Лабораторная работа 1.2 Исследование эффекта Комптона

Карцев Вадим

17 октября 2021 г.

Содержание

1	Аннотация	1
2	Теоретическая справка	1
3	Экспериметальная установка	2
4	Ход работы и обработка результатов	3
5	Вывол	4

Цель работы: исследовать энергетический спектр γ -квантов, рассеянных на графите, определение зависимости энергии γ -квантов в зависимости от угла рассеяния и энергии покоя частиц, на которых происходит комптоновское рассеяние.

В работе используется: контейнер с ^{137}Cs , сцинтилляционный спектрометр, компъютер, ФЭУ, рассеивающая мишень.

1 Аннотация

В ходе работы с помощью сцинтилляционного спектрометра были изучены спектры рассеянных на графите γ -квантов. С их помощью была получена согласованная с теорией зависимость энергии от угла рассеяния и значение энергии покоя графита $mc^2 = (488, 51 \pm 13, 43) \kappa \ni B$

2 Теоретическая справка

Эффект Комптона – явление увеличения длины волны рассеянного излучения по сравнению с падающим. Он интерпретируется как результат упругого соударения двух частиц – γ -кванта и свободного электрона.

Пусть электрон до соударения покоился, а γ -квант имел начальную энергию $\hbar\omega_0$ и импульс $\hbar\omega_0/c$. После соударения электрон приобретает энергию γmc^2 , где $\gamma=(1\beta^2)^{1/2}$, $\beta=v/c$, а γ -квант рассеивается на некторый угол θ по отношению к первоначальному направлению

движения. Энергия и импульс рассеянного излучения – $\propto \omega_1$. Запишем для рассматриваемого процесса законы сохранения энергии и импульса:

$$mc^{2} + \hbar\omega_{0} = \gamma mc^{2} + \hbar\omega_{1}$$
$$\frac{\hbar\omega_{0}}{c} = \gamma mv\cos\varphi + \frac{\hbar\omega_{1}}{c}\cos\theta$$
$$\gamma mv\sin\varphi = \frac{\hbar\omega_{1}}{c}\sin\theta$$

Решая эти уравнения и переходя от частот к длинам волн, получим изменение длины рассеянного излучения

$$\Delta \lambda = \lambda_1 - \lambda_0 = \frac{h}{mc} (1 - \cos \theta) = \Lambda (1 - \cos \theta) \tag{1}$$

где $\Lambda_k = \frac{h}{mc} = 2.4210^{-10} c$ м — комптоновская длина волны электрона. Основной целью работы является проверка соотношения 1. Преобразуем его от длин волн к энергии γ -квантов.

$$\frac{1}{\varepsilon(\theta)} - \frac{1}{\varepsilon_0} = 1 - \cos\theta \tag{2}$$

где $\varepsilon_0=E_0/(mc^2)$ – энергия γ -квантов, падающих на рассеиватель (в единицах mc^2), $\varepsilon(\theta)$ - выраженная в тех же единицах энергия квантов, испытавших комптоновское рассеяние на угол θ , m – масса электрона.

3 Экспериметальная установка

В лабораторной работе источником излучения служит ^{137}Cs , испускающий поток γ -квантов с энергией 661, 6кэВ. Пучок после выхода из коллиматорного отверстия попадает на графитовую мишень и рассеивается. Кванты, испытавшие комптоновское рассеяние, регистрируются сцинтилляционным счетчиком и приходят на ФЭУ. Сигналы, возникающие в ФЭУ, передаются на ПК для последующего спектрального анализа.

Рис 1. Принципиальная схема установки

Рис 2. Блок-схема установки

Сцинтилляционный счетчик установлен на подвижном рычаге, с помощью которого мы можем установить счетчик под необходимым углом к направлению потока γ -излучения.

4 Ход работы и обработка результатов

С помощью сцинтилляционного счетчика проведем замеры спектра и выясним зависимость положения фотопика от угла, под которым мы исследуем спектр рассеянных γ -лучей.

Длительность замера спектра для каждого угла выберем такой, чтобы фотопик был в полной мере различим на спектрограмме.

