Praktikum Day #1 Correctness of Algorithm

Lab Assistant : Fikri & Jo

Overview

- Analyzing algorithm
- Correctness of algorithm
- Method used
- Exercize

Mengapa harus menganalisis algoritma?

EFISIENSI

- Minimasi Waktu Eksekusi (Time Complexity).
- Minimasi Penggunaan Memori (Space Complexity).
- Dapat Diskalakan (Scalability)

EFEKTIFITAS

- Algoritma harus benar dalam menyelesaikan masalah.
- memilih algoritma yang paling optimal untuk suatu masalah
- Konsisten dalam menghasilkan output (yang benar).

Apa itu correctness of algorithm?

Partial Correctness:

Algoritma memberikan hasil yang benar jika ia berhenti.

Termination (berhenti):

Algoritma **pasti** berhenti untuk setiap input yang benar.

Total Correctness:

Algoritma **pasti** berhenti untuk setiap input yang benar.

Case:

Seorang programmer ingin mengimplementasikan algoritma untuk menghitung **jumlah deret aritmetika dari 1 hingga** *n* menggunakan iterasi.

```
public class Test{
public static int sum(int n) {
    int sum = 1;
    for (int i = 2; i <= n; i++) {
        sum += i;
    }
    return sum;
}</pre>
```

Metode dalam Analisis Algoritma

Induksi Matematika

Loop Invariant

Metode Formal

Induksi Matematika

Step:

- **Basis induksi**: Buktikan bahwa algoritma benar untuk nilai terkecil (*n*=1).
- Hipotesis Induksi: Asumsikan algoritma benar untuk suatu nilai
 (n = k)
- Langkah Induksi: Buktikan algoritma benar untuk suatu nilai
 (n = k+1)

CONTOH

Buktikan Algoritma berikut dengan Induksi Matematika

```
public static int sum(int n){
   return (n * (n + 1)) / 2;
}
```

$$S(n) = 1 + 2 + 3 + ... + n = \frac{n(n+1)}{2}$$

Step 1: Basis Induksi

Untuk n=1:

$$S(1) = rac{1(1+1)}{2} = rac{2}{2} = 1$$

Step 2: Hipotesis Induksi

$$n = k$$

$$S(k) = 1 + 2 + 3 + \dots + k = \frac{k(k+1)}{2}$$

Step 3: Langkah Induksi

$$S(k+1) = S(k) + (k+1)$$

 $S(k+1) = \frac{k(k+1)}{2} + (k+1)$

$$=\frac{k(k+1)+2(k+1)}{2}$$

$$=rac{(k+1)(k+2)}{2}$$

Terbukti

CONTOH 2

Buktikan Algoritma berikut dengan Induksi Matematika

```
void sumEven(int n) {
   int sum = 0;
   for (int i = 2; i <= n; i += 2) {
       sum += i;
   }
   System.out.println("Jumlah bilangan genap hingga " + n + " adalah: " + sum);
}</pre>
```

$$S(n) = 2 + 4 + 6 + \dots + 2n = \frac{2n(2n+2)}{4}$$

Step 1: Basis Induksi

Untuk
$$n = 1$$

$$S(1) = \frac{2(1)(2(1) + 2)}{4} = 2$$

Step 2 : Hipotesis Induksi

$$n = k$$

$$S(k) = 2 + 4 + 6 + \dots + 2k = \frac{2k(2k + 2)}{4}$$

Step 3: Langkah Induksi

Substitusi(k + 1) ke dalam Hipotesis

Kita ingin membuktikan :
$$S(k+1) = \frac{4k^2+12k+8}{4}$$

$$S(k+1) = S(k) + 2(k+1)$$

$$= \frac{2k(2k+2)}{4} + (2k+2)$$

$$= \frac{4k^2 + 4k}{4} + \frac{8k+8}{4}$$

$$= \frac{4k^2 + 12k + 8}{4}$$

LOOP INVARIANT

Step:

- Inisialisasi → Buktikan bahwa loop invariant benar sebelum loop mulai berjalan.
- Maintenance -> Buktikan bahwa jika loop invariant benar di suatu iterasi, maka tetap benar di iterasi berikutnya.
- **Terminasi** -> Buktikan bahwa ketika loop berhenti, loop invariant memberikan hasil yang benar sesuai spesifikasi algoritma.

