

B-A046668

## FOREIGN TECHNOLOGY DIVISION



STUDY OF THE RECIPROCAL FUNCTION OF INDETERMINACY OF A WIDEBAND SIGNAL WITH A COMPLEX LAW OF ANGULAR MODULATION

bу

G. V. Svirchevskaya





Approved for public release; distribution unlimited.

| RTIS       | White Section         | ×  |
|------------|-----------------------|----|
| DOC        | Buff Section          | E  |
| GRAHNOUN   | CEB                   | C  |
|            |                       |    |
| JUSTIFICA  | ItoH                  |    |
| JUSTIFICA  |                       |    |
| JUSTIFICA' | TIOH                  |    |
| BY         | TION/AVAILABILITY COS | ES |

n

FTD-ID(RS)T-0827-77

# EDITED TRANSLATION

FTD-ID(RS)T-0827-77

25 May 1977

MICROFICHE NR:

7+D-77-C-000614

STUDY OF THE RECIPROCAL FUNCTION OF INDETERMI-NACY OF A WIDEBAND SIGNAL WITH A COMPLEX LAW OF ANGULAR MODULATION

By: G. V. Svirchevskaya

English pages: 18

Source: Izvestiya Vysshikh Uchebnykh Zavedeniy

Radioelektronika, Vol 15, Nr 11, November 1972, PP. 1344-1352

Country of origin: USSR

Translated by: Gale M. Weisenbarger

Requester: USAMRDC

Approved for public release; distribution unlimited.

THIS TRANSLATION IS A RENDITION OF THE ORIGINAL FOREIGN TEXT WITHOUT ANY ANALYTICAL OR EDITORIAL COMMENT. STATEMENTS OR THEORIES ADVOCATED OR IMPLIED ARE THOSE OF THE SOURCE AND DO NOT NECESSARILY REFLECT THE POSITION OR OPINION OF THE FOREIGN TECHNOLOGY DIVISION.

PREPARED BY:

TRANSLATION DIVISION FOREIGN TECHNOLOGY DIVISION WP-AFB, OHIO.

#### U. S. BOARD ON GEOGRAPHIC NAMES TRANSLITERATION SYSTEM

| Bloc | k | Itali | c Transliteration | Block | Italic | Transliteration |
|------|---|-------|-------------------|-------|--------|-----------------|
| Аа   | 3 | A     | А, а              | Рр    | Pp     | R, r            |
| Бб   | 5 | Б 6   | B, b              | Сс    | Cc     | S, s            |
| Вв   | 3 | B .   | V, v              | Тт    | T m    | T, t            |
| Гг   | - | Γ :   | G, g              | Уу    | Уу     | U, u            |
| Дд   | 1 | Да    | D, d              | Фф    | Φφ     | F, f            |
| Ее   | 3 | E .   | Ye, ye; E, e*     | X ×   | X x    | Kh, kh          |
| Жж   | { | Ж э   | c Zh, zh          | Цц    | 4      | Ts, ts          |
| 3 з  | 3 | 3 ;   | Z, z              | 4 4   | 4 4    | Ch, ch          |
| Ии   | 1 | И и   | I, i              | Шш    | Шш     | Sh, sh          |
| Йй   | 1 | Я a   | Y, y              | Щщ    | Щщ     | Shch, shch      |
| Н н  |   | KK    | K, k              | Ъъ    | ъ.     | "               |
| Лл   | 1 | ЛА    | L, 1              | Ыы    | W W    | Ү, у            |
| MM   | 1 | M M   | M, m              | Ьь    | ь.     | •               |
| Нн   | 1 | H N   | N, n              | Ээ    | 9 ,    | E, e            |
| 0 0  |   | 0 0   | 0, 0              | Юю    | 10 w   | Yu, yu          |
| Пп   | 1 | Пп    | P, p              | Яя    | Яя     | Ya, ya          |

<sup>\*</sup>ye initially, after vowels, and after  $\mathbf{b}$ ,  $\mathbf{b}$ ;  $\mathbf{e}$  elsewhere. When written as  $\ddot{\mathbf{e}}$  in Russian, transliterate as  $\mathbf{y}\ddot{\mathbf{e}}$  or  $\ddot{\mathbf{e}}$ . The use of diacritical marks is preferred, but such marks may be omitted when expediency dictates.

