Package 'temStaR'

September 16, 2022					
Title Tempered Stable Distribution					
Version 0.90					
Author Aaron Y.S. Kim [aut, cre]					
Maintainer Aaron Y.S. Kim <aaron.kim@girininst.com></aaron.kim@girininst.com>					
Description This package provides useful tools to use the multivariate normal tempered stable distribution and process					
License `use_mit_license()`					
Encoding UTF-8					
LazyData true					
Roxygen list(markdown = TRUE)					
RoxygenNote 7.2.1					
Imports functional,					
R topics documented: changeCovMtx2Rho 2 chf_NTS 3 chf_stdNTS 4 copulaStdNTS 5 cvarGauss 5 cvarmarginalmnts 5					

2 changeCovMtx2Rho

X		37
	setPortfolioParam	
	rnts	
	rmnts subord	
	rmnts	
	qnts	
	qmarginalmnts	
	portfolioVaRmnts	
	portfolioCVaRmnts	
	pnts	
	pmnts	
	pmarginalmnts	
	moments stdNTS	
	moments NTS	
	mctVaRnts	
	mctVaRmnts	
	mctStdDev	
	mctCVaRnts	
	mctCVaRmnts	
	ipnts	
	importantSamplining	
	getPortNTSParam	
	getGammaVec	
	gensamplepathnts	
	fitstdntsFixAlphaThata	
	fitstdnts	
	fitnts	
	fitmnts_par	
	fitmnts	
	dnts	
	dmnts	
	dmarginalmnts	
	dCVaR_numint	
	dcopulaStdNTS	
	dBeta	
	ID .	

changeCovMtx2Rho

changeCovMtx2Rho

Description

Change coverance matrix to Rho matrix.

Usage

changeCovMtx2Rho(CovMtx, alpha, theta, betaVec)

chf_NTS 3

chf_NTS

chf_NTS

Description

chf_NTS calculates Ch.F of the NTS distribution with parameters $(\alpha, \theta, \beta, \gamma, \mu)$. If a time parameter value is given, it calculates Ch.F of the NTS profess $\phi(u) = E[\exp(iu(X(t+s)-X(s)))] = \exp(t\log(E[\exp(iuX(1))]))$, where X is the NTS process generated by the NTS distribution with parameters $(\alpha, \theta, \beta, \gamma, \mu)$.

Usage

```
chf_NTS(u, param)
```

Arguments

ntsparam

u An array of u

A vector of the NTS parameters $(\alpha, \theta, \beta, \gamma, \mu)$. For NTS process case it is a

vector of parameters $(\alpha, \theta, \beta, \gamma, \mu, t)$.

Value

Characteristic function of the NTS distribution

```
library("temStaR")
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
ntsparam <- c(alpha, theta, beta, gamma, mu)</pre>
u \leftarrow seq(from = -2*pi, to = 2*pi, length.out = 101)
phi <- chf_NTS(u, ntsparam)</pre>
#Annual based parameters
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
#scaling annual parameters to one day
dt <- 1/250 #one day
ntsparam <- c(alpha, theta, beta, gamma, mu, dt)</pre>
u \leftarrow seq(from = -2*pi, to = 2*pi, length.out = 101)
phi <- chf_NTS(u, ntsparam)</pre>
```

4 chf_stdNTS

chf_stdNTS

chf_stdNTS

Description

chf_stdNTS calculates Ch.F of the standard NTS distribution with parameters (α, θ, β) . If a time parameter value is given, it calculates Ch.F of the standard NTS profess $\phi(u) = E[\exp(iu(X(t+s)-X(s)))] = \exp(t\log(E[\exp(iuX(1))]))$, where X is the standard NTS process generated by the standard NTS distribution with parameters (α, θ, β) .

Usage

```
chf_stdNTS(u, param)
```

Arguments

An array of u

ntsparam

A vector of the standard NTS parameters (α, θ, β) . For the standard NTS process case it is a vector of parameters $(\alpha, \theta, \beta, t)$.

Value

Characteristic function of the standard NTS distribution

```
library("temStaR")
alpha <- 1.2
theta <- 1
beta <- -0.2
ntsparam <- c(alpha, theta, beta)</pre>
u \leftarrow seq(from = -2*pi, to = 2*pi, length.out = 101)
phi <- chf_stdNTS(u, ntsparam)</pre>
#Annual based parameters
alpha <- 1.2
theta <- 1
beta <- -0.2
#scaling annual parameters to one day
dt <- 1/250 #one day
ntsparam <- c(alpha, theta, beta, gamma, mu, dt)</pre>
u \leftarrow seq(from = -2*pi, to = 2*pi, length.out = 101)
phi <- chf_stdNTS(u, ntsparam)</pre>
```

copulaStdNTS 5

copulaStdNTS	copulaStdNTS
--------------	--------------

Description

copulaStdNTS calculates the stdNTS copula values

Usage

```
copulaStdNTS(u, st, subTS = NULL)
```

References

Y. S. Kim, D. Volkmann (2013), Normal Tempered Stable Copula, Applied Mathematics Letters, 26(7), 676-680 https://www.sciencedirect.com/science/article/pii/S0893965913000384

cvarGauss cvarGauss

Description

Calculate the CVaR for the normal distributed market model. Developer's version.

Usage

```
cvarGauss(eta, mu = 0, sigma = 1)
```

cvarmarginalmnts cvarmarginalmnts

Description

cvarmarginalmnts calculates the CVaR of the n-th element of the multivariate NTS distributed random variable.

Usage

```
cvarmarginalmnts(eta, n, st)
```

Arguments

eta the significant level for CVaR. Real value between 0 and 1.

n the n-th element to be calculated.

st Structure of parameters for the n-dimensional NTS distribution.

6 cvarnts

cvarnts

cvarnts

Description

cvarnts calculates Conditional Value at Risk (CVaR, or expected shortfall ES) of the NTS market model with parameters $(\alpha, \theta, \beta, \gamma, \mu)$. If only three parameters are given, it calculates CVaR of the standard NTS distribution with parameter (α, θ, β)

Usage

```
cvarnts(eps, ntsparam)
```

Arguments

eps the significant level for CVaR. Real value between 0 and 1.

ntsparam A vector of the NTS parameters $(\alpha, \theta, \beta, \gamma, \mu)$. A vector of the standard NTS

parameters (α, θ, β) .

Value

CVaR of the NTS distribution.

