Data Science for Actuaries (ACT6100)

Arthur Charpentier

Rappels # 1 (Vectors, Norms & Inner Product)

automne 2020

https://github.com/freakonometrics/ACT6100/

Norm

A norm $\|\cdot\|$, in \mathbb{R}^n , satisfies

- ▶ homogeneity, $\|\vec{au}\| = |a| \cdot \|\vec{u}\|$
- lacktriangle triangle inequality, $\|ec{m{u}} + ec{m{v}}\| \leq \|ec{m{u}}\| + \|ec{m{v}}\|$
- **•** positivity, $\|\vec{\boldsymbol{u}}\| \geq 0$
- ▶ definiteness, $\|\vec{\boldsymbol{u}}\| = 0 \iff \vec{\boldsymbol{u}} = \vec{\boldsymbol{0}}$

 $\ell_1 \text{ norm: } ||\mathbf{x}||_{\ell_1} = |x_1| + \cdots + |x_n|,$

see taxicab geometry

 ℓ_p norm: with $p \geq 1$,

$$\|\mathbf{x}\|_{\ell_p} = (|x_1|^p + \cdots + |x_n|^p)^{1/p}$$

e.g. $\|\mathbf{x}\|_{\ell_{\infty}} = \max\{x_i\}$

Unit balls ($\| {m x} \| \leq 1$) are convex sets

Hilbert Space and Inner Products

An inner product $\langle \cdot, \cdot \rangle$, in \mathbb{R}^n , satisfies

- ightharpoonup symmetry, $\langle \vec{\pmb{u}}, \vec{\pmb{v}} \rangle = \langle \vec{\pmb{v}}, \vec{\pmb{u}} \rangle$
- linearity, $\langle a\vec{\boldsymbol{u}} + b\vec{\boldsymbol{v}}, \vec{\boldsymbol{w}} \rangle = a\langle \vec{\boldsymbol{u}}, \vec{\boldsymbol{w}} \rangle + b\langle \vec{\boldsymbol{v}}, \vec{\boldsymbol{w}} \rangle$
- ightharpoonup positivity, $\langle \vec{\boldsymbol{u}}, \vec{\boldsymbol{u}} \rangle > 0$
- definiteness, $\langle \vec{\boldsymbol{u}}, \vec{\boldsymbol{u}} \rangle = 0 \iff \vec{\boldsymbol{u}} = \hat{\boldsymbol{0}}$

Example: On the set of \mathbb{R}^n vectors, $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^\top \mathbf{y}$ **Furthermore**

- $\|x\| = \sqrt{\langle x, x \rangle}$ defines a norm
- d(x, y) = ||x y|| defines a distance

Example: On the set of $m \times n$ matrices, $\langle \mathbf{A}, \mathbf{B} \rangle = \operatorname{trace}(\mathbf{A}\mathbf{B}^{\top})$ **Example**: On the set of ranfom variables, $\langle X, Y \rangle = \mathbb{E}(XY)$

Cauchy-Schwarz Inequality

 $|\langle \mathbf{x}, \mathbf{y} \rangle| \leq ||\mathbf{x}|| \cdot ||\mathbf{y}||$ with equality only when $\mathbf{x} = \lambda \mathbf{y}$

Application: $x_i \leftarrow x_i - \overline{x}$ and $y_i \leftarrow y_i - \overline{y}$,

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \boldsymbol{x}^{\top} \boldsymbol{y} = \sum_{i=1}^{n} x_i y_i$$

$$\|\mathbf{x}\| \cdot \|\mathbf{y}\| = \sqrt{\mathbf{x}^{\top}\mathbf{x}} \cdot \sqrt{\mathbf{y}^{\top}\mathbf{y}} = \sqrt{\sum_{i=1}^{n} x_i^2} \cdot \sqrt{\sum_{i=1}^{n} y_i}$$

$$\operatorname{corr}(\boldsymbol{x}, \boldsymbol{y}) = \frac{\sum_{i=1}^{n} x_{i} y_{i}}{\sum_{i=1}^{n} x_{i}^{2} \cdot \sum_{i=1}^{n} y_{i}^{2}} = \frac{\langle \boldsymbol{x}, \boldsymbol{y} \rangle}{\|\boldsymbol{x}\| \cdot \|\boldsymbol{y}\|} \in [-1, +1]$$

and $corr(\mathbf{x}, \mathbf{y}) = \pm 1$ only when $\mathbf{x} = \lambda \mathbf{y}$.

Mahalanobis distance

A $n \times n$ symmetric matrix **M** is positive definite if $\mathbf{x}^{\top} \mathbf{M} \mathbf{x} > 0$ for any $\mathbf{x} \in \mathbb{R}^n$.

Proposition: If **M** is a positive definite (symmetric) matrix, then $\langle x, y \rangle = x^{\top} M y$ defines an inner product.

(furthermore, conversely, if $\langle x, y \rangle = x^{\top} M y$ defines an inner product, then **M** is definite positive)

- $\langle x, y \rangle_M = x^\top M y$ defines an inner product,
- $\|x\|_M = \sqrt{\langle x, x \rangle_M}$ defines a norm
- $d_M(x, y) = ||x y||_M$ defines a distance

Given Σ some $n \times n$ definite positive matrix, define

$$d(\mathbf{x}, \mathbf{y}) = \sqrt{(\mathbf{x} - \mathbf{y})^{\top} \mathbf{\Sigma}^{-1} (\mathbf{x} - \mathbf{y})}$$

Given $\mu \in \mathbb{R}^n$, define the Mahalanobis "norm"

$$\|\mathbf{x}\| = d(\mathbf{x}, \boldsymbol{\mu}) = \sqrt{(\mathbf{x} - \boldsymbol{\mu})^{\top} \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})}$$

If Σ is diagonal, it is also called standardized Euclidean distance. See on the generalised distance in statistics, 1936.