Full Name:	ExamID: 010001
EEL 4750 / EEE 5502 (Fall 2018) - Practice Exam #03	Date: Nov. 28, 2018

Question	# of Points Possible	# of Points Obtained	Grader
# 1	17		
# 2	15		
# 3	16		
# 4	18		
# 5	18		
# 6	16		
Total	100		

For full credit when sketching: remember to label axes and make locations and amplitudes clear.

Before starting the exam, read and sign the following agreement.

By signing this agreement, I agree to solve the problems of this exam while adhering to the policies and guidelines of the University of Florida and EEL 4750 / EEE 5502 and without additional external help. The guidelines include, but are not limited to,

- The University of Florida honor pledge: "On my honor, I have neither given nor received unauthorized aid in doing this assignment."
- Only one 8.5 by 11 inch cheat sheet (double-sided) may be used
- No calculators or computers may be used
- No textbooks or additional notes may be used
- No collaboration is allowed
- No cheating is allowed

Student	Date	_

Full Name:

ExamID: 010001

EEL 4750 / EEE 5502 (Fall 2018) - Practice Exam #03 Date: Nov. 28, 2018

Question #1: Consider the DTFT of the signal x[n] (i.e., $X(\omega)$) shown below.

(a) (4 pts) What is the maximum achievable downsampling factor for 5x[n] without aliasing?

Solution: The maximum downsampling factor is 2

(b) (7 pts) Sketch the DTFT (from $\omega = -3\pi$ to $\omega = 3\pi$) of x[n] after downsampling by 3 (with no anti-aliasing filter). Remember to label important locations / values.

Solution:

(c) (8 pts) Sketch the DTFT (from $\omega = -3\pi$ to $\omega = 3\pi$) of x[n] after downsampling by 4 (with an anti-aliasing filter). Remember to label important locations / values.

Solution:

EEL 4750 / EEE 5502 (Fall 2018) - Practice Exam #03 Date: Nov. 28, 2018

Question #2: Consider the DTFT of the signal x[n] (i.e., $X(\omega)$) shown below.

(a) (8 pts) Sketch the DTFT (from $\omega = -3\pi$ to $\omega = 3\pi$) of x[n] after upsampling by 2 (with an interpolation filter). Remember to label important locations / values.

Solution:

(b) (7 pts) Sketch the DTFT (from $\omega = -3\pi$ to $\omega = 3\pi$) of x[n] after upsampling by 2 (with no interpolation filter). Remember to label important locations / values.

Solution:

Question #3: Consider the desired frequency response

$$H_d(\omega) = \frac{1}{1 + (1/2)e^{-j\omega}} + \frac{1}{1 + (1/2)e^{+j\omega}}$$

(a) (8 pts) Approximate $H_d(\omega)$ with a length N=5 windowing method. Use a rectangular window. Force the resulting filter to be causal and linear phase. Sketch the time-domain filter coefficients $h_a[n]$ with these requirements.

Solution:

$$H_d(\omega) = A(\omega) + A(-\omega)$$

$$A(\omega) = \frac{1}{1 + (1/2)e^{-j\omega}}$$

$$h_d[n] = (-1/2)^n u[n] + (-1/2)^{-n} u[-n]$$

After shifting by (N-1)/2=2 samples to force casually and a linear phase, the solution is:

(b) (8 pts) Approximate $H_d(\omega)$ with a length N=4 frequency sampling method. Force the resulting filter to be causal and linear phase. Compute the time-domain filter coefficients $h_b[n]$ with these requirements.

Solution: The frequency coefficients up to (and including) π are:

$$\omega_0 = 0 \qquad H_d(0) = \frac{1}{1 + (1/2)} + \frac{1}{1 + (1/2)} = \frac{2}{3} + \frac{2}{3} = \frac{4}{3}$$

$$\omega_1 = \frac{2\pi(1)}{4} = \frac{\pi}{2} \qquad H_d(\pi/2) = \frac{1}{1 - (1/2)j} + \frac{1}{1 + (1/2)j} = \frac{1 - (1/2)j + 1 + (1/2)j}{(1 - (1/2)j)(1 + (1/2)j)} = \frac{2}{1 + (1/4)} = \frac{8}{5}$$

$$\omega_2 = \frac{2\pi(2)}{4} = \pi \qquad H_d(\pi) = \frac{1}{1 - (1/2)} + \frac{1}{1 - (1/2)} = \frac{1}{1/2} + \frac{1}{1/2} = 4$$

