Chap 1. 한눈에 보는 머신러닝

Seolyoung Jeong, Ph.D.

경북대학교 IT 대학

인공지능의 개념

- ◆ **인공지능 :** 인간의 감각, 사고력을 지닌 채 인간처럼 생각하는 컴퓨터
- ◆ **머신 러닝 :** 인공 지능을 구현하는 구체적 접근 방식. <u>알고리즘을 이용해 데이터를 분석하고, 분석을 통해 학습하고, 학습한</u> <u>내용을 기반으로 판단이나 예측 수행</u>
- ◆ 딥러닝: 완전한 머신 러닝을 실현하는 기술. 인공신경망에서 발전한 형태의 인공 지능. 뇌의 뉴런과 유사한 정보 입출력 계층을 활용

인공지능의 역사

- 2번의 Al Winter
 - 1960년대 말 ~ 1970년대 : 부족한 컴퓨터 기술, XOR 문제
 - 1980년대 후반 ~ 1990년대 초 : 자연어 처리의 한계 (컴퓨터는 의미를 이해하지 못함)
- ◆ 3번의 AI 붐 (현재는 3차. 발전된 하드웨어 성능 및 이미지넷 등 딥러닝 개발)

인공자능(AI)의 역사

1943 H

워렌 맥블록과 월터 피츠, 전기 스위치처럼 켜고 끄는 기초기능의 인공신경을 그물망 형태로 연결하면 사랑의 뇌에서 동작하는 아주 간단한 기능을 흉내낼 수 있음을 증명

1956년

다트머스 회의에서 인공지능 용어 처음 사용, "학습의 모든 면 또는 지능의 다른 모든 특성을 기계로 정밀하게 기술할 수 있고 이를 시뮬레이션할 수 있다"

1980년대

전문가들의 지식과 경험을 데이터베이스화해 의사검정 과정을 프로그래밍화한 '전문가 시스템' 도입. 그러나 관리의 비효율성과 유지·보수의 어려움으로 한계

2006년

제프리 힌튼 토론토대 교수, 딥러닝 알고리즘 발표

2012년

국제 이미지 인식 경진대회 '이미자켓'에서 딥러닝 활용한 팀이 우승하며 획기적 전환점

2014년

구글, 딥마인드 인수

1950년

앨런 튜링, 기계가 인간과 얼마나 비슷하게 대화할 수 있는지를 기준으로 기계에 지능이 있는지를 판별하는 튜링 테스트 제안

1958년

프랭크 로센블래트, 뇌신경을 모사한 인공신경 뉴런 '파센트론' 제시

1970년대

AI 연구가 기대했던 결과를 보여주지 못하자 대규모 투자가 중단되며 알흐기 도래

17 Al Winter

1997년

BM 답블루, 체스 챔피언 개리 카스파로프와의 체스 대결에서 승리

2016년 구글 알파고, 이세동에게 승리

인공지능 연구 기술

인공지능 연구분야

- 자연어 처리, 음성인식, 전문가 시스템, 로봇, 컴퓨터 비전, 의료 등 다양
- ◆ 기계가 지능적으로 움직이기 위해 필요한 기술 연구

Contents

- 1.1 머신러닝이란?
- 1.2 왜 머신러닝을 사용하는가?
- 1.3 머신러닝 시스템의 종류
 - 1.3.1 지도 학습과 비지도 학습
 - 1.3.2 배치 학습과 온라인 학습
 - 1.3.3 사례 기반 학습과 모델 기반 학습
- 1.4 머신러닝의 주요 도전 과제
 - 1.4.1 충분하지 않은 양의 훈련 데이터
 - 1.4.2 대표성 없는 훈련 데이터
 - 1.4.3 낮은 품질의 데이터
 - 1.4.4 관련 없는 특성
 - 1.4.5 훈련 데이터 과대적합
 - 1.4.6 훈련 데이터 과소적합
- 1.5 테스트와 검증

1.1 머신러닝이란?

