07		7:0
23	展全宗	5.2
23	耕一岁 / 手木	1.3
23	業─2/1手ホ	章 ð 策
		0.1
21	- Per 9qquq	d.₽
21	Hopf and the state of the state	₽.₽
12	Lebesgue の種題	€.4
21	Fibration	4.2
21		1.4
51	Fibration & Cofibration	章⊅第
61	カ帯 ひ 及間 空 な 的 本基	章 £ 駕
12	-34 3 4	1.7
		1.2
12	一名イチホ	章2第
13		
71		
II	四	₽.I
	-	
6	八八 八	£.1
2	пЩ, Щ р.С.1	
č.	1.2.3 C, Cn	
₹	1.2.2 Dn, Sn-1	
8	I.2.1 Rn	
8	・・・・・・・・間空な硝本基	2.1
Ţ		I.I
τ	Introduction	喜 [焦
-		

※目

III

2020 年度 幾何学特論 I ホモトピー論入門

佃 修一

2020年5月2日

2020 年度前期「幾何学特論 I」の講義メモ. tom Dieck [5], Gray [2], 西田 [7], May [4] を参考にホモトビー論入門をやってみる.

7.A 9.A ð.A ₽.A 2.A I.A A 鬆討 6.65.3

v

List of exercises

32

exercise1																				5	
${\it exercise} 2$																				8	
${\it exercise3}$																				12	
${\it exercise 4}$																				15	
${\it exercise} 5$																				16	
${\it exercise} 6$																				17	
${\it exercise7}$																					
${\it exercise} 8$																				29	
${\it exercise 9}$																				30	
exercise10																				31	
exercise11																				31	
overcise19																				35	

Example 1.1.6 と全く同様にして Dn は可縮であることが分かる.

Sphere) 2175.

lenoisnamib-n) 面形元次 1-n ,(2sib lenoisnamib-n) 盤円元次 n か予け予念

$$D^n := \left\{ x \in \mathbb{R}^n \mid \|x\| \mid 1 \right\}$$

$$\left\{ 1 \ge \int_{1}^{s} x \sum_{i=1}^{n} \left| u \in (nx, \dots, 1x) = x \right\} = \left\{ 1 \le \int_{1}^{s} x \sum_{i=1}^{n} \left| u \in (nx, \dots, 1x) = x \right\} \right\}$$

$$\left\{ 1 \ge \int_{1}^{s} x \sum_{i=1}^{n} \left| u \in (nx, \dots, 1x) = x \right\} = \left\{ 1 \le \int_{1}^{s} x \sum_{i=1}^{n} \left| u \in (nx, \dots, 1x) = x \right\} \right\}$$

間空代階の 『M 間空丫でして一二元次 n .7.2.1 noitin和sO

I.2.2 D^{n}, S^{n-1}

. 幺こるあで合果関界再制料条位十豊後のあ去

るあずイベバンに26合乗会階の mm 間空 y w (! ベーエ .(Ioine-Borel) **3.2.1 moroor**T

Proof. 行列を使っておけば、各成分は反反し、算り掛け算で書き

Corollary 1.2.5. 線形写像 f: Rn → Rm は連続.

(4)運搬:

$$\mathbb{R}^2 \ni (x, y) \mapsto x + y \in \mathbb{R}$$

$$\mathbb{R}^2 \ni (x, y) \mapsto xy \in \mathbb{R}$$

$$\mathbb{R} \setminus \{0\} \mapsto x \mapsto 1/x \in \mathbb{R}$$

Corollary 1.2.3. X を位相空間, $B \subset \mathbb{R}^n$ を部分空間, $f: X \to B$ を写像とする。このとき, f が連続であることと, 任意の $1 \le i \le n$ に対し, $p_i \circ f: X \to B$ を写像であることは同値. ただし, $p_i: B \to \mathbb{R}$ は, 包含と第 i 成分への射影 $\mathbb{R}^n \to \mathbb{R}$ の合成.

バノ等と財かのフノと間空暦直の岡 n の M ははは、 m の L.S.S. Im の Leaditisodor T

元める位相と等しい。

の輸出イベリケーにお時かるあまのられこ, これらのまある位相は一ケリッド距離の

$$|y_1(x, y_1)| \sum_{i=i}^n |x_i - y_i|$$

moitoubortin 章 I 策

1

第1章

Introduction

1.1 ホモトピー

空間を分類したい!

位相空間を同相で分類するのは難しすぎる.

Example 1.1.1 (有限位相空間).

もう少しゆるい関係で分類しよう.

Definition 1.1.2. 閉区間 [0,1] を I で表す.

X,Y を位相空間とする.

1. $f,g:X \to Y$ を連続写像とする. 連続写像

 $H\colon X\times I\to Y$

で、任意の $x \in X$ に対し

$$H(x,0) = f(x)$$

$$H(x,1) = g(x)$$

をみたすものが存在するとき、 $f \ge g$ はホモトピック (homotopic) であるといい、 $f \simeq g$ と書く、また、H を f から g へのホモトピー (homotopy) という、

2. 連続写像 $f\colon X\to Y$ は、連続写像 $g\colon Y\to X$ で、

$$g \circ f \simeq id_X$$

 $f \circ g \simeq id_Y$

をみたすものが存在するとき、ホモトピー同値写像 (homotopy equivalence) という.

 $a+bi=c+di \Leftrightarrow a=c, b=d$

コ/4 さきあ, きるるむケ M ∋ b, c, b, a を来出社 幺 ご 卡羨 幺

$$(a,0) + (0,b) = (d,b)$$

 $(1,0)(0,d) + (0,b) = id + b =$

である. 社 D ∋ (a,b) e C は

 $I - = (0, 1 -) = (1, 0)(1, 0) = ^{2}i$

. 支表 す i 号 ほ 多 \mathbb{O} \ni (I,0)

9, Cは玉の2次粒大体である.

あう些同戦 (検単) の朴幻 $\mathbb{D} \leftarrow \mathbb{A}$: \mathfrak{f} 濁写るま宝 \mathfrak{I} の \mathfrak{f} \mathfrak{g} \mathfrak{I} . \mathfrak{g} . \mathfrak{g}

$$(0, c) + (c, 0) = (a + c, 0) + (a, c) + (a, c)$$

 $(a, c) = (a, c)$

28

.るあau (0,1) お示訟単る专関习癖 (0,0) お示訟単る专関习席习らよるかはau au

. たい幺燈素敷を示のD. ヒ* も表すDTCい幺朴燈素敷を朴のこ

$$(a,b) + (c,d) = (a+c,b+d)$$

 $(a,b)(c,d) = (ac-db,da+bc)$.

 $(a,b),(c,d)\in\mathbb{R}^2$ $\{z\}\in\mathbb{R}$

Definition 1.2.8. 平2 における却, 積を次のように定めると体となる.

.る专用料を養宝の不以おでイーへのこ, たるあヶ色お古井の養宝の朴燈素夢

1.2.3 C, Cn

B 型な的本基 C.I

8

第1章 Introduction

$$ij = k = -ji$$

$$jk = i = -kj$$

$$ki = j = -ik$$

で定めた積 *3 と一致する.