References

- Y. S. Kim, S. T. Rachev, M. L. Bianchi, and F. J. Fabozzi (2010), Computing VaR and AVaR in infinitely divisible distributions, Probability and Mathematical Statistics, 30 (2), 223-245.
- S. T. Rachev, Y. S. Kim, M. L. Bianchi, and F. J. Fabozzi (2011), Financial Models with Levy Processes and Volatility Clustering, John Wiley & Sons

```
library("temStaR")
alpha <- 1.2
theta <- 1
beta <- -0.2
ntsparam <- c(alpha, theta, beta)</pre>
u \leftarrow c(0.01, 0.05)
q <- cvarnts(u, ntsparam)</pre>
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
\verb|ntsparam| <- c(alpha, theta, beta, gamma, mu)|\\
u \leftarrow c(0.01, 0.05)
q <- cvarnts(u, ntsparam)</pre>
#Annual based parameters
alpha <- 1.2
theta <- 1
```

dBeta 7

```
beta <- -0.2 gamma <- 0.3 mu <- 0.1 #scaling annual parameters to one day dt <- 1/250 #one day ntsparam <- c(alpha, theta, beta, gamma, mu, dt) u <- c(0.01, 0.05) q <- cvarnts(u, ntsparam)
```

dBeta

dBeta

Description

The first derivative of the beta. Developer's version.

Usage

```
dBeta(n, w, betaArray, covMtx)
```

dcopulaStdNTS

dcopulaStdNTS

Description

dcopulaStdNTS calculates density of the stdNTS copula.

Usage

```
dcopulaStdNTS(u, st, subTS = NULL)
```

References

Y. S. Kim, D. Volkmann (2013), Normal Tempered Stable Copula, Applied Mathematics Letters, 26(7), 676-680 https://www.sciencedirect.com/science/article/pii/S0893965913000384

dCVaR_numint

 $dCVaR_numint$

Description

The first derivative of CVaR for the beta parameter of the stdNTS. Developer's version.

Usage

```
dCVaR_numint(eta, alpha, theta, beta, N = 200, rho = 0.1)
```

8 dmnts

dinvCdf_stdNTS

 $dinvCdf_stdNTS$

Description

The first derivative of inverse CDF for the beta parameter of the stdNTS. Developer's version.

Usage

```
dinvCdf_stdNTS(eta, alpha, theta, beta)
```

dmarginalmnts

dmarginalmnts

Description

dmarginalmnts calculates the marginal density of the n-th element of the multivariate NTS distributed random variable.

Usage

```
dmarginalmnts(x, n, st)
```

Arguments

the x such that $f(x) = \frac{d}{dx} P(X_n < x)$

n the n-th element to be calculated.

st Structure of parameters for the n-dimensional NTS distribution.

dmnts dmnts

Description

dmnts calculates the density of the multivariate NTS distribution: $f(x_1, \cdots, x_n) = \frac{d^n}{dx_1 \cdots dx_n} P(x_n < R_1, \cdots, x_n < R_n)$. The multivariate NTS random vector $R = (R_1, \cdots, R_n)$ is defined

$$R = \mu + diag(\sigma)X,$$

where

X follows $stdNTS_n(\alpha, \theta, \beta, \Sigma)$

Usage

```
dmnts(x, st, subTS = NULL)
```

dmnts 9

Arguments

```
x array of the (x_1,\cdots,x_n) st Structure of parameters for the n-dimensional NTS distribution. st$ndim: dimension st$mu: \mu mean vector (column vector) of the input data. st$sigma: \sigma standard deviation vector (column vector) of the input data. st$alpha: \alpha of the std NTS distribution (X). st$theta: \theta of the std NTS distribution (X). st$beta: \beta vector (column vector) of the std NTS distribution (X). st$Rho: \rho matrix of the std NTS distribution (X). numofsample number of samples.
```

Value

Simulated NTS random vectors

References

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

```
library("temStaR")
library(mvtnorm)
strPMNTS <- list(ndim = 2,</pre>
              mu = c(0.5, -1.5),
              sigma = c(2, 3),
              alpha = 0.1,
              theta = 3,
              beta = c(0.1, -0.3),
              Rho = matrix( data = c(1.0, 0.75, 0.75, 1.0),
                            nrow = 2, ncol = 2)
dmnts(c(0.6, -1.0), st = strPMNTS)
strPMNTS <- list(ndim = 2,</pre>
                 mu = c(0, 0, 0),
                 sigma = c(1, 1, 1),
                 alpha = 0.1,
                 theta = 3,
                 beta = c(0.1, -0.3, 0),
                 Rho = matrix(
                     data = c(1.0, 0.75, 0.1, 0.75, 1.0, 0.2, 0.1, 0.2, 1.0),
                     nrow = 3, ncol = 3)
pmnts(c(0,0,0), st = strPMNTS)
dmnts(c(0,0,0), st = strPMNTS)
```

10 dnts

dnts dnts

Description

dnts calculates pdf of the NTS distribution with parameters $(\alpha, \theta, \beta, \gamma, \mu)$. If only three parameters are given, it calculates pdf of the standard NTS distribution with parameter (α, θ, β) If a time parameter value is given, it calculates pdf of the NTS profess f(x)dx = d(P((X(t+s) - X(s)) < x)), where X is the NTS process generated by the NTS distribution with parameters $(\alpha, \theta, \beta, \gamma, \mu)$.

Usage

```
dnts(xdata, ntsparam)
```

Arguments

xdata An array of x

ntsparam A vector of the NTS parameters $(\alpha, \theta, \beta, \gamma, \mu)$. For the NTS process case it is a

vector of parameters $(\alpha, \theta, \beta, \gamma, \mu, t)$. A vector of the standard NTS parameters

 (α, θ, β) .

Value

Density of NTS distribution

References

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

```
library("temStaR")
alpha <- 1.2
theta <- 1
beta <- -0.2
ntsparam \leftarrow c(alpha, theta, beta)
x \leftarrow seq(from = -6, to = 6, length.out = 101)
d <- dnts(x, ntsparam)</pre>
plot(x,d,type = 'l')
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
ntsparam <- c(alpha, theta, beta, gamma, mu)</pre>
x \leftarrow seq(from = -2, to = 2, by = 0.01)
d <- dnts(x, ntsparam)</pre>
plot(x,d,type = 'l')
```

fitmnts 11

```
#Annual based parameters
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
#scaling annual parameters to one day
dt <- 1/250 #one day
ntsparam <- c(alpha, theta, beta, gamma, mu, dt)
x <- seq(from = -0.02, to = 0.02, length.out = 101)
d <- dnts(x, ntsparam)
plot(x,d,type = '1')</pre>
```

fitmnts

fitmnts

Description

```
fitmnts fit parameters of the n-dimensional NTS distribution.
```

```
r=\mu+diag(\sigma)X where X \mbox{ follows } stdNTS_n(\alpha,\theta,\beta,\Sigma)
```

Usage

```
\code{res <- fitmnts(returndata, n)}
\code{res <- fitmnts(returndata, n, alphaNtheta = c(alpha, theta))}
\code{res <- fitmnts(returndata, n, stdflag = TRUE ) }
\code{res <- fitmnts(returndata, n, alphaNtheta = c(alpha, theta), stdflag = TRUE)}</pre>
```

Arguments

Raw data to fit the parameters. The data must be given as a matrix form. Each

column of the matrix contains a sequence of asset returns. The number of row

of the matrix is the number of assets.

n Dimension of the data. That is the number of assets.

alphaNtheta If α and θ are given, then put those numbers in this parameter. The function fixes

those parameters and fits other remaining parameters. If you set alphaNtheta

= NULL, then the function fits all parameters including α and θ .

