

October 1978

©Intel Corporation 1978 9800749A

8086 REGISTER MODEL

Instructions which reference the flag register file as a 16-bit object use the symbol FLAGS to represent the file:

7

15

DF: DIRECTION FLAG (STRINGS)
IF: INTERRUPT ENABLE FLAG
OF: OVERFLOW FLAG (CF ⊕ SF)
TF: TRAP — SINGLE STEP FLAG 8086 FLAGS

OPERAND SUMMARY

"reg" field Bit Assignments:

16-Bit (w = 1)	8-Bit (w = 0)	Segment
000 AX	000 AL	00 ES
001 CX	001 CL	01 CS
010 DX	010 DL	10 SS
011 BX	011 BL	11 DS
100 SP	100 AH	
101 BP	101 CH	
110 SI	110 DH	
111 DI	111 BH	

SECOND INSTRUCTION BYTE SUMMARY

mod	XXX	r/m

mod	Displacement		
00	DISP = 0*, disp-low and disp-high are absent		
01	DISP = disp-low sign-extended to 16-bits, disp-high is absent		
10	DISP = disp-high: disp-low		
11	r/m is treated as a "reg" field		

r/m	Operand Address
000	(BX) + (SI) + DISP
001	(BX) + (DI) + DISP
010	(BP) + (SI) + DISP
011	(BP) + (DI) + DISP
100	(SI) + DISP
101	(DI) + DISP
110	(BP) + DISP*
111	(BX) + DISP

DISP follows 2nd byte of instruction (before data if required).

*except if mod = 00 and r/m = 110 then EA = disp-high: disp-low

Operand Address (EA) Timing (clocks):

Add 4 clocks for word operands at ODD ADDRESSES.

Immed Offset = 6

Base (BX, BP, SI, DI) = 5

Base + DISP = 9

Base + Index (BP + DI, BX + SI) = 7 Base + Index (BP + SI, BX + DI) = 8 Base + Index (BP + DI, BX + SI) + DISP = 11 Base + Index (BP + SI, BX + DI) + DISP = 12

MEMORY SEGMENTATION MODEL

SEGMENT OVERRIDE PREFIX

0 0 1 reg 1 1 0

Timing: 2 clocks

USE OF SEGMENT OVERRIDE

Operand Register	Default	With Override Prefix
IP (code address)	CS	Never
SP (stack address)	SS	Never
BP (stack address or stack marker)	SS	BP + DS or ES, or CS
SI or DI (not incl. strings)	DS	ES, SS, or CS
SI (implicit source addr for strings)	DS	ES, SS, or CS
DI (implicit dest addr for strings)	ES	Never

DATA TRANSFER

MOV = Move

Register/memory to/from register

100010dw mod reg r/m

Immediate to register/memory

Timing (clocks): register to register

memory to register register to memory

8+EA 9+EA

1 1 0 0 0 1 1 w mod 0 0 0 r/m data if w=1 data

Timing: 10+EA clocks

Immediate to register

1 0 1 1 w reg data data if w=1

Timing: 4 clocks

Memory to accumulator

1010000w addr-low addr-high

Timing: 10 clocks

Accumulator to memory

addr-high 1010001w addr-low

Timing: 10 clocks

Register/memory to segment register

1 0 0 0 1 1 1 0 mod 0 reg r/m Timing (clocks):

register to register

memory to register

2 8+EA

Segment register to register/memory

1 0 0 0 1 1 0 0 mod 0 reg r/m

Timing (clocks):

register to register register to memory

Mnemonics © Intel. 1978.

9+EA

PUSH = Push

Register/memory

1 1 1 1 1 1 1 1 mod 1 1 0 r/m

Timing (clocks): register memory

10 16+EA

Register

0 1 0 1 0 reg

Timing: 10 clocks

(Continued on following page)

