Programmering og problemløåsning 5100-B1-2E16: Ugeseddel #1

Due on Wednesday, September 14, 2016

Mehrdad Khodaverdi ctm546@alumni.ku.dk

September 22, 2016

2i.0

Betragt EBNF'en:

```
charLiteral = ?any unicode codepoint?;
stringLiteral = '"', charLiteral, '"';
operator = '+';
expression = stringLiteral | stringLiteral, operator, expression;
```

1. Opskriv 3 forskellige gyldige expressions udelukkende ved brug af tokenerne expressions, operator og stringLiteral:

```
expression = stringLiteral (1)
expression = stringLiteral, operator, stringLiteral (2)
expression = stringLiteral, operator, expression (3)
```

2. Giv derefter eksempler på tilsvarende sekvenser, hvor tokenerne er erstattet med terminaler.

For charLiteral = a

```
'"a"' = '"a"' (1)
'"a"+"a"' = '"a"' '+' '"a"' (2)
'"a"+"a"+"a"' = '"a"' '+' '"a"+"a"' (3)
```

3. Giv et eksempel på en sekvens, som ikke er gyldig i ovenstående EBNF.

```
For charLiteral = a

expression ≠ operator
expression ≠ '+'

expression ≠ stringLiteral, operator, operator
expression ≠ '"a"' '+' '+'

expression ≠ stringLiteral, stringLiteral, expression
expression ≠ '"a"' '"a"' '"a"+"a"'
```

2i.1

Udfyld følgende tabel

Decimal	Binær	Heximal	Oktal
10	1010	A	12
21	10101	15	25
63	111111	3F	77
63	111111	3F	77

Første række:

Decimal 10 til binær:

$$\frac{10}{2} = 5 \quad \text{Rest } 0$$

$$\frac{5}{2} = 2 \quad \text{Rest } 1$$

$$\frac{2}{2} = 1 \quad \text{Rest } 0$$

$$\frac{1}{2} = 1 \quad \text{Rest } 1$$

Ergo
$$(10)_{10} = (1010)_2$$

Det er givet at

Dec	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Hex	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F

Derfor må $(10)_{10} = (A)_{Hex}$

Decimal 10 til Oktal:

10 mod 8 = 2 hvilket man regner ved:
$$\frac{10}{8} = \underline{\textbf{1}}.25$$
 $\Rightarrow 8^{\underline{\textbf{1}}} + 2 = 10$ altså rest 2

Vores Octal nummer er nu ??2 og vi gentager igen fra før:

1 mod
$$8=1$$
 hvilket man regner ved: $\frac{1}{8} = \underline{\mathbf{0}}.125 \implies 8^{\underline{\mathbf{0}}} + 1 = 1$ altså rest 1

Ergo tallet er 12.

Derfor må $(10)_{10} = (12)_8$

Anden række:

Binær 10101 til decimal:

10101 betyder altså $2^0 + 2^2 + 2^4 = 21$

Ergo
$$(10101)_2 = (21)_{10}$$

10101 til Hex:

Vi udvider vores tabel gennem samme øvelse som vist oven over.:

Dec	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Bin	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
Hex	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F

Vi ser igen på 10101. Da vi ved at 1 Hex ækvivalent med 4 bit deler vi det binær tal op i grupper af 4. 10101 skrives som 0001 0101 og fra tabellen har vi:

$$0001 \quad 0101 \\ 1 \quad 5$$

Ergo
$$(10101)_2 = (15)_{Hex}$$

10101 til Oktal:

Vi udvider vores tabel nu med oktal:

Table 1: Konverterings tabel

Dec	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Bin	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
Hex	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
Oktal	0	1	2	3	4	5	6	7								

Vi ser på 10101. Da vi ved at 1 oktal er ækvivalent med 3 bit deler vi det binær tal op i grupper af 3. 10101 skrives som 010 101 og ved brug af tabellen får:

$$\begin{array}{ccc}
010 & 101 \\
2 & 5
\end{array}$$

Ergo
$$(10101)_2 = (25)_8$$

Tredje række:

Hex 3F til Bin og til oktal:

Omskriver hex 3F til bin: 3
$$\rightarrow$$
0011 og F \rightarrow 1111. Ergo (3F)_{Hex} = (00111111)₂

Nu deler vi det binær tal op i grupper af 3 og får 000 111 111. Fra tabellen har vi:

Ergo
$$(3F)_{Hex} = (77)_8$$

Hex til decimal:

$$3F = (3*16^1) + (15*16^0) = 48 + 15 = 63$$

Ergo $(3F)_{Hex} = (63)_{10}$

Fjerde række:

oktal 77 til bin også til hex

Vi ser hurtigt fra tabel 1 at tallet 77 kan skrives som binært:

Ergo
$$(77)_8 = (1111111)_2$$

og igen kan det grupperes som 0011 1111 hvilket giver henholdsvis tallet 3 og F, ergo 3F

2i.2

Først defineres \boldsymbol{a} som "Hello World"

Derefter printer jeg de første fire char i a, for til sidst at printe fra den sjette char til slut.

```
> let a = "Hello World";;

val a : string = "Hello World"

> a.[..4];;
val it : string = "Hello"
> a.[6..];;
val it : string = "World"

> a.[6..]+", "+a.[..4]+"!";;
val it : string = "World, Hello!"
```