6 912 -- (N, N, N, N) ! NS 1.2 because 1.3 89 912 or 841 unrusonable to range of (1, m. nk) should be the total number PLN=500) =0, fulse 1.8 P(N=n): (. Fin) then, it will goes to O = 4.9.24 = 2.767.1012 P(N < Amax) = 0.95 = 2.767·1012 . FCMmax) = 2.767·1012 . 4 LMmax)4 = 6.918 · 1011 · 1 · Ln max) = 923.7108

2.1	530
	S S O
	Assume, we have total of N droves in wild, then total action of 400 in (N) = N! 400! (N-400)!
2.2	Assume, we have lotel of Mores in wild, then to a
	0 + 400 in N in N!
	(400)
	400! (N-400)!
2.3	(which 270 lagged drove in 400 will be: (400)
	11 br - (N - 400)
	catch 130 untegged done in the will be (N-400)
	1/ N
	where you catch 400 drove in N: (400)
	: catch 270 tagged & 130 integged: (270). (N-400)
	i. catch 270 tagged & 130 integged: (270). (130)
	(400)
	C 486 2
	. 400! (N-400)!
	210! (400-270)! 130! (IN-400)-130)]!
1	N!
	400! (N-400)!
	400. (10 10 1)
1	
- 42	
6.00	4
1	
1.25	

