Yöneylem Araştırması-1 (Ders Notu-2)

Doğrusal Denkleme Sistmelerinin Çözümü

DP'nin Simpleks Yöntemi ile Çözümü Simpleks Tablosu Kullanarak Çözüm Simpleks Tablosunda DP'nin Özel Durumlarının Tespiti Büyük-M ve İki Evre Metotları

Doğrusal Denklem Sistemi (DDS)

Bir DDS:

$$a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1$$

 $a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2$
 $\vdots \qquad \vdots \qquad \vdots = \vdots$
 $a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m$

... $A\mathbf{x} = \mathbf{b}$ veya $A|\mathbf{b}$ şeklinde ifade edilebilir

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

Temel Satır İşlemleri (Elementary Row Operations)

Gauss-Jordan metodunu incelemeden önce, temel satır işlemlerini bilmemiz gerekir. Temel Satır İşlemleri kullanarak verilen bir **A matrisi ve b vektörü için A'** ve **b'** elde edilir.

Elde edilen **A'** ve **b'** bize çözümün olup olmadığını, varsa tekil bir çözüm olup olmadığını söyler.

3 tip Temel Satır İşlemi (TSİ) bulunmaktadır:

- Tip 1 TSİ
- Tip 2 TSİ
- Tip 3 TSİ

Temel Satır İşlemleri (Elementary Row Operations)

Tip 1 TSİ

A', herhangi bir A satırının sıfır olmayan bir skaler ile çarpılmasıyla elde edilir. Örneğin:

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 5 & 6 \\ 0 & 1 & 2 & 3 \end{bmatrix}$$

A matrisinin 2nci satırının 3 ile çarpımı:

$$A' = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & 9 & 15 & 18 \\ 0 & 1 & 2 & 3 \end{bmatrix}$$

Temel Satır İşlemleri (Elementary Row Operations-ERO)

Tip 2 TSİ

A nın i^{nci} satırını sıfır olmayan bir c skaleri ile çarp. Bazı j \neq i'ler için:

 $A' \min j \text{ satırı} = c(A' \min i \text{ satırı}) + (A' \min j \text{ satırı})$ olsun. A' nın diğer satırlarının A nın satırları ile **aynı olsun**.

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 5 & 6 \\ 0 & 1 & 2 & 3 \end{bmatrix}$$

Orneğin Anın 2nci satırını 4 ile çarp, ve Anın 3ncü satırını 4(Anın 2nci satırı)+(Anın 3ncü satırı) ile değiştir.

$$A' = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 5 & 6 \\ 4 & 13 & 22 & 27 \end{bmatrix}$$

Temel Satır İşlemleri (Elementary Row Operations-ERO)

Tip 3 TSİ

A nın iki satırını değiştirin.

Örneğin A nın 1nci ve 3ncü satırlarının yerini değiştirin:

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 5 & 6 \\ 0 & 1 & 2 & 3 \end{bmatrix} \qquad A' = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 1 & 3 & 5 & 6 \\ 1 & 2 & 3 & 4 \end{bmatrix}$$

Doğrusal Denklem Sistemi (DDS)

Doğrusal bir denklem sistemi aşağıdakilerden birini sağlar:

Durum 1: Sistemin çözümü yoktur.

Durum 2: Sistemin tekil çözümü vardır.

Durum 3: Sistemin sonsuz sayıda çözümü vardır.

DDS Çözümü: Gauss Jordan Metodu

$$2x_1 + 2x_2 + x_3 = 9$$
$$2x_1 - x_2 + 2x_3 = 6$$
$$x_1 - x_2 + 2x_3 = 5$$

Genişletilmiş Matris:

$$A|\mathbf{b}| = \begin{bmatrix} 2 & 2 & 1 & 9 \\ 2 & -1 & 2 & 6 \\ 1 & -1 & 2 & 5 \end{bmatrix}$$

1	0	0	?
0	1	0	?
0	0	1	? .

DDS Çözümü: Örnek

$$A|\mathbf{b}| = \begin{bmatrix} 2 & 2 & 1 & 9 \\ 2 & -1 & 2 & 6 \\ 1 & -1 & 2 & 5 \end{bmatrix}$$

$$A|\mathbf{b} = \begin{bmatrix} 2 & 2 & 1 & | & 9 \\ 2 & -1 & 2 & | & 6 \\ 1 & -1 & 2 & | & 5 \end{bmatrix}$$
 TiP-1 TSi
$$A_1|\mathbf{b}_1 = \begin{bmatrix} 1 & 1 & \frac{1}{2} & | & \frac{9}{2} \\ 2 & -1 & 2 & | & 6 \\ 1 & -1 & 2 & | & 5 \end{bmatrix}$$

$$A_1 | \mathbf{b}_1 = \begin{bmatrix} 1 & 1 & \frac{1}{2} & | & \frac{9}{2} \\ 2 & -1 & 2 & | & 6 \\ 1 & -1 & 2 & | & 5 \end{bmatrix}$$

$$R2 = -2 R1 + R2$$

$$A_{1}|\mathbf{b}_{1} = \begin{bmatrix} 1 & 1 & \frac{1}{2} & | & \frac{9}{2} \\ 2 & -1 & 2 & | & 6 \\ 1 & -1 & 2 & | & 5 \end{bmatrix} \quad \text{TiP-2 TSi}$$

$$R2 = -2 R1 + R2 \qquad A_{2}|\mathbf{b}_{2} = \begin{bmatrix} 1 & 1 & \frac{1}{2} & | & \frac{9}{2} \\ 0 & -3 & 1 & | & -3 \\ 1 & -1 & 2 & | & 5 \end{bmatrix}$$

$$A_{2}|\mathbf{b}_{2} = \begin{bmatrix} 1 & 1 & \frac{1}{2} & \frac{9}{2} \\ 0 & -3 & 1 & -3 \\ 1 & -1 & 2 & 5 \end{bmatrix} \quad \text{TiP-2 TSi}$$

$$R3 = -R1 + R3$$

$$A_{3}|\mathbf{b}_{3} = \begin{bmatrix} 1 & 1 & \frac{1}{2} & \frac{9}{2} \\ 0 & -3 & 1 & -3 \\ 0 & -2 & \frac{3}{2} & \frac{1}{2} \end{bmatrix}$$

$$R3 = -R1 + R3$$

$$A_3|\mathbf{b}_3 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

DDS Çözümü: Örnek

$$A_{3}|\mathbf{b}_{3} = \begin{bmatrix} 1 & 1 & \frac{1}{2} & \frac{9}{2} \\ 0 & -3 & 1 & -\frac{1}{3} & \frac{1}{2} \\ 0 & -2 & \frac{3}{2} & \frac{1}{2} \end{bmatrix} \quad \text{TiP-1 TSi}$$

$$(-1/3) R2$$

$$A_{4}|\mathbf{b}_{4} = \begin{bmatrix} 1 & 1 & \frac{1}{2} & \frac{9}{2} \\ 0 & 1 & -\frac{1}{3} & 1 \\ 0 & -2 & \frac{3}{2} & \frac{1}{2} \end{bmatrix}$$

$$A_{4}|\mathbf{b}_{4} = \begin{bmatrix} 1 & 1 & \frac{1}{2} & \frac{9}{2} \\ 0 & 1 & -\frac{1}{3} & 1 \\ 0 & -2 & \frac{3}{2} & \frac{1}{2} \end{bmatrix} \quad \text{TiP-2 TSi} \qquad A_{5}|\mathbf{b}_{5} = \begin{bmatrix} 1 & 0 & \frac{5}{6} & \frac{7}{2} \\ 0 & 1 & -\frac{1}{3} & 1 \\ 0 & -2 & \frac{3}{2} & \frac{1}{2} \end{bmatrix}$$

$$A_{5}|\mathbf{b}_{5} = \begin{bmatrix} 1 & 0 & \frac{5}{6} & \frac{7}{2} \\ 0 & 1 & -\frac{1}{3} & 1 \\ 0 & -2 & \frac{3}{2} & \frac{1}{2} \end{bmatrix} \quad \text{TiP-2 TSi} \qquad A_{6}|\mathbf{b}_{6} = \begin{bmatrix} 1 & 0 & \frac{5}{6} & \frac{7}{2} \\ 0 & 1 & -\frac{1}{3} & 1 \\ 0 & 0 & \frac{5}{6} & \frac{5}{2} \end{bmatrix}$$

DDS Çözümü: Örnek

$$A_{6}|\mathbf{b}_{6} = \begin{bmatrix} 1 & 0 & \frac{5}{6} & | & \frac{7}{2} \\ 0 & 1 & -\frac{1}{3} & | & 1 \\ 0 & 0 & \frac{5}{6} & | & \frac{5}{2} \end{bmatrix} \text{ TiP-1 TSi}$$

$$(6/5) \text{ R3}$$

$$A_{7}|\mathbf{b}_{7} = \begin{bmatrix} 1 & 0 & \frac{5}{6} & | & \frac{7}{2} \\ 0 & 1 & -\frac{1}{3} & | & 1 \\ 0 & 0 & 1 & | & 3 \end{bmatrix}$$

$$A_{7}|\mathbf{b}_{7} = \begin{bmatrix} 1 & 0 & \frac{5}{6} & \frac{7}{2} \\ 0 & 1 & -\frac{1}{3} & 1 \\ 0 & 0 & 1 & 3 \end{bmatrix} \quad \text{TiP-2 TSi} \qquad A_{8}|\mathbf{b}_{8} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & -\frac{1}{3} & 1 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

$$A_8|\mathbf{b}_8 = \begin{bmatrix} 1 & 0 & 0 & | & 1 \\ 0 & 1 & -\frac{1}{3} & | & 1 \\ 0 & 0 & 1 & | & 3 \end{bmatrix} \quad \text{TiP-2 TSi} \qquad A_9|\mathbf{b}_9 = \begin{bmatrix} 1 & 0 & 0 & | & 1 \\ 0 & 1 & 0 & | & 2 \\ 0 & 0 & 1 & | & 3 \end{bmatrix}$$

DDS Çözümü: Gauss Jordan Metodu

$$A|\mathbf{b} = \begin{bmatrix} 2 & 2 & 1 & 9 \\ 2 & -1 & 2 & 6 \\ 1 & -1 & 2 & 5 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

$$x_1 = 1$$

$$x_2 = 2$$

$$x_3 = 3$$

DDS'de Temel Değişkenler ve Çözümler

Bir doğrusal denklem sisteminde;
 tek bir denklemde (satırda) 1,
 diğer denklemlerde ise 0 katsayısına

sahip değişkene **Temel Değişken (Basic Variable - BV)** denir.

