

Programa de Asignatura

Historia del programa

Lugar y fecha de elaboración	Participantes	Observaciones (Cambios y justificaciones)
Cancún, Q. Roo 28 de Abril de 2010/	M.C. David Flores Granados Ing. Mónica Patricia René M.C. José Enrique Alvarez	Se modificó el programa para adecuarlo a la Taxonomía de Anderson. Se actualizó la bibliografía. Se reestructuró el contenido de algunas unidades, recortando incisos innecesariamente detallados.

Relación con otras asignaturas

b) Todos

Anteriores	Posteriores	
Asignatura(s)		
a) Arquitectura de Computadoras.b) Diseño de Sistemas Operativos		
Tema(s)	No aplica	
a) Todos		

Nombre de la asignatura	Departamento o Licenciatura
Cómputo paralelo	Ingeniería en Telemática

Ciclo	Clave	Créditos	Área de formación curricular
3 - 4	IT3479	6	Licenciatura Elección Libre

Tipo de asignatura	Horas de estudio			
	НТ	HP	TH	HI
Materia	32	16	48	48

Objetivo(s) general(es) de la asignatura

Objetivo cognitivo

Asociar los procesos paralelizables en el diseño de programas básicos para su implementación en unidades múltiples de control usando simuladores y arreglos de procesadores.

Objetivo procedimental

Ensamblar sistemas que hagan uso del cómputo paralelo para la mejora de la velocidad de respuesta usando arreglos de procesadores.

Objetivo actitudinal

Fomentar la disciplina en el análisis y solución de problemas para el diseño e implementación de sistemas paralelizables.

Unidades y temas

Unidad I. INTRODUCCIÓN AL CÓMPUTO PARALELO

Describir los componentes fundamentales del cómputo paralelo para el diseño de programas de alto desempeño.

- 1) Antecedentes
- 2) Paradigmas del Cómputo Paralelo
 - a) Clasificación
 - b) Niveles y desempeño
 - c) Ley de Amdahal
- 3) Paralelismo en los Programas
 - a) Manejo de datos
 - b) Ciclos paralelos
 - c) Pipeling

Unidad II. FUNDAMENTOS A LA COMPLEJIDAD COMPUTACIONAL EN ALGORITMOS

PARALELOS
Usar las herramientas del análisis de algoritmos para la estimación de su desempeño
1) Flujo de datos
2) Modelo RAM y PRAM
3) Organización de procesadores
4) Complejidad de los algoritmos paralelos
a) Tiempos de corrimiento
b) Acotaciones
Unidad III. DISEÑO DE PROGRAMAS PARALELOS
Emplear algoritmos para el diseño de sistemas paralelizables usando los modelos descritos en la teoría.
1) Modelos de cómputo paralelo
a) Hardware paralelo
b) Ejecución paralela
c) Computación distribuida

b) Procesos

a) Segmentos

2) Control de paralelismo

c) Semáforos

Unidad IV. HERRAMIENTAS PARA PROGRAMACIÓN PARALELA

Construir programas para algoritmos paralelos usando las principales herramientas de arquitecturas paralelas.

1) Clusters Linux	
2) PVM	
3) MPI	
4) CILK	
Unidad V. GPUS	
	usando las Unidades de Procesamiento Grafica mediante el lenguaje de
1) Modelo de Programación CUDA	
2) Hilos y memoria	
3) OPEN CL	
Actividades que promueven e	el aprendizaje
Docente	Estudiante
Recuperación de Ideas previas Moderar el Trabajo en equipo Coordinar la Discusión de casos prácticos Prácticas Foro	Realización de Investigación bibliográfica Participar en el Trabajo en equipo Exposición Proyecto Integral
Actividades de aprendizaje er	n Internet
No aplica	

Criterios y/o evidencias de evaluación y acreditación

Criterios	Porcentajes
Prácticas	30
Exámenes	30
Proyecto Integrador	20
Participación en Clase	20
Total	100

Fuentes de referencia básica

Bibliográficas

Hwang, K. (1993). Advanced Computer Architecture: Parallelism, Scalability, Programmability. McGraw-Hill: USA. Jaja, J. (1992). An introduction to Parallel Algorithms. Addison Wesley: USA.

Kirk D. y Hwu W. (2010). Programming Massively Parallel Processors: A Hands-on Approach. Morgan Kaufmann: USA.

Sanders J. y Kandrot E. (2010). CUDA by Example: An Introduction to General-Purpose GPU Programming.

Addison-Wesley:USA.

Stone, H.S. (1990). High-performance Computer Architecture. Addison-Wesley: USA.

Web gráficas

http://gpucomputing.net/

http://gpgpu.org/

http://www.nvidia.com/object/cuda_home_new.html

Fuentes de referencia complementaria

Bibliográficas

Johnson, B.W. (1989). Design and Analysis of Fault Tolerant Digital Systems . Addison Wesley:USA. Tabak, D. (1990). Multiprocessors. Prentice-Hall International: USA.

Web gráficas

http://courses.ece.illinois.edu/ece498/al/

Perfil profesiográfico del docente

Académicos

Ingeniería, licenciatura o posgrado en Ciencias de la Computación, Sistemas, Eléctrica o Electrónica.

Docentes

2 años de experiencia impartiendo asignaturas afines en instituciones de educación superior o posgrado.

Profesionales

Experiencia en el desarrollo de software de base, sistemas embebidos, controladores de dispositivos.