Лекція 10

Числа Стірлінга другого роду та числа Белла

Розглянемо задачу підрахунку кількості розбиттів множини A на непорожні частини.

Приклад. Якщо $A = \{a, b, c\}$, то є такі розбиття цієї множини на k непорожніх частин:

 $k=1: \{\{a, b, c\}\}\$ (одне розбиття),

k=2: {{a,b}, {c}}, {{a,c}, {b}}, {{a}, {b, c}} (три розбиття),

 $k=3: \{\{a\}, \{b\}, \{c\}\}\}$ (одне розбиття).

Позначимо як $\Phi(n, k)$ кількість розбиттів n-елементної множини A на k непорожніх частин, $n \ge 1$, $1 \le k \le n$, як $\Phi(n)$ — кількість усіх розбиттів множини A на непорожні частини. Числа $\Phi(n, k)$ називають *числами Стірлінга другого роду*, а $\Phi(n)$ — *числами Белла*. Очевидно, що

$$\Phi(n) = \sum_{k=1}^{n} \Phi(n, k).$$

Для розглянутого прикладу: $\Phi(3, 1)=1$; $\Phi(3, 2)=3$; $\Phi(3, 3)=1$; $\Phi(3)=1+3+1=5$.

Зазначимо, що довільне розбиття множини A на k непорожніх частин одержують:

- або з розбиття множини $A\setminus\{a_n\}$ на (k-1) непорожню частину та додаванням підмножини $\{a_n\}$;
- або з розбиття множини $A \setminus \{a_n\}$ на k непорожніх частин та додаванням до однієї із цих частин елемента a_n (це можна зробити k способами).

Звідси випливає тотожність $\Phi(n,k)=\Phi(n-1,k-1)+k$ $\Phi(n-1,k)$. За цією тотожністю можна побудувати з лінійною складністю таблицю для чисел $\Phi(n,k)$, а, отже, і $\Phi(n)$.

Для чисел Белла існує проста рекурентна залежність $\Phi(n+1) = \sum_{i=0}^{n} C_{n}^{i} \Phi(i)$ (уважаємо, що $\Phi(0)=1$.)

Таблиця для чисел Стірлінга другого роду і чисел Белла

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	471 2401	<i>7</i> 1 111 C	теен еприна другого роду г теен ве					
	k	1	2	3	4	5	6	•••	$\Phi(n)$
n									
1		1						• • •	1
2		1	1					• • •	2
3		1	3	1				•••	5
4		1	7	6	1			•••	15
5		1	15	25	10	1		•••	52
6		1	31	90	65	15	1	•••	203
		•••		•••	• • •	• • •	• • •	• • •	•••

Теорема. За фіксованого n послідовність $(\Phi(n,k))$, k=1,2,...,n унімодальна.

Генерування комбінаторних об'єктів

Генерування перестановок

Кожній n-елементній множині A можна поставити у взаємно-однозначну відповідність множину $A' = \{1, 2, ..., n\}$. Зручно спочатку генерувати перестановки n перших натуральних чисел, а потім замінити кожне число відповідним елементом множини A. Унаслідок цього отримаємо всі перестановки елементів даної множини A.

Існують різні алгоритми для генерування всіх перестановок множини $A'=\{1,2,...,n\}$. Розглянемо один із них. Цей алгоритм ґрунтується на послідовній побудові перестановок множини A' у лексикографічному порядку. Далі перестановку $(a_1,a_2,...,a_n)$ для спрощення записів позначатимемо як $a_1a_2...a_n$.

На множині всіх перестановок (загальніше — на множині всіх кортежів довжиною n з елементами з множини $A'=\{1,2,...,n\}$) означимо лексикографічний порядок: $a_1a_2...a_n < b_1b_2...b_n$, якщо для якогось k, $1 \le k \le n$, виконуються співвідношення $a_1 = b_1$, $a_2 = b_2,...$, $a_{k-1} = b_{k-1}$, але $a_k < b_k$. У такому разі говорять, що перестановка $a_1a_2...a_n$ менша від перестановки $b_1b_2...b_n$, або перестановка $b_1b_2...b_n$ більша від перестановки $a_1a_2...a_n$. Якщо замість чисел 1, 2, ..., n узяти букви a, b, ..., z з природним порядком a < b < ... < z, то лексикографічний порядок означає стандартну послідовність, у якій слова довжиною n наведено в словнику.

