

PCT

WELTORGANISATION FÜR GEISTIGES EIGENTUM

Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation⁶:
D21C 3/00, 9/10

A1

(11) Internationale Veröffentlichungsnummer: WO 97/36039

(43) Internationales
Veröffentlichungsdatum:

2. Oktober 1997 (02.10.97)

(21) Internationales Aktenzeichen:

PCT/EP97/01545

(22) Internationales Anmeldedatum:

26. März 1997 (26.03.97)

(30) Prioritätsdaten:

196 12 1949

27. März 1996 (27.03.96)

DE

(81) Bestimmungsstaaten: AU, BR, CA, CN, JP, KR, NO, NZ, PL,
RU, UA, US, europäisches Patent (AT, BE, CH, DE, DK,
ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Veröffentlicht

Mit internationalem Recherchenbericht.

(71) Anmelder (für alle Bestimmungsstaaten aussér US): CONSOR-
TIUM FÜR ELEKTROCHEMISCHE INDUSTRIE GMBH
[DE/DE]; Zielstattstrasse 20, D-81379 München (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): CALL, Hans-Peter [DE/DE];
Heinsbergerstrasse 14a, D-52551 Überbach-Palenberg (DE).

(74) Anwälte: POTTEN, Holger usw.; Wacker-Chemie GmbH, Zen-
tralabteilung PML, Hanns-Seidel-Platz 4, D-81737 München
(DE).

(54) Title: A MULTICOMPONENT SYSTEM FOR CHANGING, DEGRADING OR BLEACHING LIGNIN, LIGNIN-CONTAINING
MATERIALS OR SIMILAR SUBSTANCES AND PROCESSES FOR ITS USE

(54) Bezeichnung: MEHRKOMPONENTENSYSTEM ZUM VERÄNDERN, ABBAU ODER BLEICHEN VON LIGNIN, LIGNIN-
HALTIGEN MATERIALIEN ODER ÄHNLICHEN STOFFEN SOWIE VERFAHREN ZU SEINER ANWENDUNG

(57) Abstract

This invention concerns a multicomponent system for changing, degrading or bleaching lignin, lignin-containing materials or similar substances and processes for its use, containing a) optionally, at least one oxidation catalyst and b) at least one suitable oxidant and c) at least one mediator, characterized by the fact that the mediator is selected from the oximes of general formula (I) or (II) and their salts, ethers, or esters, where

the groups X are the same or different and are O, S, or NR¹, where R¹ means hydrogen, a hydroxy, formyl, carbamoyl or sulfono radical, an ester or salt of the sulfono radical, sulfamoyl, nitro, amino, phenyl, aryl-C₁-C₅-alkyl, C₁-C₁₂-Alkyl-, C₁-C₅-alkoxy, C₁-C₁₀-carbonyl, carbonyl-C₁-C₆-alkyl, a phospho, phosphono, or phosphonoxy radical, an ester or salt of the phosphonoxy radical where carbamoyl, sulfamoyl, amino and phenyl radicals can be unsubstituted or substituted one or several times with radical R² and the aryl-C₁-Csalkyl, C₁-C₂-alkyl, C₁-C₅-alkoxy, C₁-C₁₀-carbonyl, carbonyl-C₁-C₆-alkyl radicals can be saturated or unsaturated, branched or unbranched, and can be substituted one or several times with a radical R², where the radicals R² are the same or different and means a hydroxy, formyl or carboxy radical, an ester or salt of the carboxy radical, a carbamoyl or sulfono radical, an ester or salt of the sulfono radical, a sulfamoyl, nitro, amino, phenyl, C₁-C₅-alkyl or C₁-C₅-alcoxy radical and the radicals R³-R⁴ are the same or different and signify a halogen or carboxy radical, an ester or salt of the carboxy radical, or they have the meanings given for R¹, R³ and R⁴ being optionally linked to a ring [-CR⁷R⁸]n, where n = 1, 2, 3, or 4, and R⁵ and R⁶ have the meanings given for R¹, and R⁷ and R⁸ have the meanings given for R³ and R⁴.

(57) Zusammenfassung

Mehrkomponentensystem zum Verändern, Abbau oder Bleichen von Lignin, ligninhaltigen Materialien oder ähnlichen Stoffen enthaltend a) ggf. mindestens einen Oxidationskatalysator und b) mindestens ein geeignetes Oxidationsmittel und c) mindestens einen Mediator, dadurch gekennzeichnet, daß der Mediator ausgewählt ist aus der Gruppe der Oxime der allgemeinen Formel (I) oder (II), sowie deren Salze, Ether, oder Ester, wobei X gleich oder verschieden ist und O, S, oder NR¹ bedeuten, wobei R¹ Wasserstoff-, Hydroxy-, Formyl-, Carbamoyl-, Sulfonorest, Ester oder Salz des Sulfonrests, Sulfamoyl-, Nitro-, Amino-, Phenyl-, Aryl-C₁-C₅-alkyl-, C₁-C₁₂-Alkyl-, C₁-C₅-Alkoxy-, C₁-C₁₀-Carbonyl-, Carbonyl-C₁-C₆-alkyl-, Phospho-, Phosphono-, Phosphonoxyrest, Ester oder Salz des Phosphonoxyrests bedeutet, wobei Carbamoyl-, Sulfamoyl-, Amino- und Phenylreste unsubstituiert oder ein- oder mehrfach mit einem Rest R² substituiert sein können und die Aryl-C₁-C₅-alkyl-, C₁-C₁₂-Alkyl-, C₁-C₅-Alkoxy-, C₁-C₁₀-Carbonyl-, Carbonyl-C₁-C₆-alkyl-Reste gesättigt oder ungesättigt, verzweigt oder unverzweigt sein können und mit einem Rest R² ein- oder mehrfach substituiert sein können, wobei R² gleich oder verschieden ist und Hydroxy-, Formyl-, Carboxyrest, Ester oder Salz des Carboxyrests, Carbamoyl-, Sulfono-Ester oder Salz des Sulfonrests, Sulfamoyl-, Nitro-, Amino-, Phenyl-, C₁-C₅-Alkyl-, C₁-C₅-Alkoxyrest bedeutet und die Reste R³-R⁴ gleich oder verschieden sind und Halogen-, Carboxyrest, Ester oder Salz des Carboxyrests bedeuten, oder die für R¹ genannten Bedeutungen haben, wobei R³ und R⁴ ggf. zu einem Ring [-CR⁷R⁸]n mit n gleich 1, 2, 3 oder 4 verknüpft sein können und R⁵ und R⁶ die für R¹ genannten Bedeutungen haben und R⁷ und R⁸ die für R³ und R⁴ genannten Bedeutungen haben.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Arlenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische Republik Mazedonien	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland	ML	Mali	TR	Türkei
BG	Bulgarien	HU	Ungarn	MN	Mongolei	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MR	Mauretanien	UA	Ukraine
BR	Brasilien	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Island	MX	Mexiko	US	Vereinigte Staaten von Amerika
CA	Kanada	IT	Italien	NE	Niger	UZ	Usbekistan
CF	Zentralafrikanische Republik	JP	Japan	NL	Niederlande	VN	Vietnam
CG	Kongo	KE	Kenia	NO	Norwegen	YU	Jugoslawien
CH	Schweiz	KG	Kirgisistan	NZ	Neuseeland	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik Korea	PL	Polen		
CM	Kamerun	KR	Republik Korea	PT	Portugal		
CN	China	KZ	Kasachstan	RO	Rumänien		
CU	Kuba	LC	St. Lucia	RU	Russische Föderation		
CZ	Tschechische Republik	LI	Liechtenstein	SD	Sudan		
DE	Deutschland	LK	Sri Lanka	SE	Schweden		
DK	Dänemark	LR	Liberia	SG	Singapur		
EE	Estland						

Mehrkomponentensystem zum Verändern, Abbau oder Bleichen von Lignin, ligninhaltigen Materialien oder ähnlichen Stoffen sowie Verfahren zu seiner Anwendung

5 Beschreibung

Die vorliegende Erfindung betrifft ein Mehrkomponentensystem zum Verändern, Abbau oder Bleichen von Lignin, ligninhaltigen Materialien oder ähnlichen Stoffen sowie Verfahren zu seiner Anwendung.

