Translation of Citation 2

Patent Kokai Publication 69166/1994

Date of Publication: March 11, 1994

Applicant: Matsushita Electric Industrial Co., Ltd.

Title of the Invention: Method for forming contact hole

Examples

As shown in Fig. 2, MOSFET 3 and oxide membrane 2b (0.4 micron meter thick) for separation of element were formed on silicon substrate 1. Circuit layer 4 (0.6 micron meter wide and 0.3 micron meter thick), undoped insulating layer 5 (200 nm thick), which was formed by CVD method, comprised of silicon oxide and was formed on oxide membrane 2b. Flattened insulating layer 6 (700 nm thick), which was formed by CVD method, comprised of phosphorus and boron-doped silicon oxide was formed on insulating layer 5. Photoresist layer 13 having contact hole 12a and contact hole 12b was formed on insulating layer 6. MOSFET 3 is formed of gate insulating membrane 9 (0.6 micron meter wide and 0.02 micron meter thick), gate electrode 10 (0.4 micron meter thick), side protective membrane 11 (0.02 micron meter) for gate electrode, top protective membrane 15 (140 nm thick) for gate electrode and diffusion layer 8 (1 micron meter wide). Circuit layer 4 was covered by top protective membrane, which is composed of silicon oxide and which was formed by CVD method, for circuit layer and side protective membrane 17 for circuit layer. Protective layer 16 has the same etching rate as insulating layer 5. Thickness of insulating layer 6 in first contact hole 12a is 1000 nm. Thickness of insulating layer 6 in second contact hole 12b is 300 nm.

As shown in Fig. 2(b), first etching process was carried out after insulating layer was exposed in second contact hole

12b. When insulating layer 5 was exposed in first contact hole 12a, discharge was discontinued. In the first etching process, insulating layer 5 was etched by 140 nm in second contact hole 12b. Thereafter, etching started under second etching conditions.

As shown in Fig. 2 (c), the second etching process was conducted, until diffusion layer 8 and circuit layer 4 were exposed in first contact hole 12a and second contact hole 12b. respectively. The membrane which was etched by the second etching process was insulating layer 5 (200 nm thick) and the membrane to be etched by the second etching process was insulating layer 5 (200 nm thick) in first contact hole 12a and insulating layer (60 nm thick) and protective membrane 16 (140 nm thick) in second contact hole 12b. Since insulting layer 5 and protective membrane 16 are composed of the same material, they are etched at the same etching rate under the second etching conditions. Therefore, diffusion layer 8 in first contact hole 12a and circuit layer 4 was simultaneously exposed. In this case, apparent selection rate of flattened insulating layer 6/circuit layer 4 becomes infinite, so variability of depth of overetching in circuit layer 4 becomes minimum.

As shown in Fig. 2 (d), Al membrane was built up by spattering method. The top circuit layer 7 was formed by etching.

Bibliographic Fields

D cument ld ntity

(19)【発行国】

日本国特許庁(JP)

(12)【公報種別】

公開特許公報(A)

(11)【公開番号】

特開平6-69166

(43)【公開日】

平成6年(1994)3月11日

Public Availability

(43)【公開日】

平成6年(1994)3月11日

Technical

(54)【発明の名称】

コンタクトホールの形成方法

(51)【国際特許分類第5版】

H01L 21/302 F 9277-4M

21/28 L 9055-4M

21/90 A 7514-4M

【請求項の数】

2

【全頁数】

6

Filing

【審査請求】

未請求

(21)【出願番号】

特願平4-216748

(22)【出願日】

平成4年(1992)8月14日

Parties

Applicants

(71)【出願人】

【識別番号】

(19) [Publication Office]

Japan Patent Office (JP)

(12) [Kind of Document]

Unexamined Patent Publication (A)

(11) [Publication Number of Unexamined Application]

Japan Unexamined Patent Publication Hei 6 - 69166

(43) [Publication Date of Unexamined Application]

1994 (1994) March 1 1 day

(43) [Publication Date of Unexamined Application]

1994 (1994) March 1 1 day

(54) [Title of Invention] -

FORMATION METHOD OF CONTACT HOLE

(51) [International Patent Classification, 5th Edition]

H01L 21/302 F 9277-4M

21/28 L 9055-4M

21/90 A 751 4-4M

[Number of Claims]

2

[Number of Pages in Document]

6

[Request for Examination]

Unrequested

(21) [Application Number]

Japan Patent Application Hei 4 - 216748

(22) [Application Date]

1992 (1992) August 14 days

(71) [Applicant]

[Identification Number]

Page 1 Paterra Instant MT Machine Translation

000005821

【氏名又は名称】

松下電器産業株式会社

【住所又は居所】

大阪府門真市大字門真1006番地

Inventors

(72)【発明者】

【氏名】

浅井 明

【住所又は居所】

大阪府門真市大字門真1006番地 松下電器 産業株式会社内

(72)【発明者】

[氏名]

玉置 徳彦

【住所又は居所】

大阪府門真市大字門真1006番地 松下電器 産業株式会社内

Agents

(74)【代理人】

【弁理士】

【氏名又は名称】

小鍜治 明(外2名)

Abstract

(57)【要約】

【目的】

深さの異なる複数のコンタクトホールを工程数を 増加させることなく形成する。

【構成】

シコン基板 1 および配線層 4 上に、一酸化炭素が添加されたエッチングガスを用いるエッチングに対してエッチング速度の比が 5 以上となる 2 種類以上の絶縁層 5 および平坦化絶縁層 6 をエッチング速度の小さい絶縁層 5をシリコン基板 1 および配線層 4 側に形成し、一酸化炭素が添加されたエッチングガスを用いた第 1 のエッチングによって、第 1 コンタクトホール 12a において 絶縁層 5 露出 おまでエッチングを行う。

000005821

[Name]

MATSUSHITA ELECTRIC INDUSTRIAL CO. LTD. (DB 69-053-6552)

[Address]

Osaka Prefecture Kadoma City Oaza Kadoma 100 6

(72) [Inventor]

[Name]

Asai discernment

[Address]

Inside of Osaka Prefecture Kadoma City Oaza Kadoma 100 6 Matsushita Electric Industrial Co. Ltd. (DB 69-053-6552)

(72) [Inventor]

[Name]

Tamaoki Tokuhiko

[Address]

Inside of Osaka Prefecture Kadoma City Oaza Kadoma 100 6 Matsushita Electric Industrial Co. Ltd. (DB 69-053-6552)

(74) [Attorney(s) Representing All Applicants]

[Patent Attorney]

[Name]

Kokaji, Akira (2 others)

(57) [Abstract]

[Objective]

contact hole of plural where depth differs number of steps is formedwithout increasing.

[Constitution]

On silicon substrate 1 and metallization layer 4, insulating layer 5 and planarization insulating layer 6 of 2 kinds or more ratioof etching velocity 5 or greater ago vis-a-vis etching which uses etching gas where carbon monoxide is added insulating layer 5 where etching velocity is small is formedin silicon substrate 1 and metallization layer 4 side, with first etching which uses etching gas where carbon monoxide is added, Until insulating layer 5 exposes in first contact hole 12a etching is done.

その後、拡散層 8 および配線層 4 に対する絶縁層 5 のエッチング速度の比が高い第 2 のエッチング条件によって、第 1 コンタクトホール 12a および第 2 コンタクトホール 12b において拡散層 8 および配線層 4 が露出するまで第 2 のエッチングを行う。

Claims

【特許請求の範囲】

【請求項1】

半導体基板とその半導体基板上に保護絶縁膜を介して形成された配線層とを覆う第 1 の絶縁膜と前記第 1 の絶縁膜とは同一エッチング条件でエッチング速度の異なる第 2 の絶縁膜とを形成する工程と、コンタクトをとるべき配線層または半導体基板上の第 2 の絶縁膜上の所定の領域を除いてエッチングマスクを形成する工程と、一酸化炭素を含有するエッチングガスを用いて第 2 の絶縁膜と第 1 の絶縁膜をエッチングし、配線層または半導体基板に違するコンタクトホールを形成する工程を有するコンタクトホールの形成方法。

【請求項2】

同一のエッチング条件において、第 1 の絶縁膜 のエッチング速度が第 2 の絶縁膜のエッチング After that, until with second etching condition whose ratio of etching velocity of insulating layer 5 for diffusion layer 8 and metallization layer 4 is high, diffusion layer 8 and metallization layer 4 expose in first contact hole 12a and second contact hole 12b second etching is done.

