MATH20510 (S25): Analysis in Rn III (accelerated)

Lecturer: Zhimeng Ouyang Notes by: Aden Chen

Tuesday 27th May, 2025

Contents

1	Inte	gration of Differential Forms	3
	1.1	Integration on a Cell	3
2	Diffe	erential Forms	7
	2.1	Differentiation	8
	2.2	Change of Variables	11
	2.3	A Geometric Perspective	13
		2.3.1 Tangent Space	13
		2.3.2 Integration of Differential Forms	14
		2.3.3 Pushforward, Pullback	17
3	Sim	plexes and Chains	19
4	Clos	ed Forms and Exact Forms	23
	4.1	Vector Analysis	28
5	Diffe	erential Forms Practice Problem	31
6	Lebe	esgue Theory	34
	6.1	Set Functions	34
	6.2	Construction of the Lebesgue Measure	36
	6.3	Measure Space	40
	6.4	Measurable Function	40
	6.5	Simple Functions	43
	6.6	Integration	44
	6.7	Convergence Theorems	46
	6.8	Comparison of Riemann and Lebesgue Integrals	48
	6.9	Integration of Complex Functions	50
	6.10	Functions of Class \mathcal{L}^2	50
7	Powe	er Series	54
	7.1	Taylor Series	57
	7.2	Complex Series	58
	7.3	The Algebraic Completeness of the Complex Field	60
	7.4	Fourier Series	61
	7.5	Some Common Series	62

1 Integration of Differential Forms

1.1 Integration on a Cell

Definition 1.1. A *k*-cell in \mathbb{R}^k is a set of the form $I^k := \{x \in \mathbb{R}^k : a_i \le x_i \le b_i, i = 1, ..., k\}.$

Definition 1.2. Let $f \in C(I^k)$ be real valued and write $f_k := f$. Define for each i = k, ..., 1

$$f_{i-1}(x_1,\ldots,x_{k-1}) := \int_{a_i}^{b_i} f_i(x_1,\ldots,x_i) dx_i.$$

We define

$$\int_{I_k} f(x) \, dx := \int_{a_1}^{b_1} \cdots \int_{a_k}^{b_k} f_k(x_1, \dots, x_k) \, dx_k \dots \, dx_1 = f_0.$$

Remark 1.3.

- Since f is continuous on a compact set, it is uniformly continuous. Thus all iterated integrals are well-defined and uniformly continuous on I^i ($1 \le i \le k$).
- The integral over a *k*-cell is independent of the order of integration, by the following result:

Theorem 1.4. If $f \in C(I^k)$, then L(f) = L'(f), where L(f) is the integral of f over I^k as defined above, and L'(f) is the integral of f over the same domain with a different order of integration.

Proof. If $h(x) = h_1(x_1) \dots h_k(x_k)$, where $h_j \in C([a_j, b_j])$, then

$$L(h) = \prod_{i=1}^{k} \int_{a_i}^{b_i} h_i(x_i) \, \mathrm{d}x_i = L'(h).$$

If \mathcal{A} is the set of all finite sums of such functions h, it follows that L(g) = L'(g) for all $g \in \mathcal{A}$. The Stone-Weierstrass theorem shows that \mathcal{A} is dense in $C(I^k)$. Put $V = \prod_{i=1}^k (b_i - a_i)$. If $f \in C(I^k)$ and $\epsilon > 0$, there exists $g \in \mathcal{A}$ such that

 $||f-g|| < \epsilon/V$, where ||f|| is defined as $\max_{x \in I^k} |f(x)|$. Then $|L(f-g)| < \epsilon$, $L'(f-g) < \epsilon$, and since

$$L(f) - L'(f) = L(f - g) + L'(g - f),$$

we conclude that $|L(f) - L'(f)| < 2\epsilon$.

Definition 1.5. The support of function f on \mathbb{R}^k is the closure of the set of all points $x \in \mathbb{R}^k$ at which $f(x) \neq 0$. We write $f \in C_c(\mathbb{R}^k)$ if f is a continuous function with compact support, that is, if $K := \text{supp } f \subset I^k$ for some k-cell I^k . In this case we define

$$\int_{\mathbb{R}^k} f(x) \, \mathrm{d}x := \int_{I^k} f(x) \, \mathrm{d}x.$$

Definition 1.6. Let $G: \mathbb{R}^n \supset E \to \mathbb{R}^n$, where E is open. If there is an integer m and a real function g with domain E such that for all $x \in E$ we have

$$G(x) = \sum x_i e_i + g(x) e_m,$$

then we call G primitive.

Remark 1.7.

- In other words, G changes only one coordinate.
- If g is differentiable at $x \in E$, then so if G. The matrix DG(x) has

$$(\partial_1 g)(x), \ldots, (\partial_m g)(x), \ldots, (\partial_n g)(x)$$

as its mth row. On the jth row, where $j \neq m$, we have the jth unit vector. Thus the Jacobian of G at a is

$$J_G(a) = \det \mathrm{D}G(a) = (\partial_m g)(a)$$

and so G'(a) is invertible if and only if $(\partial_m g)(a) \neq 0$.

Definition 1.8. A linear operator B on \mathbb{R}^n that interchanges some pair of members of the standard basis and leaves the others fixed will be called a **flip**.

Theorem 1.9. Suppose $F: \mathbb{R}^n \supset E \to \mathbb{R}^n$ is C^1 , $0 \in E$, F(0) = 0, and F'(0) is invertible. Then there is a neighborhood of 0 in \mathbb{R}^n in which a representation

$$F(x) = B_1 \dots B_{n-1}G_n \circ \dots \circ G_1(x)$$

is valid. Each G_i is a primitive C^1 mapping in some neighborhood of 0; $G_i(0) = 0$, $G'_i(0)$ is invertible, and each B_i is either a flip or the identity.

Theorem 1.10 (Partition of Unity). Let K be a compact subset of \mathbb{R}^n . Let $\{V_\alpha\}$ be an open cover of K. Then there exists function $\psi_1, \ldots, \psi_k \in C(\mathbb{R}^n)$ such that

- $0 \le \psi_i \le 1$ for $1 \le i \le s$,
- $\operatorname{supp} \psi_i \subset V_\alpha$ for some α^1 , and
- $\sum_{i} \psi_{i} = 1$ for each $x \in K$.

Corollary 1.11. If $f \in C(\mathbb{R}^n)$ and the support of f lies in K, then

$$f = \sum \psi_i f.$$

Each $\psi_i f$ has support in some V_{α} .

Remark 1.12. This is a representation of f using functions with "small" supports. We represent global information using local information.

Theorem 1.13 (Change of Variables). Let T be a one-to-one C^1 mapping from an open set $E \in \mathbb{R}^k$ into \mathbb{R}^k such that $J_T(x) \neq 0$ for all $x \in T$. If $f \in C_c(\mathbb{R}^n)$ and supp $f \in T(E)$, then

$$\int_{\mathbb{R}^k} f(y) \, \mathrm{d}y = \int_{\mathbb{R}^k} f(T(x)) |J_T(x)| \, \mathrm{d}x.$$

Proof. If *T* is a primitive mapping, then the theorem is true by the one dimensional change of variable theorem. If *T* is a flip, the theorem reduces to the case in the first theorem of this section.

If the theorem is true for transformations P, Q, and if $S = P \circ Q$, then

$$\int f(z) dz = \int f(P(y))|J_P(y)| dy$$

$$= \int f(P(Q(x)))|J_P(Q(x))||J_Q(x)| dx = \int f(S(x))|J_S(x)| dx,$$

¹This is sometimes expressed by saying that $\{\psi_i\}$ is subordinate to the cover $\{V_\alpha\}$.

where we used the fact that

$$J_P(Q(x)) = \det DP(Q(x)) \det DQ(x)$$

= \det DP(Q(x))DQ(x) = \det DS(x) = J_S(x).

This follows from the chain rule and the fact that the determinant of a product of matrices is the product of the determinants.

Now, for each $a \in E$ there exists a neighborhood $U \subset E$ of a in which

$$T(x) = T(a) + B_1 \dots B_{k-1}G_k \circ \dots \circ G_1(x-a).$$

It follows that the theorem holds if the support of f lies in T(U).

That is, each point $y \in T(E)$ lies in an open set $V_y \subset T(E)$ such that the theorem holds for all continuous functions whose support lies in V_y .

For an arbitrary function f, we need only write it as a sum of functions with compact support using the partition of unity.

2 Differential Forms

Definition 2.1 (k-surface). Suppose E in an open set in \mathbb{R}^n . A k-surface in E is a C^1 mapping Φ from a compact set $D \subset \mathbb{R}^k$ into E.

Definition 2.2 (k-form). Let $E \subset \mathbb{R}^n$ be open. A differential form of order $k \geq 1$ in E is a function ω , symbolically represented by

$$\omega = \sum a_{i_1...i_k} \, \mathrm{d} x_{i_1} \wedge \cdots \wedge \, \mathrm{d} x_{i_k},$$

(where the indices i_1, \ldots, i_k range independently from 1 to n), which assigns to each k-surfaces Φ in E a number $\omega(\Phi) = \int_{\Phi} \omega$ according to the rule

$$\int_{\Phi} \omega = \int_{D} \sum a_{i_{1}...i_{k}}(\Phi(u)) \frac{\partial(x_{i_{1}}, \ldots, x_{i_{k}})}{\partial(u_{1}, \ldots, u_{k})} du_{1} \ldots du_{k},$$

where D is the parameter domain of Φ .

Definition 2.3.

- We write $\omega_1 = \omega_2$ if and only if $\omega_1(\Phi) = \omega_2(\Phi)$ for every k-surface Φ in E. In particular, $\omega = 0$ means that $\omega(\Phi) = 0$ for every k-surface Φ in E.
- A k-form is said to be of class C^n if the functions $a_{i_1...i_k}$ are all of class C^n .
- A 0-form in E is defined to be a continuous function in E.
- We write $\Lambda^k(D)$ for the set of all k-forms in D.

Proposition 2.4.

- $dx_i \wedge dx_j = -dx_i \wedge dx_i$. In particular, $dx_i \wedge dx_i = 0$.
- $dx_I = -dx_J$ if J is obtained by interchanging two subscripts in I.

Definition 2.5. If i_1, \ldots, i_k be integers such that $1 \le i_1 < i_2 < \cdots < i_k \le n$ and if I, and if I is the k-tuple $\{i_1, \ldots, i_k\}$, then we call I and **increasing k-index**, and we use the brief notation

$$dx_I := dx_{i_1} \wedge \cdots \wedge dx_{i_k}$$
.

These are the **basic** k**-forms** in \mathbb{R}^n .

Remark 2.6. Every k-form can be written as

$$\omega = \sum_{I} b_{I}(x) \, \mathrm{d}x_{I},$$

where each I is increasing. We call this the **standard presentation** of ω .

Theorem 2.7. Suppose $\omega = \sum_I b_I \, \mathrm{d} x_I$ is the standard presentation of a k-form ω in an open set $E \subset \mathbb{R}^n$. If $\omega = 0$ in E, then $b_I(x) = 0$ for ever increasing k-index I and for every $x \in E$.

Definition 2.8 (products). The product of the basic forms dx_I and dx_J , where $I = \{i_1, \ldots, i_p\}$ and $J = \{j_1, \ldots, j_q\}$, is the (p + q)-form

$$dx_I \wedge dx_J := dx_{i_1} \wedge \cdots \wedge dx_{i_p} \wedge dx_{j_1} \wedge \cdots \wedge dx_{j_q}.$$

If ω and λ are respectively p- and q-forms on an open set $E \subset \mathbb{R}^n$ with standard representations

$$\omega = \sum_{I} b_{I}(x) dx_{I}, \quad \lambda = \sum_{J} c_{J}(x) dx_{J},$$

then their product is defined to be the (p + q)-form

$$\omega \wedge \lambda \coloneqq \sum_{I,J} b_I(x) c_J(x) \mathrm{d} x_I \wedge \mathrm{d} x_J.$$

Proposition 2.9 (Properties of the Product).

• Distributive Laws:

$$(\omega_1 + \omega_2) \wedge \lambda = (\omega_1 \wedge \lambda) + (\omega_2 \wedge \lambda),$$

$$\omega \wedge (\lambda_1 + \lambda_2) = (\omega \wedge \lambda_1) + (\omega \wedge \lambda_2).$$

Associativity:

$$(\omega \wedge \lambda) \wedge \sigma = \omega \wedge (\lambda \wedge \sigma).$$

2.1 Differentiation

Definition 2.10. The differentiation operator d associates a (k + 1)-form $d\omega$ to each k-form ω of class C^1 in an open set $E \subset \mathbb{R}^n$.

A 0-form of class C^1 is just a continuous function $f \in C^1(E)$. We define

$$\mathrm{d}f \coloneqq \sum_i (\mathrm{D}_i f)(x) \mathrm{d}x_i.$$

If $\omega = \sum_I b_I(x) dx_I$ is the standard presentation of a k-form ω and each $b_i \in C^1(E)$, then we define

$$\mathrm{d}\omega \coloneqq \sum_I (\mathrm{d}b_I) \wedge \mathrm{d}x_I.$$

Remark 2.11.

- Since $D_i(fg) = gD_if + fD_i$, we have d(fg) = g df + f dg.
- $d^2x_I = 0$.
- Using the same trick as in the proof for the first part of the next theorem, we see that d is linear.

ili

Theorem 2.12.

(i) If ω and λ are k- and m-forms of class C^1 in E, then

$$d(\omega \wedge \lambda) = (d\omega) \wedge \lambda + (-1)^k \omega \wedge (d\lambda).$$

(ii) (Poincaré lemma) If ω is of class C^2 in E, then $d^2\omega = 0$.

Proof.

