An Empirical Analysis of Task Relations in the Multi-Task Annotation of an Arabizi Corpus

Elisa Gugliotta Marco Dinarelli

Univ. Grenoble Alpes, CNRS, Grenoble INP*, LIG, 38000 Grenoble, France;

Institute of Engineering Univ. Grenoble Alpes; Groupe getalp

```
elisa.gugliotta@univ-grenoble-alpes.fr marco.dinarelli@univ-grenoble-alpes.fr
```

Contents

- Introduction
- 2 Tools
 - Corpus
 - Architecture
- 3 Experiments
 - Single-Task
 - Multi-Task
- 4 Conclusions

Contents

- 1 Introduction
- 2 Tools
 - Corpus
 - Architecture
- 3 Experiments
 - Single-Task
 - Multi-Task
- 4 Conclusions

- Lack of comprehensive, in-depth and up-to-date descriptions
 - ightarrow Need of ${f building}$ resources

- lacktriangledown Lack of comprehensive, in-depth and up-to-date descriptions
 - ightarrow Need of ${f building}$ resources
 - ightarrow Need of linguistic **annotated corpora** to study

- Lack of comprehensive, in-depth and up-to-date descriptions
 - ightarrow Need of ${f building}$ resources
 - ightarrow Need of linguistic **annotated corpora** to study
 - ightarrow Need to process them (semi-)automatically

- Lack of comprehensive, in-depth and up-to-date descriptions
 - ightarrow Need of ${f building}$ resources
 - ightarrow Need of linguistic **annotated corpora** to study
 - ightarrow Need to process them (semi-)automatically

Analysis of under-resourced languages

- Lack of comprehensive, in-depth and up-to-date descriptions
 - ightarrow Need of **building** resources
 - ightarrow Need of linguistic **annotated corpora** to study
 - ightarrow Need to process them (semi-)automatically

Computational Strategies

Analysis of under-resourced languages

- Lack of comprehensive, in-depth and up-to-date descriptions
 - ightarrow Need of **building** resources
 - ightarrow Need of linguistic **annotated corpora** to study
 - ightarrow Need to process them (semi-)automatically

Computational Strategies

 $\begin{tabular}{lll} \textbf{Machine Learning Tools} & can speed up semi-automatic annotation of corpora \end{tabular}$

Analysis of under-resourced languages

- Lack of comprehensive, in-depth and up-to-date descriptions
 - ightarrow Need of **building** resources
 - ightarrow Need of linguistic **annotated corpora** to study
 - ightarrow Need to process them (semi-)automatically

Computational Strategies

Machine Learning Tools can speed up semi-automatic annotation of corpora

Multi-Task (MT) learning can enhance performance across various tasks to be learned, as compared to the individual tasks learned separately (Caruana, 1997).

Analysis of under-resourced languages

- lacktriangledown Lack of comprehensive, in-depth and up-to-date descriptions
 - ightarrow Need of **building** resources
 - ightarrow Need of linguistic **annotated corpora** to study
 - ightarrow Need to process them (semi-)automatically

Computational Strategies

Machine Learning Tools can speed up semi-automatic annotation of corpora

Multi-Task (MT) learning can enhance performance across various tasks to be learned, as compared to the individual tasks learned separately (Caruana, 1997).

Uncover Task Relations to improve annotation strategies and contribute to developing linguistic resources for under-resourced languages.

Contents

- Introduction
- 2 Tools
 - Corpus
 - Architecture
- Experiments
 - Single-Task
 - Multi-Task
- 4 Conclusions

Tunisian Arabish Corpus (Gugliotta and Dinarelli, 2022)

Arabizi	Class.	CODA*	Token.	POS	Lemma
Inchalah	Az.	ان شاء الله	ان شاء الله	INTERJ	ان شاء الله
cycle	Fr.	Fr.	Fr.	Fr.	Fr.
ejjay	Az.	الجاى	الـباي	DET+ADJ	جاي
wala	Az.	ولّا	ولّا	CONJ	ولّا
eli	Az.	اللي	اللي	REL_PRON	اللي
ba3dou	Az.	بعده	بعد +ہ	ADV+	 بعد
				PRON_3MS	

Table 1: Example of the annotation levels. "Az." means "Arabizi", "Fr." means "foreign". CODA* by Habash et al. (2018), POS inspired to Maamouri et al. (2004)

Tunisian Arabish Corpus (Gugliotta and Dinarelli, 2022)

