Want more revision exercises? Get MathsFit for \$2.95/topic - New from projectmaths.

2014 15b In  $\triangle DEF$ , a point S is chosen on the side DE. The length of DS is x, and the length of ES is y. The line through S parallel to DF meets EF at Q. The line through S parallel to EF meets DF at R. The area of  $\triangle DEF$  is A. The areas of  $\triangle DSR$  and  $\triangle SEQ$  are  $A_1$  and  $A_2$  respectively.



Show that  $\triangle DEF$  is similar to  $\triangle DSR$ . (i)

2

Explain why  $\frac{DR}{DF} = \frac{x}{x+y}$ . (ii)

1

Show that  $\sqrt{\frac{A_1}{A}} = \frac{x}{x+y}$ . (iii)

- 2
- Using the result from part (iii) and a similar expression for  $\sqrt{\frac{A_2}{\Lambda}}$  , deduce (iv) 2 that  $\sqrt{A} = \sqrt{A_1} + \sqrt{A_2}$ .

(iv)

- In  $\triangle$ s *DRS*, *DFE*: (i)  $\angle D$  is common  $\angle DRS = \angle DFE (corr \angle s, RS|| FE)$  $\therefore \triangle DRS$  similar to  $\triangle DFE$  (equiangular)
- Ratio of areas =  $A_1$ :ARatio of sides =  $\sqrt{A_1}$ :  $\sqrt{A}$  $\frac{\sqrt{A_1}}{\sqrt{\Delta}} = \frac{x}{x+v}$  $\sqrt{\frac{A_1}{A}} = \frac{x}{x + y}$

Area  $\triangle DRS = A_1$ , Area  $\triangle DFE = A$ :

- $\frac{DR}{DF} = \frac{DS}{DF}$ (ii) (matching sides of sim  $\Delta$ s are in proportion) As DS = x and DE = x + y,  $\frac{DR}{DE} = \frac{x}{x + y}$
- $\triangle SEQ$ , and hence  $\sqrt{\frac{A_2}{A}} = \frac{y}{y_{+}y_{-}}$ .  $\sqrt{\frac{A_1}{A}} + \sqrt{\frac{A_2}{A}} = \frac{x}{x+y} + \frac{y}{x+y}$ State Mean: 1.54  $\frac{\sqrt{A_1}}{\sqrt{A}} + \frac{\sqrt{A_2}}{\sqrt{A}} = 1$ 0.74

Also, it can be proved  $\triangle DEF$  similar to

$$\sqrt{A_1} + \sqrt{A_2} = \sqrt{A}$$

0.53

## **Board of Studies: Notes from the Marking Centre**

(i) This part was generally done well, with the majority of candidates using 'equiangular' to prove

<sup>0.52</sup> 

<sup>\*</sup> These solutions have been provided by projectmaths and are not supplied or endorsed by BOSTES.

similarity. A few candidates stated the intercept properties of transversals and parallel lines to show that the sides about the equal angle were in proportion.

Common problems were:

- not recognising the two pairs of corresponding angles, or indicating an equal pair of angles without appropriate reasoning;
- using tests for congruence instead of similarity;
- poor setting out with little or no reasoning, and omitting a concluding statement.
- (ii) This part was generally done well. Most candidates used the result in (b)(i) to explain part (ii). Some candidates wrote a full paragraph of justification when a brief statement was all that was required for 1 mark. Most candidates knew about similar triangles having corresponding sides in the same ratio and used relevant terminology.

A common problem was:

- stating pairs of equal sides and writing DS = DR, DE = DF, then  $\frac{DR}{DF} = \frac{x}{x+y}$ .
- (iii) Most candidates struggled with this part. Better responses were well set out with a series of logical steps. The candidates who achieved full marks for this part either performed algebraic manipulation involving  $\frac{A_1}{A}$ , or applied 'ratios of areas is equal to the square of the ratios of side lengths' in similar figures to achieve the result.

Common problems were:

- incorrectly using the formula Area =  $\frac{1}{2}ab\sin C$ , often with incorrect sides;
- assuming the triangles were right angled;
- assuming that DR = DS = x, DE = DF = y.
- (iv) In the better responses candidates appreciated the link between (iii) and (iv) presenting a succinct and accurate answer. Most candidates indicated that  $\sqrt{\frac{A_2}{A}} = \frac{y}{x+y}$ , using their expression from (b) (iii).

However, a considerable number of candidates struggled to provide the working to deduce  $\sqrt{A} = \sqrt{A_1} + \sqrt{A_2}$ .

Common problems were:

- not realising how to use the result from (b) (iii), some candidates unnecessarily completed a further similar triangle proof to establish the result.
- after obtaining  $\sqrt{\frac{A_1}{A}} = \frac{x}{x+y}$  and  $\sqrt{\frac{A_2}{A}} = \frac{y}{x+y}$ , some candidates assumed that  $\sqrt{A_1} = x$ ,  $\sqrt{A_2} = y$  and  $\sqrt{A_1} + \sqrt{A_2} = x + y$ .

http://www.boardofstudies.nsw.edu.au/hsc exams/2014/pdf doc/2014-maths.pdf