Computer Graphics I

Lecture 14: Global illumination 2

Xiaopei LIU

School of Information Science and Technology ShanghaiTech University

Camera rays only

Approximation

- Instead of shooting multiple rays per intersection, we shoot only one ray
- Instead of shooting only a few rays per pixel, we should large amount of rays per pixel

Path sampling

- Sampling according to light sources (direct lighting)
 - With respect to the local surface orientation

- Path sampling
 - Sampling according to BSDF (indirect lighting)
 - Different components composed together

Multiple importance sampling

- We can estimate distribution for BSDF f and light source L_d , but not for the whole
- Combine the BSDF and light source distribution

$$\frac{1}{n_f} \sum_{i=1}^{n_f} \frac{f(X_i)g(X_i)w_f(X_i)}{p_f(X_i)} + \frac{1}{n_g} \sum_{j=1}^{n_g} \frac{f(Y_j)g(Y_j)w_g(Y_j)}{p_g(Y_j)}$$

Balance heuristic for weights

$$w_{s}(x) = \frac{n_{s} p_{s}(x)}{\sum_{i} n_{i} p_{i}(x)}$$

Importance sampling in rendering

materials: sample important "lobes"

(important special case: perfect mirror!)

illumination: sample bright lights

Good paths can be hard to find!

Idea:

Once we find a good path, perturb it to find nearby "good" paths.

bidirectional path tracing

Metropolis light transport (MLT)

1. Metropolis-Hastings Algorithm

Review on Metropolis sampling

Basic algorithm

- Generate a set of samples X_i from a function f defined over an arbitrary dimensional space Ω
 - Select the first sample X_0
 - Each sample X_i is generated using a random mutation to X_{i-1} to compute a proposed sample X'
 - In order to compute X', we must compute a tentative transition function $T(X \rightarrow X')$: the transition probability
 - Compute the acceptance probability $a(X \rightarrow X')$

$$a(X \to X') = \min\left(1, \frac{f(X') T(X' \to X)}{f(X) T(X \to X')}\right) \qquad \qquad a(X \to X') = \min\left(1, \frac{f(X')}{f(X)}\right)$$

Metropolis-Hastings algorithm (MH)

- Standard Monte Carlo: sum up independent samples
- MH: take random walk of dependent samples ("mutations")
- Basic idea: prefer to take steps that increase sample value

- If careful, sample distribution will be proportional to integrand
 - make sure mutations are "ergodic" (reach whole space)
 - need to take a long walk, so initial point doesn't matter ("mixing")

Metropolis-Hastings: sampling an Image

- Want to take samples proportional to image density f
- Start at random point; take steps in (normal) random direction
- Occasionally jump to random point (ergodicity)
- Transition probability is "relative darkness" f(x')/f(x_i)

short walk long walk (original image)

Metropolis Light Transport

A variant of bidirectional path tracing

- Application of Metropolis-Hastings algorithm to the rendering equation
- Construct paths from the eye to a light source using bidirectional path tracing
- Each path is found by mutating the previous path

```
ar{x} \leftarrow 	ext{InitialPath}()
image \leftarrow \{ 	ext{ array of zeros } \}
for \ i \leftarrow 1 \ to \ N
ar{y} \leftarrow 	ext{Mutate}(ar{x})
a \leftarrow 	ext{AcceptProb}(ar{y}|ar{x})
if \ 	ext{Random}() < a
then \ \ ar{x} \leftarrow ar{y}
RECORDSAMPLE(image, ar{x})
return \ image
```

Metropolis Light Transport

- Path mutation (perturbation)
 - Local exploration
 - When a path makes a large contribution to image
 - Sample more similar path by small perturbation

Lens perturbation

Caustic perturbation

Metropolis light transport

(For details see Veach, "Robust Monte Carlo Methods for Light Transport Simulation")

path tracing

Metropolis light transport (same time)

2. Bidirectional Path Tracing

- What is traditional path tracing good for?
 - Diffuse surfaces, large area of lighting

