热学: 第 1 次作业

Due on 2024.3.4

周欣 Section A

郑晓旸 202111030007

道尔顿提出一种温标: 规定理想气体体积的相对增量正比于温度的增量, 在标准大气压下, 规定水的冰点温度为零度, 沸水温度为 100 度。试用摄氏度 t 来表示道尔顿温标的温度 τ

Solution

设大气压强为 $P_{atm}, T_0 = 273.15K$ 为摄氏 0 度, $T_{100} = 373.15K$ 为摄氏 100 度,t 为摄氏度, τ 为道尔顿温标的温度。 V_0 为理想气体在摄氏 0 度下的体积。由题意可得:

$$P_{atm}V_0 = \nu RT_0$$
$$P_{atm}V_{100} = \nu RT_{100}$$

由定义:

$$\tau = \frac{V - V_0}{V_{100} - V_0} \times 100$$

并带入气体体积和摄氏度的关系:

$$V = \frac{\nu R(t + 273.15)}{P_{atm}}$$

得到道尔顿温度与摄氏温度的转化关系:

$$\begin{split} \tau &= \frac{\frac{\nu R(t + 273.15)}{P_{atm}} - V_0}{V_{100} - V_0} \times 100 \\ &= \frac{\frac{\nu R(t + 273.15)}{P_{atm}} - \nu R T_0}{\nu R T_{100} - \nu R T_0} \times 100 \\ &= \frac{t}{100} \times 100 = t \end{split}$$

国际实用温标(1990 年)规定: 用于 13.803 (平衡氢三相点) 到 961.78°C (银在 0.101MPa 下的凝固点)的标准测量仪器是铂电阻温度计。设铂电阻在 0°C 及 °C 时电阻的值分别为 R_0 及 R(t),定义 $W(t)=R(t)/R_0$,且在不同测温区内 W(t) 对 t 的函数关系是不同的,在上述测温范围内大致有 $W(t)=1+At+Bt^2$ 若在 0.101MPa 下,对应于冰的熔点、水的沸点、硫的沸点(温度为 444.67°C)电阻的阻值分别为 11.000 Ω 、15.247 Ω 、28.887 Ω ,试确定上式中的常数 A 和 B。(正确标注常数 A 和 B 的单位)

Solution

由题意可得:

$$W(0) = 1$$

$$W(100) = 1 + 100^{\circ}C \cdot A + 10000^{\circ}C^{2} \cdot B$$

$$W(444.67) = 1 + 444.67^{\circ}C \cdot A + (444.67^{\circ}C)^{2} \cdot B$$

同时代入电阻的阻值:

$$11/11 = R_0/R_0 = 1$$

$$15.247/11 = R_{100}/R_0 = 1 + 100^{\circ}C \cdot A + 10000^{\circ}C^2 \cdot B$$

$$28.887/11 = R_0 = 1 + 444.67^{\circ}C \cdot A + (444.67^{\circ}C)^2 \cdot B$$

得到 A、B、C 的解:

$$\begin{cases} A = 3.9201^{\circ}C^{-1} \\ B = -5.9205 \times 10^{-7^{\circ}}C^{-2} \end{cases}$$

Write part of $\mathbf{Quick\text{-}Sort}(list, start, end)$

- 1: function QUICK-SORT(list, start, end)
 2: if $start \ge end$ then
 3: return
 4: end if
 5: $mid \leftarrow \text{Partition}(list, start, end)$ 6: QUICK-SORT(list, start, mid 1)
 7: QUICK-SORT(list, mid + 1, end)
 8: end function
 - Algorithm 1: Start of QuickSort

Suppose we would like to fit a straight line through the origin, i.e., $Y_i = \beta_1 x_i + e_i$ with i = 1, ..., n, $E[e_i] = 0$, and $Var[e_i] = \sigma_e^2$ and $Cov[e_i, e_j] = 0, \forall i \neq j$.

Part A

Find the least squares esimator for $\hat{\beta}_1$ for the slope β_1 .

