Interaction quench in the IHM

Soumen Kumar Bag

April 24, 2017

1 Introduction

The study of the temporal evolution of systems undergoing symmetry breaking phase transitions whether it is incondensed-matter physics, cosmology or finance 16 is difficult because they are hard to repeat, or they occur very rapidly.

$$H_{IHM} = -t \sum_{\langle i \in A, j \in B \rangle, \sigma} (\hat{c}_{j\sigma}^{\dagger} \hat{c}_{i\sigma} + hc) + \Delta \sum_{i \in A} \hat{n}_i - \Delta \sum_{i \in B} \hat{n}_i - \mu \sum_{i, \sigma} \hat{c}_{i\sigma}^{\dagger} \hat{c}_{i\sigma} + U \sum_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow}$$
(1)

Here t is the nearest neighbor hopping and, U the Hubbard repulsion has been Δ is the staggered one body potential which doubles the unit cell. When Δ is zero it is exactly Hubbard Hamiltonian.

Phase diagram of this model is studied [2, 4]. In non interacting case it is charge density wave(CDW) band insulator. As one increase U in this model CDW stat are suppressed and band insulating phase crossover to correlated metal state. If you increase U farther at certain critical U_c there will be metal to Mott insulating transition in para-magnetic calculation. We want to study at certain U(BI,M,MI) if one suddenly turn on Δ in HM how CDW phase appear in the Hamiltonian. Previously in Hubbard model(HM) interaction quench problem already done for both para[3, 1, 6] and AFM phase[5, 6] using IPT-DMFT. Double occupancy, jump of the distribution function across fermi level has been studied. Some people also studied the Melting of CDW state in the system.

2 interaction quench

FIG. 1 (color online). (a) Equilibrium phase diagram of the Hubbard model in the weak-coupling regime at half filling, calculated by DMFT with several different impurity solvers. QMC data are taken from Ref. [25]. Effective temperatures for quenches from a fixed initial state ($U_i = 2$, black dot) to various final states (open dots) are shown. Inset: Staggered magnetization m as a function of T at U = 2. (b) Nonequilibrium phase diagram for a quench $U_i \rightarrow U_f$ with the fixed initial magnetization, m(0) = 0.4. For $U_f > (<)U_c^{\text{th}}$, the system finally thermalizes to an AFM (PM) state. A northermal AFM order emerges in the colored region. The shading indicates the increasing lifetime of the nonthermal AFM state as U_i is reduced.

(b) DMFT

FIG. 1: Time evolution of m calculated with the Hartree approximation for quenches (a) $U_i=2 \rightarrow U_f=1.0,1.1,\ldots,1.9$ (from bottom to top) and (b) $U_i=2.5 \rightarrow U_f=1.5,1.6,\ldots,2.4$ (from bottom to top). The color codes are the same as Fig. 2 in the main text. Note that the temperatures of the initial states are chosen to be different values from those of Fig. 2 in the main text to fix m(0)=0.4.

FIG. 2 (color online). Time evolution of m for quenches (a) $U_i = 2 \rightarrow U_f = 1.0, 1.1, \ldots, 1.9$ (from bottom to top), and (b) $U_i = 2.5 \rightarrow U_f = 1.5, 1.6, \ldots, 2.4$. The arrows indicate the corresponding thermal values $m_{\rm th}$ reached in the long-time limit.

(b) DMFT

(a) HF

for the Hubbard model we see that steady double occupancy is larger than the equilibrium value. where as for IHM case its is lower

References

[1] Hideo Aoki, Naoto Tsuji, Martin Eckstein, Marcus Kollar, Takashi Oka, and Philipp Werner. Nonequilibrium dynamical mean-field theory and its applications. *Rev. Mod. Phys.*, 86:779–837, Jun 2014.

- [2] Soumen Bag, Arti Garg, and H. R. Krishnamurthy. Phase diagram of the half-filled ionic hubbard model. *Phys. Rev. B*, 91:235108, Jun 2015.
- [3] Martin Eckstein, Marcus Kollar, and Philipp Werner. Thermalization after an interaction quench in the hubbard model. *Phys. Rev. Lett.*, 103:056403, Jul 2009.
- [4] Arti Garg, H. R. Krishnamurthy, and Mohit Randeria. Doping a correlated band insulator: A new route to half-metallic behavior. *Phys. Rev. Lett.*, 112:106406, Mar 2014.
- [5] Naoto Tsuji, Martin Eckstein, and Philipp Werner. Nonthermal antiferromagnetic order and nonequilibrium criticality in the hubbard model. *Phys. Rev. Lett.*, 110:136404, Mar 2013.
- [6] Naoto Tsuji and Philipp Werner. Nonequilibrium dynamical mean-field theory based on weak-coupling perturbation expansions: Application to dynamical symmetry breaking in the hubbard model. Phys. Rev. B, 88:165115, Oct 2013.