Student Information

Full Name : Mustafa Ozan ALPAY

Id Number: 2309615

Answer 1

1. (a) is a **tautology**.

Table 1: Truth table for Question 1.1.a

						1 & 40001011		
p	q	r	$\neg r$	$((p \to q)$	\leftrightarrow	$(p \land \neg r))$	\rightarrow	$\neg (q \wedge r)$
T	Т	Т	F	Т	F	F	\mathbf{T}	F
T	Т	F	Т	Τ	Τ	Τ	\mathbf{T}	Τ
T	F	Т	F	F	Τ	F	\mathbf{T}	Τ
T	F	F	Т	F	F	Τ	${f T}$	Τ
F	Т	Т	F	Τ	F	F	${f T}$	F
F	Т	F	Т	Т	F	F	\mathbf{T}	Τ
F	F	Т	F	T	F	F	${f T}$	Τ
F	F	F	Т	Т	F	F	\mathbf{T}	Τ

(b) is a **contradiction**.

Table 2: Truth table for Question 1.1.b

					-	-0	-	-
p	q	$\neg p$	_	$((p \vee q)$	\wedge	$(p \to q)$	V	$(q \to \neg p))$
T	Т	F	F	T	Τ	Τ	Т	F
T	F	F	\mathbf{F}	Τ	F	F	Т	T
F	Т	Т	\mathbf{F}	Τ	Т	Τ	Т	Τ
F	F	Т	F	F	F	Τ	Т	Τ

- 2. (a) $\exists x P(x) \land \exists x Q(x) \rightarrow \exists x (P(x) \land Q(x))$ is **invalid**.
 - i. Let us say U is integers; P(x) states "x is even", and Q(x) states "x is odd".
 - ii. The left hand side is T, and the right hand side is F.
 - iii. Since $T \to F \equiv F$, the statement is **invalid**.
 - (b) $\forall x P(x) \to \exists x P(x)$ is **valid**.
 - i. Given logical statement can be translated as "for all x P(x), there is at least one x such that P(x)."
 - ii. Since each element inside $\exists x P(x)$ also exists inside $\forall x P(x)$; if $\forall x P(x)$ is T, then $\exists x P(x)$ also must be T. Similarly, if $\forall x P(x)$ is F, then $\exists x P(x)$ also must be F.
 - iii. $T \to T \equiv T$, and $F \to F \equiv T$, the statement is valid.

Answer 2

```
(\neg p \lor p) \to ((p \land \neg q) \to r) \quad \equiv \quad T \to ((p \land \neg q) \to r) \quad \text{By using Negation laws} \\ \equiv \quad F \lor ((p \land \neg q) \to r) \quad \text{By using } Table \ 7 \\ \equiv \quad ((p \land \neg q) \to r) \lor F \quad \text{By using Commutative laws} \\ \equiv \quad (p \land \neg q) \to r \quad \text{By using Identity laws} \\ \equiv \quad \neg (p \land \neg q) \lor r \quad \text{By using } Table \ 7 \\ \equiv \quad \neg p \lor q \lor r \quad \text{By using } Table \ 7 \\ \equiv \quad \neg p \lor (q \lor r) \quad \text{By using De Morgan's laws} \\ \equiv \quad \neg p \lor (q \lor r) \quad \text{By using Associative laws} \\ \equiv \quad (q \lor r) \lor \neg p \quad \text{By using Commutative laws} \\ \equiv \quad p \lor (q \lor r) \quad \text{By using Commutative laws} \\ \equiv \quad p \lor (q \lor r) \quad \text{By using Commutative laws} \\ \equiv \quad p \lor (q \lor r) \quad \text{By using Commutative laws} \\ \equiv \quad p \lor (q \lor r) \quad \text{By using Commutative laws} \\ \equiv \quad p \lor (q \lor r) \quad \text{By using Commutative laws} \\ \equiv \quad p \lor (q \lor r) \quad \text{By using Commutative laws} \\ \equiv \quad p \lor (q \lor r) \lor \neg p \quad \text{By using Commutative laws} \\ \equiv \quad p \lor (q \lor r) \quad \text{By using Commutative laws} \\ \equiv \quad p \lor (q \lor r) \quad \text{By using Commutative laws} \\ \equiv \quad p \lor (q \lor r) \quad \text{By using Commutative laws} \\ \equiv \quad p \lor (q \lor r) \quad \text{By using Commutative laws} \\ \equiv \quad p \lor (q \lor r) \quad \text{By using Commutative laws} \\ \equiv \quad p \lor (q \lor r) \quad \text{By using Commutative laws} \\ \equiv \quad p \lor (q \lor r) \quad \text{By using Commutative laws} \\ \equiv \quad p \lor (q \lor r) \quad \text{By using Commutative laws} \\ \equiv \quad p \lor (q \lor r) \quad \text{By using Commutative laws} \\ \equiv \quad p \lor (q \lor r) \quad \text{By using Commutative laws} \\ \equiv \quad p \lor (q \lor r) \quad \text{By using Commutative laws} \\ \equiv \quad p \lor (q \lor r) \quad \text{By using Commutative laws} \\ \equiv \quad p \lor (q \lor r) \quad \text{By using Commutative laws} \\ \equiv \quad p \lor (q \lor r) \quad \text{By using Commutative laws} \\ \equiv \quad p \lor (q \lor r) \quad \text{By using Commutative laws} \\ \equiv \quad p \lor (q \lor r) \quad \text{By using Commutative laws} \\ \equiv \quad p \lor (q \lor r) \quad \text{By using Commutative laws} \\ \equiv \quad p \lor (q \lor r) \quad \text{By using Commutative laws} \\ \equiv \quad p \lor (q \lor r) \quad \text{By using Commutative laws} \\ \equiv \quad p \lor (q \lor r) \quad \text{By using Commutative laws} \\ \equiv \quad p \lor (q \lor r) \quad \text{By using Commutative laws} \\ \equiv \quad p \lor (q \lor r) \quad \text{By using Commutative laws} \\ \equiv \quad p \lor (q \lor r) \quad \text{By using Commutative laws} \\ \equiv \quad p \lor (q \lor r) \quad \text{By using Commutative laws} \\ \equiv \quad p \lor (q \lor r) \quad \text{By using Commuta
```

