Markov Property

The next state depends only on the current state

$$P(S_{t+1}|S_t, S_{t-1}, ..., S_1) = P(S_{t+1}|S_t)$$

Terms:

- \triangleright S_t : State at time t
- ▶ $P(S_{t+1}|S_t)$: Transition probability from state S_t to state S_{t+1}

Hidden Markov Model

Markov Model where states are hidden but observations are visible

Terms:

 \triangleright S_t : Hidden state at time t

 \triangleright O_t : Observation at time t

 $ightharpoonup P(O_t|S_t)$: Emission probability

 $ightharpoonup P(S_{t+1}|S_t)$: Transition probability

Applications: Speech recognition, part-of-speech

tagging, ...

Cross Entropy

Measures how well a model's predicted distribution matches the true distribution

$$H(P,Q) = -\sum_{i} P(x_i) \log Q(x_i)$$

Terms:

- \triangleright $P(x_i)$: True probability distribution
- \triangleright $Q(x_i)$: Predicted probability distribution

Use-case: Loss function in classification problems, Language models

Perplexity

Measures how confused (perplexed) your language model is.

$$PP = 2^{-\frac{1}{N} \sum_{i=1}^{N} \log_2 P(w_i | w_1, w_2, ..., w_{i-1})}$$

Terms:

- ▶ *PP*: Perplexity, defined as 2^{CE}
- ▶ $P(w_i \mid w_1, ..., w_{i-1})$: Probability of word w_i given its context
- N: Total number of words in the dataset (or sequence)

Use-case: Evaluating language models (e.g., perplexity for ARLM; pseudoperplexity for BERT)

Softmax Function

Converts logits (raw scores) into a probability distribution (multinomial)

$$P(y=i) = \frac{e^{z_i}}{\sum_i e^{z_i}}$$

Terms:

- \triangleright z_i : Logit (raw model output) for class i
- P(y=i): Probability assigned to class i

Use-case: Classification tasks, neural networks, attention mechanisms

Temperature Scaling

Controls sharpness of the multinomial distribution

$$P(w_i) = \frac{e^{z_i/T}}{\sum_j e^{z_j/T}}$$

Terms:

- ▶ *T*: Temperature parameter
- ightharpoonup T > 1: Increases diversity (more randomness)
- ightharpoonup T < 1: Makes output more deterministic

Use-case: Text generation (GPT), controlling randomness

Top-p (nucleus) Sampling

Dynamically selects tokens that cover p% of the probability mass

$$V_{\text{top-p}} = \{ w_i \mid \sum_{j=1}^{r} P(w_j) \le p, \text{ sorted by } P(w_j) \}$$

Terms:

- $\triangleright P(w_i)$: Probability of token w_i
- p: Cumulative probability threshold

Use-case: Text generation, reducing randomness in NLP models

Top-k (truncated) Sampling

Samples from only the k most probable tokens in the vocabulary

$$V_{\text{top-k}} = \{ w_i \mid w_i \in \text{top-}k \text{ tokens by } P(w_i) \}$$

Terms:

k: Number of highest-probability tokens to sample from

Use-case: Controlling text generation

Log-Sum-Exp Trick

Ensures numerical stability in softmax computation

Stable Reformulation:

$$softmax(z_i) = \frac{e^{z_i - z_{max}}}{\sum_j e^{z_j - z_{max}}}$$

Terms:

- z_i: Input logits (raw scores before softmax)
- $ightharpoonup z_{\max} = \max_i z_i$: Maximum logit value

Why Use This?

Prevents numerical overflow in exponentials

Self-Attention Mechanism

Used to create a contextualized vector representation of a part of the input.

$$\mathsf{Self-Attention}(\mathbf{Q},\mathbf{K},\mathbf{V}) = \mathsf{softmax}\left(\frac{\mathbf{Q}\mathbf{K}^T}{\sqrt{d_k}}\right)\mathbf{V}$$

Why divide by $\sqrt{d_k}$? Dot product values can be large when d_k is high; large values lead to extreme softmax outputs (close to 0 or 1).

Key Terms:

- Q: Query matrix (from input)
- K: Key matrix (from input)
- V: Value matrix (from input)
- d_k: Dimensionality of key vectors

Use-case: Transformers of all kinds, Explainability, ...

