Remarque n°1.

Dans ce cours, nous utiliserons la notion de limite. Conformément au programme nous nous contenterons d'une approche intuitive.

Pour une fonction f, D_f représentera son ensemble de définition et sera un intervalle ou une réunion d'intervalles.

I Qu'est-ce qu'une limite?

Connaissance n°1 Limite finie en un point

Connaissance n°2

On explique de même

 $\lim f(x) = l$

Vocabulaire Lorsque x grandit, la courbe s'approche de plus en plus de la droite d'équation y = l. On dit que cette droite est asymptote horizontale à la courbe $en + \infty$.

Connaissance n°3 Limite infinie en un point

Vocabulaire
Lorsque x s'approche de a, la courbe s'approche de plus en plus de la droite d'équation x = a.
On dit que cette droite — est **asymptote verticale** à la courbe en a.

Remarque n°2. Limite à droite, limite à gauche

Il arrive parfois que des phénomènes différents se produisent selon que l'on s'approche de a par la gauche ou par la droite.

On peut par exemple avoir $\lim_{\substack{x \to a \\ x < a}} f(x) = -\infty$ et $\lim_{\substack{x \to a \\ x > a}} f(x) = +\infty$ Ici, la limite de f à gauche en a est $-\infty$ et la limite à droite de f en a est $+\infty$.

II Et la fonction inverse dans tout ça?

Nous allons à présent pouvoir parler du comportement de la fonction inverse aux bornes de son ensemble de définition...

Définition n°1.

On appelle fonction inverse, la fonction
$$f: \begin{cases} \mathbb{R}^* \to \mathbb{R} \\ x \to \frac{1}{x} \end{cases}.$$
 Avec $\mathbb{R}^* =]-\infty$; $0[\ \cup\]0$; $+\infty[\ .$

Dans tout ce qui suit on utilise la fonction f définie sur $]-\infty$; $0[\cup]0$; $+\infty[$ par : $f(x)=\frac{1}{x}$

EXERCICE $N^{\circ}1$ limite en $+\infty$

1) Reproduire et compléter le tableau suivant :

x	10	800	10000	50000	400000	1000000
f(x)						

- 2) Vers quel nombre semblent se rapprocher les f(x) quand x prend des valeurs positives de plus en plus grandes ?
- 3) Résoudre dans]0; $+\infty[$ l'inéquation suivante : $\frac{1}{x} < 0,000 \ 001$.

4) Résoudre dans]0; $+\infty[$ l'inéquation suivante : $\frac{1}{x} < \epsilon$ où ϵ est un nombre réel positif.

On vient de démontrer que l'on peut rendre f(x) aussi proche de zéro que l'on veut ($0 < f(x) < \epsilon$) en prenant x suffisamment grand ($x > \frac{1}{\epsilon}$). Autrement dit : $\lim_{x \to +\infty} f(x) = 0$

EXERCICE $N^{\circ}2$ limite en $-\infty$

En vous inspirant de l'exercice n°1, justifiez que $\lim_{x \to -\infty} f(x) = 0$

limite à droite en zéro. **EXERCICE** N°3

1) Reproduire et compléter le tableau suivant :

<i>-)</i>	20 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4							
x	1	0,1	0,05	0,008	0,0004	0,000001		
f(x)								

- 2) Vers quel nombre semblent se rapprocher les f(x) quand x prend des valeurs positives de plus en plus petites ?
- 3) Résoudre dans $]0; +\infty[$ l'inéquation suivante : $\frac{1}{x} > 1 000 000$. 4) Résoudre dans $]0; +\infty[$ l'inéquation suivante : $\frac{1}{x} > M$ où M est un nombre réel positif.

On vient de démontrer que l'on peut rendre f(x) aussi grand que l'on veut (f(x) > M) en prenant x suffisamment proche de la droite de zéro $(0 < x < \epsilon)$.

Autrement dit : $\lim_{x \to +\infty} f(x) = +\infty$

EXERCICE N°4 limite à gauche en zéro

En vous inspirant de l'exercice n°3, justifiez que

$$\lim_{\substack{x \to +\infty \\ x < 0}} f(x) = -\infty$$

Propriété n°1.