Thus, $(\neg p \lor p) \to ((p \land \neg q) \to r)$ and $(q \lor r) \lor \neg p$ are logically equivalent.

Answer 3

- 1. $\forall x(W(x) \rightarrow Has_CS_Degree(x))$
- 2. $\forall x \forall y ((Phd(x) \land W(x)) \land (Phd(y) \land W(y) \rightarrow Knows(x,y)))$
- 3. $\forall x((W(x) \land W(Cenk) \land (x \neq Cenk)) \rightarrow Older(Cenk, x))$
- 4. $\forall x((W(x) \land (x \neq Selen) \land W(Selen)) \rightarrow Phd(x))$
- 5. $\exists x \exists y ((W(x) \land W(y)) \land \neg Knows(x, y))$
- 6. $\forall x \forall y \forall z (((Phd(x) \land Phd(y)) \land (x \neq y)) \rightarrow (Phd(z) \rightarrow ((z = x) \lor (z = y))))$
- 7. $\exists x \exists y \exists z (Older(x, Gizem) \land Older(y, Gizem) \land Older(z, Gizem) \land (x \neq y) \land (y \neq z))$
- 8. $\exists x \forall y ((Phd(x) \land W(x)) \land ((Phd(y) \land W(y)) \rightarrow (y = x)))$

Answer 4

Table 3: Proof of $(p \to r) \lor (q \to r) \vdash (p \land q) \to r$ $\frac{(p \to r) \lor (q \to r)}{p \to r}$ premise 1 2 $\overline{assumption}$ 3 $p \wedge q$ assumption4 ∧e 3 p \rightarrow e 2,4 5 r $p \wedge q \rightarrow r$ \rightarrow i 3 – 5 6 7 \rightarrow i 2 - 6 $(p \to r) \to ((p \land q) \to r)$ $\frac{q \to r}{p \land q}$ 8 $\overline{assumption}$ 9 $\overline{assumption}$ 10 ∧e 9 q11 $\begin{array}{ccc} (p \wedge q) \rightarrow r & \rightarrow \text{i } 9 - 11 \\ (q \rightarrow r) \rightarrow ((p \wedge q) \rightarrow r) & \rightarrow \text{i } 8 - 12 \\ \end{array}$ 12 13 $(p \land q) \rightarrow r$ $\vee e 1, 7, 13$ 14

Answer 5

T	able 4: Proof of (-	$\neg p \lor \neg q) \vdash (p \land q) \to r$
1	$\neg p \lor \neg q$	premise
2	$p \wedge q$	assumption
3	p	∧e 2
4	$\mid \; \mid \; q$	∧e 2
5	$ \neg p$	$assumption egin{array}{ c c c c c c c c c c c c c c c c c c c$
6		$\neg e \ 3, 5$
7	r	⊥e 6
8	$\neg p \rightarrow r$	\rightarrow i 5 – 7
9	$\neg q$	assumption
10		$\neg e \ 4,9$
11	r	⊥e 10
12	$q \rightarrow r$	→i 9 – 11
13	r	\vee e 1,5 - 7,9 - 11
14	$(p \land q) \to r$	\to i 2 – 13

Answer 6

Table 5: Proof of $\forall x (P(x) \to (Q(x) \to R(x))), \exists x (P(x)), \forall x (\neg R(x)) \vdash \exists x (\neg Q(x))$ $\exists x (\neg Q(x))$ $\exists x (\neg Q(x))$

1	$\forall x (P(x) \to (Q(x) \to R(x)))$	premise
2	$\exists x (P(x))$	premise
3	$\forall x(\neg R(x))$	premise
4	$P(c) \to (Q(c) \to R(c))$	$\forall e 1$
5	P(c)	assumption
6	$Q(c) \to R(c)$	\rightarrow e 4,5
7	$\neg R(c)$	∀e 3
8	Q(c)	assumption
9	R(c)	\rightarrow e 6,8
10		¬e 7, 9
11	$\neg Q(c)$	¬i 8 – 10
12	$\exists x \neg Q(x)$	∃i 11
13	$\exists x \neg Q(x)$	$\exists e \ 2, 5 - 12$