

Thyroid Cancer Recurrence Database Overview

This dataset, complied over 15 years at the crossroads of Al and Medicine, is rich in predictive features aimed at understanding the recurrence of well-differentiated thyroid cancer. Each patient, meticulously tracked for a minimum of 10 years. The following list outlines key columns:

- 1. Age: Patient's age
- 2. Gender: Patient's gender
- 3. Smoking: Smoking status
- 4. Hx Smoking: History of smoking(binary)
- 5. Hx Radiotherapy: History of radiotherapy(binary)
- 6. Thyroid Function: Thyroid function details.
- 7. Physical Examination: Results of physical examination.
- 8. Adenopathy: Presence of adenopathy(binary)
- 9. Pathology: Pathology details.
- 10. Focality: Focality information
- 11. Risk: Risk assessment.
- 12. **T,N,M,Stage**: Cancer staging attributes.
- 13. Response: Response details.
- 14. Recurred: Dependent variable indicating recurrence(binary)

Importing Packages

import numpy as np
import pandas as pd

Importing Dataset

In [2]: df=pd.read_csv("C:/Users/hp/OneDrive/Desktop/Thyroid_Diff.csv")

Exploratory Data Analysis (EDA)

In [3]: df.head()

Out[3	: [:	Age	Gender	Smoking	Hx Smoking	Hx Radiothreapy	Thyroid Function	Physical Examination		ny Path	nology	Focality	Risk	т	N	M	Stage	
		0 27	F	No	No	No	Euthyroid	Single nodular goiter-left		lo Micropa	apillary	Uni- Focal	Low	T1a	N0	M0	I	lr
		1 34	F	No	Yes	No	Euthyroid	Multinodular goiter		lo Micropa	apillary	Uni- Focal	Low	T1a	N0	МО	I	
		2 30	F	No	No	No	Euthyroid	Single nodular goiter-right		lo Micropa	apillary	Uni- Focal	Low	T1a	N0	MO	I	
		3 62	F	No	No	No	Euthyroid	Single nodular goiter-right	1	lo Micropa	apillary	Uni- Focal	Low	T1a	N0	MO	I	
		4 62	F	No	No	No	Euthyroid	Multinodular goiter		lo Micropa	apillary	Multi- Focal	Low	T1a	N0	M0	I	
4																		
In [4	:[:	df.ta	il()										·					
In [4	,			er Smoking	Hx J Smoking			Thyroid Function Exa	Physical mination A	denopathy	Patho	logy Fo	cality	Risk	Т	N	ı M	St
	:	A	ge Gende	er Smoking	Smoking	Radiothreap	y F	Function Exa	Physical mination A Single nodular oiter-right	denopathy Right		illon	cality Uni- Focal	Risk High				St
]:	A 378	ge Gende		Smoking S	Radiothreap	y F	Function Exa Euthyroid	Single nodular		Рар	illary	Uni-		T4b	N1b) M1	St
]:	A 378 379	Gendo 72	M Yes	Smoking Yes	Radiothreap Ye	y F	Euthyroid 9 Euthyroid Mu	Single nodular oiter-right	Right	Pap Pap	illary	Uni- Focal Multi-	High	T4b	N1b	M1	St
]:	378 379 380	ge Gende 72 81	M Yes	Smoking Yes No Yes	Radiothreap Ye N	y F s E s E	Euthyroid Guthyroid Mu Euthyroid Mu	Single nodular oiter-right litinodular goiter	Right	Pap Pap Pap	illary illary illary rthel	Uni- Focal Multi- Focal Multi-	High High	T4b T4b T4b	N1b N1b	M1 M1 M1 M1	St
		378 379 380 381	ge Gende 72 81 72	M Yes	Smoking Yes No Yes Yes	Radiothreap Ye N Ye	y F s E s E O E Hyperth	Euthyroid Euthyroid Euthyroid Mu Euthyroid Mu Clinical hyroidism	Single nodular oiter-right litinodular goiter litinodular goiter litinodular goiter litinodular	Right Extensive Bilateral	Pap Pap Pap Hu	illary illary rthel	Uni- Focal Multi- Focal Multi- Focal Multi-	High High High	T4b T4b T4b	N1b N1b N1b	M1 M1 M1 M1 M0 M0	St

Data PreProcessing

```
In [5]: df.duplicated().sum()
Out[5]:
In [6]: df.drop_duplicates(inplace=True)
In [7]: df.duplicated().sum()
Out[7]:
In [7]: df.isnull().sum()
Out[7]: Age
Gender
                                 0
                                 0
        Smoking
                                 0
        Hx Smoking
                                 0
        Hx Radiothreapy
                                 0
                                 0
        Thyroid Function
        Physical Examination
                                 0
        Adenopathy
                                 0
        Pathology
                                 0
        Focality
                                 0
        Risk
        Т
                                 0
        Ν
                                 0
                                 0
        Stage
                                 0
        Response
                                 0
        Recurred
                                 0
        dtype: int64
```

