Subfiles package example

Overleaf

1 Introduction

Chapter 1

Notation: I use a_i to denote the *i*th column of matrix A, and a_j to denote the *j*th row.

1.7 Find a formula for $\begin{bmatrix} 1 & 1 & 1 \\ & 1 & 1 \\ & & 1 \end{bmatrix}^n$, and prove it by induction.

Discussion. Call this matrix A, and consider what A does to B in the product BA: A places B's first column in the product's first column, B's column 1 + B's column 2 in the product's second column, and the sum of B's B columns in the product's third column.

$$BA = \begin{bmatrix} | & | & | & | \\ \mathbf{b}_1 & \mathbf{b}_1 + \mathbf{b}_2 & \mathbf{b}_1 + \mathbf{b}_2 + \mathbf{b}_3 \\ | & | & | & | \end{bmatrix}$$
$$A^2 = AA = \begin{bmatrix} | & | & | & | \\ \mathbf{a}_1 & \mathbf{a}_1 + \mathbf{a}_2 & \mathbf{a}_1 + \mathbf{a}_2 + \mathbf{a}_3 \\ | & | & | & | \end{bmatrix}$$

If the left matrix is itself A, we can guess that repeated application of A on the right will leave column 1 unchanged, so we suppose the first column of $A^n=(1,0,0)$. If this is correct, each right-multiplication by A adds (1,0,0) to (1,1,0), making column 2 of $A^n=(n,1,0)$. For column 3 of A^2 we add (1,0,0)+(1,1,0)+(1,1,1)=(3,2,1). For column 3 of A^3 we add (1,0,0)+(2,1,0)+(3,2,1), and we suspect that in A^n 's 3rd column, the first entry is the sum $1+2+\ldots+n$. So we guess the third column is $(\sum_{k=1}^n k,n,1)$. The sum of the first k natural numbers has a well-known closed form, n(n+1)/2, so we can now claim:

$$A^n = \begin{bmatrix} 1 & n & \frac{n(n+1)}{2} \\ & 1 & n \\ & & 1 \end{bmatrix}$$

Proof by induction.

For the base case we may use n = 1. Then $\frac{n(n+1)}{2} = 1(2)/2 = 1$ and the base case holds. Assuming this holds for some n, for the inductive step we would have:

$$A^{n+1} = A^n A$$
 associativity
$$= \begin{bmatrix} 1 & n & \frac{n(n+1)}{2} \\ & 1 & n \\ & & 1 \end{bmatrix} A$$

$$= \begin{bmatrix} 1 & n+1 & \frac{n(n+1)}{2} + n + 1 \\ & 1 & n+1 \\ & & 1 \end{bmatrix}$$

The diagonal and superdiagonal are as we claimed. The top-right entry can be rewritten as:

$$\frac{n(n+1)}{2} + n + 1 = \frac{n(n+1) + 2n + 2}{2} = \frac{n^2 + 3n + 2}{2} = \frac{(n+1)(n+2)}{2}$$

which is also as claimed. Thus the proof is complete.

1.14 Find infinitely many matrices B such that $BA = I_2$ when

$$A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \\ 1 & 1 \end{bmatrix}$$

and prove there is no matrix C such that $AC = I_3$.

Discussion. To find infinitely many solutions, we can find a vector that when added to B doesn't change the product BA. By the row picture of matrix multiplication, the rows of B specify linear combinations A rows to make the product BA. So we'll look for a linear combination of A rows that sum to $\mathbf{0}$. Then any multiple of this linear combination will also be $\mathbf{0}$, and can be added to B without changing BA. Technically, we seek a vector in A's left null space.

Consider the row space of A: there are three vectors in a 2-dimensional space so they must be linearly dependent. In fact we might see that the first row is the sum of the other two, and so $\mathbf{a}_1 - \mathbf{a}_2 - \mathbf{a}_3 = \mathbf{0}$. Therefore the row vector $\begin{bmatrix} 1 & -1 & -1 \end{bmatrix}$ is in A's left null space:

$$\lambda \begin{bmatrix} 1 & -1 & -1 \end{bmatrix} A = \mathbf{0}$$

Let $N = \begin{bmatrix} 1 & -1 & -1 \\ 1 & -1 & -1 \end{bmatrix}$, stacking this vector. Then:

$$NA = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
, and $(B + \lambda N)A = BA + \lambda NA = BA + 0 = BA$

Next we seek a matrix \tilde{B} such that $\tilde{B}A = I_2$. We could ignore A's third row and invert the 2-by-2 matrix $\begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$, its inverse is $\begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix}$. To make it the right size we append a column of zeros to get:

$$\tilde{B} = \begin{bmatrix} 2 & -3 & 0 \\ -1 & 2 & 0 \end{bmatrix}, \quad \tilde{B}A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_2$$

Now we can let $B = \tilde{B} + \lambda N$ for any choice of scalar λ , and we'll have:

$$BA = (\tilde{B} + \lambda N)A = \tilde{B}A = I_2$$

To prove that there A has no right-inverse C, observe that A has 2 linearly independent columns and a 3-dimensional codomain. By rank-nullity, A is not full-rank and cannot produce I_3 .

