

#### **MA2011 MECHATRONICS SYSTEMS INTERFACING**

Tutorial 2

Prof. Cai Yiyu

College of Engineering
School of Mechanical and Aerospace Engineering

#### **Q2 OF T1**

## What is the Fourier series and fundamental frequencies (in Hertz) and amplitudes of the following waveforms?

a) 
$$f(t) = 5*\sin(2\pi t)$$
.

$$b) f(t) = 5*\cos(2\pi t)$$

c) 
$$f(t) = -5*\sin(2\pi t)$$

#### **FOURIER SERIES REPRESENTATION OF SIGNALS**

$$F(t) = C_0 + \sum_{n=1}^{\infty} A_n \cos(n\omega_0 t) + \sum_{n=1}^{\infty} B_n \sin(n\omega_0 t)$$
 (2)

where  $C_0$  is the DC component of the signal,  $A_n$  and  $B_n$  are coefficients. They are given by

$$A_{n} = \frac{2}{T} \int_{0}^{T} f(t) \cos(n\omega_{0}t) dt, B_{n} = \frac{2}{T} \int_{0}^{T} f(t) \sin(n\omega_{0}t) dt$$

$$C_{0} = \frac{1}{T} \int_{0}^{T} f(t) dt = \frac{A_{0}}{2}.$$
(3)

Note:  $C_0$  is the average value of the waveform over its period.

#### **UNIQUE REPRESENTATION**

$$F(t) = C_0 + \sum_{n=1}^{\infty} A_n \cos(n\omega_0 t) + \sum_{n=1}^{\infty} B_n \sin(n\omega_0 t)$$

$$5*\sin(2\pi t) = \mathbf{0} + 5*\sin(2\pi t) + \sum_{n=2}^{\infty} \mathbf{0} * \sin(2n\pi t)$$

$$5*\sin(2\pi t) = \mathbf{0} + 0*\sin(\pi t) + 5*\sin(2\pi t) + \sum_{n=3}^{\infty} \mathbf{0} * \sin(n\pi t)$$

#### **UNIQUE FOURIER REPRESENTATION**

$$F(t) = C_0 + \sum_{n=1}^{\infty} A_n \cos(n\omega_0 t) + \sum_{n=1}^{\infty} B_n \sin(n\omega_0 t)$$

$$F(t) = C_0 + \sum_{n=1}^{\infty} (A_n \cos(n \underline{w_0} t) + B_n \sin(n \underline{w_0} t))$$
  
=  $C'_0 + \sum_{n=1}^{\infty} (A'_n \cos(n \underline{w_0} t) + B'_n \sin(n \underline{w_0} t))$ 

#### **Uniqueness means**

$$\boldsymbol{C}'_0 = \boldsymbol{C}_0$$

$$A'_n = A_n$$

$$B'_n = B_n$$

For all n

Uniqueness only applicable for Standard Fourier Representation, no phase angles involved

#### SYMMETRIC PERIODIC FUNCTION

#### **Properties of symmetric functions**

f(t) has period of T



|                      |      |      | 1)    | 2)        |             | 3)         |               | 4)                                                            | 5)                                                            |
|----------------------|------|------|-------|-----------|-------------|------------|---------------|---------------------------------------------------------------|---------------------------------------------------------------|
|                      | f(t) | g(t) | -f(t) | f(t)+g(t) | f(t) - g(t) | f(t)* g(t) | f(t)/<br>g(t) | $\int_{-T/2}^{T/2} f(t) cos\left(\frac{2\pi nt}{T}\right) dt$ | $\int_{-T/2}^{T/2} f(t) sin\left(\frac{2\pi nt}{T}\right) dt$ |
| Function<br>symmetry | even | even |       |           |             |            |               |                                                               |                                                               |
|                      | odd  | odd  |       |           |             |            |               |                                                               |                                                               |
|                      | even | odd  |       |           |             |            |               |                                                               |                                                               |
|                      | odd  | even |       |           |             |            |               |                                                               |                                                               |

Even f(-t)=f(t)

