MJERENJE BRZINE INTERNET VEZE

Rezultati mjerenja pomoću računara(Laptop(Acer Aspire ES-15))-Wi-Fi

	Ping (ms)	Download (Mb/s)	Upload (Mb/s)
1. mjerenje	20	53.15	43.66
2. mjerenje	63	49.42	43.52
3. merenje	41	50.16	43,46
4. mjerenje	40	45.32	42,66
5. mjerenje	43	40.95	43.85
6. mjerenje	44	49.03	44.45

Pošto kod izmjerenih vrijednosti ne postoji ni jedna koja značajnije odstupa od ostalih, za statističku analizu mjerenja ću koristiti **aritmetičku sredinu** sa **intervalom povjerenja** od **90%.** U tom slučaju je $\alpha = 0,10$. Pošto je izvršeno 6 mjerenja, mora se koristiti t raspodjela sa 5 stepeni slobode, pa **je** $t_{1-\alpha/2; n-1} = t_{0,95; 5} = 2,015$.

Statistička analiza mjerenja za ping

Aritmetička sredina mjerenja za ping iznosi:

$$\overline{X}_p = \frac{251}{6} = 41,83 \text{ [ms]}$$

Suma kvadrata mjerenja potrebnih za računanje standardne devijacije:

$$\Sigma X_{Di}^2 = 20^2 + 63^2 + \dots + 44^2 = 400 + 3969 + 1681 + 1600 + 1849 + 1936 = 12,435$$

Standardna devijacija mjerenja za ping iznosi:

$$(20 - 41.83)^2 = 481.25$$

$$(63 - 41.83)^2 = 471.89$$

$$(41 - 41.83)^2 = 0.6889$$

$$(40 - 41.83)^2 = 3.37$$

$$(43 - 41.83)^2 = 1.3729$$

$$(44 - 41.83)^2 = 4.7389$$

$$S_p = \sqrt{\frac{963.26}{6-1}} = 13.87[ms]$$

Granice intervala povjerenja za ping:

$$C_1 = \overline{X}_p - t_{0,95;5} * \frac{S_p}{\sqrt{n}} = 41,83 - 2,015 * \frac{13,87}{\sqrt{6}} = 40 [ms]$$

$$C_2 = \bar{X}_p + t_{0,95;5} * \frac{S_p}{\sqrt{n}} = 41,83 + 2,015 * \frac{13,87}{\sqrt{6}} = 43.7[ms]$$

Zaključak je da postoji vjerovatnoća od 90% da se prava srednja vrijednost pinga nalazi u intervalu (40, 43.7).

Statistička analiza mjerenja za download

Aritmetička sredina mjerenja za download iznosi;

$$\overline{X}_d = \frac{288.03}{6} = 48.005 [Mb/s]$$

Standardna devijacija mjerenja za download iznosi:

$$(53.15-48.005)^2 = 26.46$$

$$(49.42-48.005)^2 = 2.003$$

$$(50.16-48.005)^2 = 4.646$$

$$(45.32-48.005)^2 = 7.213$$

$$(40.95-48.005)^2 = 49.721$$

$$(49.03-48.005)^2 = 1.050$$

$$S_d = \sqrt{\frac{91.093}{6-1}} = \sqrt{18.2186} = 4.27 [Mb/s]$$

Granice intervala povjerenja za download:

$$C_1 = \overline{X}_d - t_{0,95;5} * \frac{S_d}{\sqrt{n}} = 48,005 - 2,015 * \frac{4.27}{\sqrt{6}} = 44.498 \text{ [Mb/s]}$$

$$C_2 = \bar{X}_d + t_{0,95;5} * \frac{S_d}{\sqrt{n}} = 48.005 + 2,015 * \frac{4.27}{\sqrt{6}} = 51.512 \text{ [Mb/s]}$$

Zaključak je da postoji vjerovatnoća od 90% da se prava srednja vrijednost download brzine interneta nalazi u intervalu (44.498, 51.512).

Statistička analiza mjerenja za upload

Aritmetička sredina mjerenja za upload iznosi;

$$\bar{X}_u \frac{261.6}{6} = [43.6 \text{ Mb/s}]$$

Standardna devijacija mjerenja za upload iznosi:

$$(43.66-43.6)^2 = 0.0036$$

$$(43.52-43.6)^2 = 0.0064$$

$$(43.46-43.6)^2 = 0.0196$$

$$(42.66-43.6)^2 = 0.8836$$

$$(43.85-43.6)^2 = 0.0625$$

$$(44.45-43.6)^2 = 0.7225$$

$$S_u = \sqrt{\frac{1.6982}{6-1}} = 0.583 [Mb/s]$$

Granice intervala povjerenja za upload:

$$C_1 = \overline{X}u - t_{0,95;5} * \frac{S_u}{\sqrt{n}} = 43.6 - 2,015 * \frac{0,583}{2,45} = 43.119 \text{ Mb/s}$$

$$C_2 = \overline{X}_u + t_{0,95;5} * \frac{S_u}{\sqrt{n}} = 43.6 + 2,015 * \frac{0,583}{2,45} = 44.081 \text{ Mb/s}$$

Zaključak je da postoji vjerovatnoća od 90% da se prava srednja vrijednost upload brzine interneta nalazi u intervalu (43.119, 44.081).

