INTERBAND CASCADE LASERS FOR SPECTROSCOPY WITH VERY LOW INPUT POWER

Laser Applications to Chemical, Security, and Environmental Analysis (San Diego CA, 30 January 2012)

Charles D. Merritt, William W. Bewley, Chadwick L. Canedy, Chul Soo Kim, Igor Vurgaftman, Joshua Abell, & <u>Jerry R. Meyer</u>

Naval Research Lab, Washington DC 20375 [(202)767-3276; jerry.meyer@nrl.navy.mil]

Mijin Kim

Sotera Defense Solutions, Crofton MD 21114

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding an DMB control number.	ion of information. Send comments is arters Services, Directorate for Infor	regarding this burden estimate of mation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	is collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 30 JAN 2012		2. REPORT TYPE		3. DATES COVERED 00-00-2012 to 00-00-2012		
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER		
Interband Cascade Lasers for Spectroscopy with Very Low Input				5b. GRANT NUMBER		
				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER		
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Research Lab, Washington, DC, 20375				8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited						
13. SUPPLEMENTARY NOTES Presented at the Laser Applications to Chemical, Security and Environmental Analysis (LACSEA) Meeting of the Optical Society of America, 30 January 2012, San Diego, California						
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER	19a. NAME OF			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	OF PAGES 19	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

THE INTERBAND CASCADE LASER (ICL)

Hybrid of conventional diode (*Interband* active transitions) & QCL (*Cascaded* multiple

stages)

1st **Proposed**: R. Q. Yang (1995)

Design Improvements: Meyer & Vurgaftman (1996-1997)

1st Experimental Demo: U. Houston & Sandia (1997)

Further Developed: ARL, Maxion, JPL, U. Oklahoma, U. Würzburg

1st NRL ICL: August 2005

BEYOND THE ROOM-TEMPERATURE BARRIER

With thresholds reduced to ≈ 400 A/cm² by 2008, RT cw became routine *Were we approaching the fundamental limit?*

NO! - A SIGNIFICANT DESIGN FLAW REMAINED

Simulations revealed that conventional designs with moderate n-doping ($\approx 4 \times 10^{17} \text{ cm}^{-3}$) of injector QWs suffered from serious hole/electron population imbalance in active QWs

Even though more electrons than holes throughout the stage (due to doping), most electrons populated the injector while most holes populated the active QWs

DENSITIES & GAIN vs. BIAS (CONVENTIONAL)

> 5x more holes than electrons in active QWs at threshold - Consequence is excessive internal losses & Auger non-radiative decay

SOLUTION: INCREASE INJECTOR DOPING LEVEL BY > ORDER OF MAGNITUDE

[Vurgaftman et al., Nature Com., December 2011; U.S. Provisional Patent Application No. 61477191 (2011)]

Heavy n-doping of injector "rebalances" active electron & hole populations, to make them roughly equal

DENSITIES & GAIN vs. BIAS (REBALANCED)

Simulations predicted that rebalancing should enable lasing at much lower carrier concentration, plus longer Auger lifetime & lower loss (because much lower P_{th})

REBALANCING (Gen3) SUBSTANTIALLY REDUCES EXPERIMENTAL THRESHOLDS

All Gen3 devices significantly out-perform all previous ICLs

Lower power dissipation means longer battery lifetime (to $\lambda > 5 \mu m!$)

Record QCL value: P_{th} ≈ 10 kW/cm²

NARROW RIDGES: CW TO EVEN HIGHER T_{max}

HIGHER CW OPERATING TEMPERATURE

Also: Maxion/PSI growth to NRL ICL design (Gen2) yielded nearly identical performance to NRL ICLs — Commercialization on the way!

HIGH CW POWER & WALLPLUG EFFICIENCY

[Vurgaftman et al., Nature Com. 2, 585 (2011)

 P_{max}^{cw} = 159 mW cw at room temperature (Beam quality $M^2 \approx 3 @ j > 10 \times j_{th}$) WPE up to 12.2%, & still 9.9% at P_{max} (Shorter cavity: WPE = 13.5% @ 25 °C)

EXTREMELY LOW INPUT POWER THRESHOLD

[Vurgaftman et al., Nature Com. 2, 585 (2011)

T = 25 °C: Input for lasing < 30 mW
Best QCL value ever reported: 830 mW

ROOM TEMP CW @ $\lambda > 4.5 \mu m$

Narrow ridges processed from longest- λ wafers

Both produced > 15 mW of cw power @ T = 25 °C Operation to $T_{\text{max}}^{\text{cw}} = 60$ °C (4.9 μ m) & 48 °C (5.7 μ m)

& THE LATEST: EPI-DOWN MOUNTING (BROAD AREA)

 $P_{\text{max}}^{\text{cw}} > 470 \text{ mW}$ at room temperature from 70- μ m-wide ridge

NEW & IMPROVED WAFERS FROM 2 NRL MBEs

Thresholds dropped & efficiencies increased even further (Why?)

CW Power (mW/Facet)

NARROW SPECTRAL LINE (Gen1 DEVICES)

C.S. Kim et al., APL 95, 231103 (2009)

12 mW cw in single spectral line @ 25 °C; 29 mW @ 0 °C

Also:

45 mW & 7.6% WPE in single mode @ -20 °C

Single-mode ridge spectrum, superimposed with methane absorption lines

RING RESONATOR ICLS

Coupled cavity lases on Fabry-Perot & ring modes coinciding closest to gain peak

Ring resonance selects single longitudinal mode

Narrow linewidth over extended temperature range – Up to 5 mW cw output into single spectral mode at 2 °C

EXTERNAL CAVITY ICL

[with Daylight Solutions]

Caffey et al., Opt. Expr. 18, 15691 (2010)

- Narrow linewidth in EC-ICL configuration
- 170 nm tuning range
- > 1 mW cw @ all λ (PA1 Generation)
- Low power consumption (< 1 W)

ASSINGTON DO

ICL STATUS

- High wafer yield despite design complexity
- Carrier rebalancing (Gen3) substantially improves all performance characteristics
- Low Input Power: < 30 mW @ T = 25 °C
 (RT) is > 25 x lower than best QCL result
 Dramatic extension of battery lifetime

- CW Narrow Ridges (Gen3):
 - $-T_{\text{max}} = 109 \, {}^{\circ}\text{C}$
 - -RT: $P_{\text{max}} = 159 \text{ mW}$, WPE = 13.5%, $M^2 = 1.0-3.1$
- Latest wafers (Pulsed @ 300 K):
 - $-j_{th} = 134 \text{ A/cm}^2, \text{ EDQE} = 40\%$
- Corrugated-Sidewall DFB (Gen1):
 - $-P_{\text{max}}$ = 12 mW in narrow line @ RT
- Wafers already on hand can provide RT cw
 @ λ spanning 2.9 to 5.7 μm
- Bottom line: ICLs ready & able for field spectroscopy!

