Math104Hw11

Trustin Nguyen

November 17, 2023

Exercise 1: Show that $f_n = \frac{x^n}{n}$ converges uniformly on [0,1].

Proof. We will show that $f_n \to 0$ uniformly by $\limsup_{n \to \infty} \{|f_n(x)| : x \in [0,1]\} = 0$. Notice that for each f_n , the derivative $f'_n = x^{n-1}$, which is positive on [0,1], so f_n achieves its max at x = 1. It achieves its minimum at x = 0. We have that

$$0 = |f_n(0)| < |f_n(1)| = \frac{1}{n}$$

And indeed, $\lim_{n\to\infty} \frac{1}{n} = 0$. So it converges uniformly on [0,1].

Exercise 2: Assume that $\sum |a_k| < \infty$, prove that $\sum a_k x^k$ converges uniformly on [-1,1].

Proof. By the Weierstrass M-Test, we know that $\sum a_k x^k$ converges uniformly on S if $|a_k x^k| \le |a_k|$ for $x \in S$. So we have:

$$|a_k||x^k| \le |a_k|$$
$$|x^k| \le 1$$
$$-1 \le x^k \le 1$$

which is true exactly when $x \in [-1, 1]$, so we are done.

Exercise 3: Show that $\sum_{n=1}^{\infty} nx^n = \frac{x}{(1-x)^2}$ for |x| < 1.

Proof. We have that $\sum_{n\geqslant 0} x^n = \frac{1}{1-x}$. Then we use the ratio test:

$$\beta = \lim_{n \to \infty} \frac{1}{1} = 1$$

So R = $\frac{1}{\beta}$ = 1. The series does not converge on -1, 1. So $\sum_{n\geq 0} x^n$ is differentiable on (-1,1). Taking the derivative:

$$\frac{d}{dx}\sum_{n\geq 0}x^n=\frac{d}{dx}\frac{1}{1-x}$$

$$\sum_{n \ge 1} n x^{n-1} = \frac{1}{(1-x)^2}$$

Then multiply by x on both sides:

$$\sum_{n>1} nx^n = \frac{x}{(1-x)^2}$$

Exercise 4: Evaluate $\sum_{n=1}^{\infty} \frac{n}{2^n}$.

Proof. Recall that $\sum_{n\geqslant 0} y^n = \frac{1}{1-y}$. Substituting $y = \frac{1}{2}x$, we get:

$$\sum_{n\geqslant 0} \frac{1}{2^n} x^n = \frac{1}{1 - \frac{1}{2}x} = \frac{1}{\frac{2-x}{2}} = \frac{2}{2-x}$$

To make sure we can take the derivative, find the radius of convergence. Use the ratio test:

$$\beta = \lim_{n \to \infty} \left| \frac{\frac{1}{2^{n+1}}}{\frac{1}{2^n}} \right| = \lim_{n \to \infty} \left| \frac{2^n}{2^{n+1}} \right| = \frac{1}{2}$$

Then $R = \frac{1}{\beta} = 2$. We can take the derivative in the interval [-1, 1], so it is fine.

Taking the derivative of both sides we get:

$$\sum_{n \ge 1} \frac{n}{2^n} x^{n-1} = \frac{2}{(2-x)^2}$$

Substituting x = 1, we find:

$$\sum_{n \ge 1} \frac{n}{2^n} = \frac{2}{(2-1)^2} = 2$$

Exercise 5: Use Q3 to find the explicit formula for $\sum_{n=1}^{\infty} n^2 x^n$ when |x| < 1.

Proof. We have $\sum_{n\geqslant 1} nx^n = \frac{x}{(1-x)^2}$ for |x|<1. We can take the derivative again. Notice that radius of convergence is preserved on derivatives. So:

$$\frac{d}{dx} \sum_{n \ge 1} nx^n = \frac{d}{dx} \frac{x}{(1-x)^2}$$

$$\sum_{n \ge 2} n^2 x^{n-1} = \frac{(1-x)^2 + 2(1-x)x}{(1-x)^4}$$

$$\sum_{n \ge 2} n^2 x^{n-1} = \frac{1-2x+x^2+2x-2x^2}{(1-x)^4}$$

$$\sum_{n \ge 2} n^2 x^{n-1} = \frac{1-x^2}{(1-x)^4}$$

$$\sum_{n \ge 2} n^2 x^n = \frac{x(1-x^2)}{(1-x)^4}$$

So that is the formula.

Exercise 6: Let f(x) = |x| on \mathbb{R} , prove that there is no (a_n) such that $\sum_{n=0}^{\infty} a_n x^n = f(x)$ for any $x \in \mathbb{R}$.

Proof. Suppose for contradiction $f(x) = \sum_{n \ge 0} a_n x^n$ for some sequence (a_n) . Then the radius of convergence contains 0, and we know that $\sum_{n=0}^{\infty} a_n x^n$ is differentiable. Then $f'(x) = \sum_{n=1}^{\infty} n a_n x^{n-1}$ for x = 0. Now we show that |x| is not differentiable at 0. Consider

$$\lim_{x \to 0+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} \frac{|x|}{x} = 1$$

and

$$\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{|x|}{x} = -1$$

Since the limits are not equal, the limit does not exist for

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = f'(0)$$

which is a contradiction.