[Claim(s)]

[Claim 1]

semiconductor substrate and through protective insulating film on semiconductor substrate, second insulating film and first insulating film etching are done making use of etching gas which contains step。 carbon monoxide which forms etching mask first insulating film and aforementioned first insulating film which cover metallization layer which was formed as metallization layer which should take step。 contact which forms second insulating film where etching velocity differs in same etching condition or excluding predetermined domain on second insulating film on semiconductor substrate, metallization layer or formation method。 of contact hole which possesses step whichforms contact hole which reaches to semiconductor substrate

[Claim 2]

In same etching condition, formation method, of contact hole which is stated in Claim 1 where etching velocity of first

Page 3 Paterra Instant MT Machine Translation

速度より小さい請求項1記載のコンタクトホール の形成方法。

Specification

【発明の詳細な説明】

[0001]

【産業上の利用分野】

本発明は、配線層または半導体基板に到達するコンタクトホールを絶縁膜に形成するコンタクトホールの形成方法に関する。

[0002]

【従来の技術】

半導体集積回路装置は、半導体基板上に形成されたトランジスタ等の回路素子を電気的に接続するための拡散層または配線層からなる配線を有している

半導体基板上に集積される回路素子の数が増加するに伴い、回路素子の寸法および回路素子間の距離は益々縮小してきている。

このような高密度に形成された回路素子を接続するために、多層配線構造を有する半導体装置が開発されている。

[0003]

以下従来のコンタクトホールの形成方法について説明する。

図 3 は従来のコンタクトホールの形成方法を説明する図である。

図3に示するに MOS 型半導体装置は、シリコン基板1と、シリコン基板1の表面の所定領域に形成された素子分離酸化膜2aおよび2bと、シコン基板 1の素子分離酸化膜2aおよび2bが形成されていない領域(素子領域)にまたがって形成されたMOSFET3と、素子分離酸化膜2aおよび2b上に形成された配線層4と、MOSFET3と配線層4とを互いに接続するための上部配線層7を有している。

MOSFET3 は、シリコン基板 1 の素子領域の所定部分に形成された不純物拡散層(ソースまたはドレンとして機能する)8 と、素子領域上に形成されたゲート酸化膜9と、ゲート酸化膜9の上に形成されたゲート電極 10 と、ゲート電極側壁

insulating film is smaller than etching velocity of second insulating film

[Description of the Invention]

[0001]

[Field of Industrial Application]

this invention regards formation method of contact hole which forms contact hole whicharrives in metallization layer or semiconductor substrate in insulating film.

[0002]

[Prior Art]

semiconductor integrated circuit equipment has had metallization which consists of diffusion layer or metallization layer in order to connect transistor or other circuit element which was formed on semiconductor substrate to the electrical.

As quantity of circuit element which is accumulated on semiconductor substrate increases, it has reduced dimension of circuit element and distance between circuit element more and more

In order to connect circuit element which was formed to this kind of high density, semiconductor device which possesses multilayer metallization structure is developed.

10003

You explain concerning formation method of below conventional contact hole.

Figure 3 is figure which explains formation method of conventional contact hole.

Way it shows in Figure 3, as for MOS type semiconductor device, were formed to specified domain of surface of silicon substrate 1 and silicon substrate 1 extending over element separation oxidized film 2a and 2 b and element separation oxidized film 2a of silicon substrate 1 and domain (element domain) where 2 b arenot formed, insulating layer 5 which covers MOSFET 3 and were formed on the element separation oxidized film 2a and 2 b metallization layer 4 and MOSFET 3 and metallization layer 4 which wereformed and, It has possessed upper part metallization layer 7 in order to connect planarization insulating layer 6 and MOSFET 3 and metallization layer 4 mutually.

MOSFET 3, impurity diffusion layer which was formed to specified part of element domain of the silicon substrate 1 (It functions as source or drain.) has had gate oxide film 9 and were formed on gate oxide film 9 gate electrode 10 and gate electrode side wall protective film 11 which were formed on 8

保護膜 11を有している。

CVD 法によって高温形成された酸化珪素(High Temperature Oxide;HTO)からなる絶縁層 5 は、多量のりん、ほう素または両者を含む酸化珪素(BPSG)からなる平坦化絶縁層 6 が直接シリコン基板 1 に接し、シコン基板 1 の性質が変化することを防ぐためのものである。

MOSFET3 と配線層 4 とは、絶縁層 5 および平 坦化絶縁層 6 の所定部分に形成された第 1 コンタクトホール 12a と第 2 コンタクトホール 12b を介して接続されている。

絶縁層 5と平坦化絶縁層 6に第1コンタクトホール 12aと第2コンタクトホール 12bを形成するには、以下の2通りの方法がある。

[0004]

まず第1の方法について説明する。

通常の方法によって素子分離酸化膜 2a、2bと、 MOSFET3と、素子分離酸化膜 2b上に配線層 4 が形成される。

絶縁層 5 が MOSFET3 と配線層 4 を覆うように してシリコン基板 1 上に堆積される。

堆積方法としては CVD 法が用いられる。

さらに絶縁層 5 の上に平坦化絶縁層 6 が CVD 法によって形成され、熱処理によって平坦化される。

エッチングマスクとして機能するフォトレジスト膜が平坦化絶縁層 6 上に形成され、その後絶縁層 5 と平坦化絶縁層 6 において第1コンタクトホール 12a が形成されるべき領域(第1コンタクトホール領域 12a とする)と第2コンタクトホール 12b が形成されるべき領域(第2コンタクトホール領域 12b とする)上のフォトレジス 通常のフォトリングラフィ法により除去される。

その後、単一のエッチング条件によって絶縁層 5と平坦化絶縁層 6の第1 おび第 2 コンタクトホール領域 12a、12b がエッチングされる。

[0005]

次に第2の方法について説明する。

HTO からなる絶縁層 5 が MOSFET3 と配線層 4 を覆うようにしてシリコン基板 1 上に堆積される。

堆積方法としては CVD 法が用いられる。

さらに絶縁層5の上にBPSGからなる平坦化絶縁層6がCVD法によって形成され、熱処理によ

and element domain.

high temperature was formed as for insulating layer 5 which consists of silicon oxide (High temperature oxide;HTO) which, planarization insulating layer 6 which consists of silicon oxide (BPSG) which includes the phosphorus, boron or both of large amount touches to silicon substrate 1 directly with the CVD method, property of silicon substrate 1 changes is something in order to prevent.

MOSFET 3 and metallization layer 4, through first contact hole 12a and second contact hole 12b which wereformed to specified part of insulating layer 5 and planarization insulating layer 6 it is connected.

first contact hole 12a and second contact hole 12b are formed in insulating layer 5 and planarization insulating layer 6, there is a method of 2 sorts below.

[0004]

First you explain concerning first method.

metallization layer 4 is formed on element separation oxidized film 2a, 2b and MOSFET-3 and element separation oxidized film 2b with the conventional method.

It is accumulated on silicon substrate 1 that insulating layer 5 covers MOSFET 3 and the metallization layer 4.

It can use CVD method as deposition method.

Furthermore on insulating layer 5 planarization insulating layer 6 is formed with CVD method, planarization is done with thermal processing.

photoresist film which functions as etching mask is formed on planarization insulating layer 6, the domain which first contact hole 12a should form after that in insulating layer 5 and the planarization insulating layer 6 (It makes first contact hole domain 12a.) with photoresist film on domain (It makes second contact hole domain 12b.) which second contact hole 12b should form isremoved by conventional photolithography method

After that, first and second contact hole domain 12a, 12b of insulating layer 5 and planarization insulating layer 6 etching is donewith single etching condition.

[0005]

Next you explain concerning second method.

It is accumulated on silicon substrate 1 that insulating layer 5 which consists of the HTO covers MOSFET 3 and metallization layer 4.

It can use CVD method as deposition method.

Furthermore planarization insulating layer 6 which consists of BPSG on insulating layer 5 isformed with CVD method,

って平坦化される。

エッチングマスクとして機能するフォトレジスト膜が平坦化絶縁層 6 上に形成され、その後絶縁層 5と平坦化絶縁層 6において第1コンタクトホール領域 12a 上のフォトレジス 通常のフォトリングラフィ法により除去される。

その後、単一のエッチング条件によって絶縁層 5 および平坦化絶縁層 6 の第 1 コンタクトホール 領域 12a がエッチングされる。

第1コンタクトホール 12a が形成された後第1コンタクトホール 12a が形成するた めのフォトレジスト膜が剥離され、第2コンタクトホール 12bを形成するために新しく平坦化絶縁層6上にフォトレジス

絶縁層 5を覆う平坦化絶縁層 6において第2コンタクトホール 12b が形成されるべき領域(第2コンタクトホール領域)上のフォトレジスト膜が除去され、単一のエッチング条件によって絶縁層5および平坦化絶縁層6を貫通する第2コンタクトホール領域12bがエッチングされる。

第1コンタクトホール 12a と第2コンタクトホール 12b はどちらを先に形成してもよい。

[0006]

【発明が解決しようとする課題】

しかしながら上記の従来の方法では、エッチングの進行により第2コンタクトホール領域12bにおいて配線層4が露出した後も第1コンタクトホール領域12aにおいてMOSFET3の拡散層8が露出するまでエッチングが実施される。

これは第1コンタクトホール12aの方が第2コンタクトホール12bよりも深いからである。

そのため配線層4の露出部分がオーバーエッチング状態になり、配線層4へのコンタクトの電気的特性が変化したり、第2コンタクトホール12bが配線層4を突き抜けて素子分離酸化膜2bやシコン基板1に達する等の課題を有している。

[0007]

また第2の方法は第1コンタクトホール12aと第2コンタクトホール12bを別工程で形成するため、工程数が増加したりマスクずれが生じ易い等の問題を有しており、半導体装置の歩留まりを悪くする。

[8000]

本発明の目的は上記従来の課題を解決するもので、深さの異なる複数のコンタクトホール形成

planarization is done with thermal processing.

photoresist film on first contact hole domain 12a is removed by conventional photolithography method photoresist film whichfunctions as etching mask is formed on planarization insulating layer 6, after that in insulating layer 5 and planarization insulating layer 6.

