Royaume du Maroc Ministère de l'Éducation nationale, du Préscolaire et des Sports année scolaire 2021-2022Professeur : $Zakaria\ Haouzan$ Établissement : $Lyc\acute{e}e\ SKHOR\ qualifiant$

Devoir surveillé N°2 1Bac Sciences Expérimentales Durée 2h00

Fiche Pédagogique _____

I Introduction

Le programme d'études de la matière physique chimie vise à croître un ensemble de compétences visant à développer la personnalité de l'apprenant. Ces compétences peuvent être classées en Compétences transversales communes et Compétences qualitatives associées aux différentes parties du programme.

II cadre de référence

L'épreuve a été réalisée en adoptant des modes proches à des situations d'apprentissages et des situations problèmes, qui permettent de compléter les connaissances et les compétences contenues dans les instructions pédagogiques et dans le programme de la matière physique chimie et aussi dans le cadre de référence de l'examen national.

Tout en respectant les rapports d'importance précisés dans les tableaux suivants :

Restitution des Connaissances	Application des Connaissances	Situation Problème
60%	20%	20%

III tableau de spécification

niveau d'habileté	Restitution des Connaissances	Application des Connaissances	Situation Problème	la somme
Comportement global d'un circuit	39% 8pts 47min 8Q	13% 3pts 16min 3Q	13% $2 ext{pts}$ $15 ext{min}$ $2 ext{Q}$	65% 13pts 78min 13Q
Les réactions acido-basiques	12% 2.5pts 15min 2Q	4% 1pt 5min 1Q	4% 0.5pts 4min 1Q	20% 4pts 24min 4Q
Les réactions d'oxydoréduction	9% 2pts 11min 1Q	3% 0.5pts 4min 1Q	3% 0.5pts 3min 1Q	15% 18pts 18min 3Q
	60% 12pts 72min	20% 4pts 24min	20% 4pts 24min	100% 20pts 120min

Devoir surveillé $N^{\circ}2$ Semestre II

Chimie			$(7 \mathrm{pts})$				
	comprimés efferve	escents de V	itamine B5 .				$\dots (3.5 \mathrm{pts})$
N° Question			Réponse				Note
1.			endé du disposi				$\parallel 1pt$
2.	l'équation de la réaction de dosage. $5 \mathrm{Fe^{2+}} + \mathrm{MnO_4^-} + 8 \mathrm{H^+} \longrightarrow 5 \mathrm{Fe^{3+}} + \mathrm{Mn^{2+}} + 4 \mathrm{H_2O}$			$\parallel 1pt$			
	tableau d'avancement :						
	Equation de la réaction $5 \text{ Fe}^{2+} + \text{MnO}_{4}^{-} + 8 \text{ H}^{+} \longrightarrow 5 \text{ Fe}^{3+} + \text{Mn}^{2+} + 4 \text{ H}_{2}\text{O}$					$\overline{\text{H}_{2}\text{O}}$	
	états avanc quantité de Matière en mol						
	Etat initial	I	•			0	
3.b	Etat de transformation	x C_1V_1	C_2V	$\overline{Y_2-x}$	5x	\overline{x}	
	Etat final	x_{max} C_1V_1 -	$-5x_{max}$ C_2V_2	$-x_{max}$	$5x_m$	$\overline{x_{max}}$	
		le réactif	f limitant : $C_9 R$	$\overline{I_{17}NO_5}$			
	les couples acide / base mis en jeu :						
3.a	$C_9H_{17}NO_{5/}C_9H_{16}NO_5^- \text{ et } H_2O/HO^-$					$\parallel 1pt$	
5. a	l'équation de la réaction envisagée :					\parallel pt	
			$NO_5 \longrightarrow H_2O$				
	u de javel	• • • • • • • • • • • • • • • • • • • •		• • • • • • •	• • • • •	• • • • • • • • •	· - /
N° Question	Réponse				Note		
	les demi-équations électroniques						
1.	$ClO^-/Cl_2: 2 \text{ClO}^- + 4 \text{H}^+ + 2 \text{e}^- \Longrightarrow \text{Cl}_2 + 2 \text{H}_2\text{O}$				0.5pt		
	$Cl_2/Cl^-: 2\operatorname{Cl}^- \rightleftharpoons \operatorname{Cl}_2 + 2\operatorname{e}^-$						
2.	l'équation de la réaction :			$\parallel 1pt$			
	$2 \operatorname{ClO}^- + 4 \operatorname{H}^+ + 2 \operatorname{Cl}^- \longrightarrow 2 \operatorname{Cl}_2 + 2 \operatorname{H}_2 \operatorname{O}$ tableau d'avancement :						
	Equation de la réaction $2 \text{ClO}^- + 4 \text{H}^+ + 2 \text{Cl}^- \longrightarrow 2 \text{Cl}_2 + 2 \text{H}_2 \text{O}$				$\overline{\Omega}$		
	états avancement quantité de Matière en mol						
3.a	Etat initial	0	0.41	-en excè) 0	-
5.0	Etat de						
	transformation	x	0.41 - 2x	-	2	$x \mid$ -	
	Etat final	x_{max}	$0.41 - 2x_{max}$	_	22	c_m -	
3. <i>b</i>	la quantité de matière n du gaz toxique produite $n(Cl_2) = 0.41 mol$				0.75pts		
3.c	le volume V de gaz toxique dégagé : $V(Cl_2) = 9.84L$			0.5pts			

