08,03

Энтальпия образования дефектов Шоттки в полупроводниках

© И.В. Горичок

Прикарпатский национальный университет им. Васыля Стэфаныка, Ивано-Франковск, Украина

E-mail: goritchok@rambler.ru

(Поступила в Редакцию 1 ноября 2011 г. В окончательной редакции 11 января 2012 г.)

Проведен расчет энтальпии образования дефектов Шотки в кристаллах соединений A^2B^6 , A^3B^5 и A^4B^6 . Для этого применен метод, основанный на использовании потенциалов парного взаимодействия Ми–Ленарда–Джонса, параметры которого определены на основе экспериментальных данных о температуре Дебая, параметре Грюнайзена, коэффициенте Пуассона, упругих постоянных и модуле всестороннего сжатия. Полученные значения энтальпии образования согласуются с известными литературными данными и могут быть использованы для расчета концентраций этих дефектов в кристаллах.

1. Введение

Вакансии в полупроводниках относятся к важнейшим точечным дефектам, поскольку они практически всегда присутствуют в кристаллах и в значительной степени определяют их термодинамические и электрические свойства. Именно поэтому определение энтальпии образования h этих дефектов имеет большое практическое значение.

Существующие методы расчета значений *h* в большинстве случаев могут быть реализованы исключительно с использованием ЭВМ, поскольку они основаны преимущественно на решении уравнений Хартри-Фока-Рутана. Но несмотря на значительный прогресс в развитии ЭВМ, некоторые задачи теории дефектов все же остаются труднорешаемыми, а иногда и вообще практически нерешаемыми в рамках используемых приближений. Поэтому поиск относительно простых способов аналитического определения энтальпии образования дефектов является актуальным.

В работах [1,2] был предложен метод расчета энтальпии образования дефектов Шоттки в ионных кристаллах с использованием потенциалов парного взаимодействия. Цель настоящей работы — применение этого метода для определения энтальпии образования дефектов Шоттки в полупроводниковых кристаллах с неионным типом связи.

2. Метод расчета энтальпии образования дефектов

Согласно [2], энтальпия образования дефекта Шоттки определяется как

$$h_S = E_S + \frac{\alpha_p T D a b}{3(b-a)} \Big(K_S X^b - X^a \Big), \tag{1}$$

где

$$E_S = \frac{D}{b-a} \left(aK_S X^b - bX^a \right),\tag{2}$$

$$K_S = 1 + \frac{5b(b+1)}{16},\tag{3}$$

$$X = \left(1 + \frac{\alpha_p T}{3}\right)^{-1}. (4)$$

Здесь α_p — коэффициент теплового расширения, D, a, b — параметры потенциала парного взаимодействия Ми-Ленарда-Джонса, описывающего взаимодействие ближайших соседей

$$W(r) = \frac{D}{b-a} \left[a \left(\frac{r_0}{r} \right)^b - b \left(\frac{r_0}{r} \right)^a \right],\tag{5}$$

где r_0 — координата минимума потенциала, которую для кристаллов можно принять равной наименьшему расстоянию между атомами разного сорта.

Параметр b определяется по формуле [3]

$$b = 6\gamma \left[1 - \left\{ \frac{8D}{k\theta} - 2 \right\}^{-1} \right] - 2 \approx 6\gamma - 2, \tag{6}$$

где γ и θ — параметр Грюнайзена и температура Дебая. Для определения величины a использованы три формулы [3,4], различающиеся набором экспериментальных параметров, необходимых для ее расчета:

$$a = b \frac{\Gamma}{K_R + \Gamma},\tag{7}$$

где

$$K_R = \frac{h^2}{4k\pi^2 r_s^2 M}, \quad \Gamma = \frac{144}{5k_B} \frac{\theta_0}{b(b+1)} \frac{k\theta_0}{8D},$$
 (8)

M — масса атома, k_n — координационное число;

$$a = B \frac{3\pi r_0^3}{k_n k_v b D},\tag{9}$$

где B — модуль всестороннего сжатия, k_y — коэффициент упаковки;

$$a = -\frac{(\mu + 1)}{(\mu - 1)} \frac{6MV_L^2}{bk_n D},\tag{10}$$

где μ — коэффициент Пуассона, V_L — продольная скорость звука.

