1. Definitions:

• Group 5 Rules:

- (a) Closed under binary operation
- (b) associative: (ab)c = a(bc)
- (c) identity: $\exists e \in G, ea = ae = a \forall a \in G$
- (d) inverse: $\forall a \in G, \exists ! a^{-1} s.t. a^{-1} a = a a^{-1} = e$
- (e) commutative $a, b \in G, ab = ba$.
- 1,2: semigroup
- 1,2,3: monoid
- 1,2,3,4: group
- 1,2,3,4,5: Abelian group
- **Subgroup**: *H* is a subgroup of *G* if
 - $-H\subseteq G$
 - *H* is a group

CHECK a SUBGROUP:

- H ⊆ G (subset)
- *e* ∈ *H* (non empty)
- ∀a,b ∈ H,ab ∈ H (closed)
- $\forall a \in H, a^{-1} \in H$

Proper subgroup: subgroup H that is not $H \neq G$

• Order:

Order of a group: |G| = # of elements in the group Order of an element: $g \in G$, |g| = **smallest positive integer** n, s.t. $x^n = e$

- $\langle x \rangle := \{ x^n \mid n \in \mathbb{Z} \}$
- Conjugate: $x, g \in G$, conjugate of x by g: gxg^{-1} Conjugate class of x:= $\{gxg^{-1} \mid \forall g \in G\}$
- **ISOMORPHISMS of GROUP**: a function $f: G \to G'$ is called isomorphism if:
 - (a) f(xy) = f(x)f(y)
 - (b) *f* is one to one (injective)
 - (c) *f* is onto (surjective)
- Cyclic: $\exists a \in G$, s.t. $\langle a \rangle = G$