NORMAS DE VECTORES Y MATRICES

Manuel Carlevaro

Departamento de Ingeniería Mecánica Grupo de Materiales Granulares - UTN FRLP

manuel.carlevaro@gmail.com

Cálculo Avanzado • 2023

 $\textcircled{1} \cdot X_{\overrightarrow{1}} X_{\overrightarrow{1}} X_{\overrightarrow{1}} X_{\overrightarrow{1}} \times \textcircled{1}$

Problema:

$$f(x) = 0$$

$$f(x) = g(x) \implies h(x) = f(x) - g(x) = 0$$

Teorema: Valores intermedios.

Sea $f:[a,b] \to \mathbb{R}$ una función **continua** en [a,b] tal que f(a) < f(b). Entonces: $\forall u \in (f(a),f(b))$ existe $c \in [a,b]$ tal que f(c) = u.

1

Problema:

$$f(x) = 0$$

$$f(x) = g(x) \implies h(x) = f(x) - g(x) = 0$$

Teorema: Valores intermedios.

Sea $f:[a,b] \to \mathbb{R}$ una función **continua** en [a,b] tal que f(a) < f(b). Entonces: $\forall u \in (f(a),f(b))$ existe $c \in [a,b]$ tal que f(c) = u.

Estrategia general:

- $lackbox{ Mostrar que existe al menos una solución } (x^*)$
- ▶ Aislar una raíz: $D \subset \mathbb{R}$, $x^* \in D$ y $f(x) \neq 0 \ \forall x \in D \setminus \{x^*\}$
- Iterar

1

Problema:

$$f(x) = 0$$

$$f(x) = g(x) \implies h(x) = f(x) - g(x) = 0$$

Teorema: Valores intermedios.

Sea $f:[a,b] \to \mathbb{R}$ una función **continua** en [a,b] tal que f(a) < f(b). Entonces: $\forall u \in (f(a),f(b))$ existe $c \in [a,b]$ tal que f(c) = u.

Estrategia general:

- lacktriangle Mostrar que existe al menos una solución (x^*)
- ▶ Aislar una raíz: $D \subset \mathbb{R}$, $x^* \in D$ y $f(x) \neq 0 \ \forall x \in D \setminus \{x^*\}$
- ▶ Iterar

Métodos:

- Bracketing (cerrados)
 - > Bisección
 - > Posición falsa (regula falsi)
 - > ITP
- ▶ Interpolación
 - > Secante
 - > Muller
- Iterativos (abiertos)
 - > Punto fijo
 - > Newton-Raphson
 - > Secante
 - > Broyden
- ► Combinación de cerrados y abiertos
 - > Brent
 - > Ridders

1

- ▶ R.L. Burden, D.J. Faires y A.M. Burden. *Análisis numérico*. 10.ª ed. Mexico: Cengage Learning, 2017. Capítulo 2.
- ▶ J.F. Epperson. *An Introduction to Numerical Methods and Analysis.* 2.ª ed. Hoboken, United States: John Wiley & Sons, 2013. Capítulo 3.
- ▶ J. Kiusalaas. *Numerical Methods in Engineering with Python*. Cambridge, United Kingdom: Cambridge University Press, 2005. Capítulo 4.
- ▶ E. Kreyszig, H. Kreyszig y E.J. Norminton. *Advanced Engineering Mathematics*. Hoboken, USA: John Wiley & Sons, Inc, 2011. Capítulo 19.