

MON-0345.ST25.txt
SEQUENCE LISTING

<110> Li, Xia
Li, Weihua
Reed, Danielle R.
Bachmanov, Alexander A.
Brand, Joseph G.

<120> TASTE RECEPTORS OF THE T1R FAMILY FROM DOMESTIC CAT

<130> MON-0345

<140> US 10/591,360
<141> 2004-05-13

<150> PCT/US2004/015136
<151> 2004-05-13

<150> US 60/554,751
<151> 2004-03-19

<150> US 60/482,992
<151> 2003-06-27

<160> 99

<170> PatentIn version 3.3

<210> 1
<211> 2569
<212> DNA
<213> Felis catus

<400> 1
atgcccggcc tcgctctcct gggcctcacg gctctcctgg gcctcacggc tctcttggac 60
cacggggagg ggcacacgtc ctgtttgtca cagcagctca ggatgcaggg ggactatgtg 120
ctgggtgggc tcttccctct gggctctgcc gagggtacag gtcttggcga cgggctgcag 180
cccaatgcca ccgtgtgcac caggttctcg tctctgggcc tgctctggc gctggccgtg 240
aagatggcgg tggaggagat caacaacggg tcggccctgc tgcccggtgc gcacctggc 300
tatgacctct ttgacacgtg ttcagagccc atggtgccca tgaagcccag cctcgtttc 360
atggccaaag caggcagctg cagcattgcc gcctactgca attacacaca gtaccagccc 420
cgcgtgctgg ccgtcatcg gccccactcg tctgagctcg ccctcgtcac cggcaagtgc 480
ttcagcttct tccttgtgcc tcaggtcagc tacggcgcca gcaccgaccg gctgagcaac 540
cgggagatct tcccgtcctt cttccgcacg gtgcccagcg accaggtgca ggtggcggcc 600
atggtgagc tgctggagga gctcggtgg aactgggtgg cggcggtgg tagtgacgac 660
gagtagtgcc ggcagggcct gagcctttc tccggcctgg ccagcgccag gggcatctgc 720
atcgcgcatg agggcctggt gccactgccc ccaggcagcc tgccgtggg cgccctacag 780
ggcctgctgc gccagggtgaa ccagagcagc gtgcagggtgg tggtgctgtt ctccctccgc 840
cacgcggccc gcaccctctt cagctacagc atccgctgca agctctcacc caagggtgtgg 900
gtggccagcg aggccctggct gacccatgac ctggtcatga cgctgcccgg catgcctggg 960
gtgggcaccg tgctggcctt cctgcagcag ggcgcggccga tgccggagtt cccatcctac 1020

MON-0345.ST25.txt

gtgcggaccc	gcctggccct	ggccgctgac	cctgccttct	gcccctcgct	ggacgctgaa	1080
cagccaggcc	tggaggagca	cgtggtgaaa	ccacgctgcc	ccaaatgtga	ccacgtcacg	1140
ctagagaacc	tatctgcggg	gctgctgcac	caccagacct	tcgctgccta	cgcggctgt	1200
tatggcgtgg	cccaagccct	tcacaacaca	ctgcgctgca	atgcctcgaa	ctgccccagg	1260
cgggagcctg	tgccggccctg	gcagctccta	gagaacatgt	acaacgtgag	cttccgtct	1320
cgcggcctgg	cactgcagtt	cgacgcccagc	gggaacgtga	acgtggattt	cgaccgtaaa	1380
ctgtgggtgt	ggcaggaccc	gacgcccagc	ctgcgcaccg	taggcacctt	caagggccgc	1440
ctggagctct	ggcgctctca	gatgtgctgg	cacacgccgg	ggaaggcagca	gcccgtgtcc	1500
cagtgcctcc	ggcagtgc当地	ggaaggccag	gtgcgcgc当地	tgaagggctt	ccactcttgc	1560
tgttacaact	gcgtggactg	caaggcgggc	agttatcagc	gcaaccaga	tgaccctc当地	1620
tgcacccagt	gtgaccagga	ccagtggtcc	ccagaccgga	gcacacgctg	cttcgccc当地	1680
aagcccatgt	tcctggcatg	gggggagcca	gctgtgctgc	tactgctc当地	gctgctggct	1740
ctggcgctgg	gcctggcgct	ggcagccctg	gggctttcc	tctggcactc	ggacagcccg	1800
ctgggtcagg	cctcaggtgg	gccacgggccc	tgctttggcc	tggcttgccc	gggcctggcc	1860
tgcctcagtg	tcctcctgtt	ccctggccag	ccaggccctg	ccagctgc当地	ggcccagcag	1920
ccactgttcc	acctcccact	cactggctgc	ctgagcacgt	ttttcctgca	agcggccag	1980
atatttgtgg	ggtcggagct	gccaccaagc	tgggctgaga	agatgcgtgg	ccgcctgc当地	2040
gggccttggg	cctggctgg	ggtgctgctt	gctatgtgg	cagaagccgc	attgtgtgcc	2100
tggcacctgg	tagccttccc	gccagaggtg	gtgacggact	ggcgggtact	gcccacagag	2160
gcfctggtgc	actgccacgt	gcactcctgg	atcagcttc当地	gcctggtgca	tgccactaac	2220
gccatgctgg	cttcctctg	cttcctggcc	actttcctgg	tgcagagccg	gccaggccgc	2280
tacaatggtg	cccgccggcct	cacctttgcc	atgctggcct	acttcatacac	ctggatctcc	2340
tttgtcccc	tcttgccaa	tgtcacgtg	gcctaccagc	ctgccgtgca	gatgggcacc	2400
atcctcctct	gtgccttggg	tatccctagcc	accttccacc	tgcccaagtg	ctacctgctg	2460
ctgcagccgc	cggagctcaa	cacccctgag	ttcttcctgg	aagacaatgc	cagagcacag	2520
ggcagcagtt	gggggcaggg	gaggggagaa	tcggggcaaa	aacaagtga		2569

<210> 2
<211> 865
<212> PRT
<213> Felis catus

<400> 2

Met Pro Gly Leu Ala Leu Leu Gly Leu Thr Ala Leu Leu Gly Leu Thr
1 5 10 15

Ala Leu Leu Asp His Gly Glu Gly Ala Thr Ser Cys Leu Ser Gln Gln
20 25 30

MON-0345.ST25.txt

Leu Arg Met Gln Gly Asp Tyr Val 35 Leu Gly Gly Leu Phe Pro Leu Gly 40
 45

Ser Ala Glu Gly Thr Gly Leu Gly Asp Gly Leu Gln 50 Pro Asn Ala Thr 55
 60

Val Cys Thr Arg Phe Ser Ser Leu Gly Leu Leu Trp Ala Leu Ala Val 65 70 75 80

Lys Met Ala Val Glu Glu Ile Asn Asn Gly Ser Ala Leu Leu Pro Gly 85 90 95

Leu His Leu Gly Tyr Asp Leu Phe Asp Thr Cys Ser Glu Pro Met Val 100 105 110

Ala Met Lys Pro Ser Leu Val Phe Met Ala Lys Ala Gly Ser Cys Ser 115 120 125

Ile Ala Ala Tyr Cys Asn Tyr Thr Gln Tyr Gln Pro Arg Val Leu Ala 130 135 140

Val Ile Gly Pro His Ser Ser Glu Leu Ala Leu Val Thr Gly Lys Phe 145 150 155 160

Phe Ser Phe Phe Leu Val Pro Gln Val Ser Tyr Gly Ala Ser Thr Asp 165 170 175

Arg Leu Ser Asn Arg Glu Ile Phe Pro Ser Phe Phe Arg Thr Val Pro 180 185 190

Ser Asp Gln Val Gln Val Ala Ala Met Val Glu Leu Leu Glu Glu Leu 195 200 205

Gly Trp Asn Trp Val Ala Ala Val Gly Ser Asp Asp Glu Tyr Gly Arg 210 215 220

Gln Gly Leu Ser Leu Phe Ser Gly Leu Ala Ser Ala Arg Gly Ile Cys 225 230 235 240

Ile Ala His Glu Gly Leu Val Pro Leu Pro Pro Gly Ser Leu Arg Leu 245 250 255

Gly Ala Leu Gln Gly Leu Leu Arg Gln Val Asn Gln Ser Ser Val Gln 260 265 270

Val Val Val Leu Phe Ser Ser Ala His Ala Ala Arg Thr Leu Phe Ser 275 280 285

Tyr Ser Ile Arg Cys Lys Leu Ser Pro Lys Val Trp Val Ala Ser Glu 290 295 300

MON-0345.ST25.txt

Ala Trp Leu Thr Ser Asp Leu Val Met Thr Leu Pro Gly Met Pro Gly
 305 310 315 320

Val Gly Thr Val Leu Gly Phe Leu Gln Gln Gly Ala Pro Met Pro Glu
 325 330 335

Phe Pro Ser Tyr Val Arg Thr Arg Leu Ala Leu Ala Ala Asp Pro Ala
 340 345 350

Phe Cys Ala Ser Leu Asp Ala Glu Gln Pro Gly Leu Glu Glu His Val
 355 360 365

Val Gly Pro Arg Cys Pro Gln Cys Asp His Val Thr Leu Glu Asn Leu
 370 375 380

Ser Ala Gly Leu Leu His His Gln Thr Phe Ala Ala Tyr Ala Ala Val
 385 390 395 400

Tyr Gly Val Ala Gln Ala Leu His Asn Thr Leu Arg Cys Asn Ala Ser
 405 410 415

Gly Cys Pro Arg Arg Glu Pro Val Arg Pro Trp Gln Leu Leu Glu Asn
 420 425 430

Met Tyr Asn Val Ser Phe Arg Ala Arg Gly Leu Ala Leu Gln Phe Asp
 435 440 445

Ala Ser Gly Asn Val Asn Val Asp Tyr Asp Leu Lys Leu Trp Val Trp
 450 455 460

Gln Asp Pro Thr Pro Glu Leu Arg Thr Val Gly Thr Phe Lys Gly Arg
 465 470 475 480

Leu Glu Leu Trp Arg Ser Gln Met Cys Trp His Thr Pro Gly Lys Gln
 485 490 495

Gln Pro Val Ser Gln Cys Ser Arg Gln Cys Lys Glu Gly Gln Val Arg
 500 505 510

Arg Val Lys Gly Phe His Ser Cys Cys Tyr Asn Cys Val Asp Cys Lys
 515 520 525

Ala Gly Ser Tyr Gln Arg Asn Pro Asp Asp Leu Leu Cys Thr Gln Cys
 530 535 540

Asp Gln Asp Gln Trp Ser Pro Asp Arg Ser Thr Arg Cys Phe Ala Arg
 545 550 555 560

Lys Pro Met Phe Leu Ala Trp Gly Glu Pro Ala Val Leu Leu Leu Leu
 565 570 575

MON-0345.ST25.txt

Ala Leu Leu Ala Leu Ala Leu Gly Leu Ala Leu Ala Ala Leu Gly Leu
 580 585 590

Phe Leu Trp His Ser Asp Ser Pro Leu Val Gln Ala Ser Gly Gly Pro
 595 600 605

Arg Ala Cys Phe Gly Leu Ala Cys Leu Gly Leu Val Cys Leu Ser Val
 610 615 620

Leu Leu Phe Pro Gly Gln Pro Gly Pro Ala Ser Cys Leu Ala Gln Gln
 625 630 635 640

Pro Leu Phe His Leu Pro Leu Thr Gly Cys Leu Ser Thr Phe Phe Leu
 645 650 655

Gln Ala Ala Glu Ile Phe Val Gly Ser Glu Leu Pro Pro Ser Trp Ala
 660 665 670

Glu Lys Met Arg Gly Arg Leu Arg Gly Pro Trp Ala Trp Leu Val Val
 675 680 685

Leu Leu Ala Met Leu Ala Glu Ala Ala Leu Cys Ala Trp Tyr Leu Val
 690 695 700

Ala Phe Pro Pro Glu Val Val Thr Asp Trp Arg Val Leu Pro Thr Glu
 705 710 715 720

Ala Leu Val His Cys His Val His Ser Trp Ile Ser Phe Gly Leu Val
 725 730 735

His Ala Thr Asn Ala Met Leu Ala Phe Leu Cys Phe Leu Gly Thr Phe
 740 745 750

Leu Val Gln Ser Arg Pro Gly Arg Tyr Asn Gly Ala Arg Gly Leu Thr
 755 760 765

Phe Ala Met Leu Ala Tyr Phe Ile Thr Trp Ile Ser Phe Val Pro Leu
 770 775 780

Phe Ala Asn Val His Val Ala Tyr Gln Pro Ala Val Gln Met Gly Thr
 785 790 795 800

Ile Leu Leu Cys Ala Leu Gly Ile Leu Ala Thr Phe His Leu Pro Lys
 805 810 815

Cys Tyr Leu Leu Leu Gln Arg Pro Glu Leu Asn Thr Pro Glu Phe Phe
 820 825 830

Leu Glu Asp Asn Ala Arg Ala Gln Gly Ser Ser Trp Gly Gln Gly Arg
 835 840 845

MON-0345.ST25.txt

Gly Glu Ser Gly Gln Lys Gln Val Thr Pro Asp Pro Val Thr Ser Pro
 850 855 860

Gln
 865

<210> 3
 <211> 2532
 <212> DNA
 <213> Mus musculus

<400>	3					
atgggacccc	aggcgaggac	actccatttg	ctgtttctcc	tgctgcattgc	tctgcctaag	60
ccagtcattgc	tggttagggaa	ctccgacttt	cacctggctg	gggactacct	cctgggtggc	120
ctcttaccc	tccatgccaa	cgtgaagagc	gtctctcacc	tcaagctaccc	gcagggtgcc	180
aagtgcattg	agtacaacat	gaaggtcttg	ggctacaacc	tcatgcaggc	catgcgattc	240
gccgtggagg	aatcaacaa	ctgttagctct	ctgctgccc	gcgtgctgct	cggttacgag	300
atgggtggatg	tctgctaccc	ctccaacaat	atccagcctg	ggctctactt	cctgtcacag	360
atacatgact	tcctgccc	cctcaaagac	tacagccagt	acaggcccc	agtgggtggcc	420
gtcattggcc	cagacaactc	tgagtcgc	atcaccgtgt	ccaacattct	ctcctacttc	480
ctcgtgccac	aggtcacata	taggcacatc	accgacaagc	tgcgagacaa	gcggcgcttc	540
cctgcatgc	tgcgcactgt	gcccagcgcc	acccaccaca	tcgaggccat	ggtgcaactg	600
atgggttca	tccagtggaa	ctggatcgtg	gtgctgggtg	gcgtatgacg	ttatggccga	660
gagaacagcc	acctgctgag	ccagcgtctg	accaacactg	gcgtatctg	cattgccttc	720
caggaggttc	tgcctgtacc	agaaccaac	caggccgtga	ggcctgagga	gcaggaccaa	780
ctggacaaca	tcctggacaa	gctgcggcg	acctcggcgc	gtgtgggtgt	gatattctcg	840
ccagagctga	gcctgcacaa	cttctccgc	gaggtgctgc	gctggaaactt	cacaggcttt	900
gtgtggattg	cctctgagtc	ctggccatc	gaccctgttc	tacacaaccc	cacagagctg	960
cgccacacgg	gcactttct	ggcggtcacc	atccagaggg	tgtccatccc	tggcttcagc	1020
cagttccgag	tgcgcacga	caagccagag	tatccatgc	ctaacgagac	cagcctgagg	1080
actacctgta	accaggactg	tgacgcctgc	atgaacatca	ccgagtcctt	taacaacgtt	1140
ctcatgctt	cggggagcg	tgttgtctac	agtgtgtact	cggccgtcta	cgcggtagcc	1200
cacaccctcc	acagactcct	ccactgcaac	caggtccgct	gcaccaagca	aatcgcttat	1260
ccatggcagc	tactcaggg	gatctggcat	gtcaacttca	cgctcctgg	caaccagctc	1320
ttcttcgacg	aacaagggga	catgccatg	ctcctggaca	tcatccagtg	gcaatggggc	1380
ctgagccaga	accccttcca	aagcatcgcc	tcctactccc	ccaccgagac	gaggctgacc	1440
tacattagca	atgtgtcctg	gtacacccccc	aacaacacgg	tcccccata	catgtgttct	1500
aagagttgcc	agcctggca	aataaaaaaa	cccataggcc	tccacccgt	ctgcttcgag	1560
tgtgtggact	gtccgcccgg	cacccatctc	aaccgatcag	tagatgagtt	taactgtctg	1620

MON-0345.ST25.txt

tcctgccccg	gttccatgtg	gtcttacaag	aacaacatcg	cttgcttcaa	gcggcggctg	1680
gccttcctgg	agtggcacga	agtcccact	atcgtggtga	ccatcctggc	cgcctgggc	1740
ttcatcagta	cgctggccat	tctgctcatc	ttctggagac	atttccagac	gcccatggtg	1800
cgctcggcgg	gcggcccat	gtgcttcctg	atgctggtgc	ccctgctgct	ggcgttcggg	1860
atggtccccg	tgtatgtggg	cccccccacg	gtcttcctt	gtttctgccc	ccaggcttc	1920
ttcaccgtt	gcttctccgt	ctgcctctcc	tgcacacgg	tgcgtccct	ccagattgtg	1980
tgcgtttca	agatggccag	acgcctgcca	agcgcctacg	gtttctggat	gcgttaccac	2040
gggcctacg	tcttgtggc	ttcatacag	gccgtcaagg	tggccctgg	ggcaggcaac	2100
atgctggcca	ccaccatcaa	ccccattggc	cggaccgacc	ccgatgaccc	aatatcata	2160
atcctctcct	gccaccctaa	ctaccgcaac	gggctactct	tcaacaccag	catggacttg	2220
ctgctgtccg	tgctgggaaa	cagttcgcg	tacgtggca	aggaactgcc	caccaactac	2280
aacgaagcca	agttcatcac	cctcagcatg	accttcctt	tcacccctc	catccctc	2340
tgcacgttca	tgtctgtcca	cgtggcgtg	ctggcacca	tcatggatct	cctggtcact	2400
gtgctcaact	ttctggccat	cggctgggg	tactttggcc	ccaagtgtt	catgatcctt	2460
ttctaccgg	agcgcaacac	ttcagtttat	ttcaatagca	tgattcaggg	ctacacgatg	2520
aggaagagct	ag					2532

<210> 4
<211> 2529
<212> DNA
<213> Rattus rattus

<400> 4	atgggtcccc	aggcaaggac	actctgcttg	ctgtctctcc	tgctgcatgt	tctgcctaag	60
	ccaggcaagc	tggtagagaa	ctctgacttc	cacctggccg	gggactacct	cctgggtggc	120
	ctcttaccc	tccatgccaa	cgtgaagagc	atctcccacc	tcaagctacct	gcaggtgccc	180
	aagtcaatg	agttcaccat	gaaggtgttg	ggctacaacc	tcatgcaggc	catcgtttc	240
	gctgtggagg	agatcaacaa	ctgtagctcc	ctgctacccg	gcgtgctgct	cggctacgag	300
	atggtggatg	tctgttacct	ctccaacaat	atccaccctg	ggctctactt	cctggcacag	360
	gacgacgacc	tcctgcccatt	cctcaaagac	tacagccagt	acatgcccc	cgtggggct	420
	gtcattggcc	ccgacaactc	tgagtccgcc	attaccgtgt	ccaacattct	ctctcatttc	480
	ctcatcccac	agatcacata	cagcgccatc	tccgacaagc	tgcgggacaa	gcggcacttc	540
	cctagcatgc	tacgcacagt	gcccagcgcc	acccaccaca	tcgaggccat	ggtgcagctg	600
	atggttcaact	tccaatggaa	ctggattgtg	gtgctggtga	gchgacgacga	ttacggccgc	660
	gagaacagcc	acctgttgag	ccagcgtctg	accaaaacga	gchacatctg	cattgccttc	720
	caggagggttc	tgcccatacc	tgagtccagc	caggtcatga	ggtccgagga	gcagagacaa	780
	ctggacaaca	tcctggacaa	gctgcggcgg	acctcggcgc	gcgtcgtgg	ggtgttctcg	840
	cccgagctga	gcctgtatag	cttcttcac	gaggtgctcc	gctggaactt	cacgggtttt	900

MON-0345.ST25.txt

gtgtggatcg cctctgagtc ctgggctatc gacccagttc tgcataacct cacggagctg	960
cgccacacgg gtactttct gggcgtcacc atccagaggg tgtccatccc tggcttcagt	1020
cagttccgag tgccgcgtga caagccaggg tatcccggtc ctaacacgac caacctgcgg	1080
acgacacctgca accaggactg tgacgcctgc ttgaacacca ccaagtcctt caacaacatc	1140
cttatacttt cgggggagcg cgtggctcac agcgtgtact cgccagttt cgcggtgcc	1200
catgccctcc acagactcct cggctgtaac cgggtccgct gcaccaagca aaaggctac	1260
ccgtggcagc tactcaggg aatctggcac gtcaacttca cgctcctggg taaccggctc	1320
ttctttgacc aacaagggga catgccatg ctcttgaca tcatccagtg gcagtggac	1380
ctgagccaga atcccttcca aagcatcgcc tcctattctc ccaccagcaa gaggctaacc	1440
tacattaaca atgtgtcctg gtacaccccc aacaacacgg tccctgtctc catgtgtcc	1500
aagagctgcc agccagggca aataaaaaag tctgtggcc tccacccttg ttgcttcag	1560
tgcttggatt gtatgccagg cacctacctc aaccgcttag cagatgagtt taactgtctg	1620
tcctgcccgg gttccatgtg gtcctacaag aacgacatca cttgcttcca gcggcggcct	1680
accttcctgg agtggcacga agtcccacc atcgtggtg ccatactggc tgccctggc	1740
ttcttcagta cactggccat tctttcattc ttctggagac atttccagac acccatggtg	1800
cgctcggccg gtggcccat gtgcttcctg atgctcgatc ccctgctgct ggcgtttggg	1860
atggtgcccg tgtatgtggg gccccccacg gtcttcat gcttctgccc acaggcttc	1920
ttcaccgtct gcttctccat ctgcctatcc tgcattaccg tgcgtccctt ccagatcgtg	1980
tgtgtctca agatggccag acgcctgcca agtgcctaca gttttggat gcgttaccac	2040
gggcctatg tcttcgtggc cttcatcagc gccatcaagg tggccctgg ggtggcaac	2100
atgctggcca ccaccatcaa cccattggc cggaccgacc cggatgaccc caacatcatg	2160
atcctctcgt gccaccctaa ctaccgcaac gggctactgt tcaacaccag catggacttg	2220
ctgctgtctg tgctgggaaa cagttcgct tacatggca aggagctgcc caccaactac	2280
aacgaagcca agttcatcac tctcagcatg accttctcct tcacccctc catctccctc	2340
tgcacccatca tgtctgtca cgacggcgtg ctggcacca tcatggaccc cctggtcact	2400
gtgctcaact tcctggccat cggcttggaa tactttggcc ccaagtgatc catgatcctt	2460
ttctaccgg agcgcaacac ctcaagcttat ttcaatagca tgatccaggg ctacaccatg	2520
aggaagagc	2529

<210> 5
<211> 2520
<212> DNA
<213> Homo sapiens

<400> 5 atggggccca gggcaaagac catctgctcc ctgttcttcc tcctatgggt cctggctgag	60
ccggctgaga actcggactt ctacccgtt gggattacc tcctgggtgg cctcttctcc	120