Параметры кристаллов и энтальпии образования де	фектов Шоттки в $A^{2}B^{6}$, $A^{3}B^{5}$ и $A^{4}B^{6}$	(данные [5-27] и настоящей работы)
---	--	------------------------------------

Параметр	ZnS	ZnTe	CdS	CdTe	GaAs	GaSb	PbS	PbTe
D, eV	6.36[6]	4.56 [6]	5.68 [6]	4.12 [6]	6.52 [6]	5.92 [6]	5.82 [5]	4.56 [5]
α, K^{-1}	$6.14 \cdot 10^{-6} \ [7]$	$6.5 \cdot 10^{-6} [8]$	$8.5 \cdot 10^{-6}$ [7]	$4.9 \cdot 10^{-6}$ [7]	$5.9 \cdot 10^{-6} [9]$		$20.3 \cdot 10^{-6} [5]$	$19.8 \cdot 10^{-6} [5]$
C_{11} , GPa (300 K)	98.1 (100.6) ¹	71.1	73.3	53.5 (56.0) ¹	117.6	88.39	127	107
C_{12} , GPa (300 K)	62.7 (64.8) ¹	40.7	50.9	36.5 (38.7) ¹	52.68	40.33	29.8	7.7
C_{44} , GPa $(300\mathrm{K})$	44.83 (45.7) ¹	31.3	30.2	$20.44 (21.0)^1$	59.65	43.16	24.8	13.0
	[11]	[10]	[10]	[11]	[10]	[10]	[6]	[6]
B, GPa (300 K)	83.04 [12]	56.02 [12]		47.76 [12]			62.8 [13]	39.8 [13]
							54.6 ¹ [13]	39.6 ¹ [13]
μ (300 K)	0.38 [13]	0.36 [13]	0.40 [13]	0.41 [13]	0.31 [13]	0.31 [13]	0.19 [13]	0.67 [13]
	$334 \pm 6 \ [11]^1$	250^2 [8]	250 ¹ [15]	$161 \pm 41 \; [11]$	275 ¹ [18]		149 ¹ [20]	127 ¹ [20]
θ , K (300 K)			300 [15]		355 [19]	250 [19]	227^3 [5]	125 ³ [5]
		$258.7(\theta_{LO})$ [14]	$434.8(\theta_{LO})[16]$	$220(\theta_{\mathrm{LO}})[17]$	$408(\theta_{LO})$ [9]	$336(\theta_{LO})$ [9]		
γ (300 K)	$0.21(\gamma_{TA})$ [21]				0.52 [10]		2.52 [12]	1.96 [12]
	$1.33(\gamma_{TA})$ [21]						2.50 [12]	2.18 [12]
	2.33^{4}	2.19^4	2.53^{4}	2.54^{4}	1.87^{4}	1.89^{4}	1.044	0.27^{4}
	2.41 ⁵	2.22^{5}	2.63 ⁵	2.74 ⁵	1.83 ⁵	1.835	1.24 ⁵	1.94 ⁶
a (T=0 K) (7)	0.54	1.10	0.55	0.25	0.72		0.30	0.58
$b (T=0 K) (6)$ $h_S+D, eV (7)$	12.26 8.49	11.13 8.67 ²	13.19 7.86	13.27 6.16	9.23 8.99		13.12 6.15	9.76 5.36
$(T=0 \text{ K}) \qquad (7)$	0.49	8.07	7.80	0.10	0.99		5.93	4.86
(10)	9.84			7.86			_	
$h_S + D, \text{eV}$ (7)	0.07	9.01	9.45	8.82	11.72	9.69	7.83^3	1063
$(T = 300 \mathrm{K})$ (9) (10)	8.86 9.7	7.54 8.27	9.03	7.21 7.66	11.03	9.98	6.10^3 6.16^3	4.86^{3}
1 '								4 42 [22]
h_S , eV	13.13 [22]	8.03 [22]	10.35 [22]	6.96 [22]	9.90 [22]	9.16 [22]	9.24 [22]	4.42 [22]
(литературные)				5.91 [23]	10.10 [25]		7.35 [5]	4.322[26]
данные	9.98 [27]		9.22 [27]	9.00 [24]	8.50 [25]			

 $^{^{1}}$ Значение коэффициентов при $T=0\,{
m K}.$

3. Анализ результатов и обсуждение

Результаты расчета энтальпии образования дефектов Шоттки при T=0 и 300 К представлены в таблице. Для сравнения полученных значений с литературными данными к h_S необходимо прибавить величину D [28], в результате чего получим суммарную энтальпию образования изолированных катионной и анионной вакансий H_S . Наименьшей является энтальпия образования дефектов Шоттки в теллуриде и сульфиде свинца, а наибольшей — в арсениде и антимониде галлия. Большинство полученных значений удовлетворительно согласуется с известными литературными данными.

На результат расчета параметра a по формуле (7) существенно влияет выбор значений температуры Дебая и параметра Грюнайзена, что также отмечено в [29–32].

