Partiel du 8 Mars 2023 9h00-11h00

Instructions:

- Tous les documents, téléphones portables, calculatrices... sont interdits.
- Le barème est donné à titre indicatif et est susceptible d'être modifié.
- La qualité de la rédaction sera prise en compte dans l'évaluation.

Exercice 1. Rappeler les énoncés des résultats suivants:

- 1. le principe des zéros isolés;
- 2. le théorème de prolongement analytique.

Exercice 2. On rappelle la formule de la détermination principale du logarithme:

Si $\alpha \in \mathbb{R}$, on considère à présent la fonction

$$\varphi_{\alpha}: \ \mathbb{C} \setminus \mathbb{R}_{-} \longrightarrow \mathbb{C}$$

$$z \longmapsto \exp(\alpha \operatorname{Log}(z))$$

1. Montrer que si $m \in \mathbb{N}^*$, on a $\varphi_{\frac{1}{m}}(z)^m = z$ pour tout $z \in \mathbb{C} \setminus \mathbb{R}_-$.

Soit
$$z = re^{i\theta} \in \mathbb{C} \setminus \mathbb{R}$$
, avec $\theta \in]-\pi,\pi[$. On a:

$$\varphi_{\frac{1}{m}}(z))^m = \exp(\frac{1}{m}\operatorname{Log}(z))^m = \exp(m\frac{1}{m}\operatorname{Log}(z)) = \exp(\log(r) + i\theta) = re^{i\theta} = z.$$

2. Soit $\alpha > 1$. Déterminer l'image $\varphi_{\frac{1}{\alpha}}(\mathbb{C} \setminus \mathbb{R}_{-})$. Faire un dessin.

On a

$$\varphi_{\frac{1}{\alpha}}(\mathbb{C}\setminus\mathbb{R}_{-}) = \left\{ \exp\left(\frac{1}{\alpha}\log(r) + i\theta\right) \middle| r > 0, \theta \in] - \pi, \pi[\right\}$$
$$= \left\{ r^{\frac{1}{\alpha}} e^{\frac{i\theta}{\alpha}} \middle| r > 0, \theta \in] - \pi, \pi[\right\}$$
$$= \left\{ re^{i\theta} \middle| r > 0, \theta \in] - \frac{\pi}{\alpha}, \frac{\pi}{\alpha}[\right\}$$

Dessin : secteur angulaire ouvert d'angle $\frac{2\pi}{\alpha}$ centré sur l'axe (Ox).

3. Soit $\alpha > 1$. Montrer que $\varphi_{\frac{1}{\alpha}}(z) \in \mathbb{C} \setminus \mathbb{R}_{-}$, et montrer que

$$\varphi_{\alpha}(\varphi_{\frac{1}{\alpha}}(z)) = z.$$

On peut écrire $z = re^{i\theta}$ avec $r > 0, \theta \in]-\pi, \pi[$, et donc $\varphi_{1/\alpha}(z) = r^{\frac{1}{\alpha}}e^{i\frac{\theta}{\alpha}}$. Puisque $\alpha > 1$, on $\frac{\theta}{\alpha} \in]-\pi, \pi[$, ce qui montre que $\varphi_{1/\alpha}(z) \in \mathbb{C} \setminus \mathbb{R}_-$.

On a alors

$$\varphi_{\alpha}(\varphi_{1/\alpha}(z)) = \varphi_{\alpha}(r^{1/\alpha}e^{i\frac{\theta}{\alpha}}) = r^{\alpha/\alpha}e^{i\alpha\theta/\alpha} = z.$$

4. Soit $\alpha > 0$. Montrer que φ_{α} est une fonction holomorphe, de dérivée donnée par

$$\varphi'_{\alpha}(z) = \alpha \varphi_{\alpha-1}(z).$$

La fonction φ_{α} est holomorphe comme composée de fonction holomorphes. Pour calculer sa dérivée, on utilise la règle de dérivation des fonctions composées:

$$\varphi'_{\alpha}(z) = \alpha \operatorname{Log}'(z) \exp'(\alpha \operatorname{Log}(z))$$

$$= \alpha \frac{1}{z} \exp(\alpha \operatorname{Log}(z))$$

$$= \alpha \exp(-\operatorname{Log}(z)) \exp(\alpha \operatorname{Log}(z))$$

$$= \alpha \exp((\alpha - 1) \operatorname{Log}(z))$$

$$= \alpha \varphi_{\alpha - 1}(z).$$

5. Soit C le cercle unité. On paramètre $C-\{-1\}$ par $\gamma:t\in]-\pi,\pi[\longmapsto e^{it}.$ Montrer que

$$\int_{\gamma} \varphi_{\alpha}(z) dz = \begin{cases} \frac{2i \sin((\alpha+1)\pi)}{\alpha+1} & \text{si} \quad \alpha \neq -1\\ 2i\pi & \text{si} \quad \alpha = -1. \end{cases}$$

On a

$$\int_{\gamma} \varphi_{\alpha}(z)dz = \int_{-\pi}^{\pi} \exp(\alpha \operatorname{Log}(e^{it})ie^{it}dt$$
$$= \int_{-\pi}^{\pi} \exp((\alpha + 1)it)dt$$

Si $\alpha \neq -1$, cette intégrale vaut

$$i \left[\frac{1}{i(\alpha+1)} e^{i(\alpha+1)t} \right]_{-\pi}^{\pi} = \frac{2i \sin((\alpha+1)\pi)}{\alpha+1}$$

Si $\alpha = -1$, l'intégrale vaut

$$\int_{-\pi}^{\pi} i dt = 2i\pi.$$

Exercice 3. Dans tout cet exercice, on définira la fonction exponentielle comme la fonction exp : $\mathbb{C} \to \mathbb{C}$ donnée par la série entière

$$\exp(z) = \sum_{n=0}^{+\infty} \frac{z^n}{n!}.$$

1. (Question de cours) Rappeler pourquoi le rayon de convergence de cette série est infini, et pourquoi on a

$$\forall z_1, z_2 \in \mathbb{C}, \quad \exp(z_1 + z_2) = \exp(z_1) \exp(z_2).$$

et $\exp(-z) = \frac{1}{\exp(z)}$ si $z \in \mathbb{C}$.