1) 
$$f(t)$$
 even,  
 $h(t) \equiv -f(t)$ :  $h(-t) = -f(-t) = -f(t) = h(t)$   $\rightarrow$   $-f(t)$  even

2) 
$$f(t) & g(t) even$$
:  
 $h(t) \equiv f(t) + g(t)$ :  $h(-t)$ 

$$h(t) \equiv f(t) + g(t)$$
:  $h(-t) \equiv f(-t) + g(-t) = f(t) + g(t) = h(t)$   $\Rightarrow$   $f(t) + g(t)$  even  $h(t) \equiv f(t) - g(t)$ :  $h(-t) \equiv f(-t) - g(-t) = f(t) - g(t) = h(t)$   $\Rightarrow$   $f(t) - g(t)$  even

Odd 
$$f(-t)=-f(t)$$

$$3) f(t) & g(t) even$$
:

$$h(t) \equiv f(t) * g(t) : h(-t) \equiv f(-t) * g(-t) = f(t) * g(t) = h(t) \implies f(t) * g(t) even$$
  
 $h(t) \equiv f(t)/g(t) : h(-t) \equiv f(-t)/g(-t) = f(t)/g(t) = h(t) \implies f(t)/g(t) even$ 

4) 
$$f(t)$$
 even:  $f(-t) = f(t)$   
 $g(t) \equiv \cos\left(\frac{2\pi nt}{T}\right)$  even:  $\cos\left(\frac{2\pi n(-t)}{T}\right) = \cos\left(\frac{2\pi nt}{T}\right)$   
 $h(t) \equiv f(t) * g(t)$ :  $\Rightarrow$  even

So 
$$\int_{-T/2}^{T/2} h(t)dt = 2 * \int_{0}^{T/2} h(t)dt$$

Odd 
$$f(-t)=-f(t)$$

$$f(t) \text{ even: } f(-t) = f(t)$$

$$g(t) \equiv \sin\left(\frac{2\pi nt}{T}\right) \text{ odd: } \sin\left(\frac{2\pi n(-t)}{T}\right) = -\sin\left(\frac{2\pi nt}{T}\right)$$

$$h(t) \equiv f(t) * g(t): \implies \text{odd}$$

so 
$$\int_{-T/2}^{T/2} h(t) dt = 0$$

|  | ?                 | f(t) | g(t) | -f(t) | f(t)+<br>g(t) | f(t) -<br>g(t) | f(t)*<br>g(t) | f(t)/<br>g(t) | $\int_{-T/2}^{T/2} f(t) sin\left(\frac{2\pi nt}{T}\right) dt$ | $\int_{-T/2}^{T/2} f(t) cos\left(\frac{2\pi nt}{T}\right) dt$ |
|--|-------------------|------|------|-------|---------------|----------------|---------------|---------------|---------------------------------------------------------------|---------------------------------------------------------------|
|  | Function symmetry | even | even | even  | even          | even           | even          | even          | 0                                                             | $2\int_0^{T/2} f(t) cos\left(\frac{2\pi nt}{T}\right) dt$     |
|  |                   | odd  | odd  | odd   | odd           | odd            | even          | even          | $2\int_0^{T/2} f(t) \sin\left(\frac{2\pi nt}{T}\right) dt$    | 0                                                             |
|  |                   | even | odd  | even  | ?             | ?              | odd           | odd           | 0                                                             | $2\int_0^{T/2} f(t) \cos\left(\frac{2\pi nt}{T}\right) dt$    |
|  |                   | odd  | even | odd   | ?             | ?              | odd           | odd           | $2\int_0^{T/2} f(t) \sin\left(\frac{2\pi nt}{T}\right) dt$    | 0                                                             |

#### Q1

Odd 
$$f(-t)=-f(t)$$

$$f(-t) = f(t)$$
 even  
 $g(-t) = -g(t)$  odd  
 $h(t) \equiv f(t) + g(t)$ : even or odd?  $\rightarrow$  Not sure!

