#lab1

#sollutions by Goian Tudor

#*ex3*

$$factor(x^8-1)$$

$$(x-1)(x+1)(x^2+1)(x^4+1)$$
 (1)

#*e*x7

$$solve(x^2 - 4 \cdot x + 3 = 0, x)$$

 $solve(x^2 \cdot y + 2 \cdot y - x, x)$

$$\frac{1+\sqrt{-8\,y^2+1}}{2\,y},\,-\frac{-1+\sqrt{-8\,y^2+1}}{2\,y}$$

 $solve(x^2 \cdot y + 2 \cdot y - x, y)$

$$\frac{x}{x^2+2} \tag{4}$$

 $solve(x - \cos(x) = 0, x)$

$$RootOf(_Z - \cos(_Z))$$
 (5)

 $solve(x^5 - 3 \cdot x^3 - 1 = 0, x)$

$$RootOf(_Z^5 - 3_Z^3 - 1, index = 1), RootOf(_Z^5 - 3_Z^3 - 1, index = 2), RootOf(_Z^5 - 3_Z^3 - 1, index = 3), RootOf(_Z^5 - 3_Z^3 - 1, index = 4), RootOf(_Z^5 - 3_Z^3 - 1, index = 5)$$
(6)

 $solve(\{4x+3y=10,3x-y=1\},\{x,y\})$

$$\{x=1, y=2\}$$
 (7)

#ex11

 $plot(\sin(x), x = 0...2 \cdot Pi)$

 $plot(\sin(x), x = -4 \cdot Pi ..4 \cdot Pi)$

 $plot(\sin(x), x = -100..100)$

 $plot(\sin(x), x = -\inf infinity..infinity)$

 $plot([\cos(4 \cdot t), \sin(4 \cdot t), t=-2..2])$

#ex17 with(plots): implicit plot($x^2 - 2 \cdot x \cdot y - y^2 = 1, x = -50..50, y = -50..50$)

implicit plot $(x^3 - y^2 - 5y - x^2 = -4, x = -50..50, y = -50..50)$

