# **Chapitre**: Suites numériques



# I. Généralités sur les suites

| Définition 1  | Une | suite | numérique | и | de | nombres | réels | est | une | fonction | définie | SU |
|---------------|-----|-------|-----------|---|----|---------|-------|-----|-----|----------|---------|----|
| l'ensemble de | es  |       |           |   |    |         |       |     |     |          |         |    |

| <b>Notation :</b> L'image par $u$ d'un entier naturel $n$ est notée | et se lit |
|---------------------------------------------------------------------|-----------|
| « <i>u</i> indice <i>n</i> ».                                       |           |
| La suite des termes $u_n$ s'appelle $u$ et elle est notée           |           |

|       | Faration 6        | Cuite (m)     |
|-------|-------------------|---------------|
|       | Fonction <i>f</i> | Suite $(u_n)$ |
| Image |                   |               |

**Attention :** On fera bien la distinction entre  $u_n$  qui représente le terme qui a un rang n quelconque et  $(u_n)$  qui représente tous les termes de la suite.

| <u>Définition 2</u> : Soient $(u_n)$ une suite et $n$ un entier naturel. |              |
|--------------------------------------------------------------------------|--------------|
| $u_n$ est le                                                             | de la suite. |
| Le premier terme (souvent $u_0$ ) de la suite ( $u_n$ ) est la           |              |
| de la suite.                                                             |              |

<u>Remarque</u>: Une suite  $(u_n)$  peut n'être définie qu'à partir du rang 1. Dans ce cas, la suite est définie dans  $\mathbb{N}^*$  et sa valeur initiale est  $u_1$ .

Quand on parle de suite, tous les indices doivent être des entiers positifs.

# **Exemples:**

- 1, 2, 3, 4, ....est la suite des entiers naturels. (On passe d'un terme au suivant en ajoutant 1).
- Les six premiers termes de la suite des nombres impairs sont : 1, 3, 5, 7, 9 et 11 (On passe d'un terme au suivant en ajoutant 2).
- Les 5 premiers termes de la suite des puissances de 2 sont  $2^0 = 1$ ,  $2^1 = 2$ ,  $2^2 = 4$ ,  $2^3 = 8$ ,  $2^4 = 16$  (On passe d'un terme au suivant en multipliant par 2)



# II. Modes de génération d'une suite numérique

1) Suite définie à l'aide d'une fonction  $u_n = f(n)$ 

| <b>Definition 3</b> : Une suite peut 6 | etre definie au moyen d'une           | <i>f</i> de la                  |
|----------------------------------------|---------------------------------------|---------------------------------|
| variable $n: u_n =$                    | où <i>f</i> est                       | une fonction donnée définie     |
| sur                                    |                                       |                                 |
| Application 1 :                        |                                       |                                 |
| <del></del>                            | tout entier naturel $n$ , par $v_n$ = | $n^2$ Donner les trois premiers |
| termes et le 101ème.                   | tout officer fluctures to, par th     | it i Donner led trolo premiere  |
|                                        |                                       |                                 |
|                                        |                                       |                                 |
|                                        |                                       |                                 |
|                                        |                                       |                                 |
|                                        |                                       |                                 |
|                                        |                                       |                                 |
|                                        |                                       |                                 |
|                                        |                                       |                                 |
|                                        |                                       |                                 |
|                                        |                                       |                                 |

L'avantage de cette méthode est qu'elle permet de calculer directement la valeur d'un terme sans avoir besoin de connaître tous les termes précédents.

L'inconvénient est qu'elle ne permet pas de mettre en évidence une relation entre les termes consécutifs, alors que c'est souvent la nature de cette relation qui intéresse...

### Exercice 1 : Suite définie par une fonction

1. Soit  $(u_n)$  la suite définie sur  $\mathbb N$  par  $u_n=n^2+2$ .

Déterminer les termes  $u_0$ ,  $u_1$ ,  $u_2$  et  $u_{15}$ .

2. Soit  $(v_n)$  la suite définie sur  $\mathbb{N}$  par  $v_n = \frac{1}{n}n + 3$ .

Déterminer les termes d'indices 2.3 et 7.

