INTERPOLAÇÃO POLINOMIAL DE NEWTON

MAT 271 – Cálculo Numérico – PER3/UFV/2021 Professor Amarísio Araújo – DMA/UFV

INTERPOLAÇÃO POLINOMIAL DE NEWTON

Seja a função f tal que os valores $f(x_0)$, $f(x_1)$, $f(x_2)$,..., $f(x_n)$ em n+1 pontos distintos $x_0 < x_1 < x_2 < \cdots < x_n$ de um intervalo $[x_0, x_n]$ são conhecidos.

Propõe-se um polinômio interpolador de f(x), como um polinômio $p_n(x)$ de grau menor ou igual a n da seguinte forma:

$$p_n(x) = d_0 + d_1(x - x_0) + d_2(x - x_0)(x - x_1) + \dots + d_n(x - x_0)(x - x_1) \dots (x - x_{n-1})$$

POLINÔMIO INTERPOLADOR DE NEWTON

Sendo d_k , $k=0,1,2,\ldots,n$, constantes reais (coeficientes do polinômio interpolador de Newton) obtidas como veremos a seguir.

OBTENDO OS d_k , k = 0,1,2,...,n

$$p_n(x_i) = f(x_i), i = 0,1,2,...,n$$
 \Longrightarrow

$$d_0 = f(x_0)$$

$$d_0 + d_1(x_1 - x_0) = f(x_1)$$

$$d_0 + d_1(x_2 - x_0) + d_2(x_2 - x_0)(x_2 - x_1) = f(x_2)$$

:

$$d_0 + d_1(x_n - x_0) + d_2(x_n - x_0)(x_n - x_1) + \dots + d_n(x_n - x_0)(x_n - x_1) \dots (x_n - x_{n-1}) = f(x_n)$$

OBTENDO OS d_k , k = 0,1,2,...,n

$$d_0 = f(x_0)$$

$$d_{0} + d_{1}(x_{1} - x_{0}) = f(x_{1}) \implies d_{1} = \frac{f(x_{1}) - d_{0}}{x_{1} - x_{0}} = \frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}}$$

$$d_{1} = \frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}}$$

$$d_{2} + d_{1}(x_{2} - x_{0}) + d_{2}(x_{2} - x_{0})(x_{2} - x_{1}) = f(x_{2}) \implies d_{2} = \frac{f(x_{2}) - d_{1}(x_{2} - x_{0}) - d_{0}}{(x_{2} - x_{0})(x_{2} - x_{1})}$$

$$d_{2} = \frac{f(x_{2}) - f(x_{1})}{x_{2} - x_{1}} - \frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}}$$

$$d_{2} = \frac{f(x_{2}) - d_{1}(x_{2} - x_{0}) - d_{0}}{(x_{2} - x_{0})(x_{2} - x_{1})}$$

$$d_{3} = \frac{f(x_{2}) - f(x_{1})}{x_{2} - x_{0}} - \frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}}$$

$$d_{3} = \frac{f(x_{2}) - f(x_{1})}{(x_{2} - x_{0})(x_{2} - x_{1})} - \frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}}$$

$$d_{3} = \frac{f(x_{2}) - f(x_{1})}{(x_{2} - x_{0})(x_{2} - x_{1})} - \frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}}$$

$$d_{3} = \frac{f(x_{2}) - f(x_{1})}{(x_{2} - x_{0})(x_{2} - x_{1})} - \frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}}$$

$$d_{4} = \frac{f(x_{1}) - f(x_{0})}{(x_{2} - x_{0})(x_{2} - x_{1})} - \frac{f(x_{1}) - f(x_{0})}{(x_{2} - x_{0})(x_{2} - x_{1})}$$

$$d_{4} = \frac{f(x_{1}) - f(x_{0})}{(x_{2} - x_{0})(x_{2} - x_{1})} - \frac{f(x_{1}) - f(x_{0})}{(x_{2} - x_{0})(x_{2} - x_{1})}$$

OBSERVE QUE OS COEFICIENTES d_k SÃO OBTIDOS POR DIVISÕES ENTRE AS DIFERENÇAS DAS ORDENADAS DIVIDAS PELAS DIFERENÇAS ENTRE AS ABSCISSAS DOS PONTOS DADOS. O QUE NOS LEVA AO CONCEITO DE DIFERENÇAS DIVIDIDAS.

DIFERENÇAS DIVIDIDAS

NOTAÇÃO: f[]

DIFERENÇAS DIVIDIDAS DE ORDEM ZERO: $f[x_i] = f(x_i)$, i = 0, 1, ..., n

$$f[x_0] = f(x_0)$$
 $f[x_1] = f(x_1)$ $f[x_2] = f(x_2)$... $f[x_n] = f(x_n)$

DIFERENÇAS DIVIDIDAS DE ORDEM UM: $f[x_i, x_{i+1}] = \frac{f[x_{i+1}] - f[x_i]}{x_{i+1} - x_i}$, i = 0, 1, ..., n

$$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0} = \frac{f(x_1) - f(x_0)}{x_1 - x_0} \qquad f[x_1, x_2] = \frac{f[x_2] - f[x_1]}{x_2 - x_1} = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

