ORGANISATION MONDIALE DE LA PROPRIETE INTELLECTUELLE Bureau international

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets 6:

C07D 401/12, A61K 31/47, C07D 401/14

(11) Numéro de publication internationale:

WO 98/03503

(43) Date de publication internationale: 29 janvier 1998 (29.01.98)

(21) Numéro de la demande internationale:

PCT/FR97/01377

A1

(22) Date de dépôt international:

23 juillet 1997 (23.07.97)

(30) Données relatives à la priorité:

96/09327

24 juillet 1996 (24.07.96)

Publiée

FR

(71) Déposant (pour tous les Etats désignés sauf US): FOURNIER INDUSTRIE ET SANTE [FR/FR]; 38, avenue Hoche, F-75008 Paris (FR).

(72) Inventeurs; et

- (75) Inventeurs/Déposants (US seulement): DODEY, Pierre [FR/FR]; 10, rue des Champs d'Alloux, F-21121 Fontainelès-Dijon (FR). BONDOUX, Michel [FR/FR]; 7, allée des Montereys, F-21121 Fontaine-lès-Dijon (FR). HOUZIAUX, Patrick [FR/FR]; 3, rue des Jonchères, F-78580 Bazemont (FR). BARTH, Martine [FR/FR]; Résidence "Les Orangers", 6, rue de Chantreine, F-78490 Montfort-l'Amaury (FR). OU, Khan [FR/FR]; 25 A, rue de Messigny, F-21121 Hauteville-lès-Dijon (FR).
- (74) Mandataire: CLISCI, Serge; S.A. Fédit-Loriot & Autres, Conseils en Propriété Industrielle, 38, avenue Hoche, F-75008 Paris (FR).

Avec rapport de recherche internationale. Avant l'expiration du délai prévu pour la modification des revendications, sera republiée si de telles modifications sont

(81) Etats désignés: AU, BG, BR, CA, CN, CZ, EE, HU, IL, JP,

GR, IE, IT, LU, MC, NL, PT, SE).

KR, MX, NO, NZ, PL, RO, RU, SG, SK, TR, UA, US, VN, brevet européen (AT, BE, CH, DE, DK, ES, FI, FR, GB,

recues.

(54) Title: N-BENZENESULPHONYL-L-PROLINE DERIVATIVES AS BRADYKININ B2 AGONISTS

(54) Titre: DERIVES DE N-BENZENESULFONYL-L-PROLINE EN TANT QU'AGONISTES DE LA BRADYKININE B2

(57) Abstract

Compounds selected from the group which consists of the compounds of formula (I), wherein each of X1 and X2, which are the same or different, is halogen or a C1-3 alkoxy group, R1 is H, CF3 or a C1-3 alkyl group, R2 is a hydrogen atom or an OH group, A is group (a), (b) or (c), B is a single bond, -CO-, -CO-CH₂-, -CO-CH₂-O-, -CO-CH=CH or -SO₂-, m is 2 or 3, n is 0, 1, 2 or 3, R₃ is a hydrogen atom or a methyl group, and W is CH or N, the amidine group C(=NR2)NH2 being in the 2, 3 or 4 position on the aromatic ring, and addition salts thereof, are disclosed. A method for preparing said compounds, and the therapeutical use thereof, particularly for treating diseases in which bradykinin is involved, are also disclosed.

(57) Abrégé

La présente invention concerne des composés choisis parmi l'ensemble constitué par (i) les composés de formule (I) dans laquelle: X₁ et X₂ représentent chacun indépendamment un halogène ou un groupe alkoxy en C₁-C₃, R₁ représente H, CF₃ ou un groupe alkyle en C₁-C₃, R₂ représente un atome d'hydrogène ou un groupe OH, A représente un groupe (a), (b) ou (c); B représente une liaison simple, -CO-, -CO-CH₂-O-, -CO-CH₂-O-, -CO-CH₂-O-, -CO-CH₂-O-, m représente 2 ou 3, n représente 0, 1, 2 ou 3, R₃ représente un atome d'hydrogène ou un groupe méthyle, W représente CH ou N, le groupe amidine C(=NR₂)NH₂ étant en position 2, 3 ou 4 sur le noyau aromatique, et (ii) leurs sels d'addition. Elle concerne également leur procédé de préparation et leur utilisation en thérapeutique, notamment vis-à-vis des pathologies mettant en cause la bradykinine.

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

AL	Albanie	ES	Espagne	LS	Lesotho	SI	Slovénie
AM	Arménie	FI	Finlande	LT	Lituanie	SK	Slovaquie
AT	Autriche	FR	France	LU	Luxembourg	SN	Sénégal
AU	Australic	GA	Gabon	LV	Lettonie	SZ	Swaziland
AZ	Azerbaidjan	GB	Royaume-Uni	MC	Monaco	TD	Tchad
BA	Bosnie-Herzégovine	GE	Géorgie	MD	République de Moldova	TG	Togo
BB	Barbade	GH	Ghana	MG	Madagascar	TJ	Tadjikistan
BE	Betgique	GN	Guinée	MK	Ex-République yougoslave	TM	Turkménistan
BF	Burkina Faso	GR	Grèce		de Macédoine	TR	Turquie
BG	Bulgarie	HU	Hongrie	ML	Mali	TT	Trinité-et-Tobago
BJ	Bénin	18	Irlande	MN	Mongolie	UA	Ukraine
BR	Brésil	IL	Israël	MR	Mauritanie	UG	Ouganda
BY	Bélarus	IS	Islande	MW	Malawi	US	Etats-Unis d'Amérique
CA	Canada	IT	Italie	MX	Mexique	UZ	Ouzbékistan
CF	République centrafricaine	JP	Јароп	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Pays-Bas	YU	Yougoslavic
CH	Suisse	KG	Kirghizistan	NO	Norvège	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	République populaire	NZ	Nouvelle-Zélande		
CM	Cameroun		démocratique de Corée	PL	Pologne		
CN	Chine	KR	République de Corée	PT	Portugal		
CU	Cuba	ΚZ	Kazakstan	RO	Roumanie		
CZ	République tchèque	LC	Sainte-Lucie	RU	Pédération de Russie		
DE	Allemagne	LI	Liechtenstein	SD	Soudan		
DK	Danemark	LK	Sri Lanka	SE	Suède		
EE	Estonie	LR	Libéria	SG	Singapour		

DERIVES DE N-BENZENESULFONYL-L-PROLINE EN TANT QU'AGONISTES DE LA BRADYKININE B2

5 Domaine de l'invention

La présente invention concerne de nouveaux composés dérivés de la Nbenzènesulfonyl-L-proline, leur procédé de préparation et leur utilisation en thérapeutique.

Ces nouveaux composés présentent une action inhibitrice vis-à-vis de la bradykinine et sont utiles en thérapeutique, particulièrement pour le traitement de la douleur et de l'inflammation, et notamment dans le traitement de l'asthme, du choc traumatique cérébral et des rhinites allergiques.

Art antérieur

20

On sait que l'une des possibilités de traitement de certaines pathologies à 15 caractère douloureux et/ou inflammatoire (telles que l'asthme, la rhinite, le choc septique, la douleur dentaire, etc...) est d'inhiber l'action de certaines hormones telles que la bradykinine ou la kallidine. En effet ces hormones peptidiques sont impliquées dans un grand nombre de processus physiologiques dont certains sont liés de façon étroite à ces pathologies.

Bien qu'actuellement aucun produit possédant ce mode d'action ne soit encore commercialisé, de nombreuses études ont été entreprises pour créer des composés susceptibles d'être antagonistes des récepteurs de la bradykinine. La bradykinine est une hormone peptidique constituée de 9 aminoacides (Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg) et la kallidine est une hormone peptidique (Lys-Arg-Pro-25 Pro-Gly-Phe-Ser-Pro-Phe-Arg) qui comporte un aminoacide supplémentaire (Lys) par rapport à la bradykinine. On sait que des études antérieures ont permis d'obtenir des peptides qui interagissent avec les récepteurs de la bradykinine : certains comme le Bradycor (CP.0127 de la société Cortech), l'Icatibant (HOE 140 de la société Hoechst) ["Bradycor" et "Icatibant" sont des dénominations communes internationales 30 (DCI)] ou encore le NPC 17761 (de la société Scios-Nova) présentent une action inhibitrice de la fixation de la bradykinine sur son récepteur B2. Plus récemment, des composés non peptidiques ont été proposés comme antagonistes vis-à-vis de la fixation de la bradykinine sur son récepteur B2, notamment dans EP-A-0596406 et EP-A-0622361. On sait en outre que certains composés de structure apparentée à 35 celles des composés visés dans les deux demandes de brevet précitées ont déjà été décrits, notamment dans DE-A-3617183 et EP-A-0261539. eu égard à leurs éventuelles propriétés antithrombotiques.

But de l'invention

Il existe un besoin d'atténuer ou de supprimer chez les mammifères et surtout chez l'homme les douleurs et les inflammations.

Pour satisfaire ce besoin, on a recherché une nouvelle solution technique qui soit efficace dans le traitement des inflammations et des algies quelle que soit leur origine, notamment dans le traitement des algies liées à des phénomènes inflammatoires.

Selon l'invention, on se propose de fournir une nouvelle solution technique, qui met en oeuvre une fixation compétitive au niveau du récepteur B₂ de la bradykinine entre (i) la bradykinine et les hormones apparentées ou analogues, et (ii) une substance antagoniste, et qui fait appel à des composés de benzènesulfonamide structurellement différents des produits connus précités et qui limitent ou inhibent substantiellement la fixation de la bradykinine et des hormones analogues sur ledit récepteur B₂ de la bradykinine.

Conformément à cette nouvelle solution technique on se propose de fournir, selon un premier aspect de l'invention, des composés dérivés de N-benzènesulfonyl-L-proline en tant que produits industriels nouveaux ; selon un second aspect de l'invention, un procédé de préparation de ces composés; et selon un troisième aspect de l'invention, une utilisation de ces composés notamment en thérapeutique en tant qu'agents antalgiques et/ou anti-inflammatoires.

Objet de l'invention

15

20

Selon la nouvelle solution technique de l'invention, on préconise en tant que produit industriel nouveau, un composé dérivé de la N-benzènesulfonyl-L-proline qui est caractérisé en ce qu'il est choisi parmi l'ensemble constitué par :

25 (i) les composés de formule :

$$X_1$$
 X_2
 X_2
 X_2
 X_3
 X_4
 X_2
 X_4
 X_4
 X_5
 X_5
 X_6
 X_7
 X_8
 X_8
 X_9
 X_9

dans laquelle:

 X_1 et X_2 représentent chacun indépendamment un atome d'halogène ou un groupe alkoxy en C_1 - C_3 ,

 R_1 représente un atome d'hydrogène, un groupe trifluoroalkyle en C_1 - C_3 , ou un groupe alkyle en C_1 - C_3 à chaîne hydrocarbonée linéaire ou ramifiée,

5 R₂ représente un atome d'hydrogène ou un groupe OH,

A représente un groupe

$$-N-(CH_2)_n-$$
, $-N$ $(CH_2)_m$ ou $-NH-(CH_2)_n$ $N-$

B représente une liaison simple, -CO-, -CO-CH₂-, -CO-CH₂-O-, -CO-CH=CH-ou -SO₂-,

10 m représente 2 ou 3,

n représente 0, 1, 2 ou 3,

R₃ représente un atome d'hydrogène ou un groupe méthyle,

W représente CH (le noyau aromatique est le groupe phényle) ou N (le noyau aromatique est un groupe pyridyle),

le groupe amidine C(=NR₂)NH₂ peut être en position 2, 3 ou 4 sur le noyau aromatique, et,

(ii) leurs sels d'addition.

20

30

Selon l'invention, on préconise aussi un procédé de préparation des composés de formule I et de leurs sels d'addition.

On préconise également l'utilisation d'une substance antagoniste d'un récepteur de la bradykinine et des hormones analogues, ladite utilisation étant caractérisée en ce que l'on fait appel à une substance antagoniste du récepteur B₂ de la bradykinine et choisie parmi les composés de formule I et leurs sels d'addition nontoxiques, pour l'obtention d'un médicament destiné à une utilisation en thérapeutique vis-à-vis des pathologies impliquant la bradykinine ou ses analogues, en particulier vis-à-vis des algies, et notamment dans le traitement ou la prévention de pathologies liées à des états inflammatoires ou douloureux.

Description détaillée de l'invention

Dans la formule générale I des composés de l'invention, on entend par atome d'halogène un atome de fluor, de chlore, de brome ou d'iode, l'halogène préféré étant l'atome de chlore.

Par groupe alkyle en C_1 - C_3 à chaîne hydrocarbonée linéaire ou ramifiée, on entend ici les groupes méthyle, éthyle, propyle et 1-méthyléthyle.

10

Dans le composé de formule I, l'hétérocycle azoté de structure pyrrolidine comprend 1 atome de carbone asymétrique. Selon l'invention, ce carbone est de configuration S, ce qui correspond à la configuration de la L-proline.

Par "sels d'addition", on entend les sels d'addition d'acide obtenus par 5 réaction d'un composé de formule I avec un acide minéral ou un acide organique. Les acides minéraux préférés pour salifier un composé basique de formule I sont les acides chlorhydrique, bromhydrique, phosphorique et sulfurique. Les acides organiques préférés pour salifier un composé basique de formule I sont les acides méthanesulfonique, benzènesulfonique, maléique, fumarique, oxalique, citrique, lactique et trifluoroacétique.

Le procédé de préparation des composés de formule I, que l'on préconise selon l'invention comprend,

selon une première variante A, les étapes consistant à :

(1°) faire réagir un acide de formule :

$$R_1$$
 CH_3
 X_1
 X_2
 CH_3
 $CH_$

dans laquelle:

15

20

représente un atome d'hydrogène, un groupe trifluorométhyle ou un R_1 groupe alkyle en C₁-C₃ à chaîne hydrocarbonée linéaire ou ramifiée,

X1 et X2 représentent chacun indépendamment un halogène ou un groupe alkoxy en C1-C3,

avec une amine de formule :

$$HN(R_3) - (CH_2)_n$$
 W
 CN
 (III)

dans laquelle R3 représente un atome d'hydrogène ou un groupe méthyle, n représente 0, 1, 2 ou 3, et W représente CH ou N,

dans un solvant tel que par exemple du dichlorométhane et en présence d'activateurs 25 couramment utilisés pour créer des liaisons de type peptidique tels que par exemple le chlorhydrate de 1-(3-diméthylaminopropyl)-3-éthyl-carbodiimide (EDCI) et le 1hydroxy-7-aza-benzotriazole (HOAT), à une température proche de la température ambiante (i.e. une température comprise entre environ 0 et environ 40°C, et mieux une température comprise entre 10 et 35°C), pendant 2 à 50 heures, pour obtenir un composé de formule :

dans laquelle R_1 , R_3 , X_1 , X_2 , n et W conservent la même signification que ci-dessus ; (2°) faire réagir le composé de formule IV, ainsi obtenu, avec le sulfure d'hydrogène en excès dans un solvant anhydre du type de la pyridine, en présence de triéthylamine, à une température comprise entre 0 et 40°C, pendant 2 à 40 heures pour obtenir un composé de formule :

5

10

$$X_1$$
 X_2
 X_2
 X_2
 X_3
 X_4
 X_2
 X_4
 X_5
 X_5
 X_6
 X_7
 X_8
 X_9
 X_9

dans laquelle R_1 , R_3 , X_1 , X_2 , n et W conservent la même signification que ci-dessus ; (3°) faire réagir le composé de formule V, ainsi obtenu, avec un agent de méthylation en excès, de préférence l'iodure de méthyle, dans un solvant tel que par exemple l'acétone, à une température proche de la température d'ébullition du milieu

réactionnel, éventuellement sous une pression supérieure à la pression atmosphérique et pendant 1 à 5 heures, pour obtenir un composé de formule :

$$X_1$$
 X_2
 X_2
 X_2
 X_3
 X_4
 X_2
 X_4
 X_5
 X_5
 X_6
 X_7
 X_8
 X_8
 X_9
 X_9

5 ou l'un de ses sels d'addition,

où R_1 , R_3 , X_1 , X_2 , n et W conservent la même signification que ci-dessus ; (4°) faire réagir le composé de formule VI, ainsi obtenu, avec un sel d'ammonium, préférentiellement l'acétate d'ammonium, dans un solvant comme par exemple l'éthanol, à une température comprise entre la température ambiante et 100°C, pendant 1 à 10 heures, pour obtenir un composé de formule I :

$$X_1$$
 X_2
 X_2
 X_2
 X_3
 X_4
 X_2
 X_4
 X_4
 X_5
 X_5
 X_6
 X_7
 X_8
 X_8
 X_8
 X_8
 X_9
 X_9

dans laquelle:

15

représente un atome d'hydrogène, un groupe trifluorométhyle ou un R, groupe alkyle en C₁-C₃ à chaîne hydrocarbonée linéaire ou ramifiée,

 X_1 et X_2 représentent chacun indépendamment un atome d'halogène ou un groupe alkoxy en C₁-C₃,

A représente un groupe $-N(R_3)-(CH_2)_n$,

B représente une liaison simple,

W représente CH ou N,

R₂ représente un atome d'hydrogène,

5 R₃ représente H ou CH₃,

n représente 0, 1, 2 ou 3; et,

(5°) si nécessaire, faire réagir le composé de formule I, ainsi obtenu, sous forme de base libre avec un acide minéral ou organique pour obtenir le sel d'addition d'acide correspondant; ou,

7

10 selon une seconde variante B, les étapes consistant à :

(1°) faire réagir un composé de formule :

$$X_1$$
 X_2
 X_2
 X_2
 X_3
 X_4
 X_2
 X_4
 X_5
 X_5
 X_6
 X_7
 X_8
 X_9
 X_9

dans laquelle:

15

R₁ représente un atome d'hydrogène, un groupe trifluorométhyle ou un groupe alkyle en C₁-C₃ à chaîne hydrocarbonée linéaire ou ramifiée,

