```
# # Flow Data Generation Copyright (c) 2018, All rights reserved.
# # If you have questions about your rights to use or distribute this # software, please contact dcs.tamuc@gmail.com
# # Fri Sep 14 07:37:35 CDT 2018
# dcs.tamuc@gmail.com
#
```

Instruction Manual: Generating NetFlow-compatible data with labels

SiLK, the System for Internet-Level Knowledge, is a collection of traffic analysis tools developed by the CERT Network Situational Awareness Team (CERT NetSA) to facilitate security analysis of large networks. The SiLK tool suite supports the systematic collection, storage, and analysis of network flow data, enabling network security analysts to rapidly query large historical traffic data sets. SiLK is ideally suited for analyzing traffic on the backbone or border of a large, distributed enterprise or mid- sized ISP.

Installation:

Download silk-3.16.0.tar.gz from https://tools.netsa.cert.org/silk/download.html

- 1. tar -xzvf silk-3.16.0.tar.gz
- 2. cd silk-3.16.0
- 3. ./configure --prefix=/usr/local or ./configure --prefix=/MY PATH/silk-3.16.0
- 4. make
- 5. make install

Note: rwstats only outputs in seconds, not in milliseconds.

To fix this for millisecond, update src/rwstats/rwstatssetup.c for the two lines:

- line 293: SK OPTION TIMESTAMP ALWAYS MSEC
- line 301: static int bin time uses msec = 1;

And, make and make install to complete.

Note: rwcut outputs in milliseconds.

Making Flow Data:

First download trace and log data:

- Packet trace download: http://mawi.wide.ad.jp/mawi/
- Intrusion log download: http://www.fukuda-lab.org/mawilab/

And, run rwptoflow and rwstats (or rwcut). rwstats makes summary output and reorders the entries. rwcut preserves the output order.

- 1. rwptoflow captureFilepath --flow-out=FlowData.rw
- rwstats FlowDataPath \
 - --fileds=FieldsList \
 - --values=Flows \

```
--output-path=yyyymmdd_result.data \
--percentage=0
where FlowDataPath is the output from rwptoflow (FlowData.rw)

rwcut FlowDataPath \
--fields=FieldsList \
--output-path=yyyymmdd_result.data
where FlowDataPath is the output from rwptoflow (FlowData.rw)
```

For example, download TCPdump file and anomalous suspicious.csv

- 201807011400.pcap.gz (1426.45 MB)
 http://mawi.wide.ad.jp/mawi/samplepoint-F/2018/201807011400.html
- 20180701_anomalous_suspicious.csv http://www.fukuda-lab.org/mawilab/v1.1/2018/07/01/20180701.html
- Run the following commands (choose either rwstats or rwcut).
 - 1. rwpmapbuild --input addrtype-templ.txt --output address_types.pmap
 - 2. rwstats 20180701.rw \

```
--fields=1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,20,21,25,26,27,28,29 \ --values=Flows \ --output-path=20180701_result.data \
```

- --percentage=0
- 3. rwcut 20180701.rw \
 - --fields=1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,<mark>16,17</mark>,20,21,25,26,27,28,29 \
 - --output-path=20180701 result.data

Note: The command rwpmapbuild is to include the fields of sType (#16) and dType (#17) in the output. In that case, address_types.pmap file is needed, according to https://tools.netsa.cert.org/silk/addrtype.html. The file addrtype-templ.txt in \$SILKPATH/share/silk can be used.

- Alternatively, if you do not want to include the fields of sType (16) and dType (17) in the output, you can run the following commands instead. In this case, you should specify "—notypes" when running flowlabeling.py (see the section of "Labeling Flow Data" below).
 - 1. rwptoflow 201807011400.pcap --flow-out=20180701.rw
 - 2. rwstats 20180701.rw \

```
--fields=1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,20,21,25,26,27,28,29 \
```

- --values=Flows \
- --output-path=20180701_result.data \
- --percentage=0
- 3. rwcut 20180701.rw \

 - --output-path=20180701 result.data

Note: Below table shows the available fields to retrieve from the raw trace. The field numbers are specified in the "--fields=" option.

