ПРАВИТЕЛЬСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

Факультет компьютерных наук Департамент программной инженерии

Линейная алгебра

Москва 2016

Содержание

1	1 Сформулировать и доказать теорему о методе Гаусса	2
2	43 Сформулировать и доказать теорему об инвариантности ранга матрицы квадратичной формы.	2
3	44 Сформулируйте и докажите теорему о приведении квадратичных форм к диагональному (каноническому) виду при помощи ортагональной замены координат.	2
4	45 Дайте определение параболы как геометрического места точек. Выведите ее каноническое уравнение.	4
5	46 Проведите полное исследование уравнения $Ax^2 + Cy^2 + Dx + Ey + F = 0, A^2 + C^2 > 0$ кривой второго порядка	5

1. 1 Сформулировать и доказать теорему о методе Гаусса

Любую матрицу можно привести к ступенчатому виду с помощью элементарных преобразований. В доказательство предъявим алгоритм, который гарантированно завершится для конечных матриц:

- Шаг 1 (а) Фиксируем элемент в верхнем левом углу a_{ij}
 - (b) Если $a_{ij} = 0$: переходим к шагу 2. Иначе объявляем этот элемент ведущим.
 - (c) Используя ведущий элемент будем добиваемся того, что элементы во всех строках ниже него обнуляются. Если a_{ij} ведущий, то сложим строки $k, (k \neq i)$ и i. Причем строку i домножим на $\lambda = -\frac{a_{kj}}{a_{ij}}$.
 - (d) Смещаемся в матрице на строку вниз и на столбец вправо. Переходим к шагу 1. (пока не закончится матрица)
- Шаг 2 Если текущий элемент нулевой, просматриваем все элементы под ним: Если найдем ненулевой в строке k то меняем строки k и i местами и переходим к шагу 1. Если все нулевые переходим к шагу 3.
- Шаг 3 Переходим на один столбец вправо. Если справа есть столбцы переходим к шагу 1. Если столбцы закончились конец алгоритма.

2. 43 Сформулировать и доказать теорему об инвариантности ранга матрицы квадратичной формы.

Ранг матрицы квадратичной формы не меняется в зависимости от базиса.

$$Rg(A_f) = Rg(S_{e \to f}^T A_e S_{e \to f})$$

Матрица S это преобразование между двумя ортонормиованными системами координат \Longrightarrow S ортагональна \Longrightarrow $\exists S^{-1} = S^T \Longrightarrow detS \neq 0$ S - невырожденная матрица.

Домножение матрицы на невырожденную матрицу B не меняет ранг матрицы A. Это отдельная теорема, докажем ее. Очевидно что $Rg(AB) \leq Rg(A)$, а также $Rg(ABB^{-1}) \leq Rg(AB)$, следовательно $Rg(A) \leq Rg(AB) \leq Rg(A) = Rg(A)$

Поэтому:
$$Rg(A_f) = Rg(S_{e \to f}^T A_e S_{e \to f})$$

- 3. 44 Сформулируйте и докажите теорему о приведении квадратичных форм к диагональному (каноническому) виду при помощи ортагональной замены координат.
- 1. Рассмотрим квадратичную форму q(x)

- 2. Возьмем стандартный ортонормированный базис $e = e_1, \dots e_n$.
- 3. Составим матрицу этой квадратичной формы A_e . Она будет симметрична, $A^T = A \implies A$ самосопряженная матрица.
- 4. Докажем что самосопряженный оператор всегда диагонализируем. Докажем две леммы, а затем приведем основное доказательство.

Лемма 1. Собственные значения самосопряженного оператора будут вещественными.

Доказательство. Обозначим через (a,b) скалярное произведение векторов a и b. Пусть $A:V\to V$ — самосопряженный оператор (то есть $A=A^*$), λ - его собственное значение, e - вектор отвечающий этому собственному значению. По определению $\lambda(e,e)=(\lambda e,e)=(Ae,e)=(e,A^*e)=(e,Ae)=(e,\lambda e)=\bar{\lambda}(e,e)$ Здесь $\bar{\lambda}$ это комплексное сопряжение λ .

Так как
$$(e, e) \neq 0 \implies \bar{\lambda} = \lambda$$
.

доказано нормально.

