AMENDMENTS TO THE CLAIMS

(Original) A process for preparing dialdehydes and/or ethylenically unsaturated
monoaldehydes by reacting at least one compound having at least two ethylenically
unsaturated double bonds with carbon monoxide and hydrogen in the presence of a
hydroformylation catalyst comprising at least one complex of a metal of transition group
VIII with at least one ligand selected from among chelating pnicogen compounds of the
formula I,

$$R^1 \longrightarrow Pn \longrightarrow (O)_a \longrightarrow Q \longrightarrow (O)_b \longrightarrow Pn \longrightarrow R^3$$

$$R^2 \longrightarrow R^4$$

where

Q is a bridging group of the formula

$$\begin{array}{c|c}
R^{II} & & & & R^{IV} \\
R^{I} & & & & & & R^{IV} \\
R^{I} & & & & & & & R^{IV} \\
R^{I} & & & & & & & & R^{IV} \\
R^{I} & & & & & & & & & R^{IV} \\
\end{array}$$

where

A¹ and A² are each, independently of one another, O, S, SiR^aR^b, NR^c or CR^dR^e, where

R^a,R^b and R^c are each, independently of one another, hydrogen, alkyl, cycloalkyl, heterocycloalkyl, aryl or hetaryl,

 R^d and R^e are each, independently of one another, hydrogen, alkyl, cycloalkyl, heterocycloalkyl, aryl or hetaryl or the group R^d together with a further group R^d or the group R^e together with a further group R^e form an intramolecular bridging group D,

D is a divalent bridging group selected from among the groups

$$R^9$$
 CH CH R^{10} R^9 R^{10} R^{11} R^{12} R^{12} R^{13} R^{14}

where

R⁹ and R¹⁰ are each, independently of one another, hydrogen, alkyl, cycloalkyl, aryl, halogen, trifluoromethyl, carboxyl, carboxylate or cyano or are joined to one another to form a C₃-C₄-alkylene bridge,

Docket No.: 13111-00007-US

R¹¹, R¹², R¹³ and R¹⁴ are each, independently of one another, hydrogen, alkyl, cycloalkyl, aryl, halogen, trifluoromethyl, COOH, carboxylate, cyano, alkoxy, SO₃H, sulfonate, NE¹E², alkylene-NE¹E²E³⁺X⁻, acyl or nitro,

c 0 or 1,

Y is a chemical bond,

 R^{I} , R^{II} , R^{IV} , R^{V} and R^{VI} are each, independently of one another, hydrogen, alkyl, cycloalkyl, heterocycloalkyl, aryl, hetaryl, $COOR^f$, COO^-M^+ , SO_3R^f , $SO^-_3M^+$, NE^1E^2 , $NE^1E^2E^{3+}X^-$, alkylene– $NE^1E^2E^{3+}X^-$, OR^f , SR^f , $(CHR^gCH_2O)_xR^f$, $(CH_2N(E^1))_xR^f$, $(CH_2CH_2N(E^1))_xR^f$, halogen, trifluoromethyl, nitro, acyl or cyano,

where

R^f, E¹, E² and E³ are identical or different radicals selected from among hydrogen, alkyl, cycloalkyl and aryl,

R^g is hydrogen, methyl or ethyl,

M⁺ is a cation,

X is an anion, and

x is an integer from 1 to 120,

or

two adjacent radicals selected from among R^I, R^{II}, R^{III}, R^{IV}, R^V and R^{VI} together with two adjacent carbon atoms of the benzene ring to which they are bound for a fused ring system having 1, 2 or 3 further rings,

Docket No.: 13111-00007-US

a and b are each, independently of one another, 0 or 1,

Pn is a pnicogen atom selected from among the elements phosphorus, arsenic and antimony,

and

R¹, R², R³, R⁴ are each, independently of one another, hetaryl, hetaryloxy, alkyl, alkoxy, aryl, aryloxy, cycloalkyl, cycloalkoxy, heterocycloalkyl, heterocycloalkoxy or an NE¹E² group, with the proviso that R¹ and R³ are pyrrole groups bound via the nitrogen atom to the pnicogen atom Pn

or R¹ together with R² and/or R³ together with R⁴ form a divalent group E of the formula