Rezultati mjerenja pomoću mobilnog telefona(Samsung Galaxy -J600)

	Ping (ms)	Download (Mb/s)	Upload (Mb/s)
1. mjerenje	9	24.5	39.4
2. mjerenje	6	30.7	38.4
3. merenje	4	29.9	37.6
4. mjerenje	4	27.4	40.3
5. mjerenje	5	31.3	33.5
6. mjerenje	4	17.5	37.6

Kako bismo rezultate statističke analize mjerenja brzine interneta preko Wi-Fi veze na mobilnom telefonu mogli uporediti sa rezultatima dobijenim mjerenjem preko Wi-Fi veze na laptopu, koristiću takođe aritmetičku sredinu i sa intervalom povjerenja od 90%.

Statistička analiza mjerenja za ping

Aritmetička sredina mjerenja za ping iznosi:

$$\overline{X}_p = \frac{32}{6} = 5.33 \text{ [ms]}$$

Standardna devijacija mjerenja za ping iznosi:

$$(9-5.33)^2=13.51$$

$$(6-5.33)^2=0.45$$

$$(4-5.33)^2=1.77$$

$$(4-5.33)^2=1.77$$

$$(5-5.33)^2=0.11$$

$$(4-5.33)^2=1.77$$

$$S_p = \sqrt{\frac{19.38}{6-5}} = \sqrt{3.876} = 1,969 [ms]$$

Granice intervala povjerenja za ping:

$$C_1 = \bar{X}_p - t_{0,95;5} * \frac{S_p}{\sqrt{n}} = 5.33 - 2,015 * \frac{1,969}{2,45} = 3.707[ms]$$

$$C_2 = \bar{X}_p + t_{0,95;5} * \frac{S_p}{\sqrt{n}} = 5.33 + 2,015 * \frac{1,969}{2,45} = 6.953[ms]$$

Zaključak je da postoji vjerovatnoća od 90% da se prava srednja vrijednost pinga preko mobilnog telefona nalazi u intervalu (3.707, 6.953).

Statistička analiza mjerenja za download

Aritmetička sredina mjerenja za download iznosi;

$$\overline{X}_d = \frac{161.3}{6} = 26.88 \text{ [Mb/s]}$$

Standardna devijacija mjerenja za download iznosi:

$$(24.5 - 26.88)^2 = 5.6644$$

$$(30.7 - 26.88)^2 = 14.5924$$

$$(29.9 - 26.88)^2 = 9.1204$$

$$(27.4 - 26.88)^2 = 0.2704$$

$$(31.3 - 26.88)^2 = 19.5364$$

$$(17.5 - 26.88)^2 = 87.9844$$

$$S_d = \sqrt{\frac{137.1684}{6-1}} = \sqrt{27.43368} = 5.2369 [Mb/s]$$

Granice intervala povjerenja za download:

$$C_1 = \overline{X}_d - t_{0,95;5} * \frac{S_d}{\sqrt{n}} = 26.88 - 2,015 * \frac{5.2369}{2.45} = 22.573 \text{ [Mb/s]}$$

$$C_2 = \bar{X}_d + t_{0,95;5} * \frac{S_d}{\sqrt{n}} = 26.88 + 2,015 * \frac{5.2369}{2,45} = 31.187 \text{ [Mb/s]}$$

Zaključak je da postoji vjerovatnoća od 90% da se prava srednja vrijednost download brzine interneta preko mobilnog telefona nalazi u intervalu (22.573, 31.187).

Statistička analiza mjerenja za upload

Aritmetička sredina mjerenja za upload iznosi;

$$\overline{X}_u = \frac{226.8}{6} = 37.8 \text{ Mb/s}$$

Standardna devijacija mjerenja za upload iznosi:

$$(39.4 - 37.8)^2 = 2.56$$

$$(38.4 - 37.8)^2 = 0.36$$

$$(37.6 - 37.8)^2 = 0.04$$

$$(40.3 - 37.8)^2 = 6.25$$

$$(33.5 - 37.8)^2 = 18.49$$

$$(37.6 - 37.8)^2 = 0.04$$

$$S_u = \sqrt{\frac{27.74}{6-1}} = \sqrt{5.548} = 2.355 [Mb/s]$$

Granice intervala povjerenja za upload:

$$C_1 = \overline{X}u - t_{0,95;5} * \frac{S_u}{\sqrt{n}} = 35.8626 \text{ [Mb/s]}$$

$$C_2 = \bar{X}_u + t_{0,95;5} * \frac{S_u}{\sqrt{n}} = 39.7374 \text{ [Mb/s]}$$

Zaključak je da postoji vjerovatnoća od 90% da se prava srednja vrijednost upload brzine interneta nalazi u intervalu (35.8626, 39.7374).

Poređenje intervala povjerenja

Ping: Kada uporedimo interval povjerenja za ping preko Wi-Fi mreže (3.707, 6.953) sa pingom preko Samsung Galaxy J600 (2.79, 3.34), primjećujemo da je interval povjerenja za Wi-Fi uži od onog za Samsung Galaxy J600 (za 2,26 naspram 3,24). To ukazuje na veću preciznost mjerenja pinga preko Wi-Fi mreže u odnosu na Samsung Galaxy J600.

Download: Kada upoređujemo intervale za download brzinu preko Wi-Fi mreže i Samsung Galaxy J600, ne primjećujemo značajna odstupanja (37.59, 38.79) naspram (37.42, 38.62). Širina intervala je identična (1.2), a razlika između donjih i gornjih granica dva intervala je zanemarljiva.

Upload: Interval povjerenja za upload preko Samsung Galaxy J600 (35.8626, 39.7374) je značajno uži od intervala za Wi-Fi (43.119, 44.081), sa širinom prvog intervala od 0.06, a drugog od 1.3. Ovo ukazuje na gotovo identičnu srednju vrijednost upload brzine preko Samsung Galaxy J600 u odnosu na pravu srednju vrijednost.

Andrej Trožić 1196/20