Deep Generative Models: Linear Dynamical Systems

Fall Semester 2025

René Vidal

Director of the Center for Innovation in Data Engineering and Science (IDEAS),
Rachleff University Professor, University of Pennsylvania
Amazon Scholar & Chief Scientist at NORCE

Taxonomy of Generative Models

HMMs and Linear Dynamical Systems

- Hidden state Z_t and observation X_t are discrete random scalar variables
- State transition and emission are discrete

- Hidden state Z_t and observation X_t are continuous (random) vectors
- State transition and emission are linear

Linear Dynamical Systems

- Hidden state Z_t and observation Y_t are continuous (random) vectors
- State transition and emission are linear

Model Parameters:

• $\theta \coloneqq (\pi_0, \Sigma_0, A, Q, C, R)$

d: state dimension

D: output dimension

 $\begin{vmatrix} S_0 \in \mathbb{R}^{d \times d} \\ S_0 > 0 \end{vmatrix}$

 $A \in \mathbb{R}^{d \times d}$ $C \in \mathbb{R}^{D \times d}$

 $Q \in \mathbb{R}^{d \times d}$ 0 > 0

 $R \in \mathbb{R}^{D \times D}$ R > 0

Initial Distribution:

$$\mathbb{P}(Z_0) = \mathcal{N}(\pi_0, \Sigma_0)$$

• State Transition:

$$\mathbb{P}(Z_t \mid z_{t-1}) = \mathcal{N}(Az_{t-1}, Q)$$

this implies "Markov Property"

State Emission:

$$\mathbb{P}(X_t \mid z_t) = \mathcal{N}(Cz_t, R) \xrightarrow{\text{Why}} \text{this implies}$$
"Output Independence"

Why

Filtering and Smoothing

- P1: Filtering. Given θ and $(x_0, ..., x_t)$, infer the current state z_t , that is to compute $p_{\theta}(z_t \mid x_0, ..., x_t)$
 - e.g., what is the current state of the missile given its position over some past time?

- P2: Smoothing. Given θ and $(x_0, ..., x_T)$, infer the past state z_t , that is to compute $p_{\theta}(z_t \mid x_0, ..., x_T)$
 - e.g., where did the missile originate given we observed it over some time?

- Remark. You may find P1 and P2 familiar
 - In HMMs, we solved them via recursively updating $\alpha_i(t)$, $\gamma_i(t)$

Background

• Before solving the filtering and smoothing problem, we will study (review) some basic properties about LDSs and Gaussian variables

Law of Total Expectation and of Total Variance

- We will heavily use the following basic results:
 - Law of Total Expectation (LoTE)

$$\mathbb{E}[a] = \mathbb{E}_b[\mathbb{E}_a[a \mid b]]$$

Law of Total Covariance (LoTC)

$$Cov(a) = \mathbb{E}[Cov(a \mid b)] + Cov(\mathbb{E}[a \mid b])$$

$$Cov(a,b) \coloneqq \mathbb{E}[(a - \mathbb{E}[a])(b - \mathbb{E}[b])^{\mathsf{T}}]$$
$$Cov(a) \coloneqq Cov(a,a)$$

Basic Properties

- Hidden state Z_t and observation X_t are continuous (random) vectors
- State transition and emission are linear

Model Parameters:

• $\theta \coloneqq (\pi_0, \Sigma_0, A, Q, C, R)$

d: state dimension

D: output dimension

$S_0 \in \mathbb{R}^{d \times d}$ $S_0 > 0$

$$A \in \mathbb{R}^{d \times d}$$
$$C \in \mathbb{R}^{D \times d}$$

$$Q \in \mathbb{R}^{d \times d}$$
$$Q > 0$$

$$R \in \mathbb{R}^{D \times D}$$
$$R > 0$$

• Equivalent Descriptions:

	Probabilistic Description	Algebraic Description
State Transition	$\mathbb{P}(Z_t \mid Z_{t-1}) = \mathcal{N}(AZ_{t-1}, Q)$	$Z_t = Az_{t-1} + w_t$ with $w_t \sim \mathcal{N}(0, Q)$
State Emission	$\mathbb{P}(X_t \mid z_t) = \mathcal{N}(Cz_t, R)$	$X_t = Cz_t + v_t$ with $v_t \sim \mathcal{N}(0, R)$

• We assume w_t , v_t are independent from each other and independent from z_0

Basic Properties

- Hidden state Z_t and observation X_t are continuous (random) vectors
- State transition and emission are linear

Model Parameters:

• $\theta \coloneqq (\pi_0, \Sigma_0, A, Q, C, R)$

d: state dimension

D: output dimension

 $\begin{vmatrix} S_0 \in \mathbb{R}^{d \times d} \\ S_0 > 0 \end{vmatrix}$

 $\begin{vmatrix} A \in \mathbb{R}^{d \times d} \\ C \in \mathbb{R}^{D \times d} \end{vmatrix}$

 $Q \in \mathbb{R}^{d \times d}$ Q > 0

 $R \in \mathbb{R}^{D \times D}$ R > 0

Joint distribution is Gaussian:

$$p_{\theta}(x_0, ..., x_T, z_0, ..., z_T) = p_{\theta}(z_0) \prod_{t=0}^{T} p_{\theta}(x_t \mid z_t) \prod_{t=1}^{T} p_{\theta}(z_t \mid z_{t-1})$$

- Therefore, "any conditional distribution of it" is Gaussian
 - Vague, but look at your question 1 of homework 1 (next page)

Gaussian Conditioning (HW 1)

• If $\begin{bmatrix} a \\ b \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} \mu_a \\ \mu_b \end{bmatrix}, \begin{bmatrix} \Sigma_{aa} & \Sigma_{ab} \\ \Sigma_{ba} & \Sigma_{bb} \end{bmatrix}\right)$, then the conditional distribution $p(a \mid b)$ is Gaussian with mean $\mu_{a\mid b}$ and covariance $\Sigma_{a\mid b}$ given by

$$\mu_{a|b} = \mu_a + \Sigma_{ab} \Sigma_{bb}^{-1} (b - \mu_b)$$
 original mean & variance of a correction upon observing b
$$\Sigma_{a|b} = \Sigma_{aa} - \Sigma_{ab} \Sigma_{bb}^{-1} \Sigma_{ba}$$

Gaussian Combining (Extension of Problem 1b, HW 1)

Gaussian Combining: If
$$x = Cz + v$$
 with $z \sim \mathcal{N}(\mu_z, \Sigma_z)$ and $v \sim \mathcal{N}(0, \Sigma_v)$ then
$$\begin{bmatrix} z \\ x \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} \mu_z \\ C\mu_z \end{bmatrix}, \begin{bmatrix} \Sigma_z & \Sigma_z C^\top \\ C\Sigma_z & C\Sigma_z C^\top + \Sigma_v \end{bmatrix} \right)$$

Proof: The proof is finished by computing the following quantities:

•
$$\mathbb{E}[x] = \mathbb{E}_{z} \left[\mathbb{E}_{y}[x \mid z] \right] = \mathbb{E}_{z}[Cz + v] = \mathbb{E}_{z}[Cz] = C\mu_{z}$$

• $Cov(z, x) = \mathbb{E}[(z - \mu_{z})(x - C\mu_{z})^{\top}] = \mathbb{E}[(z - \mu_{z})(Cz + v - C\mu_{z})^{\top}] = \Sigma_{z}C^{\top}$
• $Cov(x) = \mathbb{E}[(x - C\mu_{z})(x - C\mu_{z})^{\top}] = \mathbb{E}_{z} \left[\mathbb{E}_{y}[(x - C\mu_{z})(x - C\mu_{z})^{\top} \mid z] \right]$
 $= \mathbb{E}_{z,v}[(Cz + v_{t} - C\mu_{z})(Cz + v_{t} - C\mu_{z})^{\top}]$
 $= \mathbb{E}_{z}[(Cz - C\mu_{z})(Cz - C\mu_{z})^{\top}] + R$
 $= C \cdot \mathbb{E}_{z}[(z - \mu_{z})(z - \mu_{z})^{\top}] \cdot C^{\top} + R = C\Sigma_{z}C^{\top} + R$

Remark. In the proof, LoTE is used at the colored equality

Filtering and Smoothing

• P1: Filtering. Given θ and $(x_0, ..., x_t)$, compute $p_{\theta}(z_t \mid x_0, ..., x_t)$

• P2: Smoothing. Given θ and $(x_0, ..., x_T)$, compute $p_{\theta}(z_t \mid x_0, ..., x_T)$

• Since $p_{\theta}(z_s \mid x_0, ..., x_t)$ is Gaussian $(\forall s, t)$, so it suffices to compute

$$\hat{\mathbf{z}}_{s|t} \coloneqq \mathbb{E}[z_s \mid x_0, \dots, x_t]
\hat{\mathbf{\Sigma}}_{s|t} \coloneqq \mathbb{E}\left[\left(z_s - \hat{z}_{s|t}\right)\left(z_s - \hat{z}_{s|t}\right)^{\mathsf{T}} \middle| x_0, \dots, x_t\right] = \operatorname{Cov}(z_s \mid x_0, \dots, x_t)$$

and we will do so recursively (first for filtering and then for smoothing)

Filtering: Compute $\hat{z}_{0|0}$, $\hat{\Sigma}_{0|0}$

$$\hat{\mathbf{z}}_{s|t} \coloneqq \mathbb{E}[z_s \mid x_0, \dots, x_t]
\hat{\mathbf{\Sigma}}_{s|t} \coloneqq \text{Cov}(z_s \mid x_0, \dots, x_t)$$

• P1: Filtering. Given θ and $(x_0, ..., x_t)$, compute $p_{\theta}(z_t \mid x_0, ..., x_t)$

- Let's begin with the simplest case:
 - What are the mean $\hat{z}_{0|0} = \mathbb{E}[z_0 \mid x_0]$ and covariance $\hat{\Sigma}_{0|0} = \text{Cov}(z_0 \mid x_0)$ of z_0 given x_0 ?

