Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

	П
	П
	П
	И
	И
•	
	Ы

wqw37

ited States partment of griculture

Natural Resources Conservation Service

Washington Basin Outlook Report June 1, 2000

Basin Outlook Reports and Federal - State - Private Cooperative Snow Surveys

For more water supply and resource management information, contact:

Local Natural Resources Conservation Service Field Office

or Scott Pattee Water Supply Specialist Natural Resources Conservation Service 2021 E. College Way, Suite 214 Mt. Vernon, WA 98273-2873 (360) 428-7684 or Betty Schmitt Public Affairs Specialist Natural Resources Conservation Service 316 W. Boone Ave., Suite 450 Spokane, WA 99201-2348 (509) 323-2912

How forecasts are made

Most of the annual streamflow in the western United States originates as snowfall that has accumulated in the mountains during the winter and early spring. As the snowpack accumulates, hydrologists estimate the runoff that will occur when it melts. Measurements of snow water equivalent at selected manual snow courses and automated SNOTEL sites, along with precipitation, antecedent streamflow, and indices of the El Niño / Southern Oscillation are used in computerized statistical and simulation models to prepare runoff forecasts. These forecasts are coordinated between hydrologists in the Natural Resources Conservation Service and the National Weather Service. Unless otherwise specified, all forecasts are for flows that would occur naturally without any upstream influences.

Forecasts of any kind, of course, are not perfect. Streamflow forecast uncertainty arises from three primary sources: (1) uncertain knowledge of future weather conditions, (2) uncertainty in the forecasting procedure, and (3) errors in the data. The forecast, therefore, must be interpreted not as a single value but rather as a range of values with specific probabilities of occurrence. The middle of the range is expressed by the 50% exceedance probability forecast, for which there is a 50% chance that the actual flow will be above, and a 50% chance that the actual flow will be below, this value. To describe the expected range around this 50% value, four other forecasts are provided, two smaller values (90% and 70% exceedance probability) and two larger values (30%, and 10% exceedance probability). For example, there is a 90% chance that the actual flow will be more than the 90% exceedance probability forecast. The others can be interpreted similarly.

The wider the spread among these values, the more uncertain the forecast. As the season progresses, forecasts become more accurate, primarily because a greater portion of the future weather conditions become known; this is reflected by a narrowing of the range around the 50% exceedance probability forecast. Users should take this uncertainty into consideration when making operational decisions by selecting forecasts corresponding to the level of risk they are willing to assume about the amount of water to be expected. If users anticipate receiving a lesser supply of water, or if they wish to increase their chances of having an adequate supply of water for their operations, they may want to base their decisions on the 90% or 70% exceedance probability forecasts, or something in between. On the other hand, if users are concerned about receiving too much water (for example, threat of flooding), they may want to base their decisions on the 30% or 10% exceedance probability forecasts, or something in between. Regardless of the forecast value users choose for operations, they should be prepared to deal with either more or less water. (Users should remember that even if the 90% exceedance probability forecast is used, there is still a 10% chance of receiving less than this amount.) By using the exceedance probability information, users can easily determine the chances of receiving more or less water.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, and marital or familial status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD).

To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326W, Whitten Building, 14th and Independence Avenue, SW, Washington, D.C., 20250-9410, or call (202) 270-5964 (voice or TDD). USDA is an equal opportunity employer.

Washington Water Supply Outlook

June 2000

General Outlook

The month of May was considerably wetter and cooler than the previous month. These conditions helped slow upper elevation snow melt and are the reason for reported increases in snow-water-content in many basins. Every telemetered site in Washington is loosing snowpack, however many ended the season with above average accumulations and is melting slower than normal. The Snow Survey staff, in cooperation with Asotin County and Seattle City Light, is planning for the installation of four new SNOTEL sites in Washington this summer. These new sites will be used for improving streamflow forecasting, resource management and early flood warning. Also, please take a look at the Glacier Research Page (colored insert) at the back of this report.

Snowpack

The June 1 statewide SNOTEL readings remained above average at 111%. Cooler temperatures have helped curtail a rapid spring melt. Among the basins with remaining measurable snowpack the Walla Walla River Basin reported the lowest readings at 36% of average. Readings taken in the Lewis River Basin reported the highest at 422% of average. Westside averages from SNOTEL and June 1 snow surveys included the North Puget Sound river basins with 84%, the Central Puget river basins with 161%, and the Olympic basins with 73%. Snowpack along the east slopes of the Cascade Mountains included the Yakima area with 137% and the Wenatchee area with 104%. Snowpack in the Spokane River Basin was at 61% and the Pend Oreille River Basin, including Canadian data, had 56% of average. Maximum snow cover in Washington was at Paradise Park SNOTEL near Mount Rainer with a water content of 78.1 inches. This site would normally have 48.1 inches of water content on June 1. Last year at this time Paradise Park had 106.7 inches of snow water.

BASIN	PERCENT OF LAST YEAR	PERCENT OF AVERAGE	ONE MONTH CHANGE
Spokane Newman Lake Pend Oreille Okanogan Methow Wenatchee Chelan Stemilt Creek Yakima Ahtanum Creek Walla Walla Lower Snake Cowlitz Lewis White	43	61 00 56 120 89 94 114 00 137	-23 00 -17 38 6 -3 11 00 30 00 -42 -29 21 238
Green			
Cedar	00 52		45
Skagit	40 N/A	93 N/A	10 N/A
Nooksack Olympic Peninsula			

Precipitation

During the month of May, the National Weather Service and Natural Resources Conservation Service climate stations showed a wide variation in average precipitation across the state. The highest percent of average in the state was at Glenwood in Klickitat County. Glenwood reported 257% of average for a total of 1.9 inches. The average for this site is .74 inches for May. Averages for the water year varied from 118% of average in the Walla Walla River Basin to 89% of average in the Okanogan - Methow river basins.

RIVER	MAY	WATER YE	AR ONE MONTH
BASIN PER	CENT OF AVERA	GE PERCENT OF A	VERAGE CHANGE
Spokane	105		1112
Colville-Pend Oreil	le 124		108 1
Okanogan-Methow	71		892
Wenatchee-Chelan	113		1030
Upper Yakima	114		1040
Lower Yakima	94		
Walla Walla	168		118 2
Lower Snake	79		1012
Cowlitz-Lewis	113		1071
White-Green-Puyallu	p 125		99
Central Puget Sound	133		110 1
North Puget Sound .	137		104 1
Olympic Peninsula .	146		111 2

Reservoir

Reservoir storage in the Yakima Basin was 804,200-acre feet, 109% of average for the Upper Reaches and 227,800-acre feet, 117% of average for Rimrock and Bumping Lakes. Storage at the Okanogan reservoirs was 115% of average for June 1. The power generation reservoirs included the following: Coeur d'Alene Lake, 215,500-acre feet, 77% of average and 90% of capacity; Chelan Lake, 457,800-acre feet, 102% of average and 68% of capacity; and Ross Lake at 94% of average and 69% of capacity.

BASIN	PERCENT	OF CAPACITY	PERCENT OF	AVERAGE
Spokane		90		77
Colville-Pend Oreill	e	47		85
Okanogan-Methow		88		115
Wenatchee-Chelan		68		102
Upper Yakima		96		109
Lower Yakima		98		117
North Puget Sound		71		95

Streamflow

BASIN

June forecasts indicate near normal summer flows for most streams in the state. They vary from 123% of average for Klickitat River near Glenwood to 70% of average for Grande Ronde River at Troy. June forecasts for some Western Washington streams include the Cedar River near Cedar Falls, 94%; Green River, 100%; and Skagit River, 87%. Some Eastern Washington streams include the Yakima River near Parker, 92%; Wenatchee River at Plain, 99%; and Spokane River near Post Falls, 80%. Volumetric forecasts are developed using current, historic and average snowpack, precipitation, streamflow and SOI data collected and coordinated by organizations cooperating with NRCS.

