

Collaborative Filtering

Manuel Dömer ZHAW School of Engineering

Recommending Movies

• The Netflix Prize

Supervised Learning Setting

Feature representation (encoding)

$$\Phi : item^{(m)} \rightarrow \mathbf{x}^{(m)} = \begin{pmatrix} x_1^{(m)} \\ \vdots \\ x_N^{(m)} \end{pmatrix}$$

Training Data

Design matrix \mathbf{X}

feature n → item m ↓	1	2	• • •	N
1	\mathbf{x}_1^1	\mathbf{x}_2^1		x_N^1
2	x_1^2	x_2^2		x_N^2
•				
M	x_1^M	$\mathbf{x}_{2}^{\mathbf{M}}$		x_N^M

Ratings y

Learning Task

Learn a predictor, f, that maps an N-dimensional vector representation of an item (row in \mathbf{X}) to an output value (element in \mathbf{y})

$$f\left(\mathbf{x}^{(m)}\right) \rightarrow \mathbf{y}^{(m)}$$

- $y^{(m)} \in \{1,2,3,4,5\} \rightarrow \text{classification}$
- $y^{(m)} \in \mathbb{R} \rightarrow regression$

Regression Problem

- Hypothesis, e.g. linear: $f(\mathbf{x}^{(m)}) = \theta^T \mathbf{x}^{(m)}$
- Loss function: $\Box = \sum_{m=1}^{M} (y^m f(\mathbf{x}^{(m)}))^2$
- + regularisation
- Cost function:

$$J(\theta) = \frac{1}{2M} \sum_{m=1}^{M} \left(\mathbf{y}^m - \theta^T \mathbf{x}^{(m)} \right)^2 + \frac{\lambda}{2} ||\theta||^2$$

• Minimise: Solve analytically or by gradient descent

Problems

- Difficult to design expressive features
- For personal recommendations data from other users is not leveraged

Rating Matrix

 $Y : M \text{ users} \times N \text{ items}$

item n → user m ↓	1	2	• • •	N
1	$y_1^{(1)}$	$y_2^{(1)}$		$\mathbf{y}_{\mathbf{N}}^{(1)}$
2	$y_1^{(2)}$	$y_2^{(2)}$		$y_N^{(2)}$
•				
M	$\mathbf{y}_{1}^{(\mathbf{M})}$	$y_2^{(M)}$		$y_N^{(M)}$

Matrix Filling Task

Rating matrix is very sparse

item n → user m ↓	1	2	• • •	N
1	5			3
2		1		
:				2
M	1			

Collaborative Filtering - The Principle

Using the Nearest Neighbour approach

User-based vs. item-based

The Nearest Neighbour Approach

Calculate the unknown rating as the average rating of the other users weighted by similarity

E.g. by cosine similarity

$$s_{m,m'} = \frac{\mathbf{x}^{(m)} \cdot \mathbf{x}^{(m')}}{|\mathbf{x}^{(m)}| |\mathbf{x}^{(m')}|}$$

- by row → user-based
- By columns → item-based

User ↓ Item →	1	2	3	4	5	6
Ł.	1	თ	1		5	4
[5	4	4		1	
3	2		5	4	5	
A		3				5
Ŝ		2		5	4	
6			4	4		5

Similarity of Users 1 and 2

User ↓ Item →	1	2	3	4	5	6
A	1	3	1		5	4
2	5	4	4		1	

Only consider items rated by both users

$$s_{1,2} = \frac{\mathbf{x}^{(1)} \cdot \mathbf{x}^{(2)}}{|\mathbf{x}^{(1)}| |\mathbf{x}^{(2)}|}$$

$$= \frac{1 \cdot 5 + 3 \cdot 4 + 1 \cdot 4 + 5 \cdot 1}{\sqrt{1^2 + 3^2 + 1^2 + 5^2} \cdot \sqrt{5^2 + 4^2 + 4^2 + 1^2}} = 0.57$$

Similarity Matrix

User↓ User→	1	2	3	4	5	6
1	1.00	0.57	0.84	0.99	1.00	0.91
2	0.57	1.00	0.73	1.00	0.65	1.00
3	0.84	0.73	1.00	0.00	0.98	0.99
4	0.99	1.00	0.00	1.00	1.00	1.00
5	1.00	0.65	0.98	1.00	1.00	1.00
6	0.91	1.00	0.99	1.00	1.00	1.00

Calculation of an Unknown Rating

User↓ Item→	1	2	3	4	5	6
Â	1	3	1		5	4
2	5	4	4	?	1	
3	2		5	4	5	
4		3				5
3		2		5	4	
6			4	4		5

User↓ User→	1	2	3	4	5	6
1	1.00	0.57	0.84	0.99	1.00	0.91
2			0.73			
3	0.84	0.73	1.00	0.00	0.98	0.99
4	0.99	1.00	0.00	1.00	1.00	1.00
5	1.00	0.65	0.98	1.00	1.00	1.00
6	0.91	1.00	0.99	1.00	1.00	1.00

Predicted rating for user m = 2, item n = 4:

$$y_{2,4}^{\hat{}} = \frac{1}{s_{2,3} + s_{2,5} + s_{2,6}} (s_{2,3} \cdot y_{3,4} + s_{2,5} \cdot y_{5,4} + s_{2,6} \cdot y_{6,4})$$

$$= \frac{1}{0.73 + 0.65 + 1.0} (0.73 \cdot 4 + 0.65 \cdot 5 + 1.0 \cdot 4)$$

$$= 4.27$$

Matrix Factorisation

For a matrix $Y: M \times N$ of rank K there exist $U: N \times K$ and

 $V: M \times K$, such that

$$Y = UV^{T}$$

Matrix Factorisation

$$Y = UV^{T}$$

- Problem: Y is sparse
- Approach:
 - Calculate U and V based on available entries in Y
 - Use U and V to predict unknown ratings \hat{Y}

Factorisation Machines

Cost:
$$J(U, V) = \frac{1}{2} \sum_{\substack{(m,n) \text{ where} \\ y_{m,n} \neq 0}} (y_{m,n} - (\mathbf{u}^{(m)} \cdot \mathbf{v}^{(n)} + b_u^{(m)} + b_v^{(n)}))^2 + \frac{\lambda}{2} \sum ||\mathbf{u}^{(m)}||^2 + \frac{\lambda}{2} \sum ||\mathbf{v}^{(n)}||^2$$

Minimise by alternating least squares or stochastic gradient descent

Summary

Collaborative filtering:

- No item features needed
- User ratings required
- Current interests infered from historic user behavior
- Sparsity
- Cold start problems
- Users's range of interests can be expanded

Content-based:

- Item features required
- No ratings required
- No cold-start or sparsity problem
- new and less famous objects are also recommended
- Serendipity effect is not really supported