Quasi-Measurable Spaces

A Convenient Foundation of Probability Theory

Patrick Forré

The Category of Measurable Spaces

- Let $\mathcal X$ be a set. A σ -algebra on $\mathcal X$ is a set of subsets $\mathscr B\subseteq 2^{\mathcal X}$ such that:
 - $\emptyset \in \mathcal{B}$,

$$A_n \in \mathcal{B}, n \in \mathbb{N} \implies \bigcup_{n \in \mathbb{N}} A_n \in \mathcal{B}$$

- $\bullet \ A \in \mathscr{B} \implies \mathscr{X} \backslash A \in \mathscr{B}$
- A tuple $(\mathcal{X},\mathcal{B}_{\mathcal{X}})$ of a set \mathcal{X} and a σ -algebra $\mathcal{B}_{\mathcal{X}}$ is called **measurable space**.
- A map $f: \mathcal{X} \to \mathcal{Y}$ between measurable spaces $(\mathcal{X}, \mathcal{B}_{\mathcal{X}})$ and $(\mathcal{Y}, \mathcal{B}_{\mathcal{Y}})$ is called a measurable map if: $B \in \mathcal{B}_{\mathcal{Y}} \implies f^{-1}(B) \in \mathcal{B}_{\mathcal{X}}$.
 - Note that the compositions of two measurable maps is a measurable map.
- Meas denotes the category of measurable spaces and measurable maps.

Kolmogorov's approach to Probability Theory (1933)

• Kolmogorov Axioms:

A probability distribution is just a normalized measure.

Probability Theory can thus be viewed as a sub-field of Measure Theory.

 Andrei Kolmogoroff. Grundbegriffe der Wahrscheinlichkeitsrechnung. Ergebnisse der Mathematik und Ihrer Grenzgebiete. 1. Folge, Nr. 2, Springer (1933).

How to formalize Random Variables?

- Sample space is a measurable space: $\left(\Omega,\mathscr{B}_{\Omega}\right)$
 - where \mathscr{B}_{Ω} is the σ -algebra/set of admissible outcome events on Ω .
- State space is a measurable space: $(\mathcal{X},\mathcal{B}_{\mathcal{X}})$
 - where $\mathscr{B}_{\mathscr{X}}$ is another σ -algebra/set of admissible events on \mathscr{X} .
- Admissible random variables are all measurable maps:
 - $X \in \text{Meas}\left((\Omega, \mathcal{B}_{\Omega}), (\mathcal{X}, \mathcal{B}_{\mathcal{X}})\right)$
- For fixed **probability measure** P on $(\Omega, \mathscr{B}_{\Omega})$ the distribution of X is:
 - push-forward probability measure: X_*P on $\mathscr{B}_{\mathscr{X}}$ (also written as: P(X)).

Motivation - Problems with that Approach

Problem 1 - Stochastic Processes

Definitions - Stochastic Process

- Let $(\Omega, \mathscr{B}_{\Omega})$ be the sample space, $(\mathcal{X}, \mathscr{B}_{\mathcal{X}})$ the state space, $(\mathcal{T}, \mathscr{B}_{\mathcal{T}})$ the time space, e.g. $\mathcal{T} = \mathbb{N}$ or $\mathcal{T} = \mathbb{R}_{>0}$.
- A stochastic process is a measurable map:

$$X = (X_t)_{t \in \mathcal{T}} : \Omega \to \prod_{t \in \mathcal{T}} \mathcal{X}, \qquad \omega \mapsto (X_t(\omega))_{t \in \mathcal{T}},$$

- i.e. a random tuple indexed by time
- A random time is a measurable map:

•
$$T: \Omega \to \mathcal{T}, \qquad \omega \mapsto T(\omega).$$

Problem

• The stopped process:

•
$$X_T: \Omega \to \mathcal{X}, \qquad \omega \mapsto X_{T(\omega)}(\omega)$$

• is **not** measurable anymore in general (or only guaranteed under additional, typically topological, assumptions).

Problem 2 - Probabilistic Graphical Models

Conditional Independence in Probabilistic Graphical Models

• Consider a Markov chain:

- We have:
 - factorization: $P(X, Y, Z) = P(Z|Y) \otimes P(Y|X) \otimes P(X)$
 - tells us that Z is only dependent on Y, and, independent of X when conditioned on Y, but then also of the choice of P(Y|X) and P(X).
- We want to be able to:
 - formalize conditional independence: $Z \perp\!\!\!\perp X, Q(Y|X), Q(X)|Y$
 - including non-random variables Q(X) and Q(Y|X)
 - read this off a graph via d-separation (or similar).

Including Non-Random Variables

- Q(Y|X) is non-random and takes values in $\mathscr{Z}:=\operatorname{Meas}\left(\mathscr{X},\mathscr{P}(\mathscr{Y})\right)$
 - ullet Then Y is determined by the new mechanism:

•
$$\mathcal{L} \times \mathcal{X} \to \mathcal{P}(\mathcal{Y}), \quad (Q(Y|X), x) \mapsto Q(Y|X = x).$$

ullet similarly for X.

Problem

• For the map:

•
$$\mathcal{L} \times \mathcal{X} \to \mathcal{P}(\mathcal{Y}), \quad (Q(Y|X), x) \mapsto Q(Y|X = x).$$

ullet to become measurable we need a well-behaved σ -algebra on:

•
$$\mathcal{L} := Meas(\mathcal{X}, \mathcal{P}(\mathcal{Y})).$$

• This is generally impossible!

Random Functions do not exist in Meas

- Theorem (Aumann, 1961):
 - There is **no** σ -algebra $\mathscr{B}_{\mathscr{L}}$ on $\mathscr{L}:=\operatorname{Meas}\left(\mathbb{R},\mathbb{R}\right)$ such that the evaluation map is measurable:

• ev:
$$\mathscr{L} \times \mathbb{R} \to \mathbb{R}$$
, $(f, x) \mapsto f(x)$,

- where $\mathbb R$ carries the Borel- σ -algebra and $\mathscr L$ is the space of all measurable maps from $\mathbb R$ to $\mathbb R$, and the product carries the product- σ -algebra.
- So there is no well-behaved way to define a probability distribution over all measurable functions in a fully non-parametric way.
- * Robert J. Aumann. *Borel structures for function spaces*. Illinois Journal of Mathematics 5.4 (1961): 614-630.

