2015 China TST Test 2 #6

Tristan Shin 1 Apr 2018

Prove that there are infinitely many positive integers n such that $n^2 + 1$ is squarefree.

Let $N > 2^{\frac{60}{\frac{5}{2} - \frac{11\pi^2}{48}}}$ be a positive integer. Consider a 1 (mod 4) prime p and count the number of positive integers $n \leq N$ such that $p^2 \mid n^2 + 1$. Mod p^2 , there are exactly 2 solutions since $\left(\frac{-1}{p}\right) = 1$ and by Hensel's Lemma. So there are at most $2\left(\left\lfloor\frac{N}{p^2}\right\rfloor + 1\right)$ solutions. So the number of $n \leq N$ such that $n^2 + 1$ is not squarefree is at most $\sum_{\substack{p \leq N \\ p \equiv 1 \pmod{4}}} \left(2\left\lfloor\frac{N}{p^2}\right\rfloor + 2\right) \leq \sum_{\substack{p \leq N \\ p \equiv 1 \pmod{4}}} \left(\frac{2N}{p^2} + 2\right)$. Then the number of $n \leq N$ such that $n^2 + 1$ is squarefree is at least

$$N - \sum_{\substack{p \le N \\ p \equiv 1 \pmod{4}}} \left(\frac{2N}{p^2} + 2\right) = \left(1 - 2 \sum_{\substack{p \le N \\ p \equiv 1 \pmod{4}}} \frac{1}{p^2}\right) N - 2\pi \left(N\right).$$

Now, observe that

$$\sum_{\substack{p \text{ prime} \\ p \equiv 1 \pmod 4}} \frac{1}{p^2} \le \left(1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots\right) - \left(\frac{1}{2^2} + \frac{1}{4^2} + \frac{1}{6^2} + \dots\right) - \left(\frac{1}{3^2} + \frac{1}{7^2} + \frac{1}{11^2} + \dots\right) - 1$$

$$\le \left(1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots\right) - \left(\frac{1}{2^2} + \frac{1}{4^2} + \frac{1}{6^2} + \dots\right) - \left(\frac{1}{4^2} + \frac{1}{8^2} + \frac{1}{12^2} + \dots\right) - 1$$

$$= \zeta\left(2\right) - \frac{1}{4}\zeta\left(2\right) - \frac{1}{16}\zeta\left(2\right) - 1$$

$$= \frac{11\pi^2}{96} - 1,$$

so the number of $n \leq N$ such that $n^2 + 1$ is squarefree is at least

$$\left(3 - \frac{11\pi^2}{48}\right)N - 2\pi\left(N\right).$$

By Chebyshev's Inequality on π , we have $\pi(N) < 30 \ln 2 \cdot \frac{N}{\ln N}$. Then since $N > 2^{\frac{60}{\frac{5}{2} - \frac{11\pi^2}{48}}}$, we have that

$$\left(3 - \frac{11\pi^2}{48}\right)N - 2\pi\left(N\right) > \left(3 - \frac{11\pi^2}{48}\right)N - \frac{60N}{\log_2 N} > \frac{1}{2}N,$$

so the number of $n \leq N$ such that $n^2 + 1$ is squarefree is at least $\frac{1}{2}N$. Then clearly there are infinitely many positive integers n such that $n^2 + 1$ is squarefree.

Remark. We can improve our statement to: for $N > 2^{\frac{60}{\epsilon}}$, the number of $n \leq N$ such that $n^2 + 1$ is squarefree is at least $(1 - 2c - \epsilon) N$, where c is the sum of the reciprocals of the squares of the 1 (mod 4) primes. We can use a computer to compute $c \approx 0.0538$, so we can get a fraction around 0.89N.