E0 249: Approximation Algorithms

Naman Mishra

January 2024

Contents

O	The Course	1
	0.1 Grading	1
	0.2 Texts	2
1	Optimization Problems	2
	1.1 Optimization Version of Common NP-Complete Problems	3
	1.2 Approximation Algorithms	3
	1.3 Asymptotic Approximation	5
2	Greedy Algorithms	5
	2.1 Set Cover	5
	2.1.1 Vertex Cover	7
	2.2 Max-Cut	8 Lecture
		01 : Mon
^	m1 o	08 Jan
0	The Course	'24

Course website: here MS Teams: 091kg9h

Instructors: Prof. Arindam Khan and Prof. Anand Louis

TAs: Aditya Subramaniam (January)

Lecture Hours: MW 1400–1530 at CSA 112

Office Hours: Just email.

0.1 Grading

(30%) Homework

(20%) Project. Research papers from top conferences (STOC, FOCS, SODA, ICALP, SoCG). Around 10% on a report. 10% on a presentation (half an hour).

(20%) Midterm

(30%) Final

0.2 Texts

Primarily *The Design of Approximation Algorithms* by David Williamson and David Shmoys, Cambridge University Press, 2011. Available online for free. Alternatively, *Approximation Algorithms* by Vijay Vazirani, Springer-Verlag, 2001.

For specific topics, Hochbaum, Sariel, etc.

1 Optimization Problems

Find the *best* solution from a set of *feasible* solutions. Richard Karp introduced the concept of NP-complete problems. Unless P = NP, the optimization version of the problems admit no algorithms that simultaneously (1) find optimal solution (2) in polynomial time (3) for all instances.

1.1 Optimization Version of Common NP-Complete Problems

Exact Decision Problem	Optimization Version
3-SAT Is a 3-CNF formula satisfiable?	Max 3-SAT Find an assignment that satisfies as many clauses as possible.
3Col Is there a legal 3-coloring (all edges bichromatic) of a graph?	 There are 2 natural corresponding optimization problems. Min-Coloring Color legally with as few colors as possible. Max-3Cut Color with 3 colors, make the coloring as legal as possible. Can be thought of as partitioning vertices into three sets, and maximizing the number of edges between the sets. (note: the usual Max-Cut is Max-2Cut)
Vertex Cover Input is a graph and an integer k . Is there a vertex cover (a subset of vertices such that every edge includes one of the vertices) of size less than k ?	Min-Vertex-Cover Input is a graph. Output is a vertex cover. Value is the fraction of vertices in the cover.

1.2 Approximation Algorithms

Task: Solve NP-hard optimization problems A, but no efficient algorithm exists (unless P = NP).

Definition 1.1. Let Π be an optimization problem and let I be an instance of Π. Then $OPT_{\Pi}(I)$ is the value of the optimal solution.

There might be several optimal solutions, but they all have the same value.

Definition 1.2. Let $\alpha \ge 1$. *A* is an α -approximation algorithm for a minimization problem Π if for every instance *I* of Π,

$$A(I) \leq \alpha \operatorname{OPT}_{\Pi}(I)$$

where A(I) is the value of the solution that A returns for I.

Typically, α takes values like 1.5, 2, O(1), $O(\log n)$, etc. Usually we omit Π and I in $OPT_{\Pi}(I)$.

For a maximization problem, $A(I) \ge \frac{1}{\alpha} \text{OPT}_{\Pi}(I)$. (Sometimes in literature, $\alpha \le 1$ is used for maximization problems.)

This is also called *absolute approximation*.

NP-hard problems are very similar to each other in terms of decidability, but can be very different in terms of approximability. For some problems, it is NP-hard to obtain any approximation (TSP) but for some (Knapsack) we can get $(1 + \varepsilon)$ -approximation in polynomial $(n, \frac{1}{\varepsilon})$ time.

Definition 1.3. A_{ε} is a polynomial time approximation scheme (PTAS) for a minimization problem Π if

$$A_{\varepsilon}(I) \leq (1+\varepsilon) \operatorname{OPT}(I)$$

and for every fixed $\varepsilon > 0$, the running time of A_{ε} is polynomial in n.

Definition 1.4 (EPTAS). Efficient PTAS. $(1 + \varepsilon)$ -approximation in runtime $f(1/\varepsilon)n^{O(1)}$, where the exponent of n is independent of ε .

Definition 1.5 (FPTAS). Fully polynomial time approximation scheme. $(1 + \varepsilon)$ -approximation in runtime polynomial in both n and $\frac{1}{\varepsilon}$.

Definition 1.6 (QPTAS). Quasi-polynomial time approximation scheme. $(1 + \varepsilon)$ -approximation in quasi-polynomial time in n.

A quasi-polynomial is between a polynomial and an exponential.

Definition 1.7 (PPTAS). Pseudo-polynomial time approximation scheme. $(1 + \varepsilon)$ -approximation in pseudo-polynomial time in n.

For example, $(nB)^{O(1)}$, where B is the biggest numeric data.

1.3 Asymptotic Approximation

Definition 1.8. The asymptotic approximation ratio ρ_A^{∞} of an algorithm *A* is

$$\lim_{n\to\infty} \rho_A^n, \quad \text{where} \quad \rho_A^n = \sup_{I\in\mathcal{I}} \left\{ \frac{A(I)}{\text{OPT}(I)} \mid \text{OPT}(I) = n \right\}$$

Lecture 02: Wed 10 Jan '24

2 Greedy Algorithms

Construct a solution iteratively by taking 'myopic' choices, *i.e.*, choose the best augmentation that optimizes the objective. Greedy algorithms that work are simple and fast. Greedy algorithms that don't work, don't work.