Streamflows reported for May were near to slightly below average. The Lewis River near Ariel had the highest flows with 224% of average. The Methow at Pateros with 77% of average, was the lowest in the state. Other streamflows were the following percentage of average: the Priest River, 105%; the Columbia at The Dalles, 89%; the Spokane at Spokane, 82%; the Columbia below Rock Island Dam, 92%; the Cowlitz at Castle Rock, 94%; and the Snake River below Ice Harbor Dam, 82%.

PERCENT OF AVERAGE

BASIN	PERCENT OF AVERAGE
	MOST PROBABLE FORECAST
	(50 PERCENT CHANCE OF EXCEEDENCE)
Spokane Colville-Pend Oreille Okanogan-Methow Wenatchee-Chelan Upper Yakima Lower Yakima Walla Walla Lower Snake Cowlitz-Lewis White-Green-Puyallup Central Puget Sound North Puget Sound Olympic Peninsula	79-119 84-100 96-109 87-90 87-123 100-105 70-77 92-128 96-100 91-101 87-97
STREAM	PERCENT OF AVERAGE MAY STREAMFLOWS
Pend Oreille Below Box Canyon Kettle at Laurier Columbia at Birchbank Spokane at Long Lake Similkameen at Nighthawk Okanogan at Tonasket Methow at Pateros Chelan at Chelan Wenatchee at Pashastin Yakima at Cle Elum Yakima at Parker Naches at Naches Grande Ronde at Troy Snake below Lower Granite Dam SF Walla Walla near Milton Freewal Lewis at Ariel Cowlitz below Mayfield Dam Skagit at Congrete	95 91 95 95 83 92 77 86 92 100 90 87 83 84 84 84

For more information contact your local Natural Resources Conservation Service office.

B A S I N S U M M A R Y O F S N O W C O U R S E D A T A

JUNE 2000

SNOW COURSE	ELEVATION	DATE	SNOW DEPTH	WATER CONTENT	LAST YEAR	AVERAGE 1961-90	SNOW COURSE	E	LEVATION	DATE	SNOW DEPTH	WATER CONTENT	LAST YEAR	AVERAGE 1961-90
ALPINE MEADOWS PILL	3500	6/01/00		42.7	45.4	22.7	MOSES MTN	PILLOW	4800	6/01/00		.0	1.2	.0
BADGER PASS PILLOW	6900	6/01/00		12.6	36.8	20.9	MOSQUITO RDG	PILLOW	5200	6/01/00		11.8	26.9	16.0
BARKER LAKES PILLOW	8250	6/01/00		1.7	13.0	10.0	MOUNT CRAG	PILLOW	4050	6/01/00	11	1.6	10.0	.0
BASIN CREEK PILLOW	7180	6/01/00		.1	5.5	4.7	MT. KOBAU	CAN.	5500	5/28/00	4	1.2	17.2	5.0
BEAVER CREEK TRAIL	2200	5/30/00	0	.0	3.6		MOUNT GARDNE	R PILLOW	2860	6/01/00		. 0	.1	.0
BEAVER PASS	3680	5/30/00	19	9.3	50.0		N.F. ELK CR	PILLOW	6250	6/01/00		. 5	.0	.9
BIG CREEK	6750	6/01/00	56	27.2	40.6	42.1	NEW HOZOMEEN	LAKE	2800	5/30/00	0	. 0	.0	
BIG WHITE MTN CAN	. 5510	5/26/00	28	13.0	17.2	7.6	NEZ PERCE CM	PILLOW	5650	6/01/00		. 0	.0	. 2
BLACK PINE PILLOW	7100	6/01/00		.3	.0	2.4	NOISY BASIN	PILLOW	6040	6/01/00		25.8	34.8	30.2
BLEWETT PASS#2PILLO	W 4270	6/01/00	0	.0	.0	.0	NORTH FORK J	оско	6330	6/01/00	36	17.6	33.2	26.3
BRENDA MINE CAN	. 4450	6/01/00		.0			OLALLIE MDWS	PILLOW	3960	6/01/00		36.1	81.9	30.0
BROWN TOP A	M 6000	6/01/00	94	49.0	92.8		PARADISE PAR	PILLOW	5500	6/01/00		78.1	106.7	48.1
BUMPING RIDGE PILLO	₩ 4600	6/01/00		12.4	41.7	6.3	PARK CK RIDG	PILLOW	4600	6/01/00	21	11.7	48.2	5.2
BUNCHGRASS MDWPILLO	₩ 5000	6/01/00		12.9	31.5	15.4	PETERSON MDW	PILLOW	7200	6/01/00		. 2	5.2	2.7
CHICKEN CREEK	4060	5/31/00	0	.0	.0	.0	PIGTAIL PEAK	PILLOW	5900	6/01/00	88	30.6	79.4	37.5
COMBINATION PILLOW	5600	6/01/00		.0	- 0	.0	PIKE CREEK P	ILLOW	5930	6/01/00		. 8	13.8	7.9
COPPER BOTTOM PILLO	w 5200	6/01/00		.0	.0	. 0	POPE RIDGE	PILLOW	3540	6/01/00	0	.0	.0	.0
CORRAL PASS PILLO	₩ 6000	6/01/00		28.8	49.9	19.6	POTATO HILL	PILLOW	4500	6/01/00		6.8	26.2	1.1
COUGAR MTN. PILLO	W 3200	6/01/00	0	.0	12.3	.0	QUARTZ PEAK	PILLOW	4700	6/01/00		.0	4.8	.0
DALY CREEK PILLOW	5780	6/01/00		.0	. 0	.0	RAINY PASS	PILLOW	4780	6/01/00		18.0	43.9	20.4
DEVILS PARK	5900	6/01/00	61	33.4	62.8	31.8	REX RIVER	PILLOW	1900	6/01/00	6	1.6	21.2	.0
DISCOVERY BASIN	7050	5/30/00	0	.0	1.6	4.2	ROCKER PEAK	PILLOW	8000	6/01/00		3.7	12.4	13.2
ELBOW LAKE PILLO	₩ 3200	6/01/00	25	12.1	45.6	6.1	SADDLE MTN P	ILLOW	7900	6/01/00		2.8	20.7	17.5
EMERY CREEK PILLOW	4350	6/01/00		- 0	.0	.0	SALMON MDWS	PILLOW	4500	6/01/00		.0	.0	.0
ENDERBY CAN	. 5800	5/28/00	104	50.4	55.5	38.9	SASSE RIDGE	PILLOW	4200	6/01/00		2.8	35.0	1.3
FISH LAKE PILLO	₩ 3370	6/01/00		3.3	27.5	5.0	SAVAGE PASS	PILLOW	6170	6/01/00		.0	18.1	12.5
FLATTOP MTN PILLOW	6300	6/01/00		30.9	52.7	34.4	SHEEP CANYON		4050	6/01/00		26.5	68.4	11.6
FREEZEOUT CK. TRAIL	3500	5/30/00	0	.0	6.0		SILVER STAR	MIN CAN.	5600	5/29/00	54	28.1	35.7	16.1
FROHNER MDWS PILLOW	6480	6/01/00		- 0	. 0	1.2	SKALKAHO PIL	LOW	7260	6/01/00		4.2	18.8	15.8
GRAVE CRK PILLOW	4300	6/01/00		- 0	.0	.0	SKOOKUM CREE	K PILLOW	3920	6/01/00		.0	22.9	.0
GREEN LAKE PILLO	₩ 6000	6/01/00		.3	21.6	3.8	SPENCER MDW	PILLOW	3400	6/01/00		4.2	46.6	.0
GROUSE CAMP PILLO	₩ 5380	6/01/00		.0	3.3	.0	SPIRIT LAKE	PILLOW	3100	6/01/00		- 0	.0	.0
HAND CREEK PILLOW	5030	6/01/00		- 0	.0	.0	STAHL PEAK P	ILLOW	6030	6/01/00		23.7	40.0	27.3
HARTS PASS PILLO	₩ 6500	6/01/00		22.5	61.2	25.3	STAMPEDE PAS	S PILLOW	3860	6/01/00		24.7	49.6	15.0
HELL ROARING DIVIDE	5770	6/01/00	24	11.4	19.6	11.2	STEVENS PASS	PILLOW	4070	6/01/00		7.4	31.8	5.7
HERRIG JUNCTION	4850	5/30/00	0	- 0	16.0	2.4	STEVENS PASS		3700	5/30/00	7	3.8	28.7	9.7
HIGH RIDGE PILLO		6/01/00		1.4	.0	. 6	STRYKER BASI		6180	5/31/00	31	15.2	31.0	20.6
HOODOO BASIN PILLOW	6050	6/01/00		20.4	49.3	29.2	STUART MOUNT		7400	6/01/00	20	8.2		
HUMBOLDT GLCH PILLO		6/01/00		.0	.0	.0	SUNSET	PILLOW	5540	6/01/00		.0	9.2	12.5
JUNE LAKE PILLO	₩ 3200	6/01/00		29.1	60.6	.0	SURPRISE LKS	PILLOW	4250	6/01/00		37.4	65.8	14.5
KRAFT CREEK PILLOW	4750	6/01/00		- 0	.0	.0	THUNDER BASI		4200	5/30/00	20	7.6	34.6	10.0
LOLO PASS PILLO		6/01/00		.0	19.6	.0	TINKHAM CREE		3000	6/01/00		.1	.0	.0
LONE PINE PILLO	₩ 3800	6/01/00		30.2	75.8	9.4	TOUCHET #2	PILLOW	5530	6/01/00		1.3	18.4	.0
LOOKOUT PILLO	W 5140	6/01/00		6.6	22.7	10.0	TROUGH #2	PILLOW	5310	6/01/00		.0	. 0	6.0
LOST HORSE PILLO		6/01/00		.0	3.5	.0	TV MOUNTAIN		6800	6/01/00	2	. 5		
LOST LAKE PILLO		6/01/00		33.8	58.5	46.8	TWELVEMILE P		5600	6/01/00		.0	.0	. 6
LUBRECHT PILLOW	4680	6/01/00		.1	.0	.0	TWIN LAKES P		6400	6/01/00		6.3	36.0	25.8
LYMAN LAKE PILLO		6/01/00		51.2	86.2	43.3	UPPER WHEELE		4400	6/01/00		.0	.0	. 0
MEADOWS CABIN	1900	5/30/00	0	.0	. 0		WARM SPRINGS		7800	6/01/00		10.1	19.2	19.6
MEADOWS PASS PILLO		6/01/00		.0	8.5	.0	WELLS CREEK	PILLOW	4200	6/01/00		9.1	40.0	22.2
MICA CREEK PILLO		6/01/00		. 0	1.9		WHITE PASS E	S PILLOW	4500	6/01/00		2.5	20.6	4.6
MOOSE CREEK PILLO	₩ 6200	6/01/00		. 0	.0	. 0	WHITE ROCKS	MTN CAN.	7200	6/01/00	11	9.3		6.6
MORSE LAKE PILLO	₩ 5400	6/01/00		36.2	92.3	21.4								