Bu şekilde olmayan diğer değişkenlere Temel Olmayan
 Değişken (Nonbasic Variable - NBV) denir.

DDS'de Temel Değişkenler ve Çözümler

Durum 1: Çözüm yok

$$A'\mathbf{x} = \mathbf{b}'$$
 içerisinde $\begin{bmatrix} 0 & 0 & \cdots & 0 | c \end{bmatrix}$ $(c \neq 0)$ varsa, $A\mathbf{x} = \mathbf{b}$ 'nin çözümü yoktur.

$$A'|\mathbf{b}' = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 2 & 1 \\ 0 & 0 & 1 & 3 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 2 \end{bmatrix}$$

Durum 2: Çözüm yok

$$\begin{array}{c}
 x_1 + 2x_2 = 3 \\
 2x_1 + 4x_2 = 4
 \end{array}
 \begin{vmatrix}
 x_1 + 2x_2 = 3 \\
 \hline
 A|\mathbf{b} = \begin{bmatrix}
 1 & 2 & 3 \\
 2 & 4 & 4
 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & -2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & | & 3 \\ 0 & 0 & | & -2 \end{bmatrix} \qquad \qquad \begin{bmatrix} x_1 + 2x_2 = 3 \\ 0x_1 + 0x_2 = -2 \end{bmatrix}$$

DDS'de Temel Değişkenler ve Çözümler

Durum 2: Tekil çözüm

Gauss-Jordan sonrasında elde edilen matris **Durum 1'e uymuyorsa** ve **NBV kümesi boş** ise tekil çözüm vardır:

$$A'|\mathbf{b}'| = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

$$BV = \{x_1, x_2, x_3\}$$
 $NBV = \emptyset$

$$NBV = \emptyset$$

DDS'de Temel Değişkenler ve Çözümler

Durum 3: Sonsuz sayıda çözüm

Gauss-Jordan sonrasında elde edilen matris **Durum 1'e uymuyorsa** ama **NBV kümesi boş değil** ise sonsuz sayıda çözüm vardır:

$$A'|\mathbf{b'}| = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 3 \\ 0 & 1 & 0 & 2 & 0 & 2 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$BV = \{x_1, x_2, x_3\}$$

$$NBV = \{x_4, x_5\}$$

Durum 3: Sonsuz sayıda çözüm

$$x_1 + x_2 = 1$$

 $x_2 + x_3 = 3$
 $x_1 + 2x_2 + x_3 = 4$

$$A_1|\mathbf{b}_1 = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 3 \\ 0 & 1 & 1 & 3 \end{bmatrix}$$

$$A_2|\mathbf{b}_2 = \begin{bmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 1 & 3 \\ 0 & 1 & 1 & 3 \end{bmatrix}$$

$$A_3|\mathbf{b}_3 = \begin{bmatrix} 1 & 0 & -1 & | & -2 \\ 0 & 1 & 1 & | & 3 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

3ncü sütunu dönüştürmek imkansız...

Matris Tersi ile DDS Çözümü

$$A\mathbf{x} = \mathbf{b}$$

Eğer A tersi alınabilir bir matris ise,

$$(A^{-1}A)\mathbf{x} = A^{-1}\mathbf{b}$$

$$I_m\mathbf{x} = A^{-1}\mathbf{b}$$

$$\mathbf{x} = A^{-1}\mathbf{b}$$

 I_m : m satır ve sütunlu birim matris (identity matrix)

^{*} Bir matrisin tersinin var olmasının şartları nelerdir ? Araştırın !

Matris Tersi ile DDS Çözümü

$$2x_1 + 5x_2 = 7$$
$$x_1 + 3x_2 = 4$$

$$2x_1 + 5x_2 = 7
x_1 + 3x_2 = 4$$

$$\begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 7 \\ 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix} \qquad A^{-1} = \begin{bmatrix} 3 & -5 \\ -1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 3 & -5 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 & -5 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 7 \\ 4 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

DP'nin Standart Formu

- <u>Tüm kısıtlarının eşitlik, tüm değişkenlerin ve sağ taraf</u> <u>sabitlerinin pozitif</u> olduğu forma standart form denir.
- Bir DP dolgu (slack) ve artık (surplus) değişkenler kullanılarak standart form haline getirilebilir.
- Örnek:

max
$$z = 4x_1 + 3x_2$$

s.t. $x_1 + x_2 \le 40$
 $2x_1 + x_2 \le 60$
 $x_1, x_2 \ge 0$

Standard Form:

max
$$z = 4x_1 + 3x_2$$

s.t. $x_1 + x_2 + s_1 = 40$
 $2x_1 + x_2 + s_2 = 60$
 $x_1, x_2, s_1, s_2 \ge 0$

DP'nin Standart Forma Dönüştürülmesi

min
$$z = 50x_1 + 20x_2 + 30x_3 + 80x_4$$

s.t. $400x_1 + 200x_2 + 150x_3 + 500x_4 \ge 500$
 $3x_1 + 2x_2 \ge 6$
 $2x_1 + 2x_2 + 4x_3 + 4x_4 \ge 10$
 $2x_1 + 4x_2 + x_3 + 5x_4 \ge 8$
 $x_1, x_2, x_3, x_4 \ge 0$

min
$$z = 50x_1 + 20x_2 + 30x_3 + 80x_4$$

s.t. $400x_1 + 200x_2 + 150x_3 + 500x_4 - e_1 = 500$
 $3x_1 + 2x_2 - e_2 = 6$
 $2x_1 + 2x_2 + 4x_3 + 4x_4 - e_3 = 10$
 $2x_1 + 4x_2 + x_3 + 5x_4 - e_4 = 8$
 $x_i, e_i \ge 0$ $(i = 1, 2, 3, 4)$

DP'nin Standart Forma Dönüştürülmesi

$$\max z = 20x_1 + 15x_2$$
s.t. $x_1 \le 100$

$$x_2 \le 100$$

$$50x_1 + 35x_2 \le 6,000$$

$$20x_1 + 15x_2 \ge 2,000$$

$$x_1, x_2 \ge 0$$

$$\max z = 20x_1 + 15x_2$$
s.t. $x_1 + \dots + s_1 = 100$

$$x_2 + s_2 = 100$$

$$50x_1 + 35x_2 + s_3 = 6,000$$

$$20x_1 + 15x_2 - e_4 = 2,000$$

$$x_i \ge 0 \quad (i = 1, 2); \quad s_i \ge 0 \quad (i = 1, 2, 3); \quad e_4 \ge 0$$

Temel Çözüm (Basic Solution - BS) ve Temel Olurlu Çözüm (Basic Feasible Solution - BFS)

- m denklem ve n değişkenden oluşan Ax = b sisteminin temel bir çözümü, n m adet değişkeni 0'a eşitleyerek geri kalan m değişken için de denklem sisteminin çözülmesi ile bulunur. (m < n için)
- n-m adet değişkenin 0'a eşitlenmesi ile geri kalan m değişken için sistemin tekil bir çözüm üreteceği, diğer bir deyişle kalan m sütunun doğrusal olarak bağımsız (linearly independent) olduğu varsayılmaktadır.

n − *m* adet değişken nasıl adlandırılır?

NBV

m adet değişken nasıl adlandırılır?

BV

Temel Çözüm (Basic Solution - BS) ve Temel Olurlu Çözüm (Basic Feasible Solution - BFS)

m=2 denklem, n=3 karar değişkeni

$$x_1 + x_2 = 3$$

 $-x_2 + x_3 = -1$

- *n-m*=3-2=1 NBV, *m*=2 BV olacaktır.
- NBV = $\{x_3\}$ ve BV = $\{x_1, x_2\}$ olursa,
- $x_3 = 0$ için çözüm sağlanabilir ;

$$x_1 + x_2 = 3$$
 $-x_2 = -1$
 $x_1 = 2, x_2 = 1$

Temel Çözüm: $\{x_1, x_2, x_3\} = \{2,1,0\}$

Temel Çözüm (Basic Solution - BS) ve Temel Olurlu Çözüm (Basic Feasible Solution - BFS)

 Tüm değişkenlerin negatif olmayan (≥ 0) değer aldığı bir temel çözüm, <u>temel olurlu çözümdür</u> (BFS : basic feasible solution)

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} \qquad \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ 3 \end{bmatrix} \qquad \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix}$$
BFS BFS değil!

