SO SIMPLE, YET SO EFFECTIVE

Ottavia M. Epifania University of Trento ottavia.epifania@unitn.it

Beyond Summer School

May, 30, 2025

How it started:

A random lesson by Professor Pastore on Generalized Linear Mixed Effects Models

How it started:

A random lesson by Professor Pastore on Generalized Linear Mixed Effects Models

How it ended:

FILLY-CROSSED STRUCTURES

Psychological Methods

© 2024 American Psychological Association

https://doi.org/10.1037/met0000708

THE END

A Guided Tutorial on Linear Mixed-Effects Models for the Analysis of Accuracies and Response Times in Experiments With Fully Crossed Design

> Ottavia M. Epifania, Pasquale Anselmi, and Egidio Robusto Department of Philosophy, Sociology, Education and Applied Psychology, University of Padova

https://doi.org/10.1037/met0000708

FULLY-CROSSED STRUCTURES

An example: The SNARC effect

Small numbers:
Perceived on the left

Large numbers: Perceived on the right

An example: The SNARC effect

A sample of small numbers:

1, 2, 3, 4

A sample of large numbers:

6, 7, 8, 9

Two conditions:

The "natural" one (so-called *compatible* condition)

An example: The SNARC effect

A sample of small numbers:

1, 2, 3, 4

A sample of large numbers:

6, 7, 8, 9

Two conditions:

The "natural" one (so-called *compatible* condition)

The "innatural" one (so-called *incompatible* condition)

AN EXAMPLE: THE SNARC EFFECT

$t = \{1, 2, \dots, T\}$: Number of trials (condition \times stimulus \times respondent)

		Small Numbers			Large Numbers				
	Condition	1	2	3	4	6	7	8	9
Jane	Compatible	y_{cj1}	y_{cj2}	y_{cj3}	y_{cj4}	y_{cj6}	y_{cj7}	y_{cj8}	$\sum_{t=1}^{T} y_{cj}/T$
	Incompatible	y_{ij1}	y_{ij2}	y_{ij3}	y_{ij4}	y_{ij6}	y_{ij7}	y_{ij8}	$\sum_{t=1}^{T} y_{ij}/T$
Mario	Compatible	y_{cm1}	y_{cm2}	y_{cm3}	y_{cm4}	y_{cm6}	y_{cm7}	y_{cm8}	$\sum_{t=1}^{T} y_{cm}/T$
	Incompatible	y_{im1}	y_{im2}	y_{im3}	y_{im4}	y_{im6}	y_{im7}	y_{im8}	$\sum_{t=1}^{T} y_{im}/T$

Scoring

Person-level scores

$$s_p = \frac{\bar{X}_{p, \text{comp}} - \bar{X}_{p, \text{inc}}}{sd_{\text{pooled}}}$$

SCORING

Person-level scores

$$s_p = \frac{\bar{X}_{p, \text{comp}} - \bar{X}_{p, \text{in}}}{sd_{\text{pooled}}}$$

Advantages

Ease of computation Ease of interpretation SCORING

Person-level scores

$$s_p = \frac{\bar{X}_{p, \text{comp}} - \bar{X}_{p, \text{inc}}}{s d_{\text{pooled}}}$$

Advantages

Ease of computation Ease of interpretation

- Being slow (less accurate) in one condition = being fast (or more accurate) in the opposite one: 0 means absence of bias
- All stimuli have the same impact (fixed effects)

A long tradition

i Respondents are random factors

Sampled from a larger population Need for acknowledging the sampling variability Results can be generalized to other respondents belonging to the same population

A long tradition

i Respondents are random factors

Sampled from a larger population Need for acknowledging the sampling variability

Results can be generalized to other respondents belonging to the same popu-

lation

i Stimuli/items are fixed factors

Taken to be entire population

There is no sampling variability

There is no need to generalize the results because the stimuli are the population

With long lasting consequences

- Generalization of the results is impaired
- Error variance everywhere, left free to bias everything
- The information at the stimulus level is lost

With long lasting consequences

- Generalization of the results is impaired
- Error variance everywhere, left free to bias everything
- The information at the stimulus level is lost

 \sum

Linear Mixed Effects Models

 ψ

Rasch model

With long lasting consequences

- Generalization of the results is impaired
- Error variance everywhere, left free to bias everything
- The information at the stimulus level is lost

 \sum

Linear Mixed Effects Models

 ψ

Rasch model

Rasch-like parametrization estimated with Linear Mixed Effects Models

WHEN?