3

Segment register XLAT = Translate byte to AL 0 0 0 reg 1 1 0 11010111 Timing: 10 clocks Timing: 11 clocks POP = Pop LEA = Load EA to register Register/memory 1 0 0 0 1 1 0 1 mod reg 10001111 mod 000 r/m Timing: 2+EA clocks Timing (clocks): register LDS = Load pointer to DS 17+EA memory 1 1 0 0 0 1 0 1 mod reg r/m Register 0 1 0 1 1 reg Timing: 16+EA clocks LES = Load pointer to ES Timing: 8 clocks 1 1 0 0 0 1 0 0 mod reg r/m Segment register Timing: 16+EA clocks 0 0 0 reg 1 1 1 LAHF = Load AH with flags Timing: 8 clocks XCHG = Exchange 10011111 Register/memory with register Timing: 4 clocks 1000011w mod reg r/m SAHF = Store AH into flags register with register Timing (clocks): 10011110 17+EA memory with register Timing: 4 clocks Register with accumulator PUSHF = Push flags 1 0 0 1 0 reg 10011100 Timing: 3 clocks Timing: 10 clocks IN = Input to AL/AX from POPF = Pop flags Fixed port 1110010w 10011101 port Timing: 8 clocks Timing: 10 clocks ARITHMETIC Variable port (DX) ADD = Add1110110w Reg./memory with register to either Timing: 8 clocks 0 0 0 0 0 0 d w mod reg r/m OUT = Output from AL/AX to register to register Timing (clocks): Fixed port 9+EA memory to register 1110011w port 16+EA register to memory Timing: 10 clocks Immediate to register/memory Variable port (DX) data if s:w=01 100000sw mod000 r/m data 1110111w immediate to register Timing (clocks): immediate to memory 17+EA Timing: 8 clocks 5 Mnemonics © Intel, 1978. (Continued on following page) Mnemonics © Intel, 1978.

O 0 0 0 0 1 0 w	Timing (clocks): immediate from register immediate from memory 17+EA Immediate from accumulator 0 0 1 0 1 1 0 w data data if w=1 Timing: 4 clocks SBB = Subtract with borrow Reg./memory and register to either 0 0 0 1 1 0 d w mod reg r/m Timing (clocks): register from register 3
Reg./memory with register to either 0 0 0 1 0 0 d w mod reg r/m	0 0 1 0 1 1 0 w data data if w=1 Timing: 4 clocks SBB = Subtract with borrow Reg./memory and register to either 0 0 0 1 1 0 d w mod reg r/m
Timing (clocks): register to register memory to register register to memory 16+EA Immediate to register/memory 1 0 0 0 0 0 0 s w mod 0 1 0 r/m data data if s:w=01	Timing: 4 clocks SBB = Subtract with borrow Reg./memory and register to either 0 0 0 1 1 0 d w mod reg r/m
Timing (clocks): register to register 9+EA register to memory 16+EA Immediate to register/memory 10 0 0 0 0 0 s w mod 0 1 0 r/m data data if s:w=01	SBB = Subtract with borrow Reg./memory and register to either 0 0 0 1 1 0 d w mod reg r/m
memory to register	Reg./memory and register to either 0 0 0 1 1 0 d w mod reg r/m
Immediate to register/memory	
1 0 0 0 0 0 s w mod 0 1 0 r/m data data if s:w=01	Timing (clocks): register from register 3
Timing (clocks): immediate to register 4	memory from register 9+EA
immediate to memory 17+EA	register from memory 16+EA
Immediate to accumulator	1 0 0 0 0 0 s w mod 0 1 1 r/m data
0 0 0 1 0 1 0 w data data if w=1 Timing: 4 clocks	Timing (clocks): immediate from register immediate from memory 17+EA
	Immediate from accumulator
INC = Increment	0 0 0 1 1 1 0 w data data if w=1
Register/memory 1 1 1 1 1 1 1 w mod 0 0 0 r/m	Timing: 4 clocks
Timing (clocks): register 2 memory 15+EA	DEC = Decrement Register/memory
Register	1 1 1 1 1 1 1 w mod 0 0 1 r/m
0 1 0 0 0 reg	Timing (clocks): register 2 memory 15+EA
Timing: 2 clocks	Register
AAA = ASCII adjust for add	0 1 0 0 1 reg
0 0 1 1 0 1 1 1	Timing: 2 clocks
Timing: 4 clocks	NEG = Change sign
DAA = Decimal adjust for add	1 1 1 1 0 1 1 w mod 0 1 1 r/m
00100111	Timing (clocks): register 3
Timing: 4 clocks	memory 16+EA
SUB = Subtract Reg./memory and register to either	CMP = Compare Register/memory and register
0 0 1 0 1 0 d w mod reg r/m	0 0 1 1 1 0 d w mod reg r/m
Timing (clocks): register from register 9+EA register from memory 16+EA	Timing (clocks): register with register memory with register register with memory 9+EA
6 Mnemonics © Intel, 1978. (Continued of following page)	Continued on following page Mnemonics € Intel, 1978.

