

## **TECHNOLOGIE**

Ce que je dois retenir

# ADRESSAGE IP SUR UN RÉSEAU

CYCLE 4

CS 5.6 IP 1.1

Comprendre le fonctionnement d'un réseau informatique

#### L'identification d'un poste sur un réseau





Meuble 1, Etage 2, Rangée 3

Comme pour l'exemple du carton, il est obligatoire d'organiser un plan d'adressage pour identifier un poste informatique (ou objet connecté) sur un réseau.

L'adresse IP est la solution internationale.



## Adresse IP



L'adresse IP (Internet Protocol) permet d'identifier tout appareil sur un réseau informatique utilisant le protocole IP (poste, imprimante, tablette, objet connecté, routeur, ...). Elle est composée de 4 parties séparées par un point.

Chaque partie peut aller de 0 à 255 mais le 0 et le 255 sont réservés à un usage spécifique.

|    | _ |     | _ |   | _  |     |
|----|---|-----|---|---|----|-----|
|    |   |     |   |   | l  |     |
| 10 |   | 1 1 |   | 2 | l  | 1 7 |
| 10 |   | '   | • | _ | ٠. | ,   |
|    | ı |     |   |   | ı  | l   |



### Communiquer d'un poste à un autre poste du même réseau



La communication numérique entre les postes d'un même réseau contient en partie l'identification de l'émetteur (son adresse IP), l'identification du destinataire (son adresse IP) et l'information (fichier texte, image, ...).

L'ensemble de ces informations est transporté par un « Paquet ».



#### Vocabulaire en informatique

Le « Bit » (Binary digiT) est l'unité du système binaire : valeur 0 ou 1



Un « Mot » (Word) est un ensemble de bits

Un « Octet » est un Mot de 8 bits



## Adressage IP sur le réseau Internet



Une adresse IP est codée sur 4 octets soit sur 4 x 8 bits = 32 bits

| En binaire | 0 0   | 0 0 | 1  | 0 | 1 0 | ) . | 0 | 0 | 0 | 0   | 0 | 0 | 0 | 1 | 0 | 0   | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
|------------|-------|-----|----|---|-----|-----|---|---|---|-----|---|---|---|---|---|-----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| En décimal | al 10 |     | [. |   | 1   |     |   |   |   | . 2 |   |   |   |   |   | . 7 |   |   |   |   |   |   |   |   |   |   |   |   |   |   |

La plus petite adresse étant 0.0.0.0 et la plus grande 255.255.255.255 soit au total :

255 x 255 x 255 x 255 = 4,2 milliards d'adresses IP différentes.

Vu le nombre croissant de machines connectées au réseau internet, ce système atteint ses limites, une nouvelle norme IPv6 codée sur 128 bits remplacera l'actuelle IPv4.

#### Masque sous-réseau



L'adresse IP est le masque sous-réseau sont deux informations indissociables. Sans le masque sousréseau il est impossible de dissocier l'identification du réseau et l'identification de la machine.

Le masque sous-réseau effectue un ET logique entre l'adresse IP de la machine et lui même.





|                        | Décimal          | Codage binaire |           |           |           |  |  |  |  |  |  |  |
|------------------------|------------------|----------------|-----------|-----------|-----------|--|--|--|--|--|--|--|
| Adresse IP             | 10.1.2.7         | 00001010       | .00000001 | .00000010 | .00000111 |  |  |  |  |  |  |  |
| Masque réseau          | 255.255.255.0    | 11111111       | .11111111 | .11111111 | .00000000 |  |  |  |  |  |  |  |
| Identification réseau  | <b>10.1.2</b> .0 | 00001010       | .0000001  | .00000010 | .00000000 |  |  |  |  |  |  |  |
| Identification machine | 0.0.0.7          | 00000000       | .00000000 | .00000000 | .00000111 |  |  |  |  |  |  |  |