Задание 5.

$$a_1=egin{pmatrix} -2 \\ -2 \\ 2 \\ 2 \end{pmatrix}, \, a_2=egin{pmatrix} 5 \\ 4 \\ -4 \\ -3 \end{pmatrix}, \, a_3=egin{pmatrix} 2 \\ 2 \\ -4 \\ 0 \end{pmatrix}, \, a_4=egin{pmatrix} -4 \\ -2 \\ 0 \\ 2 \end{pmatrix}$$
— элементы евклидова

пространства R^4 со стандартным скалярным произведением $(x,y)=x^Ty$. Применяя процесс ортогонализации к системе элементов a_1,a_2,a_3,a_4 , найти ортогональный базис подпространства $A=Lin(a_1,a_2,a_3,a_4)$. Дополнить этот базис до ортогонального базиса всего пространства R^4 .

Решение.

Применяем к заданной системе векторов процесс ортогонализации.

1. Полагаем $b_1 = a_1$.

2. Вычисляем
$$a_{21} = \frac{(a_2,b_1)}{(b_1,b_1)} = \frac{-10-8-8-6}{4+4+4+4} = \frac{-2*16}{16} = -2$$
 и находим вектор

$$b_2 = a_2 - a_{21}b_1 = \begin{pmatrix} 5\\4\\-4\\-3 \end{pmatrix} + 2\begin{pmatrix} -2\\-2\\2\\2 \end{pmatrix} = \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix}.$$

3. Вычисляем коэффициенты
$$a_{31} = \frac{(a_3,b_1)}{(b_1,b_1)} = \frac{-4-4-8}{4+4+4+4} = \frac{-16}{16} = -1$$

$$a_{32} = \frac{(a_3, b_2)}{(b_2, b_2)} = \frac{2}{2} = 1$$
 и находим вектор

$$b_3 = a_3 - a_{31}b_1 - a_{32}b_2 = \begin{pmatrix} 2 \\ 2 \\ -4 \\ 0 \end{pmatrix} + \begin{pmatrix} -2 \\ -2 \\ 2 \\ 2 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ -2 \\ 1 \end{pmatrix}.$$

4. Вычисляем коэффициенты
$$a_{41} = \frac{(a_4, b_1)}{(b_1, b_1)} = \frac{8+4+4}{4+4+4+4} = \frac{16}{16} = 1,$$

$$a_{42}=rac{(a_4,b_2)}{(b_2,b_2)}=rac{-2}{2}=-1,$$
 $a_{43}=rac{(a_4,b_3)}{(b_3,b_3)}=rac{6}{6}=1.$ Находим вектор

$$b_4 = a_4 - a_{41}b_1 - a_{42}b_2 - a_{43}b_3 = \begin{pmatrix} -4 \\ -2 \\ 0 \\ 2 \end{pmatrix} - \begin{pmatrix} -2 \\ -2 \\ 2 \\ 2 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} - \begin{pmatrix} -1 \\ 0 \\ -2 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

Процесс ортогонализации завершен. Найдена такая ортогональная система векторов b_1, b_2, b_3, b_4 , что $A = Lin(a_1, a_2, a_3, a_4) = Lin(b_1, b_2, b_3, b_4)$. Исключая из этой системы нулевой вектор $b_4 = o$, получаем базис b_1, b_2, b_3 подпространства $A = Lin(b_1, b_2, b_3)$.

Дополняем базис b_1 , b_2 , b_3 до ортогонального базиса всего пространства R^4 . Для этого находим фундаментальную систему решений однородной системы уравнений $B^T x = o$, где $B = (b_1, b_2, b_3)$ — матрица, составленная из соответствующих столбцов. Составляем расширенную матрицу системы $B^T x = o$ и приводим ее к упрощенному виду:

$$(B^{T}|o) = \begin{pmatrix} -2 & -2 & 2 & 2 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & -2 & 1 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & -1 & -1 & 0 \\ 0 & -1 & 1 & 2 & 0 \\ 0 & -1 & -1 & 2 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & -1 & -1 & 0 \\ 0 & -1 & 1 & 2 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix} \sim$$

$$\sim \begin{pmatrix} 1 & 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -2 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & -2 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}.$$

Выражаем базисные переменные x_1, x_2, x_3 через свободную переменную x_4 : $x_1 = -x_4, x_2 = 2x_4, x_3 = 0$. По этим формулам для $x_4 = 1$ получаем $x_1 = -1, x_2 = 2, x_3 = 0$. Таким образом, фундаментальная система состоит из одного решения $\varphi = \begin{pmatrix} -1 & 2 & 0 & 1 \end{pmatrix}^T$. Этот столбец дополняет ортогональный базис подпространства A до базиса R^4 .

Ответ:

$$(-2 \quad -2 \quad 2 \quad 2)^T$$
, $(1 \quad 0 \quad 0 \quad 1)^T$, $(-1 \quad 0 \quad -2 \quad 1)^T$, $(-1 \quad 2 \quad 0 \quad 1)^T$ —

ортогональный базис R^4 ; первые три столбца образуют базис подпространства A.