1356 x 654, 16 paths/pixel, 2 bounces, 250,000 faces

- What makes traditional path tracing difficult?
 - Concentrated lighting, e.g., caustics

1000 paths/pixel

Forward path tracing

- No control over path length
- Hit light source after n bounces, or get terminated by Russian roulette

• Idea

- Connect paths from light source and camera (eye)
- Construct bidirectional paths

All one-bounce cases

standard (forward) path tracing

fails for point light sources

visualize particles from light

backward path tracing

fails for a pinhole camera

- Five-bounce example
 - A combination of path from light source and camera

Fixed-length bounce rendering

- Enumerating all possibilities
 - s : number of light source ray path
 - t : number of camera ray path
 - Rendering is based on a fixed length L: s+t=L
- s+t=1: direct emission

- Fixed-length bounce rendering
 - s+t=2: direct illumination

s=1, t=1

- Fixed-length bounce rendering
 - s+t=3: indirect illumination

- Fixed-length bounce rendering
 - s+t=4: indirect illumination

s=3, t=1

s=1, t=3

Comparison with traditional path tracing

Bidirectional Path Tracing

Path Tracing

Contributions of different path lengths

3. Photon Mapping

Irradiance cache

Store illumination at sparse points

- Approximate indirect illumination
- Lookup cached illumination for radiance estimation

- A two-pass global illumination algorithm
 - Developed by Henrik Wann Jensen
 - Solve rendering equations approximately
 - Capable of simulating
 - Caustics, diffuse inter-reflections
 - Participating media
 - Same flexibility as general Monte-Carlo ray tracing
 - A fraction of the computation time

Key idea

- Photon: energy carrying packets
- A two-pass method
 - Similar as bidirectional path tracing
- First pass
 - Build the photon map structure
 - Emitting photons from the light sources into the scene
 - Store them in a *photon map* when hitting non-specular objects
- Second pass
 - Extract information about incoming flux and reflected radiance from photon map for camera ray radiance

Photon distribution

• A simple test scene

Photon tracing

Photons on surface

Photo emission

- Assumption
 - Each photon is assumed to have the same energy
- Diffuse point light source
 - Emitted in uniformly distributed random directions
- Directional light
 - Emitted in the same direction
- Diffuse square light source
 - Random positions on the square
 - Emission directions form a cosine distribution

Photo emission

- In general
 - Arbitrary shape, arbitrary emission probability profile

Power of each emitted photon

$$P_{photon} = \frac{P_{light}}{n_e}$$

Photon tracing

- The reverse of ray tracing
 - Photo tracing: propagate flux
 - Ray tracing: gather radiance
- Photon hitting an object
 - Reflected, transmitted, or absorbed
 - Decide probabilistically based on material parameters
 - Use Russian roulette
- Decision making (with Russian roulette sampling)

Photon storage

- Which photon-surface interactions are stored in the photon map?
 - Where they hit diffuse non-specular surfaces
- Data is stored in a global data structure: photo map
- What are stored?
 - Position, incoming photon power, incident direction

Two photon maps

- Global photon map (low frequency)
- Caustic photon map (high frequency)

• Balanced k-d tree

- Divide the samples at the median
- Efficiently find the neighbors for rendering

Photon map creation

- Generate random path starting from the light sources
 - Randomly sample points and outgoing directions on lights
- Follow paths through the scene
 - Find intersections with non-specular surfaces
 - At each surface intersection
 - Deposit a photon representing a sample of illumination at that point from the incident direction
- Build a balanced kd tree
 - All photons are stored in a space-partitioning kd tree
 - Nearby photons can easily be located by local search of the tree

Radiance estimate

- Fundamental radiance computation

$$L_r(x,\vec{\omega}) = \int_{\Omega_x} f_r(x,\vec{\omega}',\vec{\omega}) L_i(x,\vec{\omega}') |\vec{n}_x \cdot \vec{\omega}'| d\omega_i'$$

