Rozwiazanie zadania 2.1

I sposób. Rozważmy wielomian $p_n(y) = y^{2n-1} + 1$. Ponieważ 2n - 1 jest liczbą nieparzystą dla każdego $n \in N$, więc $p(-1) = (-1)^{2n-1} + 1 = 0$. Z twierdzenia Bézouta wynika więc, że $p_n(y)$ jest podzielny przez dwumian y + 1, tzn. istnieje wielomian $q_n(y)$ stopnia 2n - 2 taki, że

$$p_n(y) = y^{2n-1} + 1 = (y+1)q_n(y). (1)$$

Zauważmy, że $w_n(x) = x^{4n-2} + 1 = p_n(x^2)$. Stąd i z (1) wynika, że $w_n(x) = (x^2 + 1)q_n(x^2)$. Ponieważ $q_n(x^2)$ jest wielomianem stopnia 4n - 4, więc równość ta dowodzi prawdziwości tezy.

Uwaga. Stosując wzór skróconego mnożenia

$$a^{2n-1} + b^{2n-1} = (a+b)(a^{2n-2} - a^{2n-3}b + \dots - ab^{2n-3} + b^{2n-2})$$

można wielomian $q_n(y)$ napisać w postaci jawnej. Nie jest to jednak konieczne dla poprawności dowodu.

II sposób. Dowód indukcyjny. Rozważmy funkcję zdaniową zmiennej naturalnej n

$$T(n): w_n(x) = x^{4n-2} + 1$$
 jest podzielny przez $x^2 + 1$.

Sprawdzimy teraz, że dla T(n) obydwa założenia zasady indukcji matematycznej są spełnione.

 1° . Sprawdzenie prawdziwości zdania T(1).

Mamy $w_1(x) = x^{4\cdot 1-2} + 1 = x^2 + 1$, czyli oczywiście dzieli się przez $x^2 + 1$, a więc T(1) jest prawdziwe.

2°. Wykażemy, że implikacja $(T(n) \Rightarrow T(n+1))$ jest prawdziwa dla każdego $n \in N$.

Dowód. Niech n będzie dowolną ustaloną liczbą naturalną. Załóżmy, że zdanie T(n) jest prawdziwe tzn. istnieje wielomian $v_n(x)$ taki, że $w_n(x) = x^{4n-2} + 1 = (x^2 + 1)v_n(x)$. Wówczas korzystając z tej równości mamy

$$w_{n+1}(x) = x^{4(n+1)-2} + 1 = x^{4n+2} + 1 = (x^{4n+2} + x^4) - (x^4 - 1)$$