Feuille de travaux dirigés 2 : Estimation ponctuelle

Exercice 1 (Maximum de vraisemblance pour le modèle linéaire simple : rappel du td précédent):

Pour tout i = 1, ..., n, on considère

$$X_i = a_i \theta_1 + Z_i \tag{1}$$

où les Z_i sont des variables aléatoires indépendantes, de même loi $\mathcal{N}(0, \sigma^2)$. Les coefficients a_i sont des variables déterministes connues (et non toutes nulles). Les paramètres θ_1 et σ^2 sont inconnus. On observe $X = (X_1, \dots, X_n)^{\top}$. On paramètre le modèle pour X par $\theta = (\theta_1, \sigma^2) \in \mathbb{R} \times \mathbb{R}^+$.

- 1. Donner la densité p_{θ} de X par rapport à la mesure de Lebesgue en fonction de $a = (a_1, \ldots, a_n)^{\top}$ et de σ^2 .
- 2. Exprimer l'estimateur $\hat{\theta}$ du maximum de vraisemblance pour le paramètre θ .
- 3. Montrer que $\hat{\theta}_1$ (la première coordonnnée de $\hat{\theta}$) est non biaisé.

Exercice 2 (Moindres carrés dans le modèle linéaire simple): On reprend l'exemple de l'exercice ci-dessus.

- 1. Calculez l'estimateur de θ_1 donné par la méthode des moindres carrés.
- 2. Comparez à l'estimateur du maximum de vraisemblance de l'exercice précédent
- 3. On change la loi des bruits Z_i par une autre loi connue; comment sont modifiés ces deux estimateurs?

Exercice 3 (Méthode des moments):

On observe les durées de vie X_1, \ldots, X_n de n cellules tirées au hasard avec remise (c'est-à-dire que les variables aléatoires X_1, \ldots, X_n sont i.i.d.) dans une population contenant une proportion $\theta \in (0,1)$ de cellules saines et $1-\theta$ de cellules pathogènes. On modélise la durée de vie des cellules saines par une loi exponentielle de paramètre 1, c'est-à-dire par la loi de densité $e^{-x}, x \in \mathbb{R}_+$, par rapport à la mesure de Lebesgue sur \mathbb{R}_+ . On sait par ailleurs qu'une cellule pathogène a une durée de vie moyenne 2 fois moins grande qu'une cellule saine et suit aussi une loi exponentielle.

1. Les durées de vie X_1, \ldots, X_n sont donc i.i.d. de loi $(P_\theta)_{\theta \in (0,1)}$ sur \mathbb{R}_+ . Expliquer pourquoi P_θ a pour densité

$$f_{\theta}(x) := \theta e^{-x} + 2(1-\theta)e^{-2x}, \quad x > 0,$$

par rapport à la mesure de Lebesgue sur \mathbb{R}_+ .

2. Soit p > 0 un entier; calculer $\mathbb{E}_{\theta}[X_1^p]$ et en déduire un estimateur $\widehat{\theta}_{p,n}$ par la méthode des moments.

Exercice 4 (Loi Gamma):

Un opérateur mobile s'intéresse aux durées d'appel de ses clients. On observe les durées

 X_1, \ldots, X_n de n appels, supposées indépendantes et modélisées chacune par une loi Gamma $P_{\theta} = \gamma(\alpha, \lambda)$, de paramètre $\theta = (\alpha, \lambda)$ avec $\alpha > 0$ et $\lambda > 0$ dont la densité est

$$\frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} \exp(-\lambda x) \mathbb{1}_{\mathbb{R}_+}(x) ,$$

où $\Gamma(\alpha)$ est la fonction Gamma. On s'intéresse au paramètre $\theta=(\alpha,\lambda)\in\Theta=(0,\infty)^2.$

- 1. Calculez l'estimateur de θ par la méthode des moments.
- 2. Donnez l'équation que doit vérifier l'estimateur de θ par la méthode du maximum de vraisemblance. Commentez.