- ◆ 데이터로부터 학습하도록 컴퓨터를 프로그래밍하는 과학
- ◆ 기계 학습(機械學習) 또는 머신 러닝(영어: machine learning)
 - 인공 지능의 한 분야로, 컴퓨터가 학습할 수 있도록 하는 알고리즘과 기술을 개발하는 분야
 - 예) 기계 학습을 통해서 수신한 이메일이 스팸인지 아닌지를 구분할 수 있도록 훈련 [출처: 위키백과 기계학습]
- ◆ 많은 양의 데이터를 분석하기 위해서는 먼저 시각화가 필요
- ◆ 데이터 시각화를 위한 라이브러리 :
 - R(ggplot), SQL, Zepplin(라이브러리 아님)
 - Python Matplotlib (그래프/차트 도식화), Numpy (배열, 벡터 계산), Pandas (Numpy를 기반으로 개발. 데이터 정렬 가능한 자료구조 Dataframe)

1.1 머신러닝이란?

- 1959년, 아서 사무엘은 기계 학습을 "기계가 일일이 코드로 명시하지 않은 동작을 데이터로부터 학습하여 실행할 수 있도록 하는 알고리즘을 개발하는 연구 분야"라고 정의하였다. [위키백과:기계학습 정의]
- ◆ 어떤 작업 T에 대한 컴퓨터 프로그램의 성능을 P로 측정했을 때경험 E로 인해 성능이 향상됐다면, 이 컴퓨터 프로그램은 작업 T와 성능 측정 P에 대해 E로 학습한 것이다. [톰 미첼, 1997]

구분	작업 T	경험 E	성능측정 P
스팸 메일 시스템	새로운 메일이 스팸인지 구분	훈련데이터	정확도

시스템이 학습하는데 사용하는 샘플 : 훈련세트 (training set)

각 훈련데이터 : 훈련사례 (training instance, 샘플)

1.2 왜 머신러닝을 사용하는가?

- ◆ 머신러닝 기반 해결 필요한 문제들
 - 기존 솔루션으로는 많은 수동 조정과 규칙이 필요한 문제
 - 전통적인 방법으로는 전혀 해결 방법이 없는 복잡한 문제
 - 유동적인 환경에 적응하기 어려운 문제
 - <u>대량의 데이터와 복잡한 문제</u>들로 해결하기 어려운 문제

전통적인 접근 방법

◆ 문제가 단순하지 않아 규칙이 점점 길고 복잡해지므로 유지 보수가 매우 힘듦

- 예) **스팸필터**: 규칙(4U, 신용카드, 무료, 대출, 광고, 대행 등)을 분석, 패턴을 감지하는 알고리즘 작성 후 테스트/적용
- 작성된 규칙 예) if "광고" in "이메일제목" : 스팸처리

머신러닝 기반 문제 해결 장점

- ◆ 머신러닝 접근 방법
 - 문제에 대한 <u>패턴을 인지하고 학습</u>
 - 프로그램이 짧아지고 유지보수가 쉬우며 정확도를 높임

머신러닝 기반 문제 해결 장점

◆ 자동으로 변화에 적응

• 사용자가 지정한 데이터에서 <u>특정 패턴을 자동으로 인식</u>하고 별도의 작업이 없어도 분류

머신러닝 기반 문제 해결 장점

- 머신러닝을 통해 배우기
 - 대용량의 데이터를 분석하면 겉으로는 보이지 않던 패턴을 발견
 → 데이터 마이닝 (Data Mining)

1.3 머신러닝 시스템의 종류

- 머신러닝 시스템의 종류는 굉장히 많으며, 아래와 같이 크게
 3가지로 분류할 수 있음
 - (지도학습 / 비지도학습) 사람의 감독 하에 훈련하는 것인지, 그렇지 않은 것인지
 - (온라인 학습 / 배치 학습) 실시간으로 점진적인 학습을 하는지 아닌지
 - (사례 기반 학습 / 모델 기반 학습)
 단순히 알고 있는 데이터 포인트와 새 데이터 포인트를 비교하는지,
 아니면 훈련 데이터셋에서 과학자들처럼 패턴을 예측하여 예측 모델을 만드는지

머신러닝의 과정

1.3.1 지도 학습과 비지도 학습

◆ 학습하는 동안의 감독 형태와 정보량에 따라 지도학습 / 비지도학습 / 준지도학습 / 강화학습으로 구분

종류	내용	알고리즘	
지도 학습	데이터와 정답을 함께 입력	K-최근접 이웃선형회귀로지스틱 회귀	
	다른 데이터의 정답을 예측	서포트 벡터 머신결정트리와 랜덤 포레스트신경망	
비지도 학습	데이터는 입력하지만 정답은 미입력	군집시각화와 차원 축소연관 규칙 학습	
	다른 데이터의 규칙성 찾음		
강화 학습	부분적으로 정답을 입력		
	데이터를 기반으로 최적의 정답을 찾음		

