Class 22

Sec. 2.10 Applications of DCT. (easier to apply than def. of $\int f$).

Thm. f meas., g integrable.

$$|f| \le g$$
 a.e. $\Rightarrow f$ integrable.

Note1: As comparison test for series or improper integral

- 2: If *f* simple, then Ex.2.7.2.
- 3: False for Riemann integrals:

Ex.
$$f(x) = \begin{cases} 1 \text{ if } x \text{ rational} \\ 0 \text{ if } x \text{ irrational} \end{cases}$$
 on [0,1]

Then $|f| \le 1$ on [0,1] But f not Riemann integrable

Pf: Check: |f| integrable

$$\exists$$
 simple $f_n \ni 0 \le f_n \uparrow |f|$ a.e.

$$\therefore f_n \le |f| \le g$$
 a.e. & f_n simple

Ex. $2.7.2 \Rightarrow f_n$ integrable

$$\therefore$$
 DCT $\Rightarrow |f|$ integrable

Def. f meas. func.

$$f$$
 is essentially bdd if $\exists c > 0 \Rightarrow |f| \le c$ a.e.

Def. ess.
$$\sup f = \inf \{c : |f| \le c \text{ a.e.} \}$$

Cor 1. f integrable, g meas., essentially bdd $\Rightarrow fg$ integrable

Note: g may not be integrable

Pf: Say,
$$|g| \le c$$
 a.e.

$$\therefore |fg| \le c|f| \text{ a.e.}$$

integrable

- $\Rightarrow |fg|$ integrable
- $\Rightarrow fg$ integrable

Cor 2.
$$E \in \boldsymbol{a}$$
, $u(E) < \infty$

f meas., esentially bdd on E

$$\Rightarrow \int_E f$$
 exists.

Pf: $: |f| \le c$ a.e. on E.

$$\Rightarrow |\chi_E f| \le c \chi_E$$
 a.e.

integrable

$$\Rightarrow \chi_E f$$
 integrable, i.e., $\int_E f$ exists.

(Note: f bdd on finite measure set $\Rightarrow f$ integrable

Much more general than Riemann integral

i.e., any proper integral conv.)

Monotone convergence thm: (MCT)

$$0 \le f_n \uparrow f$$
 a.e., $\{f_n\}$ integrable $\Rightarrow \int f_n \uparrow \int f$

Note: In general, f may not be integrable

$$\operatorname{Ex.} f_n(x) = \begin{cases} \frac{1}{x} & \text{on } [\frac{1}{n}, 1] \\ 0 & \text{on } [0, \frac{1}{n}) \end{cases} & & f(x) = \begin{cases} \frac{1}{x} & \text{if } x \in (0, 1] \\ 0 & \text{if } x = 0 \end{cases}$$

Then $0 \le f_n \uparrow f$ a.e. & f_n integrable

But f not integrable, $\int_0^1 f = \infty$

Pf: (1) f integrable:

$$\because 0 \le f_n \le f$$
 a.e.

$$DCT \Rightarrow \int f_n \uparrow \int f$$

(2) f not integrable:

Then
$$\int f = \infty$$

Check:
$$\lim_{n} \int f_n = \infty$$

Assume
$$\lim_{n} \int f_n < \infty$$
. ($\Rightarrow \{ \int f_n \}$ Cauchy)

 $:: \{f_n\}$ integrable, Cauchy in mean, $f_n \to f$ a.e.

(Reason:
$$\int |f_{\rm m} - f_n| = \int f_{\rm m} - \int f_n \to 0 \text{ as } m, n \to \infty$$
)

(Assume $m \ge n$) (: $\lim_{n \to \infty} \int f_n \text{ exists}$)

 $\Rightarrow f$ integrable

Fatou's lemma:

 $f_n \ge 0$, a.e. integrable $\forall n \Rightarrow \int \underline{\lim} f_n \le \underline{\lim} \int f_n$

Note: $f \mapsto \int f$ is lower semiconti.

 $(:: f \mapsto [f \text{ not conti.}]$... we need DCT, MCT or Cauchy in mean)

Pf: Let
$$f = \underline{\lim} f_n = \sup_{n} \inf_{\underline{j} \ge n} f_{\underline{j}}$$

Then $0 \le g_n \uparrow f$ a.e. & g_n integrable $(\because 0 \le g_n \le f_n$ integrable)

$$\therefore MCT \Rightarrow \int g_n \uparrow \int f$$

$$\uparrow f$$

$$\uparrow f_n$$

$$\Rightarrow \int f \leq \underline{\lim} \int f_n \cdot f$$

Note 1: In general, $\int f < \underline{\lim} \int f_n$ (Ex.2.10.14)

Ex.
$$f_n = X_{[n,n+1)}$$
 on \mathbb{R} , $f = 0$

Then $f_n \ge 0$, integrable, $f = \underline{\lim} f_n$ (: $g_n = \inf_{i \ge n} f_i = 0$)

$$\therefore \int f = 0 < \underline{\lim} \int f_n = 1$$

Note 2: $MCT \Rightarrow Fatou$

(Ex.2.10.2)

Homework: Ex.2.10.2, Ex.2.10.3, Ex.2.10.4