Формальные языки

домашнее задание до 23:59 18.09

- 1. Перечислить слова языка $L_1 \cap L_2$, где $L_1 = \{(cat)^n \mid n \geq 0\}$ и $L_2 = \{c^m a^m t^m \mid m \geq 0\}$. Доказать, что других цепочек в пересечении нет.
- 2. Пусть $V_T = \{a, b, c\}$. Равны ли языки $L_1 = \{(cat)^n c \mid n \geq 2\}$ и $L_2 = \{ca(tca)^n tc \mid n \geq 1\}$? Привести аргументацию точки зрения.
- 3. Описать язык L, порождаемый грамматикой $\{a,b,c\},\{S,A,D\},P,S>$, где правила P имеют следующий вид:

$$S \to AD$$

$$A \to aA \mid \varepsilon$$

$$D \to bDc \mid \varepsilon$$

- на естественном языке;
- как множество.
- 4. Привести три различных дерева вывода для трех цепочек языка L из третьего задания.

Пример применения алгоритма минимизации

Минимизируем данный автомат:

Автомат полный, в нем нет недостижимых вершин — продолжаем. Строим обратное δ отображение.

δ^{-1}	0	1
A		В
В	_	A
\mathbf{C}	ΑВ	_
D	С	С
\mathbf{E}	D	_
\mathbf{F}	E F	DFG
G	G	${ m E}$

Отмечаем в таблице и добавляем в очередь пары состояний, различаемых словом ε : все пары, один элемент которых — терминальное состояние, а второй — не терминальное состояние. Для данного автомата это пары

$$(A,F),(B,F),(C,F),(D,F),(E,F),(A,G),(B,G),(C,G),(D,G),(E,G)$$

Дальше итерируем процесс определения неэквивалентных состояний, пока очередь не оказывается пуста.

(A,F) не дает нам новых неэквивалентных пар. Для (B,F) находится 2 пары: (A,D),(A,G). Первая пара не отмечена в таблице — отмечаем и добавляем в очередь. Вторая пара уже отмечена в таблице, значит, ничего делать не надо. Переходим к следующей паре из очереди. Итерируем дальше, пока очередь не опустошится.

Результирующая таблица (заполнен только треугольник, потому что остальное симметрично) и порядок добавления пар в очередь.

	Α	В	С	D	\mathbf{E}	F	G
Α							
В							
С	√	√					
D	\checkmark	\checkmark	✓				
E	√	√	√	√			
F	\checkmark	\checkmark	✓	\checkmark	✓		
G	√	√	√	√	√		

Очередь:

$$(A, F), (B, F), (C, F), (D, F), (E, F), (A, G), (B, G), (C, G), (D, G), (E, G), (B, D), (A, D), (A, E), (B, E), (C, E), (C, D), (D, E), (A, C), (B, C)$$

В таблице выделились классы эквивалентных вершин: $\{A,B\},\{C\},\{D\},\{E\},\{F,G\}$. Остается только нарисовать результирующий автомат с вершинами-классами. Переходы добавляются тогда, когда из какого-нибудь состояния первого класса есть переход в какое-нибудь состояние второго класса. Минимизированный автомат:

