In [17]:

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
from tabula import read_pdf
\#df = pd.read\_excel(r'C:\Users\user\Downloads\PythonWorkspace\iPythonNotebook\demo.xls
x', sheet_name='Sheet1')
\#df = read\_pdf(r'C:\Users\user\Downloads\git\DataScience\PythonWorkspace\Assignment\Eda
Assignment\Dataset.pdf')
df = pd.read_csv(r'C:\Users\user\Downloads\git\DataScience\PythonWorkspace\Assignment\E
daAssignment\Datasetcsv.csv')
df
```

Out[17]:

	age	year	nodes	status
0	30	64	1	1
1	30	62	3	1
2	30	65	0	1
3	31	59	2	1
4	31	65	4	1
5	33	58	10	1
6	33	60	0	1
7	34	59	0	2
8	34	66	9	2
9	34	58	30	1
10	34	60	1	1
11	34	61	10	1
12	34	67	7	1
13	34	60	0	1
14	35	64	13	1
15	35	63	0	1
16	36	60	1	1
17	36	69	0	1
18	37	60	0	1
19	37	63	0	1
20	37	58	0	1
21	37	59	6	1
22	37	60	15	1
23	37	63	0	1
24	38	69	21	2
25	38	59	2	1
26	38	60	0	1
27	38	60	0	1
28	38	62	3	1
29	38	64	1	1
276	67	66	0	1
277	67	61	0	1
278	67	65	0	1
279	68	67	0	1
280	68	68	0	1
281	69	67	8	2

	age	year	nodes	status
282	69	60	0	1
283	69	65	0	1
284	69	66	0	1
285	70	58	0	2
286	70	58	4	2
287	70	66	14	1
288	70	67	0	1
289	70	68	0	1
290	70	59	8	1
291	70	63	0	1
292	71	68	2	1
293	72	63	0	2
294	72	58	0	1
295	72	64	0	1
296	72	67	3	1
297	73	62	0	1
298	73	68	0	1
299	74	65	3	2
300	74	63	0	1
301	75	62	1	1
302	76	67	0	1
303	77	65	3	1
304	78	65	1	2
305	83	58	2	2

306 rows × 4 columns

In [18]:

```
#2D scatter plot
df.plot(kind='scatter',x='year',y='age')
plt.show()
#Observations
#from the following figure, we can conclude the average patient's ages that belongs to
cancer as well as the year in which they have gone through the cancer treatment
```


In [19]:

```
#using seaborn
sns.set_style("whitegrid")
sns.FacetGrid(df,hue="status",height=4).map(plt.scatter,"year","age").add_legend()
plt.show()
df['status'].value_counts()
```

#Observations:

1. out of total patients there are 225 patients having status 1 and 81 patients havin g status 2

2. here we can also identify the approx result of the ages of patient with years havi ng success status i.e 1 or 2 (since the dots of status 1 and 2 are overlapping so we ca n't get the accurate result)

#Note: According to habermans's file, status 1 means the patient survived 5yrs or longe r but the patient having status 2 means the patient died within 5year

Out[19]:

225 1 81

Name: status, dtype: int64

In [21]:

```
#using pair plot
plt.close()
sns.set_style("whitegrid")
sns.pairplot(df,hue="status",height=3)
plt.show()
#Obsevations:
# Here are some figures having coordinate axis names (status,age),(status,year),(statu
s,nodes),(age,status),(year,status),(nodes,status) through which we can create models u
sing if-else condition
# Also the figure having coordinate axis name (nodes, nodes) is suitable for finding pd
f(probability density function) of status 1 and other figures with pdf are overlapping.
```


In [22]:

```
sns.FacetGrid(df,hue="status",height=3).map(sns.distplot,"year").add_legend()
plt.show()
```

#Observations

##From the following figure, we can seee that, on the year 60 the success status i.e 1 is high but the year between 64 and 65 the success status is 2 i.e the patient died mo re within these period according to habermans's file.

In [23]:

```
sns.FacetGrid(df,hue="status",height=3).map(sns.distplot,"age").add_legend()
plt.show()
```

#Observations

##From the following figure, we can conclude that patients belonging to the age 45 to 5 0 have less success status i.e 2(patient have died more between these ages)

In [24]:

```
sns.FacetGrid(df,hue="status",height=3).map(sns.distplot,"nodes").add_legend()
plt.show()
#Observations
##From the following figure, we can conclude that the patient with nodes 0 is having mo
re success status 1
```


In [36]:

```
total_count, bin_edges = np.histogram(df["year"], bins = 20, density = True)
pdf = total_count/(sum(total_count))
cdf = np.cumsum(pdf)
plt.plot(bin_edges[1:],pdf)
plt.plot(bin_edges[1:],cdf)
plt.show()
#Observations
## From the following figure, we can conclude the percentage of patient gone through th
e cancer treatment with respect to the years using cdf and pdf.
###For eq:
    # 63.5% of total patient have gone through the cancer operation from the year 58 to
64
    # 96% of the patient have gone through the cancer treatment from the year 58 to 68
```


In [39]:

```
total_count, bin_edges = np.histogram(df["age"], bins = 20, density = True)
pdf = total_count/(sum(total_count))
cdf = np.cumsum(pdf)
plt.plot(bin_edges[1:],pdf)
plt.plot(bin_edges[1:],cdf)
plt.show()
#Observations
##From the following figure, we can identify the percentage of the different ages of pa
tient who have gone through cancer treatment in the hospital
```


In [8]:

```
#-----code to find the mean value starts-----
df_status1 = np.mean(df[df["status"]==1])
print("-----mean value of age, year, nodes for status 1-----")
print(df status1)
df_status2 = np.mean(df[df["status"]==2])
print("-----mean value of age, year, nodes for status 2-----")
print(df_status2)
#----code to find the mean value ends-----
#-----code to find the standard value starts-----
df_std_status1 = np.std(df[df["status"]==1])
print("----standard deviation, i.e the average deviation of the points from the me
an value for status 1----")
print(df_std_status1)
df_std_status2 = np.std(df[df["status"]==2])
print("-----standard deviation, i.e the average deviation of the points from the me
an value for status 2----")
print(df_std_status2)
#----code to find the standard value ends-----
##Following are the mean value, standard deviations of all the columns for status 1 and
status 2
-----mean value of age, year, nodes for status 1------
         52.017778
age
         62.862222
year
         2.791111
nodes
status
          1.000000
dtype: float64
-----mean value of age, year, nodes for status 2-----
         53.679012
age
year
         62.827160
nodes
          7.456790
status
          2.000000
dtype: float64
-----standard deviation, i.e the average deviation of the points from
the mean value for status 1-----
age
         10.987655
          3.215745
year
nodes
          5.857258
status
          0.000000
dtype: float64
-----standard deviation, i.e the average deviation of the points from
the mean value for status 2-----
         10.104182
age
          3.321424
year
nodes
          9.128776
status
          0.000000
dtype: float64
```

In [16]:

```
sns.boxplot(x="status",y="year",data = df)
plt.grid()
print("-----")
plt.show()
sns.violinplot(x="status",y="year",data = df, size = 10)
print("-----")
plt.grid()
plt.show()
#Observations
##From the following figure, we can conclude that there are 25 percentile of the patien
t form the year 58 to 60 having status 1
## and there are 25 percentile of the patient from the year 58 to 59 having status 2
```

-----box plot-----

-----violin plot-----

In []: