

两指平行夹爪用户使用手册 V1.0

睿尔曼智能科技(北京)有限公司 2024年8月

安全提示

非常感谢您购买睿尔曼智能科技(北京)有限公司的产品,在打开包装后请 首先依据设备配置清单对配件进行检查,若发现配件有损坏或缺少的情况,请尽快与您的经销商或客服联系解决。

- 产品使用前,请务必仔细阅读产品相关说明。
- 少 为了保证您和设备的使用安全,设备连接电源前,请务必确认**电源电压** 是否准确。
- 使用时请严格按照设备操作说明或在专业老师指导下进行,不得违规违章操作。
 - ☑ 请勿自行拆装机壳和改造产品内侧,否则会引起故障!
 - ☞ 安装和拆卸外侧控制装置时,请先关闭电源,防止发生电击事故或损产品!
 - ② 设备使用完毕后请断开电源。
- 本产品含有运动部件,使用时请不要佩戴首饰,长发需盘起,防止缠绕 发生危险。
 - 设备在使用过程中出现异常情况,请及时联系专业人员处理。
- 由于实际工作环境条件(包括温度, 湿度, 供电电压等)超出产品技术指标而造成的产品损坏, 我司将有偿保修, 但由此造成的其他任何损害, 我司概不负责!

版本记录

本手册内容受版权保护,版权归睿尔曼智能科技(北京)有限公司 所有,并保留一切权利。未经许可,不得以纸质、电子或其它任何方式 对文档进行复制和传播。

文件修订记录:

版本号	版本号 时间	
V1. 0 2023-8-20		拟制

- ♦ 使用前请仔细阅读本使用手册,以确保正确使用,避免潜在危险事故的发生
- → 产品外观请以实物为准
- ◇ 本公司保留说明书解释权

目录

1	产品概述	6
	1.1 产品简介	6
	1.2 产品构成	6
	1.3 产品参数	7
2	产品安装	8
	2.1 产品清单	8
	2.2 结构安装	9
	2.3 电气安装	9
3	软件调试	10
	3.1 调试软件安装及接线	10
	3.2 RS485 默认配置	11
	3.3 上位机软件说明	11
	3.3.1 上位机的具体功能描述如下	13
4	通讯协议	15
	4.1 Modbus RTU 通讯协议	15
	4. 1. 1 线圈寄存器地址说明	15
	4. 1. 2 保持寄存器地址说明	15
	4. 2 RS485 串口协议	16
	4. 2. 1 通讯协议概要	16
	4. 2. 2 指令帧	17
	4. 2. 3 指令类型	17

4. 2. 3. 1 保存参数	18
4. 2. 3. 2 系统恢复默认参数	19
4. 2. 3. 3 设置波特率	20
4. 2. 3. 4 设置夹爪 ID	20
4. 2. 3. 5 查询夹爪 ID	20
4.2.3.6 以设置的速度和力控夹取	21
4. 2. 3. 7 以设置的速度松开	21
4. 2. 3. 8 设置夹爪开口度限位	22
4. 2. 3. 9 查询夹爪开口度限位	23
4. 2. 3. 10 急停	23
4. 2. 3. 11 清除错误	24
4. 2. 3. 12 以设置的速度和力控持续夹	取24
4. 2. 3. 13 设置控制力	25
4. 2. 3. 14 查询控制力	25
4. 2. 3. 15 设置 10 模式	26
4. 2. 3. 16 设置 10 输出电平	27
4. 2. 3. 17 读取 10 输出电平	27
4. 2. 3. 18 读取夹爪状态	28
4. 2. 3. 19 读取夹爪系统参数	29
4. 2. 3. 20 查询夹爪电机状态	29
4. 2. 3. 21 设置开口度	30
4. 2. 3. 22 查询当前开口度	31
4. 2. 3. 23 设置 10 控制使能	31
4. 2. 3. 24 设置零位	32
4. 2. 3. 25 以设置的速度、力控、开口	度夹取32
4. 2. 3. 26 设置 10 控制功能	33
4.3 1/0 协议	33
5 更多资料	33

1 产品概述

1.1 产品简介

感谢您购买和使用睿尔曼研发的两指平行夹爪(以下简称夹爪)。

睿尔曼两指平行夹爪旨在为用户提供易用优质的操作能力。夹爪以自研的 WHJ03 一体化关节为核心部件开发而成,具备高动态响应、高负载、小体积、通用性强、安装方便、维护简单等特点。根据任务需要,夹爪可以灵活方便的部署在复合机器人、机械臂末端、PLC 产线上,从而解决工业、商服、家庭、教育等场景的抓取、分拣、搬运等需求。机器人采用标准的 RS485 通信接口,支持串口协议和 Modbus RTU 协议,简单高效的接口和控制指令可以使用户快速实现对夹爪的操控。

睿尔曼还为夹爪配备了上位机软件,通过设置不同加持力矩、速度、位置等参数,满足对不同质地形状目标的操作需求;具体特点如下:

- ◆ 高动态响应: 开口尺寸为 65mm, 单程开合时间达到 0.4s;
- ◆ 负载密度大: 自重只有 0.5kg 左右, 额定负载达到 4kg, 最大负载 高达 5kg;
- ◆ 通用性强: 夹爪配备 6 芯航插和 6 芯 PH2. 0 端子两种 RS485 接口, 支持串口协议、Modbus RTU 协议、I/0 控制:
- ◇ 易用性强:多种控制模式,容易操控,适合多种场景;
- ◇ 技术方案开源:夹爪的技术方案全部开源,推动行业发展;

1.2 产品构成

睿尔曼两指夹爪包括 WHJ03 关节、控制板、通信接口、传动机构、夹指等部分组成。具体构成如图所示:

- 1) WHJ03 关节: WHJ03 关节作为两指平行夹爪的核心动力模块,输出力和运动;
- 2) 传动机构: 传动机构是将关节的回转运动转为直线运动的主要机构;
- 3) 控制板: 控制板提供关节控制、RS485 通信、系统供电、扩展接口等功能;
- 4) 通讯接口:通讯接口六芯航插头和六芯 PH2.0 端子,位置如图所示;
- 5) 夹指:夹指分为标准夹指和扩展夹指,是夹爪执行操作功能的直接结构。

1.3 产品参数

类别	参数
产品型号	RMG24
整机尺寸	112 (L) *60 (W) *137 (H) mm
行程	65mm
指高	50mm
本体重量	550g
额定/最大负载	4kg/5kg
负载自重比	10 左右
夹持力	最大 127N
打开/闭合时间	0. 4s
位置重复精度	±0.05mm
指示灯	蓝色系统启动中,常绿显示功能正常,红色显示功能故障
使用环境	0~50°C, 85% RH 以下
指尖可换	扩展夹指:行程为 35-100mm,夹指长度为 60mm,螺纹固定
材料	铝合金外壳为主、ABS 为辅

额定电压	24V
额定/最大电流	1. 9/5. 7A
额定/最大功率	45. 6/136. 8W
通信接口	6 芯航插、6 芯端子
通信链路	R\$485
通信协议	RS485 串口协议、Modus-RTU

2 产品安装

2.1 产品清单

序号	名称	示意图	数量	配备
1	两指平行夹爪		1	标配
2	扩展指	2	选配	
3	航空插头线束 6 芯航插+10cm 线 束		1	标配
4	6 芯 PH2.0 端子线 束+10cm 线长		1	标配
5	电源适配器	Resident	1	选配
6	沉头十字螺钉 M4*6		6	标配
7	使用手册		1	标配
8	合格证		1	标配

2.2 结构安装

2.3 电气安装

夹爪在夹爪主体下方配备六芯航插头,在夹爪安装座内嵌六芯 PH2.0 端子,通过线束与机械臂末端、上位机等连接,具体电气引脚的线序如下:

4	黑	D12/D02	I/0 复用接口 2
5	蓝	电源 GND	电源负极
6	绿	电源输入 24V	电源正极

注意:

- 1. 使用前请注意线芯数量,根据上方表格中的线芯定义接线。
- 2. 电源连接须使用 24v 电源供电,且电源正负极不能反接,否则会损坏产品。
- 3. 航空插头和 PH2.0 端子切不可扭转和猛拉, 否则可能导致线路短路而损坏产品。

3 软件调试

夹爪通过串口协议和标准的 Modbus-RTU 进行控制。为了便于用户更好的了解、应用、控制夹爪,睿尔曼开发了两指平行夹爪的上位机调试软件。通过调试软件,用户可以实现以下功能:

- 1)参数设置:设置夹爪波特率、ID 等参数,设置夹爪的开合速度、位置、力矩等,从而形成不同的模式完成对不同质地形状的目标操作。
 - 2) 夹爪控制:可以直接控制夹爪以特定的参数开合;
 - 3) 夹爪校准:夹爪应用一段时间之后,校准夹爪的位置准确性;
- 4)故障排除:上位机可查看夹爪的各类数据和状态,方便用户分析夹爪的故障原因,并通过故障清除来使夹爪恢复正常工作。

3.1 调试软件安装及接线

将夹爪连接到上位及软件,需要通过 RS485 接口对夹爪进行控制,具体连线方式为:夹爪的蓝绿 2 根线分别接 24V 和 GND,夹爪的黄白 2 根线接 RS485_A、RS485_B(详见 2.3 节的电气安装的线序说明),485 模块要和夹爪电源共地;由于上位机部署在 PC 端,接口多为 USB,因此用户需要配备 USB 转 485 模块,将夹爪的黄白 2 根线接在 USB 转 485 模块上,进而实现 PC 端的上位机通过 USB

控制夹爪的目标。如下图所示:

线序号	颜色	注释	接线
1	黄	RS485_A	接 T/R+
2	白	RS485_B	接 T/R-
3	红	DI1/D01	/
4	黑	D12/D02	/
5	蓝	电源 GND	GND
6	绿	电源输入 24V	24V

3.2 RS485 默认配置

夹爪夹爪 ID: 1(出厂时默认)

波特率: 115200

起始位: 1

数据位:8

停止位: 1

校验位: 无校验位

3.3 上位机软件说明

上位及软件为绿色免安装版,用户将文件夹拷贝到电脑上,其中包含 exe 文件和相关的依赖文件。用户可以直接运行 exe 文件来启动程序,免安装,免登录,登录后的上位机界面如下;点击主界面右上角 "X",即完成软件退出。

3.3.1 上位机的具体功能描述如下

① 连接/断开:

夹爪通过 RS485 转 USB 连接到主控单元,在主控单元打开上位机软件,首次连接输入设备出厂默认 ID、串口号、波特率 115200,点击"打开"即会显示连接成功,点击"关闭"即会断开连接。

② 参数设置:

可以设置波特率,设备 ID,等参数。参数设置完成后,在⑤状态监测区域点击"读取夹爪参数",即可显示设备所有参数。

③ 模式控制:

在模式控制中可以设置夹爪的限位、力矩、速度、位置等, 具体如下:

最大/最小限位:上位机设置夹爪的最大最小的极限位置;参数范围为 0-

1000, 无量纲, 0 对应开口尺寸为 0mm, 1000 对应标准夹指的开口尺寸 65mm;

力矩:上位机设置夹爪以输入的速度和力控阈值去夹取,当夹持力超过设定的力控阈值后,夹爪停止运动;参数范围为 0-1000,无量纲,1000 对应额定负载 4kg;

速度:设置夹爪开合速度值,控制夹爪在工作过程中的开合速度。参数范围为 0-1000, 无量纲,其中 1000 对应达成开合时间为 0.4s;

开口度:设置夹爪的开口尺寸,夹爪接受到这条指令后,如果夹爪当前开口尺寸与设定开口尺寸不同,则夹爪以设定速度运动到开口尺寸,达到目标开口尺寸后停止运动;参数范围为 0-1000, 无量纲,其中 1000 对应开口位置为标准夹指的 65mm。位置参数应小于最大限位。

上述参数将在状态监测区显示。

打开:夹爪以设置的固定速度(最大速度)将夹爪松开到最大开口位置。

闭合:夹爪以设置的固定速度(最大速度)将夹爪闭合到最小开口位置。

力矩夹取:夹爪以设置的速度和力矩去夹取,当夹持力超过设定的力矩值后,夹爪停止运动;当夹爪停止运动后,如果检测到夹持力小于力矩值时,夹爪会继续夹取直到夹持力超过设定的力矩值。

透传使能:是为睿尔曼的遥操作的高动态响应功能开发,打开"透传使能"功能后,遥操作的主动爪将以较高的速度响应从动爪的控制,从而便于用户进行低延迟的遥操作和采集数据。

④ 协议/IO 控制:

1) ○ 接口配置:用于配置 2 个 ○ 接口的输入输出参数。具体操作如下:

选择接口 DIO/1、DIO/2 后,然后选择"输入模式"、"输出模式",点击"模式设置"。对于输入模式,不需要设置;对于输出模式,则可以设置"输出高电平"、"输出低电平",设置完成后,点击"输出设置",则完成该接口的输出参数的配置。先后完成两个接口的设置后,点击"读取状态",会显示两个IO 接口的状态。IO 控制可以选择开启、关闭,默认为输入模式。

2) 关节控制:夹爪在工作一段时间之后,通过关节控制来手动实现零位设置。具体操作如下:

点击夹爪的"闭合"按钮,夹指闭合到最小位置,根据实际情况,在"运动角度"框中输入需要关节运动的角度,点击"运动"从而手动控制夹指运动,然后观察⑤状态监测区的实时电流曲线的变化,当夹指完全闭合,且实时电流曲线显示为空载电流时,点击"零位设置",即完成了零位校准功能,校准完成需重启设备。

3) MB RTU 指令控制:用于出厂的协议指令功能的调试测试。

⑤ 状态监测区:

状态监测区通过"读取夹爪参数"可以显示设置的设备 ID、波特率、最大/最小限位、夹持速度、夹持力度等参数,显示软件的版本号。

通过"读取关节状态",可以显示关节的使能、运行状态、角度、速度、电压、电流、温度、力度、开口度、错误码等,并可以执行"清除错误"操作。

⑥ 固件升级:

点击"升级文件",找到升级文件所在的位置,选择要升级的模块: "控制板"、"关节",点击"开始升级"后,进度条会显示升级进度。

4 通讯协议

设备同时支持 485 串口通讯协议和 Modbus-RTU 标准协议 4.1 Modus-RTU 协议

4.1 Modbus RTU 通讯协议

4.1.1线圈寄存器地址说明

寄存器地址	范围	功能描述	属性	状态
0x0001	0/1	DI01 模式 0:输入模式 1:输出模式	读写	立即生效
0x0002	0/1	DI01 状态 0: 低电平 1: 高电平	读写	立即生效
0x0003	0/1	DI02 模式 0:输入模式 1:输出模式	读写	立即生效
0x0004	0x0004 0/1 0: 4 1: 7		读写	立即生效

4.1.2 保持寄存器地址说明

寄存器地址	范围	功能描述	属性	状态
0×0001	0/1	1: 保存参数 0: 无	读写	立即生效
0×0002	0/1	1: 参数恢复默认 0: 无	读写	立即生效
0x0003	1-254	夹爪设备地址(ID 号)	读写	保存参数后 重启生效
0x0004	0–5	设置串口波特率 0: 9600 1: 19200 2: 19200 3: 57600 4: 115200 5: 460800	读写	保存参数后重启生效
0x0005	0/1	0: 单次夹取 (开口度到位或夹到物体后停止)	读写	立即生效

		1:持续夹取(夹到物体停止运动,如果受力下降继续夹持)		
0x0006		1:松开(松开到最大开口度)		
0×0007	0/1	1: 急停 0: 无	读写	立即生效
0x0008	0/1	1: 清除错误 0: 无	读写	立即生效, 需重 启设备
0x0009	0-1000	设置夹爪开口度,无单位量纲	读写	立即生效
0x000A	0-1000	设置夹取速度, 无单位量纲	读写	立即生效
0x000B	0-1000	设置夹取力度,无单位量纲	读写	立即生效
0x000C	0-1000	设置最大开口度,无单位量纲	读写	立即生效
0x000D	0-1000	设置最小开口度,无单位量纲	读写	立即生效
0×000E	0-1000	实际力度,无单位量纲	只读	立即生效
0x000F	0-1000	实际位置,无单位量纲	只读	立即生效
0x0010	0-2400	实际电流,单位 mA	只读	立即生效
0x0011	0-24	实际电压,单位 V	只读	立即生效
0x0012	0-100	实际温度,单位摄氏度	只读	立即生效
0x0013	0-65536	夹爪错误码,见错误码表	只读	立即生效
0x0014	0-255	夹爪状态码 1:最大且空闲 2:最小且空闲 3:停止且空闲 4:正在闭合 5:正在张开	只读	立即生效

4.2 RS485 串口协议

4. 2. 1 通讯协议概要

主控单元与夹爪之间采用问答方式通信,主控单元主动发送指令帧,夹爪 收到指令帧,解析并执行后返回应答帧。

同一控制网络中允许一个主控单元同时连接控制多个夹爪, 因此每个夹爪 需用户分配不同的 ID 号作为唯一标识(夹爪出厂时默认的 ID 号为 1)。主

控单元发出的指令帧数据体中包括有 ID 号信息,只有与之匹配的 ID 号对应的 的夹爪才能完整接收指令帧信息,并在执行指令后返回相应的应答帧。

通信方式为 RS485 异步串口,每个指令帧以字节为最小单位,单一字节由 1 位起始位、8 位数据位以及 1 位停止位组成,无奇偶校验,共 10 比特。

4. 2. 2 指令帧

帧格式:

帧头		ID 号	数据长度	指令号	数据内容	校验和
(2Bytes)		(1Bytes)	(1Bytes)	(1Bytes)	(Len-1Bytes)	(1Bytes)
0xEB 0x90		ID	Len	CMD	Data	

帧头: 连续收到 0xEB 和 0x90 , 表示有指令帧到达。

ID 号:每个夹爪都有一个ID 号。ID 号范围为1~254,转换为十六进制为0x01~0xFE。广播ID号255(0xFF),若控制器发出的ID号为255(0xFF),所有的夹爪均接收指令帧,但都不返回应答信息。

数据体长度:等于待发送的数据段长度,包括指令号与数据,即 Len ", 总指令帧的长度为 "Len +5"。

指令类型: 见 4.2.3 表格

数据内容: 读数据时为空, 写数据时为写入数据内容。

校验和: 校验和 Check_Sum, 定义为校验和之前的除帧头两字节外其余所有数据累加和的低字节。

4.2.3 指令类型

指令类型说明:

类型	值	功能描述	指令长度	响应长度
CMD_MC_PARA_SAVE	0x01	参数保存到内部闪存	6	7
CMD_MC_PARA_DEFAULT	0x02	恢复默认参数	6	7
CMD_MC_PARA_BAUD_SET	0x03	设置波特率	7	7
CMD_MC_PARA_ID_SET	0x04	设置夹爪 ID	7	7
CMD_MC_PARA_ID_GET	0x05	读取夹爪 ID	6	7
CMD_MC_MOVE_CATCH_XG	0x10	以设置的速度和力控 阈值去夹取	10	7
CMD_MC_MOVE_RELEASE	0x11	以设置的速度松开	8	7

CMD_MC_SET_EG_PARA	0x12	设置夹爪开口的最大 /最小值	10	7
CMD_MC_READ_EG_PARA	0x13	读取夹爪开口的最大 /最小值	6	10
CMD_MC_MOVE_STOPHERE	0x16	急停	6	7
CMD_MC_ERROR_CLR	0x17	清除错误	6	7
CMD_MC_MOVE_CATCH2_XG	0x18	以设置的速度和力控 阈值持续夹取	10	7
CMD_MC_SET_FORCE_PARA	0x19	设置力限位	8	7
CMD_MC_GET_FORCE_PARA	0x1A	读取力限位	6	8
CMD_MC_SET_DIO_MODE	0x1B	设置 10 输出模式	8	7
CMD_MC_SET_DIO_OUT	0x1C	设置 10 输出电平	8	7
CMD_MC_GET_DIO_STATE	0x1D	读取 10 输出电平	6	10
CMD_MC_READ_EG_RUNSTATE	0x41	读取夹爪运行状态	6	13
CMD_MC_READ_SYSTEM_PARAM	0x42	读取夹爪系统参数	6	20
CMD_MC_READ_MOTOR_STATE	0x43	读取夹爪电机状态	6	36
CMD_MC_SEEKPOS	0x54	设置夹爪开口度	8	7
CMD_MC_READ_ACTPOS	0x55	读取夹爪开口度	6	8
CMD_MC_REAL_TRANS	0×DA	设置 10 控制使能	7	7
CMD_MC_SET_ZERO	0xDB	设置零位	6	7
CMD_MC_SEEKPOS_SPEED_FORE	0xE5	设置夹爪开口度、速 度、力控阈值	12	7
CMD_MC_SET_KEY_ENABLE	0×DA	设置 10 控制功能	7	7

4. 2. 3. 1 保存参数

功能: 主控单元将当前夹爪使用的开口最大最小值参数保存到内部闪存, 掉电不丢失。

指令帧长度: 6Bytes

指令号: 0x01

数据内容:无

例如:主控单元将 ID 为 1 的夹爪的参数固化,需要发送的指令帧如下表所示

帧· (2 By		ID 号 (1Bytes)	数据长度 (1Bytes)	指令号 (1Bytes)	数据内容 (0 Bytes)	校验和 (1Bytes)
0xEB	0x90	0x01	0x01	0x01	空	0x03

发出的指令帧为 "EB 90 01 01 01 03", 其中 "EB 90"为帧头、"01"为 ID 号、"01"为数据体长度、"01"为 CMD_MC_PARA_SAVE 参数固化指令、"03"为校验和,是指令帧除帧头外其余字节的累加和的低字节((B2+B3+···+B4)&0xFF)。当该指令帧发送给夹爪后,返回的应答帧如下表所示。

帧 (2 By		ID 号 (1Bytes)	数据长度 (1Bytes)	指令号 (1Bytes)	数据内容 (1Bytes)	校验和 (1 Bytes)
0xEE	0x16	0x01	0x02	0x01	0x01	0x05

具体收到的应答帧信息为 "EE 16 01 02 01 01 05", 其中 "EE 16"为应答帧头、"01"为 ID 号、"02"为数据体长度、"01"为指令类型、"01"为指令成功接收标志(若为 55 则表示异常,需要重新发送)、"05"是最后一个字节,为校验和,是除应答帧头外其余数据的累加和的低字节((B2+B3+···+B5)&0xFF)。

4. 2. 3. 2 系统恢复默认参数

功能: 夹爪所有参数恢复默认值

指令帧长度: 6Bytes

指令号: 0x02

数据内容:无

指令帧如下表所示

帧头		ID 号	数据长度	指令号	数据内容	校验和
(2 By	rtes)	(1Bytes)	(1 Bytes)	(1 Bytes)	(O Bytes)	(1 Bytes)
0xEB	0x90	0x01	0x01	0x02	空	0x04

应答帧如下表所示

帧		ID 号	数据长度	指令号	数据内容	校验和
(2 By		(1 Bytes)				
0xEE	0x16	0x01	0x02	0x02	0x01	0x06

4. 2. 3. 3 设置波特率

功能:设置夹爪串口通讯波特率,设置成功后重启生效。

指令帧长度: 7Bytes

指令号: 0x03

数据内容:表示波特率序号,波特率对应如下:

0	1	2	3	4	5
9600	19200	38400	57600	115200	460800

设置 ID 为 1 的夹爪波特率为 115200, 指令帧如下表所示

帧		ID 号	数据长度	指令号	数据内容	校验和
(2 By		(1 Bytes)	(1 Bytes)	(1 Byte)	(1 Bytes)	(1 Bytes)
0xEB	0x90	0x01	0x02	0x03	0x04	0×0A

应答帧如下表所示

帧· (2 By		ID 号 (1 Bytes)	数据长度 (1 Bytes)	指令号 (1 Bytes)	数据内容 (1 Bytes)	校验和 (1 Bytes)
0xEE	0x16	0x01	0x02	0x03	0x01	0x07

4. 2. 3. 4 设置夹爪 ID

功能:设置夹爪设备 ID,设置成功后重启生效。

指令帧长度: 7Bytes

指今号: 0x04

数据内容:新的ID号,取值范围0x01-0xFE,0xFF为广播地址。

设置 ID 为 1 的夹爪新 ID 为 2, 指令帧如下表所示

帧头		ID 号	数据长度	指令号	数据内容	校验和
(2 By	tes)	(1 Bytes)				
0xEB	0x90	0x01	0x02	0x04	0x03	0x09

应答帧如下表所示

帧		ID 号	数据长度	指令号	数据内容	校验和
(2 By		(1 Bytes)				
0xEE	0x16	0x01	0x02	0x04	0x01	0x08

4. 2. 3. 5 查询夹爪 ID

功能:查询夹爪设备 ID

指令帧长度: 6Bytes

指令号: 0x05

数据内容:空

广播查询总线上的设备 ID, 指令帧如下表所示

	头 /tes)	ID 号 (1 Bytes)	数据长度 (1 Bytes)	指令号 (1 Bytes)	数据内容 (0 Bytes)	校验和 (1 Bytes)
0xEB	0x90	0xFF	0x01	0x05	空	0x05

设备 ID 为 1 的应答帧如下表所示

	帧头 (2 Bytes) 0xEE 0x16		ID 号 (1 Bytes)	数据长度 (1 Bytes)	指令号 (1 Bytes)	数据内容 (1 Bytes)	校验和 (1 Bytes)
			0x01	0x02	0x05	0x01	0x09

4.2.3.6以设置的速度和力控夹取

功能:控制夹爪以设置的速度和力控制夹取

指令帧长度: 10Bytes

指令号: 0x10

数据内容: 0x32 0x00 为速度(50),速度取值范围 0-1000,无单位量纲; 0x64 0x00 为力控阈值,取值范围 50-1000,无单位量纲,都按照低字节先高字节后的顺序。

指令帧如下表所示

帧头		ID 号	数据长度	指令号	数据内容		校验和
(2 Bytes)		(1 Bytes)	(1 Bytes)	(1 Bytes)	(4 Bytes)		(1 Bytes)
0xEB	0x90	0x01	0x05	0x10	速度 (50) 0x32 0x00	力度 (100) 0x64 0x00	0×AC

设备 ID 为 1 的应答帧如下表所示

帧: (2 By		ID 号 (1 Bytes)	数据长度 (1 Bytes)	指令号 (1 Bytes)	数据内容 (1 Bytes)	校验和 (1 Bytes)
0xEE	0x16	0x01	0x02	0x10	0x01	0x14

4.2.3.7 以设置的速度松开

功能:控制夹爪以设置的速度松开夹爪

指令帧长度: 8Bytes

指令号: 0x11

数据内容: 0x32 0x00 为速度(50),速度取值范围 0-1000,无单位量纲;按照低字节先高字节后的顺序。

指令帧如下表所示

帧头		ID 号	数据长度	指令号	数据内容	校验和
(2 Bytes)		(1 Bytes)	(1 Bytes)	(1 Bytes)	(2 Bytes)	(1 Bytes)
0xEB	0x90	0x01	0x03	0x11	速度 (50) 0x32 0x00	

设备 ID 为 1 的应答帧如下表所示

	帧头 (2 Bytes) 0xEE 0x16		ID 号 (1 Bytes)	数据长度 (1 Bytes)	指令号 (1 Bytes)	数据内容 (1 Bytes)	校验和 (1 Bytes)
			0x01	0x02	0x11	0x01	0x15

4. 2. 3. 8 设置夹爪开口度限位

功能:设置夹爪开口度最大最小限位

指令帧长度: 8Bytes

指令号: 0x12

数据内容: 0x41 0x00 为开口最大值,数据范围 0-1000 对应夹爪开口度 0-65mm, 无单位量纲, 0x00 0x00 为开口最小值,数据范围 0-100 对应夹爪开口度 0-65mm。

指令帧如下表所示

帧头		ID 号	数据长度	指令号	数据内容		校验和
(2 Bytes)		(1 Bytes)	(1 Bytes)	(1 Bytes)	(4 Bytes)		(1 Bytes)
0xEB	0x90	0x01	0x05	0x12	最 (65) 0x41 0x00	最小(0) 0x00 0x00	0x59

设备 ID 为 1 的应答帧如下表所示

	帧头 (2 Bytes) 0xEE 0x16		ID 号	数据长度	指令号	数据内容	校验和
			(1 Bytes)				
			0x01	0x02	0x12	0x01	0x16

4. 2. 3. 9 查询夹爪开口度限位

功能: 读取夹爪开口度最大最小限位

指令帧长度: 6Bytes

指令号: 0x13

数据内容:空

查询 ID 为 1 的设备,指令帧如下表所示

帧	头	ID 号	数据长度	指令号	数据内容	校验和
(2 Bytes)		(1 Bytes)	(1 Bytes)	(1 Bytes)	(O Bytes)	(1 Bytes)
0xEB 0x90		0x01	0x01	0x13	空	0x15

设备 ID 为 1 的应答帧如下表所示

帧头		ID 号	数据长度	指令号	数据内容		校验和
(2 Bytes)		(1 Bytes)	(1 Bytes)	(1 Bytes)	(4 Bytes)		(1 Bytes)
0xEE	0x14	0x01	0x05	0x13	最 (65) 0x41 0x00	最小(0) 0x00 0x00	0x5A

4. 2. 3. 10 急停

功能:控制夹爪急停

指令帧长度: 6Bytes

指令号: 0x16

数据内容:空

查询 ID 为 1 的设备,指令帧如下表所示

帧头 (2 Bytes)		ID 号	数据长度	指令号	数据内容	校验和
		(1 Bytes)				
0xEB 0x90		0x01	0x01	0x16	空	0x18

设备 ID 为 1 的应答帧如下表所示

帧		ID 号	数据长度	指令号	数据内容	校验和
(2 By		(1 Bytes)				
0xEE	0x16	0x01	0x02	0x16	0x01	0x1A

4. 2. 3. 11 清除错误

功能:清除夹爪系统错误

指令帧长度: 6Bytes

指令号: 0x17

数据内容:空

查询 ID 为 1 的设备,指令帧如下表所示

帧头		ID 号	数据长度	指令号	数据内容	校验和
(2 Bytes)		(1 Bytes)	(1 Bytes)	(1 Bytes)	(0 Bytes)	(1 Bytes)
0xEB 0x90		0x01	0x01	0x17	空	

设备 ID 为 1 的应答帧如下表所示

帧头		ID 号	数据长度	指令号	数据内容	校验和
(2 Bytes)		(1 Bytes)				
0xEE	0x16	0x01	0x02	0x17	0x01	

4. 2. 3. 12 以设置的速度和力控持续夹取

功能:主控单元设置夹爪以输入的速度和力控阈值去夹取,当夹持力超过设定的力控阈值后,夹爪停止运动;当夹爪停止运动后,如果检测到夹持力小于力控阈值时,夹爪会继续夹取直到夹持力超过设定的力控阈值。

指令帧长度: 10Bytes

指令号: 0x18

数据内容: 0x32 0x00 为速度(50),速度取值范围 0-1000,无单位量纲; 0x64 0x00 为力控阈值,按照低字节先高字节后的顺序,从 50 到 1000,无单位量纲。

指令帧如下表所示

	帧头	ID 号	数据长度	指令号	数据内容		校验和
	Bytes)	(1 Bytes)	(1 Bytes)	(1 Bytes)	(4 Bytes)		(1 Bytes)
0xEB	0x90	0x01	0x05	0x18	速度 (50) 0x32 0x00	力度 (100) 0x64 0x00	0xB4

设备 ID 为 1 的应答帧如下表所示

帧头		ID 号	数据长度	指令号	数据内容	校验和
(2 Bytes)		(1 Bytes)				
0xEE	0x16	0x01	0x02	0x18	0x01	

4. 2. 3. 13 设置控制力

功能:设置夹爪力最大值,控制过程中超过最导致停止运动。

指令帧长度: 8Bytes

指令号: 0x19

数据内容: 0x32 0x00 为力最大值(50), 无单位量纲, 按照低字节先高字

节后的顺序。

指令帧如下表所示

	i头	ID 号	数据长度	指令号	数据内容	校验和
	ytes)	(1 Bytes)	(1 Bytes)	(1 Bytes)	(2 Bytes)	(1 Bytes)
0xEB	0x90	0x01	0x03	0x19	最大值(50) 0x32 0x00	0x4F

设备 ID 为 1 的应答帧如下表所示

帧		ID 号	数据长度	指令号	数据内容	校验和
(2 By		(1 Bytes)				
0xEE	0x16	0x01	0x02	0x19	0x01	0x1D

4. 2. 3. 14 查询控制力

功能:清除夹爪系统错误

指令帧长度: 6Bytes

指令号: 0x1A

数据内容:空

查询 ID 为 1 的设备,指令帧如下表所示

帧头		ID 号	数据长度	指令号	数据内容	校验和
(2 Bytes)		(1 Bytes)	(1 Bytes)	(1 Bytes)	(0 Bytes)	(1 Bytes)
0xEB	0x90	0xFF	0x01	0x1A	空	

设备 ID 为 1 的应答帧如下表所示

帧头		ID 号	数据长度	指令号	数据内容	校验和
(2 Bytes)		(1 Bytes)	(1 Bytes)	(1 Bytes)	(2 Bytes)	(1 Bytes)
0xEE	0x16	0x01	0x03	0x1A	最大值(50) 0x32 0x00	0x50

4. 2. 3. 15 设置 IO 模式

功能:设置夹爪两路 10 输入输出模式

指令帧长度: 10Bytes

指令号: 0x1B

数据内容: 夹爪包含两路数字 10, 分别由 0 和 1 表示, 模式 0: 为输入模

式, 1: 为输出模式。

设置 ID 为 1 的设备, IOO 为输出模式, 指令帧如下表所示

帧头		ID 号	数据长度	指令号	数据内容		校验和
(2 Bytes)		(1 Bytes)	(1 Bytes)	(1 Bytes)	(2 Bytes)		(1 Bytes)
0xEB	0x90	0x01	0x03	0x1B	10 (0) 0x00	模式(输出) 0x01	0×20

设备 ID 为 1 的应答帧如下表所示

帧头		ID 号	数据长度	指令号	数据内容	校验和
(2 Bytes)		(1 Bytes)				
0xEE	0x16	0x01	0x02	0x1B	0x01	

4. 2. 3. 16 设置 10 输出电平

功能:设置夹爪两路 10 输入输出电平

指令帧长度: 10Bytes

指令号: 0x1B

数据内容:夹爪包含两路数字 10,分别由 0 和 1 表示,电平输出位 0 表示输

出低电平 0V, 1 表示输出 24V。

设置 ID 为 1 的设备, IOO 为输出高电平, 指令帧如下表所示

帧头		ID 号	数据长度	指令号		据内容	校验和
(2 Bytes)		(1 Bytes)	(1 Bytes)	(1 Bytes)		Bytes)	(1 Bytes)
0xEB	0x90	0x01	0x03	0x1C	10 (0) 0×00	模式(输出) 0x01	0x21

设备 ID 为 1 的应答帧如下表所示

帧		ID 号	数据长度	指令号	数据内容	校验和
(2 By		(1 Bytes)				
0xEE	0x16	0x01	0x02	0x1C	0x01	0x20

4. 2. 3. 17 读取 IO 输出电平

功能: 读取夹爪两路 10 输入输出电平

指令帧长度: 6Bytes

指令号: 0x1D

数据内容:模式说明,0-输入模式,1输出模式,电平说明,0低电平0V,1 高电平24V。

查询 ID 为 1 的设备,指令帧如下表所示

帧头 (2 Bytes) 0xEB 0x90		ID 号 (1 Bytes)	数据长度 (1 Bytes)	指令号 (1 Bytes)	数据内容 (1 Bytes)	校验和 (1 Bytes)
		0x01	0x01	0x1D	空	0x1E

设备 ID 为 1 的应答帧如下表所示

	头 ytes)	ID 号 (1 Bytes)	数据长度 (1 Bytes)	指令号 (1 Bytes)		数据内容 (2 Bytes)			校验和 (1 Bytes)
0xEE	0x16	0x01	0x05	0x1D	I01 模式 0x01	I01 电平 0x01	I02 模式 0x01	I02 电平 0x01	0x21

4. 2. 3. 18 读取夹爪状态

功能: 读取夹爪所有系统参数

指令帧长度: 6Bytes

指令号: 0x41

数据内容:空

查询 ID 为 1 的设备,指令帧如下表所示

帧· (2 By		ID 号 (1 Bytes)	数据长度 (1 Bytes)	指令号 (1 Bytes)	数据内容 (0 Bytes)	校验和 (1 Bytes)
0xEB	0x90	0x01	0x01	0x41	空	0x43

设备 ID 为 1 的应答帧如下表所示

帧头		ID 号	数据长度	指令号	数据内容	校验和
(2 Bytes)		(1 Bytes)	(1 Bytes)	(1 Bytes)	(11 Bytes)	(1 Bytes)
0xEE	0x16	0x01	0x08	0x41	见数据内容 说明	

数据内容说明:

运行状态码	故障码	温度	开口度	加持力
(1 Bytes)	(1 Bytes)	(1 Bytes)	(2 Bytes)	(2 Bytes)
0x01	0x04	0x00	0xE8 0x03	0x64 0x00

运行状态码说明:

1	夹爪张开到最大且空闲
2	夹爪闭合到最小且空闲
3	夹爪停止且空闲
4	夹爪正在闭合
5	夹爪正在张开

故障码说明:

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
保留	保留	保留	内部通信故障	驱动器运行故障	过流故障	过温故障	堵转故障

4. 2. 3. 19 读取夹爪系统参数

功能: 读取夹爪所有系统参数

指令帧长度: 6Bytes

指令号: 0x42

数据内容:空

查询 ID 为 1 的设备,指令帧如下表所示

帧头 (2 Bytes)		ID 号	数据长度	指令号	数据内容	校验和
		(1 Bytes)	(1 Bytes)	(1 Bytes)	(O Bytes)	(1 Bytes)
0xEB 0x90		0x01	0x01	0x42	空	0x44

设备 ID 为 1 的应答帧如下表所示

帧头		ID 号	数据长度	指令号	数据内容	校验和
(2 Bytes)		(1 Bytes)	(1 Bytes)	(1 Bytes)	(11 Bytes)	(1 Bytes)
0xEE	0x16	0x01	0x0F	0x42	见数据内容 说明	

数据内容说明:

ID 号	波特率	位置最小	位置最大	速度	力控	力最大值	版本号
(1 Bytes)	(1 Bytes)	(2 Bytes)	(2 Bytes)	(2 Bytes)	(2 Bytes)	(2 Bytes)	(2 Bytes)
0x01	0x04	0x00 0x00	0xE8 0x03	0x64 0x00	0x32 0x00	0x96 0x00	0x66 0x00

4. 2. 3. 20 查询夹爪电机状态

功能: 读取关节状态数据

指令帧长度: 6Bytes

指令号: 0x43

数据内容:空

查询 ID 为 1 的设备,指令帧如下表所示

帧头 (2 Bytes)		ID 号	数据长度	指令号	数据内容	校验和
		(1 Bytes)	(1 Bytes)	(1 Bytes)	(O Bytes)	(1 Bytes)
0xEB 0x90		0x01	0x01	0x43	空	0x45

设备 ID 为 1 的应答帧如下表所示

帧· (2 By		ID 号 (1 Bytes)	数据长度 (1 Bytes)	指令号 (1 Bytes)	数据内容 (2 Bytes)	校验和 (1 Bytes)
0xEE	0x16	0x01	0x1F	0x43	见数据内容 说明	0x00

数据内容说明:

使能状态	运行状态	错误码	电流	电压
(1 Bytes)	(1 Bytes)	(2 Bytes)	(4 Bytes)	(4 Bytes)
0x01	0x04	0x0000	float	float
角度	速度	力矩(4	开口度	系统错误
(4 Bytes)	(4 Bytes)	Bytes)	(2 Bytes)	(1 Bytes)
float	float	float	0x00 0x00	0×00

电机错误码说明:

见睿尔曼单关节电机错误码

4. 2. 3. 21 设置开口度

功能:设置夹爪开口度

指令帧长度: 8Bytes

指令号: 0x54

数据内容: 0x0A 0x00 为开口度 10,数据范围 0-1000 对应夹爪开口度 0-65mm,按照低字节先高字节后的顺序。

指令帧如下表所示

	头	ID 号	数据长度	指令号	数据内容	校验和
	/tes)	(1 Bytes)	(1 Bytes)	(1 Bytes)	(2 Bytes)	(1 Bytes)
0xEB	0x90	0x01	0x03	0x54	位置 (10) 0x0A 0x00	0x62

设备 ID 为 1 的应答帧如下表所示

帧头		ID 号	数据长度	指令号	数据内容	校验和
(2 Bytes)		(1 Bytes)				
0xEE	0x16	0x01	0x02	0x04	0x01	0x58

4. 2. 3. 22 查询当前开口度

功能: 查询开口度

指令帧长度: 6Bytes

指令号: 0xD9

数据内容:空

查询 ID 为 1 的设备,指令帧如下表所示

帧头		ID 号	数据长度	指令号	数据内容	校验和
(2 Bytes)		(1 Bytes)	(1 Bytes)	(1 Bytes)	(O Bytes)	(1 Bytes)
0xEB 0x90		0x01	0x01	0xD9	空	0xDB

设备 ID 为 1 的应答帧如下表所示

帧头		ID 号	数据长度	指令号	数据内容	校验和
(2 Bytes)		(1 Bytes)	(1 Bytes)	(1 Bytes)	(2 Bytes)	(1 Bytes)
0xEE	0x16	0x01	0x03	0xD9	开口 (10) 0x0A 0x00	

4. 2. 3. 23 设置 10 控制使能

功能:设置使能 I0 控制夹爪功能,设置成功立即生效,保存参数后重启有效。

指令帧长度: 7Bytes

指令号: 0xDA

数据内容:设置0为不开启10控制夹爪,设置1开启10控制夹爪。

设置 ID 为 1 的夹爪新 ID 为 2, 指令帧如下表所示

	帧头 (2 Bytes)		ID 号	数据长度	指令号	数据内容	校验和
			(1 Bytes)				
	0xEB	0x90	0x01	0x02	0×DA	0x01	0×DE

应答帧如下表所示

帧头 (2 Bytes)		ID 号	数据长度	指令号	数据内容	校验和
		(1 Bytes)				
0xEE 0x16		0x01	0x02	0×DA	0x01	0xDE

4. 2. 3. 24 设置零位

功能:设置当前位置为0,用于校准,重启生效。

指令帧长度: 6Bytes

指令号: 0xDB

数据内容:空

查询 ID 为 1 的设备,指令帧如下表所示

帧· (2 By		ID 号 (1 Bytes)	数据长度 (1 Bytes)	指令号 (1 Bytes)	数据内容 (0 Bytes)	校验和 (1 Bytes)
0xEB	0x90	0x01	0x01	0xDB	空	0×DD

设备 ID 为 1 的应答帧如下表所示

帧头		ID 号	数据长度	指令号	数据内容	校验和
(2 Bytes)		(1 Bytes)				
0xEE 0x16		0x01	0x02	0×DB	0x01	0xDF

4. 2. 3. 25 以设置的速度、力控、开口度夹取

功能:控制夹爪以设置的速度、力控、开口度夹取

指令帧长度: 10Bytes

指令号: 0x10

数据内容: 0x32 0x00 为速度(50), 速度取值范围 0-100, 无单位量纲; 0x64 0x00 为力控阈值,按照低字节先高字节后的顺序,从 50 到 1000, 无单位量纲。0x0A 0x00 为位置 10,单位 mm。

指令帧如下表所示

帧 ³ (2 By		ID 号 (1 Bytes)	数据长度 (1 Bytes)	指令号 (1 Bytes)		数据内容 (6 Bytes)		校验和 (1 Bytes)
0xEB	0x90	0x01	0x07	0xE5	速度(50) 0x32 0x00	力度 (100) 0x64 0x00	开口度 (10) 0x0A 0x00	0x8D

设备 ID 为 1 的应答帧如下表所示

帧头	ID 号	数据长度	指令号	数据内容	校验和
(2 Bytes)	(1 Bytes)				

0xEE 0x16	0x01 0x02	0xE5	0x01	0xE9
-----------	-----------	------	------	------

4. 2. 3. 26 设置 10 控制功能

功能: 开启或关闭六芯航插 10 控制夹爪功能

指令帧长度: 7Bytes

指令号: 0xDA

数据内容: 0x01 为开启 10 控制夹爪功能, 0x00 关闭 10 控制夹爪功能。

指令帧如下表所示

帧		ID 号	数据长度	指令号	数据内容	校验和
(2 By		(1 Bytes)	(1 Bytes)	(1 Bytes)	(6 Bytes)	(1 Bytes)
0xEB 0x90		0x01	0x02	0×DA	0x01	0×DE

设备 ID 为 1 的应答帧如下表所示

帧头		ID 号	数据长度	指令号(1	数据内容	校验和
(2 Bytes)		(1 Bytes)	(1 Bytes)	Bytes)	(1 Bytes)	(1 Bytes)
0xEE	0x16	0x01	0x02	0×DA	0x01	

4.3 1/0 协议

配置 10 为输入模式, 开启 10 控制功能后, 可通过 10 实现夹爪控制。

101	低电平张开,高电平急停
102	低电平闭合,高电平急停

5 更多资料

获取更多开发资料、了解更多场景案例:

微信公众号二维码

抖音号二维码

联系我们:

sales@realman-robot.com

技术支持:

forrest@realman-robot.com

公司地址:

睿尔曼智能科技(北京)有限公司

地址: 北京市石景山区杨庄大街 69 号首特钢园创新工场 A2 层

睿尔曼智能科技(江苏)有限公司

地址: 江苏省常州市常州科教城智能数字产业园 7号厂房

睿尔曼智能科技(深圳)有限公司

地址:广东省深圳市宝安区华丰国际机器人产业园一期 A 栋五楼