제조 혁신과 소프트웨어의 역할

SPRi FORUM (2015.8.25 | 15호|)

2015.8.25.

지은희 선임연구원 (ehj524@spri.kr)

목 차

- 1. 추진배경
- 2. 제조업의 미래
- 3. 해외 주요국의 제조혁신 정책
- 4. 글로벌 기업의 성공 사례와 특징
- 5. 우리의 현황 및 이슈
- 6. 결론 및 시사점

1. 배경 : 우리 경제에서 제조업의 위상

GDP내 제조업 비중

* 출처 : UN, 'National Accounts Main Aggregates Database "

취업자에서 차지하는 제조업 비중

	2000	2005	2010	2012
일본	20.5%	18.0%	17.2%	16.9%
미국	14.4%	11.5%	10.1%	10.3%
영국	16.9%	13.2%	9.9%	9.8%
독일	23.8%	22.0%	20.0%	19.8%
프랑스	18.8%	16.1%	13.1%	12.8%
중국		28.2%	27.9%	28.0%
한국	20.3%	18.1%	16.9%	16.6%

^{*} 출처 : (독일) 노동정책연구기구, '데이터북 국제노동비교 2014'

1. 배경 : 제조업의 위기

[사설] 한국

입력: 2015-08-

한국

美・獨 신기술로 격차 더 벌

한국 경제 근간인 제조업 검정력을 협하는 '퍼펙트 스톰(파괴력이 큰 한 폭풍)'이 몰려오고 있다.

막강한 하드웨어 제조 능력에다 : 트웨어와 서비스까지 결합한 유럽고 국이 멀리 달아나고, 추격자였던 중한 조업도 혁신 역량을 갖추고 단숨에 한 제조업을 위협할 태세다. 10만원대 : 가격으로 뛰어난 소프트웨어를 적는 스마트폰으로 인기를 끌고 있는 중국 기업 샤오미가 대표적이다.

IT와 소프트웨어 기술을 제조업3

▶ 퍼펙트스톰 앞 위기 한국 제조업 왜?

철강·석화, 과잉공급 경쟁력 하락 성장동력 발굴·육성 '캡틴' 없어

"제조업 전체가 파괴적 혁신에 노출돼 있습니다. 소프트웨어와 연구개발(R&D)이 제조 경쟁력 의 원천이 되고 있지만 한국은 위 기감조차 없습니다."

임채성 건국대 경영대 교수(기 술경영결제학회 차기 회장)의 진 단이다. 임 교수 같은 전문가들은 "아직 괜찮아 보이지만 한국 산업 이 곧 위기에 처할 것"이라고 경고 한다.

실제로 한국의 주력 산업을 보면 상황이 좋은 곳을 찾기 어렵다. 월 강과 석유화학은 수익성 저하와 공 급과잉 이슈에 노출돼 있고, IT와 자동차 분야에서는 지금보다 좋은 실적을 올리기 어려울 것이라는 전 밤이 나온다.

매일경제가 매년 발표하는 1000 대 기업 매출도 2013년에 외환위 기 이후 처음 감소했다. 제조업 성 장이 멈춘 데 기인한 바가 크다는 부석이다.

곽영훈 하나금융그룹 연구위원 은 최근 내놓은 "제조업 성장등력 문제 없나?"리포트에서 "최근 3년 간 산업별 생산은 반도체 화학의 생산 호조가 지속된 반면 철강 자 동차는 현상유지하는 데 그쳤다" 며 "조선과 기계는 큰 쪽의 문화를

까지 겹치면서 저성장이 고착될 가 농성이 크다"고 분석했다.

그러나 가장 근본적인 이유는 핵 신에 실패했기 때문이다. 글로벌 금융위기 직후 우리 기업들의 실적 이 선방하면서 제조업 근본 경쟁력 에 대해 고민하지 못했다는 설명이 다. 미국 독일 등 선진국은 전통 제 조업의 한계(고비용 구조, 유연하 지 못한 시스템)를 극복하기 위해 원료, 생산부터 제품 서비스까지 연결되는 내장(임베디드) 소프트 웨어를 발전시켜왔다. 하지만 한 국의 제조 현장에선 제조와 소프트 웨어, 연구개발 분야가 따로 노는 모양새다.

세일가스 개발 등 원재료 혁신으로 생산 비용이 감소되는 추세지만 한국은 제조 원가에 원재료와 인건 의 또 다른 원인이 되고 있다. 갈 수록 높아지는 원재료 비중과 인건 비를 해소할 수 있는 방법으로 미 국에서는 3D 프린터 등 '혁신 기 술' 도입하고 있지만 한국은 이 같 은 혁신 기술을 내재화하는 데는 더딘 삼황이다.

