Predicting Gender with Email Body Text: Binary Classification Supervised Learning with The Enron Email Dataset

James Bush, Springboard Capstone I

TABLE OF CONTENTS

- DEFINING THE PROBLEM
- DATA COLLECTION
- DATA WRANGLING
- EXPLORATORY DATA ANALYSIS
- FEATURE ANALYSIS
- MODEL IMPLEMENTATION, RESULTS
- CLOSING
- REFERENCES
- APPENDIX

DEFINING THE PROBLEM

- Can text contained in an email be used to predict the sender's gender?
- Feature Variables, Target Variables
- Genuine vs. Non-Genuine Text

DATA COLLECTION

Enron Email Dataset from Carnegie Mellon University School of Computer Science

Example:

```
Message-ID: <18782981.1075855378110.JavaMail.evans@thyme>
     Date: Mon, 14 May 2001 16:39:00 -0700 (PDT)
     From: phillip.allen@enron.com
     To: tim.belden@enron.com
     Subject:
     Mime-Version: 1.0
     Content-Type: text/plain; charset=us-ascii
     Content-Transfer-Encoding: 7bit
     X-From: Phillip K Allen
     X-To: Tim Belden <Tim Belden/Enron@EnronXGate>
11
     X-cc:
     X-bcc:
     X-Folder: \Phillip_Allen_Jan2002 1\Allen, Phillip K.\'Sent Mail
     X-Origin: Allen-P
                                                        headers
     X-FileName: pallen (Non-Privileged).pst
16
     Here is our forecast
18
```

DATA COLLECTION

Variables of interest

```
Message-ID: <18782981.1075855378110.JavaMail.evans@thyme>
    Date: Mon, 14 May 2001 16:39:00 -0700 (PDT)
 → From: phillip.allen@enron.com
    To: tim.belden@enron.com
    Subject:
    Mime-Version: 1.0
    Content-Type: text/plain; charset=us-ascii
    Content-Transfer-Encoding: 7bit
 9 → X-From: Phillip K Allen
    X-To: Tim Belden <Tim Belden/Enron@EnronXGate>
    X-cc:
    X-bcc:
    X-Folder: \Phillip Allen Jan2002 1\Allen, Phillip K.\'Sent Mail
    X-Origin: Allen-P
                                                       headers
    X-FileName: pallen (Non-Privileged).pst
17 Here is our forecast
18
```

- Collecting Gender
- Data Cleaning
- Cosine Similarity
- Preprocessing

Initial Data Picture

Collecting Gender

Separate, Clean First Name for Scraping

```
cd['gender_query'] = cd['clean_name'].str.extract('^([A-Za-z\'-]+) [A-Za-z\'-]+$')
cd.head()
```

	m_from	m_from_cleaned	x_from	x_from_cleaned	clean_name	gender_query
0	phillip.allen@enron.com	phillip allen	phillip k allen	phillip allen	phillip allen	phillip
1	ina.rangel@enron.com	ina rangel	ina rangel	ina rangel	ina rangel	ina
2 1.1	119133722@multexinvestornetwork.com		$multex\ investor < 1.119133722@multexinvestorn$	multex investor	multex investor	multe
7	rebecca.cantrell@enron.com	rebecca cantrell	rebecca w cantrell	rebecca cantrell	rebecca cantrell	rebecca
9	paul.kaufman@enron.com	paul kaufman	paul kaufman	paul kaufman	paul kaufman	pau

Data Cleaning

Filter Out Emails Based On:

- Drop duplicates
- Drop NaN values
- '@enron' domain name
- 'Copyright' string
- Automated output reports

Split Emails Based On:

- Consecutive m-dash characters ('-')
- Patterns preceding *forwarded text*
- Patterns preceding reply text
- Timestamps associated with above

Remove Strings:

- URLs
- Email Addresses
- [word] colon (i.e. *From:*)

Cosine Similarity

[INDEX 1058]

We should definitely bring him in for an interview.

From: Lexi Elliott

02/09/2001 09:04 AM

To: Richard Causey/Corp/Enron@ENRON

cc: Mark E Lindsey/GPGFIN/Enron@ENRON, Mike Deville/HOU/ECT@ECT, Sally

Beck/HOU/ECT@ECT

Subject: Summer Internship

This candidate is currently working in Houston. Since our schedules are full on-campus, it would be very easy to bring him in-house for interviews. Please let me know if you are interested.

Thank you,

Lexi

[INDEX 1121]

Please give me Amy's e-mail address. I'd like to get in touch with her. Thanks.

