Задача 9-1.

1.2

Поскольку вектор силы \vec{F} сонаправлен с вектором \mathcal{Y} начальной скорости \vec{v}_0 частицы, то ее движение будет прямолинейным и равноускоренным. В таком случае частицы), покинет выделенную область в точке B с $\frac{1}{2}$ координатами $B(l,\frac{l}{2})$. Для вычисления времени движения

частицы найдем ее ускорение $a = \frac{F}{m} = \frac{2ml}{\tau^2} \cdot \frac{1}{m} = \frac{2l}{\tau^2}$ и запишем закон равноускоренного движения

$$l = v_0 t + \frac{at^2}{2} \quad \Rightarrow \quad l = \frac{l}{\tau} \cdot t + \frac{2l}{\tau^2} \cdot \frac{t^2}{2} \quad \Rightarrow \quad \left(\frac{t}{\tau}\right)^2 + \left(\frac{t}{\tau}\right) - 1 = 0 \quad . \tag{1}$$

Решение квадратного уравнения (1) даёт два корня

$$t = \frac{-1 \pm \sqrt{5}}{2} \tau \,, \tag{2}$$

Из которых нас интересует корень со знаком «+». Таким образом, частица покинет выделенную область в указанных координатах через промежуток времени

$$t = \frac{\sqrt{5} - 1}{2}\tau = 0.62\tau. \tag{3}$$

параллелен вектору начальной скорости \vec{v}_0 частицы, то её движение будет происходить по параболе, ветви которой направлены вверх. Движение вдоль оси Оу будет равноускоренным ($a = \frac{F}{m} = \frac{2l}{\tau^2}$) без начальной скорости, т.к. вектор \vec{v}_0 «горизонтален». Следовательно, частица достигнет верхней границы области за время

 $\frac{l}{2} = \frac{at^2}{2} \implies t = \frac{\tau}{\sqrt{2}}$.

При этом смещение частицы вдоль оси Ох составит

$$x = v_0 t \quad \Rightarrow \quad x = \frac{l}{\tau} \cdot \frac{\tau}{\sqrt{2}} = \frac{l}{\sqrt{2}} = 0.71l. \tag{5}$$

(4)

Как следует из (5), частица покинет выделенную область, двигаясь по параболе, в точке B, координаты которой $B(\frac{l}{\sqrt{2}},l)$ через промежуток времени $t=\frac{\tau}{\sqrt{2}}$ (см. рис.).

Отметим, что в данной задаче необходим анализ, через какую из сторон частица покинет данную область. При меньшем ускорении это было бы возможно и через сторону x = l.

1.3 Если при движении частицы на неё действует сила, которая все время перпендикулярна вектору скорости \vec{v}_0 частицы (т.е. сила «поворачивается» вместе с частицей), то эта сила не может изменить модуля скорости частицы, изменяя лишь её направление. Следовательно, траектория движения в данном случае будет представлять собой окружность некоторого радиуса R (см. рис.), по которой частица будет равномерно двигаться.

Согласно второму закону Ньютона для движения частицы по окружности запишем

$$F = \frac{4mv_0^2}{l} = ma = m\frac{v_0^2}{R} \implies R = \frac{l}{4}.$$
 (6)

Как следует из (6), частица, совершив под действием силы пол-оборота, покинет выделенную область через точку начала координат (точка 0), имея тот же модуль скорости v_0 , но противоположное направление движения. Это произойдет через промежуток времени

$$\pi R = \nu_0 t \quad \Rightarrow \quad t = \frac{\pi R}{\nu_0} = \frac{\pi}{4} \tau = 0.78\tau \,. \tag{7}$$

Таким образом, траектория движения частицы в этом случае будет представлять собой полуокружность радиуса $R=\frac{l}{4}$, координаты точки выхода частицы — $B\left(0,0\right) .$

1.4 Данный пункт является самым «олимпиадным» вариантом движения частицы в данной задаче. Действительно, как следует из условия, в начальный момент времени вектор силы \vec{F} перпендикулярен вектору начальной скорости \vec{v}_0 частицы. Однако мы не можем утверждать, что это свойство системы сохраниться в любой момент времени и при дальнейшем движении частицы, поскольку возможен вариант «различных» поворотов векторов силы и скорости с течением времени.

В таком случае обратимся к методу аналогий и постараемся «угадать» необходимое решение, используя опыт рассмотрения различных кинематических задач. Если рассмотреть движение точки на ободе колеса, катящегося без проскальзывания со скоростью \vec{v} по горизонтальной поверхности, то можно заметить, что ее скорость в верхней точке траектории равна 2v, поскольку складываются скорости поступательного и вращательного движений.

Рассмотрим, колесо радиуса $R=\frac{l}{4}$, центр которого движется без проскальзывания со скоростью $\vec{v}_0/2$ по горизонтальной поверхности. Тогда скорость движения его верхней точки (\vec{v}_0) будет совпадать и по модулю и по направлению со скоростью частицы. Угловая скорость поворота колеса (соответственно и угловой скорости поворота колеса) в этом случае равна

$$\omega = \frac{\frac{v_0}{2}}{\frac{l}{4}} = 2\frac{v_0}{l}. \tag{8}$$

Ускорение частицы будет обусловлено только вращением, следовательно, модуль силы, действующей на точку обода колеса массой m, будет равен

$$F = ma = m\omega^2 R = m\left(2\frac{v_0}{l}\right)^2 \frac{l}{4} = \frac{mv_0^2}{l}.$$
 (9)

Проекции силы на оси координат равны

$$F_{x} = -\frac{mv_{0}^{2}}{l}\sin\left(2\frac{v_{0}}{l}t\right)$$

$$F_{x} = -\frac{mv_{0}^{2}}{l}\cos\left(2\frac{v_{0}}{l}t\right)$$
(10)

Таким образом, начальные условия (координаты и скорости) и зависимости

ускорений от времени в дух задачах совпадают, поэтому совпадают и законы движения. Таким образом, траекторией движения частицы в данном случае будет траектория точки на ободе катящегося без проскальзывания колеса – циклоида.

Следовательно, частица в первый раз коснется границы выделенной области в точке B (см. рис.) через время, равное половине оборота колеса $t=\frac{\pi \, l}{2 v_0}$ в точке с координатами $(\frac{\pi}{4} \, l, 0)$.

В заключение продемонстрируем все точные траектории движения точки, рассмотренные в данной задаче на отдельном рисунке.