Exercício 0.1 (Matrizes TU)

Quais das matrizes

são totalmente unimodulares?

Para cada um dos quatro problemas abaixo

- (i) Encontre uma formulação como programa inteiro,
- (ii) descubra se a relaxação linear produz soluções inteiras ótimas:
 - Escreva a matriz de coeficientes do programa linear.
 - Verifique se a matriz é totalmente unimodular.

Proposição 0.1

Uma matriz A é totalmente unimodular se

- (i) $a_{ij} \in \{+1, -1, 0\}$
- (ii) Cada coluna contém no máximo dois coeficientes não-nulos.
- (iii) Existe uma partição de linhas M_1, M_2 tal que cada coluna com dois coeficientes não-nulos satisfaz

$$\sum_{i\in M_1}a_{ij}-\sum_{i\in M_2}a_{ij}=0$$

ou exibe um exemplo em que a relaxação linear não gera uma solução inteira ótima.

CONJUNTO INDEPENDENTE MÁXIMO

Instância Um grafo não-direcionado G = (V, A).

Solução Um conjunto independente I, i.e. $I \subseteq V$ tal que para vértices $v_1, v_2 \in I$, $\{v_1, v_2\} \notin A$.

Objetivo Maximizar |I|.

Casamento perfeito com peso máximo

Instância Um grafo não-direcionado bi-partido $G=(V_1\ \dot\cup\ V_2,A)$ (o fato de ser bi-partido significa que $A\subseteq V_1\times V_2$) com pesos $p:A\to\mathbb{R}$ nos arcos.

Solução Um casamento perfeito, i.e. um conjunto de arcos $C \subseteq A$ tal que todos nós no sub-grafo $G[C] = (V_1 \cup V_2, C)$ tem grau 1.

Objetivo Maximiza o peso total $\sum_{c \in C} p(c)$ do casamento.

PROBLEMA DE TRANSPORTE

Instância n depósitos, cada um com um estoque de p_i $(1 \le i \le n)$ produtos, e m clientes, cada um com uma demanda d_j $(1 \le j \le m)$ produtos. Custos de transporte a_{ij} de cada depósito para cada cliente.

Solução Um decisão de quantos produtos x_{ij} devem ser transportados do depósito i ao cliente j, que satisfaz (i) Cada depósito manda todo seu estoque (ii) Cada cliente recebe exatamente a sua demanda. (Observe que o número de produtos transportados deve ser integral.)

Objetivo Minimizar os custos de transporte $\sum_{i,j} a_{ij} x_{ij}$.

CONJUNTO DOMINANTE

Instância Um grafo não-direcionado G = (V, A).

Solução Um conjunto dominante, i.e. um conjunto $D \subseteq V$, tal que $\forall v \in V : v \in D \lor (\exists u \in D : \{u,v\} \in A)$ (cada vértice faz parte do conjunto dominante ou tem um vizinho no conjunto dominante).

Objetivo Minimizar o tamanho do conjunto dominante |D|.

Exercício 0.2 (Algoritmo de Planos de Corte)

1. Considere um sistema de PI com variáveis x_1 e x_2 , e variáveis de folga x_3 , x_4 e x_5 , cujo dicionário ótimo da resolução linear é:

- 2. Resolva o sistema via método de Plano de Cortes (se a solução requerer a inserção de mais que dois cortes, pare ao obter o sistema ótimo após ter inserido o segundo corte).
- 3. Resolva o sistema abaixo usando o algoritmo de planos de corte.

$$\max \quad z = -3/4x_1 + 1/2x_2$$

$$1/4x_1 - 1/2x_2 \le 1/8$$

$$1/2x_1 + 3x_2 \le 9/4$$

$$x_1, x_2 \in Z^+$$