Causal Regression

Causal Inference using Machine Learning Master in Economics, UNT

Andres Mena

Spring 2024

Table of Contents

Conditional Expectation Function

2 Regression Properties

3 Causal Regression

4 Inference in Regression

Content

Conditional Expectation Function

2 Regression Properties

Causal Regression

4 Inference in Regression

Definition of CEF

The Conditional Expectation Function (CEF)

• The Conditional Expectation Function (CEF) is the population average of y_i given a $k \times 1$ vector of covariates X_i , denoted $E[y_i|X_i]$.

Definition of CEF

The Conditional Expectation Function (CEF)

- The Conditional Expectation Function (CEF) is the population average of y_i given a $k \times 1$ vector of covariates X_i , denoted $E[y_i|X_i]$.
- For discrete y_i:

$$E[y_i|X_i=x]=\sum_t tP(y_i=t|X_i=x)$$

where $P(y_i = t | X_i = x)$ is the conditional probability mass function.

Definition of CEF

The Conditional Expectation Function (CEF)

- The Conditional Expectation Function (CEF) is the population average of y_i given a $k \times 1$ vector of covariates X_i , denoted $E[y_i|X_i]$.
- For discrete *y_i*:

$$E[y_i|X_i=x] = \sum_t tP(y_i=t|X_i=x)$$

where $P(y_i = t | X_i = x)$ is the conditional probability mass function.

• For continuous *y_i*:

$$E[y_i|X_i=x] = \int tf_y(t|X_i=x) dt$$

where $f_y(t|X_i=x)$ is the conditional density of y_i given $X_i=x$.

The Law of Iterated Expectations

Figure: CEF of Log Wage on Schooling (Mostly Harmless).

LIE:

$$E[y_i] = E\{E[y_i|X_i]\}$$

Theorem:

$$y_i = E[y_i|X_i] + \varepsilon_i$$

Theorem:

$$y_i = E[y_i|X_i] + \varepsilon_i$$

• ε_i is the mean independent, i.e $E[\varepsilon_i] = E[\varepsilon_i|X_i] = 0$.

Theorem:

$$y_i = E[y_i|X_i] + \varepsilon_i$$

- ε_i is the mean independent, i.e $E[\varepsilon_i] = E[\varepsilon_i|X_i] = 0$.
- ε_i is uncorrelated with any function of X_i .

Theorem:

$$y_i = E[y_i|X_i] + \varepsilon_i$$

- ε_i is the mean independent, i.e $E[\varepsilon_i] = E[\varepsilon_i|X_i] = 0$.
- ε_i is uncorrelated with any function of X_i .

Proof: i) Replace ϵ , ii) Use LIE to show Orthogonality h(X) and ϵ .

Theorem: The CEF Prediction Property

Theorem:

$$E[y_i|X_i] = \arg\min_{m(X_i)} E[(y_i - m(X_i))^2]$$

• The CEF $E[y_i|X_i]$ solves the minimum mean squared error (MMSE) prediction problem.

Proof: Find Normal equations and take conditional expectation.

Theorem: The ANOVA Theorem

Theorem:

$$V(y_i) = V(E[y_i|X_i]) + E[V(y_i|X_i)]$$

• The total variance equals the variance of the CEF plus the average conditional variance of y_i given X_i .

Theorem: The ANOVA Theorem

Theorem:

$$V(y_i) = V(E[y_i|X_i]) + E[V(y_i|X_i)]$$

• The total variance equals the variance of the CEF plus the average conditional variance of y_i given X_i .

Proof: Use decomposition property and show $E[\epsilon_i^2] = E[V(y_i|X_i)]$.

Content

Conditional Expectation Function

2 Regression Properties

Causal Regression

4 Inference in Regression

CIML Causal Regression Spring

9/26

Regression Problem

Regression Problem:

$$\beta_{OLS} = \arg\min_{b} E[(y_i - X_i b)^2]$$

- The vector of population regression coefficients, β_{OLS} , is defined as the solution to the population least squares problem.
- Using the first-order condition:

$$E[X_i(y_i - X_i b)] = 0$$

Solution:

$$\beta_{OLS} = E[X_i X_i']^{-1} E[X_i y_i]$$

Spring 2024

Linear CEF Theorem

Theorem:

• If the CEF is linear, then $X'_i\beta_{OLS}$ is the CEF.

Proof: Assume $E[y_i|X_i] = X_i'\beta^*$ for any and β^* , and show $\beta_{OLS} = \beta^*$.

