The order Strongylida comprises 4 superfamilies

Order: STRONGYLIDA I.

> gastrointestinal worms

lung worms

worms of other organs

(ruminants, horses, pigs, carnivores, rabbits, poultry) - the main species according the hosts, morphology, life cycles, epidemiology, prevalence, pathogenesis and clinical signs, diagnosis, treatment and control.

prof. Alica Kočišová, DVM, PhD.

Order: STRONGYLIDA

Superfamily: **STRONGYLOIDEA**

ANCYLOSTOMATOIDEA

TRICHOSTRONGYLOIDEA

METASTRONGYLOIDEA

Superfamily: STRONGYLOIDEA

Family: STRONGYLIDAE

Subfamily: Strongylinae (Bidentostomum, Craterosto

V. Strongymae (Biteriostomun, Cateriostomun, Oesophagodontus, Strongylus, Triodontophorus)

Cyatostominae (Caballonema, Coronocyclus, Cyathostom Cylicocyclus, Cylicodontophorus, Cylicostephanurus,)

Gyalocephalinae (Gyalocephalus)

CHABERTIIDAE

Subfamily: Chabertiinae (Chabertia)

Oesophagostominae (Oeso)

SYNGAMIDAE

Subfamily:

Syngaminae (Cyatostoma, Mammomonoa

Stephanurinae (Stephanurus)

Family: STRONGYLIDAE

Strongylinae and Cyathostominae of horses

- ➤ Includes both large and small strongyles
- Most common
- > Commonly referred to as bloodworms

Because of color after it ingests blood from host animal

Genus: STRONGYLUS

> Members of this genus live in the large intestine of horses and donkeys and, with Triodontophorous, are commonly known as large strongyles.

- Site of infection: Caecum and colon
- > Species: S. vulgaris; S. edentatus; S. equinus
- > post infection larvae parenteral migration in the host

Genus: TRIODONTOPHOROUS

Members of this genus are non migratory large strongyles frequently occur in the large numbers in the colon and contributes to the deleterious effect of mixed strongyle infection.

Species

- T. serratus
- T. tenuicollis
- T. brevicauda
- T. minor

LIFE CYCLE

> The adult parasites live in the caecum and colon (large intestine).

The life cycle of these worms involves the migration of larvae through the blood vessels of the intestine and liver, where they can cause <u>inflammation</u> and <u>obstruction of the blood vessels</u> resulting in damage to the intestine supplied by the damaged vessel.

Symptoms of infestation can include colic, ill thrift, and diarrhea.

Strongylus vulgaris

- > The L3 penetrate the intestinal mucosa and moult to L4 in the submucosa.
- > These then enter small arteries and migrate on the endothelium to their predilection site in the cranial mesenteric artery and its main branches.
- > After a period of several months the larvae moult to L5 and return to the intestinal wall via the arterial lumina.
- > Nodules are formed around the larvae mainly in the wall of caecum and colon.
- > The Prepatent period is 6-7 months.

Strongylus equinus

- > Exsheated L3s invade the wall of the small intestine, cecum and colon and become encapsulated in nodules in which they moult to L4s by 12-14 days after infection.
- > L4s leave their nodules and cross the peritoneal cavity to the **liver**.
 > Finally, they begin to **migrate back to the large intestine** by leaving the liver and
- Finally, they begin to migrate back to the large intestine by leaving the liver and <u>crossing the abdominal cavity directly</u> or by first passing through the pancreas and then the abdominal cavity.
- > Prepatent period is approximately 9 months.

Strongylus edentatus

- > L4 migrate to root of mesentery, some going to liver and lungs and then to wall of caecum and right ventral colon
- > Immature adults then appear in lumen of these portions of the large intestine
- > Prepatent period 11 Months

Subfamily: Cyathostominae - small Strongyles

 $\label{thm:constraints} Genera: \textit{Cyathostomum, Caballonema, Coronocyclus, Cylicocyclus, ...} \\ These parasites are present in the {\bf large intestine} of horses.$

Their effects on the host range from <u>poor performance to clinical signs</u> of **severe** enteritis.

