Sapienza University of Rome

Master in Engineering in Computer Science

Machine Learning

A.Y. 2022/2023

Prof. Luca locchi

Luca locchi

12. Convolutional Neural Networks

1/46

Sapienza University of Rome, Italy - Machine Learning (2022/2023)

12. Convolutional Neural Networks

Luca locchi

with contributions from Valsamis Ntouskos

Luca locchi

12. Convolutional Neural Networks

Overview

- Convolution
- Convolutional layers
- Pooling
- Example: LeNet
- CNNs for Images
- "Famous" CNNs
- Transfer learning
- Resources

References

Ian Goodfellow and Yoshua Bengio and Aaron Courville. Deep Learning - Chapter 9. http://www.deeplearningbook.org

Luca locchi

12. Convolutional Neural Networks

3 / 46

Sapienza University of Rome, Italy - Machine Learning (2022/2023)

Motivation

Up to now we treated inputs as general feature vectors

In some cases inputs have special structure:

- Audio
- Images
- Videos

Signals: Numerical representations of physical quantities

Deep learning can be directly applied on signals by using suitable operators

Motivation - Examples

Audio

Note: variable length 1D vectors (1D tensor)

Luca locchi

12. Convolutional Neural Networks

5 / 46

Sapienza University of Rome, Italy - Machine Learning (2022/2023)

Motivation - Examples

Images

45	60	98	127	132	133	137	133
46	65	98	123	126	128	131	133
47	65	96	115	119	123	135	137
47	63	91	107	113	122	138	134
50	59	80	97	110	123	133	134
49	53	68	83	97	113	128	133
50	50	58	70	84	102	116	126
50	50	52	58	69	86	101	120

Note: multi-channel 2D matrices (3D tensor)

Video

A sequence of color images sampled through time Note: sequence of multi-channel 2D matrices (4D tensor)

Convolution

Continuous functions

$$(x * w)(t) \equiv \int_{a=-\infty}^{\infty} x(a) w(t-a) da$$

Discrete functions

$$(x * w)(t) \equiv \sum_{a = -\infty}^{\infty} x(a) w(t - a)$$

Luca locchi

12. Convolutional Neural Networks

7 / 46

Sapienza University of Rome, Italy - Machine Learning (2022/2023)

Convolution

Discrete limited 2D functions:

$$(I * K)(i,j) \equiv \sum_{m \in S_1} \sum_{n \in S_2} I(m,n)K(i-m,j-n)$$

 $I: 2D \text{ input, } K: 2D \text{ kernel, } S_i: \text{ finite sets.}$

Discrete limited 3D functions:

$$(I * K)(i, j, k) \equiv \sum_{m \in S_1} \sum_{n \in S_2} \sum_{u \in S_3} I(m, n, u) K(i - m, j - n, k - u)$$

 $I: 3D \text{ input, } K: 3D \text{ kernel, } S_i: \text{ finite sets.}$

Luca locchi

12. Convolutional Neural Networks

8 / 46

Convolution

Commutative

$$(I * K)(i, j) = (K * I)(i, j) = \sum_{m} \sum_{n} I(i - m, j - n)K(m, n)$$

Cross-correlation

$$(I*K)(i,j) = \sum_{m} \sum_{n} I(i+m,j+n)K(m,n)$$

implemented in machine learning libraries (called convolution).

Luca locchi

12. Convolutional Neural Networks

9 / 46

Sapienza University of Rome, Italy - Machine Learning (2022/2023)

Different types of Convolutions

1D Convolution

Convolution kernel moves in one direction.

2D Convolution

Convolution kernel moves in two directions.

3D Convolution

Convolution kernel moves in three directions.

Note: 1D/2D/3D Convolutions does not refer to the dimensions of the input and of the kernel.

We can have 1D Convolutions for 2D input and kernels, 2D Convolutions for 3D input and kernels, etc.

