

ECE259: Electromagnetism

Final exam - Wednesday April 25, 2018 Instructors: Profs. Micah Stickel and Piero Triverio

					,					
Last nar	ne:									• •
First na	me:									••
Student	number:					• • • • • • • • •				
Instruc	tions									
• Du	ration: 2	hour 30 m	ninutes (14	:00 to 16:	30)					
• Ex	am Paper	Type: A.	Closed bo	ok. Only t	the aid she	et provided	d at the end	d of this be	ooklet is permitte	ed.
• Ca	lculator T	ype: 2. A	ll non-prog	grammable	e electroni	c calculato	rs are allo	wed.		
• O	nly answ	ers that	are fully	justified	will be g	iven full o	credit!			
Marks:	Q1:	/20	Q2:	/20	Q3:	/20	Q4:	/20	TOTAL:	/80

Question 1

The cylinder in the figure has radius α , height h and lies along the z axis with the origin in the middle. The cylinder is made by a perfect dielectric material and is polarized. The polarization vector is $\mathbf{P} = P_0 \mathbf{a}_x$ with $P_0 > 0$.

(a) Find the density of all polarization charge distributions that may exist within or on the cylinder. [4 points]

(b) Without doing calculations, determine the direction of the electric field \mathbf{E} at the origin. Briefly justify your answer. [2 points]

(c) Find the electric field E at the origin. [14 points] You may find the following integrals useful

$$\int_0^{2\pi} \cos^2 x dx = \pi \qquad \int \frac{dx}{(a^2 + x^2)^{3/2}} = \frac{x}{a^2 \sqrt{a^2 + x^2}} + C$$

Winter 2018

ECE259

Q1 (c) (continued)

Question 2

A very long wire with radius a lies along the z-axis and has a current density given by $J_{inner} = J_0 r a_z$. Coaxial to this wire is situated a very thin cylinder with radius b. The outer cylinder carries a total current that is equal and opposite to the inner conductor. You may assume that for these conductors, $\mu_r = 1$.

(a) Determine the magnetic field intensity, H, everywhere. [10 points]

(b) Determine the stored energy per unit length of this coaxial system. [5 points]

(c) Determine the inductance per unit length of this coaxial system. [5 points]

ECE259

Q2 (c) (continued)

Question 3

Consider the rectangular metallic frame shown in the figure. The frame is falling under the effect of gravity with velocity $\mathbf{u}(t) = -u_y(t)\mathbf{a}_y$ where $u_y(t) > 0$. The frame is rigid, has total resistance R and negligible inductance. A magnetic field $\mathbf{B} = B_0 y \mathbf{a}_z$ with $B_0 > 0$ is present in the region y > 0.

(a) Using Lenz's law, determine the sign of current i(t). [2 points]

(b) Sketch the direction of the magnetic force acting on each edge of the frame. Briefly justify your answer. [2 points]

(c) Do magnetic forces increase the frame velocity, decrease it, or leave it unchanged? Briefly justify your answer. [2 points]

(d) Determine i(t) using Faraday's law in the form $V_{emf}=-\frac{\partial}{\partial t}\Phi(t)$. Express i(t) in terms of $u_y(t)$. [4 points]

(e) Determine i(t) using the alternative form of Faraday's law $V_{emf} = -\int_S \frac{\partial \mathbf{B}}{\partial t} \cdot \mathbf{dS} + \int_c (\mathbf{u} \times \mathbf{B}) \cdot \mathbf{dl}$. Express i(t) in terms of $u_y(t)$. [4 points]

(f) Find the net magnetic force \mathbf{F}_m acting on the frame, and express it in terms of $u_y(t)$. [6 points]

Question 4.1

For the magnetic circuit shown below, answer the following True/False questions. For this problem you can ignore the effects of fringing fields, and you can assume the core has a square cross-section (i.e., it extends 3 cm into the page). Both coils are tightly wound around the core. Briefly justify each of your answers with appropriate descriptions and/or calculations. [5 points]

(a) (True / False) The magnitude of the magnetic field intensity, H, is larger in the air gap than in the magnetic core.

(b) (True / False) The reluctance of the air gap is smaller than that of the magnetic core.

(c) (True / False) The self-inductance of the second coil at the bottom is $L_{22}=259~\mathrm{mH}$ (rounded to the nearest mH).

