

21375YP

In the Claims

1 (Currently Amended)

A compound represented by Formula (I):

or a pharmaceutically acceptable salt thereof, wherein

HET is one of the following heterocycles:

R¹ is

- (a) H;
- (b) C₁-C₆-alkyl, C₂-C₄-alkenyl, C₂-C₄-alkynyl, C₃-C₆-cycloalkyl, or C₁-C₄-alkyl-[C₃-C₆-cycloalkyl], any of which is optionally substituted with one or more of the following substituents: F, CF₃, OH, O-(C₁-C₄)alkyl, S(O)₀₋₂(C₁-C₄)alkyl, O-CONR^aR^b, NR^aR^b, N(R^a)CONR^aR^b, COO-(C₁-C₄)alkyl, COOH, CN, CONR^aR^b, SO₂NR^aR^b, N(R^a)SO₂NR^aR^b, -C(=NH)NH₂, tetrazolyl, triazolyl, imidazolyl, oxazolyl, oxadiazolyl, isooxazolyl, thiazolyl, furyl, thiienyl, pyrazolyl, pyrrolyl, pyridyl, pyrimidinyl, pyrazinyl, phenyl, piperidinyl, morpholinyl, pyrrolidinyl or piperazinyl;
- (c) -O-C₁-C₆-alkyl, -O-C₃-C₆-cycloalkyl, -S-C₁-C₆-alkyl or -S-C₃-C₆-cycloalkyl, any of which is optionally substituted with one or more of the following substituents: F, CF₃, OH, O-(C₁-

21375YP

- $C_4)$ alkyl, $S(O)_{0-2}(C_1-C_4)$ alkyl, O-CONR^aR^b, NR^aR^b, N(R^a)CONR^aR^b, COO-(C₁-C₄)alkyl, COOH, CN, CONR^aR^b, SO₂NR^aR^b, N(R^a)SO₂NR^aR^b, -C(=NH)NH₂, tetrazolyl, triazolyl, imidazolyl, oxazolyl, oxadiazolyl, isooxazolyl, thiazolyl, furyl, thienyl, pyrazolyl, pyrrolyl, pyridyl, pyrimidinyl, pyrazinyl, phenyl, piperidinyl, morpholinyl, pyrrolidinyl or piperazinyl;
- (d) -C₀-C₄-alkyl-C₁-C₄-perfluoroalkyl, or -O-C₀-C₄-alkyl-C₁-C₄-perfluoroalkyl;
 - (e) -OH;
 - (f) -O-aryl, or -O-C₁-C₄-alkyl-aryl, wherein aryl is phenyl, pyridyl, pyrimidinyl, furyl, thienyl, pyrrolyl, triazolyl, pyrazolyl, thiazolyl, isoxazolyl, oxazolyl, or oxadiazolyl, any aryl of which is optionally substituted with 1-3 substituents selected from i) F, Cl, Br, I, ii) -CN, iii) -NO₂, iv) -C(=O)(R^a), v) -OR^a, vi) -NR^aR^b, vii) -C₀₋₄alkyl-CO-OR^a, viii) -(C₀₋₄alkyl)-NH-CO-OR^a, ix) -(C₀₋₄alkyl)-CO-N(R^a)(R^b), x) -S(O)₀₋₂R^a, xi) -SO₂N(R^a)(R^b), xii) -NR^aSO₂R^a, xiii) -C₁₋₁₀alkyl, and xiv) -C₁₋₁₀alkyl, wherein one or more of the alkyl carbons can be replaced by a -NR^a-, -O-, -S(O)₁₋₂-, -O-C(O)-, -C(O)-O-, -C(O)-N(R^a)-, -N(R^a)-C(O)-, -N(R^a)-C(O)-N(R^a)-, -C(O)-, -CH(OH)-, -CH=CH-, or -C≡C-;
 - (g) -OC(=O)(R^a)(R^b), or -OSO₂N(R^a)(R^b);
 - (h) -SH, or -SCON(R^a)(R^b);
 - (i) NO₂;
 - (j) NR^aR^b, -N(COR^a)R^b, -N(SO₂R^a)R^b, -N(R^a)SO₂N(R^a)₂, -N(OR^a)CONR^aR^b, -N(R^a)SO₂R^a or -N(R^a)CON(R^a)₂;
 - (k) -CH(OR^a)R^a, -C(OR^a)CF₃, -CH(NHR^b)R^a, -C(=O)R^a, C(=O)CF₃, -SOCH₃, -SO₂CH₃, COOR^a, CN, CONR^aR^b, -COCONR^aR^b, -SO₂NR^aR^b, -CH₂O-SO₂NR^aR^b, SO₂N(R^a)OR^a, -C(=NH)NH₂, -CR^a=N-OR^a, CH=CHCONR^aR^b;
 - (l) -CONR^a(CH₂)₀₋₂C(R^a)(R^b)(CH₂)₀₋₂CONR^aR^b;
 - (m) tetrazolyl, tetrazolinonyl, triazolyl, triazolinonyl, imidazolyl, imidozolonyl, oxazolyl, oxadiazolyl, isooxazolyl, thiazolyl, furyl, thienyl, pyrazolyl, pyrazolonyl, pyrrolyl, pyridyl, pyrimidinyl, pyrazinyl, or phenyl, any of which is optionally substituted with 1-3 substituents selected from i) F, Cl, Br, I, ii) -CN, iii) -NO₂, iv) -C(=O)R^a, v) C₁-C₆-alkyl, vi) -O-R^a, vii) -NR^aR^b, viii) -C₀-C₄-alkyl-CO-O R^a, ix) -(C₀-C₄-alkyl)-NH-CO-OR^a, x) -(C₀-C₄-alkyl)-CO-NR^aR^b, xi) -S(O)₀₋₂R^a, xii) -SO₂NR^aR^b, xiii) -NHSO₂R^a, xiv) -C₁-C₄-perfluoroalkyl, and xv) -O-C₁-C₄-perfluoroalkyl;
 - (n) -C(R^a)=C(R^b)-COOR^a, or -C(R^a)=C(R^b)-CONR^aR^b;

