# CS 5413 Chapter 8

Sorting in Linear Time

#### How fast can we sort?

We will prove a lower bound, then beat it by playing a different game.

# Comparison sorting

- The only operation that may be used to gain order information about a sequence is comparison of pairs of elements.
- All sorts seen so far are comparison sorts: insertion sort, selection sort, merge sort, quicksort, heapsort, treesort.

# Lower bounds for sorting

## Lower bounds

- Ω(n) to examine all the input.
- All sorts seen so far are Ω(n lg n).
- We'll show that  $\Omega(n \lg n)$  is a lower bound for comparison sorts.

#### Decision tree

- Abstraction of any comparison sort.
- Represents comparisons made by
  - · a specific sorting algorithm
  - on inputs of a given size.
- Abstracts away everything else: control and data movement.
- We're counting only comparisons.

For insertion sort on 3 elements:



How many leaves on the decision tree? There are  $\geq n!$  leaves, because every permutation appears at least once.

For any comparison sort,

- 1 tree for each n.
- View the tree as if the algorithm splits in two at each node, based on the information it has determined up to that point.
- The tree models all possible execution traces.

What is the length of the longest path from root to leaf?

- Depends on the algorithm
- Insertion sort: Θ(n²)
- Merge sort: Θ(n lg n)

# Lemma

Any binary tree of height h has  $\leq 2^h$  leaves.

In other words:

- l = # of leaves,
- h = height,
- Then  $l \leq 2^h$ .

## Theorem

Any decision tree that sorts n elements has height  $\Omega(n \lg n)$ .

# Proof

- l > n!
- By lemma,  $n! \le l \le 2^h$  or  $2^h \ge n!$
- Take logs:  $h \ge \lg(n!)$
- Use Stirling's approximation:  $n! > (n/e)^n$  (by equation (3.16))

```
h \ge \lg(n/e)^n
= n \lg(n/e)
= n \lg n - n \lg e
= \Omega(n \lg n).
```

(theorem)

**Proof** By induction on h.

**Basis:** h = 0. Tree is just one node, which is a leaf.  $2^h = 1$ .

**Inductive step:** Assume true for height = h - 1. Extend tree of height h - 1 by making as many new leaves as possible. Each leaf becomes parent to two new leaves.

```
# of leaves for height h = 2 \cdot (\text{# of leaves for height } h - 1)
= 2 \cdot 2^{h-1} \qquad \text{(ind. hypothesis)}
= 2^{h} . \qquad \blacksquare \text{(lemma)}
```

## Corollary

Heapsort and merge sort are asymptotically optimal comparison sorts.

# Sorting in linear time

Non-comparison sorts.

## Counting sort

Depends on a key assumption: numbers to be sorted are integers in  $\{0, 1, ..., k\}$ .

**Input**: A[1..n], where  $A[j] \in \{0, 1, ..., k\}$  for j = 1, 2, ..., n. Array A and values n and k are given as parameters.

Output: B[1..n], sorted. B is assumed to be already allocated and is given as a parameter.

Auxiliary storage: C[0..k]

```
COUNTING-SORT(A, B, n, k)

for i \leftarrow 0 to k

do C[i] \leftarrow 0

for j \leftarrow 1 to n

do C[A[j]] \leftarrow C[A[j]] + 1

for i \leftarrow 1 to k

do C[i] \leftarrow C[i] + C[i-1]

for j \leftarrow n downto 1

do B[C[A[j]]] \leftarrow A[j]

C[A[j]] \leftarrow C[A[j]] - 1
```

Do an example for  $A = 2_1, 5_1, 3_1, 0_1, 2_2, 3_2, 0_2, 3_3$ 

Counting sort is *stable* (keys with same value appear in same order in output as they did in input) because of how the last loop works.



Figure 8.2 The operation of COUNTING-SORT on an input array A[1..8], where each element of A is a nonnegative integer no larger than k = 5. (a) The array A and the auxiliary array C after line 5. (b) The array C after line 8. (c)–(e) The output array B and the auxiliary array C after one, two, and three iterations of the loop in lines 10-12, respectively. Only the lightly shaded elements of array B have been filled in. (f) The final sorted output array B.

Analysis:  $\Theta(n + k)$ , which is  $\Theta(n)$  if k = O(n). How big a k is practical?

