Differentiation Rules Benchmark # 4

Period:______Date:_____

1.	$\frac{d}{dx} \Big[\sin \left(x^{-2} \right) \Big]$	
2.	c is a constant $\frac{d}{dx} [c \cdot g(x)]$	
3.	$\frac{d}{dx} \left[\frac{b(x)}{v(x)} \right]$	
4.	$\frac{d}{dx} \Big[\ln \big(\cos \big(x \big) \big) \Big]$	
5.	$\frac{d}{dx} \big[s(x) \cdot w(x) \big]$	
6.	$\frac{d}{dx}[e]$	
7.	$\frac{d}{dx}\Big[\big(\cos(x)\big)^3\Big]$	
8.	$\frac{d}{dx}\Big[\cos\left(2x^3-7\right)\Big]$	
9.	$\frac{d}{dx} \Big[e^{\arctan(x)} \Big]$	
10.	$\frac{d}{dx} \Big[\sec \left(3^x \right) \Big]$	
11.	$f(x) = x^{5} + 27x + 5$ $(f^{-1})'(10)$	SETUP ONLY!! You don't need to solve for the value.
12.	$\frac{d}{dx}\Big[\cot\big(-x\big)\Big]$	

13.	$\frac{d}{dx} \Big[\operatorname{arccot} \big(\cos \big(x \big) \big) \Big]$	
14.	$\frac{d}{dx}[x]$	
15.	$\frac{d}{dx} \Big[\big 4x + 5 \big \Big]$	
16.	$\frac{d}{dx} \Big[5^{\sec(x)} \Big]$	
17.	$\frac{d}{dx} \Big[\operatorname{arccsc} \left(x^7 \right) \Big]$	
18.	$\frac{d}{dx} \Big[\arccos \Big(\log_2 (x) \Big) \Big]$	
19.	$\frac{d}{dx} \Big[\log_6 \left(x^3 + 4x \right) \Big]$	
20.	$\frac{d}{dx}\Big[\arcsin\Big(e^x\Big)\Big]$	
21.	$\frac{d}{dx}\Big[g\big(t\big(x\big)\big)\Big]$	
22.	$\frac{d}{dx}\Big[\tan\big(\sec\big(x\big)\big)\Big]$	
23.	$\frac{d}{dx} \Big[\operatorname{arcsec} \left(-x^2 \right) \Big]$	
24.	$\frac{d}{dx} \Big[h(x) \pm q(x) \Big]$	
25.	$\frac{d}{dx} \Big[\arctan\big(5x\big)\Big]$	
26.	$\frac{d}{dx} \Big[\csc\left(x^2\right) \Big]$	