

CS 3600 Project 3 Review

Notation: legalPositions

- Let's call c any coordinate which is a legal position
- Access via attribute self.legalPositions

Notation: beliefs

- Of the form P(G = c)
 - The probability the random variable representing a ghost's position G is equal to position c
- Access via self.beliefs
 - Should be a counter object

Notation: trueDistance

- trueDistance = ManhattanDistance(Pacman, c)
 - The true distance from Pacman to legal position **c**
- $P(G = c) = \alpha P(dist from Pacman to G = trueDistance)$
 - Example: [c1] [c2] [c3]
 - If Pacman is at c2 and P(dist from c2 to ghost = 1) = 1:
 - P(G = c1) = ?
 - P(G = c3) = ?

Notation: noisyDistance

- This is your **observation** parameter
- Remember, real-world sensors are noisy (this is why robots fall down)
- Luckily, we have a probability distribution describing this "noise"

Notation: emissionModel

- Represents:
 - P(noisyDistance|trueDistance)
- P(noisyDistance|trueDistance)
 - = emissionModel[trueDistance]

There is a different emission model for each noisyDistance

Notation: jail

- When a ghost has been captured, the belief that the ghost is anywhere but the jail cell must be 0%, and we must have 100% belief that the ghost is in the jail position
- You can check if a ghost has been captured by Pacman by checking if it has a noisyDistance of None

Updating Beliefs with Observation (Q1)

- What we have:
 - P(noisyDistance|trueDistance)
 - = emissionModel[trueDistance]
 - P(trueDistance)
 - Our prior <u>beliefs</u>
- What we want
 - P(c | noisyDistance)
 = α P (trueDistance to c | noisyDistance)
- Start with math before trying to code

Updating Beliefs with Time

- GIVEN: ghost was at another location
- GetPositionDistribution: gives probability distribution of where ghost may be at <u>next</u> time increment
- **Use what we already BELIEVE about ghost's location

Hunting Multiple Ghosts

- Must <u>decide</u> how to hunt
- Follow a greedy approach:
 - Determine location ghost will most likely be at (the "true" location)
 - Identify closest ghost to Pacman
 - Choose action to bring Pacman as close as possible to ghost

Why use Particles?

- Exact filtering is recursive and expensive
- Need to calculate P(X_t|e_{1:t})
 for every state X_t at each
 time step

Intuition: Particle Filtering

- Particles are votes
- If a state has more particles, it means that it is more likely that Pacman is in this state
- Can translate between belief distributions and particle list

Intuition: Particle Filtering

Example:

- You have a bag of 100 particles.
- 90 of them represent "RAIN RAIN ENDLESS RAIN"
- 10 of them represent "HOT HOT SUN"
- So the belief distribution of the current weather
 - 90% "RAIN RAIN ENDLESS RAIN"
 - 10% "HOT HOT SUN"

Initializing Uniformly

- We initialize the set of particles according to the prior distribution
- In this case, we do not know where Pacman is at all → Hence a Uniform Prior
- Each state should have the same number of particles in the beginning
- Try to distribute <u>all</u> particles as evenly as possible, even if the number of particles may not be divisible by the number of states

Updating Particles with Time Elapse

Time Elapse in Particle Filter

- Analogous to time elapse in exact inference
 - Instead of updating the probabilities of being in each state, we sample the transition of each particle
- For each particle:
 - 1. Find its corresponding transition distribution
 - 2. Sample a new particle from the distribution

Updating Particles with Observations

	$P(F_t=T F_{t-1})$	$P(F_t=F F_{t-1})$
F _{t-1} = T	0.8	0.2
$F_{t-1} = F$	0.5	0.5 ,

	$P(V_t=T F_t)$	$P(V_t=F F_t)$
F _t = T	0.6	0.4
F _t = F	0.3	0.7

Comedian Example

There's a comedian who is new in town, and he puts on a show at Radio City. When he is funny (denoted by F), he would likely change his voice (denoted by V). We assume that at time t = 0, the probability distribution of him being funny is <0.6, 0.4> (yes, he is often funny).

Sensor

り、シ

At t = 1, he is observed to change his voice.

Intuition

- The higher the sum of weights of particles in a state, the more likely Pacman is in that state
- After transitioning, we would need to re-weigh the particles based on the emission model
- The evidence / observation gives us intuition of whether this state is likely

Introduction

- Up to now, we've used separate particle filters for the ghosts
- Now, ghosts do not behave independently
 - For example, ghosts may move away from each other if they're too close
- So we need to use one joint particle filter
- If we have k ghosts, each particle will be a k-tuple of ghost positions $(c_1, c_2, ..., c_k)$

Creating Particles

- All possible particles consist of all legal positions of the k ghosts
 - Ends up being all length-k permutations of legalPositions
- For initialization, we again use a uniform prior
 - Here, uniform over all length- ${\it k}$ permutations of legalPositions
 - These permutations can be created with Python's itertools.product module over legalPositions
- We won't have enough particles to cover all permutations, so instead we randomly sample a subset from the prior
 - Done in code by taking list of permutations, shuffling them, and then taking the first N tuples

 Hop Markills Sandon Shuffle ()

Updating with Observations and Time Elapse

- observeState and elapseTime will be pretty similar to original particle filter's
- Need to do additional book-keeping since particle is a tuple of ghosts instead of a single ghost
 - For example, if some ghost is eaten, all particles must have that ghost go to jail
 - If all particles have zero weight, must reinitialize by calling initializeParticles, and then (for each particle) putting any already-eaten ghosts in jail

NokyDBt = None

