Produktivitätsmodelle für die Holzernte mit Hilfe komponentenbasierter Softwaretechnologie

Grundlagen für die Programmierung

Produktionssystem "Mobiler Hacker mit Aufbaucontainer"

- Mittlere Hacker (auf Forwarder aufgebaut)
- Grosshacker (auf Lastwagen aufgebaut)

Abteilung Management Waldnutzung Eidg. Forschungsanstalt WSL, 2003, 2007, 2014

Inhaltsübersicht

1	Gru	ındlagen	3
	1.1	Entstehung und Verwendung	3
	1.2	Verzeichnis der Quellen	
	1.3	Beurteilung und besondere Schwierigkeiten	
	1.4	Zeitangaben - Gliederung und Bezugsgrössen	
2	Pro	duktionssystem - verbal-bildliche Darstellung	4
	2.1.	Produktionsfaktoren	
	2.2.	Produktionsprozess	
	۷.۷.	2.2.1. Arbeitsaufgaben	
		2.2.2 Arbeitsabläufe	
	2.3	Input- und Outputzustände	
	2.0	2.3.1 Input-Zustand	
		2.3.2 Output-Zustand	
		2.3.3 Veränderungen	
	2.4	Erforderliche Arbeitsbedingungen	
	۷.٦	2.4.1 Technik und Personal	
		2.4.2 Gelände und Erschliessung	
		2.4.3 Waldbestände und waldbauliche Massnahmen	
		2.4.4 Weitere	
	2.5	Berechneter Output	
	2.5	Defectifieter Output	
3	Pro	duktionssystem - mathematische Darstellung	
	3.1	Systemübersicht "Mobiler, kranbeschickter Hacker"	7
	3.2	Systemzusammensetzung	
	3.3	Arbeitsproduktivität in PSH ₁₅ -Zeiten pro m3	
		3.3.1 Ermittlung der Hackgutmenge	
		3.3.2 Teilsystem Fahren	
		3.3.3 Teilsystem Hacken	
		3.3.4 Teilsystem Entladen	
		3.3.5 Zeit pro Rückefahrt und Arbeitseffizienz als PSH ₁₅ -Zeit pro m3	
	3.4	Zeitbedarf der Produktionsfaktoren pro m3	
	3.5	Abkürzungen und Definitionsbereich	
	3.6	Berechnungsbeispiel	21
4	Anł	nang	23
	A1:	Volumen von Baumteilen (andere Methode)	23
	A2:	Zeitsystem im Komponentenmodell "mobiler Hacker mit Aufbaucontainer"	26
	A3:	Erläuterungen zum Teilsystem Hacken	27
	710.	A3.1 Formel Stampfer	
		A3.2 Untersuchung mittels Einzugsgrösse	
		A3.3 Stückzahl pro Zyklus als Funktion vom Brusthöhendurchmesser	30
		A3.4 SpZ und VpZ bei Astmaterial	
	A4:	Umrechnungsfaktor F _{Verteilzeit} für PSH ₁₅ in t _{_Hacker}	
	A5:	Hackertypen	
	,	A5.1 Typenherleitung	
		A5.2 Mittlerer Hacker	
		A5.3 Grosshacker	
		7.0.0	02
5	Lite	eraturverzeichnis	33

1 Grundlagen

1.1 Entstehung und Verwendung

Verschiedene Autoren in Europa haben sich mit der Frage der Bereitstellung von Waldhackgut resp. Waldhackschnitzeln beschäftigt. Zur Zeit existieren aber keine praxistauglichen Kalkulationsgrundlagen für den Einsatz von Hackern (Eigenheer, 1998).

Daher wurde ein eigenes Produktivitätsmodell zur Schätzung der Leistung bei der Herstellung von Waldhackschnitzeln entwickelt. Dieses stützt sich auf das Modell für den Einzelprozess "Hacken" (Stampfer et al., 1997) und auf das Modell Forwarderrücken für die Fahrbewegung (Lüthy, 1997). Die Verknüpfung der unterschiedlichen Modellteile mit dem neu entwickelten Modul "Hackgut", welches die Eingabe der Bestandesdaten koordiniert, sind in einem internen Bericht der WSL (Riechsteiner, 1999) dargestellt.

Die Kalkulationsgrundlage gilt für mobile, kranbeschickte Hacker mittlerer Grösse und Grosshacker.

1.2 Verzeichnis der Quellen

EIGENHEER, U.; 1998: Produktivitätsmodelle für die Erzeugung von Waldhackschnitzeln mit mobilen, kranbeschickten Hackern. Semesterarbeit.

LÜTHY, C.; 1997: Kalkulationsgrundlage für das Holzrücken mit Forwarder. Interner Bericht, Eidg. Forschungsanstalt für Wald Schnee und Landschaft (WSL), Birmensdorf.

RIECHSTEINER, D.; 1999: Grundlagen und Herleitung des Produktionssystems mobiler kranbeschickter Hacker mit Aufbaucontainer. Interner Bericht, Eidg. Forschungsanstalt für Wald Schnee und Landschaft (WSL), Birmensdorf.

STAMPFER, E.; STAMPFER, K.; TRZESNIOWSKI, A.; 1997: Bereitstellung von Waldhackgut. Forschung im Verbund, Schriftenreihe Band 29. BOKU Wien, Institut für Forsttechnik, Hrsg.: Österreichische Elektrizitätswirtschafts-Aktiengesellschaft, Wien.

1.3 Beurteilung und besondere Schwierigkeiten

Leistungsdaten von Feldversuchen mit Hackern sind in der Literatur vorhanden. Da Angaben zu den Beständen, wie durchschnittlicher Brusthöhendurchmesser des Aushiebes (dBHD), mittlere Rückedistanz, Volumen pro Zyklus etc. meist fehlen, ist es äusserst schwierig, zweckmässige und flexible Modelle zu erstellen. Weiter sind in der Literatur keine einheitlichen Zeitangaben vorhanden, was die Auswertung der Feldversuche ebenfalls erschwert.

1.4 Zeitangaben - Gliederung und Bezugsgrössen

Das Modell von Stampfer (1997) für das Hacken und das Modell von Lüthy (1997) für das Rücken liefern Zeitangaben als PSH₁₅ Zeiten (siehe Anhang).

2 Produktionssystem - verbal-bildliche Darstellung

2.1. Produktionsfaktoren

Das Produktionssystem "mobiler kranbeschickter Hacker" für das Hacken des Hackgutes und das Rücken der entstandenen Hackschnitzel umfasst folgende Produktionsfaktoren:

- 1 mobiler, kranbeschickter Hacker mit Aufbaucontainer
- 1 Fahrer (Maschinist)

2.2. Produktionsprozess

2.2.1. Arbeitsaufgaben

Die Arbeitsaufgabe besteht darin, Holz in Form von Vollbäumen, Kronenmaterial oder Rundholzabschnitten zu hacken (=Baumbearbeitung) und die Waldhackschnitzel anschliessend auf lastwagenerreichbare Lagerplätze zu transportieren (=Geländetransport). Die Zwischenlagerung kann, abhängig vom nachfolgenden Transportprozess, in Containern oder direkt auf dem Boden erfolgen.

2.2.2 Arbeitsabläufe

Das Modell bildet folgende Aktivitäten oder Einzelprozesse der Baumbearbeitung und des Geländetransportes ab (vgl. Abbildung 1): Leerfahrt, Hacken (inkl. Beschicken, Hacken, Bunkern d.h. Einblasen in den Aufbaucontainer), Fahren beim Hacken, Lastfahrt, Entladen. Beim "Fahren beim Hacken" handelt es sich um die in der Regel kurzen Fahrten von Hackgutpolter zu Hackgutpolter. Das Entladen der Hackschnitzel erfolgt durch Auskippen des Aufbaucontainers. Das Modell bildet keine Vorliefer- und Informationsprozesse ab.

Prozess Bereitstellung von Waldhackschnitzeln - Schnittstellen und abgebildete Aktivitäten:

Abbildung 1: Ablauf eines Verarbeitungs- und Rückezyklus.

2.3 Input- und Outputzustände

2.3.1 Input-Zustand

Hackgut in Form von Vollbäumen, Kronenmaterial oder Rundholzabschnitten, vorgeliefert in Kranreichweite des mobilen Hackers (mittels Vollernter, Seilwinde, Pferd etc.).

Die Holzmenge pro Laufmeter Erschliessungslinie sollte 0.6 m³ und der mittlere BHD des Aushiebes 30 cm nicht übersteigen. Das Teilmodell für den Forwarder gilt nur bis zu einem mittleren BHD von 30 cm. Für grössere BHD wurde das Modell nicht überprüft.

2.3.2 Output-Zustand

Material: Hackschnitzel.

Das gehackte Holz lagert am Abladeort in Form von Waldhackschnitzeln auf dem Boden oder in Containern.

2.3.3 Veränderungen

Vollbäume, Kronenmaterial oder Rundholzabschnitte, meist an den Rand von Rückegassen, Maschinenwegen oder Waldstrassen vorgeliefert, werden zu Hackschnitzeln verarbeitet und zum Lagerplatz transportiert. Dieser befindet sich in der Regel am Rande von lastwagenfahrbaren Waldstrassen, wo die Waldhackschnitzel meist in Containern transportbereit zwischengelagert werden.

2.4 Erforderliche Arbeitsbedingungen

2.4.1 Technik und Personal

- Mittlerer Hacker (Forwarder-Aufbau) oder Grosshacker (Lkw-Aufbau) mit Kranbeschickung und Aufbaucontainer (Bunker) mit Kippvorrichtung.
- Trommelhacker.
- Hydraulikkran, Reichweite ca. 5-8 m, grössere Reichweiten möglich (nicht überprüft).
- Der Maschinist muss auf der eingesetzten Maschine und bezüglich der übrigen Bedingungen des Auftrages geübt sein.

2.4.2 Gelände und Erschliessung

Mittlere Hacker:

- Befahrbares Gelände für Maschinen mit Radfahrgestellen mit einem Gesamtgewicht bis ca. 20 Tonnen.
- Rückegassennetze, auch Erschliessungen mit Maschinenwegen (Breite mindestens 3 m) sowie Einsatz von der Waldstrasse aus.

Grosshacker:

Lastwagenbefahrbare Waldstrasse

2.4.3 Waldbestände und waldbauliche Massnahmen

- Nur wenige Einschränkungen: Nadel- und Laubholzbestände, Mischbestände aus Nadel- und Laubholz; Stangen- und eher schwache Baumhölzer.
- Durchforstungen (mittlerer BHD des Aushiebes max. 30 cm).

2.4.4 Weitere

Der limitierende Faktor für die Verwendbarkeit des Modelles stellt der durchschnittliche BHD des Aushiebes (dBHD) dar. Die untere Grenze wird durch das Modul "Rohpoltervolumen" des Teilsystems "Fahren" festgelegt (minimaler dBHD = 8 cm, Lüthy, 1997). Die obere Grenze wird durch die Formel von Stampfer (Stampfer et al., 1997) im Modul "Volumen pro Zyklus" (Teilsystem Hacken) bestimmt. Das Volumen pro Zyklus (VpZ) darf maximal den Wert 1.3 m³ annehmen. Für einen Silvenwert von 1 ist dies bei einem dBHD von 36 cm der Fall. Dabei spielt die Baumart (Ndh / Lbh) keine Rolle.

Weitere Grenzen können dem Definitionsbereich in Kapitel 3.5 entnommen werden.

2.5 Berechneter Output

- Zeitbedarf in produktiven Systemstunden des Produktionssystems (PSH₁₅ pro m3 oder Srm) (Effizienz).
- m³ oder Srm pro Zeiteinheit (technische Arbeitsproduktivität).
- Arbeitszeit des Produktionsfaktors Hacker in PMH₁₅ pro m³ oder Srm.
- m³ oder Srm: Angaben in Efm (nicht Tariffestmeter).

3 Produktionssystem - mathematische Darstellung

3.1 Systemübersicht "Mobiler, kranbeschickter Hacker"

Abbildung 2: Übersicht des Datenflusses im Hackermodell.

3.2 Systemzusammensetzung

Personal:	Der mobile, kranbeschickte Hacker wird von einem Maschinisten bedient.	1 Arbeitskraft
Maschinen:	Mobiler kranbeschickter Hacker mit Aufbaucontainer (mittlerer Hacker oder Grosshacker)	1 Maschine

Tabelle 1: Systemzusammensetzung.

3.3 Arbeitsproduktivität in PSH₁₅-Zeiten pro m3

3.3.1 Ermittlung der Hackgutmenge

Die Hackgutmenge

Abbildung 3: Input und Output Hackgutmenge.

Input		Formel	Out	out
AA	[-]			
V_V	[m ³ i.R.]	$falls AA = Vollbaum$ $NT = V_V \bullet Anz$		
V_K	[m ³ i.R.]	$falls AA = Kronenmaterial$ $NT = V_K \bullet Anz$	NT	[m ³ i.R.]
V_N	[m ³ i.R.]	$falls AA = Rundholzabschnitte$ $NT = V_N \bullet Anz$		
$N \ V_D$	[m ³ i.R.] [m ³ i.R.]	$Anz = \frac{N}{V_D}$	Anz	<u>"</u> [-]

Abbildung 4. Formeln zur Ermittlung der Hackgutmenge.

Volumen von Baumteilen

Abbildung 5: Input und Output bei der Ermittlung des Volumens von Baumteilen.

Inp	ut	Formel		Output
dBHD	[cm]	$V_V = V_D + V_R$ $V_D = 0.0002 \bullet dBHD^{2.3897} $ Riechsteiner (1999)*	V_{V}	$[m^3 i.R.]$
BA	[-]	$V_R = R_I \cdot dBHD^{R2} \cdot V_D$	V_{D}	$[m^3 i.R.]$
$d_{Z\!D}$	[cm]	falls $BA = Nadelholz$: falls $BA = Laubholz$: $R_1 = 10.009$ $R_2 = -1.1549$ $R_2 = -1.36$	V_R	$[m^3 i.R.]$ $[m^3 i.R.]$
		$V_K = V_V - V_N$	V_{K}	$[m^3 i.R.]$
		$V_{N} = A L_{ZD} \bullet \pi \bullet \left(\frac{dMD}{200}\right)^{2} (zu V_{N} \text{ s.Bem.1 unten})$	V _N	$[m^3 i.R.]$
		$AL_{ZD} = \frac{d_{ZD} - dBHD}{Km} + 1.3$		
		$dMD = d\left(h = \frac{AL_{ZD}}{2}\right) = Km \cdot \left(\frac{AL_{ZD}}{2} - 1.3\right) + dBHD$		
		$Km = N_1 dBHD^2 + N_2 dBHD + N_3$ $falls BA = Nadelholz N_1 = 4E - 05; N_2 = -0.0215; N_3 = -0.4238$		
		falls $BA = Laubholz N_1 = 6E - 05; N_2 = -0.0264; N_3 = -0.3887$		

^{*} V_D Ndh ≈ V_D Lbh, deshalb wurde nicht nach Baumarten unterschieden.

Abbildung 6: Formeln zur Ermittlung des Volumens von Baumteilen.

(1) Bemerkung zur Berechnung von V_N

lm Betrieb zeigte sich bald einmal, dass oben angegebene Berechnung von V_N, als Zylinder, für einzelne, spezielle Fälle zu ungenau war und zu groben Fehlern führte. Im Modell implementierten wir in der Folge eine Lösung auf Kegelbasis. V_N wird dabei als unterer Teil (Basis bis Höhe wo der Zopfdurchmesser auftritt) eines Kegels mit der Gesamthöhe = Baumschaftlänge wie folgt ermittelt:

dVolumenKegelBasis = dVolumenKegelGesamt - dVolumenKegelSpitze

wobei: dVolumenKegelGesamt = (dxPI / 3) * (dBasisDurchm_cm / 200) ^ 2 * dGesamtLaenge_m und

dVolumenKegelSpitze = (dxPI / 3) * (dZopfDrm_cm / 200) ^ 2 * dSpitzLaenge_m mit dGesamtLaenge_m = (0 - dBHD_cm / adxKm(eha)) + dxBRUSTHOEHE_m

dSpitzLaenge_m = dGesamtLaenge_m - adxALzd(eha)

dBasisDurchm_cm = dBHD_cm - adxKm(eha) * dxBRUSTHOEHE_m.

Bemerkungen zur Ausbauchung:

Mittels Ausbauchungsreihe wird die Schaftform des Massenmittelstammes bestimmt, wobei näherungsweise die Form eines geraden Kegels angenommen wird (Siehe Graphik rechts). Ausbauchungsreihen geben die baumartenspezifischen (hier für Fichte und Buche) Verhältnisse von Durchmessern verschiedenen Stammhöhen Bezugsdurchmesser an.

Aus diesem Verhältnis wird für verschiedene dBHD- Klassen (8, 12, 16,... 68, 94 cm) die Schaftform berechnet, d.h. der Schaftdurchmesser in verschiedenen Schafthöhen d(h). Pro dBHD-Klasse wird nun mit einem linearen Ansatz die Schaftform ausgeglichen.

Schaftform:

 $d_{(h)} = Km * h + Kq$ dabei zeigt sich, dass Km eine Funktion von dBHD ist. Dicke Bäume sind abholziger als dünne.