Definition 1.2.13. $q=(a,b)\in\mathbb{H}=\mathbb{C}^2$ に対し、 $(\overline{a},-b)$ を q の共役 (conjugate) と いって \overline{q} で表す。 $q=a+bi+cj+dk\in\mathbb{H}$ $(a,b,c,d\in\mathbb{R})$ と表したとき $\overline{q}=a-bi-cj-dk$ である.

exercise 2. $q=a+bi+cj+dk\in\mathbb{H}$ $(a,b,c,d\in\mathbb{R})$ と表したとき $\overline{q}=a-bi-cj-dk$ であることを確かめよ

 $q = a + bi + cj + dk \in \mathbb{H}$ $(a, b, c, d \in \mathbb{R})$ に対し

$$q\overline{q} = (a + bi + cj + dk)(a - bi - cj - dk)$$

$$= a^{2} - abi - acj - adk$$

$$+ abi - b^{2}i^{2} - bcij - bdik$$

$$+ acj - bcji - c^{2}j^{2} - cdjk$$

$$+ adk - bdki - cdkj - d^{2}k^{2}$$

$$= a^{2} - abi - acj - adk$$

$$+ abi + b^{2} - bck + bdj$$

$$+ acj + bck + c^{2} - cdi$$

$$+ adk - bdj + cdi + d^{2}$$

$$= a^{2} + b^{2} + c^{2} + d^{2} \ge 0$$

である(可換ではないので計算には注意が必要)

Definition 1.2.14. $||q|| = \sqrt{q\overline{q}} \in \mathbb{R}$ を q の絶対値という.

 $\mathbb C$ の場合と同様に、 $\mathbb H$ 、 $\mathbb H^n$ にこの絶対値を用いて距離を定めることが出来る。距離空間

$$\mathbb{H} \cong \mathbb{R}^4, \quad \mathbb{H}^n \cong (\mathbb{R}^4)^n \cong \mathbb{R}^{4n}$$

である. 4n-1 次元球面 $S^{4n-1}\subset\mathbb{R}^{4n}$ は $\mathbb{R}^{4n}=\mathbb{H}^n$ と同一視すると

$$S^{4n-1} = \{q \in \mathbb{H}^n \mid ||q|| = 1\}$$

とみなせる. 特に

$$S^3=\{q\in\mathbb{H}\mid \|q\|=1\}$$

$$\mathbb{C}^n = (\mathbb{R}^2)^n \cong \mathbb{R}^{2n}$$

で定めるとこれは Cn 上の距離関数であり,

$$\|m-z\|(m\,{}^,\!z)p$$

 $\mathfrak{F}(w,z)b$ 贈輯 $\mathfrak{O} w \le z \cup \mathbb{K}$ $\mathfrak{I}(nw,\ldots,\mathfrak{I}w) = w , (nz,\ldots,\mathfrak{I}z) = z$ 点 $\mathfrak{L} \otimes \mathfrak{L} \otimes \mathfrak{I}$. $\mathfrak{L} \otimes \mathfrak{L} \otimes \mathfrak$

$$\left\| \overline{z_i} z \prod_{1=i}^n \right\| = z \|z\| \prod_{1=i}^n \right\| = \|z\|$$

ふちき大

と定めると、これは $\mathbb C$ 上の距離関数である。もちろん,(我々の複素数体の定義では) 距離関数である。より一般に $z=(z_1,\dots,z_n)\in\mathbb C^n$ に対し,その

$$||m - z|| = (m'z)p$$

, J 🔯

コ つ ラ ω, z, コ 封 . る あ う の き ひ 同 幺 ム ハ ト ノ ル ム と 同 と も ひ で あ ち 。 特 に , で ま け る よ か し と し と し と し と し と し と し と し と

. たいる動校酵の z 多 \mathbb{R} $= \mathbb{R}$ $= \mathbb{R}$ $= \mathbb{R}$ $= \mathbb{R}$ の絶対値という.

00:

$$= a^{2} + b^{2} \ge 0$$

$$= a^{2} - b^{2}$$

$$= a^{2} - b^{2}$$

$$= a^{2} + b^{2} \ge 0$$

 $\text{Jim} \ (a,b \in \mathbb{R}) \ (\exists x \ni a,b) \ \exists y \ni a + b = z$

Definition 1.2.10. $z=(a,b)\in\mathbb{C}$ に対し, $(a,-b)\in\mathbb{C}$ ま の共役 (conjugate) \succeq

.るあか合具式でいる

$$\begin{split} ibid + iba + 5id + 5a &= (ib + 5)(id + a) \\ ibid + iba + i5d + 5a &= \\ i(bd + ba) + bd - 5a &= \\ \end{split}$$

- 一窓知に表すことが出来る。 - のは可幾体なので、普通に、計算をすることが出来る、例えば、

$$\mathbb{H}\ni d, n \quad , id+n=z$$

である。すなわち, 任意の複素数 z lt,

noitoubortnI 章 I 窜

 $|iy - ix| \underset{n \ge i \ge 1}{\operatorname{xem}} = (y, x)_{\infty} b$

Proposition 1.2.1. $d_{\infty}(x, y), d_{1}(x, y)$ &

. るホ人多財

で定めるとこれは Pin 上の距離関数である。 このノートでは、特に断らなければ Pin にはこの距離をいれ、常にこの距離の定める位

$$\|\boldsymbol{h} - \boldsymbol{x}\| = (\boldsymbol{h}, \boldsymbol{x})\boldsymbol{p}$$

4

- 3. $||x + y|| \le ||x|| + ||y||$.
- 2. 任意の $a \in \mathbb{R}$ と $x \in \mathbb{R}^n$ に対し, $\|ax\| = |a| \|x\|$.
 - $.0 = x \Leftrightarrow 0 = ||x|| \text{ (d)}$
 - $|x| \le ||x|| \le 0$

. C立り放社水, 社で思るる私社とこ計入学で仕こと、るめ宝で

$$||x|| = \sqrt{\sum_{i=1}^{n} (x_i)^2}$$

$$\mathbb{H}^n = \{(x_1, x_2, \dots, x_n) | x_i \in \mathbb{H} \}$$

1.2.1 Bu

間空な的本基 2.1

. そより挙を囲の眼、それさろあするれな班す!II 学同畿 こおいる

る。 後は「「本回機」, れるれら竹挙了しと関くと側として挙げられるが, 「幾回撃」。 ある。 1 を回機で、 1 を回機で、 1 を回路の答り始門人

まってコンパクトで、よい" 佐柏空間を弱ポモトビー同値で分類するには有限位相空間を おポモトビー同値で分類すればよい、これよい、特別の問題と対象の間の関とを であるがは、ないなれても他に関わるので立つ的では、ないないが、とはも自由で

8 間空な改本基 2.I

1.2 基本的な空間

と自然に同一視したときのユークリッド距離と同じものである.このノートでは、特に断らなければ \mathbb{C}^n にはこの距離をいれ、常にこの距離の定める位相を入れる.

奇数次元の球面 $S^{2n-1}\subset \mathbb{R}^{2n}$ は, $\mathbb{R}^{2n}=\mathbb{C}^n$ と同一視すると

$$S^{2n-1} = \{ z \in \mathbb{C}^n \mid ||z|| = 1 \} = \{ z = (z_1, \dots, z_n) \in \mathbb{C}^n \mid \sum z_i \overline{z_i} = 1 \}$$

とみなせる. 特に

$$S^1 = \{ z \in \mathbb{C} \mid ||z|| = 1 \}$$

である. $\|zw\|=\|z\|\|w\|$ であること, $\|z\|=1$ ならば $z\overline{z}=1$ であることに注意すると, S^1 は複素数の積により(可換)群となることが分かる.

