Report on comparison between analyses for semi- and dileptonic channels of HH production at HL-LHC

Izaak Neutelings (University of Zurich)

December 10, 2015

This reports compares results of selection level cuts of the analysis of HH \to bbWW \to bb $\ell\nu\ell\nu$ with the analysis note by C. Delaere *et al.* [1] and a new HH \to bbWW \to bb $qq\ell\nu$ analysis.

1 Samples

The Monte Carlo samples of the analysis note were generated by MadGraph_aMC@NLO, and the parton shower and hadronization was done in Pythia6. Our samples were fully produced in Pythia6. All samples were finally reconstructed with Delphes for the CMS Phase II technical proposal. For our analysis, the samples only contain bbWW \rightarrow bb $\ell\nu\ell\nu$ or bbWW \rightarrow bb $qq\ell\nu$ at generator level, where taus coming from a W-boson are excluded.

2 Event selections & clean-up

To reproduce the results by C. Delaere et~al., the event selections and clean-up as described in their analysis note are applied to our samples. Similar selections are made in the semileptonic case, however note that there are no cuts equivalent to $\Delta R_{\ell\ell}$, $M_{\ell\ell}$ or $\Delta\phi_{\rm bb,\ell\ell}$ at generator or clean-up level for the semileptonic case, leading to bigger differences between the two cases. All cuts are compared in Table 1.

3 Cross section & branching ratios

For our analysis, we have been using the cross sections at $\sqrt{s} = 14$ TeV given in Table 2. The analysis note lists next leading order σ_{LO} with k-factor k_{NNLO} of the samples, all listed in Table 3.

The branching ratios are found using

$$\mathcal{B}(\mathrm{HH} \to \mathrm{bbWW}) = 2\mathcal{B}(\mathrm{H} \to \mathrm{bb})\mathcal{B}(\mathrm{H} \to \mathrm{WW}) \simeq 0.248$$

$$\mathcal{B}(\mathrm{t\bar{t}} \to \mathrm{bWbW}) = \mathcal{B}(\mathrm{t} \to \mathrm{bW})^2 \simeq 0.997$$

$$\mathcal{B}(\mathrm{WW} \to \ell\nu\ell\nu) = \mathcal{B}(\mathrm{W} \to \ell\nu)^2 \simeq 0.046$$

$$\mathcal{B}(\mathrm{WW} \to qq\ell\nu) = 2\mathcal{B}(\mathrm{W} \to qq)\mathcal{B}(\mathrm{W} \to \ell\nu) \simeq 0.288$$

with numbers from [5], [6] and [7]:

$$\mathcal{B}(\mathrm{HH} \to \mathrm{bbWW} \to \mathrm{bb}\ell\nu\ell\nu) \simeq 0.011$$

 $\mathcal{B}(\mathrm{HH} \to \mathrm{bbWW} \to \mathrm{bb}qq\ell\nu) \simeq 0.072$
 $\mathcal{B}(\mathrm{t\bar{t}} \to \mathrm{bbWW} \to \mathrm{bb}qq\ell\nu\ell\nu) \simeq 0.045$
 $\mathcal{B}(\mathrm{t\bar{t}} \to \mathrm{bbWW} \to \mathrm{bb}qq\ell\nu) \simeq 0.287$

4 Significance & yield

Using the yield $N = \sigma \mathcal{B}L$ with an integrated luminosity $L = 3000 \text{ fb}^{-1}$, the Punzi significance is calculated as:

$$P = \frac{S}{1 + \sqrt{B}} \tag{1}$$

Table 1: Event selectiona and clean-up: comparison between the dileptonic and semileptonic final state.

dileptonic final state	semileptonic final state			
Generator level filter on background b-quarks: $p_T > 15 \text{ GeV}$ leptons: $p_T > 15 \text{ GeV}$, $ \eta < 2.5$ $\Delta R_{\ell\ell} < 2.5$	b-quarks: $p_T > 15 \text{ GeV}$ lepton: $p_T > 15 \text{ GeV}$, $ \eta < 2.5$			
Selection two b-jets: $p_T > 30$ GeV, $ \eta < 2.5$ two oppositely charged leptons with: muons: $p_T > 20$ GeV, $ \eta < 2.5$ electrons: $p_T > 25$ GeV, $ \eta < 2.5$ $\cancel{E}_T > 20$ GeV	min. two b-tagged jets: $p_T > 30$ GeV, $ \eta < 2.5$ min. four jets: $p_T > 20$ GeV, $ \eta < 2.5$ one lepton with: muon: $p_T > 20$ GeV, $ \eta < 2.5$ electron: $p_T > 25$ GeV, $ \eta < 2.5$ $\not\!$			
$\begin{aligned} \textbf{Clean-up} \\ 60 \text{ GeV} &< M_{\mathrm{bb}} < 160 \text{ GeV} \\ \Delta R_{\mathrm{bb}} &< 3.1 \text{ GeV} \\ M_{ll} &< 85 \text{ GeV} \\ \Delta R_{\ell\ell} &< 2 \\ \Delta \phi_{\mathrm{bb},\ell\ell} &< 1.7 \end{aligned}$	$60~{\rm GeV} < M_{\rm bb} < 160~{\rm GeV}$ $\Delta R_{\rm bb} < 3~{\rm GeV}$			