Arabizi	Class.	CODA*	Token.	POS	Lemma
Inchalah	Az.	ان شاء الله	ان شاء الله	INTERJ	ان شاء الله
cycle	Fr.	Fr.	Fr.	Fr.	Fr.
ejjay	Az.	الحجاي	ال+باي	DET+ADJ	جاي
wala	Az.	ولّا	ولّا	CONJ	ولّا
eli	Az.	اللي	اللي	REL_PRON	اللي
ba3dou	Az.	بعده	بعد +ہ	ADV+	بعد
				PRON_3MS	

Table 1: Example of the annotation levels. "Az." means "Arabizi", "Fr." means "foreign". CODA* by Habash et al. (2018), POS inspired to Maamouri et al. (2004)

Non-standardised spelling, code-mixing, script-mixing, etc...

Tunisian Arabish Corpus (Gugliotta and Dinarelli, 2022)

Arabizi	Class.	CODA*	Token.	POS	Lemma
Inchalah	Az.	ان شاء الله	ان شاء الله	INTERJ	ان شاء الله
cycle	Fr.	Fr.	Fr.	Fr.	Fr.
ejjay	Az.	الحباي	ال+باي	DET+ADJ	جاي
wala	Az.	ولّا	ولّا	CONJ	ولّا
eli	Az.	اللي	اللي	REL_PRON	اللي
ba3dou	Az.	بعده	بعد +ہ	ADV+	بعد
				PRON_3MS	

Table 1: Example of the annotation levels. "Az." means "Arabizi", "Fr." means "foreign". CODA* by Habash et al. (2018), POS inspired to Maamouri et al. (2004)

Non-standardised spelling, code-mixing, script-mixing, etc...
Impact on the performance of MT systems.

• The Encoder to convert *x* into context-aware repr.;

- The Encoder to convert x into context-aware repr.;
- 5 Decoders (one for each annotation level);

- The Encoder to convert x into context-aware repr.;
- 5 Decoders (one for each annotation level);
- Attention mechanism pass previous hidden states $(h_{i-j_{< i}})$ to the modules;

- The Encoder to convert x into context-aware repr.;
- 5 Decoders (one for each annotation level);
- Attention mechanism pass previous hidden states $(h_{i-j_{< i}})$ to the modules;
- Single task loss computation (i.e. \(\mathcal{L}_i(o_i, \hat{\delta}_i)\);

- The Encoder to convert x into context-aware repr.;
- 5 Decoders (one for each annotation level);
- Attention mechanism pass previous hidden states $(h_{i-j_{< i}})$ to the modules;
- Single task loss computation (i.e. L_i(o_i,ô_i));
- End-to-end learning of the whole architecture: $\mathcal{L} = \sum_{i=1}^{5} \mathcal{L}_{i}(o_{i}, \hat{o}_{i}).$

- The Encoder to convert x into context-aware repr.;
- 5 Decoders (one for each annotation level);
- Attention mechanism pass previous hidden states $(h_{i-j_{< i}})$ to the modules;
- Single task loss computation (i.e. $\mathcal{L}_i(o_i, \hat{o}_i)$);
- End-to-end learning of the whole architecture: $\mathcal{L} = \sum_{i=1}^{5} \mathcal{L}_{i}(o_{i}, \hat{o}_{i}).$
- Are auxiliary tasks beneficial or do they produce negative transfer? (Changpinyo et al., 2018; Ruder, 2017)

Contents

- Introduction
- 2 Tools
 - Corpus
 - Architecture
- 3 Experiments
 - Single-Task
 - Multi-Task
- 4 Conclusions

Single-Task Experiments

 Iterative procedure by testing all possible combinations of two levels;

Single-Task Experiments

- Iterative procedure by testing all possible combinations of two levels;
- Comparison between results in terms of Accuracy;

Single-Task Experiments

- Iterative procedure by testing all possible combinations of two levels;
- Comparison between results in terms of Accuracy;
- Incremental procedure by adding further levels one by one, based on the previous best results.

Single-Task Experiments

- Iterative procedure by testing all possible combinations of two levels;
- Comparison between results in terms of Accuracy;
- Incremental procedure by adding further levels one by one, based on the previous best results.

Single-Task Experiments

- Iterative procedure by testing all possible combinations of two levels;
- Comparison between results in terms of Accuracy;
- Incremental procedure by adding further levels one by one, based on the previous best results.

Multi-Task Experiments

 Iterative procedure by testing all possible combinations of all levels;

Single-Task Experiments

- Iterative procedure by testing all possible combinations of two levels;
- Comparison between results in terms of Accuracy;
- Incremental procedure by adding further levels one by one, based on the previous best results.

