Support Vector Machines (SVM)

Krittameth Teachasrisaksakul

บทน้ำ

จนถึงบัดนี้ เราได้เรียนเกี่ยวกับ machine learning models ที่ค่อนข้างง่ายที่จะวิเคราะห์ และหาค่าที่เหมาะสมที่สุดได้ (optimal) เมื่อ assumptions (สมมติฐาน) ของ มันเป็นจริง

ตัวอย่าง เช่น Gaussian Discriminant Analysis (GDA) มีสมมติฐานว่า conditional distribution (การแจกแจงแบบมีเงื่อนไข) $p(x \mid y)$ เป็นแบบ multivariate Gaussian (การแจกแจงแบบปกติหลายตัวแปร)

จะเกิดอะไรขึ้นเมื่อ assumptions ถูกละเมิด (ไม่เป็นจริง) ?

เราจะเรียนเกี่ยวกับ support vector machines (SVMs) ซึ่ง flexible มากกว่า และสามารถประยุกต์ใช้ได้อย่างกว้างขวางมากกว่าวิธีที่เรียนไปแล้ว

แม้ว่า deep neural networks ได้รับความสนใจมากที่สุดเมื่อเร็วๆนี้ ผู้คนมากมายยังคงเชื่อว่า SVM เป็น supervised classifiers (ตัวแยกประเภทที่เรียนรู้แบบมีผู้สอน / จากตัวอย่างข้อมูล) ที่หาได้ง่าย / มีพร้อมใช้ (off-the-shelf) ที่ดีที่สุด

บทน้ำ

SVMs เกิดมาจากแนวคิด maximum margin classification (การแยกประเภทโดยทำให้ margin สูงที่สุด)

- สมมติ จุดสีเหลืองเป็นข้อมูล training data จาก class 1 และ จุดสีฟ้าเป็นข้อมูล training data
 จาก class 0
- $m{ heta}^T X = 0$ เป็น ระนาบ hyperplane ที่แบ่งข้อมูลทั้ง 2 class หรือ decision boundary (ขอบเขตตัดสินใจ) ระหว่าง 2 class
- จุด A อยู่ไกลที่สุดจาก decision boundary เราสามารถทำนาย (อย่างมั่นใจ) ว่าจุด A เป็น class
 1 แต่จุด C กำกวมมากกว่าว่าจะเป็น class ใด

ข้อสังเกตนี้ ทำให้เกิดหลักการ maximizing the margin (ทำให้ margin สูงที่สุด)!

SVM Decision Boundary: Linearly Separable Case

(กรณีที่สามารถแบ่ง class ได้ด้วยขอบเขตตัดสินใจที่เป็นเชิงเส้น)

SVM Decision Boundary: Linearly Separable Case

(กรณีที่สามารถแบ่ง class ได้ด้วยขอบเขตตัดสินใจที่เป็นเชิงเส้น)

ใช้ SVM เป็น Large Margin Classifier

(ตัวแยกประเภทที่มี margin ขนาดใหญ่)

Support Vector Machines (SVM)

Optimization Objective

Krittameth Teachasrisaksakul

ทบทวน: Logistic regression เราทำแบบจำลอง (model) ของ $p(y=1\mid x;\; heta)$ ด้วย

$$h_{\theta}(x) = g(\boldsymbol{\theta}^T \boldsymbol{x})$$

กฎการแยกประเภทแบบ logistic (logistic classification rule) คือ:

$$y$$
pred $(x) = \begin{cases} 1 & \text{if } h_{\theta}(x) \ge 0.5 \\ 0, & \text{otherwise} \end{cases}$

เป้าหมายของเรา ควรเป็น การหา heta ที่ทำให้

- ullet $heta^T \! x^{(i)} \gg 0$ สำหรับ i ทุกตัวที่มี $y^{(i)} = 1$ และ
- ullet $heta^T \! x^{(i)} \ll 0$ สำหรับ i ทุกตัวที่มี $y^{(i)} = 0$

Hypothesis function:

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

ปรับ logistic regression เพื่อให้ได้ SVM

ลองคิดเกี่ยวกับ สิ่งที่เราอยากให้ logistic regression ทำ:

- ถ้y=1 แล้วเราอยากให้ $h_{ heta}(x)pprox 1$ ก็คือ $heta^T\!x\!\gg 0$ หรือ $z\!\gg 0$ (มากกว่า 0 มากๆ) ถ้า y=0 แล้วเราอยากให้ $h_{ heta}(x)pprox 0$ ก็คือ $heta^T\!x\!\ll 0$ หรือ $z\!\ll 0$

sigmoid activation function

Logistic regression:

$$J(\theta) = \min_{\theta} \frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \left(-\log h_{\theta}(x^{(i)}) \right) + (1 - y^{(i)}) \left(-\log(1 - h_{\theta}(x^{(i)})) \right) \right] + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2}$$

Logistic regression:

$$J(\theta) = \min_{\theta} \frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \left(-\log h_{\theta}(x^{(i)}) \right) + (1 - y^{(i)}) \left(-\log(1 - h_{\theta}(x^{(i)})) \right) \right] + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2}$$

Support vector machine:

$$J(\theta) = \min_{\theta} \frac{1}{m} \left[\Sigma_{i=1}^{m} y^{(i)} \mathbf{cost}_{1}(\theta^{T} x^{(i)}) + (1 - y^{(i)}) \mathbf{cost}_{0}(\theta^{T} x^{(i)}) \right] + \frac{\lambda}{2m} \Sigma_{j=1}^{n} \theta_{j}^{2}$$