2.5 For PLN = 1 max) = 3.95 .: (.F(N) = 3.95 (.F(N) = 5.09 (N-1)! 420! (N-430)! N! 420! (N-1)-430! N! 420! (N-1)-430! No.! (N-1)! No.! (N-1)-430! No.! (N-1)! No.! (N-1	3	
$\frac{(V - V(N) = F(N) - \frac{1}{F(N-1)})}{\frac{1}{270! \cdot 130!} \cdot \frac{(N-1)!}{130! \cdot 130! \cdot \frac{1}{100! \cdot 130!} \cdot \frac{(N-1)!}{130! \cdot \frac{1}{100! \cdot 130!} \cdot \frac{(N-1)!}{130! \cdot \frac{1}{100! \cdot 130!} \cdot \frac{1}{130! \cdot \frac{1}{100! \cdot 130!} \cdot \frac{1}{100! \cdot 130!}}{\frac{1}{100! \cdot 130! \cdot \frac{1}{100! \cdot 130!} \cdot \frac{1}{100! \cdot 130!} \cdot \frac{1}{100! \cdot 130!} \cdot \frac{1}{100! \cdot 130!}}$ $\frac{(N - 400)^{\frac{1}{100!}} \cdot \frac{(N - 400)^{\frac{1}{100!}} \cdot \frac{1}{100! \cdot 130!} \cdot \frac{1}{100! \cdot 100!} \cdot \frac{1}{$	2.5	For PLN = 1 max) = 2.95
$\frac{430!}{210! \cdot 130!} \frac{(N-1)!}{130! \cdot 130! \cdot ((N-400)-130)!} \frac{(N-1)!}{400! \cdot ((N-1)-400)!}$ $\frac{N!}{400! \cdot ((N-400)!} \frac{(N-1)!}{170! \cdot 130!} \frac{(N-1)-400)!}{130! \cdot (((N-1)-400)-130)!}$ $\frac{(N-400)!}{N(N-510)} \frac{(N_{max} + 400)!}{(N_{max} - 530)} = 0.95$ $\frac{(N_{max} - 400)!}{(N_{max} - 400)!} = 0.95 \cdot (N_{max} + N_{max} - 520)$ $\frac{(N_{max} - 400)!}{(N_{max} - 400)!} = 0.95 \cdot (N_{max} + N_{max} - 520)$ $\frac{(N_{max} - 400)!}{(N_{max} - 400)!} = 0.95 \cdot (N_{max} + N_{max} - 520)$ $\frac{(N_{max} - 400)!}{(N_{max} - 400)!} = 0.95 \cdot (N_{max} + N_{max} - 520)$ $\frac{(N_{max} - 400)!}{(N_{max} - 400)!} = 0.95 \cdot (N_{max} + N_{max} - 520)$ $\frac{(N_{max} - 400)!}{(N_{max} - 400)!} = 0.95 \cdot (N_{max} + N_{max} - 520)$ $\frac{(N_{max} - 400)!}{(N_{max} - 400)!} = 0.95 \cdot (N_{max} + N_{max} - 520)$ $\frac{(N_{max} - 400)!}{(N_{max} - 400)!} = 0.95 \cdot (N_{max} + N_{max} - 520)$ $\frac{(N_{max} - 400)!}{(N_{max} - 400)!} = 0.95 \cdot (N_{max} + N_{max} - 520)$ $\frac{(N_{max} - 400)!}{(N_{max} - 400)!} = 0.95 \cdot (N_{max} + N_{max} - 520)$ $\frac{(N_{max} - 400)!}{(N_{max} - 400)!} = 0.95 \cdot (N_{max} + N_{max} - 520)$ $\frac{(N_{max} - 400)!}{(N_{max} - 400)!} = 0.95 \cdot (N_{max} + N_{max} - 520)$ $\frac{(N_{max} - 400)!}{(N_{max} - 400)!} = 0.95 \cdot (N_{max} + N_{max} - 520)$ $\frac{(N_{max} - 400)!}{(N_{max} - 400)!} = 0.95 \cdot (N_{max} + N_{max} - 520)$ $\frac{(N_{max} - 400)!}{(N_{max} - 400)!} = 0.95 \cdot (N_{max} + N_{max} - 520)$ $\frac{(N_{max} - 400)!}{(N_{max} - 400)!} = 0.95 \cdot (N_{max} + N_{max} - 520)$ $\frac{(N_{max} - 400)!}{(N_{max} - 400)!} = 0.95 \cdot (N_{max} + N_{max} - 520)$ $\frac{(N_{max} - 400)!}{(N_{max} - 400)!} = 0.95 \cdot (N_{max} + N_{max} - 520)$ $\frac{(N_{max} - 400)!}{(N_{max} - 400)!} = 0.95 \cdot (N_{max} + N_{max} - 520)$ $\frac{(N_{max} - 400)!}{(N_{max} - 400)!} = 0.95 \cdot (N_{max} + N_{max} - 520)$ $\frac{(N_{max} - 400)!}{(N_{max} - 400)!} = 0.95 \cdot (N_{max} + N_{max} - 520)$ $\frac{(N_{max} - 400)!}{(N_{max} - 400)!} = 0.95 \cdot (N_{max} - 400)$ $\frac{(N_{max} - 400)!}{(N_{max} - 400)!} = 0.95 \cdot (N_{max} - 400)$ $\frac{(N_{max} - 400)!}{(N_{max} - 400)!} = 0.95 \cdot (N_{max} - 400)$ $\frac{(N_{max} - 400)!}{($: (·FLN) = 0.95
120: 130! 130! (LN-400)-130! 400! (LN-1)-400)! W! 400! (LN-400)! Tol. 130! 130! (LN-1)-400)! LN-400) , (Mmx -400) = 0.95 NLN-530) Nmax (Amx -530) (Mmx -400) = 0.85 (Amax (Amax -520) (Mmx -400) = 0.85 (Amax (Amax -520) Amax = 29650 + A559122500 Amax = 29650 - A559122500 Amax = 5329.577 Amax = 5329.577		$(\cdot F(N) : F(N) \cdot \frac{1}{F(N-1)} =$
1270: 130! 130! (LN-400)-130! 400! (LN-1)-400)! 10! 400! (N-400)! 170! 130! (LN-1)-400)! 10. 400! None 400! 100! (LN-1)-400]! 10. 400! None 400! 100! 100! 100! 100! 10. 400! None 400! 100! 100! 100! 100! 10. 400! None 400! 100! 100! 100! 100! 10. 400! (None 400) 100! 100! 100! 100! 10. 400! (None 400) 100! 100! 100! 100! 100! 100! 10. 400! (None 400) 100! 100! 100! 100! 100! 100! 100! 1		
$ \frac{N!}{400!} \frac{400!}{100!} \frac{(LN-1)-400!}{100!} \frac{130!}{100!} \frac{130!}{$		400! (N-400)! (N-1)!
$\frac{(400)!(N-400)!}{(N-400)!} = \frac{170!30!}{(N-400)!} = \frac{180!((N-1)-400)!}{(N-400)!} = \frac{180!}{(N-530)}$ $\frac{(N-400)!}{(N-530)} = \frac{(N-400)!}{(N-400)!} = \frac{180!}{(N-400)!} = \frac{180!}{(N-400)!}$ $\frac{(N-400)!}{(N-400)!} = \frac{180!((N-1)-400)!}{(N-400)!} = \frac{180!}{(N-400)!}$ $\frac{(N-400)!}{(N-400)!} = \frac{180!((N-400)!}{(N-400)!} = \frac{180!}{(N-400)!}$ $\frac{(N-400)!}{(N-400)!} = \frac{180!((N-400)!}{(N-400)!} = \frac{180!}{(N-400)!}$ $\frac{(N-400)!}{(N-400)!} = \frac{180!}{(N-400)!} = \frac{180!}{(N-400)!} = \frac{180!}{(N-400)!}$ $\frac{(N-400)!}{(N-400)!} = \frac{180!}{(N-400)!} = \frac{180!}$		270: 130! 130! (LN-400)-130)! 400! (LN-1)-400)!
$\frac{(400)!(N-400)!}{(N-400)!} = \frac{170!30!}{(N-400)!} = \frac{180!((N-1)-400)!}{(N-400)!} = \frac{180!}{(N-530)}$ $\frac{(N-400)!}{(N-530)} = \frac{(N-400)!}{(N-400)!} = \frac{180!}{(N-400)!} = \frac{180!}{(N-400)!}$ $\frac{(N-400)!}{(N-400)!} = \frac{180!((N-1)-400)!}{(N-400)!} = \frac{180!}{(N-400)!}$ $\frac{(N-400)!}{(N-400)!} = \frac{180!((N-400)!}{(N-400)!} = \frac{180!}{(N-400)!}$ $\frac{(N-400)!}{(N-400)!} = \frac{180!((N-400)!}{(N-400)!} = \frac{180!}{(N-400)!}$ $\frac{(N-400)!}{(N-400)!} = \frac{180!}{(N-400)!} = \frac{180!}{(N-400)!} = \frac{180!}{(N-400)!}$ $\frac{(N-400)!}{(N-400)!} = \frac{180!}{(N-400)!} = \frac{180!}$	7.73	N! 4no! (CN-1)-400)1
$(N_{max} - 400)^{2} = 0.85 (A_{max} + N_{max} - 520)$ $N_{max} = \frac{29650 + 1559122500}{10}$ $N_{max} = \frac{28650 - 1559122500}{10}$ $N_{max} = \frac{10}{10}$ $N_{max} = \frac{10}{10}$ $N_{max} = \frac{10}{10}$ $N_{max} = \frac{10}{10}$		400! (N-400)! 170! 130! 130! (((N-1)-400) - 130)!
		(N-400) ² , (Mmx -400) ² = 0.95 NLN-530) Nmax (1max -530)
		(1 max -400) = 0.85 (Amax (1 max -530))
1 max 1 = 5329.577 1 max 2 = 600.423 \times 601		10 max, = 29650 + 1559122500
1 max = 600.423 \$ 601		1 max = 28650 - 1559122500
	92 9	1 max 1 = 5329.577
Smallest will be the		1 max = 600.423 \$ 601
	0	: Smartlest soull be to