data if s:w=01

data if s:w=01

100000sw mod111 r/m	data	data if s:w=01	10011000			
Fiming (clocks): immediate with regis			Timing: 2 clocks			
immediate with mem	nory 17+EA		CWD = Convert w	ord to double word		
mmediate with accumulator		Ĭ	10011001			
0 0 1 1 1 1 0 w data d	lata if w=1	•	Timing: 5 clocks			
Fiming: 4 clocks				LOGIC		
AAS = ASCII adjust for subtract			NOT = Invert			
0 0 1 1 1 1 1 1			1 1 1 1 0 1 1 w	nod 0 1 0 r/m		
Timing: 4 clocks			Timing (clocks):	register memory	3 16+EA	
DAS = Decimal adjust for subtract			SHL/SAL = Shift Id	ogical/arithmetic left		
0 0 1 0 1 1 1 1			1 1 0 1 0 0 v w	mod 1 0 0 r/m		
Timing: 4 clocks			Timing (clocks):	single-bit register	2	
MUL = Multiply (unsigned)				single-bit memory variable-bit register	15+EA 8+4/bit	
1 1 1 1 0 1 1 w mod 1 0 0 r/m	74.54			variable-bit memory	20+EA+4/bit	
Firming (clocks): 8-bit 16-bit	71+EA 124+EA		SHR = Shift logica	l right		
MUL = Integer multiply (signed)			1 1 0 1 0 0 v w	mod 1 0 1 r/m		
1 1 1 1 0 1 1 w mod 1 0 1 r/m			Timing (clocks):	single-bit register	2	
Timing (clocks): 8-bit	90+EA	Ö.		single-bit memory variable-bit register	15+EA 8+4/bit	
16-bit	144+EA	Ö		variable-bit memory	20+EA+4/bit	
AAM = ASCII adjust for multiply	٠.					
1 1 0 1 0 1 0 0 0 0 0 1 0 1 0						
Timing: 83 clocks				0. 1.77		
DIV = Divide (unsigned)			SAR = Shift arithm	mod 1 1 1 r/m		
1 1 1 1 0 1 1 w mod 1 1 0 r/m					2	
Timing (clocks): 8-bit	90+EA		Timing (clocks):	single-bit register single-bit memory	15+EA	
16-bit	155+EA			variable-bit register variable-bit memory	8+4/bit 20+EA+4/bit	
IDIV = Integer divide (signed)			DOL - Detete left	variable-bit memory	20+EA+4/Dit	
1 1 1 1 0 1 1 w mod 1 1 1 r/m	9000000000	,	ROL = Rotate left	mod 0 0 0 r/m		
Timing (clocks): 8-bit 16-bit	112+EA 177+EA			mod 0 0 0 r/m single-bit register	2	
AAD = ASCII adjust for divide			Timing (clocks):	single-bit register	15+EA	
1 1 0 1 0 1 0 1 0 0 0 0 1 0 1 0				variable-bit register variable-bit memory	8+4/bit 20+EA+4/bit	
Timing: 60 clocks					eras victorias especialis.	
8 Mnemonics © Intel, 19	978			Mnemonics © Intel, 1978.		
winemonics - Intel, is						

2 D' 15+EA 8+4/bit 20+EA+4/bit	Timing (clocks): immediate with register immediate with memory 10+EA	
EU : EM : TV DIL		
	1 0 1 0 1 0 0 w data data if w=1	
9	Timing: 4 clocks	
,	OR = Or	
15+EA		
20+EA+4/DIT	Tilling (Clocks). Togleter to regions.	
	memory to regions.	
	ar variation san S	
		data if w=1
8+4/bit 20+EA+4/bit	Timing (clocks): immediate to register 4	
2		
16+EA		
	_	
data data if w=1	memory to register 9+EA	
4	register to memory 16+EA	
17+EA	Immediate to register/memory	
		data if w=1
ta if w=1	Timing (clocks): immediate to register 4 immediate to memory 17+EA	
£.	Immediate to accumulator	
1	0 0 1 1 0 1 0 w data data if w=1	
4	Timing: 4 clocks	
	STRING MANIPULATION	
3	REP = Repeat	
9+EA	1 1 1 1 0 0 1 z	
	Timing: 6 clocks/loop	
3.	Mnemonics © Intel, 1978.	11
t	8+4/bit 20+EA+4/bit 2 15+EA 8+4/bit 20+EA+4/bit 3 9+EA 16+EA data if w-1 4 17+EA	OR = Or Reg./memory and register to either 0 0 0 0 1 0 d w mod reg r/m Timing (clocks): register to register gegister to memory 16+EA 15+EA 8+4/bit 20+EA+4/bit

