

Universidade Federal do Espírito Santo Centro Tecnológico Departamento de Engenharia Elétrica Prof. Hélio Marcos André Antunes

Unidade 3: Condutores Elétricos -Dimensionamento e Instalação — Aula 06

Instalações Elétricas I Engenharia Elétrica

3.3.2- Critério do Limite de Queda de Tensão

- Os condutores apresentam, mesmo que pequena, uma resistência à passagem da corrente elétrica.
- A corrente ao passar por essa impedância provoca uma queda de tensão, que deve respeitar certos limites admissíveis.
- Estes limites não devem ser superiores aos valores estabelecidos pela NBR 5410, a fim de não prejudicar o funcionamento dos equipamentos conectados aos circuitos terminais.
- A queda de tensão causa aos equipamentos elétricos a redução de desempenho e vida útil de equipamentos, podendo causar a queima de equipamentos a curto prazo.

Critério do Limite de Queda de Tensão

- A queda de tensão em uma instalação elétrica, desde a origem até o ponto mais afastado de qualquer circuito terminal, não deve ser superior aos valores apresentados a seguir.
- Limites estabelecidos pela NBR 5410/2004:

	Denominação	Percentual (%)
a)	A partir dos terminais secundários do transformador MT/BT, no caso de transformador de propriedade da(s) unidade(s) consumidora(s).	7
b)	A partir dos terminais secundários do transformador MT/BT da empresa distribuidora de eletricidade, quando o ponto de entrega for aí localizado.	7
c)	A partir do ponto de entrega, nos demais casos de ponto de entrega com fornecimento em tensão secundária de distribuição.	5
d)	A partir dos terminais de saída do gerador, no caso de grupo gerador próprio.	7
e)	Queda de tensão nos circuitos terminais (6.2.7.2)	4

Critério do Limite de Queda de Tensão

3.3.2.1- Método da Queda de Tensão Unitária

- Constitui um método mais preciso para o cálculo da queda de tensão.
- Tanto a reatância indutiva quanto a resistência do cabo são considerados para o cálculo da queda de tensão, além do fator de potência da carga.
- Como desvantagem desse método, podemos destacar a necessidade do uso de uma tabela fornecida pelo fabricante de condutores.
- A tabela relaciona a queda de tensão unitária (V/A.km) para cada seção do condutor, com a respectiva queda de tensão, método de instalação e tipo de circuito.
- A seguir será apresentado um roteiro para o desenvolvimento deste método.

Método da Queda de Tensão Unitária

- Roteiro para dimensionamento
 - Tipo de isolação do condutor;
 - Método de instalação;
 - Material do eletroduto (magnético ou não-magnético);
 - Tensão do circuito;
 - Corrente de projeto (I_P);
 - Fator de potência ($\cos \theta$) do circuito;
 - Comprimento (l) do circuito em km;
 - Queda de tensão admissível e(%);
 - Cálculo da queda de tensão unitária;

$$\Delta V_{unit} = \frac{e(\%) \times V}{I_p \times l} \qquad \left[\frac{V}{A.Km} \right]$$

– Escolha do condutor: ΔV_{unit} obtido pela fórmula deve ser comparado com um valor tabelado. Este valor deve ser igual ou inferior ao valor calculado

Método da Queda de Tensão Unitária

Tabela para o Método da Queda de Tensão Unitária (Tabela 10.22)

	Eletroduto e (material n		Eletroduto e eletrocalha ^(A) (material não-magnético)								
Seção		stic, ic Flex		Pirastic e Pirastic Flex							
nominal (mm²)		ionofásico ásico	Circuito n	nonofásico	Circuito	Circuito trifásico					
	FP = 0,8	FP = 0,8 FP = 0,95		FP = 0,8 FP = 0,95 FP =		FP = 0,95	FP = 0,8	FP = 0,95			
1,5	23 27,4 14 16,8		23,3	27,6	20,2	23,9					
2,5			14,3	16,9	12,4	14,7					
4	9,0	10,5	8,96	10,6	7,79	9,15					
6	5,87	7,00	6,03	7,07	5,25	6,14					
10	3,54	4,20	3,63	4,23	3,17	3,67					
16	2,27	2,70	2,32	2,68	2,03	2,33					
25	1,50	1,72	1,51	1,71	1,33	1,49					
35	1,12	1,25	1,12	1,25	0,98	1,09					
50	0,86	0,95	0,85	0,94	0,76	0,82					
70	0,64	0,67	0,62	0,67	0,55	0,59					
95	0,50	0,51	0,48	0,50	0,43	0,44					

Exemplo

Exemplo 3.1) Dimensionar os condutores (cobre) para um chuveiro, tendo como dados: P_n = 5400W, V=220V, cos θ =1, isolação de PVC, eletroduto de PVC embutido em alvenaria, temperatura ambiente 30°C, comprimento do circuito 15m.

