See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/244465972

Studies on Molecular Interactions of Some Thiocyanate Salts in Coaqueous Solutions of 1,3Dioxolane + Water by Volumetric, Viscometric, and Speed of Sound Measurements

ARTICLE in JOURNAL OF CHEMICAL & ENGINEERING DATA · JUNE 2009

Impact Factor: 2.04 · DOI: 10.1021/je800562h

CITATIONS

2 5

3 AUTHORS, INCLUDING:

SEE PROFILE

READS

Riju Chanda

18 PUBLICATIONS 73 CITATIONS

SEE PROFILE

Studies on Molecular Interactions of Some Thiocyanate Salts in Coaqueous Solutions of 1,3-Dioxolane + Water by Volumetric, Viscometric, and Speed of Sound Measurements

Mahendra Nath Roy,* Riju Chanda, and Ashis Banerjee

Department of Chemistry, North Bengal University, Darjeeling-734 013, India

The densities and viscosities of some thiocyanate compounds, viz., ammonium thiocyanate, sodium thiocyanate, and potassium thiocyanate, in 10 %, 20 %, and 30 % by mass of 1,3-dioxolane + water mixtures have been determined at T=(298.15, 308.15, and 318.15) K and p=0.1 MPa. The speeds of sound of the thiocyanate compounds in 10 %, 20 %, and 30 % by mass of 1,3-dioxolane + water mixtures have also been determined at 298.15 K. Apparent molar volumes (V_{ϕ}) , viscosity *B*-coefficients, and adiabatic compressibility (β) of these electrolytes were obtained from their densities, viscosities, and speed of sound data. The limiting apparent molar volumes (V_{ϕ}) and experimental slopes (S_{v}) derived from the Masson equation and the obtained parameters have been interpreted in terms of ion—solvent and ion—ion interactions, respectively. The viscosity data were evaluated by using the Jones—Dole equation. The structure making/breaking capacities of the electrolytes have been inferred from the sign of $(\delta^2 \phi_{V}) \delta T^2$ and dB/dT. The activation parameters of viscous flow for the ternary solutions studied were also calculated and explained by the application of transition state theory.

Introduction

It is well-known that the reaction medium plays an important role in determining reactivity reflected in thermodynamic, transport, and spectral properties.^{1,2} Gaining insight into the mechanism of such interactions, thermodynamic and transport studies involving one or more solutes in mixed solvent systems are highly useful. Studies on the apparent molar volumes of electrolytes and the dependence of viscosity in connection with solutes and temperature of solutions have been employed as a function of studying ion-ion and ion-solvent interactions.3 The finding of a number of workers^{4–7} is that the addition of electrolyte could break or make the structure of a liquid. The addition of organic solvent to an aqueous solution of electrolyte brings about a change in the ion's solvation and often results in a large change in the reactivity of the dissolved electrolytes. The viscosity being a property of the liquid depending on intermolecular forces, the structural aspects of the liquid can be inferred from the viscosity of solutions at different concentrations and temperatures.

1,3-Dioxolane is a good industrial solvent. It figures prominently in the high energy battery industry and finds application in organic synthesis as manifested from the physicochemical studies in this medium.⁸ In the present study, we have performed density, viscosity, and speed of sound measurements in 10 %, 20 %, and 30 % by mass of 1,3-dioxolane + water mixtures of ammonium thiocyanate, sodium thiocyanate, and potassium thiocyanate as a function of temperature to unravel the nature of various types of interactions prevailing in these electrolyte solutions.

Experimental Section

Materials. 1,3-Dioxolane, $C_3H_6O_2$ (ethylene glycol formal or ethylene glycol methylene ether) from Merck, containing 0.3 %

Table 1. Physical Properties of Pure 1,3-Dioxolane and 1,3-Dioxolane + Water Mixtures at Different Temperatures

1,5-Dioxolane	1 Water What	ures at Differ	ent remperate	11 (3
	$\rho \cdot 10^{-3}$	/kg⋅m ⁻³	η/m	Pa•s
temperature	observed	literature	observed	literature
	10 % by mass	of 1,3-dioxola	ane + water	
298.15 K	1013.40		0.9970	
308.15 K	1007.40		0.8350	
318.15 K	1003.90		0.7452	
	20 % by mass	s of 1,3-dioxola	ne + water	
298.15 K	1024.70		1.1240	
308.15 K	1018.70		0.9652	
318.15 K	1013.80		0.8548	
	30 % by mass	s of 1,3-dioxola	ne + water	
298.15 K	1034.20		1.2460	
308.15 K	1027.80		1.0618	
318.15 K	1021.30		0.9373	
	pu	re 1,3-dioxolan	e	
298.15 K	1058.6	1058.62^{14}	0.5886	0.5889^{14}
308.15 K	1045.8		0.5235	
318.15 K	1035.6		0.4584	

water and 0.005 % peroxides and sterilized with butylated hydroxytoluene (BHT) was purified by heating under reflux with PbO₂ for 2 h, then cooled and filtered. After adding xylene to the filtrate, the mixture was fractionally distilled. ^{9,10} The solvent obtained after purification had a boiling point of 348 K at p=0.1 MPa, a density of 1058.6 kg·m⁻³, and a coefficient of viscosity of 0.5750 mPa·s at 298.15 K which is in good agreement with literature values. ^{10,11} The purity of the solvent finally obtained was > 99.0 %.

Ammonium thiocyanate, sodium thiocyanate, and potassium thiocyanate (NH₄CNS, NaCNS, and KCNS) salts (all A.R., B.D.H.) were purified by recrystallization twice from triply distilled water with a specific conductance of less than $10^{-6}~\rm S\cdot cm^{-1}$ at 298.15 K. The samples were dried in vacuum and stored over P_2O_5 under vacuum.

^{*} Corresponding author. E-mail: mahendraroy2002@yahoo.co.in. Fax: 91-353-2581546.

Table 2. Concentration c, Density ρ , Viscosity η , Apparent Molar Volumes V_{ϕ} , and $(\eta_{\rm r}-1)/c^{1/2}$ for Ammonium Thiocyanate, Sodium Thiocyanate, and Potassium Thiocyanate in Different Coaqueous (1,3-Dioxolane + Water) Solutions at Different Temperatures

