MAHARISHI INTERNATIONAL UNIVERSITY

CS 435 Algorithms:

Discovering the Hidden Dynamics of Natural Law

Premchand S Nair
Ph.D. (Math), Ph.D. (CS)
Professor
Department of
Computer Science

Jan. 13 – Feb. 06, 2025

ALGORITHMS: Discovering the Hidden Dynamics of Natural Law

Professor Prem Nair, PhD

SYLLABUS

"Fulfillment is structured in achievement, Achievement is structured in action, Action is structured in thinking, Thinking is structured in knowledge, Knowledge is structured in consciousness."

—Maharishi

GOAL OF THE COURSE

Gain practical knowledge on design and analysis of algorithms.

COURSE OBJECTIVES, ACTIVITIES, AND ASSESSMENT

This is what you'll learn	This is how you'll learn it	This is what will show
to do		you've learned it
Read code and explain	By paying attention to all	Homework, Midterm,
what the result of its	examples and illustrations	Final
execution would be	presented in the class	
(3,5)		
Distinguish between	By writing and analyzing	Homework, Midterm,
different algorithms	algorithms for various	Final
(3,5)	problems	
Establish complexity	By doing lab work in the	Homework, Midterm,
classes	class by exploring	Final
(3,5)	resources available in the	
	internet	
Design an algorithm using	By doing lab work in the	Homework, Midterm,
known design principles	class by exploring	Final
(3,5)	resources available in the	
	internet	
Organize data to fit known	By doing lab work in the	Homework, Midterm,
data structures	class by exploring	Final
(3,5)	resources available in the	
	internet	
Create Java programs	By doing lab work in the	Homework
development environment	class by exploring	
using Eclipse	resources available in the	
(3,5)	internet	
Explain the connections	By summarizing each	Short essay exam question
between the Science of	day's lesson in text and	
Consciousness	illustrating through an	
And Essentials of	example	
Programming		
(2)		

The numbers between parentheses refer to the main Essential Learning Outcomes (ELOs) below (in boldface) that are addressed by each learning objective:

- 1. Holistic development of consciousness and health
- 2. Consciousness-Based understanding
- 3. Creative thinking and critical thinking
- 4. Communication
- 5. Scientific and quantitative reasoning

- 6. Collaboration and leadership
- 7. Sustainable local and global citizenship

OFFICE HOURS, CONTACT INFORMATION

Dr. Prem Nair Email: pnair@miu.edu

Phone: 472-7000 ext 2215 (office) Office: McLaughlin Bldg., Room 226

Office hours: M/Tu/W/Th/F 9:00 – 10:00 in class

RECOMMENDED DAILY SCHEDULE

The daily schedule of all courses is designed to give students mastery of specific fields of knowledge and to cultivate higher states of consciousness for success and fulfillment in life. I recommend that you aim to be in bed by 10 PM, so that you are rested and fresh in the morning. If you have not finished your homework by then, then instead of staying up late to finish it, get a good night's rest and finish your homework in the morning before class.

MORNING	
	Group practice of the Transcendental Meditation and
	TM-Sidhi programs
10:00 AM – 12:05 AM	Class lecture, discussion, activities, labs
12:05 – 12:10	Stretch break
12:10 – 12:40	Group meditation
12:40 – 1:40 PM	Lunch and walk
AFTERNOON	
1:40 – 2:45 PM	Continuation of morning class.
	Problem solving.
2:45 – 2:50 PM	Stretch break
2:50 – 3:15 PM	In-class group practice of the Transcendental Meditation
	program for Meditators and Rising Sidhas
3:15 – 4:15 PM	GSA Hour. Both of your GSA will be present and it is
	your responsibility to get help from your GSA.
EVENING	
	Dinner
7:30 – 9:00 PM	Homework
9:30 PM	Rest