- High-level Idea.
 - 1. find the mean and covariance of $\begin{bmatrix} z_0 \\ x_0 \end{bmatrix}$ via Gaussian combining
 - 2. find the mean $\hat{z}_{0|0}$ and covariance $\hat{\Sigma}_{0|0}$ of $z_0 \mid x_0$ via Gaussian conditioning

$$\mu_{a|b} = \mu_a + \Sigma_{ab} \Sigma_{bb}^{-1} (b - \mu_b), \ \Sigma_{a|b} = \Sigma_{aa} - \Sigma_{ab} \Sigma_{bb}^{-1} \Sigma_{ba}$$

Filtering: Compute $\hat{z}_{0|0}$, $\hat{\Sigma}_{0|0}$

• Step 1: find the mean and covariance of $\begin{bmatrix} z_0 \\ x_0 \end{bmatrix}$

$$\hat{\mathbf{z}}_{s|t} \coloneqq \mathbb{E}[z_s \mid x_0, \dots, x_t] \\
\hat{\mathbf{\Sigma}}_{s|t} \coloneqq \text{Cov}(z_s \mid x_0, \dots, x_t)$$

$$\mathbb{P}(Z_0) = \mathcal{N}(\pi_0, \Sigma_0)$$

$$\mathbb{P}(X_t \mid z_t) = \mathcal{N}(Cz_t, R)$$

Gaussian Combining: If
$$x = Cz + v$$
 with $z \sim \mathcal{N}(\mu_z, \Sigma_z)$ and $v \sim \mathcal{N}(0, \Sigma_v)$ then
$$\begin{bmatrix} z \\ x \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \mu_z \\ C\mu_z \end{bmatrix}, \begin{bmatrix} \Sigma_z & \Sigma_z C^\top \\ C\Sigma_z & C\Sigma_z C^\top + \Sigma_v \end{bmatrix} \right)$$

Applying Gaussian combining yields

$$\begin{bmatrix} z_0 \\ x_0 \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \pi_0 \\ C\pi_0 \end{bmatrix}, \begin{bmatrix} \Sigma_0 & \Sigma_0 C^\top \\ C\Sigma_0 & C\Sigma_0 C^\top + R \end{bmatrix} \right)$$

Filtering: Compute $\hat{z}_{0|0}$, $\hat{\Sigma}_{0|0}$

• Step 2: apply Gaussian conditioning to $\begin{bmatrix} z_0 \\ \chi_0 \end{bmatrix}$

$$\mu_{a|b} = \mu_a + \Sigma_{ab} \Sigma_{bb}^{-1} (b - \mu_b), \ \Sigma_{a|b} = \Sigma_{aa} - \Sigma_{ab} \Sigma_{bb}^{-1} \Sigma_{ba}$$

$$\hat{z}_{s|t} \coloneqq \mathbb{E}[z_s \mid x_0, ..., x_t]
\hat{\Sigma}_{s|t} \coloneqq \text{Cov}(z_s \mid x_0, ..., x_t)$$

$$\begin{bmatrix} z_0 \\ x_0 \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \pi_0 \\ C\pi_0 \end{bmatrix}, \begin{bmatrix} \Sigma_0 & \Sigma_0 C^\top \\ C\Sigma_0 & C\Sigma_0 C^\top + R \end{bmatrix} \right)$$

• We have

$$\hat{\mathbf{z}}_{0|0} = \pi_0 + \Sigma_0 C^{\mathsf{T}} (C \Sigma_0 C^{\mathsf{T}} + R)^{-1} (x_0 - C \pi_0)$$

$$\widehat{\Sigma}_{0|0} = \Sigma_0 - \Sigma_0 C^{\mathsf{T}} (C \Sigma_0 C^{\mathsf{T}} + R)^{-1} C \Sigma_0$$

Filtering: From 0 to t

 $\hat{\mathbf{z}}_{s|t} \coloneqq \mathbb{E}[z_s \mid x_0, \dots, x_t]$ $\hat{\mathbf{\Sigma}}_{s|t} \coloneqq \text{Cov}(z_s \mid x_0, \dots, x_t)$

- P1: Filtering. Given θ and $(x_0, ..., x_t)$, compute $p_{\theta}(z_t \mid x_0, ..., x_t)$
- We've now computed $\hat{z}_{0|0}$ and $\hat{\Sigma}_{0|0}$. This solves P1 for the case t=0
- To proceed, we will update $\hat{z}_{t-1|t-1}$, $\hat{\Sigma}_{t-1|t-1}$ into $\hat{z}_{t|t}$, $\hat{\Sigma}_{t|t}$ for every t

Filtering: From 0 to t

$$\hat{\mathbf{z}}_{s|t} \coloneqq \mathbb{E}[z_s \mid x_0, \dots, x_t]
\hat{\Sigma}_{s|t} \coloneqq \text{Cov}(z_s \mid x_0, \dots, x_t)$$

- To compute $\hat{z}_{0|0}$ and $\hat{\Sigma}_{0|0}$, we
 - (Step 0) found the mean and covariance of z_0 (already known)
 - (Step 1) found the mean and covariance of $\begin{bmatrix} z_0 \\ x_0 \end{bmatrix}$ via Gaussian combining
 - (Step 2) found the mean and covariance of $z_0 \mid x_0$ via Gaussian conditioning

Question: How can we generalize these steps for general t?

- To update $\hat{z}_{t-1|t-1}$, $\hat{\Sigma}_{t-1|t-1}$ into $\hat{z}_{t|t}$, $\hat{\Sigma}_{t|t}$, we will condition on x_0, \dots, x_{t-1} and
 - (Step 0) find the mean and covariance of $z_t \mid x_0, \dots, x_{t-1}$ (using $\hat{z}_{t-1|t-1}, \hat{\Sigma}_{t-1|t-1}$)
 - (Step 1) find the mean and covariance of $\begin{bmatrix} z_t \\ x_t \end{bmatrix} \mid x_0, \dots, x_{t-1}$ via Gaussian combining
 - (Step 2) find the mean and covariance of $z_t \mid x_t, x_0, \dots, x_{t-1}$ via Gaussian conditioning

Step 0 and conditioning on $x_0, ..., x_{t-1}$ are the only differences

You should be able to figure out all the details without looking at the rest slides

Filtering: Compute $\hat{z}_{t|t}$, $\hat{\Sigma}_{t|t}$

- Step 0: find the mean and covariance of $z_t | x_0, ..., x_{t-1}$
 - By definition, this is to compute $\hat{z}_{t|t-1}$, $\hat{\Sigma}_{t|t-1}$

 $\hat{\mathbf{z}}_{s|t} \coloneqq \mathbb{E}[z_s \mid x_0, \dots, x_t]$ $\hat{\mathbf{\Sigma}}_{s|t} \coloneqq \text{Cov}(z_s \mid x_0, \dots, x_t)$

$$\mathbb{P}(Z_t \mid z_{t-1}) = \mathcal{N}(Az_{t-1}, Q)$$

We have

$$\begin{split} \hat{z}_{t|t-1} &= \mathbb{E}[z_t \mid x_0, \dots, x_{t-1}] = \mathbb{E}_{z_{t-1}} \left[\mathbb{E}_{z_t}[z_t \mid z_{t-1}, x_0, \dots, x_{t-1}] \right] \\ &= \mathbb{E}[Az_{t-1} \mid x_0, \dots, x_{t-1}] = A\hat{z}_{t-1|t-1} \end{split}$$

$$\hat{\Sigma}_{t|t-1} = \mathbb{E}\left[(z_t - \hat{z}_{t|t-1})(z_t - \hat{z}_{t|t-1})^{\top} \middle| x_0, \dots, x_{t-1} \right] = \dots = A\hat{\Sigma}_{t-1|t-1}A^{\top} + Q$$

similar to how we computed Cov(y) in the proof of Gaussian combining

Filtering: Compute $\hat{z}_{t|t}$, $\Sigma_{t|t}$

• Step 1: find the mean and covariance of
$$\begin{bmatrix} z_t \\ x_t \end{bmatrix} | x_0, \dots, x_{t-1}$$
• Step 1: find the mean and covariance of $\begin{bmatrix} z_t \\ x_t \end{bmatrix} | x_0, \dots, x_{t-1}$
• We applied Gaussian combining to $\begin{bmatrix} z_0 \\ x_0 \end{bmatrix}$ and obtained

•
$$\begin{bmatrix} z_0 \\ x_0 \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \hat{z}_{0|-1} \\ C\hat{z}_{0|-1} \end{bmatrix}, \begin{bmatrix} \hat{\Sigma}_{0|-1} & \hat{\Sigma}_{0|-1}C^{\mathsf{T}} \\ C\hat{\Sigma}_{0|-1} & C\hat{\Sigma}_{0|-1}C^{\mathsf{T}} + R \end{bmatrix} \right)$$

• Similarly, now, applying Gaussian combining to $\begin{bmatrix} z_t \\ x_t \end{bmatrix} | x_0, \dots, x_{t-1}$ gives:

$$\bullet \begin{bmatrix} z_t \\ x_t \end{bmatrix} | x_0, \dots, x_{t-1} \sim \mathcal{N} \left(\begin{bmatrix} \hat{z}_{t|t-1} \\ C\hat{z}_{t|t-1} \end{bmatrix}, \begin{bmatrix} \hat{\Sigma}_{t|t-1} & \hat{\Sigma}_{t|t-1}C^{\mathsf{T}} \\ C\hat{\Sigma}_{t|t-1} & C\hat{\Sigma}_{t|t-1}C^{\mathsf{T}} + R \end{bmatrix} \right)$$

 $\hat{\mathbf{z}}_{s|t} \coloneqq \mathbb{E}[z_s \mid x_0, ..., x_t]$ $\hat{\mathbf{\Sigma}}_{s|t} \coloneqq \text{Cov}(z_s \mid x_0, ..., x_t)$

$$\hat{z}_{t|t-1} = A\hat{z}_{t-1|t-1}$$

$$\hat{\Sigma}_{t|t-1} = A\hat{\Sigma}_{t-1|t-1}A^{\mathsf{T}} + Q$$

$$\hat{z}_{t} := \pi \cdot \hat{\Sigma}_{t-1} \cdot \nabla$$

Filtering: Compute $\hat{z}_{t|t}$, $\hat{\Sigma}_{t|t}$

• Step 2: apply Gaussian conditioning to $\begin{bmatrix} z_t \\ x_t \end{bmatrix} \mid x_0, \dots, x_{t-1}$

$$\hat{z}_{s|t} \coloneqq \mathbb{E}[z_s \mid x_0, ..., x_t]$$

$$\hat{\Sigma}_{s|t} \coloneqq \text{Cov}(z_s \mid x_0, ..., x_t)$$

$$\begin{vmatrix} \hat{z}_{t|t-1} = A\hat{z}_{t-1|t-1} \\ \hat{\Sigma}_{t|t-1} = A\hat{\Sigma}_{t-1|t-1}A^{\mathsf{T}} + Q \end{vmatrix}$$
$$\hat{z}_{0|-1} \coloneqq \pi_0, \ \hat{\Sigma}_{0|-1} \coloneqq \Sigma_0$$

