工程矩阵理论: 内积空间和等距变换

东南大学. 数学系. 周建华

August 20, 2016

本章的目的:将内积推广到抽象的线性空间.

约定:数域F指实数域 \mathbb{R} 或复数域 \mathbb{C}

- **4** $\forall \alpha \in V, \langle \alpha, \alpha \rangle \geq 0$; 且等号成立当且仅当 $\alpha = \theta$.

假设V 是数域F 上的线性空间,在V 上定义了一个二元函数 $\langle \alpha, \beta \rangle$,若

- $\forall \alpha, \beta, \gamma \in V, \langle \alpha + \beta, \gamma \rangle = \langle \alpha, \gamma \rangle + \langle \beta, \gamma \rangle;$
- **4** $\forall \alpha \in V, \langle \alpha, \alpha \rangle \geq 0$; 且等号成立当且仅当 $\alpha = \theta$.

则称 $\langle \alpha, \beta \rangle$ 是 α, β 的内积。

假设V 是数域F 上的线性空间,在V 上定义了一个二元函数 $\langle \alpha, \beta \rangle$,若

- $\forall \alpha, \beta, \gamma \in V, \langle \alpha + \beta, \gamma \rangle = \langle \alpha, \gamma \rangle + \langle \beta, \gamma \rangle;$
- **4** $\forall \alpha \in V, \langle \alpha, \alpha \rangle \geq 0$; 且等号成立当且仅当 $\alpha = \theta$.

则称 $\langle \alpha, \beta \rangle$ 是 α, β 的内积。

定义了内积的线性空间称为内积空间.

假设V 是数域F 上的线性空间,在V 上定义了一个二元函数 $\langle \alpha, \beta \rangle$,若

- $\forall \alpha, \beta, \gamma \in V, \langle \alpha + \beta, \gamma \rangle = \langle \alpha, \gamma \rangle + \langle \beta, \gamma \rangle;$
- **4** $\forall \alpha \in V, \langle \alpha, \alpha \rangle \geq 0$; 且等号成立当且仅当 $\alpha = \theta$.

则称 $\langle \alpha, \beta \rangle$ 是 α, β 的内积。

定义了内积的线性空间称为内积空间.

当F = R时,称V是欧几里德空间,简称欧氏空间;

假设V 是数域F 上的线性空间,在V 上定义了一个二元函数 $\langle \alpha, \beta \rangle$,若

- $\forall \alpha, \beta, \gamma \in V, \langle \alpha + \beta, \gamma \rangle = \langle \alpha, \gamma \rangle + \langle \beta, \gamma \rangle;$
- **4** $\forall \alpha \in V, \langle \alpha, \alpha \rangle \geq 0$; 且等号成立当且仅当 $\alpha = \theta$.

则称 $\langle \alpha, \beta \rangle$ 是 α, β 的内积。

定义了内积的线性空间称为内积空间.

当F = R时,称V是欧几里德空间,简称欧氏空间;

当F = C时,称V是酉空间.

假设V 是数域F 上的线性空间,在V 上定义了一个二元函数 $\langle \alpha, \beta \rangle$,若

- $\forall \alpha, \beta, \gamma \in V, \langle \alpha + \beta, \gamma \rangle = \langle \alpha, \gamma \rangle + \langle \beta, \gamma \rangle;$
- **4** $\forall \alpha \in V, \langle \alpha, \alpha \rangle \geq 0$; 且等号成立当且仅当 $\alpha = \theta$.

则称 $\langle \alpha, \beta \rangle$ 是 α, β 的内积。

定义了内积的线性空间称为内积空间.

当F = R时,称V是欧几里德空间,简称欧氏空间;

当F = C时,称V是酉空间.

① 在空间 $V = R^n$ 上定义内积 $\langle \alpha, \beta \rangle = \beta^T \alpha$,则 R^n 是欧氏空间.

- ① 在空间 $V=R^n$ 上定义内积 $\langle \alpha,\beta \rangle = \beta^T \alpha$,则 R^n 是欧氏空间.
- ② 在空间 $V = R^{n \times n}$ 上定义内积 $\langle A, B \rangle = tr(B^T A)$,则 $R^{n \times n}$ 是欧氏空间.