3. Soit  $(w_n)$  la suite définie sur  $\mathbb N$  par  $w_n = \frac{1}{n+1}$ .

Calculer les cinq premiers termes.

4. Soit  $(a_n)$  la suite définie sur  $\mathbb N$  par  $a_n=(-1)^n$ . Déterminer les termes  $a_0,a_1,a_2,a_{100}$  et  $u_{203}$ .

#### Exercice 2 : Suite définie par une fonction

- 1. Soit  $(u_n)$  la suite définie pour tout entier naturel n, par  $u_n=3n^2-1$ .
  - a. Calculer les trois premiers termes de la suite  $(u_n)$ .
  - b. Calculer le cinquième terme de la suite.
- 2. Soit  $(v_n)$  la suite définie pour tout entier naturel n, par  $v_n = -5n^2 + 2$ .
  - a. Calculer les quatre premiers termes de la suite  $(u_n)$ .
  - b. Calculer le huitième terme de la suite.

## 2) Suite définie à l'aide d'une relation de récurrence

**Définition 4 :** Une suite peut être définie au moven d'une  $(u_n)$  est alors définie par son premier terme et une relation permettant de calculer un terme à partir du précédent. La relation peut être donnée par une formule explicite ou par un algorithme.

On étudiera, plus spécialement, les suites définie à l'aide de la relation de récurrence  $u_{n+1} = f(u_n)$ 

**Application 2:** Soit  $(u_n)$  la suite définie par  $u_0 = 1$  et la relation  $u_{n+1} = 3u_n + 1$ , pour tout entier naturel.

| Donner les 3 premiers termes. | • |  |
|-------------------------------|---|--|
|                               |   |  |
|                               |   |  |
|                               |   |  |
|                               |   |  |
|                               |   |  |
|                               |   |  |
|                               |   |  |
|                               |   |  |
|                               |   |  |
|                               |   |  |
|                               |   |  |
|                               |   |  |
|                               |   |  |
|                               |   |  |
|                               |   |  |
|                               |   |  |
|                               |   |  |

Remarque: On peut aussi définir des relations de récurrence sur plusieurs termes.

# Exemple : la suite de Fibonacci

Cette célèbre suite est définie comme suit :  $F_0 = 0$ ,  $F_1 = 1$  et la relation de récurrence est :  $F_{n+2} = F_{n+1} + F_n$ .

Autrement dit, on additionne les deux derniers termes pour obtenir le suivant. Le début de la suite est alors {0 ; 1 ; 1 ; 2 ; 3 ; 5 ; 8 ; 13 ; 21 ; 34...}.

#### Exercice 3 : Suite définie par récurrence

- $u_{n+1} = 3u_n 2$ . Déterminer les termes  $u_1, u_2$  et  $u_3$ .
- 2. Soit  $(v_n)$  la suite définie sur  $\mathbb{N}$  par  $v_0 = 2$  et  $v_{n+1} = 1 - v_n$ . Déterminer les termes d'indices 1, 2, 3 et 5.
- 3. Soit  $(w_n)$  la suite définie sur  $\mathbb{N}$  par  $w_0 = 5, w_1 = \frac{13}{6}$  et  $w_{n+2} = \frac{5}{6} w_{n+1} - \frac{1}{6} w_n$ . Déterminer les termes  $w_2, w_3, w_4$  et  $w_5$ .

#### Exercice 4 : Suite définie par récurrence

- 1. Soit  $(u_n)$  la suite définie sur  $\mathbb{N}$  par  $u_0 = 3$  et | 1. Soit  $(u_n)$  la suite définie pour tout entier naturel n, par  $u_0 = 1$  et  $u_{n+1} = 3u_n^2 + 1$ .
  - a. Calculer les trois premiers termes de la suite  $(u_n)$ .
  - b. A l'aide de la calculatrice, déterminer le septième terme de la suite.
  - 2. Soit  $(v_n)$  la suite définie pour tout entier naturel n, par  $v_0 = -2$  et  $v_{n+1} = 3v_n + 7$ .
    - a. Calculer les trois premiers termes de la suite
    - b. A l'aide de la calculatrice, déterminer le quinzième terme de la suite.

