Drugs used to treat bronchial asthma

Dr. Rudolf Gesztelyi

University of Debrecen

Department of Pharmacology

Structure of the lung and airways

Airways

Left-sided pneumothorax (PTX)

Airflow limitations of mechanical origin

- Obstructive (increase in the airway resistance)
 - Upper respiratory tract obstruction (e.g. subglottic laryngitis)
 - Lower respiratory tract obstruction
 - Bronchitis and bronchiolitis
 - · Pulmonary emphysema
 - Bronchial asthma (BA)
- Restrictive (decrease in the respiratory surface not of obstructive origin)
 - Loss of a part of the lung
 - Alveolar infiltrate (edema, pneumonia)
 - Atelectasis (hypoventilation, compression, insufficient amount of surfactant)

Etymology

- Asthma a chronic condition characterized by recurrent bouts of dyspnea
 - Cardiac asthma recurrent attacks of dyspnea due to failure of the left ventricle that can be accompanied by bronchoconstriction caused by pulmonary congestion
 - Bronchial asthma recurrent bouts of dyspnea due to reversible obstruction of the lower airways

COPD — Chronic Obstructive Pulmonary Disease

Histology of BA

- Impairment of the mucosal epithelium (this is only a functional damage initially, then progression may lead to partial epithelial abruption)
- Remodeling of the wall of bronchi and bronchioli:
 - smooth muscle hypertrophy and hyperplasia
 - thickening of the mucosa caused by secretory gland hyperplasia,
 lymphocyte and eosinophil cell infiltration, and inflammatory edema
- Increased mucus production (hypersecretion) leading to mucous plugs (inspissation)

Epidemiology of BA

- In developed countries, 2-12% of the population is affected by bronchial asthma (accurate assessment is hindered by varying definitions of asthma and methods of data collection)
- Worsening trend
- Early onset is typical (in childhood), but it can start in every age

Characteristics of BA

- Fluctuating course (acute attacks separated by intervals with no or mild symptoms)
- Attacks manifest in widespread narrowing of the lower airways (bronchi and, more importantly, bronchioli)
- In early stage of asthma, airway narrowing is totally reversible (later it tends to be partially reversible)
- Increased sensitivity towards stimuli causing bronchial and bronchiolar inflammation and/or constriction
- Enhanced secretory activity of glands and goblet cells in bronchial and bronchiolar mucosa
- Thickening of the wall of bronchi and bronchioli (especially in poorly controlled asthma)
- Good response to adequate treatment

Symptoms of an acute asthmatic attack (asthma exacerbation)

- Wheezing (specifically: sibilant rhonchus) during exhalation (mild or moderate bout) or during both inhalation and exhalation (severe bout)
- Shortness of breath, typically in response to specific (allergens, drugs) or non-specific provoking factors (exercise, previous viral respiratory infection, increase in vagal tone at night)
- Prolonged expiration
- Unproductive (dry) cough (especially at night)
- Tachycardia
- Pallor
- Cyanosis (in severe asthma, if the patient isn't anemic)

Major types of BA

- Extrinsic asthma (specific provoking factor can be identified, onset in childhood)
 - Allergen (mainly inhaled, occasionally food)
 - Drug (aspirin or another NSAID, β-blocker, opioid)
- Intrinsic asthma (specific provoking factor cannot be identified, onset in young adulthood)
- Mixed asthma (the identified specific provoking factors are only responsible for a part of attacks)

In all types (especially in vulnerable periods for the patient), an asthmatic attack can be induced by non-specific provoking factors, such as cold and/or dry air, irritant gases, previous viral infections in the lower airways, hyperventilation, psychosocial stress, and conditions increasing the vagal tone (e.g. sleeping)

Possible pathogenic factors (and etiological theories) for BA

- **Immunological** type I hypersensitivity (chiefly for extrinsic asthma)
- Psychological psychosomatic disorder (mainly for intrinsic asthma)
- **Neurohormonal** increased vagal and/or decreased sympathetic activity (and, in this latter one, increased α-adrenergic function relative to β-adrenergic activity)
- **Epithelial** insufficient barrier function of airway epithelium

Therapy of BA

Causal treatment

- Elimination of the specific provoking factor (in extrinsic asthma)
- Desensitization (in extrinsic asthma, if the number of allergens is low)

Symptomatic treatment

- Short-term relievers (direct bronchodilators)
- Long-term controllers (anti-inflammatory agents)

Symptomatic treatment of asthma

Favorable and adverse effects of antiasthmatics I.

