UNIVERSIDADE FEDERAL DE VIÇOSA Campus Florestal

Trabalho 3 Valor: 14 pontos

Disciplina: Meta-heurísticas - CCF-480

Curso: Ciência da Computação Data: 09/06/2025

Professor: Marcus Henrique Soares Mendes

O trabalho deve ser feito em grupo de até 3 estudantes. A entrega do trabalho será via PVANet Moodle até o dia 29/06/25 às 23:59.

Implementar um algoritmo baseado numa das meta-heurísticas **cooperativas** estudadas na disciplina para resolver o problema abaixo proposto pelo professor Marcus Ritt (UFRGS):

O ensopado perfeito

Instância Temos n ingredientes, e que cada ingrediente tem um peso $w_i \geq 0$ e um sabor $t_i \geq 0$. Há ainda uma lista de ingredientes incompatíveis I, em que cada $i \in I$ é um par i = (j, k) de ingredientes que não podem ser usados juntos.

Solução Uma seleção de ingredientes, de modo que nenhum par de ingredientes incompatíveis tenha sido selecionado e que o peso total dos ingredientes selecionados não ultrapasse W.

Objetivo Maximizar o sabor total, ou seja, a soma dos sabores dos ingredientes selecionados.

Informações adicionais Instâncias disponíveis em http://www.inf.ufrgs.br/~mrpritt/
oc/ep.zip.

Melhores valores conhecidos

Instância	BKV	Instância	BKV
ep01	2118	ep06	4690
ep02	1378	ep07	4440
ep03	2850	ep08	5020
ep04	2730	ep09	4568
ep05	2624	ep10	4390

(BKV: melhor valor conhecido (ingl. best known value).)

NãoComercial-SemDerivações 4.0 bnd)

Faça um relatório que contenha a formulação matemática do problema, a definição dos principais elementos da abordagem utilizada (representação de uma solução, solução inicial, vizinhanças, critério de parada, formas de tratamento das restrições, etc.), explique como o algoritmo foi implementado (**pode ser feito em qualquer linguagem de programação**) e quais foram as configurações utilizadas. Execute o algoritmo 30 vezes de modo independente para cada uma das 10 instâncias fornecidas para o problema. E baseado

no valor final da função objetivo retornado em cada uma das 30 execuções faça uma tabela que mostre: média, valor mínimo, valor máximo e desvio padrão do valor da função objetivo retornada pelo algoritmo para cada uma das 10 instâncias. Mostre também o resultado graficamente com boxplot. Em um arquivo texto forneça quais foram os valores das variáveis de decisão obtidos para a melhor solução encontrada para cada uma das 10 instâncias do problema. Envie também o código fonte. Apresente as seguintes tabelas e discuta os resultados obtidos.

Tabela 1 - Resultado do Algoritmo proposto para o problema

Instância	Mínimo	Máximo	Média	Desvio-padrão
ep01				
ep02				
ep03				
ep04				
ep05				
ep06				
ep07				
ep08				
ep09				
ep10	_			

Tabela 2 – Considerando **a melhor execução para cada instância**: valor da solução inicial (SI), valor da solução final (SF), desvio percentual da solução final em relação à inicial calculado como 100*(SI-SF)/SI, desvio percentual da SF em relação à solução ótima, tempo computacional da meta-heurística.

Instância	SI	SF	Desvio % SI	Desvio % SF	Tempo
ep01					
ep02					
ep03					
ep04					
ep05					
ep06					
ep07					
ep08					
ep09					
ep10					

Bom Trabalho!