$Linear\ Algebra\ I-Midterm\ Exam$

Junwoo Yang

April 5, 2018

1. Mark each of the following true or false.

	(i) Let $W = \{(a,b) \in \mathbb{R}^2 \mid ab \ge 0\}$, then $W \ge \mathbb{R}^2$.
	(ii) Let S_1 and S_2 be subsets of V . If $\langle S_1 \rangle = \langle S_2 \rangle$, then $S_1 = S_2$.
	(iii) $\{x^3 - 2x^2 + 1, 4x^2 - x + 3, x + 1, x - 5\}$ is a basis of $P_3(\mathbb{R})$.
	(iv) $\dim(U+W) = \dim(U) + \dim(W)$ for $U, W \leq V$.
	(v) Let $T: V \to W$ be a linear transformation. If $\{v_1, \dots, v_k\} \subset V$ is linearly independent, then $\{T(v_1), \dots, T(v_k)\}$ is linearly independent.
2.	Prove or disprove that if $T:V\to W$ is a linear transformation, then $\ker(T)$ is a subspace of V .
	Proof.
3.	Prove or disprove that if U, W are subspaces of V , then $U \cup W$ is a subspace of V .
	Proof.
4.	Let U, W be subspaces of V . Prove or disprove that if $U \cap W = \{0\}$, then there exists unique $u \in U$ and unique $w \in W$ such that $v = u + w$ for $v \in U + W$.
	Proof.
5.	Let U, V and W be subspaces of \mathbb{R}^5 and dim $W = 4$. Prove or disprove that if $U \oplus W = \mathbb{R}^5 = V \oplus W$, then $U = V$.
	Proof.
6.	Let $\{v, w\}$ be a basis of \mathbb{R}^2 . Prove or disprove that if $T : \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation such that $T(v) = 2v + 3w$ and $T(w) = v + 2w$, then T is injective.
	Proof.

7.	Let $V = Mat_{2\times 2}(\mathbb{R})$, $W_1 = \{ \begin{pmatrix} a & b \\ c & a \end{pmatrix} \mid a, b, c \in \mathbb{R} \}$ and $W_2 = \{ \begin{pmatrix} b \\ -a & b \end{pmatrix} \mid a, b \in \mathbb{R} \}$. Find a basis of $W_1 + W_2$ which contains a basis of $W_1 \cap W_2$. (Explain why the set is a basis.)
	Proof.
8.	If linear transformation $T:V\to W$ is injective, then there is a linear transformation $S:W\to V$ such that $S\circ T$ is bijective.
	Proof.
9.	Let $T:V\to V$ be a linear transformation and $\dim(\operatorname{im}(T))=\dim(\operatorname{im}(T\circ T))$. Show that $V=\operatorname{im}(T)\oplus\ker(T)$.
	Proof.
10.	Let $T: V \to W$ be a linear transformation. Show that $\dim(V) = \dim(\ker(T)) + \dim(\operatorname{im}(T))$.
	Proof.