- 在空间 $V = R^n$ 上定义内积 $\langle \alpha, \beta \rangle = \beta^T \alpha$,则 R^n 是欧氏空间.
- ② 在空间 $V=R^{n\times n}$ 上定义内积 $\langle A,B\rangle=tr(B^TA),$ 则 $R^{n\times n}$ 是欧氏空间.
- **3** 在空间 $V = R_3[x]$ 上定义内积 $\langle f(x), g(x) \rangle = \int_{-1}^1 f(x)g(x)dx$,则 $R_3[x]$ 是欧式空间.

- ① 在空间 $V = R^n$ 上定义内积 $\langle \alpha, \beta \rangle = \beta^T \alpha$,则 R^n 是欧氏空间.
- ② 在空间 $V=R^{n\times n}$ 上定义内积 $\langle A,B\rangle=tr(B^TA),$ 则 $R^{n\times n}$ 是 欧氏空间.
- **③** 在空间 $V = R_3[x]$ 上定义内积 $\langle f(x), g(x) \rangle = \int_{-1}^1 f(x)g(x)dx$, 则 $R_3[x]$ 是欧式空间.
- ④ 在空间 $V=C^n$ 上定义内积 $\langle \alpha, \beta \rangle = \beta^H \alpha$, 则 C^n 是酉空间.

- ① 在空间 $V = R^n$ 上定义内积 $\langle \alpha, \beta \rangle = \beta^T \alpha$,则 R^n 是欧氏空间.
- ② 在空间 $V=R^{n\times n}$ 上定义内积 $\langle A,B\rangle=tr(B^TA),$ 则 $R^{n\times n}$ 是 欧氏空间.
- **③** 在空间 $V = R_3[x]$ 上定义内积 $\langle f(x), g(x) \rangle = \int_{-1}^1 f(x)g(x)dx$, 则 $R_3[x]$ 是欧式空间.
- ④ 在空间 $V=C^n$ 上定义内积 $\langle \alpha, \beta \rangle = \beta^H \alpha$, 则 C^n 是酉空间.

- **①** 对任意 $\alpha \in V, \langle \alpha, \theta \rangle = \langle \theta, \alpha \rangle = 0$

设 $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n$ 是V的基, $\alpha, \beta \in V$ 的坐标是

$$X = (x_1, x_2, \dots, x_n)^T, Y = (y_1, y_2, \dots, y_n)^T,$$

则
$$\langle \alpha, \beta \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i \overline{y_j} \langle \varepsilon_i, \varepsilon_j \rangle = X^T A \overline{Y}$$

其中, $A = (\langle \varepsilon_i, \varepsilon_i \rangle)_{n \times n}$, 称A = V在基 $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n$ 下的度量矩 阵.

设 $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n$ 是V的基, $\alpha, \beta \in V$ 的坐标是

$$X = (x_1, x_2, \dots, x_n)^T, Y = (y_1, y_2, \dots, y_n)^T,$$

则
$$\langle \alpha, \beta \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i \overline{y_j} \langle \varepsilon_i, \varepsilon_j \rangle = X^T A \overline{Y}$$

其中, $A = (\langle \varepsilon_i, \varepsilon_i \rangle)_{n \times n}$, 称A = V在基 $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n$ 下的度量矩 阵.

若F=R,则度量矩阵是对称矩阵: $A=A^T$;

设 $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n$ 是V的基, $\alpha, \beta \in V$ 的坐标是

$$X = (x_1, x_2, \dots, x_n)^T, Y = (y_1, y_2, \dots, y_n)^T,$$

则
$$\langle \alpha, \beta \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i \overline{y_j} \langle \varepsilon_i, \varepsilon_j \rangle = X^T A \overline{Y}$$

其中, $A = (\langle \varepsilon_i, \varepsilon_j \rangle)_{n \times n}$,称 $A \neq V$ 在基 $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n$ 下的度量矩阵.

