Modularity of abelian surfaces with potential QM

Enric Florit

(j. w. Ariel Pacetti)

Universitat de Barcelona

Journées Arithmetiques 2025

Theorem (Taylor, Taylor-Wiles, BCDT)

Let E/\mathbb{Q} be an elliptic curve of conductor N. There exists a classical eigenform $f_E \in S_2(\Gamma_0(N))$ with rational eigenvalues such that $L(E,s) = L(f_E,s)$.

Theorem (Ribet, Khare-Wintenberger)

Let A/\mathbb{Q} be an abelian variety of conductor N and such that $E=\operatorname{End}_{\mathbb{Q}}(A)\otimes\mathbb{Q}$ is a number field with $[E:\mathbb{Q}]=\dim A$. There exists a classical eigenform $f_A\in S_2(\Gamma_1(N))$ such that $L(A,s)=\prod_{\sigma:E\to\mathbb{C}}L({}^\sigma f_A,s)$.

Theorem (Ribet, Khare-Wintenberger)

Let A/\mathbb{Q} be an abelian variety of conductor N and such that $E=\operatorname{End}_{\mathbb{Q}}(A)\otimes\mathbb{Q}$ is a number field with $[E:\mathbb{Q}]=\dim A$. There exists a classical eigenform $f_A\in S_2(\Gamma_1(N))$ such that $L(A,s)=\prod_{\sigma:E\to\mathbb{C}}L({}^\sigma f_A,s)$.

Conjecture (Brumer-Kramer)

Theorem (Ribet, Khare-Wintenberger)

Let A/\mathbb{Q} be an abelian variety of conductor N and such that $E=\operatorname{End}_{\mathbb{Q}}(A)\otimes\mathbb{Q}$ is a number field with $[E:\mathbb{Q}]=\dim A$. There exists a classical eigenform $f_A\in S_2(\Gamma_1(N))$ such that $L(A,s)=\prod_{\sigma:E\to\mathbb{C}}L(\sigma f_A,s)$.

Conjecture (Brumer-Kramer)

Let A/\mathbb{Q} be an abelian surface with $\operatorname{End}_{\mathbb{Q}}(A)=\mathbb{Z}$ and conductor N. Then there exists a Siegel paramodular newform $f_A\in S_2(K(N))$ with rational eigenvalues such that $L(A,s)=L(f_A,s,spin)$.

• Known for infinitely many abelian surfaces [BCGP].

Theorem (Ribet, Khare-Wintenberger)

Let A/\mathbb{Q} be an abelian variety of conductor N and such that $E=\operatorname{End}_{\mathbb{Q}}(A)\otimes\mathbb{Q}$ is a number field with $[E:\mathbb{Q}]=\dim A$. There exists a classical eigenform $f_A\in S_2(\Gamma_1(N))$ such that $L(A,s)=\prod_{\sigma:E\to\mathbb{C}}L(\sigma f_A,s)$.

Conjecture (Brumer-Kramer)

- Known for infinitely many abelian surfaces [BCGP].
- Hard to verify computationally (either use Faltings-Serre method or prove residual modularity of A).

Theorem (Ribet, Khare-Wintenberger)

Let A/\mathbb{Q} be an abelian variety of conductor N and such that $E=\operatorname{End}_{\mathbb{Q}}(A)\otimes\mathbb{Q}$ is a number field with $[E:\mathbb{Q}]=\dim A$. There exists a classical eigenform $f_A\in S_2(\Gamma_1(N))$ such that $L(A,s)=\prod_{\sigma:E\to\mathbb{C}}L(\sigma f_A,s)$.

Conjecture (Brumer-Kramer)

- Known for infinitely many abelian surfaces [BCGP].
- Hard to verify computationally (either use Faltings-Serre method or prove residual modularity of A).
- Proven* if $\operatorname{End}_{\bar{\mathbb{O}}}(A) \supseteq \mathbb{Z}$.

Theorem (Ribet, Khare-Wintenberger)

Let A/\mathbb{Q} be an abelian variety of conductor N and such that $E=\operatorname{End}_{\mathbb{Q}}(A)\otimes\mathbb{Q}$ is a number field with $[E:\mathbb{Q}]=\dim A$. There exists a classical eigenform $f_A\in S_2(\Gamma_1(N))$ such that $L(A,s)=\prod_{\sigma:E\to\mathbb{C}}L({}^\sigma f_A,s)$.