Sample-level differences:

Compatible and incompatible can be defined *a priori*(SNARC effect)

Individual differences:

Compatible and incompatible are defined within each respondent (Implicit Association Test)

A CLASSIC OF PSYCHOMETRICS

THE END

$$P(x_{ps} = 1 | \theta_p, b_s) = \frac{\exp(\theta_p - b_z)}{1 + \exp(\theta_p - b_z)}$$

 θ_n : Latent trait of person p $b_{\mathfrak{s}}$: "challenging" power of stimulus s FULLY-CROSSED STRUCTURES

Logit link function g:

$$g(\eta_{ps}) = \log\left(\frac{\mu_{ps}}{1 - \mu_{ps}}\right)$$

Inverse g^{-1}

$$g^{-1}=\frac{\exp(\eta_{ps})}{1+\exp(\eta_{ps})}$$

RASCH-LIKE PARAMETRIZATION OF RESPONSE TIMES

The log-normal model

$$E(t_{ps}|\tau_p,\delta_s) = \delta_s - \tau_p + \varepsilon$$

$$au_p$$
: the speed of person p

 $\delta_s :$ the time intensity of stimulus s

Rasch-like parametrization of response times

The log-normal model

$$E(t_{ps}|\tau_p,\delta_s) = \delta_s - \tau_p + \varepsilon$$

$$\tau_p$$
: the speed of person p

$$\delta_s$$
: the time intensity of stimulus s

A linear model with an identity function!

i Rasch

$$P(x_{ps}=1) = \frac{\exp(\theta_p - b_z)}{1 + \exp(\theta_p - b_z)}$$

i Log-normal

$$E(t_{ns}|\tau_n,\delta_s) = \delta_s - \tau_n + \varepsilon$$

I GLM (inverse function)

$$P(x_{ps}=1) = \frac{\exp(\theta_p \,+\, b_s)}{1 + \exp(\theta_p \,+\, b_s)}$$

$$E(t_{ps}|\tau_p,\delta_s) = \delta_s + \tau_p + \varepsilon$$

CTS REAL DATA

The end

RANDOM FACTORS AND EFFECTS

000000

Real data

The end

In a LM:

$$\eta = \mathbf{X}\beta$$

X: Model Matrix

$$\beta$$
: Coefficients

The end

$$\eta = \mathbf{X}\beta$$

ne000000

RANDOM FACTORS AND EFFECTS

X: Model Matrix β : Coefficients

$$\eta = \mathbf{X}\beta + \mathbf{Z}d$$

d: Random effects associated to the random factors in Z ... Not model parameters! Best Linear Unbiased Predictors

 Γ : Parameters estimated for the random factors in the model (variances and covariances).

RANDOM STRUCTURES

The maximal model

Address all the possible sources of random variability that can be expected

RANDOM STRUCTURES

The maximal model

Address all the possible sources of random variability that can be expected

The models that are useful for ones aim

Random structures

The maximal model

Address all the possible sources of random variability that can be expected

The models that are useful for ones aim

Common goal: Investigate the changes in the performance of the respondents between the associative conditions

Random structures

The maximal model

Address all the possible sources of random variability that can be expected

The models that are useful for ones aim

Common goal: Investigate the changes in the performance of the respondents between the associative conditions

Less common: Investigate the changes in the functioning of the stimuli between the associative conditions

RANDOM STRUCTURES

Preliminarities

Index	Meaning	Variable
$p = 1, \dots, P$ $s = 1, \dots, S$ $c \in \{0, 1\}$ i	Respondent Stimulus Associative condition Trial	respondents stimuli condition

Accuracy: GLMM
$$y = [0, 1]$$

$$\varepsilon \sim \mathcal{N}(0, \sigma^2)$$

00000000

RANDOM FACTORS AND EFFECTS

Real Data

THE END

Model 1

Mathematical Notation

$$y = \beta_c X_c + \alpha_p[i] + \alpha_s[i]$$

1me4 notation

respondents stimuli

Rasch-like parametrization

GLMM	LMM
θ	τ

00000000

Real Data

THE END

Model 2

Mathematical Notation

$$y = \beta_c X_c + \alpha_p[i] + \beta_s[i] c_i$$

respondents stimuli

Rasch-like parametrization

LMM

GLMM

 b_{sc}

RANDOM FACTORS AND EFFECTS

Real Data

THE END

Model 3

i Mathematical Notation

$$y = \beta_c X_c + \beta_p[i] c_i + \alpha_s[i]$$

1me4 notation

stimuli

Rasch-like parametrization

	GLMM	LMM	
respondents	θ_{nc}	τ_{nc}	

 b_s

Random structures

All models are wrong...

Find the useful model via model comparison: AIC and BIC

The lower the value, the better the model

AIC, BIC, and model complexity:

Total number of parameters: β and Γ NOT the levels in d

Model 2 and Model 3: Same complexity, different focus

The chosen model is the least wrong model *given the models considered*: Relativity applies everywhere

REAL DATA

RANDOM FACTORS AND EFFECTS

REAL DATA THE END

Coke Good Pepsi Bad

Check the categories – Press Space Bar to continue

Response key: E

THE END

12 Object stimuli

White people faces

Black people faces

16 Attribute stimuli

Positive attributes

Good, laughter, pleasure, glory, peace, happy, Evil, bad, horrible, terrible, nasty, pain, joy, love

