ЛЕКЦІЯ 4(Б).

Випадкові вектори. Дискретні випадкові величини.

1. Випадковий вектор та його функція розподілу. 2. Типи залежності між змінними. 3. Незалежні випадкові величини. 4. Визначення дискретної випадкової величини. 5. Приклади випадкових величин: Розподіл Бернуллі. Схема випробувань Бернуллі. Біноміальний розподіл. Геометричний розподіл. Розподіл Пуассона. 6. Випадкові вектори дискретного типу. 7. Незалежні дискретні випадкові величини.

1. Випадковий вектор та його функція розподілу.

Очевидно, що з будь-яким стохастичним експериментом може бути пов'язано безліч випадкових величин, тобто змінних, значення яких визначається наслідком експерименту. Тому й на будь-якому ймовірнісному просторі може бути визначено багато випадкових величин.

Якщо в математиці «звичайні» змінні, як правило, позначаються латинським літерами, то в теорії ймовірностей випадкові величини прийнято позначати літерами грецької абетки ξ , η , τ , ν , ζ , Подібно, як в «звичайному» аналізі поряд з поняттям «числа» існує багатовимірний його аналог — «вектор», так само то в теорії ймовірностей вводиться поняття «випадкового вектора».

Визначення. Говоримо, що $(\xi_1, \xi_2, ..., \xi_n)$ є багатовимірною (або n-вимірною) випадковою величиною, визначеною на ймовірнісному просторі (Ω, \mathcal{F}, P) , якщо всі її координати $\xi_i, i = 1, 2, ..., n$ – випадкові величини, визначені на тому самому просторі (Ω, \mathcal{F}, P) .

Багатовимірну випадкову величину ($\xi_1, \ \xi_2, \ \dots, \ \xi_n$) називають також *п-вимірним випадковим вектором*.

Визначення. Нехай (ξ_1 , ξ_2 , ..., ξ_n) — випадковий вектор, визначений на ймовірнісному просторі (Ω , \Im , P). Багатовимірною функцією розподілу випадкового вектора (ξ_1 , ξ_2 , ..., ξ_n) називається функція $F(x_1, x_2, ..., x_n)$, що визначається формулою:

$$F(x_1, x_2, ..., x_n) = P\{\xi_1 < x_1, \xi_2 < x_2, ..., \xi_n < x_n\},\$$

-\infty < x_1 < +\infty, -\infty < x_2 < +\infty, ..., -\infty < x_n < +\infty.

Подібно, як функція розподілу $F_{\xi}(x)$ цілком та однозначно визначає відповідну випадкову величину $\xi = \xi(\omega)$, $\omega \in \Omega$, багатовимірна функція розподілу $F(x_1, x_2, \ldots, x_n)$ цілком та однозначно визначає відповідний випадковий вектор

$$(\xi_1, \, \xi_2, \, \ldots, \, \xi_n) = (\xi_1(\omega), \, \xi_2(\omega), \, \ldots, \, \xi_n(\omega)), \, \omega \in \Omega.$$

2. Типи залежності між змінними.

Одним із базових понять теорії ймовірностей, яке стосується випадкового вектора ($\xi_1, \, \xi_2, \, \dots, \, \xi_n$), є поняття його *стохастичної структури*. Ця структура визначається *розподілом* окремих його координат $\xi_i, \, i=1, \, 2, \, \dots, \, n$, а також *характером залежності* між ними.

Пригадаємо, яким чином в математиці досліджуються взаємозв'язки різних змінних. Припустимо, що вивчаються дві змінні X і Y та досліджується, чи впливають вони одна на одну, чи ні. Існує два крайні випадки взаємозалежності:

- 1. Незалежність X та Y, тобто повна відсутність залежності між ними. Така ситуація є свідченням того, що між явищами, які описують змінні X та Y, відсутній будь-який зв'язок. Якщо якимось чином κ тобто найслабший ступінь залежності змінних, то це буде крайній знизу, тобто найслабший її прояв.
- 2. Другий найсильніший (тобто крайній зверху) тип залежності означає функціональну залежність між змінними X та Y. Характерним для функціональної залежності y = f(x) є те, що значення (x) змінної X однозначно визначає значення (y) змінної Y. Тоді явище, яке описує змінна X, вважається причиною, а явище, яке описує змінна Y його наслідком, а сама залежність називається ще причино-наслідковою.
- 3. Існує ще й третій тип залежності між змінними X та Y, в певному розумінні *проміжний* між *повною* незалежністю та залежністю *абсолютною*, тобто причино-наслідковою. Ця залежність називається *статистичною* і її дослідженням, перш за все, займаються теорія ймовірностей та математична статистика.

Однією з різновидностей статистичної залежності є залежність стохастична, яка передбачає, що різним значення (x) змінної X відповідають різні умовні розподіли (Y_x) змінної Y. Саме теорія ймовірностей пропонує способи кількісного вимірювання ступеня залежності між змінними X та Y, що зберігають приведену вище градацію різних її типів.

