1. Units and Significant Figures

- 1. Physical Quantities and Units
- 2. Accuracy, Precision, and Significant Figures

2. Kinematics

- 1. <u>Introduction to One-Dimensional Kinematics</u>
- 2. <u>Displacement</u>
- 3. <u>Vectors, Scalars, and Coordinate Systems</u>
- 4. Time, Velocity, and Speed
- 5. Acceleration
- 6. <u>Motion Equations for Constant Acceleration in One Dimension</u>
- 7. <u>Problem-Solving Basics for One-Dimensional Kinematics</u>
- 8. Falling Objects
- 9. Graphical Analysis of One-Dimensional Motion

3. Two-Dimensional Kinematics

- 1. Introduction to Two-Dimensional Kinematics
- 2. <u>Kinematics in Two Dimensions: An Introduction</u>
- 3. <u>Vector Addition and Subtraction: Graphical Methods</u>
- 4. <u>Vector Addition and Subtraction: Analytical Methods</u>
- 5. Addition of Velocities
- 4. Dynamics: Force and Newton's Laws of Motion
 - 1. Introduction to Dynamics: Newton's Laws of Motion
 - 2. Development of Force Concept
 - 3. Newton's First Law of Motion: Inertia
 - 4. Newton's Second Law of Motion: Concept of a System
 - 5. Newton's Third Law of Motion: Symmetry in Forces
 - 6. Normal, Tension, and Other Examples of Forces
 - 7. <u>Problem-Solving Strategies</u>
 - 8. <u>Further Applications of Newton's Laws of Motion</u>
- 5. Work and Energy
 - 1. <u>Introduction to Work, Energy, and Energy Resources</u>

- 2. Work: The Scientific Definition
- 3. <u>Kinetic Energy and the Work-Energy Theorem</u>
- 4. Gravitational Potential Energy
- 5. Conservative Forces and Potential Energy
- 6. Nonconservative Forces
- 7. Conservation of Energy
- 6. Geometric Optics
 - 1. Introduction to Geometric Optics
 - 2. The Ray Aspect of Light
 - 3. The Law of Reflection
 - 4. The Law of Refraction
 - 5. Total Internal Reflection
 - 6. <u>Dispersion: The Rainbow and Prisms</u>
 - 7. <u>Image Formation by Lenses</u>
 - 8. Image Formation by Mirrors
- 7. Vision and Optical Instruments
 - 1. Introduction to Vision and Optical Instruments
 - 2. Physics of the Eye
 - 3. Vision Correction
 - 4. Microscopes
 - 5. <u>Telescopes</u>

Physical Quantities and Units

- Perform unit conversions both in the SI and English units.
- Explain the most common prefixes in the SI units and be able to write them in scientific notation.

The distance from Earth to the Moon may seem immense, but it is just a tiny fraction of the distances from Earth to other celestial bodies. (credit: NASA)

The range of objects and phenomena studied in physics is immense. From the incredibly short lifetime of a nucleus to the age of the Earth, from the tiny sizes of sub-nuclear particles to the vast distance to the edges of the known universe, from the force exerted by a jumping flea to the force between Earth and the Sun, there are enough factors of 10 to challenge the imagination of even the most experienced scientist. Giving numerical values for physical quantities and equations for physical principles allows us to understand nature much more deeply than does qualitative description alone. To comprehend these vast ranges, we must also have accepted units in which to express them. And we shall find that (even in the potentially mundane discussion of meters, kilograms, and seconds) a profound simplicity of nature appears—all physical quantities can be expressed as combinations of only four fundamental physical quantities: length, mass, time, and electric current.

We define a **physical quantity** either by *specifying how it is measured* or by *stating how it is calculated* from other measurements. For example, we define distance and time by specifying methods for measuring them, whereas we define *average speed* by stating that it is calculated as distance traveled divided by time of travel.

Measurements of physical quantities are expressed in terms of **units**, which are standardized values. For example, the length of a race, which is a physical quantity, can be expressed in units of meters (for sprinters) or kilometers (for distance runners). Without standardized units, it would be extremely difficult for scientists to express and compare measured values in a meaningful way. (See [link].)

Distances given in unknown units are maddeningly useless.

There are two major systems of units used in the world: **SI units** (also known as the metric system) and **English units** (also known as the customary or imperial system). **English units** were historically used in nations once ruled by the British Empire and are still widely used in the United States. Virtually every other country in the world now uses SI units as the standard; the metric system is also the standard system agreed upon by scientists and mathematicians. The acronym "SI" is derived from the French *Système International*.

SI Units: Fundamental and Derived Units

[link] gives the fundamental SI units that are used throughout this textbook. This text uses non-SI units in a few applications where they are in very common use, such as the measurement of blood pressure in millimeters of mercury (mm Hg). Whenever non-SI units are discussed, they will be tied to SI units through conversions.

Length	Mass	Time	Electric Current
meter (m)	kilogram (kg)	second (s)	ampere (A)

Fundamental SI Units

It is an intriguing fact that some physical quantities are more fundamental than others and that the most fundamental physical quantities can be defined *only* in terms of the procedure used to measure them. The units in which they are measured are thus called **fundamental units**. In this textbook, the fundamental physical quantities are taken to be length, mass, time, and electric current. (Note that electric current will not be introduced until much later in this text.) All other physical quantities, such as force and electric charge, can be expressed as algebraic combinations of length, mass, time, and current (for example, speed is length divided by time); these units are called **derived units**.

Units of Time, Length, and Mass: The Second, Meter, and Kilogram

The Second

The SI unit for time, the **second**(abbreviated s), has a long history. For many years it was defined as 1/86,400 of a mean solar day. More recently, a new standard was adopted to gain greater accuracy and to define the second in terms of a non-varying, or constant, physical phenomenon (because the solar day is getting longer due to very gradual slowing of the Earth's rotation). Cesium atoms can be made to vibrate in a very steady way, and these vibrations can be readily observed and counted. In 1967 the second was redefined as the time required for 9,192,631,770 of these vibrations. (See [link].) Accuracy in the fundamental units is essential, because all measurements are ultimately expressed in terms of fundamental units and can be no more accurate than are the fundamental units themselves.

An atomic clock such as this one uses the vibrations of cesium atoms to keep time to a precision of better than a microsecond per year. The fundamental unit of time, the second, is based on such clocks. This image is looking down from the top of an atomic fountain nearly 30 feet tall! (credit: Steve Jurvetson/Flickr)

The Meter

The SI unit for length is the **meter** (abbreviated m); its definition has also changed over time to become more accurate and precise. The meter was first defined in 1791 as 1/10,000,000 of the distance from the equator to the North Pole. This measurement was improved in 1889 by redefining the meter to be the distance between two engraved lines on a platinum-iridium bar now kept near Paris. By 1960, it had become possible to define the meter even more accurately in terms of the wavelength of light, so it was again redefined as 1,650,763.73 wavelengths of orange light emitted by krypton atoms. In 1983, the meter was given its present definition (partly for greater accuracy) as the distance light travels in a vacuum in 1/299,792,458 of a second. (See [link].) This change defines the speed of light to be exactly 299,792,458 meters per second. The length of the meter will change if the speed of light is someday measured with greater accuracy.

The Kilogram

The SI unit for mass is the **kilogram** (abbreviated kg); it is defined to be the mass of a platinum-iridium cylinder kept with the old meter standard at the International Bureau of Weights and Measures near Paris. Exact replicas of the standard kilogram are also kept at the United States' National Institute of Standards

and Technology, or NIST, located in Gaithersburg, Maryland outside of Washington D.C., and at other locations around the world. The determination of all other masses can be ultimately traced to a comparison with the standard mass.

The meter is defined to be the distance light travels in 1/299,792,458 of a second in a vacuum. Distance traveled is speed multiplied by time.

Electric current and its accompanying unit, the ampere, will be introduced in <u>Introduction to Electric Current, Resistance, and Ohm's Law</u> when electricity and magnetism are covered. The initial modules in this textbook are concerned with mechanics, fluids, heat, and waves. In these subjects all pertinent physical quantities can be expressed in terms of the fundamental units of length, mass, and time.

Metric Prefixes

SI units are part of the **metric system**. The metric system is convenient for scientific and engineering calculations because the units are categorized by factors of 10. [<u>link</u>] gives metric prefixes and symbols used to denote various factors of 10.

Metric systems have the advantage that conversions of units involve only powers of 10. There are 100 centimeters in a meter, 1000 meters in a kilometer, and so on. In nonmetric systems, such as the system of U.S. customary units, the relationships are not as simple—there are 12 inches in a foot, 5280 feet in a mile, and so on. Another advantage of the metric system is that the same unit can be used over extremely large ranges of values simply by using an appropriate metric prefix. For example, distances in meters are suitable in construction, while distances in kilometers are appropriate for air travel, and the tiny measure of nanometers are convenient in optical design. With the metric system there is no need to invent new units for particular applications.

The term **order of magnitude** refers to the scale of a value expressed in the metric system. Each power of 10 in the metric system represents a different order of magnitude. For example, 10^1 , 10^2 , 10^3 , and so forth are all different orders of magnitude. All quantities that can be expressed as a product of a specific power of 10 are said to be of the *same* order of magnitude. For example, the number 800 can be written as 8×10^2 , and the number 450 can be written as 4.5×10^2 . Thus, the numbers 800 and 450 are of the same order of magnitude: 10^2 . Order of magnitude can be thought of as a ballpark estimate for the scale of a value. The diameter of an atom is on the order of 10^{-9} m, while the diameter of the Sun is on the order of 10^9 m.

Note:

The Quest for Microscopic Standards for Basic Units

The fundamental units described in this chapter are those that produce the greatest accuracy and precision in measurement. There is a sense among physicists that, because there is an underlying microscopic substructure to matter, it would be most satisfying to base our standards of measurement on microscopic objects and fundamental physical phenomena such as the speed of light. A microscopic standard has been accomplished for the standard of time, which is based on the oscillations of the cesium atom.

The standard for length was once based on the wavelength of light (a small-scale length) emitted by a certain type of atom, but it has been supplanted by the more precise measurement of the speed of light. If it becomes possible to measure the mass of atoms or a particular arrangement of atoms such as a silicon sphere to greater precision than the kilogram standard, it may become possible to base mass measurements on the small scale. There are also possibilities that electrical phenomena on the small scale may someday allow us to base a unit of charge on the charge of electrons and protons, but at present current and charge are related to large-scale currents and forces between wires.

Prefix	Symbol	Value[footnote] See Appendix A for a discussion of powers of 10.	Example (some are approximate)			
exa	E	10^{18}	exameter	Em	$10^{18}\mathrm{m}$	distance light travels in a century
peta	P	10^{15}	petasecond	Ps	$10^{15}\mathrm{s}$	30 million years
tera	Т	10^{12}	terawatt	TW	$10^{12}\mathrm{W}$	powerful laser output
giga	G	10 ⁹	gigahertz	GHz	$10^9\mathrm{Hz}$	a microwave frequency
mega	M	10^6	megacurie	MCi	$10^6\mathrm{Ci}$	high radioactivity
kilo	k	10^3	kilometer	km	$10^3\mathrm{m}$	about 6/10 mile
hecto	h	10^2	hectoliter	hL	$10^2\mathrm{L}$	26 gallons

Prefix	Symbol	Value[footnote] See Appendix A for a discussion of powers of 10.	Example (sor	ne are apj	proximate)	
deka	da	10^1	dekagram	dag	$10^1\mathrm{g}$	teaspoon of butter
_	_	10 ⁰ (=1)				
deci	d	10^{-1}	deciliter	dL	$10^{-1}\mathrm{L}$	less than half a soda
centi	С	10^{-2}	centimeter	cm	$10^{-2}\mathrm{m}$	fingertip thickness
milli	m	10^{-3}	millimeter	mm	$10^{-3}\mathrm{m}$	flea at its shoulders
micro	μ	10^{-6}	micrometer	μm	$10^{-6}\mathrm{m}$	detail in microscope
nano	n	10^{-9}	nanogram	ng	$10^{-9}\mathrm{g}$	small speck of dust
pico	p	10^{-12}	picofarad	pF	$10^{-12}{ m F}$	small capacitor in radio
femto	f	10^{-15}	femtometer	fm	$10^{-15}{ m m}$	size of a proton
atto	a	10^{-18}	attosecond	as	$10^{-18}{ m s}$	time light crosses an atom

Metric Prefixes for Powers of 10 and their Symbols

Known Ranges of Length, Mass, and Time

The vastness of the universe and the breadth over which physics applies are illustrated by the wide range of examples of known lengths, masses, and times in [link]. Examination of this table will give you some

feeling for the range of possible topics and numerical values. (See [link] and [link].)

Tiny phytoplankton swims among crystals of ice in the Antarctic Sea. They range from a few micrometers to as much as 2 millimeters in length. (credit: Prof. Gordon T. Taylor, Stony Brook University; NOAA Corps Collections)

Galaxies collide 2.4
billion light years away
from Earth. The
tremendous range of
observable phenomena in
nature challenges the
imagination. (credit:
NASA/CXC/UVic./A.
Mahdavi et al.
Optical/lensing:
CFHT/UVic./H. Hoekstra
et al.)

Unit Conversion and Dimensional Analysis

It is often necessary to convert from one type of unit to another. For example, if you are reading a European cookbook, some quantities may be expressed in units of liters and you need to convert them to cups. Or, perhaps you are reading walking directions from one location to another and you are interested in how many miles you will be walking. In this case, you will need to convert units of feet to miles.

Let us consider a simple example of how to convert units. Let us say that we want to convert 80 meters (m) to kilometers (km).

The first thing to do is to list the units that you have and the units that you want to convert to. In this case, we have units in *meters* and we want to convert to *kilometers*.

Next, we need to determine a **conversion factor** relating meters to kilometers. A conversion factor is a ratio expressing how many of one unit are equal to another unit. For example, there are 12 inches in 1 foot, 100 centimeters in 1 meter, 60 seconds in 1 minute, and so on. In this case, we know that there are 1,000 meters in 1 kilometer.

Now we can set up our unit conversion. We will write the units that we have and then multiply them by the conversion factor so that the units cancel out, as shown:

Equation:

$$80\,\mathrm{m} imes rac{1\ \mathrm{km}}{1000\,\mathrm{m}} = 0.080\ \mathrm{km}.$$

Note that the unwanted m unit cancels, leaving only the desired km unit. You can use this method to convert between any types of unit.

Click [link] for a more complete list of conversion factors.

Lengths in meters		Masses in kilograms (more precise values in parentheses)		Times in seconds (more precise values in parentheses)	
10^{-18}	Present experimental limit to smallest observable detail	10^{-30}	Mass of an electron $\left(9.11 imes 10^{-31} \; \mathrm{kg} \right)$	10^{-23}	Time for light to cross a proton
10^{-15}	Diameter of a proton	10^{-27}	Mass of a hydrogen atom $\left(1.67 \times 10^{-27} \; \mathrm{kg}\right)$	10^{-22}	Mean life of an extremely unstable nucleus

Lengths in meters		Masses in kilograms (more precise values in parentheses)		Times in seconds (more precise values in parentheses)	
10^{-14}	Diameter of a uranium nucleus	10^{-15}	Mass of a bacterium	10^{-15}	Time for one oscillation of visible light
10^{-10}	Diameter of a hydrogen atom	10^{-5}	Mass of a mosquito	10^{-13}	Time for one vibration of an atom in a solid
10^{-8}	Thickness of membranes in cells of living organisms	10^{-2}	Mass of a hummingbird	10^{-8}	Time for one oscillation of an FM radio wave
10^{-6}	Wavelength of visible light	1	Mass of a liter of water (about a quart)	10^{-3}	Duration of a nerve impulse
10^{-3}	Size of a grain of sand	10^2	Mass of a person	1	Time for one heartbeat
1	Height of a 4-year- old child	10^3	Mass of a car	10^5	One day $\left(8.64 imes 10^4 \mathrm{s} ight)$
10^2	Length of a football field	108	Mass of a large ship	10^7	One year (y) $\left(3.16 \times 10^7 \mathrm{s} \right)$
10^4	Greatest ocean depth	10^{12}	Mass of a large iceberg	10^9	About half the life expectancy of a human
10^7	Diameter of the Earth	10^{15}	Mass of the nucleus of a comet	10^{11}	Recorded history
10^{11}	Distance from the Earth to the Sun	10^{23}	Mass of the Moon $\left(7.35 imes 10^{22} \; ext{kg} \right)$	10^{17}	Age of the Earth
10^{16}	Distance traveled by light in 1 year (a light year)	10^{25}	Mass of the Earth $\left(5.97 imes 10^{24} \; ext{kg} ight)$	10^{18}	Age of the universe
10^{21}	Diameter of the Milky Way galaxy	10^{30}	Mass of the Sun $\left(1.99 imes 10^{30} \; ext{kg} ight)$		

Lengths in meters		Masses in kilograms (more precise values in parentheses)		Times in seconds (more precise values in parentheses)	
10^{22}	Distance from the Earth to the nearest large galaxy (Andromeda)	10^{42}	Mass of the Milky Way galaxy (current upper limit)		
10^{26}	Distance from the Earth to the edges of the known universe	10^{53}	Mass of the known universe (current upper limit)		

Approximate Values of Length, Mass, and Time

Example:

Unit Conversions: A Short Drive Home

Suppose that you drive the 10.0 km from your university to home in 20.0 min. Calculate your average speed (a) in kilometers per hour (km/h) and (b) in meters per second (m/s). (Note: Average speed is distance traveled divided by time of travel.)

Strategy

First we calculate the average speed using the given units. Then we can get the average speed into the desired units by picking the correct conversion factor and multiplying by it. The correct conversion factor is the one that cancels the unwanted unit and leaves the desired unit in its place.

Solution for (a)

(1) Calculate average speed. Average speed is distance traveled divided by time of travel. (Take this definition as a given for now—average speed and other motion concepts will be covered in a later module.) In equation form,

Equation:

average speed
$$=\frac{\text{distance}}{\text{time}}$$
.

(2) Substitute the given values for distance and time.

Equation:

average speed =
$$\frac{10.0 \text{ km}}{20.0 \text{ min}} = 0.500 \frac{\text{km}}{\text{min}}$$
.

(3) Convert km/min to km/h: multiply by the conversion factor that will cancel minutes and leave hours. That conversion factor is 60 min/hr. Thus,

Equation:

average speed =
$$0.500 \frac{\text{km}}{\text{min}} \times \frac{60 \text{ min}}{1 \text{ h}} = 30.0 \frac{\text{km}}{\text{h}}$$
.

Discussion for (a)

To check your answer, consider the following:

(1) Be sure that you have properly cancelled the units in the unit conversion. If you have written the unit conversion factor upside down, the units will not cancel properly in the equation. If you accidentally get the ratio upside down, then the units will not cancel; rather, they will give you the wrong units as follows:

Equation:

$$\frac{\mathrm{km}}{\mathrm{min}} \times \frac{1 \; \mathrm{hr}}{60 \; \mathrm{min}} = \frac{1}{60} \frac{\mathrm{km} \cdot \mathrm{hr}}{\mathrm{min}^2},$$

which are obviously not the desired units of km/h.

- (2) Check that the units of the final answer are the desired units. The problem asked us to solve for average speed in units of km/h and we have indeed obtained these units.
- (3) Check the significant figures. Because each of the values given in the problem has three significant figures, the answer should also have three significant figures. The answer 30.0 km/hr does indeed have three significant figures, so this is appropriate. Note that the significant figures in the conversion factor are not relevant because an hour is *defined* to be 60 minutes, so the precision of the conversion factor is perfect.
- (4) Next, check whether the answer is reasonable. Let us consider some information from the problem—if you travel 10 km in a third of an hour (20 min), you would travel three times that far in an hour. The answer does seem reasonable.

Solution for (b)

There are several ways to convert the average speed into meters per second.

- (1) Start with the answer to (a) and convert km/h to m/s. Two conversion factors are needed—one to convert hours to seconds, and another to convert kilometers to meters.
- (2) Multiplying by these yields

Equation:

$$\label{eq:average speed} \text{Average speed} = 30.0 \frac{\text{km}}{\text{h}} \times \frac{1 \text{ h}}{3,\!600 \text{ s}} \times \frac{1,\!000 \text{ m}}{1 \text{ km}},$$

Equation:

Average speed =
$$8.33 \frac{\text{m}}{\text{s}}$$
.

Discussion for (b)

If we had started with 0.500 km/min, we would have needed different conversion factors, but the answer would have been the same: 8.33 m/s.

You may have noted that the answers in the worked example just covered were given to three digits. Why? When do you need to be concerned about the number of digits in something you calculate? Why not write down all the digits your calculator produces? The module <u>Accuracy, Precision, and Significant Figures</u> will help you answer these questions.

Note:

Nonstandard Units

While there are numerous types of units that we are all familiar with, there are others that are much more obscure. For example, a **firkin** is a unit of volume that was once used to measure beer. One firkin equals about 34 liters. To learn more about nonstandard units, use a dictionary or encyclopedia to research different "weights and measures." Take note of any unusual units, such as a barleycorn, that are not listed in the text. Think about how the unit is defined and state its relationship to SI units.

Exercise:

Check Your Understanding

Problem:

Some hummingbirds beat their wings more than 50 times per second. A scientist is measuring the time it takes for a hummingbird to beat its wings once. Which fundamental unit should the scientist use to describe the measurement? Which factor of 10 is the scientist likely to use to describe the motion precisely? Identify the metric prefix that corresponds to this factor of 10.

Solution:

The scientist will measure the time between each movement using the fundamental unit of seconds. Because the wings beat so fast, the scientist will probably need to measure in milliseconds, or 10^{-3} seconds. (50 beats per second corresponds to 20 milliseconds per beat.)

Exercise:

Check Your Understanding

Problem:

One cubic centimeter is equal to one milliliter. What does this tell you about the different units in the SI metric system?

Solution:

The fundamental unit of length (meter) is probably used to create the derived unit of volume (liter). The measure of a milliliter is dependent on the measure of a centimeter.

Summary

- Physical quantities are a characteristic or property of an object that can be measured or calculated from other measurements.
- Units are standards for expressing and comparing the measurement of physical quantities. All units can be expressed as combinations of four fundamental units.
- The four fundamental units we will use in this text are the meter (for length), the kilogram (for mass), the second (for time), and the ampere (for electric current). These units are part of the metric system, which uses powers of 10 to relate quantities over the vast ranges encountered in nature.
- The four fundamental units are abbreviated as follows: meter, m; kilogram, kg; second, s; and ampere, A. The metric system also uses a standard set of prefixes to denote each order of magnitude greater than or lesser than the fundamental unit itself.
- Unit conversions involve changing a value expressed in one type of unit to another type of unit. This is done by using conversion factors, which are ratios relating equal quantities of different units.

Conceptual Questions

Exercise:

Problem: Identify some advantages of metric units.

Problems & Exercises

Exercise:

Problem:

The speed limit on some interstate highways is roughly 100 km/h. (a) What is this in meters per second? (b) How many miles per hour is this?

Solution:

a. 27.8 m/s b. 62.1 mph

Exercise:

Problem:

A car is traveling at a speed of 33 m/s. (a) What is its speed in kilometers per hour? (b) Is it exceeding the 90 km/h speed limit?

Exercise:

Problem:

Show that $1.0~\rm m/s=3.6~\rm km/h$. Hint: Show the explicit steps involved in converting $1.0~\rm m/s=3.6~\rm km/h$.

Solution:

$$\begin{split} &\frac{1.0\,\mathrm{m}}{\mathrm{s}} = \frac{1.0\,\mathrm{m}}{\mathrm{s}} \times \frac{3600\,\mathrm{s}}{1\,\mathrm{hr}} \times \frac{1\,\mathrm{km}}{1000\,\mathrm{m}} \\ &= 3.6\,\mathrm{km/h}. \end{split}$$

Exercise:

Problem:

American football is played on a 100-yd-long field, excluding the end zones. How long is the field in meters? (Assume that 1 meter equals 3.281 feet.)

Exercise:

Problem:

Soccer fields vary in size. A large soccer field is 115 m long and 85 m wide. What are its dimensions in feet and inches? (Assume that 1 meter equals 3.281 feet.)

Solution:

length: 377 ft; 4.53×10^3 in. width: 280 ft; 3.3×10^3 in.

Exercise:

Problem:

What is the height in meters of a person who is 6 ft 1.0 in. tall? (Assume that 1 meter equals 39.37 in.)

Exercise:

Problem:

Mount Everest, at 29,028 feet, is the tallest mountain on the Earth. What is its height in kilometers? (Assume that 1 kilometer equals 3,281 feet.)

Solution:

8.847 km

Exercise:

Problem: The speed of sound is measured to be 342 m/s on a certain day. What is this in km/h?

Exercise:

Problem:

Tectonic plates are large segments of the Earth's crust that move slowly. Suppose that one such plate has an average speed of 4.0 cm/year. (a) What distance does it move in 1 s at this speed? (b) What is its speed in kilometers per million years?

Solution:

- (a) 1.3×10^{-9} m
- (b) 40 km/My

Exercise:

Problem:

(a) Refer to [link] to determine the average distance between the Earth and the Sun. Then calculate the average speed of the Earth in its orbit in kilometers per second. (b) What is this in meters per second?

Glossary

physical quantity

a characteristic or property of an object that can be measured or calculated from other measurements

units

a standard used for expressing and comparing measurements

SI units

the international system of units that scientists in most countries have agreed to use; includes units such as meters, liters, and grams

English units

system of measurement used in the United States; includes units of measurement such as feet, gallons, and pounds

fundamental units

units that can only be expressed relative to the procedure used to measure them

```
derived units
```

units that can be calculated using algebraic combinations of the fundamental units

second

the SI unit for time, abbreviated (s)

meter

the SI unit for length, abbreviated (m)

kilogram

the SI unit for mass, abbreviated (kg)

metric system

a system in which values can be calculated in factors of 10

order of magnitude

refers to the size of a quantity as it relates to a power of 10

conversion factor

a ratio expressing how many of one unit are equal to another unit

Accuracy, Precision, and Significant Figures

- Determine the appropriate number of significant figures in both addition and subtraction, as well as multiplication and division calculations.
- Calculate the percent uncertainty of a measurement.

A double-pan mechanical balance is used to compare different masses. Usually an object with unknown mass is placed in one pan and objects of known mass are placed in the other pan. When the bar that connects the two pans is horizontal, then the masses in both pans are equal. The "known masses" are typically metal cylinders of standard mass such as 1 gram, 10 grams, and 100 grams.

(credit: Serge Melki)

Many mechanical balances, such as double-pan balances, have been replaced by digital scales, which can typically measure the mass of an object more precisely. Whereas a mechanical balance may only read the mass of an object to the nearest tenth of a gram, many digital scales can measure the mass of an object up to the nearest thousandth of a gram. (credit: Karel Jakubec)

Accuracy and Precision of a Measurement

Science is based on observation and experiment—that is, on measurements. **Accuracy** is how close a measurement is to the correct value for that measurement. For example, let us say that you are measuring the length of standard computer paper. The packaging in which you purchased the paper states that it is 11.0 inches long. You measure the length of the paper three times and obtain the following measurements: 11.1 in., 11.2 in., and 10.9 in.

These measurements are quite accurate because they are very close to the correct value of 11.0 inches. In contrast, if you had obtained a measurement of 12 inches, your measurement would not be very accurate.

The **precision** of a measurement system is refers to how close the agreement is between repeated measurements (which are repeated under the same conditions). Consider the example of the paper measurements. The precision of the measurements refers to the spread of the measured values. One way to analyze the precision of the measurements would be to determine the range, or difference, between the lowest and the highest measured values. In that case, the lowest value was 10.9 in. and the highest value was 11.2 in. Thus, the measured values deviated from each other by at most 0.3 in. These measurements were relatively precise because they did not vary too much in value. However, if the measured values had been 10.9, 11.1, and 11.9, then the measurements would not be very precise because there would be significant variation from one measurement to another.

The measurements in the paper example are both accurate and precise, but in some cases, measurements are accurate but not precise, or they are precise but not accurate. Let us consider an example of a GPS system that is attempting to locate the position of a restaurant in a city. Think of the restaurant location as existing at the center of a bull's-eye target, and think of each GPS attempt to locate the restaurant as a black dot. In [link], you can see that the GPS measurements are spread out far apart from each other, but they are all relatively close to the actual location of the restaurant at the center of the target. This indicates a low precision, high accuracy measuring system. However, in [link], the GPS measurements are concentrated quite closely to one another, but they are far away from the target location. This indicates a high precision, low accuracy measuring system.

A GPS system attempts to locate a restaurant at the center of the bull's-eye. The black dots represent each attempt to pinpoint the location of the restaurant. The dots are spread out quite far apart from one another, indicating low precision, but they are each rather close to the actual location of the restaurant, indicating high accuracy. (credit: Dark Evil)

In this figure, the dots are concentrated rather closely to one another, indicating high precision, but they are rather far away from the actual location of the restaurant, indicating low accuracy. (credit: Dark Evil)

Accuracy, Precision, and Uncertainty

The degree of accuracy and precision of a measuring system are related to the **uncertainty** in the measurements. Uncertainty is a quantitative measure of how much your measured values deviate from a standard or expected value. If your measurements are not very accurate or precise, then the uncertainty of your values will be very high. In more general terms, uncertainty can be thought of as a disclaimer for your measured values. For example, if someone asked you to provide the mileage on your car, you might say that it is 45,000 miles, plus or minus 500 miles. The plus or minus amount is the uncertainty in your value. That is, you are indicating that the actual mileage of your car might be as low as 44,500 miles or as high as 45,500 miles, or anywhere in between. All measurements contain some amount of uncertainty. In our example of measuring the length of the paper, we might say that the length of the paper is 11 in., plus or minus 0.2 in. The uncertainty in a measurement, A, is often denoted as $A \pm \delta A$. In our paper example, the length of the paper could be expressed as $A \pm \delta A$. In our paper example, the length of the paper could be expressed as $A \pm \delta A$.

The factors contributing to uncertainty in a measurement include:

- 1. Limitations of the measuring device,
- 2. The skill of the person making the measurement,
- 3. Irregularities in the object being measured,
- 4. Any other factors that affect the outcome (highly dependent on the situation).

In our example, such factors contributing to the uncertainty could be the following: the smallest division on the ruler is 0.1 in., the person using the ruler has bad eyesight, or one side of the paper is slightly longer than the other. At any rate, the uncertainty in a measurement must be based on a careful consideration of all the factors that might contribute and their possible effects.

Note:

Making Connections: Real-World Connections – Fevers or Chills?

Uncertainty is a critical piece of information, both in physics and in many other real-world applications. Imagine you are caring for a sick child. You suspect the child has a fever, so you check his or her temperature with a thermometer. What if the uncertainty of the thermometer were 3.0°C? If the child's temperature reading was 37.0°C (which is normal body temperature), the "true" temperature could be anywhere from a

hypothermic 34.0°C to a dangerously high 40.0°C. A thermometer with an uncertainty of 3.0°C would be useless.

Percent Uncertainty

One method of expressing uncertainty is as a percent of the measured value. If a measurement A is expressed with uncertainty, δA , the **percent uncertainty** (%unc) is defined to be

Equation:

$$\%~{
m unc}=rac{\delta A}{A} imes 100\%.$$

Example:

Calculating Percent Uncertainty: A Bag of Apples

A grocery store sells 5-lb bags of apples. You purchase four bags over the course of a month and weigh the apples each time. You obtain the following measurements:

Week 1 weight: 4.8 lb Week 2 weight: 5.3 lb Week 3 weight: 4.9 lb Week 4 weight: 5.4 lb

You determine that the weight of the 5-lb bag has an uncertainty of ± 0.4 lb. What is the percent uncertainty of the bag's weight?

Strategy

First, observe that the expected value of the bag's weight, A, is 5 lb. The uncertainty in this value, δA , is 0.4 lb. We can use the following equation to determine the percent uncertainty of the weight:

Equation:

$$\%~{
m unc}=rac{\delta A}{A} imes 100\%.$$

Solution

Plug the known values into the equation:

Equation:

$$\%~{
m unc} = rac{0.4~{
m lb}}{5~{
m lb}} imes 100\% = 8\%.$$

Discussion

We can conclude that the weight of the apple bag is $5 \text{ lb} \pm 8\%$. Consider how this percent uncertainty would change if the bag of apples were half as heavy, but the uncertainty in the weight remained the same. Hint for future calculations: when calculating percent uncertainty, always remember that you must multiply the fraction by 100%. If you do not do this, you will have a decimal quantity, not a percent value.

Uncertainties in Calculations

There is an uncertainty in anything calculated from measured quantities. For example, the area of a floor calculated from measurements of its length and width has an uncertainty because the length and width have uncertainties. How big is the uncertainty in something you calculate by multiplication or division? If the measurements going into the calculation have small uncertainties (a few percent or less), then the **method of adding percents** can be used for multiplication or division. This method says that the percent uncertainty in a quantity calculated by multiplication or division is the sum of the percent uncertainties in the items used to make the calculation. For example, if a floor has a length of 4.00 m and a width of 3.00 m, with uncertainties of 2% and 1%, respectively, then the area of the floor is 12.0 m² and has an uncertainty of 3%. (Expressed as an area this is 0.36 m², which we round to 0.4 m² since the area of the floor is given to a tenth of a square meter.)

Exercise:

Check Your Understanding

Problem:

A high school track coach has just purchased a new stopwatch. The stopwatch manual states that the stopwatch has an uncertainty of ± 0.05 s. Runners on the track coach's team regularly clock 100-m sprints of 11.49 s to 15.01 s. At the school's last track meet, the first-place sprinter came in at 12.04 s and the second-place sprinter came in at 12.07 s. Will the coach's new stopwatch be helpful in timing the sprint team? Why or why not?

Solution:

No, the uncertainty in the stopwatch is too great to effectively differentiate between the sprint times.

Precision of Measuring Tools and Significant Figures

An important factor in the accuracy and precision of measurements involves the precision of the measuring tool. In general, a precise measuring tool is one that can measure values in very small increments. For example, a standard ruler can measure length to the nearest millimeter, while a caliper can measure length to the nearest 0.01 millimeter. The caliper is a more precise measuring tool because it can measure extremely small differences in length. The more precise the measuring tool, the more precise and accurate the measurements can be.

When we express measured values, we can only list as many digits as we initially measured with our measuring tool. For example, if you use a standard ruler to measure the length of a stick, you may measure it to be 36.7 cm. You could not express this value as 36.71 cm because your measuring tool was not precise enough to measure a hundredth of a centimeter. It should be noted that the last digit in a measured value has been estimated in some way by the person performing the measurement. For example, the person measuring the length of a stick with a ruler notices that the stick length seems to be somewhere in between 36.6 cm and 36.7 cm, and he or she must estimate the value of the last digit. Using the

method of **significant figures**, the rule is that *the last digit written down in a measurement is the first digit with some uncertainty*. In order to determine the number of significant digits in a value, start with the first measured value at the left and count the number of digits through the last digit written on the right. For example, the measured value 36.7 cm has three digits, or significant figures. Significant figures indicate the precision of a measuring tool that was used to measure a value.

Zeros

Special consideration is given to zeros when counting significant figures. The zeros in 0.053 are not significant, because they are only placekeepers that locate the decimal point. There are two significant figures in 0.053. The zeros in 10.053 are not placekeepers but are significant—this number has five significant figures. The zeros in 1300 may or may not be significant depending on the style of writing numbers. They could mean the number is known to the last digit, or they could be placekeepers. So 1300 could have two, three, or four significant figures. (To avoid this ambiguity, write 1300 in scientific notation.) *Zeros are significant except when they serve only as placekeepers*.

Exercise:

Check Your Understanding

Problem:

Determine the number of significant figures in the following measurements:

- a. 0.0009
- b. 15,450.0
- c. 6×10^3
- d. 87.990
- e. 30.42

Solution:

- (a) 1; the zeros in this number are placekeepers that indicate the decimal point
- (b) 6; here, the zeros indicate that a measurement was made to the 0.1 decimal point, so the zeros are significant
- (c) 1; the value 10^3 signifies the decimal place, not the number of measured values
- (d) 5; the final zero indicates that a measurement was made to the 0.001 decimal point, so it is significant
- (e) 4; any zeros located in between significant figures in a number are also significant

Significant Figures in Calculations

When combining measurements with different degrees of accuracy and precision, the number of significant digits in the final answer can be no greater than the number of significant digits in the least precise measured value. There are two different rules, one for multiplication and division and the other for addition and subtraction, as discussed below.

1. For multiplication and division: The result should have the same number of significant figures as the quantity having the least significant figures entering into the calculation. For example, the area of a circle can be calculated from its radius using $A=\pi r^2$. Let us see how many significant figures the area has if the radius has only two—say, $r=1.2~\mathrm{m}$. Then,

Equation:

$$A=\pi r^2=(3.1415927...) imes(1.2~ ext{m})^2=4.5238934~ ext{m}^2$$

is what you would get using a calculator that has an eight-digit output. But because the radius has only two significant figures, it limits the calculated

quantity to two significant figures or

Equation:

$$A = 4.5 \text{ m}^2$$

even though π is good to at least eight digits.

2. For addition and subtraction: *The answer can contain no more decimal places than the least precise measurement.* Suppose that you buy 7.56-kg of potatoes in a grocery store as measured with a scale with precision 0.01 kg. Then you drop off 6.052-kg of potatoes at your laboratory as measured by a scale with precision 0.001 kg. Finally, you go home and add 13.7 kg of potatoes as measured by a bathroom scale with precision 0.1 kg. How many kilograms of potatoes do you now have, and how many significant figures are appropriate in the answer? The mass is found by simple addition and subtraction:

Equation:

$$7.56~{
m kg} \ -~6.052~{
m kg} \ rac{+13.7~{
m kg}}{15.208~{
m kg}} = 15.2~{
m kg}.$$

Next, we identify the least precise measurement: 13.7 kg. This measurement is expressed to the 0.1 decimal place, so our final answer must also be expressed to the 0.1 decimal place. Thus, the answer is rounded to the tenths place, giving us 15.2 kg.

Significant Figures in this Text

In this text, most numbers are assumed to have three significant figures. Furthermore, consistent numbers of significant figures are used in all worked examples. You will note that an answer given to three digits is based on input good to at least three digits, for example. If the input has fewer significant figures, the answer will also have fewer significant

figures. Care is also taken that the number of significant figures is reasonable for the situation posed. In some topics, particularly in optics, more accurate numbers are needed and more than three significant figures will be used. Finally, if a number is *exact*, such as the two in the formula for the circumference of a circle, $c=2\pi r$, it does not affect the number of significant figures in a calculation.

Exercise:

Check Your Understanding

Problem:

Perform the following calculations and express your answer using the correct number of significant digits.

- (a) A woman has two bags weighing 13.5 pounds and one bag with a weight of 10.2 pounds. What is the total weight of the bags?
- (b) The force F on an object is equal to its mass m multiplied by its acceleration a. If a wagon with mass 55 kg accelerates at a rate of $0.0255 \,\mathrm{m/s}^2$, what is the force on the wagon? (The unit of force is called the newton, and it is expressed with the symbol N.)

Solution:

- (a) 37.2 pounds; Because the number of bags is an exact value, it is not considered in the significant figures.
- (b) 1.4 N; Because the value 55 kg has only two significant figures, the final value must also contain two significant figures.

Note:

PhET Explorations: Estimation

Explore size estimation in one, two, and three dimensions! Multiple levels of difficulty allow for progressive skill improvement. https://phet.colorado.edu/sims/estimation/estimation en.html

Summary

- Accuracy of a measured value refers to how close a measurement is to the correct value. The uncertainty in a measurement is an estimate of the amount by which the measurement result may differ from this value.
- Precision of measured values refers to how close the agreement is between repeated measurements.
- The precision of a *measuring tool* is related to the size of its measurement increments. The smaller the measurement increment, the more precise the tool.
- Significant figures express the precision of a measuring tool.
- When multiplying or dividing measured values, the final answer can contain only as many significant figures as the least precise value.
- When adding or subtracting measured values, the final answer cannot contain more decimal places than the least precise value.

Conceptual Questions

Exercise:

Problem:

What is the relationship between the accuracy and uncertainty of a measurement?

Exercise:

Problem:

Prescriptions for vision correction are given in units called *diopters* (D). Determine the meaning of that unit. Obtain information (perhaps by calling an optometrist or performing an internet search) on the minimum uncertainty with which corrections in diopters are determined and the accuracy with which corrective lenses can be produced. Discuss the sources of uncertainties in both the prescription and accuracy in the manufacture of lenses.

Problems & Exercises

Express your answers to problems in this section to the correct number of significant figures and proper units.

Exercise:

Problem:

Suppose that your bathroom scale reads your mass as 65 kg with a 3% uncertainty. What is the uncertainty in your mass (in kilograms)?

Solution:

2 kg

Exercise:

Problem:

A good-quality measuring tape can be off by 0.50 cm over a distance of 20 m. What is its percent uncertainty?

Exercise:

Problem:

(a) A car speedometer has a 5.0% uncertainty. What is the range of possible speeds when it reads $90~\rm km/h?$ (b) Convert this range to miles per hour. $(1~\rm km=0.6214~mi)$

Solution:

```
a. 85.5 to 94.5 km/hb. 53.1 to 58.7 mi/h
```

Exercise:

Problem:

An infant's pulse rate is measured to be 130 ± 5 beats/min. What is the percent uncertainty in this measurement?

Exercise:

Problem:

(a) Suppose that a person has an average heart rate of 72.0 beats/min. How many beats does he or she have in 2.0 y? (b) In 2.00 y? (c) In 2.000 y?

Solution:

- (a) 7.6×10^7 beats
- (b) 7.57×10^7 beats
- (c) 7.57×10^7 beats

Exercise:

Problem:

A can contains 375 mL of soda. How much is left after 308 mL is removed?

Exercise:

Problem:

State how many significant figures are proper in the results of the following calculations: (a) (106.7)(98.2)/(46.210)(1.01) (b) $(18.7)^2$ (c) $(1.60 \times 10^{-19})(3712)$.

Solution:

- a. 3
- b. 3
- c. 3

Exercise:

Problem:

(a) How many significant figures are in the numbers 99 and 100? (b) If the uncertainty in each number is 1, what is the percent uncertainty in each? (c) Which is a more meaningful way to express the accuracy of these two numbers, significant figures or percent uncertainties?

Exercise:

Problem:

(a) If your speedometer has an uncertainty of 2.0 km/h at a speed of 90 km/h, what is the percent uncertainty? (b) If it has the same percent uncertainty when it reads 60 km/h, what is the range of speeds you could be going?

Solution:

- a) 2.2%
- (b) 59 to 61 km/h

Exercise:

Problem:

(a) A person's blood pressure is measured to be 120 ± 2 mm Hg. What is its percent uncertainty? (b) Assuming the same percent uncertainty, what is the uncertainty in a blood pressure measurement of 80 mm Hg?

Exercise:

Problem:

A person measures his or her heart rate by counting the number of beats in 30 s. If 40 ± 1 beats are counted in $30.0 \pm 0.5 \text{ s}$, what is the heart rate and its uncertainty in beats per minute?

Solution:

 $80 \pm 3 \text{ beats/min}$

Exercise:

Problem: What is the area of a circle 3.102 cm in diameter?

Exercise:

Problem:

If a marathon runner averages 9.5 mi/h, how long does it take him or her to run a 26.22-mi marathon?

Solution:

2.8 h

Exercise:

Problem:

A marathon runner completes a 42.188-km course in 2 h, 30 min, and 12 s. There is an uncertainty of 25 m in the distance traveled and an uncertainty of 1 s in the elapsed time. (a) Calculate the percent uncertainty in the distance. (b) Calculate the uncertainty in the elapsed time. (c) What is the average speed in meters per second? (d) What is the uncertainty in the average speed?

Exercise:

Problem:

The sides of a small rectangular box are measured to be 1.80 ± 0.01 cm, 2.05 ± 0.02 cm, and 3.1 ± 0.1 cm long. Calculate its volume and uncertainty in cubic centimeters.

Solution:

 $11\pm1~\mathrm{cm}^3$

Exercise:

Problem:

When non-metric units were used in the United Kingdom, a unit of mass called the *pound-mass* (lbm) was employed, where 1 lbm = 0.4539 kg. (a) If there is an uncertainty of 0.0001 kg in the pound-mass unit, what is its percent uncertainty? (b) Based on that percent uncertainty, what mass in pound-mass has an uncertainty of 1 kg when converted to kilograms?

Exercise:

Problem:

The length and width of a rectangular room are measured to be $3.955 \pm 0.005~\mathrm{m}$ and $3.050 \pm 0.005~\mathrm{m}$. Calculate the area of the room and its uncertainty in square meters.

Solution:

 $12.06 \pm 0.04 \,\mathrm{m}^2$

Exercise:

Problem:

A car engine moves a piston with a circular cross section of $7.500 \pm 0.002~\mathrm{cm}$ diameter a distance of $3.250 \pm 0.001~\mathrm{cm}$ to compress the gas in the cylinder. (a) By what amount is the gas decreased in volume in cubic centimeters? (b) Find the uncertainty in this volume.

Glossary

accuracy

the degree to which a measured value agrees with correct value for that measurement

method of adding percents

the percent uncertainty in a quantity calculated by multiplication or division is the sum of the percent uncertainties in the items used to make the calculation

percent uncertainty

the ratio of the uncertainty of a measurement to the measured value, expressed as a percentage

precision

the degree to which repeated measurements agree with each other

significant figures

express the precision of a measuring tool used to measure a value

uncertainty

a quantitative measure of how much your measured values deviate from a standard or expected value

Introduction to One-Dimensional Kinematics class="introduction"

The motion of an American kestrel through the air can be described by the bird's displacement , speed, velocity, and acceleration. When it flies in a straight line without any change in direction, its motion is said to be one dimensional. (credit: Vince Maidens, Wikimedia Commons)

Objects are in motion everywhere we look. Everything from a tennis game to a space-probe flyby of the planet Neptune involves motion. When you are resting, your heart moves blood through your veins. And even in inanimate objects, there is continuous motion in the vibrations of atoms and molecules. Questions about motion are interesting in and of themselves: How long will it take for a space probe to get to Mars? Where will a football land if it is thrown at a certain angle? But an understanding of motion is also key to understanding other concepts in physics. An understanding of acceleration, for example, is crucial to the study of force.

Our formal study of physics begins with **kinematics** which is defined as the *study of motion without considering its causes*. The word "kinematics" comes from a Greek term meaning motion and is related to other English words such as "cinema" (movies) and "kinesiology" (the study of human motion). In one-dimensional kinematics and <u>Two-Dimensional Kinematics</u> we will study only the *motion* of a football, for example, without worrying about what forces cause or change its motion. Such considerations come in other chapters. In this chapter, we examine the simplest type of motion—namely, motion along a straight line, or one-dimensional motion. In <u>Two-Dimensional Kinematics</u>, we apply concepts developed here to study motion along curved paths (two- and three-dimensional motion); for example, that of a car rounding a curve.

Displacement

- Define position, displacement, distance, and distance traveled.
- Explain the relationship between position and displacement.
- Distinguish between displacement and distance traveled.
- Calculate displacement and distance given initial position, final position, and the path between the two.

These cyclists in Vietnam can be described by their position relative to buildings and a canal. Their motion can be described by their change in position, or displacement, in the frame of reference. (credit: Suzan Black, Fotopedia)

Position

In order to describe the motion of an object, you must first be able to describe its **position**—where it is at any particular time. More precisely, you need to specify its position relative to a convenient reference frame. Earth is often used as a reference frame, and we often describe the position of an object as it relates to stationary objects in that reference frame. For

example, a rocket launch would be described in terms of the position of the rocket with respect to the Earth as a whole, while a professor's position could be described in terms of where she is in relation to the nearby white board. (See [link].) In other cases, we use reference frames that are not stationary but are in motion relative to the Earth. To describe the position of a person in an airplane, for example, we use the airplane, not the Earth, as the reference frame. (See [link].)

Displacement

If an object moves relative to a reference frame (for example, if a professor moves to the right relative to a white board or a passenger moves toward the rear of an airplane), then the object's position changes. This change in position is known as **displacement**. The word "displacement" implies that an object has moved, or has been displaced.

Note:

Displacement

Displacement is the *change in position* of an object:

Equation:

$$\Delta x = x_{
m f} - x_0,$$

where Δx is displacement, $x_{\rm f}$ is the final position, and x_0 is the initial position.

In this text the upper case Greek letter Δ (delta) always means "change in" whatever quantity follows it; thus, Δx means *change in position*. Always solve for displacement by subtracting initial position x_0 from final position x_0 .

Note that the SI unit for displacement is the meter (m) (see <u>Physical</u> <u>Quantities and Units</u>), but sometimes kilometers, miles, feet, and other units of length are used. Keep in mind that when units other than the meter are

used in a problem, you may need to convert them into meters to complete the calculation.

A professor paces left and right while lecturing. Her position relative to Earth is given by x. The +2.0 m displacement of the professor relative to Earth is represented by an arrow pointing to the right.

A passenger moves from his seat to the back of the plane. His location relative to the airplane is given by x. The -4.0-m displacement of the passenger relative to the plane is represented by an arrow toward the rear of the plane. Notice that the arrow representing his displacement is twice as long as the arrow representing the displacement of the professor (he moves twice as far) in [link].

Note that displacement has a direction as well as a magnitude. The professor's displacement is 2.0 m to the right, and the airline passenger's displacement is 4.0 m toward the rear. In one-dimensional motion, direction can be specified with a plus or minus sign. When you begin a problem, you should select which direction is positive (usually that will be to the right or up, but you are free to select positive as being any direction). The professor's initial position is $x_0 = 1.5$ m and her final position is $x_1 = 3.5$ m. Thus her displacement is

Equation:

$$\Delta x = x_{\rm f} - x_0 = 3.5 \text{ m} - 1.5 \text{ m} = +2.0 \text{ m}.$$

In this coordinate system, motion to the right is positive, whereas motion to the left is negative. Similarly, the airplane passenger's initial position is $x_0 = 6.0$ m and his final position is $x_f = 2.0$ m, so his displacement is **Equation:**

$$\Delta x = x_{\rm f} - x_0 = 2.0 \text{ m} - 6.0 \text{ m} = -4.0 \text{ m}.$$

His displacement is negative because his motion is toward the rear of the plane, or in the negative x direction in our coordinate system.

Distance

Although displacement is described in terms of direction, distance is not. **Distance** is defined to be *the magnitude or size of displacement between two positions*. Note that the distance between two positions is not the same as the distance traveled between them. **Distance traveled** is *the total length of the path traveled between two positions*. Distance has no direction and, thus, no sign. For example, the distance the professor walks is 2.0 m. The distance the airplane passenger walks is 4.0 m.

Note:

Misconception Alert: Distance Traveled vs. Magnitude of Displacement It is important to note that the *distance traveled*, however, can be greater than the magnitude of the displacement (by magnitude, we mean just the size of the displacement without regard to its direction; that is, just a number with a unit). For example, the professor could pace back and forth many times, perhaps walking a distance of 150 m during a lecture, yet still end up only 2.0 m to the right of her starting point. In this case her displacement would be +2.0 m, the magnitude of her displacement would be 2.0 m, but the distance she traveled would be 150 m. In kinematics we nearly always deal with displacement and magnitude of displacement, and almost never with distance traveled. One way to think about this is to assume you marked the start of the motion and the end of the motion. The

displacement is simply the difference in the position of the two marks and is independent of the path taken in traveling between the two marks. The distance traveled, however, is the total length of the path taken between the two marks.

Exercise:

Check Your Understanding

Problem:

A cyclist rides 3 km west and then turns around and rides 2 km east. (a) What is her displacement? (b) What distance does she ride? (c) What is the magnitude of her displacement?

Solution:

- (a) The rider's displacement is $\Delta x = x_{\rm f} x_0 = -1$ km. (The displacement is negative because we take east to be positive and west to be negative.)
- (b) The distance traveled is 3 km + 2 km = 5 km.
- (c) The magnitude of the displacement is 1 km.

Section Summary

- Kinematics is the study of motion without considering its causes. In this chapter, it is limited to motion along a straight line, called one-dimensional motion.
- Displacement is the change in position of an object.

• In symbols, displacement Δx is defined to be **Equation:**

$$\Delta x = x_{\rm f} - x_{\rm 0}$$

where x_0 is the initial position and x_f is the final position. In this text, the Greek letter Δ (delta) always means "change in" whatever quantity follows it. The SI unit for displacement is the meter (m). Displacement has a direction as well as a magnitude.

- When you start a problem, assign which direction will be positive.
- Distance is the magnitude of displacement between two positions.
- Distance traveled is the total length of the path traveled between two positions.

Conceptual Questions

Exercise:

Problem:

Give an example in which there are clear distinctions among distance traveled, displacement, and magnitude of displacement. Specifically identify each quantity in your example.

Exercise:

Problem:

Under what circumstances does distance traveled equal magnitude of displacement? What is the only case in which magnitude of displacement and displacement are exactly the same?

Exercise:

Problem:

Bacteria move back and forth by using their flagella (structures that look like little tails). Speeds of up to $50~\mu m/s~\left(50\times10^{-6}~m/s\right)$ have been observed. The total distance traveled by a bacterium is large for its size, while its displacement is small. Why is this?

Problems & Exercises

Exercise:

Problem:

Find the following for path A in [link]: (a) The distance traveled. (b) The magnitude of the displacement from start to finish. (c) The displacement from start to finish.

Solution:

- (a) 7 m
- (b) 7 m
- (c) + 7 m

Exercise:

Problem:

Find the following for path B in [link]: (a) The distance traveled. (b) The magnitude of the displacement from start to finish. (c) The displacement from start to finish.

Find the following for path C in [link]: (a) The distance traveled. (b) The magnitude of the displacement from start to finish. (c) The displacement from start to finish.

Solution:

- (a) 13 m
- (b) 9 m
- (c) +9 m

Exercise:

Problem:

Find the following for path D in [link]: (a) The distance traveled. (b) The magnitude of the displacement from start to finish. (c) The displacement from start to finish.

Glossary

kinematics

the study of motion without considering its causes

position

the location of an object at a particular time

displacement

the change in position of an object

distance

the magnitude of displacement between two positions

distance traveled

the total length of the path traveled between two positions

Vectors, Scalars, and Coordinate Systems

- Define and distinguish between scalar and vector quantities.
- Assign a coordinate system for a scenario involving one-dimensional motion.

The motion of this Eclipse Concept jet can be described in terms of the distance it has traveled (a scalar quantity) or its displacement in a specific direction (a vector quantity). In order to specify the direction of motion, its displacement must be described based on a coordinate system. In this case, it may be convenient to choose motion toward the left as positive motion (it is the forward direction for the plane), although in many cases, the xcoordinate runs from left to right, with motion to the right as positive and motion to the left as negative. (credit: Armchair Aviator, Flickr)

What is the difference between distance and displacement? Whereas displacement is defined by both direction and magnitude, distance is defined only by magnitude. Displacement is an example of a vector quantity. Distance is an example of a scalar quantity. A **vector** is any quantity with both *magnitude and direction*. Other examples of vectors include a velocity of 90 km/h east and a force of 500 newtons straight down.

The direction of a vector in one-dimensional motion is given simply by a plus (+) or minus (-) sign. Vectors are represented graphically by arrows. An arrow used to represent a vector has a length proportional to the vector's magnitude (e.g., the larger the magnitude, the longer the length of the vector) and points in the same direction as the vector.

Some physical quantities, like distance, either have no direction or none is specified. A **scalar** is any quantity that has a magnitude, but no direction. For example, a 20° C temperature, the 250 kilocalories (250 Calories) of energy in a candy bar, a 90 km/h speed limit, a person's 1.8 m height, and a distance of 2.0 m are all scalars—quantities with no specified direction. Note, however, that a scalar can be negative, such as a -20° C temperature. In this case, the minus sign indicates a point on a scale rather than a direction. Scalars are never represented by arrows.

Coordinate Systems for One-Dimensional Motion

In order to describe the direction of a vector quantity, you must designate a coordinate system within the reference frame. For one-dimensional motion, this is a simple coordinate system consisting of a one-dimensional coordinate line. In general, when describing horizontal motion, motion to the right is usually considered positive, and motion to the left is considered negative. With vertical motion, motion up is usually positive and motion down is negative. In some cases, however, as with the jet in [link], it can be more convenient to switch the positive and negative directions. For example, if you are analyzing the motion of falling objects, it can be useful to define downwards as the positive direction. If people in a race are

running to the left, it is useful to define left as the positive direction. It does not matter as long as the system is clear and consistent. Once you assign a positive direction and start solving a problem, you cannot change it.

It is usually convenient to consider motion upward or to the right as positive (+) and motion downward or to the left as negative (-)

Exercise:

Check Your Understanding

Problem:

A person's speed can stay the same as he or she rounds a corner and changes direction. Given this information, is speed a scalar or a vector quantity? Explain.

Solution:

Speed is a scalar quantity. It does not change at all with direction changes; therefore, it has magnitude only. If it were a vector quantity, it would change as direction changes (even if its magnitude remained constant).

Section Summary

- A vector is any quantity that has magnitude and direction.
- A scalar is any quantity that has magnitude but no direction.
- Displacement and velocity are vectors, whereas distance and speed are scalars.
- In one-dimensional motion, direction is specified by a plus or minus sign to signify left or right, up or down, and the like.

Conceptual Questions

Exercise:

Problem:

A student writes, "A bird that is diving for prey has a speed of $-10 \ m/s$." What is wrong with the student's statement? What has the student actually described? Explain.

Exercise:

Problem: What is the speed of the bird in [link]?

Exercise:

Problem:

Acceleration is the change in velocity over time. Given this information, is acceleration a vector or a scalar quantity? Explain.

A weather forecast states that the temperature is predicted to be $-5^{\circ}\mathrm{C}$ the following day. Is this temperature a vector or a scalar quantity? Explain.

Glossary

scalar

a quantity that is described by magnitude, but not direction

vector

a quantity that is described by both magnitude and direction

Time, Velocity, and Speed

- Explain the relationships between instantaneous velocity, average velocity, instantaneous speed, average speed, displacement, and time.
- Calculate velocity and speed given initial position, initial time, final position, and final time.
- Derive a graph of velocity vs. time given a graph of position vs. time.
- Interpret a graph of velocity vs. time.

The motion of these racing snails can be described by their speeds and their velocities. (credit: tobitasflickr, Flickr)

There is more to motion than distance and displacement. Questions such as, "How long does a foot race take?" and "What was the runner's speed?" cannot be answered without an understanding of other concepts. In this section we add definitions of time, velocity, and speed to expand our description of motion.

Time

As discussed in <u>Physical Quantities and Units</u>, the most fundamental physical quantities are defined by how they are measured. This is the case with time. Every measurement of time involves measuring a change in

some physical quantity. It may be a number on a digital clock, a heartbeat, or the position of the Sun in the sky. In physics, the definition of time is simple—**time** is *change*, or the interval over which change occurs. It is impossible to know that time has passed unless something changes.

The amount of time or change is calibrated by comparison with a standard. The SI unit for time is the second, abbreviated s. We might, for example, observe that a certain pendulum makes one full swing every 0.75 s. We could then use the pendulum to measure time by counting its swings or, of course, by connecting the pendulum to a clock mechanism that registers time on a dial. This allows us to not only measure the amount of time, but also to determine a sequence of events.

How does time relate to motion? We are usually interested in elapsed time for a particular motion, such as how long it takes an airplane passenger to get from his seat to the back of the plane. To find elapsed time, we note the time at the beginning and end of the motion and subtract the two. For example, a lecture may start at 11:00 A.M. and end at 11:50 A.M., so that the elapsed time would be 50 min. **Elapsed time** Δt is the difference between the ending time and beginning time,

Equation:

$$\Delta t = t_{
m f} - t_0,$$

where Δt is the change in time or elapsed time, $t_{\rm f}$ is the time at the end of the motion, and t_0 is the time at the beginning of the motion. (As usual, the delta symbol, Δ , means the change in the quantity that follows it.)

Life is simpler if the beginning time t_0 is taken to be zero, as when we use a stopwatch. If we were using a stopwatch, it would simply read zero at the start of the lecture and 50 min at the end. If $t_0 = 0$, then $\Delta t = t_{\rm f} \equiv t$.

In this text, for simplicity's sake,

- motion starts at time equal to zero $(t_0 = 0)$
- ullet the symbol t is used for elapsed time unless otherwise specified $(\Delta t = t_{
 m f} \equiv t)$

Velocity

Your notion of velocity is probably the same as its scientific definition. You know that if you have a large displacement in a small amount of time you have a large velocity, and that velocity has units of distance divided by time, such as miles per hour or kilometers per hour.

Note:

Average Velocity

Average velocity is displacement (change in position) divided by the time of travel,

Equation:

$$ar{v} = rac{\Delta x}{\Delta t} = rac{x_{
m f} - x_0}{t_{
m f} - t_0},$$

where \overline{v} is the *average* (indicated by the bar over the v) velocity, Δx is the change in position (or displacement), and $x_{\rm f}$ and $x_{\rm 0}$ are the final and beginning positions at times $t_{\rm f}$ and $t_{\rm 0}$, respectively. If the starting time $t_{\rm 0}$ is taken to be zero, then the average velocity is simply

Equation:

$$\bar{v} = \frac{\Delta x}{t}$$
.

Notice that this definition indicates that *velocity is a vector because displacement is a vector*. It has both magnitude and direction. The SI unit for velocity is meters per second or m/s, but many other units, such as km/h, mi/h (also written as mph), and cm/s, are in common use. Suppose, for example, an airplane passenger took 5 seconds to move –4 m (the negative sign indicates that displacement is toward the back of the plane). His average velocity would be

Equation:

$$\bar{v} = \frac{\Delta x}{t} = \frac{-4 \text{ m}}{5 \text{ s}} = -0.8 \text{ m/s}.$$

The minus sign indicates the average velocity is also toward the rear of the plane.

The average velocity of an object does not tell us anything about what happens to it between the starting point and ending point, however. For example, we cannot tell from average velocity whether the airplane passenger stops momentarily or backs up before he goes to the back of the plane. To get more details, we must consider smaller segments of the trip over smaller time intervals.

A more detailed record of an airplane passenger heading toward the back of the plane, showing smaller segments of his trip.

The smaller the time intervals considered in a motion, the more detailed the information. When we carry this process to its logical conclusion, we are left with an infinitesimally small interval. Over such an interval, the average velocity becomes the *instantaneous velocity* or the *velocity at a specific instant*. A car's speedometer, for example, shows the magnitude (but not the

direction) of the instantaneous velocity of the car. (Police give tickets based on instantaneous velocity, but when calculating how long it will take to get from one place to another on a road trip, you need to use average velocity.) **Instantaneous velocity** v is the average velocity at a specific instant in time (or over an infinitesimally small time interval).

Mathematically, finding instantaneous velocity, v, at a precise instant t can involve taking a limit, a calculus operation beyond the scope of this text. However, under many circumstances, we can find precise values for instantaneous velocity without calculus.

Speed

In everyday language, most people use the terms "speed" and "velocity" interchangeably. In physics, however, they do not have the same meaning and they are distinct concepts. One major difference is that speed has no direction. Thus *speed is a scalar*. Just as we need to distinguish between instantaneous velocity and average velocity, we also need to distinguish between instantaneous speed and average speed.

Instantaneous speed is the magnitude of instantaneous velocity. For example, suppose the airplane passenger at one instant had an instantaneous velocity of −3.0 m/s (the minus meaning toward the rear of the plane). At that same time his instantaneous speed was 3.0 m/s. Or suppose that at one time during a shopping trip your instantaneous velocity is 40 km/h due north. Your instantaneous speed at that instant would be 40 km/h—the same magnitude but without a direction. Average speed, however, is very different from average velocity. **Average speed** is the distance traveled divided by elapsed time.

We have noted that distance traveled can be greater than displacement. So average speed can be greater than average velocity, which is displacement divided by time. For example, if you drive to a store and return home in half an hour, and your car's odometer shows the total distance traveled was 6 km, then your average speed was 12 km/h. Your average velocity, however, was zero, because your displacement for the round trip is zero.

(Displacement is change in position and, thus, is zero for a round trip.) Thus average speed is *not* simply the magnitude of average velocity.

During a 30-minute round trip to the store, the total distance traveled is 6 km. The average speed is 12 km/h. The displacement for the round trip is zero, since there was no net change in position. Thus the average velocity is zero.

Another way of visualizing the motion of an object is to use a graph. A plot of position or of velocity as a function of time can be very useful. For example, for this trip to the store, the position, velocity, and speed-vs.-time graphs are displayed in [link]. (Note that these graphs depict a very simplified **model** of the trip. We are assuming that speed is constant during the trip, which is unrealistic given that we'll probably stop at the store. But for simplicity's sake, we will model it with no stops or changes in speed. We are also assuming that the route between the store and the house is a perfectly straight line.)

Position vs. time, velocity vs. time, and speed vs. time on a trip. Note that the velocity for the return trip is negative.

Note:

Making Connections: Take-Home Investigation—Getting a Sense of Speed If you have spent much time driving, you probably have a good sense of speeds between about 10 and 70 miles per hour. But what are these in meters per second? What do we mean when we say that something is moving at 10 m/s? To get a better sense of what these values really mean, do some observations and calculations on your own:

- calculate typical car speeds in meters per second
- estimate jogging and walking speed by timing yourself; convert the measurements into both m/s and mi/h
- determine the speed of an ant, snail, or falling leaf

Exercise:

Check Your Understanding

Problem:

A commuter train travels from Baltimore to Washington, DC, and back in 1 hour and 45 minutes. The distance between the two stations is approximately 40 miles. What is (a) the average velocity of the train, and (b) the average speed of the train in m/s?

Solution:

- (a) The average velocity of the train is zero because $x_{\rm f}=x_0$; the train ends up at the same place it starts.
- (b) The average speed of the train is calculated below. Note that the train travels 40 miles one way and 40 miles back, for a total distance of 80 miles.

Equation:

$$\frac{\text{distance}}{\text{time}} = \frac{80 \text{ miles}}{105 \text{ minutes}}$$

Equation:

$$\frac{80 \text{ miles}}{105 \text{ minutes}} \times \frac{5280 \text{ feet}}{1 \text{ mile}} \times \frac{1 \text{ meter}}{3.28 \text{ feet}} \times \frac{1 \text{ minute}}{60 \text{ seconds}} = 20 \text{ m/s}$$

Section Summary

• Time is measured in terms of change, and its SI unit is the second (s). Elapsed time for an event is

Equation:

$$\Delta t = t_{\mathrm{f}} - t_{\mathrm{0}},$$

where t_f is the final time and t_0 is the initial time. The initial time is often taken to be zero, as if measured with a stopwatch; the elapsed time is then just t.

• Average velocity \overline{v} is defined as displacement divided by the travel time. In symbols, average velocity is **Equation:**

$$ar{v} = rac{\Delta x}{\Delta t} = rac{x_{
m f} - x_0}{t_{
m f} - t_0}.$$

- The SI unit for velocity is m/s.
- Velocity is a vector and thus has a direction.
- ullet Instantaneous velocity v is the velocity at a specific instant or the average velocity for an infinitesimal interval.
- Instantaneous speed is the magnitude of the instantaneous velocity.
- Instantaneous speed is a scalar quantity, as it has no direction specified.
- Average speed is the total distance traveled divided by the elapsed time. (Average speed is *not* the magnitude of the average velocity.) Speed is a scalar quantity; it has no direction associated with it.

Conceptual Questions

Exercise:

Problem:

Give an example (but not one from the text) of a device used to measure time and identify what change in that device indicates a change in time.

Exercise:

Problem:

There is a distinction between average speed and the magnitude of average velocity. Give an example that illustrates the difference between these two quantities.

Exercise:

Problem:

Does a car's odometer measure position or displacement? Does its speedometer measure speed or velocity?

Exercise:

Problem:

If you divide the total distance traveled on a car trip (as determined by the odometer) by the time for the trip, are you calculating the average speed or the magnitude of the average velocity? Under what circumstances are these two quantities the same?

Exercise:

Problem:

How are instantaneous velocity and instantaneous speed related to one another? How do they differ?

Problems & Exercises

(a) Calculate Earth's average speed relative to the Sun. (b) What is its average velocity over a period of one year?

Solution:

- (a) $3.0 \times 10^4 \, {\rm m/s}$
- (b) 0 m/s

Exercise:

Problem:

A helicopter blade spins at exactly 100 revolutions per minute. Its tip is 5.00 m from the center of rotation. (a) Calculate the average speed of the blade tip in the helicopter's frame of reference. (b) What is its average velocity over one revolution?

Exercise:

Problem:

The North American and European continents are moving apart at a rate of about 3 cm/y. At this rate how long will it take them to drift 500 km farther apart than they are at present?

Solution:

$$2 \times 10^7 \, \mathrm{years}$$

Land west of the San Andreas fault in southern California is moving at an average velocity of about 6 cm/y northwest relative to land east of the fault. Los Angeles is west of the fault and may thus someday be at the same latitude as San Francisco, which is east of the fault. How far in the future will this occur if the displacement to be made is 590 km northwest, assuming the motion remains constant?

Exercise:

Problem:

On May 26, 1934, a streamlined, stainless steel diesel train called the Zephyr set the world's nonstop long-distance speed record for trains. Its run from Denver to Chicago took 13 hours, 4 minutes, 58 seconds, and was witnessed by more than a million people along the route. The total distance traveled was 1633.8 km. What was its average speed in km/h and m/s?

Solution:

34.689 m/s = 124.88 km/h

Exercise:

Problem:

Tidal friction is slowing the rotation of the Earth. As a result, the orbit of the Moon is increasing in radius at a rate of approximately 4 cm/year. Assuming this to be a constant rate, how many years will pass before the radius of the Moon's orbit increases by 3.84×10^6 m (1%)?

A student drove to the university from her home and noted that the odometer reading of her car increased by 12.0 km. The trip took 18.0 min. (a) What was her average speed? (b) If the straight-line distance from her home to the university is 10.3 km in a direction 25.0° south of east, what was her average velocity? (c) If she returned home by the same path 7 h 30 min after she left, what were her average speed and velocity for the entire trip?

Solution:

- (a) 40.0 km/h
- (b) 34.3 km/h, 25° S of E.
- (c) average speed = 3.20 km/h, $\overline{v} = 0$.

Exercise:

Problem:

The speed of propagation of the action potential (an electrical signal) in a nerve cell depends (inversely) on the diameter of the axon (nerve fiber). If the nerve cell connecting the spinal cord to your feet is 1.1 m long, and the nerve impulse speed is 18 m/s, how long does it take for the nerve signal to travel this distance?

Conversations with astronauts on the lunar surface were characterized by a kind of echo in which the earthbound person's voice was so loud in the astronaut's space helmet that it was picked up by the astronaut's microphone and transmitted back to Earth. It is reasonable to assume that the echo time equals the time necessary for the radio wave to travel from the Earth to the Moon and back (that is, neglecting any time delays in the electronic equipment). Calculate the distance from Earth to the Moon given that the echo time was 2.56 s and that radio waves travel at the speed of light $(3.00 \times 10^8 \, \text{m/s})$.

Solution:

384,000 km

Exercise:

Problem:

A football quarterback runs 15.0 m straight down the playing field in 2.50 s. He is then hit and pushed 3.00 m straight backward in 1.75 s. He breaks the tackle and runs straight forward another 21.0 m in 5.20 s. Calculate his average velocity (a) for each of the three intervals and (b) for the entire motion.

Exercise:

Problem:

The planetary model of the atom pictures electrons orbiting the atomic nucleus much as planets orbit the Sun. In this model you can view hydrogen, the simplest atom, as having a single electron in a circular orbit 1.06×10^{-10} m in diameter. (a) If the average speed of the electron in this orbit is known to be 2.20×10^6 m/s, calculate the number of revolutions per second it makes about the nucleus. (b) What is the electron's average velocity?

Solution:

(a)
$$6.61 \times 10^{15}~\mathrm{rev/s}$$

(b) 0 m/s

Glossary

average speed

distance traveled divided by time during which motion occurs

average velocity

displacement divided by time over which displacement occurs

instantaneous velocity

velocity at a specific instant, or the average velocity over an infinitesimal time interval

instantaneous speed

magnitude of the instantaneous velocity

time

change, or the interval over which change occurs

model

simplified description that contains only those elements necessary to describe the physics of a physical situation

elapsed time

the difference between the ending time and beginning time

Acceleration

- Define and distinguish between instantaneous acceleration, average acceleration, and deceleration.
- Calculate acceleration given initial time, initial velocity, final time, and final velocity.

A plane decelerates, or slows down, as it comes in for landing in St. Maarten. Its acceleration is opposite in direction to its velocity. (credit: Steve Conry, Flickr)

In everyday conversation, to accelerate means to speed up. The accelerator in a car can in fact cause it to speed up. The greater the **acceleration**, the greater the change in velocity over a given time. The formal definition of acceleration is consistent with these notions, but more inclusive.

Note:

Average Acceleration
Average Acceleration is the rate at which velocity changes,
Equation:

$$ar{a}=rac{\Delta v}{\Delta t}=rac{v_{
m f}-v_0}{t_{
m f}-t_0},$$

where \bar{a} is average acceleration, v is velocity, and t is time. (The bar over the a means average acceleration.)

Because acceleration is velocity in m/s divided by time in s, the SI units for acceleration are m/s^2 , meters per second squared or meters per second per second, which literally means by how many meters per second the velocity changes every second.

Recall that velocity is a vector—it has both magnitude and direction. This means that a change in velocity can be a change in magnitude (or speed), but it can also be a change in *direction*. For example, if a car turns a corner at constant speed, it is accelerating because its direction is changing. The quicker you turn, the greater the acceleration. So there is an acceleration when velocity changes either in magnitude (an increase or decrease in speed) or in direction, or both.

