

Corsi di Laurea in Informatica, A.A. 2023-24 Calcolo delle probabilità (Docente: Bertini) Esercizi settimanali

Foglio 1

Esercizio 1. Dimostrare le seguenti relazioni insiemistiche:

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$
$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$$
$$(A \cap B)^{c} = A^{c} \cup B^{c}$$

Esercizio 2. Siano A,B due insiemi. Dimostrare che le seguenti affermazioni sono equivalenti

- i) $A \subset B$
- ii) $A \cap B = A$
- ii) $A \cup B = B$

Esercizio 3. Sia A, B e C tre insiemi non necessariamnte disgiunti. Esprimere $|A \cup B \cup C|$ in termini delle cardinalità di A, B, C e delle loro intersezioni.

Esercizio 4. Dopo aver intervistato 50 studenti si raccolgono i seguenti dati: 25 hanno studiato francese, 20 hanno studiato tedesco e 5 hanno studiato entrambe le lingue. Calcolare

- 1) quanti studenti hanno studiato solo francese,
- 2) quanti studenti hanno studiato solo tedesco,
- 3) quanti studenti non hanno studiato né francese né tedesco.

Esercizio 5. Dopo aver intervistato 60 persone si raccolgono i seguenti dati: 25 leggono Topolino, 26 leggono Tex, 23 leggono Diabolik. Inoltre, 9 leggono sia Topolino sia Tex, 11 sia Topolino sia Diabolik, 8 sia sia Tex sia Diabolik. Infine, 3 leggono tutti e tre i periodici. Calcolare

- 1) quanti leggono solo Topolino,
- 2) quanti leggono solo Tex,
- 3) quanti leggono solo Diabolik,
- 4) quanti leggono almeno uno dei tre periodici,
- 5) quanti leggono uno solo dei tre periodici,
- 6) quanti non leggono alcuno dei tre periodici.

Esercizio 6. Sia (Ω, \mathbb{P}) uno spazio di probabilità, e siano $A, B \in C$ tre eventi. Supponiamo di sapere $A \cap B \cap C = \emptyset$ e $\mathbb{P}(A \cap C) = 1/5$ e $\mathbb{P}(B \cap C) = 2/5$.

- 1) Calcolare $\mathbb{P}((A \cup B) \cap C)$
- 2) Quali sono i possibili valori di $\mathbb{P}(A \cap B)$? (Ad esempio, può essere $\mathbb{P}(A \cap B) = 1$?)

Esercizio 7.

- 1) Se $\mathbb{P}(A) = 1/3$ e $\mathbb{P}(B^c) = 1/4$, $A \in B$ possono essere eventi disgiunti?
- 2) Se $\mathbb{P}(A) = 1/4$ e $\mathbb{P}(A \cup B) = 3/4$, quanto vale $\mathbb{P}(B)$ nel caso che A e B siano disgiunti?
- 3) Se $\mathbb{P}(A) = \mathbb{P}(B) = 3/8$, può verificarsi che $\mathbb{P}(A \cup B) = 1/4$? E $\mathbb{P}(A \cup B) = 7/8$?
- 4) Siano $\mathbb{P}(A) = 3/4$ e $\mathbb{P}(B) = 3/8$. Si verifichi che $1/8 \leq \mathbb{P}(A \cap B) \leq 3/8$.
- 5) Si dimostri la diseguaglianza:

$$\mathbb{P}(A \cap B) > \mathbb{P}(A) + \mathbb{P}(B) - 1$$

Esercizio 8. Si lanciano 2 dadi equi, uno di colore rosso, l'altro di colore blu.

- 1) Descrivere lo spazio degli eventi elementari Ω .
- 2) Descrivere, come sottoinsiemi di Ω , i seguenti eventi: "il dado rosso vale 5", "uno dei due dadi vale 5", "entrambi i dadi valgono 5", "nessun dado vale 5", "la somma dei dadi vale 5".
- 3) Calcolare la probabilità degli eventi nel punto precedente.

Esercizio 9. (ASINTOTICA DEL PROBLEMA DEI COMPLEANNI) Sia

$$p_N(k) = 1 - \frac{N(N-1)\cdots(N-k+1)}{N^k}$$

la probabilità per il problema dei compleanni. Si osservi che, per k fissato, $p_N(k)$ è un polinomio in 1/N. Si consideri l'asintotica per k fisso e $N \to \infty$.

1) Dimostrare che

$$p_N(k) = C_1(k)\frac{1}{N} + o\left(\frac{1}{N}\right)$$

e calcolare $C_1(k)$.

2) Dimostrare che

$$p_N(k) = C_1(k)\frac{1}{N} + C_2(k)\frac{1}{N^2} + o(\frac{1}{N^2})$$

e calcolare $C_2(k)$.