#### GREEK ALPHABET

| Alpha   | Α | α | •  |   | Nu      | N | ν |   |
|---------|---|---|----|---|---------|---|---|---|
| Beta    | В | β |    |   | Xi      | Ξ | ξ |   |
| Gamma   | Γ | Υ |    |   | Omicron | 0 | 0 |   |
| Delta   | Δ | δ |    |   | Pi      | П | π |   |
| Epsilon | E | ε | •  |   | Rho     | P | ρ | • |
| Zeta    | Z | ζ |    |   | Sigma   | Σ | σ | ς |
| Eta     | Н | η |    |   | Tau     | T | τ |   |
| Theta   | Θ | θ | \$ |   | Upsilon | T | υ |   |
| Iota    | I | ι |    |   | Phi     | Φ | φ | φ |
| Kappa   | K | n | K  | × | Chi     | X | χ |   |
| Lambda  | Λ | λ |    |   | Psi     | Ψ | Ψ |   |
| Mu      | M | μ |    |   | Omega   | Ω | ω |   |
|         |   |   |    |   |         |   |   |   |

#### RUSSIAN AND ENGLISH TRIGONOMETRIC FUNCTIONS

| Russ | sian  | English            |
|------|-------|--------------------|
| sin  |       | sin                |
| cos  |       | cos                |
| tg   |       | tan                |
| ctg  |       | cot                |
| sec  |       | sec                |
| cose | ec    | csc                |
| sh   |       | sinh               |
| ch   |       | cosh               |
| th   |       | tanh               |
| cth  |       | coth               |
| sch  |       | sech               |
| csch | 1     | csch               |
| arc  | sin   | sin <sup>-1</sup>  |
| arc  | cos   | cos-l              |
| arc  | tg    | tan-1              |
| arc  | ctg   | cot-1              |
| arc  | sec   | sec-1              |
| arc  | cosec | csc-1              |
| arc  | sh    | sinh <sup>-1</sup> |
| arc  | ch    | cosh <sup>-1</sup> |
| arc  | th    | tanh <sup>-1</sup> |
| arc  | cth   | coth <sup>-1</sup> |
| arc  | sch   | sech <sup>-1</sup> |
| arc  | csch  | csch <sup>-1</sup> |
|      |       |                    |
| rot  |       | curl               |
| lg   |       | log                |
|      |       |                    |

### GRAPHICS DISCLAIMER

All figures, graphics, tables, equations, etc. merged into this translation were extracted from the best quality copy available.

STUDY OF THE RECIPROCAL FUNCTION OF INDETERMINACY OF A WIDEBAND SIGNAL WITH A COMPLEX LAW OF ANGULAR MODULATION

G. V. Svinchevskaya

A study is made of the function of indeterminacy of a signal with a complex law of angular modulation and the reciprocal function of indeterminacy of the pair, signal - filter, which with respect to its properties approaches the properties of the function of indeterminacy of a Gaussian LChM-signal [Tr. ncte: ЛЧМ- linear frequency-modulated].

The function of indeterminacy is a universal characteristic of complex wideband signals which makes it possible to select one or another signal in various radar situations [1, 2, 3]. Among the

wideband signals, an LChM-signal with a Gaussian envelope is of undoubted interest from the point of view of properties of the function of indeterminacy [4, 5]. Practical realization of such a signal, however, is quite difficult because of the limited possibilities of modern radar station transmitters. This is explained by the fact that the majority of powerful pulse superhigh frequency generators operate in the key mode in which amplitude modulation is impossible.

In this work a study is made of the function of indeterminacy and the reciprocal function of indeterminacy of a signal with a complex law of angular modulation and a rectangular envelope. The reciprocal function of indeterminacy of such a signal approximates, with respect to its properties, the function of indeterminacy of a Gaussian LChM-signal, and the realization of this signal is not difficult.

The law of angular modulation of a sounding signal is described in the following manner:

(1) 
$$f(t) = f_1(t) + f_2(t),$$

where

(2) 
$$f_1(t) = f_0 + kt, \text{ and } f_2(t) = \Delta f_m \cos \omega_m t.$$

In this case K is the rate of frequency change during a pulse T, equal to  $\Delta f/T$ :  $\Delta f$  is the frequency deviation:  $\Delta f_m = \beta f_m$ ;  $\beta$  is the index of modulation:  $f_m$  is the frequency of modulation.

In complex form the sounding signal has the following form:

(3) 
$$S(t) = e^{i\theta(t)} = e^{i[\theta_1(t) + \theta_2(t)]} |t| \leqslant \frac{T}{2},$$

where  $\theta(t)$  is the phase of the signal determined by the law of change of the instantaneous frequency of the signal (1).

