Capstone Option 2: Biodiversity for the National Parks

Adrian Nesta Course 01.15.19

Importing and Analyzing species_info.csv

Using the pandas function pd.read_csv I imported species_info.csv to analyze the data and see what conclusions could be drawn about the different animal species from it.

I learned that there were 7 unique types of species: Mammal, Bird, Reptile, Amphibian, Fish, Vascular Plant, and Nonvascular Plant. I additionally discovered there were 4 types of Conservation status: Species of Concern, Endangered, Threatened and In Recovery

Analysis, cont.

I then created a dataframe using the .groupby method to display the amount of each species in each conservation category.

Step 4

Let's start doing some analysis!

The column conservation_status has several possible values

- . Species of Concern : declining or appear to be in need of conservation
- . Threatened : vulnerable to endangerment in the near future
- · Endangered : seriously at risk of extinction
- . In Recovery: formerly Endangered, but currnetly neither in danger of extinction throughout all or a significant portion of its range

We'd like to count up how many species meet each of these criteria. Use groupby to count how many scientific_name meet each of these criteria.

Because the species that did not need protection were classified as NaN (null) in the conservation_status column. I used the .fillna method to create a row for them to provide a fuller picture of the data

Bar Chart I

Now let's create a bar chart!

- 1. Start by creating a wide figure with figsize=(10, 4)
- 2. Start by creating an axes object called ax using plt.subplot.
- 3. Create a bar chart whose heights are equal to scientific_name column of protection_counts.
- 4. Create an x-tick for each of the bars.
- 5. Label each x-tick with the label from conservation status in protection counts
- 6. Label the y-axis Number of Species
- 7. Title the graph Conservation Status by Species
- 8. Plot the grap using plt.show()

```
In [12]: plt.figure(figsize=(10,4))
ax = plt.subplot()
plt.bar(range(len(protection_counts)), protection_counts.scientific_name.values)
ax.set_xticks(range(len(protection_counts)))
ax.set_xticklabels(protection_counts.conservation_status.values)
plt.ylabel('Number of Species')
plt.title('Conservation Status by Species')
plt.show()
```

I used matplotlib to create a simple bar chart to visualize the conservation status of each species.

Are certain types of species in danger?

To view the data in the 'is_protected' column better. I created a pivot table in python using the .pivot method where data from 'is_protected' are the columns, the species categories are the rows, and the 'scientific_name' (amount) are the values.

It's going to be easier to view this data if we pivot it. Using pivot, rearange category_counts so that:										
columns is is_protected										
• index is	 index is category 									
 values is 	scientific name									
	_									
Save your pivoted data to category_pivot . Remember to reset_index() at the end.										
category_pivo	t = category_counts	.pivot((columns	='is_protected', index='category', values='scientific_name').reset_index()						
Examine categ										
Examine categ	ory_pivot .									
print(categor	y_pivot)			#						
is_protected	category	False	True							
0	Amphibian		7							
1	Bird									
2	Fish		11							
3	Mammal		30							
4	Nonvascular Plant		5							
			5							
5	Reptile	73	5							
5 6	Reptile Vascular Plant		46							

To answer the question if one of the species observed in the data has statistically significant higher rate of endangerment, I first added two new columns to the data frame. The first was a 'is_protected' column.

Danger, cont.

After renaming the 'false' and 'true' columns to 'not_protected' and 'protected', respectively. I created a new column in the dataframe with the percent of each species that are currently under protection (i.e. in some kind of danger)

```
In [29]:
         category_pivot['percent_protected'] =
         category_pivot['protected'] / (category_pivot['not_protected'] + category_pivot['protected'])
         Examine category_pivot.
In [30]:
         print(category_pivot)
                                               protected
                                                          percent protected
                     category
                                not_protected
                    Amphibian
                                                                    0.088608
                         Bird
                                          413
                                                                    0.153689
                         Fish
                                          115
                                                                    0.087302
                       Mammal
                                                                    0.170455
                                          146
            Nonvascular Plant
                                          328
                                                                   0.015015
                      Reptile
                                           73
                                                                    0.064103
               Vascular Plant
                                         4216
                                                                    0.010793
```

Statistical Significance

The test revealed that difference between protection rates for Mammals and Birds was not statistically significant, but the difference between Mammals and Reptiles was!

I would recommend that the parks look into what might be causing the unusually high endagernment rate for mammals.

To compare the protection level between multiple species in the data to determine if any specific species has a statistically significant higher level of needed protection I imported the chi2 contingency test from scipy.stats.

```
In [31]: contingency = [[146, 30], [413, 75]]

In order to perform our chi square test, we'll need to import the correct function from scipy. Past the following code and run it:

"""

from scipy.stats import chi2_contingency

Now run chi2_contingency with contingency.

In [32]: from scipy.stats import chi2_contingency

Now run chi2_contingency (contingency)

Out[33]: (0.1617014831654574, 0.6875948096661336, 1, array([[148.1686747, 27.8313253], [410.8313253, 77.1686747]]))

It looks like this difference isn't significant!

Let's test another. Is the difference between Reptile and Mammal significant?

In [34]: contingency2 = [[73, 5], [146, 30]] chi2_contingency(contingency2)

Out[34]: (4.289183096203645, 0.03835559022969898, 1, array([[ 67.2519685, 10.7480315], [151.7480315, 24.2519685]]))

Yes! It looks like there is a significant difference between Reptile and Mammal!
```

Sheep Observations

Indexing the old dataframe by the new column that filters out new sheep reveals that it erroneously picked up some extra data