LIFE CYCLE (Stages)

Free living stages same as large strongyles.

L3 infective; exsheath in stomach, small intestine but do not migrate - only forms nodules L3 enter walls of caecum, colon; develop and moult; return to gut lumen as early L5 Prepatent period - 4 to six weeks up to 3 to 4 Months.

Internal development

PATHOGENESIS

- Granulomatous colitis; masses of cyathostomin larvae embedded in mucosa = bright red L 4
- May be large numbers of L4, early L5 in faeces with watery diarrhoea

Encysted larvae

Diagnosis of Strongyles Fecal flotation

Necropsy

Treatment

- ► Benzimidazoles BZ resistance shown by several spp; Moxidectin (best to date) approved for horses Ivermectin or other avermectins
- ► Pyrantel salt probably some resistance

	COMPOUND	DOSAGE	LARGE STRONGYLES		CYATHOSTOMINS	
CHEMICAL CLASS			ADULTS	MIGRATING LARVAE	ADULTS AND LUMINAL LARVAE	ENCYSTED LARVAE
Benzimidazoles	Fenbendazole	5 mg/kg	Yes	Yes*	Yes	Yes *1
	Oxfendazole	10 mg/kg	Yes	No	Yes	No
	Oxibendazole	10 mg/kg	Yes	No	Yes	No
Heterocyclic compounds	Piperazine	88 mg/kg	No	No	Yes	No
Macrocyclic lactones	Ivermectin	0.2 mg/kg	Yes	Yes	Yes	No
	Moxidectin	0.4 mg/kg	Yes	Yes	Yes	Yes!
Tetrahydropyrimidines	Pyrantel pamaote	6.6 mg/kg	Yes	No	Yes	No
	Pyrantel tartrate*	2.64 mg/kg/day	Yes	No	Yes	No

es a regimen of 10 mg/fg, daily for 5 consecutive days, claims for efficacy against early thirthstage (E.L.), the third-stage (I.L.), and fourth-stage (L.) cyathostomin larvae; claims for efficacy against that third-stage (I.L.) and fourth-stage (L.) cyathostomin larvae; y against Strungfor celleratus is less than 90%.

Control Measures

- > Clean bedding in stalls
- Not running young foals with older, more immune horses
- > Rotation onto "clean" pastures
- > Strategic, regular treatment programs
- > Alternate dewormer types annually (one type each year, using the same type each time a dewormer is administered in one year)
- > Pasture contamination due to large number of parasites and eggs produced makes management difficult - it is practically impossible to remove all parasites from a horse's gut.

Superfamily: STRONGYLOIDEA Family: CHABERTIIDAE Subfamily: Chabertiinae (Chabertia) minae (*Oesophagostomum*) Gastrointestinal worms of ruminants and pigs

Chabertia ovina / CHABERTIOSIS

- > catarrhal nodular enteritis colitis (column wall edematous, bloodied, thickened with haemorrhages)
- ➤ small and caecum larval stages
 ➤ large intestine adult worms most pathogenic L5 and adult worms drawing intestinal mucosa into the oral capsule (already with 300 worms)!
- > diarrhea with blood > anemia, weight

➤ Pyrantel; benzimidazols; Ivermektin

OESOPHAGOSTOMOSIS OF RUMINANTS

- ➢ Oe. asperum➢ Oe. multifoliatur
- Oe. radiatum

- ≻nodules in caecum (adult worms)
- ➤ larval stages: from pyloric to rectum
 ➤ direct development (prepatent period: about 45 days) > severe enteritis (also *Oe. venulosum*, which does not form nodules)
- ➤ local inflammatory reaction encapsulation
 ➤ impairment of normal intestinal motility and absorption
- > thickening of the intestinal wall
- > intensive mucus production