In 1.3 Meter Höhe entspricht $d_{(1.3)}$ gerade dem Brusthöhendurchmesser.

Aus:

 $d_{(1.3)} = Km * 1.3 + Kq = dBHD$

Folgt:

 $d_{(h)} = Km * (h - 1.3) + dBHD$

 $dMD \qquad = d_{(h=ALZD/2)} = Km * (AL_{ZD}/2 - 1.3) + dBHD$

 $d_{(ALZD)} = d_{ZD} = Km * (AL_{ZD} - 1.3) + dBHD = Km * AL_{ZD} - Km * 1.3 + dBHD$

 AI_{ZD} = 1.3 + (d_{ZD} - dBHD) / Km

3.3.2 Teilsystem Fahren

Abbildung 7: Übersicht Zeitbedarf für alle Fahrbewegungen

Produktivität für alle Fahrbewegungen in PSH0 pro m3 i.R.

Input		Formel	Out	put
NT dLV	[m ³ i.R.]	PSH_{15} _Fahren = $\frac{tF}{60} \bullet \frac{R}{NT} \bullet KF$ und		
tF	$\left[\frac{min}{RZ}\right]$	$R = \frac{NT}{dLV}$	R	[-]
			PSH ₁₅ _	

KF F_{0-15}	[-]	$PSH_{15} - Fahren = \frac{tF}{60} \bullet \frac{1}{dLV} \bullet KF$	Fahren PSH ₀ _ Fahren	$\left[\frac{Std}{m^3i.R.}\right]$
		PSH_0 _Fahren = $\frac{PSH_{15}$ _Fahren F_{0-15}		

Abbildung 8: Formeln zur Berechnung der Produktivität für alle Fahrbewegungen in PSH0 pro m3 i.R.

Zeitbedarf für alle Fahrbewegungen im mittleren Rückezyklus (RZ) auf Rückegassen und Maschinenwegen sowie Strassen

lı	nput	Formel	Output	
		tRM = tRMFL + tRMLE + tRMLA	tRM	$\left[\frac{\min}{RZ}\right]$
$RMsFL$ V_{RMFL}	$\begin{bmatrix} m \\ \hline min \end{bmatrix}$	$tRMFL = \frac{RMsFL}{V_{RMFL}}$	tRMFL	$\left[\frac{\min}{RZ}\right]$
$RMsLE$ V_{RMLE}	$\begin{bmatrix} m \\ min \end{bmatrix}$	$tRMLE = \frac{RMsLE}{V_{RMLE}}$	tRMLE	$\left[\frac{\min}{RZ}\right]$
$RMsLA$ V_{RMLA}	$\begin{bmatrix} m \\ \hline min \end{bmatrix}$	$tRMLA = \frac{RMsLA}{V_{RMLA}}$	tRMLA	$\left[\frac{\min}{RZ}\right]$
		tST = tSTFL + tSTLE + tSTLA	tST	$\left\lceil \frac{\min}{RZ} \right\rceil$
$STsFL \ V_{STFL}$	$\begin{bmatrix} m \\ \hline min \end{bmatrix}$	$tSTFL = \frac{STsFL}{V_{STFL}}$	tSTFL	$\left[\frac{\min}{RZ}\right]$
STsLE V _{STLE}	$\begin{bmatrix} m \\ \hline min \end{bmatrix}$	$tSTLE = \frac{STsLE}{V_{STLE}}$	tSTLE	$\left[\frac{\min}{RZ}\right]$
$STsLA \ V_{STLA}$	$\begin{bmatrix} m \\ min \end{bmatrix}$	$tSTLA = \frac{STsLA}{V_{STLA}}$	tSTLA	$\left[\frac{\min}{RZ}\right]$
		tF = tRM + tST	tF	$\left[\frac{\min}{RZ}\right]$

Abbildung 9: Formeln zur Berechnung des Zeitbedarfs für alle Fahrbewegungen im mittleren Rückezyklus auf Rückegassen und Maschinenwegen sowie auf Waldstrassen.

Geschwindigkeiten auf Rückegasse und Maschinenweg

Input		Formel	Out	put
HK	[-]	BG = 89 m/min;		Г Л
		CGx = 22 m/min	V_{RMFL}	$\left \frac{m}{min} \right $
GK	[-]	CGy = 11 m/min		[min]
Fahrtyp	[-]	CGz = 7.5 m/min	V_{RMLE}	$\lceil m \rceil$
		$V_{RM} = (BG - CGx * [HK - 1]) +$		$\lfloor \overline{min} \rfloor$
		$\begin{bmatrix} 0 & falls \ Fahrtyp = eb \\ \left(-\operatorname{CGy}^*[\operatorname{GK}-1]\right) & falls \ Fahrtyp = af \\ \left(-\operatorname{CGz}^*[\operatorname{GK}-1]\right) & falls \ Fahrtyp = ab \end{bmatrix}$	V_{RMLA}	$\left[\frac{m}{min}\right]$
		$15 \le V_{\rm RMLE} = V_{\rm RM} \bullet 1.0$		
		$15 \le V_{\rm RMLA} = V_{\rm RM} \bullet 0.64$		
		$15 \le V_{\rm RMFL} = V_{\rm RM} \bullet 0.5$		
		Die drei Fahrtypen eben, aufwärts und abwärts werden im Modell zu je einem Drittel berücksichtigt.		

Abbildung 10: Formeln zur Berechnung der Geschwindigkeiten auf Rückegasse und Maschinenweg

Hindernisklassen

i iii laci iii sitiasseii			
Hindernisklasse	Hindernishöhe/-tiefe	Hindernishöhe/-tiefe	Hindernishöhe/-tiefe
Hk	10 – 30 cm 31 – 50 cm 51		51 – 90 cm
	[Anzahl Hind	ernisse pro 100 m Feinersc	hliessung
1	0	0	0
2	< 15	< 3	< 3
3	15 - 150	3 - 15	< 3
4	> 150	> 16	3 - 15

Tabelle 2: Hindernisklassen (Lüthy, 1997).

Gefällsklassentabelle

Gefällsklasse	Steigung oder Gefälle [%]
1	< 10
2	10-20
3	> 20

Tabelle 3: Gefällsklassen (Lüthy, 1997).

Geschwindigkeiten auf Strasse

Input		Formel	Out	out
		$V_{STFL} = 60 \text{ m/min}$	V_{STFL}	$\left[\frac{m}{min}\right]$
STsLE	[m]	$V_{STLE} = 126.45 + 0.314 \text{ x STsLE}$ $falls\ (V_{STLE} \ge 200 \text{ m/min})\ dann\ (V_{STLE} = 200 \text{ m/min})$	V_{STLE}	$\left\lceil \frac{m}{min} \right\rceil$
STsLA	[m]	$V_{STLA} = 69.1 + 0.8 \text{ x STsLA}$ $falls\ (V_{STLA} \ge 200 \text{ m/min})\ dann(V_{STLA} = 200 \text{ m/min})$	V_{STLA}	$\begin{bmatrix} m \\ min \end{bmatrix}$

Abbildung 11: Formeln zur Berechnung der Geschwindigkeiten auf Strasse.

Leer- und Lastfahrtstrecke im mittleren Rückezyklus (RZ)

Input		Formel	Out	put
GH	[-]	$Falls\ GH = mittlerer\ Hac\ ker:$		
		$RMsLE = ALE \bullet RMsLELA$ $RMsLA = (1 - ALE) \bullet RMsLELA$	RMsLE	[m]
RMsLELA*	[m]	$RMSLA = (1 - ALE) \bullet RMSLELA$	RMsLA	[m]
		Falls GH = Grosshacker:		
ALE	[-]	RMsLE = 0; RMsLA = 0	STsLE	[m]
			STsLA	[m]
STsLELA*	[m]	$STsLE = ALE \bullet STsLELA$		
		$STsLA = (1 - ALE) \bullet STsLELA$		

^{*} Eingabegrössen im Berechnungsmodell.

Abbildung 12: Formeln zur Berechnung der Leer- und Lastfahrtstrecke im mittleren Rückezyklus (RZ).

Fahrstrecke beim Hacken

Abbildung 13: Input und Output Fahrstrecke beim Hacken.

Input		Formel	Out	put
dLV SRP dRPV	[m ³ i.R.] [m] [m ³ i.R.]	$SFL = \frac{dLV * SRP}{dRPV}$	SFL	[m]
GH AST	[-] [-]	falls $GH = mittlerer\ Hacker$ $STsFL = AST \bullet SFL$ $RMsFL = (1 - AST) \bullet SFL$	STsFL RMsFL	[m] [m]
		falls GH = Grosshacker STsFL = SFL RMsFL = 0		

Abbildung 14: Formeln zur Berechnung der Fahrstrecke beim Hacken.

Das Rohpoltervolumen

Abbildung 15: Input und Output Rohpoltervolumen.

