Day3GroupProject

April 6, 2022

```
[38]: # Download and load the dataset into Python using .read_csv().
      import pandas as pd
      file_url = 'https://raw.githubusercontent.com/fenago/MLEssentials/main/datasets/
       ⇔Speed_Dating_Data.csv¹
      df = pd.read_csv(file_url)
[39]: import numpy as np
      import pandas as pd
      import matplotlib.pyplot as plt
      %matplotlib inline
      import seaborn as sns
[40]: # Print out the dimensions of the DataFrame using .shape.
      # 8378 row, 195 columns
      df.shape
[40]: (8378, 195)
[41]: | # Check for duplicate rows by using .duplicated() and .sum() on all the columns.
      df.duplicated().sum()
[41]: 0
[42]: # Check for duplicate rows by using .duplicated() and .sum() for the identifier_
      \hookrightarrow columns (iid, id, partner, and pid).
      df.loc[df.duplicated().sum(), ['iid', 'id', 'partner', 'pid']]
[42]: iid
                  1
                  1
      id
     partner
                  1
                 11
     pid
     Name: 0, dtype: object
[43]: | #Check for unexpected values for the following numerical variables:
      #'imprace', 'imprelig', 'sports', 'tusports', 'exercise', 'dining', 'museums',
       →'art', 'hiking', 'gaming', 'clubbing', 'reading', 'tv', 'theater', 'movies', □
       → 'concerts', 'music', 'shopping', and 'yoga'.
```

[43]:		imprace	imprelig	sports	tvsport	s ex	ercise	dining	museums	art	\
	0	2.0		-	-		8.0	_	1.0	1.0	
	1	2.0	4.0	9.0	2.	0	8.0	9.0	1.0	1.0	
	2	2.0	4.0	9.0	2.	0	8.0	9.0	1.0	1.0	
	3	2.0	4.0	9.0	2.	0	8.0	9.0	1.0	1.0	
	4	2.0	4.0	9.0	2.	0	8.0	9.0	1.0	1.0	
		•••		•••	•••	•••		•••			
	8373	1.0	1.0	8.0	2.	0	5.0	10.0	10.0	10.0	
	8374	1.0	1.0	8.0	2.	0	5.0	10.0	10.0	10.0	
	8375	1.0	1.0	8.0	2.	0	5.0	10.0	10.0	10.0	
	8376	1.0	1.0	8.0	2.	0	5.0	10.0	10.0	10.0	
	8377	1.0	1.0	8.0	2.	0	5.0	10.0	10.0	10.0	
		hiking	gaming c	lubbing	reading	tv	theater	movies	s concer	ts \	
	0	5.0	1.0	5.0	6.0	9.0	1.0				
	1	5.0	1.0	5.0	6.0	9.0	1.0			.0	
	2	5.0	1.0	5.0	6.0	9.0	1.0	10.0) 10	.0	
	3	5.0	1.0	5.0	6.0	9.0	1.0	10.0) 10	.0	
	4	5.0	1.0	5.0	6.0	9.0	1.0	10.0) 10	.0	
	•••			•••			•••				
	8373	7.0	1.0	9.0	8.0	3.0	7.0	9.0) 10	.0	
	8374	7.0	1.0	9.0	8.0	3.0	7.0				
	8375	7.0	1.0	9.0	8.0	3.0	7.0	9.0) 10	.0	
	8376	7.0	1.0	9.0	8.0	3.0	7.0				
	8377	7.0	1.0	9.0	8.0	3.0	7.0	9.0) 10	.0	
	music shopping yoga										
	0	9.0	8.0	1.0							
	1	9.0	8.0	1.0							
	2	9.0	8.0	1.0							
	3	9.0	8.0	1.0							
	4	9.0	8.0	1.0							
	•••	•••									
	8373	10.0	7.0	3.0							
	8374	10.0	7.0	3.0							
	8375	10.0	7.0	3.0							
	8376	10.0	7.0	3.0							
	8377	10.0	7.0	3.0							

[8378 rows x 19 columns]

```
[44]: # Dropped all the empty values
     # Replace the identified incorrect values.
     df2 = df.dropna(subset=['imprace', 'imprelig', 'sports', 'tvsports', "
      [45]: # Data Types
     # Check the data type of the different columns using .dtypes.
     df2.dtypes
[45]: iid
                 int64
               float64
     id
                 int64
     gender
     idg
                 int64
     condtn
                 int64
     attr5_3
               float64
     sinc5_3
               float64
     intel5_3
               float64
     fun5 3
               float64
     amb5 3
               float64
     Length: 195, dtype: object
[52]: # Change the data types to categorical for the columns that don't contain
     →numerical values using .astype().
     obj_df = df2.select_dtypes(include='object')
     obj_cols = obj_df.columns
     for col_name in obj_cols:
        df2[col_name] = df2[col_name].astype('category')
[47]: df2.info()
     #object values have been changed to categorical
    <class 'pandas.core.frame.DataFrame'>
    Int64Index: 8299 entries, 0 to 8377
    Columns: 195 entries, iid to amb5_3
    dtypes: category(4), float64(178), int64(13)
    memory usage: 12.3 MB
[48]: #Check for any missing values using .isna() and .sum() for each numerical
     \rightarrow variable.
     df2.isna().sum()
```

```
[48]: iid
      id
                     1
                     0
      gender
      idg
                     0
                     0
      condtn
      attr5_3
                  6283
      sinc5 3
                  6283
      intel5_3
                  6283
      fun5_3
                  6283
      amb5_3
                  6283
      Length: 195, dtype: int64
[49]: # Replace the missing values for each numerical variable with their
       →corresponding mean or median values using .fillna(), .mean(), and .median().
       →NoteThe dataset for this activity can be found in this courses GitHub
       →repository: https://raw.githubusercontent.com/fenago/MLEssentials/main/
       \hookrightarrow datasets/Speed_Dating_Data.csv
      num_df = df2.select_dtypes(include=['int64', 'float64'])
      num cols = num df.columns
      num_cols
[49]: Index(['iid', 'id', 'gender', 'idg', 'condtn', 'wave', 'round', 'position',
             'positin1', 'order',
             'attr3 3', 'sinc3 3', 'intel3 3', 'fun3 3', 'amb3 3', 'attr5 3',
             'sinc5_3', 'intel5_3', 'fun5_3', 'amb5_3'],
            dtype='object', length=191)
[51]: for col_name in num_cols:
          avg = df2[col name].mean()
          df2[col_name].fillna(avg, inplace=True)
[54]: df2[num_cols].isna().sum().max()
[54]: 0
[55]: # Complete a Univariate / Bivariate analysis and correlation matrix to document
       ⇒insights that you discover in the dataset. This can be a spreadshot, word
       \rightarrow doc, pdf, or zip file.
 []:
 []:
```