

## Epreuve de Mathématiques B

#### Durée 4 h

Si, au cours de l'épreuve, un candidat repère ce qui lui semble être une erreur d'énoncé, d'une part il le signale au chef de salle, d'autre part il le signale sur sa copie et poursuit sa composition en indiquant les raisons des initiatives qu'il est amené à prendre.

# L'usage de calculatrices est interdit.

#### **AVERTISSEMENT**

La présentation, la lisibilité, l'orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies. En particulier, les résultats non justifiés ne seront pas pris en compte. Les candidats sont invités à encadrer les résultats de leurs calculs.

Dans ce sujet, les candidats sont invités à illustrer, s'ils le jugent nécessaire, leurs réponses avec un dessin.

À rendre en fin d'épreuve avec la copie une feuille de papier millimétré

### Préliminaire : Questions de cours

- 1. Soit  $\Sigma$  une surface dont un paramétrage de classe  $\mathcal{C}^1$  est  $(u, v) \mapsto M(u, v)$ . Donner la définition d'un point régulier de  $\Sigma$ .
- 2. (a) Donner la définition d'une matrice carrée Q orthogonale.
  - (b) Soit Q une matrice orthogonale de  $\mathcal{M}_3(\mathbb{R})$ . Quelles sont les natures possibles de l'endomorphisme canoniquement associé à Q? Quels calculs peut-on effectuer pour distinguer ces différentes natures? Préciser le lien entre le résultat des calculs et la nature. (On ne demande pas les éléments caractéristiques.)

#### Partie I: 2 surfaces

Dans l'espace euclidien  $\mathbb{R}^3$  rapporté au repère orthonormé direct  $(O\,;\,\vec{i},\,\vec{j},\,\vec{k})$ , on considère la surface S d'équation cartésienne

$$z = (y - 2\sqrt{2}x)y$$

ainsi que la surface  $\Sigma$  de représentation paramétrique

$$\begin{cases} x = \sqrt{2}uv \\ y = (u+v)^2 \\ z = (u^2 - v^2)^2 \end{cases}, (u,v) \in \mathbb{R}^2.$$

On note M(u, v) le point de  $\Sigma$  de paramètres u et v.

- 1. A propos de S.
  - (a) Quelle est la nature de l'intersection de S avec un plan d'équation  $y=\alpha,$  où  $\alpha\in\mathbb{R}$ ? Qu'en déduit-on pour S?
  - (b) Quelle est la nature de l'intersection de S avec un plan d'équation  $x=\beta,$  où  $\beta\in\mathbb{R}$  ?
  - (c) i. Quelle est la nature de l'intersection  $\Lambda_{\gamma}$  de S avec un plan d'équation  $z = \gamma$ , où  $\gamma \in \mathbb{R}$ ? Distinguer différents cas suivant les valeurs de  $\gamma$ .
    - ii. On note  $O_{\gamma}$  le point de coordonnées  $(0,0,\gamma)$ . Tracer les courbes  $\Lambda_{\gamma}$  dans le repère  $(O_{\gamma}\,;\,\vec{i},\,\vec{j})$  pour  $\gamma\in\{-2,0,1\}$ . On pourra confondre les points  $O_{\gamma}$  et tracer les 3 courbes dans le même repère.
  - (d) Déterminer une équation cartésienne du plan tangent à S en un point  $M_0$  de S de coordonnées  $(x_0, y_0, z_0)$ . Cette équation ne devra pas dépendre de  $z_0$ .
  - (e) Dans le cas particulier où  $M_0$  est le point O, préciser la position relative de S et du plan tangent.
- 2. Comparaison de S et  $\Sigma$ .
  - (a) Vérifier que  $\Sigma \subset S$ .
  - (b) A-t-on  $\Sigma = S$ ?
- 3. A propos de  $\Sigma$ .
  - (a) Déterminer la nature géométrique de l'ensemble des points non réguliers de  $\Sigma$ .
  - (b) Soit M(u, v) un point régulier de  $\Sigma$ . Déterminer, en fonction des paramètres u et v, une équation cartésienne du plan tangent à  $\Sigma$  au point M(u, v).

### Partie II: Une famille de courbes

Soit a un réel distinct de 1 et -1. On note  $A_a(u)$  le point M(u, au) de  $\Sigma$  et  $\Gamma_a$  l'ensemble des points  $A_a(u)$  lorsque u parcourt  $\mathbb{R}^{+*}$ .

- 1. Donner une représentation paramétrique de  $\Gamma_a$ .
- 2. (a) Justifier que les vecteurs  $\frac{d\overrightarrow{OA_a}}{du}(u)$  et  $\frac{d^2\overrightarrow{OA_a}}{du^2}(u)$  engendrent un plan.

