§ 2 变分不等式

一、 R" 中变分不等式

设 A 为 R^n 中闭凸子集. $(R^n)^*$ 为 R^n 的共轭空间. 若 $f \in (R^n)^*$, $x \in R^n$, (f,x) 表示 f 在 x 的值, 即 f(x), 若 $x,y \in R^n$, 则(x,y) 表示 x 与 y 的内积.

若 $T: R^n \to (R^n)^*$,则对于给定的 $f \in (R^n)^*$. R^n 中的变分不等式的一般形式是:求 $x_0 \in A$ 使得 $\forall x \in A$,成立

$$(Tx_0, x - x_0) \geqslant (f, x - x_0).$$

若 $T:R^n \rightarrow R^n$,则 R^n 中的变分不等式为:

求 $x_0 \in A$,使得 $(Tx_0, x - x_0) \ge 0$, $\forall x \in A$.特别地,若 $f \not\in A$ 上可微实值函数,变分不等式变成求 $x_0 \in A$,使得 $(\nabla f(x_0), x - x_0) \ge 0$, $\forall x \in A$.

它等价于**极小化问题:**求 $x_0 \in A$,使得

$$f(x_0) = \min\{f(x) : x \in A\}.$$

若 $T:A \rightarrow R^n$ 为连续映射,求 $x_0 \in A$,使得

$$(Tx_0, x - x_0) \geqslant 0, \forall x \in A.$$

上式称为 HSP 变分不等式(HSP 指 Hartman, Stam, Pacchia.)

二、 赋范线性空间中的变分不等式

设 $(X, \| \cdot \|)$ 为实赋范线性空间, X^* 是 X 的共轭空间,A 为 X 的闭凸子集. 若 $f \in X^*$, $x \in X$,(f,x) 表示 f 在x 的值,即 f(x).

1. 若映射 $T: X \to X^*$,则对于给定的 $f \in X^*$, $(X, \|\cdot\|)$ 中的变分不等式的一般形式是:求 $x_0 \in A$,使得

 $(Tx_0, x - x_0) \geqslant (f, x - x_0), \forall x \in A.$

2. 若 $f: x \to R^1$ 为凸泛函,而且是加托可微的,即微分 $Df: X \to X^*$ 定义为

$$(Df(x),y) = \frac{d}{dt}f(x+ty)\Big|_{t=0}, x,y \in A.$$

则变分不等式为:求 $x_0 \in A$,使得 $(Df(x_0), x - x_0) \ge 0$, $\forall x \in A$. 它等价于极小化问题:求 $x_0 \in A$,使得 $f(x_0) = \inf\{f(x): x \in A\}$.

- 3. 混合变分不等式: 若泛函 f 可分解为两个凸泛函 g, h 之和: f(x) = g(x) + h(x). 其中 g 可微, h 不可微, 但是下半连续且常态(即 $\forall x \in X, h(x) > -\infty$, $h \not\equiv \infty$). 求 $x_0 \in X$, 使得($Dg(x_0)$, $x x_0$) $-h(x_0) + h(x) \geqslant 0$, $\forall x \in X$. 它等价于极小化问题: 求 $x_0 \in x$. 使得 $f(x_0) = \inf |f(x)|$: $x \in X$.
- 4. 设 X 为复 Hilbert 空间,L(x,y) 为 X 上共轭对称的双线性泛函,A 是 X 的闭凸子集,若 $\exists c_1, c_2 > 0$,使得 $c_1 \| x \|^2 \leqslant L(x,x) \leqslant c_2 \| x \|^2$, $\forall x \in X$.

则变分不等式为:对于给定的 $y_0 \in X$,求 $x_0 \in A$,使得

$$Re(2L(x_0, x - x_0) - (y_0, x - x_0)) \ge 0, \forall x \in A.$$

它等价于 $f(x) = L(x,x_0)$ 在 A 上达到最小值.