Multi-Task Experiments

- Iterative procedure by testing all possible combinations of all levels;
- Comparison between results in terms of Accuracy;

Single-Task Experiments

- Iterative procedure by testing all possible combinations of two levels;
- Comparison between results in terms of Accuracy;
- Incremental procedure by adding further levels one by one, based on the previous best results.

Multi-Task Experiments

- Iterative procedure by testing all possible combinations of all levels;
- Comparison between results in terms of Accuracy;

Single-Task Experiments

- Iterative procedure by testing all possible combinations of two levels;
- Comparison between results in terms of Accuracy;
- Incremental procedure by adding further levels one by one, based on the previous best results.

Multi-Task Experiments

- Iterative procedure by testing all possible combinations of all levels;
- Comparison between results in terms of Accuracy;
- Comparison between ST and MT strategies

	Arabizi input	CODA* input
Tasks	(class.)	•
Token.	80.0% (93.0%)	95.4%
POS	73.8% (92.5%)	54.5%
Lemma	75.5% (92.8%)	89.5%
Translit.	79.0% (92.8%)	67.2%

Table 2: Starting ST Experiments

	Arabizi input	CODA* input
Tasks	(class.)	•
Token.	80.0% (93.0%)	95.4%
POS	73.8% (92.5%)	54.5%
Lemma	75.5% (92.8%)	89.5%
Translit.	79.0% (92.8%)	67.2%

Table 2: Starting ST Experiments

Input	Tasks	Accuracy
Token.	POS	86.2%
Token.	Lemma	92.4%
Token.	Lemma - POS	92.8% - 87.6%
Token.	POS - Lemma	87.3% - 92.6%

Table 3: Intermediate Experiments

	Arabizi input	CODA* input
Tasks	(class.)	•
Token.	80.0% (93.0%)	95.4%
POS	73.8% (92.5%)	54.5%
Lemma	75.5% (92.8%)	89.5%
Translit.	79.0% (92.8%)	67.2%

Table 2: Starting ST Experiments

Input	Tasks	Accuracy
Token.	POS	86.2%
Token.	Lemma	92.4%
Token.	Lemma - POS	92.8% - 87.6%
Token.	POS - Lemma	87.3% - 92.6%

Table 3: Intermediate Experiments

Input	Tasks	Accuracy
CODA*	Lemma - POS	89.2% - 84.2%
CODA*	POS - Lemma	85.9% - 90.5%
CODA*	Token POS	95.3% - 85.2%
CODA*	POS - Token.	85.6% - 95.2%

Table 4: Additional Experiments

	Arabizi input	CODA* input
Tasks	(class.)	•
Token.	80.0% (93.0%)	95.4%
POS	73.8% (92.5%)	54.5%
Lemma	75.5% (92.8%)	89.5%
Translit.	79.0% (92.8%)	67.2%

Table 2: Starting ST Experiments

Input	Tasks	Accuracy
Token.	POS	86.2%
Token.	Lemma	92.4%
Token.	Lemma - POS	92.8% - 87.6%
Token.	POS - Lemma	87.3% - 92.6%

Table 3: Intermediate Experiments

Input	Tasks	Accuracy
CODA*	Lemma - POS	89.2% - 84.2%
CODA*	POS - Lemma	85.9% - 90.5%
CODA*	Token POS	95.3% - 85.2%
CODA*	POS - Token.	85.6% - 95.2%

Table 4: Additional Experiments

 Tokenization seems to be the easiest task, it helps classification (T2).

	Arabizi input	CODA* input
Tasks	(class.)	•
Token.	80.0% (93.0%)	95.4%
POS	73.8% (92.5%)	54.5%
Lemma	75.5% (92.8%)	89.5%
Translit.	79.0% (92.8%)	67.2%

Table 2: Starting ST Experiments

Input	Tasks	Accuracy
Token.	POS	86.2%
Token.	Lemma	92.4%
Token.	Lemma - POS	92.8% - 87.6%
Token.	POS - Lemma	87.3% - 92.6%

Table 3: Intermediate Experiments

Input	Tasks	Accuracy
CODA*	Lemma - POS	89.2% - 84.2%
CODA*	POS - Lemma	85.9% - 90.5%
CODA*	Token POS	95.3% - 85.2%
CODA*	POS - Token.	85.6% - 95.2%

Table 4: Additional Experiments

- Tokenization seems to be the easiest task, it helps classification (T2).
- POS benefits from Lemma and vice versa (T3).

