BY:MOAYAD ALMASRY

CPMP133

a r r a y

Array in C

DataType arrayName[];

طريقة تعريف الArray, هكذا تم إنشاء Array فارغة

arrayName[5]={1,2,3,4,5 };

ثم نعطي قيمة لل Array عبر هذه الطريقة

arrayName[5]={0};

وهكذا تم إنشاء Array فارغة

```
DataType arrayName [length ] = { };
```

DataType arrayName[] = {DT0, DT1, DT2, DT3...,};

يمكن ايضا تعريف الarray وإعطائها قيمة في خطوة واحدة بهذه الطريقة

```
نقوم بتحدید نوع الArray
ویمکننا استخدام primitive DataType مثل : nnt , char , double , ....
```

DataType arrayName[ArrayLength];

نقوم بتحديد طول المصفوفة بعد اختيار نوعها, ويجب ان نتذكر ان العنصر الأول من المصفوفة يرمز له بـ array[length-1] , والعنصر الأخير

```
DataType arrayName[] = { }
```

```
int a[ 7] = { };
```

هكذا تم انشاء Array من نوع int , وإعطاء طول للـ Array ويساوي 7,

حيث أن:

أول عنصر بالـ Array سيكون [0] array

```
Int a[7]={ };
```

```
array [0] = 1;
array [1] = 2;
array [2] = 2;
array [3] = 3;
array [4] = 0;
array [5] = 6;
array [6] = 3;
```

قمنا بتعبئة الـarray كاملة , وهكذا سيكون شكل ال

```
array 1 2 2 3 0 6 3
```

```
int a[7]={ };
```

```
array [0] = 1;
array [1] = 2;
array [2] = 2;
array [3] = 3;
array [4] = 0;
array [5] = 6;
array [6] = 3;
```

1 2 2 3 0 6 3

```
int array[] = \{1, 2, 2, 3, 0, 6, 3\};
```

الطريقة الثانية: نقوم بإعطاء قيمة لل array بعد إنشائها بوضع { } وبداخلهما قيم السيمة السيمة المعام التي تم انشاء السيمة المعام التي تم انشاء السيمة المعام التي تم إدخالها المعام التي تم إدخالها السيمة

int array[] = $\{1, 2, 2, 3, 0, 6, 3\}$;

Code	output
length	
array[1]	
array[7]	

int array[] = $\{1, 2, 2, 3, 0, 6, 3\}$;

Code	output
length	7
array[1]	2
array[7]	random

what is the output?

```
double array[5]={ };
array[0] = 3;
array[2] = 8.2;
array[3] = 3.2;

for (int i = 0; i < 5; i++) {
    printf("%d",array[i]);
}</pre>
```

	1		1
O	uτ	\mathbf{D}	ut
_		_	

what is the output?

```
double array[5] = { };
array[0] = 3;
array[2] = 8.2;
array[3] = 3.2;

for (int i = 0; i < 5; i++) {
    printf("%f", array[i]);
}</pre>
```

output

- 3.0
- 0.0
- 8.2
- 3.2
- 0.0

array of char

```
char name[4] ={ };
name[0] = "a";
name[1] = "b";
name[3] = "c";

for (int i = 0; i < 4; i++) {
    printf("%c", name[i]);
}</pre>
```

OL	ıtp	ut	

array of char

```
Char name[4] = {} ;
name[0] = "a" ;
name[1] = "b" ;
name[3] = "c" ;
for (int i = 0; i < 4; i++) {
    printf("%c", name[i]);
}</pre>
```

output a b No thing

```
copy arrays
```

```
int array1[]= {4 , 2 , 11 , 2 , 0};
int *array2 = array1;

for (int i = 0; i < 5; i++) {
   printf("%d \n", array2[i]);
}</pre>
```

output

```
int array1[] = {4 , 2 , 11 , 2 , 0};
int array2 []={ };

for (int i = 0; i <5; i++) {
    array2[i]=array1[i];
}

for (int i = 0;i<5; i++) {
    printf("%d \n",array2[i]);
}</pre>
```

output
4
2
11
2

copy arrays

```
int array1[] = { 4 , 2 , 11 , 2 , 0}
;
```

عند إنشاء الarray يتم حجز مكان لها بالذاكرة

copy arrays

```
ولكن ماذا لو قمنا بتعريف array اخرى كpointer
             وجعلها تساوي ال array الأولى ؟
int array1[] = {4, 2, 11, 2, 0}
Int *array2 = array1 ;
                         or
int array1[] = \{4, 2, 11, 2, 0\}
 Int *array2 = &array1 ;
```

```
array2[]
```