Input		Formel	Output	
dBHD	[cm]	$dRPV = 0.0247 \bullet dBHD + 1.0644 \bullet EV - 0.31973$	dRPV	[m ³ i.R.]
E	[m]	EV = 1.18*NT/E (aus Annahmen vereinfachtes Modell)	EV	$\left[\frac{m^3 i.R.}{m}\right]$
NT	$[m^3]$	(and instantion for engagement in case)		

Abbildung 16: Formel zur Berechnung des Rohpoltervolumens.

Lastvolumen pro Rückefahrt

Abbildung 17: Input und Output Lastvolumen pro Rückefahrt.

Input		Formel	Out	put
С	[Srm]	dLV = C • dBH • dUF	dLV	[m³ i.R.]
		$dBH = 0.95^{-1}$		

Abbildung 18: Formel zur Berechnung des Lastvolumens pro Rückefahrt.

Fahrstrecke pro Rohpolter

Abbildung 19: Input und Output Fahrstrecke pro Rohpolter.

¹ Die durchschnittliche Beladehöhe wurde unabhängig von der Fahrstrecke auf 0.95 gesetzt.

Input		Formel	Output	
E	[m]	$SRP = \frac{E}{NRP}$	SRP	[m]
NT dRPV	[m ³ i.R.]	$NRP = \frac{NT}{dRPV}$	NRP	[-]

Abbildung 20: Formeln zur Berechnung der Fahrstrecke pro Rohpolter.

3.3.3 Teilsystem Hacken

Zeitbedarf Hacken

Abbildung 21: Input und Output Zeitbedarf Hacken.

I	nput	Formel	Out	Output	
VpZ	[m ³ i.R.]	PSH ₁₅ _ Hacken =		「 Std.	
dUF	[-]	$\left(\begin{pmatrix} 17.55 + 165.48 \bullet VpZ - 74.33 \bullet VpZ^2 \\ -10.48 \bullet VB \end{pmatrix} \bullet GHF \bullet dUF \right)^{-1}$	PSH ₁₅ _ Hacken	$\left[\frac{3ia.}{m^3 i.R.}\right]$	
AA	[-]	falls AA = Rundholzabschnitte dann VB = 1 falls AA = Vollbaum oder Kronenmaterial dann VB=0	VB	[-]	
GH	[-]	falls GH = Grosshacker dann GHF = 2.5, falls GH = mittlerer Hacker dann GHF = 1.0,	GHF	[-]	
		GHF = Grosshackerfaktor (vgl. Anhang 5)			

Anmerkung

Die Formel von E. Stampfer et. al. 1997 liefert die Hackleistung in Srm³/PSH₁₅ (siehe A3.1 Formel Stampfer). In unserem Modell ist die Bezugsgrösse durchgehend m³. Erst ganz am Schluss werden die Werte in Srm³ umgerechnet. Deshalb müssen in obiger Formel die Srm³ aus der Formel Stampfer mit dem Umrechnungsfaktor dUF von Srm³ in m³ umgerechnet werden.

Abbildung 22: Formeln zur Berechnung des Zeitbedarfes für das Hacken.

Volumen pro Kranzyklus

li	nput	Formel	Output	
dRPV	[m ³ i.R.]	falls dRPV < VZ dann VpZ = dRPV, sonst VpZ = VZ)	VpZ	[m ³ i.R.]
AA	[-]	$falls AA = Vollbaum:$ $VZ = V_V \bullet SpZ$	VZ	[m ³ i.R.]
		falls $AA = Kronenmaterial$: $VZ = V_K \bullet SpZ$		
		falls $AA = Rundholzabschnitte:$ $VZ = V_N \bullet SpZ$		

Abbildung 23: Formeln zur Berechnung des Volumens pro Kranzyklus.

Zusammenhang Stückzahl pro Hackzyklus SpZ und dBHD

dBHD	[cm]	falls $AA = Vollbaum$ oder Rundholzat falls $dBHD \le 20$ cm: $SpZ = 11.494 \bullet dBHD^{-0.7854}$	bschnitte: Riechsteiner (1999)	SpZ	[-]
		falls $dBHD > 20$ cm: $SpZ = 1.5357 \bullet dBHD^{-0.1176}$ falls $SpZ < 1$ dann $SpZ = 1$	Riechsteiner (1999)		
dZD	[cm]	falls $AA = Kronenmaterial$: falls $dZD \le 20 \text{ cm}$: $SpZ = 11.494 \bullet dZD^{-0.7854}$	Riechsteiner (1999)	SpZ	[-]
		falls $dZD > 20$ cm: $SpZ = 1.5357 \bullet dZD^{-0.1176}$ falls $SpZ < 1$ dann $SpZ = 1$	Riechsteiner (1999)		

Abbildung 24: Formeln für die Berechnung der Stückzahl pro Zyklus SpZ (Einzelheiten dazu findet man im Anhang 3.3).

3.3.4 Teilsystem Entladen

Zeitbedarf Entladen

Über den Zeitbedarf für das Kippen des Bunkers in den Grosscontainer auf der Waldstrasse ist in der Literatur ebenfalls wenig zu finden. Einzig Feller (1998) stellte in seiner Untersuchung fest, dass der Zeitbedarf ca. 19% der Hackzeit (in RAZ) beträgt. Als Default wird für das Entladen ein Zeitbedarf von 20% der Hackzeit (PSH₁₅) angenommen.

Abbildung 25: Input und Output Zeitbedarf Entladen.

Input		Formel	0	utput
FE PSH ₁₅ _ Hacken	$\left[\frac{\min}{m^3}\right]$	PSH ₁₅ _Entladen = PSH ₁₅ _Hacken • FE	PSH ₁₅ _ Entladen	$\left[\frac{Std.}{m^3i.R.}\right]$

Abbildung 26: Formel zur Berechnung des Zeitbedarfs für das Entladen.

3.3.5 Zeit pro Rückefahrt und Arbeitseffizienz als PSH₁₅-Zeit pro m³

Abbildung 27: : Input und Output Totale Systemzeit.

Input		Formel	Output	
PSH ₁₅ _ Entladen PSH ₁₅ _ Fahren PSH ₁₅ _ Hacken	$\left[\frac{\min}{m^3 i.R.}\right]$	PSH_{15} _Hackschnitzel = PSH_{15} _Entladen + PSH_{15} _Fahren + PSH_{15} _Hacken	PSH ₁₅ _ Hack- schnitzel	$\left[\frac{Std.}{m^3i.R.}\right]$

Abbildung 28: Formeln zur Berechnung von Zeit pro Rückefahrt und Arbeitseffizienz.

3.4 Zeitbedarf der Produktionsfaktoren pro m³

Input	t	Formel	Ou	tput
$Anzahl$ $Personen$ F_{Weg} $F_{Stör}$	[-] [-] [-]	$WPPH _Hackschnitzel = \\ \begin{pmatrix} Anzahl _Pers \bullet PSH_o _Hackschnitzel \bullet \\ F_{0-15} \bullet F_{indir} \bullet F_{Weg} \bullet F_{Pausen} \bullet F_{St\"{o}r} \end{pmatrix}$	WPPH_ Hack- schnitzel	$\left[\frac{Std.}{m^3i.R.}\right]$
F_{Pausen} $F_{Verteilzeit}$ F_{0-15} F_{indir}	[-] [-] [-]	$PSH_{0} _Hackschnitzel = \frac{PSH_{15} _Hackschnitzel}{F_{0-15}}$ $PMH_{15} _Hacker = \left(PSH_{0} \bullet Masch _Laufzeitanteil \bullet F_{0-15}\right)$	PMH ₁₅ _H acker	$\left[\frac{Std.}{m^3i.R.}\right]$
Masch_Laufz eitanteil	[-]	Faktoren: $Anzahl_Pers = 1$ $F_{indir} = \frac{F_{Verteilzeit}}{F_{0-15}}$ $F_{Verteilzeit} = individuell = 1.41 [Riechstein er, 1999]$ $und Anhang 4$		

Abbildung 29: Formeln zur Berechnung des Zeitbedarfs der Produktionsfaktoren pro m3.

3.5 Abkürzungen und Definitionsbereich

Anmerkung: Zur Abbildung der Fahrbewegungen im Hackermodell wurde das Modell für das Fahren mit dem Forwarder verwendet. Deshalb erscheint in der Definition einzelner Abkürzungen die Bezeichnung "Rückezyklus".