Question 4.2

A solid perfectly conducting sphere of radius R=4 cm is centered on the origin and has a charge density of $\rho_S=2$ mC/m² on its surface. It is surrounded by a spherical dielectric shell $\varepsilon_r=5$ that extends from R=4 cm to R=6 cm. On the axes below, sketch the variation of the magnitudes of the electric field intensity, electric flux density, and the electric scalar potential (with $V(R=\infty)=0$). Your plots should include values at key points (i.e., R=0 cm, R=4 cm, and R=6 cm) and should extend from R=0 cm to R=10 cm. [6 points]

Question 4.3

A sphere of radius a that is made of a conductive dielectric ($\sigma = \sigma_0$ and $\varepsilon = \varepsilon_r \varepsilon_0$) is centered about the origin. The sphere is charged at t = 0 s with a uniform charge density given by $\rho_v(t = 0) = \rho_0$ for all $R \le a$, where ρ_0 is a positive constant.

(a) Starting from the continuity equation, $\nabla \cdot \mathbf{J} = -\frac{\partial \rho_v}{\partial t}$, prove that the charge density within the dielectric sphere varies according to $\rho_v(t) = \rho_0 e^{-\frac{\sigma_0 t}{\varepsilon_r \varepsilon_0}}$. [3 points]

(b) If it is known that at t=0 s the conduction current density within the sphere is given by $J(R, t=0) = \frac{\rho_0 \sigma_0}{3\varepsilon_r \varepsilon_0} R a_R$, determine the expression for the conduction current density for $t \ge 0$ s. Hint: Assume this current density is only a function of R. [3 points]

(c) Find the ratio of the magnitude of the conduction current density relative to the magnitude of the displacement current density for $t \ge 0$ s. [3 points]

ECE259 Winter 2018

1 Coordinate Systems

1.1 Cartesian coordinates

Position vector: $\mathbf{R} = x\mathbf{a}_x + y\mathbf{a}_y + z\mathbf{a}_z$

Differential length elements: $dl_x = a_x dx$, $dl_y = a_y dy$, $dl_z = a_z dz$

Differential surface elements: $dS_x = a_x dy dz$, $dS_y = a_y dx dz$, $dS_z = a_z dx dy$ Differential volume element: dV = dx dy dz

1.2 Cylindrical coordinates

Winter 2018 **ECE259**

Position vector: $\mathbf{R} = r\mathbf{a}_r + z\mathbf{a}_z$

Differential length elements: $d\mathbf{l}_r = \mathbf{a}_r dr$, $d\mathbf{l}_\phi = \mathbf{a}_\phi r d\phi$, $d\mathbf{l}_z = \mathbf{a}_z dz$

Differential surface elements: $d\mathbf{S}_r = \mathbf{a}_r r d\phi dz$, $d\mathbf{S}_\phi = \mathbf{a}_\phi dr dz$, $d\mathbf{S}_z = \mathbf{a}_z r d\phi dr$

Differential volume element: $dV = rdr d\phi dz$

1.3 Spherical coordinates

Position vector: $\mathbf{R} = R\mathbf{a}_R$

Differential length elements: $\mathbf{dl}_R = \mathbf{a}_R dR$, $\mathbf{dl}_\theta = \mathbf{a}_\theta R d\theta$, $\mathbf{dl}_\phi = \mathbf{a}_\phi R \sin\theta d\phi$ Differential surface elements: $\mathbf{dS}_R = \mathbf{a}_R R^2 \sin\theta d\theta d\phi$, $\mathbf{dS}_\theta = \mathbf{a}_\theta R \sin\theta dR d\phi$, $\mathbf{dS}_\phi = \mathbf{a}_\phi R dR d\theta$ Differential volume element: $dV = R^2 \sin\theta dR d\theta d\phi$