CONTOH

Buktikan Algoritma berikut dengan Loop Invariant

```
void faktorial(int n) {
    int hasil = 1;
    for (int i = 1; i <= n; i++) {
        hasil *= i;
    }
    System.out.println("Faktorial dari " + n + " adalah: " + hasil);
}</pre>
```

$$n! = n \times (n-1) \times ... \times 1$$

Inisialisasi

Sebelum loop dimulai, nilai awal adalah:

- hasil = 1
- i = 1

Pada saat ini, loop invariant:

|hasil = 1! = 1

Maintenance

Misalkan loop invariant benar pada iterasi ke — k, yaitu:

hasil = k! pada iterasi berikutnya (1 = k + 1) kita mengalikan dengan k + 1 hasil = k! × (k + 1) = (k + 1)!

Terminasi

Loop berhenti saat i = n

artinya semua bilangan telah dikalikan dari 1 hingga n.

hasil = n!

Terbukti

METODE FORMAL

Pembuktian formal digunakan untuk menunjukkan bahwa suatu algoritma benar dengan menggunakan logika matematis dan notasi formal. Kunci dari pembuktian ini ada pada:

- Preconditions → Keadaan yang harus benar sebelum algoritma dijalankan.
- Postconditions → Keadaan yang harus benar setelah algoritma selesai dijalankan.

CONTOH

Buktikan Algoritma berikut dengan Metode Formal

```
public static void main(String[] args) {
         int number = 6;
        if (isPrime(n: number)) {
            System.out.println(number + " adalah bilangan prima.");
        } else {
            System.out.println(number + " bukan bilangan prima.");
public static boolean isPrime(int n) {
        if (n <= 1) {
            return false; //
        for (int i = 2; i * i <= n; i++) {
            if (n % i == 0) {
                return false;
        return true;
```

Spesifikasi Algoritma

• Precondition:

- Input n adalah bilangan bulat positif (n > 1).

Postcondition:

- Algoritma mengembalikan true jika n adalah bilangan prima, dan false jika bukan.
- Definisi bilangan prima: n adalah bilangan prima jika dan hanya jika n hanya habis dibagi oleh 1 dan dirinya sendiri.

Base Case:

- Kasus: n = 2.
- **Precondition**: n=2 (bilangan bulat positif).
- Postcondition: Algoritma harus mengembalikan true karena 2 adalah bilangan prima.
- Pembuktian:
 - Algoritma memeriksa apakah n habis dibagi oleh bilangan dari 2 hingga $\sqrt{2} \approx 1.414$.
 - Karena tidak ada bilangan bulat antara 2 dan 1.414, algoritma langsung mengembalikan true.
 - Kesimpulan: Postcondition terpenuhi.

Induksi n>2:

Asumsi Induktif:

— Algoritma benar untuk semua bilangan bulat k dimana $2 \le k < n$.

Langkah Induktif:

- Kita perlu membuktikan bahwa algoritma juga benar untuk n.
- Algoritma memeriksa semua bilangan i dari 2 hingga \sqrt{n} :
 - * Jika n habis dibagi oleh i, maka n bukan prima, dan algoritma mengembalikan false.
 - * Jika tidak ada i yang membagi n, maka n adalah prima, dan algoritma mengembalikan true.

- Pembuktian:

- * Jika n bukan prima, maka n memiliki pembagi d dimana $2 \le d \le \sqrt{n}$. Algoritma akan menemukan d dan mengembalikan false.
- * Jika n adalah prima, maka tidak ada pembagi d yang memenuhi $2 \le d \le \sqrt{n}$. Algoritma akan mengembalikan true.

- Kesimpulan:

Algoritma benar untuk n.

KESIMPULAN

Metode	Fokus	Cakupan	Contoh Algoritma
Induksi Matematika	algoritma berbasis pola rekursi atau iterasi menggunakan langkah		Faktorial, Fibonacci, jumlah deret, Hanoi Tower
Loop Invariant	algoritma dengan	menggunakan loop (iteratif)	Pencarian maksimum, Bubble Sort,Insertion Sort, Binary Search
Pembuktian Formal	algoritma secara menyeluruh (awal, proses,	algoritma , baik rekursif, iteratif, atau	Merge Sort, Quick Sort, algoritma Divide and Conquer, algoritma Dynamic Programming

EXERCISE

Menyusul di classroom