10

Als heute hauptsächlich zur Zellstoffherstellung verwendete Verfahren sind das Sulfat- und das Sulfitverfahren zu nennen. Mit beiden Verfahren wird unter Kochung und unter Druck Zellstoff erzeugt. Das Sulfat-Verfahren arbeitet unter Zusatz von 15 NaOH und Na₂S, während im Sulfit-Verfahren Ca(HSO₃)₂ + SO₂ zur Anwendung kommt.

20

Alle Verfahren haben als Hauptziel die Entfernung des Lignins aus dem verwendeten Pflanzenmaterial, Holz oder Einjahrespflanzen.

25

Das Lignin, das mit der Cellulose und der Hemicellulose den Hauptbestandteil des Pflanzenmaterials (Stengel oder Stamm) ausmacht, muß entfernt werden, da es sonst nicht möglich ist, nicht vergilbende und mechanisch hochbelastbare Papiere herzustellen.

30

Die Holzstofferzeugungsverfahren arbeiten mit Steinschleifern (Holzschliff) oder mit Refinern (TMP), die das Holz nach entsprechender Vorbehandlung (chemisch, thermisch oder chemisch-thermisch) durch Mahlen defibrillieren.

35

Diese Holzstoffe besitzen noch einen Großteil des Lignins. Sie werden v. a. für die Herstellung von Zeitungen, Illustrierten, etc. verwendet.

Seit einigen Jahren werden die Möglichkeiten des Einsatzes von Enzymen für den Ligninabbau erforscht. Der Wirkmechanismus

- 2 -

derartiger lignolytischer Systeme ist erst vor wenigen Jahren aufgeklärt worden, als es gelang, durch geeignete Anzuchtbedingungen und Induktorzusätze bei dem Weißfäulepilz *Phanerochaete chrysosporium* zu ausreichenden Enzymmengen zu kommen.

- 5 Hierbei wurden die bis dahin unbekannten Ligninperoxidases und Manganperoxidases entdeckt. Da *Phanerochaete chrysosporium* ein sehr effektiver Ligninabbauer ist, versuchte man dessen Enzyme zu isolieren und in gereinigter Form für den Ligninabbau zu verwenden. Dies gelang jedoch nicht, da sich herausstellte,
- 10 daß die Enzyme vor allem zu einer Repolymerisation des Lignins und nicht zu dessen Abbau führen.

Ähnliches gilt auch für andere lignolytische Enzymspezies wie

Laccasen, die das Lignin mit Hilfe von Sauerstoff anstelle

- 15 von Wasserstoffperoxid oxidativ abbauen. Es konnte festgestellt werden, daß es in allen Fällen zu ähnlichen Prozessen kommt. Es werden nämlich Radikale gebildet, die wieder selbst miteinander reagieren und somit zur Polymerisation führen.

- 20 So gibt es heute nur Verfahren, die mit in-vivo Systemen arbeiten (Pilzsysteme). Hauptschwerpunkte von Optimierungsversuchen sind das sogenannte Biopulping und das Biobleaching.

Unter Biopulping versteht man die Behandlung von Holzhack-

- 25 schnitzeln mit lebenden Pilzsystemen.

Es gibt 2 Arten von Applikationsformen:

1. Vorbehandlung von Hackschnitzeln vor dem Refinern oder Mahlen zum Einsparen von Energie bei der Herstellung von Holzstoffen (z.B. TMP oder Holzschliff).

Ein weiterer Vorteil ist die meist vorhandene Verbesserung der mechanischen Eigenschaften des Stoffes, ein Nachteil die

- 35 schlechtere Endweiße.

2. Vorbehandlung von Hackschnitzeln (Softwood/Hardwood) vor der Zellstoffkochung (Kraftprozeß, Sulfitprozeß).

Hier ist das Ziel, die Reduzierung von Kochchemikalien, die Verbesserung der Kochkapazität und "extended cooking".

- 5 Als Vorteile werden auch eine verbesserte Kappareduzierung nach dem Kochen im Vergleich zu einem Kochen ohne Vorbehandlung erreicht.

10 Nachteile dieser Verfahren sind eindeutig die langen Behandlungszeiten (mehrere Wochen) und v.a. die nicht gelöste Kontaminierungsgefahr während der Behandlung, wenn man auf die wohl unwirtschaftliche Sterilisation der Hackschnitzel verzichten will.

- 15 Das Biobleaching arbeitet ebenfalls mit in-vivo Systemen. Der gekochte Zellstoff (Softwood/Hardwood) wird vor der Bleiche mit Pilz beimpft und für Tage bis Wochen behandelt. Nur nach dieser langen Behandlungszeit zeigt sich eine signifikante Kappazahlerniedrigung und Weißesteigerung, was den Prozeß unwirtschaftlich für eine Implementierung in den gängigen 20 Bleichsequenzen macht.

Eine weitere meist mit immobilisierten Pilzsystemen durchgeführte Applikation ist die Behandlung von Zellstofffabrikationsabwässern, insbesondere Bleichereiabwässern zu deren Entfärbung und Reduzierung des AOX (Reduzierung von chlorierten Verbindungen im Abwasser, die Chlor- oder Chlordioxid-Bleichstufen verursachen).

- 30 Darüber hinaus ist bekannt, Hemicellulasen u.a. Xylanasen, Mannanasen als "Bleichbooster" einzusetzen.

Diese Enzyme sollen hauptsächlich gegen das nach dem Kochprozeß das Restlignin zum Teil überdeckende reprecipitierte Xylan wirken und durch dessen Abbau die Zugänglichkeit des Lignins für die in den nachfolgenden Bleichsequenzen angewendeten Bleichchemikalien (v.a. Chlordioxyd) erhöhen. Die im Labor nachgewiesenen Einsparungen von Bleichchemikalien wurden in

- 4 -

großem Maßstab nur bedingt bestätigt, so daß man diesen Enzymtyp allenfalls als Bleichadditiv einstufen kann.

Als Cofaktor neben den lignolytischen Enzymen nimmt man Chelatsubstanzen (Siderophoren, wie Ammoniumoxalat) und Biotenside an.

In der Anmeldung PCT/EP87/00635 wird ein System zur Entfernung von Lignin aus lignincellulosehaltigem Material unter gleichzeitiger Bleiche beschrieben, welches mit lignolytischen Enzymen aus Weißfäulepilzen unter Zusatz von Reduktions- und Oxidationsmitteln und phenolischen Verbindungen als Mediatoren arbeitet.

- 15 In der DE 4008893C2 werden zusätzlich zu Red/Ox-System "Mimic Substanzen", die das aktive Zentrum (prosthetische Gruppe) von lignolytischen Enzymen simulieren, zugesetzt. So konnte eine erhebliche Performanceverbesserung erzielt werden.
- 20 In der Anmeldung PCT/EP92/01086 wird als zusätzliche Verbesserung eine Redoxkaskade mit Hilfe von im Oxidationspotential "abgestimmten" phenolischen oder nichtphenolischen Aromaten eingesetzt.
- 25 Bei allen drei Verfahren ist die Limitierung für einen großtechnischen Einsatz die Anwendbarkeit bei geringen Stoffdichten (bis maximal 4%) und bei den beiden letzten Anmeldungen die Gefahr des "Ausleachens" von Metallen beim Einsatz der Chelatverbindungen, die v.a. bei nachgeschalteten Peroxidbleichstufen zur Zerstörung des Peroxids führen können.
- 30

Aus WO/12619, WO 94/12620 und WO 94/12621 sind Verfahren bekannt, bei welchen die Aktivität von Peroxidase mittels sogenannter Enhancer-Substanzen gefördert werden.