3. Незалежні випадкові величини.

Одним з найважливіших в теорії ймовірностей є поняття *незалежності* випадкових величин. Припустимо, що на ймовірнісному просторі (Ω, \mathcal{F}, P) визначено випадкові величини \mathcal{E} та n.

Визначення. Будемо говорити, що випадкові величини ξ та η незалежні, якщо для довільних дійсних чисел x та y виконується наступна рівність:

$$P\{\xi < x; \ \eta < y\} = P\{\xi < x\} \cdot P\{\eta < y\}.$$

Зауваження. В лекції 4 було введено поняття незалежних подій A та B, а саме подій, для яких виконується умова:

$$P(A \cap B) = P(A) \cdot P(B)$$
.

Якщо у визначенні незалежних випадкових величин покласти $A = \{\xi < x\}$, а $B = \{\eta < y\}$, то незалежність випадкових величини ξ та η означає незалежність випадкових подій A та B, іншими словами:

• Те, які значення приймає випадкова величина ξ , не впливає на те, які значення приймає випадкова величина η , і навпаки.

Нехай

$$F_{\mathcal{E}}(x) = P\{\xi < x\}, -\infty < x < \infty;$$

та

$$F_n(y) = P\{ \eta < y \}, -\infty < x < \infty.$$

відповідно функції розподілу випадкових величини ξ та η . А $F_{(\xi \eta)}(x, y)$ в свою чергу означає функцію розподілу двовимірної випадкової величини (або випадкового вектора) (ξ , η), тобто функція, що визначається формулою:

$$F_{(\xi,\eta)}(x, y) = P\{\xi < x; \eta < y\}, -\infty < x < +\infty, -\infty < y < +\infty.$$

Визначення незалежних випадкових величин означає, що ξ та η будуть незалежні тоді і тільки тоді, коли для довільних дійсних чисел x та y виконується наступна рівність:

$$F_{(\xi,n)}(x, y) = F_{\xi}(x) \cdot F_n(y), -\infty < x < +\infty, -\infty < y < +\infty.$$

Отже якщо спільний розподіл $F_{(\xi,\eta)}(x,y)$ випадкових величини ξ та η відомий, легко перевірити їх незалежність. А саме, приймаючи до уваги визначення функції $F_{(\xi,\eta)}(x,y)$, а також те, що події:

$$\{\xi < \infty\} = \Omega$$
 Ta $\{\eta < \infty\} = \Omega$

напевно відбуваються, тобто

$$P\{\xi < \infty\} = 1 \text{ Ta } P\{\eta < \infty\} = 1,$$

отримаємо:

$$F_{\xi}(x) = P\{\,\xi < x\} = P\{\,\xi < x \cap \Omega\} = P\{\,\xi < x;\; \eta < \infty\} = F_{(\xi,\eta)}(x,\infty),$$
 де запис $F_{(\xi,\eta)}(x,\infty)$ означає:

$$F_{(\xi,\eta)}(x,\,\infty) = \lim_{y\to\infty} F_{(\xi,\eta)}(x,y) \,.$$

Подібним чином отримаємо:

$$F_{\eta}(y) = P\{\, \eta < y\} = P\{\Omega \cap \eta < y\} = P\{\, \xi < \infty; \ \eta < y\} = F_{(\xi,\eta)}(\infty,\, y),$$
 де запис $F_{(\xi,\eta)}(\infty,\, y)$ означає:

$$F_{(\xi,\eta)}(\infty, y) = \lim_{x\to\infty} F_{(\xi,\eta)}(x, y).$$

Критерій перевірки незалежності випадкових величин:

 \triangleright Випадкові величини ξ та η будуть незалежні тоді і тільки тоді, коли для довільних дійсних чисел x та y виконується наступна рівність:

$$F_{(\xi,\eta)}(x, y) = F_{(\xi,\eta)}(x, \infty) \cdot F_{(\xi,\eta)}(\infty, y), -\infty < x < +\infty, -\infty < y < +\infty.$$
Дискретна випадкова величина.

4. Визначення дискретної випадкової величини.

Припустимо, що ξ випадкова величина, задана на ймовірнісному просторі (Ω, \mathcal{F}, P) .

Визначення. Будемо говорити, що ξ є *дискретною випадковою величи- ною*, якщо *дискретною* є множина $\overline{\text{ii}}$ можливих значень.

Іншими словами, якщо $X = \{x_1, x_2, ..., x_n, ...\}$ різні значення, які може набувати випадкова величина ξ , то множина X щонайбільше злічена.