 <u>TEOREM-1:</u> Bir nokta eğer BFS ise olurlu bölgenin bir <u>uç</u> <u>noktasıdır</u> (extreme point).

Standard Form ve Temel Çözümler – Örnek 1

max
$$z = 4x_1 + 3x_2$$

s.t. $x_1 + x_2 \le 40$
 $2x_1 + x_2 \le 60$
 $x_1, x_2 \ge 0$

Standart Form:

max
$$z = 4x_1 + 3x_2$$

s.t. $x_1 + x_2 + s_1 = 40$
 $2x_1 + x_2 + s_2 = 60$
 $x_1, x_2, s_1, s_2 \ge 0$

Standard Form ve Temel Çözümler – Örnek 1

BV	NBV	Temel Çözüm (Ba	sic Solution)	UÇ NOKTA
x_1, x_2	S_1, S_2	$s_1 = s_2 = 0, x_1 = x$	$r_2 = 20$	E
x_1, s_1	x_2, s_2	$x_2 = s_2 = 0, x_1 = 3$	$s_0, s_1 = 10$	C
x_1, s_2	x_2, s_1	$x_2 = s_1 = 0, x_1 = 4$	$40, s_2 = -20$	Not a bfs because $s_2 < 0$
x_2, s_1	x_1, s_2	$x_1 = s_2 = 0, s_1 = -$	$-20, x_2 = 60$	Not a bfs because $s_1 < 0$
x_2, s_2	x_1, s_1	$x_1 = s_1 = 0, x_2 = 4$	$40, s_2 = 20$	B
s_1, s_2	x_1, x_2	$x_1 = x_2 = 0, s_1 = 4$	$40, s_2 = 60$	F
	$2x_1 + y$	x_2 $x_2 + s_1 = 40$ $x_2 + s_2 = 60$ $x_1, x_2, s_1, s_2 \ge 0$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{C}{0}$ $\frac{A}{40}$ $\frac{1}{50}$ $\frac{1}{60}$ x_1 28

Standard Form ve Temel Çözümler – Örnek 2

Standard Form ve Temel Çözümler

- m kısıt ve n değişkenden oluşan bir DP'de toplam BS sayısı: $\binom{n}{m}$
- Büyük *m* ve *n* için, tüm köşe noktalarının incelenmesi çok zaman alabilir...
- Örneğin;

$$m = 10 \text{ ve } n = 20 \longrightarrow \binom{20}{10} = 184,756$$

 Simplex metodu olası tüm BFS'ların sadece bir kısmını inceler.

Temel Olurlu Çözüm

- <u>TEOREM-2</u>: Bir DP'nin optimal bir çözümü varsa, o zaman optimal olan bir BFS olduğunu söyleyebiliriz.
- Bu önemlidir, çünkü herhangi bir DP sınırlı sayıda BFS'e sahiptir. Böylece bir DP'nin optimal çözümünü <u>sınırlı</u> sayıda noktayı inceleyerek bulabiliriz.
- Herhangi bir DP için olurlu bölge sonsuz sayıda nokta içerdiğinden, çözümleri sınırlı sayıdaki BFS'lerde arama yöntemi işimizi çok kolaylaştırır!
- m kısıttan oluşan bir DP'de m-1 temel değişkeni aynı olan temel olurlu çözümlere Komşu Temel Olurlu Çözümler (adjacent BFS) denir.

Yozlaşmış (degenerate) DP

 Bazen birden fazla <u>Temel Olurlu Çözüm</u> bir uç noktaya karşılık gelebilir. Bu tür DP'lara yozlaşmış (degenerate) DP adı verilir.

Simplex Algoritması Adımları

- 1. DP'yi standart forma dönüştür
 - Amaç fonksiyonunu sağ taraf 0 olacak şekilde düzenle.
- 2. Standart formda bir BFS bul (Başlangıç Olurlu Çözümü)
 BFS doğrudan bulunamıyorsa Büyük M veya İki Evre metodu
 BFS bulunamıyorsa → Olursuz Problem
- 3. BFS'nin optimal olup olmadığını kontrol et.
 - BFS optimal ise Algoritmayı bitir.
 - BFS optimal değilse, 4. Adıma Geç.
- 4. BV olacak (temele girecek) NBV'yi belirle.
 - z satırındaki bir NBV'nin katsayısı 0 ise \rightarrow Alternatif optimum
- 5. NBV olacak (temelden çıkacak) BV'yi belirle. (Min Oran Testi)

 Eğer çıkan değişken bulunamıyorsa → Sınırsız Çözüm
- 6. Pivot İşlemleri. TSİ kullanarak yeni BFS belirle.

Matris ve Sağ Taraf Değelerini güncelle. Adım 3'e dön. Bir BV'nin değeri 0 ise → Yozlaşmış Çözüm.

Simplex Algoritması - Örnek

max
$$z = 60x_1 + 30x_2 + 20x_3$$

s.t. $8x_1 + 6x_2 + x_3 \le 48$
 $4x_1 + 2x_2 + 1.5x_3 \le 20$
 $2x_1 + 1.5x_2 + 0.5x_3 \le 8$
 $x_2 \le 5$
 $x_1, x_2, x_3 \ge 0$

Standart Form

(İlk Satır Amaç Fonksiyonu)

Başlangıç Temel Olurlu Çözümü (BFS)

- Tanım: Kanonik Form: Sistemdeki her denklemin katsayısı 1 olan bir değişkene sahip olduğu (bu değişkenin diğer denklemlerdeki katsayısı 0 iken) doğrusal bir denklem sistemine KANONİK form denir.
- Kanonik formdaki bir sistemde eşitliklerin sağ tarafları negatif değilse, kanonik formdan faydalanarak başlangıç BFS'si kolayca tespit edilebilir.
- Eğer tüm kısıtlar ≤ ise standart formdan başlangıç BFS'si elde edilebilir. Eğer DP'nin ≥ veya = kısıtları varsa, bir başlangıç çözümü elde etmek doğrudan mümkün olamaz, bu durumda başlangıç çözümü elde etmek için "Büyük-M" veya "İki Evre" metodu kullanılabilir.

Başlangıç Temel Olurlu Çözümü (BFS)

Row			Basic Variable
0	$z - 60x_1 - 30x_2 - 20x_3$	= 0	z = 0
1	$8x_1 + 6x_2 + x_3 + s_1$	= 48	$s_1 = 48$
2	$4x_1 + 2x_2 + 1.5x_3 + s_2$	= 20	$s_2 = 20$
3	$2x_1 + 1.5x_2 + 0.5x_3 + s_3$	= 8	$s_3 = 8$
4	x_2	$-s_4 = 5$	$s_4 = 5$

Başlangıç BFS

BV =
$$\{s_1, s_2, s_3, s_4\}$$

NBV = $\{x_1, x_2, x_3\}$
 $s_1 = 48$
 $x_1 = 0$
 $s_2 = 20$
 $x_2 = 0$
 $s_3 = 8$
 $s_4 = 5$

Mevcut BFS Optimal mi?

 Amaç fonksiyonunu dikkate alarak, diğer NBV'ler 0 seviyesinde sabitken, herhangi bir NBV'yi artırmak z'nin artmasına yol açıyor mu?

Evet ! x_1, x_2, x_3 (üçü de) eğer BV olursa mevcut Z değeri artar. O zaman, mevcut BFS optimal değil !

O satırında katsayısı negatif olan değişkenler var...

Giren Değişkenin Bulunması

Hangi NBV, BV olmalıdır?

- Amaç fonksiyonunda en fazla artışa (max prb için) yol açan NBV "giren değişken" olarak tanımlanır.
- O satırında negatif katsayıya sahip her NBV giren değişken olabilir. En düşük olanı seçerek, bir adımda fazla artış amaçlanır (başka yaklaşımlar da var. Örn. Blend Kuralı).
- Bir NBV'nin BV olması ile elde edilecek yeni BFS mevcut
 BFS'nin komşu çözümüdür.
- En düşük negative katsayılı NBV : $x_1 \rightarrow$ Giren Değişken
- Giren değişkenin değeri ne olacak? (NBV iken değeri sıfırdı)
 Bunu çıkan değişken belirlendikten ve satır işlenlerinden sonra göreceğiz.

Çıkan Değişkenin Bulunması

Row	x_1					Basic Variable
0	$z - 60x_1$	$-30x_2-20x_3$		=	0	z = 0
1	$8x_1$	$+ 6x_2 + x_3 +$	- s ₁	=	48	$s_1 = 48$
2	$4x_1$	$+ 2x_2 + 1.5x_3$	$+ s_2$	=	20	$s_2 = 20$
3	$2x_1$	$+ 1.5x_2 + 0.5x_3$	$+ s_3$	=	8	$s_3 = 8$
4		x_2	-	⊦ <i>s</i> ₄ =	5	$s_4 = 5$

Minimum Oran Testi

$$\{\frac{48}{8}, \frac{20}{4}, \frac{8}{2}\} = 4$$

Sadece, giren değişkenin sütununda katsayısı > 0 olan satırlar dikkate alınır.

En düşük oran s₃ satırında.