X1 et X2 représentent chacun indépendamment un halogène ou un groupe méthoxy,

A représente un groupe

$$-N$$
 $(CH_2)_m$
ou $-NH-(CH_2)_n$
 $N-$

où n représente 0, 1, 2 ou 3, et m représente 2 ou 3,

20 avec un composé de formule VIII :

dans laquelle B représente -CO-, -CO-CH₂, -CO-CH₂-O-, ou -CO-CH=CH-, selon des conditions analogues à celles de l'étape (1°) de la variante A ci-dessus, pour obtenir un composé de formule :

WO 98/03503 PCT/FR97/01377

$$X_1$$
 X_2
 X_2
 X_2
 X_3
 X_4
 X_2
 X_4
 X_4
 X_5
 X_5
 X_6
 X_7
 X_8
 X_8
 X_8
 X_9
 X_9

dans laquelle R_1 , X_1 , X_2 conservent la même signification que ci-dessus,

A représente un groupe

$$-N$$
 N
 $CH_2)_m$
 N
 $CH_2)_m$
 N

5

B représente un groupe -CO-, -CO-CH₂-, -CO-CH₂-O- ou -CO-CH=CH-,

m représente 2 ou 3,

n représente 0, 1, 2 ou 3,

W représente CH, et

10 R₂ représente un atome d'hydrogène ; et,

(2°) si nécessaire, faire réagir le composé de formule I, ainsi obtenu, avec un acide pour obtenir le sel d'addition d'acide correspondant;

selon une troisième variante C, les étapes consistant à :

(1°) faire réagir un composé de formule :

$$X_1$$
 X_2
 X_2
 X_2
 X_3
 X_4
 X_2
 X_4
 X_5
 X_5
 X_6
 X_7
 X_8
 X_9
 X_9

15

dans laquelle:

R₁ représente un atome d'hydrogène, un groupe trifluorométhyle ou un groupe alkyle en C₁-C₃, à chaîne hydrocarbonée linéaire ou ramifiée,

X1 et X2 représentent chacun indépendamment un halogène ou un groupe méthoxy,

A représente un groupe

$$-N = \text{ou } -NH^{-}(CH_2)_n$$

$$(CH_2)_m$$

où m représente 2 ou 3, et n représente 0, 1, 2 ou 3,

avec un composé de formule :

5

$$HO-B$$
 W
 CN
 (IX)

dans laquelle B représente -CO-, -CO-CH₂, -CO-CH₂-O-, ou -CO-CH=CH-, et W représente CH ou N,

selon des conditions analogues à celles précédemment décrites pour réaliser l'étape 1 de la variante A et obtenir un composé de formule :

$$X_1$$
 X_2
 X_2
 X_2
 X_3
 X_4
 X_2
 X_4
 X_5
 X_5
 X_6
 X_7
 X_8
 X_9
 X_9

dans laquelle R₁, X₁, X₂, A, B et W conservent la même signification que dans les composés de départ;

(2°) faire réagir le composé de formule X, ainsi obtenu, avec de l'hydroxylamine, dans un solvant comme par exemple le DMSO, à température ambiante et pendant 1 à 12 heures, pour obtenir le composé de formule :

$$X_1$$
 X_2
 X_2
 X_1
 X_2
 X_2
 X_3
 X_4
 X_4
 X_4
 X_5
 X_5
 X_6
 X_7
 X_8
 X_9
 X_9

dans laquelle R_1 , X_1 , X_2 , A, B et W conservent la même signification que dans les composés de départ ;

(3°) faire réagir le composé de formule XI, ainsi obtenu, avec de l'anhydride
acétique, de préférence dans un solvant tel que par exemple le dichlorométhane, à température ambiante pendant 1 à 8 heures, pour obtenir le composé de formule :

$$X_1$$
 X_2
 X_2
 X_2
 X_3
 X_4
 X_2
 X_4
 X_4
 X_5
 X_6
 X_7
 X_8
 X_8
 X_9
 X_9

dans laquelle R_1 , X_1 , X_2 , A, B et W conservent la même signification que dans les composés de départ ;

10 (4°) effectuer une réduction du composé de formule XII, ainsi obtenu, par hydrogénation catalytique en présence d'un catalyseur tel que par exemple le catalyseur de Lindlar, dans un solvant tel que par exemple le méthanol, sous une pression d'hydrogène d'environ 10⁵ à 10⁶ pascals et à température ambiante pour obtenir le composé de formule :

$$X_1$$
 X_2
 X_2
 X_2
 X_3
 X_4
 X_2
 X_4
 X_5
 X_5
 X_6
 X_7
 X_8
 X_8
 X_9
 X_9

dans laquelle R_1 , X_1 , X_2 , A, B et W conservent la même signification que dans les composés de départ et R_2 représente un atome d'hydrogène ; et.

(5°) si nécessaire obtenir le sel d'addition du composé de formule I, ainsi obtenu, par réaction avec un acide approprié.

L'invention sera mieux comprise à la lecture des exemples de préparation qui suivent et des résultats d'essais pharmacologiques obtenus avec des composés selon l'invention. Dans le cas de composés présentant dans leur structure un carbone asymétrique, l'absence d'indication particulière, ou la mention (R,S) signifie qu'il s'agit de composés racémiques ; dans le cas de composés présentant une chiralité, celle-ci est indiquée à la suite immédiate de l'indexation du substituant porté par ledit carbone asymétrique ; on utilise alors les signes (R) ou (S), conformément aux règles de Cahn, Ingold et Prelog. La nomenclature utilisée dans les exemples est celle préconisée par les Chemical Abstracts : ainsi certains dérivés de la L-proline peuvent devenir, après réaction de la fonction acide avec une amine, des dérivés de la 2-(S)-pyrrolidinecarboxamide.

Dans la partie expérimentale, les "préparations" sont relatives aux composés intermédiaires et les "exemples" sont relatifs aux produits selon l'invention.

Les points de fusion (F) indiqués ci-après sont en général mesurés à l'aide 20 d'un banc Koffler et ne sont pas corrigés, il s'agit alors de points de fusion instantanée.

Les caractéristiques spectrales des signaux de résonance magnétique nucléaire (RMN) sont données pour le proton (¹H) ou pour l'isotope 13 du carbone (¹³C) : on indique le déplacement chimique par rapport au signal du tétraméthylsilane et, entre parenthèses, la forme du signal (s pour singulet, d pour doublet, t pour triplet, q pour quadruplet, m pour multiplet, sl pour signal large) et le nombre de

protons concernés par le signal. A titre indicatif, les spectres RMN¹H ont été réalisés à 300 MHz.

PREPARATION I

1-[[3-[(2,4-Diméthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-N-[(3cyanophényl)méthyl]-2(S)-pyrrolidinecarboxamide

On prépare une solution de 4 g (7,85.10⁻³ mole) de N-[[3-[(2,4-diméthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-L-proline dans 40 ml de dichlorométhane et on ajoute 1,5 g (7,85.10⁻³ mole) de chlorhydrate de 1-(3-diméthylaminopropyl)-3-éthyl-carbodiimide (EDCI), 1,07 g (7,85.10⁻³ mole) de 1hydroxy-7-aza-benzotriazole (HOAT), puis 1,14 g (8,63.10⁻³ mole) de 3-(aminométhyl)benzonitrile. Le mélange réactionnel est agité à température ambiante (15-25°C) pendant 2 heures. On ajoute alors 10 ml d'une solution 1N d'hydroxyde de sodium puis on décante la phase organique. La phase aqueuse est extraite avec du dichlorométhane puis les phases organiques rassemblées sont lavées à l'eau jusqu'à neutralité, séchées sur sulfate de sodium puis concentrées sous pression réduite. Le produit brut est purifié par chromatographie sur gel de silice avec comme éluant un mélange dichlorométhane/méthanol (98/2; v/v). On obtient ainsi 2,6 g du produit attendu sous forme d'un solide blanc (Rendement = 55 %).

$$F = 94-98^{\circ}C$$

25

$$[\alpha]_D^{23} = -51^{\circ} (c = 0.32 ; CHCl_3)$$

PREPARATION II

1-[[3-[(2,4-Diméthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-N-[3-(aminothioxométhyl)phénylméthyl]-2(S)-pyrrolidinecarboxamide

On prépare une solution de 2,1 g (3,36.10⁻³ mole) du composé obtenu selon la préparation I, dans 30 ml de pyridine et 3 ml de triéthylamine et on introduit dans cette solution du sulfure d'hydrogène par barbottage pendant 0,5 h à température ambiante, puis on laisse réagir pendant 24 heures à température ambiante. On ajoute ensuite de l'eau puis on extrait le mélange par du dichlorométhane. La phase organique est lavée à l'eau, séchée sur sulfate de sodium et concentrée sous pression 30 réduite. Le produit brut obtenu est purifié par chromatographie sur gel de silice avec comme éluant un mélange dichlorométhane/acétate d'éthyle (1/1; v/v). On obtient ainsi 0,8 g du produit attendu sous forme d'un solide jaune (Rendement = 35%).

$$F = 116-118$$
°C
 $[\alpha]_D^{28} = -51$ ° (c = 0,3; CHCl₃)

5

15

PREPARATION III

 $1-[[3-[(2,4-Dim\acute{e}thylquinolin-8-yl)oxym\acute{e}thyl]-2,4-dichloroph\acute{e}nyl]sulfonyl]-N-[3-[(imino)(m\acute{e}thylthio)m\acute{e}thyl]ph\acute{e}nylm\acute{e}thyl]-2(S)-pyrrolidinecarboxamide, iodhydrate$

On prépare une solution de 0.6 g $(0.9.10^{-3} \text{ mole})$ du composé obtenu selon la préparation II dans 20 ml d'acétone et on ajoute 1.94 g $(13.6.10^{-3} \text{ mole})$ d'iodure de méthyle. On chauffe la mélange réactionnel à doux reflux pendant 2 heures puis on concentre sous pression réduite. On obtient 0.72 g du produit attendu sous forme d'un solide jaune (Rendement = 100 %).

10 F = 146-148°C

$$[\alpha]_D^{28} = -10^{\circ} (c = 0.3; CH_3OH)$$

Exemple 1

On porte à reflux pendant 2 heures une solution de 0,72 g (0,9.10⁻³ mole) du composé obtenu selon la préparation III et de 0,21 g (2,7.10⁻³ mole) d'acétate d'ammonium dans 20 ml d'éthanol. Après élimination du solvant sous pression réduite, on ajoute 10 ml d'une solution aqueuse N d'hydroxyde de sodium et on extrait avec du dichlorométhane. Les phases organiques rassemblées sont lavées à l'eau, séchées sur sulfate de sodium puis concentrées sous pression réduite. Le produit obtenu est purifié par chromatographie sur gel de silice greffé NH₂ (Lichroprep[®]-NH₂ commercialisé par Merck avec comme éluant un mélange dichlorométhane/méthanol (98/2; v/v). On obtient ainsi 0,19 g du produit attendu sous forme d'un solide blanc (Rendement = 30 %).

25 Exemple 2

1-[[3-[(2,4-Diméthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-N-[3-(aminoiminométhyl)phénylméthyl]-2(S)-pyrrolidinecarboxamide, dichlorhydrate

On dissous 0,19 g (0,28.10⁻³ mole) du composé obtenu selon l'exemple 1 dans 1 ml d'acide chlorhydrique 1N puis on lyophilise cette solution. On obtient ainsi 0,2 g du produit attendu sous forme d'un solide jaune pâle.

$$F = 194-196$$
°C
 $[\alpha]_D^{23} = 22$ ° (c = 0,34 ; CH₃OH)

PREPARATION IV

 $1-[[3-[(2,4-Dim\acute{e}thylquinolin-8-yl)oxym\acute{e}thyl]-2,4-dichloroph\acute{e}nyl]sulfonyl]-N-dichloroph\acute{e}nyl]-N-dichloroph\acute{e}nyl]sulfonyl]-N-dichloroph\acute{e}nyl]sulfonyl]-N-dichloroph\acute{e}nyl]sulfonyl]-N-dichloroph\acute{e}nyl]sulfonyl]-N-dichloroph\acute{e}nyl]sulfonyl]-N-dichloroph\acute{e}nyl]sulfonyl]sulfonyl]-N-dichloroph\acute{e}nyl]sulfonyllasulfonylla$

35 méthyl-N-(4-cyanophénylméthyl)-2(S)-pyrrolidinecarboxamide

WO 98/03503 PCT/FR97/01377

En opérant de façon analogue à la préparation I, au départ de 4-[(N-méthyl)aminométhyl]benzonitrile, on obtient le produit attendu sous forme d'un solide jaune (Rendement = 80 %).

$$F = 64^{\circ}C$$

$$5 \quad [\alpha]_D^{23} = -39^\circ (c = 0.55; CH_3OH)$$

PREPARATION V

 $1-[[3-[(2,4-Dim\acute{e}thylquinolin-8-yl)oxym\acute{e}thyl]-2,4-dichloroph\acute{e}nyl]sulfonyl]-N-m\acute{e}thyl-N-[4-(aminothioxom\acute{e}thyl)ph\acute{e}nylm\acute{e}thyl]-2(S)-pyrrolidinecarboxamide$

En opérant de façon analogue à la préparation II, au départ du composé obtenu selon la préparation IV, on obtient le produit attendu (Rendement = 60 %).

$$F = 50$$
°C

$$[\alpha]_D^{23} = -44^{\circ} (c = 0.36; CH_3OH)$$

PREPARATION VI

1-[[3-[(2,4-Diméthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-N-

méthyl-N-[4-[(imino)(méthylthio)méthyl]phénylméthyl]-2(S)-pyrrolidine-carboxamide

En opérant de façon analogue à la préparation III, au départ du composé obtenu selon la préparation V, on obtient le produit attendu (Rendement = 97 %).

$$F = 53$$
°C

20
$$\left[\alpha\right]_{D}^{23} = -7^{\circ} (c = 0.34 ; CH_{3}OH)$$

Exemple 3

 $1-[[3-[(2,4-Dim\acute{e}thylquinolin-8-yl)oxym\acute{e}thyl]-2,4-dichloroph\acute{e}nyl]sulfonyl]-N-m\acute{e}thyl-N-[4-(aminoiminom\acute{e}thyl)ph\acute{e}nylm\acute{e}thyl]-2(S)-pyrrolidinecarboxamide$

En opérant de façon analogue à l'exemple 1, au départ du composé obtenu 25 selon la préparation VI, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 50 %).

$$F = 100$$
°C

$$[\alpha]_D^{23} = -42^{\circ} (c = 0.31 ; CH_3OH)$$

Exemple 4

30 1-[[3-[(2,4-Diméthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-N-méthyl-N-[4-(aminoiminométhyl)phénylméthyl]-2(S)-pyrrolidinecarboxamide, dichlorhydrate

En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 3, on obtient le produit attendu sous forme d'un solide jaune pâle (Rendement = 70 %).

$$F = 205$$
°C

$$[\alpha]_D^{23} = 16^{\circ} (c = 0.30; CH_3OH)$$

PREPARATION VII

En opérant de façon analogue à la préparation I, au départ de 4-(aminométhyl)benzonitrile, on obtient le produit attendu (Rendement = 65 %).

$$F = 96-98^{\circ}C$$

$$[\alpha]_D^{29} = -56^{\circ} (c = 0.32 ; CHCl_3)$$

PREPARATION VIII

1-[[3-[(2,4-Diméthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-N-[4-10 (aminothioxométhyl)phénylméthyl]-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à la préparation II, au départ du composé obtenu selon la préparation VII, on obtient le produit attendu (Rendement = 35 %).

$$F = 106-110$$
°C

$$[\alpha]_D^{29} = +21^\circ (c = 0.28; CHCl_3)$$

15 PREPARATION IX

 $1-[[3-[(2,4-Dim\acute{e}thylquinolin-8-yl)oxym\acute{e}thyl]-2,4-dichloroph\acute{e}nyl]sulfonyl]-N-[4-[(imino)(m\acute{e}thylthio)m\acute{e}thyl]ph\acute{e}nylm\acute{e}thyl]-2(S)-pyrrolidinecarboxamide$

En opérant de façon analogue à la préparation III, au départ du composé obtenu selon la préparation VIII, on obtient le produit attendu (Rendement = 95 %).