c	$\rho \cdot 10^{-3}$	_ η	$V_{\phi} \cdot 10^{6}$		c	$\rho \cdot 10^{-3}$	_ η	$V_{\phi} \cdot 10^{6}$	
mol•dm ⁻³	$\overline{\text{kg} \cdot \text{m}^{-3}}$	mPa•s	$\overline{\text{m}^3 \cdot \text{mol}^{-1}}$	$(\eta_{\rm r}-1)/c^{1/2}$	mol∙dm ⁻³	${\text{kg} \cdot \text{m}^{-3}}$	mPa•s	$\overline{\text{m}^3 \cdot \text{mol}^{-1}}$	$(\eta_{\rm r}-1)/c^{1/2}$
				Ammonium	Thiocyanate				.,.
			10	% by Mass of 1,3	-	Joter			
			10	-		v alci			
0.00100	1012.50	1.0046	26,000	T = 29		1015 57	1.0420	10.401	0.2420
0.00198 0.01388	1013.50 1014.14	1.0046 1.0212	26.000 22.799	0.1720 0.2060	0.03767 0.04957	1015.57 1016.30	1.0438 1.0540	18.401 17.300	0.2420 0.2570
0.01588	1014.14	1.0212	20.402	0.2000	0.04937	1010.30	1.0540	16.501	0.2570
0.02370	1011.05	1.0555	20.102			1017.03	1.0050	10.501	0.2070
0.00197	1007.48	0.8399	37.399	T = 30 0.1330	0.03742	1009.20	0.8699	27.784	0.2160
0.00197	1007.48	0.8522	32.995	0.1350	0.03742	1009.20	0.8099	26.677	0.2100
0.02561	1008.57	0.8613	30.290	0.1970	0.06104	1010.52	0.8855	24.772	0.2450
				T = 31					
0.00196	1003.95	0.7485	51.500	1 - 31 0.1003	0.03728	1005.22	0.7727	40.496	0.1910
0.00170	1003.33	0.7580	46.199	0.1460	0.04903	1005.74	0.7795	38.494	0.2080
0.02551	1004.74	0.7654	43.197	0.1700	0.06078	1006.33	0.7867	35.993	0.2260
				% by Mass of 1,3					
			20	•		, atter			
0.00199	1024.90	1.1343	24.800	T = 29	0.03775	1026 97	1.1821	19 100	0.2660
0.00199	1024.80 1025.45	1.1545	21.600	0.2060 0.2350	0.03773	1026.87 1027.61	1.1821	18.100 17.200	0.2660 0.2790
0.02583	1025.45	1.1692	19.500	0.2500	0.04907	1027.01	1.2038	15.800	0.2790
0.02000	1020.10	1.10,2	17.000			1020.07	1.2000	10.000	0.2000
0.00198	1018.78	0.9721	32.799	T = 30 0.1600	0.03750	1020.59	1.0089	25.183	0.2340
0.00198	1019.76	0.9721	28.995	0.1000	0.03730	1020.39	1.0089	23.378	0.2340
0.02566	1019.95	0.9989	26.989	0.2180	0.06116	1021.97	1.0277	22.172	0.2620
				T = 31					
0.00197	1013.86	0.8591	44.678	I = 31 0.1130	0.03731	1015.33	0.8886	34.529	0.2050
0.00137	1013.80	0.8708	39.609	0.1130	0.04907	1015.53	0.8965	32.291	0.2030
0.02553	1014.80	0.8801	36.563	0.1850	0.06084	1016.55	0.9041	30.459	0.2340
				% by Mass of 1,3					
			30	•		valer			
				T = 29					
0.00206	1034.31	1.2578	23.700	0.2090	0.03809	1036.38	1.3100	18.200	0.2630
0.01406	1034.96	1.2809 1.2968	21.501 19.401	0.2360	0.04980	1037.07 1037.86	1.3225 1.3341	17.800 16.502	0.2750 0.2840
0.02636	1035.68	1.2906	19.401	0.2510	0.06205	1037.60	1.3341	10.302	0.2640
				T = 30					
0.00205	1027.90	1.0697	28.700	0.1650	0.03783	1029.82	1.1089	21.990	0.2280
0.01397 0.02619	1028.49 1029.16	1.0862 1.0982	25.797 23.493	0.1942 0.2120	0.04945 0.06161	1030.50 1031.24	1.1180 1.1269	20.985 19.781	0.2380 0.2470
0.02019	1029.10	1.0962	23.493			1031.24	1.1209	19.761	0.2470
0.00204	1021 27	0.0420	41.004	T = 31		1022.02	0.0710	22 100	0.1000
0.00204	1021.37	0.9428	41.004	0.1290	0.03758	1022.93	0.9718	32.188	0.1900
0.01388 0.02602	1021.84 1022.38	0.9545 0.9636	36.515 34.010	0.1560 0.1740	0.04912 0.06119	1023.50 1024.17	0.9799 0.9881	30.589 28.669	0.2050 0.2190
0.02002	1022.30	0.7030	34.010			1024.17	0.7661	28.00)	0.2170
				Sodium Th	-				
			10	% by Mass of 1,3	-Dioxolane + V	Vater			
				T = 29	8.15 K				
0.00199	1013.50	1.0047	28.001	0.1730	0.03773	1015.69	1.0446	20.000	0.2460
0.01390	1014.19	1.0216	24.000	0.2090	0.04964	1016.49	1.0554	18.599	0.2630
0.02581	1014.92	1.0343	21.800	0.2330	0.06156	1017.31	1.0655	17.300	0.2770
				T = 30	8.15 K				
0.00197	1007.47	0.8400	43.300	0.1350	0.03749	1009.25	0.8711	31.398	0.2230
0.01381	1008.00	0.8523	37.600	0.1760	0.04932	1009.91	0.8799	29.998	0.2420
0.02565	1008.61	0.8619	33.700	0.2010	0.06115	1010.64	0.8879	27.803	0.2560
				T = 31	8.15 K				
0.00197	1003.95	0.7487	56.800	0.1050	0.03734	1005.29	0.7740	43.802	0.2000
0.01376	1004.31	0.7577	50.901	0.1430	0.04912	1005.85	0.7814	41.305	0.2190
0.02556	1004.78	0.7659	46.501	0.1740	0.06090	1006.46	0.7884	38.808	0.2350
			20	% by Mass of 1,3	-Dioxolane + V	Vater			
				T = 29					
0.00201	1024.81	1.1344	26.900	I = 29 0.2055	0.03825	1027.03	1.1835	19.700	0.2706
0.00201	1024.81	1.1558	23.500	0.2380	0.05033	1027.03	1.1956	18.000	0.2700
0.02617	1025.36	1.1708	21.100	0.2572	0.06240	1027.63	1.2066	17.100	0.2940
				T = 30					
0.00200	1018.78	0.9722	39.200	I = 30 0.1617	0.03800	1020.68	1.0105	28.502	0.2407
0.00200	1019.35	0.9722	33.901	0.1017	0.05000	1020.08	1.0103	26.704	0.2407
0.02601	1019.99	0.9998	30.703	0.2220	0.06199	1022.16	1.0300	24.806	0.2695