Conjecture (Brumer-Kramer)

- Known for infinitely many abelian surfaces [BCGP].
- Hard to verify computationally (either use Faltings-Serre method or prove residual modularity of A).
- Proven* if $\operatorname{End}_{\bar{\mathbb{O}}}(A) \supseteq \mathbb{Z}$.

^{*}Automorphy is proven, without the paramodular level.

Siegel Paramodular Forms

Let $N \in \mathbb{Z}_{\geq 1}$. Our substitute for $\Gamma_0(N)$ is the level N paramodular group

$$K(N) = \begin{pmatrix} * & N* & * & * \\ * & * & * & */N \\ * & N* & * & * \\ N* & N* & N* & * \end{pmatrix} \cap \mathsf{Sp}_4(\mathbb{Q})$$

where $* \in \mathbb{Z}$.

Siegel Paramodular Forms

Let $N \in \mathbb{Z}_{\geq 1}$. Our substitute for $\Gamma_0(N)$ is the level N paramodular group

$$K(N) = \begin{pmatrix} * & N* & * & * \\ * & * & * & */N \\ * & N* & * & * \\ N* & N* & N* & * \end{pmatrix} \cap Sp_4(\mathbb{Q})$$

where $* \in \mathbb{Z}$. Let $\mathcal{H}_2 = \{Z \in \mathsf{Mat}_2(\mathbb{C}) \mid \mathsf{Im}(Z) > 0\}$.

Siegel Paramodular Forms

Let $N \in \mathbb{Z}_{\geq 1}$. Our substitute for $\Gamma_0(N)$ is the level N paramodular group

$$K(N) = \begin{pmatrix} * & N* & * & * \\ * & * & * & */N \\ * & N* & * & * \\ N* & N* & N* & * \end{pmatrix} \cap Sp_4(\mathbb{Q})$$

where $* \in \mathbb{Z}$. Let $\mathcal{H}_2 = \{Z \in \mathsf{Mat}_2(\mathbb{C}) \mid \mathsf{Im}(Z) > 0\}$. A Siegel paramodular form of level N and weight 2 is a holomorphic $f: \mathcal{H}_2 \to \mathbb{C}$ satisfying

- $f(MZ) = \det(CZ + D)^2 f(Z)$ for all $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in K(N)$.
- f(Z) satisfies a boundedness condition.

Modular Galois representations

Theorem (Taylor, Sorensen, Mok)

Let π be a cuspidal automorphic representation of $\mathsf{GSp_4}(\mathbb{A}_\mathbb{Q})$ of weight (2,2) which is not CAP or endoscopic. Suppose the coefficient field of π is \mathbb{Q} and π has trivial central character. Then for every ℓ , exists a continuous semisimple Galois representation

$$ho_{\pi,\ell}:\mathsf{Gal}_\mathbb{Q} o\mathsf{GSp}_4(ar{\mathbb{Q}}_\ell)$$

such that:

- **1** $\rho_{\pi,\ell}$ is unramified at all $p \notin S \cup \{\ell\}$.
- ② For all $p \notin S \cup \{\ell\}$, $\operatorname{Tr} \rho_{\pi,\ell}(\operatorname{Frob}_p) = a_p$, $\operatorname{sim} \rho_{\pi,\ell} = \chi_\ell$.
- The Hodge-Tate-Sen weights of $\rho_{\pi,\ell}|_{\mathbb{Q}_\ell}$ are $\{0,0,1,1\}$.
- 5 Local-global compatibility.

Main result

Theorem (F.-Pacetti)

Main result

Theorem (F.-Pacetti)

Let D= indefinite quaternion \mathbb{Q} -algebra or $\mathrm{Mat}_2(\mathbb{Q})$. Let A/\mathbb{Q} be an abelian surface with $\mathrm{End}_{\mathbb{Q}}(A)=\mathbb{Z}$ and $\mathrm{End}_{\bar{\mathbb{Q}}}(A)\otimes\mathbb{Q}=D$. Then

• A is Siegel modular: there exists a cuspidal automorphic representation of $\mathsf{GSp}_4(\mathbb{A}_{\mathbb{O}})$ whose L-series matches that of A.

