

# Cogito Ergo Summ: Abstractive Summarization of Biomedical Papers via Semantic Parsing Graphs and Consistency Rewards



Giacomo Frisoni, Paolo Italiani, Stefano Salvatori, Gianluca Moro Department of Computer Science and Engineering, University of Bologna, Italy

# Motivations

- Biomedical document summarization challenges
- Medical jargon truly hard to interpret
- > Clauses' interdependence, complex interactions, precise domain information, narrow interpretation margin, no factual mistakes
- Problems and weaknesses of existing solutions
- ➤ Highly prone to hallucinating content or falling back on extraction
- > Superficial text organization rather than underlying semantics
- ➤ Not ensuring document-summary consistency

## Contribution

- CogitoErgoSumm, the first semantics-aware transformer-based model for single document abstractive summarization in the biomedical domain
- ➤ Combining pre-trained language models and semantic parsing graphs providing formal meaning representations
- ➤ Two different semantic parsing techniques with complementary strengths: Event Extraction (EE) and Abstract Meaning Representation (AMR)
- Reinforcement Learning (RL) to ensure factuality and consistency
- $\blacktriangleright$  Reward function based on the average SMATCH score between the original document and the generated summary

## AMR and Event Graphs

- Abstract Meaning Representation Graphs
- ➤ Capture the general meaning of any sentence as high-level semantic relations (abstraction from words to concepts)
- ➤ We use SPRING to automatically extract AMRs from sentences
- Event Graphs
- ➤ Capture biomedical-specific interactions with n-ary and potentially nested interactions between participants
- ➤ We use DEEPEVENTMINE to automatically extract events



## Architecture

ullet We extend a pre-trained BART-base architecture with the nimble ability to attend semantic parsing graphs during decoding and preserve the most relevant information via RL



### Method

- Two training phases
- $ightharpoonup 1^{th}$  Phase ightharpoonup Next Token Prediction, but with semantic graphs
- $ightharpoonup 2^{th}$  Phase ightharpoonupRL with *Proximal Policy Optimization*



- We add **two extra cross-attentions layers** to the BART decoder: Event Attention and AMR Attention
- $\blacktriangleright$  Node representations obtained using edge-aware GAT layers
- We use RL to preserve as much pivotal information as possible from the original document
- ➤ Maximize the overlap between the AMRs of the input document and the AMRs of the generated summary with SMATCH
- > Try not to deviate too much from the pr-etrained model by keeping a low KL-divergence

 $\psi(doc, summ) = AvgSmatch(doc, summ) - \beta \log \frac{\pi_{\theta}(a_t|s_t)}{\pi_{base}(a_t|s_t)}$ 

#### Results

| Model                              | #params | R-1          | R-2   | R-L          | Flesch-Kincaid | Coleman-Liau |
|------------------------------------|---------|--------------|-------|--------------|----------------|--------------|
| Oracle <sup>†</sup>                | _       | 53.56        | 25.54 | 49.56        | 14.85          | 16.13        |
| $\mathrm{BERT}	ext{-}base^\dagger$ | 110M    | 26.60        | 11.11 | 24.59        | 13.44          | 14.40        |
| Pointer generator <sup>†</sup>     | 22M     | 38.33        | 14.11 | 35.81        | 16.36          | 15.90        |
| BART-base (PubMed)                 | 139M    | 51.20        | 19.77 | 48.47        | 13.69          | 13.45        |
| BART-large (PubMed) <sup>†</sup>   | 406M    | 52.66        | 21.73 | 49.97        | 13.30          | 14.28        |
| EASumm <sup>‡</sup>                | 8M      | 46.30        | 18.73 | 43.78        | 12.42          | 13.06        |
| CogitoErgoSumm                     | 181M    | 52.23        | 20.63 | 49.44        | 14.10          | 13.67        |
| - w/o RL                           | 180M    | <u>52.30</u> | 20.47 | <u>49.46</u> | 14.06          | 13.64        |
| - w/o event and RL                 | 155M    | 52.13        | 20.42 | 49.30        | 14.02          | 13.69        |
| - w/o AMR and RL                   | 157M    | 52.02        | 20.54 | 49.25        | 13.97          | 13.66        |

- ROUGE scores higher than most of the previous methods
- Still competitive with BART-large despite having 2x fewer parameters



- Better results on every quality dimension in the human evaluation (+12.46% factualness, +6.69% informativenes)
- The plot also underlines the poor correlation between ROUGE and the desired output properties



 Qualitative example of induced semantic parsing graphs and their assistance to high-quality summarization