Date	•													
Date	٠	• •	• •	٠.	٠.	 	 	•	٠	•	٠	•	•	٠

NO.1 INSITITUTE FOR IAS/IFoS EXAMINATIONS

MATHEMATICS CLASSROOM TEST 2021-22

Under the guidance of K. Venkanna

MATHEMATICS

PDE CLASS TEST

Date: 17 Jan.-2021 Timing: 2:00 PM to 4:30 PM
Time: 03:00 Hours Maximum Marks: 250

INSTRUCTIONS

- 1. Write your details in the appropriate space provided on the right side.
- Answer must be written in the medium specified in the admission Certificate issued to you, which must be stated clearly on the right side. No marks will be given for the answers written in a medium other than that specified in the Admission Certificate.
- 3. Candidates should attempt All Question.
- 4. The number of marks carried by each question is indicated at the end of the question. Assume suitable data if considered necessary and indicate the same clearly.
- 5. Symbols/notations carry their usual meanings, unless otherwise indicated.
- 6. All answers must be written in blue/black ink only. Sketch pen, pencil or ink of any other colour should not be used.
- 7. All rough work should be done in the space provided and scored out finally.
- 8. The candidate should respect the instructions given by the invigilator.
- The question paper-cum-answer booklet must be returned in its entirety to the invigilator before leaving the examination hall. Do not remove any page from this booklet.

KEAD	INSIK	UCI	IONS C	N IHE
LEFT	SIDE	ΟF	THIS	PAGE
CARE	FULLY			

· · · · · · · · · · · · · · · · · · ·
Name
Mobile No.
Email.: (In Block Letter)
Test Centre
Medium
I have read all the instructions and shall abide by them
Signature of the Candidate
I have verified the information filled by the candidate above
Signature of the invigilator

INDEX TABLE

No.	PAGE NO.	MAX. MARKS	MARKS OBTAINED
(1)		16	
(2)		10	
(3)		18	
(4)		15	
(5)		13	
(6)		18	
(7)		16	
(8)		18	
(9)		17	
(10)		18	
(11)		18	
(12)		24	
(13)		18	
(14)		16	
(15)		15	

Total Marks

1.	(i)	Form a partial differential equation by eliminating the arbitrary function ϕ from
	(-)	$\phi(x + y + z, x^2 + y^2 - z^2) = 0$. What is the order of this partial differential equation?
	(ii)	Find the surface whose tangent planes cut off an intercept of constant length
	()	k from the axis of z. [6+10=16]

2.	Solve the following differential equation : $(D^3-4D^2\ D'+5DD'^2-2D'^3)\ z=e^{y+2x}+(y+x)^{1/2}.$	[10]

3.	(i) Find the complete integral of $(x + y)(p + q)^2 + (x - y)(p - q)^2 = 1$. (ii) Solve $(D^2 - DD' - 2D'^2 + 2D + 2D')z = e^{2x+3y} + xy + \sin(2x + y)$.	[18]

5.	Solve $(D^2 + DD' - 6D'^2)z = x^2 \sin(x + y)$.	[13]

6.	Obtain temperature distribution y(x, t) in a uniform bar of unit length whose one end is kept at 10°C and the other end is insulated. Further it is given that
	y(x,0) = 1 - x, 0 < x < 1. [18]

7.	A string is stretched and fastened to two points <i>l</i> apart, Motion is started by
' '	
	displacing the string into the form $y = m(lx - x^2)$ from which it is released at time
	t = 0. find the displacement of any point on the string at a distance x from one
	end at time t. [16]
	• •

8.	(i)	Solve $(x^2D^2-xyDD'-2y^2D'^2+xD-2yD')z=\log(y/x)-(1/2)$.
	(ii)	Find the integral surface of the partial differential equation $(x - y) p + (y - x - z)$
		q = z through the circle z = 1, $x^2 + y^2 = 1$. [18]

9.	A square plate is bounded by the lines $x=0, y=0, x=10$ and $y=10$. Its faces are insulated. The temperature along the upper horizontal edge is given by $u(x, 10) = x (10-x)$ while the other three faces are kept at 0°C. Find the steady state temperature in the plane. [17]

10.	 (i) Find a surface satisfying the equation D²z = 6x + 2 and tou along its section by the plane x + y +1 = 0. (ii) Form partial differential equation by eliminating arbitrary f from z = f(x²-y) + g(x² + y). (iii) Solve y²p - xyq = x(z - 2y). 	
	(iii) Solive y $p = xyq = x(z = 2y)$.	

11.	Find the characteristic strips of the equation $xp + yq - pq = 0$ and then find the equation of the integral surface through the curvez = $x/2$, $y = 0$. [18]

12.	(i) Find a partial differential equation by eliminating a, b, c from $x^2/a^2 + y^2/b^2 + z^2/c^2 = 1$. (ii) Reduce the equation $y^2 \left(\partial^2 z / \partial x^2 \right) - 2xy \left(\partial^2 z / \partial x \partial y \right) + x^2 \left(\partial^2 z / \partial y^2 \right) = \left(y^2 / x \right) \left(\partial z / \partial x \right) + \left(x^2 / y \right) \left(\partial z / \partial y \right) \text{tocanonical form and hence solve it.}$ $[8+16=24]$

13.	(i)	Form t	the differentia	l equation b	v eliminating	g a and b from z =	$(\mathbf{x}^2 + \mathbf{a})$	$(v^2 + b)$).
-----	-----	--------	-----------------	--------------	---------------	------------------------	-------------------------------	-------------	----

- (ii) Form a partial differential equation by eliminating the function ϕ from $lx + my + nz = \phi(x^2 + y^2 + z^2)$.
- (iii) Find the equation of the integral surface of the differential equation 2y(z-3)p + (2x-z)q = y(2x-3) which passes through the circle z = 0, $x^2 + y^2 = 2x$.