1.15 With A arbitrary, determine the products $e_{ij}A$, Ae_{ij} , e_jAe_k , $e_{ii}Ae_{jj}$, and $e_{ij}Ae_{k\ell}$

Discussion. Note that Artin defines e_{ij} as a 'unit matrix', a matrix with a 1 at the (i, j) coordinate and 0 elsewhere.

• $e_{ij}A$: since e_{ij} is multiplying A on the left, it is making linear combinations of A's rows. Since it only has a 1 in column j it extracts the jth row of A and puts in the ith row of the product, which is 0 everywhere else.

$$e_{ij}A = i \begin{bmatrix} j \\ 1 \end{bmatrix} \begin{bmatrix} - & \mathbf{a}_1 & - \\ & \vdots \\ - & \mathbf{a}_j & - \\ & \vdots \\ - & \mathbf{a}_n & - \end{bmatrix} = i \begin{bmatrix} - & \mathbf{a}_j & - \\ - & \mathbf{a}_j & - \end{bmatrix}$$

• Ae_{ij} : Note that the jth column of e_{ij} is also the ith basis vector e_i . Multiplying A by a basis vector e_i simply extracts the ith column from A: $Ae_i = \mathbf{a}_i$. Next, consider that in e_{ij} there are j-1 columns of $\mathbf{0}$ before the \mathbf{e}_j column. So Ae_{ij} is a matrix with \mathbf{a}_i in the jth column and 0's everywhere else.

$$Ae_{j} = \begin{bmatrix} \begin{vmatrix} & & & & & \\ & \mathbf{a}_{1} & \dots & \mathbf{a}_{n} \\ & & & \end{vmatrix} \begin{bmatrix} \begin{vmatrix} & & \\ & e_{i} \\ & & \end{vmatrix} \end{bmatrix}$$

$$\begin{bmatrix} & & & \\ & \mathbf{a}_{i} \\ & & \end{vmatrix} \end{bmatrix}$$

$$\begin{bmatrix} & & & \\ & \mathbf{a}_{i} \\ & & \end{bmatrix}$$

$$\begin{bmatrix} & & & \\ & \mathbf{a}_{i} \\ & & & \end{bmatrix}$$

$$Ae_{ij} = \begin{bmatrix} \begin{vmatrix} & & & \\ & \mathbf{a}_{1} & \dots & \mathbf{a}_{n} \\ & & & \end{vmatrix} \end{bmatrix} \begin{bmatrix} & & & \\ & & & \\ & & & \end{bmatrix}$$

$$\begin{bmatrix} & & & \\ & \mathbf{a}_{1} & \dots & \mathbf{a}_{n} \\ & & & \end{vmatrix} \end{bmatrix} \begin{bmatrix} & & & \\ & & & \\ & & & \end{bmatrix}$$

Alternatively, we can write $Ae_{ij} = (e_{ij}^{\top}A^{\top})^{\top} = (e_{ji}A^{\top})^{\top}$ and use the previous result: $e_{ji}A^{\top}$ places the *i*th row of A^{\top} in the *j*th row of the product, then the transpose $(e_{ji}A^{\top})^{\top}$ has the *i*th row of A in the *j*th column (and zeros everywhere else).

- e_jAe_k : the product e_jA is not defined for an arbitrary A. Suppose e_j is $m \times 1$, then for e_jA to be defined A must have the shape $1 \times n$. Then e_k must be $n \times 1$ for the product e_jAe_k to be defined. It would be very unconventional for e_j and e_k to have different shapes, but nevertheless Ae_k would be the single entry matrix $[a_{1k}]$, which then multiplies e_j like a scalar to produce $a_{1k}e_j$. In case Artin intended the product to read $e_j^{\top}Ae_k$, the answer would be that $e_j^{\top}A$ extracts the jth row of A, then multiplying by e_k extracts the kth component of that row: $e_j^{\top}Ae_k = a_{jk}$
- $e_{ii}Ae_{jj}$: using previous results, Ae_{jj} has the effect of zeroing out A except for the jth column. Multiplying this by e_{ii} on the left zeros out everything but the ith row, which leaves only a_{ij} and zeros everywhere else: $e_{ii}Ae_{jj} = a_{ij}e_{ij}$.
- $e_{ij}Ae_{k\ell}$: the product $Ae_{k\ell}$ is a matrix with \mathbf{a}_k in the ℓ th column and zeros everywhere else. Multiplying this by e_{ij} on the left takes the jth component of this column, a_{jk} , and places it in the ith row of the product, with zeros everywhere else. Therefore we have only a_{jk} in the (i,ℓ) entry, or $a_{jk}e_{i\ell}$.

Exercises from 1st edition

1.1.16 A square matrix A is called *nilpotent* if $A^k = 0$ for some k > 0. Prove that if A is nilpotent then I + A is invertible.

