Accuracy of original MPM

Lisa Wobbes, Roel Tielen November 24, 2015

Outline

- Numerical accuracy
- Benchmarks
 - Vibrating linear-elastic bar
 - Vibrating hyper-elastic bar
 - Oedometer
- •

Numerical accuracy

Numerical Approximation

$$u_{\text{ex}} = u_{\text{num}} + \mathcal{O}(\Delta x^n) + \mathcal{O}(\Delta t)$$

RMS Error

$$Error_{RMS} = \sqrt{\frac{1}{n_p} \left(\sum_{p=1}^{n_p} u_{num}(x_p, T) - u_{ex}(x_p, T) \right)^2}$$

Accuracy in displacement

For $\Delta t \to 0$, the order of accuracy is equal to n, i.e. the reduction of Δx by a factor of 2 decreases the RMS error by 2^n .

Vibrating linear-elastic bar

Vibrating linear-elastic bar: model

$$\frac{\partial^2 u}{\partial t^2} = \frac{E}{\rho} \frac{\partial^2 u}{\partial x^2}.$$

Boundary conditions:

$$u(0,t) = 0,$$

 $\frac{\partial u}{\partial x}(L,t) = 0.$

Initial conditions:

$$u(x,0) = 0,$$

$$\frac{\partial u}{\partial t}(x,0) = v_0 \sin\left(\frac{\pi x}{2L}\right).$$

Oedometer

schematic representation

Oedometer: model

$$\frac{\partial^2 u}{\partial t^2} = \frac{E}{\rho} \frac{\partial^2 u}{\partial y^2} - g.$$

Boundary conditions:

$$u(0, t) = 0,$$

 $\frac{\partial u}{\partial y}(H, t) = -p_0/E.$

Initial conditions:

$$u(y,0) = 0,$$

$$\frac{\partial u}{\partial t}(y,0) = 0.$$