Abk.	Definition	Default- Werte	Def. Bereich	Einheit
AA	Art des Hackgutes:		-	[-]
	Vollbaum / Kronenmaterial / Rundholzabschnitte			
AL_{ZD}	Länge des mittleren Rundholzabschnittes bis zum Zopfdurchmesser		≥ 0	[m]
ALE	Anteil Leerfahrt pro mittlerer Rückezyklus	0.5		[-]
Anz	Anzahl Bäume		> 0	[-]
Anzahl Personen	Anzahl Personen, die bei der Bereitstellung von Hackschnitzeln zum Einsatz gelangen.	1	1	[-]
ARM	Anteil Rückegasse/Maschinenweg an Fahrstrecke pro Rohpolter	1-AST		[-]
AST	Anteil Strasse an Fahrstrecke pro Rohpolter	0.3^{2}		[-]
BA	Baumart: Nadelholz / Laubholz		-	[-]
BG	Basis-Geschwindigkeit beim Fahren mit dem Hacker	89		$\left[\frac{m}{min}\right]$
С	Containergrösse		> 0	[Srm]
CG _x	Geschwindigkeitsveränderung gegenüber der Basisgeschwindigkeit beim Fahren auf Rückegassen und Maschinenwegen, Fahrtyp = eben	22		$\left[\frac{m}{min}\right]$
CG _y	zusätzliche Geschwindigkeitsveränderung, Fahrtyp = aufwärts	11		$\left[\frac{m}{min}\right]$
CG _z	zusätzliche Geschwindigkeitsveränderung, Fahrtyp = abwärts	7.5		$\left[\frac{m}{min}\right]$

² In Software anders implementiert: AST = FahrstreckeStrasse/FahrstreckeGesamt

Abk.	Definition	Default- Werte	Def. Bereich	Einheit
dBH	durchschnittliche Beladehöhe	0.85 -0.95		[-]
dBHD	durchschnittlicher BHD des Aushiebes		8 - 36 ³	[cm]
dLV	durchschnittliches Lastvolumen pro Rückezyklus		10 - 30	[m³ i.R.]
dMD	Mittendurchmesser des mittleren		≥ 0	[cm]
	Rundholzabschnittes			
dRPV	durchschnittliches Rohpoltervolumen		> 0	[m ³ i.R.]
dUF	durchschnittlicher Schichtigkeitsfaktor von Hackschnitzeln (Umrechnung von Srm in m3)	0.4		[-]
dZD	durchschnittlicher Zopfdurchmesser des mittleren Rundholzabschnittes (inkl. Zumass)		0 - 36	[cm]
E	Erschliessungslänge mit Holz		> 0	[m]
EV	Erschliessungslänge mit Holz im Rohpoltermodell		8 - 54	$\left[\frac{m^3 i.R.}{100m}\right]$
Fahrtyp	Fahrtyp charakterisiert, ob die Fahrt eben (eb), aufwärts (af),oder abwärts (ab) verläuft.	eb	eb, af, ab	[-]
F	Multiplikationsfaktoren für:			
F ₀₋₁₅ F _{indir} F _{Pausen} F _{Weg} F _{Stör} F _{Verteilzeit}	unvermeidbare Verlustzeiten >15 Min. indirekte Arbeitszeiten Pausen >15 Min. Wegzeiten >15 Min. Störzeiten >15 Min. Verteilzeiten	1.41	≥ 1.0	[-]
FE Verteilzeit	Faktor zur Schätzung der Entladezeit	0.2		[-]
GH	Hackergrösse:	0.2	mittlerer H.,	[-]
011	mittlerer Hacker / Grosshacker		GrossH.	1 1
GHF	Grosshackerfaktor	2.5	C100011.	[-]
GK	Gefällsklasse (siehe Tab.3)	2.0	1-3	[-]
HK	Hindernisklasse (siehe Tab.2)		1 - 4	[-]
KF	Korrekturfaktor zur Anpassung der Modellergebnisse an die Feldversuche	1.2		[-]
Km	Parameter für Bestimmung der Schaftform		< 0	[-]
Kq	Parameter für Bestimmung der Schaftform		> 0	[-]
N	Gesamt-Nutzungsmenge		> 10	[m ³ i.R.]
NRP	Anzahl Rohpolter		0-99999	[-]
NT	Hackgutmenge (abhängig von Auswahl)		> 10	[m ³ i.R.]
PMH ₁₅ _ Hacker	Produktive Maschinenarbeitszeit (MAS) des Hackers pro m³ i.R. bei der Bereitstellung von Hackschnitzeln (siehe Anhang)		≥ 0	$\left[\frac{Std.}{m^3 i.R.}\right]$
PSH ₀ _	Systemzeit ohne Unterbrüche pro m³ i.R. (siehe Anhang) für:			
Fahren	alle Fahrbewegungen			
Hacken	Beschicken, Hacken und Bunkern (Einblasen in den Container (Bunker))		≥ 0	$\left[\frac{Std.}{m^3i.R.}\right]$
Entladen	Entladen des Containers			
Hacksch nitzel	gesamte Bereitsstellung von Hackschnitzeln			
PSH ₁₅ _ Fahren, Hacken,	Produktive Arbeitszeit pro m ³ i.R. (siehe Anhang)			

³ In der Software bis 50cm zugelassen. Allfällige Fehler bei der Volumenberchnung werden vom Programm gemeldet.

Abk.	Definition	Default- Werte	Def. Bereich	Einheit
Entladen Hack- schnitzel	für: siehe PSH₀		≥ 0	$\left[\frac{Std.}{m^3i.R.}\right]$
R	Anzahl Rückezyklen		≥ 0	[-]
RMsFL	Fahrstrecke Fahren beim Hacken auf Rückegasse, Maschinenweg im mittleren Rückezyklus		≥ 0	[m]
RMsLA	Fahrstrecke Lastfahrt pro mittlerer Rückezyklus auf Rückegasse und Maschinenweg		≥ 0	[m]
RMsLE	Fahrstrecke Leerfahrt pro mittlerer Rückezyklus auf Rückegasse und Maschinenweg		≥ 0	[m]
RMsLELA	Leer- und Lastfahrten pro mittlerer Rückezyklus auf Rückegasse und Maschinenweg		0-99999	[m]
RZ	Rückezyklus		≥ 0	[-]
S	Fahrstrecke aller Leer- und Lastfahrten auf Rückegasse, Maschinenweg und Strasse pro mittlerem Rückezyklus		≥ 0	[m]
SFL	Fahrstrecke beim Hacken im Rückezyklus		≥ 0	[m]
SpZ	Stückzahl pro Kranzyklus		≥ 0	[N]
SRP	Fahrstrecke pro Rohpolter		≥ 0	[m]
STsFL	Fahrstrecke Fahren beim Hacken auf Strasse im mittleren Rückezyklus		≥ 0	[m]
STsLA	Fahrstrecke Lastfahrt pro mittlerer Rückezyklus auf Strasse		≥ 0	[m]
STsLE	Fahrstrecke Leerfahrt pro mittlerer Rückezyklus auf Strasse		≥ 0	[m]
STsLELA	Leer- und Lastfahrten pro mittlerer Rückezyklus auf Strasse		0-99999	[m]
tF	Zeitbedarf für alle Fahrbewegungen des mittleren Rückezyklus		≥ 0	$\left[\frac{\min}{RZ}\right]$
tRM	Zeitbedarf für alle Fahrbewegungen im mittleren Rückezyklus auf Rückegasse und Maschinenweg		≥ 0	$\left[\frac{\min}{RZ}\right]$
tRMFL	Zeitbedarf für Fahren beim Hacken im mittleren Rückezyklus auf Rückegasse und Maschinenweg		≥ 0	$\left[\frac{\min}{RZ}\right]$
tRMLA	Zeitbedarf für Lastfahrten im mittleren Rückezyklus auf Rückegasse und Maschinenweg		≥ 0	$\left[\frac{\min}{RZ}\right]$
tRMLE	Zeitbedarf für Leerfahrten im mittleren Rückezyklus auf Rückegasse und Maschinenweg		≥ 0	$\left[\frac{\min}{RZ}\right]$
tST	Zeitbedarf für alle Fahrbewegungen im mittleren Rückezyklus auf Strasse		≥ 0	$\left[\frac{\min}{RZ}\right]$
tSTFL	Zeitbedarf für Fahren beim Laden im mittleren Rückezyklus auf Strasse		≥ 0	$\left[\frac{\min}{RZ}\right]$
tSTLA	Zeitbedarf für Lastfahrten im mittleren Rückezyklus auf Strasse		≥ 0	$\left[\frac{\min}{RZ}\right]$
tSTLE	Zeitbedarf für Leerfahrten im mittleren Rückezyklus auf Strasse	_	≥ 0	$\left[\frac{\min}{RZ}\right]$
VB	Auswahl Sortiment oder Vollbaum für Formel Stampfer (Stampfer et al., 1997)		-	[-]