Splitting The Data into independent and dependent

```
In [9]: X=df.iloc[:, 0:16] # IV
Y=df.iloc[:,16:17]
Y
```

```
0
                     No
                     No
             2
                     No
             3
                     No
                     No
           378
                    Yes
           379
                     Yes
           380
                    Yes
           381
                    Yes
           382
          364 rows × 1 columns
In [10]: # Handling the categorical data --X
           X=pd.get_dummies(X, drop_first=True)
                                                                                    Thyroid
                                                                                                                           Thyroid
Out[10]:
               Нх
                                                                        Нх
                                                                                                       Thyroid
                                                                           Function_Clinical
Hypothyroidism
                                                                                                               Function_Subclinical Function_S
Hyperthyroidism Hypot
                                                          Radiothreapy_Yes
                                                                                            Function_Euthyroid
             0
                 27
                            0
                                                                                                                                0
                             0
                                          0
                                                                         0
                                                                                          0
                                                                                                                                0
                 34
             2
                             0
                                          0
                                                       0
                                                                         0
                                                                                          0
                                                                                                            1
                                                                                                                                0
                 30
                 62
                             0
                                                        0
                                                                         0
                                                                                          0
                                                                                                                                0
             4
                 62
                            0
                                          0
                                                       0
                                                                         0
                                                                                          0
                                                                                                            1
                                                                                                                                0
           378
                 72
                             1
                                          1
                                                        1
                                                                         1
                                                                                          0
                                                                                                            1
                                                                                                                                0
                                                       0
                                                                                          0
                                                                                                                                0
                 81
           379
                                          1
                                                        1
                                                                         0
                                                                                          0
                                                                                                            1
                                                                                                                                0
           380
                 72
                             1
           381
                 61
                                                                                          0
                                                                                                                                0
                                                       0
                                                                         0
                                                                                          0
                                                                                                                                0
           382
                                          1
                                                                                                            1
                 67
          364 rows × 40 columns
In [11]:
          Y=pd.get_dummies(Y, drop_first=True)
Out[11]:
               Recurred_Yes
             0
                          0
                           0
             2
                           0
             3
                           0
             4
                           0
           378
                           1
           379
           380
                           1
           381
                           1
           382
          364 rows × 1 columns
```

Recurred

In [12]: # data splitting

In [13]: X_train

 $\textbf{from} \ \, \textbf{sklearn.model_selection} \ \, \textbf{import} \ \, \textbf{train_test_split}$

X_train, X_test, Y_train, Y_test=train_test_split(X, Y, test_size=0.3, random_state=2)

Out[9]:

Out[13]:		Age	Gender_M	Smoking_Yes	Hx Smoking_Yes	Hx Radiothreapy_Yes	Thyroid Function_Clinical Hypothyroidism	Thyroid Function_Euthyroid	Thyroid Function_Subclinical Hyperthyroidism	Function_S Hypot
	159	24	0	0	0	0	0	1	0	
	115	37	0	0	0	0	0	1	0	
	375	59	0	0	0	0	0	1	0	
	296	51	0	0	1	0	0	1	0	
	80	27	0	0	0	0	0	0	0	
	318	30	0	0	0	0	0	1	0	
	22	36	0	0	0	0	0	1	0	
	78	35	0	0	0	0	0	1	0	
	15	42	0	0	0	0	0	1	0	
	184	67	0	0	0	0	0	1	0	
	254 r	ows ×	40 column	S						

```
In [14]: Y_train
Out[14]:
               Recurred_Yes
          159
                          0
          115
                          0
          375
                          1
                          0
          296
           80
                          0
                          1
          318
           22
                          0
           78
                          0
                          0
           15
          184
                          0
```