Зауваження. Будемо припускати, що значення $x_i \in X$ впорядковані в зростаючому порядку:

$$x_1 < x_2 < \dots < x_n, < \dots$$

Для кожного можливого значення $x_i \in X$ введемо наступну випадкову подію:

$$A_i = \{ \omega : \xi(\omega) = x_i \} = \{ \xi = x_i \}, i = 1, 2, ..., n, ...$$

Тоді випадкові події $\{A_i, i = 1, 2, \dots\}$ утворюють повну групу подій, тобто: 1. Випадкові події $A_1, A_2, \dots, A_n, \dots$ попарно несумісні:

$$A_i \cap A_j = \emptyset$$
, якщо $i \neq j, i, j = 1, 2, ..., n, ...$

2. $A_1 \cup A_2 \cup ... \cup A_n \cup ... = \Omega$.

Позначимо:

$$p_i = P\{\omega: \xi(\omega) = x_i\} = P\{\xi = x_i\}, i = 1, 2, \dots$$

Іншими словами, p_i визначає ймовірність того, що значення випадкової величини ξ буде рівне x_i , $i = 1, 2, \dots$

Приймаючи до уваги властивості випадкових подій A_i , i = 1, 2, ..., приходимо до висновку, що для чисел $\{p_i, i = 1, 2, ..., n, ...\}$ виконуються наступні умови:

1)
$$p_i > 0$$
, $i = 1, 2, ..., n, ...$;

2)
$$p_1 + p_2 + ... + p_n + ... = 1$$
.

Визначення. Множину пар $\{(x_i, p_i), i = 1, 2, ..., n, ...\}$ називають *розподі- лом ймовірності* випадкової величини ξ .

Встановимо зв'язок між розподілом ймовірності випадкової величини ξ :

$$\{(x_1, p_1), (x_2, p_2), , ..., (x_i, p_i), ...\}$$

та її функцією розподілу:

$$F_{\xi}(x) = P\{\omega: \xi(\omega) < x\} = P\{\xi < x\}, -\infty < x < \infty.$$

Подію $\{\xi < x\}$ можна записати наступним чином:

$$\{ \xi < x_i \} = \bigcup_{i: (x_i < x)} A_i .$$

Оскільки події A_i – несумісні, то очевидно, що

$$F_{\xi}(x) = P\{\xi < x\} = \sum_{i: (x_i < x)} p_i \ , -\infty < x < \infty.$$

Отже знаючи розподіл дискретної випадкової величини ξ можемо для довільного дійсного $-\infty < x < +\infty$ знайти значення $F_{\xi}(x)$ її функції розподілу.

А так, як функція розподілу *цілком* та *однозначно* визначає випадкову величину ξ , то у випадку дискретної випадкової величини цю роль виконує її розподіл $\{(x_i, p_i), i = 1, 2, ..., n, ...\}$.

З іншого боку, аналізуючи останню рівність приходимо до висновку, що $F_{\xi}(x)$ — неперервна зліва функція, яка зберігає постійне значення на проміжках $(x_i, x_{i+1}), i = 1, 2, ..., n, ...$

Оскільки згідно з припущенням $x_i < x_{i+1}$, то має місце наступне включення $\{\xi < x_i\} \subset \{\xi < x_{i+1}\}$, і на підставі властивостей ймовірності (див. лекція 2. вл. 3) отримаємо:

$$p_i = P\{\xi = x_i\} = P(\{\xi < x_{i+1}\} \setminus \{\xi < x_i\}) =$$

$$= P\{\xi < x_{i+1}\} - P\{\xi < x_i\} = F(x_{i+1}) - F(x_i), i = 1, 2, \dots$$

Отже знаючи функцію розподілу $F_{\xi}(x)$ дискретної випадкової величини ξ можемо відновити її розподіл $\{(x_i, p_i), i = 1, 2, ..., n, ...\}$.

5. Приклади випадкових величин.

Повернемось до наведених в лекції 4(А) прикладів.

Приклад 1. Кидання грального кубика.

1) Елементарна подія $\{\omega_i\}$ вказує ту грань кубика, на якій є i очок:

$$\Omega = \{ \omega_1 = 1, \, \omega_2 = 2, \, \omega_3 = 3, \, \omega_4 = 4, \, \omega_5 = 5, \, \omega_6 = 6 \}.$$

Випадкова величина $\xi = \xi(\omega)$, $\omega \in \Omega$, описує результат кидання грального кубика: $\xi = \xi(\omega_i) = \omega_i = i, i = 1, 2, 3, 4, 5, 6$.

Це перший описаний в лекції 5 спосіб визначення випадкової величини, тобто безпосереднє вказування відповідних значень $\xi = \xi(\omega)$ для кожного елементарного наслідку $\omega \in \Omega$.

2) Другий рівнозначний спосіб визначення випадкової величини полягає в окресленні її функції розподілу $F_{\varepsilon}(x)$.

У випадку дискретної випадкової величини це рівнозначно визначенню її розподілу $\{(x_i, p_i), i = 1, 2, ..., n, ...\}$.