2 Relationship between coordinate variables

-	Cartesian	Cylindrical	Spherical
x	x	$r\cos\phi$	$R\sin heta\cos\phi$
		$r \sin \phi$	$R\sin\theta\sin\phi$
y	$\begin{vmatrix} y \\ \vdots \end{vmatrix}$,	,
z		Z	$R\cos\theta$
r	$\sqrt{x^2+y^2}$	r	$R\sin heta$
ϕ	$\tan^{-1}\frac{y}{x}$	ϕ	ϕ
z	z	z	$R\cos\theta$
R	$\sqrt{x^2 + y^2 + z^2}$ $\cos^{-1} \frac{z}{z}$	$\frac{r}{\sin \theta}$	R
θ	$\cos^{-1}\frac{z}{\sqrt{x^2+y^2+z^2}}$	$\tan^{-1}\frac{r}{z}$	θ
ϕ	$\tan^{-1}\frac{y}{x}$	ϕ	ϕ

3 Dot products of unit vectors

	\mathbf{a}_x	\mathbf{a}_y	\mathbf{a}_z	\mathbf{a}_r	\mathbf{a}_{ϕ}	\mathbf{a}_z	\mathbf{a}_R	$\mathbf{a}_{ heta}$	\mathbf{a}_{ϕ}
\mathbf{a}_x	1	0	0	$\cos \phi$	$-\sin\phi$	0	$\sin \theta \cos \phi$	$\cos \theta \cos \phi$	$-\sin\phi$
\mathbf{a}_y	0	1	0	$\sin \phi$	$\cos \phi$	0	$\sin \theta \sin \phi$	$\cos \theta \sin \phi$	$\cos \phi$
\mathbf{a}_z	0	0	1	0	0	1	$\cos \theta$	$-\sin\theta$	0
$ \mathbf{a}_r $	$\cos \phi$	$\sin\phi$	0	1	0	0	$\sin heta$	$\cos \theta$	0
\mathbf{a}_{ϕ}	$-\sin\phi$	$\cos\phi$	0	0	1	0	0	0	1
\mathbf{a}_z	0	0	1	0	0	1	$\cos \theta$	$-\sin\theta$	0
\mathbf{a}_R	$\sin \theta \cos \phi$	$\sin \theta \sin \phi$	$\cos \theta$	$\sin \theta$	0	$\cos \theta$	1	0	0
$\mathbf{a}_{ heta}$	$\cos \theta \cos \phi$	$\cos \theta \sin \phi$	$-\sin\theta$	$\cos \theta$	0	$-\sin\theta$	0	1	0
\mathbf{a}_{ϕ}	$-\sin\phi$	$\cos \phi$	0	0	1	0	0	0	1

ECE259

4 Relationship between vector components

=	Cartesian	Cylindrical	Spherical
A_x	A_x	$A_r \cos \phi - A_\phi \sin \phi$	$A_R \sin \theta \cos \phi + A_\theta \cos \theta \cos \phi -$
			$A_{oldsymbol{\phi}}\sin{\phi}$
A_y	A_y	$A_r \sin \phi + A_\phi \cos \phi$	$A_R \sin \theta \sin \phi + A_\theta \cos \theta \sin \phi +$
			$A_{\phi}\cos\phi$
A_z	A_z	A_z	$A_R\cos\theta - A_\theta\sin\theta$
A_r	$A_x \cos \phi + A_y \sin \phi$	A_r	$A_R \sin \theta + A_\theta \cos \theta$
A_{ϕ}	$-A_x\sin\phi + A_y\cos\phi$	$A_{m{\phi}}$	A_{ϕ}
A_z	A_z	A_z	$A_R\cos\theta - A_\theta\sin\theta$
A_R	$A_x \sin \theta \cos \phi + A_y \sin \theta \sin \phi +$	$A_r \sin \theta + A_z \cos \theta$	A_R
	$A_z \cos \theta$		
A_{θ}	$A_x \cos \theta \cos \phi + A_y \cos \theta \sin \phi -$	$A_r \cos \theta - A_z \sin \theta$	$A_{ heta}$
	$A_z \sin \theta$		
A_{ϕ}	$-A_x \sin \phi + A_y \cos \phi$	A_{ϕ}	A_{ϕ}

5 Differential operators

5.1 Gradient

$$\nabla V = \frac{\partial V}{\partial x} \mathbf{a}_x + \frac{\partial V}{\partial y} \mathbf{a}_y + \frac{\partial V}{\partial z} \mathbf{a}_z = \frac{\partial V}{\partial r} \mathbf{a}_r + \frac{1}{r} \frac{\partial V}{\partial \phi} \mathbf{a}_\phi + \frac{\partial V}{\partial z} \mathbf{a}_z = \frac{\partial V}{\partial R} \mathbf{a}_R + \frac{1}{R} \frac{\partial V}{\partial \theta} \mathbf{a}_\theta + \frac{1}{R \sin \theta} \frac{\partial V}{\partial \phi} \mathbf{a}_\phi$$

