Mathematical Statistical Physics

May 5, 2017

Contents

\mathbf{C}	ontents	1
1	Preliminary stuff	2
2	Ideal gases 2.1 Fermions	6

Chapter 1

Preliminary stuff

In the Heisenberg picture of quantum mechanics there are three core principles

- 1. Central objects are the observables, which ware realized as operators on a Hilbert space.
- 2. Time evolution acts on observables.
- 3. Auxiliary objects are the states, realized as vectors on the Hilbert space, used to compute expectation values of observables.

This is a notion heavily based on physical intuition. One can translate these three principles into a mathematical formulation in the following way.

- 1. The set of observables is a C^* -algebra \mathcal{A} , namely:
 - \mathcal{A} is an associative algebra.
 - \mathcal{A} is equipped with a norm such that $||A \cdot B|| \le ||A|| \cdot ||B||$.
 - it is complete with respect to $\|\cdot\|$.
 - equipped with an involution $*: A \to A$ such that

$$(A^*)^* = A (1.1)$$

$$(A + \lambda B)^* = A^* + \overline{\lambda}B^* \tag{1.2}$$

$$(AB)^* = B^*A^* \tag{1.3}$$

• C^* -property, i.e. $||A^*A|| = ||A||^2$.

Remarks 1.1. There is a lot to be said about C^* -algebras but we will keep it short.

- a) Observables $A \in \mathcal{A}$ are not required to be self-adjoint $(A = A^*)$.
- b) In the quantum mechanic setting \mathcal{H} is a Hilbert space, then one takes the "set of bounded operators" $\mathcal{A} = \mathcal{L}(\mathcal{H})$.
- c) Physically, there are unbounded observables. At least for self-adjoint ones A=A', one can consider equivalently the unitary correspondents $U=e^{itA}$, since there is a one-to-one correspondence by Stokes' theorem.

- d) \mathcal{A} does not need to have a $\mathbb{1}$.
- 2. A pair (A, τ) is a C^* -dynamical system if A is a C^* -algebra and $\mathbb{R} \ni t \mapsto \tau_t$ is a strongly continuous one-parameter group *-automorphism of A:
 - $\tau_t: \mathcal{A} \to \mathcal{A}$ such that

$$\tau_t(A^*) = (\tau_t(A))^* \tag{1.4}$$

$$\tau_t(A + \lambda B) = \tau_t(A) + \lambda \tau_t(B) \tag{1.5}$$

$$\tau_t(AB) = \tau_t(A)\tau_t(B) \tag{1.6}$$

$$\|\tau_t(A)\| = \|A\| \ . \tag{1.7}$$

- $\tau_0(A) = A; \tau_{t+s} = \tau_t(\tau_s(A))$.
- For any $A \in \mathcal{A}$, $\|\tau_{t+\varepsilon}(A) \tau_t(A)\| \to 0 (\varepsilon \to 0)$, i.e. no uniformity in A.

Remarks 1.2. τ is always generated by a *-derivation of the form

$$\delta_t: \mathcal{A} \longrightarrow \mathcal{A}$$
 (1.8)

$$A \longmapsto t^{-1}(\tau_t(A) - A) . \tag{1.9}$$

The domain is defined as $D(\delta) = \{A \in \mathcal{A} \mid \lim_{t \to 0} \delta_t(A) \text{ exists}\}\$ for which we then have

$$\delta: D(\delta) \longrightarrow \mathcal{A} \tag{1.10}$$

$$A \longmapsto \delta(A) = \lim_{t \to 0} \delta_t(A)$$
 (1.11)

Then δ is a closed, densely defined map such that

$$1 \ni D(\delta), \delta(1) = 0$$
$$\delta(AB) = \delta(A)B + A\delta(B)$$
$$\delta(A^*) = \delta(A)^*.$$

In fact, there is a one-to-one correspondence between τ_t and δ (Hille-Yoshida).