On the strength of the familiar relationship from the theory of Fessel functions [6]

$$e^{i\beta \sin \omega_{m}t} = \sum_{k=-\infty}^{+\infty} J_{k}(\beta) \cdot e^{ik\omega_{m}t}$$
,

(3) may be rewritten in the following manner:

(4) 
$$S(t) = e^{i\Theta_{k}(t)} \left\{ J_{0}(\beta) + \sum_{k=1}^{\infty} J_{k}(\beta) e^{ik\omega_{m}t} + (-1)^{k} \sum_{k=1}^{\infty} J_{k}(\beta) e^{-in\omega_{m}t} \right\}$$

with  $|t| \leqslant \frac{T}{2}$ .

H

The function of indeterminacy of such a signal is calculated according to the formula [3]

(5) 
$$\chi(\tau, \Omega) = \frac{1}{2E} / \int_{-\infty}^{+\infty} A(t) \cdot A * (t - \tau) \cdot e^{-i\Omega t} dt /,$$

where E is the energy of the signal, equal to T/2, and A(t) is the complex envelope of the sounding signal equal to

(6) 
$$A(t) = e^{i\left(\frac{\mu t^2}{2} + \beta \sin \omega_m t\right)}.$$

where  $\mu = 2\pi k$ .

Taking into account (6) the function of indeterminacy (5) for  $\tau \ge 0$  has the following form:

(7) 
$$\chi(\tau, \Omega) = \frac{1}{T} \left| e^{-l\frac{\mu \tau^2}{2}} \int_{-\frac{T}{2} + \tau}^{T/2} e^{l(\mu \tau + \Omega)t} e^{l^2 \beta \cos \omega_m \left(t - \frac{\tau}{2}\right) \sin \omega_m \left(t - \frac{\tau}{2}\right)} dt \right|.$$

Analogously to (7) the expression is written for  $\tau \leqslant 0$ . In this case the integrand does not change and the limits of integration

become equal to T/2 and  $T/2 + \tau$ .

Transforming (7), expanding the last exponential factor in the integrand into a series with respect to Bessel functions [6]

(8) 
$$e^{j2\beta\sin\frac{\omega_m\tau}{2}\cos\omega_m\left(t-\frac{\tau}{2}\right)} = \sum_{k=-\infty}^{+\infty} j^k J_k\left(2\beta\sin\frac{\omega_m\tau}{2}\right) \exp\left[jk\omega_m\left(t-\frac{\tau}{2}\right)\right].$$

Substituting (8) into (7) changing the order of summation and integration and combining the results for  $\tau \geqslant 0$  and  $\tau \leqslant 0$  we obtain

(9) 
$$\chi(\tau, \Omega) = \left| \sum_{k=-\infty}^{+\infty} j^k J_k \left( 2\beta \cdot \sin \frac{\omega_m \tau}{2} \right) \chi_{\Pi \in M}(\tau, \Omega + k \omega_m) \right|.$$

From the last expression it is evident that the presence of a supplementary sinusoidal component in the composition of the instantaneous frequency of the sounding signal leads to the fact that the function of indeterminacy of a signal with a complex law of angular modulation is the sum of functions of indeterminacy of a signal with linear frequency modulation, shifted along axis  $\Omega$  by frequencies, which are multiples of the modulation frequency  $\omega_m$ , the envelopes of which change in accordance with the Bessel functions.

ň

1 1

The distribution of areas of high correlation of the function  $\chi\left(\tau,\,\Omega\right)$  is shown in Fig. 1. Analogously, from (4) it is evident that the sounding signal is the total of LChM-pulses with a rectangular envelope, the amplitude values of which are proportional to the Eessel functions. In this case we shall call the component of the signal the central component

(10) 
$$S_{\mathfrak{u}}(t) = J_0(\beta) \cdot e^{i\theta_1(t)} \quad |t| \leqslant \frac{T}{2}.$$

The basic idea of obtaining a reciprocal function of indeterminacy, approaching, with respect to its properties, a function of indeterminacy of a Gaussian LChM-signal, lies in giving the envelope of the central component a form close to Gaussian and in using a filter in the receiver which is matched with this component. A change in the form of the envelope of the central component may be achieved due to a change in the index of modulation during a pulse.

As shown by the studies, the form of an envelope close to Gaussian may be obtained during the change of the index of modulation  $\beta = c|t|$  (where c = 5.26/T). The law of change of the envelope of the central component which corresponds to it is shown in Fig. 2a as a function of  $\beta$  and during pulse T.

