Wenqiong (Wen) Tu

446 Farrish Circle, Apt 5, Charlottesville, VA 22903 | wt2tf@virginia.edu | 434-466-8451

Summary of Qualifications

- Extensive experience (6 years) in structural and stress analysis via various finite element software
- Extensive experience (6 years) in programming and code development for solid mechanics applications
- Proficiency in analysis and design of various structural components
- 6 peer-reviewed journal articles in composite materials, structural analysis, fracture and damage, finite deformation, plasticity, optimization, biomaterials

Education

University of Virginia (UVA), PhD (2015)

Charlottesville, VA, US

Applied mechanics in Civil Engineering; GPA 3.9/4.0

Huazhong University of Science and Technology (HUST)

Wuhan, China

B. S. in Engineering Mechanics, 2008, GPA 3.7/4.0; M. S. in Solid Mechanics, 2010, GPA 3.8/4.0

Skills: ANSYS, LS-DYNA, Abaqus, HyperMesh, Python, Matlab, Fortran, Unix, AutoCAD

Work Experience

Applied mechanics, UVA

Charlottesville, VA

January 2011- present

- Graduate Research Assistant
- Developed a numerical tool in modeling crack initiation and growth with high efficiency and excellent stability.
- Simulated fiber/matrix debonding in SiC/Ti composites and damage evolution in cross-ply laminates.

"Investigation of damage evolution in composite materials with finite volume homogenization"

- One peer-reviewed article has been published and two sequential papers are in the writing process.
- "Modeling of the mechanical response of periodic composite materials with Abaqus"
- Utilized python to create periodic unit cell with required microstructures and post-process output data.
- Modeled the mechanical responses (elastic-plastic, damage, hyperelastic) of polymer and metal matrix composites and biomimetic materials.
- "Finite deformation analysis and optimization of bio-inspired materials"
- Developed an efficient homogenization-based Particle Swarm Optimization (PSO) method.
- Optimized unit cell architectures of heart-valve chordae tendineae using parallelized PSO algorithm.
- Research results are published in a journal article and featured by the Global Medical Discovery website.
- "Plastic strain localization in periodic materials with wavy brick-and-mortar architectures"
- Direct and assist the research work of 3 fourth year undergraduates
- Systematically examined the combined effects of waviness and platelet arrangement on the elastic-plastic response of periodic materials with bio-inspired microstructures with wavy architectures.

Solid mechanics, HUST

Wuhan, China

Graduate Research Assistant

September 2008-November 2010

- "Study of the delamination of fiber/Aluminum laminates under low-velocity impact"
- Simulated delamination between single plies via Cohesive Zone Model (CZM) in LS-DYNA.
- Quantitated plastic effects of Al plies in absorbing impact energy and in reducing delamination between plies.
- Identified the preferred stacking sequence for laminates with strong delamination resistance.
- "Strength analysis and optimization of Carbon Fiber Reinforced Plastic (CFRP) joints"
- Designed CFRP joints with AutoCAD and created 3D finite element model in ANSYS.
- Predicted the delamination bearing strength of CFRP joints considering contact effects.
- Optimized the delamination bearing strength via PSO approach by varying ply angles.

- "Stress and strength analysis of tube connections on air cooled heat exchanger"
- Built 3D finite element model in ANSYS from technical drawing provided by collaborated company.
- Carried out stress analysis to check stress distribution at tube connections and verified the strength of steel.

Journal Articles

- **W. Tu** and M. J. Pindera, 2015. Damage Evolution in Cross-Ply Laminates Revisited via CZM-Based Finite-Volume Homogenization (in preparation).
- A. Katz, C. Trinh, J. Wright, **W. Tu**, M. J. Pindera, Plastic Strain Localization in Periodic Materials with Wavy Brick-and-Mortar Architectures and Its Effect on the Homogenized Response, Composites Part B: Engineering, 2015,68,270-278.
- **W. Tu** and M. J. Pindera, Cohesive Zone-Based Damage Evolution in Periodic Materials via Finite-Volume Homogenization, Journal of Applied Mechanics, 2014, 81: 101005(1-16).
- > W. Tu and M. J. Pindera, Targeting the Finite-deformation Response of Wavy Biological Tissues with Bio-inspired Material Architectures, 2013, Journal of the Mechanical Behavior of Biomedical Materials, 2013, 28: 291-308.
- ➤ W. Tu, J. Chen, J. Wei, Study on the Delamination of Fiber-metal Laminates under Low-velocity Impact, Chinese Journal of Solid Mechanics, 2012, 33(2): 182-188.
- W. Peng, J. Chen, J. Wei., **W. Tu**, Optimal Strength Design for Fiber Metal Laminates, Journal of Composite Materials, 2010, 45: 237-254.
- W. Peng, J. Chen, M. Gu, **W. Tu**, A Particle Swarm Optimization(PSO) Algorithm for Minimizing Interlaminar Normal Stresses at the Free-edge of Composite laminates, Mechanical Science and Technology for Aerospace Engineering, 2009, 28(11):1496-1500.

Selected Conference Presentations

- W. Tu and M. J. Pindera, A Unified Methodology for the Homogenization of Periodic Materials with Damage, Proceedings of the 4th International Conference on Integrity, Reliability and Failure, 23-27 June 2013, Funchal, Portugal, pp. 793-794.
- > W. Tu, Z. Tang, M.J. Pindera, Interfacial Damage Mechanics of Composite Materials Via Finite-Volume Micromechanics, 20th Annual International Conference on Composite Materials, July 22-28, 2012, Beijing, CHINA.
- M.J. Pindera, W. Tu, M. Cavalcante, K. Bixel, Microstructural Effects in Tailoring the Response of Engineered Bio-Materials, 2012 NSF CMMI Engineering Research and Innovation Conference, July 9–12, Boston.

Journal Reviews

Journal of Reinforced Plastics and Composites

Honors and Awards

- Travel Award for Graduate Students (2012) University of Virginia
- Excellent Master Thesis in Hubei Province, China (2011)
- Excellent Graduate Student (2009) Huazhong Univ. of Sci. & Tech
- Excellent undergraduate (2008) Huazhong Univ. of Sci. & Tech
- Excellent Thesis of Undergraduate (2008) Huazhong Univ. of Sci. & Tech