Part 2i: Convergence of Markov chains

Textbook: pp. 55-56

	Intr	odu	ıctio	n t	o cc	nve	erge	nce	of	Mai	rkov	v ch	ains	5				
	•	The	con	ver	genc	e th	eor	em i	n M	arko	ov c	hain	s de	als v	with	the		
				enc	e of	the	mai	rgina	al di	strik	utio	on fo	or ar	ı inc	reas	sing	lag	in
		time															_	
		Und stat						ılarit	у сс	ondi	tion	s th	e co	nve	rger	ice i	s to	the
								em i	s a l	nasio	s for	rimr	ort	ant	simı	ılati	on	
		algo			50110			J	<i>.</i>	Jusi						110101		

The stationary distribution	
Definition 2.25 Let X be a time-homogeneous Markov chain with transition matrix P . A probability vector π is called a <i>stationary distribution</i> of X , $\pi^{\top}P = \pi^{\top}$, that is if	
$\sum_{x \in S} \pi_x p_{xy} = \pi_y \tag{2}.$	4)
for all $y \in S$.	
$\bullet \ \pi^T P = \pi^T \iff (P^T)\pi = \pi$	
 P^T is not symmetric. P^T and P share the same eigenvalues. 	
• $\overrightarrow{P1} = \overrightarrow{1} \implies \lambda = 1$ is and eigenvalue of \overrightarrow{P}^T .	
• $\lambda = 1$ is the largest eigenvalue.	
• The multiplicity of $\lambda=1$, under appropriate regularity	
conditions, is one.	

