,
system
AERMXU
(SVD)
if n>m we assume nzm.
log (Z) .
UER VERNXN OALIZA
OTU=UUT= id

0, X, = J, 02 % = B2 r: vank of A 9252 3970 Or XY = BY O = Tort $O = \widetilde{b}_{m}$ If Bril = = = = 0, there is cet least one sol $\widetilde{\chi}_1 = \frac{\widetilde{b}_r}{\widetilde{\sigma}_r}, \quad \widetilde{\chi}_r = \frac{\widetilde{b}_r}{\widetilde{\sigma}_r}$

Case 2: If not all of bring, by ever zeros, there is no sol.

Another Points of View: If there is no solution, write $A = (a^{(1)}, a^{(2)}, a^{(n)})$

$$(a) \quad (b) \quad (b) \quad (c) \quad (c)$$

is called the least square sol. Prop: $\hat{x} = \text{avey min} ||Ax - b||^2$ Proof: For any X, $||Ax-b||^{2} = ||Ax-b^{(1)} + (-b^{(2)})||^{2}$ $\in Rom(A) \qquad \in Rom(A)^{\perp}$ Pithogoreum $||Ax-b^{(1)}||^{2} + ||b^{(2)}||^{2}$ > 11 b (2) 11² and "=" occurs if and only if.

Ax = b(1), this is the eqn for \hat{x}

2.3. Linear Regression.

Recall our livear system: $X^{T}\beta = y \qquad X \in \mathbb{R}^{p \times n}$ We some for the least square sol B: $\int_{X} \int_{X} \beta = \chi_{y}$ In porticular, if X has full row rank, then XXT is invertible, so $\beta^{|S} = (\chi \chi^{\mathsf{T}})^{-1} \chi_{\mathsf{Y}}$