copy arrays

```
int array1[] = {4 , 2 , 11 , 2 , 0};
int *array2 = array1;
```

في حالة مساواتهما معا وكانا يتكونا من نفس النوع من الdataType فإنه يتم تخزينهما معا في نفس المكان بالذاكرة, وأي تغيير على أحدهما يعني التغيير على الآخر

coupy arrays

```
int array1[] = {4, 2, 11, 2, 0};
  int *array2 = array1;

array2[0] = 1111;
  array1[1] = 710;

for (int i = 0; i <5; i++) {
    printf("%d\n", array1[i]);
}</pre>
```

	1	1
OU	ltD	Ul
	-	—

coupy arrays

```
int array1[] = {4, 2, 11, 2, 0};
    int *array2 = array1;

    array2[0] = 1111;
    array1[1] = 710;

for (int i = 0; i <5; i++) {
        printf("%d\n", array1[i]);
    }</pre>
```

output

1	1	1	1	

1	1	

	/	
4	_	

coupy arrays

```
double array1[] = \{4.1, 2.9, 11, 2.5, 0.2\}
int array2[5] ;
for (int i = 0; i < 5; i++) {
   array2[i] = array1[i];
for (int i = 0; i < 5; i++) {
printf("%d\n", array2[i]);
```

output

coupy arrays

```
double array1[] = {4.1, 2.9, 11, 2.5, 0.2};
    int array2[5]; // Assuming both arrays have 5 elements

// Copying elements from array1 to array2
    for (int i = 0; i < 5; i++) {
        array2[i] = array1[i];
    }

// Printing elements of array2
    for (int i = 0; i < 5; i++) {
        printf("%d\n", array2[i]);
    }
</pre>
```

في هذه الحاله نحن نخزن array من نوع double الى اخرى من نوع int

هنا سيقوم باهمال القيم بعد الفاصله وعمل casting

output

```
double array1[] = \{4.1, 2.9, 11, 2.5, 0.2\};
   int array2[5];
    for (int i = 0; i < 5; i++) {
       array2[i] = array1[i];
    for (int i = 0; i < 5; i++) {
        printf("%d\n", array2[i]);
```

coupy arrays

output

4

2

11

2

```
int size=5;
int array[5] = \{9, 5, 3, 7, 1\};
for (int i = 0; i < size - 1; i++) {
   for (int j = 0; j < size -i-1; j++) {
       if (array[j] > array[j + 1]) {
           int temp = array[j];
           array[j] = array[j + 1];
           array[j + 1] = temp;
for (int k = 0; k < size; k++) {
   printf("%d\n",array[k]);
```

Bubble Sort array

قام بترتيب العناصر تصاعديا

output

1

3

5

7

```
int size = 5;
int array[] = \{9, 1, 3, 7, 5\};
for (int i = 0; i < size - 1; i++) {
   for (int j = i + 1; j < size; j++) {
       if (array[j] < array[i]) {</pre>
           int temp = array[i];
           array[i] = array[j];
           array[j] = temp;
for (int k = 0; k < size; k++) {
   printf("%d\n", array[k]);
```

Selection Sort array

قام بترتيب العناصر تصاعديا

output

|--|

```
int size=5;
int array[5] = \{9, 1, 3, 7, 5\};
for (int i = 0; i < size - 1; i++) {
   for (int j = 0; j < size - 1; j++) {
       if (array[j] < array[j + 1]) {</pre>
           int temp = array[j];
           array[j] = array[j + 1];
           array[j + 1] = temp;
for (int k = 0; k < size; k++) {
   printf("%d\n",array[k]);
```

Bubble Sort array

قام بترتيب العناصر تنازلي

output

9

7

5

3

```
int key=3; \ نريد ان نبحث عنه داخل المصفوفه
int size = 5;
int array[] = \{9, 1, 3, 7, 5\};
  if (array[i] == key) {
      printf("index of key is:%d",i);
```