Best Linear Predictor (BLP) of Y

Theorem:

• The function $X_i'\beta_{OLS}$ is the best linear predictor of y_i given X_i in the MMSE sense.

Proof:
$$\beta_{BLP} = \beta_{OLS}$$

$$\beta_{BLP} = \arg\min_{b} E[(y_i - X_i b)^2]$$

BLP of the CEF

Theorem:

• The function $X_i'\beta$ provides the MMSE linear approximation to $E[y_i \mid X_i]$:

$$\beta = \arg\min_b E[(E[y_i \mid X_i] - X_i'b)^2]$$

• This motivates regression as an approximation to the CEF.

BLP of the CEF

CIML

Theorem:

• The function $X_i'\beta$ provides the MMSE linear approximation to $E[y_i \mid X_i]$:

$$\beta = \arg\min_b E[(E[y_i \mid X_i] - X_i'b)^2]$$

This motivates regression as an approximation to the CEF.

Proof: Take conditional expectation of the BLP for Y and note that is the same problem as BLP of the CEF.

Figure: Linear CEF Approximation

Illustration:

Figure: Regression threads the CEF (dots = CEF, dashes = regression line).

Centering: Subtract the mean of X and Y to define centered variables:

$$\tilde{X}_i = X_i - \bar{X}, \quad \tilde{Y}_i = Y_i - \bar{Y}$$

Centering: Subtract the mean of X and Y to define centered variables:

$$\tilde{X}_i = X_i - \bar{X}, \quad \tilde{Y}_i = Y_i - \bar{Y}$$

Centered Regression:

$$\tilde{Y}_i = \beta_1 \tilde{X}_i + \varepsilon_i$$

Centering: Subtract the mean of X and Y to define centered variables:

$$\tilde{X}_i = X_i - \bar{X}, \quad \tilde{Y}_i = Y_i - \bar{Y}$$

Centered Regression:

$$\tilde{Y}_i = \beta_1 \tilde{X}_i + \varepsilon_i$$

Key Result: The slope coefficient in the centered regression is:

$$\beta_1 = \frac{\sum \tilde{X}_i \tilde{Y}_i}{\sum \tilde{X}_i^2} = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{\sum (X_i - \bar{X})^2} = \frac{\text{Cov}(Y, X)}{\text{Var}(X)}$$

Centering: Subtract the mean of X and Y to define centered variables:

$$\tilde{X}_i = X_i - \bar{X}, \quad \tilde{Y}_i = Y_i - \bar{Y}$$

Centered Regression:

$$\tilde{Y}_i = \beta_1 \tilde{X}_i + \varepsilon_i$$

Key Result: The slope coefficient in the centered regression is:

$$\beta_1 = \frac{\sum \tilde{X}_i \tilde{Y}_i}{\sum \tilde{X}_i^2} = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{\sum (X_i - \bar{X})^2} = \frac{\mathsf{Cov}(Y, X)}{\mathsf{Var}(X)}$$

Why Center?

- Simplifies the formula by removing the intercept (β_0) .
- Directly links β_1 to covariance and variance.
- Note that $\bar{X} \to E[X]$ and $\bar{Y} \to E[Y]$ as $n \to \infty$.

Theorem: Frisch-Waugh-Lovell (FWL) Theorem

• In a multivariate regression model, the coefficient of a single variable X_k in a multiple regression is equivalent to the coefficient obtained by:

Theorem: Frisch-Waugh-Lovell (FWL) Theorem

- In a multivariate regression model, the coefficient of a single variable X_k in a multiple regression is equivalent to the coefficient obtained by:
 - **1** Regressing Y on all other covariates except X_k , and saving the residuals \tilde{Y} .

Theorem: Frisch-Waugh-Lovell (FWL) Theorem

- In a multivariate regression model, the coefficient of a single variable X_k in a multiple regression is equivalent to the coefficient obtained by:
 - **1** Regressing Y on all other covariates except X_k , and saving the residuals \tilde{Y} .
 - 2 Regressing X_k on all other covariates, and saving the residuals \tilde{X}_k .

Theorem: Frisch-Waugh-Lovell (FWL) Theorem

- In a multivariate regression model, the coefficient of a single variable X_k in a multiple regression is equivalent to the coefficient obtained by:
 - **1** Regressing Y on all other covariates except X_k , and saving the residuals \tilde{Y} .
 - 2 Regressing X_k on all other covariates, and saving the residuals \tilde{X}_k .
 - **3** Regressing \tilde{Y} on \tilde{X}_k .

