

浙江天信仪表科技有限公司 ZHEJIANG TANCY INSTRUMENT TECHNOLOGY CO., LTD.

目录

1	概过	<u> </u>		1
2	产品	品构成		1
3	技术	*指标		1
	3.1	测量介	·质条件	1
	3.2	测量管	F道条件	1
	3.3	测量范	国和精度	2
	3.4	工作环	「境	3
	3.5	工作电	! 源和功耗	3
	3.6	显示、	输出和存储功能	3
4	测量	≹主机接□	I	5
	4.1	超声换	能器接口	5
		4.1.1	超声换能器线缆与主机接口的连接	5
	4.2	交流/7	高压直流电源输入接口	5
		4.2.1	交流电源线缆与主机接口的连接	5
		4.2.2	高压直流电源线缆与主机接口的连接	6
	4.3	低压直	[流电源输入接口	6
		4.3.1	直流电源选择	6
		4.3.2	低压直流电源线缆与主机接口的连接	6
	4.4	RS-485	输出接口	7
		4.4.1	RS-485 通信线缆与主机接口的连接	7
	4.5	PULSE	输出接口	7
		4.5.1	正脉冲/频率(外供电)输出使用方法	7
		4.5.2	负脉冲/频率(外供电)输出使用方法	8
		4.5.3	脉冲/频率(内供电)输出使用方法	8
		4.5.4	开关量(外供电)输出使用方法	9
		4.5.5	开关量(内供电)输出使用方法	9
	4.6	4-20m	A 输出接口	. 10
		4.6.1	4-20mA(外供电)输出使用方法	. 10
		4.6.2	4-20mA(内供电)输出使用方法	. 10
5	超声	换能器安	·装与调试	. 11
	5.1	画线		11
		5.1.1	计算超声换能器安装距离	. 11
		5.1.2	画线所使用的工具	. 11
		5.1.3	画线方法	. 11
	5.2	底座和	1阀门的安装	. 12
		5.2.1	可焊接的金属管道	. 12
		5.2.2	不可焊接的管道	. 12
		5.2.3	阀门安装与检漏	. 12
		5.2.4	带压钻孔	. 13
		5.2.5	安装换能器	. 14
6	测量	主机操作	Ī	18
	6.1	显示器	 和按键	. 18

	6.2	显示器	} 主界面	. 19
	6.3	功能菜	〔单	21
		6.3.1	安装条件设置	. 21
		6.3.2	计量参数设置	. 23
		6.3.3	显示器设置	. 24
		6.3.4	输出接口设置	. 25
		6.3.5	其他设置	. 26
		6.3.6	历史数据	. 27
		6.3.7	·····································	. 29
7	型号	·定义	741115	
8				
9		• • • —		

☆ 微信搜一搜 Q TANCY计算器

(Version 1.04)

1 概述

本产品以传播速度差法(时间差法)为原理,用于充满封闭圆管的自来水,工、农业用水,其它给排水,以及其它单相(或接近单相)液体的流量测量,可应用于石油、化工、冶金、电力、给排水等领域。

本产品的生产、检验依据中华人民共和国城镇建设行业标准《CJ/T 3063-1997 给排水用超声流量计(传播速度差法)》、中华人民共和国国家标准《GB/T 35138-2017 封闭管道中流体流量的测量 渡越时间法液体超声流量计》、中华人民共和国国家计量检定规程《JJG 1030-2007 超声流量计》。

2 产品构成

本产品由测量主机和超声换能器两部分构成。超声换能器依据声道数量分为单声道和双声道两种。

3 技术指标

3.1测量介质条件

介质种类	水、海水、污水、酒精、油类、弱酸/碱液等能够实
	现超声波传导的均匀的单相液体, 且液体应充满测量
	管道
介质温度	-40°C~150°C
介质浊度	<10 000 mg/L

3.2测量管道条件

管道材质	碳钢、不锈钢、铸铁、铜、铝、PE、PVC、玻璃钢、				
	水泥等材质,可带有内衬,要求其整体机械强度满足				
	超声换能器开孔安装要求				
最大工作压力(范围)	1.6 MPa				
适用管道通径	DN80 ~ DN2000				