권태신 한국경제연구원장은 정권마다 신성장 프로젝트가 달 라져 기업들이 믿고 지속적으로 해 신기술에 투자하기 어렵다"고 문 재를 지적했다.

이승철 전경련 상근부회장은
"용·복합이 핵심인 신성장동력 프 로젝트를 끌고 갈 담당자와 컨트롭 타위가 없는 것이 문제"라며 "제 조업 핵신을 위한 지도는 만들었지 만 함께를 책임지는 선장이 없는 것이 현심"이라고 지적했다.

밀려

┋스톰'

강력한 폭풍>

통해 후발주자들을 압도하면서 격차를 지속적으로 유지하겠다는 야심 찬 계획 이다. 구글이나 테슬라 같은 혁신기업이 10년 뒤 가장 강력한 스마트카 회사로 변 신해 현대차를 위협하는 환경이 실제로 조성되고 있는 것이다.

환국 제조업엔 이미 브래이크가 걸렸다. 1일 때일점제가 통계청 '제조업 생산지수'를 분석한 결과 한국은 2011년부터 3년간 제조업 생산증가율이 평균 2. 2%로 2001~2010년 평균 증가율 6.7% 대비 3분의 1 수준이었다. 3년 연속 정체를 보인 것은 통계 작성 이래 처음이다.

김은표 · 손재권 · 김동은 기자

는 궁과 식선에 좋아있다는 위기감이 팽배하다.

2. 제조업의 미래

스마트 제조업 디지털 제조업 Industry 4.0

- 저임금 국가 생산, 선진국가 소비 → 글로벌 생산, 글로벌 소비 패턴
- 소비자 니즈의 고도화 및 다양화
- 빅데이터·사물인터넷 등 자원 제약을 극복해 낼 수 있는 기술의 진보

제조업 혁신을 이끄는 주요 핵심 기술

미래의 제조업 모습

- 1. 정보계(IT)와 현장계(OT)의 통합
 - 제조 현장과 관리 현장간 실시간 정보교환
 - 원격관리, 유지보수 시점 예측 등으로 운영의 효율화
- 2. 제조업의 서비스화
- 3. 인간과 로봇의 협업

2. 미래의 제조업

정보계(IT)와 현장계(OT)의 통합

- 빅데이터를 선봉으로 한 사물인터넷, 클라우드, 모바일 등 IT기술의 발달로 IT-OT의 통합 가능
- 경영-개발-생산-조달-서비스 전 가치사슬 통합

^{**} PLM(Product Lifecycle Management), MES(Manufacturing Execution System), SLM(Simulation Lifecycle Management)

2. 미래의 제조업

- 제조업의 서비스화: 서비스를 내재한 제품 생산 통해 차별적 부가가치 창출
 - (과거의 제조업) 제품 출하가 판매 완료
 - (미래의 제조업) 제품 출하는 새로운 판매의 시작, 즉 고객의 제품 사용 정보를 적극 활용하여 추가 수익원으로 활용할 수 있는 서비스 요소를 제품에 내재해 개발, 생산(SW enabled Service)
 - 센서에서 나오는 데이터를 SW·분석을 통해 새로운 서비스 창출 => 부가가치, 안정적 수익원

제조업의 서비스화 사례

- ✓ GE의 항공기 엔진 사업 : 엔진(Product)을 판매하는 것이 아니라, 엔진의 기능을 서비스로 제공
- ✓ Rolls-Royce Totalcare Solution
- ① 제품에 내재시킨 사물인터넷 기술을 활용해 고객에게 공급
- ② 전 세계 항공기·선박의 엔진에 대한 위치, 상태 정보를 실시간으로 취합해 데이터센터로 정보 전송
- ③ 데이터센터에서 빅데이터 분석을 통해 고장 가능성과 유지보수 필요성을 판단
- ④ 해당 항공기·선박의 도착지에서 가장 가까운 곳에 롤스로이스 보전기사를 보내 항공기·선박이 도착하는 즉시 정비서비스
- ✓ 커넥티드 트랙터: 제품 판매 + 농경 서비스 제공
- ✓ 진공청소기 등 가전 : 먼지를 감지하는 센서를 부착하여 클라우드에서 분석하여 병원균의 존재 파악

