Departamento de Informática Universidad Técnica Federico Santa María

Más Sobre Simplex y Ejercicios de Modelamiento y PL

Pauta v. 1.0.0

Renata Mella renata.mella.12@sansano.usm.cl

August 29, 2016

Contenido

Simplex: Casos Especiales

Imposibilidad No Acotamiento Óptimos Alternativos Degeneración

Ejercicios

Modelamiento Simplex Propuestos

Simplex: Casos Especiales Imposibilidad

Ocurre cuando no existe una solución al problema de programación lineal que satisfaga todas las restricciones, incluyendo aquellas sobre la naturaleza de las variables.

En el método Simplex, esto se identifica cuando en el tableau final aparece una variable artificial a_i en la base con un valor distinto a 0.

Si esto último ocurre significa que para que exista una solución, debe existir otra variable además de las originales del problema de tal manera que se cumplan todas las restricciones.

Simplex: Casos Especiales No Acotamiento

Ocurre cuando el valor de la solución puede crecer infinitamente sin violar las restricciones.

En el método Simplex, esto se identifica cuando, en alguna iteración, ninguna tasa $\frac{b_j}{a_{ij}}$ puede ser calculada $(a_{ij} \le 0)$.

Recordemos que a_{ij} es el coeficiente de la variable x_j en la restricción i.

Simplex: Casos Especiales

Óptimos Alternativos

Ocurre cuando existen dos o más soluciones óptimas para un mismo modelo.

En el método Simplex, esto se manifiesta cuando en el tableau final, una o más variables no basales tienen costo-oportunidad (o precio sombra) $c_j - z_j$ igual a 0.

Simplex: Casos Especiales Degeneración

La degeneración no es propia de un problema de programación lineal, sino un comportamiento del método Simplex ante ciertas características de ciertos problemas.

En el método Simplex, se identifica esta situación cuando ocurre un empate entre dos o más variables básicas. Al elegir la variable básica que sale, más de un coeficiente $\frac{b_i}{a_{ii}}$ son iguales.

Ejercicios Modelamiento

Gracias a una adecuada estrategia de marketing y a la calidad del producto, cierta pequeña fábrica de canastos de mimbre ha recibido pedidos que superan su actual capacidad de producción. Durante las próximas cuatro semanas debe entregar 52, 65, 70 y 85 canastos, respectivamente. Actualmente cuenta con seis artesanos.

La gerencia general de la fábrica ha decidido contratar personal nuevo para poder cumplir sus compromisos comerciales. Dada la escasez de artesanos, se deberá contratar personal sin experiencia. Un novato puede ser entrenado para llegar a ser aprendiz durante una semana. La segunda semana trabaja como aprendiz para ganar experiencia. Comenzando la tercera semana (después de dos semanas de trabajo) se transforma en artesano.

Ejercicios Modelamiento

La producción estimada y sueldos de los empleados es la siguiente:

	Producción	Salarios	
	(canastos/semana)	(\$/semana)	
Artesano dedicado			
sólo a producción	10	30.000	
Artesano dedicado a prod.			
y entrenamiento	5	40.000	
Aprendiz	5	15.000	
Novato	1	5.000	

Cada artesano puede entrenar hasta dos novatos por semana (el entrenamiento de un novato sólo dura una semana). Todo excedente de producción semanal puede ser guardado para cumplir los siguientes compromisos comerciales.

Ejercicios Modelamiento

Los analistas de la empresa estiman que la demanda semanal de canastos difícilmente superará los noventa canastos, por lo que han decidido terminar el período sin novatos y aprendices, pero con al menos nueve artesanos. Los reglamentos sindicales de la empresa prohiben los despidos por reducción de personal.

Formule un modelo de programación lineal que permita definir las contrataciones a realizar, de modo de cumplir los compromisos comerciales a costo mínimo.

Variables:

- ▶ x_{ij} : Personal de tipo i trabajando en semana j.
- ► z_j: Sobreproducción de semana j. (Puede trabajarse como producción también)

 $i \in \{1: \text{ artesano productor, } 2: \text{ artesano instructor, } 3: \text{ aprendiz, } 4: \text{ novato } \} \land j \in \{1,2,3,4\}$

Función Objetivo:

Min
$$z = \sum_{j=1}^{4} \sum_{i=1}^{4} k_i x_{ij}$$
 con k_i : Salario de empleado tipo i

Supuesto:

Se comienza con novatos en la primera semana (también se podría suponer que no habrán novatos al comienzo, pero no tendría mucho sentido). Los artesanos pueden cambiar roles.