  On note alors  $P_a(u)$  le plan passant par  $A_a(u)$  et dirigé par les vecteurs  $\frac{d\overrightarrow{OA_a}}{du}(u)$  et  $\frac{d^2\overrightarrow{OA_a}}{du^2}(u)$ .
  - (b) Justifier, à l'aide de la partie I, l'existence de la normale à  $\Sigma$  en tout point  $A_a(u)$  de  $\Gamma_a$ .
  - (c) Déterminer a pour qu'en tout point  $A_a(u)$  de  $\Gamma_a$ , la normale à  $\Sigma$  en  $A_a(u)$  soit incluse dans  $P_a(u)$ . On donne, si nécessaire,  $a^4 + 5a^3 + 6a^2 + 5a + 1 = (a^2 + a + 1)(a^2 + 4a + 1)$ .

### Partie III : Autour de $\Gamma_{-2}$

Dans cette partie, nous allons étudier le cas particulier a=-2 des courbes  $\Gamma_a$  définies dans la partie II.

- 1. On considère les vecteurs  $\vec{w} = \frac{1}{3} \vec{i} + \frac{2}{3} \sqrt{2} \vec{j}$  et  $\vec{u} = \vec{k}$ .
  - (a) Déterminer un vecteur  $\vec{v}$  tel que  $(\vec{u}, \vec{v}, \vec{w})$  forme une base orthonormée directe de  $\mathbb{R}^3$ .
  - (b) Ecrire la matrice de passage  $Q_1$  de la base  $(\vec{i}, \vec{j}, \vec{k})$  à la base  $(\vec{u}, \vec{v}, \vec{w})$  et la matrice de passage  $Q_2$  de la base  $(\vec{i}, \vec{j}, \vec{k})$  à la base  $(\vec{w}, \vec{v}, \vec{u})$ .
  - (c) Déterminer la nature et les éléments caractéristiques de l'endomorphisme de  $\mathbb{R}^3$  canoniquement associé à la matrice  $Q_2$ .
  - (d) Déterminer la nature et les éléments caractéristiques de l'endomorphisme de  $\mathbb{R}^3$  canoniquement associé à la matrice  $Q_1$ .
- 2. Les coordonnées d'un point M dans le repère  $(O; \vec{i}, \vec{j}, \vec{k})$  sont (x, y, z) et ses coordonnées dans  $(O; \vec{u}, \vec{v}, \vec{w})$  sont (x', y', z'). Quelle relation existe-t-il entre la matrice  $Q_1$  et les vecteurs  $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$  et  $\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$ ?
- 3. En déduire une représentation paramétrique de  $\Gamma_{-2}$  dans le repère  $(O; \vec{u}, \vec{v}, \vec{w})$ . Quelle est la nature de  $\Gamma_{-2}$ ?

On se place à nouveau dans le repère  $(O\,;\,\vec{i},\,\vec{j},\,\vec{k}),$  et on considère le système différentiel

$$S_{-2}: X' = B_{-2} \ X \ \text{où} \ B_{-2} \ \text{est la matrice} \left( \begin{array}{ccc} \frac{4}{5} & -\frac{2\sqrt{2}}{5} & 0 \\ -\frac{\sqrt{2}}{5} & \frac{1}{5} & 0 \\ -\frac{2}{5} & -\frac{4\sqrt{2}}{5} & 2 \end{array} \right)$$

On appelle courbe intégrale du système différentiel  $S_{-2}$  toute courbe dont une représentation paramétrique est  $t \in \mathbb{R} \mapsto X(t)$ , où X est une solution de  $S_{-2}$ .

- 4. Soit  $x_0$ ,  $y_0$  et  $z_0$ , trois réels donnés. Que peut-on dire du nombre de solutions de  $S_{-2}$  vérifiant  $x(0) = x_0$ ,  $y(0) = y_0$ ,  $z(0) = z_0$ ?
- 5. (a) Justifier que  $B_{-2}$  est diagonalisable et la diagonaliser. On donnera une matrice diagonale D semblable à  $B_{-2}$ , la matrice de passage P retenue, ainsi que la relation liant  $B_{-2}$ , P et D (le calcul de  $P^{-1}$  n'est pas demandé).
  - (b) En déduire les solutions de  $S_{-2}$ .
  - (c) Démontrer que toutes les courbes intégrales de  $S_{-2}$  sont planes.
  - (d) La courbe  $\Gamma_{-2}$  est-elle une courbe intégrale de  $S_{-2}$ ?
- 6. On suppose dans cette question uniquement que a est à nouveau un réel quelconque. Proposer une matrice  $B_a$  telle que  $\Gamma_a$  soit une courbe intégrale du système différentiel linéaire à coefficients constants  $X' = B_a X$ .

La surface S s'appelle paraboloïde hyperbolique ... ainsi que peuvent le suggérer les différentes courbes rencontrées dans ce problème. Elle ressemble à une selle de cheval. Quant au plan  $P_a(u)$ , il s'agit du plan osculateur à  $\Gamma_a$  au point A(u).