The law of change of the envelope of the central component can be approximated by the following analytical function:

(11) 
$$J_0[\beta(t)] = e^{-\alpha t^*} \cos \frac{\pi t}{T} - \frac{T}{2} \leqslant t \leqslant \frac{T}{2},$$
 where  $\alpha = 3/T^2$ .

In Fig. 2b the dotted line shows the curve of the approximating function. The root-mean-square error of approximation in this case does not exceed 3 o/o. The law of change of the envelope of the central component we shall call quasi-Gaussian.

Taking (11) into account the complex envelope of the central component of the sounding signal is written in the following manner:

(12) 
$$A_{u}(t) = e^{-\frac{3t^{2}}{T^{2}}} \cos \frac{\pi t}{T} e^{i\frac{\mu t^{2}}{2}} - \frac{T}{2} \leqslant t \leqslant \frac{T}{2}.$$

For determination of the characteristic of the filter we calculate the spectrum of the complex envelope of the central component using the method of a stationary phase [2]

(13) 
$$S_{\mu}(\omega) = \int_{-T/2}^{T/2} A_{\mu}(t) \cdot e^{-i\omega t} dt = \begin{cases} \sqrt{\frac{2\pi}{\mu}} e^{-\frac{3\omega^{2}}{\Delta\omega^{2}}} \cos \frac{\pi\omega}{\Delta\omega} e^{i\left(\frac{\omega^{2}}{2\mu} \pm \frac{\pi}{4}\right)} \\ \text{with } -0.5 \Delta\omega < \omega < 0.5 \Delta\omega \\ 0 \text{ with } |\omega| > 0.5 \Delta\omega. \end{cases}$$

In accordance with (13) the characteristic of the filter matched with the central component is expressed in the following manner:

(14) 
$$S_{\Phi}(\omega) = S_{\mathfrak{u}}^{\bullet}(\omega).$$

The reciprocal function of indeterminacy of the pair, signal - filter, determined by (4) and (14) may be represented in the form

(15) 
$$\chi_{BS}(\tau, \Omega) = \frac{1}{4\pi V E E_1} \left| \int_{-\infty}^{+\infty} S(\omega - \Omega) \cdot S_{\alpha}^{\bullet}(\omega) \cdot e^{j\omega \tau} d\omega \right|,$$

where  $S(\omega)$  is the spectrum of the complex envelope of the sounding signal and  $E_1$  is the energy of its central compenent equal to

(16) 
$$E_1 = \frac{1}{\pi} \int_{0}^{0.5\Delta\omega} |S_{\mathfrak{u}}(\omega)|^2 \cdot d\omega = \frac{1.19 \, \sqrt{\pi} \cdot T}{2 \, \sqrt{6}}.$$

The spectrum of the sounding signal is determined using a Fourier transform from (4)

(17) 
$$S(\omega) = \int_{-T/2}^{T/2} S(t) \cdot e^{-j\omega t} dt = J_0(\beta) \int_{-T/2}^{T/2} \exp\left\{j\left[(\omega_0 - \omega) t + \frac{\mu t^2}{2}\right]\right\} dt + \sum_{1}^{\infty} J_k(\beta) \int_{-T/2}^{T/2} \exp\left\{j\left[(\omega_0 - \omega + k\omega_m)t + \frac{\mu t^2}{2}\right]\right] dt + \left[(-1)^k \sum_{1}^{\infty} J_k(\beta) \int_{-T/2}^{T/2} \exp\left\{j\left[(\omega_0 - \omega + k\omega_m)t + \frac{\mu t^2}{2}\right]\right] dt.$$

Consequently the spectrum of the scunding signal consists of the sum of an infinite number of spectral components, the modulus of which is proportional to the Bessel functions. Consequently each component of the signal (4) has a spectrum typical for LChM-signals and the central frequencies of the spectral components are equal to  $\omega_0 \pm k\omega_m$ . Depending on the selection of the value  $\omega_m$  the components may overlap or separate. Under the condition  $0.5\,\Delta\omega\ll\omega_m$  where  $\Delta\omega$  is the band of frequencies occupied by each spectral component the overlap is quite small and the spectrum of the sounding signal may be represented in the form of the curve in Fig. 3.