254 rows × 1 columns

In [19]: X_test

```
Out[19]: array([[ 1.08790265, -0.47733437, -0.36372479, ..., -1.0749677 ,
                 2.36931137, -0.58396389],
[-0.03145143, 2.09496751, 2.74933147, ..., 0.93026051,
                 -0.42206356, -0.58396389],

[-1.01911679, -0.47733437, -0.36372479, ..., -1.0749677,

-0.42206356, 1.71243465],
                 [ 1.68050187, -0.47733437, -0.36372479, ..., -1.0749677, 2.36931137, -0.58396389],
                 [-0.88742808, \ -0.47733437, \ -0.36372479, \ \ldots, \ \ 0.93026051,
                 -0.42206356, -0.58396389],
[ 0.03439293, -0.47733437, -0.36372479, ..., -1.0749677 ,
                   2.36931137, -0.58396389]])
In [20]: print("regression coffiecient--",mlr.coef_)
          0.03557591 0.00878127 -0.00638305 -0.06336698 -0.00478465 -0.04647725 -0.06486336 -0.00584694 0.01087814 0.00633522 -0.00840969 0.0026246
            -0.04487456 \quad 0.00111679 \ -0.02340344 \quad 0.00560606 \ -0.05208046 \ -0.11598266
             0.01858543 -0.20271772 -0.1302626   0.16392676]]
In [21]: print("Y_intercept---",mlr.intercept_)
          Y intercept--- [0.29896907]
In [22]: Y_pred=mlr.predict(X_test)
In [23]: Y_pred
```

```
Out[23]: array([[ 3.55539775e-01],
                 [-2.29322483e-02],
                 [ 9.06636424e-01],
                 [ 1.24117209e-01],
                 [7.44931957e-01],
                 [ 9.81735120e-01],
                 [-1.73202438e-01],
                 [-5.13220977e-02],
                 [-2.21304335e-02],
                 [-9.30874082e-02],
                 [ 1.09182949e+00],
                 [-3.88031486e-02],
                 [ 1.21208514e+00],
                 [ 7.04583203e-02],
                 [ 1.62774345e-01],
                 [ 1.28328231e+00],
                 [-7.82306306e-03],
                 [-4.32499012e-02],
                 [-2.57072761e-02],
                 [ 3.69655879e-02],
                 [ 4.90432235e-01],
                 [-3.22976614e-02],
                 [ 1.19761492e+00],
                 [ 1.01687255e+00],
                 [-1.26057870e-03],
                 [ 3.85979606e-02],
                 [ 1.61837753e-03],
                 [ 5.81588992e-01],
                 [ 8.23100420e-02],
                 [ 1.14111378e-02],
                 [-3.01834172e-03],
                 [ 1.02236928e+00],
                 [ 1.96181689e-02],
                 [ 1.04102423e-01],
                 [ 1.91853032e-02],
                 [ 6.88043253e-02],
                 [ 4.69058335e-02],
                 [-1.94478016e-02],
                 [ 3.80788011e-01],
                 [ 9.22646453e-01],
                 [-4.86394658e-02],
                 [ 1.61352140e-01],
                 [ 1.09658299e+00],
                 [-1.54533236e-01],
                 [-1.22738522e-03],
                 [-8.20483027e-02],
                 [-1.40276359e-01],
                 [ 9.77683544e-01],
                 [ 3.64970154e-01],
                 [ 1.05878811e-01],
                 [ 5.84539868e-03],
                 [ 7.76235532e-01],
                 [ 4.88488066e-03],
                 7.60171807e-01],
                 [ 3.31178230e-02],
                   3.73482254e-02],
                 [ 1.14546947e-02],
                 [ 2.87775883e-02],
                 [ 8.64447292e-01],
                 [ 5.36517214e-01],
                 [ 1.79803210e-02],
                 [-1.96885216e-02],
                 [ 9.68741437e-01],
                 [ 1.16109720e+00],
                 [ 3.00556422e-02],
                 [ 7.99530494e-02],
                 [ 4.19397163e-01],
                 [-4.23134353e-02],
                 [-1.21727326e-01],
                 [ 4.29232551e-01],
                 [ 1.59496835e-01],
                 [-4.50626232e-02].
                 [ 1.89032583e-01]])
In [24]: from sklearn.metrics import r2 score
          z=r2_score(Y_test,Y_pred)*100
Out[24]: 79.37270316465978
```

Decision Tree

```
In [25]: from sklearn.tree import DecisionTreeRegressor
    dtr=DecisionTreeRegressor()
    dtr.fit(X_train, Y_train)
```

```
# Make predictions on new data (X_test)
Y1_pred = dtr.predict(X_test)

In [26]: from sklearn.metrics import r2_score
z1=r2_score(Y_test,Y1_pred)*100
z1

Out[26]: 66.57509157509158
```

