Block Cipher

CUI TINGTING

School of Cypberspace, Hangzhou Dianzi University

January 9, 2024

- 2 DES: Data Encryption Standard
 - Overview of DES
 - Internal Structure of DES
 - Security of DES
- 3 AES: Advanced Encryption Standard
 - Overview of AES
 - Brief Introduction to Galois Fields
 - Internal Structure of AES
 - Security of AES
- 4 SM4: Chinese Encryption Standard
- 5 Encryption Modes

- - Overview of DES
 - Internal Structure of DES
 - Security of DES
- - Overview of AFS
 - Brief Introduction to Galois Fields
 - Internal Structure of AES
 - Security of AES

- Permutation B_K operating on $\{0,1\}^b$ with the block length b
- Parameterized by a secret key: K
- Computing $C = B_K(P)$ or $P = B_K^{-1}(C)$ should be:
 - Effcient knowing the secret key K
 - Infeasible otherwise

- NOT use D vs. use D (initial value).
- Block-wise vs. bit-wise.
- Different encryption algorithms vs. same encryption algorithm.
- Simple keyschedule vs. complex keystream process.

Claude Shannon: There are two primitive operations with which strong encryption algorithms can be built.

- Confusion: An encryption operation where the relationship between key and ciphertext is obscured.
- Diffusion: An encryption operation where the influence of one plaintext symbol is spread over many ciphertext symbols.
- Both operations by themselves CANNOT provide security.
- Product ciphers: concatenate confusion and diffusion elements.

- 2 DES: Data Encryption Standard
 - Overview of DES
 - Internal Structure of DES
 - Security of DES
- - Overview of AFS
 - Brief Introduction to Galois Fields
 - Internal Structure of AES
 - Security of AES

History of DES

- Data Encryption Standard (DES) encrypts blocks of size 64 bits.
- Developed by IBM based on the cipher Lucifer under influence of NSA, the design criteria have not been published.
- Standardized 1977 by the National Bureau of Standards (NBS, today called NIST).
- Most popular block cipher for most of the last 30 years
- By far best studied symmetric algorithm.
- Nowadays considered insecure due to the small key length of 56 bit.
- But: 3DES yields very secure cipher, still widely used today.
- Replaced by the Advanced Encryption Standard (AES) in 2000.

- Block size: 64 bits, key size: 56 bits
- Totally 16 rounds
- Construction: Feistel network
- Different subkeys in each round derived from master key

Feistel Network

Expression:

$$L_i = R_{i-1}$$

 $R_i = L_{i-1} \oplus f(R_{i-1}, k_i)$

Advantage: encryption and decryption differ only in key schedule

Feistel Network

■ Note: Omit the last swap in round 16.

- Bitwise permutations
- Finial permutation IP^{-1} is the inverse of IP.

Initial Permutation

Final Permutation

f-Function in Feistel Network

Four steps:

- 1 Expansion E
- 2 XOR with round key
- 3 Substitution (8 S-boxes)
- 4 Permutation P

f-Function: Expansion Function E

Main purpose: diffision.

f-Function: Add Round Key

- Bitwise XOR of the round key and the output of the expansion function E.
- Round keys are derived from the main key in the DES key schedule.

f-Function: S-boxes Layer

- Eight different S-box.
- Nonlinear, non-bijective.
- Main purpose: confusion.

S_1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	14	04	13	01	02	15	11	08	03	10	06	12	05	09	00	07
1	00	15	07	04	14	02	13	01	10	06	12	11	09	05	03	08
2	04	01	14	08	13	06	02	11	15	12	09	07	03	10	05	00
0 1 2 3	15	12	08	02	04	09	01	07	05	11	03	14	10	00	06	13

f-Function: Permutation P

- Bitwise permutation.
- Output bits of one S-Box effect several S-Boxes in next round.
- Main purpose: diffusion.

P							
16	7	20	21	29	12	28	17
1	15	23	26	5	18	31	10
				32			9
19	13	30	6	22	11	4	25

Key Schedule

- Derives 16 round keys (or subkeys) k_i of 48 bits each from the original 56-bit key.
- The input key size of the DES is 64 bit: 56-bit key and 8-bit parity.