5.2 Divergence

$$\nabla \cdot \mathbf{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z} = \frac{1}{r} \frac{\partial (rA_r)}{\partial r} + \frac{1}{r} \frac{\partial A_\phi}{\partial \phi} + \frac{\partial A_z}{\partial z} = \frac{1}{R^2} \frac{\partial (R^2 A_R)}{\partial R} + \frac{1}{R \sin \theta} \frac{\partial (\sin \theta A_\theta)}{\partial \theta} + \frac{1}{R \sin \theta} \frac{\partial A_\phi}{\partial \phi}$$

5.3 Laplacian

$$\nabla^2 V = \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial V}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 V}{\partial \phi^2} + \frac{\partial^2 V}{\partial z^2} = \frac{1}{R^2} \frac{\partial}{\partial R} \left(R^2 \frac{\partial V}{\partial R} \right) + \frac{1}{R^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial V}{\partial \theta} \right) + \frac{1}{R^2 \sin^2 \theta} \frac{\partial^2 V}{\partial \phi^2}$$

5.4 Curl

$$\nabla \times \mathbf{A} = \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z}\right) \mathbf{a}_x + \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x}\right) \mathbf{a}_y + \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y}\right) \mathbf{a}_z$$

$$= \left(\frac{1}{r} \frac{\partial A_z}{\partial \phi} - \frac{\partial A_\phi}{\partial z}\right) \mathbf{a}_r + \left(\frac{\partial A_r}{\partial z} - \frac{\partial A_z}{\partial r}\right) \mathbf{a}_\phi + \frac{1}{r} \left(\frac{\partial (rA_\phi)}{\partial r} - \frac{\partial A_r}{\partial \phi}\right) \mathbf{a}_z$$

$$= \frac{1}{R \sin \theta} \left(\frac{\partial (\sin \theta A_\phi)}{\partial \theta} - \frac{\partial A_\theta}{\partial \phi}\right) \mathbf{a}_R + \frac{1}{R} \left(\frac{1}{\sin \theta} \frac{\partial A_R}{\partial \phi} - \frac{\partial (RA_\phi)}{\partial R}\right) \mathbf{a}_\theta$$

$$+ \frac{1}{R} \left(\frac{\partial (RA_\theta)}{\partial R} - \frac{\partial A_R}{\partial \theta}\right) \mathbf{a}_\phi$$

6 Electromagnetic formulas

 Table 1
 Electrostatics

$$\mathbf{F} = \frac{1}{4\pi\varepsilon} \frac{Q_1 Q_2}{|\mathbf{R}_2 - \mathbf{R}_1|^3} (\mathbf{R}_2 - \mathbf{R}_1) \quad \mathbf{E} = \frac{1}{4\pi\varepsilon} \int_v \frac{(\mathbf{R} - \mathbf{R}')}{|\mathbf{R} - \mathbf{R}'|^3} dQ'$$

$$\nabla \times \mathbf{E} = 0 \qquad \nabla \cdot \mathbf{D} = \rho_v$$

$$\oint_C \mathbf{E} \cdot d\mathbf{l} = 0 \qquad \oint_S \mathbf{D} \cdot d\mathbf{S} = Q$$

$$\mathbf{E} = -\nabla V \qquad V = \frac{1}{4\pi\varepsilon} \int_v \frac{dQ'}{|\mathbf{R} - \mathbf{R}'|}$$

$$V = V(P_2) - V(P_1) = \frac{W}{Q} = -\int_{P_1}^{P_2} \mathbf{E} \cdot d\mathbf{l}$$

$$\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P} = \varepsilon \mathbf{E} \qquad \mathbf{P} = \chi_e \varepsilon_0 \mathbf{E}$$

$$\rho_{p,v} = -\nabla \cdot \mathbf{P} \qquad \mathbf{a}_n$$

$$\rho_{p,s} = -\mathbf{a}_n \cdot (\mathbf{P}_2 - \mathbf{P}_1) \qquad \mathbf{2}$$

$$\mathbf{a}_n \cdot (\mathbf{D}_2 - \mathbf{D}_1) = \rho_s \qquad \mathbf{1}$$

$$E_{1,t} = E_{2,t}$$

$$Q = CV \qquad W_e = \frac{1}{2} QV$$

$$W_e = \frac{1}{2} \int_{vol} \rho_v V dv = \frac{1}{2} \int_{vol} \mathbf{D} \cdot \mathbf{E} dv$$

$$\nabla \cdot (\varepsilon \nabla V) = -\rho_v \qquad \nabla \cdot (\varepsilon \nabla V) = 0$$

