Całka podwójna i potrójna w obszarze regularnym. Całki iterowane.

Anna Bahyrycz

Całki podwójne

Definicja 1

- R prostokąt
- R_1, R_2, \ldots, R_n podział $\mathcal P$ prostokąta R na prostokąty o parami rozłącznych wnętrzach, które całkowicie wypełniają R
- prostokąt R_k ma wymiary $\Delta x_k \times \Delta y_k, \ k=1,2,\ldots,n$
- $d_k = \sqrt{(\Delta x_k)^2 + (\Delta y_k)^2}$ długość przekątnej prostokąta R_k
- ullet $\delta(\mathcal{P}) = \max\{d_1, d_2, \ldots, d_n\}$ średnica podziału \mathcal{P}
- wybieramy punkty pośrednie $(x_k^*, y_k^*) \in R_k, \ k = 1, 2, \dots, n$

Niech f(x,y) będzie funkcją ograniczoną na prostokącie R. Całkę podwójną z funkcji f po prostokącie R definiujemy następująco:

$$\iint_{R} f(x,y) \ dxdy := \lim_{\delta(\mathcal{P}_n) \to 0} \sum_{k=1}^{n} f(x_k^*, y_k^*) \Delta x_k \Delta y_k$$

o ile granica jest właściwa i nie zależy od sposobu podziału prostokąta R i wyboru punktów pośrednich.

Mówimy wtedy, że funkcja f(x,y) jest całkowalna na R.

Jeżeli funkcja f(x,y) jest ciągła na prostokącie R, to jest całkowalna na R.

Twierdzenie 2 (o liniowości całki)

Jeżeli f i g są całkowalne na prostokącie R i $\alpha, \beta \in \mathbb{R}$, to

$$\iint_R \alpha f(x,y) + \beta g(x,y) \ dxdy = \alpha \iint_R f(x,y) \ dxdy + \beta \iint_R g(x,y) \ dxdy.$$

Jeżeli funkcja f(x,y) jest ciągła na prostokącie R, to jest całkowalna na R.

Twierdzenie 2 (o liniowości całki)

Jeżeli f i g są całkowalne na prostokącie R i $\alpha, \beta \in \mathbb{R}$, to

$$\iint_R \alpha f(x,y) + \beta g(x,y) \ dx dy = \alpha \iint_R f(x,y) \ dx dy + \beta \iint_R g(x,y) \ dx dy.$$

Twierdzenie 3 (o addytywności całki względem obszaru całkowania)

Jeżeli f jest całkowalna na prostokącie R oraz $R=R_1\cup R_2$, gdzie R_1,R_2 to prostokąty o rozłącznych wnętrzach, to

$$\iint_{R} f(x,y) \ dxdy = \iint_{R_1} f(x,y) \ dxdy + \iint_{R_2} f(x,y) \ dxdy.$$

Jeżeli funkcja f jest ciągła na prostokącie $R=[a,b]\times [c,d]$, to

$$\iint_{[a,b]\times[c,d]} f(x,y)\ dxdy = \int_a^b \Big[\int_c^d f(x,y)\ dy\Big] dx = \int_c^d \Big[\int_a^b f(x,y)\ dx\Big] dy.$$

Jeżeli funkcja f jest ciągła na prostokącie $R=[a,b]\times [c,d]$, to

$$\iint_{[a,b]\times[c,d]} f(x,y)\ dxdy = \int_a^b \Big[\int_c^d f(x,y)\ dy\Big] dx = \int_c^d \Big[\int_a^b f(x,y)\ dx\Big] dy.$$

Przykład 1

$$\iint_{[0,2]\times[-1,1]} y^3 e^{x^2} \, dx dy$$

Jeżeli funkcja f jest ciągła na prostokącie $R=[a,b]\times [c,d]$, to

$$\iint_{[a,b]\times[c,d]} f(x,y)\ dxdy = \int_a^b \Big[\int_c^d f(x,y)\ dy\Big] dx = \int_c^d \Big[\int_a^b f(x,y)\ dx\Big] dy.$$

Przykład 1

$$\iint_{[0,2]\times[-1,1]} y^3 e^{x^2} dx dy = \int_0^2 \left[\int_{-1}^1 e^{x^2} y^3 dy \right] dx$$

Jeżeli funkcja f jest ciągła na prostokącie $R=[a,b]\times [c,d]$, to

$$\iint_{[a,b]\times[c,d]} f(x,y)\ dxdy = \int_a^b \Big[\int_c^d f(x,y)\ dy\Big] dx = \int_c^d \Big[\int_a^b f(x,y)\ dx\Big] dy.$$