若F = R,则度量矩阵是对称矩阵: $A = A^T$;若F = C,则度量矩阵是Hermite矩阵: $A = A^H$

设 $\alpha \in V$, α 的模(长度)定义为 $\|\alpha\| = \sqrt{\langle \alpha, \alpha \rangle}$, 若 $\|\alpha\| = 1$, 则 称 α 是单位向量.

设 $\alpha \in V, \alpha$ 的模(长度)定义为 $\|\alpha\| = \sqrt{\langle \alpha, \alpha \rangle}$, 若 $\|\alpha\| = 1$, 则 称 α 是单位向量.

性质:

 \bullet $\forall \alpha \in V, \|\alpha\| \ge 0$, $\|\mathbf{H}\|\| = 0 \Leftrightarrow \alpha = \theta$;

设 $\alpha \in V, \alpha$ 的模(长度)定义为 $\|\alpha\| = \sqrt{\langle \alpha, \alpha \rangle}$,若 $\|\alpha\| = 1$,则称 α 是单位向量.

性质:

- \bullet $\forall \alpha \in V, \|\alpha\| \ge 0$, $\|\mathbf{A}\| = 0 \Leftrightarrow \alpha = \theta$;
- ② $||k\alpha|| = |k| \, ||\alpha||$; 故若 $\alpha \neq \theta$,则称 $\frac{1}{||\alpha||} \alpha$ 是单位向量.

设 $\alpha \in V, \alpha$ 的模(长度)定义为 $\|\alpha\| = \sqrt{\langle \alpha, \alpha \rangle}$,若 $\|\alpha\| = 1$,则称 α 是单位向量.

性质:

- \bullet $\forall \alpha \in V, \|\alpha\| \ge 0$, $\|\mathbf{A}\| = 0 \Leftrightarrow \alpha = \theta$;
- ② $||k\alpha|| = |k| \, ||\alpha||$; 故若 $\alpha \neq \theta$,则称 $\frac{1}{||\alpha||} \alpha$ 是单位向量.

Theorem

(C-B不等式)

 $\forall\,\alpha,\beta\in V, |\langle\alpha,\beta\rangle|\leq \|\alpha\|\,\|\beta\|$

而且, 等号成立 $\Leftrightarrow \alpha, \beta$ 线性相关.

Theorem

(C-B不等式)

 $\forall \alpha, \beta \in V, |\langle \alpha, \beta \rangle| \le ||\alpha|| \, ||\beta||$

而且, 等号成立 $\Leftrightarrow \alpha, \beta$ 线性相关.

Theorem

(三角不等式) $\forall \alpha, \beta \in V, \|\alpha\| + \|\beta\| \ge \|\alpha + \beta\|$

向量 α, β 间的距离定义为

$$d(\alpha, \beta) = \|\alpha - \beta\|$$

向量 α, β 间的距离定义为

$$d(\alpha, \beta) = \|\alpha - \beta\|$$

三角不等式的距离形式:

$$\forall \alpha, \beta, \gamma \in V$$

$$d(\alpha, \gamma) \le d(\alpha, \beta) + d(\beta, \gamma).$$

(正交性): 若向量 α , β 的内积为零,则称 α , β 是正交的.记 $\alpha \perp \beta$.

(正交性): 若向量 α , β 的内积为零,则称 α , β 是正交的.记 $\alpha \perp \beta$.

Theorem

(勾股定理): 若 $\alpha \perp \beta$, 则 $\|\alpha + \beta\|^2 = \|\alpha\|^2 + \|\beta\|^2$

(正交性): 若向量 α , β 的内积为零,则称 α , β 是正交的.记 $\alpha \perp \beta$.

Theorem

(勾股定理): 若 $\alpha \perp \beta$, 则 $\|\alpha + \beta\|^2 = \|\alpha\|^2 + \|\beta\|^2$

由两两正交的非零向量组成的向量组称为正交向量组。

(正交性): 若向量 α , β 的内积为零,则称 α , β 是正交的.记 $\alpha \perp \beta$.

Theorem

(勾股定理): 若 $\alpha \perp \beta$, 则 $\|\alpha + \beta\|^2 = \|\alpha\|^2 + \|\beta\|^2$

- 由两两正交的非零向量组成的向量组称为正交向量组.
- 由两两正交的单位向量组成的向量组称为标准正交向量组。

(正交性): 若向量 α , β 的内积为零,则称 α , β 是正交的.记 $\alpha \perp \beta$.