Перестановку $b_1b_2...b_n$ називають *лексикографічно наступною* за $a_1a_2...a_n$, якщо не існує такої перестановки $c_1c_2...c_n$, що $a_1a_2...a_n < c_1c_2...c_n$ і $c_1c_2...c_n < b_1b_2...b_n$.

Приклад. Перестановка $23\underline{4}15$ множини $\{1, 2, 3, 4, 5\}$ менша від перестановки $23\underline{5}14$.

Алгоритм генерування перестановок множини $A' = \{1, 2, ..., n\}$ грунтується на процедурі, що будує перестановку, лексикографічно наступну за даною перестановкою $a_1a_2...a_n$. Покажемо, як це можна зробити. Спочатку припустимо, що $a_{n-1} < a_n$. Поміняємо місцями a_{n-1} й a_n і одержимо більшу перестановку. Вона лексикографічно наступна, бо ніяка інша перестановка не є більшою за дану перестановку й меншою за отриману.

Приклад. Нехай 2341<u>56</u> – задана перестановка, тоді перестановка 2341<u>65</u> – лексикографічно наступна.

Тепер розглянемо випадок $a_{n-1} > a_n$. Проглянемо останні три члени перестановки. Якщо $a_{n-2} < a_{n-1}$, то останні три члени можна переставити для отримання наступної перестановки. Поставимо менше з двох чисел a_{n-1} та a_n , яке, однак, більше, ніж a_{n-2} , на позицію n-2. Потім розмістимо число, що залишилось, та a_{n-2} на останніх двох позиціях у висхідному порядку.

Приклад. Нехай 234<u>165</u> – задана перестановка, тоді перестановка 234<u>516</u> – лексикографічно наступна.

Узагальнивши ці міркування, одержимо такий алгоритм.

Алгоритм побудови лексикографічно наступної перестановки за перестановкою $a_1 a_2 \dots a_n$

- Крок 1. Знайти такі числа a_j та a_{j+1} такі, що $(a_j < a_{j+1}) \land (a_{j+1} > a_{j+2} > ... > a_n)$. Це означає, що потрібно знайти в перестановці першу справа пару сусідніх чисел, у якій число, що ліворуч, менше від числа, що праворуч.
- Крок 2. Записати в j-ту позицію таке найменше з чисел $a_{j+1}, a_{j+2}, ..., a_n$, яке водночас більше, ніж a_j .
- Крок 3. Записати у висхідному порядку число a_j і решту із чисел $a_{j+1}, a_{j+2}, ..., a_n$ у позиції j+1, ..., n.

Приклад. Побудуємо перестановку, наступну в лексикографічному порядку за 362541. Перша справа пара чисел, у якій число, що ліворуч, менше від числа, що праворуч, — це 25. Отже, розглянемо послідовність чисел 541. Серед них найменше число, більше від 2, це 4. Тепер 4 запишемо на місце числа 2, а решту чисел 251 розмістимо на останніх трьох позиціях у висхідному порядку: 364125.

Щоб побудувати всі n! перестановок множини $A' = \{1, 2, ..., n\}$, починаємо з лексикографічно найменшої перестановки 123...n і послідовно n! - 1 разів виконуємо алгоритм побудови лексикографічно наступної перестановки.

ALGORITHM 1 Generating the Next Permutation in Lexicographic Order.

```
procedure next permutation(a_1a_2...a_n: permutation of
            \{1, 2, ..., n\} not equal to n n - 1 ... 2 1
j := n - 1
while a_{i} > a_{i+1}
   j := j - 1
{j is the largest subscript with a_j < a_{j+1}}
k := n
while a_i > a_k
    k := k - 1
\{a_k \text{ is the smallest integer greater than } a_i \text{ to the right of } a_i\}
interchange a_i and a_k
r := n
s := j + 1
while r > s
    interchange a_r and a_s
    r := r - 1
    s := s + 1
{this puts the tail end of the permutation after jth position in increasing order}
\{a_1a_2...a_n \text{ is now the next permutation}\}
```

Генерування сполучень

Як і раніше, розглянемо множину $A' = \{1, 2, ..., n\}$. Сполучення без повторень з n елементів по r — це r-елементна підмножина множини A'. Позаяк порядок запису елементів множини неістотний, то домовимося записувати елементи в кожному сполученні у висхідному порядку: наприклад, $\{3, 5, 1\}$ записуватимемо як $\{1, 3, 5\}$. Отже, сполучення $\{a_1, a_2, ..., a_r\}$ розглядатимемо як рядок чисел $a_1a_2...a_r$, причому $a_1 < a_2 < ... < a_r$.