Restricciones:

Semana 1

 $x_{11} + x_{21} = 6$ Artesanos disponibles inicialmente

 $10x_{11} + 5x_{21} + x_{41} \ge 52$ Demanda semanal

 $x_{41} \le 2x_{21}$ Número de artesanos aprendices según los artesanos instructores

 $z_1 = 10x_{11} + 5x_{21} + x_{41} - 52$ Sobreproducción Semana 2

 $x_{32} = x_{41}$ Cant. aprendices igual a cant. de novatos semana 1

 $x_{12} + x_{22} = x_{11} + x_{21}$ Cantidad de artesanos

 $10x_{12} + 5x_{22} + x_{42} + 5x_{32} + z_1 \ge 65$ Demanda semanal

 $x_{42} \le 2x_{22}$ Número de artesanos aprendices según los artesanos instructores

 $z = 10x_{12} + 5x_{22} + x_{42} + 5x_{32} + z_1 - 65$ Sobreproducción

Semana 3

 $x_{33} = x_{42}$ Cant. aprendices igual a cant. de novatos semana 2

 $x_{13} + x_{23} = x_{12} + x_{22} + x_{32}$ Cantidad de artesanos

 $10x_{13} + 5x_{23} + x_{43} + 5x_{33} + z_2 \ge 70$ Demanda semanal

 $x_{43} \le 2x_{23}$ Número de artesanos aprendices según los artesanos instructores

 $z_3 = 10x_{13} + 5x_{23} + x_{43} + 5x_{33} + z_2 - 70$ Sobreproducción Semana 4

 $x_{34} = x_{43}$ Cant. aprendices igual a cant. de novatos semana 3

 $x_{14} = x_{13} + x_{23} + x_{33}$ Cantidad de artesanos

 $10x_{14} + 5x_{34} + z_3 \ge 85$ Demanda semanal

 $x_{14} \ge 9$ Cantidad final de artesanos

 $x_{ij}, z_j \ge 0$ Naturaleza de las variables

Considere el siguiente modelo lineal:

Max
$$z = 2x_1 + 3x_2 + 4x_3$$

Sujeto a:

(a)
$$x_1 + 2x_2 + x_3 \le 8$$

(b)
$$2x_1 - x_2 + x_3 \ge 3$$

(c)
$$x_1 + x_2 + 2x_3 = 6$$

 $x_1, x_2, x_3 > 0$

- 1.- Utilice el método gráfico para encontrar la solución óptima.
- 2.- En base a la solución obtenida en el punto anterior construya el tableu final.
- Utilice el método simpex para encontrar la solución y compare ambos tableu finales.

1.- De (c) se tiene:

$$x_1 = 6 - x_2 - 2x_3 \ge 0 \Rightarrow x_2 + 2x_3 \le 6$$
 (1)

Reemplazando x_1 en (b):

$$2(6 - x_2 - 2x_3) - x_2 + X_3 \ge 3$$

$$12 - 2x_2 - 4x_3 - x_2 + x_3 \ge 3$$

$$3x_2 + 3x_3 \le 9 (2)$$

Reemplazando x_1 en (a):

$$(6 - x_2 - 2x_3) + 2x_2 + x_3 \le 8$$
$$x_2 - x_3 \le 2 (3)$$

Gráfico:

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	Z
Α	0	0	3	12
В	2,5	2,5	0,5	14,5
С	4	2	0	14
D	6	0	0	12

2.- Estandarización

Max
$$z = 2x_1 + 3x_2 + 4x_3 + 0s_1 + 0s_2 - Ma_3 - Ma_4$$

Sujeto a:

(a)
$$x_1 + 2x_2 + x_3 + s_1 = 8$$

(b)
$$2x_1 - x_2 + x_3 - e_2 + a_2 = 3$$

(c)
$$x_1 + x_2 + 2x_3 - e_3 + a_3 = 6$$

Como la solución óptima considera como variables basales a x_1, x_2, x_3 se debe dejar cada restricción en función de las variables no basales.

