

RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES

B.Sc. (General) Degree in Applied Sciences Second Year – Semester II Examination– February/ March 2019

MAP 2204 - COMPLEX CALCULUS

Time: Two (02) hours

Answer all questions.

1. a) State and prove the **Triangle inequality** for complex numbers.

Hence, show that $|z_1 + z_2| \ge ||z_1| - |z_2||$, where z_1 and z_2 are any two complex numbers.

(40 marks)

b) State De Moivre's theorem. Using the theorem,

- i. find all complex roots of the equation $z^2 (\sqrt{3} + i) = 0$,
- ii. show that $\sin 3\theta = 3\sin \theta 4\sin^3 \theta$.

(60 marks)

2. a) Write down the Cauchy Riemann equations for f(z) = u(x, y) + iv(x, y).

Use Cauchy Riemann equations to prove that the function $f(z) = e^z$ for $z \in \mathbb{C}$ is differentiable everywhere.

(30 marks)

b) Let
$$u(x, y) = y/(x^2 + y^2)$$

- i. Show that u(x, y) is a harmonic function in \mathbb{C} .
- ii. Find a harmonic conjugate v(x, y) such that u(x, y) + iv(x, y) is analytic in \mathbb{C} .
- iii. Express u(x, y) + iv(x, y) as a function of z, where z = x + iy.

(50 marks)

c) Show that, if f'(z) = 0 everywhere in a domain D, then f(z) is a constant throughout D.

(20 marks)

3. a) State Cauchy's Integral formula.

Evaluate $\int_{C} \frac{e^{az^2} dz}{z^3}$, where C is a positively oriented circle |z| = 1.

Deduce that, $\int_{0}^{2\pi} e^{a\cos 2\theta} \cos(a\sin 2\theta) d\theta = 2\pi.$

(40 marks)

b) State Modulus - Length inequality.

Hence, show that $\left| \int_{C} \frac{z^{\frac{1}{2}}}{(z^2 + 1)} dz \right| \le \frac{\pi \sqrt{R}}{1 - (1/R^2)}$, where C is the semi-circle with a radius

of R, centered at the origin and $0 \le \theta \le \pi$.

(40 marks)

c) Evaluate $\int_{C} \frac{e^{2z} dz}{z^4}$, where C is a positively oriented circle |z| = 1.

(20 marks)

4. a) Find the Taylor series expansion for a function $f(z) = e^z$, if it is analytic in $|z| < \infty$.

Deduce the Maclaurin series expansion of the function $f(z) = \cos z$, given that f is analytic in $|z| < \infty$.

(30 marks)

b) Find the Laurent's series expansion of $f(z) = \frac{-1}{(z-1)(z-2)}$ in the annular region defined as 1 < |z| < 2.

(30 marks)

c) State Cauchy's Residue theorem.

Hence, show that

$$\int_{0}^{2\pi} \frac{\cos^2 3\theta}{5 - 4\cos 2\theta} d\theta = \frac{3\pi}{8} \text{ for } |z| < 1.$$

(40 marks)

------ END ------