В прикладі, що розглядається, множина можливих значень випадкової величини має вигляд:

$$\xi \in X = \{x_1 = 1, x_2 = 2, x_3 = 3, x_4 = 4, x_5 = 5, x_6 = 6\}.$$

Як було встановлено в прикладі 1 (лек. 5) для довільного значення $x_i \in X$:

$$P\{\xi = x_i\} = 1/6; i = 1, 2, ..., 6.$$

Отже випадкова величина ξ має наступний розподіл:

$$\{(1, 1/6), (2, 1/6), (3, 1/6), (4, 1/6), (5, 1/6), (6, 1/6)\}.$$

Функція розподілу $F_{\xi}(x) = P\{\xi < x\}$ випадкової величини ξ визначається наступним чином:

Приклад 2. Кидання монети.

Кидаємо монету один раз. Простір елементарних наслідків:

$$\Omega = \{ \omega_1 = ,,O", \omega_2 = ,,P" \}.$$

Безпосереднє визначення випадкової величини $\xi = \xi(\omega), \omega \in \Omega$:

$$\xi(\omega_1) = 0; \ \xi(\omega_2) = 1.$$

Випадкова величина ξ має наступний розподіл:

$$\{(0, 1/2), (1, 1/2)\}.$$

Функція розподілу $F_{\xi}(x) = P\{\xi < x\}$ випадкової величини ξ визначається наступним чином:

х	$(-\infty < x \le 0]$	$(0 < x \le 1]$	$(1 < x < \infty)$
$F_{\xi}(x)$	0	1/2	1

Приклад 3. Кидання монети.

Трикратно кидаємо монету. Простір елементарних наслідків в цьому експерименті $\Omega = \{ \omega_1, \ \omega_2, \ \omega_3, \ \omega_4, \ \omega_5, \ \omega_6, \ \omega_7, \ \omega_8 \}$, складається з восьми елементів:

$$\Omega = \{\omega_1 = \text{«OOO»}, \omega_2 = \text{«OOR»}, \omega_3 = \text{«ORO»}, \omega_4 = \text{«ROO»}, \omega_5 = \text{«ORR»}, \omega_6 = \text{«ROR»}, \omega_7 = \text{«RRO»}, \omega_8 = \text{«RRR»}\}.$$

Випадкова величина $\xi = \xi(\omega)$, $\omega \in \Omega$, показує скільки разів при цьому з'явиться «*Орел*». Безпосереднє визначення випадкової величини $\xi = \xi(\omega)$, $\omega \in \Omega$, презентує наступна таблиця:

ω	PPP	PPO	POP	OPP	POO	OPO	OOP	000
$\xi(\omega)$	0	1	1	1	2	2	2	3

розподіл $\{(x_i, p_i), i = 1, 2, 3, 4\}$ та функцію розподілу $F_{\xi}(x) = P\{\xi < x\}, -\infty < x < \infty$ випадкової величини ξ представляють наступні таблиці: випадкової величини ξ визначається наступним чином:

x_i	0	1		2		3	
p_i	1/8	3/8	3/8		3/8	1/8	
X	$(-\infty, 0]$	(0, 1]	(1,	2]	(2, 3]	(3, ∞)	
$F_{\varepsilon}(x)$	0	1/8	1,	/2	7/8	1	

Приклад 4. Кидання монети.

Кидаємо монету до тих пір, поки вперше з'явиться «*Орел*». Простір елементарних наслідків – злічена множина:

$$\Omega = \{\omega_1, \omega_2 \omega_3, \omega_4, ...\} = \{\text{"O"}, \text{"PO"}, \text{"PPO"}, \text{"PPO"}\}.$$

Випадкова величина $\xi = \xi(\omega)$, $\omega \in \Omega$, визначає, *скільки повторних спроб* (*k*) триває цей експеримент. В загальному випадку елементарний наслідок ω_k виглядає наступним чином: $\omega_k = \langle \underbrace{PPP...PO}_{k-1} \rangle$ ».

Безпосереднє визначення випадкової величини

$$\xi = \xi(\omega), \ \omega \in \Omega$$
: $\xi(\omega_k) = k, \ k = 1, 2, 3, \dots$:

Розподіл $\{(x_k, p_k), k = 1, 2, 3, \dots\}$ в цьому прикладі визначається наступним чином:

$$x_k = k; p_k = P\{\xi = k\} = \left(\frac{1}{2}\right)^{k-1} \cdot \frac{1}{2} = \left(\frac{1}{2}\right)^k, k = 1, 2, 3, \dots.$$

