Problems on Linear Least Square Fitting

Q1. Plot the following datasets with error and fit it with straight line. Also plot all fitting lines in the same graph.

Xi	1	2	3	4	5	6	7	8	9	10
y i	2.8	3.6	2.8	3.5	4.2	5.1	6.6	8.6	10.8	14.2
σ_1	0	0	0	0	0	0	0	0	0	0
σ_2	1	1	1	1	1	1	1	1	1	1
σ_3	0.3	0.5	0.55	0.6	0.65	0.7	0.75	0.9	1.1	1.3

- **Q2.** Using Least Square fit method, fit the data points given below to the polynomial $P_n(x)$ with varying degrees (n = 1 to 7).
- (i) For each value of n, obtain the (a) values of the coefficients and (b) corresponding minimum chi-square for the best fit.
- (ii) Make a superimposed plot of the data and the best-fit polynomials for all n.
- (iii) Plot the minimum chi-square vs. N
- xi yi
- 0.0 0.2
- 0.01 .231895
- 0.02 .264668
- 0.03 .289191
- 0.04 ..332345
- 0.05 .368007
- 0.06 .403062
- 0.07 .43739
- 0.08 .472877
- $0.09 \quad 0.508413$
- 0.1 0.543893
- $0.11 \ \ 0.579221$
- 0.12 0.614274
- $0.13 \quad 0.648984$
- $0.14 \quad 0.683257$
- 0.15 0.717008
- 0.16 0.717008
- 0.17 0.782653
- 0.18 .814414

Q3.

Fitting a dataset (x_i, y_i, σ_i) using a curve $y=f(x)=a^*\exp(bx)$, where values of the parameters a and b are unknown, but defined within a set of range.

Dataset (x_i, y_i, σ_i) is the following:

i	1	2	3	4	5	6	7
x_i	1	2	3	4	5	6	7
y_i	4	5	8	16	30	38	70
σ_i	2	2	3	3	4	5	5

Define
$$\chi^2(a,b) = \sum_{i=0}^{\infty} \left[\frac{y_i - f(x_i)}{\sigma_i} \right]^2$$

Prob1: Tabulate and plot $\chi^2(a = 2.101, b)$ vs b (in steps of 0.1).

- (i) Find the value of b for which χ^2 (a = 2.101, b) is minimum χ^2_{min} .
- (ii) Find the values of b for which χ^2 value is $\chi^2_{min} + 1$ (iii) Find the values of b for which χ^2 value is $\chi^2_{min} + 4$
- (iv) Find the values of b for which χ^2 value is $\chi^2_{min} + 9$

Prob2: Tabulate and plot $\chi^2(a, b = 0.498)$ vs a (in steps of 0.1).

- (i) Find the value of a for which $\chi^2(a, b = 0.498)$ is minimum χ^2_{min} .
- (ii) Find the values of a for which χ^2 value is $\chi^2_{min} + 1$ (iii) Find the values of a for which χ^2 value is $\chi^2_{min} + 4$
- (iv) Find the values of a for which χ^2 value is $\chi^2_{min} + 9$

Prob3: Tabulate and plot $\chi^2(a,b)$ vs a, b (both in steps of 0.1).

- (i) Find the values of (a, b) for which $\chi^2(a, b)$ is minimum χ^2_{min} . Plot a vs b.
- (ii) Find the values of (a, b) for which χ^2 value is $\chi^2_{min} + 1$. Plot a vs b.
- (iii) Find the values of (a, b) for which χ^2 value is $\chi^2_{min} + 4$. Plot a vs b.
- (iv) Find the values of (a, b) for which χ^2 value is $\chi^2_{min} + 9$. Plot a vs b.

Problem 4:

Repeat question two,

(a) For the following data-sets with two different sets of errors (σ_{1}, σ_{2}) .

Xi	0.0	0.2	0.4	0.6	8.0	1.0	1.2	1.4	1.6	1.8	2.0
\mathbf{y}_{i}	6.33	6.51	6.43	5.85	4.71	3.13	1.53	0.64	1.58	5.91	15.71
σ_1	0.95	0.98	0.96	0.88	0.71	0.47	0.23	0.09	0.24	0.89	2.35
σ_2	0.06	0.13	0.19	0.23	0.23	0.19	0.11	0.05	0.14	0.59	1.73

(b) fit upto 3^{rd} degree polynomial for given data-set (n=1,2,3).

xi	1	2	3	4	5	6	7	8	9	10
yi	6.37	17.42	34.13	56.50	84.53	118.22	157.57	202.58	253.25	309.50
σ_1	3.19	8.71	17.06	28.25	42.26	59.11	78.78	101.29	126.62	154.79