WEC 2025 Programming Presentation

Team: Round Lake Scott Kenning, Christian Bookout, Julian France, Arun Alex

Optimize Fire Hall Placement Over a Map of Calgary Cow-gary

What is Linear Programming (LP)?

- Optimization technique that achieves an optimal value for a function with linear relationships
- 0 1 value
- Objective Function, Constraints, Variables

What is Integer Linear Programming (ILP)?

- Boolean values only
- Restricted to 0 or 1 results (can't have half of a fire hall!)

How to Solve LP / ILP problems

- Common to use solvers (COIN-OR CLP / CBC)
- Simplex
- "Divide and conquer" strategy
- Branch pruning
- Relaxation (ILP)

- 1st constraint to solve for min # of halls
 - Discretize area of city by creating polygon boundary and defining the set of points inside of the city.
 - Ensure the hall bounds cover the entire city by including a sampling of the city's perimeter coordinates in the list of points.

- Our Use of ILP
 - 1st constraint to solve for min # of halls
 - Discretize area of city by creating polygon boundary and defining the set of points inside of the city.
 - Ensure the hall bounds cover the entire city by including a sampling of the city's perimeter coordinates in the list of points.
 - 2nd constraint to maximize distance between halls
 - Ensure future developments have the max amount of pre-existing hall coverage.

- So why does ILP take so long to compute?
 - Candidate grid size of 1 to 2 km and a discretization grid size of 0.5 to 1 km

- So why does ILP take so long to compute?
 - Candidate grid size of 1 to 2 km and a discretization grid size of 0.5 to 1 km
 - Grid of 1000+ points that need to be enclosed within a fire halls reach, with a grid of 250+ points that are possible fire hall locations

- What Makes ILP Slow
 - So why does ILP take so long to compute?
 - Candidate grid size of 1 to 2 km and a discretization grid size of 0.5 to 1 km
 - Grid of 1000+ points that need to be enclosed within a fire halls reach, with a grid of 250+ points that are possible fire hall locations
 - That is a lot of possible permutations (even with a lot of possible optimizations)

Technology

- Python
 - o PuLP
 - Numpy
 - Pandas
 - Matplotlib

Design Decisions

- Display using matplotlib
 - Easily show polygon, circles, and points using subplots

- Display using matplotlib
 - Easily show polygon, circles, and points using subplots.
- ILP using PuLP
 - Picked over greedy algorithm or other solutions due to reliability of ILP in finding the minimum.

Design Decisions

- Display using matplotlib
 - Easily show polygon, circles, and points using subplots.
- ILP using PuLP
 - Picked over greedy algorithm or other solutions due to reliability of ILP in finding the minimum.

As compared to a greedy algorithm:

- Pros: More reliably finds minimum fire halls needed for complete coverage
- Cons: Takes a long time (especially with a high number of constraints)

- Minimize overlap of fire hall radiuses.
- Don't use future city bounds to develop past fire hall locations, since that doesn't replicate real world
 - Instead optimize current for future fire halls assuming the future city bounds aren't known

Unoptimized Hall Spacing

Optimized Hall Spacing

- Sampling of grid points to minimize checks necessary while solving
- Code smell
- Investigate reliability sacrifices with greedy algorithm
- Hall distance constraint optimization

Calgary Fire Halls vs Population Density

Comparison with Saskatoon (Fire Halls vs Population Density)

[4]

Key Takeaways from Real-World Comparisons

• Fire hall count is primarily a function of population, not area.

Key Takeaways from Real-World Comparisons

- Fire hall count is primarily a function of population, not area.
- Population density is a more important metric in fire hall placement than area coverage.

Key Takeaways from Real-World Comparisons

- Fire hall count is primarily a function of population, not area.
- Population density is a more important metric in fire hall placement than area coverage.
- Existing infrastructure impacts where fire halls can / can't be built.

- How we used ChatGPT
- Used in most areas but not much Al code made the final cut.
- Used for "templating" code save time not reading docs.
- Not used directly for program logic.
- Exception was understanding ILP implementation.
- Minimal use of existing code snippets only for solved, trivial problems

- [1] "The Python Logo", Python, 2025, https://www.python.org/community/logos/
- [2] "Calgary Map of Places The Interactive Map of Calgary", Calgary mapped, 2025, https://calgarymapped.com/index.html?map-of=fire-stations
- [3] "Calgary population density," Census Mapper, 2016, https://censusmapper.ca/maps/2327#10/
- [4] "Google Maps", Google, 2025, https://www.google.ca/maps/
- [5] "Saskatoon population density", Census Mapper, 2021, https://censusmapper.ca/#11/52.1390/-106.6405
- [6] Myrabella, "Lac Gentau in the Ossau Valley of the Pyrenees, France", Wikimedia commons, 2010, https://en.wikipedia.org/wiki/Lake#/media/File:Gentau Pic du Midi Ossau.jpg
- [7] "HD Flat Fire Station Illustration Icon Transparent PNG", CityPNG, 2024 https://www.citypng.com/photo/16898/hd-flat-fire-station-illustration-icon-transparent-png

Bibliography

- COIN-OR LP Solvers (https://github.com/coin-or)
- Pulp Mixed LP Solver (https://github.com/coin-or/pulp)