MAST30013 – Techniques in Operations Research Semester 1 Tutorial 10

1. Consider the constrained nonlinear program

$$\min \quad \frac{1}{2}x_1^2 + \frac{1}{2}x_2^2 - x_1 + x_2$$
 subject to $x_1, x_2 \le 0$.

- (a) Write down the log barrier penalty function $P_k(\boldsymbol{x})$ with penalty parameter $\alpha_k = k$.
- (b) Write down $\nabla P_k(\boldsymbol{x})$, and solve $\nabla P_k(\boldsymbol{x}) = \boldsymbol{0}$ to find any stationary points $\boldsymbol{x}^k = (x_1^k, x_2^k)$ for $P_k(\boldsymbol{x})$.
- (c) Find all stationary points $\boldsymbol{x}^k = (x_1^k, x_2^k)$ for $P_k(\boldsymbol{x})$, and find the limit $\boldsymbol{x}^* = \lim_{k \to \infty} \boldsymbol{x}^k$.
- (d) For each stationary point, write down an estimate λ^k of the optimal Lagrange multiplier vector, and find the limit $\lambda^* = \lim_{k \to \infty} \lambda^k$.

2. Consider the constrained nonlinear program

min
$$x_1^2 + 2x_2^2$$

subject to $x_1^2 + x_2^2 \le 1$
 $x_1 + x_2 = 1$.

- (a) Find all KKT points and determine if any are minima.
- (b) Do the Lagrangian Saddle Point inequalities hold? That is, for feasible \boldsymbol{x} and $\lambda \geq 0, \, \eta \in \mathbb{R}$,

$$L(\boldsymbol{x}^*, \lambda, \eta) \leq L(\boldsymbol{x}^*, \lambda^*, \eta^*) \leq L(\boldsymbol{x}, \lambda^*, \eta^*).$$

3. Consider the nonlinear program

$$\min \quad \frac{1}{4}x_1^4 - \frac{1}{2}x_1^2 + x_2^2$$
 subject to
$$x_1 \ge 0$$

$$x_2 \ge 2.$$

- (i) Write down the log barrier penalty function $P_k(x)$ with penalty parameter $\alpha_k = k$.
- (ii) Write down $\nabla P_k(\boldsymbol{x})$, and solve $\nabla P_k(\boldsymbol{x}) = \boldsymbol{0}$ to find any stationary points $\boldsymbol{x}^k = (x_1^k, x_2^k)$ for $P_k(\boldsymbol{x})$.
- (iii) Find the limit $\boldsymbol{x}^* = \lim_{k \to \infty} \boldsymbol{x}^k$.
- (iv) Find the limit $\lambda^* = \lim_{k \to \infty} \lambda^k$.