The General Linear Model

Multiple Regression and Model Criticism

Martin Corley

Today	
,	
■ The Model	
■ Recap from Last Week	
■ What The Model Means	
2 Multiple Regression	
■ Adding Predictors	
■ Type 1 vs. Type 3 Sums of Squares	
■ Interpreting Multiple Regression	
Interpreting Waltiple Regression	
3 Assumptions of Linear Models	
■ Checking Assumptions	
■ Checking Desirables	

Martin Corley USMR 7

Part I

A Linear Model

Notes		
Notes		
ivotes		
Notes		
		

A Word-Naming Experiment

```
load(url('https://is.gd/refnet'))
ls()
## [1] "naming"
summary(naming)
## lngth freq pos RT
## Min. : 4 Min. : 0 N:80 Min. : 332
## 1st Qu.: 7 1st Qu.: 9 V:80 1st Qu.: 626
## Median : 8 Median : 21 A:80 Median : 689
## Mean : 8 Mean : 61 Mean : 695
## 3rd Qu.: 77
## Max. : 13 Max. : 1452 Max. : 1003
```

- \blacksquare RT = naming-aloud times (for 240 words)
- length in characters
- freq in wpm
- pos: Noun, Verb, or Adjective

Martin Corley USMR 7

Several Equations To Start With

A General Model of Observed Data

$$outcome_i = (model) + error_i$$

 $outcomes = (model)$

Linear Model

$$\begin{aligned} \hat{y_i} &= b_0 \cdot 1 + b_1 \cdot x_i \\ \text{y ~ 1 + x} \\ \text{RT ~ log(freq+1)} \end{aligned}$$

lacktriangledown we want estimates of b_0 (intercept) and b_1 (slope)

Martin Corley USMR 7

Begin By Inspecting the Data

with(naming, plot(RT ~ log(freq+1)))

Martin Corley USMR 7

Notes			

Notes

A Simple Linear Model

```
\label{eq:model} \begin{array}{lll} \texttt{model} & \leftarrow \texttt{lm} & (\texttt{RT} & \texttt{log(freq+1)}, \texttt{ data=naming)} \\ \texttt{summary(model)} \end{array}
## Call:
## lm(formula = RT ~ log(freq + 1), data = naming)
## Multiple R-squared: 0.0587, Adjusted R-squared: 0.0548 ## F-statistic: 14.8 on 1 and 238 DF, p-value: 0.00015
```

- \blacksquare R^2 and F are basic indicators of how 'good' a model is
- part of R's output when summarising an lm object
- lacksquare we'll revisit adjusted R^2 later

Martin Corley USMR 7

A Simple Linear Model

Model Recap Interp

```
summary(model)
## -316.9 -65.2 -6.1 70.4 263.9 ## ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 759.87 18.04 42.13 < 2e-16 *** ## Jog(freq + 1) -20.24 5.25 -3.85 0.00015 *** ## ...
```

- \blacksquare glancing at Residuals gives an indication of whether they are roughly symmetrically distributed
- lacktriangle the Coefficients give you the model
- \blacksquare the Estimate for (intercept) is b_0
- lacksquare the Estimate for log(freq + 1) is b_1 , the **slope**

Martin Corley USMR 7

Coefficients

- lacktriangledown independently of whether the model fit is 'good', coefficients can tell us about our data
- lacksquare here, the (Intercept) b_0 isn't that useful
 - ightarrow it takes 760ms to name 'zero-frequency words'
- but the slope b_1 of log(freq + 1) is quite informative
 - \rightarrow words are named 20ms faster per unit increase

 - lacktriangled this is a significant finding lacktriangled calculated from the estimated coefficient and its Std. Error , using the t

Notes		
Notes		
Notes		

Notes			

Digression: R and Objects

- \blacksquare in ${\mathbb R}$, everything is an object (a 'thing' with a name)
 - vectors, matrices, dataframesfunctions, . . .
- \blacksquare functions can take into account what kind of object they're acting on

```
summary(y)
```

Martin Corley USMR 7

Notes

Digressing Further: abline() abline(v=4,col='blue') abline(a=400,b=50,col='green') # intercept, slope abline(model,col='red',lwd=2) log(freq + 1)

Martin Corley USMR 7

Visualisation (using predict())

(confidence intervals for the model)

Martin Corley USMR 7

Visualisation (using predict())

(confidence intervals for predicted observations)

Martin Corley USMR 7

Scaling of Predictors

- 'words of zero frequency' may not be very meaningful
 can **rescale** predictor to make interpretation more useful
- can also be used to ameliorate collinearity

