Digital Signal Processing Fundamentals (5ESC0)

Z-transform

Sveta Zinger, Piet Sommen

s.zinger@tue.nl

Definition

- * Z-transform is performed in the discrete time domain, it is the counterpart of the Laplace transform, which is in the continuous time domain
- * Z-transform is a transform in a complex domain
 - Z-domain, with real and imaginary axes
- * Z-transform can be defined as

$$\mathbf{ZT:} \qquad X(z) = \sum_{n = -\infty}^{\infty} x[n] \mathbf{z}^{-n}$$

Definition

* Fourier transform for discrete time series (FTD) is Z-transform calculated on the unit circle

* Substituting z by $e^{j\theta}$ we obtain the Fourier transform and the other way around:

 $\mathbf{FTD} \equiv \mathbf{ZT} \text{ evaluated on unit circle: } X(z)|_{z=\mathbf{e}\mathbf{j}_{\theta}} = X(\mathbf{e}^{\mathbf{j}\theta})$

Definition

* FTD

FTD:
$$X(e^{j\theta}) = \sum_{n=-\infty}^{\infty} x[n]e^{-jn\theta}$$

* Z-transform

ZT:
$$X(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n}$$

- * Why do we need Z-transform?
 - It allows to perform system analysis through the system function (poles and zeros)

Z-transform

ZT:
$$X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$$

If the input signal x is a delta pulse, then X(z) = 1:

Explanation:

for n=0 we get $X(z)=\delta(0)z^{-0}=1$, because $\delta(0)=1$ for other n we will have $\delta(n)=0$.

So we can write

$$x_1[n] = \delta[n] \quad \circ \longrightarrow \quad X_1(z) = 1$$

ZT:
$$X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$$

Input signal $x[n] = \delta(n - k)$, what is X(z)?

Here the delta pulse is shifted over k samples, therefore we will have a delta pulse on the position n = k.

For n=k we get $X(z)=\delta(0)z^{-k}=z^{-k}$, because $\delta(0)=1$ for other n we will have $\delta(n)=0$.

So we can write

$$x_2[n] = \delta[n-k]$$
 on $X_2(z) = z^{-k}$

Let us consider one more example

Input signal $x[n] = a^n u[n]$, what is X(z)?

For $a = \frac{1}{2}$, x[n] is on the plot below:

Observing the plot above, we can present x[n] as follows:

$$x[n] = a^n u[n] = \delta[n] + a\delta[n-1] + a^2 \delta[n-2] + \cdots$$

Z-transform is a linear transform, so we can perform it element by element:

$$X(z) = 1 + az^{-1} + a^2z^{-2} + \cdots$$

In this example we can see that we obtain in Z-domain a polynomial description of a function from which we can see sample values in the digital domain

Note:

If X(z) writes as polynomial function with terms z^{-1} , then factor of term z^{-i} equals value of x[n] at time n=i

Summary of this example:

$$x_3[n] = (a)^n u[n] \quad \circ - \circ \quad X_3(z) = 1 + az^{-1} + a^2 z^{-2} + a^3 z^{-3} \cdots$$

We can see the step function u[n] in the expression for $x_3[n]$, so the summation for Z-transform can start from 0 in this case instead of $-\infty$:

$$X(z) = \sum_{n=0}^{\infty} a^n z^{-n} = \sum_{n=0}^{\infty} (az^{-1})^n = \frac{1}{1 - az^{-1}}$$

this is a geometric series and can be written as

Region of Convergence

The expression above for geometric series is only true when $|az^{-1}| < 1$. It can be rewritten as |z| > |a|.

This can be put on the Z-plane – it is ROC (Region of Convergence):

a > 1

Region of Convergence

Why is ROC important?

We can calculate the Z-transform of a digital signal, but we are often interested in Fourier transform for discrete time series (FTD):

If the unit circle lies inside the ROC for Z-transform, then we can calculate FTD for such a signal

FTD converges <u>iff</u> unit circle in ROC

We will find Z-transform of the sequence below:

$$x_4[n] = -(a)^n u[-n-1]$$

The step function u[-n-1]=1 when $(-n-1)\geq 0$, this can be rewritten as $n\leq -1$, so we n set the summation in the Z-transform of this sequence in the interval $(-\infty; -1)$:

$$X(z) = -\sum_{-\infty}^{-1} a^n z^{-n} = -\sum_{-\infty}^{-1} (az^{-1})^n = -\sum_{p=1}^{\infty} (az^{-1})^{-p} = \cdots$$
We can replace n by $-p$, so $p = -n$

