

Система управления

Руководство по программированию станков с ЧПУ

Приводные инструменты

с С-осью посредством сервопривода

Sinumerik 840D

По состоянию на май 2008

Содержание

	стр.
Общая информация Выбор и отказ от режима позиционирования С-оси	2 2
Структура программы Указания по структуре программы	3
Указания и правила по программе С-оси	4
Данные инструмента	6
Примеры программирования	7
Циклы сверления (CYCLE 81, 82, 83, 84 и 840)	11
Функция Transmit (опция) Общая информация Указания и правила программирования Примеры программирования	17 17 18 20
Цилиндрическая интерполяция (Option) Общая информация Указания и правила программирования Примеры программирования	24 24 25 30
Y-ось (опция) Общая информация Указания и правила Формат программы Примеры программирования	31 31 31 32 33
	Выбор и отказ от режима позиционирования С-оси Структура программы Указания по структуре программы Указания и правила по программе С-оси Данные инструмента Примеры программирования Циклы сверления (СҮСLЕ 81, 82, 83, 84 и 840) Функция Transmit (опция) Общая информация Указания и правила программирования Примеры программирования Цилиндрическая интерполяция (Option) Общая информация Указания и правила программирования Примеры программирования У-ось (опция) Общая информация Указания и правила Формат программы

Приводные инструменты с С-осью (посредством сервопривода) SIN 840D стр. 2

1.0 Общая информация

Опция «Приводные инструменты с С-осью посредством сервопривода» расширяет диапазон использования токарных станков с ЧПУ и позволяет осуществлять полную обработку деталей. Она содержит следующие дополнительные устройства:

- 1. Привод инструмента с помощью трехфазного двигателя на корпусе револьверной головки.
- 2. Управляемое программой движение оси вращения (главный шпиндель) осуществляется с помощью <u>беззазорного серводвигателя</u> (с высоким передаточным числом). Этот сервопривод соединяется с главным шпинделем с помощью М-даты (М21) и после этого берет на себя управляемое программой движение в качестве С-оси вращения.
- 3. С-ось (в качестве дополнительной оси).

При управлении с помощью опции ПО **ShopTurn** и составлении программы посредством ПО ShopTurn содержащаяся в данном руководстве техническая информация по программированию не имеет значения. В данном случае необходимо руководствоваться оригинальной инструкцией фирмы Siemens по ПО ShopTurn.

Для обработки внешних программ DIN/ISO данное руководство может оказаться полезным относительно читаемости и описания формата, хотя здесь отдельно следует указать на то, что при использовании версии ShopTurn частично имеются иные системные настройки.

1.1 Выбор и отказ от режима С-оси

SPOS=0 Включает режим позиционирования.

(Главный шпиндель переходит в положение

0-градусов).

G74 C0 Синхронизирует беззазорный серво-

двигатель (положение 0-градусов).

М5 Отключает режим позиционирования.

(Только после М5 можно соединить серво-двигатель с помощью М21, см. также указание 9 на стр. 5.)

M21 Соединяет серводвигатель.

(Теперь главный шпиндель может

двигаться с помощью С...).

М22 Разъединяет серводвигатель

(Также M30 и RESET).

Важное указание:

При использовании станков с редуктором CYCLO в сочетании с датчиком полого вала на главном шпинделе, выбор C-оси осуществляется не как описано рядом, а с помощью макроса

C_ACHSE_EIN

Макрос «C_ACHSE_EIN» помещается фирмой MONFORTS в каталог «циклы изготовителя» или «циклы пользователя». Описанный в данном руководстве выбор режима C-оси (от SPOS=0 до M21) заменяется таким образом этим макросом. Это относится к расположенной рядом структуре программы и ко всем примерам программирования в данном руководстве.

Привод инструмента соединяется с помощью **M24**, а разъединяется с помощью **M25**. При соединенном приводе инструмента частота вращения инструмента программируется с помощью **S2=**, а направление вращения — с помощью **M2=**. M2=3 (вправо), M2=4 (влево), M2=5 (остановка привода инструмента)

Глава «Структура программы» на следующей странице описывает порядок и еще раз значение программируемых команд.

2.0 Структура программы (в качестве примера)

2.1 Указания по структуре программы

SPOS=0 Режим позиционирования ВКЛ, главный шпиндель на 0-градусов.

G96 не может быть активно.

G74 C0 Синхронизирует серводвигатель на 0-градусов.

(Возможное смещение нулевой точки С-оси не активируется).

М5 Режим позиционирования ВЫКЛ.

М21 Соединение серводвигателя с главным шпинделем. После

Осуществления соединения шпиндель можно двигать с помощью С....

G0 С... Серводвигатель перенимает с С... вращение главного шпинделя.

G17 (или G19) Выбор уровня (G17 для осевой обработки, G19 для радиальной

обработки)

Т.. Введение приводного инструмента.

М24 Соединить привод инструмента.

G94 S2=... M2=3 С помощью M2=3 предварительно выбирается направление вращения

инструмента, а с помощью S2=... активируется число оборотов. G94 =

«постоянное» число оборотов и поминутная подача.

М2=5 Остановка привода инструмента.М25 Разъединить привод инструмента.

М22 Разъединить серводвигатель.

М30 Окончание программы.

3.0 Указания и правила по программе С-оси

- 1. В программе C-оси можно интерполировать максимум 3 оси (X, Z и C), причем <u>линейно</u> (G1).
- 2. При **G0 С.** главный шпиндель осуществляет позиционирование (при соединенном серводвигателе) с наибольшей возможной скоростью позиционирования. Она зависит от станка и составляет, например, 6000 градусов/мин = 16 об./мин.
- 3. Рабочая подача в программе С-оси это всегда <u>поминутная подача</u>. Это означает: **G94** должно быть активно.

При <u>неподвижном</u> главном шпинделе это **мм/мин** (напр., N., G94 G1 Z-... F...).

При <u>вращающемся</u> главном шпинделе (например, для изготовления окружного паза) это **градус/мин**, причем наименьшая программируемая единица составляет 0.001 град./мин. (напр., N.. G94 G1 C... F...).

- 4. При работе с С-осью выбор передачи зависит от нагрузки и, при необходимости, это значение выбирается с помощью проб. У станков с 4-мя передачами включают, как правило, 3 передачу (М43), у станков 2-мя передачами 2 передачу (М42).
- 5. При работе в режиме С-оси V-постоянная (G96) <u>не</u> должна быть активной. Команда удаления G96 G94.
- 6. Геометрические данные инструмента для ведомых инструментов соответствующим образом вводятся в память данных инструмента. Данные длины инструмента зависят от определенного типа инструмента. Инструменты для сверления имеют типы инструмента 2.., инструменты для фрезерования типы инструмента 1. Подробная информация содержится в главе 4 «Данные инструмента». Здесь на примере типа инструмента (Wz-Тур) 200 (спиральное сверло) показано, в какие поля нужно вводить данные длины сверла именно в зависимости от соответствующего уровня обработки (G17 или G19).

