Relatório: Análise de Fluxo de Dados em Blocos Básicos (Reaching Definitions)

Introdução

Desenvolvimento de um programa para análise de fluxo de dados em blocos básicos, utilizando um grafo de fluxo de controle e códigos em três endereços. O programa segmenta as instruções em blocos básicos e computa os conjuntos IN e OUT para cada bloco.

Entrada e Saída

Entrada

A primeira linha da entrada contém dois inteiros:

```
N: número de blocos básicos no grafo.

M: número total de instruções em três endereços.
```

Seguem M linhas com as instruções. Após as instruções, há N linhas que representam os sucessores de cada bloco, onde cada linha contém os índices dos blocos sucessores ou 0 se não houver sucessores.

Saída

Para cada bloco básico, o programa imprime os seguintes conjuntos:

```
IN[b]: conjunto de definições que estão ativas na entrada do bloco b.
OUT[b]: conjunto de definições que estão ativas na saída do bloco b.
```

Cada definição é representada no formato (variável, bloco, linha).

Estrutura do Programa

Leitura dos Dados

```
Lê o número de blocos (N) e instruções (M).

Armazena todas as instruções em um vetor.

Monta o grafo de fluxo de controle com os sucessores de cada bloco.
```

Divisão em Blocos Básicos

```
Divide as M instruções uniformemente entre os N blocos básicos. Um ajuste é feito caso a divisão não seja exata.

Cada bloco recebe um subconjunto contínuo das instruções.
```

Coleta de Definições (Definições por Variável)

```
Para cada instrução que contém um operador de atribuição (=), identifica a variável definida (lado esquerdo).

Armazena em um mapa todas as definições dessa variável, associando-as aos seus respectivos blocos e linhas.
```

Construção dos Conjuntos GEN e KILL

```
GEN[b]: Conjunto das últimas definições de variáveis que ocorrem no bloco b.

KILL[b]: Conjunto de todas as outras definições da mesma variável (presentes em outros blocos) que são "mortas" pelas definições em
```

Isso é feito identificando a última definição de cada variável no bloco e, a partir disso, preenchendo GEN e KILL.

Inicialização dos Conjuntos IN e OUT

Inicializa OUT[b] com o conteúdo de GEN[b] para cada bloco b.
O conjunto IN[b] começa vazio para todos os blocos.

Construção do Conjunto de Predecessores

A partir do grafo de fluxo de controle, constrói-se para cada bloco o conjunto de seus predecessores (blocos que apontam para ele).

Cálculo Iterativo dos Conjuntos IN e OUT

O algoritmo itera enquanto houver mudanças nos conjuntos:

```
Atualiza IN[b] como a união dos conjuntos OUT de todos os seus predecessores.

Atualiza OUT[b] com a fórmula: OUT[b] = GEN[b] U (IN[b] - KILL[b]).
```

Impressão dos Resultados

Ao final da iteração, exibe os conjuntos IN e OUT para cada bloco básico.