MON-0345.ST25.txt	
ctccatgcc	acatgaaggg cattgttcac cttacttcc tgcagggtgcc catgtgcaag
gagtatgaag	tgaaggtgat aggctacaac ctcatgcagg ccatgcgctt cgcggtggag
gagatcaaca	atgacagcag cctgctgcct ggtgtgctgc tgggctatga gatgtggat
gtgtgctaca	tctccaacaa tgtccagccg gtgctctact tcctggcaca cgaggacaac
ctccttccc	tccaagagga ctacagtaac tacattccc gtgtggtggc tgtcattggc
cctgacaact	ccgagtctgt catgactgtg gccaaacttcc tctccctatt tctccttcca
cagatcacct	acagcgccat cagcgatgag ctgcgagaca aggtgcgctt cccggcttg
ctgcgtacca	cacccagcgc cgaccaccac gtcgaggcca tggtgagct gatgtgcac
ttccgctgga	actggatcat tgtgctggtg agcagcgaca cctatggccg cgacaatggc
cagctgcttgc	gcgagcgcgt ggcccggcgc gacatctgca tcgccttcca ggagacgctg
cccacactgc	agcccaacca gaacatgacg tcagaggagc gccagcgcct ggtgaccatt
gtggacaagc	tgcagcagag cacagcgcgc gtcgtggtcg tttctcgcc cgacctgacc
ctgtaccact	tcttcaatga ggtgctgcgc cagaacttca cgggcgcgt gtggatcgcc
tccgagtcc	ggccatcga cccggtcctg cacaacctca cggagctggg ccacttggc
accttcctgg	gcatcaccat ccagagcgtg cccatcccgg gcttcagtga gttccgcgag
tggggcccac	aggctggcc gccacccctc agcaggacca gccagagcta tacctgcaac
caggagtgcg	acaactgcct gaacgccacc ttgtccttca acaccattct caggctct
ggggagcgtg	tcgtctacag cgtgtactct gcggcttatg ctgtggccca tgccctgcac
agcctcctcg	gctgtgacaa aagcacctgc accaagaggg tggtctaccc ctggcagctg
cttgaggaga	tctggaaggt caacttcaact ctcctggacc accaaatctt cttcgacccg
caaggggacg	tggctctgca cttggagatt gtccagtggc aatgggaccc gagccagaat
cccttccaga	gcgtgcctc ctactacccc ctgcagcgcac agctgaagaa catccaagac
atctcctggc	acaccgtcaa caacacgatc cctatgtcca tgtgttccaa gaggtgccag
tcagggcaaa	agaagaagcc tgtggcattc cacgtctgct gcttcagtg catgactgc
cttccggca	cttccctcaa ccacactgaa gatgaatatg aatgccaggc ctgcccgaat
aacgagtgg	cctaccagag tgagacctcc tgcttaagc ggcagctgg cttcctggaa
tggcatgagg	cacccaccat cgctgtggcc ctgctggccg ccctgggctt ctcagcacc
ctggccatcc	tggtgatatt ctggaggcac ttccagacac ccatagttcg ctggctggg
ggccccatgt	gcttcctgat gctgacactg ctgctggtg catacatggt ggtcccggt
tacgtgggc	cgcccaaggt ctccacctgc ctctgccc aggcccttt tccctctgc
ttcacaattt	gcatctcctg tatgccgtg cggtttcc agatgtctg cgccttcaag
atggccagcc	gcttcccacg cgccctacagc tactgggtcc gctaccaggg gccctacgtc
tctatggcat	ttatcacggt actaaaaatg gtcattgtgg taattggcat gctggccacg
ggcctcagtc	ccaccacccg tactgacccc gatgacccca agatcacaat tgtccttgt

MON-0345.ST25.txt		
aaccccaact	accgcaacag	cctgctgttc aacaccagcc tggacctgct gctctcagtg 2220
gtgggttca	gcttcgccta	catggcaaa gagctgccca ccaactacaa cgaggccaag 2280
ttcatcaccc	tcagcatgac	cttctatttc acctcatccg tctccctctg caccttcatg 2340
tctgcctaca	gcggggtgct	ggtcaccatc gtggacctct tggtaactgt gctaacctc 2400
ctggccatca	gcctgggcta	cttcggcccc aagtgtaca tgatcctctt ctacccggag 2460
cgcaacacgc	ccgcctactt	caacagcatg atccaggggct acaccatgag gagggactag 2520
<210>	6	
<211>	2529	
<212>	DNA	
<213>	Mus musculus	
<400>	6	
atgctttct	gggcagctca	cctgctgctc agcctgcagc tggccgttgc ttactgctgg 60
gctttcagct	gccaaaggac	agaatcctct ccaggttca gcctccctgg ggacttcctc 120
ctggcaggcc	tgttctccct	ccatgctgac tgtctgcagg tgagacacag acctctggtg 180
acaagttgtg	acaggtctga	cagcttcaac ggccatggct atcacctctt ccaagccatg 240
cggttcaccg	ttgaggagat	aaacaactcc acagctctgc ttcccaacat caccctgggg 300
tatgaactgt	atgacgtgtg	ctcagagtct tccaatgtct atgcccaccc gagggtgctc 360
gcccagcaag	ggacaggcca	cctagagatg cagagagatc ttgcacca accctccaag 420
gtggtggcac	tcattggcc	tgataacact gaccacgctg tcaccactgc tgccctgctg 480
agccctttc	tgatgcccct	ggtcagctat gaggcgagca gcgtgatcct cagtggaaag 540
cgcaagttcc	cgtccttctt	gcgcaccatc cccagcgata agtaccaggt ggaagtcata 600
gtgcggctgc	tgcagagctt	cggctgggtc tggatctcgc tcgttggcag ctatggtagc 660
tacgggcagc	tggcgtaca	ggcgtggag gagctggcca ctccacgggg catctgcgtc 720
gccttcaagg	acgtggtgcc	tctctccgccc caggcggtg acccaaggat gcagcgcattg 780
atgctgcgtc	tggctcgagc	caggaccacc gtggctgtgg tcttctctaa ccggcacctg 840
gctggagtgt	tcttcagggtc	tgtggtgctg gccaacctga ctggcaaagt gtggatcgcc 900
tccgaagact	ggcccatctc	cacgtacatc accaatgtgc ccggatcca gggcattggg 960
acggtgctgg	gggtggccat	ccagcagaga caagtccctg gcctgaagga gtttgaagag 1020
tcctatgtcc	aggcagtgtat	gggtgctccc agaacttgcc cagaggggtc ctggtgccgc 1080
actaaccagc	tgtcagggaa	gtgtcacgct ttcacgacat ggaacatgcc cgagcttgg 1140
gccttctcca	tgagcgctgc	ctacaatgt tatgaggctg tgtatgtgt ggcccacggc 1200
ctccaccagc	tcctggatg	tacctctggg acctgtgcca gaggcccagt ctacccctgg 1260
cagttcttc	agcagatcta	caaggtgaat ttccctctac ataagaagac tgttagcattc 1320
gatgacaagg	gggaccctct	aggttattat gacatcatcg cctggactg gaatggacct 1380
aatggacct	ttgaggtcat	tggttctgcc tcactgtctc cagttcatct agacataaaat 1440
aagacaaaaaa	tccagtggca	cggagaagaac aatcaggtgc ctgtgtcagt gtgtaccagg 1500

MON-0345.ST25.txt

gactgtctcg aaggcacca cagttggtc atgggttccc accactgctg ctgcgagtgc	1560
atgcctgtg aagctggac atttctcaac acgagtgagc ttcacacctg ccagccttgt	1620
ggaacagaag aatgggcccc tgaggggagc tcagcctgct tctcacgcac cgtggagttc	1680
ttgggtggc atgaaccat ctcttggtg ctattagcag ctaacacgct attgctgctg	1740
ctgctgattg ggactgctgg cctgttgcc tggcgtctc acacgcgtt tgtgaggtca	1800
gctggggta ggctgtgctt cctcatgctg gtttcctgg tagctggag ttgcagcctc	1860
tacagcttct tcgggaagcc cacggtgccc gcgtgcttgc tgcgtcagcc cctctttct	1920
ctcgggttg ccattttcct ctccgtctg acaatccgct cttccaact ggtcatcatc	1980
ttcaagttt ctaccaaggt acccacattc taccacactt gggccaaaaa ccatggtgcc	2040
ggaatattcg tcattgtcag ctccacggc catttttcc tctgtctcac gtggcttgca	2100
atgtggaccc cacggccac cagggagtac cagcgcttcc cccatctggt gattcttgag	2160
tgcacagagg tcaactctgt gggcttcctg gtggcttgc cacacaacat ctcctctcc	2220
atcagcacct ttgtctgcag ctacctgggt aaggaactgc cggagaacta taacgaagcc	2280
aaatgtgtca ctttcagcct gtcctccac ttctgtatcc ttcatccatg tccagcattt	2340
accagggcag ctacctaccc gcggtaatg tgctggcagg gctggccact ctgagtggcg	2400
gttcagcgg ctatccctc cttaaatgct acgtgattct ctgccgtcca gaactcaaca	2460
acacagaaca ctttcaggcc tccatccagg actacacgag gcgctgcggc actacctga	2520
	2529

<210> 7
<211> 2520
<212> DNA
<213> Rattus rattus

<400> 7 atgctttct gggctgctca cctgctgctc agcctgcagt tggtctactg ctgggcttcc	60
agctgccaaa ggacagagtc ctctccaggc ttccagccttc ctggggactt cttccatgg	120
ggtctttct ccctccatgg tgactgtctg caggtgagac acagacctct ggtgacaagt	180
tgtgacaggc ccgacagctt caacggccat ggctaccacc tcttccaagc catgcgggtc	240
actgttgagg agataaaacaa ctccctggcc ctgcttccca acatcaccct gggtatgag	300
ctgtacgacg tggctcaga atctgccaat gtgtatgcca ccctgagggt gttgcctg	360
caagggcccc gccacataga gatacagaaa gacttcgca accactcctc caaggtggtg	420
gccttcatcg ggcctgacaa cactgaccac gctgtcacta ccgctgcctt gctgggtcct	480
ttccctgatgc ccctggtcag ctatgaggca agcagcgtgg tactcagtgc caagcgcaag	540
ttccctgttt tccttcgtac cgtccccagt gaccggcacc aggtggaggt catggtgtag	600
ctgctgcaga gttttgggtg ggtgtggatc tcgctcattg gcagctacgg tgattacggg	660
cagctgggtg tgcaggcgct ggaggagctg gccgtgcccc gggcatctg cgtcgccttc	720

MON-0345.ST25.txt

aaggacatcg	tgcccttctc	tgcccgggtg	ggtgaccgcga	ggatgcagag	catgatgcag	780
catctggctc	aggccaggac	caccgtggtt	gtggcttct	ctaaccggca	cctggctaga	840
gtgttcttca	ggtccgtgg	gctggccaac	ctgactggca	aagtgtgggt	cgcctcagaa	900
gactgggcc	tctccacgta	catcaccagc	gtgactggga	tccaaggcat	tggacggtg	960
ctcggtgtgg	ccgtccagca	gagacaagtc	cctgggctga	aggagttga	ggagtcttat	1020
gtcagggctg	taacagctgc	tcccagcgct	tgcccggagg	ggtcctgggt	cagcactaac	1080
cagctgtgcc	gggagtgcca	cacgttcacg	actcgtaaca	tgcccacgct	tggagccttc	1140
tccatgagtg	ccgcctacag	agtgtatgag	gctgtgtacg	ctgtggccca	cggcctccac	1200
cagctcctgg	gatgtacttc	ttagatctgt	tccagaggcc	cagtctaccc	ctggcagctt	1260
cttcagcaga	tctacaaggt	gaatttctt	ctacatgaga	atactgtggc	atttgatgac	1320
aacggggaca	ctctaggtta	ctacgacatc	atcgccctggg	actggaatgg	acctgaatgg	1380
acctttgaga	tcattggctc	tgcctcactg	tctccagttc	atctggacat	aaataagaca	1440
aaaatccagt	ggcacggaa	gaacaatcag	gtgcctgtgt	cagtgtgtac	cacggactgt	1500
ctggcagggc	accacaggg	ggttgtgggt	tcccaccact	gctgcttga	gtgtgtgccc	1560
tgcgaagctg	ggaccttct	caacatgagt	gagttcaca	tctgccagcc	ttgtggaaca	1620
gaagaatggg	cacccaagga	gagcactact	tgcttccac	gcacggtgga	gttcttgct	1680
tggcatgaac	ccatctttt	ggtgctaata	gcagctaaca	cgctattgct	gctgctgctg	1740
gttgggactg	ctggcctgtt	tgcctggcat	tttcacacac	ctgttagtgag	gtcagctggg	1800
ggtaggctgt	gcttcctcat	gctgggttcc	ctggtgcccg	gaagttgcag	cttctatagc	1860
ttcttcgggg	agcccacggt	gcccgctgc	ttgctgcgtc	agccccttt	ttctctcggg	1920
tttgccatct	tcctctcctg	cctgacaatc	cgctccttcc	aactggtcat	catcttcaag	1980
ttttctacca	aggtgccac	atttctaccgt	acctgggccc	aaaaccatgg	tgcaggtcta	2040
ttcgtcattg	ttagtccac	ggtccatttg	ctcatctgtc	tcacatggct	tgtaatgtgg	2100
acccccacgac	ccaccaggg	ataccagcgc	ttccccatc	tggtgattct	cgagtgcaca	2160
gaggtcaact	ctgtaggctt	cctgttggt	ttcacccaca	acattctcct	ctccatcagt	2220
accttcgtct	gcagctacct	gggtaaggaa	ctgcccagaga	actataatga	agccaaatgt	2280
gtcaccttca	gcctgctcct	caacttcgta	tcctggatcg	ccttcttcac	catggccagc	2340
atttaccagg	gcagctacct	gcctgcggc	aatgtgtgg	cagggctgac	cacactgagc	2400
ggcggcttca	gcggttactt	cctcccaag	tgctatgtga	ttctctgccc	tccagaactc	2460
aacaatacag	aacactttca	ggcctccatc	caggactaca	cgaggcgctg	cggcactacc	2520

<210> 8
<211> 2526
<212> DNA
<213> Homo sapiens

<400> 8
atgctgctct gcacggctcg cctggtcggc ctgcagcttc tcatttcctg ctgctggcc 60
Page 12

MON-0345.ST25.txt

tttgccctgcc	atagcacgga	gtcttctcct	gacttcaccc	tccccggaga	ttacccctg	120
gcaggcctgt	tccctctcca	ttctggctgt	ctgcaggtga	ggcacagacc	cgaggtgacc	180
ctgtgtgaca	ggtctttag	cttcaatgag	catggctacc	acctcttcca	ggctatgcgg	240
cttggggttg	aggagataaa	caactccacg	gccctgctgc	ccaacatcac	cctggggta	300
cagctgtatg	atgtgtttc	tgactctgcc	aatgtgtatg	ccacgctgag	agtgcctcc	360
ctgccaggc	aacaccacat	agagctcaa	ggagacattc	tccactattc	ccctacggtg	420
ctggcagtga	ttgggcctga	cagcaccaac	cgtgctgcc	ccacagccgc	cctgctgagc	480
ccttcctgg	tgcccatgat	tagctatgcg	gccagcagcg	agacgctcag	cgtgaagcgg	540
cagtatccct	cttcctgcg	caccatcccc	aatgacaagt	accaggtgga	gaccatggtg	600
ctgctgctgc	agaagttcg	gtggacctgg	atctctcgg	ttggcagcag	tgacgactat	660
gggcagctag	gggtgcaggc	actggagaac	caggccactg	gtcagggat	ctgcattgct	720
ttcaaggaca	tcatgccctt	ctctgcccag	gtgggcgatg	agaggatgca	gtgcctcatg	780
cgccacctgg	cccaggccgg	ggccaccgtc	gtggttgttt	tttccagccg	gcagttggcc	840
agggtgtttt	tcgagtcctg	ggtgctgacc	aacctgactg	gcaagggtgt	ggtcgcctca	900
gaagcctggg	ccctctccag	gcacatca	ggggtgccc	ggatccagcg	cattggatg	960
gtgctggcg	tggccatcca	gaagagggct	gtccctggcc	tgaaggcg	tgaagaagcc	1020
tatgcccggg	cagacaagaa	ggcccctagg	cttgcccaca	agggctcctg	gtgcagcagc	1080
aatcagctct	gcagagaatg	ccaagtttc	atggcacaca	cgatgccaa	gctcaaagcc	1140
ttctccatga	gttctgccta	caacgcatac	cgggctgtgt	atgcggtggc	ccatggcctc	1200
caccagctcc	tgggctgtgc	ctctggagct	tgttccaggg	gccgagtcta	cccctggcag	1260
cttttggagc	agatccacaa	ggtgcat	tttctacaca	aggacactgt	ggcgtttaat	1320
gacaacagag	atcccctcag	tagtataac	ataattgcct	gggactggaa	tggacccaag	1380
tggaccttca	cggcctcgg	ttcctccaca	tggctccag	ttcagctaaa	cataaatgag	1440
accaaaatcc	agtggcacgg	aaaggacaac	caggtgccta	agtctgtgt	ttccagcga	1500
tgtcttgaag	ggcaccagcg	agtggttacg	ggttccatc	actgctgctt	tgagtgtgt	1560
ccctgtgggg	ctgggacctt	cctcaacaag	agtgacctct	acagatgcca	gccttgtgg	1620
aaagaagagt	gggcacctga	gggaagccag	acctgcttcc	cgcgcactgt	ggtgttttg	1680
gctttgcgtg	agcacaccc	ttgggtgctg	ctggcagct	acacgctgt	gctgctgctg	1740
ctgcttggga	ctgctggcct	gttgcctgg	cacctagaca	cccctgtgg	gaggtcagca	1800
gggggccc	tgtgtttct	tatgctggc	tccctggcag	caggtagtgg	cagccttat	1860
ggcttcttgc	gggaacccac	aaggcctgcg	tgcttgcac	gccaggccct	ctttgcctt	1920
ggtttccacca	tcttcctgtc	ctgcctgaca	gttcgcct	tccactaat	catcatcttc	1980
aagtttcca	ccaaggtacc	tacattctac	cacgcctgg	tccaaaacca	cggtgctggc	2040
ctgtttgtga	tgatcagctc	agcggccca	ctgcttatct	gtctaacttg	gctgggtgg	2100

MON-0345.ST25.txt

tggaccac	tgcctgctag	ggaataccag	cgttcccc	atctggat	gcttgagtgc	2160
acagagacca	actccctgg	cttcatactg	gccttcct	acaatggc	cctctccatc	2220
agtgcctt	cttcgcagta	cctggtaag	gacttgc	agaactaca	cgaggccaa	2280
tgtgtcac	tcagcctg	cttcaacttc	gtgtcctg	tcgcctt	caccacggcc	2340
agcgtctac	acggcaagta	cctgcctgc	gccaa	tggctgg	gagcagcctg	2400
agcagcgg	tcggtg	tttctgc	aagtgc	tgatcct	ccgcccagac	2460
ctcaacag	cagagcactt	ccaggcctcc	attcaggact	acacgaggc	ctgcggctcc	2520
acctga						2526

<210> 9
<211> 2577
<212> DNA
<213> Mus musculus

<400> 9						
atgccagctt	tggctatcat	gggtctc	ctggctg	tcctggag	tggtatgg	60
gcctctt	gtctgtcaca	gcaattcaag	gcacaagg	actacata	ggcggg	120
tttccc	gctcaacc	ggaggcc	actcaacc	gaacacaacc	caacagc	180
ccgtgcaaca	ggttctc	cttgg	ttcctgg	tggctatg	atggctgt	240
gaggagat	acaatgg	tgcc	cctgg	ggctgg	tgacctat	300
gacacat	ccgagcc	gtt	tcatt	tcatgtt	ggccaagg	360
ggcagtcaaa	gcattg	ctact	gcaac	tacaca	atccaaccc	420
gtcatcg	cccact	agag	ctcatt	gcaagt	ttt	480
ctcatg	aggc	tagt	tgcc	atggat	cg	540
ccatc	tccg	cacag	gcc	cggt	tg	600
ttgc	caga	act	gtt	aggc	tg	660
gaagg	tctg	ttt	tc	act	gtat	720
ggc	cata	ttt	ca	tc	gtat	780
cgcc	acc	ttt	ca	ttt	gtat	840
tact	ttt	ttt	ttt	ttt	gtat	900
gagt	ttt	ttt	ttt	ttt	gtat	960
gtg	ttt	ttt	ttt	ttt	gtat	1020
cac	ttt	ttt	ttt	ttt	gtat	1080
gag	ttt	ttt	ttt	ttt	gtat	1140
tat	ttt	ttt	ttt	ttt	gtat	1200
tat	ttt	ttt	ttt	ttt	gtat	1260
catt	ttt	ttt	ttt	ttt	gtat	1320

MON-0345.ST25.txt

agtttccatg	ctcgagactt	gacactacag	tttgatgctg	aaggaaatgt	agacatggaa	1380
tatgacctga	agatgtgggt	gtggcagagc	cctacacctg	tattacatac	tgtggcacc	1440
ttcaacggca	cccttcagct	gcagcagtct	aaaatgtact	ggccaggcaa	ccaggtgcc	1500
gtctcccagt	gttcccggca	gtgcaaagat	ggccaggttc	gccgagtaaa	gggcttcat	1560
tcctgctgct	atgactgcgt	ggactgcaag	gcgggcagct	accggaagca	tccagatgac	1620
ttcacctgta	ctccatgtaa	ccaggaccag	tggtccccag	agaaaagcac	agcctgctta	1680
cctcgcaggc	ccaagtttct	ggcttggggg	gagccagttg	tgctgtcact	cctcctgctg	1740
ctttgcctgg	tgctgggtct	agcaactggct	gctctgggc	tctctgtcca	ccactggac	1800
agccctcttgc	tccaggcctc	aggtggctca	cagttctgct	ttggcctgat	ctgccttaggc	1860
ctcttctgccc	tcagtgtcct	tctgttccca	gggcggccaa	gctctgcccag	ctgccttgca	1920
caacaaccaa	tggctcacct	ccctctcaca	ggctgcctga	gcacactctt	cctgcaagca	1980
gctgagacact	ttgtggagtc	ttagactgcca	ctgagctggg	caaactggct	atgcagctac	2040
cttcggggac	tctgggcctg	gctagtggt	ctgttggcca	cttttgtgga	ggcagcacta	2100
tgtgcctgg	atttgcgtgc	tttcccacca	gaggtggtga	cagactggc	agtgcgtccc	2160
acagaggtac	tggagcactg	ccacgtgcgt	tcctgggtca	gcctgggctt	ggtgcacatc	2220
accaatgca	tgttagctt	cctctgcttt	ctgggcactt	tcctggtaca	gagccagcct	2280
ggccgctaca	accgtgccc	tggtctcacc	ttcgccatgc	tagtttattt	catcacctgg	2340
gtctctttg	tgccctcct	ggccaatgt	caggtggcct	accagccagc	tgtgcagatg	2400
ggtgctatcc	tagtctgtgc	cctgggcattc	ctggtcacct	tccacctgccc	caagtgcata	2460
gtgcttcttt	ggctgccaaa	gctcaacacc	caggagttct	tcctggaaag	aatgccaag	2520
aaagcagcag	atgagaacag	tggcggtggt	gaggcagctc	agggacacaa	tgaatga	2577