เขียนสมการด้านบนใหม่ เพื่อให้มันสอดคล้องกับ convention ของ SVM

Cost function:

$$J(\theta) = \min_{\theta} \frac{1}{n} \left[\sum_{i=1}^{m} y^{(i)} \mathbf{cost}_1(\theta^T x^{(i)}) + (1 - y^{(i)}) \mathbf{cost}_0(\theta^T x^{(i)}) \right] + \frac{\lambda}{2n} \sum_{j=1}^{n} \theta_j^2$$

ทำไมนี่จึงสมเหตุสมผล ? คิดเกี่ยวกับ:

• $\min_{u} \left((u+5)^2 + 1 \right) \Longrightarrow 2(u-5) \cdot 1 = 0 \Longleftrightarrow u = 5$ • $\min_{u} 10 \left((u-5)^2 + 1 \right) \Longrightarrow 2 \cdot 10 \cdot (u-5) \cdot 1 = 0 \Longrightarrow u = 5$ ลองคิดเกี่ยวกับ:

2. จัดระเบียบสมการเล็กน้อย Cost function: $J(\theta) = \min_{\theta} \frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \mathbf{cost}_{1}(\theta^{T} x^{(i)}) + (1 - y^{(i)}) \mathbf{cost}_{0}(\theta^{T} x^{(i)}) \right] + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2}$

> ก็คือ ใน logistic regression เราเขียน: $A + \lambda B$

> > ในขณะที่ ใน SVM เราเขียน CA+B

สังเกตว่า $oldsymbol{C}$ ไม่จำเป็นต้องเป็น $1/\lambda$

Logistic regression:

$$J(\theta) = \min_{\theta} \frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \left(-\log h_{\theta}(x^{(i)}) \right) + (1 - y^{(i)}) \left(-\log(1 - h_{\theta}(x^{(i)})) \right) \right] + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2}$$

Support vector machine:

$$J(\theta) = \min_{\theta} C \sum_{i=1}^{m} \left[y^{(i)} \mathbf{cost}_{1}(\theta^{T} x^{(i)}) + (1 - y^{(i)}) \mathbf{cost}_{0}(\theta^{T} x^{(i)}) \right] + \frac{1}{2} \sum_{j=1}^{n} \theta_{j}^{2}$$

Ouestion

พิจารณาปัญหา minimization ดังนี้

$$J(\theta) = \min_{\theta} \left(\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \mathbf{cost}_{1}(\theta^{T} x^{(i)}) + (1 - y^{(i)}) \mathbf{cost}_{0}(\theta^{T} x^{(i)}) \right) + \left(\frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2} \right)$$

$$J(\theta) = \min_{\theta} C \left[\sum_{i=1}^{m} y^{(i)} \mathbf{cost}_{1}(\theta^{T} x^{(i)}) + (1 - y^{(i)}) \mathbf{cost}_{0}(\theta^{T} x^{(i)}) \right] + \left(\frac{1}{2} \sum_{j=1}^{m} \theta_{j}^{2} \right)$$

ปัญหา optimization 2 ปัญหานี้ จะให้ค่า heta เดียวกัน (ก็คือ ค่า heta ค่าเดียวกันเป็นคำตอบที่เหมาะสม (optimal solution) ของปัญหาทั้ง 2 ปัญหา

(i)
$$C = \lambda$$
 (ii) $C = -\lambda$ (iv) $C = 2/\lambda$

$$C = 1/\lambda$$
 (iv) $C = 2/\lambda$

ไม่เหมือนกับ logistic regression : SVM ไม่มีการตีความในรูปของความน่าจะเป็น (probablistic interpretation)

Cost function:

$$J(\theta) = \min_{\theta} C \Sigma_{i=1}^m \left[y^{(i)} \mathbf{cost}_1(\theta^T x^{(i)}) + (1 - y^{(i)}) \mathbf{cost}_0(\theta^T x^{(i)}) \right] + \frac{1}{2} \Sigma_{j=1}^n \theta_j^2$$
Hypothesis remains

$$h_{\theta}(x) = \begin{cases} 1, & \text{if } \theta^T x \ge 0 \\ 0, & \text{otherwise} \end{cases}$$

Support Vector Machines (SVM)

Large Margin Classifier (ตัวแยกประเภทที่มี margin ขนาดใหญ่)

Krittameth Teachasrisaksakul

ความเข้าใจพื้นฐาน

$$J(\theta) = \min_{\theta} \left(\sum_{i=1}^{m} \left[y^{(i)} \mathbf{cost}_{1}(\theta^{T} x^{(i)}) + (1 - y^{(i)}) \mathbf{cost}_{0}(\theta^{T} x^{(i)}) \right] + \frac{1}{2} \sum_{j=1}^{n} \theta_{j}^{2} \right)$$

- ullet (ถ้า y=1) เราอยากให้ $heta^T\! x$ \geq 1 (ไม่ใช่แค่ ≥ 0)
- ullet ถ้า y=0 เราอยากให้ $heta^T\!x\!\leq\!-1$ (ไม่ใช่แค่ <0)
- ullet ต่อไป ถ้าเราอยากตั้งค่า $oldsymbol{C}$ เป็นค่าที่สูงมาก เช่น 100,000 ?