1.2.4 \mathbb{H}, \mathbb{H}^n

Definition 1.2.12. \mathbb{C}^2 における和, 積を次のように定めると(非可換)体となる. $(a,b),(c,d)\in\mathbb{C}^2$ に対し

$$(a,b) + (c,d) = (a+c,b+d)$$

 $(a,b)(c,d) = (ac - \overline{d}b, da + b\overline{c}).$

この体を四元数体といって $\mathbb H$ で表す。 $\mathbb H$ の元を四元数 (quaternion) という *2 . (我々の定義では) 実ベクトル空間としては $\mathbb C=\mathbb R^2$ であるから、 $\mathbb H$ と $\mathbb R^4$ は実ベクト

ル空間として自然に同一視出来る: $\mathbb{H} = \mathbb{C}^2 = \mathbb{R}^4$

$$\mathbb{H} \xrightarrow{\qquad\qquad} \mathbb{C}^2 \xrightarrow{\qquad\qquad} (\mathbb{R}^2)^2 \xrightarrow{\qquad\qquad} \mathbb{R}^4 \\ (a+bi,c+di) = ((a,b),(c,d)) \longmapsto (a,b,c,d)$$

$$\mathbb{H}=\mathbb{C}^2=\mathbb{R}^4$$
 の元 $1,i,j,k$ を

$$1 = (1,0) = (1,0,0,0)$$

$$i = (i, 0) = (0, 1, 0, 0)$$

$$j = (0, 1) = (0, 0, 1, 0)$$

 $k = (0, i) = (0, 0, 0, 1)$

で定める. ℍ の積は, ℝ⁴ に

$$i^2=j^2=k^2=-1$$

第1章 Introduction

また、このとき g を f のホモトピー逆写像 (homotopy inverse) とよぶ、
3. X から Y へのホモトピー同値写像が存在するとき、X と Y はホモトピー同値 (homotopy equivalent) であるという。

Proposition 1.1.3. X から Y への連続写像全体のなす集合を F(X,Y) と書く. ホモトピックであるという関係「 \simeq 」は F(X,Y) 上の同値関係である.

証明は後で.

Definition 1.1.4. F(X,Y) の、ホモトピックという同値関係による商集合

$$[X,Y] = F(X,Y)/\simeq$$

を X から Y へのホモトピー集合 (homotopy set) という. $f\colon X\to Y$ のホモトピー類を [f] と書くが、しばしば [] を略して f と書く.

Problem 1.1.5. 二つの位相空間 X, Y が与えられたとき

- X と Y はホモトピー同値か?
- [X,Y] はどんな集合か?

が知りたい!

Example 1.1.6. \mathbb{R}^n は一点とホモトピー同値である.

見やすさのため、一点 * からなる集合(空間) {*} を * と書く、 $f: \mathbb{R}^n \to *$ を f(x) = *, $g: * \to \mathbb{R}^n$ を $g(*) = 0 := \{0, \dots, 0\}$ で定める、明らかに $f \circ g = \mathrm{id}$ 、よって $f \circ g \simeq \mathrm{id}$. 一方、 $H: \mathbb{R}^n \times I \to \mathbb{R}^n$ を

$$H(x,t) = tx$$

で定めると、H は連続で、

$$H(x, 0) = 0x = 0 = g \circ f(x)$$

 $H(x, 1) = 1x = x = id_{\mathbb{R}^n}(x)$

だから, $g \circ f \simeq id$.

一般に、一点とホモトピー同値である空間を可縮 (contractible) であるという.

ホモトビー同値か?という観点からすると \mathbb{R}^n と一点は同じものだとみなす。これくらい大雑把に見ると有限位相空間の分類を組合せ論的に記述できる。

さらに、これよりもう少しゆるい「弱ホモトビー同値」という概念があり、コンパクトで"よい"位相空間は有限位相空間と弱ホモトビー同値であるということが知られている。

^{*1} この定義は Hamilton(William Rowan Hamilton,ウィリアム・ローワン・ハミルトン,1805- 1865)による.他にも $\mathbb{R}[X]/(X^2+1)$ として,あるいは行列環の適当な部分環として定めることもある.

· tctctT J Mom C(A, B) & Mor C T & A T O

. J 必多意封の土芸品

exercise 3. 条件 (b) の刺 1_A ∈ Hom C(A, A) は各 A に対し一意的に定まることを示せ.

>なしコ浸りまあ合器の班大、潮で班多圏コ淵実、 つのまなれたニケテ干許却 (5) 科条

に戻まる. Aをすめ domain または source, Bをすめ codomain または target と A の恒等制 (identity morphism) という.

条件 (b) の射 $1_A \in Hom C(A,A)$ は各 A に対し一意的に定まることがわかる。これを

 $\operatorname{Hom} \mathcal{C}(A, B) \cap \operatorname{Hom} \mathcal{C}(A', B') = \emptyset.$

- (c) 対(A,B)と(A',B') が異なれば, $f = AI \circ f$ し対し $f \circ A \mapsto B$
- (b) 各対象 $A \in ObC$ に対し, 次をみたす財 $I_A: A \rightarrow A$ が存在する. .C立の熱な t(gA) = (tg)A 法等
- 条件 (a) 合成体粘合的, 才なわち, 任意の射 $f\colon A\to B, g\colon B\to C, h\colon C\to D$ に対し, . E.C.

射 $g \in \operatorname{Hom}\nolimits \mathcal{C}(B,C)$ と $f \in \operatorname{Hom}\nolimits \mathcal{C}(A,B)$ の合成を gf または $g \circ f$ とあら . čいる (composition) &合き劇をのこ

 $\operatorname{Hom} \mathcal{C}(B, \mathbb{C}) \times \operatorname{Hom} \mathcal{C}(A, B) \to \operatorname{Hom} \mathcal{C}(A, \mathbb{C}).$

- 製室式れる&気∪枝3 ObC に対し定められた写像 (iii) . さいろ (worns おさま mainqrom) 娘の~8 されん ま元の合衆のこ
 - (A,B) が数の任意の順序数 (A,B) に対して改められた集合 (A,B). ObC の記を対象 (object) という.
 - data (i) 55% ObC.

. そいまとこののます式やま (a),(d),(s) 朴柔 , (なさん (iii),(ii),(i

Definition 1.4.1 (Category). 圏 (カテゴリー, category) Cとは以下の3つのdata

第1章 Introduction

. C立 δ 放 δ を δ の δ を δ の δ を δ の δ の δ の δ を δ の δ の δ を δ の δ を δ の δ の δ の δ を δ の δ を δ の δ の δ を δ の δ の δ を δ の δ を δ の δ を δ の δ .C. TT 6 X4

条件 (a) 任意の射 $f:A \to B \in \mathcal{C}, g:B \to C \in \mathcal{C}$ に対し、等式 F(gf) = F(g)F(f) が Hom $\mathcal{D}(F(A), F(B))$ 普通 $F_{A,B}$ を単に F と書く.

(ii) C の対象の各順序対 (A,B) に対して定められた写像 $\mathbb{F}_{A,B}\colon \operatorname{Hom} \mathcal{C}(A,B) \to$

data (i) 写像 $F \colon \mathrm{Ob} \, \mathcal{C} \to \mathrm{Ob} \, \mathcal{D}$

. そいまとこののまもおそま (d),(s) 料条 , ひなられ (ii),(i) stab のここの Definition L.4.5 (Functor). 圏 C から圏 かへの関手 (functor) F: C → ひとは以下

.動同一コイチホ却 Y Z X ⇔ 壁同な (doT)od ∋ Y,X

Example 1.4.4. $f: X \to Y \in ho(\text{Top})$ が同型射である $\Leftrightarrow f$ はホモトピー同値写像.

2. Aから Bへの同型物が存在するとき Aは Bに (C において) 同型であるといい,

 $A \xrightarrow{\delta} V$

.そいる関数のもま

. ふあう (isomorphism) 根壁同語 $\mathfrak{d} \in \mathbb{R}$ がある.

Definition 1.4.3. Cを置とする.

・(で元パでいわるこでぶみる神条の圏代パン) 圏をでる

流合多流合の擧罕瀦重, 禄多醸ーツイチホの譽罕瀦重, 遠於多間空財动:(qoT)oA. ♪

. 圏るもと加合き加合の勢罕誘重, 挟き劇罕誘重, 薬杖き間空財力:(qoT). &

. 圏るする流合多流合の豫写壁同準, 検多郷写壁同準, ੈ葉 は多精 い >ー て :(IodA) . 2 .圏る下ろ流合き流合の劇

臣, 棟多巻草の間の合集, J S 葉枝多合果:(stoR) . I Example-Definition 1.4.2.

