Введение в Теорию Типов Конспект лекций

Штукенберг Д. Г. Университет ИТМО

9 ноября 2018 г.

1 Введение

Эти лекции были рассказаны студентам групп М3336–М3339 в 2018 году в Университете ИТМО, на Кафедре компьютерных технологий Факультета информационных технологий и программирования.

Конспект подготовили студенты Кафедры: Егор Галкин (лекции 1 и 2), Илья Кокорин (лекции 3 и 4), Никита Дугинец (лекции 5 и 6), Степан Прудников (лекции 7 и 8). (возможно, история сложнее)

2 Лекция 3

2.1 Ү-комбинатор

Определение 2.1. Комбинатором называется λ -выражение, не имеющее свободных переменных

Определение 2.2. (Y-комбинатор)

$$Y = \lambda f.(\lambda x. f(xx))(\lambda x. f(xx))$$

Очевидно, У-комбинатор является комбинатором.

Теорема 2.1.
$$Yf =_{\beta} f(Yf)$$

Доказательство. β -редуцируем выражение Yf

$$=_{\beta} (\lambda f.(\lambda x.f(xx))(\lambda x.f(xx)))f$$

$$=_{\beta} (\lambda x.f(xx))(\lambda x.f(xx))$$

$$=_{\beta} f((\lambda x.f(xx))(\lambda x.f(xx)))$$

$$=_{\beta} f(Yf)$$

Так как при второй редукции мы получили, что $Y f =_{\beta} (\lambda x. f(xx))(\lambda x. f(xx))$

Следствием этого утверждения является теорема о неподвижной точки для бестипового лямбда-ичисления

Теорема 2.2. В лямбда-исчислении каждый терм f имеет неподвижную точку, то есть такое p, что f $p =_{\beta} p$

Доказательство. Возьмём в качестве p терм Yf. По предыдущей теореме, $f(Yf) =_{\beta} Yf$, то есть Yf является неподвижной точкой для f. Для любого терма f существует терм Yf, значит, у любого терма есть неподвижная точка.

2.2 Рекурсия

С помощью Y-комбинатора можо определять рекурсивные функции, например, функцию, вычисляющую факториал Чёрчевского нумерала. Для этого определим вспомогательную функцию

```
fact' = \lambda f.\lambda n.isZero\ n\ \overline{1}(mul\ n\ f((-1)n))
Тогда fact = Y\ fact'
```

Заметим, что $fact \ \overline{n} =_{\beta} fact' \ (Y \ fact') \ \overline{n} =_{\beta} fact' \ fact \ \overline{n}$, то есть в тело функции fact' вместо функции f будет подставлена fact (заметим, что это значит, что именно функция fact будет применена к $\overline{n-1}$, то есть это соответсувует нашим представлениям о рекурсии.)

Для понимания того, как это работает, посчитаем fact $\overline{2}$

```
fact \ \overline{2}
=_{\beta} Y \ fact' \ \overline{2}
=_{\beta} fact'(Y \ fact' \ \overline{2})
=_{\beta} (\lambda f.\lambda n.is Zero \ n \ \overline{1}(mul \ n \ f((-1)n)))(Y \ fact')\overline{2}
=_{\beta} is Zero \ \overline{2} \ \overline{1}(mul \ \overline{2} \ ((Y \ fact')((-1)\overline{2})))
=_{\beta} mul \ \overline{2} \ ((Y \ fact')((-1)\overline{2}))
=_{\beta} mul \ \overline{2} \ (Y \ fact' \ \overline{1})
=_{\beta} mul \ \overline{2} \ (fact' \ (Y \ fact' \ \overline{1}))
```

Раскрывая fact' $(Y fact' \overline{1})$ так же, как мы раскрывали fact' $(Y fact' \overline{2})$, получаем

$$=_{\beta} mul \ \overline{2} \ (mul \ \overline{1} \ (Y \ fact' \ \overline{0}))$$

Посчитаем ($Y fact' \overline{0}$).

$$(Y \ fact' \ \overline{0})$$

$$=_{\beta} fact' \ (Y \ fact') \ \overline{0}$$

$$=_{\beta} (\lambda f. \lambda n. is Zero \ n \ \overline{1}(mul \ n \ f((-1)n))) \ (Y \ fact') \ \overline{0}$$

$$=_{\beta} is Zero \ \overline{0} \ \overline{1}(mul \ \overline{0} \ ((Y \ fact'))((-1)\overline{0})) =_{\beta} \overline{1}$$

Таким образом,

$$fact \ \overline{2}$$

$$=_{\beta} mul \ \overline{2} \ (mul \ \overline{1} \ (Y \ fact' \ \overline{0}))$$

$$=_{\beta} mul \ \overline{2} \ (mul \ \overline{1} \ \overline{1}) =_{\beta} mul \ \overline{2} \ \overline{1} =_{\beta} \overline{2}$$

2.3 Парадокс Карри

Попробуем построить логику на основе λ -исчисления. Введём логический символ \to . Будем тредовать от этого исчисления наличия следующих схем аксиом:

 $1. \vdash A \rightarrow A$

$$2. \vdash (A \rightarrow (A \rightarrow B)) \rightarrow (A \rightarrow B)$$

3.
$$\vdash A =_{\beta} B$$
, тогда $A \to B$

А так же правила вывода МР:

$$\frac{\vdash A \to B, \vdash A}{\vdash B}$$

Не вводя дополнительные правила вывода и схемы аксиом, покажем, что данная логика является противоречивой. Для чего введём следующие условные обозначения:

$$F_{\alpha} = \lambda x.(x \ x) \to \alpha$$

$$\Phi_{\alpha} = F_{\alpha} F_{\alpha} = (\lambda x.(x \ x) \to \alpha) \ (\lambda x.(x \ x) \to \alpha)$$

Редуцируя Φ_{α} , получаем

$$\Phi_{\alpha}$$

$$=_{\beta} (\lambda x.(x \ x) \to \alpha) (\lambda x.(x \ x) \to \alpha)$$

$$=_{\beta} (\lambda x.(x \ x) \to \alpha) (\lambda x.(x \ x) \to \alpha) \to \alpha$$

$$=_{\beta} \Phi_{\alpha} \to \alpha$$

Таким образом, для доказательства α нужно всего лишь доказать Φ_{α} и применить правило MP.

$$\begin{array}{lll} 1) \vdash \Phi_{\alpha} \to \Phi_{\alpha} \to \alpha & \text{Так как } \Phi_{\alpha} =_{\beta} \Phi_{\alpha} \to \alpha \\ 2) \vdash (\Phi_{\alpha} \to \Phi_{\alpha} \to \alpha) \to (\Phi_{\alpha} \to \alpha) & \text{Так как } \vdash (A \to (A \to B)) \to (A \to B) \\ 3) \vdash \Phi_{\alpha} \to \alpha & \text{MP 2, 3} \\ 4) \vdash (\Phi_{\alpha} \to \alpha) \to \Phi_{\alpha} & \text{Так как } \vdash \Phi_{\alpha} \to \alpha =_{\beta} \Phi_{\alpha} \\ 5) \vdash \Phi_{\alpha} & \text{MP 3, 4} \\ 6) \vdash \alpha & \text{MP 3, 5} \end{array}$$

Таким образом, введённая логика оказывается противоречивой.

2.4 Импликационный фрагмент интуиционистского исчисления высказываний

Рассмотрим подмножество ИИВ, со следующей грамматикой:

$$\Phi ::= x \mid \Phi \to \Phi \mid (\Phi)$$

То есть состоящее только из меременных и импликаций.

Добавим в него одну схему аксиом

$$\Gamma, \varphi \vdash \varphi$$

И два правила вывода

1. Правило введения импликации:

$$\frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \to \psi}$$

2. Правило удаления импликации:

$$\frac{\Gamma \vdash \varphi \to \psi \qquad \Gamma \vdash \varphi}{\Gamma \vdash \psi}$$

Пример. Докажем $\vdash \varphi \rightarrow \psi \rightarrow \varphi$

$$\frac{\varphi,\psi \vdash \varphi}{\varphi \vdash \psi \to \varphi} \text{ (Введение импликации)} \\ \frac{\varphi \vdash \psi \to \varphi}{\vdash \varphi \to (\psi \to \varphi)} \text{ (Введение импликации)}$$

Пример. Докажем $\alpha \to \beta \to \gamma$, α , $\beta \vdash \gamma$

$$\frac{\alpha \to \beta \to \gamma, \ \alpha, \ \beta \vdash \alpha \to \beta \to \gamma \qquad \alpha \to \beta \to \gamma, \ \alpha, \ \beta \vdash \alpha}{\alpha \to \beta \to \gamma, \ \alpha, \ \beta \vdash \beta \to \gamma} \qquad \qquad \alpha \to \beta \to \gamma, \alpha, \ \beta \vdash \beta \to \gamma \qquad \qquad \alpha \to \beta \to \gamma, \alpha, \ \beta \vdash \beta$$

2.5 Просто типизированное по Карри лямбда-исчисление

Определение 2.3. Тип в просто типизированном лямбда-исчислении по Карри это либо маленькая греческая буква $(\alpha, \phi, \theta, \ldots)$, либо импликация $(\theta_1 \to \theta_2)$

Таким образом, $\Theta ::= \theta_i | \Theta \to \Theta | (\Theta)$

Импликация при этом считается правоассоциативной операцией.

Определение 2.4. Язык просто типизированного лямбда-исчисления это язык бестипового лямбда-исчисления.

Определение 2.5. Контекст Γ это список выражений вида $A:\theta$, где A - лямбда-терм, а θ - тип

Определение 2.6. Просто типизипрованное лямбда-исчисление по Карри.