F = 150-152°C

$$[\alpha]_D^{23} = -10^{\circ} (c = 0.30; CH_3OH)$$

Exemple 5

20

 $1-[[3-[(2,4-Dim\acute{e}thylquinolin-8-yl)oxym\acute{e}thyl]-2,4-dichloroph\acute{e}nyl]sulfonyl]-N-[4-yl]-[(2,4-Dim\acute{e}thylquinolin-8-yl)oxym\acute{e}thyl]-2,4-dichloroph\acute{e}nyl]sulfonyl]-N-[4-yl]-2,4-dichloroph\acute{e}nyl]sulfonyl]-N-[4-yl]-2,4-dichloroph\acute{e}nyl]sulfonyl]-N-[4-yl]-2,4-dichloroph\acute{e}nyl]sulfonyl]-N-[4-yl]-2,4-dichloroph\acute{e}nyl]sulfonyl]-N-[4-yl]-2,4-dichloroph\acute{e}nyl]sulfonyl]-N-[4-yl]-2,4-dichloroph\acute{e}nyl]sulfonyl]-N-[4-yl]-2,4-dichloroph\acute{e}nyl]sulfonyl]-N-[4-yl]-2,4-dichloroph\acute{e}nyl]sulfonyl]-N-[4-yl]-2,4-dichloroph\acute{e}nyl]sulfonyl]-N-[4-yl]-2,4-dichloroph\acute{e}nyl]sulfonyl]-N-[4-yl]-2,4-dichloroph\acute{e}nyl]sulfonyl]-N-[4-yl]-2,4-dichloroph\acute{e}nyl]sulfonyl]-N-[4-yl]-2,4-dichloroph\acute{e}nyl]sulfonyl]-N-[4-yl]-2,4-dichloroph\acute{e}nyl]sulfonyl]-N-[4-yl]-2,4-dichloroph\acute{e}nyl]-N-[4-yl]-2,4-dichloroph\acute{e}nyl]-N-[4-yl]-2,4-dichloroph\acute{e}nyl]-N-[4-yl]-2,4-dichloroph\acute{e}nyl]-N-[4-yl]-2,4-dichloroph\acute{e}nyl]-N-[4-yl]-2,4-dichloroph\acute{e}nyl]-N-[4-yl]-2,4-dichloroph\acute{e}nyl]-N-[4-yl]-2,4-dichlorophic]-1,4-di$

25 (aminoiminométhyl)phénylméthyl]-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 1, au départ du composé obtenu selon la préparation IX, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 57 %).

$$F = 115-118$$
°C

30
$$\left[\alpha\right]_{D}^{25} = -42^{\circ} (c = 0.29 ; CH_{3}OH)$$

Exemple 6

1-[[3-[(2,4-Diméthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-N-[4-(aminoiminométhyl)phénylméthyl]-2(S)-pyrrolidinecarboxamide, bis-(méthane-sulfonate)

On prépare une solution de 160 mg (0,25.10⁻³ mole) du composé obtenu selon l'exemple 5 dans 5 ml d'éthanol puis on ajoute une solution de 50,4 mg (0,525.10⁻³ mole) d'acide méthanesulfonique dans 2 ml d'éthanol. On maintient le

milieu réactionnel pendant 0,5 h sous agitation à température ambiante, puis on le verse lentement dans 50 ml d'éther éthylique. Il se forme un précipité que l'on filtre après environ 0,5 h. Le solide est lavé à l'éther puis repris en solution dans 20 ml d'eau distillée. La solution obtenue est lyophilisée et on obtient ainsi 210 mg du produit attendu sous forme d'un solide blanc (Rendement = 86 %).

$$F = 180^{\circ}C$$

$$[\alpha]_D^{25} = -25^{\circ} (c = 0.32; CH_3OH)$$

PREPARATION X

1-[[3-[2-Méthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-N-(4-cyano-phénylméthyl)-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à la préparation VII, au départ de N-[[3-[(2-méthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-L-proline, on obtient le produit attendu (Rendement = 76 %).

$$F = 86-90$$
°C

15
$$\left[\alpha\right]_{D}^{31} = -46^{\circ} (c = 0.31 ; CH_{3}OH)$$

PREPARATION XI

1-[[3-[(2-Méthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-N-[4-(aminothioxométhyl)phénylméthyl]-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à la préparation II, au départ du composé obtenu selon la préparation X, on obtient le produit attendu (Rendement = 47 %).

$$F = 130-132$$
°C

$$[\alpha]_D^{31} = +24^{\circ} (c = 0.30; CHCl_3)$$

PREPARATION XII

1-[[3-[(2-Méthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-N-[4-

25 [(imino)(méthylthio)méthyl]phénylméthyl]-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à la préparation III, au départ du composé obtenu selon la préparation XI, on obtient le produit attendu (Rendement = 99 %).

$$F = 160-162$$
°C

$$[\alpha]_D^{31} = -20^{\circ} (c = 0.30; CH_3OH)$$

30 Exemple 7

1-[[3-[(2-Méthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-N-[4-(aminoiminométhyl)phénylméthyl]-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 1, au départ du composé obtenu selon la préparation XII, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 35 %).

Exemple 8

1-[[3-[(2-Méthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-N-[4-(aminoiminométhyl)phénylméthyl]-2(S)-pyrrolidinecarboxamide, dichlorhydrate

17

En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 7, on obtient le produit attendu sous forme d'un solide jaune pâle (Rendement = 98 %).

$$F = 178-180$$
°C

$$[\alpha]_D^{22} = -35^{\circ} (c = 0.35; CH_3OH)$$

PREPARATION XIII

10 1-[[3-[2-Méthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-N-(3-cyanophényl)-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à la préparation X, au départ de 3-aminobenzonitrile, on obtient le produit attendu (Rendement = 75 %).

$$F = 112-114$$
°C

$$[\alpha]_D^{21} = -53^{\circ} (c = 0.33; CH_3OH)$$

PREPARATION XIV

 $1-[[3-[(2-M\acute{e}thylquinolin-8-yl)oxym\acute{e}thyl]-2,4-dichloroph\acute{e}nyl] sulfonyl]-N-[3-(aminothioxom\acute{e}thyl)ph\acute{e}nyl]-2(S)-pyrrolidinecarboxamide$

En opérant de façon analogue à la préparation II, au départ du composé 20 obtenu selon la préparation XIII, on obtient le produit attendu (Rendement = 50 %).

$$F = 134-136$$
°C

$$[\alpha]_D^{22} = -130^{\circ} (c = 0.32 ; CHCl_3)$$

PREPARATION XV

1-[[3-[(2-Méthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-N-[3-

25 [(imino)(méthylthio)méthyl]phényl]-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à la préparation III, au départ du composé obtenu selon la préparation XIV, on obtient le produit attendu (Rendement = 95 %).

$$F = 160-164$$
°C

$$[\alpha]_D^{22} = -42^{\circ} (c = 0.32 ; CH_3OH)$$

30 Exemple 9

1-[[3-[(2-Méthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-N-[3-(aminoiminométhyl)phényl]-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 1, au départ du composé obtenu selon la préparation XV, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 11 %).

RMN¹H (DMSO)

1,90-2,02 (m, 3H); 2,27 (m, 1H); 2,60 (s, 3H); 3,37-3,40 (m, 1H); 3,58 (m, 1H); 4,57-4,59 (m, 1H); 5,52 (m, 2H); 6,47 (m large, 3H); 7,29-7,56 (m, 7H); 7,65-7,67 (d, 1H); 7,76-7,78 (d, 1H); 7,90 (m, 1H); 8,10-8,13 (d, 1H); 8,20-8,23 (d, 1H).

5 Exemple 10

1-[[3-[(2-Méthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-N-[3-(aminoiminométhyl)phényl]-2(S)-pyrrolidinecarboxamide, dichlorhydrate

En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon l'exemple 9, on obtient le produit attendu sous forme d'un solide jaune pâle (Rendement = 99 %).

$$F = 192-195$$
°C $[\alpha]_D^{22} = -37$ ° (c = 0,31; CH₃OH)

PREPARATION XVI

1-[[3-[(2,4-Diméthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-2(S)-

15 [(pipérazin-1-yl)carbonyl]pyrrolidine

Ce composé est obtenu à partir de son sel d'addition avec l'acide trifluoroacétique, par action d'une solution aqueuse d'hydroxyde de sodium, extraction avec de l'acétate d'éthyle et élimination du solvant sous pression réduite.

$$F = 169$$
°C

20
$$[\alpha]_D^{25} = -2.7^{\circ} (c = 0.44 ; CHCl_3)$$

Exemple 11

1-[[3-[(2,4-Diméthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-2(S)-[[4-[4-(aminoiminométhyl)benzoyl]pipérazin-1-yl]carbonyl]pyrrolidine

On prépare une suspension de 0,261 g (1,3.10⁻³ mole) du chlorhydrate de l'acide 4-(aminoiminométhyl)benzoïque dans 10 ml de diméthylformamide et on ajoute 0,182 g (0,95.10⁻³ mole) de EDCI et 0,13 g (0,95.10⁻³ mole) de HOBT. On laisse sous agitation à température ambiante pendant 15 minutes puis on ajoute 0,5 g (0,86.10⁻³ mole) du composé obtenu selon la préparation XVI. Le mélange réactionnel est agité pendant 4 heures à température ambiante puis versé sur de l'eau glacée. On ajoute doucement une solution d'hydroxyde de sodium IN de façon à amener le pH à 8 et on extrait par du dichlorométhane plusieurs fois. Les phases organiques rassemblées sont lavées à l'eau, séchées sur sulfate de sodium et concentrées sous pression réduite. Le produit brut est purifié par chromatographie sur gel de silice greffé NH₂ (Lichroprep[®] NH₂) avec comme éluant un mélange dichlorométhane/méthanol (95/5; v/v). On obtient ainsi 0,4 g du produit attendu sous forme d'un solide blanc (Rendement = 64 %).

F = 139°C

$$[\alpha]_D^{22} = -31^{\circ} (c = 0.33; CH_3OH)$$

Exemple 12

1-[[3-[(2,4-Diméthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-2(S)-[[4-[4-(aminoiminométhyl)benzoyl]pipérazin-1-yl]carbonyl]pyrrolidine,

5 dichlorhydrate

On prépare une solution de 0,35 g (0,48.10⁻³ mole) du composé obtenu selon l'exemple 11, dans 8 ml d'acétate d'éthyle et 2 ml d'éthanol. On ajoute 0,5 ml d'une solution saturée de chlorure d'hydrogène dans l'éther éthylique. Les cristaux formés sont filtrés, lavés avec de l'éther éthylique puis remis en solution dans 20 ml d'eau distillée. La lyophilisation de la solution conduit à 0,35 g de produit attendu sous forme d'un solide jaune pâle (Rendement = 90 %).

$$F = 211^{\circ}C$$

 $[\alpha]_{D}^{22} = -11^{\circ} (c = 0.34 ; CH_{3}OH)$

Exemple 13

15 1-[[3-[(2,4-Diméthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-2(S)[[4-[2-[4-(aminoiminométhyl)phényl]-1-oxoéthyl]pipérazin-1-yl]carbonyl]pyrrolidine

En opérant de façon analogue à l'exemple 11, au départ du chlorhydrate de l'acide 4-(aminoiminométhyl)-phénylacétique, on obtient le produit attendu sous forme d'un solide beige (Rendement = 74 %).

$$F = 126$$
°C
 $[\alpha]_D^{27} = -32$ ° (c = 0,32; CH₃OH)

Exemple 14

1-[[3-[(2,4-Diméthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-2(S)-

25 [[4-[2-[4-(aminoiminométhyl)phényl]-1-oxoéthyl]pipérazin-1-yl]carbonyl]-pyrrolidine, dichlorhydrate

En opérant de façon analogue à l'exemple 12, au départ du composé obtenu selon l'exemple 13, on obtient le produit attendu sous forme d'un solide amorphe blanc (Rendement = 88 %).

30 F = 200°C

$$\{\alpha\}_D^{27} = +20^\circ (c = 0.35; CH_3OH)$$

Exemple 15

 $1-[[3-[(2,4-Dim\acute{e}thylquinolin-8-yl)oxym\acute{e}thyl]-2,4-dichloroph\acute{e}nyl]sulfonyl]-2(S)-[[4-[2-[4-(aminoiminom\acute{e}thyl)ph\acute{e}noxy]-1-oxo\acute{e}thyl]pip\acute{e}razin-1-yl]carbonyl]-$

35 pyrrolidine

En opérant de façon analogue à l'exemple 11, au départ du chlorhydrate de l'acide 4-(aminoiminométhyl)phénoxyacétique, on obtient le produit attendu sous forme d'un solide beige (Rendement = 77 %).

$$F = 128$$
°C

$$5 \quad \{\alpha\}_D^{27} = -32^{\circ} \ (c = 0.35; CH_3OH)$$

Exemple 16

1-[[3-[(2,4-Diméthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-2(S)-[[4-[2-[4-(aminoiminométhyl)phénoxy]-1-oxoéthyl]pipérazin-1-yl]carbonyl]-pyrrolidine, dichlorhydrate

En opérant de façon analogue à l'exemple 12, au départ du composé obtenu selon l'exemple 15, on obtient le produit attendu sous forme d'un solide couleur crème (Rendement = 95 %).

$$F = 213$$
°C

$$[\alpha]_D^{27} = +22^{\circ} (c = 0.37; CH_3OH)$$

15 Exemple 17

10

 $1-[[3-[(2-M\acute{e}thylquinolin-8-yl)oxym\acute{e}thyl]-2,4-dichloroph\acute{e}nyl]sulfonyl]-2(S)-[[4-[4-(aminoiminom\acute{e}thyl)benzoyl]pip\acute{e}razin-1-yl]carbonyl]pyrrolidine$

En opérant de façon analogue à l'exemple 11, au départ de 1-[[3-[(2-méthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-2(S)-[(pipérazin-1-yl)

carbonyl]pyrrolidine, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 52 %).

$$F = 152$$
°C

$$[\alpha]_D^{28} = -37^{\circ} (c = 0.32 ; CH_3OH)$$

Exemple 18

25 1-[[3-[(2-Méthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-2(S)-[[4-[4-(aminoiminométhyl)benzoyl]pipérazin-1-yl]carbonyl]pyrrolidine, dichlorhydrate

En opérant de façon analogue à l'exemple 12, au départ du composé obtenu selon la préparation de l'exemple 17, on obtient le produit attendu sous forme d'un solide blanc crème (Rendement = 95 %).

30
$$F = 208$$
°C

35

$$[\alpha]_D^{28} = + 10^{\circ} (c = 0.37 ; CH_3OH)$$

Exemple 19

1-[[3-[2-Méthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-2(S)-[[4-[2-[4-(aminoiminométhyl)phényl]-1-oxoéthyl]pipérazin-1-yl]carbonyl]pyrrolidine

En opérant de façon analogue à l'exemple 17, au départ du chlorhydrate de l'acide 4-(aminoiminométhyl)-phénylacétique, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 86 %).

$$F = 155$$
°C $[\alpha]_D^{28} = +0.6$ ° (c = 0.35; DMSO)

Exemple 20

1-[[3-[2-Méthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-2(S)-[[4-[2-[4-(aminoiminométhyl)phényl]-1-oxoéthyl]pipérazin-1-yl]carbonyl]pyrrolidine, dichlorhydrate

En opérant de façon analogue à l'exemple 12, au départ du composé obtenu selon l'exemple 19, on obtient le produit attendu sous forme d'un solide amorphe crème (Rendement = 90 %).

10 F = 188°C

$$[\alpha]_D^{30} = + 12^\circ (c = 0.36; CH_3OH)$$

Exemple 21

1-[[3-[(2-Méthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-2(S)-[[4-[2-[4-(aminoiminométhyl)phénoxy]-1-oxoéthyl]pipérazin-1-yl]carbonyl]-pyrrolidine

En opérant de façon analogue à l'exemple 17, au départ du chlorhydrate de l'acide 4-(aminoiminométhyl)phénoxyacétique, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 60 %).

F = 130°C

$$[\alpha]_D^{30}$$
 = -32,5° (c = 0,36; DMSO)

20 Exemple 22

1-[[3-[(2-Diméthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-2(S)-[[4-[2-[4-(aminoiminométhyl)phénoxy]-1-oxoéthyl]pipérazin-1-yl]carbonyl]pyrro-lidine, dichlorhydrate

En opérant de façon analogue à l'exemple 12, au départ du composé obtenu selon l'exemple 21, on obtient le produit attendu sous forme d'un solide beige clair (Rendement = 86 %).

F = 215°C

$$[\alpha]_D^{28} = +11$$
° (c = 0,4; CH₃OH)

Exemple 23

30 1-[[3-[(2-Méthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-N-[1-[4-(aminoiminométhyl)benzoyl]pipéridin-4-yl]-2(S)-pyrrolidinecarboxamide

On prépare une solution de 0,48g (2,39.10⁻³ mole) d'acide 4-(aminoiminométhyl)benzoïque dans 40 ml de diméthylformamide et on ajoute 0,5 g (2,63.10⁻³ mole) d'EDCI et 0,36 g (2,63.10⁻³ mole) d'HOAT. Après une heure d'agitation de ce mélange à température ambiante, on ajoute 1,5 g (2,3.10⁻³ mole) du dichlorhydrate de 1-[[3-[(2-méthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-N-[pipéridin-4-yl]-2(S)-pyrrolidinecarboxamide et 0,5 g (5,5.10⁻³ mole) de N-méthylmorpholine,

et on maintient sous agitation pendant 1 heure. Le milieu réactionnel est ensuite concentré sous pression réduite, repris par 200 ml d'une solution d'hydroxyde de sodium 3N et extrait par du dichlorométhane. La phase organique est lavée à l'eau, séchée sur sulfate de sodium et concentrée sous pression réduite. Le produit brut est purifié par chromatographie sur gel de silice greffé NH₂ (Lichroprep[®] NH₂) avec comme éluant un mélange dichlorométhane/éthanol (95/5; v/v). On obtient ainsi 0,33 g du produit attendu sous forme de cristaux blancs (Rendement = 19 %). RMN¹H (DMSO)

1,36 (m, 2H); 1,70 (m, 1H); 1,84 (m, 3H); 1,99 (m, 1H); 2,13 (m, 1H); 2,60 (s, 3 H); 3,02 (m, 1H); 3,12 (m, 1H); 3,34 (m, 2H); 3,53 (m, 1H); 3,74 (m, 1H); 4,25 (m, 1H); 4,34 (m, 1H); 5,53 (s, 2H); 7,44 (m, 4H); 7,56 (d, 2H); 7,85 (m, 3H); 7,99 (d, 1H); 8,10 (d, 1H); 8,22 (d, 1H); 8,97 (s large, 3H).

Exemple 24

1-[[3-[(2-Méthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-N-[1-[4-15 (aminoiminométhyl)benzoyl]pipéridin-4-yl]-2(S)-pyrrolidinecarboxamide, bis(méthanesulfonate)

En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 23, on obtient le produit attendu avec sous forme d'une poudre blanche (Rendement = 66 %).

20 F = 184-188°C $[\alpha]_0^{25} = -6.7$ ° (c = 0.67; CH₃OH)

PREPARATION XVII

25

1-[[3-[(2,4-Diméthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-N-[pipéridin-4-yl]-2(S)-pyrrolidinecarboxamide, dichlorhydrate

Ce composé est obtenu suivant un procédé analogue à la synthèse du chlorhydrate de 1-[[3-[(2-méthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]-sulfonyl]-N-[pipéridin-4-yl]-2(S)-pyrrolidinecarboxamide, décrite précédemment, en remplaçant la 8-hydroxy-2-méthylquinoléine par la 8-hydroxy-2,4-diméthylquinoléine.