Linear Search in array

output

index of key is:3

```
int size = 5;
int array[] = \{1, 2, 3, 4, 5\};
                                                        Reverse array
for (int i = 0; i < size/2; i++) {
   int temp=array[i];
   array[i]=array[size-i-1];
                                                                                             5
   array[size-i-1]=temp;
                                                                                 i=(size-1)
for (int i = 0; i < size; i++) {
                                                              Reversing An Array
   printf("%d\n",array[i]);
                                                         Array
                                                                    Temp
                                                                                 i=size/2
                                                                    SCALER Topics
                                                   i=0
```

output

4

3

2

Array in function

1D - Array

طرق لجعل ال function يستقبل

```
void fun(int *arr)
{
    int i;
    int n = 8;
    for (i = 0; i < n; i++)
        printf("%d ",arr[i]);
}
int main()
{
    int arr[] = { 1, 2, 3, 4, 5, 6, 7, 8 };
    fun(&arr);
    return 0;</pre>
```

```
void fun(int arr[])
{
   int i;
   int n = 8;
   for (i = 0; i < n; i++)
        printf("%d ", arr[i]);
}
int main()
{
   int arr[] = { 1, 2, 3, 4, 5, 6, 7, 8 };
   fun(arr);
   return 0;</pre>
```

Array in function

1D-Array

طرق ارسال Aarray الى طرق

```
void fun(int *arr)
{
   int i;
   int n = 8;
   for (i = 0; i < n; i++)
        printf("%d ",arr[i]);
}
int main()
{
   int arr[] = { 1, 2, 3, 4, 5, 6, 7, 8 };
   fun(&arr);
   return 0;</pre>
```

```
void fun(int arr[])
{
   int i;
   int n = 8;
   for (i = 0; i < n; i++)
        printf("%d ", arr[i]);
}
int main()
{
   int arr[] = { 1, 2, 3, 4, 5, 6, 7, 8 };
   fun(arr);
   return 0;</pre>
```

Array in function

1D - Array

```
void fun(int arr[ ])
  int i;
   int n = 8;
  for (i = 0; i < n; i++)
       scanf("%d", arr[i]);
int main()
   int arr[] = {1, 2, 3, 4, 5, 6, 7, 8 };
   fun (arr);
   return 0;
```

عندما نرسل array الى function فاننا نرسل ال addrees الخاص بها

هذا يعني انه اي تعديل يحدث على array داخل ال function سوف يحدث ايضا على قيمتها داخل ال main

Array in **function**

int main() { int n=7;

fun(arr,n);

return 0;

```
output
                                                                                   9
int arr[] = { 1, 2, 3, 4, 5, 6, 7 };
                                                                                   6
for (int i = 0; i < 7; i++) {
                                                                                   4
   printf("%d ", arr[i]);
void fun(int arr1[],int n){
                                                                                   9
    int arr2[] = \{9,6, 4, 7, 9, 3, 5\};
    for (int i = 0; i < n; i++) {
                                                                                   3
     arr1[i] = arr2[i];
                                                                                   5
```

What the output of following code

A)61 B)39 c)none d)78

```
int x[5] = \{15, 22, 39, 50, 21\};
                                            • x[0] = 15
                                            • x[1] = 22
int s = x[5 \% 2] + x[2];
                                            • x[2] = 39
                                            • x[3] = 50
                                            • x[4] = 21
printf("The value of s is: %d\n", s);
                X[5\%2]=X[1]=22
                   S=x[1]+x[2]
                   S=22+39=61
```

```
int main() {
   int b[7] = \{7, 8, 4, 2, 13, 87, 31\}, i, m =
0;
   char c[7];
  m = F1(b, c, 7);
    for (i = 0; i < 7; i++) {
      printf("\n%c", c[i]);
   printf("\n# of passes: %d\n", m);
   return 0;
int F1(int a[], char c[], int n) {
  int i, pass = 0;
   float x = 0;
 for (i = 0; i < n; i++) {
      x = x + a[i];
 x = x / n;
for (i = 0; i < n; i++) {
      if(a[i] > x) {
           c[i] = 'P';
           pass++;
       } else {
           c[i] = 'F'; }
return pass;}
```

```
Output:
P
P
# of passes: 2
```

```
int k[6] = {0, 0, 0, 0, 0, 0};
int i, n;
for (i = 3; i < 6; ++i) {
    scanf("%d", &n);
    k[n] = i;
}</pre>
```

What will be the values of k[1] and k[3] after execution of the code segment below using the given data: 2 0 1?