- Rewrite incoming radiance in terms of photons
 - According to radiance definition

$$L_i(x, \vec{\omega}') = \frac{d\Phi_i(x, \vec{\omega}')}{\cos \theta_i d\omega_i' dA_i}$$

Rewrite the integral

$$L_{r}(x,\vec{\omega}) = \int_{\Omega_{x}} f_{r}(x,\vec{\omega}',\vec{\omega}) \frac{d\Phi_{i}(x,\vec{\omega}')}{\cos\theta_{i} d\omega'_{i} dA_{i}} |\vec{n}_{x} \cdot \vec{\omega}'| d\omega'_{i}$$

$$= \int_{\Omega_{x}} f_{r}(x,\vec{\omega}',\vec{\omega}) \frac{d\Phi_{i}(x,\vec{\omega}')}{dA_{i}}.$$

Radiance estimate

- Incoming flux is approximated using the photon map
- Searching the nearest n photons
- Each photon p has equal power (energy)

$$L_r(x,\vec{\omega}) = \int_{\Omega_r} f_r(x,\vec{\omega}',\vec{\omega}) \frac{d\Phi_i(x,\vec{\omega}')}{dA_i} \approx \sum_{p=1}^n f_r(x,\vec{\omega}_p,\vec{\omega}) \frac{\Delta\Phi_p(x,\vec{\omega}_p)}{\Delta A}$$

- Assuming that the surface is locally flat
 - Projecting the sphere onto the tangent surface

$$\Delta A = \pi r^2$$

Radiance estimate

- 1. Search nearest n photons around hit point
- 2. Compute the reflected power by BRDF for each photon
- 3. Divide the sum by projected area on tangent plane

$$L_r(x, \vec{\omega}) \approx \frac{1}{\pi r^2} \sum_{p=1}^{N} f_r(x, \vec{\omega}_p, \vec{\omega}) \Delta \Phi_p(x, \vec{\omega}_p)$$

Radiance estimate

- Photon mapping is not unbiased
 - Introducing statistical error
 - Reduced noise
- BUT it is consistent
 - Converge as the number of photons goes to infinity

$$\lim_{N \to \infty} \frac{1}{\pi r^2} \sum_{p=1}^{\lfloor N^{\alpha} \rfloor} f_r(x, \vec{\omega}_p, \vec{\omega}) \Delta \Phi_p(x, \vec{\omega}_p) = L_r(x, \vec{\omega}) \text{ for } \alpha \in]0, 1[$$

Locate photons

- Symmetric v.s. non-symmetric
- Non-symmetric for edges (more accurate)
- Selection regions are geometry dependent

Filtering

- To reduce the amount of blur at sharp edges
- Useful for scenarios like caustics
- Radiance estimate is filtered
 - Increase the weight of photons close to the hit point

Cone filter

A cone-shape weight

$$w_{pc} = 1 - \frac{d_p}{k r} \qquad L_r(x, \vec{\omega}) \approx \frac{\sum_{p=1}^{N} f_r(x, \vec{\omega}_p, \vec{\omega}) \Delta \Phi_p(x, \vec{\omega}_p) w_{pc}}{(1 - \frac{2}{3k})\pi r^2}$$

Gaussian filter

Give good results when filtering caustics

$$w_{pg} = \alpha \left[1 - \frac{1 - e^{-\beta \frac{d_p^2}{2r^2}}}{1 - e^{-\beta}} \right] \qquad \alpha = 0.918$$

$$\beta = 1.953$$

$$L_r(x, \vec{\omega}) \approx \sum_{p=1}^{N} f_r(x, \vec{\omega}_p, \vec{\omega}) \Delta \Phi_p(x, \vec{\omega}_p) w_{pg}$$

- Rendering based on photon map
 - Outgoing radiance

$$L_o(x,\vec{\omega}) = L_e(x,\vec{\omega}) + L_r(x,\vec{\omega}) \qquad L_r(x,\vec{\omega}) = \int_{\Omega_x} f_r(x,\vec{\omega}',\vec{\omega}) L_i(x,\vec{\omega}') \cos\theta_i \, d\omega_i'$$

