MA-106 Linear Algebra

M.K. Keshari

Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai - 76

> 3rd February , 2015 D1 - Lecture 13

Summary

Let us collate our knowledge of special matrices so far:

- A square matrix A is invertible $\iff A\mathbf{x} = \mathbf{b}$ has a unique solution for every $\mathbf{b} \in \mathbb{R}^n$.
- An orthogonal matrix Q has the property that $Q^TQ=I$.
- A projection matrix is a symmetric matrix P such that $P^2=P$.
- If A is $m \times n$ matrix A, then the map $A : \mathbb{R}^n \to \mathbb{R}^m$ defined by $A\mathbf{x} = \mathbf{b}$ gives a correspondence between vectors in \mathbb{R}^n and vectors in \mathbb{R}^m .
- If A was orthogonal, then m=n and $\|\mathbf{b}x\| = \|\mathbf{b}\|$. Since $\|\mathbf{b}\|^2 = \|A\mathbf{x}\|^2 = (A\mathbf{x})^T (A\mathbf{x}) = \mathbf{x}^T A^T A\mathbf{x} = \|\mathbf{x}\|^2$.
- If A is a projection matrix, then $A^TA = A$. Hence $\|A\mathbf{x}\|^2 = (A\mathbf{x})^T(A\mathbf{x}) = \mathbf{x}^TA\mathbf{x} \le \|\mathbf{x}\| \|A\mathbf{x}\|$ (Cauchy-Schwarz inequality: $|v^Tw| \le \|v\| \|w\|$) $\implies \|A\mathbf{x}\| \le \|\mathbf{x}\|$.

Linear Transformation

Let
$$A=\begin{bmatrix}1&0\\0&-1\end{bmatrix}$$
. Then
$$A\begin{bmatrix}x\\y\end{bmatrix}=\begin{bmatrix}x\\-y\end{bmatrix}.$$
 Thus A reflects vectors along the X -axis.

Let
$$B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
. Then $B \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} y \\ x \end{bmatrix}$. Thus, B reflects vectors along the line $x = y$.

Let
$$P = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
. Then
$$P \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ 0 \end{bmatrix}$$
. Thus P projects vectors onto the X -axis.

Note that under these transformations, lines get mapped to lines. More generally linear combinations get mapped to linear combinations, that is,

$$A(c_1\mathbf{x}_1 + c_2\mathbf{x}_2) = c_1A\mathbf{x}_1 + c_2A\mathbf{x}_2.$$

Let V and W be vector spaces. Define a **linear transformation** $T:V\to W$ to be a function which maps linear combinations of vector to the linear combinations of their images, that is,

$$T(c_1v + c_2w) = c_1T(v) + c_2T(w)$$

Examples

Which of the following are linear transformations?

- Let A be an $m \times n$ matrix. Define $f: \mathbb{R}^n \to \mathbb{R}^m$ by $f(\mathbf{x}) = A\mathbf{x}$.
- Let $g: \mathbb{R}^3 \to \mathbb{R}^3$ defined as $g(x_1, x_2, x_3) = (x_1, x_2, 0)$.
- Let $h: \mathbb{R}^3 \to \mathbb{R}^3$ be defined as $h(x_1, x_2, x_3) = (x_1, x_2, 5)$. Note a linear transformation must map the zero vector to the zero vector.
- Let $R: \mathbb{R}^2 \to \mathbb{R}^4$ be defined as $R(x_1, x_2) = (x_1, 0, x_2, x_4^2)$. A linear transformation should map a subspace to a subspace.
- Let $T: \mathbb{R}^{\infty} \to \mathbb{R}^{\infty}$ be defined as $T(x_1, x_2, \ldots) = (x_1 + x_2, x_2 + x_3, \ldots,).$
- Let $S: \mathcal{P}_2 \to \mathcal{P}_1$ be defined as $S(a_0+a_1x+a_2x^2)=a_1+2a_2x$. Taking derivatives of polynomials is linear.

Matrices of Linear transformations

Consider the following linear transformations. Describe their behaviour on vectors.

• $P = \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$. This transforms a vector $\begin{pmatrix} x & y \end{pmatrix}^T$ onto the vector $\begin{pmatrix} (x+y)/2 & (x+y)/2 \end{pmatrix}^T$. What does that mean geometrically?

This transforms the vector $\begin{pmatrix} 1 & 0 \end{pmatrix}^T$ to $\begin{pmatrix} 1/2 & 1/2 \end{pmatrix}^T$. This transforms the vector $\begin{pmatrix} 0 & 1 \end{pmatrix}^T$ to $\begin{pmatrix} 1/2 & 1/2 \end{pmatrix}^T$. This transforms the vector $\begin{pmatrix} 1 & 1 \end{pmatrix}^T$ to $\begin{pmatrix} 1 & 1 \end{pmatrix}^T$.