Note:

Acceleration as a Vector

Acceleration is a vector in the same direction as the *change* in velocity, Δv . Since velocity is a vector, it can change either in magnitude or in direction. Acceleration is therefore a change in either speed or direction, or both.

Keep in mind that although acceleration is in the direction of the *change* in velocity, it is not always in the direction of *motion*. When an object slows down, its acceleration is opposite to the direction of its motion. This is known as **deceleration**.

A subway train in Sao Paulo, Brazil, decelerates as it comes into a station. It is accelerating in a direction opposite to its direction of motion. (credit: Yusuke Kawasaki, Flickr)

Note:

Misconception Alert: Deceleration vs. Negative Acceleration

Deceleration always refers to acceleration in the direction opposite to the direction of the velocity. Deceleration always reduces speed. Negative acceleration, however, is acceleration *in the negative direction in the chosen coordinate system*. Negative acceleration may or may not be deceleration, and deceleration may or may not be considered negative acceleration. For example, consider [link].

(a) This car is speeding up as it moves toward the right. It therefore has positive acceleration in our coordinate system.
(b) This car is slowing down as it moves toward the right.
Therefore, it has negative acceleration in our coordinate system, because its acceleration is toward the left. The car is also decelerating: the direction of its acceleration is opposite to its direction of motion.
(c) This car is moving

toward the left, but slowing down over time. Therefore, its acceleration is positive in our coordinate system because it is toward the right. However, the car is decelerating because its acceleration is opposite to its motion. (d) This car is speeding up as it moves toward the left. It has negative acceleration because it is accelerating toward the left. However, because its acceleration is in the same direction as its motion, it is speeding up (not decelerating).

Example:

Calculating Acceleration: A Racehorse Leaves the Gate

A racehorse coming out of the gate accelerates from rest to a velocity of 15.0 m/s due west in 1.80 s. What is its average acceleration?

(credit: Jon Sullivan, PD Photo.org)

Strategy

First we draw a sketch and assign a coordinate system to the problem. This is a simple problem, but it always helps to visualize it. Notice that we assign east as positive and west as negative. Thus, in this case, we have negative velocity.

We can solve this problem by identifying Δv and Δt from the given information and then calculating the average acceleration directly from the equation $\bar{a} = \frac{\Delta v}{\Delta t} = \frac{v_{\rm f} - v_0}{t_{\rm f} - t_0}$.

Solution

- 1. Identify the knowns. $v_0 = 0$, $v_{\rm f} = -15.0 \ {\rm m/s}$ (the negative sign indicates direction toward the west), $\Delta t = 1.80 \ {\rm s}$.
- 2. Find the change in velocity. Since the horse is going from zero to $-15.0~\mathrm{m/s}$, its change in velocity equals its final velocity: $\Delta v = v_\mathrm{f} = -15.0~\mathrm{m/s}$.
- 3. Plug in the known values (Δv and Δt) and solve for the unknown \overline{a} . **Equation:**

$$\bar{a} = \frac{\Delta v}{\Delta t} = \frac{-15.0 \text{ m/s}}{1.80 \text{ s}} = -8.33 \text{ m/s}^2.$$

Discussion

The negative sign for acceleration indicates that acceleration is toward the west. An acceleration of $8.33~\mathrm{m/s^2}$ due west means that the horse increases its velocity by $8.33~\mathrm{m/s}$ due west each second, that is, $8.33~\mathrm{meters}$ per second per second, which we write as $8.33~\mathrm{m/s^2}$. This is truly an average acceleration, because the ride is not smooth. We shall see later that an acceleration of this magnitude would require the rider to hang on with a force nearly equal to his weight.

Instantaneous Acceleration

Instantaneous acceleration a, or the acceleration at a specific instant in *time*, is obtained by the same process as discussed for instantaneous velocity in Time, Velocity, and Speed—that is, by considering an infinitesimally small interval of time. How do we find instantaneous acceleration using only algebra? The answer is that we choose an average acceleration that is representative of the motion. [link] shows graphs of instantaneous acceleration versus time for two very different motions. In [link](a), the acceleration varies slightly and the average over the entire interval is nearly the same as the instantaneous acceleration at any time. In this case, we should treat this motion as if it had a constant acceleration equal to the average (in this case about $1.8 \mathrm{\ m/s}^2$). In [link](b), the acceleration varies drastically over time. In such situations it is best to consider smaller time intervals and choose an average acceleration for each. For example, we could consider motion over the time intervals from 0 to 1.0 s and from 1.0 to 3.0 s as separate motions with accelerations of $+3.0 \text{ m/s}^2$ and -2.0 m/s^2 , respectively.

Graphs of instantaneous acceleration versus time for two different one-dimensional motions. (a) Here acceleration varies only slightly and is always in the same direction, since it is positive. The average over the interval is nearly the same as the

acceleration at any given time. (b) Here the acceleration varies greatly, perhaps representing a package on a post office conveyor belt that is accelerated forward and backward as it bumps along. It is necessary to consider small time intervals (such as from 0 to 1.0 s) with constant or nearly constant acceleration in such a situation.

The next several examples consider the motion of the subway train shown in [link]. In (a) the shuttle moves to the right, and in (b) it moves to the left. The examples are designed to further illustrate aspects of motion and to illustrate some of the reasoning that goes into solving problems.

One-dimensional motion of a subway train considered in [link], [link], [link], [link], [link], and [link]. Here we have chosen the x-axis so that + means to the right and — means to the left for displacements, velocities, and accelerations. (a) The subway train moves to the right from x_0 to x_f . Its displacement Δx is +2.0 km. (b) The train moves to the left from x_0 to x_f . Its displacement Δx_f is

 $-1.5~\mathrm{km}$. (Note that the prime symbol (') is used simply to distinguish between displacement in the two different situations. The distances of travel and the size of the cars are on different scales to fit everything into the diagram.)

Example:

Calculating Displacement: A Subway Train

What are the magnitude and sign of displacements for the motions of the subway train shown in parts (a) and (b) of [link]?

Strategy

A drawing with a coordinate system is already provided, so we don't need to make a sketch, but we should analyze it to make sure we understand what it is showing. Pay particular attention to the coordinate system. To find displacement, we use the equation $\Delta x = x_{\rm f} - x_{\rm 0}$. This is straightforward since the initial and final positions are given.

Solution

- 1. Identify the knowns. In the figure we see that $x_{\rm f}=6.70~{\rm km}$ and $x_0=4.70~{\rm km}$ for part (a), and $x_{\rm f}=3.75~{\rm km}$ and $x_0=5.25~{\rm km}$ for part (b).
- 2. Solve for displacement in part (a).

Equation:

$$\Delta x = x_{\rm f} - x_0 = 6.70 \text{ km} - 4.70 \text{ km} = +2.00 \text{ km}$$

3. Solve for displacement in part (b).

Equation:

$$\Delta x' = x'_{\rm f} - x'_{\rm 0} = 3.75 \text{ km} - 5.25 \text{ km} = -1.50 \text{ km}$$

Discussion

The direction of the motion in (a) is to the right and therefore its displacement has a positive sign, whereas motion in (b) is to the left and thus has a negative sign.

Example:

Comparing Distance Traveled with Displacement: A Subway Train

What are the distances traveled for the motions shown in parts (a) and (b) of the subway train in [link]?

Strategy

To answer this question, think about the definitions of distance and distance traveled, and how they are related to displacement. Distance between two positions is defined to be the magnitude of displacement, which was found in [link]. Distance traveled is the total length of the path traveled between the two positions. (See <u>Displacement</u>.) In the case of the subway train shown in [link], the distance traveled is the same as the distance between the initial and final positions of the train.

Solution

- 1. The displacement for part (a) was +2.00 km. Therefore, the distance between the initial and final positions was 2.00 km, and the distance traveled was 2.00 km.
- 2. The displacement for part (b) was -1.5 km. Therefore, the distance between the initial and final positions was 1.50 km, and the distance traveled was 1.50 km.

Discussion

Distance is a scalar. It has magnitude but no sign to indicate direction.

Example:

Calculating Acceleration: A Subway Train Speeding Up

Suppose the train in [link](a) accelerates from rest to 30.0 km/h in the first 20.0 s of its motion. What is its average acceleration during that time interval?

Strategy

It is worth it at this point to make a simple sketch:

This problem involves three steps. First we must determine the change in velocity, then we must determine the change in time, and finally we use these values to calculate the acceleration.

Solution

- 1. Identify the knowns. $v_0=0$ (the trains starts at rest), $v_{
 m f}=30.0~{
 m km/h}$, and $\Delta t=20.0~{
 m s}$.
- 2. Calculate Δv . Since the train starts from rest, its change in velocity is $\Delta v = +30.0 \text{ km/h}$, where the plus sign means velocity to the right.
- 3. Plug in known values and solve for the unknown, \bar{a} .

Equation:

$$ar{a}=rac{\Delta v}{\Delta t}=rac{+30.0 ext{ km/h}}{20.0 ext{ s}}$$

4. Since the units are mixed (we have both hours and seconds for time), we need to convert everything into SI units of meters and seconds. (See Physical Quantities and Units for more guidance.)

Equation:

$$ar{a} = igg(rac{+30 ext{ km/h}}{20.0 ext{ s}}igg)igg(rac{10^3 ext{ m}}{1 ext{ km}}igg)igg(rac{1 ext{ h}}{3600 ext{ s}}igg) = 0.417 ext{ m/s}^2$$

Discussion

The plus sign means that acceleration is to the right. This is reasonable because the train starts from rest and ends up with a velocity to the right (also positive). So acceleration is in the same direction as the *change* in velocity, as is always the case.

Example:

Calculate Acceleration: A Subway Train Slowing Down

Now suppose that at the end of its trip, the train in [link](a) slows to a stop from a speed of 30.0 km/h in 8.00 s. What is its average acceleration while stopping?

Strategy

In this case, the train is decelerating and its acceleration is negative because it is toward the left. As in the previous example, we must find the change in velocity and the change in time and then solve for acceleration.

Solution

- 1. Identify the knowns. $v_0 = 30.0 \text{ km/h}$, $v_f = 0 \text{ km/h}$ (the train is stopped, so its velocity is 0), and $\Delta t = 8.00 \text{ s}$.
- 2. Solve for the change in velocity, Δv .

Equation:

$$\Delta v = v_{
m f} - v_0 = 0 - 30.0 \ {
m km/h} = -30.0 \ {
m km/h}$$

3. Plug in the knowns, Δv and Δt , and solve for \bar{a} .

Equation:

$$ar{a} = rac{\Delta v}{\Delta t} = rac{-30.0 ext{ km/h}}{8.00 ext{ s}}$$

4. Convert the units to meters and seconds.

Equation:

$$ar{a} = rac{\Delta v}{\Delta t} = igg(rac{-30.0 ext{ km/h}}{8.00 ext{ s}}igg)igg(rac{10^3 ext{ m}}{1 ext{ km}}igg)igg(rac{1 ext{ h}}{3600 ext{ s}}igg) = -1.04 ext{ m/s}^2.$$

Discussion

The minus sign indicates that acceleration is to the left. This sign is reasonable because the train initially has a positive velocity in this problem, and a negative acceleration would oppose the motion. Again, acceleration is in the same direction as the *change* in velocity, which is negative here. This acceleration can be called a deceleration because it has a direction opposite to the velocity.

The graphs of position, velocity, and acceleration vs. time for the trains in [link] and [link] are displayed in [link]. (We have taken the velocity to remain constant from 20 to 40 s, after which the train decelerates.)

(a) Position of the train over time. Notice that the train's position changes slowly at the beginning of the journey, then more and more quickly as it picks up speed. Its position then changes more slowly as it slows down at the end of the journey. In the middle of the journey, while the velocity remains constant, the position changes at a constant rate. (b) Velocity of the train over time. The train's velocity increases as it accelerates at the beginning of the journey. It remains the same in the middle of the journey (where there is no acceleration). It decreases as the train decelerates at the end of the journey. (c) The acceleration of the train over time. The train has positive acceleration as it speeds up at the beginning of the journey. It has no acceleration as it travels at constant velocity in the middle of the journey. Its acceleration is negative as it slows down at the end of the journey.

Example:

Calculating Average Velocity: The Subway Train

What is the average velocity of the train in part b of [link], and shown again below, if it takes 5.00 min to make its trip?

Strategy

Average velocity is displacement divided by time. It will be negative here, since the train moves to the left and has a negative displacement.

Solution

- 1. Identify the knowns. $x'_{\rm f}=3.75$ km, $x'_{\rm 0}=5.25$ km, $\Delta t=5.00$ min.
- 2. Determine displacement, $\Delta x'$. We found $\Delta x'$ to be -1.5 km in [link].
- 3. Solve for average velocity.

Equation:

$$\bar{v} = rac{\Delta x \prime}{\Delta t} = rac{-1.50 ext{ km}}{5.00 ext{ min}}$$

4. Convert units.

Equation:

$$ar{v} = rac{\Delta x\prime}{\Delta t} = igg(rac{-1.50 ext{ km}}{5.00 ext{ min}}igg)igg(rac{60 ext{ min}}{1 ext{ h}}igg) = -18.0 ext{ km/h}$$

Discussion

The negative velocity indicates motion to the left.

Example:

Calculating Deceleration: The Subway Train

Finally, suppose the train in [link] slows to a stop from a velocity of 20.0 km/h in 10.0 s. What is its average acceleration?

Strategy

Once again, let's draw a sketch:

As before, we must find the change in velocity and the change in time to calculate average acceleration.

Solution

- 1. Identify the knowns. $v_0 = -20 \ \mathrm{km/h}$, $v_\mathrm{f} = 0 \ \mathrm{km/h}$, $\Delta t = 10.0 \ \mathrm{s}$.
- 2. Calculate Δv . The change in velocity here is actually positive, since **Equation:**

$$\Delta v = v_{
m f} - v_0 = 0 - (-20 \ {
m km/h}) = +20 \ {
m km/h}.$$

3. Solve for \bar{a} .

Equation:

$$ar{a} = rac{\Delta v}{\Delta t} = rac{+20.0 ext{ km/h}}{10.0 ext{ s}}$$

4. Convert units.

Equation:

$$ar{a} = igg(rac{+20.0 ext{ km/h}}{10.0 ext{ s}}igg)igg(rac{10^3 ext{ m}}{1 ext{ km}}igg)igg(rac{1 ext{ h}}{3600 ext{ s}}igg) = +0.556 ext{ m/s}^2$$

Discussion

The plus sign means that acceleration is to the right. This is reasonable because the train initially has a negative velocity (to the left) in this problem and a positive acceleration opposes the motion (and so it is to the right). Again, acceleration is in the same direction as the *change* in velocity, which is positive here. As in [link], this acceleration can be called a deceleration since it is in the direction opposite to the velocity.

Sign and Direction

Perhaps the most important thing to note about these examples is the signs of the answers. In our chosen coordinate system, plus means the quantity is to the right and minus means it is to the left. This is easy to imagine for displacement and velocity. But it is a little less obvious for acceleration. Most people interpret negative acceleration as the slowing of an object. This was not the case in [link], where a positive acceleration slowed a negative velocity. The crucial distinction was that the acceleration was in the opposite direction from the velocity. In fact, a negative acceleration will *increase* a negative velocity. For example, the train moving to the left in [link] is sped up by an acceleration to the left. In that case, both v and a are negative. The plus and minus signs give the directions of the accelerations. If acceleration has the same sign as the velocity, the object is speeding up. If acceleration has the opposite sign as the velocity, the object is slowing down.

Exercise:

Check Your Understanding

Problem:

An airplane lands on a runway traveling east. Describe its acceleration.

Solution:

If we take east to be positive, then the airplane has negative acceleration, as it is accelerating toward the west. It is also decelerating: its acceleration is opposite in direction to its velocity.

Note:

PhET Explorations: Moving Man Simulation

Learn about position, velocity, and acceleration graphs. Move the little man back and forth with the mouse and plot his motion. Set the position, velocity, or acceleration and let the simulation move the man for you. https://archive.cnx.org/specials/e2ca52af-8c6b-450e-ac2f-9300b38e8739/moving-man/

Section Summary

• Acceleration is the rate at which velocity changes. In symbols, average acceleration \bar{a} is Equation:

$$ar{a} = rac{\Delta v}{\Delta t} = rac{v_{
m f} - v_0}{t_{
m f} - t_0}.$$

- The SI unit for acceleration is m/s^2 .
- Acceleration is a vector, and thus has a both a magnitude and direction.
- Acceleration can be caused by either a change in the magnitude or the direction of the velocity.
- Instantaneous acceleration a is the acceleration at a specific instant in time.
- Deceleration is an acceleration with a direction opposite to that of the velocity.

Conceptual Questions

Exercise:

Problem:

Is it possible for speed to be constant while acceleration is not zero? Give an example of such a situation.

Exercise:

Problem:

Is it possible for velocity to be constant while acceleration is not zero? Explain.

Exercise:

Problem:

Give an example in which velocity is zero yet acceleration is not.

Exercise:

Problem:

If a subway train is moving to the left (has a negative velocity) and then comes to a stop, what is the direction of its acceleration? Is the acceleration positive or negative?

Exercise:

Problem:

Plus and minus signs are used in one-dimensional motion to indicate direction. What is the sign of an acceleration that reduces the magnitude of a negative velocity? Of a positive velocity?

Problems & Exercises

Exercise:

Problem:

A cheetah can accelerate from rest to a speed of 30.0 m/s in 7.00 s. What is its acceleration?

Solution:

$$4.29 \text{ m/s}^2$$

Exercise:

Problem: Professional Application

Dr. John Paul Stapp was U.S. Air Force officer who studied the effects of extreme deceleration on the human body. On December 10, 1954, Stapp rode a rocket sled, accelerating from rest to a top speed of 282 m/s (1015 km/h) in 5.00 s, and was brought jarringly back to rest in only 1.40 s! Calculate his (a) acceleration and (b) deceleration.

Express each in multiples of g (9.80 m/s²) by taking its ratio to the acceleration of gravity.

Exercise:

Problem:

A commuter backs her car out of her garage with an acceleration of $1.40~\rm{m/s}^2$. (a) How long does it take her to reach a speed of 2.00 m/s? (b) If she then brakes to a stop in 0.800 s, what is her deceleration?

Solution:

- (a) $1.43 \, \mathrm{s}$
- (b) -2.50 m/s^2

Exercise:

Problem:

Assume that an intercontinental ballistic missile goes from rest to a suborbital speed of 6.50 km/s in 60.0 s (the actual speed and time are classified). What is its average acceleration in m/s^2 and in multiples of g (9.80 m/s^2)?

Glossary

acceleration

the rate of change in velocity; the change in velocity over time

average acceleration

the change in velocity divided by the time over which it changes

instantaneous acceleration

acceleration at a specific point in time

deceleration

acceleration in the direction opposite to velocity; acceleration that results in a decrease in velocity

Motion Equations for Constant Acceleration in One Dimension

- Calculate displacement of an object that is not accelerating, given initial position and velocity.
- Calculate final velocity of an accelerating object, given initial velocity, acceleration, and time.
- Calculate displacement and final position of an accelerating object, given initial position, initial velocity, time, and acceleration.

Kinematic equations can help us describe and predict the motion of moving objects such as these kayaks racing in Newbury, England. (credit: Barry Skeates, Flickr)

We might know that the greater the acceleration of, say, a car moving away from a stop sign, the greater the displacement in a given time. But we have not developed a specific equation that relates acceleration and displacement. In this section, we develop some convenient equations for kinematic relationships, starting from the definitions of displacement, velocity, and acceleration already covered.

Notation: t, x, v, a

First, let us make some simplifications in notation. Taking the initial time to be zero, as if time is measured with a stopwatch, is a great simplification. Since elapsed time is $\Delta t = t_{\rm f} - t_0$, taking $t_0 = 0$ means that $\Delta t = t_{\rm f}$, the final time on the stopwatch. When initial time is taken to be zero, we use the subscript 0 to denote initial values of position and velocity. That is, x_0 is the initial position and v_0 is the initial velocity. We put no subscripts on the final values. That is, t is the final time, x is the final position, and v is the final velocity. This gives a simpler expression for elapsed time—now, $\Delta t = t$. It also simplifies the expression for displacement, which is now $\Delta x = x - x_0$. Also, it simplifies the expression for change in velocity, which is now $\Delta v = v - v_0$. To summarize, using the simplified notation, with the initial time taken to be zero,

Equation:

$$egin{array}{lll} \Delta t &=& t \ \Delta x &=& x-x_0 \ \Delta v &=& v-v_0 \end{array}$$

where the subscript 0 denotes an initial value and the absence of a subscript denotes a final value in whatever motion is under consideration.

We now make the important assumption that *acceleration is constant*. This assumption allows us to avoid using calculus to find instantaneous acceleration. Since acceleration is constant, the average and instantaneous accelerations are equal. That is,

Equation:

$$\bar{a} = a = \text{constant},$$

so we use the symbol a for acceleration at all times. Assuming acceleration to be constant does not seriously limit the situations we can study nor degrade the accuracy of our treatment. For one thing, acceleration is constant in a great number of situations. Furthermore, in many other situations we can accurately describe motion by assuming a constant acceleration equal to the average acceleration for that motion. Finally, in

motions where acceleration changes drastically, such as a car accelerating to top speed and then braking to a stop, the motion can be considered in separate parts, each of which has its own constant acceleration.

Note:

Solving for Displacement (Δx) and Final Position (x) from Average Velocity when Acceleration (a) is Constant

To get our first two new equations, we start with the definition of average velocity:

Equation:

$$ar{v} = rac{\Delta x}{\Delta t}.$$

Substituting the simplified notation for Δx and Δt yields

Equation:

$$\overline{v} = rac{x - x_0}{t}$$
.

Solving for *x* yields

Equation:

$$x=x_0+ar{v}t,$$

where the average velocity is

Equation:

$$ar{v} = rac{v_0 + v}{2} \; ext{(constant } a ext{)}.$$

The equation $\overline{v} = \frac{v_0 + v}{2}$ reflects the fact that, when acceleration is constant, v is just the simple average of the initial and final velocities. For example, if

you steadily increase your velocity (that is, with constant acceleration) from 30 to 60 km/h, then your average velocity during this steady increase is 45 km/h. Using the equation $\bar{v} = \frac{v_0 + v}{2}$ to check this, we see that

Equation:

$$ar{v} = rac{v_0 + v}{2} = rac{30 ext{ km/h} + 60 ext{ km/h}}{2} = 45 ext{ km/h},$$

which seems logical.

Example:

Calculating Displacement: How Far does the Jogger Run?

A jogger runs down a straight stretch of road with an average velocity of 4.00 m/s for 2.00 min. What is his final position, taking his initial position to be zero?

Strategy

Draw a sketch.

The final position x is given by the equation

Equation:

$$x=x_0+ar{v}t.$$

To find x, we identify the values of x_0 , \overline{v} , and t from the statement of the problem and substitute them into the equation.

Solution

- 1. Identify the knowns. $\overline{v}=4.00~\mathrm{m/s}$, $\Delta t=2.00~\mathrm{min}$, and $x_0=0~\mathrm{m}$.
- 2. Enter the known values into the equation.

Equation:

$$x = x_0 + \overline{v}t = 0 + (4.00 \text{ m/s})(120 \text{ s}) = 480 \text{ m}$$

Discussion

Velocity and final displacement are both positive, which means they are in the same direction.

The equation $x=x_0+v t$ gives insight into the relationship between displacement, average velocity, and time. It shows, for example, that displacement is a linear function of average velocity. (By linear function, we mean that displacement depends on v rather than on v raised to some other power, such as v. When graphed, linear functions look like straight lines with a constant slope.) On a car trip, for example, we will get twice as far in a given time if we average 90 km/h than if we average 45 km/h.

There is a linear relationship between displacement and average velocity. For a given time t, an object moving twice as fast as another object will

move twice as far as the other object.

Note:

Solving for Final Velocity

We can derive another useful equation by manipulating the definition of acceleration.

Equation:

$$a=rac{\Delta v}{\Delta t}$$

Substituting the simplified notation for Δv and Δt gives us

Equation:

$$a = \frac{v - v_0}{t}$$
 (constant a).

Solving for v yields

Equation:

$$v = v_0 + at \text{ (constant } a).$$

Example:

Calculating Final Velocity: An Airplane Slowing Down after Landing

An airplane lands with an initial velocity of 70.0 m/s and then decelerates at 1.50 m/s^2 for 40.0 s. What is its final velocity?

Strategy

Draw a sketch. We draw the acceleration vector in the direction opposite the velocity vector because the plane is decelerating.

Solution

- 1. Identify the knowns. $v_0 = 70.0 \text{ m/s}$, $a = -1.50 \text{ m/s}^2$, t = 40.0 s.
- 2. Identify the unknown. In this case, it is final velocity, $v_{
 m f}$
- 3. Determine which equation to use. We can calculate the final velocity using the equation $v = v_0 + at$.
- 4. Plug in the known values and solve.

Equation:

$$v = v_0 + {
m at} = 70.0 \ {
m m/s} + \Big(-1.50 \ {
m m/s}^2 \Big) (40.0 \ {
m s}) = 10.0 \ {
m m/s}$$

Discussion

The final velocity is much less than the initial velocity, as desired when slowing down, but still positive. With jet engines, reverse thrust could be maintained long enough to stop the plane and start moving it backward. That would be indicated by a negative final velocity, which is not the case here.

The airplane lands with an initial velocity of 70.0 m/s and slows to a final velocity of 10.0 m/s before heading for the terminal. Note that the acceleration is negative because its direction is opposite to its velocity, which is positive.

In addition to being useful in problem solving, the equation $v = v_0 + at$ gives us insight into the relationships among velocity, acceleration, and time. From it we can see, for example, that

- final velocity depends on how large the acceleration is and how long it lasts
- if the acceleration is zero, then the final velocity equals the initial velocity ($v=v_0$), as expected (i.e., velocity is constant)
- if *a* is negative, then the final velocity is less than the initial velocity

(All of these observations fit our intuition, and it is always useful to examine basic equations in light of our intuition and experiences to check that they do indeed describe nature accurately.)

Note:

Making Connections: Real-World Connection

The Space Shuttle *Endeavor* blasts off from the Kennedy Space Center in February 2010. (credit: Matthew Simantov, Flickr)

An intercontinental ballistic missile (ICBM) has a larger average acceleration than the Space Shuttle and achieves a greater velocity in the

first minute or two of flight (actual ICBM burn times are classified—short-burn-time missiles are more difficult for an enemy to destroy). But the Space Shuttle obtains a greater final velocity, so that it can orbit the earth rather than come directly back down as an ICBM does. The Space Shuttle does this by accelerating for a longer time.

Note:

Solving for Final Position When Velocity is Not Constant ($a \neq 0$)

We can combine the equations above to find a third equation that allows us to calculate the final position of an object experiencing constant acceleration. We start with

Equation:

$$v = v_0 + at.$$

Adding v_0 to each side of this equation and dividing by 2 gives

Equation:

$$\frac{v_0+v}{2}=v_0+\frac{1}{2}\mathrm{at}.$$

Since $\frac{v_0+v}{2} = \overline{v}$ for constant acceleration, then

Equation:

$$ar{v}=v_0+rac{1}{2}{
m at}.$$

Now we substitute this expression for \overline{v} into the equation for displacement, $x=x_0+\overline{v}t$, yielding

Equation:

$$x=x_0+v_0t+rac{1}{2}at^2 ext{ (constant } a).$$

Example:

Calculating Displacement of an Accelerating Object: Dragsters

Dragsters can achieve average accelerations of 26.0 m/s^2 . Suppose such a dragster accelerates from rest at this rate for 5.56 s. How far does it travel in this time?

U.S. Army Top Fuel pilot
Tony "The Sarge"
Schumacher begins a race
with a controlled burnout.
(credit: Lt. Col. William
Thurmond. Photo
Courtesy of U.S. Army.)

Strategy

Draw a sketch.

We are asked to find displacement, which is x if we take x_0 to be zero. (Think about it like the starting line of a race. It can be anywhere, but we call it 0 and measure all other positions relative to it.) We can use the equation $x = x_0 + v_0 t + \frac{1}{2} a t^2$ once we identify v_0 , a, and t from the statement of the problem.

Solution

- 1. Identify the knowns. Starting from rest means that $v_0 = 0$, a is given as 26.0 m/s^2 and t is given as 5.56 s.
- 2. Plug the known values into the equation to solve for the unknown x:

Equation:

$$x = x_0 + v_0 t + rac{1}{2} a t^2.$$

Since the initial position and velocity are both zero, this simplifies to **Equation:**

$$x = \frac{1}{2}at^2.$$

Substituting the identified values of a and t gives

Equation:

$$x = rac{1}{2} \Big(26.0 ext{ m/s}^2 \Big) (5.56 ext{ s})^2,$$

yielding

Equation:

$$x = 402 \text{ m}.$$

Discussion

If we convert 402 m to miles, we find that the distance covered is very close to one quarter of a mile, the standard distance for drag racing. So the answer is reasonable. This is an impressive displacement in only 5.56 s, but top-notch dragsters can do a quarter mile in even less time than this.

What else can we learn by examining the equation $x = x_0 + v_0 t + \frac{1}{2}at^2$? We see that:

• displacement depends on the square of the elapsed time when acceleration is not zero. In [link], the dragster covers only one fourth of the total distance in the first half of the elapsed time

• if acceleration is zero, then the initial velocity equals average velocity $(v_0=\bar{v})$ and $x=x_0+v_0t+\frac{1}{2}at^2$ becomes $x=x_0+v_0t$

Note:

Solving for Final Velocity when Velocity Is Not Constant ($a \neq 0$)

A fourth useful equation can be obtained from another algebraic manipulation of previous equations.

If we solve $v = v_0 +$ at for t, we get

Equation:

$$t = rac{v - v_0}{a}$$
.

Substituting this and $\overset{-}{v}=\frac{v_0+v}{2}$ into $x=x_0+\overset{-}{v}t$, we get

Equation:

$$v^2 = v_0^2 + 2a(x - x_0)$$
 (constant a).

Example:

Calculating Final Velocity: Dragsters

Calculate the final velocity of the dragster in [link] without using information about time.

Strategy

Draw a sketch.

The equation $v^2 = v_0^2 + 2a(x - x_0)$ is ideally suited to this task because it relates velocities, acceleration, and displacement, and no time information is required.

Solution

- 1. Identify the known values. We know that $v_0=0$, since the dragster starts from rest. Then we note that $x-x_0=402~\mathrm{m}$ (this was the answer in [link]). Finally, the average acceleration was given to be $a=26.0~\mathrm{m/s}^2$
- 2. Plug the knowns into the equation $v^2 = v_0^2 + 2a(x x_0)$ and solve for v.

Equation:

$$v^2 = 0 + 2 \Big(26.0 \ \mathrm{m/s}^2 \Big) (402 \ \mathrm{m}).$$

Thus

Equation:

$$v^2 = 2.09 \times 10^4 \text{ m}^2/\text{s}^2.$$

To get v, we take the square root:

Equation:

$$v = \sqrt{2.09 imes 10^4 ext{ m}^2/ ext{s}^2} = 145 ext{ m/s}.$$

Discussion

145 m/s is about 522 km/h or about 324 mi/h, but even this breakneck speed is short of the record for the quarter mile. Also, note that a square root has two values; we took the positive value to indicate a velocity in the same direction as the acceleration.

An examination of the equation $v^2 = v_0^2 + 2a(x - x_0)$ can produce further insights into the general relationships among physical quantities:

- The final velocity depends on how large the acceleration is and the distance over which it acts
- For a fixed deceleration, a car that is going twice as fast doesn't simply stop in twice the distance—it takes much further to stop. (This is why

Putting Equations Together

In the following examples, we further explore one-dimensional motion, but in situations requiring slightly more algebraic manipulation. The examples also give insight into problem-solving techniques. The box below provides easy reference to the equations needed.

TAT			
12	A	ГΔ	١
Τ.	v	te:	

Summary of Kinematic Equations (constant *a*)

Equation:

$$x=x_0+ar{v}t$$

Equation:

$$ar{v}=rac{v_0+v}{2}$$

Equation:

$$v = v_0 + at$$

Equation:

$$x=x_0+v_0t+\frac{1}{2}at^2$$

Equation:

$$v^2 = v_0^2 + 2a(x-x_0)$$

Example:

Calculating Displacement: How Far Does a Car Go When Coming to a Halt?

On dry concrete, a car can decelerate at a rate of $7.00~\mathrm{m/s^2}$, whereas on wet concrete it can decelerate at only $5.00~\mathrm{m/s^2}$. Find the distances necessary to stop a car moving at $30.0~\mathrm{m/s}$ (about $110~\mathrm{km/h}$) (a) on dry concrete and (b) on wet concrete. (c) Repeat both calculations, finding the displacement from the point where the driver sees a traffic light turn red, taking into account his reaction time of $0.500~\mathrm{s}$ to get his foot on the brake.

Strategy

Draw a sketch.

In order to determine which equations are best to use, we need to list all of the known values and identify exactly what we need to solve for. We shall do this explicitly in the next several examples, using tables to set them off. **Solution for (a)**

- 1. Identify the knowns and what we want to solve for. We know that $v_0 = 30.0 \text{ m/s}$; v = 0; $a = -7.00 \text{ m/s}^2$ (a is negative because it is in a direction opposite to velocity). We take x_0 to be 0. We are looking for displacement Δx , or $x x_0$.
- 2. Identify the equation that will help up solve the problem. The best equation to use is

Equation:

$$v^2 = v_0^2 + 2a(x - x_0).$$

This equation is best because it includes only one unknown, x. We know the values of all the other variables in this equation. (There are other equations that would allow us to solve for x, but they require us to know

the stopping time, t, which we do not know. We could use them but it would entail additional calculations.)

3. Rearrange the equation to solve for x.

Equation:

$$x-x_0=rac{v^2-v_0^2}{2a}$$

4. Enter known values.

Equation:

$$x-0 = rac{0^2 - (30.0 ext{ m/s})^2}{2 \Big(-7.00 ext{ m/s}^2 \Big)}$$

Thus,

Equation:

x = 64.3 m on dry concrete.

Solution for (b)

This part can be solved in exactly the same manner as Part A. The only difference is that the deceleration is -5.00 m/s^2 . The result is

Equation:

$$x_{\rm wet} = 90.0 \,\mathrm{m}$$
 on wet concrete.

Solution for (c)

Once the driver reacts, the stopping distance is the same as it is in Parts A and B for dry and wet concrete. So to answer this question, we need to calculate how far the car travels during the reaction time, and then add that to the stopping time. It is reasonable to assume that the velocity remains constant during the driver's reaction time.

- 1. Identify the knowns and what we want to solve for. We know that
- $\overline{v}=30.0~\mathrm{m/s}$; $t_{\mathrm{reaction}}=0.500~\mathrm{s}$; $a_{\mathrm{reaction}}=0$. We take $x_{0-\mathrm{reaction}}$ to be
- 0. We are looking for x_{reaction} .
- 2. Identify the best equation to use.

 $x = x_0 + \overline{v}t$ works well because the only unknown value is x, which is what we want to solve for.

3. Plug in the knowns to solve the equation.

Equation:

$$x = 0 + (30.0 \text{ m/s})(0.500 \text{ s}) = 15.0 \text{ m}.$$

This means the car travels 15.0 m while the driver reacts, making the total displacements in the two cases of dry and wet concrete 15.0 m greater than if he reacted instantly.

4. Add the displacement during the reaction time to the displacement when braking.

Equation:

$$x_{
m braking} + x_{
m reaction} = x_{
m total}$$

a.
$$64.3 \text{ m} + 15.0 \text{ m} = 79.3 \text{ m}$$
 when dry b. $90.0 \text{ m} + 15.0 \text{ m} = 105 \text{ m}$ when wet

The distance necessary to stop a car varies greatly, depending on road conditions and driver reaction time. Shown here are the braking distances for dry and wet pavement, as calculated in this example, for a car initially traveling at 30.0 m/s. Also shown are the total distances traveled from the point where the driver first sees a light turn red, assuming a 0.500 s reaction time.

Discussion

The displacements found in this example seem reasonable for stopping a fast-moving car. It should take longer to stop a car on wet rather than dry pavement. It is interesting that reaction time adds significantly to the displacements. But more important is the general approach to solving problems. We identify the knowns and the quantities to be determined and then find an appropriate equation. There is often more than one way to solve a problem. The various parts of this example can in fact be solved by other methods, but the solutions presented above are the shortest.

Example:

Calculating Time: A Car Merges into Traffic

Suppose a car merges into freeway traffic on a 200-m-long ramp. If its initial velocity is 10.0 m/s and it accelerates at 2.00 m/s^2 , how long does it take to travel the 200 m up the ramp? (Such information might be useful to a traffic engineer.)

Strategy

Draw a sketch.

We are asked to solve for the time t. As before, we identify the known quantities in order to choose a convenient physical relationship (that is, an equation with one unknown, t).

Solution

- 1. Identify the knowns and what we want to solve for. We know that $v_0=10~\mathrm{m/s}$; $a=2.00~\mathrm{m/s}^2$; and $x=200~\mathrm{m}$.
- 2. We need to solve for t. Choose the best equation. $x = x_0 + v_0 t + \frac{1}{2}at^2$ works best because the only unknown in the equation is the variable t for which we need to solve.

3. We will need to rearrange the equation to solve for t. In this case, it will be easier to plug in the knowns first.

Equation:

$$200~ ext{m} = 0~ ext{m} + (10.0~ ext{m/s})t + rac{1}{2} \Big(2.00~ ext{m/s}^2 \Big) \, t^2$$

4. Simplify the equation. The units of meters (m) cancel because they are in each term. We can get the units of seconds (s) to cancel by taking t=t s, where t is the magnitude of time and s is the unit. Doing so leaves

Equation:

$$200 = 10t + t^2$$
.

- 5. Use the quadratic formula to solve for t.
- (a) Rearrange the equation to get 0 on one side of the equation.

Equation:

$$t^2 + 10t - 200 = 0$$

This is a quadratic equation of the form

Equation:

$$at^2 + bt + c = 0,$$

where the constants are a = 1.00, b = 10.0, and c = -200.

(b) Its solutions are given by the quadratic formula:

Equation:

$$t=rac{-b\pm\sqrt{b^2-4{
m ac}}}{2a}.$$

This yields two solutions for t, which are

Equation:

$$t = 10.0 \text{ and } -20.0.$$

In this case, then, the time is t = t in seconds, or

Equation:

$$t = 10.0 \text{ s and} - 20.0 \text{ s}.$$

A negative value for time is unreasonable, since it would mean that the event happened 20 s before the motion began. We can discard that solution. Thus,

Equation:

$$t = 10.0 \text{ s}.$$

Discussion

Whenever an equation contains an unknown squared, there will be two solutions. In some problems both solutions are meaningful, but in others, such as the above, only one solution is reasonable. The 10.0 s answer seems reasonable for a typical freeway on-ramp.

With the basics of kinematics established, we can go on to many other interesting examples and applications. In the process of developing kinematics, we have also glimpsed a general approach to problem solving that produces both correct answers and insights into physical relationships. Problem-Solving Basics discusses problem-solving basics and outlines an approach that will help you succeed in this invaluable task.

Note:

Making Connections: Take-Home Experiment—Breaking News We have been using SI units of meters per second squared to describe some examples of acceleration or deceleration of cars, runners, and trains. To achieve a better feel for these numbers, one can measure the braking deceleration of a car doing a slow (and safe) stop. Recall that, for average acceleration, $\bar{a} = \Delta v/\Delta t$. While traveling in a car, slowly apply the brakes as you come up to a stop sign. Have a passenger note the initial speed in miles per hour and the time taken (in seconds) to stop. From this, calculate the deceleration in miles per hour per second. Convert this to meters per second squared and compare with other decelerations mentioned in this chapter. Calculate the distance traveled in braking.

Exercise:

Check Your Understanding

Problem:

A manned rocket accelerates at a rate of 20 m/s^2 during launch. How long does it take the rocket to reach a velocity of 400 m/s?

Solution:

To answer this, choose an equation that allows you to solve for time t, given only a, v_0 , and v.

Equation:

$$v = v_0 + at$$

Rearrange to solve for t.

Equation:

$$t = rac{v - v_0}{a} = rac{400 ext{ m/s} - 0 ext{ m/s}}{20 ext{ m/s}^2} = 20 ext{ s}$$

Section Summary

- To simplify calculations we take acceleration to be constant, so that $\bar{a}=a$ at all times.
- We also take initial time to be zero.
- Initial position and velocity are given a subscript 0; final values have no subscript. Thus,

Equation:

$$\Delta t = t
\Delta x = x - x_0
\Delta v = v - v_0$$

Equation:

$$x=x_0+ar{v}t$$

Equation:

$$ar{v}=rac{v_0+v}{2}$$

Equation:

$$v = v_0 + at$$

Equation:

$$x = x_0 + v_0 t + \frac{1}{2} a t^2$$

Equation:

$$v^2 = v_0^2 + 2a(x - x_0)$$

• In vertical motion, y is substituted for x.

Problems & Exercises

Exercise:

Problem:

An Olympic-class sprinter starts a race with an acceleration of $4.50~{\rm m/s}^2$. (a) What is her speed 2.40 s later? (b) Sketch a graph of her position vs. time for this period.

Solution:

(a) 10.8 m/s

Exercise:

Problem:

A well-thrown ball is caught in a well-padded mitt. If the deceleration of the ball is $2.10 \times 10^4 \, \mathrm{m/s^2}$, and 1.85 ms (1 ms = 10^{-3} s) elapses from the time the ball first touches the mitt until it stops, what was the initial velocity of the ball?

Solution:

38.9 m/s (about 87 miles per hour)

Exercise:

Problem:

A bullet in a gun is accelerated from the firing chamber to the end of the barrel at an average rate of $6.20 \times 10^5~\mathrm{m/s^2}$ for $8.10 \times 10^{-4}~\mathrm{s}$. What is its muzzle velocity (that is, its final velocity)?

Exercise:

Problem:

(a) A light-rail commuter train accelerates at a rate of 1.35 m/s^2 . How long does it take to reach its top speed of 80.0 km/h, starting from rest? (b) The same train ordinarily decelerates at a rate of 1.65 m/s^2 . How long does it take to come to a stop from its top speed? (c) In emergencies the train can decelerate more rapidly, coming to rest from 80.0 km/h in 8.30 s. What is its emergency deceleration in m/s^2 ?

Solution:

- (a) 16.5 s
- (b) 13.5 s
- (c) -2.68 m/s^2

Exercise:

Problem:

While entering a freeway, a car accelerates from rest at a rate of $2.40~\mathrm{m/s^2}$ for 12.0 s. (a) Draw a sketch of the situation. (b) List the knowns in this problem. (c) How far does the car travel in those 12.0 s? To solve this part, first identify the unknown, and then discuss how you chose the appropriate equation to solve for it. After choosing the equation, show your steps in solving for the unknown, check your units, and discuss whether the answer is reasonable. (d) What is the car's final velocity? Solve for this unknown in the same manner as in part (c), showing all steps explicitly.

Exercise:

Problem:

At the end of a race, a runner decelerates from a velocity of 9.00 m/s at a rate of 2.00 m/s^2 . (a) How far does she travel in the next 5.00 s? (b) What is her final velocity? (c) Evaluate the result. Does it make sense?

Solution:

- (a) 20.0 m
- (b) -1.00 m/s
- (c) This result does not really make sense. If the runner starts at 9.00 m/s and decelerates at $2.00 \, \mathrm{m/s}^2$, then she will have stopped after 4.50 s. If she continues to decelerate, she will be running backwards.

Exercise:

Problem:Professional Application:

Blood is accelerated from rest to 30.0 cm/s in a distance of 1.80 cm by the left ventricle of the heart. (a) Make a sketch of the situation. (b) List the knowns in this problem. (c) How long does the acceleration take? To solve this part, first identify the unknown, and then discuss how you chose the appropriate equation to solve for it. After choosing the equation, show your steps in solving for the unknown, checking your units. (d) Is the answer reasonable when compared with the time for a heartbeat?

Exercise:

Problem:

In a slap shot, a hockey player accelerates the puck from a velocity of 8.00 m/s to 40.0 m/s in the same direction. If this shot takes $3.33 \times 10^{-2} \text{ s}$, calculate the distance over which the puck accelerates.

Solution:

 $0.799 \; \text{m}$

Exercise:

Problem:

A powerful motorcycle can accelerate from rest to 26.8 m/s (100 km/h) in only 3.90 s. (a) What is its average acceleration? (b) How far does it travel in that time?

Exercise:

Problem:

Freight trains can produce only relatively small accelerations and decelerations. (a) What is the final velocity of a freight train that accelerates at a rate of $0.0500~\mathrm{m/s}^2$ for 8.00 min, starting with an initial velocity of 4.00 m/s? (b) If the train can slow down at a rate of $0.550~\mathrm{m/s}^2$, how long will it take to come to a stop from this velocity? (c) How far will it travel in each case?

Solution:

- (a) 28.0 m/s
- (b) 50.9 s
- (c) 7.68 km to accelerate and 713 m to decelerate

Exercise:

Problem:

A fireworks shell is accelerated from rest to a velocity of 65.0 m/s over a distance of 0.250 m. (a) How long did the acceleration last? (b) Calculate the acceleration.

Exercise:

Problem:

A swan on a lake gets airborne by flapping its wings and running on top of the water. (a) If the swan must reach a velocity of 6.00 m/s to take off and it accelerates from rest at an average rate of 0.350 m/s^2 , how far will it travel before becoming airborne? (b) How long does this take?

Solution:

- (a) 51.4 m
- (b) 17.1 s

Exercise:

Problem: Professional Application:

A woodpecker's brain is specially protected from large decelerations by tendon-like attachments inside the skull. While pecking on a tree, the woodpecker's head comes to a stop from an initial velocity of 0.600 m/s in a distance of only 2.00 mm. (a) Find the acceleration in m/s^2 and in multiples of $g(g=9.80~m/s^2)$. (b) Calculate the stopping time. (c) The tendons cradling the brain stretch, making its stopping distance 4.50 mm (greater than the head and, hence, less deceleration of the brain). What is the brain's deceleration, expressed in multiples of g?

Exercise:

Problem:

An unwary football player collides with a padded goalpost while running at a velocity of 7.50 m/s and comes to a full stop after compressing the padding and his body 0.350 m. (a) What is his deceleration? (b) How long does the collision last?

Solution:

(a)
$$-80.4 \text{ m/s}^2$$

(b)
$$9.33 \times 10^{-2} \text{ s}$$

Exercise:

Problem:

In World War II, there were several reported cases of airmen who jumped from their flaming airplanes with no parachute to escape certain death. Some fell about 20,000 feet (6000 m), and some of them survived, with few life-threatening injuries. For these lucky pilots, the tree branches and snow drifts on the ground allowed their deceleration to be relatively small. If we assume that a pilot's speed upon impact was 123 mph (54 m/s), then what was his deceleration? Assume that the trees and snow stopped him over a distance of 3.0 m.

Exercise:

Problem:

Consider a grey squirrel falling out of a tree to the ground. (a) If we ignore air resistance in this case (only for the sake of this problem), determine a squirrel's velocity just before hitting the ground, assuming it fell from a height of 3.0 m. (b) If the squirrel stops in a distance of 2.0 cm through bending its limbs, compare its deceleration with that of the airman in the previous problem.

Solution:

- (a) 7.7 m/s
- (b) $-15 \times 10^2 \,\mathrm{m/s}^2$. This is about 3 times the deceleration of the pilots, who were falling from thousands of meters high!

Exercise:

Problem:

An express train passes through a station. It enters with an initial velocity of 22.0 m/s and decelerates at a rate of $0.150 \, \mathrm{m/s^2}$ as it goes through. The station is 210 m long. (a) How long is the nose of the train in the station? (b) How fast is it going when the nose leaves the station? (c) If the train is 130 m long, when does the end of the train leave the station? (d) What is the velocity of the end of the train as it leaves?

Exercise:

Problem:

Dragsters can actually reach a top speed of 145 m/s in only 4.45 s—considerably less time than given in [link] and [link]. (a) Calculate the average acceleration for such a dragster. (b) Find the final velocity of this dragster starting from rest and accelerating at the rate found in (a) for 402 m (a quarter mile) without using any information on time. (c) Why is the final velocity greater than that used to find the average acceleration? *Hint*: Consider whether the assumption of constant acceleration is valid for a dragster. If not, discuss whether the acceleration would be greater at the beginning or end of the run and what effect that would have on the final velocity.

Solution:

- (a) 32.6 m/s^2
- (b) 162 m/s
- (c) $v>v_{\rm max}$, because the assumption of constant acceleration is not valid for a dragster. A dragster changes gears, and would have a greater acceleration in first gear than second gear than third gear, etc. The acceleration would be greatest at the beginning, so it would not be accelerating at $32.6~{\rm m/s}^2$ during the last few meters, but substantially less, and the final velocity would be less than $162~{\rm m/s}$.

Exercise:

Problem:

A bicycle racer sprints at the end of a race to clinch a victory. The racer has an initial velocity of 11.5 m/s and accelerates at the rate of 0.500 m/s^2 for 7.00 s. (a) What is his final velocity? (b) The racer continues at this velocity to the finish line. If he was 300 m from the finish line when he started to accelerate, how much time did he save? (c) One other racer was 5.00 m ahead when the winner started to accelerate, but he was unable to accelerate, and traveled at 11.8 m/s until the finish line. How far ahead of him (in meters and in seconds) did the winner finish?

Exercise:

Problem:

In 1967, New Zealander Burt Munro set the world record for an Indian motorcycle, on the Bonneville Salt Flats in Utah, with a maximum speed of 183.58 mi/h. The one-way course was 5.00 mi long. Acceleration rates are often described by the time it takes to reach 60.0 mi/h from rest. If this time was 4.00 s, and Burt accelerated at this rate until he reached his maximum speed, how long did it take Burt to complete the course?

Solution:

 $104 \, s$

Exercise:

Problem:

(a) A world record was set for the men's 100-m dash in the 2008 Olympic Games in Beijing by Usain Bolt of Jamaica. Bolt "coasted" across the finish line with a time of 9.69 s. If we assume that Bolt accelerated for 3.00 s to reach his maximum speed, and maintained that speed for the rest of the race, calculate his maximum speed and his acceleration. (b) During the same Olympics, Bolt also set the world record in the 200-m dash with a time of 19.30 s. Using the same assumptions as for the 100-m dash, what was his maximum speed for this race?

Solution:

(a)
$$v = 12.2 \text{ m/s}$$
; $a = 4.07 \text{ m/s}^2$

(b)
$$v = 11.2 \text{ m/s}$$

Problem-Solving Basics for One-Dimensional Kinematics

- Apply problem-solving steps and strategies to solve problems of onedimensional kinematics.
- Apply strategies to determine whether or not the result of a problem is reasonable, and if not, determine the cause.

Problem-solving skills are essential to your success in Physics. (credit: scui3asteveo, Flickr)

Problem-solving skills are obviously essential to success in a quantitative course in physics. More importantly, the ability to apply broad physical principles, usually represented by equations, to specific situations is a very powerful form of knowledge. It is much more powerful than memorizing a list of facts. Analytical skills and problem-solving abilities can be applied to new situations, whereas a list of facts cannot be made long enough to contain every possible circumstance. Such analytical skills are useful both for solving problems in this text and for applying physics in everyday and professional life.

Problem-Solving Steps

While there is no simple step-by-step method that works for every problem, the following general procedures facilitate problem solving and make it more meaningful. A certain amount of creativity and insight is required as well.

Step 1

Examine the situation to determine which physical principles are involved. It often helps to *draw a simple sketch* at the outset. You will also need to decide which direction is positive and note that on your sketch. Once you have identified the physical principles, it is much easier to find and apply the equations representing those principles. Although finding the correct equation is essential, keep in mind that equations represent physical principles, laws of nature, and relationships among physical quantities. Without a conceptual understanding of a problem, a numerical solution is meaningless.

Step 2

Make a list of what is given or can be inferred from the problem as stated (identify the knowns). Many problems are stated very succinctly and require some inspection to determine what is known. A sketch can also be very useful at this point. Formally identifying the knowns is of particular importance in applying physics to real-world situations. Remember, "stopped" means velocity is zero, and we often can take initial time and position as zero.

Step 3

Identify exactly what needs to be determined in the problem (identify the unknowns). In complex problems, especially, it is not always obvious what needs to be found or in what sequence. Making a list can help.

Step 4

Find an equation or set of equations that can help you solve the problem. Your list of knowns and unknowns can help here. It is easiest if you can find equations that contain only one unknown—that is, all of the other variables are known, so you can easily solve for the unknown. If the equation contains more than one unknown, then an additional equation is needed to solve the problem. In some problems, several unknowns must be determined to get at the one needed most. In such problems it is especially important to keep physical principles in mind to avoid going astray in a sea of equations. You may have to use two (or more) different equations to get the final answer.

Step 5

Substitute the knowns along with their units into the appropriate equation, and obtain numerical solutions complete with units. This step produces the numerical answer; it also provides a check on units that can help you find errors. If the units of the answer are incorrect, then an error has been made. However, be warned that correct units do not guarantee that the numerical part of the answer is also correct.

Step 6

Check the answer to see if it is reasonable: Does it make sense? This final step is extremely important—the goal of physics is to accurately describe nature. To see if the answer is reasonable, check both its magnitude and its sign, in addition to its units. Your judgment will improve as you solve more and more physics problems, and it will become possible for you to make finer and finer judgments regarding whether nature is adequately described by the answer to a problem. This step brings the problem back to its conceptual meaning. If you can judge whether the answer is reasonable, you have a deeper understanding of physics than just being able to mechanically solve a problem.

When solving problems, we often perform these steps in different order, and we also tend to do several steps simultaneously. There is no rigid procedure that will work every time. Creativity and insight grow with experience, and the basics of problem solving become almost automatic. One way to get practice is to work out the text's examples for yourself as you read. Another is to work as many end-of-section problems as possible, starting with the easiest to build confidence and progressing to the more difficult. Once you become involved in physics, you will see it all around you, and you can begin to apply it to situations you encounter outside the classroom, just as is done in many of the applications in this text.

Unreasonable Results

Physics must describe nature accurately. Some problems have results that are unreasonable because one premise is unreasonable or because certain premises are inconsistent with one another. The physical principle applied correctly then produces an unreasonable result. For example, if a person starting a foot race accelerates at $0.40~\mathrm{m/s^2}$ for $100~\mathrm{s}$, his final speed will be $40~\mathrm{m/s}$ (about $150~\mathrm{km/h}$)—clearly unreasonable because the time of $100~\mathrm{s}$ is an unreasonable premise. The physics is correct in a sense, but there is more to describing nature than just manipulating equations correctly. Checking the result of a problem to see if it is reasonable does more than help uncover errors in problem solving—it also builds intuition in judging whether nature is being accurately described.

Use the following strategies to determine whether an answer is reasonable and, if it is not, to determine what is the cause.

Step 1

Solve the problem using strategies as outlined and in the format followed in the worked examples in the text. In the example given in the preceding paragraph, you would identify the givens as the acceleration and time and use the equation below to find the unknown final velocity. That is,

Equation:

$$v = v_0 + {
m at} = 0 + \left(0.40\ {
m m/s}^2
ight) (100\ {
m s}) = 40\ {
m m/s}.$$

Step 2

Check to see if the answer is reasonable. Is it too large or too small, or does it have the wrong sign, improper units, ...? In this case, you may need to convert meters per second into a more familiar unit, such as miles per hour.

Equation:

$$\left(\frac{40~\text{m}}{\text{s}}\right)\!\left(\frac{3.28~\text{ft}}{\text{m}}\right)\!\left(\frac{1~\text{mi}}{5280~\text{ft}}\right)\!\left(\frac{60~\text{s}}{\text{min}}\right)\!\left(\frac{60~\text{min}}{1~\text{h}}\right) = 89~\text{mph}$$

This velocity is about four times greater than a person can run—so it is too large.

Step 3

If the answer is unreasonable, look for what specifically could cause the identified difficulty. In the example of the runner, there are only two assumptions that are suspect. The acceleration could be too great or the time too long. First look at the acceleration and think about what the number means. If someone accelerates at $0.40~\rm m/s^2$, their velocity is increasing by $0.4~\rm m/s$ each second. Does this seem reasonable? If so, the time must be too long. It is not possible for someone to accelerate at a constant rate of $0.40~\rm m/s^2$ for $100~\rm s$ (almost two minutes).

Section Summary

• The six basic problem solving steps for physics are:

- *Step 1*. Examine the situation to determine which physical principles are involved.
- *Step 2*. Make a list of what is given or can be inferred from the problem as stated (identify the knowns).
- *Step 3*. Identify exactly what needs to be determined in the problem (identify the unknowns).
- *Step 4*. Find an equation or set of equations that can help you solve the problem.
- *Step 5*. Substitute the knowns along with their units into the appropriate equation, and obtain numerical solutions complete with units.
- *Step 6*. Check the answer to see if it is reasonable: Does it make sense?

Conceptual Questions

Exercise:

Problem:

What information do you need in order to choose which equation or equations to use to solve a problem? Explain.

Exercise:

Problem:

What is the last thing you should do when solving a problem? Explain.

Falling Objects

- Describe the effects of gravity on objects in motion.
- Describe the motion of objects that are in free fall.
- Calculate the position and velocity of objects in free fall.

Falling objects form an interesting class of motion problems. For example, we can estimate the depth of a vertical mine shaft by dropping a rock into it and listening for the rock to hit the bottom. By applying the kinematics developed so far to falling objects, we can examine some interesting situations and learn much about gravity in the process.

Gravity

The most remarkable and unexpected fact about falling objects is that, if air resistance and friction are negligible, then in a given location all objects fall toward the center of Earth with the *same constant acceleration*, *independent of their mass*. This experimentally determined fact is unexpected, because we are so accustomed to the effects of air resistance and friction that we expect light objects to fall slower than heavy ones.

In a vacuum In a vacuum (the hard way)

A hammer and a feather will fall with the same constant acceleration if air resistance is considered negligible. This is a general characteristic of gravity not unique to Earth, as astronaut David R. Scott demonstrated on the Moon in 1971, where the

acceleration due to gravity is only 1.67 m/s^2 .

In the real world, air resistance can cause a lighter object to fall slower than a heavier object of the same size. A tennis ball will reach the ground after a hard baseball dropped at the same time. (It might be difficult to observe the difference if the height is not large.) Air resistance opposes the motion of an object through the air, while friction between objects—such as between clothes and a laundry chute or between a stone and a pool into which it is dropped—also opposes motion between them. For the ideal situations of these first few chapters, an object *falling without air resistance or friction* is defined to be in **free-fall**.

The force of gravity causes objects to fall toward the center of Earth. The acceleration of free-falling objects is therefore called the **acceleration due to gravity**. The acceleration due to gravity is *constant*, which means we can apply the kinematics equations to any falling object where air resistance and friction are negligible. This opens a broad class of interesting situations to us. The acceleration due to gravity is so important that its magnitude is given its own symbol, *g*. It is constant at any given location on Earth and has the average value

Equation:

$$g = 9.80 \text{ m/s}^2$$
.

Although g varies from 9.78 m/s^2 to 9.83 m/s^2 , depending on latitude, altitude, underlying geological formations, and local topography, the average value of 9.80 m/s^2 will be used in this text unless otherwise specified. The direction of the acceleration due to gravity is *downward* (towards the center of *Earth*). In fact, its direction *defines* what we call vertical. Note that whether the acceleration a in the kinematic equations has the value +g or -g depends on how we define our coordinate system. If we define the upward direction as positive, then $a = -g = -9.80 \text{ m/s}^2$, and if we define the downward direction as positive, then $a = g = 9.80 \text{ m/s}^2$.

One-Dimensional Motion Involving Gravity

The best way to see the basic features of motion involving gravity is to start with the simplest situations and then progress toward more complex ones. So we start by considering straight up and down motion with no air resistance or friction. These assumptions mean that the velocity (if there is any) is vertical. If the object is dropped, we know the initial velocity is zero. Once the object has left contact with whatever held or threw it, the object is in free-fall. Under these circumstances, the motion is one-dimensional and has constant acceleration of magnitude g. We will also represent vertical displacement with the symbol y and use x for horizontal displacement.

Note:

Kinematic Equations for Objects in Free-Fall where Acceleration = -g **Equation:**

$$v = v_0 - \operatorname{gt}$$

Equation:

$$y=y_0+v_0t-rac{1}{2}gt^2$$

Equation:

$$v^2 = v_0^2 - 2g(y-y_0)$$

Example:

Calculating Position and Velocity of a Falling Object: A Rock Thrown Upward

A person standing on the edge of a high cliff throws a rock straight up with an initial velocity of 13.0 m/s. The rock misses the edge of the cliff as it falls back to earth. Calculate the position and velocity of the rock 1.00 s, 2.00 s, and 3.00 s after it is thrown, neglecting the effects of air resistance.

Strategy

Draw a sketch.

We are asked to determine the position y at various times. It is reasonable to take the initial position y_0 to be zero. This problem involves one-dimensional motion in the vertical direction. We use plus and minus signs to indicate direction, with up being positive and down negative. Since up is positive, and the rock is thrown upward, the initial velocity must be positive too. The acceleration due to gravity is downward, so a is negative. It is crucial that the initial velocity and the acceleration due to gravity have opposite signs. Opposite signs indicate that the acceleration due to gravity opposes the initial motion and will slow and eventually reverse it.

Since we are asked for values of position and velocity at three times, we will refer to these as y_1 and v_1 ; y_2 and v_2 ; and v_3 and v_3 .

Solution for Position y_1

- 1. Identify the knowns. We know that $y_0 = 0$; $v_0 = 13.0 \text{ m/s}$; $a = -g = -9.80 \text{ m/s}^2$; and t = 1.00 s.
- 2. Identify the best equation to use. We will use $y = y_0 + v_0 t + \frac{1}{2}at^2$ because it includes only one unknown, y (or y_1 , here), which is the value we want to find.
- 3. Plug in the known values and solve for y_1 .

Equation:

$$y_1 = 0 + (13.0 \ \mathrm{m/s})(1.00 \ \mathrm{s}) + rac{1}{2} \Big(-9.80 \ \mathrm{m/s}^2 \Big) (1.00 \ \mathrm{s})^2 = 8.10 \ \mathrm{m}$$

Discussion

The rock is 8.10 m above its starting point at t = 1.00 s, since $y_1 > y_0$. It could be *moving* up or down; the only way to tell is to calculate v_1 and find out if it is positive or negative.

Solution for Velocity v_1

1. Identify the knowns. We know that $y_0=0$; $v_0=13.0~{\rm m/s}$; $a=-g=-9.80~{\rm m/s}^2$; and $t=1.00~{\rm s}$. We also know from the solution above that $y_1=8.10~{\rm m}$.

2. Identify the best equation to use. The most straightforward is $v = v_0 - \operatorname{gt}$ (from $v = v_0 + \operatorname{at}$, where $a = \operatorname{gravitational} \operatorname{acceleration} = -g$).

3. Plug in the knowns and solve.

Equation:

$$v_1 = v_0 - {
m gt} = 13.0 \ {
m m/s} - \Big(9.80 \ {
m m/s}^2 \Big) (1.00 \ {
m s}) = 3.20 \ {
m m/s}$$

Discussion

The positive value for v_1 means that the rock is still heading upward at $t=1.00~\mathrm{s}$. However, it has slowed from its original 13.0 m/s, as expected.

Solution for Remaining Times

The procedures for calculating the position and velocity at t = 2.00 s and 3.00 s are the same as those above. The results are summarized in [link] and illustrated in [link].

Time, t	Position, y	Velocity, v	Acceleration, a
1.00 s	8.10 m	$3.20~\mathrm{m/s}$	$-9.80~\mathrm{m/s}^2$
$2.00~\mathrm{s}$	$6.40~\mathrm{m}$	$-6.60~\mathrm{m/s}$	$-9.80~\mathrm{m/s}^2$
$3.00~\mathrm{s}$	$-5.10~\mathrm{m}$	$-16.4~\mathrm{m/s}$	$-9.80~\mathrm{m/s}^2$

Results

Graphing the data helps us understand it more clearly.

Vertical position, vertical velocity, and vertical acceleration vs. time for a rock thrown vertically up at the edge of a cliff. Notice that velocity changes linearly with time and that acceleration is constant. *Misconception Alert!* Notice that the position vs. time graph shows vertical position only. It is easy to get the impression that the graph shows some

horizontal motion—the shape of the graph looks like the path of a projectile. But this is not the case; the horizontal axis is *time*, not space. The actual path of the rock in space is straight up, and straight down.

Discussion

The interpretation of these results is important. At 1.00 s the rock is above its starting point and heading upward, since y_1 and v_1 are both positive. At 2.00 s, the rock is still above its starting point, but the negative velocity means it is moving downward. At 3.00 s, both y_3 and v_3 are negative, meaning the rock is below its starting point and continuing to move downward. Notice that when the rock is at its highest point (at 1.5 s), its velocity is zero, but its acceleration is still $-9.80 \, \mathrm{m/s^2}$. Its acceleration is $-9.80 \, \mathrm{m/s^2}$ for the whole trip—while it is moving up and while it is moving down. Note that the values for y are the positions (or displacements) of the rock, not the total distances traveled. Finally, note that free-fall applies to upward motion as well as downward. Both have the same acceleration—the acceleration due to gravity, which remains constant the entire time. Astronauts training in the famous Vomit Comet, for example, experience free-fall while arcing up as well as down, as we will discuss in more detail later.

Note:

Making Connections: Take-Home Experiment—Reaction Time

A simple experiment can be done to determine your reaction time. Have a friend hold a ruler between your thumb and index finger, separated by about 1 cm. Note the mark on the ruler that is right between your fingers. Have your friend drop the ruler unexpectedly, and try to catch it between your two fingers. Note the new reading on the ruler. Assuming acceleration is that due to gravity, calculate your reaction time. How far would you travel in a car (moving at 30 m/s) if the time it took your foot to go from the gas pedal to the brake was twice this reaction time?

Example:

Calculating Velocity of a Falling Object: A Rock Thrown Down

What happens if the person on the cliff throws the rock straight down, instead of straight up? To explore this question, calculate the velocity of the rock when it is 5.10 m below the starting point, and has been thrown downward with an initial speed of 13.0 m/s.

Strategy

Draw a sketch.

$$v_0 = -13.0 \text{ m/s}$$
 $a = -9.8 \text{ m/s}^2$

Since up is positive, the final position of the rock will be negative because it finishes below the starting point at $y_0 = 0$. Similarly, the initial velocity is downward and therefore negative, as is the acceleration due to gravity. We expect the final velocity to be negative since the rock will continue to move downward.

Solution

- 1. Identify the knowns. $y_0 = 0$; $y_1 = -5.10 \text{ m}$; $v_0 = -13.0 \text{ m/s}$; $a = -g = -9.80 \text{ m/s}^2$.
- 2. Choose the kinematic equation that makes it easiest to solve the problem. The equation $v^2 = v_0^2 + 2a(y y_0)$ works well because the only unknown in it is v. (We will plug y_1 in for y.)
- 3. Enter the known values

Equation:

$$v^2 = (-13.0 \ \mathrm{m/s})^2 + 2 \Big(-9.80 \ \mathrm{m/s}^2\Big) (-5.10 \ \mathrm{m} - 0 \ \mathrm{m}) = 268.96 \ \mathrm{m}^2/\mathrm{s}^2,$$

where we have retained extra significant figures because this is an intermediate result.

Taking the square root, and noting that a square root can be positive or negative, gives

Equation:

$$v = \pm 16.4 \; {\rm m/s}.$$

The negative root is chosen to indicate that the rock is still heading down. Thus,

Equation:

$$v = -16.4 \text{ m/s}.$$

Discussion

Note that this is exactly the same velocity the rock had at this position when it was thrown straight upward with the same initial speed. (See [link] and [link](a).) This is not a coincidental result. Because we only consider the acceleration due to gravity in this problem, the speed of a falling object depends only on its initial speed and its vertical position relative to the starting point. For example, if the velocity of the rock is calculated at a height of 8.10 m above the starting point (using the method from [link]) when the initial velocity is 13.0 m/s straight up, a result of ± 3.20 m/s is obtained. Here both signs are meaningful; the positive value occurs when the rock is at 8.10 m and heading up, and the negative value occurs when the rock is at 8.10 m and heading back down. It has the same speed but the opposite direction.

(a) A person throws a rock straight up, as explored in [link]. The arrows are velocity vectors at 0, 1.00, 2.00, and 3.00 s. (b) A person throws a rock straight down from a cliff with the same initial speed as before, as in [link]. Note that at the same distance below the point of release, the rock has the same velocity in both cases.

Another way to look at it is this: In [link], the rock is thrown up with an initial velocity of 13.0 m/s. It rises and then falls back down. When its

position is y=0 on its way back down, its velocity is $-13.0~\mathrm{m/s}$. That is, it has the same speed on its way down as on its way up. We would then expect its velocity at a position of $y=-5.10~\mathrm{m}$ to be the same whether we have thrown it upwards at $+13.0~\mathrm{m/s}$ or thrown it downwards at $-13.0~\mathrm{m/s}$. The velocity of the rock on its way down from y=0 is the same whether we have thrown it up or down to start with, as long as the speed with which it was initially thrown is the same.

Example:

Find *g* from Data on a Falling Object

The acceleration due to gravity on Earth differs slightly from place to place, depending on topography (e.g., whether you are on a hill or in a valley) and subsurface geology (whether there is dense rock like iron ore as opposed to light rock like salt beneath you.) The precise acceleration due to gravity can be calculated from data taken in an introductory physics laboratory course. An object, usually a metal ball for which air resistance is negligible, is dropped and the time it takes to fall a known distance is measured. See, for example, [link]. Very precise results can be produced with this method if sufficient care is taken in measuring the distance fallen and the elapsed time.

Positions and velocities of a metal ball released from rest when air resistance is negligible. Velocity is seen to increase linearly with time while displacement increases with time squared.

Acceleration is a constant and is equal to gravitational acceleration.

Suppose the ball falls 1.0000 m in 0.45173 s. Assuming the ball is not affected by air resistance, what is the precise acceleration due to gravity at this location?

Strategy

Draw a sketch.

$$v_0 = 0 \text{ m/s}$$
 $a = ?$

We need to solve for acceleration a. Note that in this case, displacement is downward and therefore negative, as is acceleration.

Solution

- 1. Identify the knowns. $y_0 = 0$; y = -1.0000 m; t = 0.45173; $v_0 = 0$.
- 2. Choose the equation that allows you to solve for a using the known values.

Equation:

$$y=y_0+v_0t+rac{1}{2}at^2$$

3. Substitute 0 for v_0 and rearrange the equation to solve for a. Substituting 0 for v_0 yields

Equation:

$$y=y_0+rac{1}{2}at^2.$$

Solving for *a* gives

Equation:

$$a=rac{2(y-y_0)}{t^2}.$$

4. Substitute known values yields

Equation:

$$a = \frac{2(-1.0000 \text{ m} - 0)}{(0.45173 \text{ s})^2} = -9.8010 \text{ m/s}^2,$$

so, because a = -g with the directions we have chosen,

Equation:

$$g = 9.8010 \text{ m/s}^2.$$

Discussion

The negative value for a indicates that the gravitational acceleration is downward, as expected. We expect the value to be somewhere around the average value of $9.80~\mathrm{m/s}^2$, so $9.8010~\mathrm{m/s}^2$ makes sense. Since the data going into the calculation are relatively precise, this value for g is more precise than the average value of $9.80~\mathrm{m/s}^2$; it represents the local value for the acceleration due to gravity.

Exercise:

Check Your Understanding

Problem:

A chunk of ice breaks off a glacier and falls 30.0 meters before it hits the water. Assuming it falls freely (there is no air resistance), how long does it take to hit the water?

Solution:

We know that initial position $y_0=0$, final position y=-30.0 m, and a=-g=-9.80 m/s². We can then use the equation $y=y_0+v_0t+\frac{1}{2}at^2$ to solve for t. Inserting a=-g, we obtain **Equation:**

$$egin{array}{lll} y &=& 0+0-rac{1}{2}gt^2 \ t^2 &=& rac{2y}{-g} \ && t &=& \pm\sqrt{rac{2y}{-g}} = \pm\sqrt{rac{2(-30.0\ ext{m})}{-9.80\ ext{m/s}^2}} = \pm\sqrt{6.12\ ext{s}^2} = 2.47\ ext{s} pprox 2.5\ ext{s} \end{array}$$

where we take the positive value as the physically relevant answer. Thus, it takes about 2.5 seconds for the piece of ice to hit the water.

Note:

PhET Explorations: Equation Grapher

Learn about graphing polynomials. The shape of the curve changes as the constants are adjusted. View the curves for the individual terms (e.g. y = bx) to see how they add to generate the polynomial curve.

https://phet.colorado.edu/sims/equation-grapher/equation-grapher en.html

Section Summary

- An object in free-fall experiences constant acceleration if air resistance is negligible.
- On Earth, all free-falling objects have an acceleration due to gravity *g*, which averages

Equation:

$$g = 9.80 \text{ m/s}^2.$$

- Whether the acceleration a should be taken as +g or -g is determined by your choice of coordinate system. If you choose the upward direction as positive, $a = -g = -9.80 \text{ m/s}^2$ is negative. In the opposite case, $a = +g = 9.80 \text{ m/s}^2$ is positive. Since acceleration is constant, the kinematic equations above can be applied with the appropriate +g or -g substituted for a.
- For objects in free-fall, up is normally taken as positive for displacement, velocity, and acceleration.