3.3测量范围和精度

型号	TUF-C11			TUF	-C12	
声道数量	单声道			双声	這道	
准确度等级	1.0			0.5		
分界流量 q_t 对应流速	0.3 m/s					
逆流要求	可测反向	流				
流速、流量范围	适用公	流速范	最小海		分界流量	最大流量
	称通径	围(m/s)	$(m^3/$	/h)	(m^3/h)	(m^3/h)
	DN80	0.2~7.0	3.6	2	5.43	126.67
	DN100		5.6	5	8.48	197.92
	DN125		8.8	4	13.25	309.25
	DN150		12.7	72	19.09	445.32
	DN200		22.6	52	33.93	791.68
	DN250		35.3	34	53.01	1237.00
	DN300	0.2~6.0	50.8	39	76.34	1526.81
	DN350		69.2	27	103.91	2078.16
	DN400		90.4	48	135.72	2714.34
	DN450		114.	51	171.77	3435.33
	DN500		141.	37	212.06	4241.15
	DN600	0.2~4.0	203.	57	305.36	4071.50
	DN700		277.	09	415.63	5541.76
	DN800		361.	91	542.87	7238.22
	DN900	0.2~3.5	458.	04	687.07	8015.76
	DN1000	0.2~3.0	565.	49	848.23	8482.29
	DN1200	0.2~2.5	814.	30	1221.45	10178.75
	DN1400	0.2~2.0	1108	.35	1662.53	11083.53
	DN1600	0.2~1.5	1447	.64	2171.47	10857.33
	DN1800	0.2~1.2	1832	.17	2748.27	10993.05

DN	2000 0.2~1.0	2261.94	3392.92	11309.72
----	--------------	---------	---------	----------

3.4工作环境

测量主机工作环境温度	- 20°C∼ + 60°C
测量主机工作环境湿度	≤85% RH
测量主机防护等级	IP65
超声换能器工作环境温度	- 40°C∼ + 150°C
超声换能器防护等级	IP68 (水深≤2m)
超声换能器线缆长度	10 * ×N (N≤10)

3.5工作电源和功耗

工作电源	AC 85V~264V, 50/60 Hz
	DC 9V~36V
功率	<5W

3.6显示、输出和存储功能

显示器		160×32 像素 LCD		
界面语言		简体中文、英文		
按键		电容式触摸按键		
输出接口	RS-485	数量: 1路		
		隔离电压: 3750 Vrms		
		传输速率: 1200/2400/4800/9600 bps		
		校验方式: None/Odd/Even		
		理论最大传输距离: 1200 m		
		通信协议: Modbus RTU		
4-20mA		数量: 1路		
		隔离电压: 3750 Vrms		
		输出形式: 二线制, 有源输出/无源输出		
		无源输出情况下最大输入电压: 40 V DC		

		有源输出情况下接口开路电压: 24 V DC (±10%)		
		最大负载电阻: 800Ω		
		输出精度:	$\pm 0.1\%$ FSR	
	脉冲、开关	数量: 2路		
	星	隔离电压:	3750 Vrms	
		输出形式:	集电极开路(OC),有源输出/无源输出	
		脉冲输出	无源输出情况下最大输入电压: 30 V DC	
			无源输出情况下最大输入电流: 5 mA	
			有源输出情况下脉冲幅度: 24 V DC (±	
			10%)	
			脉冲宽度: 5 ms~200 ms	
		开关量输	无源输出情况下最大输入电流: 30 mA	
		出	无源输出情况下最大负载功率: 150mW	
			有源输出情况下接口开路电压: 24 V DC	
			$(\pm 10\%)$	
			有源输出情况下接口短路电流: 24 mA	
		频率输出	无源输出情况下最大输入电压: 30 V DC	
			无源输出情况下最大输入电流: 5 mA	
			有源输出情况下脉冲幅度: 24 V DC (±	
			10%)	
			脉冲频率: 0 Hz ~ 1kHz	
历史数据存储		年累积流量: 10组		
		月累积流量: 120 组		
		日累积流量: 1000 组		
断电数据存储		断电时间、恢复供电时间及对应的瞬时流量、累计流		
		量, 共100组		