Функцію розподілу $F_{\xi}(x) = P\{\xi < x\}$ випадкової величини ξ визначає наступна формула:

$$F_{\xi}(x) = \begin{cases} 0, \text{skyo } x \leq 1, \\ 1/2, \text{skyo } 1 < x \leq 2, \\ \dots, \\ 1/2 + 1/4 + \dots + (1/2)^k, \\ \text{skyo} k < x \leq k + 1, \\ \dots, \end{cases}$$

Тобто

$$F_{\xi}(x)=0,\,\text{якщо }x\leq 1;$$

$$F_{\xi}(x)=1-\left(\frac{1}{2}\right)^{k-1},\,\text{якщо }k< x\leq k+1,\,k=1,\,2,\,3,\,....$$

Зауваження. Розподіл випадкової величини ξ , що розглядалась у цьому прикладі, є частковим випадком одного з основних дискретних розподілів теорії ймовірностей – *геометричного розподілу*:

Визначення. Випадкова величина ξ має геометричний розподіл з параметром p, якщо може приймати цілі додатні значення: $\xi \in \{1, 2, 3, ...\}$. І при цьому:

$$p_k = P\{\xi = k\} = (1-p)^{k-1} \cdot p, \ k = 0, 1, 2, 3, \dots$$

Параметр розподілу в прикладі, що розглядалась, дорівнює p = 1/2.

Приклади розподілів дискретних випадкових величин.

Приклад 1. (Розподіл Бернуллі).

Випадкова величина η має розподіл Бернуллі з параметром p, якщо може приймати тільки два значення:

$$\eta \in \{0, 1\}.$$

При цьому випадкова величина η приймає значення 1 з ймовірністю p:

$$p = P\{ \eta = 1 \};$$

а значення 0 з ймовірністю q = 1 - p:

$$P{\eta = 0} = 1 - p = q.$$

 $p + q = 1.$

З випадковою величиною, яка має розподіл Бернуллі, завжди зустрічаємось, коли йдеться про те, відбудеться, чи ні певна випадкова подія в досліджуваному стохастичному експерименті. В теорії ймовірності широко використовується поняття «індикатор $\chi[A]$ випадкової події A», тобто показник того, чи відбулась подія A, чи ні.

- \circ Якщо в результаті реалізації стохастичного експерименту випадкова подія A відбулась, то $\chi[A] = 1$;
- \circ В противному разі $\chi[A] = 0$.

Припустимо, що з стохастичним експериментом пов'язана деяка випадкова подія A. Відомо, що ймовірність події A дорівнює p:

$$P(A) = p$$
.

Очевидно, що індикатор $\eta = \chi[A]$ буде випадковою величиною, яка має розподіл Бернуллі з параметром p.

Приклад 2. (Схема випробувань Бернуллі).

Розглянемо послідовність n незалежних між собою повторів того самого стохастичного експерименту.

Припустимо, що в кожному з цих повторів нас цікавить випадкова подія A, реалізацію якої будемо називати *успіхом* (або «*виграшем*»).

Випадкову подію \overline{A} , протилежну до A (тобто ситуацію, коли в стохастичному експерименті випадкова подія A не відбулась) будемо називати «невдачею» (або «поразкою»).

Припустимо далі, що в кожному експерименті ймовірність події A дорівнює p, а ймовірність протилежної події \overline{A} дорівнює q = 1 - p.

Визначення. Описана послідовність n незалежних повторів того самого стохастичного експерименту називається *схемою випробувань Бернуллі* з імовірністю *«успіху»* (або з *параметром*) p.

Іншими словами, кожна незалежна реалізація в незмінних умовах того самого стохастичного експерименту у випадку схеми випробувань Бернуллі має тільки *два* різних *наслідки*. Один з них *умовно* називають «*УСПІХОМ*» і позначають символом «У». Другий, відповідно, «НЕВДА-ЧЕЮ» і позначають випробувань «Н». При цьому:

$$P\{\text{«Y»}\} = p; i P\{\text{«H»}\} = 1 - p = q;$$

 $p + q = 1.$

Приклад 3. (Біноміальний розподіл B(n, p) з параметрами n і p.).

Визначення. Випадкова величина ξ має біноміальний розподіл з параметрами n і p ($\xi \Leftrightarrow B(n, p)$), якщо всі її значення належать до множини:

$$\xi \in \{0, 1, ..., n\};$$

і при цьому:

$$p_k = P\{\xi = k\} = C_n^k \cdot p^k \cdot (1-p)^{n-k}, k = 0, 1, 2, ..., n.$$

де C_n^k означає «*кількість комбінацій з n no k*», тобто кількість різних k-елементних підмножин, які можна вибрати з множини, що містить n елементів:

$$C_n^k = \frac{n!}{k!(n-k)!}, (n! = 1 \cdot 2 \cdot 3 \cdot ... \cdot n), k = 0, 1, 2, ..., n.$$

Біноміальний розподіл з параметрами (n, p) позначається символом B(n, p), а той факт, що випадкова величина ξ має біноміальний розподіл з параметрами (n, p), позначається $\xi \Leftrightarrow B(n, p)$.