Value

Structure of parameters for the n-dimensional NTS distribution.

res\$mu : μ mean vector of the input data.

res $sigma: \sigma$ standard deviation vector of the input data.

res\$alpha : α of the std NTS distribution (X). res\$theta : θ of the std NTS distribution (X).

res\$beta : β vector of the std NTS distribution (X).

res\$Rho: ρ matrix of the std NTS distribution (X), which is correlation matrix of epsilon.

res\$CovMtx: Covariance matrix of return data r.

12 fitmnts_par

References

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

Examples

```
library(functional)
library(nloptr)
library(pracma)
library(spatstat)
library(Matrix)
library(quantmod)
getSymbols("^GSPC", src="yahoo", from = "2016-1-1", to = "2020-08-31")
pr1 <- as.numeric(GSPC$GSPC.Adjusted)</pre>
getSymbols("^DJI", src="yahoo", from = "2016-1-1", to = "2020-08-31")
pr2 <- as.numeric(DJI$DJI.Adjusted)</pre>
returndata <- matrix(data = c(diff(log(pr1)), diff(log(pr2))),</pre>
                      ncol = 2, nrow = (length(pr1)-1))
res <- fitmnts( returndata = returndata, n=2 )</pre>
#Fix alpha and theta.
\#\text{Estimate} alpha dna theta from DJIA and use those parameter for IBM, INTC parameter fit.
getSymbols("^DJI", src="yahoo", from = "2016-1-1", to = "2020-08-31")
prDJ <- as.numeric(DJI$DJI.Adjusted)</pre>
ret <- diff(log(prDJ))</pre>
ntsparam <- fitnts(ret)</pre>
getSymbols("IBM", src="yahoo", from = "2016-1-1", to = "2020-08-31")
pr1 <- as.numeric(IBM$IBM.Adjusted)</pre>
getSymbols("INTC", src="yahoo", from = "2016-1-1", to = "2020-08-31")
pr2 <- as.numeric(INTC$INTC.Adjusted)</pre>
returndata <- matrix(data = c(diff(log(pr1)), diff(log(pr2))),</pre>
                      ncol = 2, nrow = (length(pr1)-1))
res <- fitmnts( returndata = returndata,</pre>
                 n = 2
                 alphaNtheta = c(ntsparam["alpha"], ntsparam["theta"]) )
```

fitmnts_par

fitmnts

Description

fitmnts fit parameters of the n-dimensional NTS distribution. A parallel version of fitmnts()

Usage

```
fitmnts_par(
  returndata,
  n,
```

fitnts 13

```
alphaNtheta = NULL,
stdflag = FALSE,
parallelSocketCluster = NULL
)
```

Examples

```
library(functional)
library(nloptr)
library(pracma)
library(spatstat)
library(Matrix)
library(foreach)
library(doParallel)
library(quantmod)
getSymbols("^GSPC", src="yahoo", from = "2016-1-1", to = "2020-08-31")
pr1 <- as.numeric(GSPC$GSPC.Adjusted)</pre>
getSymbols("^DJI", src="yahoo", from = "2016-1-1", to = "2020-08-31")
pr2 <- as.numeric(DJI$DJI.Adjusted)</pre>
returndata <- matrix(data = c(diff(log(pr1)), diff(log(pr2))),</pre>
                      ncol = 2, nrow = (length(pr1)-1))
numofcluster <- detectCores()</pre>
cl <- makePSOCKcluster(numofcluster)</pre>
registerDoParallel(cl)
res <- fitmnts_par( returndata = returndata, n=2, parallelSocketCluster = cl )</pre>
stopCluster(cl)
```

fitnts

fitnts

Description

fitnts fit parameters $(\alpha, \theta, \beta, \gamma, \mu)$ of the NTS distribution. This function using the curvefit method between the empirical cdf and the NTS cdf.

Usage

```
\code{fitnts(rawdat)}
\code{fitnts(rawdat), ksdensityflag = 1}
\code{fitnts(rawdat, initialparam = c(alpha, theta, beta, gamma, mu))}
\code{fitnts(rawdat, initialparam = c(alpha, theta, beta, gamma, mu)), ksdensityflag = 1}
\code{fitnts(rawdat, initialparam = c(alpha, theta, beta, gamma, mu)), maxeval = 100, ksdensityflag
```

Arguments

rawdat

Raw data to fit the parameters.

initialparam

A vector of initial NTS parameters. This function uses the nloptr package. If it has a good initial parameter then estimation performs better. If users do not know a good initial parameters, then just set it as initialparam=NaN, that is default. The function cffitnts() may be helpful to find the initial parameters.

14 fitstdnts

maxeval Maximum evaluation number for nloptr. The iteration stops on this many func-

tion evaluations.

ksdensityflag This function fit the parameters using the curvefit method between the empirical

cdf and the NTS cdf. If ksdensityflag = 1 (default), then the empirical cdf is calculated by the kernel density estimation. If ksdensityflag = 0, then the

empirical cdf is calculated by the empirical cdf.

Value

Estimated parameters

References

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

Examples

```
library("temStaR")
library("quantmod")
getSymbols("^GSPC", src="yahoo", from = "2010-1-1", to = "2020-12-31")
pr <- as.numeric(GSPC$GSPC.Adjusted)</pre>
ret <- diff(log(pr))</pre>
ntsparam <- fitnts(ret)</pre>
Femp = ecdf(ret)
x = seq(from=min(ret), to = max(ret), length.out = 100)
cemp = Femp(x)
ncdf = pnts(x, c(ntsparam))
plot(x,ncdf,type = '1', col = "red")
points(x,cemp, type = 'l', col = "blue")
a = density(ret)
p = dnts(x, ntsparam)
plot(x,p,type = 'l', col = "red")
lines(a,type = 'l', col = "blue")
```

fitstdnts

fitstdnts

Description

fitstdnts fit parameters (α, θ, β) of the standard NTS distribution. This function using the curvefit method between the empirical cdf and the standard NTS cdf.