Conceptual Questions

Exercise:

Problem:

What is the acceleration of a rock thrown straight upward on the way up? At the top of its flight? On the way down?

Exercise:

Problem:

An object that is thrown straight up falls back to Earth. This is one-dimensional motion. (a) When is its velocity zero? (b) Does its velocity change direction? (c) Does the acceleration due to gravity have the same sign on the way up as on the way down?

Exercise:

Problem:

Suppose you throw a rock nearly straight up at a coconut in a palm tree, and the rock misses on the way up but hits the coconut on the way down. Neglecting air resistance, how does the speed of the rock when it hits the coconut on the way down compare with what it would have been if it had hit the coconut on the way up? Is it more likely to dislodge the coconut on the way up or down? Explain.

Exercise:

Problem:

If an object is thrown straight up and air resistance is negligible, then its speed when it returns to the starting point is the same as when it was released. If air resistance were not negligible, how would its speed upon return compare with its initial speed? How would the maximum height to which it rises be affected?

Exercise:

Problem:

The severity of a fall depends on your speed when you strike the ground. All factors but the acceleration due to gravity being the same, how many times higher could a safe fall on the Moon be than on Earth (gravitational acceleration on the Moon is about 1/6 that of the Earth)?

Exercise:

Problem:

How many times higher could an astronaut jump on the Moon than on Earth if his takeoff speed is the same in both locations (gravitational acceleration on the Moon is about 1/6 of g on Earth)?

Problems & Exercises

Assume air resistance is negligible unless otherwise stated.

Exercise:

Problem:

Calculate the displacement and velocity at times of (a) 0.500, (b) 1.00, (c) 1.50, and (d) 2.00 s for a ball thrown straight up with an initial velocity of 15.0 m/s. Take the point of release to be $y_0 = 0$.

Solution:

(a)
$$y_1 = 6.28 \text{ m}$$
; $v_1 = 10.1 \text{ m/s}$

(b)
$$y_2 = 10.1 \text{ m}$$
; $v_2 = 5.20 \text{ m/s}$

(c)
$$y_3 = 11.5 \text{ m}$$
; $v_3 = 0.300 \text{ m/s}$

(d)
$$y_4 = 10.4 \text{ m}$$
; $v_4 = -4.60 \text{ m/s}$

Exercise:

Problem:

Calculate the displacement and velocity at times of (a) 0.500, (b) 1.00, (c) 1.50, (d) 2.00, and (e) 2.50 s for a rock thrown straight down with an initial velocity of 14.0 m/s from the Verrazano Narrows Bridge in New York City. The roadway of this bridge is 70.0 m above the water.

Exercise:

Problem:

A basketball referee tosses the ball straight up for the starting tip-off. At what velocity must a basketball player leave the ground to rise 1.25 m above the floor in an attempt to get the ball?

Solution:

$$v_0 = 4.95 \; \mathrm{m/s}$$

Exercise:

Problem:

A rescue helicopter is hovering over a person whose boat has sunk. One of the rescuers throws a life preserver straight down to the victim with an initial velocity of 1.40 m/s and observes that it takes 1.8 s to reach the water. (a) List the knowns in this problem. (b) How high above the water was the preserver released? Note that the downdraft of the helicopter reduces the effects of air resistance on the falling life preserver, so that an acceleration equal to that of gravity is reasonable.

Exercise:

Problem:

A dolphin in an aquatic show jumps straight up out of the water at a velocity of 13.0 m/s. (a) List the knowns in this problem. (b) How high does his body rise above the water? To solve this part, first note that the final velocity is now a known and identify its value. Then identify the unknown, and discuss how you chose the appropriate equation to solve for it. After choosing the equation, show your steps in solving for the unknown, checking units, and discuss whether the answer is reasonable. (c) How long is the dolphin in the air? Neglect any effects due to his size or orientation.

Solution:

(a)
$$a = -9.80 \text{ m/s}^2$$
; $v_0 = 13.0 \text{ m/s}$; $y_0 = 0 \text{ m}$

(b) $v=0\mathrm{m/s}$. Unknown is distance y to top of trajectory, where velocity is zero. Use equation $v^2=v_0^2+2a(y-y_0)$ because it contains all known values except for y, so we can solve for y. Solving for y gives

Equation:

$$egin{array}{lcl} v^2-v_0^2&=&2a(y-y_0)\ rac{v^2-v_0^2}{2a}&=&y-y_0\ y&=&y_0+rac{v^2-v_0^2}{2a}=0\ \mathrm{m}+rac{(0\ \mathrm{m/s})^2-(13.0\ \mathrm{m/s})^2}{2\left(-9.80\ \mathrm{m/s}^2
ight)}=8.62\ \mathrm{m} \end{array}$$

Dolphins measure about 2 meters long and can jump several times their length out of the water, so this is a reasonable result.

(c) 2.65 s

Exercise:

Problem:

A swimmer bounces straight up from a diving board and falls feet first into a pool. She starts with a velocity of 4.00 m/s, and her takeoff point is 1.80 m above the pool. (a) How long are her feet in the air? (b) What is her highest point above the board? (c) What is her velocity when her feet hit the water?

Exercise:

Problem:

(a) Calculate the height of a cliff if it takes 2.35 s for a rock to hit the ground when it is thrown straight up from the cliff with an initial velocity of 8.00 m/s. (b) How long would it take to reach the ground if it is thrown straight down with the same speed?

Solution:

- (a) 8.26 m
- (b) 0.717 s

Problem:

A very strong, but inept, shot putter puts the shot straight up vertically with an initial velocity of 11.0 m/s. How long does he have to get out of the way if the shot was released at a height of 2.20 m, and he is 1.80 m tall?

Exercise:

Problem:

You throw a ball straight up with an initial velocity of 15.0 m/s. It passes a tree branch on the way up at a height of 7.00 m. How much additional time will pass before the ball passes the tree branch on the way back down?

Solution:

1.91 s

Exercise:

Problem:

A kangaroo can jump over an object 2.50 m high. (a) Calculate its vertical speed when it leaves the ground. (b) How long is it in the air?

Exercise:

Problem:

Standing at the base of one of the cliffs of Mt. Arapiles in Victoria, Australia, a hiker hears a rock break loose from a height of 105 m. He can't see the rock right away but then does, 1.50 s later. (a) How far above the hiker is the rock when he can see it? (b) How much time does he have to move before the rock hits his head?

Solution:

- (a) 94.0 m
- (b) 3.13 s

Exercise:

Problem:

An object is dropped from a height of 75.0 m above ground level. (a) Determine the distance traveled during the first second. (b) Determine the final velocity at which the object hits the ground. (c) Determine the distance traveled during the last second of motion before hitting the ground.

Exercise:

Problem:

There is a 250-m-high cliff at Half Dome in Yosemite National Park in California. Suppose a boulder breaks loose from the top of this cliff. (a) How fast will it be going when it strikes the ground? (b) Assuming a reaction time of 0.300 s, how long will a tourist at the bottom have to get out of the way after hearing the sound of the rock breaking loose (neglecting the height of the tourist, which would become negligible anyway if hit)? The speed of sound is 335 m/s on this day.

Solution:

- (a) -70.0 m/s (downward)
- (b) 6.10 s

Problem:

A ball is thrown straight up. It passes a 2.00-m-high window 7.50 m off the ground on its path up and takes 0.312 s to go past the window. What was the ball's initial velocity? Hint: First consider only the distance along the window, and solve for the ball's velocity at the bottom of the window. Next, consider only the distance from the ground to the bottom of the window, and solve for the initial velocity using the velocity at the bottom of the window as the final velocity.

Exercise:

Problem:

Suppose you drop a rock into a dark well and, using precision equipment, you measure the time for the sound of a splash to return. (a) Neglecting the time required for sound to travel up the well, calculate the distance to the water if the sound returns in 2.0000 s. (b) Now calculate the distance taking into account the time for sound to travel up the well. The speed of sound is 332.00 m/s in this well.

Solution:

- (a) 19.6 m
- (b) 18.5 m

Exercise:

Problem:

A steel ball is dropped onto a hard floor from a height of 1.50 m and rebounds to a height of 1.45 m. (a) Calculate its velocity just before it strikes the floor. (b) Calculate its velocity just after it leaves the floor on its way back up. (c) Calculate its acceleration during contact with the floor if that contact lasts 0.0800 ms $(8.00 \times 10^{-5} \text{ s})$. (d) How much did the ball compress during its collision with the floor, assuming the floor is absolutely rigid?

Exercise:

Problem:

A coin is dropped from a hot-air balloon that is 300 m above the ground and rising at 10.0 m/s upward. For the coin, find (a) the maximum height reached, (b) its position and velocity 4.00 s after being released, and (c) the time before it hits the ground.

Solution:

- (a) 305 m
- (b) 262 m, -29.2 m/s
- (c) 8.91 s

Exercise:

Problem:

A soft tennis ball is dropped onto a hard floor from a height of 1.50 m and rebounds to a height of 1.10 m. (a) Calculate its velocity just before it strikes the floor. (b) Calculate its velocity just after it leaves the floor on its way back up. (c) Calculate its acceleration during contact with the floor if that contact lasts 3.50 ms $(3.50 \times 10^{-3} \text{ s})$. (d) How much did the ball compress during its collision with the floor, assuming the floor is absolutely rigid?

Glossary

free-fall

the state of movement that results from gravitational force only

acceleration due to gravity acceleration of an object as a result of gravity

Graphical Analysis of One-Dimensional Motion

- Describe a straight-line graph in terms of its slope and y-intercept.
- Determine average velocity or instantaneous velocity from a graph of position vs. time.
- Determine average or instantaneous acceleration from a graph of velocity vs. time.
- Derive a graph of velocity vs. time from a graph of position vs. time.
- Derive a graph of acceleration vs. time from a graph of velocity vs. time.

A graph, like a picture, is worth a thousand words. Graphs not only contain numerical information; they also reveal relationships between physical quantities. This section uses graphs of position, velocity, and acceleration versus time to illustrate one-dimensional kinematics.

Slopes and General Relationships

First note that graphs in this text have perpendicular axes, one horizontal and the other vertical. When two physical quantities are plotted against one another in such a graph, the horizontal axis is usually considered to be an **independent variable** and the vertical axis a **dependent variable**. If we call the horizontal axis the x-axis and the vertical axis the y-axis, as in $[\underline{link}]$, a straight-line graph has the general form

Equation:

$$y = mx + b$$
.

Here m is the **slope**, defined to be the rise divided by the run (as seen in the figure) of the straight line. The letter b is used for the y-intercept, which is the point at which the line crosses the vertical axis.

A straight-line graph. The equation for a straight line is y = mx + b.

Graph of Position vs. Time (a = 0, so v is constant)

Time is usually an independent variable that other quantities, such as position, depend upon. A graph of position versus time would, thus, have x on the vertical axis and t on the horizontal axis. [link] is just such a straight-line graph. It shows a graph of position versus time for a jet-powered car on a very flat dry lake bed in Nevada.

Graph of position versus time for a jet-powered car on the Bonneville Salt Flats.

Using the relationship between dependent and independent variables, we see that the slope in the graph above is average velocity v and the intercept is position at time zero—that is, x_0 . Substituting these symbols into $y = \max + b$ gives

Equation:

$$x = \overline{v}t + x_0$$

or

Equation:

$$x = x_0 + \overline{v}t.$$

Thus a graph of position versus time gives a general relationship among displacement(change in position), velocity, and time, as well as giving detailed numerical information about a specific situation.

Note:

The Slope of *x* vs. *t*

The slope of the graph of position x vs. time t is velocity v.

Equation:

slope =
$$\frac{\Delta x}{\Delta t} = v$$

Notice that this equation is the same as that derived algebraically from other motion equations in <u>Motion Equations for Constant Acceleration in One Dimension</u>.

From the figure we can see that the car has a position of 25 m at 0.50 s and 2000 m at 6.40 s. Its position at other times can be read from the graph; furthermore, information about its velocity and acceleration can also be obtained from the graph.

Example:

Determining Average Velocity from a Graph of Position versus Time: Jet Car

Find the average velocity of the car whose position is graphed in [link]. **Strategy**

The slope of a graph of x vs. t is average velocity, since slope equals rise over run. In this case, rise = change in position and run = change in time, so that

Equation:

slope =
$$\frac{\Delta x}{\Delta t} = \bar{v}$$
.

Since the slope is constant here, any two points on the graph can be used to find the slope. (Generally speaking, it is most accurate to use two widely separated points on the straight line. This is because any error in reading data from the graph is proportionally smaller if the interval is larger.)

Solution

- 1. Choose two points on the line. In this case, we choose the points labeled on the graph: (6.4 s, 2000 m) and (0.50 s, 525 m). (Note, however, that you could choose any two points.)
- 2. Substitute the x and t values of the chosen points into the equation. Remember in calculating change (Δ) we always use final value minus initial value.

Equation:

$$ar{v} = rac{\Delta x}{\Delta t} = rac{2000 ext{ m} - 525 ext{ m}}{6.4 ext{ s} - 0.50 ext{ s}},$$

yielding

Equation:

$$\overline{v}=250~\mathrm{m/s}.$$

Discussion

This is an impressively large land speed (900 km/h, or about 560 mi/h): much greater than the typical highway speed limit of 60 mi/h (27 m/s or 96 km/h), but considerably shy of the record of 343 m/s (1234 km/h or 766 mi/h) set in 1997.

Graphs of Motion when a is constant but $a \neq 0$

The graphs in [link] below represent the motion of the jet-powered car as it accelerates toward its top speed, but only during the time when its acceleration is constant. Time starts at zero for this motion (as if measured with a stopwatch), and the position and velocity are initially 200 m and 15 m/s, respectively.

Graphs of motion of a jetpowered car during the time span when its acceleration is constant. (a) The slope of an xvs. t graph is velocity. This is shown at two points, and the instantaneous velocities obtained are plotted in the next graph. Instantaneous velocity at any point is the slope of the tangent at that point. (b) The slope of the v vs. t graph is constant for this part of the motion, indicating constant acceleration. (c) Acceleration has the constant value of 5.0 m/s^2 over the time interval plotted.

A U.S. Air Force jet car speeds down a track. (credit: Matt Trostle, Flickr)

The graph of position versus time in [link](a) is a curve rather than a straight line. The slope of the curve becomes steeper as time progresses,

showing that the velocity is increasing over time. The slope at any point on a position-versus-time graph is the instantaneous velocity at that point. It is found by drawing a straight line tangent to the curve at the point of interest and taking the slope of this straight line. Tangent lines are shown for two points in [link](a). If this is done at every point on the curve and the values are plotted against time, then the graph of velocity versus time shown in [link](b) is obtained. Furthermore, the slope of the graph of velocity versus time is acceleration, which is shown in [link](c).

Example:

Determining Instantaneous Velocity from the Slope at a Point: Jet Car Calculate the velocity of the jet car at a time of 25 s by finding the slope of the x vs. t graph in the graph below.

The slope of an x vs. t graph is velocity. This is shown at two points. Instantaneous velocity at any point is the slope of the tangent at that point.

Strategy

The slope of a curve at a point is equal to the slope of a straight line tangent to the curve at that point. This principle is illustrated in [link], where Q is the point at t = 25 s.

Solution

1. Find the tangent line to the curve at t = 25 s.

- 2. Determine the endpoints of the tangent. These correspond to a position of 1300 m at time 19 s and a position of 3120 m at time 32 s.
- 3. Plug these endpoints into the equation to solve for the slope, v.

Equation:

$$ext{slope} = v_{ ext{Q}} = rac{\Delta x_{ ext{Q}}}{\Delta t_{ ext{Q}}} = rac{(3120 ext{ m} - 1300 ext{ m})}{(32 ext{ s} - 19 ext{ s})}$$

Thus,

Equation:

$$v_{
m Q} = rac{1820 \ {
m m}}{13 \ {
m s}} = 140 \ {
m m/s}.$$

Discussion

This is the value given in this figure's table for v at t=25 s. The value of 140 m/s for v_Q is plotted in [link]. The entire graph of v vs. t can be obtained in this fashion.

Carrying this one step further, we note that the slope of a velocity versus time graph is acceleration. Slope is rise divided by run; on a v vs. t graph, rise = change in velocity Δv and run = change in time Δt .

Note:

The Slope of *v* vs. *t*

The slope of a graph of velocity v vs. time t is acceleration a.

Equation:

slope =
$$\frac{\Delta v}{\Delta t} = a$$

Since the velocity versus time graph in [link](b) is a straight line, its slope is the same everywhere, implying that acceleration is constant. Acceleration versus time is graphed in [link](c).

Additional general information can be obtained from [link] and the expression for a straight line, y = mx + b.

In this case, the vertical axis y is V, the intercept b is v_0 , the slope m is a, and the horizontal axis x is t. Substituting these symbols yields **Equation:**

$$v = v_0 + {
m at.}$$

A general relationship for velocity, acceleration, and time has again been obtained from a graph. Notice that this equation was also derived algebraically from other motion equations in Motion Equations for Constant Acceleration in One Dimension.

It is not accidental that the same equations are obtained by graphical analysis as by algebraic techniques. In fact, an important way to *discover* physical relationships is to measure various physical quantities and then make graphs of one quantity against another to see if they are correlated in any way. Correlations imply physical relationships and might be shown by smooth graphs such as those above. From such graphs, mathematical relationships can sometimes be postulated. Further experiments are then performed to determine the validity of the hypothesized relationships.

Graphs of Motion Where Acceleration is Not Constant

Now consider the motion of the jet car as it goes from 165 m/s to its top velocity of 250 m/s, graphed in [link]. Time again starts at zero, and the initial position and velocity are 2900 m and 165 m/s, respectively. (These were the final position and velocity of the car in the motion graphed in [link].) Acceleration gradually decreases from $5.0 \, \mathrm{m/s}^2$ to zero when the car hits 250 m/s. The slope of the x vs. t graph increases until $t=55 \, \mathrm{s}$, after which time the slope is constant. Similarly, velocity increases until 55

s and then becomes constant, since acceleration decreases to zero at 55 s and remains zero afterward.

Graphs of motion of a jet-powered car as it reaches its top velocity. This motion begins where the motion in

[link] ends. (a) The slope of this graph is velocity; it is plotted in the next graph. (b) The velocity gradually approaches its top value. The slope of this graph is acceleration; it is plotted in the final graph. (c) Acceleration gradually declines to zero when velocity becomes constant.

Example:

Calculating Acceleration from a Graph of Velocity versus Time

Calculate the acceleration of the jet car at a time of 25 s by finding the slope of the v vs. t graph in [link](b).

Strategy

The slope of the curve at t = 25 s is equal to the slope of the line tangent at that point, as illustrated in [link](b).

Solution

Determine endpoints of the tangent line from the figure, and then plug them into the equation to solve for slope, a.

Equation:

$$ext{slope} = rac{\Delta v}{\Delta t} = rac{(260 ext{ m/s} - 210 ext{ m/s})}{(51 ext{ s} - 1.0 ext{ s})}$$

Equation:

$$a = \frac{50 \text{ m/s}}{50 \text{ s}} = 1.0 \text{ m/s}^2.$$

Discussion

Note that this value for a is consistent with the value plotted in $[\underline{link}](c)$ at t=25 s.

A graph of position versus time can be used to generate a graph of velocity versus time, and a graph of velocity versus time can be used to generate a graph of acceleration versus time. We do this by finding the slope of the graphs at every point. If the graph is linear (i.e., a line with a constant slope), it is easy to find the slope at any point and you have the slope for every point. Graphical analysis of motion can be used to describe both specific and general characteristics of kinematics. Graphs can also be used for other topics in physics. An important aspect of exploring physical relationships is to graph them and look for underlying relationships.

Exercise:

Check Your Understanding

Problem:

A graph of velocity vs. time of a ship coming into a harbor is shown below. (a) Describe the motion of the ship based on the graph. (b)What would a graph of the ship's acceleration look like?

Solution:

- (a) The ship moves at constant velocity and then begins to decelerate at a constant rate. At some point, its deceleration rate decreases. It maintains this lower deceleration rate until it stops moving.
- (b) A graph of acceleration vs. time would show zero acceleration in the first leg, large and constant negative acceleration in the second leg, and constant negative acceleration.

Section Summary

- Graphs of motion can be used to analyze motion.
- Graphical solutions yield identical solutions to mathematical methods for deriving motion equations.
- The slope of a graph of displacement x vs. time t is velocity v.
- The slope of a graph of velocity v vs. time t graph is acceleration a.
- Average velocity, instantaneous velocity, and acceleration can all be obtained by analyzing graphs.

Conceptual Questions

Exercise:

Problem:

(a) Explain how you can use the graph of position versus time in [link] to describe the change in velocity over time. Identify (b) the time (t_a , t_b , t_c , t_d , or t_e) at which the instantaneous velocity is greatest, (c) the time at which it is zero, and (d) the time at which it is negative.

Exercise:

Problem:

(a) Sketch a graph of velocity versus time corresponding to the graph of position versus time given in [link]. (b) Identify the time or times (t_a , t_b , t_c , etc.) at which the instantaneous velocity is greatest. (c) At which times is it zero? (d) At which times is it negative?

Problem:

(a) Explain how you can determine the acceleration over time from a velocity versus time graph such as the one in [link]. (b) Based on the graph, how does acceleration change over time?

Exercise:

Problem:

(a) Sketch a graph of acceleration versus time corresponding to the graph of velocity versus time given in [link]. (b) Identify the time or times (t_a , t_b , t_c , etc.) at which the acceleration is greatest. (c) At which times is it zero? (d) At which times is it negative?

Problem:

Consider the velocity vs. time graph of a person in an elevator shown in [link]. Suppose the elevator is initially at rest. It then accelerates for 3 seconds, maintains that velocity for 15 seconds, then decelerates for 5 seconds until it stops. The acceleration for the entire trip is not constant so we cannot use the equations of motion from Motion Equations for Constant Acceleration in One Dimension for the complete trip. (We could, however, use them in the three individual sections where acceleration is a constant.) Sketch graphs of (a) position vs. time and (b) acceleration vs. time for this trip.

Exercise:

Problem:

A cylinder is given a push and then rolls up an inclined plane. If the origin is the starting point, sketch the position, velocity, and acceleration of the cylinder vs. time as it goes up and then down the plane.

Problems & Exercises

Note: There is always uncertainty in numbers taken from graphs. If your answers differ from expected values, examine them to see if they are within data extraction uncertainties estimated by you.

Exercise:

Problem:

(a) By taking the slope of the curve in [link], verify that the velocity of the jet car is 115 m/s at t=20 s. (b) By taking the slope of the curve at any point in [link], verify that the jet car's acceleration is 5.0 m/s^2 .

Solution:

- (a) 115 m/s
- (b) 5.0 m/s^2

Exercise:

Problem:

Using approximate values, calculate the slope of the curve in [link] to verify that the velocity at $t=10.0~\rm s$ is 0.208 m/s. Assume all values are known to 3 significant figures.

Exercise:

Problem:

Using approximate values, calculate the slope of the curve in [$\underline{\text{link}}$] to verify that the velocity at t=30.0~s is approximately 0.24 m/s.

Solution:

Equation:

$$v = rac{(11.7 - 6.95) imes 10^3 ext{ m}}{(40.0 - 20.0) ext{ s}} = 238 ext{ m/s}$$

Exercise:

Problem:

By taking the slope of the curve in [link], verify that the acceleration is $3.2~{\rm m/s}^2$ at $t=10~{\rm s}$.

Exercise:

Problem:

Construct the position graph for the subway shuttle train as shown in $[\underline{link}](a)$. Your graph should show the position of the train, in kilometers, from t = 0 to 20 s. You will need to use the information on acceleration and velocity given in the examples for this figure.

Solution:

Problem:

(a) Take the slope of the curve in [<u>link</u>] to find the jogger's velocity at $t=2.5~\rm s$. (b) Repeat at 7.5 s. These values must be consistent with the graph in [<u>link</u>].

Problem:

A graph of v(t) is shown for a world-class track sprinter in a 100-m race. (See [link]). (a) What is his average velocity for the first 4 s? (b) What is his instantaneous velocity at t=5 s? (c) What is his average acceleration between 0 and 4 s? (d) What is his time for the race?

Solution:

- (a) 6 m/s
- (b) 12 m/s
- (c) 3 m/s^2
- (d) 10 s

Problem:

[link] shows the position graph for a particle for 5 s. Draw the corresponding velocity and acceleration graphs.

Glossary

independent variable

the variable that the dependent variable is measured with respect to; usually plotted along the x-axis

dependent variable

the variable that is being measured; usually plotted along the *y*-axis

slope

the difference in y-value (the rise) divided by the difference in x-value (the run) of two points on a straight line

y-intercept

the *y*-value when x=0, or when the graph crosses the *y*-axis

Introduction to Two-Dimensional Kinematics class="introduction"

Everyday motion that we experience is, thankfully, rarely as tortuous as a rollercoaster ride like this—the Dragon Khan in Spain's Universal Port Aventura Amusement Park. However, most motion is in curved, rather than straight-line, paths. Motion along a curved path is twoor threedimensional motion, and can be described in a similar fashion to one-dimensional motion. (credit: Boris23/Wikimedi a Commons)

The arc of a basketball, the orbit of a satellite, a bicycle rounding a curve, a swimmer diving into a pool, blood gushing out of a wound, and a puppy chasing its tail are but a few examples of motions along curved paths. In fact, most motions in nature follow curved paths rather than straight lines. Motion along a curved path on a flat surface or a plane (such as that of a ball on a pool table or a skater on an ice rink) is two-dimensional, and thus described by two-dimensional kinematics. Motion not confined to a plane, such as a car following a winding mountain road, is described by three-dimensional kinematics. Both two- and three-dimensional kinematics are simple extensions of the one-dimensional kinematics developed for straight-line motion in the previous chapter. This simple extension will allow us to apply physics to many more situations, and it will also yield unexpected insights about nature.

Kinematics in Two Dimensions: An Introduction

- Observe that motion in two dimensions consists of horizontal and vertical components.
- Understand the independence of horizontal and vertical vectors in twodimensional motion.

Walkers and drivers in a city like New York are rarely able to travel in straight lines to reach their destinations. Instead, they must follow roads and sidewalks, making two-dimensional, zigzagged paths. (credit: Margaret W. Carruthers)

Two-Dimensional Motion: Walking in a City

Suppose you want to walk from one point to another in a city with uniform square blocks, as pictured in [link].

A pedestrian walks a two-dimensional path between two points in a city. In this scene, all blocks are square and are the same size.

The straight-line path that a helicopter might fly is blocked to you as a pedestrian, and so you are forced to take a two-dimensional path, such as the one shown. You walk 14 blocks in all, 9 east followed by 5 north. What is the straight-line distance?

An old adage states that the shortest distance between two points is a straight line. The two legs of the trip and the straight-line path form a right triangle, and so the Pythagorean theorem, $a^2 + b^2 = c^2$, can be used to find the straight-line distance.

The Pythagorean theorem relates the length of the legs of a right triangle,

labeled a and b, with the hypotenuse, labeled c. The relationship is given by: $a^2+b^2=c^2$. This can be rewritten, solving for c: $c=\sqrt{a^2+b^2}$.

The hypotenuse of the triangle is the straight-line path, and so in this case its length in units of city blocks is

 $\sqrt{(9 \text{ blocks})^2 + (5 \text{ blocks})^2} = 10.3 \text{ blocks}$, considerably shorter than the 14 blocks you walked. (Note that we are using three significant figures in the answer. Although it appears that "9" and "5" have only one significant digit, they are discrete numbers. In this case "9 blocks" is the same as "9.0 or 9.00 blocks." We have decided to use three significant figures in the answer in order to show the result more precisely.)

The straight-line path followed by a helicopter between the two points is shorter than the 14 blocks walked by the pedestrian. All blocks are square and the same size.

The fact that the straight-line distance (10.3 blocks) in [link] is less than the total distance walked (14 blocks) is one example of a general characteristic of vectors. (Recall that **vectors** are quantities that have both magnitude and direction.)

As for one-dimensional kinematics, we use arrows to represent vectors. The length of the arrow is proportional to the vector's magnitude. The arrow's length is indicated by hash marks in [link] and [link]. The arrow points in the same direction as the vector. For two-dimensional motion, the path of an object can be represented with three vectors: one vector shows the straightline path between the initial and final points of the motion, one vector shows the horizontal component of the motion, and one vector shows the vertical component of the motion. The horizontal and vertical components of the motion add together to give the straight-line path. For example, observe the three vectors in [link]. The first represents a 9-block displacement east. The second represents a 5-block displacement north. These vectors are added to give the third vector, with a 10.3-block total displacement. The third vector is the straight-line path between the two points. Note that in this example, the vectors that we are adding are perpendicular to each other and thus form a right triangle. This means that we can use the Pythagorean theorem to calculate the magnitude of the total displacement. (Note that we cannot use the Pythagorean theorem to add vectors that are not perpendicular. We will develop techniques for adding vectors having any direction, not just those perpendicular to one another, in Vector Addition and Subtraction: Graphical Methods and Vector Addition and Subtraction: Analytical Methods.)

The Independence of Perpendicular Motions

The person taking the path shown in [link] walks east and then north (two perpendicular directions). How far he or she walks east is only affected by his or her motion eastward. Similarly, how far he or she walks north is only affected by his or her motion northward.

Note:

Independence of Motion

The horizontal and vertical components of two-dimensional motion are independent of each other. Any motion in the horizontal direction does not affect motion in the vertical direction, and vice versa.

This is true in a simple scenario like that of walking in one direction first, followed by another. It is also true of more complicated motion involving movement in two directions at once. For example, let's compare the motions of two baseballs. One baseball is dropped from rest. At the same instant, another is thrown horizontally from the same height and follows a curved path. A stroboscope has captured the positions of the balls at fixed time intervals as they fall.

This shows the motions of two identical balls—one falls from rest, the other has an initial horizontal velocity. Each subsequent

position is an equal time interval. Arrows represent horizontal and vertical velocities at each position. The ball on the right has an initial horizontal velocity, while the ball on the left has no horizontal velocity. Despite the difference in horizontal velocities, the vertical velocities and positions are identical for both balls. This shows that the vertical and horizontal motions are independent.

It is remarkable that for each flash of the strobe, the vertical positions of the two balls are the same. This similarity implies that the vertical motion is independent of whether or not the ball is moving horizontally. (Assuming no air resistance, the vertical motion of a falling object is influenced by gravity only, and not by any horizontal forces.) Careful examination of the

ball thrown horizontally shows that it travels the same horizontal distance between flashes. This is due to the fact that there are no additional forces on the ball in the horizontal direction after it is thrown. This result means that the horizontal velocity is constant, and affected neither by vertical motion nor by gravity (which is vertical). Note that this case is true only for ideal conditions. In the real world, air resistance will affect the speed of the balls in both directions.

The two-dimensional curved path of the horizontally thrown ball is composed of two independent one-dimensional motions (horizontal and vertical). The key to analyzing such motion, called *projectile motion*, is to *resolve* (break) it into motions along perpendicular directions. Resolving two-dimensional motion into perpendicular components is possible because the components are independent. We shall see how to resolve vectors in Vector Addition and Subtraction: Graphical Methods and Vector Addition and Subtraction: Analytical Methods. We will find such techniques to be useful in many areas of physics.

Note:

PhET Explorations: Ladybug Motion 2D

Learn about position, velocity and acceleration vectors. Move the ladybug by setting the position, velocity or acceleration, and see how the vectors change. Choose linear, circular or elliptical motion, and record and playback the motion to analyze the behavior.

https://archive.cnx.org/specials/317a2b1e-2fbd-11e5-99b5-e38ffb545fe6/ladybug-motion/#sim-ladybug-motion

Summary

- The shortest path between any two points is a straight line. In two dimensions, this path can be represented by a vector with horizontal and vertical components.
- The horizontal and vertical components of a vector are independent of one another. Motion in the horizontal direction does not affect motion

in the vertical direction, and vice versa.

Glossary

vector

a quantity that has both magnitude and direction; an arrow used to represent quantities with both magnitude and direction

Vector Addition and Subtraction: Graphical Methods

- Understand the rules of vector addition, subtraction, and multiplication.
- Apply graphical methods of vector addition and subtraction to determine the displacement of moving objects.

Displacement can be determined graphically using a scale map, such as this one of the Hawaiian Islands. A journey from Hawai'i to Moloka'i has a number of legs, or journey segments. These segments can be added graphically with a ruler to determine the total two-dimensional displacement of the journey. (credit: US Geological Survey)

Vectors in Two Dimensions

A **vector** is a quantity that has magnitude and direction. Displacement, velocity, acceleration, and force, for example, are all vectors. In one-dimensional, or straight-line, motion, the direction of a vector can be given simply by a plus or minus sign. In two dimensions (2-d), however, we specify the direction of a vector relative to some reference frame (i.e., coordinate system), using an arrow having length proportional to the vector's magnitude and pointing in the direction of the vector.

[link] shows such a *graphical representation of a vector*, using as an example the total displacement for the person walking in a city considered in Kinematics in Two Dimensions: An Introduction. We shall use the notation that a boldface symbol, such as D, stands for a vector. Its magnitude is represented by the symbol in italics, D, and its direction by θ .

Note:

Vectors in this Text

In this text, we will represent a vector with a boldface variable. For example, we will represent the quantity force with the vector F, which has both magnitude and direction. The magnitude of the vector will be represented by a variable in italics, such as F, and the direction of the variable will be given by an angle θ .

A person walks 9 blocks east and 5 blocks north. The displacement is 10.3 blocks at an angle 29.1° north of east.

To describe the resultant vector for the person walking in a city considered in [link] graphically, draw an arrow to represent the total displacement vector D. Using a protractor, draw a line at an angle θ relative to the eastwest axis. The length D of the arrow is proportional to the vector's

magnitude and is measured along the line with a ruler. In this example, the magnitude D of the vector is 10.3 units, and the direction θ is 29.1° north of east.

Vector Addition: Head-to-Tail Method

The **head-to-tail method** is a graphical way to add vectors, described in [link] below and in the steps following. The **tail** of the vector is the starting point of the vector, and the **head** (or tip) of a vector is the final, pointed end of the arrow.

Head-to-Tail Method: The head-to-tail method of graphically adding vectors is illustrated for the two displacements of the person walking in a city considered in [link]. (a) Draw a vector representing the displacement to the east. (b) Draw a vector representing the displacement to the north. The tail of this vector should originate from the head of the first, east-pointing vector.

(c) Draw a line from the tail of the east-pointing vector to the head of the north-pointing vector to form the sum or **resultant vector** D. The length of the arrow D is proportional to the vector's magnitude and is measured to be 10.3 units . Its direction, described as the angle with respect to the east (or horizontal axis) θ is measured with a protractor to be 29.1°.

Step 1. Draw an arrow to represent the first vector (9 blocks to the east) using a ruler and protractor.

Step 2. Now draw an arrow to represent the second vector (5 blocks to the north). *Place the tail of the second vector at the head of the first vector*.

Step 3. If there are more than two vectors, continue this process for each vector to be added. Note that in our example, we have only two vectors, so we have finished placing arrows tip to tail.

Step 4. Draw an arrow from the tail of the first vector to the head of the last vector. This is the **resultant**, or the sum, of the other vectors.

Step 5. To get the **magnitude** of the resultant, *measure its length with a ruler.* (Note that in most calculations, we will use the Pythagorean theorem to determine this length.)

Step 6. To get the **direction** of the resultant, measure the angle it makes with the reference frame using a protractor. (Note that in most calculations, we will use trigonometric relationships to determine this angle.)

The graphical addition of vectors is limited in accuracy only by the precision with which the drawings can be made and the precision of the measuring tools. It is valid for any number of vectors.

Example:

Adding Vectors Graphically Using the Head-to-Tail Method: A Woman Takes a Walk

Use the graphical technique for adding vectors to find the total displacement of a person who walks the following three paths (displacements) on a flat field. First, she walks 25.0 m in a direction 49.0° north of east. Then, she walks 23.0 m heading 15.0° north of east. Finally, she turns and walks 32.0 m in a direction 68.0° south of east.

Strategy

Represent each displacement vector graphically with an arrow, labeling the first A, the second B, and the third C, making the lengths proportional to the distance and the directions as specified relative to an east-west line. The head-to-tail method outlined above will give a way to determine the magnitude and direction of the resultant displacement, denoted \mathbf{R} .

Solution

(1) Draw the three displacement vectors.

(2) Place the vectors head to tail retaining both their initial magnitude and direction.

(3) Draw the resultant vector, R.

(4) Use a ruler to measure the magnitude of \mathbf{R} , and a protractor to measure the direction of \mathbf{R} . While the direction of the vector can be specified in many ways, the easiest way is to measure the angle between the vector and the nearest horizontal or vertical axis. Since the resultant vector is south of the eastward pointing axis, we flip the protractor upside down and measure the angle between the eastward axis and the vector.

In this case, the total displacement ${\bf R}$ is seen to have a magnitude of 50.0 m and to lie in a direction 7.0° south of east. By using its magnitude and direction, this vector can be expressed as R=50.0 m and $\theta=7.0$ ° south of east.

Discussion

The head-to-tail graphical method of vector addition works for any number of vectors. It is also important to note that the resultant is independent of the order in which the vectors are added. Therefore, we could add the vectors in any order as illustrated in [link] and we will still get the same solution.

Here, we see that when the same vectors are added in a different order, the result is the same. This characteristic is true in every case and is an important characteristic of vectors. Vector addition is **commutative**. Vectors can be added in any order.

Equation:

$$\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}.$$

(This is true for the addition of ordinary numbers as well—you get the same result whether you add $\mathbf{2} + \mathbf{3}$ or $\mathbf{3} + \mathbf{2}$, for example).

Vector Subtraction

Vector subtraction is a straightforward extension of vector addition. To define subtraction (say we want to subtract \mathbf{B} from \mathbf{A} , written $\mathbf{A} - \mathbf{B}$, we must first define what we mean by subtraction. The *negative* of a vector \mathbf{B} is defined to be $-\mathbf{B}$; that is, graphically *the negative of any vector has the same magnitude but the opposite direction*, as shown in [link]. In other words, \mathbf{B} has the same length as $-\mathbf{B}$, but points in the opposite direction. Essentially, we just flip the vector so it points in the opposite direction.

The negative of a vector is just another vector of the same magnitude but pointing in the opposite direction. So **B** is the negative of **-B**; it has the same length but opposite direction.

The *subtraction* of vector \mathbf{B} from vector \mathbf{A} is then simply defined to be the addition of $-\mathbf{B}$ to \mathbf{A} . Note that vector subtraction is the addition of a negative vector. The order of subtraction does not affect the results.

Equation:

$$A - B = A + (-\mathbf{B}).$$

This is analogous to the subtraction of scalars (where, for example, 5-2=5+(-2)). Again, the result is independent of the order in which

the subtraction is made. When vectors are subtracted graphically, the techniques outlined above are used, as the following example illustrates.

Example:

Subtracting Vectors Graphically: A Woman Sailing a Boat

A woman sailing a boat at night is following directions to a dock. The instructions read to first sail 27.5 m in a direction 66.0° north of east from her current location, and then travel 30.0 m in a direction 112° north of east (or 22.0° west of north). If the woman makes a mistake and travels in the *opposite* direction for the second leg of the trip, where will she end up? Compare this location with the location of the dock.

Strategy

We can represent the first leg of the trip with a vector \mathbf{A} , and the second leg of the trip with a vector \mathbf{B} . The dock is located at a location $\mathbf{A} + \mathbf{B}$. If the woman mistakenly travels in the *opposite* direction for the second leg of the journey, she will travel a distance B (30.0 m) in the direction $180^{\circ}-112^{\circ}=68^{\circ}$ south of east. We represent this as $-\mathbf{B}$, as shown below. The vector $-\mathbf{B}$ has the same magnitude as \mathbf{B} but is in the opposite direction. Thus, she will end up at a location $\mathbf{A}+(-\mathbf{B})$, or $\mathbf{A}-\mathbf{B}$.

We will perform vector addition to compare the location of the dock, A + B, with the location at which the woman mistakenly arrives, A + (-B).

Solution

- (1) To determine the location at which the woman arrives by accident, draw vectors \mathbf{A} and $-\mathbf{B}$.
- (2) Place the vectors head to tail.
- (3) Draw the resultant vector \mathbf{R} .
- (4) Use a ruler and protractor to measure the magnitude and direction of \mathbf{R} .

In this case, $R=23.0~\mathrm{m}$ and $\theta=7.5^{\circ}$ south of east.

(5) To determine the location of the dock, we repeat this method to add vectors \mathbf{A} and \mathbf{B} . We obtain the resultant vector \mathbf{R}' :

In this case $R=52.9~\mathrm{m}$ and $\theta=90.1^{\circ}$ north of east.

We can see that the woman will end up a significant distance from the dock if she travels in the opposite direction for the second leg of the trip.

Discussion

Because subtraction of a vector is the same as addition of a vector with the opposite direction, the graphical method of subtracting vectors works the same as for addition.

Multiplication of Vectors and Scalars

If we decided to walk three times as far on the first leg of the trip considered in the preceding example, then we would walk 3×27.5 m, or 82.5 m, in a direction 66.0° north of east. This is an example of multiplying a vector by a positive **scalar**. Notice that the magnitude changes, but the direction stays the same.

If the scalar is negative, then multiplying a vector by it changes the vector's magnitude and gives the new vector the *opposite* direction. For example, if you multiply by -2, the magnitude doubles but the direction changes. We can summarize these rules in the following way: When vector \mathbf{A} is multiplied by a scalar c,

- the magnitude of the vector becomes the absolute value of cA,
- if *c* is positive, the direction of the vector does not change,
- if *c* is negative, the direction is reversed.

In our case, c=3 and A=27.5 m. Vectors are multiplied by scalars in many situations. Note that division is the inverse of multiplication. For example, dividing by 2 is the same as multiplying by the value (1/2). The rules for multiplication of vectors by scalars are the same for division; simply treat the divisor as a scalar between 0 and 1.

Resolving a Vector into Components

In the examples above, we have been adding vectors to determine the resultant vector. In many cases, however, we will need to do the opposite. We will need to take a single vector and find what other vectors added together produce it. In most cases, this involves determining the perpendicular **components** of a single vector, for example the *x- and y-* components, or the north-south and east-west components.

For example, we may know that the total displacement of a person walking in a city is 10.3 blocks in a direction 29.0° north of east and want to find out how many blocks east and north had to be walked. This method is called *finding the components (or parts)* of the displacement in the east and north

directions, and it is the inverse of the process followed to find the total displacement. It is one example of finding the components of a vector. There are many applications in physics where this is a useful thing to do. We will see this soon in Projectile Motion, and much more when we cover forces in Dynamics: Newton's Laws of Motion. Most of these involve finding components along perpendicular axes (such as north and east), so that right triangles are involved. The analytical techniques presented in Vector Addition and Subtraction: Analytical Methods are ideal for finding vector components.

Note:

PhET Explorations: Maze Game

Learn about position, velocity, and acceleration in the "Arena of Pain". Use the green arrow to move the ball. Add more walls to the arena to make the game more difficult. Try to make a goal as fast as you can.

https://archive.cnx.org/specials/30e37034-2fbd-11e5-83a2-

03be60006ece/maze-game/#sim-maze-game

Summary

- The **graphical method of adding vectors A** and **B** involves drawing vectors on a graph and adding them using the head-to-tail method. The resultant vector **R** is defined such that $\mathbf{A} + \mathbf{B} = \mathbf{R}$. The magnitude and direction of **R** are then determined with a ruler and protractor, respectively.
- The **graphical method of subtracting vector B** from **A** involves adding the opposite of vector **B**, which is defined as $-\mathbf{B}$. In this case, $\mathbf{A}-\mathbf{B}=\mathbf{A}+(-\mathbf{B})=\mathbf{R}$. Then, the head-to-tail method of addition is followed in the usual way to obtain the resultant vector **R**.
- Addition of vectors is **commutative** such that $\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$.
- The **head-to-tail method** of adding vectors involves drawing the first vector on a graph and then placing the tail of each subsequent vector at

- the head of the previous vector. The resultant vector is then drawn from the tail of the first vector to the head of the final vector.
- If a vector **A** is multiplied by a scalar quantity *c*, the magnitude of the product is given by cA. If *c* is positive, the direction of the product points in the same direction as **A**; if *c* is negative, the direction of the product points in the opposite direction as **A**.

Conceptual Questions

Exercise:

Problem:

Which of the following is a vector: a person's height, the altitude on Mt. Everest, the age of the Earth, the boiling point of water, the cost of this book, the Earth's population, the acceleration of gravity?

Exercise:

Problem:

Give a specific example of a vector, stating its magnitude, units, and direction.

Exercise:

Problem:

What do vectors and scalars have in common? How do they differ?

Exercise:

Problem:

Two campers in a national park hike from their cabin to the same spot on a lake, each taking a different path, as illustrated below. The total distance traveled along Path 1 is 7.5 km, and that along Path 2 is 8.2 km. What is the final displacement of each camper?

Exercise:

Problem:

If an airplane pilot is told to fly 123 km in a straight line to get from San Francisco to Sacramento, explain why he could end up anywhere on the circle shown in [link]. What other information would he need to get to Sacramento?

Exercise:

Problem:

Suppose you take two steps $\bf A$ and $\bf B$ (that is, two nonzero displacements). Under what circumstances can you end up at your starting point? More generally, under what circumstances can two nonzero vectors add to give zero? Is the maximum distance you can end up from the starting point $\bf A + \bf B$ the sum of the lengths of the two steps?

Exercise:

Problem: Explain why it is not possible to add a scalar to a vector.

Exercise:

Problem:

If you take two steps of different sizes, can you end up at your starting point? More generally, can two vectors with different magnitudes ever add to zero? Can three or more?

Problems & Exercises

Use graphical methods to solve these problems. You may assume data taken from graphs is accurate to three digits.

Exercise:

Problem:

Find the following for path A in [link]: (a) the total distance traveled, and (b) the magnitude and direction of the displacement from start to finish.

The various lines represent paths taken by different people walking in a city. All blocks are 120 m on a side.

Solution:

- (a) 480 m
- (b) 379 m, 18.4° east of north

Exercise:

Problem:

Find the following for path B in [link]: (a) the total distance traveled, and (b) the magnitude and direction of the displacement from start to finish.

Exercise:

Problem:

Find the north and east components of the displacement for the hikers shown in [link].

Solution:

north component 3.21 km, east component 3.83 km

Exercise:

Problem:

Suppose you walk 18.0 m straight west and then 25.0 m straight north. How far are you from your starting point, and what is the compass direction of a line connecting your starting point to your final position? (If you represent the two legs of the walk as vector displacements $\bf A$ and $\bf B$, as in [link], then this problem asks you to find their sum $\bf R = \bf A + \bf B$.)

The two displacements \mathbf{A} and \mathbf{B} add to give a total displacement \mathbf{R} having magnitude R and direction θ .

Exercise:

Problem:

Suppose you first walk 12.0 m in a direction 20° west of north and then 20.0 m in a direction 40.0° south of west. How far are you from your starting point, and what is the compass direction of a line connecting your starting point to your final position? (If you represent the two legs of the walk as vector displacements $\bf A$ and $\bf B$, as in [link], then this problem finds their sum $\bf R=\bf A+\bf B$.)

Solution:

 $19.5 \text{ m}, 4.65^{\circ} \text{ south of west}$

Exercise:

Problem:

Repeat the problem above, but reverse the order of the two legs of the walk; show that you get the same final result. That is, you first walk leg $\bf B$, which is 20.0 m in a direction exactly 40° south of west, and then leg $\bf A$, which is 12.0 m in a direction exactly 20° west of north. (This problem shows that $\bf A + \bf B = \bf B + \bf A$.)

Exercise:

Problem:

(a) Repeat the problem two problems prior, but for the second leg you walk 20.0 m in a direction 40.0° north of east (which is equivalent to subtracting \mathbf{B} from \mathbf{A} —that is, to finding $\mathbf{R}/=\mathbf{A}-\mathbf{B}$). (b) Repeat the problem two problems prior, but now you first walk 20.0 m in a direction 40.0° south of west and then 12.0 m in a direction 20.0° east of south (which is equivalent to subtracting \mathbf{A} from \mathbf{B} —that is, to finding $\mathbf{R}//=\mathbf{B}-\mathbf{A}=-\mathbf{R}/$). Show that this is the case.

Solution:

- (a) 26.6 m, 65.1° north of east
- (b) 26.6 m, 65.1° south of west

Exercise:

Problem:

Show that the *order* of addition of three vectors does not affect their sum. Show this property by choosing any three vectors \mathbf{A} , \mathbf{B} , and \mathbf{C} , all having different lengths and directions. Find the sum $\mathbf{A} + \mathbf{B} + \mathbf{C}$ then find their sum when added in a different order and show the result is the same. (There are five other orders in which \mathbf{A} , \mathbf{B} , and \mathbf{C} can be added; choose only one.)

Exercise:

Problem:

Show that the sum of the vectors discussed in [link] gives the result shown in [link].

Solution:

52.9 m, 90.1° with respect to the *x*-axis.

Exercise:

Problem: Find the magnitudes of velocities $v_{\rm A}$ and $v_{\rm B}$ in [link]

The two velocities \mathbf{v}_{A} and \mathbf{v}_{B} add to give a total $\mathbf{v}_{\mathrm{tot}}.$

Exercise:

Problem:

Find the components of v_{tot} along the x- and y-axes in [link].

Solution:

x-component 4.41 m/s

y-component 5.07 m/s

Exercise:

Problem:

Find the components of v_{tot} along a set of perpendicular axes rotated 30° counterclockwise relative to those in [link].

Glossary

component (of a 2-d vector)

a piece of a vector that points in either the vertical or the horizontal direction; every 2-d vector can be expressed as a sum of two vertical and horizontal vector components

commutative

refers to the interchangeability of order in a function; vector addition is commutative because the order in which vectors are added together does not affect the final sum

direction (of a vector)

the orientation of a vector in space

head (of a vector)

the end point of a vector; the location of the tip of the vector's arrowhead; also referred to as the "tip"

head-to-tail method

a method of adding vectors in which the tail of each vector is placed at the head of the previous vector

magnitude (of a vector)

the length or size of a vector; magnitude is a scalar quantity

resultant

the sum of two or more vectors

resultant vector

the vector sum of two or more vectors

scalar

a quantity with magnitude but no direction

tail

the start point of a vector; opposite to the head or tip of the arrow

Vector Addition and Subtraction: Analytical Methods

- Understand the rules of vector addition and subtraction using analytical methods.
- Apply analytical methods to determine vertical and horizontal component vectors.
- Apply analytical methods to determine the magnitude and direction of a resultant vector.

Analytical methods of vector addition and subtraction employ geometry and simple trigonometry rather than the ruler and protractor of graphical methods. Part of the graphical technique is retained, because vectors are still represented by arrows for easy visualization. However, analytical methods are more concise, accurate, and precise than graphical methods, which are limited by the accuracy with which a drawing can be made. Analytical methods are limited only by the accuracy and precision with which physical quantities are known.

Resolving a Vector into Perpendicular Components

Analytical techniques and right triangles go hand-in-hand in physics because (among other things) motions along perpendicular directions are independent. We very often need to separate a vector into perpendicular components. For example, given a vector like \mathbf{A} in [link], we may wish to find which two perpendicular vectors, \mathbf{A}_x and \mathbf{A}_y , add to produce it.

The vector \mathbf{A} , with its tail at the origin of an x, ycoordinate system, is shown together with its *x*- and *y*components, \mathbf{A}_x and \mathbf{A}_y . These vectors form a right triangle. The analytical relationships among these vectors are summarized below.

 \mathbf{A}_x and \mathbf{A}_y are defined to be the components of \mathbf{A} along the x- and y-axes. The three vectors \mathbf{A} , \mathbf{A}_x , and \mathbf{A}_y form a right triangle:

Equation:

$$\mathbf{A}_x + \mathbf{A}_y = \mathbf{A}.$$

Note that this relationship between vector components and the resultant vector holds only for vector quantities (which include both magnitude and direction). The relationship does not apply for the magnitudes alone. For example, if $\mathbf{A}_x = 3$ m east, $\mathbf{A}_y = 4$ m north, and $\mathbf{A} = 5$ m north-east, then it is true that the vectors $\mathbf{A}_x + \mathbf{A}_y = \mathbf{A}$. However, it is *not* true that the sum of the magnitudes of the vectors is also equal. That is,

Equation:

$$3~m+4~m~\neq~5~m$$

Thus,

Equation:

$$A_x + A_y
eq A$$

If the vector \mathbf{A} is known, then its magnitude A (its length) and its angle θ (its direction) are known. To find A_x and A_y , its x- and y-components, we use the following relationships for a right triangle.

Equation:

$$A_x = A \cos \theta$$

and

Equation:

$$A_y = A \sin \theta$$
.

The magnitudes of the vector

components \mathbf{A}_x and \mathbf{A}_y can be related to the resultant vector \mathbf{A} and the angle θ with trigonometric identities. Here we see that $A_x = A \cos \theta$ and $A_y = A \sin \theta$.

Suppose, for example, that **A** is the vector representing the total displacement of the person walking in a city considered in <u>Kinematics in Two Dimensions: An Introduction</u> and <u>Vector Addition and Subtraction:</u> <u>Graphical Methods</u>.

We can use the relationships $A_x = A \cos \theta$ and $A_y = A \sin \theta$ to determine the magnitude of the horizontal and vertical component vectors in this example.

Then A=10.3 blocks and $\theta=29.1^{\rm o}$, so that

Equation:

$$A_x = A\cos heta = (10.3 ext{ blocks})(\cos29.1^\circ) = 9.0 ext{ blocks}$$

Equation:

$$A_y = A \sin \theta = (10.3 ext{ blocks})(\sin 29.1^{\circ}) = 5.0 ext{ blocks}.$$

Calculating a Resultant Vector

If the perpendicular components \mathbf{A}_x and \mathbf{A}_y of a vector \mathbf{A} are known, then \mathbf{A} can also be found analytically. To find the magnitude A and direction θ of a vector from its perpendicular components \mathbf{A}_x and \mathbf{A}_y , we use the following relationships:

Equation:

$$A=\sqrt{A_{x^2}+A_{y^2}}$$

Equation:

$$heta= an^{-1}(A_y/A_x).$$

The magnitude and direction of the resultant vector can be determined once the horizontal and vertical components A_x and A_y have been determined.

Note that the equation $A=\sqrt{A_x^2+A_y^2}$ is just the Pythagorean theorem relating the legs of a right triangle to the length of the hypotenuse. For example, if A_x and A_y are 9 and 5 blocks, respectively, then $A=\sqrt{9^2+5^2}{=}10.3$ blocks, again consistent with the example of the person walking in a city. Finally, the direction is $\theta=\tan^{-1}(5/9){=}29.1^\circ$, as before.

Note:

Determining Vectors and Vector Components with Analytical Methods Equations $A_x = A\cos\theta$ and $A_y = A\sin\theta$ are used to find the perpendicular components of a vector—that is, to go from A and θ to A_x and A_y . Equations $A = \sqrt{A_x^2 + A_y^2}$ and $\theta = \tan^{-1}(A_y/A_x)$ are used to find a vector from its perpendicular components—that is, to go from A_x and A_y to A and θ . Both processes are crucial to analytical methods of vector addition and subtraction.

Adding Vectors Using Analytical Methods

To see how to add vectors using perpendicular components, consider $[\underline{link}]$, in which the vectors \mathbf{A} and \mathbf{B} are added to produce the resultant \mathbf{R} .

Vectors **A** and **B** are two legs of a walk, and **R** is the resultant or total displacement. You can use analytical methods to determine the magnitude and direction of **R**.

If **A** and **B** represent two legs of a walk (two displacements), then **R** is the total displacement. The person taking the walk ends up at the tip of **R**. There are many ways to arrive at the same point. In particular, the person could have walked first in the x-direction and then in the y-direction. Those paths are the x- and y-components of the resultant, \mathbf{R}_x and \mathbf{R}_y . If we know

 \mathbf{R}_x and \mathbf{R}_y , we can find R and θ using the equations $A = \sqrt{{A_x}^2 + {A_y}^2}$ and $\theta = \tan^{-1}(A_y/A_x)$. When you use the analytical method of vector addition, you can determine the components or the magnitude and direction of a vector.

Step 1. Identify the x- and y-axes that will be used in the problem. Then, find the components of each vector to be added along the chosen

perpendicular axes. Use the equations $A_x = A \cos \theta$ and $A_y = A \sin \theta$ to find the components. In [link], these components are A_x , A_y , B_x , and B_y . The angles that vectors \mathbf{A} and \mathbf{B} make with the x-axis are θ_A and θ_B , respectively.

To add vectors \mathbf{A} and \mathbf{B} , first determine the horizontal and vertical components of each vector. These are the dotted vectors \mathbf{A}_x , \mathbf{A}_y , \mathbf{B}_x and \mathbf{B}_y shown in the image.

Step 2. Find the components of the resultant along each axis by adding the components of the individual vectors along that axis. That is, as shown in $[\underline{link}]$,

Equation:

$$R_x = A_x + B_x$$

and

Equation:

$$R_y = A_y + B_y.$$

The magnitude of the vectors \mathbf{A}_x and \mathbf{B}_x add to give the magnitude R_x of the resultant vector in the horizontal direction. Similarly, the magnitudes of the vectors \mathbf{A}_y and \mathbf{B}_y add to give the magnitude R_y of the resultant vector in the vertical direction.

Components along the same axis, say the x-axis, are vectors along the same line and, thus, can be added to one another like ordinary numbers. The same is true for components along the y-axis. (For example, a 9-block eastward walk could be taken in two legs, the first 3 blocks east and the second 6 blocks east, for a total of 9, because they are along the same direction.) So resolving vectors into components along common axes makes it easier to add them. Now that the components of \mathbf{R} are known, its magnitude and direction can be found.

Step 3. To get the magnitude R of the resultant, use the Pythagorean theorem:

Equation:

$$R = \sqrt{R_x^2 + R_y^2}.$$

Step 4. To get the direction of the resultant: **Equation:**

$$heta= an^{-1}(R_y/R_x).$$

The following example illustrates this technique for adding vectors using perpendicular components.

Example:

Adding Vectors Using Analytical Methods

Add the vector \mathbf{A} to the vector \mathbf{B} shown in [link], using perpendicular components along the x- and y-axes. The x- and y-axes are along the eastwest and north—south directions, respectively. Vector \mathbf{A} represents the first leg of a walk in which a person walks 53.0 m in a direction 20.0° north of east. Vector \mathbf{B} represents the second leg, a displacement of 34.0 m in a direction 63.0° north of east.

Vector **A** has magnitude 53.0 m and direction 20.0° north of the *x*-axis. Vector **B** has magnitude 34.0 m and direction 63.0° north of the *x*-axis. You can use analytical methods to determine the magnitude and direction of **R**.

Strategy

The components of A and B along the x- and y-axes represent walking due east and due north to get to the same ending point. Once found, they are combined to produce the resultant.

Solution

Following the method outlined above, we first find the components of $\bf A$ and $\bf B$ along the x- and y-axes. Note that A=53.0 m, $\theta_{\rm A}=20.0^{\circ}$, B=34.0 m, and $\theta_{\rm B}=63.0^{\circ}$. We find the x-components by using $A_x=A\cos\theta$, which gives

Equation:

$$A_x = A \cos heta_{
m A} = (53.0 \ {
m m})(\cos 20.0^{
m o}) = (53.0 \ {
m m})(0.940) = 49.8 \ {
m m}$$

and

Equation:

$$B_x = B \cos \theta_{\rm B} = (34.0 \text{ m})(\cos 63.0^{\circ})$$

= $(34.0 \text{ m})(0.454) = 15.4 \text{ m}.$

Similarly, the *y*-components are found using $A_y = A \sin \theta_A$:

Equation:

$$A_y = A \sin heta_{
m A} = (53.0 \ {
m m})(\sin 20.0^{
m o}) \ = (53.0 \ {
m m})(0.342) = 18.1 \ {
m m}$$

and

Equation:

$$B_y = B \sin \theta_{\rm B} = (34.0 \text{ m})(\sin 63.0^{\circ})$$

= $(34.0 \text{ m})(0.891) = 30.3 \text{ m}.$

The *x*- and *y*-components of the resultant are thus

Equation:

$$R_x = A_x + B_x = 49.8 \text{ m} + 15.4 \text{ m} = 65.2 \text{ m}$$

and

Equation:

$$R_y = A_y + B_y = 18.1 \text{ m} + 30.3 \text{ m} = 48.4 \text{ m}.$$

Now we can find the magnitude of the resultant by using the Pythagorean theorem:

Equation:

$$R = \sqrt{R_x^2 + R_y^2} = \sqrt{(65.2)^2 + (48.4)^2 ext{ m}}$$

so that

Equation:

$$R = 81.2 \text{ m}.$$

Finally, we find the direction of the resultant:

Equation:

$$\theta = \tan^{-1}(R_y/R_x) = +\tan^{-1}(48.4/65.2).$$

Thus,

Equation:

$$\theta = \tan^{-1}(0.742) = 36.6^{\circ}.$$

Using analytical methods, we see that the magnitude of ${f R}$ is $81.2~{f m}$ and its

direction is 36.6° north of east.

Discussion

This example illustrates the addition of vectors using perpendicular components. Vector subtraction using perpendicular components is very similar—it is just the addition of a negative vector.

Subtraction of vectors is accomplished by the addition of a negative vector. That is, $\mathbf{A} - \mathbf{B} \equiv \mathbf{A} + (-\mathbf{B})$. Thus, the method for the subtraction of vectors using perpendicular components is identical to that for addition. The components of $-\mathbf{B}$ are the negatives of the components of \mathbf{B} . The *x*-and *y*-components of the resultant $\mathbf{A} - \mathbf{B} = \mathbf{R}$ are thus

Equation:

$$R_x = A_x + (-B_x)$$

and

Equation:

$$R_y = A_y + (-B_y)$$

and the rest of the method outlined above is identical to that for addition. (See [link].)

Analyzing vectors using perpendicular components is very useful in many areas of physics, because perpendicular quantities are often independent of one another. The next module, <u>Projectile Motion</u>, is one of many in which using perpendicular components helps make the picture clear and simplifies the physics.

The subtraction of the two vectors shown in [link]. The components of $-\mathbf{B}$ are the negatives of the components of \mathbf{B} . The method of subtraction is the same as that for addition.

Note:

PhET Explorations: Vector Addition

Learn how to add vectors. Drag vectors onto a graph, change their length and angle, and sum them together. The magnitude, angle, and components of each vector can be displayed in several formats.

https://phet.colorado.edu/sims/vector-addition/vector-addition en.html

Summary

- The analytical method of vector addition and subtraction involves using the Pythagorean theorem and trigonometric identities to determine the magnitude and direction of a resultant vector.
- The steps to add vectors **A** and **B** using the analytical method are as follows:

Step 1: Determine the coordinate system for the vectors. Then, determine the horizontal and vertical components of each vector using the equations

Equation:

$$A_x = A \cos \theta$$

$$B_x = B \cos \theta$$

and

Equation:

$$A_y = A \sin \theta$$

$$B_y = B \sin \theta.$$

Step 2: Add the horizontal and vertical components of each vector to determine the components R_x and R_y of the resultant vector, \mathbf{R} :

Equation:

$$R_x = A_x + B_x$$

and

Equation:

$$R_y = A_y + B_{y.}$$

Step 3: Use the Pythagorean theorem to determine the magnitude, R, of the resultant vector \mathbf{R} :

Equation:

$$R = \sqrt{R_x^2 + R_y^2}.$$

Step 4: Use a trigonometric identity to determine the direction, θ , of ${\bf R}$.

Equation:

$$\theta = \tan^{-1}(R_y/R_x).$$

Conceptual Questions

Exercise:

Problem:

Suppose you add two vectors **A** and **B**. What relative direction between them produces the resultant with the greatest magnitude? What is the maximum magnitude? What relative direction between them produces the resultant with the smallest magnitude? What is the minimum magnitude?

Exercise:

Problem:

Give an example of a nonzero vector that has a component of zero.

Exercise:

Problem:

Explain why a vector cannot have a component greater than its own magnitude.

Exercise:

Problem:

If the vectors **A** and **B** are perpendicular, what is the component of **A** along the direction of **B**? What is the component of **B** along the direction of **A**?

Problems & Exercises

Find the following for path C in [link]: (a) the total distance traveled and (b) the magnitude and direction of the displacement from start to finish. In this part of the problem, explicitly show how you follow the steps of the analytical method of vector addition.

The various lines represent paths taken by different people walking in a city. All blocks are 120 m on a side.

Solution:

- (a) 1.56 km
- (b) 120 m east

Exercise:

Problem:

Find the following for path D in [link]: (a) the total distance traveled and (b) the magnitude and direction of the displacement from start to finish. In this part of the problem, explicitly show how you follow the steps of the analytical method of vector addition.

Find the north and east components of the displacement from San Francisco to Sacramento shown in [link].

Solution:

North-component 87.0 km, east-component 87.0 km

Exercise:

Problem:

Solve the following problem using analytical techniques: Suppose you walk 18.0 m straight west and then 25.0 m straight north. How far are you from your starting point, and what is the compass direction of a line connecting your starting point to your final position? (If you represent the two legs of the walk as vector displacements $\bf A$ and $\bf B$, as in [link], then this problem asks you to find their sum $\bf R = \bf A + \bf B$.)

The two displacements $\bf A$ and $\bf B$ add to give a total displacement $\bf R$ having magnitude R and direction θ .

Note that you can also solve this graphically. Discuss why the analytical technique for solving this problem is potentially more accurate than the graphical technique.

Exercise:

Problem:

Repeat [link] using analytical techniques, but reverse the order of the two legs of the walk and show that you get the same final result. (This problem shows that adding them in reverse order gives the same result —that is, $\mathbf{B} + \mathbf{A} = \mathbf{A} + \mathbf{B}$.) Discuss how taking another path to reach the same point might help to overcome an obstacle blocking you other path.

Solution:

30.8 m, 35.8 west of north

You drive 7.50 km in a straight line in a direction 15° east of north. (a) Find the distances you would have to drive straight east and then straight north to arrive at the same point. (This determination is equivalent to find the components of the displacement along the east and north directions.) (b) Show that you still arrive at the same point if the east and north legs are reversed in order.

Exercise:

Problem:

Do [link] again using analytical techniques and change the second leg of the walk to 25.0 m straight south. (This is equivalent to subtracting \mathbf{B} from \mathbf{A} —that is, finding $\mathbf{R}\prime = \mathbf{A} - \mathbf{B}$) (b) Repeat again, but now you first walk 25.0 m north and then 18.0 m east. (This is equivalent to subtract \mathbf{A} from \mathbf{B} —that is, to find $\mathbf{A} = \mathbf{B} + \mathbf{C}$. Is that consistent with your result?)

Solution:

- (a) 30.8 m, 54.2° south of west
- (b) 30.8 m, 54.2° north of east

Exercise:

Problem:

A new landowner has a triangular piece of flat land she wishes to fence. Starting at the west corner, she measures the first side to be 80.0 m long and the next to be 105 m. These sides are represented as displacement vectors **A** from **B** in [link]. She then correctly calculates the length and orientation of the third side C. What is her result?

Exercise:

Problem:

You fly 32.0 km in a straight line in still air in the direction 35.0° south of west. (a) Find the distances you would have to fly straight south and then straight west to arrive at the same point. (This determination is equivalent to finding the components of the displacement along the south and west directions.) (b) Find the distances you would have to fly first in a direction 45.0° south of west and then in a direction 45.0° west of north. These are the components of the displacement along a different set of axes—one rotated 45° .

Solution:

18.4 km south, then 26.2 km west(b) 31.5 km at 45.0° south of west, then 5.56 km at 45.0° west of north

Exercise:

Problem:

A farmer wants to fence off his four-sided plot of flat land. He measures the first three sides, shown as **A**, **B**, and **C** in [link], and then correctly calculates the length and orientation of the fourth side **D** . What is his result?

Exercise:

Problem:

In an attempt to escape his island, Gilligan builds a raft and sets to sea. The wind shifts a great deal during the day, and he is blown along the following straight lines: $2.50 \text{ km } 45.0^{\circ}$ north of west; then $4.70 \text{ km } 60.0^{\circ}$ south of east; then $1.30 \text{ km } 25.0^{\circ}$ south of west; then $5.10 \text{ km } 5.00^{\circ}$ east of north; then $7.20 \text{ km } 55.0^{\circ}$ south of west; and finally $2.80 \text{ km } 10.0^{\circ}$ north of east. What is his final position relative to the island?

Solution:

7.34 km, 63.5° south of east

Exercise:

Problem:

Suppose a pilot flies 40.0 km in a direction 60° north of east and then flies 30.0 km in a direction 15° north of east as shown in [link]. Find her total distance R from the starting point and the direction θ of the straight-line path to the final position. Discuss qualitatively how this flight would be altered by a wind from the north and how the effect of the wind would depend on both wind speed and the speed of the plane relative to the air mass.

Glossary

analytical method

the method of determining the magnitude and direction of a resultant vector using the Pythagorean theorem and trigonometric identities

Addition of Velocities

- Apply principles of vector addition to determine relative velocity.
- Explain the significance of the observer in the measurement of velocity.

Relative Velocity

If a person rows a boat across a rapidly flowing river and tries to head directly for the other shore, the boat instead moves *diagonally* relative to the shore, as in [link]. The boat does not move in the direction in which it is pointed. The reason, of course, is that the river carries the boat downstream. Similarly, if a small airplane flies overhead in a strong crosswind, you can sometimes see that the plane is not moving in the direction in which it is pointed, as illustrated in [link]. The plane is moving straight ahead relative to the air, but the movement of the air mass relative to the ground carries it sideways.

A boat trying to head straight across a river will actually move diagonally relative to the shore as shown. Its total velocity (solid arrow) relative to the shore is the sum of its velocity relative

to the river plus the velocity of the river relative to the shore.

An airplane heading straight north is instead carried to the west and slowed down by wind.

The plane does not move relative to the ground in the direction it points; rather, it moves in the direction of its total velocity (solid arrow).

In each of these situations, an object has a **velocity** relative to a medium (such as a river) and that medium has a velocity relative to an observer on solid ground. The velocity of the object *relative to the observer* is the sum of these velocity vectors, as indicated in [link] and [link]. These situations are only two of many in which it is useful to add velocities. In this module,

we first re-examine how to add velocities and then consider certain aspects of what relative velocity means.

How do we add velocities? Velocity is a vector (it has both magnitude and direction); the rules of **vector addition** discussed in <u>Vector Addition and Subtraction:</u> <u>Analytical Methods</u> and <u>Vector Addition and Subtraction:</u> <u>Analytical Methods</u> apply to the addition of velocities, just as they do for any other vectors. In one-dimensional motion, the addition of velocities is simple—they add like ordinary numbers. For example, if a field hockey player is moving at 5 m/s straight toward the goal and drives the ball in the same direction with a velocity of 30 m/s relative to her body, then the velocity of the ball is 35 m/s relative to the stationary, profusely sweating goalkeeper standing in front of the goal.

In two-dimensional motion, either graphical or analytical techniques can be used to add velocities. We will concentrate on analytical techniques. The following equations give the relationships between the magnitude and direction of velocity (v and θ) and its components (v_x and v_y) along the x- and y-axes of an appropriately chosen coordinate system:

Equation:

$$v_x = v\cos\theta$$

Equation:

$$v_y = v \sin heta$$

Equation:

$$v=\sqrt{v_x^2+v_y^2}$$

Equation:

$$heta= an^{-1}(v_y/v_x).$$

The velocity, v, of an object traveling at an angle θ to the horizontal axis is the sum of component vectors \mathbf{v}_x and \mathbf{v}_y .

These equations are valid for any vectors and are adapted specifically for velocity. The first two equations are used to find the components of a velocity when its magnitude and direction are known. The last two are used to find the magnitude and direction of velocity when its components are known.

Note:

Take-Home Experiment: Relative Velocity of a Boat

Fill a bathtub half-full of water. Take a toy boat or some other object that floats in water. Unplug the drain so water starts to drain. Try pushing the boat from one side of the tub to the other and perpendicular to the flow of water. Which way do you need to push the boat so that it ends up immediately opposite? Compare the directions of the flow of water, heading of the boat, and actual velocity of the boat.

Example:

Adding Velocities: A Boat on a River

A boat attempts to travel straight across a river at a speed 0.75 m/s. The current in the river, however, flows at a speed of 1.20 m/s to the right. What is the total displacement of the boat relative to the shore?

Refer to [link], which shows a boat trying to go straight across the river. Let us calculate the magnitude and direction of the boat's velocity relative to an observer on the shore, \mathbf{v}_{tot} . The velocity of the boat, \mathbf{v}_{boat} , is 0.75 m/s in the y-direction relative to the river and the velocity of the river, $\mathbf{v}_{\text{river}}$, is 1.20 m/s to the right.

Strategy

We start by choosing a coordinate system with its x-axis parallel to the velocity of the river, as shown in [link]. Because the boat is directed straight toward the other shore, its velocity relative to the water is parallel to the y-axis and perpendicular to the velocity of the river. Thus, we can add the two velocities by using the equations $v_{\rm tot} = \sqrt{v_x^2 + v_y^2}$ and

$$heta= an^{-1}(v_y/v_x)$$
 directly.