35 Die Enhancer-Substanzen werden in WO 94/12619 anhand ihrer Halbwertslebensdauer charakterisiert.

- 5 -

Gemäß WO 94/12620 sind Enhancer-Substanzen durch die Formel A=N-N=B charakterisiert, wobei A und B jeweils definierte cyclische Reste sind.

- 5 Gemäß WO 94/12620 sind Enhancer-Substanzen organische Chemikalien, die mindestens zwei aromatische Ringe enthalten, von denen zumindest einer mit jeweils definierten Resten substituiert ist.
- 10 Alle drei Anmeldungen betreffen "dye transfer inhibition" und den Einsatz der jeweiligen Enhancer-Substanzen zusammen mit Peroxidasen als Detergent-Additiv oder Detergent-Zusammensetzung im Waschmittelbereich. Zwar wird in der Beschreibung der Anmeldung auf eine Verwendbarkeit zum Behandeln von Lignin verwiesen, aber eigene Versuche mit den in den Anmeldungen konkret offenbarten Substanzen zeigten, daß sie als Mediatoren zur Steigerung der Bleichwirkung der Peroxidasen beim Behandeln von ligninhaltigen Materialien keine Wirkung zeigten!
- 15
- 20 WO 94/29510 beschreibt ein Verfahren zur enzymatischen Delignifizierung, bei dem Enzyme zusammen mit Mediatoren eingesetzt werden. Als Mediatoren werden allgemein Verbindungen mit der Struktur NO-, NOH- oder HRNOH offenbart.
- 25 Von den in WO 94/29510 offenbarten Mediatoren liefert 1-Hydroxy-1H-benzotriazole (HBT) die besten Ergebnisse in der Delignifizierung. HBT hat jedoch verschiedene Nachteile:
Es ist nur zu hohen Preisen und nicht in hinreichenden Mengen
30 verfügbar.

Es reagiert unter Delignifizierungsbedingungen zu 1H-Benzotriazol. Diese Verbindung ist relativ schlecht abbau-
bar und kann in größeren Mengen eine beträchtliche Umweltbelas-
35 tung darstellen.

Es führt in gewissem Umfang zu einer Schädigung von Enzymen.

- 6 -

Seine Delignifizierungsgeschwindigkeit ist nicht allzu hoch.

Die vorliegende Erfindung betrifft ein Mehrkomponentensystem zum Verändern, Abbau oder Bleichen von Lignin, ligninhaltigen
5 Materialien oder ähnlichen Stoffen enthaltend

a. ggf. mindestens einen Oxidationskatalysator und

b. mindestens ein geeignetes Oxidationsmittel und

10 c. mindestens einen Mediator, dadurch gekennzeichnet, daß der Mediator ausgewählt ist aus der Gruppe der Oxime der allgemeinen Formel I oder II

15

20

I

II

25

sowie deren Salze, Ether, oder Ester, wobei

X, gleich oder verschieden ist und O, S, oder NR¹ bedeuten
wobei

30

R¹ Wasserstoff-, Hydroxy-, Formyl-, Carbamoyl-, Sulfonorest,
Ester oder Salz des Sulfonorests, Sulfamoyl-, Nitro-, Amino-,
Phenyl-, Aryl-C₁-C₅-alkyl-, C₁-C₁₂-Alkyl-, C₁-C₅-Alkoxy-,
C₁-C₁₀-Carbonyl-, Carbonyl-C₁-C₆-alkyl-, Phospho-, Phosphono-,
35 Phosphonoxyrest, Ester oder Salz des Phosphonoxyrests
bedeutet,

wobei Carbamoyl-, Sulfamoyl-, Amino- und Phenylreste unsubstituiert oder ein- oder mehrfach mit einem Rest R² substituiert sein können und die Aryl-C₁-C₅-alkyl-, C₁-C₁₂-Alkyl-, C₁-C₅-Alkoxy-, C₁-C₁₀-Carbonyl-, Carbonyl-C₁-C₆-alkyl-Reste gesättigt oder ungesättigt, verzweigt oder unverzweigt sein können und mit einem Rest R² ein- oder mehrfach substituiert sein können, wobei

R² gleich oder verschieden ist und Hydroxy-, Formyl-, Carboxyrest, Ester oder Salz des Carboxyrests, Carbamoyl-, Sulfonorest, Ester oder Salz des Sulfonorests, Sulfamoyl-, Nitro-, Amino-, Phenyl-, C₁-C₅-Alkyl-, C₁-C₅-Alkoxyrest bedeutet und

die Reste R³ und R⁴ gleich oder verschieden sind und Halogen-, Carboxyrest, Ester oder Salz des Carboxyrests bedeuten, oder die für R¹ genannten Bedeutungen haben, oder zu einem Ring [-CR⁷R⁸]_n mit n gleich 2, 3 oder 4 verknüpft sind und

R⁵ und R⁶ die für R¹ genannten Bedeutungen haben und

R⁷ und R⁸ gleich oder verschieden sind und Halogen-, Carboxyrest, Ester oder Salz des Carboxyrests bedeuten, oder die für R¹ genannten Bedeutungen haben.

Als Mediatoren im erfindungsgemäßen Mehrkomponentensystem besonders bevorzugt sind Verbindungen mit der allgemeinen Formel I bei denen X O oder S bedeutet und die übrigen Reste die vorstehend genannten Bedeutungen haben. Ein Beispiel für eine solche Verbindung ist 2-Hydroxyiminomalonsäuredimethylester.

Als Mediatoren weiterhin besonders bevorzugt sind Isonitroso-derivate von cyclischen Ureiden der allgemeinen Formel II. Beispiele für solche Verbindungen sind 1-Methylviolursäure, 1,3-Dimethylviolursäure, Thioviolursäure, Alloxan-4,5-dioxim.

Als Mediator insbesondere bevorzugt ist Alloxan-5-oxim Hydrat (Violursäure) und/oder dessen Ester, Ether oder Salze.

- 8 -

Das erfindungsgemäße Mehrkomponentensystem enthält Mediatoren, die kostengünstiger als HBT sind.

Darüber hinaus wird bei Einsatz der erfindungsgemäßen Mediatoren eine Steigerung der Delignifizierungsgeschwindigkeit 5 erzielt.

Vorzugsweise umfaßt das erfindungsgemäße Mehrkomponentensystem mindestens einen Oxidationskatalysator.

Als Oxidationskatalysatoren werden im erfindungsgemäßen Mehrkomponentensystem bevorzugt Enzyme eingesetzt. Im Sinne der Erfindung umfaßt der Begriff Enzym auch enzymatisch aktive Proteine oder Peptide oder prosthetische Gruppen von Enzymen.

Als Enzym können im erfindungsgemäßen Mehrkomponentensystem Oxidoreduktasen der Klassen 1.1.1 bis 1.97 gemäß Internationaler Enzym-Nomenklature, Committee of the International Union of Biochemistry and Molecular Biology (Enzyme Nomenclature, Academic Press, Inc., 1992, S. 24-154) eingesetzt werden.

Vorzugsweise werden Enzyme der im folgenden genannten Klassen eingesetzt:

Enzyme der Klasse 1.1, die alle Dehydrogenasen, die auf primäre, sekundäre Alkohole und Semiacetale wirken, umfassen und die als Akzeptoren NAD^+ oder NADP^+ (Subklasse 1.1.1), Cytochrome (1.1.2), Sauerstoff (O_2) (1.1.3), Disulfide (1.1.4), Chinone (1.1.5) oder die andere Akzeptoren haben (1.1.99).