• We applied Gaussian conditioning to $\begin{bmatrix} z_0 \\ \chi_0 \end{bmatrix}$ and obtained:

$$\hat{\mathbf{z}}_{0|0} = \hat{\mathbf{z}}_{0|-1} + \hat{\mathbf{\Sigma}}_{0|-1} C^{\mathsf{T}} (C \hat{\mathbf{\Sigma}}_{0|-1} C^{\mathsf{T}} + R)^{-1} (x_0 - C \hat{\mathbf{z}}_{0|-1})$$

$$\hat{\Sigma}_{0|0} = \hat{\Sigma}_{0|-1} - \hat{\Sigma}_{0|-1} C^{\mathsf{T}} (C \hat{\Sigma}_{0|-1} C^{\mathsf{T}} + R)^{-1} C \hat{\Sigma}_{0|-1}$$

• Similarly, now, applying Gaussian conditioning to $\begin{bmatrix} z_t \\ x_t \end{bmatrix} \mid x_0, \dots, x_{t-1}$ gives:

$$\hat{z}_{t|t} = \hat{z}_{t|t-1} + \hat{\Sigma}_{t|t-1} C^{\mathsf{T}} (C \hat{\Sigma}_{t|t-1} C^{\mathsf{T}} + R)^{-1} (x_0 - C \hat{z}_{t|t-1})$$

$$\hat{\Sigma}_{t|t} = \hat{\Sigma}_{t|t-1} - \hat{\Sigma}_{t|t-1} C^{\mathsf{T}} (C \hat{\Sigma}_{t|t-1} C^{\mathsf{T}} + R)^{-1} C \hat{\Sigma}_{t|t-1}$$

"Kalman gain matrix". Let us denote it by K_t

Summary: Filtering for LDSs $\begin{vmatrix} \hat{z}_{s|t} &= \mathbb{E}[z_s \mid x_0, \dots, x_t] \\ \hat{y}_{s} &= cov(z_s \mid x_s) \end{vmatrix}$

$$\hat{z}_{s|t} \coloneqq \mathbb{E}[z_s \mid x_0, ..., x_t]$$

$$\hat{\Sigma}_{s|t} \coloneqq \text{Cov}(z_s \mid x_0, ..., x_t)$$

 $\mathbb{P}(Z_0) = \mathcal{N}(\pi_0, \Sigma_0)$ $\mathbb{P}(Z_t \mid Z_{t-1}) = \mathcal{N}(AZ_{t-1}, Q)$ $\mathbb{P}(X_t \mid z_t) = \mathcal{N}(Cz_t, R)$

Putting everything together gives Kalman Filter:

- Initialization: $\hat{z}_{0|-1}\coloneqq\pi_0,\ \hat{\Sigma}_{0|-1}\coloneqq\Sigma_0$
- Recursion ($\forall t = 0, ..., T$):

"Correction":

$$K_{t} = \hat{\Sigma}_{t|t-1} C^{\mathsf{T}} (C \hat{\Sigma}_{t|t-1} C^{\mathsf{T}} + R)^{-1}$$

$$\hat{z}_{t|t} = \hat{z}_{t|t-1} + K_{t} (x_{0} - C \hat{z}_{t|t-1})$$

$$\hat{\Sigma}_{t|t} = \hat{\Sigma}_{t|t-1} - K_{t} C \hat{\Sigma}_{t|t-1}$$

"Prediction":

$$\hat{z}_{t+1|t} = A\hat{z}_{t|t}$$

$$\hat{\Sigma}_{t+1|t} = A\hat{\Sigma}_{t|t}A^{\top} + Q$$

From Filtering to Smoothing

 $\hat{z}_{s|t} \coloneqq \mathbb{E}[z_s \mid x_0, \dots, x_t]$ $\hat{\Sigma}_{s|t} \coloneqq \text{Cov}(z_s \mid x_0, \dots, x_t)$

- P1: Filtering. Given θ and $(x_0, ..., x_t)$, compute $p_{\theta}(z_t \mid x_0, ..., x_t)$
- P2: Smoothing. Given θ and $(x_0, ..., x_T)$, compute $p_{\theta}(z_t \mid x_0, ..., x_T)$

• Since everything is Gaussian, to solve P2 it suffices to compute $\hat{z}_{t|T}$, $\hat{\Sigma}_{t|T}$ for all t

Goal: Given $\hat{z}_{t|t}$, $\hat{\Sigma}_{t|t}$ and $\hat{z}_{t|t-1}$, $\hat{\Sigma}_{t|t-1}$ for every t, update $\hat{z}_{t|T}$, $\hat{\Sigma}_{t|T}$ into $\hat{z}_{t-1|T}$, $\hat{\Sigma}_{t-1|T}$

Smoothing

$$\hat{z}_{s|t} \coloneqq \mathbb{E}[z_s \mid x_0, \dots, x_t]$$

$$\hat{\Sigma}_{s|t} \coloneqq \text{Cov}(z_s \mid x_0, \dots, x_t)$$

Goal: Given $\hat{z}_{t|t}$, $\hat{\Sigma}_{t|t}$ and $\hat{z}_{t|t-1}$, $\hat{\Sigma}_{t|t-1}$ for every t, update $\hat{z}_{t|T}$, $\hat{\Sigma}_{t|T}$ into $\hat{z}_{t-1|T}$, $\hat{\Sigma}_{t-1|T}$

Observation:

• Since z_{t-1} is independent of $x_t, \dots x_T$ given z_t , we have $p_{\theta}(z_{t-1} \mid z_t, x_0, \dots, x_{t-1}) = p_{\theta}(z_{t-1} \mid z_t, x_0, \dots, x_T)$

High-level Idea:

- 1. Compute $p_{\theta}(z_{t-1} \mid z_t, x_0, ..., x_{t-1})$ via Gaussian combining and Gaussian conditioning
 - This gives us $p_{\theta}(z_{t-1} \mid z_t, x_0, ..., x_T)$
- 2. Given $p_{\theta}(z_{t-1} \mid z_t, x_0, ..., x_T)$, update $\hat{z}_{t|T}$, $\hat{\Sigma}_{t|T}$ into $\hat{z}_{t-1|T}$, $\hat{\Sigma}_{t-1|T}$ via LoTE and LoTC

$$\mathbb{P}(Z_t \mid Z_{t-1}) = \mathcal{N}(AZ_{t-1}, Q)$$

 $\hat{z}_{s|t} \coloneqq \mathbb{E}[z_s \mid x_0, \dots, x_t]$ $\widehat{\Sigma}_{s|t} \coloneqq \text{Cov}(z_s \mid x_0, \dots, x_t)$

• Step 1: Compute $p_{\theta}(z_{t-1} \mid z_t, x_0, ..., x_{t-1})$

Gaussian Combining: If x = Cz + v with $z \sim \mathcal{N}(\mu_z, \Sigma_z)$ and $v \sim \mathcal{N}(0, \Sigma_v)$ then

$$\begin{bmatrix} z \\ x \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \mu_z \\ C \mu_z \end{bmatrix}, \begin{bmatrix} \Sigma_z & \Sigma_z C^{\top} \\ C \Sigma_z & C \Sigma_z C^{\top} + \Sigma_v \end{bmatrix} \right)$$

Gaussian Conditioning: $\mu_{a|b} = \mu_a + \Sigma_{ab}\Sigma_{bb}^{-1}(b-\mu_b)$, $\Sigma_{a|b} = \Sigma_{aa} - \Sigma_{ab}\Sigma_{bb}^{-1}\Sigma_{ba}$

• Step 1.1: Applying Gaussian combining to $\begin{bmatrix} z_{t-1} \\ z_t \end{bmatrix} \mid x_0, \dots, x_{t-1}$ gives:

$$\begin{bmatrix} z_{t-1} \\ z_t \end{bmatrix} | x_0, \dots, x_{t-1} \sim \mathcal{N} \left(\begin{bmatrix} \hat{z}_{t-1|t-1} \\ \hat{z}_{t|t-1} \end{bmatrix}, \begin{bmatrix} \hat{\Sigma}_{t-1|t-1} & \hat{\Sigma}_{t-1|t-1} A^\top \\ A\hat{\Sigma}_{t-1|t-1} & \hat{\Sigma}_{t|t-1} \end{bmatrix} \right) \quad \boxed{ \hat{\Sigma}_{t|t-1} = A\hat{\Sigma}_{t-1|t-1} A^\top + Q }$$

$$\widehat{\Sigma}_{t|t-1} = A\widehat{\Sigma}_{t-1|t-1}A^{\mathsf{T}} + Q$$

• Step 1.2: From Gaussian conditioning we see $z_{t-1} \mid z_t, x_0, ..., x_{t-1}$ has distribution:

$$\mathcal{N}(\hat{z}_{t-1|t-1} + L_{t-1}(z_t - \hat{z}_{t|t-1}), \hat{\Sigma}_{t-1|t-1} - L_{t-1}A\hat{\Sigma}_{t-1|t-1})$$

$$L_{t-1} \coloneqq \hat{\Sigma}_{t-1|t-1} A^{\mathsf{T}} \hat{\Sigma}_{t|t-1}^{-1}$$

$$L_{t-1} = \hat{\Sigma}_{t-1|t-1} A^{\mathsf{T}} \hat{\Sigma}_{t|t-1}^{-1}$$

 $\hat{z}_{s|t} \coloneqq \mathbb{E}[z_s \mid x_0, ..., x_t]$ $\hat{\Sigma}_{s|t} \coloneqq \text{Cov}(z_s \mid x_0, ..., x_t)$

We have obtained

$$p_{\theta}(z_{t-1} \mid z_t, x_0, \dots, x_T) = \mathcal{N}(\hat{z}_{t-1|t-1} + L_{t-1}(z_t - \hat{z}_{t|t-1}), \hat{\Sigma}_{t-1|t-1} - L_{t-1}\hat{\Sigma}_{t|t-1}L_{t-1}^{\mathsf{T}})$$

