辛南征轮大学

软件学院 2019—2020 学年第一学期期末考试

《计算机科学技术导论》试卷样卷

《月开加什子汉小寸记》风杏什也													
专	业_		_ <u>4</u>	手级		班级_	处	自名			_ 学号		
题	<u>[</u> 号	_			=	Ξ	四			五		总分	
得	分												
	I. Single Choice Questions (1 point each, 20 points in total) (Note: Please help the grader by filling your answers into the table.)												
题一		1		2	3	4	5	6		7	8	9	10
答	案												
题-	号	11	1	2	13	14	15	1	6	17	18	19	20
答	案												
1.	1. A computer is a device. A computing system, by contrast, is a dynamic entity, used												
	to () aı	nd ii	ntera	ct with	n its envir	onment.						
		A. prep	are i	nice	ly-forn	natted doc	cuments		B.	edit pic	tures wit	h Photo	shop
		C. play	con	nput	er gam	es			D.	solve p	roblems		
2.	Cor	nmercia	ıl co	mpı	iters in	the first	generati	on (fron	n appro	ximately	1951 to	1959)
	wer	e built ı	ısin	g () to	store info	ormation	۱.					
		A. vacu	um	tube	es	B. transi	stors	C . 1	logi	c gates	Г	. circuit	S
3.	2A5	5 in base	e 17	is e	qual to	() ir	base 10).					
		A. 2A5			В. 7	753		C. '	758		D. 52	E	
4.	Altl	nough tl	he to	erms	data a	and inform	mation a	re o	ften	used i	nterchan	geably,	making
	the	distinct	tion	is s	sometii	mes usefi	ul, espe	ciall	y in	comp	uting. () ar	e basic
	valı	ies or	fact	s, w	hereas	informa	tion is	data	th	at has	been or	ganized	and/or
	pro	cessed i	n a v	way	that is	useful in	solving	som	e ki	nd of p	roblem.		
		A. Bina	•					Anal	_	lata			
		C. Octa						Data					
5.		octal di	git c	an r	•	, ,	things.						
		A. 1			В. 7	7	C. 8	3		Γ) . 10		

6.	() enables computers to store	e and transmit alphanumeric information
	efficiently between one computer and a	another.
	A. Huffman encoding	B. Run-length encoding
	C. Keyword encoding	D. Text compression
7.	To describe the behavior of logic ga	ates and circuits, we can create a ()
	showing all possible input values and a	associated output values.
	A. logic diagram	B. truth table
	C. Boolean expression	D. circuit schematic diagram
8.	As the organizing force in a computer,	the () is in charge of the fetch-execute
	cycle.	
	A. ALU B. CPU	C. control unit D. memory
9.	() is a software testing approach	that designs test cases to ensure that each
	statement in the program is executed.	
	A. Code coverage	B. Data coverage
	C. Test plan implementation	D. black-box testing
10	. () parallelism is based on increas	ing the word size of a computer. Increasing
	the word size reduces the number of	operations on data values larger than the
	word size.	
	A. Data-level B. Bit-level	C. Instruction-level D. Processor-level
11.	. A () is data structure that consist	ts of a set of nodes and a set of edges that
	relate the nodes to each other.	
	A. tree B. queue	C. list D. graph
12.	. As a (), HTML uses tags to annot	tate the information in an HMTL document,
	indicating how the information should	be displayed.
	A. markup language	B. high-level programming language
	C. extensible markup language	D. functional programming language
13.	. Suppose that an operating system impl	ements paged memory management. Within
	one of its process, the logical address	s 3517, with a page size of 1024, can be
	written as ().	
	A. <2, 445> B. <3, 445>	C. <3, 425> D. <0, 3517>
14	. When a running process executes an I/o	O statement, it will enter the () state.
	A. waiting B. running	C. terminated D. ready
15.	. A computer that passes the Turing tes	st would demonstrate (), meaning that
	the two systems (human and computer	r) are equivalent in results but do not arrive