21375YP

(o)

- (p) piperidin-1-yl, morpholin-4-yl, pyrrolidin-1-yl, piperazin-1-yl or 4-subsituted piperazin-1-yl, any of which is optionally substituted with 1-3 substituents selected from i) -CN, ii) -C(=O)(R^b), iii) C₁-C₆-alkyl, iv) -OR^a, v) -NR^aR^b, vi) -C₀-C₄-alkyl-CO-OR^a, vii) -(C₀-C₄-alkyl)-NH-CO-OR^a, viii) -(C₀-C₄-alkyl)-CON(R^a)(R^b), ix) -SR^a, x) -S(O)₀₋₂R^a, xi) -SO₂N(R^a)(R^b), xii) -NR^aSO₂R^a xiii) -C₁-C₄-perfluoroalkyl and xiv) -O-C₁-C₄-perfluoroalkyl;

R^a is

- (a) H;
- (b) C₁-C₄-alkyl, optionally substituted with one or more of the following substituents: F, CF₃, OH, O-(C₁-C₄)alkyl, S(O)₀₋₂-(C₁-C₄)alkyl, -OCONH₂, -OCONH(C₁-C₄alkyl), -OCON(C₁-C₄alkyl)(C₁-C₄alkyl), -OCONHC₁-C₄alkyl-aryl, -OCON(C₁-C₄alkyl)(C₁-C₄alkyl-aryl), NH₂, NH(C₁-C₄alkyl), N(C₁-C₄alkyl)(C₁-C₄alkyl), NH(C₁-C₄alkyl-aryl), N(C₁-C₄alkyl)(C₁-C₄alkyl-aryl), NHCONH₂, NHCONH(C₁-C₄alkyl), NHCONH(C₁-C₄alkyl-aryl), -NHCON(C₁-C₄alkyl)(C₁-C₄alkyl), NHCON(C₁-C₄alkyl)(C₁-C₄alkyl-aryl), N(C₁-C₄alkyl)CON(C₁-C₄alkyl)(C₁-C₄alkyl-aryl), COO-(C₁-C₄-alkyl), COOH, CN, CONH₂, CONH(C₁-C₄alkyl), CON(C₁-C₄alkyl)(C₁-C₄alkyl), SO₂NH₂, SO₂NH(C₁-C₄alkyl), SO₂NH(C₁-C₄alkyl-aryl), SO₂N(C₁-C₄alkyl)(C₁-C₄alkyl), NHSO₂NH₂, -C(=NH)NH₂, tetrazolyl, triazolyl, imidazolyl, oxazolyl, oxadiazolyl, isooxazolyl, thiazolyl, furyl, thiienyl, pyrazolyl, pyrrolyl, pyridyl, pyrimidinyl, pyrazinyl, phenyl, piperidinyl, morpholinyl, pyrrolidinyl or piperazinyl;
- (c) C₀-C₄-alkyl-(C₁-C₄)-perfluoroalkyl; or
- (d) C₁-C₄-alkyl-aryl, wherein aryl is phenyl, pyridyl, pyrimidinyl, furyl, thiienyl, pyrrolyl, triazolyl, pyrazolyl, thiazolyl, isoxazolyl, oxazolyl, or oxadiazolyl, any aryl of which is optionally substituted with 1-3 substituents selected from i) F, Cl, Br, I, ii) -CN, iii) -NO₂, iv) -C(=O)(C₁-C₄-alkyl), v) -O(C₁-C₄-alkyl), vi) -N(C₁-C₄-alkyl)(C₁-C₄-alkyl), vii) -C₁-C₁₀alkyl, and viii) -C₁-C₁₀alkyl, wherein one or more of the alkyl carbons can be replaced by a -O-, -S(O)₁₋₂-, -O-C(O)-, -C(O)-O-, -C(O)-, -CH(OH)-, -CH=CH-, or -C≡C-;

