PDelta-1

Title

P-Delta effect analysis of a beam

Description

A simply supported beam is subjected to three different types of transverse loads in conjunction with axial forces (mid-span point load, uniform load and two equal end moments)

Perform a P-Delta effect analysis and find the displacements and internal bending moments for each load case.

(a) A concentrated load and axial forces

(b) A uniform load and axial forces

(c) End bending moments and axial forces

Structural geometry and analysis model

Model

Analysis Type

2-D, P-Delta effect analysis

Unit System

in, lbf

Dimension

 $\begin{array}{lll} Length & L & = 100.0 \text{ in} \\ Critical load & P_{cr} & = 2383.0 \text{ lbf} \\ Relative displacement tolerance} & 0.001 \end{array}$

Element

Beam Element

Material

Modulus of elasticity $E = 29 \times 10^6 \text{ psi}$

Section Property

Area $A = 1.0 \text{ in}^2$ Moment of inertia $I_{yy} = 1/12 \text{ in}^4$

Boundary Condition

Nodes 1, 4 and 7; Constrain Dx and Dz. (Hinge supports) Nodes 3, 6 and 9; Constrain Dz. (Roller supports)

Analysis Case

In order to consider the P-Delta effect assume P is the 50 percent of the P_{cr} . $P=2383.0/2\ lbf$.

Load 1 - A concentrated load is applied at the mid-span of the beam in the -Z direction, $P_o = 100.0 \ lbf$

Load 2 – A uniform load is distributed over the entire span of the beam in the –Z direction, $\omega = 0.2$ lbf/in

 $\label{eq:Load_3-Bending} Load~3-Bending~moments~are~applied~to~both~ends~about~the~Y-axis~,$$M_o\!\!=\!\pm200~lbf\mbox{-in}~Maximum~number~of~iteration~for~the~P-Delta~effect~analysis=5$

Results

Displacements

	Node	Load	DX (in)	DY (in)	DZ (in)	RX ([rad])	RY ([rad])	RZ ([rad])
-	1	CASE1	0.000000	0.000000	0.000000	0.000000	0.052242	0.000000
	2	CASE1	-0.002054	0.000000	-1.704890	0.000000	0.000000	0.000000
	3	CASE1	-0.004109	0.000000	0.000000	0.000000	-0.052242	0.000000
	4	CASE1	0.000000	0.000000	0.000000	0.000000	0.006783	0.000000
	5	CASE1	-0.002054	0.000000	-0.214024	0.000000	0.000000	0.000000
	6	CASE1	-0.004109	0.000000	0.000000	0.000000	-0.006783	0.000000
	7	CASE1	0.000000	0.000000	0.000000	0.000000	0.007482	0.000000
	8	CASE1	-0.002054	0.000000	-0.208970	0.000000	0.000000	0.000000
	9	CASE1	-0.004109	0.000000	0.000000	0.000000	-0.007482	0.000000

Member Forces

	Elem	Load	Part	Axial (lbf)	Shear-y (lbf)	Shear-z (lbf)	Torsion (lbf·in)	Moment-y (lbf·in)	Moment-z (lbf·in)
•	1	CASE1	i	-1191.50	0.00	-50.00	0.00	0.00	0.00
	1	CASE1	1/4	-1191.50	0.00	-50.00	0.00	1132.84	0.00
	1	CASE1	2/4	-1191.50	0.00	-50.00	0.00	2265.69	0.00
	1	CASE1	3/4	-1191.50	0.00	-50.00	0.00	3398.53	0.00
	1	CASE1	j	-1191.50	0.00	-50.00	0.00	4531.38	0.00
	2	CASE1	i	-1191.50	0.00	50.00	0.00	4531.38	0.00
	2	CASE1	1/4	-1191.50	0.00	50.00	0.00	3398.53	0.00
	2	CASE1	2/4	-1191.50	0.00	50.00	0.00	2265.69	0.00
	2	CASE1	3/4	-1191.50	0.00	50.00	0.00	1132.84	0.00
	2	CASE1	j	-1191.50	0.00	50.00	0.00	0.00	0.00
	3	CASE1	i	-1191.50	0.00	-10.00	0.00	0.00	0.00
	3	CASE1	1/4	-1191.50	0.00	-7.50	0.00	173.13	0.00
	3	CASE1	2/4	-1191.50	0.00	-5.00	0.00	315.01	0.00
	3	CASE1	3/4	-1191.50	0.00	-2.50	0.00	425.63	0.00
	3	CASE1	j	-1191.50	0.00	0.00	0.00	505.01	0.00
	4	CASE1	i	-1191.50	0.00	0.00	0.00	505.01	0.00
	4	CASE1	1/4	-1191.50	0.00	2.50	0.00	425.63	0.00
	4	CASE1	2/4	-1191.50	0.00	5.00	0.00	315.01	0.00
	4	CASE1	3/4	-1191.50	0.00	7.50	0.00	173.13	0.00
	4	CASE1	j	-1191.50	0.00	10.00	0.00	0.00	0.00
		CASE1	i	-1191.50	0.00	0.00	0.00	200.00	0.00
	5	CASE1	1/4	-1191.50	0.00	0.00	0.00	262.25	0.00
	5	CASE1	2/4	-1191.50	0.00	0.00	0.00	324.49	0.00
		CASE1	3/4	-1191.50	0.00	0.00	0.00	386.74	0.00
	5	CASE1	j	-1191.50	0.00	0.00	0.00	448.99	0.00
	6	CASE1	i	-1191.50	0.00	0.00	0.00	448.99	0.00
	6	CASE1	1/4	-1191.50	0.00	0.00	0.00	386.74	0.00
		CASE1	2/4	-1191.50	0.00	0.00	0.00	324.49	0.00
	6	CASE1	3/4	-1191.50	0.00	0.00	0.00	262.25	0.00
	6	CASE1	j	-1191.50	0.00	0.00	0.00	200.00	0.00

Comparison of Results

Unit: in, lbf-in

Load type	Result	SAP2000	MIDAS/Civil	
Concentrated load	Vertical displacement	-1.7058	-1.7049	
	Bending moment	4532.428	4531.377	
Uniform load	Vertical displacement	-0.2141	-0.2140	
	Bending moment	505.127	505.010	
End moments	Vertical displacement	-0.2090	-0.2090	
	Bending moment	449.045	448.988	

References

Livesley, R. K., and Chandler, D. B., "Stability Functions for Structural Frameworks", Manchester University Press, UK, 1956.

"SAP90, A Series of Computer Programs for the Finite Element Analysis of Structures, Structural Analysis Verification Manual", Computer and Structures, Inc., 1992, Example 25.