Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий

Высшая школа интеллектуальных систем и суперкомпьютерных технологий

Лабараторная работа №2

Синтез комбинационных суммирующих устройств. АЛУ. ПО ДИСЦИПЛИННЕ «АРХИТУКТУРЫ ВЫЧИСЛИТЕЛЬНЫХ СИСТЕМ»

Выполнил студент:

Крутецкий Семен Павлович Группа: з3530903/00301

Руководитель:

доцент, к.т.н Вербова Наталья Михайловна

Содержание

Синтез и построение сумполусуматораматора	2
Построение полусумматора	2
Тестирование полусуматора	3
Синтез и построение одноразрядного сумматора	4
Построение одноразрядного сумматора	4
Тестирование одноразрадяного сумматора	5
АЛУ К155ИП3	6
Построение демонстрационной модели К155ИПЗ	6
Тестирование арифметических операций К155ИПЗ	
Тестирование логических операций К155ИПЗ	
Выводы	11

Синтез и построение полусуматора

Построение полусумматора

Для синтеза модели полусумматора необходимо составить аналитическую модель посредством построения СДНФ для управляющих сигналов S и P из таблицы 1.

X	Y	S	Р
0	0	0	0
0	1	1	0
1	0	1	0
1	1	1	1

Таблица 1: Таблицы истинности полусумматора

В результате получаем две функции описывающие управляющие сигналы S и P, где S - это результат суммирования; P - перенос в старший разряд.

- $S = \overline{X}Y \cup X\overline{Y}$
- \bullet P = XY

На основании полученных выражений составим модель полусуматора в Multisim (рис. 1).

Рис. 1: Модель полусумматора

Тестирование полусуматора

Управляющие сигналы полусуматора подключены к ламповым индикаторам. При подаче входных сигналов в соответсвие с таблицей 1 ожидаем корректную индикацию ламп управляющих сигналов. Проверим работу полусуматора для набора X=1,Y=0. Ожидаем индикацию сигнала S.

Рис. 2: Проверка работы полусумматора

Результат соответвует ожиданию. Аналогично были проверены остальные наборы входных сигналов.

Синтез и построение одноразрадяного сумматора

Построение одноразрядного сумматора

Для синтеза модели одноразрядного сумматора необходимо составить аналитическую модель посредством построения СДНФ для управляющих сигналов S и P из таблицы 2.

X	Y	Z	S	Р
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Таблица 2: Таблицы истинности одноразрядного сумматора

В результате составление СДНФ и ее упрощения получаем функции управляющих сигналов:

- $\bullet \ S = Z(\overline{XY} \cup XY) \cup \overline{Z}(\overline{XY} \cup X\overline{Y})$
- $P = Z(\overline{X}Y \cup X\overline{Y}) \cup XY$

На основании полученных функций построим модель одноразрадяного сумматора (рис. 3).

Рис. 3: Модель одноразрядного сумматора

Тестирование одноразрядного сумматора

Рассмотрим набор входящих сигналов X=1,Y=0,Z=1. Ожидаемые значения управляющих сигналов S=0,P=1.

Рис. 4: Тестирование одноразрадяного сумматора

Результат соответсвует ожиданию. Аналогино были протестированы остальные наборы входных сигналов.

АЛУ К155ИП3

Построение демонстрационной модели К155ИП3

Ниже, на рисунке 5 представленна демонстрационная модель АЛУ К155ИПЗ.

Рис. 5: АЛУ К155ИП3

Данная модель имеет несколько групп входных и выходных сигналов:

- А1-А4 информационные входы первого операнда
- В1-В4 информационные входы второго операнда
- F0-F3 исполняемая операция
- \overline{Z} вход переноса
- ullet М режим работы АЛУ. M=0 арифметический, M=1 логический
- S1-S4 результат операции
- \bullet \overline{P} выход переноса

Тестирование арифметических операций К155ИП3

Протестируем работу АЛУ на примере следующих арифметических операций:

$\mathcal{N}_{\overline{o}}$	\overline{Z}	F0	F1	F2	F3	Операция
1	0	0	1	1	0	A - B
2	0	1	0	0	1	A+B+1
3	1	0	0	1	1	A + A

Таблица 3: Таблица арифметических операций для тестирования АЛУ

Рассмотрим операцию №1. Выставим режим работы АЛУ в арифметический (M=0), в группе входов F укажем режим работы (0110). Подадим на группу входных сигналов А значение 15 (1111), на группу В 6(0110). По результатам операции A-B ожидаем получить 9(1001).

Рис. 6: Арифметическая операция №1

На панели индикации видим управляющи сигнал 1001(9), что соответвует ожидаемому результату.

Рассмотрим операцию №2. Переключатели группы F выставим в режим работы второй операции (1001). Значения для тестирования возьмем A = 5, B = 5. Ожидаемый результат A + B + 1 = 5 + 5 + 1 = 11.

Рис. 7: Арифметическая операция №2

На панели индикации видим управляющи сигнал 1011(11), что соответвует ожидаемому результату.

Рассмотрим операцию №3. Переключатели группы F выставим в режим работы третьей операции (0011). Значения для тестирования возьмем A=6. Ожидаемый результат A+A=6+6=12.

Рис. 8: Арифметическая операция №3

На панели индикации видим управляющи сигнал 1100(12), что соответвует ожидаемому результату.

Тестирование логических операций К155ИП3

Протестируем работу АЛУ на примере следующих логических операций:

$\mathcal{N}^{\underline{o}}$	F0	F1	F2	F3	Операция
1	0	1	1	0	$A \oplus B$
2	1	1	0	1	AB
3	0	1	1	1	$A \vee B$

Таблица 4: Таблица логических операций для тестирования АЛУ

Рассмотрим операцию №1. Переключим режим работы АЛУ в логический (M=1). Для тестирвания возьмем значения A=0011, B=0101. В результате ожидаем:

$$\begin{array}{c} \oplus \begin{array}{c} 0011 \\ 0101 \end{array} \\ \hline 0110 \end{array}$$

Выставив функцию №1 на блоке F проверим результат.

Рис. 9: Логическая операция №1

На панели индикации видим управляющи сигнал 0110, что соответвует ожидаемому результату.

Рассмотрим операцию №2. Выставим блок F для операции №2 (1101). Возьмем значения A = 0110, B = 1101. Ожидаемый результат:

$$\begin{array}{c} \wedge \ 0110 \\ 1101 \\ \hline 0100 \end{array}$$

Рис. 10: Логическая операция №2

На панели индикации видим управляющи сигнал 0100, что соответвует ожидаемому результату.

Рассмотрим операцию №3. Выставим блок F для операции №3 (0111). Возьмем значения A=1010, B=0111. Ожидаемый результат:

$$\begin{array}{c} \times & 1010 \\ \hline & 0111 \\ \hline & 1111 \end{array}$$

Рис. 11: Логическая операция №3

На панели индикации видим управляющи сигнал 1111, что соответвует ожидаемому результату.

Выводы

В результате выполнения лабараторной работы были построены три модели: модель полусуматора, модель одноразрядного сумматора и демонстрационная модель АЛУ К155ИПЗ.

Модель полусуммутора была построена на основание СДНФ функций управляющих сигналов составленных по таблице 1. После построения был разобран принцип работы полусумматора, а также проведено его тестирование.

Модель одноразрядного сумматора была составлена аналогично полусумматору по таблицу 2.

Затем было проведено ознакомление с АЛУ типа К155ИП3 на деманстрационном стенде. Разобраны оба режима работы АЛУ арифметический и логический. Для каждого режима работы прведены примеры демонстрирующие принцип работы АЛУ.