Main result

Theorem (F.-Pacetti)

- A is Siegel modular: there exists a cuspidal automorphic representation of $\mathsf{GSp}_4(\mathbb{A}_{\mathbb{O}})$ whose L-series matches that of A.
- If A is principally polarizable and $\operatorname{End}_{\bar{\mathbb{Q}}}(A)$ is an hereditary quaternion order, then A is paramodular.

• Let A/\mathbb{Q} be an abelian surface with $\operatorname{End}_{\mathbb{Q}}(A)=\mathbb{Z}$ and $\operatorname{End}_{\bar{\mathbb{Q}}}(A)$ an order in an indefinite quaternion algebra $D_{/\mathbb{Q}}$.

- Let A/\mathbb{Q} be an abelian surface with $\operatorname{End}_{\mathbb{Q}}(A)=\mathbb{Z}$ and $\operatorname{End}_{\bar{\mathbb{Q}}}(A)$ an order in an indefinite quaternion algebra $D_{/\mathbb{Q}}$.
- Let L be the smallest field with $\operatorname{End}_L(A) = \operatorname{End}_{\bar{\mathbb{Q}}}(A)$. Dieulefait-Rotger: $\operatorname{Gal}(L/\mathbb{Q}) \simeq C_2 \times C_2, D_{2\cdot 3}, D_{2\cdot 4}$ or $D_{2\cdot 6}$.

- Let A/\mathbb{Q} be an abelian surface with $\operatorname{End}_{\mathbb{Q}}(A)=\mathbb{Z}$ and $\operatorname{End}_{\mathbb{Q}}(A)$ an order in an indefinite quaternion algebra $D_{/\mathbb{Q}}$.
- Let L be the smallest field with $\operatorname{End}_L(A) = \operatorname{End}_{\bar{\mathbb{Q}}}(A)$. Dieulefait-Rotger: $\operatorname{Gal}(L/\mathbb{Q}) \simeq C_2 \times C_2, D_{2\cdot 3}, D_{2\cdot 4}$ or $D_{2\cdot 6}$.
- Since $\operatorname{End}_{\mathbb{Q}}(A) = \mathbb{Z}$, the action of $\operatorname{Gal}_{\mathbb{Q}}$ on $V_{\ell}(A) \simeq T_{\ell}(A) \otimes_{\mathbb{Z}_{\ell}} \mathbb{Q}_{\ell}$ gives a continous representation

$$\rho_{A,\ell}^{(\mathbb{Q})}:\mathsf{Gal}_{\mathbb{Q}}\to\mathsf{GSp}_4(\mathbb{Q}_\ell)\subset\mathsf{GL}_4(\mathbb{Q}_\ell)\simeq\mathsf{Aut}(V_\ell(A))$$

which is absolutely irreducible for all ℓ .

- Let A/\mathbb{Q} be an abelian surface with $\operatorname{End}_{\mathbb{Q}}(A)=\mathbb{Z}$ and $\operatorname{End}_{\bar{\mathbb{Q}}}(A)$ an order in an indefinite quaternion algebra $D_{/\mathbb{Q}}$.
- Let L be the smallest field with $\operatorname{End}_L(A) = \operatorname{End}_{\bar{\mathbb{Q}}}(A)$. Dieulefait-Rotger: $\operatorname{Gal}(L/\mathbb{Q}) \simeq C_2 \times C_2, D_{2\cdot 3}, D_{2\cdot 4}$ or $D_{2\cdot 6}$.
- Since $\operatorname{End}_{\mathbb{Q}}(A) = \mathbb{Z}$, the action of $\operatorname{Gal}_{\mathbb{Q}}$ on $V_{\ell}(A) \simeq T_{\ell}(A) \otimes_{\mathbb{Z}_{\ell}} \mathbb{Q}_{\ell}$ gives a continous representation

$$\rho_{A,\ell}^{(\mathbb{Q})}:\mathsf{Gal}_{\mathbb{Q}}\to\mathsf{GSp}_4(\mathbb{Q}_\ell)\subset\mathsf{GL}_4(\mathbb{Q}_\ell)\simeq\mathsf{Aut}(V_\ell(A))$$

which is absolutely irreducible for all ℓ .