Перед обращением к Т-данным уровень обработки нужно запрограммировать с помощью **G17** (осевая обработка) либо **G19** (радиальная обработка). При токарной обработке соответственно программируется **G18**.

- 7. Привод инструмента <u>соединяется с помощью **M24**</u>, а <u>разъединяется с помощью **M25**</u>. Это также означает:
 - а) Привод инструмента должен быть после введения приводного инструмента соединен (M24), и затем должна быть запрограммирована скорость вращения инструмента (S2=... M2=3 или M2=4)
 - b) Перед заменой приводного инструмента необходимо разъединить привод инструмента с помощью M25, а <u>предварительно</u> остановить с помощью M2=5. То же действует перед M30.
- 8. После включения SIN 840D необходимо выставить C-ось (см. руководство по эксплуатации).

Приводные инструменты с С-осью (посредством сервопривода) SIN 840D стр. 5

9. При соединении серводвигателя (с помощью M21) главный шпиндель должен быть с помощью SPOS=0 перемещен в положение ноль градусов, затем должен быть синхронизирован серводвигатель с помощью G74 C0 и затем отключен режим позиционирования с помощью M5.

В тех ситуациях, где вследствие несимметричного распределения веса детали шпиндель после М5 может смещен, перед процессом соединения (М21) нельзя программировать М5.

10. С-ось программируется либо абсолютно (G90), либо с приращением (G91).

Формат программы при активации G90 - от C0 до C + 359.999.

Программирование в абсолютной системе измерений (G90)

Например:

G90 G0 C0	Главный шпиндель находится на 0°											
C270	Гл. ш	іпинде	ель пов	орачив	аето	ся нег	посред	ственно	о на	a 270°	(напр. і	вращ.М4)
C320	"	"	"	"	"	"	"	"	"	320°	(напр.	вращ.М4)
C90	"	"	"	"	"	"	"	"	"	90°	(напр.	вращ.М3)
Более наглядное программирование: C=ACP() или C=ACN().												
			·				`	,		Ĺ	. напр. в	вращ.МЗ
											напр. в	вращ.М4
Например:												
G0 C=ACP(9	90)	Гл. и	пинде.	пь пово	рач	ивает	гся в на	апр. вра	аше	ения І	М4 на 9	90°.

<u>Указание по формату программы:</u> G90 действует с самоудержанием (модально). C=ACP(...) либо C=ACN(...) действует покадрово.

M3 " 180°.

Программирование в системе измерений с приращениями (G91)

Значение С-плюс обеспечивает вращение главного шпинделя в направлении М4. Значение С-минус " " " " " " " " " М3.

Например:

C=ACN(180)

G91 G0 C60	Гл. ші	тинде	ль повор	рачив	ается	я на	a 60°	ВН	направ	лении	M4
C-150	"	"	II	"	"	"	150°	"	"	"	М3
или											
G0 C=IC(60)											
C=IC(-150)											

<u>Указание по формату программы:</u> G91 действует с самоудержанием (модально). C=IC(...) действует покадрово.

4.0 Данные инструмента

Информация в главе "Данные инструмента" не действительна при опции "ShopTurn". В этом случае определение данных инструмента происходит исключительно через ПО ShopTurn. С ПО ShopTurn сопоставление длины инструмента следующее: длина 1 всегда X-размер инструмента, длина 2 всегда - Z-размер, независимо от уровня (G17-G19) и типа инструмента.

Данные сверлильных и фрезерных инструментов следует соответствующим образом сохранить в памяти данных инструментов. См. рисунки (изображение на основании сверлильных инструментов). С фрезерными инструментами ситуация аналогичная (лишь типы инструмента 120 = концевая фреза).

Типы станков RNC:

Geometrie-Länge – геометрическая длина Basis-Länge – базисная длина Werkzeugrevolver – револьверная головка инструмента

Указание:

«Геометрическая длина1» и «Базисная длина2» - названия в строках ввода памяти данных инструмента.

«Геометрическая длина1» = DP3, «Базисная длина2» = DP22

5.0 Примеры программирования

Изготовление одного отверстия спиральным сверлом (по оси)

C90

N1110 SPOS=0 N1120 G74 C0 N1130 M5 N1140 M21 N1150 G0 C0 N1160 G17 N1170 T3 N1180 M24 N1190 G94 S2=1000 M2=3 N1200 G0 X60 Z2 M8 N1210 G1 Z-15 F100 N1220 G0 Z20 N1230 X450 Z300 D0 N1240 M2=5 N1250 M25 N1260 M22

Изготовление 3 отверстий

N1110 SPOS=0 N1120 G74 C0 N1130 M5 N1140 M21 N1150 G0 C0 N1160 G17 N1170 T5 N1180 M24 N1190 G94 S2=1000 M2=3 N1200 G0 X60 Z2 M8

N1270 M30

%

N1210 BOHRUNG P3 N1220 G0 Z20 N1230 X450 Z300 D0 N1240 M2=5 N1250 M25 N1260 M22 N1270 M30

% N BOHRUNG SPF N10 G91 G0 C120 N20 G94 G1 Z-17 F100 N30 G0 Z17 N40 G90 M17 %

C₀ C270 C-90 C-270 C180 C-180

Изготовление резьбового отверстия (М6 х 1 мм)

Для нарезания резьбы используется резьбонарезная головка (с выравниванием тяги/давления).

N880 SPOS=0 N890 G74 C0 N900 M5 N910 M21 N920 G0 C0

N930 G17 N940 T3

N950 M24

N960 G94 S2=1000 M2=3

N970 G0 X60 Z2 M8 N980 G1 Z-20 F100

N990 G0 Z150

N1000 M2=5

N1010 M25

N1020 T5

N1030 M24

N1040 S2=640 M2=3

N1050 G0 X60 Z5

N1060 G1

N1070 G63 Z-10 F640

N1080 G63 Z5 M2=4

N1090 G0 Z20

N1100 X450 Z300 D0

Illos populácia =	Поминутная подача
Шаг резьбы =	Число оборотов

G63 = ручная коррекция подачи 100% G63 действует лишь покадрово. Нельзя программировать в одном кадре с другими G-данными.