4 测量主机接口

4.1超声换能器接口

4.1.1 超声换能器线缆与主机接口的连接

4.2交流/高压直流电源输入接口

4.2.1 交流电源线缆与主机接口的连接

4.2.2 高压直流电源线缆与主机接口的连接

4.3低压直流电源输入接口

4.3.1 直流电源选择

推荐使用符合以下参数的直流开关电源:

额定电压	24 V DC
额定电流	0.625 A
额定功率	15W

4.3.2 低压直流电源线缆与主机接口的连接

4.4RS-485 输出接口

4.4.1 RS-485 通信线缆与主机接口的连接

4.5PULSE 输出接口

4.5.1 正脉冲/频率(外供电)输出使用方法

(1) 在主机断电情况下,调整输出接口对应的拨码开关至下图状态。

4.5.2 负脉冲/频率(外供电)输出使用方法

(1) 在主机断电情况下,调整输出接口对应的拨码开关至下图状态。

(2) 推荐使用如下电路连接方案。

4.5.3 脉冲/频率(内供电)输出使用方法

(1) 在主机断电情况下,调整输出接口对应的拨码开关至下图状态。

4.5.4 开关量(外供电)输出使用方法

(1) 在主机断电情况下,调整输出接口对应的拨码开关至下图状态。

(2) 推荐使用如下电路连接方案。

4.5.5 开关量(内供电)输出使用方法

(1) 在主机断电情况下,调整输出接口对应的拨码开关至下图状态。

4.64-20mA 输出接口

4.6.1 4-20mA (外供电) 输出使用方法

(1) 在主机断电情况下,调整输出接口对应的拨码开关至下图状态。

(2) 推荐使用如下电路连接方案。

4.6.2 4-20mA (内供电) 输出使用方法

(1) 在主机断电情况下,调整输出接口对应的拨码开关至下图状态。

5 超声换能器安装与调试

5.1画线

5.1.1 计算超声换能器安装距离

参照 "6.3.1 安装条件设置",为测量主机设定正确的"管道内径"、"安装方法"等参数之后,进入"安装距离"界面,查看超声换能器的安装距离数值;或者使用微信小程序《TANCY 计算器》计算并查看安装距离数值。根据此数值,在测量管道上画出换能器安装线。

5.1.2 画线所使用的工具

- ① 一段长度大于管道周长的纸带(幅宽约为 200mm,可用打印纸)
- ② 记号笔
- ③ 卷尺

5.1.3 画线方法

步骤	图示
① 将纸带绕管道一周,纸带重叠部分	fi
的两个纸边要重合,沿纸边在管道	
上画一条圆周线 r, 在纸带上作周	
长起始标记。	圆周线 纸带
② 取下纸带,将纸带按周长起始标记	
对折,形成半周长。用纸带做标尺	
画一条圆周线 r 的垂直线 S, 与圆	
周线相交的 a 点, 即为一支换能器	沿轴线方向的直线
的安装位置。	
③ 沿纸带的另一端边在管道的另一	
侧画一直线 D, 并与圆周线 r 相交	r
b 点。(若使用 V 法安装,可略过	bi a S
此步骤)	

④ 根据安装距离数值,用卷尺由 b 点沿直线 D 确定 c 点。a 点和 c 点即为两只换能器的 Z 法安装点。若使用 V 法安装,则用卷尺由 a 点沿直线 S 确定另一换能器的安装点。

5.2底座和阀门的安装

5.2.1 可焊接的金属管道

用厂方提供的下连接管焊接在管道上,标注的十字线要与管道上所画的十字 线重合。焊缝不得有夹渣、气孔等焊接缺陷,待冷却后对下连接管的螺纹缠绕生 料带,并装上阀门。

5.2.2 不可焊接的管道

对于不可焊接的管道,如球墨铸铁管、PE 管、PVC 管等,采用厂方提供的专用不锈钢紧固装置,由厂家安装人员将底座固定于管道外壁。用户需提供管道外径尺寸,用于确定紧固装置的尺寸。对下紧固装置的顶部外螺纹缠绕生料带,并装上阀门。阀门上方连接好手动试压泵的连接头,打开阀门,用手动试压泵增压至 1.76MPa,保压 2 分钟对紧固装置及阀门连接处进行检漏。若有漏液现象,则需要调整紧固装置或生料带,直到完成。

