Math. - CC 1 $_{14/10/21}$

Toutes les réponses seront justifiées. La notation tiendra compte du soin apporté à la rédaction.

EXERCICE 1

Résoudre les systèmes suivants :

1.
$$\begin{cases} 3x + y + z = 2 \\ x + y - 2z = -2 \\ 2x + 3y - 4z = -1 \end{cases}$$

2.
$$\begin{cases} 2x - y + z = 0 \\ x - 3y - 2z = 1 \\ x + 2y + 3z = -1 \end{cases}$$

EXERCICE 2

1. Résoudre dans $\mathbb R$ l'inéquation d'inconnue x suivante :

$$1 - \sqrt{2}\sin(2x) \ge 2$$

2. Résoudre dans \mathbb{R} l'équation d'inconnue x suivante :

$$\sqrt{3}\cos(x) + \sin(x) = -1$$

EXERCICE 3

Soit $a \in \mathbb{R}$, f_a la fonction définie par

$$f_a(x) = \ln(x^2 - ax + 4)$$

et C_a sa courbe représentative dans un repère orthonormé.

- 1. Donner, suivant les valeurs de a, le domaine de définition D_a de f_a .
- **2.** Comparer $f_a(x)$ et $f_{-a}(-x)$. Que peut-on en déduire pour C_a et C_{-a} ?
- 3. On suppose a=4. La fonction ln est représentée graphiquement dans le repère fourni en annexe.
 - a. Montrer que

$$\forall x \in D_4, \ f_4(x) = 2 \ln|x - 2|$$

- b. Représenter alors graphiquement C_4 dans le repère fourni en annexe. On justifiera.
- c. Enfin, représenter graphiquement C_{-4} dans le même repère fourni en annexe. On justifiera.
- 4. On suppose maintenant que -4 < a < 4.
 - a. Déterminer le tableau de variation complet de f_a . On déterminer les limites aux bornes de D_a .
 - **b.** Représenter alors graphiquement C_2 dans le même repère fourni en annexe.

EXERCICE 4

Partie I : Somme des puissances p-èmes des n premiers entiers

Pour $n \in \mathbb{N}^*$ et $p \in \mathbb{N}$, on pose :

$$K(n,p) = \sum_{k=1}^{n} k^{p}$$

1. Après avoir justifié que $K(n+1,p+1) = \sum_{k=0}^{n} (k+1)^{p+1}$, montrer que

$$K(n+1, p+1) = 1 + \sum_{q=0}^{p+1} {p+1 \choose q} K(n, q)$$

2. En déduire que

$$\sum_{q=0}^{p} {p+1 \choose q} K(n,q) = (n+1)^{p+1} - 1$$

- **3. a.** Déterminer K(n, 0).
 - **b.** En déduire les valeurs de K(n,1), K(n,2) et K(n,3).

Partie II : Somme des cubes des n premiers entiers

On considère une suite de nombres réels $(x_n)_{n\in\mathbb{N}}$ telle que :

$$x_0 = 0$$
, $\forall n \in \mathbb{N}^*$, $x_n > 0$, et $\forall n \in \mathbb{N}$, $\sum_{k=0}^n x_k^3 = \left(\sum_{k=0}^n x_k\right)^2$

Pour $n \in \mathbb{N}$, on note $S_n = \sum_{k=0}^n x_k$.

1. Montrer que pour tout $n \in \mathbb{N}$:

$$x_{n+1}^3 = 2S_n x_{n+1} + x_{n+1}^2$$

2. Montrer que pour tout $n \in \mathbb{N}$:

$$x_n = n$$

- 3. Réciproquement, en remarquant que pour $n \in \mathbb{N}$, $\left(\sum_{k=0}^{n} k\right)^2 = \sum_{k=0}^{n} k^2 + 2 \sum_{0 \le i < j \le n} ij$, montrer que la suite des entiers vérifie les conditions de l'énoncé.
- **4.** Retrouver K(n,3).

Fin de l'énoncé

Nom, Prénom, Classe :

