			01.127	Ť.	nza:	02.01.2012
	Adı Soyadı:	adır. 3. ve 4. sorulard	Okul No: an sadece biri secme			
	Ceyaplanmayan sori	ınun üzerine çarpı işar	reti(X) koyunuz.			
	Hertürlü maddi-man	evi alışveriş yasaktır.	Başarılar Dilerim HENDİSLİĞİ Fİ	zik-1 dersi fin		Or. Hakan YAKUT I
	and the same	* * H	- NTH - VM + HI + H	Mari I		
	1) m=3 kg'lık bir	cismin hızı 7 ĵ m/s'd teoremini kullanarak	lir. Bu cisim uzerine	ъ торгані (12 14) і к ть. з — (v — v)/t	$\mathbf{ve} \ \vec{\mathbf{a}} = \Sigma \vec{\mathbf{F}} / \mathbf{m} \ 0$	len cismin ivmesini.
	(c) $r = v_i t + at^2 / 1$	2 'den cismin vektö	rei yerdegiştirinesin	i buiunaz, (a) W	$_{net} = \sum F \cdot r = \frac{mv_s}{2}$	$v_s = \frac{mv_i}{2}, v_i$ extension
	gösteriniz (20 P).	(a) Honz-man sor	NOT - P - P = m(V.	40 87-V	(元十五百七)	.3
	V;=7) nls	(12.5)	= 2(1/2 - +1)	3 "= 7.	53+1.6.25	2 \hat{\hat{\hat{\hat{\hat{\hat{\hat{
	F=121	$ \begin{array}{cccc} 1 & \text{if } mz - moment \\ 5 & \overline{L} = \overline{F} \cdot \Delta t = \\ 12 & 5 \cdot 1 \\ \overline{V}_{s} = 30 \cdot 1 + \\ 6 & 7 & 7 \end{array} $	7) 1/3 2	ι , = ₹	51+35 () M	2 1.1=0
	m=3163	(b) 7 7	ファイス ファー・	(d) W = 3	B= = (121)-(75	900 - Lare 2
	,	$\vec{a} = \frac{\sqrt{1 - \sqrt{1}}}{2} = 3$	5 - 12 - 10 - MV	(5)	77 - Love 7	3
			= p, who >) 12: - am	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	900 jaile 2
		. 2		B.v. i	33 ~ 17 / 전 1	12-20V2 11-
				and the second	Yne 1=21. [= 20)	5-300 M
			la la constante	vo ton 3.05 m		r 14
	viikseklikte olan ka	tan 36 m uzaktaki bir le üst direğini sıyıraral	k gitmektedir. Şut çel	kildiği zaman, 📆	υ ₀ =20m/s	toss
	top, zemini vatavla	53°'lik bir açı altınd	a 20 m/s'lik hızla te	rk etmektedir. 🤞	θ=5 <u>3</u> °	3,05 m
	(a) l'op, kale üst di direğe vükselirken n	reğinin ne kadar yakı ni, yoksa düşerken mi	nından geçerek düşe yaklaşır? (20p). (23=076	<u> </u>	
10	Deux mostes	ioi aldigi somoni bi	92 =	3,3 m/s allone /	/ox = Vo cos 53 = 20 Voy = Vo. sin 53 = 10	1.0/6=12 M/3 3
•	int pic se interpret in	$4 = \frac{x}{x} = \frac{36}{12} = \frac{3}{3} = \frac{3}{3}$	ing) offul sounds :	2 wes-keed diff	Vage V. Sins's = 12	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		$t^2 = 16.3 - \frac{1}{2}.9\%.8^2$. 54	And the second
		= 3,9-3,05 = 85 cm				
			2.44			
. (1		rappings on sellings	milited inice			
	5 Vy=Voy-3+	-c ₁				
	£1,63 €1,63	ta 16. 00 50 e +	a dosertan ost d	hige Jehelr,		
				•		
١.		R, eğim açısı β ve sü			· 1	
	yolda (a) Arabanın	dolanabileceği hızı R,	g, β ve μ_s cinsinde	n bulunuz. (b)		
(9)	R =150 m, β =20°	$v_s = 0.2$ is hizi $v_s = 0.2$ is hizi $v_s = 0.2$	sayısal olarak bulunu 1121 biləcəğiz.	z (g=9.8 m/s ⁻)	40=	
	N.I. Jasobina Z Fa = C) =) "Ug= mg x i	r>±0 :	iw date;	7	
	91/2	Noosf = nig+ ls:	SMA ZFr = m.ar Nx+fsx = mc	ا ا		CUN
		1 - <u>wa</u>		= mar (5)	N ,	$f_s = \mu_s . N$
	•	cosp- Mark	7 (sin 9 + 14 co) 1) = Mar		>x
		(3)	3 (sinft + co) f	$\int_{0}^{\infty} = dv = \frac{1}{\sqrt{3}}$	1 / Se	S
- Maria			ax B-Man	A AMERICA CO	ind,	
1/1	1	1/2	1= 34 (2)	+ 4 2018 (2) + 4 2018 (2)	fy Ny	
5	$V = \left(\frac{9.8.150(ka)}{1-0.5}\right)$	302011 1	1 026	-1-1	٠ ا	7.
3		bulunur.	Many		for Jins	AR TO THE STATE OF
i	V= 3'5,94mls	BYIVINI.	V = Parl	tang + M)	1 7	
			1-1-1	- Macorp		