<210> 10
<211> 2577
<212> DNA
<213> Rattus rattus

<400> 10
atgcccgggtt tggcttatctt gggcctcagt ctggctgctt tcctggagct tggatgggg 60
tcctctttgt gtctgtcaca gcaattcaag gcacaagggg actatatatt gggtggacta 120
tttcccctgg gcacaactga ggaggccact ctcaccaga gaacacagcc caacggcatc 180
ctatgtacca gttctcgcc cttgggttg ttccctggcca tggctatgaa gatggctgta 240
gaggagatca acaatggatc tgccttgctc cttggctgc gactggcta tgacctgttt 300
gacacatgct cagagccagt ggtcaccatg aagcccagcc tcatgttcat gccaaaggtg 360
ggaagtcaaa gcattgctgc ctactgcaac tacacacagt accaaccggc tgtgcggct 420
gtcattggtc cccactcatc agagcttgcc ctcattacag gcaagttctt cagttcttc 480
ctcatgccac aggtcagcta tagtgccagc atggatcgac taagtgaccg ggaaacattt 540
ccatccttct tccgcacagt gcccagtgac cgggtgcagc tgcaggccgt tgtgacactg 600

MON-0345.ST25.txt

ttgcagaatt tcagctggaa ctgggtggct gccttaggta gtatgtatga ctaggccgg 660
gaaggctctga gcatctttc tggctggcc aactcacag gtatctgcat tgcacacgag 720
ggcctggtgc cacaacatga cactagtggc caacaattgg gcaagggtggt ggatgtgcta 780
cgccaagtga accaaagcaa agtacaggtg gtggtgctgt ttgcattgc ccgtgctgtc 840
tactccctt ttagctacag catccttcat gacctctcac ccaaggatg ggtggccagt 900
gagtcctggc tgacctctga cctggtcatg acacttccc atattgccc tgtgggcact 960
gttcttggt ttctgcagcg cggtgcccta ctgcctgaat ttcccatta tgtggagact 1020
cgccctggcc tagctgctga cccaacattc tgtgcctccc tgaaagctga gttggatctg 1080
gaggagcgcg ttaggggccc acgctgttca caatgtgact acatcatgct acagaacctg 1140
tcatctggc ttagtcagaa cctatcagct gggcagttgc accaccaaatttgcacc 1200
tatgcagctg tgtacagtgt ggctcaggcc cttcacaaca ccctgcagtg caatgtctca 1260
cattgccccca catcagagcc tggcaaccc tggcagctcc tggagaacat gtacaatatg 1320
agtttccgtg ctcgagactt gacactgcag tttgatgcca aaggagttgt agacatggaa 1380
tatgacctga agatgtgggt gtggcagagc cctacacactg tactacatac tgttaggcacc 1440
ttcaacggca cccttcagct gcagcactcg aaaatgtatt ggccaggcaa ccaggtgcca 1500
gtctcccaact gctcccccggca gtgcaaagat ggccagggtgc gcagagtaaa gggcttcatt 1560
tcctgcgtct atgactgtgt ggactgcaag gcagggagct accggaagca tccagatgac 1620
ttcacctgta ctccatgtgg caaggatcag tggccccag aaaaagcac aacctgctta 1680
cctcgcaggc ccaagttct ggcttgggg gagccagctg tgctgtact tctcctgctg 1740
ctttgcctgg tgctgggcct gacactggct gccctgggc tcttgcctca ctactggac 1800
agcccttttgc ttcaggcctc aggtgggtca ctgttgcgt ttggcctgat ctgccttaggc 1860
ctcttcgtcc tcagtcgtcct tctgttccca ggacgaccac gctctgcccag ctgccttgcc 1920
caacaaccaa tggctcacct ccctctcaca ggctgcctga gcacactt cctgcaagca 1980
gccgagatct ttgtggagtc tgagctgcca ctgagttggg ccaaactggct ctgcagctac 2040
cttcggggcc cctgggcttg gctgggtga ctgctggca ctcttgcgttggaa ggctgcacta 2100
tgtgcctggt acttgcgttgc ttccctcca gaggtgggtga cagattggca ggtgctgccc 2160
acggaggtac tggAACACTG CCGCATGCGT TCCGGGTCA GCCTGGGCTT GGTGCACATC 2220
accaatgcag tggtagctt cctctgctt ctggcactt tcctggtaca gagccagcct 2280
ggtcgcata accgtgcccgg tggcctcacc ttcgcccattgc tagcttattt catcatgtgg 2340
gtctcttttgc tgccctccct ggctaatgtg caggtggcctt accagccagc tggcagatg 2400
ggtgctatct tattctgtgc cctgggcatc ctggccaccc tccacctgccc caaatgttat 2460
gtacttcgtt ggctgcaga gctcaacacc caggagttct tcctgggaag gagccccaaag 2520
gaagcatcag atggaaatag tggtagtagt gaggcaactc ggggacacag tgaatga 2577

MON-0345.ST25.txt

<210> 11
<211> 2559
<212> DNA
<213> Homo sapiens

<400> 11	
atgctgggcc ctgctgtcct gggcctcagc ctctgggctc tcctgcaccc tggacgggg	60
gccccattgt gcctgtcaca gcaacttagg atgaaggggg actacgtgct gggggggctg	120
ttccccctgg gcgaggccga ggaggctggc ctccgcagcc ggacacggcc cagcagccct	180
gtgtgcacca gtttctcctc aaacggcctg ctctggcac tggccatgaa aatggccgtg	240
gaggagatca acaacaagtc ggatctgctg cccggctgc gcctggcta cgacctttt	300
gatacgtgct cggagcctgt ggtggccatg aagcccagcc tcatgttcct gccaaaggca	360
ggcagccgca acatcgccgc ctactgcaac tacacgcagt accagccccg tgtgtggct	420
gtcatcgggc cccactcgtc agagctcgcc atggtcaccg gcaagttctt cagtttttc	480
ctcatgcccc aggtcagcta cggtgcttagc atggagctgc tgagcgcccc ggagaccttc	540
ccctccttct tccgcaccgt gcccagcgcac cgtgtgcagc tgacggccgc cgccggagctg	600
ctgcaggagt tcggctggaa ctgggtggcc gcccctggca gcgacgacga gtacggccgg	660
cagggcctga gcatttctc ggccttggcc gcggcacgcg gcatctgcat cgccacgcag	720
ggcctgggtc cgctgccccg tgccgatgac tcgcggctgg ggaagggtgca ggacgtcctg	780
caccaggtga accagagcag cgtcaggtg gtgctgtgt tcgcctccgt gcacgcccgc	840
cacgcctct tcaactacag catcagcagc aggctctcgc ccaaggtgtg ggtggccagc	900
gaggcctggc tgacctctga cctggtcatg gggctgccc gcatggccca gatgggcacg	960
gtgcttggct tcctccagag gggtgcccg ctgcacgagt tccccagta cgtaaagacg	1020
cacctggccc tggccaccga cccggccttc tgctctgccc tgggcagag ggagcagggt	1080
ctggaggagg acgtggtggg ccagcgctgc ccgcagtgactgcatcac gctgcagaac	1140
gtgagcgcag ggctaaatca ccaccagacg ttctctgtct acgcagctgt gtatagcgtg	1200
gcccaggccc tgcacaacac tcttcagtgc aacgcctcag gctgccccgc gcaggacccc	1260
gtgaagccct ggcagctcct ggagaacatg tacaacctga cttccacgt gggcgggctg	1320
ccgctgcggc tcgacagcag cggaaacgtg gacatggagt acgacctgaa gctgtgggtg	1380
tggcaggcgt cagtggccag gctccacgac gtggcaggt tcaacggcag ctcaggaca	1440
gagcgcctga agatccgtc gcacacgtct gacaaccaga agccctgtc ccggcgtctg	1500
ccgcagtgcc aggagggcca ggtgcgcccgg gtcaagggtt tccactcctg ctgcacac	1560
tgtgtggact gcgaggcggg cagctaccgg caaaacccag acgacatcgc ctgcaccc	1620
tgtggccagg atgagtggtc cccggagcga agcacacgt gcttccgccc caggtctcg	1680
ttcctggcat gggcgagcc ggctgtgctg ctgctgtcc tgctgtgag cctggcgctg	1740
ggccttgtgc tggctgctt gggctgttc gttcaccatc gggacagccc actggttcag	1800
gcctcggggg ggcccctggc ctgcttggc ctggtgtgcc tggcctgggt ctgcctcagc	1860

MON-0345.ST25.txt

gtcctcctgt	tccctggcca	gcccagccct	gcccgatgcc	tggcccagca	gcccttgc	1920
caccccccgc	tcacgggctg	cctgagcaca	ctcttcctgc	aggcggccga	gatttcgtg	1980
gagtcagaac	tgcctctgag	ctgggcagac	cggctgagtg	gctgcctgcg	ggggccctgg	2040
gcctggctgg	tggtgctgct	ggccatgctg	gtggaggtcg	cactgtgcac	ctgg tacctg	2100
gtggccttcc	cgccggaggt	ggtgacggac	tggcacatgc	tgcccacgga	ggcgctgg	2160
cactgccc	cacgctcctg	ggtcagcttc	ggcctagcgc	acgcccaccaa	tgccacgctg	2220
gcctttctct	gcttcctggg	cacttcctg	gtgcggagcc	agccgggccc	ctacaaccgt	2280
ctcctggcca	atgtgcaggt	ggtcctcagg	cccgcgtgc	agatgggcgc	cctcctgctc	2340
tgtgcctgg	gcatcctggc	tgcctccac	ctgcccaggt	gttacctgct	catgcggcag	2460
ccagggctca	acacccccga	gttcttcctg	ggagggggcc	ctggggatgc	ccaaggccag	2520
aatgacggga	acacaggaaa	tcaggggaaa	catgagtg			2559

<210> 12

<211> 852

<212> PRT

<213> Homo sapiens

<400> 12

Met Leu Gly Pro Ala Val Leu Gly Leu Ser Leu Trp Ala Leu Leu His
1 5 10 15

Pro Gly Thr Gly Ala Pro Leu Cys Leu Ser Gln Gln Leu Arg Met Lys
20 25 30

Gly Asp Tyr Val Leu Gly Gly Leu Phe Pro Leu Gly Glu Ala Glu Glu
35 40 45

Ala Gly Leu Arg Ser Arg Thr Arg Pro Ser Ser Pro Val Cys Thr Arg
50 55 60

Phe Ser Ser Asn Gly Leu Leu Trp Ala Leu Ala Met Lys Met Ala Val
65 70 75 80

Glu Glu Ile Asn Asn Lys Ser Asp Leu Leu Pro Gly Leu Arg Leu Gly
85 90 95

Tyr Asp Leu Phe Asp Thr Cys Ser Glu Pro Val Val Ala Met Lys Pro
100 105 110

Ser Leu Met Phe Leu Ala Lys Ala Gly Ser Arg Asp Ile Ala Ala Tyr
115 120 125

Cys Asn Tyr Thr Gln Tyr Gln Pro Arg Val Leu Ala Val Ile Gly Pro
130 135 140

MON-0345.ST25.txt

His Ser Ser Glu Leu Ala Met Val Thr Gly Lys Phe Phe Ser Phe Phe
 145 150 155 160

Leu Met Pro Gln Val Ser Tyr Gly Ala Ser Met Glu Leu Leu Ser Ala
 165 170 175

Arg Glu Thr Phe Pro Ser Phe Phe Arg Thr Val Pro Ser Asp Arg Val
 180 185 190

Gln Leu Thr Ala Ala Ala Glu Leu Leu Gln Glu Phe Gly Trp Asn Trp
 195 200 205

Val Ala Ala Leu Gly Ser Asp Asp Glu Tyr Gly Arg Gln Gly Leu Ser
 210 215 220

Ile Phe Ser Ala Leu Ala Ala Arg Gly Ile Cys Ile Ala His Glu
 225 230 235 240

Gly Leu Val Pro Leu Pro Arg Ala Asp Asp Ser Arg Leu Gly Lys Val
 245 250 255

Gln Asp Val Leu His Gln Val Asn Gln Ser Ser Val Gln Val Val Leu
 260 265 270

Leu Phe Ala Ser Val His Ala Ala His Ala Leu Phe Asn Tyr Ser Ile
 275 280 285

Ser Ser Arg Leu Ser Pro Lys Val Trp Val Ala Ser Glu Ala Trp Leu
 290 295 300

Thr Ser Asp Leu Val Met Gly Leu Pro Gly Met Ala Gln Met Gly Thr
 305 310 315 320

Val Leu Gly Phe Leu Gln Arg Gly Ala Gln Leu His Glu Phe Pro Gln
 325 330 335

Tyr Val Lys Thr His Leu Ala Leu Ala Thr Asp Pro Ala Phe Cys Ser
 340 345 350

Ala Leu Gly Glu Arg Glu Gln Gly Leu Glu Glu Asp Val Val Gly Gln
 355 360 365

Arg Cys Pro Gln Cys Asp Cys Ile Thr Leu Gln Asn Val Ser Ala Gly
 370 375 380

Leu Asn His His Gln Thr Phe Ser Val Tyr Ala Ala Val Tyr Ser Val
 385 390 395 400

Ala Gln Ala Leu His Asn Thr Leu Gln Cys Asn Ala Ser Gly Cys Pro
 405 410 415

MON-0345.ST25.txt

Ala Gln Asp Pro Val Lys Pro Trp Gln Leu Leu Glu Asn Met Tyr Asn
 420 425 430

Leu Thr Phe His Val Gly Gly Leu Pro Leu Arg Phe Asp Ser Ser Gly
 435 440 445

Asn Val Asp Met Glu Tyr Asp Leu Lys Leu Trp Val Trp Gln Gly Ser
 450 455 460

Val Pro Arg Leu His Asp Val Gly Arg Phe Asn Gly Ser Leu Arg Thr
 465 470 475 480

Glu Arg Leu Lys Ile Arg Trp His Thr Ser Asp Asn Gln Lys Pro Val
 485 490 495

Ser Arg Cys Ser Arg Gln Cys Gln Glu Gly Gln Val Arg Arg Val Lys
 500 505 510

Gly Phe His Ser Cys Cys Tyr Asp Cys Val Asp Cys Glu Ala Gly Ser
 515 520 525

Tyr Arg Gln Asn Pro Asp Asp Ile Ala Cys Thr Phe Cys Gly Gln Asp
 530 535 540

Glu Trp Ser Pro Glu Arg Ser Thr Arg Cys Phe Arg Arg Arg Ser Arg
 545 550 555 560

Phe Leu Ala Trp Gly Glu Pro Ala Val Leu Leu Leu Leu Leu Leu
 565 570 575

Ser Leu Ala Leu Gly Leu Val Leu Ala Ala Leu Gly Leu Phe Val His
 580 585 590

His Arg Asp Ser Pro Leu Val Gln Ala Ser Gly Gly Pro Leu Ala Cys
 595 600 605

Phe Gly Leu Val Cys Leu Gly Leu Val Cys Leu Ser Val Leu Leu Phe
 610 615 620

Pro Gly Gln Pro Ser Pro Ala Arg Cys Leu Ala Gln Gln Pro Leu Ser
 625 630 635 640

His Leu Pro Leu Thr Gly Cys Leu Ser Thr Leu Phe Leu Gln Ala Ala
 645 650 655

Glu Ile Phe Val Glu Ser Glu Leu Pro Leu Ser Trp Ala Asp Arg Leu
 660 665 670

Ser Gly Cys Leu Arg Gly Pro Trp Ala Trp Leu Val Val Leu Leu Ala
 675 680 685

MON-0345.ST25.txt

Met Leu Val Glu Val Ala Leu Cys Thr Trp Tyr Leu Val Ala Phe Pro
 690 695 700 705 710 715 720

Pro Glu Val Val Thr Asp Trp His Met Leu Pro Thr Glu Ala Leu Val
 705 710 715 720

His Cys Arg Thr Arg Ser Trp Val Ser Phe Gly Leu Ala His Ala Thr
 725 730 735

Asn Ala Thr Leu Ala Phe Leu Cys Phe Leu Gly Thr Phe Leu Val Arg
 740 745 750

Ser Gln Pro Gly Arg Tyr Asn Arg Ala Arg Gly Leu Thr Phe Ala Met
 755 760 765

Leu Ala Tyr Phe Ile Thr Trp Val Ser Phe Val Pro Leu Leu Ala Asn
 770 775 780

Val Gln Val Val Leu Arg Pro Ala Val Gln Met Gly Ala Leu Leu Leu
 785 790 795 800

Cys Val Leu Gly Ile Leu Ala Ala Phe His Leu Pro Arg Cys Tyr Leu
 805 810 815

Leu Met Arg Gln Pro Gly Leu Asn Thr Pro Glu Phe Phe Leu Gly Gly
 820 825 830

Gly Pro Gly Asp Ala Gln Gly Gln Asn Asp Gly Asn Thr Gly Asn Gln
 835 840 845

Gly Lys His Glu
 850

<210> 13
 <211> 858
 <212> PRT
 <213> Mus musculus

<400> 13

Met Pro Ala Leu Ala Ile Met Gly Leu Ser Leu Ala Ala Phe Leu Glu
 1 5 10 15

Leu Gly Met Gly Ala Ser Leu Cys Leu Ser Gln Gln Phe Lys Ala Gln
 20 25 30

Gly Asp Tyr Ile Leu Gly Gly Leu Phe Pro Leu Gly Ser Thr Glu Glu
 35 40 45

Ala Thr Leu Asn Gln Arg Thr Gln Pro Asn Ser Ile Pro Cys Asn Arg
 50 55 60

Phe Ser Pro Leu Gly Leu Phe Leu Ala Met Ala Met Lys Met Ala Val
 Page 21

65

70

75

80

Glu Glu Ile Asn Asn Gly Ser Ala Leu Leu Pro Gly Leu Arg Leu Gly
 85 90 95

Tyr Asp Leu Phe Asp Thr Cys Ser Glu Pro Val Val Thr Met Lys Ser
 100 105 110

Ser Leu Met Phe Leu Ala Lys Val Gly Ser Gln Ser Ile Ala Ala Tyr
 115 120 125

Cys Asn Tyr Thr Gln Tyr Gln Pro Arg Val Leu Ala Val Ile Gly Pro
 130 135 140

His Ser Ser Glu Leu Ala Leu Ile Thr Gly Lys Phe Phe Ser Phe Phe
 145 150 155 160

Leu Met Pro Gln Val Ser Tyr Ser Ala Ser Met Asp Arg Leu Ser Asp
 165 170 175

Arg Glu Thr Phe Pro Ser Phe Phe Arg Thr Val Pro Ser Asp Arg Val
 180 185 190

Gln Leu Gln Ala Val Val Thr Leu Leu Gln Asn Phe Ser Trp Asn Trp
 195 200 205

Val Ala Ala Leu Gly Ser Asp Asp Asp Tyr Gly Arg Glu Gly Leu Ser
 210 215 220

Ile Phe Ser Ser Leu Ala Asn Ala Arg Gly Ile Cys Ile Ala His Glu
 225 230 235 240

Gly Leu Val Pro Gln His Asp Thr Ser Gly Gln Gln Leu Gly Lys Val
 245 250 255

Leu Asp Val Leu Arg Gln Val Asn Gln Ser Lys Val Gln Val Val Val
 260 265 270

Leu Phe Ala Ser Ala Arg Ala Val Tyr Ser Leu Phe Ser Tyr Ser Ile
 275 280 285

His His Gly Leu Ser Pro Lys Val Trp Val Ala Ser Glu Ser Trp Leu
 290 295 300

Thr Ser Asp Leu Val Met Thr Leu Pro Asn Ile Ala Arg Val Gly Thr
 305 310 315 320

Val Leu Gly Phe Leu Gln Arg Gly Ala Leu Leu Pro Glu Phe Ser His
 325 330 335

Tyr Val Glu Thr His Leu Ala Leu Ala Asp Pro Ala Phe Cys Ala
 Page 22

340

345

350

Ser Leu Asn Ala Glu Leu Asp Leu Glu Glu His Val Met Gly Gln Arg
 355 360 365

Cys Pro Arg Cys Asp Asp Ile Met Leu Gln Asn Leu Ser Ser Gly Leu
 370 375 380

Leu Gln Asn Leu Ser Ala Gly Gln Leu His His Gln Ile Phe Ala Thr
 385 390 395 400

Tyr Ala Ala Val Tyr Ser Val Ala Gln Ala Leu His Asn Thr Leu Gln
 405 410 415

Cys Asn Val Ser His Cys His Val Ser Glu His Val Leu Pro Trp Gln
 420 425 430

Leu Leu Glu Asn Met Tyr Asn Met Ser Phe His Ala Arg Asp Leu Thr
 435 440 445

Leu Gln Phe Asp Ala Glu Gly Asn Val Asp Met Glu Tyr Asp Leu Lys
 450 455 460

Met Trp Val Trp Gln Ser Pro Thr Pro Val Leu His Thr Val Gly Thr
 465 470 475 480

Phe Asn Gly Thr Leu Gln Leu Gln Gln Ser Lys Met Tyr Trp Pro Gly
 485 490 495

Asn Gln Val Pro Val Ser Gln Cys Ser Arg Gln Cys Lys Asp Gly Gln
 500 505 510

Val Arg Arg Val Lys Gly Phe His Ser Cys Cys Tyr Asp Cys Val Asp
 515 520 525

Cys Lys Ala Gly Ser Tyr Arg Lys His Pro Asp Asp Phe Thr Cys Thr
 530 535 540

Pro Cys Asn Gln Asp Gln Trp Ser Pro Glu Lys Ser Thr Ala Cys Leu
 545 550 555 560

Pro Arg Arg Pro Lys Phe Leu Ala Trp Gly Glu Pro Val Val Leu Ser
 565 570 575

Leu Leu Leu Leu Leu Cys Leu Val Leu Gly Leu Ala Leu Ala Ala Leu
 580 585 590

Gly Leu Ser Val His His Trp Asp Ser Pro Leu Val Gln Ala Ser Gly
 595 600 605

Gly Ser Gln Phe Cys Phe Gly Leu Ile Cys Leu Gly Leu Phe Cys Leu
 Page 23

MON-0345.ST25.txt

Ser Val Leu Leu Phe Pro Gly Arg Pro Ser Ser Ala Ser Cys Leu Ala
 625 630 635 640
 640
 Gln Gln Pro Met Ala His Leu Pro Leu Thr Gly Cys Leu Ser Thr Leu
 645 650 655
 655
 Phe Leu Gln Ala Ala Glu Thr Phe Val Glu Ser Glu Leu Pro Leu Ser
 660 665 670
 670
 Trp Ala Asn Trp Leu Cys Ser Tyr Leu Arg Gly Leu Trp Ala Trp Leu
 675 680 685
 685
 Val Val Leu Leu Ala Thr Phe Val Glu Ala Ala Leu Cys Ala Trp Tyr
 690 695 700
 700
 Leu Ile Ala Phe Pro Pro Glu Val Val Thr Asp Trp Ser Val Leu Pro
 705 710 715 720
 720
 Thr Glu Val Leu Glu His Cys His Val Arg Ser Trp Val Ser Leu Gly
 725 730 735
 735
 Leu Val His Ile Thr Asn Ala Met Leu Ala Phe Leu Cys Phe Leu Gly
 740 745 750
 750
 Thr Phe Leu Val Gln Ser Gln Pro Gly Arg Tyr Asn Arg Ala Arg Gly
 755 760 765
 765
 Leu Thr Phe Ala Met Leu Ala Tyr Phe Ile Thr Trp Val Ser Phe Val
 770 775 780
 780
 Pro Leu Leu Ala Asn Val Gln Val Ala Tyr Gln Pro Ala Val Gln Met
 785 790 795 800
 800
 Gly Ala Ile Leu Val Cys Ala Leu Gly Ile Leu Val Thr Phe His Leu
 805 810 815
 815
 Pro Lys Cys Tyr Val Leu Leu Trp Leu Pro Lys Leu Asn Thr Gln Glu
 820 825 830
 830
 Phe Phe Leu Gly Arg Asn Ala Lys Lys Ala Ala Asp Glu Asn Ser Gly
 835 840 845
 845
 Gly Gly Glu Ala Ala Gln Gly His Asn Glu
 850 855
 855