After that, first contact hole domain 12a of insulating layer 5 and planarization insulating layer 6 etching is donewith single etching condition.

After first contact hole 12a was formed, photoresist film in order to form first contact hole 12a isexfoliated, photoresist film is formed on planarization insulating layer 6 newly in order to form second contact hole 12b.

photoresist film on domain (second contact hole domain) which second contact hole 12b should form in planarization insulating layer 6 which covers insulating layer 5 is removed, second contact hole domain 12b which penetrates the insulating layer 5 and planarization insulating layer 6 with single etching condition is done etching.

first contact hole 12a and second contact hole 12b may form whichever first.

[0006]

[Problems to be Solved by the Invention]

But with above-mentioned conventional method, after metallization layer 4 exposes with theadvance of etching in second contact hole domain 12b, until diffusion layer 8 of MOSFET 3 exposes in first contact hole domain 12a etching is executed.

Because this first contact hole 12a is deep in comparison with second contact hole 12b.

Because of that exposed part of metallization layer 4 to become overetching state, electrical property of contact to metallization layer 4 changing, second contact hole 12b penetrating metallization layer 4, it has possessed or other problem which reaches to element separation oxidized film 2b and silicon substrate 1.

[0007

In addition as for second method in order to form first contact hole 12a and second contact hole 12b with separate step, number of steps increases and/or we have possessed or other problem which mask gap is easy to occur, make yield of semiconductor device bad.

[8000]

objective of this invention being something which solves theabove-mentioned conventional problem, in first contact

に関して、工程数を増加させることなしに第 1 コンタクトホール領域に露出する配線層またはシリコン基板のオーバーエッチング量および電気的特性の変化を最小限にし、最少のフォトリングラフ おび程度より第 1 コ 2 コンタクトホールを形成できるコンタクトホールの形成方法を提供することを目的とする。

[0009]

【課題を解決するための手段】

この目的を達成するために本発明のコンタクトホールの形成方法は、半導体基板およびその上に形成された配線層を扱う特定の第 1、第 2 の 2 層構造の絶縁層に深さの異なるコンタクトホールを形成する工程において、第 2 の絶縁層を一酸化炭素が添加されたエッチングガスを用いて第1のエッチングを実施し、第1の絶縁層の下地となる半導体基板または配線層がエッチングされにくいエッチング条件を用いて第2のエッチングを実施する構成を有している。

[0010]

【作用】

この構成によって、コンタクトを取る半導体基板または配線層がエッチング雰囲気に曝される時間が短いため、コンタクトホールがオーバーエッチングにより半導体基板または配線層を突き抜けることがなくなり、また半導体基板または配線層へのコンタクトの電気的特性の変化を少なくすることができ、良好なコンタクトを得ることができる。

[0011]

なお本発明者らは、第1のエッチングのエッチンガスとして CHF_3 、 O_2 および COを選択し、各種絶縁層に対して(表 1)のようなxチング速度を得た。

[0012]

【表 1】

hole domain without increasing in regard to contact hole formation of plural where depth differs, exposes the number of steps designates overetching quantity of metallization layer or silicon substrate whichand change of electrical property as minimum, formation method of contact hole which can form first contact hole and second contact hole with the photolithography process of least is offered makes objective.

[0009]

[Means to Solve the Problems]

formation method of contact hole of this invention executes first etching in order toachieve this objective making use of etching gas where carbon monoxide is added in step which forms contact hole where depth differs to insulating layer of specific first, second bilayer structure which covers semiconductor substrate and metallization layer which wasformed on that, second insulating layer, After surface of first insulating layer exposes, it has possessed the constitution which executes second etching semiconductor substrate or metallization layer whichbecomes substrate of first insulating layer making use of etching condition which etching is difficult to be done.

[0010]

[Working Principle]

Because with this constitution, time when semiconductor substrate or metallization layer which takes contact is exposed to etching atmosphere is short, contact hole the semiconductor substrate or metallization layer is penetrated due to overetching, it stops being, in addition change of electrical property of contact to semiconductor substrate or metallization layer decreases, it is possible, can acquire thesatisfactory contact.

[0011]

Furthermore these inventors selected CHF $_3$ 、O $_2$ and CO as etching gas of first etching, acquired etching velocity like (Table 1) vis-a-vis various insulating layer.

[0012]

[Table 1]

		例 1	例 2
エッチングガス 流量(sccm)	CHF₃	3 0	3 0
	02	1. 7	2
	CO	3 0	5 0
エッチング速度 · (nm/min)	BPSG	160	1 2 6
	нто	2 7	2 1
	Si 3 N4	2 9	2 2

[0013]

すなわち、第2の絶縁層を BPSG、第1の絶縁層を HTO または窒化珪素(Si,N4)に選択することによって本発明のコンタクトホールの形成方法に用いるエッチング方法が実現できることを確認した。

[0014]

【実施例】

以下本発明の一実施例におけるコンタクトホールの形成方法について図面を参照しながら説明する。

[0015]

(実施例1)

図 !(a)~(d)は本発明の第 ! の実施例におけるコンタクトホールの形成方法の工程断面図である。

図 1(a)~(d)において図 3 に示す従来例と同一箇所には同一符号を付して説明を省略する。

[0013]

BPSG. first insulating layer etching method which is used for formation method of contact hole of the this invention it selects with can actualize namely, second insulating layer verified in HTO or silicon nitride (Si_3N_4).

[0014]

[Working Example(s)]

While referring to drawing, concerning formation method of contact hole in the one Working Example of below this invention you explain.

[0015]

(Working Example 1)

Figure 1 (a) - as for (d) it is a step sectional view of formation method of contact hole in first Working Example of this invention.

Same symbol on same place as Prior Art Example which is shown in the Figure 3 Figure 1 (a) - in (d) attaching, it abbreviates explanation.

First as sh基板 in Figure 1 (a), with condition which metallization layer 4 and the impurity of width 0.6; mu m film

Page 8 Paterra Instant MT Machine Translation

 $0.4 \, \mu \, \text{m}$ の素子分離酸化膜 2b 上に形成された幅 $0.6 \, \mu \, \text{m}$ 膜厚 $0.3 \, \mu \, \text{m}$ の配線層 $4 \, \text{c}$ 、不純物をドープしない条件で CVD 法によって成膜された 膜厚 $200 \, \text{nm}$ の酸化珪素からなる絶縁層 $5 \, \text{c}$ と、絶縁層 $5 \, \text{o}$ 上に CVD 法によって形成された膜厚 $700 \, \text{nm}$ のほう素とりんをドープ い酸化 珪素 からなり熱処理によって平坦化された平坦化絶縁層 $6 \, \text{c}$ とが形成されており、その上にフォトリソグラフィ法により第 $1 \, \text{a}$ コンタクトホール領域 $12a \, \text{t}$ 第 $2 \, \text{a}$ ンタクトホール領域 $12b \, \text{c}$ に窓 期 けたフォトレジスト膜 $13 \, \text{o}$ が形成される。

MOSFET3 は、幅 0.6μ m 膜厚 0.02μ m のゲート絶縁膜 9 と、膜厚 0.4μ m のゲート電極 10 と、下方の幅 0.2μ m のゲート側壁保護膜 11 と、幅 1μ m の拡散層 8 より構成されている。

第1コンタクトホール領域 12aにおける平坦化絶 縁層 6 の膜厚は 1000nm であり第 2 コンタクト ホール領域 12b における平坦化絶縁層 6 の膜 厚は 500nm である。

絶縁層 5 の膜厚は**ジ**コン基板 1 に与えるスト レスを考慮して 200nm 以下に設定されている。

なお以下の説明において、MOSFET3、絶縁層5配線層 4 および平坦化絶縁層6 が形成されたシリコン基板1をウエハ14と称する。

[0016]

次に図 1(b)に示すようにフォトレジスト膜 13が形成されたウェハ 14を3電極方式の RIE 装置内に導入し、2種類のエッチング条件によりエッチングを行う。

第 1 のエッチング条件のエッチングガスとしては、CHF, および O_2 給有する 混合ガスに COが添加したエッチングガスを用いた。

CHF₃ および O₂ の流量は、各々30sccm および 1.7sccm である。

本実施例では CO の流量は 30sccm、側部電極 に印加す電 圧の周波数は 13.56MHz、RF パ ワーは 250W とした。

下部電極に印加する電圧の周波数は 100kHz、 RF パワーは 100W とした。

放電により一部がイオン化されたエッチングガスはプラズマ状態となり、RIE 装置内に導入されたウェハ14と接触し、ウェハ14上の平坦化絶縁層6の内フォトレジスト膜13に覆われていない

thickness 0.3; mu m which was formed on element separation oxidized film 2b of MOSFET 3 and film thickness 0.4; mu m which were formed on silicon substrate 1, making use of prior art method doped is not done with CVD method film formation insulating layer 5 which consists of silicon oxide of film thickness 200 nm which is done and, It consists of silicon oxide which boron and phosphorus of film thickness 700 nm which was formed on insulating layer 5 with CVD method doped is done the planarization insulating layer 6 which planarization is done is formed with thermal processing, photoresist film 13 which opened window to first contact hole domain 12a and second contact hole domain 12b with photolithography method isformed on that.