Usage

```
\code{fitstdnts(rawdat)}
\code{fitstdnts(rawdat), ksdensityflag = 1}
\code{fitstdnts(rawdat, initialparam = c(alpha, theta, beta))}
\code{fitstdnts(rawdat, initialparam = c(alpha, theta, beta)), ksdensityflag = 1}
\code{fitstdnts(rawdat, initialparam = c(alpha, theta, beta)), maxeval = 100, ksdensityflag = 1}
```

Arguments

rawdat Raw data to fit the parameters.

initialparam A vector of initial standard NTS parameters. This function uses the nloptr

package. If it has a good initial parameter then estimation performs better. If users do not know a good initial parameters, then just set it as initialparam=NaN,

that is default.

maxeval Maximum evaluation number for nloptr. The iteration stops on this many func-

tion evaluations.

ksdensityflag This function fit the parameters using the curvefit method between the empirical

cdf and the standard NTS cdf. If ksdensityflag = 1 (default), then the empirical cdf is calculated by the kernel density estimation. If ksdensityflag = 0,

then the empirical cdf is calculated by the empirical cdf.

Value

Estimated parameters

References

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

Examples

```
library("temStaR")
library("quantmod")
getSymbols("^GSPC", src="yahoo", from = "2010-1-1", to = "2020-12-31")
pr <- as.numeric(GSPC$GSPC.Adjusted)</pre>
ret <- diff(log(pr))</pre>
stdret <- (ret-mean(ret))/sd(ret)</pre>
stdntsparam <- fitstdnts(stdret)</pre>
Femp = ecdf(stdret)
x = seq(from=min(stdret), to = max(stdret), length.out = 100)
cemp = Femp(x)
ncdf = pnts(x, c(stdntsparam))
plot(x,ncdf,type = 'l', col = "red")
lines(x,cemp, type = '1', col = "blue")
a = density(stdret)
p = dnts(x,stdntsparam)
plot(x,p,type = 'l', col = "red", ylim = c(0, max(a$y, p)))
lines(a,type = 'l', col = "blue")
```

fitstdntsFixAlphaThata

fitstdntsFixAlphaThata

Description

Fit beta of stdNTS distribution with fixed alpha and theta.

16 gensamplepathnts

Usage

```
fitstdntsFixAlphaThata(
  rawdat,
  alpha,
  theta,
  initialparam = NaN,
  maxeval = 100,
  ksdensityflag = 1
)
```

gensamplepathnts

gensamplepathnts

Description

gensamplepathnts generate sample paths of the NTS process with parameters $(\alpha, \theta, \beta, \gamma, \mu)$. If only three parameters are given, it generate sample paths of the standard NTS process with parameters (α, θ, β) .

Usage

```
gensamplepathnts(npath, ntimestep, ntsparam, dt)
```

Arguments

npath Number of sample paths $\begin{array}{ll} \text{number of sample paths} \\ \text{number of time step} \\ \text{ntsparam} & \text{A vector of the NTS parameters } (\alpha, \theta, \beta, \gamma, \mu). \text{ A vector of the standard NTS } \\ \text{parameters } (\alpha, \theta, \beta). \\ \text{dt} & \text{the time length of one time step by the year fraction. "dt=1" means 1-year.} \\ \end{array}$

Value

Structure of the sample path. Matrix of sample path. Column index is time.

```
library("temStaR")
#standard NTS process sample path
alpha <- 1.2
theta <- 1
beta <- -0.2
ntsparam <- c(alpha, theta, beta)
npath <- 5
ntimestep <- 250
dt <- 1/250
simulation <- gensamplepathnts(npath, ntimestep, ntsparam, dt)
matplot(colnames(simulation), t(simulation), type = 'l')
#NTS process sample path
alpha <- 1.2</pre>
```

getGammaVec 17

```
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
ntsparam <- c(alpha, theta, beta, gamma, mu)
npath <- 5
ntimestep <- 250
dt <- 1/250
simulation <- gensamplepathnts(npath, ntimestep, ntsparam, dt)
matplot(colnames(simulation), t(simulation), type = 'l')</pre>
```

getGammaVec

getGammaVec

Description

beta to gamma in StdNTS

Usage

```
getGammaVec(alpha, theta, betaVec)
```

getPortNTSParam

getPortNTSParam

Description

Portfolio return with capital allocation weight is $R_p = \langle w, r \rangle$, which is a weighted sum of of elements in the N-dimensional NTS random vector. R_p becomes an 1-dimensional NTS random variable. getPortNTSParam find the parameters of R_p .

Usage

```
\code{res <- setPortfolioParam(strPMNTS,w)}
\code{res <- setPortfolioParam(strPMNTS,w, FALSE)}</pre>
```

Arguments

strPMNTS

Structure of parameters for the n-dimensional NTS distribution.

strPMNTS\$ndim: dimension

 $trPMNTS\$: μ mean vector (column vector) of the input data.

 ${\tt strPMNTS\$sigma}: \sigma {\tt standard} {\tt deviation} {\tt vector} ({\tt column} {\tt vector}) {\tt of} {\tt the} {\tt input}$

data.

strPMNTS\$alpha : α of the std NTS distribution (X).

strPMNTS\$theta: θ of the std NTS distribution (X).

strPMNTS\$beta: β vector (column vector) of the std NTS distribution (X).

res\$Rho : ρ matrix (Correlation) of the std NTS distribution (X).

resSigma: Covariance Σ matrix of return data r.

18 getPortNTSParam

```
\label{eq:capital allocation weight vector.} % \begin{tabular}{ll} & Capital allocation weight vector. \\ & If stdform is FALSE, then the return parameter has the following representation \\ & R_p = < w, r > = \mu + diag(\sigma)X, \\ & \text{where} \\ & X \text{ follows } stdNTS_1(\alpha,\theta,\beta,1). \\ & \text{If stdform is TRUE, then the return parameter has the following representation} \\ & R_p = < w, r > \text{follows } NTS_1(\alpha,\theta,\beta,\gamma,\mu,1) \\ \end{tabular}
```

Value

The weighted sum follows 1-dimensional NTS.

```
\begin{split} R_p = < w, r > &= \mu + diag(\sigma)X, \\ \text{where} \\ X \text{ follows } stdNTS_1(\alpha, \theta, \beta, 1). \\ \text{Hence we obtain} \\ \text{res$mu} : \mu \text{ mean of } R_p. \\ \text{res$sigma} : \sigma \text{ standard deviation of } R_p. \\ \text{res$alpha} : \alpha \text{ of } X. \\ \text{res$theta} : \theta \text{ of } X. \\ \text{res$beta} : \beta \text{ of } X. \end{split}
```

References

Proposition 2.1 of Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

importantSamplining 19

importantSamplining importantSamplining

Description

importantSamplining do the important sampling for the TS Subordinator.

