## **CLAIMS**

- 1. (previously presented) A process for activating a catalyst composition comprising at least one hydrogenation metal component of Group VI and/or Group VIII of the Periodic Table, and an S-containing organic additive, wherein the catalyst is contacted with hydrogen at a temperature between room temperature and about 600°C, and prior to or during the contacting with hydrogen the catalyst is contacted with an organic liquid, wherein the amount of organic liquid contacted with the catalyst is about 20-500% of the catalyst pore volume which can be filled with the liquid under the conditions at which contact occurs.
- (original) The process of claim 1 wherein the contacting with the organic liquid takes place prior to the contacting with hydrogen.
- 3. (currently amended) The process of claim 1 wherein the organic liquid is a hydrocarbon with a boiling <u>point</u> range of about 150-500°C.
- (currently amended) The process of claim 3 wherein the organic liquid is selected from the group consisting of white oil, gasoline, diesel, gas oil, erand mineral lube oil.
- 5. (original) The process of claim 1 wherein the organic liquid comprises less than about 12 wt.% of oxygen.
- 6. (original) The process of claim 1 wherein the organic liquid comprises less than about 8 wt.% of oxygen.

- 7. (original) The process of claim 1 wherein the organic liquid comprises less than about 5 wt.% of oxygen.
- 8. (original) The process of claim 1 wherein the organic liquid comprises less than about 2 wt.% of oxygen.
- 9. (original) The process of claim 1 wherein the organic liquid comprises less than about 0.5 wt.% of oxygen.
- (original) The process of claim 1 wherein the organic liquid has an iodine number of about 50 or less.
- 11. (original) The process of claim 1 wherein the organic liquid has an iodine number of about 30 or less.
- 12. (original) The process of claim 1 wherein the organic liquid contains less than about 10 wt.% of sulfur.
- 13. (original) The process of claim 1 wherein the organic liquid contains less than about 5 wt.% of sulfur.
- 14. (canceled)
- 15. (original) The process of claim 1 wherein the contacting of the catalyst with hydrogen takes place at a temperature of about 100-450°C.
- 16. (original) The process of claim 1 wherein the S-containing organic additive comprises at least one carbon atom and at least one hydrogen atom.
- 17. (original) The process of claim 1 wherein the S-containing organic additive is an organic compound comprising a mercapto-group.

- 18. (original) The process of claim 17 wherein the S-containing organic additive is a mercapto acid represented by the general formula HS-R1-COOR, wherein R1 stands for a divalent hydrocarbon group with 1-about 10 carbon atoms and R stands for a hydrogen atom, an alkali metal, an alkaline earth metal, ammonium, or a linear or branched alkyl group having 1 to about 10 carbon atoms.
- 19. (original) The process of claim 1 wherein the S-containing organic additive comprises about 0.01-2.5 moles of additive per mole of hydrogenation metals present in the catalyst.
- 20. (original) The process of claim 1 wherein the S-containing organic additive is incorporated into the catalyst composition prior to, subsequent to, or simultaneously with the incorporation of the hydrogenation metal components.
- 21. (original) The process of claim 1 wherein the catalyst has a metal content in the range of about 0.1 to about 50 wt.% calculated as oxides on the dry weight of the catalyst not containing the organic additive.
- 22. (currently amended) The process of claim 1 wherein the Group VIB metal is present in an amount of about 5-40 wt.%, calculated as trioxide.
- 23. (original) The process of claim 1 wherein the Group VIII metal is present in an amount of about 1- 10 wt.%, calculated as monoxide.
- 24. (currently amended) The process of claim 1 wherein the group VI metals are selected from Mo and/or W<sub>1</sub> and the group VIII metals are selected from Co and/or Ni.

- 25. (original) The process of claim 24 wherein the amount of sulfur incorporated into the catalyst by way of the S-containing organic additive is selected to correspond to about 50-300% of the stoichiometric sulfur quantity necessary to convert the hydrogenation metals into Co<sub>9</sub>S<sub>8</sub>, MoS<sub>2</sub>, WS<sub>2</sub>, and/or Ni<sub>3</sub>S<sub>2</sub>, respectively.
- 26. (previously presented) The process of claim 36 wherein both the contacting with the organic liquid and the contacting with hydrogen are carried out *ex situ*.
- 27. (original) The process of claim 1 wherein less than about 10% of the stoichiometric sulfur quantity necessary to convert the hydrogenation metals into their sulfides is provided by way of S-containing compound added to the hydrogen other than sulfur originating with the S-containing organic additive.
- 28. (original) The process of claim 1 wherein less than about 5% of the stoichiometric sulfur quantity necessary to convert the hydrogenation metals into their sulfides is provided by way of S-containing compound added to the hydrogen other than sulfur originating with the S-containing organic additive.
- 29. (original) The process of claim 1 wherein substantially none of the stoichiometric sulfur quantity necessary to convert the hydrogenation metals into their sulfides is provided by way of S-containing compound added to the hydrogen other than sulfur originating with the S-containing organic additive.
- 30. (previously presented) The process according to claim 26 wherein the catalyst is passivated after the *ex situ* hydrogen treatment.

- 31. (original) A catalyst obtained by the process of claim 1.
- 32. (cancelled)
- 33. (cancelled)
- 34. (new) A process for activating a catalyst composition comprising at least one hydrogenation metal component of Group VI and/or Group VIII of the Periodic Table, and an S-containing organic additive, wherein the catalyst is contacted with hydrogen at a temperature between room temperature and about 600°C, and prior to or during the contacting with hydrogen the catalyst is contacted with an organic liquid, wherein the organic liquid comprises less than about 12 wt.% of oxygen.
- 35. (new) A process for activating a catalyst composition comprising at least one hydrogenation metal component of Group VI and/or Group VIII of the Periodic Table, and an S-containing organic additive, wherein the catalyst is contacted with hydrogen at a temperature between room temperature and about 600°C, and prior to or during the contacting with hydrogen the catalyst is contacted with an organic liquid, wherein the organic liquid has an iodine number of about 50 or less.
- 36. (new) The process of claim 1, wherein the contacting with the organic liquid is carried out *ex situ*.