Theorem

(勾股定理): 若 $\alpha \perp \beta$, 则 $\|\alpha + \beta\|^2 = \|\alpha\|^2 + \|\beta\|^2$

- 由两两正交的非零向量组成的向量组称为正交向量组。
- 由两两正交的单位向量组成的向量组称为标准正交向量组.
- 由正交向量组组成的基称为是正交基.

(正交性): 若向量 α , β 的内积为零,则称 α , β 是正交的.记 $\alpha \perp \beta$.

Theorem

(勾股定理): 若 $\alpha \perp \beta$, 则 $\|\alpha + \beta\|^2 = \|\alpha\|^2 + \|\beta\|^2$

- 由两两正交的非零向量组成的向量组称为正交向量组。
- 由两两正交的单位向量组成的向量组称为标准正交向量组.
- 由正交向量组组成的基称为是正交基.
- 由标准正交向量组组成的基称为是标准正交基.

标准正交基下的内积

为什么要谈论标准正交基呢?

标准正交基下的内积

为什么要谈论标准正交基呢?

 一组向量是空间V的一组基是标准正交基当且仅当相应的 度量矩阵是单位阵。

标准正交基下的内积

为什么要谈论标准正交基呢?

- 一组向量是空间V 的一组基是标准正交基当且仅当相应的 度量矩阵是单位阵。
- 设 $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n$ 是V的标准正交基, $\alpha, \beta \in V$ 在 $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n$ 下的坐标是X, Y, 则 $\langle \alpha, \beta \rangle = Y^H X = \langle X, Y \rangle_{C^n}$

设 $\alpha_1, \alpha_2, \cdots, \alpha_s \in V$ 是线性无关的.

令:

$$\beta_{1} = \alpha_{1}$$

$$\beta_{2} = \alpha_{2} - \frac{\langle \alpha_{2}, \beta_{1} \rangle}{\langle \beta_{1}, \beta_{1} \rangle} \beta_{1}$$

$$\beta_{3} = \alpha_{3} - \frac{\langle \alpha_{3}, \beta_{2} \rangle}{\langle \beta_{2}, \beta_{2} \rangle} \beta_{2} - \frac{\langle \alpha_{3}, \beta_{1} \rangle}{\langle \beta_{1}, \beta_{1} \rangle} \beta_{1}$$

$$\vdots$$

$$\beta_{s} = \alpha_{s} - \frac{\langle \alpha_{s}, \beta_{s-1} \rangle}{\langle \beta_{s-1}, \beta_{s-1} \rangle} \beta_{s-1} - \dots - \frac{\langle \alpha_{s}, \beta_{1} \rangle}{\langle \beta_{1}, \beta_{1} \rangle} \beta_{1}$$

设 $\alpha_1, \alpha_2, \cdots, \alpha_s \in V$ 是线性无关的. 今:

$$\beta_{1} = \alpha_{1}$$

$$\beta_{2} = \alpha_{2} - \frac{\langle \alpha_{2}, \beta_{1} \rangle}{\langle \beta_{1}, \beta_{1} \rangle} \beta_{1}$$

$$\beta_{3} = \alpha_{3} - \frac{\langle \alpha_{3}, \beta_{2} \rangle}{\langle \beta_{2}, \beta_{2} \rangle} \beta_{2} - \frac{\langle \alpha_{3}, \beta_{1} \rangle}{\langle \beta_{1}, \beta_{1} \rangle} \beta_{1}$$

$$\vdots$$

$$\beta_{s} = \alpha_{s} - \frac{\langle \alpha_{s}, \beta_{s-1} \rangle}{\langle \beta_{s-1}, \beta_{s-1} \rangle} \beta_{s-1} - \dots - \frac{\langle \alpha_{s}, \beta_{1} \rangle}{\langle \beta_{1}, \beta_{1} \rangle} \beta_{1}$$

