- Let V be a vector space over \mathbb{F} , and $T \in \mathcal{L}(V)$.
- Let W, Z be subspaces of V so that $V = W \oplus Z$.
- **Definition.** A function $T:V\to V$ is called the projection from V onto W along Z if,
- for x = w + z with $w \in W$ and $z \in Z$, we have T(x) = w.
- 5 Claim. For $\exists (W, Z \subseteq V) : V = W \oplus Z$ there exists $T \in \mathcal{L}(V, V)$ so that T is the
- projection from V onto W along $Z \Leftrightarrow T \circ T = T$
- First, we prove the following lemma.

```
Lemma (Direct Sum Subspace Disjunction | DSSD ) V = W \oplus Z \Rightarrow U \cap W = \{0\}
```

- 9 Proof of DSSD. Suppose that $V = W \oplus Z$.
- Consider some $v \in W \cap Z$. Note that by definition of a subspace, $0 \in W \cap Z$, and hence $W \cap Z$ is not empty. Therefore, since $v \in W$, then $\exists (-v) \in W : v + (-v) = 0$ by
- the existence of the additive inverse in a vector space. Similarly, such an element must
- exist in Z. By the uniqueness of the additive inverse, $(-v) \in W \cap Z$.
- Thus, 0 = v + (-v), where $v \in U, (-v) \in Z$. By the uniqueness of the representation
- of 0 as the sum of a vector in W and a vector in Z, since 0 = 0 + 0 by the existence of
- an additive identity, then v = 0. Thus, $W \cap Z = \{0\}$.
- 17 Proof of the Claim. (\Rightarrow) : Suppose first that such W, Z, T exist.
- 18 By DSSD, $W \cap Z = \{0\}.$
- Since T is a linear map, then T(0) = 0. Therefore, $T \circ T(0) = 0$.
- Take $v \in V$ so that $v \neq 0$. Therefore, from line 1,

$$\exists (w \in W, z \in Z) : v = w + z.$$

- By definition of T, T(v) = w.
- Since w = w + 0 and T(0) = 0, then $T \circ T(v) = T(w + 0) = w = T(v)$.
- Therefore, $T \circ T = T$.
- (\Leftarrow): Suppose now that $T \circ T = T$.
- Definition. A space partition P of V is a set of subspaces V_i , $i \in I$, where I is some index set, such that:

 $\bigcup_{i \in I} V_i = V$

2. $\forall (i, j \in I, i \neq j) : A_i \cap A_j = \{0\}$

- Let \overline{V} be the set of all space partitions of V.
- We claim that \overline{V} is not empty.
- Consider a basis of V, $\beta(V)$. Since $\beta(V)$ is linearly independent, any subset of $\beta(V)$ is also linearly independent. Take any subset $\sigma \subset \beta(V)$. Therefore, $\operatorname{span}(\sigma) \cup \operatorname{span}(\beta(V) \setminus \sigma)$ is a space partition, since $\sigma \cup (\beta(V) \setminus \sigma) = \beta(V)$ and $\sigma \cap (\beta(V) \setminus \sigma) = \emptyset$, while $\operatorname{span}(\sigma)$ and $\operatorname{span}(\beta(V) \setminus \sigma)$ are subspaces of V. Therefore, by definition of a space partition
- and DSSD, $V = \operatorname{span}(\sigma) \oplus \operatorname{span}(\beta(V) \setminus \sigma)$, and thus there exist subspaces W, Z so that
- $V=W\oplus Z.$
- Suppose then that some W, Z are given satisfying $V = W \oplus Z$. Therefore,

$$\forall (v \in V) \exists (w \in W, z \in Z) : v = w + z.$$

- Suppose T is defined with the following further set of restrictions R:
 - 1.

$$\forall (z \in Z) : T(z) = 0$$

2.

46

$$\forall (w \in W) : T(w) = w$$

- Note that the definition above is equivalent to saying that T is a zero linear map for all z in Z and an identity map for all w in W. We claim that the condition $T \circ T = T$ and $T \in \mathcal{L}(V, V)$ also holds.
- Since $V=W\oplus Z$, then $T\in \mathscr{L}(V,V)$, because for all such w,z T(w+0z)=T(w)=w and T(0w+z)=T(z)=0.
- Consider now T(v), v = w + z for some $w \in W, z \in Z$.
- Since T is a linear map, T(v) = T(w+z) = T(w) + T(z).
- Suppose that the restrictions R hold.
- Therefore, since T(w) = w and T(z) = 0, T(v) = w, and thus

$$T \circ T(v) = T(w) = w = T(v).$$

Since $T \circ T = T$ by assumption, suppose that the restrictions R hold. Since

$$\forall (v \in V) \exists (w \in W) : T(v) = w,$$

then T is a projection of V onto W along Z, and we are done.