F = 184-186°C

30 $\left[\alpha\right]_{D}^{25} = -14.2^{\circ} (c = 0.56 ; CH_{3}OH)$

PREPARATION XVIII

1-[[3-[(2,4-Diméthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-N-[(pipéridin-4-yl)méthyl]-2(S)-pyrrolidinecarboxamide, dichlorhydrate

Ce composé est obtenu en opérant de façon analogue au procédé de la préparation XVII, mais en remplaçant le dérivé protégé de la 4-aminopipéridine par un dérivé protégé de la 4-(aminométhyl)pipéridine.

F = 195°C

 $[\alpha]_D^{24} = -32.2^{\circ} (c = 1 ; CH_3OH)$

Exemple 25

1-[[3-[(2,4-Diméthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-N-[1-[4-(aminoiminométhyl)benzoyl]pipéridin-4-yl]-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 23, au départ du composé obtenu selon la préparation XVII, on obtient le produit attendu avec (Rendement = 36 %).

RMN¹H (DMSO)

1,30 (m, 2H); 1,70 (m, 1H); 1,84 (m, 3H); 1,98 (m, 1H); 2,11 (m, 1H); 2,55

10 (s, 3 H); 2,62 (s, 3H); 3,02 (m, 2H); 3,40 (m, 2H); 3,56 (m, 1H); 3,75 (m, 1H); 4,33 (m, 2H); 5,52 (s, 2H); 6,53 (m large, 3H); 7,28 (s, 1H); 7,37 (d, 3H); 7,48 (t, 1H); 7,66 (d, 1H); 7,81 (m, 3H); 7,96 (d, 1H); 8,09 (d, 1H).

Exemple 26

1-[[3-[(2,4-Diméthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-N-[1-[4-(aminoiminométhyl)benzoyl]pipéridin-4-yl]-2(S)-pyrrolidinecarboxamide, bis(méthanesulfonate)

En opérant de façon analogue à l'exemple 6, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 78 %).

20 F = 186-188°C $[\alpha]_D^{25} = -9^\circ (c = 0.79 ; CH_3OH)$

Exemple 27

 $1-[[3-[(2,4-Dim\acute{e}thylquinolin-8-yl)oxym\acute{e}thyl]-2,4-dichloroph\acute{e}nyl]sulfonyl]-N-[1-[2-[4-(aminoiminom\acute{e}thyl)ph\acute{e}noxy]-1-oxo\acute{e}thyl]pip\acute{e}ridin-4-yl]-2(S)-pyrrolidine-pyrrol$

25 carboxamide

En opérant de façon analogue au procédé de l'exemple 23, par réaction du produit obtenu selon la préparation XVII avec l'acide 4-(aminoiminométhyl)-phénoxyacétique, on obtient, le produit attendu (Rendement = 47 %).

RMN¹H (DMSO)

30 1,25 (m, 2H); 1,71 (m, 2H); 1,84 (m, 2H); 2,12 (m, 2H); 2,55 (s, 3H); 2,62 (s, 3 H); 2,80 (m, 1H); 3,13 (m, 2H); 3,40 (m, 1H); 3,53 (m, 1H); 3,73 (m, 2H); 4,10 (m, 1H); 4,33 (m, 1H); 4,86 (m, 2H); 5,53 (s, 2H); 6,45 (m large, 3H); 6,90 (d, 2H); 7,28 (s, 1H); 7,38 (d, 1H); 7,48 (t, 1H); 7,68 (t, 3H); 7,81 (d, 1H); 7,96 (d, 1H); 8,10 (d, 1H).

Exemple 28

1-[[3-[(2,4-Diméthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-N-[1-[2-[4-(aminoiminométhyl)phénoxy]-1-oxoéthyl]pipéridin-4-yl]-2(S)-pyrrolidine-carboxamide, bis(méthanesulfonate)

En opérant de façon analogue au procédé de l'exemple 6, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 72 %).

$$F = 170$$
°C

5

$$[\alpha]_D^{21} = -4.2^{\circ} (c = 0.93 ; CH_3OH)$$

Exemple 29

1-[[3-[(2,4-Diméthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-N-[[1-[2-[4-(aminoiminométhyl)phénoxy]-1-oxoéthyl]pipéridin-4-yl]méthyl]-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 27, au départ du composé obtenu selon la préparation XVIII, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 42 %).

RMN¹H (DMSO)

1,10 (m , 2H); 1,64 (m , 3H); 1,86 (m , 2H); 2,05 (m , 1H); 2,14 (m , 1H); 2,56 (s , 3 H); 2,64 (s , 3H); 2,97 (m , 3H); 3,39 (m , 2H); 3,56 (m , 1H); 3,85 (m , 1H); 4,29 (m , 1H); 4,36 (m , 1H); 4,85 (s , 2H); 5,55 (s , 2H); 6,60 (m large ,

20 3H); 6,92 (d, 2H); 7,30 (s, 1H); 7,40 (d, 1H); 7,50 (t, 1H); 7,69 (t, 3H); 7,84 (d, 1H); 8,05 (m, 1H); 8,12 (d, 1H).

Exemple 30

 $1-[[3-[(2,4-Dim\acute{e}thylquinolin-8-yl)oxym\acute{e}thyl]-2,4-dichloroph\acute{e}nyl] sulfonyl]-N-[[1-[2-[4-(aminoiminom\acute{e}thyl)ph\acute{e}noxy]-1-oxo\acute{e}thyl]pip\acute{e}ridin-4-yl]m\acute{e}thyl]-2(S)-$

25 pyrrolidinecarboxamide, bis(méthanesulfonate)

En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 29, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 70 %).

$$F = 170$$
°C

30
$$\left[\alpha\right]_{D}^{21} = -19^{\circ} (c = 0.91 ; CH_{3}OH)$$

Exemple 31

1-[[3-[(2,4-Diméthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-N-[[1-[2-[4-(aminoiminométhyl)phényl]-1-oxoéthyl]pipéridin-4-yl]méthyl]-2(S)-pyrroli dinecarboxamide

En opérant de façon analogue à l'exemple 23, au départ du composé obtenu selon la préparation XVIII et du chlorhydrate de l'acide 4-(aminoiminométhyl)

phénylacétique, on obtient le produit attendu sous forme de cristaux jaune pâle (Rendement = 44 %).

$$F = 130-132$$
°C
 $[\alpha]_D^{20} = -28$ ° (c = 0.90; CH₃OH)

5 Exemple 32

1-[[3-[(2,4-Diméthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-N-[[1-[2-[4-(aminoiminométhyl)phényl]-1-oxoéthyl]pipéridin-4-yl]méthyl]-2(S)-pyrrolidinecarboxamide, dichlorhydrate

En opérant de façon analogue à l'exemple 12, au départ du composé obtenu selon l'exemple 31, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 77 %).

F = 210-214°C

$$[\alpha]_D^{24}$$
 = -17,5° (c = 0,75; CH₃OH)

Exemple 33

15 1-[[3-[2,4-Diméthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-N-[[1-[2-[4-(aminoiminométhyl)benzoyl]pipéridin-4-yl]méthyl]-2(S)-pyrrolidine-carboxamide

En opérant de façon analogue à l'exemple 31, au départ du chlorhydrate de l'acide 4-(aminoiminométhyl)benzoïque, on obtient le produit attendu sous forme d'un solide blanc-cassé (Rendement = 59 %).

Exemple 34

1-[[3-[2,4-Diméthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-N-[[1-[2-[4-(aminoiminométhyl)benzoyl]pipéridin-4-yl]méthyl]-2(S)-pyrrolidine-carboxamide, dichlorhydrate

En opérant de façon analogue à l'exemple 12, au départ du composé obtenu selon l'exemple 33, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 77 %).

$$F = 186-190 \,^{\circ}C$$

 $[\alpha]_{D}^{25} = -19^{\circ} (c = 1,05 ; CH_3OH)$

30 Exemple **35**

25

1-[[3-[(2-Méthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-N-[[1-[4-(aminoiminométhyl)benzoyl]pipéridin-4-yl]méthyl]-2(S)-pyrrolidinecarboxamide, dichlorhydrate

En opérant de façon analogue à l'exemple 23, au départ de chlorhydrate de l'acide 4(aminoiminométhyl)benzoïque et du dichlorhydrate de !-[[3-[(2-méthyl-quinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-N-[(pipéridin-4-yl)méthyl]-2(S)-pyrrolidinecarboxamide, et après purification au moyen d'une chromatographie

en phase inverse sur gel de silice greffé RP18 avec comme éluant le mélange eau/acétonitrile/acide chlorhydrique (63/32/1; v/v/v), on obtient le produit attendu sous forme d'un solide poudreux blanc (Rendement = 39 %).

$$F = 210 \, ^{\circ}C$$

$$5 \quad [\alpha]_D^{26} = -28^{\circ} (c = 0.98 ; CH_3OH)$$

Exemple 36

1-[[3-[(2-Méthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-N-[[1-[2-[4-(aminoiminométhyl)phényl]-1-oxoéthyl]pipéridin-4-yl]méthyl]-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 23, au départ du chlorhydrate de l'acide 4-(aminoiminométhyl)benzoïque et du chlorhydrate de 1-[[3-[2-méthylqui-nolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-N-[(pipéridin-4-yl)méthyl]-2(S)-pyrrolidine carboxamide, on obtient le produit attendu sous forme de cristaux jaunes (Rendement = 36 %).

$$F = 120-126$$
°C

$$[\alpha]_D^{26} = -33^{\circ} (c = 0.95; CH_3OH)$$

Exemple 37

 $1-[[3-[(2-M\acute{e}thylquinolin-8-yl)oxym\acute{e}thyl]-2,4-dichloroph\acute{e}nyl]sulfonyl]-N-[[1-[2-[4-(aminoiminom\acute{e}thyl)ph\acute{e}nyl]-1-oxo\acute{e}thyl]pip\acute{e}ridin-4-yl]m\acute{e}thyl]-2(S)-pyrroli-1-(Aminoiminome)phinyl]-1-oxo\acute{e}thyl]pip\acute{e}ridin-4-yl]m\acute{e}thyl]-2(S)-pyrroli-1-(Aminoiminome)phinyl]-1-oxo\acute{e}thyl]pip\acute{e}ridin-4-yl]m\acute{e}thyl]-1-(S)-pyrroli-1-(S)-pyrr$

20 dinecarboxamide, dichlorhydrate

En opérant de façon analogue à l'exemple 12, au départ du composé obtenu selon l'exemple 36, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 77 %).

$$F = 186-190$$
°C

25
$$[\alpha]_D^{26} = -19^{\circ} (c = 1.05; CH_3OH)$$

Exemple 38

1-[[3-[(2-Méthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-N-[[1-[2-[4-(aminoiminométhyl)phénoxy]-1-oxoéthyl]pipéridin-4-yl]méthyl]-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 31, au départ du chlorhydrate de l'acide 4-(aminoiminométhyl)phénoxyacétique, on obtient le produit attendu sous forme de cristaux jaunes (Rendement = 73 %).

$$F = 134-138$$
°C
 $[\alpha]_D^{25} = -29$ ° (c = 1,05; C₂H₅OH)

35 **Exemple 39**

1-[[3-[(2-Méthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-N-[[1-[2-[4-(aminoiminométhyl)phénoxy]-1-oxoéthyl]pipéridin-4-yl]méthyl]-2(S)-pyrrolidinecarboxamide, dichlorhydrate

En opérant de façon analogue à l'exemple 12, au départ du composé obtenu à l'exemple 38, on obtient le produit attendu sous forme de cristaux jaune clair (Rendement = 79 %).

$$F = 197-200$$
°C

$$[\alpha]_D^{24} = -22^{\circ} (c = 0.95 ; CH_3OH)$$

Exemple 40

1-[[3-[(2,4-Diméthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-N-[1-[2-[4-(aminoiminométhyl)phényl]-1-oxoéthyl]pipéridin-4-yl]-2(S)-pyrrolidine-carboxamide

En opérant de façon analogue à l'exemple 31, au départ du composé obtenu selon la préparation XVII, on obtient le produit attendu sous forme de cristaux jaune pâle (Rendement = 50 %).

Exemple 41

1-[[3-[(2,4-Diméthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-N-[1-[2-[4-(aminoiminométhyl)phényl]-1-oxoéthyl]pipéridin-4-yl]-2(S)-pyrrolidine-carboxamide, dichlorhydrate

20 En opérant de façon analogue à l'exemple 12, au départ du composé obtenu selon l'exemple 40, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 82 %).

$$F = 205 \, ^{\circ}C$$

 $[\alpha]_{D}^{21} = -7.7^{\circ} (c = 1.10 ; CH_{3}OH)$

25 Exemple 42

1-[[3-[(2-Méthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-N-[1-[2-[4-(aminoiminométhyl)phényl]-1-oxoéthyl]pipéridin-4-yl]-2(S)-pyrrolidine-carboxamide

En opérant de façon analogue à l'exemple 23, au départ du chlorhydrate de l'acide 4-(aminoiminométhyl)phénylacétique, on obtient, le produit attendu sous forme de cristaux jaunes (Rendement = 52 %).

$$F = 114-120 \text{ °C}$$

 $[\alpha]_D^{26} = -29 \text{ ° (c} = 0.95 \text{ ; CH}_3\text{OH)}$

Exemple 43

1-[[3-[(2-Méthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-N-[1-[2-[4-(aminoiminométhyl)phényl]-1-oxoéthyl]pipéridin-4-yl]-2(S)-pyrrolidine-carboxamide, dichlorhydrate

En opérant de façon analogue à l'exemple 12, au départ du composé obtenu selon l'exemple 42, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 77 %).

$$F = 189-191 \, ^{\circ}C$$

5
$$[\alpha]_D^{26} = -10^{\circ} (c = 0.95; CH_3OH)$$

Exemple 44

 $1-[[3-[(2-M\acute{e}thylquinolin-8-yl)oxym\acute{e}thyl]-2,4-dichloroph\acute{e}nyl]sulfonyl]-N-[1-[2-[4-(aminoiminom\acute{e}thyl)ph\acute{e}noxy]-1-oxo\acute{e}thyl]pip\acute{e}ridin-4-yl]-2(S)-pyrrolidine-1-yll-2($

carboxamide

En opérant de façon analogue au procédé de l'exemple 42, au départ du chlorhydrate de l'acide 4-(aminoiminométhyl)phénoxyacétique, on obtient le produit attendu sous forme de cristaux jaunes (Rendement = 59 %).

$$F = 134-138 °C$$

 $[\alpha]_D^{24} = -27° (c = 0.95 ; CH3OH)$

15 Exemple 45

 $1-[[3-[(2-M\acute{e}thylquinolin-8-yl)oxym\acute{e}thyl]-2,4-dichloroph\acute{e}nyl]sulfonyl]-N-[1-[2-[4-(aminoiminom\acute{e}thyl)ph\acute{e}noxy]-1-oxo\acute{e}thyl]pip\acute{e}ridin-4-yl]-2(S)-pyrrolidine-carboxamide, dichlorhydrate$

En opérant de façon analogue à l'exemple 12, au départ du composé obtenu selon l'exemple 44, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 78 %).

$$F = 195-200 \, ^{\circ}\text{C}$$

 $[\alpha]_{D}^{24} = -9^{\circ} \, (c = 1,00 \, ; \, \text{CH}_{3}\text{OH})$

PREPARATION XIX

25 1-[[3-[(2,4-Diméthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-2(S)[[4-(3-cyanobenzoyl)pipérazin-1-yl]carbonyl]pyrrolidine

En opérant de façon analogue à l'exemple 11, au départ d'acide 3-cyanobenzoïque, on obtient le produit attendu sous forme d'un solide poudreux blanc (Rendement = 86%).

30 F = 131°C

$$[\alpha]_D^{23} = -13^\circ (c = 0.45; CHCl_3)$$

Exemple 46

35

 $1-[[3-[(2,4-Dim\acute{e}thylquinolin-8-yl)oxym\acute{e}thyl]-2,4-dichloroph\acute{e}nyl]sulfonyl]-2(S)-[[4-[3-[(amino)(hydroxyimino)m\acute{e}thyl]benzoyl]pip\acute{e}razin-1-yl]carbonyl]pyrrolidine$

On prépare une solution de 1,02 g (1,44.10⁻³ mole) du composé obtenu selon la préparation XIX dans 16 ml de diméthylsulfoxyde et on ajoute 0,16 g (2,3.10⁻³ mole) de chlorhydrate d'hydroxylamine, puis 0,48 g (4,76.10⁻³ mole) de

triéthylamine. Après 4 heures sous agitation à température ambiante, on ajoute à nouveau les mêmes quantités de chlorhydrate d'hydroxylamine et de triéthylamine et on continue l'agitation pendant 12 heures. On verse ensuite le mélange réactionnel sur 200 ml d'eau. Le précipité obtenu est filtré puis séché sous vide. On obtient ainsi 0,7 g du produit attendu sous forme d'un solide fin blanc (Rendement = 66 %).

$$F = 160$$
°C

10

$$[\alpha]_D^{23} = -4^{\circ} (c = 0.50 ; CHCl_3)$$

PREPARATION XX

1-[[3-[(2,4-Diméthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-2(S)-[[4-[3-[(acétoxyimino)(amino)méthyl]benzoyl]pipérazin-1-yl]carbonyl]pyrrolidine

On ajoute 90 mg (0,88.10⁻³ mole) d'anhydride acétique à une solution de 0,62 g (0,84.10⁻³ mole) du composé obtenu selon l'exemple 46 dans 6 ml de tetrahydrofurane et on agite le mélange réactionnel à température ambiante pendant 30 mn. On ajoute 50 ml de dichlorométhane et on lave cette phase organique avec de l'eau jusqu'à neutralité. La phase organique est séchée sur sulfate de magnésium puis concentrée sous pression réduite. On obtient ainsi 0,65 g du produit attendu sous forme d'un solide blanc.

$$F = 130$$
°C
 $[\alpha]_D^{23} = -8$ ° (c = 0.25; CHCl₃)

20 Exemple 47

1-[[3-[(2,4-Diméthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-2(S)-[[4-[3-(aminoiminométhyl)benzoyl]pipérazin-1-yl]carbonyl]pyrrolidine

On prépare une solution de 0,6 g (0,76.10⁻³ mole) du composé obtenu selon la préparation XX dans 10 ml de méthanol, on ajoute 30 mg de catalyseur de Lindlar (à 5 % de palladium) et on agite ce mélange sous atmosphère d'hydrogène, à pression atmosphérique et à température ambiante pendant 6 heures. Après élimination du catalyseur par filtration, la solution est concentrée sous pression réduite. Le produit brut obtenu est purifié par chromatographie sur gel de silice greffé NH₂ (Lichroprep[®]NH₂) avec comme éluant le mélange dichlorométhane/méthanol (97/3; v/v). On obtient ainsi 0,47 g du produit attendu sous forme d'un solide jaune-pâle (Rendement = 85 %).