• Step 2: update $\hat{z}_{t|T}$, $\hat{\Sigma}_{t|T}$ into $\hat{z}_{t-1|T}$, $\hat{\Sigma}_{t-1|T}$ via LoTE and LoTC

$$\begin{split} \hat{z}_{t-1|T} &= \mathbb{E}[z_{t-1}|x_0, \dots, x_T] = \mathbb{E}_{z_t} \big[\mathbb{E}_{z_{t-1}}[z_{t-1} \mid z_t, x_0, \dots, x_T] \big] \\ &= \mathbb{E}_{z_t} \big[\hat{z}_{t-1|t-1} + L_{t-1} \big(z_t - \hat{z}_{t|t-1} \big) \mid x_0, \dots, x_T \big] \\ &= \hat{z}_{t-1|t-1} + L_{t-1} \big(\hat{z}_{t|T} - \hat{z}_{t|t-1} \big) \\ \hat{\Sigma}_{t-1|T} &= \operatorname{Cov}(z_{t-1} \mid x_0, \dots, x_T) = \mathbb{E}[\operatorname{Cov}(z_{t-1} \mid z_t, x_0, \dots, x_T)] + \operatorname{Cov}(\mathbb{E}[z_{t-1} \mid z_t, x_0, \dots, x_T]) \\ &= \mathbb{E} \big[\hat{\Sigma}_{t-1|t-1} - L_{t-1} \hat{\Sigma}_{t|t-1} L_{t-1}^{\mathsf{T}} \big] + \operatorname{Cov} \big(\hat{z}_{t-1|t-1} + L_{t-1} \big(z_t - \hat{z}_{t|t-1} \big) \big) \\ &= \hat{\Sigma}_{t-1|t-1} - L_{t-1} \hat{\Sigma}_{t|t-1} L_{t-1}^{\mathsf{T}} + \operatorname{Cov} \big(\hat{z}_{t-1|t-1} + L_{t-1} \big(z_t - \hat{z}_{t|t-1} \big) |x_0, \dots, x_T \big) \\ &= \hat{\Sigma}_{t-1|t-1} + L_{t-1} \big(\hat{\Sigma}_{t|T} - \hat{\Sigma}_{t|t-1} \big) L_{t-1}^{\mathsf{T}} \end{split}$$

Summary: Smoothing for LDSs

 $\hat{z}_{s|t} \coloneqq \mathbb{E}[z_s \mid x_0, ..., x_t]$ $\hat{\Sigma}_{s|t} \coloneqq \text{Cov}(z_s \mid x_0, ..., x_t)$

• Goal. Given θ and $(x_0, ..., x_T)$, compute $p_{\theta}(z_t \mid x_0, ..., x_T)$

- Algorithm (known as "Rauch-Tung-Striebel smoother").
 - 1. (Forward Pass) Run Kalman filtering to compute $\hat{z}_{t|t}$, $\hat{\Sigma}_{t|t}$ and $\hat{z}_{t+1|t}$, $\hat{\Sigma}_{t+1|t}$ for all t
 - 2. (Backward Pass) For t = T, ..., 1, compute the following:

•
$$L_{t-1} = \hat{\Sigma}_{t-1|t-1} A^{\mathsf{T}} \hat{\Sigma}_{t|t-1}^{-1}$$

•
$$\hat{z}_{t-1|T} = \hat{z}_{t-1|t-1} + L_{t-1}(\hat{z}_{t|T} - \hat{z}_{t|t-1})$$

•
$$\hat{\Sigma}_{t-1|T} = \hat{\Sigma}_{t-1|t-1} + L_{t-1}(\hat{\Sigma}_{t|T} - \hat{\Sigma}_{t|t-1})L_{t-1}^{\mathsf{T}}$$

Remark: L_{t-1} might also be computed in the forward pass

State Estimation and Learning

 Now that we've studied algorithms for filtering and smoothing, we are prepared to perform more complicated tasks

• State Estimation ("Decoding"). Given θ and $(x_0, ..., x_T)$, solve:

$$\underset{z_0,\dots,z_T}{\operatorname{argmax}} p_{\theta}(z_0,\dots,z_T \mid x_0,\dots,x_T)$$

• Learning. Given N observations $\{x^{(n)}\}_{n=1}^N$, find best θ : $\max_{\theta} \prod_{n=1}^N p_{\theta}(x^{(n)})$

State Estimation

$$\hat{z}_{s|t} \coloneqq \mathbb{E}[z_s|x_0, ..., x_t]$$

$$\hat{\Sigma}_{s|t} \coloneqq \text{Cov}(z_s|x_0, ..., x_t)$$

- State Estimation. Given θ and $(x_0, ..., x_T)$, solve: $\underset{z_0, ..., z_T}{\operatorname{argmax}} p_{\theta}(z_0, ..., z_T | x_0, ..., x_T)$
- Solution:
 - Since $p_{\theta}(z_0, ..., z_T | x_0, ..., x_T)$ is Gaussian, the optimal solution to state estimation is

- Therefore, the state estimation problem can be solved by smoothing
- Similarly, we can prove the output $\hat{z}_{t|t}$ of the Kalman filter solves $\max_{z_t} p_{\theta}(z_t \mid x_0, \dots, x_t)$

Learning

Model Parameters:

 $\theta \coloneqq (\pi_0, \Sigma_0, A, Q, C, R)$

• Learning. Given N observations $\{x^{(n)}\}_{n=1}^N$, find best θ : $\max_{\theta} \prod_{n=1}^N p_{\theta}(x^{(n)})$

- We can perform learning via the EM algorithm
 - derivations are algebraically involved and are given at the end of the slides.

Possible Extensions of Linear Dynamical Systems

- What if
 - we do not have Gaussians?
 - we have time-varying dynamics?

•
$$Z_t = A_t Z_{t-1} + w_t$$
, $X_t = C_t Z_t + v_t$

- we have control over states?
 - $Z_t = Az_{t-1} + Uq_t + w_t$
- we have nonlinear dynamics?
 - $Z_t = f(z_{t-1}) + w_t$, $X_t = g(z_t) + v_t$

Deep Generative Models: Dynamic Textures

Fall Semester 2025

René Vidal

Director of the Center for Innovation in Data Engineering and Science (IDEAS),
Rachleff University Professor, University of Pennsylvania
Amazon Scholar & Chief Scientist at NORCE

Taxonomy of Generative Models

Motivation: Dynamic Textures

• Dynamic textures are videos of nonrigid deformable objects such as water, fire, smoke, flags moving with the wind, etc.

• Dynamic textures are characterized by appearance + dynamics

Need a model that captures the appearance and dynamics

Dynamic Texture Model

- A video is a sequence of T images $\{I_t \in \mathbb{R}^D\}_{t=0}^T$, where D is the number of pixels.
- Suppose at each time instant we observe a noisy version of the image

$$x_t = I_t + v_t$$

where $v_t \sim \mathcal{N}(0, Q)$ is an i.i.d. sequence Gaussian noise.

• Suppose each image I_t is generated via a latent representation z_t as follows:

$$I_t = C_0 + C z_t$$

- If $Q = \sigma_v^2 I_D$ and $z_t \sim^{i.i.d.} \mathcal{N}(0, I_d)$, then $x_t = C_0 + C z_t + v_t$ is a PPCA model,
 - C_0 is the mean image/average video frame and C_i is the ith principal direction/eigenimage.
- However, this is not a good model for video because all frames are i.i.d.

Dynamic Texture Model

- To capture the temporal evolution of a video, instead of assuming z_t i.i.d., we assume that z_t is a linear autoregressive model $z_{t+1} = Az_t + w_t$.
- We say the video sequence $\{x_t \in \mathbb{R}^D\}_{t=0}^T$ is a **linear dynamic texture** if

$$z_{t+1} = Az_t + w_t$$

$$x_t = C_0 + Cz_t + v_t$$

where

- D is the number of pixels and T is the number of frames
- $z_t \in \mathbb{R}^d$ is the hidden state, d is its dimension, and z_0 is the initial state
- $w_t \sim \mathcal{N}(0,Q)$ is the state noise, i.i.d. sequence, assumed to be independent from z_t
- $v_t \sim \mathcal{N}(0,R)$ is the output noise, i.i.d. sequence, assumed to be independent from z_t
- $A \in \mathbb{R}^{d \times d}$, $C_0 \in \mathbb{R}^D$, $C \in \mathbb{R}^{D \times d}$, $Q \in \mathbb{R}^{d \times d}$ and $R \in \mathbb{R}^{D \times D}$ are the model parameters

Dynamic Textures

$$z_{t+1} = Az_t + w_t$$

$$x_t = C_0 + Cz_t + v_t$$

(Soatto ICCV 01, Doretto IJCV 03)

 $C_0 \in \mathbb{R}^D$ $C \in \mathbb{R}^{D \times d}$

 $A \in \mathbb{R}^{d \times d}$ $z_0 \in \mathbb{R}^d$

 $Q \in \mathbb{R}^{d \times d}$ $R \in \mathbb{R}^{D \times D}$

APPEARANCE

DYNAMICS

NOISE

Learning Dynamic Textures

• Let $\{x_t\}_{t=0...T}$, $x_t \in \mathbb{R}^D$ be an observed video sequence. Our goal is to learn the model parameters $\theta = \{A, C_0, C, Q, R\}$, a.k.a. the system identification problem.