토탈케어 서비스 실적

2. 미래의 제조업

- 직업세계의 변화 : 인간과 로봇간 협업
 - (현재 제조업) 유연성이 요구되는 작업은 완전수동방식으로 사람들이 수행하고, 생산성이 필요한 작업에는 로봇을 활용
 - (미래 제조업) 사람-로봇-정보 시스템 간 통신·컴퓨팅 강화
 - 저숙련 직종은 기계로 대체, 새로운 고숙련 직종에 대한 수요 증대=> SW인력확충, 전문인력 교육

* 출처 : BCG(2015)

3. 해외 주요국의 제조 혁신 정책

세계 주요 제조강국들은 노동력 감소,고령화 등 노동기반 약화에 따라, 제조현장의 고도화를 통해 미래 제조업 경쟁력 확보 노력을 가속화하는 중임.

- 첨단 제조 파트너쉽(Advaced Manufacturing Partnership)
- 오바마 대통령의 이니셔티브로 미국으로 제조업 회귀(Reshoring)를 중시,
- 제조업체에 대한 세율 조정 및 첨단제조 기업에 대한 세제 지원 확대
- 제조업 혁신 가속화를 위해 '첨단제조파트너십 조정위원회' 설치 및 '국가제조업혁신네트워크' 구축
- 첨단제조업 인재 육성을 위한 펀드조성 및 제조혁신기관 건립
- 기술 혁신을 위한 플랫폼 제공, 첨단제조기술 로드맵 작성하여 중소기업이 사용할 수 있는 시설 정비 등을 실시
- GE의 Industrial Internet이 차세대 제조업을 견인한 것처럼, 민간주도의 움직임이 빠르게 확산

- 산업계 중심의 Industry 4.0 전략 발표('12), 2015년 4월 '인더스트리 4.0' 전략을 정부 주도로 변경
 - IoT, 3D 프린팅, 사이버물리시스템(CPS), 스마트 공장 등을 활용해 국가차원의 기술표준을 정립
 - 제조업과 ICT를 결합하여 생산시설의 네트워크화, 지능형생산시스템을 갖춘 Smart Factory로 진화
- 원료, 생산, 물류, 서비스, 제품까지도 모두 임베디드 시스템을 통해 네트워크에 연결되고 사이버물 리시스템(CPS)을 통해 생산과정을 통제

<미국과 독일의 제조 혁신 정책의 특징>

IT와 제조의 부가가치 획득 경쟁 구도

* 출처: 経済産業省・厚生労働省・文部科学省, 'ものづくり基盤技術の振興施策' (2015.6)

3. 해외 주요국의 제조 혁신 정책

일본

- 기존 '일본 재흥전략'을 미래 투자 및 생산성 혁명에 맞춘 '2015년판 제조 백서'로 개정(2015년 6월)
 - 단순한 생산의 효율화를 넘어서 IoT 활용에 의한 비즈니스 모델이 변혁하는 상황에서도 제조현장의 「장인의 기술」이나「스리아와세(조정통합)」로 경쟁력을 확보해 온 일본의 제조업에서는 IoT 활용에 의한 고부가가치화·차별화하는 전략 추진 필요
 - IoT로 인해 세계적으로 제조업의 경쟁 규칙이 크게 변한다는 인식 하에 로봇 대국인 일본이 IoT 시 대의 로봇으로 세계를 선도하고 로봇 혁명을 실현해 나가는 것을 제안
- 일본은 다른 선진국과는 달리 제조업 자체에 대한 경쟁력 부족 문제 보다는 교육.연구개발 등의 과 학기술혁신을 통한 제조기반지원 측면에서 제조업 혁신을 접근

- '2025년 세계 제조업 2강 대열 진입'을 목표로 '중국 제조 2025' 를 수립('15.5)
 - 인터넷 기술과 전통산업 간 융합을 산업 발전의 새로운 동력으로 인식하고, 제조업에 인터넷 기술을 접목시키는 스마트 제조 발전 전략 추진
 - 향후 30년간 세 단계에 거쳐 산업고도화를 추진하는 전략목표를 제시하고 있으며, 세부전략 설정을 통해 10대 핵심 산업분야를 선정하는 한편, 5대 중점 프로젝트 계획을 명시함
- 중국 제조업 발전수준(Industry 2.0~3.0)을 고려, 네트워크, 디지털화 등의 기술을 이용하여 산업화 와 정보화를 고도로 융합시키는 동시에 중국이 '제조대국'에서 '제조강국'으로 전환하는 것을 목표