Limites de la fonction inverse aux bornes de son ensemble de définition.

L'axe des abscisses est asymptote horizontale à l'hyperbole.

L'axe des ordonnées est asymptote verticale à l'hyperbole.

Vous pouvez vous aider du complément de cours.

Méthode n°1. À connaître

Énoncé:

Soit f la fonction définie sur $\mathbb{R}^* =]-\infty$; $0[\ \cup\]0$; $+\infty[$ par: $f(x) = \frac{7}{x} + 4$

- 1) Déterminer la limite de f en $+\infty$.
- 2) Déterminer la limite de f en 0^- .

Réponse :

Pour $x \in \mathbb{R}^*$, on peut écrire $f(x) = 7 \times \frac{1}{x} + 4$

1)
$$\lim_{x \to +\infty} \frac{1}{x} = 0$$
 donc $\lim_{x \to +\infty} 7 \times \frac{1}{x} = 0$
d'où $\lim_{x \to +\infty} 7 \times \frac{1}{x} + 4 =$ $\lim_{x \to +\infty} f(x) = 4$
d'où $\lim_{x \to 0} 7 \times \frac{1}{x} = -\infty$ donc $\lim_{x \to 0} 7 \times \frac{1}{x} = -\infty$
d'où $\lim_{x \to 0} 7 \times \frac{1}{x} + 4 =$ $\lim_{x \to 0} f(x) = -\infty$

2)
$$\lim_{\substack{x \to 0 \\ x < 0}} \frac{1}{x} = -\infty$$
 donc $\lim_{\substack{x \to 0 \\ x < 0}} 7 \times \frac{1}{x} = -\infty$

d'où
$$\lim_{\substack{x \to 0 \\ x < 0}} 7 \times \frac{1}{x} + 4 = \left[\lim_{\substack{x \to 0 \\ x < 0}} f(x) = -\infty \right]$$

EXERCICE N°1

Soit f la fonction définie sur l'intervalle]0; $+\infty[$ par $f(x)=\frac{-5}{x}$. Déterminer la limite de la fonction f en 0 puis celle . $+\infty$

EXERCICE N°2

f est la fonction définie sur l'intervalle]0; $+\infty[$ par $f(x)=8+\frac{11}{x}$ Déterminer la limite de la fonction f en 0 puis celle $+\infty$.

EXERCICE N°3

Soit f la fonction définie sur l'intervalle $]-\infty$; 0[par $f(x)=\frac{-5}{x}$. Déterminer la limite de la fonction f en 0 puis celle $-\infty$.

EXERCICE N°4

Soit f la fonction définie sur l'intervalle $]-\infty$; 0[par . $f(x)=8+\frac{11}{x}$ Déterminer la limite de la fonction f en 0 puis celle $-\infty$.

EXERCICE N°5

On donne ci-contre la courbe représentative de la fonction $\ f$ définie sur :

$$\mathbb{R}^* =]-\infty \; ; \; 0[\; \cup \;]0 \; ; \; +\infty[\quad \text{par} \quad f(x) = -\frac{4}{x}]$$

- 1) Lire graphiquement les limites de f aux bornes de son ensemble de définition.
- 2) Interpréter graphiquement ces résultats.

Propriété n°2. Dérivée de la fonction inverse

preuve:

• Soit $a \in]-\infty$; 0[et h tel que]a-h; $a+h[\subset]-\infty$; 0[On peut écrire :

$$\frac{f(a+h)-f(a)}{a+h-a} = \frac{\frac{1}{a+h} - \frac{1}{a}}{h} = \frac{\frac{a-(a+h)}{a(a+h)}}{h} = \frac{\frac{-h}{a(a+h)}}{h} = \frac{-h}{a(a+h)} \times \frac{1}{h} = \frac{-1}{a(a+h)}$$

En faisant tendre h vers 0, on obtient : $-\frac{1}{a^2}$

Le nombre dérivée de f en a existe donc pour tout $a \in]-\infty$; 0[et vaut $-\frac{1}{a^2}$.

