# AXI SDRAM V1.0

IP User Guide(Beta Release)



September 13, 2024





# **Contents**

| IP Specifications                           | 2  |
|---------------------------------------------|----|
| Licensing                                   | 3  |
| IP Specification                            | 4  |
| <b>IP Specification</b><br>Overview         | 4  |
| IP Support Details                          |    |
| Port List                                   |    |
| Resource Utilization                        | 7  |
| Design Flow IP Customization and Generation | 8  |
| IP Customization and Generation             | 8  |
| Example Design                              | 10 |
| Simulating the Example Design               |    |
| Synthesis and PnR                           | 10 |
| Release                                     | 11 |
| Revision History                            | 11 |



### **IP Summary**

#### Introduction

An AXI SDRAM controller acts as a bridge between the AXI bus, and a simpler SDRAM (Synchronous Dynamic Random Access Memory) for off-chip data storage. This controller translates requests from the processor into the appropriate signals for the SDRAM. This core can be configured via Raptor's IP Catalog GUI interface.

#### **Features**

- 32-bit AXI4 slave interface
- Standard SDRAM interface



Figure 1. AXI\_SDRAM block level diagram



### Licensing

| COP | YRIC  | TH                                      | ΓEXT: |
|-----|-------|-----------------------------------------|-------|
| COL | 11/1/ | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | LLAI. |

Copyright (c) 2022 RapidSilicon

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.



# **IP Specification**

#### Overview

An AXI SDRAM controller acts as a crucial bridge within a digital system, facilitating communication between the high-performance AXI bus and the external Synchronous Dynamic Random Access Memory (SDRAM). This controller deciphers the processor's AXI read/write requests and translates them into the specific commands understood by the SDRAM.

Here's a breakdown of its key components:

**AXI Interface:** This acts as the entry point, receiving AXI requests and data packets from the processor. It understands the AXI protocol, which defines how data is formatted and transferred on the internal bus.

**Controll Unit:** This unit serves as the brain of the controller. It receives the AXI requests from the interface, decodes them, and generates the corresponding commands for the SDRAM. Additionally, it incorporate a scheduler to optimize the order of requests, maximizing memory access efficiency. This scheduler ensures that data packets are issued to the SDRAM in a way that minimizes wait times and leverages the memory's capabilities.

**SDRAM Interface:** This section acts as the translator on the other side. It takes the generated commands from the command unit and transforms them into the control signals and addresses that the SDRAM understands. It also handles the complex timing sequences specific to SDRAM technology, ensuring data integrity during transfers. SDRAM has specific requirements for when data can be read or written, and this interface ensures these timings are met meticulously.

**Refresh Logic:** DRAM is volatile, meaning it loses data when power is off. To maintain data integrity, the controller incorporates refresh logic. This component periodically activates refresh cycles, essentially reminding the SDRAM to recharge its storage capacitors and prevent data loss.

These components work coherently to manage the data flow between the processor and the SDRAM. The AXI interface receives requests, the command unit translates them, the SDRAM interface generates the appropriate signals, and the refresh logic ensures data remains valid. This intricate interplay allows the system to leverage the high-speed processing power of the processor while utilizing the vast storage capacity of the SDRAM.



### **IP Support Details**

| Comp   | pliance   | IP Resources  |                 |               |                  | Tool Flow       |                         |            |           |
|--------|-----------|---------------|-----------------|---------------|------------------|-----------------|-------------------------|------------|-----------|
| Device | Interface | Source Files  | Constraint File | Testbench     | Simulation Model | Software Driver | Analyze and Elaboration | Simulation | Synthesis |
| GEMINI | AXI4      | Systemverilog | SDC             | Systemverilog | -                | -               | Raptor                  | Raptor     | Raptor    |

### **Ports**

Table 2 lists the top interface ports of the AXI SDRAM.