 $\label{eq:model.S} $$ \bmod 1.S \leftarrow In(RT - I(\log (freq+1) - mean(\log(freq+1))), data=naming) $$ summary(model.S) $$$ ## ... Estimate Std. Error t value Pr(>|t|)
(Intercept) 695.38 6.72 103.41 < 2e-16 ***
(I(1) -20.24 5.25 -3.85 0.00015 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 104 on 238 degrees of freedom
Multiple R-squared: 0.0587, Adjusted R-squared: 0.0548
F-statistic: 14.8 on 1 and 238 DF, p-value: 0.00015

- slope unchanged
- 695ms corresponds to words of mean log frequency

Notes			
-			

Notes			

Notes			

Scaling of Predictors

■ *linear* scaling of predictors doesn't change model fit

```
summary(model)$r.squared
## [1] 0.059
summary(model.S)$r.squared
## [1] 0.059
summary(lm(RT ~ I(5 * log(freq + 1)), data=naming))$r.squared
```

■ non-linear scaling—like log() above—changes fit

```
summary(lm(RT ~ freq, data=naming))$r.squared
```

Martin Corley USMR 7

Part II

Multiple Regression

Multiple Predictors I vs. III Interpreting

Multiple Regression

Naming Time by Log Frequency and Word Length

- so far, have accounted for one predictor
 adding predictors increases the dimensionality of the model M

artin	Corley	USMR 7

18	

Notes			

Notes		

Notes			

Adding Predictors

- lacksquare in multiple regression, R^2 measures the fit of the entire model
- \blacksquare sum of individual R^2 s if predictors not correlated
- interpretation more tricky if predictors correlated

Specific Model for Multiple Regression

$$y_i = b_0 + b_1 x_{1i} + b_2 x_{2i} + \ldots + b_n x_{ni} + \epsilon_i$$

lacktriangledown does word length have an effect on naming time (over and above frequency)?

model2 <- lm(RT ~ log(freq+1) + length,data=naming)

Martin Corley USMR 7

Multiple Predictors I vs. III Interpreting

Notos

Comparing Models

- \blacksquare R^2 for model was .059
- \blacksquare R^2 for the new model2 is .079 (from summary(model2))
- does this mean that model2 is better?
- \blacksquare any predictor will improve R^2 (chance associations guarantee this)

model3 <- lm(RT - log(freq+1) + runif(240),data = naming)
add purely random predictor
summary(model3)</pre> ## ... ## Multiple R-squared: 0.0619, Adjusted R-squared: 0.054 ## ...

lacktriangle adjusted R^2 controls for additional predictors

Martin Corley USMR 7

Comparing Models

summary(model) # without length $\mbox{\#\#}$... $\mbox{\#\#}$ F-statistic: 14.8 on 1 and 238 DF, $\mbox{ p-value: 0.00015}$ $\mbox{\#\#}$... summary(model2) # with length ## ... ## F-statistic: 10.2 on 2 and 237 DF, p-value: 5.47e-05 ## ...

Multiple Predictors I vs. III Interpreting

lacktriangledown each model improves over *chance*, but do they successively improve over *each* other?

Martin Corley USMR 7

Notes			
	·		

```
Multiple Predictors I vs. III Interpreting
Comparing Models
            anova(model2)
            ## Analysis of Variance Table
            ##
## Response: RT
           ## Reaponse: RT
## Df Sum Sq Mean Sq F value Pr(>F)
## log(freq + 1) 1 161118 161118 15.12 0.00013 ***
## Length 1 56969 5696 5.35 0.02163 *
## Reasiduals 237 2525770 10657
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
        model2b <- lm(RT-length+log(freq+1),data=naming)</pre>
           ## ... Df Sum Sq Mean Sq F value Pr(>F) ## length 1 113441 113441 10.64 0.0013 ** ## lengtreq + 1) 1 104646 104646 9.82 0.0019 ** ## Residuals 237 2528770 10657 ## ...
                                           Martin Corley USMR 7
```

Multiple Predictors I vs. III Interpreting

Type I vs. Type 3 SS

- \blacksquare order matters because R, by default, uses Type~I sums of squares
 - calculate the improvement to the model caused by each successive predictor *in turn*
- compare to Type III sums of squares
 - calculate the improvement to the model caused by each predictor taking all other predictors into account

 ■ default for, e.g., SPSS
- huge debate about which is 'better'
- good arguments for Type I
- (nobody likes Type II)
- most important: be aware of the consequence...
- \blacksquare predictors should be entered into models in a theoretically-motivated order

Martin Corley USMR 7 23

Multiple Predictors I vs. III Interpreting

Type I vs. Type 3 SS

- \blacksquare order matters because R, by default, uses Type~I sums of squares
 - \blacksquare calculate the improvement to the model caused by each successive predictor in turn
- compare to Type III sums of squares
 - calculate the improvement to the model caused by each predictor taking all other predictors into account
 ■ default for, e.g., SPSS
- huge debate about which is 'better'
- good arguments for Type I
- (nobody likes Type II)
- most important: be aware of the consequence...
- pre

dictors should be entered into mod-	els in a theoretically-motivated order	
Martin Corley	USMR 7	23