Przykład 1

$$\iint_{[0,2]\times[-1,1]} y^3 e^{x^2} dx dy = \int_0^2 \left[\int_{-1}^1 e^{x^2} y^3 dy \right] dx = \int_0^2 \left[\frac{1}{4} e^{x^2} y^4 \right]_{-1}^1 dx$$
$$= \frac{1}{4} \int_0^2 e^{x^2} (1-1) dx = 0$$

Jeżeli f jest funkcją o rozdzielonych zmiennych postaci f(x,y)=g(x)h(y), gdzie funkcja g(x) jest ciągła na [a,b], zaś h(y) jest ciągła na [c,d], to

$$\iint_{[a,b]\times[c,d]} f(x,y) \ dxdy = \Big(\int_a^b g(x) \ dx\Big) \cdot \Big(\int_c^d h(y) \ dy\Big).$$

Jeżeli f jest funkcją o rozdzielonych zmiennych postaci f(x,y)=g(x)h(y), gdzie funkcja g(x) jest ciągła na [a,b], zaś h(y) jest ciągła na [c,d], to

$$\iint_{[a,b]\times[c,d]} f(x,y) \ dxdy = \Big(\int_a^b g(x) \ dx\Big) \cdot \Big(\int_c^d h(y) \ dy\Big).$$

Przykład 2

Zamień na sumę iloczynów całek pojedynczych

$$\iint_{[1,3]\times[1,e]} \left(\frac{2y^2}{x^3} + \frac{3x}{y}\right) dxdy$$

Jeżeli f jest funkcją o rozdzielonych zmiennych postaci f(x,y)=g(x)h(y), gdzie funkcja g(x) jest ciągła na [a,b], zaś h(y) jest ciągła na [c,d], to

$$\iint_{[a,b]\times[c,d]} f(x,y) \ dxdy = \Big(\int_a^b g(x) \ dx\Big) \cdot \Big(\int_c^d h(y) \ dy\Big).$$

Przykład 2

Zamień na sumę iloczynów całek pojedynczych

$$\iint_{[1,3]\times[1,e]} \left(\frac{2y^2}{x^3} + \frac{3x}{y}\right) dxdy$$

$$= 2\left(\int_{1}^{3} \frac{1}{x^{3}} dx\right) \cdot \left(\int_{1}^{e} y^{2} dy\right) + 3\left(\int_{1}^{3} x dx\right) \cdot \left(\int_{1}^{e} \frac{1}{y} dy\right).$$

Definicja 2

Niech

- D będzie obszarem ograniczonym na płaszczyźnie,
- ullet f(x,y) będzie funkcją określoną i ograniczoną na D,
- R dowolnym prostokątem takim, że $D \subset R$.

Definiujemy rozszerzenie funkcji f na prostokąt R:

$$f^*(x,y) = \left\{ \begin{array}{ll} f(x,y) & \textit{dla } (x,y) \in D \\ 0 & \textit{dla } (x,y) \in R \setminus D \end{array} \right. .$$

Całkę podwójną z funkcji f po obszarze D definiujemy wzorem:

$$\iint_D f(x,y) \ dxdy = \iint_R f^*(x,y) \ dxdy,$$

o ile całka po prostokącie R istnieje.

Mówimy wtedy, że funkcja f jest całkowalna na D.

Definicja 2

Niech

- D będzie obszarem ograniczonym na płaszczyźnie,
- ullet f(x,y) będzie funkcją określoną i ograniczoną na D,
- R dowolnym prostokątem takim, że $D \subset R$.

Definiujemy rozszerzenie funkcji f na prostokąt R:

$$f^*(x,y) = \left\{ \begin{array}{ll} f(x,y) & \textit{dla} \ (x,y) \in D \\ 0 & \textit{dla} \ (x,y) \in R \setminus D \end{array} \right. .$$

 $\it Całkę\ podwójną\ z\ funkcji\ f\ po\ obszarze\ D\ definiujemy\ wzorem:$

$$\iint_D f(x,y) \ dxdy = \iint_R f^*(x,y) \ dxdy,$$

o ile całka po prostokącie R istnieje. Mówimy wtedy, że funkcja f jest całkowalna na D.

Uwaga 1

Całka $\iint_D f(x,y) dxdy$ nie zależy od wyboru prostokąta R.

i wierazenie o

Niech obszar D ma postać:

$$D = \{(x, y) : a \leqslant x \leqslant b, \ d(x) \leqslant y \leqslant g(x)\},\$$

gdzie d(x), g(x) są funkcjami ciągłymi na [a,b] i d(x) < g(x) dla $x \in (a,b)$ (jest to tzw. obszar normalny względem osi 0x).

