Analiza Matematyczna

Rafal Wlodarczyk

INA 1 Sem. 2023

1 Wykład pierwszy

Liczby naturalne $\mathbb{N} = \{1, 2, 3, \dots\}$

Definicja 1.0.1. Zasada indukcji matematycznej. Niech będzie dana własność liczb naturalnych, która czyni zadość warunkom:

- 1. Liczba 1 posiada tę własność.
- 2. Jeżeli liczba n posiada tę własność, to posiada ją również liczba n+1.

Zasada indukcji matematycznej mówi, że przy tych założeniach każda liczba naturalna posiada te własność.

Przykład 1.0.1. $1+2+\cdots+n=\frac{n(n+1)}{2}$.

- 1. n=1 L=1 $P=\frac{1(1+1)}{2}$
- 2. $\forall_{n\geqslant 1}1+2+\cdots+n=\frac{n(n+1)}{2}\implies 1+2+\cdots+n+n+1=\frac{(n+1)(n+2)}{2}.$ Z założenia indukcyjnego mamy: $1+2+\ldots+n+(n+1)=\frac{n(n+1)}{2}+n+1=(n+1)(\frac{n}{2}+1)=\frac{(n+1)(n+2)}{2}$ Na mocy zasady indukcji matematycznej teza zachodzi \square .

Przykład 1.0.2. Nierówność Bernoulli'ego. Niech $a \ge 1$, wówczas dla dowolnego n naturalnego zachodzi nierówność: $(1+a)^n \ge 1 + na$

- 1. $n = 1, L = (1 + a)^1 = 1 + a, P = 1 + 1 \cdot a = 1 + a, L = P$, własność zachodzi
- 2. $\forall_{n>1}(1+a)^n \ge 1 + na \implies (1+a)^{n+1} \ge 1 + (n+1) \cdot a$ $(1+a)^{n+1} = (1+a)^n \cdot (1+a) \ge^{ind} \cdot (1+na)(1+a)$ $(1+a)^{n+1} \ge 1 + a + na + na^2 = 1 + (n+1)a + na^2 \ge 1 + (n+1) \cdot a$ Na mocy zasady indukcji matematycznej nierówność jest prawdziwa.

Liczby Całkowite $\mathbb{Z} = \{0, 1, -1, 2, -2, 3, -3, ...\}$

Definicja 1.0.2. Liczby wymierne \mathbb{Q} to liczby postaci:

$$\frac{p}{q}$$
, gdzie $p, q \in \mathbb{Z}$ oraz $q \neq 0$

Zbiór liczb wymiernych jest liniowo uporządkowany, to znaczy każde dwie liczby wymierne można połączyć jednym ze znaków:

 $\begin{array}{l} a < b, a > b, a = b. \\ \text{Dodawanie} \ \mathbb{Q} \\ \frac{p_1}{q_1} + \frac{p_2}{q_2} = \frac{p_1q_2 + p_2q_1}{q_1q_2} \\ \text{Mnożenie} \ \mathbb{Q} \\ \frac{p_1}{q_1} \cdot \frac{p_2}{q_2} = \frac{p_1p_2}{q_1q_2} \\ \text{Własności:} \end{array}$

- 1. Przemienność a + b = b + a
- 2. Łączność a + (b+c) = (a+b) + c
- 3. Rozdizelność (a+b)c = ac + bc

Uwaga. Jeżeli $(a < c \wedge c < b) \iff a < c < b.$ Mówimy wtedy, że c leży między liczbami a i b.

Z twierdzenia Pitagorasa $1^2+1^2=x^2 \implies x=\sqrt{2}.$ D-d niewymierności $\sqrt{2}$ jako ćwiczenie.

Własność - zbiór $\mathbb Q$ jest zbiorem gęstym.

Niech a,b będą dowolnymi liczbami wymiernymi, takimi że a < b. Wówczas istnieje liczbac leżąca między liczbami a i b.

np.:
$$c = \frac{a+b}{2}$$

Liczby rzeczywiste \mathbb{R}

Definicja 1.0.3. Mówimy, że zbiór jest ograniczony jeżeli istnieją takie dwie liczby m, M,że:

$$\forall_{x \in X} m \leqslant x \leqslant M, X \in [m, M]$$

Uwaga analogicznie ograniczoność z dołu i góry osobno.

Definicja 1.0.4. Kres górny zbioru. Niech X będzie zbiorem ograniczonym z góry.

$$\forall_{x \in X} \exists_M x \leqslant M$$

Kresem górnym zbioru nazywamy najmniejszą liczbę ograniczającą zbiór X z góry.

 $(-\infty, 1)$: kres 1

 $(-\infty, 1) \cup (1, 2]$: kres 2

1.1 Aksjomat Zupełności

Każdy ograniczony z góry podzbiór liczb rzeczywistych ma kres górny.

Definicja 1.1.1. Kres dolny zbioru nazywamy największą liczbą ograniczjącą zbiór X z dołu.

$$\forall_{x \in X} \exists_m m \leqslant X$$

 $(-1, +\infty)$: kres -1

 $(2, +\infty)$: kres 2

Kres górny zbioru i kres dolny zbioru to pojęcia dualne.

1.2 Wartość bezwzględna

$$|a| = \begin{cases} a, a \geqslant 0 \\ -a, a < 0 \end{cases}$$

Przykład 1.2.1. Własności:

- |a| = |-a|
- $|ab| = |a| \cdot |b|$
- $\bullet |a+b| \leqslant |a|+|b|$
- $\bullet ||a-b| \leqslant |a| + |b|$
- $\bullet |a| |b| \leqslant |a b|$

Definicja 1.2.1. Współczynnik Newtona. Zakładamy że n,k są liczbami naturalnymi, takimi że $n \ge k$. Współczynnik Newtona określam wzorem:

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Własności:

- 1. $\binom{n}{0} = \binom{n}{n} = 1$
- $2. \binom{n}{k} = \binom{n}{n-k}$
- $3. \binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$
- $4. \binom{n}{k+1} = \binom{n}{k} \cdot \frac{n-k}{k+1}$
- Symbol sumy \sum
- Symbol iloczynu Π

Definicja 1.2.2. Nierówność Cauchy'ego - Schwarza. Niech a_1, a_2, \ldots, a_n oraz b_1, b_2, \ldots, b_n będą dowolnymi liczbami rzeczywistymi. Wówczas zachodzi nierówność:

$$(a_1^2 + a_2^2 + \dots + a_n^2)(b_1^2 + b_2^2 + \dots + b_n^2) \ge (a_1b_1 + a_2b_2 + \dots + a_nb_n)^2$$

lub równoważnie:

$$\sum_{i=1}^{n} a_i^2 \cdot \sum_{i=1}^{n} b_i^2 \geqslant \left(\sum_{i=1}^{n} a_i b_i\right)^2$$

2 Wykład drugi

Definicja 2.0.1. Ciąg liczbowy to funkcja z \mathbb{N} w \mathbb{R} . Stosujemy zapis a_1, a_2, \ldots, a_n . Przykłady:

- $a_n = c + (n-1)d$ arytmetyczny
- $b_n = cq^{n-1}$ geometryczny
- $c_n = n!$

• $d_{n+1} = 2^{d_n}$ - rekurencyjny

Definicja 2.0.2. Ciąg monotoniczny.

- 1. a_n jest rosnacy $\iff \forall_{n \in \mathbb{N}} a_n < a_{n+1}$
- 2. a_n jest malejacy $\iff \forall_{n \in \mathbb{N}} a_n > a_{n+1}$
- 3. a_n jest niemalejący $\iff \forall_{n \in \mathbb{N}} a \leqslant a_{n+1}$
- 4. a_n jest nierosnący $\iff \forall_{n \in \mathbb{N}} a \geqslant a_{n+1}$

Analogicznie definiujemy ciąg monotoniczny od pewnego miejsca:

1. a_n jest rosnący od $n_0 \iff \forall_{n>n_0} a_n < a_{n+1}$

Definicja 2.0.3. Liczbą graniczną ciągu a_n nazywamy liczbę g, taką że:

$$\forall_{\varepsilon>0}\exists_{n_0}\forall_{n>n_0}|a_n-g|<\varepsilon$$

Piszemy wtedy: $\lim_{n\to\infty} a_n = g$ lub $a_n \to g$.

 $|a_n - g| < \varepsilon \iff -\varepsilon < a_n - g < \varepsilon \iff g - \varepsilon < a_n < g + \varepsilon$

Wykład trzeci 3

Twierdzenie 3.0.1. Twierdzenie (o ciągu monotonicznym i ograniczonym)

a) Ciąg rosnący i ograniczony z góry jest zbieżny.

 $\forall_{n>n_0} a_n \leqslant a_{n+1} \text{ i } \forall_{n \in \mathbb{N} a_n < M} \implies \exists \lim_{n \to \infty} a_n$

b) Ciąg malejący i ograniczony z dołu jest zbieżny.