Decision Boundary ของ SVM

$$\min_{\theta} C \sum_{i=1}^{m} \left[y^{(i)} \mathbf{cost}_1(\theta^T x^{(i)}) + (1 - y^{(i)}) \mathbf{cost}_0(\theta^T x^{(i)}) \right] + \frac{1}{2} \sum_{j=1}^{n} \theta_j^2$$

$$\approx 0$$

เมื่อใดก็ตามที่
$$y^{(i)}=1$$
 จะได้ $heta^T\! x^{(i)}$ ≥ 1

เมื่อใดก็ตามที่
$$y^{(i)}=0$$
 จะได้ $heta^T \! x^{(i)} \! \leq \! -1$

Decision Boundary ของ SVM

$$\min_{\theta} C \Sigma_{i=1}^m \left[y^{(i)} \mathbf{cost}_1(\theta^T x^{(i)}) + (1-y^{(i)}) \mathbf{cost}_0(\theta^T x^{(i)}) \right] + \frac{1}{2} \Sigma_{j=1}^n \theta_j^2$$
 เมื่อใดก็ตามที่ $y^{(i)} = 1$ จะได้ $\theta^T x^{(i)} \ge 1$
$$\min_{\theta} C \cdot 0 + \left(\frac{1}{2} \Sigma_{j=1}^n \theta_j^2 \right)$$
 เมื่อใดก็ตามที่ $y^{(i)} = 0$ จะได้ $\theta^T x^{(i)} \le -1$ subject to $\theta^T x^{(i)} \ge 1$ if $y^{(i)} = 1$
$$-\theta^T x^{(i)} \le -1$$
 if $y^{(i)} = 0$

เมื่อแก้ปัญหา optimization นี้

เราจะได้ decision boundary ที่น่าสนใจ!

- ก็คือ เมื่อ C สูงมาก → SVM จะอ่อนไหวต่อ outlier (ค่า/ข้อมูลผิดปกติ)
- ลดค่า C จะทำให้ \longrightarrow SVM อ่อนไหว น้อยลง

SVM Decision Boundary: Linearly Separable Case

กรณีที่สามารถแบ่ง class ได้ด้วยขอบเขตตัดสินใจที่เป็นเชิงเส้น

SVM Decision Boundary: Linearly Separable Case กรณีที่สามารถแบ่ง class ได้ด้วยขอบเขตตัดสินใจที่เป็นเชิงเส้น

SVM เป็น Large Margin Classifier (ตัวแยกประเภทที่มี margin ขนาดใหญ่)

Large Margin Classifier เมื่อมี Outliers (ค่า/ข้อมูลผิดปกติ)

SVM พยายามหา decision boundary ที่มีระยะห่าง (margin) จาก ตัวอย่าง / sample สูงสุด

Large Margin Classifier เมื่อมี Outliers (ค่า/ข้อมูลผิดปกติ)

ลองเพิ่ม outlier

เมื่อ C สูงมาก : SVM จะอ่อนไหวต่อ outlier

เมื่อลดค่า C จะทำให้ SVM อ่อนไหวน้อยลง

ถ้าข้อมูลไม่ 'linearly sample' (ไม่สามารถแยกชนิด / class ด้วย decision boundary ที่เป็นเส้นตรง)

แล้ว SVM ยังคงทำงานได้ถูกต้อง

Question

พิจารณาชุดข้อมูล training set เมื่อ 'x' แทน ตัวอย่างที่ (y=1) และ 'o' แทน ตัวอย่าง negative ที่ (y=0) สมมติฝึก/สร้าง (train) SVM (ที่ทำนาย 1

เมื่อ θ_0 + $\theta_1 x_1$ + $\theta_2 x_2 \geq 0$) SVM อาจจะให้ค่า θ_0 , θ_1 , θ_1 ?

(i)
$$\theta_0 = 3$$
, $\theta_1 = 1$, $\theta_2 = 0$

(ii)
$$\theta_0 = -3$$
, $\theta_1 = 1$, $\theta_2 = 0$

(iii)
$$\theta_0 = 3$$
, $\theta_1 = 0$, $\theta_2 = 1$

(iv)
$$\theta_0 = -3$$
, $\theta_1 = 0$, $\theta_2 = 1$

Support Vector Machines (SVM)

คณิตศาสตร์เบื้องหลัง

Large Margin Classification

Krittameth Teachasrisaksakul

 $(\boldsymbol{u}^T\boldsymbol{v}$ เรียกว่า 'vector inner product')

ถ้ามี
$$m{u} = egin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$
 กับ $m{v} = egin{bmatrix} v_1 \\ v_2 \end{bmatrix}$ ให้คำนวณ $m{u}^T m{v} = ?$

($\boldsymbol{u}^T \boldsymbol{v}$ เรียกว่า 'vector inner product')

สามารถ quantify (วัดปริมาณ) vector โดยหาค่า euclidean length หรือ norm ของมัน

$$\|\mathbf{u}\| = \sqrt{u_1^2 + u_2^2}$$
 (by Pythagoras theorem)
 \mathbb{R}

ถ้ามี
$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$
 กับ $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$ ให้คำนวณ $\mathbf{u}^T \mathbf{v} = ?$

 $(\boldsymbol{u}^T\boldsymbol{v}$ เรียกว่า 'vector inner product')

จาก figure :

p = ความยาวของ projection (การฉายภาพ) ของ vบน u

ถ้ามี
$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$
 กับ $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$ ให้คำนวณ $\mathbf{u}^T \mathbf{v} = ?$

 $(\boldsymbol{u}^T\boldsymbol{v}$ เรียกว่า 'vector inner product')

จาก figure :

p =ความยาวของ projection (การฉายภาพ) ของ vบน u

เป็นไปได้ที่จะแสดงให้เห็นว่า

$$\boldsymbol{u}^T\boldsymbol{v} = p \cdot \|\boldsymbol{u}\|$$

หมายเหตุ: p เป็นลบ ถ้าขนาดมุมระหว่าง $m{u}$ กับ $m{v} > 90$

Decision Boundary ของ SVM

ทำให้สมการง่ายขึ้น เพื่อที่จะวิเคราะห์บันได้ง่ายขึ้น

$$J(\theta) = \frac{1}{2} \sum_{j=1}^{n} \theta_j^2 \text{ s.t. } -\theta^T x^{(i)} \ge 1 \text{ if } y^{(i)} = 1$$
$$-\theta^T x^{(i)} \le -1 \text{ if } y^{(i)} = 0$$