지도학습

◆ 알고리즘에 주입하는 훈련데이터에 레이블(LABEL)이라는 정답이 포함

- ◆ 가능한 작업1: 분류(Classfication)
 - 예) 스팸필터 작업 (많은 양의 메일, 스팸 유무)
- ◆ 가능한 작업2: 타겟 수치 예측
 - 예) 중고차 가격
 - 예측 변수(predictor variable)라 부르는 특성(feature)를 사용해 타겟 예측
 - Feature : 주행거리, 연식, 브랜드, 사고유무 등
 - Feature와 Label(중고차 가격)이 포함된 많은 데이터가 필요
 - 이러한 작업을 회귀(regression)이라 함

지도 학습 알고리즘

◆ 회귀 (Regression)

- 예) 로지스틱 회귀 : 분류에 많이 사용됨. 클래스에 속할 확률 출력 (스팸일 가능성 20%)
- 대표적 지도 학습 알고리즘
 - K-Nearest Neghbors (k-최근접 이웃)
 - Linear Regression (선형 회귀)
 - Logistic Regression (로지스틱 회귀)
 - Support Vector Machines (SVM, 서포트 벡터 머신)
 - Decision Tree(결정 트리)와 Random Forests (랜덤 포레스트)
 - Neural networks (신경망) : 일부 신경망 구조는 비지도학습

- ◆ 훈련 데이터에 레이블이 없는 것
- ◆ 최종적으로 내야하는 <u>답이 정해져 있지 않는 것</u>이 특징
- ◆ 대표적 비지도 학습 알고리즘
 - Clustering (군집)
 - k-Means (k-평균)
 - Hierarchical Cluster Analysis (HCA, 계층 군집 분석)
 - Expectation Maximization (기댓값 최대화)
 - Visualization(시각화)와 Dimensionality Reduction (차원 축소)
 - Principal Component Analysis (PCA, 주성분(최적치) 분석)
 - Kernel PCA
 - Locally-Linear Embedding (LLE, 지역적 선형 임베딩)
 - t-distributed Stochastic Neighbor Embedding (t-SNE, t개의 분산 기반 확률적 근접 위상 배치법)
 - Association Rule Learning (연관 규칙 학습)
 - Apriori (어프라이어리): breadth-first search strategy 사용
 - Eclat (이클렛): depth-first search algorithm

◆ 군집 (Clustering) :

- 유사한 속성의 객체들을 군집(cluster)으로 나누거나 묶어주는 데이터마이닝 기법
- 예) 고객들의 구매 패턴을 반영하는 속성들에 관한 데이터 수집

◆ 군집 분석의 방법은 '계층적 방법' 과 '비계층적 방법' 으로 구분

종류	내용	도식화
비계층적 군집 (Non-hierachical Clustering	사전에 군집 수 K를 정한 후 입력 데이터를 K개 중 하나의 군집에 배정	
계층적 군집 (Hierachical Clustering	사전에 군집 수 K를 정하지 않고 단계적으로 군집 트리를 제공	

 시각화와 차원 축소 (Visualization and Dimensionality Reduction)

• 레이블이 없는 대규모의 고차원 데이터를 2D나 3D로 표현함

• 데이터가 어떻게 조직되어 있는지 이해할 수 있고 예상치 못한 패턴 발견

가능

차원 축소 (Dimensionality Reduction)는 너무 많은 정보를 잃지 않으면서 데이터를 간소화하며, 하나의 특성으로 합침
 → 특성 추출 (feature extraction)

◆ 이상치 탐지 (Anomaly detection)

- 시스템은 정상 샘플로 훈련, 새로운 샘플이 정상 데이터인지 혹은 이상치인지 판단
- 예) 제조 결함 잡아내기, 학습 알고리즘 전 데이터셋에서 이상한 값 자동 제거 Feature 2

연관 규칙 학습 (Association rule learning)

- 동시 발생 규칙을 이용해 특성 간 관계 탐구로 데이터 패턴 분석
- 연관 규칙 분석 : 군집 분석 이후에 각 그룹의 특성을 분석하기 위해 사용
- 예) 바비큐 소스와 감자를 구매한 사람 → 스테이크 구매 경향 있음

