Modular Arithmetic 3

Andres Buritica Monroy

1 Choosing good mods

Prove that:

- Squares are 0, 1 or $4 \mod each$ of $\{5,8\}$, and 0 or $1 \mod 3$.
- Cubes are $0, 1 \text{ or } -1 \text{ mod each of } \{7,9\}.$

Often a problem will be solved by considering it under an appropriate mod. In general, for nth powers, try looking mod m where $\varphi(m)$ is a small multiple of n. You can also try choosing a mod which divides a bunch of terms in an equation.

However, remember that if you find a single solution to an equation, then that solution is still a solution in every mod so you won't be able to find a contradiction.

2 Problems

- 1. Find all positive integers a, b such that $a^4 + b^4 = 10a^2b^2 2022$.
- 2. Find all positive integers n such that $2^n + 7^n$ is a perfect square.
- 3. Find all pairs of positive integers x, y such that $x! + 5 = y^3$.
- 4. Find all primes p, q for which $pq \mid (5^p 2^p)(5^q 2^q)$.
- 5. Prove that if p is prime, then $2^p + 3^p$ is not a nontrivial perfect power.
- 6. Find all positive integers x, y, z such that $3^x + 4^y = 5^z$.
- 7. Find all pairs of positive integers x, y such that $1 + 2^x + 2^{2x+1} = y^2$.
- 8. Find all integers a, b such that $a^3 + (a+1)^3 + \cdots + (a+6)^3 = b^4 + 1$.
- 9. What is the least residue mod n of the product of the elements of \mathbb{Z}_n^* ?

3 Homework

- 1. Find all positive integers a for which $1!+2!+\cdots+a!$ is a perfect cube.
- 2. Prove that if m and n are natural numbers, then $3^m + 3^n + 1$ is not a perfect square.
- 3. Find all primes p and q such that $p + q = (p q)^3$.