- One method we have learned is Maximum Likelihood Estimation (using EM)
 - Given x_0, \dots, x_T , solve

$$\hat{A}, \hat{C}_0, \hat{C}, \hat{Q}, \hat{R} = \underset{A,C_0,C,Q,R}{\operatorname{argmax}} \log p(x_0, ..., x_T)$$

subject to

$$z_{t+1} = Az_t + w_t$$
 $t = 0, ..., T - 1, w_t \sim^{i.i.d.} \mathcal{N}(0, Q)$ $t = 0, ..., T$ $x_t = C_0 + Cz_t + v_t$ $t = 0, ..., T$, $v_t \sim^{i.i.d.} \mathcal{N}(0, R)$ $t = 0, ..., T$

• However, doing so is complicated and there is a simple approximate solution

Approximate Solutions (C_0)

- Let $\{x_t\}_{t=0...T}$, $x_t \in \mathbb{R}^D$ be an observed video sequence. Our goal is to learn the model parameters $\theta = \{A, C_0, C, Q, R\}$, a.k.a. the system identification problem.
- One method we have learned is Maximum Likelihood Estimation (using EM)
 - Given x_0, \dots, x_T , solve

$$\hat{A}, \hat{C}_0, \hat{C}, \hat{Q}, \hat{R} = \underset{A,C_0,C,Q,R}{\operatorname{argmax}} \log p(x_0, ..., x_T)$$

subject to

$$z_{t+1} = Az_t + w_t$$
 $t = 0, ..., T - 1, w_t \sim^{i.i.d.} \mathcal{N}(0, Q)$ $t = 0, ..., T$ $x_t = C_0 + Cz_t + v_t$ $t = 0, ..., T$, $v_t \sim^{i.i.d.} \mathcal{N}(0, R)$ $t = 0, ..., T$

- if $\mathbb{E}[z_0] = 0$, then $\mathbb{E}[z_t] = 0$ for all t
- $\mathbb{E}[x_t] = C_0 + C\mathbb{E}[z_t] + \mathbb{E}[v_t] = C_0$.
- so we can estimate C_0 as the mean video $\hat{C}_0 = \frac{1}{T} \sum x_t$
- subtract the mean from each frame ($x_t \leftarrow x_t \hat{C}_0$) and we obtain a different LDS

Reformulation without C_0

• For our given process $\{z_t\}$, $z_t \in \mathbb{R}^d$, guided by

$$z_{t+1} = Az_t + w_t \qquad w_t \sim \mathcal{N}(0, Q) \qquad z(0) = z_0$$

$$x_t = Cz_t + v_t \qquad v_t \sim \mathcal{N}(0, R)$$

with initial condition $z(0) = z_0$, positive definite matrices R and Q.

• We seek the estimate parameters $A \in \mathbb{R}^{d \times d}$, $C \in \mathbb{R}^{D \times D}$, $Q \in \mathbb{S}^{d \times d}_+$, $R \in \mathbb{S}^{D \times D}_+$ from the given samples x_1, \dots, x_T that maximizes the log-likelihood

$$\hat{A}_T$$
, \hat{C}_T , \hat{Q}_T , \hat{R}_T , = argmax log $p(x_0, ..., x_T)$
 A, C, Q, R

Approximate Solutions (C and $Z_{0:T}$)

- Let $X_{0:T} = [x_0, ..., x_T] \in \mathbb{R}^{D \times (T+1)}, Z_{0:T} = [z_0, ..., z_T] \in \mathbb{R}^{d \times (T+1)}$ with T+1 > d, $W_{0:T} = [w_0, ..., w_T] \in \mathbb{R}^{d \times (T+1)}$
- Our assumption $D\gg d$, $\mathrm{rank}(C)=d$ and $C^TC=I_d$ allows us to rewrite the output equation as

$$X_{0:T} = CZ_{0:T} + W_{0:T}; \qquad C \in \mathbb{R}^{D \times d}; C^{\top}C = I_d$$

• We can estimate C and $Z_{0:T}$ via solving

$$\hat{C}_T, \hat{Z}_{0:T} = \operatorname{argmin}_{C, Z_{0:T}} ||X_{0:T} - CZ_{0:T}||_F^2 \text{ subject to } C^{\mathsf{T}}C = I_d$$

• The solution can be found using SVD. Let $X_{0:T} = U\Sigma V^{\mathsf{T}}$, then

$$\hat{C}_T = U \qquad \qquad \hat{Z}_{0:T} = \Sigma V^{\top}$$

• This solution is very close to learning a PPCA model for $Y_{0:T}$.

Approximate Solutions (A, Q, R)

 $\begin{array}{c} X_{0:T} = U\Sigma V^{\top} \\ \hat{Z}_{0:T} = \Sigma V^{\top} \end{array}$

• We can estimate A by the following

$$\hat{A}_T = \operatorname{argmin}_A \left| \left| \hat{Z}_{1:T} - A \hat{Z}_{0:T-1} \right| \right|_F = \hat{Z}_{1:T} \hat{Z}_{1:T}^{\mathsf{T}} (\hat{Z}_{0:T} \hat{Z}_{0:T}^{\mathsf{T}})^{-1}$$

We can estimate the state and output covariances via

$$\widehat{Q}_T = \frac{1}{T} \sum_{t=0}^{T-1} \widehat{w}_t \widehat{w}_t^{\mathsf{T}} \qquad \widehat{R}_T = \frac{1}{T} \sum_{t=0}^{T-1} \widehat{v}_t \widehat{v}_t^{\mathsf{T}}$$

$$\widehat{R}_T = \frac{1}{T} \sum_{t=0}^{T-1} \widehat{v}_t \widehat{v}_t^{\mathsf{T}}$$

where $\hat{w}_t \doteq y_t - \hat{C}_T \hat{z}_t$ and $\hat{v}_t \doteq \hat{z}_{t+1} - \hat{A}_T \hat{z}_t$.

Approximate Solution: Pseudocode

 Therefore, everything can be computed in succession and in closed-form

• In the original work, the algorithm is implemented in fewer than 20 lines

```
function [x0,Ymean,Ahat,Bhat,Chat] = dytex(Y,n,nv)
% Suboptimal Learning of Dynamic Textures;
% (c) UCLA, March 2001.
  tau = size(Y,2); Ymean = mean(Y,2);
  [U,S,V] = svd(Y-Ymean*ones(1,tau),0);
  Chat=U(:,1:n); Xhat = S(1:n,1:n)*V(:,1:n)';
  x0=Xhat(:,1);
  Ahat = Xhat(:,2:tau)*pinv(Xhat(:,1:(tau-1)));
  Vhat = Xhat(:,2:tau)-Ahat*Xhat(:,1:(tau-1));
  [Uv,Sv,Vv] = svd(Vhat,0);
  Bhat = Uv(:,1:nv)*Sv(1:nv,1:nv)/sqrt(tau-1);
function [I] = synth(x0, Ymean, Ahat, Bhat, Chat, tau)
% Synthesis of Dynamic Textures;
% (c) UCLA, March 2001.
  [n,nv] = size(Bhat);
  X(:,1) = x0;
  for t = 1:tau,
    X(:,t+1) = Ahat*X(:,t)+Bhat*randn(k,1);
    I(:,t) = Chat*X(:,t)+Ymean;
  end;
```

Experimental Results

 By learning the parameters using a finite number of sequence. Our system can then help us synthesize infinite sequences

Experimental Results

- Top: The original sequence of water waves
- Left: As you increase the number of images in your original sequence, you are better at reconstructing the original sequence with your system
- Right: extrapolation error reduces as number of time steps increases

Figure 3. River. From top to bottom: Samples of the original sequence, corresponding samples of the compressed sequence (compression ratio: 2.53), samples of extrapolated sequence (using n = 50 components, $\tau = 120$, $m = 170 \times 115$), compression error as a function of the dimension of the state space n, and extrapolation error as a function of the length of the training set τ . The data set used comes from the MIT Temporal Texture database.

https://www.youtube.com/watch?v=bXHpOodkUv0

Appendix (Optional)

• In the subsequent slides, we derive EM for learning the parameters of LDSs.

Learning

Model Parameters:

• $\theta \coloneqq (\pi_0, \Sigma_0, A, Q, C, R)$

• Learning. Given N observations $\{x^{(n)}\}_{n=1}^N$, find best θ : $\max_{\theta} \prod_{n=1}^N p_{\theta}(x^{(n)})$

- We can perform learning via the EM algorithm
 - derivations are algebraically involved and are given at the end of the slides.

Learning (Review Lecture 2)

• The likelihood
$$\prod_{i=1}^N p_{\theta}(x_i) = \frac{\exp\left(-\frac{1}{2}\sum_{i=1}^N (x_i - \mu)^\mathsf{T} \Sigma^{-1}(x_i - \mu)\right)}{(2\pi)^{\frac{ND}{2}} \det(\Sigma)^{\frac{N}{2}}}$$
 is maximized at

$$\mu^* = \frac{\sum_{i=1}^N x_i}{N}, \qquad \Sigma^* = \frac{\sum_{i=1}^N (x_i - \mu^*)(x_i - \mu^*)^\top}{N} \stackrel{\text{empirical covariance}}{\longleftarrow}$$

- How did we obtain μ^* and Σ^* ?
 - Step 0: Rewrite the objective
 - maximizing log-likelihood is minimizing $N \log \det \Sigma + \sum_{i=1}^{N} (x_i \mu)^{\mathsf{T}} \Sigma^{-1} (x_i \mu)$
 - Step 1: Set the derivative w.r.t. μ to 0
 - solving it gives μ^*
 - Step 2: Substitute $\mu=\mu^*$ into the objective, and set the derivative w.r.t. Σ^{-1} to 0

$$m \cdot \log \det \Sigma + \operatorname{tr}(S\Sigma^{-1})$$
 is minimized at $\Sigma = S/m$

Learning

Model Parameters:

• $\theta \coloneqq (\pi_0, \Sigma_0, A, Q, C, R)$

• Learning. Given N observations $\{x^{(n)}\}_{n=1}^N$, find best θ : $\max_{\theta} \prod_{n=1}^N p_{\theta}(x^{(n)})$

• We are going to apply the EM algorithm (iteration: k):

E-step:
$$q^{k}(\mathbf{z}|\mathbf{x}^{(n)}) = p_{\theta^{k}}(\mathbf{z}|\mathbf{x}^{(n)})$$

M-step:
$$\theta^{k+1} = \operatorname{argmax}_{\theta} \sum_{\mathbf{z} \sim q^k(\mathbf{z}|\mathbf{x}^{(n)})}^{N} \left[\log p_{\theta}(\mathbf{x}^{(n)}, \mathbf{z}) \right]$$

Guessing

Model Parameters:

• $\theta \coloneqq (\pi_0, \Sigma_0, A, Q, C, R)$

E-step:
$$q^{k}(\mathbf{z}|\mathbf{x}^{(n)}) = p_{\theta^{k}}(\mathbf{z}|\mathbf{x}^{(n)})$$