#### Exercice 5 : Suite définie par récurrence

- 1. Soit  $(u_n)$  la suite définie par son premier terme  $u_0 = 1$ , et telle qu'en multipliant un terme par 3, on obtienne le terme suivant.
  - a. Déterminer les termes  $u_1, u_2$  et  $u_3$ .
  - b. Donner une relation reliant  $u_{n+1}$  et  $u_n$ .
- 2. Soit  $(v_n)$  la suite définie par son premier terme  $v_0 = 5$ , et telle qu'en ajoutant 2 à un terme, on obtienne le terme suivant.
  - a. Déterminer les termes  $v_1, v_2$  et  $v_3$ .
  - b. Donner une relation reliant  $v_{n+1}$  et  $v_n$ .
- 3. Soit  $(w_n)$  la suite définie par son premier terme  $w_0 = 2$ , et telle qu'en multipliant un terme par 2 puis en luis ajoutant -1, on obtienne le terme suivant.
  - a. Déterminer les termes  $w_1, w_2$  et  $w_3$ .
  - b. Donner une relation reliant  $w_{n+1}$  et  $w_n$ .

#### Exercice 6: Algorithme et suite

La suite  $(u_n)$  est définie par  $u_0 = A$  et l'algorithme suivant permettant d'afficher le terme d'indice N.

Variables A est un réel. N et I sont des

entiers.

A? et N? Entrée

**Traitement** Pour *I* allant de 1 à *N* faire

 $A \leftarrow 2 \times A - 1$ 

Fin Pour Sortie Afficher A

- 1. Quelle valeur de A sera affichée après exécution de l'algorithme:
  - a. Si on saisit A = 1 et N = 5?
  - b. Si on saisit A = 2 et N = 3?
- 2. Quelle valeur de N faut-il saisir pour obtenir le  $3^{\text{ème}}$
- 3. Modifier l'algorithme pour qu'il affiche les terme de  $u_1$
- 4. Déterminer  $u_1, u_2, u_3$  et  $u_4$  quand A = 3.
- 5. Exprimer  $u_{n+1}$  en fonction de  $u_n$

# Représentation graphique d'une suite

1) Suite définie à l'aide d'une fonction  $u_n = f(n)$ points de coordonnées placer les dans un repère (0; I, I)

du plan.

**Application 3 :** Donner la représentation graphique des neuf premiers termes de la suite  $(u_n)$ , définie pour tout entier naturel n par :  $u_n = -n^2 + 7n + 1$ .



# 2) Suite définie à l'aide d'une relation de récurrence $u_{n+1} = f(u_n)$

On peut déterminer graphiquement les termes d'une suite définie par  $u_0$  et  $u_{n+1} = f(u_n)$ en traçant le graphe de la fonction f.  $u_1$  s'obtient en plaçant  $u_0$  sur l'axe des abscisses et en lisant  $f(u_0)$ ,  $u_2$  s'obtient en plaçant  $u_1$  sur l'axe des abscisses et en lisant  $f(u_1)$ ...

On utilise ensuite la droite d'équation y = x pour placer les valeurs lues sur l'axe des ordonnées sur l'axe des abscisses

# Application 4:

Placer sur l'axe des abscisses, sans calcul, les 4 premiers termes de la suite. Quelle conjecture peut-on faire quant à son sens de variation et sa convergence ?









 $u_{n+1} = \frac{3u_n + 2}{u_n + 4}$  et  $u_0 = 0$ 

$$u_{n+1} = 3 - \frac{4}{u_n + 1}$$
 et  $u_0 = 4$ 



$$u_{n+1} = 6 - \frac{5}{u_{n+1}}$$
et  $u_0 = 0$ 



# Sens de variations d'une suite

# **Définitions 5:**

- Une suite  $(u_n)$  est **croissante** si, pour tout entier naturel, \_
- Une suite  $(u_n)$  est **décroissante** si, pour tout entier naturel, \_\_\_\_\_
- Une suite  $(u_n)$  est **constante** si, pour tout entier naturel,
- Une suite est monotone si elle est soit croissante, soit décroissante, soit constante.