- 1) Pelo critério da seção mínima:
 - Circuito de tomada (ABNT NBR 5410);
 - 2,5 mm² (Fase + Fase + PE).
- 2) Pela capacidade de corrente:

$$- I_P = \frac{P}{V\cos\theta} = \frac{5400}{220.1} = 24,5A$$

$$- I_C \ge \frac{I_P}{FCT \times FCR \times FCA} \to I_c \ge 24.5 A$$

- Obs: n\u00e3o existe necessidade de corrigir a corrente I_{c.} pois o circuito est\u00e1 em temperatura de 30°C e s\u00e9 h\u00e1 um circuito no eletroduto.
- Isolação de PVC, 2 condutores carregados (fase + fase), método de instalação B1 (Tabela 10.8), temperatura 30°C:
 - $I_c = 32 \text{ A} \text{ (Tabela 10.10)};$
 - $4 \text{ mm}^2 \text{ (Fase + Fase + PE)}.$

- 3) Pelo critério da queda de tensão:
 - Queda de tensão unitária:
 - Eletroduto de PVC (material não-magnético);
 - Circuito monofásico (Fase-Fase);
 - Fp=1, usar fp=0,95 da Tabela 10.22;
 - L=0,015 Km.

-
$$\Delta V_{unit} = \frac{e(\%.) \times V}{I_P \times l} = \frac{0.04 \times 220}{24.5 \times 0.015} = 23.9 \text{V/A.Km}$$

- Da <u>Tabela 10.22</u>, obtemos 16,9V/A.Km (valor abaixo de 23,9 V/A.Km) que corresponde a um condutor de 2,5 mm².
- Logo, pelo método da queda de tensão unitária pode-se usar um cabo de 2,5 mm² (Fase + Fase+ PE).
- Como o critério da capacidade de corrente apresentou a maior seção dentre os critérios apresentados, o circuito de tomada do chuveiro deve ser composto por:
 - − Três condutores de cobre com seção de 4mm² (F + F +PE).

Tabela 10.8 - Tipos de linhas elétricas (Tabela 33 da NBR 5410:2004).

Método de Instalação Número	Método de Referência a Utilizar para a Capacidade de Condução de Corrente ⁽¹⁾	Descrição
1	A1	Condutores isolados ou cabos unipolares em eletroduto de seção circular embutido em parede termicamente isolante ²⁾ .
7	B1	Condutores isolados ou cabos unipolares em eletroduto de seção circular embutido em alvenaria.

Tabela 10.10 - Capacidade de condução de corrente, em ampères, para os métodos de referência A1, A2, B1, B2, C, e D (Tabela 36 da NBR 5410:2004).

Condutores: cobre e alumínio

Isolação: PVC

Temperatura no condutor: 70°C

Temperatura de referência do ambiente: 30° C(ar), 20° C(solo)

C	Métodos de Referência Indicados na Tabela 10.8													
Seções Nominais	A	1	A	2	В	1	В	2		0	I			
mm ²		Número de Condutores Carregados												
11111	2	3	2	3	2	3	2	3	2	3	2	3		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11	(12)	(13)		
						obre								
0,5	7	7	7	7	9	8	9	8	10	9	12	10		
0,75	9	9	9	9	11	10	11	10	13	11	15	12		
1	11	10	11	10	14	12	13	12	15	14	18	15		
1.5	14,5	13,5	14	13	17,5	15,5	16,5	15	19,5	17,5	22	18		
2,5	19,5	18	18,5	17,5	24	21	23	20	27	24	29	24		
4	26	24	25	23	32	28	30	27	36	32	38	31		

Tabela para o Método da Queda de Tensão Unitária (Tabela 10.22)