Oesophagostomum columbianum - ovce

- > Diagnosis coprocultures
- post mortemTe: Pyrantel; benzimidazols; Ivermektin

OESOPHAGOSTOMOSIS OF PIGS

- ≻ Oesophagostomum dentatum
 ≻ Oe. brevispiculum
 ≻ Oe. quadrispinulatum

- ▶ prepatent period: 43-55 days;
 ▶ resistant larvae survive in the environment for a year or more;
 ▶ Ivermectin, benzimidazoles

Superfamily: STRONGYLOIDEA

Family: SYNGAMIDAE Subfamily:

Syngaminae (Cyatostoma,

Stephanurinae (Stephanurus)

>respiratory tract of poultry ≻kidney of pigs

Syngamus trachea / SYNGAMOSIS

- > 7-20 mm; > forked worms; a male of 2-6 mm
- > direct life cycle

- ▶ Prepatent period: 12-17-20 days
 ▶ Adult worms survive 23-147 days in chickens, 48-224 days in turkeys, 98 days in guinea fowl.

> winter season in paratenic hosts (earthworms, beetles, flies, snails, ...)

- > disease of young birds (pheasants, turkeys, mustard, chickens, ...) > petechial and hemorrhagic bleeds;
- mucosal inflammation;creation of knots;
- bronchopneumonia migrating larvae; > pulmonary edema;
- dg: eggs
- ➤ Te: benzimidazols, ivermectin

For aquatic poultry: Cyathostoma bronchiale

- ➤ male and female live separately;
 ➤ already 2-3 worms can cause death by asphyxiation

Stephanurus dentatus / STEPHANUROSIS

- > 30-45 mm; 20-30 mm
- > cysts in the kidneys
- > inflammation of the abdominal and thoracic cavities

Prepatent period: 6-19 months Adult worms live cca 2 years

- > percutaneous infection nodules in the skin, swelling and enlargement of regional Lymphatic nodules; > migrating larwae abscesse and liver cirrhosis; > adult worms kidney cysts;

- > Dg: eggs in urine > Te: levamizol, ivermectin, benzimidazols

Superfamily: **TRICHOSTRONGYLOIDEA**

Family: Amidostomatidae (Amidostomum, ...)

Trichostrongylidae (Cooperia, Graphidium, Haemonchus, Hyostrongylus, Marshallagia, Ostertagia,

Teladorsagia, Trichostrongylus, ...)
Molineidae (Nematodirus, Ollulanus, ...) Ornithostrongylidae (Ornithostrongylus)

Helligmonellidae (*Nippostrongylus, Heligmosomoides*) Dictyocaulidae (*Dictyocaulus*)

Genus: Trichostrongylus

Trichostrongylus spp. are widely distributed throughout the world.

- Trichostrongylus species are the smallest members of the family Trichostrongylidae.
- They are thin and with a length of 7 mm or less are difficult to see without a microscope

Species of Trichostrongylidae and Nematodirus, autochthonous in Europe.

Predilection site of adults ¹	Species (prepatent period in days of selected species)	Length of females	Prevalence ³		
	and appears	(mm) ²	Cattle	Sheep	Goat
Abomasum	Hisemonchus contortus (18-19)	20-30	(+)	++/+++	+++
	Ostertagia ostertagi (18-21)	8-0	+++/++++	5+5	(+)
	Ostertagia ⁶ fyrata	up to 10	1/11	(+)	(+)
	Ostertagia Aptospicularis (17)	6-11	+/++++	+	+
	Taladorsagra ⁵ circumcincta (16)	12-13	(+)	+++/++++	****
	Teladoxsagia ⁶ triffurcata	9-11	(+)	++/++++	++++
	Trichostrongylus axei (25)	5-6	4/444	**	**
Small intestine	Trichostrongylus calubriformis (15)	5-6	(1-))	++/+++	***
	Trichostrongy/us vitrinus (18-19)	5-8	0+3	+=/+++	++
	Trichostrongylus capricola	5-7	(+)	+	+
	Trichostrongylus tongispicularis	5-7	+		
	Cooperis curticei (14)	5-6	+	+++/++++	++
	Cooperia oncophora (17)	8-12	++/+++	+	
	Cospenia zumabada ⁶	7-9	4/4+++	+	
	Cooperia pectinata	7-9			
	Coopenia punctata (14)	6-7	4/44	(+)	
	Nematodirus heketianus (21-26)	15-24	+/++++	(+)	
	Namatodrus Moolls (21)	12-20	(+)	++/++++	++
	Nematodirus battus (15-29)	18-15	+	+/+++	++
	Alamatodrus spathiger (15-21)	12-20	(+)	++	