单位化: $\gamma_i = \frac{1}{\|\beta_i\|} \beta_i, i = 1, 2, \dots, s.$

Schmidt正交化方法

设 $\alpha_1, \alpha_2, \cdots, \alpha_s \in V$ 是线性无关的. 今:

$$\beta_{1} = \alpha_{1}$$

$$\beta_{2} = \alpha_{2} - \frac{\langle \alpha_{2}, \beta_{1} \rangle}{\langle \beta_{1}, \beta_{1} \rangle} \beta_{1}$$

$$\beta_{3} = \alpha_{3} - \frac{\langle \alpha_{3}, \beta_{2} \rangle}{\langle \beta_{2}, \beta_{2} \rangle} \beta_{2} - \frac{\langle \alpha_{3}, \beta_{1} \rangle}{\langle \beta_{1}, \beta_{1} \rangle} \beta_{1}$$

$$\vdots$$

$$\beta_{s} = \alpha_{s} - \frac{\langle \alpha_{s}, \beta_{s-1} \rangle}{\langle \beta_{s-1}, \beta_{s-1} \rangle} \beta_{s-1} - \dots - \frac{\langle \alpha_{s}, \beta_{1} \rangle}{\langle \beta_{1}, \beta_{1} \rangle} \beta_{1}$$

单位化: $\gamma_i = \frac{1}{\|\beta_i\|} \beta_i, i = 1, 2, \dots, s.$

则 $\gamma_1, \gamma_2, \cdots \gamma_s$ 是与 $\alpha_1, \alpha_2, \cdots \alpha_s$ 等价的标准正交向量组.

Example

1 若V在 $\varepsilon_1, \varepsilon_2$ 下的度量矩阵是 $\begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix}$,求V的一组标准正交基.

Example

- **1** 若V在 ε_1 , ε_2 下的度量矩阵是 $\begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix}$, 求V的一组标准正交基.
- ② 在 $V = R_3[x]$ 中定义内积: $\langle f(x), g(x) \rangle = \int_{-1}^1 f(x)g(x)dx$. 求V的一组标准正交基.

n阶复矩阵A称为是酉矩阵,若 $A^HA = I$.

n阶复矩阵A称为是酉矩阵,若 $A^HA = I$.

A是酉矩阵 $\Leftrightarrow A^{-1} = A^H \Leftrightarrow A$ 的行(9)向量组是 C^n 的标准正交 基.

n阶复矩阵A称为是酉矩阵。若 $A^HA=I$.

A是酉矩阵 $\Leftrightarrow A^{-1} = A^H \Leftrightarrow A$ 的行 (\mathcal{P}))向量组是 \mathbb{C}^n 的标准正交 基.

Theorem

 $\partial \alpha_1, \alpha_2, \cdots, \alpha_n \in V$ 的标准正交基,

$$(\gamma_1, \gamma_2, \cdots, \gamma_n) = (\alpha_1, \alpha_2, \cdots, \alpha_n)U,$$

则 $\gamma_1, \gamma_2, \cdots, \gamma_n$ 是标准正交基 $\Leftrightarrow U$ 是酉矩阵.

① 若A, B是同阶酉矩阵,则 A^{-1}, AB 都是酉矩阵.

Schmidt正交化方法的应用

- ① 若A, B是同阶酉矩阵,则 A^{-1}, AB 都是酉矩阵.
- ② 假设A是上(下)三角矩阵,若A是酉矩阵,则A是对角阵,且其主对角元的模均等于1.

- ① 若A, B是同阶酉矩阵,则 A^{-1} ,AB都是酉矩阵.
- ② 假设A是上(下)三角矩阵,若A是酉矩阵,则A是对角阵,且其主对角元的模均等于1.

如果 $\alpha_1, \alpha_2, \dots, \alpha_n$ 是V的基,则有标准正交基 $\gamma_1, \gamma_2, \dots, \gamma_n$ 使 得 $(\gamma_1, \gamma_2, \dots, \gamma_n) = (\alpha_1, \alpha_2, \dots, \alpha_n)T$ 其中,T 是上三角矩阵,且其主对角元均大于零.

假设A是n阶可逆矩阵,则存在酉矩阵U及主对角元均大于零的上三角矩阵T,使得A = UT,而且,满足上述条件的矩阵U,T是唯一的.