준지도 학습

- 레이블이 일부만 있는 데이터
 - 대부분 레이블이 없는 데이터가 많고, 레이블이 있는 데이터는 아주 조금
- 예) 구글 포토 호스팅 서비스
 - 가족사진 업로드 서비스
 - 사람 A: 사진 1,5,11 / 사람 B: 사진 2,5,7에 있음 자동 인식: 비지도학습(군집)
 - 문제: 이 사람들이 누구인가?
 - 사람마다 레이블이 하나씩만 주어지면 사진에 있는 모든 사람의 이름을 알 수 있음

준지도 학습

- ◆ 대부분의 준지도 학습 : 지도 학습 + 비지도 학습의 조합
 - 비지도 학습 방식으로 순차적으로 훈련된 다음, 전체 시스템이 지도 학습 방식으로 세밀하게 조정됨

강화 학습

- ◆ 현재 상태를 관찰해서 어떻게 대응해야 할 지와 관련된 문제를 다룸
- ◆ 행동의 주체, 환경(상황 또는 상태), 보상/벌점 등으로 구성
 - 학습하는 시스템: 에이전트
 - 환경을 관찰해서, 행동을 실행하고,
 그 결과로 보상(reward) 또는 벌점(penality)을 받음
 - 큰 보상을 얻기 위한 최상의 전략(policy): 시간이 지나면서 스스로 학습

1.3.2 배치 학습과 온라인 학습

- ◆ 머신러닝 시스템을 분류하는데 사용하는 또 다른 기준
- ◆ 입력 데이터의 스트림으로부터 점진적으로 학습 가능 여부

◆ 배치학습 (batch learning)

- 가용한 데이터를 모두 사용하여 훈련 > 시간과 자원 많이 소모
- 먼저 시스템을 훈련시키고, 제품에 적용하여 더 이상의 학습 없이 실행됨
- 즉, 학습한 것을 단지 적용만 함 : 오프라인 학습 (offline learning)
- 머신러닝 시스템 훈련, 평가, 론칭 과정 자동화
- 주기적으로 데이터 업데이트 후 시스템 새버전 훈련

문제점

- 새로운 데이터를 학습하려면 전체 데이터를 사용하여 처음부터 다시 훈련해야 함
- 전체 데이터셋 사용 훈련에 많은 컴퓨팅 자원 필요 (CPU, 메모리 공간 등)
- 자원이 제한된 시스템(스마트폰, 로봇 등)에서 많은 양의 훈련 데이터를 이동, 학습을 위해 몇 시간씩 많은 자원 사용은 심각한 문제 일으킴

온라인 학습

- ◆ 데이터를 순차적으로 한개씩 또는 미니배치(mini-batch)라 부르는 작은 묶음 단위로 주입하여 시스템 훈련
- ◆ 비용이 적게 들어 시스템은 데이터가 도착하는 대로 즉시 학습 가능

• 연속적으로 데이터를 받고 빠른 변화에 스스로 적응해야 하는 시스템에 적합 (예: 주식 가격)

• 큰 데이터셋을 학습하는 시스템에도 가능 : 외부 메모리 (out-of-core) 학습

온라인 학습

- ◆ 학습률 (learning rate) : 변화하는 데이터에 얼마나 빠르게 적응할 것인가
- ◆ 학습률을 높게 하면 데이터에 빠르게 적응하지만, 예전 데이터를 금방 잊음
- 학습률이 낮으면 시스템의 관성으로 더 느리게 학습, 데이터 잡음에 덜 민감

문제점: 나쁜 데이터가 주입되면 시스템 성능이 점진적으로 감소

1.3.3 사례 기반 학습과 모델 기반 학습

- ◆ 머신러닝 시스템이 어떻게 일반화 되는가에 따라 분류
- ◆ 대부분의 머신러닝 작업: 예측을 만드는 것
- ◆ 주어진 훈련 데이터로 학습하지만, 훈련데이터에서는 본 적 없는 새로운 데이터로 일반화되어야 함
- ◆ 훈련 데이터에서 높은 성능을 내는 것이 좋지만 그게 최종 목표는 아님
- ◆ 진짜 목표는 새로운 샘플에 잘 작동하는 모델
- 일반화를 위한 두 가지 접근법 :
 - 사례 기반 학습 / 모델 기반 학습