Рассмотрим исчисление с единственной схемой аксиом:

$$\Gamma, x : \theta \vdash x : \theta$$
, если x не входит в Γ

И следующими правилами вывода

1. Правило типизации абстракции

$$\frac{\Gamma, x : \varphi \vdash P : \psi}{\Gamma \vdash (\lambda \ x. \ P) : \varphi \rightarrow \psi}$$

2. Правило типизации импликации:

$$\frac{\Gamma \vdash P : \varphi \to \psi \qquad \Gamma \vdash Q : \varphi}{\Gamma \vdash PQ : \psi}$$

Если λ -выражение типизируется с использованием этихъ двух правил и одной схемы аксиом, то будем говорить, что оно типизируется по Карри.

Пример. Докажем $\vdash \lambda x. \lambda y. x: \alpha \rightarrow \beta \rightarrow \alpha$

$$\frac{x:\alpha,y:\beta\vdash x:\alpha}{x:\alpha\vdash\lambda\;y.\;x:\beta\to\alpha}\;\text{(Правило типизации импликации)}\\ \vdash\lambda\;x.\;\lambda\;y.\;x:\alpha\to\beta\to\alpha\;\text{(Правило типизации импликации)}$$

Пример. Докажем $\vdash \lambda \ x. \ \lambda \ y. \ x \ y: (\alpha \to \beta) \to \alpha \to \beta$

$$\frac{x:\alpha \to \beta, y:\alpha \vdash x:\alpha \to \beta \qquad x:\alpha \to \beta, y:\alpha \vdash y:\alpha}{x:\alpha \to \beta, y:\alpha \vdash x y:\beta \atop \overline{x:\alpha \to \beta \vdash \lambda \ y. \ x \ y:\alpha \to \beta} \atop \vdash \lambda \ x. \ \lambda \ y. \ x \ y:(\alpha \to \beta) \to \alpha \to \beta}$$

2.6 Отсутствие типа у Ү-комбинатора

Теорема 2.3. *Y*-комбинатор не типизируется в просто типизированном по Карри лямбда исчислении

Неформальное доказательство $Y f =_{\beta} f (Y f)$, поэтому Y f и f (Y f) должны иметь одинаковые типы.

Пусть $Y f : \alpha$

Тогда $Y: \beta \to \alpha, f: \beta$

Из $f(Y f): \alpha$ получаем $f: a \to \alpha$ (так как $Y f: \alpha$)

Тогда $\beta=\alpha \to \alpha$, из этого получаем $Y:(\alpha \to \alpha) \to \alpha$

Можно доказать, что λ x. $x:\alpha\to\alpha$. Тогда Y λ x. $x:\alpha$, то есть любой тип является обитаемым. Так как это невозможно, Y-комбинатор не может иметь типа, так как тогда он сделает нашу логику противоречивой.

Формальное доказательство Докажем от противного. Пусть Y-комбинатор типизируем. Тогда в выводе его типа есть вывод типа выражения x x. Так как x x - абстракция, то и типизированна она может быть только по правилу абстракции. Значит, в выводе типа Y-комбинатора есть такой вывод:

$$\frac{\Gamma \vdash x : \varphi \to \psi \qquad \Gamma \vdash x : \varphi}{\Gamma \vdash xx : \psi}$$

Рассмотрим типизацию $\Gamma \vdash x : \varphi \to \psi$ и $\Gamma \vdash x : \varphi$. x это атомарная переменная, значит, она могла быть типизирована только по единственной схеме аксиом.

Следовательно, x типизируется следующим образом.

$$\frac{\Gamma', x:\varphi \to \psi, x:\varphi \vdash x:\varphi \to \psi \qquad \Gamma', x:\varphi \to \psi, x:\varphi \vdash x:\varphi}{\Gamma', x:\varphi \to \psi, x:\varphi \vdash xx:\psi}$$

Следовательно, в контексте Γ переменная x встречается два раза, что невозможно по схеме аксиом.

2.7 Изоморфизм Карри-Ховарда

Заметим, что аксиомы и правила вывода импликационного фрагмента ИИВ и просто типизированного по Карри лямбда-исчисления точно соответсвуют друг другу.

Просто типизирпованное λ-исчисление	Импликативный фрагмент ИИВ
$\Gamma, x: \theta \vdash x: \theta$	$\Gamma, \varphi \vdash \varphi$
$\frac{\Gamma, x : \varphi \vdash P : \psi}{\Gamma \vdash (\lambda \ x. \ P) : \varphi \to \psi}$	$\frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \to \psi}$
$\begin{array}{ c c c c c }\hline \Gamma \vdash P : \varphi \to \psi & \Gamma \vdash Q : \varphi \\\hline \Gamma \vdash PQ : \psi & \\\hline \end{array}$	$\frac{\Gamma \vdash \varphi \to \psi \qquad \Gamma \vdash \varphi}{\Gamma \vdash \psi}$

Установим соответствие и между прочими сущностями ИИВ и просто типизированного по Карри лямбда-исчисления.

Просто типизирпованное λ -исчисление	Импликативный фрагмент ИИВ
Тип	Высказывание
Терм	Доказательство высказывания
Проверка того, что терм имеет заданный	Проверка доказательства на корректность
ТИП	
Обитаемый тип	Доказуемое высказывание
Проверка того, что существует терм, име-	Проверка того, что заданное высказыва-
ющий заданный тип	ние имеет доказательство