

로봇활용 SW교육 지침서

The NEXT ROBOT with EV3

EV3로 배우는 블록 코딩 & C언어

2017년 2학기

인제대학교 헬스케어IT 학과

이상훈

Weekly plan (2nd semester, 2017)

```
wk01: Introduction to curriculum & current state of HW-SW coding
wk02:
wk03:
wk04:
wk05:
wk06:
wk07:
wk08: Mid-term Exam.
wk09:
wk10:
wk11: Special talk by CEO of HandsOn Tech.
wk12:
wk13:
wk14:
wk15: Final exam.
```


수업 안내

수업목표

헬스케어IT는 융합학문으로 소프트웨어와 하드웨어를 연결하는 코딩 능력이 필수적이다. 본 수업은 헬스케어IT학과 학생들이 EV3 Mindstorm 하드웨어를 기반으로 블록코딩과 C언어를 이용해서 소프트웨어와 하드웨어를 연결하는 일고리듬을 이해하고 기초적인 코딩 능력을 갖추게한다.

주요 수업 목표는 다음과 같다.

- 1. EV3 LEGO Mindstorm 사용과 관리
- 2. LEGO 블록 코딩으로 EV3 제어
- 3. ROBOTC C 코딩으로 EV3 활용
- 4. EV3를 활용하는 프로젝트 수행

성적평가방법

과제(40.00%), 중간고사(30.00%), 기말고사(30.00%)

교재 및 참고문헌

구분		교재명	저자명	출판년도	출판사
참고도서	ev3_use	r_guide.pdf	Lego	2017	LEGOeducation.com
기타자료	http://gi	thub.com/redwoods/Lec/ev3	github.com	2017	Github

기타 주의사항

- 1. 수업은 실습과 프로젝트 발표 위주로 진행한다.
- 2. EV3 키트는 2인 1조로 이용한다.
- 3. 고의적인 하드웨어 파손과 분실은 수요자에게 책임을 묻는다.
- 4. 3주를 초과하여 무단 결석하는 경우 낙제.

수업계획서(1/2)

2017학년도 2학기

주간계획서			
주차	수업방법	[제목 없음] 수업내용	과제물
1	강의/실습	수업 안내 실습조 편성 EV3 소개	
2	강의/실습	EV3 Block coding I: - 블록 코딩의 기초 - 블록 제어 코딩	실습확인
3	강의/실습	EV3 Block coding II: - 도구 사용하기 - 멀티태스킹	실습확인
4	강의/실습/발표	EV3 Block coding III: - 변수와 함수 - Loop	프로젝트1
5	강의/실습	EV3 Block coding IV : - 센서 활용 코딩	실습확인
6	강의/실습	EV3 Block coding V : - 센서 데이터 로깅	실습확인
7	강의/실습/발표	EV3 Block coding VI: - 데이터 저장 및 분석	프로젝트2
8	시험	중간고사	

수업계획서(2/2)

i	1	1	
9	강의/실습	EV3 ROBOTC coding I: - ROBOTC 프로그래밍 소개 - EV3 연결	실습확인
10	강의/실습/발표	EV3 ROBOTC coding II: - ROBOTC 코딩 규칙 - 시간(지연) 함수, 데이터 저장, 변수	실습확인
11	강의/실습	EV3 ROBOTC coding III : - 조건문 - 반복문	프로젝트3
12	강의/실습	EV3 ROBOTC coding IV : - 함수및 배열 - EV3 제어	실습확인
13	강의/실습	EV3 ROBOTC coding V : - 센서 코딩 - 센서 활용 프로젝트	실습확인
14	강의/실습/발표	EV3 ROBOTC coding VI: - 데이터 로깅 - 데이터처리 및 분석	프로젝트4
15	시험	기말고사	

- The NEXT ROBOT with EV3』는
 - 로봇을 활용하여 효율적인 프로그램을 만드는 방법을 재미있게 배우는 책
 - 로봇을 활용하여 효율적인 알고리즘을 만드는 방법을 재미있게 배우는 책
 - 로봇을 활용하여 효율적인 소프트웨어를 만드는 방법을 재미있게 배우는 책
 - 로봇과 소프트웨어를 사랑하는 교사와 학생이 함께 쓴 책
 - 모든 이들이 컴퓨팅 사고(CT)를 즐기기 위한 책 입니다.

