

语义分割

PART ONE

语义分割中的 attention机制

PART TWO

EM算法

PART THREE

EMANet

. PART FOUR

语义分割

- 1. 像素到语义节点映射;
- 2. 语义节点间推理;
- 3. 节点向像素反映射。

step 1 & 3 构成的对像素特征的低 秩重建发挥了关键作用。

语义分割

映射的关键,在于寻找一组"最合适"的feature map, 具有如下性质:

- 1.具有代表性
- 2. 数量少
- 3. 互不相似

$$\mathbf{y}_{i} = \frac{1}{C(\mathbf{x})} \sum_{\forall j} f(\mathbf{x}_{i}, \mathbf{x}_{j}) g(\mathbf{x}_{j})$$
(1)

- 1. f表示 计算 x_i 和 x_i 之间的相关度
- 2. g 对 x_i 进行变换
- $3. y_i$ 可以看作为 是 $g(x_i)$ 的加权平均,输出的 y_i 是 x_i 的重构

$$\mathbf{y} = softmax \left(\mathbf{x}^T W_{\theta}^T W_{\phi} \mathbf{x} \right) \left(\mathbf{x}^T W_{\sigma}^T \right)$$
 (2)

a. 原图 b. Feature map c. Feature map after Nonlocal

即高维 feature map 里存在大量的冗余信息, attention机制可以消除大量噪音。

Nonlocal 对于每个 x_i 的计算,都要在全图上进行,因此复杂度为 $O(N^2C)$ 。

对于 attention 机制的扩展:

- 1. PSANet (双路attention)
- 2. DANet (双路attention)
- 3. OCNet

对于 Nonlocal 计算的优化:

- CCNet (运算过程分解)
- 2. ISANet (运算过程分解)
- 3. DGMN (MC采样)
- 4. Local Relation Net (局部计算)

5. A2Net (乘法结合律)

• • •

https://spaces.ac.cn/archives/6853

EM算法

Figure 1: Pipeline of the proposed expectation-maximization attention method.

- 摒弃了在全图上计算注意力图的流程
- 转而通过EM算法迭代出一组紧凑的基,在这组基上运行注意力机制,降低了复杂度。

EM算法 期望最大化算法

期望最大化 (EM) 算法旨在为隐变量模型寻找最大似然解。对于观测数据 $X=\{x_1, x_2, ..., x_N\}$,每一个数据点 x_i 都对应隐变量 z_i 。我们把 $\{X, Z\}$ 称为完整数据,其似然函数为 $In p(X, Z|\theta)$, θ 是模型的参数。

E 步根据当前参数 θ ^old 计算隐变量 Z 的后验分布,并以之寻找完整数据的似然 Q(θ , θ ^old):

$$Q\left(\boldsymbol{\theta}, \boldsymbol{\theta}^{old}\right) = \sum_{\mathbf{z}} p\left(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{old}\right) \ln p\left(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}\right) \tag{1}$$

M 步通过最大化似然函数来更新参数得到θ^new:

$$oldsymbol{ heta}^{ ext{new}} = rg \max_{oldsymbol{ heta}} \mathcal{Q}\left(oldsymbol{ heta}, oldsymbol{ heta}^{ ext{old}}
ight)$$
 (2)

EM 算法被证明会收敛到局部最大值处, 且迭代过程完整数据似然值单调递增。

Nonlocal:
$$\mathbf{y}_{i} = \frac{1}{C(\mathbf{x})} \sum_{\forall j} f(\mathbf{x}_{i}, \mathbf{x}_{j}) g(\mathbf{x}_{j})$$
 (3)

其中 f(.,.) 表示广义的核函数,C(x) 是归一化系数。它将第 i 个像素的特征 x_i 更新为其他所有像素特征经过 g 变换之后的加权平均 y_i ,权重通过归一化后的核函数计算,表征两个像素之间的相关度。这里 1 < j < N,所以视为像素特征被一组过完备的基进行了重构。这组基数目巨大,且存在大量信息冗余。

第一步 A_E 求期望, 估计隐变量 Z

 $\mathbf{y}_{i} = \frac{1}{C(\mathbf{x})} \sum_{\forall j} f(\mathbf{x}_{i}, \mathbf{x}_{j}) g(\mathbf{x}_{j})$ (3)

第 k 个基对第 n 个像素的权重 可以计算为

$$z_{nk} = \frac{\mathcal{K}(\mathbf{x}_n, \boldsymbol{\mu}_k)}{\sum_{i=1}^{K} \mathcal{K}(\mathbf{x}_n, \boldsymbol{\mu}_j)}$$
(4)