Çıkan Değişken = S₃

Pivot İşlemi

Row	x_1		Basic Variable						
0	$z - 60x_1 - 30x_2 - 20x_3$	=	0 z = 0						
1	$8x_1 + 6x_2 + x_3 + s_1$	=	48 $s_1 = 48$						
2	$4x_1 + 2x_2 + 1.5x_3$	$+ s_2 =$	$s_2 = 20$						
3	$(2x_1)$ + $1.5x_2$ + $0.5x_3$	$+ s_3 =$	$s_3 = 8$						
4	x_2	$+ s_4 =$	$5 s_4 = 5$						
Yeni g	Yeni giren değişkenin sütunu dönüştürülür. Bu sütunun pivot satırındaki								

elemanı 1, diğer satırları 0 yapılır. (Bu dönüşümden diğer sütunlar da etkilenir)

 $x_1 + 0.75x_2 + 0.25x_3 + 0.5s_3 = 4$

40

Tip 1 TSi: (Satır 3)x(1/2):
$$x_1 + 0.75x_2 + 0.25x_3 + 0.5s_3 = 0.5$$

Tip 2 TSi: (Satır 3')x(60) + Satır 0: $z + 15x_2 - 5x_3 + 30s_3 = 240$

Tip 2 TSi: (Satır 3')x(-8) + Satır 1:
$$-x_3 + s_1 - 4s_3 = 16$$

Tip 2 TSI: (Satir 3)x(-8) + Satir 1:
$$-x_3 + s_1 - 4s_3 = 16$$

Tip 2 TSI: (Satir 3')x(-4) + Satir 2: $-x_2 + 0.5x_3 + s_2 - 2s_3 = 4$

Pivot İşlemi (1.İterasyon) Sonrası Tablo

Row				Basic Variable
Row 0'	$z + 15x_2 - 5x_3$	$+ 30s_3$	= 240	z = 240
Row 1'	$- x_3 + s_1$	$-4s_{3}$	= 16	$s_1 = 16$
Row 2'	$ x_2 + 0.5x_3$	$+ s_2 - 2s_3$	= 4	$s_2 = 4$
Row 3'	$x_1 + 0.75x_2 + 0.25x_3$	$+ 0.5s_3$	= 4	$x_1 = 4$
Row 4'	x_2	+	$s_4 = 5$	$s_4 = 5$

Yeni BFS:

$$BV = \{s_1, s_2, x_1, s_4\}, NBV = \{s_3, x_2, x_3\}$$

$$z = 240 - 15x_2 + 5x_3 - 30s_3$$

Mevcut tablo optimum değil ! x_3 NBV'den BV'ye girmek üzere seçilir.

2.İterasyon (Çıkan Değişken)

Row						Basic Variable
Row 0'	z +	$15x_2 -$	$5x_3$	$+ 30s_3$	= 240	z = 240
Row 1'		_	x_3	$+ s_1 - 4s_3$	= 16	$s_1 = 16$
Row 2'	_	$x_2 +$	$0.5x_{3}$	$+ s_2 - 2s_3$	= 4	$s_2 = 4$
Row 3'	$x_1 + 0$	$0.75x_2 +$	$0.25x_3$	$+ 0.5s_3$	= 4	$x_1 = 4$
Row 4'		x_2		-	$+ s_4 = 5$	$s_4 = 5$

Row 1': no ratio

Row 2':
$$\frac{4}{0.5} = 8$$

Row 3':
$$\frac{4}{0.25} = 16$$

Row 4': no ratio

Minimum Oran Testi

$$min\{8, 16\} = 8$$

Çıkan Değişken =
$$s_2$$

2.İterasyon (Pivot)

 x_2

x_3			Basic Variable
$z + 15x_2 - 5x_3$	$+ 30s_3$	= 240	z = 240
$- x_3 + s_1$	$-4s_{3}$	= 16	$s_1 = 16$
$- x_2 + 0.5x_3$	$+ s_2 - 2s_3$	= 4	$s_2 = 4$
$x_1 + 0.75x_2 + 0.25x_3$	$+ 0.5s_3$	= 4	$x_1 = 4$
x_2	+	$-s_4 = 5$	$s_4 = 5$
			Basic Variable
$z + 5x_2 + 10$	$0s_2 + 10s_3$	= 280	z = 280
$ 2x_2$ $+$ s_1 $+$	$2s_2 - 8s_3$	= 24	$s_1 = 24$
$-2x_2 + x_3 + $	$2s_2 - 4s_3$	= 8	$x_3 = 8$
	_	= 2	$x_1 = 2$
	$z + 15x_{2} - 5x_{3}$ $- x_{3} + s_{1}$ $- x_{2} + 0.5x_{3}$ $x_{1} + 0.75x_{2} + 0.25x_{3}$ x_{2} $z + 5x_{2} + 1$ $- 2x_{2} + s_{1} + $ $- 2x_{2} + x_{3} + $	$z + 15x_{2} - 5x_{3} + 30s_{3}$ $- x_{2} + 0.5x_{3} + s_{1} - 4s_{3}$ $- x_{2} + 0.5x_{2} + 0.25x_{3} + 0.5s_{3}$ $x_{2} + 10s_{2} + 10s_{3}$ $- 2x_{2} + s_{1} + 2s_{2} - 8s_{3}$ $- 2x_{2} + x_{3} + 2s_{2} - 4s_{3}$	$z + 15x_{2} - 5x_{3} + 30s_{3} = 240$ $- x_{3} + s_{1} - 4s_{3} = 16$ $- x_{2} + 0.5x_{3} + s_{2} - 2s_{3} = 4$ $x_{1} + 0.75x_{2} + 0.25x_{3} + 0.5s_{3} = 4$ $x_{2} + s_{4} = 5$ $z + 5x_{2} + 10s_{2} + 10s_{3} = 280$ $- 2x_{2} + s_{1} + 2s_{2} - 8s_{3} = 24$ $- 2x_{2} + x_{3} + 2s_{2} - 4s_{3} = 8$

 $+ s_4 = 5$

2.İterasyon Sonrası Tablo

Yeni BFS:

$$BV = \{s_1, x_3, x_1, s_4\}, NBV = \{s_3, s_2, x_2\}$$

Row								Basic Variable
0"	Z	+	$5x_2$	+	$10s_2 +$	$10s_3$	= 280	z = 280
1"		_	$2x_2$	$+ s_1 +$	$2s_2$ -	$8s_3$	= 24	$s_1 = 24$
2"		_	$2x_2 + x$	+	$2s_2 -$	$4s_3$	= 8	$x_3 = 8$
3"	X	$_{1} + 1$	$.25x_{2}$	_	$0.5s_2 +$	$1.5s_{3}$	= 2	$x_1 = 2$
4"			x_2				$+ s_4 = 5$	$s_4 = 5$

Mevcut Çözüm Optimal mi? EVET!

Bir maksimizasyon problemi için, tüm temel olmayan değişkenlerin (NBV) kanonik form **amaç fonksiyonundaki katsayıları negatif değilse**, kanonik form **optimaldir**. (OPTİMALLİK KOŞULU)

Yöntem 1: MAX problemi olarak çözmek

Yöntem 2: MİN problemi olarak çözmek

Örnek:

min
$$z = 2x_1 - 3x_2$$

s.t. $x_1 + x_2 \le 4$
 $x_1 - x_2 \le 6$
 $x_1, x_2 \ge 0$

Yöntem 1: MAX problemi olarak çözmek

Amaç fonksiyonunu (-1) ile çarp.

min
$$z = 2x_1 - 3x_2$$

s.t. $x_1 + x_2 \le 4$
 $x_1 - x_2 \le 6$
 $x_1, x_2 \ge 0$

max
$$-z = -2x_1 + 3x_2$$

s.t. $x_1 + x_2 \le 4$
 $x_1 - x_2 \le 6$
 $x_1, x_2 \ge 0$

Yöntem 1: MAX problemi olarak çözmek

-z	<i>X</i> ₁	Х 2	<i>\$</i> ₁	<i>\$</i> ₂	rhs	Basic Variable	Ratio
1	2	-3	0	0	0	-z = 0	
0	1	1	1	0	4	$s_1 = 4$	$\frac{4}{1} = 4*$
0	1	-1	0	1	6	$s_2 = 6$	None

-z	<i>X</i> ₁	<i>Х</i> ₂	<i>s</i> ₁	<i>\$</i> ₂	rhs	Basic Variable
1	5	0	3	0	12	-z = 12
0	1	1	1	0	4	$x_2 = 4$
0	2	0	1	1	10	$s_2 = 10$

Yöntem 2: MİN problemi olarak çözmek

Z	<i>X</i> ₁	Х 2	<i>\$</i> ₁	<i>\$</i> ₂	rhs	Basic Variable	Ratio
1	-2	3	0	0	0	z = 0	
0	1		1	0	4	$s_1 = 4$	$\frac{4}{1} = 4*$
0	1	-1	0	1	6	$s_2 = 6$	None

Z	<i>X</i> ₁	Х ₂	<i>\$</i> ₁	<i>\$</i> ₂	rhs	Basic Variable
1	- 5	0	-3	0	-12	z = -12
0	1	1	1	0	4	$x_2 = 4$
0	2	0	1	1	10	$s_2 = 10$

