Rocket Math Stuff

1 Variables

Variable	Symbol	Units	Description
Height	h(t)	m	Height off ground
Velocity	v(t)	m/s	Velocity of rocket
Acceleration	a(t)	m/s^2	Acceleration of rocket
Thrust	T(t)	$kg \cdot m/s^2$	Thrust of rocket
Burn rate	B	m/s	Fuel burn rate (time, not energy)
Gravity	$\mid g \mid$	m/s^2	Gravity (≈ 9.807)
Mass	m(t)	kg	Mass of rocket
Core Radius	R_c	m	Initial radius of inner core (function of angle if non-cylinder
Inner radius	r(t)	$\mid m \mid$	Radius of core at given time
Rocket Length	$\mid L \mid$	m	Vertical length of rocket
Rocket Radius	R	m	Inner rocket radius (e.g. exclude PVC thickness)
Outer Radius	R_o	m	Outer rocket radius (measured from center to edge of PVC)
Fuel density	ρ_f	kg/m^3	Fuel density
Air Density	$\rho_a(h)$	kg/m^3	Air density (decreases with height)
Drag	C_d	None	Drag coefficient (related to Reynold's number)
Rocket Area	A	m^2	Cross sectional area of rocket (for drag computation)
Burn End Time	$ t_e $	s	The time at which the burn ends
Air Temperature	$T_a(h)$	K	Temperature of air at height h
Air Pressure	$p_a(h)$	kPa	Pressure of atmosphere at height h
Lapse rate	$\mid L \mid$	K/m	Temperature lapse rate (≈ 0.0065)
Ideal Gas Constant	R	$J/\mathrm{mol} \cdot K$	Ideal Gas Constant
Air Molar Mass	M_m	kq/mol	Dry air molar mass

2 Equation Derivations

2.1 Velocity/Height

2.1.1 Governing equation

Note: Currently just used F = ma, but since it's a mass varying system, need to integrate this equation: Mass Varying System. Shouldn't be too much of an issue since we find m(t) explicitly below and the derivative is simple. It just adds another constant, exhaust rate, that we'll need to figure out or approximate as the speed of sound.

$$\sum F = T(t) - gm(t) - \gamma v^2 = m(t)a(t) = m(t)\dot{v}$$

$$\dot{v} = \frac{T(t)}{m(t)} - g - \frac{\gamma v^2}{m(t)}$$
(1)

2.1.2 Drag

Drag is proportional to v^2 for turbulent flows (is this turbulent or laminar..? not sure since high speed but moderately aerodynamic object). If it's laminar, proportional to v. Drag coefficient equation (source: Wikipedia):

$$\gamma = \frac{1}{2}\rho_a C_d A = \frac{\pi}{2} C_d R_o^2 \rho_a(h) \tag{2}$$

For air density, assumptions are: 1) Troposphere, 2) No humidity. From Wikipedia, with $T_0 = 288.15$ and $p_0 = 101.325$:

$$T(h) = T_0 - Lh \tag{3}$$

$$p(h) = \rho_0 \left(1 - \frac{Lh(t)}{T_0} \right)^{\frac{gM_m}{RL}} \tag{4}$$

$$\rho_a(h) = \frac{p(h)M_m}{RT(h)} \tag{5}$$

For fun, let's approximate $C_D \approx 0.4$ (relatively close I think).

2.1.3 Gravity

Gravity (approximated for now to get rid of nonlinearities):

$$g = \frac{GM_{\oplus}}{R_{\oplus} + h(t)} \approx 9.807$$

2.1.4 Mass

In a given moment, $2\pi r(t)H \cdot \rho_f dr$ (kg) of fuel is being burned (assumptions: symmetric cylindrical burn).

Assuming the fuel burns outward at a constant rate (it doesn't, it's dependent on chamber pressure. Need to integrate these equations: Pressure related burn rate: $\frac{dr}{dt} = B \implies dr = Bdt$, so $2\pi H \rho_f r(t) dt$ (kg) of fuel is burned.

$$r(t) = \begin{cases} Bt + R_c & t \leq \frac{R - R_c}{B} \\ R & t > \frac{R - R_c}{B} \end{cases}$$
 (6)

Let $t_e = \frac{R - R_c}{R}$, when all the fuel has burned. With this, the mass of the rocket is:

$$m(t) = \begin{cases} M_0 - \int_0^t 2\pi H \rho_f B(Bt + R_c) dt = M_0 - \pi H \rho_f B(Bt^2 + 2R_c t) & t \le t_e \\ M_0 - \pi H \rho_f (R^2 - R_c^2) & t > t_e \end{cases}$$
 (7)

$$\dot{m} = \begin{cases} -2\pi H \rho_f B(Bt + R_c) & t \leq t_e \\ 0 & t > t_e \end{cases}$$
 (8)

2.2 Thrust

Need to figure this bit out.