Revised: 6/6/2020

Trees I

Michael C. Hackett
Assistant Professor, Computer Science

Community College of Philadelphia

Lecture Topics

- Tree Terminology
- Binary Trees
 - Tree Traversals
- Binary Search Trees
- General/N-ary Trees

- Complexity of Trees
- Other Tree Classifications
 - Balanced Binary Trees
 - Full Binary Trees
 - Complete Binary Trees
 - Perfect Binary Trees
- Tree Structure Complexities

• A **tree** is a non-linear data structure, where each point in the tree will branch into zero or more points.

- Each point in the tree is called a node or vertex
 - Shown in orange below
- The top-most node is called the root node
 - The root node is the tree's starting point

- The lines connecting the nodes are edges or branches
 - Shown in orange below

- Children or child nodes are nodes that branch from a higher node.
- A node's **parent** is the node it branches from.
 - The root node is the only node in a tree that does not have a parent.

- A leaf or leaf node is a node with no children
 - Nodes D, E, F, and G

• Each node's **height** is its distance (number of edges) to its <u>farthest</u> leaf.

- A path is the edges that connect the root node to any other particular node in the tree.
 - In a tree, paths only begin at the root node
 - Path from node A to node E:

• There is only **one** path from the root to any node in the tree

Binary Trees

 While trees may be built without limits for the number of children a node can have, the binary tree only allows up to two children for each node.

Binary Trees

• The children of a node are referred to as its left child and right child

Tree Traversals

- The process of visiting nodes in a tree is called a traversal.
 - The concept is similar to traversing/visiting each value in an array, list, or other linear data structure
- Traversals always begin at the root node
 - Other nodes cannot be accessed directly
- Two types of tree traversals:
 - Depth-First Traversal
 - Breadth-First Traversal

Depth-First Traversal

- A depth-first traversal begins at the root node and travels down the left path until reaching a leaf
 - Works its way back up the tree, going down the right path of any nodes
 - Travels down the left path until reaching a leaf
 - Process repeats

- There are three methods of performing a depth-first traversal: In-Order, Pre-Order, and Post-Order traversals.
 - The path taken by each is always the same.

Tree Traversals

In-Order Traversal

- Traverse down the left side
- Use the node's value/data
- Traverse down the right side
- In other words, the value of the node is used upon the second time it is visited

Pre-Order Traversal

- Use the node's value/data
- Traverse down the left side
- Traverse down the right side
- In other words, the value of the node is used upon the **first** time it is visited.

Post-Order Traversal

- Traverse down the left side
- Traverse down the right side
- Use the node's value/data
- In other words, the value of the node is used upon the **last** time it is visited.

In-Order Traversal

- Arrows show the direction of the traversal.
- Numbers indicate when the values of the nodes are used in the traversal.

In-Order Traversal

 The value of the node is used upon the second time it is visited (or first time if its a leaf)

• Infix Format: HDIBEAJFCG

Pre-Order Traversal

- Arrows show the direction of the traversal (same as in-order)
- Numbers indicate when the values of the nodes are used in the traversal.

Pre-Order Traversal

- The value of the node is used upon the first time it is visited
- Prefix Format: A B D H I E C F J G

Post-Order Traversal

- Arrows show the direction of the traversal. (Same as in-order and pre-order)
- Numbers indicate when the values of the nodes are used in the traversal.

Post-Order Traversal

- The value of the node is used upon the **last** time it is visited.
- Postfix Format: HIDEBJFGCA

 Using a breath-first or level-order traversal, the tree is traversed by visiting all nodes at each level of the tree, working its way to the bottom.

• Breadth-first traversals often use a queue to complete the traversal.

Node values used:

• First, the root is added to the queue.

Node values used:

• Then, it is popped from the queue

Node values used:

• Its data is used

Node values used: A

• Its children are added to the queue

Node values used: A

An item is popped from the queue.

Node values used: A

• Its data is used

Node values used: A B

• Its children are added to the queue

Node values used: A B

An item is popped from the queue.

Node values used: A B

• Its data is used

Node values used: A B C

- Its children are added to the queue
 - The process repeats until the queue is empty

Node values used: A B C

Binary Search Trees

- A binary search tree (or BST) is a binary tree where, for each node:
 - Its left child's value is less than its own value
 - As will all of its children

• Its right child's value is greater than its own value

As will all of its children

Binary Search Trees

- This allows simple less-than or greater-than comparisons to search the tree for a value.
 - Searching for 5:

A similar process is used for adding new nodes to a BST

Binary Search Trees

• The smallest (min) value in a BST is always the left-most leaf.