# Proof by contradiction! Assume: h(t) even result h(-t) = h(t); f(-t) + g(-t) = (f(t) + g(t));

$$f(t)-g(t) = f(t)+g(t)$$

$$2*g(t)=0 \implies only \ if \ g(t)=0$$

Assume: 
$$h(t)$$
 odd result  
 $h(-t) = -h(t)$ ;  
 $f(-t) + g(-t) = -(f(t) + g(t))$ ;  
 $f(t) - g(t) = -f(t) - g(t)$   
 $2*f(t) = 0 \implies only if f(t) = 0$ 

f(t) is a function defined as follows.



- (a) Is it a periodic function? If yes, what is the period, and write the function of the waveform defined at [0, T]
- (b) Is it a symmetric function?
- (c) Can the waveform be represented by Fourier Series? If yes, what are the DC  $C_0$ ,  $A_n$  and  $B_n$  of the waveform and the Fourier Series?
- (d) What are the peak amplitude, and peak-to-peak amplitude?
- (e) If the peak amplitude is changed to A, what will be the function of f(t) and its Fourier Series Representation?

(a) It is a periodic function with Period=T: f(t+T)=f(t)

#### And the function can be defined as



(b) This is an odd periodic function: f(-t) = -f(t)

As a periodic odd function, it can be represented by Fourier Series.

For the odd periodic function, the DC  $C_0=0$  and  $A_n=0$ 



(c) Can the waveform be represented by Fourier Series? If yes, what are the DC  $C_0$ ,  $A_n$  and  $B_n$  of the waveform and the Fourier Series?

DC  $\frac{C_0=0}{A_n}$  and  $\frac{A_n=0}{A_n}$ 

$$B_n = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \sin\left(\frac{2\pi nt}{T}\right) dt$$

Since f(t) and  $sin\left(\frac{2\pi nt}{T}\right)$  are two odd function, we have  $\frac{f(t)}{T}$  is an even function

$$B_n = \frac{4}{T} \int_0^{T/2} f(t) \sin\left(\frac{2\pi nt}{T}\right) dt$$

(c) Can the waveform be represented by Fourier Series? If yes, what are the DC  $C_0$ ,  $A_n$  and  $B_n$  of the waveform and the Fourier Series?

$$B_{n} = = \frac{4}{T} \int_{0}^{T/2} f(t) \sin\left(\frac{2\pi nt}{T}\right) dt$$

$$= \frac{4}{T} \int_{0}^{T/4} \frac{4t}{T} \sin\left(\frac{2\pi nt}{T}\right) dt + \frac{4}{T} \int_{T/4}^{T/2} \frac{4}{T} (\frac{T}{2} - t) \sin\left(\frac{2\pi nt}{T}\right) dt$$

$$= \frac{4}{T} \int_{0}^{T/4} \frac{4t}{T} \sin\left(\frac{2\pi nt}{T}\right) dt + \frac{4}{T} \int_{T/4}^{T/2} \frac{4}{T} (\frac{T}{2} - t) \sin\left(\frac{2\pi nt}{T}\right) dt$$



(c) Can the waveform be represented by Fourier Series? If yes, what are the DC  $C_0$ ,  $A_n$  and  $B_n$  of the waveform and the Fourier Series?



$$\mathbf{B_{n}} = X_{n} + Y_{n} = \frac{4}{T} \int_{0}^{T/4} \frac{4t}{T} sin\left(\frac{2\pi nt}{T}\right) dt + \frac{4}{T} \int_{T/4}^{T/2} \frac{4}{T} (\frac{T}{2} - t) sin\left(\frac{2\pi nt}{T}\right) dt$$

$$X_{n} = \frac{4}{T} \int_{0}^{T/4} \frac{4t}{T} \sin\left(\frac{2\pi nt}{T}\right) dt = \left(\frac{4}{T}\right)^{2} \int_{0}^{T/4} t \sin\left(\frac{2\pi nt}{T}\right) dt = -\left(\frac{4}{T}\right)^{2} \frac{T}{2\pi n} \int_{0}^{T/4} t \, d\cos\left(\frac{2\pi nt}{T}\right)$$

