CS 512, Spring 2014

Assignment 5

Shan Sikdar

1 Problem 1

- (a) $\phi = \mathbf{G}a$
 - (i) the path $q_3 \to q_4 \to q_3 \to q_4 \to q_3....$ (q_3 and q_4 keep repeating) will satisfy Ga
 - (ii) No because there are other paths do not satisfy Ga
- (b) $\phi = a\mathbf{U}b$
 - (i) the path $q_3 \rightarrow q_2....$ (q_2 goes on forever) will statisfy $\phi = a \mathbf{U} b$
 - (ii) No because there are other paths that do not satisfy $\phi = a\mathbf{U}b$
- (c) $\phi = a\mathbf{U}X(a \wedge \neg b)$
 - (i) the path $q_3 \rightarrow q_4 \rightarrow q_3 \rightarrow q_4 \rightarrow q_3$ (q_3 and q_4 keep repeating) will satisfy $\phi = a\mathbf{U}X(a \wedge \neg b)$
 - (ii) No because not all of the other paths satisfy $\phi = a\mathbf{U}X(a \wedge \neg b)$
- (d) $\phi = \mathbf{X} \neg b \wedge \mathbf{G}(\neg a \vee \neg b)$
 - (i) the path $q_3 \to q_1 \to q_2....$ will satisfy $\phi = \mathbf{X} \neg b \wedge \mathbf{G}(\neg a \vee \neg b)$
 - (ii) No because all the other paths do not satisfy $\phi = \mathbf{X} \neg b \wedge \mathbf{G}(\neg a \lor \neg b)$
- (e) $\mathbf{X}(a \wedge b) \wedge F(\neg a \wedge \neg b)$
 - (i) the path $q_3 \rightarrow q_4 \rightarrow q_3 \rightarrow q_1 \rightarrow q_2$...

- (ii) No
- (f) $a \wedge \mathbf{F}b$
 - (i) All possible paths satisfy $a \wedge \mathbf{F}b$.
 - (ii) Yes all paths satisfy $a \wedge \mathbf{F}b$

- (a) $\mathbf{FG}\varphi$ and $\varphi \to \mathbf{X}\varphi$ The path $p \to \neg p \to \neg p \to p \to p \to p \to p \dots$ (p goes on forever) satisfies $\mathbf{FG}\varphi$ but not $\varphi \to \mathbf{X}\varphi$
- (b) $\mathbf{FG}\varphi$ and $\neg\varphi\mathbf{UG}\varphi$ The path $\neg p\to \neg p\to p\to \neg p\to p\to p\to p\to p\dots$ (p go on forever) satisfies \mathbf{FG} but not $\neg\varphi\mathbf{UG}\varphi$
- (c) $\mathbf{G}(\varphi \to \mathbf{X}\varphi)$ and $\neg \varphi \mathbf{U} \mathbf{G} \varphi$ The path $p \to p \to p$... (p goes on forever), satsisfies $\mathbf{G}(\varphi \to \mathbf{X}\varphi)$ but not $\neg \varphi \mathbf{U} \mathbf{G} \varphi$.
- (d) $\mathbf{F}(\varphi \wedge \psi)$ and $(\mathbf{F}\varphi \wedge \mathbf{F}\psi)$ The path $p \to q \to p \to q \to p$...(have p, q alternate forever). This satisfies $(\mathbf{F}\varphi \wedge \mathbf{F}\psi)$ but not $\mathbf{F}(\varphi \wedge \psi)$
- (e) (a) One implication has shown to be false in part a. To see why the implication is false going the other way, note that the path $\neg p \rightarrow \neg p \rightarrow \neg p \dots (\neg p \text{ goes on forever})$ will satisfy $\varphi \rightarrow \mathbf{X}\varphi$ but not $\mathbf{FG}\varphi$.
 - (b) $\neg \varphi \mathbf{U} \mathbf{G} \varphi$ implies $\mathbf{F} \mathbf{G} \varphi$, Because in the first case you wil have $\mathbf{G} \varphi$ after some $\neg \varphi$ which implies sometime in the future you will have globally φ . The implication does not exist the other way from the counter example shown in part b.
 - (c) $\neg \varphi \mathbf{U} \mathbf{G} \varphi$ implies $\mathbf{G}(\varphi \to \mathbf{X} \varphi)$ Because once you have globally φ , then you know that if you see φ the next state must also have φ . The implication does not exist the other way from the counter example shown in part c.

(d) $\mathbf{F}(\varphi \wedge \psi)$ implies $(\mathbf{F}\varphi \wedge \mathbf{F}\psi)$

Since if we know $\varphi \wedge \psi$ will be true at some point in the future, at that point both φ and ψ have to be true seperately as well. (otherwise the \wedge could not be true. Then we know sometime in the future $(\mathbf{F}\varphi \wedge \mathbf{F}\psi)$

$$\varphi \mathbf{U} \psi \equiv \varphi \mathbf{W} \psi \wedge \mathbf{F} \psi$$
 proof.