 Table 2
 Magnetostatics

$$\mathbf{F}_{m} = q\mathbf{u} \times \mathbf{B} \qquad \qquad \mathbf{F}_{m} = I\mathbf{l} \times \mathbf{B}$$

$$\nabla \times \mathbf{B} = \mu \mathbf{J} \qquad \qquad \nabla \cdot \mathbf{B} = 0$$

$$\oint_{C} \mathbf{B} \cdot d\mathbf{l} = \mu I \qquad \qquad \oint_{S} \mathbf{B} \cdot d\mathbf{S} = 0$$

$$\mathbf{B} = \frac{\mu I}{4\pi} \oint_{C} \frac{d\mathbf{l}' \times (\mathbf{R} - \mathbf{R}')}{|\mathbf{R} - \mathbf{R}'|^{3}} \qquad \qquad \Phi = \int_{S} \mathbf{B} \cdot d\mathbf{S}$$

$$\mathbf{B} = \mu_{0} (\mathbf{H} + \mathbf{M}) = \mu \mathbf{H} \qquad \qquad \mathbf{M} = \chi_{m} \mathbf{H}$$

$$\mathbf{J}_{m,s} = \mathbf{M} \times \mathbf{a}_{n} \qquad \qquad \mathbf{J}_{m} = \nabla \times \mathbf{M}$$

$$B_{1,n} = B_{2,n} \qquad \qquad \mathbf{a}_{n} \times (\mathbf{H}_{2} - \mathbf{H}_{1}) = \mathbf{J}_{s}$$

$$\nabla \times \mathbf{H} = \mathbf{J} \qquad \qquad \oint_{\mathbf{H}} \mathbf{H} \cdot d\mathbf{l} = I$$

$$W_{m} = \frac{1}{2} \int_{vol} \mathbf{B} \cdot \mathbf{H} dv$$

$$L = \frac{N\Phi}{I} = \frac{2W_{m}}{I^{2}} \qquad \qquad L_{12} = \frac{N_{2}\Phi_{12}}{I_{1}} = \frac{N_{2}}{I_{1}} \int_{S_{2}} \mathbf{B}_{1} \cdot d\mathbf{S}_{2}$$

$$\mathcal{R} = \frac{l}{\mu S} \qquad \qquad V_{mmf} = NI$$

Table 3 Faraday's law, Ampere-Maxwell law

$$V_{emf} = \oint_C (\mathbf{u} \times \mathbf{B}) \cdot d\mathbf{l} - \int_S \frac{\partial \mathbf{B}}{\partial t} \cdot d\mathbf{S} \quad V_{emf} = \oint_C \mathbf{E} \cdot d\mathbf{l} = -\frac{d\Phi}{dt}$$

$$\oint_C \mathbf{H} \cdot d\mathbf{l} = \int_S \mathbf{J} \cdot d\mathbf{S} + \frac{d}{dt} \int_S \mathbf{D} \cdot d\mathbf{S} \qquad \nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$$

Table 4 Currents
$$I = \int_{S} \mathbf{J} \cdot \mathbf{dS} \qquad \mathbf{J} = \rho \mathbf{u} = \sigma \mathbf{E}$$

$$\nabla \cdot \mathbf{J} = -\frac{\partial \rho_{v}}{\partial t} \qquad \mathbf{P} = \int_{vol} (\mathbf{E} \cdot \mathbf{J}) \, dv$$

$$J_{2,n} - J_{1,n} = -\frac{\partial \rho_{s}}{\partial t} \qquad \sigma_{2} J_{1,t} = \sigma_{1} J_{2,t}$$

$$R = \frac{l}{\sigma S} \qquad \sigma = -\rho_{e} \mu_{e} = \frac{1}{\rho}$$