1. Комбинаторика

Для конечных множеств A_1, \ldots, A_n выполнено

$$|A_1 \cup \ldots \cup A_n| = \sum_{1 \le i \le n} |A_i| - \sum_{1 \le i < j \le n} |A_i \cap A_j| + \sum_{1 \le i < j < k \le n} |A_i \cap A_j \cap A_k| - \ldots$$

B частности, для n = 2,

$$|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|$$

и для n = 3,

$$|A_1 \cup A_2 \cup A_3| = |A_1| + |A_2| + |A_3| - (|A_1 \cap A_2| + |A_1 \cap A_3| + |A_2 \cap A_3|) + |A_1 \cap A_2 \cap A_3|.$$

Правило суммы

В n ящиках лежат N_1, \ldots, N_k различимых шаров. Сколько имеется способов вытащить из этих ящиков один шар?

Omeem: $N_1 + \ldots + N_k$.

Правило произведения

В n ящиках лежат N_1, \ldots, N_k различимых шаров. Сколько имеется способов вытащить из этих ящиков k шаров, вынимая из каждого ящика по одному шару? $Omeem: N_1 \cdot \ldots \cdot N_k$.

Стандартные задачи

 $3a\partial a ua$ 1. Сколько имеется способов разложить n $\frac{\text{различимых}}{\text{перазлечимых}}$ шаров в k различимых ящиков так, что в каждый ящик можно положить $\frac{\text{не более одного}}{\text{любое число}}$ шаров?

Ответ:

	в каждом ящике не более 1 шара	в каждом ящике любое число шаров
шары различимы	$\frac{k!}{(k-n)!}$	k^n
шары неразличимы	$\binom{k}{n}$	$\binom{n+k-1}{k-1}$

3adaчa 2. Сколько имеется способов разложить $n_1+\ldots+n_m$ шаров, среди которых n_1 одинаковых шаров 1-го типа, ..., n_m одинаковых шаров m-го типа в $n_1+\ldots+n_m$ различимых ящиков так, что в каждом ящике окажется ровно один шар?

Ответ:

$$\binom{n_1+\ldots+n_m}{n_1,\ldots,n_m} := \frac{(n_1+\ldots+n_m)!}{n_1!\cdot\ldots\cdot n_m!}$$

В частности, число способов разложить n различимых шаров в n различимых ящиков так, что в каждом ящике окажется ровно один шар равно n!.

Замечание. В русскоязычных текстах приняты следующие обозначения и терминология:

	в каждом ящике не более 1 шара	в каждом ящике любое число шаров
шары различимы	A_k^n (Размещения без повторений)	k^n $\begin{pmatrix} \text{Размещения} \\ \text{с повторениями} \end{pmatrix}$
шары неразличимы	C_k^n (Сочетания без повторений)	C_{k+n-1}^{k-1} (Сочетания с повторениями)

Число способов разложить n различимых шаров в n различимых ящиков так, что в каждом ящике окажется ровно один шар называют числом перестановок без повторений.

3adaча 3. Сколько имеется способов разложить n неразличимых шаров в k различимых ящиков так чтобы количество ящиков с шарами было равно r?

Решение. Раскладываем в 2 шага.

Шаг 1. Выбираем r ящиков и в каждый из них кладем по одному шару. Количество способов сделать это равно $\binom{k}{r}$.

Шаг 2. Произвольно раскладываем оставниеся n-r шаров в выбранные r ящиков. Количество способов сделать это равно $\binom{n-1}{r-1}$.

По правилу произведения, количество способов равно $\binom{k}{r} \cdot \binom{n-1}{r-1}$.

Следует понимать, что не для всякой задачи по комбинаторике есть простая формула дающая ответ.