F = 158°C

$$[\alpha]_D^{22}$$
 = + 10° (c = 0.50; CHCl₃)

Exemple 48

35 1-[[3-[(2,4-Diméthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-2(S)-[[4-[3-(aminoiminométhyl)benzoyl]pipérazin-1-yl]carbonyl]pyrrolidine, dichlorhydrate

On prépare une solution de 380 mg (0,52.10⁻³ mole) du composé obtenu selon l'exemple 47 dans 4 ml de dichlorométhane et on ajoute 1 ml d'une solution saturée de chlorure d'hydrogène dans l'éther éthylique. Après 30 mn d'agitation du mélange on filtre le précipité obtenu et on le lave avec un peu d'éther éthylique.

5 Après séchage, le produit est remis en solution dans 6 ml d'eau, filtré et lyophilisé. On obtient ainsi 389 mg du produit attendu sous forme d'un solide blanc.

$$F = 210$$
°C

$$[\alpha]_D^{20} = +22^{\circ} (c = 0.65; CH_3OH)$$

Exemple 49

10 1-[[3-[(2,4-Diméthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényi]sulfonyl]-N-[3-[4-(aminoiminométhyl)phényl]propyl]-2(S)-pyrrolidinecarboxamide

On prépare une solution de 1 g (1,96.10⁻³ mole) de 1-[[3-[(2,4-diméthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-L-proline dans 10 ml de DMF et on ajoute 0,41 g $(2,16.10^{-3}$ mole) de EDCI et 0,29 g $(2,16.10^{-3}$ mole) de HOAT. Après 30 mn sous agitation à température ambiante, on ajoute au milieu réactionnel une solution de 0,54 g (2,16.10⁻³ mole) de dichlorhydrate de 3-[4-aminoiminométhyl)phényl]propanamine dans 7 ml de DMF et 0,22 g (2,16.10⁻³ mole) de Nméthylmorpholine. Après 14 heures sous agitation à température ambiante, on verse le mélange réactionnel dans 150 ml d'eau glacée et 10 ml d'une solution 1N d'hydroxyde de sodium. Le produit précipité est filtré et repris en solution dans du dichlorométhane. La solution est lavée à l'eau puis séchée sur sulfate de magnésium et concentrée sous pression réduite. Le produit brut est purifié par chromatographie sur gel de silice greffé NH2 avec comme éluant le mélange dichlorométhane éthanol (96/4; v/v). On obtient ainsi 500 mg du produit attendu sous la forme d'un solide blanc cristallisé (Rendement = 39 %). 25

F = 130-134 °C

$$[\alpha]_D^{24} = -42^\circ (c = 0.33 ; CHCl_3)$$

Exemple 50

20

1-[[3-[(2,4-Diméthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-N-[3-30 [4-(aminoiminométhyl)phényl]propyl]-2(S)-pyrrolidinecarboxamide, dichlorhydrate

On prépare une solution de 230 mg (0,34.10⁻³ mole) du composé obtenu selon l'exemple 49 dans 5 ml de méthanol et on ajoute 0,5 ml d'une solution de chlorure d'hydrogène 4N dans l'éther éthylique. Après 15 mn sous agitation, on concentre le mélange réactionnel sous pression réduite, on reprend le résidu en solution dans de l'eau et on lyophilise cette solution. On obtient ainsi 250 mg du produit attendu sous forme de cristaux jaune clair (Rendement = 98 %).

F = 188-190 °C

$$[\alpha]_D^{25} = -37^\circ (c = 0.31 ; CH_3OH)$$

Exemple 51

1-[[3-[(2,4-Diméthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-N-[2-

5 [4-(aminoiminométhyl)phényl]éthyl]-2(S)-pyrrolidinecarboxamide,

dichlorhydrate

En opérant de façon analogue aux exemples 49 et 50, au départ de dichlorhydrate de 2-[4-(aminoiminométhyl)phényl]éthanamine, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 30 %).

$$[\alpha]_D^{24} = -22^{\circ} (c = 0.36; CH_3OH)$$

PREPARATION XXI

 $1-[[3-[(2,4-Dim\acute{e}thylquinolin-8-yl)oxym\acute{e}thyl]-2,4-dichloroph\acute{e}nyl]sulfonyl]-2(S)-[[4-(1,1-dim\acute{e}thyl\acute{e}thoxycarbonyl)hexahydro-1,4-diaz\acute{e}pin-1-$

15 yl]carbonyl]pyrrolidine

En opérant de façon analogue à la préparation I, au départ de 1-(1,1-diméthyléthoxycarbonyl)-hexahydro-1,4-diazépine (ou N-Boc-homopipérazine), on obtient le produit attendu sous forme d'un solide blanc (Rendement = 79 %).

$$F = 60 \, ^{\circ}C$$

20
$$\left[\alpha\right]_{D}^{25} = -17^{\circ} (c = 0.34 ; CH_{3}OH)$$

PREPARATION XXII

 $1-[[3-[(2,4-Dim\acute{e}thylquinolin-8-yl)oxym\acute{e}thyl]-2,4-dichloroph\acute{e}nyl]sulfonyl]-2(S)-[(hexahydro-1,4-diaz\acute{e}pin-1-yl)carbonyl]pyrrolidine$

On prépare une solution de 2,05 g (2,96.10⁻³ mole) du composé obtenu selon la préparation XXI dans 20 ml de dichlorométhane. On refroidit la solution à 0 °C et on ajoute 0,32 g (2,96.10⁻³ mole) d'anisole et 5 ml d'acide trifluoroacétique. Le mélange réactionnel est agité pendant 1 heure à 0 °C et 1 heure à température ambiante, puis concentré sous pression réduite. Le résidu est repris avec de l'eau et on ajoute une solution 1N d'hydroxyde de sodium en quantité suffisante pour amener le milieu à pH12. On extrait cette phase aqueuse par de l'acétate d'éthyle et la phase organique obtenue est lavée à l'eau, séchée sur sulfate de sodium et concentrée sous pression réduite. On obtient ainsi 1,68 g du produit attendu sous forme d'un solide blanc (Rendement = 95 %).

$$F = 65 °C$$

35
$$[\alpha]_D^{25} = -27^{\circ} (c = 0.34; CH_3OH)$$

Exemple 52

1-[[3-[(2,4-Diméthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-2(S)-[[4-[4-(aminoiminométhyl)benzoyl]hexahydro-1,4-diazépin-1-yl]carbonyl]-pyrrolidine

En opérant de façon analogue à l'exemple 11, au départ du composé obtenu selon la préparation XXII, on obtient le produit attendu sous forme d'un solide blanc cassé (Rendement = 32 %).

$$F = 180$$
°C $[\alpha]_0^{24} = -35$ ° (c = 0.30; CH₃OH)

10 Exemple 53

1-[[3-[(2,4-Diméthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-2(S)-[[4-[4-(aminoiminométhyl)benzoyl]hexahydro-1,4-diazépin-1-yl]carbonyl]pyrrolidine, dichlorhydrate

En opérant de façon analogue à l'exemple 12, au départ du composé obtenu selon l'exemple 51, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 78 %).

$$F = 200$$
°C
 $[\alpha]_D^{26} = -5.5$ ° (c = 0.31; CH₃OH)

PREPARATION XXIII

20 1-[[3-[(2,4-Diméthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-2(S)-[[4-[3-(4-cyanophényl)-1-oxo-2(E)-propényl]pipérazin-1-yl]carbonyl]pyrrolidine

En opérant de façon analogue à l'exemple 11, au départ d'acide 4-cyanocinnamique (dans cette synthèse, on utilise le HOAT en remplacement du HOBT), on obtient le produit attendu, sous forme de cristaux blancs (Rendement = 79 %).

25 F = 118 °C

$$[\alpha]_D^{26} = -12^\circ (c = 0.50 ; CHCl_3)$$

Exemple 54

1-[[3-[(2,4-Diméthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-2(S)[[4-[3-[4-[(amino)(hydroxyimino)méthyl]phényl]-1-oxo-2(E)-propényl]pipérazin-1yl]carbonyl]pyrrolidine

En opérant de façon analogue à l'exemple 46, au départ du composé obtenu selon la préparation XXIII, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 94 %).

F = 186 °C
35
$$\left[\alpha\right]_{D}^{25}$$
 = + 17,5° (c = 0,39; CH₃OH)

PREPARATION XXIV

1-[[3-[(2,4-Diméthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-2(S)-[[4-[3-[4-[(acétoxyimino)(amino)méthyl]phényl]-1-oxo-2(E)-propényl]pipérazin-1-yl]carbonyl]pyrrolidine

En opérant de façon analogue à la préparation XX, au départ du composé obtenu selon l'exemple 54, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 87 %).

$$F = 134 \,^{\circ}C$$

 $[\alpha]_D^{25} = -16^{\circ} (c = 0.32 ; CHCl_3)$

10 Exemple 55

5

 $1-[[3-[(2,4-Dim\acute{e}thylquinolin-8-yl)oxym\acute{e}thyl]-2,4-dichloroph\acute{e}nyl]sulfonyl]-2(S)-[[4-[3-[4-(aminoiminom\acute{e}thyl)ph\acute{e}nyl]-1-oxo-2(E)-prop\acute{e}nyl]pip\acute{e}razin-1-yl]-carbonyl]pyrrolidine$

En opérant de façon analogue à l'exemple 47, au départ du composé obtenu selon la préparation XXIV, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 96 %).

F = 155 °C

$$[\alpha]_D^{25}$$
 = -13° (c = 0.50; CH₃OH)

PREPARATION XXV

20 3-Amino-6-chloro-2-méthoxytoluène, chlorhydrate

On prépare une solution de 32,57 g (0,16 mole) de 6-chloro-2-méthoxy-3-nitrotoluène dans 230 ml d'acétate d'éthyle et 25 ml d'éthanol et on ajoute lentement sous agitation, à température ambiante, 182,25 g (0,8 mole) de chlorure stanneux (dihydrate). Le milieu réactionnel est chauffé à reflux pendant 2 heures puis refroidi et versé sur de l'eau. On ajoute une solution 1N d'hydroxyde de sodium de façon à atteindre pH13 et on extrait par du dichlorométhane. La phase organique est lavée à l'eau, séchée sur sulfate de sodium et concentrée sous pression réduite. Le résidu gommeux est dissous dans l'éther éthylique et on ajoute 167 ml d'une solution 1N de chlorure d'hydrogène dans l'éther éthylique. Le sel précipité est filtré, lavé à l'éther éthylique et séché. On obtient ainsi 24,5 g du produit attendu sous forme de cristaux violets (Rendement = 78 %).

$$F = 162-168 \, ^{\circ}C$$

35

PREPARATION XXVI

Chlorure de 4-chloro-2-méthoxy-3-méthylbenzènesulfonyle

On prépare un mélange de 10,46 g (0,05 mole) du composé obtenu selon la préparation XXV dans 21 ml d'acide chlorhydrique concentré et 6, 5 ml d'acide acétique. On refroidit à - 10 °C et on ajoute lentement une solution de 3.76 g (0,054

mole) de nitrite de sodium dans 5,5 ml d'eau. Cette solution de sel de diazonium est ajoutée lentement à un mélange de 74 ml d'acide acétique saturé d'anhydride sulfureux et 1,62 g de chlorure cuivreux maintenu à 10 °C. Après 30 minutes sous agitation à 10-15 °C, le mélange réactionnel est versé sur de l'eau et extrait deux fois avec de l'acétate d'éthyle. Les phases organiques rassemblées sont lavées avec une solution de bicarbonate de sodium, avec de l'eau, avec une solution saturée de chlorure de sodium, puis séchées sur sulfate de sodium et concentrées sous pression réduite. Le résidu est purifié par chromatographie sur gel de silice avec comme éluant le mélange cyclohexane/acétate d'éthyle (95/5; v/v). On obtient ainsi 3,6 g du produit attendu sous forme de cristaux jaunes (Rendement = 62 %).

 $F = 88-92 \, ^{\circ}C$

PREPARATION XXVII

Chlorure de 3-bromométhyl-4-chloro-2-méthoxybenzènesulfonyle

On prépare une solution de 4,4 g (0,017 mole) du composé obtenu selon la préparation XXVI dans 20 ml de 1,1,2,2-tetrachloroéthane et on ajoute 9,21 g (0,052 mole) de N-bromosuccinimide et 0,209 g (0,8.10⁻³ mole) de peroxyde de benzoyle. Le mélange réactionnel est chauffé à 135 °C sous agitation, pendant 3 heures, puis refroidi et versé sur 250 ml d'eau. On extrait avec du dichlorométhane et la phase organique est lavée à l'eau, séchée sur sulfate de sodium et concentrée sous pression réduite. Le produit brut obtenu est purifié par chromatographie sur gel de silice avec comme éluant le mélange cyclohexane/acétate d'éthyle (95/5; v/v). On obtient ainsi 3,6 g du produit attendu sous forme de cristaux jaunes (Rendement = 62 %).

 $F = 88-92 \, ^{\circ}C$

25 PREPARATION XXVIII

1-[(3-Bromométhyl-4-chloro-2-méthoxyphényl)sulfonyl]-L-proline, méthyl ester

On prépare une solution de 1,7 g (0,01 mole) du chlorhydrate de l'ester méthylique de la L-proline et de 1,6 g de bicarbonate de potassium dans 5 ml d'eau que l'on ajoute lentement et sous agitation à une solution de 3,5 g (0,01 mole) du composé obtenu selon la préparation XXVII dans 20 ml d'acétonitrile. On ajoute ensuite encore 1,6 g de bicarbonate de potassium en solution dans 5 ml d'eau. Après 1 heure sous agitation à température ambiante, le mélange réactionnel est versé sur de l'eau et extrait par de l'acétate d'éthyle. La phase organique est lavée à l'eau, séchée sur sulfate de sodium et concentrée sous pression réduite. On obtient ainsi 4.13 g du produit attendu sous forme d'une gomme jaune orangée.

$$[\alpha]_D^{25} = -33.5^{\circ} (c = 0.75; CHCl_3)$$

RMN ¹H (CDCl₃)

1,8-2,1 (m , 4H); 3,35 (m , 1H); 3,56 (m , 1H); 3,68 (s , 3H); 4,12 (s , 3H); 4,6 (d , 1 H); 4,68 (d , 1H); 7,31 (d , 1H); 7,85 (d , 1H).

PREPARATION XXIX

1-[[3-[(2,4-Diméthylquinolin-8-yl)oxyméthyl]-4-chloro-2-méthoxyphényl]

5 sulfonyl]-L-proline, méthyl ester

On prépare une solution de 1,62 g (9,4.10⁻³ mole) de 2,4-diméthyl-8-hydroxyquinoléine dans 10 ml de DMF et on ajoute 0.281 g (9,4.10⁻³ mole) d'hydrure de sodium (à 80 % dans l'huile). Après agitation du mélange pendant une heure à température ambiante, on ajoute goutte à goutte une solution de 4 g (9,4.10⁻³ mole) du composé obtenu selon la préparation XXVIII dans 30 ml de DMF. Le milieu réactionnel est maintenu sous agitation pendant 5 heures à température ambiante puis versé sur 400 ml d'eau froide. Le précipité formé est filtré, lavé à l'eau sur le filtre et séché sous vide. On obtient ainsi 3,8 g du produit attendu sous forme de cristaux gris (Rendement = 78 %).

15 $F = 66-70 \, ^{\circ}C$

20

 $[\alpha]_D^{25} = -8.5^{\circ} (c = 0.95; CHCl_3)$

PREPARATION XXX

1-[[3-[(2,4-Diméthylquinolin-8-yl)oxyméthyl]-4-chloro-2-méthoxyphényl] sulfonyl]-L-proline

On ajoute doucement 8 ml d'une solution 1N d'hydroxyde de sodium à une solution de 3,76 g (7,2.10⁻³ mole) du composé obtenu selon la préparation XXIX dans 35 ml de méthanol et 35 ml d'eau. Après une nuit sous agitation à température ambiante, le mélange réactionnel est versé sur 200 ml d'eau et on acidifie avec de l'acide chlorhydrique 1N. Le mélange est extrait par du dichlorométhane et la phase organique obtenue est lavée à l'eau, séchée sur sulfate de sodium et concentrée sous pression réduite. Le produit brut est purifié par chromatographie sur gel de silice avec comme éluant un mélange acétate d'éthyle/éthanol (9/1; v/v). On obtient ainsi 1,73 g du produit attendu sous forme de cristaux beiges (Rendement = 47 %).

 $F = 134-138 \, ^{\circ}C$

30 $[\alpha]_D^{26} = +83^{\circ} (c = 0.98 ; CHCl_3)$

PREPARATION XXXI

1-[[3-[(2,4-Diméthylquinolin-8-yl)oxyméthyl]-4-chloro-2-méthoxyphényl] sulfonyl]-2(S)-[[4-(4-cyanobenzoyl)pipérazin-1-yl]carbonyl]pyrrolidine

En opérant de façon analogue à l'exemple 49, au départ du composé acide obtenu selon la préparation XXX et du chlorhydrate de 1-[4-cyanobenzoyl)pipérazine, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 96 %).

$$F = 139-141 \, ^{\circ}C$$

$$[\alpha]_D^{26} = -4.6^{\circ} (c = 0.98 ; CHCl_3)$$

Exemple 56

 $\label{lem:condition} $$1-[[3-[(2,4-Diméthylquinolin-8-yl)oxyméthyl]-4-chloro-2-méthoxyphényl] sulfonyl]-2(S)-[[4-[(amino)(hydroxyimino)méthyl]benzoyl]pipérazin-1-pipérazin$

5 yl]carbonyl]pyrrolidine

En opérant de façon analogue à l'exemple 46, au départ du composé obtenu selon la préparation XXXI, on obtient le produit attendu sous forme de cristaux jaunes (Rendement = 86 %).

$$F = 152-154 \, ^{\circ}C$$

10
$$[\alpha]_D^{26} = -2.7^{\circ} (c = 1.00; DMSO)$$

PREPARATION XXXII

1-[[3-[(2,4-Diméthylquinolin-8-yl)oxyméthyl]-4-chloro-2-méthoxyphényl] sulfonyl]-2(S)-[[4-[4-[(acétoxyimino)(amino)méthyl]benzoyl]pipérazin-1-yl]carbonyl]pyrrolidine

En opérant de façon analogue à la préparation XX, au départ du composé obtenu selon l'exemple 56, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 98 %).

