Estructuras Algebraicas para la Computación

Mariam Cobalea

Universidad de Málaga Dpto. de Matemática Aplicada

Mariam Cobalea (UM

Estructuras Algebraicas para la Computació

1 / 36

Mariam Cobalea (UM

Estructuras Algebraicas para la Computación

2 / 2/

Relaciones de orden

Definición (Relación de orden parcial)

Sea $\,\mathcal{R}\,$ una relación binaria definida sobre un conjunto no vacío $\,$ A.

- Se dice que $\,\mathcal{R}\,$ es una relación de orden parcial si es reflexiva, antisimétrica y transitiva.
- El par (A, \mathcal{R}) se llama conjunto parcialmente ordenado.

Ejemplo

- $(\mathcal{P}(S), \subseteq)$ es un conjunto parcialmente ordenado.
- Las relaciones de orden permiten comparar los elementos de un conjunto.

Relaciones de orden

Ejemplo En el conjunto $A = \{2, 4, 5, 10, 12, 20\}$ se considera la relación | de divisibilidad:

$$\mathcal{R}_{|} = \{(2,2), (2,4), (2,10), (2,12), (2,20), (4,4), (4,12), (4,20), \\ (5,5), (5,10), (5,20), (10,10), (10,20), (12,12), (20,20)\}$$

Relaciones de orden

Notación: Para denotar las relaciones de orden usaremos los símbolos

 \preceq

~

Vocabulario: Cuando $a \leq b$, se dice que:

- el elemento a es anterior al elemento b,
- el elemento **b** es posterior al elemento **a**,
- el elemento *a precede* al elemento *b*,
- el elemento **b sucede** al elemento **a**.

Mariam Cobalea (UMA) Estructuras Algebraicas para la Computación 2 / 36 Mariam Cobalea (UMA) Estructuras Algebraicas para la Computación 4 / 3

Representación de relaciones de orden parcial: Diagramas de Hasse

Una relación de orden parcial \leq sobre un conjunto A se puede representar usando un grafo simplificado teniendo en cuenta las propiedades de la relación: reflexiva, antisimétrica y transitiva.

- ✓ Por ser reflexiva, tenemos asegurados los arcos (a, a).
- ✓ Por ser antisimétrica, no habrá arcos de ida y vuelta, es decir, si aparece (a,b), no aparecerá (b,a).
- ✓ Por ser transitiva, si aparecen los arcos (a,b) y (b,c), también contamos con el arco (a,c).
- ✓ Por todo ello, podemos simplificar la gráfica prescindiendo de los arcos que están asegurados.

Mariam Cobalea (UMA

Estructuras Algebraicas para la Computación

5 / 3

Relaciones de orden

Representación: Diagramas de Hasse

Para determinar qué arcos son imprescindibles definimos los siguientes conceptos.

Definición

Sean a y b elementos de un conjunto parcialmente ordenado (A, \leq) .

- Se dice que son elementos comparables si $a \leq b$ ó bien $b \leq a$.
- Se dice que el elemento b es sucesor inmediato del elemento a si se verifican las siguientes condiciones:
 - $a \prec b$
 - No existe $c \in A$, tal que $a \leq c \leq b$.

Relaciones de orden

Representación: Diagramas de Hasse

Ejemplo

Se considera el conjunto $A = \{2, 4, 5, 10, 12, 20\}$, parcialmente ordenado por la relación de divisibilidad.

$$\mathcal{R}_{|} = \{(2,2), (2,4), (2,10), (2,12), (2,20), (4,4), (4,12), (4,20), \\ (5,5), (5,10), (5,20), (10,10), (10,20), (12,12), (20,20)\}$$

- Comprobamos que 20 es sucesor inmediato 4, ya que $4 \mid 20$ y no existe ningún elemento $c \in A$ tal que $4 \mid c$ y $c \mid 20$.
- ¿Se puede decir que 20 es sucesor inmediato de 5 ?

Mariam Cobalea (UMA)

Estructuras Algebraicas para la Computación

7/3

Relaciones de orden

Representación: Diagramas de Hasse

Teniendo en cuenta lo anterior, podemos describir un grafo de la relación más simple: el *diagrama de Hasse*.