Usage

```
importantSamplining(alpha, theta)
```

ipnts ipnts

Description

ipnts calculates inverse cdf of the NTS distribution with parameters $(\alpha, \theta, \beta, \gamma, \mu)$. If only three parameters are given, it calculates inverse cdf of the standard NTS distribution with parameter (α, θ, β)

Usage

```
ipnts(u, ntsparam, maxmin = c(-10, 10), du = 0.01)
```

Arguments

u Real value between 0 and 1 $\text{A vector of the NTS parameters } (\alpha, \theta, \beta, \gamma, \mu). \text{ A vector of the standard NTS parameters } (\alpha, \theta, \beta).$

Value

Inverse cdf of the NTS distribution. It is the same as quts function.

References

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

```
library("temStaR")
alpha <- 1.2
theta <- 1
beta <- -0.2
ntsparam <- c(alpha, theta, beta)
u <- seq(from = 0.01, to = 0.99, length.out = 99)
q <- ipnts(u, ntsparam)
plot(u,q,type = 'l')
alpha <- 1.2</pre>
```

20 mctCVaRmnts

```
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
ntsparam <- c(alpha, theta, beta, gamma, mu)</pre>
u \leftarrow seq(from = 0.01, to = 0.99, length.out = 99)
q <- ipnts(u, ntsparam)</pre>
plot(x,q,type = 'l')
#Annual based parameters
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
#scaling annual parameters to one day
dt <- 1/250 #one day
ntsparam \leftarrow c(alpha, theta, beta, gamma, mu, dt)
u \leftarrow seq(from = 0.01, to = 0.99, length.out = 99)
q <- ipnts(u, ntsparam)</pre>
plot(x,q,type = 'l')
```

mctCVaRmnts

mctCVaRmnts

Description

Calculate the marginal contribution to CVaR for the multivariate NTS market model: the random vector \boldsymbol{r} is

```
r = \mu + diag(\sigma)X where X \text{ follows } stdNTS_N(\alpha,\theta,\beta,\Sigma)
```

Usage

```
\code{mctCVaRmnts(eta, n, w, st)}
```

Arguments

eta	Significant level of CVaR.	
n	The targer stock to calculate the mctCVaR	
W	The capital allocation rate vector for the current portfolio	
st	Structure of parameters for the N-dimensional NTS distribution.	
	st\$ndim: Dimension of the model. Here st\$ndim=N.	
	$st\mbox{mu}: \mu$ mean vector (column vector) of the input data.	
	${\tt st\$sigma}: \sigma$ standard deviation vector (column vector) of the input data.	
	st\$alpha : α of the std NTS distribution (X).	
	st\$theta: θ of the std NTS distribution (X).	

mctCVaRnts 21

```
st$beta: \beta vector (column vector) of the std NTS distribution (X). st$Rho: \rho matrix of the std NTS distribution (X), which is correlation matrix of epsilon. st$CovMtx: Covariance matrix of return data r.
```

References

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

Examples

```
library(functional)
library(nloptr)
library(pracma)
library(spatstat)
library(Matrix)
library(quantmod)
library(mvtnorm)
library("temStaR")
#Fix alpha and theta.
#Estimate alpha dna theta from DJIA and use those parameter for IBM, INTL parameter fit.
getSymbols("^DJI", src="yahoo", from = "2020-8-25", to = "2020-08-31")
prDJ <- as.numeric(DJI$DJI.Adjusted)</pre>
ret <- diff(log(prDJ))</pre>
ntsparam <- fitnts(ret)</pre>
getSymbols("IBM", src="yahoo", from = "2016-1-1", to = "2020-08-31")
pr1 <- as.numeric(IBM$IBM.Adjusted)</pre>
getSymbols("INTL", src="yahoo", from = "2016-1-1", to = "2020-08-31")
pr2 <- as.numeric(INTL$INTL.Adjusted)</pre>
returndata <- matrix(data = c(diff(log(pr1)), diff(log(pr2))),</pre>
                      ncol = 2, nrow = (length(pr1)-1))
st <- fitmnts( returndata = returndata,</pre>
                n = 2
                 alphaNtheta = c(ntsparam["alpha"], ntsparam["theta"]) )
w \leftarrow c(0.3, 0.7)
eta <- 0.01
mctVaRmnts(eta, 1, w, st) #MCT-VaR for IBM
mctVaRmnts(eta, 2, w, st) #MCT-VaR for INTL
mctCVaRmnts(eta, 1, w, st) #MCT-CVaR for IBM
mctCVaRmnts(eta, 2, w, st) #MCT-CVaR for INTL
```

mctCVaRnts

mctCVaRnts

Description

Calculate the marginal contribution to CVaR for the multivariate NTS market model. Developer's version.

22 mctVaRmnts

Usage

```
mctCVaRnts(
  eta,
  n,
  w,
  covMtx,
  alpha,
  theta,
  betaArray,
  muArray,
  CVaR = NULL,
  dCVaR = NULL
)
```

 ${\tt mctStdDev}$

mctStdDev

Description

Morginal contribution to Risk for Standard Deviation.

Usage

```
mctStdDev(n, w, covMtx)
```

Arguments

n The targer stock to calculate the mctCVaR

w The capital allocation rate vector for the current portfolio

CovMtx Covariance matrix of return data.

mctVaRmnts

mctVaRmnts

Description

Calculate the marginal contribution to VaR for the multivariate NTS market model: the random vector \boldsymbol{r} is

```
r = \mu + diag(\sigma)X where X \text{ follows } stdNTS_N(\alpha,\theta,\beta,\Sigma)
```

Usage

```
\code{mctVaRmnts(eta, n, w, st)}
```

mctVaRmnts 23

Arguments

eta	Significant level of CVaR.
n	The targer stock to calculate the mctCVaR
W	The capital allocation rate vector for the current portfolio
st	Structure of parameters for the N-dimensional NTS distribution.
	st\$ndim: Dimension of the model. Here st\$ndim=N.
	st mu : μ mean vector (column vector) of the input data.
	stsigma: \sigma $ standard deviation vector (column vector) of the input data.
	st\$alpha : α of the std NTS distribution (X).
	st\$theta : θ of the std NTS distribution (X).
	st\$beta : β vector (column vector) of the std NTS distribution (X).
	st\$Rho : ρ matrix of the std NTS distribution (X), which is correlation matrix of epsilon.
	st\$CovMtx: Covariance matrix of return data r .