	Arabizi input	CODA* input
Tasks	(class.)	-
Token.	80.0% (93.0%)	95.4%
POS	73.8% (92.5%)	54.5%
Lemma	75.5% (92.8%)	89.5%
Translit.	79.0% (92.8%)	67.2%

Table 2: Starting ST Experiments

Input	Tasks	Accuracy
Token.	POS	86.2%
Token.	Lemma	92.4%
Token.	Lemma - POS	92.8% - 87.6%
Token.	POS - Lemma	87.3% - 92.6%

Table 3: Intermediate Experiments

Input	Tasks	Accuracy
CODA*	Lemma - POS	89.2% - 84.2%
CODA*	POS - Lemma	85.9% - 90.5%
CODA*	Token POS	95.3% - 85.2%
CODA*	POS - Token.	85.6% - 95.2%

Table 4: Additional Experiments

- Tokenization seems to be the easiest task, it helps classification (T2).
- POS benefits from Lemma and vice versa (T3).
- Lemma helps the POS task as much as/more than Token. (T4).

	Accuracies on tasks						
Exp. ID	Token.	Lemma	POS	Arabizi			
I	95.4%	-	-	-			
II	95.3%	89.8%	-	-			
III	96%	90.7%	86.2%	-			
IV	94.4%	88.9%	84.5%	67.8%			

Table 5: CODA* input

		Accuracies on tasks						
Exp. ID	Class.	Token.	Lemma	POS	CODA*			
I	86.2%	-	-	-	-			
II	93%	80%	-	-	-			
III	95%	80%	78.2%	-	-			
IV	94.1%	78.9%	77.5%	77.8%	-			
V	94.2%	78.9%	77.3%	78.6%	79.5%			

Table 6: Arabizi input

		Accuracies on tasks					
Exp. ID	Token.	Lemma	POS	Arabizi			
I	95.4%	-	-	-			
II	95.3%	89.8%	-	-			
III	96%	90.7%	86.2%	-			
IV	94.4%	88.9%	84.5%	67.8%			

Table 5: CODA* input

•	iasks are auxiliary	tasks	τ11	tne
	Exp III (T5).			

		Accuracies on tasks						
Exp. ID	Class.	Token.	Lemma	POS	CODA*			
I	86.2%	-	-	-	-			
II	93%	80%	-	-	-			
III	95%	80%	78.2%	-	-			
IV	94.1%	78.9%	77.5%	77.8%	-			
V	94.2%	78.9%	77.3%	78.6%	79.5%			

Table 6: Arabizi input

		Accuracies on tasks					
Exp. ID	Token.	Lemma	POS	Arabizi			
I	95.4%	-	-	-			
II	95.3%	89.8%	-	-			
III	96%	90.7%	86.2%	-			
IV	94.4%	88.9%	84.5%	67.8%			

Table 5: CODA* input

		Accuracies on tasks						
Exp. ID	Class.	Token.	Lemma	POS	CODA*			
I	86.2%	-	-	-	-			
II	93%	80%	-	-	-			
III	95%	80%	78.2%	-	-			
IV	94.1%	78.9%	77.5%	77.8%	-			
V	94.2%	78.9%	77.3%	78.6%	79.5%			

Table 6: Arabizi input

- Tasks are auxiliary tasks til the Exp III (T5).
- Visible negative transfer effect of the "Arabizi" task (Exp. IV - T5).

	Accuracies on tasks					
Exp. ID	Token.	Lemma	POS	Arabizi		
I	95.4%	-	-	-		
II	95.3%	89.8%	-	-		
III	96%	90.7%	86.2%	-		
IV	94.4%	88.9%	84.5%	67.8%		

Table 5: CODA* input

		Accuracies on tasks						
Exp. ID	Class.	Token.	Lemma	POS	CODA*			
I	86.2%	-	-	-	-			
II	93%	80%	-	-	-			
III	95%	80%	78.2%	-	-			
IV	94.1%	78.9%	77.5%	77.8%	-			
V	94.2%	78.9%	77.3%	78.6%	79.5%			

Table 6: Arabizi input

- Tasks are auxiliary tasks til the Exp III (T5).
- Visible negative transfer effect of the "Arabizi" task (Exp. IV - T5).
- The most difficult task seems to be the POS one (Exp. IV - T6).