- 로봇을 활용한 소프트웨어 교육을 목표로 하는 책들은 많지만!
- '재미'는 목표가 아니라 방법이어야 하는데!
- SW교육의 목표인 알고리즘과 프로그래밍 보다는 로봇 조립만 하고!
- 심지어 어렵다는 이유로 소프트웨어를 선생님이 작성해서 다운로드!
- 각종 대회에서 답을 찾으려고 했으나, 대부분은 하드웨어 설계 중심!
- 이러다가 로봇도 소프트웨어도 제대로 배우지 못하는 것 아닌가?

- 『The NEXT ROBOT with EV3』를 읽는 과정은
 - 험한(복잡한) 산(문제)을 오르는(해결하는) 과정과 같습니다.
 - 1장(C언어 프로그래밍): 준비물을 챙기고, 기초 교육을 받는 과정
 - 2장(라인 트레이싱 알고리즘): 본격적인 산행, 점점 경사가 급해짐
 - 소스 코드, 해설, 동영상, 로봇 조립도, 미션 맵 파일, 교수용 PPT 제공

- 산(책)을 오르다가(읽다가) 난관(문제)을 만나면
 - 1. 복잡한 문제의 현재 상태와 목표 상태를 분석합니다.
 - 2. 복잡한 문제를 작은 단위의 여러 문제들로 분해함으로써, 현재 상태에서 목표 상태에 이르기 위해 필요한 다음의 상태들을 파악합니다.
 - 3. 각 상태 간의 관계를 바탕으로 알고리즘(절차)을 설계하고, 이를 프로그래밍합니다.
 - 4. 프로그램을 실행하고, 실행 결과가 현재 상태와 목표 상태를 일치하게 하는지 확인합니다.
 - 4-1. 만약 일치한다면, 문제가 해결된 것입니다.
 - 4-2. 그렇지 않다면, 위의 과정(1~3)을 적절한 위치부터 다시 시작합니다.

- 어려운 책? vs. **오래 보는 책!**
- 흥미를 위한 책? vs. **컴퓨팅 사고력을 기르기 위한 책!**
- 혼자 보는 책? vs. 친구들과 함께 즐기는 책!
- EV3 책? vs. **SW교육 책!**
- 프로그래밍 책? vs. **알고리즘 책!**
- 로봇 책? vs. 문제해결 책!
- 누구를 위한 책? vs. **모두를 위한 책!**

- 『The NEXT ROBOT with EV3』가
 - 로봇을 활용하여
 - C언어 프로그래밍과 알고리즘을
 - → 가르치고 배우고자 하는 모든 분들께
 - 하나의 지침서가 될 수 있기를 바랍니다.

"The NEXT ROBOT with EV3"

- 1부 EV3로 배우는 블록 코딩 (LEGO LME)
- 2부 EV3로 배우는 C언어 프로그래밍
- 프로젝트

1부 EV3로 배우는 블록코딩

- I. LEGO® MINDSTORMS® Education EV3
 - 1. EV3와 NXT 비교
 - 2. 브릭 인터페이스
- II. C언어 프로그래밍
 - 1. ROBOTC 개발환경
 - 2. ROBOTC 기초
 - 3. 액츄에이터 제어
 - 4. 센서 활용

I. LEGO MINDSTORMS Education EV3

- 1. EV3와 NXT 비교
- 2. 브릭 인터페이스

Run Recent screen

Brick Apps screen

File Navigation screen

Settings screen

1. EV3와 NXT의 비교

- EV3 특징
- 액츄에이터
- 센서
- 기계 구조

EV3?