Remarks 1.3. In the quantum mechanic setting $\mathcal{A} = \mathcal{L}(\mathcal{H})$. The dynamics are generated by a $H \cdot H^*$ on \mathcal{H} , namely

$$\tau_t(A) = e^{itH} A e^{-itH} . (1.12)$$

It is a *-automorphism by unitarity of e^{-itH} and a strongly continuous group because $t \mapsto e^{-itH}$ is so. The *-derivation is given by

$$\delta(A) = \frac{\mathrm{d}}{\mathrm{d}t} \tau_t(A) \mid_{t=0} = i[H, A] ,$$

sometimes written as $\tau_t(A) = e^{i[H,\cdot]t}(A)$.

3. Finally, a state over A is a positive, normalized linear functional over A

$$\omega: \mathcal{A} \longmapsto \mathbb{C}$$

$$A \longrightarrow \omega(A) \in \mathbb{C} ,$$

such that $\omega(A^*A) \geq 0$ (positivity) and $\|\omega\| := \sup \frac{\|\omega(A)\|}{\|A\|} = 1$ (normalization). Remarks 1.4. Let us now try to establish some intuition

- The positivity of the quadratic function $\lambda \mapsto \omega((A + \lambda B)^*(A + \lambda B))$ implies a) $\omega(A^*B) = \omega(B^*A)$.
 - b) $|\omega(A^*B)|^2 \le \omega(A^*A)\omega(B^*B)$ (Cauchy-Schwarz inequality).
- In the quantum mechanic setting, any normalized vector $\psi \in \mathcal{H}$ defines a state by

$$\omega_{\psi}: \mathcal{A} \longrightarrow \mathbb{C}$$
 (1.13)

$$A \longmapsto \langle \psi, A\psi \rangle$$
 (1.14)

• Also any density matrix $\varrho = \varrho^* \in \mathcal{L}(\mathcal{H})$ defines a state by

$$\omega_{\varrho}: A \longrightarrow \mathbb{C} \tag{1.15}$$

$$A \longmapsto \omega_{\rho}(A) = \text{Tr}(\varrho A) \qquad (\text{Tr}(\varrho) = 1) .$$
 (1.16)

• If $\mathbb{1} \in \mathcal{A}$, then ω is normalized $\Leftrightarrow \omega(\mathbb{1}) = 1$.

It turns out that \mathcal{A} may have inequivalent representations, corresponding to thermodynamically different situations. A representation of the C^* -algebra A on a Hilbert-space \mathcal{H} is a *-morphisms $\pi: \mathcal{A} \longrightarrow \mathcal{L}(\mathcal{H})$, namely

$$\pi(A \cdot B) = \pi(A)\pi(B) \tag{1.17}$$

$$\pi(A + \lambda B) = \pi(A) + \lambda \pi(B) \tag{1.18}$$

$$\pi(A^*) = (\pi(A))^* . \tag{1.19}$$

 π_1, π_2 are called equivalent if there is a unitary map

$$U: \mathcal{H}_1 \to \mathcal{H}_2 \text{ s.t. } U\Pi_1(A) = \Pi_2(A)U \quad \forall A \in \mathcal{A} .$$
 (1.20)

Now given a π on \mathcal{H} and any normlized vector $\xi \in \mathcal{H}$, then the map

$$\omega_{\xi} : \mathcal{A} \longrightarrow \mathbb{C} \qquad \omega_{\xi}(A) = \langle \xi, \pi(A)\xi \rangle , \qquad (1.21)$$

defines a state on the algebra. Given a state ω on \mathcal{A} , there exists a $\mathcal{H}\omega$, a representation $\pi_{\omega}: \mathcal{A} \to \mathcal{H}\omega$ and a normalized $\Omega_{\omega} \in \mathcal{H}\omega$ such that

$$\omega(A) = \langle \Omega_{\omega}, \pi_{\omega}(A)\Omega_{\omega} \rangle$$
 "GNS construction". (1.22)

We will be mainly using two topologies

- 1. In $A: A_n \to A \text{ if } ||A_n A|| \to 0.$
- 2. In a representation where A is represented as $\mathcal{L}(\mathcal{H})$ there: uniform convergence, strong convergence, weak convergence apply as usual, outside of representations, these terms do not make sense.