假设A是n阶可逆矩阵,则存在酉矩阵U及主对角元均大于零的上三角矩阵T,使得A = UT,而且,满足上述条件的矩阵U,T是唯一的.

Example

假设矩阵
$$A = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 0 & 1 \\ 1 & -1 & 1 \end{pmatrix}$$
, 求 A 的 UT 分解.

基扩充定理

Theorem

假设 $W \in V$ 的子空间, $\alpha_1, \alpha_2, \cdots \alpha_s \in W$ 的标准正交基, 则 存在 $\alpha_{s+1}, \alpha_{s+2}, \cdots \alpha_n$, 使

得 $\alpha_1, \alpha_2, \cdots \alpha_s, \alpha_{s+1}, \alpha_{s+2}, \cdots \alpha_n$ 是 V 的标准正交基.

设 $W \leq V, \alpha \in V$, 若 $\forall \beta \in W$, $\alpha \perp \beta$, 称 $\alpha \perp W$.

若 $W_1, W_2 \leq V$, 对 $\forall \alpha_1 \in W_1, \alpha_2 \in W_2, \alpha_1 \perp \alpha_2$,称 $W_1 \perp W_2$.

设 $W \leq V, \alpha \in V,$ 若 $\forall \beta \in W$, $\alpha \perp \beta$, 称 $\alpha \perp W$.

若 $W_1, W_2 \leq V$, 对 $\forall \alpha_1 \in W_1, \alpha_2 \in W_2, \alpha_1 \perp \alpha_2, \pi W_1 \perp W_2$.

Theorem

设 $W = L(\alpha_1, \alpha_2, \dots, \alpha_s), \eta \in V$, 则 $\eta \perp W \Leftrightarrow \forall j, \eta \perp \alpha_j$.

正交补空间

Definition

设 $W \leq V$, 记

$$W^{\perp} = \{ \alpha \in V | \alpha \perp W \} \,,$$

易证这是 V 的子空间, 称是 W 在V中的正交补空间.

正交补空间

Definition

设 $W \leq V$, 记

$$W^{\perp} = \{ \alpha \in V | \alpha \perp W \} \,,$$

易证这是 V 的子空间, 称是 W 在V中的正交补空间.

Theorem

若dimV = n, W < V,则 $V = W \oplus W^{\perp}$.

而且,若 $V = W \oplus U$,且 $W \perp U$,则 $U = W^{\perp}$.

正交补空间

Definition

设W < V. 记

$$W^{\perp} = \{ \alpha \in V | \alpha \perp W \} \,,$$

易证这是 V 的子空间, 称是 W 在V中的正交补空间.

Theorem

若 $dimV = n, W \leq V$,则 $V = W \oplus W^{\perp}$.

而且,若 $V=W\oplus U$,且 $W\perp U$,则 $U=W^{\perp}$.

Corollary

若 $dimV = n, W \leq V$,则 $(W^{\perp})^{\perp} = W$.

假设 $A \in C^{s \times n}$, 定义线性映射 $f: C^n \to C^s$ 为: $f(x) = Ax, \forall x \in C^n, f$ 的值域和核空间分别记 为R(A), K(A).

假设 $A \in C^{s \times n}$, 定义线性映射 $f: C^n \to C^s$

为: $f(x) = Ax, \forall x \in C^n, f$ 的值域和核空间分别记

为R(A), K(A).

问题:如何计算 $R(A)^{\perp}$ 和 $K(A)^{\perp}$?

假设 $A \in C^{s \times n}$, 定义线性映射 $f: C^n \to C^s$

为: $f(x) = Ax, \forall x \in C^n, f$ 的值域和核空间分别记

为R(A), K(A).

问题:如何计算 $R(A)^{\perp}$ 和 $K(A)^{\perp}$?

Theorem

$$R(A)^{\perp} = K(A^{H}), \quad K(A)^{\perp} = R(A^{H}).$$

假设 $A \in C^{s \times n}$, 定义线性映射 $f: C^n \to C^s$

为: $f(x) = Ax, \forall x \in C^n, f$ 的值域和核空间分别记

为R(A), K(A).

问题:如何计算 $R(A)^{\perp}$ 和 $K(A)^{\perp}$?

Theorem

$$R(A)^{\perp} = K(A^H), \quad K(A)^{\perp} = R(A^H).$$

Example

正交基.

问题:如何求向量到子空间的距离?

问题:如何求向量到子空间的距离? 己知 $W \leq V, \alpha \in V$,若 $\eta \in W$ 满足

$$d(\alpha, \eta) = \min_{\xi \in W} d(\alpha, \xi)?$$

问题:如何求向量到子空间的距离? 己知 $W \le V, \alpha \in V$,若 $\eta \in W$ 满足

$$d(\alpha, \eta) = \min_{\xi \in W} d(\alpha, \xi)?$$

则称 η 为 α 在W中的正投影.

问题:如何求向量到子空间的距离? 己知 $W \le V, \alpha \in V$,若 $\eta \in W$ 满足

$$d(\alpha, \eta) = \min_{\xi \in W} d(\alpha, \xi)?$$

则 η 为 α 在W中的正投影.

Theorem

假设 $W < V, \alpha \in V, 则$:

① 若 α 在W 中的正投影存在,则正投影必定是唯一的;

问题:如何求向量到子空间的距离? 己知 $W \le V, \alpha \in V$,若 $\eta \in W$ 满足

$$d(\alpha, \eta) = \min_{\xi \in W} d(\alpha, \xi)?$$

则 η 为 α 在W中的正投影.

Theorem

假设 $W < V, \alpha \in V, 则$:

- ① 若 α 在W 中的正投影存在,则正投影必定是唯一的;
- ② $\eta \in W$ 是 α 在W中的正投影当且仅当 $\eta \alpha \bot W$

Theorem

如果W是内积空间V的有限维子空间,则任意 $\alpha \in V$ 在W中的正投影必定存在.

<u>Theorem</u>

如果W是内积空间V的有限维子空间,则任意 $\alpha \in V$ 在W中的正投影必定存在.

Example

在 R^3 中,己知 $\alpha_1 = (1, 2, -1), \alpha_2 = (2, -1, 3), \alpha = (2, 1, 2),$ 假设 $W = L(\alpha_1, \alpha_2),$ 求 α 在W 中的正投影.

Theorem

如果W是内积空间V的有限维子空间,则任意 $\alpha \in V$ 在W中的正投影必定存在.

Example

在 R^3 中,己知 $\alpha_1=(1,2,-1), \alpha_2=(2,-1,3), \alpha=(2,1,2),$ 假设 $W=L(\alpha_1,\alpha_2),$ 求 α 在W 中的正投影.

Example

假设 $V = R_3[x]$ 中的内积定义为

$$\langle f(x), g(x) \rangle = \int_{-1}^{1} f(x)g(x)dx,$$

求 $\eta = x^2$ 在W = L(1,x) 中的正投影.

应用

① Fourier系数:

在线性空间 $C_{[-\pi,\pi]}$ 上定义内 积 $\langle f(x),g(x)\rangle=\int_{-\pi}^{\pi}f(x)g(x)dx$,于是, $C_{[-\pi,\pi]}$ 成为欧氏空间,记子空间

$$W_n = L(1, \cos x, \sin x, \cdots, \cos nx, \sin nx),$$

求 $f(x) \in C_{[-\pi,\pi]}$ 在 W_n 中的正投影.

应用

① Fourier系数: 在线性空间 $C_{[-\pi,\pi]}$ 上定义内 积 $\langle f(x),g(x)\rangle=\int_{-\pi}^{\pi}f(x)g(x)dx$,于是, $C_{[-\pi,\pi]}$ 成为欧氏空间,记子空间

$$W_n = L(1, \cos x, \sin x, \cdots, \cos nx, \sin nx),$$

求 $f(x) \in C_{[-\pi,\pi]}$ 在 W_n 中的正投影.

② 最小二乘解: $\partial A \in C^{s \times n}$,求线性方程组Ax = b 的最佳近似解.