Natural Resources Conservation Service

Washington State Snow, Water and Climate Services

Program Contacts

Leonard Jordan
State Conservationist
W. 316 Boone Ave., Suite 450
Spokane, WA 99201-2348
phone: 509-323-2961
fax: 509-323-2979
leonard.jordan@wa.usda.gov

Betty Schmitt
Public Affairs Specialist
W. 316 Boone Ave., Suite 450
Spokane, WA 99201-2348
phone: 509-323-2912

fax: 509-323-291 betty.schmitt@wa.usda.gov Scott Pattee
Water Supply Specialist
2021 E. College Way, Suite 214
Mount Vernon, WA 98273-2873
phone: 360-428-7684
fax: 360-424-6172
scott.pattee@wa.usda.gov

Chris Pacheco Resource Conservationist National Water and Climate Center 101 SW Main St., Suite 1600 Portland, OR 97204-3224

phone: 503-414-3056 fax: 503-414-3101 cpacheco@wcc.nrcs.usda.gov

Helpful Internet Addresses

NRCS Snow Survey and Climate Services Homepages

Washington:

http://www.wa.nrcs.usda.gov/snow/snow.htm

Oregon:

http://crystal.or.nrcs.usda.gov/snowsurveys

Idaho:

http://idsnow.id.nrcs.usda.gov

National Water and Climate Center (NWCC):

http://www.wcc.nrcs.usda.gov

NWCC Anonymous FTP Server:

ftp.wcc.nrcs.usda.gov

USDA-NRCS Agency Homepages

Washington:

http://www.wa.nrcs.usda.gov/nrcs

NRCS National:

http://www.ftw.nrcs.usda.gov

Natural Resources Conservation Service

Washington State Snow, Water and Climate Services

Field Office Contacts

Eastern Washington

Jimmie Gleaton District Conservationist 232 Williams Lake Road Colville, WA 99114-9638 509-685-0937 jimmie.gleaton@wa.usda.gov

Randy Kelley District Conservationist 1251 Second Ave. South, Room 101 Okanogan, WA 98840-9723 509-422-2750 randy.kelly@wa.usda.gov Doug Allen District Conservationist 301 Yakima Street, Room 301 Wenatchee, WA 98801-2966 509-664-0265 doug.allen@wa.usda.gov

David Chain District Conservationist 607 E. Mountain View Ellensburg, WA 98926 509-925-8585 david.chain@wa.usda.gov

Western Washington

John Gillies District Conservationist 6975 Hannegen Road Lynden, WA 98205-1535 360-354-2035 john.gillies@wa.usda.gov

Monica Hoover Wetland Specialist 1835 Black Lake Blvd SW, STE E Olympia, WA 98512-5623 360-704-7752 monica.hoover@wa.usda.gov Kerry Perkins
District Conservationist
111 East 3rd, Room 2B
Port Angeles, WA 98362-3009
360-457-5091
kerry.perkins@wa.usda.gov

Scott Pattee Water Supply Specialist 2021 E. College Way, Suite 214 Mount Vernon, WA 98273-2873 360-428-7684 scott.pattee@wa.usda.gov

Data Collection Offices

Jon Lea Oregon Data Collection Office 101 SW Main St., Suite 1300 Portland, OR 97204 503-414-3267 jlea@or.usda.gov Ron Abramovich Idaho Data Collection Office 9173 West Barnes, Suite C Boise, ID 83709 208-378-5741 ron.abramovich@id.usda.gov

Spokane River Basin

*Based on selected stations

The June 1 forecasts for summer runoff within the Spokane River Basin are 80% of average near Post Falls and 83% at Long Lake. The forecast is based on a basin snowpack that is 61% of average and precipitation that is 111% of average for the water year. Precipitation for May was near normal at 105% of average. Streamflow on the Spokane River at Long Lake, was 95% of average for May. June 1 storage in Coeur d'Alene Lake, was 215,500-acre feet, 77% of average and 90% of capacity. Snowpack at Quartz Peak SNOTEL melted out on May 22nd. Average temperatures in the Spokane basin were near normal.