Discussion

If I + A is invertible then its inverse is some matrix $(I + A)^{-1}$. If we consider this a function of A then we find that it is infinitely differentiable and we might attempt to evaluate its Maclaurin series. Note the resemblance to a geometric series:

$$f(A) = (I + A)^{-1} = I - A + A^2 - A^3 + \dots$$

Since A is nilpotent all powers of A from k onwards are 0, so this is really a finite sum:

$$(I+A)^{-1} = I - A + A^2 - \dots (-1)^{k-1} A^{k-1}$$

We'll assume Artin meant that k is the *lowest* integer such that $A^k = \mathbf{0}$.

Proof

We check if it inverts I + A, and indeed it does:

$$(I+A)(I-A+A^2-\dots(-1)^{k-1}A^{k-1})$$

$$= (I(I-A+A^2-\dots(-1)^{k-1}A^{k-1})) + (A(I-A+A^2-\dots(-1)^{k-1}A^{k-1})).$$

$$= I+A-A+A^2-A^2+\dots(-1)^{k-1}A^{k-1}+(-1)^{k-2}A^{k-1}+0$$

$$= I$$

which confirms that $I + A - A^2 + \dots + (-1)^{k-1}A^{k-1}$ is indeed the inverse of I + A.

Chapter 2

2 Section 1

1. Let S be a set. Prove that the law of composition defined by ab = a for all a, b in S is associative.

Solution: use algebra to demonstrate order of groupings doesn't matter We'll show that $a \circ (b \circ c) = (a \circ b) \circ c$. For any $a, b, c \in S$, the composition $a \circ (b \circ c) = a \circ b = a$. Also $(a \circ b) \circ c = a \circ c = a$. Therefore this composition is associative.

Takeaway: projection is associative.

2. . Prove the properties of inverses that are listed near the end of the section.

The properties are:

• If an element a has both a left inverse ℓ and a right inverse r, then the left inverse and the right inverse are equal.

Solution: use algebra to show equality. We'll use algebra to show that $\ell = r$. Given $a\ell = 1$, multiply both sides by r. This gives $\ell ar = 1r = r$. Using associativity we have $\ell(ar) = r$. But since ar = 1, as r is a right inverse, this simplifies to $\ell = r$.

• If a is invertible, its inverse is unique. Solution: assume there are multiple inverses and show they are equal.

Suppose a is invertible. This means there exists at least one inverse a^{-1} . Let b, c be other, possibly different inverses for a. Then

$$ca = ba \implies caa^{-1} = baa^{-1} \implies c = b$$

showing that b = c.

• Inverses multiply in the opposite order: $(ab)^{-1} = b^{-1}a^{-1}$.

Solution: use algebra to demonstrate the property holds.

This requires that a and b individually have inverses. Using associativity:

$$ab(b^{-1}a^{-1}) = a(bb^{-1})a^{-1} = a1a^{-1} = aa^{-1} = 1$$

 \bullet An element a may have a left inverse or a right inverse, though it is not invertible.

Solution: show an example

• Let \mathbb{N} denote the set $\{1, 2, 3, \ldots\}$, and let $s : \mathbb{N} \to \mathbb{N}$ be the *shift* map function defined by s(n) = n + 1. Prove that s has no right inverse, but that it has infinitely many left inverses. Solution: explore the function's properties and form a proof.

Suppose s has a right inverse t. Then t must be a function from \mathbb{N} to \mathbb{N} such that s(t(n)) = n. We can also write this as t(n) + 1 = n. This clearly works if t(n) = n - 1. However if n = 1 then n - 1 is not in the target set \mathbb{N} . In this sense s cannot have a right inverse.

If s has a left inverse then t(s(n)) = n for all n. I.e. t(n+1) = n. We can define t(n) = n-1 and since t can never receive a number lower than 2 as input, we don't have the problem before of t(n) mapping out of \mathbb{N} . However, t must still be defined on the entire set \mathbb{N} , so we can map 1 to any natural number we like. For example we could have t_1 which maps 1 to 1, t_{29} which maps 1 to 29, etc. In this sense each t_k is a left inverse of s and there are infinitely many different ones, one for each natural number.

3 Section 2

- 2.1 First
- 2.2 Second
- 2.3 third
- 2.4 fourth
- 2.5 In the definition of a subgroup, the identity element in H is required to be the identity of G. One might require only that H have an identity element, not that it need be the same as the identity of G. Show that if H has an identity at all, then it is the identity of G. Show the analogous statement is true for inverses.

Solution: isolate the essential difference between the objects then show they must be equal. Suppose $H \leq G$ and e is the identity of H. Then for any $h \in H$, eh = he = h. Now take some $g \in G$ that is not in H (if there is no such g then H = G and e is the identity in G, as the group identity is unique). Let eg = g'. Perhaps $g \neq g'$ and e is not the identity in G. However, using associativity:

shows hg = hg'. We apply the cancellation law to get g = g'. That means eg = g for any $g \in G$ not in H and e is already the identity for H. Therefore e behaves as the identity in G as well, and since group identities are unique, e must be the identity of G.

For inverses, suppose $h \in H$ has an inverse h^{-1} in H but a possibly different inverse $j \in G$. Then in G, $hh^{-1} = hj$ and by the cancellation law $h^{-1} = j$.