<210> 14
<211> 858
<212> PRT
<213> *Rattus rattus*

<400> 14

Met Pro Gly Leu Ala Ile Leu Gly Leu Ser Leu Ala Ala Phe Leu Glu
 1 5 10 15

Leu Gly Met Gly Ser Ser Leu Cys Leu Ser Gln Gln Phe Lys Ala Gln
 20 25 30

Gly Asp Tyr Ile Leu Gly Gly Leu Phe Pro Leu Gly Thr Thr Glu Glu
 35 40 45

Ala Thr Leu Asn Gln Arg Thr Gln Pro Asn Gly Ile Leu Cys Thr Arg
 50 55 60

Phe Ser Pro Leu Gly Leu Phe Leu Ala Met Ala Met Lys Met Ala Val
 65 70 75 80

Glu Glu Ile Asn Asn Gly Ser Ala Leu Leu Pro Gly Leu Arg Leu Gly
 85 90 95

Tyr Asp Leu Phe Asp Thr Cys Ser Glu Pro Val Val Thr Met Lys Pro
 100 105 110

Ser Leu Met Phe Met Ala Lys Val Gly Ser Gln Ser Ile Ala Ala Tyr
 115 120 125

Cys Asn Tyr Thr Gln Tyr Gln Pro Arg Val Leu Ala Val Ile Gly Pro
 130 135 140

His Ser Ser Glu Leu Ala Leu Ile Thr Gly Lys Phe Phe Ser Phe Phe
 145 150 155 160

Leu Met Pro Gln Val Ser Tyr Ser Ala Ser Met Asp Arg Leu Ser Asp
 165 170 175

Arg Glu Thr Phe Pro Ser Phe Phe Arg Thr Val Pro Ser Asp Arg Val
 180 185 190

Gln Leu Gln Ala Val Val Thr Leu Leu Gln Asn Phe Ser Trp Asn Trp
 195 200 205

Val Ala Ala Leu Gly Ser Asp Asp Asp Tyr Gly Arg Glu Gly Leu Ser
 210 215 220

Ile Phe Ser Gly Leu Ala Asn Ser Arg Gly Ile Cys Ile Ala His Glu
 225 230 235 240

Gly Leu Val Pro Gln His Asp Thr Ser Gly Gln Gln Leu Gly Lys Val
 245 250 255

Val Asp Val Leu Arg Gln Val Asn Gln Ser Lys Val Gln Val Val Val
 260 265 270

MON-0345.ST25.txt

Leu Phe Ala Ser Ala Arg Ala Val Tyr Ser Leu Phe Ser Tyr Ser Ile
275 280 285

Leu His Asp Leu Ser Pro Lys Val Trp Val Ala Ser Glu Ser Trp Leu
290 295 300

Thr Ser Asp Leu Val Met Thr Leu Pro Asn Ile Ala Arg Val Gly Thr
305 310 315 320

Val Leu Gly Phe Leu Gln Arg Gly Ala Leu Leu Pro Glu Phe Ser His
325 330 335

Tyr Val Glu Thr Arg Leu Ala Leu Ala Asp Pro Thr Phe Cys Ala
340 345 350

Ser Leu Lys Ala Glu Leu Asp Leu Glu Glu Arg Val Met Gly Pro Arg
355 360 365

Cys Ser Gln Cys Asp Tyr Ile Met Leu Gln Asn Leu Ser Ser Gly Leu
370 375 380

Met Gln Asn Leu Ser Ala Gly Gln Leu His His Gln Ile Phe Ala Thr
385 390 395 400

Tyr Ala Ala Val Tyr Ser Val Ala Gln Ala Leu His Asn Thr Leu Gln
405 410 415

Cys Asn Val Ser His Cys His Thr Ser Glu Pro Val Gln Pro Trp Gln
420 425 430

Leu Leu Glu Asn Met Tyr Asn Met Ser Phe Arg Ala Arg Asp Leu Thr
435 440 445

Leu Gln Phe Asp Ala Lys Gly Ser Val Asp Met Glu Tyr Asp Leu Lys
450 455 460

Met Trp Val Trp Gln Ser Pro Thr Pro Val Leu His Thr Val Gly Thr
465 470 475 480

Phe Asn Gly Thr Leu Gln Leu Gln His Ser Lys Met Tyr Trp Pro Gly
485 490 495

Asn Gln Val Pro Val Ser Gln Cys Ser Arg Gln Cys Lys Asp Gly Gln
500 505 510

Val Arg Arg Val Lys Gly Phe His Ser Cys Cys Tyr Asp Cys Val Asp
515 520 525

Cys Lys Ala Gly Ser Tyr Arg Lys His Pro Asp Asp Phe Thr Cys Thr
530 535 540

MON-0345.ST25.txt

Pro Cys Gly Lys Asp Gln Trp Ser Pro Glu Lys Ser Thr Thr Cys Leu
545 550 555 560

Pro Arg Arg Pro Lys Phe Leu Ala Trp Gly Glu Pro Ala Val Leu Ser
565 570 575

Leu Leu Leu Leu Leu Cys Leu Val Leu Gly Leu Thr Leu Ala Ala Leu
580 585 590

Gly Leu Phe Val His Tyr Trp Asp Ser Pro Leu Val Gln Ala Ser Gly
595 600 605

Gly Ser Leu Phe Cys Phe Gly Leu Ile Cys Leu Gly Leu Phe Cys Leu
610 615 620

Ser Val Leu Leu Phe Pro Gly Arg Pro Arg Ser Ala Ser Cys Leu Ala
625 630 635 640

Gln Gln Pro Met Ala His Leu Pro Leu Thr Gly Cys Leu Ser Thr Leu
645 650 655

Phe Leu Gln Ala Ala Glu Ile Phe Val Glu Ser Glu Leu Pro Leu Ser
660 665 670

Trp Ala Asn Trp Leu Cys Ser Tyr Leu Arg Gly Pro Trp Ala Trp Leu
675 680 685

Val Val Leu Leu Ala Thr Leu Val Glu Ala Ala Leu Cys Ala Trp Tyr
690 695 700

Leu Met Ala Phe Pro Pro Glu Val Val Thr Asp Trp Gln Val Leu Pro
705 710 715 720

Thr Glu Val Leu Glu His Cys Arg Met Arg Ser Trp Val Ser Leu Gly
725 730 735

Leu Val His Ile Thr Asn Ala Val Leu Ala Phe Leu Cys Phe Leu Gly
740 745 750

Thr Phe Leu Val Gln Ser Gln Pro Gly Arg Tyr Asn Arg Ala Arg Gly
755 760 765

Leu Thr Phe Ala Met Leu Ala Tyr Phe Ile Ile Trp Val Ser Phe Val
770 775 780

Pro Leu Leu Ala Asn Val Gln Val Ala Tyr Gln Pro Ala Val Gln Met
785 790 795 800

Gly Ala Ile Leu Phe Cys Ala Leu Gly Ile Leu Ala Thr Phe His Leu
805 810 815

MON-0345.ST25.txt

Pro Lys Cys Tyr Val Leu Leu Trp Leu Pro Glu Leu Asn Thr Gln Glu
820 825 830

Phe Phe Leu Gly Arg Ser Pro Lys Glu Ala Ser Asp Gly Asn Ser Gly
835 840 845

Ser Ser Glu Ala Thr Arg Gly His Ser Glu
850 855

<210> 15
<211> 842
<212> PRT
<213> Mus musculus

<400> 15

Met Leu Phe Trp Ala Ala His Leu Leu Leu Ser Leu Gln Leu Ala Val
1 5 10 15

Ala Tyr Cys Trp Ala Phe Ser Cys Gln Arg Thr Glu Ser Ser Pro Gly
20 25 30

Phe Ser Leu Pro Gly Asp Phe Leu Leu Ala Gly Leu Phe Ser Leu His
35 40 45

Ala Asp Cys Leu Gln Val Arg His Arg Pro Leu Val Thr Ser Cys Asp
50 55 60

Arg Ser Asp Ser Phe Asn Gly His Gly Tyr His Leu Phe Gln Ala Met
65 70 75 80

Arg Phe Thr Val Glu Glu Ile Asn Asn Ser Thr Ala Leu Leu Pro Asn
85 90 95

Ile Thr Leu Gly Tyr Glu Leu Tyr Asp Val Cys Ser Glu Ser Ser Asn
100 105 110

Val Tyr Ala Thr Leu Arg Val Leu Ala Gln Gln Gly Thr Gly His Leu
115 120 125

Glu Met Gln Arg Asp Leu Arg Asn His Ser Ser Lys Val Val Ala Leu
130 135 140

Ile Gly Pro Asp Asn Thr Asp His Ala Val Thr Thr Ala Ala Leu Leu
145 150 155 160

Ser Pro Phe Leu Met Pro Leu Val Ser Tyr Glu Ala Ser Ser Val Ile
165 170 175

Leu Ser Gly Lys Arg Lys Phe Pro Ser Phe Leu Arg Thr Ile Pro Ser
180 185 190

MON-0345.ST25.txt

Asp Lys Tyr Gln Val Glu Val Ile Val Arg Leu Leu Gln Ser Phe Gly
195 200 205

Trp Val Trp Ile Ser Leu Val Gly Ser Tyr Gly Asp Tyr Gly Gln Leu
210 215 220

Gly Val Gln Ala Leu Glu Glu Leu Ala Thr Pro Arg Gly Ile Cys Val
225 230 235 240

Ala Phe Lys Asp Val Val Pro Leu Ser Ala Gln Ala Gly Asp Pro Arg
245 250 255

Met Gln Arg Met Met Leu Arg Leu Ala Arg Ala Arg Thr Thr Val Val
260 265 270

Val Val Phe Ser Asn Arg His Leu Ala Gly Val Phe Phe Arg Ser Val
275 280 285

Val Leu Ala Asn Leu Thr Gly Lys Val Trp Ile Ala Ser Glu Asp Trp
290 295 300

Ala Ile Ser Thr Tyr Ile Thr Asn Val Pro Gly Ile Gln Gly Ile Gly
305 310 315 320

Thr Val Leu Gly Val Ala Ile Gln Gln Arg Gln Val Pro Gly Leu Lys
325 330 335

Glu Phe Glu Glu Ser Tyr Val Gln Ala Val Met Gly Ala Pro Arg Thr
340 345 350

Cys Pro Glu Gly Ser Trp Cys Gly Thr Asn Gln Leu Cys Arg Glu Cys
355 360 365

His Ala Phe Thr Thr Trp Asn Met Pro Glu Leu Gly Ala Phe Ser Met
370 375 380

Ser Ala Ala Tyr Asn Val Tyr Glu Ala Val Tyr Ala Val Ala His Gly
385 390 395 400

Leu His Gln Leu Leu Gly Cys Thr Ser Gly Thr Cys Ala Arg Gly Pro
405 410 415

Val Tyr Pro Trp Gln Leu Leu Gln Gln Ile Tyr Lys Val Asn Phe Leu
420 425 430

Leu His Lys Lys Thr Val Ala Phe Asp Asp Lys Gly Asp Pro Leu Gly
435 440 445

Tyr Tyr Asp Ile Ile Ala Trp Asp Trp Asn Gly Pro Glu Trp Thr Phe
450 455 460

MON-0345.ST25.txt

Glu Val Ile Gly Ser Ala Ser Leu Ser Pro Val His Leu Asp Ile Asn
465 470 475 480

Lys Thr Lys Ile Gln Trp His Gly Lys Asn Asn Gln Val Pro Val Ser
485 490 495

Val Cys Thr Arg Asp Cys Leu Glu Gly His His Arg Leu Val Met Gly
500 505 510

Ser His His Cys Cys Phe Glu Cys Met Pro Cys Glu Ala Gly Thr Phe
515 520 525

Leu Asn Thr Ser Glu Leu His Thr Cys Gln Pro Cys Gly Thr Glu Glu
530 535 540

Trp Ala Pro Glu Gly Ser Ser Ala Cys Phe Ser Arg Thr Val Glu Phe
545 550 555 560

Leu Gly Trp His Glu Pro Ile Ser Leu Val Leu Leu Ala Ala Asn Thr
565 570 575

Leu Leu Leu Leu Leu Ile Gly Thr Ala Gly Leu Phe Ala Trp Arg
580 585 590

Leu His Thr Pro Val Val Arg Ser Ala Gly Gly Arg Leu Cys Phe Leu
595 600 605

Met Leu Gly Ser Leu Val Ala Gly Ser Cys Ser Leu Tyr Ser Phe Phe
610 615 620

Gly Lys Pro Thr Val Pro Ala Cys Leu Leu Arg Gln Pro Leu Phe Ser
625 630 635 640

Leu Gly Phe Ala Ile Phe Leu Ser Cys Leu Thr Ile Arg Ser Phe Gln
645 650 655

Leu Val Ile Ile Phe Lys Phe Ser Thr Lys Val Pro Thr Phe Tyr His
660 665 670

Thr Trp Ala Gln Asn His Gly Ala Gly Ile Phe Val Ile Val Ser Ser
675 680 685

Thr Val His Leu Phe Leu Cys Leu Thr Trp Leu Ala Met Trp Thr Pro
690 695 700

Arg Pro Thr Arg Glu Tyr Gln Arg Phe Pro His Leu Val Ile Leu Glu
705 710 715 720

Cys Thr Glu Val Asn Ser Val Gly Phe Leu Val Ala Phe Ala His Asn
725 730 735

MON-0345.ST25.txt

Ile Leu Leu Ser Ile Ser Thr Phe Val Cys Ser Tyr Leu Gly Lys Glu
740 745 750

Leu Pro Glu Asn Tyr Asn Glu Ala Lys Cys Val Thr Phe Ser Leu Leu
755 760 765

Leu His Phe Val Ser Trp Ile Ala Phe Phe Thr Met Ser Ser Ile Tyr
770 775 780

Gln Gly Ser Tyr Leu Pro Ala Val Asn Val Leu Ala Gly Leu Ala Thr
785 790 795 800

Leu Ser Gly Gly Phe Ser Gly Tyr Phe Leu Pro Lys Cys Tyr Val Ile
805 810 815

Leu Cys Arg Pro Glu Leu Asn Asn Thr Glu His Phe Gln Ala Ser Ile
820 825 830

Gln Asp Tyr Thr Arg Arg Cys Gly Thr Thr
835 840

<210> 16

<211> 840

<212> PRT

<213> Rattus rattus

<400> 16

Met Leu Phe Trp Ala Ala His Leu Leu Leu Ser Leu Gln Leu Val Tyr
1 5 10 15

Cys Trp Ala Phe Ser Cys Gln Arg Thr Glu Ser Ser Pro Gly Phe Ser
20 25 30

Leu Pro Gly Asp Phe Leu Leu Ala Gly Leu Phe Ser Leu His Gly Asp
35 40 45

Cys Leu Gln Val Arg His Arg Pro Leu Val Thr Ser Cys Asp Arg Pro
50 55 60

Asp Ser Phe Asn Gly His Gly Tyr His Leu Phe Gln Ala Met Arg Phe
65 70 75 80

Thr Val Glu Glu Ile Asn Asn Ser Ser Ala Leu Leu Pro Asn Ile Thr
85 90 95

Leu Gly Tyr Glu Leu Tyr Asp Val Cys Ser Glu Ser Ala Asn Val Tyr
100 105 110

Ala Thr Leu Arg Val Leu Ala Leu Gln Gly Pro Arg His Ile Glu Ile
115 120 125

MON-0345.ST25.txt

Gln Lys Asp Leu Arg Asn His Ser Ser Lys Val Val Ala Phe Ile Gly
 130 135 140

Pro Asp Asn Thr Asp His Ala Val Thr Thr Ala Ala Leu Leu Gly Pro
 145 150 155 160

Phe Leu Met Pro Leu Val Ser Tyr Glu Ala Ser Ser Val Val Leu Ser
 165 170 175

Ala Lys Arg Lys Phe Pro Ser Phe Leu Arg Thr Val Pro Ser Asp Arg
 180 185 190

His Gln Val Glu Val Met Val Gln Leu Leu Gln Ser Phe Gly Trp Val
 195 200 205

Trp Ile Ser Leu Ile Gly Ser Tyr Gly Asp Tyr Gly Gln Leu Gly Val
 210 215 220

Gln Ala Leu Glu Glu Leu Ala Val Pro Arg Gly Ile Cys Val Ala Phe
 225 230 235 240

Lys Asp Ile Val Pro Phe Ser Ala Arg Val Gly Asp Pro Arg Met Gln
 245 250 255

Ser Met Met Gln His Leu Ala Gln Ala Arg Thr Thr Val Val Val Val
 260 265 270

Phe Ser Asn Arg His Leu Ala Arg Val Phe Phe Arg Ser Val Val Leu
 275 280 285

Ala Asn Leu Thr Gly Lys Val Trp Val Ala Ser Glu Asp Trp Ala Ile
 290 295 300

Ser Thr Tyr Ile Thr Ser Val Thr Gly Ile Gln Gly Ile Gly Thr Val
 305 310 315 320

Leu Gly Val Ala Val Gln Gln Arg Gln Val Pro Gly Leu Lys Glu Phe
 325 330 335

Glu Glu Ser Tyr Val Arg Ala Val Thr Ala Ala Pro Ser Ala Cys Pro
 340 345 350

Glu Gly Ser Trp Cys Ser Thr Asn Gln Leu Cys Arg Glu Cys His Thr
 355 360 365

Phe Thr Thr Arg Asn Met Pro Thr Leu Gly Ala Phe Ser Met Ser Ala
 370 375 380

Ala Tyr Arg Val Tyr Glu Ala Val Tyr Ala Val Ala His Gly Leu His
 385 390 395 400

MON-0345.ST25.txt

Gln Leu Leu Gly Cys Thr Ser Glu Ile Cys Ser Arg Gly Pro Val Tyr
 405 410 415

Pro Trp Gln Leu Leu Gln Gln Ile Tyr Lys Val Asn Phe Leu Leu His
 420 425 430 435

Glu Asn Thr Val Ala Phe Asp Asp Asn Gly Asp Thr Leu Gly Tyr Tyr
 435 440 445

Asp Ile Ile Ala Trp Asp Trp Asn Gly Pro Glu Trp Thr Phe Glu Ile
 450 455 460

Ile Gly Ser Ala Ser Leu Ser Pro Val His Leu Asp Ile Asn Lys Thr
 465 470 475 480

Lys Ile Gln Trp His Gly Lys Asn Asn Gln Val Pro Val Ser Val Cys
 485 490 495

Thr Thr Asp Cys Leu Ala Gly His His Arg Val Val Val Gly Ser His
 500 505 510

His Cys Cys Phe Glu Cys Val Pro Cys Glu Ala Gly Thr Phe Leu Asn
 515 520 525

Met Ser Glu Leu His Ile Cys Gln Pro Cys Gly Thr Glu Glu Trp Ala
 530 535 540

Pro Lys Glu Ser Thr Thr Cys Phe Pro Arg Thr Val Glu Phe Leu Ala
 545 550 555 560

Trp His Glu Pro Ile Ser Leu Val Leu Ile Ala Ala Asn Thr Leu Leu
 565 570 575

Leu Leu Leu Leu Val Gly Thr Ala Gly Leu Phe Ala Trp His Phe His
 580 585 590

Thr Pro Val Val Arg Ser Ala Gly Gly Arg Leu Cys Phe Leu Met Leu
 595 600 605

Gly Ser Leu Val Ala Gly Ser Cys Ser Phe Tyr Ser Phe Phe Gly Glu
 610 615 620

Pro Thr Val Pro Ala Cys Leu Leu Arg Gln Pro Leu Phe Ser Leu Gly
 625 630 635 640

Phe Ala Ile Phe Leu Ser Cys Leu Thr Ile Arg Ser Phe Gln Leu Val
 645 650 655

Ile Ile Phe Lys Phe Ser Thr Lys Val Pro Thr Phe Tyr Arg Thr Trp
 660 665 670

MON-0345.ST25.txt

Ala Gln Asn His Gly Ala Gly Leu Phe Val Ile Val Ser Ser Thr Val
 675 680 685

His Leu Leu Ile Cys Leu Thr Trp Leu Val Met Trp Thr Pro Arg Pro
 690 695 700

Thr Arg Glu Tyr Gln Arg Phe Pro His Leu Val Ile Leu Glu Cys Thr
 705 710 715 720

Glu Val Asn Ser Val Gly Phe Leu Leu Ala Phe Thr His Asn Ile Leu
 725 730 735

Leu Ser Ile Ser Thr Phe Val Cys Ser Tyr Leu Gly Lys Glu Leu Pro
 740 745 750

Glu Asn Tyr Asn Glu Ala Lys Cys Val Thr Phe Ser Leu Leu Leu Asn
 755 760 765

Phe Val Ser Trp Ile Ala Phe Phe Thr Met Ala Ser Ile Tyr Gln Gly
 770 775 780

Ser Tyr Leu Pro Ala Val Asn Val Leu Ala Gly Leu Thr Thr Leu Ser
 785 790 795 800

Gly Gly Phe Ser Gly Tyr Phe Leu Pro Lys Cys Tyr Val Ile Leu Cys
 805 810 815

Arg Pro Glu Leu Asn Asn Thr Glu His Phe Gln Ala Ser Ile Gln Asp
 820 825 830

Tyr Thr Arg Arg Cys Gly Thr Thr
 835 840

<210> 17

<211> 841

<212> PRT

<213> Homo sapiens

<400> 17

Met Leu Leu Cys Thr Ala Arg Leu Val Gly Leu Gln Leu Leu Ile Ser
 1 5 10 15

Cys Cys Trp Ala Phe Ala Cys His Ser Thr Glu Ser Ser Pro Asp Phe
 20 25 30

Thr Leu Pro Gly Asp Tyr Leu Leu Ala Gly Leu Phe Pro Leu His Ser
 35 40 45

Gly Cys Leu Gln Val Arg His Arg Pro Glu Val Thr Leu Cys Asp Arg
 50 55 60

Ser Cys Ser Phe Asn Glu His Gly Tyr His Leu Phe Gln Ala Met Arg
 Page 34

65

70

75

80

Leu Gly Val Glu Glu Ile Asn Asn Ser Thr Ala Leu Leu Pro Asn Ile
 85 90 95

Thr Leu Gly Tyr Gln Leu Tyr Asp Val Cys Ser Asp Ser Ala Asn Val
 100 105 110

Tyr Ala Thr Leu Arg Val Leu Ser Leu Pro Gly Gln His His Ile Glu
 115 120 125

Leu Gln Gly Asp Leu Leu His Tyr Ser Pro Thr Val Leu Ala Val Ile
 130 135 140

Gly Pro Asp Ser Thr Asn Arg Ala Ala Thr Thr Ala Ala Leu Leu Ser
 145 150 155 160

Pro Phe Leu Val Pro Met Ile Ser Tyr Ala Ala Ser Ser Glu Thr Leu
 165 170 175

Ser Val Lys Arg Gln Tyr Pro Ser Phe Leu Arg Thr Ile Pro Asn Asp
 180 185 190

Lys Tyr Gln Val Glu Thr Met Val Leu Leu Leu Gln Lys Phe Gly Trp
 195 200 205

Thr Trp Ile Ser Leu Val Gly Ser Ser Asp Asp Tyr Gly Gln Leu Gly
 210 215 220

Val Gln Ala Leu Glu Asn Gln Ala Thr Gly Gln Gly Ile Cys Ile Ala
 225 230 235 240

Phe Lys Asp Ile Met Pro Phe Ser Ala Gln Val Gly Asp Glu Arg Met
 245 250 255

Gln Cys Leu Met Arg His Leu Ala Gln Ala Gly Ala Thr Val Val Val
 260 265 270

Val Phe Ser Ser Arg Gln Leu Ala Arg Val Phe Phe Glu Ser Val Val
 275 280 285

Leu Thr Asn Leu Thr Gly Lys Val Trp Val Ala Ser Glu Ala Trp Ala
 290 295 300

Leu Ser Arg His Ile Thr Gly Val Pro Gly Ile Gln Arg Ile Gly Met
 305 310 315 320

Val Leu Gly Val Ala Ile Gln Lys Arg Ala Val Pro Gly Leu Lys Ala
 325 330 335

Phe Glu Glu Ala Tyr Ala Arg Ala Asp Lys Lys Ala Pro Arg Pro Cys
 Page 35

340

345

350

His Lys Gly Ser Trp Cys Ser Ser Asn Gln Leu Cys Arg Glu Cys Gln
 355 360 365

Ala Phe Met Ala His Thr Met Pro Lys Leu Lys Ala Phe Ser Met Ser
 370 375 380

Ser Ala Tyr Asn Ala Tyr Arg Ala Val Tyr Ala Val Ala His Gly Leu
 385 390 395 400

His Gln Leu Leu Gly Cys Ala Ser Gly Ala Cys Ser Arg Gly Arg Val
 405 410 415

Tyr Pro Trp Gln Leu Leu Glu Gln Ile His Lys Val His Phe Leu Leu
 420 425 430

His Lys Asp Thr Val Ala Phe Asn Asp Asn Arg Asp Pro Leu Ser Ser
 435 440 445

Tyr Asn Ile Ile Ala Trp Asp Trp Asn Gly Pro Lys Trp Thr Phe Thr
 450 455 460

Val Leu Gly Ser Ser Thr Trp Ser Pro Val Gln Leu Asn Ile Asn Glu
 465 470 475 480

Thr Lys Ile Gln Trp His Gly Lys Asp Asn Gln Val Pro Lys Ser Val
 485 490 495

Cys Ser Ser Asp Cys Leu Glu Gly His Gln Arg Val Val Thr Gly Phe
 500 505 510