21375YP

 R^b is

- (a) H; or
- (b) C_1 - C_6 -alkyl, optionally substituted with one or more of the following substituents: F, CF_3 , OH, O-(C_1 - C_4)alkyl, S(O)₀₋₂(C_1 - C_4)alkyl, -OCONH₂, -OCONH(C_1 - C_4 alkyl), NH₂, NH(C_1 - C_4 alkyl), N(C_1 - C_4 alkyl)(C_1 - C_4 alkyl), NHCONH₂, NHCONH(C_1 - C_4 alkyl), -NHCON(C_1 - C_4 alkyl)(C_1 - C_4 alkyl), COO-(C_1 - C_4 -alkyl), COOH, CN, and CONH₂;

 R^2 is:

- (a) H;
- (b) $-C_1$ - C_4 -alkyl, $-C_3$ - C_6 -cycloalkyl or $-C_1$ - C_4 -alkyl-(C_3 - C_6)-cycloalkyl, optionally substituted with one or more of the following substituents: F, CF_3 , OH, O-(C_1 - C_4)alkyl, S(O)₀₋₂(C_1 - C_4)alkyl, O-CONR^aR^b, NR^aR^b, N(R^a)CONR^aR^b, COO-(C_1 - C_4)alkyl, COOH, CN, CONR^aR^b, SO₂NR^aR^b, N(R^a)SO₂NR^aR^b, -C(=NH)NH₂, tetrazolyl, triazolyl, imidazolyl, oxazolyl, oxadiazolyl, isooxazolyl, thiazolyl, furyl, thienyl, pyrazolyl, pyrrolyl, pyridyl, pyrimidinyl, pyrazinyl, phenyl, piperidinyl, morpholinyl, pyrrolidinyl and piperazinyl;
- (c) $-C_0$ - C_4 -alkyl- C_1 - C_4 -perfluoroalkyl;
- (d) aryl or $-(C_1$ - C_4 -alkyl)-aryl, wherein aryl is phenyl, pyridyl, pyrimidinyl, furyl, thienyl, pyrrolyl, triazolyl, pyrazolyl, thiazolyl, isoxazolyl, oxazolyl, or oxadiazolyl, any aryl of which is optionally substituted with 1-3 substituents selected from i) F, Cl, Br, I, ii) -CN, iii) -NO₂, iv) -C(=O)(R^a), v) -OR^a, vi) -NR^aR^b, vii) -C₀₋₄alkyl-CO-OR^a, viii) -(C₀₋₄alkyl)-NH-CO-OR^a, ix) -(C₀₋₄alkyl)-CO-N(R^a)(R^b), x) -S(O)₀₋₂R^a, xi) -SO₂N(R^a)(R^b), xii) -NR^aSO₂R^a, xiii) -C₁₋₁₀alkyl, and xiv) -C₁₋₁₀alkyl, wherein one or more of the alkyl carbons can be replaced by a -NR^a-, -O-, -S(O)₁₋₂-, -O-C(O)-, -C(O)-O-, -C(O)-N(R^a)-, -N(R^a)-C(O)-, -N(R^a)-C(O)-N(R^a)-, -C(O)-, -CH(OH)-, -CH=CH-, or -C≡C-; or
- (e) -C(=O)(R^a), -CONR^aR^b, COO-(C_1 - C_4)alkyl, -SO₂R^a, -SO₂N(R^a)(R^b);