$$Y_{n} = \frac{4}{T} \int_{T/4}^{T/2} \frac{4}{T} \left(\frac{T}{2} - t\right) sin\left(\frac{2\pi nt}{T}\right) dt$$

$$= \left(\frac{4}{T}\right)^{2} \int_{T/4}^{T/2} \left(\frac{T}{2} - t\right) sin\left(\frac{2\pi nt}{T}\right) dt$$

$$= -\left(\frac{4}{T}\right)^{2} \frac{T}{2\pi n} \int_{T/4}^{T/2} \left(\frac{T}{2} - t\right) dcos\left(\frac{2\pi nt}{T}\right)$$

Because 
$$\int_a^b f(t)dg(t) = f(t)g(t) \begin{vmatrix} b \\ a \end{vmatrix} - \int_a^b g(t)df(t)$$

$$\begin{split} & \frac{4}{T} \int_{0}^{T/4} \frac{4t}{T} \sin \left( \frac{2\pi nt}{T} \right) dt = \left( \frac{4}{T} \right)^{2} \int_{0}^{T/4} t \sin \left( \frac{2\pi nt}{T} \right) dt \\ & = -\left( \frac{4}{T} \right)^{2} \frac{T}{2\pi n} \int_{0}^{T/4} t \, d\cos \left( \frac{2\pi nt}{T} \right) \\ & = -\frac{8}{\pi nT} \left( t * \cos \left( \frac{2\pi nt}{T} \right) \right) \left| \frac{T/4}{0} + \frac{8}{\pi nT} \int_{0}^{T/4} \cos \left( \frac{2\pi nt}{T} \right) dt \\ & = -\frac{8}{\pi nT} \left( T/4 * \cos \left( \frac{2\pi nT/4}{T} \right) \right) + \frac{8}{\pi nT} * \frac{T}{2\pi n} \int_{0}^{T/4} d\sin \left( \frac{2\pi nt}{T} \right) \\ & = -\frac{2}{\pi n} \left( \cos \left( \frac{\pi n}{2} \right) \right) + \frac{4}{(\pi n)^{2}} * \left( \sin \left( \frac{2\pi nt}{T} \right) \right) \left| \frac{T/4}{0} \right| \\ & = -\frac{2}{\pi n} \cos \left( \frac{\pi n}{2} \right) + \frac{4}{(\pi n)^{2}} * \sin \left( \frac{\pi n}{2} \right) \end{split}$$

Because 
$$\int_a^b f(t)dg(t) = f(t)g(t) \begin{vmatrix} b \\ a \end{vmatrix} - \int_a^b g(t)df(t)$$

$$\begin{split} Y_{n} &= \frac{4}{T} \int_{T/4}^{T/2} \frac{4}{T} (\frac{T}{2} - t) \sin \left( \frac{2\pi nt}{T} \right) dt \\ &= \left( \frac{4}{T} \right)^{2} \int_{T/4}^{T/2} (\frac{T}{2} - t) \sin \left( \frac{2\pi nt}{T} \right) dt \\ &= -\left( \frac{4}{T} \right)^{2} \frac{T}{2\pi n} \int_{T/4}^{T/2} (\frac{T}{2} - t) d\cos \left( \frac{2\pi nt}{T} \right) \\ &= -\frac{8}{\pi nT} \left( (\frac{T}{2} - t) * \cos \left( \frac{2\pi nt}{T} \right) \right) \left| \frac{T/2}{T/4} + \frac{8}{\pi nT} \int_{T/4}^{T/2} \cos \left( \frac{2\pi nt}{T} \right) dt \\ &= -\frac{8}{\pi nT} \left( 0 - T/4 * \cos \left( \frac{2\pi nT/4}{T} \right) \right) - \frac{8}{\pi nT} * \frac{T}{2\pi n} \int_{T/4}^{T/2} d\sin \left( \frac{2\pi nt}{T} \right) \\ &= \frac{2}{\pi n} \left( \cos \left( \frac{\pi n}{2} \right) \right) - \frac{4}{(\pi n)^{2}} * \left( \sin \left( \frac{2\pi nt}{T} \right) \right) \left| \frac{T/2}{T/4} \right| \\ &= \frac{2}{\pi n} \cos \left( \frac{\pi n}{2} \right) - \frac{4}{(\pi n)^{2}} * \left( 0 - \sin \left( \frac{2\pi nT/4}{T} \right) \right) \\ &= \frac{2}{\pi n} \cos \left( \frac{\pi n}{2} \right) + \frac{4}{(\pi n)^{2}} * \sin \left( \frac{\pi n}{2} \right) \end{split}$$