His His Cys Cys Phe Glu Cys Val Pro Cys Gly Ala Gly Thr Phe Leu
 515 520 525

Asn Lys Ser Asp Leu Tyr Arg Cys Gln Pro Cys Gly Lys Glu Glu Trp
 530 535 540

Ala Pro Glu Gly Ser Gln Thr Cys Phe Pro Arg Thr Val Val Phe Leu
 545 550 555 560

Ala Leu Arg Glu His Thr Ser Trp Val Leu Leu Ala Ala Asn Thr Leu
 565 570 575

Leu Leu Leu Leu Leu Gly Thr Ala Gly Leu Phe Ala Trp His Leu
 580 585 590

Asp Thr Pro Val Val Arg Ser Ala Gly Gly Arg Leu Cys Phe Leu Met
 595 600 605

Leu Gly Ser Leu Ala Ala Gly Ser Gly Ser Leu Tyr Gly Phe Phe Gly
 Page 36

MON-0345.ST25.txt

Glu Pro Thr Arg Pro Ala Cys Leu Leu Arg Gln Ala Leu Phe Ala Leu
 625 630 635 640

Gly Phe Thr Ile Phe Leu Ser Cys Leu Thr Val Arg Ser Phe Gln Leu
 645 650 655

Ile Ile Ile Phe Lys Phe Ser Thr Lys Val Pro Thr Phe Tyr His Ala
 660 665 670

Trp Val Gln Asn His Gly Ala Gly Leu Phe Val Met Ile Ser Ser Ala
 675 680 685

Ala Gln Leu Leu Ile Cys Leu Thr Trp Leu Val Val Trp Thr Pro Leu
 690 695 700

Pro Ala Arg Glu Tyr Gln Arg Phe Pro His Leu Val Met Leu Glu Cys
 705 710 715 720

Thr Glu Thr Asn Ser Leu Gly Phe Ile Leu Ala Phe Leu Tyr Asn Gly
 725 730 735

Leu Leu Ser Ile Ser Ala Phe Ala Cys Ser Tyr Leu Gly Lys Asp Leu
 740 745 750

Pro Glu Asn Tyr Asn Glu Ala Lys Cys Val Thr Phe Ser Leu Leu Phe
 755 760 765

Asn Phe Val Ser Trp Ile Ala Phe Phe Thr Thr Ala Ser Val Tyr Asp
 770 775 780

Gly Lys Tyr Leu Pro Ala Ala Asn Met Met Ala Gly Leu Ser Ser Leu
 785 790 795 800

Ser Ser Gly Phe Gly Gly Tyr Phe Leu Pro Lys Cys Tyr Val Ile Leu
 805 810 815

Cys Arg Pro Asp Leu Asn Ser Thr Glu His Phe Gln Ala Ser Ile Gln
 820 825 830

Asp Tyr Thr Arg Arg Cys Gly Ser Thr

835 840

<210> 18
 <211> 843
 <212> PRT
 <213> Mus musculus

<400> 18

Met Gly Pro Gln Ala Arg Thr Leu His Leu Leu Phe Leu Leu His

MON-0345.ST25.txt

Ala Leu Pro Lys Pro Val Met Leu Val Gly Asn Ser Asp Phe His Leu
20 25 30

Ala Gly Asp Tyr Leu Leu Gly Gly Leu Phe Thr Leu His Ala Asn Val
35 40 45

Lys Ser Val Ser His Leu Ser Tyr Leu Gln Val Pro Lys Cys Asn Glu
50 55 60

Tyr Asn Met Lys Val Leu Gly Tyr Asn Leu Met Gln Ala Met Arg Phe
65 70 75 80

Ala Val Glu Glu Ile Asn Asn Cys Ser Ser Leu Leu Pro Gly Val Leu
85 90 95

Leu Gly Tyr Glu Met Val Asp Val Cys Tyr Leu Ser Asn Asn Ile Gln
100 105 110

Pro Gly Leu Tyr Phe Leu Ser Gln Ile Asp Asp Phe Leu Pro Ile Leu
115 120 125

Lys Asp Tyr Ser Gln Tyr Arg Pro Gln Val Val Ala Val Ile Gly Pro
130 135 140

Asp Asn Ser Glu Ser Ala Ile Thr Val Ser Asn Ile Leu Ser Tyr Phe
145 150 155 160

Leu Val Pro Gln Val Thr Tyr Ser Ala Ile Thr Asp Lys Leu Arg Asp
165 170 175

Lys Arg Arg Phe Pro Ala Met Leu Arg Thr Val Pro Ser Ala Thr His
180 185 190

His Ile Glu Ala Met Val Gln Leu Met Val His Phe Gln Trp Asn Trp
195 200 205

Ile Val Val Leu Val Ser Asp Asp Asp Tyr Gly Arg Glu Asn Ser His
210 215 220

Leu Leu Ser Gln Arg Leu Thr Asn Thr Gly Asp Ile Cys Ile Ala Phe
225 230 235 240

Gln Glu Val Leu Pro Val Pro Glu Pro Asn Gln Ala Val Arg Pro Glu
245 250 255

Glu Gln Asp Gln Leu Asp Asn Ile Leu Asp Lys Leu Arg Arg Thr Ser
260 265 270

Ala Arg Val Val Val Ile Phe Ser Pro Glu Leu Ser Leu His Asn Phe
275 280 285

MON-0345.ST25.txt

Phe Arg Glu Val Leu Arg Trp Asn Phe Thr Gly Phe Val Trp Ile Ala
290 295 300

Ser Glu Ser Trp Ala Ile Asp Pro Val Leu His Asn Leu Thr Glu Leu
305 310 315 320

Arg His Thr Gly Thr Phe Leu Gly Val Thr Ile Gln Arg Val Ser Ile
325 330 335

Pro Gly Phe Ser Gln Phe Arg Val Arg His Asp Lys Pro Glu Tyr Pro
340 345 350

Met Pro Asn Glu Thr Ser Leu Arg Thr Thr Cys Asn Gln Asp Cys Asp
355 360 365

Ala Cys Met Asn Ile Thr Glu Ser Phe Asn Asn Val Leu Met Leu Ser
370 375 380

Gly Glu Arg Val Val Tyr Ser Val Tyr Ser Ala Val Tyr Ala Val Ala
385 390 395 400

His Thr Leu His Arg Leu Leu His Cys Asn Gln Val Arg Cys Thr Lys
405 410 415

Gln Ile Val Tyr Pro Trp Gln Leu Leu Arg Glu Ile Trp His Val Asn
420 425 430

Phe Thr Leu Leu Gly Asn Gln Leu Phe Phe Asp Glu Gln Gly Asp Met
435 440 445

Pro Met Leu Leu Asp Ile Ile Gln Trp Gln Trp Gly Leu Ser Gln Asn
450 455 460

Pro Phe Gln Ser Ile Ala Ser Tyr Ser Pro Thr Glu Thr Arg Leu Thr
465 470 475 480

Tyr Ile Ser Asn Val Ser Trp Tyr Thr Pro Asn Asn Thr Val Pro Ile
485 490 495

Ser Met Cys Ser Lys Ser Cys Gln Pro Gly Gln Met Lys Lys Pro Ile
500 505 510

Gly Leu His Pro Cys Cys Phe Glu Cys Val Asp Cys Pro Pro Gly Thr
515 520 525

Tyr Leu Asn Arg Ser Val Asp Glu Phe Asn Cys Leu Ser Cys Pro Gly
530 535 540

Ser Met Trp Ser Tyr Lys Asn Asn Ile Ala Cys Phe Lys Arg Arg Leu
545 550 555 560

MON-0345.ST25.txt

Ala Phe Leu Glu Trp His Glu Val Pro Thr Ile Val Val Thr Ile Leu
565 570 575

Ala Ala Leu Gly Phe Ile Ser Thr Leu Ala Ile Leu Leu Ile Phe Trp
580 585 590

Arg His Phe Gln Thr Pro Met Val Arg Ser Ala Gly Gly Pro Met Cys
595 600 605

Phe Leu Met Leu Val Pro Leu Leu Leu Ala Phe Gly Met Val Pro Val
610 615 620

Tyr Val Gly Pro Pro Thr Val Phe Ser Cys Phe Cys Arg Gln Ala Phe
625 630 635 640

Phe Thr Val Cys Phe Ser Val Cys Leu Ser Cys Ile Thr Val Arg Ser
645 650 655

Phe Gln Ile Val Cys Val Phe Lys Met Ala Arg Arg Leu Pro Ser Ala
660 665 670

Tyr Gly Phe Trp Met Arg Tyr His Gly Pro Tyr Val Phe Val Ala Phe
675 680 685

Ile Thr Ala Val Lys Val Ala Leu Val Ala Gly Asn Met Leu Ala Thr
690 695 700

Thr Ile Asn Pro Ile Gly Arg Thr Asp Pro Asp Asp Pro Asn Ile Ile
705 710 715 720

Ile Leu Ser Cys His Pro Asn Tyr Arg Asn Gly Leu Leu Phe Asn Thr
725 730 735

Ser Met Asp Leu Leu Leu Ser Val Leu Gly Phe Ser Phe Ala Tyr Val
740 745 750

Gly Lys Glu Leu Pro Thr Asn Tyr Asn Glu Ala Lys Phe Ile Thr Leu
755 760 765

Ser Met Thr Phe Ser Phe Thr Ser Ser Ile Ser Leu Cys Thr Phe Met
770 775 780

Ser Val His Asp Gly Val Leu Val Thr Ile Met Asp Leu Leu Val Thr
785 790 795 800

Val Leu Asn Phe Leu Ala Ile Gly Leu Gly Tyr Phe Gly Pro Lys Cys
805 810 815

Tyr Met Ile Leu Phe Tyr Pro Glu Arg Asn Thr Ser Ala Tyr Phe Asn
820 825 830

MON-0345.ST25.txt

Ser Met Ile Gln Gly Tyr Thr Met Arg Lys Ser
835 840

<210> 19
<211> 843
<212> PRT
<213> Rattus rattus
<400> 19

Met Gly Pro Gln Ala Arg Thr Leu Cys Leu Leu Ser Leu Leu Leu His
1 5 10 15

Val Leu Pro Lys Pro Gly Lys Leu Val Glu Asn Ser Asp Phe His Leu
20 25 30

Ala Gly Asp Tyr Leu Leu Gly Gly Leu Phe Thr Leu His Ala Asn Val
35 40 45

Lys Ser Ile Ser His Leu Ser Tyr Leu Gln Val Pro Lys Cys Asn Glu
50 55 60

Phe Thr Met Lys Val Leu Gly Tyr Asn Leu Met Gln Ala Met Arg Phe
65 70 75 80

Ala Val Glu Glu Ile Asn Asn Cys Ser Ser Leu Leu Pro Gly Val Leu
85 90 95

Leu Gly Tyr Glu Met Val Asp Val Cys Tyr Leu Ser Asn Asn Ile His
100 105 110

Pro Gly Leu Tyr Phe Leu Ala Gln Asp Asp Asp Leu Leu Pro Ile Leu
115 120 125

Lys Asp Tyr Ser Gln Tyr Met Pro His Val Val Ala Val Ile Gly Pro
130 135 140

Asp Asn Ser Glu Ser Ala Ile Thr Val Ser Asn Ile Leu Ser His Phe
145 150 155 160

Leu Ile Pro Gln Ile Thr Tyr Ser Ala Ile Ser Asp Lys Leu Arg Asp
165 170 175

Lys Arg His Phe Pro Ser Met Leu Arg Thr Val Pro Ser Ala Thr His
180 185 190

His Ile Glu Ala Met Val Gln Leu Met Val His Phe Gln Trp Asn Trp
195 200 205

Ile Val Val Leu Val Ser Asp Asp Asp Tyr Gly Arg Glu Asn Ser His
210 215 220

MON-0345.ST25.txt

Leu Leu Ser Gln Arg Leu Thr Lys Thr Ser Asp Ile Cys Ile Ala Phe
225 230 235 240

Gln Glu Val Leu Pro Ile Pro Glu Ser Ser Gln Val Met Arg Ser Glu
245 250 255

Glu Gln Arg Gln Leu Asp Asn Ile Leu Asp Lys Leu Arg Arg Thr Ser
260 265 270

Ala Arg Val Val Val Phe Ser Pro Glu Leu Ser Leu Tyr Ser Phe
275 280 285

Phe His Glu Val Leu Arg Trp Asn Phe Thr Gly Phe Val Trp Ile Ala
290 295 300

Ser Glu Ser Trp Ala Ile Asp Pro Val Leu His Asn Leu Thr Glu Leu
305 310 315 320

Arg His Thr Gly Thr Phe Leu Gly Val Thr Ile Gln Arg Val Ser Ile
325 330 335

Pro Gly Phe Ser Gln Phe Arg Val Arg Arg Asp Lys Pro Gly Tyr Pro
340 345 350

Val Pro Asn Thr Thr Asn Leu Arg Thr Thr Cys Asn Gln Asp Cys Asp
355 360 365

Ala Cys Leu Asn Thr Thr Lys Ser Phe Asn Asn Ile Leu Ile Leu Ser
370 375 380

Gly Glu Arg Val Val Tyr Ser Val Tyr Ser Ala Val Tyr Ala Val Ala
385 390 395 400

His Ala Leu His Arg Leu Leu Gly Cys Asn Arg Val Arg Cys Thr Lys
405 410 415

Gln Lys Val Tyr Pro Trp Gln Leu Leu Arg Glu Ile Trp His Val Asn
420 425 430

Phe Thr Leu Leu Gly Asn Arg Leu Phe Phe Asp Gln Gln Gly Asp Met
435 440 445

Pro Met Leu Leu Asp Ile Ile Gln Trp Gln Trp Asp Leu Ser Gln Asn
450 455 460

Pro Phe Gln Ser Ile Ala Ser Tyr Ser Pro Thr Ser Lys Arg Leu Thr
465 470 475 480

Tyr Ile Asn Asn Val Ser Trp Tyr Thr Pro Asn Asn Thr Val Pro Val
485 490 495

MON-0345.ST25.txt

Ser Met Cys Ser Lys Ser Cys Gln Pro Gly Gln Met Lys Lys Ser Val
500 505 510

Gly Leu His Pro Cys Cys Phe Glu Cys Leu Asp Cys Met Pro Gly Thr
515 520 525

Tyr Leu Asn Arg Ser Ala Asp Glu Phe Asn Cys Leu Ser Cys Pro Gly
530 535 540

Ser Met Trp Ser Tyr Lys Asn Asp Ile Thr Cys Phe Gln Arg Arg Pro
545 550 555 560

Thr Phe Leu Glu Trp His Glu Val Pro Thr Ile Val Val Ala Ile Leu
565 570 575

Ala Ala Leu Gly Phe Phe Ser Thr Leu Ala Ile Leu Phe Ile Phe Trp
580 585 590

Arg His Phe Gln Thr Pro Met Val Arg Ser Ala Gly Gly Pro Met Cys
595 600 605

Phe Leu Met Leu Val Pro Leu Leu Leu Ala Phe Gly Met Val Pro Val
610 615 620

Tyr Val Gly Pro Pro Thr Val Phe Ser Cys Phe Cys Arg Gln Ala Phe
625 630 635 640

Phe Thr Val Cys Phe Ser Ile Cys Leu Ser Cys Ile Thr Val Arg Ser
645 650 655

Phe Gln Ile Val Cys Val Phe Lys Met Ala Arg Arg Leu Pro Ser Ala
660 665 670

Tyr Ser Phe Trp Met Arg Tyr His Gly Pro Tyr Val Phe Val Ala Phe
675 680 685

Ile Thr Ala Ile Lys Val Ala Leu Val Val Gly Asn Met Leu Ala Thr
690 695 700

Thr Ile Asn Pro Ile Gly Arg Thr Asp Pro Asp Asp Pro Asn Ile Met
705 710 715 720

Ile Leu Ser Cys His Pro Asn Tyr Arg Asn Gly Leu Leu Phe Asn Thr
725 730 735

Ser Met Asp Leu Leu Leu Ser Val Leu Gly Phe Ser Phe Ala Tyr Met
740 745 750

Gly Lys Glu Leu Pro Thr Asn Tyr Asn Glu Ala Lys Phe Ile Thr Leu
755 760 765

MON-0345.ST25.txt

Ser Met Thr Phe Ser Phe Thr Ser Ser Ile Ser Leu Cys Thr Phe Met
770 775 780

Ser Val His Asp Gly Val Leu Val Thr Ile Met Asp Leu Leu Val Thr
785 790 795 800

Val Leu Asn Phe Leu Ala Ile Gly Leu Gly Tyr Phe Gly Pro Lys Cys
805 810 815

Tyr Met Ile Leu Phe Tyr Pro Glu Arg Asn Thr Ser Ala Tyr Phe Asn
820 825 830

Ser Met Ile Gln Gly Tyr Thr Met Arg Lys Ser
835 840

<210> 20
<211> 839
<212> PRT
<213> Homo sapiens

<400> 20

Met Gly Pro Arg Ala Lys Thr Ile Cys Ser Leu Phe Phe Leu Leu Trp
1 5 10 15

Val Leu Ala Glu Pro Ala Glu Asn Ser Asp Phe Tyr Leu Pro Gly Asp
20 25 30

Tyr Leu Leu Gly Gly Leu Phe Ser Leu His Ala Asn Met Lys Gly Ile
35 40 45

Val His Leu Asn Phe Leu Gln Val Pro Met Cys Lys Glu Tyr Glu Val
50 55 60

Lys Val Ile Gly Tyr Asn Leu Met Gln Ala Met Arg Phe Ala Val Glu
65 70 75 80

Glu Ile Asn Asn Asp Ser Ser Leu Leu Pro Gly Val Leu Leu Gly Tyr
85 90 95

Glu Ile Val Asp Val Cys Tyr Ile Ser Asn Asn Val Gln Pro Val Leu
100 105 110

Tyr Phe Leu Ala His Glu Asp Asn Leu Leu Pro Ile Gln Glu Asp Tyr
115 120 125

Ser Asn Tyr Ile Ser Arg Val Val Ala Val Ile Gly Pro Asp Asn Ser
130 135 140

Glu Ser Val Met Thr Val Ala Asn Phe Leu Ser Leu Phe Leu Leu Pro
145 150 155 160

MON-0345.ST25.txt

Gln Ile Thr Tyr Ser Ala Ile Ser Asp Glu Leu Arg Asp Lys Val Arg
 165 170 175

 Phe Pro Ala Leu Leu Arg Thr Thr Pro Ser Ala Asp His His Val Glu
 180 185 190

 Ala Met Val Gln Leu Met Leu His Phe Arg Trp Asn Trp Ile Ile Val
 195 200 205

 Leu Val Ser Ser Asp Thr Tyr Gly Arg Asp Asn Gly Gln Leu Leu Gly
 210 215 220

 Glu Arg Val Ala Arg Arg Asp Ile Cys Ile Ala Phe Gln Glu Thr Leu
 225 230 235 240

 Pro Thr Leu Gln Pro Asn Gln Asn Met Thr Ser Glu Glu Arg Gln Arg
 245 250 255

 Leu Val Thr Ile Val Asp Lys Leu Gln Gln Ser Thr Ala Arg Val Val
 260 265 270

 Val Val Phe Ser Pro Asp Leu Thr Leu Tyr His Phe Phe Asn Glu Val
 275 280 285

 Leu Arg Gln Asn Phe Thr Gly Ala Val Trp Ile Ala Ser Glu Ser Trp
 290 295 300

 Ala Ile Asp Pro Val Leu His Asn Leu Thr Glu Leu Gly His Leu Gly
 305 310 315 320

 Thr Phe Leu Gly Ile Thr Ile Gln Ser Val Pro Ile Pro Gly Phe Ser
 325 330 335

 Glu Phe Arg Glu Trp Gly Pro Gln Ala Gly Pro Pro Pro Leu Ser Arg
 340 345 350

 Thr Ser Gln Ser Tyr Thr Cys Asn Gln Glu Cys Asp Asn Cys Leu Asn
 355 360 365

 Ala Thr Leu Ser Phe Asn Thr Ile Leu Arg Leu Ser Gly Glu Arg Val
 370 375 380

 Val Tyr Ser Val Tyr Ser Ala Val Tyr Ala Val Ala His Ala Leu His
 385 390 395 400

 Ser Leu Leu Gly Cys Asp Lys Ser Thr Cys Thr Lys Arg Val Val Tyr
 405 410 415

 Pro Trp Gln Leu Leu Glu Glu Ile Trp Lys Val Asn Phe Thr Leu Leu
 420 425 430

MON-0345.ST25.txt

Asp His Gln Ile Phe Phe Asp Pro Gln Gly Asp Val Ala Leu His Leu
 435 440 445

Glu Ile Val Gln Trp Gln Trp Asp Arg Ser Gln Asn Pro Phe Gln Ser
 450 455 460

Val Ala Ser Tyr Tyr Pro Leu Gln Arg Gln Leu Lys Asn Ile Gln Asp
 465 470 475 480

Ile Ser Trp His Thr Val Asn Asn Thr Ile Pro Met Ser Met Cys Ser
 485 490 495

Lys Arg Cys Gln Ser Gly Gln Lys Lys Pro Val Gly Ile His Val
 500 505 510

Cys Cys Phe Glu Cys Ile Asp Cys Leu Pro Gly Thr Phe Leu Asn His
 515 520 525

Thr Glu Asp Glu Tyr Glu Cys Gln Ala Cys Pro Asn Asn Glu Trp Ser
 530 535 540

Tyr Gln Ser Glu Thr Ser Cys Phe Lys Arg Gln Leu Val Phe Leu Glu
 545 550 555 560

Trp His Glu Ala Pro Thr Ile Ala Val Ala Leu Leu Ala Ala Leu Gly
 565 570 575

Phe Leu Ser Thr Leu Ala Ile Leu Val Ile Phe Trp Arg His Phe Gln
 580 585 590

Thr Pro Ile Val Arg Ser Ala Gly Gly Pro Met Cys Phe Leu Met Leu
 595 600 605

Thr Leu Leu Leu Val Ala Tyr Met Val Val Pro Val Tyr Val Gly Pro
 610 615 620

Pro Lys Val Ser Thr Cys Leu Cys Arg Gln Ala Leu Phe Pro Leu Cys
 625 630 635 640

Phe Thr Ile Cys Ile Ser Cys Ile Ala Val Arg Ser Phe Gln Ile Val
 645 650 655

Cys Ala Phe Lys Met Ala Ser Arg Phe Pro Arg Ala Tyr Ser Tyr Trp
 660 665 670

Val Arg Tyr Gln Gly Pro Tyr Val Ser Met Ala Phe Ile Thr Val Leu
 675 680 685

Lys Met Val Ile Val Val Ile Gly Met Leu Ala Thr Gly Leu Ser Pro
 690 695 700

MON-0345.ST25.txt

Thr Thr Arg Thr Asp Pro Asp Asp Pro Lys Ile Thr Ile Val Ser Cys
705 710 715 720

Asn Pro Asn Tyr Arg Asn Ser Leu Leu Phe Asn Thr Ser Leu Asp Leu
725 730 735

Leu Leu Ser Val Val Gly Phe Ser Phe Ala Tyr Met Gly Lys Glu Leu
740 745 750

Pro Thr Asn Tyr Asn Glu Ala Lys Phe Ile Thr Leu Ser Met Thr Phe
755 760 765

Tyr Phe Thr Ser Ser Val Ser Leu Cys Thr Phe Met Ser Ala Tyr Ser
770 775 780

Gly Val Leu Val Thr Ile Val Asp Leu Leu Val Thr Val Leu Asn Leu
785 790 795 800

Leu Ala Ile Ser Leu Gly Tyr Phe Gly Pro Lys Cys Tyr Met Ile Leu
805 810 815

Phe Tyr Pro Glu Arg Asn Thr Pro Ala Tyr Phe Asn Ser Met Ile Gln
820 825 830

Gly Tyr Thr Met Arg Arg Asp
835

<210> 21

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Overgo probes

<400> 21

actttgagaa catgagtaat gacg

24

<210> 22

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Overgo probes

<400> 22

agtacccgga ctgcgtcgta atta

24

<210> 23

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Overgo probes

MON-0345.ST25.txt

<400>	23	
cactagggtc atccttgctt tcag		24
<210>	24	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Overgo probes	
<400>	24	
agtcaagggtg atgggcctga aagc		24
<210>	25	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Overgo probes	
<400>	25	
atgtggtgga ctggctgtac catc		24
<210>	26	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Overgo probes	
<400>	26	
ttgaagccct ccacgtgatg gtac		24
<210>	27	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Overgo probes	
<400>	27	
cacacggta acaagatcac cttc		24
<210>	28	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Overgo probes	
<400>	28	
agtagcactg ctcggagaag gtga		24
<210>	29	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	