Definition

设 V 是内积空间, $f \in Hom(V, V)$,若

$$\langle f(\alpha), f(\beta) \rangle = \langle \alpha, \beta \rangle, \quad \forall \alpha, \beta \in V$$

称 f 是等距变换.

Definition

设 V 是内积空间, $f \in Hom(V, V)$,若

$$\langle f(\alpha), f(\beta) \rangle = \langle \alpha, \beta \rangle, \quad \forall \alpha, \beta \in V$$

称 f 是等距变换.

若F = R, 称f 是正交变换;

Definition

设 V 是内积空间, $f \in Hom(V, V)$,若

$$\langle f(\alpha), f(\beta) \rangle = \langle \alpha, \beta \rangle, \quad \forall \alpha, \beta \in V$$

称 f 是等距变换.

若F = R, 称f 是正交变换;

若F = C, 称f 是酉变换.

Definition

设 V 是内积空间, $f \in Hom(V, V)$,若

$$\langle f(\alpha), f(\beta) \rangle = \langle \alpha, \beta \rangle, \quad \forall \alpha, \beta \in V$$

称 f 是等距变换.

若F = R, 称f 是正交变换;

若F = C, 称f 是酉变换.

Example

设 A 是酉矩阵, $f: \mathbb{C}^n \to \mathbb{C}^n$ 定义为:

$$f(x) = Ax, \quad \forall x \in C^n.$$

设 V 是内积空间, $f \in Hom(V, V)$, 下述条件等价:

● *f* 保持长度不变;

- **●** *f* 保持长度不变;
- ② f保持内积不变;

- ❶ f 保持长度不变;
- ② f保持内积不变;
- ③ f将标准正交基变为标准正交基;

- ❶ f 保持长度不变;
- ② f保持内积不变;
- **③** f将标准正交基变为标准正交基;
- f在标准正交基下的矩阵是酉矩阵.

欧氏空间中的镜像变换

假设 V是一个欧氏空间, $\omega \in V$ 是一个单位向量, 映射

$$f: V \to V, \quad \alpha \mapsto \alpha - 2 \langle \alpha, \omega \rangle \omega,$$

则f是V上的等距变换(正交变换).

问题: 假设在欧氏空间 V 中有两个向量 α, β ,是否有正交变 换 f ,使得 f 将 α 变到 β 上?

问题:假设在欧氏空间 V 中有两个向量 α,β ,是否有正交变换 f ,使得 f 将 α 变到 β 上?

设
$$\beta_0 = \frac{\|\alpha\|}{\|\beta\|} \beta$$
, 令

$$\omega = \frac{1}{\|\alpha - \beta_0\|} (\alpha - \beta_0) = \frac{1}{\|\alpha - \frac{\|\alpha\|}{\|\beta\|} \beta\|} \left(\alpha - \frac{\|\alpha\|}{\|\beta\|} \beta \right).$$

Example

假设 V 是有限维欧氏空间, $\omega\in V$ 是单位向量, V 上的变换 f 定义如下:对任意 $\eta\in V$, $f(\eta)=\eta-2\left<\eta,\omega\right>\omega$.

Example

假设 V 是有限维欧氏空间, $\omega \in V$ 是单位向量, V 上的变换 f 定

义如下:对任意 $\eta \in V$, $f(\eta) = \eta - 2 \langle \eta, \omega \rangle \omega$.

1. 证明: f 是V 上的正交变换.

Example

假设 V 是有限维欧氏空间, $\omega \in V$ 是单位向量, V 上的变换 f 定义如下: 对任意 $\eta \in V$, $f(\eta) = \eta - 2 \langle \eta, \omega \rangle \omega$.

- 1. 证明: f 是V 上的正交变换.
- 2. 在 $R[x]_3$ 中定义内积: 对 $\varphi(x), \psi(x) \in R[x]_3$,

$$\langle \varphi(x), \psi(x) \rangle = \int_0^1 \varphi(x)\psi(x)dx,$$

于是, $R[x]_3$ 成为欧氏空间. 分别求 $R[x]_3$ 中向量 $\alpha=1$ 及 $\beta=x$ 的长度,并求正实数 k 及单位向量 $\omega\in R[x]_3$,使得相应的正交变换 f 将 α 变成 $k\beta$.