• 입출력과 프로그래밍이 가능한 지능형 브릭으로 RCX, NXT에 이은 3세대 마인드스톰 로봇 플랫폼

EV3의 성능

	EV3	NXT
프로세서	32bit ARM9 프로세서 300MHz	32bit ARM7 프로세서 48MHz
주기억장치 (RAM)	64MB	64KB
보조기억장치 (Flash Memory)	16MB	256KB
코프로세서 (센서와 I2C 통신 지원)	해당 없음	Atmel 8-Bit AVR 8 MHz 512Byte RAM 4KB FLASH Memory
운영체제 (OS)	리눅스	별도의 전용 OS
센서 포트	4개 (최대 460,8Kbps)	4개 (최대 9.6Kbps)
모터 포트	4개 (엔코더 지원)	3개 (엔코더 지원)

EV3의 성능

	EV3	NXT
USB 통신 속도	High speed (최대 480Mbps)	Full speed (최대 12Mbps)
USB 확장 연결	Daisy-chaining(3단계) Wi-Fi 동글 USB 저장 매체	해당 없음
SD-Card 지원	마이크로 SD-Card 인식 (최대 32GB)	해당 없음
통신 가능 스마트 기기	Android, Apple	Android
입력 버튼	6개 (백라이트 지원)	4개
디스플레이	흑백 LCD (178×128 Pixel)	흑백 LCD (100×64 Pixel)
통신 환경	블루투스 2,1 USB 2,0(PC 연결) USB 1,1(Daisy-chaining)	블루투스 1.0 USB 2.0(PC 연결)

액츄에이터

- 액츄에이터는 시스템을 움직이거나 제어하는 데 쓰이는 출력 장치를 뜻함
 - EV3의 액츄에이터에는 서보 모터, 디스플레이, 스피커, LED 등이 있음

브릭 상태 표시등 - 초록

서보 모터

- 서보 모터는 회전 센서가 내장되어 있으며, 1° 단위로 모터 회전을 제어 가능
 - EV3의 서보 모터는 라지 모터와 미디엄 모터로 구성됨

라지 모터

미디엄 모터

	라지 모터	미디엄 모터
속도	160~170 rpm	240~250 rpm
러닝 토크	20 N·cm	8 N·cm
정지 토크	40 N·cm	12 N·cm
특징	느리고 힘이 세다	빠르고 다소 힘이 약하다

- 토크(돌림힘)는 물체를 회전시키는 힘을 나타낸 물리량
 - 토크의 단위는 N·m 또는 N·cm 를 사용

토크 = (작용점에 작용하는 힘의 크기) × (회전 중심부터 작용점까지의 거리)

 $\tau \equiv \mathbf{r} \times \mathbf{F}$

• EV3 이전 모델인 NXT의 서보 모터도 EV3에서 사용 가능

디스플레이

- 디스플레이를 통해 EV3 브릭 인터페이스를 사용
 - EV3의 상태를 확인할 수 있고, 점, 선, 도형(원, 사각형 등)을 표시 가능

*

블루투스가 활성화되었지만 연결되지 않았거나 다른 블루투스 장치에 보이지 않음

무선 연결 상태 아이콘(왼쪽부터)

*<

블루투스가 활성화되었으며 다른 블루투스 장치에 보임

*>

블루투스가 활성화되었으며 EV3 브릭이 다른 블루투스 장치에 연결됨

*0

블루투스가 활성화되고 보이며, EV3 브릭이 다른 블루투스 장치에 연결됨

Wi-Fi가 활성화되었지만 네트워크에 연결 안 됨

₹

Wi-Fi가 활성화되었으며 네트워크에 연결됨

USB

브릭 이름

다른 장치와 연결된 USB 설정

배터리 잔량

브릭 버튼

1. 뒤로

실행 중인 프로그램을 중단하고 EV3 브릭을 종료하는 등 취소 작업을 하는 데 사용됩니다.

2. 가운데

종료하거나, 원하는 설정을 선택하거나, 브릭 프로그램 앱에서 블록을 선택하는 등다양한질문에 "확인"으로 사용됩니다. 예를 들어 이 버튼을 누르면 체크박스를 선택할 수 있습니다.