Aus dieser Klasse sind besonders bevorzugt die Enzyme der Klasse 1.1.5 mit Chinonen als Akzeptoren und die Enzyme der Klasse 1.1.3 mit Sauerstoff als Akzeptor.

Insbesondere bevorzugt in dieser Klasse ist Cellobiose-quinone-1-oxidoreduktase (1.1.5.1).

Weiterhin bevorzugt sind Enzyme der Klasse 1.2. Diese Enzym-
klasse (1.1.5.1) umfaßt solche Enzyme, die Aldehyde zu den
korrespondierenden Säuren oder Oxo-Gruppen oxidieren. Die Ak-
zeptoren können NAD⁺, NADP⁺ (1.2.1), Cytochrome (1.2.2), Sau-
erstoff (1.2.3), Sulfide (1.2.4), Eisen-Schwefel-Proteine
5 (1.2.5) oder andere Akzeptoren (1.2.99) sein.

Besonders bevorzugt sind hier die Enzyme der Gruppe (1.2.3)
mit Sauerstoff als Akzeptor.

10 Weiterhin bevorzugt sind Enzyme der Klasse 1.3. In dieser
Klasse sind Enzyme zusammengefaßt, die auf CH-CH-Gruppen des
Donors wirken.

15 Die entsprechenden Akzeptoren sind NAD⁺, NADP⁺ (1.3.1), Cyto-
chrome (1.3.2), Sauerstoff (1.3.3), Chinone oder verwandte
Verbindungen (1.3.5), Eisen-Schwefel-Proteine (1.3.7) oder an-
dere Akzeptoren (1.3.99).

20 Besonders bevorzugt ist die Bilirubinoxidase (1.3.3.5);

Hier sind ebenfalls die Enzyme der Klasse (1.3.3) mit Sauer-
stoff als Akzeptor und (1.3.5) mit Chinone etc. als Akzeptor
besonders bevorzugt.

25 Weiterhin bevorzugt sind Enzyme der Klasse 1.4, die auf
CH-NH₂-Gruppen des Donors wirken.

30 Die entsprechenden Akzeptoren sind NAD⁺, NADP⁺ (1.4.1), Cyto-
chrome (1.4.2), Sauerstoff (1.4.3), Disulfide (1.4.4), Eisen-
Schwefel-Proteine (1.4.7) oder andere Akzeptoren (1.4.99).

Besonders bevorzugt sind auch hier Enzyme der Klasse 1.4.3 mit
Sauerstoff als Akzeptor.

35 Weiterhin bevorzugt sind Enzyme der Klasse 1.5, die auf CH-NH-
Gruppen des Donors wirken. Die entsprechenden Akzeptoren sind

- 10 -

NAD⁺, NADP⁺ (1.5.1), Sauerstoff (1.5.3), Disulfide (1.5.4), Chinone (1.5.5) oder andere Akzeptoren (1.5.99).

Auch hier sind besonders bevorzugt Enzyme mit Sauerstoff (O₂) (1.5.3) und mit Chinonen (1.5.5) als Akzeptoren.

Weiterhin bevorzugt sind Enzyme der Klasse 1.6, die auf NADH oder NADPH wirken.

10 Die Akzeptoren sind hier NADP⁺ (1.6.1), Hämproteine (1.6.2), Disulfide (1.6.4), Chinone (1.6.5), NO₂-Gruppen (1.6.6), und ein Flavin (1.6.8) oder einige andere Akzeptoren (1.6.99).

Besonders bevorzugt sind hier Enzyme der Klasse 1.6.5 mit 15 Chinonen als Akzeptoren.

Weiterhin bevorzugt sind Enzyme der Klasse 1.7, die auf andere NO₂-Verbindungen als Donatoren wirken und als Akzeptoren Cytochrome (1.7.2), Sauerstoff (O₂) (1.7.3), Eisen-Schwefel-Proteine (1.7.7) oder andere (1.7.99) haben.

Hier sind besonders bevorzugt die Klasse 1.7.3 mit Sauerstoff als Akzeptor.

25 Weiterhin bevorzugt sind Enzyme der Klasse 1.8, die auf Schwefelgruppen als Donatoren wirken und als Akzeptoren NAD⁺, NADP⁺ (1.8.1), Cytochrome (1.8.2), Sauerstoff (O₂) (1.8.3), Disulfide (1.8.4), Chinone (1.8.5), Eisen-Schwefel-Proteine (1.8.7) oder andere (1.8.99) haben.

30 Besonders bevorzugt ist die Klasse 1.8.3 mit Sauerstoff (O₂) und (1.8.5) mit Chinonen als Akzeptoren.

Weiterhin bevorzugt sind Enzyme der Klasse 1.9, die auf Häm-35 gruppen als Donatoren wirken und als Akzeptoren Sauerstoff (O₂) (1.9.3), NO₂-Verbindungen (1.9.6) und andere (1.9.99) haben.

- 11 -

Besonders bevorzugt ist hier die Gruppe 1.9.3 mit Sauerstoff (O_2) als Akzeptor (Cytochromoxididasen).

Weiterhin bevorzugt sind Enzyme der Klasse 1.12, die auf Wasserstoff als Donor wirken.

Die Akzeptoren sind NAD^+ oder $NADP^+$ (1.12.1) oder andere (1.12.99).

10 Desweiteren bevorzugt sind Enzyme der Klasse 1.13 und 1.14 (Oxygenasen).

Weiterhin sind bevorzugte Enzyme die der Klasse 1.15, die auf Superoxid-Radikale als Akzeptoren wirken.

15 Besonders bevorzugt ist hier die Superoxid-Dismutase (1.15.1.1).

Weiterhin sind bevorzugt Enzyme der Klasse 1.16.

20 Als Akzeptoren wirken NAD^+ oder $NADP^+$ (1.16.1) oder Sauerstoff (O_2) (1.16.3).

25 Besonders bevorzugt sind hier Enzyme der Klasse 1.16.3.1 (Ferroxidase, z.B. Ceruloplasmin).

Weiterhin bevorzugte Enzyme sind diejenigen, die der Gruppe 1.17 (Wirkung auf CH_2 -Gruppen, die zu -CHOH- oxidiert werden), 1.18 (Wirkung auf reduziertes Ferredoxin als Donor), 1.19 (Wirkung auf reduziertes Flavodoxin als Donor) und 1.97 (andere Oxidoreduktasen) angehören.

Weiterhin besonders bevorzugt sind die Enzyme der Gruppe 1.11., die auf ein Peroxid als Akzeptor wirken. Diese einzige 35 Subklasse (1.11.1) enthält die Peroxidasen.

Besonders bevorzugt sind hier die Cytochrom-C-Peroxidasen (1.11.1.5), Catalase (1.11.1.6), die Peroxydase (1.11.1.6),

- 12 -

die Iodid-Peroxidase (1.11.1.8), die Glutathione-Peroxidase (1.11.1.9), die Chlorid-Peroxidase (1.11.1.10), die L-Ascorbat-Peroxidase (1.11.1.11), die Phospholipid-Hydroperoxid-Glutathione-Peroxidase (1.11.1.12), die Mangan-Peroxidase 5 (1.12.1.13), die Diarylpropan-Peroxidase (Ligninase, Lignin-Peroxidase) (1.11.1.14).

Ganz besonders bevorzugt sind Enzyme der Klasse 1.10, die auf Biphenole und verwandten Verbindungen wirken. Sie katalysieren 10 die Oxidation von Biphenolen und Ascorbaten. Als Akzeptoren fungieren NAD^+ , NADP^+ (1.10.1), Cytochrome (1.10.2), Sauerstoff (1.10.3) oder andere (1.10.99).