MON-0345.ST25.txt

<220>		
<223>	Overgo probes	
<400>	29	
	atctaccaca tggacgagga ggag	24
<210>	30	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Overgo probes	
<400>	30	
	tgaccaggta cggcgtctcc tcct	24
<210>	31	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Overgo probes	
<400>	31	
	agcgcgta c gctggccgac ttca	24
<210>	32	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Overgo probes	
<400>	32	
	ttgctgagca cgttcttcaa gtcg	24
<210>	33	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Overgo probes	
<400>	33	
	cacgcctaca aattcttctt taag	24
<210>	34	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Overgo probes	
<400>	34	
	agtccctggtc catggactta aaga	24

MON-0345.ST25.txt

<210> 35	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Overgo probes	
<400> 35	
cttccactcc tgctgctacg actg	24
<210> 36	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Overgo probes	
<400> 36	
tgcctcgcag tccacgcagt cgta	24
<210> 37	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Overgo probes	
<400> 37	
aggtagcgccg cgtcaagggc ttcc	24
<210> 38	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Overgo probes	
<400> 38	
tcgtacgcaggc aggagtggaa gccc	24
<210> 39	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Overgo probes	
<400> 39	
gttcctggca tggggggagc cggc	24
<210> 40	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Overgo probes	

MON-0345.ST25.txt

<400> 40
gagcagcaca agcacagccg gctc 24

<210> 41
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Overgo probes

<400> 41
acagccccact agttcaggcc gcag 24

<210> 42
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Overgo probes

<400> 42
caggccccggg gtccccctgc ggcc 24

<210> 43
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Overgo probes

<400> 43
cccactgggtt caggcctcgg gggg 24

<210> 44
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Overgo probes

<400> 44
aaagcaggcc aggggcccccc ccga 24

<210> 45
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Overgo probes

<400> 45
aggcgctgggt gcactgccgc acac 24

<210> 46
<211> 24
<212> DNA
<213> Artificial Sequence

MON-0345.ST25.txt

<220>
<223> Overgo probes

<400> 46
aagctgaccc aggagcgtgt gcgg 24

<210> 47
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Overgo probes

<400> 47
acagaggcac tggtgcaactg ccgc 24

<210> 48
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Overgo probes

<400> 48
tgatccagga gtgcacgcgg cagt 24

<210> 49
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Overgo probes

<400> 49
accaatgccca cgctggcctt tctc 24

<210> 50
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Overgo probes

<400> 50
aagtccccag gaagcagaga aagg 24

<210> 51
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Overgo probes

<400> 51
tggtacatgc tgccaatgcc acgc 24

MON-0345.ST25.txt

<210> 52	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Overgo probes	
<400> 52	
aagcagagga aagccagcgt ggca	24
<210> 53	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Overgo probes	
<400> 53	
tacaaccgtg cccgtggcct cacc	24
<210> 54	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Overgo probes	
<400> 54	
aggccagcat ggcgaaggta aggc	24
<210> 55	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Overgo probes	
<400> 55	
tcatcacctg ggtctccctt gtgc	24
<210> 56	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Overgo probes	
<400> 56	
acattggcca ggaggggac aaag	24
<210> 57	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Overgo probes	

MON-0345.ST25.txt

<400> 57
tgccatggg tgccctcctg ctct

24

<210> 58
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Overgo probes

<400> 58
aggatgccca gcacacagag cagg

24

<210> 59
<211> 9049
<212> DNA
<213> Felis catus

<220>
<221> misc_feature
<222> (14)..(14)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (47)..(47)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (56)..(56)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (67)..(67)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (2113)..(2113)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (2121)..(2121)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (2125)..(2132)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (2138)..(2138)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (4198)..(4198)
<223> n is a, c, g, or t

<220>

MON-0345.ST25.txt

<221> misc_feature
<222> (4232)..(4232)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (4237)..(4237)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (4256)..(4256)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (4264)..(4264)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (4272)..(4272)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (4298)..(4298)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (4328)..(4328)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (4341)..(4341)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (4343)..(4343)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (4354)..(4354)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (4386)..(4386)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (4389)..(4390)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (4399)..(4456)
<223> n is a, c, g, or t

<400> 59
ctggaaaaaa aggngaaccc agatgattc accccaaaat ttcatgtntca gaaaantgag 60

gactggagg aggtcaactt aaagttagtt tcattttgtta aactgaggcc caggtaaaaa 120
Page 55

MON-0345.ST25.txt

gttctaaaac ccacagctcc cttccatatt ctgtccccca gagaaggcgt gtccctgcct	180
tcctctgacc cctgcccccc aagacgcctg ggctcccttt ctgagccggg tgaagccgca	240
ggcaccagag cgagaacaga acccacaacc atccagaggg aggggcagcg gccaccacct	300
ggcttgcacc tgtgccttca ccctgcccag ttccctgagta ggaccgcagg cccggaaggc	360
caaggcaaacc acgcctggttc ctacgactgg gttccagccc cacccctggc acaggcgtga	420
agttgggaag catctggca gccgctgtct attctattta aacagccgag ctggtcagag	480
ggtgctggct ggccatgcca ggcacaggac ggactggcca gcatgtcact cccggcggct	540
cacctggtcg gcctgcagct ctccctctcc tgctgctggg ctctcagctg ccacagcaca	600
gagacgtctg ccgacttcag cctccctggg gattacctcc tcgcaggtct gttccctctg	660
cactctgact gtccggcgt gaggcaccgg cccacggta ccctctgtga caggtgagtg	720
aggggtcccg tgcctctagg acctctgccc atcctctgtc ctccctcagtg aggatcctt	780
ggttgtttagt tgagtggagt tagggccttt tagagagctg agactctaga agctaaacca	840
cgtgttgctt tacctgtctt ccaccctgag gatcacacgt taagtgttct taccagtcaa	900
aattgaatat gtatcaaaca aaaataaaatg gccttccatg ctgaaataac aaaaaacaga	960
cacgcatgga gaacctactt tgtggggcgc ctgggtggcc cagtcggta agtgtctgcc	1020
tcttcgtttt ggctcaggc atgacctcgg ggttcatgag ttcgagcccc gcgtcagctc	1080
cgtgatgagc ctggagcccg cttggaattc cctccccacc cccacccccc gctcatgcca	1140
gctcgagctc tcgctcactc tctcaaaata aacttaagag gggcgcctgg gtggcgcagt	1200
cagttaaagcg tccgacttca gccaggtcac gatcagcaca ttatttcctg gacccat	1260
tctcccttcg ctgtacagag cttaacgtaa actccctggc aagacccctt ttctgatttt	1320
agaaaaggcca gcttatttgt ttggttcctg taatagctt aaaaatagaat ccagctgtat	1380
cagggaaacat ttaaaaaaatg tatcaaggaa gacctataac agtaaaaata tttttaatc	1440
ccagagtgtt ttcataaaaga cacaggatta cattactcaa ttatTTTaa agggTTTtg	1500
aaaagccgtg tttcacttgc catggctaattt gattataggc atccgaatga gcctgtggct	1560
atgacttcag tctgttcggg ggaaatgact ctgatgtcat aaactgactc ggcttcgctg	1620
acagggaaagt cgtacagaag aaaagctgtt cgagccata tgggtgtgc gctcaatgtc	1680
aggaagggc gacgtaatgt gtgcagaaat gggcagctgt cgagagtgaa gaaattggga	1740
agttggcacg gaagagggga ccgagtccga gaaggctgct ggataaagca gagctttgc	1800
agaagagaag ggccggctgc tgtccctatc ctgggtggcgg aaccacttag aaacaaggcg	1860
tcagaattag agacttcggg tcatgcaggg agggcggccc aggggggtgg cgtccttgg	1920
aactctggta agtttgagat tgatcccagg ggtcgtggta tggagcctcg catgagactc	1980
tacactgatc gatgagaagc agaagccct tgcgtgtgag gaaggggaca cgagcagttg	2040
gcacactaaa acgcaaggac acgtttctac gagaaaacgg tacatctgtc tgcgacacag	2100
aaagatcccc ggnaccagtc ntcgnnnnnn nnttccgntg ggattccagt cagcagttcc	2160

MON-0345.ST25.txt

cgagaggcac tgaggaacac aggcctcac cacgtcaca agtgtcctga tgagagggat	2220
actaggtaaa cgaggttcga caggtgtggt ggttaatttt atacatcaac ctggctaggg	2280
tacggtgccc agttgttgg ccaaacadca gtctagatgg ggctgtgaag gttaacattt	2340
aaaccaacag ggtgagtaaa gcagatcgct ttccattgtg tgggtgggcc tcataccaatc	2400
agttgaagac cttaaaagaa aagattgagg tcccccaaa aaggaagaaa ttctgccttc	2460
gaactcaaca ctgcagctt gaccactgag agcattcca gcctgcctg caaacgccag	2520
actcaccagc cccacaatca tgtgaaccaa ttccctaaaa taaacttctc tttctctctc	2580
tctatccaac tggttctgtt tctctgcaga accctgactc acgcagcagg tttccctgct	2640
acaggacttc atcagccccc caaccctaattt atgctcatcc agggaggaat ggtttgtgg	2700
ttctccaagt tgtaaccgcc cctccccccc cgccccggcc cccccaagg cctgttaaca	2760
cagctgagt tatggtacag ggcacacagt gaggtcatgg tggtagggga cgggacagat	2820
gcctcagag tttccttctt acccttcccc ccaccccgaa cgccaaagagg gtctcgca	2880
ggccttgctc ctctgagctc tcagctggc tttctctaca ggcccacag cttcaacgg	2940
cacggcttacc acctttcca ggccatgcgg tttggcatcg aggagataaa caactccacg	3000
gcctcctgc cgaacgtcac cctggatac cagctgtacg acgtgtgctc ggagtctgccc	3060
aacgtgtatg ccacactaaa cgtgctctcc ctgctgggaa cacatcacgt agagatccga	3120
gcagaccctt cccactattt gcctgcccgc ctggctgtca ttggcctga caccaccaac	3180
cacgcagcca ccactgcagc cctgctgagc cccttcctgg tgccctgggat gagctggagc	3240
ccgggggcct gtccatctcc cctgcccggca ggtccagtgt gggctgaggg ggtgggggg	3300
tggcaagag ctgccatgcc cactctgagt ctccctgggt gtcacattgc agggggccct	3360
gccttcata cagtccccgc cccagcatcc cttccttcccc aagtgtgc tccagacctc	3420
cctgcctcaa tgtcctgaga aaaaccgtct cctttgaaac tgctgcctt tgctctgccc	3480
cctccattcc atctcctctg tgaagaacgg aacaccctt gttccacc tcacacactt	3540
gtccacttct cccgccttc ctccctccgg tcccttcctt cccttccttca gtcaggctc	3600
agaggtgtgg tccccctccc cttccatgc cgtccttcgt ggcctcaccc tccctctgc	3660
tcgtaggcct gtcctaggct tcctcctccg cctataagct ggcttaccc ctctgtct	3720
tccaggcacc tgtggctta gcgtgcctt ctctctgaac ctcgttcgtt ggaaacttgt	3780
gcactgagct ctctttctt gttgtttctt ccctctcatc acttgcttc cggggccctg	3840
ccctgactgc tgcaccacca ctccgtctct tgtgatctcc agggcttctt agatctccag	3900
gtccagcaaa tgctttcag cccttcttg cttgacatga cgactttgtg acaaatttga	3960
ccagtccttc agtgcgttc ttgcctcggc atttatgacc tgccacctcc ctctacttg	4020
tggtacctcc ttctcagtct cctttggaga atctcctccc cccctttctt gaaaaagtgg	4080
atgattcccc gagtgcagga ccactccctt tcccaggcag gtgctggag caaacaactt	4140
tccctactct tcaagaatct ttctggctgg tctaaaaata agttgatgtg acacaganan	4200

MON-0345.ST25.txt

aaggaaaagt caaatcacgt atgtacaggg anctacnaaa cacgaaaggtaa	4260
aagngaggct anctgctatc tgaactatga acaagggnag gggtaaattc aaggaaagaa	4320
gaaatcanag aaagaagagg nanggtataa aagntgctgg ccatcaaaaa tggaaaggaag	4380
aattanaann gattggagnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn	4440
nnnnnnnnnn nnnnnnctt ttcccgtcac cggtggccag gttaaattc aggctgcaa	4500
gctgtttttt gggatgactc cagcagtctc cttagggagtt cttcctgact ctggcttgaa	4560
gcctttcta acacattctt cactgaaatc agatacaccc ctgaaacaca agtctggca	4620
gattacctct ctgcctagac atttaagggg ctccccaggg cctgcagata aagaccaagt	4680
atcttagcta tcttggtgcc aggagtaagg ctcctgccc tgaccagaca cgcctacttt	4740
tgtgctcctt cttccggctt ccaacccctt gggtcagttc tctcaactggg ttagctttt	4800
gttctttcc cttcttctc ccacaaacctt cccccctgggt ttctgcctct tcttagatg	4860
tagctggtcg gcctcctagt ccaccagagc tgccttgag agccagggtt gggaccatgt	4920
ctccctcctc ctcgggtccc cgcgccagc acagggccag cacttggagg ctctgagtt	4980
aggccaaggc cactgaagtc gctgaactga accccccccc cggccccctt ccgcagatca	5040
gctacgaggc cagcagcgtt acgctcgag tgaagcggca ttaccctcg tttctgcga	5100
ccatccccag cgacaagcac caggtggagg ccatgggtct gctgctgcag agttcgggt	5160
gggtctggat ctcggtggtc ggcagcgcacg ggcactacgg gcagctgggg gtgcaggcgc	5220
tggaggagca ggccacccag cagggcatct gcgttgcctt caaggacatc atcccttct	5280
ctgcccggcc gggcgacgag agatgcaga gcatcatgca ccacctggcc cgagcggaga	5340
ccaccgttgtt ggtcggtttc tccagcaggc agctggccag ggtgttctt gagtcgggt	5400
tgctggccaa cctgactgcc aagggtgtga tcgcctcaga agactggcc atctctagac	5460
acatcagcaa tgtgccccgg atccagggca ttggcacggt gctgggtgt gccatccagc	5520
agaggcttgtt ccctggcctt aaggagttt aagaggccta tgcaggcaga gataaggggg	5580
ccctggcc ttgctccagg acctccgagt gcagcagcaa ccagctctgt agagagtgtc	5640
gggctttcac ggcagagcag atgcccacgc tcggggcatt ctccatgagc tctgcttata	5700
acgcctaccg ggcagtctac gcagtgccc atggcctcca ccagctcctg ggctgtgcct	5760
ctggagcctt ttccaggagc cgagtctacc cctggcaggt aaggtagccc agacccggc	5820
accctgaaac ggggtgtttt cctaaggcaa acagagtgtat ccctctctgg ccaactgagt	5880
gctgggggtt ggggacaaag gccacccatc agaaggctaa ttccctctct tgggcttcac	5940
ttctctgacc tcggccccctc ccaccacat gctccagacc cagggtctaaa aatctctgg	6000
aaacgggcct ttttagaagc ttccctctcac tcaggaggcc agttgggagg gtcgaggggc	6060
ttccctggaa gggagggggc tctgaatttc cagacagact gaaaccaccc aaatagaagc	6120
atttgcttcc taagccttcc gggctggaa gagttgagga ggagcagcct gcgtcatctg	6180
tggctgctcc atgatccccg tttatctcag cttctggagc agatccgcaa ggtgaatttc	6240

MON-0345.ST25.txt

ctcctacaca aggacaccgt gaggttaat gacaacgggg accctctcg tggctacgac	6300
ataattgcct gggactggag tggccccaag tggaaacttca gggtcattgg ctcctccatg	6360
tggcctccag ttcaagcttga cataaataaa accaaaatcc ggtggcacgg gaaggacaac	6420
caggtaatgg agccatggtc actcaccaag tcaccgcctt acgggcagcc tggagcctga	6480
agtcaactgtc gacacagactc acacggagca ggagggggcc ccgggtgcca gcccaacgtg	6540
gctctatcca gccctgccag ggaagcccc aagccgcac ccagatggcc ggctgcagct	6600
ggtatacaca accagggct gtgccctgg agtgagctgt gagggcagat gcacggagac	6660
tcccattcgc catgtgagca tcccttgact tggccactc catgtggttc cagaacacct	6720
gtggccttctt gcaggtgcca aagtctgtgt gctccagcga ctgcctcgaa gggcaccagc	6780
gagtgatttc gggtttctac cactgttgct ttgagtgtgt gccctgttag gccggagct	6840
tcctcaacaa gagcggtgag tgtccaaatg agtggagaa tgactggca ctcccagggt	6900
ctgtatggca gatgagggga tctcccttgg gccacgcacg tgcagaacca gagccttgct	6960
ccctctgttg ccagttgagg tacaggttgtt agaatatttgc caccagact gagttctgat	7020
gaagcagaaaa ccaacaacca gttgaaatcc tcagggcccc tacgtttttt actagaggc	7080
tcctgatgca atccctgcag atgcaatctt atcctaaatt caacctttt atgcaacag	7140
atgtagttat gttcccttgtt cccctccat gctgtctgtg tgaagtccct tccgtcgccc	7200
ctgccaaaga cagccagcac cttggacagc ttggccttga tgcagatact attgtatccg	7260
cagacaagaa acatagcata ctccacccag tcatggtgca aggtcaagat cagagagcaa	7320
actcaggttag ctaagggctc agcccagagc tggactctgt gagccacgtt cttccctttt	7380
actatctctg tggcgttag aacacatctc ttctgttctc agagagtcag agaaaccaca	7440
gaatggcagc acagataggg ggctttgggt aatggaagcg ctggggagat gaaaatgccc	7500
ttcctttggg gctggttgtc cctgttgat catgcctca ctggcatgtg ggcagagcta	7560
ccagagtaag gccctctcta agatctctc ggtttgcag ccccttctgg gatcataagc	7620
catacagaac ctacccaagg gtctccagaa tctgcaatta acacaggcat ctggaggaaa	7680
cacttggccg cggggccccca ctcaaggcata cccccttatct cgctgtgtgc agtaggagcc	7740
cggcttctgg ggtacagcgc tcccaagcacc ttgcaggcct acatggcttc cttccctcat	7800
tcctgctctg ctcatctagg ctctcaggag cccctccac cttttcttc cagacctcca	7860
cagctgcccag ccttggggaa aagaagagtggc acatggcttc cttccctcat	7920
acgcaccgtg gtgttttgc tttggcacga gaccatctt tgggtgtgc tggcagctaa	7980
tacgttgctg ctgctgctgg tgactggac tgctggcctg tttgcctggc acttagacac	8040
ccctgtgggt aagtccgctg gggccgact gtgcttcttc atgctaggct ccctggcagg	8100
gggcagctgt gggctctacg gctttttgg ggagccacg ctgcccacat gcttggcgt	8160
ccaaagcctc cttgcccctgg gtttgccat cttcctgtcc tgcctgacca tccgctcctt	8220
ccaaactggtc ttcatcttca agtttctgc caaggtaccc accttctacc gtgcctgggt	8280

MON-0345.ST25.txt

ccaaaaccac	ggtcctggcc	tatttgtggt	gatcagctca	atggcccagc	tgctcatctg	8340
tctaacttgg	ctggcggtgt	ggaccccact	gccaccagg	gagtaccagc	gcttccctca	8400
gctgggtgt	cttgattgca	cagaggccaa	ctcacgggc	ttcatgttgg	ctttgccta	8460
caatggcctc	ctgtccgtca	gcgccttgc	ctgcagctac	ctgggcaagg	acctgccaga	8520
gaactacaac	gaggccaaat	gtgtcacttt	tagtctgctg	ctcaacttcg	tgtcctggat	8580
tgccttcttc	accacggcca	gcgtctacca	gggcaagtac	ttgcccgcgg	tcaacgtgct	8640
ggcggcgctg	agcagcctga	gtggcggctt	cagcggttat	ttcctccccca	agtgctacgt	8700
gatcctgtgc	cgc当地aaat	ttaacagcac	acagcacttc	caggcctcca	tccaggagta	8760
cacgaggcgc	tgccgctcca	cctgaccagt	ggggcgggca	gggcctagcc	ggggaggtgg	8820
gggggtgggg	gtgaaggggt	agaaggtggg	gttagggcgc	ctcccctgcc	ctgagggctcg	8880
aaggtcgagc	gaggcgagcg	ggcccccgcgc	cctccgggag	gccttttgg	ctcctgtctt	8940
ggctcgggta	gtgtacgctc	acgggagtcc	agtccaggct	ccgagctgcc	aataaagcgg	9000
tgaaacatgc	gtcctggctg	ctctagctgt	ctgaaccgag	ggtggggcg		9049