• Suppose $\ell \nmid \operatorname{disc} D$, so that $D \otimes \mathbb{Q}_{\ell} \simeq \operatorname{Mat}_2(\mathbb{Q}_{\ell})$. Then

$$V_{\ell}(A_L) \simeq W_{\ell}(A) \oplus W_{\ell}(A),$$

where $W_{\ell}(A)$ is an abs. irreducible $\mathbb{Q}_{\ell}[\mathsf{Gal}_L]$ -submodule of $V_{\ell}(A_L)$.

$$\leadsto
ho_{A\,\ell}^{(L)}: \mathsf{Gal}_L o \mathsf{Aut}(W_\ell(A)) \simeq \mathsf{GL}_2(\mathbb{Q}_\ell).$$

Intermediate quadratic fields

Lemma

There exists a quadratic subextension K/\mathbb{Q} of L/\mathbb{Q} such that $E = \operatorname{End}_K(A) \otimes \mathbb{Q}$ is a quadratic field.

• Fix K and E. Let $\ell = \lambda \lambda'$ in \mathcal{O}_E . Then

$$V_{\ell}(A_{\mathcal{K}}) \simeq W_{\lambda}(A) \oplus W_{\lambda'}(A),$$

 $\mathsf{let}\ \rho_{A,\lambda}^{(K)}: \mathsf{Gal}_K \to \mathsf{Aut}(W_\lambda(A)) \simeq \mathsf{GL}_2(E_\lambda).$

- We have $ho_{A,\lambda}^{(K)}|\operatorname{Gal}_L\simeq
 ho_{A,\ell}^{(L)}.$
- Let ${}^s\rho_{A,\lambda}^{(K)}(t):=\rho_{A,\lambda}^{(K)}(sts^{-1})$. Then

$${}^{s}\rho_{A,\lambda}^{(K)}\simeq\rho_{A,\lambda'}^{(K)}.$$

 $\bullet \implies \rho_{A,\ell}^{(\mathbb{Q})} = \operatorname{Ind}_K^{\mathbb{Q}} \rho_{A,\lambda}^{(K)}.$

Since $Z(End(A_L) \otimes \mathbb{Q}) = \mathbb{Q}$, A_L is a (strong) \mathbb{Q} -variety:

- For all $s \in Gal_{\mathbb{Q}}$ there is an isogeny $\mu_s : {}^sA \to A$.
- ② For all $\varphi \in \operatorname{End}_L(A)$ and $s \in \operatorname{Gal}_{\mathbb{Q}}$, $\mu_s{}^s \varphi = \varphi \mu_s$.

Since $Z(\text{End}(A_L) \otimes \mathbb{Q}) = \mathbb{Q}$, A_L is a (strong) \mathbb{Q} -variety:

- **1** For all $s \in Gal_{\mathbb{Q}}$ there is an isogeny $\mu_s : {}^sA \to A$.
- ② For all $\varphi \in \operatorname{End}_L(A)$ and $s \in \operatorname{Gal}_{\mathbb{Q}}$, $\mu_s{}^s \varphi = \varphi \mu_s$.

We can apply the following result.

Lemma (Ribet, Guitart)

There exists a finite order character $\xi: \mathsf{Gal}_L \to \bar{\mathbb{Q}}^{\times}$ and a representation $\tilde{\rho}: \mathsf{Gal}_{\mathbb{Q}} \to \mathsf{GL}_2(\bar{\mathbb{Q}}_{\ell})$ such that $\tilde{\rho}|\mathsf{Gal}_L \simeq \rho_{A,\ell}^{(L)} \otimes \xi$.

Since $Z(\text{End}(A_L) \otimes \mathbb{Q}) = \mathbb{Q}$, A_L is a (strong) \mathbb{Q} -variety:

- For all $s \in \mathsf{Gal}_{\mathbb{Q}}$ there is an isogeny $\mu_s : {}^sA \to A$.
- ② For all $\varphi \in \operatorname{End}_L(A)$ and $s \in \operatorname{Gal}_{\mathbb{Q}}$, $\mu_s{}^s \varphi = \varphi \mu_s$.

We can apply the following result.

Lemma (Ribet, Guitart)

There exists a finite order character $\xi: \operatorname{Gal}_L \to \bar{\mathbb{Q}}^{\times}$ and a representation $\tilde{\rho}: \operatorname{Gal}_{\mathbb{Q}} \to \operatorname{GL}_2(\bar{\mathbb{Q}}_{\ell})$ such that $\tilde{\rho}|\operatorname{Gal}_L \simeq \rho_{A,\ell}^{(L)} \otimes \xi$.

• By Serre's modularity conjecture, $\tilde{\rho}$ is modular: $\tilde{\rho} \simeq \rho_{f,\mathfrak{l}}$ for some classical modular eigenform f.