- 5. У каждого самосопряженного оператора есть 1 или 2 инвариантных подпространства.
- 6. Если одно под-пространство. Есть решение.
- 7. Если два подпространства. Тоже обязательно будут решения.
- 8. Рассмотрим ее как матрицу оператора ϕ . Об операторах уже много чего известно, воспользуемся этим.
- 9. Так как матрица ϕ_e симметрична \implies оператор диагонализируем. (Именно поэтому любую кв. форму можно привести к канон виду). Будем приводить оператор ϕ к диагональному виду.
- 10. Найдем собственные значения $\lambda_1, \ldots, \lambda_n$.
- 11. Найдем собственные вектора.
- 12. Процессом ортагонализации Грамма-Шмидта добьемся того чтобы все собственные вектора были ортагональны. Далее нормируем каждый вектор. В результате получим набор векторов $\{f_1, \ldots, f_n\}$, которые образуют ортонормированный базис f.
- 13. Для операторов верно: $\phi_e = T_{e \to f} \phi_f T_{e \to f}^{-1}$

 $T_{e \to f}$ - матрица оператора перехода от базиса e к базису f (матрица из векторов базиса f записанных по столбцам, она будет ортагональна).

 ϕ_f - матрица оператора в базисе f (будет диагональной матрицей).

 ϕ_e - матрица оператора в изначальном базисе e (симметричная матрица).

14. Базисы e и f ортонормированны \iff оператор перехода $T_{e \to f}$ будет ортагональным $\implies T_{e \to f}^{-1} = T_{e \to f}^T$

$$\phi_e = T_{e \to f} \phi_f T_{e \to f}^{-1}$$

$$\phi_f = T_{e \to f}^{-1} \phi_e T_{e \to f}$$

$$\phi_f = T_{e \to f}^T \phi_e T_{e \to f}$$

15. Вернемся к квадратичным формам и перепишем матрицу оператора как кв. форму:

$$A_f = T_{e \to f}^T A_e T_{e \to f}$$

Где A_f - построенная диагональная матрица квадратичной формы. $T_{e o f}$ - ортагональная матрица перехода (применение такой матрицы это ортагональная замена координат). A_e - изначальная матрица кв. формы.

(или по формуле стас: $A_{e'} = S_{e \to e'}^T A_e S_{e \to e'}$)

- 16. Теперь по матрице A_f мы можем выписать канонический вид кв. формы q(x), который мы получили при помощи ортагональной замены координат.
- 17. Так как все манипуляции логичны и не запрещенны $\implies \forall q(x)$ можно привести к канон. виду с помощью оратагональной замены координат.

45 Дайте определение параболы как 4. геометрического места точек. Выведите ее каноническое уравнение.

(Мы уже знаем что каноническое уравнение параболы это $y^2=2px$, осталось это показать.)

Геометрические точки задающие параболу равноудалены от фокуса пораболы и директрисы (смотри википедию «эксцентриситет»). В каноническом уравнении параболы (картинка ниже также дана для канонического случая):

Фокус – точка
$$F(p/2, 0)$$
.

Директриса – вертикальная прямая L заданная уравнением: x = -p/2.

Пусть $\rho(A,B)$ – дистанция между точками A и B. Рассмотрим точку M(x,y). Точка $M \in$ параболе \iff выполнятся соотношение $\rho(F,M) = \rho(F,L)$. Перепишем уравнение относительно координат:

$$\sqrt{\left(x - \frac{p}{2}\right)^2 + y^2} = |x + \frac{p}{2}|$$

Возведем обе стороны в квадрат:

$$\left(x - \frac{p}{2}\right)^2 + y^2 = \left(x + \frac{p}{2}\right)^2$$

Раскрываем скобки и переносим:

$$y^2 = 2px$$

Каноническое уравнение. Здесь 2p просто коэффициент. (Каноническое уравнение параболы записывают через $y^2 = 2px$ вместо $y^2 = kx$, так как у параметра p появляется геометрическое значение, это параметр параболы)

Сначала перепишем уравнение в более хорошей форме:

$$A\left(x^{2} + 2\frac{D}{2A}x + \frac{D^{2}}{4A^{2}}\right) - \frac{D^{2}}{4A} + C\left(y^{2} + 2\frac{E}{2C}y + \frac{E^{2}}{4C^{2}}\right) - \frac{E^{2}}{4C} + F = 0$$

$$A\left(x + \frac{D}{2A}\right)^{2} + C\left(y + \frac{E}{2C}\right)^{2} + \left(F - \frac{E^{2}}{4C} - \frac{D^{2}}{4A}\right) = 0$$