CS 435
Algorithms:
Discovering the Hidden Dynamics of Natural Law

			<u> </u>			
	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6
Analysis Techniques and Sorting Algorithms	Lesson 1: Introduction to Algorithms.	Lesson 2 Intro to Analysis of Algorithms.	Lesson 2 (continued) Lesson 3 Dynamic Programming.	Lesson 3 (continued)	Lesson 4 Part 1 Average Case Analysis Part 2 Amortized Analysis	Lesson 5 Merge Sort
Analysis of Data Structures	Lesson 6 QuickSort and QuickSelect	Lesson 7 Lower Bound on Comparison-Based Algorithms, Skip List	Lesson 8 A Review of Data Structures Lesson 9: Binary Search Trees Dictionary.	Midterm Review	Midterm Examination (Lessons 1-9)	Catch up or Review
Graph Algorithms	Lesson 10 Red-Black Trees Ordered Dictionary.	Lesson 11 Priority Queues and Heap Sort	Lesson 12 Introduction to Graph Theory.	Lesson 13 Implementing Graph Algorithms	Lesson 14 Weighted Graphs, Part I: Shortest Path Algorithms. Disjoint sets.	Lesson 14 Weighted Graphs, Part II Continued. Disjoint sets. Kruskal's Algorithm.
Hard Problems	Lesson 15 NP Complete Problems. Backtracking.	Catch up or Review	Final Exam Review	Final Examination (Lessons 1-15)		

EVALUATION PLAN

Grading components

Midterm Examination	45%
Final Examination	45%
Assignments	5%
Professional Etiquette	5%

Midterm and Final will be graded strictly. No point fishing will be tolerated and will result in forfeiting 100% of the Professional Etiquette points.

Meaning of grades

A (92–100)	Excellent, exceptional
A- (90–91.9)	Excellent
B + (88–89.9)	Very good comprehension of course concepts and proficiency in course competencies
B (82–87.9)	Good comprehension of course concepts and proficiency in course competencies.
B- (80–81.9)	basic comprehension of course concepts and proficiency in course competencies
C (70–79.9)	Fair — meets minimal expectations for passing
NC (below 70)	No credit — did not attain course objectives at a minimal level

If you are caught cheating on midterm or final, you will get NC.

Study pods

Each one of you belongs to a study pod consisting of 3 or 4 students. If your class number is x, you belong to the study pod x % 9. For example, students with class numbers 5, 14 and 23 are in the study pod 5. Only one member of the study pod needs to submit the assignments.

Exam grading

1 point questions: Correct 1. No partial credit.

2 or more points questions: First error -50%. Subsequent errors -25%.

Professor will "curve" your midterm and final exam points using the formula

Your scaled score = (your actual Score * 45)/ (Maximum score).

TEXTS AND OTHER CLASS MATERIALS

The strongly recommended text for the course is *Algorithm Design: Foundations, Analysis, and Internet Examples*, by Michael Goodrich and Roberto Tamassia, available through Amazon Books and Barnes and Noble.

Reference Materials

Data Structues And Algorithm Analysis In Java

Mark Allen Weiss Addison-Wesley ISBN: 0-201-35754-2

We have used this textbook in previous Algorithms classes.

An Introduction to Algorithms

T.H. Cormen, C.E. Leiserson, R.L. Rivest

McGraw-Hill, 25th printing, 2000

The classic reference. It has everything in it. And it's inexpensive considering it spans more than 1000 pages.

Data Structures, Algorithms, and Applications in Java

Sartaj Sahni

McGraw-Hill

http://www.mhhe.com/engcs/compsci/sahnijava/

Website offers Java code for many algorithms

END OF COURSE EVALUATION

Please give us your feedback about the course. You should be receiving an email from Dr. Raul Calderon at evaluations@miu.edu near the end of the course that will give you a one-step login link. If you do not get this email, you can also go to Smartevals.com/miu and log in there.

- Your Username: your student ID in 000-00-0000 format.
- Your Password: your birth date in MM/DD/YY format.

COURSE POLICIES

The following list of policies is meant to remind you of the policies in effect for this course. Most of these are University-wide policies explained in more detail in the University catalog, available online at www.miu.edu/catalog. If you are unsure how the policy works, feel free to discuss it with me after class.

Late homework (department policy) — Unless you are ill or prevented from turning in work by a family emergency, all assignments should be handed in on the day they are due. You may turn in homework one day late for a slightly reduced grade, but not after that. Please do not turn in assignments after the end of the course without prior arrangement (see "Incompletes" below).

