CS 547: Foundation of Computer Security

S. Tripathy IIT Patna

Previous Class

- Protection in General-Purpose Operating Systems
 - Segmentation and Paging
 - Dual Mode Protection

User Authentication

Present Class

- Access Control
 - DAC
 - Linux File System
 - MAC

User Authentication

- Use of Hashed salt Passwords
 Prevents duplicate passwords
- Increases the difficulty of offline dictionary attacks.
- becomes nearly impossible to find out whether a person with passwords on two or more systems has used the same password on all of them.

(a) Loading a new password

(b) Verifying a password

Linux password

/etc/passwd

- Username, x, UID, GID, Full name, homeDirectory, Login shell
- \$ sudo cat /etc/shadow/
- som:\$6\$ABCD1234\$JnCx/.NCi4315V0AONxuVpUIRvPivoQjLzY0M28iYkOJ U/FwVhXE4Me2f72fldvGEOpnTAB7IuVrsVfwpT/XT/:38478:0:99999:5:::
- username
- \$6\$ Algorithm used for hashing. 6 (sha-512)
- \$ABCD1234\$ string salt which is used for hashing..
- \$JnCx/.NCi4315V0AONfwpT/XT/ Value after the third \$ sign represents actual hashed password.
- password change date, expiry date etc. in colon (:)

Windows system

- password hashes are stored Security Accounts Manager (SAM) file,
 - C:\windows\system32\config\SAM
 - not accessible to regular users while the operating system is running.
- Previous versions of Windows used LAN Manager hash, or LM hash,
 - Algorithm is based on DES
 - has some security weaknesses
- To avoid this weakness NTLM algorithm.
 - It uses MD4
 - It is a challenge-response protocol used for authentication by several Windows components.

Remote User Authentication

- authentication over a network, the Internet, or a communications link is more complex
 - additional security threats such as:
 - eavesdropping, capturing a password, replaying an authentication sequence that has been observed
- generally rely on some form of a challenge-response protocol to counter threats

Password Protocol

- user transmits identity to remote host
- host generates a random number (nonce)
- nonce is returned to the user
- host stores a hash code of the password function in which the password hash is one of the arguments
- use of a random number helps defend against an adversary capturing the user's transmission

Client	Transmission	Host
U, user	$U \rightarrow$	
	← {r, h(), f()}	random number h(), f(), functions
P' password r', return of r	$f(r', h(P') \rightarrow$	
	← yes/no	if $f(r', h(P') = f(r, h(P(U)))$ then yes else no

(a) Protocol for a password

Scope of Computer Security

Access Control

- Many objects for which OS has to run access control
- In general, access control has three goals:
 - Check every access: Else OS might fail to notice that access has been revoked
 - Enforce least privilege: Grant program access only to smallest number of objects required to perform a task
 - Verify acceptable use: Limit types of activity that can be performed on an object

Access Control Principles

Access Control Policies

dictates

what types of access are permitted,

- under what circumstances,

based on comparing security labels with clearances

by whom.

based on the identity of the requestor and on access rules

Attribute-based access control based on attributes of the user, the resource to be accessed, and current environmental conditions

Access Control Basic Elements

subject entity capable of accessing objects

- © concept equates with that of process
- ®typically held accountable for the actions they initiate
- often have three classes: owner, group, world

object

resource to which access is controlled

- mentity used to contain and/or receive information
- protection depends on the environment in which access control operates

access right: the way in which a subject may access an object

∞e.g. read, write, execute, delete, create, search

Protection Domains

- Protection Domain: set of objects together with access rights to those objects in terms of the access matrix, a row defines a protection domain
 - any process spawned by the user have access rights defined by the same protection domain
 - user can spawn processes with a subset of the access rights of the user, defined as a new protection domain
 - association between a process and a domain can be static or dynamic
 - Many O.S has different mode
 - in *user mode* certain areas of memory are protected from use and certain instructions may not be executed
 - in *kernel mode* privileged instructions may be executed and protected areas of memory may be accessed

Discretionary Access Control

- scheme in which an entity may enable another entity to access some resource
 - often provided using an access matrix
 - one dimension consists of identified subjects that may attempt data access to the resources
 - the other dimension lists the objects that may be accessed
 - each entry in the matrix indicates the access rights of a particular subject for a particular object

Access Matrix