5.2.3 阀门安装与检漏

对下连接管或紧固装置的螺纹缠绕生料带,并装上阀门,安装完毕后,整体

安装完成示意图,如下图所示。阀门上方连接好手动试压泵的连接头,打开阀门,用手动试压泵增压至 2.4MPa,保压 2 分钟对焊缝或紧固装置连接处和阀门连接处进行检漏。若有漏液现象,则需要补焊或调整双卡箍装置和生料带,直到完成。最后对焊缝喷涂防锈漆。

5.2.4 带压钻孔

- (1) 打开球阀,向球阀内加入冷却液,以备钻孔冷却。
- (2) 开孔器的进给外套往后拧出后将钻头部分缩入开孔器腔体内,然后将带压开孔器缠绕四氟生料带与阀门连接拧紧,最后拧紧进给外套再将钻杆推到底。
- (3)将电钻与开孔器的钻杆连接,手扶进给外套顺时针方向每分钟一圈旋 转推进,直至孔打通,严禁使用冲击档。
- (4) 孔打通后卸掉电钻,逆时针方向将进给外套退拧下来,然后抽出钻杆 关闭球阀。
 - (5) 用扳手将开孔器卸下,清除掉开孔器和球阀腔体内的切屑。

5.2.5 安装换能器

- ①声楔面 ②换能器杆 ③上连接管 ④定位螺杆 ⑤203 标记(与声楔面同侧)
- ⑥定位板 ⑦紧定螺钉 ⑧限位螺母 ⑨电缆锁紧螺帽
- (1)该超声换能器一面标记有传感器高度 H 为 203mm,此面与声楔面同侧。 203 即为传感器中心到限位板底面的距离。该超声换能器适用于管道壁厚不大于 35mm 的安装环境。若现场管壁壁厚超过 35mm,可特殊订制。

(2) 松开 6 只 M8 螺母, 拧出定位螺杆④, 使得螺杆与上连接管③脱开。 将换能器杆②退到上连接管③内,如下图所示。注意末端 2 对垫片容易滑落出来, 可以先把它们卸下来。

(3)在球阀顶部放入四氟垫片,并在上连接管③上缠绕生料带,如图所示 旋紧到球阀内,然后缓慢打开球阀。

(4)调整声楔面到合适位置,并将换能器杆②推入管道内,锁紧定位螺杆④。测量换能器露在管外部分长度 L,使 L=H-t 即 L=203-t (t 为管壁厚,包含管内衬厚度),精确到 mm。精准调整好 L 后,锁紧 6 只 M8 螺母。

- (5)精确调整换能器的声楔面①,使对角两只换能器的声楔面①相对(即标志 203 相对)。
- (6)参照 "6.3.1.4 调试数据",进入测量主机的"调试数据"界面,检验超声换能器的安装效果。适当地微调声楔面标记角度,从而更好地满足调试数据指标要求。
 - (7) 锁紧紧定螺钉⑦和限位螺母⑧,卸下阀门手柄,安装完毕。
 - (8) 插入式超声流量计安装示意图。

TUF-C11 型安装示意图 (单声道 DN80≤DN≤DN200)

TUF-C11 型安装示意图 (单声道 DN200<DN≤DN2000)

TUF-C12 型安装示意图 (双声道 DN80≤DN≤DN200)

TUF-C12 型安装示意图 (双声道 DN200<DN≤DN2000)

6 测量主机操作

6.1显示器和按键

6.1.1 主机电源接通后,显示仪表启动界面。

6.1.2 按键功能:

操作类型按键	数据查看	菜单	数值更改	选项更改
A	向上翻页	向上循环	改变光标 所在位置 的数字	上一个选项
Enter	切换显示 内容	进入	保存更改 并返回	保存更改 并返回
Back	返回	返回	放弃更改 并返回	放弃更改 并返回
>	向下翻页	向下循环	移动光标	下一个选项