Remarks 1.5. On the set of states over \mathcal{A} , designated by $\varepsilon(\mathcal{A})$, one has

- $\varepsilon(\mathcal{A})$ is a convex set. $\omega_1, \omega_2 \in \varepsilon(\mathcal{A})$ then $\omega = \lambda \omega_1 + \mu \omega_2 \in \varepsilon(\mathcal{A})$.
- $\varepsilon(\mathcal{A})$ is weakly-* compact (if \mathcal{A} has an identity), namely every sequence $(\omega_n)_{n\in\mathcal{N}}$ of states in \mathcal{A} has convergent subsequences (in the weak-*-topology) $\exists (n_k)_{k\in\mathcal{N}} : \omega_{n_k}(A) \to \overline{\omega}(A)$.

In particular: A sequence of finite volume thermal equilibrium states always have infinite-volume limit points. As we shall see later, the uniqueness of the infinity point can be takes as a characterization of phase transitions.

Chapter 2

Ideal gases

The ideal gas is a gas of non-interacting particles. The thermodynamic limit (TDL) is usually obtained by taking N particles in a finite volume $\Lambda \in \mathbb{R}^d$ and letting $N \to \infty$, $\Lambda \to \mathbb{R}^d$ such that

$$N/|\Lambda| \to \varrho$$
 with $0 < \varrho < \infty$. (2.1)

There are two types of indistinguishable particles in nature

- 1. Bosons have a symmetric wave function.
- 2. Fermions have an antisymmetric wavefunction.

A Hilbert space carrying an arbitrary number of particles is a Fock space built upon the one-particle Hilbert space. Action of the symmetric group S_n on $\otimes^N \mathcal{H}$.

$$P_{\sigma}: \psi_1 \otimes \cdots \otimes \psi_N \longmapsto \psi_1 \sigma^{-1}(1) \otimes \cdots \otimes \psi_{\sigma^{-1}(N)}, \qquad (2.2)$$

for any $\sigma \in S_n$ (check $P_{\sigma\sigma'} = P_{\sigma} \circ P_{\sigma'}$ and so on) and now

$$\mathcal{H}_{s/a}^{N} := \{ \psi \in \otimes^{N} \mathcal{H} : P_{\sigma} \psi = \delta(\sigma) \psi \text{ for any } \sigma \in S_{n} \}, \qquad (2.3)$$

$$\delta(\sigma) = \begin{cases} 1 & \text{if "s" (Bosons)} \\ -1 & \text{if "a" (Fermions)} \end{cases}$$
 (2.4)

Furthermore one has $\mathcal{H}_{s/a}^0 := \mathbb{C}$ with unit vector Ω , called "vacuum". Now the Fock space is given by

$$\mathcal{F}_{s/a}(\mathcal{H}) = \bigoplus_{N \in \mathcal{N} \cup \{0\}} \mathcal{H}_{s/a}^{N} , \qquad (2.5)$$

 $\psi \in \mathcal{F}_{s/a}(\mathcal{H})$ is represented as $(\psi^N)_{N \in \mathcal{N} \cup \{0\}} = (\psi^0, \psi^1, \ldots)$ where $\psi^N \in \mathcal{H}^N_{s/a}$ with the norm given by

$$\|\psi\|_{\mathcal{F}_{s/a}(\mathcal{H})}^2 = \sum_{N>0} \|\psi^N\|_{\otimes^N \mathcal{H}}^2 .$$
 (2.6)

- Remarks 2.1. This sum has to be convergent, thus the series elements have to decrease in value. Since hte proability to have more than M particles is given by taking the sum $\sum_{N\geq M}\|\psi^N\|_{\otimes^N\mathcal{H}}^2$. So Fock space does not describe the infinite particle state as for $M\to\infty$ the state would always be zero. One can only take the TDL.
 - The number operator is given by $(N\psi)^N = N\psi^N$ for any $N \in \mathcal{N}$.
 - Second quantization: If $A: \mathcal{H} \to \mathcal{H}$ is a linear operator then define $\Gamma(A), d\Gamma(A): \mathcal{H}^N_{s/a} \to \mathcal{H}^N_{s/a}$ for any N where

$$\Gamma(A) = A \otimes \dots \otimes A \tag{2.7}$$

$$d\Gamma(A) = \sum_{j=1}^{N} \mathbb{1} \otimes \cdots \otimes \mathbb{1} \otimes \underbrace{A}_{\text{j-th position}} \otimes \mathbb{1} \cdots \otimes \mathbb{1} , \qquad (2.8)$$

with which one has $N = d\Gamma(1)$. Also if A is self-adjoint then $\frac{d}{dt}\Gamma(e^{itA})|_{t=0} = id\Gamma(A)$ i.e. $\Gamma(e^{itA}) = e^{itd\Gamma(A)}$.