Spokane River Basin

=======================================		amflow	Forecast	s - June	1, 2000			========
<<===== Drier ===== Future	e Conditions ===	===== Wet	ter ====>>		========		.======================================	========
Forecast Point	Forecast Period	90% (1000AF)	70% (1000AF)	50% (Most	Exceeding * = Probable) (% AVG.)		10% 3 000AF)	0-Yr Avg. (1000AF)
E=====================================	jun-sep jun-jul	413	542 459	629 542	80 78	716 625	845 746	785 692
SPOKANE at Long Lake	JUN-JUL JUN-SEP	476 662	609 805	699 902	81 83	789 999	922 1142	859 1082
SPOK Reservoir Storage	ANE RIVER BASIN (1000 AF) - End o	f May				SPOKANE RIVER BAS Nowpack Analysis	_	000
Reservoir	Capacity	*** Usabl This Year	e Storage *: Last Year A	Wate	rshed	Number of Data Sites	=======	r as % of Average
COEUR D'ALENE	238.5	215.5	352.5 28).5 SPOR	ANE RIVER	7	42	61
				NEWM	IAN LAKE	1	0	0

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

The average is computed for the 1961-1990 base period.

SPOKANE RIVER BASIN Percent of Average June 1, 2000

Snowpack - 61% Precipitation - 111% Reservoir - 77%

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
(2) - The value is natural flow - actual flow may be affected by upstream water management.

Colville - Pend Oreille River Basins

*Based on selected stations

The June – September average forecast for the Kettle River streamflow is 112%, Colville at Kettle Falls is 110%, Chamokane Creek near Long Lake is 119% and Priest River near the town of Priest River is 107%. May streamflow was 91% of average on the Pend Oreille River, 91% on the Columbia at the International Boundary and 95% on the Kettle River. June 1 snow cover was 56% of average in the Pend Oreille Basin and 171% in the Kettle River Basin. Precipitation during May was 91% of average, bringing the year-to-date precipitation to 105% of average. Reservoir storage in Roosevelt and Banks lakes was reported to be 85% of average and 47% of capacity on June 1. Average temperatures were near normal.

Colville - Pend Oreille River Basins

		=====	=======	
Streamfl	low Forecasts	- J	une 1,	2000

		<<======	Drier ====	== Future Co	nditions =	===== Wetter	====>>	
Forecast Point	Forecast Period	90% (1000AF)	70% (1000AF)	50% (Most	xceeding * Probable) (% AVG.)	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
\$END OREILLE Lake Inflow (1,2)	JUN-JUL	3337	4456	4964	77	5472	6591	6449
	JUN-SEP	4259	5501	6065	79	6629	7871	7669
PRIEST near Priest (1,2)	JUN-JUL	237	291	315	106	339	393	297
	JUN-SEP	285	347	375	107	403	465	351
PEND OREILLE bl Box Canyon (1,2)	JUN-JUL	2599	4273	5034	77	5795	7469	6543
	JUN-SEP	3444	5297	6139	79	6981	8834	7754
CHAMOKANE CREEK near Long Lake	JUL-AUG	3.34	3.55	3.70	119	3.85	4.06	3.12
COLVILLE at Kettle Falls	JUN-SEP	28	38	45	110	52	63	41
	JUN-JUL	18.2	27	33	110	39	48	30
KETTLE near Laurier	JUN-SEP	749	869	950	112	1031	1151	851
	JUN-JUL	690	785	850	112	915	1010	758

COLVILLE - PEND OF Reservoir Storage (1000				COLVILLE - PEND OREILLE RIVER BASINS Watershed Snowpack Analysis - June 1, 2000				
Reservoir	Usable Capacity	*** Usa This Year	able Stora Last Year	ige *** Avg	Watershed	Number of Data Sites		r as % of ====== Average
ROOSEVELT	5232.0	2120.5	1706.5	2851.0	COLVILLE RIVER	0	0	0
BANKS	715.0	671.3	673.0	418.0	PEND OREILLE RIVER	42	39	56
					KETTLE RIVER	1	76	171

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

The average is computed for the 1961-1990 base period.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
(2) - The value is natural flow - actual flow may be affected by upstream water management.

Okanogan - Methow River Basins

*Based on selected stations

Average summer runoff forecast for the Okanogan River is 94%, Similkameen River is 84%, Methow River is 100% and Salmon Creek is 85%. June 1 snow cover on the Okanogan was 120% of average and the Methow was 89%. Moses Mountain SNOTEL site had melted out by June 1. May precipitation in the Okanogan-Methow was 71% of average, with precipitation for the water year at 89% of average. May streamflow for the Methow River was 77% of average, 92% for the Okanogan River and 83% for the Similkameen. Combined storage in the Conconully Reservoirs was 20,700-acre feet, which is 88% of capacity and 115% of the June 1 average. Temperatures were 1 degree above normal for the past month.

Okanogan - Methow River Basins

11.8

603

16.4

590

10.2

555

Streamflow Forecasts - June 1, 2000 <<===== Drier ===== Future Conditions ====== Wetter ====>> Forecast Point Forecast 90% 70% 50% (Most Probable) 30% 10% 30-Yr Avg. (1000AF) (1000AF) (1000AF) (% AVG.) (1000AF) (1000AF) SIMILKAMEEN near Nighthawk (1) JUIN-JUIL 361 534 612 81 690 863 JUN-SEP 454 630 710 84 790 966 850 875 1091 OKANOGAN near Tonasket (1) JUN-JUL 463 679 92 848 1052 1297 1005 JUN-SEP 583 85 10.75 14.93 SALMON CREEK near Conconully JUN-JUL 0.87 5.05 7.90 9.30

5.6

507

8.7

85

100

	========							· 			
OKANOGAN - METHOW RIVER BASINS Reservoir Storage (1000 AF) - End of May						OKANOGAN - METHOW RIVER BASINS Watershed Snowpack Analysis - June 1, 2000					
Reservoir	Usable Capacity	*** Usab This Year	le Storage ' Last Year A	* * * Avg	Ñ	atershed	Number of Data Sites	This Yea	r as % of ====== Average		
SALMON LAKE		NO REP	PORT	====		OKANOGAN RIVER		58	121		
CONCONULLY RESERVOIR		NO REF	PORT		1	OMAK CREEK	1	0	0		
					-	SANPOIL RIVER	0	0	0		
					1	SIMILKAMEEN RIVER	0	0	0		
					1	TOATS COULEE CREEK	0	0	0		
					-	CONCONULLY LAKE	1	0	0		
					-1	METHOW RIVER	3	39	89		

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

The average is computed for the 1961-1990 base period.

METHOW RIVER near Pateros

(1) - The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
(2) - The value is natural flow - actual flow may be affected by upstream water management.

1.0

437

386

JUN-SEP

JUN-SEP

JUN-JUL

OKANOGAN-METHOW BASIN Percent of Average June 1, 2000

> Snowpack - 104% Precipitation - 89% Reservoir - 115%

Wenatchee - Chelan River Basins

*Based on selected stations

Precipitation during May was 113% of average in the basin and 103% for the year-to-date. All rivers and streams within the Wenatchee – Chelan river basin are forecast to have near to slightly above average flows for the upcoming June – September runoff period. May average streamflows on the Chelan River were 86% and on the Wenatchee River 92%. June 1 average snowpack in Wenatchee Basin was 94%, in Chelan Basin was 114%; Colockum Ridge, Stemilt Creek and the Entiat River snow survey sites have melted out for the season. Reservoir storage in Lake Chelan was 457,800-acre feet, 102% of June 1 average and 68% of capacity. Lyman Lake SNOTEL had the most snow water with 51.2 inches of water. This site would normally have 43.3 inches on June 1. Temperatures were near normal for May.