With a change in the index of modulation during a pulse, taking into account (17), the reciprocal function of indeterminacy is written in the following manner

(18) 
$$\chi_{BS}(\tau, \Omega) = \frac{1}{4\pi \sqrt{EE_1}} \left[ \int_{-\infty}^{+\infty} J_0[\beta(t)] e^{i\left[\frac{\mu t^2}{2} - t(\omega + \Omega)\right]} dt + \int_{-\infty}^{+\infty} \sum_{1}^{\infty} J_k[\beta(t)] e^{i\left[\frac{\mu t^2}{2} - t(\omega + \Omega - k_{E_m})\right]} dt + \int_{-\infty}^{+\infty} (-1)^k \sum_{1}^{\infty} J_k[\beta(t)] \times e^{i\left[\frac{\mu t^2}{2} - t(\omega + \Omega + k_{E_m})\right]} dt \right] \sqrt{\frac{2\pi}{\mu}} e^{-\frac{3\omega^2}{\Delta\omega^2}} \left(\cos\frac{\pi\omega}{\Delta\omega}\right) e^{-i\frac{\omega^2}{2\mu}} \times e^{i\omega t} d\omega = \chi_{BS11}(\tau, \Omega) + \chi_{BS12}(\tau, \Omega) + \chi_{BS21}(\tau, \Omega).$$

From (18) it is evident that, as does the function of indeterminacy (9), the reciprocal function of indeterminacy consists of the totality of the tasic component  $\chi_{\rm BSH}(\tau,\Omega)$  and the lateral components shifted on axis  $\Omega$  to frequencies which are multiples of the modulation frequency  $\omega_m$ .

Taking (13) into account the basic component  $\chi_{\text{B311}}$  ( $\tau$ ,  $\Omega$ ) is written as

(19) 
$$\chi_{B31}(\tau, \Omega) = \frac{1}{2\mu VEE_1} \left| \int_{-\infty}^{+\infty} e^{-\frac{6\omega^*}{\Delta\omega^*}} e^{-\frac{3\Omega^*}{\Delta\omega^*}} e^{\frac{6\omega\Omega}{\Delta\omega^*}} \cos \frac{\pi\omega}{\Delta\omega} \cos \frac{\pi(\omega - \Omega)}{\Delta\omega} \right| \times e^{-\frac{1}{2\mu}} e^{\frac{i\omega\Omega}{\mu}} e^{i\omega\tau} d\omega = \frac{1}{4\mu VEE_1} \left| e^{-\frac{3\Omega^*}{\Delta\omega^*}} \left( \cos \frac{\pi\Omega}{\Delta\omega} J_1 + 0.5 J_2 \right) \right|.$$

where

12

ě

$$J_{1} = \int_{-\infty}^{+\infty} e^{-\frac{6\omega^{2}}{\Delta\omega^{2}}} e^{\frac{6\omega\Omega}{\Delta\omega^{2}}} e^{\frac{i\omega\Omega}{\mu}} e^{i\omega\tau} d\omega;$$

$$J_{2} = \int_{-\infty}^{+\infty} e^{-\frac{6\omega^{2}}{\Delta\omega^{2}}} e^{\frac{6\omega\Omega}{\Delta\omega^{2}}} e^{i\omega\tau} e^{i$$

During calculation of components  $J_1$  and  $J_2$  we use transforms which reduce to the calculation of the integral of probabilities [7], obtaining the final expression for  $J_1$  and  $J_2$ :

(20) 
$$J_1 = \sqrt{\frac{\pi}{6}} \Delta \omega \exp \left\{ \frac{\Delta \omega^2}{24} \left[ \frac{6\Omega}{\Delta \omega^2} + j \left( \tau + \frac{\Omega}{\mu} \right) \right]^2 \right\}.$$

(21) 
$$J_{2} = \sqrt{\frac{\pi}{6}} \Delta \omega \exp\left\{\frac{\Delta \omega^{2}}{24} \left[\frac{6\Omega}{\Delta \omega^{2}} + j\left(\tau + \frac{\Omega}{\mu} + \frac{2\pi}{\Delta \omega}\right)\right]^{2}\right\} e^{-j\frac{\pi\Omega}{\Delta \omega}} + \sqrt{\frac{\pi}{6}} \Delta \omega \exp\left\{\frac{\Delta \omega^{2}}{24} \left[\frac{6\Omega}{\Delta \omega^{2}} + j\left(\tau + \frac{\Omega}{\mu} - \frac{2\pi}{\Delta \omega}\right)\right]^{2}\right\} e^{j\frac{\pi\Omega}{\Delta \omega}}.$$

Substituting the obtained values (20) and (21) into (19) and making simple transformations we obtain

$$\chi_{8311}\left(\tau,\ \Omega\right) = 0.43\ e^{-\frac{\pi^2\Delta/^2(\tau + \Omega/\mu)^2}{6}} \left[\cos\frac{\pi\Omega}{\Delta\omega} + e^{-\frac{\pi^2}{6}} \cdot \operatorname{ch}\frac{\pi\Delta\omega}{6}\left(\tau + \frac{\Omega}{\mu}\right)\right].$$