Therefore,

$$h_b[n] = \frac{4}{3} + \frac{16}{5}\cos\left(\frac{\pi}{2}\left(n - \frac{3}{2}\right)\right) + 8\cos\left(\pi\left(n - \frac{3}{2}\right)\right) \quad \text{for} \quad 0 \le n \le 3$$

4

Date: Nov. 28, 2018

Question #4: Consider a desired filter frequency response (with a causal impulse response)

$$H_d(s) = \frac{60}{s + 1/2}$$

(a) (6 pts) Approximate $H_d(s)$ as a discrete-time IIR filter by approximating the differential equation with a sampling rate T=2. Compute the time-domain filter coefficients $h_a[n]$ of this filter. Force the resulting filter to be causal.

Solution: $s \to \frac{1}{T}(1-z^{-1})$

$$H_a(z) = \frac{60}{\frac{1}{2}(1 - z^{-1}) + 1/2}$$

$$= \frac{60}{1/2 - (1/2)z^{-1} + 1/2}$$

$$= \frac{60}{1 - (1/2)z^{-1}}$$

$$h_a[n] = 60(1/2)^n u[n]$$

(b) (6 pts) Approximate $H_d(s)$ as a discrete-time IIR filter using the impulse invariance method with a sampling rate T=2. Compute the time-domain filter coefficients $h_b[n]$ of this filter. Force the resulting filter to be causal.

Solution: Poles: s = -1/2

Convert s-poles into z-poles: $s_0 \rightarrow e^{s_0 T}$

$$H_b(z) = \frac{60}{1 - e^{(2)(-1/2)}z^{-1}}$$
$$= \frac{60}{1 - e^{-1}z^{-1}}$$
$$h_b[n] = 60e^{-n}u[n]$$

(c) (6 pts) Approximate $H_d(s)$ as a discrete-time IIR filter using the bilinear transform with a sampling rate T=2. Compute the time-domain filter coefficients $h_c[n]$ of this filter. Force the resulting filter to be causal.

Solution: $s \to \frac{2}{T} \frac{1-z^{-1}}{1+z^{-1}}$

$$H_c(z) = \frac{60}{\frac{1-z^{-1}}{1+z^{-1}} + 1/2}$$

$$= \frac{60(1+z^{-1})}{1-z^{-1} + 1/2(1+z^{-1})}$$

$$= \frac{60(1+z^{-1})}{3/2 - (1/2)z^{-1}}$$

$$= \frac{40(1+z^{-1})}{1 - (1/3)z^{-1}}$$

$$h_c[n] = 40(1/3)^n u[n] + 40(1/3)^{n-1} u[n-1]$$

Question #5: Consider a 2-channel filter bank shown below.

Let the filters be defined by the frequency domain expression

$$H_0(\omega) = G_0(\omega) = \sqrt{2}\sin(\omega/2)$$

(a) (7 pts) Choose a filter $H_1(\omega) = G_1(\omega)$ that satisfies the alias canceling conditions.

Solution: The alias canceling conditions:

$$H_0(\omega)G_0(\omega) + H_1(\omega)G_1(\omega) = 2$$

$$H_0(\omega - \pi)G_0(\omega) + H_1(\omega - \pi)G_1(\omega) = 0$$

$$2\sin(\omega/2)\sin(\omega/2) + H_1(\omega)G_1(\omega) = 2$$
$$2\sin((\omega - \pi)/2)\sin(\omega/2) + H_1(\omega - \pi)G_1(\omega) = 0$$

$$2\sin^2(\omega/2) + H_1(\omega)G_1(\omega) = 2$$
$$2\cos(\omega/2)\sin(\omega/2) + H_1(\omega - \pi)G_1(\omega) = 0$$

If we choose $H_1(\omega) = G_1(\omega) = \sqrt{2}\cos(\omega/2)$,

$$2\sin^{2}(\omega/2) + 2\cos^{2}(\omega/2) = 2$$
$$2\cos(\omega/2)\sin(\omega/2) + 2\cos((\omega - \pi)/2)\cos(\omega) = 0$$

$$2\sin^2(\omega/2) + 2\cos^2(\omega/2) = 2$$
$$2\cos(\omega/2)\sin(\omega/2) - 2\sin(\omega/2)\cos(\omega) = 0$$

$$2 = 2$$

$$0 = 0$$

Full Name: _____

__ ExamID: 010001

Date: Nov. 28, 2018

EEL 4750 / EEE 5502 (Fall 2018) - Practice Exam #03

(b) (7 pts) Let $X(\omega) = \cos(\omega/2)$. Compute the intermediate signal $V_0(\omega)$.

