DESIGN OF RECTANGULAR PATCH ANTENNA ARRAY FOR 5G WIRELESS COMMUNICATION

Semester-V

Antennas and Wave Propagation

Poorvajha G

2020105562

Aim:

We have planned to design a two-element array antenna for 5G wireless communication using HFSS software. The antenna operating frequency is chosen as 28GHz. Our final design must contain two rectangular patches on a Roger RT-5880 LZ, dielectric constant ε_r =1.96. Till now we have implemented a single patch edge-fed antenna with Koch snowflake fractal.

Design Image:

Dimensions:

Patch:

Patch width X= 0.4403 cm

Patch length Y= 0.31535 cm

Substrate:

Substrate material: Rogers RT-5880

Dielectric constant: 1.96

Substrate thickness: 0.0762 cm

Substrate width X: 2.7 cm

Substrate length Y: 3.18 cm

Feed:

Edge feed width: 0.0366 cm

Edge feed length: 0.267 cm

Feed Width: 0.2738 cm

Feed length: 1.07 cm

Frequency: 28GHz

Results:

Input impedance:

	Freq [GHz]	dB(PeakDirectivity) ATK_Solution : FF_Sweep
1	14.000000	3.484804
2	28.000000	9.596694
3	42.000000	8.757609

We are still working in Koch snowflake fractal.

The Koch snowflake is introduced in the patch by using a python code which is given as follows:

```
ScriptEnv.Initialize("Ansoft.ElectronicsDesktop")
oDesktop.RestoreWindow()
oProject = oDesktop.GetActiveProject()
oDesign = oProject.GetActiveDesign()
oEditor = oDesign.SetActiveEditor("3D Modeler")
r=1 #radius
unit='mm' #unit
n=4 #iteration
models=[]
    name=oEditor.CreateRegularPolygon(
```

```
global models
if n == 0:
    models.append(triangle(x, y, r))
else:
    fractal(n-1, x-r*cos(0*pi/3), y-r*sin(0*pi/3), r/2)
    fractal(n-1, x-r*cos(2*pi/3), y-r*sin(2*pi/3), r/2)
    fractal(n-1, x-r*cos(4*pi/3), y-r*sin(4*pi/3), r/2)
    models.append(triangle(x, y, r))

triangle(0,0,-r)
fractal(n,0,0,r/2)

tool = ','.join(models)
AddWarningMessage(tool)

oEditor.Subtract(
    [
        "NAME:Selections",
        "Blank Parts:=" , "Polygon1",
        "Tool Parts:=" , tool
],
    [
        "NAME:SubtractParameters",
        "KeepOriginals:=" , False
])
```

The Koch fractal in the patch is implemented as follows:

Iteration-3

Iteration-4

We are yet to add the substrate, ground and feed.