Space

In-Place

Out-Place

```
In-Place Algo:
  Space Complexity: O(1)
     int[] arr = {1,2,3,4};
           square:
for(int i = 0; i < arr.length; i++)
       arr[i] = arr[i] * arr[i];
    int[] arr = \{2,4,8,16\};
```

```
Out-Place Algo:
Space Complexity: O(n)
int[] arr = {1,2,3,4};
int[] square = new int[arr.length];

for(int i = 0; i < arr.length; i++)
{
square[i] = arr[i] * arr[i];
}
```

287. Find the Duplicate Number

Given an array of integers nums containing n + 1 integers where each integer is in the range [1, n] inclusive.

There is only **one repeated number** in nums, return this repeated number.

You must solve the problem **without** modifying the array nums and uses only constant extra space.

Example 1:

```
Input: nums = [1,3,4,2,2]
Output: 2
```

Example 2:

```
Input: nums = [3,1,3,4,2]
Output: 3
```

Constraints:

- $1 \le n \le 10^5$
- nums.length == n + 1
- 1 <= nums[i] <= n
- All the integers in nums appear only once except for precisely one integer which appears two or more times.

Follow up:

- How can we prove that at least one duplicate number must exist in nums?
- Can you solve the problem in linear runtime complexity?

OutPlace Algo

Time Complexity: O(n)

Excepted Output: 2

OutPlace Algo

Space Complexity: O(n)

Clue is values are in the range of [1,n] and the length of the array is : n+1
So that each value can be uniquely identified by an array index.

- -> Take a boolean[] array with size n. Has the default values are False.
- -> For each iteration of input array, update the respective boolean[] array index value with True.
- -> If the value is repeated for the second visit you already find true in boolean[] array so return the value.

OutPlace Algo

InPlace Algo

Time Complexity: O(n)

Excepted Output: 2

InPlace Algo

Space Complexity: O(1)

Clue Hint is values are in the range of [1,n] and the length of the array is : n+1
So that each value can be uniquely identified by an array index.

- -> Here we replace the sign of index value mapping to current iterated value with in the same input array.
- -> If the value is repeated then the sign would have already been updated so that it is the duplicate.

Note: As we are updating given input array, always take the absolute value for each iteration.

In-Place Algo

41. First Missing Positive

Given an unsorted integer array nums, return the smallest missing positive integer.

You must implement an algorithm that runs in O(n) time and uses constant extra space.

Example 1:

```
Input: nums = [1,2,0]
Output: 3
```

Example 2:

```
Input: nums = [3,4,-1,1]
Output: 2
```

Example 3:

```
Input: nums = [7,8,9,11,12]
Output: 1
```

Constraints:

- 1 <= nums.length <= $5 * 10^5$
- $-2^{31} \le nums[i] \le 2^{31} 1$