References

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

```
library(functional)
library(nloptr)
library(pracma)
library(spatstat)
library(Matrix)
library(quantmod)
library(mvtnorm)
library("temStaR")
#Fix alpha and theta.
#Estimate alpha dna theta from DJIA and use those parameter for IBM, INTL parameter fit.
getSymbols("^DJI", src="yahoo", from = "2020-8-25", to = "2020-08-31")
prDJ <- as.numeric(DJI$DJI.Adjusted)</pre>
ret <- diff(log(prDJ))</pre>
ntsparam <- fitnts(ret)</pre>
getSymbols("IBM", src="yahoo", from = "2016-1-1", to = "2020-08-31")
pr1 <- as.numeric(IBM$IBM.Adjusted)</pre>
getSymbols("INTL", src="yahoo", from = "2016-1-1", to = "2020-08-31")
pr2 <- as.numeric(INTL$INTL.Adjusted)</pre>
returndata <- matrix(data = c(diff(log(pr1)), diff(log(pr2))),</pre>
                     ncol = 2, nrow = (length(pr1)-1))
st <- fitmnts( returndata = returndata,</pre>
                 alphaNtheta = c(ntsparam["alpha"], ntsparam["theta"]) )
w \leftarrow c(0.3, 0.7)
eta <- 0.01
mctVaRmnts(eta, 1, w, st) #MCT-VaR for IBM
mctVaRmnts(eta, 2, w, st) #MCT-VaR for INTL
```

24 moments_NTS

```
mctCVaRmnts(eta, 1, w, st) #MCT-CVaR for IBM
mctCVaRmnts(eta, 2, w, st) #MCT-CVaR for INTL
```

mctVaRnts

mctVaRnts

Description

Calculate the marginal contribution to VaR for the multivariate NTS market model. Developer's version.

Usage

```
mctVaRnts(
  eta,
  n,
  w,
  covMtx,
  alpha,
  theta,
  betaArray,
  muArray,
  icdf = NULL,
  dicdf = NULL
```

moments_NTS

moments_NTS

Description

moments_NTS calculates mean, variance, skewness, and excess kurtosis of the NTS distribution with parameters $(\alpha, \theta, \beta, \gamma, \mu)$.

Usage

```
moments_NTS(param)
```

Arguments

param

A vector of the NTS parameters $(\alpha, \theta, \beta, \gamma, \mu)$.

Value

First 4 moments (Mean, Variance, Skewness, Excess Kurtosis) of NTS distribution. The mean is always the same as the parameter μ .

moments_stdNTS 25

References

Kim, Y.S, K-H Roh, R. Douady (2020) Tempered Stable Processes with Time Varying Exponential Tails https://arxiv.org/pdf/2006.07669.pdf

Examples

```
library("temStaR")
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
ntsparam <- c(alpha, theta, beta, gamma, mu)
moments_NTS(param = ntsparam)</pre>
```

moments_stdNTS

moments stdNTS

Description

moments_stdNTS calculates mean, variance, skewness, and excess kurtosis of the standard NTS distribution with parameters (α, θ, β) .

Usage

```
moments_stdNTS(param)
```

Arguments

param

A vector of the standard NTS parameters (α, θ, β) .

Value

First 4 moments (Mean, Variance, Skewness, Excess Kurtosis) of NTS distribution. Of course, the mean and variance are always 0 and 1, respectively.

References

Kim, Y.S, K-H Roh, R. Douady (2020) Tempered Stable Processes with Time Varying Exponential Tails https://arxiv.org/pdf/2006.07669.pdf

```
library("temStaR")
alpha <- 1.2
theta <- 1
beta <- -0.2
ntsparam <- c(alpha, theta, beta)
moments_stdNTS(param = ntsparam)</pre>
```

26 pmnts

pmarginal	mnts
Pinai Siliai	

pmarginalmnts

Description

pmarginalmnts calculates the marginal cdf of the n-th element of the multivariate NTS distributed random variable.

Usage

```
pmarginalmnts(x, n, st)
```

Arguments

```
x the x such that F(x) = P(X_n < x) n the n-th element to be calculated.
```

st Structure of parameters for the n-dimensional NTS distribution.

pmnts pmnts

Description

```
pmnts calculates the cdf values of the multivariate NTS distribution: F(x_1,\cdots,x_n)=P(x_n< R_1,\cdots,x_n< R_n). The multivariate NTS random vector R=(R_1,\cdots,R_n) is defined R=\mu+diag(\sigma)X, where X follows stdNTS_n(\alpha,\theta,\beta,\Sigma)
```

Usage

```
pmnts(x, st, subTS = NULL)
```

Arguments

```
x array of the (x_1,\cdots,x_n) st Structure of parameters for the n-dimensional NTS distribution. st$ndim: dimension st$mu: \mu mean vector (column vector) of the input data. st$sigma: \sigma standard deviation vector (column vector) of the input data. st$alpha: \alpha of the std NTS distribution (X). st$theta: \theta of the std NTS distribution (X). st$beta: \beta vector (column vector) of the std NTS distribution (X). st$Rho: \rho matrix of the std NTS distribution (X). numof sample number of samples.
```

pnts 27

Value

Simulated NTS random vectors

References

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

Examples

```
library(mvtnorm)
strPMNTS <- list(ndim = 2,</pre>
              mu = c(0.5, -1.5),
              sigma = c(2, 3),
              alpha = 0.1,
              theta = 3,
              beta = c(0.1, -0.3),
              Rho = matrix( data = c(1.0, 0.75, 0.75, 1.0),
                            nrow = 2, ncol = 2)
pmnts(c(0.6, -1.0), st = strPMNTS)
strPMNTS <- list(ndim = 2,</pre>
                 mu = c(0, 0, 0),
                 sigma = c(1, 1, 1),
                 alpha = 0.1,
                 theta = 3,
                 beta = c(0.1, -0.3, 0),
                 Rho = matrix(
                     data = c(1.0, 0.75, 0.1, 0.75, 1.0, 0.2, 0.1, 0.2, 1.0),
                     nrow = 3, ncol = 3)
)
pmnts(c(0,0,0), st = strPMNTS)
dmnts(c(0,0,0), st = strPMNTS)
```

pnts

pnts

Description

pnts calculates cdf of the NTS distribution with parameters $(\alpha, \theta, \beta, \gamma, \mu)$. If only three parameters are given, it calculates cdf of the standard NTS distribution with parameter (α, θ, β) If a time parameter value is given, it calculates cdf of the profess F(x) = P((X(t+s) - X(s)) < x), where X is the NTS process generated by the NTS distribution with parameters $(\alpha, \theta, \beta, \gamma, \mu)$.

