PRÁCTICA: LARSON - SECCIÓN 3.4 CRITERIO DE LA SEGUNDA DERIVADA PARA EXTREMOS

Dra. Penélope Cordero

Facultad de Ingeniería y Ciencias Hídricas Universidad Nacional del Litoral

¿Qué ejercicios de práctica debo hacer?

- ✓ Ejercicios Propuestos:
 - Pág. 185: 21 al 37 /// 51 52.

- ✓ EN ESTE VIDEO:
 - Ejercicio 21.
 - Ejercicio 30.
 - Ejercicio 32.
 - Ejercicio 36.
 - Ejercicio 52.

Criterio de la segunda derivada

Teorema 3.9 (pag. 184)

Sea f una función tal que f'(c) = 0 y exista la segunda derivada de f en un intervalo abierto que contenga a c.

- Si f''(c) > 0, entonces f(c) es un mínimo relativo.
- \circ Si f''(c) < 0, entonces f(c) es un máximo relativo.

Si f''(c)=0, el criterio no funciona. Es decir, f puede tener un mínimo relativo, un máximo relativo o ninguno de los dos. En tales casos se puede usar el criterio de la primera derivada.

Ejercicio 21

Encuentre todos los extremos relativos. Emplee el criterio de la segunda derivada cuando sea posible.

21.
$$f(x) = x^4 - 4x^3 + 2$$

Solución:

• Hallamos los números críticos de f:

$$f'(x) = 4x^3 - 12x^2$$

$$= 4x^2(x-3) = 0 \qquad \text{Igualación a 0 de } f'(x)$$

$$x = 0, 3$$

Números críticos

• Calculamos f''(x):

$$f''(x) = 12x^2 - 24x.$$

EJERCICIO 21

f es tal que f'(0) = f'(3) = 0 y f''(x) existe para todo $x \in \mathbb{R}$, teniendo en cuenta el Teorema 3.9, podemos aplicar el criterio de la segunda derivada.

Punto	(3, -25)	(0,2)
Signo de $f''(x)$	$f''(3) = 12(3)^2 - 24(3) = 36 > 0$	$f''(0) = 12(0)^2 - 24(0) = 0$
Conclusión	Mínimo relativo	El criterio no funciona

Para determinar si el punto (0,2) es un extremo relativo aplicamos el criterio de la primera derivada:

Intervalo	$-\infty < x < 0$	$0 < x < \infty$
Valor de prueba	x = -1	x = 1
Signo de $f'(x)$	$f'(-1) = 4(-1)^3 - 12(-1)^2 = -16 < 0$	$f'(1) = 4(1)^3 - 12(1)^2 = -8 < 0$
Conclusión	Decreciente	Decreciente

Por lo tanto (0,2) no es un máximo relativo ni un mínimo relativo.

Encuentre todos los extremos relativos. Emplee el criterio de la segunda derivada cuando sea posible.

30. $y = x \ln x$

Solución: Llamemos $f(x) = x \ln x$

. Hallamos los números críticos de f:

$$f'(x) = \ln x + x \frac{1}{x}$$

$$= \ln x + 1 \qquad x \neq 0$$

$$= \ln x + 1 = 0 \qquad \text{Igualación a 0 de } f'(x)$$

$$\ln x = -1$$

$$x = e^{-1}$$

Números críticos

• Calculamos f''(x):

$$f''(x) = \frac{1}{x}$$

$$f(x)=x\ln x$$
es tal que
$$f'\left(e^{-1}\right)=0$$

$$f''(x)=\frac{1}{x} \quad \text{existe para todo } x>0$$

teniendo en cuenta el Teorema 3.9, podemos aplicar el criterio de la segunda derivada:

Punto	$(e^{-1}, -e^{-1})$
Signo de $f''(x)$	$f''(e^{-1}) = \frac{1}{e^{-1}} = e > 0$
Conclusión	Mínimo relativo

Encuentre todos los extremos relativos. Emplee el criterio de la segunda derivada cuando sea posible.

32.
$$y = x^2 \ln \frac{x}{4}$$

Solución: Llamemos $f(x) = x^2 \ln \frac{x}{4}$.

· Hallamos los números críticos de y:

$$\begin{array}{lll} f'(x) & = & 2x \ln \frac{x}{4} + x^2 \frac{1}{\frac{x}{4}} \frac{1}{4} & = 2x \ln \frac{x}{4} + x^2 \frac{4}{x} \frac{1}{4} \\ & = 2x \ln \frac{x}{4} + x & x \neq 0 \\ & = x \left(2 \ln \frac{x}{4} + 1 \right) = 0 & \text{Igualación a 0 de } f'(x) \end{array}$$

$$x = \frac{4}{\sqrt{e}}$$

Números críticos

• Calculamos f''(x):

$$f''(x) = 2\ln\frac{x}{4} + 3$$

$$f(x)=x^2\ln\frac{x}{4}$$
es tal que
$$f'\left(\frac{4}{\sqrt{e}}\right)=0$$

$$f''(x)=2\ln\frac{x}{4}+3\quad\text{existe para todo }x>0$$

teniendo en cuenta el Teorema 3.9, podemos aplicar el criterio de la segunda derivada:

Punto	$\left(\frac{4}{\sqrt{e}}, \frac{8}{e}\right)$
Signo de $f''(x)$	$f''\left(\frac{4}{\sqrt{e}}\right) = 2\ln\frac{4/\sqrt{e}}{4} + 3 = 2 > 0$
Conclusión	Mínimo relativo

Encuentre todos los extremos relativos. Emplee el criterio de la segunda derivada cuando sea posible.

36.
$$f(x) = xe^{-x}$$

Solución:

• Hallamos los números críticos de f(x):

$$f'(x) = e^{-x} - xe^{-x}$$

$$= e^{-x}(1-x) = 0$$
 Igualación a 0 de $f'(x)$

x = 1

Números críticos

• Calculamos f''(x):

$$f''(x) = e^{-x}(x-2)$$

Sigue ↓

$$f(x)=xe^{-x}$$
es tal que
$$f'\left(1\right)=0$$

$$f''(x)=e^{-x}(x-2)\quad\text{existe para tod} ox\in\mathbb{R}$$

teniendo en cuenta el Teorema 3.9, podemos aplicar el criterio de la segunda derivada:

Punto	$\left(1, e^{-1}\right)$
Signo de $f''(x)$	$f''(1) = e^{-1}(1-2) = -e^{-1} < 0$
Conclusión	Máximo relativo

 ${f 52.}$ Trace la gráfica de la función f que tenga las características que se indican.

Condición	Característica
f(0) = f(2) = 0	fcorta al eje de las abscisas en $x=0$ y $x=2$
	1 es un número crítico tal que $f^{\prime}(x)$ cambia de
f'(x) > 0 si x < 1	positiva a negativa en 1. Luego, por el criterio de
f'(1) = 0	la primera derivada f tiene un máximo relativo en
f'(x) < 0 si x > 1	$(1, f(1)), f$ es creciente en $(-\infty, 1)$ y decreciente
	en $(1,\infty)$.
f''(x) < 0	Por el criterio de concavidad f es cóncava hacia
	abajo en todo su dominio.

Una gráfica con estas características es la siguiente:

