Need for Generalization

- Curse of dimensionality
 - State spaces grow exponentially
 - Example: queueing system
- *Tabula rasa* learning learns exponentially many parameters

• Tabula rasa regret bounds

$$\tilde{O}(H\mathcal{S}\sqrt{\mathcal{A}HL})$$

How many episodes before we do well?

$$\tilde{O}(H^3\mathcal{S}^2\mathcal{A})$$

Approaches to Generalization

- Model learning
 - Learn MDP (P, R)
 - Parameterized model (P^{θ}, R^{θ})

- Value function learning
 - Learn value function Q^*
 - Parameterized value function Q^{θ}

- Policy learning
 - Learn policy μ^*
 - Parameterized policy μ^{θ}
- Coherent versus agnostic learning
 - Parametric versus nonparametric representations

Factored MDPs

• State-action pair is a vector

$$\mathcal{S} \times \mathcal{A} = \mathcal{X} = \mathcal{X}_1 \times \cdots \times \mathcal{X}_N$$

• Each component has *scope*

$$Z_n \subseteq \{1,\ldots,N\}$$

• Scope constrains model

$$\mathbb{P}(s_{t+1} = s | x_t) = \prod_{n=1}^{N} \mathbb{P}(s_{n,t+1} = s_n | x_{Z_n,t})$$
$$\mathbb{E}[r_t | x_t] = \sum_{n=1}^{N} \mathbb{E}[r_{n,t} | x_{Z_n,t}]$$

- How many parameters to learn?
 - Exponential in N?
 - Exponential in $|Z_n|$?

A Recommendation System Model

Consider recommending movies

- N movies
- Sequence of H recommendations for each customer
- Customer accepts/rejects each
- Goal: high acceptance rate

• MDP formulation

• state: $r_t \in \{0, 1\}$

• action: $s_t \in \{-1, 0, 1\}^N$

• reward: $a_t \in \{1, ..., N\}$

Parameterization

$$\mathbb{E}[r_t = 1 | s_t, a_t] = \begin{cases} \frac{\exp(\theta_{a_t}^\top s_t)}{1 + \exp(\theta_{a_t}^\top s_t)} & \text{if } s_{a_t, t} = 0\\ 0 & \text{otherwise} \end{cases}$$

$$s_{a_t,t+1} \leftarrow r_t$$