On a donc démontré que f est dérivable sur $]-\infty$; 0[et que pour $x\in]-\infty$; 0[, $f'(x)=-\frac{1}{x^2}$.

- On procède de la même façon sur]0; $+\infty[$ (faites-le).
- Ce qui achève la démonstration.

Remarque n°3.

• On a f'(x)<0 sur]-∞; 0[donc f est strictement décroissante sur]-∞; 0[.
• On a f'(x)<0 sur]0; +∞[donc f est strictement décroissante sur]0; +∞[.
• Mais f n'est pas strictement décroissante sur]-∞; 0[\cup]0; +∞[.

On peut à présent dresser le tableau de variation de la fonction inverse.

Connaissance n°4 Tableau de variation complet de la fonction inverse.

x	$-\infty$ () + ∞
f'(x)	_	-
f(x)	0 -∞	+∞ 0

EXERCICE N°1

Les fonctions suivantes sont définies et dérivables sur $]-\infty$; 0 \cup 0; $+\infty$ [.

1) Déterminer l'expression de leur dérivée sachant que pour tout réel x non nul :

$$f_{1}(x) = \frac{1}{x} + 25 \quad ; \quad f_{2}(x) = \frac{1}{x} - \pi \sqrt{7} \quad ; \quad f_{3}(x) = \frac{4}{x} \qquad f_{4}(x) = \frac{-7.5}{x} \quad ; \quad f_{5}(x) = \frac{-3}{x} + \frac{25}{\sqrt{7}}$$

$$g_{1}(x) = 2x + \frac{1}{x} \quad ; \quad g_{2}(x) = \frac{3}{x} + 4x^{2} \quad ; \quad g_{3}(x) = 3x^{2} - 5x + 7 - \frac{8}{x}$$
2) Réduire au même dénominateur, les expressions $g_{1}'(x)$; $g_{2}'(x)$ et $g_{3}'(x)$.

EXERCICE N°2

- f est la fonction définie sur l'intervalle $]-\infty$; 0[par : $f(x)=\frac{-1.5}{x}$
- Calculer f'(x) pour tout réel x appartenant à] -∞; 0[.
 Étudier le signe de f'(x) sur l'intervalle] -∞; 0[.
 En déduire le sens de variation de f sur] -∞; 0[.

EXERCICE N°3

Soit f la fonction définie sur]0; $+\infty$ [par : $f(x)=0.16x+4.7+\frac{1}{x}$.

- 1) Montrer que pour tout réel x appartenant à l'intervalle]0; $+\infty$ [, $f'(x) = \frac{0.16(x-2.5)(x+2.5)}{x^2}$ 2) Étudier le signe de f'(x) sur l'intervalle $]0 ; +\infty [$.
 3) En déduire les variations de f sur l'intervalle $]0 ; +\infty [$.

EXERCICE N°1

- Soit f la fonction définie sur \mathbb{R}^* par : $f(x) = -10x + 62 \frac{3240}{x}$.

 1) Montrer que pour tout réel non nul, $f'(x) = \frac{-10(x-18)(x+18)}{x^2}$
- 2) Dresser le tableau de variation de la fonction f sur \mathbb{R}^* .

EXERCICE N°2 Attention à l'ensemble de définition

Soit f la fonction définie sur l'intervalle [0,1;1] par : $f(x) = 2 - 0.1x - \frac{0.025}{x}$

- 1) Montrer que pour tout réel x appartenant à l'intervalle [0,1;1]: $f'(x) = \frac{-0.1(x-0.5)(x+0.5)}{x^2} .$
- 2) Dresser le tableau de variation de la fonction f sur l'intervalle [0,1;1].

