#### 卷积神经网络(1)



#### 概览

- 1. 无处不在的卷积神经网络。
- 2. 视觉是什么?
- 3. 直接使用普通ANN实现图片分类。
- 4. 卷积神经网络。
  - 1. 认识感受器与感受野。
  - 2. 使用"edge"特征描述图片。
  - 3. 卷积。
  - 4. 池化。
- 5. 卷积与池化的黄金组合。

# 1. 无处不在的卷积神经网络

#### 分类



#### 检索



# 目标检测

































# 图片分割



## 图片转文字



a man holding a tennis racquet on a tennis court



a close up of a plate of food on a table



a desk with a laptop and a monitor



a group of people playing a game with nintendo wii controllers



a pile of luggage sitting on the ground



a view of a building with a clock on the top of it

# 图片风格化









# 人体姿态估计



# 2. 视觉是什么?

#### 谁看到了真实的世界?



# 谁看到了真实的世界?



#### 视觉的本质



视觉系统本质上是对外界刺激进行抽象表示的系统。 我们所看到的世界是主观的世界,不是世界的本来面目。

## 计算机视觉



#### 视觉与机器视觉



人的视觉

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 12 0 11 39 137 37 0 152 147 84 0 0 0 0 41 160 250 255 235 162 255 238 206 11 13 0 9 9 150 251 45 21 184 159 154 255 233 40 0 0 0 145 146 3 10 0 11 124 253 255 107 0 0 3 252 250 228 255 255 234 112 28 2 1 4 0 21 255 253 251 255 172 31 8 0 0 4 0 163 225 251 255 229 120 0 0 0 21 162 255 255 254 255 126 6 0 10 14 3 79 242 255 141 66 255 245 189 26 221 237 98 0 67 251 255 144 125 255 141 0 87 244 255 208 145 248 228 116 235 255 141 34 85 237 253 246 255 210 21

计算机

# 图片的通道



# 3. 使用ANN实现 图片分类

#### 使用全连接NN模型实现图片分类



思考:如何将图片输入给神经网络模型,并进行分类?

# 使用全连接网络实现图片分类



#### 使用全连接网络实现图片分类



# 4. 卷积神经网络

#### 卷积神经网络

卷积神经网络(Convolutional Neural Network, CNN)是一 种经典的前馈神经网络, 主要受生物学中的感受野 (receptive field)的概念提出。感受野在生物体中广泛存在 ,一个感受野连接多个感受器细胞,这些感受器细胞共同决 定了感受野是否兴奋。通过感受野的机制,生物体传入的信 号数量会大大降低,同时也能很好的对输入信号进行特征提 取。

# 4.1 认识感受器与感受野

#### 感受器与感受野



图片

局部感知:图像的局部联系紧密 ,局部像素可以作为整体的一个 特征。

局部连接:具有紧密联系的局部 区域与一个神经元相连。没有紧 密联系的部分无须相连。



利用了2维信息,降低了连接数量。

#### 感受器与感受野



#### 感受野感知到的信息是什么?

Hubel和Wiesel在1962年通过 实验发现:大脑中的一些特 别的神经细胞只会对特定方 向的边缘"edge"做出反应。

#### 感受器与感受野



#### "边"的特点:

- 1. 每种"边"都是不同的。即每种"边"可以看作一种特征。
- 2. 有限数量的边进行组合可以构成内容丰富的各种图片。
- 3. 通过统计发现大约需要20种 左右的边即可描述各种各样的 图片。

一个模型中构成人脸的"边"

《深度学习》

27

# 4.2 使用"边"特征描述图片

思考:统计发现构成数字图像的边都是近似的,假如构成图像的"边"已知,如何使用这些"边"描述现有图像?

# 查找"边"在图像中的位置



# 查找"边"在图像中的位置



人通过观察可以找到与"边"相似的部分,计算机该如何查找呢?