$$\theta_0 = 0$$

$$n = 2$$

ทำให้สมการง่ายขึ้น เพื่อที่จะวิเคราะห์บันได้ง่ายขึ้น

$$J(\theta) = \frac{1}{2} \sum_{j=1}^{n} \theta_{j}^{2} = \frac{1}{2} (\theta_{1}^{2} + \theta_{2}^{2}) = \frac{1}{2} (\sqrt{\theta_{1}^{2} + \theta_{2}^{2}})^{2}$$
s.t. $-\theta^{T} x^{(i)} \ge 1$ if $y^{(i)} = 1$ $= (\|\theta\|)$ where $\theta = \begin{bmatrix} \theta_{0} \\ \theta_{1} \\ \theta_{2} \end{bmatrix}$

$$-\theta^{T} x^{(i)} \le -1$$
 if $y^{(i)} = 0$

$$\theta_0 = 0$$

$$n = 2$$

$$J(\theta) = \frac{1}{2} \sum_{j=1}^{n} \theta_{j}^{2} = \frac{1}{2} (\theta_{1}^{2} + \theta_{2}^{2}) = \frac{1}{2} (\sqrt{\theta_{1}^{2} + \theta_{2}^{2}})^{2} = \frac{1}{2} ||\theta||^{2}$$
s.t.
$$\theta^{T} x^{(i)} \ge 1 \text{ if } y^{(i)} = 1$$

$$\theta^{T} x^{(i)} \le -1 \text{ if } y^{(i)} = 0$$

Objective function ของ SVM จะกลายเป็น

$$\min_{\theta} \frac{1}{2} \sum_{j=1}^{n} \theta_{j}^{2} \iff \min_{\theta} \sum_{j=1}^{n} \frac{1}{2} \|\boldsymbol{\theta}\|^{2} \text{ s.t. } - \underbrace{\boldsymbol{p}^{(i)}} \cdot \|\boldsymbol{\theta}\| \ge 1 \text{ if } y^{(i)} = 1 \\ - \underline{\boldsymbol{p}^{(i)}} \cdot \|\boldsymbol{\theta}\| \le -1 \text{ if } y^{(i)} = 0$$

เมื่อ $p^{(i)}$ เป็น projection ของ $x^{(i)}$ บน vector heta

เพราะ $p^{(1)}$ น้อยมาก ดังนั้น $|| \theta ||$ ต้องเยอะมาก

(ทำไม นี่จึงสมเหตุสมผล ?)

เพราะ $p^{(2)}$ น้อยมาก ดังนั้น || heta|| ต้องเยอะมาก (ทำไม นี่จึงสมเหตุสมผล ?)

Objective function ของ SVM จะกลายเป็น

$$\min_{\theta} \frac{1}{2} \sum_{j=1}^{n} \theta_{j}^{2} \iff \min_{\theta} \sum_{j=1}^{n} \frac{1}{2} \|\boldsymbol{\theta}\|^{2} \text{ s.t. } -\boldsymbol{p}^{(i)} \cdot \|\boldsymbol{\theta}\| \ge 1 \text{ if } y^{(i)} = 1$$
$$-\boldsymbol{p}^{(i)} \cdot \|\boldsymbol{\theta}\| \le -1 \text{ if } y^{(i)} = 0$$

Objective function ของ SVM จะกลายเป็น

$$\min_{\theta} \frac{1}{2} \sum_{j=1}^{n} \theta_{j}^{2} \iff \min_{\theta} \sum_{j=1}^{n} \frac{1}{2} \|\boldsymbol{\theta}\|^{2} \text{ s.t. } -\boldsymbol{p}^{(i)} \cdot \|\boldsymbol{\theta}\| \ge 1 \text{ if } y^{(i)} = 1$$
$$-\boldsymbol{p}^{(i)} \cdot \|\boldsymbol{\theta}\| \le -1 \text{ if } y^{(i)} = 0$$

Question

ปัญหา SVM optimization ที่เราใช้ คือ:

$$\min_{\theta} \frac{1}{2} \sum_{j=1}^{n} \theta_{j}^{2} \text{ s.t. } - p^{(i)} \cdot \|\boldsymbol{\theta}\| \ge 1 \text{ if } y^{(i)} = 1$$
$$- p^{(i)} \cdot \|\boldsymbol{\theta}\| \le -1 \text{ if } y^{(i)} = 0$$

เมื่อ $p^{(i)}$ เป็น projection (signed / ที่มีเครื่องหมาย) ของ $x^{(i)}$ ลงบน θ พิจารณา ชุดข้อมูล training set ด้านขวา ที่ค่าที่เหมาะสม (optimal value) ของ θ ค่าของ $\|\theta\|$ จะเป็นเท่าไร?

(i) 1/4 (ii) 1/2

Support Vector Machines (SVM)

Kernels (Part 1)

Krittameth Teachasrisaksakul

ความเข้าใจพื้นฐาน

ขอบเขตตัดสินใจที่ไม่เป็นเชิงเส้น (Non-linear decision boundary)

ความเข้าใจพื้นฐาน

ขอบเขตตัดสินใจที่ไม่เป็นเชิงเส้น (Non-linear decision boundary)

ทำนาย
$$y=1$$
 ถ้า
$$\theta_0+\theta_1x_1+\theta_2x_2+\theta_3x_1x_2 \\ +\theta_4x_1^2+\theta_5x_2^2+\ldots\geq 0$$

 $h_{\theta}(x) = \begin{cases} 1, & \text{if } \theta_0 + \theta_1 x_1 + \ldots \ge 0 \\ 0, & \text{otherwise} \end{cases}$

สัญลักษณ์ใหม่ (New notation):

$$\theta_0 + \theta_1 f_1 + \theta_2 f_2 + \dots$$
 iture

เช่น
$$f_1 = x_1, f_2 = x_2, f_3 = x_1 x_2, f_4 = x_1^2, f_5 = x_2^2, \dots$$

คำถาม: มีตัวเลือก features f_1 , f_2 , f_3 ที่ต่างไป หรือ ดีกว่าหรือไม่?

