

Universidad Autónoma de Querétaro

Facultad de Ingeniería

Ingeniería en Automatización

SDLR - LCD

M en C. Marcos Romo Avilés

- Las pantallas LCD utilizan cristales líquidos que se alinean eléctricamente para permitir o bloquear la luz y así crear imágenes. Estos cristales no emiten luz por sí mismos, por lo que las pantallas LCD necesitan una fuente de luz de fondo, como lámparas fluorescentes o LEDs.
- Vamos a trabajar con la LCD 1602

- Dentro del LCD no encontramos con $m \times n$ matrices, las más comunes son las de 16×2 .
- En cada matriz se puede mostrar diferentes valores alfanuméricos.
- Cada matriz de forma común tiene 7×5 puntos, aunque también las hay de 10×5 .

- Los pines 15 y 16 controlan el led de fondo para la visualización de los caracteres.
- De los pines 7 a 14 es el bus de entrada, a través de estos puedo mandar caracteres o instrucciones de operación.
- Los pines 1 y 2 corresponden a la alimentación de la LCD.
- El pin 3 modifica el contraste mediante el uso de un potenciómetro.
- El pin 4 permite identificar al control de la LCD si lo que está en la entrada corresponde a un comando o a un carácter. Si RS es 1 la LCD imprime el carácter de entrada y si RS es 0 la LCD toma la entrada como una instrucción.
- El pin 5 permite leer información de LCD o escribir información en la LCD. Si R/W es 0 se escribe en la LCD, por el contrario, si es 1 lee datos de la LCD.
- Finalmente, el pin 6 es el enable, se activa con flanco de bajada. Cuando sucede dicho evento verifica el valor de RS.

- Para ajustar el contraste se colocan las terminales externas de un potenciómetro entre VDD y VSS. Posteriormente se coloca la termina central a VO.
- La resistencia sugerida es entre 10k a 20k.

10) Write data to RAM

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	0	D7	D6	D5	D4	D3	D2	D1	D0

11) Read data from RAM

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	1	D7	D6	D5	D4	D3	D2	D1	D0

1) Clear display

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	0	0	1

Clear display

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	0	0	1

2) Return home

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	0	1	-

3) Entry mode set

-,	,								
RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	1	I/D	SH

Set the moving direction of cursor and display.

- Cuando I/D es alto, el cursor se mueve de derecha a izquierda. SH=1
- Cuando I/D es bajo el cursor se mueve de izquierda a derecha. SH=1

Display ON/OFF control

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	1	D	С	В

Control display/cursor/blink ON/OFF 1 bit register.

- Permite seleccionar si el mensaje, cursor o parpadeo se observan o no.
- Si D=1 el mensaje se despliega. D=0 el display se apaga, pero el mensaje permanece guardado en la memoria.
- C=1 el cursor se observa. C=0 el cursor desaparece.
- B=1 el cursor parpadea. B=0 el parpadeo del cursor desaparece.

Cursor or display shift

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	1	S/C	R/L	-	-

- Desplaza el cursor o display a la derecha o izquierda sin leer o escribir. No define donde se escribe el carácter.
- Si S/C = 0 y R/L=0 se mueve el cursor a la izquierda
- Si S/C = 0 y R/L=1 se mueve el cursor a la derecha
- Si S/C = 1 y R/L=0 Mueve todo el dispaly a la izquierda
- Si S/C = 1 y R/L=1 Mueve todo el dispaly a la derecha

Function set

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	1	DL	N	F	-	() = 1

- Fija los parámetros de operación, como el tamaño de interface, número de líneas de la LCD y el tamaño de la matriz del carácter.
- Cuando DL = 1 es un bus de 8 bits, con DL = 0 es un bus de 4 bits.
- Si N = 1 son para displays de dos filas, N = 0 es una fila.
- Con F = 0 configura matriz de 5×8 puntos, por otro lado, F = 1 es una matriz de 5×11 puntos.
- NOTA: Los caracteres se envían en formato ASCII.

COMANDO	MODO	VALOR HEXADECIMAL
CLEAR DISPLAY		01
RETURN HOME		02
ENTRY MODE SET	INCREMENTA POSICIÓN DERECHA	05
ENTRY WIODE SET	INCREMENTA POSICIÓN IZQUIERDA	07
	DIPSLAY ON, CURSOR OFF, BLINK OFF	0C
	DISPLAY OFF, CURSOR OFF, BLINK OFF	08
CONTROL DISPLAY	DISPLAY ON, CURSOR ON, BLINK OFF	0E
	DISPLAY ON, CURSOR OFF, BLINK ON	0D
	DISPLAY ON, CURSOR ON, BLINK ON	OF
	CURSOR IZQUIERDA	10
CURSOR O DISPLAY	CURSOR DERECHA	14
SHIFT	SMS IZQUIERDA	18
	SMS DERECHA	1C
SET		38

- La máquina de estados comienza en el estado SO aquí espera que el usuario inicie el proceso el cual se activa con ST. También indica que el sistema está listo para iniciar mediante la variable RDY. En este estado enable esta deshabilitado por lo que no importa el valor de RS o DATA.
- Se requieren dos estados para él envió de datos, ya que enable requiere pasar de 1 a 0 para que el valor de RS sea válido y a su vez se tome en cuenta los valores de DATA.
- Los estados del S1 al S6 configuran la LCD para su funcionamiento.
- Los estados del S7 al S26 envían el mensaje HOLA MUNDO, con los estados S13 y S14 representando el espacio entre palabras.
- El estado S27 es un estado de espera antes de regresar a S0.
- El reloj debe configurarse 1 MHz, en caso de no funcionar probar con un periodo de 50 ms

- Escribir los nombres de cada uno de los integrantes en la LCD, los cuales deben ser seleccionados mediante switches.
- Cuando ST este en 0, debe mostrarse el ultimo nombre seleccionado y no debe cambiar hasta que ST este en 1.