Student 1:

A1: Supervised learning is when the data has labels and we try to predict those labels. Unsupervised learning works without labels to find patterns, like clusters. Example supervised: spam detection. [Missing example for unsupervised]

A2: 0.9

A3: Code prints 'Prime'/'Composite' (wrong capitalization, wrong wording).

A4: B) Insertion sort because I think it's fast.

A5: From the table, Bubble Sort is O(n^2), while Merge Sort and Quick Sort are O(n log n). The chart also shows that Merge Sort and Quick Sort are more efficient than Bubble Sort.

Algorithm	Time Complexity
Bubble Sort	O(n^2)
Merge Sort	O(n log n)
Quick Sort	O(n log n)

Student 2:

A1: Supervised learning uses labeled input-output pairs to train a model (e.g., regression); unsupervised uses unlabeled data to discover structure (e.g., clustering). Example supervised: image classifier; example unsupervised: k-means. The key difference is labels vs. no labels.

A3: Correct primality code, correct output ('prime'/'composite').

A4: C) Merge sort, because divide-and-conquer with merging yields O(n log n).

A5: The table shows Bubble Sort has quadratic complexity, Merge and Quick Sort are O(n log n). The chart confirms that Merge Sort and Quick Sort scale better.

Algorithm	Time Complexity
Bubble Sort	O(n^2)
Merge Sort	O(n log n)
Quick Sort	O(n log n)

