Recitation 4

Alex Dong

CDS, NYU

Fall 2020

Norms

Norms measure distances! Think about all the properties of distance that make sense.

- ightharpoonup distance = 0 means at the same point
- ▶ distance is always non-negative
- ▶ distance follows triangle inequality (well... at least in euclidean space)

Norms

Shorthand way to remember what the properties do.

Definition (Norm)

A norm $\|\cdot\|$ on V verifies the following points:

- 1. Triangular inequality: $||u+v|| \le ||u|| + ||v||$ "Euclidean space"
- 2. Homogeneity: $\|\alpha v\| = |\alpha| \times \|v\|$ "farther actually means farther"
- 3. Positive definiteness: if $||v|| = 0 \implies v = 0$. "Non-negative"

Inner Products

Inner products measure angles! ... but not directly.

$$cos(\theta) = \frac{\langle u, v \rangle}{\|u\| \|v\|}$$

or

$$\langle u, v \rangle = cos(\theta) \|u\| \|v\|$$

When u, v are unit vectors, inner product gives a measure for angle between vectors.

Inner Products in Machine Learning

- ► Angles can be used as a measure of similarity
- ▶ Kernel Tricks (&) Increase Data Complexity
 - Sometimes you have to calculate $x_{old}^T x_{new}$, equivalently $\langle x_{old}, x_{new} \rangle$
 - ➤ You can replace the inner product with a inner product in a higher dimensional space
 - ▶ Instead of calculating $\langle x_{old}, x_{new} \rangle$, define a function K and calculate $\langle K(x_{old}), K(x_{new}) \rangle$
 - ▶ If you pick "the right" higher dimensional space, your data can be a lot easier to work with
 - ► (This is just for your general knowledge)
 - \blacktriangleright (&) denotes extra material not covered in this course

Questions 1: Norms and Inner Products

1. Which of the following functions are inner products for $x, y \in \mathbb{R}^3$?

i.
$$f(x,y) = x_1y_2 + x_2y_3 + x_3y_1$$

ii.
$$f(x,y) = x_1^2 y_1^2 + x_2^2 y_2^2 + x_1^2 y_1^2$$

iii.
$$f(x,y) = x_1y_1 + x_3y_3$$

2. For $A \in \mathbb{R}^{m \times n}$ and $x \in \mathbb{R}^n$, prove that

$$||Ax|| \le ||x|| \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i,j}^2}$$

Solutions 1: Norms and Inner Products

1. Which of the following functions are inner products for $x, y \in \mathbb{R}^3$?

Solution

i.
$$f(x,y) = x_1y_2 + x_2y_3 + x_3y_1$$
 False

Consider $u = [1,0,0]^T$ and $v = [0,1,0]^T$.

 $\langle u,v \rangle = 1$, but $\langle v,u \rangle = 0$. (Not symmetric)

ii. $f(x,y) = x_1^2y_1^2 + x_2^2y_2^2 + x_3^2y_3^2$ False

Consider $v = [1,0,0]^T$.

 $\langle 2v,v \rangle = 4$, but $2\langle v,v \rangle = 2$. (Not linear)

iii. $f(x,y) = x_1y_1 + x_3y_3$ False

Consider $v = [0,1,0]^T$.

 $\langle v,v \rangle = 0$, but $v \neq 0$. (Not positive definite)

Solutions 1: Norms and Inner Products

2. For $A \in \mathbb{R}^{m \times n}$ and $x \in \mathbb{R}^n$, prove that

$$\|Ax\| \leq \|x\| \sqrt{\sum_{i=1}^m \sum_{j=1}^n} A_{i,j}^2$$

Solution

$$and \ A = \begin{bmatrix} -- & \mathbf{a_1}^T & -- \\ \vdots & \vdots & \vdots \\ -- & \mathbf{a_m}^T & -- \end{bmatrix} \ and \ x = \begin{bmatrix} | \\ x \\ | \end{bmatrix} \ .$$

From matrix multiplication, observe that $Ax = \sum_{i=1}^{m} \langle \mathbf{a_i}, x_i \rangle$. Now,

$$\begin{aligned} \|Ax\|^2 &= \sum_{i=1}^m \langle \mathbf{a_i}, x \rangle^2 \\ \|Ax\|^2 &\leq \sum_{i=1}^n \|\mathbf{a_i}\|^2 \|x\|^2 & by \ Cauchy\text{-}Schwarz \\ \|Ax\| &\leq (\sum_{i=1}^n \|\mathbf{a_i}\|^2 \|x\|^2)^{.5} \\ \|Ax\| &\leq \|x\| (\sum_{i=1}^n \|\mathbf{a_i}\|^2)^{.5} \\ \|Ax\| &\leq \|x\| (\sum_{i=1}^n \sum_{j=1}^m A_{i,j})^{.5} & by \ definition \ of \ \mathbf{a_i} \end{aligned}$$

