LEARNING PROBLEM

Bùi Tiến Lên

01/09/2019

Contents

1. Learning Components

2. A Simple Learning Model

3. Type of Learnings

4. Feasibility Of LearningProbability to the rescue

Feasibility O Learning

Probability to the rescue

Notation

symbol	meaning		
$a, b, c, N \dots$	scalar number		
$\boldsymbol{w}, \boldsymbol{v}, \boldsymbol{x}, \boldsymbol{y} \dots$	column vector		
$oldsymbol{X},oldsymbol{Y}\dots$	matrix	operator	meaning
\mathbb{R}	set of real numbers	w [⊤]	transpose
$\mathbb Z$	set of integer numbers	XY	matrix multiplication
\mathbb{N}	set of natural numbers	$oldsymbol{\mathcal{X}}^{-1}$	inverse
\mathbb{R}^D	set of vectors		
$\mathcal{X},\mathcal{Y},\dots$	set		
\mathcal{A}	algorithm		

Probability to t rescue

Credit Approval

- Suppose that a bank receives thousands of credit card applications every day, and it wants to automate the process of evaluating them.
- Applicant information

age	23 years
gender	male
annual salary	\$30000
years in residence	1 year
years in job	1 year
current debt	\$15000

Approve credit?

Type of Learnin

Feasibility O Learning

Probability to the rescue

Problem Statement

Formalization

- Input: x (customer application)
- Output: $y (good/bad \ customer? \ or \{1, -1\})$
- Data $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), ... (\mathbf{x}_N, y_N)$ (historical records)
- Target function: $f: \mathcal{X} \to \mathcal{Y}$ (ideal credit approval formula)
- Best approximate function $g: \mathcal{X} \to \mathcal{Y}$ (formula to be used)

Learning Components

Components of Learning

Solution components

The 2 solution components are referred as the learning model

• The **hypothesis set** \mathcal{H} built up from the problem

$$\mathcal{H} = \{h_{\theta_1}, h_{\theta_2}, ...\}$$

• The **learning algorithm** A is a search algorithm which finds $g \in \mathcal{H}$ such that

$$\mathbf{g} \stackrel{best}{pprox} \mathbf{f}$$

A Simple Learning Model

A Simple Hypothesis Set

We starts with the simple model (the perceptron model)

• For input $x = (x_1, ..., x_d)$ (attributes of a customer)

Approve credit if
$$\sum_{i=1}^d w_i x_i \geq threshold$$

Deny credit if $\sum_{i=1}^d w_i x_i < threshold$

• This linear formula $h \in \mathcal{H}$ can be written as

$$h(x) = h_{\mathbf{w}, \text{threshold}}(x) = sign\left(\left(\sum_{i=1}^{d} w_i x_i\right) - \text{threshold}\right)$$

• Set
$$w_0 = -threshold$$

$$h(x) = h_{\mathbf{w}}(x) = sign\left(\left(\sum_{i=1}^{d} \mathbf{w}_{i} x_{i}\right) + \mathbf{w}_{0}\right)$$

• Introduce an artificial coordinate $x_0 = 1$

$$h(x) = h_{\mathbf{w}}(x) = sign\left(\sum_{i=0}^{d} \mathbf{w}_{i}x_{i}\right)$$

• In vector form, the perceptron implements

$$h(x) = h_{\mathbf{w}}(x) = sign(\mathbf{w}^{\mathsf{T}}\mathbf{x})$$

A Simple Learning Model

Type of Learning

Feasibility Of Learning

Probability to the rescue

2D Model

- Decision boundaries: line
- Decision regions: approve and deny regions

Attribute 1

A Simple Learning Algorithm

We uses the simple learning algorithm (perceptron learning algorithm - PLA) to implements

$$h(x) = h_{\mathbf{w}}(x) = sign(\mathbf{w}^{\mathsf{T}}\mathbf{x})$$

Given the training set

$$\mathcal{D} = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), ...(\mathbf{x}_N, y_N)\}$$