<u>Изготовление торцевых пазов сверлильно-прорезной фрезой (Ø16)</u>

N790 SPOS=0 N800 G74 C0

N810 M5

N820 M21

N830 G0 C0

N840 G17

N850 T7

N860 M24

N870 G94 S2=800 M2=3

N880 G0 X10 Z2 M8

N890 Z-5

N900 G94 G1 X100 F60

N910 Z2 F300

N920 G0 X10

N930 C180

N940 Z-5

N950 G1 X100 F60

N960 Z2 F300

N970 G0 Z20

N980 X450 Z300 D0

Резание на внешнем диаметре фрезой с осевой подачей (Ø20)

•

N1050 SPOS=0 N1060 G74 C0

N1070 M5

N1080 M21

N1090 G0 C0

N1100 G17

N1110 T1

N1120 M24

N1130 G94 S2=530 M2=3

N1140 G0 X122 Z-3 M8

N1150 G1 X114 F53

N1160 C90 F60

N1170 X116

N1180 G0 X450 Z300 D0

N1190 M2=5

N1200 M25

N1210 M22

N1220 M30

%

Резание фрезой на внешнем диаметре с одновременным смещением в X-оси

.

N1110 SPOS=0

N1120 G74 C0

N1130 M5

N1140 M21

N1150 G0 C0

N1160 G17

N1170 T3

N1180 M24

N1190 G94 S2=530 M2=3

N1200 G0 X122 Z-3 M8

N1210 G1 X108 F53

N1220 X114 C90 F60

N1230 G0 X122

N1240 X450 Z300 D0

N1250 M2=5

N1260 M25

N1270 M22

N1280 M30

%

Изготовление центрического кольцевого паза сверлильно-прорезной фрезой с

осевой подачей

. N800 SPOS=0

N810 G74 C0

N820 M5

N830 M21

N840 G0 C0

N850 G17

N860 T7

N870 M24

N880 G94 S2=600 M2=3

N890 G0 X80 Z2 M8

N900 G1 Z-4 F60

N910 C60 F86

N920 G0 Z20

N930 X450 Z300 D0

N940 M2=5

N950 M25

N960 M22

N970 M30

%

$$F = \frac{Do}{D} * F' = \frac{114.59}{80} * 60 = 86$$
 град./ мин.

Do = "Удельный диаметр" = 114.59 мм

D = актуальный диаметр фрезерования = 80 мм

F′ = подача в мм/мин.

F = подача в градусах/мин

<u>Изготовление 2-х открытых продольных пазов сверлильно-прорезной фрезой (Ø10)</u>

. N750 SPOS=0

N760 G74 C0

N770 M5

N780 M21

N790 G0 C0

N800 G19

N810 T9

N820 M24

N830 G94 S2=400 M2=3

N840 G0 X88 Z7 M8

N850 G1 Z-15 F60

N860 G0 X104 F300

N870 G0 Z7

N880 X88

N890 C180

N900 G1 Z-15 F60

N910 X104 F300

N920 G0 X450 Z300 D0

6.0 Циклы сверления

Фирма Siemens постоянно отслеживает и модернизирует данные циклы, поэтому могут иметься различия между поставляемой и описанной здесь версией.

Далее описывается общий формат программы, представленный на основании примеров программирования.

Апдет: Wz – приводной инструмент

Цикл сверления CYCLE 81

Подача сверла

Глубина конечного сверления (абсолютно) Интервал безопасности (инкрем. без знака) Базовая плоскость (нач. точка, абсолютно) *) Уровень отвода (в конце цикла, абсолютно)

<u>касается*)</u> Начальная точка смещается на интервал безопасности (здесь: 1 мм)

Модальный цикл сверления

X350

M2 = 5

M25

M22 M30

(4 отверстия на 90°) G17 -Уровень обработки T1 M24 G94 S2=2500 M2=3 G0 X100 Z50 F200 MCALL CYCLE81 (10,0,1,-30) G0 C0 C90 C180 C270 MCALL окончание модального запрсса Z100

Используемый инструмент сохраняется в памяти данных инструмента с типом инструмента 200 (спиральное сверло), а длина сверла под геометрической длиной 1.

Цикл сверления CYCLE 82

Цикл сверления CYCLE82 отличается от цикла CYCLE81 тем, что здесь может быть запрограммировано время задержки на определенной глубине сверления.

Указание:

В отношении формата программы важны следующие обстоятельства:

 При составлении цикла глубокого сверления с управлением со стороны <u>оператора</u> ряд переменных (блок в скобках) дополняется 5-ю переменными (значениями). См. указанную ниже структуру:

Конечная глубина сверления (абсолютно) Интервал безопасности (инкрем. без знака) Базовая плоскость (нач. точка, абсолютно) *) Уровень отвода (в конце цикла, абсолютно)

2. Если цикл глубокого сверления программируется не с управлением со стороны оператора, но с дополнительными 5-ю переменными, то хотя его и можно выполнить, но нельзя полностью «переместить назад» («дополнительные» 5 переменных удаляются).

4. Содержащаяся в дополнительных 5 переменных минимальная глубина сверления активируется только в том случае, если значение дегрессии программируется не как расстояние (в верхнем примере – 10 мм), а как коэффициент. Значение дегрессии интерпретируется как коэффициент, если оно программируется отрицательным значением, например: -0.8. В этом случае, начиная с 1-ой глубины сверления, каждая следующая глубина сверления сокращается на этот коэффициент (или на 80%).

касается *) Если после нарезания резьбы осуществляется токарная обработка, то главный шпиндель нужно опять превратить в мастер-шпиндель с помощью SETMS(1). Посредством М5 или запрограммированной скорости вращения главного шпинделя (например, S1000 M4) осуществляется выход из регулировки положения (SPOS=..).

Указание:

Начиная с версии ПО 6.02.09, цикл G840 расширен на несколько переменных. Следующий пример показывает дополнительные возможности.

Структура программы: СҮСLE840 (10,10,,-20,,,4,3,0,,1.25,3,1,0)

бывшие значения переменных См. значение ниже

<u>Значение:</u> ...,3,1,0)

0 (см. пояснение 1 ниже)

1 = шаг резьбы в мм (см. пояснение 2 ниже)

ГЕО-ось ("3" при прогр. G17 или G19, "1" при прогр. G18)

касается 1) 0 = состояние в отношении подачи и регулировки как и перед вызовом цикла. При значении переменной ≠ 0 см. оригинальное описание цикла фирмы «Сименс».

касается 2)

0 = Шаг резьбы согласно запрогр. системе мер перед вызовом цикла (метрич. или в дюймах)

1 = " в мм (как в примере)

2 = " " в шагах резьбы на дюйм (ввод вместо шага резьбы 1.25) 3 = " " в дюймах на оборот (ввод вместо шага резьбы 1.25)

Указание относительно функции "Сброс":

Только составленный управлением со стороны <u>оператора</u>, начиная с версии ПО 6.02.09, цикл CYCLE840 с помощью функции «Сброс» соответственно производит возврат в «полный» экран ввода данных (с указанными выше дополнительными переменными). Составленный управлением <u>не</u> со стороны оператора цикл CYCLE840 (введенный через интерфейс или вручную) производит возврат в экран ввода, содержащий лишь «существовавшие ранее переменные».

