Adding a third normal to CLUBB

Sven Bergmann

University of Wisconsin Milwaukee

May 3, 2024

- Introduction
- Problem
 - Motivation to add a third normal component
 - Closing turbulence pdes by integration over a pdf
 - Derivation of trinormal closures by transformation of binormal closures
 - Goal
 - Inputs and Outputs
- Oefinitions
 - Normal Distribution
 - Variates of the pdf
- Formulas that define the shape of the pdf and moments in terms of pdf parameters
 - ullet Definition of the trinormal distribution, P_{tmg}
- Formulas for higher-order moments
- Asymptotics
- Integration using SymPy
- Summary

- Introduction
- Problem
 - Motivation to add a third normal component
 - Closing turbulence pdes by integration over a pd
 - Derivation of trinormal closures by transformation of binormal closures
 - Goal
 - Inputs and Outputs
- Operations
 Operations
 - Normal Distribution
 - Variates of the pdf
- Formulas that define the shape of the pdf and moments in terms of pdf parameters
 - Definition of the trinormal distribution, P_{tm_s}
- 5 Formulas for higher-order moments
- Asymptotics
- Integration using SymPy
- Summary

4 / 40

- Introduction
- Problem
 - Motivation to add a third normal component
 - Closing turbulence pdes by integration over a pdf
 - Derivation of trinormal closures by transformation of binormal closures
 - Goal
 - Inputs and Outputs
- Openitions
 - Normal Distribution
 - Variates of the pdf
- Formulas that define the shape of the pdf and moments in terms of pdf parameters
 - ullet Definition of the trinormal distribution, P_{tm}
- 5 Formulas for higher-order moments
- Asymptotics
- Integration using SymPy
- Summary

Figure: Binormal plot for two strong up-/downdrafts

$$w_1=5,\ w_2=-5,\ \theta_{l1}=5,\ \theta_{l2}=-5,\ \alpha=0.5,\ \sigma_w=2,\ \sigma_{\theta_{l1}}=2,\ \sigma_{\theta_{l1}}=2.$$

Figure: Binormal plot for two strong up-/downdrafts with increased standard deviations

$$w_1 = 5$$
, $w_2 = -5$, $\theta_{l1} = 5$, $\theta_{l2} = -5$, $\alpha = 0.5$, $\sigma_w = 5$, $\sigma_{\theta_{l1}} = 5$, $\sigma_{\theta_{l1}} = 5$.

Figure: Trinormal plot for two strong up-/downdrafts with varying δ

$$\begin{array}{c} w_1=5,\ w_2=-5,\ \theta_{l1}=5,\ \theta_{l2}=-5,\ \alpha=0.5,\ \sigma_w=2,\ \sigma_{\theta_{l1}}=2,\ \sigma_{\theta_{l2}}=2,\\ \sigma_{w3}=2,\ \sigma_{3\theta_l}=2,\ \rho_{w\theta_l}=0.5. \end{array}$$

Figure: Trinormal plot for two strong up-/downdrafts with a third peak in the middle

$$\begin{array}{c} w_1=5,\ w_2=-5,\ \theta_{l1}=5,\ \theta_{l2}=-5,\ \alpha=0.5,\ \delta=0.5,\ \sigma_w=2,\ \sigma_{\theta_{l1}}=2,\\ \sigma_{\theta_{l2}}=2,\ \sigma_{w3}=2,\ \sigma_{\theta_{l}3}=2,\ \rho_{w\theta_{l}}=0.5. \end{array}$$

Consider the following prognostic pde [Lar22, p. 21]:

$$\frac{\partial \overline{w'\theta'_l}}{\partial t} = -\overline{w}\frac{\partial \overline{w'\theta'_l}}{\partial z} - \frac{1}{\rho_s}\frac{\partial \rho_s \overline{w'^2\theta'_l}}{\partial z} - \overline{w'^2}\frac{\partial \overline{\theta'_l}}{\partial z} - \overline{w'\theta'_l}\frac{\partial \overline{w}}{\partial z} + \dots$$

10 / 40

Binormal closures are already existing [LG05], e.g.

