Problem K. Polycarp Training

Time limit 2000 ms Mem limit 262144 kB

Polycarp wants to train before another programming competition. During the first day of his training he should solve exactly 1 problem, during the second day — exactly 2 problems, during the third day — exactly 3 problems, and so on. During the k-th day he should solve k problems.

Polycarp has a list of n contests, the i-th contest consists of a_i problems. During each day Polycarp has to choose **exactly one** of the contests he didn't solve yet and solve it. He solves **exactly** k **problems from this contest**. Other problems are discarded from it. If there are no contests consisting of at least k problems that Polycarp didn't solve yet during the k-th day, then Polycarp stops his training.

How many days Polycarp can train if he chooses the contests optimally?

Input

The first line of the input contains one integer n ($1 \le n \le 2 \cdot 10^5$) — the number of contests.

The second line of the input contains n integers a_1, a_2, \ldots, a_n ($1 \le a_i \le 2 \cdot 10^5$) — the number of problems in the i-th contest.

Output

Print one integer — the maximum number of days Polycarp can train if he chooses the contests optimally.

Examples

Input	Output
4 3 1 4 1	3

Session 4 Jul 14, 2024

Input	Output
3 1 1 1	1

Input	Output
5 1 1 1 2 2	2