4) Kütlesi m olan küçük bir blok, sabit v hızıyla dönen bir ters koninin içindedir ve koni içerisine düşmeden şekildeki gibi h yüksekliğinde kalabilmektedir. Koni duvarları düşeyle β açısı yapmaktadır ve blok ile koni zenimi arasındaki statik sürtünme katsayısı µ'dür. Verilenlere göre; (a) Bloğa etki eden kuvvetleri serbest cisim diyagramında gösteriniz ve koninin hızını R, g, μ, β cinsinden veren bir ifade türetiniz. (b) m=2 kg, β =30°, h=2 m ve μ =0.2 ise koninin V hızını ve dakikadaki devir sayısını bulunuz(π=3, g=10 m/s² alınız)(20 P)

(9) Newtonian 1 - grassing gra

$$2F = 0 \Rightarrow N \sin \beta + f \cos \beta = rn 9$$

$$N (\sin \beta + \mu \cos \beta) = rn 9$$

$$N = rn 9 / (\sin \beta + \mu \cos \beta)$$

Neutonon 2: Josephindon; EF = mar

$$(5) V = \left[\frac{2R(\cos \beta - \mu \sin \beta)}{\sin \beta} \right]^{1/2}$$

$$\frac{1}{\sin \beta} + \frac{1}{\mu \cos \beta}$$

$$\frac{1}{\sin \beta} + \frac{1}{\mu \cos \beta} = \frac{1}{2} + \frac{1}{\mu \cos \beta}$$

5) (a) Kütlesi m olan mermi h yüksekliğinde sürtünmesiz bir masanın kenarında duran M kütleli bir bloğa doğru ateşleniyor. Mermi bloğun içinde kalıyor ve çarpışmadan sonra blok masanın tabanından d kadar ileride yere düşüyor. Merminin ilk hızını m,M,g, h ve d cinsinden bulunuz. (b)Burada m=8 gr, M=2.5kg; h=1m, d=2 m ise merminin ilk hızını bulunuz (g=9,8 m/s² alınız) (20 P)

Meminin hiz V, olsun. Garpismoden sonaki ortak his Vo obse Meminin n_{121} V_1 orange $\frac{1}{2}$ $\frac{1$

but hale model downler.

$$d = V_0 + t$$

$$h = \frac{1}{2}gt^2 = \frac{1}{2}q\left(\frac{d}{V_0}\right)^2$$

$$V_2 = \frac{9 J_2}{2h} = \left(\frac{m\nabla_1}{m+N}\right)^2$$

 $V_0^2 = \frac{9 L^2}{2 \ln} = \left(\frac{m V_1}{m + N_1}\right)^2$ 6) 0.5 kg kütleli bir blok, kütlesi ihmal edilebilir yatay bir yaya karşı, yay bir Δx uzaklığı kadar sıkışıncaya kadar itiliyor. Yay sabiti 450 N/m'dir. Yay serbest bırakıldığında blok, sürtünmesiz yatay yüzey boyunca, R=1 m yarıçaplı, düşey dairesel rayın alt noktasındaki B noktasına doğru hareket ediyor ve ray üzerinde yukarı doğru harekete devam ediyor. Rayın tabanında blokun sürati V_B=12 m/s'dir ve blok rayda yukarı doğru kayarken, ortalama 7 N'luk bir sürtünme kuvvetinin etkisinde kalıyor. (a) Ax nedir? (b) Rayın tepesinde bloğun öngördüğünüz hızı nedir? (c) Blok gerçekten rayın tepesine ulaşır mı veya tepeye ulaşmadan önce düşer mi?(20p) k=450 N/m, R=1 m, f=7N
m=015 kg.
VB=12m3s

(a) Energiain bornoumona gare
$$E_1 = E_B$$
 (5) $\frac{1}{2}k \Delta x^2 = \frac{1}{2}m V_B^2$

$$\Delta x = \sqrt{\frac{m}{k}} V_g = \sqrt{\frac{o.5}{450}} \cdot 12$$

$$\Delta x = 0.4 \text{ m}$$

(c) Bloom rough tepesine Jasabilmeni

$$C = \frac{\sqrt{r^2}}{k} V_B = \sqrt{\frac{95}{450}} \cdot 12$$

$$C = \frac{\sqrt{r^2}}{k} V_B = \sqrt{\frac{95}{450}} \cdot 12$$

$$C = \frac{\sqrt{r^2}}{k} = \frac{2018}{450} = \frac{2618}{12} = \frac{11}{2618} = \frac{11}{26$$

$$W_{di} = E_{T} - E_{g}$$

$$-f_{s} \cdot \pi_{R} = \left[\frac{1}{2}mV_{T}^{2} + mq(2R)\right] - \frac{1}{2}mV_{g}^{2}$$

$$V_{T} = \left(V_{B}^{2} - \frac{2f_{s}\pi R}{m} - 4q_{s}R\right)^{1/2}$$

$$V_{T} = \left[1/2^{2} - \frac{2 \cdot 7 \cdot 3 \cdot 1}{0.15} - 4 \cdot 9 \cdot 8 \cdot 1\right]^{1/2}$$

$$V_{T} = \left[1/4 - 84 - 39/2\right]^{1/2}$$

$$V_{T} = \sqrt{20/8}$$

$$V_{T} = \sqrt{156} \quad m$$

$$V_{T} = \sqrt{156} \quad m$$