**Méthode**: Pour comparer les deux nombres  $u_n$  et $u_{n+1}$ , nous pouvons étudier le signe de leur différence:

Si la suite n'est pas définie par récurrence :

Pour obtenir  $u_{n+1}$ , on remplace n par n+1 dans l'expression de  $u_n$  en fonction de n

| $v_n$ ia so                     | ite définie sur N pa                                                              | $v_{n+1} - v_n$               | 1 2 6 7 0             |                    |                  |
|---------------------------------|-----------------------------------------------------------------------------------|-------------------------------|-----------------------|--------------------|------------------|
|                                 |                                                                                   |                               |                       |                    |                  |
|                                 |                                                                                   |                               |                       |                    |                  |
|                                 |                                                                                   |                               |                       |                    |                  |
|                                 |                                                                                   |                               |                       |                    |                  |
| Annlication 6                   | $\underline{:}$ Soit $(u_n)$ la suite                                             | définie sur №                 | $nar u = n^2 D$       | lonner son sen     | ıs de variation  |
| ppiication                      | <u>:</u> 3010 ( <i>a<sub>n</sub></i> ) 10 30100                                   | dennie sur 14                 | $par u_n - n \cdot b$ | 701111C1 3011 3C11 | is de variation. |
|                                 |                                                                                   |                               |                       |                    |                  |
|                                 |                                                                                   |                               |                       |                    |                  |
|                                 |                                                                                   |                               |                       |                    |                  |
|                                 |                                                                                   |                               |                       |                    |                  |
|                                 |                                                                                   |                               |                       |                    |                  |
|                                 |                                                                                   |                               |                       |                    |                  |
|                                 | $\frac{\text{M\'ethode}):}{\text{ntervalle}[0; +\infty[.]}$<br>strictement crois: |                               | ; +∞[ alors           | la suite $(u_n)$   | est stricteme    |
| Si f est                        | itervalle $[0; +\infty[$ .                                                        | sante sur [0                  |                       |                    |                  |
| Si f est Si f est               | strictement crois:                                                                | sante sur [0<br>issante sur [ | 0; +∞[ alors          | la suite $(u_n)$   |                  |
| Si f est Si f est               | strictement croissistrictement décro                                              | sante sur [0<br>issante sur [ | 0; +∞[ alors          | la suite $(u_n)$   |                  |
| Si f est Si f est               | strictement croissistrictement décro                                              | sante sur [0<br>issante sur [ | 0; +∞[ alors          | la suite $(u_n)$   |                  |
| Si f est Si f est               | strictement croissistrictement décro                                              | sante sur [0<br>issante sur [ | 0; +∞[ alors          | la suite $(u_n)$   |                  |
| Si f est Si f est               | strictement croissistrictement décro                                              | sante sur [0<br>issante sur [ | 0; +∞[ alors          | la suite $(u_n)$   |                  |
| Si f est Si f est               | strictement croissistrictement décro                                              | sante sur [0<br>issante sur [ | 0; +∞[ alors          | la suite $(u_n)$   |                  |
| Si f est Si f est               | strictement croissistrictement décro                                              | sante sur [0<br>issante sur [ | 0; +∞[ alors          | la suite $(u_n)$   |                  |
| Si f est Si f est               | strictement croissistrictement décro                                              | sante sur [0<br>issante sur [ | 0; +∞[ alors          | la suite $(u_n)$   |                  |
| Si f est Si f est               | strictement croissistrictement décro                                              | sante sur [0<br>issante sur [ | 0; +∞[ alors          | la suite $(u_n)$   |                  |
| Si f est Si f est Application 7 | strictement croissistrictement décro                                              | sante sur [0<br>issante sur [ | 0; +∞[ alors          | la suite $(u_n)$   |                  |
| Si f est Si f est Application 7 | strictement croissistrictement décro                                              | sante sur [0<br>issante sur [ | 0; +∞[ alors          | la suite $(u_n)$   |                  |
| Si f est Si f est Application 7 | strictement croissistrictement décro                                              | sante sur [0<br>issante sur [ | 0; +∞[ alors          | la suite $(u_n)$   |                  |