(i) By how the product and the derivative is defined, we need only prove the statement for the special case

$$\omega = f \, \mathrm{d} x_I, \quad \lambda = g \, \mathrm{d} x_J,$$

where $f, g \in C^1(E)$, dx_I is a basic k-form, and dx_J is a basic m-form. (If k or m is 0, omit dx_I or dx_J .) Then we have

$$\omega \wedge \lambda = fg \; \mathrm{d} x_I \wedge \mathrm{d} x_J.$$

If I and J have no common indices, then the desired statement is proved, with each of the three terms being 0. Let's thus suppose otherwise. We may write

$$d(\omega \wedge \lambda) = d(fg \, dx_I \wedge dx_J)$$

$$= (-1)^{\alpha} \, d(fg \, dx_{[I,J]})$$

$$= (-1)^{\alpha} (f \, dg + g \, df) \wedge dx_{[I,J]}$$

$$= (f \, dg + g \, df) \wedge dx_I \wedge dx_J.$$

Here, α is the number of interchanges of indices needed to make (I, J) increasing, and [I, J] denotes the increasing (k + m)-tuple obtained by combining the indices in I and J. Now note that

$$dg \wedge dx_I = (-1)^k dx_I \wedge dg,$$

and so

$$d(\omega \wedge \lambda) = (df \wedge dx_I) \wedge (g dx_J) + (-1)^k (f dx_I) \wedge (dg \wedge dx_J)$$
$$= (d\omega) \wedge \lambda + (-1)^k \omega \wedge d\lambda.$$

(ii) We first prove the statement for a 0-form $f \in C^2$. We have

$$d^{2}f = d\left(\sum_{j} (D_{j}f)(x)dx_{j}\right) = \sum_{j} d(D_{j}f) \wedge dx_{j}$$
$$= \sum_{j} \sum_{i} (D_{ij}f)(x)dx_{i} \wedge dx_{j}.$$

Since $D_{ij}f = D_{ji}f$ and $dx_i \wedge dx_j = -dx_j \wedge dx_i$, we have $d^2f = 0$. If $\omega = f dx_I$ then $d\omega = (df) \wedge dx_I$. Then, the first part of this theorem shows that

$$\mathrm{d}^2\omega = (\mathrm{d}^2 f) \wedge \mathrm{d} x_I + (-1)^{|I|} (\mathrm{d} f) \wedge \mathrm{d}^2 x_I.$$

It remains to recall that $d^2x_I = d^2f = 0$.

Example 2.13. Let $f \in \Lambda^0(\mathbb{R}^3)$. Let

$$\mathrm{d}f = \frac{\partial f}{\partial x} \, \mathrm{d}x + \frac{\partial f}{\partial y} \, \mathrm{d}y + \frac{\partial f}{\partial z} \, \mathrm{d}z,$$

and write

$$F := \nabla f = \operatorname{grad} f = \left\langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right\rangle =: \left\langle A, B, C \right\rangle.$$

We have

$$d(df) = \left(\frac{\partial C}{\partial y} - \frac{\partial B}{\partial z}\right) dy \wedge dz + \left(\frac{\partial A}{\partial z} - \frac{\partial C}{\partial y}\right) dz \wedge dx + \left(\frac{\partial B}{\partial x} - \frac{\partial A}{\partial y}\right) dx \wedge dy,$$

Note that the three functions are the three coordinates of $\nabla \times F = \text{curl } F$. That is, d(df) has the three coordinates of

$$\operatorname{curl}(\operatorname{grad} f) = \nabla \times (\nabla f).$$

Consider now the 2-form in \mathbb{R}^3

$$d^2 f = P dy \wedge dz + Q dz \wedge dx + R dx \wedge dy =: \omega$$

and

$$G = \langle P, Q, R \rangle$$
.

Then we have

$$d\omega = \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}\right) dx \wedge dy \wedge dz,$$

which, note, contains the three coordinates of div $G := \nabla \cdot G$. We have then that $d(d^2f)$ has the same three coordinates as

$$\operatorname{div}(\operatorname{curl} F) = \nabla \cdot (\nabla \times F).$$

2.2 Change of Variables

Let $T: \mathbb{R}^n \supset E \to V \in \mathbb{R}^m$ be C^1 . Let ω be a k-form in V with standard presentation

$$\omega = \sum_{I} b_{I}(y) \, \mathrm{d}y_{I}.$$

Write $y = (y_1, ..., y_m) = T(x) = (t_i(x), ..., t_m(x))$. Since

$$dt_i = \sum_j (D_j t_i)(x) dx_j,$$

each dt_i is a 1-form in E. We may define the **pullback**

$$\omega_T := \sum_I b_I(T(x)) dt_{i_1}(x) \wedge \cdots \wedge dt_{i_k}(x).$$

Note that ω_T is a k-form in E.

Theorem 2.14. With E and T as above, let ω and λ be k- and m-forms in V. Then,

- (i) $(\omega + \lambda)_T = \omega_T + \lambda_T$ if k = m;
- (ii) $(\omega \wedge \lambda)_T = \omega_T \wedge \lambda_T$;
- (iii) $d(\omega_T) = (d\omega)_T$ if ω is of class C^1 and T is of class C^2 .

Proof. (i) follows from the definition. To prove (ii), note that

$$(\mathrm{d}y_{i_1} \wedge \cdots \wedge \mathrm{d}y_{i_r})_T = \mathrm{d}t_{i_1}(x) \wedge \cdots \wedge \mathrm{d}t_{i_r}(x)$$

regardless of whether $\{i_1, \ldots, i_r\}$ is increasing, since the same number of minus signs are needed on each side of the equation to produce increasing rearrangements. We turn to (iii).

If f is a 0-form of class C^1 in V, then

$$f_T(x) = f(T(x)), \quad \mathrm{d}f = \sum_i (\mathrm{D}_i f)(y) \, \mathrm{d}y_i.$$

Using the chain rule, we have

$$d(f_T) = \sum_{j} (D_j f_T)(x) dx_j$$

$$= \sum_{j} \sum_{i} D_i f(T(x)) (D_j t_i) T(x) dx_j$$

$$= \sum_{i} D_i f(T(x)) dt_i = (df)_T.$$

If $dy_I = dy_1 \wedge \cdots \wedge dy_{i_k}$, then $(dy_I)_T = dt_{i_1} \wedge \cdots \wedge dt_{i_k}$ is a basic k-form. Thus $d((dy_I)_T) = 0$. Suppose now that $\omega = f dy_I$. Then $\omega_T = f_T(x)(dy_I)_T$ and, by the discussion above, we have

$$d(\omega_T) = d(f_T) \wedge (dy_I)_T = (df)_T \wedge (dy_I)_T$$

= $((df) \wedge dy_I)_T = (d\omega)_T$.

By applying Part (i), we can prove the general case.

2.3 A Geometric Perspective

2.3.1 Tangent Space

Definition 2.15 (Tangent Space). Given a curve C and a point p on the curve, the **tangent space** to C at p is defined as

$$T_pC := \text{span} \{ \text{vectors tangent to } C \text{ at } p \}$$
.

Example 2.16. For a 2 surface r(u,v) = (x(u,v),y(u,v),z(u,v)), where $\mathbb{R}^2 \supset D \to \mathbb{R}^3$, we define

$$T_p S = \operatorname{span} \{r_u(p), r_v(p)\},$$

where

$$r_u := \left\langle \frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}, \frac{\partial z}{\partial u} \right\rangle.$$

Definition 2.17. A **1-form** in \mathbb{R}^n is a linear function $\omega : T_p \mathbb{R}^n \to \mathbb{R}$. That is, $\Lambda^1(\mathbb{R}^n) = (T_p \mathbb{R}^n)^*$.

Proposition 2.18. Any 1-form ω in \mathbb{R}^n is a linear combination of $\langle dx_1, \ldots, dx_n \rangle$, where $dx_i : x \mapsto x_i$.

Example 2.19. If
$$\omega = a \, dx + b \, dy$$
, then $\omega(\langle 1, 2 \rangle) = a \cdot 1 + b \cdot 2$.

Definition 2.20. An *k*-form on \mathbb{R}^n is a function $\omega: (T_p\mathbb{R}^n)^k \to \mathbb{R}$ that is multilinear and alternating.

Proposition 2.21. $\Lambda^k(\mathbb{R}^n)$ has basis

$$\left\{ \mathrm{d}x_{i_1} \wedge \cdots \wedge \mathrm{d}x_{i_k} : 1 \leq i_1 < \cdots < i_k \leq n \right\}.$$

Definition 2.22. For $v^{(1)}, \ldots, v^{(k)} \in T_p \mathbb{R}^n$ and $\omega = dx_{i_1} \wedge \cdots \wedge dx_{i_k}$ we define

$$\omega(v^{(1)}, \dots, v^{(k)}) := \det \left(v_{x_{i_m}}^{(j)} \right)_{1 \le j, m \le k} = \det \begin{pmatrix} v_{x_{i_1}}^{(1)} & \dots & v_{x_{i_k}}^{(1)} \\ \vdots & \ddots & \vdots \\ v_{x_{i_1}}^{(k)} & \dots & v_{x_{i_k}}^{(k)} \end{pmatrix}$$

Example 2.23. Let $v^{(1)} = \langle 1, -1, 3, 5 \rangle$, $v^{(2)} = \langle 0, 1, -1, 4 \rangle \in T_p \mathbb{R}^4$. We have

$$dx \wedge dy(v^{(1)}, v^{(2)}) = \det\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} = 1,$$
$$dz \wedge dw(v^{(1)}, v^{(2)}) = \det\begin{pmatrix} 3 & 5 \\ -1 & 4 \end{pmatrix} = 17.$$

Let $\omega = 3 \, \mathrm{d}x \wedge \mathrm{d}y + 5 \, \mathrm{d}z \wedge \mathrm{d}w \in \Lambda^2(\mathbb{R}^2)$. We have

$$\omega(v^{(1)}, v^{(2)}) = 3 \cdot 1 + 5 \cdot 17 = 88.$$

Example 2.24. Let $\omega = \sum_{I} a_{I} dx_{I}$. We have

$$\omega(v^{(1)},\ldots,v^{(k)}) = \sum_{I} a_{I} \det\left(v_{i_{m}}^{(j)}\right)_{1 \leq j,m \leq k}.$$

Definition 2.25. A differential k-form on \mathbb{R}^n is denoted

$$\omega = \sum_{I} f_{I}(x) \, \mathrm{d}x_{I},$$

where $f_I: \mathbb{R}^n \to \mathbb{R}$ are infinitely differentiable. Thus for each $p \in \mathbb{R}^n$, ω_p is a k-form in $T_p\mathbb{R}^n$.

Example 2.26. Let $\omega = x^2 \, \mathrm{d} x \wedge \mathrm{d} y - x^3 z \, \mathrm{d} y \wedge \mathrm{d} z \in \Lambda^2(\mathbb{R}^3)$. To evaluate ω , we need a base point p, and k vectors based at p, say $v^{(1)}, \ldots, v^{(k)} \in T_p\mathbb{R}^n$. Suppose $p = (2, 1, -1), v^{(1)} = \langle 1, -2, 3 \rangle$, and $v^{(2)} = \langle 2, 0, 1 \rangle$. We have

$$\omega_p = 4 \, \mathrm{d}x \wedge \mathrm{d}y + 8 \, \mathrm{d}y \wedge \mathrm{d}z = 4 \det \begin{pmatrix} 1 & -2 \\ 2 & 0 \end{pmatrix} + 8 \det \begin{pmatrix} -2 & 3 \\ 0 & 1 \end{pmatrix}.$$

2.3.2 Integration of Differential Forms

Definition 2.27 (Integration of differential 2-forms). Let $\phi : \mathbb{R}^2 \supset D \to S \subset \mathbb{R}^n$ be a 2-surface and let $\omega = \sum_I f_I(x) \, \mathrm{d} x_I$ be a differential 2-form in \mathbb{R}^n . We define

$$\int_{S} \omega := \iint_{D} \omega_{\phi(u,v)} \left(\frac{\partial \phi}{\partial u}, \frac{\partial \phi}{\partial v} \right) du dv.$$

Now recall that

$$dx_i \wedge dx_j(v^{(1)}, v^{(2)}) = det \begin{pmatrix} v_i^{(1)} & v_j^{(1)} \\ v_i^{(2)} & v_j^{(2)} \\ v_i^{(2)} & v_j^{(2)} \end{pmatrix}.$$

Example 2.28. Let

$$\omega := xy \, dx \wedge dy + x^2 \, dx \wedge dz \in \Lambda^2(\mathbb{R}^3)$$
$$S : \phi(u, v) = \langle u, v, u^2 + v^2 \rangle$$
$$D = \{(u, v) : u^2 + v^2 \le 1\}.$$

Note that

$$\omega_{\phi(u,v)} (\phi_u, \phi_v) = \omega_{\langle u,v,u^2+v^2 \rangle} (\langle 1,0,2u \rangle, \langle 0,1,2v \rangle)$$

$$= uv \, dx \wedge dy (\phi_u, \phi_v) + u^2 \, dx \wedge dz (\phi_u, \phi_v)$$

$$= uv \, det \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + u^2 \, det \begin{pmatrix} 1 & 2u \\ 0 & 2v \end{pmatrix}$$

$$= uv + 2u^2v.$$

Then,

$$\int_{S} \omega = \iint_{D} (uv + 2u^{2}v) du dv$$

$$= \int_{0}^{2\pi} \int_{0}^{1} \left(r^{2} \cos \theta \sin \theta + 2r^{3} \cos^{2} \theta \sin \theta \right) r dr d\theta$$

$$= \int_{0}^{2\pi} \int_{0}^{1} r^{3} \cos \theta \sin \theta + 2r^{4} \cos^{2} \theta \sin \theta dr d\theta$$

$$= \int_{0}^{2\pi} \frac{1}{4} \sin \theta \cos \theta + \frac{2}{5} \cos^{2} \theta \sin \theta d\theta = 0,$$

since the integrand is 2π -periodic. Note that we switched to polar coordinates in the second equality:

$$u := r \cos \theta$$
, $v := r \sin \theta$, $du dv = r dr d\theta$.

