Mathématiques discrètes 1

L1 L2I: 2020-2021

Devoir

Durée : 2h

Les imprimés des chapitres 1, 2 et 3 du cours sont autorisés.

Exercice 1. (5 points) Pour deux ensembles A et B, on appelle différence symétrique, noté $A\Delta B$, l'ensemble défini par

$$A\Delta B = (A \cup B) \backslash (A \cap B).$$

Ainsi, $A\Delta B$ est constitué des éléments qui appartiennent soit à A, soit à B, mais pas aux deux.

- 1. Matérialiser sur un dessin $A\Delta B$.
- 2. Soit E un ensemble et $A, B, C \in \mathcal{P}(E)$.
 - a) Montrez que $A\Delta B = [A \cap (E \setminus B)] \cup [(E \setminus A) \cap B]$.
 - b) Calculer $A\Delta A$, $A\Delta (E \setminus A)$, $A\Delta E$ et $E \setminus (A\Delta B)$.
 - c) Montrer que, si $A\Delta B = C$, alors $A\Delta C = B$ et $B\Delta C = A$.

Exercice 2. (5 points) Soit (A, +, ., -) une algèbre de Boole. On considère la relation binaire, de symbole <, définie dans A par :

$$a < b \iff a + b = b$$
.

- 1. Montrer que < est une relation d'ordre dans A.
- 2. Montrer que $(a < b) \iff a.b = a$.
- 3. Montrer que, $\forall (a, b, c) \in \mathcal{A}^3$, $b.c < a.b + \bar{a}.c$.
- 4. On définit la relation binaire \subset par : $a \subset b$ si et seulement si $a.\bar{b} = 0$; montrer que c'est une relation d'ordre dans A.

Problème. (10 points)

Partie A: Considérons l'application $f: \mathbb{R} \longrightarrow \mathbb{R}$ définie par $f(x) = xe^{-x}$.

- 1. Calculer les limites en $-\infty$ et en $+\infty$ de l'application f.
- 2. Calculer la dérivée de l'application f.
- 3. Construire le tableau de variation de l'application f.
- 4. Construire soigneusement C_f , la courbe représentative de l'application f.
- 5. L'application f est elle injective? Justifier votre réponse à l'aide de \mathcal{C}_f .
- 6. L'application f est elle surjective? Justifier votre réponse à l'aide de \mathcal{C}_f .
- 7. L'application f est elle bijective? Justifier votre réponse.

DR. D.N. DIATTA (dndiatta@univ-zig.sn)

Partie B: On considère la relation binaire définie par :

 $x\mathcal{R}y$ si et seulement si $xe^y = ye^x$.

- 1. Établir que \mathcal{R} est une relation d'équivalence.
- 2. En vous aidant de la première partie du problème, déterminer pour tout réel x le nombre d'éléments que contient $\mathcal{R}(x)$ la classe d'équivalence de x.

UNE CORRECTION DU DEVOIR.

Exercice 1.

1. Matérialisation de $A\Delta B$.

Figure 1.

2.

a) Montrons que
$$A\Delta B = [A\cap (E\setminus B)] \cup [(E\setminus A)\cap B]$$
.
$$A\Delta B = (A\cup B)\setminus (A\cap B)$$
$$A\Delta B = (A\cup B)\cap (\overline{A\cap B})$$
$$A\Delta B = (A\cup B)\cap (\overline{A}\cup \overline{B})$$
$$A\Delta B = ((A\cap \overline{A})\cup (A\cap \overline{B}))\cup ((B\cap \overline{B})\cup (B\cap \overline{A}))$$
$$\operatorname{Comme}\ A\cap \overline{A} = B\cap \overline{B} = \varnothing, \operatorname{alors:}$$
$$A\Delta B = (A\cap \overline{B})\cup (B\cap \overline{A})$$
$$A\Delta B = [A\cap (E\setminus B)]\cup [(E\setminus A)\cap B].$$

DR. D.N. DIATTA (dndiatta@univ-zig.sn)

b) Calculons
$$A\Delta A$$
, $A\Delta (E \setminus A)$, $A\Delta E$ et $E \setminus (A\Delta B)$.

