Depression detection in social networks

Martí Caixal i Joaniquet

Agenda

What problem are we facing?

- More depression messages than other types
- Yet, they receive less attention

NLP PROLEM

Find out which method gives the best results and how they differ

Shallow Learning:

- Naïve Bayes
- Decision Tree
- Random Forest
- SVM
- KNN
- Hyper Parameter Search

Deep Leaning

- o RNN
 - · RNN LSTM
 - · RNN GRU
- Transformers (BERT)

Planification

Short iterations

Good control of flow

Friendly to changes

Independent subobjectives

Easy to detect errors

Agile Methodology

Mental Health Twitter (Twitter 3)

Only the message and label

Depression Twitter (Twitter Scale)

Labeled in a scale from 1 to
5

Depression Reddit (Reddit)

Already cleaned

- 10000 messages
- 2 classes
- Unbalanced (80/20)

" @cosmicgirlie Thinking of you. Everything crossed Turn baby turn! "

Mental Health Twitter (Twitter 3)

Only the message and label

Depression Twitter (Twitter Scale)

Labeled in a scale from 1 to

Depression Reddit (Reddit)

Already cleaned

- 45000 messages
- 4 classes (Scale from 0 to 3
- Unbalanced (40/20/30/10)

"humm dodgers scored a hr stupid dodgers i hate them"

Mental Health Twitter (Twitter 3)

Only the message and label

Depression Twitter (Twitter Scale)

Labeled in a scale from 1 to
5

Depression Reddit (Reddit)

Already cleaned

- 40000 messages
- 2 classes
- Unbalanced (60/40)
- Already cleaned

" i used to be highly functional before but it now i can barely function at all i take everything just..."

Unbalanced, target class being minority:

- × Undersampling
- × Oversampling

- Recall instead of accuracy
- Macro average

Initial preprocessing

Delete usernames

Delete Stop Words

Delete numbers

Lemmanization

Delete punctuation

Specific approaches

Shallow Learning

- Bag of Words
- TF-IDF

Deep Learning

Word Embedding (GloVe)

Bag of Words

Document	the	cat	sat	in	hat	with
the cat sat	1	1	1	0	0	0
the cat sat in the hat	2	1	1	1	1	0
the cat with the hat	2	1	0	0	1	1

TF-IDF

Shallow learning results

- Scikit Learn library
- Default parameters

- Naïve Bayes
- Decision Tree
- Random Forest
- o SVM
- o KNN
- Hyperparameter Search

TF-IDF vs BoW & feature size

TF-IDF - - - - BoW

- ✓ TF-IDF slightly better
- ✓ Increase number of features slightly improves results

Results

Execution time

- √ TF-IDF slightly better
- √ nº max_features improves results
- ✓ Better execution time

Confidence in predictions

Hyperparameter search

Done with Optuna:

- Python library
- Optimized search
- Parallelization

Model	Nº parameters	executions
SVM	3	10 ³
KNN	3	10 ³
DT	4	8 ⁴
RF	4	8 ⁴
NB	1	100 ¹

× Results do not improve

Word Vectoring

Deep learning results

- Keras library
- o RTX 3070 Ti

- o RNN
- o RNN GRU
- o RNN LSTM
- o BERT

RNN

- Sequence of layers
- Input, activation function, output
- No memory

RNN LSTM

- o 3 gates
- Memory

RNN GRU

- o 2 gates
- Memory
- Simplified LSTM

RNN

- Sequence of layers
- Input, activation function, output
- No memory

RNN LSTM GRU

RNN LSTM

- 3 gates
- Memory

RNN GRU

- o 2 gates
- Memory
- Simplified LSTM

Results

RNN

Results

New preprocessing

Delete usernames

Delete Stop Words

Delete numbers

Lommanization

Delete punctuation

BERT (transformers)

Differences in predictions

Deep Learning

Shallow Learning

"study finds no casual relationship between cannabis and depression"

"dailytonic exposure to the bacteria in soil can be good for mental hearlth and could treat depression and prevent ptsd"

"don't be sad, armys are here for you we will always suport you btstwt be strong"

Conclusions

Shallow learning

- Best: SVM and RF (relative to confidence)
- Preprocessing highly affects on metrics
- Feature extraction highly affects on execution time
- Parameters are not decisive

Deep learning

- Results about 10% better
- Simple RNN not good at all, GRU and LSTM are needed
- LSTM better than GRU with long messages
- Gets the semantics instead of the relations
- BERT needs more data and computing resources

Execution time