Definition 2.29. Now let ω be a differential k-form on \mathbb{R}^k , say

$$\omega = \sum_{I} f_{I}(x) \, \mathrm{d}x_{I},$$

and a k-surface $\phi: \mathbb{R}^k \supset D \to S \subset \mathbb{R}^n$, we define

$$\int_{S} \omega := \int \cdots \int_{D} \omega_{\phi(u_{1},\dots,u_{k})} \left(\frac{\partial \phi}{\partial u_{1}}, \dots, \frac{\partial \phi}{\partial u_{k}} \right) du_{1} \dots du_{k}.$$

Recall that

$$dx_{I}(v^{(1)}, \dots, v^{(k)}) = det \begin{pmatrix} v_{i_{1}}^{(1)} & \dots & v_{i_{k}}^{(1)} \\ \vdots & \ddots & \vdots \\ v_{i_{1}}^{(k)} & \dots & v_{i_{k}}^{(k)} \end{pmatrix}.$$

Example 2.30. Let

$$\omega = x_1 dx_1 + (x_1^2 + x_2)dx_2 + x_3x_4 dx_4 \in \Lambda^1(\mathbb{R}^4)$$

and consider the curve $C: \phi: [0, 3\pi] \to \mathbb{R}^4$ defined by

$$\phi(t) := \langle \cos t, \sin t, t, -t \rangle.$$

Note that

$$\phi'(t) = \langle -\sin t, \cos t, 1, -1 \rangle.$$

We then have

$$\int_C \omega = \int_0^{3\pi} \cos t (-\sin t) + (\cos^2 t + \sin t) \cos t + t^2 dt$$

$$= \int_0^{3\pi} \cos^3 t + t^2 dt = \int_0^{3\pi} \cos t (1 - \sin^2 t) + t^2 dt$$

$$= \sin t + \frac{1}{3} \sin^3 t + \frac{t^3}{3} \Big|_0^{3\pi} = 9\pi^2.$$

Integration is independent of the parameterization we choose. As an example, consider a 2-form

$$\omega = f(x, t) \, \mathrm{d}x \wedge \mathrm{d}y$$

over $D \subset \mathbb{R}^2$. We have

$$\begin{split} \int_D \omega &= \iint_D \omega_{\mathrm{Id}} \left(\frac{\partial \, \mathrm{Id}}{\partial x}, \frac{\partial \, \mathrm{Id}}{\partial y} \right) \, \mathrm{d}A \\ &= \iint_d f(x,y) \, \mathrm{d}x \wedge \mathrm{d}y \left(\langle 1,0 \rangle \atop \langle 0,1 \rangle \right) \, \mathrm{d}A = \iint_D f(x,y) \mathrm{d}A. \end{split}$$

Now, with another parameterization of *D*:

$$\phi: D' \ni (u, v) \longmapsto (x, y) \in D.$$

We have

$$\int_{D} \omega = \iint_{D'} \omega_{\phi(u,v)} \left(\frac{\partial \phi}{\partial u}, \frac{\partial \phi}{\partial v} \right) dA'$$

$$= \iint_{D'} f(\phi(u,v)) dx \wedge dy \left(\frac{\partial \phi}{\partial u}, \frac{\partial \phi}{\partial v} \right) dA'$$

$$= \iint_{D'} f(\phi(u,v)) \det \left(\frac{\frac{\partial x}{\partial u}}{\frac{\partial y}{\partial u}}, \frac{\frac{\partial x}{\partial v}}{\frac{\partial y}{\partial v}} \right) dA'$$

$$= \iint_{D} f(x,y) dA.$$

More generally, for a k-surface $\phi:(u_1,\ldots,u_k)\mapsto\mathbb{R}^m$, we have

$$\int_{S} \omega = \int \cdots \int_{D} \omega(\phi(u_1, \dots, u_k)) \frac{\partial(x_{i_1}, \dots, x_{i_k})}{\partial(u_1, \dots, u_k)} du_1 \dots du_k.$$

2.3.3 Pushforward, Pullback

Definition 2.31. Let T be a C'-mapping from E to V:

$$\mathbb{R}^n \supset E \xrightarrow{T} V \subset \mathbb{R}^m.$$

The mapping T induces **pushforward** tangent spaces:

$$T_p\mathbb{R}^n \xrightarrow{T_*} T_{T(p)}\mathbb{R}^m, \quad p \in E.$$

Let ω be a k-form on V. The mapping T induces the **pullback**

$$T^*\omega(v_1,\ldots,v_k)=\omega(T_*v_1,\ldots,T_*v_k).$$

Note that $T^*\omega$ is also sometimes written as ω_T (e.g., in Rudin).

Proposition 2.32. *Let* ω *be a k-form and* λ *be an l-form.*

(i)
$$T^*(a\omega + b\lambda) = aT^*\omega + bT^*\lambda$$
.

(ii)
$$T^*(\omega \wedge \lambda) = T^*\omega \wedge T^*\lambda$$
.

(iii) $d(T^*\omega) = T^*(d\omega)$.

(iv) Let
$$E \xrightarrow{E} V \xrightarrow{S} W$$
. Then $T^*(S^*\omega) = (ST)^*\omega$.

Proposition 2.33. *Let* Φ *be a k-surface in* E.

$$\mathbb{R}^k\supset D\overset{\Phi}{\longrightarrow}\Phi(D)=S\subset E,\quad \mathbb{R}^n\supset E\overset{T}{\longrightarrow}V\subset\mathbb{R}^m.$$

Then,

$$\int_{T\Phi}\omega=\int_{\Phi}T^*\omega.$$

3 Simplexes and Chains

Definition 3.1. Consider the mapping $f: X \to Y$, where X and Y are vector spaces. We say f is **affine** if f - f(0) is linear. That is, if f(x) = f(0) + Ax for some linear transformation $A \in L(X, Y)$.

Definition 3.2. The standard simplex is defined as

$$Q^k := \left\{ u \in \mathbb{R}^k : u = \sum_{i=1}^k \alpha_i e_i, \alpha_i \ge 0, \sum \alpha_i \le 1 \right\}.$$

Definition 3.3. If p_0, \ldots, p_k are points of \mathbb{R}^n , the **oriented affine** k-simplex $\sigma = [p_0, \ldots, p_k] : Q^k \to \mathbb{R}^n$ is defined by the affine mapping

$$\sigma(\alpha_1 e_1 + \cdots + \alpha_k e_k) := p_0 + \sum \alpha_i (p_i - p_0).$$

Note that σ is characterized by $\sigma(0) = p_0$, $\sigma(e_i) = p_i$, and

$$\sigma(u) = p_0 + Au$$
, $Ae_i = p_i - p_0$, $\forall u \in Q^k, 1 \le i \le k$.

Definition 3.4. An **affine** k-**chain** Γ in an open set $E \subset \mathbb{R}^n$ is a collection of finitely many oriented affine k-simplexes $\sigma_1, \ldots, \sigma_r$ in \mathbb{E} . These need not be distinct. If ω is a k-form in E, we define

$$\int_{\Gamma} \omega := \sum_{i=1}^{r} \int_{\sigma_i} \omega.$$

Definition 3.5. For $k \ge 1$, the **boundary** of the oriented affine k-simplex $\sigma = [p_0, \ldots, p_k]$ is defined to be the affine (k-1)-chain

$$\partial \sigma := \sum_{j=0}^{k} (-1)^{j} [p_0, \dots, p_{j-1}, p_{j+1}, \dots, p_k].$$

Example 3.6. The boundary of $\sigma = [p_0, p_1, p_2]$ is

$$\partial \sigma := [p_1, p_2] - [p_0, p_2] + [p_0, p_1] = [p_0, p_1] + [p_1, p_2] + [p_2, p_0].$$

Definition 3.7. A differentiable simplex Let $T: \mathbb{R}^n \supset E \to V \subset \mathbb{R}^m$ be a C^2 mapping. If σ is an oriented affine k-simplex in E, then the composite mapping $\Phi := T \circ \sigma$ is a k-surface in V with parameter domain Q^k . We call Φ an **oriented** differentiable k-simplex in V.

A finite collection Ψ of oriented k-simplexes Φ_1, \ldots, Φ_r of class C^2 in V is called a k-chain of class C^2 in V. If ω is a k-form in V, we define

$$\int_{\Psi} \omega \coloneqq \sum_{i=1}^r \int_{\Phi_i} \omega.$$

The **boundary** of the oriented k-simplex $\Phi = T \circ \sigma$ is the (k-1) chain

$$\partial \Phi = T(\partial \sigma)$$
.

Similarly, we define

$$\partial \Psi = \sum_{i} \partial \Phi_{i}.$$

Let Q^n be the standard simplex in \mathbb{R}^n , let σ_0 be the identity mapping with domain Q^n . That is,

$$\sigma_0 = [0, e_1, \dots, e_n].$$

Then, its boundary

$$\partial \sigma_0 = [e_1, e_2, \dots, e_n] - [0, e_2, \dots, e_n] + \dots + (-1)^n [0, e_1, \dots, e_{n-1}]$$

is called the **positively oriented boundary** of the set Q^n .

Now let T be a one-to-one mapping of Q^n into \mathbb{R}^n of class C^2 whose Jacobian is positive. The inverse function theorem implies $E = T(Q^n)$ is the closure of an open subset of \mathbb{R}^n . We define the **positively oriented boundary** of E to be the (n-1)-chain

$$\partial E := \partial T = T(\partial \sigma_0).$$

Theorem 3.8 (Generalized Stokes' Theorem). If Ψ is a k-chain of class C^2 in an open set $V \in \mathbb{R}^m$ and if ω is a (k-1)-form of class C^1 , then

$$\int_{\Psi} d\omega = \int_{\partial \Psi} \omega.$$

Example 3.9. If k = 1, m = 1 we have the fundamental theorem of calculus:

$$\int_a^b f'(x) \, \mathrm{d}x = f(b) - f(a).$$

If k = 2, m = 2 we have Green's theorem: If

$$\omega = A dx + B dy$$
, $d\omega = \left(\frac{\partial B}{\partial x} - \frac{\partial A}{\partial y}\right) dx \wedge dy$,

then

$$\int_{D} \left(\frac{\partial B}{\partial x} - \frac{\partial A}{\partial y} \right) dx \wedge dy = \oint_{\partial D} A dx + B dy.$$

If k = 3, m = 3, we have the so-called "divergence theorem": If

$$\omega = A \, dy \wedge dz + B \, dz \wedge dx + C \, dx \wedge dy, \quad d\omega = \left(\frac{\partial A}{\partial x} + \frac{\partial B}{\partial y} + \frac{\partial C}{\partial z}\right) \, dx \wedge dy \wedge dz,$$

then

$$\int_{D} \left(\frac{\partial A}{\partial x} + \frac{\partial B}{\partial y} + \frac{\partial C}{\partial z} \right) dx \wedge dy \wedge dz = \int_{\partial D} A dy \wedge dz + B dz \wedge dx + C dx \wedge dy,$$

We may rewrite the previous equation as

$$\int_D \operatorname{div} F \, dV = \int_S F \cdot n \, dS,$$

where $F = \langle A, B, C \rangle$ and n is the unit normal vector to the surface $\partial D = S$. Note that $n \, dS = \langle dx dz, dz dy, dx dy \rangle$.

If k = 2, m = 3, we have the original theorem discovered by Stokes: If

$$\omega = A \, dx + B \, dy + C \, dz,$$

$$d\omega = \left(\frac{\partial C}{\partial y} - \frac{\partial B}{\partial z}\right) \, dy \wedge dz + \left(\frac{\partial A}{\partial z} - \frac{\partial C}{\partial x}\right) \, dz \wedge dx + \left(\frac{\partial B}{\partial x} - \frac{\partial A}{\partial y}\right) \, dx \wedge dy,$$

then

$$\int_{\partial S} \omega = \int_{S} d\omega.$$

That is,

$$\int F n \, \mathrm{d}s = \int (\operatorname{curl} F) \cdot n \, \mathrm{d}S.$$

Sometimes *n* d*s* is written as d*v*.

Proof (*Sketch*). We want to prove $\int_{\Psi} d\omega = \int_{\partial \Psi} \omega$. Since $\Psi = \sum \Phi_i = \sum T \circ \sigma$ (by the pullback commuting with exterior differentiation $d\omega_T = (d\omega)_T$ and the change of variables formula $\int_{T\sigma} d\omega = \int_{\sigma} (d\omega)_T = \int_{\sigma} d(\omega_T)$), we need only show

$$\int_{\sigma} d\omega = \int_{\partial \sigma} \omega.$$

It suffices to consider some special case, and then some Ouyang magique gives the desired result, I guess.

4 Closed Forms and Exact Forms

Theorem 4.1. Let $D \subset \mathbb{R}^3$ and let $F = \langle A(z, y, z), B(z, y, z), C(z, y, z) \rangle$ be continuous in D. Then the following are equivalent:

- (1) F is a **conservative/gradient**. That is, there exists a differentiable function u(x, y, z) such that du = A dx + B dy + C dz (that is, u is the anti-derivative of $\omega = A dx + B dy + C dz$).
- (2) For any closed curve $\Lambda \subset D$ we have

$$\oint_{\Lambda} A \, \mathrm{d}x + B \, \mathrm{d}y + C \, \mathrm{d}z = 0.$$

(3) The line integral $\int_C A dx + B dy + C dz$ is independent of path.

If in addition F is C^1 and D is simply-connected, then the above three statements are equivalent to the following one as well:

(4) $\operatorname{curl} F = 0$, that is

$$\begin{cases} \partial C/\partial y = \partial B/\partial z \\ \partial A/\partial z = \partial C/\partial x \\ \partial B/\partial x = \partial A/\partial y \end{cases}$$

Proof. (2) \Longrightarrow (3): Write $C_1 + C_2^- = \Lambda$. We have $\int_{C_1} + \int_{C_2^-} = \oint_{\Lambda} = 0$ and so

$$\int_{C_1} = -\int_{C_2^-} = \int_{C_2}.$$

 $(3) \implies (2)$ is essentially the same as $(2) \implies (3)$. $(3) \implies (1)$: Define

$$u(x, y, z) = \int_C A dx + B dy + C dz,$$

where C is a path from a fixed point P_0 to (x, y, z). Then, it is easy to check that

$$\begin{cases} A = \partial u / \partial x \\ B = \partial u / \partial y \\ C = \partial u / \partial z \end{cases}.$$

 $(1) \implies (3)$: We have by the fundamental theorem of calculus

$$I = \int_C \omega = u(Q) - u(P).$$

(1) \Longrightarrow (4): Suppose ω has anti-derivative u. Then

$$A = \frac{\partial u}{\partial x}, \quad B = \frac{\partial u}{\partial y}, \quad C = \frac{\partial u}{\partial z}$$

and then

$$\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}.$$

(4) \Longrightarrow (1): For any closed curve $\Lambda \subset D$ there exists (by D being simply-connected) a 2-surface S such that $\partial S = \Lambda$. By Stokes' theorem, we have

$$\oint_{\Lambda} F \, dr = \int_{S} (\operatorname{curl} F) \cdot n \, dS = 0.$$

Remark 4.2. (4) \implies (1)–(3) requires D to be simply-connected. (1)–(3) \implies (4) does not.