Labeling Flow Data:

The next step is to combine the flow data with the given anomaly information. We describe how to combine the flow record in the flow table with the anomalous traffic information provided by MAWILab.

For the flow data (15 minutes of a day), it is possible to download the associated attack information in a csv format. For example, a flow records data file (e.g. 20180701_result.data) and the associated csv file (e.g. 20180701_anomalous suspicious.csv).

To combine those two files, we implemented a new Python3 program of "flowlabeling.py", which is based on the old internal program combineFlow_1003.py. The program is executed based on priority rules defined below. Option "--sec" is when the records are in seconds. Without source modifications, outputs from rwstats are in seconds. By default, it assumes records in milliseconds.

Priority	# matches	sIP	sPort	dIP	dPort
41 (highest)	4	match	match	match	match
34	3	match	null	match	match
33	3	match	match	match	null
32	3	null	match	match	match
31	3	match	match	null	match
26	2	match	null	match	null
25	2	null	null	match	match
24	2	null	match	match	null
23	2	match	null	null	match
22	2	match	match	null	null
21	2	null	match	null	match
14	1	null	null	match	null
13	1	match	null	null	null
12	1	null	null	null	match
11	1	null	match	null	null
0 (lowest)	0	null	null	null	null

With the assumption that the flow and attack files are located in the same directory, the program is being executed with the following command:

% python flowlabeling.py -t YYYYMMDD

e.g. python flowlabeling.py -t 20180701
python flowlabelling.py -t 20180701
python flowlabelling.py -t 20180701 --sec
python flowlabelling.py -i ./20180701_result.data
python flowlabelling.py -i ./20180701_result.data -c 20180701_anomalous suspicious.csv

```
% python flowlabeling.py -h
```

```
usage: flowlabeling.py [-h] [-i INPUTFILE] [-c CLASSIFIER] [-o OUTPUTDIR] [-t DATESTR] [--sec]
Tool to combine the flow and classifier
optional arguments:
```

- -h, --help show this help message and exit
- -i INPUTFILE, --input INPUTFILE Input file path. e.g. *_result.data
- -c CLASSIFIER, --classifier CLASSIFIER Input classifier file path. e.g. *_anomalous_suspicious.csv
- -o OUTPUTDIR, --output OUTPUTDIR Output directory path
- -t DATESTR, --time DATESTR Datetime of the file. When used, -i and -o are ignored.
- --sec Flow times in seconds, rather than milliseconds. default False.
- --notypes Flag for input data without types fields 16 (sType) and 17 (dType). Default False.

Note: If the input data file does not contain two fields of sType (16) and dType (17), use the option of "—notypes" to flowlabeling. To add the two fields in the data file, you should execute rwpmapbuild and run either rwstats or rwcut with "16,17" in the –fields option (see the section of "Making Flow Data" above).

To break the outputs into multiple files with designated time windows, use the Python3 program "flowsplitter.py".

```
% python flowsplitter.py -t YYYYMMDD
```

```
e.g. python flowsplitter.py -t 2018070101 -n 5
python flowsplitter.py -t 2018070101 -n 5 --sec
python flowsplitter.py -t 2018070101 -n 15
python flowsplitter.py -t 2018070101 -n 30
python flowsplitter.py -i ./2018070101_result/2018070101_mawilab_flow.csv -n 5
python flowsplitter.py -i ./2018070101_result/2018070101_mawilab_flow.csv -o output5 -n 5
```

% python flowsplitter.py -h

```
usage: flowsplitter.py [-h] [-i INPUTFILE] [-o OUTPUTDIR] [-t DATESTR] [-n SPLITSEC]
Tool to split the flow files in timed order
optional arguments:
```

- -h, --help (show this help message and exit)
- -i INPUTFILE, --input INPUTFILE (input flow file path. e.g. *_mawilab_flow.csv)
- -o OUTPUTDIR, --output OUTPUTDIR (output directory path)
- -t DATESTR, --time DATESTR (datetime of the file. When used, -i and -o are ignored.)
- -n SPLITSEC (time separation in seconds. default 5 sec.)
- --sec (flow times from rwstats in seconds, rather than milliseconds. default False.)