For PCN < Amax) = 0.95 ·. (· FCN) = 0.95 From 2.4, we know that F(N) - F(N+1) = (NOT)(N-529) Q: C.F(N) = F(N) · F(N+1) (M+1)(N-529) (Max +1)(Mmx -529) = 0.95 (N-399)2 (Mmx -399)2 = (Nmx +1) (Nmx-529) = 0.95 (Nmx -389) 1 max = -23010 + 1833,000000 1 mex 2 = -23010 - 1833000000 Mmax , 2 585.174 Amax = -5187.174 based on the last page, the range of the Amax is between \$585.174 to 600.423 so, smallest 1 max is betness 585,174 - 600.423

3.1 p of fair coin 15 p of bais coin is head of ? If 10 thips, threshold will be 10 =5 P (win) = P (fair) . P (win) + P (bias) . P (bias) = \(\left(\frac{\times \cdot \times \times \cdot \times \left(\frac{\times \cdot \times \times \times \cdot \times \left(\frac{\times \times \times \times \times \times \times \left(\frac{\times \times \time $=\frac{1}{2}\left(\left(\frac{z^{4}}{z^{2}}\left(\frac{10}{k}\right)\left(\frac{1}{2}\right)^{k}\cdot\left(1-\frac{1}{2}\right)^{13-k}+\left(\frac{z^{10}}{k}\left(\frac{10}{2}\right)\left(\frac{2}{3}\right)^{k}\cdot\left(1-\frac{2}{3}\right)^{k}\right)$ $= \frac{1}{2} \left(\frac{183}{512} + \frac{1817b}{18b83} \right) = 0.65018$ O It so files, threshold will be 20 = 10 P(wn) = 1 (P(x<10) + P(xx10)) $= \frac{1}{2} \left(\left(\frac{5}{2} \left(\frac{10}{k} \right) \left(\frac{1}{2} \right)^{1} \cdot \left(1 - \frac{1}{2} \right)^{20 - k} \right) + \left(\frac{5}{2} \left(\frac{10}{k} \right) \left(\frac{2}{3} \right) \left(1 - \frac{2}{3} \right)^{2} \right)$ k! (w-k) = [(215855 + 0.96236) = 0.68/13