 $\forall_{n>n_0} a_n \geqslant a_{n+1} \ \mathrm{i} \ \forall_{n\in\mathbb{N} a_n>m} \implies \exists \lim_{n\to\infty} a_n$

Idea dowodu:

$$A = \{a_{n_0+1}, a_{n_0+2}, \dots, a_n, \dots\} \in \mathbb{R}$$

A - ograniczony, istnieje kres górny zbioru A

Każdy ograniczony podzbiór liczb rzeczywistych ma kres

czyli sup(A) (??) $sup(A) = lim_{n \to \infty a_n}$

Przykład 3.0.1. Rozważmy następujący ciąg rekurencyjny: $a_1 = \sqrt{2} \ a_{n+1} = \sqrt{2 + a_n}$ Idea dowodu indukcyjnego:

- 1. $a_n \leq 2$, indukcja po n
- 2. $a_n \leqslant a_{n+1}$, indukcja po n. $a_n \leqslant a_{n+1} \implies a_{n+1} \leqslant a_{n+2}$
- 3. $\sqrt{2+a_n} \leqslant \sqrt{2+a_{n+1}}$ kwadrat stronami rozwiązuje krok indukcyjny

$$\forall_{n\geqslant 1} a_n \leqslant 2 \Longrightarrow a_{n+1} \leqslant 2$$
$$a_{n+1} = \sqrt{2+a_n} \leqslant_{z.ind} \sqrt{2+2} = 2$$

Na mocy twierdzenia o ciągu monotonicznym i ograniczonym istnieje: $\lim_{n\to\infty} a_n = g$

$$a_{n+1} = \sqrt{2 + a_n}, \lim_{n \to \infty} a_n = g = \lim_{n \to \infty} a_{n+1} = g$$

$$g = \sqrt{2 + g}$$

$$g^2 - g - 2 = 0$$

$$\Delta = 9 = 3^2$$

$$g = \sqrt{2+g}$$

$$\Lambda = 0 - 3^2$$

$$g_1=\frac{1+3}{2}=2$$
lub $g_2=\frac{1-3}{2}=-1,$ które nie zachodzi, zatem $lima_n=g_1$

Definicja 3.0.1. Podciąg ciągu

Niech a_n będzie dowolnym ciągiem. Niech $n_1, n_2, ... n_k$ będzie pewnym rosnącym ciągiem liczb naturalnych. Wówczas ciąg $a_{nk} = (a_{n1}, a_{n2}, a_{n3}, ...)$ Nazywamy podciągiem ciągu.

Przykład 3.0.2. Rozważny następujące przykłady ($\mathbb{N} = \{1, 2, 3, 4, \dots\}$):

a)
$$a_n = (-1)^n, n \in \mathbb{N}$$
 $a_{2k} = (-1)^n = 1, k \in \mathbb{N}$ $(a_2, a_4, a_6, ...)$ - podciąg o wyrazach parzystych. b) $a_{2k-1} = (-1)^{2k-1} = -1, n \in \mathbb{N}$ $(a_1, a_3, a_5, ...)$ - podciąg o wyrazach nieparzystych. $S = \{1, -1\}$ c) $(1, \frac{1}{2}, 3, \frac{1}{4}, 5, \frac{1}{6}, ...)$ $a_{2k-1} = 2k - 1$ - podciąg o wyr. nieparzystych. $a_{2k} = \frac{1}{2k}$ - podciąg o wyr. parzystych.

 $S = \{0, \infty\}$ d) $sin(\frac{n\pi}{3})$ - $plot(sin(\frac{n\pi}{3}), (n, 1, 17)) \leftarrow$ wolframalpha **Definicja 3.0.2.** Liczba s jest punktem skupienia ciągu $a_n \iff s$ jest granicą właściwą

Jeśli $\lim_{n\to\infty} a_n = \infty \implies a_n$ ma granicę niewłaściwą $+\infty$

- sup() superior kres górny
- inf() inferior kres dolny

Definicja 3.0.3. Granica górna ciągu a_n to kres górny granic podciągu a_n . $\lim_{n\to\infty} \sup(a_n) = \lim_{n\to\infty} a_n$

lub niewłaściwą pewnego podciągu. Oznaczenie S - zbiór punktów skupienia.

Definicja 3.0.4. Granica dolna ciągu a_n to kres dolny granic podciągu a_n . $\lim_{n\to\infty} inf(a_n) = \lim_{n\to\infty} a_n$

 $\lim \inf(a_n) \leq \lim \sup(a_n)$, równość dla granicy ciągu.