Problem 3 - Probabilistic Programs

```
def prog_prob_prog(a):
    return lambda m,s: [Z:=np.random.uniform(), a*m+s*Z][-1]
```

```
for n in range(5):
    print(prog_prob_prog(a=n)(m=5,s=2))
```

1.8106662116099772

6.762509413168864

10.365457994333775

15.884402920590935

21.48676872656254

Definition - Probabilistic Programs

- A probabilistic program with inputs $x \in \mathcal{X}$ and outputs $z \in \mathcal{Z}$ is a measurable map:
 - measurable map: $K: \mathcal{X} \to \mathcal{P}(\mathcal{Z})$
 - i.e. a Markov kernel.
- The set of probabilistic programs: Meas $(\mathcal{X}, \mathcal{P}(\mathcal{Z}))$.

Problem

Curry / Uncurry probabilistic programs would translate to isomorphism:

• Meas
$$\left(\mathcal{X}\times\mathcal{Y},\mathcal{P}\left(\mathcal{Z}\right)\right)\cong\operatorname{Meas}\left(\mathcal{X},\operatorname{Meas}\left(\mathcal{Y},\mathcal{P}(\mathcal{Z})\right)\right)$$

• $K\mapsto \tilde{K}$ with $\tilde{K}(x)(y)=K(x,y)$

• There does **not exists** any σ -algebra on $\operatorname{Meas}\left(\mathcal{Y},\mathcal{P}(\mathcal{Z})\right)$ that would make that work (similar argument as before).

^{*} Alonzo Church. A formulation of the simple theory of types. The Journal of Symbolic Logic 5.2 (1940): 56-68.

Problem 4 - Causal Assumptions

Causal Inference - Estimating Treatment Effects

- For estimating treatment effect, in the typical case, we have the variables:
 - X = observed treatment variable,
 - Y =observed outcome,
 - Y_x = potential outcome variable under (forced) treatment X=x,
 - Z = all other relevant features of the patient.
- Estimation is not possible without further assumptions.
- Typical assumptions made are:
 - Strong Ignorability: $X \perp \!\!\! \perp (Y_x)_{x \in \mathcal{X}} \mid Z$,
 - Consistency: $Y = Y_X$ a.s.

Problem

- Here, $(Y_x)_{x \in \mathcal{X}}$ is used as a vector of random variables from which we can pick components: $(\tilde{x}, (Y_x)_{x \in \mathcal{X}}) \mapsto Y_{\tilde{x}}$.
 - However, the following map is, in general, not measurable:

$$\mathcal{X} \times \prod_{x \in \mathcal{X}} \mathcal{Y} \to \mathcal{Y}, \quad \left(\tilde{x}, (y_x)_{x \in \mathcal{X}} \right) \mapsto y_{\tilde{x}}.$$

So Strong Ignorability does formally not go well with Consistency.

Problem 5 - Counterfactual Probabilities

Counterfactual Probabilities

- For reasonsing about treatment effect we consider the variables:
 - X = observed treatment variable,
 - Y =observed outcome,
 - Y_x = potential outcome variable under (forced) treatment X=x.
- Conditional counterfactual probabilities:
 - $C(A \mid x, x') := P(Y_x \in A \mid X = x')$
 - "What would have happened (with which probability) under treatment X=x given that the patient was actually treated with $X=x^{\prime}$?"

Problems

• Not clear if conditional counterfactual probabilities are probability measures in A and/or measurable in x, x' or jointly.

•
$$C(A \mid x, x') := P(Y_x \in A \mid X = x')$$

• Not clear if conditioning is well-defined here, dependent on how to view $x\mapsto Y_x$.

Quasi-Measurable Spaces

References

• The talk is based on the following papers:

Chris Heunen, Ohad Kammar, Sam Staton, Hongseok Yang.
 A convenient category for higher-order probability theory.
 32nd Annual ACM/IEEE Symposium on Logic in Computer
 Science (LICS), 2017.

• Patrick Forré, *Quasi-Measurable Spaces*, 2021, https://arxiv.org/abs/2109.11631.

Main Idea behind Quasi-Measurable Spaces

- Main idea: Exchange the role of σ -algebras and random variables!!!
- Sample space is a measurable space: $\left(\Omega,\mathscr{B}_{\Omega}\right)$
 - where \mathscr{B}_{Ω} is the σ -algebra/set of admissible outcome events on Ω .
- State space is a "quasi-measurable space": $(\mathcal{X},\mathcal{X}^\Omega)$
 - where \mathcal{X}^{Ω} is a set of admissible random variables.
- σ -algebra of admissible events is:
 - $\bullet \,\, \mathscr{B}_{\mathcal{X}} := \mathscr{B}\left(\mathscr{X}^{\Omega}\right) := \left\{ A \subseteq \mathscr{X} \,|\, \forall X \in \mathscr{X}^{\Omega} \,.\, X^{-1}(A) \in \mathscr{B}_{\Omega} \right\}$
- ullet For fixed **probability measure** P on $igl(\Omega,\mathscr{B}_\Omegaigr)$ the distribution of X is:
 - ullet push-forward probability measure: X_*P on $\mathscr{B}_{\mathscr{X}}$ (also written as: P(X)).

The Sample Space - Act 1 - Random Variables

- The Sample Space $(\Omega, \Omega^{\Omega})$ consists of:
 - ullet a set: Ω
 - a set of maps: $\Omega^{\Omega} \subseteq \{\Phi: \Omega \to \Omega\}$
 - such that:
 - $id_{\Omega} \in \Omega^{\Omega}$,
 - Ω^{Ω} contains all constant maps,
 - Ω^{Ω} is closed under composition:
 - $\Phi_1, \Phi_2 \in \Omega^{\Omega} \implies \Phi_2 \circ \Phi_1 \in \Omega^{\Omega}$.
- Standard example:
 - $\Omega^{\Omega} := \operatorname{Meas}\left((\Omega, \mathscr{B}_{\Omega}), (\Omega, \mathscr{B}_{\Omega})\right)$ for some carefully chosen σ -algebra: \mathscr{B}_{Ω} .

Quasi-Measurable Spaces

- A Quasi-Measurable Space $(\mathcal{X},\mathcal{X}^\Omega)$ w.r.t. sample space (Ω,Ω^Ω) per definition consists of:
 - ullet a set: ${\mathscr X}$
 - ullet a set of admissible random variables: \mathcal{X}^{Ω} ,
 - i.e. a set of maps: $X: \Omega \to \mathcal{X}$, such that:
 - all constant maps $\Omega o \mathscr{X}$ are in \mathscr{X}^{Ω} ,
 - \mathscr{X}^{Ω} is closed under pre-composition with Ω^{Ω} :
 - $X \in \mathcal{X}^{\Omega}$, $\Phi \in \Omega^{\Omega} \implies X \circ \Phi \in \mathcal{X}^{\Omega}$.