$$A\Delta A = (A \cup A) \setminus (A \cap A)$$

$$A\Delta A = A \setminus A = \varnothing.$$

$$A\Delta (E \setminus A) = (A \cup (E \setminus A)) \setminus (A \cap (E \setminus A))$$

$$A\Delta (E \setminus A) = E \setminus \varnothing = E$$

$$A\Delta E = (A \cup E) \setminus (A \cap E)$$

$$A\Delta E = E \setminus A$$

$$A\Delta E = \bar{A}$$

$$E \setminus (A\Delta B) = E \setminus ([A \cap (E \setminus B)] \cup [(E \setminus A) \cap B])$$

$$E \setminus (A\Delta B) = (\overline{A \cap \bar{B}}) \cup \overline{A} \cap \overline{B}$$

$$E \setminus (A\Delta B) = (\overline{A \cap \bar{B}}) \cap (\overline{A} \cap B)$$

$$E \setminus (A\Delta B) = (\overline{A} \cup B) \cap (A \cup \overline{B})$$

c) Montrons que $(A\Delta B=C)\Longrightarrow ((A\Delta C)=B)\wedge ((B\Delta C)=A)$. Supposons que $A\Delta B=C$.

$$A\Delta C = A\Delta(A\Delta B)$$
$$A\Delta C = (A\Delta A)\Delta B$$
$$A\Delta C = \varnothing \Delta B = B$$

car la différence symérique est associative et \varnothing en est un élément neutre.

$$B\Delta C = B\Delta(A\Delta B)$$

$$B\Delta C = B\Delta(B\Delta A)$$

$$B\Delta C = (B\Delta B)\Delta A$$

$$B\Delta C = \varnothing \Delta A = A$$

car la différence symérique est commutative, associative et \varnothing en est un élément neutre.

Exercice 2.

- 1. Montrons que < est une relation d'ordre dans \mathcal{A} c'est à dire qu'elle est réflexive, antisymétrique et transitive.
 - Reflexivité. Soit $a \in \mathcal{A}$. Comme $(\mathcal{A}, +, ., \bar{})$ est une algèbre de Boole, alors par la propriété d'idempotence on a : a + a = a, d'où a < a.
 - Antisymétrie. Soient $a, b \in \mathcal{A}/(a < b) \land (b < a)$. On a :

$$(S_1) \left\{ \begin{array}{l} a+b=b \\ b+a=a \end{array} \right.$$

Par commutativité de l'addition dans une algèbre de Boole, on a : (a+b) = (b+a). Ainsi (S) implique a=b.

• Transitivité. Soient $a, b, c \in \mathcal{A}/(a < b) \land (b < c)$. On a :

$$a+b=b \tag{1}$$

$$b + c = c \tag{2}$$

Par l'équation (1) b=a+b. Remplaçant b par a+b dans l'équation (2) on a :

$$a+b+c=c. (3)$$

Par l'équation (2) b+c=c. Remplaçant c par b+c dans l'équation (3), on a :

$$a + c = c \tag{4}$$

d'où a < c.

2. Montrons que $(a < b) \iff a.b = a$.

 $(a < b) \Longrightarrow a.b = a$. Admettons que a < b. Ainsi a + b = b, d'où a.(a + b) = a.b. Comme a.(a + b) = a.a + a.b = a + a.b, alors a + a.b = a.b. Or a + a.b = a par conséquent a = a.b.

 $a.b = a \Longrightarrow (a < b)$. Admettons que a.b = a. Comme a.b + b = b, remplaçant a.b par a dans cette expression, on a: a + b = b, d'où a < b.

3. Montrons que $\forall (a,b,c) \in \mathcal{A}^3$, $b.c < a.b + \bar{a}.c$. Soient $a,b,c \in \mathcal{A}$. $(b.c)(a.b + \bar{a}.c) = b.c.a.b + b.c.\bar{a}.c = b.c.a + b.c.\bar{a}$ car b.b = b et c.c = c. Mettant en facteur b.c dans cette dernière expression, on a : $(b.c)(a.b + \bar{a}.c) = b.c(a + \bar{a}) = b.c$ car $a + \bar{a} = 1$. Ainsi, $(b.c)(a.b + \bar{a}.c) = b.c$ d'où par l'équivalence démontrée en 2. on a :

$$b.c < a.b + \bar{a}.c. \tag{5}$$

4. Montrons que \subset est une relation d'ordre dans \mathcal{A} c'est à dire qu'elle est réflexive, antisymétrique et transitive.

Reflexivité. Soit $a \in \mathcal{A}$. Comme $a.\bar{a} = 0$ alors $a \subset a$.

Antisymétrie. Soient $a, b \in \mathcal{A}/(a \subset b) \land (b \subset a)$. On a :

$$(S_2) \begin{cases} a.\bar{b} = 0 \\ b.\bar{a} = 0 \end{cases}$$

Comme $a + \bar{a}.b = a + b$ et $b + \bar{b}a = b + a$, alors $a + \bar{a}.b = b + \bar{b}a$. Substituant dans cette dernière expression les relations de (S_2) , on a a + 0 = b + 0, d'où a = b.