Twierdzenie 3.0.2. Twierdzenie (Bolzano - Weierstrassa). Każdy ciąg ograniczony ma podciąg zbieżny. (English Wikipedia)

D-d. $\forall_{n\in\mathbb{N}} m \leqslant a_n \leqslant M$ Dzielimy przedział $[m_1,M_1]$ na dwa podprzedziały: $[m_1,\frac{m_1+M_1}{2}]$, $[\frac{m_1+M_1}{2},M_1]$. Przynajmniej w jednym z przedziałów jest nieskończenie wiele wyrazów ciągu. Oznaczmy tę połówkę przez $[m_2,M_2]$. Postępujemy tak dalej i mamy:

 $\begin{array}{l} \forall_{k\in\mathbb{N}}m_1\leqslant m_k\leqslant a_{nk}\leqslant M_k\leqslant M_1\\ M_k \text{ malejący i ograniczony} \implies \text{zbieżny }g_1\\ m_k \text{ rosnący i ograniczony} \implies \text{zbieżny }g_2\\ g_1=g_2=g\\ M_k-m_k=\frac{M_1-m_1}{2}\\ M_k\to g_1;m_k\to g_2, \text{ ponieważ }\frac{M_1-m_1}{2k}\to 0 \end{array}$

Definicja 3.0.5. Ciąg a_n nazywamy ciągiem Cauchy'ego, wtedy i tylko wtedy, gdy: $\forall_{\varepsilon>0}\exists_{n_0}\forall_{n,m>n_0}|a_n-a_m|<\varepsilon$.

Twierdzenie 3.0.3. Ciąg liczb rzeczywistych jest zbieżny \iff jest ciągiem Cauchy'ego.

Przykład 3.0.3.
$$x_n = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots$$

 $x_1 = 1, x_2 = 2, x_3 = 2 + 1/2.$

- 1. x_n jest rosnący $x_{n+1} x_n = \frac{1}{(n+1)!} > 0 \iff x_{n_1} > x_n$
- 2. x_n jest ograniczony (pamiętając, że $\forall_{n>3}2^n \leqslant n!$ czyli $\frac{1}{4!} < \frac{1}{2^4}, \frac{1}{5!} < \frac{1}{2^5}$)... Dla n>3 $x_n=\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+... \leqslant 2+\frac{1}{2}+\frac{1}{6}+\frac{1}{2^4}+\frac{1}{2^5}+...+\frac{1}{2^n}$ $\frac{1}{2^4}\cdot\frac{1}{1-\frac{1}{2}}=\frac{1}{2^3}$ Istnieje $\lim_{n\to\infty}x_n=e=2.7182...$ $sum(1/k!,(k,0,300))\leftarrow$ wolframalpha

Twierdzenie 3.0.4. Liczba eulera wyraża się wzorem:

$$\lim_{n\to\infty} (1+\frac{1}{n})^n = e$$

Twierdzenie 3.0.5. Niech a_n będzie dowolnym ciągiem takim, że: $\lim_{n \to \infty} a_n = \infty$. Wówczas:

$$\lim_{n \to \infty} (1 + \frac{1}{a_n})^{a_n} = e, (1 - \frac{1}{a_n})^{a_n} = \frac{1}{e}$$

Przykład 3.0.4. $\lim((1+\frac{1}{2n})^{2n})^{\frac{1}{2}}=e^{\frac{1}{2}}=\sqrt{e}$

Własność: $\lim_{n\to\infty}a_n=g_1\wedge \lim_{n\to\infty}b_n=g_2\implies \lim_{n\to\infty}(a_n^{b_n})=g_1^{g_2}$

Przykład 3.0.5.
$$\lim (1 - \frac{1}{n})^{n/2} = \lim \left((1 - \frac{1}{n})^n \right)^{\frac{n}{2}} = (\frac{1}{e})^{\frac{1}{2}} = \frac{1}{\sqrt{e}}$$

Wskazówka: $limit\left(\left(1+\frac{1}{2^n}\right)^{n+1}, n \to infty\right)$

Definicja 3.0.6. Szereg o wyrazach nieujemnych. Dla dowolnego ciągu a_1, a_2, \ldots, a_n o wyrazach nieujemnych, tworzymy ciąg sum częściowych:

$$S_1 = a_1, S_2 = a_1 + a_2, S_3 = a_1 + a_2 + a_3, \dots, S_N = a_1 + a_2 + a_3 + a_1 + a_2 + a_2 + a_3 + a_2 + a_3 + a_4 + a_4 + a_5 + a_5$$

