Electrical Quantity Division Principles

In this chapter, let us discuss about the following two division principles of electrical quantities.

- Current Division Principle
- Voltage Division Principle

Current Division Principle

When two or more passive elements are connected in parallel, the amount of current that flows through each element gets **divided** (shared) among themselves from the current that is entering the node.

Consider the following circuit diagram.

The above circuit diagram consists of an input current source I_S in parallel with two resistors R_1 and R_2 . The voltage across each element is V_S . The currents flowing through the resistors R_1 and R_2 are I_1 and I_2 respectively.

The KCL equation at node P will be

$$I_S = I_1 + I_2$$

• Substitute $I_1=rac{V_S}{R_1}$ and $I_2=rac{V_S}{R_2}$ in the above equation.

$$I_S = rac{V_S}{R_1} + rac{V_S}{R_2} = V_S(rac{R_2 + R_1}{R_1 R_2})$$

$$\Rightarrow V_S = I_S \left(rac{R_1 R_2}{R_1 + R_2}
ight)$$

• Substitute the value of $V_{\mathbb{S}}$ in $I_1 = rac{V_S}{R_1}$.

$$I_1 = \frac{I_S}{R_1} \left(\frac{R_1 R_2}{R_1 + R_2} \right)$$

$$A\Rightarrow I_1=I_S(rac{R_2}{R_1+R_2})$$

• Substitute the value of $V_{\mathbb{S}}$ in $\ I_2 = rac{V_S}{R_2}$.

$$I_2 = rac{I_S}{R_2} (rac{R_1 R_2}{R_1 + R_2})$$

$$r \Rightarrow I_2 = I_S(rac{R_1}{R_1+R_2})$$

From equations of I_1 and I_2 , we can generalize that the current flowing through any passive element can be found by using the following formula.

$$I_N = I_S(rac{Z_1 \|Z_2\| \ldots \|Z_{N-1}}{Z_1 + Z_2 + \ldots + Z_N})$$

This is known as **current division principle** and it is applicable, when two or more passive elements are connected in parallel and only one current enters the node.

Where,

- I_N is the current flowing through the passive element of Nth branch.
- I_S is the input current, which enters the node.
- $Z_1, Z_2, ..., Z_N$ are the impedances of 1st branch, 2nd branch, ..., Nth branch respectively.

Voltage Division Principle

When two or more passive elements are connected in series, the amount of voltage present across each element gets **divided** (shared) among themselves from the voltage that is available across that entire combination.

Consider the following circuit diagram.

The above circuit diagram consists of a voltage source, V_S in series with two resistors R_1 and R_2 . The current flowing through these elements is I_S . The voltage drops across the resistors R_1 and R_2 are V_1 and V_2 respectively.

The KVL equation around the loop will be

$$V_S = V_1 + V_2$$

• Substitute $V_1 = I_S R_1$ and $V_2 = I_S R_2$ in the above equation

$$V_S = I_S R_1 + I_S R_2 = I_S (R_1 + R_2)$$

$$I_S = rac{V_S}{R_1 + R_2}$$

• Substitute the value of I_S in $V_1 = I_S R_1$.

$$V_1 = (rac{V_S}{R_1 + R_2})R_1$$

$$\Rightarrow V_1 = V_S(rac{R_1}{R_1+R_2})$$

• Substitute the value of I_S in $V_2 = I_S R_2$.

$$V_2 = (rac{V_S}{R_1 + R_2})R_2$$

$$\Rightarrow V_2 = V_S(rac{R_2}{R_1+R_2})$$

From equations of V_1 and V_2 , we can generalize that the voltage across any passive element can be found by using the following formula.

$$V_N = V_S(rac{Z_N}{Z_1 + Z_2 + \ldots + Z_N})$$

This is known as **voltage division principle** and it is applicable, when two or more passive elements are connected in series and only one voltage available across the entire combination.

Where,

- V_N is the voltage across Nth passive element.
- V_S is the input voltage, which is present across the entire combination of series passive elements.
- $Z_1, Z_2, ..., Z_3$ are the impedances of 1st passive element, 2nd passive element, ..., Nth passive element respectively.