Py-I-W

where

- Py is a pyrrole group which is bound via the pyrrole nitrogen atom to the pnicogen atom Pn,
- I is a chemical bond or O, S, SiR^aR^b , NR^c , substituted or unsubstituted C_1 - C_{10} -alkylene or CR^hR^i ,
- W is cycloalkyl, cycloalkoxy, aryl, aryloxy, hetaryl or hetaryloxy,

and

R^h and Rⁱ are each, independently of one another, hydrogen, alkyl, cycloalkyl, heterocycloalkyl, aryl or hetaryl,

or R^1 together with R^2 and/or R^3 together with R^4 form a bispyrrole group of the formula

Py-I-Py

(I.k)

bound via the nitrogen atoms to the pnicogen atom Pn.

2. (Original) A process as claimed in claim 1, wherein at least one ligand of the formula I, in which the radicals R¹, R², R³ and R⁴ are selected independently from among groups of the formulae I.a to I.k

(I.h)

(I.i)

Application No.: Not Yet Assigned

Docket No.: 13111-00007-US

where

Alk is a C₁-C₄-alkyl group and

R°, R°, R°, and R° are each, independently of one another, hydrogen, C₁-C₄-alkyl, C₁-C₄-alkoxy, acyl, halogen, trifluoromethyl, C₁-C₄-alkoxycarbonyl or carboxyl, is used.

- 3. (Original) A process as claimed in claim 2, wherein at least one ligand of the formula I, in which the radicals R¹, R², R³ and R⁴ are each, independently of one another, a 3-alkylindolyl group, preferably a 3-methylindolyl group, is used.
- 4. (Currently amended) A process as claimed in <u>claim 1, any of the preceding claims</u>, wherein the chelating pnicogen compound of the formula I is selected from among chelating pnicogen compounds of the formula II,

$$R^{19}-(O)_{a}$$
 Pn
 $(O)_{b}-Q-(O)_{a}$
 Pn
 $(O)_{b}-R^{20}$
 R^{15}
 R^{18}
 R^{16}
 R^{17}
 R^{18}
 R^{16}
 R^{17}
 R^{18}
 $R^{19}-(O)_{b}-R^{20}$
 $R^{19}-(O)_{b}-R^{20}$

where

R¹⁵, R¹⁶, R¹⁷ and R¹⁸ are each, independently of one another, hydrogen, alkyl, cycloalkyl, heterocycloalkyl, aryl, hetaryl, W'COOR^k, W'COO'M⁺, W'(SO₃)R^k, W'(SO₃)'M⁺, W'PO₃(R^k)(R^l), W'(PO₃)²-(M⁺)₂, W'NE⁴E⁵, W'(NE⁴E⁵E⁶)⁺X⁻, W'OR^k, W'SR^k, (CHR^lCH₂O)_yR^k, (CH₂NE⁴)_yR^k, (CH₂CH₂NE⁴)_yR^k, halogen, trifluoromethyl, nitro, acyl or cyano,

where

W' is a single bond, a heteroatom or a divalent bridging group having from 1 to 20 bridge atoms,

- R^k, E⁴, E⁵, E⁶ are identical or different radicals selected from among hydrogen, alkyl, cycloalkyl and aryl,
- R¹ is hydrogen, methyl or ethyl,
- M⁺ is a cation equivalent,
- X is an anion equivalent and
- y is an integer from 1 to 240,

where two adjacent radicals R¹⁵, R¹⁶, R¹⁷ and R¹⁸ together with the carbon atoms of the pyrrole ring to which they are bound may also form a fused ring system having 1, 2 or 3 further rings,

with the proviso that at least one of the radicals R^{15} , R^{16} , R^{17} and R^{18} is not hydrogen and R^{19} and R^{20} are not joined to one another,

R¹⁹ and R²⁰ are each, independently of one another, cycloalkyl, heterocycloalkyl, aryl or hetaryl, or R¹⁹ together with R¹⁵ or R¹⁶ and/or R¹⁹ together with R¹⁷ or R¹⁸ form a divalent group