3. 왼쪽, 오른쪽, 위, 아래

이 버튼 네 개는 EV3 브릭의 콘텐츠를 탐색하는 데 사용됩니다.

스피커

- 스피커는 EV3 브릭 옆면에 위치하며 다양한 음향 효과를 냄
 - ROBOTC에 내장되어있는 음원이나 다운로드 받은 외부 음원도 이용 가능
 - 로봇이 특정 동작을 수행할 때 특정 소리를 출력하도록 하면 실행 여부를 쉽게 확인 가능

LED

● LED는 빨강, 초록, 주황색으로 켜지거나 점멸되어 현재 EV3의 상태를 보여줌

브릭 상태 표시등 – 빨강

브릭 상태 표시등 – 주황

브릭 상태 표시등 - 초록

LED 상태	설명	LED 상태	설명
빨강	구동, 업데이트 중, 종료	빨강 점멸	작동 중
초록	준비	초록 점멸	프로그램 실행 중
주황	경고, 준비	주황 점멸	경고, 실행 중

센서

- 센서는 외부 환경의 변화를 감지할 수 있는 입력 장치를 뜻함
 - EV3의 센서는 터치 센서, 컬러 센서, 초음파 센서, 자이로 센서 등이 있음

- **터치 센서**는 '눌림', '떼어짐', '눌렸다 떼어짐' 3가지의 조건을 사용하여 프로그래밍 가능

- **컬러 센서**는 컬러(color) 모드, 반사광(reflected) 모드, 주변광(ambient) 모드로 사용 가능
- 컬러 센서의 인식 주기(sampling rate)는 1/1000초

센서

- 센서는 외부 환경의 변화를 감지할 수 있는 입력 장치를 뜻함
 - EV3의 센서는 터치 센서, 컬러 센서, 초음파 센서, 자이로 센서 등이 있음

- **초음파 센서**는 고주파 음파의 반사를 이용하여 물체와의 거리를 측정
- 측정 가능 범위는 3~250cm임

- **자이로 센서**는 단일 축에서 회전 동작을 감지
- 케이스의 화살표 방향의 회전을 감지하며 1초당 최대 440°까지 회전 속도 감지 가능

센서의 호환

EV3에서도 NXT의 센서들을 사용할 수 있음

기계 구조

- 레고의 기본 구조인 '스터드(stud)를 가진 브릭'의 한계를 해결하기 위해 빔과 커넥터가 탄생
- 빔과 빔은 커넥터의 연결을 통해 다양한 종류의 로봇을 설계하는 것이 가능

기어 구조

• 기어와 축은 모터에 연결하여 동력을 전달하고 기계를 움직임

기어	축

기어 구조

- 기어와 축은 모터에 연결하여 동력을 전달하고 기계를 움직임
- 기어는 톱니바퀴 수를 달리하여 가속/감속 기어 제작 가능
- 기어 배치에 따라 수평, 수직으로 힘 전달 가능

수직 힘 전달

차동 기어

기어 구조

- 기어와 축은 모터에 연결하여 동력을 전달하고 기계를 움직임
- 목적에 따라 다양한 기어가 존재

턴테이블

랙 기어

쇠구슬과 볼 베어링

- EV3에서는 쇠구슬과 볼 베어링, 패널(panel)이 추가됨
 - 마찰력이 적은 보조 바퀴와 완성도 높은 외관을 구현할 수 있게 됨

볼 베어링

2. 브릭 인터페이스

- 최근 실행
- 파일 내비게이션
- 브릭 앱스
- 설정

Run Recent screen

File Navigation screen

Brick Apps screen

Settings screen

최근 실행())

• 최근 실행 탭에서는 가장 최근 실행된 프로그램들을 보여줌

Run Recent screen

- 만약 다운로드 되거나 실행된 프로그램이 없다면 빈 공백으로 나타남
- 가장 상위에 있는 프로그램이 가장 최근에 실행된 프로그램

파일 내비게이션(音)