MOVS = Move String

Timing: 17 clocks

CMPS = Compare String

1010011w

Timing: 22 clocks

SCAS = Scan String

1010111w

Timing: 15 clocks

LODS = Load String

1010110w

Timing: 12 clocks

STOS = Store String

1010101w

Timing: 10 clocks

CONTROL TRANSFER

NOTE: Queue reinitialization is not included in the timing information for <u>transfer</u> operations. To account for instruction loading, add 8 clocks to timing numbers.

CALL = Call

Direct within segment

1 1 1 0 1 0 0 0 disp-low disp-high

Timing: 11 clocks

Indirect within segment

1 1 1 1 1 1 1 1 mod 0 1 0 r/m

Timing: 13+EA clocks

Direct intersegment

 1 0 0 1 1 0 1 0
 offset-low
 offset-high

 Timing: 20 clocks
 seg-low
 seg-high

Indirect intersegment

1 1 1 1 1 1 1 1 mod 0 1 1 r/m

Timing: 29+EA clocks

JMP = Unconditional Jump

Direct within segment

1 1 1 0 1 0 0 1 disp-low disp-high

Timing: 7 clocks

Direct within segment-short

1 1 1 0 1 0 1 1 disp

Timing: 7 clocks

Indirect within segment

1 1 1 1 1 1 1 1 1 mod 1 0 0 r/m

Timing: 7+EA clocks

Direct intersegment

 1 1 1 0 1 0 1 0
 offset-low
 offset-high

 Timing: 7 clocks
 seg-low
 seg-high

Indirect intersegment

1 1 1 1 1 1 1 1 mod 1 0 1 r/m

Timing: 16+EA clocks

RET = Return from CALL

1 1 0 0 0 0 1 1

Timing: 8 clocks

Within seg. adding immed to SP

1 1 0 0 0 0 1 0 data-low data-high

Timing: 12 clocks

Intersegment

11001011

Timing: 18 clocks

Intersegment, adding immediate to SP

1 1 0 0 1 0 1 0 data-low data-high

Timing: 17 clocks

JE/JZ = Jump on equal/zero

0 1 1 1 0 1 0 0 disp

Timing (clocks): Jump is taken Jump is not taken

13

8

01111100	disp	
Timing (clocks):	Jump is taken Jump is not taken	8 4
JLE/JNG = Jump	on less or equal/not great	er
01111110	disp	
Timing (clocks):	Jump is taken Jump is not taken	8 4
JB/JNAE = Jump	on below/ not above or ed	qual
01110010	disp	
Timing (clocks):	Jump is taken Jump is not taken	8 4
JBE/JNA = Jump	on below or equal/not abo	ove
01110110	disp	
Timing (clocks):	Jump is taken Jump is not taken	8 4
JP/JPE = Jump o	n parity/parity even	
01111010	disp	
Timing (clocks):	Jump is taken Jump is not taken	8 4
JO = Jump on ove		
01110000	disp	
Timing (clocks):	Jump is taken Jump is not taken	. 8 4
JS = Jump on sig	n	
01111000	disp	
Timing (clocks):	Jump is taken Jump is not taken	8 4
JNE/JNZ = Jump	on not equal/not zero	
01110101	disp	
Timing (clocks):	Jump is taken Jump is not taken	8
JNL/JGE = Jump	on not less/greater or equ	al
	disp	
0 1 1 1 1 1 0 1		8
Timing (clocks):	Jump is taken Jump is not taken	
	Jump is not taken	4

