Math 239 - Introduction to Combinatorics

Spring 2017

Lecture 31: July 12th, 2017

Lecturer: Alan Arroyo Guevara Notes By: Harsh Mistry

31.1 Matchings

Image goes here

Definition 31.1 Given a graph G a matching is set M of edges of G such that every vertex in G is incident to at most one edge in M

Definition 31.2 Let M be a matching of G

- 1. M is Maximum if every other matching M' has $|M'| \in |M|$ (Red edges form a maximum matching in G_1 and G_2 but not in G_3)
- 2. A matching is **perfect** if $|M| = \frac{1}{2} |V(G)|$ (Red edges form a perfect matching just for G_1)
- 3. A vertex $v \in V(G)$ is **saturated** by M if it is incident to an edge in M.

31.2 Augmenting paths

Goal: Given a graph, find a maximum matching.

- How to tell that a matching is not maximum? Use Augmenting paths
- How to tell a graph is not connected? There exists a cut
- How to tell a graph is bipartite? Check for Odd cycles
- How to tell that a matching is not planar Check for $K_{3,3}$ or K_5 subdivisions

Definition 31.3 Given a graph G and a matching M a path P is **alternating** if when we traverse P, the edges alternate between M and $E(G) \setminus M$

If in addition the ends of P are unsaturated, then P is Augmenting