Jeżeli f(x,y) jest ciągła na obszarze D, to

$$\iint_D f(x,y) \ dxdy = \int_a^b \left[\int_{d(x)}^{g(x)} f(x,y) \ dy \right] dx.$$

Twierdzenie 7

Niech obszar D ma postać:

$$D=\{(x,y):c\leqslant y\leqslant d,\;p(y)\leqslant x\leqslant q(y)\},$$

gdzie p(y), q(y) są funkcjami ciągłymi na [c,d] i p(y) < q(y) dla $y \in (c,d)$ (jest to tzw. obszar normalny względem osi 0y).

Jeżeli f(x,y) jest ciągła na obszarze D, to

$$\iint_D f(x,y) \ dxdy = \int_c^d \left[\int_{p(y)}^{q(y)} f(x,y) \ dx \right] dy.$$

Zamienić na całki iterowane całkę podwójną z funkcji $\,f\,$ całkowalnej na obszarze $\,D\,$ ograniczonym krzywymi: $\,x+2y=8\,$ i $\,xy=6.$

Zamienić na całki iterowane całkę podwójną z funkcji f całkowalnej na obszarze

D jest obszarem normalnym względem obu osi

$$\iint_D f(x,y) \ dxdy$$

Zamienić na całki iterowane całkę podwójną z funkcji f całkowalnej na obszarze

D jest obszarem normalnym względem obu osi

$$\iint_D f(x,y) \; dx dy = \int_2^6 \Big[\int_{\frac{6}{x}}^{4-\frac{x}{2}} f(x,y) \; dy \Big] dx$$

Zamienić na całki iterowane całkę podwójną z funkcji f całkowalnej na obszarze

D jest obszarem normalnym względem obu osi

$$\iint_D f(x,y) \ dx dy = \int_2^6 \left[\int_{\frac{6}{x}}^{4-\frac{x}{2}} f(x,y) \ dy \right] dx = \int_1^3 \left[\int_{\frac{6}{y}}^{8-2y} f(x,y) \ dx \right] dy$$

Definicja 3

Sumę skończonej liczby obszarów normalnych (względem osi 0x lub 0y) o parami rozłącznych wnętrzach nazywamy obszarem regularnym na płaszczyźnie.

Definicja 3

Sumę skończonej liczby obszarów normalnych (względem osi 0x lub 0y) o parami rozłącznych wnętrzach nazywamy obszarem regularnym na płaszczyźnie.

Twierdzenie 8

Całki po obszarach regularnych mają te same własności co całki po prostokątach, tzn. liniowość, addytywność względem obszaru całkowania.

1 1Zykiau 4

Zamienić na całki iterowane całkę podwójną z funkcji f całkowalnej na obszarze D ograniczonym krzywymi: $x=y^2$ i $x=\frac{y^2}{2}+1$.

1 12ykiau 4

Zamienić na całki iterowane całkę podwójną z funkcji $\,f\,$ całkowalnej na obszarze

$$D$$
 ograniczonym krzywymi: $x=y^2$ i $x=\frac{y^2}{2}+1$.

D jest obszarem normalnym względem osi Oy

$$\iint_D f(x,y) \ dxdy$$

1 12ykiau 4

Zamienić na całki iterowane całkę podwójną z funkcji f całkowalnej na obszarze

$$D$$
 ograniczonym krzywymi: $x=y^2$ i $x=\frac{y^2}{2}+1$.

D jest obszarem normalnym względem osi Oy

$$\iint_{D} f(x,y) \ dxdy = \int_{-\sqrt{2}}^{\sqrt{2}} \left[\int_{y^{2}}^{\frac{y^{2}}{2}+1} f(x,y) \ dx \right] dy$$

1 12 y Kidd i

Zamienić na całki iterowane całkę podwójną z funkcji f całkowalnej na obszarze

D jest obszarem normalnym względem osi Oy

$$\iint_D f(x,y) \, dx dy = \int_{-\sqrt{2}}^{\sqrt{2}} \left[\int_{y^2}^{\frac{y^2}{2} + 1} f(x,y) \, dx \right] dy$$

$$= \int_0^1 \left[\int_{-\sqrt{x}}^{\sqrt{x}} f(x,y) \ dy \right] dx + \int_1^2 \left[\int_{\sqrt{2(x-1)}}^{\sqrt{x}} f(x,y) \ dy \right] dx + \int_1^2 \left[\int_{-\sqrt{x}}^{-\sqrt{2(x-1)}} f(x,y) \ dy \right] dx$$