Table 2 Continued

<i>c</i>	$\rho \cdot 10^{-3}$	η	$V_{\phi} \cdot 10^6$		c	$\rho \cdot 10^{-3}$	_η	$V_{\phi} \cdot 10^6$	
mol·dm ⁻³	$kg \cdot m^{-3}$	mPa•s	$\overline{\text{m}^3 \cdot \text{mol}^{-1}}$	$(\eta_{\rm r}-1)/c^{1/2}$	mol∙dm ⁻³	$kg \cdot m^{-3}$	mPa•s	$\overline{\text{m}^3 \cdot \text{mol}^{-1}}$	$(\eta_{\rm r}-1)/c^{1/2}$
					18.15 K				
0.00199	1013.86	0.8592	49.100	0.1152	0.03781	1015.44	0.8900	37.105	0.2119
0.01394	1014.35	0.8709	40.803	0.1600	0.04974	1016.08	0.8994	34.707	0.2340
0.02588	1014.86	0.8806	39.703	0.1880	0.06167	1016.73	0.9076	33.108	0.2490
			30	% by Mass of 1,	3-Dioxolane + V	Water			
				T=2	98.15 K				
0.00215	1034.32	1.2579	24.899	0.2060	0.04051	1036.72	1.3125	18.201	0.2650
0.01497 0.02780	1035.09 1035.89	1.2818 1.2984	21.200 19.499	0.2350 0.2520	0.05182 0.06662	1037.47 1038.50	1.3246 1.3383	17.300 16.000	0.2770 0.2870
0.02760	1033.69	1.2904	19.499		0.00002 08.15 K	1036.30	1.3363	10.000	0.2870
0.00212	1007.01	1.0600	20.202			1020.16	1 1110	21.000	0.2220
0.00213 0.01487	1027.91 1028.60	1.0699 1.0869	30.302 26.396	0.1650 0.1940	0.04024 0.05148	1030.16 1030.90	1.1112 1.1206	21.800 20.249	0.2320 0.2440
0.02762	1029.37	1.1003	23.576	0.2180	0.06617	1031.89	1.1328	18.711	0.2600
				T=3	18.15 K				
0.00212	1021.38	0.9429	44.001	0.1290	0.03997	1023.15	0.9753	33.962	0.2030
0.01478	1021.90	0.9553	39.401	0.1580	0.05112	1023.75	0.9833	32.459	0.2170
0.02744	1022.50	0.9652	36.381	0.1800	0.06570	1024.58	0.9926	30.427	0.2300
				Potassium	Thiocyanate				
			10	% by Mass of 1,	3-Dioxolane + V	Water			
				T=2	98.15 K				
0.00199	1013.53	1.0048	33.001	0.1750	0.03776	1016.19	1.0528	23.000	0.2880
0.01391 0.02583	1014.37 1015.25	1.0242 1.0393	26.900 25.101	0.2310 0.2640	0.04968 0.06160	1017.15 1018.18	1.0659 1.0782	21.501 19.400	0.3100 0.3280
0.02303	1013.23	1.03/3	23.101		08.15 K	1010.10	1.0762	17.400	0.3200
0.00197	1007.50	0.8401	48.490	0.1380	0.03752	1009.69	0.8758	35.999	0.2520
0.00197	1007.30	0.8540	41.500	0.1940	0.03732	1010.53	0.8866	33.499	0.2320
0.02566	1008.89	0.8652	38.799	0.2260	0.06127	1011.40	0.8958	31.699	0.2940
				T=3	18.15 K				
0.00197	1003.96	0.7487	64.294	0.1060	0.03737	1005.69	0.7772	49.199	0.2220
0.01377 0.02556	1004.46 1005.04	0.7591 0.7680	56.400 52.399	0.1590 0.1910	0.04919 0.06101	1006.39 1007.15	0.7855 0.7949	46.299 43.798	0.2440 0.2700
0.02330	1003.04	0.7000		0.1510) % by Mass of 1,			0.7747	43.770	0.2700
				·	98.15 K				
0.00209	1024.84	1.1345	30.333	0.2039	0.03977	1027.67	1.1863	21.999	0.2780
0.01465	1025.73	1.1562	26.022	0.2370	0.05234	1028.69	1.1988	20.466	0.2910
0.02721	1026.68	1.1722	23.723	0.2600	0.06490	1029.75	1.2113	18.933	0.3050
				T = 3	08.15 K				
0.00208	1018.81	0.9724	44.625	0.1630	0.03952	1021.20	1.0111	33.396	0.2390
0.01457 0.02705	1019.54 1020.34	0.9880 1.0001	38.939 35.910	0.1960 0.2200	0.05200	1022.10 1023.03	1.0222 1.0328	31.203 29.449	0.2590 0.2760
0.02703	1020.34	1.0001	33.910		0.06447 18.15 K	1023.03	1.0326	29. 44 9	0.2700
0.00207	1012 00	0.9502	55 461			1015 06	0.8000	41.560	0.2120
0.00207	1013.88 1014.49	0.8593 0.8712	55.461 49.128	0.1160 0.1590	0.03932 0.05173	1015.96 1016.79	0.8909 0.9008	41.560 38.887	0.2130 0.2364
0.02691	1015.19	0.8810	44.749	0.1870	0.06413	1017.66	0.9098	36.560	0.2540
			30	% by Mass of 1,	3-Dioxolane + V	Water			
				T=2	98.15 K				
0.00215	1034.35	1.2581	28.485	0.2100	0.04051	1037.28	1.3160	20.408	0.2790
0.01497	1035.27	1.2818	24.582	0.2350	0.05182	1038.30	1.3288	17.515	0.2920
0.02780	1036.29	1.2996	21.375	0.2580	0.06662	1039.41	1.3444	18.311	0.3060
0.00213	1027.92	1.0700	39.958	T = 3 0.1680	08.15 K 0.04024	1030.48	1.1125	29.799	0.2380
0.00213	1027.92	1.0700	39.958 34.883	0.1680	0.04024	1030.48	1.1125	29.799	0.2380
0.02762	1029.59	1.1006	31.452	0.2200	0.06617	1032.43	1.1358	26.409	0.2710
				T=3	18.15 K				
0.00212	1021.40	0.9430	50.382	0.1320	0.03997	1023.65	0.9791	37.556	0.2230
0.01478	1022.07	0.9568	44.032	0.1710	0.05113	1024.50	0.9877	33.948	0.2380
0.02744	1022.86	0.9676	39.553	0.1950	0.06572	1025.44	0.9993	33.479	0.2580

Table 3. Limiting Partial Molar Volume V_{ϕ}^{o} and Experimental Slope S_{v}^{*} for Ammonium Thiocyanate, Sodium Thiocyanate, and Potassium Thiocyanate in Different Coaqueous (1,3-Dioxolane + Water) Solutions at Different Temperatures

		$V_{\phi}^{\text{o}} \cdot 10^6 / \text{m}^3 \cdot \text{mol}^{-1}$			$S_v * \cdot 10^4 / \text{m}^2 \cdot \text{L}^{1/2} \cdot \text{mol}^{-3}$	/2
mass fraction of 1,3-dioxolane	T = 298.15 K	T = 308.15 K	T = 318.15 K	T = 298.15 K	T = 308.15 K	T = 318.15 K
		A	mmoniam Thiocyanate	2		
10	28.216	40.184	55.024	-48.497	-62.078	-75.578
20	26.708	35.211	47.804	-43.754	-52.505	-69.906
30	25.382	30.792	43.685	-35.408	-44.380	-59.913
			Sodium Thiocyanate			
10	30.267	46.455	60.951	-52.520	-76.063	-89.101
20	29.120	42.232	51.500	-48.659	-70.161	-75.294
30	26.557	32.948	47.102	-41.319	-55.592	-64.970
		P	otassium Thiocyanate			
10	35.346	51.774	68.521	-63.900	-81.835	-100.370
20	32.697	47.865	59.833	-53.911	-72.830	-91.831
30	30.658	43.029	54.054	-49.746	-68.155	-84.055

Table 4. Values of Various Coefficients of Equation 4 for Different Thiocyanates in Different Coaqueous (1,3-Dioxolane + Water)

014410115			
mass fraction of	a ₀ •10 ⁶	$a_1 \cdot 10^6$	$a_2 \cdot 10^6$
1,3-dioxolane	$m^3 \cdot mol^{-1}$	$m^3 \cdot mol^{-1} \cdot K^{-1}$	$m^3 \cdot mol^{-1} \cdot K^{-2}$
	Ammonian	n Thiocyanate	
10	-1329.000	7.705	-0.010
20	803.020	-6.355	0.013
30	27.389	-0.584	0.002
	Sodium 7	Thiocyanate	
10	-2623.200	16.056	-0.024
20	1278.900	-9.638	0.019
30	-570.480	3.120	-0.004
	Potassium	Thiocyanate	
10	220.740	-1.743	0.004
20	3797.400	-25.738	0.044
30	4690.500	-31.185	0.052