Wenatchee - Chelan River Basins

Streamflow Forecasts - June 1, 2000

	=========		: Drier ====:	== Future Co	======================================	====== Wetter	. =====>>	
Forecast Point	Forecast Period		70% (1000AF)	= Chance Of I		30% (1000AF)		30-Yr Avg. (1000AF)
HELAN RIVER near Chelan	JUN-SEP	557	653	718	97	783	879	738
	JUN-JUL	443	528	585	97	642	727	602
TEHEKIN near STEHEKIN	JUN-SEP	417	481	525	96	569	633	548
	JUN-JUL	317	369	405	96	441	493	422
ENTIAT RIVER near Ardenvoir	JUN-SEP	130	145	156	108	167	182	145
	JUN-SEP	130	145	156	108	167	182	145
VENATCHEE at Plain	JUN-JUL	477	543	588	98	633	699	600
	JUN-SEP	571	655	712	99	769	853	718
STEMILT nr Wenatchee (miners in)	MAY-SEP	99	126	144	104	162	189	138
CCICLE CREEK near Leavenworth	JUN-SEP JUN-JUL	176 149	200 172	216 187	109 109	232	256 225	198 172

=======	MENTA TOUTE	- CHELAN RIVER B	ACTNO	=======	======:	MENA TOUR	CURIAN DIVER	DACINO	========	
	Reservoir Storage					Watershed Snowpa		This Year as % ES Last Yr Avera 48 114 0 0 38 94 0 0 0 0		
Reservoir		Usable Capacity	*** Usa This Year	ole Stora Last Year	ge *** Avg	Watershed	Number of Data Sites	=======		
CHELAN LAKE		676.1	457.8	324.4	450.6	CHELAN LAKE BASIN	4	48	114	
						ENTIAT RIVER	1	0	0	
						WENATCHEE RIVER	7	38	94	
						SQUILCHUCK CREEK	0	0	0	
						STEMILT CREEK	1	0	0	
						COLOCKUM CREEK	1	0	0	

* 90%, 70%, 30%, and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

he average is computed for the 1961-1990 base period.

1) - The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
2) - The value is natural flow - actual flow may be affected by upstream water management.

WENATCHEE-CHELAN BASIN Percent of Average June 1, 2000 Snowpack - 104% Precipitation -103% Reservoir - 102%

Upper Yakima River Basin

*Based on selected stations

June 1 reservoir storage for the Upper Yakima reservoirs was 804,200-acre feet, 109% of average. Forecasts for the Yakima River at Cle Elum are 88% of average. Lake inflow forecasts include Keechelus at 89%, Kachess at 87% and Lake Cle Elum at 90% of average. A new forecast, developed for the Teanaway River near Cle Elum, is for 88% average flows. May streamflows within the basin were Yakima near Cle Elum at 100% and Cle Elum River near Roslyn at 98%. June 1 snowpack was 103% based upon six snow courses and SNOTEL readings within the Upper Yakima Basin. Precipitation was 114% of average for May and 104% year-to-date for water. Volume forecasts for the Yakima Basin are for natural flow. As such, they June differ from the U.S. Bureau of Reclamation's forecast for the total water supply available, which includes irrigation return flow.

Upper Yakima River Basin

Streamflow	Forecasts	-	June	1.	2000

		<<======	Drier ====	== Future Co	onditions =	===== Wetter	====>>	
Forecast Point	Forecast Períod	90% (1000AF)	70% (1000AF)		Exceeding * Probable) (% AVG.)	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
KEECHELUS LAKE INFLOW	JUN-JUL	30	39	45	88	51	61	51
	JUN-SEP	37	48	55	89	62	73	62
*ACHESS LAKE INFLOW	JUN-JUL	27	34	39	87	44	51	45
	JUN-SEP	31	39	45	87	51	59	52
CLE ELUM LAKE INFLOW	JUN-JUL	140	164	181	90	198	222	201
	JUN-SEP	166	195	215	90	235	264	239
YAKIMA at Cle Elum	JUN-JUL	233	283	318	88	353	403	361
	JUN-SEP	291	350	390	88	430	489	444
TEANAWAY near Cle Elum	JUN-JUL	14.7	25	32	88	39	49	36
	JUN-SEP	18.6	29	36	88	42	52	40

UPPER YAKIMA RIVER BASIN Reservoir Storage (1000 AF) - End of May

UPPER YAKIMA RIVER BASIN Watershed Snowpack Analysis - June 1, 2000

Reservoir	Usable Capacity	*** Usable Storage *** This Last Year Year Avg			Watershed	Number of Data Sites	This Year as % of Last Yr Average	
KEECHELUS	157.8	131.5	102.3	144.0	UPPER YAKIMA RIVER	6	34	130
KACHESS	239.0	236.5	220.4	218.0				
CLE ELUM	436.9	436.2	329.3	378.0				

* 90%, 70%, 30%, and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

The average is computed for the 1961-1990 base period.

(1) - The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels. (2) - The value is natural flow - actual flow may be affected by upstream water management.

UPPER YAKIMA BASIN Percent of Average June 1, 2000

Snowpack - 130% Precipitation - 104% Reservoir - 109%

Lower Yakima River Basin

*Based on selected stations

May average streamflows within the basin were: Yakima River near Parker, 90%; Naches River near Naches, 87%; and Yakima River at Kiona, 97%. June 1 reservoir storage for Bumping and Rimrock reservoirs was 227,800-acre feet, 117% of average. Forecast averages for Yakima River near Parker are 92%; American River near Nile, 87%; Ahtanum Creek, 95%; and Klickitat River near Glenwood, 123%. June 1 snowpack was 144% based upon five snow courses and SNOTEL readings within the Lower Yakima Basin. Precipitation was 94% of average for May and 112% year-to-date for water. Average temperatures for the month were near normal. Volume forecasts for Yakima Basin are for natural flow. As such, they June differ from the U.S. Bureau of Reclamation's forecast for the total water supply available, which includes irrigation return flow.

Streamflow Forecasts - June 1, 2000

=======================================			========				========	
		<<======	Drier ====	== Future Co	onditions ==	===== Wetter	=====>>	
Forecast Point	Forecast	=======		= Chance Of E	xceeding * =	*==========	======	
	Period	90%	70%	50% (Most		30%	10%	30-Yr Avg.
		(1000AF)	(1000AF)	(1000AF)	(% AVG.)	(1000AF)	(1000AF)	(1000AF)
UMPING LAKE INFLOW	JUN-SEP	46	59	68	88	77	90	77
OMPING LAKE INFLOW	JUN-JUL	38	49	57	88	65	77	65
	30N-30L	30	49	5/	• •	63	//	65
AMERICAN RIVER near Nile	JUN-SEP	44	52	57	87	62	69	65
	JUN-JUL	37	44	49	88	54	61	56
RIMROCK LAKE INFLOW	JUN-SEP	102	116	126	88	136	150	143
Minimode Enter 111 Box	JUN-JUL	73	84	92	88	100	111	105
	001. 002	, 3	0.1			200		
NACHES near Naches	JUN-SEP	284	341	380	90	419	476	424
	JUN-JUL	235	282	314	91	346	393	347
AHTANUM CREEK nr Tampico (2)	MAY-SEP	28	33	36	95	39	45	38
	MAY-JUL	25	29	33	96	36	40	34
				0.50				
YAKIMA near Parker	JUN-SEP	625	765	860	92	955	1095	938
	JUN-JUL	487	602	680	91	758	873	749
KLICKITAT near Glenwood	JUN-JUN	3.8	44	48	123	52	58	39
	JUN-SEP	69	79	86	123	93	103	70
		.=		 ============				
LOWER YAK	(IMA RIVER BASI	IN			LOWE	R YAKIMA RIVE	R BASIN	
Reservoir Storage (1	000 AF) - End	of May			Watershed Sn	owpack Analys	is - June :	1, 2000

LOWER YAKIMA Reservoir Storage (1000				LOWER YA Watershed Snowp	AKIMA RIVER BAS ack Analysis -		
Reservoir	Usable Capacity		ole Stora Last Year	ge ***	Watershed	Number of Data Sites	This Year as % of
SUMPING LAKE	33.7	32.1	25.5	27.0			
RIMROCK	198.0	195.7	152.1	167.0			
SUMPING LAKE	33.7	32.1	25.5	27.0	watersned		Last Yr Average

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

The average is computed for the 1961-1990 base period.