• 파일 내비게이션 탭에서는 SD 카드에 저장된 파일들을 포함하여 EV3 안에 있는 모든 파일들에 접근하고, 파일들의 관리가 가능

File Navigation screen

- 파일들은 주로 프로젝트 폴더 안에 보관되며 이 안에는 프로젝트에 사용될 음성 파일 혹은 이미지 파일도 보관됨
- 또한 이 탭에서는 파일의 삭제와 이동이 가능
- 브릭 프로그램 앱에서 만들어진 프로그램들은 BrkProg_SAVE 폴더에 저장되고, 브릭 데이터로그 앱에서 만들어진 파일들은 BrkDL_SAVE 폴더에 저장됨

브릭 앱스(ඎ)

• 브릭 앱스에는 5개의 미리 만들어진 브릭 앱들이 존재

Brick Apps screen

- 포트 뷰(Port View) 앱
- 적외선 센서 제어(IR Control) 앱
- 브릭 데이터로그(Brick Datalog) 앱
- 모터 제어(Motor Control) 앱
- 브릭 프로그램(Brick Program) 앱

• 사용자가 앱을 만들어서 사용할 수도 있음

포트 뷰(🗐)

• 포트 뷰에서는 각 포트에 연결된 센서의 센서 값이나 모터의 인코더 값을 확인 가능

- 가운데 버튼을 눌러 모터 및 센서의 현재 설정을 확인하고 변경 가능

모터 제어(판)

- 모터 제어(Motor Control)에서는 모터의 회전 테스트가 가능
- 화면에 표시된 상하좌우 버튼을 눌러 모터의 정회전과 역회전을 제어

- 각 2개의 모드에서 포트 A와 D, 포트 B와 C에 연결된 모터를 테스트 할수 있으며 가운데 버튼을 눌러 모드 변경이 가능

브릭 프로그램(団)

전체 블록 팔레트

- 브릭 프로그램에서는 간단한 프로그램이 작성 가능
- 블록들은 액션 블록(화살표)과 대기 블록(모래시계)으로 나뉨
- 각 프로그래밍 블록은 가운데 버튼을 누른 뒤 위/아래 버튼을 이용하여 설정을 바꿀 수 있음
- 휴지통 블록으로 블록의 삭제를, 시작 블록으로 블록 프로그램의 실행을, 디스켓 아이콘으로 블록 프로그램을 저장 할 수 있음

브릭 프로그램 작성 예제

• 컬러 센서가 검정색을 감지할 때까지 전진하는 블록 프로그램의 작성 과정

브릭 프로그램 작성 예제

▲프로그램 실행

▲블록 삭제 아이콘

설정(*)

• 설정 탭에서는 EV3의 현재 상태를 확인하고 조정할 수 있음

Settings screen

- 소리 크기(Volume): 브릭 스피커에서 나오는 사운드의 음량을 0~100%의 값으로 조절
- 절전 모드(Sleep): 일정 시간 동작을 안 할 경우 슬립 모드로 전환되는 시간을 조절
- 블루투스 통신(Bluetooth): 블루투스 기능을 활성화하여 다른 기기를 검색하고 연결하거나 다른 기기가 검색 가능하게 할 수 있음

- 설정 탭에서는 EV3의 현재 상태를 확인하고 조정할 수 있음
 - 와이파이 통신(Wi-Fi): 와이파이 통신 기능으로 무선 통신 연결 가능

- 브릭 정보(Brick Info): 하드웨어와 펌웨어 버전, EV3 브릭 OS 빌드 등 EV3 브릭의 현재 기술 사양을 확인할 수 있음

특히, 펌웨어의 버전이 사용하고자 하는 ROBOTC의 버전과 일치해야 프로그램의 다운로드와 실행에 문제가 없음. 따라서 업데이트된 ROBOTC 소프트웨어를 설치한 후에는 EV3의 펌웨어 업데이트를 진행해야 함

Thank you and enjoy!

로봇활용 SW교육 지침서

The NEXT ROBOT with EV3

EV3로 배우는 C언어와 알고리즘

정웅열·최웅선·정종광·전준호·배상용·전현석 이선경·경다은·김제현·오범석·이찬호 지음

