Combo 2 de teoremas

Emanuel Nicolás Herrador - November 2024

Teorema de Dedekind

Sea (L, s, i) un reticulado terna. La relación binaria definida por:

$$x \le y \iff x \ s \ y = y$$

es un orden parcial sobre L para el cual se cumple que:

$$\sup(\{x, y\}) = x \ s \ y$$
$$\inf(\{x, y\}) = x \ i \ y$$

cualesquiera sean $x, y \in L$.

Demostración

Primero, demostremos que \leq es reflexiva, transitiva y antisimétrica suponiendo $x,y,z\in L$:

- 1. Reflexividad: Por reflexividad de s, tenemos x s x = x. Luego, por def. de \leq , tenemos $x \leq x$ por lo que se demuestra.
- 2. Transitividad: Sea $(x s y = y) \land (y s z = z)$, entonces:

$$(x \ s \ y) \ s \ (y \ s \ z) = y \ s \ z$$
 $x \ s \ (y \ s \ y) \ s \ z = y \ s \ z$ Asociatividad
 $x \ s \ y \ s \ z = y \ s \ z$ Reflexividad
 $x \ s \ (y \ s \ z) = y \ s \ z$ Asociatividad
 $x \ s \ (y \ s \ z) = y \ s \ z$ Por suposición anterior

Ahora, por def. de \leq , tenemos que si $x \leq y \land y \leq z$, entonces $x \leq z$, por lo que se demuestra.

3. Antisimetría: Sea $(x \ s \ y = y \land y \ s \ x = x)$, por conmutatividad tenemos que $x \ s \ y = y \ s \ x$. Luego, con esto llegamos a que x = y. Por ello, por def. de \leq , esto significa que si $x \leq y \land y \leq x$, entonces x = y por lo que se demuestra.

Como \leq es reflexiva, transitiva y antisimétrica, entonces por def. es un orden parcial sobre L. Con ello, solo queda ver que $\forall x, y \in L$ se cumple que $\sup(\{x,y\}) = x \ s \ y$ y que $\inf(\{x,y\}) = x \ i \ y$. Veamos ambos casos:

- $\sup(\{x,y\}) = x \ s \ y$:
 - Por reflexividad y asociatividad, tenemos que x s y = (x s x) s y = x s (x s y) por lo que por def. de \leq , llegamos a que $x \leq x$ s y. Del mismo modo, llegamos también a que $y \leq x$ s y. Esto significa, entonces, que x s y es una cota superior de $\{x,y\}$.
 - Sea z una cota superior de $\{x,y\}$, entonces $x \leq z \wedge y \leq z$, por lo que por def. de \leq tenemos $x s z = z \wedge y s z = z$. Con ello:

$$(x\ s\ z)\ s\ (y\ s\ z)=z\ s\ z$$

$$(x\ s\ y)\ s\ (z\ s\ z)=z\ s\ z$$
 Asociatividad y Conmutatividad
$$(x\ s\ y)\ s\ z=z$$
 Reflexividad

Luego, por def. de \leq , tenemos que x s $y \leq z$, por lo que x s y es la menor cota superior de $\{x,y\}$.

Finalmente, entonces, esto significa por def. de supremo que $\sup(\{x,y\}) = x s y$, y se demuestra.

• $\inf(\{x,y\}) = x \ i \ y$

- Notemos que $x \leq y \iff x \ s \ y = y$. Luego, aplicando ínfimo de x a ambos, llegamos a que $x \ i \ y = x \ i \ (x \ s \ y) \triangleq x$. Entonces, $x \leq y \iff x \ i \ y = x$ o, por conmutatividad, $y \ i \ x = x$ (def. alternativa del orden parcial).
- Veamos que x i y $\stackrel{\text{Reflexividad}}{=}$ (x i x) i y $\stackrel{\text{Asociatividad}}{=}$ x i (x i y). Luego, por def. alternativa del orden parcial, x i $y \le x$. Del mismo modo, llegamos a que x i $y \le y$, por lo que por def. x i y es una cota inferior de $\{x,y\}$.
- Sea z una cota inferior de $\{x,y\}$, entonces por def. $z \le x \land z \le y$, por lo que por def. alternativa del orden parcial, z i $x = z \land z$ i y = z. Ahora, notemos que:

$$(z \ i \ x) \ i \ (z \ i \ y) = z \ i \ z$$
 $(x \ i \ y) \ i \ (z \ i \ z) = z \ i \ z$ Asociatividad y Conmutatividad
 $(x \ i \ y) \ i \ z = z$ Reflexividad

Luego, por def. alternativa de \leq , tenemos que $z \leq x$ i y, por lo que x i y es la mayor cota inferior de $\{x,y\}$.

Finalmente, entonces, esto significa que por la def. de ínfimo, $\inf(\{x,y\}) = x i y$.

Con todo ello, entonces, se demuestra. ■

Lema

Supongamos que \vec{a}, \vec{b} son asignaciones tales que si $x_i \in Li(\varphi)$, entonces $a_i = b_i$. Entonces $\mathbf{A} \models \varphi[\vec{a}]$ sii $\mathbf{A} \models \varphi[\vec{b}]$

Demostración

Por lema sabemos que: Sea **A** una estructura de tipo τ y sea $t \in T^{\tau}$. Supongamos que \vec{a}, \vec{b} son asignaciones tales que $a_i = b_i$, cada vez que x_i ocurra en t. Entonces $t^{\mathbf{A}}[\vec{a}] = t^{\mathbf{A}}[\vec{b}]$.

