Θεώρημα 0.0.1. (Γραμμικό θεώρημα Van der Waerden για το $\mathbb Z$) Για κάθε k και για κάθε $l \ge 2$ οποτεδήποτε το χρωματιστεί με k το πλήθος χρώματα θα υπάρχουν α και d τέτοιοι ώστε το σύνολο $\{\alpha, \alpha+d, \ldots, a+ld\}$ να είναι μονοχρωματικό.

Θεώρημα 0.0.2. (Γραμμικό θεώρημα Van der Waerden για το \mathbb{N}) Για κάθε k και για κάθε $l \geq 2$ οποτεδήποτε το χρωματιστεί με k το πλήθος χρώματα θα υπάρχουν α και d τέτοιοι ώστε το σύνολο $\{\alpha, \alpha+d, \ldots, a+ld\}$ να είναι μονοχρωματικό.

Ισχυρισμός: Από το πρώτο θεώρημα μπορουμε να συνάγουμε το δεύτερο.

Aπόδειξη. Έστω ένας k-χρωματισμός του συνόλου $\mathbb N$, δηλαδή έστω σύνολα C_1,\ldots,C_m με $m\leqslant k$, $C_i\cap C_j=$ για κάθε $i\neq j$ και τέτοια ώστε $\mathbb N=C_1\cup\ldots C_m$. Θεωρούμε την εξής διαμέριση του συνόλου $\mathbb Z$. Ορίζουμε

$$C_0 = \{0\}$$

και

$$C_{-i} = \{ -c : c \in C_i \}.$$

Παρατηρούμε τώρα ότι

$$\mathbb{Z} = \cup_{i=-m}^{m} C_i$$

και προφανώς τα σύνολα στην ένωση αυτή είναι ξένα ανά δύο. Έχουμε λοιπόν έναν (2k+1)-χρωματισμό του $\mathbb Z$ και από το θεώρημα 1 συμπεραίνουμε ότι υπάρχουν α και d στο $\mathbb Z$ καθώς και i_0 στο $\{-m,\ldots,m\}$ τέτοια ώστε το σύνολο $\{\alpha,\alpha+d,\ldots,\alpha+ld\}$ να είναι υποσύνολο του C_{i_0} . Είναι φανερό ότι $i_0\neq 0$ καθώς το σύνολο περιέχει παραπάνω από ενα στοιχεία. Αν το i_0 είναι θετικός το συμπέρασμα έπεται άμεσα ενώ αν ο i_0 είναι αρνητικός παρατηρούμε ότι ο εγκλεισμός

$$\{\alpha, \alpha + d, \dots, -\alpha + ld\} \subseteq C_{i_0}$$

είναι ισοδύναμος με τον εγκλεισμό

$$\{-\alpha, -\alpha - d, \dots, -\alpha - ld\} \subseteq -C_{i_0} = C_{-i_0}$$

όπου τα $-\alpha$ και -d είναι θετικοί αριθμοί. Το συμπέρασμα έπεται θέτοντας $\alpha'=-\alpha$ και d'=d.