圏の例を挙げる.

第2章 ホモトピー

П

・ 執 $f:A \to B$ と $g:B \to C$ の合成を図え $A \stackrel{f}{\to} B \stackrel{g}{\to} C$ であらわす.

Hom C(A, B) を Hom(A, B) または C(A, B) と書くこともある。

- ン書と ひきも ひんぱんの ひroM きも ,ひきん ごりはべんの ひもひ ましおし •

1.3 可除代数

である、||aa'|| = ||a||||a'|| であること(が示せる)、||a|| = 1 ならば $a\bar{a} = 1$ であることに 注意すると、 S^3 は四元数の積により(非可換)群となることが分かる.

$$\left(\sum a_i e_i\right) \cdot \left(\sum b_i e_i\right) = \sum (a_i b_j) (e_i \cdot e_j)$$

により、Vに、分配法則をみたす積を定めることが出来る.一般には、この積は単位元をもつとも結合的である とも限らない。

1.3 可除代数

 \mathbb{R} に $i^2 = -1$ になる数 i を付け加えて新しい数 (複素数、 \mathbb{C}) を作った。 \mathbb{R} に $i^2 = j^2 =$ $k^2 = -1$ になる「数」i, j, k を付け加えて新しい数(四元数, \mathbb{H})を作った. 同じようなこ とが他にも出来るのか? 例えば k は使わず i,j だけを考えて \mathbb{R}^3 が体になるようには出来 ないのか?といった疑問は自然におこるであろう.

Definition 1.3.1. 実ベクトル空間 A に、 $積 :: A \times A \rightarrow A$ が与えられており、任意の $a,b,c \in A$ と任意の $r \in \mathbb{R}$ に対し

- 1. $(a+b) \cdot c = a \cdot c + b \cdot c$
- 2. $a \cdot (b+c) = a \cdot b + a \cdot c$
- 3. $(ra) \cdot b = r(a \cdot b) = a \cdot (rb)$

が成り立つとき *4, A を \mathbb{R} 上の代数 (algebra) あるいは \mathbb{R} 代数という. $\mathbb R$ 代数 A は, 任意の $0 \neq a \in A$ と任意の $b \in A$ に対し次の二つの条件

- 1. ax = b をみたす $x \in A$ がただ一つ存在する
- 2. ya = b をみたす $y \in A$ がただ一つ存在する

をみたすとき実可除代数 (real division algebra) という.

実可除代数は 分配法則が成り立ち加減乗除という四則演算が出来るという意味で 広 い意味での「数」の様なものである(ただし,積については,単位元の存在,可換法則,結 合法則は要求しない).

Example 1.3.2. \mathbb{R} から \mathbb{C} . \mathbb{C} から \mathbb{H} を作ったのと同じことを \mathbb{H} でやってみる.

1. $f_0 \simeq f_1$ $about size <math>about size gf_0 \simeq about size gf_0 \simeq a$

2. $g_0 \simeq g_1$ ならば $g_0 f \simeq g_1 f$ である.

3. $f_0 \simeq f_1, g_0 \simeq g_1 \text{ t is, } g_0 f_0 \simeq g_1 f_1 \text{ t c.}$

Proof. 1. $F: X \times I \to Y$ を f_0 から f_1 へのホモトピーとすると $gF: X \times I \to Y \to Z$ は gf_0 から gf_1 へのホモトピーである.

16

3. 1,2 より $g_0f_0 \simeq g_0f_1 \simeq g_1f_1$. よって $g_0f_0 \simeq g_1f_1$.

exercise 5.2を示せ.

Proposition 2.1.1.3 より写像の合成は, 写像

 $[X,Y] \times [Y,Z] \rightarrow [X,Z]$

を定める.

Definition 2.1.2. 1. 位相空間 X とその部分空間 $A \subset X$ の組 (X,A) を位相空間 対という. しばしば省略して空間対とよぶ.

A が一点 $\{x_0\}$ であるときは, $(X,\{x_0\})$ を (X,x_0) と書き, 基点付き空間 (based space) という. また x_0 を基点 (basepoint) という.

2. (X,A), (Y,B) を空間対とする. 連続写像 $f\colon X\to Y$ は, $f(A)\subset B$ をみたすと き空間対の写像とよび、 $f:(X,A) \to (Y,B)$ と表す.

基点付き空間の写像 $f\colon (X,x_0) \to (Y,y_0)$, つまり連続写像 $f\colon X \to Y$ で, $f(x_0) =$ y_0 をみたすものを基点付き写像 (based map) という.

3. 位相空間対を対象とし、空間対の写像を射とする圏を空間対の圏といい (Top(2)) と書く. (Top(2)) の同型射を空間対の同相写像という.

4. 基点付き空間を対象とし、基点付き写像を射とする圏を基点付き空間の圏といい (Top) と書く.

Lemma 2.1.3. $f:(X,A) \rightarrow (Y,B)$ を空間対の写像とする.

このとき、f が空間対の同相写像 $\Leftrightarrow f: X \to Y$, $f|_A: A \to B$ がどちらも同相写像、

 $Proof.\ f\colon (X,A) \to (Y,B)$ が空間対の同相写像であるとし, $g\colon (Y,B) \to (X,A)$ をその 逆射とする. 明らかに $f: X \to Y$ は同相写像で, $g: Y \to X$ がその逆写像である.

また, $f(A) \subset B$, $g(B) \subset A$ なので, f および g の制限は写像 $f|_A \colon A \to B$, $g|_B \colon B \to B$ Aを定め、どちらも連続である.明らかに互いに他の逆写像であるから同相.

逆に、 $f: X \to Y$ 、 $f|_A: A \to B$ がどちらも同相写像であるとする、 $g: Y \to X$ を f

^{*2} この作り方は、艮 から $\mathbb C$ を作った方法と同じである。この構成法を Cayley-Dickson 構成という。*3 e_1,\dots,e_n が実ペクトル空間 V の基底であるとき, n^2 個の元 $e_i\cdot e_j\in V$ を定めると

*5 これは Brouwer の不動点定理と同値な命題である.

となる. D^n は可縮なので $F(D^n) = F(*) = 0$ ゆえ右辺は 0 写像となり不合理.

$$i_{I}(f) = i_{I}(f) = f_{I}(f) = f_{I}(f) = f_{I}(f) = f_{I}(f)$$

ጋሮኔ .ሮሷዕ፟፟፟፟፟ፙል bi =it , ኃዕኔት $it={}_{t-nS}|t$

は可觸ではないことが分かる。 5、ことががりかる。 5、ことががりない。 5 ことがが 5 ことがが 5 ことがが 5 ことがが 5 ことがが 5 ことがが 5 ことが 5

. (京でき越きが養職のこ、るで存在する (東で なもくる であれるかんできたみないといって 2-n2 (まで いながで 期間ーソイチホン点ー的 1-n2 かのなり き 2 , くるも変励を作こ

$$\mathbb{Z} = (^{1-n}\mathbb{Z})\mathbb{I}$$

$$\mathbb{Z} = (^{1-n}\mathbb{Z})\mathbb{I}$$

2

$$E: vo(\mathbf{Lob}) \rightarrow (\mathbf{Vpel})$$

Example 1.4.7. 関手

□ (検薬の子な(g) A, つ) 検壁同却(t) A とない。

$$P(f)P(g) = P(f)P(g) = P(f)P(g) = P(f)P(g)$$

考3のJ.C立り類24 BI = 8t, AI = 4g さ

 $Proof.\ f: A \to B \in C$ が同型射であるとする. $g: B \to A \in C$ を f の逆射とする. $f: A \to B \in C$ かいのう

特に, A, B ∈ C について, F(A) 挙 F(B) ならば A ≱ B である.