Table 5. Limiting Partial Molar Expansibility ϕ_{E^0} for Ammonium Thiocyanate, Sodium Thiocyanate, and Potassium Thiocyanate in Different Coaqueous (1,3-Dioxolane + Water) Solutions at Different Temperatures

mass fraction of	$\phi_{\mathrm{E}}^{\mathrm{o}}$ · 1	10 ⁶ /m ³ ·mol ⁻¹	•K ⁻¹	$(\delta\phi_{\rm E}^{\rm o}/\delta T)_P \cdot 10^6$
1,3-dioxolane	298.15 K	308.15 K	318.15 K	$\overline{\text{m}^3 \cdot \text{mol}^{-1} \cdot \text{K}^{-2}}$
	Ammo	niam Thiocy	anate	
10	1.623	1.419	1.215	-0.020
20	1.278	1.534	1.790	0.026
30	0.668	0.710	0.752	0.004
	Sodi	um Thiocyar	nate	
10	1.983	1.511	1.039	-0.047
20	1.393	1.763	2.133	0.037
30	0.974	0.902	0.830	-0.007
	Potass	sium Thiocya	anate	
10	0.881	0.969	1.057	0.009
20	0.618	1.502	2.386	0.088
30	0.001	1.047	2.093	0.105

Apparatus and Procedure. The binary aqueous solution of 1,3-dioxolane as well as the solutions of thiocyanate were made by weight, and conversion of molality into molarity was done¹² using density values. Adequate precautions were made to reduce evaporation losses during mixing.

The densities (ρ) were measured with an Ostwald-Sprengel type pycnometer having a bulb volume of 25 cm³ and an internal diameter of the capillary of about 0.1 cm. The pycnometer was calibrated at the experimental temperatures with double-distilled water and benzene. The pycnometer with the test solution was equilibrated in a water-bath maintained at \pm 0.01 K of the desired temperature by means of a mercury-in-glass thermoregulator, and the temperature was determined by a calibrated thermometer and

Muller bridge. The pycnometer was then removed from the thermostatic bath, properly dried, and weighed. The evaporation losses remained insignificant during the time of the actual measurements. An average of three measurements was taken into account. The density values are reproducible to $\pm~3\cdot10^{-4}~\rm g\cdot cm^{-3}$. The viscosity (η) was measured by means of a suspended-level Ubbelobde viscometer at the desired temperature (precision $\pm~0.01~\rm K$). The uncertainty in viscosity measurements was $\pm~0.003~\rm mPa\cdot s$. Details have been described earlier. Speeds of sound (u) were determined with an uncertainty of $\pm~0.2~\rm m\cdot s^{-1}$, using a single-crystal variable-path ultrasonic interferometer (Mittal Enterprises, New Delhi, India) working at 2 MHz, which was calibrated with purified water and methanol at 298.15 K. The temperature stability was maintained within $\pm~0.01~\rm K$ by circulating thermostatted water around the cell by a circulating pump.

Results and Discussion

The experimental values of densities and viscosities of pure¹⁴ 1,3-DO and 10 %, 20 %, and 30 % by mass of 1,3-DO + H_2O mixtures at T = (298.15, 308.15, and 318.15) K and p = 0.1 MPa are reported in Table 1.

In the present investigation, we have determined the ρ , η , and u values, and the values of different parameters such as V_{ϕ} , V_{ϕ}^{o} , S_{v}^* , A, B, ϕ_{k} , $\phi_{\text{k}}^{\text{o}}$, and S_{k}^* have been measured at different temperatures using the appropriate equations and graphical diagrams.

The apparent molar volumes V_{ϕ} of solutions were calculated from the density data using the following standard expression

$$V_{\phi} = M/\rho_{\rm o} - 1000(\rho - \rho_{\rm o})/c\rho_{\rm o} \tag{1}$$

where c is the molar concentration of the solution; M is the molecular weight of the solute; and the other symbols have their usual meaning.

The values of limiting apparent molar volumes V_{ϕ}^{o} and experimental slopes S_{v}^{*} at different temperatures have been obtained by using least-squares from linear plots of V_{ϕ} against $c^{1/2}$ using the Masson equation¹⁵

$$V_{\phi} = V_{\phi}^{\text{ o}} + S_{\text{v}}^{*} c^{1/2} \tag{2}$$

where $S_{\rm v}^*$ is a constant dependent on charge and salt type and can be related to ion—ion interactions and $V_{\phi}^{\rm o}$ is the limiting apparent molar volume which is related to ion—solvent interactions. The $V_{\phi}^{\rm o}$ values along with the experimental slopes $S_{\rm v}^*$ are listed in Table 3.

mass fraction of		$A \cdot 10^{-3} \text{/m}^{3/2} \cdot \text{mol}^{-1/2}$			$B \cdot 10^6 / \text{m}^3 \cdot \text{mol}^{-1}$	
1,3-dioxolane	T = 298.15 K	T = 308.15 K	T = 318.15 K	T = 298.15 K	T = 308.15 K	T = 318.15 K
		A	mmoniam Thiocyanate	e		
10	0.151	0.109	0.073	0.471	0.555	0.614
20	0.188	0.138	0.088	0.400	0.494	0.597
30	0.192	0.146	0.106	0.368	0.410	0.444
			Sodium Thiocyanate			
10	0.150	0.107	0.072	0.507	0.602	0.658
20	0.186	0.136	0.083	0.433	0.536	0.665
30	0.188	0.142	0.102	0.386	0.451	0.496
		P	otassium Thiocyanate			
10	0.142	0.103	0.067	0.752	0.775	0.804
20	0.180	0.134	0.081	0.486	0.543	0.671
30	0.184	0.142	0.100	0.468	0.489	0.606

Table 6. Values of A- and B-Coefficients for Ammonium Thiocyanate, Sodium Thiocyanate, and Potassium Thiocyanate in Different Coaqueous (1,3-Dioxolane + Water) Solutions at Different Temperatures

The plots of V_{ϕ} against the square root of the molar concentration $c^{1/2}$ were found to be linear with negative slopes. Table 3 shows that the limiting apparent molar volumes V_{ϕ}° for all studied mixtures are positive and increase with a rise in temperature but decrease with an increase in the amount of 1,3dioxolane in the mixtures.

This indicates the presence of strong ion—solvent interactions, and these interactions are further strengthened with a rise in temperature and weakened with an increase in the amount of 1,3-dioxolane in the mixed solvent under investigation, suggesting larger electrostriction at higher temperature and lower amount of 1,3-dioxolane in the mixture. Similar results were obtained for some 1:1 electrolytes in aqueous N,N-dimethylformamide (DMF)¹⁶ and aqueous tetrahydrofuran (THF).¹⁷

It is evident from Table 3 that the values of S_v^* for all the studied mixtures are negative at all temperatures. Since S_v^* is a measure of ion-ion interactions, the results indicate the presence of weak ion-ion interactions. These interactions, however, decrease with a rise in temperature, which is attributed to more violent thermal agitation at higher temperature, resulting in a diminished force of ion—ion interactions (ionic dissociation). ^{2,18} The S_v^* values increase with an increase in the amount of 1,3dioxolane in the mixture which results in a decrease in the solvation of ions; i.e., more and more solute is accommodated in the void space left in the packing of large associated solvent molecules with the addition of 1,3-dioxolane to the mixture.