MOSFET 3, is formed from gate insulating film 9 of width 0.6; mu m film thickness 0.02; mu m and gate electrode 10 of film thickness 0.4; mu m and gate side wall protective film 11 of the width 0.2; mu m of lower and diffusion layer 8 of width 1; mu m.

As for film thickness of planarization insulating layer 6 in first contact hole domain 12a with 1000 nm, film thickness of planarization insulating layer 6 in second contact hole domain 12b is 500 nm.

film thickness of insulating layer 5 considering stress which is given to the silicon substrate 1, is set to 200 nm or less.

Furthermore silicon substrate 1 where MOSFET 3, insulating layer 5, metallization layer 4 and planarization insulating layer 6 were formed at the time of explaining below, is named wafer 14.

[0016]

As shown next in Figure 1 (b), wafer 14 where photoresist film 13 was formed isintroduced into RIE equipment of 3 electrode system, etching is done with etching condition of 2 kinds.

As etching gas of first etching condition, etching gas which CO adds to mixed gas which contains CHF₃ and O₂ was used.

flow of CHF₃ and O₂ is each 30 secm and 1.7 secm.

With this working example as for flow of CO as for frequency of the voltage which imparting is done as for 13.56 MHz, RFpower it made 250 W in 30 sccm, side part electrode.

As for frequency of voltage which imparting is done as for 100 KHz, RFpower it made 100 W in bottom electrode.

Part as for etching gas which ionization is done becomes plasma state depending upon discharge, contacts with wafer 14 which is introduced into RIE equipment, etching does portion which is not covered in the inside photoresist film 13

JP1994069166A

部分を高い異方性を持つてメチングする。

第 1 のエッチングは第 2 コンタクトホール領域 12b において絶縁層 5 が露出した後も して 継続 行われ、第 1 コンタクトホール領域 12a において 絶縁層 5 が露出するまで行われた後放電を中断する。

[0017]

第1のエッチング条件では平坦化絶縁層6は毎分 150nm エッチングされ、絶縁層 5 は毎分30nm エッチングされる。

したがって、この時点において第 2 コンタクトホール領域 12b においては絶縁層 5 は 100nm エッチングされるが、絶縁層 5 のエッチング速度に対する平坦化絶縁層 6 のエッチング速度の比が 5 を確保できるため 200nm 厚の絶縁層 5 の膜中でエッチングを止めることができる。

以下の説明において、一般的に A のエッチング 速度に対するBのエッチング速度の比を A/Bの 選択比と称することとする。

その後、第2のエッチング条件のエッチングガス として CHF,および O₂ を含有するエッチングガ スを導入する。

CHF; および O₂ の流量は、各々45sccm および 5sccm である。

側部電極に印加される RF パワーを 200W、下部電極に印加される RF パワーを 100W とし、再び側部および下部電極に電力を供給することにより放電を開始した。

[0018]

次に図 1(c)に示すように、第2のエッチングは第1コンタクトホール領域 12aにおいて拡散層8が露出するまで行う。

第 2 のエッチング条件では絶縁層 5 は毎分 120nm エッチングされ、配線層 4 および拡散層 8 は毎分 10nm エッチングされるため、この時点において第 2 コンタクトホール領域 12b においては配線層 4 は 8nm エッチングされる。

この場合の実質的な平坦化絶縁層 6/配線層 4 の選択比は、平坦化絶縁層 6/絶縁層 5 の選択比である 5 と絶縁層 5/配線層 4 の選択比である 12 巻章 算した 60 となり、配線層 4 のオーバーエッチング深さのばらつきを最小限に食い止めることができる。

of planarization insulating layer 6 on wafer 14 with high anisotropy.

first etching is done after insulating layer 5 exposes in second contact hole domain 12b, continuing, insulating layer 5 exposes until in first contact hole domain 12a, after being done, discharge isdiscontinued.

[0017]

With first etching condition as for planarization insulating layer 6 each minute 150 nm etching it is done, insulating layer 5 isdone each minute 30 nm etching.

Therefore, in this time point, in second contact hole domain 12b, insulating layer 5 is done 100 nm etching, but because ratio of etching velocity of planarization insulating layer 6 for etching velocity of insulating layer 5 can guarantee 5, it stops etching in film of insulating layer 5 of 200 nm thick, it is possible.

At time of explaining below, ratio of etching velocity of B generally for etching velocity of A is designated as selectivity of the A/B and it names.

After that, etching gas which contains CHF_3 and O_2 as the etching gas of second etching condition is introduced.

flow of CHF3 and O2 is each 45 sccm and 5 sccm.

In side part electrode RFpower which imparting is done RFpower which the imparting is done was designated as 100 W in 200 W. bottom electrode, discharge wasstarted by again supplying electric power to side part and bottom electrode.

[0018]

As shown next in Figure 1 (c), second etching until diffusion layer 8 exposes in first contact hole domain 12a it does.

With second etching condition as for insulating layer 5 each minute 120 nm etching it is done, as for metallization layer 4 and diffusion layer 8 because each minute 10 nm etching it is done, as for metallization layer 4 8 nm etching it is done regarding second contact hole domain 12b in this time point.

selectivity of effective planarization insulating layer 6/metallization layer 4 in this case, it becomes with 60 where the integration it does, 12 where it is a selectivity of 5 and insulating layer 5/metallization layer 4 which is a selectivity of planarization insulating layer 6/insulating layer 5 eats scatter of overetching depth of metallization layer 4 in the minimum and stops it is possible.

[0019]

単一のエッチングにより本実施例と同様の第 1 コンタクトホール 12a および第 2 コンタクトホール 12b を形成しまとした 場合、平坦化絶緑層 6/配 線層 4 の選択比として 60 が必要となる。

しかしながら平坦化絶縁層6/配線層4の選択比が 60 となるエッチングは実現困難であり本 実施例では実現容易な2つのエッチングにわけることによりその困難性を回避している。

[0020]

次に図 1(d)に示すように、スパッタ法によりアルミ(Al)膜を堆積し所定のパターンにエッチングして上部配線層7を形成する。

[0021]

こうして作製された深さの異なる複数の第 1、第 2 コンタクトホール 12a、12b は、コンタクトホール 0 底に露出した配線層 4 およびジコン基板 1 へのオーバーエッチング 量が少なく、エッチング 雰囲気より受けるダメージおよび汚染が少なく、上部配線層 7 と第 1 コンタクトホール 12a の底に露出したシリコン基板 1 または第 2 コンタクトホール 12b の底に露出した配線層 4 との間で良好なコンタクトを得ることができた。

[0022]

(実施例 2)

図 2(a)~(d)は本発明の第2の実施例におけるコンタクトホールの形成方法の工程断面図である。

図 2(a)~(d)において、図 3 に示す従来例と同一 箇所には同一符号を付して説明を省略する。

まず図 2(a)に示すように、シリコン基板 1 の上に、従来法を用いて形成された MOSFET3 と膜厚 $0.4\,\mu$ m の素子分離酸化膜 2b 上に形成された幅 $0.6\,\mu$ m 膜厚 $0.3\,\mu$ m の配線層 4 と、不純物をドープしない条件で CVD 法によって成膜された膜厚 200nm の酸化珪素からなる絶縁層 5 と、絶縁層 5 の上に CVD 法によって形成された膜厚 700nm のほう素とりんをドープした酸化珪素からなり熱処理によって平坦化された平坦化絶縁層 6 とが形成されており、その上にフォトリソグラフ 法により第 1 コンタクトホール領域 12a が第 2 コンタクトホール領域 12b に窓都開けたフォトレジスト膜 13 が形成される。

[0019]

When it tries to form first contact hole 12a and second contact hole 12b which are similar to the this working example with single etching, 60 becomes necessary as selectivity of planarization insulating layer 6/metallization layer 4.

But etching where selectivity of planarization insulating layer 6/metallization layer 4 becomes with 60 beingactualization difficult, with this working example difficulty is evaded by beingable to boil in actualization easy 2 etching.

[0020]

As shown next in Figure 1 (d), it accumulates aluminum (AI) film with sputtering method and etching does in predetermined pattern and forms upper part metallization layer 7.

[0021]

In this way, as for first, second contact hole 12a, 12b of plural where depth which isproduced differs, overetching quantity to metallization layer 4 and silicon substrate 1 whichare exposed in bottom of contact hole is small, etching atmosphere compared to damage and pollution which are received are little, Satisfactory contact could be acquired between metallization layer 4 which isexposed in bottom of silicon substrate 1 or second contact hole 12b which is exposed in the bottom of upper part metallization layer 7 and first contact hole 12a.

[0022]

(Working Example 2)

Figure 2 (a) - as for (d) it is a step sectional view of formation method of contact hole in second Working Example of this invention.

Figure 2 (a) - in (d), same symbol on same place as the Prior Art Example which is shown in Figure 3 attaching, it abbreviatesexplanation.