Solution

The magnitude of the total velocity is

Equation:

$$v_{
m tot} = \sqrt{v_x^2 + v_y^2},$$

where

Equation:

$$v_x = v_{
m river} = 1.20~{
m m/s}$$

and

Equation:

$$v_y = v_{\rm boat} = 0.750 \; {\rm m/s}.$$

Thus,

Equation:

$$v_{
m tot} = \sqrt{(1.20~{
m m/s})^2 + (0.750~{
m m/s})^2}$$

yielding

Equation:

$$v_{\rm tot} = 1.42 \; {\rm m/s}.$$

The direction of the total velocity θ is given by:

Equation:

$$heta = an^{-1}(v_y/v_x) = an^{-1}(0.750/1.20).$$

This equation gives

Equation:

$$heta=32.0^{
m o}.$$

Discussion

Both the magnitude v and the direction θ of the total velocity are consistent with [link]. Note that because the velocity of the river is large compared

with the velocity of the boat, it is swept rapidly downstream. This result is evidenced by the small angle (only 32.0°) the total velocity has relative to the riverbank.

Example:

Calculating Velocity: Wind Velocity Causes an Airplane to Drift

Calculate the wind velocity for the situation shown in [link]. The plane is known to be moving at 45.0 m/s due north relative to the air mass, while its velocity relative to the ground (its total velocity) is 38.0 m/s in a direction 20.0° west of north.

An airplane is known to be heading north at 45.0 m/s, though its velocity relative to the ground is 38.0 m/s at an angle west of north. What is the speed and direction of the wind?

Strategy

In this problem, somewhat different from the previous example, we know the total velocity $\mathbf{v}_{\rm tot}$ and that it is the sum of two other velocities, $\mathbf{v}_{\rm w}$ (the wind) and $\mathbf{v}_{\rm p}$ (the plane relative to the air mass). The quantity $\mathbf{v}_{\rm p}$ is known, and we are asked to find $\mathbf{v}_{\rm w}$. None of the velocities are perpendicular, but it is possible to find their components along a common set of perpendicular axes. If we can find the components of $\mathbf{v}_{\rm w}$, then we can combine them to solve for its magnitude and direction. As shown in $[\underline{\text{link}}]$, we choose a coordinate system with its *x*-axis due east and its *y*-axis due north (parallel to $\mathbf{v}_{\rm p}$). (You may wish to look back at the discussion of the addition of vectors using perpendicular components in $\underline{\text{Vector Addition}}$ and $\underline{\text{Subtraction: Analytical Methods.}}$)

Solution

Because $\mathbf{v}_{\mathrm{tot}}$ is the vector sum of the \mathbf{v}_{w} and \mathbf{v}_{p} , its x- and y-components are the sums of the x- and y-components of the wind and plane velocities. Note that the plane only has vertical component of velocity so $v_{\mathrm{p}x}=0$ and $v_{\mathrm{p}y}=v_{\mathrm{p}}$. That is,

Equation:

$$v_{\mathrm{tot}x} = v_{\mathrm{w}x}$$

and

Equation:

$$v_{\mathrm{tot}y} = v_{\mathrm{w}y} + v_{\mathrm{p}}.$$

We can use the first of these two equations to find v_{wx} :

Equation:

$$v_{\mathrm wx} = v_{\mathrm{tot}x} = v_{\mathrm{tot}} \mathrm{cos}\ 110^{\mathrm o}.$$

Because $v_{
m tot}=38.0~{
m m/s}$ and $\cos 110^{
m o}=-0.342$ we have

Equation:

$$v_{\text{w}x} = (38.0 \text{ m/s})(-0.342) = -13 \text{ m/s}.$$

The minus sign indicates motion west which is consistent with the diagram.

Now, to find $v_{
m wy}$ we note that

Equation:

$$v_{\mathrm{tot}y} = v_{\mathrm{w}y} + v_{\mathrm{p}}$$

Here $v_{\mathrm{tot}y} = v_{\mathrm{tot}} \sin 110^{\circ}$; thus,

Equation:

$$v_{\rm w} = (38.0 \ {\rm m/s})(0.940) - 45.0 \ {\rm m/s} = -9.29 \ {\rm m/s}.$$

This minus sign indicates motion south which is consistent with the diagram.

Now that the perpendicular components of the wind velocity $v_{\rm w}x$ and $v_{\rm w}y$ are known, we can find the magnitude and direction of ${\bf v}_{\rm w}$. First, the magnitude is

Equation:

$$egin{array}{lcl} v_{
m w} &=& \sqrt{v_{
m w}^2 + v_{
m w}^2} \ &=& \sqrt{(-13.0\ {
m m/s})^2 + (-9.29\ {
m m/s})^2} \end{array}$$

so that

Equation:

$$v_{
m w}=16.0~{
m m/s}.$$

The direction is:

Equation:

$$heta = an^{-1}(v_{\mathrm wy}/v_{\mathrm wx}) = an^{-1}(-9.29/-13.0)$$

giving

Equation:

$$heta=35.6^{
m o}.$$

Discussion

The wind's speed and direction are consistent with the significant effect the wind has on the total velocity of the plane, as seen in [link]. Because the

plane is fighting a strong combination of crosswind and head-wind, it ends up with a total velocity significantly less than its velocity relative to the air mass as well as heading in a different direction.

Note that in both of the last two examples, we were able to make the mathematics easier by choosing a coordinate system with one axis parallel to one of the velocities. We will repeatedly find that choosing an appropriate coordinate system makes problem solving easier. For example, in projectile motion we always use a coordinate system with one axis parallel to gravity.

Relative Velocities and Classical Relativity

When adding velocities, we have been careful to specify that the *velocity is relative to some reference frame*. These velocities are called **relative velocities**. For example, the velocity of an airplane relative to an air mass is different from its velocity relative to the ground. Both are quite different from the velocity of an airplane relative to its passengers (which should be close to zero). Relative velocities are one aspect of **relativity**, which is defined to be the study of how different observers moving relative to each other measure the same phenomenon.

Nearly everyone has heard of relativity and immediately associates it with Albert Einstein (1879–1955), the greatest physicist of the 20th century. Einstein revolutionized our view of nature with his *modern* theory of relativity, which we shall study in later chapters. The relative velocities in this section are actually aspects of classical relativity, first discussed correctly by Galileo and Isaac Newton. **Classical relativity** is limited to situations where speeds are less than about 1% of the speed of light—that is, less than 3,000 km/s. Most things we encounter in daily life move slower than this speed.

Let us consider an example of what two different observers see in a situation analyzed long ago by Galileo. Suppose a sailor at the top of a mast on a moving ship drops his binoculars. Where will it hit the deck? Will it hit

at the base of the mast, or will it hit behind the mast because the ship is moving forward? The answer is that if air resistance is negligible, the binoculars will hit at the base of the mast at a point directly below its point of release. Now let us consider what two different observers see when the binoculars drop. One observer is on the ship and the other on shore. The binoculars have no horizontal velocity relative to the observer on the ship, and so he sees them fall straight down the mast. (See [link].) To the observer on shore, the binoculars and the ship have the *same* horizontal velocity, so both move the same distance forward while the binoculars are falling. This observer sees the curved path shown in [link]. Although the paths look different to the different observers, each sees the same result—the binoculars hit at the base of the mast and not behind it. To get the correct description, it is crucial to correctly specify the velocities relative to the observer.

Classical relativity. The same motion as viewed by two different observers. An observer on the moving ship sees the binoculars dropped from the top of its mast fall straight down. An observer on shore sees the binoculars take the curved path,

moving forward with the ship.
Both observers see the
binoculars strike the deck at the
base of the mast. The initial
horizontal velocity is different
relative to the two observers.
(The ship is shown moving
rather fast to emphasize the
effect.)

Example:

Calculating Relative Velocity: An Airline Passenger Drops a Coin

An airline passenger drops a coin while the plane is moving at 260 m/s. What is the velocity of the coin when it strikes the floor 1.50 m below its point of release: (a) Measured relative to the plane? (b) Measured relative to the Earth?

The motion of

a coin dropped inside an airplane as viewed by two different observers. (a) An observer in the plane sees the coin fall straight down. (b) An observer on the ground sees the coin move almost horizontally.

Strategy

Both problems can be solved with the techniques for falling objects and projectiles. In part (a), the initial velocity of the coin is zero relative to the plane, so the motion is that of a falling object (one-dimensional). In part (b), the initial velocity is 260 m/s horizontal relative to the Earth and gravity is vertical, so this motion is a projectile motion. In both parts, it is best to use a coordinate system with vertical and horizontal axes.

Solution for (a)

Using the given information, we note that the initial velocity and position are zero, and the final position is 1.50 m. The final velocity can be found using the equation:

Equation:

$${v_y}^2 = {v_{0y}}^2 - 2g(y - y_0).$$

Substituting known values into the equation, we get

Equation:

$$v_y^2 = 0^2 - 2(9.80 \text{ m/s}^2)(-1.50 \text{ m} - 0 \text{ m}) = 29.4 \text{ m}^2/\text{s}^2$$

yielding

Equation:

$$v_y = -5.42 \; {
m m/s}.$$

We know that the square root of 29.4 has two roots: 5.42 and -5.42. We choose the negative root because we know that the velocity is directed downwards, and we have defined the positive direction to be upwards. There is no initial horizontal velocity relative to the plane and no horizontal acceleration, and so the motion is straight down relative to the plane.

Solution for (b)

Because the initial vertical velocity is zero relative to the ground and vertical motion is independent of horizontal motion, the final vertical velocity for the coin relative to the ground is $v_y = -5.42 \, \mathrm{m/s}$, the same as found in part (a). In contrast to part (a), there now is a horizontal component of the velocity. However, since there is no horizontal acceleration, the initial and final horizontal velocities are the same and $v_x = 260 \, \mathrm{m/s}$. The x- and y-components of velocity can be combined to find the magnitude of the final velocity:

Equation:

$$v = \sqrt{{v_x}^2 + {v_y}^2}.$$

Thus,

Equation:

$$v = \sqrt{(260 \ {
m m/s})^2 + (-5.42 \ {
m m/s})^2}$$

yielding

Equation:

$$v = 260.06 \text{ m/s}.$$

The direction is given by:

Equation:

$$heta = an^{-1}(v_y/v_x) = an^{-1}(-5.42/260)$$

so that

Equation:

$$\theta = \tan^{-1}(-0.0208) = -1.19^{\circ}.$$

Discussion

In part (a), the final velocity relative to the plane is the same as it would be if the coin were dropped from rest on the Earth and fell 1.50 m. This result fits our experience; objects in a plane fall the same way when the plane is flying horizontally as when it is at rest on the ground. This result is also true in moving cars. In part (b), an observer on the ground sees a much different motion for the coin. The plane is moving so fast horizontally to begin with that its final velocity is barely greater than the initial velocity. Once again, we see that in two dimensions, vectors do not add like ordinary numbers—the final velocity v in part (b) is *not* (260 - 5.42) m/s; rather, it is 260.06 m/s. The velocity's magnitude had to be calculated to five digits to see any difference from that of the airplane. The motions as seen by different observers (one in the plane and one on the ground) in this example are analogous to those discussed for the binoculars dropped from the mast of a moving ship, except that the velocity of the plane is much larger, so that the two observers see *very* different paths. (See [link].) In addition, both observers see the coin fall 1.50 m vertically, but the one on the ground also sees it move forward 144 m (this calculation is left for the reader). Thus, one observer sees a vertical path, the other a nearly horizontal path.

Note:

Making Connections: Relativity and Einstein

Because Einstein was able to clearly define how measurements are made (some involve light) and because the speed of light is the same for all

observers, the outcomes are spectacularly unexpected. Time varies with observer, energy is stored as increased mass, and more surprises await.

Note:

PhET Explorations: Motion in 2D

Try the new "Motion in 2D" simulation for the latest updated version. Learn about position, velocity, and acceleration vectors. Move the ball with the mouse or let the simulation move the ball in four types of motion (2 types of linear, simple harmonic, circle).

Motio n in 2D

Summary

• Velocities in two dimensions are added using the same analytical vector techniques, which are rewritten as

Equation:

$$v_x = v \cos \theta$$

Equation:

$$v_y = v \sin \theta$$

Equation:

$$v = \sqrt{v_x^2 + v_y^2}$$

Equation:

$$heta= an^{-1}(v_y/v_x).$$

- Relative velocity is the velocity of an object as observed from a particular reference frame, and it varies dramatically with reference frame.
- **Relativity** is the study of how different observers measure the same phenomenon, particularly when the observers move relative to one another. **Classical relativity** is limited to situations where speed is less than about 1% of the speed of light (3000 km/s).

Conceptual Questions

Exercise:

Problem:

What frame or frames of reference do you instinctively use when driving a car? When flying in a commercial jet airplane?

Exercise:

Problem:

A basketball player dribbling down the court usually keeps his eyes fixed on the players around him. He is moving fast. Why doesn't he need to keep his eyes on the ball?

Exercise:

Problem:

If someone is riding in the back of a pickup truck and throws a softball straight backward, is it possible for the ball to fall straight down as viewed by a person standing at the side of the road? Under what condition would this occur? How would the motion of the ball appear to the person who threw it?

Exercise:

Problem:

The hat of a jogger running at constant velocity falls off the back of his head. Draw a sketch showing the path of the hat in the jogger's frame of reference. Draw its path as viewed by a stationary observer.

Exercise:

Problem:

A clod of dirt falls from the bed of a moving truck. It strikes the ground directly below the end of the truck. What is the direction of its velocity relative to the truck just before it hits? Is this the same as the direction of its velocity relative to ground just before it hits? Explain your answers.

Problems & Exercises

Exercise:

Problem:

Bryan Allen pedaled a human-powered aircraft across the English Channel from the cliffs of Dover to Cap Gris-Nez on June 12, 1979. (a) He flew for 169 min at an average velocity of 3.53 m/s in a direction 45° south of east. What was his total displacement? (b) Allen encountered a headwind averaging 2.00 m/s almost precisely in the opposite direction of his motion relative to the Earth. What was his average velocity relative to the air? (c) What was his total displacement relative to the air mass?

Solution:

- (a) 35.8 km, 45° south of east
- (b) 5.53 m/s, 45° south of east

(c) 56.1 km, 45° south of east

Exercise:

Problem:

A seagull flies at a velocity of 9.00 m/s straight into the wind. (a) If it takes the bird 20.0 min to travel 6.00 km relative to the Earth, what is the velocity of the wind? (b) If the bird turns around and flies with the wind, how long will he take to return 6.00 km? (c) Discuss how the wind affects the total round-trip time compared to what it would be with no wind.

Exercise:

Problem:

Near the end of a marathon race, the first two runners are separated by a distance of 45.0 m. The front runner has a velocity of 3.50 m/s, and the second a velocity of 4.20 m/s. (a) What is the velocity of the second runner relative to the first? (b) If the front runner is 250 m from the finish line, who will win the race, assuming they run at constant velocity? (c) What distance ahead will the winner be when she crosses the finish line?

Solution:

- (a) 0.70 m/s faster
- (b) Second runner wins
- (c) 4.17 m

Exercise:

Problem:

Verify that the coin dropped by the airline passenger in the [link] travels 144 m horizontally while falling 1.50 m in the frame of reference of the Earth.

A football quarterback is moving straight backward at a speed of 2.00 m/s when he throws a pass to a player 18.0 m straight downfield. The ball is thrown at an angle of 25.0° relative to the ground and is caught at the same height as it is released. What is the initial velocity of the ball *relative to the quarterback*?

Solution:

 $17.0 \text{ m/s}, 22.1^{\circ}$

Exercise:

Problem:

A ship sets sail from Rotterdam, The Netherlands, heading due north at 7.00 m/s relative to the water. The local ocean current is 1.50 m/s in a direction 40.0° north of east. What is the velocity of the ship relative to the Earth?

Exercise:

Problem:

(a) A jet airplane flying from Darwin, Australia, has an air speed of 260 m/s in a direction 5.0° south of west. It is in the jet stream, which is blowing at 35.0 m/s in a direction 15° south of east. What is the velocity of the airplane relative to the Earth? (b) Discuss whether your answers are consistent with your expectations for the effect of the wind on the plane's path.

Solution:

- (a) 230 m/s, 8.0° south of west
- (b) The wind should make the plane travel slower and more to the south, which is what was calculated.

(a) In what direction would the ship in [link] have to travel in order to have a velocity straight north relative to the Earth, assuming its speed relative to the water remains $7.00 \, \mathrm{m/s?}$ (b) What would its speed be relative to the Earth?

Exercise:

Problem:

(a) Another airplane is flying in a jet stream that is blowing at 45.0 m/s in a direction 20° south of east (as in [link]). Its direction of motion relative to the Earth is 45.0° south of west, while its direction of travel relative to the air is 5.00° south of west. What is the airplane's speed relative to the air mass? (b) What is the airplane's speed relative to the Earth?

Solution:

- (a) 63.5 m/s
- (b) 29.6 m/s

Exercise:

Problem:

A sandal is dropped from the top of a 15.0-m-high mast on a ship moving at 1.75 m/s due south. Calculate the velocity of the sandal when it hits the deck of the ship: (a) relative to the ship and (b) relative to a stationary observer on shore. (c) Discuss how the answers give a consistent result for the position at which the sandal hits the deck.

The velocity of the wind relative to the water is crucial to sailboats. Suppose a sailboat is in an ocean current that has a velocity of 2.20 m/s in a direction 30.0° east of north relative to the Earth. It encounters a wind that has a velocity of 4.50 m/s in a direction of 50.0° south of west relative to the Earth. What is the velocity of the wind relative to the water?

Solution:

 $6.68 \text{ m/s}, 53.3^{\circ} \text{ south of west}$

Exercise:

Problem:

The great astronomer Edwin Hubble discovered that all distant galaxies are receding from our Milky Way Galaxy with velocities proportional to their distances. It appears to an observer on the Earth that we are at the center of an expanding universe. [link] illustrates this for five galaxies lying along a straight line, with the Milky Way Galaxy at the center. Using the data from the figure, calculate the velocities: (a) relative to galaxy 2 and (b) relative to galaxy 5. The results mean that observers on all galaxies will see themselves at the center of the expanding universe, and they would likely be aware of relative velocities, concluding that it is not possible to locate the center of expansion with the given information.

Five galaxies on a straight line, showing their distances and velocities relative to the Milky Way (MW) Galaxy. The distances are in millions of light years (Mly), where a light year is the distance light

travels in one year. The velocities are nearly proportional to the distances. The sizes of the galaxies are greatly exaggerated; an average galaxy is about 0.1 Mly across.

Exercise:

Problem:

- (a) Use the distance and velocity data in [link] to find the rate of expansion as a function of distance.
- (b) If you extrapolate back in time, how long ago would all of the galaxies have been at approximately the same position? The two parts of this problem give you some idea of how the Hubble constant for universal expansion and the time back to the Big Bang are determined, respectively.

Solution:

(a)
$$H_{
m average}=14.9rac{
m km/s}{
m Mly}$$

(b) 20.2 billion years

Exercise:

Problem:

An athlete crosses a 25-m-wide river by swimming perpendicular to the water current at a speed of 0.5 m/s relative to the water. He reaches the opposite side at a distance 40 m downstream from his starting point. How fast is the water in the river flowing with respect to the ground? What is the speed of the swimmer with respect to a friend at rest on the ground?

A ship sailing in the Gulf Stream is heading 25.0° west of north at a speed of 4.00 m/s relative to the water. Its velocity relative to the Earth is 4.80 m/s 5.00° west of north. What is the velocity of the Gulf Stream? (The velocity obtained is typical for the Gulf Stream a few hundred kilometers off the east coast of the United States.)

Solution:

 $1.72 \text{ m/s}, 42.3^{\circ}$ north of east

Exercise:

Problem:

An ice hockey player is moving at 8.00 m/s when he hits the puck toward the goal. The speed of the puck relative to the player is 29.0 m/s. The line between the center of the goal and the player makes a 90.0° angle relative to his path as shown in [link]. What angle must the puck's velocity make relative to the player (in his frame of reference) to hit the center of the goal?

An ice hockey player moving across the rink must shoot backward to give the puck a velocity toward the goal.

Unreasonable Results Suppose you wish to shoot supplies straight up to astronauts in an orbit 36,000 km above the surface of the Earth. (a) At what velocity must the supplies be launched? (b) What is unreasonable about this velocity? (c) Is there a problem with the relative velocity between the supplies and the astronauts when the supplies reach their maximum height? (d) Is the premise unreasonable or is the available equation inapplicable? Explain your answer.

Exercise:

Problem:

Unreasonable Results A commercial airplane has an air speed of 280 m/s due east and flies with a strong tailwind. It travels 3000 km in a direction 5° south of east in 1.50 h. (a) What was the velocity of the plane relative to the ground? (b) Calculate the magnitude and direction of the tailwind's velocity. (c) What is unreasonable about both of these velocities? (d) Which premise is unreasonable?

Exercise:

Problem:

Construct Your Own Problem Consider an airplane headed for a runway in a cross wind. Construct a problem in which you calculate the angle the airplane must fly relative to the air mass in order to have a velocity parallel to the runway. Among the things to consider are the direction of the runway, the wind speed and direction (its velocity) and the speed of the plane relative to the air mass. Also calculate the speed of the airplane relative to the ground. Discuss any last minute maneuvers the pilot might have to perform in order for the plane to land with its wheels pointing straight down the runway.

Glossary

classical relativity

the study of relative velocities in situations where speeds are less than about 1% of the speed of light—that is, less than 3000 km/s

relative velocity

the velocity of an object as observed from a particular reference frame

relativity

the study of how different observers moving relative to each other measure the same phenomenon

velocity

speed in a given direction

vector addition

the rules that apply to adding vectors together

Introduction to Dynamics: Newton's Laws of Motion class="introduction"

Newton's laws of motion describe the motion of the dolphin's path. (credit: Jin Jang)

Motion draws our attention. Motion itself can be beautiful, causing us to marvel at the forces needed to achieve spectacular motion, such as that of a

dolphin jumping out of the water, or a pole vaulter, or the flight of a bird, or the orbit of a satellite. The study of motion is kinematics, but kinematics only *describes* the way objects move—their velocity and their acceleration. **Dynamics** considers the forces that affect the motion of moving objects and systems. Newton's laws of motion are the foundation of dynamics. These laws provide an example of the breadth and simplicity of principles under which nature functions. They are also universal laws in that they apply to similar situations on Earth as well as in space.

Isaac Newton's (1642–1727) laws of motion were just one part of the monumental work that has made him legendary. The development of Newton's laws marks the transition from the Renaissance into the modern era. This transition was characterized by a revolutionary change in the way people thought about the physical universe. For many centuries natural philosophers had debated the nature of the universe based largely on certain rules of logic with great weight given to the thoughts of earlier classical philosophers such as Aristotle (384–322 BC). Among the many great thinkers who contributed to this change were Newton and Galileo.

Isaac Newton's monumental work, *Philosophiae Naturalis Principia Mathematica*, was published in 1687. It proposed scientific

laws that are still
used today to
describe the motion
of objects. (credit:
Service commun de
la documentation de
l'Université de
Strasbourg)

Galileo was instrumental in establishing *observation* as the absolute determinant of truth, rather than "logical" argument. Galileo's use of the telescope was his most notable achievement in demonstrating the importance of observation. He discovered moons orbiting Jupiter and made other observations that were inconsistent with certain ancient ideas and religious dogma. For this reason, and because of the manner in which he dealt with those in authority, Galileo was tried by the Inquisition and punished. He spent the final years of his life under a form of house arrest. Because others before Galileo had also made discoveries by *observing* the nature of the universe, and because repeated observations verified those of Galileo, his work could not be suppressed or denied. After his death, his work was verified by others, and his ideas were eventually accepted by the church and scientific communities.

Galileo also contributed to the formation of what is now called Newton's first law of motion. Newton made use of the work of his predecessors, which enabled him to develop laws of motion, discover the law of gravity, invent calculus, and make great contributions to the theories of light and color. It is amazing that many of these developments were made with Newton working alone, without the benefit of the usual interactions that take place among scientists today.

It was not until the advent of modern physics early in the 20th century that it was discovered that Newton's laws of motion produce a good approximation to motion only when the objects are moving at speeds much, much less than the speed of light and when those objects are larger than the

size of most molecules (about 10^{-9} m in diameter). These constraints define the realm of classical mechanics, as discussed in <u>Introduction to the Nature of Science and Physics</u>. At the beginning of the 20^{th} century, Albert Einstein (1879–1955) developed the theory of relativity and, along with many other scientists, developed quantum theory. This theory does not have the constraints present in classical physics. All of the situations we consider in this chapter, and all those preceding the introduction of relativity in <u>Special Relativity</u>, are in the realm of classical physics.

Note:

Making Connections: Past and Present Philosophy

The importance of observation and the concept of cause and effect were not always so entrenched in human thinking. This realization was a part of the evolution of modern physics from natural philosophy. The achievements of Galileo, Newton, Einstein, and others were key milestones in the history of scientific thought. Most of the scientific theories that are described in this book descended from the work of these scientists.

Development of Force Concept

• Understand the definition of force.

Dynamics is the study of the forces that cause objects and systems to move. To understand this, we need a working definition of force. Our intuitive definition of **force**—that is, a push or a pull—is a good place to start. We know that a push or pull has both magnitude and direction (therefore, it is a vector quantity) and can vary considerably in each regard. For example, a cannon exerts a strong force on a cannonball that is launched into the air. In contrast, Earth exerts only a tiny downward pull on a flea. Our everyday experiences also give us a good idea of how multiple forces add. If two people push in different directions on a third person, as illustrated in [link], we might expect the total force to be in the direction shown. Since force is a vector, it adds just like other vectors, as illustrated in [link](a) for two ice skaters. Forces, like other vectors, are represented by arrows and can be added using the familiar head-to-tail method or by trigonometric methods. These ideas were developed in Two-Dimensional Kinematics.

Part (a) shows an overhead view of two ice skaters pushing on a third. Forces are vectors and add like other vectors, so the total force on the third skater is in the direction shown. In part (b), we see a free-body diagram representing the forces acting on the third skater.

[link](b) is our first example of a **free-body diagram**, which is a technique used to illustrate all the **external forces** acting on a body. The body is represented by a single isolated point (or free body), and only those forces acting *on* the body from the outside (external forces) are shown. (These forces are the only ones shown, because only external forces acting on the body affect its motion. We can ignore any internal forces within the body.) Free-body diagrams are very useful in analyzing forces acting on a system and are employed extensively in the study and application of Newton's laws of motion.

A more quantitative definition of force can be based on some standard force, just as distance is measured in units relative to a standard distance. One possibility is to stretch a spring a certain fixed distance, as illustrated in [link], and use the force it exerts to pull itself back to its relaxed shape—called a *restoring force*—as a standard. The magnitude of all other forces can be stated as multiples of this standard unit of force. Many other possibilities exist for standard forces. (One that we will encounter in Magnetism is the magnetic force between two wires carrying electric current.) Some alternative definitions of force will be given later in this chapter.

The force exerted by a stretched spring can be used as a standard unit of force. (a) This spring has a length x when undistorted. (b) When stretched a distance Δx , the spring exerts a restoring force, $\mathbf{F}_{\text{restore}}$, which is reproducible. (c) A spring scale is one device that uses a spring to measure force. The force $\mathbf{F}_{\text{restore}}$ is exerted on whatever is attached to the hook. Here $\mathbf{F}_{\text{restore}}$ has a

magnitude of 6 units in the force standard being employed.

Note:

Take-Home Experiment: Force Standards

To investigate force standards and cause and effect, get two identical rubber bands. Hang one rubber band vertically on a hook. Find a small household item that could be attached to the rubber band using a paper clip, and use this item as a weight to investigate the stretch of the rubber band. Measure the amount of stretch produced in the rubber band with one, two, and four of these (identical) items suspended from the rubber band. What is the relationship between the number of items and the amount of stretch? How large a stretch would you expect for the same number of items suspended from two rubber bands? What happens to the amount of stretch of the rubber band (with the weights attached) if the weights are also pushed to the side with a pencil?

Section Summary

- **Dynamics** is the study of how forces affect the motion of objects.
- **Force** is a push or pull that can be defined in terms of various standards, and it is a vector having both magnitude and direction.
- External forces are any outside forces that act on a body. A free-body diagram is a drawing of all external forces acting on a body.

Conceptual Questions

Propose a force standard different from the example of a stretched spring discussed in the text. Your standard must be capable of producing the same force repeatedly.

Exercise:

Problem:

What properties do forces have that allow us to classify them as vectors?

Glossary

dynamics

the study of how forces affect the motion of objects and systems

external force

a force acting on an object or system that originates outside of the object or system

free-body diagram

a sketch showing all of the external forces acting on an object or system; the system is represented by a dot, and the forces are represented by vectors extending outward from the dot

force

a push or pull on an object with a specific magnitude and direction; can be represented by vectors; can be expressed as a multiple of a standard force

Newton's First Law of Motion: Inertia

- Define mass and inertia.
- Understand Newton's first law of motion.

Experience suggests that an object at rest will remain at rest if left alone, and that an object in motion tends to slow down and stop unless some effort is made to keep it moving. What **Newton's first law of motion** states, however, is the following:

Note:

Newton's First Law of Motion

A body at rest remains at rest, or, if in motion, remains in motion at a constant velocity unless acted on by a net external force.

Note the repeated use of the verb "remains." We can think of this law as preserving the status quo of motion.

Rather than contradicting our experience, **Newton's first law of motion** states that there must be a *cause* (which is a net external force) *for there to be any change in velocity (either a change in magnitude or direction)*. We will define *net external force* in the next section. An object sliding across a table or floor slows down due to the net force of friction acting on the object. If friction disappeared, would the object still slow down?

The idea of cause and effect is crucial in accurately describing what happens in various situations. For example, consider what happens to an object sliding along a rough horizontal surface. The object quickly grinds to a halt. If we spray the surface with talcum powder to make the surface smoother, the object slides farther. If we make the surface even smoother by rubbing lubricating oil on it, the object slides farther yet. Extrapolating to a frictionless surface, we can imagine the object sliding in a straight line indefinitely. Friction is thus the *cause* of the slowing (consistent with Newton's first law). The object would not slow down at all if friction were

completely eliminated. Consider an air hockey table. When the air is turned off, the puck slides only a short distance before friction slows it to a stop. However, when the air is turned on, it creates a nearly frictionless surface, and the puck glides long distances without slowing down. Additionally, if we know enough about the friction, we can accurately predict how quickly the object will slow down. Friction is an external force.

Newton's first law is completely general and can be applied to anything from an object sliding on a table to a satellite in orbit to blood pumped from the heart. Experiments have thoroughly verified that any change in velocity (speed or direction) must be caused by an external force. The idea of *generally applicable or universal laws* is important not only here—it is a basic feature of all laws of physics. Identifying these laws is like recognizing patterns in nature from which further patterns can be discovered. The genius of Galileo, who first developed the idea for the first law, and Newton, who clarified it, was to ask the fundamental question, "What is the cause?" Thinking in terms of cause and effect is a worldview fundamentally different from the typical ancient Greek approach when questions such as "Why does a tiger have stripes?" would have been answered in Aristotelian fashion, "That is the nature of the beast." True perhaps, but not a useful insight.

Mass

The property of a body to remain at rest or to remain in motion with constant velocity is called **inertia**. Newton's first law is often called the **law of inertia**. As we know from experience, some objects have more inertia than others. It is obviously more difficult to change the motion of a large boulder than that of a basketball, for example. The inertia of an object is measured by its **mass**. Roughly speaking, mass is a measure of the amount of "stuff" (or matter) in something. The quantity or amount of matter in an object is determined by the numbers of atoms and molecules of various types it contains. Unlike weight, mass does not vary with location. The mass of an object is the same on Earth, in orbit, or on the surface of the Moon. In practice, it is very difficult to count and identify all of the atoms and molecules in an object, so masses are not often determined in this

manner. Operationally, the masses of objects are determined by comparison with the standard kilogram.

Exercise:

Check Your Understanding

Problem:

Which has more mass: a kilogram of cotton balls or a kilogram of gold?

Solution:

Answer

They are equal. A kilogram of one substance is equal in mass to a kilogram of another substance. The quantities that might differ between them are volume and density.

Section Summary

- **Newton's first law of motion** states that a body at rest remains at rest, or, if in motion, remains in motion at a constant velocity unless acted on by a net external force. This is also known as the **law of inertia**.
- **Inertia** is the tendency of an object to remain at rest or remain in motion. Inertia is related to an object's mass.
- **Mass** is the quantity of matter in a substance.

Conceptual Questions

Exercise:

Problem: How are inertia and mass related?

Exercise:

Problem:

What is the relationship between weight and mass? Which is an intrinsic, unchanging property of a body?

Glossary

inertia

the tendency of an object to remain at rest or remain in motion

law of inertia

see Newton's first law of motion

mass

the quantity of matter in a substance; measured in kilograms

Newton's first law of motion

a body at rest remains at rest, or, if in motion, remains in motion at a constant velocity unless acted on by a net external force; also known as the law of inertia

Newton's Second Law of Motion: Concept of a System

- Define net force, external force, and system.
- Understand Newton's second law of motion.
- Apply Newton's second law to determine the weight of an object.

Newton's second law of motion is closely related to Newton's first law of motion. It mathematically states the cause and effect relationship between force and changes in motion. Newton's second law of motion is more quantitative and is used extensively to calculate what happens in situations involving a force. Before we can write down Newton's second law as a simple equation giving the exact relationship of force, mass, and acceleration, we need to sharpen some ideas that have already been mentioned.

First, what do we mean by a change in motion? The answer is that a change in motion is equivalent to a change in velocity. A change in velocity means, by definition, that there is an **acceleration**. Newton's first law says that a net external force causes a change in motion; thus, we see that a *net* external force causes acceleration.

Another question immediately arises. What do we mean by an external force? An intuitive notion of external is correct—an **external force** acts from outside the **system** of interest. For example, in [link](a) the system of interest is the wagon plus the child in it. The two forces exerted by the other children are external forces. An internal force acts between elements of the system. Again looking at [link](a), the force the child in the wagon exerts to hang onto the wagon is an internal force between elements of the system of interest. Only external forces affect the motion of a system, according to Newton's first law. (The internal forces actually cancel, as we shall see in the next section.) You must define the boundaries of the system before you can determine which forces are external. Sometimes the system is obvious, whereas other times identifying the boundaries of a system is more subtle. The concept of a system is fundamental to many areas of physics, as is the correct application of Newton's laws. This concept will be revisited many times on our journey through physics.

Different forces exerted on the same mass produce different accelerations. (a) Two children push a wagon with a child in it. Arrows representing all external forces are shown. The system of interest is the wagon and its rider. The weight **w** of the system and the support of the ground N are also shown for completeness and are assumed to cancel. The vector \mathbf{f} represents the friction acting on the wagon, and it acts to the left, opposing the motion of the wagon. (b) All of the external forces acting on the system add together to produce a net force, \mathbf{F}_{net} . The free-body diagram shows all of the forces acting on the system of interest. The dot represents the center of mass of the system. Each force vector extends from this dot. Because there are two forces acting to the right, we draw the vectors collinearly. (c) A larger net external force produces a larger

acceleration $(\mathbf{a}\prime > \mathbf{a})$ when an adult pushes the child.

Now, it seems reasonable that acceleration should be directly proportional to and in the same direction as the net (total) external force acting on a system. This assumption has been verified experimentally and is illustrated in [link]. In part (a), a smaller force causes a smaller acceleration than the larger force illustrated in part (c). For completeness, the vertical forces are also shown; they are assumed to cancel since there is no acceleration in the vertical direction. The vertical forces are the weight ${\bf w}$ and the support of the ground ${\bf N}$, and the horizontal force ${\bf f}$ represents the force of friction. These will be discussed in more detail in later sections. For now, we will define **friction** as a force that opposes the motion past each other of objects that are touching. [link](b) shows how vectors representing the external forces add together to produce a net force, ${\bf F}_{\rm net}$.

To obtain an equation for Newton's second law, we first write the relationship of acceleration and net external force as the proportionality **Equation:**

$$\mathbf{a} \propto \mathbf{F}_{\mathrm{net}},$$

where the symbol \propto means "proportional to," and $\mathbf{F}_{\mathrm{net}}$ is the **net external force**. (The net external force is the vector sum of all external forces and can be determined graphically, using the head-to-tail method, or analytically, using components. The techniques are the same as for the addition of other vectors, and are covered in <u>Two-Dimensional Kinematics</u>.) This proportionality states what we have said in words—*acceleration is directly proportional to the net external force*. Once the system of interest is chosen, it is important to identify the external forces and ignore the internal ones. It is a tremendous simplification not to have to consider the numerous internal forces acting between objects within the system, such as muscular forces within the child's body, let alone the myriad of forces between atoms in the objects, but by doing so, we can easily solve some very complex problems with only minimal error due to our simplification

Now, it also seems reasonable that acceleration should be inversely proportional to the mass of the system. In other words, the larger the mass (the inertia), the smaller the acceleration produced by a given force. And indeed, as illustrated in [link], the same net external force applied to a car produces a much smaller acceleration than when applied to a basketball. The proportionality is written as

Equation:

$$\mathbf{a} \propto rac{1}{m}$$

where m is the mass of the system. Experiments have shown that acceleration is exactly inversely proportional to mass, just as it is exactly linearly proportional to the net external force.

The same force exerted on systems of different masses produces different accelerations. (a) A basketball player pushes on a basketball to make a pass. (The effect of gravity on the ball is ignored.) (b) The same player exerts an identical force on a stalled SUV and produces a far smaller acceleration (even if friction is negligible). (c) The free-body diagrams are identical, permitting direct comparison of the two situations. A series of patterns for the free-body diagram will emerge as you do more problems.

It has been found that the acceleration of an object depends *only* on the net external force and the mass of the object. Combining the two proportionalities just given yields Newton's second law of motion.

Note:

Newton's Second Law of Motion

The acceleration of a system is directly proportional to and in the same direction as the net external force acting on the system, and inversely proportional to its mass.

In equation form, Newton's second law of motion is

Equation:

$$\mathbf{a} = rac{\mathbf{F}_{ ext{net}}}{m}.$$

This is often written in the more familiar form

Equation:

$$\mathbf{F}_{\mathrm{net}}=m\mathbf{a}.$$

When only the magnitude of force and acceleration are considered, this equation is simply

Equation:

$$F_{
m net}={
m ma.}$$

Although these last two equations are really the same, the first gives more insight into what Newton's second law means. The law is a *cause and effect relationship* among three quantities that is not simply based on their definitions. The validity of the second law is completely based on experimental verification.

Units of Force

 ${f F}_{
m net}=m{f a}$ is used to define the units of force in terms of the three basic units for mass, length, and time. The SI unit of force is called the **newton** (abbreviated N) and is the force needed to accelerate a 1-kg system at the rate of $1{
m m/s}^2$. That is, since ${f F}_{
m net}=m{f a}$,

Equation:

$$1 N = 1 kg \cdot m/s^2.$$

While almost the entire world uses the newton for the unit of force, in the United States the most familiar unit of force is the pound (lb), where 1 N = 0.225 lb.

Weight and the Gravitational Force

When an object is dropped, it accelerates toward the center of Earth. Newton's second law states that a net force on an object is responsible for its acceleration. If air resistance is negligible, the net force on a falling object is the gravitational force, commonly called its **weight w**. Weight can be denoted as a vector \mathbf{w} because it has a direction; *down* is, by definition, the direction of gravity, and hence weight is a downward force. The magnitude of weight is denoted as w. Galileo was instrumental in showing that, in the absence of air resistance, all objects fall with the same acceleration g. Using Galileo's result and Newton's second law, we can derive an equation for weight.

Consider an object with mass m falling downward toward Earth. It experiences only the downward force of gravity, which has magnitude w. Newton's second law states that the magnitude of the net external force on an object is $F_{\rm net} = {\rm ma}$.

Since the object experiences only the downward force of gravity, $F_{\text{net}} = w$. We know that the acceleration of an object due to gravity is g, or a = g. Substituting these into Newton's second law gives

Note:

Weight

This is the equation for *weight*—the gravitational force on a mass m:

Equation:

$$w = mg$$
.

Since $g = 9.80 \text{ m/s}^2$ on Earth, the weight of a 1.0 kg object on Earth is 9.8 N, as we see:

Equation:

$$w = \text{mg} = (1.0 \text{ kg})(9.80 \text{ m/s}^2) = 9.8 \text{ N}.$$

Recall that g can take a positive or negative value, depending on the positive direction in the coordinate system. Be sure to take this into consideration when solving problems with weight.

When the net external force on an object is its weight, we say that it is in **free-fall**. That is, the only force acting on the object is the force of gravity. In the real world, when objects fall downward toward Earth, they are never truly in free-fall because there is always some upward force from the air acting on the object.

The acceleration due to gravity g varies slightly over the surface of Earth, so that the weight of an object depends on location and is not an intrinsic property of the object. Weight varies dramatically if one leaves Earth's surface. On the Moon, for example, the acceleration due to gravity is only $1.67~\mathrm{m/s}^2$. A 1.0-kg mass thus has a weight of $9.8~\mathrm{N}$ on Earth and only about $1.7~\mathrm{N}$ on the Moon.

The broadest definition of weight in this sense is that the weight of an object is the gravitational force on it from the nearest large body, such as Earth, the Moon, the Sun, and so on. This is the most common and useful definition of weight in physics. It differs dramatically, however, from the definition of weight used by NASA and the popular media in relation to space travel and exploration. When they speak of "weightlessness" and

"microgravity," they are really referring to the phenomenon we call "free-fall" in physics. We shall use the above definition of weight, and we will make careful distinctions between free-fall and actual weightlessness.

It is important to be aware that weight and mass are very different physical quantities, although they are closely related. Mass is the quantity of matter (how much "stuff") and does not vary in classical physics, whereas weight is the gravitational force and does vary depending on gravity. It is tempting to equate the two, since most of our examples take place on Earth, where the weight of an object only varies a little with the location of the object. Furthermore, the terms *mass* and *weight* are used interchangeably in everyday language; for example, our medical records often show our "weight" in kilograms, but never in the correct units of newtons.

Note:

Common Misconceptions: Mass vs. Weight

Mass and weight are often used interchangeably in everyday language. However, in science, these terms are distinctly different from one another. Mass is a measure of how much matter is in an object. The typical measure of mass is the kilogram (or the "slug" in English units). Weight, on the other hand, is a measure of the force of gravity acting on an object. Weight is equal to the mass of an object (m) multiplied by the acceleration due to gravity (g). Like any other force, weight is measured in terms of newtons (or pounds in English units).

Assuming the mass of an object is kept intact, it will remain the same, regardless of its location. However, because weight depends on the acceleration due to gravity, the weight of an object *can change* when the object enters into a region with stronger or weaker gravity. For example, the acceleration due to gravity on the Moon is $1.67~\mathrm{m/s^2}$ (which is much less than the acceleration due to gravity on Earth, $9.80~\mathrm{m/s^2}$). If you measured your weight on Earth and then measured your weight on the Moon, you would find that you "weigh" much less, even though you do not look any skinnier. This is because the force of gravity is weaker on the Moon. In fact, when people say that they are "losing weight," they really

mean that they are losing "mass" (which in turn causes them to weigh less).

Note:

Take-Home Experiment: Mass and Weight

What do bathroom scales measure? When you stand on a bathroom scale, what happens to the scale? It depresses slightly. The scale contains springs that compress in proportion to your weight—similar to rubber bands expanding when pulled. The springs provide a measure of your weight (for an object which is not accelerating). This is a force in newtons (or pounds). In most countries, the measurement is divided by 9.80 to give a reading in mass units of kilograms. The scale measures weight but is calibrated to provide information about mass. While standing on a bathroom scale, push down on a table next to you. What happens to the reading? Why? Would your scale measure the same "mass" on Earth as on the Moon?

Example:

What Acceleration Can a Person Produce when Pushing a Lawn Mower?

Suppose that the net external force (push minus friction) exerted on a lawn mower is 51 N (about 11 lb) parallel to the ground. The mass of the mower is 24 kg. What is its acceleration?

The net force on a lawn mower is 51

N to the right. At what rate does the lawn mower accelerate to the right?

Strategy

Since $\mathbf{F}_{\mathrm{net}}$ and m are given, the acceleration can be calculated directly from Newton's second law as stated in $\mathbf{F}_{\mathrm{net}} = m\mathbf{a}$.

Solution

The magnitude of the acceleration a is $a = \frac{F_{\text{net}}}{m}$. Entering known values gives

Equation:

$$a = \frac{51 \text{ N}}{24 \text{ kg}}$$

Substituting the units $kg \cdot m/s^2$ for N yields

Equation:

$$a = rac{51 \; ext{kg} \cdot ext{m/s}^2}{24 \; ext{kg}} = 2.1 \; ext{m/s}^2.$$

Discussion

The direction of the acceleration is the same direction as that of the net force, which is parallel to the ground. There is no information given in this example about the individual external forces acting on the system, but we can say something about their relative magnitudes. For example, the force exerted by the person pushing the mower must be greater than the friction opposing the motion (since we know the mower moves forward), and the vertical forces must cancel if there is to be no acceleration in the vertical direction (the mower is moving only horizontally). The acceleration found is small enough to be reasonable for a person pushing a mower. Such an effort would not last too long because the person's top speed would soon be reached.

Example:

What Rocket Thrust Accelerates This Sled?

Prior to manned space flights, rocket sleds were used to test aircraft, missile equipment, and physiological effects on human subjects at high speeds. They consisted of a platform that was mounted on one or two rails and propelled by several rockets. Calculate the magnitude of force exerted by each rocket, called its thrust \mathbf{T} , for the four-rocket propulsion system shown in [link]. The sled's initial acceleration is 49 m/s^2 , the mass of the system is 2100 kg, and the force of friction opposing the motion is known to be 650 N.

A sled experiences a rocket thrust that accelerates it to the right. Each rocket creates an identical thrust **T**. As in other situations where there is only horizontal acceleration, the vertical forces cancel. The ground exerts an upward force **N** on the system that is equal in magnitude and opposite in direction to its weight, **w**. The system here is the sled, its rockets, and rider, so none of the forces *between* these objects are considered. The arrow representing friction (**f**) is drawn larger than scale.

Strategy

Although there are forces acting vertically and horizontally, we assume the vertical forces cancel since there is no vertical acceleration. This leaves us with only horizontal forces and a simpler one-dimensional problem. Directions are indicated with plus or minus signs, with right taken as the positive direction. See the free-body diagram in the figure.

Solution

Since acceleration, mass, and the force of friction are given, we start with Newton's second law and look for ways to find the thrust of the engines. Since we have defined the direction of the force and acceleration as acting "to the right," we need to consider only the magnitudes of these quantities in the calculations. Hence we begin with

Equation:

$$F_{\rm net} = {
m ma}$$
,

where F_{net} is the net force along the horizontal direction. We can see from [link] that the engine thrusts add, while friction opposes the thrust. In equation form, the net external force is

Equation:

$$F_{\rm net} = 4T - f$$
.

Substituting this into Newton's second law gives

Equation:

$$F_{
m net} = {
m ma} = 4T - f.$$

Using a little algebra, we solve for the total thrust 4T:

Equation:

$$4T = \text{ma} + f$$
.

Substituting known values yields

Equation:

$$4T = \text{ma} + f = (2100 \text{ kg})(49 \text{ m/s}^2) + 650 \text{ N}.$$

So the total thrust is

Equation:

$$4T = 1.0 \times 10^5 \text{ N},$$

and the individual thrusts are

Equation:

$$T = rac{1.0 imes 10^5 ext{ N}}{4} = 2.6 imes 10^4 ext{ N}.$$

Discussion

The numbers are quite large, so the result might surprise you. Experiments such as this were performed in the early 1960s to test the limits of human endurance and the setup designed to protect human subjects in jet fighter emergency ejections. Speeds of 1000 km/h were obtained, with accelerations of 45 g's. (Recall that g, the acceleration due to gravity, is $9.80~\text{m/s}^2$. When we say that an acceleration is 45~g's, it is $45\times9.80~\text{m/s}^2$, which is approximately $440~\text{m/s}^2$.) While living subjects are not used any more, land speeds of 10,000 km/h have been obtained with rocket sleds. In this example, as in the preceding one, the system of interest is obvious. We will see in later examples that choosing the system of interest is crucial—and the choice is not always obvious.

Newton's second law of motion is more than a definition; it is a relationship among acceleration, force, and mass. It can help us make predictions. Each of those physical quantities can be defined independently, so the second law tells us something basic and universal about nature. The next section introduces the third and final law of motion.

Section Summary

- Acceleration, **a**, is defined as a change in velocity, meaning a change in its magnitude or direction, or both.
- An external force is one acting on a system from outside the system, as opposed to internal forces, which act between components within the

system.

- Newton's second law of motion states that the acceleration of a system is directly proportional to and in the same direction as the net external force acting on the system, and inversely proportional to its mass.
- In equation form, Newton's second law of motion is $\mathbf{a} = \frac{\mathbf{F}_{\text{net}}}{m}$.
- This is often written in the more familiar form: $\mathbf{F}_{\mathrm{net}} = m\mathbf{a}$.
- The weight **w** of an object is defined as the force of gravity acting on an object of mass *m*. The object experiences an acceleration due to gravity **g**:

Equation:

$$\mathbf{w} = m\mathbf{g}$$
.

- If the only force acting on an object is due to gravity, the object is in free fall.
- Friction is a force that opposes the motion past each other of objects that are touching.

Conceptual Questions

Exercise:

Problem:

Which statement is correct? (a) Net force causes motion. (b) Net force causes change in motion. Explain your answer and give an example.

Exercise:

Problem:

Why can we neglect forces such as those holding a body together when we apply Newton's second law of motion?

Explain how the choice of the "system of interest" affects which forces must be considered when applying Newton's second law of motion.

Exercise:

Problem:

Describe a situation in which the net external force on a system is not zero, yet its speed remains constant.

Exercise:

Problem:

A system can have a nonzero velocity while the net external force on it *is* zero. Describe such a situation.

Exercise:

Problem:

A rock is thrown straight up. What is the net external force acting on the rock when it is at the top of its trajectory?

Exercise:

Problem:

(a) Give an example of different net external forces acting on the same system to produce different accelerations. (b) Give an example of the same net external force acting on systems of different masses, producing different accelerations. (c) What law accurately describes both effects? State it in words and as an equation.

Exercise:

Problem:

If the acceleration of a system is zero, are no external forces acting on it? What about internal forces? Explain your answers.

If a constant, nonzero force is applied to an object, what can you say about the velocity and acceleration of the object?

Exercise:

Problem:

The gravitational force on the basketball in [link] is ignored. When gravity *is* taken into account, what is the direction of the net external force on the basketball—above horizontal, below horizontal, or still horizontal?

Problem Exercises

You may assume data taken from illustrations is accurate to three digits.

Exercise:

Problem:

A 63.0-kg sprinter starts a race with an acceleration of 4.20 m/s^2 . What is the net external force on him?

Solution:

265 N

Exercise:

Problem:

If the sprinter from the previous problem accelerates at that rate for 20 m, and then maintains that velocity for the remainder of the 100-m dash, what will be his time for the race?

A cleaner pushes a 4.50-kg laundry cart in such a way that the net external force on it is 60.0 N. Calculate the magnitude of its acceleration.

Solution:

 13.3 m/s^2

Exercise:

Problem:

Since astronauts in orbit are apparently weightless, a clever method of measuring their masses is needed to monitor their mass gains or losses to adjust diets. One way to do this is to exert a known force on an astronaut and measure the acceleration produced. Suppose a net external force of 50.0 N is exerted and the astronaut's acceleration is measured to be $0.893~\text{m/s}^2$. (a) Calculate her mass. (b) By exerting a force on the astronaut, the vehicle in which they orbit experiences an equal and opposite force. Discuss how this would affect the measurement of the astronaut's acceleration. Propose a method in which recoil of the vehicle is avoided.

Exercise:

Problem:

In [link], the net external force on the 24-kg mower is stated to be 51 N. If the force of friction opposing the motion is 24 N, what force F (in newtons) is the person exerting on the mower? Suppose the mower is moving at 1.5 m/s when the force F is removed. How far will the mower go before stopping?

The same rocket sled drawn in [link] is decelerated at a rate of 196 m/s^2 . What force is necessary to produce this deceleration? Assume that the rockets are off. The mass of the system is 2100 kg.

Exercise:

Problem:

(a) If the rocket sled shown in [link] starts with only one rocket burning, what is the magnitude of its acceleration? Assume that the mass of the system is 2100 kg, the thrust T is 2.4×10^4 N, and the force of friction opposing the motion is known to be 650 N. (b) Why is the acceleration not one-fourth of what it is with all rockets burning?

Solution:

- (a) 12 m/s^2 .
- (b) The acceleration is not one-fourth of what it was with all rockets burning because the frictional force is still as large as it was with all rockets burning.

Exercise:

Problem:

What is the deceleration of the rocket sled if it comes to rest in 1.1 s from a speed of 1000 km/h? (Such deceleration caused one test subject to black out and have temporary blindness.)

Exercise:

Problem:

Suppose two children push horizontally, but in exactly opposite directions, on a third child in a wagon. The first child exerts a force of 75.0 N, the second a force of 90.0 N, friction is 12.0 N, and the mass of the third child plus wagon is 23.0 kg. (a) What is the system of interest if the acceleration of the child in the wagon is to be calculated? (b) Draw a free-body diagram, including all forces acting on the system. (c) Calculate the acceleration. (d) What would the acceleration be if friction were 15.0 N?

Solution:

(a) The system is the child in the wagon plus the wagon.

(c) $a = 0.130 \text{ m/s}^2$ in the direction of the second child's push.

(d)
$$a = 0.00 \text{ m/s}^2$$

Exercise:

Problem:

A powerful motorcycle can produce an acceleration of $3.50~\mathrm{m/s}^2$ while traveling at 90.0 km/h. At that speed the forces resisting motion, including friction and air resistance, total 400 N. (Air resistance is analogous to air friction. It always opposes the motion of an object.) What is the magnitude of the force the motorcycle exerts backward on the ground to produce its acceleration if the mass of the motorcycle with rider is 245 kg?

Exercise:

Problem:

The rocket sled shown in [link] accelerates at a rate of 49.0 m/s^2 . Its passenger has a mass of 75.0 kg. (a) Calculate the horizontal component of the force the seat exerts against his body. Compare this with his weight by using a ratio. (b) Calculate the direction and magnitude of the total force the seat exerts against his body.

Solution:

- (a) $3.68 \times 10^3 \ \mathrm{N}$. This force is 5.00 times greater than his weight.
- (b) 3750 N; 11.3° above horizontal

Exercise:

Problem:

Repeat the previous problem for the situation in which the rocket sled decelerates at a rate of 201 m/s^2 . In this problem, the forces are exerted by the seat and restraining belts.

Exercise:

Problem:

The weight of an astronaut plus his space suit on the Moon is only 250 N. How much do they weigh on Earth? What is the mass on the Moon? On Earth?

Solution:

 $1.5 \times 10^3 \; \mathrm{N}, 150 \; \mathrm{kg}, 150 \; \mathrm{kg}$

Exercise:

Problem:

Suppose the mass of a fully loaded module in which astronauts take off from the Moon is 10,000 kg. The thrust of its engines is 30,000 N. (a) Calculate its the magnitude of acceleration in a vertical takeoff from the Moon. (b) Could it lift off from Earth? If not, why not? If it could, calculate the magnitude of its acceleration.

Glossary

acceleration

the rate at which an object's velocity changes over a period of time

free-fall

a situation in which the only force acting on an object is the force due to gravity

friction

a force past each other of objects that are touching; examples include rough surfaces and air resistance

net external force

the vector sum of all external forces acting on an object or system; causes a mass to accelerate

Newton's second law of motion

the net external force $\mathbf{F}_{\mathrm{net}}$ on an object with mass m is proportional to and in the same direction as the acceleration of the object, \mathbf{a} , and inversely proportional to the mass; defined mathematically as $\mathbf{F}_{\mathrm{net}}$

$$\mathbf{a} = \frac{\mathbf{F}_{ ext{net}}}{m}$$

system

defined by the boundaries of an object or collection of objects being observed; all forces originating from outside of the system are considered external forces

weight

the force **w**due to gravity acting on an object of mass m; defined mathematically as: $\mathbf{w} = m\mathbf{g}$, where \mathbf{g} is the magnitude and direction of the acceleration due to gravity

Newton's Third Law of Motion: Symmetry in Forces

- Understand Newton's third law of motion.
- Apply Newton's third law to define systems and solve problems of motion.

There is a passage in the musical *Man of la Mancha* that relates to Newton's third law of motion. Sancho, in describing a fight with his wife to Don Quixote, says, "Of course I hit her back, Your Grace, but she's a lot harder than me and you know what they say, 'Whether the stone hits the pitcher or the pitcher hits the stone, it's going to be bad for the pitcher." This is exactly what happens whenever one body exerts a force on another—the first also experiences a force (equal in magnitude and opposite in direction). Numerous common experiences, such as stubbing a toe or throwing a ball, confirm this. It is precisely stated in **Newton's third law of motion**.

Note:

Newton's Third Law of Motion

Whenever one body exerts a force on a second body, the first body experiences a force that is equal in magnitude and opposite in direction to the force that it exerts.

This law represents a certain *symmetry in nature*: Forces always occur in pairs, and one body cannot exert a force on another without experiencing a force itself. We sometimes refer to this law loosely as "action-reaction," where the force exerted is the action and the force experienced as a consequence is the reaction. Newton's third law has practical uses in analyzing the origin of forces and understanding which forces are external to a system.

We can readily see Newton's third law at work by taking a look at how people move about. Consider a swimmer pushing off from the side of a pool, as illustrated in [link]. She pushes against the pool wall with her feet

and accelerates in the direction *opposite* to that of her push. The wall has exerted an equal and opposite force back on the swimmer. You might think that two equal and opposite forces would cancel, but they do not *because they act on different systems*. In this case, there are two systems that we could investigate: the swimmer or the wall. If we select the swimmer to be the system of interest, as in the figure, then $\mathbf{F}_{\text{wall on feet}}$ is an external force on this system and affects its motion. The swimmer moves in the direction of $\mathbf{F}_{\text{wall on feet}}$. In contrast, the force $\mathbf{F}_{\text{feet on wall}}$ acts on the wall and not on our system of interest. Thus $\mathbf{F}_{\text{feet on wall}}$ does not directly affect the motion of the system and does not cancel $\mathbf{F}_{\text{wall on feet}}$. Note that the swimmer pushes in the direction opposite to that in which she wishes to move. The reaction to her push is thus in the desired direction.

When the swimmer exerts a force $\mathbf{F}_{\mathrm{feet\ on\ wall}}$ on the wall, she accelerates in the direction opposite to that of her push. This means the net external force on her is in the direction opposite to $\mathbf{F}_{\mathrm{feet\ on\ wall}}$. This opposition occurs because, in accordance with Newton's third law of motion, the wall exerts a force $\mathbf{F}_{\mathrm{wall\ on\ feet}}$ on her, equal in magnitude but in the direction opposite to the one she exerts on it. The line around the swimmer indicates the system of interest. Note that $\mathbf{F}_{\mathrm{feet\ on\ wall}}$ does not act on this system (the swimmer) and, thus, does not cancel $\mathbf{F}_{\mathrm{wall\ on\ feet}}$. Thus the free-body diagram shows only $\mathbf{F}_{\mathrm{wall\ on\ feet}}$, \mathbf{w} , the gravitational force, and \mathbf{BF} , the buoyant force of the water supporting the swimmer's weight. The vertical forces \mathbf{w} and \mathbf{BF} cancel since there is no vertical motion.

Other examples of Newton's third law are easy to find. As a professor paces in front of a whiteboard, she exerts a force backward on the floor. The floor exerts a reaction force forward on the professor that causes her to accelerate forward. Similarly, a car accelerates because the ground pushes forward on the drive wheels in reaction to the drive wheels pushing backward on the ground. You can see evidence of the wheels pushing backward when tires spin on a gravel road and throw rocks backward. In another example, rockets move forward by expelling gas backward at high velocity. This means the rocket exerts a large backward force on the gas in the rocket combustion chamber, and the gas therefore exerts a large reaction force forward on the rocket. This reaction force is called **thrust**. It is a common misconception that rockets propel themselves by pushing on the ground or on the air behind them. They actually work better in a vacuum, where they can more readily expel the exhaust gases. Helicopters similarly create lift by pushing air down, thereby experiencing an upward reaction force. Birds and airplanes also fly by exerting force on air in a direction opposite to that of whatever force they need. For example, the wings of a bird force air downward and backward in order to get lift and move forward. An octopus propels itself in the water by ejecting water through a funnel from its body, similar to a jet ski. In a situation similar to Sancho's, professional cage fighters experience reaction forces when they punch, sometimes breaking their hand by hitting an opponent's body.

Example:

Getting Up To Speed: Choosing the Correct System

A physics professor pushes a cart of demonstration equipment to a lecture hall, as seen in [link]. Her mass is 65.0 kg, the cart's is 12.0 kg, and the equipment's is 7.0 kg. Calculate the acceleration produced when the professor exerts a backward force of 150 N on the floor. All forces opposing the motion, such as friction on the cart's wheels and air resistance, total 24.0 N.

A professor pushes a cart of demonstration equipment. The lengths of the arrows are proportional to the magnitudes of the forces (except for ${\bf f}$, since it is too small to draw to scale). Different questions are asked in each example; thus, the system of interest must be defined differently for each. System 1 is appropriate for this example, since it asks for the acceleration of the entire group of objects. Only ${\bf F}_{\rm floor}$ and ${\bf f}$ are external forces acting on System 1 along the line of motion. All other forces either cancel or act on the outside world. System 2 is chosen for [link] so that ${\bf F}_{\rm prof}$ will be an external force and enter into Newton's second law. Note that the free-body diagrams, which allow us to apply Newton's second law, vary with the system chosen.

Strategy

Since they accelerate as a unit, we define the system to be the professor, cart, and equipment. This is System 1 in [link]. The professor pushes backward with a force $\mathbf{F}_{\mathrm{foot}}$ of 150 N. According to Newton's third law, the floor exerts a forward reaction force $\mathbf{F}_{\mathrm{floor}}$ of 150 N on System 1. Because all motion is horizontal, we can assume there is no net force in the vertical direction. The problem is therefore one-dimensional along the

horizontal direction. As noted, \mathbf{f} opposes the motion and is thus in the opposite direction of $\mathbf{F}_{\mathrm{floor}}$. Note that we do not include the forces $\mathbf{F}_{\mathrm{prof}}$ or $\mathbf{F}_{\mathrm{cart}}$ because these are internal forces, and we do not include $\mathbf{F}_{\mathrm{foot}}$ because it acts on the floor, not on the system. There are no other significant forces acting on System 1. If the net external force can be found from all this information, we can use Newton's second law to find the acceleration as requested. See the free-body diagram in the figure.

Solution

Newton's second law is given by

Equation:

$$a=rac{F_{
m net}}{m}.$$

The net external force on System 1 is deduced from [link] and the discussion above to be

Equation:

$$F_{\rm net} = F_{
m floor} - f = 150 \; {
m N} - 24.0 \; {
m N} = 126 \; {
m N}.$$

The mass of System 1 is

Equation:

$$m = (65.0 + 12.0 + 7.0) \text{ kg} = 84 \text{ kg}.$$

These values of $F_{
m net}$ and m produce an acceleration of

Equation:

$$a = rac{F_{
m net}}{m}, \ a = rac{126 \ {
m N}}{84 \ {
m kg}} = 1.5 \ {
m m/s^2}.$$

Discussion

None of the forces between components of System 1, such as between the professor's hands and the cart, contribute to the net external force because they are internal to System 1. Another way to look at this is to note that forces between components of a system cancel because they are equal in magnitude and opposite in direction. For example, the force exerted by the

professor on the cart results in an equal and opposite force back on her. In this case both forces act on the same system and, therefore, cancel. Thus internal forces (between components of a system) cancel. Choosing System 1 was crucial to solving this problem.

Example:

Force on the Cart—Choosing a New System

Calculate the force the professor exerts on the cart in [link] using data from the previous example if needed.

Strategy

If we now define the system of interest to be the cart plus equipment (System 2 in [link]), then the net external force on System 2 is the force the professor exerts on the cart minus friction. The force she exerts on the cart, \mathbf{F}_{prof} , is an external force acting on System 2. \mathbf{F}_{prof} was internal to System 1, but it is external to System 2 and will enter Newton's second law for System 2.

Solution

Newton's second law can be used to find $\mathbf{F}_{\mathrm{prof}}$. Starting with

Equation:

$$a=rac{F_{
m net}}{m}$$

and noting that the magnitude of the net external force on System 2 is **Equation:**

$$F_{
m net} = F_{
m prof} - f,$$

we solve for F_{prof} , the desired quantity:

Equation:

$$F_{
m prof} = F_{
m net} + f.$$

The value of f is given, so we must calculate net $F_{\rm net}$. That can be done since both the acceleration and mass of System 2 are known. Using Newton's second law we see that

Equation:

$$F_{
m net}={
m ma},$$

where the mass of System 2 is 19.0 kg (m= 12.0 kg + 7.0 kg) and its acceleration was found to be $a = 1.5 \text{ m/s}^2$ in the previous example. Thus,

Equation:

$$F_{\rm net} = {
m ma}$$
,

Equation:

$$F_{
m net} = (19.0 \ {
m kg})(1.5 \ {
m m/s^2}) = 29 \ {
m N}.$$

Now we can find the desired force:

Equation:

$$F_{
m prof} = F_{
m net} + f,$$

Equation:

$$F_{\text{prof}} = 29 \text{ N} + 24.0 \text{ N} = 53 \text{ N}.$$

Discussion

It is interesting that this force is significantly less than the 150-N force the professor exerted backward on the floor. Not all of that 150-N force is transmitted to the cart; some of it accelerates the professor.

The choice of a system is an important analytical step both in solving problems and in thoroughly understanding the physics of the situation (which is not necessarily the same thing).

Note:

PhET Explorations: Gravity Force Lab

Visualize the gravitational force that two objects exert on each other. Change properties of the objects in order to see how it changes the gravity force. https://phet.colorado.edu/sims/html/gravity-force-lab/latest/gravity-force-lab en.html

Section Summary

- **Newton's third law of motion** represents a basic symmetry in nature. It states: Whenever one body exerts a force on a second body, the first body experiences a force that is equal in magnitude and opposite in direction to the force that the first body exerts.
- A **thrust** is a reaction force that pushes a body forward in response to a backward force. Rockets, airplanes, and cars are pushed forward by a thrust reaction force.

Conceptual Questions

Exercise:

Problem:

When you take off in a jet aircraft, there is a sensation of being pushed back into the seat. Explain why you move backward in the seat—is there really a force backward on you? (The same reasoning explains whiplash injuries, in which the head is apparently thrown backward.)

Exercise:

Problem:

A device used since the 1940s to measure the kick or recoil of the body due to heart beats is the "ballistocardiograph." What physics principle(s) are involved here to measure the force of cardiac contraction? How might we construct such a device?

Exercise:

Problem:

Describe a situation in which one system exerts a force on another and, as a consequence, experiences a force that is equal in magnitude and opposite in direction. Which of Newton's laws of motion apply?

Exercise:

Problem:

Why does an ordinary rifle recoil (kick backward) when fired? The barrel of a recoilless rifle is open at both ends. Describe how Newton's third law applies when one is fired. Can you safely stand close behind one when it is fired?

Exercise:

Problem:

An American football lineman reasons that it is senseless to try to outpush the opposing player, since no matter how hard he pushes he will experience an equal and opposite force from the other player. Use Newton's laws and draw a free-body diagram of an appropriate system to explain how he can still out-push the opposition if he is strong enough.

Exercise:

Problem:

Newton's third law of motion tells us that forces always occur in pairs of equal and opposite magnitude. Explain how the choice of the "system of interest" affects whether one such pair of forces cancels.

Problem Exercises

Exercise:

Problem:

What net external force is exerted on a 1100-kg artillery shell fired from a battleship if the shell is accelerated at $2.40\times10^4~\mathrm{m/s}^2$? What is the magnitude of the force exerted on the ship by the artillery shell?

Solution:

Force on shell: $2.64 \times 10^7~\mathrm{N}$

Force exerted on ship = -2.64×10^7 N, by Newton's third law

Exercise:

Problem:

A brave but inadequate rugby player is being pushed backward by an opposing player who is exerting a force of 800 N on him. The mass of the losing player plus equipment is 90.0 kg, and he is accelerating at $1.20~{\rm m/s}^2$ backward. (a) What is the force of friction between the losing player's feet and the grass? (b) What force does the winning player exert on the ground to move forward if his mass plus equipment is $110~{\rm kg}$? (c) Draw a sketch of the situation showing the system of interest used to solve each part. For this situation, draw a free-body diagram and write the net force equation.

Glossary

Newton's third law of motion

whenever one body exerts a force on a second body, the first body experiences a force that is equal in magnitude and opposite in direction to the force that the first body exerts

thrust

a reaction force that pushes a body forward in response to a backward force; rockets, airplanes, and cars are pushed forward by a thrust reaction force

Normal, Tension, and Other Examples of Forces

- Define normal and tension forces.
- Apply Newton's laws of motion to solve problems involving a variety of forces.
- Use trigonometric identities to resolve weight into components.

Forces are given many names, such as push, pull, thrust, lift, weight, friction, and tension. Traditionally, forces have been grouped into several categories and given names relating to their source, how they are transmitted, or their effects. The most important of these categories are discussed in this section, together with some interesting applications. Further examples of forces are discussed later in this text.

Normal Force

Weight (also called force of gravity) is a pervasive force that acts at all times and must be counteracted to keep an object from falling. You definitely notice that you must support the weight of a heavy object by pushing up on it when you hold it stationary, as illustrated in [link](a). But how do inanimate objects like a table support the weight of a mass placed on them, such as shown in [link](b)? When the bag of dog food is placed on the table, the table actually sags slightly under the load. This would be noticeable if the load were placed on a card table, but even rigid objects deform when a force is applied to them. Unless the object is deformed beyond its limit, it will exert a restoring force much like a deformed spring (or trampoline or diving board). The greater the deformation, the greater the restoring force. So when the load is placed on the table, the table sags until the restoring force becomes as large as the weight of the load. At this point the net external force on the load is zero. That is the situation when the load is stationary on the table. The table sags quickly, and the sag is slight so we do not notice it. But it is similar to the sagging of a trampoline when you climb onto it.

(a) The person holding the bag of dog food must supply an upward force F_{hand} equal in magnitude and opposite in direction to the weight of the food w. (b) The card table sags when the dog food is placed on it, much like a stiff trampoline. Elastic restoring forces in the table grow as it sags until they supply a force N equal in magnitude and opposite in direction to the weight of the load.

We must conclude that whatever supports a load, be it animate or not, must supply an upward force equal to the weight of the load, as we assumed in a few of the previous examples. If the force supporting a load is perpendicular to the surface of contact between the load and its support, this force is defined to be a **normal force** and here is given the symbol **N**. (This is not the unit for force N.) The word *normal* means perpendicular to a

surface. The normal force can be less than the object's weight if the object is on an incline, as you will see in the next example.

Note:

Common Misconception: Normal Force (N) vs. Newton (N)

In this section we have introduced the quantity normal force, which is represented by the variable \mathbf{N} . This should not be confused with the symbol for the newton, which is also represented by the letter \mathbf{N} . These symbols are particularly important to distinguish because the units of a normal force (\mathbf{N}) happen to be newtons (\mathbf{N}). For example, the normal force \mathbf{N} that the floor exerts on a chair might be $\mathbf{N}=100~\mathrm{N}$. One important difference is that normal force is a vector, while the newton is simply a unit. Be careful not to confuse these letters in your calculations! You will encounter more similarities among variables and units as you proceed in physics. Another example of this is the quantity work (W) and the unit watts (W).

Example:

Weight on an Incline, a Two-Dimensional Problem

Consider the skier on a slope shown in [link]. Her mass including equipment is 60.0 kg. (a) What is her acceleration if friction is negligible? (b) What is her acceleration if friction is known to be 45.0 N?

Since motion and friction are parallel to the slope, it is most convenient to project all

forces onto a coordinate system where one axis is parallel to the slope and the other is perpendicular (axes shown to left of skier).

 ${f N}$ is perpendicular to the slope and ${f f}$ is parallel to the slope, but ${f w}$ has components along both axes, namely ${f w}_{\perp}$ and ${f w}_{\parallel}$. ${f N}$ is equal in magnitude to ${f w}_{\perp}$, so that there is no motion perpendicular to the slope, but f is less than w_{\parallel} , so that there is a downslope acceleration (along the parallel axis).

Strategy

This is a two-dimensional problem, since the forces on the skier (the system of interest) are not parallel. The approach we have used in twodimensional kinematics also works very well here. Choose a convenient coordinate system and project the vectors onto its axes, creating two connected *one*-dimensional problems to solve. The most convenient coordinate system for motion on an incline is one that has one coordinate parallel to the slope and one perpendicular to the slope. (Remember that motions along mutually perpendicular axes are independent.) We use the symbols \perp and \parallel to represent perpendicular and parallel, respectively. This choice of axes simplifies this type of problem, because there is no motion perpendicular to the slope and because friction is always parallel to the surface between two objects. The only external forces acting on the system are the skier's weight, friction, and the support of the slope, respectively labeled \mathbf{w} , \mathbf{f} , and \mathbf{N} in [link]. \mathbf{N} is always perpendicular to the slope, and \mathbf{f} is parallel to it. But \mathbf{w} is not in the direction of either axis, and so the first step we take is to project it into components along the chosen axes, defining w_{\parallel} to be the component of weight parallel to the slope and w_{\perp} the component of weight perpendicular to the slope. Once this is done, we can consider the two separate problems of forces parallel to the slope and forces perpendicular to the slope.

