Fiji/R nuclear fluorescence intensity analysis pipeline (v02.5, 5/5/23)

Pipeline usage overview (steps):

- 1) Basic image read, processing and ROI measurements
- 2a) (optional): Extract images for presentation
- 2) Read ROI data into R
- 3a) Analysis of individual channels
- 3b) Analysis of intensities of 2 channels (Ch1 vs Ch2)

Required:

- Fiji
- R (including libraries tidyverse, colorRamps, ImerTest)

Input:

- Leica confocal lif file (Z-stack) 16-bit
 - Other input needs customised input scripts (replacing '01_MaxProj greyscale batch_v02_17-12-20_from lif.ijm', see subfolder 'alternative input and ROI definitition scripts')
 - 8-bit images may require alternative R scripts for proper visualisation (see subfolder 'R scripts optimised for 8-bit images')

Description of pipeline usage steps

1) Basic image read, processing and ROI measurements

- Copy script directory in your main analysis directory
 - For alternative data formats, replace scripts in main script directory with relevant versions from subdirectories (see "Input" above)
- Open images with Fiji
- Run Fiji script "01_MaxProj greyscale batch_v02_17-12-20_from lif.ijm"
 - o select main analysis directory when asked
 - Will create maximum projection of all opened images in "01_MaxProj greyscale" subfolder
- Run Fiji script "02_Nuclei ROI measure batch_v021_18-01-15.ijm"
 - o change DAPI channel if required (script line 2)
 - o select main analysis directory when asked
 - set DAPI threshold for each image to outline nuclei (background has to be red)
 - will create for each image (folder "02_ImageJ analysis")
 - ROI sets
 - csv files with intensity for each nucleus for each channel

2a) (optional): Extract images for presentation

script "02a_Greyscale to RGB sel chan adj brightness selected area batch_v022_20-12-15.iim")

- Can create RGB images of selected channels in selected colors
- Define output folder in script
- Change parameters in script (channels, colors, intensity range)
- Select input folder when running script

2) Read ROI data into R

- Run R script "03_R batch input_v02_18-01-15.R"
 - Define channel names in script line 24 (in order of channels)
 - Reads data from "02_ImageJ analysis" for downstream R analyses in "03_R input" folder
 - Creates "image_groups.csv" where you have to define the image groups for the downstream analysis
 - "group" can be e.g. your experimental conditions
 - "repl" can be e.g. a number or letter to identify your coverslip, if you have multiple technical replicates, to know which image is from which coverslip

3a) Analysis of individual channels

- Run R script "04_intens distrib 1 Ch 16bit_v023_230301_all channels new plots.R"
 - Define image groups in "03_R input" folder (see above)
 - Creates QC plots in "04_intens distrib_1Ch" folder, showing intensity distributions for selected channel
- Run R script "05_threshold testing 1 Ch_v025_230302 with t-test stats.R"
 - Set the channel you want to analyse in line 27
 - From the QC plots and/or the original max proj images get some thresholds that could make sense
 - Set the thresholds for which you want to get summary statistics in line 29 (you can set as many thresholds as you like to test, separated with commas: "thCh1.test.thresh = c(20, 30, 40)" means it will analyse with 20, 30 and 40 as thresholds)
 - o Output:
 - plots and summary csv files for the different thresholds
 - Basic statistic analysis of first group vs other groups (t-test or GLMM stats with Imertest package)

3b) Analysis of intensities of 2 channels (Ch1 vs Ch2)

- Run R script "04b_intens distrib 2 Ch 16bit_v026_230301_new plots.R"
 - o Define the 2 channels you want to analyse in line 30

- Gives you folder "04b_intens distrib_2Ch", with FACS-style scatterplots intensity Ch1 vs Ch2
- Run R script "05b_threshold analysis 2 Ch_v025_230302 Imer stats included.R"
 - o Define dataset that you want to analyse in line 21
 - Set thresholds for both channels in line 28 (only each one threshold possible: c(thresh_Ch1, thresh_Ch2))
 - Output: folder "05b_treshold analysis_2Ch", with plots of fraction of Ch1/Ch2
 -/-, -/+, ... of all cells; and basic stats