Question de cours.

2. Montrer que $\overline{\exp(z)} = \exp(\overline{z})$ pour tout $z \in \mathbb{C}$, et en déduire que

$$\forall t \in \mathbb{R}, \quad |\exp(it)| = 1.$$

Si $z \in \mathbb{C}$, on a

$$\overline{\exp(z)} = \sum_{n=0}^{+\infty} \frac{z^n}{n!} = \sum_{n=0}^{+\infty} \frac{\overline{z}^n}{n!} = \exp(\overline{z}).$$

Ainsi, si $t \in \mathbb{R}$, on a

$$|\exp(it)|^2 = \exp(it)\overline{\exp(it)} = \exp(it)\exp(\overline{it}) = \exp(it)\exp(-it) = \exp(0) = 1.$$

On note

$$\mathbb{U} = \{ z \in \mathbb{C} \mid |z| = 1 \}.$$

C'est un groupe pour la multiplication complexe.

3. Montrer que $\varphi: t \in (\mathbb{R}, +) \to \exp(it) \in (\mathbb{U}, \cdot)$ est une application continue et un morphisme de groupes.

La fonction exp est continue puisqu'elle est analytique. La fonction φ est donc contine comme composée d'applications continues. Si $t_1, t_2 \in \mathbb{R}$, on $\varphi(t_1 + t_2) = \exp(i(t_1 + t_2)) = \exp(it_1)\exp(it_2) = \varphi(t_1)\varphi(t_2)$, donc c'est un morphisme de groupes.

Notons $Z \subset \mathbb{R}$ le noyau de ce morphisme. L'objectif de la question suivante est de montrer que Z peut-être engendré par un unique élément de \mathbb{R} . Pour cela, on rappelle sans démonstration le résultat suivant:

Soit $G \subset \mathbb{R}$ un sous-groupe. Alors ou bien G est dense, ou bien il existe $\tau \in \mathbb{R}_+$ tel que $G = \mathbb{Z}\tau$.

4. Supposons par l'absurde que Z soit dense dans \mathbb{R} . En utilisant le principe des zéros isolés, montrer que cela doit impliquer que exp est constante égale à 1, et conclure à une contradiction. Conclure qu'il existe $\tau \in \mathbb{R}_+$ tel que $Z = \mathbb{Z}\tau$.

Si Z est dense dans \mathbb{R} , alors tout intervalle de la forme $\left|\frac{1}{n+1},\frac{1}{n}\right|$ contient un point $z_n \in Z$. La suite (iz_n) est donc une suite de points de \mathbb{C}^* , convergeant vers 0, et tels que $\exp(iz_n) = 1$ pour tout

n. On conclut du principe des zéros isolés que exp est la fonction constante égale à 1, ce qui est absurde puisqu'elle n'est pas définie par une série entière constante.

On est donc dans la deuxième partie de l'alternative précédente, et il existe donc $\tau \in \mathbb{R}_+$ tel que $Z = \mathbb{Z}\tau$.

Dans les deux questions suivantes, on va montrer que φ n'est pas injective, et donc que $\tau \neq 0$. On introduit le groupe des racines de l'unité:

$$\mathbb{U}_{rac} = \{ x \in \mathbb{U} \mid \exists m \in \mathbb{N}, x^m = 1 \}.$$

et on note $\mathbb{U}_{rac}^* = \mathbb{U}_{rac} - \{1\}$. On pourra admettre sans démonstration que les seules parties connexes de $\mathbb{U} - \mathbb{U}_{rac}^*$ sont les singletons.

5. On suppose par l'absurde que φ est injective. Montrer que $\varphi(\mathbb{R}) \cap \mathbb{U}_{rac} = \{1\}$.

Supposons qu'il existe $t \in \mathbb{R}$ tel que $\exp(it) \in \mathbb{U}_{rac}$. Alors il existe $m \in \mathbb{N}$ tel que $\exp(it)^m = 1$, et donc $\exp(mit) = 1$. Cela implique que $mt \in Z$, et puisque l'on a supposé φ injective, on a mt = 0, donc t = 0. Ainsi, $\exp(it) = 1$, ce qui donne le résultat.

6. En déduire que $\varphi(\mathbb{R}) = \{1\}$. (*Indication : montrer d'abord que* $\varphi(\mathbb{R})$ *est connexe*), et conclure à une contradiction.

Puisque φ est continue et que \mathbb{R} est connexe, on voit que $\varphi(\mathbb{R})$ est connexe. D'après la question précédente, on a $\varphi(\mathbb{R}) \cap \mathbb{U}^*_{rac} = \emptyset$, donc $\varphi(\mathbb{R})$ est un sous-ensemble connexe de $\mathbb{U} - \mathbb{U}^*_{rac}$, donc un singleton.

On a $1 \in \varphi(\mathbb{R})$, donc $\varphi(\mathbb{R}) = \{1\}$. Autrement dit, $Z = \mathbb{R}$, ce qui est absurde puisque Z n'est pas dense.

On a donc démontré que $\tau \neq 0$. Une définition possible de π consiste à poser $\pi = \frac{\tau}{2}$. On a alors

$$\ker(\exp:i\mathbb{R}\to\mathbb{U})=2i\pi\mathbb{Z}.$$