Ans to the gues no 1

image dimension = $\frac{128 \times 128}{1 \times 128 \times 128}$ 1×128×128

Filter dimension = 6 × 5 × 5

Stride = 2

Padding = 0

1 st step:

model. add (Convolution 2D(6, 5,5), input_shape (128x128x1)))

Feature Map Dimension:

W= Width =
$$(128+2.0+5)/2+1$$

= $62.5=63$
|Height = $(128+2.0-5)/2+1$
= 63

Dimension =
$$6 \times 63 \times 63$$

model, add (MaxPooling 2D ((2,2)))

In max-pooling dimension will be haved

:. Dimension = 6x31x31

2nd Step:

model. add (Convolution20(6, 55, input_Shape = (31,31,6)))

Feature Map Dimension:

Height =
$$(31+2.0-5)/2 + 1$$

= 14
Width = $(31+2.0-5)/2+1$
= 14

Dimension = 6x 14 x 14

Max-Poolin

model.add (Max Pooling 2D ((2,2)))

Dimension = 6 X 7 X X

3 std Step:

Feature Map Dimension:

Height =
$$(7+2.0-5)/2+1$$

= 2
Width = $(7+2.0-5)/2+1$
= 2

Dimension = 6x 2x2

Max - Pooling:

Dimension = EXIXI

4th Step:

Feature Map Dimension:

Height =
$$(1+2.0-5)/2+1$$

= -1

Weight =
$$(1+2.0-5)(2+1)$$

= -1

Dimension can not be negative Max-Pooling:

Dimensition can not be negative

Therefore, after 4 sets of convolution and max-pooling we got a negative dimension of Matrix which cur not be used for flattening.