First as shown in Figure 2 (a), with condition which metallization layer 4 and the impurity of width 0.6; mu m film thickness 0.3; mu m which was formed on element separation oxidized film 2b of MOSFET 3 and film thickness 0.4; mu m which were formed on silicon substrate 1, making use of prior art method doped is not done with CVD method film formation insulating layer 5 which consists of silicon oxide of film thickness 200 nm which is done and, It consists of silicon oxide which boron and phosphorus of film thickness 700 nm which was formed on insulating layer 5 with CVD method doped is done the planarization insulating layer 6 which planarization is done is formed with thermal processing, photoresist film 13 which opened window to first contact hole domain 12a and second contact hole domain 12b with

MOSFET3 は、幅 0.6μ m で膜厚 0.02μ m のゲート絶縁膜 9 と、膜厚 0.4μ m のゲート電極 10 と、下方の幅 0.2μ m のゲート電極側壁保護膜 11 と、膜厚 140nm のゲート電極上部保護膜 15 と、幅 1μ m の拡散層 8 より構成されている。

配線層 4 は、膜厚 140nm の CVD 法によって成膜された酸化珪素からなる配線層上部保護膜 16 と下方の幅 0.2 µm の配線層側壁保護膜 17 によって扱われている。

配線層上部保護膜16は、第2のエッチング条件に対して絶縁層5と同じエッチング速度を持つものである。

第1コンタクトホール領域12aにおける平坦化絶 緑層6の膜厚は1000nmであり第 2 コンタクト ホール領域12bにおける平坦化絶緑層6の膜 厚は300nmである。

なお以下の説明において、MOSFET3、絶縁層 5配線層 4 および平坦化絶縁層 6 が形成されたシリコン基板 1 を以下ウェハ 14 と称する。

次にウェハ 14 は第 1 のエッチング条件によりウェハ 14 上の平坦化絶縁層 6 の内フォトレジスト 膜 13 に覆われていない部分が高い異方性を持ってエッチングされる。

[0023]

次に図 2(b)に示すように、第 1 のエッチングは第 2 コンタクトホール領域 12b において絶縁層 5 が露出した後も継続して行われ、第 1 コンタクトホール領域 12a において絶縁層 5 が露出するまで行われた後、放電を中断する。

第 1 のエッチングにより第 2 コンタクトホール領 域 12bにおいては、絶縁層 5 は 140nm エッチン <mark>を</mark>れる

その後、第 2 のエッチング条件により再びエッチングを開始する。

[0024]

次に図 2(c)に示すように、第 2 のエッチングは第 1 コンタクトホール領域 12a において拡散層 8 が露出し、かつ第 2 コンタクトホール領域 12b において配線層 4 が露出するまで行う。

第 2 のエッチングによってエッチングされる膜は、第1コンタクトホール領域 12aにおいては膜厚 200nm の絶縁層 5 であり第 2 コンタクトホ

photolithography method isformed on that.

MOSFET 3, with width 0.6; mu m is formed from gate insulating film 9 of the film thickness 0.02; mu m and gate electrode 10 of film thickness 0.4; mu m and gate electrode side wall protective film 11 of width 0.2; mu m of lower and gate electrode upper part protective film 15 of film thickness 140 nm and diffusion layer 8 of width 1; mu m.

As for metallization layer 4, with CVD method of film thickness 140 nm it is covered with metallization layer sidewall protection membrane 17 of width 0.2; mu m of metallization layer upper part protective film 16 and lower whichconsist of silicon oxide which film formation is done.

metallization layer upper part protective film 16 as insulating layer 5 is something which has same etching velocity vis-a-vis second etching condition.

As for film thickness of planarization insulating layer 6 in first contact hole domain 12a with 1000 nm, film thickness of planarization insulating layer 6 in second contact hole domain 12b is 300 nm.

Furthermore silicon substrate 1 where MOSFET 3, insulating layer 5, metallization layer 4 and planarization insulating layer 6 were formed at the time of explaining below, is named or less wafer 14.

Next wafer 14 etching is done with anisotropy where portion whichis not covered in inside photoresist film 13 of planarization insulating layer 6 on wafer 14 by the first etching condition is high.

[0023]

As shown next in Figure 2 (b), first etching is done after insulating layer 5 exposes in second contact hole domain 12b, continuing, insulating layer 5 exposes until in the first contact hole domain 12a, after being done, discharge is discontinued.

With first etching regarding second contact hole domain 12b, insulating layer 5 is done 140 nm etching.

Again after that, etching is started with second etching condition .

[0024]

As shown next in Figure 2 (c), diffusion layer 8 exposes second etching in the first contact hole domain 12a, metallization layer 4 exposes at same time until in second contact hole domain 12b, it does.

film which etching is done regarding first contact hole domain 12a with insulating layer 5 of film thickness 200 nm, is insulating layer 5 of film thickness 60 nm and metallization

ール領域 12b においては膜厚 60nm の絶縁層 5 と膜厚 140nm の配線層上部保護膜 16である。

絶縁層 5 と配線層上部保護膜 16 は同一材料から構成されているため第 2 のエッチング条件に対して同じエッチング速度となるので、第 1 コンタクトホール領域 12a における拡散層 8 と第 2 コンタクトホール領域 12b における配線層 4 は第 2 のエッチングによって同 時に露出する。

この場合の見かけ上の平坦化絶縁層 6/配線層 4 の選択比は無限大となり、配線層 4 のオーバーエッチング深さのばらつきを最小限に食い止めることができる。

[0025]

次に図 2(d)に示すように、スパッタ法により AI 膜を堆積し所定のパターンにエッチングして上部配線層 7を形成する。

[0026]

こうして作製された深さの異なる複数の第 1; 第 2 コンタクトホール 12a、12b は、コンタクトホール 0底に露出した配線層 4 およびジョン基板 1 へのオーバーエッチング量が極めて少なく、エッチング雰囲気より受けるダメージおよび汚染が少なく上 部配線層 7 センタ 底に露出したシリコン基板 1 または配線層 4 との間で良好なコンタクトを得ることができた。

[0027]

なお本実施例では、エッチング装置として3電極 方式の RIE 装置を用いたが、2 電極方式の RIE 装置、ECR-RIE 装置、マグネトロン RIE 装置、ナ ローギャップ方式の RIE 装置等を用いても同様 のエッチングを行うことができる。

[0028]

なお本実施例では、第 1 のエッチング条件のエッチングガスとして CHF_3 、 O_2 および CO を用いたが、少なくとも一つの C-F 結合もつガスと CO を用いても同様のエッチングを行うことができる。

[0029]

なお本実施例では、絶縁層5 おび配線層上 部保護膜 16 として CVD 法によって成膜された酸化珪素を用いたが、熱酸化による酸化珪素、CVD 法による酸化窒化珪素、CVD 法による窒化珪素等を用いても同様の効果を得ることができる。

layer upper part protective film 16 of film thickness 140 nm with second etching regarding second contact hole domain 12b.

Because insulating layer 5 and metallization layer upper part protective film 16 because it is constituted from thesame material, become same etching velocity vis-a-vis second etching condition, diffusion layer 8 in first contact hole domain 12a and metallization layer 4 in second contact hole domain 12b it exposes simultaneously with second etching.

selectivity of planarization insulating layer 6/metallization layer 4 on apparent in this case it becomes infinitely large, eats scatter of overetching depth of metallization layer 4 in minimum and stops it ispossible.

[0025]

As shown next in Figure 2 (d), it accumulates Al film with sputtering method and etching does in predetermined pattern and forms upper part metallization layer 7.

[0026]

In this way, as for first, second contact hole 12a, 12b of plural where depth which isproduced differs, overetching quantity to metallization layer 4 and silicon substrate 1 whichare exposed in bottom of contact hole quite is small, satisfactory contact could be acquired between silicon substrate 1 or metallization layer 4 where etching atmosphere compared to damage and pollution which are received are little, expose in bottom of upper part metallization layer 7 and contact hole.

[0027]

Furthermore RIE equipment of 3 electrode system was used with this working example, as etching equipment similar etching is done, but making use of RIE equipment etc of the RIE equipment. ECR-RIE equipment, magnetron RIE equipment, + low gap system of 2 electrode system it is possible.

[0028]

Furthermore CHF $_3$ 、O $_2$ and CO were used with this working example, as the etching gas of first etching condition similar etching is done, but C-F connection of at least one making use of gas and CO which it has it ispossible .

[0029]

Furthermore with this working example, silicon oxide which film formation is done was used with CVD method as insulating layer 5 and metallization layer upper part protective film 16, but with thermal oxidation with the silicon oxide, CVD method similar effect can be acquired with silicon oxynitride. CVD method making use of the silicon nitride

きる。

[0030]

なお本実施例では、配線層上部保護膜 16 と絶 緑層 5 を同一材料により構成したが、配線層上 部保護膜16と絶縁層5を異なる材料から構成し てもよい。

[0031]

なお本実施例では、配線層上部保護膜 16 を単一材料により構成したが、2 つ以上の材料から 構成される2層以上の構造としてもよい。

[0032]

なお本実施例では、絶縁層 5 を単一材料により 構成したが、2 つ以上の材料から構成される 2 層以上の構造としてもよい。

[0033]

なお本実施例では、絶縁層 5 と平坦化絶縁層 6 の 2 層の絶縁層を用いたが、絶縁層 5 と平坦化 絶縁層 6 は 3 層以上の構成としてもよい。

3 層以上の構成とした場合、エッチング条件を 3 つ以上用いてもよい。

[0034]

なお本実施例では、第1のエッチング条件として 平坦化絶縁層 6/絶縁層 5 の選択比が 5 とる。 エッチング条件を用いたが、平坦化絶縁層 6/絶 縁層 5 の選択比が 5 以上となる他のエッチング 条件でもよい。

[0035]

【発明の効果】

以上のように本発明は、深さの異なる複数のコ 取る半額体基板 取る半額体基板 取る半額体基板 をは配線層がエッチング雰囲気に曝される時間が短く、コンタクトホールがオーバーエッチング により半導体基板または配線層を突き抜けることがなく、半導体基板または配線層がエッチング雰囲気より受けるダメージおよび汚染を少なくすることができ、良好なコンタクトを得ることができる優れたコンタクトホールの形成方法を実現ることができる。

[0036]

etc.