$$\overline{w'^2} = \alpha [(w_1 - \overline{w})^2 + \sigma_w^2] + (1 - \alpha)[(w_2 - \overline{w})^2 + \sigma_w^2]. \tag{2.1}$$

$$\overline{w'^2} \frac{1 - \delta \lambda_w}{1 - \delta} = \overline{w'^2}_{dGn} \tag{2.2}$$

$$\overline{w^{\prime 3}} \frac{1}{1 - \delta} = \overline{w^{\prime 3}}_{dGn} \tag{2.3}$$

$$\frac{\overline{w'^3}}{\overline{w'^2}^{3/2}} \frac{(1-\delta)^{1/2}}{(1-\lambda_w \delta)^{3/2}} = \frac{\overline{w'^3}_{dGn}}{\overline{w'^2}_{dGn}^{3/2}}$$
(2.4)

$$\overline{\theta_l'^2} \frac{1 - \delta \lambda_\theta}{1 - \delta} = \overline{\theta_l'^2}_{dGn} \tag{2.5}$$

$$\overline{w'\theta_l'} \frac{1 - \delta \lambda_{w\theta}}{1 - \delta} = \overline{w'\theta_{ldGn}'}$$
 (2.6)

4□ > 4□ > 4 = > 4 = > = 99

If we substitute in a formula for λ_w (4.6), which will be explained later on, we get

$$\overline{w'^2} \left(1 - \delta \frac{\sigma_{w3}^2}{\overline{w'^2}} \right) = (1 - \delta) \overline{w'^2}_{dGn}$$

$$\overline{w'^2} - \delta \sigma_{w3}^2 = (1 - \delta) \overline{w'^2}_{dGn}$$

$$\overline{w'^2} = \overline{w'^2}_{dGn} - \delta \overline{w'^2}_{dGn} + \delta \sigma_{w3}^2$$

$$\overline{w'^2} = \overline{w'^2}_{dGn} - \delta \left(\overline{w'^2}_{dGn} - \sigma_{w3}^2 \right). \tag{2.7}$$

The goal of this thesis is to verify that all the transformations worked out well.

Forward run (weather forecast)

• Given: \overline{w} , $\overline{w'^2}$, $\overline{w'^3}$, $\overline{\theta_l}$, $\overline{w'\theta_l'}$, $\overline{r_t}$, $\overline{w'r_t'}$, $\overline{\theta_l'^2}$, $\overline{r_t'^2}$, $\overline{r_t'\theta_l'}$.

15 / 40

Forward run (weather forecast)

- $\bullet \ \, \text{Given:} \ \, \overline{w}, \, \overline{w'^2}, \, \overline{w'^3}, \, \overline{\theta_l}, \, \overline{w'\theta_l'}, \, \overline{r_t}, \, \overline{w'r_t'}, \, \overline{\theta_l'^2}, \, \overline{r_t'^2}, \, \overline{r_t'\theta_l'}.$
- Searched for: Parameters, which describe the shape of the underlying pdf, for ultimately describing higher-order moments, e.g. $\overline{w'^2\theta'_l}$ in terms of lower-order moments

Backward run (verification direction)

• Given: pdf parameters, e.g. mean, standard deviation

Backward run (verification direction)

- Given: pdf parameters, e.g. mean, standard deviation
- Searched for: lower- and higher-order moments

- Introduction
- Problem
 - Motivation to add a third normal component
 - Closing turbulence pdes by integration over a pd
 - Derivation of trinormal closures by transformation of binormal closures
 - Goal
 - Inputs and Outputs
- Oefinitions
 - Normal Distribution
 - Variates of the pdf
- Formulas that define the shape of the pdf and moments in terms of pdf parameters
 - ullet Definition of the trinormal distribution, P_{tmg}
- 5 Formulas for higher-order moments
- 6 Asymptotics
- Integration using SymPy
- Summary

Univaritate

We say that a random variable X is distributed according to a normal distribution $(X \sim \mathcal{N}(\mu, \sigma^2))$ when it has the following pdf:

Definition (pdf of a normal distribution)

$$f(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right)$$
 (3.1)

Multivariate

We say that a random vector \boldsymbol{X} $(r \times r)$ is distributed according to a multivariate normal distribution when it has the following joint density function [Ize08, p. 59]:

Definition (pdf of a multivariate normal distribution)

$$f(\boldsymbol{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = (2\pi)^{-\frac{r}{2}} |\boldsymbol{\Sigma}|^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(x-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(x-\boldsymbol{\mu})\right), \boldsymbol{x} \in \mathbb{R}^{r}, \quad (3.2)$$

where

$$\boldsymbol{\mu} = \begin{pmatrix} \mu_1 \\ \vdots \\ \mu_r \end{pmatrix} \in \mathbb{R}^r, \text{ and } \boldsymbol{\Sigma} = \begin{pmatrix} \sigma_1^2 & \rho_{12}\sigma_1\sigma_2 & \dots & \rho_{1r}\sigma_1\sigma_r \\ \rho_{12}\sigma_1\sigma_2 & \sigma_2^2 & \dots & \vdots \\ \vdots & \dots & \ddots & \vdots \\ \rho_{1r}\sigma_1\sigma_r & \dots & \dots & \sigma_r^2 \end{pmatrix} \in \mathbb{R}^{r \times r}$$

$$(3.3)$$

Moments

We denote the skewness and kurtosis by the following:

$$\mathbb{E}[X^3] = \mathbb{E}\left[\left(\frac{X-\mu}{\sigma}\right)^3\right] = \frac{\mu_3}{\sigma^3} = \frac{\mathbb{E}[(X-\mu)^3]}{(\mathbb{E}[(X-\mu)^2])^{3/2}},\tag{3.4}$$

$$\mathbb{E}[X^4] = \mathbb{E}\left[\left(\frac{X-\mu}{\sigma}\right)^4\right] = \frac{\mathbb{E}[(X-\mu)^4]}{(\mathbb{E}[(X-\mu)^2])^2} = \frac{\mu_4}{\sigma^4}.$$
 (3.5)

- ullet w upward wind (or up-/downdraft),
- ullet r_t total water mixing ratio,
- ullet θ_l liquid water potential temperature.

The variables mostly appear in standardized form, e.g. $w' = w - \overline{w}$.

- Introduction
- Problem
 - Motivation to add a third normal component
 - Closing turbulence pdes by integration over a pd
 - Derivation of trinormal closures by transformation of binormal closures
 - Goal
 - Inputs and Outputs
- Openitions
 - Normal Distribution
 - Variates of the pdf
- Formulas that define the shape of the pdf and moments in terms of pdf parameters
 - ullet Definition of the trinormal distribution, P_{tmg}
- 5 Formulas for higher-order moments
- Asymptotics
- Integration using SymPy
- Summary

Normal Mixture

$$P_{tmg}(w, \theta_l, r_t) = \alpha (1 - \delta) \mathcal{N}(\mu_1, \Sigma_1)$$

$$+ (1 - \alpha)(1 - \delta) \mathcal{N}(\mu_2, \Sigma_2)$$

$$+ \delta \mathcal{N}(\mu_3, \Sigma_3),$$

$$(4.1)$$

where \mathcal{N} denotes the multivariate normal distribution, $\alpha \in (0,1)$ is the mixture fraction of the binormal, and $\delta \in [0,1)$ is the weight of the third normal.

Mean of first and second component

$$\mu_1 = \begin{pmatrix} w_1 \\ \theta_{l1} \\ r_{t1} \end{pmatrix}, \text{ and } \mu_2 = \begin{pmatrix} w_2 \\ \theta_{l2} \\ r_{t2} \end{pmatrix}$$
 (4.2)

Covariance between first and second component

$$\Sigma_{1} = \begin{pmatrix} \sigma_{w}^{2} & 0 & 0\\ 0 & \sigma_{\theta_{l1}}^{2} & \rho_{\theta_{l}r_{t}}\sigma_{\theta_{l}3}\sigma_{r_{t}3}\\ 0 & \rho_{\theta_{l}r_{t}}\sigma_{\theta_{l}3}\sigma_{r_{t}3} & \sigma_{r_{t1}}^{2} \end{pmatrix}, \tag{4.3}$$

and

$$\Sigma_{2} = \begin{pmatrix} \sigma_{w}^{2} & 0 & 0 \\ 0 & \sigma_{\theta_{l2}}^{2} & \rho_{\theta_{l}r_{t}}\sigma_{\theta_{l}3}\sigma_{r_{t}3} \\ 0 & \rho_{\theta_{l}r_{t}}\sigma_{\theta_{l}3}\sigma_{r_{t}3} & \sigma_{r_{t2}}^{2} \end{pmatrix}. \tag{4.4}$$