Epizootiology

- Trichostrongylus species are not usually primary pathogens in temperate regions of
- Their role is usually contributory to parasitic gastroenteritis in which Ostertagia or Haemonchus are the primary pathogens in ruminants.
- However, in warmer subtropical areas Trichostrongylus species are important pathogens in grazing ruminants and counts of 10,000 or more worms per animal are not unusual in clinical outbreaks.
- Hypobiosis occurs at the L3 stage and is an important controlling feature of life cycles in temperate areas of the world.
- Survival of preparasitic stages
- Eggs and infective L3s are able to survive both heat and cold. In temperate zones of both hemispheres enough L3s may survive winter and produce clinical outbreaks
- of trichostrongylosis in grazing ruminants in early spring.
 The ability of *T. axei* to cross-infect between horses and ruminants may lead to amplification of T. axei infections in horses when mixed grazing of pastures with horses and ruminants is used as a parasite control measure.

Life cycle

Trichostrongylus species - Life Cycles

Species (host animal)	Days p.i.	Development and prepatency M: moulting, L3: parasitic L3 ¹ , L4: 4 th stage larva, St. 5: preadult 5 th stage	Stage of hypobiosis	
Haemonchus contortus (sheep)	1-8	L3 abomesum, crypts, some in lumina of gastric glands	L4	
		M → to L4, return to mucosa surface		
	9-11	M → to St. 5, further development		
	18	prepatency		
Ostertagia ostertagi (cattle)	1-8	$L3 \rightarrow$ abomesum, lumina of gastric glands (mostly in fundus region)	L4	
		M to L4		
	8-15	M → to St. 5 in lumina of gastric glands		
	>15	emergence from gastric glands to mucosa surface, further development		
	18	prepatency		
Trichostrongytus colubritormis (sheep)	1-4	L3 → small intestine → M to L4	L3	
	6-10	M to St. 5		
	15	prepatency		
Cooperia curticei (sheep)	1-2	L3 → lumen of anterior small intestine	L4	
	3-4	migration of L3 into crypts, M → to L4		
	5	most of L4 free in intestinal luman		
	9-10	M → to St. 5, further development		
	14	prepatency		
Nematodirus battus (sheep)	1-5	L3 → small intestine, M → to L4	2	
	12	nearly all parasites in St. 5		
	14	prepatency		

Pathogenesis

- Inflammatory reactions of the abomasum (abomasitis)
- > And small intestine (enteritis)

Clinical signs

- Light infections are usually asymptomatic but may contribute to poor appetites, diminished growth rates and soft faeces
- Heavy infections (10,000+ worms) will produce a diarrhoea that is serious and can be debilitating, especially in ruminants. The term "black scours" is sometimes used to describe the diarrhoea because it is often watery and dark green (almost black) in colour.

Diagnosis

- A diagnosis of trichostrongylosis is made on the basis of a combination of factors
- Clinical signs Seasonal occurrence of disease
- Necropsy findings
 Presence of Strongyle-type eggs in the feces of infected animals Fecal cultures to identify Trichostronglyus L3s

Genus: Haemonchus

- Haemonchus species are the largest of the nematodes found in the abomasum of ruminants.
- > They range from 10-30mm in length and are reddish when fresh because they are blood suckers.
- They achieve this by using a tiny lancet in their small buccal capsule. Because they feed on blood, the female has a striking appearance, looking like a barber pole because the white ovaries wind around the red blood filled intestine.

Haemonchus

- > The copulatory bursa (A) of the male is distinct because it has an asymmetrical dorsal lobe with
- > a Y-shaped dorsal ray (B), which is sometimes confused with the spicules (C).