По спектрограммам на стр. 5 определим расположения фотопиков для раличных углов рассеяния. Ниже приведена таблица с результатами измерений для всех углов θ . Погрешность измерения угла будем считать как половину деления разметки измерительного стола $\sigma_{\theta} = 0,5^{\circ}$. Погрешность положения фотопика возьмем как половину ширины вершины фотопика. Значения погрешности положения также приведены в таблице ниже.

	θ	0°	10°	20°	30°	40°	50°	60°	70°	80°	90°	100°	110°	120°
	N	912	868	790	751	665	594	536	463	424	385	353	319	282
ĺ	σ_N	8	7	20	6	8	5	4	6	6	3	5	2	6

Погрешность для 1/N и $1-\cos\theta$ будут считаться по формулам

$$\sigma_{1/N} = \frac{1}{N} \varepsilon_N = \frac{1}{N} \frac{\sigma_N}{N} = \frac{\sigma_N}{N^2}; \quad \sigma_{1-\cos\theta} = \sin(\theta)\sigma_{\theta}.$$

Рис 3. Зависимость $\frac{1}{N}(1-\cos\theta)$

По МНК получим коэффициент наклона и точку пересечения прямой с осью Ү. Также вычислим погрешности для этих значений.

$$A = \frac{\langle xy \rangle - \langle x \rangle \langle y \rangle}{\langle x^2 \rangle - \langle x \rangle^2}; \quad \sigma_A = \frac{1}{\sqrt{n}} \sqrt{\frac{\langle y^2 \rangle - \langle y \rangle^2}{\langle x^2 \rangle - \langle x \rangle^2} - A^2}$$
$$\frac{1}{N(0)} = \langle y \rangle - A \langle x \rangle; \quad \sigma_{1/N(0)} = \sigma_A \sqrt{\langle x^2 \rangle}$$

Здесь для удобства мы произвели переименование $x\stackrel{def}{\equiv}1-\cos\theta,\,y\stackrel{def}{\equiv}1/N.$

Из этих формул рассчитаем значения угла наклона и пересечения прямой с осью Y с погрешностями.

$$A = (152, 5 \pm 2, 8) \cdot 10^{-5}; \quad \frac{1}{N(0)} = (112, 6 \pm 2, 2) \cdot 10^{-5}$$

С помощью полученных значений для прямой аппроксимации вычислим наилучшие значения для положения фотопика при углах 0° и 90° .

$$N(0^{\circ}) = 888, 28 \pm 17, 57;$$
 $N(90^{\circ}) = 377, 30 \pm 7, 21$

Из вычисленных значений для $N(0^{\circ})$ и $N(90^{\circ})$ получим значение mc^2 и погрешность для него по следующим формулам

$$mc^2 = E_\gamma \frac{N(90^\circ)}{N(0^\circ) - N(90^\circ)}; \quad \sigma_{mc^2} = mc^2 \sqrt{\varepsilon_{N(0^\circ)}^2 + \varepsilon_{N(90^\circ)}^2}$$

где

$$\varepsilon_{N(0^{\circ})} = \frac{\sigma_{N(0^{\circ})}}{N(0^{\circ})}; \quad \varepsilon_{N(90^{\circ})} = \frac{\sigma_{N(90^{\circ})}}{N(90^{\circ})}$$

Таким образом получим результат $mc^2=(488,51\pm13,43)\kappa \ni B$. Полученный результат имеет относительную погрешность $\varepsilon_{mc^2}=2,75\%$.

5 Вывод

В ходе выполнения работы было исследовано явление комптоновского рассеяния γ -квантов на графитовой мишени, подтверждена теоретическая зависимость распределения энергии γ -квантов по углам рассеяния, а также вычислена энергия покоя электрона $mc^2=(488,51\pm13,43)\kappa \ni B$. Теоретическое значение энергии покоя электрона $mc^2_{meop}=511\kappa \ni B$, что в рамках двойной погрешности согласуется с полученным экспериментальным путем значением.

Приложение