Abk.	Definition	Default- Werte	Def. Bereich	Einheit
V_D	Volumen des Massenmittelstammes (Derbholz)		≥ 0	[m ³ i.R.]
V _K	Volumen Kronenmaterial des Massenmittelst.		≥ 0	[m ³ i.R.]
V _N	Volumen eines mittleren Rundholzabschnittes		≥ 0	[m³ i.R.]
VpZ	Volumen pro Hackzyklus		0.1 -1.3	[m³i.R.]
V_R	Volumen Reisig des Massenmittelstammes		≥ 0	[m ³ i.R.]
V _{RMFL}	Geschwindigkeit auf Rückegasse und Maschinenweg beim Hacken		>0	$\left[\frac{m}{min}\right]$
V _{RMLA}	Geschwindigkeit auf Rückegasse und Maschinenweg bei Lastfahrt		>0	$\left[\frac{m}{min}\right]$
V _{RMLE}	Geschwindigkeit auf Rückegasse und Maschinenweg bei Leerfahrt		>0	$\left[\frac{m}{min}\right]$
V _{STFL}	Geschwindigkeit auf Strasse beim Hacken	60		$\left[\frac{m}{min}\right]$
V _{STLA}	Geschwindigkeit auf Strasse bei Lastfahrt		>0	$\left[\frac{m}{min}\right]$
V _{STLE}	Geschwindigkeit auf Strasse bei Leerfahrt		>0	$\left[\frac{m}{min}\right]$
V_V	Volumen Vollbaum des Massenmittelstammes		≥ 0	[m ³ i.R.]
VZ	Volumen pro Hackzyklus ⁴		0.1 - 1.3	[m ³ i.R.]
WPPH_ Hacksch nitzel	Arbeitsplatzzeit für das Personal pro m³ i.R. bei der Bereitsstellung von Hackschnitzeln (siehe Anhang)		≥ 0	$\left[\frac{Std.}{m^3i.R.}\right]$

Tabelle 4: Abkürzungen und Definitionen.

3.6 Berechnungsbeispiel

Eingabe

Bestandesdaten:				Nutzungsdaten:			
Hindernisklasse	HK	1		Baumart	BA	1	
Gefällsklasse	GK	1		Hackgut	AA	0	
Fahrtyp		af		Silvenwert	SW	1	
E_Länge mit Holz	E	200	m	dBHD	dBHD	15	cm
Leer & Last RG	FRM	200	m	Zopfdurchmesser	dZD	0	cm
Leer & Last ST	FST	50	m	Nutzmenge	N	160	m³ i:R.
Default-Werte:				Maschinendaten:			
Umrechnung Srm	dUF	0.4		Containergrösse	С	30	Srm
Anteil Leer	ALE	0.5		Hackergrösse	GH	0	
Anteil Last	ALA	0.5					
Basis-Geschw.	BG	89					
Geschw. Änderung	CGx	22					
	Cgy	11					
	CGz	7.5					
Gesch Strasse Laden	VSTFL	60					
Korrekturfaktor	KF	1.2					
Entladefaktor	FE	0.2					

⁴ Rechnerischer Wert für VpZ, nur relevant falls dRPV ≥ VpZ

Totale Systemzeit

Fahren	0.37	min/m3 i.R.	Nutzungsmenge	m3	230.18	
Hacken	2.67	min/m3 i.R.	VpZ	m4	0.26	
Entladen	0.53	min/m3 i.R.	SpZ	m5	1.42	
Total	3.58	min/m3 i.R.	Vv	m6	0.19	
			Vk	m7	0.08	
Leistung	0.28	m3 i.R./min	Vn	m8	0.10	
	0.70	Srm/min	Vd	m9	0.13	
	41.92	Srm/h	AL	m	20.75	
Effizienz	0.02	h/Srm				
Zeit/Objekt	13.73	h				

Tabelle 5: Berechnungsbeispiel (Riechsteiner, 1999).

4 Anhang

A1: Volumen von Baumteilen (andere Methode)

Abbildung 30: Input und Output bei der Ermittlung des Volumens von Baumteilen.

Input		Formel	Output		
h_{dom}	[m]	$\frac{V_D}{G}(h_{dom}) = C_1 * EXP(\frac{C_2}{h_{dom}})$ $F_V = f(\frac{V_D}{G}) = C_3 * EXP(\frac{C_4}{\frac{V_D}{G}} + 0.5)$			
dBHD	[cm]	$\left(\frac{V_D}{G}\right) - C_3 \cdot \frac{EAI}{G} \left(\frac{V_D}{G} + 0.5\right)$			
BA	[-]	$F_V = \frac{V_V}{V_V}$	V_{V}	[m ³ i.R.]	
		$V_{V} = F_{V} * V_{D}$	$V_{\rm D}$	[m ³ i.R.]	
$d_{Z\!D}$	[cm]	$F_{V} = \frac{V_{V}}{V_{D}}$ $V_{V} = F_{V} * V_{D}$ $V_{D} = C_{I} * EXP(\frac{C_{2}}{h_{dom}}) * dBHD^{2} * \pi / 40000$	V_R	[m ³ i.R.]	
		$V_R = V_V - V_D$	V_{K}	[m ³ i.R.]	
			V_N	[m ³ i.R.]	
		C_1 C_2 C_3 C_4 Fichte 33.54 - 28.01 0.94 3.06			
		Buche			
		$V_K = V_V - V_N$			
		$V_N = AL_{ZD} \bullet \pi \bullet \left(\frac{dMD}{200}\right)^2$			
		$AL_{ZD} = \frac{d_{ZD} - dBHD}{Km} + 1.3$			
		$dMD = \left(h = \frac{AL_{ZD}}{2}\right) = Km \cdot \left(\frac{AL_{ZD}}{2} - 1.3\right) + dBHD$			
		$Km = N_1 \bullet dBHD^2 + N_2 \bullet dBHD + N_3$			
		falls BA = Nadelholz $N_1 = 4E - 05$; $N_2 = -0.0215$; $N_3 = -0.4238$			
		falls $BA = Laubholz N_1 = 6E - 05; N_2 = -0.0264; N_3 = -0.3887$			

Abbildung 31: Formeln zur Ermittlung des Volumens von Baumteilen.

lı	nput	Formel	Output		
AA	[-]	falls AA = Vollbaum			
V_V	[m ³ i.R.]	$falls AA = Vollbaum$ $NT = V_V \bullet Anz$			
V_K	[m ³ i.R.]	$falls AA = Kronenmaterial$ $NT = V_K \bullet Anz$	NT	[m ³ i.R.]	
V_N	[m ³ i.R.]	$falls AA = Rundholzabschnitte$ $NT = V_N \bullet Anz$			
$N \ V_D$	[m ³ i.R.] [m ³ i.R.]	$Anz = \frac{N}{V_D}$	Anz	[-]	

Abbildung 32: Formeln zur Ermittlung des Volumens von Baumteilen

Hdom	V7/G Fi	V7/G Bu	Modell
10	2.1	2.5	2.04
15	5.3	5.2	5.19
20	8.2	8	8.27
25	10.8	11	10.94
30	13.2	14.2	13.19
35	15.1	17.6	15.07
40	16.7	21.1	16.66

Tabelle 6: Formhöhenwerte in Abhängigkeit von h_{dom} (Forstkalender 1998, S.181).

arith. Mittelhöhe	FD	FV	FV/FD	Modell FV/FD=f(FD)
6	1.2	6.6	5.500	5.685
7	2	7	3.500	3.197
8	2.9	7.5	2.586	2.313
9	3.8	8	2.105	1.916
10	4.6	8.5	1.848	1.714
11	5.4	8.9	1.648	1.580
12	6.1	9.3	1.525	1.496
13	6.9	9.8	1.420	1.423
14	7.5	10.2	1.360	1.379
15	8.1	10.6	1.309	1.343
16	8.7	11	1.264	1.312
17	9.3	11.4	1.226	1.286
18	9.8	11.8	1.204	1.266
19	10.3	12.2	1.184	1.249
20	10.8	12.6	1.167	1.234
21	11.3	13	1.150	1.219
22	11.7	13.4	1.145	1.209
23	12.1	13.7	1.132	1.200
24	12.5	14.1	1.128	1.191
25	12.8	14.4	1.125	1.184
26	13.1	14.7	1.122	1.178
27	13.5	15	1.111	1.171
28	13.8	15.3	1.109	1.165
29	14.1	15.6	1.106	1.160

30	14.4	15.9	1.104	1.155
31	14.6	16.1	1.103	1.152
32	14.9	16.3	1.094	1.148

Tabelle 7: Werte der Formhöhe für Derbholz und Vollbaum.

Bemerkungen

Beim Arbeiten mit diesen Formeln treten, gewisse Probleme auf.