## "边"矩阵



边"1"对应的矩阵

#### 子图1矩阵



子图"1"对应的矩阵

#### 求值

| 0 | 0  | 100 | 0 | 0 |
|---|----|-----|---|---|
| 0 | 0  | 100 | 0 | 0 |
| 0 | 0  | 100 | 0 | 0 |
| 0 | 0  | 90  | 0 | 0 |
| 0 | 20 | 70  | 0 | 0 |



| 0 | 0  | 90  | 0 | 0 |
|---|----|-----|---|---|
| 0 | 0  | 110 | 0 | 0 |
| 0 | 0  | 100 | 0 | 0 |
| 0 | 0  | 90  | 0 | 0 |
| 0 | 40 | 80  | 0 | 0 |

边"1"对应的矩阵

子图"1"对应的矩阵

 $y_1 = 100 * 90 + 100 * 110 + 100 * 100 + 90 * 90 + 20 * 40 + 70 * 80 = 44500$ 

## 子图2矩阵



子图"2"对应的矩阵

#### 求值

| 0 | 0  | 100 | 0 | 0 |
|---|----|-----|---|---|
| 0 | 0  | 100 | 0 | 0 |
| 0 | 0  | 100 | 0 | 0 |
| 0 | 0  | 90  | 0 | 0 |
| 0 | 20 | 70  | 0 | 0 |



| 0  | 0  | 0   | 0  | 0  |
|----|----|-----|----|----|
| 0  | 0  | 30  | 0  | 0  |
| 80 | 80 | 100 | 80 | 70 |
| 20 | 0  | 0   | 0  | 10 |
| 0  | 0  | 0   | 0  | 0  |

边"1"对应的矩阵

子图"2"对应的矩阵

 $y_2 = 100 * 30 + 100 * 100 = 13000$ 

## 两次求值对比

| 0  | 0 | 100 | 0 | 0 |  |
|----|---|-----|---|---|--|
| 0  | 0 | 100 | 0 | 0 |  |
| 0  | 0 | 100 | 0 | 0 |  |
| 0  | 0 | 90  | 0 | 0 |  |
| 矩阵 |   |     |   |   |  |

| 0          | 0  | 90  | 0 | 0 |
|------------|----|-----|---|---|
| 0          | 0  | 110 | 0 | 0 |
| 0          | 0  | 100 | 0 | 0 |
| 0          | 0  | 90  | 0 | 0 |
| 0          | 40 | 80  | 0 | 0 |
| 子图"1"对应的矩阵 |    |     |   |   |



 $y_1 = 100 * 90 + 100 * 110 + 100 * 100 + 90 * 90 + 20 * 40 + 70 * 80 = 44500$  $y_2 = 100 * 30 + 100 * 100 = 13000$ 

## 两次求值对比

| 0 | 0   | 100                | 0  | 0  |
|---|-----|--------------------|----|----|
| 0 | 0   | 100                | 0  | 0  |
| 0 | 0   | 100                | 0  | 0  |
| 0 | 0   | 90                 | 0  | 0  |
| 1 | ) i | <b>701</b> "<br>巨阵 | 砂应 | 0约 |





可以看到:一般的,与"边"接近的局部"子图",对应元素乘积的和较大,反之较小。

# 只有与"边"相近的子图,对应 元素乘积和才会较大吗?

# 4.3 卷积

#### 卷积

| <b>1</b> <sub>×1</sub> | 1,0 | 1,  | 0 | 0 |
|------------------------|-----|-----|---|---|
| 0,0                    | 1,  | 1,0 | 1 | 0 |
| <b>0</b> <sub>×1</sub> | 0,0 | 1,  | 1 | 1 |
| 0                      | 0   | 1   | 1 | 0 |
| 0                      | 1   | 1   | 0 | 0 |

Image



Convolved Feature 卷积隐含的原则是:输入(此处是图像)的一部分的统计特性与其他部分是一样的。

我们把3\*3的"边"矩阵叫做**卷积** 核(Convolution kernel)。右 边的图是与卷积核运算的结果 ,我们把它叫做**特征分布图, 简称特征图(Feature map)**。 特征图反映了某个特征在某个 输入(此处是图片)上的激活 值。

将"边"与所有可能的子图运算,就是卷积的过程。

#### 特征图







n个"边"通过卷积可以得到n个特征图。n个特征图就是原图的另一种表达形式。

思考: 1个"边"的特征分布图能表示图片的特征分布吗?