- Empezamos representando cada elemento del conjunto A con un punto del plano, colocándolos de abajo hacia arriba (el punto a por debajo del b, si $a \leq b$).
- Dibujamos una línea ascendente desde cada elemento hasta cada uno de sus sucesores inmediatos.
- Se suprimen las orientaciones, pues todas las líneas son ascendentes.

Mariam Cobalea (UMA) Estructuras Algebraicas para la Computación 6 / 36 Mariam Cobalea (UMA) Estructuras Algebraicas para la Computación 8 / 3

Representación: Diagramas de Hasse

Ejemplo El conjunto $A = \{2, 4, 5, 10, 12, 20\}$ con la relación de orden parcial divisibilidad se representa mediante el diagrama de Hasse:

Mariam Cobalea (UMA

Estructuras Algebraicas para la Computación

0 / 26

Relaciones de orden

Representación: Diagramas de Hasse

Ejemplo El conjunto \mathcal{D}_{30} de los divisores de 30 con la relación de orden parcial divisibilidad se representa

Relaciones de orden

Representación: Diagramas de Hasse

Ejercicio En el conjunto $T = \{a, b, c, d, e, f\}$ se define la relación

$$\mathcal{R} = \{(a,a), (a,b), (a,c), (a,d), (a,e), (a,f), (b,b), (b,d), (b,e), (b,f), (c,c), (c,d), (c,e), (c,f), (d,d), (d,f), (e,e), (e,f), (f,f)\}$$

- **o** Demuestra que (T, \mathcal{R}) es un conjunto parcialmente ordenado.
- Dibuja su diagrama de Hasse.

Solución

• Para demostrar que $(\mathcal{T},\mathcal{R})$ es un conjunto parcialmente ordenado hay que justificar que \mathcal{R} es una relación de orden parcial: reflexiva, antisimétrica y transitiva. Para ello, usamos la matriz asociada.

Mariam Cobalea (UMA

Estructuras Algebraicas para la Computación

11 / 3

Relaciones de orden

Representación: Diagramas de Hasse

Ejercicio En el conjunto $T = \{a, b, c, d, e, f\}$ se define la relación $\mathcal{R} = \{(a, a), (a, b), (a, c), (a, d), (a, e), (a, f), (b, b), (b, d), (b, e), (b, f), (c, c), (c, d), (c, e), (c, f), (d, d), (d, f), (e, e), (e, f), (f, f)\}$

② Dibuja su diagrama de Hasse.

Solución

Su diagrama de Hasse es

Orden producto

Definición (Orden Producto)

Sean (A, \leq_1) y (B, \leq_2) dos conjuntos parcialmente ordenados. En el conjunto $A \times B$ se define la relación \leq :

$$(a_1,b_1) \preceq (a_2,b_2) \iff a_1 \preceq_1 a_2 \land b_1 \preceq_2 b_2$$

Teorema

 $(A \times B, \preceq)$ es un conjunto parcialmente ordenado.

Mariam Cobalea (UMA

Estructuras Algebraicas para la Computación

13 / 36

Mariam Cobalea (UMA

Estructuras Algebraicas para la Computación

15 / 36

Relaciones de orden

Orden producto

Ejemplo

 (\mathbb{B}, \leq)

 (\mathbb{B}^2, \preceq)

 (\mathbb{B}^3, \preceq)

Relaciones de orden

Orden producto

Ejercicio

En el conjunto $A = (\mathbb{R} - \{0\}) \times \mathbb{R}$ se define la siguiente relación binaria:

$$(x_1,y_1)\,\mathcal{R}\,(x_2,y_2)\iff x_1\leq x_2\; \mathsf{y}\;\mathsf{adem\'{a}s}\;rac{y_1}{x_1}=rac{y_2}{x_2}$$

- \bullet Demuestra que $\,\mathcal{R}\,\,$ es una relación de orden y estudia si es un orden total.
- Representa el conjunto de elementos comparables con (1,1).
- **3** Representa el conjunto de elementos comparables con (2,4).

Relaciones de orden

Definición (Orden Lexicográfico)

Sean (A, \leq_1) y (B, \leq_2) dos conjuntos parcialmente ordenados. En el conjunto $A \times B$ se define la relación \preccurlyeq (llamada **orden lexicográfico**)

$$(a_1,b_1) \preccurlyeq (a_2,b_2) \iff a_1 \preceq_1 a_2 \lor (a_1=a_2 \land b_1 \preceq_2 b_2)$$

Teorema

 $(A \times B, \preceq)$ es un conjunto parcialmente ordenado.