Całki potrójne

Definicja 4

- P prostopadłościan
- P_1, P_2, \ldots, P_n podział $\mathcal P$ prostopadłościanu P na prostopadłościany o parami rozłącznych wnętrzach, które całkowicie wypełniają P
- prostopadłościan P_k ma wymiary $\Delta x_k imes \Delta y_k imes \Delta z_k, \ k=1,2,\ldots,n$
- $d_k=\sqrt{(\Delta x_k)^2+(\Delta y_k)^2+(\Delta z_k)^2}$ długość przekątnej prostopadłościanu P_k
- $\delta(\mathcal{P}) = \max\{d_1, d_2, \dots, d_n\}$ średnica podziału \mathcal{P}
- wybieramy punkty pośrednie $(x_k^*, y_k^*, z_k^*) \in P_k, \ k = 1, 2, \dots, n$

Niech f(x,y,z) będzie funkcją ograniczoną na prostopadłościanie P. Całka potrójna z funkcji f po prostopadłościanie P to:

$$\iiint_P f(x, y, z) \ dxdydz := \lim_{\delta(\mathcal{P}_n) \to 0} \sum_{k=1}^n f(x_k^*, y_k^*, z_k^*) \Delta x_k \Delta y_k \Delta z_k$$

o ile granica jest właściwa i nie zależy od sposobu podziału prostopadłościanu ${\cal P}$ i wyboru punktów pośrednich.

Mówimy wtedy, że funkcja f(x, y, z) jest całkowalna na P.

Jeżeli funkcja f(x,y,z) jest ciągła na prostopadłościan P, to jest całkowalna na P.

Twierdzenie 10 (o liniowości całki)

Jeżeli f i g są całkowalne na prostopadłościanie P i $\alpha, \beta \in \mathbb{R}$, to

$$\iiint_{P} \alpha f(x, y, z) + \beta g(x, y, z) \ dxdydz =$$

$$= \alpha \iiint_{P} f(x, y, z) \ dxdydz + \beta \iiint_{P} g(x, y, z) \ dxdydz.$$

Jeżeli funkcja f(x,y,z) jest ciągła na prostopadłościan P, to jest całkowalna na P.

Twierdzenie 10 (o liniowości całki)

Jeżeli f i g są całkowalne na prostopadłościanie P i $\alpha, \beta \in \mathbb{R}$, to

$$\iiint_{P} \alpha f(x, y, z) + \beta g(x, y, z) \, dx dy dz =$$

$$= \alpha \iiint_{P} f(x, y, z) \, dx dy dz + \beta \iiint_{P} g(x, y, z) \, dx dy dz.$$

Twierdzenie 11 (o addytywności całki względem obszaru całkowania)

Jeżeli f jest całkowalna na prostopadłościanie P oraz $P=P_1\cup P_2$, gdzie P_1,P_2 to prostopadłościany o rozłącznych wnętrzach, to

$$\iiint_P f(x,y,z) \ dxdydz = \iiint_{P_1} f(x,y,z) \ dxdydz + \iiint_{P_2} f(x,y,z) \ dxdydz.$$

Jeżeli funkcja f jest ciągła na prostopadłościanie $P=[a,b]\times [c,d]\times [p,q]$, to

$$\iiint_{[a,b]\times[c,d]\times[p,q]}f(x,y,z)\;dxdydz=\int_a^b\Big\{\int_c^d\Big[\int_p^qf(x,y,z)\;dz\Big]\;dy\Big\}dx.$$

Uwaga 2

Powyższe twierdzenie jest prawdziwe także wtedy, gdy po prawej stronie równości napiszemy dowolną całkę iterowaną.

$$\iiint_P xz\sin(xy)\ dxdydz, \qquad \quad P = \left[\frac{1}{3},\frac{1}{2}\right] \times [0,\pi] \times [0,1].$$

$$\iiint_P xz\sin(xy)\ dxdydz, \qquad \quad P = \left[\frac{1}{3},\frac{1}{2}\right] \times [0,\pi] \times [0,1].$$

$$\iiint_{\left[\frac{1}{3},\frac{1}{2}\right]\times[0,\pi]\times[0,1]} xz\sin(xy) \ dxdydz = \int_{\frac{1}{3}}^{\frac{1}{2}} \left\{ \int_{0}^{\pi} \left[\int_{0}^{1} zx\sin(xy) \ dz \right] dy \right\} dx$$

$$\iiint_P xz\sin(xy)\;dxdydz, \qquad \quad P = \left[\frac{1}{3},\frac{1}{2}\right]\times[0,\pi]\times[0,1].$$

$$\iiint_{\left[\frac{1}{3},\frac{1}{2}\right]\times\left[0,\pi\right]\times\left[0,1\right]} xz\sin(xy) \ dxdydz = \int_{\frac{1}{3}}^{\frac{1}{2}} \left\{ \int_{0}^{\pi} \left[\int_{0}^{1} zx\sin(xy) \ dz \right] dy \right\} dx$$
$$= \frac{1}{2} \int_{\frac{1}{3}}^{\frac{1}{2}} \left\{ \int_{0}^{\pi} x\sin(xy) \left[z^{2}\right]_{z=0}^{z=1} dy \right\} dx = \frac{1}{2} \int_{\frac{1}{3}}^{\frac{1}{2}} \left\{ \int_{0}^{\pi} x\sin(xy) \ dy \right\} dx$$