Let's put the minus inside

$$-\sum_{p=1}^{\infty} (az^{-1})^{-p} = -\sum_{p=1}^{\infty} (a^{-1}z)^{p}$$

There is a formula for the series $\sum_{n=0}^{\infty} i^n$, but our first value of p is equal to 1 and not to zero,

we can change it by adding the term for p=0; this term equals to 1, because $(a^{-1}z)^0=1$, so we also have to subtract 1: in this way we do not change our series – we add 1 and subtract 1

$$-\sum_{p=1}^{\infty} (a^{-1}z)^p = -\left(\sum_{p=0}^{\infty} (a^{-1}z)^p - 1\right) = 1 - \frac{1}{1 - a^{-1}z}$$
This step is only valid when $|a^{-1}z| < 1$ or $|z| < |a|$

From the expression on the right hand side above we can derive the final formula for the Z-transform in this example:

$$X(z) = \frac{1}{1 - az^{-1}}$$

ROC differences

Thus while $x_3[n] \neq x_4[n] \Rightarrow X_4(z) = X_3(z)$ but different ROC!

FTD converges <u>iff</u> unit circle in ROC

ROC differences

Region of convergence may also be in a ring, for example, $\frac{1}{2} < z < 2$

Z-transforms of delta pulses

We have already considered several simple but very useful examples:

Signal in time domain $x[n]$	Z-transform $X(z)$
$\delta[n]$	1
$\delta[n-k]$	z^{-k}
$a\delta[n+1] + b\delta[n] + c\delta[n-1]$	$az + b + cz^{-1}$, a, b, c – parameters

Z-transforms of delta pulses

Explanation for the formula in the last line of the table above

If
$$x[n] = \delta[n+1]$$
, we can also write $x[n] = \delta[n-(-1)] = \delta[n-k]$, if $k = -1$; then $X(z) = z^{-k} = z^1$

If
$$x[n] = \delta[n-1]$$
, we can also write $x[n] = \delta[n-k]$, if $k=1$; then $X(z) = z^{-1}$

We can see that z^{-1} is related to a delay [n-1]

Z-transform and delay

In a flowchart of a system we can indicate a delay by T

A delay can also be indicated by z^{-1} :

Common Z-transform pairs

Sequence	Z-transform	ROC
$\delta[n]$	1	all z
$\delta[n-i]$	z^{-i}	$z \neq 0, \infty$
$a^n u[n]$	$\frac{1}{1-az^{-1}}$	z > a
$-a^n u[-n-1]$	$\frac{\frac{1}{1-az^{-1}}}{az^{-1}}$	z < a
$na^nu[n]$	$rac{az^{-1}}{(1-az^{-1})^2}$	z > a
$-na^nu[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
$a^n \cos(n\theta_0)u[n]$	$\frac{1 - az^{-1}\cos(\theta_0)}{1 - 2az^{-1}\cos(\theta_0) + a^2z^{-2}}$	z > a
$a^n \sin(n\theta_0) u[n]$	$\frac{az^{-1}\sin(\theta_0)}{1-2az^{-1}\cos(\theta_0)+a^2z^{-2}}$	z > a
$a^n \sin(n\theta_0 + \phi)u[n]$	$\frac{\sin(\phi) + az^{-1}\sin(\theta_0 - \phi)}{1 - 2az^{-1}\cos(\theta_0) + a^2z^{-2}}$	z > a

Example: common Z-transform pair (1/2)

Find the Z-transform of the following sequence:

$$x[n] = \left(\frac{1}{3}\right)^n \cos(n\omega_0)u[n]$$

Solution

Use the Z-transform table on previous slide to find the pair we need:

$$X(z) = \frac{1 - \frac{1}{3}\cos(\omega_0)z^{-1}}{1 - \frac{2}{3}\cos(\omega_0)z^{-1} + \frac{1}{9}z^{-2}}$$

Example: common Z-transform pair (2/2)

So the solution is

$$X(z) = \frac{1 - \frac{1}{3}\cos(\omega_0)z^{-1}}{1 - \frac{2}{3}\cos(\omega_0)z^{-1} + \frac{1}{9}z^{-2}},$$

with a region of convergence $|z| > \frac{1}{3}$ which we can find in the table for Z-transform pairs

Does FTD converge for this signal? Why?