Orthogonality

- ▶ Angles can be used as a measure of similarity
- \blacktriangleright Vectors u, v are orthogonal if and only if $\langle u, v \rangle = 0$
- \blacktriangleright Vectors are orthogonal \Longrightarrow vectors are in as different directions as possible
- ▶ Orthogonal coordinate systems are nice because we can view each coordinate "independently" (we will prove later).
- ► Gram-Schmidt Process allows us to change any basis into an orthonormal basis.

Orthogonal Projections

- ▶ Projections form an important part of linear algebra.
 - ▶ We can view the action of a matrix and how it affects a certain subspace
 - ► We can simplify our data by picking the subspace "closest" to the data (PCA, Lec 7)
 - ▶ We can find the best-fit line/plane/subspace (Linear regression, Lec 9)
- ▶ Orthogonal projections are a special kind of projection
 - ▶ They preserve the original vector components (in the orthogonal basis)
 - ▶ Practice question on this later

Idempotence

Lets take a step back.

- ▶ P_S is an orthogonal projection $\iff P_S = VV^T$
 - \blacktriangleright V has orthonormal columns that form a basis for S.
- ► There is a more general definition of a projection known as *idempotence*.

Definition (Idempotence)

An matrix P is idempotent when

$$P^2 = P$$

An idempotent matrix is also called a projection or projection matrix.

Questions 2: Orthogonal Projections vs Idempotence

Definition (Idempotence)

A square matrix P is idempotent when

$$P^2 = P$$

- 1. Show that $X(X^TX)^{-1}X^T$ is idempotent.
- 2. Show that all orthogonal projections are idempotent.
- 3. Give an example of an idempotent matrix that is not an orthogonal projection.

(Hint: Show that your matrix does not minimize the distance to subspace it projects onto.)

Solutions 2: Orthogonal Projections vs Idempotence

Solution

1. Show that $X(X^TX)^{-1}X^T$ is idempotent.

$$P^{2} = (X(X^{T}X)^{-1}X^{T})(X(X^{T}X)^{-1}X^{T})$$

$$= X(X^{T}X)^{-1}(X^{T}X)(X^{T}X)^{-1}X^{T}$$

$$= X(X^{T}X)^{-1}X^{T}$$

2. Show that all orthogonal projections are idempotent.

Let P be an orthogonal projection.

Recall that all orthogonal projections take the form VV^T , where $V \in \mathbb{R}^{n \times k}$ has orthonormal columns.

Note that $V^TV = I_k$, the identity matrix in $\mathbb{R}^{k \times k}$.

Then
$$P^2 = (VV^T)(VV^T) = V(V^TV)V^T = VI_kV^T = VV^T = P$$

Solutions 2: Orthogonal Projections vs Idempotence

Solution

3. Give an example of an idempotent matrix that is not an orthogonal projection.

Consider the matrix
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$

It's easy to see
$$A^2 = A$$
, and $Im(A) = \{ \begin{bmatrix} x \\ 0 \end{bmatrix} \mid x \in \mathbb{R} \}$

Consider the vector
$$v = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

The closest vector in
$$Im(A)$$
 is $v_{Im(A)} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$, but $Av = \begin{bmatrix} 4 \\ 0 \end{bmatrix}$

Note: Rigorously speaking, we need to prove that $v_{Im(A)} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$ is the closest vector in Im(A). We can do this by constructing an orthogonal projection onto Im(A), which is found by setting $V = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, and calculating

$$VV^T = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

Questions: Orthogonality

- 1. Let $v_1, ..., v_k$ be a list of orthogonal vectors. Show that $v_1, ..., v_k$ are linearly independent.
- 2. Let U be the subspace of \mathbb{R}^n with orthonormal basis $u_1, ..., u_k$.
 - i. Prove that the orthogonal projection of $v \in \mathbb{R}^n$ onto U can be expressed as $P_U = \sum_{i=0}^k \langle v, u_i \rangle u_i$. (Use the fact that the orthonormal basis for a subspace of \mathbb{R} can be extended to obtain an orthonormal basis for \mathbb{R})
 - ii. Prove that $P_U(v) \leq ||v||$
 - iii. Prove that $v P_U(v)$ is orthogonal to $P_U(v)$