Elementos destacables en una ordenación

Definición

Sea B un subconjunto de un conjunto parcialmente ordenado (A, \leq) . Se dice que $x \in B$ es maximal de B, si no existe ningún $b \in B$ posterior.

> El maximal es posterior a todo elemento comparable con él.

Ejemplo $A = \{2, 4, 5, 10, 12, 20\}$ con la relación | de divisibilidad.

$$B_1 = \{2, 4, 12, 20\}$$

12 es maximal de B_1

20 es maximal de B_1

Mariam Cobalea (UMA

Estructuras Algebraicas para la Computació

17 / 36

Relaciones de orden

Elementos destacables en una ordenación

Definición

Sea B un subconjunto de un conjunto parcialmente ordenado (A, \leq) . Se dice que $x \in B$ es minimal de B, si no existe ningún $b \in B$ anterior.

> El *minimal* es anterior a todo elemento comparable con él.

Ejemplo $A = \{2, 4, 5, 10, 12, 20\}$ con la relación | de divisibilidad.

$$B_1 = \{2, 4, 12, 20\}$$

2 es minimal de *B*1

Relaciones de orden

Elementos destacables en una ordenación

Lema

Sea (A, \preceq) un conjunto parcialmente ordenado. Si A es finito y no vacío, entonces tiene un elemento minimal.

Demostración:

- \succ Por ser A no vacío, existe un elemento $x_1 \in A$.
- > Si x_1 es minimal, entonces el lema queda demostrado.
- ightharpoonup En caso contrario, existe un $x_2 \neq x_1$ tal que $x_2 \leq x_1$.
- \succ Si x_2 es minimal, queda demostrado el lema.
- ightharpoonup En caso contrario, existe $x_3 \neq x_2$ tal que $x_3 \leq x_2$.
- ➤ Como el conjunto A es finito, el proceso debe terminar. Así obtenemos el elemento minimal.

Mariam Cobalea (UMA

Estructuras Algebraicas para la Computación

19 / 3

Relaciones de orden

Elementos destacables en una ordenación

Aplicando el lema anterior repetidamente podemos encontrar una relación de orden total \ll compatible con \preceq ; es decir, una relación de orden total \ll que contenga a la relación de orden parcial \preceq dada:

para todo $a, b \in A$ si $a \leq b$, entonces $a \ll b$

El proceso de construcción de un orden total como $\,\ll\,$ se llama

clasificación u ordenación topológica.

Mariam Cobalea (UMA) Estructuras Algebraicas para la Computación 18 / 36 Mariam Cobalea (UMA) Estructuras Algebraicas para la Computación 20 / 3

Elementos destacables en una ordenación

Algoritmo de ordenación topológica

- Sea
 ≤ una relación de orden parcial definida en un conjunto finito no vacío A.
- Nos planteamos encontrar una relación de orden total \ll compatible con \preceq . Esto es, para todo $a, b \in A$ si $a \preceq b$, entonces $a \ll b$.
- Se empieza eligiendo un elemento minimal $a_1 \in A$.
- Si $A \{a_1\}$ no es vacío, se elige un elemento minimal $a_2 \in A \{a_1\}$.
- Se repite este proceso hasta elegir todos los elementos de A.
- La secuencia $a_1 \ll a_2 \ll ... \ll a_n$ nos proporciona un orden total.

Mariam Cobalea (UMA

Estructuras Algebraicas para la Computación

21 / 36

Relaciones de orden

Elementos destacables en una ordenación

Ejemplo

- Solución 1: 5 ≪ 2 ≪ 10 ≪ 4 ≪ 20 ≪ 12
- Solución 2: $2 \ll 4 \ll 12 \ll 5 \ll 10 \ll 20$

Relaciones de orden

Elementos destacables en una ordenación

Ejercicio: Los prerrequisitos en las asignaturas de una carrera universitaria constituyen un orden parcial. Se dice que $a \leq b$ si es necesario acabar con éxito la asignatura a para poder terminar con éxito la asignatura b.