6.2显示器主界面

6.2.1 显示内容:

正向信号强度——上游至下游传播的超声信号强度 反向信号强度——下游至上游传播的超声信号强度 声道编号——信号强度、运行状态所属声道的编号 运行状态——仪表运行状态的代码

代码	含义
G	正常
U	流量大幅波动
S	信号检索
Е	故障或无测量介质

6.2.2 主界面数据

页面	数据	说明	
1	瞬时流量	显示范围为 - 9,999,999.999 ~ + 9,999,999.999	
		单位可选 m³/h、m³/s、L/h、L/s	
	净累计流量 净累计流量=正累计流量+负累计流量		
		显示范围为 (- 100,000,000 ~ + 100,000,000) m³	
		超出显示范围后,将显示超出后的余数,同时相	

		应的溢出因数递增,参见"6.3.6.5溢出因数"	
		单位可选 m³、L	
2 瞬时流量 同上		同上	
	正累计流量	显示范围为 [0~+100,000,000) m³	
		超出显示范围后,将显示超出后的余数,同时相	
		应的溢出因数递增,参见"6.3.6.5溢出因数"	
		单位可选 m³、L	
3	瞬时流量	同上	
	负累计流量	显示范围为 (-100,000,000~0] m³	
		超出显示范围后,将显示超出后的余数,同时相	
		应的溢出因数递增,参见"6.3.6.5溢出因数"	
		单位可选 m³、L	
4	瞬时流量 同上		
流速 数值精度 0.0001		数值精度 0.0001	
		单位可选 m/s、mm/s	
5	声波速度	数值精度 0.01	
		单位 m/s	
	液体温度	根据声波速度推算,仅供参考	
		数值精度 0.1	
		単位 ℃	
6	有效测量时间	仪表处于正常测量状态的累积时间	
		单位 小时	
	仪表运行时间	仪表运行的总累积时间(含非正常测量时间)	
		单位 小时	
7	当前日期		
	当前时间		