Notes		
Notes		
Notes		
-		

Type 1 vs. Type 3 SS

Martin Corley USMR 7

Multiple Predictors I vs. III Interpreting

Multiple Predictors I vs. III Interpreting

Type III SS

■ can easily get Type III-like output

```
drop1(model2,test='F')
```

Martin Corley USMR 7

The Two-Predictor Model

summary(model2) ## Residual standard error: 103 on 237 degrees of freedom ## Multiple R-squared: 0.0795, Adjusted R-squared: 0.0717 ## F-statistic: 10.2 on 2 and 237 DF, p-value: 5.47e-05

- RT decreases by 17ms for every additional unit of log frequency
- RT *increases* by 12ms for every character of length
- \blacksquare model accounts for 8% of the variance

Notes			

Notes		

Notes			

Multiple

The Two-Predictor Model

library(scatterplot3d)
s3d <- with(naming,scatterplot(log(freq +1),length,RT))
s3d\$plane3d(model2)

Naming Time by Log Frequency and Word Length

Martin Corley USMR 7

Notes

Notes

Part III

Model Criticism

	Assumptions	Checking Desirables
Ass	sumptions of Linear Models	
	Required	
	■ linearity of relationships(!) ■ for the residuals: ■ normality ■ homogeneity of variance	

■ independence
- masponaente
sirable
uncorrelated predictors (no collinearity)
no 'bad' (overly influential) observations

Notes	
-	

Linearity plot(model2, which=1)

- lacksquare plotting fitted values $\hat{y_i}$ against residuals ϵ_i
- \blacksquare the 'average residual' is roughly zero across $\hat{y_i},$ so relationship is likely to be linear

Martin Corley USMR 7

Notes

Normality of Residuals ■ simple assessments are often useful hist(residuals(model2), main='', breaks=20) 30 20 9

residuals(model2) Martin Corley USMR 7

0

100 200 300

-300 -200 -100

Normality of Residuals plot(density(residuals(model2)),main='') 0.004 0.003 Density 0.002 0.001 0.000 -400 -200 400 N = 240 Bandwidth = 29.61

Martin Corley USMR 7

33

Notes		

 $\begin{tabular}{l} Theoretical Quantiles \\ Im(RT \sim log(freq + 1) + length) \\ Martin Corley & USMR 7 \end{tabular}$

Homogeneity of Variance $\begin{array}{c} \text{Plot}(\text{model }2, \text{ which=3}) \\ \hline \\ \text{Plot}(\text{model }2, \text{ which=3}) \\ \hline \\ \text{Scale-Localion} \\ \hline \\ \text{Scale-Localion}$

Martin Corley USMR 7

Notes			
	·		

	Assumptions	Checking Desirables	
Independence			
■ no easy way to check indepe	endence of	residuals	
■ in part, because it depends o	n the <i>sourc</i>	te of the observations	
■ one determinant might be a <i>person</i> observed multiple times			
■ e.g., my naming times might	tend to be	slower than yours	
$ ightarrow$ repeated measures $ ightarrow \ldots ightarrow$	mixed mod	lels	

Martin Corley USMR 7

Notes

but meanwhile. . .

Assumptions Checking Desirables

Desirables

collinearity

- correlated predictors widen the confidence interval (i.e., raise the SE of the coefficient)
- we can estimate how much using a calculation of variance inflation factor (VIF)
- lacksquare calculated from R^2 s of models using predictors to predict each other

library(car)
vif(model2)
log(freq + 1) length
1.1 1.1

- \blacksquare $\sqrt{\text{VIF}}$ tells you how much the SE has been inflated
- \blacksquare $\sqrt{1.1}=1.0:$ no problem here!

Martin Corley USMR 7 37

Notes

Identifying 'Bad' Observations

- outliers affect the intercept only
- the studentised residual is the difference between the observation and the regression without that observation

Martin Corley USMR 7

Identifying 'Bad' Observations

 \blacksquare observations with high ${\bf leverage}$ are inconsistent with other data, but may not be distorting the model

Martin Corley	USMR 7	39

Notes		
-		
-		

Identifying 'Bad' Observations

 \blacksquare what we care about most are observations with high influence (outliers with high leverage)

Martin Corley USMR 7

41

42

Desirables

identifying 'bad' observations

- \blacksquare one way of identifying observations with high influence is using Cook's distance \blacksquare Cook's distances over 1 are worth looking at

plot(model2, which=4)

Assumptions Violated

if we didn't that reaction times scaled with log frequency.

```
model2.B <- lm(RT ~ freq + length,data=naming)
summary(model2.B)</pre>
```

Martin Corley USMR 7

Notes

Notes

Fitted values

Martin Corley USMR 7

Obs. number

43

Notes	
Notes	
Notes	