$$\iiint_P xz\sin(xy)\;dxdydz, \qquad \quad P = \left[\frac{1}{3},\frac{1}{2}\right]\times[0,\pi]\times[0,1].$$

$$\iiint_{\left[\frac{1}{3},\frac{1}{2}\right]\times\left[0,\pi\right]\times\left[0,1\right]} xz\sin(xy) \, dxdydz = \int_{\frac{1}{3}}^{\frac{1}{2}} \left\{ \int_{0}^{\pi} \left[\int_{0}^{1} zx\sin(xy) \, dz \right] \, dy \right\} dx \\
= \frac{1}{2} \int_{\frac{1}{3}}^{\frac{1}{2}} \left\{ \int_{0}^{\pi} x\sin(xy) \left[z^{2}\right]_{z=0}^{z=1} \, dy \right\} dx = \frac{1}{2} \int_{\frac{1}{3}}^{\frac{1}{2}} \left\{ \int_{0}^{\pi} x\sin(xy) \, dy \right\} dx \\
= -\frac{1}{2} \int_{\frac{1}{2}}^{\frac{1}{2}} \left\{ x \cdot \frac{1}{x} \left[\cos(xy)\right]_{y=0}^{y=\pi} \right\} dx = -\frac{1}{2} \int_{\frac{1}{2}}^{\frac{1}{2}} (\cos(\pi x) - 1) dx$$

$$\iiint_P xz\sin(xy)\;dxdydz, \qquad \quad P = \left[\frac{1}{3},\frac{1}{2}\right]\times[0,\pi]\times[0,1].$$

$$\begin{split} \iiint_{\left[\frac{1}{3},\frac{1}{2}\right]\times\left[0,\pi\right]\times\left[0,1\right]} xz\sin(xy) \; dxdydz &= \int_{\frac{1}{3}}^{\frac{1}{2}} \Big\{ \int_{0}^{\pi} \Big[\int_{0}^{1} zx\sin(xy) \; dz \Big] \; dy \Big\} dx \\ &= \frac{1}{2} \int_{\frac{1}{3}}^{\frac{1}{2}} \Big\{ \int_{0}^{\pi} x\sin(xy) \Big[z^{2} \Big]_{z=0}^{z=1} \; dy \Big\} dx = \frac{1}{2} \int_{\frac{1}{3}}^{\frac{1}{2}} \Big\{ \int_{0}^{\pi} x\sin(xy) \; dy \Big\} dx \\ &= -\frac{1}{2} \int_{\frac{1}{3}}^{\frac{1}{2}} \Big\{ x \cdot \frac{1}{x} \Big[\cos(xy) \Big]_{y=0}^{y=\pi} \Big\} dx = -\frac{1}{2} \int_{\frac{1}{3}}^{\frac{1}{2}} (\cos(\pi x) - 1) dx \\ &= -\frac{1}{2} \Big[\frac{1}{\pi} \sin(\pi x) - x \Big]_{\frac{1}{3}}^{\frac{1}{2}} = \frac{1}{2\pi} \Big(\frac{\sqrt{3}}{2} - 1 \Big) + \frac{1}{12} \end{split}$$

Jeżeli f jest funkcją o rozdzielonych zmiennych postaci f(x,y,z)=g(x)h(y)k(z), gdzie funkcje $g,\ h,\ k$ są ciągłe odpowiednio na przedziałach $[a,b],\ [c,d]$ i [p,q], to

$$\iiint_{[a,b]\times[c,d]\times[p,q]} f(x,y,z) \ dxdydz = \Big(\int_a^b g(x) \ dx\Big) \cdot \Big(\int_c^d h(y) \ dy\Big) \cdot \Big(\int_p^q k(z) \ dz\Big).$$

Jeżeli f jest funkcją o rozdzielonych zmiennych postaci f(x,y,z)=g(x)h(y)k(z), gdzie funkcje $g,\ h,\ k$ są ciągłe odpowiednio na przedziałach $[a,b],\ [c,d]$ i [p,q], to

$$\iiint_{[a,b]\times[c,d]\times[p,q]} f(x,y,z) \ dxdydz = \Big(\int_a^b g(x) \ dx\Big) \cdot \Big(\int_c^d h(y) \ dy\Big) \cdot \Big(\int_p^q k(z) \ dz\Big).$$