Версии ПО ранее 6.02.09 соответственно обрабатывают только «существовавшие ранее переменные».

Указание:

Начиная с версии ПО 6.02.09, цикл G84 расширен на несколько переменных. Следующий пример показывает дополнительные возможности.

Структура программы: СҮСLE84 (10,10,0,-20,,,3,,1.25,0,400,400,3,1,0,1,8,0.5)

бывшие значения переменных См. значение ниже

Значение: ...,3,1,0,1,8,0.5) Значение отвода (с приращением без знака) Глубина нарезания резьбы с приращением (без знака) 1=изм. стружки, 2=удаление стр., (0=нарезка резьбы одним ходом) 0 (см. пояснение 1 ниже) 1 = шаг резьбы в мм (см. пояснение 2 ниже) - ГЕО-ось ("3" при прогр. G17 или G19, "1" при прогр. G18)

касается 1) 0 = состояние в отношении подачи и регулировки как и перед вызовом цикла При значении переменной ≠ 0 см. оригинальное описание цикла фирмы «Сименс». касается 2)

0 = Шаг резьбы согласно запрогр. системе мер перед вызовом цикла (метрич. или в дюймах)

1 = в мм (как в примере)

2 = в шагах резьбы на дюйм (ввод вместо шага резьбы 1.25) 3 = в дюймах на оборот (ввод вместо шага резьбы 1.25)

Указание относительно функции "Сброс":

Только составленный управлением со стороны оператора, начиная с версии ПО 6.02.09, цикл CYCLE84 с помощью функции «Сброс» соответственно производит возврат в «полный» экран ввода данных (с указанными выше дополнительными переменными).

Составленный управлением <u>не</u> со стороны оператора цикл CYCLE84 (введенный через интерфейс или вручную) производит возврат в экран ввода, обслуживающий лишь «существовавшие ранее переменные». Версии ПО ранее 6.02.09 соответственно обрабатывают только «существовавшие ранее переменные».

Нарезание резьбы без компенсационного патрона

2 резьбовых отверстия М8 (на C0 и C180) программируемые с помощью G331 и G332.

MSG ("СПИРАЛЬНОЕ СВЕРЛО, Д-Р 6.8") G17 Уровень обработки T1 M24 -Соединить привод инструмента G94 S2=2500 M2=3 G0 X100 Z50 F200 — Подача сверла MCALL CYCLE 81 (10,0,1,-26) G0 C0 Конечная глубина нарезания резьбы (абсолютно) C180 Интервал безопасности (инкрем. без знака) MCALL Базовая плоскость (нач. точка, абсолютно) G0 Z100 C0 Уровень отвода (в конце цикла, абсолютно) M2 = 5M25 MSG ("GEWINDEBOHRER M8") T3 M24 S2=400 M2=3 G0 X100 Z10 Позиционирование Привод инструмента = мастер-шпиндель *) SETMS(2) -SPOS=0 Привод инструмента: регулировка положения G331 Z-20 K1.25 S2=400 Нарезание резьбы при С0 G4 F0.1 -Время задержки 0.1 сек. G332 Z10 K1.25 S2=400 -Отвод Время задержки 0.1 сек. G4 F0.1 — G0 C180 С-ось на 180° G331 Z-20 K1.25 S2=400 Нарезание резьбы при С180 G4 F0 1 — Время задержки 0.1 сек. G332 Z10 K1.25 S2=400 Отвод G4 F0.1 Время задержки 0.1 сек. G0 Z100 X350 касается *) M2 = 5Если после нарезания резьбы M25 осуществляется токарная обработка, то M22 главный шпиндель с помощью **SETMS(1)** M30 необходимо опять превратить в мастершпиндель. С помощью М5 или запрограммированной скорости вращения главного шпинделя (напр.,

Ø100

S1000 M4) осуществляется выход из

регулировки положения (SPOS=..).

20

26

7.0 Функция Transmit

7.1 Общая информация

- 1. Функция TRANSMIT (от английского <u>TRANS</u>formation <u>M</u>illing <u>I</u>nto <u>T</u>urning (трансформация фрезерования в токарную обработку) это опция, касающаяся «приводных инструментов с C-осью».
- 2. TRANSMIT позволяет осуществлять фрезерную обработку контуров (например, квадратов, шестигранников, эксцентрических круговых пазов, плоскостей для ключей и т.д.) на торцевой поверхности изделия с помощью инструментов с осевой подачей. Осуществляется интерполяция X- и C-оси. (C=ось вращения).
- 3. Адресный формат для осей интерполяции TRANSMIT **X** и **Y**. <u>Указание:</u> В прежних станках и версиях управления (до июля 2002 г.) формат был **X** и **C1**.
- 4. TRANSMIT программируется в **условной** (декартовой) системе координат. А сами движения станка осуществляются в **реальной** системе координат станка. (См. рисунки).

условная система координат

Fiktives Koordinatensystem

реальная система координат

Reales Koordinatensystem

5. Следующие примеры программирования показывают структуру программы.

Пример 1: «Квадрат»

Пример 2: «Шестигранник»

Пример 3: «Квадрат с закруглением» Пример 4: «Плоскость для ключей»

7.2 Указания и правила программирования

- 1. Перед выбором опции TRANSMIT должен быть выбран режим С-оси и соединен беззазорный серводвигатель (как это объяснено в главе «Структура программы» на стр. 3). Следует обратить внимание на то, что при активной опции TRANSMIT поворот и вращение вокруг центра вращения осуществляется не С-командой, а командой **ROT** (см. п. 16). Это также означает, что С-смещение нулевой точки при опции TRANSMIT не действует.
- 2. Адресный формат для осей интерполяции TRANSMIT **X** и **Y**. Обе оси программируются в **радиусе** (DIAMOF).
- 3. TRANSMIT активируется командой **TRANSMIT** и деактивируется командой **TRAFOOF**. Данный кадр выбора либо отмены выбора не должен содержать никаких перемещений или других функций. Выбор TRANSMIT может осуществляться только из положения отмены TRAFOOF. Это означает, что переход к следующей трансформации возможен только через предварительную отмену кадра.
- 4. Перед обращением к используемому для опции TRANSMIT инструменту следует запрограммировать **G17** (выбор уровня). Если после <u>отмены выбора</u> TRANSMIT (с помощью TRAFOOF) осуществляется дальнейшая обработка, то перед обращением к соответствующему инструменту (Тданные) должен быть запрограммирован соответствующий уровень. При использовании токарных инструментов = G18, радиальных сверлильных и фрезерных инструментов = G19, при использовании осевых сверлильных и фрезерных инструментов остается активированным G17.