48

Simplex Örnek (min problem) – 1

min
$$z = 4x_1 - x_2$$

s.t. $2x_1 + x_2 \le 8$
 $x_2 \le 5$
 $x_1 - x_2 \le 4$
 $x_1, x_2 \ge 0$

	Z	X ₁	_x ₂	S ₁	_S ₂	_s ₃	RHS	Oran	_
Z	1		1	0	0	0	0		
s_1	0	2	1	1	0	0	8	8	
s_2	0	0	1	0	1	0	5	5*	-
s ₃	0	1		0	0	 1	4	Yok	_
					- — — — -				_

 x_2 girer S_2 çıkar

	Z	x_1	\mathbf{x}_2	s_1	s_2	s ₃	RHS	Oran
Z	1		0	0	-1	0	 -5	
s_1	0	2	0	1	-1	0	3	
x_2	0	0	1	0	1	0	5	
s ₃	0	1	0	0	1	1	9	

Optimal Çözüm

$$- x_1 = 0 \text{ (NBV)}$$

 $- x_2 = 5 \text{ (BV)}$

z = -5

$$x_2 = 0 \text{ (NBV)}$$

$$s_1 = 3 \text{ (BV)}$$

$$s_2 = 0 \text{ (NBV)}$$

$$s_3 = 9$$
 (BV)

49

Simplex Örnek (min problem) – 2

min
$$z = -x_1 - x_2$$

s.t. $x_1 - x_2 \le 1$
 $x_1 + x_2 \le 2$

	Z	x_1	x_2	s_1	s_2	RHS	Ora	n
	1	1	1	0	0	0		-
s_1	0			_	_	_		-
s_2	0	1	(1)	0	1	2	2	•
								-

$$x_2$$
 girer S_2 çıkar

Optimal Çözüm

$$z = -2$$

 $x_1 = 0$ (NBV)
 $x_2 = 2$ (BV)

$$s_1 = 3 \text{ (BV)}$$

$$s_2 = 0$$
 (NBV)

Alternatif Optimal Çözüm

$$BV = \{s_1, s_2, s_3, s_4\}, NBV = \{x_1, x_2, x_3\}$$

Z	Х1	Х 2	Х 3	<i>s</i> ₁	<i>\$</i> 2	<i>\$</i> 3	<i>S</i> ₄	rhs	Basic Variable	Ratio
1	-60	-35	-20	0	0	0	0	0	z = 0	
0	8	6	1	1	0	0	0	48	$s_1 = 48$	$\frac{48}{8} = 6$
0	4	2	1.5	0	1	0	0	20	$s_2 = 20$	$\frac{20}{4} = 5$
0	2	1.5	0.5	0	0	1	0	8	$s_3 = 8$	$\frac{8}{2} = 4*$
0	0	1	0	0	0	0	1	5	$s_4 = 5$	None
	,			,				<u>"</u>		

$$BV = \{x_1, s_1, s_2, s_4\}, NBV = \{x_2, x_3, s_3\}$$

Z	<i>X</i> ₁	Х2	<i>Х</i> 3	s_1	<i>\$</i> ₂	<i>\$</i> 3	<i>\$</i> ₄	rhs	Basic Variable	Ratio
1	0	10	-5	0	0	30	0	240	z = 240	
0	0	0	-1	1	0	-4	0	16	$s_1 = 16$	None
0	0	-1	0.5	0	1	-2	0	4	$s_2 = 4$	$\frac{4}{0.5} = 8*$
0	1	0.75	0.25	0	0	0.5	0	4	$x_1 = 4$	$\frac{4}{0.25} = 16$
0	0	1	0	0	0	0	1	5	$s_4 = 5$	None
						<u> </u>		<u> </u>		

$$BV = \{x_1, x_3, s_1, s_4\}, NBV = \{x_2, s_2, s_3\}$$

Alternatif Optimal Çözüm NBV

z satırında **0 olan** bir **NBV** var: x_2

z	<i>X</i> ₁	(X ₂)	<i>Ж</i> 3	<i>s</i> ₁	s_2	s_3	<i>\$</i> ₄	rhs	Basic Variable
1	0	0	0	0	10	10	0	280	z = 280
0	0	-2	0	1	2	-8	0	24	$s_1 = 24$
0	0	-2	1	0	2	-4	0	8	$x_3 = 8$
0	1	(1.25)	0	0	-0.5	1.5	0	2	$x_1 = 2*$
0	0	1	0	0	0	0	1	5	$s_4 = 5$
B	$V = \{x_1,$	X_2 , S_1 ,	s_{4} .NI	BV =	$\{x_2, s_2, s_3\}$	$\{z_{1}, z_{2} = 2\}$	80 - 1	$0s_2 - 10$	$0s_3 = 280$
	(*1)	3, 1,	4)		(**29**29**.	3),~ –			3 - 5 - 5
4	(*1°)	<i>X</i> ₂	Х 3	<i>s</i> ₁	(**2**2**)	(s_3)	<i>s</i> ₄	rhs	Basic Variable
4 <u>z</u>					\$2 10				Basic
1 0		Х 2	Ж 3	<i>s</i> ₁		s_3	<i>s</i> ₄	rhs	Basic Variable
4 1	<u>x</u> ₁	X ₂	X ₃	<i>s</i> ₁	\$2 10	\$3 10	s ₄	rhs 280	Basic Variable z=280
1 0	0 1.6	X ₂ 0 0	X ₃	s ₁ 0 1	10 1.2	10 -5.6	s ₄ 0 0	rhs 280 27.2	Basic Variable $z = 280$ $s_1 = 27.2$
1 0 0	0 1.6 1.6	X ₂ 0 0	0 0 1	S ₁ 0 1 0	10 1.2 1.2	10 -5.6 -1.6	s ₄ 0 0 0	rhs 280 27.2 11.2	Basic Variable $z = 280$ $s_1 = 27.2$ $x_3 = 11.2$

Alternatif Optimal Çözüm

Her iki tablo da optimal...

Tablo 3

$$BV = \{x_{1}, x_{3}, s_{1}, s_{4}\}, NBV = \{x_{2}, s_{2}, s_{3}\}$$

$$\begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ s_{1} \\ s_{2} \\ s_{3} \\ s_{4} \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 8 \\ 24 \\ 0 \\ 0 \\ 5 \end{bmatrix}, \qquad z^{*} = 280$$

$$\begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ s_{4} \end{bmatrix} = \begin{bmatrix} 0 \\ 1.6 \\ 11.2 \\ 27.2 \\ 0 \\ 0 \\ 3.4 \end{bmatrix}, \qquad z^{*} = 280$$

Alternatif Optimal Çözüm

Optimal çözümlerin matematiksel ifadesi:

$$x^{(1)*}$$
 $x^{(2)*}$

$$x^{(1)*} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 8 \end{bmatrix}$$

$$x^{(2)*} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 1.6 \\ 11.2 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \lambda \begin{bmatrix} 2 \\ 0 \\ 8 \end{bmatrix} + (1 - \lambda) \begin{bmatrix} 0 \\ 1.6 \\ 11.2 \end{bmatrix}, \quad 0 \le \lambda \le 1$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2\lambda \\ 1.6 - 1.6\lambda \\ 11.2 - 3.2\lambda \end{bmatrix}$$

Sınırsız Çözüm

$$\max z = 36x_1 + 30x_2 - 3x_3 - 4x_4$$
s.t.
$$x_1 + x_2 - x_3 \le 5$$

$$6x_1 + 5x_2 - x_4 \le 10$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Z	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>s</i> ₁	<i>\$</i> 2	rhs	Basic Variable	Ratio
1	-36	-30	3	4	0	0	0	z = 0	
0	1	1	-1	0	1	0	5	$s_1 = 5$	$\frac{5}{1} = 5$
0	6	5	0	-1	0	1	10	$s_2 = 10$	$\frac{10}{6} = \frac{5}{3}$ *

BV =
$$\{s_1, s_2\}$$
, NBV = $\{x_1, x_2, x_3, x_4\}$

$$BV = \{x_1, s_1\}, NBV = \{x_2, x_3, x_4, s_2\}$$

Sınırsız Çözüm

Z	<i>X</i> ₁	<i>Х</i> 2	<i>X</i> ₃	Х4	<i>s</i> ₁	<i>\$</i> ₂	rhs	Basic Variable	Ratio
1	0	0	3	-2	0	6	60	z = 60	
0	0	$\frac{1}{6}$	-1	$\left(\frac{1}{6}\right)$	1	$-\frac{1}{6}$	$\frac{10}{3}$	$s_1 = \frac{10}{3}$	$(\frac{10}{3})/(\frac{1}{6}) = 20*$
0	1	$\frac{5}{6}$	0	$-\frac{1}{6}$	0	$\frac{1}{6}$	$\frac{5}{3}$	$x_1 = \frac{5}{3}$	None

$$BV = \{x_1, x_4\}, NBV = \{x_2, x_3, s_1, s_2\}$$

Z	<i>X</i> ₁	<i>Х</i> 2	Х 3	<i>X</i> ₄	<i>s</i> ₁	<i>s</i> ₂	rhs	Basic Variable	Ratio
1	0	2	<u>-9</u>	0	12	4	100	z = 100	
0	0	1	-6	1	6	-1	20	$x_4 = 20$	None
0	1	1	-1	0	1	0	5	$x_1 = 5$	None

$$x_4 = 20 + 6x_3$$

$$x_1 = 5 + x_3$$

 x_3 'ü istediğimiz kadar artırabiliriz Z, x_3 'teki her artış için 9 birim artacaktır 56 $z = 100 - 2x_2 + 9x_3 - 12s_1 - 4s_2$

- Ender karşılaşılmakla beraber, Simplex algoritmasının bir LP'nin optimal çözümünü bulamadığı durumlar vardır.
- Simplex iterasyonlarında (max problem);

```
Yeni BFS z değeri = Mevcut BFS z değeri -
(yeni BFS'de giren değişken değeri) x
```

(mevcut BFS'de giren değişkenin satır 0 katsayısı)

Bu durumda;

Yeni BFS'de giren değişken değeri > 0 ise,

Yeni BFS z değeri > Mevcut BFS z değeri

Yeni BFS'de giren değişken değeri = 0 ise,

Yeni BFS z değeri = Mevcut BFS z değeri

- <u>TANIM</u>: Eğer bir LP'nin her BFS'sinde tüm temel değişkenler (BV) pozitif ise, bu LP'ye yozlaşmamış (nondegenerate) LP denir.
 - Yozlaşmamış bir LP'de her iterasyonda z değeri artar (max problemi) ve bir BFS birden fazla kez ziyaret edilmez.
- <u>TANIM:</u> Herhangi bir BFS'sinde bir temel değişkeni (BV) 0 değeri alan bir LP'ye yozlaşmış (degenerate) LP denir.
 - → Modelin en az bir gereksiz kısıtı vardır.
 - → Cycling (döngüye girme) olasılığı var.