Для параллельного переноса координат, сделаем замену $x'=x+\frac{D}{2A}$, а также $y'=y+\frac{E}{2C}$. Заодно заменим константу: $F'=F-\frac{E^2}{4C}-\frac{D^2}{4A}$

$$A(x')^{2} + C(y')^{2} + F' = 0$$

$$A(x')^2 + C(y')^2 = -F'$$

Теперь рассмотрим 3 варианта (будем строит дерево вариантов):

Вариант 1 AC > 0

- (a) $F'=0 \implies Ax'^2+Cy'^2=0 \iff x'^2=0, y'^2=0.$ То есть решение это точка на плоскости $x=-\frac{D}{2A}, y=-\frac{E}{2C}.$
- (b) $F' \neq 0 \implies \frac{x'^2}{-F'/A} + \frac{y'^2}{-F'/C} = 1$ (Разделили на -F' и перенесли коэффициенты A, C вниз).
 - і. $F'<0 \implies (-F'/A)>0, (-F'/C)>0$. Решение можо переписать в виде $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$. Это эллипс.

іі. $F'>0 \implies -F'<0$. Так как рассматриваем AC>0 следовательно решение для $A(x')^2+C(y')^2=-F'$ это пустое множество.

Вариант 2 AC < 0

- (а) $F'=0 \implies Ax'^2+Cy'^2=0.$ Разложим по $(a^2-b^2)=(a-b)(a+b)$, так как либо A<0, либо C<0. Получим либо $(\sqrt{|A|}x'-\sqrt{|C|}y')(\sqrt{|A|}x'+\sqrt{|C|}y')=0,$ либо $(-\sqrt{|A|}x'+\sqrt{|C|}y')(\sqrt{|A|}x'+\sqrt{|C|}y')=0.$ В любом случае верно что: $\sqrt{|A|}x'=\sqrt{|C|}y', \sqrt{|A|}x'=-\sqrt{|C|}y'.$ Это пара прямых на плоскости.
- (b) $F' \neq 0 \implies \frac{x'^2}{-F'/A} + \frac{y'^2}{-F'/C} = 1$
 - і. $F'>0(A<0,C>0)\implies (-F'/A)>0, (-F'/C)<0$. Решение можо переписать в виде $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$. Это гипербола.
 - іі. $F'<0(A>0,C<0)\Longrightarrow (-F'/A)<0,(-F'/C)>0$. Решение можно переписать в виде $-\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$. Это сопряженная гипербола.

Вариант 3 AC = 0

(a) $A \neq 0, C = 0 \implies Ax^2 + Dx + Ey + F = 0$ Выделим полный квадрат по x:

$$A\left(x + \frac{D}{2A}\right)^2 + Ey + F - \frac{D^2}{4A} = 0$$

Введем $F' = F - \frac{D}{4A} \implies A\left(x + \frac{D}{2A}\right)^2 = -Ey - F'$

- i. Если $E=0 \implies A\left(x+\frac{D}{2A}\right)^2=-F'$
 - A. $F'=0 \implies \left(x+\frac{D}{2A}\right)^2=0$. Это вертикальная прямая $x=\frac{-D}{2A}$
 - В. $F'\neq 0$ Перепишем уравнение в виде $\left(x+\frac{D}{2A}\right)^2=\frac{-F'}{A}$ При $signF'=signA\implies \frac{-F'}{A}<0\implies \emptyset$. При $signF'=-signA\implies x=\pm\sqrt{\frac{-F'}{A}}-\frac{D}{2A}$. Это пара вертикальных прямых.
- іі. Если $E\neq 0 \implies A\left(x+\frac{D}{2A}\right)^2=-E(y+\frac{F'}{E})$. Осуществим параллельный перенос системы координат $x'=x+\frac{D}{2A},y'=y+\frac{F'}{E}$. Получим:

$$x'^2 = -\frac{E}{A}y' \iff y' = -\frac{A}{E}x'^2$$

Это парабола (обыкновенная, вдоль оси у)

(b) $A = 0, C \neq 0 \implies Cy^2 + Dx + Ey + F = 0$ Разбор случая полностью аналогичен предыдущему. Вертикальные линии станут горизонтальными. Парабола будет вдоль оси х.