사례 기반 학습

◆ 유사도(similarity) 측정

- 스팸 메일과 동일한 메일을 스팸이라고 지정하는 대신 스팸 메일과 <u>매우 유사한 메일을 구분</u>하도록 스팸 필터 프로그램 개발
- 예) 공통으로 포함한 단어의 수를 세는 것
 스팸 메일과 공통으로 가지고 있는 단어가 많으면 스팸으로 분류

◆ 사례 기반 학습 (instance-based learning)

 시스템이 사례를 기억함으로써 학습 유사도 측정을 통해 새로운 샘플을 일반화

- ◆ 모델 기반 학습 (model-based learning)
 - 샘플들의 모델을 만들어 예측에 사용

- ◆예) 1인당 GDP에 대한 삶의 만족도
 - 국가별 '1인당 GDP' 와 '삶의 만족도' (표 / 그래프)

Country	GDP per capita (USD)	Life satisfaction
Hungary	12,240	4.9
Korea	27,195	5.8
France	37,675	6.5
Australia	50,962	7.3
United States	55,805	7.2

- 1인당 GDP가 증가할수록 선형으로 같이 올라감
- 1인당 GDP의 선형 함수로 삶의 만족도 선형 모델을 얻음

삶의만족도 = $\theta_0 + \theta_1 X1$ 인당 GDP

- 모델 파라미터 θ_0 , θ_1 조정
- ◆ 가능한 몇 개의 선형 모델

- 모델의 최상 성능 측정지표
 - 모델이 얼마나 좋은지 측정 : 효용 함수, 적합도 함수
 - 모델이 얼마나 나쁜지 측정 : 비용 함수

- ◆예) 선형 회귀 → 훈련과 예측 데이터 사이의 거리를 재는 비용함수 최소화가 목표
- ◆ 선형 회귀 알고리즘
 - 알고리즘에 훈련 데이터를 공급하면 데이터에 가장 잘 맞는 선형 모델 파라미터 찾음 : 모델을 훈련(training) 시킨다.
- ◆ 훈련 데이터에 최적인 선형 모델 찾음

삶의만족도 = $\theta_0 + \theta_1 X1$ 인당 GDP

예) 국가별 '1인당 GDP' 와 '삶의 만족도' 표에 없는 키프로스 국가의 1인당 GDP는 22,587달러 → 삶의 만족도 계산 : 5.96

머신 러닝 시스템 작업

- 모든게 다 잘 되면 모델은 좋은 예측 내놓음
- 그렇지 않은 경우 추가 처리 필요
 - 더 많은 특성 (고용률, 건강, 대기 오염) 을 사용하거나,
 - 좋은 훈련 데이터를 더 많이 모으거나,
 - 더 강력한 모델(예: 다항 회귀 모델)을 선택해야 할지도...

머신러닝 시스템 작업 요약

- 1. 데이터를 분석
- 2. 모델을 선택
- 3. 훈련데이터로 모델을 훈련시킴 (비용함수가 최소인 모델 파라미터 를 찾음)
- 4. 새로운 데이터에 모델 적용하여 예측 수행 모델의 일반화 기대...

1.4 머신러닝의 주요 도전 과제

◆ 우리의 주요 작업

- 학습 알고리즘을 선택해서, 어떤 데이터를 훈련시키는 것
- 문제될 수 있는 두 가지 : 나쁜 알고리즘, 나쁜 데이터

◆ 나쁜 데이터 사례

- 충분하지 않은 양의 훈련 데이터
- 대표성 없는 훈련 데이터
- 낮은 품질의 데이터
- 관련 없는 특성

◆ 나쁜 알고리즘 사례

- 훈련 데이터 과대적합
- 훈련 데이터 과소적합

1.4.1 충분하지 않은 양의 훈련 데이터

- 어린 아이는 '사과'에 대해 알려주면 '모든 종류의 사과'를 쉽게 일반화 함
- 예) 충분한 데이터가 주어지면 여러 다른 머신러닝 알고리즘과 관계없이 거의 비슷하게 잘 처리함

1.4.2 대표성 없는 훈련 데이터

- 일반화가 잘되려면, 원하는 새로운 사례를 훈련 데이터가 잘 대표하는 것이 중요
- 선형 모델 훈련 예) 사용한 나라의 집합에 일부 나라 빠져 있어 대표성이 완벽하지 못함
 - 누락된 나라 추가했을 때 (대표성이 더 큰 훈련 샘플)