Örnek:

max
$$z = 5x_1 + 2x_2$$

s.t. $x_1 + x_2 \le 6$
 $x_1 - x_2 \le 0$
 $x_1, x_2 \ge 0$

Z	<i>X</i> ₁	<i>X</i> ₂	<i>\$</i> ₁	<i>\$</i> ₂	rhs	Basic Variable	Ratio
1	-5	-2	0	0	0	z = 0	
0	1	1	1	0	6	$s_1 = 6$	6
0	1	-1	0	1	0	$s_2 = 0$	0*

$$BV = \{s_1, s_2\}, NBV = \{x_1, x_2\} \Rightarrow BV = \{x_1, s_1\}, NBV = \{x_2, s_2\}_{59}$$

Z	<i>X</i> ₁	Х 2	<i>\$</i> ₁	<i>\$</i> ₂	rhs	Basic Variable	Ratio
1	0	-7	0	5	0	z = 0	
0	0	2	1	-1	6	$s_1 = 6$	$\frac{6}{2} = 3*$
0	1	-1	0	1	0	$x_1 = 0$	None

$$BV = \{x_1, s_1\}, NBV = \{x_2, s_2\}$$
 \Rightarrow $BV = \{x_1, x_2\}, NBV = \{s_1, s_2\}$

Z	<i>X</i> ₁	<i>X</i> ₂	<i>\$</i> ₁	s ₂	rhs	Basic Variable
1	0	0	3.5	1.5	21	z = 21
0	0	1	0.5	-0.5	3	$x_2 = 3$
0	1	0	0.5	0.5	3	$x_1 = 3$

Basic Variables	Basic Feasible Solution	Corresponds to Extreme Point
x_1, x_2	$x_1 = x_2 = 3, s_1 = s_2 = 0$	D
x_1, s_1	$x_1 = 0, s_1 = 6, x_2 = s_2 = 0$	C
x_1, s_2	$x_1 = 6, s_2 = -6, x_2 = s_1 = 0$	Infeasible
x_2, s_1	$x_2 = 0, s_1 = 6, x_1 = s_2 = 0$	C
x_2, s_2	$x_2 = 6, s_2 = 6, s_1 = x_1 = 0$	В
s_1, s_2	$s_1 = 6, s_2 = 0, x_1 = x_2 = 0$	C

 $Maximize z = 3x_1 + 9x_2$

$$x_1 + 4x_2 \le 8$$

$$x_1 + 2x_2 \le 4$$

$$x_1, x_2 \ge 0$$

Iteration	Basic	x_1	x_2	<i>x</i> ₃	x_4	Solution
0	ž.	-3	<u>_</u> 9	0	0	0
x2 enters	x_3	1	4	1	0	8
x_3 leaves	<i>x</i> ₄	1	_ 2	0	1	4
1	ζ	$-\frac{3}{4}$	0	9	0	18
x_1 enters	x_2	<u>1</u>	1	14	0	2
x_4 leaves	<i>x</i> ₄	12	0	$-\frac{1}{2}$	1	
2	z	0	0	3 2] 2	18
(optimum)	<i>x</i> ₂	0	1	1/2	$-\frac{1}{2}$	2
	x_1	1	0	-1	2	

Başlangıç BFS'sinin Bulunması

Simplex algoritması başlamak için bir BFS'ye ihtiyaç duyar.

Başlangıç temel çözümü olurlu bir temel çözüm olmalı. Olursuz bir temel çözüm olmaz!

- kısıtlar ≤ olursaması durumunda; dolgu (slack)
 değişkenleri başlangıç için bir BFS elde etmede kullanılabilir.
- Başlangıçta elimizde hazır bir BFS yoksa (≥ kısıtları) o zaman iki farklı yöntemler ile başlangıç BFS'si elde edilebilir:
 - Büyük M Metodu
 - İki Evre Metodu

Büyük M (Big-M) Metodu

min
$$z = 2x_1 + 3x_2$$

s.t. $\frac{1}{2}x_1 + \frac{1}{4}x_2 \le 4$
 $x_1 + 3x_2 \ge 20$
Standart Form: $x_1 + x_2 = 10$

$$z - 2x_1 - 3x_2 = 0$$

$$\frac{1}{2}x_1 + \frac{1}{4}x_2 + s_1 = 4$$

$$x_1 + 3x_2 - e_2 = 20$$

$$x_1 + x_2 = 10$$

 İlk tablonun oluşturulması ve bir BFS elde etmek için öncelikle iki adet yapay (artificial) değişken tanımlayalım.

$$z - 2x_1 - 3x_2 = 0$$

$$\frac{1}{2}x_1 + \frac{1}{4}x_2 + \boxed{s_1}$$

$$x_1 + 3x_2$$

$$x_1 + x_2 = 0$$

$$= 4$$

$$+ a_3 = 10$$
Başlangıç BFS $z = 0, s_1 = 4, a_2 = 20, a_3 = 10$

• İlk problem ile yapay değişkenleri tanımlayarak elde ettiğimiz problem aynı optimal çözüme mi sahip olacak?

Optimal:
$$z = 0$$
, $s_1 = 4$, $a_2 = 20$, $a_3 = 10$, $x_1 = x_2 = 0$

Yapay değişkenlerin optimal çözümde temel değişken (BV)
 olmamaları (0 değeri almaları) için, bu değişkenlere büyük bir
 amaç fonksiyonu (M) katsayısı tanımlanır:

$$\min z = 2x_1 + 3x_2 + Ma_2 + Ma_3$$

$$z - 2x_1 - 3x_2 - Ma_2 - Ma_3 = 0$$

Buradaki amaç, bu değişkenlerin en kısa sürede temel
 olmayan değişken (NBV) olarak çözümden çıkmalarını ve bir
 daha temel değişken (BV) olmamalarını sağlamaktır.

- Problemin yeni tanımlanan amaç fonksiyonundan da görüleceği gibi, optimal çözümde: $a_2 = a_3 = 0$ olması beklenir.
- Modifiye edilmiş amaç fonksiyonu kullanıldığında, yapay değişkenler eklenmiş problemin optimal çözümü ile orijinal problemin optimal çözümü <u>aynı olacaktır</u>.
- Bazı durumlarda, Büyük M metodu ile bulunan optimal çözümde bazı <u>yapay değişkenler pozitif değer alabilir</u>.
 Bu gibi durumlar <u>orijinal problemin olurlu çözümü</u> <u>olmadığını (infeasible)</u> gösterir.

Büyük M Metodu Adımları

- 1. Problemi **standart forma** çevir (Eşitsizlikleri eşitliğe dönüştür, sağ tarafları pozitif yap).
- Eğer mevcut formdan BFS elde edilemiyorsa yapay değişkenler tanımla.
- 3. Her yapay değişken için amaç fonksiyonunda büyük bir katsayı (M) tanımla (min problemi için Ma_i , max problemi için $-Ma_i$).
- 4. Başlangıçta tüm yapay değişkenler temel çözümde yer alacağı için, Simplex'e başlamadan önce 0 satırındaki (amaç fonksiyonu) yapay değişkenleri temel satır işlemleri ile ele.
- 5. Modifiye edilmiş problemi **Simplex ile çöz**. Optimal çözümde <u>tüm</u> <u>yapay değişkenler 0</u> ise, orijinal problem için <u>olurlu bir optimal</u> <u>çözüm</u> bulunmuştur. Eğer optimal çözümde <u>pozitif yapay</u> <u>değişkenler</u> varsa <u>orijinal problem olursuzdur</u> (infeasible).

$$\min z = 2x_1 + 3x_2$$

Row 1:
$$\frac{1}{2}x_1 + \frac{1}{4}x_2 + s_1 = 4$$

Row 2:
$$x_1 + 3x_2 - e_2 + a_2 = 20$$

Row 3:
$$x_1 + x_2 + a_3 = 10$$

Temel satır işlemleri ile satır 0 kanonik forma dönüştürülür.