	Accuracies on tasks					
Exp. ID	Class.	CODA*	Lemma	Token.	POS	
I	97.3	82.6	82.3(5)	82.3(3)	71.4(4)	
II	99	84.2	82.8(4)	83.5 (3)	83.1(5)	
III	92.9	78.5	54.2(4)	75.9(5)	78(3)	
IV	94.3	78.3	76.4(5)	77.9(4)	78.1(3)	
V	97.9	84.3	83.6 (3)	82.3(4)	82.3(5)	
VI	98.8	83.5	82.4(3)	82.3(5)	82.3(4)	

Table 7: Arabizi input

	Accuracies on tasks					
Exp. ID	Class.	CODA*	Lemma	Token.	POS	
I	97.3	82.6	82.3(5)	82.3(3)	71.4(4)	
II	99	84.2	82.8(4)	83.5 (3)	83.1 (5)	
III	92.9	78.5	54.2(4)	75.9(5)	78(3)	
IV	94.3	78.3	76.4(5)	77.9(4)	78.1(3)	
V	97.9	84.3	83.6 (3)	82.3(4)	82.3(5)	
VI	98.8	83.5	82.4(3)	82.3(5)	82.3(4)	

Table 7: Arabizi input

Table 6: Arabizi input

			Lemma		
V	94.2%	78.9%	77.3%	78.6%	79.5%

	Accuracies on tasks				
Exp. ID	Class.	CODA*	Lemma	Token.	POS
I	97.3	82.6	82.3(5)	82.3(3)	71.4(4)
II	99	84.2	82.8(4)	83.5 (3)	83.1(5)
III	92.9	78.5	54.2(4)	75.9(5)	78(3)
IV	94.3	78.3	76.4(5)	77.9(4)	78.1(3)
V	97.9	84.3	83.6 (3)	82.3(4)	82.3(5)
VI	98.8	83.5	82.4(3)	82.3(5)	82.3(4)

Table 7: Arabizi input

Table 6: Arabizi input

	Accuracies on tasks				
Exp. ID	Class.	CODA*	Lemma	Token.	POS
I	97.3	82.6	82.3(5)	82.3(3)	71.4(4)
II	99	84.2	82.8(4)	83.5 (3)	83.1(5)
III	92.9	78.5	54.2(4)	75.9(5)	78(3)
IV	94.3	78.3	76.4(5)	77.9(4)	78.1(3)
V	97.9	84.3	83.6 (3)	82.3(4)	82.3(5)
VI	98.8	83.5	82.4(3)	82.3(5)	82.3(4)

Table 7: Arabizi input

 POS was defined as the most difficult task in ST experiments. (78% in T6 - 83% in T7, where POS is the *last* task).

	Accuracies on tasks				
Exp. ID	Class.	CODA*	Lemma	Token.	POS
I	97.3	82.6	82.3(5)	82.3(3)	71.4(4)
II	99	84.2	82.8(4)	83.5 (3)	83.1(5)
III	92.9	78.5	54.2(4)	75.9(5)	78(3)
IV	94.3	78.3	76.4(5)	77.9(4)	78.1(3)
V	97.9	84.3	83.6 (3)	82.3(4)	82.3(5)
VI	98.8	83.5	82.4(3)	82.3(5)	82.3(4)

Table 7: Arabizi input

- POS was defined as the most difficult task in ST experiments. (78% in T6 83% in T7, where POS is the *last* task).
- Lemma in in 4th position helps Token. and POS => cushioning effect

	Accuracies on tasks				
Exp. ID	Class.	Lemma	Token.	POS	Arabizi
I	97.2	88.8(5)	94.5(3)	83.6(4)	68.8(2)
II	98.1	89.3(4)	95.3(3)	83.4(5)	68.3(2)
III	98.1	89.1(4)	95.2(5)	83.4(3)	68.5(2)
IV	97.4	88.6(5)	94.7(4)	83.3(3)	68.4(2)
V	97.8	88.9(3)	95.2(4)	84.3(5)	68.7(2)
VI	97.5	89.2(3)	94.4(5)	83.4(4)	68.3(2)
VII	97.5	89.3(2)	95(4)	83.6(5)	68.7(3)
VIII	98.3	89.2(2)	95.4(5)	84.8(4)	68.6(3)