F = 110-112 °C

$$[\alpha]_D^{26} = -4.7^\circ \text{ (c = 1.00 ; CHCl}_3)$$

20 Exemple 57

15

1-[[3-[(2,4-diméthylquinolin-8-yl)oxyméthyl]-4-chloro-2-méthoxyphényl]sulfonyl]-2(S)-[[4-[4-(aminoiminométhyl)benzoyl]pipérazin-1-yl]carbonyl]pyrrolidine

En opérant de façon analogue à l'exemple 47, au départ du composé obtenu selon la préparation XXXII, on obtient le produit attendu sous forme de cristaux jaunes (Rendement = 71 %).

F = 147-150 °C

$$[\alpha]_D^{26} = -3.7^\circ (c = 0.75 ; CHCl_3)$$

Exemple 58

1-[[3-[(2,4-Diméthylquinolin-8-yl)oxyméthyl]-4-chloro-2-méthoxyphényl]
30 sulfonyl]-2(S)-[[4-[4-(aminoiminométhyl)benzoyl]pipérazin-1-yl]carbonyl]
pyrrolidine, dichlorhydrate

En opérant de façon analogue à l'exemple 12, au départ du composé obtenu selon l'exemple 57, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 89 %).

35 F = 196-198 °C

$$[\alpha]_0^{23} = -21^\circ (c = 0.85; CH_3OH)$$

PREPARATION XXXII

4-(2-Méthoxyphénylimino)-2-oxo-1,1,1-trifluoropentane

On chauffe à 100-105 °C un mélange de 28,4 g (0,23 mole) d'o-anisidine et 43,18 g (0,28 mole) de 1,1,1-trifluoro-2,4-pentanedione pendant une heure puis on refroidit et reprend le milieu réactionnel par de l'éther éthylique. On ajoute 10 ml d'acide chlorhydrique 1N. Le mélange est filtré afin d'éliminer le produit insoluble et le filtrat est concentré sous pression réduite. On obtient ainsi le produit attendu sous forme d'un solide beige (Rendement = 98 %).

 $F = 40-45 \, ^{\circ}C$

10 PREPARATION XXXIII

8-Méthoxy-2-méthyl-4-trifluorométhylquinoléine

On prépare un mélange de 400 g d'acide polyphosphorique dans 140 ml de toluène et on ajoute goutte à goutte une solution de 33,03 g (0,127 mole) du composé obtenu selon la préparation XXXII dans 180 ml de toluène. Le mélange réactionnel est porté à doux reflux sous agitation pendant 17 heures. On refroidit et on ajoute de l'eau glacée. Le mélange est décanté et extrait plusieurs fois avec du toluène. Les phases organiques rassemblées sont lavées à l'eau, séchées sur sulfate de sodium et concentrées sous pression réduite. On obtient ainsi 14,7 g du produit attendu sous forme de cristaux blancs (Rendement = 48 %).

20 F = 112-113 °C

PREPARATION XXXIV

8-Hydroxy-2-méthyl-4-trifluorométhylquinoléine

On refroidit une solution de 11 g (45,6.10⁻³ mole) de 8-méthoxy-2-méthyl-4-trifluorométhylquinoléine dans 360 ml de dichlorométhane à - 60 °C et on ajoute goutte à goutte 228 ml d'une solution 1M de tribromure de bore dans le dichlorométhane. Le milieu réactionnel est agité ensuite pendant 1 heure à température ambiante puis on ajoute doucement 250 ml de méthanol et on poursuit l'agitation pendant 2 heures. On ajoute 250 ml de dichlorométhane et une solution de bicarbonate de sodium de façon à rendre le milieu alcalin. La phase organique est séparée, lavée à l'eau, séchée sur sulfate de sodium et concentrée sous pression réduite. On obtient ainsi 8,25 g du produit attendu sous forme de cristaux bruns (Rendement = 79,5 %).

 $F = 60-61 \, ^{\circ}C$

PREPARATION XXXV

35 1-[[3-[(2-Méthyl-3-trifluorométhylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]-sulfonyl]-L-proline, méthyl ester

En opérant de façon analogue à la préparation XXIX, au départ du composé obtenu selon la préparation XXXIV et après purification par chromatographie sur gel de silice, on obtient le produit attendu sous forme de cristaux beiges (Rendement = 88 %).

5 F = 165-167 °C

PREPARATION XXXVI

1-[[3-[(2-Méthyl-3-trifluorométhylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]-sulfonyl]-L-proline

En opérant de façon analogue à la préparation XXX, au départ du composé obtenu selon la préparation XXXV, on obtient (après concentration des phases organiques d'extraction) le produit attendu (Rendement = 98 %).

 $F = 120-125 \, ^{\circ}C$

PREPARATION XXXVII

1-[[3-[(2-Méthyl-4-trifluorométhyl-quinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-2(S)-[[4-(4-cyanobenzoyl)pipérazin-1-yl]carbonyl]pyrrolidine

En opérant de façon analogue à la préparation XXXI, au départ du composé obtenu selon la préparation XXXVI, on obtient le produit attendu (Rendement = 55 %).

 $F = 170-172 \, ^{\circ}C$

20 Exemple 59

1-[[3-[(2-Méthyl-4-trifluorométhyl-quinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]-sulfonyl]-2(S)-[[4-[4-[(amino)(hydroxyimino)méthyl]benzoyl]pipérazin-1-yl]-carbonyl]pyrrolidine

En opérant de façon analogue à l'exemple 46, au départ du composé obtenu selon la préparation XXXVII, on obtient le produit attendu sous forme d'une poudre blanc crème (Rendement = 79 %).

F = 228-230 °C $[\alpha]_D^{25} = +2,5^{\circ} \text{ (c} = 0,75 \text{ ; DMSO)}$

PREPARATION XXXVIII

30 1-[[3-[(2-Méthyl-4-trifluorométhyl-quinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]-sulfonyl]-2(S)-[[4-[4-[(acétoxyimino)(amino)méthyl]benzoyl]pipérazin-1-yl]-carbonyl]pyrrolidine

En opérant de façon analogue à la préparation XX, au départ du composé obtenu selon l'exemple 59, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 97 %).

F = 244-246 °C $[\alpha]_D^{25} = +5^\circ \text{ (c} = 1,05 \text{ ; DMSO)}$

Exemple 60

1-[[3-[(2-Méthyl-4-trifluorométhyl-quinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]-sulfonyl]-2(S)-[[4-[4-(aminoiminométhyl)benzoyl]pipérazin-1-yl]carbonyl]-pyrrolidine

5 En opérant de façon analogue à l'exemple 47, au départ du composé obtenu selon la préparation XXXVIII, on obtient le produit attendu sous forme d'un solide blanc crème (Rendement = 68 %).

$$F = 150-155$$
 °C (déc.)
 $[\alpha]_D^{25} = -0.1$ ° (c = 0.85; CH₂Cl₂)

10 Exemple 61

1-[[3-[(2-Méthyl-4-trifluorométhyl-quinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]-sulfonyl]-2(S)-[[4-[4-(aminoiminométhyl)benzoyl]pipérazin-1-yl]carbonyl]-pyrrolidine, bis(méthanesulfonate)

En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 60, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 92 %).

F = 132-135 °C

$$[\alpha]_D^{22}$$
 = + 19° (c = 1,00; CH₃OH)

PREPARATION XXXIX

20 1-[[3-[(2,4-Diméthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-2(S)[[4-[(4-cyanophényl)sulfonyl]pipérazin-1-yl]carbonyl]pyrrolidine

On prépare une supension de 4 g (6,08.10⁻³ mole) du composé obtenu selon la préparation XVII dans 50 ml de dichlorométhane, on ajoute 2.46 g (24,3.10⁻³ mole) de triéthylamine et on refroidit à 0 °C. On ajoute alors goutte à goutte 1,47 g (7,3.10⁻³ mole) de chlorure de 4-cyanobenzènesulfonyle sous agitation, puis on laisse le milieu réactionnel pendant une heure sous agitation à température ambiante. On ajoute 100 ml de dichlorométhane et on verse le milieu réactionnel sur de l'eau. Après décantation, la phase organique est lavée à l'eau, séchée sur sulfate de sodium et concentrée sous pression réduite. Le résidu est purifié par chromatographie sur gel de silice avec comme éluant le mélange dichlorométhane/éthanol (95/5; v/v). On obtient ainsi 2,9 g du produit attendu sous forme d'un solide beige (Rendement = 64 %).

$$F = 156-158$$
°C
 $[\alpha]_D^{24} = -10.5$ ° (c = 0.6; CHCl₃)

5

Exemple 62

1-[[3-[(2,4-Diméthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-2(S)[[4-[(4-[(amino)(hydroxyimino)méthyl]phényl]sulfonyl]pipérazin-1-yl]carbonyl]pyrrolidine

En opérant de façon analogue à l'exemple 46 (on remplace la triéthylamine par du t-butoxyde de potassium), au départ du composé obtenu selon la préparation XXXIX, on obtient le produit attendu sous forme d'un solide blanc (Rendement = 52 %).

$$F = 154-156 \, ^{\circ}C$$

$$[\alpha]_{D}^{26} = +46.5^{\circ} (c = 1.10; CHCl_{3})$$

PREPARATION XL

 $1-[[3-[(2,4-Dim\acute{e}thylquinolin-8-yl)oxym\acute{e}thyl]-2,4-dichloroph\acute{e}nyl]sulfonyl]-2(S)-[[4-[(4-[(acetoxyimino)(amino)m\acute{e}thyl]ph\acute{e}nyl]sulfonyl]pip\acute{e}razin-1-yl]carbonyl]-pyrrolidine$

En opérant de façon analogue à la préparation XX, au départ du composé obtenu selon l'exemple 62, on obtient le produit attendu sous forme de cristaux beiges (Rendement = 98 %).

$$F = 134-136 \text{ °C}$$

 $[\alpha]_0^{26} = +40^\circ \text{ (c} = 0.85 \text{ ; CHCl}_3)$

20 Exemple 63

 $1-[[3-[(2,4-Dim\acute{e}thylquinolin-8-yl)oxym\acute{e}thyl]-2,4-dichloroph\acute{e}nyl]sulfonyl]-2(S)-[[4-[(4-(aminoiminom\acute{e}thyl)ph\acute{e}nyl]sulfonyl]pip\acute{e}razin-1-yl]carbonyl]pyrrolidine$

En opérant de façon analogue à l'exemple 47, au départ du composé obtenu selon la préparation XL, on obtient le produit attendu sous forme de cristaux 25 blancs (Rendement = 49 %).

F = 146-150 °C

$$[\alpha]_D^{26} = +26^\circ (c = 0.85 ; CHCl_3)$$

Exemple 64

1-[[3-[(2,4-Diméthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-2(S)[[4-[[4-(aminoiminométhyl)phényl]sulfonyl]pipérazin-1-yl]carbonyl]pyrrolidine,
dichlorhydrate

En opérant de façon analogue à l'exemple 12, au départ du composé obtenu selon l'exemple 63, on obtient le produit attendu sous forme d'un solide fin blanc (Rendement = 90 %).

35 F = 152-155 °C

$$[\alpha]_D^{27} = + 28.5^\circ (c = 0.85 ; C_2H_5OH)$$

PREPARATION XLI

Acide N-[[3-cyanopyridin-2-yl]méthyl]iminodicarboxylique, bis(1,1-diméthyléthyl)ester

On prépare une solution de 3,8 g (17,5.10⁻³ mole) de iminodicarboxylate de di-t-butyle dans 25 ml de THF et on ajoute 0,525 g (17,5.10⁻³ mole) d'hydrure de sodium (en dispersion à 80 % dans l'huile). Après 15 mn sous agitation à température ambiante, on ajoute goutte à goutte une solution de 3,45 g (17,5.10⁻³ mole) de 6-bromométhyl-3-cyanopyridine dans 50 ml de THF. Après 30 minutes sous agitation à température ambiante, le mélange est concentré sous pression réduite et le résidu est purifié par chromatographie sur gel de silice en éluant par du dichlorométhane. On obtient ainsi 4 g du produit attendu sous forme de cristaux blancs (Rendement = 68,5 %).

 $F = 65-70 \, ^{\circ}C$

PREPARATION XLII

15 Acide N-[[3-[(amino)(hydroxyimino)méthyl]pyridin-2-yl]méthyl]iminodicarboxylique, bis(1,1-diméthyléthyl)ester

En opérant de façon analogue à l'exemple 62, au départ du composé obtenu selon la préparation XLI, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 54 %).

20 $F = 178-180 \, ^{\circ}C$

PREPARATION XLIII

2-Aminométhyl-5-(aminoiminométhyl)pyridine, trichlorhydrate

On prépare une solution de 1,7 g (4,6.10⁻³ mole) du composé obtenu selon la préparation XLII dans 12 ml d'acide acétique et 0,87 ml d'anhydride acétique. On ajoute 245 mg de charbon palladié à 10 % et on agite le mélange sous atmosphère d'hydrogène, à pression atmosphérique et à température ambiante pendant 2 heures. Après élimination du catalyseur par filtration, on ajoute 18,6 ml d'acide chlorhydrique 5N et on laisse le mélange sous agitation pendant 12 heures. On ajoute ensuite 100 ml de 2-propanol et 200 ml d'éther éthylique. Le précipité formé est filtré, lavé par de l'éther éthylique et séché sous vide. On obtient ainsi 720 mg du produit attendu sous forme de cristaux blanc-cassé (Rendement = 60 %).

 $F = 275-280 \, ^{\circ}C$

Exemple 65

1-[[3-[(2,4-Diméthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-N-[[5-(aminoiminométhyl)pyridin-2-yl]méthyl]-2(S)-pyrrolidinecarboxamide

En opérant de façon analogue à l'exemple 49, au départ du composé obtenu selon la préparation XLIII, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 26 %).

F = 128-130 °C
5
$$[\alpha]_D^{21}$$
 = -36° (c = 1,00; CHCl₃)

Exemple 66

dichlorhydrate

10 En opérant de façon analogue à l'exemple 12, au départ du composé obtenu selon l'exemple 65, on obtient le produit attendu sous forme de cristaux blancs fins (Rendement = 76 %).

$$F = 202-204 \, ^{\circ}C \, (dec.)$$

 $[\alpha]_D^{23} = -49^{\circ} \, (c = 1.00 \, ; \, C_2H_5OH)$

15 PREPARATION XLIV

1-[[3-[(2,4-Diméthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-2(S)-[[4-[(5-cyanopyridin-2-yl]carbonyl]pipérazin-1-yl]carbonyl]pyrrolidine

En opérant de façon analogue à la préparation XXIII, au départ du chlorhydrate de l'acide 5-cyanopicolinique, on obtient le produit attendu sous forme d'un solide jaune pâle (Rendement = 44 %).

F = 125-128 °C

$$[\alpha]_D^{21}$$
 = -12,5° (c = 1,00; CHCl₃)

Exemple 67

1-[[3-[(2,4-Diméthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-2(S)-

25 [[4-[[5-[(amino)(hydroxyimino)méthyl]pyridin-2-yl]carbonyl]pipérazin-1-yl]carbonyl]pyrrolidine

En opérant de façon analogue à l'exemple 62, au départ du composé obtenu selon la préparation XLIV, on obtient le produit attendu sous forme d'un solide beige (Rendement = 45 %).

30 F = 148-150 °C

$$[\alpha]_D^{25} = +4.5^\circ (c = 1.05; CHCl_3)$$

PREPARATION XLV

1-[[3-[(2,4-Diméthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-2(S)-[[4-[[5-[(acétoxyimino)(amino)méthyl]pyridin-2-yl]carbonyl]pipérazin-1-yl]-

35 carbonyl]pyrrolidine

En opérant de façon analogue à la préparation XX, au départ du composé obtenu selon l'exemple 67, on obtient le produit attendu sous forme d'un solide jaune clair (Rendement = 92 %).

$$F = 145-147 \, ^{\circ}C$$

5
$$[\alpha]_D^{21} = -4.4^{\circ} (c = 1.05; CHCl_3)$$

Exemple 68

1-[[3-[(2,4-Diméthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-2(S)-[[4-[[5-(aminoiminométhyl)pyridin-2-yl]carbonyl]pipérazin-1-yl]carbonyl]-pyrrolidine

En opérant de façon analogue à l'exemple 47, au départ du composé obtenu selon la préparation XLV, on obtient le produit attendu sous forme d'un solide iaune clair (Rendement = 58 %).

$$F = 150-155$$
 °C $[\alpha]_D^{20} = -40,5$ ° (c = 0,95; CH₃OH)

15 **Exemple 69**

1-[[3-[(2,4-Diméthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-2(S)-[[4-[[5-(aminoiminométhyl)pyridin-2-yl]carbonyl]pipérazin-1-yl]carbonyl]pyrrolidine, méthanesulfonate

En opérant de façon analogue à l'exemple 6, au départ du composé obtenu selon l'exemple 68, on obtient le produit attendu sous forme d'un solide jaune pâle (Rendement = 91 %).

$$F = 176-180 \text{ °C}$$

 $[\alpha]_D^{22} = -32^\circ \text{ (c} = 0.95 \text{ ; CH}_3\text{OH)}$

PREPARATION XLVI

25 1-[[3-[(2,4-Diméthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-2(S)-[[4-(4-cyanobenzoyl)pipérazin-1-yl]carbonyl]pyrrolidine

En opérant de façon analogue à la préparation XXIII, au départ d'acide 4-cyanobenzoïque, on obtient le produit attendu sous forme d'une huile incolore (Rendement = 83 %).