Quasi-Measurable Maps

- Let $(\mathcal{Z},\mathcal{Z}^\Omega)$ and $(\mathcal{X},\mathcal{X}^\Omega)$ two quasi-measurable spaces.
- A map $g: \mathcal{Z} \to \mathcal{X}$ is called quasi-measurable if

•
$$Z \in \mathcal{Z}^{\Omega} \implies g(Z) := g \circ Z \in \mathcal{X}^{\Omega}$$

• The set of all quasi-measurable maps is abbreviated:

$$ullet$$
 QMS $\Big((\mathcal{Z}, \mathcal{Z}^\Omega), (\mathcal{X}, \mathcal{X}^\Omega) \Big)$ or QMS $\big(\mathcal{Z}, \mathcal{X} \big)$ for short.

- Note that the *composition* of two quasi-measurable maps is again *quasi-measurable*.
- The class of all quasi-measuable spaces (w.r.t. a fixed sample space) together with all quasi-measurable maps builds a category: QMS.

The Product Space

- Let $(\mathcal{X}_i, \mathcal{X}_i^{\Omega})$ be a family of quasi-measurable spaces, $i \in I$.
- $i \in I$

$$ullet$$
 into a quasi-measurable space by putting: $\left(\prod_{i\in I}\mathscr{X}_i\right)^\Omega:=\prod_{i\in I}\mathscr{X}_i^\Omega$

- product random variables on the product are of the form:
 - $X(\omega) = (X_i(\omega))_{i \in I}$ with $X_i \in \mathcal{X}_i^{\Omega}$ for all $i \in I$.

The Function Space

- Let $(\mathcal{X},\mathcal{X}^\Omega)$ and $(\mathcal{Z},\mathcal{Z}^\Omega)$ two quasi-measurable spaces. We put:
 - $\mathcal{X}^{\mathcal{Z}} := \mathrm{QMS}\left((\mathcal{Z}, \mathcal{Z}^{\Omega}), (\mathcal{X}, \mathcal{X}^{\Omega})\right)$
 - $\bullet \left(\mathcal{X}^{\mathcal{Z}} \right)^{\Omega} := \left\{ X : \ \Omega \to \mathcal{X}^{\mathcal{Z}} \ | \ \left((\omega, z) \mapsto X(\omega)(z) \right) \in \mathrm{QMS}(\Omega \times \mathcal{Z}, \mathcal{X}) \right\}$
 - function-valued random variables are defined via the product structure
- Then $\left(\mathcal{X}^{\mathcal{Z}}, \left(\mathcal{X}^{\mathcal{Z}}\right)^{\Omega}\right)$ is a quasi-measurable space.
- Note that such a construction was not possible for measurable spaces!!!

Currying, Uncurrying and the Evaluation Map

- Let $(\mathcal{X},\mathcal{X}^\Omega)$, $(\mathcal{Y},\mathcal{Y}^\Omega)$ and $(\mathcal{Z},\mathcal{Z}^\Omega)$ be quasi-measurable spaces.
- We can then curry and uncurry:

• QMS
$$(\mathcal{Z} \times \mathcal{Y}, \mathcal{X}) \cong$$
 QMS $(\mathcal{Y}, \mathcal{X}^{\mathcal{Z}}) =$ QMS $(\mathcal{Y}, QMS (\mathcal{Z}, \mathcal{X}))$

• In particular, the evaluation map is quasi-measurable:

• ev:
$$\mathcal{X}^{\mathcal{Z}} \times \mathcal{Z} \to \mathcal{X}$$
, ev $(g, z) := g(z)$.

Note that this was not possible in Meas for measurable spaces!

Theorem - QMS cartesian closed

- Theorem: The category of quasi-measurable spaces QMS is cartesian closed.
- Remark: We can also construct the following in QMS:
 - coproducts, equalizers, coequalizers, thus:
 - all small limits and all small colimits
- Remark: This means that QMS allows for simply typed λ -calculus.
- \bullet Remark: Note that most of this is not true for the category of measurable spaces Meas!

The Slice Categories

- Let $(\mathcal{T}, \mathcal{T}^{\Omega})$ be a quasi-measurable space.
- The slice category QMS $_{\mathcal{T}}$ of all *quasi-measurable spaces over* \mathcal{T} is given by:
 - ullet objects: quasi-measurable maps: $T_{\mathcal{X}}:\,\mathcal{X} o\mathcal{T}$
 - ullet morphisms: quasi-measurable maps: $f\colon \mathcal{X} o \mathcal{Y}$
 - s.t.: $T_{\mathcal{Y}} \circ f = T_{\mathcal{X}}$.

• By abuse of notation we will just write $\mathcal X$ instead of $\left(\mathcal X,\mathcal X^\Omega,T_{\mathcal X}\right)$

The Fibre Product

- Let $\mathcal{T} \in \text{QMS}$ and $\mathcal{X}, \mathcal{Y} \in \text{QMS}_{\mathcal{T}}$.
- The fibre product of ${\mathcal X}$ and ${\mathcal Y}$ over ${\mathcal T}$ is given as follows:

•
$$\mathcal{X} \times_{\mathcal{T}} \mathcal{Y} := \left\{ (x, y) \in \mathcal{X} \times \mathcal{Y} \mid T_{\mathcal{X}}(x) = T_{\mathcal{Y}}(y) \right\}$$

$$\bullet \left(\mathcal{X} \times_{\mathcal{T}} \mathcal{Y} \right)^{\Omega} := \left\{ (X, Y) \in \mathcal{X}^{\Omega} \times \mathcal{Y}^{\Omega} \mid T_{\mathcal{X}} \circ X = T_{\mathcal{Y}} \circ Y \right\}$$

- $T: \mathcal{X} \times_{\mathcal{T}} \mathcal{Y} \to \mathcal{T}, \quad T(x,y) := T_{\mathcal{X}}(x) = T_{\mathcal{Y}}(y)$
- This makes $\mathcal{X} \times_{\mathcal{T}} \mathcal{Y}$ a quasi-measurable space over \mathcal{T} .
- ullet In fact, the fibre product is the categorical product of QMS $_{\mathcal{T}}$.

