Online Infix Probability Computation for Probabilistic Finite Automata

Marco Cognetta Yo-Sub Han Yonsei University, Seoul, Republic of Korea http://toc.yonsei.ac.kr

Soon Chan Kwon

Problem

We compute infix probabilities for probabilistic finite automata faster and online.

$$\mathcal{P}(\Sigma^*w\Sigma^*) = \sum_{\substack{\text{Infix probability of }w}} \mathcal{P}(x)$$

Use the infix probability of w to compute the infix probability of wa.

$$\mathcal{P}(\Sigma^*w\Sigma^*) \to \mathcal{P}(\Sigma^*wa\Sigma^*)$$

We consider the case where w is given as a stream.

Probabilistic Finite Automata

 $\mathsf{PFA}\; \mathcal{P} = (Q_{\mathcal{P}}, \mathsf{\Sigma}, \{\mathbb{M}_{\mathcal{P}}(c)\}_{c \in \mathsf{\Sigma}}, \mathbb{I}_{\mathcal{P}}, \mathbb{F}_{\mathcal{P}})$ $\cdot \mathbb{M}_{\mathcal{P}}(c) - |Q_{\mathcal{P}}| \times |Q_{\mathcal{P}}|$ transition matrix $\mathbb{I}_{\mathcal{P}} - 1 \times |Q_{\mathcal{P}}|$ initial weight vector $\mathbb{F}_{\mathcal{P}} - |Q_{\mathcal{P}}| \times 1$ final weight vector

$$\mathcal{P}(w) = \mathbb{I}_{\mathcal{P}} \prod_{i=1}^{|w|} \mathbb{M}_{\mathcal{P}}(w_i) \mathbb{F}_{\mathcal{P}}$$

Previous Approach (Our EMNLP'18 Paper)

- ·Construct DFA \mathcal{D} for $\Sigma^* w \Sigma^*$
- ·Perform state elimination:

$$\alpha_{i,j}^k = \alpha_{i,j}^{k-1} + \alpha_{i,k}^{k-1} (\alpha_{k,k}^{k-1})^* \alpha_{k,j}^{k-1}$$

·Extract $\alpha_{0,k+1}^k$ to get $\mathcal{P}(\Sigma^* w_1 w_2 \dots w_k \Sigma^*)$

Regex	Matrix	Regex	Matrix					
Ø	0	$R \cup S$	$\mathbb{M}_{\mathcal{P}}(R) + \mathbb{M}_{\mathcal{P}}(S)$					
λ	1	RS	$\mathbb{M}_{\mathcal{P}}(R)\mathbb{M}_{\mathcal{P}}(S)$					
c	$\mathbb{M}_{\mathcal{P}}(c)$	R^*	$(1-\mathbb{M}_{\mathcal{P}}(R))^{-1}$					
$\mathbb{I}_{\mathcal{P}}\mathbb{M}_{\mathcal{P}}(R)\mathbb{F}_{\mathcal{P}} = \sum \mathcal{P}(w)$								

$$\mathbb{I}_{\mathcal{P}}\mathbb{M}_{\mathcal{P}}(R)\mathbb{F}_{\mathcal{P}} = \sum_{w \in R} \mathcal{P}(u)$$

Basic Incremental Algorithm

 $\alpha_{i,j}^{k}$ = paths from q_{i} to q_{j} that don't visit states $> q_{k}$.

$$0 \xrightarrow{\lambda} \underbrace{1}_{b} \underbrace{2}_{a} \underbrace{3}_{b} \underbrace{4}_{\lambda} \underbrace{5}_{b}$$

α^{0}								$lpha^{1}$					
	0	1	2	3	4	5		0	1	2	3	4	5
0	\emptyset	λ	Ø	Ø	\emptyset	Ø	0	\emptyset	$\lambda + b^*b$	b^*a	Ø	\emptyset	\emptyset
1	Ø	b	a	Ø	Ø	Ø	1	Ø	$b + bb^*b$	$a + bb^*a$	Ø	Ø	Ø
2	Ø	b	Ø	a	Ø	Ø	2	Ø	$b + bb^*b$	bb^*a	a	Ø	Ø
3	Ø	Ø	Ø	a	b	Ø	3	Ø	Ø	Ø	a	b	Ø
4	Ø	Ø	Ø	Ø	Ø	λ	4	Ø	Ø	Ø	Ø	Ø	λ
5	Ø	Ø	Ø	Ø	Ø	Ø	5	\emptyset	Ø	Ø	Ø	Ø	Ø
1 7 th 2 7 th (7 7 th) th 2 7 th (7 7 th) th 4 7													

$$\alpha_{0,2}^1 = b^* \alpha$$

$$\alpha_{0,2}^1 = b^*a$$
 $\alpha_{0,3}^2 = b^*a(bb^*a)^*a$

$$\alpha_{0,4}^3 = b^* a (bb^* a)^* a a^* b$$

Algorithm 1: Incremental Infix Probability

Time Complexity: $O(|w|^3|Q_P|^m)$

Recurrence Reanalysis

Not all cells need to be computed at each iteration.

We only need to consider cells that eventually contribute to $\alpha_{0,n+1}^n$.

In fact, only O(n) cells need to be evaluated at each step.

- $\alpha_{i,j}^k$: Ignore
- $\alpha_{i,j}^k$: Compute normally
- $\bullet \quad \alpha_{i,j}^k := \alpha_{i,j}^{k-1}$
- $\alpha_{i,j}^k$: Always \emptyset
- New runtime: $O(|w|^2|Q_P|^m)$

Always ∅

$$\underline{\alpha_{k+x,k+y}^{k}} = \alpha_{k+x,k+y}^{k-1} + \alpha_{k+x,k}^{k-1} (\alpha_{k,k}^{k-1})^* \alpha_{k,k+y}^{k-1}$$

$$0 < x < y$$

Online Algorithm

Issue: We can't predict where back-transitions will go. At step k+1, we know how to get from q_1 to q_k and how to get from q_k to q_{k+1} , but not q_k to q_k .

Key idea: Prepend $c \in \Sigma - w_k$ to each path from state $\delta(q_{k+1}, c)$ to k. Now we can reconstruct all $q_k \to q_k$ paths without ever knowing the out-transitions beforehand.

Experimental Timings

$ Q , \mathbf{\Sigma} $		1500, 26		1500, 100			
w Alg	Alg 1	Faster	Online	Alg 1	Faster	Online	
1	13.396	1.780	1.201	13.371	1.720	1.605	
2	13.382	1.649	1.320	13.382	1.570	1.750	
3	13.154	1.446	1.459	13.290	1.447	1.849	
4	13.333	1.295	1.609	13.342	1.273	1.986	
5	13.378	1.161	1.763	13.319	1.143	2.135	
6	14.352	1.002	1.898	13.282	0.994	2.254	
7	14.287	0.869	2.056	13.571	0.832	2.368	
8	14.330	0.735	2.189	13.614	0.702	2.479	
9	14.673	0.591	2.367	13.661	0.568	2.679	
10	13.847	0.447	1.596	13.627	0.445	1.507	
Total	137.947	10.976	1.365	134.462	10.694	20.615	

An important use case:

Given a string w, find a such that the infix of wa is maximized.

... be or not to ... \rightarrow ... be or not to be ...

Consider the |Q| = 1500, $|\Sigma| = 100$ case with |w| = 9.

Old method $\approx 134.462 * 100 = 13446.2$ seconds

Faster method $\approx 10.694 * 100 = 1069.4$ seconds Online method $\approx (20.615 - 1.507) + 1.507 * 100 = 169.808$ seconds