

Die LU-Zerlegung

Aleksandre Kandelaki, Matthias Staritz, Benjamin Liertz

Technische Universität München

Fakultät für Informatik

Garching, 16. August 2021

Einleitung

Einleitung

Untere Dreiecksmatrix:

$$\begin{bmatrix} l_{1,1} & 0 & 0 & \cdots & 0 \\ l_{2,1} & l_{2,2} & 0 & & \vdots \\ l_{3,1} & l_{3,2} & l_{3,3} & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & 0 \\ l_{n,1} & l_{n,2} & l_{n,3} & \cdots & l_{n,n} \end{bmatrix}$$

Obere Dreiecksmatrix:

$$\begin{bmatrix} l_{1,1} & 0 & 0 & \cdots & 0 \\ l_{2,1} & l_{2,2} & 0 & & \vdots \\ l_{3,1} & l_{3,2} & l_{3,3} & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & 0 \\ l_{n,1} & l_{n,2} & l_{n,3} & \cdots & l_{n,n} \end{bmatrix} \begin{bmatrix} u_{1,1} & u_{1,2} & u_{1,3} & \cdots & u_{1,n} \\ 0 & u_{2,2} & u_{2,3} & \cdots & u_{2,n} \\ 0 & 0 & u_{3,3} & \cdots & u_{3,n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & u_{n,n} \end{bmatrix}$$

Einleitung

Einheitsmatrix:

$$\begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & & \vdots \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & 0 \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}$$

Pivotmatrix:

$$\begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 1 & 0 & 0 & & \vdots \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & 0 \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}$$

Lineares Gleichungssystem als Beispiel

Lineares Gleichungssystem:

$$0x_1 + 3x_2 + 5x_3 + 7x_4 = 0$$
$$2x_1 + 6x_2 + 10x_3 + 14x_4 = 0$$
$$-4x_1 + 12x_2 + 15x_3 + -21x_4 = 0$$
$$6x_1 + 9x_2 + -5x_3 + -7x_4 = 0$$

Koeffizientenmatrix A:

$$\begin{bmatrix} 0 & 3 & 5 & 7 \\ 2 & 6 & 10 & 14 \\ -4 & 12 & 15 & -21 \\ 6 & 9 & -5 & -7 \end{bmatrix}$$

Ergebnis der LU-Zerlegung:

$$A = \begin{bmatrix} 0 & 3 & 5 & 7 \\ 2 & 6 & 10 & 14 \\ -4 & 12 & 15 & -21 \\ 6 & 9 & -5 & -7 \end{bmatrix} L = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -2 & 8 & 1 & 0 \\ 3 & -3 & 4 & 1 \end{bmatrix} U = \begin{bmatrix} 2 & 6 & 10 & 14 \\ 0 & 3 & 5 & 7 \\ 0 & 0 & -5 & -49 \\ 0 & 0 & 0 & 168 \end{bmatrix} P = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Lösungsansatz

Beispiel für Zeilenvertauschungen

$$\begin{bmatrix} 0 & 3 & 5 & 7 \\ 2 & 6 & 10 & 14 \\ -4 & 12 & 15 & -21 \\ 6 & 9 & -3 & -9 \end{bmatrix} \longleftrightarrow \to \begin{bmatrix} 6 & 9 & -3 & -9 \\ 2 & 6 & 10 & 14 \\ -4 & 12 & 15 & -21 \\ 0 & 3 & 5 & 7 \end{bmatrix}$$

Lösungsansatz

Beispiel für Zeilenaddition mit Faktor

$$\begin{bmatrix} 6 & 9 & -3 & -9 \\ 2 & 6 & 10 & 14 \\ -4 & 12 & 15 & -21 \\ 0 & 3 & 5 & 7 \end{bmatrix} \leftarrow \begin{bmatrix} \frac{1}{3} \\ + \end{bmatrix} \rightarrow \begin{bmatrix} 6 & 9 & -3 & -9 \\ 2 & 6 & 10 & 14 \\ 0 & 15 & 14 & -24 \\ 0 & 3 & 5 & 7 \end{bmatrix}$$

