Exam: Artificial IntelligenceAlgorithms and Application

Module Exam

Summer 2023 Date: 01.09.2023

Important Information

INFORMATIK

- Please check your exam copy for completeness. It covers **19 pages** (cover sheet included).
- Fill out the cover sheet immediately after receiving the exam.
- Use only the examination paper to solve the tasks. If you do not have enough space, you can receive additional paper during the examination. Additional papers must also be marked with your name and matriculation number.
- Please leave a correction margin of 3 cm.
- You have a total of **90 minutes** to complete the exam.
- Except for a non-programmable calculator, no other aids are allowed in the exam.

We wish you much success!

Please fill out clearly in block letters.								
First Name	Last Name	Seat No						
Matr. No	Course of Study	☐ Master ☐ Diplom						
Repeater: □ yes □ no								

Section	Max. Points	Achieved Points	Exam Review (,,Klausureinsicht"):
1	36		
2	24		(do not fill out before the review)
3	30		I have reviewed the corrected exam:
Sum	90		There are no complaints about the
			correction. Complaints about the correction exist (see additional sheet).

Date:	 	 						 									

Signature:

First Name	Last Name	Matr. No

1 Basic Concepts and Algorithms (36 Points)

1.1 The researcher **McCarthy** played a **crucial role** for the **field of artificial intelligence**. **Why**? (1 P)

1.2 Please briefly explain the concept of an agent in artificial intelligence based on the definition of Russell & Norvig. Please draw the architecture of a "reflex agent" and briefly explain it by comparing it to the general agent model. (6 P)

First Name	Last Name	Matr. No

1.3 Please briefly **explain** what kind of problem the *traveling salesman problem* represents using the **national park example** from the lecture. (2 P)

1.4 Please provide an example of a "CAPTCHA". Please also explain how a "CAPTCHA" is related to Artificial Intelligence and name three ability domains of Artificial Intelligence that are needed to solve it. (3 P)

First	t Name Matr. No
1.5	Why are biases in AI-based systems not just a simple machine learning problem ? Please explain using an example that we did <u>not</u> discuss in the lecture. (3 P)
1.6	Yandex's Alice chatbot was taken offline after a short time and is considered a "failed" AI project. Please explain why this was the case. (1 P)
1.7	Please explain : What role did the research of Professor Fei-Fei Li from the Stanford University play in neural networks? What in particular has she become known for? (1 P)

First Name	Last Name	Matr. No.

1.8 Please explain in your own words the benefit of the bias in perceptron modeling. (1 P)

1.9 Please **illustrate** the **difference** between **feedback** and **feedforward ANNs** with a **sketch**.

How do the **connections among neurons** in the <u>same</u> layers look like in each case? (2 P)

First Name		Last Name		Matr. No
wants to problem t	oredict if a car ypes. However	has a specific proble	m (classification) his prediction, he	ng a logistic regression . He a. The data has five different be only gets error messages. Those errors ? (2 P)
1.11 Please de	fine: What is a	a model in machine l	learning? (2 P)	
_		the difference between the chapter 2? (1 P)	-	program and function in our

Last Name	Matr. No
vas the overarching goal of this year	
and explain its structure : What is a	data frame in Python? (3 P)
	vas the overarching goal of this year

irst Name	Last l	Name	Matı	r. No	
15 Please briefl usually usec		rence between a ba	r chart and a his	etogram. What ar	e they
16 Please defi n	ie the two steps mu	tation and crossove	$oldsymbol{r}$ in the context (of genetic algorit	hms.
What is the	difference between	n the two steps ? (3	P)		

First Name	Last Name	Matr. No

2 Application of Search Algorithms (24 Points)

Consider the following **AI problem**:

Your local DIY-store plans to improve the shopping experience with automated agents. The agents have a language interface and a route-finding module. Customers can ask the agent where to find specific tools and materials and the agent guides them through the store. Your job is to help develop the agent. For that purpose, you received the following floor plan:

On the floor plan, you can see that each section (e.g., "Tools") has subsections that are indicated by a number, and that certain sections are connected with one another via doors. To simplify the development, you can assume that the agent travels in Manhattan distance, and that it travels along the walls. Of course, the agent can only enter a room through a door. As the store management wants to avoid collisions, the agent is only allowed to move towards increasing numbers and always only drives towards one subsection in each room it passes (e.g., to exclusively one subsection from number 2, 3 to 4 in the tools section). On the map, there are two exits, an official one near the checkout (A) and one in the outdoor area of the store (B).