Solutions: Orthogonality

Solution

1. Let $v_1, ..., v_k$ be a list of orthogonal vectors. Show that $v_1, ..., v_k$ are linearly independent.

$$\begin{split} Let \; \alpha_1, ..., \alpha_k &\in \mathbb{R} \; s.t \; \sum_{i=1}^k \alpha_i v_i = \vec{0}. \\ Consider \; \langle \sum_{i=1}^k \alpha_i v_i, \sum_{j=1}^k \alpha_j v_j \rangle. \\ 0 &= \; \langle \vec{0}, \vec{0} \rangle \\ &= \; \langle \sum_{i=1}^k \alpha_i v_i, \sum_{j=1}^k \alpha_j v_j \rangle \\ &= \sum_{i=1}^k \alpha_i^2 \langle v_i, v_i \rangle, \sum_{i \neq j} \alpha_i \alpha_j \langle v_i, v_j \rangle \\ 0 &= \sum_{i=1}^k \alpha_i^2 \quad \quad by \; orthonormality \; of \; v_i, v_j \end{split}$$

So
$$\alpha_1, ..., \alpha_k = 0$$
.

Solutions: Orthogonality

Solution

Let U be the subspace of \mathbb{R}^n with orthonormal basis $u_1, ..., u_k$.

2i. Prove that the orthogonal projection of $v \in \mathbb{R}^n$ onto U can be expressed as

$$P_U(v) = \sum_{i=0}^k \langle v, u_i \rangle u_i.$$

Let $u_{k+1}, ..., u_n$ be an orthonormal basis extension for $u_1, ..., u_k$.

Then $u_1,...,u_k,u_{k+1},...,u_n$ form an orthonormal basis for \mathbb{R}^n

Now, let $v = \sum_{i=1}^{n} \alpha_i u_i$ where $\alpha_i = \langle v, u_i \rangle$ and let $x \in U$, where $x = \sum_{i=1}^{k} \beta_i u_i$.

We want to find $\arg\min_{x\in U} \|v-x\|$.

$$||v - x|| = ||\sum_{i=1}^{n} \alpha_i u_i - \sum_{j=1}^{k} \beta_i u_i||$$

$$= ||\sum_{j=1}^{k} (\alpha_i - \beta_i) u_i - \sum_{i=k+1}^{n} \alpha_i u_i||$$

$$= \sqrt{\sum_{j=1}^{k} (\alpha_i - \beta_i)^2 + \sum_{i=k+1}^{n} \alpha_i^2} \quad by \ orthonormality$$

||v-x|| is minimized when $\alpha_i = \beta_i \quad \forall i \in \{1,...,k\}$

This implies that $\beta_i = \langle v, u_i \rangle$.

So $P_U(v) = argmin_{x \in U} ||v - x|| = \sum_{i=0}^k \langle v, u_i \rangle u_i$.

Questions: Orthogonality

Solution

Let U be the subspace of \mathbb{R}^n with orthonormal basis $u_1, ..., u_k$. 2ii. Prove that $P_U(v) \leq ||v||$ $P_U(v) = \sum_{i=1}^k \langle v, u_i \rangle u_i$ from 2i $||P_U(v)||^2 = ||\sum_{i=1}^{n} \langle v, u_i \rangle u_i||^2$ $= \sum \|\langle v, u_i \rangle u_i \|^2$ by Pythagorean Theorem $\leq \sum \|\langle v, u_i \rangle u_i \|^2$ add extra components $= \|\sum \langle v, u_i \rangle u_i\|^2$ Pythagorean Theorem $= ||v||^2$ So $P_U(v) \leq ||v||$

Questions: Orthogonality

Solution

Let U be the subspace of \mathbb{R}^n with orthonormal basis $u_1, ..., u_k$. 2iii. Prove that $v - P_U(v)$ is orthogonal to $P_U(v)$ $P_U(v) = \sum_{i=1}^k \langle v, u_i \rangle u_i \qquad \text{from 2i}$ $v = \sum_{i=0}^n \langle v, u_i \rangle u_i \qquad \text{since } u_1, ..., u_n \text{ is a orthonormal basis.}$ $v - P_U(v) = \sum_{i=1}^n \langle v, u_i \rangle u_i - \sum_{i=1}^k \langle v, u_i \rangle u_i$

$$v - P_U(v) = \sum_{i=1}^n \langle v, u_i \rangle u_i - \sum_{i=1}^n \langle v, u_i \rangle u_i$$
$$= \sum_{i=k+1}^n \langle v, u_i \rangle u_i$$
$$\langle v - P_U(v), v \rangle = \langle (\sum_{i=k+1}^n \langle v, u_i \rangle u_i), (\sum_{i=1}^k \langle v, u_i \rangle u_i) \rangle$$

=0 u_i are pairwise orthogonal.