6.2.3 显示内容更新周期为1秒。

6.3功能菜单

显示主界面时,长按 进入功能菜单。

6.3.1 安装条件设置

"安装条件设置"用于设定换能器安装方面的关键参数,并可用于检查换能器安装效果。

6.3.1.1 管道内径

设置范围: 15.0 mm~10 000.0 mm

6.3.1.2 安装方法

设置选项: Z法、V法

6.3.1.3 安装距离

显示精度: 0.1 mm

"安装距离"所显示的数值,是同一声道的上游换能器和下游换能器之间,沿 管道轴线方向的距离。

6.3.1.4 调试数据

"调试数据"显示每一声道正向信号强度(SI-0)、反向信号强度(SI-1)、信道质量(CQ)以及平均传播时间(T)的数值。

信号强度反映超声信号在介质中经过正、反向传播后,被换能器所接收的信号幅度。

信道质量反映超声信号在介质中可靠传播,并被换能器有效接收的概率。

在安装条件设置无误、换能器安装准确的情况下,信号强度值与信道质量值 越大,仪表的测量结果越稳定。

一般情况下,信号强度和信道质量均高于 60%时,仪表工作状态较为稳定可靠。

可借助微信小程序"TANCY 计算器",通过输入平均传播时间(T),评估换能器安装的准确性。

6.3.2 计量参数设置

"计量参数设置"用于设定计量性能调校方面的关键参数。

6.3.2.1 零流量

零流量即被测介质处于静止状态时,仪表测得瞬时流量示值的均值。

零流量设置不准确,将影响流量测量的准确度。

讲入"2.1.1 查看",可查看当前零流量的设定值。

进入"2.1.2 设置",仪表将自动完成零流量的测定和记忆。注意此功能必须在被测介质处于静止状态时使用。

进入"2.1.3清除", 仪表将设置零流量为0。

6.3.2.2 始动流速

当仪表测得流速的绝对值小于等于始动流速时, 仪表的瞬时流量和流速示值 计为 0。

设置范围: 0.000 m/s~0.100 m/s

6.3.2.3 计量方向

设置选项:单向、双向

当选择"单向"时,如果瞬时流量为负值,则计为0。

6.3.2.4 滑动平均参数

对瞬时流量数据进行滑动平均运算处理,可有效抑制数据的随机波动。

滑动平均参数取值越大,数据越趋于平稳,但同时仪表对瞬时流量变化的响应速度趋于缓慢。

设置范围: 01~99

6.3.3 显示器设置

6.3.3.1 瞬时流量单位

设置选项: m³/h、m³/s、L/h、L/s

6.3.3.2 累计流量单位

设置选项: m³、L

6.3.3.3 流速单位

设置选项: m/s、mm/s

6.3.3.4 界面语言

设置选项:简体中文、English

6.3.4 输出接口设置

6.3.4.1 RS-485

波特率设置选项: 1200bps、2400bps、4800bps、9600bps

校验位设置选项: None、Odd、Even

地址设置范围: 001~247

6.3.4.2 4-20mA

瞬时流量 = (量程上限 - 量程下限 $) \times \frac{输出电流值 - 4}{16}$

量程下限是输出电流值为 4mA 时所代表的瞬时流量值。

设置范围: - 9,999,999.999~+ 9,999,999.999 m³/h

量程上限是输出电流值为 20mA 时所代表的瞬时流量值。

设置范围: - 9,999,999.999~+ 9,999,999.999 m³/h

6.3.4.3 PULSE

功能选择设置选项:关闭、累计脉冲、报警开关、频率输出

功能选择	PULSE1 输出接口功能	PULSE2 输出接口功能
关闭	禁用	禁用
累计脉冲	输出脉冲量,代表正累	输出脉冲量,代表负累

	计流量的递增	计流量的递增
报警开关	输出开关量,代表瞬时	输出开关量,代表瞬时
	流量低于报警下限值	流量高于报警上限值
频率输出	输出频率信号,代表正	输出频率信号,代表逆
	向瞬时流量	向瞬时流量

脉冲宽度是选用"累计脉冲"输出时,单个正脉冲的高电平持续时间,或单个负脉冲的低电平持续时间。

设置范围: 5~200 ms

脉冲当量是选用"累计脉冲"或"频率输出"时,单个脉冲信号所代表的累计流量增量。

设置范围: 0.000001~10.000000 m³

报警上限设置范围: - 9,999,999.999~+ 9,999,999.999 m³/h

报警下限设置范围: - 9,999,999.999~+ 9,999,999.999 m3/h

6.3.5 其他设置

6.3.5.1 用户密码开关

设置选项: 关、开

当用户密码设为"开"时,进入功能菜单需输入正确的用户密码。

默认密码为0000

如果连续 3 次密码输入错误,功能菜单将被锁定 48 小时。

6.3.5.2 修改用户密码

用户密码设置范围: 0000~9999

6.3.5.3 厂商内部功能

厂商内部功能涉及仪表测量和输出准确度,以及仪表数据安全,受动态密码 保护。

例如,修正系数是依据对仪表进行实流检定的结果,对流量示值进行修正的 系数。

即

修正系数 =
$$\frac{标准器示值}{Q表示值}$$

用户如需操作此部分功能,请向售后服务咨询。

6.3.6 历史数据

6.3.6.1 日历史数据

可按日期查询 1000 组日历史数据。

每组数据的存储时间是次日的00:00。

数据内容包括:

- 1) 存储日期
- 2) 净累积流量(当前增加值)
- 3) 净累积流量(结算值)
- 4) 正累积流量(当前增加值)
- 5) 正累积流量(结算值)
- 6) 负累积流量(当前增加值)
- 7) 负累积流量(结算值)
- 8) 有效测量时间(当前增加值)
- 9) 有效测量时间(结算值)
- 10) 仪表运行时间(当前增加值)
- 11) 仪表运行时间(结算值)

6.3.6.2 月历史数据

可按月份查询 120 组月历史数据。

每组数据的存储时间是次月的1日00:00。

数据内容包括:

- 1) 存储日期
- 2) 净累积流量(结算值)
- 3) 正累积流量(结算值)
- 4) 负累积流量(结算值)
- 5) 有效测量时间(结算值)
- 6) 仪表运行时间(结算值)

6.3.6.3 年历史数据

可按年份查询 10 组年历史数据。

每组数据的存储时间是次年的1月1日00:00。

数据内容同上。

6.3.6.4 断电数据

可查询 100 组断电数据。

数据内容包括:

- 1) 断电时间
- 2) 恢复供电时间
- 3) 断电前最后一次测得的瞬时流量
- 4) 恢复供电后第一次测得的瞬时流量
- 5) 断电前净累积流量
- 6) 断电前正累积流量
- 7) 断电前负累积流量

6.3.6.5 溢出因数

当净累积流量、正累积流量或负累积流量超出显示范围后,显示屏将显示超出后的余数,同时相应的溢出因数递增。

即

总累积流量 = 溢出因数 × 显示范围 + 当前示值

仪表存储的溢出因数包括:

- 1) 净累积流量溢出因数
- 2) 正累积流量溢出因数
- 3) 负累积流量溢出因数

6.3.7 诊断信息

诊断信息界面包含仪表运行过程中的专业技术数据,可用于异常状态下的故障排查。

7 型号定义

注: 电流输出、脉冲输出和 RS-485 通信可多选,型号按以上列出的顺序填写,其他选项只能单选。

选型举例: TUF-C12-300-T-1.0-Y-50

表示: TUF-C1型插入式超声流量计,声道数: 双声道,适用口径: 300mm,输出方式: RS-485通信、脉冲输出,准确度等级: 1.0级,压力测量功能: 有,电缆线长度: 50米。

备注:双卡箍装置仅适用于 DN≥300。 不可焊接的管道需配套双卡箍装置,用户可在型号末尾括备注管道材质及管道外径。如: TUF-C12-300-T-1.0-Y-50 (球墨铸铁 ϕ 326)

8 故障排查

故障现象	可能原因	解决方法
屏幕无显示内容	保险管熔断	检查供电电源是否正常;
		更换保险管。
运行状态为"S"	管道内无测量介质	注入测量介质,并使其充满
		管道
	超声换能器安装不准确	检查超声换能器安装情况
	测量主机设置不正确	检查测量主机的"安装条件
		设置"与"计量参数设置"
	测量介质中含有较多的	改善测量介质条件, 或变更
	气体或固体杂质	超声换能器安装点
	超声换能器损坏	返厂维修
运行状态为"U"	测量介质中含有较多的	改善测量介质条件, 或变更
	气体或固体杂质	超声换能器安装点
	超声换能器收到来自安	排除干扰信号,或变更超声
	装点附近其它超声信号	换能器安装点
	发射装置的干扰信号	
	仪表工作环境存在较强	排除干扰信号;
	的电磁干扰	测量主机、超声换能器及其
		线缆远离干扰源。
	超声换能器采用V法安	改用Z法安装,或变更超声
	装时,由管内壁结垢等因	换能器安装点
	素导致反射信号失真	
	超声换能器损坏	返厂维修
运行状态为"E"	管道内无测量介质	注入测量介质,并使其充满
		管道
	仪表硬件故障	返厂维修

9 售后承诺

流量计自发货之日起 18 个月内(或安装后 12 个月内),在正常使用操作条件下,对产品在使用过程中出现的故障和零配件磨损问题,免费提供维修和更换服务。在设备的设计使用寿命期内,保证零部件的正常供应,对所有部件终身维修服务。人为破坏及不可抗力因素除外。除产品说明书外,公司可以根据用户的实际情况及要求提供与产品相关的技术资料、行业信息及技术咨询,以供用户参考。产品安装由公司派专业技术人员现场安装及调试。

修订历史

Version 1.04

- ① "3.6 显示、输出和存储功能"中增加"频率输出"相关内容。
- ② 修改 6.3.2 和 6.3.5 配图。
- ③ 删除原"6.3.2.3 修正系数"一节。
- ④ 增加 "6.3.5.3 厂商内部功能"一节。