Since the thiocyanate ion is common in the cases of the studied salts, from the values of V_{ϕ}^{o} at a particular temperature, it may be concluded that the solvation of cations in the 1,3dioxolane + water mixture follows the order $K^+ > Na^+ > NH_4^+$. The same results are observed for some metal sulfates in water.2,19

The temperature dependence of V_{ϕ}^{o} for various thiocyanate salts, studied here in the solvent mixtures, can be expressed by the polynomial

$$V_{\phi}^{\ o} = a_0 + a_1 T + a_2 T^2 \tag{3}$$

where T is the temperature in Kelvin. The values of coefficients a_0 , a_1 , and a_2 for all the studied mixtures are reported in Table 4.

The apparent molar expansibilities $\phi_{\rm E}^{\rm o}$ at infinite dilution can be obtained by differentiating eq 3 with respect to temperature

$$\phi_{\rm E}^{\ o} = (\delta V_{\phi}^{\ o} / \delta T)_p = a_1 + 2a_2 T$$
 (4)

The values of $\phi_{\rm E}^{\rm o}$ along with the sign of magnitude of $(\delta^2 V_{\phi}^{\rm o})$ δT^2)_p for the studied mixtures at all temperatures are reported in Table 5.

Hepler²⁰ has developed a technique of examining the sign of $(\delta^2 V_{\phi}^{\circ}/\delta T^2)_p$ for various solutes in terms of long-range structure making or breaking capacities of the solutes in mixed solvent systems using the following thermodynamic expression

$$(\delta C_P / \delta P)_T = -(\delta^2 V_\phi^{\text{o}} / \delta T^2)_P \tag{5}$$

On the basis of eq 5, it has been deduced that the structure breaker solutes should have small positive or negative values, otherwise it is a structure maker. In the present study, it is observed from Table 5 that the electrolytes (viz., NH₄SCN, NaSCN, and KSCN) under investigation are predominantly structure breakers in all the experimental solvent mixtures. This may be ascribed to the absence of caging or packing effects. 17,21

The viscosity data of all studied mixtures have been analyzed by the Jones-Dole²² equation

$$(\eta/\eta_{\rm o} - 1)/c^{1/2} = (\eta_{\rm r} - 1)/c^{1/2} = A + Bc^{1/2}$$
 (6)

where $\eta = (Kt - L/t)\rho$; $\eta_r = \eta/\eta_o$ and η are the viscosities of solvent and solution, respectively; c is the molar concentration of a solution; ρ is the density of the solution; and K and L are constants for a particular viscometer. The values of A and B have been determined from the intercept and slope of linear plots of $(\eta/\eta_0 - 1)/c^{1/2}$ versus $c^{1/2}$ and are recorded in Table 6.

It is evident from Table 6 that in all cases small positive values of A-coefficients continuously decrease with the rise in temperature but increase with an increase in the amount of 1,3dioxolane in the mixtures, thereby suggesting that ion-ion interactions are weakened with the increase of temperature but strengthened with the increase of 1,3-dioxolane.

The B-coefficient is a measure of effective solvodynamic volume of solvated ions and is governed by size and shape effects of an ion and a structural effect induced by ion-solvent interaction. It is observed from Table 6 that the values of the B-coefficient of different mixtures are positive, thereby suggesting the presence of strong ion-solvent interactions, and these types of interactions are strengthened with a rise in temperature and weakened with an increase of 1,3-dioxolane in the mixtures. These conclusions are in excellent agreement

with those drawn from the $V_{\phi}^{\,\,0}$ values discussed earlier. It has been reported in a number of studies^{23,24} that dB/dT is a better criterion for determining the structure-making/-breaking

Table 7. Values of $V_2{}^o - V_1{}^o$, $\Delta\mu_1{}^{ot}$, $\Delta\mu_2{}^{ot}$, $T\Delta S_2{}^{ot}$, and $\Delta H_2{}^{ot}$ for Ammonium Thiocyanate, Sodium Thiocyanate, and Potassium Thiocyanate in Different Coaqueous (1,3-Dioxolane + Water) Solutions at Different Temperatures