The Internal Hom

- Let $\mathcal{T} \in QMS$ and $\mathcal{X}, \mathcal{Y}, \mathcal{Z} \in QMS_{\mathcal{T}}$.
- The *internal hom* from \mathscr{Y} to \mathscr{Z} over \mathscr{T} is given as follows:

$$Q_{\mathcal{T}}(\mathcal{Y}, \mathcal{Z}) := \coprod_{t \in \mathcal{T}} QMS(\mathcal{Y}_t, \mathcal{Z}_t) \qquad \text{(coproduct taken in Sets)}$$

- $T_{\mathcal{Q}}: \mathcal{Q}_{\mathcal{T}}(\mathcal{Y}, \mathcal{Z}) \to \mathcal{T}, \quad T_{\mathcal{Q}}(t, g) := t.$
- $\begin{array}{c} \bullet \ \mathscr{Q}_{\mathscr{T}}(\mathscr{Y},\mathscr{Z})^{\Omega} := \left\{ (T,G) : \Omega \to \mathscr{Q}_{\mathscr{T}}(\mathscr{Y},\mathscr{Z}) \mid T \in \mathscr{T}^{\Omega} \text{ and } \right. \\ \\ \forall \Phi \in \Omega^{\Omega}, \forall Y \in \mathscr{Y}^{\Omega} \text{ s.t. } T \circ \Phi = T_{\mathscr{Y}} \circ Y. \\ \\ \left. G(\Phi)(Y) \in \mathscr{Z}^{\Omega} \right\} \end{array}$
 - with $G(\Phi)(Y): \Omega \to \mathcal{Z}$, $\omega \mapsto G(\Phi(\omega))(Y(\omega))$

The Internal Hom - Theorem

- Let $\mathcal{T} \in \text{QMS}$ and $\mathcal{X}, \mathcal{Y}, \mathcal{Z} \in \text{QMS}_{\mathcal{T}}$.
- The *internal hom* $Q_{\mathcal{T}}(\mathcal{Y}, \mathcal{Z})$ is a quasi-measurable space over \mathcal{T} .
- ullet The internal hom defines an exponential object in the slice category $QMS_{\mathscr{T}}$:
 - The curry map is well-defined and a canonical bijection:
 - QMS_{\mathcal{T}} $(\mathcal{X} \times_{\mathcal{T}} \mathcal{Y}, \mathcal{Z}) \cong \text{QMS}_{\mathcal{T}} (\mathcal{X}, \mathcal{Q}_{\mathcal{T}}(\mathcal{Y}, \mathcal{Z}))$
 - $g \mapsto \tilde{g}$ with $\tilde{g}(x) = (T_{\mathcal{X}}(x), g_x)$ with $g_x(y) := g(x, y)$.
- ullet Furthermore, it induces an isomorphism in QMS $_{\mathcal{T}}$:
 - $Q_{\mathcal{T}}(\mathcal{X} \times_{\mathcal{T}} \mathcal{Y}, \mathcal{Z}) \cong Q_{\mathcal{T}}(\mathcal{X}, Q_{\mathcal{T}}(\mathcal{Y}, \mathcal{Z})).$

Strong Monomorphism = Embeddings

- ullet A quasi-measurable map $i: \mathcal{X} o \mathcal{Y}$ is called an *embedding* iff
 - *i* is injective, and:
 - $\bullet \ \mathcal{X}^{\Omega} = \{X: \ \Omega \to \mathcal{X} \mid i \circ X \in \mathcal{Y}^{\Omega}\}$
- Lemma: Embeddings are exactly the strong monomorphisms in QMS.

 \mathcal{W}^{-}

(for t epimorphisms)

Subobject Classifier for Strong Monomorphisms

- Let $\mathbf{2} = \{0,1\}$ be the quasi-measurable space with $\mathbf{2}^{\Omega} := \operatorname{Sets}(\Omega,\mathbf{2})$.
- Lemma: Then 2 together with the constant-1-map $1:1\to 2$ is a subobject classifier for strong monomorphisms in QMS.

Definition - Quasitopos

- A quasitopos is a category that:
 - has all finite limits,
 - has all finite colimits,
 - is locally cartesian closed,
 - has a subobject classifier for strong monomorphisms.

[•] Peter T. Johnstone. Sketches of an Elephant: A Topos Theory Compendium. Oxford University Press, 2002.

Main Theorems

- Theorem: The category of quasi-measurable spaces QMS forms a quasitopos, and, is in particular, locally cartesian closed.
- Remark: This means that, besides simply typed λ -calculus, we get a dependent type theory for QMS.
 - Roughly speaking, this means that we can model programs that can vary the output type/space dependent on the input.

 Remark: Note that most of this is not true for the category of measurable spaces Meas!

The Sample Space - Act 2 - The σ -Algebra

- We now endow the Sample Space $(\Omega, \Omega^{\Omega})$ with an additional σ -algebra \mathscr{B}_{Ω} such that:
 - $\Omega^{\Omega} \subseteq \text{Meas}\left((\Omega, \mathscr{B}_{\Omega}), (\Omega, \mathscr{B}_{\Omega})\right)$.

• The Sample Space is now the triple: $(\Omega, \Omega^{\Omega}, \mathscr{B}_{\Omega})$.

- Standard example:
 - $\Omega^{\Omega} = \text{Meas}\left((\Omega, \mathcal{B}_{\Omega}), (\Omega, \mathcal{B}_{\Omega})\right)$

Topological and Measurable Spaces as Quasi-Measurable Spaces

• If $(\mathcal{X}, \mathcal{E}_{\mathcal{X}})$ is a measurable space or a topological space, etc., then we can turn this into a quasi-measurable space via allowing for the following random variables:

$$\bullet \ \mathcal{X}^{\Omega} := \mathcal{F}(\mathcal{E}_{\mathcal{X}}) := \left\{ X : \ \Omega \to \mathcal{X} \ | \ \forall A \in \mathcal{E}_{\mathcal{X}} . X^{-1}(A) \in \mathcal{B}_{\Omega} \right\}$$

• Note that the later introduced σ -algebra $\mathscr{B}_{\mathscr{X}}$ might be strictly bigger than the one we started with to turn $(\mathscr{X},\mathscr{E}_{\mathscr{X}})$ into quasi-measurable space $(\mathscr{X},\mathscr{X}^{\Omega})$:

$$\bullet \ \mathcal{E}_{\mathcal{X}} \subsetneq \mathcal{B}_{\mathcal{X}} := \mathcal{B} \left(\mathcal{X}^{\Omega} \right)$$