Solution: The frequency response at $V_0(\omega)$ is

$$V_0(\omega) = [H_0(\omega)X(\omega) + H_0(\omega - \pi)X(\omega - \pi)] G_0(\omega)$$

$$= [\sin(\omega/2)\cos(\omega/2) + \sin((\omega - \pi)/2)\cos((\omega - \pi)/2)] G_0(\omega)$$

$$= [\sin(\omega/2)\cos(\omega/2) - \cos(\omega/2)\sin(\omega/2)] G_0(\omega)$$

$$= 0$$

(c) (4 pts) (True or False) When the alias canceling conditions are met, $V_0(z) = V_1(z)$.

Solution: False, alias canceling ensures that $V_0(z) + V_1(z) = X(z)$, which is not guaranteed to be true when $V_0(z) = V_1(z)$.

EEL 4750 / EEE 5502 (Fall 2018) - Practice Exam #03

Question #6: Consider the following wavelet bank and filter bank.

Let the high pass filter H(z) and low pass filter G(z) be defined by frequency responses:

$$G(\omega) = \sum_{k=-\infty}^{\infty} u(\omega + \pi/2 - 2\pi k) - u(\omega - \pi/2 - 2\pi k)$$

$$H(\omega) = \sum_{k=-\infty}^{\infty} u(\omega + \pi/2 - \pi - 2\pi k) - u(\omega - \pi/2 - \pi - 2\pi k)$$

Use the Noble identities to simplify the wavelet bank (left) diagram and represent it as a filter bank (right). Determine M_1 , M_2 , and M_3 . Sketch $|F_1(\omega)|$, $|F_2(\omega)|$, and $|F_3(\omega)|$.

Solution: $M_1 = 2$, $M_2 = 4$, $M_3 = 4$.

$$F_1(\omega) = H(z)$$

$$F_2(\omega) = G(z)H(z^2)$$

$$F_3(\omega) = G(z)G(z^2)$$

Table of Discrete-Time Fourier Transform Pairs:

Discrete-Time Fourier Transform :
$$X(\omega)=\sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n}$$

Inverse Discrete-Time Fourier Transform : $x[n]=\frac{1}{2\pi}\int_{2\pi}X(\omega)e^{j\omega t}\;d\omega$.

x[n]	$X(\omega)$	condition
$a^n u[n]$	$rac{1}{1-ae^{-j\omega}}$	a < 1
$(n+1)a^nu[n]$	$\frac{1}{(1 - ae^{-j\omega})^2}$	a < 1
$\frac{(n+r-1)!}{n!(r-1)!}a^nu[n]$	$\frac{1}{(1 - ae^{-j\omega})^r}$	a < 1
$\delta[n]$	1	
$\delta[n-n_0]$	$e^{-j\omega n_0}$	
x[n] = 1	$2\pi \sum_{k=-\infty}^{\infty} \delta(\omega - 2\pi k)$	
u[n]	$\frac{1}{1 - e^{-j\omega}} + \sum_{k = -\infty}^{\infty} \pi \delta(\omega - 2\pi k)$	
$e^{j\omega_0 n}$	$2\pi \sum_{k=-\infty}^{\infty} \delta(\omega - \omega_0 - 2\pi k)$	
$\cos(\omega_0 n)$	$\pi \sum_{k=-\infty}^{\infty} \{\delta(\omega - \omega_0 - 2\pi k) + \delta(\omega + \omega_0 - 2\pi k)\}\$	
$\sin(\omega_0 n)$	$\frac{\pi}{j} \sum_{k=-\infty}^{\infty} \{ \delta(\omega - \omega_0 - 2\pi k) - \delta(\omega + \omega_0 - 2\pi k) \}$	
$\sum_{k=-\infty}^{\infty} \delta[n-kN]$	$\frac{2\pi}{N} \sum_{k=-\infty}^{\infty} \delta\left(\omega - \frac{2\pi k}{N}\right)$	
$x[n] = \begin{cases} 1 & , & n \le N \\ 0 & , & n > N \end{cases}$	$\frac{\sin(\omega(N+1/2))}{\sin(\omega/2)}$	
	$X(\omega) = \begin{cases} 1 & , & 0 \le \omega \le W \\ 0 & , & W < \omega \le \pi \end{cases}$	
	$X(\omega)$ is periodic with period 2π	

