PARSING EXPRESSION GRAMMARS

OVERVIEW & AN EQUIVALENT COMPUTATIONAL MODEL

ALEXANDER RUBTSOV

HSE University, Moscow, Russia

BASED ON MFCS 2024 PAPER (JOINT WORK WITH NIKITA CHUDINOV) SEPTEMBER 26, 2024

Parsing Expression Grammars

PARSING EXPRESSION GRAMMARS

MOTIVATION, DEFINITION, EXAMPLES

PRACTICAL MOTIVATION

Classical Parsing Approaches

- Top-Down: LL(k) easy to design, but the power is limited
- Bottom-Up: LR(k) powerful (generate all DCFLs), but hard to design

Parsing Expression Grammars

- PEGs can be considered as a generalization of LL-grammars
- PEGs are more powerful than LR-grammars, but there is no (currently?) direct translation LR-grammars to PEGs
- PEGs now being used in compilers Python replaced LL(1)-parser by PEG
- PEGs are popular for solving parsing problems

$$S \rightarrow BC$$

$$B \rightarrow abb \mid b$$

$$\mathbf{C} \rightarrow \mathbf{c}\mathbf{C} \mid \varepsilon$$

S

$$S \to \textit{BC}$$

$$B \rightarrow abb \mid b$$

$$\mathbf{C} \rightarrow \mathbf{c}\mathbf{C} \mid \varepsilon$$

$$S \rightarrow BC$$
 $B \rightarrow abb \mid b$
 $C \rightarrow cC \mid \varepsilon$

$$S \rightarrow BC$$
 $B \rightarrow abb \mid b$
 $C \rightarrow cC \mid \varepsilon$

$$S \rightarrow BC$$
 $B \rightarrow abb \mid b$
 $C \rightarrow cC \mid \varepsilon$

$$S \rightarrow BC$$
 $B \rightarrow abb \mid b$
 $C \rightarrow cC \mid \varepsilon$

$$S \rightarrow BC$$
 $B \rightarrow abb \mid b$
 $C \rightarrow cC \mid \varepsilon$

$$S \rightarrow BC$$
 $B \rightarrow abb \mid b$
 $C \rightarrow cC \mid \varepsilon$

$$S \rightarrow BC$$
 $B \rightarrow abb \mid b$
 $C \rightarrow cC \mid \varepsilon$

$$S \to \textit{BC}$$

$$B \rightarrow abb \mid b$$

 $C \rightarrow cC \mid \varepsilon$

CFG $S \rightarrow AB \mid BC$ $A \rightarrow aA \mid a$ $B \rightarrow abb \mid b$

 $C \rightarrow cC \mid \varepsilon$

PEG

$$S \leftarrow AB / BC$$

 $A \leftarrow aA / a$
 $B \leftarrow abb / b$
 $C \leftarrow cC / \varepsilon$

S

PEG:

$$S \leftarrow AB / BC$$

 $A \leftarrow aA / a$
 $B \leftarrow abb / b$
 $C \leftarrow cC / \varepsilon$

PEG:

$$S \leftarrow AB / BC$$

$$A \leftarrow aA / a$$

$$B \leftarrow abb / b$$

$$C \leftarrow cC / \varepsilon$$

$$S \leftarrow AB / BC$$

 $A \leftarrow aA / a$
 $B \leftarrow abb / b$
 $C \leftarrow cC / \varepsilon$

$$S \leftarrow AB / BC$$

 $A \leftarrow aA / a$
 $B \leftarrow abb / b$
 $C \leftarrow cC / \varepsilon$

PEG:

$$S \leftarrow AB / BC$$

 $A \leftarrow aA / a$
 $B \leftarrow abb / b$
 $C \leftarrow cC / \varepsilon$

PEG:

$$S \leftarrow AB / BC$$

 $A \leftarrow aA / a$
 $B \leftarrow abb / b$
 $C \leftarrow cC / \varepsilon$

$$S \leftarrow AB / BC$$

 $A \leftarrow aA / a$
 $B \leftarrow abb / b$
 $C \leftarrow cC / \varepsilon$

$$S \leftarrow AB / BC$$

 $A \leftarrow aA / a$
 $B \leftarrow abb / b$
 $C \leftarrow cC / \varepsilon$

$$S \leftarrow AB / BC$$

 $A \leftarrow aA / a$
 $B \leftarrow abb / b$
 $C \leftarrow cC / \varepsilon$

$$S \leftarrow AB / BC$$

 $A \leftarrow aA / a$
 $B \leftarrow abb / b$
 $C \leftarrow cC / \varepsilon$

PEG:

$$S \leftarrow AB / BC$$

 $A \leftarrow aA / a$
 $B \leftarrow abb / b$
 $C \leftarrow cC / \varepsilon$

PEG:

 $S \leftarrow AB / BC$ $A \leftarrow aA / a$ $B \leftarrow abb / b$ $C \leftarrow cC / \varepsilon$

$$S \leftarrow AB / BC$$

 $A \leftarrow aA / a$
 $B \leftarrow abb / b$
 $C \leftarrow cC / \varepsilon$

$$S \leftarrow AB / BC$$

 $A \leftarrow aA / a$
 $B \leftarrow abb / b$
 $C \leftarrow cC / \varepsilon$

PEG:

$$S \leftarrow A(!c)D / A'B$$

$$A \leftarrow aAb / \varepsilon$$

$$A' \leftarrow aA' / \varepsilon$$

$$B \leftarrow bBc / \varepsilon$$

$$D \leftarrow dD / \varepsilon$$

$$a^nb^nd^* \cup a^*b^nc^n$$

PEG:

$$S \leftarrow A(!c)D / A'B$$

$$A \leftarrow aAb / \varepsilon$$

$$A' \leftarrow aA' / \varepsilon$$

$$B \leftarrow bBc / \varepsilon$$

$$D \leftarrow dD / \varepsilon$$

$$a^nb^nd^* \cup a^*b^nc^n$$

PEG:

$$S \leftarrow A(!c)D / A'B$$

$$A \leftarrow aAb / \varepsilon$$

$$A' \leftarrow aA' / \varepsilon$$

$$B \leftarrow bBc / \varepsilon$$

$$D \leftarrow dD / \varepsilon$$

$$a^nb^nd^* \cup a^*b^nc^n$$

PEG:

$$S \leftarrow A(!c)D / A'B$$

$$A \leftarrow aAb / \varepsilon$$

$$A' \leftarrow aA' / \varepsilon$$

$$B \leftarrow bBc / \varepsilon$$

$$D \leftarrow dD / \varepsilon$$

$$a^nb^nd^* \cup a^*b^nc^n$$

PEG:

$$S \leftarrow A(!c)D / A'B$$

 $A \leftarrow aAb / \varepsilon$
 $A' \leftarrow aA' / \varepsilon$
 $B \leftarrow bBc / \varepsilon$
 $D \leftarrow dD / \varepsilon$

$$a^nb^nd^* \cup a^*b^nc^n$$

PEG:

$$S \leftarrow A(!c)D / A'B$$

$$A \leftarrow aAb / \varepsilon$$

$$A' \leftarrow aA' / \varepsilon$$

$$B \leftarrow bBc / \varepsilon$$

$$D \leftarrow dD / \varepsilon$$

$$a^nb^nd^* \cup a^*b^nc^n$$

PEG:

$$S \leftarrow A(!c)D / A'B$$

$$A \leftarrow aAb / \varepsilon$$

$$A' \leftarrow aA' / \varepsilon$$

$$B \leftarrow bBc / \varepsilon$$

$$D \leftarrow dD / \varepsilon$$

$$a^nb^nd^* \cup a^*b^nc^n$$

PEGS EXAMPLES: OPERATOR &

& is a syntactic sugar

$$&X = !(!X)$$

- \blacksquare if X yields to fail then !X yields to ε
- \blacksquare if X does not yield to fail then & X yields to ε

$$G: S \leftarrow (\&(Ac))BC \quad A \leftarrow aAb / \varepsilon \quad B \leftarrow aB / a \quad C \leftarrow bCc / \varepsilon$$

$$L(G) = \{a^n b^n c^n \mid n \ge 1\}$$

DISCUSSION

- "Concatenation" in PEGs is not a real concatenation!
 - ► Conjecture: PELs are not closed over concatenation
- PELs are closed over Boolean operations: $\Gamma_{Bool}(PEL) = PEL$
- PEL \ CFL ≠∅
- Open question: CFL \ PEL $\stackrel{?}{=} \varnothing$
 - ▶ $\Omega(n^{1+\varepsilon})$ bound on CFLs parsing implies CFL \ PEL $\neq \emptyset$