Як і для перестановок, покажемо, як за даним сполученням знайти наступне відповідно до лексикографічного порядку. Припустимо, що n=5 та r=3. Якщо можна збільшити останню цифру, то так і будемо робити. Тому, маючи рядок 123, його можна замінити на 124. Якщо ж маємо 125, останнє число збільшити не можна. Тому переходимо до наступного (справа) числа й дивимось, чи можна його збільшити. У даному разі це можна зробити: потрібно замінити 2 на 3. Проте ми прагнемо побудувати найменший рядок із тих, котрі більші 125. Тому збільшуємо останнє число (тобто 3) на 1 і записуємо результат у наступну позицію. Отже, перші два числа — це 1 і 3, тому наступний рядок — 134. Припустимо, що є рядок 145. Останнє й передостаннє числа збільшити не можна. Проте перше число збільшити можна, тому 1 збільшуємо до 2. Щоб зробити рядок мінімальним, як останні числа візьмемо 3 та 4, унаслідок чого отримаємо рядок 234.

Узагальнимо ці міркування. Значення останнього числа в рядку — найбільше можливе, якщо воно дорівнює n=n-r+r. Якщо останнє число — найбільше можливе, то передостаннє — найбільше можливе, якщо воно дорівнює n-r+(r-1) або n-r+i, де i=r-1 є позицією цього числа. Загалом, значення кожного i-го числа найбільше можливе, якщо числа праворуч від нього — найбільші можливі, і це значення дорівнює n-r+i. Отже, проглядаємо рядок справа наліво й визначаємо, чи дорівнює значення i-го елемента n-r+i (це максимальне значення, яке може бути в i-й позиції). Перше значення, яке не задовольняє цю умову, можна збільшити. Нехай, наприклад, це значення дорівнює m і займає j-ту позицію. Збільшуємо m на 1, а значення кожного елемента, що стоїть після j-го, дорівнює значенню попереднього елемента плюс 1. Тепер можемо сформулювати потрібний алгоритм.

Алгоритм побудови лексикографічно наступного сполучення.

Крок 1. Знайти в рядку перший справа елемент a_i такий, що $a_i \neq n-r+i$.

Крок 2. Для знайденого елемента виконати присвоювання $a_i := a_i + 1$.

Крок 3. Для j=i+1, i+2, ..., r виконати $a_j:=a_i+j-i$ (або, що те саме, $a_j:=a_{j-1}+1$).

Приклад. Нехай множина $A' = \{1, 2, 3, 4, 5, 6\}$. Знайдемо сполучення, наступне за $\{1, 2, 5, 6\}$ у лексикографічному порядку.

Задане сполучення подамо рядком 1256. Маємо n = 6, r = 4. Перший справа з таких елементів, що $a_i \neq 6-4+i$, — це елемент $a_2=2$. Для обчислення наступного більшого сполучення збільшуємо a_2 на 1 й одержуємо $a_2=3$. Тепер $a_3=3+\underline{1}=4$ та $a_4=3+\underline{2}=5$ (легко побачити, що за алгоритмом підкреслений доданок щоразу збільшується на 1). Отже, наступне в лексикографічному порядку сполучення — те, що зображене рядком 1345, тобто $\{1, 3, 4, 5\}$. Запишемо цей алгоритм у вигляді псевдокоду.