Solution

The magnitude of the component of the weight parallel to the slope is $w_{\parallel}=w\sin{(25^{\circ})}=mg\sin{(25^{\circ})}$, and the magnitude of the component of

the weight perpendicular to the slope is

$$w_{\perp}=w\cos{(25^{
m o})}=mg\cos{(25^{
m o})}.$$

(a) Neglecting friction. Since the acceleration is parallel to the slope, we need only consider forces parallel to the slope. (Forces perpendicular to the slope add to zero, since there is no acceleration in that direction.) The forces parallel to the slope are the amount of the skier's weight parallel to the slope w_{\parallel} and friction f. Using Newton's second law, with subscripts to denote quantities parallel to the slope,

Equation:

$$a_\parallel = rac{F_{
m net\parallel}}{m}$$

where $F_{
m net\parallel}=w_{\parallel}={
m mg~sin}~(25^{
m o})$, assuming no friction for this part, so that

Equation:

$$a_\parallel = rac{F_{
m net\parallel}}{m} = rac{{
m mg\,sin}\,(25^{
m o})}{m} = g\,{
m sin}\,(25^{
m o})$$

Equation:

$$(9.80 \text{ m/s}^2)(0.4226) = 4.14 \text{ m/s}^2$$

is the acceleration.

(b) Including friction. We now have a given value for friction, and we know its direction is parallel to the slope and it opposes motion between surfaces in contact. So the net external force is now

Equation:

$$|F_{
m net\parallel}=w_\parallel-f,$$

and substituting this into Newton's second law, $a_{\parallel}=rac{F_{
m net\parallel}}{m}$, gives

Equation:

$$a_\parallel = rac{F_{
m net}_\parallel}{m} = rac{w_\parallel - f}{m} = rac{{
m mg\,sin}\left(25^{
m o}
ight) - f}{m}.$$

We substitute known values to obtain

Equation:

$$a_{\parallel} = rac{(60.0 \ ext{kg})(9.80 \ ext{m/s}^2)(0.4226) - 45.0 \ ext{N}}{60.0 \ ext{kg}},$$

which yields

Equation:

$$a_\parallel=3.39~\mathrm{m/s}^2,$$

which is the acceleration parallel to the incline when there is 45.0 N of opposing friction.

Discussion

Since friction always opposes motion between surfaces, the acceleration is smaller when there is friction than when there is none. In fact, it is a general result that if friction on an incline is negligible, then the acceleration down the incline is $a = g \sin \theta$, regardless of mass. This is related to the previously discussed fact that all objects fall with the same acceleration in the absence of air resistance. Similarly, all objects, regardless of mass, slide down a frictionless incline with the same acceleration (if the angle is the same).

An object rests on an incline that makes an

angle θ with the horizontal.

When an object rests on an incline that makes an angle θ with the horizontal, the force of gravity acting on the object is divided into two components: a force acting perpendicular to the plane, \mathbf{w}_{\perp} , and a force acting parallel to the plane, \mathbf{w}_{\parallel} . The perpendicular force of weight, \mathbf{w}_{\perp} , is typically equal in magnitude and opposite in direction to the normal force, \mathbf{N} . The force acting parallel to the plane, \mathbf{w}_{\parallel} , causes the object to accelerate down the incline. The force of friction, \mathbf{f} , opposes the motion of the object, so it acts upward along the plane.

It is important to be careful when resolving the weight of the object into components. If the angle of the incline is at an angle θ to the horizontal, then the magnitudes of the weight components are

Equation:

$$w_\parallel = w \sin{(heta)} = \mathrm{mg} \sin{(heta)}$$

and

Equation:

$$w_{\perp}=w\cos{(heta)}=\mathrm{mg}\cos{(heta)}.$$

Instead of memorizing these equations, it is helpful to be able to determine them from reason. To do this, draw the right triangle formed by the three weight vectors. Notice that the angle θ of the incline is the same as the angle formed between \mathbf{w} and \mathbf{w}_{\perp} . Knowing this property, you can use trigonometry to determine the magnitude of the weight components:

Equation:

$$egin{array}{lll} \cos \left(heta
ight) &=& rac{w_{\perp}}{w} \ w_{\perp} &=& w \cos \left(heta
ight) = \operatorname{mg} \cos \left(heta
ight) \end{array}$$

Equation:

$$egin{array}{lcl} \sin \left(heta
ight) & = & rac{w_{\parallel}}{w} \ w_{\parallel} & = & w \sin \left(heta
ight) = \mathrm{mg} \sin \left(heta
ight) \end{array}$$

Note:

Take-Home Experiment: Force Parallel

To investigate how a force parallel to an inclined plane changes, find a rubber band, some objects to hang from the end of the rubber band, and a board you can position at different angles. How much does the rubber band stretch when you hang the object from the end of the board? Now place the board at an angle so that the object slides off when placed on the board. How much does the rubber band extend if it is lined up parallel to the board and used to hold the object stationary on the board? Try two more angles. What does this show?

Tension

A **tension** is a force along the length of a medium, especially a force carried by a flexible medium, such as a rope or cable. The word "tension" comes from a Latin word meaning "to stretch." Not coincidentally, the flexible cords that carry muscle forces to other parts of the body are called *tendons*. Any flexible connector, such as a string, rope, chain, wire, or cable, can exert pulls only parallel to its length; thus, a force carried by a flexible connector is a tension with direction parallel to the connector. It is important to understand that tension is a pull in a connector. In contrast, consider the phrase: "You can't push a rope." The tension force pulls outward along the two ends of a rope.

Consider a person holding a mass on a rope as shown in [link].

When a perfectly flexible connector (one requiring no force to bend it) such as this rope transmits a force T, that force must be parallel to the length of the rope, as shown. The pull such a flexible connector exerts is a tension. Note that the rope pulls with equal force but in opposite directions on the hand and the supported mass (neglecting the weight of the rope). This is an example of Newton's third law. The rope is the medium that carries

the equal and opposite forces between the two objects. The tension anywhere in the rope between the hand and the mass is equal. Once you have determined the tension in one location, you have determined the tension at all locations along the rope.

Tension in the rope must equal the weight of the supported mass, as we can prove using Newton's second law. If the 5.00-kg mass in the figure is stationary, then its acceleration is zero, and thus $\mathbf{F}_{\rm net}=0$. The only external forces acting on the mass are its weight \mathbf{w} and the tension \mathbf{T} supplied by the rope. Thus,

Equation:

$$F_{
m net} = T - w = 0,$$

where T and w are the magnitudes of the tension and weight and their signs indicate direction, with up being positive here. Thus, just as you would expect, the tension equals the weight of the supported mass:

Equation:

$$T = w = mg$$
.

For a 5.00-kg mass, then (neglecting the mass of the rope) we see that

Equation:

$$T = \text{mg} = (5.00 \text{ kg})(9.80 \text{ m/s}^2) = 49.0 \text{ N}.$$

If we cut the rope and insert a spring, the spring would extend a length corresponding to a force of 49.0 N, providing a direct observation and measure of the tension force in the rope.

Flexible connectors are often used to transmit forces around corners, such as in a hospital traction system, a finger joint, or a bicycle brake cable. If there is no friction, the tension is transmitted undiminished. Only its direction changes, and it is always parallel to the flexible connector. This is illustrated in [link] (a) and (b).

(a) Tendons in the finger carry force **T** from the muscles to other parts of the finger, usually changing the force's direction, but not its magnitude (the

tendons are relatively friction free). (b) The brake cable on a bicycle carries the tension **T** from the handlebars to the brake mechanism. Again, the direction but not the magnitude of **T** is changed.

Example:

What Is the Tension in a Tightrope?

Calculate the tension in the wire supporting the 70.0-kg tightrope walker shown in [link].

The weight of a tightrope walker causes a wire to sag by 5.0 degrees. The system of interest here is the point in the wire at which the tightrope walker is standing.

Strategy

As you can see in the figure, the wire is not perfectly horizontal (it cannot be!), but is bent under the person's weight. Thus, the tension on either side of the person has an upward component that can support his weight. As

usual, forces are vectors represented pictorially by arrows having the same directions as the forces and lengths proportional to their magnitudes. The system is the tightrope walker, and the only external forces acting on him are his weight \mathbf{w} and the two tensions \mathbf{T}_{L} (left tension) and \mathbf{T}_{R} (right tension), as illustrated. It is reasonable to neglect the weight of the wire itself. The net external force is zero since the system is stationary. A little trigonometry can now be used to find the tensions. One conclusion is possible at the outset—we can see from part (b) of the figure that the magnitudes of the tensions T_{L} and T_{R} must be equal. This is because there is no horizontal acceleration in the rope, and the only forces acting to the left and right are T_{L} and T_{R} . Thus, the magnitude of those forces must be equal so that they cancel each other out.

Whenever we have two-dimensional vector problems in which no two vectors are parallel, the easiest method of solution is to pick a convenient coordinate system and project the vectors onto its axes. In this case the best coordinate system has one axis horizontal and the other vertical. We call the horizontal the x-axis and the vertical the y-axis.

Solution

First, we need to resolve the tension vectors into their horizontal and vertical components. It helps to draw a new free-body diagram showing all of the horizontal and vertical components of each force acting on the system.

When the vectors are projected onto vertical and horizontal axes, their components along those axes must add to zero, since the tightrope walker is stationary. The small angle results in T being much greater than w.

Consider the horizontal components of the forces (denoted with a subscript x):

Equation:

$$F_{\text{net}x} = T_{\text{L}x} - T_{\text{R}x}$$
.

The net external horizontal force $F_{\mathrm{net}x}=0$, since the person is stationary. Thus,

Equation:

$$egin{array}{lcl} F_{
m net}x = 0 &=& T_{
m L}x - T_{
m R}x \ T_{
m L}x &=& T_{
m R}x. \end{array}$$

Now, observe [link]. You can use trigonometry to determine the magnitude of T_L and T_R . Notice that:

Equation:

$$egin{array}{lll} \cos{(5.0^{
m o})} &=& rac{T_{
m L}x}{T_{
m L}} \ T_{
m L}x &=& T_{
m L}\cos{(5.0^{
m o})} \ \cos{(5.0^{
m o})} &=& rac{T_{
m R}x}{T_{
m R}} \ T_{
m R}x &=& T_{
m R}\cos{(5.0^{
m o})}. \end{array}$$

Equating T_{Lx} and T_{Rx} :

Equation:

$$T_{
m L} \cos{(5.0^{
m o})} = T_{
m R} \cos{(5.0^{
m o})}.$$

Thus,

Equation:

$$T_{\mathrm{L}} = T_{\mathrm{R}} = T$$

as predicted. Now, considering the vertical components (denoted by a subscript y), we can solve for T. Again, since the person is stationary, Newton's second law implies that net $F_y = 0$. Thus, as illustrated in the free-body diagram in [link],

Equation:

$$F_{\mathrm{net}y} = T_{\mathrm{L}y} + T_{\mathrm{R}y} - w = 0.$$

Observing [link], we can use trigonometry to determine the relationship between T_{Ly} , T_{Ry} , and T. As we determined from the analysis in the horizontal direction, $T_L = T_R = T$:

Equation:

$$egin{array}{lll} \sin{(5.0^{
m o})} &=& rac{T_{
m L}y}{T_{
m L}} \ T_{
m L}y = T_{
m L} \sin{(5.0^{
m o})} &=& T \sin{(5.0^{
m o})} \ \sin{(5.0^{
m o})} &=& rac{T_{
m R}y}{T_{
m R}} \ T_{
m R}y = T_{
m R} \sin{(5.0^{
m o})} &=& T \sin{(5.0^{
m o})}. \end{array}$$

Now, we can substitute the values for T_{Ly} and T_{Ry} , into the net force equation in the vertical direction:

Equation:

$$egin{array}{lll} F_{
m nety} & = & T_{
m L}_y + T_{
m R}_y - w = 0 \ & = & T \sin{(5.0^{
m o})} + T \sin{(5.0^{
m o})} - w = 0 \ & 2 \, T \sin{(5.0^{
m o})} - w & = & 0 \ & 2 \, T \sin{(5.0^{
m o})} & = & w \end{array}$$

and

Equation:

$$T = rac{w}{2 \sin{(5.0^{
m o})}} = rac{
m mg}{2 \sin{(5.0^{
m o})}},$$

so that

Equation:

$$T = rac{(70.0 ext{ kg})(9.80 ext{ m/s}^2)}{2(0.0872)},$$

and the tension is

Equation:

$$T = 3900 \text{ N}.$$

Discussion

Note that the vertical tension in the wire acts as a normal force that supports the weight of the tightrope walker. The tension is almost six times the 686-N weight of the tightrope walker. Since the wire is nearly horizontal, the vertical component of its tension is only a small fraction of the tension in the wire. The large horizontal components are in opposite directions and cancel, and so most of the tension in the wire is not used to support the weight of the tightrope walker.

If we wish to *create* a very large tension, all we have to do is exert a force perpendicular to a flexible connector, as illustrated in [link]. As we saw in the last example, the weight of the tightrope walker acted as a force perpendicular to the rope. We saw that the tension in the roped related to the weight of the tightrope walker in the following way:

Equation:

$$T=rac{w}{2\sin{(heta)}}.$$

We can extend this expression to describe the tension T created when a perpendicular force (\mathbf{F}_{\perp}) is exerted at the middle of a flexible connector: **Equation:**

$$T=rac{F_{\perp}}{2\sin{(heta)}}.$$

Note that θ is the angle between the horizontal and the bent connector. In this case, T becomes very large as θ approaches zero. Even the relatively small weight of any flexible connector will cause it to sag, since an infinite tension would result if it were horizontal (i.e., $\theta=0$ and $\sin\theta=0$). (See $\lceil \ln k \rceil$.)

We can create a very large tension in the chain by pushing on it perpendicular to its length, as shown. Suppose we wish to pull a car out of the mud when no tow truck is available. Each time the car moves forward, the chain is tightened to keep it as nearly straight as possible. The tension in the chain is given by $T = \frac{F_\perp}{2\sin{(\theta)}}$; since θ is small, T is very large. This situation is analogous to the tightrope walker shown in [link], except that the tensions shown here are those transmitted to the car and the tree rather than those acting at the point where \mathbf{F}_\perp is applied.

Unless an infinite tension is exerted, any flexible connector—such as the chain at the bottom of the picture—will sag under its own weight, giving a characteristic curve when the weight is evenly

distributed along the length.
Suspension bridges—such as the
Golden Gate Bridge shown in this
image—are essentially very heavy
flexible connectors. The weight of
the bridge is evenly distributed
along the length of flexible
connectors, usually cables, which
take on the characteristic shape.
(credit: Leaflet, Wikimedia
Commons)

Extended Topic: Real Forces and Inertial Frames

There is another distinction among forces in addition to the types already mentioned. Some forces are real, whereas others are not. *Real forces* are those that have some physical origin, such as the gravitational pull. Contrastingly, *fictitious forces* are those that arise simply because an observer is in an accelerating frame of reference, such as one that rotates (like a merry-go-round) or undergoes linear acceleration (like a car slowing down). For example, if a satellite is heading due north above Earth's northern hemisphere, then to an observer on Earth it will appear to experience a force to the west that has no physical origin. Of course, what is happening here is that Earth is rotating toward the east and moves east under the satellite. In Earth's frame this looks like a westward force on the satellite, or it can be interpreted as a violation of Newton's first law (the law of inertia). An **inertial frame of reference** is one in which all forces are real and, equivalently, one in which Newton's laws have the simple forms given in this chapter.

Earth's rotation is slow enough that Earth is nearly an inertial frame. You ordinarily must perform precise experiments to observe fictitious forces and the slight departures from Newton's laws, such as the effect just described. On the large scale, such as for the rotation of weather systems and ocean currents, the effects can be easily observed.

The crucial factor in determining whether a frame of reference is inertial is whether it accelerates or rotates relative to a known inertial frame. Unless stated otherwise, all phenomena discussed in this text are considered in inertial frames.

All the forces discussed in this section are real forces, but there are a number of other real forces, such as lift and thrust, that are not discussed in this section. They are more specialized, and it is not necessary to discuss every type of force. It is natural, however, to ask where the basic simplicity we seek to find in physics is in the long list of forces. Are some more basic than others? Are some different manifestations of the same underlying force? The answer to both questions is yes, as will be seen in the next (extended) section and in the treatment of modern physics later in the text.

Note:

PhET Explorations: Forces in 1 Dimension

Explore the forces at work when you try to push a filing cabinet. Create an applied force and see the resulting friction force and total force acting on the cabinet. Charts show the forces, position, velocity, and acceleration vs. time. View a free-body diagram of all the forces (including gravitational and normal forces).

Forces in <u>1</u> Dimensio <u>n</u>

Section Summary

• When objects rest on a surface, the surface applies a force to the object that supports the weight of the object. This supporting force acts

perpendicular to and away from the surface. It is called a normal force, N.

• When objects rest on a non-accelerating horizontal surface, the magnitude of the normal force is equal to the weight of the object: **Equation:**

$$N = mg.$$

• When objects rest on an inclined plane that makes an angle θ with the horizontal surface, the weight of the object can be resolved into components that act perpendicular (\mathbf{w}_{\perp}) and parallel (\mathbf{w}_{\parallel}) to the surface of the plane. These components can be calculated using: **Equation:**

$$w_{\parallel} = w \sin{(\theta)} = \operatorname{mg}{\sin{(\theta)}}$$

Equation:

$$w_{\perp} = w \cos{(\theta)} = \operatorname{mg}{\cos{(\theta)}}.$$

• The pulling force that acts along a stretched flexible connector, such as a rope or cable, is called tension, **T**. When a rope supports the weight of an object that is at rest, the tension in the rope is equal to the weight of the object:

Equation:

$$T=\mathrm{mg}.$$

• In any inertial frame of reference (one that is not accelerated or rotated), Newton's laws have the simple forms given in this chapter and all forces are real forces having a physical origin.

Conceptual Questions

Exercise:

Problem:

If a leg is suspended by a traction setup as shown in [link], what is the

tension in the rope?

A leg is suspended by a traction system in which wires are used to transmit forces. Frictionless pulleys change the direction of the force *T* without changing its magnitude.

Exercise:

Problem:

In a traction setup for a broken bone, with pulleys and rope available, how might we be able to increase the force along the tibia using the same weight? (See [link].) (Note that the tibia is the shin bone shown in this image.)

Problem Exercises

Exercise:

Problem:

Two teams of nine members each engage in a tug of war. Each of the first team's members has an average mass of 68 kg and exerts an average force of 1350 N horizontally. Each of the second team's members has an average mass of 73 kg and exerts an average force of 1365 N horizontally. (a) What is magnitude of the acceleration of the two teams? (b) What is the tension in the section of rope between the teams?

Solution:

a.
$$0.11 \text{ m/s}^2$$

b. $1.2 \times 10^4 \text{ N}$

Exercise:

Problem:

What force does a trampoline have to apply to a 45.0-kg gymnast to accelerate her straight up at $7.50~\mathrm{m/s}^2$? Note that the answer is independent of the velocity of the gymnast—she can be moving either up or down, or be stationary.

Exercise:

Problem:

(a) Calculate the tension in a vertical strand of spider web if a spider of mass 8.00×10^{-5} kg hangs motionless on it. (b) Calculate the tension in a horizontal strand of spider web if the same spider sits motionless in the middle of it much like the tightrope walker in [link]. The strand sags at an angle of 12° below the horizontal. Compare this with the tension in the vertical strand (find their ratio).

Solution:

- (a) $7.84 \times 10^{-4} \text{ N}$
- (b) $1.89\times 10^{-3}\ N$. This is 2.41 times the tension in the vertical strand.

Exercise:

Problem:

Suppose a 60.0-kg gymnast climbs a rope. (a) What is the tension in the rope if he climbs at a constant speed? (b) What is the tension in the rope if he accelerates upward at a rate of $1.50 \, \mathrm{m/s}^2$?

Exercise:

Problem:

Show that, as stated in the text, a force \mathbf{F}_{\perp} exerted on a flexible medium at its center and perpendicular to its length (such as on the tightrope wire in $[\underline{\operatorname{link}}]$) gives rise to a tension of magnitude $T = \frac{F_{\perp}}{2\sin{(\theta)}}$.

Solution:

Newton's second law applied in vertical direction gives

Equation:

$$F_{y} = F - 2T \sin \theta = 0$$

Equation:

$$F = 2T \sin \theta$$

Equation:

$$T = rac{F}{2\sin heta}.$$

Exercise:

Problem:

Consider the baby being weighed in [link]. (a) What is the mass of the child and basket if a scale reading of 55 N is observed? (b) What is the tension T_1 in the cord attaching the baby to the scale? (c) What is the tension T_2 in the cord attaching the scale to the ceiling, if the scale has a mass of 0.500 kg? (d) Draw a sketch of the situation indicating the system of interest used to solve each part. The masses of the cords are negligible.

A baby is weighed using a spring scale.

Glossary

inertial frame of reference

a coordinate system that is not accelerating; all forces acting in an inertial frame of reference are real forces, as opposed to fictitious forces that are observed due to an accelerating frame of reference

normal force

the force that a surface applies to an object to support the weight of the object; acts perpendicular to the surface on which the object rests

tension

the pulling force that acts along a medium, especially a stretched flexible connector, such as a rope or cable; when a rope supports the weight of an object, the force on the object due to the rope is called a tension force

Problem-Solving Strategies

• Understand and apply a problem-solving procedure to solve problems using Newton's laws of motion.

Success in problem solving is obviously necessary to understand and apply physical principles, not to mention the more immediate need of passing exams. The basics of problem solving, presented earlier in this text, are followed here, but specific strategies useful in applying Newton's laws of motion are emphasized. These techniques also reinforce concepts that are useful in many other areas of physics. Many problem-solving strategies are stated outright in the worked examples, and so the following techniques should reinforce skills you have already begun to develop.

Problem-Solving Strategy for Newton's Laws of Motion

Step 1. As usual, it is first necessary to identify the physical principles involved. *Once it is determined that Newton's laws of motion are involved (if the problem involves forces), it is particularly important to draw a careful sketch of the situation*. Such a sketch is shown in [link](a). Then, as in [link](b), use arrows to represent all forces, label them carefully, and make their lengths and directions correspond to the forces they represent (whenever sufficient information exists).

(a) A sketch of Tarzan hanging from a vine. (b) Arrows are used to represent all forces. ${\bf T}$ is the tension in the vine above Tarzan, ${\bf F}_T$ is the force he exerts on the vine, and ${\bf w}$ is his weight. All other forces, such as the nudge of a breeze, are assumed negligible. (c) Suppose we are given the ape man's mass and asked to find the tension in the vine. We then define the system of interest as shown and draw a free-body diagram. ${\bf F}_T$ is no longer shown, because it is not a force acting on the system of interest; rather, ${\bf F}_T$ acts on the outside world. (d) Showing only the arrows, the head-to-tail method of addition is used. It is apparent that ${\bf T}=-{\bf w}$, if Tarzan is stationary.

Step 2. Identify what needs to be determined and what is known or can be inferred from the problem as stated. That is, make a list of knowns and unknowns. *Then carefully determine the system of interest*. This decision is a crucial step, since Newton's second law involves only external forces. Once the system of interest has been identified, it becomes possible to determine which forces are external and which are internal, a necessary step to

employ Newton's second law. (See [link](c).) Newton's third law may be used to identify whether forces are exerted between components of a system (internal) or between the system and something outside (external). As illustrated earlier in this chapter, the system of interest depends on what question we need to answer. This choice becomes easier with practice, eventually developing into an almost unconscious process. Skill in clearly defining systems will be beneficial in later chapters as well.

A diagram showing the system of interest and all of the external forces is called a **free-body diagram**. Only forces are shown on free-body diagrams, not acceleration or velocity. We have drawn several of these in worked examples. [link](c) shows a free-body diagram for the system of interest. Note that no internal forces are shown in a free-body diagram.

Step 3. Once a free-body diagram is drawn, *Newton's second law can be applied to solve the problem*. This is done in [link](d) for a particular situation. In general, once external forces are clearly identified in free-body diagrams, it should be a straightforward task to put them into equation form and solve for the unknown, as done in all previous examples. If the problem is one-dimensional—that is, if all forces are parallel—then they add like scalars. If the problem is two-dimensional, then it must be broken down into a pair of one-dimensional problems. This is done by projecting the force vectors onto a set of axes chosen for convenience. As seen in previous examples, the choice of axes can simplify the problem. For example, when an incline is involved, a set of axes with one axis parallel to the incline and one perpendicular to it is most convenient. It is almost always convenient to make one axis parallel to the direction of motion, if this is known.

Note:

Applying Newton's Second Law

Before you write net force equations, it is critical to determine whether the system is accelerating in a particular direction. If the acceleration is zero in a particular direction, then the net force is zero in that direction. Similarly, if the acceleration is nonzero in a particular direction, then the net force is described by the equation: $F_{\rm net} = {\rm ma.}$ For example, if the system is accelerating in the horizontal direction, but it is not accelerating in the vertical direction, then you will have the following conclusions:

Equation:

$$F_{\text{net }x} = \text{ma},$$

Equation:

$$F_{\text{net } y} = 0.$$

You will need this information in order to determine unknown forces acting in a system.

Step 4. As always, *check the solution to see whether it is reasonable*. In some cases, this is obvious. For example, it is reasonable to find that friction causes an object to slide down an incline more slowly than when no friction exists. In practice, intuition develops gradually through problem solving, and with experience it becomes progressively easier to judge whether an answer is reasonable. Another way to check your solution is to check the units. If you are solving for force and end up with units of m/s, then you have made a mistake.

Section Summary

- To solve problems involving Newton's laws of motion, follow the procedure described:
 - 1. Draw a sketch of the problem.
 - 2. Identify known and unknown quantities, and identify the system of interest. Draw a free-body diagram, which is a sketch showing all of the forces acting on an object. The object is represented by a dot, and the forces are represented by vectors extending in different directions from the dot. If vectors act in

directions that are not horizontal or vertical, resolve the vectors into horizontal and vertical components and draw them on the free-body diagram.

- 3. Write Newton's second law in the horizontal and vertical directions and add the forces acting on the object. If the object does not accelerate in a particular direction (for example, the x-direction) then $F_{\text{net }x}=0$. If the object does accelerate in that direction, $F_{\text{net }x}=\text{ma}$.
- 4. Check your answer. Is the answer reasonable? Are the units correct?

Problem Exercises

Exercise:

Problem:

 $A~5.00 \times 10^5$ -kg rocket is accelerating straight up. Its engines produce $1.250 \times 10^7~N$ of thrust, and air resistance is $4.50 \times 10^6~N$. What is the rocket's acceleration? Explicitly show how you follow the steps in the Problem-Solving Strategy for Newton's laws of motion.

Solution:

Using the free-body diagram:

$$F_{\text{net}} = T - f - mg = \text{ma},$$

so that

$$a = \frac{{T - f - {\rm{mg}}}}{m} = \frac{{1.250 \times 10^7 \; {\rm{N}} - 4.50 \times 10^6 \; N - (5.00 \times 10^5 \; {\rm{kg}})(9.80 \; {\rm{m/s}^2})}}{{5.00 \times 10^5 \; {\rm{kg}}}} = 6.20 \; {\rm{m/s}^2}.$$

Exercise:

Problem:

The wheels of a midsize car exert a force of 2100 N backward on the road to accelerate the car in the forward direction. If the force of friction including air resistance is 250 N and the acceleration of the car is $1.80~\mathrm{m/s}^2$, what is the mass of the car plus its occupants? Explicitly show how you follow the steps in the Problem-Solving Strategy for Newton's laws of motion. For this situation, draw a free-body diagram and write the net force equation.

Exercise:

Problem:

Calculate the force a 70.0-kg high jumper must exert on the ground to produce an upward acceleration 4.00 times the acceleration due to gravity. Explicitly show how you follow the steps in the Problem-Solving Strategy for Newton's laws of motion.

Solution:

Use Newton's laws of motion.

Given :
$$a=4.00g=(4.00)(9.80 \text{ m/s}^2)=39.2 \text{ m/s}^2; m=70.0 \text{ kg,}$$
 Find: F .
$$\sum F=+F-w=\text{ma,so} \quad F=\text{ma}+w=\text{ma}+\text{mg}=m(a+g).$$
 that
$$F=(70.0 \text{ kg})[(39.2 \text{ m/s}^2)+(9.80 \text{ m/s}^2)+($$

This result is reasonable, since it is quite possible for a person to exert a force of the magnitude of 10^3 N.

Exercise:

Problem:

When landing after a spectacular somersault, a 40.0-kg gymnast decelerates by pushing straight down on the mat. Calculate the force she must exert if her deceleration is 7.00 times the acceleration due to gravity. Explicitly show how you follow the steps in the Problem-Solving Strategy for Newton's laws of motion.

Exercise:

Problem:

A freight train consists of two 8.00×10^4 -kg engines and 45 cars with average masses of 5.50×10^4 kg . (a) What force must each engine exert backward on the track to accelerate the train at a rate of 5.00×10^{-2} m/s 2 if the force of friction is 7.50×10^5 N, assuming the engines exert identical forces? This is not a large frictional force for such a massive system. Rolling friction for trains is small, and consequently trains are very energy-efficient transportation systems. (b) What is the force in the coupling between the 37th and 38th cars (this is the force each exerts on the other), assuming all cars have the same mass and that friction is evenly distributed among all of the cars and engines?

Solution:

- (a) $4.41 \times 10^5 \text{ N}$
- (b) $1.50 \times 10^5 \text{ N}$

Exercise:

Problem:

Commercial airplanes are sometimes pushed out of the passenger loading area by a tractor. (a) An 1800-kg tractor exerts a force of $1.75 \times 10^4~\rm N$ backward on the pavement, and the system experiences forces resisting motion that total 2400 N. If the acceleration is $0.150~\rm m/s^2$, what is the mass of the airplane? (b) Calculate the force exerted by the tractor on the airplane, assuming 2200 N of the friction is experienced by the airplane. (c) Draw two sketches showing the systems of interest used to solve each part, including the free-body diagrams for each.

Exercise:

Problem:

A 1100-kg car pulls a boat on a trailer. (a) What total force resists the motion of the car, boat, and trailer, if the car exerts a 1900-N force on the road and produces an acceleration of $0.550~\rm m/s^2$? The mass of the boat plus trailer is 700 kg. (b) What is the force in the hitch between the car and the trailer if 80% of the resisting forces are experienced by the boat and trailer?

Solution:

- (a) 910 N
- (b) $1.11 \times 10^3 \text{ N}$

Exercise:

Problem:

(a) Find the magnitudes of the forces \mathbf{F}_1 and \mathbf{F}_2 that add to give the total force \mathbf{F}_{tot} shown in [link]. This may be done either graphically or by using trigonometry. (b) Show graphically that the same total force is obtained independent of the order of addition of \mathbf{F}_1 and \mathbf{F}_2 . (c) Find the direction and magnitude of some other pair of vectors that add to give \mathbf{F}_{tot} . Draw these to scale on the same drawing used in part (b) or a similar picture.

Exercise:

Problem:

Two children pull a third child on a snow saucer sled exerting forces \mathbf{F}_1 and \mathbf{F}_2 as shown from above in [link]. Find the acceleration of the 49.00-kg sled and child system. Note that the direction of the frictional force is unspecified; it will be in the opposite direction of the sum of \mathbf{F}_1 and \mathbf{F}_2 .

Solution:

 $a=0.139 \mathrm{\ m/s}, \, \theta=12.4^{\circ}$ north of east

An overhead view of the horizontal forces acting on a

child's snow saucer sled.

Exercise:

Problem:

Suppose your car was mired deeply in the mud and you wanted to use the method illustrated in [link] to pull it out. (a) What force would you have to exert perpendicular to the center of the rope to produce a force of 12,000 N on the car if the angle is 2.00°? In this part, explicitly show how you follow the steps in the Problem-Solving Strategy for Newton's laws of motion. (b) Real ropes stretch under such forces. What force would be exerted on the car if the angle increases to 7.00° and you still apply the force found in part (a) to its center?

Exercise:

Problem:

What force is exerted on the tooth in [link] if the tension in the wire is 25.0 N? Note that the force applied to the tooth is smaller than the tension in the wire, but this is necessitated by practical considerations of how force can be applied in the mouth. Explicitly show how you follow steps in the Problem-Solving Strategy for Newton's laws of motion.

Solution:

Use Newton's laws since we are looking for forces.

This seems reasonable, since the applied tensions should be greater than the force applied to the tooth.

Braces are used to apply forces to teeth to realign them. Shown in this figure are the tensions applied by the wire to the protruding tooth. The total force applied to the tooth by the wire, \mathbf{F}_{app} , points straight toward the back of the mouth.

Exercise:

Problem:

[link] shows Superhero and Trusty Sidekick hanging motionless from a rope. Superhero's mass is 90.0 kg, while Trusty Sidekick's is 55.0 kg, and the mass of the rope is negligible. (a) Draw a free-body diagram of the situation showing all forces acting on Superhero, Trusty Sidekick, and the rope. (b) Find the tension in the rope above Superhero. (c) Find the tension in the rope between Superhero and Trusty Sidekick. Indicate on your free-body diagram the system of interest used to solve each part.

Superhero and Trusty Sidekick hang motionless on a rope as they try to figure out what to do next. Will the tension be the same everywher e in the rope?

Exercise:

Problem:

A nurse pushes a cart by exerting a force on the handle at a downward angle 35.0° below the horizontal. The loaded cart has a mass of 28.0 kg, and the force of friction is 60.0 N. (a) Draw a free-body diagram for the system of interest. (b) What force must the nurse exert to move at a constant velocity?

Exercise:

Problem:

Construct Your Own Problem Consider the tension in an elevator cable during the time the elevator starts from rest and accelerates its load upward to some cruising velocity. Taking the elevator and its load to be the system of interest, draw a free-body diagram. Then calculate the tension in the cable. Among the things to consider are the mass of the elevator and its load, the final velocity, and the time taken to reach that velocity.

Exercise:

Problem:

Construct Your Own Problem Consider two people pushing a toboggan with four children on it up a snow-covered slope. Construct a problem in which you calculate the acceleration of the toboggan and its load. Include a free-body diagram of the appropriate system of interest as the basis for your analysis. Show vector forces and their components and explain the choice of coordinates. Among the things to be considered are the forces exerted by those pushing, the angle of the slope, and the masses of the toboggan and children.

Exercise:

Problem:

Unreasonable Results (a) Repeat [link], but assume an acceleration of 1.20 m/s^2 is produced. (b) What is unreasonable about the result? (c) Which premise is unreasonable, and why is it unreasonable?

Exercise:

Problem:

Unreasonable Results (a) What is the initial acceleration of a rocket that has a mass of 1.50×10^6 kg at takeoff, the engines of which produce a thrust of 2.00×10^6 N? Do not neglect gravity. (b) What is unreasonable about the result? (This result has been unintentionally achieved by several real rockets.) (c) Which premise is unreasonable, or which premises are inconsistent? (You may find it useful to compare this problem to the rocket problem earlier in this section.)

Further Applications of Newton's Laws of Motion

- Apply problem-solving techniques to solve for quantities in more complex systems of forces.
- Integrate concepts from kinematics to solve problems using Newton's laws of motion.

There are many interesting applications of Newton's laws of motion, a few more of which are presented in this section. These serve also to illustrate some further subtleties of physics and to help build problem-solving skills.

Example:

Drag Force on a Barge

Suppose two tugboats push on a barge at different angles, as shown in [link]. The first tugboat exerts a force of 2.7×10^5 N in the *x*-direction, and the second tugboat exerts a force of 3.6×10^5 N in the *y*-direction.

(a) A view from above of two tugboats pushing on a barge. (b) The free-body diagram for the ship contains only forces acting in the plane of the water. It omits the two vertical forces—the weight of the barge and the buoyant force of the water supporting it cancel and are not shown. Since the applied forces are perpendicular, the x- and y-axes are in the same direction as \mathbf{F}_x and \mathbf{F}_y . The problem quickly becomes a one-dimensional problem along the direction of \mathbf{F}_{app} , since friction is in the direction opposite to \mathbf{F}_{app} .

If the mass of the barge is 5.0×10^6 kg and its acceleration is observed to be $7.5 \times 10^{-2}~{\rm m/s}^2$ in the direction shown, what is the drag force of the water on the

barge resisting the motion? (Note: drag force is a frictional force exerted by fluids, such as air or water. The drag force opposes the motion of the object.)

Strategy

The directions and magnitudes of acceleration and the applied forces are given in $[\underline{link}](a)$. We will define the total force of the tugboats on the barge as \mathbf{F}_{app} so that:

Equation:

$$\mathbf{F}_{\mathrm{app}} = \mathbf{F}_x + \mathbf{F}_y$$

Since the barge is flat bottomed, the drag of the water \mathbf{F}_D will be in the direction opposite to \mathbf{F}_{app} , as shown in the free-body diagram in [link](b). The system of interest here is the barge, since the forces on it are given as well as its acceleration. Our strategy is to find the magnitude and direction of the net applied force \mathbf{F}_{app} , and then apply Newton's second law to solve for the drag force \mathbf{F}_D .

Solution

Since \mathbf{F}_x and \mathbf{F}_y are perpendicular, the magnitude and direction of \mathbf{F}_{app} are easily found. First, the resultant magnitude is given by the Pythagorean theorem:

Equation:

The angle is given by

Equation:

$$egin{array}{lcl} heta &=& an^{-1}\Big(rac{F_y}{F_x}\Big) \ heta &=& an^{-1}\Big(rac{3.6 imes10^5~ ext{N}}{2.7 imes10^5~ ext{N}}\Big) = 53^{ ext{o}}, \end{array}$$

which we know, because of Newton's first law, is the same direction as the acceleration. \mathbf{F}_D is in the opposite direction of \mathbf{F}_{app} , since it acts to slow down the acceleration. Therefore, the net external force is in the same direction as \mathbf{F}_{app} , but its magnitude is slightly less than \mathbf{F}_{app} . The problem is now one-dimensional. From $[\underline{link}](\mathbf{b})$, we can see that

Equation:

$$F_{
m net} = F_{
m app} - F_{
m D}$$
.

But Newton's second law states that

Equation:

$$F_{
m net}={
m ma.}$$

Thus,

Equation:

$$F_{\rm app} - F_{\rm D} = {
m ma.}$$

This can be solved for the magnitude of the drag force of the water $F_{\rm D}$ in terms of known quantities:

Equation:

$$F_{
m D} = F_{
m app} - {
m ma.}$$

Substituting known values gives

Equation:

$${
m F_D} = (4.5 imes 10^5 \ {
m N}) - (5.0 imes 10^6 \ {
m kg}) (7.5 imes 10^{-2} \ {
m m/s}^2) = 7.5 imes 10^4 \ {
m N}.$$

The direction of \mathbf{F}_D has already been determined to be in the direction opposite to \mathbf{F}_{app} , or at an angle of 53° south of west.

Discussion

The numbers used in this example are reasonable for a moderately large barge. It is certainly difficult to obtain larger accelerations with tugboats, and small speeds are desirable to avoid running the barge into the docks. Drag is relatively small for a well-designed hull at low speeds, consistent with the answer to this example, where $F_{\rm D}$ is less than 1/600th of the weight of the ship.

In the earlier example of a tightrope walker we noted that the tensions in wires supporting a mass were equal only because the angles on either side were equal. Consider the following example, where the angles are not equal; slightly more trigonometry is involved.

Example:

Different Tensions at Different Angles

Consider the traffic light (mass 15.0 kg) suspended from two wires as shown in [link]. Find the tension in each wire, neglecting the masses of the wires.

A traffic light is suspended from two wires. (b) Some of the forces involved. (c) Only forces acting on the system are shown here. The free-body diagram for the traffic light is also shown. (d) The forces projected onto vertical (*y*) and horizontal (*x*) axes. The horizontal components of the tensions must cancel, and the sum of the vertical components of the tensions must equal the weight of the traffic light. (e) The free-body diagram shows the vertical and horizontal forces acting on the traffic light.

Strategy

The system of interest is the traffic light, and its free-body diagram is shown in [link] (c). The three forces involved are not parallel, and so they must be projected onto a coordinate system. The most convenient coordinate system has one axis vertical and one horizontal, and the vector projections on it are shown in part (d) of the figure. There are two unknowns in this problem (T_1 and T_2), so two equations are needed to find them. These two equations come from applying Newton's second law along the vertical and horizontal axes, noting that the net external force is zero along each axis because acceleration is zero.

Solution

First consider the horizontal or *x*-axis:

Equation:

$$F_{
m net} x = T_{2x} - T_{1x} = 0.$$

Thus, as you might expect,

Equation:

$$T_{1x}=T_{2x}$$
.

This gives us the following relationship between T_1 and T_2 :

Equation:

$$T_1 \cos (30^{\circ}) = T_2 \cos (45^{\circ}).$$

Thus,

Equation:

$$T_2 = (1.225)T_1.$$

Note that T_1 and T_2 are not equal in this case, because the angles on either side are not equal. It is reasonable that T_2 ends up being greater than T_1 , because it is exerted more vertically than T_1 .

Now consider the force components along the vertical or *y*-axis:

Equation:

$$F_{ ext{net }y} = T_{1y} + T_{2y} - w = 0.$$

This implies

Equation:

$$T_{1y} + T_{2y} = w.$$

Substituting the expressions for the vertical components gives

Equation:

$$T_1 \sin{(30^\circ)} + T_2 \sin{(45^\circ)} = w.$$

There are two unknowns in this equation, but substituting the expression for T_2 in terms of T_1 reduces this to one equation with one unknown:

Equation:

$$T_1(0.500) + (1.225T_1)(0.707) = w = mg,$$

which yields

Equation:

$$(1.366)T_1 = (15.0 \text{ kg})(9.80 \text{ m/s}^2).$$

Solving this last equation gives the magnitude of T_1 to be

Equation:

$$T_1 = 108 \text{ N}.$$

Finally, the magnitude of T_2 is determined using the relationship between them, T_2 = 1.225 T_1 , found above. Thus we obtain

Equation:

$$T_2 = 132 \text{ N}.$$

Discussion

Both tensions would be larger if both wires were more horizontal, and they will be equal if and only if the angles on either side are the same (as they were in the earlier example of a tightrope walker).

The bathroom scale is an excellent example of a normal force acting on a body. It provides a quantitative reading of how much it must push upward to support the weight of an object. But can you predict what you would see on the dial of a bathroom scale if you stood on it during an elevator ride? Will you see a value greater than your weight when the elevator starts up? What about when the elevator moves upward at a constant speed: will the scale still read more than your weight at rest? Consider the following example.

Example:

What Does the Bathroom Scale Read in an Elevator?

[link] shows a 75.0-kg man (weight of about 165 lb) standing on a bathroom scale in an elevator. Calculate the scale reading: (a) if the elevator accelerates upward at a rate

of 1.20 m/s^2 , and (b) if the elevator moves upward at a constant speed of 1 m/s.

(a) The various forces acting when a person stands on a bathroom scale in an elevator. The arrows are approximately correct for when the elevator is accelerating upward—broken arrows represent forces too large to be drawn to scale. \mathbf{T} is the tension in the supporting cable, \mathbf{w} is the weight of the person, \mathbf{w}_s is the weight of the scale, \mathbf{w}_e is the weight of the elevator, \mathbf{F}_s is the force of the scale on the person, \mathbf{F}_p is the force of the person on the scale, \mathbf{F}_t is the force of the scale on the floor of the elevator, and \mathbf{N} is the force of the floor upward on the scale. (b) The free-body diagram shows only the external forces acting on the designated system of interest—the person.

Strategy

If the scale is accurate, its reading will equal $F_{\rm p}$, the magnitude of the force the person exerts downward on it. [link](a) shows the numerous forces acting on the elevator, scale, and person. It makes this one-dimensional problem look much more formidable than if the person is chosen to be the system of interest and a free-body diagram is drawn as in [link](b). Analysis of the free-body diagram using Newton's laws can produce answers to both parts (a) and (b) of this example, as well as some other questions that might arise. The only forces acting on the person are his weight \mathbf{w} and the upward force of the scale $\mathbf{F}_{\rm s}$. According to Newton's third law $\mathbf{F}_{\rm p}$ and $\mathbf{F}_{\rm s}$ are

equal in magnitude and opposite in direction, so that we need to find $F_{\rm s}$ in order to find what the scale reads. We can do this, as usual, by applying Newton's second law,

Equation:

$$F_{
m net}={
m ma.}$$

From the free-body diagram we see that $F_{
m net} = F_{
m s} - w$, so that

Equation:

$$F_{\rm s}-w={
m ma}.$$

Solving for F_s gives an equation with only one unknown:

Equation:

$$F_{\rm s}={
m ma}+w,$$

or, because w = mg, simply

Equation:

$$F_{\rm s}={
m ma+mg.}$$

No assumptions were made about the acceleration, and so this solution should be valid for a variety of accelerations in addition to the ones in this exercise.

Solution for (a)

In this part of the problem, $a=1.20~\mathrm{m/s^2}$, so that

Equation:

$$F_{
m s} = (75.0~{
m kg})(1.20~{
m m/s^2}) + (75.0~{
m kg})(9.80~{
m m/s^2}),$$

yielding

Equation:

$$F_{\rm s}=825~{
m N}.$$

Discussion for (a)

This is about 185 lb. What would the scale have read if he were stationary? Since his acceleration would be zero, the force of the scale would be equal to his weight:

Equation:

$$egin{array}{lcl} F_{
m net} &=& {
m ma} = 0 = F_{
m s} - w \ F_{
m s} &=& w = {
m mg} \ F_{
m s} &=& (75.0\ {
m kg})(9.80\ {
m m/s}^2) \ F_{
m s} &=& 735\ {
m N}. \end{array}$$

So, the scale reading in the elevator is greater than his 735-N (165 lb) weight. This means that the scale is pushing up on the person with a force greater than his weight, as it must in order to accelerate him upward. Clearly, the greater the acceleration of the elevator, the greater the scale reading, consistent with what you feel in rapidly accelerating versus slowly accelerating elevators.

Solution for (b)

Now, what happens when the elevator reaches a constant upward velocity? Will the scale still read more than his weight? For any constant velocity—up, down, or stationary—acceleration is zero because $a=\frac{\Delta v}{\Delta t}$, and $\Delta v=0$.

Equation:

$$F_{\rm s}={
m ma}+{
m mg}=0+{
m mg}.$$

Now

Thus.

Equation:

$$F_{
m s} = (75.0~{
m kg})(9.80~{
m m/s}^2),$$

which gives

Equation:

$$F_{\rm s} = 735 \; {
m N}.$$

Discussion for (b)

The scale reading is 735 N, which equals the person's weight. This will be the case whenever the elevator has a constant velocity—moving up, moving down, or stationary.

The solution to the previous example also applies to an elevator accelerating downward, as mentioned. When an elevator accelerates downward, a is negative, and the scale reading is *less* than the weight of the person, until a constant downward velocity is reached, at which time the scale reading again becomes equal to the person's weight. If the elevator is in free-fall and accelerating downward at g, then the scale reading will be zero and the person will *appear* to be weightless.

Integrating Concepts: Newton's Laws of Motion and Kinematics

Physics is most interesting and most powerful when applied to general situations that involve more than a narrow set of physical principles. Newton's laws of motion can also be integrated with other concepts that have been discussed previously in this text to

solve problems of motion. For example, forces produce accelerations, a topic of kinematics, and hence the relevance of earlier chapters. When approaching problems that involve various types of forces, acceleration, velocity, and/or position, use the following steps to approach the problem:

Problem-Solving Strategy

Step 1. *Identify which physical principles are involved*. Listing the givens and the quantities to be calculated will allow you to identify the principles involved. Step 2. *Solve the problem using strategies outlined in the text*. If these are available for the specific topic, you should refer to them. You should also refer to the sections of the text that deal with a particular topic. The following worked example illustrates how these strategies are applied to an integrated concept problem.

Example:

What Force Must a Soccer Player Exert to Reach Top Speed?

A soccer player starts from rest and accelerates forward, reaching a velocity of 8.00 m/s in 2.50 s. (a) What was his average acceleration? (b) What average force did he exert backward on the ground to achieve this acceleration? The player's mass is 70.0 kg, and air resistance is negligible.

Strategy

To	integrate	d, we must <i>accelera</i>	tionalong a <i>kinen</i>	natics. fo	orce, a	<i>dynamics</i> found
solv	econcept	first	straight	Part	topi	c in this
an	problem	identify	line.	(b)	of	chapter.
	_	the	This is	deals		
		physical	a topic	with		
		principles	of			
		involved				
		and				
		identify				
		the				
		chapters				
		in which				
		they are				
		found.				
		Part (a)				
		of this				
		example				
		considers				
The following solutions to each part of the example illustrate how the specific						

problem-solving strategies are applied. These involve identifying knowns and unknowns, checking to see if the answer is reasonable, and so forth.

Solution for (a)

We are given the initial and final velocities (zero and 8.00 m/s forward); thus, the change in velocity is $\Delta v = 8.00$ m/s. We are given the elapsed time, and so $\Delta t = 2.50$ s. The unknown is acceleration, which can be found from its definition:

Equation:

$$a = rac{\Delta v}{\Delta t}.$$

Substituting the known values yields

Equation:

$$a = \frac{8.00 \text{ m/s}}{2.50 \text{ s}}$$

= 3.20 m/s^2 .

Discussion for (a)

This is an attainable acceleration for an athlete in good condition.

Solution for (b)

Here we are asked to find the average force the player exerts backward to achieve this forward acceleration. Neglecting air resistance, this would be equal in magnitude to the net external force on the player, since this force causes his acceleration. Since we now know the player's acceleration and are given his mass, we can use Newton's second law to find the force exerted. That is,

Equation:

$$F_{
m net}={
m ma.}$$

Substituting the known values of m and a gives

Equation:

$$F_{\text{net}} = (70.0 \text{ kg})(3.20 \text{ m/s}^2)$$

= 224 N.

Discussion for (b)

This is about 50 pounds, a reasonable average force.

This worked example illustrates how to apply problem-solving strategies to situations that include topics from different chapters. The first step is to identify the physical principles involved in the problem. The second step is to solve for the unknown using familiar problem-solving strategies. These strategies are found throughout the text, and many worked examples show how to use them for single topics. You will find these

techniques for integrated concept problems useful in applications of physics outside of a physics course, such as in your profession, in other science disciplines, and in everyday life. The following problems will build your skills in the broad application of physical principles.

Summary

- Newton's laws of motion can be applied in numerous situations to solve problems of motion
- Some problems will contain multiple force vectors acting in different directions on an object. Be sure to draw diagrams, resolve all force vectors into horizontal and vertical components, and draw a free-body diagram. Always analyze the direction in which an object accelerates so that you can determine whether $F_{\rm net} = {\rm ma}$ or $F_{\rm net} = 0$.
- The normal force on an object is not always equal in magnitude to the weight of the object. If an object is accelerating, the normal force will be less than or greater than the weight of the object. Also, if the object is on an inclined plane, the normal force will always be less than the full weight of the object.
- Some problems will contain various physical quantities, such as forces, acceleration, velocity, or position. You can apply concepts from kinematics and dynamics in order to solve these problems of motion.

Conceptual Questions

Exercise:

Problem:

To simulate the apparent weightlessness of space orbit, astronauts are trained in the hold of a cargo aircraft that is accelerating downward at g. Why will they appear to be weightless, as measured by standing on a bathroom scale, in this accelerated frame of reference? Is there any difference between their apparent weightlessness in orbit and in the aircraft?

Exercise:

Problem:

A cartoon shows the toupee coming off the head of an elevator passenger when the elevator rapidly stops during an upward ride. Can this really happen without the person being tied to the floor of the elevator? Explain your answer.

Problem Exercises

Exercise:

Problem:

A flea jumps by exerting a force of $1.20\times10^{-5}~N$ straight down on the ground. A breeze blowing on the flea parallel to the ground exerts a force of $0.500\times10^{-6}~N$ on the flea. Find the direction and magnitude of the acceleration of the flea if its mass is $6.00\times10^{-7}~kg$. Do not neglect the gravitational force.

Solution:

 10.2 m/s^2 , 4.67° from vertical

Exercise:

Problem:

Two muscles in the back of the leg pull upward on the Achilles tendon, as shown in [link]. (These muscles are called the medial and lateral heads of the gastrocnemius muscle.) Find the magnitude and direction of the total force on the Achilles tendon. What type of movement could be caused by this force?

Exercise:

Problem:

A 76.0-kg person is being pulled away from a burning building as shown in [link]. Calculate the tension in the two ropes if the person is momentarily motionless. Include a free-body diagram in your solution.

Solution:

$$T_1=736\;\mathrm{N}$$

$$T_2 = 194 \mathrm{\ N}$$

The force \mathbf{T}_2 needed to hold steady the person being rescued from the fire is less than her weight and less than the force \mathbf{T}_1 in the other rope, since the more

vertical rope supports a greater part of her weight (a vertical force).

Exercise:

Problem:

Integrated Concepts A 35.0-kg dolphin decelerates from 12.0 to 7.50 m/s in 2.30 s to join another dolphin in play. What average force was exerted to slow him if he was moving horizontally? (The gravitational force is balanced by the buoyant force of the water.)

Exercise:

Problem:

Integrated Concepts When starting a foot race, a 70.0-kg sprinter exerts an average force of 650 N backward on the ground for 0.800 s. (a) What is his final speed? (b) How far does he travel?

Solution:

- (a) 7.43 m/s
- (b) 2.97 m

Exercise:

Problem:

Integrated Concepts A large rocket has a mass of 2.00×10^6 kg at takeoff, and its engines produce a thrust of 3.50×10^7 N. (a) Find its initial acceleration if it takes off vertically. (b) How long does it take to reach a velocity of 120 km/h straight up, assuming constant mass and thrust? (c) In reality, the mass of a rocket decreases significantly as its fuel is consumed. Describe qualitatively how this affects the acceleration and time for this motion.

Exercise:

Problem:

Integrated Concepts A basketball player jumps straight up for a ball. To do this, he lowers his body 0.300 m and then accelerates through this distance by forcefully straightening his legs. This player leaves the floor with a vertical velocity sufficient to carry him 0.900 m above the floor. (a) Calculate his velocity when he leaves the floor. (b) Calculate his acceleration while he is straightening his legs. He goes from zero to the velocity found in part (a) in a distance of 0.300 m. (c) Calculate the force he exerts on the floor to do this, given that his mass is 110 kg.

Solution:

- (a) 4.20 m/s
- (b) 29.4 m/s^2
- (c) $4.31 \times 10^3 \text{ N}$

Exercise:

Problem:

Integrated Concepts A 2.50-kg fireworks shell is fired straight up from a mortar and reaches a height of 110 m. (a) Neglecting air resistance (a poor assumption, but we will make it for this example), calculate the shell's velocity when it leaves the mortar. (b) The mortar itself is a tube 0.450 m long. Calculate the average acceleration of the shell in the tube as it goes from zero to the velocity found in (a). (c) What is the average force on the shell in the mortar? Express your answer in newtons and as a ratio to the weight of the shell.

Exercise:

Problem:

Integrated Concepts Repeat [link] for a shell fired at an angle 10.0° from the vertical.

Solution:

- (a) 47.1 m/s
- (b) $2.47 \times 10^3 \text{ m/s}^2$
- (c) $6.18\times 10^3\ N$. The average force is 252 times the shell's weight.

Exercise:

Problem:

Integrated Concepts An elevator filled with passengers has a mass of 1700 kg. (a) The elevator accelerates upward from rest at a rate of $1.20 \, \mathrm{m/s^2}$ for $1.50 \, \mathrm{s}$. Calculate the tension in the cable supporting the elevator. (b) The elevator continues upward at constant velocity for $8.50 \, \mathrm{s}$. What is the tension in the cable during this time? (c) The elevator decelerates at a rate of $0.600 \, \mathrm{m/s^2}$ for $3.00 \, \mathrm{s}$. What is the tension in the cable during deceleration? (d) How high has the elevator moved above its original starting point, and what is its final velocity?

Exercise:

Problem:

Unreasonable Results (a) What is the final velocity of a car originally traveling at 50.0 km/h that decelerates at a rate of $0.400~\mathrm{m/s}^2$ for 50.0 s? (b) What is unreasonable about the result? (c) Which premise is unreasonable, or which premises are inconsistent?

Exercise:

Problem:

Unreasonable Results A 75.0-kg man stands on a bathroom scale in an elevator that accelerates from rest to 30.0 m/s in 2.00 s. (a) Calculate the scale reading in newtons and compare it with his weight. (The scale exerts an upward force on him equal to its reading.) (b) What is unreasonable about the result? (c) Which premise is unreasonable, or which premises are inconsistent?

Introduction to Work, Energy, and Energy Resources class="introduction"

How many forms of energy can you identify in this photograph of a wind farm in Iowa? (credit: Jürgen from Sandesneben , Germany, Wikimedia Commons)

Energy plays an essential role both in everyday events and in scientific phenomena. You can no doubt name many forms of energy, from that provided by our foods, to the energy we use to run our cars, to the sunlight that warms us on the beach. You can also cite examples of what people call energy that may not be scientific, such as someone having an energetic personality. Not only does energy have many interesting forms, it is

involved in almost all phenomena, and is one of the most important concepts of physics. What makes it even more important is that the total amount of energy in the universe is constant. Energy can change forms, but it cannot appear from nothing or disappear without a trace. Energy is thus one of a handful of physical quantities that we say is *conserved*.

Conservation of energy (as physicists like to call the principle that energy can neither be created nor destroyed) is based on experiment. Even as scientists discovered new forms of energy, conservation of energy has always been found to apply. Perhaps the most dramatic example of this was supplied by Einstein when he suggested that mass is equivalent to energy (his famous equation $E = \mathrm{mc}^2$).

From a societal viewpoint, energy is one of the major building blocks of modern civilization. Energy resources are key limiting factors to economic growth. The world use of energy resources, especially oil, continues to grow, with ominous consequences economically, socially, politically, and environmentally. We will briefly examine the world's energy use patterns at the end of this chapter.

There is no simple, yet accurate, scientific definition for energy. Energy is characterized by its many forms and the fact that it is conserved. We can loosely define **energy** as the ability to do work, admitting that in some circumstances not all energy is available to do work. Because of the association of energy with work, we begin the chapter with a discussion of work. Work is intimately related to energy and how energy moves from one system to another or changes form.

Work: The Scientific Definition

- Explain how an object must be displaced for a force on it to do work.
- Explain how relative directions of force and displacement determine whether the work done is positive, negative, or zero.

What It Means to Do Work

The scientific definition of work differs in some ways from its everyday meaning. Certain things we think of as hard work, such as writing an exam or carrying a heavy load on level ground, are not work as defined by a scientist. The scientific definition of work reveals its relationship to energy —whenever work is done, energy is transferred.

For work, in the scientific sense, to be done, a force must be exerted and there must be displacement in the direction of the force.

Formally, the **work** done on a system by a constant force is defined to be the product of the component of the force in the direction of motion times the distance through which the force acts. For one-way motion in one dimension, this is expressed in equation form as

Equation:

$$W = |\mathbf{F}| (\cos \theta) |\mathbf{d}|,$$

where W is work, \mathbf{d} is the displacement of the system, and θ is the angle between the force vector \mathbf{F} and the displacement vector \mathbf{d} , as in [link]. We can also write this as

Equation:

$$W = \operatorname{Fd} \cos \theta$$
.

To find the work done on a system that undergoes motion that is not oneway or that is in two or three dimensions, we divide the motion into oneway one-dimensional segments and add up the work done over each segment.

Note:

What is Work?

The work done on a system by a constant force is the product of the component of the force in the direction of motion times the distance through which the force acts. For one-way motion in one dimension, this is expressed in equation form as

Equation:

$$W = \operatorname{Fd} \cos \theta$$
,

where W is work, F is the magnitude of the force on the system, d is the magnitude of the displacement of the system, and θ is the angle between the force vector \mathbf{F} and the displacement vector \mathbf{d} .

Examples of work. (a) The work done by the force ${\bf F}$ on this lawn mower is Fd $\cos\theta$. Note that $F\cos\theta$ is the component of the force in the direction of motion. (b) A person holding a briefcase does no work on it, because there is no

displacement. No energy is transferred to or from the briefcase. (c) The person moving the briefcase horizontally at a constant speed does no work on it, and transfers no energy to it. (d) Work *is* done on the briefcase by carrying it up stairs at constant speed, because there is necessarily a component of force **F** in the direction of the motion. Energy is transferred to the briefcase and could in turn be used to do work. (e) When the briefcase is lowered, energy is transferred out of the briefcase and into an electric generator. Here the work done on the briefcase by the generator is negative, removing energy from the briefcase, because **F** and **d** are in opposite directions.

To examine what the definition of work means, let us consider the other situations shown in [link]. The person holding the briefcase in [link](b) does no work, for example. Here d=0, so W=0. Why is it you get tired just holding a load? The answer is that your muscles are doing work against one another, but they are doing no work on the system of interest (the "briefcase-Earth system"—see Gravitational Potential Energy for more details). There must be displacement for work to be done, and there must be a component of the force in the direction of the motion. For example, the person carrying the briefcase on level ground in [link](c) does no work on it, because the force is perpendicular to the motion. That is, $\cos 90^\circ = 0$, and so W=0.

In contrast, when a force exerted on the system has a component in the direction of motion, such as in [link](d), work *is* done—energy is transferred to the briefcase. Finally, in [link](e), energy is transferred from the briefcase to a generator. There are two good ways to interpret this energy transfer. One interpretation is that the briefcase's weight does work on the generator, giving it energy. The other interpretation is that the generator does negative work on the briefcase, thus removing energy from it. The drawing shows the latter, with the force from the generator upward

on the briefcase, and the displacement downward. This makes $\theta=180^{\circ}$, and $\cos 180^{\circ}=-1$; therefore, W is negative.

Calculating Work

Work and energy have the same units. From the definition of work, we see that those units are force times distance. Thus, in SI units, work and energy are measured in **newton-meters**. A newton-meter is given the special name **joule** (J), and $1 J = 1 N \cdot m = 1 \text{ kg} \cdot \text{m}^2/\text{s}^2$. One joule is not a large amount of energy; it would lift a small 100-gram apple a distance of about 1 meter.

Example:

Calculating the Work You Do to Push a Lawn Mower Across a Large Lawn

How much work is done on the lawn mower by the person in [link](a) if he exerts a constant force of 75.0 N at an angle 35° below the horizontal and pushes the mower 25.0 m on level ground? Convert the amount of work from joules to kilocalories and compare it with this person's average daily intake of 10,000 kJ (about 2400 kcal) of food energy. One *calorie* (1 cal) of heat is the amount required to warm 1 g of water by 1°C, and is equivalent to 4.184 J, while one *food calorie* (1 kcal) is equivalent to 4184 J.

Strategy

We can solve this problem by substituting the given values into the definition of work done on a system, stated in the equation $W = \operatorname{Fd} \cos \theta$. The force, angle, and displacement are given, so that only the work W is unknown.

Solution

The equation for the work is

Equation:

$$W = \operatorname{Fd} \cos \theta$$
.

Substituting the known values gives

Equation:

$$W = (75.0 \text{ N})(25.0 \text{ m}) \cos (35.0^{\circ})$$

= $1536 \text{ J} = 1.54 \times 10^{3} \text{ J}.$

Converting the work in joules to kilocalories yields $W=(1536~{
m J})(1~{
m kcal}/4184~{
m J})=0.367~{
m kcal}.$ The ratio of the work done to the daily consumption is

Equation:

$$rac{W}{2400 ext{ kcal}} = 1.53 imes 10^{-4}.$$

Discussion

This ratio is a tiny fraction of what the person consumes, but it is typical. Very little of the energy released in the consumption of food is used to do work. Even when we "work" all day long, less than 10% of our food energy intake is used to do work and more than 90% is converted to thermal energy or stored as chemical energy in fat.

Section Summary

- Work is the transfer of energy by a force acting on an object as it is displaced.
- The work W that a force ${\bf F}$ does on an object is the product of the magnitude F of the force, times the magnitude d of the displacement, times the cosine of the angle θ between them. In symbols, **Equation:**

$$W = \operatorname{Fd} \cos \theta$$
.

- The SI unit for work and energy is the joule (J), where $1~J=1~N\cdot m=1~kg\cdot m^2/s^2.$
- The work done by a force is zero if the displacement is either zero or perpendicular to the force.

• The work done is positive if the force and displacement have the same direction, and negative if they have opposite direction.

Conceptual Questions

Exercise:

Problem:

Give an example of something we think of as work in everyday circumstances that is not work in the scientific sense. Is energy transferred or changed in form in your example? If so, explain how this is accomplished without doing work.

Exercise:

Problem:

Give an example of a situation in which there is a force and a displacement, but the force does no work. Explain why it does no work.

Exercise:

Problem:

Describe a situation in which a force is exerted for a long time but does no work. Explain.

Problems & Exercises

Exercise:

Problem:

How much work does a supermarket checkout attendant do on a can of soup he pushes 0.600 m horizontally with a force of 5.00 N? Express your answer in joules and kilocalories.

Solution:

Equation:

$$3.00~{
m J} = 7.17 imes 10^{-4}~{
m kcal}$$

Exercise:

Problem:

A 75.0-kg person climbs stairs, gaining 2.50 meters in height. Find the work done to accomplish this task.

Exercise:

Problem:

(a) Calculate the work done on a 1500-kg elevator car by its cable to lift it 40.0 m at constant speed, assuming friction averages 100 N. (b) What is the work done on the lift by the gravitational force in this process? (c) What is the total work done on the lift?

Solution:

(a)
$$5.92 \times 10^5 \text{ J}$$

(b)
$$-5.88 \times 10^5 \ J$$

(c) The net force is zero.

Exercise:

Problem:

Suppose a car travels 108 km at a speed of 30.0 m/s, and uses 2.0 gal of gasoline. Only 30% of the gasoline goes into useful work by the force that keeps the car moving at constant speed despite friction. (See [link] for the energy content of gasoline.) (a) What is the magnitude of the force exerted to keep the car moving at constant speed? (b) If the required force is directly proportional to speed, how many gallons will be used to drive 108 km at a speed of 28.0 m/s?

Exercise:

Problem:

Calculate the work done by an 85.0-kg man who pushes a crate 4.00 m up along a ramp that makes an angle of 20.0° with the horizontal. (See [link].) He exerts a force of 500 N on the crate parallel to the ramp and moves at a constant speed. Be certain to include the work he does on the crate *and* on his body to get up the ramp.

A man pushes a crate up a ramp.

Solution:

Equation:

$$3.14 \times 10^3 \ \mathrm{J}$$

Exercise:

Problem:

How much work is done by the boy pulling his sister 30.0 m in a wagon as shown in [link]? Assume no friction acts on the wagon.

The boy does work on the system of the wagon and the child when he pulls them as shown.

Exercise:

Problem:

A shopper pushes a grocery cart 20.0 m at constant speed on level ground, against a 35.0 N frictional force. He pushes in a direction 25.0° below the horizontal. (a) What is the work done on the cart by friction? (b) What is the work done on the cart by the gravitational force? (c) What is the work done on the cart by the shopper? (d) Find the force the shopper exerts, using energy considerations. (e) What is the total work done on the cart?

Solution:

- (a) -700 J
- (b) 0
- (c) 700 J
- (d) 38.6 N

Exercise:

Problem:

Suppose the ski patrol lowers a rescue sled and victim, having a total mass of 90.0 kg, down a 60.0° slope at constant speed, as shown in [link]. The coefficient of friction between the sled and the snow is 0.100. (a) How much work is done by friction as the sled moves 30.0 m along the hill? (b) How much work is done by the rope on the sled in this distance? (c) What is the work done by the gravitational force on the sled? (d) What is the total work done?

A rescue sled and victim are lowered down a steep slope.

Glossary

energy

the ability to do work

work

the transfer of energy by a force that causes an object to be displaced; the product of the component of the force in the direction of the displacement and the magnitude of the displacement

joule

SI unit of work and energy, equal to one newton-meter

Kinetic Energy and the Work-Energy Theorem

- Explain work as a transfer of energy and net work as the work done by the net force.
- Explain and apply the work-energy theorem.

Work Transfers Energy

What happens to the work done on a system? Energy is transferred into the system, but in what form? Does it remain in the system or move on? The answers depend on the situation. For example, if the lawn mower in [link] (a) is pushed just hard enough to keep it going at a constant speed, then energy put into the mower by the person is removed continuously by friction, and eventually leaves the system in the form of heat transfer. In contrast, work done on the briefcase by the person carrying it up stairs in [link](d) is stored in the briefcase-Earth system and can be recovered at any time, as shown in [link](e). In fact, the building of the pyramids in ancient Egypt is an example of storing energy in a system by doing work on the system. Some of the energy imparted to the stone blocks in lifting them during construction of the pyramids remains in the stone-Earth system and has the potential to do work.

In this section we begin the study of various types of work and forms of energy. We will find that some types of work leave the energy of a system constant, for example, whereas others change the system in some way, such as making it move. We will also develop definitions of important forms of energy, such as the energy of motion.

Net Work and the Work-Energy Theorem

We know from the study of Newton's laws in <u>Dynamics: Force and Newton's Laws of Motion</u> that net force causes acceleration. We will see in this section that work done by the net force gives a system energy of motion, and in the process we will also find an expression for the energy of motion.

Let us start by considering the total, or net, work done on a system. Net work is defined to be the sum of work done by all external forces—that is, **net work** is the work done by the net external force $\mathbf{F}_{\rm net}$. In equation form, this is $W_{\rm net} = F_{\rm net} d \cos \theta$ where θ is the angle between the force vector and the displacement vector.

[link](a) shows a graph of force versus displacement for the component of the force in the direction of the displacement—that is, an $F \cos \theta$ vs. d graph. In this case, $F \cos \theta$ is constant. You can see that the area under the graph is $Fd \cos \theta$, or the work done. [link](b) shows a more general process where the force varies. The area under the curve is divided into strips, each having an average force $(F \cos \theta)_{i(ave)}$. The work done is $(F \cos \theta)_{i(ave)}d_i$ for each strip, and the total work done is the sum of the W_i . Thus the total work done is the total area under the curve, a useful property to which we shall refer later.

(a) A graph of $F \cos \theta$ vs. d, when $F \cos \theta$ is

constant. The area under the curve represents the work done by the force. (b) A graph of $F \cos \theta$ vs. d in which the force varies. The work done for each interval is the area of each strip; thus, the total area under the curve equals the total work done.

Net work will be simpler to examine if we consider a one-dimensional situation where a force is used to accelerate an object in a direction parallel to its initial velocity. Such a situation occurs for the package on the roller belt conveyor system shown in [link].

A package on a roller belt is pushed horizontally through a distance **d**.

The force of gravity and the normal force acting on the package are perpendicular to the displacement and do no work. Moreover, they are also equal in magnitude and opposite in direction so they cancel in calculating the net force. The net force arises solely from the horizontal applied force $\mathbf{F}_{\mathrm{app}}$ and the horizontal friction force \mathbf{f} . Thus, as expected, the net force is

parallel to the displacement, so that $\theta=0^{\circ}$ and $\cos\theta=1$, and the net work is given by

Equation:

$$W_{
m net} = F_{
m net} d.$$

The effect of the net force $\mathbf{F}_{\mathrm{net}}$ is to accelerate the package from v_0 to v. The kinetic energy of the package increases, indicating that the net work done on the system is positive. (See [link].) By using Newton's second law, and doing some algebra, we can reach an interesting conclusion. Substituting $F_{\mathrm{net}} = \mathrm{ma}$ from Newton's second law gives

Equation:

$$W_{\rm net} = {
m mad.}$$

To get a relationship between net work and the speed given to a system by the net force acting on it, we take $d=x-x_0$ and use the equation studied in Motion Equations for Constant Acceleration in One Dimension for the change in speed over a distance d if the acceleration has the constant value a; namely, $v^2=v_0^2+2{\rm ad}$ (note that a appears in the expression for the net work). Solving for acceleration gives $a=\frac{v^2-v_0^2}{2d}$. When a is substituted into the preceding expression for $W_{\rm net}$, we obtain

Equation:

$$W_{
m net} = migg(rac{v^2-{v_0}^2}{2d}igg)d.$$

The d cancels, and we rearrange this to obtain

Equation:

$${W}_{
m net} = rac{1}{2} m v^2 - rac{1}{2} m v_0^2.$$

This expression is called the **work-energy theorem**, and it actually applies *in general* (even for forces that vary in direction and magnitude), although we have derived it for the special case of a constant force parallel to the displacement. The theorem implies that the net work on a system equals the change in the quantity $\frac{1}{2}mv^2$. This quantity is our first example of a form of energy.

Note:

The Work-Energy Theorem

The net work on a system equals the change in the quantity $\frac{1}{2}mv^2$.

Equation:

$$W_{
m net} = rac{1}{2} m v^2 - rac{1}{2} {
m mv}_0^2$$

The quantity $\frac{1}{2}mv^2$ in the work-energy theorem is defined to be the translational **kinetic energy** (KE) of a mass m moving at a speed v. (*Translational* kinetic energy is distinct from *rotational* kinetic energy, which is considered later.) In equation form, the translational kinetic energy, **Equation:**

$$ext{KE} = rac{1}{2}mv^2,$$

is the energy associated with translational motion. Kinetic energy is a form of energy associated with the motion of a particle, single body, or system of objects moving together.

We are aware that it takes energy to get an object, like a car or the package in [link], up to speed, but it may be a bit surprising that kinetic energy is proportional to speed squared. This proportionality means, for example, that a car traveling at 100 km/h has four times the kinetic energy it has at 50

km/h, helping to explain why high-speed collisions are so devastating. We will now consider a series of examples to illustrate various aspects of work and energy.

Example:

Calculating the Kinetic Energy of a Package

Suppose a 30.0-kg package on the roller belt conveyor system in [link] is moving at 0.500 m/s. What is its kinetic energy?