U

Ρ

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} 0 & 1 & 2 \\ 3 & 4 & 5 \\ 6 & 6 & 12 \end{bmatrix} \leftarrow \qquad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \leftarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \leftarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \leftarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \leftarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix} \leftarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \leftarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & -1 \\ 0 & 1 & 2 \end{bmatrix} \leftarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \leftarrow \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \leftarrow \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \leftarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \leftarrow \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \leftarrow \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \leftarrow \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \leftarrow \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \leftarrow \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \leftarrow \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \leftarrow \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

Genauigkeit

Absorption:

1000000,00f + 0,01f = 1000000,00f

Auslöschung:

1000000,1f - 1000000,0f = 0,125f! = 0,1f

Kondition Beispiel

Lineares Gleichungssystem:

$$\begin{bmatrix} 1 & 1 \\ 1 & 1 - \epsilon \end{bmatrix} \cdot x = \begin{bmatrix} 4 \\ 4 - \epsilon \end{bmatrix} = b$$

Lösung:
$$x = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

Störung der rechten Seite mit $0 < \epsilon \ll 1$

$$\bar{b} = b + \begin{bmatrix} \epsilon \\ -\epsilon \end{bmatrix} = \begin{bmatrix} 4 + \epsilon \\ 4 - 2\epsilon \end{bmatrix}$$

Lösung:
$$\bar{x} = \begin{bmatrix} 1 + \epsilon \\ 3 \end{bmatrix}$$

Relativer Fehler

Relativer Fehler:
$$\frac{||x - \bar{x}||}{||x||}$$

Relative Störung:
$$\frac{||b-\bar{b}||}{\||b||}$$

Kondition:
$$||A|| \cdot ||A^{-1}||$$

Störung in b:
$$\frac{||x-\bar{x}||}{||x||} \leq \frac{||b||}{||x||} \cdot ||A^{-1}|| \cdot \frac{||b-\bar{b}||}{||b||} \leq ||A|| \cdot ||A^{-1}|| \cdot \frac{||(b-\bar{b})||}{||b||}$$

Relativer Fehler

Relative Störung in A:
$$\frac{||A-\bar{A}||}{||A||} \le ea$$

Relative Störung in b:
$$\frac{||b-\bar{b}||}{||b||} \le eb$$

Störung in A und b:
$$\frac{||x - \bar{x}||}{||x||} \le \frac{cond(A)}{1 - ea \cdot cond(A)} \cdot (ea + eb)$$

Stabilität

Beschränkung der Störung:

$$\frac{||A - \bar{A}||}{||A||} \le C \ eps \qquad \frac{||b - \bar{b}||}{||b||} \le C \ eps$$

Störung in b:

$$|A - \bar{A}| \le 2n \ eps \ |\bar{L}||\bar{R}| + O(eps^2)$$

Störung in A und b:

$$\frac{||A - \bar{A}|| \infty}{||A|| \infty} \le 2n^3 \ eps \ \frac{\max_{i,j} |\hat{U}_{ij}|}{\max_{i,j} |a_{ij}|} + O(eps^2)$$

Performance

- Perf Tool hat uns das Vektorisieren erleichtert
- Die LU-Zerlegung ist stark vektorisierbar
 - Zeilenvertauschung
 - Kopieren von A in U
 - Addieren von vielfachen einer Zeile auf eine Andere
- Die gute Schleifenlogik reduziert Cache-Misses

Einige Ergebnisse

Matrixgröße	Assembler	Assembler + SIMD	Speedup
500x500	0.019841	0.006468	≈ 30.6
1000x1000	0.161224	0.055287	≈ 2.9
2000x2000	1.359814	0.671388	≈ 2.0
4000x4000	11.823209	6.975800	≈ 1.7
10000x10000	192.002399	113.115672	≈ 1.7

Zusammenfassung

- LU-Zerlegung zerlegt eine Matrix in zwei Dreiecksmatrizen
- Stets nur eine Lösung, wenn L Matrix in der Diagonale nur 1-er enthält
- LU-Zerlegung wird meistens für Matrixinversion angewendet
- Es kommt bei einem naiven Verfahren zu sehr grossen Rundungsfehlern
- Pivotisierung ist entscheidend für die Genauigkeit
- Durch Vektorisierung kann man einen kompetenten Speedup erreichen

Danke für Ihre Aufmerksamkeit!