Theorem: Frisch-Waugh-Lovell (FWL) Theorem

- In a multivariate regression model, the coefficient of a single variable X_k in a multiple regression is equivalent to the coefficient obtained by:
 - ① Regressing Y on all other covariates except X_k , and saving the residuals \tilde{Y} .
 - 2 Regressing X_k on all other covariates, and saving the residuals X_k .
 - **3** Regressing \tilde{Y} on \tilde{X}_k .

Key Insight: The effect of X_k on Y can be isolated by removing the influence of other covariates from both Y and X_k .

Regression Anatomy Formula: Removing estiamted Conditional Expectations under Linearity

Step 1: Residualizing Variables

• Define the residualized variables by removing the estimated conditional expectations $\hat{m}(L|X_{-k})$:

$$\tilde{X}_k = X_k - \hat{m}[X_k \mid X_{-k}], \quad \tilde{Y} = Y - \hat{m}[Y \mid X_{-k}]$$

- This removes the influence of all other covariates (X_{-k}) on both X_k and Y, isolating the unique relationship between X_k and Y.
- All the properties of the CEF are preserved, specially the decomposition property.

Regression Anatomy Formula: Removing estiamted Conditional Expectations under Linearity

Step 1: Residualizing Variables

• Define the residualized variables by removing the estimated conditional expectations $\hat{m}(L|X_{-k})$:

$$\tilde{X}_k = X_k - \hat{m}[X_k \mid X_{-k}], \quad \tilde{Y} = Y - \hat{m}[Y \mid X_{-k}]$$

- This removes the influence of all other covariates (X_{-k}) on both X_k and Y, isolating the unique relationship between X_k and Y.
- All the properties of the *CEF* are preserved, specially the decomposition property.

Step 2: Regression on Residualized Variables

$$\tilde{Y} = \beta_k \tilde{X}_k + \tilde{\varepsilon}$$

Regression Anatomy Formula: Removing estiamted Conditional Expectations under Linearity

Step 1: Residualizing Variables

• Define the residualized variables by removing the estimated conditional expectations $\hat{m}(L|X_{-k})$:

$$\tilde{X}_k = X_k - \hat{m}[X_k \mid X_{-k}], \quad \tilde{Y} = Y - \hat{m}[Y \mid X_{-k}]$$

- This removes the influence of all other covariates (X_{-k}) on both X_k and Y, isolating the unique relationship between X_k and Y.
- All the properties of the CEF are preserved, specially the decomposition property.

Step 2: Regression on Residualized Variables

$$\tilde{Y} = \beta_k \tilde{X}_k + \tilde{\varepsilon}$$

Result: The partial regression coefficient is:

$$\beta_k = \frac{\mathsf{Cov}(Y, \tilde{X}_k)}{\mathsf{Var}(\tilde{X}_k)}$$

Content

Conditional Expectation Function

2 Regression Properties

3 Causal Regression

4 Inference in Regression

Causal Regression Model: Constant Treatment Effect

Causal Model
$$Y_i = Y_i(0) + D_i(Y_i(1) - Y_i(0))$$

Causal Regression Model: Constant Treatment Effect

Causal Model
$$Y_i = Y_i(0) + D_i(Y_i(1) - Y_i(0))$$

Regression Model $Y_i = \alpha + \beta D_i + \varepsilon_i$

Causal Regression Model: Constant Treatment Effect

Causal Model
$$Y_i = Y_i(0) + D_i(Y_i(1) - Y_i(0))$$

Regression Model $Y_i = \alpha + \beta D_i + \varepsilon_i$

- β : Constant treatment effect $\beta = Y_i(1) Y_i(0)$
- α : $E[Y_i(0)]$
- ε_i : $Y_i(0) E[Y_i(0)]$

Causal Regression Model: Constant Treatment Effect

Causal Model
$$Y_i = Y_i(0) + D_i(Y_i(1) - Y_i(0))$$

Regression Model $Y_i = \alpha + \beta D_i + \varepsilon_i$

- β : Constant treatment effect $\beta = Y_i(1) Y_i(0)$
- α : $E[Y_i(0)]$
- ε_i : $Y_i(0) E[Y_i(0)]$