The cutting of  $\chi_{\text{ext}1}$  ( $\tau$ ,  $\Omega$ ) by planes  $\tau$  = 0 and  $\Omega$  = 0 may be represented as:

$$\chi_{B311}(\tau, 0) = 0.43 \cdot e^{-\frac{\pi^2 \Delta/^2 \tau^2}{6}} \left(1 + e^{-\frac{\pi^2}{6}} \operatorname{ch} \frac{\pi \Delta \omega \tau}{6}\right);$$

$$\chi_{\text{BH}} \left( \Omega, \ 0 \right) = 0.43 \cdot e^{-\frac{\Omega^2 T^4}{24}} \left( \cos \frac{\pi \Omega}{\Delta \omega} + e^{-\frac{\pi^4}{6}} \operatorname{ch} \frac{\pi \Delta \omega T}{6} \right).$$

The length of the compressed pulse at the level 3 dB is equal to 1.51/ $\Delta f$ ; respectively the width  $\chi(\Omega,0)$  along the axis of Doppler frequencies comprises 1.51/T.

The cutting of the surface  $\chi_{\rm BSH}(\tau,\,\Omega)$  by a plane parallel to plane  $(\tau,\Omega)$  and at a level 0.5 from its maximum value is described by the equation

$$0.43 \, e^{-\frac{\pi^2 \Delta f^2 \left(\tau + \frac{\Omega}{\mu}\right)^2}{6}} \left\{ \cos \frac{\pi \Omega}{\Delta \omega} \div e^{-\frac{\pi^2}{6}} \, \cot \frac{\pi \Delta \omega}{6} \left(\tau + \frac{\Omega}{\mu}\right) \right\} = 0.5.$$

After taking the logarithm and following simple transformations this expression may be reduced to the classical equation of a curve of the second order which is an ellipse with the equation of the major axis v = kr with  $v = \Omega/2r$ .

Comparison of the cross sections plotted taking the last equation into account shows that the drcp  $\chi_{BSII}(\tau,\Omega)$  along the axis of Dcppler frequencies takes place more slowly than in the case of a Gaussian LChM-signal.

8

Evaluation of the energy losses during the use of the signal with the complex law of angular modulation takes place in the following manner:

(22) 
$$\Delta \rho = \frac{(S/N)_{\phi}}{(S/N)_{\text{max}}},$$

where  $\left(\frac{S}{N}\right)_{\varphi}$  is the ratio of the peak power of the signal at the cutput of the quasi-Gaussian filter to the mean square of noise;  $(S/N)_{\max} = \frac{2E}{N_0}$  is the signal/noise ratio during matched processing of the signal (4); E is the energy of the signal; N<sub>0</sub> is the spectral density of white noise.

Substituting values  $(S/N)_{\Phi}$  and  $(S/N)_{\max}$  in (22) we obtain

$$\Delta \rho = \frac{\left[\frac{1}{\pi} \int_{0}^{0.5\Delta\omega} |S_{\Phi}(\omega)| \cdot |S(\omega)/d\omega|^{2}}{\left[\frac{N_{0}}{\pi} \int_{0}^{0.5\Delta\omega} |S_{\Phi}(\omega)|^{2} \cdot d\omega\right]} : \frac{2E}{N_{0}} = \frac{E_{1}}{2E} = 3,6 \text{ dB}.$$

In the last expression  $S(\omega)$  is the spectrum of the complex envelope of the sounding signal;  $S_{\varphi}(\omega)$  is the coefficient of transmission of a quasi-Gaussian filter. Calculation of losses is

made taking into account the fact that only the component spectrum (13) is present at the output of the filter.

According to data cited in [1], analogous losses in the case of a Gaussian LChM signal comprise 3.5 dB.

Let us compare the obtained results with another variation of the pair, signal - filter, which can provide the same properties as the reciprocal function of indeterminacy as the pair examined above.

The signal in this case is represented by an LChM-signal with a rectangular envelope which is subjected to weight processing by a filter, whose modulus of the transmission coefficient is equal to the square of the modulus of the transmission coefficient of a quasi-Gaussian filter (16) - a quasi-Gaussian square filter.

The calculation of the reciprocal function of indeterminacy according to equation (15) in this case leads to the following expression:

$$\chi_{B3}\left(\tau,\ \Omega\right) = 0.314 \cdot e^{-\frac{\Delta\omega^{3}\left(\tau + \frac{\Omega}{\mu}\right)^{3}}{2^{4}}} \left[1 + e^{-\frac{\pi^{3}}{6}} \operatorname{ch} \frac{\pi\Delta\omega}{6} \left(\tau + \frac{\Omega}{\mu}\right)\right].$$

Calculations show that in this case losses in the signal/noise ratio are approximately 5 dB.

