Results

Descriptives

Descriptives

Ν

Missing

Mean

Median

Standard deviation

Minimum

Maximum

Descriptives

Descriptives

	Image
N	200
Missing	0

Frequencies

Frequencies of Image

Levels	Counts	% of Total	Cumulative %
1	3	1.5 %	1.5 %
2	1	0.5 %	2.0 %
3	1	0.5 %	2.5 %
4	4	2.0 %	4.5 %
5	17	8.5 %	13.0 %
6	44	22.0 %	35.0 %
7	73	36.5 %	71.5 %
8	44	22.0 %	93.5 %
9	12	6.0 %	99.5 %
10	1	0.5 %	100.0 %

Plots

Image

Descriptives

Descriptives

	Airplay	Adverts	Sales
N	200	200	200
Missing	0	0	0
Mean	27.5	614	193
Std. error mean	0.868	34.3	5.71
Median	28.0	532	200
Mode	28.0	103 a	230
Standard deviation	12.3	486	80.7
IQR	16.3	695	113
Range	63.0	2263	350
Minimum	0.00	9.10	10.0
Maximum	63.0	2272	360
Shapiro-Wilk W	0.993	0.925	0.985
Shapiro-Wilk p	0.408	< .001	0.030

^a More than one mode exists, only the first is reported

Plots

Airplay

Adverts

Sales

Relationships, Prediction, and Group Comparisons

You have entered a numeric variable for Variable 1 / Dependent Variable and a numeric variable for Variable 2 / Independent Variables. Hence, the <u>Pearson correlation coefficient</u>, which is a measure for the strength of the linear relationship between two variables, seems to be a good option for you! In order to run this analysis in jamovi, go to: Regression > Correlation Matrix

- Drop your two variables in the white box at the right
- Under Correlation Coefficients, select Pearson (selected by default)
- Under Hypothesis, select your alternative hypothesis

Alternatively, you could perform a <u>linear regression analysis</u>. The test outcomes of both methods will be equivalent. Click on the links to learn more about these methods!

Scatter Plots of Bivariate Relationships - Dependent/Independent Variables

Correlation Matrix

Correlation Matrix

		Adverts	Sales	Airplay
Adverts	Pearson's r	_		
	p-value	_		
	95% CI Upper	_		
	95% CI Lower	_		
	N	_		
Sales	Pearson's r	0.578 ***	_	
	p-value	< .001	_	
	95% CI Upper	0.664	_	
	95% CI Lower	0.478	_	
	Ν	200	_	
Airplay	Pearson's r	0.102	0.599 ***	_
	p-value	0.151	< .001	_
	95% CI Upper	0.237	0.681	_
	95% CI Lower	-0.037	0.502	_
	N	200	200	_

Note. * p < .05, ** p < .01, *** p < .001

Plot

Adverts

Sales

Airplay

Linear Regression

Model Fit Measures

				Overall Model Test			Test
Model	R	R ²	Adjusted R ²	F	df1	df2	р
1	0.578	0.335	0.331	99.6	1	198	< .001

Omnibus ANOVA Test

	Sum of Squares	df	Mean Square	F	р
Adverts	433688	1	433688	99.6	< .001
Residuals	862264	198	4355		

Note. Type 3 sum of squares

[3]

			95% Confidence Interval		_				nfidence erval
Predictor	Estimate	SE	Lower	Upper	t	р	Stand. Estimate	Lower	Upper
Intercept Adverts	134.1399 0.0961	7.53657 0.00963	119.2777 0.0771	149.002 0.115	17.80 9.98	< .001 < .001	0.578	0.464	0.693

Assumption Checks

Normality Test (Shapiro-Wilk)

Statistic	р
0.990	0.176

Q-Q Plot

Residuals Plots

References

[1] The jamovi project (2021). jamovi. (Version 1.6) [Computer Software]. Retrieved from https://www.jamovi.org.

[2] R Core Team (2020). *R: A Language and environment for statistical computing*. (Version 4.0) [Computer software]. Retrieved from https://cran.r-project.org. (R packages retrieved from MRAN snapshot 2020-08-24).

[3] Fox, J., & Weisberg, S. (2020). *car: Companion to Applied Regression*. [R package]. Retrieved from https://cran.r-project.org/package=car.