<210> 60
<211> 2526
<212> DNA
<213> Felis catus

<400> 60	atgtcactcc	cggcggtca	cctggtcggc	ctgcagctct	ccctctcctg	ctgctggct	60
	ctcagctgcc	acagcacaga	gacgtctgcc	gacttcagcc	tccctgggaa	ttacccctc	120
	gcaggtctgt	tccctctgca	ctctgactgt	ccgggcgtga	ggcacccggcc	cacggtgacc	180
	ctctgtgaca	ggcccgacag	cttcaacggt	cacggctacc	acctcttcca	ggccatgcgg	240
	tttggcatcg	aggagataaa	caactccacg	gccctcctgc	cgaacgtcac	cctggatac	300
	cagctgtacg	acgtgtgctc	ggagtctgcc	aacgtgtatg	ccacactaaa	cgtgctctcc	360
	ctgctgggaa	cacatcacgt	agagatccga	gcagaccctt	cccaactattc	gcctgcccgc	420
	ctggctgtca	ttgggcctga	caccaccaac	cacgcagcca	ccactgcagc	cctgctgagc	480
	cccttcctgg	tgccctgtat	cagctacgag	gccagcagcg	tgacgctcgg	agtgaagcgg	540
	cattaccctt	cgtttctgctg	caccatcccc	agcgacaagc	accaggtgg	ggccatggtg	600
	ctgctgctgc	agagttcgg	gtgggtctgg	atctcggtgg	tcggcagcga	cgccgactac	660
	gggcagctgg	gggtgcaggc	gctggaggag	caggccaccc	agcagggcat	ctgcgttgcc	720
	ttcaaggaca	tcatccccctt	ctctgcccgg	ccgggcgacg	agaggatgca	gagcatcatg	780
	caccacctgg	cccgagcag	gaccaccgtt	gtggtcgttt	tctccagcag	gcagctggcc	840
	agggttgtct	ttgagtcgg	ggtgctggcc	aacctgactg	ccaaggtgt	gatgcctca	900
	gaagactggg	ccatctctag	acacatcagc	aatgtccccg	ggatccaggg	cattggcacg	960
	gtgctgggtg	tggccatcca	gcagaggctt	gtccctggcc	tgaaggagtt	tgaaggaggcc	1020

MON-0345.ST25.txt

tatgtccagg cagataaggg ggcccctggg ctttgcctca ggacctccga gtgcagcagc	1080
aaccagctct gtagagagtgc tcgggctttc acggcagagc agatgcccac gctcgaaaa	1140
ttctccatga gctctgccta taacgcctac cgggcagtct acgcagtggc ccatggcctc	1200
caccagctcc tgggctgtgc ctctggagcc tggccaggg accgagtcta cccctggcag	1260
cttctggagc agatccgcaa ggtgaatttc ctccatcaca aggacaccgt gaggttaat	1320
gacaacgggg accctctcag tggctacgac ataattgcct gggactggag tggccccaa	1380
tggaaacttca gggcattgg ctccatcg tggccatcg ttcagctggc cataaataaa	1440
accaaaatcc ggtggcacgg gaaggacaac caggtccaa agtctgtgtg ctccagcag	1500
tgcctcgaag ggcaccagcg agtgatttcg gtttctacc actgttgctt tgagtgtgt	1560
ccctgtgagg cgggagctt cctcaacaag agcgacctcc acagctgcc a cccctgtggg	1620
aaagaaaaagt gggcacccgc gggaaagtgaa acctgcattt c acgcaccgt ggtttttt	1680
acttggcacg agaccatctc ttgggtgctg ctggcagcta atacgttgct gctgctgctg	1740
gtgactggga ctgctggcct gttgcctgg cacttagaca cccctgtggt gaagtccgct	1800
ggggccgac tgtgcttctt catgctaggc tccctggcag gggcagctg tggctctac	1860
ggctttttt gggagccac gctgcccaca tgcttgc gccaaggcct cttgcctg	1920
ggttttgcca tcttcctgac ctgcctgacc atccgctcct tccaaactggt cttcatctt	1980
aagttttctg ccaaggtacc cacattctac cgtgcctggg tccaaaacca cggcctggc	2040
ctatttgtgg tgatcagctc aatggccag ctgctcatct gtctaacttg gctggcggt	2100
tggacccac tggccaccag ggagtaccag cgctccctc agctgggt gcttgattgc	2160
acagaggcca actcaccggg cttcatgtt gcttcgcct acaatggcct cctgtccgtc	2220
agcgccctt g cctgcagcta cctggcaag gacgtccag agaactacaa cgaggccaaa	2280
tgtgtcactt ttagtctgct gctcaacttc gtgtcctgg tgccttctt caccacggcc	2340
agcgctacc agggcaagta cttgcccgcg gtcaacgtgc tggcggcgct gagcagcctg	2400
agtggcggt tcagcggtt tttccccc aagtgcctacg tgatcctgtg ccggccaaa	2460
tttaacagca cacagcactt ccaggcctcc atccaggagt acacgaggcg ctgcggctcc	2520
acctga	2526

<210> 61
<211> 841
<212> PRT
<213> *Felis catus*

<400> 61

Met Ser Leu Pro Ala Ala His Leu Val Gly Leu Gln Leu Ser Leu Ser	
1 5 10 15	

Cys Cys Trp Ala Leu Ser Cys His Ser Thr Glu Thr Ser Ala Asp Phe	
20 25 30	

MON-0345.ST25.txt

Ser Leu Pro Gly Asp Tyr Leu Leu Ala Gly Leu Phe Pro Leu His Ser
35 40 45

Asp Cys Pro Gly Val Arg His Arg Pro Thr Val Thr Leu Cys Asp Arg
50 55 60

Pro Asp Ser Phe Asn Gly His Gly Tyr His Leu Phe Gln Ala Met Arg
65 70 75 80

Phe Gly Ile Glu Glu Ile Asn Asn Ser Thr Ala Leu Leu Pro Asn Val
85 90 95

Thr Leu Gly Tyr Gln Leu Tyr Asp Val Cys Ser Glu Ser Ala Asn Val
100 105 110

Tyr Ala Thr Leu Asn Val Leu Ser Leu Leu Gly Thr His His Val Glu
115 120 125

Ile Arg Ala Asp Pro Ser His Tyr Ser Pro Ala Ala Leu Ala Val Ile
130 135 140

Gly Pro Asp Thr Thr Asn His Ala Ala Thr Thr Ala Ala Leu Leu Ser
145 150 155 160

Pro Phe Leu Val Pro Leu Ile Ser Tyr Glu Ala Ser Ser Val Thr Leu
165 170 175

Gly Val Lys Arg His Tyr Pro Ser Phe Leu Arg Thr Ile Pro Ser Asp
180 185 190

Lys His Gln Val Glu Ala Met Val Leu Leu Leu Gln Ser Phe Gly Trp
195 200 205

Val Trp Ile Ser Val Val Gly Ser Asp Gly Asp Tyr Gly Gln Leu Gly
210 215 220

Val Gln Ala Leu Glu Glu Gln Ala Thr Gln Gln Gly Ile Cys Val Ala
225 230 235 240

Phe Lys Asp Ile Ile Pro Phe Ser Ala Arg Pro Gly Asp Glu Arg Met
245 250 255

Gln Ser Ile Met His His Leu Ala Arg Ala Arg Thr Thr Val Val Val
260 265 270

Val Phe Ser Ser Arg Gln Leu Ala Arg Val Phe Phe Glu Ser Val Val
275 280 285

Leu Ala Asn Leu Thr Ala Lys Val Trp Ile Ala Ser Glu Asp Trp Ala
290 295 300

MON-0345.ST25.txt

Ile Ser Arg His Ile Ser Asn Val Pro Gly Ile Gln Gly Ile Gly Thr
 305 310 315 320

Val Leu Gly Val Ala Ile Gln Gln Arg Leu Val Pro Gly Leu Lys Glu
 325 330 335

Phe Glu Glu Ala Tyr Val Gln Ala Asp Lys Gly Ala Pro Gly Pro Cys
 340 345 350

Ser Arg Thr Ser Glu Cys Ser Ser Asn Gln Leu Cys Arg Glu Cys Arg
 355 360 365

Ala Phe Thr Ala Glu Gln Met Pro Thr Leu Gly Ala Phe Ser Met Ser
 370 375 380

Ser Ala Tyr Asn Ala Tyr Arg Ala Val Tyr Ala Val Ala His Gly Leu
 385 390 395 400

His Gln Leu Leu Gly Cys Ala Ser Gly Ala Cys Ser Arg Asp Arg Val
 405 410 415

Tyr Pro Trp Gln Leu Leu Glu Gln Ile Arg Lys Val Asn Phe Leu Leu
 420 425 430

His Lys Asp Thr Val Arg Phe Asn Asp Asn Gly Asp Pro Leu Ser Gly
 435 440 445

Tyr Asp Ile Ile Ala Trp Asp Trp Ser Gly Pro Lys Trp Asn Phe Arg
 450 455 460

Val Ile Gly Ser Ser Met Trp Pro Pro Val Gln Leu Asp Ile Asn Lys
 465 470 475 480

Thr Lys Ile Arg Trp His Gly Lys Asp Asn Gln Val Pro Lys Ser Val
 485 490 495

Cys Ser Ser Asp Cys Leu Glu Gly His Gln Arg Val Ile Ser Gly Phe
 500 505 510

Tyr His Cys Cys Phe Glu Cys Val Pro Cys Glu Ala Gly Ser Phe Leu
 515 520 525

Asn Lys Ser Asp Leu His Ser Cys Gln Pro Cys Gly Lys Glu Lys Trp
 530 535 540

Ala Pro Ala Gly Ser Glu Thr Cys Phe Pro Arg Thr Val Val Phe Leu
 545 550 555 560

Thr Trp His Glu Thr Ile Ser Trp Val Leu Leu Ala Ala Asn Thr Leu
 565 570 575

MON-0345.ST25.txt

Leu Leu Leu Leu Val Thr Gly Thr Ala Gly Leu Phe Ala Trp His Leu
 580 585 590

Asp Thr Pro Val Val Lys Ser Ala Gly Gly Arg Leu Cys Phe Phe Met
 595 600 605

Leu Gly Ser Leu Ala Gly Gly Ser Cys Gly Leu Tyr Gly Phe Phe Gly
 610 615 620

Glu Pro Thr Leu Pro Thr Cys Leu Leu Arg Gln Ser Leu Leu Ala Leu
 625 630 635 640

Gly Phe Ala Ile Phe Leu Ser Cys Leu Thr Ile Arg Ser Phe Gln Leu
 645 650 655

Val Phe Ile Phe Lys Phe Ser Ala Lys Val Pro Thr Phe Tyr Arg Ala
 660 665 670

Trp Val Gln Asn His Gly Pro Gly Leu Phe Val Val Ile Ser Ser Met
 675 680 685

Ala Gln Leu Leu Ile Cys Leu Thr Trp Leu Ala Val Trp Thr Pro Leu
 690 695 700

Pro Thr Arg Glu Tyr Gln Arg Phe Pro Gln Leu Val Val Leu Asp Cys
 705 710 715 720

Thr Glu Ala Asn Ser Pro Gly Phe Met Leu Ala Phe Ala Tyr Asn Gly
 725 730 735

Leu Leu Ser Val Ser Ala Phe Ala Cys Ser Tyr Leu Gly Lys Asp Leu
 740 745 750

Pro Glu Asn Tyr Asn Glu Ala Lys Cys Val Thr Phe Ser Leu Leu Leu
 755 760 765

Asn Phe Val Ser Trp Ile Ala Phe Phe Thr Thr Ala Ser Val Tyr Gln
 770 775 780

Gly Lys Tyr Leu Pro Ala Val Asn Val Leu Ala Ala Leu Ser Ser Leu
 785 790 795 800

Ser Gly Gly Phe Ser Gly Tyr Phe Leu Pro Lys Cys Tyr Val Ile Leu
 805 810 815

Cys Arg Pro Lys Phe Asn Ser Thr Gln His Phe Gln Ala Ser Ile Gln
 820 825 830

Glu Tyr Thr Arg Arg Cys Gly Ser Thr
 835 840

MON-0345.ST25.txt

<210> 62
<211> 10607
<212> DNA
<213> *Felis catus*

<220>
<221> misc_feature
<222> (1604)..(1683)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (2470)..(2516)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (2537)..(2537)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (2560)..(2560)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (2574)..(2574)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (2580)..(2580)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (2599)..(2599)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (2850)..(2850)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (5784)..(5830)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (7512)..(7553)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (8626)..(8626)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (10453)..(10453)
<223> n is a, c, g, or t

<220>
<221> misc_feature

MON-0345.ST25.txt

<222> (10491)..(10491)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (10501)..(10501)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (10511)..(10511)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (10545)..(10545)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (10558)..(10558)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (10574)..(10574)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (10599)..(10599)
<223> n is a, c, g, or t

<400> 62
ttagctgctg aaacgctgct ttttagcaaa aggccgtgac ctcatgatgt tatacgtcgt 60
ggagattgag aaccagggcc tagcatctga ctatgtgctt tgagtccccca cttttgctgg 120
tttgtcaacc cagggtgagc ttctgtgac ttctgtgcc tcagtttctt catctgtgga 180
atggggccgg tcatagtccc cggttattgtg atcatcgagc aagatggta atggcgagca 240
cacagcatga tgccttagttc ttactggaac acctgtcctg ggtcaggggc tgttatataaa 300
gtactacctg ccaggatcaa cttgatccgg ttcttattctg tctcctgggt gagtatctgt 360
gccctttact cccagatgtt ggaaatgtca ggggcatgag acctgtcctt aaccgagtgg 420
cagaaggta agtttgtgtc cgagatagca ggacatgctt tctctacctc cgcaggcggt 480
tctcccaagac ccccccaggcc ccaccatgcc ctgttaggaa gggatcatcc taattctagc 540
ctcttcttcc gccccagagt tctgaagctt ctccacctgt ccaggtgttt ccccacccct 600
tcagccacgg caagaccgtc actatgtaaa tgtctgtca aatccccctgg tgtcaagctg 660
ccagctctct gatgaggcag ggccacctcc ggggacccct cacttcccag ccatgggacc 720
ccgggcccagg gaagtctgct gcttcatcat cctgcccgg ctcctggctg agccggctga 780
gaactcagac ttctacttgg ctggggatta cttcctcggc ggcctttca ccctccatgc 840
caacgtgaag ggcacgtcc acctaaccct cctgcaggtg ccccaagtgc aggagtgagt 900
cgccaatgtg gggctggaag tggcgacggg ggcggagtgg gaagcctggg ctggcctgt 960
gctcctcagg ggaccacgcc aggaccaagg gctcaaaatg ctcttcctca ttcattgcca 1020

MON-0345.ST25.txt	
acctctcatc	ccgcattatc cccaccggcc tgcagggaga ccccatgcag ttcatgttac
caaaatctt	ggcaattgta ttctgaata tggagagctg gttgtccgc cgtgtgtctt
aataaataaa	gagttacagg gtacttgagc ctggaggggt tgtagagacc acccccacct
actttgtcaa	gtgggaaact cctactgagt ccgtgtcaag tccaagtcta gacaccgggg
gttatgcctt	tggaaggcag aaatgtggtt ttcggtagc aggttctcag actggagggg
aaggttgca	tttctctagg gctgtggta ggtggaaagg ggtgcttcca ggaccagaag
ggatttcctc	cactcacctt gtcccctgtg agccctgggg gtggctgcat cactcaaggt
tgggtgagac	acctttgtgc aagtgcgaag gctggatgg cgacccagc gtggatgat
gagatagtga	cttgctgcag agagggtgaa ggcgtccctgt gagagaggga gagaaaaaaag
tctgtgacgt	cgggaaagat cacatgctgg cttgagaatg acgnnnnnnn nnnnnnnnnn
nnnnnnnnnn	nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn
nnngatgtgg	aggtgatrgt gatggcggtg attgtacgg tggatcggt gatggtggtc
acagacaacg	cagttatagt gatggcagtg gtgataggaa tagtaggtgg tgatggcat
tctggagatg	tggcaggtga caacgatgag atgaaaatgc cagaatcttc tggagtggtc
ccttcttgcg	ccactcctcg gcttcctat ggcaggcaga ggggactccc cggctctcct
gtcccttccc	cctctcactc tggacctgcc tctcacccca ccccacatgg ctcccccagg
tatgaaataa	aggtgttggg ctacgatctc atgcaggcca tgtgcttgc aggggaggag
atcaatagcc	agagcagcct gctgcctggc gtgctgctgg gctacaaaat ggtggatgtc
agctacatct	ccaacaatgt ccagccctgt ctccacttcc cggcaaaggaa ggactgttcc
ttgcccattcc	aggaggacta cagccactgt gtgccccgtg tggtggtctgt cattggtcct
ggcaactctg	agtccactgt gactgtggcc cgcttcctct ctctttccct cttccacag
gggaggcccc	tgggtcctgg ggtaaggagc tggggggcag aggagtggtt atccaggggg
ctcacttccc	cccaccggtc ctggggtag gaggaggcag gaagtaggggt cagaatgtca
accccaatcc	trggaaggca gcccagccac gtggtaaga gctcaggctt ggaggcagac
agacckgggn	nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnngcct
tcagagagat	catcctntca agggggccct tattccttn cccctggag cccntcagtn
cccaccactt	tctgcagcnc ccattcgggt ctccgattcc tccaatccac tcactcgctg
tgtggctctg	gataagtgac tgtccctctc tgaacctcag cgtcctcattc tgcaaagtgg
agacataaca	gcacatcaga aggtcgcgag aataggggcg cctgggaggc tcagtcggtt
aagcatccga	ttctgggtcg cggctcaggt catgatctcc cggttcgtga gttcaagccc
cgcacatggc	tgtgtgctga cagcacagan cctgcttggg attctgtctt cccttctctc
tgcccctcac	ctgctttgc tctctctctc tcaaaataaa taaataaaact tttaaaaaaa
aaggaaggta	gtgagaaaaaa agcggtgtac agagatggag agggctccac gcgg tacctg
gcatgctgctg	agccctcaga acccgtagc gacgaaagtg acctgtgtgc gtcgtcacca

MON-0345.ST25.txt	
ccatcccagc aggccctgag gcttcgaccc tgcctcccc gcaaagctca cagtctccga	3120
ggctccggc cacgtcccc gggcgctctg tctgtgtccc tcgaaccccg cccagccctg	3180
ccgcaccgtg agctagtcag cgccctgctgg gttcgtgact ctctccgcca ttgtgcaccc	3240
tggggctggg gccacaccca ggggctccgg ttaatttaga tgctttctt ctctgccatc	3300
tgcttacccc cgagcttgggt tagagagcct gactttgctg ggagtctcca gaacgtcccg	3360
ggacctccca gcaaccagca tctttattct ccctcccttag aactgatgtg tgcagtcgct	3420
gtgcctctgc agctcagagc aggggtgggtt cctgtgaact ggggcccagg gtggttcct	3480
ggagggggca aggcacccgac tagccctcga agaaggagcc gggcttggct gaggtggac	3540
agggggagag catgaggtt tcggccagct ttctgtgcct gggAACCCCC tctccccaca	3600
accctggatc ccagaggcct taacggggccc cagctgtaac agactcgtct gtgtcgagca	3660
ttccacagta ggtgtccccca ggctccctcg gggccaccaa aggaccacaa cgacattacg	3720
cggacagggt ctcagattcc gatgggtccc ctgtttgctg gaaccatctc cctttggaaa	3780
tttacagctc tctttctgg cagtaacccc gccccttggt gctgggtacg aagggggcac	3840
ccagagcggg gctcaccagg cagcgctgac tgctgcgttg tcgggcta ac gggtattaac	3900
cgccctccctc gccgctccca ttctcttagc tgctgaaacg ctgctttta gcaaaggccg	3960
tgacctcatg atgttatacg tcgtggagat tgagaaccag gtcctagcat ctgactatgt	4020
gctttgagtc cccacttttgc tggttgtgc aacccagggt gagcttcgta agcttctctg	4080
tgccctcagtt ttctcatctg tggaaatgtgt gagggggaga cctcagttc aagcggggtg	4140
gccaggaggg ccttctgac aactggacaa cgacctgagg gagaggaagg agtgagggag	4200
ctatgtgggt gcctagaaga gcgcctccgaa agagggggca gcgaatgcag aggccggcag	4260
gagcctggtg cggtggctga accggtgagc agccccggga ccaggcggga cagtaggaga	4320
agatgaagcc agagaggtga gggccggggt cagtggtgga gccccttggg ggccactgaa	4380
ggactctggc tgtcctcgag tgacattagg agctgttggg gagtttgag ctgaggagta	4440
aggtagcggc caagtggtcg cagaggccac ccggctgcca cgaacagcag cagagacagc	4500
caaggggaag ggtggggggc tgtggtgacc ccgggagggt ggtgtatggtg gcccggtgag	4560
gccctagctc acgctggcgg ccctccgctc tccggcagat cacctacagc gccatcagt	4620
acgagctacg ggacaagcag cgcttccgg cccttctgcc cacagcgccg ggcggccatc	4680
accagatcga ggccatggtg cagctgtatgt tggacttccg ccggaaactgg atcatcgcc	4740
tggtgagcag cggcgactgc ggccgcgacg acagccagct gctcagcgat cgccggccg	4800
gcggcgacac ctgcatcgcc ttccgggaga cgctgccc at gcccagccc aaccaggcgg	4860
tgacgcagtggagc cgcctgaagg ccatcgatgg cggcagcag cggcagagct	4920
ctgcgcgcgt cgtggcctg ctgtcgccaa agctggcct gcacaacttc ttccgcgagg	4980
tgctccgcca gaacctcact ggcgtcgatc ggatcgccctc cgagtcctgg gccatcgacc	5040
cggcctcgca cgacaggccc acgcgtgca cagcctccctg ggctgcaccc agaccagcag	5100

