

From annular cavity to rotor-stator flow: nonlinear dynamics of axisymmetric rolls

Artur Gesla 1,2,*

Patrick Le Quéré²

Yohann Duguet ²

Laurent Martin Witkowski ³

¹ Sorbonne Université

²Université Paris-Saclay, LISN-CNRS

³ Université Claude Bernard Lyon 1, LMFA

^{*} now at EPFL, group HEAD with Eunok Yim

$$Re = H^2\Omega/\nu$$

Aspect ratio : $\Gamma = R / H$

Re

Challenge: No clear explanation of the circular rolls.

Experiment

Experimentally seen circular rolls are a forcing response.

Re=500 - forcing

Time: 0.000000

 $\Omega(t) = 1 + \text{white noise}$

Resolvent analysis (axisymmetric)

 $f_{ heta}$ optimal forcing

u_{θ} optimal response

Gesla et al. On the origin of circular rolls in rotor-stator flow, JFM 2024.

$$\frac{\partial \mathbf{u}}{\partial t} + \nabla(\mathbf{u} \otimes \mathbf{u}) = -\nabla p + \frac{1}{Re} \nabla^2 \mathbf{u}$$
$$\nabla \cdot \mathbf{u} = 0$$

Stress-free on the hub:

$$(u_r, \frac{\partial u_\theta}{\partial r} - \frac{u_\theta}{r}, \frac{\partial u_z}{\partial r}) = (0, 0, 0) \text{ at } r_1 = R_1/H.$$

If hub at r=0 (rotor-stator):

$$(u_r, u_\theta, \frac{\partial u_z}{\partial r}) = (0, 0, 0).$$

4

5

6

7

Aspect ratio R/H=5 Boundary conditions:

$$egin{aligned} oldsymbol{u} &= oldsymbol{0} & ext{at } z = 1 & ext{stator,} \ oldsymbol{u} &= H \, r/R_2 \, oldsymbol{e}_{ heta} & ext{at } z = 0 & ext{rotor,} \ oldsymbol{u} &= oldsymbol{e}_{ heta} & ext{at } r_2 = R_2/H, & ext{shroud.} \end{aligned}$$

Numerical methods:

- Finite Volume discretization r-z
- Steady state Newton method
- Instability ARPACK
- Time integration with BDF2 scheme

- Interaction of $\lambda_i = 0.216i$ with itself forces the $\lambda_i = 0.426i$
- Interaction of these two forces the $\lambda_i = 0.638i$
- Different spatial support and number of rolls give an illusion of pairing

 $\times 10^{-5}$

A supercritical branch is replaced by a steep Hopf branch for decreasing δ . Laminar-turbulent transition becomes subcritical.

Summary:

Stability exchange for a radially displaced cavity.

New perspective on the roll pairing.

Gesla *et al.* From annular cavity to rotor-stator flow: nonlinear dynamics of axisymmetric rolls, accepted PRF 2025.

Outlooks:

Self-Consistent Model, Harmonic Balance Method, Floquet Analysis on the periodic states identified

 $\delta \to 1$ analysis, similarity to a Differentially Heated Cavity for $\Pr=1$ and $\Delta\Omega \ll \Omega$, comparison of thresholds in Ra and Re

Corner singularity

the corner singularity is also considered. This is achieved here by smoothing out the boundary condition at the Bödewadt corner, imposing an exponential velocity profile of the form $u_{\theta} = r \exp\left(\frac{r-\Gamma}{\varepsilon}\right)$. Two regularisations have been considered: $\varepsilon = 0.003$ and $\varepsilon = 0.006$. The case without any regularization $(u_{\theta} = 0)$ is referred to as $\varepsilon = 0$ for ease of notation.

TABLE V. Critical Reynolds number Re_c depending on the spatial discretisation. From R1 to R5 the ratio between two consecutive grid resolutions is 1.5 in each direction.