	at those results in	the same way.			
	A. strong equ	iivalence	B. artifici	al intelligence	
	C. human int	elligence	D. weak e	equivalence	
16.	Information secu	ırity can be descri	bed as the sy	enthesis of (), integrity, and
	availability – the	so-called CIA tria	d.		
	A. confidenti	ality	B. accessi	ibility	
	C. safety		D. depend	lability	
17.	() are broad	d, but precise, sta	tements outlin	ning what is	to be provided by
	software product				
	A. Software	engineering	B. Softwa	re quality	
	C. Software s	specifications	D. Softwa	are requiremen	nts
18.	() CPU sc	heduling distribut	es the proces	ssing time ec	uitably among all
	processes that an	re in the ready sta	ate. A particul	lar time slice	called quantum is
	established in thi	s approach.	-		-
	A. First-come	e, first-served	B. Shorte	st-job-next	
	C. Round-rob	oin	D. Priorit	y-based	
19.	According to the	Huffman encodin	ng scheme in t	the table below	w, the word (
	would be encode	d as 101011111000)1011.		
		Huffman Co	de C	haracter]
		00		A	
		01		<u>E</u>	-
		100		L	-
		110 111		O R	
		1010		B	-
		1011		D	-
	A. BREAD	B. BROAD	C. DREA	D D	. BLOOD
20.	A() is a sma	all text file that a w	veb server stor	es on your lo	cal computer's hard
	disk. This file is	not a program, and	it does not ex	ecute anythin	g on your computer
	However, since i	t is based on the m	achine that's n	naking the cor	nnection (instead of
	the person/user),	using this techno	ology to perso	nalize user e	xperience does not
	always work.				
	A. spreadshe	et B. tag	C. hyperto	ext D	. cookie
II.	Fill in the Bla	anks (2 points e	ach, 30 poir	ıts in total)	
1.		(255, 0, 0) represen	_	color	

2. 24.375 in decimal is _____ in binary.

3. The figure below provides a transistor-based implementation of the ______ gate.

4.	The	signed-magnitude	rep	resent	tation	of	the	negativ	e num	ber -62	is
			The	2's	comp	leme	nt	of the	same	number	is
		·									

5.	If we leverage run-length	n encoding to compress the str	ring AABBBCCCC,	we will
	get	and the compression ratio is	·	

6.	A stack is an abstract composite data structure in v	which accesses are made at only
	one end. Adding an item to the stack is called	, while removing an
	item is termed	

7.	There are three basic disk-scheduling pol	icies, namely	,
	, and	, each o	of which
	determines, in a different way, the	in which pending disk re	quests are
	processed.		

8.	A local-area net	work (LAN) connec	ts a rela	atively	small numb	er of mach	ines	in a
	relatively close	geographical area.	Three	classic	topologies	of LANs	are	ring
	topology,	topology, and	<u> </u>	to	opology.			

III. Translate the Following Paragraphs into Chinese (5 points each, 10 points in total).

1. A semantic network is a knowledge representation technique that focuses on the relationships between objects. A directed graph is used to represent a semantic network. The nodes of the graph represent objects, and the arrows between nodes represent relationships. The arrows are labeled to indicate the types of relationships that exisit. Semantic networks borrow many object-oritented concepts, including inheritance and instantiation.

2. Although username and password verification is used for the vast majority of software systems, other authentication techniques do come into play. These range from seemingly insignificant situations, such as posting a comment on a blog, to high-security systems that use multiple levels of authorization. Among emerging alternatives, biometric authentication, a security process relying on unique biological or physiological characteristics of an individual for the purpose of identify verification, has drawn the attention of the security research community.

IV. Applied Problem (24 points).

Write down the pseudocode implementation of the Quicksort algorithm and show how the algorithm works with the input sequence 6, 38, 5, 7, 21, 55, 100, 34.

V. Answer the Following	Questions in	English	or Chinese	. (8 points
each, 16 points in total).				

1. How does the Web differ from the Internet?

2. Compare and contrast an assembler, a compiler, and an interpreter.