Nematode species	Host species	Predilection site
Haemonchus contortus Haemonchus placei	sheep and goats cattle	Abomasum Abomasum

Haemonchus - Life Cycle

The predilection site is the abomasum of sheep and goats. "strongyle-type" eggs pass to the external environment in host faeces.

The prepatent period is 2-3 weeks in sheep.
The cattle species, *H. placei*, has a similar life cycle but its **prepatent period** is 4 weeks.

Pathogenesis

- > Haemonchosis is characterized by a hemorrhagic anemia attributable to blood loss via the blood-sucking activities of worms in the abomasum.
- > Fourth stage larvae as well as adults are blood suckers which means that blood losses, sufficient to cause a clinically obvious anemia, may occur before an infection is patent.
- > The actual mechanism of blood sucking involves the worm attaching to the mucosa and extruding its oral lancet to slit capillaries in the abomasal mucosa. They ingest blood flowing from these slit capillaries.
- > Worms also secrete an anticoagulant into the bleeding lesion ensuring that these lesions will continue to bleed after the worm is replete and has moved away.

Trichostrongylidosis in ruminants: selected pathophysiological features

Clinical signs

- In hyperacute haemonchosis, sudden deaths in a flock of previously healthy sheep are seen.
- This syndrome results from ingestion of large numbers of infective larvae by sheep grazing on a heavily contaminated pasture.
- In acute haemonchosis, grazing sheep develop a sudden onset anemia. In the absence of treatment, and if grazing continues, these animals progressively worsen.
- The PCV drops initially, plateaus, then falls even further, signaling exhaustion of the erythropoetic system. Without treatment, death is the usual outcome

> ascites and submandibular edema

Genus: Ostertagia

- small (~10mm) reddish brown worms found in the abomasum of ruminants.
- On a global basis they are the major cause of parasitic gastritis (Ostertagiosis) of ruminants in temperate climates.

Nematode species	Host species	Predilection site
Ostertagia ostertagi	cattle	Abomasum
Ostertagia circumcincta (Teladorsagia)	sheep and goats	Abomasum
Ostertagia trifurcata	sheep and goats	Abomasum

Other, less common species include *O. lyrata*, and *O. kolchida* in cattle plus *O. leptospicularis* found in cattle, sheep and goats.

Ostertagia species are found throughout temperate and subtropical areas of

The cattle species, *Ostertagia ostertagi* is particularly important in temperate areas wherever cattle are raised.

Life cycle

Larva emerges from the gastric glands

Epizootiology

The epidemiological patterns of ostertagiosis have been well defined in most areas of the world. There are also four common features that influence these epidemiological patterns despite the wide range of climates and management conditions under which cattle are raised.

- 1. The influence of temperature and moisture on the survival and development of preparasitic stages of the life cycle.
- 2. The different ways in which pasture is used to raise dairy replacement heifers and beef calves.
- The influence of seasonal arrested development (hypobiosis) on the parasitic phase of the life cycle.
- 4. The influence of the immune response on infection and disease.

Pathogenesis

	Ostertagiosis type I 'summer ostertagiosis'	Ostertagiosis type II 'winter ostertagiosis'
Season	July until end of grazing season	January until May
Animal group	young animals during their first grazing period	young animals after their first grazing period, ransly cattle after several grazing periods
Morbidity	high, majority or all young animals of a herd more or loss affected, older cattle usually without clinical signs	usually only a few animals affected
Mortality	usually low, high in some years	low
Letholity	mostly low	high
Clinical signs ²		
Inappetence		+
Danhoea	+ (profuse, without blood)	+ (profuse, occasionally intermittent)
Weight loss	+	+ (rapid and marked)
Exsionosis	+	+ 92m)
Subcutaneous cedema		+ (approximately 40% of clinical cases)
Fever		
Anaemia		+ (in some cases)
Serum pepsinogen	elevated	mostly elevated
Serum albumin	in severe cases decreased	mostly decreased
Parasitology		
Egg detection in facces	positive	positive or negative
EpG	low up to >1000	very low to high
Worm burden in abornasum	predominantly adults of Cl. cetertagi (often >40,000 specimens/anima)	in heavy infections up to >100,000 specimens with high proportion (30-80%) of hypoblotic an other immature stages
Pathology	abomasum: typical nodules, inflamed mucosa, oedama of abomasal folds, pH elevated in severe cases (x3)	like in type I, usually less nockiles, but marked oederna, pH often elevated (>3)
Thorapy	broad-apactrum anthelimintios effective	only certain broad-spectrum antheimintics effective against hypobiotic stages (► Table 19.2. p. 678)