Emily Sellers 02/06/2001 01:16 PM

To: Steven J Kean/NA/Enron@Enron

cc:

Subject: follow up to interview

Steve, Amy Kim asked me to forward this to you. She wasn't sure if she had the correct email address.

Emily Sellers

Preprocessing

- Remove non-word characters
- Remove underscore character
- Remove single characters
- Remove numbers
- Reduce space character multiples
- Remove stop words
- Remove names included in the gender-name key
- Lemmatize words

ORIGINAL BODY

DATA WRANGLING

02/09/2001 09:04 AM

We should definitely bring him in for an interview.

From: Lexi Elliott

SPLIT ON

To: Richard Causey/Corp/Enron@ENRON cc: Mark E Lindsey/GPGFIN/Enron@ENRON, Mike Deville/HOU/ECT@ECT, Sally Beck/HOU/ECT@ECT Subject: Summer Internship This candidate is currently working in Houston. Since our schedules are full on-campus, it would be very easy to bring him in-house for interviews. Please let me know if you are interested. Thank you, Lexi ----- Forwarded by Lexi Elliott/NA/Enron on 02/09/2001 09:09 ΑΜ -----Judd Eisenberg <judde@mail.utexas.edu> on 02/06/2001 01:11:05 AM To: lexi.elliott@enron.com cc: Subject: Summer Internship Lexi Elliot,

Hi, my name is Judd Eisenberg, and I am a business student at the

University of Texas who is seeking the summer analyst internship at Enron. I received an opportunity to meet you at a reception dinner that Enron

POST DATA CLEANING

We should definitely bring him in for an interview.

POST PREPROCESSING

definitely bring interview

EXPLORATORY DATA ANALYSIS

Number of Emails by Sender

EXPLORATORY DATA ANALYSIS

Initial Data Picture

Pre-Modeling Data Picture

EXPLORATORY DATA ANALYSIS

Character Count ChangeFrom Initial to Pre-Modeling

1.0

Evaluating Thresholds – No Restrictions

Feature Coefficients Histogram, ECDF

Feature Returns

Feature Returns with Data Points

-16	LogisticRegression: Highest 50 Feature Importance						
df ckm dq mhc appt doorstep abb alos adr dp							

feature_name	feature_coef	feature_frequency	character_count
pl	-3.365496	259	2
bt	-2.879711	100	2
jmf	-2.445996	67	3
dg	-2.403187	145	2
mat	-2.180302	68	3
cgy	-1.882465	23	3
executables	-1.857019	15	11
kk	-1.833449	25	2
kh	-1.806247	29	2
db	-1.762353	32	2

feature_name		feature_coef	feature_frequency	character_count
	df	4.257436	179	2
	ckm	2.606287	47	3
	dq	2.229836	20	2
	mhc	2.219864	30	3
	appt	1.797386	24	4
	doorstep	1.741485	39	8
	abb	1.737722	40	3
	alos	1.667401	22	4
	adr	1.629356	34	3
	dp	1.566950	59	2

Evaluating Thresholds – First Adjustment

Word Count: 7df - 60% df

Character Count: 3, 13

Feature Coefficients Histogram, ECDF

Feature Returns

Feature Returns with Data Points

feature_name	feature_coef	feature_frequency	character_count
mat	-2.560905	71	3
jmf	-2.542075	77	3
cgas	-2.123214	59	4
executables	-1.874143	16	11
gtv	-1.825940	23	3
shout	-1.799436	35	5
cng	-1.750343	73	3
hgm	-1.724560	11	3
latter	-1.719614	35	6
aec	-1.713489	14	3

feature_name	feature_coef	feature_frequency	character_count
ckm	2.782829	54	3
mhc	2.231569	35	3
appt	2.099367	26	4
adr	2.068282	43	3
tino	1.921104	31	4
rms	1.741359	19	3
bod	1.627470	18	3
gngr	1.587551	25	4
talented	1.562603	13	8
cvb	1.506041	8	3

Evaluating Thresholds – Second Adjustment

Word Count: 50df - 50% df

Character Count: 5, 11

Feature Coefficients Histogram, ECDF

Feature Returns

Feature Returns with Data Points

feature_name	feature_coef	feature_frequency	character_count
dispatch	-1.448862	68	8
highly	-1.401186	94	6
highest	-1.160044	59	7
towards	-1.134885	83	7
auction	-1.039440	140	7
serious	-1.026771	68	7
football	-1.021749	77	8
indication	-1.005445	55	10
protection	-0.973110	63	10
relief	-0.961283	71	6

chairnerson —	LogisticRegression: Highest 50 Feature Importance							
chairperson prebon								
paralegal brokerage					/			
locate specialist								
temporary				/				
feature passcode			J					
limitation								

feature_name	feature_coef	feature_frequency	character_count
chairperson	2.018544	82	11
prebon	1.884477	115	6
paralegal	1.601634	65	9
brokerage	1.568712	87	9
locate	1.526571	62	6
specialist	1.207088	201	10
temporary	1.184306	79	9
feature	1.089935	80	7
passcode	1.083886	80	8
limitation	1.042528	78	10