Luca locchi 12. Convolutional Neural Networks

utional Neural Networks 10 / 46

Image 2D Convolutions

2D Convolution for 2D input image (gray scale) with 2D kernel

Interactive example: http://setosa.io/ev/image-kernels/

Luca locchi
12. Convolutional Neural Networks
11 / 46
Sapienza University of Rome, Italy - Machine Learning (2022/2023)

Image 2D Convolutions

2D Convolution for 3D input image (RBG channels) with 3D kernel (3 channels)

Source: https://commons.wikimedia.org/wiki/File:Convolutional_Neural_Network_with_Color_Image_Filter.gif

3D Convolutions

3D Convolution with 3D input and 3D kernel

Source: https://www.kaggle.com/shivamb/3d-convolutions-understanding-use-case

Luca locchi

12. Convolutional Neural Networks

13 / 46

Sapienza University of Rome, Italy - Machine Learning (2022/2023)

Terminology

Input size $(w_{in} \times h_{in} \times d_{in})$ dimensions of the input

Kernel size $(w_k \times h_k \times d_k)$ dimensions of the kernel

Feature map or Depth slice output of convolution between an input and one kernel

Depth (d) number of kernels (i.e., of feature maps)

Padding (p) nr. of fillers for outer rows/columns (typically zeros)

Stride (s) step of sliding kernel (1 does not skip any pixel)

Receptive field region in the *input space* that a particular feature is looking at (i.e., is affected by)

2D Convolutions with multiple kernels

1 kernel applied to the input produces 1 feature map

Examples:

 $32 \times 32 \times 1$ image * $5 \times 5 \times 1$ kernel $\rightarrow 1$ feature map 28×28

 $32 \times 32 \times 3$ image * $5 \times 5 \times 3$ kernel $\rightarrow 1$ feature map 28×28

If we use d kernels, we can generate d feature maps (output of depth d)

Examples:

 $32 \times 32 \times 1$ image * 6 kernels $5 \times 5 \times 1 \rightarrow 6$ feature maps 28×28

 $32 \times 32 \times 3$ image * 6 kernels $5 \times 5 \times 3 \rightarrow 6$ feature maps 28×28

Note: 6 feature maps 28×28 are represented as a $28 \times 28 \times 6$ tensor.

Luca locchi

12. Convolutional Neural Networks

15 / 46

Sapienza University of Rome, Italy - Machine Learning (2022/2023)

2D Convolutions with multiple kernels

In general

Input: $w_{in} \times h_{in} \times d_{in}$

Kernels: d_{out} of size $w_k \times h_k \times d_k$ (with $d_k = d_{in}$)

Output: feature maps $w_{out} \times h_{out} \times d_{out}$

with w_{out}, h_{out} computed according to stride and padding (see next slides)

Number of kernel parameters: $w_k \cdot h_k \cdot d_k \cdot d_{out}$

Note: for 3D convolutions $d_{in} > d_k$ and output with multiple kernels is a 4D tensor $w_{out} \times h_{out} \times z_{out} \times d_{out}$, with z_{out} computed according to slide and padding in the third dimension.

Luca locchi 12. Convolutional Neural Networks

Convolutional Neural Networks

FNN with one or more convolutional layers.

Convolutional layer

Three stages:

- convolutions between input and kernel
- non-linear activation function (detector)
- pooling

Luca locchi

12. Convolutional Neural Networks

17 / 46

Sapienza University of Rome, Italy - Machine Learning (2022/2023)

Convolutional layer: Convolution

1. 2D Convolution stage

$$(I * K)(i,j) = \sum_{m} \sum_{n} I(i+m,j+n)K(m,n)$$

Very efficient in terms of memory requirements and generalization accuracy.

- Sparse connectivity
- Parameter sharing

Luca locchi

12. Convolutional Neural Networks

18 / 46

Sparse connectivity

sparse interactions/ sparse connectivity: outputs depend only on a few inputs (as kernel is usually much smaller than input)

Luca locchi

12. Convolutional Neural Networks

19 / 46

Sapienza University of Rome, Italy - Machine Learning (2022/2023)

Parameter sharing

Learn only one set of parameters (for the kernel) shared to all the units.

k parameters instead of $m \times n$ (note: $k \ll m$)

Padding

valid padding (p=0): only valid values (output depends on kernel size) same padding $(p=w_k/2)$: output has same size of input

Luca locchi

12. Convolutional Neural Networks

21 / 46

Sapienza University of Rome, Italy - Machine Learning (2022/2023)

Convolutional layer: Detector

2. Detector stage

Use non-linear activation functions.

- ReLU
- tanh
- ...

Convolutional layer: Pooling

3. Pooling stage

Implements invariance to local translations.

max pooling returns the maximum value in a rectangular region.

average pooling returns the average value in a rectangular region.