#### Exercice 7 : Sens de variations d'une suite

- 1. Soit  $(u_n)$  une suite décroissante. Comparer  $u_4$  et  $u_5$ .
- 2. Soit  $(v_n)$  une suite croissante. Déterminer le signe de  $u_{11} u_{10}$

# Exercice 8 : Sens de variations d'une suite (récurrente)

Dans chacun des cas suivants, déterminer le sens de variation de la suite  $(u_n)$ .

variation de la suite 
$$(u_n)$$
.

a.  $\begin{cases} u_0 = 1 \\ u_{n+1} = u_n + n^2 \end{cases}$  b.  $\begin{cases} u_0 = 9 \\ u_{n+1} = u_n - 7 \end{cases}$  c.  $\begin{cases} u_0 = -7 \\ u_{n+1} = u_n - 7n \end{cases}$  d.  $\begin{cases} u_0 = 9 \\ u_{n+1} = u_n - 7n \end{cases}$  d.  $\begin{cases} u_0 = 9 \\ u_{n+1} = u_n - 1 \end{cases}$  g.  $u_0 = -1$  g.  $u_0 = -3n^2 - 2n + 1$  h.  $u_0 = 3 - 2n$ 

## Exercice 9 : Sens de variations d'une suite (explicite)

Dans chacun des cas suivants, déterminer le sens de variation de la suite  $(u_n)$ .

a. 
$$u_n = 2n$$

b. 
$$u_n = n^2$$

c. 
$$u_n = 1 - \frac{1}{2}$$

d. 
$$u_n = n^2 + 3$$

e. 
$$u_n = 3n$$

f. 
$$u_n = 5n - 8$$

g. 
$$u_n^n = -3n^2 - 2n$$

h. 
$$u_n = 3 - 2i$$

# Exercice 10 : Recherche de seuils

Soit  $(u_n)$  la suite définie par  $u_n = n - 0.25$ .

- 1. Résoudre l'inéquation  $u_n \ge 5000$ .
- 2. En déduire le plus petit entier  $n_0$  tel que pour tout *n* supérieur à  $n_0$ ,  $u_n \ge 5000$ .

# Exercice 12: Comportement d'une suite

Représenter la suite et conjecturer le sens de variation et le comportement de la suite lorsque ntend vers  $+\infty$ .

a) 
$$u_0 = 1$$
 et pour tout  $n \in \mathbb{R}$ ,  $u_{n+1} = \frac{1}{2}u_n + 1$ 

b) 
$$u_0 = 9$$
 et pour tout  $n \in \mathbb{R}$ ,  $u_{n+1} = \frac{u_n^2}{10}$ 

c) 
$$u_0 = \frac{1}{4}$$
 et pour tout  $n \in \mathbb{R}$ ,  $u_{n+1} = \sqrt[10]{u_n}$ 

d) 
$$u_0 = 2$$
 et pour tout  $n \in \mathbb{R}$ ,  $u_{n+1} = \frac{1}{u_n}$ 

e) 
$$u_0 = 6$$
 et pour tout  $n \in \mathbb{R}$ ,  $u_{n+1} = -\frac{1}{2}u_n + 2$ 

Dans chacun des cas suivants :

• Donner, en justifiant, les variations de  $(u_n)$ 

Exercice 14 : Cas d'une limite infinie à l'infini

• Trouver un indice m tel que , lorsque  $n \ge m$ , les les termes  $u_n$  appartiennent à l'intervalle Idonné.

a) 
$$u_n = \sqrt{2n+1}$$
  $I = [10^5; +\infty[$ 

b) 
$$u_n = \frac{2-n}{3}$$
  $I = ]-\infty; -10^5$ 

c) 
$$u_n = \frac{2}{3}n^2$$
  $I = [10^6; +\infty]$ 

d) 
$$u_n = \frac{5^n}{2^{n+1}}$$
  $I = [10^5; +\infty]$ 

e) 
$$u_n = -2 \times 5^n$$
  $I = ]-\infty; -10^6]$ 

## Exercice 11: Recherche de seuils

Soit  $(v_n)$  la suite définie pour tout entier naturel npar  $v_n = \frac{1}{n+1}$ .