Для вычисления параметра Грюнайзена γ применены формулы [33], которые дают возможность определить эту величину, используя известные упругие постоянные C_{ij} или коэффициент Пуассона μ ,

$$\gamma = \frac{9(V_L^2 - (4/3)V_T^2)}{2(V_L^2 + 2V_T^2)},\tag{11}$$

$$\gamma = \frac{3}{2} \left(\frac{1+\mu}{2-3\mu} \right). \tag{12}$$

 $^{^{2}}$ Значение коэффициентов при $T=80\,\mathrm{K}.$

 $^{^{3}}$ Значение коэффициентов при $T=200\,{
m K}.$

⁴ Рассчитано по формуле (11).

⁵ Рассчитано по формуле (12).

⁶ Рассчитано по формуле(14).

Здесь V_L и V_T — продольная и поперечная компоненты скорости звука,

$$V_{L} = \left[\frac{C_{11} + 2C_{12} + 4C_{44}}{3\rho}\right]^{\frac{1}{2}}, V_{T} = \left[\frac{C_{11} - C_{12} + C_{44}}{3\rho}\right]^{\frac{1}{2}},$$
(13)

где ρ — плотность.

Для теллурида свинца, который характеризуется значением $C_{12}-C_{44}<0$, при определении параметра Грюнайзена использована зависимость [10]

$$\gamma = \left[-(C_{12} - C_{44}) \frac{V_z}{27skT} \right]^{\frac{1}{2}}, \tag{14}$$

где V_z — объем элементарной ячейки, s — количество атомов в элементарной ячейке.

Из результатов расчета, представленных в таблице, видим, что обе формулы дают практически одинаковые значения параметра γ .

Используя для вычисления γ коэффициенты C_{ij} , определенные при 0 и 300 K, мы установили, что температурная зависимость параметра Грюнайзена является слабой и при расчетах ею можно пренебречь. Например, для сульфида цинка при T=0 K параметр $\gamma=2.33$, а при T=300 K — $\gamma=2.37$, что практически не влияет на результат расчета h_S .

Для оценки значения температуры Дебая теллуридов цинка и кадмия при $300\,\mathrm{K}$ была использована парциальная температура Дебая продольных оптических фононов θ_{LO} . На примере CdS, GaAs и GaSb видим, что такая оценка дает несколько завышенное значение θ , поэтому и энергии образования дефектов Шоттки при $T=300\,\mathrm{K}$, рассчитанные по формуле (7) будут лишь приблизительными величинами.

При использовании формул (9), (10) для определения h_S выбор значения температуры Дебая не является существенным, поскольку θ не входит явно в эти формулы, а параметр b практически от нее не зависит. Таким образом, при известных температурных зависимостях модуля всестороннего сжатия B и упругих постоянных C_{ij} по формулам (9), (10) можно определить $h_S(T)$ без учета температурной зависимости температуры Дебая. В результате выполнения такого расчета для ZnS, CdTe, PbS, PbTe было установлено, что изменение энтальпии образования дефекта Шоттки с изменением температуры намного меньше, чем следует из результатов вычисления по формуле (7).

Сравнивая полученные значения h_S+D с литературными данными, следует обратить внимание на то, что рассчитанные в [22] энтальпии образования вакансий для сульфидов цинка, кадмия и свинца, как это отмечено авторами, являются завышенными. Также энтальпия образования дефекта Шоттки в сульфиде свинца, взятая из работы [5], использовалась авторами для моделирования дефектной структуры кристаллов при высоких температурах, поэтому ее необходимо сравнивать с полученным значением h_S+D при $T=300\,\mathrm{K}$.

Также следует отметить, что используемая в настоящей работе теория расчета энтальпии образования дефектов Шоттки разрабатывалась авторами [2] для ионных кристаллов, где основными дефектами являются именно вакансии анионной и катионной подрешеток [34], которые и определяют температурные зависимости основных параметров кристалла (α_p , C_{ij} , B). В ковалентных кристаллах на параметры, которые используются для определения h_S , кроме вакансий могут оказывать влияние также межузловые атомы и различные комплексы, концентрации которых (особенно при высоких температурах) являются значительными [35]. Таким образом, результаты расчетов h_S при T>0 К могут иметь значительную погрешность для кристаллов, в которых дефекты Шоттки не являются доминирующими.

4. Выводы

- 1. Определены параметры Грюнайзена и параметры парного потенциала Ми–Ленарда–Джонса для полупроводниковых кристаллов A^2B^6 , A^3B^5 и A^4B^6 .
- 2. Рассчитаны энтальпии образования дефектов Шоттки в полупроводниковых кристаллах, которые согласуются с известными литературными данными.
- 3. Установлено, что наименьшей является энтальпия образования дефектов Шоттки в кристаллах соединений A^4B^6 , с переходом к кристаллам соединений A^2B^6 и A^3B^5 она возрастает.