30 Exemple 70

1-[[3-[(2,4-Diméthylquinolin-8-yl)oxyméthyl]-2,4-dichlorophényl]sulfonyl]-2(S)-[[4-[4-[(amino)(hydroxyimino)méthyl]benzoyl]pipérazin-1-yl]carbonyl]pyrrolidine

En opérant de façon analogue à l'exemple 62, au départ du composé obtenu selon la préparation XLVI, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 34 %).

$$F = 161 \, ^{\circ}C$$

 $[\alpha]_{D}^{24} = -15^{\circ} (c = 0.55 ; CHCl_{3})$

PREPARATION XLVII

Chlorure de 2,4-diméthoxy-3-méthylbenzènesulfonyle

On prépare une solution de 15,22 g (0,1 mole) de 2,6-diméthoxytoluène dans 50 ml de dichlorométhane et on ajoute, à 0°C, 20 ml (0,3 mole) d'acide chlorosulfonique. On maintient le milieu réactionnel sous agitation pendant 1 heure à température ambiante puis on le verse sur 300 ml d'eau glacée. Le produit est extrait avec de l'éther di-isopropylique et les phases organiques sont lavées à l'eau, séchées sur sulfate de magnésium et concentrées sous pression réduite. On obtient ainsi 15,2 g du produit attendu sous forme d'un solide cristallisé jaune clair (Rendement = 61 %).

10 $F = 60^{\circ}C$

PREPARATION XLVIII

Chlorure de 2,4-diméthoxy-3-(bromométhyl)benzènesulfonyle

En opérant de façon analogue à la préparation XXVII au départ du composé obtenu selon la préparation XLVII, on obtient le produit attendu sous forme d'un solide brun clair (Rendement = 44 %).

 $F = 82^{\circ}C$

PREPARATION IL

1-[(3-Bromométhyl-2,4-diméthoxyphényl)sulfonyl]-L-proline, méthyl ester

En opérant de façon analogue à la préparation XXVIII, au départ du composé obtenu selon la préparation XLVIII, on obtient le produit attendu sous forme d'une huile jaune (Rendement = 69 %).

RMN¹H(CDCl₃)

1,74-1,79 (m, 1H); 1,92-2,11 (m, 3H); 3,28-3,36 (m, 1H); 3,50-3,58 (m, 1H); 3,69 (s, 3H); 3,96 (s, 3H); 4,07 (s, 3H); 4,53-4,59 (m, 1H); 4,65-4,73 (dd, 2H); 6,74-6,77 (d, 1H); 7,91-7,94 (d, 1H).

PREPARATION L

1-[[3-[(2,4-Diméthylquinolin-8-yl)oxyméthyl]-2,4-diméthoxyphényl]sulfonyl]-L-proline, méthyl ester

En opérant de façon analogue à la préparation XXIX, au départ du 30 composé obtenu selon la préparation IL, on obtient le produit attendu sous forme d'une poudre blanche (Rendement = 78 %)

F = 186°C

PREPARATION LI

1-[[3-[(2,4-Diméthylquinolin-8-yl)oxyméthyl]-2,4-diméthoxyphényl]sulfonyl]-L35 proline

En opérant de façon analogue à la préparation XXX, au départ du composé obtenu selon la préparation L, on obtient le produit attendu sous forme d'un solide blanc crème (Rendement = 97 %).

F = 130°C

5 PREPARATION LII

1-[[3-[(2,4-Diméhtylquinolin-8-yl)oxyméthyl]-2,4-diméthoxyphényl]sulfonyl]-2(S)-[[4-(4-cyanobenzoyl)pipérazin-1-yl]carbonyl]pyrrolidine

En opérant de façon analogue à la préparation XXXI, au départ du composé obtenu selon la préparation LI, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 71 %).

F = 118-122°C

Exemple 71

15 .

1-[[3-[(2,4-Diméthylquinolin-8-yl)oxyméthyl]-2,4-diméthoxyphényl]sulfonyl]-2(S)-[[4-[4-[(amino)(hydroxyimino)méthyl]benzoyl]pipérazin-1-yl]carbonyl]pyrrolidine

En opérant de façon analogue à l'exemple 56, au départ du composé obtenu selon la préparation LII, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 79 %).

F = 160-164°C

PREPARATION LIII

20 1-[[3-[(2,4-Diméthylquinolin-8-yl)oxyméthyl]-2,4-diméthoxyphényl]sulfonyl]-2(S)[[4-[4-[(acétoxyimino)(amino)méthyl]benzoyl]pipérazin-1-yl]carbonyl]pyrrolidine

En opérant de façon analogue à la préparation XXXII, au départ du composé obtenu selon l'exemple 71, on obtient le produit attendu sous forme de cristaux blancs (Rendement = 88 %).

25 $F = 152^{\circ}C$

Exemple 72

1-[[3-[(2,4-Diméthylquinolin-8-yl)oxyméthyl]-2,4-diméthoxyphényl]sulfonyl]-2(S)-[[4-[4-(aminoiminométhyl)benzoyl]pipérazin-1-yl]carbonyl]pyrrolidine

En opérant de façon analogue à l'exemple 57, au départ du composé obtenu selon la préparation LIII, on obtient le produit attendu sous forme de cristaux beiges (Rendement = 42 %).

F = 136°C

L'activité des produits selon l'invention a été évaluée en fonction de leur aptitude à se lier aux récepteurs de la bradykinine. En effet, les kinines, dont le principal représentant est la bradykinine, forment un groupe de petits peptides qui contribuent de façon importante à la réponse inflammatoire et apparaissent de ce fait impliqués dans la pathophysiologie des maladies inflammatoires. De plus, la

bradykinine est un des agents algésiants parmi les plus puissants connus. Les kinines activent deux types de récepteurs appelés respectivement B₁ et B₂. Le récepteur B₂ appartient à la grande famille des récepteurs à sept domaines transmembranaires couplés aux G-protéines. Nous décrivons dans la présente invention des composés se liant au récepteur B₂ et bloquant de ce fait la fixation de la bradykinine.

Le test pharmacologique utilisé est le suivant : des segments d'iléon de cobayes mâles [de souche Dunkin-Hartley (Iffa Credo, l'Arbresle, France)] sont isolés et broyés dans le tampon TES suivant : TES 25mM, 1,10-phénanthroline 1mM (pH 6.8), bacitracine 140 μg/ml, BSA 1g/l. Les membranes sont ensuite isolées par centrifugation (18000 tours par minute ; 20 min ; 4 °C). Les études de liaison sont effectuées dans ce tampon TES en utilisant la [³H]-bradykinine (120 pM), 50 μg de protéine membranaire par essai (volume final 500 μl) avec un temps d'équilibre de 90 min à 20°C. On détermine ensuite le taux (en pourcentage) d'inhibition de la fixation de [³H]-bradykinine en présence de l'un des composés selon l'invention à tester à une concentration de 10.6 M.

Les résultats obtenus (notés "activité") lors de ces essais sont consignés dans le tableau I ci-après en regard des exemples figurant dans la description.

Les composés de la présente invention, qui inhibent la liaison de la $[^3H]$ bradykinine au récepteur B_2 de cobaye (voir tableau I), se lient également au récepteur B_2 humain cloné et transfecté de façon stable dans des cellules CHO (Chinese Hamster Ovary Cells). Ainsi dans ce test, certains composés inhibent à la concentration de $10~\mu\text{M}$ d'au moins 95 % la fixation de la $[^3H]$ -bradykinine au récepteur B_2 .

Les composés de la présente invention peuvent être utiles dans le traitement des algies, et en particulier dans le traitement de nombreuses pathologies impliquant la bradykinine ou ses homologues. Parmi ces pathologies, on inclut les chocs septiques et hémorragiques, les réactions anaphylactiques, l'arthrose, la polyarthrite rhumatoïde, les rhinites, l'asthme, les maladies inflammatoires du tractus gastrointestinal (par ex. colites, rectites, maladie de Crohn), la pancréatite, certains carcinomes, l'angiooedème héréditaire, la migraine, l'encéphalomyélite, la méningite, les accidents vasculaires cérébraux (notamment ceux provoqués par un choc traumatique cérébral), certains désordres neurologiques, les états inflammatoires vasculaires (par exemple : athérosclérose et artérite des membres inférieurs), les états douloureux (par exemple les céphalgies, les douleurs dentaires, les douleurs menstruelles), les contractions utérines prématurées, la cystite et les brûlures. Les composés selon l'invention peuvent également être utiles pour la potentialisation d'agents antiviraux.

Les composés de la présente invention, qui peuvent être utilisés sous forme de base libre ou de leurs sels d'addition non-toxiques, en association avec un excipient physiologiquement acceptable, sont en général prescrits en thérapeutique humaine à des doses d'environ 1 à 1000 mg/jour, sous une forme administrable par voie orale, par injection intraveineuse, intramusculaire ou sous-cutanée, par voie transdermique, par le moyen d'aérosols ou par le moyen de suppositoires.

Ces composés sont également administrables par voie topique, par exemple sous forme de gel ou de pommade.

Les composés de la présente invention trouvent également leur utilité, en tant que réactifs pharmacologiques, notamment pour l'étude des interactions hormone-récepteur. L'utilisation en tant que réactif pharmacologique peut faire appel à un dérivé radiomarqué de l'un des composés selon l'invention (par exemple avec du tritium [³H] ou du soufre [³5S]), dans le but d'obtenir un radio-ligand destiné à des études conformationnelles du récepteur B₂ de la bradykinine, ou des tests de fixation à ce type de récepteur, par exemple pour l'évaluation de nouveaux composés susceptibles de présenter une affinité pour le récepteur B₂ de la bradykinine.

TABLEAU I

$$C1$$
 X_2
 SO_2
 $A-B$
 N
 R_1
 R_2
 N
 R_2
 N
 N
 R_2

Ex	Ri	Х2	w	A	: B >	Pos.	R ₂	Sel (b)	Activité (%)
1	СН3	Cı	СН	-NH-CH ₂ -	-	3	Н	-	-
2	СН3	Cl	СН	-NH-CH₂-	-	3	Н	Chl	100
3	СН₃	CI	СН	-N(CH ₃)-CH ₂ -	•	4	Н	-	-
4	CH ₃	Cl	СН	-N(CH ₃)-CH ₂ -	-	4	Н	Chl	97,8
5	CH ₃	Cl	СН	-NH-CH ₂ -		4	н	-	-
6	CH ₃	Cl	СН	-NH-CH ₂ -	-	4	Н	Ms	100
7	Н	Cl	СН	-NH-CH ₂ -	-	4	Н	-	-

TABLEAU I (suite 1)

Ex	R ₁	X ₂	w	A	В	Pos.	R ₂	Sel (b)	Activité (%)
8	Н	Cl	СН	-NH-CH ₂ -	-	4	Н	Chl	96,6
9	Н	Cl	СН	-NH-	<u>-</u>	3	Н	-	-
10	Н	CI	СН	-NH-	-	3	Н	Chl	100
11	СН₃	Cl	СН	N	-CO-	4	Н	-	-
12	СН₃	CI	СН	_NN	-CO-	4	Н	Chl	99,3
13	CH ₃	Cl	СН	_NN	-CO-CH₂-	4	н	-	-
14	CH ₃	CI	СН	_nn_	-CO-CH₂-	4	Н	Chl	100
15	CH ₃	Cl	СН	-N_N-	-CO-CH₂-O-	4	Н	-	ı
16	СН₃	CI	СН	-N_N-	-CO-CH₂-O-	4	Н	Chl	100
17	Н	CI	СН	_NN	-CO-	4	н	-	-

TABLEAU I (suite 2)

Ex	R ₁	X ₂	W	A	В	Pos.	R ₂	1998 1998 1998 1998 1998	Activité
18	Н	Cl	СН	-N_N-	-CO-	4	Н	Chl	100
19	Н	CI	СН	-N_N-	-CO-CH₂-	4	н	-	•
20	н	Cl	СН	-N_N-	-CO-CH₂-	4	Н	Chl	100
21	н	Cl	СН	_N	-CO-CH₂-O-	4	Н	-	
22	н	Cl	СН	N	-CO-СН ₂ -О-	4	Н	Chl	100
23	Н	Cl	СН	-M	-CO-	4	Н	-	-
24	Н	CI	СН	—MH———————————————————————————————————	-CO-	4	Н	Ms	98,9
25	СН₃	CI	СН	NH-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-CO-	4	Н	-	-
26	CH₃	Cl	СН	-MH-_N-	-CO-	4	н	Ms	100
27	CH ₃	CI	СН	-ини-	-CO-CH ₂ -O-	4	н	-	-

TABLEAU I (suite 3)

Ex	R ₁	X ₂	W	A	В	Pos.	R ₂	Sel (b)	Activité
28	СН₃	CI	СН	-NH-\N	-CO-CH ₂ -O-	4	Н	Ms	98
29	СН₃	Cl	СН	-ин-сн2	-CO-CH ₂ -O-	4	н	•	-
30	СН₃	CI	СН	-NH-CH ₂	-CO-СН ₂ -О-	4	Н	Ms	99,3
31	СН3	Cl	СН	-NH-CH _Z	-CO-СН ₂ -	4	Н	-	-
32	СН3	CI	СН	-NH-CH ₂ -N-	-CO-CH₂-	4	Н	Chl	-
33	СН₃	Cl	СН	-ин - сн ₇ — _ и —	-CO-	4	Н	٠	-
34	CH ₃	Cl	СН	-NH-CH _Z -N-	-CO-	4	Н	Chi	-
35	Н	Cl	СН	-NH-CH ₂ N-	-CO-	4	Н	Chl	-
36	н	СІ	СН	-NH-CH _Z -N-	-CO-CH ₂ -	4	Н	-	-

TABLEAU I (suite 4)

Ex	R ₁	Х,	w	A	В	Pos.	R₂	Sel (b)	Acti- vitë (%)
37	Н	CI	СН	- NH - CH ₂ N -	-CO-CH ₂ -	4	Н	Chl	-
38	Н	Cl	СН	-NH-CH ₂ -N-	-CO-CH ₂ -O-	4	н	-	•
39	Н	CI	СН	- NH - CH ₂ N -	-CO-CH ₂ -O-	4	Н	Chi	-
40	СН₃	Cl	СН	— NH——N—	-CO-CH₂-	4	Н	-	-
41	CH ₃	CI	СН	— NH——N—	-CO-CH₂-	4	Н	Chl	-
42	Н	Cl	СН	NH-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-CO-CH ₂ -	4	Н	-	~
43	Н	Cl	СН	- NH-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-CO-CH₂-	4	н	Chl	-
44	н	Cl	СН	— NH——N—	-CO-CH ₂ -O-	4	Н	-	-
45	Н	Cl	СН	N#1N	-CO-CH ₂ -O-	4	Н	Chl	-

TABLEAU I (suite 5)

				TABI	LEAU I (suite 5)	المحمقة وتمح	State of the F	n tabahasa I	
Ex	R ₁	X ₂	w	A	В	Pos.	R ₂	Sel (b)	Activité (%)
46	СН3	Cl	СН	-N_N-	-CO-	3	ОН	-	-
47	СН3	Cl	СН	-n_n-	-CO-	3	Н	-	-
48	СН₃	Cl	СН	- N _ N -	-CO-	3	Н	Chl	-
49	CH ₃	CI	СН	-NH-(CH ₂) ₃ -	-	4	Н	-	-
50	CH ₃	Cl	СН	-NH-(CH ₂)₃-	٠	4	н	Chl	-
51	СН3	CI	СН	-NH-(CH ₂) ₂ -	-	4	Н	Chì	-
52	CH ₃	CI	СН	-N_N-	-CO-	4	Н	-	-
53	СН3	Cl	СН	-N_N-	-CO-	4	Н	-	-
54	СН3	CI	СН	-N_N-	-CO-CH=CH-	4	ОН	-	-
55	CH ₃	CI	СН	N	-CO-CH=CH-	4	Н	-	-

TABLEAU 1 (suite 6)

Ex	R ₁	X ₂	w	Α	В	Pos.	R ₂	Sel (b)	Activité
56	СН₃	OCH ₃	СН	N_N-	-CO-	4	ОН	-	-
57	CH₃	OCH ₃	СН	-N_N-	-CO-	4	Н	-	-
58	CH ₃	ОСН3	СН	- N_N-	-CO-	4	Н	Chl	-
59	CF ₃	Cl	СН	- N_N-	-CO-	4	ОН	-	•
60	CF ₃	CI	СН	-N_N-	-CO-	4	Н	-	-
61	CF ₃	CI	СН	-N_N-	-CO-	4	Н	Ms	-
62	CH ₃	Cl	СН	_nn_	-\$O ₂ -	4	ОН	-	-
63	CH ₃	CI	СН	N	-\$O ₂ -	4	Н	-	-
64	СН₃	CI	СН	N	-SO ₂ -	4	Н	Chì	
65	CH ₃	Cl	N	-NH-CH₂-	-	5*	н	-	

TABLEAU I (suite 7 et fin)

Ex	\mathbf{R}_1	X ₂	W	A	В	Pos.	R ₂	Sel (b)	Activité (%)
66	СН₃	Cl	N	-NH-CH₂-	-	5*	Н	Chl	-
67	СН₃	Cl	N	_ NN	-CO-	5*	ОН	-	-
68	СН₃	CI	N	-N_N-	-CO-	5*	Н	-	-
69	СН₃	CI	N	-м_м-	-CO-	5*	н	Ms	-
70	СН₃	СІ	СН	_nn_	-CO-	4	ОН	-	-

Notes

(a) position du groupe amidine sur le cycle aromatique

* : position par rapport à l'azote du groupe pyridinyle

(b) Chl: sel avec l'acide chlorhydrique

Ms : sel avec l'acide méthanesulfonique

REVENDICATIONS

- 5 1. Composé dérivé de N-benzènesulfonyl-(L)-proline, caractérisé en ce qu'il est choisi parmi l'ensemble constitué par :
 - (i) les composés de formule :

$$X_1$$
 X_2
 X_2
 X_2
 X_3
 X_4
 X_2
 X_4
 X_4
 X_5
 X_6
 X_7
 X_8
 X_8
 X_9
 X_9

dans laquelle:

10 X₁ et X₂ représentent chacun indépendamment un atome d'halogène ou un groupe alkoxy en C₁-C₃,

R₁ représente un atome d'hydrogène, un groupe trifluoroalkyle en C₁-C₃, ou un groupe alkyle en C₁-C₃ à chaîne hydrocarbonée linéaire ou ramifiée,

R₂ représente un atome d'hydrogène ou un groupe OH,

15 A représente un groupe

$$-N-(CH_2)_n$$
, $-N$ $(CH_2)_m$ ou $-NH-(CH_2)_n$

B représente une liaison simple, -CO-, -CO-CH₂-, -CO-CH₂-O-, -CO-CH=CH- ou -SO₂-,

m représente 2 ou 3,

20 n représente 0, 1, 2 ou 3,

R₃ représente un atome d'hydrogène ou un groupe méthyle,

W représente CH ou N, le groupe amidine $C(=NR_2)NH_2$ étant en position 2, 3 ou 4 sur le noyau aromatique, et,

25 (ii) leurs sels d'addition.