01111111	disp	
Timing (clocks):	Jump is taken Jump is not taken	8
JNB/JAE = Jump	on not below/above or ed	qual
01110011	disp	
Timing (clocks):	Jump is taken Jump is not taken	8
JNBE/JA = Jump	on not below or equal/ab	ove
01110111	disp	
Timing (clocks):	Jump is taken Jump is not taken	8
JNP/JPO = Jump	on not parity/parity odd	
01111011	disp	
Timing (clocks):	Jump is taken Jump is not taken	8
JNO = Jump on n	ot overflow	
01110001	disp	
Timing (clocks):	Jump is taken Jump is not taken	8
JNS = Jump on n	ot sign	
01111001	disp	
Timing (clocks):	Jump is taken Jump is not taken	8
LOOP = Loop CX	times	
11100010	disp	
Timing (clocks):	Jump is taken Jump is not taken	9 5
LOOPZ/LOOPE =	Loop while zero/equal	
11100001	disp	
Timing (clocks):	Jump is taken Jump is not taken	11 5
LOOPNZ/LOOPN	E = Loop while not zero/	not equa
11100000	disp	
Timing (clocks):	Jump is taken Jump is not taken	11 5

15

JCXZ = Jump on CX zero

1 1	100011	disp
Tim	ing (clocks):	lump is taken

Jump is not taken

8086 CONDITIONAL TRANSFER OPERATIONS

Instruction	Condition	Interpretation
JE or JZ	ZF = 1	"equal" or "zero"
JL or JNGE	(SF xor OF) = 1	"less" or "not greater or equal"
JLE or JNG	((SP xor OF) or ZF) = 1	"less or equal" or "not greater"
JB or JNAE	CF = 1	"below" or "not above or equal"
JBE or JNA	(CF or ZF) = 1	"below or equal" or "not above"
JP or JPE	PF = 1	"parity" or "parity even"
JO	OF = 1	"overflow"
JS	SF= 1	"sign"
JNE or JNZ	ZF = 0	"not equal" or "not zero"
JNL or JGE	(SF xor OF) = 0	"not less" or "greater or equal"
JNLE or JG	((SF xor OF) or ZF) = 0	"not less or equal" or "greater"
JNB or JAE	CF = 0	"not below" or "above or equal"
JNBE or JA	(CF or ZF) = 0	"not below or equal" or "above"
JNP or JPO	PF = 0	"not parity" or "parity odd"
JNO	OF = 0	"not overflow"
JNS	SF = 0	"not sign"

[&]quot;"Above" and "below" refer to the relation between two unsigned values, while "greater" and "less" refer to the relation between two signed values.

INT = Interrupt Type specified

11001101	type
----------	------

Timing: 50 clocks

Type 3

11001100

Timing: 51 clocks

INTO = Interrupt on overflow

11001110

Timing: 52 clocks if pass

4 clocks if fail

IRET = Interrupt return

11001111

Timing: 24 clocks

16

Mnemonics © Intel, 1978.

PROCESSOR CONTROL

CLC = Clear carry	STC = Set carry
11111000	1 1 1 1 1 0 0 1
Timing: 2 clocks	Timing: 2 clocks
CMC = Complement carry	NOP = No operation
1 1 1 1 0 1 0 1	1 0 0 1 0 0 0 0
Timing: 2 clocks	Timing: 3 clocks
CLD = Clear direction	STD = Set direction
1 1 1 1 1 1 0 0	1 1 1 1 1 1 0 1
Timing: 2 clocks	Timing: 2 clocks
CLI = Clear interrupt	STI = Set interrupt
1 1 1 1 1 0 1 0	1 1 1 1 1 0 1 1
Timing: 2 clocks	Timing: 2 clocks
HLT = Halt	WAIT = Wait
1 1 1 1 0 1 0 0	10011011
Timing: 2 clocks	Timing: 3 clocks
LOCK = Bus lock prefix	ESC = Escape (to external device)

Footnotes:

11110000

Timing: 2 clocks

if d=1 then "to"; if d=0 then "from" if w=1 then word instruction; if w=0 then byte instruction

if s:w = 01 then 16 bits of immediate data form the operand

if s:w = 11 then an immediate data byte is sign extended to form the 16-bit operand

1 1 0 1 1 x x x mod x x x r/m

Timing: 7+EA clocks

if v=0 then "count" = 1; if v=1 then "count" in (CL)

x = don't care

z is used for some string primitives to compare with ZF FLAG

AL = 8-bit accumulator

AX = 16-bit accumulator

CX = Count register

DS = Data segment DX = Variable port register

ES = Extra segment Above/below refers to unsigned value

Greater = more positive;

Less = less positive (more negative) signed values

See page 1 for Operand Summary.

See page 2 for Segment Override Summary.

Mnemonics © Intel, 1978.

