

SLAM: Sequential Estimation

Robot Localization and Mapping 16-833

Michael Kaess

March 29, 2021

SLAM is a Sequential Estimation Problem!

Full SLAM (Computer Vision: Bundle Adjustment)

From Strasdat et al, 2011 IVC "Visual SLAM: Why filter?"

- Graph grows with time:
 - Have to solve a sequence of increasingly larger problems
 - Will become too expensive even for sparse Cholesky

F. Dellaert and M. Kaess, "Square Root SAM: Simultaneous localization and mapping via square root information smoothing," IJRR 2006

Keyframe SLAM

- Drop subset of poses to reduce density/complexity
- Only retain "keyframes" necessary for good map

Complexity still grows with time, just slower

Filter

- Keyframe idea not applicable: map would fall apart
- Instead, marginalize out previous poses
 - Extended Kalman Filter (EKF)
- Problems when used for SLAM:
 - All landmarks become fully connected -> expensive
 - Relinearization not possible -> inconsistent

Fixed-lag Smoothing

- Marginalize out all but last n poses and connected landmarks
 - Relinearization possible
- Linear case
- Nonlinear (with some restrictions)

Is Cheap and Exact Achievable?

• Back to full BA and keyframes:

- New information is added to the graph
- Older information does not change
- Can be exploited to obtain an efficient solution!

Incremental Smoothing and Mapping (iSAM)

Solving a growing system:

- R factor from previous step
- How do we add new measurements?

Key idea:

New measurements ->

- Append to existing matrix factorization
- "Repair" using Givens rotations

QR Factorization: Householder Reflections

On the board

Givens Rotations

$$(\cos \phi, \sin \phi) = \begin{cases} (1,0) & \text{if } \beta = 0\\ \left(\frac{-\alpha}{\beta\sqrt{1 + \left(\frac{\alpha}{\beta}\right)^2}}, \frac{1}{\sqrt{1 + \left(\frac{\alpha}{\beta}\right)^2}}\right) & \text{if } |\beta| > |\alpha|\\ \left(\frac{1}{\sqrt{1 + \left(\frac{\beta}{\alpha}\right)^2}}, \frac{-\beta}{\alpha\sqrt{1 + \left(\frac{\beta}{\alpha}\right)^2}}\right) & \text{otherwise} \end{cases}$$

where $\alpha := a_{kk}$ and $\beta := a_{ik}$.

iSAM Updates

Incremental Smoothing and Mapping (iSAM)

Update and solution are O(1)

Are we done?

SLAM is nonlinear...

iSAM requires periodic batch factorization to relinearize

Also: loop closures cause fill-in!

Loops and Periodic Variable Reordering

Factor R for 500 frames (n=1579)

No variable reordering

Variable reordering COLAMD

Periodic Variable Reordering – Timing

Live iSAM Example

Open-source code at: https://people.csail.mit.edu/kaess/isam/

Newer version (iSAM2, based on graphical models, discussed in next lectures) is part of GTSAM library: https://github.com/borglab/gtsam

Pose Graph SLAM - Scalability

Odometry measurement

Loop closing constraint

Smoothing: Grows unboundedly in time Should only depend on explored space

Solution: Reduced Pose Graph
Johannsson, Kaess, Fallon, Leonard (ICRA 13)

Pose Graph Reduction

Reduction by marginalization

Remove x_r

$$p(x_1, x_2, x_3, x_4) = \int p(x_1, x_2, x_3, x_4, x_r) dx_r$$

Avoiding dense graphs:

- Kretzschmar et al. (IROS 11): approximate marginal using Chow-Liu tree
- Eade et al. (IROS 10): limit degree of nodes and remove edges
- Carlevaris-Bianco, Kaess, Eustice (TRO 14): consistent sparsification
- Mazuran et al. (IJRR 15): nonlinear factor recovery
- Our approach: keeping the graph simple during construction

Reduced Pose Graph (step n)

In general, not revisiting exactly same poses

Standard pose graph:

Reduced Pose Graph (step n+1)

In general, not revisiting exactly same poses

Standard pose graph:

New pose is added

Reduced Pose Graph (step n+2)

Avoiding inconsistency

Second loop closure to x_j to avoid double use of constraint

Standard pose graph:

Reduced Pose Graph (step n+3)

Avoiding inconsistency

Constraint between x_i and x_j added

Omitting short odometry links similar to ESEIF by Walter 07

Standard pose graph:

Marginalization instead would lead to fully correlated pose graph!!

Partitioning

- How to know when to add a new pose?
- Partitioning schemes
 - Regular grid (x, y, heading)
 - Based on visibility (view frustum)
 - Based on feature overlap (typically done for keyframes)
- Choice of scheme depends on the sensors and motion

MIT Stata Center Data Set

Publically available: http://projects.csail.mit.edu/stata/

- IJRR data paper (Fallon, Johannsson, Kaess, Leonard)
- Duration: 18 months
- Operation time: 38 hours
- Distance travelled: 42 km (26 miles)
- Size: 2.3TB
- Ground truth by aligning laser scans with floor plans

Reduced Pose Graph – Second Floor

Multiple Floors – Elevator Transitions

Accelerometer sufficient to determine floor

Reduced Pose Graph – 10 Floors