ALGORITHM 2 Generating the Next r-Combination in Lexicographic Order

```
procedure next r-combination(\{a_1, a_2, ..., a_n\}: proper subset of \{1, 2, ..., n\} not equal to \{n - r + 1, ..., n\} with a_1 < a_2 < ... < a_r) i := r

while a_i = n - r + i
i := i - 1
a_i = a_i + 1

for j := i + 1 to r
a_j = a_j + j - i
\{\{a_1, a_2, ..., a_n\} \text{ is now the next combination}\}
```

Коротко зупинимось на питанні генерування всіх розміщень з n елементів по r. Знову розглядатимемо цю задачу лише для множини $A' = \{1, 2, ..., n\}$. Один із можливих способів її розв'язання такий. Використаємо алгоритм генерування лексикографічно наступного сполучення для побудови r-елементних сполучень n-елементної множини A'. Після кожної стадії, коли побудовано чергове r-сполучення, застосуємо r!-1 разів алгоритм побудови перестановки за умови n=r для побудови всіх перестановок елементів цього сполучення як r-елементної множини.

2.10. Генерування розбиттів множини

Опишемо алгоритм генерування всіх розбиттів множини. Ідею цього алгоритму найпростіше пояснити, сформулювавши його в рекурентній формі. Зазначимо спочатку, що кожне розбиття S множини $\{1, 2, ..., n\}$ однозначно задає розбиття S_{n-1} множини $\{1, 2, ..., n-1\}$, одержане з S після вилучення елемента n із відповідної підмножини (і вилучення порожньої підмножини, якщо елемент n утворював одноелементну підмножину). Навпаки, якщо дано розбиття $P = \{A_1, A_2, ..., A_k\}$ множини $\{1, 2, ..., n-1\}$, то легко знайти всі такі розбиття S_n множини $\{1, 2, ..., n-1, n\}$, що $S_{n-1} = P$. Це такі розбиття:

$$\{A_{1}, A_{2}, ..., A_{k}, \{n\}\}\$$
 $\{A_{1} \cup \{n\}, A_{2}, ..., A_{k}\}\$
 $\{A_{1}, A_{2} \cup \{n\}, ..., A_{k}\}\$
 $\{A_{1}, A_{2}, ..., A_{k} \cup \{n\}\}.$
 $\{A_{1}, A_{2}, ..., A_{k} \cup \{n\}\}.$

Наведені міркування підказують простий рекурентний спосіб генерування всіх розбиттів. Якщо дано список L_{n-1} усіх розбиттів множини $\{1, 2, ..., n-1\}$, то список L_n усіх розбиттів множини $\{1, 2, ..., n-1, n\}$ утворюють заміною кожного розбиття P в списку L_{n-1} на відповідну йому послідовність (1).

Приклад. На рисунку показано формування списку всіх розбиттів множини $\{1, 2, 3\}$. Розбиттів цієї множини всього $\Phi(3)=5$, де $\Phi(n)$ – число Белла.

Дискретна ймовірність

Експеримент — це процедура, яка як вихід має один із множини можливих результатів. Цю множину можливих результатів називатимемо *простором можливих результатів* експерименту. Подія — це підмножина простору можливих результатів.

Нехай S — скінченний непорожній простір **рівноможливих** результатів, E — подія, тобто підмножина S, тоді ймовірність E визначають як $p(E) = \frac{|E|}{|S|}$.

Зазначимо, що $0 \le p(E) \le 1$.

Приклад. Ви витягаєте три карти з добре перетасованої колоди 52 карт. Яка ймовірність витягти короля, королеву і валета саме у такому порядку?

Маємо:
$$|E| = 4 \cdot 4 \cdot 4 = 4^3 = 64$$
, $|S| = A_{52}^3 = \frac{52!}{49!} = 50 \cdot 51 \cdot 52 = 132600$, $p(E) = \frac{|E|}{|S|} = \frac{64}{132600} = 0,000482655$.

Приклад. Роздачею n карт називають вибірку з колоди 52 карт без повернень, порядок вибору карт неістотний.

- (a) Скільки існує роздач по три карти? Оскільки порядок вибору карт неістотний, то, очевидно, $C_{52}^3 = \frac{52!}{3! \cdot 49!} = \frac{50 \cdot 51 \cdot 52}{2 \cdot 3} = 50 \cdot 17 \cdot 26 = 22100$.
- (б) Скільки існує роздач по три карти, якщо кожна карта фігурна (валет, королева або король)? Усього є 12 фігурних карт, отже $C_{12}^3 = \frac{12!}{3! \cdot 9!} = \frac{10 \cdot 11 \cdot 12}{2 \cdot 3} = 5 \cdot 11 \cdot 4 = 220.$
 - (в) Яка ймовірність, що в роздачі з трьох карт усі карти будуть фігурними?
- 3 (a) та (б) випливає, відповідно, |S| = 22100, |E| = 220. Отже,

$$p(E) = \frac{|E|}{|S|} = \frac{220}{22100} = 0,0099548.$$

Приклад. Яка ймовірність, що в роздачі п'яти карт усі карти мають різні значення? Колода містить 52 карти.