F(f): $F(A) \rightarrow F(B) \in \Omega$ も同型射である.

Lemma I.4.6. $F: \mathbb{C} \to \mathbb{D}$ を関手とする。 $f: A \to B \in \mathbb{C}$ が同型射ならば

いなないおおけらくいってお子とど一同値ではないないならないならないならないなりである。

これけいな然をおりではなる事を表う事の事にあるようななを表を重変不おんながれてるのと 際実(〉本きとおなさとなる来出)おので示をとこるもでか回 ーソイチホ冷間空ので二 本で見た象を出回ーソイチホタアと張頭とろが、パップれたえどを楽と辿回ーソイチホコ

園 1√. I

** 積が双線型 (bilinear) であるということ.

8,4,2,1 = n (ま 4,8.5.1 meorem 1.3.4 まり 都写合わ { させるまつ

$$f(x,y) = \pi(g(x,y)) = \pi(g(x,y$$

¥ψ

$$(x) \pm (x) \pm (x + 1) = \frac{1}{x} - \frac{1}{x} = \frac{1}{x} - \frac{1}{x} = \frac{1}{x} = (x - 1) \pm (x - 1) = (x - 1) \pm (x$$

· & * * * *

$$f = u \circ \theta \colon S^{n-1} \times S^{n-1} \to \mathbb{F}_u \setminus \{0\} S^{n-1}$$

瀬合 (0

$$\frac{\|x\|}{x} = (x) \pi \quad ,^{1-n} S \leftarrow \{0\} \mathrel{/} ^{n} \mathbb{H} : \pi$$

劉卓勝重3 6 劉卓 . ♂ 5 4 4 多

第1章 Introduction

$$g\colon S^{n-1}\times S^{n-1}\to \mathbb{R}^n\setminus\{0\}$$

網定條

四回のフリコ間空れイベン実、るもと遠外湖下実元水 n 多 R .8.8.1 m mool of Theorem 1.8.9 r が r きん r の

15

П

第2章

面 introduction

ホモトピー

2.1 ホモトピー

第1章で述べたホモトピーの性質を証明しよう.

Proposition 1.1.3. X から Y への連続写像全体のなす集合を F(X,Y) と書く. ホモトピックであるという関係 $[\simeq]$ は F(X,Y) 上の同値関係である.

Proof. 1. $f\colon X\to Y$ に対し、 $F\colon X\times I\to Y$ を F(x,t)=f(x) で定めると *6 明らかに連続で F(x,0)=F(x,1)=f(x) だから $f\simeq f.$

- 2. $f\simeq g$ とし, $H\colon X\times I\to Y$ を f から g へのホモトピーとする. $H^{-1}\colon X\times I\to Y$ を $H^{-1}(x,t)=H(x,1-t)$ で定めると *7 明らかに連続で $H^{-1}(x,0)=H(x,1)=g(x)$, $H^{-1}(x,1)=H(x,0)=f(x)$ だから H^{-1} は g から f へのホモトピー. よって $g\simeq f$.
- 3. $f\simeq g,\,g\simeq h$ とし, F を f から g への, G を g から h へのホモトピーとする. $H\colon X\times I\to Y$ を

$$H(x,t) = \begin{cases} F(x,2t), & 0 \le t \le \frac{1}{2} \\ G(x,2t-1), & \frac{1}{2} \le t \le 1 \end{cases}$$
 (2.1)

で定めると H は連続で, H(x,0)=F(x,0)=f(x), H(x,1)=G(x,1)=h(x) なので $f\simeq h.$

exercise 4. (2.1) の H が well-defined であることと連続であることを確かめよ. (ヒント: H を $X \times [0,1/2]$ と $X \times [1/2]$ に制限したものは連続. Proposition A.3.3 参照)

Proposition 2.1.1. $f, f_0, f_1: X \rightarrow Y, g, g_0, g_1: Y \rightarrow Z$ を連続写像とする.

10

 $(a,b),(c,d) \in \mathbb{H}^2$ に対し、和、積を

П

$$(a,b) + (c,d) = (a+c,b+d)$$
$$(a,b)(c,d) = (ac - \overline{d}b, da + b\overline{c})$$

で定める。この積は可換ではなく、結合法則もみたさないが、この積により \mathbb{H}^2 は \mathbb{R} 代数となる。さらに、積に関する単位元 (1,0) を持ち、0 でない元は積に関する逆元を持つ。また(結合法則をみたさないので、逆元を持つことから直ちに言えるわけではないが)可除代数であることが示せる

 $\mathbb{H}^2\cong\mathbb{R}^8$ にこの和、積を入れたものを Cayley 代数といって $\mathbb O$ で表す. $\mathbb O$ の元を八元数 (octonion) あるいは Cayley 数という

実可除代数の例として 1,2,4,8 次元のもの \mathbb{R} , \mathbb{C} , \mathbb{H} , \mathbb{O} を挙げた. 実は次が成り立つ.

Theorem 1.3.3 ([1], [3]). A が有限次元実可除代数ならば, A の次元は 1,2,4,8 のいずれかである.

この定理は次のホモトピー論の定理の系として得られた.

Theorem 1.3.4 ([1], [3]). 奇写像

$$S^{n-1}\times S^{n-1}\to S^{n-1}$$

が存在するのは n=1,2,4,8 に限る. ただし, 連続写像 $f\colon S^{n-1}\times S^{n-1}\to S^{n-1}$ が奇写像であるとは, 任意の $x,y\in S^{n-1}$ に対し

$$f(-x,y) = -f(x,y) = f(x,-y)$$

が成り立つことをいう.

この講義でこの定理の証明を与えることは出来ないが、Theorem 1.3.4 を仮定して Theorem 1.3.3 を示しておこう.

Lemma 1.3.5. 可除代数は零因子をもたない. つまり, $a \cdot b = 0$ ならば a = 0 または b = 0.

 $\textit{Proof.}\ A$ を可除代数, $a,b\in A,\,ab=0$ とする. $a\neq 0$ とすると,

$$a\cdot b=0=a\cdot 0$$

で、A は可除なので b=0.

Remark. A が有限次元ならば逆も成り立つことが知られている. つまり, A が有限次元代数で、零因子をもたなければ, A は可除代数である(証明はさほど難しくない). .

の逆写像とすると, f が同相写像なので g は連続である. $f|_A\colon A\to B$ は同相写像な ので全射ゆえ f(A)=B である. $b\in B$ に対し, $f(g(b))=b\in B=f(A)$. f は単射 だから $g(b) \in A$. よって $g(B) \subset A$. したがって g は空間対の写像であり、明らかに $f\colon (X,A) \to (Y,B)$ の逆射.

exercise 6. $f\colon (X,A) \to (Y,B)$ を空間対の写像とする. このとき, $f|_A\colon A \to B$ が連続 であることを示せ(Proposition A.3.2 を見よ).

Definition 2.1.4. 空間の 3 対, 基点付き空間対

li€ ∍qquq č.4

4.4 Hopf fibration

4.3 Lebesgue の補題

4.2 Fibration

4.1 Cofibration

Fibration & Cofibration

章 4 第

17

^{*6} 射影 $X \times I \to X$ と f の合成だから **7 ι : $I \to I$, $\iota(t) = 1 - t$ は連続で, $H^{-1} = H \circ (\mathrm{id}_X \times \iota)$

- 5.5 計算例
- 5.4 Freudenthal

5.2 完全列

- 5.3 Blakers-Massey
- 5.1 ホモトピー群

ホモトピー群

第5章

23

61

筑斠び 及間空な 的本基 章 8 駕 $S \triangleq S \ h = h^{-1}g \ S \ \text{SHIM} \ h \in H \ \tilde{C} \ kh = g.$

Example A.2.6. H を G の部分群とする. 群の賴 $G \times H \to G$ により H は G に付から 分称日とよられる. 実際、 $g \sim k$ とすると g = kh となる $h \in H$ がある. よって $k^{-1}g = h$ e H. 一方, $k^{-1}g \in H$

. 544492

 $R_{\rm emot}$ 、. G が X に左から作用しているとき, $L_{\rm emo}$ A.3 により与えられる台作用を考えると, これらの作用の定める同値関係は同じであることが $g\cdot y=(g^{-1})^{-1}\cdot y=y\cdot g^{-1}$

バをよること書くひ/X を X/D と書くことも多い.