Definition 4.3. Let ω be a k-form in D in an open set $E \subset \mathbb{R}^m$.

- (i) We say ω is **exact in** E if there is a (k-1)-form λ in E such that $\omega = d\lambda$ (that is, λ is an anti-derivative / primitive of ω).
- (ii) We say ω is **closed** if $\omega \in C^1$ and $d\omega = 0$.

Remark 4.4. Let $\omega = \sum_i f_i(x) \, \mathrm{d} x_i$ be a 1-form. Then ω is closed if and only if $\partial_j f_i(x) = \partial_i f_j(x)$ for any $1 \le i, j \le n$ and any $x \in E$.

Since $d^2\omega = 0$ always, we have the following:

Proposition 4.5. Let ω be a k-form of class C^1 . If ω is exact then it is closed.

In general closed does not imply exact. The following result gives a sufficient condition for closed forms to be exact:

Theorem 4.6 (Poincaré lemma). *If* $E \subset \mathbb{R}^n$ *is simply-connected, then we have* ω *is closed implies* ω *is exact.*

Proposition 4.7.

(i) If ω is exact, and Ψ is a k-chain in E such that $\partial \Psi = 0$ (Ψ is "closed"), then

$$\int_{\Psi} \omega = 0.$$

(ii) If ω is closed, and $\Phi = \partial \Psi$ (Φ is "exact"), then

$$\int_{\Phi} \omega = 0.$$

Example 4.8. Let $E = \mathbb{R}^2 \setminus \{0\}$ and set

$$\omega \coloneqq \frac{x \, \mathrm{d} y - y \, \mathrm{d} x}{x^2 + y^2} \in \Lambda^1(E).$$

Write $\omega = A dx + B dy$. Then,

(i) ω is closed. To check this, we need only verify that $\partial B/\partial x = \partial A/\partial y$:

$$\frac{\partial A}{\partial y} = \frac{y^2 - x^2}{(x^2 + y^2)^2} = \frac{\partial B}{\partial x}.$$

(ii) ω is not exact. By the remark above, we need only show that $\int_{\Lambda} \omega \neq 0$ for some closed curve Λ : Let Λ be the unit circle and D be the unit disk. We have by Stokes' theorem

$$\oint_{\Lambda} \omega = \oint_{\Lambda} \frac{x \, \mathrm{d}y - y \, \mathrm{d}x}{x^2 + y^2} = \oint_{\Lambda} x \, \mathrm{d}y - y \, \mathrm{d}x = \iint_{D} 2 \, \mathrm{d}x \wedge \mathrm{d}y = 2\pi \neq 0.$$

(iii) ω , however, is exact on $\{(x, y) : y > 0\}$. Note that we can verify $\int_{\partial \Psi} \omega = 0$ from Stokes' theorem and (i). This does not work for the example in (ii) since Λ is not the boundary of a 2-chain in E.

Now consider $D = \{(x, y) \in \mathbb{R}^2 : x \in [0, 1], y = 0\}$ and set $E = \mathbb{R}^2 \setminus D$. Let Γ be a closed curve around D. Then

$$\int_{\Gamma} \frac{x \, dy - y \, dx}{x^2 + y^2} - \int_{\Gamma} \frac{(x - 1)dy - y \, dx}{(x - 1)^2 + y^2} = 2\pi - 2\pi = 0.$$

Thus ω is exact in E.

Now consider $D = \{(0,0), (1,0)\}$ and set $E = \mathbb{R}^2 \setminus D$. Let Γ be a closed curve that goes between (0,0) and (1,0). Then

$$\int_{\Gamma} \frac{x \, dy - y \, dx}{x^2 + y^2} - \int_{\Gamma} \frac{(x - 1)dy - y \, dx}{(x - 1)^2 + y^2} = 2\pi - 0 = 2\pi.$$

Example 4.9. Let $E = \mathbb{R}^3$ and set

$$\omega = (yze^{xyz} + 3x^2)dx + (xze^{xyz} + \sin y)dy + (xye^{xyz} + 2z)dz$$

:= $A dx + B dy + C dz$.

Then $\operatorname{curl}(\langle A, B, C \rangle) = 0$ and so ω is closed and exact (since the domain is simply connected).

But what is the anti-derivative of ω , u(x, y, z)? We want

$$\frac{\partial u}{\partial x} = A = yze^{xyz} + 3x^2,$$

which gives

$$u = e^{xyz} + 3x^3 + \phi(y, z)$$

for some function ϕ . Differentiating with respect to y gives

$$\frac{\partial u}{\partial y} = xze^{xyz} + \frac{\partial \phi}{\partial y} = B = xze^{xyz} + \sin y,$$

and so

$$\phi(y, z) = -\cos(y) + \psi(z), \quad u = e^{xyz} + x^3 - \cos y + \psi(z).$$

Differentiating with respect to z gives

$$\frac{\partial u}{\partial z} = xye^{xyz} + \frac{\partial \psi}{\partial z} = C = xye^{xyz} + 2z,$$

and so $\psi(z) = z^2 + c$. Thus,

$$u(x, y, z) = e^{xyz} + 3x^3 - \cos y + z^2 + c.$$

Another way to find u is to integrate: Consider P=(0,0,0) and $Q=(\xi,\eta,\zeta)$. Consider the path

$$(0,0,0) \rightarrow (\xi,0,0) \rightarrow (\xi,\eta,0) \rightarrow (\xi,\eta,\zeta).$$

Since ω is exact, line integrals are independent of paths.

$$u(\xi, \eta, \zeta) - u(0, 0, 0) = \int_{(0,0,0)}^{(\xi, \eta, \zeta)} \omega$$

$$= \int_{0}^{\xi} A(x, 0, 0) dx + \int_{0}^{\eta} B(\xi, y, 0) dy + \int_{0}^{\zeta} B(\xi, \eta, z) dz$$

$$= \int_{0}^{\xi} 3x^{2} dx + \int_{0}^{\eta} \sin y dy + \int_{0}^{\zeta} (\xi \eta e^{\xi \eta z} 2z) dz$$

$$= \xi^{3} - \cos \eta + 1 + e^{\xi \eta \zeta} - 1 + \zeta^{2}.$$

Thus

$$u(x, y, z) = x^3 + e^{xyz} - \cos y + z^2 + c.$$

Example 4.10. Let $f(r) \in C(0, +\infty)$ where $r = \sqrt{x^2 + y^2 + z^2}$. Let $D \subset \mathbb{R}^3 \setminus \{0\}$. Show that $\omega = f(r)(x \, dx + y \, dy + z \, dz)$ is exact in D.

• If D is convex (contractible), then by Poincaré lemma, ω is exact if we can show it is closed (i.e., if if we can show curl $f(r) \langle x, y, z \rangle = 0$).

Denote A = f(r)x, B = f(r)y, and C = f(r)z. Then,

$$\frac{\partial B}{\partial x} - \frac{\partial A}{\partial y} = f'(r)\frac{x}{r}y - f'(r)\frac{y}{r}x = 0,$$

and analogously.

• If D is not convex, we want to find an antiderivative u such that $du = \omega$:

$$\int rf(r) dr = u(r), \quad u'(r) = rf(r).$$

$$du = \frac{\partial u}{\partial r} \frac{\partial r}{\partial x} dx + \frac{\partial u}{\partial r} \frac{\partial r}{\partial y} dy + \frac{\partial u}{\partial r} \frac{\partial r}{\partial z} dz$$
$$= r f(r) \frac{x}{r} dx + \dots + \dots$$
$$= f(r) x dx + \dots + \dots = \omega.$$

4.1 Vector Analysis

Consider vector field $F = \langle A, B, C \rangle$. We can identify it with the 1-form in \mathbb{R}^3

$$\lambda_F = A \, \mathrm{d}x + B \, \mathrm{d}y + C \, \mathrm{d}z$$

and the 2-form in \mathbb{R}^3

$$\omega_F = A \, dy \wedge dz + B \, dz \wedge dx + C \, dx \wedge dy.$$

From $d^2\omega = 0$, we know

Theorem 4.11.

- If $F = \nabla u$, then $\nabla \times F = 0$.
- If $F = \nabla \times G$, then $\nabla \cdot F = 0$.

Proof. Note that

$$F \doteq \lambda_F \doteq \omega_F$$
$$\nabla F \doteq dF$$
$$\nabla \times F \doteq d\lambda_F$$
$$\nabla \cdot F \doteq d\omega_F$$

Theorem 4.12 (Poincaré lemma). Assume E is contractible (or, in particular, convex)

- If $\nabla \times F = 0$, then $F = \nabla u$ for some $u \in C^1$.
- If $\nabla \cdot F = 0$, then $F = \nabla \times G$ for some vector field G in E.

Line integrals are just integrals of 1-forms. Let

$$\gamma(t) = \langle \gamma_1(t), \gamma_2(t), \gamma_3(t) \rangle$$
.

Then γ' is the tangent vector. We have

$$\int_{\gamma} \lambda_F = \int_a^b F(\gamma(t)) \cdot \gamma'(t) dt.$$

We may write

$$\gamma'(t)dt = T(t)|\gamma'(t)|dt = T(t)ds$$
,

where ds is the arc length element.

Let Φ be a 2-surface in \mathbb{R}^3 with

$$x = x(u, v)$$
$$y = y(u, v)$$
$$z = z(u, v).$$

Then

$$\int_{\Phi} \omega_F = \int_D F(\Phi(u, v)) \cdot N(u, v) \, du dv.$$

We may write

$$N(u,v) = \Phi_u \times \Phi_v = \left\langle \frac{\partial(y,z)}{\partial(u,v)}, \frac{\partial(z,x)}{\partial(u,v)}, \frac{\partial(x,y)}{\partial(u,v)} \right\rangle$$
$$= n(u,v)|N(u,v)| \, du dv$$
$$= n(u,v) \, dA,$$

where dA is the surface area element.

Proposition 4.13. Let γ be a C^1 -curve in an open set $E \subset \mathbb{R}^3$ with parameter interval [0,1]. We may write

$$\int_{\gamma} \lambda_F = \int_0^1 F \cdot \gamma' \, du = \int_0^1 F \cdot t \, |\gamma'| \, du = \int_{\gamma} F \cdot t \, ds.$$

Proposition 4.14. Let Φ be a 2-surface in an open set $E \subset \mathbb{R}^3$ of class C^2 with parameter domain $D \subset \mathbb{R}^2$. We may write

$$\int_{\Phi} \omega_F = \int_D F(\Phi(u, v)) \cdot N(u, v) \, du dv$$

$$= \int_D F(\Phi(u, v)) \cdot n(u, v) \, |N(u, v)| \, du dv$$

$$= \int_{\Phi} (F \cdot n) \, dA,$$

where

$$N(u,v) := \left\langle \frac{\partial(y,z)}{\partial(u,v)}, \frac{\partial(z,x)}{\partial(u,v)}, \frac{\partial(x,y)}{\partial(u,v)} \right\rangle.$$

Stoke's original theorem can now be written as

Proposition 4.15. If F is a vector field of class C^2 in an ope set $E \subset \mathbb{R}^3$ and Φ is a 2-surface of class C^2 in E, then

$$\int_{\Phi} (\nabla \times F) \cdot n \, dA = \int_{\partial \Phi} F \cdot t \, ds.$$

The divergence theorem can be written as

Proposition 4.16. If F is a vector field of class C^1 in an open set $E \subset \mathbb{R}^3$ and Ω is a closed subset of E with positively oriented boundary $\partial \Omega$, then

$$\int_{\Omega} \nabla \cdot F \, dV = \int_{\partial \Omega} F \cdot n \, dS.$$

5 Differential Forms Practice Problem

Problem 5.1. Let $\omega = x \, dx + y \, dy + z \, dz$ in \mathbb{R}^3 . Consider the curve $\Gamma = \{x^2 + y^2 + z^2 = 1\} \cap \{x + y + z = 0\}$. Choose the orientation to be counter-clockwise when viewed from the positive x-axis. Compute $\int_{\Gamma} \omega$.

Solution 1: We have for $t \in [0, 2\pi]$ that

$$\begin{cases} x = \frac{1}{\sqrt{2}}\cos t + \frac{1}{\sqrt{6}}\sin t \\ y = -\frac{1}{\sqrt{2}}cost + \frac{1}{\sqrt{6}}\sin t \\ z = -\frac{2}{\sqrt{6}}\sin t \end{cases}$$

Then,

$$\int_{\Gamma} \omega = \int_{0}^{2\pi} x(t)x'(t) + y(t)y'(t) + z(t)z'(t) dt.$$

Solution 2: Observe that $F = \langle x, y, z \rangle = n$, the unit normal vector to S^2 . We may thus use

$$\int_{\Gamma} \omega = \int_{\Gamma} F \cdot t \, \mathrm{d}s = 0,$$

where the last equality follows by observing that t is always tangent to n.

Solution 3: Note that $\nabla \times F = 0$, and so $d\omega = 0$. By Poincaré lemma, ω is exact. Thus

$$\oint_{\Gamma} \omega = 0.$$

Problem 5.2. Let *S* be the unit sphere in \mathbb{R}^3 . Let the orientation be outward. Compute

- (i) $I_1 = \iint_S x \, dy dz + y \, dz dx + z \, dx dy$.
- (ii) $I_2 = \iint_S x^2 \, dy dz + y^2 \, dz dx + z^2 \, dx dy$.