Strategy

Because the mass m and speed v are given, the kinetic energy can be calculated from its definition as given in the equation $KE = \frac{1}{2}mv^2$.

Solution

The kinetic energy is given by

Equation:

$$ext{KE} = rac{1}{2}mv^2.$$

Entering known values gives

Equation:

$$KE = 0.5(30.0 \text{ kg})(0.500 \text{ m/s})^2$$

which yields

Equation:

$$KE = 3.75 \text{ kg} \cdot \text{m}^2/\text{s}^2 = 3.75 \text{ J}.$$

Discussion

Note that the unit of kinetic energy is the joule, the same as the unit of work, as mentioned when work was first defined. It is also interesting that, although this is a fairly massive package, its kinetic energy is not large at this relatively low speed. This fact is consistent with the observation that people can move packages like this without exhausting themselves.

Example:

Determining the Work to Accelerate a Package

Suppose that you push on the 30.0-kg package in [link] with a constant force of 120 N through a distance of 0.800 m, and that the opposing friction force averages 5.00 N.

(a) Calculate the net work done on the package. (b) Solve the same problem as in part (a), this time by finding the work done by each force that contributes to the net force.

Strategy and Concept for (a)

This is a motion in one dimension problem, because the downward force (from the weight of the package) and the normal force have equal magnitude and opposite direction, so that they cancel in calculating the net force, while the applied force, friction, and the displacement are all horizontal. (See [link].) As expected, the net work is the net force times distance.

Solution for (a)

The net force is the push force minus friction, or $F_{\rm net} = 120~{
m N} - 5.00~{
m N} = 115~{
m N}$. Thus the net work is

Equation:

$$W_{\text{net}} = F_{\text{net}}d = (115 \text{ N})(0.800 \text{ m})$$

= 92.0 N·m = 92.0 J.

Discussion for (a)

This value is the net work done on the package. The person actually does more work than this, because friction opposes the motion. Friction does negative work and removes some of the energy the person expends and converts it to thermal energy. The net work equals the sum of the work done by each individual force.

Strategy and Concept for (b)

The forces acting on the package are gravity, the normal force, the force of friction, and the applied force. The normal force and force of gravity are each perpendicular to the displacement, and therefore do no work.

Solution for (b)

The applied force does work.

Equation:

$$egin{array}{lll} W_{
m app} &=& F_{
m app} d \cos(0^{
m o}) = F_{
m app} d \ &=& (120\ {
m N})(0.800\ {
m m}) \ &=& 96.0\ {
m J} \end{array}$$

The friction force and displacement are in opposite directions, so that $\theta=180^{\circ}$, and the work done by friction is

Equation:

$$egin{array}{lll} W_{
m fr} &=& F_{
m fr} d \cos(180^{
m o}) = - F_{
m fr} d \ &=& - (5.00 \ {
m N}) (0.800 \ {
m m}) \ &=& - 4.00 \ {
m J}. \end{array}$$

So the amounts of work done by gravity, by the normal force, by the applied force, and by friction are, respectively,

Equation:

$$egin{array}{lll} W_{
m gr} &=& 0, \ W_{
m N} &=& 0, \ W_{
m app} &=& 96.0 \
m J, \ W_{
m fr} &=& -4.00 \
m J. \end{array}$$

The total work done as the sum of the work done by each force is then seen to be

Equation:

$$W_{
m total} = W_{
m gr} + W_{
m N} + W_{
m app} + W_{
m fr} = 92.0~
m J.$$

Discussion for (b)

The calculated total work $W_{\rm total}$ as the sum of the work by each force agrees, as expected, with the work $W_{\rm net}$ done by the net force. The work done by a collection of forces acting on an object can be calculated by either approach.

Example:

Determining Speed from Work and Energy

Find the speed of the package in [link] at the end of the push, using work and energy concepts.

Strategy

Here the work-energy theorem can be used, because we have just calculated the net work, $W_{\rm net}$, and the initial kinetic energy, $\frac{1}{2}mv_0^2$. These calculations allow us to find the final kinetic energy, $\frac{1}{2}mv^2$, and thus the final speed v.

Solution

The work-energy theorem in equation form is

Equation:

$$W_{
m net} = rac{1}{2} m v^2 - rac{1}{2} m {v_0}^2.$$

Solving for $\frac{1}{2}mv^2$ gives

Equation:

$$rac{1}{2} {
m mv}^2 = W_{
m net} + rac{1}{2} m {v_0}^2.$$

Thus,

Equation:

$$rac{1}{2}mv^2 = 92.0 \ \mathrm{J} + 3.75 \ \mathrm{J} = 95.75 \ \mathrm{J}.$$

Solving for the final speed as requested and entering known values gives **Equation:**

$$egin{array}{lcl} v & = & \sqrt{rac{2(95.75 \, {
m J})}{m}} = \sqrt{rac{191.5 \, {
m kg \cdot m^2/s^2}}{30.0 \, {
m kg}}} \ & = & 2.53 \, {
m m/s}. \end{array}$$

Discussion

Using work and energy, we not only arrive at an answer, we see that the final kinetic energy is the sum of the initial kinetic energy and the net work

done on the package. This means that the work indeed adds to the energy of the package.

Example:

Work and Energy Can Reveal Distance, Too

How far does the package in [link] coast after the push, assuming friction remains constant? Use work and energy considerations.

Strategy

We know that once the person stops pushing, friction will bring the package to rest. In terms of energy, friction does negative work until it has removed all of the package's kinetic energy. The work done by friction is the force of friction times the distance traveled times the cosine of the angle between the friction force and displacement; hence, this gives us a way of finding the distance traveled after the person stops pushing.

Solution

The normal force and force of gravity cancel in calculating the net force. The horizontal friction force is then the net force, and it acts opposite to the displacement, so $\theta=180^{\circ}$. To reduce the kinetic energy of the package to zero, the work $W_{\rm fr}$ by friction must be minus the kinetic energy that the package started with plus what the package accumulated due to the pushing. Thus $W_{\rm fr}=-95.75$ J. Furthermore, $W_{\rm fr}=fdt\cos\theta=-fdt$, where dt is the distance it takes to stop. Thus,

Equation:

$$d\prime = -rac{W_{
m fr}}{f} = -rac{-95.75 \
m J}{5.00 \
m N},$$

and so

Equation:

$$d\prime = 19.2 \text{ m}.$$

Discussion

This is a reasonable distance for a package to coast on a relatively frictionfree conveyor system. Note that the work done by friction is negative (the force is in the opposite direction of motion), so it removes the kinetic energy.

Some of the examples in this section can be solved without considering energy, but at the expense of missing out on gaining insights about what work and energy are doing in this situation. On the whole, solutions involving energy are generally shorter and easier than those using kinematics and dynamics alone.

Section Summary

- The net work W_{net} is the work done by the net force acting on an object.
- Work done on an object transfers energy to the object.
- The translational kinetic energy of an object of mass m moving at speed v is $KE = \frac{1}{2}mv^2$.
- The work-energy theorem states that the net work $W_{\rm net}$ on a system changes its kinetic energy, $W_{\rm net}=\frac{1}{2}mv^2-\frac{1}{2}m{v_0}^2.$

Conceptual Questions

Exercise:

Problem:

The person in [link] does work on the lawn mower. Under what conditions would the mower gain energy? Under what conditions would it lose energy?

Exercise:

Problem:

Work done on a system puts energy into it. Work done by a system removes energy from it. Give an example for each statement.

Exercise:

Problem:

When solving for speed in [link], we kept only the positive root. Why?

Problems & Exercises

Exercise:

Problem:

Compare the kinetic energy of a 20,000-kg truck moving at 110 km/h with that of an 80.0-kg astronaut in orbit moving at 27,500 km/h.

Solution:

1/250

Exercise:

Problem:

(a) How fast must a 3000-kg elephant move to have the same kinetic energy as a 65.0-kg sprinter running at 10.0 m/s? (b) Discuss how the larger energies needed for the movement of larger animals would relate to metabolic rates.

Exercise:

Problem:

Confirm the value given for the kinetic energy of an aircraft carrier in [link]. You will need to look up the definition of a nautical mile (1 knot = 1 nautical mile/h).

Solution:

 $1.1 \times 10^{10} \, \mathrm{J}$

Exercise:

Problem:

(a) Calculate the force needed to bring a 950-kg car to rest from a speed of 90.0 km/h in a distance of 120 m (a fairly typical distance for a non-panic stop). (b) Suppose instead the car hits a concrete abutment at full speed and is brought to a stop in 2.00 m. Calculate the force exerted on the car and compare it with the force found in part (a).

Exercise:

Problem:

A car's bumper is designed to withstand a 4.0-km/h (1.1-m/s) collision with an immovable object without damage to the body of the car. The bumper cushions the shock by absorbing the force over a distance. Calculate the magnitude of the average force on a bumper that collapses 0.200 m while bringing a 900-kg car to rest from an initial speed of 1.1 m/s.

Solution:

 $2.8 \times 10^3 \text{ N}$

Exercise:

Problem:

Boxing gloves are padded to lessen the force of a blow. (a) Calculate the force exerted by a boxing glove on an opponent's face, if the glove and face compress 7.50 cm during a blow in which the 7.00-kg arm and glove are brought to rest from an initial speed of 10.0 m/s. (b) Calculate the force exerted by an identical blow in the gory old days when no gloves were used and the knuckles and face would compress only 2.00 cm. (c) Discuss the magnitude of the force with glove on. Does it seem high enough to cause damage even though it is lower than the force with no glove?

Exercise:

Problem:

Using energy considerations, calculate the average force a 60.0-kg sprinter exerts backward on the track to accelerate from 2.00 to 8.00 m/s in a distance of 25.0 m, if he encounters a headwind that exerts an average force of 30.0 N against him.

Solution:

102 N

Glossary

net work

work done by the net force, or vector sum of all the forces, acting on an object

work-energy theorem

the result, based on Newton's laws, that the net work done on an object is equal to its change in kinetic energy

kinetic energy

the energy an object has by reason of its motion, equal to $\frac{1}{2}mv^2$ for the translational (i.e., non-rotational) motion of an object of mass m moving at speed v

Gravitational Potential Energy

- Explain gravitational potential energy in terms of work done against gravity.
- Show that the gravitational potential energy of an object of mass m at height h on Earth is given by $PE_g = mgh$.
- Show how knowledge of the potential energy as a function of position can be used to simplify calculations and explain physical phenomena.

Work Done Against Gravity

Climbing stairs and lifting objects is work in both the scientific and everyday sense—it is work done against the gravitational force. When there is work, there is a transformation of energy. The work done against the gravitational force goes into an important form of stored energy that we will explore in this section.

Let us calculate the work done in lifting an object of mass m through a height h, such as in [link]. If the object is lifted straight up at constant speed, then the force needed to lift it is equal to its weight mg. The work done on the mass is then W = Fd = mgh. We define this to be the **gravitational potential energy** (PE_{σ}) put into (or gained by) the object-Earth system. This energy is associated with the state of separation between two objects that attract each other by the gravitational force. For convenience, we refer to this as the PE_g gained by the object, recognizing that this is energy stored in the gravitational field of Earth. Why do we use the word "system"? Potential energy is a property of a system rather than of a single object—due to its physical position. An object's gravitational potential is due to its position relative to the surroundings within the Earth-object system. The force applied to the object is an external force, from outside the system. When it does positive work it increases the gravitational potential energy of the system. Because gravitational potential energy depends on relative position, we need a reference level at which to set the potential energy equal to 0. We usually choose this point to be Earth's surface, but this point is arbitrary; what is important is the *difference* in gravitational potential energy, because this difference is what relates to the work done. The difference in gravitational potential energy of an object (in the Earthobject system) between two rungs of a ladder will be the same for the first two rungs as for the last two rungs.

Converting Between Potential Energy and Kinetic Energy

Gravitational potential energy may be converted to other forms of energy, such as kinetic energy. If we release the mass, gravitational force will do an amount of work

equal to mgh on it, thereby increasing its kinetic energy by that same amount (by the work-energy theorem). We will find it more useful to consider just the conversion of PE_g to KE without explicitly considering the intermediate step of work. (See [link].) This shortcut makes it is easier to solve problems using energy (if possible) rather than explicitly using forces.

(a) The work done to lift the weight is stored in the mass-Earth system as gravitational potential energy. (b) As the weight moves downward, this gravitational potential energy is transferred to the cuckoo clock.

More precisely, we define the *change* in gravitational potential energy ΔPE_g to be **Equation:**

$$\Delta \mathrm{PE}_{\mathrm{g}} = \mathrm{mgh},$$

where, for simplicity, we denote the change in height by h rather than the usual Δh . Note that h is positive when the final height is greater than the initial height, and vice versa. For example, if a 0.500-kg mass hung from a cuckoo clock is raised 1.00 m, then its change in gravitational potential energy is

Equation:

$$mgh = (0.500 \text{ kg}) (9.80 \text{ m/s}^2) (1.00 \text{ m})$$

= $4.90 \text{ kg} \cdot \text{m}^2/\text{s}^2 = 4.90 \text{ J}.$

Note that the units of gravitational potential energy turn out to be joules, the same as for work and other forms of energy. As the clock runs, the mass is lowered. We can think of the mass as gradually giving up its 4.90 J of gravitational potential energy, without directly considering the force of gravity that does the work.

Using Potential Energy to Simplify Calculations

The equation $\Delta PE_g = mgh$ applies for any path that has a change in height of h, not just when the mass is lifted straight up. (See [link].) It is much easier to calculate mgh (a simple multiplication) than it is to calculate the work done along a complicated path. The idea of gravitational potential energy has the double advantage that it is very broadly applicable and it makes calculations easier. From now on, we will consider that any change in vertical position h of a mass m is accompanied by a change in gravitational potential energy mgh, and we will avoid the equivalent but more difficult task of calculating work done by or against the gravitational force.

The change in gravitational potential energy $(\Delta \mathrm{PE}_\mathrm{g})$ between points A and B is independent of the path. $\Delta PE_g = mgh$ for any path between the two points. Gravity is one of a small class of forces where the work done by or against the force depends only on the starting and ending points, not on the path between them.

Example:

The Force to Stop Falling

A 60.0-kg person jumps onto the floor from a height of 3.00 m. If he lands stiffly (with his knee joints compressing by 0.500 cm), calculate the force on the knee joints.

Strategy

This person's energy is brought to zero in this situation by the work done on him by the floor as he stops. The initial PE_g is transformed into KE as he falls. The work done by the floor reduces this kinetic energy to zero.

Solution

The work done on the person by the floor as he stops is given by

Equation:

$$W = \mathrm{Fd} \cos \theta = -\mathrm{Fd},$$

with a minus sign because the displacement while stopping and the force from floor are in opposite directions ($\cos \theta = \cos 180^{\circ} = -1$). The floor removes energy from the system, so it does negative work.

The kinetic energy the person has upon reaching the floor is the amount of potential energy lost by falling through height h:

Equation:

$$ext{KE} = -\Delta ext{PE}_{ ext{g}} = - ext{mgh},$$

The distance d that the person's knees bend is much smaller than the height h of the fall, so the additional change in gravitational potential energy during the knee bend is ignored.

The work W done by the floor on the person stops the person and brings the person's kinetic energy to zero:

Equation:

$$W = -KE = mgh.$$

Combining this equation with the expression for W gives

Equation:

$$-Fd = mgh.$$

Recalling that h is negative because the person fell down, the force on the knee joints is given by

Equation:

$$F = -rac{ ext{mgh}}{d} = -rac{(60.0 ext{ kg}) \Big(9.80 ext{ m/s}^2 \Big) (-3.00 ext{ m})}{5.00 imes 10^{-3} ext{ m}} = 3.53 imes 10^5 ext{ N}.$$

Discussion

Such a large force (500 times more than the person's weight) over the short impact time is enough to break bones. A much better way to cushion the shock is by bending the legs or rolling on the ground, increasing the time over which the force acts. A bending motion of 0.5 m this way yields a force 100 times smaller than in the example. A kangaroo's hopping shows this method in action. The kangaroo is the only large animal to use hopping for locomotion, but the shock in hopping is cushioned by the bending of its hind legs in each jump. (See [link].)

The work done by the ground upon the kangaroo reduces its kinetic energy to zero as it lands. However, by applying the force of the ground on the hind legs over a longer distance, the impact on the bones is reduced. (credit: Chris Samuel, Flickr)

Example:

Finding the Speed of a Roller Coaster from its Height

(a) What is the final speed of the roller coaster shown in [link] if it starts from rest at the top of the 20.0 m hill and work done by frictional forces is negligible? (b) What is its final speed (again assuming negligible friction) if its initial speed is 5.00 m/s?

The speed of a roller coaster increases as gravity pulls it downhill and is greatest at its lowest point. Viewed in terms of energy, the roller-coaster-Earth system's gravitational potential energy is converted to kinetic energy. If work done by friction is negligible, all $\Delta PE_{\rm g}$ is converted to KE.

Strategy

The roller coaster loses potential energy as it goes downhill. We neglect friction, so that the remaining force exerted by the track is the normal force, which is perpendicular to the direction of motion and does no work. The net work on the roller coaster is then done by gravity alone. The *loss* of gravitational potential energy from moving *downward* through a distance h equals the *gain* in kinetic energy. This can be written in equation form as $-\Delta PE_g = \Delta KE$. Using the equations for PE_g and KE, we can solve for the final speed v, which is the desired quantity.

Solution for (a)

Here the initial kinetic energy is zero, so that $\Delta KE = \frac{1}{2}mv^2$. The equation for change in potential energy states that $\Delta PE_{\rm g} = mgh$. Since h is negative in this case, we will rewrite this as $\Delta PE_{\rm g} = -mg \mid h \mid$ to show the minus sign clearly. Thus,

Equation:

$$-\Delta PE_g = \Delta KE$$

becomes

Equation:

$$egin{aligned} \operatorname{mg}\mid h\mid =rac{1}{2}mv^2. \end{aligned}$$

Solving for v, we find that mass cancels and that

Equation:

$$v = \sqrt{2g\mid h\mid}.$$

Substituting known values,

Equation:

$$v = \sqrt{2(9.80 \text{ m/s}^2)(20.0 \text{ m})}$$

= 19.8 m/s.

Solution for (b)

Again $-\Delta PE_g=\Delta KE$. In this case there is initial kinetic energy, so $\Delta KE=\frac{1}{2}mv^2-\frac{1}{2}mv_0^2$. Thus,

Equation:

$$|mg| \ h \mid = rac{1}{2} m v^2 - rac{1}{2} m {v_0}^2.$$

Rearranging gives

Equation:

$$rac{1}{2}mv^2 = \mathrm{mg}\mid h\mid +rac{1}{2}m{v_0}^2.$$

This means that the final kinetic energy is the sum of the initial kinetic energy and the gravitational potential energy. Mass again cancels, and

Equation:

$$v = \sqrt{2g\mid h\mid + {v_0}^2}.$$

This equation is very similar to the kinematics equation $v = \sqrt{v_0^2 + 2 \mathrm{ad}}$, but it is more general—the kinematics equation is valid only for constant acceleration, whereas our equation above is valid for any path regardless of whether the object moves with a constant acceleration. Now, substituting known values gives

Equation:

$$v = \sqrt{2(9.80 \text{ m/s}^2)(20.0 \text{ m}) + (5.00 \text{ m/s})^2}$$

= 20.4 m/s.

Discussion and Implications

First, note that mass cancels. This is quite consistent with observations made in Falling Objects that all objects fall at the same rate if friction is negligible. Second, only the speed of the roller coaster is considered; there is no information about its direction at any point. This reveals another general truth. When friction is negligible, the speed of a falling body depends only on its initial speed and height, and not on its mass or the path taken. For example, the roller coaster will have the same final speed whether it falls 20.0 m straight down or takes a more complicated path like the one in the figure. Third, and perhaps unexpectedly, the final speed in part (b) is greater than in part (a), but by far less than 5.00 m/s. Finally, note that speed can be found at *any* height along the way by simply using the appropriate value of h at the point of interest.

We have seen that work done by or against the gravitational force depends only on the starting and ending points, and not on the path between, allowing us to define the simplifying concept of gravitational potential energy. We can do the same thing for a few other forces, and we will see that this leads to a formal definition of the law of conservation of energy.

Note:

Making Connections: Take-Home Investigation—Converting Potential to Kinetic Energy

One can study the conversion of gravitational potential energy into kinetic energy in this experiment. On a smooth, level surface, use a ruler of the kind that has a groove running along its length and a book to make an incline (see [link]). Place a marble at the 10-cm position on the ruler and let it roll down the ruler. When it hits the level surface, measure the time it takes to roll one meter. Now place the marble

at the 20-cm and the 30-cm positions and again measure the times it takes to roll 1 m on the level surface. Find the velocity of the marble on the level surface for all three positions. Plot velocity squared versus the distance traveled by the marble. What is the shape of each plot? If the shape is a straight line, the plot shows that the marble's kinetic energy at the bottom is proportional to its potential energy at the release point.

A marble rolls down a ruler, and its speed on the level surface is measured.

Section Summary

- Work done against gravity in lifting an object becomes potential energy of the object-Earth system.
- The change in gravitational potential energy, ΔPE_g , is $\Delta PE_g = mgh$, with h being the increase in height and g the acceleration due to gravity.
- The gravitational potential energy of an object near Earth's surface is due to its position in the mass-Earth system. Only differences in gravitational potential energy, $\Delta PE_{\rm g}$, have physical significance.
- As an object descends without friction, its gravitational potential energy changes into kinetic energy corresponding to increasing speed, so that $\Delta KE = -\Delta PE_g$.

Conceptual Questions

Exercise:

Problem:

In [link], we calculated the final speed of a roller coaster that descended 20 m in height and had an initial speed of 5 m/s downhill. Suppose the roller coaster had had an initial speed of 5 m/s *uphill* instead, and it coasted uphill, stopped, and then rolled back down to a final point 20 m below the start. We would find in that case that its final speed is the same as its initial speed. Explain in terms of conservation of energy.

Exercise:

Problem:

Does the work you do on a book when you lift it onto a shelf depend on the path taken? On the time taken? On the height of the shelf? On the mass of the book?

Problems & Exercises

Exercise:

Problem:

A hydroelectric power facility (see [link]) converts the gravitational potential energy of water behind a dam to electric energy. (a) What is the gravitational potential energy relative to the generators of a lake of volume $50.0~\rm km^3$ ($\rm mass = 5.00 \times 10^{13}~\rm kg)$, given that the lake has an average height of 40.0 m above the generators? (b) Compare this with the energy stored in a 9-megaton fusion bomb.

Hydroelectric facility (credit: Denis

Belevich, Wikimedia Commons)

Solution:

- (a) $1.96 \times 10^{16} \text{ J}$
- (b) The ratio of gravitational potential energy in the lake to the energy stored in the bomb is 0.52. That is, the energy stored in the lake is approximately half that in a 9-megaton fusion bomb.

Exercise:

Problem:

(a) How much gravitational potential energy (relative to the ground on which it is built) is stored in the Great Pyramid of Cheops, given that its mass is about 7×10^9 kg and its center of mass is 36.5 m above the surrounding ground? (b) How does this energy compare with the daily food intake of a person?

Exercise:

Problem:

Suppose a 350-g kookaburra (a large kingfisher bird) picks up a 75-g snake and raises it 2.5 m from the ground to a branch. (a) How much work did the bird do on the snake? (b) How much work did it do to raise its own center of mass to the branch?

Solution:

- (a) 1.8 J
- (b) 8.6 J

Exercise:

Problem:

In [link], we found that the speed of a roller coaster that had descended 20.0 m was only slightly greater when it had an initial speed of 5.00 m/s than when it started from rest. This implies that $\Delta PE >> KE_i$. Confirm this statement by taking the ratio of ΔPE to KE_i . (Note that mass cancels.)

Exercise:

Problem:

A 100-g toy car is propelled by a compressed spring that starts it moving. The car follows the curved track in [link]. Show that the final speed of the toy car is 0.687 m/s if its initial speed is 2.00 m/s and it coasts up the frictionless slope,

gaining 0.180 m in altitude.

A toy car moves up a sloped track. (credit: Leszek Leszczynski, Flickr)

Solution:

Equation:

$$v_f = \sqrt{2 {
m gh} + {v_0}^2} = \sqrt{2 (9.80 \ {
m m/s}^2) (-0.180 \ {
m m}) + (2.00 \ {
m m/s})^2} = 0.687 \ {
m m/s}$$

Exercise:

Problem:

In a downhill ski race, surprisingly, little advantage is gained by getting a running start. (This is because the initial kinetic energy is small compared with the gain in gravitational potential energy on even small hills.) To demonstrate this, find the final speed and the time taken for a skier who skies 70.0 m along a 30° slope neglecting friction: (a) Starting from rest. (b) Starting with an initial speed of 2.50 m/s. (c) Does the answer surprise you? Discuss why it is still advantageous to get a running start in very competitive events.

Glossary

gravitational potential energy the energy an object has due to its position in a gravitational field

Conservative Forces and Potential Energy

- Define conservative force, potential energy, and mechanical energy.
- Explain the potential energy of a spring in terms of its compression when Hooke's law applies.
- Use the work-energy theorem to show how having only conservative forces implies conservation of mechanical energy.

Potential Energy and Conservative Forces

Work is done by a force, and some forces, such as weight, have special characteristics. A **conservative force** is one, like the gravitational force, for which work done by or against it depends only on the starting and ending points of a motion and not on the path taken. We can define a **potential energy** (PE) for any conservative force, just as we did for the gravitational force. For example, when you wind up a toy, an egg timer, or an old-fashioned watch, you do work against its spring and store energy in it. (We treat these springs as ideal, in that we assume there is no friction and no production of thermal energy.) This stored energy is recoverable as work, and it is useful to think of it as potential energy contained in the spring. Indeed, the reason that the spring has this characteristic is that its force is *conservative*. That is, a conservative force results in stored or potential energy. Gravitational potential energy is one example, as is the energy stored in a spring. We will also see how conservative forces are related to the conservation of energy.

Note:

Potential Energy and Conservative Forces

Potential energy is the energy a system has due to position, shape, or configuration. It is stored energy that is completely recoverable. A conservative force is one for which work done by or against it depends only on the starting and ending points of a motion and not on the path taken.

We can define a potential energy (PE) for any conservative force. The work done against a conservative force to reach a final configuration

depends on the configuration, not the path followed, and is the potential energy added.

Potential Energy of a Spring

First, let us obtain an expression for the potential energy stored in a spring (PE_s). We calculate the work done to stretch or compress a spring that obeys Hooke's law. (Hooke's law was examined in Elasticity: Stress and Strain, and states that the magnitude of force F on the spring and the resulting deformation ΔL are proportional, $F = k\Delta L$.) (See [link].) For our spring, we will replace ΔL (the amount of deformation produced by a force F) by the distance x that the spring is stretched or compressed along its length. So the force needed to stretch the spring has magnitude F = kx, where k is the spring's force constant. The force increases linearly from 0 at the start to kx in the fully stretched position. The average force is kx/2. Thus the work done in stretching or compressing the spring is

 $W_{\rm s}={
m Fd}=\left(\frac{kx}{2}\right)x=\frac{1}{2}kx^2$. Alternatively, we noted in <u>Kinetic Energy</u> and the Work-Energy Theorem that the area under a graph of F vs. x is the work done by the force. In $[\underline{{
m link}}](c)$ we see that this area is also $\frac{1}{2}kx^2$. We therefore define the **potential energy of a spring**, ${
m PE}_{\rm s}$, to be **Equation:**

$$ext{PE}_{ ext{s}} = rac{1}{2} ext{kx}^2,$$

where k is the spring's force constant and x is the displacement from its undeformed position. The potential energy represents the work done *on* the spring and the energy stored in it as a result of stretching or compressing it a distance x. The potential energy of the spring PE_s does not depend on the path taken; it depends only on the stretch or squeeze x in the final configuration.

(a) An undeformed spring has no PE_s stored in it. (b) The force needed to stretch (or compress) the spring a distance x has a magnitude F = kx, and the work done to stretch (or compress) it is \(\frac{1}{2}kx^2\). Because the force is conservative, this work is stored as potential energy (PE_s) in the spring, and it can be fully recovered.
(c) A graph of F vs. x has a slope of k, and the area under the graph is \(\frac{1}{2}kx^2\). Thus the work done or potential energy stored is \(\frac{1}{2}kx^2\).

The equation $PE_s = \frac{1}{2}kx^2$ has general validity beyond the special case for which it was derived. Potential energy can be stored in any elastic medium by deforming it. Indeed, the general definition of **potential energy** is energy due to position, shape, or configuration. For shape or position deformations, stored energy is $PE_s = \frac{1}{2}kx^2$, where k is the force constant of the particular system and x is its deformation. Another example is seen in [link] for a guitar string.

Work is done to deform the guitar string, giving it potential energy. When released, the potential energy is converted to kinetic energy and back to potential as the string oscillates back and forth. A very small fraction is dissipated as

sound
energy,
slowly
removing
energy from
the string.

Conservation of Mechanical Energy

Let us now consider what form the work-energy theorem takes when only conservative forces are involved. This will lead us to the conservation of energy principle. The work-energy theorem states that the net work done by all forces acting on a system equals its change in kinetic energy. In equation form, this is

Equation:

$$W_{
m net} = rac{1}{2} m v^2 - rac{1}{2} m {v_0}^2 = \Delta {
m KE}.$$

If only conservative forces act, then

Equation:

$$W_{
m net} = W_{
m c},$$

where $W_{\rm c}$ is the total work done by all conservative forces. Thus, **Equation:**

$$W_{\mathrm{c}} = \Delta \mathrm{KE}.$$

Now, if the conservative force, such as the gravitational force or a spring force, does work, the system loses potential energy. That is, $W_{\rm c}=-\Delta {\rm PE}$. Therefore,

Equation:

$$-\Delta PE = \Delta KE$$

or

Equation:

$$\Delta \text{KE} + \Delta \text{PE} = 0.$$

This equation means that the total kinetic and potential energy is constant for any process involving only conservative forces. That is,

Equation:

$$\begin{aligned} KE + PE &= constant \\ or & (conservative forces only), \\ KE_i + PE_i &= KE_f + PE_f \end{aligned}$$

where i and f denote initial and final values. This equation is a form of the work-energy theorem for conservative forces; it is known as the **conservation of mechanical energy** principle. Remember that this applies to the extent that all the forces are conservative, so that friction is negligible. The total kinetic plus potential energy of a system is defined to be its **mechanical energy**, (KE + PE). In a system that experiences only conservative forces, there is a potential energy associated with each force, and the energy only changes form between KE and the various types of PE , with the total energy remaining constant.

Example:

Using Conservation of Mechanical Energy to Calculate the Speed of a Toy Car

A 0.100-kg toy car is propelled by a compressed spring, as shown in [link]. The car follows a track that rises 0.180 m above the starting point. The spring is compressed 4.00 cm and has a force constant of 250.0 N/m. Assuming work done by friction to be negligible, find (a) how fast the car

is going before it starts up the slope and (b) how fast it is going at the top of the slope.

A toy car is pushed by a compressed spring and coasts up a slope. Assuming negligible friction, the potential energy in the spring is first completely converted to kinetic energy, and then to a combination of kinetic and gravitational potential energy as the car rises. The details of the path are unimportant because all forces are conservative—the car would have the same final speed if it took the alternate path shown.

Strategy

The spring force and the gravitational force are conservative forces, so conservation of mechanical energy can be used. Thus,

Equation:

$$KE_i + PE_i = KE_f + PE_f$$

or

Equation:

$$rac{1}{2}m{v_{
m i}}^2 + mg{h_{
m i}} + rac{1}{2}k{x_{
m i}}^2 = rac{1}{2}m{v_{
m f}}^2 + mg{h_{
m f}} + rac{1}{2}k{x_{
m f}}^2,$$

where h is the height (vertical position) and x is the compression of the spring. This general statement looks complex but becomes much simpler when we start considering specific situations. First, we must identify the initial and final conditions in a problem; then, we enter them into the last equation to solve for an unknown.

Solution for (a)

This part of the problem is limited to conditions just before the car is released and just after it leaves the spring. Take the initial height to be zero, so that both $h_{\rm i}$ and $h_{\rm f}$ are zero. Furthermore, the initial speed $v_{\rm i}$ is zero and the final compression of the spring $x_{\rm f}$ is zero, and so several terms in the conservation of mechanical energy equation are zero and it simplifies to

Equation:

$$rac{1}{2}k{x_{
m i}}^2 = rac{1}{2}m{v_{
m f}}^2.$$

In other words, the initial potential energy in the spring is converted completely to kinetic energy in the absence of friction. Solving for the final speed and entering known values yields

Equation:

$$egin{array}{lll} v_{
m f} &=& \sqrt{rac{k}{m}} x_{
m i} \ &=& \sqrt{rac{250.0\ {
m N/m}}{0.100\ {
m kg}}} (0.0400\ {
m m}) \ &=& 2.00\ {
m m/s}. \end{array}$$

Solution for (b)

One method of finding the speed at the top of the slope is to consider conditions just before the car is released and just after it reaches the top of the slope, completely ignoring everything in between. Doing the same type of analysis to find which terms are zero, the conservation of mechanical energy becomes

Equation:

$$rac{1}{2}k{x_i}^2 = rac{1}{2}m{v_f}^2 + mgh_f.$$

This form of the equation means that the spring's initial potential energy is converted partly to gravitational potential energy and partly to kinetic energy. The final speed at the top of the slope will be less than at the bottom. Solving for $v_{\rm f}$ and substituting known values gives

Equation:

$$egin{array}{lll} v_{
m f} &=& \sqrt{rac{kx_{
m i}^{2}}{m}-2gh_{
m f}} \ &=& \sqrt{\left(rac{250.0~{
m N/m}}{0.100~{
m kg}}
ight)(0.0400~{
m m})^{2}-2(9.80~{
m m/s}^{2})(0.180~{
m m})} \ &=& 0.687~{
m m/s}. \end{array}$$

Discussion

Another way to solve this problem is to realize that the car's kinetic energy before it goes up the slope is converted partly to potential energy—that is, to take the final conditions in part (a) to be the initial conditions in part (b).

Note that, for conservative forces, we do not directly calculate the work they do; rather, we consider their effects through their corresponding potential energies, just as we did in [link]. Note also that we do not consider details of the path taken—only the starting and ending points are important (as long as the path is not impossible). This assumption is usually a tremendous simplification, because the path may be complicated and forces may vary along the way.

Note:

PhET Explorations: Energy Skate Park

Learn about conservation of energy with a skater dude! Build tracks, ramps and jumps for the skater and view the kinetic energy, potential energy and friction as he moves. You can also take the skater to different planets or even space!

https://phet.colorado.edu/sims/html/energy-skate-park-basics/latest/energy-skate-park-basics en.html

Section Summary

- A conservative force is one for which work depends only on the starting and ending points of a motion, not on the path taken.
- We can define potential energy (PE) for any conservative force, just as we defined PE_g for the gravitational force.
- The potential energy of a spring is $PE_s = \frac{1}{2}kx^2$, where k is the spring's force constant and x is the displacement from its undeformed position.
- Mechanical energy is defined to be KE + PE for a conservative force.
- When only conservative forces act on and within a system, the total mechanical energy is constant. In equation form,

Equation:

$$KE + PE = constant \label{eq:KE}$$
 or
$$KE_i + PE_i = KE_f + PE_f \label{eq:KE}$$

where i and f denote initial and final values. This is known as the conservation of mechanical energy.

Conceptual Questions

Exercise:

Problem: What is a conservative force?

Exercise:

Problem:

The force exerted by a diving board is conservative, provided the internal friction is negligible. Assuming friction is negligible, describe changes in the potential energy of a diving board as a swimmer dives from it, starting just before the swimmer steps on the board until just after his feet leave it.

Exercise:

Problem:

Define mechanical energy. What is the relationship of mechanical energy to nonconservative forces? What happens to mechanical energy if only conservative forces act?

Exercise:

Problem:

What is the relationship of potential energy to conservative force?

Problems & Exercises

Exercise:

Problem:

A 5.00×10^5 -kg subway train is brought to a stop from a speed of 0.500 m/s in 0.400 m by a large spring bumper at the end of its track. What is the force constant k of the spring?

Solution:

Equation:

$$7.81 \times 10^5 \, \mathrm{N/m}$$

Exercise:

Problem:

A pogo stick has a spring with a force constant of 2.50×10^4 N/m, which can be compressed 12.0 cm. To what maximum height can a child jump on the stick using only the energy in the spring, if the child and stick have a total mass of 40.0 kg? Explicitly show how you follow the steps in the <u>Problem-Solving Strategies for Energy</u>.

Glossary

conservative force

a force that does the same work for any given initial and final configuration, regardless of the path followed

potential energy

energy due to position, shape, or configuration

potential energy of a spring

the stored energy of a spring as a function of its displacement; when Hooke's law applies, it is given by the expression $\frac{1}{2}kx^2$ where x is the distance the spring is compressed or extended and k is the spring constant

conservation of mechanical energy

the rule that the sum of the kinetic energies and potential energies remains constant if only conservative forces act on and within a system

mechanical energy

the sum of kinetic energy and potential energy

Nonconservative Forces

- Define nonconservative forces and explain how they affect mechanical energy.
- Show how the principle of conservation of energy can be applied by treating the conservative forces in terms of their potential energies and any nonconservative forces in terms of the work they do.

Nonconservative Forces and Friction

Forces are either conservative or nonconservative. Conservative forces were discussed in <u>Conservative Forces and Potential Energy</u>. A **nonconservative force** is one for which work depends on the path taken. Friction is a good example of a nonconservative force. As illustrated in [link], work done against friction depends on the length of the path between the starting and ending points. Because of this dependence on path, there is no potential energy associated with nonconservative forces. An important characteristic is that the work done by a nonconservative force *adds or removes mechanical energy from a system*. **Friction**, for example, creates **thermal energy** that dissipates, removing energy from the system. Furthermore, even if the thermal energy is retained or captured, it cannot be fully converted back to work, so it is lost or not recoverable in that sense as well.

The amount of the happy face erased depends on the path taken by the eraser between points A and B, as does the work done against friction. Less work is done and less of the face

is erased for the path in (a) than for the path in (b). The force here is friction, and most of the work goes into thermal energy that subsequently leaves the system (the happy face plus the eraser). The energy expended cannot be fully recovered.

How Nonconservative Forces Affect Mechanical Energy

Mechanical energy *may* not be conserved when nonconservative forces act. For example, when a car is brought to a stop by friction on level ground, it loses kinetic energy, which is dissipated as thermal energy, reducing its mechanical energy. [link] compares the effects of conservative and nonconservative forces. We often choose to understand simpler systems such as that described in [link](a) first before studying more complicated systems as in [link](b).

Comparison of the effects of conservative and nonconservative forces on the mechanical energy of a system. (a) A system with only conservative forces. When a rock is dropped onto a spring, its mechanical energy remains constant (neglecting air resistance) because the force in the spring is conservative. The spring can propel the rock back to its original height, where it once again has only potential energy due to gravity. (b) A system with nonconservative forces. When the same rock is dropped onto the ground, it is stopped by nonconservative forces that dissipate its mechanical energy as thermal energy, sound, and surface distortion. The rock has lost mechanical energy.

How the Work-Energy Theorem Applies

Now let us consider what form the work-energy theorem takes when both conservative and nonconservative forces act. We will see that the work done by nonconservative forces equals the change in the mechanical energy of a system. As noted in <u>Kinetic Energy and the Work-Energy Theorem</u>, the work-energy theorem states that the net work on a system equals the change in its kinetic energy, or $W_{\rm net} = \Delta KE$. The net work is the sum of the work by nonconservative forces plus the work by conservative forces. That is, **Equation:**

$$W_{\rm net} = W_{\rm nc} + W_{\rm c}$$

so that

Equation:

$$W_{\rm nc} + W_{\rm c} = \Delta {\rm KE}$$

where $W_{\rm nc}$ is the total work done by all nonconservative forces and $W_{\rm c}$ is the total work done by all conservative forces.

A person pushes a crate up a ramp, doing work on the crate. Friction and gravitational force (not shown) also do work on the crate; both forces oppose the person's push. As the crate is pushed up the ramp, it gains mechanical energy, implying that the work done by the person is greater than the work done by friction.

Consider [link], in which a person pushes a crate up a ramp and is opposed by friction. As in the previous section, we note that work done by a conservative force comes from a loss of gravitational potential energy, so that $W_{\rm c} = -\Delta {\rm PE}$. Substituting this equation into the previous one and solving for $W_{\rm nc}$ gives

Equation:

$$W_{\rm nc} = \Delta {
m KE} + \Delta {
m PE}.$$

This equation means that the total mechanical energy (KE + PE) changes by exactly the amount of work done by nonconservative forces. In [link], this is the work done by the person minus the work done by friction. So even if energy is not conserved for the system of interest (such as the crate), we know that an equal amount of work was done to cause the change in total mechanical energy.

We rearrange $W_{\rm nc} = \Delta {\rm KE} + \Delta {\rm PE}$ to obtain **Equation:**

$$KE_i + PE_i + W_{nc} = KE_f + PE_f.$$

This means that the amount of work done by nonconservative forces adds to the mechanical energy of a system. If $W_{\rm nc}$ is positive, then mechanical energy is increased, such as when the person pushes the crate up the ramp in [link]. If $W_{\rm nc}$ is negative, then mechanical energy is decreased, such as when the rock hits the ground in [link](b). If $W_{\rm nc}$ is zero, then mechanical energy is conserved, and nonconservative forces are balanced. For example, when you push a lawn mower at constant speed on level ground, your work done is removed by the work of friction, and the mower has a constant energy.

Applying Energy Conservation with Nonconservative Forces

When no change in potential energy occurs, applying $KE_i + PE_i + W_{nc} = KE_f + PE_f$ amounts to applying the work-energy theorem by setting the change in kinetic energy to be equal to the net work done on the system, which in the most general case includes both conservative and nonconservative forces. But when seeking instead to find a change in total mechanical energy in situations that involve changes in both potential and kinetic energy, the previous equation $KE_i + PE_i + W_{nc} = KE_f + PE_f$ says that you can start by finding the change in mechanical energy that would have resulted from just the conservative forces, including the potential energy changes, and add to it the work done, with the proper sign, by any nonconservative forces involved.

Example:

Calculating Distance Traveled: How Far a Baseball Player Slides

Consider the situation shown in [link], where a baseball player slides to a stop on level ground. Using energy considerations, calculate the distance

the 65.0-kg baseball player slides, given that his initial speed is 6.00 m/s and the force of friction against him is a constant 450 N.

The baseball player slides to a stop in a distance *d*. In the process, friction removes the player's kinetic energy by doing an amount of work fd equal to the initial kinetic energy.

Strategy

Friction stops the player by converting his kinetic energy into other forms, including thermal energy. In terms of the work-energy theorem, the work done by friction, which is negative, is added to the initial kinetic energy to reduce it to zero. The work done by friction is negative, because \mathbf{f} is in the opposite direction of the motion (that is, $\theta = 180^{\circ}$, and so $\cos \theta = -1$). Thus $W_{\rm nc} = -\mathrm{fd}$. The equation simplifies to

Equation:

$$rac{1}{2}m{v_{\mathrm{i}}}^2-\mathrm{fd}=0$$

or

Equation:

$$\mathrm{fd}=rac{1}{2}m{v_{\mathrm{i}}}^{2}.$$

This equation can now be solved for the distance d.

Solution

Solving the previous equation for d and substituting known values yields **Equation:**

$$egin{array}{lcl} d & = & rac{m{v_{
m i}}^2}{2f} \ & = & rac{(65.0\ {
m kg})(6.00\ {
m m/s})^2}{(2)(450\ {
m N})} \ & = & 2.60\ {
m m.} \end{array}$$

Discussion

The most important point of this example is that the amount of nonconservative work equals the change in mechanical energy. For example, you must work harder to stop a truck, with its large mechanical energy, than to stop a mosquito.

Example:

Calculating Distance Traveled: Sliding Up an Incline

Suppose that the player from [link] is running up a hill having a 5.00° incline upward with a surface similar to that in the baseball stadium. The player slides with the same initial speed, and the frictional force is still 450 N. Determine how far he slides.

The same baseball player slides to a stop on a 5.00° slope.

Strategy

In this case, the work done by the nonconservative friction force on the player reduces the mechanical energy he has from his kinetic energy at zero height, to the final mechanical energy he has by moving through

distance d to reach height h along the hill, with $h = d \sin 5.00^\circ$. This is expressed by the equation

Equation:

$$KE_i + PE_i + W_{nc} = KE_f + PE_f.$$

Solution

The work done by friction is again $W_{\rm nc}=-{\rm fd}$; initially the potential energy is ${\rm PE_i}={\rm mg}\cdot 0=0$ and the kinetic energy is ${\rm KE_i}=\frac{1}{2}m{v_i}^2$; the final energy contributions are ${\rm KE_f}=0$ for the kinetic energy and ${\rm PE_f}={\rm mgh}={\rm mgd}\sin\theta$ for the potential energy. Substituting these values gives

Equation:

$$rac{1}{2}m{v_{\mathrm{i}}}^2+0+\left(-fd
ight)=0+mgd\sin heta.$$

Solve this for d to obtain

Equation:

$$egin{array}{lcl} d & = & rac{\left(rac{1}{2}
ight)m{v_{
m i}}^2}{f+mg\sin heta} \ & = & rac{(0.5)(65.0\,{
m kg})(6.00\,{
m m/s})^2}{450\,{
m N}+(65.0\,{
m kg})(9.80\,{
m m/s}^2)\sin{(5.00^{
m o})}} \ & = & 2.31\,{
m m}. \end{array}$$

Discussion

As might have been expected, the player slides a shorter distance by sliding uphill. Note that the problem could also have been solved in terms of the forces directly and the work energy theorem, instead of using the potential energy. This method would have required combining the normal force and force of gravity vectors, which no longer cancel each other because they point in different directions, and friction, to find the net force. You could then use the net force and the net work to find the distance d that reduces the kinetic energy to zero. By applying conservation of energy and using the potential energy instead, we need only consider the gravitational potential energy mgh, without combining and resolving force vectors. This simplifies the solution considerably.

Note:

Making Connections: Take-Home Investigation—Determining Friction from the Stopping Distance

This experiment involves the conversion of gravitational potential energy into thermal energy. Use the ruler, book, and marble from <u>Take-Home</u> <u>Investigation—Converting Potential to Kinetic Energy</u>. In addition, you will need a foam cup with a small hole in the side, as shown in [link]. From the 10-cm position on the ruler, let the marble roll into the cup positioned at the bottom of the ruler. Measure the distance d the cup moves before stopping. What forces caused it to stop? What happened to the kinetic energy of the marble at the bottom of the ruler? Next, place the marble at the 20-cm and the 30-cm positions and again measure the distance the cup moves after the marble enters it. Plot the distance the cup moves versus the initial marble position on the ruler. Is this relationship linear? With some simple assumptions, you can use these data to find the coefficient of kinetic friction μ_k of the cup on the table. The force of friction f on the cup is $\mu_k N$, where the normal force N is just the weight of the cup plus the marble. The normal force and force of gravity do no work because they are perpendicular to the displacement of the cup, which moves horizontally. The work done by friction is fd. You will need the mass of the marble as well to calculate its initial kinetic energy. It is interesting to do the above experiment also with a steel marble (or ball bearing). Releasing it from the same positions on the ruler as you did with the glass marble, is the velocity of this steel marble the same as the velocity of the marble at the bottom of the ruler? Is the distance the cup moves proportional to the mass of the steel and glass marbles?

Rolling a marble down a ruler into a foam cup.

Note:

PhET Explorations: The Ramp

Explore forces, energy and work as you push household objects up and down a ramp. Lower and raise the ramp to see how the angle of inclination affects the parallel forces acting on the file cabinet. Graphs show forces, energy and work.

The Ram

Section Summary

- A nonconservative force is one for which work depends on the path.
- Friction is an example of a nonconservative force that changes mechanical energy into thermal energy.
- Work $W_{\rm nc}$ done by a nonconservative force changes the mechanical energy of a system. In equation form, $W_{\rm nc} = \Delta {\rm KE} + \Delta {\rm PE}$ or, equivalently, ${\rm KE_i} + {\rm PE_i} + W_{\rm nc} = {\rm KE_f} + {\rm PE_f}$.
- When both conservative and nonconservative forces act, energy conservation can be applied and used to calculate motion in terms of the known potential energies of the conservative forces and the work done by nonconservative forces, instead of finding the net work from the net force, or having to directly apply Newton's laws.

Problems & Exercises

Exercise:

Problem:

A 60.0-kg skier with an initial speed of 12.0 m/s coasts up a 2.50-m-high rise as shown in [link]. Find her final speed at the top, given that the coefficient of friction between her skis and the snow is 0.0800. (Hint: Find the distance traveled up the incline assuming a straight-line path as shown in the figure.)

The skier's initial kinetic energy is partially used in coasting to the top of a rise.

Solution:

 $9.46 \, \text{m/s}$

Exercise:

Problem:

(a) How high a hill can a car coast up (engine disengaged) if work done by friction is negligible and its initial speed is 110 km/h? (b) If, in actuality, a 750-kg car with an initial speed of 110 km/h is observed to coast up a hill to a height 22.0 m above its starting point, how much thermal energy was generated by friction? (c) What is the average force of friction if the hill has a slope 2.5° above the horizontal?

Glossary

nonconservative force

a force whose work depends on the path followed between the given initial and final configurations

friction

the force between surfaces that opposes one sliding on the other; friction changes mechanical energy into thermal energy

Conservation of Energy

- Explain the law of the conservation of energy.
- Describe some of the many forms of energy.
- Define efficiency of an energy conversion process as the fraction left as useful energy or work, rather than being transformed, for example, into thermal energy.

Law of Conservation of Energy

Energy, as we have noted, is conserved, making it one of the most important physical quantities in nature. The **law of conservation of energy** can be stated as follows:

Total energy is constant in any process. It may change in form or be transferred from one system to another, but the total remains the same.

We have explored some forms of energy and some ways it can be transferred from one system to another. This exploration led to the definition of two major types of energy—mechanical energy (KE + PE) and energy transferred via work done by nonconservative forces ($W_{\rm nc}$). But energy takes *many* other forms, manifesting itself in *many* different ways, and we need to be able to deal with all of these before we can write an equation for the above general statement of the conservation of energy.

Other Forms of Energy than Mechanical Energy

At this point, we deal with all other forms of energy by lumping them into a single group called other energy (OE). Then we can state the conservation of energy in equation form as

Equation:

$$KE_i + PE_i + W_{nc} + OE_i = KE_f + PE_f + OE_f.$$

All types of energy and work can be included in this very general statement of conservation of energy. Kinetic energy is KE, work done by a conservative force is represented by PE, work done by nonconservative forces is $W_{\rm nc}$, and

all other energies are included as OE. This equation applies to all previous examples; in those situations OE was constant, and so it subtracted out and was not directly considered.

Note:

Making Connections: Usefulness of the Energy Conservation Principle
The fact that energy is conserved and has many forms makes it very
important. You will find that energy is discussed in many contexts, because it
is involved in all processes. It will also become apparent that many situations
are best understood in terms of energy and that problems are often most
easily conceptualized and solved by considering energy.

When does OE play a role? One example occurs when a person eats. Food is oxidized with the release of carbon dioxide, water, and energy. Some of this chemical energy is converted to kinetic energy when the person moves, to potential energy when the person changes altitude, and to thermal energy (another form of OE).

Some of the Many Forms of Energy

What are some other forms of energy? You can probably name a number of forms of energy not yet discussed. Many of these will be covered in later chapters, but let us detail a few here. **Electrical energy** is a common form that is converted to many other forms and does work in a wide range of practical situations. Fuels, such as gasoline and food, carry **chemical energy** that can be transferred to a system through oxidation. Chemical fuel can also produce electrical energy, such as in batteries. Batteries can in turn produce light, which is a very pure form of energy. Most energy sources on Earth are in fact stored energy from the energy we receive from the Sun. We sometimes refer to this as **radiant energy**, or electromagnetic radiation, which includes visible light, infrared, and ultraviolet radiation. **Nuclear energy** comes from processes that convert measurable amounts of mass into energy. Nuclear energy is transformed into the energy of sunlight, into electrical energy in power plants, and into the energy of the heat transfer and blast in weapons.

Atoms and molecules inside all objects are in random motion. This internal mechanical energy from the random motions is called **thermal energy**, because it is related to the temperature of the object. These and all other forms of energy can be converted into one another and can do work.

[link] gives the amount of energy stored, used, or released from various objects and in various phenomena. The range of energies and the variety of types and situations is impressive.

Note:

Problem-Solving Strategies for Energy

You will find the following problem-solving strategies useful whenever you deal with energy. The strategies help in organizing and reinforcing energy concepts. In fact, they are used in the examples presented in this chapter. The familiar general problem-solving strategies presented earlier—involving identifying physical principles, knowns, and unknowns, checking units, and so on—continue to be relevant here.

Step 1. Determine the system of interest and identify what information is given and what quantity is to be calculated. A sketch will help.

Step 2. Examine all the forces involved and determine whether you know or are given the potential energy from the work done by the forces. Then use step 3 or step 4.

Step 3. If you know the potential energies for the forces that enter into the problem, then forces are all conservative, and you can apply conservation of mechanical energy simply in terms of potential and kinetic energy. The equation expressing conservation of energy is

Equation:

$$KE_i + PE_i = KE_f + PE_f.$$

Step 4. If you know the potential energy for only some of the forces, possibly because some of them are nonconservative and do not have a potential energy, or if there are other energies that are not easily treated in terms of force and work, then the conservation of energy law in its most general form must be used.

Equation:

$$KE_i + PE_i + W_{nc} + OE_i = KE_f + PE_f + OE_f.$$

In most problems, one or more of the terms is zero, simplifying its solution. Do not calculate W_c , the work done by conservative forces; it is already incorporated in the PE terms.

Step 5. You have already identified the types of work and energy involved (in step 2). Before solving for the unknown, *eliminate terms wherever possible* to simplify the algebra. For example, choose h=0 at either the initial or final point, so that $PE_{\rm g}$ is zero there. Then solve for the unknown in the customary manner.

Step 6. *Check the answer to see if it is reasonable.* Once you have solved a problem, reexamine the forms of work and energy to see if you have set up the conservation of energy equation correctly. For example, work done against friction should be negative, potential energy at the bottom of a hill should be less than that at the top, and so on. Also check to see that the numerical value obtained is reasonable. For example, the final speed of a skateboarder who coasts down a 3-m-high ramp could reasonably be 20 km/h, but *not* 80 km/h.

Transformation of Energy

The transformation of energy from one form into others is happening all the time. The chemical energy in food is converted into thermal energy through metabolism; light energy is converted into chemical energy through photosynthesis. In a larger example, the chemical energy contained in coal is converted into thermal energy as it burns to turn water into steam in a boiler. This thermal energy in the steam in turn is converted to mechanical energy as it spins a turbine, which is connected to a generator to produce electrical energy. (In all of these examples, not all of the initial energy is converted into the forms mentioned. This important point is discussed later in this section.)

Another example of energy conversion occurs in a solar cell. Sunlight impinging on a solar cell (see [link]) produces electricity, which in turn can be used to run an electric motor. Energy is converted from the primary source of solar energy into electrical energy and then into mechanical energy.

Solar energy is converted into electrical energy by solar cells, which is used to run a motor in this solar-power aircraft. (credit: NASA)

Object/phenomenon	Energy in joules
Big Bang	10^{68}
Energy released in a supernova	10^{44}
Fusion of all the hydrogen in Earth's oceans	10^{34}
Annual world energy use	$4{ imes}10^{20}$

Object/phenomenon	Energy in joules
Large fusion bomb (9 megaton)	$3.8{ imes}10^{16}$
1 kg hydrogen (fusion to helium)	$6.4{\times}10^{14}$
1 kg uranium (nuclear fission)	$8.0{\times}10^{13}$
Hiroshima-size fission bomb (10 kiloton)	$4.2{\times}10^{13}$
90,000-ton aircraft carrier at 30 knots	$1.1{\times}10^{10}$
1 barrel crude oil	$5.9{\times}10^9$
1 ton TNT	$4.2{\times}10^{9}$
1 gallon of gasoline	$1.2{ imes}10^8$
Daily home electricity use (developed countries)	$7{ imes}10^7$
Daily adult food intake (recommended)	$1.2{\times}10^7$

Object/phenomenon	Energy in joules
1000-kg car at 90 km/h	$3.1{ imes}10^5$
1 g fat (9.3 kcal)	$3.9{\times}10^4$
ATP hydrolysis reaction	$3.2{\times}10^4$
1 g carbohydrate (4.1 kcal)	$1.7{\times}10^4$
1 g protein (4.1 kcal)	$1.7{\times}10^4$
Tennis ball at 100 km/h	22
Mosquito $\left(10^{-2}~\mathrm{g~at~0.5~m/s}\right)$	$1.3{ imes}10^{-6}$
Single electron in a TV tube beam	$4.0{ imes}10^{-15}$
Energy to break one DNA strand	10^{-19}

Energy of Various Objects and Phenomena

Efficiency

Even though energy is conserved in an energy conversion process, the output of *useful energy* or work will be less than the energy input. The **efficiency** Eff of an energy conversion process is defined as

Equation:

$$\text{Efficiency(Eff)} = \frac{\text{useful energy or work output}}{\text{total energy input}} = \frac{W_{\text{out}}}{E_{\text{in}}}.$$

[link] lists some efficiencies of mechanical devices and human activities. In a coal-fired power plant, for example, about 40% of the chemical energy in the coal becomes useful electrical energy. The other 60% transforms into other (perhaps less useful) energy forms, such as thermal energy, which is then released to the environment through combustion gases and cooling towers.

Activity/device	Efficiency (%)[<u>footnote</u>] Representative values
Cycling and climbing	20
Swimming, surface	2
Swimming, submerged	4
Shoveling	3
Weightlifting	9
Steam engine	17
Gasoline engine	30

Activity/device	Efficiency (%)[footnote] Representative values
Diesel engine	35
Nuclear power plant	35
Coal power plant	42
Electric motor	98
Compact fluorescent light	20
Gas heater (residential)	90
Solar cell	10

Efficiency of the Human Body and Mechanical Devices

Note:

PhET Explorations: Masses and Springs

A realistic mass and spring laboratory. Hang masses from springs and adjust the spring stiffness and damping. You can even slow time. Transport the lab to different planets. A chart shows the kinetic, potential, and thermal energies for each spring.

https://phet.colorado.edu/sims/mass-spring-lab/mass-spring-lab en.html

Section Summary

- The law of conservation of energy states that the total energy is constant in any process. Energy may change in form or be transferred from one system to another, but the total remains the same.
- When all forms of energy are considered, conservation of energy is written in equation form as

 $KE_i + PE_i + W_{nc} + OE_i = KE_f + PE_f + OE_f$, where OE is all **other forms of energy** besides mechanical energy.

- Commonly encountered forms of energy include electric energy, chemical energy, radiant energy, nuclear energy, and thermal energy.
- Energy is often utilized to do work, but it is not possible to convert all the energy of a system to work.
- The efficiency Eff of a machine or human is defined to be $\mathrm{Eff} = \frac{W_{\mathrm{out}}}{E_{\mathrm{in}}}$, where W_{out} is useful work output and E_{in} is the energy consumed.

Conceptual Questions

Exercise:

Problem:

Consider the following scenario. A car for which friction is *not* negligible accelerates from rest down a hill, running out of gasoline after a short distance. The driver lets the car coast farther down the hill, then up and over a small crest. He then coasts down that hill into a gas station, where he brakes to a stop and fills the tank with gasoline. Identify the forms of energy the car has, and how they are changed and transferred in this series of events. (See [link].)

A car experiencing non-negligible friction coasts down a hill, over a small crest, then downhill again, and comes to a stop at a gas station.

Exercise:

Problem:

Describe the energy transfers and transformations for a javelin, starting from the point at which an athlete picks up the javelin and ending when the javelin is stuck into the ground after being thrown.

Exercise:

Problem:

Do devices with efficiencies of less than one violate the law of conservation of energy? Explain.

Exercise:

Problem:

List four different forms or types of energy. Give one example of a conversion from each of these forms to another form.

Exercise:

Problem: List the energy conversions that occur when riding a bicycle.

Problems & Exercises

Exercise:

Problem:

Using values from [link], how many DNA molecules could be broken by the energy carried by a single electron in the beam of an old-fashioned TV tube? (These electrons were not dangerous in themselves, but they did create dangerous x rays. Later model tube TVs had shielding that absorbed x rays before they escaped and exposed viewers.)

Solution:

 4×10^4 molecules

Exercise:

Problem:

Using energy considerations and assuming negligible air resistance, show that a rock thrown from a bridge 20.0 m above water with an initial speed of 15.0 m/s strikes the water with a speed of 24.8 m/s independent of the direction thrown.

Solution:

Equating ΔPE_g and ΔKE , we obtain

$$v = \sqrt{2 ext{gh} + {v_0}^2} = \sqrt{2(9.80 ext{ m/s}^2)(20.0 ext{ m}) + (15.0 ext{ m/s})^2} = 24.8 ext{ m/s}$$

Exercise:

Problem:

If the energy in fusion bombs were used to supply the energy needs of the world, how many of the 9-megaton variety would be needed for a year's supply of energy (using data from [link])? This is not as far-fetched as it may sound—there are thousands of nuclear bombs, and their energy can be trapped in underground explosions and converted to electricity, as natural geothermal energy is.

Exercise:

Problem:

(a) Use of hydrogen fusion to supply energy is a dream that may be realized in the next century. Fusion would be a relatively clean and almost limitless supply of energy, as can be seen from [link]. To illustrate this, calculate how many years the present energy needs of the world could be supplied by one millionth of the oceans' hydrogen fusion energy. (b) How does this time compare with historically significant events, such as the duration of stable economic systems?

Solution:

(a)
$$25 \times 10^6$$
 years

(b) This is much, much longer than human time scales.

Glossary

law of conservation of energy

the general law that total energy is constant in any process; energy may change in form or be transferred from one system to another, but the total remains the same

electrical energy

the energy carried by a flow of charge

chemical energy

the energy in a substance stored in the bonds between atoms and molecules that can be released in a chemical reaction

radiant energy

the energy carried by electromagnetic waves

nuclear energy

energy released by changes within atomic nuclei, such as the fusion of two light nuclei or the fission of a heavy nucleus

thermal energy

the energy within an object due to the random motion of its atoms and molecules that accounts for the object's temperature

efficiency

a measure of the effectiveness of the input of energy to do work; useful energy or work divided by the total input of energy

Introduction to Geometric Optics class="introduction"

Geometric Optics

Light from this page or screen is formed into an image by the lens of your eye, much as the lens of the camera that made this photograph. Mirrors, like lenses, can also form images that in turn are captured by your eye.

Image seen as a result of reflectio n of light on a plane smooth surface. (credit: **NASA** Goddard Photo and Video, via Flickr)

Our lives are filled with light. Through vision, the most valued of our senses, light can evoke spiritual emotions, such as when we view a magnificent sunset or glimpse a rainbow breaking through the clouds. Light can also simply amuse us in a theater, or warn us to stop at an intersection. It has innumerable uses beyond vision. Light can carry telephone signals through glass fibers or cook a meal in a solar oven. Life itself could not exist without light's energy. From photosynthesis in plants to the sun warming a cold-blooded animal, its supply of energy is vital.

Double Rainbow over the bay

of Pocitos in Montevideo, Uruguay. (credit: Madrax, Wikimedia Commons)

We already know that visible light is the type of electromagnetic waves to which our eyes respond. That knowledge still leaves many questions regarding the nature of light and vision. What is color, and how do our eyes detect it? Why do diamonds sparkle? How does light travel? How do lenses and mirrors form images? These are but a few of the questions that are answered by the study of optics. Optics is the branch of physics that deals with the behavior of visible light and other electromagnetic waves. In particular, optics is concerned with the generation and propagation of light and its interaction with matter. What we have already learned about the generation of light in our study of heat transfer by radiation will be expanded upon in later topics, especially those on atomic physics. Now, we will concentrate on the propagation of light and its interaction with matter.

It is convenient to divide optics into two major parts based on the size of objects that light encounters. When light interacts with an object that is several times as large as the light's wavelength, its observable behavior is like that of a ray; it does not prominently display its wave characteristics. We call this part of optics "geometric optics." This chapter will concentrate on such situations. When light interacts with smaller objects, it has very prominent wave characteristics, such as constructive and destructive interference. Wave Optics will concentrate on such situations.

The Ray Aspect of Light

• List the ways by which light travels from a source to another location.

There are three ways in which light can travel from a source to another location. (See [link].) It can come directly from the source through empty space, such as from the Sun to Earth. Or light can travel through various media, such as air and glass, to the person. Light can also arrive after being reflected, such as by a mirror. In all of these cases, light is modeled as traveling in straight lines called rays. Light may change direction when it encounters objects (such as a mirror) or in passing from one material to another (such as in passing from air to glass), but it then continues in a straight line or as a ray. The word **ray** comes from mathematics and here means a straight line that originates at some point. It is acceptable to visualize light rays as laser rays (or even science fiction depictions of ray guns).

Note:

Ray

The word "ray" comes from mathematics and here means a straight line that originates at some point.

Three methods for light to travel from a source to another location. (a) Light reaches the upper atmosphere of Earth traveling through empty space directly from the source. (b) Light can reach a person in one of two ways. It can travel through media like air and glass. It can also reflect from an object like a mirror. In the situations shown here, light interacts with objects large enough that it travels in straight lines, like a ray.

Experiments, as well as our own experiences, show that when light interacts with objects several times as large as its wavelength, it travels in straight lines and acts like a ray. Its wave characteristics are not pronounced in such situations. Since the wavelength of light is less than a micron (a thousandth of a millimeter), it acts like a ray in the many common situations in which it encounters objects larger than a micron. For example, when light encounters anything we can observe with unaided eyes, such as a mirror, it acts like a ray, with only subtle wave characteristics. We will concentrate on the ray characteristics in this chapter.

Since light moves in straight lines, changing directions when it interacts with materials, it is described by geometry and simple trigonometry. This part of optics, where the ray aspect of light dominates, is therefore called **geometric optics**. There are two laws that govern how light changes direction when it interacts with matter. These are the law of reflection, for

situations in which light bounces off matter, and the law of refraction, for situations in which light passes through matter.

Note:

Geometric Optics

The part of optics dealing with the ray aspect of light is called geometric optics.

Section Summary

- A straight line that originates at some point is called a ray.
- The part of optics dealing with the ray aspect of light is called geometric optics.
- Light can travel in three ways from a source to another location: (1) directly from the source through empty space; (2) through various media; (3) after being reflected from a mirror.

Problems & Exercises

Exercise:

Problem:

Suppose a man stands in front of a mirror as shown in [link]. His eyes are 1.65 m above the floor, and the top of his head is 0.13 m higher. Find the height above the floor of the top and bottom of the smallest mirror in which he can see both the top of his head and his feet. How is this distance related to the man's height?

A full-length mirror is one in which you can see all of yourself. It need not be as big as you, and its size is independent of your distance from it.

Solution:

Top 1.715 m from floor, bottom 0.825 m from floor. Height of mirror is 0.890 m, or precisely one-half the height of the person.

Glossary

ray

straight line that originates at some point

geometric optics part of optics dealing with the ray aspect of light

The Law of Reflection

• Explain reflection of light from polished and rough surfaces.

Whenever we look into a mirror, or squint at sunlight glinting from a lake, we are seeing a reflection. When you look at this page, too, you are seeing light reflected from it. Large telescopes use reflection to form an image of stars and other astronomical objects.

The law of reflection is illustrated in [link], which also shows how the angles are measured relative to the perpendicular to the surface at the point where the light ray strikes. We expect to see reflections from smooth surfaces, but [link] illustrates how a rough surface reflects light. Since the light strikes different parts of the surface at different angles, it is reflected in many different directions, or diffused. Diffused light is what allows us to see a sheet of paper from any angle, as illustrated in [link]. Many objects, such as people, clothing, leaves, and walls, have rough surfaces and can be seen from all sides. A mirror, on the other hand, has a smooth surface (compared with the wavelength of light) and reflects light at specific angles, as illustrated in [link]. When the moon reflects from a lake, as shown in [link], a combination of these effects takes place.

The law of reflection states that the angle of reflection equals the angle of incidence— $\theta_{\rm r}=\theta_{\rm i}$. The angles are measured relative to the perpendicular to

the surface at the point where the ray strikes the surface.

Light is diffused when it reflects from a rough surface. Here many parallel rays are incident, but they are reflected at many different angles since the surface is rough.

When a sheet of paper is illuminated with many parallel incident rays, it can be seen at many different angles, because

its surface is rough and diffuses the light.

A mirror illuminated by many parallel rays reflects them in only one direction, since its surface is very smooth. Only the observer at a particular angle will see the reflected light.

Moonlight is spread out when it is reflected by the lake, since the surface is shiny but uneven. (credit:

Diego Torres Silvestre, Flickr)

The law of reflection is very simple: The angle of reflection equals the angle of incidence.

Note:

The Law of Reflection

The angle of reflection equals the angle of incidence.

When we see ourselves in a mirror, it appears that our image is actually behind the mirror. This is illustrated in [link]. We see the light coming from a direction determined by the law of reflection. The angles are such that our image is exactly the same distance behind the mirror as we stand away from the mirror. If the mirror is on the wall of a room, the images in it are all behind the mirror, which can make the room seem bigger. Although these mirror images make objects appear to be where they cannot be (like behind a solid wall), the images are not figments of our imagination. Mirror images can be photographed and videotaped by instruments and look just as they do with our eyes (optical instruments themselves). The precise manner in which images are formed by mirrors and lenses will be treated in later sections of this chapter.

Our image in a mirror is behind the mirror. The two rays shown are those that strike the mirror at just the correct angles to be reflected into the eyes of the person. The image appears to be in the direction the rays are coming from when they enter the eyes.

Note:

Take-Home Experiment: Law of Reflection

Take a piece of paper and shine a flashlight at an angle at the paper, as shown in [link]. Now shine the flashlight at a mirror at an angle. Do your observations confirm the predictions in [link] and [link]? Shine the flashlight on various surfaces and determine whether the reflected light is diffuse or not. You can choose a shiny metallic lid of a pot or your skin. Using the mirror and flashlight, can you confirm the law of reflection? You will need to draw lines on a piece of paper showing the incident and reflected rays. (This part works even better if you use a laser pencil.)

Section Summary

- The angle of reflection equals the angle of incidence.
- A mirror has a smooth surface and reflects light at specific angles.
- Light is diffused when it reflects from a rough surface.
- Mirror images can be photographed and videotaped by instruments.

Conceptual Questions

Exercise:

Problem:

Using the law of reflection, explain how powder takes the shine off of a person's nose. What is the name of the optical effect?

Problems & Exercises

Exercise:

Problem:

Show that when light reflects from two mirrors that meet each other at a right angle, the outgoing ray is parallel to the incoming ray, as illustrated in the following figure.

A corner reflector sends the reflected ray back in a direction parallel to the incident ray, independent of incoming direction.

Exercise:

Problem:

Light shows staged with lasers use moving mirrors to swing beams and create colorful effects. Show that a light ray reflected from a mirror changes direction by 2θ when the mirror is rotated by an angle θ .

Exercise:

Problem:

A flat mirror is neither converging nor diverging. To prove this, consider two rays originating from the same point and diverging at an angle θ . Show that after striking a plane mirror, the angle between their directions remains θ .

A flat mirror neither converges nor diverges light rays. Two rays continue to diverge at the same angle after reflection.

Glossary

mirror

smooth surface that reflects light at specific angles, forming an image of the person or object in front of it

law of reflection angle of reflection equals the angle of incidence

The Law of Refraction

• Determine the index of refraction, given the speed of light in a medium.

It is easy to notice some odd things when looking into a fish tank. For example, you may see the same fish appearing to be in two different places. (See [link].) This is because light coming from the fish to us changes direction when it leaves the tank, and in this case, it can travel two different paths to get to our eyes. The changing of a light ray's direction (loosely called bending) when it passes through variations in matter is called **refraction**. Refraction is responsible for a tremendous range of optical phenomena, from the action of lenses to voice transmission through optical fibers.

Note:

Refraction

The changing of a light ray's direction (loosely called bending) when it passes through variations in matter is called refraction.

Note:

Speed of Light

The speed of light c not only affects refraction, it is one of the central concepts of Einstein's theory of relativity. As the accuracy of the measurements of the speed of light were improved, c was found not to depend on the velocity of the source or the observer. However, the speed of light does vary in a precise manner with the material it traverses. These facts have far-reaching implications, as we will see in <u>Special Relativity</u>. It makes connections between space and time and alters our expectations that all observers measure the same time for the same event, for example. The speed of light is so important that its value in a vacuum is one of the most fundamental constants in nature as well as being one of the four fundamental SI units.

Looking at the fish tank as shown, we can see the same fish in two different locations, because light changes directions when it passes from water to air. In this case, the light can reach the observer by two different paths, and so the fish seems to be in two different places. This bending of light is called refraction and is responsible for many optical phenomena.

Why does light change direction when passing from one material (medium) to another? It is because light changes speed when going from one material

to another. So before we study the law of refraction, it is useful to discuss the speed of light and how it varies in different media.