- (1) $\pi \models \varphi \mathbf{U} \psi$ iff By definintion:
- (2) $(\exists i \geq 1)[\pi^i \models \psi \land \pi^1 \models \varphi,, \pi^{i-1} \models \varphi]$ iff since we know $(\exists i \geq 1)\pi^i \models \psi$ is true, and using properties of \land :
- (3) $((\exists i \geq 1)\pi^i \models \psi) \land (\exists i \geq 1)[\pi^i \models \psi \land \pi^1 \models \varphi,, \pi^{i-1} \models \varphi]$ iff Since we know that this statment is true, using properties of \lor :
- (4) $((\exists i \geq 1)\pi^i \models \psi) \land (\exists i \geq 1)[\pi^i \models \psi \land \pi^1 \models \varphi,, \pi^{i-1} \models \varphi] \lor \forall k\pi^k \models \varphi \text{ iff}$ by definitions of **F** and **W**:
- (5) $\mathbf{F}\psi \wedge \varphi \mathbf{W}\psi$
- (6) $\pi \models \mathbf{F}\psi \wedge \varphi \mathbf{W}\psi$

Since we have iff at every line we know that implications work both ways. So they are equivelent.

$$\varphi \mathbf{W} \psi \equiv \varphi \mathbf{U} \psi \vee \mathbf{G} \varphi$$
 proof.

- (1) $\pi \models \varphi \mathbf{W} \psi$ iff By definition:
- (2) $(\exists i \geq 1)[\pi^i \models \psi \land \pi^1 \models \varphi,, \pi^{i-1} \models \varphi] \lor \forall k \ \pi^k \models \varphi \text{ iff}$ By definition of **G**:
- (3) $(\exists i \geq 1)[\pi^i \models \psi \land \pi^1 \models \varphi,, \pi^{i-1} \models \varphi] \lor \mathbf{G}\varphi$ iff by Definition of **U**:
- (4) $\varphi \mathbf{U} \psi \vee \mathbf{G} \varphi$
- (5) $\pi \models \varphi \mathbf{U} \psi \vee \mathbf{G} \varphi$

Since we have iff at every line we know that implications work both ways. So they are equivelent.

```
function NNF(\phi):
\phi is a literal: return \phi
\phi is \neg\neg\phi_1: return NNF(\phi_1)
\phi is \phi_1 \wedge \phi_2: return NNF(\phi_1) \wedge NNF(\phi_2)
\phi is \phi_1 \vee \phi_2: return NNF(\phi_1) \vee NNF(\phi_2)
\phi is \neg(\phi_1 \land \phi_2): return NNF(\neg\phi_1) \lor NNF(\neg\phi_2)
\phi is \neg(\phi_1 \lor \phi_2): return NNF(\neg\phi_1) \land NNF(\neg\phi_2)
\phi is \mathbf{G}\phi_1: return \mathbf{G}NNF(\phi_1)
\phi is \neg \mathbf{G}\phi_1: return \mathbf{F}NNF(\neg \phi_1)
\phi is \mathbf{F}\phi_1: return \mathbf{F}NNF(\phi_1)
\phi is \neg \mathbf{F}\phi_1: return \mathbf{G}NNF(\neg \phi_1)
\phi is \mathbf{X}\phi_1: return \mathbf{X}NNF(\phi_1)
\phi is \neg \mathbf{X}\phi_1: return \mathbf{X}NNF(\neg \phi_1)
\phi is \phi_1 \cup \phi_2: return NNF(\phi_1) \cup NNF(\phi_2)
\phi is \neg(\phi_1 \mathbf{U} \phi_2): return NNF(\neg \phi_1) \mathbf{R} NNF(\neg \psi)
\phi is \phi_1 \mathbf{R} \phi_2: return NNF(\phi_1) \mathbf{R} NNF(\phi_2)
\phi is \neg(\phi_1 \mathbf{R} \phi_2): return NNF(\neg \phi_1) \mathbf{U} NNF(\neg \psi)
\phi is \phi_1 \mathbf{W} \phi_2: return NNF(\phi_1)\mathbf{U} NNF(\phi_2) \vee G NNF(\phi)
\phi is \neg(\phi_1 \mathbf{W} \phi_2): return NNF(\neg(\phi_1 U \phi_2)) \wedge NNF(\neg \mathbf{G} \phi_1)
```

- (a) No, take the path $s_2 \to s_4 \to s_2 \to s_4 \to s_2 \to s_4$... When you have s_2 , r is true, when you have s_4 r is false. So this cannot satisfy **FG**r
- (b) Yes,

If you start from s_1 there are two ways to go s_3 and s_4 . s_3 has an r so thats okay. If we then follow a path to s_4 we see that from s_4 any state that we move to will have an r. If you start from s_2 , the next state is s_4 which like before any state you move to from there will have an r.

(c) Yes,

If $X \neg r$ then you know the next state has to be s_4 . Every state that you can move to from s_4 will have r as true. Then you know that in the next state, r will be true. So XXr

- (d) No, take the path $s_2 \to s_4 \to s_2 \to s_4 \to s_2 \to s_4$... When you have s_2 , q is false, when you have s_4 q is true. So this cannot satisfy $\mathbf{G}q$
- (e) Yes.

If you start from s_1 you have p and the next states contain a q or r. If you start from s_2 you start with r and then you have already staisfied the condition $q \vee r$ of the U.

(f) No.

If you take the path $s_1 \rightarrow s_4 \rightarrow s_2...$ then this doesn't work.