Przykładowo dla e $S_0 = \frac{1}{0!}, S_1 = \frac{1}{0!} + \frac{1}{1!} \dots$ Jeżeli ciąg S_n jest zbieżny to piszemy, że:

$$\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} S_N$$

(granica to suma szeregu)

$$S_1 \leqslant S_2 \leqslant S_3 \leqslant S_N < M$$

Przykład 3.0.6. $apart(1/(n \cdot (n+1)), n) \leftarrow wolframalpha$

$$\begin{array}{c} \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{n(n+1)} = S_N \\ S_1 = \frac{1}{2}, S_2 = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3}, \text{ zatem:} \\ \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{n(n+1)} = \\ = \frac{1}{1} - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \dots + \frac{1}{n} - \frac{1}{n+1} = \\ = 1 - \frac{1}{n+1}, \text{ finalnie:} \\ \sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \lim_{n \to \infty} S_N = \lim_{n \to \infty} (1 - \frac{1}{n+1}) = 1 \end{array}$$

Przykład 3.0.7. $a + aq + ... + aq^n = a \cdot \frac{1 - q^{n+1}}{1 - q}$, dla |q| < 1:

$$\sum_{n=0}^{\infty} aq^n = \lim_{n \to \infty} a \cdot \frac{1 - q^{n+1}}{1 - q} = \frac{a}{1 - q}$$

Przykład 3.0.8. $\sum_{n=0}^{\infty} \frac{1}{n!} = e$

Przykład 3.0.9. Szereg harmoniczny. $H_N = \sum_{n=1}^N \frac{1}{n}$, $\lim_{N \to \infty} = \infty$, wolny wzrost do ∞ $H_{2^{n+1}} = \frac{1}{1} + \frac{1}{2} + \frac{1}{2+1} + \frac{1}{2+2} + \frac{1}{2^2+1} + \frac{1}{2^2+2} + \frac{1}{2^2+3} + \frac{1}{2^3} + \frac{1}{2^3+1} + \frac{1}{2^3+2} + \frac{1}{2^3+3} + \cdots + \frac{1}{2^3+2^3} + \frac{1}{2^n+1} + \frac{1}{2^n+2} + \cdots + \frac{1}{2^n+2^n}$

$$\begin{array}{l} \frac{1}{1} + \frac{1}{2} = \frac{3}{2} \\ \frac{1}{2+1} + \frac{1}{2+2} \geqslant 2 \cdot \frac{1}{2+2} = \frac{1}{2} \\ \frac{1}{2^2+1} + \frac{1}{2^2+2} + \ldots \geqslant 4 \cdot \frac{1}{2^2+2^2} = \frac{1}{2} \\ \frac{1}{2^3+1} + \frac{1}{2^3+2} + \ldots \geqslant 8 \cdot \frac{1}{2^3+2^3} = \frac{1}{2} \\ \frac{1}{2^n+1} + \frac{1}{2^n+2} + \ldots \geqslant 2^n \cdot \frac{1}{2^n+2^n} = \frac{1}{2} \\ H_{2^{n+1}} \geqslant \frac{3}{2} + \frac{1}{2} \cdot n = 1 + \frac{1}{2}(n+1) \\ H_{2^{n+1}} \geqslant 1 + \frac{n+1}{2} \\ H_{2^n} \geqslant 1 + \frac{n}{2} \end{array}$$

Założmy, że $2^N = k \implies N = log_2()$ $H_k\geqslant 1+\frac{\log_2(k)}{2}\to\infty$ Na mocy twierdenia o dwóch ciągach $H_k\to\infty$

Następny wykład - kryteria zbieżności szeregów: kryterium kondensacyjne.

Definicja 3.0.7. Warunek konieczny zbieżności szeregów. Jeżeli $\sum_{n=1}^{\infty} a_n$ jest zbieżny, to $\lim_{n\to\infty} a_n = 0$. (dla $\sum_{n=1}^{\infty} a_n < \infty$).

Szereg $\sum_{n=1}^{\infty} \frac{n}{n+1}$ jest rozbieżny, bo nie jest spełniony warunek konieczny $\lim_{n\to\infty} \frac{n}{n+1}=1$

Warunek konieczny nie jest wystarczający.

Wykład czwarty 4

Kryteria zbieżności szeregów

$$\sum_{n=1}^{\infty} a_n, a_n > 0, \operatorname{czy} S_n = \sum_{n=1}^{\infty} a_n$$

 $S_{N+1} - S_N = a_{n+1} > 0, S_N$ - rosnący. Jeżeli S_N jest ograniczony to jest zbieżny.

$$\sum_{n=1}^{\infty} \frac{1}{n^2}, \text{ dla } n \ge 2:$$

$$S_N = \sum_{n=1}^{N} \frac{1}{n^2} = 1 + \sum_{n=2}^{N} \frac{1}{n^2} \le 1 + \sum_{n=2}^{N} \frac{1}{n(n-1)} = 1 + \sum_{n=2}^{N} (\frac{1}{n-1} - \frac{1}{n}) = 2 - \frac{1}{N} \le 2$$

Twierdzenie 4.1.2. Kryterium porównawcze. $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$ oraz $a_n, b_n > 0$:

Jeżeli
$$\exists_{n_0} \forall_{n>n_0} a_n \leqslant b_n$$
 i $\sum_{n=1}^{\infty} b_n$ jest zbieżny, to $\sum_{n=1}^{\infty} a_n$ jest zbieżny.

