Lecture 2 - ARM Controllers architecture

Topics

- ARM series introduction
- ARM features

ARM company history

- Architectural ideas that you see in ARM controllers really came in the 1980s
- Acorn had a computer called BBC which was based on an 8 bit microprocessor
 - MOS Technology 6502 CPU

ARM company history

- For next iteration of BBC micro, Acorn tried to replace the 6502 with a more powerful controller based on smaller instruction set
 - Led to the first commercial RISC processor
 - ARM1 circa 1985
- Later version of BBC micro used the RISC based microprocessor

ARM company history

- ARM company was founded in 1990
- Stands for
 - Advanced RISC Architecture
 - Initially own by Acorn and Apple

Why ARM architecture?

- Why are we using ARM for teaching purposes?
- ARM dominates a lot of embedded system applications
 - Most popular category of microcontrollers

Examples of ARM processors in products

- Mainly used in battery operated devices
- · ARM7 Apple iPod
- · ARM9 Sony Erricson, BenQ TVs
- · ARM11 Original iPhone
- Generally, ARM processors are used when you need reasonably powerful computational capabilities

ARM Cortex products

Features of ARM processors

- RISC based architecture
- · Despite this, they are quite powerful
 - Advanced architecture ideas
 - Not like your Arduino devices!
- Not just one product, but a family
 - There is a common instruction set for backward compatibility
 - Anything in ARM7, can be run in ARM9 for example

Design Philosophy of ARM processors

- Small processor to lower power consumption
 - Needed for Embedde systems
- High code density
 - Helps limit memory and physical size
- · Interfacing with low-cost memory
- · Reduced size for processor
 - Allows more room for ASIC

RISC Architecture Features

- Instructions
 - Reduced set
 - Single cycle
 - Fixed length
- Pipelined
 - Decode in one stage
 - No need for micro-programming

RISC Architecture Features

- Registers
 - Large number of general purpose registers
- Load/Store Architecture
 - Only LOAD and STORE instructions can access memory and registers
 - All other instructions can only work with registers

ARM vs RISC Architecture - Differences

- Strictly speaking, ARM processors are not RISC architectures
 - Certain instructions require variable number of cycles for execution
 - Barrel shifter
 - Thumb mode → 16 bit instruction set
 - ARM is mostly RISC