When applied with *stride*, it reduces the size of the output layer.

Example: max pooling with width 3 and stride 2

Luca locchi

12. Convolutional Neural Networks

23 / 46

Sapienza University of Rome, Italy - Machine Learning (2022/2023)

Convolutional layer: Pooling

Example of max pooling

Introduces subsampling:

Feature map size - Number of parameters

Consider input of size $w_{in} \times h_{in} \times d_{in}$, d_{out} kernels of size $w_k \times h_k \times d_{in}$, stride s and padding p

Dimensions of output feature map are given by:

$$w_{out} = \frac{w_{in} - w_k + 2p}{s} + 1$$

$$h_{out} = \frac{h_{in} - h_k + 2p}{s} + 1$$

Number of trainable parameters of the convolutional layer is:

$$|\theta| = \underbrace{w_k \cdot h_k \cdot d_{in} \cdot d_{out}}_{\text{kernel weights}} + \underbrace{d_{out}}_{\text{bias}}$$

Luca locchi

12. Convolutional Neural Networks

25 / 46

Sapienza University of Rome, Italy - Machine Learning (2022/2023)

CNNs for Images (2D input)

A regular 3-layer Neural Network

Every convolutional layer of a CNN transforms the 3D input volume to a 3D output volume of neuron activations.

Material from Fei-Fei's group

CNNs for Images (2D input)

 w_0 w_0x_0

Each neuron is connected to a local 'horizontal' region of the input volume, but to all channels (depth)

The neurons still compute a dot product of their weights with the input followed by a non-linearity

Material from Fei-Fei's group

Luca locchi

12. Convolutional Neural Networks

27 / 46

Sapienza University of Rome, Italy - Machine Learning (2022/2023)

Example: LeNet

Y. LeCun, L. Bottou, Y. Bengio and P. Haffner: Gradient-Based Learning Applied to Document Recognition, Proceedings of the IEEE, 86(11):2278-2324, November 1998

Handwritten recognition with LeNet

MNIST database

Accuracy up to 98 %.

Luca locchi

12. Convolutional Neural Networks

29 / 46

Sapienza University of Rome, Italy - Machine Learning (2022/2023)

Kernels and Feature maps - Example

Visualization of learned kernels of the first layer:

Computed activations during forward pass:

Material from Fei-Fei's group

Recent success of CNNs

- Theoretical advancements:
 - Dropout
 - ReLUs
 - Batch Normalization
 - Skip connections
 - ...
- Massively Parallel Computing (GPUs/TPUs)
- Very large training sets (ImageNet/MS COCO)
- International competitions (ILSVRC 2010-2017)
- Developing Frameworks (Keras, Theano, Tensorflow, PyTorch, ...)

Luca locchi

12. Convolutional Neural Networks

31 / 46

Sapienza University of Rome, Italy - Machine Learning (2022/2023)

ImageNet and ILSVRC

ImageNet Huge dataset of images over 14 M labelled high resolution images about 22 K categories

ILSVRC Competitions of image classification at large scale (since 2010)

1.2 M images in 1 K categories

5 guesses about image label

http://image-net.org

"Famous" CNNs

- AlexNet (2012)
- GoogLeNet / Inception (2014)
- VGG (2014)
- ResNet (2015)

Image top-5 classification error rate on ILSVRC (%)

Luca locchi

12. Convolutional Neural Networks

Sapienza University of Rome, Italy - Machine Learning (2022/2023)

"Famous" CNNs

AlexNet - Winner of ILSVRC 2012

- Reached 16.4% top-5 image classification error on ILSVRC 2012
- ullet Large gap from 25.8% top-5 error, best result of ILSVRC 2011
- Not commonly used anymore

"Famous" CNNs

GoogLeNet/Inception - Winner of ILSVRC 2014

Inception module:

- Reached 6.7% top-5 image classification error on ILSVRC 2012
- Updated versions commonly used also today (Inception v3 and v4)

Luca locchi

12. Convolutional Neural Networks

35 / 46

Sapienza University of Rome, Italy - Machine Learning (2022/2023)

"Famous" CNNs

VGG - 1st Runner-Up of ILSVRC 2014

- Reached 7.3% top-5 image classification error on ILSVRC 2012
- Commonly used also today