MON-0345.ST25.txt	
ctccgggtcg tctatccctg gcaggtgagg ccccacccac ggagagtcgg ggccacacac	5160
gcaggcgcgg ccacagccct gagtggttgc catggagacc actgccctgc tctagcgtcc	5220
ccctctctgg ccgggtcctg ggcaaactgg cgggagaggg caggggacgt accctgtccc	5280
cagacacata aagccagaag tgcttcatgg tgacaaaact cctttttta cattaatgtat	5340
atcctcgcca tccaagatag cctgtcccg caggagattt gggtaagtt tcctggaagg	5400
aggcctggca ggcagtgggc cccctggcc ccctgcgtt tctccagggt ggcggccttgg	5460
ggggaggact tctgtgttca gctctctgag gctctgctt gggtttatgc atcttcttc	5520
gtcccaggta tggacgattc agaggagtaa ggaggcaagg agtcgcctgg attcagac	5580
ggaatttaaa tctgtatTTT tctgatctgc gtgcacaccc ggcgtgcac acacacacac	5640
ctaaccacga agtttatgtat ggtagaagat ttactgagg gggcgcctgg gtggctcagt	5700
cggtaagcg tccgacttca gccaggtcac gatctcgccg tctgtgagtt cgagccccgc	5760
gtcaggctct gggctgatgg ctcccccccc nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn	5820
nnnnnnnnnnn agcaccccgaa gggcccgaaaa gaggcacct gagccgtaa agggaaacag	5880
gagtggcctc tgaacccagg ttaggtctt ccgctggatg gcagacgtga ctccacggg	5940
agcaggaata atgtcgacac atcgccggaa agggagcac ttcctgggtgt gcagtcattt	6000
tgctaagctc ccaacattgg gaaactcatg cggtgcttca gagccggaa gacagggttt	6060
ttgttgtcct actttacaga agaggagact ggagctcacg ggggttggc gacaggccc	6120
aggctcagag caggtggcag agctggtgcc tgaacccagg ttagtctgac tacagagcc	6180
gggctcccg ccgctgcctc ccgggtgacc acatctgcgg ttcattggcc cccttggtagg	6240
gatgtggaca cccagtctcg tgggttagtc actctcccc ggatcgagcc cgacttctt	6300
ttttttttttt aatttttttt tcaacgttta tttatttttgg gacagagag agacagagca	6360
tgaatggcgg agggcagag agagagggag acacagaatc gaaacaggg tccaggctcc	6420
gagccatcag cccagacccct gatgcggggc tcgaactcac ggaccgcgag atcgtgac	6480
ggctgaagtc ggacacttac ccgaatgcgc cacccagggg cccagatcga gcccacttc	6540
tgacgccagc gtcgcttcct ttccctgtgg cctccagct gttcaggaa atctggagg	6600
tcaacttcac ctcctggc caccagatct ttttgacca gcgaggggac ctactcatgc	6660
gcctggagat catccagggc cgggtggacc tgagccagaa ctttctggc gcgtgcctc	6720
ctactgcccgt gtgctacgac ggctgaggc catccgtac gtctcctggc acacggccaa	6780
caacacggc agctctcgga gggctgggtgg gggctggga cttgggtctg ggcactggc	6840
cgtgcagggg tggcaagggc cctgtggacc tgagatccat tatcgagcac tgatgtcatc	6900
cctatttgg tttgtccctc ctcccattga ctaagcaactg tggaaagtcta gagtttctg	6960
gatcctcagg acccaggggc tcagggggct gcacaaagtg aacgttaggt ggacacgtgt	7020
gtgctaagga cttcaattct catgtcaacc ctagaaata gagagtactg ttccctgt	7080
ctttgggtt gggaaactgg aggcacagag ggggtcgcgt gaccataaa aggccacaca	7140

MON-0345.ST25.txt

gctttcgcat	gtctctatac	acagcattca	gtctacatcc	catcgattag	tactcgcgtt	7200
ttggggacag	tagctgtgcc	ttcacctgtg	tctgacatct	gtcagtctga	aagctcctt	7260
gttttaccct	cttagcttac	aagctgtcag	aatggccgcb	atgtggggaa	ggtagagact	7320
cagcctcgtg	gggaaggggg	gaggtggggg	gacctaaaag	ttcaaagagc	cagggcacct	7380
gggtggctca	gtcagttaag	catccgactc	tggatctcag	ctcagtcttg	atctcaggtc	7440
gtgagtttag	accctgtgt	agggctccgt	gctgggcgcg	cagcctactt	aaaaataata	7500
aaaacaaaag	cnnnnnnnnn	nnnnnnnnnn	nnnnnnnnnn	nnnnnnnnnn	nnngatcccc	7560
gtgtccatgt	gttccaagga	ctgccagcct	gggcaaagga	agaagcccgt	gggtattcat	7620
ccctgctgct	tcgagtgtct	cgactgcctt	ccgggcacct	tcctcaacca	aactgcagat	7680
gggactcaca	gaccacacacc	cctgccctgc	cctgccctgc	cccgccctgg	ggctcccagg	7740
gcccttcatc	tttggcaggg	tctctggagt	ctcatccagg	ggacacaggt	gtccaaaggc	7800
cagggaccat	gttttgactc	cgcttgtatc	tccctaaccg	ctggtgtaag	aaaaatcttc	7860
aatgctgtga	gggcgtgggg	gtgggagaag	gaacagccct	caaccaggcg	aggctgtaac	7920
tgatccctc	tgcacacaca	tgtagctgag	ggcccagggg	ggtcaggcca	gagaatgtcc	7980
accggatgaa	cgaacgaatg	aatgaatgaa	cgaacgaaca	aacacacaaa	tgaatgaatg	8040
tctctgtccg	tagaagaaat	gtttctggca	gacaggccta	ggatctaatt	tctctctgtg	8100
gcctcccgag	tgcctcgtgt	agttcggagc	atataatgtt	tgctcagtga	atgtttattg	8160
agtgacatcc	ttgatgagaa	gaattgacat	ctccccctat	agatcataaa	ctccaggaaa	8220
ggggggacaa	tgtcatccct	ccagtgttta	ccacagttca	ccgtggggc	cgaattatTT	8280
ttttttcatg	acttcacaga	ttagtaacta	agcggttctg	tacatctacc	gatcagagta	8340
cttacgacgt	gcccagcaga	gcccagggca	caggtaggt	gctcaacaaa	agtttgggg	8400
caattgatca	gtagccggaa	gtcagggggc	tcggtttat	ccacgtctgt	gctctccatc	8460
tcagatgcct	atcacagtgg	gtggcgctca	aaaagaaaact	tgaataaacf	gtcgaatgtc	8520
catctcacca	gagggtacgg	tcttggagg	gaggcattac	ggttgccagg	ctctcagtca	8580
aggggacctt	ggaccacatc	ctgcctctgt	aactggttt	gtaacngcct	ggaggagcct	8640
cagatgccac	atctgtgaaa	tggggttgca	gtgaggatct	gatggggccgg	tggatacgag	8700
ggacgcagtg	agaggtgcta	cgaccgcagg	catcgccctt	ggctcgcccc	ctccctaccc	8760
ctacagccgg	ccgggtgcag	gtgcagagga	tgtgggtgcc	ggaaagggtgg	gtgtatctga	8820
tggaactgct	gtgggctctt	gcagacgagt	ttggctgccc	gccctgcccc	agttgcgggt	8880
ggtcccgag	gaacgacgct	tcgtgcttca	agcggcggct	ggcctccctt	aatgacgct	8940
aggcacccgc	cgtcgctgt	gccgtgtgt	ccatcctggg	ctccctctgc	accctggcca	9000
tcctgggtat	cttctggagg	caccgccacg	cgcctatggt	tcgctcgccc	ggggccccca	9060
ggtgcttccc	gatgccgatg	ccctgctgt	ataggtgacg	gtctccatgt	acatcggca	9120
gccccgcgtt	ttcatgtgcc	tcggccacca	gacccttctc	accctctgct	tcaccgtctg	9180

MON-0345.ST25.txt

tatctccgt	gtcaccgtgc	gctttcca	gatcgccgc	gtttcaaca	tggccaggcg	9240	
cctccgcgt	gcctacggct	actgggtccg	ctaccacggg	ccctgtgtct	tcgtggcg	9300	
cttacggtg	ctcaagatgg	tcatcggtgc	gggcaacgtg	ctggccgcga	ccgcccagcc	9360	
cgccgcccgc	cccgaccccg	atgacccaa	gatcgccgtt	ctcgccgtca	actaccacaa	9420	
cgtgctcctg	ttcgacacca	gcctggaccc	gcttctgtcc	gtggcgggct	tcggcttcgc	9480	
ctacgtggc	aaggagctgc	ccaccaccca	caacgaggcc	aagttcttca	cttccgcata	9540	
gacttctac	ttcaccttt	ccatctccct	ctgtaccc	atgtctgtct	acgagggggt	9600	
cctggtcacc	atcctgcacc	tcgtggtggc	agtgctcaac	cttctggcgc	ctttggcccc	9660	
tgggctactt	cggccccaag	tgctgcgtgg	tcctttcta	ccggatcac	aacacgccc	9720	
tctacttcag	cagcatgatt	cagggctaca	ccaccggaa	ggactagcac	tgccccctgg	9780	
ctgcccaggg	ggccagaggg	ctcggtactg	ggagatggag	accaggggtg	gggctggggg	9840	
tggtgtgac	tcattcagcc	cctgctggga	gcagggacac	cacccgc	tactctctga	9900	
tttggcctcc	ccctccaggt	tctctgcacc	ctggccgtt	ttacccaccc	gctgggtgat	9960	
gcctaaaaat	acgctttccc	tgcagccgtt	tggcttgcca	ggcactgcca	cccatgctag	10020	
ggaaaggagc	cggggtgacc	tccctatggg	tctccaagac	agagatggag	cgaagcagcc	10080	
cacagtgc	atctgggtgt	cacagcgggt	gtccgcaggt	tccggctccg	ggcagccatg	10140	
ctggaaggct	gggctggggc	tggtgttggg	ggacatctgc	ccggcatcat	tcactcc	10200	
cccacgtgtc	tgcgcctcac	ctcccagact	ccccggcccc	ccagcttggg	acccagctt	10260	
ggacc	cagct	tctctgagtc	atggctgcgc	atagggctg	cttcataaat	gcttatgaat	10320
aaacctccct	tgggtgaaac	gaaggcg	ttt	tccagaggtt	ccccctcc	10380	
ccccccg	tc	gccaagaa	agaagactgg	gatcagagac	ctcagcttcc	atttccgcgt	10440
tgccacttct	ganccgtgta	cttgggcca	attctattta	ctgtttcgga	ncctacacgg	10500	
ncctttcct	naaataggaa	caataaacca	ggggcacctt	tgacnactg	tgttagtancc	10560	
aatttgacga	taanttttt	taaaagatta	aattaatcng	ataaaatt		10607	

<210> 63
<211> 1176
<212> DNA
<213> Felis catus

<400> 63
atgggacccc gggccagggg agtctgctgc ttcatcatcc tgccgcggct cctggctgag 60
ccggctgaga actcagactt ctacttggct gggattact tcctcggcgg cctttcacc 120
ctccatgcca acgtgaaggg catcgccac ctcaacctcc tgcaggtgcc ccagtgcag 180
gagttataaa taaagggttt gggctacgt ctcatgcagg ccatgtgctt tgcagggag 240
gagatcaata gccagagcag cctgctgcct ggcgtgctgc tgggctacaa aatggtggat 300
gtcagctaca tctccaacaa tgtccagccc gtgctccact tccggcaaa ggaggactgt 360
tccttgcaca tccaggagga ctacagccac tgcgtgcggc gtgtggtggc tgcattgg 420

MON-0345.ST25.txt

cctggcaact ctgagtcac	tgtgactgtg gcccgttcc	tctctcttt ctccttcca	480
cagatcacct acagcgccat	cagtgacgag ctacggaca	agcagcgctt cccggccctt	540
ctgcccacag cgccgggcgc	cgatcaccag atcgaggcca	tggtgagct gatgttgac	600
ttccgcccga actggatcat	cgcgctggtg agcagcggcg	actgcggccg cgacgacagc	660
cagctgctca gcgatcgccc	ggccggcggc gacacctgca	tcgccttccg ggagacgctg	720
cccatgcccc agcccaacca	ggcggtgacg cagtggagc	gccggcgct gaaggccatc	780
gtggacgagc agcagcggca	gagctctgca cgcgtcggt	tcctgctgtc gccaaagctg	840
gtcctgcaca acttcttccg	cgaggtgctc cgccagaacc	tcacggcgt cgtcggatc	900
gcctccgagt cctggccat	cgacccggtc ctgcacgaca	ggcccacgca ctgcacagcc	960
tcctgggctg cacccagacc	agcagctccg ggtcgctat	ccctggcagg tgaggcccc	1020
cccacggaga gtcggggcca	cacacgcagg cgccgcaca	gccctgagtg gttgccatgg	1080
agaccactgc cctgctctag	cgtccccctc tctggccggg	tcctggcaa actggcggga	1140
gaggccaggg gacgtaccct	gtccccagac acataa		1176

<210> 64

<211> 391

<212> PRT

<213> Felis catus

<400> 64

Met Gly Pro Arg Ala Arg Glu Val Cys Cys Phe Ile Ile Leu Pro Arg			
1	5	10	15

Leu Leu Ala Glu Pro Ala Glu Asn Ser Asp Phe Tyr Leu Ala Gly Asp		
20	25	30

Tyr Phe Leu Gly Gly Leu Phe Thr Leu His Ala Asn Val Lys Gly Ile		
35	40	45

Val His Leu Asn Leu Leu Gln Val Pro Gln Cys Lys Glu Tyr Glu Ile		
50	55	60

Lys Val Leu Gly Tyr Asp Leu Met Gln Ala Met Cys Phe Ala Gly Glu			
65	70	75	80

Glu Ile Asn Ser Gln Ser Ser Leu Leu Pro Gly Val Leu Leu Gly Tyr		
85	90	95

Lys Met Val Asp Val Ser Tyr Ile Ser Asn Asn Val Gln Pro Val Leu		
100	105	110

His Phe Pro Ala Lys Glu Asp Cys Ser Leu Pro Ile Gln Glu Asp Tyr		
115	120	125

Ser His Cys Val Pro Arg Val Val Ala Val Ile Gly Pro Gly Asn Ser	
Page 72	

MON-0345.ST25.txt

130	135	140
Glu Ser Thr Val Thr Val Ala Arg Phe Leu Ser Leu Phe Leu Leu Pro		
145	150	155 160
Gln Ile Thr Tyr Ser Ala Ile Ser Asp Glu Leu Arg Asp Lys Gln Arg		
165	170	175
Phe Pro Ala Leu Leu Pro Thr Ala Pro Gly Ala Asp His Gln Ile Glu		
180	185	190
Ala Met Val Gln Leu Met Leu Tyr Phe Arg Arg Asn Trp Ile Ile Ala		
195	200	205
Leu Val Ser Ser Gly Asp Cys Gly Arg Asp Asp Ser Gln Leu Leu Ser		
210	215	220
Asp Arg Pro Ala Gly Gly Asp Thr Cys Ile Ala Phe Arg Glu Thr Leu		
225	230	235 240
Pro Met Pro Gln Pro Asn Gln Ala Val Thr Gln Trp Glu Arg Arg Arg		
245	250	255
Leu Lys Ala Ile Val Asp Glu Gln Gln Arg Gln Ser Ser Ala Arg Val		
260	265	270
Val Val Leu Leu Ser Pro Lys Leu Val Leu His Asn Phe Phe Arg Glu		
275	280	285
Val Leu Arg Gln Asn Leu Thr Gly Val Val Arg Ile Ala Ser Glu Ser		
290	295	300
Trp Ala Ile Asp Pro Val Leu His Asp Arg Pro Thr Arg Cys Thr Ala		
305	310	315 320
Ser Trp Ala Ala Pro Arg Pro Ala Ala Pro Gly Arg Leu Ser Leu Ala		
325	330	335
Gly Glu Ala Pro Pro Thr Glu Ser Arg Gly His Thr Arg Arg Arg Arg		
340	345	350
His Ser Pro Glu Trp Leu Pro Trp Arg Pro Leu Pro Cys Ser Ser Val		
355	360	365
Pro Leu Ser Gly Arg Val Leu Gly Lys Leu Ala Gly Glu Ala Arg Gly		
370	375	380
Arg Thr Leu Ser Pro Asp Thr		
385	390	

MON-0345.ST25.txt

<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Construct	
<400> 65	
taaacaactc cacggccctg ctgc	24
<210> 66	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Construct	
<400> 66	
cccagggta tgttggcag cagg	24
<210> 67	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Construct	
<400> 67	
gctgtgtatg cggtggcca tggc	24
<210> 68	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Construct	
<400> 68	
ccagtagctg gtggaggcca tggg	24
<210> 69	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Construct	
<400> 69	
tgctgaccaa cctgactggc aagg	24
<210> 70	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Construct	
<400> 70	

tctgaggcga cccacacacctt gccaa

<210> 71
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 71
ccagttcagc taaacataaaa ttag

<210> 72
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 72
gccactggat tttggtctca ttta

<210> 73
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 73
agctaaacacg ctgctgctgc tgct

<210> 74
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 74
agcagtccca agcagcagca gcag

<210> 75
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 75
tgtgtcacct tcagcctgct cttc

<210> 76
<211> 24
<212> DNA
<213> Artificial Sequence

MON-0345.ST25.txt

<220>		
<223>	Synthetic Construct	
<400>	76	
	tccaggacac gaagttgaag agca	24
<210>	77	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Construct	
<400>	77	
	tacttcggcc ccaagtgcta catg	24
<210>	78	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Construct	
<400>	78	
	ccgggttagaa gaggatcatg tagc	24
<210>	79	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Construct	
<400>	79	
	tggtcaccat cgtggacctc ttgg	24
<210>	80	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Construct	
<400>	80	
	aggttgagca cagtgaccaa gagg	24
<210>	81	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Construct	
<400>	81	
	accaactaca acgaggccaa gttc	24
<210>	82	

MON-0345.ST25.txt

<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Construct	
<400> 82	
tcatgctgag ggtgatgaac ttgg	24
<210> 83	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Construct	
<400> 83	
tccgagtcct gggccatcga cccg	24
<210> 84	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Construct	
<400> 84	
tgagggttgtg caggaccggg tcga	24
<210> 85	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Construct	
<400> 85	
tacaacctca tgcaggccat gcgc	24
<210> 86	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Construct	
<400> 86	
tctcctccac cgcgaaagcgc atgg	24
<210> 87	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Construct	
<400> 87	

atcaccatcc agagcgtgcc catc

<210> 88
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 88
actcaactgaa gcccgggatg ggca

<210> 89
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 89
accaccacgt cgaggccatg gtgc

<210> 90
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 90
aagtgcagca tcagctgcac catg

<210> 91
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 91
tcrgacttct acctgcctgg rga

<210> 92
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 92
cttcacgttg gcatggaggg

<210> 93
<211> 21
<212> DNA
<213> Artificial Sequence

MON-0345.ST25.txt

<220>		
<223>	Synthetic Construct	
<400>	93	
	tacccctgg gtggcctttt c	21
<210>	94	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Construct	
<400>	94	
	tcttgcacwk gggcacctgc	20
<210>	95	
<211>	22	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Construct	
<400>	95	
	agggttgtggg ctacaacctt at	22
<210>	96	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Construct	
<400>	96	
	gggcakgtag tggctgttagt c	21
<210>	97	
<211>	22	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Construct	
<400>	97	
	ggctacaacc tsatgcaggc ca	22
<210>	98	
<211>	22	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Construct	
<400>	98	
	gagttgtcag ggccaatgac cg	22
<210>	99	

MON-0345.ST25.txt

<211> 2598
<212> DNA
<213> Felis catus

<400>	99					
atgcccggcc	tcgctctcct	gggcctcacg	gctctcctgg	gcctcacggc	tctcttggac	60
cacggggagg	gcgcaacgtc	ctgcttgta	cagcagctca	ggatgcaggg	ggactatgtg	120
ctgggtggc	tcttccctct	gggctctgcc	gagggtacag	gtcttggcga	cgggctgcag	180
ccaaatgcca	ccgtgtcac	caggttctcg	tctctggcc	tgctctggc	gctggccgtg	240
aagatggcgg	tggaggagat	caacaacggg	tcggccctgc	tgcccgggct	gcacctggc	300
tatgacctct	ttgacacgtg	ttcagagccc	atggtggcca	tgaagcccag	cctcgtgttc	360
atggccaaag	caggcagctg	cagcattgcc	gcctactgca	attacacaca	gtaccagccc	420
cgcgtgctgg	ccgtcatcg	gccccactcg	tctgagctcg	ccctcgtcac	cggcaagttc	480
ttcagcttct	tccttgtgcc	tcaggtcagc	tacggcgc	gcaccgaccg	gctgagcaac	540
cgggagatct	tcccgtcctt	cttccgcacg	gtgcccagcg	accaggtgca	ggtggcggcc	600
atggtggagc	tgctggagga	gctcggctgg	aactgggtgg	cggcggtg	tagtgcac	660
gagtatggcc	ggcagggcct	gagcctcttc	tccggcctgg	ccagcgc	gggcatactgc	720
atcgcgcatg	agggccttgt	gccactgccc	ccaggcagcc	tgccggctgg	cgcctacag	780
ggcctgctgc	gccaggtgaa	ccagagcagc	gtgcaggtgg	tggtgctgtt	ctcctccgc	840
cacgcggccc	gcaccctctt	cagctacagc	atccgctgca	agctctcacc	caaggtgtgg	900
gtggccagcg	aggcctggct	gacccagac	ctggcatg	cgctgcccgg	catgcctgg	960
gtggccaccg	tgctggcctt	cctgcagcag	ggcgccccga	tgccggagtt	cccatccctac	1020
gtgcggaccc	gcctggccct	ggccgctgac	cctgccttct	gcgcctcgct	ggacgctgaa	1080
cagccaggcc	tggaggagca	cgtgggggg	ccacgctg	ccaaatgtga	ccacgtcacg	1140
ctagagaacc	tatctgcggg	gctgctgac	caccagac	tcgctgccta	cgcggctgtg	1200
tatggcgtgg	cccaagccct	tcacaacaca	ctgcgcgtca	atgcctcg	ctgccccagg	1260
cgggagcctg	tgcggccctg	gcagctccta	gagaacatgt	acaacgtgag	cttccgtgt	1320
cgcggcctgg	cactgcagtt	cgacgcccagc	gggaacgtga	acgtggatta	cgacctgaaa	1380
ctgtgggtgt	ggcaggaccc	gacgcccag	ctgcgcaccg	taggcac	caagggccgc	1440
ctggagctct	ggcgctctca	gatgtgctgg	cacacgcccgg	ggaagcagca	gcccgtgtcc	1500
cagtgc	ggcagtgc	ggaaggccag	gtgcgcgc	tgaaggcgtt	ccactcttgc	1560
tgttacaact	gcgtggactg	caaggcgggc	agttatcagc	gcaacccaga	tgacccctc	1620
tgcacccagt	gtgaccagga	ccagtggtcc	ccagaccgga	gcacacgctg	cttcgcccgc	1680
aagcccatgt	tcctggcatg	gggggagcca	gctgtgctgc	tactgctgc	gctgctggct	1740
ctggcgctgg	gcctggcgct	ggcagccctg	gggctcttcc	tctggcactc	ggacagcccgg	1800
ctgggttcagg	cctcaggtgg	gccacgggccc	tgcttggcc	tggcttg	ggccctggc	1860
tgcctcagtg	tcctcctgtt	ccctggccag	ccaggccctg	ccagctgcct	ggccagcag	1920

MON-0345.ST25.txt

ccactgttcc acctcccact cactggctgc ctgagcacgt ttttcctgca agcggccgag	1980
atatttgtgg ggtcgagact gccaccaagc tgggctgaga agatgcgtgg ccgcctgcgg	2040
gggcctggg cctggctggt ggtgctgctt gctatgtgg cagaagccgc attgtgtgcc	2100
tggtacctgg tagccttccc gccagaggtg gtgacggact ggcgggtact gcccacagag	2160
gcgctgggtgc actgccacgt gcactcctgg atcagcttcg gcctggtgca tgccactaac	2220
gccatgctgg ctttcctctg cttcctggc actttcctgg tgcagagccg gccaggccgc	2280
tacaatggtg cccgcggcct caccttgcct atgctggcct acttcatcac ctggatctcc	2340
tttgcgtcccc tctttgccaa tgtgcacgtg gcctaccagc ctgccgtgca gatgggcacc	2400
atcctcctct gtgcctggg tatccttagcc accttccacc tgcccaagtg ctacctgctg	2460
ctgcagcggc cgagactcaa cacccctgag ttcttcctgg aagacaatgc cagagcacag	2520
ggcagcagtt gggggcaggg gaggggagaa tcggggcaaa aacaagtgac acccgatcca	2580
gtgacacctac cgcaagtga	2598