GOBIERNO CONSTITUCIONAL DEL ESTADO LIBRE Y SOBERANO DE OAXACA INSTITUTO ESTATAL DE EDUCACIÓN PÚBLICA DE OAXACA COORDINACIÓN GENERAL DE PLANEACIÓN EDUCATIVA COORDINACIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA
Análisis y Simulación Industrial

CICLO	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Décimo Semestre	111002	85

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Otorgar al estudiante el conocimiento sobre la naturaleza de los sistemas reales, el aprendizaje de técnicas de modelado y herramientas para sistemas discretos y estocásticos aplicados a la industria, así como la habilidad para usar software de simulación para modelar un sistema y estimar las medidas de rendimiento del sistema y sus resultados.

TEMAS Y SUBTEMAS

- 1. Introducción a la simulación
- 1.1 Conceptos
- 1.2 Justificación
- 1.3 Metodología
- 2. Fundamentos matemáticos
- 2.1 Teoría de probabilidad y teoría de colas
- 2.2 Simulación de eventos discretos
- 2.3 Modelado de sistemas de inventarios
- 2.4 Modelos de confiabilidad
- 2.5 Mantenimiento y control de calidad
- 2.6 Simulación de generación de números aleatorios
- 3. Simulación de generación de procesos
- 3.1 Montecarlo
- 3.2 Continuos y discretos
- 3.3 Interpolación
- 4. Simulación de sistemas de colas
- 4.1 Simple
- 4.2 Serie
- 4.3 Paralelo
- 4.4 Línea de espera
- 5. Simulación de sistemas de inventarios
- 5.1 Eventos
- 5.2 Demandas
- 5.3 Pedidos
- 5.4 Revisión

6. Simulación de sistemas de manufactura

- 6.1 Líneas de flujo
- 6.2 Sistemas de servicios y ensamble
- 6.3 AS/RS
- 6.4 PERT/CPM
- 6.5 Análisis y diseño de experimentos de simulación

7. Lenguajes de simulación

- 7.1 Clasificación
- 7.2 Comparación
- 7.3 SIMULINK
- 7.4 MATLAB

8. Tendencias del SW y HW para simulación

- 8.1 GUI
- 8.2 Metabolismo
- 8.3 Tiempo Real
- 8.4 Modelos orientados a objetos
- 8.5 Procesamiento paralelo
- 8.6 Inteligencia artificial

ACTIVIDADES DE APRENDIZAJE

Exposición del profesor, lectura y análisis de artículos técnicos, exposición de proyectos de los alumnos, ejercicios y prácticas en laboratorio de cómputo.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

3 exámenes parciales 50%

1 examen final 30%

Trabajos finales 20%

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL, AÑO Y Nº DE EDICIÓN)

Libros Básicos:

Handbook of simulation: Principles, Methodology: Advances, Applications, and Practice, Banks J; John Wiley & Sons, 1998.

Análisis y simulación de sistemas industriales, Schmidt J. W, Taylor R.E; Trillas, 1979.

Stochastic Modeling, Analysis and simulation, Barry Nelson; McGraw-Hill, 1995.

Libros de Consulta:

Simulation Fundamentals, Bennett B.S; Prentice-Hall, 1995.

Handbook Of Industrial Engineering: Technology And Operations Management, USA: John Wiley, 2001.

PERFIL PROFESIONAL DEL DOCENTE

Ingeniero industrial ó en carrera a fin, por ejemplo, ingeniero industrial y de sistemas, con conocimientos de análisis y simulación industrial; preferentemente con Maestría en Ingeniería Industrial y con experiencia en consultoría de sistemas industriales.