parameters	T = 298.15 K	T = 308.15 K	T = 318.15 K
A	mmonium thiocy	yanate	
10 % by M	lass of 1,3-Diox	olane + Water	
$(V_2^{\text{o}} - V_1^{\text{o}}) \cdot 10^6 / (\text{m}^3 \cdot \text{mol}^{-1})$	8.18	20.39	35.37
$\Delta \mu_1^{\text{ot}}/(\text{kJ}\cdot\text{mol}^{-1})$	9.70	9.54	9.53
$\Delta \mu_2^{\text{ot}}/(\text{kJ}\cdot\text{mol}^{-1})$	59.35	74.40	87.42
$T\Delta S_2^{\text{ot}}/(\text{kJ}\cdot\text{mol}^{-1})$	-418.46	-432.50	-446.53
$\Delta H_2^{\text{ot}}/(\text{kJ}\cdot\text{mol}^{-1})$	-359.11	-358.09	-359.11
	lass of 1,3-Diox		
$(V_2^{\text{o}} - V_1^{\text{o}}) \cdot 10^6 / (\text{m}^3 \cdot \text{mol}^{-1})$	4.38	13.13	25.95
$\Delta \mu_1^{\text{or}}/(\text{kJ}\cdot\text{mol}^{-1})$	10.27	10.19	10.17
$\Delta \mu_2^{\text{ot}}/(\text{kJ}\cdot\text{mol}^{-1})$	44.94	58.92	75.45
$T\Delta S_2^{\text{ot}}/(\text{kJ}\cdot\text{mol}^{-1})$	-454.77	-470.03	-485.28
$\Delta H_2^{\text{ot}}/(\text{kJ}\cdot\text{mol}^{-1})$	-409.83	-411.11	-409.83
	lass of 1,3-Diox		
$(V_2^{\circ} - V_1^{\circ}) \cdot 10^6 / (\text{m}^3 \cdot \text{mol}^{-1})$	0.39	6.11	19.31
$\Delta \mu_1^{\text{ot}}/(\text{kJ}\cdot\text{mol}^{-1})$	10.80	10.72	10.71
$\Delta \mu_2^{\text{ot}}/(\text{kJ}\cdot\text{mol}^{-1})$	36.57	43.23	50.30
$T\Delta S_2^{\text{ot}}/(\text{kJ}\cdot\text{mol}^{-1})$	-204.75	-211.62	-218.48
$\Delta H_2^{\text{ot}}/(\text{kJ}\cdot\text{mol}^{-1})$	-168.18	-168.39	-168.18
	Sodium Thiocya	nate	
10 % by M	lass of 1,3-Diox	olane + Water	
$(V_2^{\text{o}} - V_1^{\text{o}}) \cdot 10^6 / (\text{m}^3 \cdot \text{mol}^{-1})$	10.20	26.62	41.26
$\Delta \mu_1^{\text{ot}}/(\text{kJ} \cdot \text{mol}^{-1})$	9.70	9.54	9.53
$\Delta \mu_2^{\text{ot}}/(\text{kJ} \cdot \text{mol}^{-1})$	63.96	81.29	93.90
$T\Delta S_2^{\text{ot}}/(\text{kJ}\cdot\text{mol}^{-1})$	-446.33	-461.30	-476.27
$\Delta H_2^{\text{ot}}/(\text{kJ}\cdot\text{mol}^{-1})$	-382.36	-380.00	-382.36
	lass of 1,3-Diox	olane + Water	
$(V_2^{\text{o}} - V_1^{\text{o}}) \cdot 10^6 / (\text{m}^3 \cdot \text{mol}^{-1})$	6.72	20.09	29.57
$\Delta \mu_1^{\text{of}}/(\text{kJ}\cdot\text{mol}^{-1})$	10.27	10.20	10.18
$\Delta \mu_2^{\text{of}}/(\text{kJ}\cdot\text{mol}^{-1})$	48.64	64.35	83.75
$T\Delta S_2^{\text{ot}}/(\text{kJ}\cdot\text{mol}^{-1})$	-523.30	-540.85	-558.40
$\Delta H_2^{\text{ot}}/(\text{kJ}\cdot\text{mol}^{-1})$	-474.65	-476.50	-474.65
30 % by N	lass of 1,3-Diox	olane + Water	
$(V_2^{\text{o}} - V_1^{\text{o}}) \cdot 10^6 / (\text{m}^3 \cdot \text{mol}^{-1})$	1.45	8.12	22.59
$\Delta \mu_1^{\text{of}}/(\text{kJ}\cdot\text{mol}^{-1})$	10.81	10.74	10.72
$\Delta \mu_2^{\text{ot}}/(\text{kJ}\cdot\text{mol}^{-1})$	38.17	47.44	55.97
$T\Delta S_2^{\text{ot}}/(\text{kJ}\cdot\text{mol}^{-1})$	-265.37	-274.27	-283.17
$\Delta H_2^{\text{of}}/(\text{kJ}\cdot\text{mol}^{-1})$	-227.19	-226.83	-227.19
P	otassium Thiocy	ranate	
10 % by N	lass of 1,3-Diox	olane + Water	
$(V_2^{\circ} - V_1^{\circ}) \cdot 10^6 / (\text{m}^3 \cdot \text{mol}^{-1})$	15.20	31.87	48.75
$\Delta \mu_1^{\text{ot}}/(\text{kJ}\cdot\text{mol}^{-1})$	9.71	9.55	9.54
$\Delta \mu_2^{\text{ot}}/(\text{kJ}\cdot\text{mol}^{-1})$	94.46	103.86	114.15
$T\Delta S_2^{\text{ot}}/(\text{kJ}\cdot\text{mol}^{-1})$	-293.48	-303.32	-313.17
$\Delta H_2^{\text{of}}/(\text{kJ}\cdot\text{mol}^{-1})$	-199.02	-199.46	-199.02
20 % by N	lass of 1,3-Diox	olane + Water	
$(V_2^{\text{o}} - V_1^{\text{o}}) \cdot 10^6 / (\text{m}^3 \cdot \text{mol}^{-1})$	10.10	25.34	37.71
$\Delta \mu_1^{\text{ot}}/(\text{kJ}\cdot\text{mol}^{-1})$	10.30	10.22	10.21
$\Delta \mu_2^{\text{ot}}/(\text{kJ}\cdot\text{mol}^{-1})$	54.46	65.18	84.74
$T\Delta S_2^{\text{of}}/(\text{kJ}\cdot\text{mol}^{-1})$	-451.46	-466.60	-481.75
$\Delta H_2^{\text{ot}}/(\text{kJ}\cdot\text{mol}^{-1})$	-397.00	-401.42	-397.00
30 % by N	lass of 1,3-Diox	olane + Water	
$(V_2^{\text{o}} - V_1^{\text{o}}) \cdot 10^6 / (\text{m}^3 \cdot \text{mol}^{-1})$	5.16	17.84	29.18
$\Delta \mu_1^{\text{ot}}/(\text{kJ}\cdot\text{mol}^{-1})$	10.85	10.77	10.76
$\Delta\mu_1^{\text{ot}}/(\text{kJ}\cdot\text{mol}^{-1})$	45.98	51.51	67.52
$T\Delta S_2^{\text{ot}}/(\text{kJ}\cdot\text{mol}^{-1})$	-320.99	-331.76	-342.52
$\Delta H_2^{\text{ot}}/(\text{kJ}\cdot\text{mol}^{-1})$	-275.01	-280.24	-275.01
- ` /			

nature of any solute rather than simply the value of the *B*-coefficient. It is found from Table 6 that the values of the *B*-coefficient increase with a rise in temperature (positive *dB/dT*) suggesting the structure-breaking tendency of all studied thiocyanate salts (viz., NH₄SCN, NaSCN, and KSCN) in different compositions of the 1,3-dioxolane + water mixture. A similar result was reported by some workers ^{19,25,26} in the case of the viscosity of lithium and sodium perchlorate in propionic acid + ethanol mixtures. These conclusions are also in excellent agreement with that drawn from the magnitude of $(\delta^2 V_{\phi}{}^{\circ}/\delta T^2)_P$ illustrated earlier.

Table 8. Molality m, Sound Velocity u, Adiabatic Compressibility β , Partial Molal Compressibility ϕ_k , Limiting Partial Adiabatic Compressibility ϕ_k^o , and Experimental Slope S_k^* of Ammonium Thiocyanate, Sodium Thiocyanate and Potassium Thiocyanate in Different Coaqueous (1,3-Dioxolane + Water) Solutions at $T=298.15~\mathrm{K}$