- 2. Composé selon la revendication 1, caractérisé en ce que dans la formule I, X_1 et X_2 sont chacun l'atome de chlore.
- 3. Procédé de préparation d'un composé de formule I, caractérisé en ce qu'il comprend les étapes consistant à :
- 5 (1°) faire réagir un acide de formule :

$$X_1$$
 X_2
 X_2
 X_1
 X_2
 X_2
 X_3
 X_4
 X_2
 X_4
 X_5
 X_6
 X_7
 X_9
 X_9

dans laquelle:

15

 R_1 représente un atome d'hydrogène un groupe trifluorométhyle ou un groupe alkyle en C_1 - C_3 à chaîne hydrocarbonée linéaire ou ramifiée,

10 X_1 et X_2 représentent chacun indépendamment un halogène ou un groupe alkoxy en C_1 - C_3 .

avec une amine de formule :

$$HN(R_3) - (CH_2)_n \stackrel{CN}{\swarrow}$$
 (III)

dans laquelle R₃ représente un atome d'hydrogène ou un groupe méthyle, n représente 0, 1, 2 ou 3, et W représente CH ou N,

dans un solvant et en présence d'activateurs couramment utilisés pour créer des liaisons de type peptidique, à une température proche de la température ambiante, pendant 2 à 50 heures, pour obtenir un composé de formule :

WO 98/03503 58 PCT/FR97/01377

$$X_1$$
 X_2
 X_2
 X_3
 X_4
 X_2
 X_4
 X_5
 X_5
 X_6
 X_7
 X_8
 X_8
 X_9
 X_9

dans laquelle R₁, R₃, X₁, X₂, n et W conservent la même signification que ci-dessus; (2°) faire réagir le composé de formule IV, ainsi obtenu, avec le sulfure d'hydrogène en excès dans un solvant anhydre, en présence de triéthylamine, à une température comprise entre 0 et 40°C, pendant 2 à 40 heures pour obtenir un composé de formule:

$$X_1$$
 X_2
 X_2
 X_2
 X_3
 X_4
 X_2
 X_4
 X_5
 X_5
 X_6
 X_7
 X_7
 X_8
 X_9
 X_9

dans laquelle R₁, R₃, X₁, X₂, n et W conservent la même signification que ci-dessus; (3°) faire réagir le composé de formule V, ainsi obtenu, avec un agent de méthylation en excès, dans un solvant, à une température proche de la température d'ébullition du milieu réactionnel, éventuellement sous une pression supérieure à la pression atmosphérique et pendant 1 à 5 heures, pour obtenir un composé de formule:

$$X_1$$
 X_2
 X_2
 X_2
 X_3
 X_4
 X_2
 X_4
 X_5
 X_5
 X_6
 X_7
 X_8
 X_8
 X_8
 X_9
 X_9

ou l'un de ses sels d'addition,

où $R_1,\ R_3,\ X_1,\ X_2,\ n$ et W conservent la même signification que ci-dessus ;

(4°) faire réagir le composé de formule VI, ainsi obtenu, avec un sel d'ammonium, dans un solvant, à une température comprise entre la température ambiante et 100°C,

dans un solvant, à une température comprise entre la température ambiante et 100°C pendant 1 à 10 heures, pour obtenir un composé de formule I:

dans laquelle:

R₁ représente un atome d'hydrogène, un groupe trifluorométhyle ou un groupe alkyle en C₁-C₃ à chaîne hydrocarbonée linéaire ou ramifiée,

 X_1 et X_2 représentent chacun indépendamment un atome d'halogène, ou un groupe alkoxy en $C_1\text{-}C_3$

A représente un groupe $-N(R_3)-(CH_2)_{n}$,

B représente une liaison simple,

15 W représente CH ou N,

R₂ représente un atome d'hydrogène,

R₃ représente H ou CH₃,

- n représente 0, 1, 2 ou 3; et,
- (5°) si nécessaire, faire réagir le composé de formule 1, ainsi obtenu, sous forme de base libre avec un acide minéral ou organique pour obtenir le sel d'addition d'acide correspondant.
- 5 **4.** Procédé de préparation d'un composé de formule I caractérisé en ce qu'il comprend les étapes consistant à :
 - (1°) faire réagir un composé de formule :

$$X_1$$
 X_2
 X_2
 X_2
 X_2
 X_2
 X_3
 X_4
 X_2
 X_4
 X_2
 X_4
 X_4
 X_5
 X_5
 X_5
 X_6
 X_7
 X_7
 X_8
 X_9
 X_9

dans laquelle:

10 R₁ représente un atome d'hydrogène, un groupe trifluorométhyle ou un groupe alkyle en C₁-C₃, à chaîne hydrocarbonée linéaire ou ramifiée,

X1 et X2 représentent chacun indépendamment un halogène, ou un groupe méthoxy

A représente un groupe

où n représente 0, 1, 2 ou 3, et m représente 2 ou 3, avec un composé de formule VIII :

dans laquelle B représente -CO-, -CO-CH₂, -CO-CH₂-O-, ou -CO-CH=CH-, selon des conditions analogues à celles de l'étape (1°) de la revendication 3, pour obtenir un composé de formule :

$$X_1$$
 X_2
 X_2
 X_1
 X_2
 X_2
 X_3
 X_4
 X_4
 X_5
 X_5
 X_6
 X_7
 X_8
 X_8
 X_9
 X_9

dans laquelle R₁, X₁, X₂ conservent la même signification que ci-dessus,

A représente un groupe

$$-N$$
 $(CH_2)_m$
ou $-NH-(CH_2)_n$
 $N-$

5 B représente un groupe -CO-, -CO-CH₂-, -CO-CH₂-O- ou -CO-CH=CH-

m représente 2 ou 3,

n représente 0, 1, 2 ou 3,

W représente CH, et

R₂ représente un atome d'hydrogène ; et,

- 10 (2°) si nécessaire, faire réagir le composé de formule I, ainsi obtenu, avec un acide pour obtenir le sel d'addition d'acide correspondant.
 - 5. Procédé de préparation d'un composé de formule I, caractérisé en ce qu'il comprend les étapes consistant à :
 - (1°) faire réagir un composé de formule :

$$X_1$$
 X_2
 X_2
 X_2
 X_3
 X_4
 X_2
 X_4
 X_5
 X_5
 X_5
 X_6
 X_7
 X_8
 X_9
 X_9

dans laquelle:

15

R₁ représente un atome d'hydrogène, un groupe trifluorométhyle ou un groupe alkyle en C₁-C₃, à chaîne hydrocarbonée linéaire ou ramifiée,

X1 et X2 représentent chacun indépendamment un halogène, ou un groupe méthoxy

A représente un groupe,

$$-N$$
 $(CH_2)_m$
ou $-NH-(CH_2)_n$
 $N-N$

où m représente 2 ou 3, et n représente 0, 1, 2 ou 3,

avec un composé de formule

5

dans laquelle B représente -CO-, -CO- CH_2 , -CO- CH_2 -O-, ou -CO-CH=CH-, et W représente CH ou N,

selon des conditions analogues à celles précédemment décrites pour réaliser l'étape (1°) de la revendication 3 et obtenir un composé de formule :

$$X_1$$
 X_2
 X_2
 X_2
 X_3
 X_4
 X_2
 X_4
 X_2
 X_4
 X_4
 X_5
 X_5
 X_6
 X_7
 X_8
 X_9
 X_9

dans laquelle R_1 , X_1 , X_2 , A, B et W conservent la même signification que dans les composés de départ ;

(2°) faire réagir le composé de formule X, ainsi obtenu, avec l'hydroxylamine, dans un solvant, à température ambiante et pendant 1 à 12 heures, pour obtenir le composé de formule

WO 98/03503 63 PCT/FR97/01377

$$X_1$$
 X_2
 X_2
 X_1
 X_2
 X_3
 X_4
 X_4
 X_5
 X_5
 X_6
 X_7
 X_8
 X_8
 X_9
 X_9

dans laquelle R_1 , X_1 , X_2 , A, B et W conservent la même signification que dans les composés de départ ;

(3°) faire réagir le composé de formule XI, ainsi obtenu, avec l'anhydride acétique,
 de préférence dans un solvant, à température ambiante pendant 1 à 8 heures, pour obtenir le composé de formule

$$X_1$$
 X_2
 X_2
 X_2
 X_3
 X_4
 X_2
 X_4
 X_4
 X_5
 X_5
 X_6
 X_7
 X_8
 X_9
 X_9

dans laquelle R_1 , X_1 , X_2 , A, B et W conservent la même signification que dans les composés de départ ;

10 (4°) réduire le composé de formule XII, ainsi obtenu, par hydrogénation catalytique en présence d'un catalyseur, dans un solvant, sous une pression d'hydrogène d'environ 10⁵ à 10⁶ pascals et à température ambiante, pour obtenir le composé de formule

$$X_1$$
 X_2
 X_2
 X_1
 X_2
 X_3
 X_4
 X_4
 X_5
 X_5
 X_6
 X_7
 X_8
 X_8
 X_8
 X_9
 X_9

dans laquelle R_1 , X_1 , X_2 , A, B et W conservent la même signification que dans les composés de départ et R_2 représente un atome d'hydrogène; et,

- (5°) si nécessaire obtenir le sel d'addition du composé de formule l, ainsi obtenu, par réaction avec un acide approprié.
 - 6. Composition thérapeutique caractérisée en ce qu'elle renferme, en association avec un excipient physiologiquement acceptable, au moins un composé choisi parmi l'ensemble constitué par les composés de formule I et leurs sels d'addition non-toxiques selon la revendication 1.
- 10 7. Utilisation d'une substance antagoniste d'un récepteur de la bradykinine et des hormones analogues, ladite utilisation étant caractérisée en ce que l'on fait appel à une substance antagoniste du récepteur B2 de la bradykinine et choisie parmi l'ensemble constitué par les composés de formule I et leurs sels d'addition non toxiques selon la revendication 1, pour l'obtention d'un médicament destiné à une utilisation en thérapeutique vis-à-vis d'états pathologiques impliquant la bradykinine ou ses homologues.
 - 8. Utilisation selon la revendication 7, d'une substance choisie parmi l'ensemble constitué par les composés de formule I et leurs sels d'addition non toxiques selon la revendication 1, pour l'obtention d'un médicament destiné à une utilisation en thérapeutique pour le traitement d'états douloureux.

20

- 9. Utilisation selon la revendication 7, d'une substance choisie parmi l'ensemble constitué par les composés de formule I et leurs sels d'addition non toxiques selon la revendication 1, pour l'obtention d'un médicament destiné à une utilisation en thérapeutique pour le traitement d'états inflammatoires.
- 25 10. Utilisation d'un composé de formule l ou l'un de ses sels d'addition selon la revendication l en tant que réactif pharmacologique.

INTERNATIONAL SEARCH REPORT

Interna. J Application No PCT/FR 97/01377

A. CLASSIFICATION OF SUBJECT MATTER
1PC 6 C07D401/12 A61K31/47 C07D401/14 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 6 C07D A61K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Category ° EP 0 622 361 A (FUJISAWA PHARMACEUTICAL 1.6.7 A CO.,LTD.) 2 November 1994 cited in the application see claims 1,6,7 WO 96 13485 A (FUJISAWA PHARMACEUTICAL Α CO., LTD.) 9 May 1996 see claims P.A WO 96 40639 A (FOURNIER INDUSTRIE ET 1,6,7 SANTA) 19 December 1996 see claims 1,6,7 WO 97 07115 A (FOURNIER INDUSTRIE ET P.A SANTÉ) 27 February 1997 see claims -/--Patent family members are listed in annex. Further documents are listed in the continuation of box C. X I Special categories of cited documents : "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the *A* document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be paracellal resource, or cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. *O* document referring to an oral disclosure, use, exhibition or document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 2 1. 11. 97 14 November 1997 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijawijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Van Bijlen, H

1

INTERNATIONAL SEARCH REPORT

Interns al Application No PCT/FR 97/01377

	tion) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Р,Х	WO 97 24349 A (FOURNIER INDUSTRIE ET SANTÉ) 10 July 1997 see claims	1,6,7

INTERNATIONAL SEARCH REPORT

linurmation on patent family members

Interna. 1 Application No PCT/FR 97/01377

Patent document cited in search report	Publication date	Patent family member(s)	Publication date	
EP 622361 A	02-11-94	AU 680870 B AU 6052594 A CA 2122236 A	14-08-97 03-11-94 29-10-94 18-01-95	
		CN 1097417 A HU 70493 A JP 7002780 A US 5563162 A ZA 9402780 A	30-10-95 06-01-95 08-10-96 09-01-95	
WO 9613485 A	09-05-96	AU 3753695 A	23-05-96	
WO 9640639 A	19-12-96	FR 2735128 A EP 0773932 A	13-12-96 21-05-97	
WO 9707115 A	27-02-97	FR 2737892 A EP 0787131 A	21-02-97 06-08-97	
WO 9724349 A	10-07-97	FR 2743073 A AU 1198897 A	04-07-97 28-07-97	

RAPPORT DE RECHERCHE INTERNATIONALE

atemationale No Domai

PCT/FR 97/01377 A. CLASSEMENT DE L'OBJET DE LA DEMANDE CIB 6 CO7D401/12 A61K31/47 C07D401/14 Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE cumentation minimale consultée (système de classification suivi des symboles de classement) C07D A61K CIB 6 Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si cela est réalisable, termes de recherche C. DOCUMENTS CONSIDERES COMME PERTINENTS no, des revendications visées Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents Catégorie * 1.6.7 EP 0 622 361 A (FUJISAWA PHARMACEUTICAL Α CO.,LTD.) 2 novembre 1994 cité dans la demande voir revendications 1,6,7 WO 96 13485 A (FUJISAWA PHARMACEUTICAL Α CO., LTD.) 9 mai 1996 voir revendications 1,6,7 P,A WO 96 40639 A (FOURNIER INDUSTRIE ET SANTA) 19 décembre 1996 voir revendications 1,6,7 WO 97 07115 A (FOURNIER INDUSTRIE ET P.A SANTÉ) 27 février 1997 voir revendications -/--Les documents de familles de brevets sont indiqués en annexe Voir la suite du cadre C pour la fin de la liste des documents * Catégories spéciales de documents cités: *T° document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenenant pas à l'état de la technique partinent, mais cité pour comprandre le principe ou la théorie constituant la base de l'invention "A" document définissant l'état général de la tschnique, non considéré comme particulièrement pertinent 'E° document antérieur, mais publié à la date de dépôt international "X" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité ou après cette date "L" document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée) inventive par rapport au document considéré isolément "Y" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres "O" document se référant à une divutgation orale, à un usage, à documents de même nature, cette combinaison étant évidente pour une personne du métier une exposition ou tous autres moyens document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée *&* document qui fait partie de la même famille de brevets Date d'expédition du présent rapport de recherche internationale Date à laquelle la recherche internationale a été effectivement achevée 2 1. 11. 97 14 novembre 1997

1

Fax: (+31-70) 340-3016

Nom et adresse postale de l'administration chargée de la recherche internationale Office Européen des Brevets, P.B. 5818 Patentiean 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni,

Fonctionnaire autorisé

Van Bijlen, H

RAPPORT DE RECHERCHE INTERNATIONALE

Domai internationale No PCT/FR 97/01377

Catégorie °	OCUMENTS CONSIDERES COMME PERTINENTS Identification des documents cités, avec,le cas échéant, l'indication des passages pertinents	no, des revendications visées
P,X	WO 97 24349 A (FOURNIER INDUSTRIE ET SANTÉ) 10 juillet 1997 voir revendications	1,6,7
	·	

RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relatifs aux ...embres de tamilles de brevets

Demar. itemationate No PCT/FR 97/01377

Document brevet cité au rapport de recherche	Date de publication	Membre(s) de la famille de brevet(s)	Date de publication
EP 622361 A	02-11-94	AU 680870 B AU 6052594 A CA 2122236 A CN 1097417 A HU 70493 A JP 7002780 A US 5563162 A ZA 9402780 A	14-08-97 03-11-94 29-10-94 18-01-95 30-10-95 06-01-95 08-10-96 09-01-95
WO 9613485 A	09-05-96	AU 3753695 A	23-05-96
WO 9640639 A	19-12-96	FR 2735128 A EP 0773932 A	13-12-96 21-05-97
WO 9707115 A	27-02-97	FR 2737892 A EP 0787131 A	21-02-97 06-08-97
WO 9724349 A	10-07-97	FR 2743073 A AU 1198897 A	04-07-97 28-07-97

Formulaire PCT/ISA/210 (annexe familles de brevets) (juillet 1992)