Show difference between $E[Y_i|D_i=1]$ and $E[Y_i|D_i=0]$

Setup:

$$Y_i = \beta_0 + \beta D_i + \gamma' X_i + \epsilon_i$$

Setup:

$$Y_i = \beta_0 + \beta D_i + \gamma' X_i + \epsilon_i$$

Setup:

$$Y_i = \beta_0 + \beta D_i + \gamma' X_i + \epsilon_i$$

Using the regression anatomy formula:

$$\beta = \frac{\mathsf{Cov}(Y_i, \tilde{D}_i)}{\mathsf{Var}(\tilde{D}_i)}, \quad \tilde{D}_i = D_i - \mathbb{E}[D_i|X_i].$$

Setup:

$$Y_i = \beta_0 + \beta D_i + \gamma' X_i + \epsilon_i$$

Using the regression anatomy formula:

$$eta = rac{\mathsf{Cov}(Y_i, ilde{D}_i)}{\mathsf{Var}(ilde{D}_i)}, \quad ilde{D}_i = D_i - \mathbb{E}[D_i|X_i].$$

Expanding the Numerator:

$$Cov(Y_i, \tilde{D}_i) = \mathbb{E}[(D_i - \mathbb{E}[D_i|X_i])Y_i].$$

Setup:

$$Y_i = \beta_0 + \beta D_i + \gamma' X_i + \epsilon_i$$

Using the regression anatomy formula:

$$eta = rac{\mathsf{Cov}(Y_i, ilde{D}_i)}{\mathsf{Var}(ilde{D}_i)}, \quad ilde{D}_i = D_i - \mathbb{E}[D_i|X_i].$$

Expanding the Numerator:

$$Cov(Y_i, \tilde{D}_i) = \mathbb{E}[(D_i - \mathbb{E}[D_i|X_i])Y_i].$$

By the Law of Iterated Expectations (LIE), substitute Y_i with $\mathbb{E}[Y_i|D_i,X_i]$. **Define CATE:** $\tau(X_i) = \mathbb{E}[Y_i(1) - Y_i(0)|X_i]$.

$$\mathbb{E}[Y_i|D_i,X_i]=\mathbb{E}[Y_i|D_i=0,X_i]+\tau(X_i)D_i.$$

Decomposing the Covariance:

$$\mathbb{E}\big[(D_i - \mathbb{E}[D_i|X_i])\mathbb{E}[Y_i|D_i = 0, X_i]\big] + \mathbb{E}\big[(D_i - \mathbb{E}[D_i|X_i])\tau(X_i)D_i\big]$$

Decomposing the Covariance:

$$\mathbb{E}\big[(D_i - \mathbb{E}[D_i|X_i])\mathbb{E}[Y_i|D_i = 0, X_i]\big] + \mathbb{E}\big[(D_i - \mathbb{E}[D_i|X_i])\tau(X_i)D_i\big]$$

- The first term vanishes (why?)

Decomposing the Covariance:

$$\mathbb{E}\big[(D_i - \mathbb{E}[D_i|X_i])\mathbb{E}[Y_i|D_i = 0, X_i]\big] + \mathbb{E}\big[(D_i - \mathbb{E}[D_i|X_i])\tau(X_i)D_i\big]$$

- The first term vanishes (why?)
- The second term simplifies:

$$\mathbb{E}[(D_i - \mathbb{E}[D_i|X_i])D_i\tau(X_i)] = \mathbb{E}[(D_i - \mathbb{E}[D_i|X_i])^2\tau(X_i)].$$

Decomposing the Covariance:

$$\mathbb{E}\big[(D_i - \mathbb{E}[D_i|X_i])\mathbb{E}[Y_i|D_i = 0, X_i]\big] + \mathbb{E}\big[(D_i - \mathbb{E}[D_i|X_i])\tau(X_i)D_i\big]$$

- The first term vanishes (why?)
- The second term simplifies:

$$\mathbb{E}[(D_i - \mathbb{E}[D_i|X_i])D_i\tau(X_i)] = \mathbb{E}[(D_i - \mathbb{E}[D_i|X_i])^2\tau(X_i)].$$

Final Expression:

$$\beta = \frac{\mathbb{E}[(D_i - \mathbb{E}[D_i|X_i])^2 \tau(X_i)]}{\mathbb{E}[(D_i - \mathbb{E}[D_i|X_i])^2]}.$$

Decomposing the Covariance:

$$\mathbb{E}\big[(D_i - \mathbb{E}[D_i|X_i])\mathbb{E}[Y_i|D_i = 0, X_i]\big] + \mathbb{E}\big[(D_i - \mathbb{E}[D_i|X_i])\tau(X_i)D_i\big]$$