Von diesen wiederum sind Enzyme der Klasse 1.10.3 mit Sauerstoff (O_2) als Akzeptor besonders bevorzugt.

Von den Enzymen dieser Klasse sind die Enzyme Catechol Oxidase (Tyrosinase) (1.10.3.1), L-Ascorbate Oxidase (1.10.3.3), α -Aminophenol Oxidase (1.10.3.4) und Laccase (Benzoldiol: Oxigen 20 Oxidoreduktase) (1.10.3.2) bevorzugt, wobei die Laccasen (Benzoldiol: Oxigen Oxidoreduktase) (1.10.3.2) insbesondere bevorzugt sind.

Die genannten Enzyme sind käuflich erhältlich oder lassen sich 25 nach Standardverfahren gewinnen. Als Organismen zur Produktion der Enzyme kommen beispielsweise Pflanzen, tierische Zellen, Bakterien und Pilze in Betracht. Grundsätzlich können sowohl natürlich vorkommende als auch gentechnisch veränderte Organismen Enzymproduzenten sein. Ebenso sind Teile von einzelligen 30 oder mehrzelligen Organismen als Enzymproduzenten denkbar, vor allem Zellkulturen.

Für die insbesondere bevorzugten Enzyme, wie die aus der Gruppe 35 1.11.1 vor allem aber 1.10.3 und insbesondere zur Produktion von Laccasen werden beispielsweise Weißfäulepilze wie Pleurotus, Phlebia und Trametes verwendet.

- 13 -

Das erfindungsgemäße Mehrkomponentensystem umfaßt mindestens ein Oxidationsmittel. Als Oxidationsmittel können beispielsweise Luft, Sauerstoff, Ozon, H_2O_2 , organische Peroxide, Persäuren wie die Peressigsäure, Perameisensäure, Perschwefelsäure, Persalpetersäure, Metachlorperoxybenzosäure, Perchlorsäure, Perborate, Peracetate, Persulfate, Peroxide oder Sauerstoffspezies und deren Radikale wie OH^- , OOH^- , Singulettsauerstoff, Superoxid ($O_2^{\cdot-}$), Ozonid, Dioxygenyl-Kation (O_2^+), Dioxirane, Dioxetane oder Fremy Radikale eingesetzt werden.

Vorzugsweise werden solche Oxidationsmittel eingesetzt, die entweder durch die entsprechenden Oxidoreduktasen generiert werden können z.B. Dioxirane aus Laccasen plus Carbonylen oder die chemisch den Mediator regenerieren können oder diesen direkt umsetzen können.

Die Erfindung betrifft auch die Verwendung von Substanzen, welche erfindungsgemäß als Mediatoren geeignet sind zum Verändern, Abbau oder Bleichen von Lignin, ligninhaltigen Materialien oder ähnlichen Stoffen.

Die Wirksamkeit des Mehrkomponentensystems beim Verändern, Abbau oder Bleichen von Lignin, ligninhaltigen Materialien oder ähnlichen Stoffen ist häufig nochmals gesteigert, wenn neben den genannten Bestandteilen noch Mg^{2+} Ionen vorhanden sind. Die Mg^{2+} Ionen können beispielsweise als Salz, wie z.B. $MgSO_4$, eingesetzt werden. Die Konzentration liegt im Bereich von 0,1 - 2 mg/g ligninhaltigem Material, vorzugsweise bei 0,2 - 0,6 mg/g.

In manchen Fällen läßt sich eine weitere Steigerung der Wirksamkeit des erfindungsgemäßen Mehrkomponentensystems dadurch erreichen, daß das Mehrkomponentensystem neben den Mg^{2+} Ionen auch Komplexbildner wie z.B. Ethyldiamintetraessigsäure (EDTA), Diethylentriaminpentaessigsäure (DTPA), Hydroxyethylen-diamintriessigsäure (HEDTA), Diethylentriaminpentamethylen-phosphonsäure (DTMPA), Nitrilotriessigsäure (NTA), Polyphosphorsäure (PPA) etc. enthält. Die Konzentration liegt im

- 14 -

Bereich von 0,2 - 5 mg/g ligninhaltigem Material, vorzugsweise bei 1 - 3 mg.

Der Einsatz des erfindungsgemäßen Mehrkomponentensystems in
5 einem Verfahren zum Behandeln von Lignin erfolgt beispielswei-
se dadurch, daß man die jeweils ausgewählten Komponenten a)
bis c) gemäß Anspruch 1 gleichzeitig oder in beliebiger Rei-
henfolge mit einer wässrigen Suspension des ligninhaltigen Ma-
terials mischt.

10 Vorzugsweise wird ein Verfahren unter Einsatz des erfindungs-
gemäßen Mehrkomponentensystems in Gegenwart von Sauerstoff
oder Luft bei Normaldruck bis 10 bar und in einem pH-Bereich
von 2 bis 11, bei einer Temperatur von 20 bis 95°C, vorzugs-
15 weise 40 - 95°C, und einer Stoffdichte von 0,5 bis 40 %
durchgeführt.

Ein für den Einsatz von Enzymen bei der Zellstoffbleiche unge-
wöhnlicher und überraschender Befund ist, daß beim Einsatz des
20 erfindungsgemäßen Mehrkomponentensystems eine Steigerung der
Stoffdichte eine erhebliche Steigerung der Kappaerniedrigung
ermöglicht.

Aus ökonomischen Gründen bevorzugt wird ein erfindungsgemäßes
25 Verfahren bei Stoffdichten von 8 bis 35 %, besonders bevorzugt
9 bis 15 % durchgeführt.

Überraschenderweise zeigte sich ferner, daß eine saure Wäsche
(pH 2 bis 6, vorzugsweise 4 bis 5) oder Q-Stufe (pH-Wert 2 bis
30 6, vorzugsweise 4 bis 5) vor der Enzym-Mediatorstufe bei man-
chen Zellstoffen zu einer erheblichen Kappazahlerniedrigung im
Vergleich zur Behandlung ohne diese spezielle Vorbehandlung
führt. In der Q-Stufe werden als Chelatbildner die zu diesem
Zwecke üblichen Substanzen (wie z.B. EDTA, DTPA) eingesetzt.
35 Sie werden vorzugsweise in Konzentrationen von 0,1 %/t bis 1
%/t, besonders bevorzugt 0,1 %/t bis 0,5 %/t, eingesetzt.

- 15 -

Im erfindungsgemäßen Verfahren werden vorzugsweise 0,01 bis 10.000 IU Enzym pro g ligninhaltiges Material eingesetzt. Besonders bevorzugt werden 0,1 bis 100, insbesondere bevorzugt werden 1 bis 40, IU Enzym pro g ligninhaltiges Material eingesetzt (1 U entspricht dem Umsatz von 1 μmol 2,2'-Azino-bis(3-ethyl-benzothiazolin-6-sulfonsäure-diammoniumsalz) (ABTS)/min/ml Enzym).

5 Im erfindungsgemäßen Verfahren werden vorzugsweise 0,01 mg bis 100 mg Oxidationsmittel pro g ligninhaltigem Material eingesetzt. Besonders bevorzugt werden 0,01 bis 50 mg Oxidationsmittel pro g ligninhaltigem Material eingesetzt.

10 Im erfindungsgemäßen Verfahren werden vorzugsweise 0,5 bis 80 mg Mediator pro g ligninhaltigem Material eingesetzt. Besonders bevorzugt werden 0,5 bis 40 mg Mediator pro g ligninhaltigem Material eingesetzt.

15 Gleichzeitig können Reduktionsmittel zugegeben werden, die zusammen mit den vorhandenen Oxidationsmitteln zur Einstellung eines bestimmten Redoxpotentials dienen.