Properties of Z-transform

 $\hbox{\tt Linearity} \qquad \qquad : \qquad a \cdot x[n] + b \cdot y[n] \qquad \circ \!\!\! - \!\!\! \circ \qquad a \cdot X(z) + b \cdot Y(z)$

Shifting property : $x[n-n_0]$ \circ $z^{-n_0}X(z)$

Time reversal : x[-n] \circ \sim $X(z^{-1})$

Multiply by exponential : $a^n \cdot x[n]$ $\circ - \circ$ $X(a^{-1}z)$

Convolution theorem : y[n] = x[n] * h[n] $\circ - \circ Y(z) = X(z) \cdot H(z)$

Conjugation : $x^*[n]$ $\circ - \circ$ $X^*(z^*)$

 $\underline{\mathsf{Derivative}} \qquad \qquad : \qquad nx[n] \qquad \qquad \circ - z \frac{\mathsf{d}X(z)}{\mathsf{d}z}$

We will find Z-transform of the sequence below:

$$x[n] = \left(\frac{1}{2}\right)^n u[n] - 2^n u(-n-1)$$

The sequence above is a sum of two sequences:

$$x_1[n] = \left(\frac{1}{2}\right)^n u[n]$$

and

$$x_2[n] = -2^n u[-n-1]$$

We remember from the common transform pairs:

sequence $a^n u[n]$ has Z-transform equal to $\frac{1}{1-az^{-1}}$ with ROC |z| > a

So for the first sequence
$$x_1[n] = \left(\frac{1}{2}\right)^n u[n]$$

we obtain the following result in Z-domain:

$$X_1(z) = \frac{1}{1 - \frac{1}{2}z^{-1}}$$
, $|z| > \frac{1}{2}$

We also remember from the common transform pairs:

sequence $-a^n u[-n-1]$ has Z-transform equal to $\frac{1}{1-az^{-1}}$ with ROC |z| < a

So for the first sequence $x_2[n] = -2^n u(-n-1)$

we obtain the following result in Z-domain:

$$X_2(z) = \frac{1}{1 - 2z^{-1}}$$
, $|z| < 2$

Therefore, the Z-tranform of the provided sequence x[n] will be

$$X(z) = X_1(z) + X_2(z) = \frac{1}{1 - \frac{1}{2}z^{-1}} + \frac{1}{1 - 2z^{-1}} = \frac{2 - \frac{5}{2}z^{-1}}{\left(1 - \frac{1}{2}z^{-1}\right)(1 - 2z^{-1})}$$

With a region of convergence (ROC) $\frac{1}{2} < |z| < 2$

In this case ROC is the set of all points that are in the ROC of both $X_1(z)$ and $X_2(z)$

Find the Z-tranform of the convolution of two following sequences: $x[n] = \alpha^n u[n]$ and $h[n] = \delta[n] - \alpha \delta[n-1]$.

The Z-transform of the first sequence $x[n] = \alpha^n u[n]$ is

$$X(z) = \frac{1}{1-\alpha z^{-1}}, \quad |z| > |\alpha|$$

The Z-transform of the second sequence is

$$H(z) = 1 - \alpha z^{-1}$$

We know that the convolution in the time domain is multiplication in the Z-domain.

Therefore we can find the Z-transform of the convolution of the given sequences by multipying their Z-transforms:

$$Y(z) = X(z)H(z) = \frac{1}{1-\alpha z^{-1}}(1-\alpha z^{-1}) = 1.$$

There are several ways for calculating the inverse z-transform

If we can decompose the expression for Z-transform into parts whose transform pairs are in the table above, then the inverse Z-transform is straightforward.

For example, let's perform the inverse Z-transform for

$$x(z) = \frac{1}{1 - \frac{1}{3}z^{-1}}$$

What is
$$x[n]$$
 for $x(z) = \frac{1}{1 - \frac{1}{3}z^{-1}}$?

We know that the sequence $x[n] = a^n u[n]$ has the Z-transform $X(z) = \frac{1}{1-az^{-1}} |a| < 1$

So the answer is
$$x[n] = \left(\frac{1}{3}\right)^n u[n]$$
, in this case $a = \frac{1}{3}$

Let's consider partial fraction expansion for inverse Z-transform Assume that we are given $X(z) = \frac{5-2z^{-1}}{1-\frac{5}{6}z^{-1}+\frac{1}{6}z^{-2}}$ and we have to find x[n].