This projects a vector onto the line along $\begin{pmatrix} 1 & 1 \end{pmatrix}^T$.

$$\bullet \ Q = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}.$$

We can verify what happens on the standard basis vectors $\begin{pmatrix} 1 & 0 \end{pmatrix}^T$ and $\begin{pmatrix} 0 & 1 \end{pmatrix}^T$.

This rotates a vector by 45 degrees.

$$\bullet \ G = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Observing the transformation on the standard basis vectors, we see ${\cal G}$ projects a vector on the XY-plane.

• Recall $g: \mathbb{R}^3 \to \mathbb{R}^3$ given by $g(x_1, x_2, x_3)^T = (x_1, x_2, 0)^T$.

$$\text{ and } G \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = g (\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}) = \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix}.$$

Matrices of Linear transformations

$\mathsf{Theorem}$

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then there exists an $m \times n$ matrix A such that $T(\mathbf{x}) = A\mathbf{x}$.

More generally, let V and W be finite dimensional vector spaces with bases B and B'. Then any linear transformation $T:V\to W$ can be described using an appropriate matrix.

We will explain this using the following examples.

- Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be given by $T(\begin{pmatrix} x_1 & x_2 \end{pmatrix}^T) = \begin{pmatrix} x_1 + x_2 & x_2 x_1 & x_2 \end{pmatrix}^T$.
- Let $S: \mathcal{P}_2 \to \mathcal{P}_1$ be defined as $S(a_0 + a_1x + a_2x^2) = a_1 + 2a_2x$.

Finding matrices of Linear transformations

Recall
$$T: \mathbb{R}^2 \to \mathbb{R}^3$$
 defined by $T(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}) = \begin{pmatrix} x_1 + x_2 \\ x_2 - x_1 \\ x_2 \end{pmatrix}$.

T is a linear transformation, so it preserves linear combinations,

$$T(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}) = T(x_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} 0 \\ 1 \end{pmatrix}) = x_1 T(\begin{pmatrix} 1 \\ 0 \end{pmatrix}) + x_2 T(\begin{pmatrix} 0 \\ 1 \end{pmatrix}).$$

It is therefore sufficient to know values of T on a basis.

If
$$A=\begin{pmatrix} v_1 & v_2 \end{pmatrix}$$
, then $A(\begin{pmatrix} 1 \\ 0 \end{pmatrix})=v_1$ and $A(\begin{pmatrix} 0 \\ 1 \end{pmatrix})=v_2$.

Set
$$T\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} := v_1 \text{ and } T\begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} := v_2.$$

Then
$$A\mathbf{x} = \begin{pmatrix} 1 & 1 \\ -1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 \\ -x_1 + x_2 \\ x_2 \end{pmatrix} = T(\mathbf{x})$$

Finding matrices of Linear transformations

Recall that if
$$v=\begin{pmatrix} a \\ b \\ c \end{pmatrix} \in \mathbb{R}^3$$
, then $v=ae_1+be_2+ce_3$,

i.e. in the representation of v as a linear combination of (ordered) basis $\mathcal{S} = \{e_1, e_2, e_3\}$, a is the coefficient of e_1 , b is the coefficient of e_2 , c is the coefficient of e_3 .

We say that $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$ is the coordinate of vector $v \in \mathbb{R}^3$ with respect

to standard (ordered) basis ${\mathcal S}$ and denote it by $[v]_{{\mathcal S}}.$

If we take another basis $S' = \{e_2, e_3, e_1\}$ of \mathbb{R}^3 , then same vector $v = be_2 + ce_3 + ae_1$. Hence the coordinate of v w.r.t. basis S' is

$$[v]_{\mathcal{S}'} = \begin{pmatrix} b \\ c \\ a \end{pmatrix}.$$

M.K. Keshari

If B is a (ordered) basis of a vector space V of dimension n, then any vector in V can be uniquely expressed as a linear combination of basis vector.

Vectors in V can be identified with its coordinate vector in \mathbb{R}^n .

Example. \mathcal{P}_2 is a 3 dimensional vector space with an ordered basis $B_2 = \{1, x, x^2\}.$

Basis is not unique, $B_2'=\{1,x,x+x^2\}$ is another basis.

Fix basis B_2 . If $v = a + bx + cx^2 \in \mathcal{P}_2$, then its coordinate vector

$$[v]_{B_2}=egin{pmatrix} a \ b \ c \end{pmatrix}$$
 . The coordinate vector $[v]_{B_2'}=egin{pmatrix} a \ b-c \ c \end{pmatrix}$, since

$$a1 + (b - c)x + c(x + x^2) = v.$$

Using the correspondence $\mathcal{P}_2 \longleftrightarrow \mathbb{R}^3$ defined as

$$v\in\mathcal{P}_2\mapsto [v]_{B_2}\in\mathbb{R}^3$$
 and $egin{pmatrix} a \ b \ c \end{pmatrix}\in\mathbb{R}^3\mapsto a+bx+cx^2\in\mathcal{P}_2$,

we can identify \mathcal{P}_2 with \mathbb{R}^3 .