Row 0:
$$z - 2x_1 - 3x_2 - Ma_2 - Ma_3 = 0$$

$$M(\text{row 2})$$
: $Mx_1 + 3Mx_2 - Me_2 + Ma_2 = 20M$

$$M(\text{row 3})$$
: $Mx_1 + Mx_2 + Ma_3 = 10M$

New row 0:
$$z + (2M - 2)x_1 + (4M - 3)x_2 - Me_2 = 30M$$

Z	<i>x</i> ₁	<i>X</i> ₂	<i>s</i> ₁	e 2	a 2	a 3	rhs	Basic Variable	Ratio
1	2M - 2	4M - 3	0	-M	0	0	30 <i>M</i>	z = 30M	
0	1/2	$\frac{1}{4}$	1	0	0	0	4	$s_1 = 4$	16
0	1	3	0	-1	1	0	20	$a_2 = 20$	$\frac{20}{3}*$
0	1	1	0	0	0	1	10	$a_3 = 10$	10

Z	<i>X</i> ₁	Х2	s_1	<i>e</i> ₂	<i>a</i> ₂	a 3	rhs	Basic Variable	Ratio
1	$\frac{2M-3}{3}$	0	0	$\frac{M-3}{3}$	$\frac{3-4M}{3}$	0	$\frac{60+10M}{3}$	$z = \frac{60 + 10M}{3}$	
0	$\frac{5}{12}$	0	1	$\frac{1}{12}$	$-\frac{1}{12}$	0	$\frac{7}{3}$	$s_1 = \frac{7}{3}$	$\frac{28}{5}$
0	$\frac{1}{3}$	1	0	$-\frac{1}{3}$	$\frac{1}{3}$	0	$\frac{20}{3}$	$x_2 = \frac{20}{3}$	20
0	$\left(\frac{2}{3}\right)$	0	0	1/3	$-\frac{1}{3}$	1	$\frac{10}{3}$	$a_3 = \frac{10}{3}$	5*

Z	<i>X</i> ₁	Х2	<i>s</i> ₁	e 2	a ₂	a ₃	rhs	Basic Variable
1	0	0	0	$-\frac{1}{2}$	$\frac{1-2M}{2}$	$\frac{3-2M}{2}$	25	z = 25
0	0	0	1	$-\frac{1}{8}$	$\frac{1}{8}$	$-\frac{5}{8}$	$\frac{1}{4}$	$s_1 = \frac{1}{4}$
0	0	1	0	$-\frac{1}{2}$	$\frac{1}{2}$	$-\frac{1}{2}$	5	$x_2 = 5$
0	1	0	0	$\frac{1}{2}$	$-\frac{1}{2}$	$\frac{3}{2}$	5	$x_1 = 5$

BV =
$$\{x_1, x_2, s_1\}$$
, NBV = $\{e_2, a_2, a_3\}$
 $x^* = \begin{bmatrix} x_1 \\ x_2 \\ s_1 \\ e_2 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \\ 1/4 \\ 0 \\ 0 \\ 0 \end{bmatrix}$, $z^* = 25$

Büyük M Metodu ile Problemin Olursuz Olduğunun Bulunması

min
$$z = 2x_1 + 3x_2$$

s.t. $\frac{1}{2}x_1 + \frac{1}{4}x_2 \le 4$
 $x_1 + 3x_2 \ge 36$
 $x_1 + x_2 = 10$
 $x_1, x_2 \ge 0$

$$z - 2x_1 - 3x_2 = 0$$

$$\frac{1}{2}x_1 + \frac{1}{4}x_2 + s_1 = 4$$

$$x_1 + 3x_2 - e_2 + a_2 = 36$$

$$x_1 + x_2 + a_3 = 10$$

Büyük (Big) M Metodu ile Problemin Olursuz Olduğunun Bulunması

Z	<i>X</i> ₁	Х2	<i>s</i> ₁	e 2	a ₂	a ₃	rhs	Basic Variable	Ratio
1	2M - 2	4M - 3	0	-M	0	0	46 <i>M</i>	z = 46M	
0	$\frac{1}{2}$	$\frac{1}{4}$	1	0	0	0	4	$s_1 = 4$	16
0	1	3	0	-1	1	0	36	$a_2 = 36$	12
0	1	1	0	0	0	1	10	$a_3 = 10$	10*

Z	<i>X</i> ₁	Х 2	<i>s</i> ₁	e 2	a 2	a ₃	rhs	Basic Variable
1	1 - 2M	0	0	-M	0	3-4M	30 + 6M	z = 6M + 30
0	$\frac{1}{4}$	0	1	0	0	$-\frac{1}{4}$	$\frac{3}{2}$	$s_1 = \frac{3}{2}$
0	$-\dot{2}$	0	0	-1	1	-3	6	$a_2 = \frac{1}{6}$
0	1	1	0	0	0	1	10	$x_2 = 10$

Optimal çözümde yapay değişken a_2 pozitif değer aldı. Problemin olurlu çözümü yoktur. $_{73}$

İki Evre (Two Phase) Metodu

- Elimizde hazır bir BFS olmadığında kullanılabilecek diğer bir metod da iki evre metodudur.
- Büyük M metodunda olduğu gibi probleme yapay değişkenler eklenir.
- İlk aşamada (Evre-1), amaç fonksiyonu eldeki yapay değişkenleri minimize etmeye çalışır.
- Yapay değişkenler temel olmaktan çıktığında, artık elimizde orijinal problem için bir BFS vardır. Böylelikle ilk evre tamamlanır.
- İkinci evrede orijinal problemin amaç fonksiyonu ile Simplex'e devam edilir.

İki Evre Metodu Adımlar

- 1. Problemi **standart forma** dönüştür (Eşitsizlikleri eşitliğe dönüştür, sağ tarafları pozitif yap).
- Eğer mevcut formdan BFS elde edilemiyorsa yapay değişkenler tanımla.
- 3. Ilk evrede yeni bir amaç fonksiyonu tanımla. Bu amaç fonksiyonu (w') yapay değişkenlerin toplamı olsun.
- 4. Bu problemi Simplex ile çöz. Problem olurlu (feasible) ise, optimal çözümde **yapay değişkenler** temel olmayan değişkenler (NBV) olacaktır. (Ayrıca w' değeri de 0 olacaktır)
- 5. <u>İkinci evreye</u> geç. Elde edilen amaç fonksiyonunu **orijinal amaç fonksiyonu ile değiştir**. Bu amaç fonksiyonu ve mevcut BFS ile Simplex'e devam et. Optimal çözümü bul.

İlk Evre Sonunda Durumlar

- Durum 1: w' O'dan farklıdır. Bu durumda, orijinal problemin olurlu bir çözümü yoktur (infeasible).
- Durum 2: w' 0'a eşit, yapay değişkenler NBV'dir. Bu durumda yapay değişkenlere ait tüm sütunlar problemden (ve simplex tablodan) çıkartılabilir. Orijinal problemin amaç fonksiyonu ile 2.evreye devam edilebilir.
- Durum 3: w' 0'a eşit, ancak en az bir yapay değişken BV'dir (Değeri 0 olmasına rağmen temel değişken). Bu durumda temel olmayan (NBV) tüm yapay değişkenler ve 0 satırında negatif katsayıya sahip orijinal probleme ait tüm temel değişkenler (BV) problemden çıkartılarak 2.evreye devam edilir.

min
$$z = 2x_1 + 3x_2$$

s.t. $\frac{1}{2}x_1 + \frac{1}{4}x_2 \le 4$
 $x_1 + 3x_2 \ge 36$
 $x_1 + x_2 = 10$
 $x_1, x_2 \ge 0$

$$z - 2x_1 - 3x_2 = 0$$

$$\frac{1}{2}x_1 + \frac{1}{4}x_2 + s_1 = 4$$

$$x_1 + 3x_2 - e_2 + a_2 = 36$$

$$x_1 + x_2 + a_3 = 10$$

$$z - 2x_1 - 3x_2 = 0$$

$$\frac{1}{2}x_1 + \frac{1}{4}x_2 + s_1 = 4$$

$$x_1 + 3x_2 - e_2 + a_2 = 36$$

$$x_1 + x_2 + a_3 = 10$$

İlk Evre için yeni amaç fonksiyonu oluştur.

min
$$w' = a_2 + a_3$$

s.t. $\frac{1}{2}x_1 + \frac{1}{4}x_2 + s_1 = 4$
 $x_1 + 3x_2 - e_2 + a_2 = 36$
 $x_1 + x_2 + a_3 = 10$

min
$$w' = a_2 + a_3$$

s.t. $\frac{1}{2}x_1 + \frac{1}{4}x_2 + s_1 = 4$
 $x_1 + 3x_2 - e_2 + a_2 = 36$
 $x_1 + x_2 + a_3 = 10$

Temel satır işlemleri ile satır 0 kanonik forma dönüştürülür.