- The first term vanishes (why?)
- The second term simplifies:

$$\mathbb{E}[(D_i - \mathbb{E}[D_i|X_i])D_i\tau(X_i)] = \mathbb{E}[(D_i - \mathbb{E}[D_i|X_i])^2\tau(X_i)].$$

Final Expression:

$$\beta = \frac{\mathbb{E}[(D_i - \mathbb{E}[D_i|X_i])^2 \tau(X_i)]}{\mathbb{E}[(D_i - \mathbb{E}[D_i|X_i])^2]}.$$

Weighted Average: Define $\sigma_D^2(X_i) = \mathbb{E}[(D_i - \mathbb{E}[D_i|X_i])^2|X_i]$. Then:

$$\beta = \frac{\mathbb{E}[\sigma_D^2(X_i)\tau(X_i)]}{\mathbb{E}[\sigma_D^2(X_i)]}.$$

Conclusion: - β is a variance-weighted average of CATE $\tau(X_i)$. - The weights depend on the conditional variance of D_i given X_i .

Content

Conditional Expectation Function

2 Regression Properties

Causal Regression

Inference in Regression

Classical Additive Approach - Population Setup

Population Linear Projection:

$$Y = D\beta + X'\gamma + \epsilon, \quad \epsilon \perp (D, X),$$

where:

- D is the treatment indicator,
- ullet X=(1,W) includes an intercept and covariates with $\mathbb{E}[W]=0$,
- $D \perp W$ (randomized controlled trial).

Key Results: - Decompose $\gamma'X = \gamma_1 + \gamma_2'W$. - For $U := \gamma_2'W + \epsilon$:

$$Y = D\beta + \gamma_1 + U, \quad U \perp (1, D).$$

Interpretation of Coefficients: - $\beta = \mathbb{E}[Y(1)] - \mathbb{E}[Y(0)]$ (ATE), - $\gamma_1 = \mathbb{E}[Y(0)]$ (average untreated outcome).

Projection Properties

Projection Setup:

$$Y = D\beta + \gamma_1 + U, \quad U \perp (1, D).$$

Key Implications: - The population projection of Y onto (1, D) yields:

$$Y = \mathbb{E}[Y|D] = D\beta + \gamma_1.$$

- The coefficients (β, γ_1) are the same as those obtained by the two-sample approach in the population:

$$\beta = \mathbb{E}[Y(1)] - \mathbb{E}[Y(0)], \quad \gamma_1 = \mathbb{E}[Y(0)].$$

RCT Setting: - Randomization ensures:

$$D \perp W$$
, $\epsilon \perp (D, W)$.

Approximate Normality of \hat{eta}

OLS Estimator for β :

$$\sqrt{n}(\hat{\beta} - \beta) \approx \sqrt{n} \frac{\mathbb{E}_n[\epsilon \tilde{D}]}{\mathbb{E}_n[\tilde{D}^2]} \sim \mathcal{N}(0, V_{11}),$$

where:

- $\tilde{D} = D \mathbb{E}[D|X]$ (residual after partialling out X),
- $V_{11} = \frac{\mathbb{E}[\epsilon^2 \tilde{D}^2]}{(\mathbb{E}[\tilde{D}^2])^2}.$

Key Derivation Steps: 1. Partial out X = (1, W) from D, 2. Use OLS theory to approximate the distribution of $\hat{\beta}$.

Approximate Normality of $\hat{\gamma}_1$ and Joint Properties

OLS Estimator for γ_1 :

$$\sqrt{n}(\hat{\gamma}_1 - \gamma_1) \approx \sqrt{n} \frac{\mathbb{E}_n[\epsilon \tilde{1}]}{\mathbb{E}_n[\tilde{1}^2]} \sim \mathcal{N}(0, V_{22}),$$

where:

- $\tilde{1} = 1 \mathbb{E}[1|D,X]$ (residual after partialling out D and X),
- $V_{22} = \frac{\mathbb{E}[\epsilon^2 \tilde{1}^2]}{(\mathbb{E}[\tilde{1}^2])^2}$.

Joint Normality: The estimators $\hat{\beta}$ and $\hat{\gamma}_1$ are jointly normal:

$$\mathsf{Cov}(\hat{\beta}, \hat{\gamma}_1) \sim V_{12},$$

where:

$$V_{12} = rac{\mathbb{E}[\epsilon^2 \tilde{D} \tilde{1}]}{\mathbb{E}[\tilde{D}^2] \mathbb{E}[\tilde{1}^2]}.$$