Since $Z(\text{End}(A_L) \otimes \mathbb{Q}) = \mathbb{Q}$, A_L is a (strong) \mathbb{Q} -variety:

- **①** For all $s \in Gal_{\mathbb{Q}}$ there is an isogeny $\mu_s : {}^sA \to A$.
- ② For all $\varphi \in \operatorname{End}_L(A)$ and $s \in \operatorname{Gal}_{\mathbb{Q}}$, $\mu_s{}^s \varphi = \varphi \mu_s$.

We can apply the following result.

Lemma (Ribet, Guitart)

There exists a finite order character $\xi: \operatorname{Gal}_L \to \bar{\mathbb{Q}}^{\times}$ and a representation $\tilde{\rho}: \operatorname{Gal}_{\mathbb{Q}} \to \operatorname{GL}_2(\bar{\mathbb{Q}}_{\ell})$ such that $\tilde{\rho}|\operatorname{Gal}_L \simeq \rho_{A,\ell}^{(L)} \otimes \xi$.

- By Serre's modularity conjecture, $\tilde{\rho}$ is modular: $\tilde{\rho} \simeq \rho_{f,\mathfrak{l}}$ for some classical modular eigenform f.
- There is a finite order character $\chi: \operatorname{Gal}_K \to \bar{\mathbb{Q}}^{\times}$ such that $\rho_{f,\mathfrak{l}}|\operatorname{Gal}_K \simeq \rho_{A,\lambda}^{(K)} \otimes \chi.$

Theorem (F.-Pacetti)

Let D= indefinite quaternion \mathbb{Q} -algebra or $\mathrm{Mat}_2(\mathbb{Q})$. Let A/\mathbb{Q} be an abelian surface with $\mathrm{End}_{\mathbb{Q}}(A)=\mathbb{Z}$ and $\mathrm{End}_{\bar{\mathbb{Q}}}(A)\otimes\mathbb{Q}=D$. Then

• A is Siegel modular: there exists a cuspidal automorphic representation of $\mathsf{GSp}_4(\mathbb{A}_\mathbb{Q})$ whose L-series matches that of A.

Theorem (F.-Pacetti)

- A is Siegel modular: there exists a cuspidal automorphic representation of $\mathsf{GSp}_4(\mathbb{A}_{\mathbb{O}})$ whose L-series matches that of A.
- There is a finite order character $\chi: \operatorname{Gal}_K \to \bar{\mathbb{Q}}^{\times}$ such that $\rho_{f,\mathfrak{l}}|\operatorname{Gal}_K \simeq \rho_{A,\lambda}^{(K)} \otimes \chi.$

Theorem (F.-Pacetti)

- A is Siegel modular: there exists a cuspidal automorphic representation of $\mathsf{GSp}_4(\mathbb{A}_\mathbb{O})$ whose L-series matches that of A.
- There is a finite order character $\chi: \operatorname{Gal}_K \to \bar{\mathbb{Q}}^{\times}$ such that $\rho_{f,\mathfrak{l}}|\operatorname{Gal}_K \simeq \rho_{A,\lambda}^{(K)} \otimes \chi.$
- Cyclic base change: $\rho_{A,\lambda}^{(K)}$ is Bianchi or Hilbert modular.

Theorem (F.-Pacetti)

- A is Siegel modular: there exists a cuspidal automorphic representation of $\mathsf{GSp}_4(\mathbb{A}_{\mathbb{O}})$ whose L-series matches that of A.
- There is a finite order character $\chi: \operatorname{Gal}_K \to \bar{\mathbb{Q}}^{\times}$ such that $\rho_{f,\mathfrak{l}}|\operatorname{Gal}_K \simeq \rho_{A,\lambda}^{(K)} \otimes \chi.$
- Cyclic base change: $\rho_{A,\lambda}^{(K)}$ is Bianchi or Hilbert modular.
- $\rho_{A,\ell}^{(\mathbb{Q})} = \operatorname{Ind}_K^{\mathbb{Q}} \rho_{A,\lambda}^{(K)}$ and automorphic induction $\implies \rho_{A,\ell}^{(\mathbb{Q})}$ modular (for an automorphic rep'n Π of $\operatorname{GL}_4(\mathbb{A}_{\mathbb{Q}})$).