 $\frac{1}{2}\left(P\left(\frac{k-1}{0.5}\right) + P\left(\frac{k}{2}\right)\right)$ = 1/2 (E () (10) (1 - 1) (0 - k) + (E () (3) (1 - 5) () - k) KI (10-K)! a We already knows that it we set our threshold to 5 the probability of winning is 0.65019 It we set our threshold to b, then the function will looks like $\frac{1}{2}((\frac{5}{2})^{2}(\frac{10!}{2})^{10-k}) + (\frac{1}{2})^{10-k}) + (\frac{5}{2})^{10-k}) + (\frac{5}{2})^{10-k}$ $=\frac{1}{2}\left(\frac{319}{512}+\frac{15488}{19683}\right)=0.705$ However, if we set on threshold to 1, then: 1 (2 b (| (10-12)) (2) (2) (2) (2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3) (3) = 1 (53 + 11008) = 0.6937 As we can see, when threshold is 6, P(win) = 0.705 which is bigger than threshold of 5 and 1 . For 10 tilps, threshold should set to b

3.2 Per 20 files ~ ((E) (20) (1-1) (1-1) 20-k) + (20 (20) (2) (1-3) 20-k)) Same logic as 3.20, we know that theshold (0, PCwin) = 0.68713. If we set threshold to 11, function will be. -1 ((\(\int_{10}(\int_{10 = 1 (30833) + 0.90810) = 0.7481 If we set threshold to 12, $\frac{1}{2} \left(\left(\sum_{k=0}^{\infty} {\binom{20}{k}} \left(\frac{1}{2} \right)^{k} \cdot \left(\frac{1}{2} \right)^{20-k} \right) + \left(\left(\sum_{k=0}^{\infty} {\binom{20}{k}} \left(\frac{1}{3} \right)^{k} \cdot \left(\frac{1}{3} \right)^{20-k} \right) \right)$ $= \frac{1}{2} \left(\frac{392313}{524288} + 0.80945 \right) = 0.71886$ $\frac{1}{2} \left(\left(\sum_{k=0}^{12} {\binom{10}{k}} \left(\frac{1}{2} \right)^{k} \cdot \left(\frac{1}{2} \right)^{20-k} \right) + \left(\sum_{i,3}^{10} {\binom{10}{k}} \left(\frac{1}{3} \right)^{i} \cdot \left(\frac{1}{3} \right)^{20-k} \right) \right)$ $-\frac{1}{2}\left(\frac{227648}{262144} + 0.66147\right) = 0.7649$ can see that when threshold is 12, Pluin)=0.77886 which is bigger than threshold of 10, 11 and 13 i. For 20 silps, threshold should be \$12

FCN, T, P) 7 FCN, T+1, P) N: s number of flips, I is threshold, p is probability FLN, T,P) FLN, 7+1, P) - 2 (= TO (N) (1) TO (1) N-TA + EN (N) (P) (1-P) FLN. T-1, P) FLN, T, P) - FLN, Tol, P) \$0 1 (Z (Z) (Z) (Z) N-7 + Z (N) (P) (1 - P) N-1 - 2 (Z (1) (1) (1) N-1 Z (T) P) = = (N) (2M). (-| +2 · (p) · (1-p) N-1+1 => 1.2 (p) 1. (1-p) N-T+1 51 we know this part is negative so we don't we this part FLN, I, P) - FLN, I+1, P) 20 $\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right)^{\frac{1}{2}} \left(\frac{1}{2} \right)^{\frac{1}{2}} + \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right)^{\frac{1}{2}} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right)^{\frac{1}{2}} + \frac{1}{2} \left(\frac{1}{2} \right)^{\frac{1}{2}} + \frac{1}{2}$ + ZN LTJEPÍLI-P) N-T