2.1 Set Cover

Problem 1. Given:

- A ground set of *n* elements $E = \{e_1, \dots, e_n\}$.
- A collection of *m* subsets of *E*, $\mathcal{S} = \{S_1, \dots, S_m\}$.
- A cost function cost: $\mathcal{S} \to \mathbb{Q}_+$.

Goal: Find a minimum weight collection of subsets from $\mathcal S$ that covers E.

For instance,

$$E = \{A, B, C, D, E, F\}$$
 $n = 6$
 $S_1 = \{A, B, C\}$ $c(S_1) = 10$
 $S_2 = \{C, F\}$ $c(S_2) = 10$
 $S_3 = \{E, F\}$ $c(S_3) = 8$
 $S_4 = \{D, E\}$ $c(S_4) = 10$
 $S_5 = \{B, D, E\}$ $c(S_5) = 11$

Brute force is exponential in m ($O(n2^m)$).

We have several greedy options:

- Select minimum cost set. Obviously fails. Consider singleton sets of cost 1, and universal set of cost $1 + \varepsilon$. Greedy gives cost n, optimal is $1 + \varepsilon$. This is an n-approximation.
- Select set that covers the most uncovered elements. Obviously fails. Consider the same sets as before, but cost of universal set being arbi-

trarily large.

• Choose set that covers the most uncovered elements per unit cost. This is a $O(\log n)$ -approximation.

```
GREEDYSETCOVER(E, \mathcal{S}, cost):

C \leftarrow \emptyset

while C \neq E

\alpha_S \leftarrow \frac{\text{cost}(S)}{|S \setminus C|} for each S \in \mathcal{S}

Select S with minimum \alpha_S

for e \in S \setminus C

price(e) \leftarrow \alpha_S

C \leftarrow C \cup S

return C
```

Proposition 2.1. GreedySetCover is an $O(\log n)$ -approximation.

Proof. We make two observations.

- Left over sets from OPT can cover the remaining items from *E* \ *C* at cost at most OPT.
- Among these left over sets, at least one must have cost effectiveness at most $\frac{OPT}{|E\setminus C|}$.

WLOG, suppose that the elements are numbered in the order in which they are selected by the greedy algorithm.

Assume element e_k was covered by the most cost-effective set at iteration $i \le k$. The numbering implies that at most k-1 elements were selected before iteration i.

At the beginning of iteration i, $|E \setminus C| \ge n - k + 1$. From our observation, we have that

$$\operatorname{price}(e_k) \le \frac{\operatorname{OPT}}{|E \setminus C|} \le \frac{\operatorname{OPT}}{n - k + 1}$$

The way price is defined, the cost of the set cover is the same as the sum of

the prices of the elements. Thus we have

$$cost(C) = \sum_{j=1}^{n} price(e_j)$$

$$\leq \sum_{j=1}^{k} \frac{OPT}{n-j+1}$$

$$\leq \sum_{j=1}^{n} \frac{OPT}{j}$$

$$\leq H_n OPT.$$

From $H_n \le 1 + \ln n$, we have that the cost of the greedy algorithm is at most $(1 + \ln n)$ OPT.

Is this bound tight? Yes! Consider the following instance:

$$E = \{1, \dots, n\}$$

$$S_i = \{i\}$$

$$\cos(S_i) = 1 \text{ for } i = 1, \dots, n$$

$$S_{n+1} = E$$

$$\cos(S_{n+1}) = 1 + \varepsilon$$

The optimal solution is the set cover $\{S_{n+1}\}$ with cost $1+\varepsilon$. The greedy selects the sets S_1, \ldots, S_n with total cost H_n . Thus, the approximation ratio r lies in

$$\left[\frac{H_n}{1+\varepsilon}, H_n\right]$$

for every $\varepsilon > 0$?

Current literature has an upper bound of $\ln(n/\ln n) + 0.78$ and a lower bound of $\ln(n/\ln n) - 0.31$.

Theorem 2.2 (Dinur-Steurer). It is NP-hard to approximate set cover within $(1 - \varepsilon) \ln n$ for all $\varepsilon > 0$.

2.1.1 Vertex Cover

Problem 2 (Vertex Cover). Given:

- a graph G = (V, E).
- node weights $C: V \to \mathbb{Q}^+$.

Goal: A subset $U \subseteq V$ such that each edge is incident to at least one node in U and $\sum_{u \in U} C(u)$ is minimized.

This is a special case of SetCover where E is the ground set, and S_i is the set of edges incident to node i.

Homework: Prove that a maximal matching is a 2-approximation for VERTEXCOVER in the unweighted case.

2.2 Max-Cut

Definition 2.3 (Cut). Given an undirected graph G = (V, E), a *cut* is a partition of V into S and $V \setminus S$.

Problem 3 (Max-Cut). Given:

- An undirected complete graph G = (V, E).
- A weight function $w : E \to \mathbb{Q}$.

Goal: Find a cut $[S, V \setminus S]$ that maximizes the sum of the weights of the edges crossing the cut. That is,

$$OPT = \max_{S \subseteq V} \sum_{(u,v) \in E} w(u,v) [u \in S \oplus v \in S]$$

Randomized algorithm:

$$\frac{\text{TBD}(G = (V, E), w):}{S \leftarrow \emptyset}$$
for $v \in V$
add v to S with probability $\frac{1}{2}$
return $(S, V \setminus S)$

Proposition 2.4. The expected value of the cut returned by the above algorithm is $\frac{1}{2}$ OPT.

Proof. Define

Then
$$E[X_i] = \frac{1}{2}$$
. Expected size of the cut is $\frac{|E|}{2} \ge \frac{\mathsf{OPT}}{2}$ since $|\mathsf{OPT}| \le |E|$.