Déterminer un entier N tel que, pour tout nsupérieur ou égal à N,  $0 < v_n \le 0.001$ .

#### Exercice 13: Cas d'une limite finie à l'infini

La suite  $(u_n)$  a pour limite L (à conjecturer à l'aide de la calculatrice) quand n tend vers  $+\infty$ .

Trouver un indice m tel que, lorsque n > m, les termes  $u_n$  appartiennent à l'intervalle I proposé.

) 
$$u_n = \frac{1}{\sqrt{n}}$$
  $I = ]0; 10^{-4}[.$   
)  $I = [0; 10^{-5}]$ 

$$u_n = \frac{1}{n+5} \qquad I = ]0; 10^{-5}[$$

$$u_n = \frac{1}{2} + \frac{3}{2n} \qquad I = ]0,49; 0,51[$$

d) 
$$u_n = 3 + \frac{1}{n}$$
  $I = ]3 - 10^{-4}; 3 + 10^{-4}[$ 

#### Exercice 15: Modélisation

Dans un étang, pendant l'hiver 2015, la population des gardons était estimée à 600 kg. Mais, chaque année la quantité de gardons diminue du quart de sa valeur. Pour compenser cette diminution, on réintroduit chaque automne 200 kg de gardons.

On note  $u_n$  la quantité de gardons, exprimée en kg, au début de l'hiver de l'année 2015 + n.

On a ainsi  $u_0 = 600$  et pour tout entier naturel n:

$$u_{n+1} = \frac{3}{4}u_n + 200$$

- 1. Déterminer la quantité  $u_1$  de gardons présents l'hiver 2016, puis la quantité de gardons  $u_2$  l'hiver 2017.
- 2. A l'aide d'un tableur, ou d'une calculatrice, déterminer la quantité de gardons présents dans l'étang au début de l'hiver 2025.

## V. Utilisation d'un tableur :

#### Points essentiels à ne pas oublier :

- 1) Une formule commence toujours par un « = ».
- 2) « fois » s'écrit « \* », « divisé » s'écrit « / » et les puissances s'écrivent « ^ ».
- 3) Les opérations doivent être écrites : « = 4\*B2 » fonctionne, mais il faut mettre le \*!
- 4) Utilisation du \$ : il bloque une référence quand on recopie la formule... dans \$A\$2 : le A est bloqué, le 2 est bloqué ; dans \$A\$2 : le A est bloqué, mais le 2 n'est pas bloqué ; dans A\$2 : le 2 est bloqué, mais le A n'est pas bloqué.

#### Exercice 16:

(u<sub>n</sub>) est une suite définie par une relation explicite.

On construit le tableau excel ci-contre.

Dans chaque cas, trouver la formule qu'il faut mettre dans la cellule B2 pour que, quand on la recopie vers le bas, les termes de la suite se calculent.

| que, quand on la recopie vers | s le bas, les termes de la suite se calculent. |
|-------------------------------|------------------------------------------------|
| 1) Pour $u_n = 2n + 3$ :      |                                                |
| 2) 5                          |                                                |

| 2) Pour u <sub>n</sub> = n <sup>2</sup> : |  |
|-------------------------------------------|--|
|-------------------------------------------|--|

| 3) Pour u <sub>n</sub> = n ( n + 1 ) : |  |
|----------------------------------------|--|
|----------------------------------------|--|

| 4) Pour u <sub>n</sub> = | $2 \times 5^n$ | : |  |
|--------------------------|----------------|---|--|
|--------------------------|----------------|---|--|

# Exercice 17:

 $(u_n)$  est une suite définie par son  ${\bf 1}^{er}$  terme  $u_0=3$  et une relation de récurrence (donnée ci-dessous). On construit le tableau excel ci-contre.