Hackett - Community College of Philadelphia - CSCI 211

• The largest (max) value in a BST is always the right-most leaf.

Hackett - Community College of Philadelphia - CSCI 211

• To remove a node, we need to determine its **successor**- the node that will replace it.

- If the node to remove...
 - Has no children Safe to remove
 - Has only a right child The right child is the successor
 - Has only a left child The left child is the successor
 - Has both a right and left child (The trickiest scenario) The smallest value down the right side of the node is the successor.

Removing the node containing 7...

Hackett - Community College of Philadelphia - CSCI 211

 Removing the node containing 7... No successor, safe to simply remove

• Removing the node containing 9...

Hackett - Community College of Philadelphia - CSCI 211

• Removing the node containing 9... (didn't have a left child) the node containing 10 is its successor.

Hackett - Community College of Philadelphia - CSCI 211

- Removing the node containing 4...
 - Has two children

• Goes down its right side looking for the smallest value (only one node to check)...

Hackett - Community College of Philadelphia - CSCI 211

• 5 is the smallest (and only) node, so that is its successor.

Hackett - Community College of Philadelphia - CSCI 211

N-ary Trees

• An **n-ary tree** (or **general tree**) is a tree where each node may have any number of children.

N-ary Trees

- Since we don't know how many children each node has, it won't have left or right children like a binary tree.
- Instead, each node maintains a list structure of its children.

- Traversing any tree using depth-first or breadth-first traversals will have O(n) complexity as each node needs to be visited once.
 - Just as traversing an array or linked list.

- How the tree is structured will have an impact on insert, removal, and search.
 - A binary tree is balanced when every node's left subtree and right subtree differ by, at most, one level

Unbalanced BST

Balanced BST

Every node's left subtree and right subtree must differ by <= 1

- Balanced trees ensure the best performance and efficiency.
- Consider this (valid) BST:
 - This example, where each node has at most one child, is called a *pathological* or *degenerate tree*.
 - Clearly unbalanced.

- The smallest value in the tree will be the final leaf.
- To get to it, we need to visit every node in the tree.
 - O(n)
- Same for searching for a value.
- Essentially, this tree would behave like a linked list (a linear data structure)

- Here are the same nodes but balanced a little better.
- The complexity of any operation on this balanced tree is O(h)
 - Where h is the height of the tree.

- A full binary tree is when every node has either 0 or 2 children
 - The tree below is full, but not balanced

An example of a BST that is balanced, but not full

An example of a BST that is both balanced and full

- Checking for a Full Tree
 - P + 1 = L
 - P is the number of parent nodes in the tree
 - L is the number of leaf nodes in the tree
 - 3 + 1 = 4
 - 4 = 4 (Full)

- Checking for a Full Tree
 - P + 1 = L
 - 4 + 1 = 4
 - 5 = 4 (**Not Full**)

• A complete binary tree is when every level is filled (except for the last level) and the leaves are as far left as possible.

Balanced and Complete, but not Full

- An example of a BST that is balanced but not complete.
 - Not full, either

Balanced, not full, not complete

• An example of a BST that is balanced, not full, but complete.

Balanced, not full, complete

• An example of a BST that is balanced, not full, and not complete.

Balanced, not full, not complete

• An example of a BST that is balanced, full, and complete.

Balanced, full, complete

Perfect Binary Trees

- A **perfect binary tree** is when every node has two children and the leaves are all at the same level.
 - Always full, complete, and balanced.

Balanced, Complete, Full, and Perfect

Tree Structure Complexities

- Perfect BSTs perform in O(log n)
- Balanced BSTs will perform between O(log n) at best and O(h) at worst, depending on how balanced it is
- Very unbalanced trees perform closer to O(n)

Structure	Insertion	Removal	Search	Find Min	Find Max
Pathological Tree	O(n)	O(n)	O(n)	O(n)	O(n)
Balanced BST	O(h)	O(h)	O(h)	O(h)	O(h)
Perfect BST	O(log n)	O(log n)	O(log n)	O(log n)	O(log n)