Kubernetes 101

Durg FOSS - March 2023

Harshita Sao

Monolithic application

Monolithic Architecture

User Interface

Business Logic

Data Interface

Database

Drawbacks of Monolithic application

- Redeploy the entire application on each update.
- Not flexible and impossible to adopt new tech, languages and frameworks.
- One bug or issue can affect the whole system.
- Due to tight dependency, monolithic applications can run into downtime difficulties.
- High Cost.
- Testing becomes harder.

Microservices & its Advantages

- Can scale easily depending on the needs.
- Changes can easily be deployed they don't impact other stack
- Cost effective.
- Easier Testing
- Improved Fault tolerance.
- Easily adopt the latest emerging technology.

Containers

- Containers are similar to but not the same thing as virtual machines (VMs).
- One of the primary differences is that containers are isolated or abstracted away from the underlying operating system and infrastructure that they run on.
- In the simplest terms, a container includes both an application's code and everything that code needs to run properly.

Container Orchestration

A container orchestration is an automation to manage the container workloads and services. There are many aspects that needs to be managed throughout a container's lifecycle, including:

- Updates with no downtime
- Deployment
- Scaling (up and down)
- Self healing of the containers
- Providing security
- Availability
- Reliability

Kubernetes

- Kubernetes is a container orchestrator. It is an open source platform. It was released by Google in mid 2014. Now kubernetes is CNCF's graduating project.
- It automates the process of scheduling, scaling, load balancing, fault tolerance, deployment, rollouts, and rollbacks, etc. of the containerized application.
- It is highly extensible and portable. By using several plugins, it offers networking and security.

Components of Kubernetes

Cluster: A cluster is created when we deploy kubernetes. Control plane and worker node are present in cluster.

- Worker Node: It is similar to server or VM. It is where our application is running.
- Control Plane: It is incharge of controlling worker nodes.

Kubectl

It is a command Line tool for Kubernetes. Kubectl communicates with the control plane. It may interact in one of two ways:

- Declarative way: By writing the manifest(yaml) files.
- Imperative way: Through specific commands in terminal.

NOTE: The best practise is to use declarative way rather than writing everything out repeatedly.

Control Plane Components

Kube-apiserver: All communications happen via API server using kubectl.

etcd: It is the central database used to store all the cluster data.

kube-scheduler: It is kubernetes scheduler which assignees pods to nodes.

kube-controller-manager: This manages various controllers. These are control-loops that tries to move the current state closer to the desired state of the cluster.

Worker Node Components

Kubelet: It runs on every node in the cluster and check whether pod's container are active and in good condition.

Container Runtime: It is responsible for running the containers. K8s supports container runtime such as containerd, CRI-O, etc.

kube-proxy: It is a network-proxy that runs on each node and allow communication of pod from inside and outside of the cluster.

Pods

Pods are the fundamental component of kubernetes. Our containers run within the pod.

Pods have:

- a unique IP address (which allows them to communicate with each other)
- persistent storage volumes (as required)
- configuration information that determine how a container should run.

Complete Architecture

Installation

- Minikube
- Kubeadm
- Cloud Providers: GKE, AKS, EKS, etc.
- Playgrounds: <u>Play with Kubernetes</u>, <u>Killerkoda</u>

Kubernetes Manifest File

- This file include all the necessary information, about the sort of object we wish to build and the tasks we want it to perform.
- The manifest files can be written in declarative languages like YAML or JSON.
- <u>Blog</u> to learn the full format of the Kubernetes manifest file.

```
apiVersion: v1
kind: Pod
metadata:
    name: nginx-pod
    labels:
        app: nginx
spec:
    containers:
      - name: nginx-container
        image: nginx
```


Additional Resources

Kubernetes tutorials, Hands on Practice:

https://www.youtube.com/watch?v=PN3VqbZqmD8&t=358s

https://kubernetes.io/docs/tutorials/

https://www.youtube.com/watch?v=X48VuDVv0do&t=102s

Contribution guide:

https://www.youtube.com/watch?v=FgsXbHBRYIc

https://www.youtube.com/watch?v=L1GwDvqR5H4

Thank You!

Connect with me:

- LinkedIn Harshita Sao
- Twitter @harshitasao09