Key Schedule

- Split key into 28-bit halves C_0, D_0 .
- Two rotations LS_i per round:
 - Rounds 1,2,9,16: ≪ 1.
 - In other rounds: ≪ 2.
- Two permutations PC-1 and PC-2.

PC - 1	PC-2					
57 49 41 33 25 17 9 1	14 17 11 24 1 5 3 28					
58 50 42 34 26 18 10 2	15 6 21 10 23 19 12 4					
59 51 43 35 27 19 11 3	26 8 16 7 27 20 13 2					
60 52 44 36 63 55 47 39	41 52 31 37 47 55 30 40					
31 23 15 7 62 54 46 38	51 45 33 48 44 49 39 56					
30 22 14 6 61 53 45 37	34 53 46 42 50 36 29 32					
29 21 13 5 28 20 12 4	·					

Decryption

- Due to Feistel construction, decryption only differs with encryption in key schedule.
- 2 Generate the same 16 round keys in reverse order.

Security of DES

- After proposal of DES two major criticisms arose:
 - 1 Key space is too small (2^{56} keys) :
 - 2 S-box design criteria have been kept secret: Are there any hidden analytical attacks (backdoors), only known to the NSA?
- Analytical Attacks:

- 1 Differential attack (1990, chosen plaintext attack, 2^{47})
- 2 Linear attack (1992, known plaintext attack, 2^{43})
- Exhaustive key search:
 - **1** Definition: for a given pair of plaintext-ciphertext (x, y) test all 2^{56} keys until the condition $DES_h^{-1}(y) = x$ is fulfilled.
 - Relatively easy given today's computer technology!

History of Attacks on DES

Year	Proposed/ implemented DES Attack				
1977	Diffie & Hellman, (under-)estimate the costs of a key search machine				
1990	Biham & Shamir propose differential cryptanalysis (2 ⁴⁷ chosen ciphertexts)				
1993	Mike Wiener proposes design of a very efficient key search machine: Average search requires 36h. Costs: \$1.000.000				
1993	Matsui proposes linear cryptanalysis (2 ⁴³ chosen ciphertexts)				
Jun. 1997	DES Challenge I broken, 4.5 months of distributed search				
Feb. 1998	DES Challenge II1 broken, 39 days (distributed search)				
Jul. 1998	DES Challenge II2 broken, key search machine <i>Deep Crack</i> built by the Electronic Frontier Foundation (EFF): 1800 ASICs with 24 search engines each, Costs: \$250 000, 15 days average search time (required 56h for the Challenge)				
Jan. 1999	DES Challenge III broken in 22h 15min (distributed search assisted by <i>Deep Crack</i>)				
2006-2008	Reconfigurable key search machine <i>COPACOBANA</i> developed at the Universities in Bochum and Kiel (Germany), uses 120 FPGAs to break DES in 6.4 days (avg.) at a cost of \$10 000.				

Double DES

How to enhence the security of DES?

Double DES

How to enhance the security of DES?

■ Double DES: A plaintext x is first encrypted with a key k_{L_t} then is encrypted again using a second key k_R to product the ciphertext y.

Double DES

How to enhance the security of DES?

- Double DES: A plaintext x is first encrypted with a key k_{L_t} then is encrypted again using a second key k_R to product the ciphertext y.
- lacktriangle Exhaustive key search would require $2^{56} \cdot 2^{56} = 2^{112}$ encryptions or decryptions.

Meet-in-the-Middle Attack

MITM Attack

- Phase I: Table Computation. Compute a lookup table for all pairs $(k_{L,i}, z_{L,i})$, where $e_{k_{L,i}}(x) = z_{L,i}$, $i = 1, 2, ..., 2^k$
- Phase II: Key Matching. Compute $e_{k_{R,i}}^{-1}(x) = z_{R,i}$ and check if $z_{R,i}$ matchs with any $z_{L,i}$ in the table.

