- (1) L^p -RÄUME: Seien $1 \le p < q \le +\infty$
 - (a) Sei $\Omega \subset \mathbb{R}^d$ eine messbare Teilmenge mit $\lambda(\Omega) < +\infty$. Zeigen Sie, dass in dem Fall die Inklusion $L^q(\Omega) \subset L^p(\Omega)$ gilt.
 - (b) Zeigen Sie,

$$L^q(\mathbb{R}^d) \not\subset L^p(\mathbb{R}^d)$$
, und $L^p(\mathbb{R}^d) \not\subset L^q(\mathbb{R}^d)$,

indem Sie jeweils ein Gegenbeispiel angeben.

- (2) RÄUME VON OPERATOREN: Seien X und Y normierte Räume.
 - (a) Zeigen Sie, dass L(X, Y) ein normierter Raum ist.
 - (b) Zeigen Sie, dass L(X, Y) ein Banachraum ist, falls Y ein Banachraum ist.
 - (c) Zeigen Sie, dass im Falle, dass X endlich-dimensional ist, jede lineare Abbildung $X \to Y$ beschränkt ist.
- (3) Beispiele von Operatoren:
 - (a) Zeigen Sie, dass die Abbildung $x \mapsto xf(x)$ einen beschränkten Operator auf $L^1([0,1])$ definiert. Gilt dies auch auf $L^1(\mathbb{R})$?
 - (b) Zeigen Sie dass die Abbildung $P: L^1([0,1]) \to L^1([0,1]),$

$$f \mapsto f - \int_0^1 f(s) ds$$

eine Projektion ist. Charakterisieren Sie rg(P).

- (4) Eigenschaften des orthogonalen Komplements: Es sei X ein Hilbertraum und $A \subset X$.
 - (a) Zeigen Sie, dass A^{\perp} ein abgeschlossener Untervektorraum ist.
 - (b) Zeigen Sie, dass $A^{\perp} = \overline{\operatorname{span}(A)}^{\perp}$ gilt.
 - (c) Verwenden Sie $X = \overline{\operatorname{span}(A)} \oplus \overline{\operatorname{span}(A)}^{\perp}$, um $(A^{\perp})^{\perp} = \overline{\operatorname{span}(A)}$ zu zeigen.
 - (d) Folgern Sie, dass span(A) dicht in X ist genau dann, wenn $A^{\perp} = \{0\}$.
 - (e) Sei $B \subset X$ eine weitere Menge. Gilt $A \subset B$, so folgt $B^{\perp} \subset A^{\perp}$.
- (5) HAMEL-BASIS UND UNSTETIGE FUNKTIONALE: Sei X ein Vektorraum über \mathbb{K} . Eine Teilmenge $B \subset X$ heißt Hamel-Basis in X, falls sich jedes Element aus X als endliche Linearkombination aus Elementen aus B schreiben läßt.

Zeigen Sie folgende Aussagen:

- (a) Sei X ein Vektorraum und A eine linear unabhängige Teilmenge von X. Dann existiert eine Hamel-Basis B von X mit $A \subset B$. Insbesondere besitzt jeder Vektorraum eine Hamel-Basis (Hinweis: Lemma von Zorn).
- (b) Zeigen Sie, dass für jeden unendlich-dimensionalen Banachraum eine unstetige lineare Abbildung $X \to \mathbb{K}$ existiert, indem Sie folgendermaßen vorgehen: Wählen Sie eine linear unabhängige Folge $(x_n)_{n\in\mathbb{N}}$ mit $||x_n||=1$ und ergänzen Sie diese zu einer

Hamel-Basis von X. Setzen Sie dann $x^*(x_n) = n$ und Null auf allen anderen Basiselementen. Zeigen Sie, dass x^* zu einer unstetigen linearen Abbildung $x^*: X \to \mathbb{K}$ fortgesetzt werden kann.