内核K的一种选择

$$\mathbf{Z} = softmax\left(\lambda \mathbf{X}\left(\boldsymbol{\mu}^{\top}\right)\right)$$
 (5)

其中, λ 作为超参数来控制 Z 的分布。

第二步 $A_{\rm M}$ 期望最大化更新基 μ

$$\mathbf{y}_{i} = \frac{1}{C(\mathbf{x})} \sum_{\forall j} f(\mathbf{x}_{i}, \mathbf{x}_{j}) g(\mathbf{x}_{j})$$
(3)

 μ_k 是 x_n 的加权平均

$$\boldsymbol{\mu}_k = \frac{z_{nk} \mathbf{x}_n}{\sum_{m=1}^{N} z_{mk}} \tag{6}$$

第三步 A_R 期望最大化更新基 μ

 A_E 和 A_M 交替执行 T 步。此后,近似收敛的 μ 和 Z 便可以被用来对 X 进行重估计得 \tilde{X}

$$\tilde{\mathbf{X}} = \mathbf{Z}\boldsymbol{\mu} \tag{7}$$

EMA Unit

		Evaluation Iterations (mIoU %)							
		1	2	3	4	5	6	7	8
us	1	77.34	77.52	77.60	77.59	77.59	77.59	77.59	77.59
ratio	2		77.75	78.04	78.15	78.15	78.12	78.12	78.17
	3			78.52	78.80	78.86	78.88	78.89	78.88
Ite	4				78.14	78.25	78.27	78.28	78.27
Fraining Iterations	5					77.70	77.76	77.82	77.86
	6						77.85	77.91	77.92
	7							77.11	77.14
Ξ	8								77.24

Method	SS	MS+Flip	FLOPs	Memory	Params
ResNet-101	-	-	190.6G	2.603G	42.6M
DeeplabV3 [4]	78.51	79.77	+63.4G	+66.0M	+15.5M
DeeplabV3+ [5]	79.35	80.57	+84.1G	+99.3M	+16.3M
PSANet [38]	78.51	79.77	+56.3G	+59.4M	+18.5M
EMANet (256)	79.73	80.94	+21.1G	+12.3M	+4.87M
EMANet (512)	80.05	81.32	+43.1G	+22.1M	+10.0M

Table 3: Comparisons with state-of-the-art on the PASCAL Context test set. '+' means pretrained on COCO Stuff.

Method	Backbone	mIoU (%)	
PSPNet [37]	ResNet-101		
DANet [11]	ResNet-50	50.1	
MSCI [20]	ResNet-152	50.3	
EMANet	ResNet-50	50.5	
SGR [18]	ResNet-101	50.8	
CCL [8]	ResNet-101	51.6	
EncNet [35]	ResNet-101	51.7	
SGR+ [18]	ResNet-101	52.5	
DANet [11]	ResNet-101	52.6	
EMANet	ResNet-101	53.1	

Table 4: Comparisons on the COCO Stuff test set.

Method	Backbone	mIoU (%)	
RefineNet [21]	ResNet-101	33.6	
CCL [8]	ResNet-101	35.7	
DANet [11]	ResNet-50	37.2	
DSSPN [19]	ResNet-101	37.3	
EMANet	ResNet-50	37.6	
SGR [18]	ResNet-101	39.1	
DANet [11]	ResNet-101	39.7	
EMANet	ResNet-101	39.9	

Expectation-Maximization Attention Networks for Semantic Segmentation

https://arxiv.org/abs/1907.13426

为节约而生: 从标准Attention到稀疏Attention

https://spaces.ac.cn/archives/6853

用Attention玩转CV,一文总览自注意力语义分割进展

https://mp.weixin.qq.com/s?__biz=MzA3MzI4MjgzMw==&mid=2650768770&idx=3&sn=aec7b055da21a94999adac0ce45dfe01&chksm=871a41fcb06dc8ead45b8b99a7b9bc59aedc64373a45f781db00f528e029a7c861e95f8094c0&token=310258758&lang=zh_CN#rd

ICCV 2019 | 解读北大提出的期望最大化注意力网络EMANet

https://mp.weixin.qq.com/s?__biz=MzA3MzI4MjgzMw==&mid=2650768486&idx=4&sn=8dd39c05a6 9021007f8f2d9ccae5ffb6&chksm=871a4018b06dc90e5ef9320dc9a032a92e7a609a34765ea37f6eacd73 82b2f93b23d3f51f717&scene=21#wechat_redirect

EM算法的九层境界: Hinton和Jordan理解的EM算法

https://mp.weixin.qq.com/s/NbM4sY93kaG5qshzgZzZIQ?