同様にG がX に左から作用しているとき、Tの同値関係による商集合をG/X と書き、X/G と着き、X

Definition A.2.5. G が X に右から作用しているとき, 上の同値関係による預集合を

П

 $z \sim x \not \succeq \text{Fi} \left(\textbf{G} \textbf{Y} \right) \cdot z = \textbf{G} \cdot \left(\textbf{Y} \cdot \textbf{Z} \right) = \textbf{G} \cdot \textbf{W} = x$

 $(y\cdot y)\cdot y^{-1}=x\cdot y^{-1} \text{ if } \lambda \neq y \cdot x = y\cdot y, y=z\cdot h \text{ L if } \lambda \neq y, h \in G \text{ h if } \lambda \neq x \in S \text{ L if } \lambda \neq x \in S \text{$

 $x \sim x \not\preceq \phi \circ x = x$.1

· 下小杉の台融の用計古 · foor f

.685

Mana A.2.4. G か X に右から (右から (右から のかな X まる 0・4) これ かん A. A. G か A. C はから 0 がまり 0 を 0 0 を 0 を 0 を 0 を 0 を 0 を 0 を 0 を 0 を 0 を 0

$$\begin{split} \mu(x,\vartheta), h &= h^{-1} \cdot \mu(x,\vartheta) = h^{-1} \cdot (\theta^{-1}x,\vartheta) \\ \mu(\mu(x,\vartheta), h) &= h^{-1} \cdot \mu(x,\vartheta) = h^{-1} \cdot x = \mu(x,\vartheta h) \\ &= h^{-1} \cdot x = x \\ &= x \\ \end{split}$$

foorq

 $\mu(x,g)=g^{-1}\cdot x$ と定めることにより G は X に右から作用する.

Lemma A.2.3. G が X に左から作用しているとする。 写像 $\mu\colon X\times G\to X$ を

離民聯モ A 疑わ

25

付録A

予備知識

これまでに学んだ(かもしれない)であろう事で必用なことをまとめておく. 証明がついていないものは幾何学序論の私の講義ノート [6] にあると思う.

A.1 同值関係

Definition A.1.1. 集合 X 上の関係が次の 3 つの条件:

- 1. (反射律, reflexive law) $x \sim x$,
- 2. (対称律, symmetric law) $x \sim y \Rightarrow y \sim x$,
- 3. (推移律, transitive law) $x \sim y$ かつ $y \sim z \Rightarrow x \sim z$

を満たすとき, 関係 \sim は集合 X 上の同値関係 (equivalence relation) であるという.

Definition A.1.2. 関係 \sim を集合 X 上の同値関係とする. X の要素 $a \in X$ に対し, a と同値な要素全体のなす X の部分集合

$$C_a = \{x \in X \mid x \sim a\}$$

を a の同値類 (equivalence class) という. a の同値類を [a], \bar{a} 等と書くことも多い. $x\in C_a$ をひとつとることを, x を C_a の代表元 (representative) としてとるという.

Definition A.1.3. X を集合, \sim を X 上の同値関係とする.

1. 同値類の全体 $\{C_a \mid a \in X\}$ を X/\sim と書き、同値関係 \sim による X の商集合 (quotient set) という.

.るるで資かの水却のな事大/であくよで財か斯直

. る水い多財が関直割水りならはとこころと重告お司合業財直

が生成する位相(この位相を直積位相 という)をいれた位相空間を,歳 $(X_i,O_\lambda)\}_{\lambda\in\Lambda}$ の直積空間または弱位相による直積空間という.ただし $p_\lambda\colon\prod X_\lambda\to X_\lambda$ は標準的対影.

$$\bigcup_{\lambda \in \Lambda} \left\{ p_{\lambda}^{-1}(O) \mid O \in \mathcal{O}_{\lambda} \right\}$$

滅の合巣代

間空靜直 4.Α

exercise 8. 証明せよ.

は連続である.

Proposition A.3.3. X を依相空間, $X=F_1\cup F_2$, F_1,F_2 は関集合とする、また, Y を依相空間, $f:X\to Y$ を写像とする、このとき, $f|_{F_1}:F_1\to Y$ (*) が連続ならば f

exercise 7. 証明せよ.

· 辦重 t $^$

,≛305.8

する郷

事者合き $Y \leftarrow A$: i ,間空 公路
き $Y \supset A$,間空 財
 かる Y, X .2.8.A noitize
qorf

. るまで用すわ水、潮るや闘を掛踏重の剥写のへ間空位階

.61

topology)という. 位相空間の影分集は相対位相をいれて位相空間と見たとき, 部分空間 (subspace) と

と定めると, O_A は A の位相となる。 この位相を X による A の相対位相 (relative

$$\{\mathcal{O}\ni O\mid O\cap A\}={}_{A}\mathcal{O}$$

2

間空 代 · B.A

8. 图空 代階 8. A

32

付録 A 予備知識

Theorem A.6.4. Hausdorff 空間の部分空間も Hausdorff.

もう少し一般的に次が成り立つ.

Proposition A.6.5. X を位相空間, Y を Hausdorff 空間とする. 連続な単射 $f\colon X\to Y$ が存在すれば X も Hausdorff.

 $Proof.\ a,b\in X,\ a\neq b$ とする. f は単射だから $f(a)\neq f(b)$ である. Y は Hausdorff だから f(a) の近傍 U と、f(b) の近傍 V で $U\cap V=\emptyset$ となるものがある. f は連続なので $f^{-1}(U),\ f^{-1}(V)$ はそれぞれ a,b の近傍で、 $f^{-1}(U)\cap f^{-1}(V)=f^{-1}(U\cap V)=f^{-1}(\emptyset)=\emptyset$.

Theorem A.6.6. X,Y を位相空間とする. このとき $X\times Y$ が Hausdorff \Leftrightarrow X,Y とも 𝒯 Hausdorff

Remark . 無限個の直積に対しても同様なことが成り立つ. 証明もほぼ同じ.

Theorem A.6.7. X を位相空間とする. このとき, X が Hausdorff \Leftrightarrow 対角線集合 $\Delta = \{(x,x) \mid x \in X\}$ が $X \times X$ の閉集合.

Corollary A.6.8. X を位相空間, Y を Hausdorff 空間, $A\subset X$ とし, $f,g\colon X\to Y$ を 連続写像とする. このとき次が成り立つ.

1. X の部分集合

 $C:=\{x\in X\mid f(x)=g(x)\}$

は閉集合である。

2. f と g が部分集合 A 上一致すれば, A^a 上一致する.

Example A.6.9. $\mathbb R$ を 1 次元ユークリッド空間とする. 連続関数 $f,g:\mathbb R\to\mathbb R$ が $\mathbb Q$ 上一致するならば f=g である.

Corollary A.6.10. X を位相空間, Y を Hausdorff 空間とする. 写像 $f\colon X\to Y$ が連続ならばグラフ

$$\Gamma_f := \{(x,y) \in X \times Y \mid y = f(x)\}$$

は $X \times Y$ の閉集合.