Stack Operations:

■ push(x) \leftarrow

Stack Operations:

■ $push(x) \leftarrow$

Stack Operations:

- push(x) ←
- $push(y) \leftarrow$

Stack Operations:

- push(x) ←
- push(y) ←

Stack Operations:

- push(x) ←
- $push(y) \leftarrow$

Stack Operations:

- \blacksquare push(x) \leftarrow
- $push(y) \leftarrow$
- $push(z) \leftarrow$

Stack Operations:

- \blacksquare push(x) \leftarrow
- push(y) ←
- $push(z) \leftarrow$

Stack Operations:

- push(x) ←
- $push(y) \leftarrow$
- $push(z) \leftarrow$

Stack Operations:

- push(x) ←
- $push(y) \leftarrow$
- **■** push(*z*) ←
- **■** pop(z) ↑

Stack Operations:

- \blacksquare push(x) \leftarrow
- $push(y) \leftarrow$
- $push(z) \leftarrow$
- **■** pop(*z*) ↑
- **■** pop(*y*) ↓

Stack Operations:

- \blacksquare push(x) \leftarrow
- $push(y) \leftarrow$
- $push(z) \leftarrow$
- **■** pop(*z*) ↑
- **■** pop(*y*) ↓

$a^nb^nc^n$

$a^nb^nc^n$

PEG:

$$S \leftarrow A(!C)D / A'B$$

$$A \leftarrow aAb / \varepsilon$$

$$A' \leftarrow aA' / \varepsilon$$

$$B \leftarrow bBc / \varepsilon$$

$$C \leftarrow cC / a$$

$$D \leftarrow dD / \varepsilon$$

PEG:

$$S \leftarrow A(!C)D / A'B$$

$$A \leftarrow aAb / \varepsilon$$

$$A' \leftarrow aA' / \varepsilon$$

$$B \leftarrow bBc / \varepsilon$$

$$C \leftarrow cC / a$$

$$D \leftarrow dD / \varepsilon$$

PEG:

$$S \leftarrow A(!C)D / A'B$$

$$A \leftarrow aAb / \varepsilon$$

$$A' \leftarrow aA' / \varepsilon$$

$$B \leftarrow bBc / \varepsilon$$

$$C \leftarrow cC / a$$

$$D \leftarrow dD / \varepsilon$$

PEG:

$$S \leftarrow A(!C)D / A'B$$

$$A \leftarrow aAb / \varepsilon$$

$$A' \leftarrow aA' / \varepsilon$$

$$B \leftarrow bBc / \varepsilon$$

$$C \leftarrow cC / a$$

$$D \leftarrow dD / \varepsilon$$

PEG:

$$S \leftarrow A(!C)D / A'B$$

$$A \leftarrow aAb / \varepsilon$$

$$A' \leftarrow aA' / \varepsilon$$

$$B \leftarrow bBc / \varepsilon$$

$$C \leftarrow cC / a$$

$$D \leftarrow dD / \varepsilon$$

PEG:

$$S \leftarrow A(!C)D / A'B$$

$$A \leftarrow aAb / \varepsilon$$

$$A' \leftarrow aA' / \varepsilon$$

$$B \leftarrow bBc / \varepsilon$$

$$C \leftarrow cC / a$$

$$D \leftarrow dD / \varepsilon$$

 $A \leftarrow BC$

 $A \leftarrow BC$

 $A \leftarrow BC$

 $A \leftarrow BC$

$$A \leftarrow BC$$

$$A \leftarrow BC$$

$$A \leftarrow BC$$

$$A \leftarrow BC$$

Theorem

$$\Gamma_{REG}(DCFL) \cdot PEL = PEL$$

$$\psi: a(a|bc^*)^*b \mapsto L_a(L_a|L_bL_c^*)^*L_b, \text{ where } L_a, L_b, L_c \in \mathsf{DCFL}$$

$$\Gamma_{\mathsf{REG}}(\mathsf{DCFL}) = \bigcup_{\psi, R} \psi(R)$$

OVERVIEW OF RESULTS ON COMPUTATIONAL COMPLEXITY

RESULTS AND CONCLUSION

- PEGs is an upgrade of Top-Down Parsing Languages (TDPLs) introduced by A. Birman and J. Ullman in the 1960-s
 - ▶ DCFL \subseteq TDPL, $a^nb^nc^n \in$ TDPL
 - Linear-time parsing algorithm, which was impractical in 60-s, because of memory overhead