Random Forest Regression Model

SVR

```
In [29]: from sklearn.svm import SVR
          # Create and fit the model (adjust hyperparameters like 'C' and 'kernel')
          svrm = SVR(kernel='linear')
          svrm.fit(X train, Y train)
          # Make predictions on new data (X_test)
          Y3 pred =svrm.predict(X test)
          C:\Users\hp\anaconda3\lib\site-packages\sklearn\utils\validation.py:993: DataConversionWarning: A column-vector
          y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using rav
          el().
          y = column_or_1d(y, warn=True)
In [31]: from sklearn.metrics import r2_score
          z3=r2_score(Y_test,Y3_pred)*100
          77.41640879945099
          Table
In [32]: pd.DataFrame(([mlr,dtr,rfr,svrm],[z,z1,z2,z3]),index=('Model','r2 score'))
Out[32]:
            Model LinearRegression() DecisionTreeRegressor() (DecisionTreeRegressor(max_features='auto', ra... SVR(kernel='linear')
                        79.372703
                                            66.575092
                                                                                  80.299359
                                                                                                  77.416409
          r2_score
```

Visualization

```
In [33]: import matplotlib.pyplot as plt
import seaborn as sns

In [34]: target='Recurred'
    columns=df.columns.tolist()

In [35]: plt.figure(figsize=(16,6))
    plt.subplot(2,1,1)
    sns.boxplot(df[columns[0]],orient='h', boxprops=dict(facecolor='#416DFE'))
    plt.subplot(2,1,2)
    sns.histplot(df[columns[0]],bins=30,color='b')
```

C:\Users\hp\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[35]: <AxesSubplot:xlabel='Age', ylabel='Count'>


```
In [36]: print("\033[1m"+"Skewness"+"\033[0m",df[columns[0]].skew())
```

Skewness 0.6782692112593017

Skewness 0.7197318617338616

Inference:

The age distribution in the dataset is positively skewed to the right, indicating that most patients fall within the younger age range. There is a prominent peak between the ages of 30 to 40, suggesting a concentration of patients in this age group.

Gender

```
In [37]: df[columns[1]]
Out[37]:
         1
                 F
                F
         2
                F
         3
                F
         4
         378
                М
         379
                Μ
         380
                Μ
         381
                Μ
         382
         Name: Gender, Length: 364, dtype: object
In [38]: age=df[columns[1]].value_counts()
         plt.figure(figsize=(10,4),dpi=200)
In [39]:
         plt.subplot(1,2,1)
          custom labels = ('Female', 'Male')
          sns.barplot(x=age.index,y=age.values)
          plt.xticks([0,1],custom_labels, rotation=0, ha='right')
         plt.subplot(1,2,2)
         plt.pie(labels=custom\_labels, x=age.values, autopct='\$.2f\%', startangle=30, explode=(0.1,.1))
         plt.show()
```


Inference:

Aproximately 81% of the individuals are females with frequency of 312, indicating a predominant representation of female patients in the study on well-differentiated thyroid cancer recurrence. This gender distribution provides valuable context for further analysis and may prompt considerations regarding the impact of gender on the prediction of cancer recurrence.

Smoking

```
Smoking = df[columns[2]].value_counts()
In [40]:
         plt.figure(figsize=(10,4),dpi=200)
         plt.subplot(1,2,1)
         sns.barplot(x=Smoking.index,y=Smoking.values)
         plt.subplot(1,2,2)
         \verb|plt.pie| (labels=Smoking.index,x=Smoking.values,autopct='\$.2f\%',startangle=30,explode=(0.1,.1))|
         plt.show()
          300
          250
          200
                                                                                                                         Yes
                                                                                                            13.46%
                                                                                    86.54%
                                                                            No
          150
          100
           50
             0
```

Inference:

No

The dataset indicates that around 87% of individuals are non-smokers, with 49 cases identified as smokers.

Yes

```
def visualize(data,figsize=(10,4),ticks_rotation=0,lab_disatance=1.1,pct_dist=0.6,textprops=None):
    data = data.value_counts()
    colors = ('#ffa600','#ff6361','#d45087','#a05195','#f95d6a','#ff7c43')
    fig = plt.figure(figsize=figsize,dpi=200)
    plt.subplot(1,2,1)
    plt.title('')
    sns.barplot(x=data.index,y=data.values)
    plt.xticks(rotation=ticks_rotation)
    plt.subplot(1,2,2)
    plt.pie(labels=data.index,x=data.values,autopct='%.2f%%',startangle=30)
    plt.show()
```

Results of Physical Examination

visualize(df[columns[6]],ticks_rotation=40,figsize=(14,5))
visualize(df[columns[6]],(17,5),ticks_rotation=10,textprops=dict(size=10),pct_dist=1.2,lab_disatance=1.37)

The distribution of Physical Examination findings indicates diverse statuses among patients:

Multinodular goiter: 140 cases

Single nodular goiter-right: 140 cases

Single nodular goiter-left: 89 cases

Normal: 7 cases

Diffuse goiter: 7 cases

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js