The σ-Algebra

- Let $(\mathcal{X},\mathcal{X}^\Omega)$ be a quasi-measurable space.
- Then the induced σ -algebra is:
 - $\bullet \ \mathcal{B}_{\mathcal{X}} := \left\{ A \subseteq \mathcal{X} \mid \forall X \in \mathcal{X}^{\Omega} . X^{-1}(A) \in \mathcal{B}_{\Omega} \right\}$
- ullet We can then define the set of admissible random variables with values in $\mathscr{B}_{\mathscr{X}}$ via:
 - $\bullet \ \left(\mathscr{B}_{\mathcal{X}} \right)^{\Omega} := \left\{ \Psi : \ \Omega \to \mathscr{B}_{\mathcal{X}} \, | \, \exists D \in \mathscr{B}_{\Omega \times \mathcal{X}} \, \forall \omega \in \Omega \, . \, \Psi(\omega) = D_{\omega} \right\} \ \cong \mathscr{B}_{\Omega \times \mathcal{X}}$
 - where $D_{\omega} := \left\{ x \in \mathcal{X} \mid (\omega, x) \in D \right\}$
- Then $\left(\mathscr{B}_{\mathcal{X}}, \left(\mathscr{B}_{\mathcal{X}}\right)^{\Omega}\right)$ is a quasi-measurable space.
- Note that this was not possible in the category of measurable spaces!!!

Theorem - The Adjunction

- A map $g:\mathcal{X}\to\mathcal{Y}$ from a quasi-measurable space $(\mathcal{X},\mathcal{X}^\Omega)$ to a measurable space $(\mathcal{Y},\mathcal{B}_{\mathcal{Y}})$ is
 - measurable if and only if it is quasi-measurable,
 - provided we use the corresponding choices:
 - $\bullet \, \mathscr{B}_{\mathcal{X}} := \mathscr{B}(\mathcal{X}^{\Omega}) := \{ A \subseteq \mathcal{X} \mid \forall X \in \mathcal{X}^{\Omega} . X^{-1}(A) \in \mathscr{B}_{\Omega} \},$
 - $\bullet \ \mathscr{Y}^{\Omega} := \mathscr{F}(\mathscr{B}_{\mathscr{Y}}) := \{Y \colon \Omega \to \mathscr{Y} \mid \forall B \in \mathscr{B}_{\mathscr{Y}} . \ Y^{-1}(B) \in \mathscr{B}_{\Omega} \}.$
- In other words, we have the natural identification of sets of maps:

$$\bullet \ \mathrm{Meas} \left((\mathcal{X}, \mathcal{B}(\mathcal{X}^{\Omega})), (\mathcal{Y}, \mathcal{B}_{\mathcal{Y}}) \right) = \mathrm{QMS} \left((\mathcal{X}, \mathcal{X}^{\Omega}), (\mathcal{Y}, \mathcal{F}(\mathcal{B}_{\mathcal{Y}})) \right).$$

The Sample Space - Act 3 - Probability Measures

- We now endow the Sample Space $(\Omega, \Omega^{\Omega}, \mathcal{B}_{\Omega})$ with some additional set of **product compatible probability measures** \mathcal{P} on \mathcal{B}_{Ω} , i.e. such that:
 - for all $P \in \mathscr{P}$ and $D \in \mathscr{B}_{O \times O}$ the map:
 - $\Omega \to [0,1]$, $\omega \mapsto P(D^{\omega})$, is (quasi-)measurable,
 - where $D^{\omega}:=\{\tilde{\omega}\in\Omega\,|\,(\tilde{\omega},\omega)\in D\}$,
 - for all $P_1,P_2\in \mathscr{P}$ there exist $\Phi_1,\Phi_2\in \Omega^\Omega$ and $P\in \mathscr{P}$ such that:
 - $P_1 \otimes P_2 = P(\Phi_1, \Phi_2)$ on $\mathscr{B}_{\Omega \times \Omega}$, i.e. for all $D \in \mathscr{B}_{\Omega \times \Omega}$ we have:

$$\bullet \ (P_1 \otimes P_2)(D) := \int P_1(D^\omega) \, P_2(d\omega) = P(\{\omega \in \Omega \mid (\Phi_1(\omega), \Phi_2(\omega)) \in D\}).$$

• The **Sample Space** is now the quadruple: $(\Omega, \Omega^{\Omega}, \mathscr{B}_{\Omega}, \mathscr{P})$.

The Space of Push-forward Probability Measures

• Let $(\mathcal{X},\mathcal{X}^\Omega)$ be a quasi-measurable space. Define:

$$\bullet \ \mathcal{P}(\mathcal{X}) := \mathcal{P}(\mathcal{X}, \mathcal{X}^{\Omega}) := \left\{ P(X) : \ \mathcal{B}_{\mathcal{X}} \to [0, 1] \ | \ X \in \mathcal{X}^{\Omega}, P \in \mathcal{P} \right\}$$

$$\bullet \ \mathcal{P}(\mathcal{X})^{\Omega} := \mathcal{P}(\mathcal{X}, \mathcal{X}^{\Omega})^{\Omega} := \left\{ P(X|I) \, | \, X \in (\mathcal{X}^{\Omega})^{\Omega}, P \in \mathcal{P} \right\}$$

$$P(X \in A \mid I = \omega) := P\left(\left\{\tilde{\omega} \in \Omega \mid X(\omega)(\tilde{\omega}) \in A\right\}\right) \text{ for } A \in \mathcal{B}_{\mathcal{X}}$$

• Lemma: $(\mathcal{P}(\mathcal{X}), \mathcal{P}(\mathcal{X})^{\Omega})$ is also a quasi-measurable space.

The Spaces of Markov Kernels and Random Functions

- Let $(\mathcal{X},\mathcal{X}^\Omega)$ and $(\mathcal{Z},\mathcal{Z}^\Omega)$ be quasi-measurable spaces.
- ullet Then the space of Markov kernels from $(\mathcal{Z},\mathcal{Z}^\Omega)$ to $(\mathcal{X},\mathcal{X}^\Omega)$:

•
$$\mathscr{P}(\mathscr{X})^{\mathscr{Z}} = \mathrm{QMS}\left(\big(\mathscr{Z},\mathscr{Z}^{\Omega}\big),\big(\mathscr{P}(\mathscr{X}),\mathscr{P}(\mathscr{X})^{\Omega}\big)\right)$$

- is again a quasi-measurable space.
- Also the space of probability distribution over functions:
 - $\mathscr{P}\left(\mathscr{X}^{\mathscr{Z}}\right)$ is again a quasi-measurable space.
- Note that these construction were not possible in the category of measurable spaces!!!

