

Azure ML Classic Studio

Predicting of blood data using <u>Regression Model</u> in <u>AzureML</u> Classic Studio.

This model (Pipeline) trains a linear regressor to predict blood data based on technical features such as collection, availability, Because you're trying to answer the question "How much?" this is called a regression problem. However, you can apply the same fundamental steps in this example to tackle any type of machine learning problem whether it be regression, classification, clustering, and so on.

Gallery Link:

Blood data amount prediction model[19K41A0590]

Blood data amount prediction using pre-available dataset and training the model using Linear Regression. Tags: Linear Regression, Automobile, Azure ML,

https://studio.azureml.net/Home/ViewWorkspaceCached/b1b070a1912a4421867e9b0a9b3c0a1c#Workspaces/Experiments/Experiment/b1b070a1912a4421867e9b0a9b3c0a1c.f-id.fdfcce7270aa4ec9943feb132bd4c87d/ViewExperiment

navigate to the link to see the Workflow and you can download the project as well.

Machine Learning Project Workflow

- 1. Import Data
- 2. Explore Data (Missing values, outliers)
- 3. Preprocess data (Missing value imputation, outlier treatment, normalization)
- 4. Model Selection
- 5. Model Training
- 6. Model Testing
- 7. Model Deployment

Workflow

Project Workflow

Import Data:

- · importing the RAW dataset which is in CSV format.
- the dataset is pre-available in the Azure ML Classic Studio.

Automobile Price RAW dataset (CSV format)

Explore Data

Azure ML Classic Studio

- this basically includes data visualization to search for any missing values in the Dataset.
- if any missing values are found, then they needs to be cleaned.
- selecting the required columns and clean the data using the Clean Missing Value module (Just Drag n' Drop)

Data Cleaning

Split Data

Data Splitting

Model Training

using Linear regression to train the model

• Since the goal of this sample is to predict automobile prices, and because the label column (price) is continuous data, a regression model can be a good choice. We use Linear Regression for this pipeline.

Linear Regression

Score Model and Evaluate Model

• After the model is trained, we can use the Score Model and Evaluate Model modules to generate predicted results and evaluate the models.

Score Labels

Evaluation Results

Model Evaluation Results