Thresholds for Model:

Feature Frequency: Min df: 7, Max df: 70%

• Feature Characters: Min chars: 4, Max chars: 13

- Evaluating Multiple Models
- Varying Sample Size
- Model 1: Parameter Selection, Model Fit
- Model 2: Parameter Selection, Model Fit
- Model 2: Fit Model
- Models Evaluated:
 - Random Forest Classifier (RFC)
 - Multinomial Naïve Bayes (MNB)
 - Logistic Regression (LOGR)
 - Stochastic Gradient Descent Classifier (SGDC)
 - Linear Support Vector Classification (LSVC)
 - K Neighbors Classifier (KNN)

Evaluating Multiple Models

Modeling:

- 5-Fold Cross-Validation
- 60/40 Train/Test Split
- Randomized sample n = 30000
- Default Parameters
- Scored with Accuracy

Varying Sample Size

Modeling:

- 5-Fold Cross-Validation
- 60/40 Train/Test Split
- Randomized sample n = 30000
- Default Parameters
- Scored with *Accuracy*

- Linear Support Vector Classification
- Parameter Selection:
 - Grid Search
 - 10-Fold Cross-Validation
 - 70/30 Train/Test Split
 - Randomized sample n = 41479 (30% of Dataset)
 - Scored with *Accuracy*
- Parameter Constants:
 - class_weight = 'balanced'
 - *max_iter* = '1000'
- Parameter Grid:
 - C across -5 to 4 (10 values across base 10 log space)
- Best Fit:
 - C = '0.1'

[[15637 7 [6599 11	-				
		precision	recall	f1-score	support
6	0.6	0.70	0.68	0.69	22952
1	1.0	0.62	0.64	0.63	18527
accura	асу			0.66	41479
macro a	avg	0.66	0.66	0.66	41479
weighted a	avg	0.67	0.66	0.67	41479

- Logistic Regression
- Parameter Selection:
 - Grid Search
 - 10-Fold Cross-Validation
 - 70/30 Train/Test Split
 - Randomized sample n = 41479 (30% of Dataset)
 - Scored with Accuracy
- Parameter Constants:
 - class_weight = 'balanced'
 - *max_iter* = '1000'
- Parameter Grid:
 - **C** across -5 to 4 (10 values across base 10 log space)
 - Solver across 'liblinear', 'saga'
- Best Fit:
 - C = '0.1'
 - *Solver*: 'liblinear'

[[15594	7358	3]			
[6573 3	11954]]			
		precision	recall	f1-score	support
	0.0	0.70	0.68	0.69	22952
	1.0	0.62	0.65	0.63	18527
accur	racy			0.66	41479
macro	avg	0.66	0.66	0.66	41479
weighted	avg	0.67	0.66	0.66	41479

Gender-Related Nouns

- boy list: wife
- girl list: husband

Diction

- boy list: expletives, slang, job roles
- girl list: different job roles

Spelling

- Conscious, unconscious spelling
- boy list: higher frequency of both
- girl list: less frequent
- Reflecting on Context, Author Identity

CLOSING

Future Improvements

- Addressing Processes Introducing Bias
- Alternative Cleaning Processes
- Improved Modeling Process
- Improved Model Selection Process
- Removing Redundancy in Model Selection

REFERENCES

Cohen, W. W. (2015). Enron Email Dataset. Retrieved from https://www.cs.cmu.edu/~./enron/.

Kantrowitz, M., Ross, B. (1994). Names Corpus, Version 1.3. Retrieved from http://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/areas/nlp/corpora/names/

Prabhakaran, S. (2020). Cosine Similarity – Understanding the math and how it works (with python codes). Retrieved from https://www.machinelearningplus.com/nlp/cosine-similarity/.

Scikit-learn. (2019a). Sklearn.linear_model.SGDClassifier. Retrieved from https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html

Scikit-learn. (2019b). Sklearn.metrics.pairwise.cosine_similarity. Retrieved from https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.cosine_similarity.html.

Wikipedia. (2020). Fundie. Retrieved from https://en.wikipedia.org/wiki/Fundie

APPENDIX:

LINEAR SVC FEATURES

LOGISTIC REGRESSION FEATURES