20 Als Reduktionsmittel können Natrium-Bisulfit, Natrium-Dithionit, Ascorbinsäure, Thioverbindungen, Mercaptoverbindungen oder Glutathion etc. eingesetzt werden.

25 Die Reaktion läuft beispielsweise bei Laccase unter Luft- oder Sauerstoffzufuhr oder Sauerstoff- bzw. Luftüberdruck ab, bei den Peroxidasen (z.B. Ligninperoxidases, Manganperoxidases) mit Wasserstoffperoxid ab. Dabei können beispielsweise der Sauerstoff auch durch Wasserstoffperoxid + Katalase und Wasserstoffperoxid durch Glucose + Glucoseoxidase oder andere Systeme *in situ* generiert werden.

30 35 Außerdem können dem System Radikalbildner oder Radikalfänger (Abfangen von beispielsweise OH^\cdot oder COH^\cdot Radikalen) zugesetzt werden. Diese können das Zusammenspiel innerhalb der Red/Ox- und Radikalmediatoren verbessern.

Der Reaktionslösung können auch weitere Metallsalze zugegeben werden.

- 5 Diese sind im Zusammenwirken mit Chelatbildnern als Radikalbildner oder Red/Ox-Zentren wichtig. Die Salze bilden in der Reaktionslösung Kationen. Solche Ionen sind u.a. Fe^{2+} , Fe^{3+} , Mn^{2+} , Mn^{3+} , Mn^{4+} , Cu^{2+} , Ca^{2+} , Ti^{3+} , Cer^{4+} , Al^{3+} .
- 10 Die in der Lösung vorhandenen Chelate können darüber hinaus als Mimicsubstanzen für die Enzyme, beispielsweise für die Laccasen (Kupferkomplexe) oder für die Lignin- oder Manganperoxidases (Hämkomplexe) dienen. Unter Mimicsubstanzen sind solche Stoffe zu verstehen, die die prosthetischen Gruppen von
15 (hier) Oxidoreduktasen simulieren und z.B. Oxidationsreaktionen katalysieren können.

Weiterhin kann dem Reaktionsgemisch NaOCl zugesetzt werden. Diese Verbindung kann im Zusammenspiel mit Wasserstoffperoxid
20 Singuletsauerstoff bilden.

Schließlich ist es auch möglich, unter Einsatz von Detergentien zu arbeiten. Als solche kommen nicht-ionische, anionische, kationische und amphotere Tenside in Betracht. Die Detergentien können die Penetration der Enzyme und Mediatoren in
25 die Faser verbessern.

Ebenso kann es für die Reaktion förderlich sein, Polysaccharide und/oder Proteine zuzusetzen. Hier sind insbesondere als
30 Polysaccharide Glucane, Mannane, Dextrane, Lävane, Pektine, Alginat oder Pflanzengummis und/oder eigene von den Pilzen gebildete oder in der Mischkultur mit Hefer produzierte Polysaccharide und als Proteine Gelantine und Albumin zu nennen. Diese Stoffe dienen hauptsächlich als Schutzkolloide für die
35 Enzyme.

Weitere Proteine, die zugesetzt werden können, sind Proteasen wie Pepsin, Bromelin, Papain usw.. Diese können u.a. dazu

- 17 -

dienen, durch den Abbau des im Holz vorhandenen Extensins C, eines hydroxyprolinreichen Proteins, einen besseren Zugang zum Lignin zu erreichen.

- 5 Als weitere Schutzkolloide kommen Aminosäuren, Einfachzucker, Oligomerzucker, PEG-Typen der verschiedensten Molekulargewichte, Polyethylenoxide, Polyethylenimine und Polydimethylsiloxane in Frage.
- 10 Das erfindungsgemäße Verfahren kann nicht nur bei der Delignifizierung (Bleiche) von Sulfat-, Sulfit-, Organosol-, o.a. Zellstoffen und von Holzstoffen eingesetzt werden, sondern auch bei der Herstellung von Zellstoffen oder Holzstoffen (Refinerstoff/Holzschliff) allgemein beispielsweise aus Holz- oder Einjahrespflanzen. Dazu sollte eine Defibrillierung durch die üblichen Kochverfahren und/oder mechanischen Verfahren oder Druck (d.h. eine sehr schonende Behandlung bis zu Kappa-zahlen im Bereich von > 50 Kappa bzw. >10% Ligningehalt) gewährleistet sein.
- 15
- 20 Bei der Bleiche von Zellstoffen wie auch bei der Herstellung von Zellstoffen kann die Behandlung mehrfach wiederholt werden, entweder nach Wäsche und Extraktion des behandelten Stoffes mit NaOH oder ohne diese Zwischenschritte. Dies führt zu noch wesentlich weiter reduzierten Kappawerten und zu erheblichen Weißesteigerungen. Ebenso kann vor der Enzym/Mediatorbehandlung eine O₂-Stufe eingesetzt werden oder auch wie bereits erwähnt eine saure Wäsche oder Q-Stufe (Chelatstufe) ausgeführt werden.
- 25
- 30 Im folgenden wird die Erfindung anhand von Beispielen näher erläutert:

Beispiel 1: Enzymatische Bleiche mit Violursäure und Softwood Sulfatzellstoff

- 5 5 g atro Zellstoff (Softwood O₂ delignifiziert), Stoffdichte 30% (ca. 17 g feucht) werden zu folgenden Lösungen gegeben:
- A) 20 ml Leitungswasser werden mit 65 mg Violursäure Monohydrat unter Rühren versetzt, der pH-Wert mit 0,5 mol/l H₂SO₄-Lsg. so eingestellt, daß nach Zugabe des Zellstoffs und 10 des Enzyms pH 4,5 resultiert.
- B) 5 ml Leitungswasser werden mit der Menge Laccase von Trametes versicolor versetzt, daß eine Aktivität von 35 U (1 U = Umsatz von 1 µmol ABTS/min/ml Enzym) pro g Zellstoff resultiert.
- 15 Die Lösungen A und B werden zusammengegeben und auf 33 ml aufgefüllt.
- Nach Zugabe des Zellstoffes wird für 2 min mit einem Teigknetter gemixt.
- Danach wird der Stoff in eine auf 45°C vorgeheizte Reaktions-20 bombe gegeben und unter 1 - 10 bar Sauerstoffüberdruck für 10 bis 40 Minuten inkubiert.
- Danach wird der Stoff über einem Nylonsieb (30 µm) gewaschen und 1 Stunde bei 60°C, 2% Stoffdichte und 8% NaOH pro g Zellstoff extrahiert.
- 25 Nach erneuter Wäsche des Stoffes wird die Kappazahl bestimmt. In Abhängigkeit der Inkubationsdauer werden folgende Delignifizierungsraten erreicht:

	Reaktionsdauer [min]	Kappa	Ligninabbau [%]
		nach Extraktion	
30	0 *	10,40	0,00
	10,00	8,00	23,10
	20,00	7,40	28,80
	30,00	7,00	32,70
	40,00	7,00	32,70

Ergebnis * bei 0 min (Kappa vor Extraktion)

Beispiel 2: Enzymatische Bleiche mit Violursäure und Softwood Sulfatzellstoff

- 5 5 g atro Zellstoff (Softwood O₂ delignifiziert), Stoffdichte 30% (ca. 17 g feucht) werden zu folgenden Lösungen gegeben:
- A) 20 ml Leitungswasser werden mit 130 mg Violursäure Monohydrat unter Rühren versetzt, der pH-Wert mit 0,5 mol/l H₂SO₄-Lsg. so eingestellt, daß nach Zugabe des Zellstoffs und 10 des Enzyms pH 4,5 resultiert.
- B) 5 ml Leitungswasser werden mit der Menge Laccase von Trametes versicolor versetzt, daß eine Aktivität von 35 U (1 U = Umsatz von 1 µmcl ABTS/min/ml Enzym) pro g Zellstoff resultiert.
- 15 Die Lösungen A und B werden zusammengegeben und auf 33 ml aufgefüllt.
- Nach Zugabe des Zellstoffes wird für 2 min mit einem Teigknetter gemixt.
- Danach wird der Stoff in eine auf 45°C vorgeheizte Reaktions-20 bombe gegeben und unter 1 - 10 bar Sauerstoffüberdruck für 1 - 4 Stunden inkubiert.
- Danach wird der Stoff über einem Nylonsieb (30 µm) gewaschen und 1 Stunde bei 60°C, 2% Stoffdichte und 8% NaOH pro g Zellstoff extrahiert.
- 25 Nach erneuter Wäsche des Stoffes wird die Kappazahl bestimmt.