Punctuality and attendance — Much of the value of a university class lies in the experience you have in class. For this reason, punctuality and attendance are highly valued at MIU. A class grade will be reduced at the rate of one percentage point for every 20 cumulative minutes late (up to two points per session), and three percentage points for an unexcused absence for a whole session (morning or afternoon).

NOTE: If you arrive late, please mark the number of minutes late on the Lateness Registry that is posted in the classroom.

Punctuality also extends to returning from the class break in a timely fashion (after 5 minutes). I should not need to go out and round up students.

An excused absence is defined as absence due to bona fide illness or family emergency. You are responsible for all readings and all written assignments whether you are able to attend class or not, and, in the interest of efficiency, please arrange to find out adjustments in assignments and

other announcements from other classmates rather than from me if possible. I will be happy to give you any handouts you missed while absent.

Repeated unexcused absences are a violation of the MIU. Code of Student Behavior. In addition to academic consequences, students with repeated unexcused absences are subject to disciplinary actions.

Contact me — In the rare event you must miss class or are sick, please contact me as soon as possible using the contact information above (email or phone) or send a message or note to class with a friend. If you keep me informed, I will know how you are doing and how to plan for each class.

Incompletes — Incompletes are given in response to student requests for work that cannot be completed during the course due to illness or family emergency and that does not exceed the equivalent of six sessions of a four-week course. If circumstances should arise during the course that make you eligible for an incomplete before the end of the course, please contact me immediately.

If I give you an Incomplete, you will have the three days during the weekend immediately following the end of the course to make up that incomplete work. (If you are still sick that weekend, you may request an additional 32 days — that is, the work will be due by the end of the three-day weekend following the next block. If you are granted this incomplete, yet the work is not completed by then, the grade of Incomplete will become a grade of NC.)

Academic Honor Code — Personal integrity, honesty, and honor are essential qualities of a capable student and a developing leader. The University has established an Academic Honor Code that sets forth the standards of academic honesty and personal integrity expected of all students for all writing assignments and exams. This course will be conducted in strict conformity with the Academic Honor Code. you can find the Code and related procedures in the University Catalog at www.miu.edu/catalog. Please familiarize yourself with this code and avoid using others' work without proper citations.

Standards of appearance — The MIU faculty seek to create a coherent, focused, and dignified atmosphere on campus and in the classroom that supports the giving and gaining of knowledge. I ask that you dress in keeping with this purpose. This means:

- Neat, dignified, and modest clothing appropriate to the occasion is encouraged at all times.
- Torn, stained, and sloppy clothing are not appropriate.
- Immodest or revealing clothing is not appropriate (e.g., mini-skirts).

- Shorts are not appropriate for class, but shorts (other than short shorts) may be worn in the dining hall or while doing class projects outside the classroom when appropriate as determined by the faculty.
- Students from other cultures and traditions are welcome to wear traditional dress, provided the appearance is neat and modest.

Computers, cell phones, and pagers — Please turn off all cell phones and pagers at the start of class, so you will not inadvertently interrupt a lecture or class discussion. Carrying on extended texting conversations in class is both inappropriate and distracting to your classmates, so please avoid these kinds of behavior. We will discuss when and under what conditions classroom use of computers is encouraged.

Student Support Services — Beyond the normal support you will receive from me and your classmates, extensive on-campus support services are available for both academic and personal support that you may need at any time. To access these services, please stop by the Student Life Department in Room 105 of the Dreier Building between 10 a.m. and 4 p.m., Monday through Friday, or call Santoria Rush at 641-472-1225 for referral to the appropriate person.

Promoting Respectful Classroom Interaction — Maharishi University of Management is unique for the level of harmony and mutual support that exists on campus and in its classrooms. In this spirit, we honor cultural diversity as well as diverse backgrounds and viewpoints. While we welcome dialog from, and challenge to, all points of view, we ask that you maintain an open and supportive attitude toward your fellow classmates and University staff, and we do not tolerate harassment in any form.