

Fraunhofer Institute for Cognitive Systems IKS

Context-aware, Autonomous and Smart Architecture Workshop, ECSA 2022 20th September 2022

Towards Uncertainty Reduction Tactics for Behavior Adaptation

Andreas Kreutz, Gereon Weiss, Mario Trapp

Motivation

Motivation

Imprecise Perception Leads to Uncertain Knowledge

Imprecise Perception Leads to Uncertain Knowledge

Imprecise Perception Leads to Uncertain Knowledge

Public information

[1] G.A. Moreno et al.: "Uncertainty Reduction in Self-Adaptive Systems", 2018

Uncertainty Reduction Tactics

Contributions of this Work

Analyze the **potential benefit** of uncertainty reduction. Propose a **context model** that supports the use of tactics. Present **proof-of-concept** that demonstrates feasibility.

Without uncertainty reduction

Without uncertainty reduction

Without uncertainty reduction

With uncertainty reduction

Without uncertainty reduction

With uncertainty reduction

Without uncertainty reduction

Model relative costs: $c_{failure} = 1$,

 $c_{tactic} \in [0, 1]$

With uncertainty reduction

Only tactics with a low relative cost are beneficial

© Fraunhofer IKS

- ightarrow Great potential when cost of failure is very high
- Need to be able to estimate p_{action} , p_{tactic} and p_{action}' at run-time

Context Model for Uncertainty Reduction

Expressing different types of uncertainty

- Measurement uncertainty: UML class diagram with uncertain OCL data types [2]
- Occurrence uncertainty: added class **ProbableElement** [3]

- [2] M.F. Bertoa et al.: "Incorporating measurement uncertainty into OCL/UML primitive datatypes", 2020
- [3] L. Burgeño et al.: "Expressing Confidence in Models and in Model Transformation Elements", 2018

Estimating p_{action} and p_{tactic}

Constraints to express action admissibility

Action a_{pick} :

context Box: width ≤ 0.45 and width ≥ 0.55

 \rightarrow (True, 0.708)

box1:Box

confidence=Real(0.9)

width=UReal(0.5, 0.05)

height=UReal(0.5, 0.05)

depth=UReal(0.5, 0.05)

Towards Estimating p'_{action}

context Box: width ≤ 0.45 and width $\geq 0.55 \rightarrow \text{(True, 0.708)}$

Towards Estimating p'_{action}

context Box: width \leq 0.45 and width \geq 0.55 \rightarrow (True, 0.708)

Towards Estimating p'_{action}

context Box: width \leq 0.45 and width \geq 0.55 \rightarrow (True, 0.708)

Tactic	Reposition
Improves attribute	Box.width

Proof-of-Concept for Constraint Evaluation

Mission

• Move boxes from the left table to the right table using the action a_{pick}

Means of perception

Camera for noisy measurements of box widths

Uncertainty reduction

 Tactic Reposition moves closer to the box to obtain a more accurate measurement

Initial Results

		No tactic
Total cost	1.98 ± 1.07	

	c_{tactic}			
	0.05	0.1	0.25	
Total cost	0.41 ± 0.37	0.71 ± 0.54	1.58 ± 0.88	

Initial Results

Conclusion

- Uncertainty reduction has great potential to improve the performance of autonomous systems
- Admissibility constraints can be expressed and evaluated with the proposed model

Future Work

- Extension for estimating benefit of uncertainty reduction tactics
- Evaluation by means of a realistic use case

Thank you! Questions?

Fraunhofer Institute for Cognitive Systems IKS

Contact

Andreas Kreutz Self-Adaptive Software Systems andreas.kreutz@iks.fraunhofer.de

Fraunhofer Institute for Cognitive Systems IKS Hansastraße 32 80686 München www.iks.fraunhofer.de