

Plano de Ensino

- Revisão de Conjuntos e Funções
- Linguagens, Expressões Regulares e Gramáticas
- Autômatos
- Conceitos básicos sobre compiladores e interpretadores
- Visão geral do processo de compilação
- Tipos de compiladores
- Análise léxica
- Análise sintática
- Análise semântica
- Geração de Código

Livro-Texto

- Bibliografia Básica:
 - » AHO, A.; ULLMANN, J.; REVI, S.. Compiladores : princípios, técnicas e ferramentas. 3ª ed. Rio de Janeiro: LTC, 2006.
- Bibliografia Complementar:
 - » TOSCANI, Simão Sirineo; PRICE, Ana M. A..
 Implementação de Linguagens de Programação.
 1ª ed. Porto Alegre: Bookman Companhia Ed., 2008.
 - » DELAMARO, Marcio Eduardo. Como Construir um Compilador: Utilizando Ferramentas Java. 1ª ed.: Novatec, 2004.

2. Expressões Regulares

- Toda linguagem regular pode ser descrita por uma expressão simples, denominada Expressão Regular
- Trata-se de um formalismo gerador, pois expressa como construir (gerar) as palavras da linguagem.
- Uma ER é definida recursivamente a partir de conjuntos (linguagens) básicas e operação de concatenação e união.

2. Expressões Regulares

- Dado um alfabeto ∑:
 - » Os símbolos do alfabeto são expressões regulares.
 - » Se R_1 e R_2 são ER, então ($R_1 \cup R_2$) é uma ER. ($R_1 \mid R_2$) representa a união de linguagens.
 - » Se R_1 e R_2 são ER, então (R_1R_2) é uma ER.
 - R_1R_2 representa concatenação de linguagens
 - » Se R₁ é uma ER, então (R₁)* é uma ER; $(R_1)^{-}$ representa a linguagem formada pela concatenação de zero ou mais palavras de R_1^{-}
 - » Se R_1 é uma ER, então $(R_1)^+$ é uma ER; $(R_1)^* \text{ representa a linguagem formada pela concatenação de um ou mais palavras de <math>R_1$ » Obs: $R_1^* = R_1 R_1^*$

2. Expressões Regulares

■ Dado um alfabeto ∑ = {a, b}; e as expressões regulares a seguir, teremos a linguagem gerada, conforme tabela:

ER	Linguagem Gerada
а	{a}
ab	{ab}
(a b)	{a, b}
ba*	{b, ba, baa, baaa, baaaa,}
(a)*	{ε, a, aa, aaa,}
(a b)*	{ε, a, b, aa, ab, bb, abaa,}
(a (a b))*	{ε, aa, ab, aaaa, abaa, aaab,}
(a (a b)+)	{aa, ab, aaa, aba, aab,}
((a b)* (a b))*	{ε, a, b, ab, aa, bb, aaa, aba, abb,}

2. Expressões Regulares - Exemplos

- Exemplo 1: representação de todos os números binários com pelo menos 1 dígito.
 - » (0 | 1)+
- Exemplo 2: representação de todos os números binários com pelo menos 1 dígito e no máximo 4.
 - » (0 | 1) | ((0 | 1)(0 | 1)) | ((0 | 1)(0 | 1)(0 | 1)) | ((0 | 1)(0 | 1)(0 | 1)(0 | 1))
- Exemplo 3: representação de todos os números binários com sinal e mantissa, sendo números negativos (iniciando com 1) ou positivos (iniciando com 0).
 - » (0 | 1)(0 | 1)+

