Long Term Modelling

Capacity Expansion and NPV

Capacity expansion considers the:

- cost of retirements
- cost of new builds
- fixed operating costs and,
- variable operating costs

to:

 Maximise the NPV (Net Present Value) of the total costs of the system over a long-term planning horizon.

$$NPV = rac{R_t}{(1+i)^t}$$

where:

- $R_t = \text{net cash flow}$
- i = discount rate
- t = time of cash flow

NPV is used to determine the profitability of a certain project.

Capacity Expansion allows us to find out:

- How much to invest?
- What technologies to build?
- How many units to build?
- Where to build?
- When to build?

Within the LT object there are 2 components:

- Capital Costs C(x) and,
 - One off fees i.e. new generators, transmission expansion, generator retirements
- Production costs P(x)
 - Operational costs i.e. operating existing and new builds of transmission network, notional cost of unserved energy.

The goal is to minimise NPV by formulating it as a Mixed-Integer Problem:

$$C(x) + P(x) = \text{Total Cost}$$

To formulate this you usually have an objective function: in this case to minimise costs and constraints that the equation is subject to. i.e.

objective function

minimize cost:

subject to:

```
\sum (y) \sum (g) DFy \times (BuildCostg \times GenBuild(g,y))
+\sum (y) DFy X [FOMChargeg \times 1000 \times PMAXg (Unitsg + <math>\sum i \le y GenBuild Unitsg,i)]
+\sum (t) DFt \in y \times Lt \times [VoLL \times USE t + \sum g (SRMCg \times GenLoadg,t)]
```

constraints

> Equation 1: Energy Balance

 $\sum (g) GenLoad(g,y) + USEt = Demandt \ \forall t$

> Equation 2: Feasible Energy Dispatch

 $GenLoad(g,t) \le PMAX$ ($Unitsg + \sum i \le y GenBuild Unitsg,i$)

› Equation 3: Feasible Builds

∑ i≤y GenBuild g,i ≤ MaxUnitsBuiltg,y

Equation 4: Integrality

GenBuild(g,y) integer

Application in PLEXOS

In PLEXOS, there is an LT PLan Object where you can consider:

- Step Size: in years, can also consider overlap
- Chronology: Partial, Fitted Sampled
- Discount Rate: %, End Effects Method (Perpetuity, None), Discount/Expansion Period (Month, Quarter, Year)
- Transmission: Regional, Zonal, Nodal
- Expansion Algorithm: Linear Programming, Mixed Integer Programming

Generation Capacity Expansion

To define a Generation Expansion you need a generator with the following:

- [Max Capacity] in MW
- [Max Units Built]
- [Build Cost] in \$/kW

If LT Plan uses Discount Rate, define:

- [Economic Life] in years
- [WACC] Weighted Average Cost of Capital in %
- [FO&M] Fixed Operating and Maintenance costs in \$/kW/year You also need Heat Rate, Fuel Price and VO&M charges.

Retirements

· Planned Retirements

Property	Value	Unit	Date from
Units	1	-	
Units	0	-	01/05/23

· Economic Retirements

Property	Value	Unit	Date From
Units	1	-	
Max Units Retired	1	-	01 January 2010
Min Units Retired	0	-	
Min Units Retired	1	-	01 January 2020
Retirement Cost	9500	\$000	
Heat Rate	10	GJ/MWh	
Heat Rate	10.1	GJ/MWh	01 January 2011
Heat Rate	10.201	GJ/MWh	01 January 2012
Heat Rate	10.93685	GJ/MWh	01 January 2020
Fixed O&M Charge	13	\$/kW/year	
Fixed O&M Charge	13.325	\$/kW/year	01 January 2011
Fixed O&M Charge	13.65813	\$/kW/year	01 January 2012
Fixed O&M Charge	16.23522	\$/kW/year	01 January 2020

Energy

These tables display points at which a generator is retired. Table 1 shows the effective date (aka Planned Retirement) of the generator and Table 2 shows the Economic Retirement which shows the retirement costs, heat rate and fixed O&M charges to justify the retirement.

Application in PLEXOS

- Planned addition of AC and DC lines is supported by OPF methods in PLEXOS using Line [Units]
- PLEXOS auto recomputes shift factors to cope with change (in topography)
- LT Plan supports all types of transmission constraints including security-constrained optimal power flow.
- Optimized transmission line expansion (using the [Max Units Built] property), retirement (using the [Max Units Retired] property) in LT Plan works in much the same way as generation expansion.

Explansion is done in continuous units of megawatts, this all you need is:

- [Expansion Cost] in \$/MW
- [Max Expansion] in MW
- [WACC] in %

Expansion uses Interface which helps with both zonal/regional transmission and full-nodal AC expansion.