	Eletroduto e (material n		Eletroduto e eletrocalha ^(A) (material não-magnético) Pirastic e Pirastic Flex							
Seção		stic, ic Flex								
nominal (mm²)		ionofásico ásico	Circuito r	nonofásico	Circuito	trifásico				
	FP = 0,8	FP = 0,95	FP = 0,8	FP = 0,95	FP = 0,8	FP = 0,95				
1,5	23 27,4		23,3	27,6	20,2	23,9				
2,5	14			16,9	12,4	14,7				
4	9,0	10,5	8,96	10,6	7,79	9,15				
6	5,87	7,00	6,03	7,07	5,25	6,14				
10	3,54	4,20	3,63	4,23	3,17	3,67				
16	2,27	2,70	2,32	2,68	2,03	2,33				
25	1,50	1,72	1,51	1,71	1,33	1,49				
35	1,12	1,25	1,12	1,25	0,98	1,09				
50	0,86	0,95	0,85	0,94	0,76	0,82				
70	0,64	0,67	0,62	0,67	0,55	0,59				
95	0,50	0,51	0,48	0.50	0,43	0,44				

Exemplo

Exemplo 3.2) A figura abaixo ilustra um trecho de uma instalação elétrica residencial. Dimensione os condutores para o circuito 2, considerando os condutores de cobre com isolação de PVC, tensão V=127V e fator de potência igual a 0,8 atrasado. Considere que o eletroduto de PVC (embutido em alvenaria) localiza-se em um ambiente com temperatura de 35°C.

- 1) Pelo critério da seção mínima:
 - Circuito de tomada (ABNT NBR 5410);
 - 2,5 mm² (Fase + Neutro + PE).
- 2) Pela capacidade de corrente:

$$- I_P = \frac{S}{V} = \frac{2000}{127} = 15,7 \text{ A}$$

Como o condutor está em uma condição fora do caso padrão da <u>Tabela 10.10</u> (30°C ar), será necessário corrigir a corrente I_{C:}

$$I_C \ge \frac{I_P}{FCT \times FCR \times FCA}$$

- Da <u>Tabela 10.14</u> para PVC e 35°C, o FCT é igual a 0,94. Como em um eletroduto temos dois circuitos, FCA é igual a 0,8 na <u>Tabela 10.16</u>. Por último, FCR=1, pois o eletroduto está embutido em alvenaria.

$$I_C \ge \frac{15.7}{0.94 \times 1 \times 0.8}$$
 $I_C \ge 20.88 A$ $I_C = 24 A (#2.5)$ (Tabela 10.10);

Tabela 10.8 - Tipos de linhas elétricas (Tabela 33 da NBR 5410:2004).

Método de Instalação Número	Método de Referência a Utilizar para a Capacidade de Condução de Corrente ⁽¹⁾	Descrição
1	A1	Condutores isolados ou cabos unipolares em eletroduto de seção circular embutido em parede termicamente isolante ²⁾ .
7	B1	Condutores isolados ou cabos unipolares em eletroduto de seção circular embutido em alvenaria.

Tabela 10.10 - Capacidade de condução de corrente, em ampères, para os métodos de referência A1, A2, B1, B2, C, e D (Tabela 36 da NBR 5410:2004).

Condutores: cobre e alumínio

Isolação: PVC

Temperatura no condutor: 70°C

Temperatura de referência do ambiente: 30° C(ar), 20° C(solo)

C - T	Métodos de Referência Indicados na Tabela 10.8												
Seções Nominais	A	1	A	2	В	1	В	2		0	I		
mm ²	Número de Condutores Carregados												
11111	2	3	2	3	2	3	2	3	2	3	2	3	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11	(12)	(13)	
						obre							
0,5	7	7	7	7	9	8	9	8	10	9	12	10	
0,75	9	9	9	9	11	10	11	10	13	11	15	12	
1	11	10	11	10	14	12	13	12	15	14	18	15	
1.5	14,5	13,5	14	13	17.5	15,5	16,5	15	19,5	17,5	22	18	
2,5	19,5	18	18,5	17,5	24	21	23	20	27	24	29	24	
4	26	24	25	23	36	28	30	27	36	32	38	31	

Tabela 10.14 - Fatores de correção para temperaturas ambientes diferentes de 30°C para cabos não-enterrados e de 20°C (temperatura do solo) para linhas subterrâneas - FCT - (Tabela 40 da NBR 5410:2004).