Комбинаторные тождества

 $(x_1 + \ldots + x_p)^n = \sum_{j_1 + \ldots + j_p = n} {n \choose j_1, \ldots, j_p} x_1^{j_1} \cdot \ldots \cdot x_p^{j_p}.$

B частности, для p = 2,

$$(x+y)^n = \sum_{1 \le j \le n} \binom{n}{j} x^j y^{n-j}.$$

$$\sum_{m=1}^{n} mt^{m} = \frac{t(1-(n+1)t^{n}+nt^{n+1})}{(1-t)^{2}}.$$

$$\sum_{j_1+\ldots+j_p=m} \binom{n_1}{j_1} \cdot \ldots \cdot \binom{n_p}{j_p} = \binom{n_1+\ldots+n_p}{m} \quad \text{(тождество Вандермонда)}.$$

В частности, для p = 2,

$$\sum_{j_1+j_2=m} \binom{n_1}{j_1} \binom{n_2}{j_2} = \binom{n_1+n_2}{m}.$$

$$\sum_{n_1+n_2=n} \binom{n_1}{j_1} \binom{n_2}{j_2} = \binom{n+1}{j_1+j_2+1} \quad \text{(еще одно тождество Вандермонда)}.$$

В частности, полагая $j_1 = 0, j_2 = m$, получаем

$$\sum_{m \leqslant k \leqslant n} \binom{k}{m} = \binom{n+1}{m+1}.$$

2. Графы

Эйлеров граф – это граф в котором существует путь проходящий по каждому ребру ровно один раз.

Теорема Эйлера. Граф эйлеров тогда и только тогда, когда число вершин нечетной степени равно 0 (в этом случае путь будет замкнутым, т.е. циклом) или 2 (в этом случае путь будет незамкнутым: начнется в одной вершине нечетной степени и закончится в другой вершине нечетной степени).

Гамильтонов граф – это граф, который содержит Гамильтонов цикл. Гамильтонов цикл – это цикл, который проходит через каждую вершину графа ровно один раз.

Теорема Дирака. Если $|V| \ge 3$ и степень каждой вершины графа не меньше $\frac{|V|}{2}$, где V – множество вершин графа, то для этого графа существует гамильтонов цикл.

Планарный граф – это граф, который можно нарисовать на плоскости без самопересечений. $Формула \ \ \Im inepa$. Для связного планарного графа имеем: |V| - |E| + |F| = 2, где V – вершины графа, E – ребра графа, F – грани графа.

Теорема Куратовского. Граф планарен тогда и только тогда, когда он не содержит K_5 и $K_{3,3}$.

Пусть G=(V,E) – граф. Подмножество вершин $I\subset V$ называется изолированным, если никакие две вершины из I не смежны; подмножество вершин $C\subset V$ называется кликой, если всякие две вершины из C смежны.

Теорема Турана.

- (1) B каждом графе G = (V, E) имеется изолированное множество вершин, содержащее не менее $\frac{|V|^2}{|V| + 2|E|}$ вершин.
- (2) B каждом графе G = (V, E) имеется клика, содержащяя не менее $\frac{|V|^2}{|V|^2 2|E|}$ вершин.

X роматическое число $\chi(G)$ графа G — это минимальное число цветов, в которые можно раскрасить вершины графа так, чтобы концы любого ребра имели разные цвета. Максимальная (соотв. минимальная) степень вершин графа G обозначаются через $\Delta(G)$ (соотв. $\delta(G)$).

Теорема (Brooks) Пусть G – связный граф, не являющийся полным графом u не являющийся циклом нечетной длины. Тогда $\chi(G) \leq \Delta(G)$.

Теорема (Szekeres-Wilf) $\chi(G) \le 1 + \max_{H \subseteq G} \delta(H)$ для всякого графа G.

Теорема Холла. Пусть $G(X \sqcup Y, E)$ – двудольный граф. Для того, чтобы существовало паросочетание, в которое входят все вершины из X, необходимо и достаточно, чтобы для любого подмножества $A \subset X$ было выполнено

$$|A| \le |\{y \in Y \mid y \text{ соединен ребром с вершиной из } A\}|$$

Теорема Кёнига. Рассмотрим матрицу, состоящую из нулей и единиц. Тогда максимальное число ладей, которые можно поставить на единицы так чтобы они не били друг друга равно минимальному суммарному количеству строк и столбцов, которыми можно покрыть единицы.