Propriétés « observables ».

La terminologie « propriété observable » n'est pas utilisée, mais c'est en réalité la compacité.

Remarque 1 (Rappel). Si $f: X \to Y$ alors

$$f_! \dashv f^{\bullet} : \wp(X) \to \wp(Y),$$

où $f_!$ est l'image directe, et f^{\bullet} est l'image réciproque.

Ainsi, $f^{\bullet}: \wp(Y) \to \wp(X)$ préserve les intersections (i.e. si $\mathcal{S} \subseteq \wp(Y)$ alors on a que $f^{\bullet}(\cap \mathcal{S}) = \bigcap_{S \in \mathcal{S}} f^{\bullet}(S)$).

De plus, f^{\bullet} préserve les unions car $f^{\bullet} \dashv f_{\bullet} : \wp(Y) \to \wp(X)$ où

$$f_{\bullet}: \wp(X) \longrightarrow \wp(Y)$$

 $A \longmapsto \bigcup \{B \subseteq Y \mid f^{\bullet}(B) \subseteq A\}.$

Définition 1. Soient $(X, \Omega X)$ et $(Y, \Omega Y)$ deux espaces topologiques. Une fonction $f: X \to Y$ est continue si $f^{\bullet}: \wp(Y) \to \wp(X)$ se restreint en une fonction $f^{\bullet}: \Omega Y \to \Omega X$, autrement dit

$$\forall V \in \Omega Y, \qquad f^{\bullet}(V) = \{x \in X \mid f(x) \in V\} \in \Omega(X).$$

On définie ainsi une catégorie d'espaces topologiques.

Un homéomorphisme $f:X\to Y$ est une bijection continue telle que

$$f^{-1}:Y\to X$$

est continue.¹

Lemme 1. Une fonction $f: \Sigma^{\omega} \to \Gamma^{\omega}$ est continue si et seulement si

$$\forall \alpha \in \Sigma^{\omega}, \forall n \in \mathbb{N}, \exists k \in \mathbb{N}, \forall \beta \in \Sigma^{\omega},$$
$$\beta(0) \dots \beta(k) = \alpha(0) \dots \alpha(k)$$
$$\downarrow \qquad \qquad \qquad \downarrow$$
$$f(\beta)(0) \dots f(\beta)(n) = f(\alpha)(0) \dots f(\alpha)(n).$$

Autrement dit, f est continue ssi on peut déterminer une partie finie de sa sortie à partir d'une partie finie de son entrée.

Soit $P \subseteq \Sigma^{\omega}$, et on définit la fonction caractéristique de P:

$$\chi_P : \Sigma^\omega \longrightarrow \mathbf{2} = \{0, 1\}$$

$$\alpha \longmapsto \begin{cases} 1 & \text{si } \alpha \in P \\ 0 & \text{si } \alpha \notin P \end{cases}.$$

Avec $\Omega \mathbf{2} = \wp(\mathbf{2}) = \{\emptyset, \{0\}, \{1\}, \{0, 1\}\}\}$ (ce qui est cohérent avec l'idée que $\mathbf{2}$ représente les booléens), on a que χ_P est continue ssi

- $\triangleright \chi_P^{\bullet}\{0\} = \Sigma^{\omega} \setminus P \text{ est un ouvert };$
- $\triangleright \chi_P^{\bullet}\{1\} = P \text{ est un ouvert.}$

On arrive donc à la notion de clopen.

Définition 2. Soit $(X, \Omega X)$ un espace topologique. Une partie $P \subseteq X$ est clopen (ouvert fermé en français) si P et $X \setminus P$ sont ouverts.

 $^{^1}$ Ce n'est pas évident : par exemple, il y a une bijection $[0,1] \to \mathbb{S}^1$ (où \mathbb{S}^1 est le cercle unité de \mathbb{R}^2) continue mais la réciproque ne l'est pas.

Exemple 1. Soit $u \in \Sigma^*$, on a que $\mathsf{ext}(u)$ est ouvert. Mais, on a aussi que $\Sigma^{\omega} \setminus \mathsf{ext}(u)$ est ouvert :

$$\Sigma^{\omega} \setminus \operatorname{ext}(u) = \bigcup \{\operatorname{ext}(v) \mid v \neq u \text{ et length}(v) = \operatorname{length}(u)\}.$$

Remarque 2. Sur Σ^{ω} , tous les $\mathsf{ext}(W)$ où $W \subseteq \Sigma^{\star}$ sont clopen.