Table 8: Other MT experiments to predict Arabizi

	Accuracies on tasks				
Exp. ID	Class.	Lemma	Token.	POS	Arabizi
I	97.2	88.8(5)	94.5(3)	83.6(4)	68.8(2)
II	98.1	89.3(4)	95.3(3)	83.4(5)	68.3(2)
III	98.1	89.1(4)	95.2(5)	83.4(3)	68.5(2)
IV	97.4	88.6(5)	94.7(4)	83.3(3)	68.4(2)
V	97.8	88.9(3)	95.2(4)	84.3(5)	68.7(2)
VI	97.5	89.2(3)	94.4(5)	83.4(4)	68.3(2)
VII	97.5	89.3(2)	95(4)	83.6(5)	68.7(3)
VIII	98.3	89.2(2)	95.4(5)	84.8(4)	68.6(3)

Table 8: Other MT experiments to predict Arabizi

	Accuracies on tasks					
Exp. ID	Class.	Lemma	Token.	POS	CODA*	
I	94.1	76.3(4)	77.9(2)	77.9(3)	78.1	
П	94.2	77.3(3)	78.9(2)	78.6(4)	79.5	
III	94	77.2(3)	78.2(4)	78.5(2)	78.2	
IV	93.8	76.3(4)	78.1(3)	78.1(2)	78	
V	94	77.2(2)	78.4(3)	78.5(4)	78.5	
VI	94.2	77.3(2)	78.7(4)	78.8(3)	78.7	

Table 9: Other MT experiments to predict CODA*

Contents

- Introduction
- 2 Tools
 - Corpus
 - Architecture
- Experiments
 - Single-Task
 - Multi-Task
- 4 Conclusions

• It clearly emerges the existence of task-relations in ST experiments.

- It clearly emerges the existence of task-relations in ST experiments.
- Linguistic intuition would say that morphological tasks necessarily support other morphological tasks. This is not always the case (Lemma supports POS).

- It clearly emerges the existence of task-relations in ST experiments.
- Linguistic intuition would say that morphological tasks necessarily support other morphological tasks. This is not always the case (Lemma supports POS).
- It seems better to isolate difficult tasks (POS), leaving it as the last task and preceding it with a simple and related task (Lemma), exploiting its cushioning effect to the negative transfer.

- It clearly emerges the existence of task-relations in ST experiments.
- Linguistic intuition would say that morphological tasks necessarily support other morphological tasks. This is not always the case (Lemma supports POS).
- It seems better to isolate difficult tasks (POS), leaving it as the last task and preceding it with a simple and related task (Lemma), exploiting its cushioning effect to the negative transfer.

- It clearly emerges the existence of task-relations in ST experiments.
- Linguistic intuition would say that morphological tasks necessarily support other morphological tasks. This is not always the case (Lemma supports POS).
- It seems better to isolate difficult tasks (POS), leaving it as the last task and preceding it with a simple and related task (Lemma), exploiting its cushioning effect to the negative transfer.
- ST learning logic has been shown to be an uncertain strategy compared to an MT strategy.

- It clearly emerges the existence of task-relations in ST experiments.
- Linguistic intuition would say that morphological tasks necessarily support other morphological tasks. This is not always the case (Lemma supports POS).
- It seems better to isolate difficult tasks (POS), leaving it as the last task and preceding it with a simple and related task (Lemma), exploiting its cushioning effect to the negative transfer.
- ST learning logic has been shown to be an uncertain strategy compared to an MT strategy.
- Specific task ordering in an MT robust system with attention mechanism matters up to a certain point.

References I

- Rich Caruana. Multitask learning. Machine learning, 28(1):41–75, 1997.
- Soravit Changpinyo, Hexiang Hu, and Fei Sha. Multi-task learning for sequence tagging: An empirical study. *arXiv preprint arXiv:1808.04151*, 2018.
- Elisa Gugliotta and Marco Dinarelli. Tarc: Tunisian arabish corpus first complete release. In 13th Conference on Language Resources and Evaluation (LREC 2022), 2022.
- Elisa Gugliotta, Marco Dinarelli, and Olivier Kraif. Multi-task sequence prediction for Tunisian Arabizi multi-level annotation. *arXiv preprint arXiv:2011.05152*, 2020.
- Nizar Habash et al. Unified guidelines and resources for Arabic dialect orthography. In *Proceedings of the Eleventh International Conference on LREC*, 2018.
- Mohamed Maamouri, Ann Bies, Tim Buckwalter, and Wigdan Mekki. The Penn Arabic Treebank: Building a large-scale annotated Arabic corpus. In *NEMLAR conference on Arabic language resources and tools*, volume 27, pages 466–467. Cairo, 2004.
- Sebastian Ruder. An overview of multi-task learning in deep neural networks. arXiv preprint arXiv:1706.05098, 2017.

Thank you very much for your attention:)