 Структура программы:
 .

 N.. TRAFOOF
 — Отмена выбора: TRANSMIT

 N.. G54
 — Повторный выбор G54

 N.. G18
 — Выбор: уровень G18

N.. T10 — токарный инструмент

- 5. Посредством даты станка TRAFOOF устанавливается как RESET-состояние (сброс).
- 6. После выбора и отмены выбора TRANSMIT необходимо запрограммировать 1-ый кадр перемещения в абсолютных размерах (G90). Затем могут быть записаны абсолютные размеры или размеры с приращением (G91).
- 7. Выбор (G41/G42) компенсации радиуса инструмента (WRK) либо отмена выбора (G40) могут быть осуществлены только при активной опции TRANSMIT.
- 8. При предварительном позиционировании инструмента (фреза с осевой подачей) возле обрабатываемого изделия и соответственно при удалении от контура необходимо следить, чтобы это происходило при деактивированной функции WRK (G40). Это значит, что здесь программируется центр фрезерования. Для увеличения и одновременно для уменьшения значения WRK необходимо учитывать диаметр фрезерования, что касается интерполяции осей. При слишком коротком пути увеличения или уменьшения компенсации подается сообщение об ошибке WRK.
- 9. При активной опции TRANSMIT нужно при позиционировании (у первой точки контура) и свободном перемещении (от контура) учитывать знаки (+ или -) условных осей. Т.е. если обработка контура завершается, например, при X– (минус), то и инструмент должен тоже перемещаться в X– (минусовое направление).
- 10. Возможно использование программирования прохождения контура (RND, CHR, CHF, ANG). См. также пример 1 относительно указания угла (ANG).

11. Формат адреса для <u>шпинделя инструмента</u>: **S2=... M2=...**

(M2=3 или M2=4 или M2=5)

- 12. Подача должна программироваться в **мм/мин** (G94).
- 13. При программировании "TRANSMIT" и "TRAFOOF" удаляются актуальные фреймы (смещения) с помощью G500. Это значит, что после этих команд необходимо опять запрограммировать актуальное смещение нулевой точки (как правило, G54). См. также примеры программирования.
- 14. Коррекция инструмента осуществляется с помощью радиуса фрезерования.
- 15. С помощью OFFN=... можно запрограммировать припуск к запрограммированному контуру (эквидистанту). Отмена выбора происходит с помощью OFFN=0. Использование показывает пример 1.
- 16. С помощью **ROT Z**... осуществляется вращение условных осей вокруг продольной оси (Z).

ROT Z... действует как абсолютная команда в градусах. На поворот (вправо или влево) вокруг Z-оси можно повлиять с помощью ROT Z+.... либо ROT Z-.....

AROT Z... действует аддитивно. Названные ранее команды удаляются с помощью TRAFOOF. Структура программы следующая:

TRANSMIT G54 ROT Z...

<u>Указание:</u> В сочетании с командой REPEAT командами **ROT Z...** или **AROT Z...** можно повторить действия в более простой программной форме.

17. Данные фрезерного инструмента следует соответствующим образом сохранить в памяти коррекции инструмента.

G17 активно

Тип инструмента 120

Werkzeug-revolver

Geometrie-Länge 1

Werkzeugrevolver – револьверная головка Geometrie-Länge – геометрическая длина Radius - радиус

Указание:

«Геометрическая длина 1» и «радиус» – названия в строках ввода памяти данных инструмента «Геометрическая длина 1» = DP3, «радиус» = DP6.

7.3 Примеры программирования

Пример 1

% N \	/IERKANT MPF	(Шапка программы – квадрат)
%_N_V	SPOS=0	(Шапка программы — квадрат) (Режим позиционирования ВКЛ, гл. шпиндель на 0-град.)
N20	G74 C0	(Гежим позиционирования вкл, тл. шпиндель на отрад.)
N30	M5	(Синхронизировать серьодый атель) (Режим позиционирования ВЫКЛ)
N40	M21	(Гежим позиционирования выкот) (Соединить серводвигатель)
N50	G0 C0	(С на 0-град.)
N60	G17	(Выбор уровня)
N70	T1	(Введение фрезы для черновой обработки)
N80	M24	(Соединить привод инструмента)
N90	G94 S2=1500 M2=3	(Подача мм/мин, скор. вращения, направление вращения)
N100		(Программирование радиуса)
N110		(Выбор TRANSMIT)
N120		(Повторная активация G54-NV)
	G0 X53 Z-10 M8	(Предварительное позиционирование)
N140		(Выбором комп. инстр. в подаче на точку 1)
N150		(точка 2)
	X-38.89 Y0	(точка 3)
	X0 Y-38.89	(точка 4) Черновое фрезерование
	X38.89 Y0	(точка 1)
	G40 X53 F2000 M9 OFFN=0	(Отменой комп. инстр. удаление от контура)
	G0 Z300 D0 M2=5	(Позиция смены инстр., остановка привода инструмента)
N210	M25	(Разъединить привод инструмента)
N220	T2	(Введение фрезы для чистовой обработки)
N230	M24	(Соединить привод инструмента)
N240	G94 S2=1800 M2=3	(Скорость вращения, направление вращения)
N250	X53 Z-10 M8	(Предварительное позиционирование)
N260	G42 G1 X38.89 Y0 F100	(Выбором комп. инстр. в подаче на точку 1)
N270	X0 Y38.89	(точка 2)
N280	X-38.89 Y0	(точка 3)
N290	X0 Y-38.89	(точка 4) Чистовое фрезерование
N300	X38.89 Y0	(точка 1)
N310	G40 X53 F2000 M9	(Отменой комп. инстр. удаление от контура)
N320	TRAFOOF	(Отмена выбора TRANSMIT)
N330	G54	(Повторная активация G54-NV)
N340	DIAMON	(Программирование диаметра)
N350	G0 X300 Z300 D0 M2=5	(Позиция смены инстр., остановка привода инструмента)
N360	M25	(Разъединение привода инструмента)
N370		(Разъединить серводвигатель)
		axialer Schaftfräser – концевая фреза с осевой подачей
-		Eckmaß — угловой размер, Radius - радиус
		- 1 harmely manage halfing

Указание:

С помощью OFFN=... можно предусмотреть припуск к запрограммированному контуру (см. N140). С помощью OFFN=0 происходит отмена выбора припуска (см. N190).