298.15 K					
m	и	$\beta \cdot 10^{10}$	$\phi_{\rm k} \cdot 10^{10}$	$\phi_{k}^{o} \cdot 10^{10}$	$S_{k}^{*} \cdot 10^{10}$
mol∙kg ⁻¹	${\rm ms^{-1}}$	Pa^{-1}	$m^3 \cdot mol^{-1} \cdot Pa^{-1}$	$m^3 \cdot mol^{-1} \cdot Pa^{-1}$	$m^3 \cdot mol^{3/2} \cdot Pa^{-1} \cdot kg^{1/2}$
		Am	monium Thiocyar	nate	
	10) % by Ma	ass of 1,3-Dioxola	ne + Water	
0.00196	1473.7	4.5432	-1.102	-1.215	2.360
0.01370	1490.9	4.4361	-0.949	1.213	2.500
0.02545	1505.1	4.3497	-0.857		
0.03720	1513.8	4.2971	-0.734		
0.04896	1525.8	4.2265	-0.706		
0.06072	1531.2	4.1934	-0.628		
		011 11		1 337 .	
			ss of 1,3-Dioxola		
0.00194	1485.7	4.4206	-1.680	-1.865	4.511
0.01358	1510.7	4.2730	-1.320		
0.02522	1529.2	4.1674	-1.130		
0.03686	1545.8	4.0755	-1.024		
0.04851	1554.2	4.0289	-0.877		
0.06016	1558.5	4.0033	-0.754		
	30	% by Ma	ss of 1,3-Dioxola	nne + Water	
0.00200	1496.7	4.3161	-1.840	-2.070	5.599
0.01360	1524.6	4.1569	-1.420		
0.02551	1540.9	4.0666	-1.110		
0.03685	1557.8	3.9761	-1.012		
0.04819	1564.7	3.9384	-0.855		
0.06006	1566.5	3.9264	-0.710		
			. 1' TPL '	4.	
		50	odium Thiocyana	te	
	10	% by Ma	ss of 1,3-Dioxola	nne + Water	
0.00196	1475.1	4.5343	-1.551	-1.717	3.593
0.01372	1499.6	4.3845	-1.320		
0.02549	1517.0	4.2818	-1.120		
0.03726	1532.7	4.1909	-1.015		
0.04903	1548.4	4.1035	-0.953		
0.06081	1552.4	4.0787	-0.814		
				1 337 .	
0.00106			ss of 1,3-Dioxola		4.052
0.00196	1486.2	4.4175	-1.810	-2.045	4.853
0.01376	1515.6	4.2454	-1.500		
0.02555	1537.5	4.1220	-1.290		
0.03735	1550.7	4.0493	-1.080		
0.04916	1566.2	3.9664	-0.991		
0.06097	1568.4	3.9522	-0.827		
	30	% by Ma	ss of 1,3-Dioxola	ne + Water	
0.00208	1498.2	4.3075	-2.170	-2.463	6.957
0.01448	1531.8	4.1176	-1.600		
0.02689	1553.8	3.9985	-1.300		
0.03920	1569.2	3.9172	-1.100		
0.05015	1571.2	3.9043	-0.890		
0.06448	1573.4	3.8895	-0.720		
		Pot	tassium Thiocyan	ate	
			•		
			ss of 1,3-Dioxola		
0.00196	1477.3	4.5209	-2.230	-2.522	6.892
0.01373	1508.7	4.3308	-1.710		
0.02551	1529.0	4.2130	-1.390		
0.03729	1545.7	4.1187	-1.210		
0.04908	1549.8	4.0932	-0.978		
0.06086	1554.5	4.0643	-0.842		
	20	% by Ma	ass of 1,3-Dioxola	ne + Water	
0.00204	1488.1	4.4064	-2.280	-2.589	7.046
0.01431	1523.1	4.2027	-1.740		
0.02658	1547.6	4.0665	-1.450		
0.03885	1559.8	3.9993	-1.170		
0.05113	1568.7	3.9501	-0.990		
0.06341	1572.6	3.9270	-0.840		
				1 337 -	
0.00000			uss of 1,3-Dioxola		0.040
0.00208	1499.2	4.3014	-2.460	-2.805	8.243
0.01448	1537.1	4.0883	-1.800		
0.02690	1559.8	3.9665	-1.420		
0.03920	1573.3	3.8949	-1.160		
0.05015	1574.3	3.8863	-0.930		
0.06449	1578.9	3.8594	-0.770		

The viscosity data have also been analyzed on the basis of transition state theory for the relative viscosity of the solutions as suggested by Feakings et al.²⁷ using eq 7

$$\Delta \mu_2^{\text{ot}} = \Delta \mu_1^{\text{ot}} + RT(1000B + V_2^{\text{o}} - V_1^{\text{o}})/V_1^{\text{o}}$$
 (7)

where $\Delta\mu_2^{\text{ot}}$ is the contribution per mole of the solute to free energy of activation for viscous flow of solutions and $\Delta\mu_1^{\text{ot}}$ is the free energy of activation per mole of solvent mixture. The values are reported in Table 7. V_1^{o} is the partial molar volume of the solvent mixture, and V_2^{o} is the partial molar volume of the solute. $\Delta\mu_1^{\text{ot}}$ is calculated from

$$\Delta \mu_1^{\text{of}} = \Delta G_1^{\text{of}} = RT \ln(\eta_0 V_1^{\text{o}} / h N_A)$$
 (8)

where h is Planck's constant and N_A is Avogadro's number. From Table 7, it is seen that $\Delta \mu_1^{ot}$ is almost constant at all temperatures and solvent compositions. It means that $\Delta \mu_2^{\text{ot}}$ is dependent mainly on the values of the viscosity B-coefficients and $(V_2^{\circ} - V_1^{\circ})$ terms. $\Delta \mu_2^{\circ t}$ values were positive at all experimental conditions, suggesting that with the rise in temperature and lower concentration of 1,3-dioxolane in the mixtures the process of viscous flow of solutions becomes difficult. So the formation of the transition state becomes less favorable.²⁷ According to Feakings et al.,²⁷ $\Delta \mu_2^{\text{ot}} > \Delta \mu_1^{\text{ot}}$ for solutes having positive viscosity B-coefficients indicates stronger solute-solvent interactions, suggesting the formation of a transition state which is accompanied by the rupture and distortion of the intermolecular forces in the solvent structure.²⁷ Equation 9 has been used to calculate the entropy of activation ΔS_2^{ot} for solutions.

$$\Delta S_2^{\ ot} = -d(\Delta \mu_2^{\ ot})/dT \tag{9}$$

 ΔS_2^{ot} has been calculated from the slope of the plots of $\Delta \mu_2^{ot}$ versus T by using a least-squares treatment. The enthalpy of activation has been determined by using the following relation²⁷

$$\Delta H_2^{ot} = \Delta \mu_2^{ot} + T \Delta S_2^{ot} \tag{10}$$

The values of ΔS_2^{ot} and ΔH_2^{ot} are reported in Table 7. They are negative for all studied mixtures at all experimental temperatures. This suggests that the transition state is associated with bond formation and increase in order.

The coefficient of adiabatic compressibility β has been calculated using the relation

$$\beta = 1/\mu^2 \rho \tag{11}$$

where μ is the ultrasonic velocity and ρ is the density of the solution.

The apparent molal adiabatic compressibility ϕ_k of the solution was computed from the relation

$$\phi_{k} = \beta M/\rho + 1000(\beta \rho_{0} - \beta_{0}\rho)/m\rho\rho_{0}$$
 (12)

where β and β_0 are the adiabatic compressibility of solution and solvent, respectively, and m is the molal concentration of the solution.

The limiting apparent molal adiabatic compressibilities ϕ_k^o were obtained by extrapolating the plots of ϕ_k versus $m^{1/2}$ of the solution to zero concentration by a computerized least-squares method

$$\phi_{k} = \phi_{k}^{o} + S_{k} * m^{1/2} \tag{13}$$

where S_k^* is the experimental slope.

The values of m, μ , β , ϕ_k , ϕ_k^o , and S_k^* for all the studied mixtures at 298.15 K are determined and reported in Table 8.

It is evident from Table 8 that all the mixtures investigated here have negative apparent molar adiabatic compressibility $\phi_k^{\text{ o}}$ and positive limiting experimental slopes S_k^* . These results can be interpreted in terms of the loss of compressibility of the 1,3-dioxolane + water mixture due to electrostrictive forces in the vicinity of the ions. The same conclusion was obtained in the case of studies on sound velocities of some alkali metal halides in THF + H₂O mixtures. ^{19,28}

Conclusion

The extensive study of the densities, viscosities, and speeds of sound of different thiocyanates in various mass fractions of the solvent mixture of 1,3-dioxolane and water at different temperatures reveals the characteristics and structural properties prevalent in the solutions. In summary, V_{ϕ}° and viscosity *B*-coefficient values for the different thiocyanates indicate the presence of strong ion—solvent interactions, and these interactions are further strengthened with a rise in temperature and with a decrease in the amount of 1,3-dioxolane in the mixtures. It also indicates that all studied mixtures act as structure breakers.