M-step:

$$\theta^{k+1} = \operatorname{argmax}_{\theta} \sum_{n=1}^{N} \mathbb{E}_{\mathbf{z} \sim q^{k}(\mathbf{z}|\mathbf{x}^{(n)})} [\log p_{\theta}(\mathbf{x}^{(n)}, \mathbf{z})]$$

$$\mathbb{P}(Z_0) = \mathcal{N}(\pi_0, \Sigma_0) \qquad \qquad \mathbb{P}(Z_t | z_{t-1}) = \mathcal{N}(Az_{t-1}, Q)$$

$$\mathbb{P}(Y_t|z_t) = \mathcal{N}(Cz_t, R)$$

- Let us exercise our intuition and guess a solution to the M-step...
 - Since $\pi_0 = \mathbb{E}[z_0]$, we guess...:

$$\pi_0^{k+1} = \sum_{n=1}^{N} \frac{\mathbb{E}_{\mathbf{z} \sim q^k(\mathbf{z}|\mathbf{x}^{(n)})}[z_0]}{N} \quad \longleftarrow \quad \text{"empirical mean"}$$

And we guess the covariance should be

$$\Sigma_0^{k+1} = \sum_{n=1}^N \frac{\left(\mathbb{E}_{q^k(\mathbf{z}|\mathbf{x}^{(n)})}[z_0] - \pi_0^{k+1}\right) \left(\mathbb{E}_{\mathbf{z} \sim q^k(\mathbf{z}|\mathbf{x}^{(n)})}[z_0] - \pi_0^{k+1}\right)^{\mathsf{T}}}{N}$$

"empirical covariance"

• Try having a guess for A^{k+1} , Q^{k+1} , C^{k+1} , R^{k+1} yourself...

E-step (iteration: k)

$$\hat{z}_{s|t} \coloneqq \mathbb{E}[z_s|x_0, ..., x_t]$$

$$\hat{\Sigma}_{s|t} \coloneqq \text{Cov}(z_s|x_0, ..., x_t)$$

E-step:
$$q^{k}(\mathbf{z}|\mathbf{x}^{(n)}) = p_{\theta^{k}}(\mathbf{z}|\mathbf{x}^{(n)})$$

M-step:
$$\theta^{k+1} = \operatorname{argmax}_{\theta} \sum_{n=1}^{N} \mathbb{E}_{\mathbf{z} \sim q^{k}(\mathbf{z} | \mathbf{x}^{(n)})} [\log p_{\theta}(\mathbf{x}^{(n)}, \mathbf{z})]$$

• In E-step, we will need to compute the expectation $\mathbb{E}_{z\sim q^k(z|x^{(n)})}[\cdot]$.

• "It turns out that" we only need to compute the following expectations:

$$\mathbb{E}_{k}^{(n)}[z_{t}] \coloneqq \mathbb{E}_{\mathbf{z} \sim q^{k}(\mathbf{z}|\mathbf{x}^{(n)})}[z_{t}]$$

$$\mathbb{E}_{k}^{(n)}[z_{t}z_{t}^{\mathsf{T}}] \coloneqq \mathbb{E}_{\mathbf{z} \sim q^{k}(\mathbf{z}|\mathbf{x}^{(n)})}[z_{t}z_{t}^{\mathsf{T}}]$$

$$\mathbb{E}_{k}^{(n)}[z_{t}z_{t-1}^{\mathsf{T}}] \coloneqq \mathbb{E}_{\mathbf{z} \sim q^{k}(\mathbf{z}|\mathbf{x}^{(n)})}[z_{t}z_{t-1}^{\mathsf{T}}]$$

• later you will see why...

E-step (iteration: k)

```
\hat{z}_{s|t} \coloneqq \mathbb{E}[z_s|x_0, ..., x_t]
\hat{\Sigma}_{s|t} \coloneqq \text{Cov}(z_s|x_0, ..., x_t)
```

E-step:
$$q^{k}(\mathbf{z}|\mathbf{x}^{(n)}) = p_{\theta^{k}}(\mathbf{z}|\mathbf{x}^{(n)})$$

M-step: $\theta^{k+1} = \operatorname{argmax}_{\theta} \sum_{n=1}^{N} \mathbb{E}_{\mathbf{z} \sim q^{k}(\mathbf{z} | \mathbf{x}^{(n)})} [\log p_{\theta}(\mathbf{x}^{(n)}, \mathbf{z})]$

$$\mathbb{E}_{k}^{(n)}[z_{t}] \coloneqq \mathbb{E}_{\mathbf{z} \sim q^{k}(\mathbf{z}|\mathbf{x}^{(n)})}[z_{t}] \\
\mathbb{E}_{k}^{(n)}[z_{t}z_{t}^{\mathsf{T}}] \coloneqq \mathbb{E}_{\mathbf{z} \sim q^{k}(\mathbf{z}|\mathbf{x}^{(n)})}[z_{t}z_{t}^{\mathsf{T}}] \\
\mathbb{E}_{k}^{(n)}[z_{t}z_{t-1}^{\mathsf{T}}] \coloneqq \mathbb{E}_{\mathbf{z} \sim q^{k}(\mathbf{z}|\mathbf{x}^{(n)})}[z_{t}z_{t-1}^{\mathsf{T}}]$$

- ullet These expectations can all be computed via smoothing using eta^k and $oldsymbol{x}^{(n)}$
 - To see this, dropping indices k, n for clarity, we have

$$\begin{split} \mathbb{E}[z_t|\boldsymbol{x}] &= \mathbb{E}[z_t|x_0,\dots,x_T] = \hat{z}_{t|T} \\ \mathbb{E}[z_tz_t^\top|\boldsymbol{x}] &= \mathrm{Cov}(z_t|x_0,\dots,x_T) + \mathbb{E}[z_t|x_0,\dots,x_T] \mathbb{E}[z_t^\top|x_0,\dots,x_T] \\ &= \hat{\Sigma}_{t|T} + \hat{z}_{t|T}\hat{z}_{t|T}^\top \\ \mathbb{E}[z_tz_{t-1}^\top|\boldsymbol{x}] &= \hat{\Sigma}_{t|T}L_{t-1}^\top + \hat{z}_{t|T}\hat{z}_{t-1|T}^\top \\ &\text{homework} \end{split}$$

 $L_{t-1} = \widehat{\Sigma}_{t-1|t-1} A^{\mathsf{T}} \widehat{\Sigma}_{t|t-1}^{-1}$

M-step (iteration: k)

$$\mathbb{E}_{k}^{(n)}[z_{t}] \coloneqq \mathbb{E}_{\mathbf{z} \sim q^{k}(\mathbf{z}|\mathbf{x}^{(n)})}[z_{t}]$$

$$\mathbb{E}_{k}^{(n)}[z_{t}z_{t}^{\mathsf{T}}] \coloneqq \mathbb{E}_{\mathbf{z} \sim q^{k}(\mathbf{z}|\mathbf{x}^{(n)})}[z_{t}z_{t}^{\mathsf{T}}]$$

$$\mathbb{E}_{k}^{(n)}[z_{t}z_{t-1}^{\mathsf{T}}] \coloneqq \mathbb{E}_{\mathbf{z} \sim q^{k}(\mathbf{z}|\mathbf{x}^{(n)})}[z_{t}z_{t-1}^{\mathsf{T}}]$$

$$\mathbb{P}(Z_0) = \mathcal{N}(\pi_0, \Sigma_0)$$

$$\mathbb{P}(Z_t | z_{t-1}) = \mathcal{N}(Az_{t-1}, Q)$$

$$\mathbb{P}(X_t | z_t) = \mathcal{N}(Cz_t, R)$$

Model Parameters:

$$\bullet \quad \theta \coloneqq (\pi_0, \Sigma_0, A, Q, C, R)$$

$$\theta^{k+1} = \operatorname{argmax}_{\theta} \sum_{n=1}^{N} \mathbb{E}_{\mathbf{z} \sim q^{k}(\mathbf{z}|\mathbf{x}^{(n)})} [\log p_{\theta}(\mathbf{x}^{(n)}, \mathbf{z})]$$

Observation. In the joint log-likelihood

$$p_{\theta}(x_0, \dots, x_T, z_0, \dots, z_T) = p_{\theta}(z_0) \prod_{t=0}^T p_{\theta}(x_t | z_t) \prod_{t=1}^T p_{\theta}(z_t | z_{t-1}),$$

- π_0 , Σ_0 only appear in $p_{\theta}(z_0)$
- A, Q only appear in $\prod_{t=1}^{T} p_{\theta}(z_t|z_{t-1})$
- C, R only appear in $\prod_{t=0}^{T} p_{\theta}(x_t|z_t)$
- So the objective of the M-step is separable (as in HMMs), this gives ... (next page)

M-step (iteration: k)

$$\begin{split} \mathbb{E}_k^{(n)}[z_t] &\coloneqq \mathbb{E}_{\mathbf{z} \sim q^k(\mathbf{z}|x^{(n)})}[z_t] \\ \mathbb{E}_k^{(n)}[z_t z_t^{\mathsf{T}}] &\coloneqq \mathbb{E}_{\mathbf{z} \sim q^k(\mathbf{z}|x^{(n)})}[z_t z_t^{\mathsf{T}}] \\ \mathbb{E}_k^{(n)}[z_t z_{t-1}^{\mathsf{T}}] &\coloneqq \mathbb{E}_{\mathbf{z} \sim q^k(\mathbf{z}|x^{(n)})}[z_t z_{t-1}^{\mathsf{T}}] \end{split}$$

$$\mathbb{P}(Z_0) = \mathcal{N}(\pi_0, \Sigma_0)$$

$$\mathbb{P}(Z_t | z_{t-1}) = \mathcal{N}(Az_{t-1}, Q)$$

$$\mathbb{P}(X_t | z_t) = \mathcal{N}(Cz_t, R)$$

Model Parameters:

$$\bullet \quad \theta \coloneqq (\pi_0, \Sigma_0, A, Q, C, R)$$

$$\theta^{k+1} = \operatorname{argmax}_{\theta} \sum_{n=1}^{N} \mathbb{E}_{\mathbf{z} \sim q^{k}(\mathbf{z}|\mathbf{x}^{(n)})} [\log p_{\theta}(\mathbf{x}^{(n)}, \mathbf{z})]$$