T		Isolação								
Temperatura °C	PVC	EPR ou XLPE	PVC	EPR ou XLPE						
		Ambiente		do Solo						
10	1,22	1,15	1,10	1,07						
15	1,17	1,12	1,05	1,04						
20	1,12	1,08	-	_						
25	1,06	1,04	0,95	0,96						
30	-	-	0,89	0,93						
35	0,94	0,96	0,84	0,89						

Tabela 10.16 - Fatores de correção para agrupamento de circuitos ou cabos multipolares

	Forma de Agrupamento dos Condutores		Número de Circuitos ou de Cabos Multipolares										
Ref.		1	2	3	4	5	6	7	8	9 a 11	12 a 15	16 a 19	≥ 20
1	Em feixe: ao ar livre ou sobre superfície; embutidos; em conduto fechado.	1,00	0,80	0,70	0,65	0,60	0,57	0,54	0,52	0,50	0,45	0,41	0,38

- 3) Queda de tensão unitária (trecho a trecho):
- Adotando um cabo de 2,5 mm², temos um ΔV_{unit}= 14,3 V/A.Km da <u>Tabela 10.22</u> (Eletroduto de PVC material não-magnético), circuito monofásico (Fase-Fase), fp=0,8). Deve-se calcular a queda de tensão trecho a trecho até que se obtenha a queda de tensão total do circuito:

$$- \Delta e = \frac{\Delta V_{unit} \times I_P \times l \times 100\%}{V}$$

Trecho	S(VA)	Ip (A)	d (km)	Δe_{trecho} (%)	$\Delta e_{acum}(\%)$
AO	2000	15,75	0,01	1,773	1,773
AB	1400	11,02	0,01	1,241	3,014
ВС	800	6,30	0,01	0,709	3,724
CD	200	1,57	0,003	0,053	3,777
DE	100	0,79	0,002	0,018	3,795

- Como a queda de tensão acumulada é menor que 4% (valor limite ABNT NBR 5410), os condutores devem ser de 2,5 mm² (Fase + Neutro + PE).
- Analisando os resultados, os condutores do circuito devem ter seção de 2,5 mm² (Fase + Neutro + PE).

Tabela para o Método da Queda de Tensão Unitária (Tabela 10.22)

	Eletroduto e (material n		Eletroduto e eletrocalha ^(A) (material não-magnético) Pirastic e Pirastic Flex							
Seção		stic, ic Flex								
nominal (mm²)		ionofásico ásico	Circuito n	nonofásico	Circuito	trifásico				
	FP = 0,8 FP = 0,95		FP = 0,8	FP = 0,95	FP = 0,8	FP = 0,95				
1,5	23 27,4 14 16,8		23.3	27,6	20,2	23,9				
2,5			14.3	16,9	12,4	14,7				
4	9,0	10,5	8,96	10,6	7,79	9,15				
6	5,87	7,00	6,03	7,07	5,25	6,14				
10	3,54	4,20	3,63	4,23	3,17	3,67				
16	2,27	2,70	2,32	2,68	2,03	2,33				
25	1,50	1,72	1,51	1,71	1,33	1,49				
35	1,12	1,25	1,12	1,25	0,98	1,09				
50	0,86	0,95	0,85	0,94	0,76	0,82				
70	0,64	0,67	0,62	0,67	0,55	0,59				
95	0,50	0,51	0,48	0,50	0,43	0,44				

Exemplo

Exemplo 3.3) A figura abaixo ilustra o trecho de um circuito alimentador, entre o medidor e o QDC. O circuito alimentador é trifásico a cinco fios (3 fases + neutro + PE), com comprimento de 30 metros e alimenta uma carga total de 40 kW (fp= 0,8 atrasado).

Dimensione os condutores para o circuito alimentador, considerando os condutores de cobre com isolação de PVC, tensão de fase 127 V e tensão de linha de 220 V. Considere que a carga elétrica do circuito alimentador é equilibrada (sem harmônicos de corrente), e o mesmo está alocado em um eletroduto de PVC enterrado no solo (método de instalação 61 A e método de referência D), com temperatura de 20°C. Adote FCR=1.

- 1) Pelo critério da seção mínima:
 - O circuito alimentador não possui seção mínima, e mesmo dever ser calculado usando o critério da capacidade de corrente e queda de tensão.
- 2) Pela capacidade de corrente:

$$- I_P = \frac{P_{3\emptyset}}{\sqrt{3} V_L \cos \theta} = \frac{40.000}{\sqrt{3} \times 220 \times 0.8} = 131,22 \text{ A}$$

Isolação de PVC, 3 condutores carregados (fase + fase + fase e com carga equilibrada), método de instalação D, temperatura 30°C:

$$I_C \ge \frac{I_P}{FCT \times FCR \times FCA}$$
 $I_C \ge \frac{131,22}{1 \times 1 \times 1}$

- $I_c = 151 \text{ A}, 70 \text{ mm}^2 \text{ (Tabela 36)},$
- Condutor neutro: 35 mm² (slide 22)
- Condutor PE: 35 mm² (slide 22)

