$\begin{split} T_{TRnd}(p_0) &= 1100 & R(p_0) = 0 \\ T_{TRnd}(p_1) &= 550 & R(p_1) = 50 \\ T_{TRnd}(p_2) &= 1275 & R(p_2) = 100 \\ T_{TRnd}(p_3) &= 950 & R(p_3) = 150 \\ T_{TRnd}(p_4) &= 475 & R(p_4) = 200 \end{split}$$

$$i \quad \tau(p_i)$$

0 350

125

2 475

3 250

75

• [Most	Wic	le)	ly-	use	d

650	7	50	8	50	9	50	10	50	1	150	125	50 1	1275
p_0	p ₂	p ₃	p ₀	p ₂	p ₃	p ₀	p ₂	p ₀	p ₂	p ₂	p ₂	p ₂	

$$\begin{split} T_{TRnd}(p_0) &= 1100 & R(p_0) = 0 \\ T_{TRnd}(p_1) &= 550 & R(p_1) = 50 \\ T_{TRnd}(p_2) &= 1275 & R(p_2) = 100 \\ T_{TRnd}(p_3) &= 950 & R(p_3) = 150 \\ T_{TRnd}(p_4) &= 475 & R(p_4) = 200 \end{split}$$

$$T_{TRnd_avg} = (1100+550+1275+950+475)/5 = 4350/5 = 870$$

Average response (wait) time $R_{avg} = (0+50+100+150+200)/5 = 500/5 = 100$

RR (TQ=50, Overhead =10)

$$T_{TRnd_avg} = (1320+660+1535+1140+565)/5 = 5220/5 = 1044$$

Average response (wait) time $R_{avg} = (0+60+120+180+240)/5 = 600/5 = 120$

Time Quantum and Context Switch Time

- quantum large ⇒ FIFO
- quantum small \Rightarrow quantum must be large enough with respect to context switch, otherwise overhead is too high.

RR algorithm

- Consider a variant of the RR scheduling algorithm where the entries in the ready queue are pointers to the PCBs.
- What would be the effect of putting two pointers to the same process in the ready queue?
- How would you modify the basic RR algorithm to achieve the same effect without the duplicate pointers?

5. Multilevel Queue

- Ready queue is partitioned into separate queues: foreground (interactive) background (batch)
- Each queue has its own scheduling algorithm, foreground – RR background – FCFS
- Scheduling must be done between the queues.
 - Fixed priority scheduling (i.e., serve all from foreground then from background). Possibility of starvation.
 - Time slice each queue gets a certain amount of CPU time which it can schedule amongst its processes; i.e., 80% to foreground in RR, 20% to background in FCFS

Multi-Level Queues

Example- Multi-level Queue

6. Multilevel Feedback Queue

- Multilevel queue with feedback scheduling is similar to multilevel queue; however, it allows processes to move between queues.
- Aging can be implemented this way.
- Multilevel-feedback-queue scheduler defined by the following parameters:
 - number of queues
 - scheduling algorithms for each queue
 - method used to determine when to upgrade a process
 - method used to determine when to demote a process
 - method used to determine which queue a process will enter when that process needs service

Example of Multilevel Feedback Queue

Three queues:

- $-Q_0$ time quantum 8 milliseconds
- $-Q_1$ time quantum 16 milliseconds
- $-Q_2$ FCFS non-preemption

Example Scheduling

- A new job enters queue Q_0 . When it gains CPU, job receives 8 milliseconds. If it does not finish in 8 milliseconds, job is moved to queue Q_1 .
- At Q₁ job is again served FCFS and receives 16 additional milliseconds.
- If it still does not complete, it is preempted and moved to queue Q_2 .

Multiple-Processor Scheduling

- CPU scheduling is more complex when multiple CPUs are available
 - Asymmetric multiprocessing only one processor accesses the system data structures, alleviating the need for data sharing
 - Symmetric multiprocessing (SMP) each processor is selfscheduling, all processes in common ready queue, or each has its own private queue of ready processes
- Processor affinity process has affinity for processor on which it is currently running
 - soft affinity (can be changed at a later time)
 - hard affinity (process doesn't move to another processor)
 - Variations including processor sets

Multicore Scheduling

 In SMP, each CPU has its own private ready queue for the processes waiting to be run on that CPU

Process Migration

- If SMP, need to keep all CPUs loaded for efficiency
- Load balancing attempts to keep workload evenly distributed
- Push migration periodically checks load on each processor, and if found any of them overloaded, pushes task from overloaded CPU to other CPUs
- Pull migration idle processors pull waiting tasks from busy processor

Starvation

- Which of the following scheduling algorithms could result in starvation?
 - First-come, first serve
 - Shortest job first
 - Round robin
 - Priority

Scheduling in Linux

How does Linux schedule processes?

Reading

- Read Chapter 5 (Textbook)
- Read Chapter 4 (Linux Kernel Development)
- Acknowledgments
 - –These slides are adapted from
 - Öznur Özkasap (Koç University)
 - Operating System and Concepts (9th edition) Wiley