- The BRDF is separated into a sum of two components
 - Specular/glossy + diffuse

$$f_r(x, \vec{\omega}', \vec{\omega}) = f_{r,s}(x, \vec{\omega}', \vec{\omega}) + f_{r,d}(x, \vec{\omega}', \vec{\omega})$$

Rendering based on photon map

- Incoming radiance classification
 - Direct illumination $L_{i,l}(x,\vec{\omega}')$
 - Caustics $L_{i,c}(x,\vec{\omega}')$
 - Indirect illumination from the light sources via specular reflection or transmission
 - Diffuse indirect illumination $L_{i,d}(x,\vec{\omega}')$
- Incoming light

$$L_i(x, \vec{\omega}') = L_{i,l}(x, \vec{\omega}') + L_{i,c}(x, \vec{\omega}') + L_{i,d}(x, \vec{\omega}')$$

Reflected radiance splitting

Reflected radiance splitting

$$L_{r}(x,\vec{\omega}) = \int_{\Omega_{x}} f_{r}(x,\vec{\omega}',\vec{\omega}) L_{i}(x,\vec{\omega}') \cos\theta_{i} d\omega'_{i}$$

$$= \int_{\Omega_{x}} f_{r}(x,\vec{\omega}',\vec{\omega}) L_{i,l}(x,\vec{\omega}') \cos\theta_{i} d\omega'_{i} +$$

$$\int_{\Omega_{x}} f_{r,s}(x,\vec{\omega}',\vec{\omega}) (L_{i,c}(x,\vec{\omega}') + L_{i,d}(x,\vec{\omega}')) \cos\theta_{i} d\omega'_{i} +$$

$$\int_{\Omega_{x}} f_{r,d}(x,\vec{\omega}',\vec{\omega}) L_{i,c}(x,\vec{\omega}') \cos\theta_{i} d\omega'_{i} +$$

$$\int_{\Omega_{x}} f_{r,d}(x,\vec{\omega}',\vec{\omega}) L_{i,d}(x,\vec{\omega}') \cos\theta_{i} d\omega'_{i}.$$

• Direct illumination

- Standard distributed ray tracing
- Multiple shadow/light rays are shot

$$\int_{\Omega_x} f_r(x, \vec{\omega}', \vec{\omega}) L_{i,l}(x, \vec{\omega}') \cos \theta_i \, d\omega_i'$$

Specular and glossy reflection

- Strongly dominated by $f_{r,s}$ which has a narrow peak around the mirror direction
- Standard Monte Carlo ray tracing, sampling based on $f_{r,s}$

$$\int_{\Omega_r} f_{r,s}(x,\vec{\omega}',\vec{\omega}) (L_{i,c}(x,\vec{\omega}') + L_{i,d}(x,\vec{\omega}')) \cos \theta_i \, d\omega_i'$$

Caustics

Solved by using a radiance estimate from the caustics photon map

$$\int_{\Omega_x} f_{r,d}(x,\vec{\omega}',\vec{\omega}) L_{i,c}(x,\vec{\omega}') \cos \theta_i \, d\omega_i'$$

Multiple diffuse reflections

- The approximate evaluation
- Based on the global photon map

$$\int_{\Omega_x} f_{r,d}(x, \vec{\omega}', \vec{\omega}) L_{i,d}(x, \vec{\omega}') \cos \theta_i \, d\omega_i'$$

Bias and consistency in estimators

Unbiased:
$$E[X] = \int_a^b f(x) dx$$

• Example: $\frac{1}{N} \sum_{i}^{N} f(x_i)$

Consistent:
$$\lim_{N \to \infty} E[X] = \int_a^b f(x) dx$$

• Example:
$$\frac{1}{N+1} \sum_{i}^{N} f(x_i)$$

- Biased v.s. consistent estimators
 - Graphical interpretation
 - Consistent: the image approaches correct solution as some parameter is increased
 - Unbiased : produces correct result on average
 - Potential value of biased but consistent estimators
 - May have lower variance
 - May look better (less noise)

