

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai ISO 9001 : 2015 Certified Institution Vadapudupatti, Annanji (po), Theni - 625 531, Tamilnadu, India.

Academic Year 2019-2020

S.No	Title of paper	Name of the author/s	Department of the teacher	Name of journal	Calendar Year of publication	ISSN number	Link to website of the Journal
1.	Performance and emission characteristics of algae oil in diesel engine	A. Vennimalai Raja n,	Mechanical Engineering	Materials today proceedings - science direct	2020	2214-7853	<u>View</u>
2.	Performance and emission characteristics of algae oil in diesel engine	B Radhakrishnan	Mechanical Engineering	Materials today proceedings - science direct	2020	2214-7853	<u>View</u>
3.	Vision-based surface roughness accuracy prediction in the CNC milling process (Al6061) using ANN	R. Nagaraja,	Mechanical Engineering	Materials today proceedings - science direct	2020	2214-7853	<u>View</u>
4.	Vision-based surface roughness accuracy prediction in the CNC milling process (Al6061) using ANN	B Radhakrishnan	Mechanical Engineering	Materials today proceedings - science direct	2020	2214-7853	<u>View</u>
5.	A Facile Green Approach of Cone- like ZnO NSs	B Radhakrishnan	Mechanical Engineering	Journal of Inorganic and Organometallic	2020	1574-1451	<u>View</u>

	1		ı	Tarriniadu, irid			
	Synthesized Via <i>Jatropha</i>			Polymers and Materials sprin			
	gossypifolia Leaves			•			
	Extract for			ger			<u>View</u>
	Photocatalytic and						
	Biological Activity						
	Computer vision		Mechanical	Transactions of			
	measurement and		Engineering	the Institute of			
	optimization of	D		Measurement			
6.	surface roughness	B Radhakrishnan		and Control	2020	3158977	<u>View</u>
	using soft	Raunakrisiinan		sage			
	computing						
	approaches						
	Computer vision		Mechanical	Transactions of			
	measurement and	C.Mathalai	Engineering C.Mathalai	the Institute of			
	optimization of			Measurement	2020	2450055	V
7.	surface roughness	sundaram		and Control	2020	3158977	<u>View</u>
	using soft			sage			
	computing approaches						
	Wear behavior of		Mechanical	Transactions of			
	B4C reinforced Al		Engineering	the Canadian			
	6063 matrix		Linginicering	Society for			
8.	composite	S. Harikishore,		Mechanical	2020	3158977	View
	electrodes			Engineering		0_000	<u> </u>
	fabricated by stir			0 0			
	casting method						
	Wear behavior of		Mechanical	Transactions of			
	B4C reinforced Al	Mathalai Sundaram,	Engineering	the Canadian			
9.	6063 matrix			Society for	2020	3158977	<u>View</u>
	composite	o arradi diri,		Mechanical			
	electrodes			Engineering			

1	Tarrimiauu, muia.								
	fabricated by stir casting method								
10.	Wear behavior of B4C reinforced Al 6063 matrix composite electrodes fabricated by stir casting method	B Radhakrishnan	Mechanical Engineering	Transactions of the Canadian Society for Mechanical Engineering	2020	3158977	<u>View</u>		
11.	Optimization of machining parameters in plane surface grinding process by response surface methodology	G. Arun Kumar,	Mechanical Engineering	Materials today proceedings - science direct	2020	2214-7853	<u>View</u>		
12.	Optimization of machining parameters in plane surface grinding process by response surface methodology	B Radhakrishnan	Mechanical Engineering	Materials today proceedings - science direct	2020	2214-7853	<u>View</u>		

NADAR SARASWATHI COLLEGE OF ENGINEERING & TECHNOLOGY

13.	A Methodology for privacy Concerns in Social Networking on Web Browsers	R.Udhaya Kumar	Computer Science and Engineering	Journal of Critical Reviews	2020	2394-5125	<u>View</u>
14.	Intumescent flame retardant spirophosphates: pyrolysis Pyrolysis- GC-MS studies	N DAVID MATHAN, A Thamaraichelva n, D PONRAJU and C T VIJAYAKUMAR	Chemistry	Research Journal of Materials Science	2020	2320-6055	<u>View</u>
15.	Studies on the catalytic activity of CuO/TiO2/ZnO ternary nanocomposites prepared via one step hydrothermal green approach	Mathalai Sundaram C,	Mechanical Engineering	IOP science	2019	1742-6596	<u>View</u>
16.	Studies on the catalytic activity of CuO/TiO2/ZnO ternary nanocomposites prepared via one step hydrothermal green approach	V, Sivaganesan	Mechanical Engineering	IOP science	2019	1742-6596	<u>View</u>

17.	Emission study on the outcome of DMC on neem bio- diesel-ignited diesel engine	Mathalai Sundaram C	Mechanical Engineering	Energy Sources, Part A: Recovery, Utilization, and Environmental Effects	2019	1556-7036	<u>View</u>
18.	Optimization of machining process parameters in CNC turning process of IS2062 E250 Steel using coated carbide cutting tool	B Radhakrishnan	Mechanical Engineering	Materials today proceedings - science direct	2019	2214-7853	<u>View</u>
19.	Mechanical and morphological investigation of bio-degradable magnesium AZ31 alloy for an orthopedic application	Vembathurajesh A,	Mechanical Engineering	Materials today proceedings - science direct	2019	2214-7853	<u>View</u>
20.	Mechanical and morphological investigation of bio-degradable magnesium AZ31 alloy for an orthopedic application	Mathalai Sundaram C,	Mechanical Engineering	Materials today proceedings - science direct	2019	2214-7853	<u>View</u>

NADAR SARASWATHI COLLEGE OF ENGINEERING & TECHNOLOGY

21.	Mechanical and morphological investigation of bio-degradable magnesium AZ31 alloy for an orthopedic application	A. Vennimalai Raja n	Mechanical Engineering	Materials today proceedings - science direct	2019	2214-7853	<u>View</u>
22.	Experimental Evaluation of Al- Zn-Al2O3 Composite on Piston Analysis by CAE Tools.	B Radhakrishnan	Mechanical Engineering	Mechanics & Mechanical Engineering	2019	1428-1511	<u>View</u>