.るあで費卦の水おのな事大/ぐ動くよで間空商, 駐幼小等

 $V \ni h, x \text{ for } y \notin y = x \Leftrightarrow y \sim x$

おいるる.(X) $\Delta \cup A \times A$,知付書习的本具

. (依確)表のフ全 制関動同じ合き

・ たいる間空商るよい \sim 条関動同多のき式たも多時沿外等るよい \sim / $X \leftarrow X : \pi$ 緩慢

Definition A.5.2. 関係 ~ き位相空間 X 上の同値関係とする. 商乗合 X/~ に, 自然な

. ている間至か考る

はY に位相を与える。この位相をf による等心は相といい,位相空間 (Y,O_f) を f によ

$$O_f = \{O \subset Y \mid f^{-1}(O) \in O_X\}$$

孤台果位

間空商 C.A

- 4. Theorem A.4.2 を証明せよ.
- 3. px が関写像とはならないような例を挙げよ.
 - 2. p_A は関写像であることを示せ.

. サ示まることを示せ、

exercise 9. I. 直検空間の位相は、全ての入 \in A \subset A \subset A \cup A

.000022

なる縁重 t な t X \leftarrow t t

2. ∮: A → X を写像とする.

. ふで掛むぐろひ

対式社のまず式を多 $_{\rm A}$ $_{\rm A}$ $_{\rm C}$ $_{\rm C}$

I. ~ 各 λ \in Λ に対し連続写像 $A_i: A_i \rightarrow X_k$ がまなられているとする。

.

$$\begin{split} X_1 = {}^{g}_{\mathcal{A}} = {}^{6}_{1} \cdot {}^{6}_{\mathcal{A}} = {}^{6}_{\mathcal{A}} \circ {}^{1} \cdot {}^{6}_{\mathcal{A}} \\ X_1 = {}^{g}_{\mathcal{A}} = {}^{1} \cdot {}^{6}_{\mathcal{A}} = {}^{1} \cdot {}^{6}_{\mathcal{A}} \circ {}^{6}_{\mathcal{A}} \\ (x)X_1 = x = x \cdot \vartheta = (x)^{g}_{\mathcal{A}} \\ (x)^{6}_{\mathcal{A}} = x \cdot (\theta_{\mathcal{A}}) = (x \cdot \theta) \cdot \psi = ((x)^{6}_{\mathcal{A}})^{q}_{\mathcal{A}} \end{split}$$

foorq

 $\lambda_{X} = \lambda_{X}$.

 $1. \ v_h \circ v_g = v_{hg}.$

. C立 (類社 次 、 る 数 立 $x \cdot \varrho = (x, \varrho) v = (x)_{\varrho} v$ 蒼

Lemma A.2.2. G が X に たから作用しているとする。 $g \in G$ に対し、写像 $v_g : X \to X$

x = x = x

 $x(\theta y) = (x\theta)y$

制料条の土くるで多式含書のこ.>昔く $x\varrho$ おいるあ $x\cdot\varrho$ 多 $X\ni(x,\varrho)$ u 、制し割し

 $\Sigma.$ $\nu(e,x)=x.$ ただし $e\in G$ は単位元.

 $\text{I. } \nu(h,\nu(g,x)) = \nu(hg,x).$

(6) 左から作用するという。

はまる。 $G \times X \to X$ が与えられ、 $\phi \phi \phi$ 作るとすとき。 G は X に (v によるとうとう。 G は X に (v によるとうとう。

x = ax.

 $y(y) = y(\theta x)$

料料条の土るを支き者です。) 書る gx おいるも $g\cdot x$ ま $X\ni (g,x)$ 4 はしおし

5. $\mu(x,e) = x$. ただしゃらほは単位元.

 $1. \ \mu(\mu(x,g),h) = \mu(x,gh).$

. きいくるも用乳された (U により) むから作用するという.

条の水, ならえぞな $X \leftarrow \mathcal{Q} \times X$: 4 豫章 . 6 を載さする, 6 条集会 X . 1.2.A noitinn A.2.1. X を集合 X .

用卦の鞯 2.A

付録 A 予備知識

A.6 ハウスドルフ空間

Theorem A.5.4. X,Z を位相空間, Y を集合, $f\colon X\to Y$ を写像とし, Y に f による等 化位相を入れる. $g\colon Y\to Z$ を写像とする.

このとき g が連続であるための必要十分条件は $g \circ f \colon X \to Z$ が連続であることである.

Theorem A.5.5. X,Y を位相空間, \sim を X 上の同値関係, X/\sim を商空間, $\pi\colon X\to X/\sim$ を自然な射影とする.

 $f \colon X \to Y$ を写像とし、次が可換であるとする(Proposition A.1.4 参照).

このとき, \bar{f} が連続であるための必用十分条件は f が連続であることである.

exercise 10. 1. Definition A.5.1 の O_f は位相であることを示せ.

- 2. Definition A.5.1 で, f による等化位相は, f を連続にする最強の位相であることを示せ.
- 3. Theorem A.5.4 を証明せよ.
- 4. Theorem A.5.5 を証明せよ.

A.6 ハウスドルフ空間

Definition A.6.1. 位相空間 X が Hausdorff (ハウスドルフ) 空間 である \bigoplus_{def} 任意の 相異なる 2 点 $x,y\in X$ に対し, x の近傍 U と y の近傍 V で, $U\cap V=\emptyset$ となるものが存 かする

exercise 11. 位相空間 X が Hausdorff 空間である \leftrightarrow 任意の相異なる 2 点 $x,y \in X$ に 対し, x を含む開集合 O と y を含む開集合 O ' v, $O \cap O' = \emptyset$ となるものが存在する.

Example A.6.2. 距離空間は Hausdorff 空間である. 実際 X を距離空間, $x,y\in X$, $x\neq y$ とすると, $\varepsilon=d(x,y)/2>0$ で, $\mathrm{U}_\varepsilon(x)\cap\mathrm{U}_\varepsilon(y)=\emptyset$.

Theorem A.6.3. Hausdorff 空間において、1点は閉集合である.

2. $a \in X$ を $C_a \in X/\sim$ にうつす写像

$$X \longrightarrow X/\sim$$
 $U \qquad U$
 $a \longmapsto C_a$

を自然な写像 あるいは商写像, 自然な射影などという.

Proposition A.1.4. X を集合、 \sim $ext{c}$ $ext{e}$ $ext{c}$ $ext{e}$ $ext{$

 $f: X \to Y$ を写像とする. 次は同値である.

1. $x \sim x' \Rightarrow f(x) = f(x')$.

2. $f = \bar{f} \circ \pi$ となるような写像 $\bar{f}: X/\sim \to Y$ が存在する.

$$X \xrightarrow{f} Y$$

さらに、このような写像 \bar{f} は一意的である。この写像 \bar{f} を f により誘導される写像 (induced map) という。

具体的に書けば $\bar{f}(C_x) = f(x)$ である.

Corollary A.1.5. X,Y を集合、 \sim 、≈ をそれぞれ X,Y 上の同値関係、 $p:X\to X/\sim$ 、 $q:Y\to Y/\approx$ をそれぞれ自然な射影とする.

 $f \colon X \to Y$ を写像とする. 次は同値である.

1. $x \sim x' \Rightarrow f(x) \approx f(x')$.

2. $q \circ f = \bar{f} \circ p$ となるような写像 $\bar{f} \colon X/\sim \to Y/\approx$ が存在する

$$X \xrightarrow{f} Y$$

$$\downarrow^{q}$$

$$X/\sim \longrightarrow \uparrow^{\bar{c}} Y/\approx$$

この $ar{f}$ は $ar{f}(C_x) = C_{f(x)}$ により与えられる.

Proof. $q\circ f\colon X\to Y/\!\approx$ に Prop. A.1.4 を使えばよい.