- PEGs is an upgrade of Top-Down Parsing Languages (TDPLs) introduced by A. Birman and J. Ullman in the 1960-s
 - ▶ DCFL \subset TDPL, $a^nb^nc^n \in$ TDPL
 - Linear-time parsing algorithm, which was impractical in 60-s, because of memory overhead
- B. Ford invented PEGs in 2004
 - ► PEGs are equivalent to TDPLs and generalized TDPLs
 - ► Moreover PEGs without! operation generate PEL
 - Practical linear-time parsing algorithm for PEGs (Packrat Parsing)

- PEGs is an upgrade of Top-Down Parsing Languages (TDPLs) introduced by A. Birman and J. Ullman in the 1960-s
 - ▶ DCFL \subset TDPL, $a^nb^nc^n \in$ TDPL
 - Linear-time parsing algorithm, which was impractical in 60-s, because of memory overhead
- B. Ford invented PEGs in 2004
 - ► PEGs are equivalent to TDPLs and generalized TDPLs
 - ► Moreover PEGs without! operation generate PEL
 - Practical linear-time parsing algorithm for PEGs (Packrat Parsing)
- Python replaced LL-parser by PEG (PEP 617, 2020)

- PEGs is an upgrade of Top-Down Parsing Languages (TDPLs) introduced by A. Birman and J. Ullman in the 1960-s
 - ▶ DCFL \subset TDPL, $a^nb^nc^n \in$ TDPL
 - Linear-time parsing algorithm, which was impractical in 60-s, because of memory overhead
- B. Ford invented PEGs in 2004
 - ► PEGs are equivalent to TDPLs and generalized TDPLs
 - ► Moreover PEGs without! operation generate PEL
 - ► Practical linear-time parsing algorithm for PEGs (Packrat Parsing)
- Python replaced LL-parser by PEG (PEP 617, 2020)
- B. Loff, N. Moreira, and R. Reis presented the first computational model for PEGs (DLT, 2018)
 - $ightharpoonup a^{2^n} \in PEL$ and palindromes of length 2^n in PEL
 - ► Structural Results: there is no pumping lemma for PEL

OUR RESULTS

- New computational model: Pushdown Pointer Automata
 - \triangleright $\mathcal{L}(DPPDA) = PEL$
 - ► Linear-time simulation algorithm for 2-DPPDA (in RAM), modification of S. Cook algorithm for 2-DPDA
 - ► Clarification of PEL place among the formal languages
 - ► Simplicity: now the inclusion DCFL ⊂ PEL is trivial
- Thm. $\Gamma_{RFG}(DCFL) \cdot PEL = PEL$
 - ► Corollary: $\Gamma_{REG}(DCFL) \in PEL \Rightarrow \Gamma_{Bool}(\Gamma_{REG}(DCFL)) \in PEL \Rightarrow$ $\Rightarrow \Gamma_{\text{Bool}}(\Gamma_{\text{RFG}}(\text{DCFL}))$ is O(n)-recognizable in RAM.
 - It is a simplification and upgrade of the previously known result: $\Gamma_{REG}(DCFL)$ is O(n)-recognizable [E. Bertsch and M.-J. Nederhof, SIAM J. on Comp, 1999]
- We hope that our model will rase interest to PELs in TCS community

DISCUSSION

- The relations between following models are unknown:
 - ► DPPDA vs 2-DPDA
 - ► 2-DPDA vs 2-DPPDA
 - ► 2-DPDA vs 2-NPDA
 - ► 2-NPDA vs 2-NPPDA
- It is unknown whether CFL $\stackrel{?}{\subseteq} \mathscr{L}$ (2-DPPDA)

News

Now practically-motivated class PEL is among these classes

Remark

Many questions for 2-NDPA from Rupak Majumdar's talk are relevant for 2-NPPDA

COOK'S THEOREM

Theorem (Cook 1972)

A 2-DPDA-recognizable language is recognizable in linear time (in the RAM model).

Cook also provided a linear-time simulation algorithm.

- KMP algorithm has been investigated by Knuth by this simulation (and independently discovered by Morris without it).
- LR-parsers are 1-DPDA, so Cook's results show that there is an option of linear time parsing for wider class than DCFL.