List of Symbols

Density of solution

•	
$ ho_{ m o}$	Density of solvent
η	Viscosity of solution
$\eta_{ m o}$	Viscosity of solvent
C	Molar concentration of solution
m	Molal concentration of solution
ΔS_2^{ot}	Entropy of activation
ΔH_2^{ot}	Enthalpy of activation
μ	Speed of sound of solution
$\mu_{ m o}$	Speed of sound of solvent
β	Adiabatic compressibility of solution
$eta_{ m o}$	Adiabatic compressibility of solvent
$\phi_{ m k}$	Apparent molal adiabatic compressibility
$\phi_{ m k}{}^{ m o}$	Limiting apparent molal adiabatic compressibility
S_k^*	Experimental slope
$\phi_{ ext{v}}$	Apparent molar volume
$\phi_{ ext{v}}^{ ext{ o}}$	Limiting apparent molar volume
$S_{\rm v}*$	Experimental slope
M	Molecular weight of solute
$\phi_{ m E}$	Apparent molar expansibility

Literature Cited

 $\phi_{\rm E}^{\rm o}$

h

 $N_{\rm A}$

 H_2O

1,3-DO

(1) Popovych, O.; Tomkins, R. P. T. *Nonaqueous Solution Chemistry*; Wiley-Interscience: New York, 1981; Chap. 4.

Limiting apparent molar expansibility

Planck's constant

1,3-dioxolane

Water

Avogadro's number

- (2) Das, B.; Hazra, D. K. Apparent and Partial Molar Volumes of Selected Symmetrical Tetraalkylammonium Bromides in 2-methoxy-1-ethanol at 25°C. J. Chem. Eng. Data 1991, 36, 403–405.
- (3) Lawrence, K. G.; Sacco, A. Preferential solvation of ions in mixed solvents. *J. Chem. Soc., Faraday Trans.* **1983**, *79* (1), 615–619.
- (4) Pogue, R.; Atkinson, G. Solution thermodynamics of first-row transition elements. 1. Apparent molal volumes of aqueous nickel dichloride nickel diperchlorate cupric chloride and cupric perchlorate from 15 to 55.degree.C. J. Chem. Eng. Data 1988, 33, 370–376.

- Marcus, Y.; Hefter, G.; Pang, T. S. Ionic partial molar volumes in non-aqueous solvents. J. Chem. Soc., Faraday Trans. 1994, 1899– 1903.
- (6) Moumouzias, G.; Panopoulos, D. K.; Ritzoulis, G. Excess properties of the binary liquid system propylene carbonate + acetonitrile. J. Chem. Eng. Data. 1991, 36, 20–23.
- (7) Saha, N.; Das, B.; Hazra, D. K. Viscosities and Excess Molar Volumes for Acetonitrile + Methanol at 298.15, 308.15, and 318.15 K. J. Chem. Eng. Data 1995, 40, 1264–1266.
- (8) Roy, M. N.; Das, B.; Hazra, D. K. Densities and Viscosities of the binary aqueous mixture of tetrahydrofuran and 1,2-dimethoxyethane at 298, 308 and 318 K. J. Chem. Technol. 1994, 1, 93–97.
- Covington, A. K.; Dickinson, T. Physical Chemistry of Organic Solvent Systems; Plenum: New York, 1973; p 564.
- (10) Abbott, A. P.; Schiffrin, D. J. Conductivity of tetra-alkylammonium salts in polyaromatic solvents. *J. Chem. Soc.*, Faraday Trans. 1 1990, 86, 1453–1459.
- (11) Roy, M. N.; Nandi, D.; Hazra, D. K. Electrical conductances for tetraalkylammonium bromides, LiBF4 and LiAsF6 in tetrahydrofuran at 25 °C. J. Indian Chem. Soc. 1993, 70, 305–310.
- (12) Shoemaker, D. P.; Garland, C. W. Experiment's in Physical Chemistry; McGraw-Hill: New York, 1967; pp 131–138.
- (13) Suindells, J. R.; Godfray, T. B. Absolute viscosity of water at 20°C. J. Res. Natl. Bur. Stand 1952, 1, 48–52.
- (14) Gascon, I.; Villares, A.; Haro, M.; Martin, S.; Artigas, H. Experimental and Predicted Viscosities of the Ternary Mixture (Hexane + 1,3-Dioxolane + 2-Butanol) at 298.15 and 313.15 K. *J. Chem. Eng. Data* **2005**, *50*, 722–726.
- (15) Masson, D. O. Ion-Solvent Interactions. *Philos. Mag.* 1929, 8, 218–223.
- (16) Garland-Paneda, E.; Yanes, C.; Calventa, J. J. A. Study of Ion-Solvent Interactions of Alkali-Metal halides in DMF at various temperatures. *J. Chem. Soc., Faraday Trans.* 1994, 94, 573–579.
- (17) Roy, M. N.; Jha, A.; Dey, R. A. Study on ion-solvent interactions of some alkali metal chlorides in tetrahydrofuran + water mixture at different temperatures. J. Chem. Eng. Data 2001, 46, 1247–1252.
- (18) Millero, F. J. In Structure and Transport Process in Water and Aqueous Solutions; Horne, R. A., Ed.; New York, 1972.

- (19) Roy, M. N.; Choudhury, A.; Jha, A. Densities, Viscosities and Adiabatic Compressibiliti es of Some Mineral Salts in Water at Different Temperatures. J. Chem. Eng. Data 2004, 49, 291–296.
- (20) Hepler, L. G. Studies on viscosities and densities of R₄NX in ME + water mixtures of different temperatures. Can. J. Chem. 1969, 47, 4617–4622.
- (21) Misra, P. R.; Das, B.; Parmar, M. L.; Banyal, D. S. Effect of temperature on the partial molar volumes of some bivalent transition metal nitrates and magnesium nitrate in DMF + water mixtures. *Indian J. Chem.* **2005**, *44A*, 1582–1588.
- (22) Jones, G.; Dole, M. Density and Viscosity Studies on Some R₄NX in DME + water mixtures at different temperatures. *J. Am. Chem. Soc.* **1929**, *51*, 2950–2956.
- (23) Gopal, R.; Siddique, M. A. A study of ion-solvent interactions of some tetraalkyl- ammonium and common ions in N-methyl acetamide from apparent molar volume data. J. Phys. Chem. 1969, 72, 1814–1817.
- (24) Saha, N.; Das, B. Apparent Molar Volumes of Some Symmetrical Tetraalkyl-ammonium Bromides in Acetonitrite at Various Temperatures. J. Chem. Eng. Data 1997, 42, 277–280.
- (25) Contreras, S. M. Densities and Viscosities of Binary Mixtures of 1,4-Dioxane with 1- Propanol and 2-Propanol at (25, 30, 35, and 40) °C. J. Chem. Eng. Data 2001, 46, 1149–1152.
- (26) Parmar, M. L.; Chauhan, M. K. A study of ion-solvent interactions of some tetraalkyl and multivalent electrolytes in propylene glycol + water mixtures. *Indian J. Chem.* **1995**, *34A*, 434–439.
- (27) Feakins, D.; Freemantle, D. J.; Lawrence, K. G. Transition state treatment of the relative viscosity of electrolytic solutions. Applications to aqueous, non-aqueous and methanol + water systems. *J. Chem. Soc., Faraday Trans. 1* **1974**, *70*, 795–806.
- (28) Roy, M. N.; Hazra, D. K. Studies on Adiabatic Compressibilities of Some Alkali and Metal Halides in THF + H2O mixtures at 25°C. North Bengal Univ. Rev. 1997, 8, 54–58.

Received for review July 19, 2008. Accepted March 7, 2009. The authors are thankful to the Departmental Special Assistance Scheme under the University Grants Commission, New Delhi (No. 540/6/DRS/2007, SAP-1), for instrumental and financial assistance.

JE800562H