ASSEMBLER DIRECTIVES

Symbol Definition:

EQU

LABEL

PURGE

Memory Reservation and

Data Definition:

DB

DW

DD

RECORD

Location Counter and

Segmentation Control:

SEGMENT/ENDS

ORG

GROUP

ASSUME

PROC/ENDP

CODEMACRO/ENDM

Program Linkage:

NAME

PUBLIC

EXTRN

END

PROCESSOR RESET REGISTER INITIALIZATION

DS = 0000H

SS = 0000H

ES = 0000H

No other registers are acted upon during reset.

MCS-86™ RESERVED LOCATIONS

Reserved Memory Locations

Intel Corporation reserves the use of memory locations FFFFOH through FFFFFH (with the exception of FFFFOH - FFFF5H for JMP instr.) for Intel hardware and software products. If you use these locations for some other purpose, you may preclude compatibility of your system with certain of these products.

Reserved Input/Output Locations

Intel Corporation reserves the use of input/output locations F8H through FFH for Intel hardware and software products. Users who wish to maintain compatibility with present and future Intel products should not use these locations.

Reserved Interrupt Locations

Intel Corporation reserves the use of interrupts 0-31 (locations 00H through 7FH) for Intel hardware and software products. Users who wish to maintain compatibility with present and future Intel products should not use these locations.

Interrupts 0 through 4 (00H-13H) currently have dedicated hardware functions as defined below.

Interrupt	Location	Function		
0	00H-03H	Divide by zero		
1	04H-07H	Single step		
2	08H-0BH	Non-maskable interrupt		
3	0CH-0FH	One-byte interrupt instruction		
4	10H-13H	Interrupt on overflow		

INTERRUPT POINTER TABLE

8086 INSTRUCTION SET MATRIX

1	0	1	2	3	4	5	6	7
0	ADD b,f,r/m	ADD w,f,r/m	ADD b,t,r/m	ADD w,t,r/m	ADD b, ia	ADD w, ia	PUSH ES	POP ES
1	ADC b,f,r/m	ADC w,f,r/m	ADC b,t,r/m	ADC w,t,r/m	ADC b,i	ADC w,i	PUSH SS	POP SS
2	AND b,f,r/m	AND w,f,r/m	AND b,t,r/m	AND w,t,r/m	AND b,i	AND w,i	SEG =ES	DAA
3	XOR b,f,r/m	XOR w,f,r/m	XOR b,t,r/m	XOR w,t,r/m	XOR b,i	XOR w,i	SEG =SS	AAA
4	INC AX	INC CX	INC DX	INC BX	INC SP	INC BP	INC SI	INC DI
5	PUSH AX	PUSH CX	PUSH DX	PUSH BX	PUSH SP	PUSH BP	PUSH SI	PUSH DI
6								
7	JO	JNO	JB/ JNAE	JNB/ JAE	JE/ JZ	JNE/ JNZ	JBE/ JNA	JNBE/ JA
8	Immed b,r/m	Immed w,r/m	Immed b,r/m	Immed is,r/m	TEST b,r/m	TEST w,r/m	XCHG b,r/m	XCHG w,r/m
9	NOP	XCHG CX	XCHG DX	XCHG BX	XCHG SP	XCHG BP	XCHG SI	XCHG DI
A	MOV m → AL	MOV m → AX	MOV AL - m	M0V AX → m	MOVS b	MOVS w	CMPS b	CMPS W
В	M0V i → AL	MOV i → CL	MOV i → DL	MOV i → BL	MOV i → AH	MOV i → CH	MOV i → DH	MOV i → BH
C			RET. (i+SP)	RET	LES	LDS	MOV b,i,r/m	MOV w,i,r/m
0	Shift b	Shift W	Shift b,v	Shift w,v	AAM	AAD		XLAT
E	LOOPNZ/ LOOPNE	LOOPZ/ LOOPE	LOOP	JCXZ	IN b	IN w	OUT b	OUT w
F	LOCK		REP	REP Z	HLT	СМС	Grp 1 b,r/m	Grp 1 w,r/m

b = byte operation d = direct f = from CPU reg i = immediate ia = immed. to accum. id = indirect is = immed. byte, sign ext. I = long ie. intersegment

m = memory r/m = EA is second byte si = short intrasegment sr = segment register t = to CPU reg v = variable w = word operation z = zero