Лема 1. Нехай випадкова величина ξ визначає кількість «*УСПІХІВ*» в серії n випробувань Бернуллі з параметром p. Іншими словами, нехай ξ вказує кількість експериментів (в серії з n виконаних), в яких подія A відбулась. Тоді ξ має біноміальний розподіл з параметрами n і p, тобто $\xi \Leftrightarrow B(n,p)$.

Доведення. Очевидно, що можливими значеннями випадкової величини ξ є числа, які належать до множини:

$$\xi \in \{0, 1, ..., n\}.$$

Знайдемо ймовірність p_0 того, що випадкова величина ξ набуде значення k=0, тобто

$$p_0 = P\{\xi = 0\}.$$

Це означає, що серед n експериментальних результатів не було отримано жодного «УСПІХУ». Іншими словами, в результаті проведених експериментів було отримано послідовність $(\overline{A}; \overline{A}; ...; \overline{A})$ n реалізацій протилежної до A події $\overline{A} = \Omega \setminus A$. Враховуючи, що $P(\Omega \setminus A) = 1 - p$, а також незалежність реалізацій експериментів, отримаємо:

$$p_0 = P\{\xi = 0\} = P\{(\overline{A}; \overline{A}; ...; \overline{A})\} = P\{\overline{A}\} \cdot P\{\overline{A}\} \cdot ... \cdot P\{\overline{A}\} = (1-p)^n = C_n^0 \cdot p^0 \cdot (1-p)^{n-0}.$$

Подібно, як і в попередньому випадку, подія $\{\xi=1\}$ означає, що серед n експериментальних результатів було отримано pівно один успіх. Іншими словами, результатом експериментів є послідовність з n елементів, де подія A відбулася oдин paз, а (n-1) разів відбулася протилежна до A подія $\overline{A} = \Omega \setminus A$.

Наприклад $(A; \overline{A}; \overline{A}; ...; \overline{A})$. Імовірність такої послідовності елементарних подій, при умові, що окремі реалізації незалежні між собою, дорівнює:

$$P\{\!\!\left(A;\overline{A};\overline{A};\ldots;\overline{A}\right)\!\!\} = P\{\!\!\left\{A\right\}\!\!\cdot\!P\{\!\!\left\{\overline{A}\right\}\!\!\cdot\!\ldots\!\cdot\!P\{\!\!\left\{\overline{A}\right\}\!\!\right\} = p\cdot(1-p)^{n-1}.$$

Для того, щоб знайти ймовірність події $\{\xi = 1\}$, необхідно врахувати, *скількома способами* можна отримати *рівно один успіх* серед *п* повторень експериментів, а саме:

$$p_{1} = P\{\xi = 1\} = P\{(A; \overline{A}; ...; \overline{A}) \cup (\overline{A}; A; \overline{A}; ...; \overline{A}) \cup ... \cup (\overline{A}; \overline{A}; ...; \overline{A}; A)\} =$$

$$= P\{(A; \overline{A}; ...; \overline{A})\} + P\{(\overline{A}; A; \overline{A}; ...; \overline{A})\} + ... + P\{(\overline{A}; \overline{A}; ...; \overline{A}; A)\} =$$

$$= n \cdot p \cdot (1 - p)^{n-1} = C_{n}^{1} \cdot p^{1} \cdot (1 - p)^{n-1}.$$

У загальному випадку подія $\{\xi = k\}$ означає, що серед n результатів експериментів було отримано k успіхів і (n - k) невдач. Іншими словами, результатом експериментів є послідовність з n елементів, де подія A відбулася k разів, а (n - k) разів відбулася протилежна до A подія

$$\overline{A} = \Omega \setminus A$$
. Наприклад $\left\{ A, ..., A, \overline{A}, ..., \overline{A} \right\}$. Імовірність такої послідовності $\left\{ (k \ pasie) \ (n-k \ pasie) \right\}$.

елементарних подій, при умові, що окремі реалізації незалежні між собою, дорівнює:

$$P\left\{A,\ldots,A,\overline{A},\ldots,\overline{A}\right\} = P\left\{A\right\}\cdot\ldots\cdot P\left\{A\right\}\cdot P\left\{\overline{A}\right\}\cdot\ldots\cdot P\left\{\overline{A}\right\} = p^{k}\cdot(1-p)^{n-k}.$$

Для того, щоб обчислити ймовірність події $\{\xi = k\}$, необхідно знайти, *скільки* існує *різних способів* її реалізації. Тобто необхідно знайти:

• *Скількома різними способами* можна розмістити k літер A на n місцях.

Вона дорівнює «кількості комбінацій з n по k»: $C_n^k = \frac{n!}{k!(n-k)!}$. Тому

$$p_k = P\{\xi = k\} = C_n^k \cdot p^k \cdot (1-p)^{n-k}, k = 0, 1, 2, ..., n.$$

Приклад 4. (продовження прикладу 3). (Біноміальний розподіл).