Solution 1: Using spherical coordinates and symmetry, we can write

$$I_1 = 3 \iint_S z \, dx dy$$
, $I_2 = 3 \iint_S z^2 \, dx dy$.

Solution 2:

$$I_1 = \iint_S \omega_F = \iint_S \langle x, y, z \rangle \cdot n \, dS = \iint_S 1 \, dS = 4\pi$$

and, similarly,

$$I_2 = \iint_S x^3 + y^3 + z^3 \, dS = 0,$$

where the last equality follows from symmetry.

Solution 3: Let D be the unit ball. By Gauss / Divergence Theorem, we have

$$I_1 = \iint_S \omega_F = \iiint_D \nabla \cdot F \, dV = \iiint_D 3 \, dV = 3 \cdot \frac{4}{3}\pi = 4\pi.$$

Similarly,

$$I_2 = \iiint_D 2x + 2y + 2z \, dV = 0.$$

The last equality once again follows from symmetry.

Problem 5.3. Let

$$I = \oint_{\Gamma_b} (y^2 - z^2) \, dx + (z^2 - x^2) \, dy + (x^2 - y^2) \, dz,$$

where

$$\Gamma_h = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\} \cap \{x + y + z = h\}, \quad h \in (-1, 1)$$

with counter-clockwise orientation when viewed from the positive z-axis.

Solution 1: Let S_h be the disk in the plane $\{x + y + z = h\}$ enclosed by Γ_h . By Stokes' theorem,

$$\oint_{\Gamma_h} \omega = \oint_{\Gamma_h} F \cdot t \, ds = \iint_{S_h} (\nabla \times F) \cdot n \, dS.$$

We have

$$\nabla \times F = \langle -2y - 2x, -2z - 2x, -2x - 2y \rangle$$

and

$$n = \langle 1, 1, 1 \rangle / \sqrt{3}.$$

Thus

$$(\nabla \times F) \cdot n = -\frac{4}{\sqrt{3}}(x+y+z) = -\frac{4h}{\sqrt{3}}.$$

We finally have

$$I = \iint_{S_h} -\frac{4h}{\sqrt{3}} dS = -\frac{4h}{\sqrt{3}} \iint_{S_h} dS.$$

It remains to find the area of S_h : we have $r_h = \sqrt{1 - d^2} = \sqrt{1 - h^2/3}$, where we get d by $d = |\langle 0, 0, h \rangle \cdot n| = |h|/\sqrt{3}$. Thus $\iint_{S_h} dS = \pi (1 - h^2/3)^2$ and so

$$I = -\frac{4h}{\sqrt{3}}\pi \left(1 - \frac{h^2}{3}\right)^2.$$

6 Lebesgue Theory

6.1 Set Functions

Definition 6.1. A family \mathcal{R} of sets is called a **ring** if $A, B \in \mathcal{R}$ implies

$$A \cup B \in \mathcal{R}, \quad A \setminus B \in \mathcal{R}.$$

If, in addition to \mathcal{R} being a ring, we also have $A_n \in \mathcal{R}$ for $n \in \mathbb{N}$ implies

$$\bigcup_{n=1}^{\infty} A_n \in \mathscr{R},$$

then \mathcal{R} is called a σ -ring.

Remark 6.2.

• Rings are closed under finite intersections:

$$A \cap B = A \setminus (A \setminus B) \in \mathcal{R}.$$

• σ -rings are closed under countable intersections:

$$\bigcap_{n=1}^{\infty} A_n = A_1 \setminus \left(\bigcup_{n=1}^{\infty} (A_1 \setminus A_n)\right).$$

Definition 6.3. We say ϕ is a **set function** on \mathcal{R} if ϕ assigns to every $A \in \mathcal{R}$ a number $\phi(A)$ of the extended real number system.

• We say ϕ is **additive** if $A \cap B = \emptyset$ implies

$$\phi(A \cup B) = \phi(A) + \phi(B).$$

• We say ϕ is **countably additive** if $A_i \cap A_j = \emptyset$ for $i \neq j$ implies

$$\phi\left(\bigcup_{n=1}^{\infty}A_n\right)=\sum_{n=1}^{\infty}\phi(A_n).$$

Remark 6.4. Note that since $\phi(\bigcup_{n=1}^{\infty} A_n)$ is independent of the order in which the A_n 's are arranged, $\sum_{n=1}^{\infty} \phi(A_n)$ converges absolutely if it converges at all.

Proposition 6.5. *If* ϕ *is additive, then*

- (i) If we assume that the range of ϕ is not only $+\infty$ or $-\infty$, then $\phi(\emptyset) = 0$.
- (ii) ϕ is finitely additive.
- (iii) $\phi(A_1 \cup A_2) + \phi(A_1 \cap A_2) = \phi(A_1) + \phi(A_2)$.
- (iv) If $\phi(A) \ge 0$ for all A and $A_1 \subset A_2$, then $\phi(A_1) \le \phi(A_2)$.
- (v) If $B \subset A$ and $|\phi(B)| < +\infty$, then $\phi(A \setminus B) = \phi(A) \phi(B)$.

Proof.

(i) Note that

$$\phi(A \sqcup \emptyset) = \phi(A) + \phi(\emptyset).$$

- (ii) Induction.
- (iii) Write

$$A \sqcup B = (A \setminus B) \sqcup (B \setminus A) \sqcup (A \cap B),$$

$$A = (A \setminus B) \sqcup (A \cap B)$$

$$B = (B \setminus A) \sqcup (A \cap B).$$

(iv) Note that

$$A_2 = A_1 \sqcup (A_2 \setminus A_1)$$

(v) Note that

$$A = B \sqcup (A \setminus B).$$

Definition 6.6. Let ϕ be a set function on a ring \mathcal{R} . Suppose $A_1 \subset A_2 \subset \ldots$ and $A := \bigcup A_n \in \mathcal{R}$. We say ϕ is **lower continuous** if $\lim_{n \to \infty} \phi(A_n) = \phi(A)$.

Proposition 6.7. *If* ϕ *is countably additive, then it is lower continuous.*

Proof. Set $B_1 := A_1$ and $B_n := A_n \setminus A_{n-1}$. Note that B_n is pairwise disjoint and $A = \bigcup B_n$. Thus,

$$\phi(A) = \sum_{i=1}^{\infty} \phi(B_i) = \lim_{n \to \infty} \sum_{i=1}^{n} \phi(B_i).$$

6.2 Construction of the Lebesgue Measure

Definition 6.8. Let \mathbb{R}^p denote the *p*-dimensional Euclidean space.

• By an **interval** in \mathbb{R}^p we mean the set of points x such that

$$a_i \le x_i \le b_i$$
, $1 \le i \le p$,

or the set of points characterized by the display above with some of the inequalities being strict.

• If I is an interval, we define

$$m(I) := \prod (b_i - a_i).$$

If $A \in \mathcal{E}$, and $A = \bigsqcup_{i=1}^n A_i$ where each A_i is an interval, then

$$m(A) := \sum_{i=1}^n m(A_i).$$

• An **elementary set** A is the union of a finite number of intervals. The family of all elementary subsets of \mathbb{R}^p is denoted \mathscr{E} .

Proposition 6.9.

- \mathscr{E} is a ring but not a σ -ring (consider, e.g., \mathbb{N}^p).
- Any $A \in \mathcal{E}$ can be written as the union of finitely many disjoint intervals.
- m is well defined on E.
- m is additive on \mathcal{E} .

Our goal now is to extend m on \mathscr{E} to a σ -ring.

Definition 6.10 (Regular). A nonnegative additive set function ϕ defined on $\mathscr E$ is said to be **regular** if the following is true: To every $A \in \mathscr E$ and to every $\epsilon > 0$ there exist sets $F \in \mathscr E$ and $G \in \mathscr E$ such that F is closed, G is open, $F \subset A \subset G$, and

$$\phi(G) - \epsilon \leq \phi(A) \leq \phi(F) + \epsilon.$$

Example 6.11.

- m is regular on \mathscr{E} .
- Let α be a monotonically increasing function on \mathbb{R} . Put

$$\mu([a,b)) = \alpha(b-) - \alpha(a-)$$

$$\mu([a,b]) = \alpha(b+) - \alpha(a-)$$

$$\mu((a,b]) = \alpha(b+) - \alpha(a+)$$

$$\mu((a,b)) = \alpha(b-) - \alpha(a+)$$

Note that m is the special case of setting $\alpha(x) = x$. We have μ is regular on $\mathscr E$ for the same reason.

We next show that every regular set function on $\mathscr E$ can be extended to a countably additive set function on a σ -ring containing $\mathscr E$.

Definition 6.12. Let μ m be additive, regular, nonnegative, and finite on \mathscr{E} . Consider countable covering s of any set $E \subset \mathbb{R}^p$ by open elementary sets A_n :

$$E\subset\bigcup_{n=1}^{\infty}A_n.$$

Define for any $E \subset \mathbb{R}^p$,

$$\mu^*(E) := \inf \sum_{n=1}^{\infty} \mu(A_n),$$

where the inf is taken over all countable coverings of E by open elementary sets. μ^* is called the **outer measure** of E, corresponding to μ .

Proposition 6.13 (Properties of the Outer Measure).

- (i) $\mu^* \ge 0$ and $\mu^*(E_1) \le \mu^*(E_2)$ if $E_1 \subset E_2$.
- (ii) μ^* is an extension of μ from \mathscr{E} to $\mathcal{P}(\mathbb{R}^n)$. That is, for any $A \in \mathscr{E}$, $\mu^*(A) = \mu(A)$.
- (iii) μ^* is countably subadditive: If $E = \bigcup_{n=1}^{\infty} E_n$, then

$$\mu^*(E) \leq \sum_{n=1}^{\infty} \mu^*(E_n).$$

Proof. (i) Immediate.

(ii) Fix $A \in \mathcal{E}$ and $\epsilon > 0$. Find $A \subset G$ open such that

$$\mu(G) \le \mu(A) + \epsilon$$
.

Since $\mu^*(A) \le \mu(G)$ and since ϵ was arbitrary, we have $\mu^*(A) \le \mu(A)$.

We next prove the reverse inequality. By the definition of μ^* , there exists a sequence $\{A_n\}$ of open elementary sets whose union contains A such that $\sum \mu(A_n) \leq \mu^*(A) + \epsilon$. The regularity of μ shows that A contains a closed elementary set F such that $\mu(F) \geq \mu(A) - \epsilon$. Since F is compact, we have $F \subset A_1 \cup \cdots \cup A_N$ for some N. Then,

$$\mu(A) \le \mu(F) + \epsilon \le \mu(A_1 \cup \dots \cup A_N) + \epsilon$$
$$\le \sum_{n=1}^N \mu(A_n) + \epsilon \le \mu^*(A) + 2\epsilon.$$

By sending ϵ to 0 we have $\mu(A) \leq \mu^*(A)$.

(iii) Suppose $E = \bigcup E_n$ with $\mu^*(E) < +\infty$ for each n. Given $\epsilon > 0$, there are coverings $\{A_{nk}\}, k = 1, 2, ...$ of E_n by open elementary sets such that

$$\sum_{k=1}^{\infty} \mu(A_{nk}) \le \mu^*(E_n) + 2^{-n}\epsilon.$$

Then,

$$\mu^*(A) \leq \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \mu(A_{nk}) \leq \sum_{n=1}^{\infty} \mu^*(E_n) + \epsilon.$$

Our goal now is to find some family of sets \mathfrak{M} such that $\mu^*|_{\mathfrak{M}}$ is countably additive.

Definition 6.14. For any $A, B \subset \mathbb{R}^p$, we define

$$S(A, B) := (A \setminus B) \cup (B \setminus A)$$
$$d(A, B) := \mu^*(S(A, B)).$$

• We write $A_n \to A$ if $d(A_n, A) \to 0$, and in such case, we say A is **finitely** μ -measurable and write $A \in \mathfrak{M}_F(\mu)$.

• If A is the union of a countable collection of finitely μ -measurable sets, we say A is μ -measurable and write $A \in \mathfrak{M}(\mu)$.

Remark 6.15. Note that d is nonnegative, symmetric, and satisfies the triangle inequality. However, it is not positive definite and as such does not define a metric.

Example 6.16. Let $A = \emptyset$ and B be countable. We have d(A, B) = 0.

We may, however, quotient \mathbb{R}^p by the equivalence relation $A \sim B$ if d(A, B) = 0. In this quotient space, d define a metric.

Remark 6.17.

- $\mathfrak{M}_F(\mu)$ is obtained as the closure of \mathscr{E} , $\mathfrak{M}_F(\mu) := \overline{\mathscr{E}}$ is a ring.
- $\mathfrak{M} := \sigma(\mathfrak{M}_F) = \sigma(\overline{\mathscr{E}})$ is a σ -ring.

Theorem 6.18. $\mathfrak{M}(\mu)$ is a σ -ring, and μ^* is countably additive on $\mathfrak{M}(\mu)$.

Example 6.19. When $\mu = m$, we have μ is the Lebesgue measure. Remark 6.20.

- (i) If A is open, then $A \in \mathfrak{M}(\mu)$ for any μ , since every open sets in \mathbb{R}^p is the union of a countable collection of open intervals. By taking complements, we see that $\mathfrak{M}(\mu)$ contains also all closed sets.
- (ii) We say E is a **Borel** set if E can be obtained by a countable number of operations starting from open sets, each operation being either a union, intersection, or complement. The Borel σ -ring is denoted \mathscr{B} . Note that \mathscr{B} is the smallest σ -ring containing all open sets and so by (i), $\mathscr{B} \subset \mathfrak{M}$.
- (iii) μ is regular on \mathfrak{M} . For any $A \in \mathfrak{M}(\mu)$ and $\epsilon > 0$, there exists F closed and G open such that

$$F \subset A \subset G$$
, $\mu(G \setminus A) < \epsilon$, $\mu(A \setminus F) < \epsilon$.