$$\begin{split} B_n &= X_n + Y_n \\ &= -\frac{2}{\pi n} \cos\left(\frac{\pi n}{2}\right) + \frac{4}{(\pi n)^2} * \sin\left(\frac{\pi n}{2}\right) + \frac{2}{\pi n} \cos\left(\frac{\pi n}{2}\right) + \frac{4}{(\pi n)^2} * \sin\left(\frac{\pi n}{2}\right) \\ &= \frac{8}{(\pi n)^2} * \sin\left(\frac{\pi n}{2}\right) \end{split}$$

$$sin\left(\frac{\pi n}{2}\right) = \begin{cases} 0, & n = 2k \\ 1, & n = 4k+1 \\ -1, & n = 4k-1 \end{cases}$$

Therefore, the Fourier series is

$$F(t) = \frac{8}{\pi^2} \left[ \sin\left(\frac{2\pi}{T}t\right) - \frac{1}{3^2} \sin\left(\frac{6\pi}{T}t\right) + \frac{1}{5^2} \sin\left(\frac{10\pi}{T}t\right) - \cdots \right]$$

(d) The peak amplitude=1
and peak-to-peak amplitude =2



(e) Find the Fourier series of the following periodic function.



It is a periodic function with Period=T:

And the function can be defined as

$$f(t) = \begin{cases} A\frac{4}{T}t, & 0 \le t \le \frac{T}{4} \\ A\frac{4}{T}(-t + \frac{T}{2}), & \frac{T}{4} \le t \le \frac{3T}{4} \\ A\frac{4}{T}(t - T), & \frac{3T}{4} \le t \le T \end{cases}$$



This is an odd periodic function:

$$f(-t) = -f(t)$$

As a periodic old function, it can be represented by Fourier Series.

For the odd periodic function, the DC  $C_0=0$  and  $A_n=0$ 

$$B_{n} = \frac{2}{T} \int_{-T/2}^{T/2} f(t) sin\left(\frac{2\pi nt}{T}\right) dt$$

$$= \frac{4}{T} \int_{0}^{T/2} f(t) sin\left(\frac{2\pi nt}{T}\right) dt$$

$$= \frac{4}{T} \int_{0}^{T/4} A \frac{4t}{T} sin\left(\frac{2\pi n}{T}\right) dt + \frac{4}{T} \int_{T/4}^{T/2} A \frac{4}{T} \left(\frac{T}{2} - t\right) sin\left(\frac{2\pi n}{T}\right) dt$$

$$= \frac{4}{T} * \frac{4}{T} * A \left[ 2 \left(\frac{T}{2\pi n}\right)^{2} sin\left(\frac{\pi n}{2}\right) \right]$$

$$= 8A \left(\frac{1}{\pi n}\right)^{2} sin\left(\frac{\pi n}{2}\right)$$

$$B_n = 0$$
 when *n* is even.