• β_2 agonists

- Smooth muscle relaxation (by increasing the cAMP level in smooth muscle cells)
- Reduction of mucus hypersecretion in airways
- Inhibition of mastocyte degranulation
- Enhancement of ciliary activity of bronchial and bronchiolar epithelium
- Enhancement of anti-inflammatory effects of corticosteroids
- Tachycardia (even in case of selective agents because of systemic vasodilation)
- Skeletal muscle tremor
- Hypokalemia (due to an increased potassium intake in skeletal muscle)
- β₂ receptor downregulation and desensitization (in case of frequently used long-acting β₂ agonists applied without co-administration of corticosteroids, particularly for their effects exerted on tissues other than smooth muscle)

Favorable and adverse effects of antiasthmatics II.

Muscarinic antagonists

- Smooth muscle relaxation (by preventing the effect of acetylcholine released from the vagal nerve)
- Reduction of mucus production (also an anti-acetylcholine action)
- Some therapeutical benefit over β_2 agonists in patients with COPD or asthma-COPD overlap syndrome
- Weak effect as compared to β_2 agonists (especially in extrinsic asthma)

Smooth muscle spasmolytics

- Smooth muscle relaxation (via inhibiting the phosphodiesterase /PDE/ and/or the L-type Ca²⁺ channels)
- Some agents (roflumilast, cilomilast) show specificity towards PDE4,
 the major PDE type of airways
- Weak effect as compared to β_2 agonists
- Poor selectivity to the airways (in case of per os administration)

Favorable and adverse effects of antiasthmatics III.

- Xanthines (especially theophylline)
 - Smooth muscle relaxation (and enhancement of similar action of β_2 agonists, by increasing the cAMP level *via* phosphodiesterase inhibition and A_1 adenosine receptor blockade)
 - Inhibition of mastocyte degranulation (via phosphodiesterase inhibition and A₁ adenosine receptor blockade)
 - Increase in skeletal muscle contractility (via sensitizing the ryanodine receptor) that makes the work of respiratory muscles more effective
 - Increase in activity of histone deacetylase (and enhancement of the similar effect corticosteroids exert on histone deacetylase, leading to the repression of pro-inflammatory genes)
 - Narrow therapeutic window (need for plasma level monitoring)
 - Headache, insomnia, anxiety, skeletal muscle tremor, seizure
 - Anorexia, nausea, vomiting, abdominal discomfort
 - Tachycardia, arrhythmia

Favorable and adverse effects of antiasthmatics IV.

Corticosteroids

- Strong inhibition of practically every step of the inflammatory cascade leading to a decrease in mucosal edema and mucus hypersecretion
- Strong immunosuppressive action contributing to the anti-inflammatory effect (with adverse effects milder than that of the so-called immunosuppressive drugs)
- Increase in activity of histone deacetylase (and thereby repression of pro-inflammatory genes)
- Increase in sensitivity to β₂ agonists
- Slow development of the desirable effects
- A small inhibitory effect on growth (for children)
- Upon systemic administration, the common adverse effect of corticosteroids, such as: osteoporosis, hyperglycemia, irritability, hypertension, peptic erosion and ulcer, increased susceptibility to infections, suppression of adrenal cortex

Favorable and adverse effects of antiasthmatics V.

Leukotriene pathway modifiers

- Inhibition of leukotriene-mediated steps of the inflammatory cascade that leads to decreased mucosal edema as well as mucus production (an effect weaker than that of corticosteroids)
- Inhibition of bronchial and bronchiolar reactivity to constrictor agents (great effectiveness against aspirin-induced asthmatic attack)
- A weak bronchodilatory effect
- Increase in activity of histone deacetylase (and thereby repression of pro-inflammatory genes)
- Some patients do not respond to leukotriene pathway modifiers
- Liver toxicity (in the case of zileuton)
- Headache
- Dyspepsia, diarrhea

Favorable and adverse effects of antiasthmatics VI.

Cromons

- A weak anti-inflammatory effect caused by mast cell stabilization and inhibition of some cell types involved in the inflammation, especially in extrinsic asthma
- Safety (lack of toxicity)
- Slow development of the desirable effects
- Local irritation, mouth dryness
- Nausea, anorexia, dysgeusia

H₁ receptor antagonists

- A weak anti-inflammatory effect shown in extrinsic asthma
- Sedation
- Except for their use as an adjunctive drug in seasonal asthma, H₁
 receptor blockers are not able to significantly contribute to either the symptomatic relief or the control of bronchial asthma

Favorable and adverse effects of antiasthmatics VII.