Przykład 6

Zamień iloczyn całek pojedynczych

$$\iiint_P \ln x^{yz} \ dxdydz, \qquad P = [1, e] \times [1, 2] \times [2, 3].$$

$$\iiint_{[1,e]\times[1,2]\times[2,3]} \ln x^{yz} \ dx dy dz = \int_{2}^{3} \big\{ \int_{1}^{2} \big[\int_{1}^{e} yz \ln x \ dx \big] \ dy \big\} dz$$

Jeżeli f jest funkcją o rozdzielonych zmiennych postaci f(x,y,z)=g(x)h(y)k(z), gdzie funkcje $g,\ h,\ k$ są ciągłe odpowiednio na przedziałach $[a,b],\ [c,d]$ i [p,q], to

$$\iiint_{[a,b]\times[c,d]\times[p,q]} f(x,y,z) \ dxdydz = \Big(\int_a^b g(x) \ dx\Big) \cdot \Big(\int_c^d h(y) \ dy\Big) \cdot \Big(\int_p^q k(z) \ dz\Big).$$

Przykład 6

Zamień iloczyn całek pojedynczych

$$\iiint_P \ln x^{yz} \ dx dy dz, \qquad P = [1, e] \times [1, 2] \times [2, 3].$$

$$\iiint_{[1,e]\times[1,2]\times[2,3]} \ln x^{yz} \, dx dy dz = \int_{2}^{3} \left\{ \int_{1}^{2} \left[\int_{1}^{e} yz \ln x \, dx \right] \, dy \right\} dz
= \left(\int_{1}^{e} \ln x \, dx \right) \cdot \left(\int_{1}^{2} y \, dy \right) \cdot \left(\int_{2}^{3} z \, dz \right).$$

Niech

- U będzie obszarem ograniczonym w przestrzeni,
- ullet f(x,y,z) będzie funkcją określoną i ograniczoną na U,
- definiujemy rozszerzenie funkcji f na prostopadłościan P:

$$f^*(x,y,z) = \left\{ \begin{array}{ll} f(x,y,z) & \textit{dla } (x,y,z) \in U \\ 0 & \textit{dla } (x,y,z) \in P \setminus U \end{array} \right. .$$

Całkę potrójną z funkcji f po obszarze U definiujemy wzorem:

$$\iiint_U f(x,y,z) \ dxdydz = \iiint_P f^*(x,y,z) \ dxdydz,$$

o ile całka po prostopadłościanie P istnieje. Mówimy wtedy, że funkcja f jest całkowalna na U.

Niech

- U będzie obszarem ograniczonym w przestrzeni,
- ullet f(x,y,z) będzie funkcją określoną i ograniczoną na U,
- definiujemy rozszerzenie funkcji f na prostopadłościan P:

$$f^*(x,y,z) = \left\{ \begin{array}{ll} f(x,y,z) & \textit{dla } (x,y,z) \in U \\ 0 & \textit{dla } (x,y,z) \in P \setminus U \end{array} \right. .$$

 $\it Całkę potrójną z funkcji f po obszarze U definiujemy wzorem:$

$$\iiint_U f(x,y,z) \ dxdydz = \iiint_P f^*(x,y,z) \ dxdydz,$$

o ile całka po prostopadłościanie P istnieje. Mówimy wtedy, że funkcja f jest całkowalna na U.

Uwaga 3

Całka $\iiint_U f(x,y,z) dxdydz$ nie zależy od wyboru prostopadłościanu P.

Twierdzenie 14

Niech obszar U ma postać:

$$U = \{(x, y, z) : (x, y) \in D_{xy}, \ d(x, y) \le z \le g(x, y)\},\$$

gdzie d(x,y), g(x,y) są funkcjami ciągłymi na obszarze regularnym D_{xy} i d(x,y) < g(x,y) dla punktów (x,y) należących do wnętrza D_{xy} (jest to tzw. obszar normalny względem płaszczyzny x0y). Jeżeli f(x,y,z) jest ciągła na obszarze U, to

$$\iiint_U f(x,y,z) \ dxdydz = \iint_{D_{xy}} \left[\int_{d(x,y)}^{g(x,y)} f(x,y,z) \ dz \right] dxdy.$$

Twierdzenie 14

Niech obszar U ma postać:

$$U = \{(x, y, z) : (x, y) \in D_{xy}, \ d(x, y) \le z \le g(x, y)\},\$$

gdzie d(x,y),g(x,y) są funkcjami ciągłymi na obszarze regularnym D_{xy} i d(x,y) < g(x,y) dla punktów (x,y) należących do wnętrza D_{xy} (jest to tzw. obszar normalny względem płaszczyzny x0y). Jeżeli f(x,y,z) jest ciągła na obszarze U, to

$$\iiint_U f(x,y,z) \ dxdydz = \iint_{D_{xy}} \left[\int_{d(x,y)}^{g(x,y)} f(x,y,z) \ dz \right] dxdy.$$

Uwaga 4

Prawdziwe są także analogiczne twierdzenia dotyczące obszarów normalnych względem pozostałych płaszczyzn układu współrzędnych $(x0z,\ y0z)$.

