Image Enhancement and Object Recognition For Night Vision Surveillance

Team Members:

Aashish Bhandari (070bex401)

Aayush Kafle (070bex403)

Pranjal Dhakal (070bex427)

Prateek Raj Joshi (070bex429)

Supervised By:

Mr. Dinesh Baniya Kshatri

Introduction

- Image processing and enhancement has been a boon for technological development.
- A machine has been able to see as human does and take necessary actions.
- Sometimes, a machine might see things that a human simply cannot.

Basic Overview

System Block Diagram

Hardware Setup

Client-Server Model

- Secure Copy Protocol(SCP) is used.
- Based on Secure Shell(SSH)
- Key Encryption and decryption makes it less susceptible to network intrusion.

NoIR Camera

- Doesn't have IR Cut Filter.
- Presence of IR illuminators.
- IR rays are invisible to naked human eye.
- Works same as a flash light of mobile phones.

Issues with camera

• Radial and Tangential Distortion

No Radial Distortion

Negative Radial Distortion

Positive Radial Distortion

Solution: Camera Calibration

Distorted Image without Calibration

Undistorted Image After Calibration

Correction using Novel Iterative Method

Image Enhancement

• For passive illumination IR cameras, image enhancement is used for Contrast stretching, noise reduction and to provide better input for classifier.

• Algorithms:

- Histogram Equalization,
- Adaptive Histogram Equalization,
- Contrast Limited Adaptive Histogram Equalization,
- Retinex (Single and Multi-scale)
- Quantitative Parameters: Entropy, MSE, PSNR and modified PSNR with variance

Histogram Equalization

Adaptive Histogram Equalization

8/6/2017

Contrast Limited Adaptive Histogram Equalization

Retinex (Single and Multi-Scale)

Original image histogram

Same Result of MSR Gray and MSR color (single channel

Classification

- Classification methods:
 - Neural Networks,
 - Support Vector Machine (SVM),
 - K nearest neighbor etc.
- A special type of Neural Network designed specially for image processing called Convolutional Neural Network (CNN) was used.

Convolutional Neural Network (CNN)

- CNNs are best suited for image classification.
- Combination of "Feature Extractor" and "Classifier".

Convolution Neural Network

Need for CNN

- Convenience: Once model ready, less work to be done.
- Reliability: Provides Spatial Invariance.
- Speed: Classification in fraction of seconds. Takes time only during training.
- Automation: Self-sufficient method with complete automation

Development of Model

- Two approaches for CNN development
 - Development and training of a complete CNN architecture from groundup.

• Heina "Transfer Learning" approach

Complete CNN training.	Transfer Learning
Refers to complete training of CNN.	Refers to partial training of CNN.
Large dataset needed.	Can work well with smaller datasets.
Needs greater computational power.	Needs less computational power.
Can be more accurate.	Might not be as accurate as complete training.

Comparison table

Transfer Learning

- Training CNN from ground-up is arduous.
- Using a pre-trained network for initialization of weights and biases or used as a fixed feature extractor.
- Weights and biases for Inception V3 model provided by TensorFlow.
- Used the inception model as feature extractor and then trained self made Neural Network.

Transfer Learning

Confusion Matrix obtained from training in our case:

		Predicted Class			
		Batman	Police Man	Soldier	Wonder Woman
Actual Class	Batman	4	4	3	2
	Policeman	0	1	0	3
	Soldier	1	1	4	0
	Wonder Woman	0	2	1	6

Creating a complete CNN

Our Custom CNN architecture

Results of training CNN

COST FUNCTION GRAPH

cross_entropy

Results of training CNN

VALIDATION

ACCITD ACV

predict/accuracy_summary

CNN Training Details

Epoch	Time to complete	Accuracy	Cross Entropy loss
1st	0:29:11	55.71%	200088.573
2nd	1:25:29	46.19%	62718.081
3rd	0:29:17	48.49%	3899.8477
4th	0:26:55	51.25%	2880.0667

Image Processing Effects

Original Image

After CLAHE

After MSR Gray

IMAGE	PREDICTIONS USING SOFTMAX FUNCTION	COMMENT
Original Image	Wonder Woman (58%)	True Prediction
After CLAHE	Wonder Woman (85.67%)	True Prediction
After MSR Gray	Wonder Woman (94.318%)	True Prediction

Image Processing Effects

After AHE

After Histogram Equalization

After MSR Color

IMAGE	PREDICTIONS USING SOFTMAX FUNCTION	COMMENT
After AHE	Batman (74%)	False Prediction
After Histogram	Batman(99.97%)	False Prediction
After MSR Color	Batman(100%)	False Prediction

Limitations

- Inability to automatically detect the illumination condition and enhance image.
- Inability to detect intruder severity.
- Over-fitting of the CNN model due to inadequate training data.

Future Enhancements

- Automatic image enhancement based on illumination condition.
- Intruder severity detection with weapon detection schemes using models like R-CNN.
- Creation and collection of enough dataset for optimum training.

Conclusion

- Knowledge in camera calibration was gained.
- Enhanced the images taken in inadequate lighting conditions.
- Built different CNN classification models.
- Learnt and implemented concept of Transfer Learning.
- Studied effects of enhancing images in classification accuracy.

References

- A. Ellmauthaler, E. A. B. D. Silva, C. L. Pagliari, J. N. Gois, and S. R. Neves, "A novel iterative calibration approach for thermal infrared cameras", *2013 IEEE International Conference on Image Processing*, 2013.
- A. Krizhevsky, I. Sutskever, and G. E. Hilton, "Imagenet classification with deep convolutional neural networks", in *Advances in Neural Information Processing Systems* 25 (F. Periera, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, eds.), pp. 1097-1105, Curran Associates, Inc., 2012.
- A. Karpathy, "Standford University CS231n:" Convolutional Neural Networks for Visual Recognition."
- C Szegedy, W Liu, Y Jia, P Sermanet, S Reed, D Anguelov, D Erhan, V Vanhoucke and A Rabinovich, "Going Deeper with Convolutions", in *Computer Vision and Pattern Regonition (CPVR)*, 2015.

Thank You

Backup section

Features Extracted by Convolutional Layer

Features Extracted by Convolutional Layer

Transfer Learning Accuracy

Transfer Learning Cost Function

cross_entropy

Self made Fully Connected Layer

For MNIST dataset: 28x28 input neurons 2 hidden layers (64x32) Random weight initialization Accuracy: 98% Iteration 20000

For CIFAR dataset:
Feature extracted using Inception
Model
1920 input neurons
2 hidden layers(128x32)
Random weight initialization
Accuracy: 66%

Iteration:70000