The first inequality holds since μ^* was defined by coverings of open sets. The second inequality holds by taking complements.

(iv) If $A \in \mathfrak{M}(\mu)$, there exists $F, G \in \mathcal{B}$, $F \subset A \subset B$, such that

$$\mu(G \setminus A) = \mu(A \setminus F) = 0.$$

This follows from (iii) by sending $\epsilon := 1/n \to 0$. Thus any $A \in \mathfrak{M}(\mu)$ is the union of a Borel set and a set of measure zero.

6.3 Measure Space

Definition 6.21. Suppose X is a set. We say X is a **measure space** if there exists a σ -ring $\mathfrak M$ of subsets of X (called measurable sets) and a nonnegative countably additive set function μ (called a measure) defined on $\mathfrak M$. If, in addition, $X \in \mathfrak M$, then X is said to be a **measurable space** and $\mathfrak M$ is called a σ -field.

Example 6.22.

- (i) $X = \mathbb{R}^p$, $\mathfrak{M} = \mathfrak{M}(m)$, $\mu = m$ is called the Lebesgue measure.
- (ii) $X \simeq \mathbb{N}$, $\mathfrak{M} = \mathcal{P}(\mathbb{N})$, $\mu(A) = |A|$ is called the counting measure.
- (iii) Probability theory: \mathfrak{M} is the set of all events, $\mu = \mathbb{P}$ is the probability of an event, $\mathbb{P}(E) = 1$, and $0 \leq \mathbb{P}(A) \leq 1$ for each $A \in \mathfrak{M}$.

6.4 Measurable Function

Let *X* denote a measurable space throughout this chapter.

Definition 6.23. A function $f: X \to \overline{\mathbb{R}}$ is called **measurable** if

$$f^{-1}\left((a,+\infty]\right)\coloneqq\{x|f(x)>a\}$$

is measurable for each $a \in \mathbb{R}$.

Example 6.24. $X = \mathbb{R}^p$ and $\mathfrak{M} = \mathfrak{M}(m)$. If f is continuous, then f is measurable.

Proposition 6.25. We can replace " $f^{-1}(a, +\infty]$ " with any of the following:

(i)
$$f^{-1}[a, +\infty]$$
,

(ii)
$$f^{-1}[-\infty, a)$$
,

(iii)
$$f^{-1}[-\infty, a]$$
.

Proof. (i) We have if each $f^{-1}(a, +\infty)$ is measurable that

$$f^{-1}[a, +\infty] = \bigcup_{n=1}^{\infty} f^{-1}\left(a - \frac{1}{n}, +\infty\right] \in \mathfrak{M}.$$

Similarly, assuming each $f^{-1}[a, +\infty]$ is measurable,

$$f^{-1}(a, +\infty] = \bigcup_{n=1}^{\infty} f^{-1}\left[a + \frac{1}{n}, +\infty\right] \in \mathfrak{M}.$$

(ii), (iii)
$$f^{-1}[-\infty, a) = X \setminus f^{-1}[a, +\infty]$$

and so on.

Theorem 6.26. If f is measurable, then |f| is measurable.

Proof. We have

$$|f|^{-1}[-\infty, a) = f^{-1}[-\infty, a) \bigcap f^{-1}(-a, +\infty] \in \mathfrak{M}.$$

Theorem 6.27. Let $\{f_n\}$ be a sequence of measurable functions. Then $\sup f_n$, $\inf f_n$, $\lim \sup f_n$, and $\lim \inf f_n$ are measurable.

Proof. For any a,

$${x : \sup f_n(x) > a} = \bigcup {x : f_n(x) > a}.$$

The same proof works for inf. For lim sup, note that

$$\limsup f_n = \inf_m (\sup_{n \ge m} f_n).$$

Alternatively, note that

$$\{\limsup f_n > a\} = \bigcap_{m=1}^{\infty} \bigcup_{n=m}^{\infty} \{f_n > a\}.$$

The lim inf case is of course similar.

Corollary 6.28.

(i) If f and g are measurable, then $\min(f,g)$ and $\max(f,g)$ are measurable. In particular,

$$f^+ := \max(f, 0), \quad f^- := -\min(f, 0) = \max(-f, 0)$$

are measurable.

(ii) If a sequence of measurable functions f_n converges pointwise to f, then f is measurable.

Theorem 6.29. Let $f, g: X \to \mathbb{R}$ be measurable and $F: \mathbb{R}^2 \to \overline{\mathbb{R}}$ be continuous. Then,

$$h(x) \coloneqq F(f(x), g(x))$$

is measurable. In particular, f + g, f - g, fg, and f/g are measurable.

Proof. Let

$$G_a := F^{-1}(a, +\infty).$$

Then G_a is open and we can write

$$G_a = \bigcup I_n$$

where I_n is a sequence of open intervals in \mathbb{R}^2 . For each $I_n = (a_n, b_n) \times (c_n, d_n)$, we have

$$\{x: (f(x),g(x)) \in I_n\} = \{x: a_n < f(x) < b_n\} \cap \{x: c_n < f(x) < d_n\}$$

is measurable. Hence the same is true of $\{x: F(x) > a\} = \{x: (f(x), g(x)) \in G_a\}$.

Remark 6.30. Measurability of a function does not depend on the measure, but the σ -ring.

Definition 6.31. If $f^{-1}(a, +\infty)$ is always a Borel set, then f is said to be **Borel-measurable**.

6.5 Simple Functions

Definition 6.32. Let s be a real-valued function defined on X. If the range of s is finite, we say s is a **simple function**.

Definition 6.33. Let $E \subset X$ and put

$$K_E(x) := \begin{cases} 1, & x \in E \\ 0, & x \notin E \end{cases}.$$

Then, K_E is called the **characteristic function** of E.

Remark 6.34. Every simple function can be written as a finite linear combination of characteristic functions.

Every function can be approximated by simple functions:

Theorem 6.35. Let $f: X \to \mathbb{R}$. Then there exists a sequence $\{s_n\}$ of simple functions such that $s_n \to f$ pointwise.

- (i) If f is measurable, then $\{s_n\}$ can be chosen to be measurable.
- (ii) If f is nonnegative, then $\{s_n\}$ can be chosen to be monotonically increasing.
- (iii) If f is bounded, the convergence is uniform.

Proof. For $f \ge 0$, define

$$E_{ni} := \left\{ x : \frac{i-1}{2^n} \le f(x) \le \frac{i}{2^n} \right\}, \quad F_n = \{x : f(x) \ge n\}$$

and put

$$s_n(x) = \sum_{i=1}^{n2^n} \frac{i-1}{2^n} \mathbb{1}_{E_{ni}}(x) + n \mathbb{1}_{F_n}(x).$$

For each x, if $f(x) = \infty$, then $s_n(x) = n$ for each n. If $f(x) < \infty$, then there exists N such that $|f(x)| \le N$. Then, for $n \ge N$,

$$|s_n(x) - f(x)| \le \frac{1}{2^n} \longrightarrow 0.$$

For the general case, write $f = f^+ - f^-$.

6.6 Integration

Definition 6.36. Let (X, \mathfrak{M}, μ) be a measurable space. Let $E \in \mathfrak{M}$.

(i) For a nonnegative measurable simple function $s = \sum c_i \mathbb{1}_{E_i}$ with each $c_i \ge 0$, we define

 $I_E(s) := \sum c_i \mu(E \cap E_i).$

(ii) If f is measurable and nonnegative, we define

$$\int_E f \, \mathrm{d}\mu \coloneqq \sup I_E(s),$$

where the sup is taken over all measurable simple functions f such that $0 \le s \le f$.

(iii) For a general measurable function f, we define

$$\int_E f \, \mathrm{d} \mu \coloneqq \int_E f^+ \, \mathrm{d} \mu - \int_E f^- \, \mathrm{d} \mu,$$

provided at least of the two terms is finite. If both terms are finite, we say f is **integrable** and write $f \in \mathcal{L}(\mu)$ on E. In this case, we define

$$\int_E |f| \,\mathrm{d}\mu \coloneqq \int_E f^+ \,\mathrm{d}\mu + \int_E f^- \,\mathrm{d}\mu < \infty.$$

Note that $\int f d\mu \leq \int |f| d\mu$.

Proposition 6.37.

(1) It is easy to verify that

$$\int_E s \, \mathrm{d}\mu = I_E(s).$$

- (2) If f is bounded on E, $\mu(\mu) < \infty$, then $f \in \mathcal{L}(E)$.
- (3) If $a \le f(x) \le b$, $\mu(E) < \infty$, then

$$a\mu(E) \le \int_E f \, \mathrm{d}\mu \le b\mu(E).$$

(4) If $f, g \in \mathcal{L}(\mu)$, $f \leq g$ on E, then

$$\int_{E} f \, \mathrm{d}\mu \le \int_{E} g \, \mathrm{d}\mu.$$

- (5) If $\mu(E) = 0$, then $\int_{E} f \, d\mu = 0$.
- (6) If $f \in \mathcal{L}(\mu)$ on E, then $f \in \mathcal{L}(\mu)$ on $A \subset E$ for any $A \subset E$.
- (7) If $E = \bigcup_{n=1}^{\infty} E_n$ with E_n pairwise disjoint, then if either (1) f is nonnegative and measurable, or (2) $f \in \mathcal{L}(\mu)$, then

$$\int_{E} f \, \mathrm{d}\mu = \sum_{n=1}^{\infty} \int_{E_{n}} f \, \mathrm{d}\mu.$$

Thus the function $\phi(E) := \int_E f \, d\mu$ is countably additive on \mathfrak{M} .

(8) If $B \subset A$ and $\mu(B \setminus A) = 0$, then

$$\int_A f \, \mathrm{d}\mu = \int_B f \, \mathrm{d}\mu.$$

- (9) Thus, if $\mu(S(A, B)) = 0$, then $\int_A f d\mu = \int_B f d\mu$.
- (10) If $|f| \le g$ are on E and $g \in \mathcal{L}(\mu)$ on E, then $f \in \mathcal{L}(\mu)$ on E.

Definition 6.38. We write $f \sim g$ if the set $\{x : f(x) \neq g(x)\} \cap E$ has measure zero and say f = g almost everywhere (ae) on E.

Remark 6.39.

- \sim as defined above is an equivalence relation.
- If $f \sim g$ on E we have

$$\int_A f \, \mathrm{d}\mu = \int_A g \, \mathrm{d}\mu$$

provided the integrals exist, for every measurable subset A of E.

6.7 Convergence Theorems

Theorem 6.40 (Monotone Convergence Theorem). Suppose $E \in \mathfrak{M}$. Let $\{f_n\}$ be a sequence of measurable functions such that

$$0 \le f_1(x) \le f_2(x) \le \dots$$

and let f be the pointwise limit of f_n . Then,

$$\int_E f_n \, \mathrm{d}\mu \longrightarrow \int_E f \, \mathrm{d}\mu.$$

Proof. Note first that $\int_E f_n \, \mathrm{d}\mu$ is increasing and so converges to some limit $\alpha \in [0,+\infty]$. Since $\int f_n \leq \int f$ for each n, we have $\alpha \leq \int f$. It remains to establish the reverse inequality. To that end choose $c \in (0,1)$ and let s be a simple function such that $0 \leq s \leq f$. Put $E_n \coloneqq \{x | f_n(x) \geq cs(x)\}$ for each n. Note that we have $E_1 \subset E_2 \subset \ldots$ and $E = \cup E_n$. For each n, then,

$$\int_{E} f_n \, \mathrm{d}\mu \ge \int_{E_n} f_n \, \mathrm{d}\mu \ge c \int_{E_n} s \, \mathrm{d}\mu$$

By countable additivity and lower continuity (which is a consequence of countable additivity) of $A \mapsto \int_A g$, we have

$$\int_{E_n} s \, \mathrm{d}\mu \longrightarrow \int_E s \, \mathrm{d}\mu.$$

We thus have $\alpha \ge c \int_E s \, d\mu$. Sending $c \to 1$, this gives $\alpha \ge \int_E s \, d\mu$. Taking sup over all simple functions s such that $0 \le s \le f$, we have

$$\alpha \ge \int_E f \, \mathrm{d}\mu.$$

Corollary 6.41. *Let* $\{f_n\} \ge 0$. *We have*

$$\int \sum_{n=1}^{\infty} f_n d\mu = \sum_{n=1}^{\infty} \int_E f_n d\mu.$$

Theorem 6.42 (Linearity).

$$\int_{E} \sum_{i=1}^{n} c_{i} f_{i} = \sum_{i=1}^{n} c_{i} \int_{E} f_{i}.$$

Proof (*Idea*). For any f, there exists simple functions $\{\phi_n\}$ such that $0 \le \phi_n \uparrow f$. Use linearity for simple functions and the decomposition $f = f^+ - f^-$.

Theorem 6.43 (Fatou's Theorem). Let $\{f_n\} \ge 0$. Then

$$\int \liminf f_n \le \liminf \int f_n.$$

Proof. Define $g_n := \liminf_{1 \le i \le n} f_n$ and observe that $g_n \uparrow \liminf f_n =: g$. From each $g_n \le f_n$ we have $\int g_n \le \int f_n$. Taking \liminf on both sides we have (using the monotone convergence theorem)

$$\underbrace{\lim \int g_n = \int \lim g_n = \int \liminf f_n}_{\text{MCT}} \leq \liminf \int f_n.$$

Theorem 6.44 (Dominated Convergence Theorem). Let $\{f_n\}$ be such that

- $|f_n| \le g$ for some $g \in \mathcal{L}(\mu)$ on E, and
- $f_n \to f$ pointwise ae on E.