• We can therefore decompose M-step into 3 optimization problems (as in HMMs):

```
\begin{aligned} \text{M-step } (\pi_0, \Sigma_0) : \\ (\pi_0^{k+1}, \Sigma_0^{k+1}) &= \operatorname{argmax}_{\theta} \sum_{n=1}^N \mathbb{E}_{\mathbf{z} \sim q^k \left(\mathbf{z} \mid \mathbf{x}^{(n)}\right)} [\log p_{\theta}(z_0)] \end{aligned}
```

```
 \text{M-step } (C,R): \\  (C^{k+1},R^{k+1}) = \operatorname{argmax}_{\theta} \sum_{n=1}^{N} \mathbb{E}_{\mathbf{z} \sim q^{k}\left(\mathbf{z}|\mathbf{x}^{(n)}\right)} \left[ \sum_{t=0}^{T} \log p_{\theta} \left(x_{t}^{(n)} \middle| z_{t}\right) \right]
```

```
\begin{aligned} \text{M-step } (A,Q) : \\ (A^{k+1},Q^{k+1}) &= \operatorname{argmax}_{\theta} \sum_{n=1}^{N} \mathbb{E}_{\mathbf{z} \sim q^{k}\left(\mathbf{z} \mid \mathbf{x}^{(n)}\right)} \left[\sum_{t=1}^{T} \log p_{\theta}(z_{t} \mid z_{t-1})\right] \end{aligned}
```

We will address them one by one next

M-step
$$(\pi_0, \Sigma_0)$$

$$\mathbb{P}(Z_0) = \mathcal{N}(\pi_0, \Sigma_0)$$

$$\mathbb{E}_{k}^{(n)}[z_{t}] \coloneqq \mathbb{E}_{\mathbf{z} \sim q^{k}(\mathbf{z}|\mathbf{x}^{(n)})}[z_{t}]$$

$$\mathbb{E}_{k}^{(n)}[z_{t}z_{t}^{\mathsf{T}}] \coloneqq \mathbb{E}_{\mathbf{z} \sim q^{k}(\mathbf{z}|\mathbf{x}^{(n)})}[z_{t}z_{t}^{\mathsf{T}}]$$

$$\mathbb{E}_{k}^{(n)}[z_{t}z_{t-1}^{\mathsf{T}}] \coloneqq \mathbb{E}_{\mathbf{z} \sim q^{k}(\mathbf{z}|\mathbf{x}^{(n)})}[z_{t}z_{t-1}^{\mathsf{T}}]$$

$$(\pi_0^{k+1}, \Sigma_0^{k+1}) = \operatorname{argmax}_{\theta} \sum_{n=1}^{N} \mathbb{E}_{\mathbf{z} \sim q^k(\mathbf{z}|\mathbf{x}^{(n)})} [\log p_{\theta}(z_0)]$$

• Since $p_{\theta}(z_0)$ is Gaussian, we have:

$$\log p_{\theta}(z_0) \propto -\log \det \Sigma_0 - (z_0 - \pi_0)^{\mathsf{T}} \Sigma_0^{-1} (z_0 - \pi_0)$$

• And now we get this:

$$(\pi_0^{k+1}, \Sigma_0^{k+1}) = \operatorname{argmin}_{\theta} N \log \det \Sigma_0 + \sum_{n=1}^N \mathbb{E}_{\mathbf{z} \sim q^k(\mathbf{z}|\mathbf{x}^{(n)})} [(z_0 - \pi_0)^{\mathsf{T}} \Sigma_0^{-1} (z_0 - \pi_0)]$$

M-step (π_0, Σ_0)

$$\mathbb{E}_{k}^{(n)}[z_{t}] \coloneqq \mathbb{E}_{\mathbf{z} \sim q^{k}(\mathbf{z}|\mathbf{x}^{(n)})}[z_{t}] \\
\mathbb{E}_{k}^{(n)}[z_{t}z_{t}^{\mathsf{T}}] \coloneqq \mathbb{E}_{\mathbf{z} \sim q^{k}(\mathbf{z}|\mathbf{x}^{(n)})}[z_{t}z_{t}^{\mathsf{T}}] \\
\mathbb{E}_{k}^{(n)}[z_{t}z_{t-1}^{\mathsf{T}}] \coloneqq \mathbb{E}_{\mathbf{z} \sim q^{k}(\mathbf{z}|\mathbf{x}^{(n)})}[z_{t}z_{t-1}^{\mathsf{T}}]$$

$$(\pi_0^{k+1}, \Sigma_0^{k+1}) = \operatorname{argmin}_{\theta} N \log \det \Sigma_0 + \sum_{n=1}^{N} \mathbb{E}_{\mathbf{z} \sim q^k(\mathbf{z}|\mathbf{x}^{(n)})} [(z_0 - \pi_0)^{\mathsf{T}} \Sigma_0^{-1} (z_0 - \pi_0)]$$

use the definitions of $\mathbb{E}_k^{(n)}[z_0]$ and $\mathbb{E}_k^{(n)}[z_0z_0^{\mathsf{T}}]$

$$\left(\pi_0^{k+1}, \Sigma_0^{k+1} \right) = \operatorname{argmin}_{\theta} N \log \det \Sigma_0 + N \pi_0^{\mathsf{T}} \Sigma_0^{-1} \pi_0 + \sum_{n=1}^{N} \operatorname{tr} \left(\mathbb{E}_k^{(n)} [z_0 z_0^{\mathsf{T}}] \Sigma_0^{-1} \right) - 2 \sum_{n=1}^{N} \pi_0^{\mathsf{T}} \Sigma_0^{-1} \mathbb{E}_k^{(n)} [z_0]$$

• Setting the derivative with respect to π_0 to 0 yields $\pi_0^{k+1} = \frac{\sum_{n=1}^N \mathbb{E}_k^{(n)}[z_0]}{N}$

Use
$$\pi_0^{k+1}$$

$$\Sigma_0^{k+1} = \operatorname{argmin}_{\theta} N \cdot \log \det \Sigma_0 + \sum_{n=1}^{N} \operatorname{tr} \left(\mathbb{E}_k^{(n)} [z_0 z_0^{\mathsf{T}}] \Sigma_0^{-1} \right) - N \cdot \operatorname{tr} \left(\pi_0^{k+1} (\pi_0^{k+1})^{\mathsf{T}} \Sigma_0^{-1} \right)$$

 $m \cdot \log \det \Sigma + \operatorname{tr}(S\Sigma^{-1})$ is minimized at $\Sigma = S/m$

$$\Sigma_0^{k+1} = \frac{\Sigma_{n=1}^N \mathbb{E}_k^{(n)} [\mathbf{z}_0 \mathbf{z}_0^{\mathsf{T}}]}{N} - \pi_0^{k+1} (\pi_0^{k+1})^{\mathsf{T}}$$

M-step (C, R)

$$\mathbb{P}(X_t|z_t) = \mathcal{N}(Cz_t, R)$$

$$(C^{k+1}, R^{k+1}) = \operatorname{argmax}_{\theta} \sum_{n=1}^{N} \mathbb{E}_{\mathbf{z} \sim q^{k}(\mathbf{z}|\mathbf{x}^{(n)})} \left[\sum_{t=0}^{T} \log p_{\theta} \left(x_{t}^{(n)} \middle| z_{t} \right) \right]$$

$$p_{\theta} \left(x_{t}^{(n)} \middle| z_{t} \right) \text{ is Gaussian}$$

```
\mathbb{E}_{k}^{(n)}[z_{t}] \coloneqq \mathbb{E}_{\mathbf{z} \sim q^{k}(\mathbf{z}|\mathbf{x}^{(n)})}[z_{t}] \\
\mathbb{E}_{k}^{(n)}[z_{t}z_{t}^{\mathsf{T}}] \coloneqq \mathbb{E}_{\mathbf{z} \sim q^{k}(\mathbf{z}|\mathbf{x}^{(n)})}[z_{t}z_{t}^{\mathsf{T}}] \\
\mathbb{E}_{k}^{(n)}[z_{t}z_{t-1}^{\mathsf{T}}] \coloneqq \mathbb{E}_{\mathbf{z} \sim q^{k}(\mathbf{z}|\mathbf{x}^{(n)})}[z_{t}z_{t-1}^{\mathsf{T}}]
```

Use C^{k+1}

$$(C^{k+1}, R^{k+1}) = \operatorname{argmin}_{\theta} N(T+1) \log \det R + \sum_{n=1}^{N} \sum_{t=0}^{T} \mathbb{E}_{z_{t} \sim q^{k}(z_{t}|\mathbf{x}^{(n)})} \left[\left(x_{t}^{(n)} - Cz_{t} \right)^{\mathsf{T}} R^{-1} \left(x_{t}^{(n)} - Cz_{t} \right) \right]$$

use the definitions of $\mathbb{E}_k^{(n)}[z_t]$ and $\mathbb{E}_k^{(n)}[z_t z_t^{\mathsf{T}}]$

$$\min_{\theta} N(T+1) \log \det R + \sum_{n=1}^{N} \sum_{t=0}^{T} \left\{ \operatorname{tr} \left(\left(C \mathbb{E}_{k}^{(n)} [\mathbf{z}_{t} \mathbf{z}_{t}^{\mathsf{T}}] C^{\mathsf{T}} + x_{t}^{(n)} \left(x_{t}^{(n)} \right)^{\mathsf{T}} \right) R^{-1} - 2x_{t}^{(n)} \mathbb{E}_{k}^{(n)} [\mathbf{z}_{t}]^{\mathsf{T}} C^{\mathsf{T}} R^{-1} \right) \right\}$$

• Setting the derivative with respect to C to 0 yields

$$C^{k+1} = \left(\sum_{n=1}^{N} \sum_{t=0}^{T} x_{t}^{(n)} \, \mathbb{E}_{k}^{(n)} [z_{t}]^{\top}\right) \left(\sum_{n=1}^{N} \sum_{t=0}^{T} \mathbb{E}_{k}^{(n)} [z_{t} z_{t}^{\top}]\right)^{-1}$$

$$\min_{\theta} N(T+1) \log \det R + \sum_{n=1}^{N} \sum_{t=0}^{T} \left\{ \operatorname{tr} \left(x_{t}^{(n)} \left(x_{t}^{(n)} \right)^{\mathsf{T}} R^{-1} - x_{t}^{(n)} \mathbb{E}_{k}^{(n)} [z_{t}]^{\mathsf{T}} (C^{k+1})^{\mathsf{T}} R^{-1} \right) \right\}$$

$$\frac{\partial \operatorname{tr}(C^{\mathsf{T}}X)}{\partial C} = X$$

$$\frac{\partial \operatorname{tr}(C^{\mathsf{T}}XCY)}{\partial C} = XCY + X^{\mathsf{T}}CY^{\mathsf{T}}$$