[0030]

Furthermore with this working example, metallization layer upper part protective film 16 and insulating layer 5 were formed due tosame material, but it is possible to form metallization layer upper part protective film 16 and insulating layer 5 from material which differs.

[0031]

Furthermore with this working example, metallization layer upper part protective film 16 was formed due to single material, butit is possible as structure of 2 layers or more which are formed from material of 2 or more.

[0032]

Furthermore with this working example, insulating layer 5 was formed due to single material, butit is possible as structure of 2 layers or more which are formed from material of 2 or more.

[0033]

Furthermore with this working example, insulating layer of 2 layers of insulating layer 5 and the planarization insulating layer 6 was used, but insulating layer 5 and planarization insulating layer 6 are possible asconstitution of 3 layers or more.

When it it constitutes of 3 layers or more, 3 or more it is possible to use the etching condition.

[0034]

Furthermore with this working example, etching condition where selectivity of planarization insulating layer 6/insulating layer 5 becomes with 5 as first etching condition was used, but it is good even with theother etching condition where selectivity of planarization insulating layer 6/insulating layer 5 becomes 5 or greater.

[0035]

[Effects of the Invention]

Like above as for this invention, contact hole of plural where depth differs, time where which takes contact is exposed to etching atmosphere is short, contact hole penetrates semiconductor substrate or the metallization layer due to overetching, is not, semiconductor substrate or metallization layer the etching atmosphere compared to decreases damage and pollution which are received, it to be possible, Satisfactory contact can be acquired can actualize formation method of the contact hole which is superior.

[0036]

タクトを

```
また深さの異なるコンタクトホールを最小回数の
                                                In addition because contact hole where depth differs can be
   フォトリソグラフィエ程で形成することができるた
                                                formedwith photolithography process of minimum number of
   め、半羽体集積回路を高歩留まり生産すること
                                                times, high yield rate produces semiconductor integrated
   ができ、その実用的効果は極めて大きい。
                                                circuit tobe possible, practical effect quite is large.
   【図面の簡単な説明】
                                                [Brief Explanation of the Drawing(s)]
   【図1】
                                               [Figure 1]
   (a)~(d)は本発明の第1の実施例におけるコンタ
                                               (a) - As for (d) step sectional view of formation method of
   クトホールの形成方法の工程断面図
                                               contact hole in first Working Example of this invention
  【図2】
                                               [Figure 2]
  (a)~(d)は本発明の第2の実施例におけるコンタ
                                               (a) - As for (d) step sectional view of formation method of
  クトホールの形成方法の工程断面図
                                               contact hole in second Working Example of this invention
  【図3】
                                               [Figure 3]
  従来のコンタクトホールの形成方法を説明する
                                               formation method of conventional contact hole is explained
  図
  【符号の説明】
                                              [Explanation of Symbols in Drawings]
 りつン基板 (半導体基板)
                                              silicon substrate (semiconductor substrate)
 12a
                                              12 a
 第1コン
                  (コンタクトホール)
                                    タクトホール first contact hole (contact hole )
 12b
                                              12 b
 第2コン
                  (コンタクトホール)
                                    タクトホール second contact hole (contact hole)
 13
                                              13
 フォトレジスト膜(エッチングマスク)
                                              photoresist film (etching mask )
 2a
                                              2 a
素子分離酸化膜(保護絶縁膜)
                                             element separation oxidized film (protective insulating film )
2b
素子分離酸化膜(保護絶縁膜)
                                             element separation oxidized film (protective insulating film )
配線層
                                             metallization layer
5
絶縁層(第1の絶縁膜)
                                             insulating layer (first insulating film )
平坦化絶縁層(第2の絶縁膜)
                                            planarization insulating layer (second insulating film )
Drawings
【図1】
                                            [Figure 1]
```


[Figure 2]

12a 7 6 12b

12a 7 6 12b

2a 8 11 9 10 11 8 1 26 4 5

[Figure 3]

Page 17 Paterra Instant MT Machine Translation

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-69166

(43)公開日 平成6年(1994)3月11日

(51) Int.Cl.5

識別記号

庁内整理番号

FI

技術表示箇所

H 0 1 L 21/302

F 9277-4M

21/28

L 9055-4M

21/90

A 7514-4M

審査請求 未請求 請求項の数2(全 6 頁)

(21)出願番号

特顏平4-216748

(22)出願日

平成4年(1992)8月14日

(71)出願人 000005821

松下電器産業株式会社

大阪府門真市大字門真1006番地

(72) 発明者 浅井 明

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(72)発明者 玉置 徳彦

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(74)代理人 弁理士 小鍜治 明 (外2名)

(54)【発明の名称】 コンタクトホールの形成方法

(57)【要約】

【目的】 深さの異なる複数のコンタクトホールを工程 数を増加させることなく形成する。

シリコン基板1および配線層4上に、一酸化炭 秦が添加されたエッチングガスを用いるエッチングに対 してエッチング速度の比が5以上となる2種類以上の絶 縁層5および平坦化絶縁層6をエッチング速度の小さい絶 縁層5をシリコン基板1および配線層4側に形成し、一酸 化炭素が添加されたエッチングガスを用いた第1のエッ チングによって、第1コンタクトホール12aにおいて絶 縁層5が露出するまでエッチングを行う。その後、拡散 層8および配線層4に対する絶縁層5のエッチング速度の 比が高い第2のエッチング条件によって、第1コンタク トホール12aおよび第2コンタクトホール12bにおいて拡 散層8および配線層4が露出するまで第2のエッチングを 行う。

【特許請求の範囲】

【請求項1】 半導体基板とその半導体基板上に保護絶 縁膜を介して形成された配線層とを覆う第1の絶縁膜と 前記第1の絶縁膜とは同一エッチング条件でエッチング 速度の異なる第2の絶縁膜とを形成する工程と、コンタ クトをとるべき配線層または半導体基板上の第2の絶縁 膜上の所定の領域を除いてエッチングマスクを形成する 工程と、一酸化炭素を含有するエッチングガスを用いて 第2の絶縁膜と第1の絶縁膜をエッチングし、配線層ま たは半導体基板に達するコンタクトホールを形成するエ 10 緑層 5 がMOSFET 3 と配線層 4 を覆うようにしてシリコン 程を有するコンタクトホールの形成方法。

【請求項2】 同一のエッチング条件において、第1の 絶縁膜のエッチング速度が第2の絶縁膜のエッチング速 度より小さい請求項1記載のコンタクトホールの形成方 法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、配線層または半導体基 板に到達するコンタクトホールを絶縁膜に形成するコン タクトホールの形成方法に関する。

[0002]

【従来の技術】半導体集積回路装置は、半導体基板上に 形成されたトランジスタ等の回路素子を電気的に接続す るための拡散層または配線層からなる配線を有してい る。半導体基板上に集積される回路素子の数が増加する に伴い、回路素子の寸法および回路素子間の距離は益々 縮小してきている。このような高密度に形成された回路 素子を接続するために、多層配線構造を有する半導体装 置が開発されている。

【0003】以下従来のコンタクトホールの形成方法に 30 ついて説明する。図3は従来のコンタクトホールの形成 方法を説明する図である。図3に示すようにMOS 型半導 体装置は、シリコン基板1と、シリコン基板1の表面の 所定領域に形成された素子分離酸化膜2aおよび2b と、シリコン基板1の素子分離酸化膜2aおよび2bが 形成されていない領域(素子領域)にまたがって形成さ れたMOSFET3と、素子分離酸化膜2aおよび2b上に形 成された配線層4と、MOSFET3と配線層4を覆う絶線層 5と、平坦化絶縁層6と、MOSFET3と配線層4とを互い に接続するための上部配線層7を有している。MOSPET3 40 は、シリコン基板1の素子領域の所定部分に形成された 不純物拡散層 (ソースまたはドレインとして機能する) 8と、素子領域上に形成されたゲート酸化膜9と、ゲー ト酸化膜9の上に形成されたゲート電極10と、ゲート 電極側壁保護膜11を有している。CVD法によって高 温形成された酸化珪素(High Temperature Oxide; HT ○)からなる絶縁層5は、多量のりん、ほう素または両 者を含む酸化珪素(BPSG)からなる平坦化絶縁層6 が直接シリコン基板1に接し、シリコン基板1の性質が

層4とは、絶縁層5および平坦化絶縁層6の所定部分に 形成された第1コンタクトホール12aと第2コンタク トホール12 bを介して接続されている。絶縁層5と平 坦化絶縁層6に第1コンタクトホール12aと第2コン タクトホール12bを形成するには、以下の2通りの方