⁽¹⁾ - The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels. (2) - The value is natural flow - actual flow may be affected by upstream water management.

*Based on selected stations

May precipitation was 168% of average, bringing the year-to-date precipitation to 118% of average. June 1 average snowpack was at 36%. The forecast for the coming summer is for 100% of average streamflow in the South Fork Walla Walla River and 105% for Mill Creek. May streamflow was 81% of average for the Walla Walla River. The Touchet SNOTEL site had 1.3 inches of snow-water-equivalent. On average Touchet would be melted out. Average temperatures were near normal for the area.

Walla Walla River Basin

Streamflow Forecasts - June 1, 2000

	<<=====	Drier =====	== Future C	onditions =	===== Wetter	====>>	
Forecast							
Period							30-Yr Avg. (1000AF)
ا =========	(1000AL)	=========	=========	========	=========	========	=========
MAY-SEP	4.72	6.61	7.90	105	9.19	11.08	7.50
MAY-JUL	4.33	6.22	7.50	103	8.78	10.67	7.30
JUN-JUL	14.7	17.5	19.4	101	21	24	19.3
JUN-SEP	26	30	33	100	35	39	33
	Period MAY-SEP MAY-JUL JUN-JUL	Forecast 90% (1000AF) MAY-SEP 4.72 MAY-JUL 4.33 JUN-JUL 14.7	Forecast 90% 70% (1000AF) (100	Forecast Period 90% 70% 50% (Most (1000AF) (1000AF) (1000AF) MAY-SEP 4.72 6.61 7.90 MAY-JUL 4.33 6.22 7.50 JUN-JUL 14.7 17.5 19.4	Forecast Period 90% 70% 50% (Most Probable) (1000AF) (100	Forecast Period 90% 70% 50% (Most Probable) 30% (1000AF) (1000AF) (1000AF) (1000AF) (1000AF) (1000AF) (1000AF) 9.19 MAY-SEP 4.72 6.61 7.90 105 9.19 MAY-JUL 4.33 6.22 7.50 103 8.78 JUN-JUL 14.7 17.5 19.4 101 21	Period 90% 70% 50% (Most Probable) 30% 10% (1000AF) (1000AF) (1000AF) (* AVG.) (1000AF) (1000AF) MAY-SEP 4.72 6.61 7.90 105 9.19 11.08 MAY-JUL 4.33 6.22 7.50 103 8.78 10.67 JUN-JUL 14.7 17.5 19.4 101 21 24

	WALLA WALLA RIVER BASIN WALLA RIVER BASIN Reservoir Storage (1000 AF) - End of May Watershed Snowpack Analysis - June 1, 2000 Usable *** Usable Storage *** Number This Year as % of									000
Re	eservoir	Usabl Capaci	ty 7	This	e Storage Last Year	e *** Avg	Watershed	Number of Data Sites	This Yea: Last Yr	
			.=====			=====	WALLA WALLA RIVER	2	15	450

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

The average is computed for the 1961-1990 base period.

- (1) The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels. (2) The value is natural flow actual flow may be affected by upstream water management.

WALLA WALLA BASIN Percent of Average June 1, 2000

Snowpack - 36% Precipitation - 118%

High Ridge

Lower Snake River Basin

*Based on selected stations

The June - September forecast is for 72% of average streamflow in the Snake River below Lower Granite Dam, 70% for Grande Ronde at Troy, and 77% for Clearwater River at Spalding. May precipitation was 79% of average, maintaining the year-to-date precipitation at 101% of average. June 1 snowpack was at 54% of average. May streamflow was 82% of average for Snake River below Lower Granite Dam and 83% for Grande Ronde River near Troy. Average temperatures were 1 degree above normal in the area for the month.

Streamflow Forecasts - June 1, 2000

beloamlion loledabeb dans 1, 2000											
<pre>c====== Drier ====== Future Conditions ======= Wetter =====>></pre>											
Forecast Point	Forecast		.=======	- Chance Of I	Exceeding * :		=======				
	Period	90% (1000AF)	70% (1000AF)	50% (Most		30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)			
GRANDE RONDE at Troy (1)	JUN-JUL	106	285	326	70	367	456	466			
SRANDE RONDE at 110y (1)	JUN-SEP	196 238	346	395	70	444	552	564			
CLEARWATER at Spalding (1,2)	JUN-JUL	3360	4153	4514	76	4875	5668	5972			
CHEMINATER OF SPORTERING (1/2)	JUN-SEP	3667	4516	4902	77	5288	6137	6405			
SNAKE blw Lower Granite Dam (1.2)	JUN-JUL	4983	6095	6600	68	7105	8217	9678			
	JUN-SEP	6907	8319	8960	72	9601	11013	12390			

	LOWER SNAKE RIVER BASIN Reservoir Storage (1000 AF) - End of May Usable *** Usable Storage ***						LOWER SNAKE RIVER BASIN Watershed Snowpack Analysis - June 1, 2000				
Reservoir		Usable Capacity		ble Storag Last Year	e *** Avg	Watershed	Number of Data Sites	This Year			
						LOWER SNAKE, GRAND	E RONDE 9	20	35		

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

The average is computed for the 1961-1990 base period.

⁽¹⁾ - The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels. (2) - The value is natural flow - actual flow may be affected by upstream water management.

*Based on selected stations

The June - September forecast is for 128% of average streamflow in the Lewis River at Ariel, 104% for Cowlitz below Mayfield Dam, and 123% for Klickitat River near Glenwood. May average streamflow for Cowlitz River was 92% and 224% for Lewis River. May precipitation was 113% of average and the water-year average was 107%. June 1 snow cover for Cowlitz River was 140%, and Lewis River was 422% of average. The Paradise Park SNOTEL recorded the most water content for the basin with 78.1 inches of water. Average June 1 water content is 48.1 inches. Average temperatures were 1 degree above normal during May.

Streamflow Forecasts - June 1, 2000

		<<======	: Drier ====:	== Future Co	onditions ==	===== Wetter	====>>				
Forecast Point	Forecast			= Chance Of H	Exceeding * :						
rolecast Foint	Period	90%	70%		Probable)	30%	10%	30-Yr Avg.			
		(1000AF)	(1000AF)	(1000AF)	(% AVG.)	(1000AF)	(1000AF)	(1000AF)			
			.=========	=======================================		==========					
MEWIS at Ariel (2)	JUN-JUL	389	431	460	130	489	531	354			
	JUN-SEP	561	612	647	128	682	733	506			
COWLITZ R. bl Mayfield Dam (2)	JUN-SEP	240	704	1020	104	1336	1800	982			
COWLITZ R. at Castle Rock (2)	JUN-SEP	273	867	1270	98	1673	2267	1299			
WI TOWING AND A COLOR OF THE CO	71B1 71B1	2.0	4.4	4.0	1.00	50	58	2.0			
KLICKITAT near Glenwood	JUN-JUN	38	44	48	123	52		39			
	JUN-SEP	69	79	86	123	93	103	70			
COLUMBIA R. at The Dalles (2)	JUN-SEP	43445	50266	54900	92	59534	66355	59652			
COLUMBIA R. at THE Dailes (2)											
	JUN-JUL	31344	37034	40900	90	44766	50456	45431			

	DWLITZ - LEWIS RIVER BAS Storage (1000 AF) - End			COWLITZ - LEWIS RIVER BASINS Watershed Snowpack Analysis - June 1, 2000				
Reservoir	Usable Capacity	ge *** Avg	Watershed	Number of Data Sites	This Yea	r as % of		
					LEWIS RIVER	4	41	422
					COWLITZ RIVER	6	48	140

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

The average is computed for the 1961-1990 base period.