Table 2: Cross sections at NNLO and $\sqrt{s} = 14$ TeV [2][3], branching ratios \mathcal{B} (excluding W $\to \tau \bar{\tau}$) [5][6][7] and number of Monte Carlo events per process in our analysis sample.

process	$\sigma \mathcal{B}$ [fb]	branching ratio \mathcal{B}	number of MC events		
НН	40				
$\mathrm{HH} \to \mathrm{bbWW} \to \mathrm{bb}qq\ell\nu$	2.88	0.072	$166 \ 483$		
$\mathrm{HH} \to \mathrm{bbWW} \to \mathrm{bb}\ell\nu\ell\nu$	0.44	0.011	$22\ 812$		
${f t} \overline{f t}$	$984\ 500$				
$t\bar{t} \rightarrow bbWW \rightarrow bbqq\ell\nu$	$282\ 552$	0.287	$164 \ 661$		
$t\bar{t} \rightarrow bbWW \rightarrow bb\ell\nu\ell\nu$	$44\ 303$	0.045	$22\ 546$		

Table 3: Cross sections for their Monte Carlo samples listed in the analysis note by C. Deleare et al. [1].

process	σ_{LO} [fb]	$k_{ m NNLO}$	number of MC events
$\overline{\rm HH} \to \rm bbWW \to bb\ell\nu\ell\nu$	0.163	2.3	1.1M
tt full leptonic	9030	1.85	4.8M

Table 4: Number of MC events in our sample at each level of selection.

selection level	dileptor	nic final state	semileptonic final state		
	signal	background	signal	background	
$bbWW \rightarrow bb\ell\nu\ell\nu, bbqq\ell\nu$	22812	22546	166483	164661	
Generator level filter on background	22812	8339	166483	137880	
Selection	2571	1636	28821	36760	
Clean-up	2066	280	22225	15300	

Table 5: Comparison of the significance P and yields S := N(HH) and $B := N(\text{t\bar{t}})$ between the semileptonic and dileptonic final state for our results using the cross sections at NNLO from Table 2 and the results by C. Deleare *et al.* at $\sqrt{s} = 14$ TeV and with integrated luminosity $L = 3000 \text{ fb}^{-1}$. The factor $k_B = \sqrt{\mathcal{B}(\text{WW} \to \ell \nu \ell \nu)/\mathcal{B}(\text{WW} \to \text{qq}\ell \nu)} \simeq 0.397$ allows for comparison.

	dileptonic final state			semileptonic final state			
	\overline{P}	S	В	\overline{P}	$k_{\mathcal{B}}P$	S	В
Initial bbWW \rightarrow b	b $qq\ell u$, k	$\mathrm{ob}\ell u\ell u$	sample				
Assuming NNLO	0.115	1320	132 907 500	0.297	0.118	8640	$847\ 654\ 500$
Generator filter on	backgr	ound					
Assuming NNLO	0.188	1320	$49\ 157\ 972$	0.324	0.129	8640	$709\ 789\ 218$
Selection							
Assuming NNLO	0.048	149	$9\ 644\ 135$	0.109	0.043	1496	$189\ 235\ 942$
C. Delaere et al.	0.043	113	6759579				
Clean-up							
Assuming NNLO	0.093	120	$1\ 650\ 586$	0.130	0.052	1153	$78\ 762\ 511$
C. Delaere et al.	0.075	90	$1\ 437\ 144$				
Neural network							
C. Delaere et al.	0.60	37	3875				

with yields S := N(HH) and $B := N(t\bar{t})$. To obtain the significance at after each round of cuts, we multiply the yields with the respective selection efficiency. The total number of Monte Carlo events per sample in our analysis is listed in Table 2.

5 Results

Results are summarized in Table 5. To compare the dileptonic to the semileptonic case, the significance of the latter is also scaled by $k_{\mathcal{B}} = \sqrt{\mathcal{B}(WW \to \ell\nu\ell\nu)/\mathcal{B}(WW \to qq\ell\nu)} \simeq 0.397$.