- H/BHD sollte nicht beliebig sein
- Bei Vorgabe Zopfdurchmesser 7 cm sollte VN=VD sein. Dies ist bei der ursprünglichen Form Riechsteiner besser gewärleistet.
- Vorteil liegt darin, dass man f
 ür verschiedene Oberh
 öhen die Volumenbestimmung durchf
 ühren kann.
- Bei sehr kleinen Zahlen für VD steigt die Anzahl Bäume sehr stark an, was zu grossen Volumenwerten für Kronenmaterial, etc führt.
- Unterschiede im Kronenmaterial

Abbildung 33: V7/G als Funktion von h_{dom} für Fichte

A2: Zeitsystem im Komponentenmodell "Mobiler Hacker mit Aufbaucontainer"

(nach Björheden & Thompson 1995 und Heinimann 1997, verändert Björnheden & Thompson 1995: An International Nomenclature For Forest Work Study, Swedish University of Agricultural Sciences Department of Operational Efficiency, Sweden; Heinimann, H.R. 1997: Skript Forstl. Verfahrenstechnik, ETH Zürich)

Abbildung 34: Verwendetes Zeitsystem

Die in Abbildung 34 aufgeführten Zeiten können grundsätzlich für das Produktionssystem als ganzes sowie für die beteiligten Produktionsfaktoren (Maschinen, Personal) ermittelt werden. Je nachdem spricht man zum Beispiel von der System-, von der Maschinen- oder von der Personalarbeitszeit. In Anlehnung an die Originalgrundlagen wurden die Abkürzungen von den englischen Begriffen abgeleitet.

	Arbeitsplatzzeit					
		Nicht Arbeitszeit	Arbeitszeit (Work time)			
Betrachtetes Objekt		(non work time)				
	workplace	n on w ork	work	indirect	p roductive	
System (system hour)	WPSH	NWSH	WSH	ISH	PSH	
Maschine (machine hour)	WPMH	NWMH	WMH	IMH	PMH	
Personal (p ersonal h our)	WPPH	NWPH	WPH	IPH	PPH	

Tabelle 8: Übersicht über die verwendeten Zeitbegriffe.

Berechnung der System- und Faktorzeiten

$$F_{O-15} = \frac{PSH_{15}}{PSH_{0}}$$

$$PSH_{15} = PSH_{0}*F_{0-15}$$

$$WSH = PSH_{15} + ISH = PSH_{15}*F_{indir}$$

$$WPSH = WSH + NWSH = WSH*F_{Weg}*F_{Pausen}*F_{Stör}$$

$$Personal:$$

$$PPH_{0} = Anz_Pers*PSH_{0}$$

$$PPH_{15} = PPH_{0}*F_{0-15}$$

$$WPPH = PPH_{15} + IPH = PPH_{15}*F_{indir}$$

$$WPPH = WPH *F_{Weg}*F_{Pausen}*F_{Stör}$$

$$Maschinen:$$

$$PMH_{0} = Anz_Masch*PSH_{0}*Masch_Laufzeitanteil$$

$$PMH_{15} = PMH_{0}*F_{0-15}$$

$$WMH = PMH_{15} + IMH = PMH_{15}*F_{indir}$$

$$WPMH = WPM_{15} + IMH = PMH_{15}*F_{indir}$$

$$WPMH = PMH_{15} + IMH = PMH_{15}*F_{indir}$$

$$WPMH = WMH *F_{Stör}$$

Abbildung 35: Formeln zur Berechnung der System- und Faktorzeiten.

A3: Erläuterungen zum Teilsystem Hacken

A3.1 Formel Stampfer

Die einzige brauchbare Formel, die in der Literatur gefunden werden konnte, ist diejenige von Stampfer (Stampfer et. al., 1997). Sie gilt für mittlere, kranbeschickte Hacker, berechnet die Leistung in Srm³/PSH₁₅ für das Hacken von Vollbäumen und Sortimenten und hat folgende Eingangsgrössen:

Eingangsgrösse	Einheit	Bemerkung
Volumen pro Zyklus (VpZ)	fm	- Zyklus: Die Zeit von der Auflage eines Bündels in den
		Einzug/Förderband bis zum nächsten Bündel.
		- liefert bis zu einem VpZ von 1.3 m³ realistische Werte.
Vollbaum/Sortiment	0/1	- Dummy-Variable

Tabelle 9: Eingangsgrössen Teilsystem Hacken

Einerseits ist die Eingangsgrösse "Volumen pro Zyklus (VpZ)" schwer zu bestimmen, andererseits sollen die Bestandesdaten nur einmal erhoben werden. Im Teilsystem Fahren wird der Bestand mittels dBHD (der Nutzungsmenge), Erschliessungslänge mit Holz und Hackgutmenge umschrieben und daraus das durchschnittliche Rohpoltervolumen berechnet.

Es wird nun versucht, eine Funktion zwischen dem dBHD des zu hackenden Holzes und dem "Volumen pro Zyklus (VpZ)" herzuleiten. Da die Beziehung dBHD zu VpZ tarifabhängig ist, erscheint es sinnvoll, die Beziehung dBHD zu "Stückzahl pro Zyklus (SpZ)" herzuleiten und diese mit dem jeweils für die örtlichen Gegebenheiten gültigen Massenmittelstamm hochzurechnen.

Gemäss Becker (Becker et al., 1986) ist die Abhängigkeit der Baumzahl vom BHD pro Krangriff als gesichert anzusehen (Korrelationskoeffizient r=-0.7).

Einzig aus der Untersuchung von Becker (Becker et al., 1986) und Plath (Plath, et al., 1996) lässt sich die Stückzahl pro Zyklus herleiten.

Quelle	ана	Hackort	Hackgut	Distanz	Nutzmenge Sm3	Nutzmenge m3	Sm3/hRAZ	Sm3/hG AZ	Fäche [ha]	Stückzahl	ZdS	VpZ [fm]	В'Ап
Becker	7.5	RG	gezopft	130	50	20.0	10.7	12.2	0.19	689	3.19	0.09	Lbh
Becker	7.4	В	Vollbaum	188	26	10.4	6.5	8.7	0.11	563	3.18	0.06	Lbh
Becker	9.5	WS	Volbaum	59	53	21.2	17.7	18.2	0.22	421	2.03	0.1	Lbh
Becker	10.8	Platz	Volbaum	23	178	71.2	16.2	17.6	0.58	1024	1.54	0.11	Lbh
Becker	10.5	WS	gezopft	382	217	86.8	8.4	11.9	0.68	1334	1.57	0.1	Ndh
Becker	9.1	В	Volbaum	158	459	183.6	11.0	15.8	1.00	3642	1.73	0.09	Lbh
Becker	14.7	В	Volbaum	235	286	114.4	12.5	22.0	0.35	1102	1.37	0.14	Lbh
Becker	8.1	В	Volbaum	152	140	56.0	9.7	13.0	0.5	1469	1.7	0.06	Lbh
Becker	6.0	RG	gezopft	550	196	78.4	8.1	10.4	0.69	5013	1.51	0.02	Ndh
Plat h	8.0	WS	Volbaum		580	232.0	27.0	31.4	0.69	3039	3.4	0.27	Ndh

Tabelle 10: Grundaten aus der Literatur.

Infolge der kleinen Grunddatenmenge und der kleinen Differenz zwischen der SpZ von gezopften Bäumen und Vollbäumen, wird über die gesamte Datenmenge eine Regression gebildet. Das durchschnittliche Rohpoltervolumen, welches einen limitierenden Faktor für die Anzahl Bäume pro Krangriff (= SpZ) darstellt, hat eine zu vernachlässigende Bedeutung (Becker et. al, 1986).

Die letzte Zeile aus den Becker-Daten (BHD = 6 cm) wurde infolge der grossen Abweichung zu den restlichen Daten bei der Auswertung nicht berücksichtigt.

Tabelle 11: Grunddaten SpZ.

Abbildung 36: Stückzahl pro Zyklus (SpZ) abh. vom BHD.

Da diese Beziehung nur für kleine BHD gültig ist, wird versucht mittels Greifer- und Einzugsgrösse des Hackers den weiteren Verlauf der Kurve herzuleiten

A3.2 Untersuchung mittels Einzugsgrösse

Gemäss P. Schaad, Forstunternehmer, zitiert in der Semesterarbeit von U. Eigenheer (Eigenheer, 1998) liegt die optimale Hackerleistung bei etwa halber Ausfüllung der Einzugsöffnung. Falls mehr ausgefüllt ist, reicht die Motorleistung oft nicht mehr aus, um ohne Unterbruch zu hacken. Bei Überlastung wird der Hackrotor vom Hackmotor abgeriegelt. Bei einer mittleren Einzugsgrösse von 47*67 (Typ Erjo vgl. Riechsteiner (1999) und Anhang 5) beläuft sich der maximale Stammdurchmesser auf 45 cm.