%_N_S	SECHSKANT_MPF	(Шапка программы – шестигранник)
MSG('	'SECHSKANT FRAESEN")	(Сообщение)
N10	SPOS=0	(Режим позиционирования ВКЛ)
N20	G74 C0	(Синхронизировать серводвигатель)
N30	M5	(Режим позиционирования ВЫКЛ)
N40	M21	(Соединить серводвигатель)
N50	G0 C0	(С на 0 градусов)
N60	G17	(Выбор уровня)
N70	T5	(Завести приводн. инструмент (фрезу)
N80	M24	(Соединить привод инструмента)
N90	G94 S2=2000 M2=3	(Подача мм/мин, скорость вращения, напр. вращения)
N100	DIAMOF	(Программирование радиуса)
N110	TRANSMIT	(Выбор TRANSMIT)
N120	G54	(Повторное программирование G54-NV)
N130	G0 X48 Z-7 M8	(Предварительное позиционирование)
N140	G42 G1 X30.02 Y0 F120	(Выбором комп. инстр. в подаче на точку 1)
N150	X15.01 Y26	(точка 2)
N160	X-15.01	(точка 3)
N170	X-30.02 Y0	(точка 4)
N180	X-15.01 Y-26	(точка 5)
N190	X15.01	(точка 6)
N200	X30.02 Y0	(точка 1)
N210	G40 X48 F2000 M9	(Отменой комп. инстр. удаление от контура)
N220	TRAFOOF	(Отмена TRANSMIT)
N230	G54	(Повторное программирование G54-NV)
N240	DIAMON	(Программирование диаметра)
N250	G0 X300 Z300 D0 M2=5	(Позиция смены инструмента)
N260	M25	(Разъединить привод инструмента, остановка прив. инстр.)
N270	M22	(Разъединить серводвигатель)
N280	M30	

Schlüsselweite – размер под ключ, Eckmaß – угловой размер Umrechnungsfaktor – переводной коэффициент, axialer Schaftfräser – концевая фреза с осевой подачей

%_N_VI	ERKANT_MIT_VERRUNDUNG_MPF	(шапка программы – квадрат с закруглением)
N10	SPOS=0	(Режим позиционирования ВКЛ)
N20	G74 C0	(Синхронизировать серводвигатель)
N30	M5	(Режим позиционирования ВЫКЛ)
N40	M21	(Соединить серводвигатель)
N50	G0 C0	(С на 0 градусов)
N60	G17	(Выбор уровня)
N70	T12	(Ввести приводной инструмент (фрезу)
N80	M24	(Соединить привод инструмента)
N90	G94 S2=1200 M2=3	(Подача мм/мин, скор. вращения, направление вращения)
N100	DIAMOF	(Программирование радиуса)
N110	TRANSMIT	(Выбор TRANSMIT)
N120	G54	(Повторное программирование G54-NV)
N130	G0 X53 Z-10 M8	(Предварительное позиционирование)
N140	G42 G1 X38.89 Y0 F100	(Выбором комп. инстр. в подаче на верхнюю угловую точку)
N150	X7.07 Y31.82	(точка 2)
N160	G3 X-7.07 Y31.82 CR=10	(точка 3)
N170	G1 X-31.82 Y7.07	(точка 4)
N180	G3 X-31.82 Y-7.07 CR=10	(точка 5)
N190	G1 X-7.07 Y-31.82	(точка 6)
N200	G3 X7.07 Y-31.82 CR=10	(точка 7)
N210	G1 X31.82 Y-7.07	(точка 8)
N220	G3 X31.82 Y7.07 CR=10	(точка 1)
N230	G40 G1 X53 F2000 M9	(Отменой комп. инстр. удаление от контура)
N240	TRAFOOF	(Отмена TRANSMIT)
N250	G54	(Повторное программирование G54-NV)
N260	DIAMON	(Программирование диаметра)
N270	G0 X300 Z350 D0 M2=5	(Позиция смены инструмента)
N280	M25	(Разъединить привод инструмента)
N290	M22	(Разъединить серводвигатель)
N300	M30	

Eckmaß – угловой размер Vierkant - квадрат Umrechnungsfaktor – переводной коэффициент Указание:

При использовании программирования прохождения контура (здесь: RND) программирование этого квадрата с закруглением значительно облегчается. Программируются лишь угловые точки.

См. раздел программы рядом.

SIN 45° = C / 10 C = 0.707 * 10 = 7.07 X = C = 7.07

Umrechnungsfaktor = 0.707 Eckmaß = Vierkant / 0.707 Eckmaß = 55 / 0.707 = 77.78

N140 G42 G1 X38.89 Y0 F100 N150 X0 Y38.89 RND=10 N160 X-38.89 Y0 RND=10 N170 X0 Y-38.89 RND=10 N180 X38.89 Y0 RND=10 N190 ANG=135 Y8 N200 G40 X53 F2000

%_N_S	CHLUESSELFLAECHE_MPF	(шапка программы – плоскость для ключей)
N10	SPOS=0	(Режим позиционирования ВКЛ)
N20	G74 C0	(Синхронизировать серводвигатель)
N30	M5	(Режим позиционирования ВЫКЛ)
N40	M21	(Соединить серводвигатель)
N50	G0 C0	(С на 0 градусов)
N60	G17	(Выбор уровня)
N70	T11	(Ввести приводн. инструмент)
N80	M24	(Соединить привод инструмента)
N90	G94 S2=500 M2=3	(Подача мм/мин, скор. вращения, напр. вращения)
N100	DIAMOF	(Программирование радиуса)
N110	TRANSMIT	(Выбор TRANSMIT)
N120	G54	(Повторное программирование G54-NV)
N130	G0 X65 Z-38 M8	(Предварительное позиционирование)
N140	G42 G1 X22.5 Y-20 F100	(Выбором комп. инстр. в подаче на точку 1)
N150	Y20	(точка 2)
N160	G3 X-22.5 Y20 CR=30 F2000	(точка 3) См. указание ниже.
N170	G1 Y-20 F100	(точка 4)
N180	G40 X-65 F2000 M9	(Отменой комп. инстр. удаление от контура)
N190	TRAFOOF	(Отмена TRANSMIT)
N200	G54	(Повторное программирование G54-NV)
N210	DIAMON	(Программирование диаметра)
N220	G0 X430 Z300 D0 M2=5	(Позиция смены инструмента)
N230	M25	(Разъединить привод инструмента)
N240	M22	(Разъединить привод инструмента)
N250	M30	

8.0 ЦИЛИНДРИЧЕСКАЯ ИНТЕРПОЛЯЦИЯ (TRACYL)

8.1 Общая информация

- 1. ЦИЛИНДРИЧЕСКАЯ ИНТЕРПОЛЯЦИЯ (называемая также интерполяцией боко-вой поверхности) является опцией для «приводных инструментов с Сосью».
- 2. ЦИЛИНДРИЧЕСКАЯ ИНТЕРПОЛЯЦИЯ позволяет осуществлять фрезерную обработку на боковой поверхности (цилиндрическое развертывание) изделия. При этом могут быть запрограммированы как контуры прямых, так и окружностей.
 - Осуществляется интерполяция Z-оси и круглой оси.
- 3. Формат адреса для осей интерполяции TRACYL **Z** и **Y**. <u>Указание</u>: В более ранних версиях станков и программ управления (до июля 2002 г.) формат был **Z** и **C1**.
- 4. Для программирования необходимо развертывание подвергаемого фрезерованию контура. Развертывание относится к диаметру фрезерования, см. рисунок.