Twierdzenie 4.1.3. Jeżeli $\sum_{n>n_0}^{\infty} \leqslant \sum_{n>n_0}^{\infty}$ i $\sum_{n>n_0}^{\infty} a_n = \infty$ $(a_n \text{ rozbieżny})$, to wówczas $\sum_{n>n_0}^{\infty} b_n = \infty \ (b_n \text{ rozbieżny}).$

Wniosek: $\sum_{n=1}^{\infty} \frac{1}{n^p} = \infty$ dla $p \le 1$, bo $\frac{1}{n^p} \ge \frac{1}{n}$, $\sum_{n=1}^{\infty} \frac{1}{n} = \infty$

Twierdzenie 4.1.4. Twierdzenie o zagęszczaniu. Zakładamy, że $a_n \ge 0$ i $a_{n+1} \le a_n$. Wówczas $\sum_{n=1}^{\infty} a_n$ jest zbieżny $\iff \sum_{n=1}^{\infty} 2^n a_{2^n}$ jest zbieżny.

Przykład 4.1.1. Rozważmy poniższy przykład ciągu:

$$a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 + a_8 \implies tw.zag$$

 $2 \cdot a_2 + 4 \cdot a_4 + 8 \cdot a_8$

Przykład 4.1.2. Zastosowanie Tw. o zagęszczaniu.

$$\sum_{n=1}^{\infty} \frac{1}{n^p}, p \in \mathbb{R} \text{ zbieżny} \iff \sum_{n=1}^{\infty} 2^n (\frac{1}{2^n})^p \text{ jest zbieżny.}$$

$$\sum_{n=1}^{\infty} 2^n (\frac{1}{2^n})^p = \sum_{n=1}^{\infty} 2^n \frac{1}{2^{np}} = \sum_{n=1}^{\infty} \frac{1}{2^{np-n}} = \sum_{n=1}^{\infty} \frac{1}{2^{n(p-1)}}$$

$$\sum_{n=1}^{\infty} \frac{1}{2^{n(p-1)}} \text{ jest zbieżny dla } p > 1$$

Wniosek 1: $\sum_{n=1}^{\infty} \frac{1}{n^p}$ jest zbieżny dla p > 1 i rozbieżny dla $p \leqslant 1$

Definicja 4.1.1. Kryterium d'Alemberta: $\sum_{n=1}^{\infty} a_n, a_n \ge 0$:

- Jeżeli $\exists_{n_0} \forall_{n>n_0} \frac{a_{n+1}}{a_n} \leqslant q < 1$, to $\sum_{n=1}^{\infty} a_n$ jest zbieżny.
- Jeżeli $\exists_{n_0} \forall_{n>n_0} \frac{a_{n+1}}{a_n} \geqslant 1$, to $\sum_{n=1}^{\infty} a_n$ jest rozbieżny.
- Jeżeli $\exists_{n_0} \forall_{n>n_0} \frac{a_{n+1}}{a_n}=1,$ to kryterium d'Alemberta nie rozstrzyga zbieżności.

Idea d-d:

$$\lim_{n\to\infty} \sup \left| \frac{a_{n+1}}{a_n} \right| = q, q < 1$$

$$\left|\frac{a_{n+1}}{a_n}\right| < q$$

$$a_{n+1} < a_n q$$

$$a_{n+1} < a_n q$$
 $a_n < a_0 q^{n-1}$

$$a_n < a_0 q^{n-1}$$

$$\sum_{n=1}^{\infty} a_n < \sum_{n=1}^{\infty} a_0 q^{n-1} - \text{zbieżne}$$

Przykład 4.1.3. Przykład: $\sum_{n=1}^{\infty}, a_n = \frac{n!}{n^n}$:

$$\frac{a_{n+1}}{a_n} = \frac{\frac{(n+1)!}{(n+1)^{n+1}}}{\frac{n!}{n^n}} = \frac{n^n}{(n+1)^n} = \frac{1}{\frac{(n+1)^n}{n^n}} = \frac{1}{(1+\frac{1}{n})^n}$$

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{1}{(1+\frac{1}{n})^n} = \frac{1}{e} < 1$$

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{1}{(1 + \frac{1}{n})^n} = \frac{1}{e} < 1$$

Z kryterium d'Alemberta szereg jest zbieżny.

