Практическое занятие 1 (1 час) Расчет машинного времени при подъеме насосно-компрессорных труб

<u>Цель работы</u>: ознакомление с технологией проведения спуско-подъемных операций и приобретение навыков практических расчетов времени при СПО.

1.Теоретическаячасть

В зависимости от способа эксплуатации, глубины и геолого-технической характеристики ремонтируемой (или вновь вводимой в эксплуатацию) скважины, а также цели ремонта и его вида технология текущего ремонта скважин бывает различной. Основной объем работ при этом связан со спуском и подъемом подземного оборудования (труб, штанг, насосов, их узлов и деталей), а также различных инструментов и приспособлений.

Спуско-подъемные операции трудоемки и в зависимости от характера работ занимают от 50 до 80% всего времени, затрачиваемого на ремонт, т. е. фактически эти работы определяют общую продолжительность текущего ремонта. Поэтому механизация и автоматизация обязательны для ускорения ремонта. Свинчивание и развинчивание НКТ при спуско-подъемных операциях выполняются с помощью автоматов АПР-2ВБ с приводом от электродвигателя, АПР-ГП с гидроприводом, механических ключей КМУ-32 и КМУ-50, КМУ-ГП с гидроприводом. Для свинчивания и развинчивания насосных штанг применяют штанговые ключи АШК-Г и АШК-Т.

Прежде чем начать подъем колонны НКТ, необходимо убедиться в том, что они не прихвачены. Прихват труб определяют по индикатору веса. При подъеме колонны труб из скважины следует соблюдать следующие правила:

- 1) первую трубу колонны следует поднимать при помощи специального подъемного патрубка; во время ремонта глубоких скважин необходимо применять подъемный патрубок с термообработанным резьбовым концом;
- 2) нельзя допускать резких переходов с одной скорости подъема на другую и превышения нагрузки более 20% собственной массы колонны труб, что может возникнуть вследствие трения муфт об эксплуатационную колонну, особенно в искривленных и наклонно-направленных скважинах;
- 3) поднимать отвинченную трубу можно лишь тогда, когда имеется полная уверенность в том, что она полностью вышла из резьбы муфты;
- 4) не рекомендуется ударять ручниками по муфте в целях ослабления резьбового соединения перед отвинчиванием труб;
- 5) перед подачей поднятой трубы на мостки следует на ее резьбу навинтить предохранительное кольцо, а затем ниппельный конец установить на специальный лоток или клапан, медленно опуская при этом талевой механизм, подтаскивать трубы на мостки следует при помощи специальных вилок.

Подъем НКТ из скважины начинают с ввинчивания подъемного патрубка в муфту посадочной планшайбы, на который надевают элеватор. Затем планшайбу вместе с подъемным патрубком приподнимают до выхода из скважины первой муфты спущенных в скважину труб, под которую подводят элеватор. Закрыв элеватор, сажают на него трубы, отвинчивают планшайбу и, оттащив ее в сторону, приступают к подъему труб.

2. Расчетная часть

Рассчитать машинное время на подъем НКТ подъемниками C-80, A-50 и AR32/40M, техническая характеристика которых приведена в таблице 1.

1. Машинное время на подъем труб из скважины t_{M} :

$$t_{\scriptscriptstyle M} = \frac{l \cdot i \cdot k}{\pi \cdot d \operatorname{cp} \cdot n} \,, \tag{MUH}$$

где dcp – средний диаметр барабана, м;

l — длина одной трубы;

i — число струн оснастки талевого каната;

n – число оборотов барабана лебедки;

k — коэффициент, учитывающий замедление скорости подачи крюка при включении и торможении барабана лебедки (таблица 2)

2. Длина каната, навиваемого на бочку барабана l_{κ} :

$$l_{\kappa} = (l + 0, 5) \cdot i, \tag{M}$$

где 0,5 м – высота подъема трубы над устьем скважины

3. Число витков талевого каната в одном слое α :

$$\alpha = (l_6/\delta) - c \tag{BUTKOB}$$

где c = 1 — уменьшение числа витков из-за неплотной намотки каната

4. Диаметр d_i бочки барабана с учетом навиваемых слоев каната определяем по формуле:

$$d_i = d_6 + \delta + 1.87 \cdot \delta \cdot m_i, \tag{M}$$

где $m_1 = 1$, $m_2 = 2$ и $m_3 = 3$, т.е. находим d_1 , d_2 , d_3

5. Длина каната в каждом слое барабана в первом слое $(m = 1) l_{\kappa I}$:

$$l_{\kappa I} = \boldsymbol{\pi} \cdot d_I \cdot \boldsymbol{\alpha} \tag{M}$$

во втором слое (m = 2) $l_{\kappa 2}$:

$$l_{\kappa 2} = \boldsymbol{\pi} \cdot d_2 \cdot \boldsymbol{\alpha} \tag{M}$$

в третьем слое (m = 3) $l_{\kappa 3}$:

$$l_{\kappa\beta} = \pi \cdot d_{\beta} \cdot \alpha \tag{M}$$

6. Средний диаметр бочки барабана лебедки dcp:

$$dcp = \frac{(d1+d2+d3)}{3}$$
 (M)

7. Затем находим машинное время подъема на каждой скорости лебедки по формуле 1, т.е. t_{m1} , t_{m2} , t_{m3} , t_{m4} .

Таблица 1 Техническая характеристика агрегатов подъемников

Технические пара-	Единица	Подъемные агрегаты		
метры	измерения	С-80/ЛТ-11КМ	AR32/40M	A-50
Число струн оснастки талевого каната (i)		10	10	10
Число оборотов бара- бана лебедки (n)				
I	об/мин	34	35	39,8
II	об/мин	54	58	69,8
III	об/мин	107	96	153
IV	об/мин	170	159	268
Длина одной трубы (l)	M	7	8	8
Диаметр талевого каната (δ)	M	0,022	0,0215	0,0215
Диаметр бочки барабана лебедки d_{δ}	MM	345	420	420
Рабочая длина боч- ки барабана лебедки l_{δ}	ММ	640	600	600

Таблица 2 Коэффициент k, учитывающий замедление скорости подъема крюка при включении и торможении барабана лебедки

		Вид ремонта скважин	
Тип подъемника	Скорость подъема	Оборудованных	Во всех остальных
		ЭЦН	случаях
AR 32/40M	I	1,5	1,1
	II	1,5	1,15
	III		1,2
	IV		1,3
A-50	I	1,5	1,1
	II	1,5	1,15
	III		1,2
	IV		1,3
С-80/ЛТ-11КМ	I	1,5	1,2
	II	1,5	1,2
	III		1,2
	IV		1,3

Исходные данные

№ варианта	Тип подъемника		
1	С-80/ЛТ-11КМ		
2	AR32/40M		
3	A-50		
4	С-80/ЛТ-11КМ		
5	AR32/40M		
6	A-50		
7	С-80/ЛТ-11КМ		
8	AR32/40M		
9	A-50		
10	С-80/ЛТ-11КМ		
11	AR32/40M		
12	A-50		
13	С-80/ЛТ-11КМ		
14	AR32/40M		
15	A-50		
16	С-80/ЛТ-11КМ		
17	AR32/40M		
18	A-50		
19	С-80/ЛТ-11КМ		
20	AR32/40M		
21	A-50		
22	С-80/ЛТ-11КМ		
23	AR32/40M		
24	A-50		
25	С-80/ЛТ-11КМ		

Номер варианта брать по списку в журнале группы