Przykład *i*

Całkę potrójną $\int\!\!\int_U f(x,y,z)\;dxdydz$ zamienić na całki iterowane jeżeli obszar U ograniczony jest powierzchniami: $2x+3y+4z=12,\;x=0,\;y=0$ i z=0.

Przykład *i*

Całkę potrójną $\iiint_U f(x,y,z) \ dx dy dz$ zamienić na całki iterowane jeżeli obszar U ograniczony jest powierzchniami: $2x+3y+4z=12,\ x=0,\ y=0$ i z=0.

$$\iiint_U f(x,y,z) \ dxdydz = \iint_{D_{xy}} \left[\int_0^{3-\frac{x}{2} - \frac{3y}{4}} f(x,y,z) \ dz \right] dxdy$$

Przykład *i*

Całkę potrójną $\iiint_U f(x,y,z) \ dx dy dz$ zamienić na całki iterowane jeżeli obszar U ograniczony jest powierzchniami: $2x+3y+4z=12,\ x=0,\ y=0$ i z=0.

$$\iiint_{U} f(x,y,z) \, dx dy dz = \iint_{D_{xy}} \left[\int_{0}^{3 - \frac{x}{2} - \frac{3y}{4}} f(x,y,z) \, dz \right] dx dy$$
$$= \int_{0}^{6} \left\{ \int_{0}^{-\frac{2x}{3} + 4} \left[\int_{0}^{3 - \frac{x}{2} - \frac{3y}{4}} f(x,y,z) \, dz \right] dy \right\} dx$$

$$\iiint_U f(x,y,z) \ dx dy dz = \int_0^6 \Big\{ \int_0^{-\frac{2x}{3}+4} \Big[\int_0^{3-\frac{x}{2}-\frac{3y}{4}} x \ dz \Big] \ dy \Big\} dx$$

$$\iiint_{U} f(x,y,z) \, dx dy dz = \int_{0}^{6} \left\{ \int_{0}^{-\frac{2x}{3}+4} \left[\int_{0}^{3-\frac{x}{2}-\frac{3y}{4}} x \, dz \right] dy \right\} dx$$

$$= \int_0^6 \Big\{ \int_0^{-\frac{2x}{3}+4} \Big[x(3-\frac{x}{2}-\frac{3y}{4}) \Big] \ dy \Big\} dx$$

$$\iiint_{U} f(x,y,z) \, dx dy dz = \int_{0}^{6} \left\{ \int_{0}^{-\frac{2x}{3}+4} \left[\int_{0}^{3-\frac{x}{2}-\frac{3y}{4}} x \, dz \right] dy \right\} dx$$
$$= \int_{0}^{6} \left\{ \int_{0}^{-\frac{2x}{3}+4} \left[x(3-\frac{x}{2}-\frac{3y}{4}) \right] dy \right\} dx$$

$$\int_0^{-\frac{2x}{3}+4} \left(3x - \frac{x^2}{2} - \frac{3yx}{4}\right) dy = \left[3xy - \frac{x^2y}{2} - \frac{3y^2x}{8}\right]_{y=0}^{y=-\frac{2x}{3}+4}$$

$$\iiint_{U} f(x,y,z) \, dx dy dz = \int_{0}^{6} \left\{ \int_{0}^{-\frac{2x}{3}+4} \left[\int_{0}^{3-\frac{x}{2}-\frac{3y}{4}} x \, dz \right] dy \right\} dx$$
$$= \int_{0}^{6} \left\{ \int_{0}^{-\frac{2x}{3}+4} \left[x(3-\frac{x}{2}-\frac{3y}{4}) \right] dy \right\} dx$$

$$\int_0^{-\frac{2x}{3}+4} \left(3x - \frac{x^2}{2} - \frac{3yx}{4}\right) dy = \left[3xy - \frac{x^2y}{2} - \frac{3y^2x}{8}\right]_{y=0}^{y=-\frac{2x}{3}+4}$$
$$= 3x\left(4 - \frac{2x}{3}\right) - \frac{x^2}{2}\left(4 - \frac{2x}{3}\right) - \frac{3x}{8}\left(4 - \frac{2x}{3}\right)^2$$

$$\iiint_{U} f(x,y,z) \, dx dy dz = \int_{0}^{6} \left\{ \int_{0}^{-\frac{2x}{3}+4} \left[\int_{0}^{3-\frac{x}{2}-\frac{3y}{4}} x \, dz \right] dy \right\} dx$$
$$= \int_{0}^{6} \left\{ \int_{0}^{-\frac{2x}{3}+4} \left[x(3-\frac{x}{2}-\frac{3y}{4}) \right] dy \right\} dx$$

