Práctica 3: TRANSFORMACIONES LINEALES

- 1. Para cada una de las siguientes funciones $T: \mathbb{R}^2 \to \mathbb{R}^2$ determinar si se trata de una transformación lineal y en caso afirmativo: obtener nul(T) y img(T), calcular su dimensión y determinar si T es inversible.
 - a) $T((x, y)^t) = (y, x)^t$.
 - b) $T((x, y)^t) = (x^2, y^2)^t$.
 - c) $T((x, y)^t) = (x, -y)^t$.
 - d) $T((x, y)^t) = (x, 0)^t$.
- 2. . Sea $V = \mathbb{R}^n$, fijamos la base canónica $B = \{e_1, e_2, \cdots, e_n\}$. Para cada $T_i : \mathbb{R}^n \to \mathbb{R}^n$ hallar A_i tal que $A_i x = T_i(x), \forall x \in \mathbb{R}^n, i = 1, \cdots, 4$.
 - a) $T_1(x) = x, \forall x \in \mathbb{R}^n$.
 - *b*) $T_2(x) = 0, \forall x \in \mathbb{R}^n$.
 - c) $T_3(x) = c \cdot x, c \in \mathbb{R}, \forall x \in \mathbb{R}^n$.
 - d) $T_4(x) = y$, donde $y = (y_k)_{k=1}^n$ con $y_k = x_k$, $i \neq k \neq j$, $y_k = x_i$, k = j y $y_k = x_j$, k = i
- 3. Consideremos la base canónica de $V = \mathbb{R}^2$ dada por $B = \{e_1, e_2\}$ y la transformación lineal $T : \mathbb{R}^2 \to \mathbb{R}^2$ que aplica los vectores e_1 y e_2 como sigue:

$$T(e_1) = e_1 + e_2,$$
 $T(e_2) = 2 \cdot e_1 - e_2.$

Obtener

- a) $T(3 \cdot e_1 4 \cdot e_2)$ y $T^2(3 \cdot e_1 4 \cdot e_2)$.
- b) las matrices asociadas a $T ext{ y } T^2$ en la base B.
- c) $T(v), \forall v \in V$.
- 4. Sean $T_{1,2}: \mathbb{R}^3 \to \mathbb{R}^3$ tal que $T_1((x,y,z)^t) = (x,y,0)^t$ y $T_2((x,y,z)^t) = (x,y,y)^t$. Hallar $T_1 \circ T_2$ y $T_2 \circ T_1$. Analizar si son epimorfismos, monomorfismos, isomorfismos o ninguna de ellas.
- 5. Definimos $\mathbb{R}_n[x] = \{p : p \text{ polinomio a coe ficientes reales } grad(p) \leq n, x \in \mathbb{R}\} \cup \{0\}$. Sea

$$T: \quad \mathbb{R}^{2\times 2} \quad \to \quad \mathbb{R}_3[x],$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \quad \mapsto \quad T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = 2dx^3 + (a+b)x^2 + (a-c)x + 2(c+d).$$

- *a*) Probar que *T* es lineal.
- *b*) Hallar una base para nul(T) y una para img(T).
- c) Determinar si T es un isomorfismo.
- 6. Sea $T_w : \mathbb{C} \to \mathbb{C}/T_w(z) = z + w\bar{z}$, donde w = a + ib, $a, b \in \mathbb{R}$.
 - a) Considerar w = 1 + i y calcular $T_w(2 + 3i)$.
 - b) Comprobar que T_w es una transformación lineal entre espacios vectoriales.
 - c) Si $B = \{1, i\}$ es base de \mathbb{C} , hallar la matriz de T_w en dicha base.
 - d) Probar que T_w es isomorfismo si y sólo si $a^2 + b^2 \neq 1$.
- 7. Sea $T: \mathbb{R}_n[x] \to \mathbb{R}_n[x]$ tal que $T(a_0 + a_1x + \cdots + a_nx^n) = a_0 + a_1(x+1) + \cdots + a_n(x+1)^n$. Probar que T es isomorfismo.
- 8. Sea $T: \mathbb{R}^3 \to \mathbb{R}^3$ tal que $T(v) = (x+y, x+z, \alpha(v))^t$, donde $v = (x, y, z)^t$ y $\alpha: \mathbb{R}^3 \to \mathbb{R}$. Determinar, si es posible, α de modo que T resulte lineal.

