Nom:	Prénom :	Groupe :
ECOLE POLYTECH	NIQUE UNIVERSITAIRE DE NICE S	SOPHIA-ANTIPOLIS
Université Nice Sophia Antipolis	Cycle Initial Polytech Première Année Année scolaire 2013/2014	Note / 20
École d'ingénieurs POLYTECH' NICE-SOPHIA	Epreuve de circuit N°3	7 40

Durée: 1h30

Mardi 10 Décembre 2013

- □ Cours et documents non autorisés.
- □ Calculatrice collège autorisée.
- Vous répondrez directement sur cette feuille.
- □ Tout échange entre étudiants (gomme, stylo, réponses...) est interdit
- □ Vous êtes prié:
 - d'indiquer votre nom, prénom et groupe.
 - d'éteindre votre téléphone portable.

TOUTE FRAUDE ou TENTATIVE DE FRAUDE SERA SANCTIONNEE

L'étudiant ayant triché ET l'étudiant ayant aidé (le cas échéant) seront traduits devant la commission disciplinaire de l'université.

N'OUBLIEZ PAS LES UNITES

Rappel:

- $pico = 10^{-12}$
- nano = 10^{-9}
- $micro = 10^{-6}$

On donne :
$$e^{-1} = 0.37$$

 $e^{-2} = 0.135$
 $e^{-3} = 0.05$
 $e^{-4} = 0.018$
 $e^{-5} = 0$

Questions de cours sur les impédances et dimension (3 pts)

0,25pt	Expression de l'impédance d'une résistance :
0,25pt	Expression de l'impédance d'une bobine :
0,25pt	Expression de l'impédance d'un condensateur :
0,25pt	Expression et définition de la fonction de transfert d'un circuit :
0,25pt	Expression du gain :
0,25pt	Expression du gain en décibel :
0,25pt	Comment est définie la pulsation de coupure $\omega_{\mathbb{C}}$?
0,25pt	Que représente l'argument de la fonction de transfert ?
1pt	Déterminez la dimension de $\frac{R}{L}$:
	Réponse :
	BROUILLON

Soit le signal représenté ci-dessous :

Déterminez graphiquement les valeurs numériques pour :

Valeur crête :	0,25pt
Valeur crête-crête :	0,25pt
Valeur moyenne :	
Période :	0,25pt

BROUILLON	
	3

A. Déterminez la capacité équivalente, Cab, du circuit ci-contre :

1.5pt Réponse : Faites les approximations nécessaires. $\begin{array}{c|c} & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & \\ & & & \\ & & \\ & & \\ & & &$

B. Déterminez l'inductance équivalente, LAB, du circuit ci-contre :

1,5pt Réponse :
Faites les approximations nécessaires.

A ImH InH
A ImH
A ImH
A ImH
A

BROUILLON

Ci-dessous, on a les formes d'onde du courant et de la tension pour un composant inconnu.

III.1. Déduire du graphe les réponses aux questions suivantes : n'oubliez pas les unités, attention justement aux échelles en y sur les graphiques.

1pt

	Courant	Tension
Amplitude		
Т		
ω		
Expression*		

^{*} pour l'expression des signaux en fonction du temps, utilisez les fonctions sinus ou cosinus (n'introduisez pas de déphasage).

III 2	Quel est ce	composant	inconnu	⁹ Justifiez	Donnez sa	valeur	numérique.
111.4.	Quei est ce	Composant	monimu	. ousumez.	Dunnez sa	vaicui	mumerique.

1,5pt

R'eponse :

III.3. Quelle est la valeur maximale de l'énergie stockée par le composant ?

R'eponse:

0,5pt

Partie IV.1. Interrupteur fermé.

0.5pt

Soit le circuit ci-dessous. L'interrupteur est fermé depuis longtemps et on considère que le régime permanent est atteint.

0,5pt IV.1.a. Déterminez la tension Uc (constante) aux bornes du condensateur.

Réponse :	

IV.1.b. Donnez l'expression et la valeur numérique de la charge Q du condensateur.

Expression:

Valeur numérique (avec unité) :

BROUILLON

Partie IV.2. Interrupteur ouvert.

L'interrupteur était fermé depuis longtemps (partie 1). En t=0, on l'ouvre.

1v.2.a. valeur numerique de la tension aux bornes du condensateur en t-o.	
$\mathbf{u}_{\mathbf{C}}(0) = \dots$	0.5pt

IV.2.b. Déterminez l'équation différentielle qui régit les variations de uc(t), tension aux bornes du condensateur. 1pt

Réponse : refaites le schéma sous une forme plus classique

IV.2.c. Déterminez la solution de cette équation différentielle (expression de uc(t))

0.5pt

Réponse :

	IV.2.d. Déduisez de l'expression de la tension $u_{\mathbb{C}}(t)$ trouvée en IV.2.c, l'expression de la charge $q(t)$.
0,5pt	
	IV.2.e. Au bout de combien de temps, la charge du condensateur atteint-elle 25% de sa valeur initiale calculée au IV.1.b ?
0,5pt	$R\'eponse:$
	BROUILLON
	BROCILLON

EXERCICE V : Etude du régime transitoire d'un circuit RL (6 pts)

Partie A. Charge de la bobine en énergie électromagnétique sous la tensio	\mathbf{E}_{1}

Soit le circuit RL ci-dessous

La bobine se charge sous la tension E₁=8V. Dans cette partie, on notera le courant i_A(t).

V.1.a. Déterminez l'équation différentielle qui régit les variations du courant i _A (t) dans la	
bobine.	$0.5 \mathrm{pt}$
$R\'eponse:$	
V.1.b. Donnez la solution de cette équation différentielle. On donne i _A (0)=0.	0,75pt
$R\'eponse:$	

V.1.c. Tracé

Donnez la valeur numérique de la constante de temps de l'exponentielle :	0,25pt
Tracez l'évolution du courant entre t=0 et t=1s.	0,5pt

Partie B. Charge de la bobine en énergie électromagnétique sous la tension E2.

A t=1s l'interrupteur bascule de sorte que la bobine se charge sous la tension E₂=-8V.

On réinitialise le temps à t=0. Dans cette partie, on notera le courant i_B(t).

0.5pt

V.2.a. La valeur du courant à t=0 correspond à la valeur atteinte précédemment par i : donnez sa valeur numérique.

 $i_B(0) = i_A(1) = \dots$

V.2.b. Déterminez l'équation différentielle qui régit les variations du courant $i_B(t)$ dans la bobine.

	Réponse :
į	

V.2.c. Donnez la solution de cette équation différentielle :	0,75pt
$R\'eponse:$	C 1 2 1 C 1 C 1 C CONTROL CONT
V.2.d. Tracé	
Donnez la valeur numérique de la constante de temps de l'exponentielle :	0,25pt
Tracez l'évolution du courant entre t=0 et t=1s à la suite du tracé précédent (correspond à t=1s et t=2s sur le graphique).	0,5pt
Partie C. Charge de la bobine en énergie électromagnétique sous la tension E_1 . A t=2s l'interrupteur bascule de sorte que la bobine se charge sous la tension E_1 =8V. E_1 =8 V E_2 =-8 V E_2 =-8 V E_2 On réinitialise le temps à t=0. Dans cette partie, on notera le courant $i_C(t)$.	
Brièvement donnez:	····
Valeur numérique du courant à t=0 : ic(0) =	0,25pt
EDL1A:	0,5pt
Solution:	0,75pt

0,5pt

Tracez ic(t) sur le graphe à la suite de $i_B(t)$.