HOMEWORK 2: MODULE THEORY DUE: FRIDAY, MARCH 2ND

- 1) Show that for a prime ideal \mathfrak{p} , $R \setminus \mathfrak{p}$ is a multiplicatively closed set.
- 2) Compute the localization of the ring $R = \mathbb{Z}/\langle 10 \rangle$ at the multiplicative set $W = \langle 1, 2, 4, 8, 6 \rangle$. In particular, write down all the elements.
- 3) Show that a map of modules $\varphi: M \to N$ is injective and surjective if and only if there is a 2-sided inverse to $\varphi: \exists \varphi^{-1}: N \to M$ with $\varphi^{-1} \circ \varphi = Id_M$ and $\varphi \circ \varphi^{-1} = Id_N$.
- 4) Prove the following Proposition from class:

Proposition 0.1. There is a natural map $\operatorname{Hom}_R(N,P) \times \operatorname{Hom}_R(M,N) \to \operatorname{Hom}_R(M,P)$ given by composition.

In addition, $End_R(M) := Hom_R(M, M)$ has a natural structure as an R-algebra.

5) We define the tensor product of two R-modules M, N to be

$$M \otimes_R N = \{ \sum_{i=1}^l m_i \otimes n_i \mid m_i \in M, n_i \in N \} / \sim$$

where \sim is defined by

- i. $rm \otimes n \sim m \otimes rn$
- ii. $m \otimes n + m' \otimes n \sim (m + m') \otimes n$
- iii. $m \otimes n + m \otimes n' \sim m \otimes (n + n')$

Give $M \otimes_R N$ the structure of an R-module.

6) Recall that if $\varphi: R \to S$ is a ring homomorphism, then S is an R-module. If M is another R-module, show that $M \otimes_R S$ has the structure of an S module.

Additionally, note that if M is an S-module, M is also an R-module with action $r \cdot m = \varphi(r)m$. Therefore, we can pass modules between rings that are connected by a ring homomorphism.

- 7) Show that if $N \subseteq M$, and that M/N and N are finitely generated modules, then so is M.
- 8) Show that if F, F' are free modules, then so is $F \otimes_R F'$. Calculate its rank.
- 9) Show that two free R-modules are isomorphic, $F \cong F'$, if and only if F and F' have the same rank.

Hint: You may want to quotient out by the maximal ideal. This is the same as tensoring by R/\mathfrak{m} over R by Class 9, Prop 0.4.