Dans chaque cas, trouver la formule qu'il faut mettre dans la cellule B3 pour que, quand on la recopie vers le bas, les termes de la suite se calculent.

| 1) Pour $u_{n+1} = 1.3u_n$ :                     |  |
|--------------------------------------------------|--|
| 2) Pour $u_{n+1} = u_n + 5$ :                    |  |
| 3) Pour u <sub>n+1</sub> = 2u <sub>n</sub> - 1 : |  |

| ۲, | Dour II | 211 | ⊥ n |
|----|---------|-----|-----|

5) Pour  $u_{n+1} = 2u_n + n$ 

#### Exercice 18:

Soit  $(u_n)$  une suite définie par  $u_0 = 4$  et  $u_{n+1} = 2u_n + 8 \ \forall n \in \mathbb{N}$ . On construit le tableau excel ci-dessous.

|   | Α                        | В | С  | D  | Е  | F   | G   | Н   |
|---|--------------------------|---|----|----|----|-----|-----|-----|
| 1 | valeur de n              | 0 | 1  | 2  | 3  | 4   | 5   | 6   |
| 2 | valeur de u <sub>n</sub> | 4 | 16 | 40 | 88 | 184 | 376 | 760 |

| a) Quelle formule faut-il mettre dans la cellule C2 pou | ır obtenir, par recopie vers la droite, | les termes de la |
|---------------------------------------------------------|-----------------------------------------|------------------|
| suite ?                                                 |                                         |                  |

| b) | Que | devient | cette | formule | dans la | cellule H2 | ? |
|----|-----|---------|-------|---------|---------|------------|---|
|----|-----|---------|-------|---------|---------|------------|---|

| 7 | A    | В              |
|---|------|----------------|
|   | rang | terme          |
| 1 | n    | U <sub>n</sub> |
| 2 | 0    |                |
| 3 | 1    |                |
| 4 | 2    |                |

| 20/1 |      |       |
|------|------|-------|
| 2    | A    | В     |
|      | rang | terme |
| 1    | n    | Un    |
| 2    | 0    | 3     |
| 3    | 1    |       |
| 4    | 2    |       |
|      |      |       |

#### Exercice 19:

Soit  $(u_n)$  une suite définie par  $u_0 = 100$  et  $u_{n+1} = 0.5u_n$  pour tout entier naturel n.

On construit le tableau excel ci-contre.

a) Quelle formule faut-il mettre dans la cellule B3 pour que, quand on la recopie vers le bas, les termes de la suite se calculent ?

|   | A         | В                       | C                                           |
|---|-----------|-------------------------|---------------------------------------------|
| 1 | rang<br>n | terme<br>U <sub>n</sub> | somme:<br>U <sub>0</sub> + + U <sub>n</sub> |
| 2 | 0         | 100                     | 100                                         |
| 3 | 1         | 50                      | 150                                         |
| 4 | 2         | 25                      | 175                                         |
| 5 | 3         | 12,5                    | 187,5                                       |

b) Que deviendrait cette formule dans la cellule B6?

c) Quelle formule faut-il mettre dans la cellule C3 pour que, quand on la recopie vers le bas, les sommes des termes de la suite se calculent ?

.....

#### Exercice 20:

Soit  $(u_n)$  une suite définie par  $u_0 = 5$  et  $u_{n+1} = u_n + 2 \ \forall n \in IN$ . On construit le tableau excel ci-contre.

a) Quelle formule faut-il mettre dans la cellule B3 pour que, quand on la recopie vers le bas, les termes de la suite se calculent ?

| A     | В            | C                                 |
|-------|--------------|-----------------------------------|
| rang  | terme        | somme:                            |
| - 2.1 | Un           | U <sub>0</sub> + + U <sub>n</sub> |
| 0     | 5            | 5                                 |
| 1     | 7            | 12                                |
| 2     | 9            | 21                                |
| 3     | 11           | 32                                |
|       | rang n 0 1 2 |                                   |

b) Que deviendrait cette formule dans la cellule B6?

.....

c) Que deviendrait cette formule dans la cellule B50 ?

.....

d) On cherche une formule à mettre dans la cellule C3, pour que, quand on la recopie vers le bas, les sommes des termes de la suite se calculent.