- (1) The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels. (2) The value is natural flow actual flow may be affected by upstream water management.

White - Green - Puyallup River Basins

*Based on selected stations

Summer runoff is forecast to be 100% of average for the Green River below Howard Hanson Dam and 96% for the White River near Buckley. June 1 snowpack was 159% of average in both White River and Puyallup river basins and 165% in Green River Basin. Water content on June 1 at Corral Pass SNOTEL, at an elevation of 6,000 feet, was 28.8 inches. This site has a June 1 average of 19.5 inches. May precipitation was 125% of average, bringing the water year-to-date to 99% of average for the basins. Average temperatures in the area were near normal for the month.

White - Green - Puyallup River Basins

Streamflow Forecasts - June 1, 2000

		=======================================	Drier ====	== Future C	onditions =	======= Wetter	=====>>	
Forecast Point	Forecast Period	90% (1000AF)	70% (1000AF)	= Chance Of : 50% (Most (1000AF)	Exceeding * Probable) (% AVG.)	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
WHITE near Buckley (1,2)	JUN-JUL JUN-SEP	166 244	200 287	215 307	96 96	230	264 370	225 320
GREEN below Howard Hanson (1,2)	JUN-JUL JUN-SEP	49 73	69 96	78 106	100 100	87 116	107 139	78 106

	EEN - PUYALLUP RIVE ge (1000 AF) - End	WHITE - GREEN - PUYALLUP RIVER BASINS Watershed Snowpack Analysis - June 1, 2000							
Reservoir	Usable Capacity	*** Usabl This Year	le Storage Last Year	*** Avg	Watershed	Number of Data Sites		r as % of Average	
					WHITE RIVER	2	46	159	
					GREEN RIVER	2	40	165	
					PUYALLUP RIVER	2	46	159	

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

The average is computed for the 1961-1990 base period.

WHITE-GREEN-PUYALLUP BASINS Percent of Average June 1, 2000

> Snowpack - 161% Precipitation - 99%

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
(2) - The value is natural flow - actual flow may be affected by upstream water management.

Central Puget Sound River Basins

*Based on selected stations

Forecast for spring and summer flows are: 94% for Cedar River near Cedar Falls; 92% for Rex River and 101% for South Fork Tolt. May precipitation was 133% of average, bringing water-year-to-date to 110% of average. June 1 average snow cover in Cedar River Basin was 170%, Tolt River Basin was 188%, Snoqualmie River Basin was 153%, and Skykomish River Basin was 141%. Stevens Pass SNOTEL, at 4070 feet, had 7.4 inches of water content. Average June 1 water content at Stevens Pass is 5.7 inches. Average temperatures were slightly above normal for the past month.

Central Puget Sound River Basins

Streamflow	Forecasts	- June	1	2000

=======================================							========	
		· <======	Drier ====	== Future C	onditions =:	===== Wetter	=====>>	
Forecast Point	Forecast			- Chance Of	Exceeding * =		======	
	Period	90% (1000AF)	70% (1000AF)		Probable)	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
ČEDAR near Cedar Falls	JUN-JUL	16.2	23	27	93	31	38	29
CEDAR Real Cedal Falls								
	JUN-SEP	21	29	35	94	40	48	37
REX near Cedar Falls	JUN-JUL	3 62	6.53	8.50	92	10.47	13.38	9.21
REX near Cedar Falls		3.62						
9	JUN-SEP	5,3	8.9	11.3	92	13.7	17.3	12.3
CEDAR RIVER at Cedar Falls	JUN-JUL	11.1	15.8	19.0	91	22	27	21
CEDAR RIVER at Cedal Falls								
	JUN-SEP	15.1	18.0	20	91	22	25	22
SOUTH FORK TOLT near Index	JUN-JUL	4.51	5.52	6.20	98	6.88	7.89	6.30
SOUTH FORK TOBY Hear Tindex					-	_		
	JUN-SEP	7.19	8.27	9.00	101	9.73	10.81	8.90

Re	CENTRAL PUGET SOUND R. servoir Storage (1000 AF)				CENTRAL PUGET SOUND RIVER BASINS Watershed Snowpack Analysis - June 1, 2000			
Reservoir	Usal Capac	,	t	*** Avg	Watershed	Number of Data Sites		r as % of ======= Average
		.======	 =====		CEDAR RIVER	4	6	0
					TOLT RIVER	2	63	188
					SNOQUALMIE RIVER	4	52	153
					SKYKOMISH RIVER	3	51	141

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

The average is computed for the 1961-1990 base period.

- (1) The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
 (2) The value is natural flow actual flow may be affected by upstream water management.

CENTRAL PUGET BASIN Percent of Average
June 1, 2000 Snowpack - 161% Precipitation - 110%

North Puget Sound River Basins

*Based on selected stations

Forecast for Skagit River streamflow is 87% of average for the spring and summer period. May streamflow in Skagit River was 96% of average. Other forecast points included Baker River at 97% and Thunder Creek at 92% of average. Basin-wide precipitation for May was 137% of average, bringing water-year-to-date to 104% of average. June 1 average snow cover in Skagit River Basin was 93%, and Nooksack River Basin was 75%. Rainy Pass SNOTEL, at 4,780 feet, had 18 inches of water content. Average June 1 water content is 20.4 inches. June 1, Skagit River, reservoir storage was 95% of average and 71% of capacity. Average May temperatures were slightly below normal for the basin.

North Puget Sound River Basins

Streamflow Forecasts - June 1, 2000

	DCI	camiliow	rorccast	.s canc	1, 2000			
Forecast Point	Forecast			======================================		===== Wetter		
rorecast Forme	Period	90% (1000AF)	70% (1000AF)	50% (Most (1000AF)		30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
THUNDER CREEK near Newhalem	JUN-JUL JUN-SEP	123 210	136 227	145 239	91 92	154 251	167 268	160 259
SKAGIT at Newhalem (2)	JUN-SEP	1054	1160	1231	87	1302	1408	1418
SAKER RIVER near Concrete	JUN-JUL JUN-SEP	428 668	456 684	475 695	97 97	494 706	522 722	490 717

NORTH PUGET SO Reservoir Storage (100)					NORTH PUGET SOUND RIVER BASINS Watershed Snowpack Analysis - June 1, 2000			
Reservoir	Usable Capacity	*** Usa This Year	ble Stora Last Year	age *** Avg	Watershed	Number of Data Sites	This Yea Last Yr	r as % of Average
ROSS	1404.1	975.0	590.2	1033.9	SKAGIT RIVER	4	39	93
DIABLO RESERVOIR	90.6	87.1	87.5	86.1	BAKER RIVER	0	0	0
GORGE RESERVOIR	9.8	8.1	7.8	8.3	NOOKSACK RIVER	2	25	75

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

The average is computed for the 1961-1990 base period.

- (1) The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels. (2) The value is natural flow actual flow may be affected by upstream water management.

