AlgoR.dijkstra - On Graph Shortest Path

Samuel ORTION

Université d'Évry val d'Essone - Paris-Saclay

2022

- Introduction
 - What is this?

- 2 The Dijkstra Algorithm
 - But what is a graph?
 - The Problem...

AlgoR

AlgoR is a set of R Packages to learn algorithmic and RCpp programming.

Subject: see V. RUNGE projet statement (fr.)

AlgoR.dijkstra: the R package that implements shortest path

algorithm.

Let G = (V, E) be a graph, where V is a set of vertices and E is a set of edges.

An edge e = (u, v) is a pair of vertices u and v such that $u, v \in V$.

- G is a directed graph if e = (u, v) implies $u \to v$.
- G is an undirected graph if e = (u, v) implies $u \leftrightarrow v$.

We can add a weight w to each edge e = (u, v), to get a weighted graph.

Directed graph

Figure: Directed graph

$$G = (V, E) = (\{A, B, C\}, \{(A, B), (A, C), (B, C), (C, B)\})$$

Weighted graph

Figure: Weighted directed graph

$$G = (V, E) = (\{A, B, C\}, \{(A, B), (A, C), (B, C), (C, B)\})$$

$$W = \{2, 1, 3, 1\}$$

Shortest Path

Let be a graph G, a source vertex s and a destination vertex d. What is the **shortest path** from s to d? (That is to say the set of vertex S such that there exists an edge between each vertex in S and the next one in S and the sum of the weight of the edges is minimal.)

Shortest Path - An example

Figure: Find the shortest path from the orange house to the red house