Table of Discrete-Time Fourier Transform Properties: For each property, assume

$$x[n] \overset{DTFT}{\longleftrightarrow} X(\omega)$$
 and $y[n] \overset{DTFT}{\longleftrightarrow} Y(\omega)$

Property	Time domain	DTFT domain
Linearity	Ax[n] + By[n]	$AX(\omega) + BY(\omega)$
Time Shifting	$x[n-n_0]$	$X(\omega)e^{-j\omega n_0}$
Frequency Shifting	$x[n]e^{j\omega_0n}$	$X(\omega-\omega_0)$
Conjugation	$x^*[n]$	$X^*(-\omega)$
Time Reversal	x[-n]	$X(-\omega)$
Convolution	x[n] * y[n]	$X(\omega)Y(\omega)$
Multiplication	x[n]y[n]	$\frac{1}{2\pi} \int_{2\pi} X(\theta) Y(\omega - \theta) d\theta$
Differencing in Time	x[n] - x[n-1]	$(1 - e^{-j\omega})X(\omega)$
Accumulation	$\sum_{k=-\infty}^{\infty} x[k]$	$\frac{1}{1 - e^{-j\omega}} + \pi X(0) \sum_{k = -\infty}^{\infty} \delta(\omega - 2\pi k)$
Frequency Differentiation	nx[n]	$j\frac{dX(\omega)}{d\omega}$
Parseval's Relation for Aperiodic Signals	$\sum_{k=-\infty}^{\infty} x[k] ^2$	$\frac{1}{2\pi} \int_{2\pi} X(\omega) ^2 d\omega$

Table of Z-Transform Pairs:

Z-Transform :
$$X(z)=\sum_{n=-\infty}^\infty x[n]z^{-n}$$

 Inverse Z-Transform : $x[n]=\frac{1}{2\pi j}\oint_{\mathcal C} X(z)z^{n-1}\;dz$.

x[n]	$X(\omega)$	ROC
$a^n u[n]$	$\frac{1}{1 - az^{-1}}$	z > a
$-a^n u[-n-1]$	$\frac{1}{1 - az^{-1}}$	z < a
$na^nu[n]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
$-na^nu[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
$\delta[n]$	1	All z
$\delta[n-n_0]$	z^{-n_0}	All z
u[n]	$\frac{1}{1-z^{-1}}$	z > 1
$\cos(\omega_0 n)u[n]$	$\frac{1 - z^{-1}\cos(\omega_0)}{1 - 2z^{-1}\cos(\omega_0) + z^{-2}}$	z > 1
$\sin(\omega_0 n) u[n]$	$\frac{z^{-1}\sin(\omega_0)}{1 - 2z^{-1}\cos(\omega_0) + z^{-2}}$	z > 1
$a^n \cos(\omega_0 n) u[n]$	$\frac{1 - az^{-1}\cos(\omega_0)}{1 - 2az^{-1}\cos(\omega_0) + a^2z^{-2}}$	z > a
$a^n \sin(\omega_0 n) u[n]$	$\frac{az^{-1}\sin(\omega_0)}{1 - a2z^{-1}\cos(\omega_0) + a^2z^{-2}}$	z > a

 Table of Z-Transform Properties:
 For each property, assume

$$x[n] \stackrel{Z}{\longleftrightarrow} X(z)$$
 and $y[n] \stackrel{Z}{\longleftrightarrow} Y(z)$

Property	Time domain	Z-domain
Linearity	Ax[n] + By[n]	AX(z) + BY(z)
Time Shifting	$x[n-n_0]$	$X(z)z^{-n_0}$
Z-scaling	$a^n x[n]$	$X(a^{-1}z)$
Conjugation	$x^*[n]$	$X^*(z^*)$
Time Reversal	x[-n]	$X(z^{-1})$
Convolution	x[n] * y[n]	X(z)Y(z)
Differentiation in z-domain	nx[n]	$-z\frac{dX(z)}{dz}$
Initial Value Theorem	x[n] is causal	$x(0) = \lim_{z \to \infty} X(z)$