RS/Conference2019

San Francisco | March 4-8 | Moscone Center

BETTER.

SESSION ID: CSV-W03

Securing Cloud-Native Applications at Scale

Ashwin Ambekar

Principal Security Architect eBay Inc @ashwin_ambekar

What is a Cloud Native Application?

Applications that are designed to run *natively* on the Cloud. Such Applications are *elastic*, *resilient*, *loosely coupled* to infrastructure, use *distributed data* and can be secure even in public Cloud

Cloud Native Application adds <u>value to the business</u> in a **flexible**, **continuous**, **highly available** and **secure** manner

Cloud-Native Transformation

- Monoliths broken down into multiple functional and nonfunctional micro-services
- Common abstractions across services stack (e.g. discovery, rate limiting etc.)
- Ubiquitous deployments, independent of environment and location
- Short development cycles and frequent deployments
- Partitioned, duplicated and distributed data

Cloud-Native Transformation at Scale

- eBay 2017 Cloud landscape: Before Cloud-Native transition
 - 200,000+ Computes/VMs
 - 1.1+ M deployments
 - 4000+ Applications

- eBay 2019 Cloud landscape: During Cloud-Native transition
 - 336,000+ Computes/VMs
 - 2+ M deployments
 - 20,000+ Applications

Security Implications

- Increased surface area
 - Computes, dependencies, locations
- Dynamic eco-system
 - Ephemeral computes and frequent deployments
- Distributed data and services
- New technology landscape and culture

Traditional Security Model

Remediation centric security

Gaps and challenges

Challenge	Caused by	
Observability, Compliance	Increased Surface Area, Ephemeral computes	
Scanning, Patching, AV, FIM	Increased Surface Area, Ephemeral computes	
PAM, MAC, Access Control	Increased Surface Area, New technology landscape	
Data Classification challenges	Distributed Data	
X.509	Ephemeral computes, Dynamic Services	
DDoS, IDS/IPS, DLP	Encrypted traffic	
Segmentation (Network, Apps)	Increased Surface Area, Ephemeral computes	
Software Supply Chain	Increased Surface Area	

Security model is broken in Cloud-Native Era

Target State

- Layered security controls: Defense in depth
- Application centric security
- Reduce remediation centric security
 - Does not scale

Pillars of Cloud-Native Security at scale

Declarative Security

• Cloud native systems are declarative and intent driven, security is no different

Self Healing

- Drift between declared and actual can be eliminated by self-healing systems
- Self healing systems embrace visibility as basic requirement

Cloud-Native Security

Secure by default

- Embrace immutable infrastructure
- Implement Secure by default policy for code and infrastructure to reduce security gaps

Dynamic

 Process, Controls and Policies must be dynamic and continuous in nature

Securing DevOps

- Functional tests

- Security

configuration

- Secure home for

infrastructure security

applications

- Intent driven

remediation

Change with topologyDynamic security

- Vulnerability scans

- Security configuration

- Runtime security

configuration

Reference Architecture: Kubernetes

Build

Ship

Admission

Run

Harden Kubernetes Control Plane

Build

Ship

Admission

Run

Harden Kubernetes Platform

Secure Infrastructure

Build

Ship

Admission

Run

Secure Infrastructure

Build

Ship

Admission

Run

Isolation

- POD Security Policies
- Sandboxing (Kata, gVisor)
- Node Restrictions

Segmentation

- Network Policies
- Zone based clusters, namespaces, Dataclassification

Access Control

- RBAC
 - Namespace scoped
 - Cluster scoped

Policies

- Admission Controllers
- Image and resource policies
- Stack specific policies and exceptions

Secure Build Ship Admission Run

POD Security Policy

```
spec:
privileged: false
allowPrivilegeEscalation: false
requiredDropCapabilities:
  - ALL
volumes:
  - 'configMap'
  - 'emptyDir'
  - 'projected'
  - 'secret'
  - 'downwardAPI'
hostNetwork: false
hostIPC: false
hostPID: false
runAsUser:
  rule: 'MustRunAsNonRoot'
seLinux:
  rule: 'RunAsAny'
supplementalGroups:
  rule: 'MustRunAs'
  ranges:
    - min: 1
      max: 65535
```

POD Security Policy (PSP) can be authorized via RBAC. POD will not be created if PSP authorizations are missing for service account used for creating POD.

Secure Infrastructure

Build

Ship

Admission

Run

- Reducing attack surface with Network policy
 - Scenario: Restrict access to java web-app from nginx

Create namespace for Java web-app

kubectl create namespace listitem

kubectl label namespace/listitem purpose=catalog

Create namespace for nginx

kubectl create namespace rproxy

kubectl label namespace/rproxy purpose=frontend

kind: NetworkPolicy

apiVersion: networking.k8s.io/v1

metadata:

name: web-allow-fe

spec:

podSelector:

matchLabels:

app: web-app

ingress:

- from:

- namespaceSelector:

matchLabels:

purpose: frontend

Secure Infrastructure

Build

Ship

Admission

Run

- Use WAF for securing applications
 - OWASP
 - Encrypt the traffic to/from POD
 - Enforce Authentication and Authorization
- Detection and Control
 - Privilege escalation detection
 - Container monitoring (cAdvisor)
 - Network detection and controls (Edge security, IDS, Sflow, EBPF)
 - Network Inspection and Visualization

Istio (Service Mesh) is a good candidate

Application threat model

- You need threat-modelling for your applications
- S.T.R.I.D.E is a very useful methodology in modeling threats for applications
 - Analyze and prioritize security initiatives

Threat	Description	Breaks
Spoofing	Pretending to be someone else	Authentication
Tampering	Modifying data that should not be modifiable	Integrity
Repudiation	Claiming someone didn't do something	Non-repudiation
Information Disclosure	Exposing information	Confidentiality
Denial Of Service	Preventing system from providing service	Availability
Elevation Of Privileges	Doing things that one is not supposed to do	Authorization

Final thoughts

- Simplicity is key to success at scale
- Change is inevitable
 - Track technology landscape and associated vulnerabilities
- Empower application developers with knowledge, tools and responsibility
- Prepare Incident response plan
 - Mitigation of control gaps is never sufficient, infrastructure will always have gaps and zero day vulnerabilities

RS/Conference2019 Q & A