Kernels : ความเข้าใจพื้นฐาน

นี่คือ แนวคิดใหม่ในการนิยาม feature ใหม่ f_{1} , f_{2} , f_{3}

ถ้ามี x คำนวณ feature ใหม่ ที่ขึ้นอยู่กับ proximity (ความใกล้ชิด) ของ landmarks $I^{(1)}$, $I^{(2)}$, $I^{(3)}$

Kernels : ความเข้าใจพื้นฐาน

นี่คือ แนวคิดใหม่ในการนิยาม feature ใหม่ f_1 , f_2 , f_3

ถ้ามี x คำนวณ feature ใหม่ ที่ขึ้นอยู่กับ proximity (ความใกล้ชิด) ของ landmarks $I^{(1)}$, $I^{(2)}$, $I^{(3)}$

$$f_1 := \mathbf{similarity}(x(l^{(1)})) = \exp(-\frac{\|x - l^{(1)}\|^2}{2\sigma^2})$$

ถ้ามี example (ตัวอย่าง) x
$$\rightarrow$$

$$f_1 := \mathbf{similarity}(x(l^{(1)})) = \exp(-\frac{\|x - l^{(1)}\|^2}{2\sigma^2})$$

$$f_2 := \mathbf{similarity}(x, l^{(2)}) = \exp(-\frac{\|x - l^{(1)}\|^2}{2\sigma^2})$$
 kernels

kornels (Gaussian kernels)

Kernels : ความเข้าใจพื้นฐาน

นี่คือ แนวคิดใหม่ในการนิยาม feature ใหม่ f_1 , f_2 , f_3

ถ้ามี x คำนวณ feature ใหม่ ที่ขึ้นอยู่กับ proximity (ความใกล้ชิด) ของ landmarks $I^{(1)}$, $I^{(2)}$, $I^{(3)}$

ถ้ามี example (ตัวอย่าง) x
$$\rightarrow$$

$$f_1 := \mathbf{similarity}(x, l^{(1)}) = \exp(-\frac{\|x - l^{(1)}\|^2}{2\sigma^2})$$

$$f_2 := \underbrace{\mathbf{similarity}}_{\text{(Gaussian kernels)}}(x, l^{(2)}) = \exp(-\frac{\|x - l^{(1)}\|^2}{2\sigma^2})$$

$$f_1 := \mathbf{similarity}(x, l^{(1)}) = \exp(-\frac{\|x - l^{(1)}\|^2}{2\sigma^2}),$$
 where $\|x - l\|^2 = \sum_{j=1}^n (x_j - l_j)^2$

ถ้า x อยู่ไกลจาก $t^{(1)}$ แล้ว

$$f_1:=\mathbf{similarity}(x,l^{(1)})=\exp(-rac{\|x-l^{(1)}\|^2}{2\sigma^2}),$$
 where $\|x-l\|^2=\Sigma_{j=1}^n(x_j-l_j)^2$ ຄ້າ x ອຢູ່ໄກຄຈາກ $l^{(1)}$ ແລ້ວ $f_1pprox \exp\Big(-rac{(\mathbf{large\ number})^2}{2\sigma^2}\Big)pprox 0$

สังเกตว่า landmark แต่ละจุด ทำให้เกิด (นิยาม) feature ใหม่

$$l^{(1)} = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$$

$$f_1 = \exp\left(-\frac{\|x - l^{(1)}\|^2}{2\sigma^2}\right)$$

ต่อไป ลองดูผลขย**ง \sigma^2** (จิ๋งเป็น parameter ของ Gaussian kernel)

$$l^{(1)} = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$$

$$f_1 = \exp\left(-\frac{\|x - l^{(1)}\|^2}{2\sigma^2}\right)$$

Question

พิจารณาตัวอย่าง 1 มิติ (1-D example) ที่มี 1 feature $\textbf{\textit{X}}_1$ และสมมติ $\boldsymbol{\textit{l}}^{(1)}$ = 5

ภาพด้านบน คือ plot ของ

$$f_1 = \exp\left(-\frac{\|x_1 - l^{(1)}\|^2}{2\sigma^2}\right)^2 = 1$$

สมมติ เราเปลี่ยนให้ $\sigma^2=4$ ภาพใดที่เป็น plot ของ f_1 ที่มีค่า σ^2 ค่าใหม่ ?

ถ้ามี features (คุณลักษณะ) เหล่านี้ ลองดูว่าจะเรียนรู้ hypothesis function อะไรได้

d• ทำนาย y=1 สำหรับ $x_{
m extsf{ iny x}}$

ถ้ามี features (คุณลักษณะ) เหล่านี้ ลองดูว่าจะเรียนรู้ hypothesis function อะไรได้

ถ้ามี features (คุณลักษณะ) เหล่านี้ ลองดูว่าจะเรียนรู้ hypothesis function อะไรได้

$$\because f_1 pprox 0,\, f_2 pprox 0,\, f_3 pprox 0$$
 ଲିକିନ୍ତ୍ $heta_0 + heta_1 \cdot 1 + heta_2 \cdot 0 + heta_3 \cdot 0 = -0.5 < 0$

∴ ทำนาย y=0 สำหรับ x_2

Hypothesis function:

ทำนาย '1' เมื่อ
$$\theta_0+\theta_1f_1+\theta_2f_2+\theta_3f_3\geq 0$$

ถ้ามี example X_{2}

เราจะคำนวณ:
$$f_1, f_2, f_3$$

สมมติ เราทำนาย

$$\theta_0 = -0.5, \ \theta_1 = 1, \ \theta_2 = 1, \ \theta_3 = 0$$

ถ้ามี features (คุณลักษณะ) เหล่านี้ ลองดูว่าจะเรียนรู้ hypothesis function อะไรได้

Hypothesis function:

ทำนาย '1' เมื่อ
$$\theta_0 + \theta_1 f_1 + \theta_2 f_2 + \theta_3 f_3 \geq 0$$

ถ้ามี example X_{2}

เราจะคำนวณ: f_1, f_2, f_3

สมมติ เราทำนาย

$$\theta_0 = -0.5$$
, $\theta_1 = 1$, $\theta_2 = 1$, $\theta_3 = 0$

นี่ให้ความเข้าใจพื้นฐานเกี่ยวกับว่า นิยามของ landmarks และ kernel function ทำให้เรียนรู้ non-linear decision boundary ที่ค่อนข้างซับซ้อนได้อย่างไร!

ถ้ามี features (คุณลักษณะ) เหล่านี้ ลองดูว่าจะเรียนรู้ hypothesis function อะไรได้

Hypothesis function:

ทำนาย '1' เมื่อ
$$\theta_0+\theta_1f_1+\theta_2f_2+\theta_3f_3\geq 0$$

ถ้ามี example X_{2}

เราจะคำนวณ: f_1, f_2, f_3

สมมติ เราทำนาย

$$\theta_0 = -0.5$$
, $\theta_1 = 1$, $\theta_2 = 1$, $\theta_3 = 0$

คำถาม: หา landmarks เหล่านี้ได้อย่างไร ? เลือก landmarks เหล่านี้ได้อย่างไร ? Similarity function อื่นๆ มีอะไรบ้าง? เป็นต้น

Support Vector Machines (SVM)

Kernels (Part 2)

Krittameth Teachasrisaksakul

การเลือก landmarks

สำหรับ X ทุกตัว ถ้า X อยู่ในชุดข้อมูล เรากำหนดให้ X เป็น landmarks

สีแต่ละสีของจุดใน plot ด้านขวา ไม่สำคัญ ในตอนนี้

นิยาม: ถ้ามีตัวอย่าง example *m* ตัว

$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(k)}, y^{(m)})$$

เลือก / กำหนดให้

$$l^{(1)} := x^{(1)}, l^{(2)} := \underline{x}^{(2)}, \dots, l^{(m)} := x^{(m)}$$

ถ้ามีตัวอย่าง X (จากชุดข้อมูล training / cross validation / testing):

$$f_1 = \mathbf{similarity}(x, l^{(1)})$$
 $f_2 = \mathbf{similarity}(x, l^{(2)})$
 $f_3 = \mathbf{similarity}(x, l^{(2)})$
 $f_4 = \begin{bmatrix} f_0 \\ f_1 \\ f_2 \\ \vdots \\ f_m \end{bmatrix}$
 $f_0 = 1 \text{ (interceptor)}$

ถ้ามีตัวอย่าง $m{X}$ (จากชุดข้อมูล training / cross validation / testing):

$$f_1 = \mathbf{similarity}(x, l^{(1)})$$
 $f_2 = \mathbf{similarity}(x, l^{(2)})$
 \vdots
 $f = \begin{bmatrix} f_0 \\ f_1 \\ f_2 \\ \vdots \\ f_m \end{bmatrix}$ in the following function $f_0 = 1$ (interceptor)

ตัวอย่าง: สำหรับตัวอย่างจากชุดข้อมูล training $(x^{(i)}, y^{(i)})$ เราสามารถสร้าง vector

$$x^{(i)} \rightarrow \begin{array}{c} f_1^{(i)} = \mathbf{similarity}(x^{(i)}, l^{(1)}) \\ f_2^{(i)} = \mathbf{similarity}(x^{(i)}, l^{(2)}) \\ \vdots \\ f_m^{(i)} = \mathbf{similarity}(x^{(i)}, l^{(m)}) \end{array} \qquad \begin{array}{c} f_i^{(i)} = \mathbf{similarity}(x^{(i)}, l^{(i)}) \\ & = \exp\left(-\frac{0}{2\sigma^2}\right) = 1 \end{array}$$

ถ้ามีตัวอย่าง $oldsymbol{X}$ (จากชุดข้อมูล training / cross validation / testing):

$$f_1 = \mathbf{similarity}(x, l^{(1)})$$
 $f_2 = \mathbf{similarity}(x, l^{(2)})$
 \vdots
 $f = \begin{bmatrix} f_0 \\ f_1 \\ f_2 \\ \vdots \\ f \end{bmatrix}$ ធ្វើខ $f_0 = 1$ (interceptor)

ตัวอย่าง: สำหรับตัวอย่างจากชุดข้อมสู training $(x^{(i)}, y^{(i)})$ เราสามารถสร้าง vector

$$x^{(i)} \rightarrow \begin{cases} f_1^{(i)} = \mathbf{similarity}(x^{(i)}, l^{(1)}) \\ f_2^{(i)} = \mathbf{similarity}(x^{(i)}, l^{(2)}) \\ \vdots \\ f_m^{(i)} = \mathbf{similarity}(x^{(i)}, l^{(m)}) \end{cases}$$

แทนที่จะใช้
$$\mathbf{X}^{(i)} \in \mathbb{R}^{n+1}$$
 เราจะเขียนแทน $\mathbf{X}^{(i)}$ แต่ละตัวด้วย feature vector
$$\mathbf{f}_1^{(i)} = \mathbf{f}_1^{(i)}$$
 : $\mathbf{f}_m^{(i)}$

สมมติ เรามี parameter ที่เรียนรู้แล้ว $oldsymbol{ heta}$ ($oldsymbol{ heta} \in \mathbb{R}^{m+1}$)

ON

Hypothesis: ถ้ามี X เราคำนวณ features $f \in \mathbb{R}^{m+1}$

แล้ว เราทำนาย '
$$y{=}1'$$
ู้ถ้า

$$\boldsymbol{\theta}^T \boldsymbol{f} \ge 0 \iff \theta_0 f_0 + \theta_1 f_1 + \dots + \theta_m f_m \ge 0$$

จะหาค่า parameter \varTheta ได้อย่างไร?

