1.6 Llisteu les següents funcions en ordre creixent, és a dir, si l'ordre és $f_1; f_2; ...,$ aleshores $f_2 = \Omega(f_1); f_3 = \Omega(f_2);$ etc.

$$(\log n)^{100}$$
, $n \log n$, 3^n , $\frac{n^2}{\log n}$, $n2^n$, 0.99^n , n^3 , \sqrt{n} .

Solució:

L'ordre és: 0.99^n , $(\log n)^{100}$, \sqrt{n} , $n \log n$, $\frac{n^2}{\log n}$, n^3 , $n2^n$, 3^n .

Justificacions:

- 1) $(\log n)^{100} = \Omega(0.99^n)$: per definició, p.ex., amb $c = 1, n_0 = 10$.
- 2) $\sqrt{n} = \Omega((\log n)^{100})$: $\lim_{n \to \infty} \frac{\sqrt{n}}{(\log n)^{100}} = \lim_{n \to \infty} \frac{\sqrt{n}}{\log^{100} n} = \infty \Rightarrow \sqrt{n} = \omega((\log n)^{100}).$
- 3) $n \log n = \Omega(\sqrt{n})$: per definició, p.ex., amb $c = 1, n_0 = 4$.
- 4) $\frac{n^2}{\log n} = \Omega(n \log n)$: per definició, p.ex., amb $c = 1, n_0 = 2$.
- 5) $n^3 = \Omega(\frac{n^2}{\log n})$: per definició, p.ex., amb $c = 1, n_0 = 3$.
- 6) $n2^n = \Omega(n^3)$: per definició, p.ex., amb $c = 1, n_0 = 4$.
- 7) $3^n = \Omega(n2^n)$: per definició, p.ex., amb $c = 1, n_0 = 10$.