[5+5+8=18]

14.	(i) Solve $y^2(x - y)p + x^2(y - x)q = z(x^2 + y^2)$	
	(ii) Solve $(\partial^2 \mathbf{z}/\partial \mathbf{x}^2) - (\partial^2 \mathbf{z}/\partial \mathbf{y}^2) + (\partial \mathbf{z}/\partial \mathbf{x}) + 3(\partial \mathbf{z}/\partial \mathbf{y}) - 2\mathbf{z} = e^{\mathbf{x}-\mathbf{y}} - \mathbf{x}^2\mathbf{y}$	[6+10=16]
	(=1) = =1 = (= = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	[0 00 00]

15.	A string of length l is initially at rest in its equilibrium position and motion is started by giving each of its points a velocity v given by $v=kx$ if $0 \le x \le l/2$ and $v=k(l-x)$ if $l/2 \le x \le l$. Find the displacement function $y(x,t)$. [15]

INDIA'S No. 1 INSTITUTE FOR IAS/IFOS EXAMINATIONS

OUR ACHIEVEMENTS IN IFoS (FROM 2008 TO 2018)

OUR RANKERS AMONG TOP 10 IN IFoS

PRATAP SINGH AIR-01

PARTH IAISWAL AIR-05

PRATEEK JAIN AIR-03

HIMANSHII GIIPTA AIR-05

SIDHARTHA GUPTA AIR-03

ASHISH REDDY MV AIR-06

VARUN GUNTUPALLI AIR-04 IFoS-2014

ANUPAM SHUKLA **AIR-07**

TESWANG GYALTSON AIR-04 IFoS-2010

ΔΑΝCΗΔΙ SRIVASTAVA **AIR-09**

DESHAL DAN AIR-05 IFoS-2017

HARSHVARDHAN AIR-10

AIR-16 AIR-29 IFoS-2018 IFoS-2018

P.V.S. REDDY AIR-22 IFoS-2017 CHINTAN DOBARIYA

PRAKHAR GUPTA AIR-23 IFoS-2017

SUNNY K. SINGH AIR-24 IFoS-2017

AIR-35 IFoS-2017

SUNEEL SHEORAN AIR-36 IFoS-2017

VASU DOEGAR

SACHIN GUPTA AIR-45 IFoS-2017

RAHUL KR. JADHAV AIR-68 IFoS-2017

AIR-21 IFoS-2016

AIR-57 IFoS-2016

NITHAN RAJ TN AIR-78 IFOS-2015

HIMANSHU BAGRI AIR-87 IFoS-2015

ONLY IMS PROVIDES SCIENTIFIC & INNOVATIVE TEACHING METHODOLOGIES FULLY REVISED STUDY MATERIALS AND FULLY REVISED TEST SERIES.

HEAD OFFICE: 25/8, Old Rajender Nagar, Delhi-60. BRANCH OFFICE: 105-106, Top Floor, Mukherjee Tower Mukherjee Nagar, Delhi-9 ©Ph.:011-45629987, 9999197625 🥟 www.ims4maths.com @ e-Mail: ims4maths@gmail.com

Regional Office: H.No. 1-10-237, 2nd Floor, Room No. 202 R.K'S-Kancham's Blue Sapphire Ashok Nagar, Hyderabad-20. Ph.: 9652351152, 9652661152

INDIA'S No. 1 INSTITUTE FOR IAS/IFOS EXAMINATION

OUR ACHIEVEMENTS IN IAS (FROM 2008 TO 2018)

S. GAUTHAM RAJ AIR-353 (2018)

SAGAR KUMAR AIR-13 (2017) AIR-82 (2017)

SUNNY K SINGH AIR-91 (2017)

SUNEEL S. AIR-250 (2017)

JAY YADAV AIR-372 AIR-485 (2011) G.I. KRUPPACAR ABHISHEK MODI BHAGWATI PKANAL AWAKASH KUMAR NAINEET AGARWAL AIT F SINGH S (2011) (2010) (2010) (2010) (2010) (2010) HAMBHU KUMAR A. ARIUN NISHA GUPTA AIR-47 (2009) (2009) (2009) HEAD OFFICE: 25/8, Old Rajender Nagar, Delhi-60. BRANCH OFFICE: 105-106, Top Floor, Mukherjee Tower Mukherjee Nagar, Delhi-9 ©Ph.:011-45629987, 9999197625 www.ims4maths.com @ e-Mail: ims4maths@gmail.com

Regional Office: H.No. 1-10-237, 2nd Floor, Room No. 202 R.K'S-Kancham's Blue Sapphire Ashok Nagar, Hyderabad-20. Ph.: 9652351152, 9652661152