| Signal Name         | I/O   | Description                 |  |  |
|---------------------|-------|-----------------------------|--|--|
| AXI Clock and Reset |       |                             |  |  |
| i_s_axi_clk         | I     | AXI4 Clock                  |  |  |
| i_s_axi_resetn      | I     | AXI4 RESET                  |  |  |
| i_m_axi_clk         | I     | AXI4 Clock                  |  |  |
| AXI WRITE ADDRESS C | HANNE | Ĺ                           |  |  |
| s_axil_awvalid      | I     | AXI4 Write address valid    |  |  |
| s_axil_awready      | О     | AXI4 Write address ready    |  |  |
| s_axil_awaddr       | I     | AXI4 Write address          |  |  |
| s_axil_awprot       | I     | AXI4 Protection type        |  |  |
| AXI WRITE DATA CHAN | NEL   |                             |  |  |
| s_axil_wvalid       | I     | AXI4 Write valid            |  |  |
| s_axil_wready       | О     | AXI4 Write ready.           |  |  |
| s_axil_wdata        | I     | AXI4 Write data             |  |  |
| s_axil_wstrb        | I     | AXI4 Write strobes          |  |  |
| AXI WRITE RESPONSE  | CHANN | EL                          |  |  |
| s_axil_bvalid       | О     | AXI4 Write response valid   |  |  |
| s_axil_bready       | I     | AXI4 Response ready         |  |  |
| s_axil_bresp        | О     | AXI4 Write response         |  |  |
| AXI READ ADDRESS CH | ANNEL |                             |  |  |
| s_axil_arvalid      | I     | AXI4 Read address valid     |  |  |
| s_axil_arready      | О     | AXI4 Read address ready     |  |  |
| s_axil_araddr       | I     | AXI4 Read address           |  |  |
| s_axil_arprot       | I     | AXI4 Protection type        |  |  |
| AXI READ DATA CHANN | EL    |                             |  |  |
| s_axil_rvalid       | I     | AXI4 Read valid             |  |  |
| s_axil_rready       | О     | AXI4 Read ready             |  |  |
| s_axil_rresp        | I     | AXI4 Read data              |  |  |
| s_axil_rdata        | О     | AXI4 Read response          |  |  |
| DDR Interface       |       |                             |  |  |
| sdram_clk_o         | I     | SDRAM clock                 |  |  |
| sdram_cke_o         | I     | SDRAM Clock enable          |  |  |
| sdram_cs_o          | I     | SDRAM chip select           |  |  |
| sdram_ras_o         | I     | SDRAM Row address strobe    |  |  |
| sdram_cas_o         | О     | SDRAM Column address strobe |  |  |
| sdram_we_o          | I     | SDRAM wriite enable         |  |  |
| sdram_ba_o          | I     | SDRAM bank address          |  |  |



| sdram_addr_o        | О | SDRAM Address     |
|---------------------|---|-------------------|
| sdram_dqm_o         | I | SDRAM data mask   |
| sdram_data_out_en_o | О | SDRAM data enable |
| sdram_data_output_o | I | SDRAM data        |
| sdram_data_input_i  | I | SRAM Input Data   |

AXI SDRAM Interface



#### **Resource Utilization**

Please note that the utilization and timing figures provided in this section for the Processor System Reset IP core should be considered as estimates, as they are based on its usage in conjunction with other design modules in the FPGA. Once integrated with other designs in the system, the FPGA resource utilization and core timing may differ from the reported results.

| Tool                 | Raptor Design Suite |           |  |  |  |
|----------------------|---------------------|-----------|--|--|--|
| FPGA Device          | GEMINI              |           |  |  |  |
| Resource Utilization |                     |           |  |  |  |
|                      | Options             | Resources |  |  |  |
| Minimum<br>Resource  | LUT                 | 514       |  |  |  |
|                      | Registers           | 397       |  |  |  |
|                      | BRAM                | 0         |  |  |  |
|                      | DSP                 | 0         |  |  |  |



# **Design Flow**

#### **IP Customization and Generation**

AXI DDR SDRAM IP core is a part of the Raptor Design Suite Software. A customized AXI DDR SDRAM can be generated from the Raptor's IP configurator window.



Selecting AXI DDR SDRAM from IP Catalog List



**Parameters Customization:** From the IP configuration window, the parameters of the AXI DDR SDRAM can be configured and AXI DDR SDRAM features can be enabled for generating a customized AXI DDR SDRAM IP core that suits the user application requirement.



IP Configuration



# **Example Design**

### **Simulating the Example Design**

AXI SDRAM can be simulated using Raptor. The simulation collateral is available in the sim directory.



AXI Async FIFO example design simulation

### Synthesis and PnR

Raptor Suite is armed with tools for Synthesis along with Post and Route capabilities and the generated post-synthesis and post-route and place netlists can be viewed and analyzed from within the Raptor. The generated bitstream can then be uploaded on an FPGA device to be utilized in hardware application



# **Revision History**

| Date               | Version | Revisions                                                |
|--------------------|---------|----------------------------------------------------------|
| September 13, 2024 | 0.01    | Initial version AXI/ <sub>S</sub> DRAMU serGuideDocument |