Przykład 4.1.4. Przykład: $\sum_{n=1}^{\infty} \frac{n!}{2^n}$ jest rozbieżny. $(\sum_{n=1}^{\infty} \frac{n!}{2^n} = \infty)$

Przykład 4.1.5. Przykład: $\sum_{n=1}^{\infty} \frac{1}{n} = \infty$

 $\frac{a_{n+1}}{a_n}=\frac{\frac{1}{n+1}}{\frac{1}{n}}=\frac{n}{n+1}\to 1$ Kryterium d'Alamberta nic nie powie.

Przykład 4.1.6. Przykład: $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$

$$\sum_{n=1}^{N} \frac{1}{n(n+1)} = \sum_{n=1}^{N} \left(\frac{1}{n} - \frac{1}{n+1}\right) = 1 - \frac{1}{N+1} \to 1$$

$$\sum_{n=1}^{N} \frac{1}{n(n+1)} = \sum_{n=1}^{N} \left(\frac{1}{n} - \frac{1}{n+1}\right) = 1 - \frac{1}{N+1} \to 1$$

$$\frac{a_{n+1}}{a_n} = \dots = \frac{n^2 + n}{n^2 + 3n + 2} = 1 \text{ Kryterium d'Alamberta nic nie powie.}$$

Simplify (wolframalpha):

$$\frac{(n+1)!}{(n+1)^{n+1}} \cdot \frac{n^n}{n!} = \frac{n^n}{(n+1)^n}$$

 $\operatorname{discreteplot}(n^2, (n, 1, 20))$ (wolframalpha)

 $\operatorname{discreteplot}(n^2, n, 1, 20)$ (mathematica)

Definicja 4.1.2. Kryterium Cauchy'ego. $\sum_{n=1}^{\infty}, a_n \geqslant 0$

- 1. Jeżeli $\exists_{n_0} \forall_{n>n_0} \sqrt[n]{a_n} \leqslant q < 1$, to $\sum_{n=1}^{\infty} a_n$ jest zbieżny.
- 2. Jeżeli $\exists_{n_0} \forall_{n>n_0} \sqrt[n]{a_n} \geqslant 1$, to $\sum_{n=1}^{\infty} a_n$ jest rozbieżny.
- 3. Jeżeli $\exists_{n_0} \forall_{n>n_0} \sqrt[n]{a_n} = 1$, to kryterium Cauchy'ego nie rozstrzyga zbieżności.

Idea:

$$\sqrt[n]{|a_n|} < q$$
, $0 < q < 1$ czyli $|a_n| < q^n$ więc $a_n < q^n$ zatem $\sum_{n=1}^{\infty} q^n$ zbieżny.

Przykład 4.1.7. $\sum_{n=1}^{\infty} \frac{n^2}{2^n}, a_n = \frac{n^2}{2^n}$ z kryterium Cauchy'ego: $\sqrt[n]{a_n} = \frac{\sqrt[n]{n^2}}{2} = \frac{1}{2} < 1$ - zbieżny

Przykład 4.1.8. $\sum_{n=1}^{\infty} \frac{7^n}{2^n+5^n}, a_n = \frac{7^n}{2^n+5^n}$ z kryterium Cauchy'ego: $\sqrt[n]{a_n} = \frac{7}{\sqrt[n]{2^n+5^n}} = \frac{7}{5} > 1$ - rozbieżny

Przykład 4.1.9. $\sum_{n=1}^{\infty} \frac{5^n}{5^n+3^n}$ kryterium Cauchy'ego nie działa: $\sqrt[n]{a_n} = \frac{5}{\sqrt[n]{5^n+3^n}} \implies 1$

 $a_n=\frac{5^n}{5^n+3^n},$ sprawdźmy warunek konieczny zbieżności: $lim_{n\to\infty}a_n=lim_{n\to\infty}\frac{5^n}{5^n+3^n}=1\neq 0$

Ciąg jest rozbieżny.

Definicja 4.1.3. Zbieżność bezwzględna. Rozważmy szereg $\sum_{n=1}^{\infty} a_n$ o wyrazach dowolnych. Mówimy, że szereg $\sum_{n=1}^{\infty} a_n$ jest zbieżny bezwzględnie jeśli: $\sum_{n=1}^{\infty} |a_n|$ jest zbieżny.