Entourer les formules qui conviennent :

formule 1 := B2+B3 formule 4 := SOMME(B2:B3)formule 2 := C2+B3 formule 5 := SOMME(\$B\$2:B3)formule 3 := C2+C3 formule 6 := SOMME(C2:B3)

| VI. | <b>Utilisation</b> | d'alg | orithmes | : |
|-----|--------------------|-------|----------|---|
|     |                    |       |          |   |

| Exercice 21 |
|-------------|
|-------------|

La suite  $(u_n)$  est définie par  $u_0 = 3$  et l'algorithme suivant permet d'afficher le terme d'indice N.

On donne ci-dessous cet algorithme :

**Traduction Python:** 

U ← 3

Pour K allant de 1 à N :

Afficher U

1) Faire tourner cet algorithme pour N = 3, en écrivant les étapes.

| N |  |   |  |
|---|--|---|--|
| U |  | · |  |

2) Exprimer  $u_{n+1}$  en fonction de  $u_n$ 

# Exercice 22:

La suite  $(u_n)$  est définie par  $u_0=0$  et pour tout entier naturel n on a  $u_{n+1}=u_n+n$ 

1) Donner les quatre premiers termes

|  |  | 1 |
|--|--|---|
|  |  | 1 |
|  |  | 1 |
|  |  | 1 |
|  |  | 1 |
|  |  | 1 |
|  |  | 1 |
|  |  |   |

2) Compléter cet algorithme :

**Traduction Python:** 

U←

Pour K allant de 1 à N :

U ←

Afficher

3) Proposer une modification de l'algorithme précédent pour qu'il calcule et affiche, en plus du terme  $u_N$ , la somme :  $S_N = u_0 + u_1 + \cdots u_N$ 

## Exercice 23:

On considère l'algorithme suivant :

<u>Traduction Python :</u>

 $N \leftarrow 0$   $d \leftarrow 400$ Tant que d > 374  $N \leftarrow N + 1$   $d \leftarrow 0,985d$ Fin Tant que Afficher N

1) Faire fonctionner cet algorithme, en détaillant bien toutes les étapes.

|  | - | <br> | , | <br> | -, | _, |  |  |  |  |  |  |  |
|--|---|------|---|------|----|----|--|--|--|--|--|--|--|
|  |   |      |   |      |    |    |  |  |  |  |  |  |  |
|  |   |      |   |      |    |    |  |  |  |  |  |  |  |
|  |   |      |   |      |    |    |  |  |  |  |  |  |  |
|  |   |      |   |      |    |    |  |  |  |  |  |  |  |
|  |   |      |   |      |    |    |  |  |  |  |  |  |  |
|  |   |      |   |      |    |    |  |  |  |  |  |  |  |
|  |   |      |   |      |    |    |  |  |  |  |  |  |  |

2) On considère la suite  $(d_n)$  définie par  $d_0=400$  et  $d_{n+1}=0.985d_n$  pour tout entier naturel n. Expliquer ce que fait cet algorithme.

#### Exercice 24:

 $N \leftarrow 0$ 

On considère l'algorithme suivant :

**Traduction Python:** 

 $U \leftarrow 2$ Tant que U < 100  $N \leftarrow N + 1$   $U \leftarrow 3U + 4$ Fin Tant que Afficher N

1) Faire fonctionner cet algorithme, en détaillant bien toutes les étapes.

| I) rune ron | e ronetionner det digoritime, en detamant bien todtes les étapes. |  |  |  |  |  |  |   |
|-------------|-------------------------------------------------------------------|--|--|--|--|--|--|---|
|             |                                                                   |  |  |  |  |  |  | 1 |
|             |                                                                   |  |  |  |  |  |  | l |
|             |                                                                   |  |  |  |  |  |  |   |
|             |                                                                   |  |  |  |  |  |  | l |
|             |                                                                   |  |  |  |  |  |  | l |

2) On considère la suite  $(u_n)$  définie par  $u_0=2$  et  $u_{n+1}=3u_n+4$  pour tout entier naturel n. Expliquer ce que fait cet algorithme.

- 3) On cherche la plus petite valeur N à partir de laquelle les termes de la suite dépassent 10 000.
- a) Expliquer comment modifier l'algorithme précédent pour obtenir cette valeur.
- b) Déterminer cette valeur à l'aide de votre calculatrice.