- Data comp.: $3 \sim 4$ known plaintexts.
- Time comp.: 2^{57} .
- Memory comp.: 2^{56} .

Triple DES – 3DES

- Triple encryption using DES is often used in practice to extend the effective key length of DES to 112
- Advantage: choosing $k_1 = k_2 = k_3$ performs single DES encryption.
- No practical attack known today.
- Used in many legacy applications, i.e., in banking systems.

- - Overview of DES
 - Internal Structure of DES
 - Security of DES
- 3 AES: Advanced Encryption Standard
 - Overview of AFS
 - Brief Introduction to Galois Fields
 - Internal Structure of AES
 - Security of AES

AES Selection Process

- NIST launches the AES open contest to replace DES in 1997
 - 128-bit block length, 128-, 192- and 256-bit keys
 - specs, code, design rationale and preliminary analysis
- First round: August 1998 to August 1999
 - 15 candidates at 1st AES conference in Ventura. California
 - analysis presented at 2nd AES conf. in Rome, March 1999
 - NIST narrowed down to 5 fi nalists using this analysis
- Second round: August 1999 to summer 2000
 - analysis presented at 3rd AES conf. in New York, April 2000
 - NIST selected winner using this analysis: Riindael
- NIST motivated their choice in two reports

AES Winner — Rijndael Cipher

- Block and key lengths $\in \{128, 160, 192, 224, 256\}$
 - set of 25 block ciphers
 - AES limits block length to 128 and key length to multiples of 64

Joan Daemon-

AES: Overview

Three AES versions according to key size.

Block size (bit)	Key size (bit)	#Rounds
128	128	10
128	192	12
128	256	14

SM4: Chinese Encryption Standard E

AES: Overview

- Iterated cipher with 10/12/14 rounds.
- Each round consists of "Layers".
- all operations on $GF(2^8)$ field.

Group

A group $\langle G, \circ \rangle$ is a set of elements G with an operation \circ which combines two elements of G. A group has the following properties:

- **1** The group operation \circ is closed. That is, for all $a, b \in G$, it holds that $a \circ b = c \in G$.
- 2 The group operation is associative. That is, $a \circ (b \circ c) = (a \circ b) \circ c$.
- **3** There is an element $1 \in G$, called the neutral element (or identity element), such that $a \circ 1 = 1 \circ a = a$ for all $a \in G$.
- 4 For each $a \in G$ there exists an element $a^{-1} \in G$, called the inverse of a, such that $a \circ a^{-1} = a^{-1} \circ a = 1$.

A group G is abelian (or commutative) if, furthermore, $a \circ b = b \circ a$ for all $a, b \in G$.

A field $< F, +, \times >$ is a set of elements with the following properties:

- 1 All elements of F form an additive group with the group operation + and the neutral element 0.
- 2 All elements of F except 0 form a multiplicative group with the group operation \times and the neutral element 1.
- 3 When the two group operations are mixed, the distributivity law holds, i.e., for all $a,b,c\in F$: a(b+c)=(ab)+(ac).

A field $\langle F, +, \times \rangle$ is a set of elements with the following properties:

- 1 All elements of F form an additive group with the group operation + and the neutral element 0.
- 2 All elements of F except 0 form a multiplicative group with the group operation \times and the neutral element 1.
- 3 When the two group operations are mixed, the distributivity law holds, i.e., for all $a, b, c \in F$: a(b+c) = (ab) + (ac).

Example 1

$$<\mathbb{R},+, imes>$$

Definition 2 (order/cardinality)

The number of elements in the field is called the order or cardinality of the field.

Galois Fields (Finite Fields)

Definition 2 (order/cardinality)

The number of elements in the field is called the order or cardinality of the field.

Theorem 3

A field with order m only exists if m is a prime power, i.e., $m=p^n$, for some positive integer n and prime integer p. p is called the characteristic of the finite field.

Example 4

Finite fields with 11, 81, 256, 12?

Prime Fields GF(p)

GF(p)

Let p be a prime, GF(p) consists of

- **1** Elements: 0, 1, ..., p 1.
- 2 Two operations: modular integer addition and integer multiplication modulo p.