The core concepts of Fock spaces are those of annihilation and creation operators.

• Annihilation operators: For $\varphi \in \mathcal{H}$ one defines

$$b(\varphi): \otimes^N \mathcal{H} \longrightarrow \otimes^{N-1} \mathcal{H} \tag{2.9}$$

$$b(\varphi)(\psi_1 \otimes \ldots \otimes \psi_N) = \sqrt{N} \langle \varphi, \psi_1 \rangle_{\mathcal{H}} \psi_2 \otimes \ldots \otimes \psi_N$$
 (2.10)

$$b(\varphi)\Omega = 0. (2.11)$$

Since $b(\varphi): \mathcal{H}_{s/a}^N \to \mathcal{H}_{s/a}^{N-1}$ for any N, it extends to a map $b(\varphi): \mathcal{F}_{s/a}(\mathcal{H}) \to \mathcal{F}_{s/a}(\mathcal{H})$.

• Creation operators: For $\varphi \in \mathcal{H}$ one defines

$$b^*(\varphi)\psi^{N-1} = \frac{1}{\sqrt{N}} \sum_{k=1}^{N} (\pm 1)^{k-1} P_{\pi_k}(\varphi \otimes \psi^{N-1}) \text{ where } \pm \text{ is for } s/a \text{ and}$$
 (2.12)

$$\pi_k^{-1} = (k, 1, 2, \dots, k - 1, k + 1, \cdot, N)$$
 (2.13)

This can be interpreted as inserting a particle φ into each position and average over the possible positions, that's what P_{π_k} does, inserting into the k-th position. Proving this exactly is cumbersome.

Remarks 2.2. • $b^*(\varphi) = (b(\varphi))^*$

- $\varphi \mapsto b(\varphi)$ is anti-linear, i.e. $\varphi \mapsto b^*(\varphi)$ is linear.
- The following commutation law holds $Nb(\varphi) = b(\varphi)(N-1)$.
- If $U: \mathcal{H} \to \mathcal{H}$ is unitary: $\Gamma(U)b^*(\varphi)\Gamma(U)^* = b^*(U\varphi)$.

• The following commutation relations hold on $\mathcal{F}_s(\mathcal{H})$ (CCR)

$$[b(\varphi), b^*(\psi)] = \langle \varphi, \psi \rangle \mathbb{1}$$
 (2.14)

$$[b(\varphi), b(\psi)] = [b^*(\varphi), b^*(\psi)] = 0.$$
 (2.15)

• Canonical anticommutation relation on $\mathcal{F}_a(\mathcal{H})$ (CAR)

$$\{b(\varphi), b^{\dagger}(\psi)\} = \langle \varphi, \psi \rangle \mathbb{1}$$
 (2.16)

$$\{b(\varphi), b(\psi)\} = \{b^*(\varphi), b^*(\psi)\} = 0,$$
 (2.17)

where $\{A, B\} = AB + BA$.

2.1 Fermions

The (CAR) relations indicate that the fermionic creation/anihilation operators are a representation of the abstract algebra $CAR(\mathcal{H})$, defined as the C^* -algebra generated by $\mathbb{1}, a(\varphi), \varphi \in \mathcal{H}$ satisfying:

- $\varphi \mapsto a(\varphi)$ is antilinear.
- $\{a(\varphi), a(\psi)^*\} = \langle \varphi, \psi \rangle \; ; \; \{a(\varphi), a(\psi)\} = 0 = \{a(\varphi)^*, a(\psi)^*\}.$

Since

$$(a(\varphi)^*a(\varphi))^2 = a(\varphi)^* \{a(\varphi), a(\varphi)^*\} a(\varphi)$$
(2.18)

$$= \|\varphi\|^2 a(\varphi)^* a(\varphi) \mid \text{ by the C*-property}$$
 (2.19)

$$= ||a(\varphi)^* a(\varphi)||^2 = ||\varphi||^2 ||a(\varphi)^* a(\varphi)||$$
 (2.20)

$$\Rightarrow ||a(\varphi)^*|| = ||\varphi||, \qquad (2.21)$$

so that the map $\varphi \mapsto a(\varphi)^*$ is continuous.