Some surprising Lemmata

- Let $(\mathcal{X},\mathcal{X}^\Omega)$ and $(\mathcal{Y},\mathcal{Y}^\Omega)$ be quasi-measurable spaces.
- Then the following maps are all quasi-measurable:

•
$$\mathscr{Y}^{\mathscr{X}} \times \mathscr{B}_{\mathscr{Y}} \to \mathscr{B}_{\mathscr{X}}, \qquad (f, B) \mapsto f^{-1}(B).$$

•
$$\mathcal{P}(\mathcal{X}) \times \mathcal{B}_{\mathcal{X}} \to [0,1], \qquad (P,A) \mapsto P(A).$$

•
$$\mathcal{Y}^{\mathcal{X}} \times \mathcal{P}(\mathcal{X}) \to \mathcal{P}(\mathcal{Y}), \quad (f, P) \mapsto f_*P.$$

•
$$[0,\infty]^{\mathcal{X}} \times \mathcal{P}(\mathcal{X}) \to [0,\infty], \quad (h,P) \mapsto \int h(x) P(dx).$$

 Note that such statements were not known or even possible in the category of measurable spaces!!!

Theorem: The Product of Markov Kernels

- Assume that there exists an isomorphism of quasi-measurable spaces:
 - $\Omega \times \Omega \cong \Omega$.
- Then for all quasi-measurable spaces $(\mathcal{X},\mathcal{X}^{\Omega}),$ $(\mathcal{Y},\mathcal{Y}^{\Omega}),$ $(\mathcal{Z},\mathcal{Z}^{\Omega})$ the product of Markov kernels:
 - \otimes : $\mathcal{P}(\mathcal{X})^{\mathcal{Y} \times \mathcal{I}} \times \mathcal{P}(\mathcal{Y})^{\mathcal{I}} \to \mathcal{P}(\mathcal{X} \times \mathcal{Y})^{\mathcal{I}}$

$$(P(X|Y,Z) \otimes Q(Y|Z))(D|z) := \int P(X \in D^y | Y = y, Z = z) Q(Y \in dy | Z = z)$$

• is a well-defined quasi-measurable map.

Theorem: Strong Probability Monad

• If $\Omega \times \Omega \cong \Omega$ then the triple $(\mathcal{P}, \delta, \mathbb{M})$ is a **strong probability monad** on the cartesian closed category QMS, where:

- This thus allows for a notion of computation of monadic type and simply typed λ -calculus.
- We thus get semantics for higher-order probability theory for probabilistic programming language.

Construction of well-behaved Sample Spaces

- Theorem: Let Ω_0 be a set, and:
 - \mathscr{E}_0 a countable set of subsets of Ω_0 that separates the points of Ω_0 .

$$\Omega:=\prod_{n\in\mathbb{N}}\Omega_0,\quad\text{and}\quad\mathcal{E}:=\{\mathrm{pr}_n^{-1}(A)\,|\,A\in\mathcal{E}_0,n\in\mathbb{N}\},$$

- $\tilde{\mathscr{P}}:=\{P \text{ complete perfect probability measure on }\Omega,\mathscr{E}\subseteq\mathscr{B}_P\}$,
- $\mathscr{B}_{\Omega}:=\bigcap_{P\in\tilde{\mathscr{P}}}\mathscr{B}_{P}, \text{ the perfect-universal completion of }\mathscr{E},$
- $\Omega^{\Omega} := \operatorname{Meas} \left((\Omega, \mathscr{B}_{\Omega}), (\Omega, \mathscr{B}_{\Omega}) \right), \quad \mathscr{P} := \tilde{\mathscr{P}} |_{\mathscr{B}_{\Omega}}$
- Then $(\Omega, \Omega^{\Omega}, \mathscr{B}_{\Omega}, \mathscr{P})$ satisfies all points of act 1-3 and $\Omega \times \Omega \cong \Omega$.

Fubini Theorem

- Let $(\Omega, \Omega^{\Omega}, \mathcal{B}_{\Omega}, \mathcal{P})$ be the sample space from the last slide.
- Let $(\mathcal{X},\mathcal{X}^\Omega)$ and $(\mathcal{Y},\mathcal{Y}^\Omega)$ be quasi-measurable spaces and:
 - $f \in [0,\infty]^{\mathcal{X} \times \mathcal{Y}}$, $P \in \mathcal{P}(\mathcal{X})$ and $Q \in \mathcal{P}(\mathcal{Y})$.
- Then we have the equality:

The Sample Space - Act 4 - The Universal Hilbert Cube

$$\Omega = [0,1]^{\mathbb{N}} = \prod_{n \in \mathbb{N}} [0,1], \text{ the Hilbert Cube,}$$

- \mathscr{B}_{Ω} = set of all *universally measurable* subsets of Ω .
 - Note that this is bigger than the Borel σ -algebra on Ω .
- $\mathscr{P}=$ all probability measures on $\mathscr{B}_{\Omega}, \qquad \Omega^{\Omega}=\operatorname{Meas}\left((\Omega,\mathscr{B}_{\Omega}),(\Omega,\mathscr{B}_{\Omega})\right).$
- We call this Sample Space $(\Omega, \Omega^{\Omega}, \mathcal{B}_{\Omega}, \mathcal{P})$ the Universal Hilbert Cube.
- Interpretation: Countably infinite sequence of uniformly distributed samples (e.g. from a (pseudo-)random number generator).
- Note that it satisfies act 1-3 and the iso: $\Omega \times \Omega \cong \Omega$ (via "Hilbert's Hotel").

The Category of Quasi-Universal Spaces

- <u>Definition</u>: A **quasi-universal space** $(\mathcal{X}, \mathcal{X}^{\Omega})$ is per definition just a quasi-measurable space where the sample space Ω is the **universal Hilbert cube**.
- We abbreviate the category of quasi-universal spaces as QUS.

Countably Separated and Standard Quasi-Measurable Spaces

- Definition: A quasi-measurable space $(\mathcal{X},\mathcal{X}^\Omega)$ is called:
 - countably separated if there exists a countable subset $\mathscr{E} \subseteq \mathscr{B}_{\mathscr{X}}$ that separates the points of \mathscr{X} .