Sumando (b) + (c):

$$3x_1 + 3x_3 - e_2 + a_2 + a_3 = 9$$
 (I)

Sumando (a) + 2(b):

$$5x_1 + 3x_3 + s_1 - 2e_2 + a_2 = 14$$
 (II)

Calculando $\frac{(II)-(I)}{2}$:

$$x_1 + \frac{1}{2}s_1 - \frac{1}{2}e_2 + \frac{1}{2}a_2 - \frac{1}{2}a_3 = \frac{5}{2}$$
 (1)

Calculando $\frac{(II)-5(1)}{3}$:

$$x_3 - \frac{1}{2}s_1 - \frac{1}{6}e_2 - \frac{1}{6}a_2 - \frac{5}{6}a_3 = \frac{1}{2}$$
 (2)

Calculando (c)-(1)-2(2):

$$x_2 + \frac{1}{2}s_1 + \frac{1}{6}e_2 - \frac{1}{6}a_2 - \frac{1}{6}a_3 = \frac{5}{2}$$
 (3)

Finalmente, el tableau final queda:

		<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	s_1	<i>e</i> ₂	a_2	a_3	
Base	c_{j}	2	3	4	0	0	-M	-M	bj
<i>X</i> ₁	2	1	0	0	1/2	$-\frac{1}{2}$	1/2	$-\frac{1}{2}$	<u>5</u> 2
<i>X</i> ₂	3	0	1	0	$\frac{1}{2}$	<u>1</u> 6	$-\frac{1}{6}$	$-\frac{1}{6}$	<u>5</u>
<i>X</i> ₃	4	0	0	1	$-\frac{1}{2}$	<u>1</u> 6	$-\frac{1}{6}$	<u>5</u>	<u>1</u> 2
	z_j	2	3	4	1/2	<u>1</u> 6	$-\frac{1}{6}$	<u>11</u> 6	<u>29</u> 2
	$c_j - z_j$	0	0	0	$-\frac{1}{2}$	$-\frac{1}{6}$	$-M + \frac{1}{6}$	$-M - \frac{11}{6}$	

Solución:

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ s_1 \\ e_2 \\ a_2 \\ a_3 \\ z \end{pmatrix} = \begin{pmatrix} \frac{5}{2} \\ \frac{5}{2} \\ \frac{1}{2} \\ 0 \\ 0 \\ 0 \\ 0 \\ 6 \end{pmatrix}$$

Ejercicios Propuestos

Silicon Valley Corporation (Silvco) fabrica transistores. Un aspecto importante en la fabricación de los transistores es fundir un elemento denominado G (germanium) en un horno. Lamentablemente el proceso de fundido varía mucho en cuanto a la calidad que se obtiene del elemento G. Hay dos métodos que se pueden usar para fundir el elemento G: el método 1 cuesta US\$50 por transistor, y el método 2 US\$70 por transistor. Las calidades del elemento se muestran en la siguiente tabla:

Nivel del G fundido	% producido por fundición			
	Método 1	Método 2		
Defectuoso	30	20		
Nivel 1	30	20		
Nivel 2	20	25		
Nivel 3	15	20		
Nivel 4	5	15		

nota: Nivel 1 es pobre; nivel 4 es excelente.

Ejercicios Propuestos

Silvco puede realizar un proceso adicional para aumentar la calidad del elemento fundido. Este cuesta US\$25 por transistor. Los resultados del proceso adicional se muestran en la tabla. Silvco tiene suficiente capacidad de horneado ya sea para fundir o hacer el retratamiento de a lo más 20000 transistores al mes. Las demandas mensuales son 1000 de transistores de nivel 4, 2000 del nivel 3, 3000 del nivel 2, y 3000 del nivel 1. Use programación lineal para minimizar el costo de producir los transistores que se requieren.

Nivel del G reprocesado	% producido por el proceso adicional				
	Defectuoso	Nivel 1	Nivel 2	Nivel 3	
Defectuoso	30	0	0	0	
Nivel 1	25	30	0	0	
Nivel 2	15	30	40	0	
Nivel 3	20	20	30	50	
Nivel 4	10	20	30	50	