สมมติ เรามี parameter ที่เรียนรู้แล้ว $oldsymbol{ heta}$ ($oldsymbol{ heta} \in \mathbb{R}^{m+1}$)

Hypothesis: ถ้ามี X เราคำนวณ features $f \in \mathbb{R}^{m+1}$

แล้ว เราทำนาย '
$$y=1$$
' ถ้า

$$\theta^T f \ge 0 \iff \theta_0 f_0 + \theta_1 f_1 + \dots + \theta_m f_m \ge 0$$

Objective function:

$$\min_{\boldsymbol{\theta}} \bigcirc \Sigma_{i=1}^m y^{(i)} \mathbf{cost}_1(\boldsymbol{\theta}^T \boldsymbol{f}^{(i)}) + (1-\boldsymbol{y}^{(i)}) \mathbf{cost}_0(\boldsymbol{\theta}^T \boldsymbol{f}^{(i)}) + \frac{1}{2} \Sigma_{j=1}^n \theta_j^2$$

สังเกตว่า สำหรับปัญหา optimization นี้ เรามี n=m

สมมติ เรามี parameter ที่เรียนรู้แล้ว $oldsymbol{ heta}$ ($oldsymbol{ heta} \in \mathbb{R}^{m+1}$)

Hypothesis: ถ้ามี X เราคำนวณ features $f \in \mathbb{R}^{m+1}$

แล้ว เราทำนาย '
$$y=1$$
' ถ้า

$$\boldsymbol{\theta}^T \boldsymbol{f} \ge 0 \iff \theta_0 f_0 + \theta_1 f_1 + \dots + \theta_m f_m \ge 0$$

Objective function:

$$\min_{\boldsymbol{\theta}} C \Sigma_{i=1}^{m} y^{(i)} \mathbf{cost}_{1}(\boldsymbol{\theta}^{T} \boldsymbol{f}^{(i)}) + (1 - \boldsymbol{y}^{(i)}) \mathbf{cost}_{0}(\boldsymbol{\theta}^{T} \boldsymbol{f}^{(i)}) + \left| \frac{1}{2} \Sigma_{j=1}^{n} \theta_{j}^{2} \right|$$

$$\therefore \frac{1}{2} \sum_{j=1}^{n} \theta_{j}^{2} = \frac{1}{2} (\theta_{1}^{2} + \theta_{2}^{2}) = \frac{1}{2} (\sqrt{\theta_{1}^{2} + \theta_{2}^{2}})^{2} = \frac{1}{2} ||\boldsymbol{\theta}||^{2}$$

$$:: \Sigma_i \theta_i^2 = \boldsymbol{\theta}^T \boldsymbol{\theta}$$

เพิ่มมาเพื่อ rescaling!

ในบาง implementation : คำนวณ $m{ heta}^T \! M m{ heta}$ เพื่อ computational efficiency (ประสิทธิภาพในการคำนวณ)

การเลือก Parameter ของ SVM

(C) (viu $\frac{1}{\lambda}$)

 $m{C}$ มาก : bias ต่ำลง, variance สูง($pprox m{\lambda}$ น้อย)

C น้อย : bias สูงขึ้น, variance ต่ำ $(pprox \lambda \, นาก)$

มีแนวโน้ม overfitting

มีแนวโน้ม underfitting

 σ^2 มา $_{i}$: features $f_{_{i}}$ เปลี่ยนอย่าง smooth

bias สูงขึ้น, variance ต่ำลง

$$f_i = \exp\left(-\frac{\|x - l^{(i)}\|^2}{2\sigma^2}\right)$$

 $(\sigma^2$ น้อย $^{}$: features $f_{_i}$ เปลี่ยนอย่าง smooth น้อยลง

bias ต่ำลง, variance สูงขึ้น

มีแนวโน้ม underfitting

$$\sigma^2 = 3$$

มีแนวโน้ม overfitting

$$\sigma^2 = 0.5$$

Question

สมมติ เรา train SVM และพบว่ามัน overfit ชุดข้อมูล training ข้อใดต่อไปนี้จะเป็นขั้นตอนต่อไปที่เหมาะสม ? วงทุกข้อที่ถูกต้อง

(i) เพิ่ม C

(iii) เพิ่ม σ

(iv) ลด $oldsymbol{\sigma}$

Support Vector Machines (SVM)

การใช้ SVM

Krittameth Teachasrisaksakul

การประยุกต์ใช้

- 1. ใช้ SVM software package (เช่น scikit-learn, libsvm, ...) เพื่อแก้หาค่า parameter
- 2. จำเป็น ต้องกำหนดค่า:
 - i. การเลือกค่า parameter C
 - ii. การเลือก kernel ก็คือ similarity function เช่น
 - ไม่มี kernel (หรือ 'linear kernel')

ทำนาย
$$y=1$$
 ถ้า $\boldsymbol{\theta}^T x \geq 0$ $(\theta_0 + \theta_1 x_1 + \ldots + \theta_n x_n \geq 0)$

Linear kernel บอกเป็นนัยว่าเราใช้ 'standard linear classifier' (ตัวแยกประเภทที่ใช้ฟังก์ชันเชิงเส้นแบบมาตรฐาน)

คำถาม: เมื่อใดที่เราจำเป็นต้องใช้มัน?

เมื่อ n มาก และ m น้อย ก็คือ $x_{_{\mathbf{i}}} \in \mathbb{R}^{n+1}$

ในกรณีนี้ เรามีข้อมูลไม่เพียงพอ และอยากหลีกเลี่ยง overfitting!