The output:

Note that feature #26 class is the label for anomaly detection.

Feature #	Field# (in Silk)	Feature	NetFlow field	Description
1	1	sIP	IPV4_SRC_ADDR	Source IP
2	2	dIP	IPV4_DST_ADDR	Dest IP
3	3	sPort	L4_SRC_PORT	Source Port

4	4	dPort	L4 DST PORT	Dest port	
5	5	proto	PROTOCOL	IP protocol	
6	6	packets	IN BYTES	Packet count	
7	7	bytes	IN_PKTS	Byte count	
8	8	flags	TCP FLAGS	Bit-wise or of TCP flags over all packets	
9	9	sTime	UNIX_Seconds	Starting time of flow (in sec)	
10	10	durat	_	Duration of flow (in sec)	
11	11	eTime		End time of flow (in sec)	
12	12	sen	FLOW_SAMPLER_ID	Name or ID of the sensor	
13	13	in	SRC_VLAN	Router SNMP input interface	
14	14	out	DST_VLAN	Router SNMP output interface	
15	15	nhIP	IPV4_NEXT_HOP	Router next hop ID	
16	16	sType	SRC_TOS	Type of source IP address (pmap required)	
17	17	dType	DST_TOS	Type of destination IP address (pmap required)	
18	20	senClass		Class of sensor that collected flow (SiLK-	
				specific)	
19	21	typeFlow		Type of flow for this sensor class (SiLK-specific)	
20		iType	ICMP_TYPE	ICMP type value for ICMP flows	
21		iCode		ICMP code value	
22	26	initialF		TCP flags on first packet in flow	
23	27	sessionF		Bit-wise OR of TCP flags over all packets except	
				the first in the flow	
24	28	attribut		Flow attributes set by the flow generator	
25	29	appli		Guess as to the content of the flow	
26		class		{Normal, Anomaly, Unsure}	
				Records labeled Unsure may be excluded for	
				anomaly detection experiments	
27		taxonomy		category assigned to the anomaly using	
				the taxonomy for backbone traffic anomalies	
				1. Unknown are labels starting with the	
				prefixes "unk" and "empty"	
				2. Other are labels starting with the prefixes	
				"ttl_error","hostout","netout", and	
				"icmp_error"	
				3. HTTP are labels starting with the prefixes	
				"alphflHTTP","ptmpHTTP","mptpHTTP","p	
				tmplaHTTP" and "mptplaHTTP"	
				4. Multi. points are labels starting with the	
				prefixes "ptmp","mptp" and "mptmp"	
				5. Alpha flow are labels starting with the	
				prefixes	
				"alphfl","malphfl","salphfl","point_to_poi	
				nt" and "heavy_hitter"	
				6. IPv6 tunneling are labels starting with the	
				prefixes "ipv4gretun" and "ipv46tun"	
				7. Port scan are labels starting with the	
				prefixes "posca" and "ptpposca"	
				8. Network scan ICMP are labels starting	
				with the prefixes "ntscIC" and "dntscIC"	
				9. Network scan UDP are labels starting with	

		the prefixes "ntscUDP" and "ptpposcaUDP" 10. Network scan TCP are labels starting with the prefixes "ntscACK", "ntscSYN", "sntscSYN", "ntscTCP ", "ntscnull", "ntscXmas", "ntscFIN" and "dntscSYN" 11. DoS are labels starting with the prefixes "DoS", "distributed_dos", "ptpDoS", "sptpD oS", "DDoS" and "rflat"
28	 label	 The label anomalous is assigned to all abnormal traffic and should be identified by any efficient anomaly detector. The label suspicious is assigned to all traffic that is probably anomalous but not clearly identified by our method. The label notice is assigned to all traffic that is not identified anomalous by our method but that has been reported by at least one anomaly detector. This traffic should not be identified by any anomaly detector, we do not label them as benign in order to trace all the alarms reported by the combined detectors.
29	 heuristic	code assigned to the anomaly using simple heuristic based on port number, TCP flags and ICMP code
30	 distance	difference <i>Dn-Da</i>
31	 nbDetectors	number of configurations (detector and parameter tuning) that reported the anomaly