Remarks 2.3. • If h is a pre-Hilbert space, with $\overline{h} = \mathcal{H}$, then $CAR(h) = CAR(\mathcal{H})$.

• $CAR(\mathcal{H})$ is unique up to *-isomorphisms.

Consider Thermal equilibrium in a finite volume $\Lambda \subset C\mathbb{R}^d$. Gibbs state at inverse temperature $0 < \beta < \infty$ and chemical potential $\mu \in \mathbb{R}$ is given by

$$w_{\beta,\mu}(A) := Z_{\beta,\mu}^{-1} \text{Tr}(e^{-\beta K_{\mu}} A) ,$$
 (2.22)

where $A \in CAR(\mathcal{H}_1)$ and $K_{\mu} = d\Gamma(H - \mu \mathbb{1}) = d\Gamma(H) - \mu \mathcal{N}$ and

$$Z_{\beta,\mu} = \text{Tr}(e^{-\beta K_{\mu}}) , \qquad (2.23)$$

wheneer $\exp(-\beta K_{\mu}) \in I_1(\mathcal{F}_a(\mathcal{H}_1))$ (trace-class operator).

Lemma 2.1. $\exp(-\beta H) \in I_1(\mathcal{H}_1) \Leftrightarrow \exp(-\beta K_{\mu}) \in I_1(\mathcal{F}_a(\mathcal{H}_a)) \forall \mu \in \mathbb{R}$.

Example 2.1. $\Lambda = [-L/2, L/2], \mathcal{H}_1 = L^2(\Lambda), H = -\Delta_L$.

<u>But</u> $-\Delta$ on \mathbb{R}^d has purely absolutely continuous spectrum so $\exp(\Delta)$ cannot be trace-class. Defining the activity Z as

$$Z = e^{\beta \mu} \,, \tag{2.24}$$

one can find the following relation

$$\exp(-\beta K_{\mu}) = \gamma(\exp(-\beta (H - \mu \mathbb{1}))) = Z\Gamma(\exp(-\beta H)) \tag{2.25}$$

$$e^{-\beta K_{\mu}}b^{\#}(\varphi) = zb^{\#}(e^{-\beta H}\varphi)e^{-\beta K_{\mu}}$$
, (2.26)

whereby the hashtag is a placeholder for nothing or dagger.

Proposition 2.1. If $\exp(-\beta H) \in I_1(\mathcal{H}_1)$, then the Gibbs states are given by

$$\omega_{\beta,\mu}(a^*(\varphi)a(\psi)) = \langle \psi, Ze^{-\beta H}(1 + Ze^{-\beta H})^{-1}\varphi \rangle \tag{2.27}$$

$$\omega_{\beta,\mu}(a^*(\varphi)) = 0 = \omega_{\beta,\mu}(a(\varphi)). \tag{2.28}$$

Proof. By Eq. (2.26) one has

$$\omega_{\beta,\mu}(a^*(\tilde{\varphi})a(\psi)) = Z_{\beta,\mu}^{-1} \text{Tr}(b^*(Ze^{-\beta H}\tilde{\varphi})e^{-\beta K_{\mu}}b(\varphi)) \mid \text{cyclicity of trace}$$
(2.29)

$$= \omega_{\beta,\mu}(a(\psi)a^*(Ze^{-\beta H}\tilde{\varphi})) \mid \text{use CAR}$$
 (2.30)

$$= -\omega_{\beta,\mu}(a^*(Ze^{-\beta H}\tilde{\varphi})a(\psi))\langle\psi, Ze^{-\beta H}\tilde{\varphi}\rangle$$
 (2.31)

$$\Rightarrow \omega_{\beta,\mu}(a^*((\mathbb{1} + Ze^{-\beta H})\tilde{\varphi})a(\psi)) = \langle \psi, Ze^{-\beta H}\tilde{\varphi} \rangle , \qquad (2.32)$$

and hence the first term of the claim, since $Ze^{-\beta H} > 0$ implies that $(\mathbb{1} + Ze^{-\beta H})$ is invertible.