Biased but consistent estimators

100000 photons, 50 photons in radiance estimate

Biased but consistent estimators

500000 photons, 500 photons in radiance estimate

Cornell box

200000 global photons, 50000 caustic photons

Cornell box: photons

200000 global photons

Caustics from a glass sphere

Photon mapping: 10000 photons, 50 photons in estimate

Caustics from a glass sphere

Path tracing: 1000 paths/pixels

Reflection inside a metal ring

50000 photons, 50 photons in radiance estimate

Example code

https://github.com/Mikepicker/PhotonMapping/blob/master/PhotonMapping/main.cpp

```
29 //-----Parameters-----
                                                                                                 112 //-----Geom Object-----
31 #define PHOTON_MAPPING
                                     // define for Photon Mapping, undefine for Ray Tracing
32 #define WINDOW WIDTH 512
                                    // Window width
                                    // Window beight
33 #define WINDOW HEIGHT 512
                                                                                                 114 template<typename T>
                                     // Max recursive depth
34 #define MAX_RAY_DEPTH 5
                                                                                                 115 class GeomObject {
                                              // Number of photons
36 #define CAUSTICS PHOTONS 20000 // Number of photons for caustic objects
                                                                                                 117 public:
37 #define LIGHT POWER 500 // Lights power
                                                                                                              Vec3<T> surfaceColor, emissionColor; /// surface color and emission (light)
38 #define ESTIMATE 100
                                                      // Number of nearest neighbors
                                                                                                              T transparency, reflection;
                                                                                                                                                   /// surface transparency and reflectivity
39 #define CAUSTICS_ESTIMATE 500
                                                                                                              GeomObject(const Vec3<T> &sc, const T &refl = 0, const T &transp = 0, const Vec3<T> &ec = 0)
                                                                                                                      : surfaceColor(sc), reflection(refl), transparency(transp), emissionColor(ec)
    //------Vector3-----
                                                                                                              // get object position
45 template<typename T>
                                                                                                              virtual Vec3<T> getPosition() = 0;
46 class Vec3
                                                                                                              virtual bool intersect(const Vec3<T> &rayOrig, const Vec3<T> &rayDir, Vec3<T>* pHit = NULL, Vec3<T>* nHit = NULL) const = 0;
47 {
                                                                                                              virtual Vec3<T> computeBRDF() const = 0:
48 public:
                                                                                                              virtual Vec3<T> randomPoint() const = 0;
           Vec3(): x(T(0)), y(T(0)), z(T(0)) {}
           Vec3(T xx) : x(xx), y(xx), z(xx) {}
          Vec3(T xx, T yy, T zz) : x(xx), y(yy), z(zz) {}
           Vec3& normalize()
                                                                                                 135 template<typename T>
                  T nor2 = length2():
                                                                                                       class Plane : public GeomObject<T> {
                  if (nor2 > 0) {
                        T invNor = 1 / sqrt(nor2);
                          x *= invNor, y *= invNor, z *= invNor;
                                                                                                              Vec3<T> position;
                                                                                                                                            // plane position
                                                                                                              Vec3<T> normal;
                                                                                                                                    // vector normal to the plane
                   return *this;
                                                                                                              Plane(const Vec3<T> &p, const Vec3<T> &n, const Vec3<T> &sc,
                                                                                                                      const T &refl = 0, const T &transp = 0, const Vec3<T> &ec = 0) :
           // clam values under/above min/max
                                                                                                                      position(p), normal(n), GeomObject(sc, refl, transp, ec)
           Vec3& gate(T min. T max)
                   if (x < min)
                                                                                                              // get plane position
                                                                                                                                                                                                                                    67
                  if (v < min)
                                                                                                              Vec3<T> getPosition() { return position; }
                          v = min:
                  if (z < min)
```

Real-time ray tracer

- NVIDIA OptiX:
 - GPU-based programmable ray tracer

Credit: NVIDIA (this ray-traced image can be rendered at interactive rates on modern GPUs)

Next lecture: Volume rendering 1