

BLG 335E – Analysis of Algorithms I Fall 2015, Recitation 3 04.11.2015

R.A. Kübra Cengiz

R.A. Hakan Gündüz
Research Lab 2

a) How many people must there be in a room before the probability that someone has the same birthday as you do is at least 1/2?

Solution 1.a

Probability that someone in the room has the same birthday as me, denoted by

P (B) is 1– probability that no one in the room has the same birthday as me.

$$P(B) = 1 - \left(\frac{364}{365}\right)^n$$

Solution 1.a

We wish
$$P(B) \ge 1/2$$

$$1 - \left(\frac{364}{365}\right)^n \ge 1/2$$

$$\log(1/2) \ge \log\left(\frac{364}{365}\right)^n$$

$$-\log(2) \ge n \log\left(\frac{364}{365}\right)$$

$$\log(2) \le n \log\left(\frac{364}{365}\right)$$

$$253 \le n$$

b) How many people must there be in a room before the probability that at least two people have a birthday on July 4 is greater than 1/2?

Solution 1.b

Probability that at least two people have a birthday on July 4, denoted by

P(J) is 1 – (probability that **exactly one person** in the room has a birthday on July 4) - (probability that **no one** in the room has a birthday on July 4).

$$=1-\binom{n}{1}\left(\frac{1}{365}\right)\left(\frac{364}{365}\right)^{n-1}-\binom{n}{0}\left(\frac{1}{365}\right)\left(\frac{364}{365}\right)^{n}$$

$$P(J) \ge \frac{1}{2}$$

• Illustrate the operation of **Counting-Sort** on the array below.

$$A = [6, 0, 2, 0, 1, 3, 4, 6, 1, 3, 2]$$

- 1. $Max{A[i]}=6$
- 2. 0 0 0 0 0 0 0
- 3. 2 2 2 2 1 0 2
- 4. 2 4 6 8 9 9 11

6 0 2 0 1 3 4 6 1 3 2

5.

2	1 4	6	3 8	9	5 9	6 11
2	4	5	8	9	9	11
2	4	5	7	9	9	11
2	3	5	7	9	9	11
2	3	5	7	9	9	10
2	3	5	7	8	9	10
2	3	5	6	8	9	10
2	2	5	6	8	9	10
1	2	5	6	8	9	10
1	2	4	6	8	9	10
0	2	4	6	8	9	10
0	2	4	6	8	9	9

• Illustrate the operation of **Radix-Sort** on the following list of English words:

COW, DOG, SEA, RUG, ROW, MOB, BOX, TAB, BAR, EAR, TAR, DIG, BIG, TEA, NOW, FOX.

COW

DOG

SEA

RUG

ROW

MOB

BOX

TAB

BAR

EAR

TAR

DIG

BIG

TEA

NOW

FOX

SEA

TEA

MOB

TAB

DOG

RUG

DIG

BIG

BAR

EAR

TAR

FOX

BOX

COW

ROW

NOW

TAB

BAR

EAR

TAR

SEA

TEA

DIG

BIG

MOB

DOG

FOX

BOX

COW

ROW

NOW

RUG

BAR

BIG

BOX

COW

DIG

DOG

EAR

FOX

MOB

NOW

ROW

RUG

SEA

TAB

TAR

TEA

Given input array A[0..9]. The array B[0..9] of sorted lists or buckets.

Bucket i holds values in the interval [i/10, (i+1)/10].

The sorted output consists of a concatenation in order of the lists first B[0] then B[1] then B[2] ... and the last one is B[9].

• Illustrate the operation of **Bucket-Sort** on the array below.

A = [.78, .17, .39, .26, .72, .94, .21, .12, .23, .68]

İSTANBUL TEKNİK ÜNİVERSİTESİ

Give tight asymptotic bounds for T(n) in each of the following recurrences.

a.
$$T(n) = 4T(\frac{n}{2}) + n^2\sqrt{n}$$

 $a = 4$, $b = 2$, $f(n) = n^2\sqrt{n} = n^{5/2}$

$$n^{\log_b^a} = n^{\log_2^4} = n^2$$

$$n^{5/2} = \Omega(n^{2+1/2})$$
possibly case 3, let's check c

Master Method

$$T(n) = aT(n/b) + f(n)$$

1
$$f(n) = O(n^{\log_b a - \varepsilon}) \Longrightarrow T(n) = \Theta(n^{\log_b a})$$

$$2 f(n) = \Theta(n^{\log_b a}) \Longrightarrow T(n) = \Theta(n^{\log_b a} \log_2 n)$$

$$3 f(n) = \Omega(n^{\log_b a + \varepsilon}) \text{ and } af(n/b) \le cf(n),$$

$$for \exists c \ c < 1 \text{ and } n > n_0$$

$$\Rightarrow T(n) = \Theta(f(n))$$

Exercise 5.a

$$a f\left(\frac{n}{b}\right) = 4\left(\frac{n}{2}\right)^2 \sqrt{\frac{n}{2}} = \frac{n^{5/2}}{\sqrt{2}} \le cn^{\frac{5}{2}}$$

$$for \frac{1}{\sqrt{2}} \le c < 1$$

Case 3 applies
$$T(n) = \Theta(n^2 \sqrt{n})$$

b.
$$T(n) = 3T\left(\frac{n}{2}\right) + n \lg n$$

$$a = 2$$
 $b = 3$, $f(n) = n \lg n$
 $n^{\log_b^a} = n^{\lg 3} \approx n^{1.585}$

$$n \lg n = O(n^{\lg 3 - \varepsilon})$$

$$0 < \varepsilon \le 0.58$$
 case 1

$$T(n) = \Theta(n^{\lg 3})$$