 $m \cdot \log \det \Sigma + \operatorname{tr}(S\Sigma^{-1})$ is minimized at $\Sigma = S/m$

$$R^{k+1} = \frac{\sum_{n=1}^{N} \sum_{t=0}^{T} x_{t}^{(n)} (x_{t}^{(n)})^{\mathsf{T}} - C^{k+1} \sum_{n=1}^{N} \sum_{t=0}^{T} \mathbb{E}_{k}^{(n)} [\mathbf{z}_{t}] (x_{t}^{(n)})^{\mathsf{T}}}{N(T+1)}$$

M-step (A, Q)

$$\mathbb{P}(Z_t|z_{t-1}) = \mathcal{N}(Az_{t-1}, Q)$$

$$(A^{k+1}, Q^{k+1}) = \operatorname{argmax}_{\theta} \sum_{n=1}^{N} \mathbb{E}_{\mathbf{z} \sim q^{k}(\mathbf{z}|\mathbf{x}^{(n)})} [\sum_{t=1}^{T} \log p_{\theta}(z_{t}|z_{t-1})]$$

$$\downarrow p_{\theta}(z_{t}|z_{t-1}) \text{ is Gaussian}$$

```
\mathbb{E}_{k}^{(n)}[z_{t}] \coloneqq \mathbb{E}_{\mathbf{z} \sim q^{k}(\mathbf{z}|\mathbf{x}^{(n)})}[z_{t}]
\mathbb{E}_{k}^{(n)}[z_{t}z_{t}^{\mathsf{T}}] \coloneqq \mathbb{E}_{\mathbf{z} \sim q^{k}(\mathbf{z}|\mathbf{x}^{(n)})}[z_{t}z_{t}^{\mathsf{T}}]
\mathbb{E}_{k}^{(n)}[z_{t}z_{t-1}^{\mathsf{T}}] \coloneqq \mathbb{E}_{\mathbf{z} \sim q^{k}(\mathbf{z}|\mathbf{x}^{(n)})}[z_{t}z_{t-1}^{\mathsf{T}}]
```

$$(A^{k+1}, Q^{k+1}) = \operatorname{argmin}_{\theta} NT \log \det Q + \sum_{n=1}^{N} \sum_{t=1}^{T} \mathbb{E}_{\mathbf{z} \sim q^{k}(\mathbf{z}|\mathbf{x}^{(n)})} [(z_{t} - Az_{t-1})^{\mathsf{T}} Q^{-1}(z_{t} - Az_{t-1})]$$

use the definitions of $\mathbb{E}_k^{(n)}[z_tz_t^{\mathsf{T}}]$ and $\mathbb{E}_k^{(n)}[z_tz_{t-1}^{\mathsf{T}}]$

$$\min_{\theta} NT \log \det Q + \sum_{n=1}^{N} \sum_{t=1}^{T} \left\{ \operatorname{tr} \left(\left(A \left(\mathbb{E}_{k}^{(n)} [z_{t-1} z_{t-1}^{\mathsf{T}}] \right) A^{\mathsf{T}} + \mathbb{E}_{k}^{(n)} [z_{t} z_{t}^{\mathsf{T}}] \right) Q^{-1} - 2 \mathbb{E}_{k}^{(n)} [z_{t} z_{t-1}^{\mathsf{T}}] A^{\mathsf{T}} Q^{-1} \right) \right\}$$

• Setting the derivative with respect to A to 0 yields

$$A^{k+1} = \left(\sum_{n=1}^{N} \sum_{t=1}^{T} \mathbb{E}_{k}^{(n)} [z_{t} z_{t-1}^{\mathsf{T}}]\right) \left(\sum_{n=1}^{N} \sum_{t=1}^{T} \mathbb{E}_{k}^{(n)} [z_{t-1} z_{t-1}^{\mathsf{T}}]\right)^{-1}$$

Use
$$A^{k+1}$$

$$\min_{\theta} NT \log \det Q + \sum_{n=1}^{N} \sum_{t=1}^{T} \left\{ \operatorname{tr} \left(\mathbb{E}_{k}^{(n)} [z_t z_t^{\mathsf{T}}] Q^{-1} - \mathbb{E}_{k}^{(n)} [z_t z_{t-1}^{\mathsf{T}}] (A^{k+1})^{\mathsf{T}} Q^{-1} \right) \right\}$$

$$\frac{\partial \operatorname{tr}(A^{\mathsf{T}}X)}{\partial A} = X$$
$$\frac{\partial \operatorname{tr}(A^{\mathsf{T}}XAY)}{\partial A} = XAY + X^{\mathsf{T}}AY^{\mathsf{T}}$$

$$m \cdot \log \det \Sigma + \operatorname{tr}(S\Sigma^{-1})$$
 is minimized at $\Sigma = S/m$

$$Q^{k+1} = \frac{\sum_{n=1}^{N} \sum_{t=0}^{T} \mathbb{E}_{k}^{(n)} [z_{t} z_{t}^{\mathsf{T}}] - A^{k+1} \sum_{n=1}^{N} \sum_{t=0}^{T} \mathbb{E}_{k}^{(n)} [z_{t-1} z_{t}^{\mathsf{T}}]}{NT}$$

Summary: EM for LDSs (iteration: k)

E-step

Given θ^k , for each $\mathbf{x}^{(n)}$, use Kalman Filter & Smoothing to compute:

- $\mathbb{E}_{k}^{(n)}[z_t] \coloneqq \mathbb{E}_{\mathbf{z} \sim q^k(\mathbf{z}|\mathbf{x}^{(n)})}[z_t|\mathbf{x}^{(n)}]$
- $\mathbb{E}_{k}^{(n)}[z_{t}z_{t}^{\mathsf{T}}] \coloneqq \mathbb{E}_{\mathbf{z} \sim q^{k}(\mathbf{z}|\mathbf{x}^{(n)})}[z_{t}z_{t}^{\mathsf{T}}|\mathbf{x}^{(n)}]$
- $\mathbb{E}_{k}^{(n)}[z_{t}z_{t-1}^{\mathsf{T}}] \coloneqq \mathbb{E}_{\mathbf{z} \sim q^{k}(\mathbf{z}|\mathbf{x}^{(n)})}[z_{t}z_{t-1}^{\mathsf{T}}|\mathbf{x}^{(n)}]$

M-step

Update parameters:

•
$$\pi_0^{k+1} = \frac{\sum_{n=1}^N \mathbb{E}_k^{(n)}[z_0]}{N}$$

•
$$\Sigma_0^{k+1} = \frac{\Sigma_{n=1}^N \mathbb{E}_k^{(n)} [z_0 z_0^{\mathsf{T}}]}{N} - \pi_0^{k+1} (\pi_0^{k+1})^{\mathsf{T}}$$

•
$$C^{k+1} = \left(\sum_{n=1}^{N} \sum_{t=0}^{T} x_t^{(n)} \mathbb{E}_k^{(n)} [z_t]^{\mathsf{T}}\right) \left(\sum_{n=1}^{N} \sum_{t=0}^{T} \mathbb{E}_k^{(n)} [z_t z_t^{\mathsf{T}}]\right)^{-1}$$

•
$$R^{k+1} = \frac{\sum_{n=1}^{N} \sum_{t=0}^{T} x_t^{(n)} (x_t^{(n)})^{\mathsf{T}} - C^{k+1} \sum_{n=1}^{N} \sum_{t=0}^{T} \mathbb{E}_k^{(n)} [z_t] (x_t^{(n)})^{\mathsf{T}}}{N(T+1)}$$

•
$$A^{k+1} = \left(\sum_{n=1}^{N} \sum_{t=1}^{T} \mathbb{E}_{k}^{(n)} [z_{t} z_{t-1}^{\mathsf{T}}]\right) \left(\sum_{n=1}^{N} \sum_{t=1}^{T} \mathbb{E}_{k}^{(n)} [z_{t-1} z_{t-1}^{\mathsf{T}}]\right)^{-1}$$

•
$$Q^{k+1} = \frac{\sum_{n=1}^{N} \sum_{t=0}^{T} \mathbb{E}_{k}^{(n)} [z_{t} z_{t}^{\mathsf{T}}] - A^{k+1} \sum_{n=1}^{N} \sum_{t=0}^{T} \mathbb{E}_{k}^{(n)} [z_{t-1} z_{t}^{\mathsf{T}}]}{NT}$$

• $\hat{z}_{s|t} \coloneqq \mathbb{E}[z_s|x_0,...,x_t]$

• $\hat{\Sigma}_{s|t} \coloneqq \text{Cov}(z_s|x_0,...,x_t)$

• $L_{t-1} \coloneqq \widehat{\Sigma}_{t-1|t-1} A^{\mathsf{T}} \widehat{\Sigma}_{t|t-1}^{-1}$

Kalman Filter & Smoothing can compute

add indices
$$n,k$$
 • $\mathbb{E}[z_t|\mathbf{y}] = \hat{z}_{t|T}$

•
$$\mathbb{E}[z_t z_t^{\mathsf{T}} | \boldsymbol{y}] = \hat{\Sigma}_{t|T} + \hat{z}_{t|T} \hat{z}_{t|T}^{\mathsf{T}}$$

•
$$\mathbb{E}[\boldsymbol{z}_{t}\boldsymbol{z}_{t-1}^{\mathsf{T}}|\boldsymbol{y}] = L_{t-1}\hat{\Sigma}_{t|T} + \hat{z}_{t|T}\hat{z}_{t-1|T}^{\mathsf{T}}$$

via forward & backward passes

Model Parameters:

•
$$\theta \coloneqq (\pi_0, \Sigma_0, A, Q, C, R)$$

$$\mathbb{P}(Z_0) = \mathcal{N}(\pi_0, \Sigma_0)$$

$$\mathbb{P}(Z_t | z_{t-1}) = \mathcal{N}(Az_{t-1}, Q)$$

$$\mathbb{P}(X_t | z_t) = \mathcal{N}(Cz_t, R)$$