4. 글로벌 기업의 제조혁신 사례

- GE의 산업인터넷(Industrial Internet)
 - GE는 '모든 제조 회사가 소프트웨어와 데이터분석 회사'가 되어야 한다고 보고, 캘리포니아 샌 래 몬에 10억 달러를 투자하여 'GE Software 센터'를 설립
 - GE는 소프트웨어 및 분석 역량 강화를 위해 '소프트웨어 센터'에 1,000명 이상, 글로벌 GE Biz에 10,000여명 이 상 소프트웨어 엔지니어와 데이터 과학자를 고용
 - 터빈, 엔진, 기관차 등 센서가 부착된 장치들로부터 데이터를 수집·분석하여 산업용 중대형 장비나 부품에 스마트 기능을 부여하는 IoT 플랫폼(Predix)과 40여개의 솔루션(Predictivity) 개발
 - 2014년 GE의 소프트웨어 매출은 40억 달러(총매출 1,486억 달러)로 SW매출의 대부분이 Predix에서 나오고, 2016년에는 SW매출이 70억 달러를 달성할 것으로 전망
 - GE의 비전은 스마트폰 생태계와 마찬가지로 산업부문도 전세계 모든 기업과 개인이 만든 수많은 앱(애플리케이션)을 지원하는 열린 플랫폼 프레딕스를 통해 산업부문 앱 경제를 실현
 - GE는 산업인터넷 생태계 확장을 위해 자사의 프리딕스 플랫폼을 개발자와 파트너사에 개방('15년)하고, Amazon, AT&T, Intel, Softbank, Cosco, Verizon, Vodaphone 등과 전략적인 제휴
 - 산업인터넷 경쟁력 강화를 위해 기업내 VC펀드(GE Ventures)를 조성하여 스타트업 육성하거나, IoT, 빅데이터, 보안 기업들을 **적극적으로 M&A**(Wurldtech(센서), Pivotal(빅데이터), Mocana(사이버보안))
 - 산업인터넷 분야에서 GE의 이러한 성과는 '하드웨어/도메인 전문 지식과 소프트웨어/분석 역량'을 결합하여 고객에게 차별화된 가치를 제공하였기 때문
 - GE는 산업인터넷으로 전 산업에 걸쳐 효율성을 1% 끌어 올리면 엄청난 비용절감이 가능할 것으로 전망
 - 향후 15년간 에너지산업에서 연료사용량을 1% 줄이면 660억 달러, 항공업계는 300억달러를 절감할 수 있으며 헬스케어는 630억 달러를 절감

산업인터넷에서의 GE의 성공: SW분석역량+산업전문지식

4. 글로벌 기업의 제조혁신 사례

- Siemens: Smart Factory
 - 지멘스는 1만7500여명의 SW 엔지니어를 보유하고 있으며, 2007년부터 디지털 제조역량 강화를 위해 SW, 시뮬레이션, 보안 솔루션기업 인수에 40억 유로 투자
 - 지멘스 암벡 공장은 산업자동화 SW와 생산로봇을 적용해 구매, 제작에서 물류까지 전 공정의 75%를 자동화한 세계 최고의 '스마트 공장' 구현
 - '제품디자인→생산계획→생산엔지니어링→생산실행→서비스'까지 전 제조과정을 하나의 시스템으로 통합한 디지털엔터프라이즈플랫폼(DEP) 구축하여 **설계부터 생산까지 소요되는 시간을 기존보다 50% 가까이 단축**
 - 제품은 기계와 실시간 교신을 하면서 각종 정보와 현 상황을 전달, 유휴 설비의 절전/단전을 통해 에너지 절약
 - 2030년까지 가상 세계와 현실 세계의 완전 통합으로 Industries 4.0 달성

지멘스 디지털 플랫폼

* 출처 : Siemens(2014)

5. 우리의 현황 및 이슈

● 제조혁신 정책 : 제조업 3.0 전략(2015.4)

< 스마트 산업혁명의 양상>

구분 현재(As-Is) 미래(To-Be) 생산 ・소비자 맞춤형 유연생산 · 소품종 · 대량생산 •범위의 경제 방식 • 규모의 경제 제품ㆍ •제품 고유기능 충실 ·스마트 디바이스化 •소프트파워 경쟁 서비스 · 가격 · 품질경쟁 · 틈새수요로도 수익창출 비즈 ·대형수요 존재시 수익창출 •3D프린터, 온라인 유통 등 • 양산설비가 비즈니스 전제 니스 → 공장 없는 창업·비즈니스 <제조업 혁신 3.0 전략 실행 대책(2015.3)>