"Famous" CNNs

ResNet - Winner of ILSVRC 2015

Residual Layers

- Reached 3.6% top-5 image classification error on ILSVRC 2012
- Commonly used also today (various versions e.g. 50, 101, 152 layers)

(Use of skip connections)

Luca locchi

12. Convolutional Neural Networks

37 / 46

Sapienza University of Rome, Italy - Machine Learning (2022/2023)

Common uses of famous CNNs

- Train a new model on a dataset
- Use pre-trained models (e.g., trained on ImageNet) to
 - predict ImageNet categories for new images
 - extract features to train another model (e.g., SVM)
- Refine pre-trained models on a new dataset (new set of classes)

Examples: https://keras.io/applications/

Transfer Learning

Definitions

- D is a domain defined by data points $\mathbf{x}_i \in \mathbf{X}$ distributed according to $\mathcal{D}(\mathbf{x})$
- T is a *learning task* defined by labels $\mathbf{y} \in \mathbf{Y}$, a target function $f: \mathbf{X} \to \mathbf{Y}$, and distribution $P_{\mathcal{D}}(\mathbf{y}|\mathbf{x})$

Given

- ullet D_S and T_S a source domain and learning task
- ullet D_T and T_T a target domain and learning task
- In general, $D_S \neq D_T$ and $T_S \neq T_T$

Goal

improve learning of $f_T: \mathbf{X}_T \to \mathbf{Y}_T$ using knowledge in D_S and T_S (i.e., after training $f_S: \mathbf{X}_S \to \mathbf{Y}_S$)

Luca locchi

12. Convolutional Neural Networks

39 / 46

Sapienza University of Rome, Italy - Machine Learning (2022/2023)

Transfer Learning - Example

Image classification using a CNN

CNN pre-trained on Imagenet

- millions of images (source domain)
- classification of 1000 classes (source learning task)

Slide from from Caffe framework tutorial @CVPR2015

Transfer Learning - Example

Image classification using a CNN

Use a pre-trained model for a different domain and/or learning task E.g. Boat recognition in ARGOS dataset:

- thousands of boat images (target domain)
- classification of 20 boat classes (target learning task)

Luca locchi

12. Convolutional Neural Networks

41 / 46

Sapienza University of Rome, Italy - Machine Learning (2022/2023)

Transfer Learning - Example

1st solution - Fine-tuning

- use same network architecture with pre-trained model
- network parameters 'copied' from the pre-trained model
- no random initialization

Strategies

- training of all network parameters
- 'freeze' parameters of some layers (usually the first ones)

Pro Full advantage of the CNN!

Con 'Heavy' training

Transfer Learning - Example

2nd solution - CNN as feature extractor

- extract features at a specific layer of CNN, usually:
 - last convolutional layer (flattened)
 - dense layers
- 2 collect extracted features \mathbf{x}' of training/validation split and associate corresponding labels t in a new dataset $D' = \{(\mathbf{x}'_1, t_1), \dots, (\mathbf{x}'_N, t_n)\}$
- 3 train a new classifier C' using dataset D', e.g.
 - ANN (extreme case of fine-tuning)
 - SVM
 - linear classifier
 - ...
- $oldsymbol{4}$ classify extracted features of test set using the classifier C'

Pro No need to train the CNN!

Con Cannot modify features, source and target domains should be as 'compatible' as possible

Luca locchi

12. Convolutional Neural Networks

43 / 46

Sapienza University of Rome, Italy - Machine Learning (2022/2023)

Transfer Learning - Example

2nd solution - CNN as feature extractor

Resources

Frameworks

- Caffe/Caffe 2 (UC Berkeley) C/C++, Python, Matlab
- TensorFlow (Google) C/C++, Python, Java, Go
- Theano (U Montreal) Python
- CNTK (Microsoft) Python, C++ , C#/.Net, Java
- Torch/PyTorch (Facebook) Lua/Python
- MxNet (DMLC) Python, C++, R, Perl,
- Darknet (Redmon J.) C

High-level application libraries and models

- Keras
- TFLearn

Datasets

- https://www.tensorflow.org/datasets
- https://www.kaggle.com/

Luca locchi

12. Convolutional Neural Networks

45 / 46

Sapienza University of Rome, Italy - Machine Learning (2022/2023)

Summary

- CNNs are deep networks using convolution
- Very efficient (memory and generalization accuracy)
- Many successful examples
- Requires very large amount of data and very high computational resources