202 A. Neuenhofer

Tafel 5.2 Flächen- und Widerstandsmomente für die Schwerachse

Querschnitt	Schwerachsen- abstand e	Widerstands- moment <i>W=I/e</i>			
1. 2. b b b	1. $\frac{h}{2}$ 2. $\frac{H}{2}$	1. $\frac{bh^3}{12}$ 2. $\frac{b}{12}(H^3 - h^3)$	1. $\frac{bh^2}{6}$ 2. $\frac{b}{6H}(H^3 - h^3)$		
3. 4.	3. $\frac{a}{2}$ 4. $\frac{a}{2}\sqrt{2}$				
5. 6. Î	5. 0,866 r 6. r	5. 0,5413 r ⁴ 6. 0,5413 r ⁴	5. $\frac{5}{8}r^3 = 0,625r^3$ 6. $0,5413r^3$		
7.	0,9239 <i>r</i>	0,6381 r ⁴	0,6906 r ³		
8.	$e_1 = \frac{h}{3}$ $e_2 = \frac{2}{3}h$	$I_{v} = \frac{bh^{3}}{36}$ $I_{z} = \frac{hb^{3}}{48}$	$W_{\text{vo}} = \frac{bh^2}{24}$ $W_{\text{vu}} = \frac{bh^2}{12}$ $W_{\text{z}} = \frac{hb^2}{24}$		
9. v	$e_1 = \frac{h}{3}$ $e_2 = \frac{2}{3}h$	$I_{v} = \frac{b \cdot h^{3}}{36}$ $I_{z} = \frac{hb^{3}}{36}$ $I_{vz} = -\frac{b^{2}h^{2}}{72}$	$W_{yo} = \frac{bh^2}{24}$ $W_{yu} = \frac{bh^2}{12}$		
10. 11. du	10. $\frac{d}{2}$ 11. $\frac{D}{2}$	10. $\frac{\pi d^4}{64} \approx 0.05 d^4$ 11. $\frac{\pi}{64} (D^4 - d^4)$	10. $\frac{\pi d^3}{32} \approx 0.1 d^3$ 11. $\frac{\pi}{32} \cdot \frac{D^4 - d^4}{D}$		

Tafel 5.2 (Fortsetzung)

Schwerpunktlagen weiterer Flächen s. Kapitel Mathematik

G

204 A. Neuenhofer

Tafel 5.3 Torsionsflächenmomente zweiten Grades und Torsionswiderstandsmomente

							10			
Querschnittsform	I_{T}			_	W_{\top}			Ort von max τ		
Kreis	$\frac{\pi d^4}{32}$				$\frac{\pi d^3}{16}$			Am Umfang		
Kreisring 5	$\frac{\pi}{32} (d^4 - d_i^4)$			-	$\frac{\pi}{16} \frac{d^4 - d_i^4}{d}$			Am äußeren Um- fang		
Dünnwan- diger Kreis- ring $t \leqslant d$ $d_m = d - t$	$\frac{\pi d_{\mathrm{m}}^3 t}{4}$				$\frac{\pi d_{\rm m}^2 t}{2}$			Über Ringdicke nahezu konstant		
Ellipse	$\frac{\pi}{16} \frac{a^3b^3}{a^2+b^2}$				$\pi \frac{ab^2}{16}$			Schnittpunkt des Umfangs mit kurzer Achse		
Sechseck 5	0,133 <i>d</i> ⁴				0,188 <i>d</i> ³			Mitte der Seiten		
Achteck	0,130 <i>d</i> ⁴				0,185 d ³					
Rechteck b	$\alpha b^3 d$				βb²d			Mitten der längeren Seiten		
	d/b 1,00 1,25 1,50		2,00	3,00	4,00	6,00	10,00	∞		
	α 0,140 0,17		0,196		0,263		0 299	0.313	0,333	
	β 0,208	0,221	0,231	0,246	0,267	0,282	0,200	0,313	0,000	
Walzquer-schnitte	$\eta {\textstyle \frac{1}{3}} \sum (d \cdot b^3)$			$\eta \overline{3n}$	$\eta \frac{1}{3 \max b} \sum (d \cdot b^3)$			Mitte der Längs- seiten des dick- sten Rechtecks		
	Profil	I		Ĺ	L		Т		+	
	η	1,30		1,12	1,0	00	1,12	1	,17	
Kasten- querschnitt $t_1, t_2 \leqslant b$ $t_3, t_4 \leqslant d$	$\frac{4bd}{\frac{1}{b}(\frac{1}{t_1} + \frac{1}{t_2}) + \frac{1}{d}(\frac{1}{t_3} + \frac{1}{t_4})}$				2 <i>b d</i> min <i>t</i>			Mitte der dünnsten Wand		
Geschlossener dünnwandiger Querschnitt	allgemein: $\frac{4A_{m}^{2}}{\oint \frac{ds}{t}}$ für $t = \text{const}$: $\frac{4A_{m}^{2}t}{U}$ A_{m} ist die Fläche, die von der Wandachse eingeschlossen wird.				2 <i>A_m</i> min <i>t</i>			An der dünnsten Stelle des Rings		

5.3 Spannungen und Verzerrungen; Körperelement

5.3.1 Allgemeines

Zwischen den beiden Ufern eines Schnittes durch ein beanspruchtes Bauteil wirken über die Fläche verteilte Kräfte, die Spannungen (Einheit z. B. MPa). Schräg auf eine Schnittfläche wirkende Spannungen werden in Normalspannungen σ , die senkrecht zur Schnittfläche wirken, und Schubspannungen τ , die in der Ebene der Schnittfläche wirken, zerlegt. Die Schubspannungen werden meist noch in Komponenten parallel zu den Querschnittsachsen zerlegt. Ein aus einem beanspruchten Bauteil herausgeschnittenes kleines Volumenelement verändert durch Verzerrungen seine Form und Größe. Es wird in Richtung der drei Kantenlängen im Allgemeinen unterschiedlich stark gedehnt (Dehnung ε). Ein ursprünglich

rechter Winkel zwischen den Kanten des Volumenelements wird verändert (Gleitungen γ). Ursache für Spannungen und Verzerrungen sind die Einwirkungen (Äußere Kräfte, Zwängungen, Temperaturänderung usw.). Den Zusammenhang zwischen Spannungen und Verzerrungen beschreibt das Spannungs-Dehnungs-Gesetz (z. B. das Hookesche Gesetz).

5.3.2 Einachsiger Spannungszustand

Abb. 5.10 Einachsiger Spannungszustand