Theorem (F.-Pacetti)

- A is Siegel modular: there exists a cuspidal automorphic representation of $\mathsf{GSp}_4(\mathbb{A}_\mathbb{O})$ whose L-series matches that of A.
- There is a finite order character $\chi: \operatorname{Gal}_{\mathcal{K}} \to \bar{\mathbb{Q}}^{\times}$ such that $\rho_{f,\mathfrak{l}}|\operatorname{Gal}_{\mathcal{K}} \simeq \rho_{A,\lambda}^{(\mathcal{K})} \otimes \chi.$
- Cyclic base change: $\rho_{A,\lambda}^{(K)}$ is Bianchi or Hilbert modular.
- $\rho_{A,\ell}^{(\mathbb{Q})} = \operatorname{Ind}_K^{\mathbb{Q}} \rho_{A,\lambda}^{(K)}$ and automorphic induction $\implies \rho_{A,\ell}^{(\mathbb{Q})}$ modular (for an automorphic rep'n Π of $\operatorname{GL}_4(\mathbb{A}_{\mathbb{Q}})$).
- Since $\rho_{A,\ell}^{(\mathbb{Q})}$ is attached to an abelian surface, Π must be the transfer of an automorphic rep'n π of $\mathsf{GSp_4}(\mathbb{A}_\mathbb{Q})$.

• Let $\Pi = \otimes'_{\nu} \Pi_{\nu}$ be a representation of $\mathsf{GSp_4}(\mathbb{A}_\mathbb{Q})$.

- Let $\Pi = \otimes'_{\nu} \Pi_{\nu}$ be a representation of $\mathsf{GSp}_4(\mathbb{A}_{\mathbb{Q}})$.
- Want: for every prime p, either Π_p unramified or having a fixed vector for $K(p^n)$.

- Let $\Pi = \otimes'_{\nu} \Pi_{\nu}$ be a representation of $\mathsf{GSp}_4(\mathbb{A}_{\mathbb{Q}})$.
- Want: for every prime p, either Π_p unramified or having a fixed vector for $K(p^n)$.
- Let F/\mathbb{Q} be quadratic. If π is a cuspidal automorphic representation of $GL_2(\mathbb{A}_F)$ with trivial central character, then its induction to \mathbb{Q} is paramodular:

- Let $\Pi = \otimes'_{\nu} \Pi_{\nu}$ be a representation of $\mathsf{GSp}_4(\mathbb{A}_{\mathbb{Q}})$.
- Want: for every prime p, either Π_p unramified or having a fixed vector for $K(p^n)$.
- Let F/\mathbb{Q} be quadratic. If π is a cuspidal automorphic representation of $GL_2(\mathbb{A}_F)$ with trivial central character, then its induction to \mathbb{Q} is paramodular:
 - F/\mathbb{Q} real quadratic by Johnson-Leung and Roberts;

- Let $\Pi = \otimes'_{\nu} \Pi_{\nu}$ be a representation of $\mathsf{GSp}_4(\mathbb{A}_{\mathbb{Q}})$.
- Want: for every prime p, either Π_p unramified or having a fixed vector for $K(p^n)$.
- Let F/\mathbb{Q} be quadratic. If π is a cuspidal automorphic representation of $GL_2(\mathbb{A}_F)$ with trivial central character, then its induction to \mathbb{Q} is paramodular:
 - F/\mathbb{Q} real quadratic by Johnson-Leung and Roberts;
 - \bullet F/\mathbb{Q} imaginary quadratic by Berger, Dembélé, Pacetti and Sengün.

Theorem (F.-Pacetti)

Let D= indefinite quaternion \mathbb{Q} -algebra or $\mathrm{Mat}_2(\mathbb{Q})$. Let A/\mathbb{Q} be an abelian surface with $\mathrm{End}_{\mathbb{Q}}(A)=\mathbb{Z}$ and $\mathrm{End}_{\bar{\mathbb{Q}}}(A)\otimes\mathbb{Q}=D$. Then

• If A is principally polarizable and $\operatorname{End}_{\bar{\mathbb{Q}}}(A)$ is an hereditary quaternion order, then A is paramodular.

Theorem (F.-Pacetti)

- If A is principally polarizable and $\operatorname{End}_{\bar{\mathbb{Q}}}(A)$ is an hereditary quaternion order, then A is paramodular.
- Dieulefait-Rotger showed that L/\mathbb{Q} is biquadratic.

