Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering

End Sem (Odd) Examination Dec-2017 CS3CO02 Computer Architecture and Organization

Programme: B.Tech. Branch/Specialisation: CS

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

(1.	10 Q 3)	5110 010 00 W1100011 111 1011 11150000	or only w, o, o or w.			
Q.1	i.	The component of compute coordinating operations.	r responsible for controlling and	1		
		(a) ALU (b) Memory ((c) I/O (d) CU			
	ii.	· · ·	tic and logical operation are stored?	1		
			(b) In Cache Memory			
		· ·	d) In Instruction Register			
	iii.		After counting 0, 1, 10, 11, the next binary number is			
		(a) 12 (b) 100 (•			
	iv.	Convert binary 1111111110010		1		
		(a) $(EE2)_{16}$ (b) $(FF2)_{16}$ (
	v.		its operation assumes the	1		
		(a) Another device	(b) Processor			
			(d) None of these			
	vi.	The pipelining process is also		1		
		(a) Superscalar operation (_		
		(c) Von Neumann cycle				
	vii.	• • • • • • • • • • • • • • • • • • • •				
		(a) Hard disk	y	1		
		(b) RAM				
		(c) ROM				
		(d) Fast solid state chips in the	other board			
	viii.	The process divides the		1		
	V 1111.	•	(c) Formatting (d) Modification	_		
		(a) Creation (b) initiation (o) i oilliamii (a) modilication			

P.T.O.

[2]

	ix.	Any condition that causes a processor to stall is called as	1	
		(a) Hazard (b) Page fault		
		(c) System error (d) None of these		
	х.	In the client server model of the cluster approach is used.	1	
		(a) Load configuration (b) FIFO		
		(c) Bankers algorithm (d) Round robin		
Q.2	i.	What, in general terms, is the distinction between computer	2	
		organization and computer architecture?		
	ii.	List and briefly define the main structural components of a computer.	3	
	iii.	Write and explain various addressing modes of basic computer.	5	
OR	iv.	Explain in brief computer generation.	5	
Q.3	•	Attempt any two:	-	
	i.	Write single precision floating point representation of positive binary number $(111.10101)_2 * 2^5$.	5	
	ii.	Explain sign magnitude, 1's complement and 2's compliment	5	
		with a suitable example.		
	iii.	Write detailed procedure for Decimal to Hexadecimal conversion	5	
		and Hexadecimal to Octal conversion.		
0.4			4	
Q.4	i.	Consider a pipeline with 5 stages. Assume the 1 st stage takes 5	4	
		units of time, 2 nd takes 2 units of time, 3 rd takes 3 unit of time, 4 th		
		takes 1 unit of time and 5 th takes 4 unit of time. Calculate speed		
	ii.	up factor of pipeline over non pipeline. Explain Vector, Array and Multithreaded processor.	6	
OR	ii. iii.	Explain vector, Array and Wuntumeaded processor. Explain hardwired control unit and differentiate horizontal &	6	
OK	111.	vertical micro programmed control unit.	U	
		vertical finero programmea control ante.		
Q.5		Attempt any two:		
	i.	A moving arm disk-storage device has the following	5	
		specifications:		
		Number of tracks per recording surface -200,		
		Disk – rotation speed – 2400 rpm,		
		Track storage capacity – 62,500 bits.		
		What is the data transfer rate (in kilo bytes/sec) for this device?		

[3]

	ii. iii.	Explain in brief memory hierarchy with suitable diagram. List and explain at least five auxiliary memory peripheral devices.	5 5
Q.6		Attempt any two:	
	i.	Describe Flynn's classification for multiprocessor organization.	5
	ii.	What do you understand by inter-processor communication? Describe with suitable diagram.	5
	iii.	What are Multi-core processors? Describe the architecture of any one of multi-core processor.	5

CS3CO02 Computer Architecture and Organization **Marking Scheme**

Q.1	i.	(d) CU	1
	ii.	(a) In Accumulator	1
	iii.	(b) 100	1
	iv.	(b) (FF2) ₁₆	1
	v.	(b) Processor	1
	vi.	(b) Assembly line operation	1
	vii.	(c) ROM	1
	viii.	(c) Formatting	1
	ix.	(a) Hazard	1
	х.	(d) Round robin	1
Q.2	i.	Computer organization [1 Marks] and computer architecture[1 Marks]	2
	ii.	List [1 Marks] structural components [2 Marks]	3
	iii.	5 addressing mode of 1 mark each	5
OR	iv.	5 generations 1 mark each	5
Q.3	i.	Single Precision Format	5
		Sign bit 8 Bits 23 Bits Fraction	
		$(111.10101)_2 *2^5 = 1.1110101 * 2^7 $ (normalized)	
		Sign bit = 0	
		Biased exponent (excess 127 method) = 127+7 = 134 =(10000110) ₂ Mantissa (only fraction part 23 bit) = 111010100000000000000000000000000000	
		Answer = 0 10000110 1110101000000000000000000	
		71115WCI — 0 10000110 1110101000000000000000000	
	ii.	Sign magnitude[1 Marks], 1's complement[2 Marks] and	5
		2'scompliment[2 Marks]	
OR	iii.	Decimal to Hexadecimal conversion [2.5 Marks] and Hexadecimal to	5
		Octal conversion[2.5 Marks]	

Q.4 i.
$$Speed up = \frac{t_n}{t_p} = \frac{(5+2+3+1+4)}{5} = \frac{15}{5} = 3$$
 (:: t_p : Maximum time unit of all stages + overhead \rightarrow overhead is zero here) ii. Vector [2 Marks], Array [2 Marks] and Multithreaded processor [2 Marks]. OR iii. Hardwired control unit [2 Marks] and differentiate horizontal & vertical 6 micro programmed control unit [4 Marks].

Q.5 i.
$$1 \text{ rotation} - \frac{1}{40} \sec ; \frac{1}{40} \sec - 62500 \text{bits}$$

$$1 \sec - 62500 \times 40 \text{bits}$$

$$= \frac{62500 \times 40}{1000 \times 8} \text{k bytes}$$

$$= \frac{625}{2} = 312.5 \text{k bytes}$$

- ii. Memory hierarchy [3 Marks] diagram [2 Marks]. 5
- OR iii. List [1 Marks] and explain at least 5 auxiliary memory peripheral devices [4 Marks].
- Q.6 Attempt any two:
 - i. Flynn's classification [5 Marks] 5 5
 - ii. Inter-processor communication [3 Marks] diagram [2 Marks].
 - iii. Multi-core processors[3 Marks] architecture of any one of multi-core processor[2 Marks]