If ψ is such that $\mathcal{N}\psi = N\psi$ (i.e. finite particle number) then

$$\langle \psi, e^{-\beta K_{\mu}} \psi \rangle = N^{-1} \langle \psi, e^{-\beta K_{\mu}} b(\varphi) \mathcal{N} \psi \rangle$$
 (2.33)

$$= N^{-1} \langle \psi, (\mathcal{N} + 1) e^{-\beta K_{\mu}} b(\varphi) \psi \rangle \tag{2.34}$$

$$= \frac{N+1}{N} \langle \psi, e^{-\beta K_{\mu}} b(\varphi) \psi \rangle \tag{2.35}$$

$$\Rightarrow \langle \psi, e^{-\beta K_{\mu}} \psi \rangle = 0. \tag{2.36}$$

Computing $\text{Tr}(e^{-\beta K_{\mu}}b(\varphi))$ in a basis such vectors proves the claim. Now: By a similar argument

$$\omega_{\beta,\mu}(a^*(\varphi_1)\cdots a^*(\varphi_n)a(\psi_m)\cdot a(\psi_1)) = \delta_{n,m}\det\left(\{\langle\psi_i,\varrho\psi_j\rangle\}_{i,j=1}^n\right), \qquad (2.37)$$

where
$$\rho = Ze^{-\beta H}(1 + Ze^{-\beta H})^{-1}$$
.

Remarks 2.4. The 2n-point function is expressed in terms of the 2-point function $\langle \psi, Ze^{-\beta H}(\mathbb{1} + Ze^{-\beta H})^{-1}\varphi \rangle$ called Gaussian state or quasi-free state.

Remarks 2.5. The crucial property used in this calculation, expressed in Eq. (2.26), is the KMS condition:

$$\omega_{\beta,\mu}(BA) = \omega_{\beta,\mu}(A \underbrace{\tau_{i\beta}(B)}_{e^{\beta K_{\mu}}Be^{-\beta K_{\mu}}}). \qquad (2.38)$$

Take the thermodynamic limit, which means here that $\mathcal{H} = L^2(\mathbb{R}^d)$, then one has to take the limit of the operators

$$(H\psi)(x) = (-\Delta\psi)(x) = (2\pi)^{-d/2} \int |\xi|^2 \hat{\psi}(\xi) e^{i\xi \cdot x} d\xi.$$
 (2.39)

How can one evaluate this? The dynamics on $CAR(\mathcal{H})$ are given by $\tau_t(a^{\#}(\varphi)) = a^{\#}(e^{-itH}\varphi)$. As one does per usual one takes the well understood finite case $f(-\Delta_L)$ which converges to $f(-\Delta)$ strongly for any bounded, continuous function f. This applies to e^{-itx} , $e^{-\beta x}$, $Ze^{-\beta x}(1+Ze^{-\beta x})^{-1}$ (for x>0).

Theorem 2.1. Let $\omega_{\beta,\mu}^2$ be the Gibbs state associated to $H_l = -\Delta_L$ on $CAR(\mathcal{H}_L)$. Then

$$\omega_{\beta,\mu}^L(A) \longrightarrow \omega_{\beta,\mu}(A) \qquad (L \to \infty) ,$$

for any $A \in CAR(\mathcal{H}_L)$ and any L, where $\omega_{\beta,\mu}$ is the quasi-free state over $CAR(\mathcal{H})$ with the two-point function

$$\omega_{\beta,\mu}(a^*(\varphi)a(\psi)) = (2\pi)^{-d/2} \int \overline{\psi(\xi)} \frac{Ze^{-\beta|\xi|^2}}{1 + Ze^{-\beta|\xi|^2}} \hat{\varphi}(\xi) d\xi . \tag{2.40}$$

Proof. It suffices to prove the statement for the two-point function. But this follows from the weak convergence of

$$Ze^{-\beta(-\Delta_L)}(\mathbb{1} + Ze^{-\beta(-\Delta_L)}) \xrightarrow{w} Ze^{-\beta(-\Delta)} \left(\mathbb{1} + Ze^{-\beta(-\Delta)}\right)^{-1}$$
, (2.41)

for a proof refer to exercise sheet 1.