The denominator here is a second order polynomial, we can find its zeros and rewrite

$$X(z) = \frac{5 - 2z^{-1}}{\left(1 - \frac{1}{2}z^{-1}\right)\left(1 - \frac{1}{3}z^{-1}\right)} = \frac{A_1}{1 - \frac{1}{2}z^{-1}} + \frac{A_2}{1 - \frac{1}{3}z^{-1}}$$

To get the common nominator for the sum above, we can write

$$A_1\left(1-\frac{1}{3}z^{-1}\right)+A_2\left(1-\frac{1}{2}z^{-1}\right)=5-2z^{-1},$$

 A_1 and A_2 are constant values.

This can be rewritten as

$$(A_1 + A_2) - \left(\frac{A_1}{3} + \frac{A_2}{2}\right)z^{-1} = 5 - 2z^{-1}$$
 constant another constant another constant

We can write it as

$$A_1 + A_2 = 5$$

$$\frac{A_1}{3} + \frac{A_2}{2} = 2$$

From this system of equations we obtain

$$A_1 = 3$$
; $A_2 = 2$

Now we can rewrite the expression for the provided Z-transform

$$X(z) = \frac{3}{1 - \frac{1}{2}z^{-1}} + \frac{2}{1 - \frac{1}{3}z^{-1}}$$

So we can deduce the signal in the time domain:

$$x[n] = 3\left(\frac{1}{2}\right)^n u[n] + 2\left(\frac{1}{3}\right)^n u[n]$$

There is also another method we can use in the same example

Let's recall the initial Z-transform function:

$$X(z) = \frac{5 - 2z^{-1}}{1 - \frac{5}{6}z^{-1} + \frac{1}{6}z^{-2}}$$

We have rewritten it as

$$X(z) = \frac{5 - 2z^{-1}}{\left(1 - \frac{1}{2}z^{-1}\right)\left(1 - \frac{1}{3}z^{-1}\right)} = \frac{A_1}{1 - \frac{1}{2}z^{-1}} + \frac{A_2}{1 - \frac{1}{3}z^{-1}}$$

The roots of the polynomial in the denominator of this function are $\frac{1}{2}$ and $\frac{1}{3}$.

Let's multiply both sides of the equation

$$\frac{5 - 2z^{-1}}{\left(1 - \frac{1}{2}z^{-1}\right)\left(1 - \frac{1}{3}z^{-1}\right)} = \frac{A_1}{1 - \frac{1}{2}z^{-1}} + \frac{A_2}{1 - \frac{1}{3}z^{-1}}$$

by
$$\left(1 - \frac{1}{2}z^{-1}\right)$$
.

We will then obtain

$$\frac{5 - 2z^{-1}}{\left(1 - \frac{1}{3}z^{-1}\right)} = A_1 + \frac{A_2}{1 - \frac{1}{3}z^{-1}} \left(1 - \frac{1}{2}z^{-1}\right)$$
this is zero if $z = \frac{1}{2}$

If $z = \frac{1}{2}$ (one of the roots of the polynomial of denominator), then

$$A_1 = \frac{5-2z^{-1}}{\left(1-\frac{1}{3}z^{-1}\right)} = \frac{5-4}{1-\frac{2}{3}} = 3$$
; and similarly we can find $A_2 = 2$.

Z-transforms that are rational functions of z:

$$X(z) = \frac{b_0 + b_1 z^{-1} + \dots + b_N z^{-N}}{1 + a_1 z^{-1} + \dots + a_M z^{-M}} = \frac{\sum_{k=0}^{N} b_k z^{-k}}{1 + \sum_{k=1}^{M} a_k z^{-k}} =$$

$$= b_0 \frac{\prod_{k=1}^{N} (1 - \beta_k z^{-1})}{\prod_{k=1}^{M} (1 - \alpha_k z^{-1})}$$

For M>N and simple roots, thus $\alpha_i\neq\alpha_k$ for $i\neq k$, we obtain:

$$X(z) = \sum_{k=1}^{M} \frac{A_k}{1 - \alpha_k z^{-1}}$$
 o-o $x[n] = \sum_{k=1}^{M} A_k (\alpha_k)^n u[n]$

Z-transform

with coefficients

 $A_k = \left[(1 - \alpha_k z^{-1}) X(z) \right] |_{z = \alpha_k}$ DSP Fundamentals (Signals II) / **5ESC0** /

Fac. EE, SPS

Summary

We considered the definition of Z-transform, its properties

region of convergence and its properties,

inverse Z-transform

and examples

