Problem Set #08

November 7, 2019

2. Assume there are two language $L_1 \in P$ and $L_2 \in P$

Therefore there's a TM M_1 that solves L_1 and TM M_2 that solves L_2 These both run in polynomial time as both are $\in P$.

```
TM M_x = "on input w:
run w on M_1 if it accepts, accept
run w on M_2 if it accepts, accept
else: reject.
```

Since we know that M_1 and M_2 run in polynomial time they run in $O(n^c)$ where c is some constant and n = |w| we know that M_x runs in $O(n^c) + O(n^c)$ which is simply $O(n^c)$. therefore since $M_x \in P$ and P is closed under union.

P is closed under concatenation

Assume there are two language $L_1 \in P$ and $L_2 \in P$

Therefore there's a TM M_1 that solves L_1 and TM M_2 that solves L_2 These both run in polynomial time as both are $\in P$.

TM M_x = "on input w:

- 1. W can be cut w into two strings, in n different ways
- 2. for each cut:
 - i. check if $\operatorname{cut}_1 \in L_1$
 - ii. check if $\operatorname{cut}_2 \in L_2$

if both accept, accept.

Since we know that M_1 and M_2 run in polynomial time they run in $O(n^c)$ where c is some constant and n = |w| we know that M_x rune in $O(n^c) + O(n^c)$ which is simply $O(n^c)$. therefore since $M_x \in P$ and P is closed under concatenation.

P is closed under complement

Assume there's a language L_1 with a TM M_1 that decides it $\in P$

Then there's a TM M_2 that accepts $\text{co-}L_1 \in P$.

 $M_2 =$ "on input w:

1. run M_1 on w.

If M_1 accepts, reject.

if M_1 rejects, accept.

Since M_1 is a decider we know that it will always halt in polynomial time and we therefore can just output the opposite in polynomial time. Therefore P is closed under complement