Negative attributes

failure, hate


```
# install package for fitting lmms
install.packages("lme4")
# nice plots :)
install.packages("ggplot2")

library(lme4)
library(ggplot2)
```

The data

```
respondent condition stimuli accuracy latency
         1 Whitegood
                          hate
                                            1224
         1 Whitegood
                          bf14
                                           5160
         1 Whitegood laughter
                                            1214
         1 Whitegood
                          bf56
                                            1143
         1 Whitegood
                          evil
                                            827
         1 Whitegood
                           wf3
                                            1859
```

Number of trials \times condition \times respondent:

table(data\$respondent, data\$condition)

```
      Whitebad
      Whitegood

      1
      60
      60

      2
      60
      60

      3
      60
      60

      4
      60
      60

      5
      60
      60

      6
      60
      60
```

GLMMs for accuracy

```
Model 1: y_i = logit^{-1}(\alpha + \beta_c X_c + \alpha_{p[i]} + \alpha_{s[i]})
accuracy1 = glmer(accuracy ~ 0 + condition + (1|stimuli) + (1|respondent),
                     data = data.
                     family = "binomial")
Model 2: y_i = logit^{-1}(\alpha + \beta_c X_c + \alpha_{p[i]} + \beta_{s[i]}c_i)
accuracy2 = glmer(accuracy ~ 0 + condition + (0 + condition|stimuli) +
                        (1 respondent),
                     data = data.
                     family = "binomial")
Model 3: y_i = logit^{-1}(\alpha + \beta_c X_c + \alpha_{s[i]} + \beta_{p[i]}c_i)
accuracy3 = glmer(accuracy ~ 0 + condition + (1|stimuli) +
                        (0 + condition respondent),
                     data = data.
                     family = "binomial")
```

LMMs for log-time responses

```
Model 1: y_i = \alpha + \beta_c X_c + \alpha_{p[i]} + \alpha_{s[i]} + \varepsilon_i
logtime1 = lmer(log(latency) ~ 0 + condition + (1|stimuli) + (1|respondent),
                       data = data.
                       REML = FALSE)
Model 2: y_i = \alpha + \beta_c X_c + \alpha_{p[i]} + \beta_{s[i]} c_i + \varepsilon_i
logtime2 = lmer(log(latency) ~ 0 + condition + (0 + condition | stimuli) +
                          (1 respondent),
                       data = data.
                       REML = FALSE)
Model 3: y_i = \alpha + \beta_c X_c + \alpha_{s[i]} + \beta_{p[i]} c_i + \varepsilon_i
logtime3 = lmer(log(latency) ~ 0 + condition + (1|stimuli) +
                          (0 + condition respondent),
                       data = data.
                       REML = FALSE)
```

Model comparison

GLMMs

The use of the anova() function is just for the convenience of having all the information on the same page!

anova(accuracy1, accuracy2, accuracy3)

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Model comparison

LMMs

Signif. codes:

The use of the anova() function is just for the convenience of having all the information on the same page!

anova(logtime1, logtime2, logtime3)

```
Data: data
Models:
logtime1: log(latency) ~ 0 + condition + (1 | stimuli) + (1 | respondent)
logtime2: log(latency) ~ 0 + condition + (0 + condition | stimuli) + (1 | respondent)
logtime3: log(latency) ~ 0 + condition + (1 | stimuli) + (0 + condition | respondent)
npar AIC BIC logLik -2*log(L) Chisq Df Pr(>Chisq)
logtime1 5 6073.2 6108.0 -3031.6 6063.2
logtime2 7 6061.4 6110.2 -3023.7 6047.4 15.743 2 0.0003815 ***
logtime3 7 5657.2 5705.9 -2821.6 5643.2 404.249 0
```

Model Comparison

Useful Models:

GLMMs Model~2 θ_p b_{WGBB} and b_{BGWB}

The IAT effect is mostly due to variations in the *stimuli functioning* between conditions, while the performance of the respondents seems unaltered

Results should be interpreted together!

LMMs $\it Model~3$ $\it au_{
m WGBB}$ and $\it au_{
m BGWB}$ $\it au_{
m e}$

The IAT effect is mostly due to variations in the *performance of the respondents* between conditions, while the functioning of the stimuli appears not affected

Rasch-like estimates

 θ_p

RASCH-LIKE ESTIMATES

$b_{\rm WGBB}$ and $b_{\rm WGBB}$

Rasch-like estimates

Log-normal estimates

$\tau_{\rm WGBB}$ and $\tau_{\rm BGWB}$

FULLY-CROSSED STRUCTURES A CLASSIC OF PSYCHOMETRICS RANDOM FACTORS AND EFFECTS REAL DATA THE END OCCOOCOCO

Log-normal estimates

Log-normal estimates

2

THE END

- The best model depends on the other models... sometimes useful, never right
- The sky is the limit... but do not over complicate things

- The best model depends on the other models... sometimes useful, never right
- The sky is the limit... but do not over complicate things

HOWEVER

Time and accuracy are independent from one another, pretty bold assumption

THE END