Then, $f \in \mathcal{L}(\mu)$ and

$$\lim_{n\to\infty} \int_E f_n \, \mathrm{d}\mu = \int_E \lim_{n\to\infty} f_n \, \mathrm{d}\mu.$$

Proof. Note first that $|f| \le g$. Also, since $g \in \mathcal{L}(\mu)$, we know

$$f_n \in \mathcal{L}(\mu), \quad f \in \mathcal{L}(\mu).$$

Note in particular that we have $g + f_n \ge 0$. Fatou's Lemma gives

$$\int g + f = \int \liminf(g + f_n) \le \liminf \int (g + f_n) = \int g + \lim f_n.$$

Since $g \in \mathcal{L}$, we have $|\int g| < \infty$ and thus

$$\int f \le \liminf \int f_n.$$

We may similarly apply Fatou's lemma to $g - f_n$ to get

$$\int g - f = \int \liminf(g - f_n) \le \int g + \liminf - \int f_n \le \int g - \limsup \int f_n$$
 and thus
$$- \int f \le -\limsup \int f_n.$$

Corollary 6.45. Suppose $\mu(E) < \infty$, $\{f_n\}$ is uniformly bounded on E, and $f_n \to f$ as on E. Then, $f \in \mathcal{L}(\mu)$ on E and $\lim_{n \to \infty} \int f_n = \int \lim_{n \to \infty} f_n = \int f$.

6.8 Comparison of Riemann and Lebesgue Integrals

Proposition 6.46.

(i) If $f \in \mathcal{R}[a,b]$, then $f \in \mathcal{L}[a,b]$ and

$$\int_{a}^{b} f(x) dx = \mathcal{R} \int_{a}^{b} f(x) dx.$$
Riemann Integral

However, $\mathcal{R}[a,b] \subsetneq \mathcal{L}[a,b]$.

(ii) A function f is Riemann integrable if and only if it is continuous as on the relevant interval. The converse is however not true. For example, consider the Dirichlet function $D := \mathbb{1}(\mathbb{Q})|_{[0,1]}$.

Remark 6.47.

• (i) holds for bounded intervals. For an unbounded integral $[a, +\infty)$, $f \in \mathcal{R}[a, +\infty]$ does not imply $f \in \mathcal{L}[a, +\infty]$, unless |f| is also Reimann integrable. For an example, consider $f = \sin(x)/x$. Then

$$\mathscr{R} \int_0^{+\infty} \frac{\sin x}{x} \, \mathrm{d}x = \frac{\pi}{2}.$$

However,

$$\int_0^{+\infty} \left| \frac{\sin x}{x} \right| \, \mathrm{d}x = +\infty.$$

This is the reason why some call the Lebesgue integral the absolute convergent integral.

Proof.

(i) Let f be Riemann integrable. There exists a sequence of partitions P_k such that

$$\lim_{k\to\infty} L(P_k, f) = \mathcal{R} \underbrace{\int}_a^b f \, \mathrm{d}x, \quad \lim_{k\to\infty} U(P_k, f) = \mathcal{R} \overline{\int}_a^b f \, \mathrm{d}x.$$

Define $L_k(x) := m_i^k$ and $U_k(x) := M_i^k$. Then

$$L(P_k, f) = \int L_k \, dx, \quad U(P_k, f) = \int U_k \, dx,$$

$$L_1 \le L_2 \le \dots \le f \le \dots \le U_2 \le U_1.$$

Thus there exists $L := \lim L_k$ and $U := \lim U_k$. Observe that L and U are bounded measurable functions on [a, b] and

$$L \le f \le U$$

$$\int L \, dx = \mathcal{R} \int f, \quad \int U \, dx = \mathcal{R} \overline{\int} f$$

by the monotone convergence theorem. To complete, note that $f\in \mathscr{R}$ if and only if

$$\int L = \int U,$$

which happens if and only if L = U ae, which which case L = f = U ae.

(ii) If x belongs to no P_k , it is easy to see that U(x) = L(x) if and only if f is continuous at x. Since the union of the sets P_k is countable, its measure is 0, and we conclude that f is continuous as on [a, b] if and only if L = U as, and by the precious result, if and only if $f \in \mathcal{R}$.

Proposition 6.48. Let $F(x) := \int_a^x f \, dt$, where $f \in \mathcal{L}$.

- (i) If $f \in \mathcal{R}[a, b]$, then $F \in C[a, b]$.
- (ii) If $f \in C[a, b]$, then $F \in C'[a, b]$ and F' = f.

Proposition 6.49. Let $F(x) := \int_a^x f \, dt$, where $f \in \mathcal{L}$.

- (i) F'(x) = f(x) ae on [a, b].
- (ii) If F is differentiable at every point of [a, b] and if $F' \in \mathcal{L}$, then

$$F(b) - F(a) = \int_a^b F'(t).$$

In this case, F is absolutely continuous on [a, b]. This is stronger even than uniform continuity of f.

6.9 Integration of Complex Functions

Let $f: X \to \mathbb{C}$ and write f = u + iv, where u, v are real functions.

Definition 6.50. We say f is **measurable** if both u and v are measurable. Equivalently, f is measurable if and only if $f^{-1}(V)$ is measurable for open subset $V \subset \mathbb{C}$.

Definition 6.51. We say f is **integrable** if $|f| \in \mathcal{L}(\mu)$, that is, if $\int |f| d\mu < \infty$. In this case we define

$$\int_{E} f \, \mathrm{d}\mu \coloneqq \int_{E} u \, \mathrm{d}\mu + \mathrm{i} \int_{E} v \, \mathrm{d}\mu.$$

6.10 Functions of Class \mathcal{L}^2

Definition 6.52.

$$\mathscr{L}^2 := \left\{ f : \int |f|^2 \, \mathrm{d}\mu < \infty \right\}.$$

We define on \mathcal{L}^2 the norm

$$||f||_2 := \left(\int |f|^2 d\mu\right)^{1/2} \equiv \sqrt{\langle f, f \rangle}$$

and the inner product

$$\langle f, g \rangle \coloneqq \int f \overline{g} \, \mathrm{d}\mu.$$

Remark 6.53. As an inner product, $\langle \cdot, \cdot \rangle$ satisfies

• $\langle f, f \rangle \ge 0$ with equality if and only if f = 0.

•
$$\langle f, g \rangle = \overline{\langle g, f \rangle}$$
.

• Conjugate bilinearity:

$$\langle af_1 + bf_2, g \rangle = a \langle f_1, g \rangle + b \langle f_2, g \rangle, \quad \langle f, cg_1 + dg_2 \rangle = \overline{c} \langle f, g_1 \rangle + \overline{d} \langle f, g_2 \rangle.$$

Remark 6.54. \mathcal{L}^p is complete. In particular, \mathcal{L}^2 is a Hilbert space and \mathcal{L}^p is a Banach space.

Proposition 6.55 (Cauchy Schwarz). Let $f, g \in \mathcal{L}^2$. We have

$$|\langle f, g \rangle| \le ||f||_2 ||g||_2.$$

Proof. Note that by the positive definiteness of the inner product,

$$\langle f + \lambda g, f + \lambda g \rangle \ge 0.$$

Let $\lambda = -\langle f, g \rangle / ||g||$ (this the length of the projection of f on g) and we get the desired result by expanding the inequality above.

This can be generalized to the Holder inequality:

Proposition 6.56 (Holder Inequality). If 1/p + 1/q = 1, then

$$||fg||_1 \le ||f||_p ||g||_q$$
.

Proposition 6.57. $||f||_2 := \sqrt{\langle f, f \rangle}$ is a **norm**. That is,

- $||f|| \ge 0$ and ||f|| = 0 if and only if f = 0 ae.
- ||cf|| = |c|||f||.
- $||f + g|| \le ||f|| + ||g||$.

Proof. The first two statements are obvious. We prove the third: Note that

$$||f + g||^2 = \langle f + g, f + g \rangle = ||f||^2 + ||g||^2 + 2\langle f, g \rangle$$

$$\leq ||f||^2 + ||g||^2 + 2||f||||g||$$

$$= (||f|| + ||g||)^2.$$

Definition 6.58. $||f||_{\infty} := \sup_{x} |f(x)|$.

Proposition 6.59 (Minkowski Inequality). For $1 \le p \le \infty$ we have

$$||f + g||_p \le ||f||_p + ||g||_p.$$

Theorem 6.60. C[a,b] is dense in $\mathcal{L}^2[a,b]$. That is, for any $f \in \mathcal{L}^2[a,b]$ and $\epsilon > 0$, there exists a continuous function g such that $||f - g||_2 < \epsilon$.

Proof (*Idea*). Let $A \subset [a, b]$ be closed. For χ_A we can define

$$d(x; A) := \inf_{y \in A} |x - y|.$$

The function

$$g_n(x) \coloneqq \frac{1}{1 + nd(x; A)}$$

is continuous, identically 1 on A and converges to 0 on $[a, b] \setminus A$. By the dominated convergence theorem, we have

$$||g_n - \chi_A|| \longrightarrow 0.$$

By regularity we can extend the conclusion to χ_E for arbitrary measurable sets, simple functions, and then arbitrary \mathcal{L}^2 functions by approximation.

Definition 6.61. Let *H* be an inner product space.

- We say f and g are **orthogonal** $(f \perp g)$ if $\langle f, g \rangle = 0$.
- We say $S = \{\phi_n\} \subset H$ is a **orthogonal set** if $\phi_n \perp \phi_m$ for any $n \neq m$. If, in addition, $\langle \phi_n, \phi_n \rangle = 1$, then we say S is an **orthonormal set**.
- An orthonormal set S is said to be **complete** if $S^{\perp} = \{0\}$, that is, if $f \perp \phi_n$ for each n implies f = 0.
- An orthonormal set S is said to be closed (and form an orthonormal basis of H) if for each f ∈ H we have

$$f=\sum c_n\phi_n.$$

Note that in this case, $\langle f, \phi_m \rangle = c_m$. We may thus write

$$f = \sum \langle f, \phi_n \rangle \phi_n.$$

The coefficients c_n are called **Fourier coefficients** and the summation is called a **Fourier series** (or Fourier expansion).

Definition 6.62. A **Hilbert space** is a complete inner product space. That is, an inner product space H is said to be complete if each Cauchy sequence (with respect to the inner product induced metric) is convergent with a limit in H.

Proposition 6.63. All \mathcal{L}^p spaces are complete normed spaces (**Banach spaces**).

Theorem 6.64. Let H be a Hilbert space and let $S \subset H$ be an orthonormal set. The following are equivalent:

- (i) S is closed (so S is an orthonormal basis).
- (ii) S is complete $(S^{\perp} = 0)$.
- (iii) Parseval identity:

$$||f||_2^2 = \sum \langle f, \phi_n \rangle^2 = \sum c_i^2 =: ||(c_n)||_{\ell^2}^2.$$

Thus, Fourier transformations $(f \mapsto \langle f, \phi_n \rangle)$ are isometries between \mathcal{L}^2 and ℓ^2 .

7 Power Series

Definition 7.1. A **power series** is a function of the form $f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$ defined on the real line, and where $a_n \in \mathbb{R}$. These are called **analytic functions**.

Example 7.2.

- (i) $\sum_{n=0}^{\infty} n^n x^n$ converges if and only if x = 0.
- (ii) $\sum x^n$ converges on (-1, 1).
- (iii) $\sum x^n/n$ converges on [-1, 1) and diverges at x = 1.
- (iv) $\sum x^n/n^2$ converges on [-1, 1].
- (v) $\sum x^n/n!$ converges everywhere. To see this, write $c_n := x^n/n!$ and note that

$$\frac{|c_{n+1}|}{|c_n|} = \frac{|x|}{n+1} \longrightarrow 0$$

Theorem 7.3. If the power series $\sum a_n x^n$ converges at $x_0 \in \mathbb{R}$ and $x_0 \neq 0$, then this series converges on $(-|x_0|, |x_0|)$. Moreover, it converges uniformly on any closed interval $[a, b] \subset (-|x_0|, |x_0|)$.

Proof. Take $\delta \in (0, 1)$ such that $[a, b] \subset (-\delta |x_0|, \delta |x_0|)$. Since $\sum a_n x_0^n$ converges, we have $|a_n x_0^n|$ converges to 0. There thus exists M such that $|a_n x_0^n| \leq M$ for each n. Then,

$$|a_n x^n| = \left| a_n x_0^n \cdot \frac{x_n}{x_0^n} \right| \le M \delta^n \longrightarrow 0.$$

By the Weierstrass M-test, we have the series converges uniformly on [a, b]. \Box

Corollary 7.4. The series $\sum a_n x^n$ converges at $x_0 \neq 0$ and diverges at $x_1 \neq 0$, then there exists R, $|x_0| \leq R \leq |x_1|$, such that the series converges on (-R, R) and diverges if |x| > R. (The behavior cannot be determined at the endpoints.)

Definition 7.5. The **radius of convergence** of a power series $\sum a_n x^n$ is defined as

$$R := \sup \{|x| : \sum a_n x^n \text{ converges}\}.$$

R is well-defined by the theorem above.

Theorem 7.6. For the power series $\sum a_n x^n$. Let $\rho := \limsup \sqrt[n]{|a_n|}$. Then we have $R = 1/\rho$ (if $\rho = 0$, then $R = \infty$; if $\rho = \infty$, then R = 0).

The same conclusion holds if we define $\rho := \lim |a_{n+1}|/|a_n|$.

Proof. For the first definition of ρ , use the root test. For the second, use the ratio test.

Remark 7.7. We can analogously define the radius of convergence for the series $\sum a_n(x-x_0)^n$. The results above remain valid.

Example 7.8. Find the radius and interval of convergence for $\sum n! x^{n^n}$. Recalling that $\lim x^{1/x} = \lim \exp(\log x/x) = 1$ (the last equality follows from L'Hopital's rule), we have

$$1 \le (n!)^{\frac{1}{n^n}} \le (n^n)^{\frac{1}{n^n}} \longrightarrow 1.$$

Thus

$$\limsup \sqrt[n]{|a_n|} = \limsup (n!)^{\frac{1}{n^n}} = 1.$$

We thus have R = 1. When $x = \pm 1$, it is obvious that the series diverges. Thus the interval of convergence is (-1, 1).