การประยุกต์ใช้

- ใช้ SVM software package (เช่น scikit-learn, libsvm, ...) เพื่อแก้หาค่า parameter
- จำเป็น ต้องกำหนดค่า:
 - การเลือกค่า parameter C
 - การเลือก kernel ก็คือ similarity function เช่น
 - ไม่มี kernel (หรือ 'linear kernel')

ทำนาย
$$y=1$$
 ถ้า $\boldsymbol{\theta}^T x \geq 0$ $(\theta_0 + \theta_1 x_1 + \ldots + \theta_n x_n \geq 0)$
Gaussian kernel (ต้องเลือกค่า σ^2):

Gaussian kernel (ต้องเลือกค่า σ^2):

$$f_i = \exp\left(-\frac{\|x - l^{(i)}\|^2}{2\sigma^2}\right)$$

คำถาม: เมื่อใดที่เราจะใช้ Gaussian kernel ?

เมื่อ $x \in \mathbb{R}^n$, n น้อย, และ m มาก

การประยุกต์ใช้

เตือนความจำเกี่ยวกับ implementation

ต้องทำ reature scaling กอนใช้ Gaussian kernel

ตัวอย่าง (Housing domain):

$$\kappa_1 \in [0, 1000]$$
 feet²

$$x_2 \in \{1, 2, 3, 4, 5\}$$

ถ้าในกรณีนี้ : ขนาดพื้นที่บ้าน (size) จะมีอิทธิพลมากกับ ระยะห่าง (distance) เหล่านี้

Kernel แบบอื่นๆ

- ไม่ใช่ similarity function ทุกอัน $\mathbf{Similarity}(x,\,I)$ ที่จะเป็น kernel ที่ถูกต้อง / ใช้ได้ (valid)
- เพื่อยอมรับว่าเป็น kernel ที่ถูกต้อง ต้องสอดคล้องกับ Mercer's theorem
 - O เพื่อทำให้แน่ใจว่า optimization ของ SVM package ทำงานอย่างถูกต้อง และ
 - O ไม่ diverge!
- ตัวเลือกอื่นของ off-the-shelf kernels (ที่ไม่ต้องพัฒนาเอง)
 - O Polynomial kernel: $\mathbf{similarity}(x, l) := (x^T l + \varepsilon)^d$ ເຫ່ນ $(x^T l)^2 \qquad (x^T l)^3 \qquad (x^T l + 1)^3 \qquad (x^T l + 5)^4$
 - O Kernel ที่เข้าใจยากขึ้น: รูtring kernel, chi-square kernel, histogram, intersection kernel, ...

Question

สมมติ เราพยายามตัดสินใจเลือกระหว่าง kernel ไม่กี่ตัว และเลือกค่า parameter เช่น \emph{C} , σ^2 เป็นต้น เราควรเลือกอย่างไร?

- (i) เลือกอะไรก็ตามที่ ทำงานมีประสิทธิภาพสูงสุดกับข้อมูล training
- (ii) เลือกอะไรก็ตามที่ ทำงานมีประสิทธิภาพสูงสุดกับข้อมูล cross-validation
- (iii) เลือกอะไรก็ตามที่ ทำงานมีประสิทธิภาพสูงสุดกับข้อมูล test
- (iv) เลือกอะไรก็ตามที่ ทำให้มี SVM margin มากที่สุด

Multi-class Classification (การแยกประเภท มากกว่า 2 ประเภท)

$$y \in \{1, 2, 3, ..., K\}$$

- SVM package หลายๆอัน มี multi-class classification functionality (ที่ built-in / มีพร้อมใช้ได้)
- ไม่อย่างนั้น ใช้วิธี one-vs-all (แยก 1 class ออกจาก class ที่เหลือทั้งหมด) ก็คือ
 - Train SVM K ตัว แต่ละตัวใช้เพื่อแยก y=i ออกจาก class ที่เหลือทั้งหมด เมื่อ $i=1,\,2,\,...,\,K$
 - หาค่า $heta^{(1)}$, $heta^{(2)}$, ..., $heta^{(K)}$
 - เลือก class i ที่มีค $(heta^{(i)})^T X$ มากที่สุด

Logistic Regression vs. SVM

เมื่อใดควรใช้ algorithm แต่ละอัน (เทียบกับอีกอัน) ?

สมมติ n = จำนวน features ($x \in \mathbb{R}^{n+1}$), m = จำนวน training examples

- 1. ถ้า n มาก (เทียบกับ m) (เช่น $n \ge m$, n = 10,000, $10 \le m \le 10,000$) ใช้ logistic regression หีรือ SVM ที่ไม่มี kernel (ก็คือ 'linear kernel')
- 2. ถ้า n น้อย, m มีคาปานกลาง (intermediate) (เช่น $1 \leq n \leq 10,000,10 \leq m \leq 50,000$) ใช้ SVM ที่ใช้ Gaussian kernel
- 3. ถ้า \underline{n} น้อย, \underline{m} มาก (เช่น $1 \leq n \leq 1,000$, m > 50,000) สร้าง / เพิ่ม features แล้วใช้ logistic regression หรือ SVM ที่ไม่มี kernel
- 4. Neural network (NN) มีแนวโน้มที่จะทำงานได้ดี ใน setting ส่วนมากที่พูดถึง แต่อาจ train ได้ช้ากว่า
- 5. **SVM เป็น convex optimization problem** ในทางปฏิบัติ ค่า local optima ไม่ใช่ปัญหาใหญ่ เมื่อใช้ neural network แต่เราไม่ต้องกังวลเรื่องนี้ เมื่อใช้ SVM

References

- Andrew Ng, Machine Learning, Coursera.
- Teeradaj Racharak, Al Practical Development Bootcamp.
- 3. What is Machine Learning?, https://www.digitalskill.org/contents/5