The Littoral Sedimentation and Optics Model (LSOM)

Timothy Keen
Naval Research Laboratory
Code 7322
Stennis Space Center, Mississippi

10 May 2002

Motivation

The Navy needs a capability to predict nearshore bottom properties and water column optical characteristics at forecast intervals up to 72 hours.

OUTLINE

- Overview of LSOM
- Resuspension
- Active Layer
- Transport Algorithms
- Mass (bed) Conservation
- Bed Definitions

LSOM: OVERVIEW

- 2D finite-difference computation grid
- 1D BBLM computes profiles
- Mass-conservation equations for spectrum of silt/sand sizes
- Mud algorithms
- Bed load, advection, and diffusion terms
- Spectral and total erosion and deposition
- Algorithms for optical scattering and diver visibility

LSOM: FLOW

INPUT: 2D current, wave, and sediment parameter fields

2D GRID **BBLM** LOOP u_* , C_0 , h_A , etc. SIZE Sediment profiles **LOOP** Resuspension depth Recompute profiles H_{R} YES Reduce $H_R > h_A$ reference concentration. Bed, suspended, and diffusion fluxes Solve mass conservation equation Bed parameters Integrated bed parameters

OUTPUT: 2D beds; sediment profiles; scattering coefficients; diver visibility;

BBLM: FLOW

INPUT: CURRENT, WAVE, AND SEDIMENT PARAMETERS Guess reference current U_A and physical roughness k_b

Find skin friction

Calculate k_b and reference concentrations

Find total shear stress using k_b and U_A

Find mean and maximum shear stresses u_{*c} and u_{*cw} , apparent bottom roughness k_{bc} , and wave boundary layer height

Find current profile

Calculated and specified reference currents match?

OUTPUT: SHEAR STRESSES; CURRENT PROFILE; SEDIMENT REFERENCE CONC., C_0 ; RIPPLE PARAMETERS

YES

NO

SILT/SAND REFERENCE CONCENTRATION

• Instantaneous reference concentration $c_n(z_0)$

• Average over wave period to find mean concentration $c_{mn}(z_0)$

COHESIVE SEDIMENT DYNAMICS: ENTRAINMENT

Resuspended concentration*:

Empirical Coefficients
$$\varepsilon = \frac{d}{t_d^n} (\tau - \tau_c)^m \quad \text{(kg/m²)}$$
 Time since deposition

- Need to examine the empirical coefficients a, n, and m using mineralogical and chemical data.
- Replace power-law formulation with physical models for clay diagenesis and entrainment.

SUSPENDED SEDIMENT PROFILES

Mean concentration within wave boundary layer:

Mean concentration above wave boundary layer:

Dimensionless fall velocity $C_{mn}(z) = C_{mn}(z_0) \left\| \frac{z}{z_0} \right\|^{-\frac{||\mathcal{Y}^{W_{fn}}||}{\kappa u_{*_{cw}}}}$ Diffusivity

parameter

$$C_{mn}(z) = C_{mn}(\delta_w) \left[\frac{z}{\delta_w} \right]^{-\frac{|w|_{fn}}{\kappa u_{*c}}}$$
Wave boundary layer height

ACTIVE LAYER CALCULATION

- The BBLM computes a resuspension depth for each size class.
- depth is limited by:
 - near-bed transport:
 - ripple height:

Break-off range

$$\eta = 0.48S_*^{0.8}A_b \left[\frac{\psi_m}{\psi_c}\right]^{-1.5}$$

Sediment parameter

Equilibrium range

Wave orbital diameter

COUPLING BBLM TO TRANSPORT MODEL

- The BBLM is applied independently at each grid point on a 2D horizontal grid.
- The corrected suspended sediment profiles are coupled to 2D transport equations for all size classes.
- The active layer is found from near-bed transport and ripple height.

MASS-CONSERVATION EQUATIONS

 The suspended sediment ADVECTION flux in x direction for size n:

$$S_n = \Delta \int_{y}^{z_1} \int_{z_0} u(z) c_{mn}(z) dz$$

BED LOAD

Modified Bagnold formulation:

SEDIMENT DIFFUSION EQUATIONS

 The suspended sediment DIFFUSION flux in x direction for size n:

$$D_n = \Delta_y A_H \int_{z_0}^{z_1} c_{mn}(z) dz$$

Horizontal diffusivity

• A_H is Smagorinsky formulation

MASS-CONSERVATION EQUATIONS

• Total derivative in x direction for size n:

BED DEFINITIONS

- Storm Bed: thickness of reworked sediment
- Resuspension Bed: equivalent thickness of resuspended sediment
- <u>Transported Bed:</u> sediment deposited after transport by steady currents from another location

INSTANTANEOUS TOTAL BEDS

model.

 $H_{\mathbb{R}}$

CUMULATIVE TOTAL BEDS

These beds are present after last model integration.

CONCLUSIONS

- LSOM is a modular, scalable, multipurpose model for Navy needs.
- It is being enhanced with cohesive sediment algorithms.
- A PC-based windows version is currently under development.