Abwicklung – развертывание

Mittelpunktbahn der zu fräsenden Kontur (Beispiel) – траектория центра подвергаемого фрезерованию контура (пример).

8.2 Указания и правила программирования

1. Общий формат программы для ЦИЛИНДРИЧЕСКОЙ ИНТЕРПОЛЯЦИИ следующий:

- 2. Формат адреса для осей интерполяции TRACYL **Z** и **Y**.
- 3. После выбора ЦИЛИНДРИЧЕСКОЙ ИНТЕРПОЛЯЦИИ с помощью G1 можно запрограммировать контуры прямых, а с помощью G2 / G3 контуры окружностей.
- 4. Перед вызовом используемого для опции TRACYL инструмента следует запрограммировать **G19** (выбор уровня).
- 5. При программировании " TRACYL (..)" и "TRAFOOF" удаляются актуальные фреймы (смещения) с помощью G500. Это значит, что после этих команд необходимо опять запрограммировать актуальное смещение нулевой точки (как правило, G54). См. также примеры программирования.
- 6. Следует обращать внимание на то, что при активном TRACYL смещение нулевой точки С не действует.

Запрограммированный контур фрезерования можно смещать с помощью **ATRANS Y...** или **ATRANS Z...** (смещение в обоих случаях в миллиметрах). Программное повторение данных действий можно легко осуществить с помощью функции REPEAT или подпрограммы.

Следует учесть, что перед ATRANS-смещением с помощью G40 следует выбрать отмену SRK (компенсацию радиуса резки). С помощью TRAFOOF смещения вновь удаляются.

7. Если после отмены цилиндрической интерполяции (с помощью TRAFOOF) следует обработка токарными инструментами, то нужно активировать уровень **G18**.

Структура программы:

. N.. TRAFOOF — Отмена: цилинд. интерполяция N.. G54 N.. G18 — Выбор: уровень G18

- 8. При активной компенсации радиуса резки данные длины инструмента и нулевой точки <u>не</u> могут быть изменены.
- 9. Данные фрезерного инструмента следует соответствующим образом сохранить в памяти коррекции инструмента.

<u>Указание:</u> «Геометрическая длина 1», «базисная длина 2» и «радиус» - названия в строках ввода памяти данных инструмента.

«Геометрическая длина 1» = DP3, «базисная длина 2» = DP22, «радиус» = DP6

Werkzeugrevolver – револьверная головка Geometrie-Länge – геометрическая длина Radius – радиус Basis-Länge – базисная длина

10. При ЦИЛИНДРИЧЕСКОЙ ИНТЕРПОЛЯЦИИ возможно программирование компенсации радиуса инструмента (WRK). Выбор осуществляется с помощью **G41** или **G42**.

При выборе G41 фреза перемещается влево, а при выборе G42 – вправо вдоль запрограммированного контура.

Выбор и отмена выбора функции WRK должны осуществляться при <u>активной</u> ЦИЛИНДРИЧЕСКОЙ ИНТЕРПОЛЯЦИИ.

При работе <u>без</u> WRK (**G40** активна) программируется траектория центра фрезерования, см. рисунки (фрагменты развертывания).

G40 (41, 42) ist aktiv - G40 (41, 42) активно Zylinderabwicklung – цилиндрическое развертывание Fräser – фреза programmierte Kontur – запрограммированный контур Fräser-Mittelpunktbahn – траектория центра фрезы

11. Размещенные ниже рисунок и раздел программы разъясняют последовательность движений фрезы (в частности, при выборе и отмене WRK компенсации радиуса инструмента).

Äquidistante - эквидистанта

Zylinderabwicklung – цилиндрическое развертывание

bezogen auf den Fräs-Durchmesser – относится к диаметру фрезерования

SPOS=0 Ν... G74 C0 Ν... М5 Ν... M21 Ν... G0 C0 Ν... G19 Ν... T7 Ν... M24 Ν... G94 S2=... M2=... Ν.. X80 Z50 M8

Предварительное позиционирование

Ν... TRACYL (80)

Ν... G54

G0 **G41** Y0 Z15 Ν...

Ν... G1 Z-110 F... Y... Z-140 Ν...

Ν... Y90

G3 Y120 Z-110 CR=30

N... G1 Z15

N... G0 **G40** Z50

N... TRAFOOF Ν... G54

(Выбор WRK)

(первый проход фрезы)

(последний проход фрезы) (Отмена WRK)

12. Размеры контура фрезерования, подлежащего программированию, будут, как правило, указаны в <u>градусах</u>. Однако Y-значения необходимы в <u>мм</u>. Это значит, что здесь необходим соответствующий перерасчет. Для этого можно воспользоваться коэффициентом, который рассчитывается из диаметра фрезерования, деленного на номинальный диаметр, см. пример ниже:

Диам. фрез. = 50 мм Номин. диаметр = 114.59 (360°/π) Коэффициент = 0.436 (рассчитан: диам. фрезы/ номин. диаметр)

При диаметре фрезерования 50 мм коэффициент составляет 0.436. Это дает при развертывании, например, 90° путь развертывания 39.24 мм (рассчитывают: 90 x 0.436 = 39.24 мм).