1	В	9	A	В	C	D	E	F
)	OR b,f,r/m	OR w,f,r/m	OR b.t.r/m	OR w,t,r/m	OR b.i	OR w.i	PUSH CS	
1	SBB b,f,r/m	SBB w,f,r/m	SBB b,t,r/m	SBB w,t,r/m	SBB b,i	SBB w,i	PUSH DS	POP DS
?	SUB b,f,r/m	SUB w.f.r/m	SUB b,t,r/m	SUB w,t,r/m	SUB b.i	SUB w.i	SEG -CS	DAS
3	CMP b,f,r/m	CMP w.f.r/m	CMP b,t,r/m	CMP w,t,r/m	CMP b,i	CMP w.i	SEG -DS	AAS
1	DEC AX	DEC CX	DEC DX	DEC BX	DEC SP	DEC BP	DEC SI	DEC DI
,	POP AX	POP CX	POP DX	POP BX	POP SP	POP BP	POP SI	POP DI
i								
1	JS	JNS	JP/ JPE	JNP/ JP0	JL/ JNGE	JNL/ JGE	JLE/ JNG	JNLE/ JG
3	MOV b,f,r/m	MOV w.f.r/m	MOV b,t,r/m	MOV w.t,r/m	MOV sr,t,r/m	LEA	MOV sr,f,r/m	POP r/m
)	CBW	CWD	CALL I,d	WAIT	PUSHF	POPF	SAHF	LAHF
١	TEST b,i	TEST w,i	STOS b	STOS w	LODS b	LODS w	SCAS b	SCAS w
3	M0V i → AX	MOV i → CX	MOV i → DX	MOV i → BX	MOV i → SP	MOV i → BP	MOV i SI	MOV i → DI
;			RET. I.(i+SP)	RET I	INT Type 3	INT (Any)	INTO	IRET
)	ESC 0	ESC 1	ESC 2	ESC 3	ESC 4	ESC 5	ESC 6	ESC 7
	CALL d	JMP d	JMP I,d	JMP si,d	IN v,b	IN v,w	OUT v,b	OUT v,w
	CLC	STC	CLI	STI	CLD	STD	Grp 2 b,r/m	Grp 2 w.r/m

where:								
mod r/m	000	001	010	011	100	101	110	111
Immed	ADD	OR	ADC	SBB	AND	SUB	XOR	CMP
Shift	ROL	ROR	RCL	ACR	SHL/SAL	SHR	_	SAR
Grp 1	TEST	2 	NOT	NEG	MUL	IMUL	DIV	IDIV
Grp 2	INC	DEC	CALL	CALL Lid	JMP id	JMP Lid	PUSH	-

20

Mnemonics © Intel, 1978.

Mnemonics © Intel, 1978.

MNEMONIC INDEX

Mnemonic	Page	Mnemonic	Page	Mnemonic	Page
AAA	6	JG	15	MOV	3
AAD	8	JGE	14	MOVS	12
AAM	8	JL	14	MUL	8
AAS	8	JLE	14	NEG	7
ADC	6	JMP	13	NOP	17
ADD	5	JNA	14	NOT	9
AND	10	JNAE	14	OR	11
CALL	12	JNB	15	OUT	4
CBW	9	JNBE	15	POP	4
CLC	17	JNE	14	POPF	5
CLD	17	JNG	14	PUSH	3
CLI	17	JNGE	14	PUSHF	5
CMC	17	JNL	14	RCL	10
CMP	7	JNLE	16	RCR	10
CMPS	12	JNO	15	REP	11
CWD	9	JNP	15	RET	13
DAA	6	JNS	15	ROL	9
DAS	8	JNZ	14	ROR	10
DEC	7	JO	14	SAHF	5
DIV	8	JP	14	SAL	9
ESC	17	JPE	14	SAR	9
HLT	17	JPO	15	SBB	7
IDIV		JS	14	SCAS	12
IMUL	8	JZ	13	SHL	9
IN	4	LAHF	5	SHR	9
INC		LDS	5	STC	17
INT	16	LEA	5	STD	17
INTO		LES	-	ŠTI	17
IRET	16	LOCK	17	STOS	12
JA	15	LODS	12	SUB	6
JAE		LOOP	15	TEST	10
JB	14	LOOPE _	15	WAIT	17
JBE		LOOPNE _	15	XCHG	4
JCXZ		LOOPNZ _		XLAT	5
JE		LOOPZ	15	XOR	11

Mnemonics © Intel, 1978.

Printed in U.S.A./A329/381/20K BL