Therefore, the Fourier series is

$$F(t) = \frac{8A}{\pi^2} \left[ \sin\left(\frac{2\pi}{T}t\right) - \frac{1}{3^2} \sin\left(\frac{6\pi}{T}t\right) + \frac{1}{5^2} \sin\left(\frac{10\pi}{T}t\right) - \cdots \right]$$

#### Given wave form f(t)

$$F(t) = C_0 + \sum_{n=1}^{\infty} A_n \cos(n\omega_0 t) + \sum_{n=1}^{\infty} B_n \sin(n\omega_0 t)$$
 (2)

where  $C_0$  is the DC component of the signal,  $A_n$  and  $B_n$  are coefficients. They are given by

$$A_{n} = \frac{2}{T} \int_{0}^{T} f(t) \cos(n\omega_{0}t) dt, B_{n} = \frac{2}{T} \int_{0}^{T} f(t) \sin(n\omega_{0}t) dt$$

$$C_{0} = \frac{1}{T} \int_{0}^{T} f(t) dt = \frac{A_{0}}{2}.$$
(3)

Note:  $C_0$  is the average value of the waveform\_over\_its\_period.

Now with new wave form K•f(t)

$$F'(t) = KF(t)$$

A signal y(t) is shown below for 2 complete cycles. It has a period of 0.02 s.

 $y(t) = |A\sin(100\pi t)|$ , where A is 10 volt



Figure 1: The signal y(t)

Find the Fourier Series for y(t) and sketch the amplitude spectrum from DC to the 12<sup>th</sup> harmonics.

Ans: 
$$y(t) = \frac{20}{\pi} + \sum_{n=2,4,...}^{...} A_n \cos(n\omega_o t), A_n = \frac{10(2)}{\pi(n+1)} - \frac{10(2)}{\pi(n-1)},$$

A signal is defined in the time interval [0, 0.02] of unit second.



$$y(t) = |A\sin(100\pi t)|$$

(a) Create a periodic function f(t) of even symmetry based on the given signal y(t) with a period T=0.02 seconds.

#### **CONVERSION FROM NON-PERIODIC TO PERIODIC**

#### **Expansion Into Even-function Symmetry**

A second pattern can be created by mirroring the original one against an axis  $t = \tau$ .

An even-function symmetric periodic waveform can be generated by offsetting the two patterns merged along the time axis by a distance nT ( $T=2\tau$ ),  $n=\pm 1$ ,  $\pm 2$ ,  $\pm 3$ , ...



(a) Create a periodic function f(t) of even symmetry based on the given signal y(t) with a period T=0.02 seconds.





(b) Find the Fourier Series for f(t) and sketch the amplitude spectrum from DC to the  $12^{th}$  harmonics.



The period T = 0.02 s. The fundamental frequency is 50 Hz.

$$f(t) = \begin{cases} A\sin(100\pi t), 0 \le t \le \frac{T}{2} \\ -A\sin(100\pi t), \frac{T}{2} \le t \le T \end{cases}$$

$$f(t) = \begin{cases} A\sin(100\pi t), 0 \le t \le \frac{T}{2} \\ -A\sin(100\pi t), -\frac{T}{2} \le t \le 0 \end{cases}$$

the function is an even function, there are only the dc and the cosine terms. The standard formulas are:

$$A_{\rm o} = \frac{1}{T} \int_{-T/2}^{T/2} y(t) dt$$
 and  $A_{\rm n} = \frac{2}{T} \int_{-T/2}^{T/2} y(t) \cos(100n\pi t) dt$ 

The terms can be obtained from 0 to T/2 and then multiplied by 2:

$$A_{0} = \frac{2}{T} \int_{0}^{T/2} 10\sin(100\pi t) dt = \frac{1000}{100\pi} \cos(100\pi t) \Big|_{0}^{100} \Big|$$

$$A_{0} = \frac{2}{T} \int_{0}^{T/2} y(t) dt = \frac{2}{100\pi T} \int_{0}^{T/2} A\sin(100\pi t) dt$$

$$= \frac{-2A}{100\pi T} \cos(100\pi t) \Big|_{0}^{T} \frac{1}{2} = \frac{-2A}{100\pi T} \left(\cos\left(\frac{100\pi T}{2}\right) - \cos(100\pi * 0)\right)$$

$$= \frac{2A}{100\pi T} (1 - \cos\left(\frac{100\pi T}{2}\right)) = \frac{2*10}{100*\pi * 0.02} \left(1 - \cos\left(\frac{100\pi * 0.02}{2}\right)\right) = \frac{10}{\pi} * (1 - \cos(\pi)) = \frac{20}{\pi}$$

$$A_{\mathbf{n}} = 2 \times \frac{2}{T} \int_{0}^{T/2} 10 \sin(100\pi t) \cos(100n\pi t) dt$$