목표

제조업의 창조경제 구현

기본 방향

- ① 제조업·IT 융합을 통해 생산현장, 제품, 지역생태계 혁신
- ② 성공사례를 조기 창출하여 제조업 전반으로 확산

4대 추진방향	13대 세부 추진과제		
1. 스마트 생산방식 확산	 스마트공장 보급·확산 8대 스마트 제조기술 개발 제조업 소프트파워 강화 생산설비 고도화 투자 촉진 		
2. 창조경제 대표 신산업 창출	① 스마트 융합제품 조기 가시화 ② 30대 지능형 소재·부품 개발 및 사업화 ③ 민간 R&D 및 실증 투자 촉진		
3. 지역 제조업의 스마트 혁신	① 창조경제혁신센터를 통한 제조업 창업 활성화 ② 지역 거점 산업단지의 스마트화 ③ 지역별 특화 스마트 신산업 육성		
4. 사업재편 촉진 및 혁신기반 조성	① 기업의 자발적 사업재편 촉진 ② 융합신제품 규제시스템 개선 ③ 제조업 혁신을 뒷받침하는 선제적 인력 양성		

5. 우리의 현황 및 이슈

- 우리의 제조혁신 전략의 방향성 설정은?
 - 기존 공장자동화와 구분되는 진정한 Digital transformation 전략인가?
 - 우리 제조업은 경쟁력있는 플랫폼 역량이 있는가?
 - 플랫폼 주도자가 될 것인가? 플랫폼 기업과 협력하는 파트너가 될 것인가?
- 제조 혁신을 위한 우리의 산업구조적인 여건은 충분한 잠재력이 있는가?
 - 미래 제조업은 제품 품질, 가격 경쟁력에서 생태계, 플랫폼 경쟁력으로 경쟁원천이 변화, SW역량, SW생태계이 제조업 경쟁력의 핵심 요소로 부상(설비 투자-> SW R&D 투자)
 - 인적 자원 : 숙련노동자 -> SW전략을 총괄하는 SW전담조직, 인력 확충
- 그리고 우리 SW산업의 경쟁력은 충분한가?

5. 우리의 현황 및 이슈

- 우리나라 제조업의 IT/SW 활용은 선진국의 1/3 수준(SERI, 2008년 기준 데이터)
- 타 산업에서 SW활용도는 크게 증대되지 않아 산업의 혁신과 국민경제에 미치는 파급효과 는 아직 미흡한 상황(한국의 산업별 SW 활용도는 미국의 55.3% 수준)
- 제조업에서의 SW인력 수요는 증가하고 있는데 비해, SW인력 분포는 IT 기업에 치우침
- 제조업의 SW 기업에 대한 투자 및 인수사례는 매우 미흡

^{*} 출처 : SPRI(2015),

^{*} 출처 : 미국, 일본은 METI(2015)

^{**} 각 산업에서 1억원 생산에 필요한 SW 투입량(한국은행 산업연관표 2012년 기준)

^{**}한국은 임베디드 SW실태조사결과로 추정한 값

6. 결론 및 시사점

- 1. 제조업 혁신 3.0 전략: 미래 제조업 변화에 대비, 제조 혁신의 큰그림 부재
 - 총체적 접근, SW기반 제품/서비스 혁신 전략이라기 보다는 단위 부품/공정 중심/자동화 중심 한계
- 2. 세계 최고의 ICT 인프라와 제조업 강점을 가진 우리나라가 미래 제조혁신을 위한 기반이 충분하나, 새로운 제조 생태계 주도 전략과 SW 경쟁력 부족으로 본격적인 실행력 부족
 - * 엑센츄어가 글로벌 20개국 대상 IIoT 역량을 평가한 결과, 한국은 12위(52.2점)에 불과 미국(64점), 스위스(63.9점) 핀란드(63.2점), 일본 9위(54.4점), 중국 14위(47.1점)
- 3. 제조업 혁신을 추진할 추진체계 구축 미흡(범부처적 제조혁신 기구 필요)
- 4. 차세대 제조업에서 요구되는 SW전문인력 양성을 위한 체계적인 인력양성계획 미흡
 - SW인력 채용계획, IoT, 빅데이터, 클라우드, 제조 IT 전문기업 육성 및 투자계획 미흡
 - 이제 SW 인력양성과 SW 스타트업 투자 활성화는 SW산업계만의 문제가 아니라 제조업의 생존전략이 되고 있음을 인지해야 함