EXERCICE N°3

Soit f la fonction définie sur l'intervalle \mathbb{R}^* par : $f(x) = 0.5x + 2 + \frac{8}{x}$ Justifier toutes les informations données par le tableau de variation de f ci-dessous.

x	$-\infty$	-4	0		4		+∞
f'(x)	+	0 -		_	0	+	
f(x)	1	-2	+∞			1	+∞
	$-\infty$	*	$-\infty$	*	6		0

EXERCICE N°4

Lorsqu'un véhicule roule entre 10 km.h^{-1} et 130 km.h^{-1} , sa consommation d'essence c (en litres) s'exprime en fonction de sa vitesse v (en km.h^{-1}) par l'expression :

$$c(v)=0.06v+\frac{150}{v}$$

- 1) Vérifier que pour tout v appartenant à l'intervalle $\begin{bmatrix} 10 \ ; \ 130 \end{bmatrix}$, $c'(v) = \frac{0.06(v-50)(v+50)}{v^2}$
- 2) Étudier le signe de c'(v) sur l'intervalle [10; 130] puis dresser le tableau de variation de la fonction c.
- 3) En déduire la vitesse à laquelle doit rouler ce véhicule pour que sa consommation d'essence soit minimale. Déterminer la consommation minimale en litres.

EXERCICE N°1

Une entreprise fabrique des tables de jardin. La production est comprise entre 1 et 30 tables par jour. Toutes les tables fabriquées sont supposées vendues.

Le coût de production, exprimé en euros, de q tables fabriquées est égal à $C(q)=q^2+50\,q+100$ où q appartient à l'intervalle $[1\ ;30]$.

- 1) Quel est le coût de production, en euros, de 20 tables ?
- 2) À chaque quantité q de tables produites, on associe le coût unitaire de production :

$$C_u(q) = \frac{C(q)}{q}$$

- **2.a)** Calculer le coût unitaire de production, en euros, pour 20 tables produites.
- **2.b)** Représenter la fonction C_u sur la calculatrice et déterminer pour quelles quantités de tables produites, le coût unitaire, en euro, est inférieur ou égal à 80.
- **2.c)** Démontrer que, pour tout réel q de l'intervalle [1;30],

$$C_{u}'(q) = \frac{(q-10)(q+10)}{q^2}$$

- **2.d)** Étudier le signe de $C_u(q)$ sur l'intervalle [1;30] et dresser le tableau de variation de la fonction C_u .
- **2.e)** Préciser la quantité de tables à fabriquer par jour pour que le coût unitaire soit minimal. Quel est ce coût minimal ?

EXERCICE N°2 Toujours faire attention aux notations

Une entreprise fabrique chaque jour x litres d'un produit chimique, où x appartient à [1;50].

Le coût total journalier de production pour x litres est donné par la fonction C définie sur [1;50] par :

$$C(x)=0.5x^2+2x+200$$
,

les coûts étant exprimés en centaines d'euros.

- 1) Le coût moyen de production d'un litre quand on en produit x litres est la fonction C_M définie par $C_M(x) = \frac{C(x)}{x}$, où $x \in [1;50]$.
- **1.a)** Exprimer le coût moyen de production en fonction de x.
- **1.b)** Justifier que pour tout x appartenant à [1;50],

$$C_M'(x) = \frac{0.5(x-20)(x+20)}{x^2}$$

- **1.c)** Étudier le signe de $C_M'(x)$ sur l'intervalle [1; 50] puis dresser le tableau de variation de la fonction C_M .
- **1.d)** En déduire la quantité de produit chimique à produire pour que le coût moyen soit minimal.
- 2) Le coût marginal de production, noté C_m pour une quantité produite x, est le supplément de coût total de production engendré par la production d'un litre supplémentaire. On a donc :

$$C_m(x) = C(x+1) - C(x)$$
.

- **2.a)** Calculer le coût marginal pour une production de 10 litres de produit, c'est-à-dire l'augmentation du coût total de production pour passer de 10 litres à 11 litres.
- **2.b)** En pratique, les économistes assimilent le coût marginal de production à la dérivée du coût total et considèrent donc que $C_m(x) = C'(x)$.

Calculer C'(x) et comparer avec le résultat obtenu à la question précédente.

2.c) Les économistes affirment que le coût moyen est minimal lorsqu'il est égal au coût marginal. Vérifier que $-0.5+\sqrt{400.25}$ est une solution de l'équation $C_M(x)=C_m(x)$ pour confirmer l'affirmation faite par les économistes.