Sistemas Inteligentes para la Gestión en la Empresa

Práctica 2 - *Deep Learning* para multi-clasificación

Felipe Peiró

Juan Carlos Serrano

Pedro Manuel Gómez-Portillo

Índice

- Fundamentos teóricos
- Descripción de la red empleada
- Resultados
- Conclusiones

Fundamentos teóricos

Fundamentos teóricos I

- El Deep Learning es muy popular
 - Muy buenos resultados en problemas relacionados con los sentidos
 - Procesamiento del Lenguaje Natural
 - Visión por Computadora
 - Asistentes virtuales

Fundamentos teóricos II

- Estructuras jerárquicas de redes neuronales artificiales
 - Similar a la estructura neuronal humana
 - Consigue aprendizaje a través de diversas capas
 - Análisis de datos no lineales

Fundamentos teóricos III

- Conjunto de entrenamiento de 46652 imágenes
- Conjunto de prueba de 11659 imágenes

Fundamentos teóricos IV

TensorFlow

Demasiado parametrizable y complejo. Backend

Keras

Abstracción intuitiva. Interfaz

Fundamentos teóricos V

- Google Cloud
 - Procesador Intel Broadwell x2
 - o 13 GB de memoria RAM
 - GPU NVIDIA Tesla K80
 - Disco duro SSD

Descripción de la red empleada

Red neuronal I

- 1. layer_conv_2d. Entrada de 150x150. Función ReLU
- 2. layer_max_pooling_2d. Tamaño de pool 2x2
- 3. layer_conv_2d. Ventana de 2x2. Función ReLU
- 4. layer_max_pooling_2d. Tamaño de pool 2x2

Red neuronal II

- 5. layer_flatten. Matriz 2D → Vector 1D
 - Para capas totalmente conectadas
- 6. layer_dense. 512 neuronas. Función ReLU
- 7. layer_dense. 5 neuronas. Función softmax
 - Asignar probabilidades a cada clase

Red neuronal III

Red neuronal IV - Hiperparámetros

- Conjuntos de entrenamiento y prueba → 80/20
- Función de coste → categorical_crossentropy
- Algoritmo de optimización → optimizer_rmsprop
 - Tasa de aprendizaje \rightarrow 0.0001
 - Tasa de decadencia de aprendizaje → 1e-6

Resultados

Entrenamiento I

- 15 épocas
- 1 hora y 56 minutos de entrenamiento
 - Máquina cloud de Google

Entrenamiento II

Resultados I

- Porcentaje de aciertos del 28.11% con el conjunto de prueba
- En total se han gastado ~26\$ de crédito

Conclusiones

Conclusiones

- La Inteligencia Artificial es muy compleja
 - Primera toma de contacto
- Google Cloud
 - Aprender a desplegar una red neuronal en la nube
 - Reducir tiempos de entrenamiento

¿Preguntas?