Example 7.9. Find the radius and interval of convergence for

$$\sum \frac{\log(n+1)}{n^2} (x-3)^n.$$

We have

$$\frac{|a_{n+1}|}{|a_n|} = \frac{\log(n+2)}{\log(n+1)} \cdot \frac{(n+1)^2}{n^2} \longrightarrow 1.$$

Thus R = 1. When $x = 3 \pm 1$, we have

$$\left|\frac{\log(n+1)}{n^2}\right| \le \frac{\log(n+1)}{n^2} \le \frac{1}{n^{2-\delta}}.$$

And so the series converges by the comparison test at both endpoints. The interval of convergence is [2, 4].

Theorem 7.10 (Abel). Let $\sum a_n x^n$ be a power series with radius of convergence R. Then,

- (i) $\sum a_n x^n$ converges uniformly on any $[a,b] \subset (-R,R)$.
- (ii) If $\sum a_n x^n$ converges at x = R, then it converges uniformly on any (-R, R].

(iii) If $\sum a_n x^n$ converges at x = -R, then it converges uniformly on any [-R, R).

Proof. Follows from a theorem stated above.

Theorem 7.11 (Continuity). Let $\sum a_n x^n$ be a power series with radius of convergence R.

- (i) If the series converges at $x = x_0 + R$, then $\lim_{x \to x + R^-} \sum a_n (x x_0)^n = \sum a_n R^n$.
- (ii) If the series converges at $x = x_0 R$, then $\lim_{x \to x R^+} \sum a_n (x x_0)^n = \sum a_n (-R)^n$.

Consequently, the power series $\sum a_n(x-x_0)^n$ is continuous on its interval of convergence.

Theorem 7.12 (Integrability). Let $\sum a_n x^n$ be a power series with radius of convergence R. For any x_1, x_2 in the interval of convergence, we have

$$\int_{a}^{b} \sum_{n=0}^{+\infty} a_n (x - x_0)^n dx = \sum \int_{a}^{b} a_n (x - x_0)^n dx.$$

Moreover,

$$\int \sum a_n (x - x_0)^n dx = \sum_{n=0}^{+\infty} \frac{a_n}{n+1} (x - x_0)^{n+1}.$$

The new series has the same radius of convergence as the original series:

$$\limsup \sqrt[n]{\frac{|a_{n+1}|}{n+1}} = \limsup \sqrt[n]{|a_n|}.$$

Example 7.13.

- $\sum x^n$ converges on (-1, 1).
- $\sum x^{n+1}/(n+1)$ converges on [-1, 1).
- $\sum x^{n+2}/(n+1)/(n+2)$ converges on [-1, 1].

Theorem 7.14 (Differentiability). Let $S(x) := \sum a_n(x - x_0)^n$ be a power series with radius of convergence R. Then for $x \in (x_0 - R, x_0 + R)$, S(x) is uniformly differentiable at x. Hence, any real analytic function is infinitely differentiable.

For this series we can formally differentiate term by term:

$$S^{(k)}(x) = \sum n(n-1)\dots(n-k+1)a_n(x-x_0)^{n-k}.$$

Example 7.15. Find the sum of the series $\sum (n(2n+1))^{-1}$. Define

$$S(x) = \sum \frac{x^{2n+1}}{n(2n+1)}.$$

Note that S has radius of convergence R = 1 and converges at both endpoints. We differentiate S to get

$$S'(x) = \sum \frac{x^{2n}}{n} = -\log(1 - x^2), \quad \forall x \in (-1, 1).$$

Thus,

$$S(x) - S(0) = \int_0^x S'(t) dt$$

$$= \int_0^x -\log(1 - t^2) dt$$

$$= -t \log(1 - t^2) \Big|_0^x - 2 \int_0^x \frac{t^2}{1 - t^2} dt$$

$$= -x \log(1 - x^2) + 2x + \log \frac{1 - x}{1 + x}$$

$$= (1 - x) \log(1 - x) + 2x - (1 + x) \log(1 + x), \quad \forall x \in (-1, 1).$$

Since S(0) = 0, we have

$$\sum \frac{1}{n(2n+1)} = \lim_{x \to 1} S(1) = 2 - 2\log 2.$$

7.1 Taylor Series

Suppose $f(x) = \sum a_n x^n$ on (-R, R). By differentiating both sides n times and letting x = 0, we get

$$a_n = \frac{f^{(n)}(0)}{n!}.$$

Thus the power series expansion is unique.

Remark 7.16. C^{∞} functions are not necessarily analytic. For example, consider

$$f(x) = \begin{cases} 0 & x \le 0 \\ e^{-1/x^2} & x > 0 \end{cases}.$$

Each derivative of f is 0 at x = 0, but f is not identically 0.

7.2 Complex Series

Definition 7.17. Let $S(x) = \sum a_n(z - z_0)^n$, where z_0 and a_n are complex, and $z \in \mathbb{C}$. We say S is **complex analytic** if it can be expanded in a power series in $D(z_0, \delta) \subset \mathbb{C}$.

Theorem 7.18 (M-test). If there is a sequence M_n such that $|a_n(z-z_0)^n| \leq M_n$ for each n and $z \in \Omega \subset \mathbb{C}$ and $\sum M_n < \infty$, then $\sum a_n(z-z_0)^n$ converges uniformly on Ω .

Example 7.19. Consider $e^z = \sum z^n/n!$ on D(0, R). We have

$$\frac{|z|^n}{n!} < \frac{R^n}{n!}$$

for each R. Thus by the M-test, the series converges uniformly on D(0,R) for each R. We thus have

$$e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}, \quad z \in \mathbb{C}.$$

Theorem 7.20 (Abel). Suppose $\sum a_n(z-z_0)^n$ converges at $z^* \pm z_0$. Then for any $0 < r < |z^* - z_0|$, the series converges uniformly on $\overline{D(z_0, r)} := \{z : |z - z_0| \le r\}$.

Definition 7.21. The **radius of convergence** of a complex power series $\sum a_n(z-z_0)^n$ is defined as

$$R := \sup_{R} \left\{ |z - z_0| : \sum_{n} a_n (z - z_0)^n \text{converges} \right\}.$$

In light of Abel's' theorem, we have again that

- For any $r \in (0, R)$, the series converges uniformly on $\overline{D(z_0, r)}$.
- For $z \notin \overline{D(0,r)}$, the series diverges.
- For $z \in \partial D(0, R)$, the behavior is not determined.

Theorem 7.22. Let $\rho := \limsup \sqrt[n]{|a_n|}$ (or $\rho := \lim |a_{n+1}|/|a_n|$). Then, $R = 1/\rho$ (if $\rho = \infty$, then R = 0 and vice versa).

Theorem 7.23. In D(0,R), $S(z) = \sum a_n(z-z_0)^n$ can be differentiated term by term:

$$S'(z) = \sum na_n(z - z_0)^{n-1}.$$

The new series has the same radius of convergence as the original series. Repeated application of this theorem shows that complex analytic functions are infinitely differentiable.

Theorem 7.24 (Taylor). If $S(z) = \sum a_n(z-z_0)^n$ is infinitely differentiable at on D(0,R) and $a_n = f^{(n)}(z_0)/n!$, that is,

$$S(z) = \sum \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n,$$

Definition 7.25. We say f(z) is **analytic** at $z_0 \in \mathbb{C}$ if f is complex differentiable in some neighborhood $D(z_0,g) \subset \mathbb{C}$. Equivalently, f(z) is analytic in $\Omega \subset \mathbb{C}$ if it is analytic for any $z_0 \in \Omega$. If this is the case, $f(z) = \sum a_n(z-z_0)^n$ in Ω .

Example 7.26.

$$e^{x} = \sum \frac{z^{n}}{n!}, \qquad z \in \mathbb{C}$$

$$\sin z = \sum (-1)^{n-1} \frac{z^{2n-1}}{(2n-1)!}, \qquad z \in \mathbb{C}$$

$$\cos z = \sum (-1)^{n} \frac{z^{2n}}{(2n)!}, \qquad z \in \mathbb{C}.$$

We may read off the following:

$$\sin(z_1 + z_2) = \sin z_1 \cos z_2 + \cos z_1 \sin z_2,$$

 $e^{z_1 + z_2} = e^{z_1} e^{z_2},$
 $(\sin z)' = \cos z,$
 $(\cos z)' = -\sin z,$
 $e^{iz} = \cos z + i \sin z$

Theorem 7.27. Suppose f(z) is analytic in $\Omega \subset \mathbb{C}$. If there exists $z_0 \in \Omega$ such that $f(z_0) = f'(z_0) = \cdots = 0$, then $f(z) \equiv 0$.

Proof. Let $S := \{z \in \Omega : f(z) = f'(z) = \dots = 0\}$. Since $f^{(n)}$ is continuous, S is closed in Ω . Since f(z) is analytic, there exists $D(z_0, \delta) \in \mathbb{C}$ such that $f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n = 0$. Thus S is open in Ω and we may conclude $S = \Omega$.

Corollary 7.28. If f(z) is analytic and non-constant in Ω , then there exists $m \in \mathbb{N}_+$ such that $f^{(m)}(z_0) \neq 0$, $f'(z_0) = f''(z_0) = \cdots = f^{(m-1)}(z_0) = 0$. There then exists $D(z_0, \delta) \subset \mathbb{C}$ such that $f(z) = f(z_0) + (z - z_0)^m g(z)$ where $g(z_0) \neq 0$. If $f(z_0) = 0$, then z_0 is a zero of f of order $f(z_0) = 0$. Then $f(z_0) = 0$ is an isolated zero.

Theorem 7.29 (Uniqueness of Analytic Functions). Suppose f(z) and g(z) are analytic in Ω . If there exists $\{z_n\} \subset \Omega$ such that $f(z_n) = g(z_n)$ and $z_n \to z^* \in \Omega$, then f and g are identical on Ω .

Since $f(z) = f(z_0) + (z - z_0)^m g(z)$ behaves locally like $z \mapsto z^m$, we have the following:

Theorem 7.30. If f'(z) is analytic in Ω , then f is an open mapping, that is, f maps any open set to an open set.

7.3 The Algebraic Completeness of the Complex Field

Theorem 7.31 (Fundamental Theorem of Algebra). Let $P(z) = a_0 + a_1 z + \cdots + a_n z^n$ be a complex polynomial of degree n. Suppose $n \ge 1$ and $a_n \ne 0$ so P is nonconstant. Then P(z) has at least one root in \mathbb{C} .

Corollary 7.32. P(z) has exactly n complex roots (counted with multiplicity).

Recall the following: If $f(z) = \sum a_n(z - z_0)^n$ is complex analytic and nonconstant, then f is an open mapping.

Proof. Since P(z) is continuous, |P(z)| is also continuous and thus attains minimum and maximum on $\overline{D(0,R)}$. Let's assume it attains min at $z_0 \in \overline{D_0,R}$. Since $|P(z)| \to \infty$ as $|z| \to \infty$, we can choose R large enough such that $z_0 \in D(0,R)$ and $\min\{|P(z)| : |z| = R\} > P(0)$.

By the open mapping theorem, P(D(0,R)) is open, so $P(z_0)$ is an interior point. If $|P(z_0)| \neq 0$, then $|P(z_0)|$ cannot be the min (since some point in the open set P(D(0,R)) will have smaller length) and we have a contradiction.

7.4 Fourier Series

On $\mathcal{L}^2[-\pi,\pi]$ we have the orthonormal basis

$$\left\{\phi_n \coloneqq \frac{1}{\sqrt{2\pi}}e^{\mathrm{i}nx} : n \in \mathbb{Z}\right\}.$$

That is,

$$\langle \phi_n, \phi_m \rangle = \begin{cases} 1 & n = m \\ 0 & n \neq m \end{cases}.$$

Recall that

$$e^{inx} = \cos(nx) + i\sin(nx)$$
.

Definition 7.33. The Fourier series of $f \in \mathcal{L}^2[-\pi, \pi]$ is defined as

$$\sum_{n\in\mathbb{Z}}c_n\phi_n(x),$$

where the coefficients c_n are given by

$$c_n := \langle f, \phi_n \rangle = \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} f(x) e^{-inx} dx.$$

It turns out that $\{\phi_n\}$ forms a complete orthonormal basis of $\mathcal{L}^2[-\pi, \pi]$. Thus, for each $f \in \mathcal{L}[-\pi, \pi]$, $f(x) = \sum c_n \phi_n(x)$ if and only if the Fourier series converges almost everywhere.

For $f \in \mathcal{L}[-\pi, \pi]$ we can define its Fourier series as

$$f(x) \sim \sum_{n \in \mathbb{Z}} c_n e^{\mathrm{i}nx}.$$

Theorem 7.34 (Pointwise Convergence). Let f be a function of period 2π . If

- (i) f(x) is piecewise differentiable, or
- (ii) f(x) is piecewise monotone,

then for any $x \in [-\pi, \pi]$, we have

$$S_n f(x) \longrightarrow \frac{1}{2} \left[f(x^-) + f(x^+) \right],$$

where

$$S_n f(x) := \sum_{k=-n}^n \langle f, \phi_i \rangle \phi_i.$$

(iii) If f is Lipschitz or α -Holder continuous at $x \in [-\pi, \pi]$, that is,

$$|f(x+y) - f(x)| \le C|y|^{\alpha}.$$

In particular this implies f is continuous at x.

Then $S_n f(x) \to f(x)$.

Theorem 7.35 (\mathcal{L}^2 -Convergence). If $f \in \mathcal{L}^2[-\pi, \pi]$, then $S_n f \longrightarrow f$ in the \mathcal{L}^2 norm.

Theorem 7.36. If $S_n f \to f$ in the \mathcal{L}^p norm, then there exists a subsequence $S_{n_k} f \to f$ almost everywhere.

Theorem 7.37. For $f \in \mathcal{L}^p[-\pi, \pi]$, $S_n f \to f$ a.e., which implies the completeness of $\{\phi_n\}$.

Theorem 7.38 (Parseval's Identity).

$$||f||_{\mathcal{L}^2} = ||\hat{f}(x)||_{\ell^2}.$$

7.5 Some Common Series

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n, \quad |x| < 1.$$

$$\log(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots, \quad |x| < 1.$$

$$\log(1-x) = -\sum_{n=1}^{\infty} \frac{x^n}{n}, \quad |x| < 1.$$