 R^3 is

- (a) H;
- (b) $-C_1$ - C_4 -alkyl, $-C_3$ - C_6 -cycloalkyl or $-C_1$ - C_4 -alkyl-(C_3 - C_6)-cycloalkyl, optionally substituted with one or more of the following substituents: F, CF_3 , OH, O-(C_1 - C_4)alkyl, S(O)₀₋₂(C_1 - C_4)alkyl, O-CONR^aR^b, NR^aR^b, N(R^aR^b)CONR^aR^b, COO-(C_1 - C_4)alkyl, COOH, CN, CONR^aR^b, SO₂NR^aR^b, N(R^aR^b)SO₂NR^aR^b, -C(=NH)NH₂, tetrazolyl, triazolyl, imidazolyl, oxazolyl, oxadiazolyl, isooxazolyl, thiazolyl, furyl, thienyl, pyrazolyl, pyrrolyl, pyridyl, pyrimidinyl, pyrazinyl, phenyl, piperidinyl, morpholinyl, pyrrolidinyl or piperazinyl;
- (c) $-C_0$ - C_4 -alkyl- C_1 - C_4 -perfluoroalkyl;

21375YP

- (d) aryl or -(C₁-C₄-alkyl)-aryl, wherein aryl is phenyl, pyridyl, pyrimidinyl, furyl, thienyl, pyrrolyl, triazolyl, pyrazolyl, thiazolyl, isoxazolyl, oxazolyl, or oxadiazolyl, any aryl of which is optionally substituted with 1-3 substituents selected from i) F, Cl, Br, I, ii) -CN, iii) -NO₂, iv) -C(=O)(R^a), v) -OR^a, vi) -NR^aR^b, vii) -C₀₋₄alkyl-CO-OR^a, viii) -(C₀₋₄alkyl)-NH-CO-OR^a, ix) -(C₀₋₄alkyl)-CO-N(R^a)(R^b), x) -S(O)₀₋₂R^a, xi) -SO₂N(R^a)(R^b), xii) -NR^aSO₂R^a, xiii) -C₁₋₁₀alkyl, and xiv) -C₁₋₁₀alkyl, wherein one or more of the alkyl carbons can be replaced by a -NR^a-, -O-, -S(O)₁₋₂-, -O-C(O)-, -C(O)-O-, -C(O)-N(R^a)-, -N(R^a)-C(O)-, -N(R^a)-C(O)-N(R^a)-, -C(O)-, -CH(OH)-, -CH=CH-, or -C≡C- ;
- (e) -O-C₁-C₄-alkyl, -O-C₀-C₄-alkyl-C₁-C₄-perfluoroalkyl, -O-aryl or -O(C₁-C₄-alkyl)-aryl; or
- (f) -C(=O)(R^a), -SO₂R^a, -SO₂N(R^a)(R^b), CN, NR^aR^b, NO₂, F, Cl, Br, I, OH, OCONR^aR^b, O(C₁-C₄-alkyl)CONR^aR^b, -OSO₂NR^aR^b, COOR^a, or CONR^aR^b;

R⁴ and R⁵ each independently is:

- (a) H;
- (b) -C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl or C₃-C₆-cycloalkyl, any of which is optionally substituted with one or more of the following substituents: F, CF₃, -O-(C₁-C₄)-alkyl, -CN, -N(R^a)(R^b), -N(R^a)CO-(C₁-C₄)-alkyl, -COOR^b, -CON(R^a)(R^b) or phenyl;
- (c) -O-C₀-C₆-alkyl, -O-aryl, or -O-C₁-C₄-alkyl-aryl, wherein aryl is phenyl, pyridyl, pyrimidinyl, furyl, thienyl, pyrrolyl, triazolyl, pyrazolyl, thiazolyl, isoxazolyl, oxazolyl, or oxadiazolyl, any aryl of which is optionally substituted with 1-3 substituents selected from i) F, Cl, Br, I, ii) -CN, iii) -NO₂, iv) -C(=O)(R^a), v) -OR^a, vi) -NR^aR^b, vii) -C₀₋₄alkyl-CO-OR^a, viii) -(C₀₋₄alkyl)-NH-CO-OR^a, ix) -(C₀₋₄alkyl)-CO-N(R^a)(R^b), x) -S(O)₀₋₂R^a, xi) -SO₂N(R^a)(R^b), xii) -NR^aSO₂R^a, xiii) -C₁₋₁₀alkyl, and xiv) -C₁₋₁₀alkyl, wherein one or more of the alkyl carbons can be replaced by a -NR^a-, -O-, -S(O)₁₋₂-, -O-C(O)-, -C(O)-O-, -C(O)-N(R^a)-, -N(R^a)-C(O)-, -N(R^a)-C(O)-N(R^a)-, -C(O)-, -CH(OH)-, -C=C-, or -C≡C- ;
- (d) -C₀-C₄-alkyl-C₁-C₄-perfluoroalkyl, or -O-C₀-C₄-alkyl-C₁-C₄-perfluoroalkyl; or
- (e) CN, NH₂, NO₂, F, Cl, Br, I, OH, OCON(R^a)(R^b), O(C₁-C₄-alkyl)CONR^aR^b, -OSO₂N(R^a)(R^b), -COOR^b, -CON(R^a)(R^b), or aryl, wherein aryl is phenyl, pyridyl, pyrimidinyl, furyl, thienyl, pyrrolyl, triazolyl, pyrazolyl, thiazolyl, isoxazolyl, oxazolyl, or oxadiazolyl, any aryl of which is optionally substituted with 1-3 substituents selected from i) F, Cl, Br, I, ii) -CN, iii) -NO₂, iv) -C(=O)(R^a), v) -OR^a, vi) -NR^aR^b, vii) -C₀₋₄alkyl-CO-OR^a, viii) -(C₀₋₄alkyl)-NH-CO-OR^a, ix) -(C₀₋₄alkyl)-CO-N(R^a)(R^b), x) -S(O)₀₋₂R^a, xi) -SO₂N(R^a)(R^b), xii) -NR^aSO₂R^a, xiii) -C₁₋₁₀alkyl, and xiv) -C₁₋₁₀alkyl, wherein one or more of the alkyl carbons can be replaced by a -NR^a-, -O-, -S(O)₁₋₂-, -O-C(O)-, -C(O)-O-, -C(O)-N(R^a)-, -N(R^a)-C(O)-, -N(R^a)-C(O)-N(R^a)-, -C(O)-, -CH(OH)-, -C=C-, or -C≡C-; and

21375YP

R⁶, R⁷ and R⁸ each independently is:

- (a) H, provided at least one of R⁶, R⁷ and R⁸ is not hydrogen;
- (b) C₁-C₆-alkyl, C₂-C₄-alkenyl, C₃-C₄-alkynyl or C₃-C₆-cycloalkyl, any of which is optionally substituted all substituted with one or more of the following substituents: F, CF₃, OH, O-(C₁-C₄)alkyl, OCON(R^a)(R^b), NR^aR^b, COOR^a, CN, CONR^aR^b, N(R^a)CONR^aR^b, N(R^a)SO₂NR^aR^b, SO₂NR^aR^b, S(O)₀₋₂(C₁-C₄-alkyl), -C(=NH)NH₂, tetrazolyl, triazolyl, imidazolyl, oxazolyl, oxadiazolyl, isooxazolyl, thiazolyl, furyl, thienyl, pyrazolyl, pyrrolyl, pyridyl, pyrimidinyl, pyrazinyl, phenyl, piperidinyl, morpholinyl, pyrrolidinyl, or piperazinyl;
- (c) -O- C₁-C₆-alkyl, -O-C₃-C₆-cycloalkyl, -S-C₁-C₆-alkyl, or -S-C₃-C₆-cycloalkyl, any of which is optionally substituted with one or more of the following substituents: F, CF₃, OH, O-(C₁-C₄)alkyl, NH₂, NH(C₁-C₄-alkyl), N(C₁-C₄-alkyl)₂, COOH, CN, CONH₂, CONH(C₁-C₄-alkyl), CONH(C₁-C₄-alkyl)₂, SO₂NH₂, SO₂NH(C₁-C₄-alkyl), tetrazolyl, triazolyl, imidazolyl, oxazolyl, oxadiazolyl, isooxazolyl, thiazolyl, furyl, thienyl, pyrazolyl, pyrrolyl, pyridyl, pyrimidinyl, pyrazinyl, phenyl, piperidinyl, morpholinyl, pyrrolidinyl, or piperazinyl;
- (d) -C₀-C₄-alkyl-C₁-C₄-perfluoroalkyl, or -O-C₀-C₄-alkyl-C₁-C₄-perfluoroalkyl; or
- (e) -O-aryl, or -O-C₁-C₄-alkyl-aryl, wherein aryl is phenyl, pyridyl, pyrimidinyl, furyl, thienyl, pyrrolyl, triazolyl, pyrazolyl, thiazolyl, isoxazolyl, oxazolyl, or oxadiazolyl, any aryl of which is optionally substituted with 1-3 substituents selected from i) F, Cl, Br, I, ii) -CN, iii) -NO₂, iv) -C(=O)(R^a), v) -OR^a, vi) -NR^aR^b, vii) -C₀₋₄alkyl-CO-OR^a, viii) -(C₀₋₄alkyl)-NH-CO-OR^a, ix) -(C₀₋₄alkyl)-CO-N(R^a)(R^b), x) -S(O)₀₋₂R^a, xi) -SO₂N(R^a)(R^b), xii) -NR^aSO₂R^a, xiii) -C₁₋₁₀alkyl, and xiv) -C₁₋₁₀alkyl, wherein one or more of the alkyl carbons can be replaced by a -NR^a-, -O-, -S(O)₁₋₂-, -O-C(O)-, -C(O)-O-, -C(O)-N(R^a)-, -N(R^a)-C(O)-, -N(R^a)-C(O)-N(R^a)-, -C(O)-, -CH(OH)-, -CH=CH-, or -C≡C; (f) CN, N(R^a)(R^b), NO₂, F, Cl, Br, I, -OR^a, -SR^a, -OCON(R^a)(R^b), -OSO₂N(R^a)(R^b), COOR^b, CON(R^a)(R^b), -N(R^a)CON(R^a)(R^b), -N(R^a)SO₂N(R^a)(R^b), -C(OR^b)R^a, -C(OR^a)CF₃, -C(NHR^a)CF₃, -C(=O)R^a, C(=O)CF₃, -SOCH₃, -SO₂CH₃, -NHSO₂(C₁₋₆-alkyl), -NHSO₂-aryl, SO₂N(R^a)(R^b), -CH₂OSO₂N(R^a)(R^b), SO₂N(R^b)-OR^a, -C(=NH)NH₂, -CR_a=N-OR_a, CH=CH or aryl, wherein aryl is phenyl, pyridyl, pyrimidinyl, furyl, thienyl, pyrrolyl, triazolyl, pyrazolyl, thiazolyl, isoxazolyl, oxazolyl, or oxadiazolyl, any aryl of which is optionally substituted with 1-3 substituents selected from i) F, Cl, Br, I, ii) -CN, iii) -NO₂, iv) -C(=O)(R^a), v) -OR^a, vi) -NR^aR^b, vii) -C₀₋₄alkyl-CO-OR^a, viii) -(C₀₋₄alkyl)-NH-CO-OR^a, ix) -(C₀₋₄alkyl)-CO-N(R^a)(R^b), x) -S(O)₀₋₂R^a, xi) -SO₂N(R^a)(R^b), xii) -NR^aSO₂R^a, xiii) -C₁₋₁₀alkyl, and xiv) -C₁₋₁₀alkyl, wherein one or more of the alkyl carbons can be replaced by a -NR^a-, -O-, -S(O)₁₋₂-, -O-C(O)-, -C(O)-O-, -C(O)-N(R^a)-, -N(R^a)-C(O)-, -N(R^a)-C(O)-N(R^a)-, -C(O)-, -CH(OH)-, -CH=CH-, or -C≡C; or when R⁶ and R⁷ are present on adjacent carbon atoms, R⁶ and R⁷, together with the benzene ring to which