Example 5

$$GF(5) = \{0,1,2,3,4\}$$

 $GF(2)=\{0,1\}$ (addition: XOR gate, multiplication: logical AND

gate)

Extension Fields $GF(2^m)$

Extension fields

 $GF(2^m)$ with m>1:

- Elements of extension fields can be represented as polynomials.
- Computation in the extension field is achieved by performing a certain type of polynomial arithmetic.

For example: each element $A \in GF(2^8)$ is represented as:

$$A(x) = a_7 x^7 + \dots, +a_1 x^1 + a_0, a_i \in GF(2)$$

Another form is an 8-bit vector:

$$A(x) = (a_7, a_6, a_5, a_4, a_3, a_2, a_1, a_0)$$

Addition and Subtraction in $GF(2^m)$

Definition 6

Let $A(x), B(x) \in GF(2^m)$. The sum of the two elements is computed according to:

$$C(x) = A(x) + B(x) = \sum_{i=0}^{m-1} c_i x^i, c_i \equiv a_i + b_i \mod 2$$

and the difference is computed according to:

$$C(x) = A(x) - B(x) = \sum_{i=0}^{m-1} c_i x^i, c_i \equiv a_i - b_i \equiv a_i + b_i \mod 2$$

Addition and Subtraction in $GF(2^m)$

Example 7

Assume $A(x) = x^7 + x^6 + x^4 + 1$, $B(x) = x^4 + x^2 + 1$ in $GF(2^8)$, How about A(x) + B(x)?

Addition and Subtraction in $GF(2^m)$

Example 7

Assume $A(x) = x^7 + x^6 + x^4 + 1$, $B(x) = x^4 + x^2 + 1$ in $GF(2^8)$, How about A(x) + B(x)?

$$A(x) = x^7 + x^6 + x^4 + 1$$

$$B(x) = x^4 + x^2 + 1$$

$$C(x) = x^7 + x^6 + x^2$$

Standard polynomial multiplication rule:

$$A(x) \cdot B(x) = (a_{m-1}x^{m-1} + \dots + a_0) \cdot (b_{m-1}x^{m-1} + \dots + b_0)$$
$$= c_{2m-2}x^{2m-2} + \dots + c_0$$

where

$$c_0 = a_0 b_0 \mod 2,$$

 $c_1 = a_0 b_1 + a_1 b_0 \mod 2,$
 \dots
 $c_{2m-2} = a_{m-1} b_{m-1} \mod 2$

$$A(x) \cdot B(x) = (a_{m-1}x^{m-1} + \dots + a_0) \cdot (b_{m-1}x^{m-1} + \dots + b_0)$$
$$= c_{2m-2}x^{2m-2} + \dots + c_0$$

where

$$c_0 = a_0 b_0 \mod 2,$$

 $c_1 = a_0 b_1 + a_1 b_0 \mod 2,$

Problem here?

$$c_{2m-2} = a_{m-1}b_{m-1} \mod 2$$

Standard polynomial multiplication rule:

$$A(x) \cdot B(x) = (a_{m-1}x^{m-1} + \dots + a_0) \cdot (b_{m-1}x^{m-1} + \dots + b_0)$$
$$= c_{2m-2}x^{2m-2} + \dots + c_0$$

where

$$c_0 = a_0 b_0 \mod 2,$$

 $c_1 = a_0 b_1 + a_1 b_0 \mod 2,$

 $c_{2m-2} = a_{m-1}b_{m-1} \mod 2$

Multiplication

Let $A(x), B(x) \in GF(2^m)$ and let

$$P(x) \equiv \sum_{i=0}^{m} p_i x^i, p_i \in GF(2)$$

be an irreducible polynomial. Multiplication of the two elements $A(x),\,B(x)$ is performed as

$$C(x) \equiv A(x) \cdot B(x) \mod P(x)$$
.