Immunomodulant agents (biological therapy)

- Circumscript (not general) anti-inflammatory effects in extrinsic asthma
- Irritation at the place of administration (in the skin)
- High cost of the treatment

Immunosuppressive drugs

- Robust immunosuppressive and thereby strong anti-inflammatory effect (stronger than that of corticosteroids), mechanism of which depends on the particular agent (e.g. methotrexate is a folate antimetabolite type cytotoxic drug that additionally inhibits chemotaxis even in small doses)
- Common adverse effects of immunosuppressive drugs, such as nausea, vomiting, mucosal ulceration, hepatotoxicity, anemia, increased susceptibility to infections, retardation in growth and development (for children)

Bronchodilators I.

- β₂ agonists (inhaled; in a severe bout: per os too)
 - Short-acting drugs (SABA): salbutamol (a.k.a. albuterol; Serevent),
 levosalbutamol (a.k.a. levalbuterol; Xopenex), terbutaline (Bricanyl iv. too), fenoterol (Berotec, Berodual) quick-relievers
 - Long-acting drugs (LABA): salmeterol (Serevent), formoterol
 (Atimos), clenbuterol (Spiropent), bambuterol (prodrug of terbutaline;
 Bambec), procaterol
 - Ultra long-acting (i.e. once-daily) drugs (ultra-LABA) alone only in COPD; combined with inhaled corticosteroids (ICS) in BA: olodaterol (Striverdi Respimat), vilanterol (only in combination), abediterol (under investigation), indacaterol (Onbrez Breezhaler)

Bronchodilators II.

- Muscarinic antagonists (inhaled)
 - Short-acting drug: ipratropium bromide (Atrovent, Berodual) quickreliever
 - Long-acting drugs: tiotropium bromide (Spiriva), aclidinium bromide (Bretaris Genuair), glycopyrronium bromide (Seebri Breezhaler – only in COPD), umeclidinium bromide (Incruse – only in COPD)

Bronchodilators III.

- Smooth muscle spasmolytics (mainly per os)
 - Non-specific PDE inhibitor (with L-type Ca-channel inhibitory action): papaverine (Pavabid) (low priority)
 - Specific PDE4 inhibitors (only in COPD): roflumilast (Daxas, Daliresp), cilomilast (Ariflo)
- **Xanthines** (per os; in a severe attack: iv. too)
 - methylxanthines: theophylline (Retafyllin, Euphylong),
 aminophylline (complex of theophylline with ethylenediamine;
 Diaphyllin), caffeine (low priority)
 - propylxanthine: enprofylline (Nilyph)

Anti-inflammatory drugs I.

- Corticosteroids (inhaled; in a severe bout: per os and iv. too)
 - Only for inhalation (ICS): budesonide (Aerox, Miflonide), fluticasone (Flixotide), beclometasone (Clenil), flunisolide (AeroBid), ciclesonide (Alvesco)
 - Only per os or iv.: prednisolone (Di-Adreson), methylprednisolone (Medrol)
- Leukotriene pathway modifiers (per os)
 - CysLT₁ receptor antagonists (LTRA): zafirlukast (Accolate),
 montelukast (Singulair), pranlukast (Pranlukast)
 - 5-lipoxygenase inhibitor: zileuton (Zyflo)

Anti-inflammatory drugs II.

- Cromons (inhaled)
 - cromolyn (Intal), nedocromil (Tilade) (low-priority drugs)
- H₁ receptor antagonists (per os)
 - cetirizine (Zyrtec), levocetirizine (Xyzal), fexofenadine (Altiva)
 (low-priority drugs)

Anti-inflammatory drugs III.

- **Immunomodulant substances** (*sc.*) efficacious but expensive biological therapy drugs to treat extrinsic asthma
 - omalizumab (humanized IgG specific to human IgE; Xolair)
 - quilizumab (humanized IgG specific to human IgE; under investigation)
 - benralizumab (blocking antibody specific to IL-5 receptor that decreases the eosinophilic granulocyte ADCT; Fasenra)
 - mepolizumab (humanized IgG specific to IL-5 that decreases the eosinophilic granulocyte ADCT; Nucala)
 - reslizumab (humanized IgG specific to IL-5 thereby decreasing the eosinophilic granulocyte ADCT; Cinqaero)

Anti-inflammatory drugs IV.

- lebrikizumab, tralokinumab (antibodies specific to IL-13; under investigation for extrinsic asthma)
- secukinumab (antibody specific to IL-17; Cosentyx)
- brodalumab (blocking antibody specific to IL-17; Siliq, Kyntheum)
- dupilumab (blocking antibody specific to IL-4 receptor that also inhibits the IL-13 pathway; Dupixent - under investigation to treat BA)
- Immunosuppressive drugs (per os, sc., im., iv.)
 - methotrexate (Metoject), ciclosporin (Sandimmun) "last resort" drugs

Thanks for your attention!