CS & IT

Discrete Mathematics
Graph Theory
Lecture No. 10

TOPICS TO BE COVERED

01 Matching set

...

02 Maximal matching set

. . .

03 Matching no.

. . .

04 Covering set

...

05 Covering number

Independent set, set of non adjacent vertices.

maximal Independent: Independent set such that we can not set with this.

add new vertex into this.

Independence no (B161): no of vertices present in largest maximal Independent set

if we take any verten of v, either that verten belongs to D or its adjacent belongs to D.

minimal dominating set: Dominating set, such that

we can not remove any new

verten from this.

Domination no (X(G)) no of vertices present in Smallest minimal dominating set

manimal:
not related size
but property such that
we can not add new
vertex into this

minimal: not related size.

but property such that
we can not remove

anything.

cannot and mal andependent set

{acdf acd9) ae

minimal dominating set.

Every MIS will always be mos but viceversa is not tre

Domination no < Independence no $\alpha(G) \leq \beta(G)$. Independent set: set of non adjacent vertices: manimal Independent iset

Dominating set.

minimal Dominating set.

scan not remove.

Spel

Pw

Provide 3

\[\lambda \lambda \rightarrow ms. \]

\[\lambda \text{maximal matching} \rightarrow matching set. \]

\[\settimes \text{such that we can not add} \]

\[\text{new edge into this.} \]

matchingno(m(61): no of edges present in largest maximal matching set

$$M((4)=2.$$

Manual A

$$M(cn) = \lfloor \frac{n}{2} \rfloor$$

$$m(wn)$$
 $m(Kn)$

3-1-2

$$m(w_n) = \frac{1}{2}$$

$$M(kn) = M(mn) = M(cn) = \left\lfloor \frac{n}{2} \right\rfloor$$

