姓名:

学号:

p.19: 13-(a) Find statement forms in **conjunctive normal form** which are logically equivalent to the following:

$$(a) \qquad (((\neg p) \lor q) \to r)$$

Your answer: (5 points)

Here we will use three methods to find some **conjunctive normal forms** (CNF) of $(\neg p \lor q \to r)$, the former two are from our textbook, while the third one is new.

In the first place, let

$$\varphi = (\neg p \lor q \to r).$$

Method-(1)

First we construct a truth table of φ 's negation:

p q r	 ¬ (((¬)	$p \vee q$	$(q) \rightarrow r$
1 1 1	0	0	1	1
<u>1</u> <u>1</u> <u>0</u>	1	0	1	0
1 0 1	0	0	0	1
1 0 0	0	0	0	1
0 1 1			1	1
<u>0</u> <u>1</u> <u>0</u>	1	1	1	0
0 0 1	0	1	1	1
0 0 0	1	1	1	0

The combinations which give $\neg \varphi$ value 1 are 110, 010 and 000. Thus a **disjunctive normal form** of $\neg \varphi$ is

$$\chi = (p \wedge q \wedge \neg r) \vee (\neg p \wedge q \wedge \neg r) \vee (\neg p \wedge \neg q \wedge \neg r)$$

It is clear that χ is logically equivalent to $\neg \varphi$, hence $\neg \chi$ is logically equivalent to $\neg \neg \varphi$, that is, φ .

Thus, by the **De Morgan's laws**, we have

$$\neg \chi = \neg [(p \land q \land \neg r) \lor (\neg p \land q \land \neg r) \lor (\neg p \land \neg q \land \neg r)]
\equiv \neg (p \land q \land \neg r) \land \neg (\neg p \land q \land \neg r) \land \neg (\neg p \land \neg q \land \neg r)
\equiv (\neg p \lor \neg q \lor \neg \neg r) \land (\neg \neg p \lor \neg q \lor \neg \neg r) \land (\neg \neg p \lor \neg \neg q \lor \neg \neg r)
\equiv (\neg p \lor \neg q \lor r) \land (p \lor \neg q \lor r) \land (p \lor q \lor r)$$

Therefore, $(\neg p \lor \neg q \lor r) \land (p \lor \neg q \lor r) \land (p \lor q \lor r)$ is a CNF of φ .

(NB: we using the symbol expression " $\alpha \equiv \beta$ " to denote that formula α is logically equivalent to β)

Method-(2)

$$\varphi = (\neg p \lor q \to r)$$

$$\equiv \neg(\neg p \lor q) \lor r \qquad \text{(by the meaning of material implication,}$$

$$\text{cf. Example 1.4-(a), p. 7 of our textbook)}$$

$$\equiv (\neg \neg p \land \neg q) \lor r \qquad \text{(by the De Morgan's laws)}$$

$$\equiv (p \land \neg q) \lor r$$

$$\equiv (p \lor r) \land (\neg q \lor r) \qquad \text{(by the distribution of } (\lor - \land), \text{ cf. p. 10, Exercises-6-(b))}$$

Hence $(p \lor r) \land (\neg q \lor r)$ is a CNF of φ .

Method-(3)

Similarly, we construct a truth table for φ (notice that, not for the negation of φ):

p	q	r	(\neg	p	\vee	q	\rightarrow	r	
1	1	1		0	1	1	1	1	1	
1	<u>1</u>	<u>0</u>		0	1	1	1	0	0	
1	0	1		0	1	0	0	1	1	
1	0	0		0	1	0	0	1	0	
0	1	1		1	0	1	1	1	1	
0	1	0		1	0	1	1	0	0	
0	0	1		1	0	1	0	1	1	
0	0	0		1	0	1	0	0	0	

The combinations which give φ value 0 are 110, 010 and 000. Then according to these truth combinations, we can construct three **disjunctive formulas** as follows,

$$\varphi_1 = (\neg p \lor \neg q \lor r)$$

$$\varphi_2 = (p \lor \neg q \lor r)$$

$$\varphi_3 = (p \lor q \lor r)$$

Next, we connect above three formulas in a conjunctive form, that is,

$$\varphi_1 \land \varphi_2 \land \varphi_3 = (\neg p \lor \neg q \lor r) \land (p \lor \neg q \lor r) \land (p \lor q \lor r)$$

It is easy to check that $\varphi_1 \wedge \varphi_2 \wedge \varphi_3$ is a CNF of φ . And as we can see, the result in current Method-(3) is same as the Method-(1).

p.26: 21 Suppose that $\mathscr{A}_1, \mathscr{A}_2, \dots, \mathscr{A}_n$; : \mathscr{A} is a valid argument form. Prove that $\mathscr{A}_1, \mathscr{A}_2, \dots, \mathscr{A}_{n-1}$; : $(\mathscr{A}_n \to \mathscr{A})$ is also a valid argument form.

Your proof:

First, suppose that $\mathscr{A}_1, \mathscr{A}_2, \ldots, \mathscr{A}_n$; $\therefore \mathscr{A}$ is a valid argument form, but $\mathscr{A}_1, \mathscr{A}_2, \ldots, \mathscr{A}_{n-1}$; $\therefore (\mathscr{A}_n \to \mathscr{A})$ is not.

Then there is an assignment of truth values to the statement variables such that $\mathscr{A}_1, \mathscr{A}_2, \ldots, \mathscr{A}_{n-1}$ takes value T while $(\mathscr{A}_n \to \mathscr{A})$ takes value F, that is, \mathscr{A}_n is T but \mathscr{A} takes F. However, this contradicts to our assumption that $\mathscr{A}_1, \mathscr{A}_2, \ldots, \mathscr{A}_n$; $\therefore \mathscr{A}$ is a valid argument form. (5 points)

.....作业反馈

- 还是有同学少写题目呀,题目少写的话想给你们找分都很难了。考试的时候也差不多,尽量不要空题不做呀 ②
- 还有很多同学写证明的时候,一句话中往往不写「定语」和「状语」,比如会出现如下情况:

所以 φ 。

所以 φ 什么呢? φ 是重言式? φ 是矛盾式? 这些都是需要额外加以说明的。