Diagnosis

- The presence of strongyle type eggs in the faeces of affected animals will merely confirm the presence of adult strongyle nematodes in the g.i. tract.

 In Type I disease, egg counts greater than 1,000 EPG are usually seen but counts
- are much more variable in Type II disease.

Genus: Nematodirus

- > These are slender, relatively long worms (up to 2.5 cm long). As the accompanying image shows, they are distinguished morphologically by an inflated cuticle around the anterior end which may also show transverse striations
- Large numbers of these long slender worms are usually seen at necropsy, in the small intestine, as clumps resembling cotton wool.

Nematode species	Host species	Predilection site
Nematodirus battus	sheep	small intestine
Nematodirus spathiger	sheep and goats	small intestine
Nematodirus filicollis	sheep and goats	small intestine
Nematodirus helvetianus	cattle	small intestine
Nematodirus abnormalis	sheep and goats	small intestine

Life-cycle

Nematodirus is of special importance as a parasite of lambs in temperate regions.

Its hosts are ruminants, and its predilection site is the small intestine.

Nematodirus species are distributed worldwide, but more commonly in temperate zones.

Preparasitic phase of development occur within the egg.

Epizootiology

- > The most important factor influencing transmission of Nematodirus species is the ability of L3s to survive from year to year enclosed inside their protective egg shells.
- > Arrested development has been recorded in sheep (Canada, United States) and has been attributed to hypobiosis at the L4 stage as a mechanism for survival over winter.

Pathogenesis and clinical signs

- Nematodirus is not usually a primary pathogen in ruminants. Its importance therefore is as an additive affect in mixed infections of nematodes causing parasitic gastroenteritis.
- Diarrhea followed rapidly by dehydration are the primary clinical signs. Adult ewes have developed a strong immunity to Nematodirus and are usually unaffected.

Diagnosis

Genus: Cooperia

Cooperia species are nematodes of the small intestine of ruminants. Species in domestic animals are usually 5-9 mm long and males have a prominent bursa in relation to their size.

Nematode species	Host species	Predilection site	
Cooperia curticei	sheep and goats	small intestine	
Cooperia oncophora	cattle	small intestine	
Cooperia pectinata	cattle	small intestine	
Cooperia punctata	cattle	small intestine	
Cooperia surnabada	cattle and sheep	small intestine	

Life cycle

Following ingestion of infective L3s, the larvae reach the small intestine and develop into adults.

The prepatent period varies from 15 to 18 days.

Cooperia are generally considered to be mild pathogens. They contribute secondary effects to the primary pathogens;

to the primary pathogens;
A variety of clinical signs have been attributed to *Cooperia* species and these include: diarrhea, weight loss, anorexia and poor weight gains;

Eggs of family Trichostrongylidae

Genus: Hyostrongylus

The only species of importance in domestic animals is *Hyostrongylus rubidus*, commonly called the "red stomach worm" of pigs. It is a slender worm, 5-10 mm in length.

Life cycle

Hyostrongylus rubidus - Life Cycle

➤ Pathogenic effects of *Hyostrongylus* infections are similar to *Ostertagia* in cattle.

Therapy - trichostrongylidosis

- Benzimidazoles (albendazole, fenbendazole, mebendazole, oxfendazole)
- ➤ Imidazothiazoles (levamizole)
- Macrocyclic lactones (ivermectin, doramectin, eprinomectin, moxidectin)
- > Amino-acetonitril derivates (monepantel)
- > Spiroindoles (derquantel)