- ◆ 누락된 나라 추가 전 모델 : 점선 → 추가 후 모델 : 실선
 - 간단한 선형 모델은 잘 동작하지 않음!
- ◆ 샘플링 잡음 (noise) : 샘플이 작거나 대표성 없는 데이터
- 샘플링 편향 (bias): 표본 추출 방법이 잘못된 경우 → 대표성 없음

1.4.3 낮은 품질의 데이터

- ◆ 훈련 데이터가 에러, 이상치, 잡음으로 가득한 경우
- ◆ 패턴을 찾기 어려워 잘 동작 안함
- → 훈련 데이터 정제 필요
- ◆ 사실, 대부분의 데이터 과학자가 데이터 정제에 많은 시간 할애
- ◆ 이상치 샘플 무시하거나 수동으로 고침
- ◆ 일부 샘플에만 특성 몇개가 누락될 시, 특성 모두 무시 / 샘플 무시 / 빠진 값 채움

1.4.4 관련 없는 특성

- ◆ 훈련에 사용할 좋은 특성을 찾는 것 : 특성 공학
- ◆ 성공적인 머신러닝 프로젝트의 핵심 요소
- ◆ 특성 선택 (feature selection) : 가지고 있는 특성 중에서 훈련에 가장 유용한 특성 선택
- ◆ 특성 추출 (feature extraction) : 특성을 결합하여 더 유용한 특성을 만듬 (예: 차원 축소 알고리즘 사용)
- ◆ 새로운 데이터를 수집해 새 특성 만듬

1.4.5 훈련 데이터 과대적합

- ◆ 해외여행 중 택시 운전사가 내 물건을 훔쳤다고 가정. 그 나라 모든 택시 운전사는 도둑이라고 생각
- ◆ 일반화의 오류. 머신러닝에서는 과대적합(overfitting)이라고 함
- 모델이 훈련데이터에만 너무 잘 맞는 경우

- ◆ 훈련 세트에 잡음이 많거나 데이터셋이 너무 작으면 (샘플링 잡음이 발생하므로) 잡음이 섞인 패턴을 감지하게 됨.
- ◆ 이런 패턴은 새로운 샘플에 일반화되지 못함

훈련 데이터 과대적합

- ◆ 고차원의 다항회귀모델의 경우
- ◆ 예) 삶의 만족도 모델 : '나라 이름' 특성 추가
 - 'w'가 들어간 나라들의 삶의 만족도는 '7'보다 크다는 패턴 감지
 - 신뢰할 수 없음 (우연히 훈련 데이터에서 찾은 것)
 - 이 패턴이 진짜인지, 잡음 데이터로 인한 것인지 모델이 구분해낼 방법 없음
- ◆ 과대적합 ← 훈련 데이터에 있는 잡음의 양에 비해 <u>모델이 너무</u> <u>복잡할 때</u> 자주 발생
- 해결방법
 - 파라미터 수가 적은 모델 선택 (고차원 다항 모델보다는 선형 모델)
 - 훈련 데이터 특성 수를 줄이거나, 모델에 제약을 가해 단순화시킴
 - 훈련 데이터를 더 많이 모음
 - 훈련 데이터의 잡음을 줄임 (예: 오류 데이터 수정과 이상치 제거)

훈련 데이터 과대적합

◆ 규제 (regularization)

- 모델을 단순하게 하고, 과대적합의 위험을 감소시키기 위해 모델에 제약을 가하는 것
- 규제로 과대적합될 위험 감소

규제가 모델의 기울기를 더 작게 만들어 훈련데이터에는 덜 맞지만,
 새로운 샘플에는 더 잘 일반화됨

훈련 데이터 과대적합

- ◆ 하이퍼파라미터
 - (모델이 아니라) 학습 알고리즘의 <u>파라미터</u>
 - 훈련 전에 미리 저장되고, 훈련하는 동안에는 <u>상수</u>로 남아 있음
 - 매우 큰 값의 규제 하이퍼파라미터 지정 (기울기=0에 가까운)
 → 평편한 모델
 - 과대 적합될 가능성 없지만 좋은 모델 찾지 못함
 - 머신러닝 시스템 구축 시 하이퍼파라미터 튜닝은 매우 중요한 과정임

