Лекции по дискретной математике

me and boyz

3 октября 2021 г.

Содержание

- 1 Дискретные функции и их представление. Индуктивное определение формулы. Полные системы. Критерий полноты.
- Дискретные функции и их представление.
 Индуктивное определение формулы. Полные системы. Критерий полноты.

Определение. Дискретной функцией называется любая функция, отображающая конечное множество A в конечное множество B.

Область определения дискретной функции часто представляется в виде декартового произведения множеств относительно небольшой мощности.

Если $f:A\to B$ - дискретная функция и $A=A_1\times\cdots\times A_n$, то f обозначают следующим образом $f(x_1;\ldots;x_n)$ и называют дискретной функцией от n переменных x_1,\ldots,x_n . При этом x_i принимает всевозможные значения из A_i . Если $A_1=\cdots=A_n=B$ и $B=\{0,1\}$, то f называется булевой функцией.

Определение. Обозначим далее $\Omega = \{0,1\}$, тогда булевой функцией от n переменных называется любое отображение $f:\Omega^n \to \Omega$.

0-местными булевыми функциями будем называть элементы $0, 1 \in \Omega$.

Замечание. Существуют функции k - значной логики.

Обозначать булеву функцию будем $f(x_1; ...; x_n)$ или $f(\vec{x})$, если количество переменных известно из контекста.

Определение. Если $f(x_1; ...; x_n)$ - булева функция и $\vec{\alpha} = (a_1; ...; a_n) \in \Omega^n$, то образ $\vec{\alpha}$ при отображении f называют значением функции f на наборе $\vec{\alpha}$. Обозначение: $f(\vec{\alpha})$.

Определение. Если рассматривать 0 и 1 как числа $\in \mathbb{N}_0$, то для набора $\vec{\alpha} = (a_1; \dots; a_n)$ обозначим $||\vec{\alpha}|| = a_1 + \dots + a_n$ - вес вектора $\vec{\alpha}$.

$$\widetilde{a}=\sum_{i=1}^n a_i 2^{n-i}$$
 - лексикографический порядок.
 Пример.

$$\vec{\alpha} = (1; 1; 0; 1) \Rightarrow ||\vec{\alpha}|| = 1 + 1 + 0 + 1 = 3.$$

Естественным образом задания является табличный, при этом координата *i*-вектора f^{\downarrow} соответствует значению $f(\vec{\alpha})$, где $\tilde{a}=i$.

Пример.

$$\begin{array}{ccccc} x_0 & x_1 & f^{\downarrow} \\ 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{array}$$

Утверждение. $|F_2(n)| = 2^{2^n}$.

Определение. Весом булевой функции f называют величину ||f|| = $|\{\vec{\alpha} \in \Omega^n \mid f(\vec{\alpha}) = 1\}|.$

Определение. Функция от n-1 переменной, определяемая равенством $\varphi(a_{i_n};\ldots;a_{i_n})=f'(a_1;\ldots;a_{i-1};b;a_{i+1};\ldots;a_n),$ называется функцией полученной из f' фиксацией i-ой переменной значением b.

Обозначением $\varphi = f_i^b(x_1;\dots;x_n)$, аналогично фиксация k переменных значениями $b_1,\dots,b_k:\varphi=f_{i_1;\dots;i_n}^{b_1;\dots;b_k}(x_1;\dots;x_n)$. Общее название таких функци φ - подфункции f.

Если $f(a_1;\ldots;a_{i-1};0;a_{i+1};\ldots;a_n)=f(a_1;\ldots;a_{i-1};1;a_{i+1};\ldots;a_n)$, то переменная x_i называется несущественной переменной функции f, в противном случае - существенной.

Onpedenenue. Пусть x_i -несущественная (фиктивная) переменная функции f,g получена из f фиксацией x_i любой константой, тогда говорят, что g получена удалением из f несущественной переменной x_i , а f получена из g добавлением фиктивной переменной x_i .

Пусть задано множество функций $\mathbb{K} = \{f_i : i \in I\}$ и множество символов переменных $X = \{x_1; ...; x_n\}.$

Определение.

- 1. Любой символ переменной есть формула над классом К.
- 2. Если f_j символ m местной функции из $\mathbb{K},$ а A_1,\dots,A_m формулы над \mathbb{K} , то $f_i(A_1; \ldots; A_m)$ - формула над \mathbb{K} .
- 3. Других формул нет.

Множество формул над \mathbb{K} обозначается $\Phi(\mathbb{K})$. При m=0 формула есть символ над К, т.е. константа.

Определение. Число символов функций из К, встречающихся в формуле A назовем рангом формулы A. Обозначение: r(A).

Определение.

- 1. Подформула формулы x_i только она сама.
- 2. Подформулы $f_j(A_1;\ldots;A_n)$ на сама и все подформулы формулы $A_1;\ldots;A_n$.

Определение. Пусть A - произвольная формула, в ее записи присутствует только переменные x_{i_1}, \ldots, x_{i_k} . Набор x_{j_1}, \ldots, x_{j_m} называется допустимым, если $\{x_{i_1}, \ldots, x_{i_k}\} \subseteq \{x_{j_1}, \ldots, x_{j_m}\}$.

Каждой формуле при фиксированном допустимом наборе $(x_1; ...; x_n)$ сопоставляется по следующему правилу:

- 1. Если A есть x_i , то ей сопоставляется функция f, значения которой определяются равенством $f(a_1; \ldots; a_n) = a_i, (a_1; \ldots; a_n) \in \Omega^n$.
- 2. Если A есть $f_j(A_1;\ldots;A_m)$ и формулам A_1,\ldots,A_m сопоставлены функции $\varphi_1(x_1;\ldots;x_n);\ldots;\varphi_m(x_1;\ldots;x_n)$, то формуле A сопоставляется функция f, значения которой определяются равенством $f(a_1;\ldots;a_n)=f_j(b_1;\ldots;b_n)$, где $b_\zeta=\varphi_\zeta(a_1;\ldots;a_n),\zeta\in\overline{1,n}$.

Определение. Формулы A и B равносильны, если они представляют одну и ту же функцию на любом допустимом наборе. Обозначение: $A \equiv B$.

Определение. Пусть A - произвольная формула над классом $\mathbb{K} = (\&, \lor, /)$. Двойственной A называется формула полученная из A заменой A $\leftrightarrow \lor$. Обозначение: A*.

Теорема. $A^*(x_1; ...; x_n) = A(x_1; ...; x_n).$

Cледствие. $A \equiv B \Leftrightarrow A^* \equiv B^*$.

Определение. Замыканием системы \mathbb{K} булевых функций называют множество всех булевых функций представимых формулами над \mathbb{K} . Обозначение: $[\mathbb{K}]$.

Утверждение.

- 1. $\mathbb{K} \subseteq [\mathbb{K}]$
- 2. $\mathbb{K}_1 \subseteq \mathbb{K}_2 \Rightarrow [\mathbb{K}_1] \subseteq [\mathbb{K}_2]$
- 3. $[[\mathbb{K}]] = [\mathbb{K}]$

Определение. Система \mathbb{K} называется полной, если (замыкание) $[\mathbb{K}] = F_2$.