References

- [1] C. Delaere et al., Study of HH production with $H \to bb$, $H \to WW \to \ell\nu\ell\nu$ for an upgraded CMS detector at the HL-LHC, CMS draft analysis note 2014/141.
- [2] D. de Florian & J. Mazzitelli, *Higgs Boson Pair Production at Next-to-Next-to-Leading Order in QCD*. Phys. Rev. Lett. **111** (Nov, 2013) 201801, doi:10.1103/PhysRevLett.111.201801, arXiv:1309.6594.
- [3] NNLO+NNLL top-quark-pair cross sections ATLAS-CMS recommended predictions for top-quark-pair cross sections using the Top++v2.0 program (M. Czakon, A. Mitov, 2013), https://twiki.cern.ch/twiki/bin/view/LHCPhysics/TtbarNNLO#Top_quark_pair_cross_sections_at.
- [4] R. Frederix et al., Higgs pair production at the LHC with NLO and parton-shower effects, Phys. Rev. Lett. B723 (May, 2014) 142, doi:10.1016/j.physletb.2014.03.026, arXiv:1401.7340.
- [5] Higgs cross sections for European Strategy studies in 2012, https://twiki.cern.ch/twiki/bin/view/LHCPhysics/HiggsEuropeanStrategy2012#SM_Higgs_decay_branching_ratio_M.
- [6] T. Aaltonen et al. (CDF Collaboration), Measurement of $\mathcal{B}(t \to Wb)/\mathcal{B}(t \to Wq)$ in Top-Quark-Pair Decays Using Dilepton Events and the Full CDF Run II Data Set, Phys. Rev. Lett. **112**, 221801 (June, 2014), doi:10.1103/PhysRevLett.112.221801, arXiv:1404.3392.
- [7] J. Beringer et al. (Particle Data Group), PR **D86**, 010001 (2012) and 2013 partial update for the 2014 edition (http://pdg.lbl.gov/2013/listings/rpp2013-list-w-boson.pdf).

Appendix A: Preliminary results on multivariate analysis of $HH \rightarrow bbWW \rightarrow bbqq\ell\nu$

The TMVA's boosted decision tree (BDT) is used for the multivariate analysis on HH \rightarrow bbWW \rightarrow bb $qq\ell\nu$ with background $t\bar{t} \rightarrow$ bbWW \rightarrow bb $qq\ell\nu$. Samples, selection and clean-up are described in sections 1 to 2. The following are input variables for the BDT: $p_T^{\rm bb}$ of the two b-tagged jets, p_T^{jj} of the two leading "light" jets, p_T^{ℓ} of the leading lepton, $\not E_T$, $p_T^{\rm bb}$, p_T^{jj} , $p_T^{ji,\ell}$, $\Delta R_{ji,\ell}$, $\Delta R_{ji,\ell}$, $\Delta R_{b_1\ell}$, $\Delta R_{b_2\ell}$, ΔR_{bb} , ΔR_{jj} , $\Delta R_{jj,l}$

$$M_T^{\ell\nu} = \sqrt{2p_T^{\ell} \mathcal{E}_T (1 - \cos \Delta \phi_{\ell, \mathcal{E}_T})}.$$
 (2)

All variables are shown Figs. 2-6.

The final BDT output and background rejection versus signal efficiency of the test sample is shown in Fig. 7. A cut is made at 0.25, yielding a significance of P = 0.38 (see Eq. (1)) and 100 signal events and 5000 background events at an integrated lumininosity L = 3000 fb⁻¹.

Figure 1: Multiplicities of $p_T > 20$ GeV jets and $p_T > 30$ GeV.

Figure 2: Variables distribution of HH (red) and $t\bar{t}$ (blue) for the neural network: transverse momentum p_T of the lepton and missing transverse energy \cancel{E}_T .

Figure 3: Variables distribution of HH (red) and $t\bar{t}$ (blue) for the neural network: transverse momentum p_T for the two leading jets and two leading b-jets.

Figure 4: Variables distribution of HH (red) and $t\bar{t}$ (blue) for the neural network: Higgs mass reconstructions $M_{\rm bb}$ and $M_{jj\ell\nu}$ and top mass reconstructions $M_{jj\rm b_1}$ and $M_{\rm b_2\ell\nu}$.

Figure 5: Variables distribution of HH (red) and $t\bar{t}$ (blue) for the neural network: $\Delta R_{j_1\ell}$, $\Delta R_{j_2\ell}$, $\Delta R_{b_1\ell}$ and $\Delta R_{b_2\ell}$.

Figure 6: Variables distribution of HH (red) and $t\bar{t}$ (blue) for the neural network: ΔR_{bb} , ΔR_{jj} , $\Delta R_{jj,b_1}$ and $\Delta R_{jj,\ell}$.

Figure 7: Final BDT output and background rejection versus signal efficiency.