MATH 307

Chapter 1

SECTION 1.4: SPECIAL MATRICES AND ADDITIONAL PROPERTIES

Contents

Diagonal Matrices	2
Triangular Matrices	<u> </u>
Symmetric Matrices	

DIAGONAL MATRICES

A diagonal matrix is a square matrix whose off diagonal entries are zero.

• Remark: We denote a diagonal matrix by diag (d_1, d_2, \dots, d_n) .

EXAMPLE 1. Give some examples of diagonal matrices.

EXAMPLE 2. Suppose A = diag(1, 2, -4, 3, 5) and B = diag(-1, 2, 0, 4, 3).

- 1) Is A invertible?
- 2) Is A + B invertible?
- 3) Is AB invertible?

General Facts: Suppose A and B are diagonal matrices

$$A = \operatorname{diag}(a_1, a_2, \dots, a_n)$$
 and $B = \operatorname{diag}(b_1, b_2, \dots, b_n)$.

- $A + B = \operatorname{diag}(a_1 + b_1, a_2 + b_2, \dots, a_n + b_n).$
- $AB = \text{diag}(a_1b_1, a_2b_2, \dots, a_nb_n).$
- A is invertible if and only if $a_i \neq 0$ for each i. In this case, we have

$$A^{-1} = \operatorname{diag}(1/a_1, 1/a_2, \dots, 1/a_n).$$

TRIANGULAR MATRICES

- Upper Triangular: Square matrices whose entries below the diagonal are zero.
- Lower Triangular: Square matrices whose entries above the diagonal are zero.

EXAMPLE 3. Give an example of an upper triangular matrix and an example of a lower triangular matrix.

General Facts:

- If A and B are both upper triangular, then so is A + B; similarly if A and B are both lower triangular, then so is A + B.
- If A and B are both upper triangular, then so is AB; similarly if A and B are both lower triangular, then so is AB.
- A is invertible if and only if each of the diagonal entries of A is nonzero.

EXAMPLE 4. Let A and B be the two following 3×3 matrices:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 7 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} -1 & 4 & 1 \\ 0 & -1 & 2 \\ 0 & 0 & 0 \end{bmatrix}.$$

- 1. Is A invertible?
- 2. Is B invertible?
- 3. Is AB upper or lower triangular matrix?

Symmetric Matrices

- Transpose: The transpose of a matrix A of dimensions $m \times n$, denoted A^{\top} , is the matrix obtained by interchanging the rows and columns of A.
- Symmetric: A matrix A is said to be symmetric if $A = A^{\top}$.

EXAMPLE 5. Let A and B be the following matrices.

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}.$$

- 1. Find B^{\top} .
- 2. Is A symmetric?

General facts about transpose:

•
$$(A^{\top})^{\top} = A$$
.

•
$$(cA)^{\top} = cA^{\top}$$
.

•
$$(A^T)^{-1} = (A^{-1})^{\top}$$
.

•
$$(A+B)^{\mathsf{T}} = A^{\mathsf{T}} + B^{\mathsf{T}}$$
. • $(AB)^{\mathsf{T}} = B^{\mathsf{T}}A^{\mathsf{T}}$.

$$(AB)^{\top} = B^{\top} A^{\top}.$$

General Facts about symmetric: Suppose A and B are matrices of the same size.

- If A and B are symmetric matrices, then so is A + B.
- If A is symmetric, then A is a square matrix and cA is symmetric for any scalar c.
- $A^{\top}A$ and AA^{\top} are symmetric matrices.
- If A is an invertible symmetric matrix, then A^{-1} is a symmetric matrix.

EXAMPLE 6. Is the matrix

$$A = \begin{bmatrix} 1 & 0 & 4 \\ -4 & 0 & 6 \\ 2 & 0 & -10 \end{bmatrix}$$

invertible?

Remarks:

- Using row operations on the transposed matrix is equivalent to applying column operations to the original matrix.
- So, in general, what we learned to do with the rows of a matrix can also be done with the columns of a matrix.
- Taking column operations will be important when we will find the row space and column space of a matrix.