The Speed of Light

Early attempts to measure the speed of light, such as those made by Galileo, determined that light moved extremely fast, perhaps instantaneously. The first real evidence that light traveled at a finite speed came from the Danish astronomer Ole Roemer in the late 17th century. Roemer had noted that the average orbital period of one of Jupiter's moons, as measured from Earth, varied depending on whether Earth was moving toward or away from Jupiter. He correctly concluded that the apparent change in period was due to the change in distance between Earth and Jupiter and the time it took light to travel this distance. From his 1676 data, a value of the speed of light was calculated to be 2.26×10^8 m/s (only 25% different from today's accepted value). In more recent times, physicists have measured the speed of light in numerous ways and with increasing accuracy. One particularly direct method, used in 1887 by the American physicist Albert Michelson (1852–1931), is illustrated in [link]. Light reflected from a rotating set of mirrors was reflected from a stationary mirror 35 km away and returned to the rotating mirrors. The time for the light to travel can be determined by how fast the mirrors must rotate for the light to be returned to the observer's eye.

A schematic of early apparatus used by Michelson and others to determine the speed of light. As the mirrors rotate, the reflected ray is only briefly directed at the stationary mirror. The returning ray will be reflected into the observer's eye only if the next mirror has rotated into the correct position just as the ray returns. By measuring the correct rotation rate, the time for the round trip can be measured and the speed of light calculated. Michelson's calculated value of the speed of light was only 0.04% different from the value used today.

The speed of light is now known to great precision. In fact, the speed of light in a vacuum c is so important that it is accepted as one of the basic physical quantities and has the fixed value

Equation:

$$c = 2.99792458 \times 10^8 \, \mathrm{m/s} pprox 3.00 \times 10^8 \, \mathrm{m/s},$$

where the approximate value of 3.00×10^8 m/s is used whenever three-digit accuracy is sufficient. The speed of light through matter is less than it is in a vacuum, because light interacts with atoms in a material. The speed of light depends strongly on the type of material, since its interaction with different atoms, crystal lattices, and other substructures varies. We define the **index of refraction** n of a material to be

Equation:

$$n = \frac{c}{v},$$

where v is the observed speed of light in the material. Since the speed of light is always less than c in matter and equals c only in a vacuum, the index of refraction is always greater than or equal to one.

Note:

Value of the Speed of Light

Equation:

$$c = 2.99792458 imes 10^8 \, \mathrm{m/s} pprox 3.00 imes 10^8 \, \mathrm{m/s}$$

Note:

Index of Refraction

$$n=rac{c}{v}$$

That is, $n \geq 1$. [link] gives the indices of refraction for some representative substances. The values are listed for a particular wavelength of light, because they vary slightly with wavelength. (This can have important effects, such as colors produced by a prism.) Note that for gases, n is close to 1.0. This seems reasonable, since atoms in gases are widely separated and light travels at c in the vacuum between atoms. It is common to take n=1 for gases unless great precision is needed. Although the speed of light v in a medium varies considerably from its value c in a vacuum, it is still a large speed.

Medium	n
Gases at 0°C, 1 atm	
Air	1.000293
Carbon dioxide	1.00045
Hydrogen	1.000139
Oxygen	1.000271
Liquids at $20^{ m oC}$	
Benzene	1.501
Carbon disulfide	1.628

Medium	n
Carbon tetrachloride	1.461
Ethanol	1.361
Glycerine	1.473
Water, fresh	1.333
Solids at 20°C	
Diamond	2.419
Fluorite	1.434
Glass, crown	1.52
Glass, flint	1.66
Ice at $20^{\circ}\mathrm{C}$	1.309
Polystyrene	1.49
Plexiglas	1.51
Quartz, crystalline	1.544
Quartz, fused	1.458
Sodium chloride	1.544
Zircon	1.923

Index of Refraction in Various Media

Example:

Speed of Light in Matter

Calculate the speed of light in zircon, a material used in jewelry to imitate diamond.

Strategy

The speed of light in a material, v, can be calculated from the index of refraction n of the material using the equation n = c/v.

Solution

The equation for index of refraction states that n=c/v. Rearranging this to determine v gives

Equation:

$$v = \frac{c}{n}$$
.

The index of refraction for zircon is given as 1.923 in [link], and c is given in the equation for speed of light. Entering these values in the last expression gives

Equation:

$$egin{array}{lll} v & = & rac{3.00 imes 10^8 \, ext{m/s}}{1.923} \ & = & 1.56 imes 10^8 \, ext{m/s}. \end{array}$$

Discussion

This speed is slightly larger than half the speed of light in a vacuum and is still high compared with speeds we normally experience. The only substance listed in [link] that has a greater index of refraction than zircon is diamond. We shall see later that the large index of refraction for zircon makes it sparkle more than glass, but less than diamond.

Law of Refraction

[link] shows how a ray of light changes direction when it passes from one medium to another. As before, the angles are measured relative to a perpendicular to the surface at the point where the light ray crosses it.

(Some of the incident light will be reflected from the surface, but for now we will concentrate on the light that is transmitted.) The change in direction of the light ray depends on how the speed of light changes. The change in the speed of light is related to the indices of refraction of the media involved. In the situations shown in [link], medium 2 has a greater index of refraction than medium 1. This means that the speed of light is less in medium 2 than in medium 1. Note that as shown in [link](a), the direction of the ray moves closer to the perpendicular when it slows down. Conversely, as shown in [link](b), the direction of the ray moves away from the perpendicular when it speeds up. The path is exactly reversible. In both cases, you can imagine what happens by thinking about pushing a lawn mower from a footpath onto grass, and vice versa. Going from the footpath to grass, the front wheels are slowed and pulled to the side as shown. This is the same change in direction as for light when it goes from a fast medium to a slow one. When going from the grass to the footpath, the front wheels can move faster and the mower changes direction as shown. This, too, is the same change in direction as for light going from slow to fast.

The change in direction of a light ray depends on how the speed of light changes when it crosses from one medium to another. The speed of light is greater in medium 1 than in medium 2 in the situations shown here.

(a) A ray of light moves closer to the perpendicular when it slows down. This is analogous to what happens when a lawn mower goes from a footpath to grass. (b) A ray of

light moves away from the perpendicular when it speeds up. This is analogous to what happens when a lawn mower goes from grass to footpath. The paths are exactly reversible.

The amount that a light ray changes its direction depends both on the incident angle and the amount that the speed changes. For a ray at a given incident angle, a large change in speed causes a large change in direction, and thus a large change in angle. The exact mathematical relationship is the **law of refraction**, or "Snell's Law," which is stated in equation form as **Equation**:

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$
.

Here n_1 and n_2 are the indices of refraction for medium 1 and 2, and θ_1 and θ_2 are the angles between the rays and the perpendicular in medium 1 and 2, as shown in [link]. The incoming ray is called the incident ray and the outgoing ray the refracted ray, and the associated angles the incident angle and the refracted angle. The law of refraction is also called Snell's law after the Dutch mathematician Willebrord Snell (1591–1626), who discovered it in 1621. Snell's experiments showed that the law of refraction was obeyed and that a characteristic index of refraction n could be assigned to a given medium. Snell was not aware that the speed of light varied in different media, but through experiments he was able to determine indices of refraction from the way light rays changed direction.

Note:

The Law of Refraction

$$n_1\sin\theta_1=n_2\sin\theta_2$$

Note:

Take-Home Experiment: A Broken Pencil

A classic observation of refraction occurs when a pencil is placed in a glass half filled with water. Do this and observe the shape of the pencil when you look at the pencil sideways, that is, through air, glass, water. Explain your observations. Draw ray diagrams for the situation.

Example:

Determine the Index of Refraction from Refraction Data

Find the index of refraction for medium 2 in [link](a), assuming medium 1 is air and given the incident angle is 30.0° and the angle of refraction is 22.0°.

Strategy

The index of refraction for air is taken to be 1 in most cases (and up to four significant figures, it is 1.000). Thus $n_1=1.00$ here. From the given information, $\theta_1=30.0^\circ$ and $\theta_2=22.0^\circ$. With this information, the only unknown in Snell's law is n_2 , so that it can be used to find this unknown.

Solution

Snell's law is

Equation:

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$
.

Rearranging to isolate n_2 gives

Equation:

$$n_2 = n_1 rac{\sin heta_1}{\sin heta_2}.$$

Entering known values,

$$n_2 = 1.00 \frac{\sin 30.0^{\circ}}{\sin 22.0^{\circ}} = \frac{0.500}{0.375}$$

= 1.33.

Discussion

This is the index of refraction for water, and Snell could have determined it by measuring the angles and performing this calculation. He would then have found 1.33 to be the appropriate index of refraction for water in all other situations, such as when a ray passes from water to glass. Today we can verify that the index of refraction is related to the speed of light in a medium by measuring that speed directly.

Example:

A Larger Change in Direction

Suppose that in a situation like that in [link], light goes from air to diamond and that the incident angle is 30.0° . Calculate the angle of refraction θ_2 in the diamond.

Strategy

Again the index of refraction for air is taken to be $n_1 = 1.00$, and we are given $\theta_1 = 30.0^{\circ}$. We can look up the index of refraction for diamond in [link], finding $n_2 = 2.419$. The only unknown in Snell's law is θ_2 , which we wish to determine.

Solution

Solving Snell's law for $\sin \theta_2$ yields

Equation:

$$\sin heta_2 = rac{n_1}{n_2} \sin heta_1.$$

Entering known values,

Equation:

$$\sin heta_2 = rac{1.00}{2.419} \sin 30.0^{\circ} = \left(0.413\right)(0.500) = 0.207.$$

The angle is thus

$$heta_2 = \sin^{-1}\!0.207 = 11.9^{
m o}.$$

Discussion

For the same 30° angle of incidence, the angle of refraction in diamond is significantly smaller than in water (11.9° rather than 22° —see the preceding example). This means there is a larger change in direction in diamond. The cause of a large change in direction is a large change in the index of refraction (or speed). In general, the larger the change in speed, the greater the effect on the direction of the ray.

Section Summary

- The changing of a light ray's direction when it passes through variations in matter is called refraction.
- The speed of light in vacuum $c=2.99792458 imes 10^8 \, \mathrm{m/s} pprox 3.00 imes 10^8 \, \mathrm{m/s}.$
- Index of refraction $n=\frac{c}{v}$, where v is the speed of light in the material, c is the speed of light in vacuum, and n is the index of refraction.
- Snell's law, the law of refraction, is stated in equation form as $n_1 \sin \theta_1 = n_2 \sin \theta_2$.

Conceptual Questions

Exercise:

Problem:

Diffusion by reflection from a rough surface is described in this chapter. Light can also be diffused by refraction. Describe how this occurs in a specific situation, such as light interacting with crushed ice.

Exercise:

Problem:

Why is the index of refraction always greater than or equal to 1?

Exercise:

Problem:

Does the fact that the light flash from lightning reaches you before its sound prove that the speed of light is extremely large or simply that it is greater than the speed of sound? Discuss how you could use this effect to get an estimate of the speed of light.

Exercise:

Problem:

Will light change direction toward or away from the perpendicular when it goes from air to water? Water to glass? Glass to air?

Exercise:

Problem:

Explain why an object in water always appears to be at a depth shallower than it actually is? Why do people sometimes sustain neck and spinal injuries when diving into unfamiliar ponds or waters?

Exercise:

Problem:

Explain why a person's legs appear very short when wading in a pool. Justify your explanation with a ray diagram showing the path of rays from the feet to the eye of an observer who is out of the water.

Exercise:

Problem: Why is the front surface of a thermometer curved as shown?

The curved surface of the thermometer serves a purpose.

Exercise:

Problem:

Suppose light were incident from air onto a material that had a negative index of refraction, say -1.3; where does the refracted light ray go?

Problems & Exercises

Exercise:

Problem: What is the speed of light in water? In glycerine?

Solution:

 $2.25 imes 10^8 \, \mathrm{m/s}$ in water

 $2.04 \times 10^8 \ m/s$ in glycerine

Exercise:

Problem: What is the speed of light in air? In crown glass?

Exercise:

Problem:

Calculate the index of refraction for a medium in which the speed of light is $2.012 \times 10^8 \, \mathrm{m/s}$, and identify the most likely substance based on [link].

Solution:

1.490, polystyrene

Exercise:

Problem:

In what substance in [link] is the speed of light $2.290 \times 10^8 \ m/s$?

Exercise:

Problem:

There was a major collision of an asteroid with the Moon in medieval times. It was described by monks at Canterbury Cathedral in England as a red glow on and around the Moon. How long after the asteroid hit the Moon, which is 3.84×10^5 km away, would the light first arrive on Earth?

Solution:

 $1.28 \mathrm{s}$

Exercise:

Problem:

A scuba diver training in a pool looks at his instructor as shown in $[\underline{link}]$. What angle does the ray from the instructor's face make with the perpendicular to the water at the point where the ray enters? The angle between the ray in the water and the perpendicular to the water is 25.0° .

A scuba diver in a pool and his trainer look at each other.

Exercise:

Problem:

Components of some computers communicate with each other through optical fibers having an index of refraction n=1.55. What time in nanoseconds is required for a signal to travel 0.200 m through such a fiber?

Solution:

 $1.03 \, \mathrm{ns}$

Exercise:

Problem:

(a) Given that the angle between the ray in the water and the perpendicular to the water is 25.0°, and using information in [link], find the height of the instructor's head above the water, noting that you will first have to calculate the angle of incidence. (b) Find the apparent depth of the diver's head below water as seen by the instructor.

Exercise:

Problem:

Suppose you have an unknown clear substance immersed in water, and you wish to identify it by finding its index of refraction. You arrange to have a beam of light enter it at an angle of 45.0° , and you observe the angle of refraction to be 40.3° . What is the index of refraction of the substance and its likely identity?

Solution:

n = 1.46, fused quartz

Exercise:

Problem:

On the Moon's surface, lunar astronauts placed a corner reflector, off which a laser beam is periodically reflected. The distance to the Moon is calculated from the round-trip time. What percent correction is needed to account for the delay in time due to the slowing of light in Earth's atmosphere? Assume the distance to the Moon is precisely 3.84×10^8 m, and Earth's atmosphere (which varies in density with altitude) is equivalent to a layer 30.0 km thick with a constant index of refraction n=1.000293.

Exercise:

Problem:

Suppose [link] represents a ray of light going from air through crown glass into water, such as going into a fish tank. Calculate the amount the ray is displaced by the glass (Δx), given that the incident angle is 40.0° and the glass is 1.00 cm thick.

Exercise:

Problem:

[link] shows a ray of light passing from one medium into a second and then a third. Show that θ_3 is the same as it would be if the second medium were not present (provided total internal reflection does not occur).

A ray of light passes from one medium to a third by traveling through a second. The final direction is the same as if the second medium were not present, but the ray is displaced by Δx (shown exaggerated).

Exercise:

Problem: Unreasonable Results

Suppose light travels from water to another substance, with an angle of incidence of 10.0° and an angle of refraction of 14.9°. (a) What is the index of refraction of the other substance? (b) What is unreasonable about this result? (c) Which assumptions are unreasonable or inconsistent?

Solution:

- (a) 0.898
- (b) Can't have n < 1.00 since this would imply a speed greater than c.
- (c) Refracted angle is too big relative to the angle of incidence.

Exercise:

Problem: Construct Your Own Problem

Consider sunlight entering the Earth's atmosphere at sunrise and sunset—that is, at a 90° incident angle. Taking the boundary between nearly empty space and the atmosphere to be sudden, calculate the angle of refraction for sunlight. This lengthens the time the Sun appears to be above the horizon, both at sunrise and sunset. Now construct a problem in which you determine the angle of refraction for different models of the atmosphere, such as various layers of varying density. Your instructor may wish to guide you on the level of complexity to consider and on how the index of refraction varies with air density.

Exercise:

Problem: Unreasonable Results

Light traveling from water to a gemstone strikes the surface at an angle of 80.0° and has an angle of refraction of 15.2° . (a) What is the speed

of light in the gemstone? (b) What is unreasonable about this result?

(c) Which assumptions are unreasonable or inconsistent?

Solution:

- (a) $\frac{c}{5.00}$
- (b) Speed of light too slow, since index is much greater than that of diamond.
- (c) Angle of refraction is unreasonable relative to the angle of incidence.

Glossary

refraction

changing of a light ray's direction when it passes through variations in matter

index of refraction

for a material, the ratio of the speed of light in vacuum to that in the material

Total Internal Reflection

- Explain the phenomenon of total internal reflection.
- Describe the workings and uses of fiber optics.
- Analyze the reason for the sparkle of diamonds.

A good-quality mirror may reflect more than 90% of the light that falls on it, absorbing the rest. But it would be useful to have a mirror that reflects all of the light that falls on it. Interestingly, we can produce *total reflection* using an aspect of *refraction*.

Consider what happens when a ray of light strikes the surface between two materials, such as is shown in [link](a). Part of the light crosses the boundary and is refracted; the rest is reflected. If, as shown in the figure, the index of refraction for the second medium is less than for the first, the ray bends away from the perpendicular. (Since $n_1 > n_2$, the angle of refraction is greater than the angle of incidence—that is, $\theta_2 > \theta_1$.) Now imagine what happens as the incident angle is increased. This causes θ_2 to increase also. The largest the angle of refraction θ_2 can be is 90°, as shown in [link](b). The **critical angle** θ_2 for a combination of materials is defined to be the incident angle θ_1 that produces an angle of refraction of 90°. That is, θ_c is the incident angle for which $\theta_2 = 90$ °. If the incident angle θ_1 is greater than the critical angle, as shown in [link](c), then all of the light is reflected back into medium 1, a condition called **total internal reflection**.

Note:

Critical Angle

The incident angle θ_1 that produces an angle of refraction of 90° is called the critical angle, θ_c .

(a) A ray of light crosses a boundary where the speed of light increases and the index of refraction decreases. That is, $n_2 < n_1$. The ray bends away from the perpendicular. (b) The critical

angle θ_c is the one for which the angle of refraction is . (c) Total internal reflection occurs when the incident angle is greater than the critical angle.

Snell's law states the relationship between angles and indices of refraction. It is given by

Equation:

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$
.

When the incident angle equals the critical angle ($\theta_1 = \theta_c$), the angle of refraction is 90° ($\theta_2 = 90^{\circ}$). Noting that $\sin 90^{\circ} = 1$, Snell's law in this case becomes

Equation:

$$n_1 \sin \theta_1 = n_2$$
.

The critical angle θ_c for a given combination of materials is thus **Equation:**

$$heta_c = \sin^{-1}(n_2/n_1) ext{ for } n_1 > n_2.$$

Total internal reflection occurs for any incident angle greater than the critical angle θ_c , and it can only occur when the second medium has an index of refraction less than the first. Note the above equation is written for a light ray that travels in medium 1 and reflects from medium 2, as shown in the figure.

Example:

How Big is the Critical Angle Here?

What is the critical angle for light traveling in a polystyrene (a type of plastic) pipe surrounded by air?

Strategy

The index of refraction for polystyrene is found to be 1.49 in [link], and the index of refraction of air can be taken to be 1.00, as before. Thus, the condition that the second medium (air) has an index of refraction less than the first (plastic) is satisfied, and the equation $\theta_c = \sin^{-1}(n_2/n_1)$ can be used to find the critical angle θ_c . Here, then, $n_2 = 1.00$ and $n_1 = 1.49$.

Solution

The critical angle is given by

Equation:

$$heta_c = \sin^{-1}(n_2/n_1).$$

Substituting the identified values gives

Equation:

$$heta_c = \sin^{-1}(1.00/1.49) = \sin^{-1}(0.671) \ 42.2^{\circ}.$$

Discussion

This means that any ray of light inside the plastic that strikes the surface at an angle greater than 42.2° will be totally reflected. This will make the inside surface of the clear plastic a perfect mirror for such rays without any need for the silvering used on common mirrors. Different combinations of materials have different critical angles, but any combination with $n_1 > n_2$ can produce total internal reflection. The same calculation as made here shows that the critical angle for a ray going from water to air is 48.6° , while that from diamond to air is 24.4° , and that from flint glass to crown glass is 66.3° . There is no total reflection for rays going in the other direction—for example, from air to water—since the condition that the second medium must have a smaller index of refraction is not satisfied. A number of interesting applications of total internal reflection follow.

Fiber Optics: Endoscopes to Telephones

Fiber optics is one application of total internal reflection that is in wide use. In communications, it is used to transmit telephone, internet, and cable TV signals. **Fiber optics** employs the transmission of light down fibers of plastic or glass. Because the fibers are thin, light entering one is likely to strike the inside surface at an angle greater than the critical angle and, thus, be totally reflected (See [link].) The index of refraction outside the fiber must be smaller than inside, a condition that is easily satisfied by coating the outside of the fiber with a material having an appropriate refractive index. In fact, most fibers have a varying refractive index to allow more light to be guided along the fiber through total internal refraction. Rays are reflected around corners as shown, making the fibers into tiny light pipes.

Light entering a thin fiber may strike the inside surface at large or grazing angles and is completely reflected if these angles exceed the critical angle. Such rays continue down the fiber, even following it around corners, since the angles of reflection

and incidence remain large.

Bundles of fibers can be used to transmit an image without a lens, as illustrated in [link]. The output of a device called an **endoscope** is shown in [link](b). Endoscopes are used to explore the body through various orifices or minor incisions. Light is transmitted down one fiber bundle to illuminate internal parts, and the reflected light is transmitted back out through another to be observed. Surgery can be performed, such as arthroscopic surgery on the knee joint, employing cutting tools attached to and observed with the endoscope. Samples can also be obtained, such as by lassoing an intestinal polyp for external examination.

Fiber optics has revolutionized surgical techniques and observations within the body. There are a host of medical diagnostic and therapeutic uses. The flexibility of the fiber optic bundle allows it to navigate around difficult and small regions in the body, such as the intestines, the heart, blood vessels, and joints. Transmission of an intense laser beam to burn away obstructing plaques in major arteries as well as delivering light to activate chemotherapy drugs are becoming commonplace. Optical fibers have in fact enabled microsurgery and remote surgery where the incisions are small and the surgeon's fingers do not need to touch the diseased tissue.

(a) An image is transmitted by a bundle of fibers that have fixed

neighbors. (b) An endoscope is used to probe the body, both transmitting light to the interior and returning an image such as the one shown. (credit: Med_Chaos, Wikimedia Commons)

Fibers in bundles are surrounded by a cladding material that has a lower index of refraction than the core. (See [link].) The cladding prevents light from being transmitted between fibers in a bundle. Without cladding, light could pass between fibers in contact, since their indices of refraction are identical. Since no light gets into the cladding (there is total internal reflection back into the core), none can be transmitted between clad fibers that are in contact with one another. The cladding prevents light from escaping out of the fiber; instead most of the light is propagated along the length of the fiber, minimizing the loss of signal and ensuring that a quality image is formed at the other end. The cladding and an additional protective layer make optical fibers flexible and durable.

Fibers in bundles are clad by a material that has a lower index of refraction than the core to ensure total internal reflection, even when fibers are in contact with one another. This shows a single fiber with its cladding.

Note:

Cladding

The cladding prevents light from being transmitted between fibers in a bundle.

Special tiny lenses that can be attached to the ends of bundles of fibers are being designed and fabricated. Light emerging from a fiber bundle can be focused and a tiny spot can be imaged. In some cases the spot can be scanned, allowing quality imaging of a region inside the body. Special minute optical filters inserted at the end of the fiber bundle have the capacity to image tens of microns below the surface without cutting the surface—non-intrusive diagnostics. This is particularly useful for determining the extent of cancers in the stomach and bowel.

Most telephone conversations and Internet communications are now carried by laser signals along optical fibers. Extensive optical fiber cables have been placed on the ocean floor and underground to enable optical communications. Optical fiber communication systems offer several advantages over electrical (copper) based systems, particularly for long distances. The fibers can be made so transparent that light can travel many kilometers before it becomes dim enough to require amplification—much superior to copper conductors. This property of optical fibers is called *low loss*. Lasers emit light with characteristics that allow far more conversations in one fiber than are possible with electric signals on a single conductor. This property of optical fibers is called *high bandwidth*. Optical signals in one fiber do not produce undesirable effects in other adjacent fibers. This property of optical fibers is called *reduced crosstalk*. We shall explore the unique characteristics of laser radiation in a later chapter.

Corner Reflectors and Diamonds

A light ray that strikes an object consisting of two mutually perpendicular reflecting surfaces is reflected back exactly parallel to the direction from which it came. This is true whenever the reflecting surfaces are perpendicular, and it is independent of the angle of incidence. Such an object, shown in [link], is called a **corner reflector**, since the light bounces from its inside corner. Many inexpensive reflector buttons on bicycles, cars, and warning signs have corner reflectors designed to return light in the direction from which it originated. It was more expensive for astronauts to place one on the moon. Laser signals can be bounced from that corner reflector to measure the gradually increasing distance to the moon with great precision.

(a) Astronauts placed a corner reflector on the moon to measure its gradually increasing orbital distance. (credit: NASA) (b) The bright spots on these bicycle safety reflectors are reflections of the flash of the camera that took this picture on a dark night. (credit: Julo, Wikimedia Commons)

Corner reflectors are perfectly efficient when the conditions for total internal reflection are satisfied. With common materials, it is easy to obtain a critical angle that is less than 45° . One use of these perfect mirrors is in binoculars, as shown in [link]. Another use is in periscopes found in submarines.

These binoculars employ corner reflectors with total internal reflection to get light to the observer's eyes.

The Sparkle of Diamonds

Total internal reflection, coupled with a large index of refraction, explains why diamonds sparkle more than other materials. The critical angle for a diamond-to-air surface is only 24.4°, and so when light enters a diamond, it has trouble getting back out. (See [link].) Although light freely enters the diamond, it can exit only if it makes an angle less than 24.4°. Facets on diamonds are specifically intended to make this unlikely, so that the light can exit only in certain places. Good diamonds are very clear, so that the light makes many internal reflections and is concentrated at the few places it can exit—hence the sparkle. (Zircon is a natural gemstone that has an exceptionally large index of refraction, but not as large as diamond, so it is

not as highly prized. Cubic zirconia is manufactured and has an even higher index of refraction (≈ 2.17), but still less than that of diamond.) The colors you see emerging from a sparkling diamond are not due to the diamond's color, which is usually nearly colorless. Those colors result from dispersion, the topic of Dispersion: The Rainbow and Prisms. Colored diamonds get their color from structural defects of the crystal lattice and the inclusion of minute quantities of graphite and other materials. The Argyle Mine in Western Australia produces around 90% of the world's pink, red, champagne, and cognac diamonds, while around 50% of the world's clear diamonds come from central and southern Africa.

Light cannot easily escape a diamond, because its critical angle with air is so small. Most reflections are total, and the facets are placed so that light can exit only in particular ways—thus concentrating the light and making the diamond sparkle.

Note:

PhET Explorations: Bending Light

Explore bending of light between two media with different indices of refraction. See how changing from air to water to glass changes the bending angle. Play with prisms of different shapes and make rainbows.

https://phet.colorado.edu/sims/html/bending-light/latest/bending-light_en.html

Section Summary

- The incident angle that produces an angle of refraction of 90° is called critical angle.
- Total internal reflection is a phenomenon that occurs at the boundary between two mediums, such that if the incident angle in the first medium is greater than the critical angle, then all the light is reflected back into that medium.
- Fiber optics involves the transmission of light down fibers of plastic or glass, applying the principle of total internal reflection.
- Endoscopes are used to explore the body through various orifices or minor incisions, based on the transmission of light through optical fibers.
- Cladding prevents light from being transmitted between fibers in a bundle.
- Diamonds sparkle due to total internal reflection coupled with a large index of refraction.

Conceptual Questions

Exercise:

Problem:

A ring with a colorless gemstone is dropped into water. The gemstone becomes invisible when submerged. Can it be a diamond? Explain.

Exercise:

Problem:

A high-quality diamond may be quite clear and colorless, transmitting all visible wavelengths with little absorption. Explain how it can sparkle with flashes of brilliant color when illuminated by white light.

Exercise:

Problem:

Is it possible that total internal reflection plays a role in rainbows? Explain in terms of indices of refraction and angles, perhaps referring to [link]. Some of us have seen the formation of a double rainbow. Is it physically possible to observe a triple rainbow?

Double rainbows are not a very common observance. (credit: InvictusOU812, Flickr)

Exercise:

Problem:

The most common type of mirage is an illusion that light from faraway objects is reflected by a pool of water that is not really there. Mirages are generally observed in deserts, when there is a hot layer of air near the ground. Given that the refractive index of air is lower for air at higher temperatures, explain how mirages can be formed.

Problems & Exercises

Exercise:

Problem:

Verify that the critical angle for light going from water to air is 48.6°, as discussed at the end of [link], regarding the critical angle for light traveling in a polystyrene (a type of plastic) pipe surrounded by air.

Exercise:

Problem:

(a) At the end of [link], it was stated that the critical angle for light going from diamond to air is 24.4° . Verify this. (b) What is the critical angle for light going from zircon to air?

Exercise:

Problem:

An optical fiber uses flint glass clad with crown glass. What is the critical angle?

Solution:

 66.3°

Exercise:

Problem:

At what minimum angle will you get total internal reflection of light traveling in water and reflected from ice?

Exercise:

Problem:

Suppose you are using total internal reflection to make an efficient corner reflector. If there is air outside and the incident angle is 45.0°, what must be the minimum index of refraction of the material from which the reflector is made?

Solution:

> 1.414

Exercise:

Problem:

You can determine the index of refraction of a substance by determining its critical angle. (a) What is the index of refraction of a substance that has a critical angle of 68.4° when submerged in water? What is the substance, based on [link]? (b) What would the critical angle be for this substance in air?

Exercise:

Problem:

A ray of light, emitted beneath the surface of an unknown liquid with air above it, undergoes total internal reflection as shown in [link]. What is the index of refraction for the liquid and its likely identification?

A light ray inside a liquid strikes the surface at the critical angle and undergoes total internal reflection.

Solution:

1.50, benzene

Exercise:

Problem:

A light ray entering an optical fiber surrounded by air is first refracted and then reflected as shown in [link]. Show that if the fiber is made from crown glass, any incident ray will be totally internally reflected.

A light ray enters the end of a fiber, the surface of which is perpendicular to its sides. Examine the conditions under which it

may be totally internally reflected.

Glossary

critical angle

incident angle that produces an angle of refraction of 90°

fiber optics

transmission of light down fibers of plastic or glass, applying the principle of total internal reflection

corner reflector

an object consisting of two mutually perpendicular reflecting surfaces, so that the light that enters is reflected back exactly parallel to the direction from which it came

zircon

natural gemstone with a large index of refraction

Dispersion: The Rainbow and Prisms

• Explain the phenomenon of dispersion and discuss its advantages and disadvantages.

Everyone enjoys the spectacle of a rainbow glimmering against a dark stormy sky. How does sunlight falling on clear drops of rain get broken into the rainbow of colors we see? The same process causes white light to be broken into colors by a clear glass prism or a diamond. (See [link].)

The colors of the rainbow (a) and those produced by a prism (b) are identical. (credit: Alfredo55, Wikimedia Commons; NASA)

We see about six colors in a rainbow—red, orange, yellow, green, blue, and violet; sometimes indigo is listed, too. Those colors are associated with different wavelengths of light, as shown in [link]. When our eye receives pure-wavelength light, we tend to see only one of the six colors, depending on wavelength. The thousands of other hues we can sense in other situations are our eye's response to various mixtures of wavelengths. White light, in particular, is a fairly uniform mixture of all visible wavelengths. Sunlight, considered to be white, actually appears to be a bit yellow because of its mixture of wavelengths, but it does contain all visible wavelengths. The sequence of colors in rainbows is the same sequence as the colors plotted versus wavelength in [link]. What this implies is that white light is spread out according to

wavelength in a rainbow. **Dispersion** is defined as the spreading of white light into its full spectrum of wavelengths. More technically, dispersion occurs whenever there is a process that changes the direction of light in a manner that depends on wavelength. Dispersion, as a general phenomenon, can occur for any type of wave and always involves wavelength-dependent processes.

Note:

Dispersion

Dispersion is defined to be the spreading of white light into its full spectrum of wavelengths.

Even though rainbows are associated with seven colors, the rainbow is a continuous distribution of colors according to wavelengths.

Refraction is responsible for dispersion in rainbows and many other situations. The angle of refraction depends on the index of refraction, as we saw in <u>The Law of Refraction</u>. We know that the index of refraction n depends on the medium. But for a given medium, n also depends on wavelength. (See [link]. Note that, for a given medium, n increases as wavelength decreases and is greatest for violet light. Thus violet light is bent more than red light, as shown for a prism in [link](b), and the light is dispersed into the same sequence of wavelengths as seen in [link] and [link].

Note:

Making Connections: Dispersion

Any type of wave can exhibit dispersion. Sound waves, all types of electromagnetic waves, and water waves can be dispersed according to wavelength. Dispersion occurs whenever the speed of propagation depends on wavelength, thus separating and spreading out various wavelengths. Dispersion may require special circumstances and can result in spectacular displays such as in the production of a rainbow. This is also

true for sound, since all frequencies ordinarily travel at the same speed. If you listen to sound through a long tube, such as a vacuum cleaner hose, you can easily hear it is dispersed by interaction with the tube. Dispersion, in fact, can reveal a great deal about what the wave has encountered that disperses its wavelengths. The dispersion of electromagnetic radiation from outer space, for example, has revealed much about what exists between the stars—the so-called empty space.

Medium	Red (660 nm)	Orange (610 nm)	Yellow (580 nm)	Green (550 nm)	Blue (470 nm)	Violet (410 nm)
Water	1.331	1.332	1.333	1.335	1.338	1.342
Diamond	2.410	2.415	2.417	2.426	2.444	2.458
Glass, crown	1.512	1.514	1.518	1.519	1.524	1.530
Glass, flint	1.662	1.665	1.667	1.674	1.684	1.698
Polystyrene	1.488	1.490	1.492	1.493	1.499	1.506
Quartz, fused	1.455	1.456	1.458	1.459	1.462	1.468

Index of Refraction n in Selected Media at Various Wavelengths

(a) A pure wavelength of light falls onto a prism and is refracted at both surfaces. (b) White light is dispersed by the prism (shown exaggerated). Since the index of refraction varies with wavelength, the angles of refraction vary with wavelength. A sequence of red to violet is produced, because the index of refraction increases steadily with decreasing wavelength.

Rainbows are produced by a combination of refraction and reflection. You may have noticed that you see a rainbow only when you look away from the sun. Light enters a drop of water and is reflected from the back of the drop, as shown in [link]. The light is refracted both as it enters and as it leaves the drop. Since the index of refraction of water

varies with wavelength, the light is dispersed, and a rainbow is observed, as shown in [link] (a). (There is no dispersion caused by reflection at the back surface, since the law of reflection does not depend on wavelength.) The actual rainbow of colors seen by an observer depends on the myriad of rays being refracted and reflected toward the observer's eyes from numerous drops of water. The effect is most spectacular when the background is dark, as in stormy weather, but can also be observed in waterfalls and lawn sprinklers. The arc of a rainbow comes from the need to be looking at a specific angle relative to the direction of the sun, as illustrated in [link] (b). (If there are two reflections of light within the water drop, another "secondary" rainbow is produced. This rare event produces an arc that lies above the primary rainbow arc—see [link] (c).)

Note:

Rainbows

Rainbows are produced by a combination of refraction and reflection.

Part of the light falling on this water drop enters and is reflected from the back of the drop. This light is refracted and dispersed both as it enters and as it leaves the drop.

(a) Different colors emerge in different directions, and so you must look at different locations to see the various colors of a rainbow. (b) The arc of a rainbow results from the fact that a line between the observer and any point on the arc must make the correct angle with the parallel rays of sunlight to receive the refracted rays. (c)

Double rainbow. (credit: Nicholas, Wikimedia Commons)

Dispersion may produce beautiful rainbows, but it can cause problems in optical systems. White light used to transmit messages in a fiber is dispersed, spreading out in time and eventually overlapping with other messages. Since a laser produces a nearly pure wavelength, its light experiences little dispersion, an advantage over white light for transmission of information. In contrast, dispersion of electromagnetic waves coming to us from outer space can be used to determine the amount of matter they pass through. As with many phenomena, dispersion can be useful or a nuisance, depending on the situation and our human goals.

Note:

PhET Explorations: Geometric Optics

How does a lens form an image? See how light rays are refracted by a lens. Watch how the image changes when you adjust the focal length of the lens, move the object, move the lens, or move the screen.

https://phet.colorado.edu/sims/geometric-optics/geometric-optics en.html

Section Summary

- The spreading of white light into its full spectrum of wavelengths is called dispersion.
- Rainbows are produced by a combination of refraction and reflection and involve the dispersion of sunlight into a continuous distribution of colors.
- Dispersion produces beautiful rainbows but also causes problems in certain optical systems.

Problems & Exercises

Exercise:

Problem:

(a) What is the ratio of the speed of red light to violet light in diamond, based on [link]? (b) What is this ratio in polystyrene? (c) Which is more dispersive?

Exercise:

Problem:

A beam of white light goes from air into water at an incident angle of 75.0°. At what angles are the red (660 nm) and violet (410 nm) parts of the light refracted?

Solution:

46.5°, red; 46.0°, violet

Exercise:

Problem:

By how much do the critical angles for red (660 nm) and violet (410 nm) light differ in a diamond surrounded by air?

Exercise:

Problem:

(a) A narrow beam of light containing yellow (580 nm) and green (550 nm) wavelengths goes from polystyrene to air, striking the surface at a 30.0° incident angle. What is the angle between the colors when they emerge? (b) How far would they have to travel to be separated by 1.00 mm?

Solution:

- (a) 0.043°
- (b) 1.33 m

Exercise:

Problem:

A parallel beam of light containing orange (610 nm) and violet (410 nm) wavelengths goes from fused quartz to water, striking the surface between them at a 60.0° incident angle. What is the angle between the two colors in water?

Exercise:

Problem:

A ray of 610 nm light goes from air into fused quartz at an incident angle of 55.0°. At what incident angle must 470 nm light enter flint glass to have the same angle of refraction?

Solution:

 71.3°

Exercise:

Problem:

A narrow beam of light containing red (660 nm) and blue (470 nm) wavelengths travels from air through a 1.00 cm thick flat piece of crown glass and back to air again. The beam strikes at a 30.0° incident angle. (a) At what angles do the two colors emerge? (b) By what distance are the red and blue separated when they emerge?

Exercise:

Problem:

A narrow beam of white light enters a prism made of crown glass at a 45.0° incident angle, as shown in [link]. At what angles, $\theta_{\rm R}$ and $\theta_{\rm V}$, do the red (660 nm) and violet (410 nm) components of the light emerge from the prism?

This prism will disperse the white light into a rainbow of colors. The incident angle is 45.0° , and the angles at which the red and violet light emerge are $\theta_{\rm R}$ and $\theta_{\rm V}$.

Solution:

53.5°, red; 55.2°, violet

Glossary

dispersion

spreading of white light into its full spectrum of wavelengths

rainbow

dispersion of sunlight into a continuous distribution of colors according to wavelength, produced by the refraction and reflection of sunlight by water droplets in the sky

Image Formation by Lenses

- List the rules for ray tracking for thin lenses.
- Illustrate the formation of images using the technique of ray tracking.
- Determine power of a lens given the focal length.

Lenses are found in a huge array of optical instruments, ranging from a simple magnifying glass to the eye to a camera's zoom lens. In this section, we will use the law of refraction to explore the properties of lenses and how they form images.

The word *lens* derives from the Latin word for a lentil bean, the shape of which is similar to the convex lens in [link]. The convex lens shown has been shaped so that all light rays that enter it parallel to its axis cross one another at a single point on the opposite side of the lens. (The axis is defined to be a line normal to the lens at its center, as shown in [link].) Such a lens is called a **converging (or convex) lens** for the converging effect it has on light rays. An expanded view of the path of one ray through the lens is shown, to illustrate how the ray changes direction both as it enters and as it leaves the lens. Since the index of refraction of the lens is greater than that of air, the ray moves towards the perpendicular as it enters and away from the perpendicular as it leaves. (This is in accordance with the law of refraction.) Due to the lens's shape, light is thus bent toward the axis at both surfaces. The point at which the rays cross is defined to be the **focal point** F of the lens. The distance from the center of the lens to its focal point is defined to be the **focal length** *f* of the lens. [link] shows how a converging lens, such as that in a magnifying glass, can converge the nearly parallel light rays from the sun to a small spot.

Rays of light entering a converging lens parallel to its axis converge at its focal point F. (Ray 2 lies on the axis of the lens.) The distance from the center of the lens to the focal point is the lens's focal length f. An expanded view of the path taken by ray 1 shows the perpendiculars and the angles of incidence and refraction at both surfaces.

Note:

Converging or Convex Lens

The lens in which light rays that enter it parallel to its axis cross one another at a single point on the opposite side with a converging effect is called converging lens.

Note:

Focal Point F

The point at which the light rays cross is called the focal point F of the lens.

Note:

Focal Length f

The distance from the center of the lens to its focal point is called focal length f.

Sunlight focused by a converging magnifying glass can burn paper. Light rays from the sun are nearly parallel and cross at the focal point of the lens. The more powerful the lens, the closer to the lens the rays will cross.

The greater effect a lens has on light rays, the more powerful it is said to be. For example, a powerful converging lens will focus parallel light rays closer to itself and will have a smaller focal length than a weak lens. The light will also focus into a smaller and more intense spot for a more powerful lens. The $\operatorname{\mathbf{power}} P$ of a lens is defined to be the inverse of its focal length. In equation form, this is

Equation:

$$P = \frac{1}{f}.$$

Note:

Power P

The **power** P of a lens is defined to be the inverse of its focal length. In equation form, this is

Equation:

$$P = \frac{1}{f}$$
.

where f is the focal length of the lens, which must be given in meters (and not cm or mm). The power of a lens P has the unit diopters (D), provided that the focal length is given in meters. That is, 1 D = 1/m, or $1 m^{-1}$. (Note that this power (optical power, actually) is not the same as power in watts defined in Work, Energy, and Energy Resources. It is a concept related to the effect of optical devices on light.) Optometrists prescribe common spectacles and contact lenses in units of diopters.

Example:

What is the Power of a Common Magnifying Glass?

Suppose you take a magnifying glass out on a sunny day and you find that it concentrates sunlight to a small spot 8.00 cm away from the lens. What are the focal length and power of the lens?

Strategy

The situation here is the same as those shown in [link] and [link]. The Sun is so far away that the Sun's rays are nearly parallel when they reach Earth. The magnifying glass is a convex (or converging) lens, focusing the nearly parallel rays of sunlight. Thus the focal length of the lens is the distance from the lens to the spot, and its power is the inverse of this distance (in m).

Solution

The focal length of the lens is the distance from the center of the lens to the spot, given to be 8.00 cm. Thus,

Equation:

$$f = 8.00 \text{ cm}.$$

To find the power of the lens, we must first convert the focal length to meters; then, we substitute this value into the equation for power. This gives

Equation:

$$P = \frac{1}{f} = \frac{1}{0.0800 \text{ m}} = 12.5 \text{ D}.$$

Discussion

This is a relatively powerful lens. The power of a lens in diopters should not be confused with the familiar concept of power in watts. It is an unfortunate fact that the word "power" is used for two completely different concepts. If you examine a prescription for eyeglasses, you will note lens powers given in diopters. If you examine the label on a motor, you will note energy consumption rate given as a power in watts.

[link] shows a concave lens and the effect it has on rays of light that enter it parallel to its axis (the path taken by ray 2 in the figure is the axis of the lens). The concave lens is a **diverging lens**, because it causes the light rays to bend away (diverge) from its axis. In this case, the lens has been shaped so that all light rays entering it parallel to its axis appear to originate from the same point, F, defined to be the focal point of a diverging lens. The distance from the center of the lens to the focal point is again called the focal length f of the lens. Note that the focal length and power of a diverging lens are defined to be negative. For example, if the distance to F in [link] is 5.00 cm, then the focal length is f = -5.00 cm and the power of the lens is P = -20 D. An expanded view of the path of one ray through the lens is shown in the figure to illustrate how the shape of the lens, together with the law of refraction, causes the ray to follow its particular path and be diverged.

Rays of light entering a diverging lens parallel to its axis are diverged, and all appear to originate at its focal point F. The dashed lines are not rays —they indicate the directions from which the rays appear to come. The focal length f of a diverging lens is negative. An expanded view of the path taken by ray 1 shows the perpendiculars and the angles of incidence and refraction at both surfaces.

Note:

Diverging Lens

A lens that causes the light rays to bend away from its axis is called a diverging lens.

As noted in the initial discussion of the law of refraction in <u>The Law of Refraction</u>, the paths of light rays are exactly reversible. This means that the direction of the arrows could be reversed for all of the rays in [<u>link</u>] and [<u>link</u>]. For example, if a point light source is placed at the focal point of a convex lens, as shown in [<u>link</u>], parallel light rays emerge from the other side.

A small light source, like a light bulb filament, placed at the focal point of a convex lens, results in parallel rays of light emerging from the other side. The paths are exactly the reverse of those shown in [link]. This technique is used in lighthouses and sometimes in traffic lights to produce a directional beam of light from a source that emits light in all directions.

Ray Tracing and Thin Lenses

Ray tracing is the technique of determining or following (tracing) the paths that light rays take. For rays passing through matter, the law of refraction is used to trace the paths. Here we use ray tracing to help us understand the action of lenses in situations ranging from forming images on film to magnifying small print to correcting nearsightedness. While ray tracing for complicated lenses, such as those found in sophisticated cameras, may require computer techniques, there is a set of simple rules for tracing rays through thin lenses. A **thin lens** is defined to be one whose thickness allows rays to refract, as illustrated in [link], but does not allow properties such as dispersion and aberrations. An ideal thin lens has two refracting surfaces but the lens is thin enough to assume that light rays bend only once. A thin symmetrical lens has two focal points, one on either side and both at the same distance from the lens. (See [link].) Another important characteristic of a thin lens is that light rays through its center are deflected by a negligible amount, as seen in [link].

Note:

Thin Lens

A thin lens is defined to be one whose thickness allows rays to refract but does not allow properties such as dispersion and aberrations.

Note:

Take-Home Experiment: A Visit to the Optician

Look through your eyeglasses (or those of a friend) backward and forward and comment on whether they act like thin lenses.

Thin lenses have the same focal length on either side. (a) Parallel light rays entering a converging lens from the right cross at its focal point on the left. (b) Parallel light rays entering a diverging lens from the right seem to come from the focal point on the right.

The light ray through the center of a thin lens is deflected by a negligible amount and is assumed to emerge parallel to its original path (shown as a shaded line).

Using paper, pencil, and a straight edge, ray tracing can accurately describe the operation of a lens. The rules for ray tracing for thin lenses are based on the illustrations already discussed:

- 1. A ray entering a converging lens parallel to its axis passes through the focal point F of the lens on the other side. (See rays 1 and 3 in [link].)
- 2. A ray entering a diverging lens parallel to its axis seems to come from the focal point F. (See rays 1 and 3 in [link].)
- 3. A ray passing through the center of either a converging or a diverging lens does not change direction. (See [link], and see ray 2 in [link] and [link].)
- 4. A ray entering a converging lens through its focal point exits parallel to its axis. (The reverse of rays 1 and 3 in [link].)
- 5. A ray that enters a diverging lens by heading toward the focal point on the opposite side exits parallel to the axis. (The reverse of rays 1 and 3 in [link].)

Note:

Rules for Ray Tracing

- 1. A ray entering a converging lens parallel to its axis passes through the focal point F of the lens on the other side.
- 2. A ray entering a diverging lens parallel to its axis seems to come from the focal point F.
- 3. A ray passing through the center of either a converging or a diverging lens does not change direction.
- 4. A ray entering a converging lens through its focal point exits parallel to its axis.
- 5. A ray that enters a diverging lens by heading toward the focal point on the opposite side exits parallel to the axis.

Image Formation by Thin Lenses

In some circumstances, a lens forms an obvious image, such as when a movie projector casts an image onto a screen. In other cases, the image is less obvious. Where, for example, is the image formed by eyeglasses? We will use ray tracing for thin lenses to illustrate how they form images, and we will develop equations to describe the image formation quantitatively.

Consider an object some distance away from a converging lens, as shown in [link]. To find the location and size of the image formed, we trace the paths of selected light rays originating from one point on the object, in this case the top of the person's head. The figure shows three rays from the top of the object that can be traced using the ray tracing rules given above. (Rays leave this point going in many directions, but we concentrate on only a few with paths that are easy to trace.) The first ray is one that enters the lens parallel to its axis and passes through the focal point on the other side (rule 1). The second ray passes through the center of the lens without changing direction (rule 3). The third ray passes through the nearer focal point on its way into the lens and leaves the lens parallel to its axis (rule 4). The three rays cross at the same point on the other side of the lens. The image of the top of the person's head is located at this point. All rays that come from the same point on the top of the person's head are refracted in such a way as to cross at the point shown. Rays from another point on the object, such as her belt buckle, will also cross at another common point, forming a complete image, as shown. Although three rays are traced in [link], only two are necessary to locate the image. It is best to trace rays for which there are simple ray tracing rules. Before applying ray tracing to other situations, let us consider the example shown in [link] in more detail.

Ray tracing is used to locate the image formed by a lens. Rays originating from the same point on the object are traced—the three chosen rays each follow one of the rules for ray tracing, so that their paths are easy to determine. The image is located at the point where the rays

cross. In this case, a real image—one that can be projected on a screen—is formed.

The image formed in [link] is a **real image**, meaning that it can be projected. That is, light rays from one point on the object actually cross at the location of the image and can be projected onto a screen, a piece of film, or the retina of an eye, for example. [link] shows how such an image would be projected onto film by a camera lens. This figure also shows how a real image is projected onto the retina by the lens of an eye. Note that the image is there whether it is projected onto a screen or not.

Note:

Real Image

The image in which light rays from one point on the object actually cross at the location of the image and can be projected onto a screen, a piece of film, or the retina of an eye is called a real image.

Real images can be projected. (a) A real image of the person is projected onto film. (b) The converging nature of the multiple surfaces that make up the eye result in the projection of a real image on the retina.

Several important distances appear in [link]. We define d_o to be the object distance, the distance of an object from the center of a lens. Image distance d_i is defined to be the distance of the image from the center of a lens. The height of the object and height of the image are given the symbols h_o and h_i , respectively. Images that appear upright relative to the object have heights that are positive and those that are inverted have negative heights. Using the rules of ray tracing and making a scale drawing with paper and pencil, like that in [link], we can accurately describe the location and size of an image. But the real benefit of ray tracing is in visualizing how images are formed in a variety of situations. To obtain numerical information, we use a pair of

equations that can be derived from a geometric analysis of ray tracing for thin lenses. The **thin lens equations** are

Equation:

$$rac{1}{d_{
m o}}+rac{1}{d_{
m i}}=rac{1}{f}$$

and

Equation:

$$rac{h_{
m i}}{h_{
m o}}=-rac{d_{
m i}}{d_{
m o}}=m.$$

We define the ratio of image height to object height (h_i/h_o) to be the **magnification** m. (The minus sign in the equation above will be discussed shortly.) The thin lens equations are broadly applicable to all situations involving thin lenses (and "thin" mirrors, as we will see later). We will explore many features of image formation in the following worked examples.

Note:

Image Distance

The distance of the image from the center of the lens is called image distance.

Note:

Thin Lens Equations and Magnification

Equation:

$$rac{1}{d_{
m o}}+rac{1}{d_{
m i}}=rac{1}{f}$$

Equation:

$$rac{h_{
m i}}{h_{
m o}} = -rac{d_{
m i}}{d_{
m o}} = m$$

Example:

Finding the Image of a Light Bulb Filament by Ray Tracing and by the Thin Lens Equations

A clear glass light bulb is placed 0.750 m from a convex lens having a 0.500 m focal length, as shown in [link]. Use ray tracing to get an approximate location for the image. Then use the thin lens equations to calculate (a) the location of the image and (b) its magnification. Verify that ray tracing and the thin lens equations produce consistent results.

A light bulb placed 0.750 m from a lens having a 0.500 m focal length produces a real image on a poster board as discussed in the example above. Ray tracing predicts the image location and size.

Strategy and Concept

Since the object is placed farther away from a converging lens than the focal length of the lens, this situation is analogous to those illustrated in [link] and [link]. Ray tracing to scale should produce similar results for d_i . Numerical solutions for d_i and m can be obtained using the thin lens equations, noting that $d_0 = 0.750$ m and f = 0.500 m.

Solutions (Ray tracing)

The ray tracing to scale in [link] shows two rays from a point on the bulb's filament crossing about 1.50 m on the far side of the lens. Thus the image distance d_i is about 1.50 m. Similarly, the image height based on ray tracing is greater than the object height by about a factor of 2, and the image is inverted. Thus m is about -2. The minus sign indicates that the image is inverted.

The thin lens equations can be used to find d_i from the given information:

Equation:

$$\frac{1}{d_0} + \frac{1}{d_i} = \frac{1}{f}.$$

Rearranging to isolate d_i gives

Equation:

$$rac{1}{d_{
m i}}=rac{1}{f}-rac{1}{d_{
m o}}.$$

Entering known quantities gives a value for $1/d_i$:

Equation:

$$rac{1}{d_{
m i}} = rac{1}{0.500 \ {
m m}} - rac{1}{0.750 \ {
m m}} = rac{0.667}{{
m m}}.$$

This must be inverted to find d_i :

Equation:

$$d_{
m i} = rac{
m m}{0.667} = 1.50 \
m m.$$

Note that another way to find d_i is to rearrange the equation:

Equation:

$$rac{1}{d_{
m i}}=rac{1}{f}-rac{1}{d_{
m o}}.$$

This yields the equation for the image distance as:

Equation:

$$d_{
m i} = rac{f d_{
m o}}{d_{
m o} - f}.$$

Note that there is no inverting here.

The thin lens equations can be used to find the magnification m, since both d_i and d_o are known. Entering their values gives

Equation:

$$m = -rac{d_{
m i}}{d_{
m o}} = -rac{1.50\ {
m m}}{0.750\ {
m m}} = -\,2.00.$$

Discussion

Note that the minus sign causes the magnification to be negative when the image is inverted. Ray tracing and the use of the thin lens equations produce consistent results. The thin lens equations give the most precise results, being limited only by the accuracy of the given information. Ray tracing is limited by the accuracy with which you can draw, but it is highly useful both conceptually and visually.

Real images, such as the one considered in the previous example, are formed by converging lenses whenever an object is farther from the lens than its focal length. This is true for movie projectors, cameras, and the eye. We shall refer to these as *case 1* images. A case 1 image is formed when $d_o > f$ and f is positive, as in $[\underline{link}](a)$. (A summary of the three cases or types of image formation appears at the end of this section.)

A different type of image is formed when an object, such as a person's face, is held close to a convex lens. The image is upright and larger than the object, as seen in [link](b), and so the lens is called a magnifier. If you slowly pull the magnifier away from the face, you will see that the magnification steadily increases until the image begins to blur. Pulling the magnifier even farther away produces an inverted image as seen in [link] (a). The distance at which the image blurs, and beyond which it inverts, is the focal length of the lens. To use a convex lens as a magnifier, the object

must be closer to the converging lens than its focal length. This is called a *case 2* image. A case 2 image is formed when $d_0 < f$ and f is positive.

(a)

(b)

(a) When a converging lens is held farther away from the face than the lens's focal length, an inverted image is formed. This is a case 1 image. Note that the image is in focus but the face is not, because the image is much closer to the camera taking this photograph than the face. (credit: DaMongMan, Flickr) (b) A magnified image of a face is produced by placing it closer to the converging lens than its focal length. This is a case 2 image. (credit: Casey Fleser, Flickr)

[link] uses ray tracing to show how an image is formed when an object is held closer to a converging lens than its focal length. Rays coming from a common point on the object continue to diverge after passing through the lens, but all appear to originate from a point at the location of the image. The image is on the same side of the lens as the object and is farther away from the lens than the object. This image, like all case 2 images, cannot be projected and, hence, is called a **virtual image**. Light rays only appear to originate at a virtual image; they do not actually pass through that location in space. A screen placed at the location of a virtual image will receive only diffuse light from the object, not focused rays from the lens. Additionally, a screen placed on the opposite side of the lens will receive rays that are still diverging, and so no image will be projected on it. We can see the magnified image with our eyes, because the lens of the eye converges the rays into a real image projected on our retina. Finally, we note that a virtual image is upright and larger than the object, meaning that the magnification is positive and greater than 1.

Ray tracing predicts the image location and size for an object held closer to a converging lens than its focal length. Ray 1 enters parallel to the axis and exits through the focal point on the opposite side, while ray 2 passes through the center of the lens without changing path. The two rays continue to diverge on the other side of the lens, but both appear to come from a common point, locating the upright, magnified,

virtual image. This is a case 2 image.

Note:

Virtual Image

An image that is on the same side of the lens as the object and cannot be projected on a screen is called a virtual image.

Example:

Image Produced by a Magnifying Glass

Suppose the book page in [link] (a) is held 7.50 cm from a convex lens of focal length 10.0 cm, such as a typical magnifying glass might have. What magnification is produced?

Strategy and Concept

We are given that $d_{\rm o}=7.50~{\rm cm}$ and $f=10.0~{\rm cm}$, so we have a situation where the object is placed closer to the lens than its focal length. We therefore expect to get a case 2 virtual image with a positive magnification that is greater than 1. Ray tracing produces an image like that shown in [link], but we will use the thin lens equations to get numerical solutions in this example.

Solution

To find the magnification m, we try to use magnification equation, $m=-d_{\rm i}/d_{\rm o}$. We do not have a value for $d_{\rm i}$, so that we must first find the location of the image using lens equation. (The procedure is the same as followed in the preceding example, where $d_{\rm o}$ and f were known.) Rearranging the magnification equation to isolate $d_{\rm i}$ gives

Equation:

$$rac{1}{d_{
m i}}=rac{1}{f}-rac{1}{d_{
m o}}.$$

Entering known values, we obtain a value for $1/d_i$:

Equation:

$$rac{1}{d_{
m i}} = rac{1}{10.0 {
m \ cm}} - rac{1}{7.50 {
m \ cm}} = rac{-0.0333}{{
m cm}}.$$

This must be inverted to find d_i :

Equation:

$$d_{
m i} = -rac{{
m cm}}{0.0333} = -30.0 \ {
m cm}.$$

Now the thin lens equation can be used to find the magnification m, since both d_i and d_o are known. Entering their values gives

Equation:

$$m = -rac{d_{
m i}}{d_{
m o}} = -rac{-30.0 \ {
m cm}}{7.50 \ {
m cm}} = 4.00.$$

Discussion

A number of results in this example are true of all case 2 images, as well as being consistent with [link]. Magnification is indeed positive (as predicted), meaning the image is upright. The magnification is also greater than 1, meaning that the image is larger than the object—in this case, by a factor of 4. Note that the image distance is negative. This means the image is on the same side of the lens as the object. Thus the image cannot be projected and is virtual. (Negative values of d_i occur for virtual images.) The image is farther from the lens than the object, since the image distance is greater in magnitude than the object distance. The location of the image is not obvious when you look through a magnifier. In fact, since the image is bigger than the object, you may think the image is closer than the object. But the image is farther away, a fact that is useful in correcting farsightedness, as we shall see in a later section.

A third type of image is formed by a diverging or concave lens. Try looking through eyeglasses meant to correct nearsightedness. (See [link].) You will see an image that is upright but smaller than the object. This means that the magnification is positive but less than 1. The ray diagram in [link] shows that the image is on the same side of the lens as the object and, hence,

cannot be projected—it is a virtual image. Note that the image is closer to the lens than the object. This is a *case 3* image, formed for any object by a negative focal length or diverging lens.

A car viewed through a concave or diverging lens looks upright. This is a case 3 image. (credit: Daniel Oines, Flickr)

Ray tracing predicts the image location and size for a concave or diverging lens. Ray 1 enters parallel to the axis and is bent so that it appears to originate from the focal point. Ray 2 passes through the center of the lens without changing path. The two rays appear to come from a common point, locating the upright image. This is a case 3 image, which is closer to the lens than the object and smaller in height.

Example:

Image Produced by a Concave Lens

Suppose an object such as a book page is held 7.50 cm from a concave lens of focal length -10.0 cm. Such a lens could be used in eyeglasses to correct pronounced nearsightedness. What magnification is produced?

Strategy and Concept

This example is identical to the preceding one, except that the focal length is negative for a concave or diverging lens. The method of solution is thus the same, but the results are different in important ways.

Solution

To find the magnification m, we must first find the image distance $d_{\rm i}$ using thin lens equation

Equation:

$$rac{1}{d_{
m i}}=rac{1}{f}-rac{1}{d_{
m o}},$$

or its alternative rearrangement

Equation:

$$d_i = rac{f d_{
m o}}{d_{
m o} - f}.$$

We are given that $f=-10.0~{\rm cm}$ and $d_{\rm o}=7.50~{\rm cm}$. Entering these yields a value for $1/d_{\rm i}$:

Equation:

$$rac{1}{d_{
m i}} = rac{1}{-10.0 \ {
m cm}} - rac{1}{7.50 \ {
m cm}} = rac{-0.2333}{{
m cm}}.$$

This must be inverted to find d_i :

Equation:

$$d_{
m i} = -rac{{
m cm}}{0.2333} = -4.29 \ {
m cm}.$$

Or

Equation:

$$d_{
m i} = rac{(7.5)(-10)}{(7.5-(-10))} = -75/17.5 = -4.29 {
m ~cm}.$$

Now the magnification equation can be used to find the magnification m, since both $d_{\rm i}$ and $d_{\rm o}$ are known. Entering their values gives

Equation:

$$m=-rac{d_{
m i}}{d_{
m o}}=-rac{-4.29~{
m cm}}{7.50~{
m cm}}=0.571.$$

Discussion

A number of results in this example are true of all case 3 images, as well as being consistent with [link]. Magnification is positive (as predicted), meaning the image is upright. The magnification is also less than 1, meaning the image is smaller than the object—in this case, a little over half its size. The image distance is negative, meaning the image is on the same side of the lens as the object. (The image is virtual.) The image is closer to the lens than the object, since the image distance is smaller in magnitude than the object distance. The location of the image is not obvious when you look through a concave lens. In fact, since the image is smaller than the object, you may think it is farther away. But the image is closer than the object, a fact that is useful in correcting nearsightedness, as we shall see in a later section.

[link] summarizes the three types of images formed by single thin lenses. These are referred to as case 1, 2, and 3 images. Convex (converging) lenses can form either real or virtual images (cases 1 and 2, respectively), whereas concave (diverging) lenses can form only virtual images (always case 3). Real images are always inverted, but they can be either larger or smaller than the object. For example, a slide projector forms an image larger than the slide, whereas a camera makes an image smaller than the object being photographed. Virtual images are always upright and cannot be projected. Virtual images are larger than the object only in case 2, where a convex lens is used. The virtual image produced by a concave lens is

always smaller than the object—a case 3 image. We can see and photograph virtual images only by using an additional lens to form a real image.

Туре	Formed when	Image type	$d_{ m i}$	m
Case 1	f positive, $d_{ m o}>f$	real	positive	negative
Case 2	f positive, $d_{ m o} < f$	virtual	negative	positive $m>1$
Case 3	fnegative	virtual	negative	positive $m < 1$

Three Types of Images Formed By Thin Lenses

In <u>Image Formation by Mirrors</u>, we shall see that mirrors can form exactly the same types of images as lenses.

h	N	_	4	-ρ	
	V	n	١	-ρ	ľ

Take-Home Experiment: Concentrating Sunlight

Find several lenses and determine whether they are converging or diverging. In general those that are thicker near the edges are diverging and those that are thicker near the center are converging. On a bright sunny day take the converging lenses outside and try focusing the sunlight onto a piece of paper. Determine the focal lengths of the lenses. Be careful because the paper may start to burn, depending on the type of lens you have selected.

Problem-Solving Strategies for Lenses

- Step 1. Examine the situation to determine that image formation by a lens is involved.
- Step 2. Determine whether ray tracing, the thin lens equations, or both are to be employed. A sketch is very useful even if ray tracing is not specifically required by the problem. Write symbols and values on the sketch.
- Step 3. Identify exactly what needs to be determined in the problem (identify the unknowns).
- Step 4. Make alist of what is given or can be inferred from the problem as stated (identify the knowns). It is helpful to determine whether the situation involves a case 1, 2, or 3 image. While these are just names for types of images, they have certain characteristics (given in [link]) that can be of great use in solving problems.
- Step 5. If ray tracing is required, use the ray tracing rules listed near the beginning of this section.
- Step 6. Most quantitative problems require the use of the thin lens equations. These are solved in the usual manner by substituting knowns and solving for unknowns. Several worked examples serve as guides.

Step 7. Check to see if the answer is reasonable: Does it make sense? If you have identified the type of image (case 1, 2, or 3), you should assess whether your answer is consistent with the type of image, magnification, and so on.

Note:

Misconception Alert

We do not realize that light rays are coming from every part of the object, passing through every part of the lens, and all can be used to form the final image.

We generally feel the entire lens, or mirror, is needed to form an image. Actually, half a lens will form the same, though a fainter, image.

Section Summary

- Light rays entering a converging lens parallel to its axis cross one another at a single point on the opposite side.
- For a converging lens, the focal point is the point at which converging light rays cross; for a diverging lens, the focal point is the point from which diverging light rays appear to originate.
- The distance from the center of the lens to its focal point is called the focal length f.
- Power P of a lens is defined to be the inverse of its focal length, $P = \frac{1}{f}$.
- A lens that causes the light rays to bend away from its axis is called a diverging lens.
- Ray tracing is the technique of graphically determining the paths that light rays take.
- The image in which light rays from one point on the object actually cross at the location of the image and can be projected onto a screen, a piece of film, or the retina of an eye is called a real image.
- Thin lens equations are $\frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f}$ and $\frac{h_i}{h_o} = -\frac{d_i}{d_o} = m$ (magnification).

- The distance of the image from the center of the lens is called image distance.
- An image that is on the same side of the lens as the object and cannot be projected on a screen is called a virtual image.

Conceptual Questions

Exercise:

Problem:

It can be argued that a flat piece of glass, such as in a window, is like a lens with an infinite focal length. If so, where does it form an image? That is, how are d_i and d_o related?

Exercise:

Problem:

You can often see a reflection when looking at a sheet of glass, particularly if it is darker on the other side. Explain why you can often see a double image in such circumstances.

Exercise:

Problem:

When you focus a camera, you adjust the distance of the lens from the film. If the camera lens acts like a thin lens, why can it not be a fixed distance from the film for both near and distant objects?

Exercise:

Problem:

A thin lens has two focal points, one on either side, at equal distances from its center, and should behave the same for light entering from either side. Look through your eyeglasses (or those of a friend) backward and forward and comment on whether they are thin lenses.

Exercise:

Problem:

Will the focal length of a lens change when it is submerged in water? Explain.

Problems & Exercises

Exercise:

Problem:

What is the power in diopters of a camera lens that has a 50.0 mm focal length?

Exercise:

Problem:

Your camera's zoom lens has an adjustable focal length ranging from 80.0 to 200 mm. What is its range of powers?

Solution:

5.00 to 12.5 D

Exercise:

Problem:

What is the focal length of 1.75 D reading glasses found on the rack in a pharmacy?

Exercise:

Problem:

You note that your prescription for new eyeglasses is −4.50 D. What will their focal length be?

Solution:

Exercise:

Problem:

How far from the lens must the film in a camera be, if the lens has a 35.0 mm focal length and is being used to photograph a flower 75.0 cm away? Explicitly show how you follow the steps in the Problem-Solving Strategy for lenses.

Exercise:

Problem:

A certain slide projector has a 100 mm focal length lens. (a) How far away is the screen, if a slide is placed 103 mm from the lens and produces a sharp image? (b) If the slide is 24.0 by 36.0 mm, what are the dimensions of the image? Explicitly show how you follow the steps in the Problem-Solving Strategy for lenses.

Solution:

- (a) 3.43 m
- (b) 0.800 by 1.20 m

Exercise:

Problem:

A doctor examines a mole with a 15.0 cm focal length magnifying glass held 13.5 cm from the mole (a) Where is the image? (b) What is its magnification? (c) How big is the image of a 5.00 mm diameter mole?

Solution:

- (a) -1.35 m (on the object side of the lens).
- (b) +10.0

(c) 5.00 cm

Exercise:

Problem:

How far from a piece of paper must you hold your father's 2.25 D reading glasses to try to burn a hole in the paper with sunlight?

Solution:

44.4 cm

Exercise:

Problem:

A camera with a 50.0 mm focal length lens is being used to photograph a person standing 3.00 m away. (a) How far from the lens must the film be? (b) If the film is 36.0 mm high, what fraction of a 1.75 m tall person will fit on it? (c) Discuss how reasonable this seems, based on your experience in taking or posing for photographs.

Exercise:

Problem:

A camera lens used for taking close-up photographs has a focal length of 22.0 mm. The farthest it can be placed from the film is 33.0 mm. (a) What is the closest object that can be photographed? (b) What is the magnification of this closest object?

Solution:

- (a) 6.60 cm
- (b) -0.333

Exercise:

Problem:

Suppose your 50.0 mm focal length camera lens is 51.0 mm away from the film in the camera. (a) How far away is an object that is in focus? (b) What is the height of the object if its image is 2.00 cm high?

Exercise:

Problem:

(a) What is the focal length of a magnifying glass that produces a magnification of 3.00 when held 5.00 cm from an object, such as a rare coin? (b) Calculate the power of the magnifier in diopters. (c) Discuss how this power compares to those for store-bought reading glasses (typically 1.0 to 4.0 D). Is the magnifier's power greater, and should it be?

Solution:

- (a) +7.50 cm
- (b) 13.3 D
- (c) Much greater

Exercise:

Problem:

What magnification will be produced by a lens of power –4.00 D (such as might be used to correct myopia) if an object is held 25.0 cm away?

Exercise:

Problem:

In [link], the magnification of a book held 7.50 cm from a 10.0 cm focal length lens was found to be 3.00. (a) Find the magnification for the book when it is held 8.50 cm from the magnifier. (b) Do the same for when it is held 9.50 cm from the magnifier. (c) Comment on the trend in m as the object distance increases as in these two calculations.

Solution:

- (a) +6.67
- (b) +20.0
- (c) The magnification increases without limit (to infinity) as the object distance increases to the limit of the focal distance.

Exercise:

Problem:

Suppose a 200 mm focal length telephoto lens is being used to photograph mountains 10.0 km away. (a) Where is the image? (b) What is the height of the image of a 1000 m high cliff on one of the mountains?

Exercise:

Problem:

A camera with a 100 mm focal length lens is used to photograph the sun and moon. What is the height of the image of the sun on the film, given the sun is 1.40×10^6 km in diameter and is 1.50×10^8 km away?

Solution:

-0.933 mm

Exercise:

Problem:

Combine thin lens equations to show that the magnification for a thin lens is determined by its focal length and the object distance and is given by $m = f/(f-d_{\rm o})$.

Glossary

converging lens

a convex lens in which light rays that enter it parallel to its axis converge at a single point on the opposite side

diverging lens

a concave lens in which light rays that enter it parallel to its axis bend away (diverge) from its axis

focal point

for a converging lens or mirror, the point at which converging light rays cross; for a diverging lens or mirror, the point from which diverging light rays appear to originate

focal length

distance from the center of a lens or curved mirror to its focal point

magnification

ratio of image height to object height

power

inverse of focal length

real image

image that can be projected

virtual image

image that cannot be projected

Image Formation by Mirrors

- Illustrate image formation in a flat mirror.
- Explain with ray diagrams the formation of an image using spherical mirrors.
- Determine focal length and magnification given radius of curvature, distance of object and image.

We only have to look as far as the nearest bathroom to find an example of an image formed by a mirror. Images in flat mirrors are the same size as the object and are located behind the mirror. Like lenses, mirrors can form a variety of images. For example, dental mirrors may produce a magnified image, just as makeup mirrors do. Security mirrors in shops, on the other hand, form images that are smaller than the object. We will use the law of reflection to understand how mirrors form images, and we will find that mirror images are analogous to those formed by lenses.

[link] helps illustrate how a flat mirror forms an image. Two rays are shown emerging from the same point, striking the mirror, and being reflected into the observer's eye. The rays can diverge slightly, and both still get into the eye. If the rays are extrapolated backward, they seem to originate from a common point behind the mirror, locating the image. (The paths of the reflected rays into the eye are the same as if they had come directly from that point behind the mirror.) Using the law of reflection—the angle of reflection equals the angle of incidence—we can see that the image and object are the same distance from the mirror. This is a virtual image, since it cannot be projected—the rays only appear to originate from a common point behind the mirror. Obviously, if you walk behind the mirror, you cannot see the image, since the rays do not go there. But in front of the mirror, the rays behave exactly as if they had come from behind the mirror, so that is where the image is situated.

Two sets of rays from common points on an object are reflected by a flat mirror into the eye of an observer. The reflected rays seem to originate from behind the mirror, locating the virtual image.

Now let us consider the focal length of a mirror—for example, the concave spherical mirrors in [link]. Rays of light that strike the surface follow the law of reflection. For a mirror that is large compared with its radius of curvature, as in [link](a), we see that the reflected rays do not cross at the same point, and the mirror does not have a well-defined focal point. If the mirror had the shape of a parabola, the rays would all cross at a single point, and the mirror would have a well-defined focal point. But parabolic mirrors are much more expensive to make than spherical mirrors. The solution is to use a mirror that is small compared with its radius of curvature, as shown in [link](b). (This is the mirror equivalent of the thin lens approximation.) To a very good approximation, this mirror has a well-defined focal point at F that is the focal distance f from the center of the mirror. The focal length f of a concave mirror is positive, since it is a converging mirror.

(a) Parallel rays reflected from a large spherical mirror do not all cross at a common point. (b) If a spherical mirror is small compared with its radius of curvature, parallel rays are focused to a common point. The distance of the focal point from the center of the mirror is its focal length *f*. Since this mirror is converging, it has a positive focal length.

