



Random forest, source: http://blog.yhat.com

# Handling Missing Values in Decision Forests in the Encrypted Network Traffic

Author: Lukáš Sahula

Supervisor: Ing. Jan Brabec

Bachelor thesis

Czech Technical University in Prague Faculty of Electrical Engineering Department of Computer Science

# Handling missing values...

| Name  | Animal | Age | Gender | Description     |  |
|-------|--------|-----|--------|-----------------|--|
| Rex   | Dog    | 3   | Male   | A good boy      |  |
| Lady  | Dog    | X   | Female | X               |  |
| Cat   | Cat    | 4   | Male   | X               |  |
| Kitty | Cat    | X   | Female | Likes to cuddle |  |
| Gizmo | X      | X   | Male   | X               |  |

### ... in Decision Forests ...



Decision Tree classifier, source: http://packtpub.com

## ... in the Encrypted Network Dataset

- Data from network proxy logs
- Classification of malware
- Over 100 classes of malware
- 50 features
- Data missingness over 50%

## **Dataset correlation analysis**



Heatmap of feature pairs correlations (Pearson)

## Conditional probabilities of missingness



P(i\_missing | j\_not\_missing)

## **Feature substitution**



Feature pairs with PCC above 0.3

## **Existing methods for missing data imputation**

- Baseline
- Strawman imputation (mean or median)
- On-the-fly-imputation method
- Missingness incorporated in attributes
- MissForest
- Surrogate splits

• ...

#### **Evaluation metrics**



Precision and recall, source: http://wikipedia.org

## **Experiments with random forests**

- Number of trees: 100
- Minimal number of samples for a split: 2
- Maximal number of features for a split: sqrt
- Maximal depth of trees: unlimited
- Trained on data from three days in January 2017
- Tested on data from one day in March 2017
- Randomness factor: 1% of variance in recall and precision

#### Results

| Method   | Precision | Recall | Prec = 1.0 | Prec > 0.8 | Prec > 0.5 |
|----------|-----------|--------|------------|------------|------------|
| Baseline | 0.61      | 0.57   | 22         | 54         | 70         |
| Mean     | 0.59      | 0.54   | 21         | 54         | 70         |
| Median   | 0.56      | 0.49   | 19         | 45         | 65         |
| OTFI     | 0.23      | 0.06   | 18         | 25         | 25         |
| MIA      | 0.65      | 0.58   | 28         | 60         | 74         |

Average precision, recall, and number of classes with precision above a certain threshold

#### **Contributions**

- Correlation of datasets features analysed
- Algorithms compared on real data
- On-the-fly-imputation found not suited for data with heavy missingness
- Missingness incorporated in attributes slightly improves the baseline method
- Python framework for further experiments implemented

#### **Answers**

#### **Method speed comparison**

- Baseline: ~18 hours
- Strawman: ~18 hours
- MIA: ~45 hours
- OTFI: ~100 hours