Maximal flow problems are converted to transshipment problems by

- a. adding extra supply nodes
- b. requiring integer solutions
- c. connecting the supply and demand nodes with a return arc
- o d. adding supply limits on the supply nodes

Clear my choice

The number of constraints in network flow problems is determined by the number of

- a. supplies.
- b. demands.
- c. nodes.
- d. arcs.

Clear my choice

What is the objective function in the following maximal flow problem?

- a. MAX X₁₄
- b. MIN X₄₁
- \circ d. MAX X₁₂ + X₁₃ + X₂₃ + X₂₄ + X₃₄

Clear my choice

The arcs in a network indicate all of the following except?

- a. constraints
- b. routes
- oc. paths
- d. connections

Clear my choice

How many constraints are there in a transportation problem which has 6 supply points and 5 demand points? (ignore the non-negativity/integer constraints)
○ a. 5
● b. 11
○ c. 30
○ d. 6
Clear my choice
A factory which ships items through the network would be represented by which type of node?
o a. random
b. decision
● c. supply
o d. demand
Clear my choice
How could a network be modified if demand exceeds available supply?
a. remove the extra demand arcs
b. add a dummy supply
o c. add a dummy demand
od. add extra supply arcs
Clear my choice