"Métricas custom para reducción de falsos positivos en clasificación binaria - fraude"

Informe Técnico: Detección de Fraudes Financieros con LightGBM

1. Resumen

Se abordó el reto de optimizar la detección de fraudes en un dataset de transacciones bancarias realizadas dentro de EE.UU., simulando transacciones internacionales y aplicando múltiples estrategias de ingeniería de variables y evaluación personalizada. Se entrenaron modelos LightGBM con métricas clásicas y funciones de evaluación personalizadas. El objetivo final fue reducir los falsos positivos sin afectar significativamente el recall.

2. Metodología

Simulación de transacciones internacionales:

- Se asignó a cada estado un centro geográfico (centroide) y un radio máximo estimado.
- Se calculó la distancia entre la transacción y el centroide mediante la fórmula de Haversine.
- Si la distancia excedía el radio del estado, se etiquetó como transacción internacional (is international = 1).

Ingeniería de Características Geográficas:

- Variables como dist_to_state_center, state_radius_ratio, is_borderline, extreme_distance_flag, dist_category, distance_diff_from_limit, is_centered, entre otras.

Ingeniería de Variables Generales:

- time_since_last_tx: tiempo desde la última transacción.
- delta_amt: diferencia de monto entre transacciones.

- tx_rolling_freq: frecuencia de las últimas 5 transacciones.
- z_amt: z-score por cliente del monto.
- merchant_tx_count, repeat_rate, amt_ratio_month, merchant_repeat, days_since_last_tx.

Entrenamiento con LightGBM:

- Entrenamiento inicial con AUC > 0.999, umbral estándar (0.5).
- Ajuste de umbral usando best_threshold_v3() para maximizar F1 manteniendo Recall ≥ 0.90.

Métricas personalizadas:

- feval_ratio_fp_tp: penaliza falsos positivos.
- feval_f1_penalized: penaliza el F1 si hay muchos FP.
- feval precision at recall: requiere recall ≥ 0.5 para validar la precisión.

3. Implementación Práctica

- Dataset filtrado temporalmente (diciembre 2020 como test).
- SMOTE aplicado en transacciones internacionales
- Entrenamiento de tres modelos con distintas estrategias:
- -Ponderación de clases.
- -Métrica personalizada por modelo.
- -Optimizado por umbral con Recall ≥ 0.8/0.9 y Ratio FP/TP ≤ 2.0/3.0.

4. Análisis de Resultados

4.1 Modelo General (Full dataset)

Conjunto	AUC	Precisión	Recall	F1	Ratio FP/TP
Validación	0.9997	0.946	0.919	0.933	1.057
(0.5)					
Test (0.5)	0.9983	0.934	0.818	0.872	1.071
Test	0.9983	0.698	0.903	0.787	1.433
(0.0079)					

4.2 Modelo sobre Transacciones Internacionales

Conjunto	AUC	Precisión	Recall	F1	Ratio FP/TP
Test	0.9989	0.879	0.764	0.817	1.137

4.3 Modelos con Métricas Personalizadas

Modelo	AUC	Precisión	Recall	F1	Ratio FP/TP	Umbral
F1_Penalizado	0.9981	0.922	0.822	0.869	1.085	0.7075
Precision@Recall≥0.8	0.9890	0.746	0.806	0.775	1.341	0.0051
Ratio_FP_TP	0.9780	0.560	0.802	0.659	1.787	0.0111

5. Conclusiones

- Modelo General: excelente separación con AUC > 0.998. Ajustar el umbral permite alcanzar Recall ≥ 90% con aceptable precisión (69.8%).
- Modelo Internacional: muy útil para contextos geográficamente anómalos, mantiene alta AUC y ratio FP/TP bajo.
- Modelo con F1_Penalizado: mejor balance general. Precisión > 92%, recall > 82%, ratio FP/TP ≤ 1.1.
- Recomendación: utilizar el modelo F1_Penalizado en producción, con validación sobre el umbral ajustado, monitoreo continuo de falsos positivos y refinamiento periódico del modelo.