In Abhängigkeit der Inkubationsdauer werden folgende Delignifizierungsraten erreicht:

30	Reaktionsdauer [h]	Kappa nach Extraktion	Ligninabbau [%]
	0 *	10,40	0,00
	4	4,90	52,90

35

Ergebnis * bei 0 min Kappa vor Extraktion

Von der eingesetzten Enzymaktivität wurden nach einer Reak-

- 20 -

tionsdauer von 4 Stunden 89% wiedergefunden.

**Vergleichsbeispiel 1: Enzymatische Bleiche mit
1-Hydroxy-1-H-Benzotriazol und Softwood Sulfatzellstoff**

5

5 g atro Zellstoff (Softwood O₂ delignifiziert), Stoffdichte 30% (ca. 17 g feucht) werden zu folgenden Lösungen gegeben:

A) 20 ml Leitungswasser werden mit 25 mg

10 1-Hydroxy-1-H-Benzotriazol unter Rühren versetzt, der pH-Wert mit 0,5 mol/l H₂SO₄-Lsg. so eingestellt, daß nach Zugabe des Zellstoffs und des Enzyms pH 4,5 resultiert.

B) 5 ml Leitungswasser werden mit der Menge Laccase von Trametes versicolor versetzt, daß eine Aktivität von 35 U (1 U = Umsatz von 1 µmol ABTS/min/ml Enzym) pro g Zellstoff

15 resultiert.

Die Lösungen A und B werden zusammengegeben und auf 33 ml aufgefüllt.

Nach Zugabe des Zellstoffes wird für 2 min mit einem Teigknetter gemixt.

20 Danach wird der Stoff in eine auf 45°C vorgeheizte Reaktionsbombe gegeben und unter 1 - 10 bar Sauerstoffüberdruck für 10 bis 40 Minuten inkubiert.

Danach wird der Stoff über einem Nylonsieb (30 µm) gewaschen und 1 Stunde bei 60°C, 2% Stoffdichte und 8% NaOH pro g Zellstoff extrahiert.

25 Nach erneuter Wäsche des Stoffes wird die Kappazahl bestimmt. In Abhängigkeit der Inkubationsdauer werden folgende Delignifizierungsraten erreicht:

30

35

Reaktionsdauer [min]	Kappa nach Extraktion	Ligninabbau
		[%]
5	0 *	0,00
	10,00	6,70
	20,00	10,60
	30,00	14,40
	40,00	18,30

10 Ergebnis * bei 0 min (Kappa vor Extraktion)

Vergleichsbeispiel 2: Enzymatische Bleiche mit
1-Hydroxy-1-H-Benzotriazol und Softwood Sulfatzellstoff

- 15 5 g atro Zellstoff (Softwood O₂ delignifiziert), Stoffdichte 30% (ca. 17 g feucht) werden zu folgenden Lösungen gegeben:
 A) 20 ml Leitungswasser werden mit 50 mg 1-Hydroxy-1-H-Benzotriazol unter Rühren versetzt, der pH-Wert mit 0,5 mol/l H₂SO₄-Lsg. so eingestellt, daß nach Zugabe des Zellstoffs und des Enzyms pH 4,5 resultiert.
- 20 B) 5 ml Leitungswasser werden mit der Menge Laccase von Trametes versicolor versetzt, daß eine Aktivität von 35 U (1 U = Umsatz von 1 µmol ABTS/min/ml Enzym) pro g Zellstoff resultiert.
- 25 Die Lösungen A und B werden zusammengegeben und auf 33 ml aufgefüllt.
 Nach Zugabe des Zellstoffes wird für 2 min mit einem Teigknetter gemixt.
- 30 Danach wird der Stoff in eine auf 45°C vorgeheizte Reaktionsbombe gegeben und unter 1 - 10 bar Sauerstoffüberdruck für 1 - 4 Stunden inkubiert.
- Danach wird der Stoff über einem Nylonsieb (30 µm) gewaschen und 1 Stunde bei 60°C, 2% Stoffdichte und 8% NaOH pro g Zellstoff extrahiert.
- 35 Nach erneuter Wäsche des Stoffes wird die Kappazahl bestimmt.

- 22 -

In Abhängigkeit der Inkubationsdauer werden folgende Delignifizierungsraten erreicht:

	Reaktionsdauer [h]	Kappa nach Extraktion	Ligninabbau [%]
5	0 *	10,40	0,00
	4	5,60	46,20

10 Ergebnis * bei 0 min Kappa vor Extraktion

Von der eingesetzten Enzymaktivität wurden nach einer Reaktionsdauer von 4 Stunden 15% wiedergefunden.

15

20

25

30

35

Patentansprüche

1. Mehrkomponentensystem zum Verändern, Abbau oder Bleichen von Lignin, ligninhaltigen Materialien oder ähnlichen Stoffen

5 enthaltend

a. ggf. mindestens einen Oxidationskatalysator und

b. mindestens ein geeignetes Oxidationsmittel und

10 c. mindestens einen Mediator, dadurch gekennzeichnet, daß der Mediator ausgewählt ist aus der Gruppe der Oxime der allgemeinen Formel I oder II

15

I

II

25

sowie deren Salze, Ether, oder Ester, wobei

X, gleich oder verschieden ist und O, S, oder NR¹ bedeuten
wobei

30

R¹ Wasserstoff-, Hydroxy-, Formyl-, Carbamoyl-, Sulfonorest,
Ester oder Salz des Sulfonorests, Sulfamoyl-, Nitro-, Amino-,
Phenyl-, Aryl-C₁-C₅-alkyl-, C₁-C₁₂-Alkyl-, C₁-C₅-Alkoxy-,
C₁-C₁₀-Carbonyl-, Carbonyl-C₁-C₆-alkyl-, Phospho-, Phosphono-,
35 Phosphonoxyrest, Ester oder Salz des Phosphonoxyrests
bedeutet,

- 24 -

wobei Carbamoyl-, Sulfamoyl-, Amino- und Phenylreste unsubstituiert oder ein- oder mehrfach mit einem Rest R² substituiert sein können und die Aryl-C₁-C₅-alkyl-, C₁-C₁₂-Alkyl-, C₁-C₅-Alkoxy-, C₁-C₁₀-Carbonyl-, Carbonyl-C₁-C₆-alkyl-Reste gesättigt oder ungesättigt, verzweigt oder unverzweigt sein können und mit einem Rest R² ein- oder mehrfach substituiert sein können wobei

R² gleich oder verschieden ist und Hydroxy-, Formyl-, Carboxyrest, Ester oder Salz des Carboxyrests, Carbamoyl-, Sulfonorest, Ester oder Salz des Sulfonorests, Sulfamoyl-, Nitro-, Amino-, Phenyl-, C₁-C₅-Alkyl-, C₁-C₅-Alkoxyrest bedeutet und

die Reste R³-R⁴ gleich oder verschieden sind und Halogen-, Carboxyrest, Ester oder Salz des Carboxyrests bedeuten, oder die für R¹ genannten Bedeutungen haben, oder zu einem Ring [-CR⁷R⁸]_n mit n gleich 2, 3 oder 4 verknüpft sind und

R⁵ und R⁶ die für R¹ genannten Bedeutungen haben und

R⁷ und R⁸ gleich oder verschieden sind und Halogen-, Carboxyrest, Ester oder Salz des Carboxyrests bedeuten, oder die für R¹ genannten Bedeutungen haben.