Example 8

Multiply the two polynomials $A(x) = x^3 + x^2 + 1$ and $B(x) = x^2 + x$ in the field $GF(2^4)$, where the irreducible polynomial is $P(x) = x^4 + x + 1$.

Example 8

Multiply the two polynomials $A(x) = x^3 + x^2 + 1$ and $B(x) = x^2 + x$ in the field $GF(2^4)$, where the irreducible polynomial is $P(x) = x^4 + x + 1$.

$$A(x) \cdot B(x) = x^5 + x^3 + x^2 + x$$

= $x \cdot (x^4 + x + 1) + (x^2 + x) + x^3 + x^2 + x$
= $x^3 \mod p(x)$

Example 8

Multiply the two polynomials $A(x) = x^3 + x^2 + 1$ and $B(x) = x^2 + x$ in the field $GF(2^4)$, where the irreducible polynomial is $P(x) = x^4 + x + 1$.

$$A(x) \cdot B(x) = x^5 + x^3 + x^2 + x$$

$$= x \cdot (x^4 + x + 1) + (x^2 + x) + x^3 + x^2 + x$$

$$= x^3 \mod p(x)$$

Vector form: $(1101) \cdot (0110) = (1000)$ or $0xd \cdot 0x6 = 0x8$

Inversion in $GF(2^m)$

Inversion

For a given finite field $GF(2^m)$ and the corresponding irreducible reduction polynomial P(x), the inverse A^{-1} of a nonzero element $A \in GF(2^m)$ is defined as:

$$A^{-1}(x) \cdot A(x) = 1 \mod P(x).$$

Inversion in $GF(2^m)$

Example 9

The table contains all inverses in $GF(2^8)$ modulo $P(x) = x^8 + x^4 + x^3 + x + 1$ in hexadecimal notation.

		Y															
		0	1	2	3	4	5	6	7	8	9	Α	В	C	D	Ε	F
	0	00	01	8D	F6	CB	52	7B	D1	E8	4F	29	C0	B0	E1	E5	C7
	1	74	B4	AA	4B	99	2B	60	5F	58	3F	FD	CC	FF	40	EE	B2
	2	3A	6E	5A	F1	55	4D	Α8	C9	C1	0A	98	15	30	44	A2	C2
	3	2C	45	92	6C	F3	39	66	42	F2	35	20	6F	77	BB	59	19
	4	1D	FE	37	67	2D	31	F5	69	Α7	64	AΒ	13	54	25	E9	09
	5	ED	5C	05	CA	4C	24	87	$_{\mathrm{BF}}$	18	3E	22	F0	51	EC	61	17
	6	16	5E	ΑF	D3	49	Α6	36	43	F4	47	91	DF	33	93	21	3B
	7	79	В7	97	85	10	В5	ВА	3C	В6	70	D0	06	Α1	FΑ	81	82
Χ	8	83	7E	7F	80	96	73	ΒE	56	9B	9E	95	D9	F7	02	В9	Α4
	9	DE	6A	32	6D	D8	8A	84	72	2A	14	9F	88	F9	DC	89	9A
	Α	FΒ	7C	2E	C3	8F	В8	65	48	26	C8	12	4A	CE	E7	D2	62
	В	0C	E0	1F	EF	11	75	78	71	Α5	8E	76	3D	BD	BC	86	57
	C	0B	28	2F	A3	DA	D4	E4	0F	Α9	27	53	04	1B	FC	AC	E6
	D	7A	07	ΑE	63	C5	DB	E2	EΑ	94	8B	C4	D5	9D	F8	90	6B
	E	В1	0D	D6	ΕB	C6	0E	CF	AD	08	4E	D7	E3	5D	50	1E	B3
	F	5B	23	38	34	68	46	03	8C	DD	9C	7D	A0	CD	1A	41	1C

Internal Structure of AES

- AES is a byte-oriented cipher
- The state A (i.e., the 128-bit data path) can be arranged in a 4×4 matrix:

$$\begin{pmatrix} a_{00} & a_{01} & a_{42} & a_{43} \\ a_{11} & a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{32} & a_{33} \end{pmatrix}$$

Non-linear layer: SubBytes

SubBytes consists of 16 S-boxes:

- identical
- nonlinear
- bijective

Non-linear layer: SubBytes

S-box:
$$y=A(x^{-1})+b$$
 in $GF(2^8)$ with $p(x)=x^8+x^4+x^3+x+1$.