Einst Name	Last Name	Matu Na
First Name	Last Name	Matr. No

2.1 Please classify the agent's task environment with the PEAS framework. (4 P)

First Name	Last Name	Matr. No

- **2.2** To implement a first proof-of-concept agent, you **model** the **store** with **simple search trees**. For that purpose, you perform the following two tasks (a and b):
 - a) Please **draw** the **subset** of a possible **search tree** of the **DYI store** to the official exit in state with a *depth-first search*. How many nodes do you have to **visit** until you **reach** the **exit** in this case? (4 P)

(Note: You can decide with which logic your algorithm always chooses between multiple next nodes (e.g., it always chooses the most left one) when searching the tree. Please indicate your assumption.)

First Name	Last Name	Matr. No

b) Please **draw** again the **subset** of a possible **search tree** of the **DYI store** until it reaches the official exit but this time you use the *greedy best first strategy*. Please use the **Euclidian distance** to the **official exit** from each state's nearest section door as a heuristic. Please **explain** your **results**. (8 P)

First Name	Last Name	Matr. No

2.3 As a next step, you are asked to implement an emergency program. You decide to implement an A* search algorithm to find the fastest path to one of the exists (A or B). By doing so, please assume that you are in state 2 in the tools section and the fire alarm starts. Which path is the best for each exit? Use the same heuristic as in task 2.2 b) for the A*-algorithm. (8 P)

First Name	Last Name	Matr. No

3 Programming with Python (30 Points)

One of your colleagues prepared the following Python notebook for an analysis of car failures. Please consider the following code when answering the next questions:

```
from pandas import read_excelll
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score

dataset = read_excel(open("car_maintenance.xlsx", "rb"))
```

Out[3]:

	PART_1023	PART_99	PART_02	OIL	CHECK_STATUS	FOLLOW-UP
0	1	2	1	0.25	acc	yes
1	2	1	1	0.15	unacc	no
2	1	2	1	0.25	acc	yes
3	1	1	1	0.15	good	yes
4	2	1	1	0.15	vgood	no
5	1	1	1	0.50	acc	yes

Python Code	L	dataset.describe()
----------------	---	--------------------

Out[5]:

	PART_1023	PART_99	PART_02	OIL
count	31.000000	31.000000	31.0	31.000000
mean	1.580645	33.387097	1.0	0.180645
std	0.672022	179.210617	0.0	0.160040
min	1.000000	1.000000	1.0	0.050000
25%	1.000000	1.000000	1.0	0.100000
50%	1.000000	1.000000	1.0	0.150000
75%	2.000000	1.000000	1.0	0.200000
max	3.000000	999.000000	1.0	0.800000

Note: The notebook continues on the next page.

First Name	Last Name	Matr. No

```
# remove outliers
       # thr = dataset["PART 99"].quantile(0.999)
   2
       dataset = dataset[dataset["PART_99"] < thr]</pre>
       dataset.describe()
       # analytics
Python Code
   10
       X = dataset.loc[:, "PART 1023":"CHECK STATUS"]
       Y = dataset.loc[:, "FOLLOW-UP"]
   11
   12
       X_train, X_test, Y_train, Y_test = train_test_split(...)
   13
   14
       clf = DecisionTreeClassifier()
   15
       clf = clf.fit(X train, Y train)
   16
       prediction = clf.predict(X test)
   17
   18
   19
       confusion matrix(Y test, prediction)
   20
   21
```

3.1 Which machine learning model is trained in the above code? (1 P)

First Name	Last Name	Matr. No.

3.2 Please explain what the "rb" in the open () function, which is part of the read_excel() command, means. (1 P)

3.3 Please explain the result of the dataset.describe() command displayed by OUT[5]. (4 P)

First Name	Last Name	Matr. No.

3.4 Unfortunately, some part of the code is missing in the third code cell. Please complete the code by adding a command to delete column "PART_02" in line 7. (2 P)

Note: You can write the code directly above in line 7 or in the space below this task (assuming it would be written in line 7).

3.5 Please write the code for the missing parameters of the train_test_split() function in line 12 of the third code cell (indicated by "...") to split your dataset with a test_size of 0.3. (2 P)

First Name	Last Name	Matr. No

3.6 When you run the above code cells, you get an ImportError. Please explain or provide corrected code on how you can fix the error in the above code cells. (2 P)

3.7 Please write code to implement another classification model of your choice (e.g., from scikit learn). Your code should include the code to create an object, train it, and use the predict() function on it to predict the class variable. Please feel free to use the model you used in the lectorial. (6 P)

First Name	Last Name	Matr. No

3.8 Please explain the purpose of confusion_matrix() in the code. Why do you need it and what does it tell you? (4 P)

3.9 Please explain: What could be a possible step to improve the performance of the above classification model? Please provide some Python/pseudo code to implement this step.(2 P)