5. 设 G 为 R^n 中开集 $.(a_{jk}(x))_{n\times n}$ 为正定矩阵,且 $\exists \delta > 0$,使得

 $\sum_{j,k=1}^{n} a_{jk}(x) x_{j} y_{k} \geqslant \delta \sum_{k=1}^{n} + x_{k} + 2.$ 式中 $a_{jk} \in C(\overline{G})$. 设 $H^{1}(G)$ 为 L^{2} 的子空间,即 $H^{1}(G) = \{u: u, u_{x_{j}} \in L^{2}(G)\}$. 在 $H^{1}(G)$ 中定义内积

$$(u,v)_* = \int_G \left[\sum_{k=1}^n \frac{\partial u}{\partial x_k} \frac{\partial v}{\partial x_k} + uv \right] dx.$$

则 $H^1(G)$ 按内积 $(u,v)_*$ 构成 Hilbert 空间.

若 $A 为 H^1(G)$ 中闭凸子集,则 $\forall f \in L^2(G)$.存在惟一的 $u_0 \in A$,使得

$$\int_{G} \left[\sum_{j,k=1}^{n} a_{jk}(x) \frac{\partial u_{0}(x)}{\partial x_{k}} \cdot \frac{\partial}{\partial x_{j}} (u(x) - u_{0}(x)) \right] dx$$

$$\geqslant \int_{G} f(x) [u(x) - u_{0}(x)] dx. \ \forall \ u \in A.$$

若 $A = \{u \in H^1(G): u(x) \leq \varphi(x), x \in G\}$. 式中 $\varphi \in C(\overline{G}), u$ 表示薄膜的位移, f 表示外力, $\varphi(x)$ 表障碍,则上述变分不等式称为障碍问题变分不等式.

6. **椭圆型变分不等式**:设X为实Hilbert空间,范数为 $\|x\| = \sqrt{(x,x)}$,A为X的 非空闭凸子集, $f \in X^*$,L(x,y)为X上双线性连续泛函,满足X- 椭圆条件,即 $\exists c > 0$,使得

$$L(x,x) \geqslant c \| x \|^2$$
, $\forall x \in X$. 则存在惟一的 $x_0 \in A$, 使得 $L(x_0, x - x_0) \geqslant f(x - x_0)$. $\forall x \in A$.

上式称为第一类椭圆型变分不等式.

若存在 X 上常态的下半连续的凸泛函 g (常态指 $g(x) > -\infty$, $\forall x \in X$, $g(x) \not\equiv \infty$).

则存在惟一的 $x_0 \in X$,成立**第二类椭圆型变分不等式**:

$$L(x_0, x - x_0) + g(x) - g(x_0) \geqslant f(x - x_0), \forall x \in X.$$

若将上述 g(x) 改为 g(x,y),上式变成

$$L(x_0, x - x_0) + g(x_0, x) - g(x_0, x_0) \geqslant f(x - x_0). \ \forall x \in X.$$

则称为拟变分不等式,记为 QVI.

椭圆型变分不等式在弹性薄膜界面的流动问题(障碍问题),弹塑性柱体的扭转问题,粘塑性流体在柱形管道中的流动问题,地下水的开发利用中的轴对称水井问题等有广泛应用.这类变分不等式的常用解法有逐次逼近法、惩罚法、正则化法、对偶方法、数值解法等.此外,还有 I、II 型抛物型变分不等式,双曲型变分不等式等,张石生[116]用 Fan Ky极大极小原理,KKM 技巧,分别用拓扑方法,变分方法,半序方式和不动点方法,研究了变分不等式解的存在性、惟一性及解集的性状,并给出其对偏微分方程的边值问题,非线性规划问题,鞍点问题及经济数学中的 Nash 限制平衡问题等的应用,还研究了随机变分不等式,向量变分不等式,Fuzzy 映象变分不等式等.

