TREES

PROF. NAVRATI SAXENA

Non-Linear Data structures

- Each item can be connected to several other items
- Items have hierarchical relationship
- Each item is called node
- Provides efficient insertion and searching
- Very flexible data structures
- The different non-linear data structures are
 - Trees
 - Graphs

Trees

Tree Terminology

- Hierarchical organization
- Nodes connected by edges

Major Terminologies

Root	Special node to refer the entire tree
Parent	Immediate predecessor of a node
Child	All immediate successors of a node
Siblings	All nodes having the same parent
Path	Successive edges from a source node to a destination node
Node Height	Maximum number of edges from a node to leaves
Tree Height	Height of the Root
Node Depth	Number of edges from Root to a node
Node Degree	Number of children of a node
Edge	Connection between any two nodes

Tree Terminology

- Size: Number of nodes in the tree
 E.g. Tree in figure has size = 12
- **Depth of a node:** Distance (number of edges) from the root.
 - Depth of node P = 0
 - Depth of node S = 2
- Height (h) of a tree: Maximum depth of any node in the tree
- Leaf Node: Nodes of a tree at the maximum depth

Balanced Binary Trees

Balanced Binary Tree

Unbalanced Binary Tree

Balanced Tree: Every level above the lowest is "full" (contains 2n nodes) n = number of nodes in the previous level

BINARY TREES

Binary Tree

- An ordered tree, each node having a maximum of 2 child nodes
- A binary tree consists of:
 - A node (called the root node)
 - Left and right sub trees
- Complete binary tree: binary tree with all the nodes having 2 subtrees

FORMAL DEFINITION

A binary tree is either empty or consists of a node called the root together with two binary trees called the left subtree and the right subtree.

- Number of Leaves (n) = 8
- Number of nodes (2n 1) = 2 x 8 1 = 15

Parts of a Binary Tree

- Maybe empty contains no nodes
- If not empty, has a root node
- Root and every other node contains:
 - (1) A value (2) Pointer to a left child (may be null), and (3) Pointer to a right child (may be null)
- Each node is reachable from the root node by a unique path
- Leaf node: A node with neither a left child nor a right child

A Sample Binary Tree

Types of Binary Trees

- Full binary tree/Proper binary tree/2-tree/strictly binary tree:

 Every node other than the leaf node has two children
- Complete binary tree/Perfect binary tree/ full binary tree: All leaves are at the same depth or same level, and in which every parent has two children

 Balanced binary tree: The depth of the two subtrees of every node never differ by more than 1

Binary Tree Traversals

- Recursive Definition: Consists of root, a left subtree, and a right subtree
- Traverse/walk: visit each node in the binary tree exactly once
- Tree traversals are naturally recursive
- Since a binary tree has **three "parts**," there are **six** possible ways to traverse the binary tree:
 - 1. root, left, right
 - 2. left, root, right
 - 3. left, right, root

- 4. root, right, left
- 5. right, root, left
- 6. right, left, root
- left and right are recursive calls to left and right sub-trees respectively

DFS (Depth First Search) – Types

root, left, right Pre-order Traversal
 left, root, right In-order Traversal
 left, right, root Post-order Traversal

DFS: Pre-order Traversal (1/14)

- root -> left -> right
- left and right: recursive calls to left and right sub-trees respectively

DFS: Pre-order Traversal (2/14)

- root -> left -> right
- left and right: recursive calls to left and right sub-trees respectively

DFS: Pre-order Traversal (3/14)

- root -> left -> right
- left and right: recursive calls to left and right sub-trees respectively

DFS: Pre-order Traversal (4/14)

root -> left -> right

Root S has no left or right sub-tree

- ⇒ Completed all left sub-trees originated at root P, Q, S
- ⇒ Visit the right sub-tree of "root (S) = Q"

DFS: Pre-order Traversal (5/14)

DFS: Pre-order Traversal (6/14)

W

21/62

DFS: Pre-order Traversal (7/14)

root -> left -> right

W: No left or right sub-tree

Root(W) = T: No right sub-tree

Root(T) = Q: Right sub-tree visited

Root(Q) = P: Left sub-tree visited

Visit right sub-tree

DFS: Pre-order Traversal (8/14)

DFS: Pre-order Traversal (9/14)

DFS: Pre-order Traversal (10/14)

root -> left -> right

Root X has no left or right sub-tree

- ⇒ Completed all left sub-trees originated at root R, U, X
- ⇒ Visit the right sub-tree of "root (X) = U"

DFS: Pre-order Traversal (11/14)

root -> left -> right

DFS: Pre-order Traversal (12/14)

root -> left -> right

DFS: Pre-order Traversal (13/14)

root -> left -> right

- left and right sub-tree: NULL
- Root (Z) = Y: left and right sub-trees visited
- Root (Y) = U: left and right sub-trees visited
- Root (U)=R: left sub-tree visited => visit right

DFS: Pre-order Traversal (14/14)

Thank you!