...
$$f[x_{n-1}, x_n] = \frac{f[x_n] - f[x_{n-1}]}{x_n - x_{n-1}} = \frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}}$$

DIFERENÇAS DIVIDIDAS

DIFERENÇAS DIVIDIDAS DE ORDEM DOIS

$$\begin{split} f[x_i,x_{i+1},x_{i+2}] &= \frac{f[x_{i+1},x_{i+2}] - f[x_i,x_{i+1}]}{x_{i+2} - x_i}, i = 0,1,\dots,n \\ f[x_0,x_1,x_2] &= \frac{f[x_1,x_2] - f[x_0,x_1]}{x_2 - x_0} \qquad \qquad f[x_1,x_2,x_3] &= \frac{f[x_2,x_3] - f[x_1,x_2]}{x_3 - x_1} \\ & \dots \qquad f[x_{n-2},x_{n-1},x_n] &= \frac{f[x_{n-1},x_n] - f[x_{n-2},x_{n-1}]}{x_n - x_{n-2}} \\ & \vdots \end{split}$$

DIFERENÇA DIVIDIDA DE ORDEM n

$$f[x_0, x_1, ..., x_n] = \frac{f[x_1, x_2, ..., x_n] - f[x_0, x_1, ..., x_{n-1}]}{x_n - x_0}$$

VOLTANTO AOS d_k

$$d_0 = f[x_0]$$
 PRIMEIRA DIFERENÇA DIVIDIDA DE ORDEM ZERO

$$d_1 = f[x_0, x_1]$$
 PRIMEIRA DIFERENÇA DIVIDIDA DE ORDEM UM

$$d_2 = f[x_0, x_1, x_2]$$
 PRIMEIRA DIFERENÇA DIVIDIDA DE ORDEM DOIS

:

$$d_n = f[x_0, x_1, ..., x_n]$$
 ÚNICA DIFERENÇA DIVIDIDA DE ORDEM n

ILUSTRANDO O CÁLCULO DAS DIFERENÇAS DIVIDIDAS COM O USO DE TABELA (CASO n=3)

$$p_3(x) = d_0 + d_1(x - x_0) + d_2(x - x_0)(x - x_1) + d_3(x - x_0)(x - x_1)(x - x_2)$$

DIFERENÇAS DIVIDIDAS – CASO PARTICULAR n=3

x	f(x)	ORDEM ZERO	ORDEM UM	ORDEM DOIS	ORDEM TRÊS
<i>x</i> ₀	$f(x_0)$	$f(x_0)$			
			$f[x_0, x_1]$		
x_1	$f(x_1)$	$f(x_1)$		$f[x_0, x_1, x_2]$	
			$f[x_1, x_2]$		$f[x_0, x_1, x_2, x_3]$
x_2	$f(x_2)$	$f(x_2)$		$f[x_1, x_2, x_3]$	
	66.	£()	$f[x_2, x_3]$		
x_3	$f(x_3)$	$f(x_3)$			

$$d_0 = f(x_0)$$

$$d_1 = f[x_0, x_1]$$

$$d_2 = f[x_0, x_1, x_2]$$

$$d_2 = f[x_0, x_1, x_2]$$
 $d_3 = f[x_0, x_1, x_2, x_3]$

EXEMPLO 1

x	-1	0	1	3
f(x)	2	-1	2	32

x	f(x)	ORDEM 0	ORDEM 1	ORDEM 2	ORDEM 3
-1	2	2			
0	-1	-1	$\frac{-1-2}{0-(-1)} = -3$ $\frac{2-(-1)}{1-0} = 3$	$\frac{3 - (-3)}{1 - (-1)} = 3$	$\frac{4-3}{3-(-1)} = \frac{1}{4}$
1	2	2	$\frac{32 - 2}{3 - 1} = 15$	$\frac{15 - 3}{3 - 0} = 4$	
3	32	32			

EXEMPLO 1

х	f(x)	ORDEM 0	ORDEM 1	ORDEM 2	ORDEM 3
-1	2	2			
			-3		
0	-1	-1		3	
			3		
1	2	2			1/4
			15	4	
3	32	32			

$$p_3(x) = d_0 + d_1(x - x_0) + d_2(x - x_0)(x - x_1) + d_3(x - x_0)(x - x_1)(x - x_2)$$
$$p_3(x) = 2 - 3(x + 1) + 3(x + 1)x + \frac{1}{4}(x + 1)x(x - 1)$$

EXEMPLO 2

Da aula anterior:

x	-1	0	2
f(x)	4	1	-1

Encontramos $p_2(x) = 1 - \frac{7}{3}x + \frac{2}{3}x^2$

		DIFE	RENÇAS DIVID	IDAS
х	f(x)	ORDEM 0	ORDEM 1	ORDEM 2
-1	4	4		
			-3	
0	1	1		2/3
			-1	
2	-1	-1		

$$p_2(x) = d_0 + d_1(x - x_0) + d_2(x - x_0)(x - x_1)$$

$$p_2(x) = 4 - 3(x + 1) + \frac{2}{3}(x + 1)x$$

$$p_2(x) = 1 - \frac{7}{3}x + \frac{2}{3}x^2$$