# 多核卷积



使用不同的卷积核(即"边")可以得到不同的特征图。不同的特征图代表了不同特征("边")在原图中的分布情况。

#### 特征图通道



n个卷积核卷积之后可以得到n个特征图,也被称为n个通道的特征图。 为了表述方便,使用"通道"代替图片与特征图,例如:

1个通道通过3次卷积生成3个通道。

#### 多核卷积实例



一个手写数字"2",使用20个卷积核卷积后的特征图。

# 思考:

- 1. 特征图保留了原图的哪些信息?
  - 2. 特征图与原图的关系是什么?

# 特征图与原图的关系



卷积核保留了原图的局部特征信息。 特征图保留了局部特征的强弱和位置信息。 卷积核与特征图可以看做原图的另一种表达形式。

# 特征图与原图的大小关系

原图 6\*6

特征图 5\*5

卷积核 2\*2

一般的,原图大小大于等于卷积得到特征图的大小

## 小练习

1. 对"10px\*10px"大小的图片使用"3\*3"大小的卷积核做卷积得到的特征图大小是多少?

2. 对"10px\*10px"大小的图片使用"2\*3"大小的卷积核做卷积得到的特征图大小是多少?

# 思考:卷积的本质是在干什么?

卷积就是利用特征(卷积核)进行局部特征提取,并得到特征分布图(特征图)的过程。

4.4 池化

- ▶根据我们对全连接神经网络做数字图像处理相关任务的分析,思考:
- ▶1. 使用卷积提取到的特征图是否有助于处理数字图像相关 任务?
- ▶2. 如果将特征图数据送入全连接神经网络是否可行?

# 特征图作为输入



# 特征图作为模型输入的优缺点

- ▶·**自**提取到了局部特征作为输出。
- ▶▲ 卷积使得图像特征具有了一定的平移不变性。
- ▶ 即特征图展开破坏了高维的位置(全局)信息。
- > 即直接使用特征图输入全连接神经网络时参数规模较大。

# 特征图下采样——池化



滑动窗大小:一般取2\*2。

滑动步幅:通常等于滑窗大小。

Convolved feature

Pooled feature

最大池化:取一个区域的最大值。

平均池化:取一个区域的平均值。

#### 特征图下采样——池化



Convolved feature

Pooled feature

池化: 在允许损失少量信息的情况下,对特征图进行下采样。

优点:使得图像特征 获得了一定的平移不 变性;使得特征图的 规模减小。

#### 小练习

1. 对 6\*6 大小的特征图使用 3\*3 大小的滑动窗做池化得到的新特征图大小是多少?

2. 对 10px\*10px 大小的图片使用 5个 3\*3 大小的卷积核做卷积得到的特征图, 再以4\*4的滑动窗做池化, 得到了几张特征图? 每张特征图的大小是多少?

# 5. 卷积与池化的组合

# 卷积与池化组合



28\*28像素的图像

3个由5\*5卷积核得到 的特征图: 3\*24\*24

3个2\*2池化后的特征 图: 3\*12\*12

通过卷积与池化,可以有效的提取数据中的特征,并降低特征图维度。

# 简单的卷积神经网络结构图



# 卷积神经网络例子: LeNet



Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

来源: 《Gradient-Based Learning Appliea to Document Recognition》

# 卷积神经网络:LeNet



LeNet曾是上世界90年代中后期美国各大银行、证券公司等最常用的识别票据手写体的算法。

#### 小结

- ▶ 卷积神经网络通常包含多个卷积层、池化层以及全连接层。
- > 卷积层可以进行局部特征提取。
- ▶ 卷积核即为图像的局部特征——"edge", 卷积核与图像操作产生的结果是特征图, 代表了当前"edge"在原图上的分布。
- ▶ 一个卷积核与原图作用可以得到一个特征图,通常需要多个卷积核对图片进行特征提取,才能较为完整的提取到图片的所有特征。
- ▶ 通过对卷积得到的特征图下采样 (池化) 可以降低特征图的维度。
- ▶ 卷积与池化使得图像具有了平移不变性。
- ▶ 卷积与池化组合使用, 既提取到了特征又降低了神经网络规模。

# 下节内容

- ▶多通道卷积。
- ▶ 卷积相关的计算。
- ▶ 卷积与池化的灵活应用。

#### **THANKS**