NORTH PUGET BASIN Percent of Average June 1, 2000

Snowpack - 84% Precipitation - 104% Reservoir - 95%

Olympic Peninsula River Basins

*Based on selected stations

June average streamflow forecasts for Dungeness River is 98% and Elwah River is 93%. Big Quilcene and Wynoochee rivers can expect near average runoff this summer also. May precipitation was 146% of average. Precipitation has accumulated at 111% of average for the water-year. May precipitation at Quillayute was 9.32 inches. The thirty-year average for May is 5.27 inches. June 1 snow cover in the Olympic Basin was at 73% of average. The Mount Crag SNOTEL near Quilcene had 1.6 inches of snow-water-equivalent on June 1. This site is typically melted out by June 1. Temperatures were 1 degree below average for the month.

Olympic Peninsula River Basins

Streamflow Forecasts - June 1, 2000

	=========			==========	========		========	=========
		<<======	: Drier ====:	== Future Co	onditions =	===== Wetter	====>>	
Baucasah Baint	Famanan			Change Of	Tugoodina *			
Forecast Point	Forecast							
	Period	90%	70%		Probable)	30%	10%	30-Yr Avg.
		(1000AF)	(1000AF)	(1000AF)	(% AVG.)	(1000AF)	(1000AF)	(1000AF)
	========		========	==========		===========	========	
DUNGENESS near Sequim	JUN-SEP	88	95	100	98	105	112	102
•	JUN-JUL	65	70	i 73	99	76	81	74
			. •			1		
ELWHA near Port Angeles	JUN-SEP	262	283	297	93	311	332	319
Edmin near rore migores	JUN-JUL	193	209	220	94	231	247	233
*	0.014-0.07	193	209	220	94	231	24/	233

=======	OLYMPIC PENINSULA RIVER B	ZETUS Zetns			OLYMPIC PEN	JINSULA RIVER E	EEEEEEEE	
	Reservoir Storage (1000 AF) - End				Watershed Snowpa			000
			=======			.======	.=======	
Reservoir	Usable Capacity	*** Usabl This Year	Le Storage Last Year	e *** Avg	Watershed	Number of Data Sites	This Yea: Last Yr	r as % of ====== Average
	=======================================	========	.======	=====	OLYMPIC PENINSULA	1	9	0
					ELWHA RIVER	0	0	0
					MORSE CREEK	0	0	0
					DUNGENESS RIVER	0	0	0
					QUILCENE RIVER	1	16	0
					WYNOOCHEE RIVER	0	0	0

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

The average is computed for the 1961-1990 base period.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels. (2) - The value is natural flow - actual flow may be affected by upstream water management.

GLACIER PAGE

North Cascades National Park Glacier Monitoring Program

The National Park Service began monitoring glaciers in North Cascades National Park in 1993. Goals for this program and additional data can be found at North Cascades National Park home page at http://www.nps.gov/noca/massbalance.htm.

The four glaciers monitored are located at the headwaters of four park watersheds with large hydroelectric operations (Figure 1). They represent a range in elevation from 8500 to 5700 feet, and a range in climatic conditions from maritime to continental. Methods include at least two visits annually to each glacier to measure winter accumulation and summer melt. Measurements are taken at a series of points down the centerline of each glacier (Table 1), then integrated across the entire glacier surface to determine annual mass balance for the entire glacier. Glaciers east of the hydrologic crest (Silver and Sandalee) appear to have a different relationship to climate than the west-side glaciers due to their higher elevations, continental climate and north aspects (Figure 2). Temporal variation is also large, as net mass balance varied 11.5 ft/yr. between 1993 and 1999.

Figure 1. Glaciers monitored in North Cascades N.P.S. Complex.

		2000	1999	Average
	Elev.	Accumulation	Accumulation	Accumulation
Glacier:	(feet)	(inches W.E.)	(inches W.E.)	(inches W.E.)
	6100	127	214	141
Noisy	6030	150	190	138
Creek	5940	121	165	122
	5810	117	167	120
	5670	118	171	119
	8530	134	189	133
Silver	8200	98	141	115
	7690	169	164	131
	7400	62	63	63
	7710	122	182	129
North	7360	130	191	127
Klawatti	7040	135	167	126
	6460	126	168	110
	6130	113	130	99
	7360	113	153	128
Sandalee	7100	131	185	143
	6810	129	152	127
	6630	150	214	150

Table 1. Snow water equivalent (W.E.) measured at monitored glaciers in late April.

Table 1 presents this spring's winter accumulation data, along with average values and data from the heavy winter accumulation of water year 1999 for comparison.

Accumulation generally increases with elevation, but on steep, barren slopes snow is redistributed by wind and avalanches. This year's accumulation values are slightly below the seven-year average.

Estimates of total glacial contribution to runoff for three watersheds are based on the mass balance measurements and GIS analysis to determine glacier area by 165 ft elevation bands (Table 2). Glaciers buffer flow in these watersheds by providing meltwater from ice in dry/warm years, and by storing water in wet/cool years. Glacial stream buffering capacity in these watersheds varies by as much as 100% annually. Magnitude of glacial contribution to streamflow is large, but varies by the amount of glacial cover in each watershed. Thunder Creek is 13% glaciated, while Baker River and Stehekin River are 6% and 3%, respectively (Post and others, 1971).

Relative importance of glacial contribution to streamflow increases from west to east. For example, glaciers annually contribute a higher percentage of meltwater to streamflow in the Stehekin than in the Baker, despite the fact that the Baker is more glaciated. This is due to lower snowfall east of the hydrologic crest of the North Cascades. In this average accumulation year we anticipate that glacial runoff will be above average in these watersheds.

	Mean Glacial	of Glacial Runoff		Percent Glacial Runoff to Total Summer Runoff		
	Runoff	Minimum	Maximum	Minimum	Maximum	
Noisy Creek Glacier	1.6	1.3	2.1			
Baker River Watershed	76	70	93	7	14	
North Klawatti Glacier	4.1	3.2	5.1			
Thunder Creek Watershed	105	86	135	25	44	
Sandalee Glacier	0.5	0.3	0.6			
Stehekin River Watershed	71	58	91	6	10	

Table 2. Glacial contribution to summer stream flow for three watersheds. Runoff units are thousands of acre-feet. Data from 1993-99 except the Sandalee Glacier and Stehekin River Watershed (1995-99).

Figure 2. Net annual mass balance for the five glaciers monitored in the North Cascades.

Issued by

Released by

Pearlie S. Reed Chief

Natural Resources Conservation Service U.S. Department of Agriculture

Leonard Jordan

State Conservationist

Natural Resources Conservation Service Spokane, Washington

The Following Organizations Cooperate with the Natural Resources Conservation Service in Snow Survey Work*:

Canada Ministry of the Environment

Investigations Branch, Victoria, British Columbia

State Washington State Department of Ecology

Washington State Department of Natural Resources

Federal Department of the Army

Corps of Engineers

U.S. Department of Agriculture

Forest Service

U.S. Department of Commerce

NOAA, National Weather Service

U.S. Department of Interior

Bonneville Power Administration

Bureau of Reclamation Geological Survey National Park Service Bureau of Indian Affairs

Local City of Tacoma

City of Seattle

Chelan County P.U.D.

Pacific Power and Light Company

Puget Sound Power and Light Company

Washington Water Power Company

Snohomish County P.U.D. Colville Confederated Tribes

Spokane County

Yakama Indian Nation
Whatcom County

Pierce County

Private Okanogan Irrigation District

Wenatchee Heights Irrigation District Newman Lake Homeowners Association

Whitestone Reclamation District

Washington Snow Survey Office 2021 E. College Way, Suite 214 Mount Vernon, WA 98273-2873

FOR OFFICIAL USE ONLY

U. S. DEPT. OF AGRICULTURE NATIONAL AGRICUL. LIBRARY CURRENT SERIAL RECORDS ROOM 002 BELTSVILLE, MD 20705-2351

Washington Basin Outlook Report

Natural Resources Conservation Service Spokane, WA