Table 1 shows comparative data for three signals which makes it possible to judge the effectiveness of the suggested pair, signal - filter.

In this table the relative efficiency of the signal in decibels indicates the sum of the relative energy of the signals and of the losses of mismatching. The latter arise: 1) during amplitude modulation of the sounding signal due to inefficient use of the power of the transmitter; 2) during non-optimal processing: a) of a signal with a complex law of angular modulation a quasi-Gaussian filter, b) of an LChM-signal with a rectangular envelope by a quasi-Gaussian square filter.

Comparison with other known means of weight processing of an LChM-signal [8] and also with signals with nonlinear frequency modulation [9] shows that although a signal with a complex law of angular modulation is inferior to them with respect to energy losses, it is superior with respect to properties of the reciprocal correlation function and has a low level of lateral lobes and weak criticality toward Dcppler frequency shifts.

CONCLUSIONS

X

- 1. The study of the reciprocal function of indeterminacy of a signal with a complex law of angular modulation showed that its properties approximate the properties of the function of indeterminacy of a Gaussian LChM-signal.
- In contrast to a Gaussian LChM-signal we can practically realize a signal with a complex law of angular modulation and a rectangular envelope.
- 3. With almost identical energy losses in the signal/noise ratio with a Gaussian LChM-signal, a signal with a complex law of angular modulation clearly wins out in comparison with weight quasi-Gaussian square processing of a rectangular LChM-signal although it is inferior to such a weight function as Hemming's function [8].

Submitted 25 Jan 1971

Revision 27 May 1971

#### LITERATURE

Вудворд Ф. М., Теория вероятностей и теория информации с применениями в радиолокации, Изд-во «Советское радио», 1955.
 Вакман Д. Е., Сложные сигналы и принцип неопределенности в радиолока-

ции, Изд-во «Советское радио», 1965.
3. Варакин А. Е., Теория сложных сигналов, Изд-во «Советское радио», 1970.
4. Krönert, Impulsverdichtung, Nachrichtentechnik, 1957, 4.

5. Фоул, Кари, III уур, Система сжатия импульсов, использующая гауссов сигнал с линейной ЧМ, ТИИЭР, 1965, 51, № 2.
6. Бейтман, Эрдейи, Высшие трансцендентные фулкции, Издею «Наука»,

7. Янке Е., Эмде Ф., Таблицы специальных функций, Физматгиз, 1968. 8. Соок, Bernfeld—radar signals, An introduction to the theory and application,

N. J. Acad. Press, 1967.

9. Кук Ч., О некотором классе сжимаемых импульсных сигналов с нелинейной ЧМ, ТИИЭР, 1964, № 11.



Fig. 1. Location of the range of high correlation of the function of indeterminacy of a signal with a complex law of frequency modulation.



Fig. 2. Change of the envelope of a central component of a sounding signal: a. - dependences on  $\beta$ ; b - during a pulse.



Fig. 3. Spectrum of a signal with a complex law of frequency modulation with  $\beta$  = const and  $\omega\Delta/2\ll\omega_m$  .

Table 1.

| (/)<br>Название сигнала                                   | (2)<br>Относи-<br>тельная<br>энергия, дб | <b>(3)</b><br>Потери<br>рассогла-<br>сования,<br>∂6 | <b>(4)</b><br>Относи-<br>тельная эф-<br>фектив-<br>ность, ∂б | Длитель-<br>ность основ-<br>ного лепест-<br>ка |
|-----------------------------------------------------------|------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------|------------------------------------------------|
| (6) ЛЧМ-сигнал с гауссовой оги-                           |                                          |                                                     |                                                              | 1.5                                            |
| бающей                                                    | -3,53                                    | 0                                                   | <b>-3,</b> 53                                                | $\frac{1,5}{\Delta f}$                         |
| (7) ЛЧМ-сигнал с прямоугольной огибающей и квазигауссовым |                                          | 1                                                   |                                                              |                                                |
| квадрат-фильтром                                          | -5                                       | 0                                                   | -5                                                           | $\frac{1, 51}{\Delta f}$                       |
| (б) Сигнал со сложным законом уг-                         |                                          |                                                     |                                                              | Δ                                              |
| ловой модуляции                                           | 0                                        | -3,6                                                | -3,6                                                         | $\frac{1, 51}{\Delta f}$                       |

((KBY: 1) Name of signal; 2) Relative energy, dB: 3) Losses of mismatching, dB; 4) Belative efficiency, dB; 5) Duration of the basic lobe; 6) LChM-signal with a Gaussian envelope; 7) LChM-signal with a rectangular envelope and quasi-Gaussian square filter; 8) Signal with complex law of angular modulation.))