注 KMM定理:设 X 为 Hausdorff 线性拓扑空间. $\sum \subset X$ 为 n-1 维单形, A_1 , …, A_n 为 \sum 的顶点, F_1 , …, F_n 为 X 中的 n 个闭集, 若对 \sum 的任意一组顶点(A_{i_1} , …, A_{i_m}), $1 \le m \le n$, 有 $|A_{i_1}$, …, A_{i_m} | $\subset_{k=1}^m F_{i_k}$. 则存在点 $x_0 \in \sum$,使得 $x_0 \in \bigcap_{k=1}^n F_k$.

7. **广义变分不等式**:设 *X* 为实 Hilbert 空间, *A* 为 *X* 中闭凸集, (,) 为内积.

 $T,g:X \to X$ 为非线性算子,求 $u \in X.g(u) \in A$,使得

$$(Tu, g(v) - g(u)) \geqslant 0, \forall g(v) \in A. \tag{2.1}$$

这是 Noor 于 1988 年引入并研究的,见[399]1988,1:119 - 121.

特别当 g = I(恒等算子) 时,(2.1) 就等价于求 $u \in A$ 使得(Tu,v - u) $\geqslant 0$, $\forall v \in A$.这是 1964 年由 Stampacchia 引入并研究的古典变分不等式.(见 C. R. Acad. Sci. Paris, 1964,258;4453 – 4416.)

2000 年 Noor-Rassias 进一步研究了(2.1) 的性质,例如设 $u \in X, g(u) \in A$ 是(2.1) 的解的充要条件是 $u \in X$ 满足

$$g(u) = P_A[g(u) - rTu].$$

式中r > 0为常数, $g: A \rightarrow A$, P_A 是X 在A 上的投影算子.

细节及进一步的结果见[301]2002,268(1):334 - 343.268(2):602 - 614(抛物变分不等式) 和 629 - 646;2003,277(2):379 - 394.

三、 拓扑空间中的变分不等式

1. 设 X 为拓扑空间,D 为X 中任一非空子集,f 为 D 上常态泛函(即 $\forall x \in D$. $f(x) > -\infty$, $f(x) \not\equiv \infty$). φ 为 $D \times D$ 上泛函,而且取有限值, $\varphi(x,x) \geqslant 0$, $\forall x \in D$,则 $\varphi(x,y) \geqslant f(x) - f(y)$ $\forall y \in D$.

称为**变分不等式**,若 $x_0 \in D$ 满足上式,则 x_0 称为该不等式的解.

2. **Fan Ky 变分不等式:**设 X 为局部凸的 Hausdorff 拓扑线性空间. A 为X 中非空紧 凸集, $f: A \to X$ 为连续映射. 求 $x_0 \in A$ 和X 上连续半范数 p, 使得

$$p(f(x_0) - x) - p(f(x_0) - x_0) \ge 0, \forall x \in A.$$

- 3. 利用本章 \S 1 定义 17 关于 T- γ 对角拟凸的概念还可证明以下变分不等式: 设 X, Y 为 Hausdorff 拓扑线性空间, $A \subset X$. $B \subset Y$ 分别为非空紧凸和非空凸集, f, g: $A \times B \rightarrow R^1$ 满足:
 - (1) $\forall y \in B, g(x,y)$ 关于 $x \in A$ 是上半连续的;
 - (2) $\forall x \in A, f(x,y)$ 关于 $y \in B$ 是 $T-\gamma$ 对角拟凸的;
- (3) $\forall (x,y) \in A \times B, f(x,y) \leq g(x,y),$ 则存在 $x_0 \in A$,使得 $g(x_0,y) \geqslant \gamma$, $\forall y \in B$,从而有 $\inf\{g(x_0,y): y \in B\} \geqslant \gamma$.

见[340]1991,11(3):346-352.

变分不等式理论在控制论、对策论、经济数学等领域中都起着十分重要的作用.