Use the identity:

$$2\sin(X)\cos(Y) = \sin(X+Y) + \sin(X-Y)$$
:

$$A_{\mathbf{n}} = 1000 \int_{0}^{T/2} 2\sin(100\pi t)\cos(100n\pi t)dt$$

$$= 1000 \int_{0}^{T/2} \sin(100\pi[1+n]t) + \sin(100\pi[1-n]t)dt$$

$$=-1000\frac{\cos(100\pi[n+1]t)}{100\pi(n+1)}\bigg|_{0}^{1/100} + 1000\frac{\cos(100\pi[n-1]t)}{100\pi(n-1)}\bigg|_{0}^{1/100}$$

$$= -\frac{10}{(n+1)\pi} \left[\cos(n+1)\pi - 1\right] + \frac{10}{(n-1)\pi} \left[\cos(n-1)\pi - 1\right]$$

For 
$$n = 1$$
, or odd:  $\cos(2\pi) = \cos(2k\pi) = 1$ ; for  $k = 2, 3, 4 \dots A_n = 0$ 

For 
$$n = 2$$
, or even:  $\cos(\pi) = \cos((2k+1)\pi) = -1$ , for  $k = 1, 2, 3, 4$   
$$A_n = \frac{10(2)}{\pi(n+1)} - \frac{10(2)}{\pi(n-1)}$$

$$y(t) = \frac{20}{\pi} + \sum_{n=2,4,...}^{...} A_n \cos(n\omega_0 t)$$
 where  $A_n = \frac{10(2)}{\pi(n+1)} - \frac{10(2)}{\pi(n-1)}$ 

The amplitude spectrum is as shown below:



#### Q3

A signal  $y(t) = |A\sin(100\pi t)|$  below is defined in the time interval [0, 0.01] of unit second.



(c) If a periodic function g(t) of odd symmetry is created also based on the given signal y(t) with a period T=0.02 seconds. What will be g(t) and its Fourier Series

#### **CONVERSION FROM NON-PERIODIC TO PERIODIC**

#### **Expansion Into Odd-function Symmetry**

A second pattern can be created by mirroring the original one against the time axis and then the axis  $t = \tau$ .

An odd-function periodic waveform can be generated by offsetting the two patterns merged along the time axis by a distance nT ( $T=2\tau$ ),  $n=\pm 1, \pm 2, \pm 3, ...$ 



A signal  $y(t) = |A\sin(100\pi t)|$  below is defined in the time interval [0, 0.01] of unit second.



(c) If a periodic function g(t) of odd symmetry is created also based on the given signal y(t) with a period T=0.02 seconds. What will be g(t) and its Fourier Series

$$g(t) = A\sin(100\pi t), 0 \le t \le T, or \ g(t) = A\sin(100\pi t), -T/2 \le t \le T/2,$$

 $G(t) = A\sin(100\pi t)$ : Uniqueness of the Fourier Representation

#### **ANSWER TO Q3(C)**



4. Group Discussion on Fourier Descriptor and their applications.

#### Reference:

E. Persoon, K. Fu (1977), Shape Discrimination Using Fourier Descriptors, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1 March 1977, DOI: 10.1109/TSMC.1977.4309681

Vinay Saxena (2012), (PDF) Fourier descriptors under rotation, scaling, translation and various distortion for hand drawn planar curves (researchgate.net), Journal of Experimental Sciences 2012, 3(1): 05-07.

#### **FOURIER SERIES APPLICATION: FOURIER DESCRIPTOR**





- 1. Fourier Theory is very important
- 2. The calculation of Fourier representation is not easy
- 3. There are several techniques to simplify the calculation
  - Uniqueness
  - Symmetry
  - Step-by-Step

(21 March 1768 – 16 May 1830)