Just as for lenses, the shorter the focal length, the more powerful the mirror; thus, P=1/f for a mirror, too. A more strongly curved mirror has a shorter focal length and a greater power. Using the law of reflection and some simple trigonometry, it can be shown that the focal length is half the radius of curvature, or

Equation:

$$f=rac{R}{2},$$

where R is the radius of curvature of a spherical mirror. The smaller the radius of curvature, the smaller the focal length and, thus, the more powerful the mirror.

The convex mirror shown in [link] also has a focal point. Parallel rays of light reflected from the mirror seem to originate from the point F at the

focal distance f behind the mirror. The focal length and power of a convex mirror are negative, since it is a diverging mirror.

Parallel rays of light reflected from a convex spherical mirror (small in size compared with its radius of curvature) seem to originate from a well-defined focal point at the focal distance f behind the mirror. Convex mirrors diverge light rays and, thus, have a negative focal length.

Ray tracing is as useful for mirrors as for lenses. The rules for ray tracing for mirrors are based on the illustrations just discussed:

- 1. A ray approaching a concave converging mirror parallel to its axis is reflected through the focal point F of the mirror on the same side. (See rays 1 and 3 in [link](b).)
- 2. A ray approaching a convex diverging mirror parallel to its axis is reflected so that it seems to come from the focal point F behind the mirror. (See rays 1 and 3 in [link].)
- 3. Any ray striking the center of a mirror is followed by applying the law of reflection; it makes the same angle with the axis when leaving as when approaching. (See ray 2 in [link].)
- 4. A ray approaching a concave converging mirror through its focal point is reflected parallel to its axis. (The reverse of rays 1 and 3 in [link].)
- 5. A ray approaching a convex diverging mirror by heading toward its focal point on the opposite side is reflected parallel to the axis. (The reverse of rays 1 and 3 in [link].)

We will use ray tracing to illustrate how images are formed by mirrors, and we can use ray tracing quantitatively to obtain numerical information. But since we assume each mirror is small compared with its radius of curvature, we can use the thin lens equations for mirrors just as we did for lenses.

Consider the situation shown in [link], concave spherical mirror reflection, in which an object is placed farther from a concave (converging) mirror than its focal length. That is, f is positive and $d_o > f$, so that we may expect an image similar to the case 1 real image formed by a converging lens. Ray tracing in [link] shows that the rays from a common point on the object all cross at a point on the same side of the mirror as the object. Thus a real image can be projected onto a screen placed at this location. The image distance is positive, and the image is inverted, so its magnification is negative. This is a *case 1 image for mirrors*. It differs from the case 1 image for lenses only in that the image is on the same side of the mirror as the object. It is otherwise identical.

A case 1 image for a mirror. An object is farther from the converging mirror than its focal length. Rays from a common point on the object are traced using the rules in the text. Ray 1 approaches parallel to the axis, ray 2 strikes the center of the mirror, and ray 3 goes through the focal point on the way toward the mirror. All three rays cross at the same point after being reflected, locating the inverted real image. Although three rays are shown, only two of the three are needed to locate the image and determine its height.

Example:

A Concave Reflector

Electric room heaters use a concave mirror to reflect infrared (IR) radiation from hot coils. Note that IR follows the same law of reflection as visible light. Given that the mirror has a radius of curvature of 50.0 cm and produces an image of the coils 3.00 m away from the mirror, where are the coils?

Strategy and Concept

We are given that the concave mirror projects a real image of the coils at an image distance $d_{\rm i}=3.00~{\rm m}$. The coils are the object, and we are asked to find their location—that is, to find the object distance $d_{\rm o}$. We are also given the radius of curvature of the mirror, so that its focal length is $f=R/2=25.0~{\rm cm}$ (positive since the mirror is concave or converging). Assuming the mirror is small compared with its radius of curvature, we can use the thin lens equations, to solve this problem.

Solution

Since d_i and f are known, thin lens equation can be used to find d_o :

Equation:

$$rac{1}{d_\mathrm{o}} + rac{1}{d_\mathrm{i}} = rac{1}{f}.$$

Rearranging to isolate $d_{
m o}$ gives

Equation:

$$\frac{1}{d_0} = \frac{1}{f} - \frac{1}{d_i}.$$

Entering known quantities gives a value for $1/d_0$:

Equation:

$$rac{1}{d_{
m o}} = rac{1}{0.250~{
m m}} - rac{1}{3.00~{
m m}} = rac{3.667}{{
m m}}.$$

This must be inverted to find d_0 :

Equation:

$$d_{
m o} = rac{1 \ {
m m}}{3.667} = 27.3 \ {
m cm}.$$

Discussion

Note that the object (the filament) is farther from the mirror than the mirror's focal length. This is a case 1 image ($d_{\rm o} > f$ and f positive), consistent with the fact that a real image is formed. You will get the most concentrated thermal energy directly in front of the mirror and 3.00 m away from it. Generally, this is not desirable, since it could cause burns. Usually, you want the rays to emerge parallel, and this is accomplished by having the filament at the focal point of the mirror.

Note that the filament here is not much farther from the mirror than its focal length and that the image produced is considerably farther away. This is exactly analogous to a slide projector. Placing a slide only slightly farther away from the projector lens than its focal length produces an image significantly farther away. As the object gets closer to the focal distance, the image gets farther away. In fact, as the object distance approaches the focal length, the image distance approaches infinity and the rays are sent out parallel to one another.

Example:

Solar Electric Generating System

One of the solar technologies used today for generating electricity is a device (called a parabolic trough or concentrating collector) that concentrates the sunlight onto a blackened pipe that contains a fluid. This heated fluid is pumped to a heat exchanger, where its heat energy is transferred to another system that is used to generate steam—and so generate electricity through a conventional steam cycle. [link] shows such a working system in southern California. Concave mirrors are used to concentrate the sunlight onto the pipe. The mirror has the approximate shape of a section of a cylinder. For the problem, assume that the mirror is exactly one-quarter of a full cylinder.

- a. If we wish to place the fluid-carrying pipe 40.0 cm from the concave mirror at the mirror's focal point, what will be the radius of curvature of the mirror?
- b. Per meter of pipe, what will be the amount of sunlight concentrated onto the pipe, assuming the insolation (incident solar radiation) is

 0.900 kW/m^2 ?

c. If the fluid-carrying pipe has a 2.00-cm diameter, what will be the temperature increase of the fluid per meter of pipe over a period of one minute? Assume all the solar radiation incident on the reflector is absorbed by the pipe, and that the fluid is mineral oil.

Strategy

To solve an *Integrated Concept Problem* we must first identify the physical principles involved. Part (a) is related to the current topic. Part (b) involves a little math, primarily geometry. Part (c) requires an understanding of heat and density.

Solution to (a)

To a good approximation for a concave or semi-spherical surface, the point where the parallel rays from the sun converge will be at the focal point, so $R=2f=80.0 \; \mathrm{cm}$.

Solution to (b)

The insolation is 900 W/m^2 . We must find the cross-sectional area A of the concave mirror, since the power delivered is $900 \text{ W/m}^2 \times \text{A}$. The mirror in this case is a quarter-section of a cylinder, so the area for a length L of the mirror is $A = \frac{1}{4}(2\pi R)\text{L}$. The area for a length of 1.00 m is then

Equation:

$$A = \frac{\pi}{2}R(1.00 \text{ m}) = \frac{(3.14)}{2}(0.800 \text{ m})(1.00 \text{ m}) = 1.26 \text{ m}^2.$$

The insolation on the 1.00-m length of pipe is then

Equation:

$$igg(9.00 imes 10^2 rac{
m W}{
m m^2} igg) igg(1.26 \;
m m^2 igg) = 1130 \;
m W.$$

Solution to (c)

The increase in temperature is given by $Q = mc \Delta T$. The mass m of the mineral oil in the one-meter section of pipe is

Equation:

$$egin{array}{lll} m &=&
ho {
m V} =
ho \pi \left(rac{d}{2}
ight)^2 (1.00 {
m \, m}) \ &=& \left(8.00 imes 10^2 {
m \, kg/m}^3
ight) (3.14) (0.0100 {
m \, m})^2 (1.00 {
m \, m}) \ &=& 0.251 {
m \, kg}. \end{array}$$

Therefore, the increase in temperature in one minute is **Equation:**

$$egin{array}{lll} \Delta T &=& Q/m {
m c} \ &=& rac{(1130\ {
m W})(60.0\ {
m s})}{(0.251\ {
m kg})(1670\ {
m J\cdot kg/^{\circ}C})} \ &=& 162^{
m o}{
m C}. \end{array}$$

Discussion for (c)

An array of such pipes in the California desert can provide a thermal output of 250 MW on a sunny day, with fluids reaching temperatures as high as 400°C. We are considering only one meter of pipe here, and ignoring heat losses along the pipe.

Parabolic trough collectors are used to generate electricity in southern California. (credit: kjkolb, Wikimedia Commons)

What happens if an object is closer to a concave mirror than its focal length? This is analogous to a case 2 image for lenses ($d_o < f$ and f positive), which is a magnifier. In fact, this is how makeup mirrors act as magnifiers. [link](a) uses ray tracing to locate the image of an object placed close to a concave mirror. Rays from a common point on the object

are reflected in such a manner that they appear to be coming from behind the mirror, meaning that the image is virtual and cannot be projected. As with a magnifying glass, the image is upright and larger than the object. This is a *case 2 image for mirrors* and is exactly analogous to that for lenses.

(a) Case 2 images for mirrors are formed when a converging mirror has an object closer to it than its focal length. Ray 1 approaches parallel to the axis, ray 2 strikes the center of the mirror, and ray 3 approaches the mirror as if it came from the focal point. (b) A magnifying mirror showing the reflection. (credit: Mike Melrose, Flickr)

All three rays appear to originate from the same point after being reflected, locating the upright virtual image behind the mirror and showing it to be larger than the object. (b) Makeup mirrors are perhaps the most common use of a concave mirror to produce a larger, upright image.

A convex mirror is a diverging mirror (*f* is negative) and forms only one type of image. It is a *case* 3 image—one that is upright and smaller than the object, just as for diverging lenses. [link](a) uses ray tracing to illustrate the location and size of the case 3 image for mirrors. Since the image is behind the mirror, it cannot be projected and is thus a virtual image. It is also seen to be smaller than the object.

Case 3 images for mirrors are formed by any convex mirror. Ray 1 approaches parallel to the axis, ray 2 strikes the center of the

mirror, and ray 3 approaches toward the focal point. All three rays appear to originate from the same point after being reflected, locating the upright virtual image behind the mirror and showing it to be smaller than the object. (b) Security mirrors are convex, producing a smaller, upright image. Because the image is smaller, a larger area is imaged compared to what would be observed for a flat mirror (and hence security is improved). (credit: Laura D'Alessandro, Flickr)

Example:

Image in a Convex Mirror

A keratometer is a device used to measure the curvature of the cornea, particularly for fitting contact lenses. Light is reflected from the cornea, which acts like a convex mirror, and the keratometer measures the magnification of the image. The smaller the magnification, the smaller the radius of curvature of the cornea. If the light source is 12.0 cm from the cornea and the image's magnification is 0.0320, what is the cornea's radius of curvature?

Strategy

If we can find the focal length of the convex mirror formed by the cornea, we can find its radius of curvature (the radius of curvature is twice the focal length of a spherical mirror). We are given that the object distance is

 $d_{\rm o}=12.0~{
m cm}$ and that m=0.0320. We first solve for the image distance $d_{\rm i}$, and then for f.

Solution

 $m=-d_{
m i}/d_{
m o}$. Solving this expression for $d_{
m i}$ gives

Equation:

$$d_{
m i} = -m d_{
m o}$$
.

Entering known values yields

Equation:

$$d_{\rm i} = -(0.0320)(12.0~{
m cm}) = -0.384~{
m cm}.$$

Equation:

$$rac{1}{f}=rac{1}{d_{
m o}}+rac{1}{d_{
m i}}$$

Substituting known values,

Equation:

$$\frac{1}{f} = \frac{1}{12.0 \text{ cm}} + \frac{1}{-0.384 \text{ cm}} = \frac{-2.52}{\text{cm}}.$$

This must be inverted to find f:

Equation:

$$f = rac{{
m cm}}{-2.52} = -0.400 \; {
m cm}.$$

The radius of curvature is twice the focal length, so that

Equation:

$$R = 2 \mid f \mid = 0.800 \text{ cm}.$$

Discussion

Although the focal length f of a convex mirror is defined to be negative, we take the absolute value to give us a positive value for R. The radius of curvature found here is reasonable for a cornea. The distance from cornea

to retina in an adult eye is about 2.0 cm. In practice, many corneas are not spherical, complicating the job of fitting contact lenses. Note that the image distance here is negative, consistent with the fact that the image is behind the mirror, where it cannot be projected. In this section's Problems and Exercises, you will show that for a fixed object distance, the smaller the radius of curvature, the smaller the magnification.

The three types of images formed by mirrors (cases 1, 2, and 3) are exactly analogous to those formed by lenses, as summarized in the table at the end of <u>Image Formation by Lenses</u>. It is easiest to concentrate on only three types of images—then remember that concave mirrors act like convex lenses, whereas convex mirrors act like concave lenses.

Note:

Take-Home Experiment: Concave Mirrors Close to Home

Find a flashlight and identify the curved mirror used in it. Find another flashlight and shine the first flashlight onto the second one, which is turned off. Estimate the focal length of the mirror. You might try shining a flashlight on the curved mirror behind the headlight of a car, keeping the headlight switched off, and determine its focal length.

Problem-Solving Strategy for Mirrors

Step 1. Examine the situation to determine that image formation by a mirror is involved.

Step 2. Refer to the <u>Problem-Solving Strategies for Lenses</u>. The same strategies are valid for mirrors as for lenses with one qualification—use the ray tracing rules for mirrors listed earlier in this section.

Section Summary

• The characteristics of an image formed by a flat mirror are: (a) The image and object are the same distance from the mirror, (b) The image

is a virtual image, and (c) The image is situated behind the mirror.

• Image length is half the radius of curvature.

Equation:

$$f = \frac{R}{2}$$

• A convex mirror is a diverging mirror and forms only one type of image, namely a virtual image.

Conceptual Questions

Exercise:

Problem:

What are the differences between real and virtual images? How can you tell (by looking) whether an image formed by a single lens or mirror is real or virtual?

Exercise:

Problem:

Can you see a virtual image? Can you photograph one? Can one be projected onto a screen with additional lenses or mirrors? Explain your responses.

Exercise:

Problem:

Is it necessary to project a real image onto a screen for it to exist?

Exercise:

Problem:

At what distance is an image *always* located—at d_0 , d_i , or f?

Exercise:

Under what circumstances will an image be located at the focal point of a lens or mirror?

Exercise:

Problem:

What is meant by a negative magnification? What is meant by a magnification that is less than 1 in magnitude?

Exercise:

Problem:

Can a case 1 image be larger than the object even though its magnification is always negative? Explain.

Exercise:

Problem:

[link] shows a light bulb between two mirrors. One mirror produces a beam of light with parallel rays; the other keeps light from escaping without being put into the beam. Where is the filament of the light in relation to the focal point or radius of curvature of each mirror?

The two mirrors trap most of the bulb's light and form a directional beam as in a headlight.

Exercise:

Problem:

Devise an arrangement of mirrors allowing you to see the back of your head. What is the minimum number of mirrors needed for this task?

Exercise:

Problem:

If you wish to see your entire body in a flat mirror (from head to toe), how tall should the mirror be? Does its size depend upon your distance away from the mirror? Provide a sketch.

Exercise:

Problem:

It can be argued that a flat mirror has an infinite focal length. If so, where does it form an image? That is, how are d_i and d_o related?

Exercise:

Problem:

Why are diverging mirrors often used for rear-view mirrors in vehicles? What is the main disadvantage of using such a mirror compared with a flat one?

Problems & Exercises

Exercise:

Problem:

What is the focal length of a makeup mirror that has a power of 1.50 D?

Solution:

 $+0.667 \, \mathrm{m}$

Exercise:

Problem:

Some telephoto cameras use a mirror rather than a lens. What radius of curvature mirror is needed to replace a 800 mm focal length telephoto lens?

Exercise:

Problem:

(a) Calculate the focal length of the mirror formed by the shiny back of a spoon that has a 3.00 cm radius of curvature. (b) What is its power in diopters?

Solution:

(a)
$$-1.5 \times 10^{-2}$$
 m

(b)
$$-66.7 D$$

Exercise:

Problem:

Find the magnification of the heater element in [link]. Note that its large magnitude helps spread out the reflected energy.

Exercise:

Problem:

What is the focal length of a makeup mirror that produces a magnification of 1.50 when a person's face is 12.0 cm away? Explicitly show how you follow the steps in the <u>Problem-Solving Strategy for Mirrors</u>.

Solution:

+0.360 m (concave)

Exercise:

Problem:

A shopper standing 3.00 m from a convex security mirror sees his image with a magnification of 0.250. (a) Where is his image? (b) What is the focal length of the mirror? (c) What is its radius of curvature? Explicitly show how you follow the steps in the Problem-Solving Strategy for Mirrors.

Exercise:

Problem:

An object 1.50 cm high is held 3.00 cm from a person's cornea, and its reflected image is measured to be 0.167 cm high. (a) What is the magnification? (b) Where is the image? (c) Find the radius of curvature of the convex mirror formed by the cornea. (Note that this technique is used by optometrists to measure the curvature of the cornea for contact lens fitting. The instrument used is called a keratometer, or curve measurer.)

Solution:

- (a) +0.111
- (b) -0.334 cm (behind "mirror")
- (c) 0.752cm

Exercise:

Problem:

Ray tracing for a flat mirror shows that the image is located a distance behind the mirror equal to the distance of the object from the mirror. This is stated $d_i = -d_o$, since this is a negative image distance (it is a virtual image). (a) What is the focal length of a flat mirror? (b) What is its power?

Exercise:

Problem:

Show that for a flat mirror $h_i = h_o$, knowing that the image is a distance behind the mirror equal in magnitude to the distance of the object from the mirror.

Solution:

Equation:

$$m=rac{h_{
m i}}{h_{
m o}}=-rac{d_{
m i}}{d_{
m o}}=-rac{-d_{
m o}}{d_{
m o}}=rac{d_{
m o}}{d_{
m o}}=1\Rightarrow h_{
m i}=h_{
m o}$$

Exercise:

Problem:

Use the law of reflection to prove that the focal length of a mirror is half its radius of curvature. That is, prove that f=R/2. Note this is true for a spherical mirror only if its diameter is small compared with its radius of curvature.

Exercise:

Problem:

Referring to the electric room heater considered in the first example in this section, calculate the intensity of IR radiation in W/m^2 projected by the concave mirror on a person 3.00 m away. Assume that the heating element radiates 1500 W and has an area of $100~\rm cm^2$, and that half of the radiated power is reflected and focused by the mirror.

Solution:

$$6.82 \mathrm{\ kW/m}^2$$

Exercise:

Consider a 250-W heat lamp fixed to the ceiling in a bathroom. If the filament in one light burns out then the remaining three still work. Construct a problem in which you determine the resistance of each filament in order to obtain a certain intensity projected on the bathroom floor. The ceiling is 3.0 m high. The problem will need to involve concave mirrors behind the filaments. Your instructor may wish to guide you on the level of complexity to consider in the electrical components.

Glossary

converging mirror

a concave mirror in which light rays that strike it parallel to its axis converge at one or more points along the axis

diverging mirror

a convex mirror in which light rays that strike it parallel to its axis bend away (diverge) from its axis

law of reflection

angle of reflection equals the angle of incidence

Introduction to Vision and Optical Instruments class="introduction"

```
A scientist
 examines
   minute
details on the
surface of a
disk drive at
     a
magnificatio
n of 100,000
 times. The
 image was
 produced
  using an
  electron
microscope.
  (credit:
   Robert
  Scoble)
```


Explore how the image on the computer screen is formed. How is the image formation on the computer screen different from the image formation in your eye as you look down the microscope? How can videos of living cell processes be taken for viewing later on, and by many different people?

Seeing faces and objects we love and cherish is a delight—one's favorite teddy bear, a picture on the wall, or the sun rising over the mountains. Intricate images help us understand nature and are invaluable for developing techniques and technologies in order to improve the quality of life. The image of a red blood cell that almost fills the cross-sectional area of a tiny capillary makes us wonder how blood makes it through and not get stuck. We are able to see bacteria and viruses and understand their structure. It is the knowledge of physics that provides fundamental understanding and models required to develop new techniques and instruments. Therefore, physics is called an *enabling science*—a science that enables development and advancement in other areas. It is through optics and imaging that physics enables advancement in major areas of biosciences. This chapter illustrates the enabling nature of physics through an understanding of how a

human eye is able to see and how we are able to use optical instruments to see beyond what is possible with the naked eye. It is convenient to categorize these instruments on the basis of geometric optics (see Geometric Optics) and wave optics (see Wave Optics).

Physics of the Eye

- Explain the image formation by the eye.
- Explain why peripheral images lack detail and color.
- Define refractive indices.
- Analyze the accommodation of the eye for distant and near vision.

The eye is perhaps the most interesting of all optical instruments. The eye is remarkable in how it forms images and in the richness of detail and color it can detect. However, our eyes commonly need some correction, to reach what is called "normal" vision, but should be called ideal rather than normal. Image formation by our eyes and common vision correction are easy to analyze with the optics discussed in <u>Geometric Optics</u>.

[link] shows the basic anatomy of the eye. The cornea and lens form a system that, to a good approximation, acts as a single thin lens. For clear vision, a real image must be projected onto the light-sensitive retina, which lies at a fixed distance from the lens. The lens of the eye adjusts its power to produce an image on the retina for objects at different distances. The center of the image falls on the fovea, which has the greatest density of light receptors and the greatest acuity (sharpness) in the visual field. The variable opening (or pupil) of the eye along with chemical adaptation allows the eye to detect light intensities from the lowest observable to 10^{10} times greater (without damage). This is an incredible range of detection. Our eyes perform a vast number of functions, such as sense direction, movement, sophisticated colors, and distance. Processing of visual nerve impulses begins with interconnections in the retina and continues in the brain. The optic nerve conveys signals received by the eye to the brain.

The cornea and lens of an eye act together to form a real image on the light-sensing retina, which has its densest concentration of receptors in the fovea and a blind spot over the optic nerve. The power of the lens of an eye is adjustable to provide an image on the retina for varying object distances. Layers of tissues with varying indices of refraction in the lens are shown here. However, they have been omitted from other pictures for clarity.

Refractive indices are crucial to image formation using lenses. [link] shows refractive indices relevant to the eye. The biggest change in the refractive index, and bending of rays, occurs at the cornea rather than the lens. The ray diagram in [link] shows image formation by the cornea and lens of the eye. The rays bend according to the refractive indices provided in [link]. The cornea provides about two-thirds of the power of the eye, owing to the fact that speed of light changes considerably while traveling from air into cornea. The lens provides the remaining power needed to produce an image on the retina. The cornea and lens can be treated as a single thin lens, even

though the light rays pass through several layers of material (such as cornea, aqueous humor, several layers in the lens, and vitreous humor), changing direction at each interface. The image formed is much like the one produced by a single convex lens. This is a case 1 image. Images formed in the eye are inverted but the brain inverts them once more to make them seem upright.

Material	Index of Refraction
Water	1.33
Air	1.0
Cornea	1.38
Aqueous humor	1.34
Lens	1.41 average (varies throughout the lens, greatest in center)
Vitreous humor	1.34

Refractive Indices Relevant to the Eye

An image is formed on the retina with light rays converging most at the cornea and upon entering and exiting the lens. Rays from the top and bottom of the object are traced and produce an inverted real image on the retina. The distance to the object is drawn smaller than scale.

As noted, the image must fall precisely on the retina to produce clear vision — that is, the image distance d_i must equal the lens-to-retina distance. Because the lens-to-retina distance does not change, the image distance d_i must be the same for objects at all distances. The eye manages this by varying the power (and focal length) of the lens to accommodate for objects at various distances. The process of adjusting the eye's focal length is called **accommodation**. A person with normal (ideal) vision can see objects clearly at distances ranging from 25 cm to essentially infinity. However, although the near point (the shortest distance at which a sharp focus can be obtained) increases with age (becoming meters for some older people), we will consider it to be 25 cm in our treatment here.

[link] shows the accommodation of the eye for distant and near vision. Since light rays from a nearby object can diverge and still enter the eye, the lens must be more converging (more powerful) for close vision than for distant vision. To be more converging, the lens is made thicker by the action of the ciliary muscle surrounding it. The eye is most relaxed when viewing

distant objects, one reason that microscopes and telescopes are designed to produce distant images. Vision of very distant objects is called *totally relaxed*, while close vision is termed *accommodated*, with the closest vision being *fully accommodated*.

d_o (very large) $d_{i} = 2.00 \text{ cm}$ $d_{o} \text{ (very small)}$ $d_{o} \text{ (very small)}$

Relaxed and accommodated vision for distant and close objects. (a) Light rays from the same point on a distant object must be nearly parallel while entering the eye and more easily converge to produce an image on the retina. (b) Light rays from a nearby object can diverge more and still enter the eye. A more powerful lens is needed to converge them on the retina than if they were parallel.

We will use the thin lens equations to examine image formation by the eye quantitatively. First, note the power of a lens is given as p=1/f, so we rewrite the thin lens equations as

Equation:

$$P = \frac{1}{d_0} + \frac{1}{d_i}$$

and

Equation:

$$rac{h_{
m i}}{h_{
m o}}=-rac{d_{
m i}}{d_{
m o}}=m.$$

We understand that d_i must equal the lens-to-retina distance to obtain clear vision, and that normal vision is possible for objects at distances $d_o = 25$ cm to infinity.

Note:

Take-Home Experiment: The Pupil

Look at the central transparent area of someone's eye, the pupil, in normal room light. Estimate the diameter of the pupil. Now turn off the lights and darken the room. After a few minutes turn on the lights and promptly estimate the diameter of the pupil. What happens to the pupil as the eye adjusts to the room light? Explain your observations.

The eye can detect an impressive amount of detail, considering how small the image is on the retina. To get some idea of how small the image can be, consider the following example.

Example:

Size of Image on Retina

What is the size of the image on the retina of a 1.20×10^{-2} cm diameter human hair, held at arm's length (60.0 cm) away? Take the lens-to-retina distance to be 2.00 cm.

Strategy

We want to find the height of the image $h_{\rm i}$, given the height of the object is $h_{\rm o}=1.20\times 10^{-2}$ cm. We also know that the object is 60.0 cm away, so that $d_{\rm o}=60.0$ cm. For clear vision, the image distance must equal the lens-to-retina distance, and so $d_{\rm i}=2.00$ cm . The equation $\frac{h_{\rm i}}{h_{\rm o}}=-\frac{d_{\rm i}}{d_{\rm o}}=m$ can be used to find $h_{\rm i}$ with the known information.

Solution

The only unknown variable in the equation $rac{h_{
m i}}{h_{
m o}}=-rac{d_{
m i}}{d_{
m o}}=m$ is $h_{
m i}$:

Equation:

$$rac{h_{
m i}}{h_{
m o}} = -rac{d_{
m i}}{d_{
m o}}.$$

Rearranging to isolate h_i yields

Equation:

$$h_{
m i} = -h_{
m o} \cdot rac{d_{
m i}}{d_{
m o}}.$$

Substituting the known values gives

Equation:

$$egin{array}{lll} h_{
m i} &=& -(1.20 imes 10^{-2} {
m \, cm}) rac{2.00 {
m \, cm}}{60.0 {
m \, cm}} \ &=& -4.00 imes 10^{-4} {
m \, cm}. \end{array}$$

Discussion

This truly small image is not the smallest discernible—that is, the limit to visual acuity is even smaller than this. Limitations on visual acuity have to do with the wave properties of light and will be discussed in the next chapter. Some limitation is also due to the inherent anatomy of the eye and processing that occurs in our brain.

Example:

Power Range of the Eye

Calculate the power of the eye when viewing objects at the greatest and smallest distances possible with normal vision, assuming a lens-to-retina distance of 2.00 cm (a typical value).

Strategy

For clear vision, the image must be on the retina, and so $d_{\rm i}=2.00~{\rm cm}$ here. For distant vision, $d_{\rm o}\approx\infty$, and for close vision, $d_{\rm o}=25.0~{\rm cm}$, as discussed earlier. The equation $P=\frac{1}{d_{\rm o}}+\frac{1}{d_{\rm i}}$ as written just above, can be used directly to solve for P in both cases, since we know $d_{\rm i}$ and $d_{\rm o}$. Power has units of diopters, where $1~{\rm D}=1/{\rm m}$, and so we should express all distances in meters.

Solution

For distant vision,

Equation:

$$P = rac{1}{d_{
m o}} + rac{1}{d_{
m i}} = rac{1}{\infty} + rac{1}{0.0200 \ {
m m}}.$$

Since $1/\infty = 0$, this gives

Equation:

$$P = 0 + 50.0 / \text{m} = 50.0 \text{ D}$$
 (distant vision).

Now, for close vision,

Equation:

$$P = rac{1}{d_{
m o}} + rac{1}{d_{
m i}} = rac{1}{0.250~{
m m}} + rac{1}{0.0200~{
m m}} \ = rac{4.00}{{
m m}} + rac{50.0}{{
m m}} = 4.00~{
m D} + 50.0~{
m D} \ = 54.0~{
m D} ~{
m (close~vision)}.$$

Discussion

For an eye with this typical 2.00 cm lens-to-retina distance, the power of the eye ranges from 50.0 D (for distant totally relaxed vision) to 54.0 D (for close fully accommodated vision), which is an 8% increase. This increase in power for close vision is consistent with the preceding

discussion and the ray tracing in [link]. An 8% ability to accommodate is considered normal but is typical for people who are about 40 years old. Younger people have greater accommodation ability, whereas older people gradually lose the ability to accommodate. When an optometrist identifies accommodation as a problem in elder people, it is most likely due to stiffening of the lens. The lens of the eye changes with age in ways that tend to preserve the ability to see distant objects clearly but do not allow the eye to accommodate for close vision, a condition called **presbyopia** (literally, elder eye). To correct this vision defect, we place a converging, positive power lens in front of the eye, such as found in reading glasses. Commonly available reading glasses are rated by their power in diopters, typically ranging from 1.0 to 3.5 D.

Section Summary

• Image formation by the eye is adequately described by the thin lens equations:

Equation:

$$P=rac{1}{d_{
m o}}+rac{1}{d_{
m i}} ext{ and } rac{h_{
m i}}{h_{
m o}}=-rac{d_{
m i}}{d_{
m o}}=m.$$

- The eye produces a real image on the retina by adjusting its focal length and power in a process called accommodation.
- For close vision, the eye is fully accommodated and has its greatest power, whereas for distant vision, it is totally relaxed and has its smallest power.
- The loss of the ability to accommodate with age is called presbyopia, which is corrected by the use of a converging lens to add power for close vision.

Conceptual Questions

Exercise:

If the lens of a person's eye is removed because of cataracts (as has been done since ancient times), why would you expect a spectacle lens of about 16 D to be prescribed?

Exercise:

Problem:

A cataract is cloudiness in the lens of the eye. Is light dispersed or diffused by it?

Exercise:

Problem:

When laser light is shone into a relaxed normal-vision eye to repair a tear by spot-welding the retina to the back of the eye, the rays entering the eye must be parallel. Why?

Exercise:

Problem:

How does the power of a dry contact lens compare with its power when resting on the tear layer of the eye? Explain.

Exercise:

Problem:

Why is your vision so blurry when you open your eyes while swimming under water? How does a face mask enable clear vision?

Problem Exercises

Unless otherwise stated, the lens-to-retina distance is 2.00 cm. Exercise:

What is the power of the eye when viewing an object 50.0 cm away?

Solution:

52.0 D

Exercise:

Problem:

Calculate the power of the eye when viewing an object 3.00 m away.

Exercise:

Problem:

- (a) The print in many books averages 3.50 mm in height. How high is the image of the print on the retina when the book is held 30.0 cm from the eye?
- (b) Compare the size of the print to the sizes of rods and cones in the fovea and discuss the possible details observable in the letters. (The eye-brain system can perform better because of interconnections and higher order image processing.)

Solution:

- (a) -0.233 mm
- (b) The size of the rods and the cones is smaller than the image height, so we can distinguish letters on a page.

Exercise:

Suppose a certain person's visual acuity is such that he can see objects clearly that form an image $4.00~\mu m$ high on his retina. What is the maximum distance at which he can read the 75.0 cm high letters on the side of an airplane?

Exercise:

Problem:

People who do very detailed work close up, such as jewellers, often can see objects clearly at much closer distance than the normal 25 cm.

- (a) What is the power of the eyes of a woman who can see an object clearly at a distance of only 8.00 cm?
- (b) What is the size of an image of a 1.00 mm object, such as lettering inside a ring, held at this distance?
- (c) What would the size of the image be if the object were held at the normal 25.0 cm distance?

Solution:

- (a) +62.5 D
- (b) -0.250 mm
- (c) -0.0800 mm

Glossary

accommodation

the ability of the eye to adjust its focal length is known as accommodation

presbyopia

a condition in which the lens of the eye becomes progressively unable to focus on objects close to the viewer

Vision Correction

- Identify and discuss common vision defects.
- Explain nearsightedness and farsightedness corrections.
- Explain laser vision correction.

The need for some type of vision correction is very common. Common vision defects are easy to understand, and some are simple to correct. [link] illustrates two common vision defects. Nearsightedness, or myopia, is the inability to see distant objects clearly while close objects are clear. The eye overconverges the nearly parallel rays from a distant object, and the rays cross in front of the retina. More divergent rays from a close object are converged on the retina for a clear image. The distance to the farthest object that can be seen clearly is called the far point of the eye (normally infinity). Farsightedness, or hyperopia, is the inability to see close objects clearly while distant objects may be clear. A farsighted eye does not converge sufficient rays from a close object to make the rays meet on the retina. Less diverging rays from a distant object can be converged for a clear image. The distance to the closest object that can be seen clearly is called the near point of the eye (normally 25 cm).

(a) The nearsighted (myopic) eye converges rays from a distant object in front of the retina; thus, they are diverging when they

strike the retina, producing a blurry image. This can be caused by the lens of the eye being too powerful or the length of the eye being too great. (b) The farsighted (hyperopic) eye is unable to converge the rays from a close object by the time they strike the retina, producing blurry close vision. This can be caused by insufficient power in the lens or by the eye being too short.

Since the nearsighted eye over converges light rays, the correction for nearsightedness is to place a diverging spectacle lens in front of the eye. This reduces the power of an eye that is too powerful. Another way of thinking about this is that a diverging spectacle lens produces a case 3 image, which is closer to the eye than the object (see [link]). To determine the spectacle power needed for correction, you must know the person's far point—that is, you must know the greatest distance at which the person can see clearly. Then the image produced by a spectacle lens must be at this distance or closer for the nearsighted person to be able to see it clearly. It is worth noting that wearing glasses does not change the eye in any way. The eyeglass lens is simply used to create an image of the object at a distance where the nearsighted person can see it clearly. Whereas someone not wearing glasses can see clearly *objects* that fall between their near point and their far point, someone wearing glasses can see *images* that fall between their near point and their far point.

Correction of nearsightedness requires a diverging lens that compensates for the overconvergence by the eye. The diverging lens produces an image closer to the eye than the object, so that the nearsighted person can see it clearly.

Example:

Correcting Nearsightedness

What power of spectacle lens is needed to correct the vision of a nearsighted person whose far point is 30.0 cm? Assume the spectacle (corrective) lens is held 1.50 cm away from the eye by eyeglass frames.

Strategy

You want this nearsighted person to be able to see very distant objects clearly. That means the spectacle lens must produce an image 30.0 cm from the eye for an object very far away. An image 30.0 cm from the eye will be 28.5 cm to the left of the spectacle lens (see [link]). Therefore, we

must get $d_i = -28.5$ cm when $d_o \approx \infty$. The image distance is negative, because it is on the same side of the spectacle as the object.

Solution

Since d_i and d_o are known, the power of the spectacle lens can be found using $P=\frac{1}{d_o}+\frac{1}{d_i}$ as written earlier:

Equation:

$$P = rac{1}{d_{
m o}} + rac{1}{d_{
m i}} = rac{1}{\infty} + rac{1}{-0.285 \
m m}.$$

Since $1/\infty = 0$, we obtain:

Equation:

$$P = 0 - 3.51/m = -3.51 D.$$

Discussion

The negative power indicates a diverging (or concave) lens, as expected. The spectacle produces a case 3 image closer to the eye, where the person can see it. If you examine eyeglasses for nearsighted people, you will find the lenses are thinnest in the center. Additionally, if you examine a prescription for eyeglasses for nearsighted people, you will find that the prescribed power is negative and given in units of diopters.

Since the farsighted eye under converges light rays, the correction for farsightedness is to place a converging spectacle lens in front of the eye. This increases the power of an eye that is too weak. Another way of thinking about this is that a converging spectacle lens produces a case 2 image, which is farther from the eye than the object (see [link]). To determine the spectacle power needed for correction, you must know the person's near point—that is, you must know the smallest distance at which the person can see clearly. Then the image produced by a spectacle lens must be at this distance or farther for the farsighted person to be able to see it clearly.

Correction of farsightedness uses a converging lens that compensates for the under convergence by the eye. The converging lens produces an image farther from the eye than the object, so that the farsighted person can see it clearly.

Example:

Correcting Farsightedness

What power of spectacle lens is needed to allow a farsighted person, whose near point is 1.00 m, to see an object clearly that is 25.0 cm away? Assume the spectacle (corrective) lens is held 1.50 cm away from the eye by eyeglass frames.

Strategy

When an object is held 25.0 cm from the person's eyes, the spectacle lens must produce an image 1.00 m away (the near point). An image 1.00 m

from the eye will be 98.5 cm to the left of the spectacle lens because the spectacle lens is 1.50 cm from the eye (see [link]). Therefore, $d_{\rm i}=-98.5$ cm. The image distance is negative, because it is on the same side of the spectacle as the object. The object is 23.5 cm to the left of the spectacle, so that $d_{\rm o}=23.5$ cm.

Solution

Since $d_{\rm i}$ and $d_{\rm o}$ are known, the power of the spectacle lens can be found using $P=rac{1}{d_{
m o}}+rac{1}{d_{
m i}}$:

Equation:

$$P = \frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{0.235 \text{ m}} + \frac{1}{-0.985 \text{ m}}$$

$$= 4.26 \text{ D} - 1.02 \text{ D} = 3.24 \text{ D}.$$

Discussion

The positive power indicates a converging (convex) lens, as expected. The convex spectacle produces a case 2 image farther from the eye, where the person can see it. If you examine eyeglasses of farsighted people, you will find the lenses to be thickest in the center. In addition, a prescription of eyeglasses for farsighted people has a prescribed power that is positive.

Another common vision defect is **astigmatism**, an unevenness or asymmetry in the focus of the eye. For example, rays passing through a vertical region of the eye may focus closer than rays passing through a horizontal region, resulting in the image appearing elongated. This is mostly due to irregularities in the shape of the cornea but can also be due to lens irregularities or unevenness in the retina. Because of these irregularities, different parts of the lens system produce images at different locations. The eye-brain system can compensate for some of these irregularities, but they generally manifest themselves as less distinct vision or sharper images along certain axes. [link] shows a chart used to detect astigmatism. Astigmatism can be at least partially corrected with a spectacle having the opposite irregularity of the eye. If an eyeglass prescription has a cylindrical correction, it is there to correct astigmatism. The normal corrections for short- or farsightedness are spherical corrections, uniform along all axes.

This chart can detect astigmatism, unevenness in the focus of the eye. Check each of your eyes separately by looking at the center cross (without spectacles if you wear them). If lines along some axes appear darker or clearer than others, you have an astigmatism.

Contact lenses have advantages over glasses beyond their cosmetic aspects. One problem with glasses is that as the eye moves, it is not at a fixed distance from the spectacle lens. Contacts rest on and move with the eye, eliminating this problem. Because contacts cover a significant portion of the

cornea, they provide superior peripheral vision compared with eyeglasses. Contacts also correct some corneal astigmatism caused by surface irregularities. The tear layer between the smooth contact and the cornea fills in the irregularities. Since the index of refraction of the tear layer and the cornea are very similar, you now have a regular optical surface in place of an irregular one. If the curvature of a contact lens is not the same as the cornea (as may be necessary with some individuals to obtain a comfortable fit), the tear layer between the contact and cornea acts as a lens. If the tear layer is thinner in the center than at the edges, it has a negative power, for example. Skilled optometrists will adjust the power of the contact to compensate.

Laser vision correction has progressed rapidly in the last few years. It is the latest and by far the most successful in a series of procedures that correct vision by reshaping the cornea. As noted at the beginning of this section, the cornea accounts for about two-thirds of the power of the eye. Thus, small adjustments of its curvature have the same effect as putting a lens in front of the eye. To a reasonable approximation, the power of multiple lenses placed close together equals the sum of their powers. For example, a concave spectacle lens (for nearsightedness) having $P = -3.00 \,\mathrm{D}$ has the same effect on vision as reducing the power of the eye itself by 3.00 D. So to correct the eye for nearsightedness, the cornea is flattened to reduce its power. Similarly, to correct for farsightedness, the curvature of the cornea is enhanced to increase the power of the eye—the same effect as the positive power spectacle lens used for farsightedness. Laser vision correction uses high intensity electromagnetic radiation to ablate (to remove material from the surface) and reshape the corneal surfaces.

Today, the most commonly used laser vision correction procedure is *Laser in situ Keratomileusis (LASIK)*. The top layer of the cornea is surgically peeled back and the underlying tissue ablated by multiple bursts of finely controlled ultraviolet radiation produced by an excimer laser. Lasers are used because they not only produce well-focused intense light, but they also emit very pure wavelength electromagnetic radiation that can be controlled more accurately than mixed wavelength light. The 193 nm wavelength UV commonly used is extremely and strongly absorbed by corneal tissue,

allowing precise evaporation of very thin layers. A computer controlled program applies more bursts, usually at a rate of 10 per second, to the areas that require deeper removal. Typically a spot less than 1 mm in diameter and about 0.3 µm in thickness is removed by each burst. Nearsightedness, farsightedness, and astigmatism can be corrected with an accuracy that produces normal distant vision in more than 90% of the patients, in many cases right away. The corneal flap is replaced; healing takes place rapidly and is nearly painless. More than 1 million Americans per year undergo LASIK (see [link]).

Laser vision correction is being performed using the LASIK procedure. Reshaping of the cornea by laser ablation is based on a careful assessment of the patient's vision and is computer controlled. The

upper corneal layer is temporarily peeled back and minimally disturbed in LASIK, providing for more rapid and less painful healing of the less sensitive tissues below. (credit: U.S. Navy photo by Mass Communicatio n Specialist 1st Class Brien Aho)

Section Summary

- Nearsightedness, or myopia, is the inability to see distant objects and is corrected with a diverging lens to reduce power.
- Farsightedness, or hyperopia, is the inability to see close objects and is corrected with a converging lens to increase power.
- In myopia and hyperopia, the corrective lenses produce images at a distance that the person can see clearly—the far point and near point, respectively.

Conceptual Questions

Exercise:

Problem:

It has become common to replace the cataract-clouded lens of the eye with an internal lens. This intraocular lens can be chosen so that the person has perfect distant vision. Will the person be able to read without glasses? If the person was nearsighted, is the power of the intraocular lens greater or less than the removed lens?

Exercise:

Problem:

If the cornea is to be reshaped (this can be done surgically or with contact lenses) to correct myopia, should its curvature be made greater or smaller? Explain. Also explain how hyperopia can be corrected.

Exercise:

Problem:

If there is a fixed percent uncertainty in LASIK reshaping of the cornea, why would you expect those people with the greatest correction to have a poorer chance of normal distant vision after the procedure?

Exercise:

Problem:

A person with presbyopia has lost some or all of the ability to accommodate the power of the eye. If such a person's distant vision is corrected with LASIK, will she still need reading glasses? Explain.

Problem Exercises

Exercise:

Problem:

What is the far point of a person whose eyes have a relaxed power of 50.5 D?

Solution:

2.00 m

Exercise:

Problem:

What is the near point of a person whose eyes have an accommodated power of 53.5 D?

Exercise:

Problem:

(a) A laser vision correction reshaping the cornea of a myopic patient reduces the power of his eye by 9.00 D, with a $\pm 5.0\%$ uncertainty in the final correction. What is the range of diopters for spectacle lenses that this person might need after LASIK procedure? (b) Was the person nearsighted or farsighted before the procedure? How do you know?

Solution:

- (a) $\pm 0.45 \text{ D}$
- (b) The person was nearsighted because the patient was myopic and the power was reduced.

Exercise:

Problem:

In a LASIK vision correction, the power of a patient's eye is increased by 3.00 D. Assuming this produces normal close vision, what was the patient's near point before the procedure?

Exercise:

Problem:

What was the previous far point of a patient who had laser vision correction that reduced the power of her eye by 7.00 D, producing normal distant vision for her?

Solution:

0.143 m

Exercise:

Problem:

A severely myopic patient has a far point of 5.00 cm. By how many diopters should the power of his eye be reduced in laser vision correction to obtain normal distant vision for him?

Exercise:

Problem:

A student's eyes, while reading the blackboard, have a power of 51.0 D. How far is the board from his eyes?

Solution:

1.00 m

Exercise:

Problem:

The power of a physician's eyes is 53.0 D while examining a patient. How far from her eyes is the feature being examined?

Exercise:

Problem:

A young woman with normal distant vision has a 10.0% ability to accommodate (that is, increase) the power of her eyes. What is the closest object she can see clearly?

Solution:

20.0 cm

Exercise:

Problem:

The far point of a myopic administrator is 50.0 cm. (a) What is the relaxed power of his eyes? (b) If he has the normal 8.00% ability to accommodate, what is the closest object he can see clearly?

Exercise:

Problem:

A very myopic man has a far point of 20.0 cm. What power contact lens (when on the eye) will correct his distant vision?

Solution:

-5.00 D

Exercise:

Problem:

Repeat the previous problem for eyeglasses held 1.50 cm from the eyes.

Exercise:

Problem:

A myopic person sees that her contact lens prescription is -4.00 D. What is her far point?

Solution: 25.0 cm Exercise:

Problem:

Repeat the previous problem for glasses that are 1.75 cm from the eyes.

Exercise:

Problem:

The contact lens prescription for a mildly farsighted person is 0.750 D, and the person has a near point of 29.0 cm. What is the power of the tear layer between the cornea and the lens if the correction is ideal, taking the tear layer into account?

Solution:

-0.198 D

Exercise:

Problem:

A nearsighted man cannot see objects clearly beyond 20 cm from his eyes. How close must he stand to a mirror in order to see what he is doing when he shaves?

Exercise:

Problem:

A mother sees that her child's contact lens prescription is 0.750 D. What is the child's near point?

Solution:

30.8 cm

Exercise:

Problem:

Repeat the previous problem for glasses that are 2.20 cm from the eyes.

Exercise:

Problem:

The contact lens prescription for a nearsighted person is -4.00 D and the person has a far point of 22.5 cm. What is the power of the tear layer between the cornea and the lens if the correction is ideal, taking the tear layer into account?

Solution:

 $-0.444~\mathrm{D}$

Exercise:

Problem: Unreasonable Results

A boy has a near point of 50 cm and a far point of 500 cm. Will a -4.00 D lens correct his far point to infinity?

Glossary

near sight edness

another term for myopia, a visual defect in which distant objects appear blurred because their images are focused in front of the retina rather than being focused on the retina

myopia

a visual defect in which distant objects appear blurred because their images are focused in front of the retina rather than being focused on the retina

far point

the object point imaged by the eye onto the retina in an unaccommodated eye

farsightedness

another term for hyperopia, the condition of an eye where incoming rays of light reach the retina before they converge into a focused image

hyperopia

the condition of an eye where incoming rays of light reach the retina before they converge into a focused image

near point

the point nearest the eye at which an object is accurately focused on the retina at full accommodation

astigmatism

the result of an inability of the cornea to properly focus an image onto the retina

laser vision correction

a medical procedure used to correct astigmatism and eyesight deficiencies such as myopia and hyperopia

Microscopes

- Investigate different types of microscopes.
- Learn how image is formed in a compound microscope.

Although the eye is marvelous in its ability to see objects large and small, it obviously has limitations to the smallest details it can detect. Human desire to see beyond what is possible with the naked eye led to the use of optical instruments. In this section we will examine microscopes, instruments for enlarging the detail that we cannot see with the unaided eye. The microscope is a multiple-element system having more than a single lens or mirror. (See [link]) A microscope can be made from two convex lenses. The image formed by the first element becomes the object for the second element. The second element forms its own image, which is the object for the third element, and so on. Ray tracing helps to visualize the image formed. If the device is composed of thin lenses and mirrors that obey the thin lens equations, then it is not difficult to describe their behavior numerically.

Multiple lenses and mirrors are used in this microscope. (credit: U.S. Navy photo by Tom Watanabe)

Microscopes were first developed in the early 1600s by eyeglass makers in The Netherlands and Denmark. The simplest **compound microscope** is

constructed from two convex lenses as shown schematically in [link]. The first lens is called the **objective lens**, and has typical magnification values from $5 \times$ to $100 \times$. In standard microscopes, the objectives are mounted such that when you switch between objectives, the sample remains in focus. Objectives arranged in this way are described as parfocal. The second, the **eyepiece**, also referred to as the ocular, has several lenses which slide inside a cylindrical barrel. The focusing ability is provided by the movement of both the objective lens and the eyepiece. The purpose of a microscope is to magnify small objects, and both lenses contribute to the final magnification. Additionally, the final enlarged image is produced in a location far enough from the observer to be easily viewed, since the eye cannot focus on objects or images that are too close.

A compound microscope composed of two lenses, an objective and an eyepiece. The objective forms a case 1 image that is larger than the object. This first image is the object for the eyepiece. The eyepiece forms a case 2 final image that is further magnified.

To see how the microscope in [link] forms an image, we consider its two lenses in succession. The object is slightly farther away from the objective lens than its focal length f_o , producing a case 1 image that is larger than the

object. This first image is the object for the second lens, or eyepiece. The eyepiece is intentionally located so it can further magnify the image. The eyepiece is placed so that the first image is closer to it than its focal length $f_{\rm e}$. Thus the eyepiece acts as a magnifying glass, and the final image is made even larger. The final image remains inverted, but it is farther from the observer, making it easy to view (the eye is most relaxed when viewing distant objects and normally cannot focus closer than 25 cm). Since each lens produces a magnification that multiplies the height of the image, it is apparent that the overall magnification m is the product of the individual magnifications:

Equation:

$$m = m_{\rm o} m_{\rm e}$$

where $m_{\rm o}$ is the magnification of the objective and $m_{\rm e}$ is the magnification of the eyepiece. This equation can be generalized for any combination of thin lenses and mirrors that obey the thin lens equations.

Note:

Overall Magnification

The overall magnification of a multiple-element system is the product of the individual magnifications of its elements.

Example:

Microscope Magnification

Calculate the magnification of an object placed 6.20 mm from a compound microscope that has a 6.00 mm focal length objective and a 50.0 mm focal length eyepiece. The objective and eyepiece are separated by 23.0 cm.

Strategy and Concept

This situation is similar to that shown in [link]. To find the overall magnification, we must find the magnification of the objective, then the magnification of the eyepiece. This involves using the thin lens equation.

Solution

The magnification of the objective lens is given as

Equation:

$$m_{
m o} = -rac{d_{
m i}}{d_{
m o}},$$

where $d_{\rm o}$ and $d_{\rm i}$ are the object and image distances, respectively, for the objective lens as labeled in [link]. The object distance is given to be $d_{\rm o}=6.20~{\rm mm}$, but the image distance $d_{\rm i}$ is not known. Isolating $d_{\rm i}$, we have

Equation:

$$\frac{1}{d_{\rm i}} = \frac{1}{f_{
m o}} - \frac{1}{d_{
m o}},$$

where $f_{
m o}$ is the focal length of the objective lens. Substituting known values gives

Equation:

$$rac{1}{d_{
m i}} = rac{1}{6.00 \ {
m mm}} - rac{1}{6.20 \ {
m mm}} = rac{0.00538}{{
m mm}}.$$

We invert this to find d_i :

Equation:

$$d_{
m i}=186~{
m mm}.$$

Substituting this into the expression for $m_{\rm o}$ gives

Equation:

$$m_{
m o} = -rac{d_{
m i}}{d_{
m o}} = -rac{186\ {
m mm}}{6.20\ {
m mm}} = -30.0.$$

Now we must find the magnification of the eyepiece, which is given by **Equation:**

$$m_{
m e} = -rac{d_{
m i}\prime}{d_{
m o}\prime},$$

where $d_i\prime$ and $d_o\prime$ are the image and object distances for the eyepiece (see [link]). The object distance is the distance of the first image from the eyepiece. Since the first image is 186 mm to the right of the objective and the eyepiece is 230 mm to the right of the objective, the object distance is $d_o\prime=230$ mm -186 mm =44.0 mm. This places the first image closer to the eyepiece than its focal length, so that the eyepiece will form a case 2 image as shown in the figure. We still need to find the location of the final image $d_i\prime$ in order to find the magnification. This is done as before to obtain a value for $1/d_i\prime$:

Equation:

$$rac{1}{d_{ ext{i'}}} = rac{1}{f_{ ext{e}}} - rac{1}{d_{ ext{o'}}} = rac{1}{50.0 ext{ mm}} - rac{1}{44.0 ext{ mm}} = -rac{0.00273}{ ext{mm}}.$$

Inverting gives

Equation:

$$d_{
m i}\prime = -rac{
m mm}{0.00273} = -367 \
m mm.$$

The eyepiece's magnification is thus

Equation:

$$m_{
m e} = -rac{d_{
m i}\prime}{d_{
m o}\prime} = -rac{-367~{
m mm}}{44.0~{
m mm}} = 8.33.$$

So the overall magnification is

Equation:

$$m=m_{
m o}m_{
m e}=(-30.0)(8.33)=-250.$$

Discussion

Both the objective and the eyepiece contribute to the overall magnification, which is large and negative, consistent with [link], where the image is seen to be large and inverted. In this case, the image is virtual and inverted, which cannot happen for a single element (case 2 and case 3 images for single elements are virtual and upright). The final image is 367 mm (0.367 m) to the left of the eyepiece. Had the eyepiece been placed farther from

the objective, it could have formed a case 1 image to the right. Such an image could be projected on a screen, but it would be behind the head of the person in the figure and not appropriate for direct viewing. The procedure used to solve this example is applicable in any multiple-element system. Each element is treated in turn, with each forming an image that becomes the object for the next element. The process is not more difficult than for single lenses or mirrors, only lengthier.

Normal optical microscopes can magnify up to $1500\times$ with a theoretical resolution of $-0.2~\mu m$. The lenses can be quite complicated and are composed of multiple elements to reduce aberrations. Microscope objective lenses are particularly important as they primarily gather light from the specimen. Three parameters describe microscope objectives: the **numerical aperture** (NA), the magnification (m), and the working distance. The NA is related to the light gathering ability of a lens and is obtained using the angle of acceptance θ formed by the maximum cone of rays focusing on the specimen (see [link](a)) and is given by

Equation:

$$NA = n \sin \alpha$$
,

where n is the refractive index of the medium between the lens and the specimen and $\alpha=\theta/2$. As the angle of acceptance given by θ increases, NA becomes larger and more light is gathered from a smaller focal region giving higher resolution. A $0.75\mathrm{NA}$ objective gives more detail than a 0.10NA objective.

(a) The numerical aperture (NA) of a microscope objective lens refers to the light-gathering ability of the lens and is calculated using half the angle of acceptance θ . (b) Here, α is half the acceptance angle for light rays from a specimen entering a camera lens, and D is the diameter of the aperture that controls the light entering the lens.

While the numerical aperture can be used to compare resolutions of various objectives, it does not indicate how far the lens could be from the specimen. This is specified by the "working distance," which is the distance (in mm usually) from the front lens element of the objective to the specimen, or cover glass. The higher the NA the closer the lens will be to the specimen and the more chances there are of breaking the cover slip and damaging both the specimen and the lens. The focal length of an objective lens is different than the working distance. This is because objective lenses are made of a combination of lenses and the focal length is measured from inside the barrel. The working distance is a parameter that microscopists can use more readily as it is measured from the outermost lens. The working distance decreases as the NA and magnification both increase.

The term f/# in general is called the f-number and is used to denote the light per unit area reaching the image plane. In photography, an image of an object at infinity is formed at the focal point and the f-number is given by the ratio of the focal length f of the lens and the diameter D of the aperture controlling the light into the lens (see $[\underline{link}](b)$). If the acceptance angle is small the NA of the lens can also be used as given below.

Equation:

$$f/\# = rac{f}{D} pprox rac{1}{2 {
m NA}}.$$

As the f-number decreases, the camera is able to gather light from a larger angle, giving wide-angle photography. As usual there is a trade-off. A greater f/# means less light reaches the image plane. A setting of f/16 usually allows one to take pictures in bright sunlight as the aperture diameter is small. In optical fibers, light needs to be focused into the fiber. [link] shows the angle used in calculating the NA of an optical fiber.

Light rays enter an optical fiber. The numerical aperture of the optical fiber can be determined by using the angle $\alpha_{\rm max}$.

Can the NA be larger than 1.00? The answer is 'yes' if we use immersion lenses in which a medium such as oil, glycerine or water is placed between the objective and the microscope cover slip. This minimizes the mismatch in refractive indices as light rays go through different media, generally providing a greater light-gathering ability and an increase in resolution. [link] shows light rays when using air and immersion lenses.

Light rays from a specimen entering the objective. Paths for immersion medium of air (a), water (b) (n=1.33), and oil (c) (n=1.51) are shown. The water and oil immersions allow more rays to enter the objective, increasing the resolution.

When using a microscope we do not see the entire extent of the sample. Depending on the eyepiece and objective lens we see a restricted region which we say is the field of view. The objective is then manipulated in two-dimensions above the sample to view other regions of the sample. Electronic scanning of either the objective or the sample is used in scanning microscopy. The image formed at each point during the scanning is combined using a computer to generate an image of a larger region of the sample at a selected magnification.

When using a microscope, we rely on gathering light to form an image. Hence most specimens need to be illuminated, particularly at higher magnifications, when observing details that are so small that they reflect only small amounts of light. To make such objects easily visible, the intensity of light falling on them needs to be increased. Special illuminating

systems called condensers are used for this purpose. The type of condenser that is suitable for an application depends on how the specimen is examined, whether by transmission, scattering or reflecting. See [link] for an example of each. White light sources are common and lasers are often used. Laser light illumination tends to be quite intense and it is important to ensure that the light does not result in the degradation of the specimen.

Objective

Specimen

Illumination of a specimen in a microscope. (a)
Transmitted light from a condenser lens. (b)
Transmitted light from a mirror condenser. (c) Dark field illumination by scattering (the illuminating beam misses the objective lens). (d) High magnification illumination with reflected light – normally laser light.

Annular stop

(c)

We normally associate microscopes with visible light but x ray and electron microscopes provide greater resolution. The focusing and basic physics is the same as that just described, even though the lenses require different technology. The electron microscope requires vacuum chambers so that the electrons can proceed unheeded. Magnifications of 50 million times provide the ability to determine positions of individual atoms within materials. An electron microscope is shown in [link]. We do not use our eyes to form images; rather images are recorded electronically and displayed on computers. In fact observing and saving images formed by optical microscopes on computers is now done routinely. Video recordings of what occurs in a microscope can be made for viewing by many people at later dates. Physics provides the science and tools needed to generate the sequence of time-lapse images of meiosis similar to the sequence sketched in [link].

An electron microscope has the capability to image individual atoms on a material. The microscope uses vacuum technology, sophisticated detectors and state of the art image processing software. (credit: Dave Pape)

The image shows a sequence of events that takes place during meiosis. (credit: PatríciaR, Wikimedia Commons; National Center for Biotechnology Information)

Note:

Take-Home Experiment: Make a Lens

Look through a clear glass or plastic bottle and describe what you see. Now fill the bottle with water and describe what you see. Use the water bottle as a lens to produce the image of a bright object and estimate the focal length of the water bottle lens. How is the focal length a function of the depth of water in the bottle?

Section Summary

- The microscope is a multiple-element system having more than a single lens or mirror.
- Many optical devices contain more than a single lens or mirror. These are analysed by considering each element sequentially. The image formed by the first is the object for the second, and so on. The same ray tracing and thin lens techniques apply to each lens element.

 The overall magnification of a multiple-element system is the product of the magnifications of its individual elements. For a two-element system with an objective and an eyepiece, this is Equation:

$$m=m_{\rm o}m_{\rm e}$$

where $m_{\rm o}$ is the magnification of the objective and $m_{\rm e}$ is the magnification of the eyepiece, such as for a microscope.

- Microscopes are instruments for allowing us to see detail we would not be able to see with the unaided eye and consist of a range of components.
- The eyepiece and objective contribute to the magnification. The numerical aperture (NA) of an objective is given by **Equation:**

$$NA = n \sin \alpha$$

where n is the refractive index and α the angle of acceptance.

- Immersion techniques are often used to improve the light gathering ability of microscopes. The specimen is illuminated by transmitted, scattered or reflected light though a condenser.
- The f /# describes the light gathering ability of a lens. It is given by **Equation:**

$$f/\#=rac{f}{D}pproxrac{1}{2\,NA}.$$

Conceptual Questions

Exercise:

Problem:

Geometric optics describes the interaction of light with macroscopic objects. Why, then, is it correct to use geometric optics to analyse a microscope's image?

Exercise:

Problem:

The image produced by the microscope in [link] cannot be projected. Could extra lenses or mirrors project it? Explain.

Exercise:

Problem:

Why not have the objective of a microscope form a case 2 image with a large magnification? (Hint: Consider the location of that image and the difficulty that would pose for using the eyepiece as a magnifier.)

Exercise:

Problem: What advantages do oil immersion objectives offer?

Exercise:

Problem:

How does the NA of a microscope compare with the NA of an optical fiber?

Problem Exercises

Exercise:

Problem:

A microscope with an overall magnification of 800 has an objective that magnifies by 200. (a) What is the magnification of the eyepiece? (b) If there are two other objectives that can be used, having magnifications of 100 and 400, what other total magnifications are possible?

Solution:

(a) 4.00

(b) 1600

Exercise:

Problem:

- (a) What magnification is produced by a 0.150 cm focal length microscope objective that is 0.155 cm from the object being viewed?
- (b) What is the overall magnification if an $8 \times$ eyepiece (one that produces a magnification of 8.00) is used?

Exercise:

Problem:

(a) Where does an object need to be placed relative to a microscope for its 0.500 cm focal length objective to produce a magnification of -400? (b) Where should the 5.00 cm focal length eyepiece be placed to produce a further fourfold (4.00) magnification?

Solution:

- (a) 0.501 cm
- (b) Eyepiece should be 204 cm behind the objective lens.

Exercise:

Problem:

You switch from a 1.40NA $60\times$ oil immersion objective to a 1.40NA $60\times$ oil immersion objective. What are the acceptance angles for each? Compare and comment on the values. Which would you use first to locate the target area on your specimen?

Exercise:

Problem:

An amoeba is 0.305 cm away from the 0.300 cm focal length objective lens of a microscope. (a) Where is the image formed by the objective lens? (b) What is this image's magnification? (c) An eyepiece with a 2.00 cm focal length is placed 20.0 cm from the objective. Where is the final image? (d) What magnification is produced by the eyepiece? (e) What is the overall magnification? (See [link].)

Solution:

- (a) +18.3 cm (on the eyepiece side of the objective lens)
- (b) -60.0
- (c) -11.3 cm (on the objective side of the eyepiece)
- (d) +6.67
- (e) -400

Exercise:

Problem:

You are using a standard microscope with a $0.10NA~4\times$ objective and switch to a $0.65NA~40\times$ objective. What are the acceptance angles for each? Compare and comment on the values. Which would you use first to locate the target area on of your specimen? (See [link].)

Exercise:

Problem: Unreasonable Results

Your friends show you an image through a microscope. They tell you that the microscope has an objective with a 0.500 cm focal length and an eyepiece with a 5.00 cm focal length. The resulting overall magnification is 250,000. Are these viable values for a microscope?

Glossary

compound microscope

a microscope constructed from two convex lenses, the first serving as the ocular lens(close to the eye) and the second serving as the objective lens

objective lens

the lens nearest to the object being examined

eyepiece

the lens or combination of lenses in an optical instrument nearest to the eye of the observer

numerical aperture

a number or measure that expresses the ability of a lens to resolve fine detail in an object being observed. Derived by mathematical formula **Equation:**

$$NA = n \sin \alpha$$
,

where n is the refractive index of the medium between the lens and the specimen and $\alpha=\theta/2$

Telescopes

- Outline the invention of a telescope.
- Describe the working of a telescope.

Telescopes are meant for viewing distant objects, producing an image that is larger than the image that can be seen with the unaided eye. Telescopes gather far more light than the eye, allowing dim objects to be observed with greater magnification and better resolution. Although Galileo is often credited with inventing the telescope, he actually did not. What he did was more important. He constructed several early telescopes, was the first to study the heavens with them, and made monumental discoveries using them. Among these are the moons of Jupiter, the craters and mountains on the Moon, the details of sunspots, and the fact that the Milky Way is composed of vast numbers of individual stars.

[link](a) shows a telescope made of two lenses, the convex objective and the concave eyepiece, the same construction used by Galileo. Such an arrangement produces an upright image and is used in spyglasses and opera glasses.

(a) Galileo made telescopes with a convex objective and a concave eyepiece. These produce an upright image and are used in spyglasses. (b) Most simple telescopes have two convex lenses. The objective forms a case 1 image that is the object for the eyepiece. The eyepiece forms a case 2 final image that is magnified.

The most common two-lens telescope, like the simple microscope, uses two convex lenses and is shown in [link](b). The object is so far away from the telescope that it is essentially at infinity compared with the focal lengths of the lenses ($d_o \approx \infty$). The first image is thus produced at $d_i = f_o$, as shown in the figure. To prove this, note that

Equation:

$$rac{1}{d_{
m i}} = rac{1}{f_{
m o}} - rac{1}{d_{
m o}} = rac{1}{f_{
m o}} - rac{1}{\infty}.$$

Because $1/\infty = 0$, this simplifies to

Equation:

$$rac{1}{d_{
m i}}=rac{1}{f_{
m o}},$$

which implies that $d_{\rm i}=f_{\rm o}$, as claimed. It is true that for any distant object and any lens or mirror, the image is at the focal length.

The first image formed by a telescope objective as seen in [link](b) will not be large compared with what you might see by looking at the object directly. For example, the spot formed by sunlight focused on a piece of paper by a magnifying glass is the image of the Sun, and it is small. The telescope eyepiece (like the microscope eyepiece) magnifies this first image. The distance between the eyepiece and the objective lens is made slightly less than the sum of their focal lengths so that the first image is closer to the eyepiece than its focal length. That is, $d_0 l$ is less than $l_0 l$ and so the eyepiece forms a case 2 image that is large and to the left for easy viewing. If the angle subtended by an object as viewed by the unaided eye is l0, and the angle subtended by the telescope image is l1, then the **angular magnification** l2 is defined to be their ratio. That is, l3 is l4 is can be shown that the angular magnification of a telescope is related to the focal lengths of the objective and eyepiece; and is given by

Equation:

$$M = rac{ heta \prime}{ heta} = -rac{f_{
m o}}{f_{
m e}}.$$

The minus sign indicates the image is inverted. To obtain the greatest angular magnification, it is best to have a long focal length objective and a short focal length eyepiece. The greater the angular magnification M, the larger an object will appear when viewed through a telescope, making more

details visible. Limits to observable details are imposed by many factors, including lens quality and atmospheric disturbance.

The image in most telescopes is inverted, which is unimportant for observing the stars but a real problem for other applications, such as telescopes on ships or telescopic gun sights. If an upright image is needed, Galileo's arrangement in [link](a) can be used. But a more common arrangement is to use a third convex lens as an eyepiece, increasing the distance between the first two and inverting the image once again as seen in [link].

This arrangement of three lenses in a telescope produces an upright final image. The first two lenses are far enough apart that the second lens inverts the image of the first one more time. The third lens acts as a magnifier and keeps the image upright and in a location that is easy to view.

A telescope can also be made with a concave mirror as its first element or objective, since a concave mirror acts like a convex lens as seen in [link]. Flat mirrors are often employed in optical instruments to make them more compact or to send light to cameras and other sensing devices. There are many advantages to using mirrors rather than lenses for telescope objectives. Mirrors can be constructed much larger than lenses and can, thus, gather large amounts of light, as needed to view distant galaxies, for example. Large and relatively flat mirrors have very long focal lengths, so that great angular magnification is possible.

A two-element telescope composed of a mirror as the objective and a lens for the eyepiece is shown. This telescope forms an image in the same manner as the twoconvex-lens telescope already discussed, but it does not suffer from chromatic aberrations. Such telescopes can gather more light, since larger mirrors than lenses can be constructed.

Telescopes, like microscopes, can utilize a range of frequencies from the electromagnetic spectrum. [link](a) shows the Australia Telescope Compact

Array, which uses six 22-m antennas for mapping the southern skies using radio waves. [link](b) shows the focusing of x rays on the Chandra X-ray Observatory—a satellite orbiting earth since 1999 and looking at high temperature events as exploding stars, quasars, and black holes. X rays, with much more energy and shorter wavelengths than RF and light, are mainly absorbed and not reflected when incident perpendicular to the medium. But they can be reflected when incident at small glancing angles, much like a rock will skip on a lake if thrown at a small angle. The mirrors for the Chandra consist of a long barrelled pathway and 4 pairs of mirrors to focus the rays at a point 10 meters away from the entrance. The mirrors are extremely smooth and consist of a glass ceramic base with a thin coating of metal (iridium). Four pairs of precision manufactured mirrors are exquisitely shaped and aligned so that x rays ricochet off the mirrors like bullets off a wall, focusing on a spot.

(a) The Australia
Telescope Compact Array
at Narrabri (500 km NW
of Sydney). (credit: Ian

Bailey) (b) The focusing of x rays on the Chandra Observatory, a satellite orbiting earth. X rays ricochet off 4 pairs of mirrors forming a barrelled pathway leading to the focus point. (credit: NASA)

A current exciting development is a collaborative effort involving 17 countries to construct a Square Kilometre Array (SKA) of telescopes capable of covering from 80 MHz to 2 GHz. The initial stage of the project is the construction of the Australian Square Kilometre Array Pathfinder in Western Australia (see [link]). The project will use cutting-edge technologies such as **adaptive optics** in which the lens or mirror is constructed from lots of carefully aligned tiny lenses and mirrors that can be manipulated using computers. A range of rapidly changing distortions can be minimized by deforming or tilting the tiny lenses and mirrors. The use of adaptive optics in vision correction is a current area of research.

An artist's impression of the Australian Square Kilometre Array Pathfinder in Western Australia is displayed. (credit: SPDO, XILOSTUDIOS)

Section Summary

- Simple telescopes can be made with two lenses. They are used for viewing objects at large distances and utilize the entire range of the electromagnetic spectrum.
- The angular magnification M for a telescope is given by **Equation:**

$$M=rac{ heta\prime}{ heta}=-rac{f_{
m o}}{f_{
m e}},$$

where θ is the angle subtended by an object viewed by the unaided eye, θ \prime is the angle subtended by a magnified image, and $f_{\rm o}$ and $f_{\rm e}$ are the focal lengths of the objective and the eyepiece.

Conceptual Questions

Exercise:

Problem:

If you want your microscope or telescope to project a real image onto a screen, how would you change the placement of the eyepiece relative to the objective?

Problem Exercises

Unless otherwise stated, the lens-to-retina distance is 2.00 cm. Exercise:

Problem:

What is the angular magnification of a telescope that has a 100 cm focal length objective and a 2.50 cm focal length eyepiece?

Solution:

-40.0

Exercise:

Problem:

Find the distance between the objective and eyepiece lenses in the telescope in the above problem needed to produce a final image very far from the observer, where vision is most relaxed. Note that a telescope is normally used to view very distant objects.

Exercise:

Problem:

A large reflecting telescope has an objective mirror with a $10.0~\mathrm{m}$ radius of curvature. What angular magnification does it produce when a $3.00~\mathrm{m}$ focal length eyepiece is used?

Solution:

-1.67

Exercise:

Problem:

A small telescope has a concave mirror with a 2.00 m radius of curvature for its objective. Its eyepiece is a 4.00 cm focal length lens. (a) What is the telescope's angular magnification? (b) What angle is subtended by a 25,000 km diameter sunspot? (c) What is the angle of its telescopic image?

Exercise:

Problem:

A $7.5 \times$ binocular produces an angular magnification of -7.50, acting like a telescope. (Mirrors are used to make the image upright.) If the binoculars have objective lenses with a 75.0 cm focal length, what is the focal length of the eyepiece lenses?

Solution:

+10.0 cm

Exercise:

Problem: Construct Your Own Problem

Consider a telescope of the type used by Galileo, having a convex objective and a concave eyepiece as illustrated in [link](a). Construct a problem in which you calculate the location and size of the image produced. Among the things to be considered are the focal lengths of the lenses and their relative placements as well as the size and location of the object. Verify that the angular magnification is greater than one. That is, the angle subtended at the eye by the image is greater than the angle subtended by the object.

Glossary

adaptive optics

optical technology in which computers adjust the lenses and mirrors in a device to correct for image distortions

angular magnification

a ratio related to the focal lengths of the objective and eyepiece and given as $M=-rac{f_{
m o}}{f_{
m e}}$