Introduction to Complexity and Computability: Homework 2

Andrew McIsaac

November 4, 2021

Homework Problem 1

Show that the following languages are partially decidable:

- (a) $ETx = \{ \langle M, x \rangle \mid M(x) \downarrow \text{ and at the end of computation the tape of } M \text{ is empty} \}$ Use a Universal Turing Machine to simulate M on x. If $M(x) \downarrow$ then clear the tape of M and accept.
- (b) $ETE = \{\langle M \rangle \mid (\exists x)(M(x) \downarrow \text{ and at the end of computation the tape of } M \text{ is empty})\}$ Run ETx on every possible input string x. Run the first Turing Machine ETx_1 on input x_1 for one step, then the TMs ETx_1 and ETx_2 for one step on input x_1 and x_2 respectively, and so on for every single x. If there is an x that is accepted by ETx, clear the tape of M and ETE accepts.

Homework Problem 2

Show that the language ETx is not decidable.

The proof is by contradiction. Assume that ETx is decidable. Then there is a TM P that decides ETx. Then construct a TM Q to decide $L_{\mathcal{U}}$, the universal language.

Q proceeds as follows on the input $\langle M, x \rangle$:

- 1. Run P on $\langle M, x \rangle$.
- 2. If P rejects, reject.
- 3. If P accepts, simulate M on x until it halts and the tape of M is empty.
- 4. If M accepts, accept. If M rejects, reject.

If P decides ETx, Q decides $L_{\mathcal{U}}$. But $L_{\mathcal{U}}$ is undecidable, so ETx must also be undecidable.