Usage

```
pnts(xdata, ntsparam, dz = 2^-8, m = 2^12)
```

28 pnts

Arguments

xdata An array of x $\begin{array}{ll} \text{A vector of the NTS parameters } (\alpha, \theta, \beta, \gamma, \mu). \text{ For the NTS process case it is a} \\ \text{vector of parameters } (\alpha, \theta, \beta, \gamma, \mu, t). \text{ A vector of the standard NTS parameters} \\ (\alpha, \theta, \beta). \end{array}$

Value

Cumulative probability of the NTS distribution

References

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

```
library("temStaR")
alpha <- 1.2
theta <- 1
beta <- -0.2
ntsparam <- c(alpha, theta, beta)</pre>
x \leftarrow seq(from = -6, to = 6, length.out = 101)
p <- pnts(x, ntsparam)</pre>
plot(x,p,type = 'l')
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
ntsparam <- c(alpha, theta, beta, gamma, mu)</pre>
x \leftarrow seq(from = -2, to = 2, by = 0.01)
p <- pnts(x, ntsparam)</pre>
plot(x,p,type = 'l')
#Annual based parameters
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
#scaling annual parameters to one day
dt <- 1/250 #one day
ntsparam <- c(alpha, theta, beta, gamma, mu, dt)</pre>
x <- seq(from = -0.02, to = 0.02, length.out = 101)
p <- pnts(x, ntsparam)</pre>
plot(x,p,type = 'l')
```

portfolioCVaRmnts 29

portfolioCVaRmnts

portfolioCVaRmnts

Description

Calculate portfolio conditional value at risk (expected shortfall) on the NTS market model

Usage

```
portfolioCVaRmnts(strPMNTS, w, eta)
```

Arguments

strPMNTS Structure of parameters for the n-dimensional NTS distribution.

strPMNTS\$ndim: dimension

 $trPMNTSmu: \mu$ mean vector (column vector) of the input data.

strPMNTSsigma : σ standard deviation vector (column vector) of the input

data.

strPMNTS\$alpha : α of the std NTS distribution (X). strPMNTS\$theta : θ of the std NTS distribution (X).

strPMNTS\$beta : β vector (column vector) of the std NTS distribution (X).

res\$Rho : ρ matrix (Correlation) of the std NTS distribution (X).

 $\verb"res$Sigma": Covariance Σ matrix of return data r.$

w Capital allocation weight vector.

eta significanlt level

Value

portfolio value at risk on the NTS market model

portfolioVaRmnts

portfolioVaRmnts

Description

Calculate portfolio value at risk on the NTS market model

Usage

```
portfolioVaRmnts(strPMNTS, w, eta)
```

30 qmarginalmnts

Arguments

strPMNTS Structure of parameters for the n-dimensional NTS distribution.

strPMNTS\$ndim: dimension

 $strPMNTS$mu: \mu mean vector (column vector) of the input data.$

strPMNTSsigma : σ standard deviation vector (column vector) of the input

data.

strPMNTS\$alpha : α of the std NTS distribution (X). strPMNTS\$theta : θ of the std NTS distribution (X).

strPMNTS\$beta : β vector (column vector) of the std NTS distribution (X).

res\$Rho : ρ matrix (Correlation) of the std NTS distribution (X).

resSigma: Covariance Σ matrix of return data r.

w Capital allocation weight vector.

eta significanlt level

Value

portfolio value at risk on the NTS market model

qmarginalmnts	qmarginalmnts
4 921142	4

Description

qmarginalmnts calculates the quantile value of the n-th element of the multivariate NTS distributed random variable.

Usage

```
qmarginalmnts(u, n, st)
```

Arguments

u vector of probabilities.

n the n-th element to be calculated.

st Structure of parameters for the n-dimensional NTS distribution.

qnts 31

qnts qnts

Description

qnts calculates quantile of the NTS distribution with parameters $(\alpha, \theta, \beta, \gamma, \mu)$. If only three parameters are given, it calculates quantile of the standard NTS distribution with parameter (α, θ, β) If a time parameter value is given, it calculates quantile of NTS profess. That is it finds x such that u = P((X(t+s) - X(s)) < x), where X is the NTS process generated by the NTS distribution with parameters $(\alpha, \theta, \beta, \gamma, \mu)$.

Usage

```
qnts(u, ntsparam)
```

Arguments

u vector of probabilities.

ntsparam

A vector of the NTS parameters $(\alpha, \theta, \beta, \gamma, \mu)$. For the NTS process case it is a vector of parameters $(\alpha, \theta, \beta, \gamma, \mu, t)$. A vector of standard NTS parameters (α, θ, β) .

Value

The quantile function of the NTS distribution

```
library("temStaR")
alpha <- 1.2
theta <- 1
beta <- -0.2
ntsparam <- c(alpha, theta, beta)</pre>
u \leftarrow c(0.01, 0.05, 0.25, 0.5, 0.75, 0.95, 0.99)
q <- qnts(u, ntsparam)</pre>
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
ntsparam <- c(alpha, theta, beta, gamma, mu)</pre>
u \leftarrow c(0.01, 0.05, 0.25, 0.5, 0.75, 0.95, 0.99)
q <- qnts(u, ntsparam)</pre>
#Annual based parameters
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
```

32 rmnts

```
#scaling annual parameters to one day dt <- 1/250 #one day ntsparam <- c(alpha, theta, beta, gamma, mu, dt) u <- c(0.01,0.05,0.25,0.5, 0.75, 0.95, 0.99) q <- qnts(u, ntsparam)
```

rmnts

rmnts

Description

rmnts generates random vector following the n dimensional NTS distribution using Cholesky decomposition.

```
r=\mu+diag(\sigma)X, where X \mbox{ follows } stdNTS_n(\alpha,\theta,\beta,\Sigma)
```

Usage

```
rmnts(strMnts, numofsample)
```

Arguments

numofsample number of samples.

strPMNTS Structure of parameters for the n-dimensional NTS distribution.

strPMNTS\$ndim: dimension

strPMNTS\$mu : μ mean vector (column vector) of the input data.

 ${\tt strPMNTS\$sigma}: \sigma \ {\tt standard} \ {\tt deviation} \ {\tt vector} \ ({\tt column} \ {\tt vector}) \ {\tt of} \ {\tt the} \ {\tt input}$

data.

strPMNTS\$alpha : α of the std NTS distribution (X). strPMNTS\$theta : θ of the std NTS distribution (X).

strPMNTS\$beta : β vector (column vector) of the std NTS distribution (X).

strPMNTS\$Rho : ρ matrix of the std NTS distribution (X).