- Good for sorting 32-bit values? No.
- 16-bit? Probably not.
- 8-bit? Maybe, depending on n.
- 4-bit? Probably (unless n is really small).

Counting sort will be used in radix sort.

## Radix sort

How IBM made its money. Punch card readers for census tabulation in early 1900's. Card sorters, worked on one column at a time. It's the algorithm for using the machine that extends the technique to multi-column sorting. The human operator was part of the algorithm!

Key idea: Sort least significant digits first.

To sort d digits:

RADIX-SORT(A, d)

for  $i \leftarrow 1$  to d

do use a stable sort to sort array A on digit i

# Example:



#### Correctness:

- Induction on number of passes (i in pseudocode).
- Assume digits 1, 2, . . . , i − 1 are sorted.
- Show that a stable sort on digit i leaves digits 1, ..., i sorted:
  - If 2 digits in position i are different, ordering by position i is correct, and positions 1, . . . , i − 1 are irrelevant.
  - If 2 digits in position i are equal, numbers are already in the right order (by inductive hypothesis). The stable sort on digit i leaves them in the right order.

This argument shows why it's so important to use a stable sort for intermediate sort.

Analysis: Assume that we use counting sort as the intermediate sort.

- $\Theta(n+k)$  per pass (digits in range  $0,\ldots,k$ )
- d passes
- $\Theta(d(n+k))$  total
- If k = O(n), time  $= \Theta(dn)$ .

How to break each key into digits?

- n words.
- b bits/word.
- Break into r-bit digits. Have d = ⌈b/r⌉.
- Use counting sort,  $k = 2^r 1$ .

Example: 32-bit words, 8-bit digits. b = 32, r = 8,  $d = \lceil 32/8 \rceil = 4$ ,  $k = 2^8 - 1 = 255$ .

• Time =  $\Theta(\frac{b}{r}(n+2^r))$ .

How to choose r? Balance b/r and  $n+2^r$ . Choosing  $r \approx \lg n$  gives us  $\Theta\left(\frac{b}{\lg n}\left(n+n\right)\right) = \Theta(bn/\lg n)$ .

- If we choose  $r < \lg n$ , then  $b/r > b/\lg n$ , and  $n + 2^r$  term doesn't improve.
- If we choose  $r > \lg n$ , then  $n + 2^r$  term gets big. Example:  $r = 2 \lg n \Rightarrow 2^r = 2^{2 \lg n} = (2^{\lg n})^2 = n^2$ .

So, to sort  $2^{16}$  32-bit numbers, use  $r = \lg 2^{16} = 16$  bits.  $\lceil b/r \rceil = 2$  passes.

# Compare radix sort to merge sort and quicksort:

- 1 million (2<sup>20</sup>) 32-bit integers.
- Radix sort: [32/20] = 2 passes.
- Merge sort/quicksort: lg n = 20 passes.
- Remember, though, that each radix sort "pass" is really 2 passes—one to take census, and one to move data.

How does radix sort violate the ground rules for a comparison sort?

- Using counting sort allows us to gain information about keys by means other than directly comparing 2 keys.
- Used keys as array indices.

## Bucket sort

Assumes the input is generated by a random process that distributes elements uniformly over [0, 1).

### Idea:

- Divide [0, 1) into n equal-sized buckets.
- Distribute the n input values into the buckets.
- Sort each bucket.
- Then go through buckets in order, listing elements in each one.

**Input:** A[1 ... n], where  $0 \le A[i] < 1$  for all i.

Auxiliary array: B[0..n-1] of linked lists, each list initially empty.

```
BUCKET-SORT(A, n)

for i \leftarrow 1 to n

do insert A[i] into list B[\lfloor n \cdot A[i] \rfloor]

for i \leftarrow 0 to n-1

do sort list B[i] with insertion sort

concatenate lists B[0], B[1], \ldots, B[n-1] together in order

return the concatenated lists
```

Correctness: Consider A[i], A[j]. Assume without loss of generality that  $A[i] \leq A[j]$ . Then  $\lfloor n \cdot A[i] \rfloor \leq \lfloor n \cdot A[j] \rfloor$ . So A[i] is placed into the same bucket as A[j] or into a bucket with a lower index.

