Why XOR is so important in cryptography

The following theorem explains why \oplus is so frequently used in cryptography.

Theorem 1. Let Y be a random variable over $\{0,1\}^n$, and X an independent uniform variable on $\{0,1\}^n$. Then $Z = Y \oplus X$ is uniform on $\{0,1\}^n$.

Proof. We prove the theorem for n = 1. Let $P_0 = Pr\{Y = 0\}$ and $P_1 = Pr\{Y = 1\}$ be the probability distribution of Y. Of course, $P_0 + P_1 = 1$ by definition. Since X is uniform, 1/2 is the probability of both 0 and 1. Let us now compute the probability distribution of

$$Z=X\oplus Y$$

_					
	X	Y	$Z = X \oplus Y$	P(Z)	0.5
	0	0	0	$P_0/2$ =	0 <u>.</u> 5
	0	1	1	$P_1/2$	
	1	0	1	$P_0/2$	
	1	1	0	$P_1/2$	

Let us consider the first row, to fix ideas. Since X is independent (of Y), then $P(X=0;Y=0)=P(X=0)\times P(Y=0)=\frac{1}{2}\times P_0$.

Let us know compute $Pr\{Z=0\}$. $Pr\{Z=0\} = Pr\{(X,Y)=(0,0)\lor(X,Y)=(1,1)\}$. The two events are disjoint thus we obtain $Pr\{Z=0\} = Pr\{(X,Y)=(0,0)\} + Pr\{(X,Y)=(1,1)\} = \frac{P_0}{2} + \frac{P_1}{2} = \frac{1}{2}$.