Value

Simulated NTS random vectors

References

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

rmnts_subord 33

Examples

rmnts_subord

rmnts_subord

Description

rmnts_subord generates random vector following the n dimensional NTS distribution using subordination.

```
r=\mu+diag(\sigma)X, where X \mbox{ follows } stdNTS_n(\alpha,\theta,\beta,\Sigma)
```

Usage

```
rmnts_subord(strPMNTS, numofsample, rW = NaN, rTau = NaN)
```

Arguments

Structure of parameters for the n-dimensional NTS distribution. $strPMNTS$ndim: dimension \\ strPMNTS$mu: μ mean vector (column vector) of the input data. \\ strPMNTS$sigma: σ standard deviation vector (column vector) of the input data.$

data. strPMNTS\$alpha: α of the std NTS distribution (X). strPMNTS\$theta: θ of the std NTS distribution (X).

strPMNTS\$beta : β vector (column vector) of the std NTS distribution (X). strPMNTS\$Rho : ρ matrix of the std NTS distribution (X).

numofsample number of samples.

Value

Simulated NTS random vectors

References

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

34 rnts

Examples

rnts

rnts

Description

rnts generates random numbers following NTS distribution with parameters $(\alpha, \theta, \beta, \gamma, \mu)$. If only three parameters are given, it generates random numbers of standard NTS distribution with parameter (α, θ, β) If a time parameter value is given, it generates random numbers of increments of NTS profess for time interval t.

Usage

```
rnts(n, ntsparam)
```

Arguments

n number of random numbers to be generated.

ntsparam

A vector of NTS parameters $(\alpha, \theta, \beta, \gamma, \mu)$. For NTS process case it is a vector of parameters $(\alpha, \theta, \beta, \gamma, \mu, t)$. A vector of standard NTS parameters $(\alpha, \theta, \beta, \gamma, \mu, t)$.

Value

NTS random numbers

References

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

```
library("temStaR")

alpha <- 1.2
theta <- 1
beta <- -0.2
ntsparam <- c(alpha, theta, beta)
r <- rnts(100, ntsparam) #generate 100 NTS random numbers
plot(r)</pre>
```

setPortfolioParam 35

```
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
ntsparam <- c(alpha, theta, beta, gamma, mu)</pre>
r <- rnts(100, ntsparam) #generate 100 NTS random numbers
plot(r)
#Annual based parameters
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
#scaling annual parameters to one day
dt <- 1/250 #one day
ntsparam <- c(alpha, theta, beta, gamma, mu, dt)</pre>
r <- rnts(100, ntsparam) #generate 100 NTS random numbers
plot(r)
```

setPortfolioParam

setPortfolioParam

Description

 $Please \ use \ getPortNTSParam \ instead \ of \ setPortfolioParam.$

Portfolio return with capital allocation weight is $R_p = \langle w, r \rangle$, which is a weighted sum of of elements in the N-dimensional NTS random vector. R_p becomes an 1-dimensional NTS random variable. setPortfolioParam find the parameters of R_p .

Usage

```
\code{res <- setPortfolioParam(strPMNTS,w)}</pre>
```

Arguments

```
Structure of parameters for the n-dimensional NTS distribution.  \begin{split} & \mathsf{strPMNTS\$ndim}: \mathsf{dimension} \\ & \mathsf{strPMNTS\$mu}: \mu \; \mathsf{mean} \; \mathsf{vector} \; (\mathsf{column} \; \mathsf{vector}) \; \mathsf{of} \; \mathsf{the} \; \mathsf{input} \; \mathsf{data}. \\ & \mathsf{strPMNTS\$sigma}: \; \sigma \; \mathsf{standard} \; \mathsf{deviation} \; \mathsf{vector} \; (\mathsf{column} \; \mathsf{vector}) \; \mathsf{of} \; \mathsf{the} \; \mathsf{input} \; \mathsf{data}. \\ & \mathsf{strPMNTS\$alpha}: \; \alpha \; \mathsf{of} \; \mathsf{the} \; \mathsf{std} \; \mathsf{NTS} \; \mathsf{distribution} \; (X). \\ & \mathsf{strPMNTS\$theta}: \; \theta \; \mathsf{of} \; \mathsf{the} \; \mathsf{std} \; \mathsf{NTS} \; \mathsf{distribution} \; (X). \\ & \mathsf{strPMNTS\$beta}: \; \beta \; \mathsf{vector} \; (\mathsf{column} \; \mathsf{vector}) \; \mathsf{of} \; \mathsf{the} \; \mathsf{std} \; \mathsf{NTS} \; \mathsf{distribution} \; (X). \\ & \mathsf{strPMNTS\$Rho}: \; \Sigma \; \mathsf{matrix} \; \mathsf{of} \; \mathsf{the} \; \mathsf{std} \; \mathsf{NTS} \; \mathsf{distribution} \; (X). \\ & \mathsf{w} \; \qquad \mathsf{Capital} \; \mathsf{allocation} \; \mathsf{weight} \; \mathsf{vector}. \\ \end{split}
```

36 setPortfolioParam

Value

```
The weighted sum follows 1-dimensional NTS. R_p = < w, r > = \mu + diag(\sigma)X, where X \text{ follows } stdNTS_1(\alpha, \theta, \beta, 1). Hence we obtain \operatorname{res\$mu}: \mu \text{ mean of } R_p. \operatorname{res\$sigma}: \sigma \text{ standard deviation of } R_p. \operatorname{res\$alpha}: \alpha \text{ of } X. \operatorname{res\$theta}: \theta \text{ of } X. \operatorname{res\$beta}: \beta X.
```

References

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

Index

```
changeCovMtx2Rho, 2
                                                   rmnts, 32
chf_NTS, 3
chf\_stdNTS, 4
                                                   rnts, 34
copulaStdNTS, 5
cvarGauss, 5
cvarmarginalmnts, 5
cvarnts, 6
dBeta, 7
dcopulaStdNTS, 7
dCVaR_numint, 7
dinvCdf_stdNTS, 8
{\tt dmarginalmnts}, {\tt 8}
dmnts, 8
dnts, 10
fitmnts, 11
fitmnts_par, 12
fitnts, 13
fitstdnts, 14
fitstdntsFixAlphaThata, 15
gensamplepathnts, 16
getGammaVec, 17
getPortNTSParam, 17
importantSamplining, 19
ipnts, 19
mctCVaRmnts, 20
mctCVaRnts, 21
mctStdDev, 22
mctVaRmnts, 22
mctVaRnts, 24
moments_NTS, 24
moments_stdNTS, 25
pmarginalmnts, 26
pmnts, 26
pnts, 27
portfolioCVaRmnts, 29
portfolioVaRmnts, 29
{\tt qmarginalmnts}, {\tt 30}
qnts, 31
```