Зауваження. Припустимо, що випадкова величина ξ має біноміальний розподіл з параметрами n і p ($\xi \Leftrightarrow B(n, p)$). Приводячи в лемі 1 її інтерпретацію в контексті «*схеми випробувань Бернуллі*», ми показали:

• Що ξ вказує кількість «*VCПІХІВ*» в серії, яка складається з *п випробувань*. При цьому $p = P\{VCПІХУ\}$.

Результат одного такого експерименту описує випадкова величина η , яка має розподіл Бернуллі з параметром p.

Нехай множина випадкових величин (η_1 , η_2 , ..., η_n) представляє послідовні результати всієї серії, що складається з n випробувань. Тобто випадкова величина η_k є *індикатором* результату k-того по порядку випробування k = 1, 2, ..., n:

- \circ $\eta_k = 1$, якщо в *i*-тому випробуванні був «УСПІХ»;
- \circ $\eta_k = 0$, в противному разі.

Тоді очевидно, що виконується наступна стохастична рівність:

$$B(n, p) \Leftrightarrow \eta_1 + \eta_2 + \ldots + \eta_n$$
.

При цьому η_k , k = 1, 2, ..., n — незалежні випадкові величини, що мають такий самий розподіл Бернуллі з параметром p:

$$\eta_k \in \{0, 1\}, k = 1, 2, ..., n.$$

$$P\{\eta_k = 1\} = p, P\{\eta_k = 0\} = q = 1 - p, p + q = 1, k = 1, 2, ..., n..$$

Приклад 5. (Геометричний розподіл).

Визначення. Випадкова величина ξ має геометричний розподіл з параметром p, якщо може приймати цілі додатні значення: $\xi \in \{1, 2, 3, ...\}$. І при цьому: $p_k = P\{\xi = k\} = (1-p)^{k-1} \cdot p$, k = 1, 2, 3,

Лема 2. Нехай випадкова величина ξ визначає кількість випробувань в схемі Бернуллі з параметром p до тих пір, поки вперше з'явиться «УС-ПІХ». Тоді ξ має геометричний розподіл з параметром p.

Доведення. Очевидно, що можливими значеннями випадкової величини ξ , описаної в лемі 2, ϵ множина натуральних чисел: $\xi \in \{1, 2, 3, ...\}$.

Випадкова подія $\{\xi = k\}$ означає, що в ході дослідів Бернуллі була отримана така послідовність результатів:

$$\{\xi = k\} = \left\{\underbrace{\overline{A}\overline{A}\overline{A}...\overline{A}}_{k-1}A\right\},\,$$

де символ \overline{A} вказує на те, що чергове випробування закінчилося «НЕВ-ДАЧЕЮ», а символ A вказує на «УСПІХ» у цьому випробуванні. Враховуючи незалежність випробувань і те, що $P\{A\}=p,\ P\{\overline{A}\}=1-p$, маємо:

$$p_{k} = P\{\xi = k\} = P\left\{\underbrace{\overline{A}\overline{A}\overline{A}...\overline{A}}_{k-1}A\right\} = P\left\{\overline{A}\right\}....P\left\{\overline{A}\right\}\cdot P\left\{A\right\} = (1-p)^{k-1}\cdot p,$$

$$k = 1, 2, 3,$$

Приклад 6. (Розподіл Пуассона).

Визначення. Випадкова величина π має розподіл *Пуассона з параметром* λ , якщо вона може приймати всі цілі невід'ємні значення $\pi \in \{0, 1, 2 ... \}$ і

при цьому:
$$p_k = P\{\xi = k\} = e^{-\lambda} \cdot \frac{\lambda^k}{k'}, k = 0, 1, 2, \dots$$

Гранична теорема Пуассона: Нехай випадкова величина ξ_n визначає число «*Успіхів*» в серії з *п* випробувань Бернуллі.

Припустимо, що ймовірність « $VC\Pi XV$ » (p_n) залежить від кількості (n) випробувань, і при цьому виконуються умови:

- 1. $p_n \to 0$, при $n \to \infty$;
- $2. \quad \lim_{n\to\infty} (p_n\cdot n)=\lambda.$

Тоді для довільного значення k = 1, 2, ... існують наступні границі:

$$\lim_{n\to\infty} P(\xi_n = k) = e^{-\lambda} \cdot \frac{\lambda^k}{k!}$$

На практиці це означає, що для біноміального розподілу з параметрами (n, p), у випадку, коли p «достатньо мале», n — «достатньо велике», а

$$\lambda = n \cdot p$$
,

то для довільного k:

$$P\{\xi=k\} = C_n^k \cdot p^k \cdot (1-p)^{n-k} \approx e^{-\lambda} \cdot \frac{\lambda^k}{k!}, k=0, 1, 2, \dots$$

6. Випадкові вектори дискретного типу.