- standard quasi-measurable space if there are quasi-measurable maps:
 - $\iota: (\mathcal{X}, \mathcal{X}^{\Omega}) \to (\Omega, \Omega^{\Omega})$ and $r: (\Omega, \Omega^{\Omega}) \to (\mathcal{X}, \mathcal{X}^{\Omega})$ s.t.:
 - $r \circ \iota = \mathrm{id}_{\mathcal{X}}$.

Theorem: Disintegration of Markov Kernels

- Let $(\mathcal{X},\mathcal{X}^\Omega)$ and $(\mathcal{Y},\mathcal{Y}^\Omega)$ and $(\mathcal{Z},\mathcal{Z}^\Omega)$ be quasi-universal spaces.
 - Let $(\mathcal{Y}, \mathcal{Y}^{\Omega})$ be countably separated. and:
 - ullet either $\left(\mathcal{X},\mathcal{X}^\Omega\right)$ or $\left(\mathcal{Z},\mathcal{Z}^\Omega\right)$ be a *standard* quasi-universal space.
- Then the product of Markov kernels:
 - \otimes : $\mathcal{P}(\mathcal{X})^{\mathcal{Y} \times \mathcal{I}} \times \mathcal{P}(\mathcal{Y})^{\mathcal{I}} \to \mathcal{P}(\mathcal{X} \times \mathcal{Y})^{\mathcal{I}}$
 - is a (surjective) quotient map of quasi-universal spaces.
- More concretely, for every $P(X,Y|Z) \in \mathcal{P}(\mathcal{X} \times \mathcal{Y})^{\mathcal{Z}}$ there exists $P(X|Y,Z) \in \mathcal{P}(\mathcal{Y})^{\mathcal{Y} \times \mathcal{Z}}$ such that: $P(X,Y|Z) = P(X|Y,Z) \otimes P(Y|Z)$.

Conditional Kolmogorov Extension Theorem

- Let $(\mathcal{X}_n, \mathcal{X}_n^{\Omega})$, $n \in \mathbb{N}$, a sequence of *standard* quasi-universal spaces and $(\mathcal{Z}, \mathcal{Z}^{\Omega})$ be any quasi-universal space.
 - Assume we have $Q_n(X_{0:n}|Z) \in \mathcal{P}\left(\mathcal{X}_{0:n}\right)^{\mathcal{Z}}$ such that for every $n \in \mathbb{N}$:
 - $\operatorname{pr}_{0:n,*}Q_{n+1}(X_{0:n+1}|Z) = Q_n(X_{0:n}|Z).$
- Then there exists a unique $Q(X_{\mathbb{N}} | Z) \in \mathcal{P}\left(\mathcal{X}_{\mathbb{N}}\right)^{\mathcal{Z}}$ such that:
 - $\operatorname{pr}_{0:n,*}Q(X_{0:n+1}|Z) = Q_n(X_{0:n}|Z)$ for all $n \in \mathbb{N}$,
 - $\text{where } \mathcal{X}_{\mathbb{N}} := \prod_{n \in \mathbb{N}} \mathcal{X}_n.$

Conditional De Finetti Theorem

- $(\mathcal{X},\mathcal{X}^\Omega)$ standard quasi-universal spaces, $(\mathcal{Z},\mathcal{Z}^\Omega)$ any quasi-universal space.
- For a Markov kernel $Q(X_{\mathbb{N}} | Z) \in \mathscr{P}\left(\mathscr{X}^{\mathbb{N}}\right)^{\mathscr{Z}}$ the following is equivalent:
 - $Q(X_{\mathbb{N}} | Z)$ is **exchangable**, i.e. invariant under all finite permuations: $\rho : \mathbb{N} \cong \mathbb{N}$.
 - There exists a quasi-universal space \mathcal{Y} and $K(X|Y) \in \mathcal{P}(\mathcal{X})^{\mathcal{Y}}$ and $P(Y|Z) \in \mathcal{P}(\mathcal{Y})^{\mathcal{Z}}$ such that :

$$Q(X_{\mathbb{N}}|Z) = \left(\bigotimes_{n \in \mathbb{N}} K(X_n|Y)\right) \circ P(Y|Z).$$

• In this case we can w.l.o.g. take: $\mathscr{Y} = \mathscr{P}(\mathscr{X})$ and $K(X \in A \mid Y = P) := P(A)$.

Transitional Conditional Independence

- Consider a Markov kernel: $P(X, Y, Z | T) \in \mathcal{P}(\mathcal{X} \times \mathcal{Y} \times \mathcal{Z})^{\mathcal{T}}$.
- We say that X is **conditional independent** of Y given Z w.r.t. $P(X, Y, Z \mid T)$,
 - in symbols: $X \perp\!\!\!\perp Y \mid Z$ if:
 - there exists a Markov kernel $Q(X|Z) \in \mathcal{P}(\mathcal{X})^{\mathcal{Z}}$ such that:
 - $P(X, Y, Z \mid T) = Q(X \mid Z) \otimes P(Y, Z \mid T)$.

Partially Generic Causal Bayesian Networks

- A partially generic causal Baysian network per definition consists of:
 - a conditional directed acyclic graph (CDAG): G = (J, V, E),
 - \bullet an input variable X_j on a quasi-universal space \mathcal{X}_j for each $j\in J$,
 - an output variable X_v on a *standard* quasi-universal space \mathcal{X}_v for each $v \in V$,
 - an exceptional set: $W \subseteq V$,
 - a Markov kernel: $P_v(X_v|X_{\operatorname{Pa}^G(v)})\in \mathscr{P}(\mathscr{X}_v)^{\mathscr{X}_{\operatorname{Pa}^G(v)}}$ for $v\in V\backslash W$.

Partially Generic Causal Bayesian Networks

- For a partially generic causal Baysian network with exceptional set W we introduce for $w \in W$:
 - an indicator variable: $I_w \to w$,
 - a quasi-universal space: $\mathcal{X}_{I_w} := \mathcal{P}(\mathcal{X}_w)^{\mathcal{X}_{\operatorname{Pa}^{G(w)}}}$,
 - a "generic" Markov kernel:

•
$$P_w\left(X_w \in A \mid X_{Pa^G(w)} = x, X_{I_w} = Q\right) := Q\left(X_w \in A \mid X_{Pa^G(w)} = x\right).$$

• So we get a joint Markov kernel: $P(X_V, X_J, X_{I_W} | X_J, X_{I_W})$.