Exemplo

Tabela 36 — Capacidades de condução de corrente, em ampères, para os métodos de referência A1, A2, B1, B2, C e D

Condutores: cobre e alumínio

Isolação: PVC

Temperatura no condutor: 70°C

Temperaturas de referência do ambiente: 30°C (ar), 20°C (solo)

Socoo.				Métod	dos de ref	ferência i	ndicados	na tabela	a 33			
Seções nominais	Α	.1	Α	A2 B1		B2		С)	
mm ²					Número o	de condut	ores carr	egados				
mm-	2	3	2	3	2	3	2	3	2	3	2	3
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
					C	obre						
0,5	7	7	7	7	9	8	9	8	10	9	12	10
0,75	9	9	9	9	11	10	11	10	13	11	15	12
1	11	10	11	10	14	12	13	12	15	14	18	15
1,5	14,5	13,5	14	13	17,5	15,5	16,5	15	19,5	17,5	22	18
2,5	19,5	18	18,5	17,5	24	21	23	20	27	24	29	24
4	26	24	25	23	32	28	30	27	36	32	38	31
6	34	31	32	29	41	36	38	34	46	41	47	39
10	46	42	43	39	57	50	52	46	63	57	63	52
16	61	56	57	52	76	68	69	62	85	76	81	67
25	80	73	75	68	101	89	90	80	112	96	104	86
35	99	89	92	83	125	110	111	99	138	119	125	103
50	119	108	110	99	151	134	133	118	168	144	148	122
70	151	136	139	125	192	171	168	149	213	184	183	151

Seção do Condutor Neutro e PE

• Slide 15 e 16 – Aula 05

Seção dos condutores de fase mm²	Seção reduzida do condutor neutro mm²		
S ≤ 25	s		
35	25		
50	25		
70	35		
95	50		
120	70		
150	70		
185	95		
240	120		
300	150		
400	185		

Seção dos condutores fase (mm²)	Seção mínima do condutor PE (mm²)			
1,5 a 25	a mesma seção do condutor fase			
25	16			
35	16			
50	25			
70	35			
95	50			
120	70			
150	95			
185	95			
240	120			
300	150			

Um condutor de proteção pode ser comum a vários circuitos

3) Queda de tensão:

- Queda de tensão unitária:
 - Eletroduto de PVC (material não-magnético);
 - Circuito trifásico (Fase + Fase +Fase);
 - Fp=0,8, Tabela 10.22;
 - L=0,03 Km.

$$- \Delta V_{unit} = \frac{e(\%) \times V}{I_P \times l} = \frac{0.01 \times 220}{131.58 \times 0.03} = 0.58 \text{ V/A.Km}$$

- Da <u>Tabela 10.22</u>, obtemos 0,55 V/A.Km (valor abaixo de 0,58 V/A.Km) que corresponde a um condutor de 70 mm².
- Logo, pelo método da queda de tensão unitária pode-se usar um cabo de 70 mm² (Fase + Fase+ Fase), 35 mm² (Neutro + PE).
- Assim, o circuito alimentador terá os seus condutores fase com seção de 70 mm² (Fase + Fase+ Fase) e 35 mm² (Neutro + PE).

Tabela para o Método da Queda de Tensão Unitária (Tabela 10.22)

	Eletroduto e eletrocalha ^(A) (material magnético) Pirastic, Pirastic Flex Circuito monofásico e trifásico		Eletroduto e eletrocalha ^(A) (material não-magnético) Pirastic e Pirastic Flex			
Seção						
nominal (mm²)			Circuito monofásico		Circuito trifásico	
	FP = 0,8	FP = 0,95	FP = 0,8	FP = 0,95	FP = 0,8	FP = 0,95
1,5	23	27,4	23,3	27,6	20,2	23,9
2,5	14	16,8	14,3	16,9	12,4	14,7
4	9,0	10,5	8,96	10,6	7,79	9,15
6	5,87	7,00	6,03	7,07	5,25	6,14
10	3,54	4,20	3,63	4,23	3,17	3,67
16	2,27	2,70	2,32	2,68	2,03	2,33
25	1,50	1,72	1,51	1,71	1,33	1,49
35	1,12	1,25	1,12	1,25	0,98	1,09
50	0,86	0,95	0,85	0,94	0.76	0,82
70	0,64	0,67	0,62	0,67	0,55	0,59
95	0,50	0,51	0,48	0,50	0,43	0,44