• pick a misclassified point (x_i, y_i)

$$sign(\mathbf{w}^{\mathsf{T}}\mathbf{x}_{i}) \neq y_{i}$$

and update the weight vector

 $\mathbf{w} \leftarrow \mathbf{w} + \mathbf{v}_n \mathbf{x}_n$

Iterations of PLA

• At iteration t = 1, 2, 3, ... pick a misclassified point from

$$\mathcal{D} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), ...(\boldsymbol{x}_N, y_N)\}$$

and run a PLA iteration on it

• That's it

Learning Model

A Simple

Learning Model

A Learning Puzzle

Type of Learnings

Basic Premise of Learning

"using a set of observations to uncover an underlying process"

broad premise \Longrightarrow many variations

- Supervise learning
- Unsupervised learning
- Reinforcement learning

Supervised Learning

- We get data \mathcal{D} : (input, correct ouput)
 - When the **output** is one of a *finite set of values*, the learning problem is called **classification**
 - When the **output** is a *number*, the learning problem is called **regression**
- Example from vending machine coin classification

Type of Learnings

Feasibility Of Learning

Probability to t rescue

Unsupervised Learning

• Instead of (input, correct input), we get (input, ?)

earning omponent

A Simple Learning Mod

Type of Learnings

Feasibility O
Learning

Probability to t

Reinforcement Learning

Instead of (input, correct input),
 we get (input, some ouput, grade for this output)

Feasibility Of Learning

A Related Experiment - Bin Problem

Consider a BIN with red and green marbles

$$P[\mbox{picking a red marble}] = \mu$$

$$P[\mbox{picking a green marble}] = 1 - \mu$$

- The value of μ is unknown to us
- We pick *N* marbles independently
- The fraction of red marbles in **SAMPLE** = ν

Probability to the

Does ν say anything about μ ?

- **No!** (certain answer)
 - Sample can be mostly red while bin is mostly red
- Yes! (uncertain answer)
 - Sample frequency ν is likely close to bin frequency μ

What does ν say about μ ?

- In a big sample (large N), ν is probably close μ (within ϵ)
- Formally,

$$P[|
u - \mu| > \epsilon] \le 2e^{-2\epsilon^2 N}$$
 for any $\epsilon > 0$

This is called **Hoeffding's Inequality**

- **Bound** does not depend on μ ; tradeoff: N, ϵ and the bound
- We have

$$\nu \approx \mu \Longrightarrow \mu \approx \nu$$

• In other words, the statement " $\mu=\nu$ " is **probably approximately correct** (P.A.C)

Connection to Learning

- ullet Bin problem: The unknown is a number μ
- Learning problem: The unknown is a function $f: \mathcal{X} \to \mathcal{Y}$
- Each marble is a point $\mathbf{x} \in \mathcal{X}$

Bin problem	Learning problem
•	hypothesis got it right $h(x) = f(x)$
•	hypothesis got it wrong $h(x) \neq f(x)$

Connection to Learning (cont.)

• The error rate within the sample, which corresponds to ν in the bin model, will be called the *in-sample error*, (domain \mathcal{D})

$$E_{in}(h) = ext{fraction of } \mathcal{D} ext{ where } f ext{ and } h ext{ disagre}$$

$$= \frac{1}{N} \sum_{n=1}^{N} \llbracket h(\mathbf{x}_n) \neq f(\mathbf{x}_n)
bracket$$

where [statement] = 1 if the statement is true, and = 0 if the statement is false

• In the same way, we define the *out-of-sample error*, (domain \mathcal{X})

$$E_{out}(h) = P(h(\mathbf{x}) \neq f(\mathbf{x})), \mathbf{x} \in \mathcal{X}$$

which corresponds to μ in the bin model.

Probability to the rescue

Connection to Learning (cont.)

The Hoeffding inequality becomes:

$$P[|E_{in}(h) - E_{out}(h)| > \epsilon] \le 2e^{-2\epsilon^2 N}$$
 for any $\epsilon > 0$

Inductive Learning Hypothesis

Generalization is possible.

 If a machine performs well on most training data AND it is not too complex, it will probably do well on similar test data. Type of Learning

Feasibility Of Learning

Probability to the rescue

Back to Learning Diagram

References

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT press.

Lê, B. and Tô, V. (2014).
Cổ sổ trí tuệ nhân tạo.
Nhà xuất bản Khoa học và Kỹ thuật.

Nguyen, T. (2018). Artificial intelligence slides. Technical report, HCMC University of Sciences.

Russell, S. and Norvig, P. (2016).

Artificial intelligence: a modern approach.
Pearson Education Limited.