9. Sea $T: \mathbb{R}^3 \to \mathbb{R}^3$ transformación lineal tal que

$$T((0,0,1)^t) = (2,3,5)^t,$$
 $T((0,1,1)^t) = (1,0,0)^t,$ $T((1,1,1)^t) = (0,1,-1)^t.$

- a) Probar que con esta información es posible obtener T(v), $\forall v \in \mathbb{R}^3$.
- b) Determinar, fijada la base canónica en \mathbb{R}^3 , la matriz de T.
- c) Utilizando (9b), obtener $dim(nul(T) \vee rang(T))$.
- d) Determinar si T es inversible.
- 10. Determinar, si existe, una transformación lineal $T: \mathbb{R}^3 \to \mathbb{R}^2$ que verifique: $T((1,-1,1)^t) = (1,0)^t$ y $T((1,1,1)^t) = (0,1)^t.$
- 11. Sean V y W espacios vectoriales sobre \mathbb{K} y $\mathcal{L}(V,W) = \{T: V \to W: T \text{ trans formación lineal}\}$. Probar que para $T_1, T_2 \in \mathcal{L}(V, W)$

 - $i) \{v \in V : T_1(v) = T_2(v)\} \subset V.$ $ii) \text{ Si } V = \langle U \rangle \text{ y } T_1(u) = T_2(u), \forall u \in U, \text{ entonces } T_1(v) = T_2(v), \forall v \in V.$
- 12. Sean V y W espacios vectoriales de dimensión finita y $T \in \mathcal{L}(V, W)$. Probar que:
 - *i*) Si *T* inyectiva, entonces *T* transforma conjuntos *l.i.*. de *V* en conjuntos *l.i.* de *W*.
 - ii) Si T sobreyectiva, entonces T transforma conjuntos generadores de V en conjuntos generadores de
 - iii) T isomorfismo si y solo si T transforma bases de V en bases de W.
- 13. Sea V un espacio vectorial sobre $\mathbb K$ y supongamos que existe una aplicación lineal $T \in \mathcal L(V)$ tal que tanto nul(T) como img(T) son subespacios de dimensión finita. Probar que V también debe ser de dimensión finita.
- 14. Sea V un espacio vectorial de dimensión finita sobre \mathbb{K} , y $S,T\in\mathcal{L}(V)$. Probar que:
 - *i*) $T \circ S$ es inversible si y solo si S y T son inversibles.
 - *ii*) Para *I* la función identidad en V, $T \circ S = I$ si y solo si $S \circ T = I$.
- 15. Sea V el espacio vectorial de los números complejos y K el cuerpo de los números reales. Con las operaciones usuales, V es un espacio vectorial sobre K. Describir explícitamente un isomorfismo de este espacio con \mathbb{R}^2 .
- 16. Una matriz $n \times n$, $A = (a_{ij})_{i,i=1}^n$ con entradas en $\mathbb C$ tal que $A = \overline{A}^t$, i.e. $a_{ij} = \overline{a_{ji}}$, para todos $i, j = 1, \dots, n$ se dice Hermitiana.

Sea W el conjunto de todas las matrices Hermitianas 2×2 .

- *i*) Verificar que W es un espacio vectorial sobre \mathbb{R} .
- ii) Verificar que la aplicación

$$(x, y, z, t) \mapsto \begin{bmatrix} t + x & y + iz \\ y - iz & t - x \end{bmatrix}$$

es un isomorfismo de \mathbb{R}^4 en W.

- 17. Mostrar que $\mathbb{K}^{m \times n}$ es isomorfo a \mathbb{K}^{mn} .
- 18. Sean V y W dos espacios vectoriales de dimensión finita sobre K. Probar que V y W son isomorfos si y sólo si dim $V = \dim W$.
- 19. Sea T la transformación lineal de \mathbb{R}^3 en \mathbb{R}^2 definida por

$$T(x_1, x_2, x_3) = (x_1 + x_2, 2x_3 - x_1).$$

- i) Si \mathcal{B} es la base ordenada estándar de \mathbb{R}^3 y \mathcal{B}' es la base ordenada estándar para \mathbb{R}^2 , determinar la matriz de T relativa al par $(\mathcal{B}, \mathcal{B}')$.
- *ii*) Si $\mathcal{B} = \{(1,0,-1),(\bar{1},1,1),(1,0,0)\}$ y $\mathcal{B}' = \{(0,1),(1,0)\}$ ¿Cuál es la matriz de T relativa a al par $(\mathcal{B},\mathcal{B}')$.
- 20. Sea T un operador lineal sobre \mathbb{K}^n y sea A la matriz de T relativa a la base estándar de \mathbb{K}^n . Sea W el subespacio de \mathbb{K}^n generado por los vectores columnas de A. ¿Qué relación existe entre W y T?

