Complex Numbers for **Audio Signal Processing**

Valerio Velardo

Join the community!

thesoundofai.slack.com

Fourier transform -> magnitude and phase

- Fourier transform -> magnitude and phase
- Magnitude is a real number

- Fourier transform -> magnitude and phase
- Magnitude is a real number
- ... something with magnitude + phase?

COMPLICATED NUMBERS?

NO SIRaj! IT'S COMPLEX NUMBERS

The genesis of CNs

The genesis of CNs

sqrt(-1)

The genesis of CNs

sqrt(-1)

Our first complex number

$$c = a + ib$$

 $a, b \in \mathbb{R}$

Our first complex number

c=a + ib

 $a, b \in \mathbb{R}$

Our first complex number

c=a | maginary part | c=a | a

 $a, b \in \mathbb{R}$

Plotting complex numbers

Plotting complex numbers

Cartesian coordinates

$$|c|^2 = a^2 + b^2$$

$$|c|^{2} = a^{2} + b^{2}$$

$$|c| = \sqrt{a^{2} + b^{2}}$$

$$\cos(\gamma) = \frac{a}{|c|}$$

$$\cos(\gamma) = \frac{a}{|c|} \quad \sin(\gamma) = \frac{b}{|c|}$$

$$\cos(\gamma) = \frac{a}{|c|} \quad \sin(\gamma) = \frac{b}{|c|}$$

$$\frac{\sin(\gamma)}{\cos(\gamma)} = \frac{b}{a}$$

$$\cos(\gamma) = \frac{a}{|c|} \quad \sin(\gamma) = \frac{b}{|c|}$$

$$\frac{\sin(\gamma)}{\cos(\gamma)} = \frac{b}{a}$$

$$\cos(\gamma) = \frac{a}{|c|} \quad \sin(\gamma) = \frac{b}{|c|}$$

$$\frac{\sin(\gamma)}{\cos(\gamma)} = \frac{b}{a}$$

$$\gamma = \arctan\left(\frac{b}{a}\right)$$

$$\gamma = \arctan\left(\frac{b}{a}\right)$$
$$|c| = \sqrt{a^2 + b^2}$$

$$\gamma = \arctan\left(\frac{b}{a}\right)$$
$$|c| = \sqrt{a^2 + b^2}$$

$$a = |c| \cdot \cos(\gamma)$$
 $b = |c| \cdot \sin(\gamma)$

$$\gamma = \arctan\left(\frac{b}{a}\right)$$
$$|c| = \sqrt{a^2 + b^2}$$

$$a = |c| \cdot \cos(\gamma)$$
 $b = |c| \cdot \sin(\gamma)$

$$c = a + ib$$

$$\gamma = \arctan\left(\frac{b}{a}\right)$$
$$|c| = \sqrt{a^2 + b^2}$$

$$a = |c| \cdot \cos(\gamma)$$
 $b = |c| \cdot \sin(\gamma)$

$$c = a + ib$$

$$\gamma = \arctan\left(\frac{b}{a}\right)$$
$$|c| = \sqrt{a^2 + b^2}$$

$$a = |c| \cdot \cos(\gamma)$$
 $b = |c| \cdot \sin(\gamma)$

$$c = a + ib$$

$$\gamma = \arctan\left(\frac{b}{a}\right)$$
$$|c| = \sqrt{a^2 + b^2}$$

$$a = |c| \cdot \cos(\gamma)$$
 $b = |c| \cdot \sin(\gamma)$

$$c = a + ib$$

$$c = |c| \cdot (\cos(\gamma) + i\sin(\gamma))$$

Euler formula

$$e^{i\gamma} = \cos(\gamma) + i\sin(\gamma)$$

Euler formula

$$e^{i\gamma} = \cos(\gamma) + i\sin(\gamma)$$

Euler identity

$$e^{i\pi} + 1 = 0$$

Euler identity

Euler identity

-1

$$e^{i\gamma} = \cos(\gamma) + i\sin(\gamma)$$

Euler identity

Euler identity

Polar coordinates 2.0

$$c = |c| \cdot (\cos(\gamma) + i\sin(\gamma))$$
$$e^{i\gamma} = \cos(\gamma) + i\sin(\gamma)$$

Polar coordinates 2.0

$$c = |c| \cdot (\cos(\gamma) + i\sin(\gamma))$$
$$e^{i\gamma} = \cos(\gamma) + i\sin(\gamma)$$

Polar coordinates 2.0

$$c = |c| \cdot (\cos(\gamma) + i\sin(\gamma))$$
$$e^{i\gamma} = \cos(\gamma) + i\sin(\gamma)$$

$$c = |c| \cdot e^{i\gamma}$$

$$c = |c| \cdot e^{i\gamma}$$

Scales distance from origin

What's up next?

Complex representation of Fourier transform