Przykład 4.1.10. $\sum_{n=1}^{\infty} \frac{(-1)^n n^2}{2^n}$ jest zbieżny bezwzględnie. $\sum_{n=1}^{\infty} |\frac{(-1)^n n^2}{2^n}| = \sum_{n=1}^{\infty} \frac{n^2}{2^n} < \infty$ $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$ jest zbieżny (kryterium d'Alemberta)

$$\sum_{n=1}^{\infty} \left| \frac{(-1)^n n^2}{2^n} \right| = \sum_{n=1}^{\infty} \frac{n^2}{2^n} < \infty$$

FAKT. Badanie zbieżności bezwzględnej szeregu sprowadza się do badania zbieżności szeregu o wyrazach nieujemnych.

Twierdzenie 4.1.5. Zbieżność bezwzględna implikuje zwykłą zbieżność.

$$\sum_{n=1}^{\infty} |a_n|$$
 jest zbieżny $\implies \sum_{n=1}^{\infty} a_n$ zbieżny.

Uwaga: twierdzenie w drugą stronę nie działa.

Przykład 4.1.11. $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ nie jest zbieżny bezwzględnie, bo: $\sum_{n=1}^{\infty} \left| \frac{(-1)^n}{n} \right| = \sum_{n=1}^{\infty} \frac{1}{n} = \infty$

$$\sum_{n=1}^{\infty} \left| \frac{(-1)^n}{n} \right| = \sum_{n=1}^{\infty} \frac{1}{n} = \infty$$

Twierdzenie 4.1.6. Kryterium Abela (Dirichleta). Niech zachodza następujące warunki:

- 1. $a_n \geqslant 0$
- $2. \ a_1 \geqslant a_2 \geqslant ... \geqslant a_n \geqslant ...$
- 3. $\lim_{n\to\infty} a_n = 0$

Wówczas:

$$\sum_{n=1}^{\infty} a_n (-1)^n$$
 jest zbieżny

Przykład 4.1.12. Pokażmy, że szereg $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ jest zbieżny. Z kryterium Abela: $a_n = \frac{1}{n} \geqslant 0 \land a_1 \geqslant a_2 \geqslant ... \geqslant a_n \geqslant ... \land lim_{n \to \infty} a_n = 0$ Szereg jest zatem zbieżny.

Przykład 4.1.13. $\sum_{n=1}^{\infty} a_n (-1)^{n+1} = \sum_{n=1}^{\infty} (-1)(-1)^n a_n = -1 \cdot \sum_{n=1}^{\infty} (-1)^n a_n$ Dalej z kryterium Abela...

Ciagi to funkcje $\mathbb{N} \to \mathbb{R}$

4.2 Funkcje

Analizujemy funkcje $\mathbb{R} \to \mathbb{R}$

Definicja 4.2.1. Dziedzina funkcji (domain): dom(f) - zbiór wszystkich x dla których funkcja jest określona.

Definicja 4.2.2. Zbiór wartości (range): $rng(f) = \{f(x) : x \in dom(f)\}$

Definicja 4.2.3. Wykres funkcji (graph): $G(f) = \{(x, f(x)) : x \in dom(f)\}$

Definicja 4.2.4. Funkcja różnowartościowa (one-to-one function):

$$\forall_{x,y \in A} x \neq y \implies f(x) \neq f(y)$$

Uwaga. Jeśli $f:A\to B$ jest różnowartościowa, to istnieje dokładnie jedna funkcja $f^{-1}:rng(f)\to A$, taka że: $\forall_{x\in A}f^{-1}(f(x))=x$ oraz $\forall_{y\in rng(f)}f(f^{-1}(y))=y$.

Definicja 4.2.5. Funkcje monotoniczne $f: A \to B$:

- 1. $\forall x, y \in A(x < y \implies f(x) < f(y))$ rosnaca
- 2. $\forall x, y \in A(x < y \implies f(x) > f(y))$ malejąca
- 3. $\forall x,y \in A(x < y \implies f(x) \leqslant f(y))$ niemalejąca (słabo rosnąca)
- 4. $\forall x, y \in A(x < y \implies f(x) \ge f(y))$ nierosnąca (słabo malejąca)

Definicja 4.2.6. Złożenie funkcji $f:A\to B,\,g:B\to C$ wówczas:

$$g \circ f : A \to C$$
$$(g \circ f)(x) = g(f(x))$$

Przykład 4.2.1. Rozważmy następujące funkcje i ich złożenia:

$$f: \mathbb{R} \to \mathbb{R}, g: \mathbb{R} \to [-1, 1]$$

$$f(x) = x^3 + 1, g(y) = \sin(y)$$

$$g \circ f(x) = g(f(x)) = sin(f(x)) = sin(x^3 + 1)$$

Przykład drugi:

$$g:\mathbb{R}\to [-1,1], f:[-1,1]\to \mathbb{R}$$

$$f \circ g(x) = f(g(x)) = f(\sin(x)) = \sin^3(x) + 1$$