MOI UNIVERSITY

SCHOOL OF INFORMATION SCIENCES DEPARTMENT OF INFORMATION TECHNOLOGY COURSE OUTLINE

Unit Code:	INF 228
Unit Title:	DATA STRUCTURES AND ALGORITHMS I
Lecturer Name:	Faith Kibas
Lecturer Contacts:	faykibas@gmail.com 0728 669313
Class time	Mondays 12 PM – 2 PM

JUN - AUG 2021

UNIT PURPOSE/DESCRIPTION

This course is designed to introduce students to data structures and algorithms along with their respective applications.

EXPECTED LEARNING OUTCOMES

By the end of the course unit the student should be able to:-

- Describe the various ways of organizing data
- Apply basic knowledge and skills to develop basic algorithms
- Select and apply relevant data structures for specific problems in programming
- Demonstrate an understanding of basic data structures necessary for advanced study

Pre-requisite: INF 100: Introduction to Informatics

INF 106: Discrete Mathematics for Informaticists

COURSE DESCRIPTION

Week	Topic	Sub-topic
Week1: TOPIC 1	Introduction	Definitions; primitive data types; compound data types
Week 2: TOPIC 2	Linear data structures	Arrays-single: multi-dimensional
Week 3: TOPIC 2	Linear data structures	Queues and stacks
Week 4: TOPIC 3	Non-linear data	Binary trees, ego binary search trees depth first;
	structures	breadth first search trees.
Week 5: TOPIC 3	Non-linear data structures	Representation and manipulation of sets; graphs
Week 6	CAT 1	Writing Continuous Assessment Test 1
Week 7: TOPIC 3	Non-linear data	Depth first; breadth first search trees. Priority
	structures	queues and heaps
Week 8: TOPIC 4	Sorting	Ego selection
Week 9: TOPIC 4	Sorting	Merge
Week 10: TOPIC 4	Sorting	Quick sorts
		Assignment
Week 12: TOPIC 4	Sorting	Bubble sort
Week 13: TOPIC 5	Future Trends	Current and emerging issues in data structures and algorithms
Week 14:		FINAL EXAMINATION

Teaching/learning methodology

This is a practical course and delivery will utilize a variety of learning strategies to accomplish an understanding and mastery of the learning outcomes and concepts presented. These include, but not limited to, reading assignments, lectures and seminars, case studies, term paper, journal article

reviews, essays, critical thinking and analysis of the subject matter and examinations. The delivery emphasis is on reasoning, understanding and application of knowledge and skills rather than memorizing. This is a theory course and delivery shall be by lectures and seminars

Other Instructional materials/Equipment:

Textbooks, Journals, Case studies, Government/Institutional reports.

COURSE ASSES MENT

Assessment Type	Frequency	Percentage
Assignment: Article summaries/library search 10%	1	10%
CATs 1. WRITTEN PAPER 30%	1	30%
Final Examination	1	60%
Total		100%

Course Texts

Course Texts and References

- 1. Salmon (1994).Structures and abstraction: a brief introduction to Turbo pascal.richard Irwin Inc.Newyork.
- 2. H. Cormen, C. E. Leiserson and R. L. Rivest, *Introduction to Algorithms*, Tata-Mcgraw Hill Publishers.
- 3. A. Aho, J. E. Hopcroft and J. D. Ullman, *Data Structures and Algorithms*, Addison-Wesley.
- 4. Horowitz and Sahani, Fundamentals of Data Structures in C/C++, Computer Science Press.
- 5. A. Aho, J. E. Hopcroft and J. D. Ullman, *Design and Analysis of Computer Algorithms*, Addison-Wesley.
- 6. John R A (2007). An introduction to Java programming and object oriented development. Thomson course Technology. USA
- 7. Deitel P, Deitel, H and Deitel A (2013). Android: How to program with an introduction to java. PEARSON. Education limited. USA
- 8. Dietel H and Dietel P (2013).C++ how to program .PERASON horizon Edn Malaysia.

Course Journals

1. Springer Journals