Considera los prerrequisitos para las asignaturas de Matemáticas (Mat)

Asignaturas	Prerrequisitos
Mat 101	Ninguno
Mat 201	Mat 101
Mat 250	Mat 101
Mat 251	Mat 250
Mat 340	Mat 201
Mat 341	Mat 340
Mat 450	Mat 201, Mat 250
Mat 500	Mat 450, Mat 251

Dibuja el diagrama de Hasse correspondiente.

Mariam Cobalea (UM

Estructuras Algebraicas para la Computación

22 / 2

Relaciones de orden

Elementos destacables en una ordenación

Ejercicio:

- Si un estudiante quiere cursar las 8 asignaturas, pero sólo una por semestre, ¿qué asignaturas debe cursar en su primer semestre? ¿Y en el último?
- Suponiendo que quiere cursar Mat 250 en su primer año (primer o segundo semestre) y Mat 340 en su último curso (séptimo u octavo semestre), halla todas las formas en que puede cursar las ocho asignaturas.

dariam Cobalea (UMA) Estructuras Algebraicas para la Computación 22 / 36 Mariam Cobalea (UMA) Estructuras Algebraicas para la Computación 24 /

Elementos destacables en una ordenación

Definición

Sea B un subconjunto de un conjunto parcialmente ordenado (A, \preceq) . Se dice que $x \in B$ es máximo de B, si x es posterior a todo $b \in B$.

Ejemplo $A = \{2, 4, 5, 10, 12, 20\}$ con la relación | de divisibilidad.

$$B_2 = \{2, 4, 10, 20\}$$

20 es máximo de B_2 , ya que

 $20 \in B_2$ y 2|20, 4|20, 10|20 y 20|20

Teorema

Sea B un subconjunto de un conjunto parcialmente ordenado (A, \preceq) . El máximo de B (si existe) es único.

Mariam Cobalea (UMA

Estructuras Algebraicas para la Computación

25 / 3

Relaciones de orden

Elementos destacables en una ordenación

Definición

Sea B un subconjunto de un conjunto parcialmente ordenado (A, \preceq) . Se dice que $x \in B$ es mínimo de B, si x es anterior a todo $b \in B$.

Ejemplo $A = \{2, 4, 5, 10, 12, 20\}$ con la relación | de divisibilidad.

$$B_2 = \{2, 4, 10, 20\}$$

2 es mínimo de B_2 , ya que

 $2 \in B_2$ y 2|2, 2|4, 2|10 y 2|20

Teorema

Sea B un subconjunto de un conjunto parcialmente ordenado (A, \preceq) . El mínimo de B (si existe) es único.

Relaciones de orden

Elementos destacables en una ordenación

Ejemplo $A = \{2, 4, 5, 10, 12, 20\}$ con la relación | de divisibilidad.

$$B_3 = \{2, 4, 5, 20\}$$

20 es máximo de B_3 , ya que
 $20 \in B_3$ y $2|20, 4|20, 5|20$ y $20|20$

¿Tiene mínimo B₃?

$$B_4 = \{2, 4, 12, 20\}$$

2 es mínimo de B_4 , ya que
 $2 \in B_4$ y $2|2, 2|4, 2|12$ y $2|20$
Tiene máximo B_4 ?

Mariam Cobalea (UMA)

Estructuras Algebraicas para la Computación

27 /

Relaciones de orden

Elementos destacables en una ordenación

Definición

Sea B un subconjunto de un conjunto parcialmente ordenado (A, \preceq) . Se dice que $x \in B$ es máximo de B, si x es posterior a todo $b \in B$. Se dice que $x \in B$ es mínimo de B, si x es anterior a todo $b \in B$.

Ejemplo $A = \{2, 4, 5, 10, 12, 20\}$ con la relación | de divisibilidad.

$$B_5 = \{2, 4, 5, 10\}$$

¿Tiene máximo B_5 ?

¿Tiene mínimo B_5 ?

Teorema

Sea B un subconjunto de un conjunto parcialmente ordenado (A, \leq) . El máximo de B (si existe) es único. El mínimo de B (si existe) es único.

Elementos destacables en una ordenación

Definición

Sea B un subconjunto de un conjunto parcialmente ordenado (A, \prec) . Se dice que $c \in A$ es cota superior de B, si c es posterior a todo $b \in B$.