	1																
)	1	2	3	4	5	6	7	<i>y</i> 8	9	Α	В	С	D	Е	F
	6	3	7C	77	7B	F2	6B	6F	C5	30	01	67	2B	FE	D7	AB	76
1	c	Α	82	C9	7D	FA	59	47	FO	AD	D4	A2	AF	9C	A4	72	C0
2	В	7	FD	93	26	36	3F	F7	CC	34	A5	E5	F1	71	D8	31	15
3	0	4	C7	23	C3	18	96	05	9A	07	12	80	E2	EB	27	B2	75
4	0	9	83	2C	1A	1B	6E	5A	A0	52	3B	D6	B 3	29	E3	2F	84
5	5	3	D1	00	ED	20	FC	B1	5B	6A	CB	BE	39	4A	4C	58	CF
ϵ	D	00	EF	AA	FB	43	4D	33	85	45	F9	02	7F	50	3C	9F	A8
7	5	1	A3	40	8F	92	9D	38	F5	BC	B6	DA	21	10	FF	F3	D2
X 8	C	D	0C	13	EC	5F	97	44	17	C4	A7	7E	3D	64	5D	19	73
9	6	0	81	4F	DC	22	2A	90	88	46	EE	B8	14	DE	5E	0B	DB
A	E	0	32	3A	0A	49	06	24	5C	C2	D3	AC	62	91	95	E4	79
E	BE	7	C8	37	6D	8D	D5	4E	A9	6C	56	F4	EA	65	7A	ΑE	08
C	B	A	78	25	2E	1C	A6	B4	C6	E8	DD	74	1F	4B	BD	8B	8A
Ε	7	0	3E	B5	66	48	03	F6	0E	61	35	57	B9	86	C1	1D	9E
E	E	1	F8	98	11	69	D9	8E	94	9B	1E	87	E9	CE	55	28	DF
T.	7 8	C	Δ1	80	OD	RE	F6	42	68	41	99	2D	OF	R0	54	$\mathbf{R}\mathbf{R}$	16

Example: S(C2) = 25

Shuffing layer: ShiftRows

- Each row is shifted by a different amount
- Moves bytes in a given column to 4 different columns
- Contribute to fast diffusion

Mixing layer: MixColumns

Same invertible mapping applied to all 4 columns with $p(x) = x^{8} + x^{4} + x^{3} + x + 1$

$$c(x) = \begin{pmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{pmatrix}$$

Round key addition: AddRoundKey

The subkeys are generated in the key schedule.

Key Schedule

- Subkeys are derived recursively from the original master key.
- Each round has 1 subkey, plus 1 whitening subkey at the beginning of AES.
- There are different key schedules for the different key sizes.

block size (bit)	key size (bit)	#rounds	#subkeys
128	128	10	11
128	192	12	13
128	256	14	15

Key Schedule for 128-Bit Key AES

- Word-oriented: 1 word = 32 bits
- 11 subkeys are stored in $W[0], \ldots, W[43]$
- First subkey $W[0], \ldots, W[3]$ is the original AES key
- W[4i] = W[4(i-1)] + q(W[4i-1]).
- W[4i+j] =W[4i+j-1] + W[4(i-1)+j]

- The round coefficient is an element of the Galois field $GF(2^8)$ with $p(x) = x^8 + x^4 + x^3 + x + 1$.
- $RC[i] = x^{i-1}, i = 1, 2, \dots$
- \bullet g() has two purposes:
 - add nonlinearity to the key schedule
 - removes symmetry in AES

Key Schedule for 192-Bit Key AES

Key Schedule for 256-Bit Key AES

Decryption

Inverse MixColumn Sublayer

$$c(x) = \begin{pmatrix} 0E & 0B & 0D & 09 \\ 09 & 0E & 0B & 0D \\ 0D & 09 & 0E & 0B \\ 0B & 0D & 09 & 0E \end{pmatrix}$$

- Inverse ShiftRows Sublayer
- Inverse Byte Substitution Layer

Security

- Brute-force attack:
 - Due to the key length of 128, 192 or 256 bits, a brute-force attack is not possible
- Analytical attacks:
 - There is no analytical attack known that is better than brute-force in single-key setting
 - There are related-key boomerang attack on AES-192 and AES-256.