Placing of the third component

$$\mu_{3} = \begin{pmatrix} \overline{w} \\ \overline{\theta_{l}} \\ \overline{r_{t}} \end{pmatrix}, \text{ and } \Sigma_{3} = \begin{pmatrix} \sigma_{w3}^{2} & \rho_{w\theta_{l}3}\sigma_{w3}\sigma_{\theta_{l}3} & \rho_{wr_{t}3}\sigma_{w3}\sigma_{r_{t}3} \\ \rho_{w\theta_{l}3}\sigma_{w3}\sigma_{\theta_{l}3} & \sigma_{\theta_{l}3}^{2} & \rho_{\theta_{l}r_{t}3}\sigma_{\theta_{l}3}\sigma_{r_{t}3} \\ \rho_{wr_{t}3}\sigma_{w3}\sigma_{r_{t}3} & \rho_{\theta_{l}r_{t}3}\sigma_{\theta_{l}3}\sigma_{r_{t}3} & \sigma_{r_{t}3}^{2} \end{pmatrix}. \tag{4.5}$$

Additional definitions

$$\lambda_w \equiv \frac{\sigma_{w3}^2}{\overline{w'^2}}, \quad \lambda_\theta \equiv \frac{\sigma_{\theta_l 3}^2}{\theta_l'^2}, \quad \lambda_r \equiv \frac{\sigma_{r_t 3}^2}{r_t'^2}, \tag{4.6}$$

$$\lambda_{\theta r} \equiv \frac{\rho_{\theta_l r_t} \sigma_{\theta_l 3} \sigma_{r_t 3}}{\overline{r_t' \theta_l'}}, \quad \lambda_{w\theta} \equiv \frac{\rho_{w\theta_l} \sigma_{w3} \sigma_{\theta_l 3}}{\overline{w' \theta_l'}}, \quad \lambda_{wr} \equiv \frac{\rho_{wr_t} \sigma_{w3} \sigma_{r_t 3}}{\overline{w' r_t'}}. \tag{4.7}$$

- Introduction
- Problem
 - Motivation to add a third normal component
 - Closing turbulence pdes by integration over a pd
 - Derivation of trinormal closures by transformation of binormal closures
 - Goal
 - Inputs and Outputs
- Operations
 Operations
 - Normal Distribution
 - Variates of the pdf
- Formulas that define the shape of the pdf and moments in terms of pdf parameters
 - ullet Definition of the trinormal distribution, P_{tmg}
- Formulas for higher-order moments
- Asymptotics
- Integration using SymPy
- Summary

$$\overline{w'^4} = \left(\overline{w'^2}\right)^2 \frac{(1 - \delta\lambda_w)^2}{(1 - \delta)} \left(3\tilde{\sigma}_w^4 + 6\left(1 - \tilde{\sigma}_w^2\right)\tilde{\sigma}_w^2 + \left(1 - \tilde{\sigma}_w^2\right)^2\right)
+ \frac{1}{(1 - \tilde{\sigma}_w^2)} \frac{1}{(1 - \delta\lambda_w)} \frac{\left(\overline{w'^3}\right)^2}{\overline{w'^2}}
+ \delta 3\lambda_w^2 \left(\overline{w'^2}\right)^2$$
(5.1)

$$\overline{w'^2\theta'_l} = \frac{1}{(1 - \tilde{\sigma}_w^2)} \frac{1 - \delta \lambda_{w\theta}}{1 - \delta \lambda_w} \frac{\overline{w'^3}}{\overline{w'^2}} \overline{w'\theta'_l}$$
 (5.2)