Vamos a demostrar por inducción en k que el lema vale $\forall \varphi \in F_k^{\tau}$. Suponemos \vec{a}, \vec{b} asignaciones tales que si $x_i \in Li(\varphi)$, entonces $a_i = b_i$.

- Caso base k=0: Sea $\varphi\in F_0^{\tau}$, entonces tenemos dos casos:
 - $-\varphi = (t \equiv s)$ con $t, s \in T^{\tau}$: Por lema, sabemos que $t^{\mathbf{A}}[\vec{a}] = t^{\mathbf{A}}[\vec{b}]$ y que $s^{\mathbf{A}}[\vec{a}] = s^{\mathbf{A}}[\vec{b}]$. Por ello:

$$\begin{aligned} \mathbf{A} &\vDash \varphi[\vec{a}] \iff \mathbf{A} \vDash (t[\vec{a}] \equiv s[\vec{a}]) \\ \iff \mathbf{A} \vDash (t[\vec{b}] \equiv s[\vec{b}]) \\ \iff \mathbf{A} \vDash \varphi[\vec{b}] \end{aligned}$$

por lo que se demuestra.

 $-\varphi = r(t_1, \ldots, t_n)$ con $r \in \mathcal{R}_n, n \ge 1$ y $t_1, \ldots, t_n \in T^{\tau}$: Por lema, sabemos que $t_i^{\mathbf{A}}[\vec{b}] = t_i^{\mathbf{A}}[\vec{b}]$. Por ello:

$$\mathbf{A} \vDash \varphi[\vec{a}] \iff \mathbf{A} \vDash r(t_1[\vec{a}], \dots, t_n[\vec{a}])$$

$$\iff \mathbf{A} \vDash r(t_1[\vec{b}], \dots, t_n[\vec{b}])$$

$$\iff \mathbf{A} \vDash \varphi[\vec{b}]$$

por lo que se demuestra.

- Hipótesis inductiva (k): Sea $k \in \mathbb{N}_0$, entonces $\forall \varphi \in F_k^{\tau}, (\mathbf{A} \vDash \varphi[\vec{a}] \iff \mathbf{A} \vDash \varphi[\vec{b}])$
- Caso inductivo (k+1): Sea $\varphi \in F_{k+1}^{\tau}$, tenemos varios casos:
 - Si $\varphi \in F_{k}^{\tau}$: se demuestra por HI.
 - Si $\varphi = (\varphi_1 \eta \varphi_2)$ con $\varphi_1, \varphi_2 \in F_k^{\tau}$ y $\eta \in \{\land, \lor, \rightarrow, \leftrightarrow\}$: Los casos son análogos, por lo que vamos a ver $\varphi = (\varphi_1 \land \varphi_2)$. Como $Li(\varphi_i) \subseteq Li(\varphi)$, por HI $\mathbf{A} \models \varphi_i[\vec{a}] \iff \mathbf{A} \models \varphi_i[\vec{b}]$. Se tiene entonces que:

$$\begin{aligned} \mathbf{A} \vDash \varphi[\vec{a}] &\iff \mathbf{A} \vDash \varphi_1[\vec{a}] \text{ y } \mathbf{A} \vDash \varphi_2[\vec{a}] & \text{ Def. de } \vDash \\ &\iff \mathbf{A} \vDash \varphi_1[\vec{b}] \text{ y } \mathbf{A} \vDash \varphi_2[\vec{b}] & \text{ HI } \\ &\iff \mathbf{A} \vDash \varphi[\vec{b}] & \text{ Def. de } \vDash \end{aligned}$$

por lo que se demuestra.

- Si $\varphi = Qx_j\varphi_1$ con $\varphi_1 \in F_k^{\tau}$ y $Q \in \{\forall, \exists\}$: Los dos casos son análogos, por lo que vamos a ver $\varphi = \forall x_j\varphi_1$. Como $Li(\varphi_1) \subseteq Li(\varphi) \cup \{x_j\}$, por HI $\mathbf{A} \models \varphi_1[\vec{a}] \iff \mathbf{A} \models \varphi_1[\vec{b}]$. Por ello mismo, entonces, $\mathbf{A} \models \varphi_1[\downarrow_j^a(\vec{a})] \iff \mathbf{A} \models \varphi_1[\downarrow_j^a(\vec{b})]$ para todo $a \in A$. Con esto en mente, se tiene:

$$\begin{aligned} \mathbf{A} &\vDash \varphi[\vec{a}] \iff \forall a \in A, \mathbf{A} \vDash \varphi_1[\downarrow_j^a(\vec{a})] & \text{Def. de } \vDash \\ &\iff \forall a \in A, \mathbf{A} \vDash \varphi_1[\downarrow_j^a(\vec{b})] & \text{Prop. anterior} \\ &\iff \mathbf{A} \vDash \varphi[\vec{b}] & \text{Def. de } \vDash \end{aligned}$$

por lo que se demuestra.

Con todo ello, entonces, se demuestra por inducción. \blacksquare