Theorem (F.-Pacetti)

- If A is principally polarizable and $\operatorname{End}_{\bar{\mathbb{Q}}}(A)$ is an hereditary quaternion order, then A is paramodular.
- Dieulefait-Rotger showed that L/\mathbb{Q} is biquadratic.
- We may pick K/\mathbb{Q} quadratic subextension so that $\operatorname{End}_K(A)\otimes\mathbb{Q}$ is a real quadratic field.

Theorem (F.-Pacetti)

- If A is principally polarizable and $\operatorname{End}_{\bar{\mathbb{Q}}}(A)$ is an hereditary quaternion order, then A is paramodular.
- Dieulefait-Rotger showed that L/\mathbb{Q} is biquadratic.
- We may pick K/\mathbb{Q} quadratic subextension so that $\operatorname{End}_K(A)\otimes\mathbb{Q}$ is a real quadratic field.
- $\det \rho_{A,\lambda}^{(K)} = \chi_{\ell}$, the cyclotomic character.

Theorem (F.-Pacetti)

- If A is principally polarizable and $\operatorname{End}_{\bar{\mathbb{Q}}}(A)$ is an hereditary quaternion order, then A is paramodular.
- Dieulefait-Rotger showed that L/\mathbb{Q} is biquadratic.
- We may pick K/\mathbb{Q} quadratic subextension so that $\operatorname{End}_K(A) \otimes \mathbb{Q}$ is a real quadratic field.
- det $\rho_{A\lambda}^{(K)} = \chi_{\ell}$, the cyclotomic character.
- ullet Hence the representation π of $GL_2(\mathbb{A}_K)$ has trivial central character.

Theorem (F.-Pacetti)

- If A is principally polarizable and $\operatorname{End}_{\bar{\mathbb{Q}}}(A)$ is an hereditary quaternion order, then A is paramodular.
- Dieulefait-Rotger showed that L/\mathbb{Q} is biquadratic.
- We may pick K/\mathbb{Q} quadratic subextension so that $\operatorname{End}_K(A) \otimes \mathbb{Q}$ is a real quadratic field.
- $\det \rho_{A,\lambda}^{(K)} = \chi_{\ell}$, the cyclotomic character.
- Hence the representation π of $GL_2(\mathbb{A}_K)$ has trivial central character.
- \Longrightarrow the induction of π to $\mathbb Q$ is paramodular.

An example

Consider the following genus 2 curve from Dieulefait-Rotger

$$C: y^2 = (x^2 + 7)(83/30x^4 + 14x^3 - 1519/30x^2 + 49x - 1813/120),$$

and let $A = \text{Jac } C$.

- End_L(A) is a maximal order in B_6 (the indefinite quaternion algebra of discriminant 6), for $L = \mathbb{Q}(\sqrt{-6}, \sqrt{-14})$.
- $\operatorname{End}_{\mathbb{Q}}(A) = \mathbb{Z}$.
- $\operatorname{End}_{\mathbb{Q}(\sqrt{-14})}(A) \otimes \mathbb{Q} = \mathbb{Q}(\sqrt{2}).$
- $\operatorname{End}_{\mathbb{Q}(\sqrt{21})}(A) \otimes \mathbb{Q} = \mathbb{Q}(\sqrt{3}).$
- $\operatorname{End}_{\mathbb{Q}(\sqrt{-6})}(A) \otimes \mathbb{Q} = \mathbb{Q}(\sqrt{-6}).$

• If $\operatorname{Gal}(L/\mathbb{Q}) = C_2 \times C_2$, then for some K/\mathbb{Q} we have $\operatorname{End}_K(A) \otimes \mathbb{Q}$ real quadratic, and $\det \rho_{A,\lambda}^{(K)} = \chi_\ell$.

