

UNIVERSIDADE FEDERAL DO PARANÁ – UFPR Departamento de Informática

Computer Vision and Perception

Image filtering

Prof. Eduardo Todt 2023

Sumary

Text book
Introduction
recognition problem
image basics

Remember image structure

255	255	255	255	255	255	255	255	255	255	255	255
255	255	255	255	255	255	255	255	255	255	255	255
255	255	255	20	0	255	255	255	255	255	255	255
255	255	255	75	75	75	255	255	255	255	255	255
255	255	75	95	95	75	255	255	255	255	255	255
255	255	96	127	145	175	255	255	255	255	255	255
255	255	127	145	175	175	175	255	255	255	255	255
255	255	127	145	200	200	175	175	95	255	255	255
255	255	127	145	200	200	175	175	95	47	255	255
255	255	127	145	145	175	127	127	95	47	255	255
255	255	74	127	127	127	95	95	95	47	255	255
255	255	255	74	74	74	74	74	74	255	255	255
255	255	255	255	255	255	255	255	255	255	255	255
255	255	255	255	255	255	255	255	255	255	255	255

Filters

Filtering

Form a new image whose pixels are a combination of the original pixels

Why?

To get useful information from images

E.g., extract edges or contours (to understand shape)

To enhance the image

E.g., to remove noise

E.g., to sharpen to enhance image

Image filtering

Modify the pixels in an image based on some function of a local neighborhood of each pixel

10	5	3
4	5	1
1	1	7

Modified image data

Lienar Filtering

One simple version of filtering: linear filtering (cross-correlation, convolution)

Replace each pixel by a linear combination (a weighted sum) of its neighbors

The prescription for the linear combination is called "kernel" (or "mask", "filter")

Cross-correlation

Let F be the image, H be the kernel (of size $2k+1 \times 2k+1$), and be G the output image

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

$$G = H \otimes F$$

Convolution

Same as cross-correlation, except that the kernel is "flipped" (horizontally and vertically)

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i-u,j-v]$$

$$G = H * F$$

F[x,y]

G[x,y]

_			_					
0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

Linear filters

https://www.cs.cornell.edu/courses/cs5670/2017sp/lectures/lec01_filter.pdf

Linear filters

https://www.cs.cornell.edu/courses/cs5670/2017sp/lectures/lec01_filter.pdf

Linear filters

Original

Sharpening filter (accentuates edges)

Sharpening

before

after

Gaussian Kernel

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}}$$

Gaussian Filters

Gaussian Filter

Removes "high-frequency" components from the image (low-pass filter)

Convolution with self is another Gaussian: original width σ results width σ sqrt(2)

Sharpening revisited

What does blurring take away?

Let's add it back:

https://www.cs.cornell.edu/coi

Sharpen filter

Sharpen filter

https://www.

Optical convolution

Camera shake

Source: Fergus, et al. "Removing Camera Shake from a Single Photograph", SIGGRAPH 2006

Gaussian Kernel

Computational Vision and Perception