 $\{\{\zeta/z>((x)f,(o)t)\cdot b \Leftarrow \delta \zeta>(x,o)\chi b \mid \delta\}\operatorname{qus}_{,!}\}\operatorname{nim}$... > ? C C

 $(('x)t,(ix)t) \lor b + ((ix)t,(x)t) \lor b \ge (('x)t,(x)t) \lor b$

 $\supset c^2 d \mathcal{H} \cup A_Y(f(a_i), x) > (\lambda_i \wedge (i_i)) + \lambda_i \mathcal{H} \wedge A_Y(f(a_i)) = 0$

 $\begin{aligned} (x, x, x) & b + i \delta > \\ & \delta + i \delta > \\ & b + i \delta > \end{aligned}$

の場合 A 録わ

A.7 コンパクト空間

A.7 コンパクト空間

Definition A.7.1. 1. 位相空間 X がコンパクト (compact) である $\underset{\text{def}}{\Leftrightarrow} X$ の任意の 開被覆が有限部分被覆をもつ.

2. 位相空間 X の部分集合 A がコンパクトである $\underset{\mathrm{def}}{\leftrightarrow}$ 部分空間 A がコンパクトである.

Remark. コンパクト Hausdorff 空間のことをコンパクトといい、この定義 A.7.1 の条件をみたす空間を準コンパクト (quassi-compact) ということもある.

Proposition A.7.2. $A_1, A_2 \subset X$ がコンパクトならば $A_1 \cup A_2$ もコンパクトである.

Theorem A.7.3. コンパクト空間の閉部分集合はコンパクトである.

Theorem A.7.4. コンパクト空間の連続写像による像はコンパクトである.

Remark. コンパクト集合の連続写像による逆像はコンパクトとは限らない. 例えば $\mathbb R$ 上の容数関数を考えてみよ.

Theorem A.7.5. X, Y ともにコンパクトなら $X \times Y$ もコンパクト.

Remark . 無限個の直積の場合も同様なことが成り立つ(チコノフ (Tikhonov) の定理)が、こちらは選択公理が必要(選択公理と同値)であり証明はもう少し面倒.

Theorem A.7.6. コンパクト空間の無限部分集合は集積点をもつ.

Proof.~Xをコンパクト空間とする. $X\neq\emptyset$ としてよい. $A\subset X$ が集積点をもたないならば A は有限集合であることを示せばよい.

任意の $x\in X$ に対し, x は A の集積点ではないので, x を含む開集合 O_x で, $(A-\{x\})\cap O_x=\emptyset$ となるものが存在する.

$$\emptyset = (A - \{x\}) \cap O_x = A \cap \{x\}^c \cap O_x = A \cap O_x \cap \{x\}^c$$

だから

$$A\cap O_x\subset \{x\}$$

である。各 $x\in X$ に対し、この様な O_x をとる。 $\{O_x\}_{x\in X}$ は X の開被覆である。 X はコンパクトなので、 $x_1,\dots,x_n\in X$ で、

$$X = \bigcup_{i=1}^{n} O_{x_i}$$

- -tsukudā/lecturenotes/. [7] 西田 吾郎. ホモトピー論. 共立出版, 1985.
- Mathematical Society (EMS), Zürich, 2008. [6] Shuichi Tsukuda. 幾何学序論講義ノート. http://math.u-ryukyu.ac.jp/
- matics. University of Chicago Press, Chicago, IL, 1999.

 [5] Tammo tom Dieck. Algebraic topology, EMS Textbooks in Mathematics. European
- Acad. Sci. USA, 44(3):280-283, 1958.

 [4] J. P. May. A Concise Course in Algebraic Topology. Chicago Lectures in Mathe-
- Publishers], New York-London, 1975. [3] Michel A. Kervaire. Non-parallelizability of the n-sphere for $n>7.\ Proc.\ Natl.$
- Soc., 64:87–89, 1958. [2] Brayton Gray. Homotopy Theory. Academic Press [Harcourt Brace Jovanovich,
- [1] R. Bott and J. Milnor. On the parallelizability of the spheres. Bull. Amer. Math.

48

、 つ卦卦は $X \ni n^{D}, \dots, n^{D}$ る者、うのなイセパン

 $5\delta_a \text{ if } d_Y(f(a), f(x)) > 2/2 \text{ if } a_X \text{ is } a_X \text{ in } a_X \text{ in$

 $>(x,a)_X b$, d . & ₹ S 0 < 3 . toor9

き, 写像 f: X → Y が連続ならば, f は一様連続である.

幺のこ 、るもと間空鯔理 $_{Y}$ $_{Y}$

. あえ言き逝却き幺のイクパンにね X

exercise 12. 一様連続ならば連続であることを示せ、

明かに一様連続ならば連続である.

. るなる $\delta > 0$ が存在して、 $d_X(x,x') < \delta$ ならば $d_Y(f(x),f(x),f(x'))$

なる 0 < 3 の窓力 \Leftrightarrow るあう (uniformly continuous) 計画 \Leftrightarrow さあう $t \in X$ (対 $t \in X$) ふもと間空調理多 (X, A_X) , (X, A_X) .1.e.A noitinna Definition

間空瓣函 イクパン □ 6.Α

相互像:

.検単却 責 コトイイらきあ, ひよため宝の斜関

謝同 .操全き $ar{t}$, つのな操全な π \circ $ar{t}$ = t . るあで縁悪却 $ar{t}$ ひよる. δ . δ . δ . δ . δ . δ . .16% CE & ~/X, 02

4.7. A moreort, うのな様全な縁重却 \sim / $X \leftarrow X : \pi$ 劇写商 , \Im 4 \Im \Im \Im \Im \Im \Im

尊懇 , きょのこ 、るめ虫 (よこ) (x) t=(x) $t \leftrightarrow x \sim x$, $s \sim$ 易関動同の土 X . るちょ検 全な熱東 $Y \leftarrow X : 1$,間空 Hausdorff 空間, $Y \in \mathbb{R}$ 進本な会立 $X : \mathbf{5.8.A}$ 、 $X : \mathbf{5.8.A$

間空獅頭イセパンロ 6.A

付録 A 予備知識

П

П

となるものが存在する.

$$A = A \cap X$$

$$= A \cap \left(\bigcup_{i=1}^{n} O_{x_i}\right)$$

$$= \bigcup_{i=1}^{n} A \cap O_{x_i}$$

$$\subset \bigcup_{i=1}^{n} \{x_i\} = \{x_1, \dots, x_n\}$$

だから、A は有限集合.

Corollary A.7.7. コンパクト距離空間の任意の点列は収束する部分列を含む.

Proof.~X をコンパクト距離空間, $\{x_n\}$ を X の点列とする. $A=\{x_n\mid n\in\mathbb{N}\}$ とおく. A が有限集合であれば、ある $x \in X$ が存在し、無限個の番号 n に対し $x_n = x$ となるので よい.

A が無限集合であれば, A は集積点をもつ. $x \in X$ を集積点とすると, 任意の $k \in \mathbb{N}$ に 対し、 ${\rm U}_{\frac{1}{k}}(x)\cap A$ は無限集合であるので、 $x_{n_k}\in {\rm U}_{\frac{1}{k}}(x),\,n_k< n_{k+1}$ となる数列 $\{n_k\}_k$ が とれる. 部分列 $\{x_{n_k}\}_k$ は x に収束する.

Remark. 逆も成り立つ. すなわち, 距離空間 X においては, X はコンパクトである \Leftrightarrow 任意の点列は収束する部分列を含む.

A.8 コンパクト Hausdorff 空間

Theorem A.8.1. Hausdorff 空間のコンパクト集合は閉集合である.

Corollary A.8.2. コンパクト Hausdorff 空間の部分集合がコンパクトであるための必 要十分条件は閉集合であること.

Proof. Thm. A.7.3, A.8.1 よりあきらか.

Corollary A.8.3. コンパクト空間から Hausdorff 空間への連続写像は閉写像である.

Proof. Thm. A.7.3, A.7.4, A.8.1 よりあきらか.

Corollary A.8.4. コンパクト空間から Hausdorff 空間への連続な全単射は同相写像で