8.3 Пример программирования

Технические данные:

стр. 30

Внешн. диаметр = 120 MMДиаметр фрез. = 110 MM= 110 $MM * \pi$ Цил. развертыв. (360°) = 345.575 MM1° (или коэфф.) = 0.96 MM $= 1.042^{\circ}$ 1 MM

% N STEUERKURVE MPF N10 G54

N20 G0 X430 Z300 D0 SPOS=0 N30 N40 G74 C0 N50 М5 N60 M21 G0 C0 N70 N80 G19 N90 T1 M8 N100 M24

G94 S2=900 M2=3 N110 X124 Z-50 N120

N130 TRACYL (110)

N140 G54 G1 X110 F90 N150 N160 Y57.6 RND=20 N170 Z-110 RND=10

Y172.8 RND=50 N180 N190 Y230.4 Z-50 RND=50

N200 Y345.6

G0 X124 Abheben N210

N220 **TRAFOOF** N230 G54

N240 X430 Z300 D0 N250 M2=5

N260 M25 N270 M22

N280

Режим позицион. ВКЛ

Синхронизировать серводвигатель Режим позиционирования ВЫКЛ Соединить серводвигатель

С на 0 градусов Выбор уровня Ввести врезу

Соединить привод инструмента

Скорость вращения/направление вращения

Позиционирование фрезы

Выбор: цилиндрическая интерполяция Повторное программирование G54-NV Погружение на диаметр фрезерования

Фрезерование «распределит. кулачка»

Отмена: цилиндрическая интерполяция

Повторное программирование G54-NV

Позиция смены инструмента Привод инструмента СТОП Разъединить привод инструмента Разъединить серводвигатель

Zylinderabwicklung – цилиндрическое развертывание

9.0 Ү-ось

9.1 Общая информация

«Y-Achse» (GEO-ось) является опцией. Она предусмотрена для использования приводных инструментов для изготовления концентричных и, прежде всего, эксцентричных осевых и радиальных отверстий и расточек.

Тип станка UniCen (с опцией Y-оси) имеет вместо дисковой револьверной головки В-головку инструмента и серийно систему управления инструментом. Поэтому описание Y-оси для этого станка следует взять из руководства по программированию UniCen.

При Y-оси револьверная головка полностью двигается на направляющем элементе вертикально к X-оси.

Ү-ход зависит от станка, информация о нем содержится в соответствующем изображении рабочей зоны, см. рисунок.

9.2 Указания и правила

- 1. Y-ось является «полноценной» осью (аналогично X и Z). Это также означает, что возможна линейная (G0, G1) и круговая (G2, G3) интерполяция осей X, Z и Y друг с другом.
- 2. После ВКЛ/ВЫКЛ блока ЧПУ Y-ось (аналогично X и Z) необходимо выставить. После этого Y-ось находится не в положении Y0.
- 3. Для токарного режима и «обычного» (не эксцентричного) режима С-оси <u>Y-ось должна находиться в исходном положении (Y0).</u>
 - Таким образом, необходимо обязательно позаботиться о том, чтобы в начале программы Y-ось перемещалась в исходное положение. Для смены инструмента Y-ось должна также находится в положении Y0, чтобы избежать столкновения (наибольший диаметр устанавливаемого инструмента).
- 4. Для Y-оси существует (аналогично X, Z и C) возможность смещения нулевой точки.

9.3 Формат программы

1. Для программирования Y-оси действуют следующие правила знака: (см. также рисунок на предыдущей странице).

При активной **G90**: Исходное положение = Y0

Y- ось программируется в **радиусе**.

При активной **G91**:

Указание:

Названные с G91направления перемещения соответствуют работе с помощью кнопок JOG-режима (кнопки «+Y» и кнопка «-Y»).

2. Данные круговой интерполяции (это параллельные по осям координаты от начальной до центральной точки круга) программируются следующим образом:

$$X$$
-ось = $\pm I$
 Y -ось = $\pm J$

Приведенный ниже пример поясняет программирование:

Указание: Вместо "I", "J" и "К" можно упрощенно использовать "CR=".

9.4 Примеры программирования

Пример 1

Фрезерование шпоночного паза (DIN 6886) торцевой пазовой фрезой (Ø11)

%_N_ZAPFEN_MPF . . . N590 SPOS=0 N600 G74 C0

N610 M5

N620 M21

N620 G0 C0

N630 G19

N640 Y0

N650 T3 N660 M24

N670 G94 S2=500 M2=3

N680 L1111

N690 G0 X... Z... D0

N700 M2=5

N710 M25

N720 M22

%_N_L1111_SPF

N10 G90 G0 X48 Z-21

N20 G1 X35.2 F50

N30 Z-64 F100

N40 G42 Z-70

N50 G2 Y-6 Z-64 CR=6

N60 G1 Z-21

N70 G2 Y+6 Z-21 CR=6

N80 G1 Z-64

N90 G2 Y0 Z-70 CR=6

N100 G40 G1 Z-64

N120 G0 X48

N130 M17

Токарный режим

Синхронизировать серводвигатель Режим позиционирования ВЫКЛ Соединить серводвигатель С-ось на 0 градусов Z/Y-уровень Y на 0 (исходное положение) Ввести приводной инструмент Соединить приводной инструмент

Режим позиционирования ВКЛ

Скорость и напр. вращения прив. инструмента Вызов U.-P. (фрезерование шпоночного паза)

Позиция смены инструмента

Скорость вращения инструмента Стоп

Разъединить приводной инструмент

Разъединить серводвигатель

Последовательность фрезерования

Указание:

Коррекция инструмента

осуществляется радиусом фрезы.

Фрезерование шестигранника (SW 17) с помощью Y-оси. milling cutter - фреза

Текст программы:

```
N230 SPOS=0
N240 G74 C0
N250 M5
N260 M21
N270 G0 C0
N280 G19
N290 Y0
N300 T11
N310 M24
N320 G94 S2=1500 M2=3
N330 G0 Y17
N340 X17
                      → %_N_SECHSKANT_SPF
N350 SECHSKANT P6
                          MSG ("SECHSKANT FRAESEN, SW 17")
N360 G0 X50
N370 G0 Y0
                          N10 G0 C=IC(60)
N380 M2=5
                          N20 G1 Y-17 F100
                                               ; Фрезеровка из А в В
N390 M25
                          N30 G0 X19
                                                ; Отвод
N400 M22
                          N40 Y+17
                                                ; Позиционирование
                          N50 X17
                                                ; Подача
                          N60 M17
```

Указания:

- 1). В кадре N350 вызывается подпрограмма SECHSKANT 6x (6 заходов фрезы).
- 2). Фрезерная обработка осуществляется в каждом случае из А в В.
- 3). Ү-ось программируется в радиусе.

Заключение

Мы со всей ответственностью подошли к составлению настоящего руководства по программированию, однако мы не несем никакой ответственности за любые ошибки, которые могут в нем содержаться.

Мы также не несем никакой ответственности за возможный ущерб, который может стать следствием подобных ошибок.

Мы будем благодарны Вам за указания на возможные ошибки, содержащиеся в данном руководстве.

Мы оставляем за собой право на изменения в спецификации.

© Копирование и перепечатка данного руководства, в т.ч. и его отдельных частей, возможна только по нашему специальному разрешению.

A. MONFORTS GmbH & Co. KG Машиностроительный завод Мёнхенгладбах

тел.: +49 (0) 2161- 401364

+49 (0) 2161- 401415

факс: +49 (0) 2161- 401490

E-Mail: technology@a.monforts.de