【0004】まず第1の方法について説明する。通常の 方法によって素子分離酸化膜2a、2bと、MOSFET3 と、素子分離酸化膜2b上に配線層4が形成される。絶 基板1上に堆積される。堆積方法としてはCVD法が用 いられる。さらに絶縁層5の上に平坦化絶録層6がCV D法によって形成され、熱処理によって平坦化される。 エッチングマスクとして機能するフォトレジスト膜が平 坦化絶縁層6上に形成され、その後絶縁層5と平坦化絶 緑層6において第1コンタクトホール12aが形成され るべき領域(第1コンタクトホール領域12aとする) と第2コンタクトホール12bが形成されるべき領域 (第2コンタクトホール領域12bとする)上のフォト 20 レジスト膜が通常のフォトリソグラフィ法により除去さ れる。その後、単一のエッチング条件によって絶縁層5 と平坦化絶縁層6の第1および第2コンタクトホール領 域12a、12bがエッチングされる。

【0005】次に第2の方法について説明する。HTO からなる絶縁層5がMOSFET3と配線層4を覆うようにし てシリコン基板1上に堆積される。堆積方法としてはC VD法が用いられる。さらに絶縁層5の上にBPSGか らなる平坦化絶縁層6がCVD法によって形成され、熱 処理によって平坦化される。エッチングマスクとして機 能するフォトレジスト膜が平坦化絶縁層6上に形成さ れ、その後絶縁層5と平坦化絶縁層6において第1コン タクトホール領域12a上のフォトレジスト膜が通常の フォトリソグラフィ法により除去される。その後、単一 のエッチング条件によって絶縁層5および平坦化絶縁層 6の第1コンタクトホール領域12aがエッチングされ る。第1コンタクトホール12aが形成された後第1コ ンタクトホール12aを形成するためのフォトレジスト 膜が剥離され、第2コンタクトホール12bを形成する ために新しく平坦化絶縁層6上にフォトレジスト膜が形 成される。絶縁層5を覆う平坦化絶縁層6において第2 コンタクトホール12bが形成されるべき領域(第2コ ンタクトホール領域)上のフォトレジスト漠が除去さ れ、単一のエッチング条件によって絶縁層5および平坦 化絶縁層6を貫通する第2コンタクトホール領域12b がエッチングされる。第1コンタクトホール12aと第 2コンタクトホール12 bはどちらを先に形成してもよ W.

[0006]

【発明が解決しようとする課題】しかしながら上記の従 変化することを防ぐためのものである。MOSFET 3 と配線 50 来の方法では、エッチングの進行により第 2 コンタクト

ホール領域12bにおいて配線層4が露出した後も第1 コンタクトホール領域12aにおいてMOSFET3の拡散層 8が露出するまでエッチングが実施される。これは第1 コンタクトホール12aの方が第2コンタクトホール1 2 bよりも深いからである。そのため配線層4の露出部 分がオーバーエッチング状態になり、配線層4へのコン タクトの電気的特性が変化したり、第2コンタクトホー ル12 bが配線層4を突き抜けて素子分離酸化膜2 bや シリコン基板1に達する等の課題を有している。

【0007】また第2の方法は第1コンタクトホール1 10 2 a と第 2 コンタクトホール 1 2 b を別工程で形成する ため、工程数が増加したりマスクずれが生じ易い等の問 題を有しており、半導体装置の歩留まりを悪くする。

【0008】本発明の目的は上記従来の課題を解決する もので、深さの異なる複数のコンタクトホール形成に関 して、工程数を増加させることなしに第1コンタクトホ 一ル領域に露出する配線層またはシリコン基板のオーバ ーエッチング量および電気的特性の変化を最小限にし、 最少のフォトリソグラフィ工程により第1コンタクトホ ールおよび第2コンタクトホールを形成できるコンタク 20 し、各種絶縁層に対して(表1)のようなエッチング速 トホールの形成方法を提供することを目的とする。 [0009]

【課題を解決するための手段】この目的を達成するため*

*に本発明のコンタクトホールの形成方法は、半導体基板 およびその上に形成された配線層を覆う特定の第1、第 2の2層構造の絶縁層に深さの異なるコンタクトホール を形成する工程において、第2の絶縁層を一酸化炭素が 添加されたエッチングガスを用いて第1のエッチングを 実施し、第1の絶縁層の表面が露出した後第1の絶縁層 の下地となる半導体基板または配線層がエッチングされ にくいエッチング条件を用いて第2のエッチングを実施 する構成を有している。

[0010]

【作用】この構成によって、コンタクトを取る半導体基 板または配線層がエッチング雰囲気に曝される時間が短 いため、コンタクトホールがオーバーエッチングにより 半導体基板または配線層を突き抜けることがなくなり、 また半導体基板または配線層へのコンタクトの電気的特 性の変化を少なくすることができ、良好なコンタクトを 得ることができる。

【0011】なお本発明者らは、第1のエッチングのエ ッチングガスとしてCHF:、OzおよびCOを選択 度を得た。

[0012]

【表1】

		例1	例 2
エッチングガス · 流量(sccm)	CHF₃	3 0	3 0
	02	1. 7	2
	CO	3 0	5 0
エッチング速度 (nm/min)	BPSG	1 6.0	1 2 6
	нто	2 7	2 1
	Si 3 N4	2 9	2 2

【0013】 すなわち、第2の絶縁層をBPSG、第1 の絶縁層をHTOまたは窒化珪素(SiaMa)に選択する ことによって本発明のコンタクトホールの形成方法に用 いるエッチング方法が実現できることを確認した。

[0014]

【実施例】以下本発明の一実施例におけるコンタクトホ ールの形成方法について図面を参照しながら説明する。 【0015】 (実施例1) 図1 (a) ~ (d) は本発明 の第1の実施例におけるコンタクトホールの形成方法の 50 工程断面図である。図1 (a) ~ (d) において図3に

示す従来例と同一箇所には同一符号を付して説明を省略 する。まず図1 (a) に示すように、シリコン基板1上 に、従来法を用いて形成されたMOSFET3と膜厚0.4μmの 素子分離酸化膜2 b上に形成された幅0,6μΦ膜厚0.3μΦ の配線層4と、不純物をドープしない条件でCVD法に よって成膜された膜厚200mm の酸化珪素からなる絶縁層 5と、絶縁層5の上にCVD法によって形成された膜厚 700mm のほう素とりんをドープした酸化珪素からなり熱 処理によって平坦化された平坦化絶縁層6とが形成され ており、その上にフォトリソグラフィ法により第1コン タクトホール領域12aおよび第2コンタクトホール領 域12 bに窓を開けたフォトレジスト膜13が形成され る, MOSFET 3 は、幅0.6μm膜厚0.02μm のゲート絶縁膜 9 と、膜厚0.4μmのゲート電極1 0 と、下方の幅0.2μm のゲート側壁保護膜11と、幅1μπの拡散層8より構成 されている。第1コンタクトホール領域12aにおける 平坦化絶縁層6の膜厚は1000nmであり、第2コンタクト ホール領域12bにおける平坦化絶縁層6の膜厚は500n m である。絶縁層5の膜厚はシリコン基板1に与えるス トレスを考慮して200mm 以下に設定されている。なお以 20 下の説明において、MOSFET 3、絶縁層5、配線層4およ び平坦化絶縁層6が形成されたシリコン基板1をウエハ 14と称する。

【0016】次に図1(b)に示すようにフォトレジス ト膜13が形成されたウェハ14を3電極方式のRIE 装置内に導入し、2種類のエッチング条件によりエッチ ングを行う。第1のエッチング条件のエッチングガスと しては、CHF3 およびO2を含有する混合ガスにCO が添加したエッチングガスを用いた。CHF。およびO z の流量は、各々30sccmおよび1.7sccm である。本実施 30 例ではCOの流量は30sccm、側部電極に印加する電圧の 周波数は13.56MHz、RFパワーは250Wとした。下部電極 に印加する電圧の周波数は100kHz、RFパワーは100Wと した。放電により一部がイオン化されたエッテングガス はプラズマ状態となり、RIE装置内に導入されたウェ ハ14と接触し、ウェハ14上の平坦化絶縁層6の内フ オトレジスト膜13に覆われていない部分を高い異方性 を持ってエッチングする。第1のエッチングは第2コン タクトホール領域12bにおいて絶縁層5が露出した後 も継続して行われ、第1コンタクトホール領域12aに 40 おいて絶縁層るが露出するまで行われた後放電を中断す る。

【0017】第1のエッチング条件では平坦化絶縁層6 は毎分150nm エッチングされ、絶縁層5は毎分30nmエッ テングされる。したがって、この時点において第2コン タクトホール領域12bにおいては絶縁層5は100nm エ ッチングされるが、絶録層5のエッチング速度に対する 平坦化絶録層6のエッチング速度の比が5を確保できる ため200mm 厚の絶縁層5の膜中でエッチングを止めるこ

ング速度に対するBのエッチング速度の比をA/Bの選 択比と称することとする。その後、第2のエッチング条 件のエッチングガスとしてCHF; およびOz を含有す るエッチングガスを導入する。CHF1およびO1の流 量は、各々45sccmおよび5sccm である。側部電極に印加 されるRFパワーを200W、下部電極に印加されるRFパ ワーを100%とし、再び側部および下部電極に電力を供給 することにより放電を開始した。