Row 0:
$$w'$$
 $-a_2 - a_3 = 0$
+ Row 2: $x_1 + 3x_2 - e_2 + a_2 = 36$
+ Row 3: $x_1 + x_2 + a_3 = 10$
= New row 0: $w' + 2x_1 + 4x_2 - e_2 = 46$

w'	<i>X</i> ₁	<i>Х</i> ₂	<i>\$</i> ₁	e 2	a 2	a ₃	rhs	Basic Variable	Ratio
1	2	4	0	-1	0	0	46	w' = 46	
0	$\frac{1}{2}$	$\frac{1}{4}$	1	0	0	0	4	$s_1 = 4$	16
0	1	3	0	-1	1	0	36	$a_2 = 36$	12
0	1	1	0	0	0	1	10	$a_3 = 10$	10*

w'	<i>X</i> ₁	Х 2	<i>\$</i> ₁	e 2	a 2	a ₃	rhs	Basic Variable
1	-2	0	0	- 1	0	-4	6	w'=6
0	$\frac{1}{4}$	0	1	0	0	$-\frac{1}{4}$	$\frac{3}{2}$	$s_1 = \frac{3}{2}$
0	-2	0	0	-1	1	-3	6	$a_2 = 6$
0	1	1	0	0	0	1	10	$x_2 = 10$

0 satırındaki katsayıların hepsi negatif, optimal çözüm bulundu. w' değeri 0'dan farklı (6), bu nedenle **orjinal problem olurlu değil.**

min
$$z = 2x_1 + 3x_2$$

s.t. $\frac{1}{2}x_1 + \frac{1}{4}x_2 \le 4$
 $x_1 + 3x_2 \ge 20$
 $x_1 + x_2 = 10$
 $x_1, x_2 \ge 0$

$$z - 2x_1 - 3x_2 = 0$$

$$\frac{1}{2}x_1 + \frac{1}{4}x_2 + s_1 = 4$$

$$x_1 + 3x_2 - e_2 + a_2 = 20$$

$$x_1 + x_2 + a_3 = 10$$

min
$$z = 2x_1 + 3x_2$$

s.t. $\frac{1}{2}x_1 + \frac{1}{4}x_2 \le 4$
 $x_1 + 3x_2 \ge 20$
 $x_1 + x_2 = 10$
 $x_1, x_2 \ge 0$

İlk Evre için yeni amaç fonksiyonu oluştur.

min
$$w' = a_2 + a_3$$

s.t. $\frac{1}{2}x_1 + \frac{1}{4}x_2 + s_1 = 4$
 $x_1 + 3x_2 - e_2 + a_2 = 20$
 $x_1 + x_2 + a_3 = 10$

Temel satır işlemleri ile satır 0 kanonik forma dönüştürülür.

Row 0:
$$w'$$
 $-a_2 - a_3 = 0$
+ Row 2: $x_1 + 3x_2 - e_2 + a_2 = 20$
+ Row 3: $x_1 + x_2 + a_3 = 10$
= New row 0: $w' + 2x_1 + 4x_2 - e_2 = 30$

w'	<i>X</i> ₁	Х 2	<i>s</i> ₁	e 2	a ₂	a ₃	rhs	Basic Variable	Ratio
1	2	4	0	-1	0	0	30	w' = 30	
0	$\frac{1}{2}$	$\frac{1}{4}$	1	0	0	0	4	$s_1 = 4$	16
0	1	3	0	-1	1	0	20	$a_2 = 20$	$\frac{20}{3}$ *
0	1	1	0	0	0	1	10	$a_3 = 10$	10

w'	<i>X</i> ₁	Х 2	<i>s</i> ₁	e 2	a 2	a ₃	rhs	Basic Variable	Ratio
1	$\frac{2}{3}$	0	0	$\frac{1}{3}$	$-\frac{4}{3}$	0	$\frac{10}{3}$	$w' = \frac{10}{3}$	
0	$\frac{5}{12}$	0	1	$\frac{1}{12}$	$-\frac{1}{12}$	0	$\frac{7}{3}$	$s_1 = \frac{7}{3}$	$\frac{28}{5}$
0	$\frac{1}{3}$	1	0	$-\frac{1}{3}$	$\frac{1}{3}$	0	$\frac{20}{3}$	$x_2 = \frac{20}{3}$	20
0	$\left(\frac{2}{3}\right)$	0	0	$\frac{1}{3}$	$-\frac{1}{3}$	1	$\frac{10}{3}$	$a_3 = \frac{10}{3}$	5*

w'	<i>X</i> ₁	Х 2	<i>s</i> ₁	e 2	a 2	a ₃	rhs	Basic Variable
1	0	0	0	0	- 1	-1	0	w'=0
0	0	0	1	$-\frac{1}{8}$	1/8	$-\frac{5}{8}$	$\frac{1}{4}$	$s_1 = \frac{1}{4}$
0	0	1	0	$-\frac{1}{2}$	$\frac{1}{2}$	$-\frac{1}{2}$	5	$x_2 = 5$
0	1	0	0	$\frac{1}{2}$	$-\frac{1}{2}$	$\frac{3}{2}$	5	$x_1 = 5$

- Bu aşamadan sonra 2.evreye geçilebilir.
- 2.evre için, öncelikle satır 0 mevcut BFS için kanonik forma dönüştürülmeli.
- Tablodan a_2 ve a_3 sütunları silinebilir.

$$\min z = 2x_1 + 3x_2$$
 yada $z - 2x_1 - 3x_2 = 0$

• x_1 ve x_2 Evre 1 optimal tablosunda yer aldığından, Evre 2'ye başlamadan önce Evre 2 satır 0'dan **TSİ ile yok edilmelidir.**

Phase II row 0:
$$z - 2x_1 - 3x_2 = 0$$

+ 3(row 2): $3x_2 - \frac{3}{2}e_2 = 15$
+ 2(row 3): $2x_1 + e_2 = 10$
= New Phase II row 0: $z - \frac{1}{2}e_2 = 25$

$$\min z - \frac{1}{2}e_2 = 25$$

$$s_1 - \frac{1}{8}e_2 = \frac{1}{4}$$

$$x_2 - \frac{1}{2}e_2 = 5$$

$$x_1 + \frac{1}{2}e_2 = 5$$

Bu problemde, ilave herhangi bir pivot yapmadan bu çözümün **2.evre için de optimal** olduğu görülebilir.

$$\max z = 40x_1 + 10x_2 + 7x_5 + 14x_6$$
s.t.
$$x_1 - x_2 + 2x_5 = 0$$

$$-2x_1 + x_2 - 2x_5 = 0$$

$$x_1 + x_3 + x_5 - x_6 = 3$$

$$2x_2 + x_3 + x_4 + 2x_5 + x_6 = 4$$

$$\text{All } x_i \ge 0$$

- x_4 sadece 4.eşitlikte yer aldığından, temel değişken olarak alınabilir.
- Bir BFS elde etmek için; 1, 2 ve 3. eşitlikler için 3 adet yapay değişken tanımlayalım: a_1 , a_2 , a_3 .

Evre 1 Amaç Fonk: $\min w = a_1 + a_2 + a_3$

TSİ ile 1,2 ve 3ncü satırlar amaç fonk.na eklendiğinde elde edilen Evre 1 tablosu:

W	<i>X</i> ₁	Х 2	Х 3	<i>X</i> ₄	<i>X</i> ₅	Х ₆	a ₁	a 2	a ₃	rhs	Basic Variable
1	0	0	1	0	1	-1	0	0	0	3	w = 3
0	1	-1	0	0	2	0	1	0	0	0	$a_1 = 0$
0	-2	1	0	0	-2	0	0	1	0	0	$a_2 = 0$
0	1	0	1	0	1	-1	0	0	1	3	$a_3 = 3$
0	0	2	1	1	2	1	0	0	0	4	$x_4 = 4$

w=0, optimal Evre 1 tablosu. Ancak a_1 ve a_2 BV. a_3 sütunu silinebilir.

$w = x_1$	1 <i>X</i> 2	X 3	<i>X</i> ₄	<i>X</i> ₅	<i>X</i> ₆	<i>a</i> ₁	a 2	a ₃	rhs	Basic Variable
1	0 -1 1 0 2	0 0 0 1 0	0 0 0 0 1	0 2 -2 1 1	0 0 0 -1 2	0 1 0 0 0	0 0 1 0	1 0 0 1	0 0 0 3 1	$w = 0$ $a_1 = 0$ $a_2 = 0$ $x_3 = 3$ $x_4 = 1$

	Iki Ev	re Mo	etodu	ı – Du	ırum .	3			
		z —	$40x_1$	$-10x_{2}$	$-7x_{5}$	-14x	$_{6} = 0$		
Z	Х ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>X</i> ₆	a ₁	a 2	rhs	Basic Variables
1	-10	0	0	-7	-14	0	0	0	z = 0
0	-1	0	0	2	0	1	0	0	$a_1 = 0$
0	1	0	0	-2	0	0	1	0	$a_2 = 0$
0	0	1	0	1	-1	0	0	3	$x_3 = 3$
0	2	0	1	1	2	0	0	1	$x_4 = 1$
				Optim	nal Tablo	, <i>z</i> =7			Basic
Z	Х2	Х 3	<i>X</i> ₄	<i>X</i> ₅	<i>X</i> ₆	a ₁	a ₂	rhs	Variables
1	4	0	7	0	0	0	0	7	z = 7
0	0	0	0	2	0	1	0	0	$a_1 = 0$
0	1	0	0	0	0	0	1	0	$a_2 = 0$
0	1	1	$\frac{1}{2}$	$\frac{3}{2}$	0	0	0	$\frac{7}{2}$	$x_3 = \frac{7}{2}$
0	0	0	$\frac{1}{2}$	$\frac{1}{2}$	1	0	0	$\frac{1}{2}$	$x_6 = \frac{1}{2}$

Örnek

min
$$z = -x_1 - x_2$$

s.t. $x_1 - x_2 \le 1$
 $x_1 + x_2 \le 2$

11			
	Solution	x_{j}	
c'	$\mathbf{x} = -c_B B^{-1} b$	$-c_B B^{-1} A_j + c_j =$	= - j
	$X_3 = B^{-1}b$	$\mathbf{z} = B^{-1}A_j$	
			//