- If $Gal(L/\mathbb{Q}) = C_2 \times C_2$, then for some K/\mathbb{Q} we have $End_K(A) \otimes \mathbb{Q}$ real quadratic, and $\det \rho_{A,\lambda}^{(K)} = \chi_{\ell}$.
- The $\operatorname{Gal}_{\mathcal{K}}$ -equivariant determinant form $W_{\lambda}(A) \wedge W_{\lambda}(A) \to E_{\lambda}(\chi_{\ell})$ extends to a $\operatorname{Gal}_{\mathbb{O}}$ -equivariant alternating pairing

$$\operatorname{Ind}_K^\mathbb{Q} W_\lambda(A) imes \operatorname{Ind}_K^\mathbb{Q} W_\lambda(A) o E_\lambda(\chi_\ell).$$

- If $Gal(L/\mathbb{Q}) = C_2 \times C_2$, then for some K/\mathbb{Q} we have $End_K(A) \otimes \mathbb{Q}$ real quadratic, and $\det \rho_{A,\lambda}^{(K)} = \chi_\ell$.
- The $\operatorname{Gal}_{\mathcal{K}}$ -equivariant determinant form $W_{\lambda}(A) \wedge W_{\lambda}(A) \to E_{\lambda}(\chi_{\ell})$ extends to a $\operatorname{Gal}_{\mathbb{Q}}$ -equivariant alternating pairing

$$\operatorname{\mathsf{Ind}}^{\mathbb Q}_{\mathsf K} \ W_{\lambda}(\mathsf A) imes \operatorname{\mathsf{Ind}}^{\mathbb Q}_{\mathsf K} \ W_{\lambda}(\mathsf A) o \mathsf E_{\lambda}(\chi_{\ell}).$$

• If $\operatorname{Gal}(L/\mathbb{Q}) \simeq D_{2 \cdot n}$, n = 3, 4, 6, then there is a single quadratic subextension K of L, and $\operatorname{End}_K(A) \otimes \mathbb{Q}$ is always imaginary quadratic.

- If $\operatorname{Gal}(L/\mathbb{Q}) = C_2 \times C_2$, then for some K/\mathbb{Q} we have $\operatorname{End}_K(A) \otimes \mathbb{Q}$ real quadratic, and $\det \rho_{A,\lambda}^{(K)} = \chi_\ell$.
- The $\operatorname{Gal}_{\mathcal{K}}$ -equivariant determinant form $W_{\lambda}(A) \wedge W_{\lambda}(A) \to E_{\lambda}(\chi_{\ell})$ extends to a $\operatorname{Gal}_{\mathbb{Q}}$ -equivariant alternating pairing

$$\operatorname{Ind}_K^\mathbb{Q} W_\lambda(A) imes \operatorname{Ind}_K^\mathbb{Q} W_\lambda(A) o E_\lambda(\chi_\ell).$$

- If $\operatorname{Gal}(L/\mathbb{Q}) \simeq D_{2 \cdot n}$, n = 3, 4, 6, then there is a single quadratic subextension K of L, and $\operatorname{End}_K(A) \otimes \mathbb{Q}$ is always imaginary quadratic.
- Moreover, $\det \rho_{A,\lambda}^{(K)} = \varepsilon \chi_{\ell}$, where ε is a nontrivial character of $\operatorname{Gal}(L/K)$ which usually does not extend to $\operatorname{Gal}(L/\mathbb{Q})$.

- If $Gal(L/\mathbb{Q}) = C_2 \times C_2$, then for some K/\mathbb{Q} we have $End_K(A) \otimes \mathbb{Q}$ real quadratic, and $\det \rho_{A,\lambda}^{(K)} = \chi_\ell$.
- The $\operatorname{Gal}_{\mathcal{K}}$ -equivariant determinant form $W_{\lambda}(A) \wedge W_{\lambda}(A) \to E_{\lambda}(\chi_{\ell})$ extends to a $\operatorname{Gal}_{\mathbb{O}}$ -equivariant alternating pairing

$$\operatorname{Ind}_{\mathcal K}^{\mathbb Q} W_{\lambda}(A) imes \operatorname{Ind}_{\mathcal K}^{\mathbb Q} W_{\lambda}(A) o E_{\lambda}(\chi_{\ell}).$$

- If $\operatorname{Gal}(L/\mathbb{Q}) \simeq D_{2\cdot n}$, n=3,4,6, then there is a single quadratic subextension K of L, and $\operatorname{End}_K(A) \otimes \mathbb{Q}$ is always imaginary quadratic.
- Moreover, $\det \rho_{A,\lambda}^{(K)} = \varepsilon \chi_{\ell}$, where ε is a nontrivial character of $\operatorname{Gal}(L/K)$ which usually does not extend to $\operatorname{Gal}(L/\mathbb{Q})$.
- Can't extend determinant form to a $\operatorname{Gal}_{\mathbb Q}$ -equivariant pairing on $\operatorname{Ind}_K^{\mathbb Q} W_{\lambda}(A)$.