【0018】次に図1(c)に示すように、第2のエッ チングは第1コンタクトホール領域12aにおいて拡散 層8が露出するまで行う。第2のエッチング条件では絶 縁層 5 は毎分120mm エッチングされ、配線層 4 および拡 散層8は毎分10mmエッチングされるため、この時点にお いて第2コンタクトホール領域12bにおいては配線層 4 は8nm エッチングされる。この場合の実質的な平坦化 絶縁層6/配線層4の選択比は、平坦化絶縁層6/絶縁 層5の選択比である5と絶縁層5/配線層4の選択比で ある12を積算した60となり、配線層4のオーバーエ ッチング深さのばらつきを最小限に食い止めることがで きる。

【0019】単一のエッチングにより本実施例と同様の 第1コンタクトホール12aおよび第2コンタクトホー ル12bを形成しようとした場合、平坦化絶縁層6/配 線層4の選択比として60が必要となる。しかしながら 平坦化絶録層6/配線層4の選択比が60となるエッテ ングは実現困難であり、本実施例では実現容易な2つの エッチングにわけることによりその困難性を回避してい

【0020】次に図1(d)に示すように、スパッタ法 によりアルミ (AI) 膜を堆積し所定のパターンにエッチ ングして上部配線層7を形成する。

【0021】こうして作製された深さの異なる複数の第 1、第2コンタクトホール12a、12bは、コンタク トホールの底に露出した配線層4およびシリコン基板1 へのオーパーエッチング量が少なく、エッチング雰囲気 より受けるダメージおよび汚染が少なく、上部配線層7 と第1コンタクトホール12aの底に露出したシリコン 基板1または第2コンタクトホール12bの底に露出し た配線層4との間で良好なコンタクトを得ることができ

【0022】 (実施例2) 図2 (a) ~ (d) は本発明 の第2の実施例におけるコンタクトホールの形成方法の 工程断面図である。図2(a)~(d)において、図3 に示す従来例と同一箇所には同一符号を付して説明を省 略する。まず図2(a)に示すように、シリコン基板1 の上に、従来法を用いて形成されたMOSFET 3と膜厚0.4 μпの素子分離酸化膜2 b上に形成された幅0.6μп膜厚 0.3μmの配線層4と、不純物をドープしない条件でCV D法によって成膜された膜厚200mm の酸化珪素からなる とができる。以下の説明において、一般的にAのエッチ 50 絶縁層5と、絶縁層5の上にCVD法によって形成され

た膜厚7000回 のほう素とりんをドープした酸化珪素から なり熱処理によって平坦化された平坦化絶縁層6とが形 成されており、その上にフォトリソグラフィ法により第 1コンタクトホール領域12aおよび第2コンタクトホ 一ル領域12bに窓を開けたフォトレジスト膜13が形 成される。MOSFET 3 は、幅0.6μmで膜厚0.02μm のゲー ト絶縁膜9と、膜厚0.4μmのゲート電極10と、下方の 幅0.2µmのゲート電極側壁保護膜11と、膜厚140nm の ゲート電極上部保護膜15と、幅1μπの拡散層8より標 成されている。配線層4は、膜厚140nm のCVD法によ 10 って成膜された酸化珪素からなる配線層上部保護膜16 と下方の幅0.2μπの配線層側壁保護膜17によって覆わ れている。配線層上部保護膜16は、第2のエッチング 条件に対して絶縁層5と同じエッチング速度を持つもの である。第1コンタクトホール領域12aにおける平坦 化絶録層6の膜厚は1000mであり、第2コンタクトホー ル領域12bにおける平坦化絶縁層6の膜厚は300mm で ある。なお以下の説明において、MOSFET3、絶録層5、 配線層4および平坦化絶縁層6が形成されたシリコン基 板1を以下ウェハ14と称する。次にウェハ14は第1 のエッチング条件によりウェハ14上の平坦化絶緑層6 の内フォトレジスト膜13に覆われていない部分が高い 異方性を持ってエッチングされる。

【0023】次に図2(b)に示すように、第1のエッチングは第2コンタクトホール領域12bにおいて絶縁層5が露出した後も継続して行われ、第1コンタクトホール領域12aにおいて絶縁層5が露出するまで行われた後、放電を中断する。第1のエッチングにより第2コンタクトホール領域12bにおいては、絶縁層5は140nmエッチングされる。その後、第2のエッチング条件に30より再びエッチングを開始する。

【0024】次に図2(c)に示すように、第2のエッ チングは第1コンタクトホール領域12aにおいて拡散 層8が露出し、かつ第2コンタクトホール領域12bに おいて配線層4が露出するまで行う。第2のエッチング によってエッチングされる膜は、第1コンタクトホール 領域12aにおいては膜厚200mm の絶縁層5であり、第 2コンタクトホール領域12bにおいては膜厚60mmの絶 縁層 5 と膜厚140mm の配線層上部保護膜 1 6 である。絶 録暦5と配線層上部保護膜16は同一材料から構成され 40 ているため第2のエッチング条件に対して同じエッチン グ速度となるので、第1コンタクトホール領域12aに おける拡散層8と第2コンタクトホール領域12bにお ける配線層4は第2のエッチングによって同時に露出す る。この場合の見かけ上の平坦化絶縁層6/配線層4の 選択比は無限大となり、配線層4のオーパーエッチング 深さのばらつきを最小限に食い止めることができる。

【0025】次に図2(d)に示すように、スパッタ法によりAI膜を堆積し所定のパターンにエッチングして上部配線層7を形成する。

【0026】こうして作製された深さの異なる複数の第1、第2コンタクトホール12a、12bは、コンタクトホールの底に露出した配線層4およびシリコン基板1へのオーパーエッチング量が極めて少なく、エッチング雰囲気より受けるダメージおよび汚染が少なく、上部配線層7とコンタクトホールの底に露出したシリコン基板1または配線層4との間で良好なコンタクトを得ることができた。

【0027】なお本実施例では、エッチング装置として3電極方式のRIE装置を用いたが、2電極方式のRIE装置、ECR-RIE装置、マグネトロンRIE装置、ナローギャップ方式のRIE装置等を用いても同様のエッチングを行うことができる。

【0028】なお本実施例では、第1のエッチング条件のエッチングガスとしてCHF;、OzおよびCOを用いたが、少なくとも一つのC-F結合もつガスとCOを用いても同様のエッチングを行うことができる。

【0029】なお本実施例では、絶縁層5および配線層上部保護膜16としてCVD法によって成膜された酸化珪素を用いたが、熱酸化による酸化珪素、CVD法による酸化窒化珪素、CVD法による窒化珪素等を用いても同様の効果を得ることができる。

【0030】なお本実施例では、配線層上部保護膜16 と絶縁層5を同一材料により構成したが、配線層上部保 護膜16と絶縁層5を異なる材料から構成してもよい。

【0031】なお本実施例では、配線層上部保護膜16を単一材料により構成したが、2つ以上の材料から構成される2層以上の構造としてもよい。

【0032】なお本実施例では、絶縁層5を単一材料により構成したが、2つ以上の材料から構成される2層以上の構造としてもよい。

【0033】なお本実施例では、絶縁層5と平坦化絶縁層6の2層の絶縁層を用いたが、絶縁層5と平坦化絶縁層6は3層以上の構成としてもよい。3層以上の構成とした場合、エッチング条件を3つ以上用いてもよい。

【0034】なお本実施例では、第1のエッチング条件として平坦化絶縁層6/絶縁層5の選択比が5となるエッチング条件を用いたが、平坦化絶縁層6/絶縁層5の選択比が5以上となる他のエッチング条件でもよい。

7 [0035]

【発明の効果】以上のように本発明は、深さの異なる複数のコンタクトホールを、コンタクトを取る半導体基板または配線層がエッチング雰囲気に曝される時間が短く、コンタクトホールがオーバーエッチングにより半導体基板または配線層を突き抜けることがなく、半導体基板または配線層がエッチング雰囲気より受けるダメージおよび汚染を少なくすることができ、良好なコンタクトを得ることができる優れたコンタクトホールの形成方法を実現することができる。

50 【0036】また深さの異なるコンタクトホールを最小

回数のフォトリソグラフィ工程で形成することができる ため、半導体集積回路を高歩留まり生産することがで き、その実用的効果は極めて大きい。

【図面の簡単な説明】

【図1】(a)~(d)は本発明の第1の実施例におけるコンタクトホールの形成方法の工程断面図

【図2】(a)~(d)は本発明の第2の実施例におけるコンタクトホールの形成方法の工程断面図

【図3】従来のコンタクトホールの形成方法を説明する 図

【符号の説明】

- 1 シリコン基板(半導体基板)
- 2 a 素子分離酸化膜(保護絶録膜)
- 2 b 素子分離酸化膜(保護絶縁膜)
- 4 配線層
- 5 絶縁層(第1の絶縁膜)
- 6 平坦化絶縁層 (第2の絶縁膜)
- 13 フォトレジスト膜 (エッチングマスク)
- 12a 第1コンタクトホール (コンタクトホール)

10

10 12b 第2コンタクトホール (コンタクトホール)

【図1】

.

[図3]