У колоді з 52 карт є 13 різних значень (і кожне значення має 4 варіанти — чотири масті). П'ять різних значень із 13 можна отримати C_{13}^5 способами, і кожне значення —

у чотирьох варіантах, тобто $|E| = 4^5 \cdot C_{13}^5$. Усього є C_{52}^5 способів отримати роздачу з п'яти карт, тобто $|S| = C_{52}^5$. Отже, $p(E) = \frac{|E|}{|S|} = \frac{4^5 \cdot C_{13}^5}{C_{52}^5}$.

Приклад. Роздачу п'яти карт називають *full house*, якщо вона містить 3 карти одного значення і 2 карти іншого значення (скажімо, 3 шістки та 2 королеви).

(a) Скількома способами можна вибрати *масть карт*, щоб вони утворили *full house* (скажімо, 3 шістки та 2 королеви)?

Оскільки є чотири масті, а вибрати потрібно три шістки та дві королеви, то C_4^3 способів вибрати масть шісток і C_4^2 способів вибрати масть королев. За правилом добутку $C_4^3 \cdot C_4^2 = 4 \cdot 6 = 24$ способи вибрати *масть карт*, щоб вони утворили *full house*.

(б) Скількома способами можна вибрати *значення карт*, щоб вони утворили *full house*?

Якщо колода містить 52 карти, то *значень* буде 13; *full house* утворюють 2 значення. Отже, є $C_{13}^2 = 78$ способів вибрати *значення карт*, щоб вони утворили *full house*.

- (в) Скільки роздач п'яти карт утворюють *full house*? Будь-які три карти одного значення можна вибрати C_4^3 способами, а будь-які дві карти іншого значення можна вибрати C_4^2 способами. Скількома способами можна утворити пари значень? У разі, коли колода містить 52 карти, таких способів, очевидно, A_{13}^2 . Справді, значень 13, а порядок істотний, бо одне й те саме значення може стосуватися як двох, так і трьох карт (скажімо, 3 шістки + 2 королеви та 2 шістки + 3 королеви). Отже, за правилом добутку кількість роздач п'яти карт, які утворюють *full house*, дорівнює $C_4^3 \cdot C_4^2 \cdot A_{13}^2 = 4 \cdot 6 \cdot 156 = 3744$.
 - (г) Знайти ймовірність отримання full house при роздачі п'яти карт.

У п. (в) ми обчислили $|E| = C_4^3 \cdot C_4^2 \cdot A_{13}^2 = 3744$. Очевидно, що простір можливих результатів спроб має потужність $|S| = C_{52}^5 = 2598960$. Отже, ймовірність отримання full house при роздачі п'яти карт складає $p(E) = \frac{|E|}{|S|} = \frac{3744}{2598960} = 0,001440576$.

Приклад. Кидаємо сім стандартних гральних кісток. Яка ймовірність випадання усіх шести номерів? Можлива ситуація: $1\ 2\ 3\ 4\ 5\ 6\ 4$. Способів об'єднати 2 кістки з $7\ \epsilon$ C_7^2 , а варіантів вибору всіх 6 номерів ϵ , очевидно, 6!. Отже,

$$|E| = 6! \cdot C_7^2 = 6! \cdot \frac{7!}{2! \cdot 5!} = 3 \cdot 7!, |S| = 6^7, p(E) = \frac{|E|}{|S|} = \frac{3 \cdot 7!}{6^7} = \frac{35}{648} \approx 0,054012346.$$

Ймовірність протилежної події та об'єднання подій

Ми можемо використати певну техніку обчислень для знаходження ймовірності подій, отриманих з інших подій.

Теорема 1. Нехай E — подія в просторі результатів спроб S. Тоді ймовірність протилежної події $\overline{E} = S - E$ дорівнює $p(\overline{E}) = 1 - p(E)$.