	Physique ($\overline{13 \mathrm{pts})}$	
Partie 1 :Con	nportement globale d'un circuit électrique	(6pts)	
N° Question	Réponse	Note	
	Comportement globale d'un circuit électrique		
1.	R Ext A	1pt	
2.a	L'énergie dissipée par effet joule par le conducteur ohmique : On a : $I = 500 \text{mA} = 0.5 \text{ A}$ et $\Delta t = 12 \text{ min} = 12 \times 60 = 720 \text{s}$	1pt	
_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	$W_R = R.I^2.\Delta t = 100, 5^2720 = 1800J$		
2.b	Il s'agit d'un circuit en série, on peut appliquer la loi de Pouillet : $I = \frac{E - E'}{R + r + r'}$ donc $r' = \frac{E - E'}{I} - R - r = 5\Omega$	1pt	
	L'énergie totale produite par le générateur :		
3.a	On maintenant I = 0,35 A et Δt = 20min = 20 × 60 = 1200 s	1pt	
	$W_e = E.I.\Delta t \text{ donc } We = 120,351200 = 5040J$		
3.b	L'énergie électrique fournie au circuit par le générateur : $W_f = U_{PN}.I.\Delta t = E.I.\Delta t - r.I^2.\Delta t$	1pt	
9.0	$donc W_f = 120,351200 - 1x0,352x1200 = 4893J$	$\parallel \qquad \qquad$	
	On peut appliquer la loi de Pouillet puisque le		
	circuit est en série : $I = \frac{E - E'}{R + r + r'}$ alors $R = \frac{E - E'}{I} - r - r' = 17\Omega$		
3.c	Les dipôles récepteurs qui dissipent de l'énergie	1pt	
	par effet joule sont le conducteur ohmique et le moteur.		
	$W_{th} = R.I^2.\Delta t = 3200J$		
	an énergétique	(7pts)	
1.	$P_r = (R + r')I^2 = 0.32W$	1pt	
2.	$P_u = E'I = 0.24W$	1pt	
3.	$P_e = P_j + P_u = 0.56W$	1pt	
4.a	$P_j = 0.36 - 0.32 = 0.04W$	1pt	
4.b	$P_j = rI^2 \text{ donc } r = \frac{P_J}{I^2} = 4\Omega$	1pt	
5	$P_e = U_{PN}.I = (E - rI)I \text{ donc } E = \frac{P_e}{I} + rI = 6V$ $I = \frac{E - E'}{R + r + r'} = 0.1A$	2pt	