Нехай на ймовірнісному просторі (Ω, \mathcal{F}, P) визначено випадковий вектор (двовимірну випадкову величину) (ξ, η) , координати якого є дискретними випадковими величинами.

При цьому $\xi \in \{x_1, x_2, ..., x_k\}$, а $\eta \in \{y_1, y_2, ..., y_m\}$.

Для кожної пари (x_i, y_i) визначимо ймовірність:

$$p_{ij} = P\{\xi = x_i, \eta = y_j\}, i = 1, 2, ..., k, j = 1, 2, ..., m.$$

Визначення. Множину чисел [$\{(x_i, y_j), p_{ij}\}, i = 1, 2, ..., k, j = 1, 2, ..., m.$] будемо називати *розподілом випадкового вектора* (ξ, η) дискретного типу.

Розглядаючи випадкові вектори в лекції 6, ми встановили зв'язок між спільним розподілом $F_{(\xi,\eta)}(x,y)$ вектора (ξ,η) та маргінальними розподілами $F_{\xi}(x)$ та $F_{\eta}(y)$ окремих його координат ξ та η . Подивимось, як вони виглядають у випадку випадкових векторів дискретного типу.

Нехай

$$\{(x_i, p_i), i = 1, 2, ..., n\}, \text{ де } p_i = P\{\xi = x_i\}, i = 1, 2, ..., k,$$

та

$$\{(y_j, s_j), j = 1, 2, ..., m\}, \text{ де } s_j = P\{\eta = y_j\}, j = 1, 2, ..., m,$$

відповідно розподіли координат ξ , та η . Оскільки

$$\{\eta = y_1\} \cup \{\eta = y_2\} \cup ... \cup \{\eta = y_m\} = \Omega,$$

то:

$$p_{i} = P\{\xi = x_{i}\} = P\{(\xi = x_{i}) \cap \Omega\} =$$

$$= P\{(\xi = x_{i} \cap \{\eta = y_{1}\} \cup \{\eta = y_{2}\} \cup ... \cup \{\eta = y_{m}\})\} =$$

$$= P\{((\xi = x_{i}) \cap \{\eta = y_{1}\}) \cup ((\xi = x_{i}) \cap \{\eta = y_{2}\}) \cup ...$$

$$... ((\xi = x_{i}) \cap \cup \{\eta = y_{m}\})\} = P\{\xi = x_{i}, \eta = y_{1}\} + P\{\xi = x_{i}, \eta = y_{2}\} + ...$$

$$... + P\{\xi = x_{i}, \eta = y_{m}\} = p_{i1} + p_{i2} + ... + p_{im}, i = 1, 2, ..., k.$$

Аналогічно доводимо, що:

$$s_j = P\{ \eta = y_j \} = p_{1j} + p_{2j} + ... + p_{kj}, j = 1, 2, ..., m,$$

Тому, якщо відомий розподіл:

$$\{(x_i, y_i), p_{ii}\}, i = 1, 2, ..., k, j = 1, 2, ..., m.\}$$

випадкового вектора (ξ , η), то розподіли окремих його координат ξ та η визначаємо за формулами:

- ightharpoonup Розподіл координат ξ ; $p_i = \sum_{j=1}^m p_{ij}$, i=1,2,...,k.
- ightharpoonup Розподіл координат η : $s_j = \sum_{i=1}^n p_{ij}$, j=1,2,...,m.

7. Незалежні дискретні випадкові величини.

Дискретні випадкові величини ξ та η будуть незалежні тоді і тільки тоді, коли для довільних значень x_i та y_i виконується наступна рівність:

 $P\{\xi=x_i,\ \eta=y_j\}=P\{\xi=x_i\}\cdot P\{\eta=y_j\},\ i=1,\ ...,\ k;\ j=1,\ ...,\ m.$ Використовуючи розподіл $[\{(x_i,y_j),\ p_{ij}\},\ i=1,\ 2,\ ...,\ k,\ j=1,\ 2,\ ...,\ m.]$ випадкового вектора (ξ,η) та розподіли $\{(x_i,p_i),\ i=1,\ 2,\ ...,\ n\},\ \{(y_j,s_j),\ j=1,\ 2,\ ...,\ m\}$ його координат, умову незалежності можна записати наступним чином:

• Для довільних чисел i = 1, ..., k та j = 1, 2, ..., m виконується наступна рівність:

$$p_{ij} = p_i \cdot s_j$$
.

Враховуючи отримані для визначення розподілів окремих координат ξ та η формули, цю рівність можна записати наступним чином:

$$p_{ij} = \left(\sum_{j=1}^{m} p_{ij}\right) \cdot \left(\sum_{i=1}^{n} p_{ij}\right).$$