$$\overline{w'\theta_l'^2} = \frac{2}{3} \frac{(1 - \delta\lambda_{w\theta})^2}{(1 - \delta\lambda_w)^2} \frac{1}{(1 - \tilde{\sigma}_w^2)^2} \frac{\overline{w'^3}}{\left(\overline{w'^2}\right)^2} \left(\overline{w'\theta_l'}\right)^2 + \frac{1}{3} \frac{(1 - \delta\lambda_w)}{(1 - \delta\lambda_{w\theta})} \left(1 - \tilde{\sigma}_w^2\right) \frac{\overline{w'^2}}{\overline{w'\theta_l'}} \frac{\theta_l'^3}{\overline{w'\theta_l'}}$$

$$(5.3)$$

31 / 40

$$\overline{w'r_t'\theta_l'} = (1 - \delta)\alpha(w_1 - \overline{w}) \left[(r_{t1} - \overline{r_t}) \left(\theta_{l1} - \overline{\theta_l} \right) + r_{r_t\theta_l}\sigma_{r_{t1}}\sigma_{\theta_{l1}} \right]
+ (1 - \delta)(1 - \alpha)(w_2 - \overline{w}) \left[(r_{t2} - \overline{r_t}) \left(\theta_{l2} - \overline{\theta_l} \right) + r_{r_t\theta_l}\sigma_{r_{t2}}\sigma_{\theta_{l2}} \right]$$
(5.4)

- Introduction
- Problem
 - Motivation to add a third normal component
 - Closing turbulence pdes by integration over a pd
 - Derivation of trinormal closures by transformation of binormal closures
 - Goa
 - Inputs and Outputs
- Operations
 Operations
 - Normal Distribution
 - Variates of the pdf
- Formulas that define the shape of the pdf and moments in terms of pdf parameters
 - Definition of the trinormal distribution, P_{tm_s}
- 5 Formulas for higher-order moments
- Asymptotics
- Integration using SymPy
- Summary

34 / 40

- Introduction
- Problem
 - Motivation to add a third normal component
 - Closing turbulence pdes by integration over a pd
 - Derivation of trinormal closures by transformation of binormal closures
 - Goa
 - Inputs and Outputs
- Openitions
 - Normal Distribution
 - Variates of the pdf
- Formulas that define the shape of the pdf and moments in terms of pdf parameters
 - ullet Definition of the trinormal distribution, P_{tmg}
- Formulas for higher-order moments
- Asymptotics
- Integration using SymPy
- Summary

DEMONSTRATION

(Analytic integration using SymPy [Meu+17])

Code to follow along the demonstration I

Listing: Import statements

```
import sympy as sp
from IPython.display import display
from sympy import abc, oo, Symbol, Integral
from sympy.stats import Normal, density
```

- Introduction
- Problem
 - Motivation to add a third normal component
 - Closing turbulence pdes by integration over a pd
 - Derivation of trinormal closures by transformation of binormal closures
 - Goal
 - Inputs and Outputs
- Operations
 Operations
 - Normal Distribution
 - Variates of the pdf
- Formulas that define the shape of the pdf and moments in terms of pdf parameters
 - ullet Definition of the trinormal distribution, P_{tmg}
- 5 Formulas for higher-order moments
- Asymptotics
- Integration using SymPy
- Summary

References I

- [Ize08] Alan Julian Izenman. Modern multivariate statistical techniques: regression, classification, and manifold learning. Springer texts in statistics. OCLC: ocn225427579. New York; London: Springer, 2008. ISBN: 9780387781884.
- [Lar22] Vincent E. Larson. CLUBB-SILHS: A parameterization of subgrid variability in the atmosphere. 2022. arXiv: 1711.03675 [physics.ao-ph].
- [LG05] Vincent E Larson and Jean-Christophe Golaz. "Using probability density functions to derive consistent closure relationships among higher-order moments". In: *Monthly Weather Review* 133.4 (2005), pp. 1023–1042.
- [Meu+17] Aaron Meurer et al. "SymPy: symbolic computing in Python". In:

 PeerJ Computer Science 3 (Jan. 2017), e103. ISSN: 2376-5992. DOI:
 10.7717/peerj-cs.103. URL:
 https://doi.org/10.7717/peerj-cs.103.