$\tau_{1}^{#2} + \alpha$	$ au_{1^{-}}^{#1} +^{lpha}$	$\sigma_{1}^{#2} \dagger^{\alpha}$	$\sigma_{1^{-}}^{*1} \dagger^{\alpha}$	$ au_{1+}^{#1} + ^{lphaeta}$	$\sigma_{1^+}^{*2} \dagger^{lphaeta}$	$\sigma_{1^+}^{\sharp 1} \dagger^{lphaeta}$	
0	0	0	0	$-\frac{i}{\sqrt{2}(kr_5+k^3r_5)}$	$\frac{1}{\sqrt{2}(k^2r_5+k^4r_5)}$		$\sigma_{1^{+}\alpha\beta}^{\#1}$
0	0	0	0	$-\frac{i(6k^2r_5+t_1)}{2k(1+k^2)^2r_5t_1}$	$\frac{6k^2r_5+t_1}{2(k+k^3)^2r_5t_1}$	$\frac{1}{\sqrt{2} \; (k^2 r_5 + k^4 r_5)}$	$\sigma_{1^{+}lphaeta}^{\#2}$
0	0	0	0	$\frac{6k^2r_5+t_1}{2(1+k^2)^2r_5t_1}$	$\frac{i(6k^2r_5+t_1)}{2k(1+k^2)^2r_5t_1}$	$\frac{i}{\sqrt{2} \left(k r_5 + k^3 r_5\right)}$	$t_{1}^{\#1}{}_{lphaeta}$
$-\frac{2ik}{t_1+2k^2t_1}$	0	$\frac{\sqrt{2}}{t_1+2k^2t_1}$	0	0	0	0	$\sigma_{1^-\alpha}^{\#1}$
$\frac{i\sqrt{2}k(2k^2r_5-t_1)}{(t_1+2k^2t_1)^2}$	0	$\frac{-2 k^2 r_5 + t_1}{(t_1 + 2 k^2 t_1)^2}$	$\frac{\sqrt{2}}{t_1+2k^2t_1}$	0	0	0	$\sigma_{1^-lpha}^{\#2}$
0	0	0	0	0	0	0	$\iota_{1^{-}\alpha}^{\#1}$
$\frac{-4 k^4 r_5 + 2 k^2 t_1}{(t_1 + 2 k^2 t_1)^2}$	0	$-\frac{i\sqrt{2}k(2k^2r_5-t_1)}{(t_1+2k^2t_1)^2}$	$\frac{2ik}{t_1+2k^2t_1}$	0	0	0	$ au_{1^-}^{\#2}lpha$

Source constraints				
SO(3) irreps	#			
$\sigma_{0}^{\#1} == 0$	1			
$\tau_{0+}^{\#2} == 0$	1			
$\tau_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} == 0$	1			
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3			
$\tau_{1}^{\#1\alpha} == 0$	3			
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	3			
$\tau_{2+}^{\#1\alpha\beta} - 2ik\sigma_{2+}^{\#1\alpha\beta} == 0$	5			
Total #:	17			

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2}^{\#1}{}_{\alpha\beta}$	$\omega_{2^{-}\alpha\beta\chi}^{\#1}$
$\omega_{2}^{\#1}\dagger^{lphaeta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0
$f_{2}^{#1} \dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	<u>t</u> 1 2

	$\omega_{1}^{\#1}{}_{lphaeta}$	$\omega_{1}^{\#2}{}_{\alpha\beta}$	$f_{1}^{\#1}{}_{\alpha\beta}$	$\omega_{1}^{\#1}{}_{lpha}$	$\omega_{1-\alpha}^{\#2}$	$f_{1-\alpha}^{\#1}$	$f_{1}^{#2}\alpha$
$\omega_{1}^{\sharp 1}$ † lphaeta	$k^2 r_5 + \frac{t_1}{6}$	$-\frac{t_1}{3\sqrt{2}}$	$-\frac{ikt_1}{3\sqrt{2}}$	0	0	0	0
$\omega_{1}^{\#2} \dagger^{\alpha\beta}$	$-\frac{t_1}{3\sqrt{2}}$	<u>t</u> 1 3	<u>i kt</u> 1 3	0	0	0	0
$f_{1}^{#1} \dagger^{\alpha\beta}$	$\frac{ikt_1}{3\sqrt{2}}$	$-\frac{1}{3}\bar{l}kt_1$	$\frac{k^2t_1}{3}$	0	0	0	0
$\omega_{1}^{#1}$ † lpha	0	0	0	$k^2 r_5 - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	īkt ₁
$\omega_1^{\#2} \uparrow^{\alpha}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	- Ī k t₁	0	0	0

	$\omega_0^{\#1}$	$f_{0^{+}}^{#1}$	$f_{0}^{#2}$	$\omega_0^{\#1}$
$\omega_{0}^{\#1}$ †	-t ₁	$i\sqrt{2} kt_1$	0	0
$f_{0}^{\#1}\dagger$	$-i \sqrt{2} kt_1$	$-2 k^2 t_1$	0	0
$f_{0}^{#2} \dagger$	0	0	0	0
$\omega_0^{\#1}$ †	0	0	0	0

_	$\sigma_{0}^{\#1}$	$ au_0^{\#1}$	$ au_0^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0^+}^{\sharp 1} \dagger$	$-\frac{1}{(1+2k^2)^2t_1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	0
$\tau_{0}^{\#1}$ †	$-\frac{i \sqrt{2} k}{(1+2k^2)^2 t_1}$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	0	0
$\tau_{0^{+}}^{\#2}$ †	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	0

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_2^{\#1}_{lphaeta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\sharp 1} \dagger^{\alpha \beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$ au_{2}^{\#1} \dagger^{lphaeta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{t_1}$

 $\frac{\text{Unitarity conditions}}{r_5 > 0 \&\& t_1 < 0 \mid\mid t_1 > 0}$

(No massive particles)