Evaluación 2

Montiel Ramírez B. Karytza

Grupo 1 - Mayo 2019

0.1. Introducción

En la planeación de irrigación de cultivos o estudios de uso de agua en la Agricultura, se requiere conocer la cantidad de vapor de agua en la atmósfera que proviene por un lado de la evaporación de la humedad de suelo, así como también de la transpiración de las plantas. A este proceso se le conoce como Evapotranspiración.

En el presente documento se hablará acerca del cálculo de la Evapotranspiración de referencia ET_0 , pero, ¿qué es dicho concepto?. Segun el libro Crop Evapotranspiration, escrito por Richard G. Allen, Luis S. Pereira, entre otros con la participación del FAO, se refiere a un parámetro climático que expresa el poder de evaporación de la atmósfera.

0.2. Procedimiento

La evaluación constó de tres partes que se basaban en realizar diferentes actividades.

Parte 1.- El producto sería la construcción de una tabla de valores con los siguientes datos: Latitud, Longitud, Elevación, Velocidad del Viento, Tmax, Tmin, RHmax, RHmin, RHmean y Rs, así como la realización de tres gráficos sobre la variación mensual de la temperatura, humedad relativa y radiación solar. Todo esto a partir de los datos tomados del viñedo ubicado en el kilómetro 41 de la carretera de Hermosillo a Bahía Kino.

Al inicio del código se importan las librerías a utilizar, contiguo a eso se lee el primer archivo correspondiente a los datos meteorológicos. Se visualiza la tabla que se trabajará y se crean columnas con las que posteriormente se harán cálculos. Después, mediante un loop calculamos la elevación, longitud y latitud, finalmente observamos el producto final en una tabla:

	Mes	Tmax	Tmin	Tmean	RHmax	RHmin	RHmean	Vel	RS	Latitud	Longitud	Elevacion
0	- 1	33.35	0.54	16.963975	91.60	5.98	38.471432	1.943827	111.861695	28.918611	-111.310639	101
1	2	31.47	0.07	17.230275	99.53	6.76	48.168006	1.964189	126.347812	28.918611	-111.310639	101
2	3	35.22	3.06	19.282359	89.73	6.76	36.968353	1.926196	170.105269	28.918611	-111.310639	101
3	4	36.30	5.43	21.880618	93.40	5.23	40.785667	2.101812	213.415993	28.918611	-111.310639	101
4	5	38.18	7.13	23.650034	94.60	8.19	44.233468	2.113918	237.177688	28.918611	-111.310639	101
5	6	41.47	13.12	28.416187	98.37	5.34	50.810507	2.154986	224.636062	28.918611	-111.310639	101
6	7	44.94	18.71	31.065726	97.00	13.10	57.639805	2.022204	200.421983	28.918611	-111.310639	101
7	8	40.24	22.71	30.120894	98.60	30.16	68.868454	1.910853	189.466922	28.918611	-111.310639	101
8	9	41.39	19.43	29.661271	98.03	21.32	66.619750	1.790326	183.133271	28.918611	-111.310639	101
9	10	35.82	10.23	23.254207	98.47	17.32	68.696082	1.664435	148.386203	28.918611	-111.310639	101
10	11	32.39	2.47	16.966396	99.43	8.75	58.085458	1.498097	125.265785	28.918611	-111.310639	101
11	12	31.86	-1.34	14.332823	97.33	8.04	58.333938	1.628730	99.410793	28.918611	-111.310639	101

Para finalizar con la primera parte de la actividad, se nos pide realizar tres gráficas:

La variación mensual de la temperatura máxima ronda entre los 30° C y 40° C, llegando a superar los 40° C en un pequeño período. La temperatura mínima va de los 0° a 20° C al igual que en el caso anterior, supera su máximo en una ocasión. Mientras que la temperatura media se mantiene por debajo de los 20° C y llega por encima de los 30° C.

La variación mensual de la humedad tanto máxima como mínima, así como la media, se mantuvieron poco varientes dentro de sus propios parámetros.

Finalmente, la variación mensual de la radiación solar se incrementa abruptamente, y disminuye con gran velocidad.

Parte 2.- En este pequeño apartado, se pide estimar la Evapotranspiración ET_0 mensual promedio, para ello, mediante arreglos y loops se procede a realizar los cálculos necesarios. Una vez hecho esto, se acomodan los resultados en una tabla:

	Mes	ET_J&H	ET_Valiantzas1	ET_Valiantzas4
0	1	56.545212	21.310199	43.165927
1214	2	64.715721	24.210628	50.449047
2558	3	95.924988	33.834978	67.057178
4046	4	134.322228	44.563196	86.068343
5486	5	159.853219	51.067272	96.785325
6974	6	178.380785	52.063887	99.099546
8414	7	172.534524	48.026437	78.859969
9902	8	158.592629	44.307655	84.900674
11390	9	151.169927	42.835503	87.684736
12830	10	98.529331	31.589043	70.496390
14318	11	63.328515	23.683415	55.130708
15758	12	43.659941	17.784211	38.243952

En ella se muestran todos los meses del años.

Parte 3.- Finalmente, la última parte de la evaluación se utiliza un nuevo archivo de datos de flujos, en el cual el propósito principal era crear una gráfica del balance energía promedio en un mes típico. Como en otras ocaciones, al ser una archivo diferente el primer paso es leer los datos, continuamente se declaran las variables con las que se va a trabajar y mediante el uso de loops y arreglos se procede a hacer los calculos correspondientes. El producto final:

Donde se muestra la energía que llega a la superficie.

0.3. Conclusión

El proyecto en esta ocasión fue de bastante retroalimentación, donde se aplicaron técnicas de lo más básico a lo más complejo.

Bibliografía

- [1] Crop evapotranspiration Guidelines for computing crop water requirements FAO Irrigation and drainage paper 56. Richard G. Allen, Luis S. Pereira, Dirk Raes, Martin Smith, FAO Food and Agriculture Organization of the United Nations Rome, 1998.
- [2] Evaluation of the Penman-Monteith and other 34 reference evapotranspiration equations under limited data in a semiarid dry climate. Koffi Djaman, Michael O'Neill, Lamine Diop, Ansoumana Bodian, Samuel Allen, Komlan Koudahe, Kevin Lombard. 9 January 2018 /Accepted: 2 September 2018.