Remarks 2.6. This theorem has obviously a lot of interesting implications, amongst other things

- Given β, μ , the limit of $\omega_{\beta,\mu}^L$ exists and it is unique and $\omega_{\beta,\mu}$ defines the thermal equilibrium state on $CAR(L^2(\mathbb{R}^d))$.
- Density of the free Fermi gas

$$\varrho(\beta,\mu) = \lim_{L \to \infty} L^{-d} \sum_{n \ge 1} \omega_{\beta,\mu}^L (\underbrace{a^{\dagger}(\psi_n)a(\psi_n)}_{\mathcal{N}})$$
 (2.42)

$$= (2\pi)^{d/2} \int \frac{Ze^{-\beta}|\xi|^2}{1 + Ze^{-\beta|\xi|^2}} d\xi , \qquad (2.43)$$

where $(\psi_n)_{n\in\mathcal{N}}$ is a basis of \mathcal{H}_L . This means that the momentum density distribution

$$0 \le \frac{Ze^{-\beta|\xi|^2}}{1 + Ze^{-\beta|\xi|^2}} \le 1 , \qquad (2.44)$$

and its limit as $\beta \to \infty$ (i.e. $T \to 0$)

$$\lim_{\beta \to \infty} \frac{1}{1 + e^{\beta(|\xi|^2 - \mu)}} = \begin{cases} 0 : & \text{if } |\xi|^2 > \mu \\ 1 : & \text{if } |\xi|^2 < \mu \end{cases}$$
 (2.45)

This is illustrated in Fig. 2.1.

Figure 2.1 Fermi-Dirac distribution [stolen; By Krishnavedala - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=15478733].

• $\omega_{\beta,\mu}$ having an infinite number of particles cannot be given by a vector or density matrix in $\mathcal{F}_a(L^2(\mathbb{R}^d))$. There is the famous Araki-Wyss representation associated to $\omega_{\beta,\mu}$, namely to $\varrho = \frac{Ze^{-\beta H}}{1+Ze^{-\beta H}}$.

$$H_{\varrho} = \mathcal{F}_a(\mathcal{H}) \otimes \mathcal{F}_a(\mathcal{H}) \qquad \omega_{\varrho} = \omega \otimes \omega$$
 (2.46)

$$\pi(a^*(\varphi)) = b^*(\sqrt{1-\varrho}\varphi) \otimes \mathbb{1} + (-\mathbb{1})^{\mathcal{N}} \otimes b(\sqrt{\varrho}\varphi) . \tag{2.47}$$

12 Chapter 2 Ideal gases

If the density is a projection, i.e. $\varrho = \varrho^2$ (for us that means $\beta = \infty$, as is clearly visible in Fig. 2.1., then the two Fock-spaces have the interpretation: particles \otimes antiparticles. Check $(\mathcal{H}_{\varrho}, \Omega_{\varrho}, T_{\varrho})$ is the GNS representation of $\omega_{\beta,\mu}$:

$$\langle \Omega_{\varrho}, \pi_{\varrho}(a^{*}(\varphi)a(\varphi))\Omega_{\varrho} \rangle = \langle \Omega \otimes \Omega, \left((-1)^{\mathcal{N}} \otimes b(\sqrt{\varrho}\varphi) \right) \left((-1)^{\mathcal{N}} \otimes b^{*}(\sqrt{\varrho}\psi) \right) \Omega \otimes \Omega$$
(2.48)

$$= \langle \Omega, b(\sqrt{\varrho}\varphi)b^*(\sqrt{\varrho}\psi)\Omega \rangle \tag{2.49}$$

$$= \langle \sqrt{\varrho}\psi, \sqrt{\varrho}\varphi \rangle + \langle \Omega, b^*(\sqrt{\varrho}\psi)b(\sqrt{\varrho}\varphi)\Omega \rangle \tag{2.50}$$

$$= \langle \psi, \varrho \varphi \rangle = \omega_{\beta,\mu}(a^*(\varphi)a(\varphi)) \tag{2.51}$$