Der Greifer von mittleren, kranbeschickten Hackern hat einen Querschnitt von ca. 0.35 m². Die halbe Einzugsöffnung, Bedingung für eine optimale Hackleistung beläuft

sich auf ca. 0.15 m². Die Einzugsöffnung stellt folglich den limitierenden Faktor für die Anzahl Stämme pro Zyklus dar.

Abbildung 37: Einzugsöffnung schematisch (grau: halber Einzug).

Abbildung 38: Anzahl Stück pro halber Einzugsfläche (Einzugsöffnung), abhängig vom Durchmesser.

Vergleicht man nun diese Daten mit denjenigen aus der Literatur, so zeigt sich, dass für kleine Durchmesser die berechneten Stückzahlen zu gross sind. Dies kommt v.a. durch die bei diesen Dimensionen kleinen Rohpoltervolumina zustande, wodurch die potentielle SpZ nicht ausgenutzt werden kann.

Bem.: Stampfer stellte fest, dass die Stückzahl pro Zyklus keinen signifikanten Einfluss auf die Hackleistung hat (Stampfer, 1997). Dies bezweifle ich, da die SpZ den örtlichen Gegebenheiten Rechnung trägt.

A3.3 Stückzahl pro Zyklus als Funktion vom Brusthöhendurchmesser

Um eine verlässliche Beziehung zwischen dem durchschnittlichen Brusthöhendurchmesser des zu hackenden Holzes BHD und der Stückzahl pro Zyklus SpZ herzuleiten, werden die gewonnenen Erkenntnisse kombiniert.

Die Kurve aus der Literatur nähert sich dem Wert 1 und behält diesen Wert bis zu dem maximal möglichen BHD von 45 cm, was logisch erscheint.

Die Verknüpfung der beiden Kurvenstücke und die zugehörigen Funktionen zeigt

nachstehende Abbildung.

Abbildung 39: Stückzahl pro Zyklus als Funktion vom dBHD.

A3.4 SpZ und VpZ bei Astmaterial

Über das Hacken von Astmaterial ist in der Literatur nur wenig zu finden. Gemäss Definition hat Reisig einen maximalen Durchmesser von 7 cm. Dies entspricht einem Stückinhalt von ca. 0.02 fm, was einer Stückzahl pro halber Einzugsfläche von ca. 8 entspricht. Das VpZ beläuft sich folglich auf maximal 0.16 fm. Ebenfalls darf dieser Wert erst verwendet werden, wenn das Rohpoltervolumen grösser als dieser Wert ist.

A4: Umrechnungsfaktor F_{Verteilzeit} für PSH15 in t_{_Hacker}

Eine Auswertung des Verhältnisses von RAZ zu GAZ von bestehenden Versuchen ergab ein durchschnittliches $F_{\text{Verteilzeit}}$ von 1.41 5 . Die Standardabweichung beträgt 28%.

	Lite rat ur	Sm 3/h GA Z	Sm 3/h RA Z
Becker (1986)		10.7	12.2
Becker (1986)		6.5	8.7
Becker (1986)		17.7	18.2
Becker (1986)		16.2	17.6
Becker (1986)		8.4	11.9
Becker (1986)		11.0	15.8
Becker (1986)		12.5	22.0
Becker (1986)		9.7	13.0
Becker (1986)		8.1	10.4
Kalaja (1984)		16.0	26.6
Kalaja (1984)		18.0	30.0
Kalaja (1984)		21.5	35.5
Kalaja (1984)		22.1	36.7
Plath (1996)		26.9	54.6
Stampfer (1997)		34.9	40.6
Stampfer (1997)		23.2	27.7
Stampfer (1997)		60.2	68.8

Tabelle 12: Grunddaten.

Abbildung 40: Verhältnis Srm³/h GAZ zu Srm³/h RAZ.

A5: Hackertypen

Nachfolgend werden die beiden gebräuchlichsten Hackertypen beschrieben.

A5.1 Typenherleitung

Motorleistung	Einzugsöffnung	Einzugsöffnung	Тур	Fahrgestell
[kW]	[cm ²]	[cm]		
110	960	40*24	Klöckner/Welte	Forwarder
179	1120	56*20	Bruks Ösa	Forwarder
109	1120	28*40	-	Forwarder
270	3149	47*67	Erjo (GHH)	Forwarder
383	7571	113*67	Bruks 1004 CT	Lkw
302	4836	78*62	Bruks 803 CT	Forwarder
383	5616	78*72	Bruks 1203 CT	Lkw

Tabelle 13: Grundlagendaten Typenherleitung.

_

⁵ Vermutlich inkl. Störungszeiten (Anmerkung F. Frutig, Jan. 2003)

Abbildung 41: Einzugsöffnung = f(Motorleistung).

A5.2 Mittlerer Hacker

Bei mittleren Hackern mit einem Aufbaucontainer (Bunker) ist das Hackaggregat (meist Trommelhacker) auf das Fahrgestell eines Forwarders aufgebaut. Der mittlere Hacker operiert v.a. auf der Rückegasse/Maschinenweg.

Motorleistung	bis 300	kW
Einzugsöffnung	ca. 47*67	cm
Kranreichweite	9	m
Bunkergrösse	15	Srm ³
Leergewicht (ohne Trägerfahrzeug)	< 10	t
Hackleistung	10 - 50	Srm ³ /h

Tabelle 14: Maschinendaten mittlere Hacker.

A5.3 Grosshacker

Bei Grosshackern ist das Hackaggregat meist in das Fahrgestell eines Lkws integriert. Der Grosshacker operiert auf der Waldstrasse bzw. auf Aufarbeitungsplätzen.

Motorleistung	bis 300	kW
Einzugsöffnung	ca. 78*72	cm
Kranreichweite	9	М
Bunkergrösse	30	Srm ³
Leergewicht (ohne Trägerfahrzeug)	> 10	t
Hackleistung	50 - 120	Srm ³ /h

Tabelle 15: Maschinendaten Grosshacker.

Gemäss Remler (Remler et al., 1996) ist die durchschnittliche Leistung von Grosshackern ca. dreimal so hoch wie beim mittleren Hacker. Für die nachfolgenden Leistungsberechnungen wird ein vorsichtiger Faktor von 2.5 verwendet.

5 Literaturverzeichnis

BECKER, G.; BÖLTZ, K.; MÜLLER, A.; 1896: Nutzung forstlicher Biomasse durch Abschlussbericht zum EG-Projekt BOS/002/D(B). Institut für Forstbenutzung und Forstliche Arbeitswissenschaft der Albert-Ludwigs-Universität, Freiburg.

BJÖRHEDEN & THOMPSON; 1995: An International Nomenclature For Forest Work Study, Swedish University of Agricultural Sciences, Department of Operational Efficiency, Sweden.

EIGENHEER, U.; 1998: Produktivitätsmodelle für die Erzeugung von Waldhackschnitzeln mit mobilen, kranbeschickten Hackern. Semesterarbeit ETHZ.

FELLER, S.; REMLER, N.; WEIXLER, H.; 1998: Vollmechanisierte Waldhackschnitzel-Bereitstellung. Bericht Nummer 16, Bayerische Landesanstalt für Wald und Forstwirtschaft, Freising.

HEINIMANN, H.R.; 1997: Skript Forstl. Verfahrenstechnik I, ETH Zürich.

KALAJA, H., 1984: The example of terrain chipping system in first commercial thinning. Folia Forestalia 584, Helsinki.

LÜTHY, C.; 1997: Kalkulationsgrundlage für das Holzrücken mit Forwarder. Interner Bericht, Eidg. Forschungsanstalt für Wald Schnee und Landschaft (WSL), Birmensdorf.

NÄF, J.; 1998: Ein Kalkulationsmodell für den Einsatz von Forwardern in Forstbetrieben. Interner Bericht, Eidg. Forschungsanstalt für Wald Schnee und Landschaft (WSL), Birmensdorf.

PLATH, H. J.; KROOP, M.; 1996: Gewinnung und Aufbereitung von Ganzbäumen zu Heizhackschnitzeln, AFZ / Der Wald, Nr. 17.

REMLER et al., 1996: Kosten und Leistung bei der Bereitstellung von Waldhackschnitzeln. Bayerische Landesanstalt für Wald und Forstwirtschaft. Bericht 11, 66 S.

RIECHSTEINER, D. 1999: Mobiler, kranbeschickter Hacker mit Aufbaucontainer - Grundlagen und Herleitung des Produktionssystems. Interner Bericht WSL.

STAMPFER, E.; STAMPFER, K.; TRZESNIOWSKI, A.; 1997: Bereitstellung von Waldhackgut. Forschung im Verbund, Schriftenreihe Band 29. BOKU Wien, Institut für Forsttechnik, Hrsg.: Österreichische Elektrizitätswirtschafts-Aktiengesellschaft, Wien.