- 1. Przypomnienie co to macierz schodkowa
- 2. Twierdzenie: Każda macierz $A \in M_m^n(K)$ jest równoważna z macierzą w postaci schodkowej (potrzebne operacje a,b) oraz z macierzą w postaci schodkowej zredukowanej (a,b,c)
 - (a) $r_i \leftrightarrow r_j$
 - (b) $r_i + ar_j$
 - (c) $a \neq 0$: ar_i
 - (d) Wniosek Każdy niesprzeczny układ równań ma rozwiązanie
 - (e) Dowód:
 - i. Dla macierzy zerowej OK na przykład $\begin{vmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{vmatrix}$
 - ii. Indukcja: $A \neq 0$

Jeden wiersz - od razu postać schodkowa

ZJ - A ma m wierszy, jest niezerowa, jest w postaci schodkowej

Możemy zrobić algorytm, dla którego jeśli A_m jest w postaci schodkowej to otrzymamy z A_{m+1} postać schodkową. Zerujemy odpowiednie kolumny ostatniego wiersza używając wierszy z A_m . Jeśli jakaś kolumna nie dała się wyzerować to wstawiamy wiersz w odpowiednie miejsce. Jak mamy schodkową to łatwo można zrobić schodkową zredukowaną z c. Mamy schodki. Koniec dowodu.

- 3. Definicja: Wielomianem zmiennej x o współczynnikach w K nazywamy wyrażenie $a_0 + a_1x + \cdots + a_nx^n, n \in \mathbb{N}_0, a_0, \ldots a_n \in K$
 - (a) Każdy wielomian f wyraża funkcję $f: K \to K$, $s \mapsto a_0 + a_1 s + \cdots + a_n s^n$. f nazywamy funkcją wielomianową.
 - i. Pierwiastkiem wielomianu nazywamy $s \in K$: f(s) = 0
 - ii. $K = \mathbb{R} \vee \mathbb{C} \vee \mathbb{Q}$
 - (b) Przykład: $K = Z_2 = \{0, 1\}$
 - i. $|\{f:f:Z_2\to Z_2\}|=4$. W Z_2 , różne wielomiany oznaczają tą samą funkcję, na przykład x^2+x+1 oraz x^3+x+1
 - ii. Ciało w którym każdy wielomian n-tego stopnia ma n pierwiastków, to ciało algebraicznie domknięte.
 - (c) Zasadnicze twierdzenie algebry: Ciało liczb zespolonych jest ciałem algebraicznie domkniętym. To znaczy, że każdy wielomian o n współczynnikach w tym ciele ma n pierwiastków. $\mathbb R$ nie jest algebraicznie domknięte
- 4. $\begin{vmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{vmatrix} A : \{1, \dots, m\} \times \{1, \dots, n\} \to K, \quad (i, j) \mapsto A(i, j) \text{ czyli } (a_{ij}) \text{ (i wiersz, j kolumna)}$
 - (a) $r_i(A) = [a_{i1}, \dots, a_{in}], c^j(A) = \begin{bmatrix} a_{1j} \\ \vdots \\ a_{mj} \end{bmatrix}$
 - (b) $A_{(2,3)}^{(3,5,7)}$ bierze trzecią, piątą i siódmą kolumnę, z tylko drugim i trzecim rzędem.
 - (c) $0_m^n = \begin{bmatrix} 0 & \dots & 0 \\ \vdots & & \vdots \\ 0 & \dots & 0 \end{bmatrix}$
 - (d) Macierz kwadratowa m = n
 - (e) $\begin{bmatrix} x & \\ & x \\ & x \end{bmatrix}$ główna przekątna
 - (f) Jeśli poniżej głównej przekątnej same zera górna trójkątna, na odwrót dolna trójkątna, jeśli na górze i na dole same zera- diagonalna, jeśli dodatkowo na głównej przekątnej same jedynki macierz jednostkowa
 - (g) Macierze możemy dodać, jeśli ich wymiary się zgadzaja: (A+B)(i,j) = A(i,j) + B(i,j)
 - (h) -A: (-A)(i,j) = -(A)(i,j)

- (j) $A \in M_m^n$, $B \in M_n^k$: $A \cdot B \in M_m^k$
 - i. $c^i(A \cdot B) = A \cdot c^i(B)$
 - ii. więc $(A \cdot B)(i,j) := \sum_{s=1}^{n} A(i,s) \cdot B(s,j) = r_i(A)c^j(B)$
 - iii. $r_j(AB) = r_j(A)B$
 - iv. $c^i(AB) = A \cdot c^i(B)$

v.