21375YP

they are attached, may form a bicyclic aromatic ring selected from naphthyl, indolyl, quinolinyl, isoquinolinyl, quinoxalinyl, benzofuryl, benzothienyl, benzoxazolyl, benzothiazolyl, and benzimidazolyl, any aromatic ring of which is optionally substituted with 1-4 independent substituents selected from i) halogen, ii) -CN, iii) -NO₂, iv) -CHO, v) -O-C₁₋₄alkyl, vi) -N(C₀₋₄alkyl)(C₀₋₄alkyl), vii) -C₀₋₄alkyl-CO-O(C₀₋₄alkyl), viii) -(C₀₋₄alkyl)-NH-CO-O(C₀₋₄alkyl), ix) -(C₀₋₄alkyl)-CO-N(C₀₋₄alkyl)(C₀₋₄alkyl), x) -S(C₀₋₄alkyl), xi) -S(O)(C₁₋₄alkyl), xii) -SO₂(C₀₋₄alkyl), xiii) -SO₂N(C₀₋₄alkyl)(C₀₋₄alkyl), xiv) -NHSO₂(C₀₋₄alkyl)(C₀₋₄alkyl), xv) -C₁₋₁₀alkyl and xvi) -C₁₋₁₀alkyl in which one or more of the carbons can be replaced by a -N(C₀₋₆alkyl)-, -O-, -S(O)₁₋₂-, -O-C(O)-, -C(O)-O-, -C(O)-N(C₀₋₆alkyl)-, -N(C₀₋₆alkyl)-C(O)-, -N(C₀₋₆alkyl)-C(O)-N(C₀₋₆alkyl)-, -C(O)-, -CH(OH), -CH=CH-, or -C≡C-.

2(Original). A compound according to Claim 1, or a pharmaceutically acceptable salt thereof, wherein

HET is

3(Original). A compound according to Claim 1, or a pharmaceutically acceptable salt thereof, wherein

HET is

4. Withdrawn.

5. Withdrawn.

21375YP

6. Withdrawn.

7. Withdrawn.

8(Original). A compound according to Claim 1, or a pharmaceutically acceptable salt thereof, wherein

R^6 is other than H and is attached at the ortho position.

9(Currently Amended). A compound represented by

10(Currently Amended) A compound according to Claim 1- which is represented by

R^6	R^2	R^1
Cl	H	H
Cl	H	COOEt
Cl	H	CONH ₂
Cl	H	CONH-tBu

21375YP

R⁶	R²	R¹
Cl	H	
Cl	H	NH ₂
CF ₃	H	COOEt
CF ₃	H	CONH ₂
CF ₃	H	H
CF ₃	H	NH ₂
OCF ₃	H	CH ₃
OCF ₃	H	H
OCF ₃	H	NH ₂
OCF ₃	H	CONMe ₂
OCF ₃	Cl	CH ₃
OCF ₃	H	NHSO ₂ CH ₃
OCF ₃	H	CH ₂ OH
O-Ph	H	CONH ₂
CF ₃	H	NHCONH-iPr
OCF ₃	H	NHCONH-iPr
OCF ₃	H	NHCOCH ₃
CF ₃	H	NHCOCH ₃
OCF ₃	H	CH ₂ COOEt
OCF ₃	H	CH ₂ CN
OCF ₃	H	CH ₂ CONH ₂
CF ₃	H	CH ₂ CONH ₂
OCF ₃	H	NHCONMe ₂
OCF ₃	H	
OCF ₃	H	2-Pyrimidyl
OCF ₃	H	2-Pyridyl
OCF ₃	H	2-Oxazolyl
OCF ₃	H	2-Imidazolyl
OCF ₃	H	2-Pyrazolyl
OCF ₃	H	2-(1-Methyl)-imidazolyl

21375YP

R⁶	R²	R¹
OCF ₃	H	
OCF ₃	H	 , or
OCF ₃	H	

11(Currently Amended).

A compound represented by

12(Currently Amended).

A compound according to Claim 1 represented by

R₆	R₂	R₁
CF ₃	H	H
CF ₃	H	COOEt
CF ₃	H	CONH ₂
CF ₃	H	CONHCH ₃
CF ₃	COOEt	CH ₃
CF ₃	CONH ₂	CH ₃
OCF ₃	H	H
OCF ₃	H	COOCH ₃
OCF ₃	H	CONH ₂

21375YP

R ₆	R ₂	R ₁
OCF ₃	H	COOH
OCF ₃	H	CH ₂ OH
OCF ₃	H	CONH(CH ₂) ₃ OH, or
O-Ph	H	CONH ₂

13. Withdrawn.

14. Withdrawn.

15. Withdrawn.

16. Withdrawn.

17(Original). A pharmaceutical composition comprising a therapeutically effective amount of the compound according to Claim 1, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.

18. Withdrawn.

19 Withdrawn.

20 Withdrawn.

21 Withdrawn.

22 Withdrawn.

23 Withdrawn.

24 Withdrawn.

25 Withdrawn.

21375YP

26 Withdrawn.

27 Withdrawn.

28 Withdrawn.

29 Withdrawn.

30 Withdrawn.

31 Withdrawn.