Доведення. Для знаходження ймовірності події $\overline{E} = S - E$ зазначимо, що $|\overline{E}| = |S| - |E|$. Отже, $p(\overline{E}) = \frac{|S| - |E|}{|S|} = 1 - \frac{|E|}{|S|} = 1 - p(E)$.

Ця теорема ε основою альтернативної стратегії обчислення ймовірності, коли прямий підхід не працю ε добре.

Приклад. Генерована послідовність з 10 бітів. Яка ймовірність, що принаймні один біт ϵ 0?

Нехай E — подія, яка полягає в тому, що принаймні один з 10 бітів є 0. Тоді подія \overline{E} полягає в тому, що всі біти є 1. Простір S рівноможливих результатів — множина всіх рядків бітів довжиною 10. Отже, $p(E) = 1 - p(\overline{E}) = 1 - \frac{|\overline{E}|}{|S|} = 1 - \frac{1}{2^{10}} = 1 - \frac{1}{1024} = \frac{1023}{1024}$.

Можна також знайти ймовірність об'єднання двох подій.

Теорема 2. Нехай E_1 і E_2 – події в просторі результатів спроб S . Тоді $p(E_1 \cup E_2) = p(E_1) + p(E_2) - p(E_1 \cap E_2)$.

Доведення. Потужність об'єднання двох множин визначають за формулою $|E_1 \cup E_2| = |E_1| + |E_2| - |E_1 \cap E_2|$.

Отже,

$$p(E_1 \cup E_2) = \frac{|E_1 \cup E_2|}{|S|} = \frac{|E_1| + |E_2| - |E_1 \cap E_2|}{|S|} = \frac{|E_1|}{|S|} + \frac{|E_2|}{|S|} - \frac{|E_1 \cap E_2|}{|S|} = \frac{|E_1|}{|S|} + \frac{|E_2|}{|S|} +$$

$$= p(E_1) + p(E_2) - p(E_1 \cap E_2).$$

Приклад. Знайти ймовірність, що випадково вибране додатне ціле, що не перевищує 100, ділиться на 2 або 5.

Нехай E_1 — подія, яка полягає в тому, що випадково вибране число ділиться на 2, а E_2 — подія, що випадково вибране число ділиться на 5. Тоді $E_1 \cup E_2$ — подія, що вибране число ділиться на 2 або 5. Також $E_1 \cap E_2$ — подія, що вибране число ділиться на 2 і 5. Тому що $|E_1|=50$, $|E_2|=20$ і $|E_1 \cap E_2|=10$, а |S|=100, маємо

$$p(E_1 \cup E_2) = p(E_1) + p(E_2) - p(E_1 \cap E_2) = \frac{50}{100} + \frac{20}{100} - \frac{10}{100} = \frac{3}{5}.$$

Приклад. Урна містить 5 червоних, 3 синіх і 3 зелених кулі. Навмання виймається 4 кулі. Яка ймовірність вийняти такі кулі?

(a) всі чотири кулі одного кольору. Цю подію позначимо E_1 .

$$|E_1| = C_5^4 \cdot C_3^0 \cdot C_3^0 = 5$$
, $|S| = C_{11}^4 = 330$. Отже, $p(E_1) = \frac{|E_1|}{|S|} = \frac{5}{330} = \frac{1}{66}$.

(б) Серед вийнятих куль ϵ , щонайменше, одна куля кожного кольору. Цю подію позначимо E_2 .

$$|E_2| = C_5^2 \cdot C_3^1 \cdot C_3^1 + C_5^1 \cdot C_3^2 \cdot C_3^1 + C_5^1 \cdot C_3^1 \cdot C_3^2 = 90 + 45 + 45 = 180,$$

 $|S| = C_{11}^4 = 330.$ Отже, $p(E_2) = \frac{|E_2|}{|S|} = \frac{180}{330} = \frac{6}{11}.$

(в) Усі вийняті кулі точно двох кольорів. Цю подію позначимо E. Тоді подія $\overline{E} = E_1 \cup E_2$;

$$p(\overline{E}) = p(E_1 \cup E_2) = p(E_1) + p(E_2) - p(E_1 \cap E_2) = \frac{1}{66} + \frac{6}{11} - 0 = \frac{37}{66},$$
TOMY $p(E) = 1 - p(\overline{E}) = 1 - \frac{37}{66} = \frac{29}{66}.$

© Щербина Ю.М., 2021