- 21. Sea V un espacio vectorial de dimensión finita sobre el campo \mathbb{K} y sean S y T operadores lineales sobre V. Probar que existen dos bases ordenadas \mathcal{B} y \mathcal{B}' en V tales que $[S]_{\mathcal{B}} = [T]_{\mathcal{B}'}$ si y sólo si existe un operador lineal inversible U sobre V tal que $T = USU^{-1}$.
- 22. En \mathbb{R}^3 , sean $v_1 = (1,0,1)$, $v_2 = (0,1,2)$ y $v_3 = (-1,-1,0)$.
 - i) Si f es un funcional lineal sobre \mathbb{R}^3 tal que $f(v_1) = 1$, $f(v_2) = -1$ y $f(v_3) = 3$ y si v = (a, b, c), hallar f(v).
 - ii) Describir explícitamente un funcional lineal f sobre \mathbb{R}^3 tal que $f(v_1 = f(v_2) = 0$ pero $f(v_3) \neq 0$.
 - iii) Sea f cualquier funcional lineal tal que $f(v_1) = f(v_2) = 0$ pero $f(v_3) \neq 0$. Si v = (2, 3, -1), muestre que $f(v) \neq 0$.
- 23. Sea $\mathcal{B} = \{(1,0,-1), (1,1,1), (2,2,0)\}$ una base de \mathbb{C}^3 . Hallar la base dual de \mathcal{B} .
- 24. Sean $v_1 = (1, 0, -1, 2)$ y $v_2 = (2, 3, 1, 1)$ y sea $W = \langle \{v_1, v_2\} \rangle$. ¿Qué funcionales lineales de la forma $f(x_1, x_2, x_3, x_4) = c_1x_1 + c_2x_2 + c_3x_3 + c_4x_4$ están en el anulador de W?.
- 25. Sea $V = \mathcal{M}_{2\times 2}(\mathbb{R})$ y sean

$$B = \begin{bmatrix} 2 & -2 \\ -1 & 1 \end{bmatrix}, \qquad C = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$$

Sea W el subespacio de V que consiste de todas las matrices A tales que AB=0. Sea f, un funcional lineal sobre V que está en el anulador de W. Supongamos que f(I)=0 (I matriz identidad) y f(C)=3. Hallar f(B).

- 26. Sean W_1 y W_2 subespacios de un espacio vectorial V de dimensión finita.
 - *i*) Probar que $(W_1 + W_2)^0 = W_1^0 \cap W_2^0$.
 - *ii*) Probar que $(W_1 \cap W_2)^0 = W_1^0 + W_2^0$.
- 27. Sea V un espacio vectorial de dimensión finita sobre \mathbb{K} y sea W un subespacio de V. Si f es un funcional lineal sobre W, pruebe que existe un funcional lineal g sobre V tal que g(v) = f(v), $\forall v \in W$.
- 28. Sea $v \in V$ espacio vectorial, entonces v induce un funcional lineal L_v en V^* definido por

$$\begin{array}{cccc} L_v: & V^* & \to & \mathbb{K} \\ & f & \mapsto & L_v(f) = f(v) \end{array}$$

- a) Mostrar que L_v es lineal.
- *b*) Probar que si V es de dimensión finita y $v \neq 0$, entonces existe un funcional lineal f tal que $f(v) \neq 0$.
- *c*) Probar que si V es de dimensión finita, la aplicación $v \mapsto L_v$ es un isomorfismo de V en V^{**} . V^{**} se conoce como el *doble dual de V*.
- *d*) Probar que si L es un funcional lineal sobre el espacio dual V^* del espacio vectorial V de dimensión finita, entonces existe un único vector $v \in V$ tal que L(f) = f(v) para todo $f \in V^*$.
- *e*) Mostrar que en un espacio vectorial *V* de dimensión finita, toda base de *V** es la dual de alguna base de *V*.