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

| REPORT DOCUMENTATION                                                  | READ INSTRUCTIONS BEFORE COMPLETING FORM |                                                                |  |  |
|-----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------|--|--|
| 1. REPORT NUMBER FTD-ID(RS)T-0827-77                                  | 2. GOVT ACCESSION NO.                    | 3. RECIPIENT'S CATALOG NUMBER                                  |  |  |
| 4. TITLE (and Subtitle) STUDY OF THE RECIPROCAL FUNCTI                | 5. TYPE OF REPORT & PERIOD COVERED       |                                                                |  |  |
| INDETERMINACY OF A WIDEBAND SI                                        | Translation                              |                                                                |  |  |
| A COMPLEX LAW OF ANGULAR MODUI                                        | 6. PERFORMING ORG. REPORT NUMBER         |                                                                |  |  |
| 7. AUTHOR(s)                                                          | 8. CONTRACT OR GRANT NUMBER(s)           |                                                                |  |  |
| G. V. Svirchevskaya                                                   |                                          |                                                                |  |  |
| 9. PERFORMING ORGANIZATION NAME AND ADDRESS                           |                                          | 10. PROGRAM ELEMENT, PROJECT, TASK<br>AREA & WORK UNIT NUMBERS |  |  |
| Foreign Technology Division Air Force Systems Command U. S. Air Force |                                          |                                                                |  |  |
| 11. CONTROLLING OFFICE NAME AND ADDRESS                               |                                          | 12. REPORT DATE                                                |  |  |
|                                                                       |                                          | November 1972                                                  |  |  |
|                                                                       |                                          | 13. NUMBER OF PAGES                                            |  |  |
| 14. MONITORING AGENCY NAME & ADDRESS(if different                     | from Controlling Office)                 | 15. SECURITY CLASS. (of this report)                           |  |  |
|                                                                       |                                          | UNCLASSIFIED                                                   |  |  |
|                                                                       |                                          | 15a. DECLASSIFICATION/DOWNGRADING<br>SCHEDULE                  |  |  |
| 16. DISTRIBUTION STATEMENT (of this Report)                           |                                          |                                                                |  |  |
| 17. DISTRIBUTION STATEMENT (of the abstract entered in                | in Block 20, if different from           | m Report)                                                      |  |  |
| 18. SUPPLEMENTARY NOTES                                               |                                          |                                                                |  |  |
| 19. KEY WORDS (Continue on reverse side if necessary and              | d identify by block number)              |                                                                |  |  |
|                                                                       |                                          |                                                                |  |  |
| 20. ABSTRACT (Continue on reverse side if necessary and 17            | identify by block number)                |                                                                |  |  |
|                                                                       |                                          |                                                                |  |  |

#### DISTRIBUTION LIST

#### DISTRIBUTION DIRECT TO RECIPIENT

| ORGANIZATION                                                | MICROFICHE       | ORGANIZATION                                      | MICROFICHE  |  |
|-------------------------------------------------------------|------------------|---------------------------------------------------|-------------|--|
| A205 DMATC A210 DMAAC B344 DIA/RDS-3C C043 USAMIIA          | 1<br>2<br>8<br>1 | E053 AF/INAKA E017 AF/RDXTR-W E404 AEDC E408 AFWL | 1<br>1<br>1 |  |
| C509 BALLISTIC RES LABS<br>C510 AIR MOBILITY R&D<br>LAB/FIO | 1                | E410 ADTC<br>E413 ESD<br>FTD                      | 1 2         |  |
| C513 PICATINNY ARSENAL C535 AVIATION SYS COMD C557 USAIIC   | 1 1 1            | CCN<br>ETID<br>NIA/PHS                            | 1<br>3<br>1 |  |
| C591 FSTC C619 MIA REDSTONE D008 NISC H300 USAICE (USAREUR) | 1                | NICD                                              | 5           |  |
| POOS ERDA POSS CIA/CRS/ADD/SD NAVORDSTA (50L)               | 1 1              |                                                   |             |  |
| NAVWPNSCEN (Code 121)<br>NASA/KSI<br>AFIT/LD                | 1 1              |                                                   |             |  |