$$\int_0^{-\frac{2x}{3}+4} \left(3x - \frac{x^2}{2} - \frac{3yx}{4}\right) dy = \left[3xy - \frac{x^2y}{2} - \frac{3y^2x}{8}\right]_{y=0}^{y=-\frac{2x}{3}+4}$$
$$= 3x\left(4 - \frac{2x}{3}\right) - \frac{x^2}{2}\left(4 - \frac{2x}{3}\right) - \frac{3x}{8}\left(4 - \frac{2x}{3}\right)^2$$
$$= 12x - 2x^2 - 2x^2 + \frac{x^3}{3} - 6x + 2x^2 - \frac{x^3}{6} = \frac{x^3}{6} - 2x^2 + 6x$$

$$\begin{split} \iiint_U f(x,y,z) \; dx dy dz &= \int_0^6 \Big\{ \int_0^{-\frac{2x}{3}+4} \Big[\int_0^{3-\frac{x}{2}-\frac{3y}{4}} x \; dz \Big] \; dy \Big\} dx \\ &= \int_0^6 \Big\{ \int_0^{-\frac{2x}{3}+4} \Big[x(3-\frac{x}{2}-\frac{3y}{4}) \Big] \; dy \Big\} dx \\ &= \int_0^6 \Big\{ \frac{x^3}{6} - 2x^2 + 6x \Big\} dx \end{split}$$

$$\int_{0}^{-\frac{2x}{3}+4} \left(3x - \frac{x^{2}}{2} - \frac{3yx}{4}\right) dy = \left[3xy - \frac{x^{2}y}{2} - \frac{3y^{2}x}{8}\right]_{y=0}^{y=-\frac{2x}{3}+4}$$

$$= 3x\left(4 - \frac{2x}{3}\right) - \frac{x^{2}}{2}\left(4 - \frac{2x}{3}\right) - \frac{3x}{8}\left(4 - \frac{2x}{3}\right)^{2}$$

$$= 12x - 2x^{2} - 2x^{2} + \frac{x^{3}}{3} - 6x + 2x^{2} - \frac{x^{3}}{6} = \frac{x^{3}}{6} - 2x^{2} + 6x$$

$$\iiint_{U} f(x,y,z) \, dx dy dz = \int_{0}^{6} \left\{ \int_{0}^{-\frac{2x}{3}+4} \left[\int_{0}^{3-\frac{x}{2}-\frac{3y}{4}} x \, dz \right] \, dy \right\} dx$$

$$= \int_{0}^{6} \left\{ \int_{0}^{-\frac{2x}{3}+4} \left[x(3-\frac{x}{2}-\frac{3y}{4}) \right] \, dy \right\} dx$$

$$= \int_{0}^{6} \left\{ \frac{x^{3}}{6} - 2x^{2} + 6x \right\} dx$$

$$= \left[\frac{x^{4}}{24} - \frac{2x^{3}}{3} + 3x^{2} \right]_{0}^{6} = \frac{6^{3}}{4} - \frac{2 \cdot 6^{3}}{3} + 3 \cdot 6^{2}$$

$$\iiint_{U} f(x,y,z) \, dx dy dz = \int_{0}^{6} \left\{ \int_{0}^{-\frac{2x}{3}+4} \left[\int_{0}^{3-\frac{x}{2}-\frac{3y}{4}} x \, dz \right] \, dy \right\} dx$$

$$= \int_{0}^{6} \left\{ \int_{0}^{-\frac{2x}{3}+4} \left[x(3-\frac{x}{2}-\frac{3y}{4}) \right] \, dy \right\} dx$$

$$= \int_{0}^{6} \left\{ \frac{x^{3}}{6} - 2x^{2} + 6x \right\} dx$$

$$= \left[\frac{x^{4}}{24} - \frac{2x^{3}}{3} + 3x^{2} \right]_{0}^{6} = \frac{6^{3}}{4} - \frac{2 \cdot 6^{3}}{3} + 3 \cdot 6^{2}$$

$$6^{2} \left(\frac{3}{2} - 4 + 3 \right) = 18$$

Sumę skończonej liczby obszarów normalnych względem płaszczyzn układu współrzędnych o parami rozłącznych wnętrzach nazywamy obszarem regularnym w przestrzeni.

Sumę skończonej liczby obszarów normalnych względem płaszczyzn układu współrzędnych o parami rozłącznych wnętrzach nazywamy obszarem regularnym w przestrzeni.

Twierdzenie 15

Całki po obszarach regularnych mają te same własności co całki po prostopadłościanach, tzn. liniowość, addytywność względem obszaru całkowania.