6]:	: species['is_sheep'] = species.common_names.apply(lambda x: 'Sheep' in x) species.head()									
6]:		category		scientific_name	common_names	conservation_status	is_protected	is_sheep		
	0	Mammal	Clethriono	mys gapperi gapperi	Gapper's Red-Backed Vole	No Intervention	False	False		
	1	Mammal		Bos bison	American Bison, Bison	No Intervention	False	False		
	2	Mammal		Bos taurus	Aurochs, Aurochs, Domestic Cattle (Feral), Dom	No Intervention	False	False		
	3	Mammal		Ovis aries D	comestic Sheep, Mouflon, Red Sheep, Sheep (Feral)	No Intervention	False	True		
	4	Mammal		Cervus elaphus	Wapiti Or Elk	No Intervention	False	False		
	Select the rows of 'species' where 'is_sheep' is 'True' and examine the results.									
4]:	species[species.is_sheep]									
4]:		ca	tegory	scientific_name	common_name	s conservation_statu	is is_protecte	d is_sheep		
		3 N	lammal	Ovis aries	Domestic Sheep, Mouflon, Red Sheep, Sheep (Fera	l) No Intervention	n Fals	e True		
	113	9 Vascula	ar Plant	Rumex acetosella	Sheep Sorrel, Sheep Sorre	ell No Intervention	n Fals	e True		
	223	3 Vascula	ar Plant	Festuca filiformis	Fineleaf Sheep Fescu	e No Intervention	n Fals	e True		

After importing and examining the other file of data, observations.csv, I used a lambda function to add a new column to the dataframe that determined if the observation was a sheep

ations = pd.read_csv('observations.csv')	

	scientific_name	park_name	observations
0	Vicia benghalensis	Great Smoky Mountains National Park	68
1	Neovison vison	Great Smoky Mountains National Park	77
2	Prunus subcordata	Yosemite National Park	138
3	Abutilon theophrasti	Bryce National Park	84
4	Githopsis specularioides	Great Smoky Mountains National Park	85

Further filtering and merging

To weed out the extra plant species data from the sheep dataframe I filtered on the species dataframe to include only 'Mammals'. I then merged the 'observations' dataframe with the 'sheep' only dataframe to provide a more robust set of data.

4]:	<pre>sheep_species = species[(species.is_sheep) & (species.category == 'Mammal')]</pre>											
	Now merge `sheep_species` with `observations` to get a DataFrame with observations of sheep. Save this DataFrame as `sheep_observations`. sheep_observations = observations.merge(sheep_species) sheep_observations											
5]:												
]:		scientific_name	park_name	observations	category	common_names	conservation_status	is_protected	is_sheep			
	0	Ovis canadensis	Yellowstone National Park	219	Mammal	Bighorn Sheep, Bighorn Sheep	Species of Concern	True	True			
	1	Ovis canadensis	Bryce National Park	109	Mammal	Bighorn Sheep, Bighorn Sheep	Species of Concern	True	True			
	2	Ovis canadensis	Yosemite National Park	117	Mammal	Bighorn Sheep, Bighorn Sheep	Species of Concern	True	True			
	3	Ovis canadensis	Great Smoky Mountains National Park	48	Mammal	Bighorn Sheep, Bighorn Sheep	Species of Concern	True	True			
	4	Ovis canadensis sierrae	Yellowstone National Park	67	Mammal	Sierra Nevada Bighorn Sheep	Endangered	True	True			
	5	Ovis canadensis sierrae	Yosemite National Park	39	Mammal	Sierra Nevada Bighorn Sheep	Endangered	True	True			
	6	Ovis canadensis sierrae	Bryce National Park	22	Mammal	Sierra Nevada Bighorn Sheep	Endangered	True	True			
		Ouis sanadansia	Creat Constant Mauntains									

Sheep by Park

Using pandas to create an 'Observation by Park' dataframe with the sum total of sheep from each park. I then visualized that pared down dataframe with another bar plot from matplotlib.

How many weeks?

Our scientists know that 15% of sheep at Bryce National Park have foot and mouth disease. Park rangers at Yellowstone National Park have been running a program to reduce the rate of foot and mouth disease at that park. The scientists want to test whether or not this program is working. They want to be able to detect reductions of at least 5 percentage points. For instance, if 10% of sheep in Yellowstone have foot and mouth disease, they'd like to be able to know thi with confidence

Use <u>Codecademy's sample size calculator</u> to calculate the number of sheep that they would need to observe from each park. Use the default level of significance (90%).

Remember that "Minimum Detectable Effect" is a percent of the baseline.

minimum_detectable_effect = 100 * (0.05 / 0.15)
print(minimum_detectable_effect)

33.3333333333333

How many weeks would you need to observe sheep at Bryce National Park in order to observe enough sheep? How many weeks would you need to observe at Yellowstone National Park to observe enough sheep?

#Needs to see 870 sheep. One week of sheep observations at Bryce National Park yielded 250. Will need about 4 weeks (870/250)

#One week of sheep observations at Yellowstone produced 507. Will need about 2 weeks (870/507)

1.715976331360946

To determine if the new program that Yellowstone implemented to reduce foot and mouth disease in the park's sheep will be effective, we need to know how many weeks of sheep observations will be needed to detect a 5% change from the 15% baseline. Using the Codecademy tool, calculating the minimum detectable effect (33.3%), and a default 90% confidence, I determined that it will take about 4 weeks in Bryce National Park to reach the necessary sheep observations and 2 weeks in Yellowstone.