Список литературы

- [1] М.Н. Магомедов. ФТТ 34, 3718 (1992).
- [2] М.Н. Магомедов. ФТТ 34, 3724 (1992).
- [3] М.Н. Магомедов. ЖФХ 63, 2943 (1989).
- [4] М.Н. Магомедов. ЖФХ 61, 1003 (1987).
- [5] Д.М. Фреїк, В.В. Прокопїв, М.О. Галущак, М.В. Пиц, Г.Д. Матеїк. Кристалохімія і термодинаміка атомних дефектів у сполуках A_4B_6 . Плай, Івано-Франківськ (1999). 164 с.
- [6] У. Харрисон. Электронная структура и свойства твердых тел. Физика химической связи. Мир, М. (1983). 381 с.
- [7] Н.Н. Берченко, В.Е. Кревс, В.Г. Средин. Полупроводниковые твердые растворы и их применение / Под. ред. В.Г. Средина. Воениздат, М. (1982). 208 с.
- [8] Н.Х. Абрикосов, В.Ф. Банкина, Л.В. Порецкая. Полупроводниковые соединения, их получение и свойства. Наука, М. (1967). 176 с.
- [9] К.В. Шалимова. Физика полупроводников. Энергоатомиздат, М. (1985). 392 с.
- [10] В.П. Михальченко. ФТТ 45, 429 (2003).
- [11] Ю.Х. Векилов, А.П. Русаков. ФТТ 13, 1157 (1971).
- [12] Y. Zhang. X. Ke, C. Chen, J. Yang, P.R.C. Kent. Phys. Rev. B 80, 024 304 (2009).
- [13] Л.А. Сергеева. Изв. АН СССР. Неорган. материалы 16, 1346 (1980).
- [14] В.И. Соколов, Н.Б. Груздев, И.А. Фарина. ФТТ **45**, 1560 (2003).

1376 И.В. Горичок

[15] Физические величины. Справочник / Под ред. И.С. Григорьева, Е.З. Мейлихова. Энергоатомиздат, М. (1991). 1232 с.

- [16] В.И. Соколов, Н.Б. Груздев, Е.А. Широков, А.Н. Кислов. ФТТ 44, 33 (2002).
- [17] Н.В. Лугуева, С.М. Лугуев. Химия и компьютерное моделирование. Бутлеровские сообщения (приложение к спецвыпуску) 10, 200 (2002).
- [18] В.Ф. Мастеров, К.Ф. Штельмах, В.П. Маслов, С.Б. Михрин, Б.Е. Саморуков. ФТП 37, 943 (2003).
- [19] В.И. Фистуль. Введение в физику полупроводников. Высш. шк., М. (1984). 352 с.
- [20] Л.Е. Шелимова. Изв. АН СССР Неорган. материалы 24, 1597 (1988).
- [21] Н.В. Лугуева, С.М. Лугуев. ФТТ 44, 251 (2002).
- [22] І.В. Горічок. Фізіка і хімія твердого тіла 12, 322 (2011).
- [23] S.-H. Wei, S.B. Zhang. Phys. Rev. B 66, 155211 (2002).
- [24] M.A. Berding. Phys. Rev. 60, 8943 (1999).
- [25] В.И. Байков, Э.И. Исаев, П.А. Коржавый, Ю.Х. Векилов, И.А. Абрикосов. ФТТ 47, 1762 (2005).
- [26] K. Hoang, S.D. Mahanti, P. Jena. Phys. Rev. B 76, 115 432 (2007).
- [27] В.В. Прокопів, І.В. Горічок. Фізіка і хімія твердого тіла. 7, 717 (2006).
- [28] В.Н. Чеботин. Физическая химия твердого тела. Химия, М. (1982). 120 с.
- [29] М.Н. Магомедов. ЖТФ 80, 9, 150 (2010).
- [30] М.Н. Магомедов. ФТТ 45, 33 (2003).
- [31] М.Н. Магомедов. ФТП 42, 1153 (2008).
- [32] М.Н. Магомедов. Письма в ЖТФ 27, 18, 36 (2001).
- [33] Д.С. Сандитов, В.В. Мантанов, М.В. Дармаев, Б.Д. Сандитов. ЖТФ **79**, *3*, 59 (2009).
- [34] І. Болеста. Фізіка твердого тіла. Видавн. центр ЛНУ ім. І. Франка, Львів (2003). 480 с.
- [35] А. Сакалас, З. Янушкявичюс. Точечные дефекты в полупроводниковых соединениях. Мокслас, Вильнюс (1988). 153 с.