1.4.6 훈련 데이터 과소적합

- ◆ 과대적합의 반대
- ◆ 모델이 너무 단순해서 데이터의 내재된 구조를 학습하지 못할 때 발생
- 예) 삶의 만족도 선형 모델 : 현실은 이 모델보다 더 복잡.
 훈련 샘플에서조차도 부정확한 예측
- ◆ 해결 방법
 - 파라미터가 더 많은 강력한 모델 선택
 - 학습 알고리즘에 더 좋은 특성 제공 (특성 공학)
 - 모델의 제약을 줄임 (예: 규제 하이퍼파라미터 감소)

1.5 테스트와 검증

◆ 모델이 새로운 샘플에 얼마나 잘 일반화될까?

- 새로운 샘플에 실제로 적용해 봄
- 실제 서비스에 모델을 넣고 잘 동작하는지 모니터링
- 모델이 아주 나쁠 때 고객 불만 토로

◆ 훈련 데이터 : 훈련 세트 + 테스트 세트로 나눔

- 훈련 세트를 사용해 모델을 훈련시킴 (데이터의 80%)
- 테스트 세트를 사용해 모델을 테스트함 (나머지 20%)

새로운 샘플에 대한 오류 비율 : 일반화 오차 (외부 샘플 오차)

- 테스트 세트에서 모델을 평가하여 오차에 대한 추정값 획득
- 이전에 본 적이 없는 새로운 샘플에 모델이 얼마나 잘 작동하는가?
- 훈련 오차가 낮지만 (훈련 세트에서 모델의 오차 적음), 일반화 오차가 높다면: 훈련 데이터에 과대 적합됨

모델 평가

- ◆ 모델 평가 : 두 모델 중 선택 갈등 (선형 모델 vs. 다항 모델)
 - 두 모델 모두 훈련 세트로 훈련
 - 테스트 세트를 사용해 얼마나 잘 일반화되는지 비교
 - 선형 모델이 더 잘 일반화되었다고 가정
 - 과대적합을 피하기 위해 규제 적용
 - 하이퍼파라미터 값 선택 (100개의 하이퍼파라미터 값으로 100개의 다른 모델 훈련)
 - 모델을 실제 서비스에 투입
 - 성능이 예상보다 좋지 않음 (오차 15% 발생)
 - 테스트 세트에 최적화된 모델
 - 검증 세트 : 두번째 홀드아웃(holdout) 세트 생성
 - 최상의 성능을 내는 모델과 하이퍼파리미터 선택
 - 만족스러운 모델을 찾으면 일반화 오차의 추정값을 얻기 위해 테스트 세트로 단 한번의 최종 테스트 수행
 - 교차검증: 훈련 데이터에서 검증 세트로 너무 많은 양의 데이터를 뺏기지 않기 위해 훈련 세트를 여러 서브셋으로 나누고 각 모델을 서브셋의 조합으로 훈련시키고 나머지 부분으로 검증
 - 모델과 하이퍼파라미터 선택되면 전체 훈련 데이터를 사용하여 최종 모델 훈련
 - 테스트 세트에서 일반화 오차 측정

한눈에 보는 머신러닝

- 머신러닝은 명시적인 규칙을 코딩하지 않고, 기계가 데이터로부터 학습하여 어떤 작업을 더 잘하도록 만드는 것
- 여러 종류의 머신러닝 시스템
 - 지도 학습 / 비지도 학습
 - 배치 학습 / 온라인 학습
 - 사례 기반 학습 / 모델 기반 학습
- ◆ 훈련 세트에 데이터를 모아 학습 알고리즘에 주입
 - 학습 알고리즘이 모델 기반인 경우 훈련 세트에 모델 맞추기 위해 파라미터 조정
 - 사례 기반인 경우 샘플을 기억하는 것이 학습, 새로운 샘플 일반화 위해 <u>유사도</u> <u>측정</u> 사용
- ◆ 훈련 세트가 너무 작거나 대표성이 없는 데이터이거나, 잡음이 많고 관련 없는 특성으로 오염되어 있다면 시스템 잘 작동하지 않음
- ◆ 모델이 너무 단순하거나(과소적합), 너무 복잡(과대적합) 하지 않아야 함

Any Questions... Just Ask!