- If same bucket, insertion sort fixes up.
- If earlier bucket, concatenation of lists fixes up.

# Analysis:

- Relies on no bucket getting too many values.
- All lines of algorithm except insertion sorting take Θ(n) altogether.
- Intuitively, if each bucket gets a constant number of elements, it takes O(1) time to sort each bucket ⇒ O(n) sort time for all buckets.
- We "expect" each bucket to have few elements, since the average is 1 element per bucket.
- But we need to do a careful analysis.

Define a random variable:

n<sub>i</sub> = the number of elements placed in bucket B[i].

Because insertion sort runs in quadratic time, bucket sort time is

$$T(n) = \Theta(n) + \sum_{i=0}^{n-1} O(n_i^2)$$
.

Take expectations of both sides:

$$\begin{split} \mathbf{E}\left[T(n)\right] &= \mathbf{E}\left[\Theta(n) + \sum_{i=0}^{n-1} O(n_i^2)\right] \\ &= \Theta(n) + \sum_{i=0}^{n-1} \mathbf{E}\left[O(n_i^2)\right] \quad \text{(linearity of expectation)} \\ &= \Theta(n) + \sum_{i=0}^{n-1} O(\mathbf{E}\left[n_i^2\right]) \quad \text{(E}\left[aX\right] = a\mathbf{E}\left[X\right]) \end{split}$$

## Claim

$$E[n_i^2] = 2 - (1/n)$$
 for  $i = 0, ..., n-1$ .

# Proof of claim

Define indicator random variables:

- X<sub>ij</sub> = I {A[j] falls in bucket i}
- Pr {A[j] falls in bucket i} = 1/n

$$n_i = \sum_{j=1}^n X_{ij}$$

Then

$$E[n_i^2] = E\left[\left(\sum_{j=1}^n X_{ij}\right)^2\right]$$

$$= E\left[\sum_{j=1}^n X_{ij}^2 + 2\sum_{j=1}^{n-1} \sum_{k=j+1}^n X_{ij} X_{ik}\right]$$

$$= \sum_{j=1}^n E[X_{ij}^2] + 2\sum_{j=1}^{n-1} \sum_{k=j+1}^n E[X_{ij} X_{ik}] \quad \text{(linearity of expectation)}$$

$$E\left[X_{ij}^{2}\right] = 0^{2} \cdot \Pr\left\{A[j] \text{ doesn't fall in bucket } i\right\} + 1^{2} \cdot \Pr\left\{A[j] \text{ falls in bucket } i\right\}$$

$$= 0 \cdot \left(1 - \frac{1}{n}\right) + 1 \cdot \frac{1}{n}$$

$$= \frac{1}{n}$$

 $E[X_{ij}X_{ik}]$  for  $j \neq k$ : Since  $j \neq k$ ,  $X_{ij}$  and  $X_{ik}$  are independent random variables  $\Rightarrow E[X_{ij}X_{ik}] = E[X_{ij}]E[X_{ik}]$   $= \frac{1}{n} \cdot \frac{1}{n}$ 

$$=\frac{1}{n^2}$$

Therefore:

$$E[n_i^2] = \sum_{j=1}^n \frac{1}{n} + 2 \sum_{j=1}^{n-1} \sum_{k=j+1}^n \frac{1}{n^2}$$

$$= n \cdot \frac{1}{n} + 2\binom{n}{2} \frac{1}{n^2}$$

$$= 1 + 2 \cdot \frac{n(n-1)}{2} \cdot \frac{1}{n^2}$$

$$= 1 + \frac{n-1}{n}$$

$$= 1 + 1 - \frac{1}{n}$$

$$= 2 - \frac{1}{n}$$

Therefore:

$$E[T(n)] = \Theta(n) + \sum_{i=0}^{n-1} O(2 - 1/n)$$
$$= \Theta(n) + O(n)$$
$$= \Theta(n)$$

■ (claim)

- Again, not a comparison sort. Used a function of key values to index into an array.
- This is a probabilistic analysis—we used probability to analyze an algorithm whose running time depends on the distribution of inputs.
- Different from a randomized algorithm, where we use randomization to impose a distribution.
- With bucket sort, if the input isn't drawn from a uniform distribution on [0, 1), all bets are off (performance-wise, but the algorithm is still correct).