Ejemplo $A = \{2, 4, 5, 10, 12, 20\}$ con la relación | de divisibilidad.

$$B_6 = \{2, 5, 10\}$$

10 es cota superior de B_6 ,

20 es cota superior de B_6 ,

$$C_{\rm S}(B_6)=\{10,20\}$$

Relaciones de orden

Elementos destacables en una ordenación

Definición

Sea B un subconjunto de un conjunto parcialmente ordenado (A, \preceq) . Se dice que $m \in A$ es la mínima cota superior de B, si m es el mínimo del conjunto $C_s(B)$ de las cotas superiores de B.

Ejemplo $A = \{2, 4, 5, 10, 12, 20\}$ con la relación | de divisibilidad.

$$B_6 = \{2, 5, 10\}$$
 $C_S(B_6) = \{10, 20\}$
 $\min(C_S(B_6)) = 10$

$$\min\left(C_{\mathsf{S}}(B_{\mathsf{6}})\right)=10$$

Relaciones de orden

Elementos destacables en una ordenación

Definición

Sea B un subconjunto de un conjunto parcialmente ordenado (A, \prec) . Se dice que $c \in A$ es cota inferior de B, si c es anterior a todo $b \in B$.

Ejemplo $A = \{2, 4, 5, 10, 12, 20\}$ con la relación | de divisibilidad.

$$B_7 = \{4, 10, 12, 20\}$$

2 es cota inferior de $B_7,$ $C_i(B_7)=\{2\}$

$$C_i(B_7)=\{2$$

Relaciones de orden

Elementos destacables en una ordenación

Definición

Sea B un subconjunto de un conjunto parcialmente ordenado (A, \prec) . Se dice que $M \in A$ es la máxima cota inferior de B, si M es el máximo del conjunto $C_i(B)$ de las cotas inferiores de B.

Ejemplo $A = \{2, 4, 5, 10, 12, 20\}$ con la relación | de divisibilidad.

$$B_8$$
 = $\{4, 12, 20\}$ $C_i(B_6) = \{2, 4\}$
máx $(C_i(B_8)) = 4$

$$máx(C_i(B_8)) = 4$$

Elementos destacables en una ordenación

Ejercicio: Sea el conjunto parcialmente ordenado $T = \{a, b, c, d, e, f\}$

Determina los elementos destacables de los subconjuntos $B_1 = \{a, b, c\},$ $B_2 = \{c, d\}$ y $B_3 = \{d, e\}$

Mariam Cobalea (UMA)

Estructuras Algebraicas para la Computación

33 / 3

Relaciones de orden

Elementos destacables en una ordenación

Ejercicios:

- Sea D_{60} el conjunto de los divisores de 60 y sean los subconjuntos $B_1=\{1,2,3,5\}, \quad B_2=\{3,4\} \quad \text{y} \quad B_3=\{4,15\}.$
 - Dibuja el diagrama de Hasse de $(D_{60}, |)$
 - Halla los elementos destacables de los subconjuntos B_1, B_2 y B_3 .

Relaciones de orden

Elementos destacables en una ordenación

Ejercicios:

- ② Sea D_{72} el conjunto de los divisores de 72 y sean los subconjuntos $B_1 = \{3, 6, 12, 18\}, B_2 = \{4, 6, 12, 18\}$ y $B_3 = \{6, 9, 12, 18, 36\}.$
 - Dibuja el diagrama de Hasse de $(D_{72}, |)$.
 - Halla los elementos destacables de los subconjuntos B_1 , B_2 y B_3 .

Mariam Cobalea (UMA

Estructuras Algebraicas para la Computación

35 / 3

Relaciones de orden

Elementos destacables en una ordenación

Ejercicios:

- **3** Sea D_{2310} el conjunto de los divisores de 2310 y sean los subconjuntos $B_1 = \{2, 6, 10, 14, 22\}, B_2 = \{6, 14, 15, 42\}$ y $B_3 = \{6, 15, 21, 35\}.$
 - Halla los elementos destacables de los subconjuntos B_1 , B_2 y B_3 .

Mariam Cobalea (UMA) Estructuras Algebraicas para la Computación 34 / 36 Mariam Cobalea (UMA) Estructuras Algebraicas para la Computación 36 / 3