25 2. Mehrkomponentensystem gemäß Anspruch 1, dadurch gekennzeichnet, daß es mindestens einen Oxidationskatalysator umfaßt.

30 3. Mehrkomponentensystem gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß als Oxidationskatalysator Enzym eingesetzt wird.

4. Mehrkomponentensystem gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß als Enzym Laccase eingesetzt wird.

35 5. Mehrkomponentensystem gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß als Oxidationsmittel Luft, Sauerstoff, Ozon, H₂O₂, organische Peroxide, Persäuren wie die

- 25 -

Peressigsäure, Perameisensäure, Perschwefelsäure, Persalpetersäure, Metachlorperoxibenzosäure, Perchlorsäure, Perborate, Peracetate, Persulfate, Peroxide oder Sauerstoffspezies und deren Radikale wie OH[·], OOH[·], Singuletsauerstoff, Superoxid (O₂^{·-}), Ozonid, Dioxygenyl-Kation (O₂⁺), Dioxirane, Dioxetane oder Fremy Radikale eingesetzt werden.

6. Mehrkomponentensystem gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß als Mediator Verbindungen der allgemeinen Formel I, bei denen X O oder S bedeutet und die übrigen Reste die vorstehend genannten Bedeutungen haben, eingesetzt werden.

7. Mehrkomponentensystem gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß als Mediator Isonitrosoderivate von cyclischen Ureiden der allgemeinen Formel II eingesetzt werden.

8. Mehrkomponentensystem gemäß einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß als Mediator Alloxan-5-oxim Hydrat (Violursäure) oder dessen Ester, Ether oder Salze eingesetzt werden.

9. Verfahren zum Behandeln von Lignin, dadurch gekennzeichnet, daß man die jeweils ausgewählten Komponenten a) bis c) gemäß Anspruch 1 gleichzeitig oder in beliebiger Reihenfolge mit einer wässrigen Suspension des ligninhaltigen Materials mischt.

10. Verwendung von Mediatoren gemäß Anspruch 1 zum Verändern, Abbau oder Bleichen von Lignin, ligninhaltigen Materialien oder ähnlichen Stoffen.

INTERNATIONAL SEARCH REPORT

In national Application No
PCT/EP 97/01545

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 D21C3/00 D21C9/10

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 6 D21C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P,X	EP 0 717 143 A (LIGNOZYM GMBH) 19 June 1996 see claims 1-6,18,20 ---	1-5,9,10
X	WO 94 29510 A (CALL HANS PETER) 22 December 1994 cited in the application see claims 1-3,8,14; examples 1-6 ---	1-5,9,10
A	US 3 728 461 A (DOUROS J ET AL) 17 April 1973 see the whole document ---	8
A	DE 32 16 639 A (CIBA GEIGY AG) 25 November 1982 -----	

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *'A' document defining the general state of the art which is not considered to be of particular relevance
- *'E' earlier document but published on or after the international filing date
- *'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *'O' document referring to an oral disclosure, use, exhibition or other means
- *'P' document published prior to the international filing date but later than the priority date claimed

*'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

*'X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

*'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

*& document member of the same patent family

1

Date of the actual completion of the international search

9 June 1997

Date of mailing of the international search report

20.06.97

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patendaan 2
NL - 2280 HV Rijswijk
Tel. (- 31-70) 340-2040, Tx. 31 651 epo nl,
Fax (- 31-70) 340-3016

Authorized officer

Nestby, K

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP 97/01545

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
EP 0717143 A	19-06-96	AU 4535096 A CA 2164394 A CN 1142255 A CZ 9602438 A WO 9618770 A EP 0745154 A FI 963210 A NO 963410 A PL 315913 A SK 104096 A	03-07-96 17-06-96 05-02-97 15-01-97 20-06-96 04-12-96 16-08-96 15-10-96 09-12-96 05-02-97
WO 9429510 A	22-12-94	AU 7124094 A AU 7739794 A BR 9406854 A CA 2165426 A CA 2182182 A CN 1127523 A CN 1129468 A CZ 9503325 A WO 9429425 A EP 0739433 A EP 0705327 A FI 956023 A FI 961157 A JP 9500153 T NO 955111 A NO 961205 A	03-01-95 03-01-95 26-03-96 17-12-94 22-12-94 24-07-96 21-08-96 15-05-96 22-12-94 30-10-96 10-04-96 25-01-96 13-03-96 07-01-97 07-02-96 25-03-96
US 3728461 A	17-04-73	CA 967878 A US 3928017 A	20-05-75 23-12-75
DE 3216639 A	25-11-82	NONE	

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP 97/01545

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 6 D21C3/00 D21C9/10

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationsymbole)
IPK 6 D21C

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
P,X	EP 0 717 143 A (LIGNOZYM GMBH) 19.Juni 1996 siehe Ansprüche 1-6,18,20	1-5,9,10
X	WO 94 29510 A (CALL HANS PETER) 22.Dezember 1994 in der Anmeldung erwähnt siehe Ansprüche 1-3,8,14; Beispiele 1-6	1-5,9,10
A	US 3 728 461 A (DOUROS J ET AL) 17.April 1973 siehe das ganze Dokument	8
A	DE 32 16 639 A (CIBA GEIGY AG) 25.November 1982	

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

* Besondere Kategorien von angegebenen Veröffentlichungen:

'A' Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist

'E' älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist

'L' Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)

'O' Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

'P' Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

'T' Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

'X' Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfindenscher Tätigkeit beruhend betrachtet werden

'Y' Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann nicht als auf erfindenscher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist

'&' Veröffentlichung, die Mitglied derselben Patentfamilie ist

1

Datum des Abschlusses der internationalen Recherche

9.Juni 1997

Anmeldedatum des internationalen Recherchenberichts

20.06.97

Name und Postanschrift der internationale Recherchenbehörde
Europäisches Patentamt, P.B. 5818 Patentaan 2
NL - 2280 HV Rijswijk
Tel. (+ 31-70) 340-2040, Tx. 31 651 epn nl.
Fax (+ 31-70) 340-3016

Bevollmächtigter Bediensteter

Nestby, K

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Int.	nationales Aktenzeichen
	PCT/EP 97/01545

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
EP 0717143 A	19-06-96	AU 4535096 A CA 2164394 A CN 1142255 A CZ 9602438 A WO 9618770 A EP 0745154 A FI 963210 A NO 963410 A PL 315913 A SK 104096 A	03-07-96 17-06-96 05-02-97 15-01-97 20-06-96 04-12-96 16-08-96 15-10-96 09-12-96 05-02-97
WO 9429510 A	22-12-94	AU 7124094 A AU 7739794 A BR 9406854 A CA 2165426 A CA 2182182 A CN 1127523 A CN 1129468 A CZ 9503325 A WO 9429425 A EP 0739433 A EP 0705327 A FI 956023 A FI 961157 A JP 9500153 T NO 955111 A NO 961205 A	03-01-95 03-01-95 26-03-96 17-12-94 22-12-94 24-07-96 21-08-96 15-05-96 22-12-94 30-10-96 10-04-96 25-01-96 13-03-96 07-01-97 07-02-96 25-03-96
US 3728461 A	17-04-73	CA 967878 A US 3928017 A	20-05-75 23-12-75
DE 3216639 A	25-11-82	KEINE	