Theorem: Global Markov Property

ullet For every partially generic causal Bayesian network with exceptional set W

and any subsets: $A, B, C \subseteq V \cup I_W \cup J$ we have the implication:

$$\bullet A \perp B \mid C \Longrightarrow X_A \perp \!\!\!\perp X_B \mid X_C.$$

(Proposed) Answers

Answers - Stochastic Process

• Definition: A stochastic process is a quasi-measurable map:

•
$$X: \Omega \to \mathcal{X}^{\mathcal{T}}, \qquad \omega \mapsto (t \mapsto X(\omega)(t)).$$

• Lemma: This is *equivalent* to a quasi-measurable map: $X: \Omega \times \mathcal{I} \to \mathcal{X}$, $(\omega, t) \mapsto X(\omega, t)$.

• Lemma: The map:
$$\mathcal{X}^{\mathcal{T}} \to \prod_{t \in \mathcal{T}} \mathcal{X}$$
, $X \mapsto (X(t))_{t \in \mathcal{T}}$, is quasi-measurable.

- Lemma: If $T: \Omega \to \mathcal{T}$ is quasi-measurable (random time) then the map:
 - $\Omega \to \mathcal{X}$, $\omega \mapsto X(\omega)(T(\omega))$ is again quasi-measurable.

Answers - Probabilistic Programs

- <u>Definition</u>: A **probabilistic program** with input $x \in \mathcal{X}$ and output $z \in \mathcal{Z}$ is quasi-measurable map: $\mathcal{X} \to \mathcal{P}(\mathcal{Z})$.
- Theorem: We have the natural curry / uncurry isomorphism:

• QMS
$$\left(\mathcal{X} \times \mathcal{Y}, \mathcal{P}\left(\mathcal{Z}\right)\right) \cong$$
 QMS $\left(\mathcal{X}, QMS\left(\mathcal{Y}, \mathcal{P}(\mathcal{Z})\right)\right)$

- Theorem: QMS is a quasitopos, thus allows for dependent type theory.
- <u>Theorem</u>: The triple $(\mathcal{P}, \delta, \mathbb{M})$ forms a **strong probability monad** on the category of quasi-measurable spaces QMS (for certain sample spaces, e.g. the universal Hilbert cube). Thus allows for **higher-order probabilistic programs**.

- * Partially generic causal Bayesian networks can model graphical models with non-random input variables.
- * Transitional conditional independence also works with non-random input variables.
- Theorem: Global Markov Property: For $A,B,C\subseteq V\cup I_W\cup J$ we have:
 - $\bullet A \perp B \mid C \Longrightarrow X_A \perp \!\!\!\perp X_B \mid X_C.$
- Example: Here Q(Y|X) is a non-random input variable with values in $\mathscr{L}:=\mathrm{QUS}\left(\mathscr{X},\mathscr{P}(\mathscr{Y})\right)$
 - ullet Then Y is determined by the new quasi-measurable mechanism:

•
$$\mathscr{L} \times \mathscr{X} \to \mathscr{P}(\mathscr{Y}), \quad (Q(Y|X), x) \mapsto Q(Y|X = x).$$

• We can now read off the graph: $Z \perp \!\!\! \perp X, Q(Y|X), Q(X) \mid Y$.

Answers - Causal Assumptions

- Model potential outcome as quasi-measurable map / random function:
 - $G: \Omega \to \mathscr{Y}^{\mathscr{X}}$
- Potential outcome under treatment X = x then: $Y_x := G(x)$.
- Rephrase causal assumptions:
 - Strong Ignorability: $X \perp \!\!\! \perp G \mid Z$,
 - Consistency: Y = G(X).
- Everything is well-defined and quasi-measurable.

Answers - Counterfactual Probabilities

- Theorem: Disintegration of Markov kernels.
- Model potential outcome as: $G \in (\mathcal{Y}^{\mathcal{X}})^{\Omega}$
- ullet Assume that ${\mathscr X}$ to countably separated quasi-universal space.
- Then via the disintegration theorem there exists conditional:
 - $P(G|X) \in \mathcal{P}(\mathcal{G})^{\mathcal{X}}$ such that $P(G,X) = P(G|X) \otimes P(X)$.
- Evaluation maps and push-forwards are quasi-measurable, which implies:
 - $C(A \mid x, x') := P(G(x) \in A \mid X = x')$ defines:
 - well-defined and quasi-measurable $C \in \mathcal{P}(\mathcal{Y})^{\mathcal{X} \times \mathcal{X}}$
- So, conditional counterfactual probabilities are well-defined and quasi-measurable.

Answers - Statistics and Probability Theory

- For (standard) quasi-universal spaces we at least can do the following:
 - Theorem: Disintegration of Markov kernels.
 - Remark: This allows for Bayes' Rule and thus Bayesian Statistics.
 - Theorem: Fubini Theorem.
 - Theorem: Conditional de Finetti Theorem.
 - Theorem: Kolmogorov Extension Theorem.
 - <u>Theorem</u>: Global Markov Property for graphical models like partially generic causal Bayesian networks.

Recommendation

- For probabilistic programming, graphical models, causality, statistics, etc.
 - use for:
 - sample space —> the universal Hilbert cube
 - replace:
 - measurable spaces —> quasi-measurable spaces
 - measurable maps —> quasi-measurable maps
 - categorical construction in Meas —> categorical construction in QMS
- study more of the (classical) theory in this framework (e.g. martingales).
 - Patrick Forré, Quasi-Measurable Spaces, 2021, https://arxiv.org/abs/2109.11631.

More about Convenient Categories

Probability Theory

- * Quasi-Borel Spaces by Chris Heunen, Ohad Kammar, Sam Staton, Hongseok Yang
- * Quasi-Measurable Spaces by Patrick Forré, https://arxiv.org/abs/2109.11631

Topology

- Compactly Generated Weakly Hausdorff Spaces (CGWH) by Witold Hurewicz, David Gale, Norman Steenrod, John
 C. Moore, Michael C. McCord, Neil Strickland, et al (<u>script</u>)
- * Condensed Sets by Peter Scholz, Dustin Clausen (script)

Differential Geometry

• **Diffeological Spaces** - by Kuo Tsai Chen, Jean-Marie Souriau, Patrick Iglesias-Zemmour, John Baez, Alexander Hoffnung, Andrew Stacey, et al.

Thank you for your attention!