-I-W-

where

- I is a chemical bond or O, S, SiR^aR^b, NR^c or substituted or unsubstituted C₁-C₁₀-alkylene, preferably CR^hRi, where R^a, R^b, R^c, R^h and Rⁱ are each, independently of one another, hydrogen, alkyl, cycloalkyl, heterocycloalkyl, aryl or hetaryl and
- W is cycloalkyl, cycloalkoxy, aryl, aryloxy, hetaryl or hetaryloxy.
- 5. (Currently amended) A process as claimed in <u>claim 1</u>, any of the preceding claims, wherein the chelating pnicogen compound of the formula I is a chelating pnicogen compound of the formulae II.1 to II.3,

Application No.: Not Yet Assigned Docket No.: 13111-00007-US

$$R^{19}-(O)_{a}$$
 P
 $(O)_{b}-Q-(O)_{a}$
 P
 $(O)_{b}-R^{20}$
 R^{18}
 R^{15}
 R^{16}
 R^{16}
 R^{16}

$$R^{19}-(O)_a$$
 $P(O)_b-Q-(O)_a$ $P(O)_b-R^{20}$ (II.2)

$$R^{19}-(O)_{a}$$
 P
 $(O)_{b}-Q-(O)_{a}$
 P
 $(O)_{b}-R^{20}$
 N
 R^{16}
 R^{17}
 R^{16}
 R^{17}
 R^{16}
 R^{17}

where

 R^{15} , R^{16} , R^{17} , R^{18} , Q, a and b are as defined in claim 4, where at least one of the radicals R^{16} and R^{17} in the formula II.3 is not hydrogen,

 R^{19} and R^{20} are each, independently of one another, cycloalkyl, heterocycloalkyl, aryl or hetaryl.

Docket No.: 13111-00007-US

6. (Currently amended) A process as claimed in <u>claim 1</u>, any of claims 1 to 5, wherein the bridging group Q is a triptycenediyl group of the formula

$$R^{II}$$

$$R^{II}$$

$$R^{IV}$$

$$R^{V}$$

or the formula

$$R^{II}$$

$$R^{II}$$

$$R^{IV}$$

$$R^{V}$$

$$R^{V}$$

where R^I, R^{II}, R^{III}, R^{IV}, R^V and R^{VI}, R⁹, R¹⁰, R¹¹ and R¹² are as defined in claim 1.

7. (Currently amended) A process as claimed in <u>claim 1</u>, <u>any of claims 1 to 5</u>, wherein the bridging group Q is a xanthenediyl group of the formula

$$R^{II} \xrightarrow{R^{III}} R^{d} \xrightarrow{R^{e}} R^{IV}$$

$$R^{V}$$

$$Y$$

where R^I, R^{II}, R^{III}, R^{IV}, RV and R^{VI} and Y are as defined in claim 1 and R^d and R^e are each, independently of one another, hydrogen, alkyl, cycloalkyl, heterocyloalkyl, aryl or hetaryl.

Application No.: Not Yet Assigned Docket No.: 13111-00007-US

8. (Currently amended) A process as claimed in <u>claim 1</u>, any of the preceding claims, wherein a molar ratio of ligand to metal of transition group VIII of from 1:1 to 1000:1 is set in the reaction mixture.

- 9. (Currently amended) A process as claimed in <u>claim 1</u>, any of the preceding claims, wherein the reaction is carried out at from 40 to 80°C.
- 10. (Currently amended) A process as claimed in <u>claim 1</u>, any of the preceding claims, wherein the compound having at least two ethylenically unsaturated double bonds which is used is a a,w-diolefin.
- 11. (Currently amended) A process as claimed in <u>claim 1</u>, any of the preceding claims, wherein
 - (i) a compound having a least two ethylenically unsaturated double bonds is subjected to the hydroformylation reaction in a reaction zone,
 - (ii) an output is taken from the reaction zone and is fractionated to give a fraction enriched in unsaturated monoaldehydes and a fraction depleted in unsaturated monoaldehydes, and
 - (iii) the fraction depleted in unsaturated monoaldehydes is recirculated, if appropriate optionally after work up, to the reaction zone.