Solution

To find the least squares estimator, we should minimize our Residual Sum of Squares, RSS:

$$RSS = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$
$$= \sum_{i=1}^{n} (Y_i - \hat{\beta}_1 x_i)^2$$

By taking the partial derivative in respect to $\hat{\beta}_1$, we get:

$$\frac{\partial}{\partial \hat{\beta}_1}(RSS) = -2\sum_{i=1}^n x_i(Y_i - \hat{\beta}_1 x_i) = 0$$

This gives us:

$$\sum_{i=1}^{n} x_i (Y_i - \hat{\beta}_1 x_i) = \sum_{i=1}^{n} x_i Y_i - \sum_{i=1}^{n} \hat{\beta}_1 x_i^2$$
$$= \sum_{i=1}^{n} x_i Y_i - \hat{\beta}_1 \sum_{i=1}^{n} x_i^2$$

Solving for $\hat{\beta}_1$ gives the final estimator for β_1 :

$$\hat{\beta_1} = \frac{\sum x_i Y_i}{\sum x_i^2}$$

Part B

Calculate the bias and the variance for the estimated slope $\hat{\beta}_1$.

Solution

For the bias, we need to calculate the expected value $E[\hat{\beta}_1]$:

$$E[\hat{\beta}_1] = E\left[\frac{\sum x_i Y_i}{\sum x_i^2}\right]$$

$$= \frac{\sum x_i E[Y_i]}{\sum x_i^2}$$

$$= \frac{\sum x_i (\beta_1 x_i)}{\sum x_i^2}$$

$$= \frac{\sum x_i^2 \beta_1}{\sum x_i^2}$$

$$= \beta_1 \frac{\sum x_i^2 \beta_1}{\sum x_i^2}$$

$$= \beta_1$$

Thus since our estimator's expected value is β_1 , we can conclude that the bias of our estimator is 0.

For the variance:

$$\begin{aligned} \operatorname{Var}[\hat{\beta}_{1}] &= \operatorname{Var}\left[\frac{\sum x_{i}Y_{i}}{\sum x_{i}^{2}}\right] \\ &= \frac{\sum x_{i}^{2}}{\sum x_{i}^{2}} \operatorname{Var}[Y_{i}] \\ &= \frac{\sum x_{i}^{2}}{\sum x_{i}^{2}} \operatorname{Var}[Y_{i}] \\ &= \frac{1}{\sum x_{i}^{2}} \operatorname{Var}[Y_{i}] \\ &= \frac{1}{\sum x_{i}^{2}} \sigma^{2} \\ &= \frac{\sigma^{2}}{\sum x_{i}^{2}} \end{aligned}$$

Problem 5

Prove a polynomial of degree k, $a_k n^k + a_{k-1} n^{k-1} + \ldots + a_1 n^1 + a_0 n^0$ is a member of $\Theta(n^k)$ where $a_k \ldots a_0$ are nonnegative constants.

证明. To prove that $a_k n^k + a_{k-1} n^{k-1} + \ldots + a_1 n^1 + a_0 n^0$, we must show the following:

$$\exists c_1 \exists c_2 \forall n \geq n_0, \ c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n)$$

For the first inequality, it is easy to see that it holds because no matter what the constants are, $n^k \le a_k n^k + a_{k-1} n^{k-1} + \ldots + a_1 n^1 + a_0 n^0$ even if $c_1 = 1$ and $n_0 = 1$. This is because $n^k \le c_1 \cdot a_k n^k$ for any nonnegative constant, c_1 and a_k .

Taking the second inequality, we prove it in the following way. By summation, $\sum_{i=0}^{k} a_i$ will give us a new constant, A. By taking this value of A, we can then do the following:

$$a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n^1 + a_0 n^0 =$$

$$\leq (a_k + a_{k-1} \dots a_1 + a_0) \cdot n^k$$

$$= A \cdot n^k$$

$$\leq c_2 \cdot n^k$$

where $n_0 = 1$ and $c_2 = A$. c_2 is just a constant. Thus the proof is complete.

Evaluate $\sum_{k=1}^{5} k^2$ and $\sum_{k=1}^{5} (k-1)^2$.

Problem 19

Find the derivative of $f(x) = x^4 + 3x^2 - 2$

Problem 6

Evaluate the integrals $\int_0^1 (1-x^2) dx$ and $\int_1^\infty \frac{1}{x^2} dx$.