- Overview of DES
- Internal Structure of DES
- Security of DES
- - Overview of AFS
 - Brief Introduction to Galois Fields
 - Internal Structure of AES
 - Security of AES
- 4 SM4: Chinese Encryption Standard

- - Overview of DES
 - Internal Structure of DES
 - Security of DES
- - Overview of AFS
 - Brief Introduction to Galois Fields
 - Internal Structure of AES
 - Security of AES
- 5 Encryption Modes

A block cipher is much more than just an encryption algorithm, it can be used

- 1 to build different types of block-based encryption schemes
- 2 to realize stream ciphers
- 3 to construct hash functions
- 4 to make message authentication codes (MAC)
- 5 to build key establishment protocols
- 6 to make a pseudo-random number generator

Encryption with Block Ciphers: Modes of Operation

There are several ways of encrypting long plaintexts, e.g., an e-mail or a computer file, with a block cipher ("modes of operation")

- Electronic Code Book mode (ECB)
- 2 Cipher Block Chaining mode (CBC)
- 3 Output Feedback mode (OFB)
- 4 Cipher Feedback mode (CFB)
- Counter mode (CTR)
- 6 Galois Counter Mode (GCM)

Advantages:

- simple: not require block synchronization between Alice and Bob.
- parallelizable: for high-speed implementations.

Disadvantages:

- equal plaintext blocks → equal ciphertext blocks: low-entropy
- problem in padded last block

Block #	1	2	3	4	5	
	Sending	Sending	Receiving	Receiving	Amount	
	Bank A	Account #	Bank B	Account #	\$	

Attack process:

- Oscar opens one account at bank A and one at bank B.
- He sends \$1.00 transfers from his account at bank A to his account at bank B
- 3 all transforms replaces block 4

CRYPTOGRAPHY AND DATA SECURITY

Statistical properties in the plaintext are preserved in the ciphertext.

- ECB with plaintext block randomized by previous ciphertext block
- First plaintext block randomized with Initial Value (IV)
- Advantages: solve some leakage in ECB, paralleled decryption
- Disadvantages: encryption strictly serial, IV re-used attack

Block #	1	2	3	4	5	
	Sending	Sending	Receiving	Receiving	Amount	
	Bank A	Account #	Bank B	Account #	\$	

- 1 Oscar opens one account at bank A and one at bank B.
- 2 He sends \$1.00 transfers from his account at bank A to his account at bank B
- 3 all transforms replaces block 5

- to build a synchronous stream cipher from a block cipher
- The key stream is generated blockwise, not bitwise
- strictly serial for encryption and decrytion
- no need for B_K^{-1} , no padding

Cipher Feedback mode (CFB)

- to build a synchronous stream cipher from a block cipher
- The key stream is generated blockwise, not bitwise
- strictly serial for encryption and decrytion
- use in situations where short plaintext blocks are to be encrypted

- use a block cipher as a stream cipher (like the OFB and CFB modes)
- fully parallelizable

Galois Counter Mode (GCM)

- Message Authentication: the receiver can make sure that the message was really created by the original sender
- Message Integrity: the receiver can make sure that nobody tampered with the ciphertext during transmission

Feature	ECB	CBC	OFB	CFB	CTR
parallel encryption	у	n	n	n	У
parallel decryption	У	У	n	n	У
padding-free	n	n	У	У	У
IV-violation tolerant	n.a.	У	n	n	n

Legend:

- random access: fast decryption of bits anywhere in the message
- bit errors limited: bitflips in C do not spread out in P