Transitivité. Soient $a, b, c \in \mathcal{A}/(a \subset b) \land (b \subset c)$. On a :

$$a.\bar{b} = 0 \tag{6}$$

$$b.\bar{c} = 0 \tag{7}$$

Comme $b + \bar{b} = 1$, alors $a.\bar{c}.(b + \bar{b}) = a.\bar{c}$. Or $a.\bar{c}.(b + \bar{b}) = a.\bar{c}.b + a.\bar{c}.\bar{b} = a.(b.\bar{c}) + \bar{c}.(a.\bar{b}) = 0$ car $a.\bar{b} = 0$ et $b.\bar{c} = 0$. Ainsi $a.\bar{c} = 0$, d'où $a \subset c$.

Problème.

Partie A:

- 1. Calcul des limites de f.
 - En $-\infty$: $\lim_{x \to -\infty} x = -\infty$ et $\lim_{x \to -\infty} e^{-x} = +\infty$, donc $\lim_{x \to -\infty} f(x) = -\infty$ par produit.
 - En $+\infty$: $\lim_{x \to +\infty} x = +\infty$ et $\lim_{x \to +\infty} e^{-x} = 0$, donc $\lim_{x \to +\infty} f(x) = 0$ car la fonction exponentielle domine la fonction x.
- 2. Dérivée de la fonction f.

Pour
$$x \in \mathbb{R}$$
, $f'(x) = e^{-x} - xe^{-x} = (1-x)e^{-x}$.

3. Tableau de variations de f.

DR. D.N. DIATTA (dndiatta@univ-zig.sn)

Soit $x \in \mathbb{R}$. Comme $e^{-x} > 0$, $f'(x) \ge 0 \iff (1-x) \ge 0 \iff x \le 1$. On a ainsi le tableau suivant :

Figure 2.

4. Courbe représentative de f.

Figure 3.

- 5. L'application f n'est pas injective. Si f était injective, toute droite parallèle à l'axe des abscisses (donc d'equation $y = b, b \in \mathbb{R}$) couperait au plus une fois \mathcal{C}_f . Or les droites d'équation $y = b, b \in]0, e^{-1}[$ coupent deux fois \mathcal{C}_f .
- 6. L'application f n'est pas surjective. Si f était surjective, toute droite parallèle à l'axe des abscisses (donc d'equation $y=b,\,b\in\mathbb{R}$) couperait au mois une fois \mathcal{C}_f . Or les droites d'équation $y=b,\,b\in]e^{-1},+\infty[$ ne coupent pas \mathcal{C}_f .

7. L'application f n'est pas bijective car elle n'est pas injective.

Partie B:

1. Montrons que \mathcal{R} est une relation d'équivalence c'est à dire qu'elle est réflexive, symetrique et transitive.

Réflexivité. Soit $x \in \mathbb{R}$, comme $xe^x = xe^x$, alors \mathcal{R} est réflexive.

Symétrie. Soit $x, y \in \mathbb{R}$ tels que $x\mathcal{R}y$. On a : $xe^y = ye^x$. Par symétrie de l'égalité, on a $ye^x = xe^y$, d'où $y\mathcal{R}x$.

Trasitivité. Soient $x, y, z \in \mathbb{R}$ tels que $x\mathcal{R}y$ et $y\mathcal{R}z$. On a :

$$x e^y = y e^x \tag{8}$$

$$ye^z = ze^y \tag{9}$$

De l'équation (8) on a :

$$xe^{-x} = ye^{-y}$$
. (10)

De l'équation (9) on a :

$$ye^{-y} = ze^{-z}. (11)$$

Des équations (10) et (11) on déduit :

$$xe^{-x} = ze^{-z}, (12)$$

qui donne $xe^z = ze^x$, soit $x\mathcal{R}z$.

2. Nombre d'éléments de la classe de $x \in \mathbb{R}$.

Soient $x, y \in \mathbb{R}$. $y \in \mathcal{R}(x)$ si et seulement si $x\mathcal{R}y$. Or $x\mathcal{R}y$ si et seulement si $xe^y = ye^x$, soit $xe^{-x} = ye^{-y}$. Ainsi, $y \in \mathcal{R}(x)$ si et seulement si f(y) = f(x). Autrement dit : $\mathcal{R}(x)$ a autant d'éléments qu'il y'a de points d'intersection entre \mathcal{C}_f et la droite horizontale d'équation y = f(x). Ainsi, à l'aide du \mathcal{C}_f , on conclut que :

- Pour $x \in]-\infty, 0] \cup \{e^{-1}\}, \#\mathcal{R}(x) = 1.$
- Pour $x \in]0, e^{-1}[\cup]e^{-1}, +\infty[, \#\mathcal{R}(x) = 2.$