Trajectory of Alternating Direction Method of Multipliers and Adaptive Acceleration

Clarice Poon (University of Bath) Jingwei Liang (University of Cambridge)

Alternating direction method of multipliers (ADMM)

Consider the minimization problem

$$\min_{x \in \mathbb{R}^n, y \in \mathbb{R}^m} R(x) + J(y)$$
 such that $Ax + By = b$, $(\mathcal{P}_{\mathsf{ADMM}})$

where the following basic assumptions are imposed

 $(\mathcal{A}.1)$ $R \in \Gamma_0(\mathbb{R}^n)$, $J \in \Gamma_0(\mathbb{R}^m)$ are proper closed and convex functions.

$$(\mathcal{A}.2)A:\mathbb{R}^n \to \mathbb{R}^p$$
 and $B:\mathbb{R}^m \to \mathbb{R}^p$ are injective linear operators.

(A.3) ri $(dom(R) \cap dom(J)) \neq \emptyset$, and the set of minimizers is non-empty. Augmented Lagrangian associated to (\mathcal{P}_{ADMM})

$$\mathcal{L}(x,y;\psi) \stackrel{\text{\tiny def}}{=} R(x) + J(y) + \langle \psi, Ax + By - b \rangle + \frac{\gamma}{2} ||Ax + By - b||^2.$$

Alternating direction method of multipliers

$$x_{k} = \operatorname{argmin}_{x \in \mathbb{R}^{n}} R(x) + \frac{\gamma}{2} ||Ax + By_{k-1} - b + \frac{1}{\gamma} \psi_{k-1}||^{2},$$

$$y_{k} = \operatorname{argmin}_{y \in \mathbb{R}^{m}} J(y) + \frac{\gamma}{2} ||Ax_{k} + By - b + \frac{1}{\gamma} \psi_{k-1}||^{2},$$

$$\psi_{k} = \psi_{k-1} + \gamma (Ax_{k} + By_{k} - b).$$

Define $z_k \stackrel{\text{\tiny def}}{=} \psi_{k-1} + \gamma A x_k$, we can rewrite ADMM as

$$x_k = \operatorname{argmin}_{x \in \mathbb{R}^n} R(x) + \frac{\gamma}{2} ||Ax - \frac{1}{\gamma}(z_{k-1} - 2\psi_{k-1})||^2,$$

$$z_k = \psi_{k-1} + \gamma A x_k,$$

$$y_k = \operatorname{argmin}_{y \in \mathbb{R}^m} |J(y) + \frac{\gamma}{2} ||By + \frac{1}{\gamma} (z_k - \gamma b)||^2,$$

$$\psi_k = z_k + \gamma (By_k - b).$$

Fixed-point characterization: there exists some ${\mathcal F}$ such that

$$z_{k+1} = \mathcal{F}(z_k).$$

Trajectory of ADMM and failure of inertial

Linearization For *k* large enough

$$z_{k+1}-z_k=M(z_k-z_{k-1})+o(||z_k-z_{k-1}||).$$

Define $v_k = z_k - z_{k-1}$ and $\theta_k = \angle(v_k, v_{k-1})$.

LASSO problem

$$\min_{x,y\in\mathbb{R}^n} \mu \|x\|_1 + \frac{1}{2} \|Ky - f\|^2$$
 such that $x - y = 0$.

Trajectory of z_k

 $heta_k o heta^\star$

Straight-line trajectory: $\theta_k \rightarrow 0$

Trajectory of $\{z_k\}_{k\in\mathbb{N}}$

Failure of inertial

Trajectory based Adaptive Acceleration

The regularity of trajectory allows to use the current points to predict the future points. That is

$$\bar{z}_{k,s} = \mathcal{E}_{s,q}(z_k, z_{k-1}, \cdots, z_{k-q}).$$

Idea: given $\{z_{k-j}\}_{j=0}^{q+1}$ and $v_{k-j} \stackrel{\text{def}}{=} z_{k-j} - z_{k-j-1}$, predict the future iterates by considering how the past directions v_{k-1}, \ldots, v_{k-q} approximate the latest direction v_k :

ightharpoonup Let $V_{k-1}\stackrel{ ext{ iny def}}{=} \left[v_{k-1},\cdots,v_{k-q}
ight]\in\mathbb{R}^{n imes q}$, and

$$c_k \stackrel{\text{def}}{=} \operatorname{argmin}_{c \in \mathbb{R}^q} \|V_{k-1}c - v_k\|^2 = \|\sum_{j=1}^q c_j v_{k-j} - v_k\|^2.$$

▶ The idea is then that $v_{k+1} \approx V_k c_k$ and so, $\bar{z}_{k,1} \stackrel{\text{\tiny def}}{=} z_k + V_k c \approx z_{k+1}$. Iterating this s times, we obtain $\bar{z}_{k,s} \approx z_{k+s}$.

Given $c \in \mathbb{R}^q$, define the mapping H by

$$H(c) = \begin{bmatrix} c_{1:q-1} & \mathsf{Id}_{q-1} \\ c_q & \mathsf{0}_{1,q-1} \end{bmatrix} \in \mathbb{R}^{q \times q}.$$

Let $C_k = H(c_k)$, note that $V_k = V_{k-1}C_k$. Let $(C)_{(:,1)}$ be the first column of C, then $\bar{z}_{k,s} = z_k + V_k \left(\sum_{i=1}^s C_k^i \right)_{(:,1)},$

which is the desired trajectory following extrapolation scheme.

Algorithm: A³DMM - adaptive acceleration for ADMM

Initial: Let $s \geq 1, q \geq 2$ be integers and $\bar{q} = q + 1, V_0 = 0 \in \mathbb{R}^{p \times q}$; Repeat:

For
$$k \geq 1$$
: $y_k = \operatorname{argmin}_{y \in \mathbb{R}^m} J(y) + \frac{\gamma}{2} \|By + \frac{1}{\gamma} (\overline{z}_{k-1} - \gamma b)\|^2$, $\psi_k = \overline{z}_{k-1} + \gamma (By_k - b)$, $x_k = \operatorname{argmin}_{x \in \mathbb{R}^n} R(x) + \frac{\gamma}{2} \|Ax - \frac{1}{\gamma} (\overline{z}_{k-1} - 2\psi_k)\|^2$, $z_k = \psi_k + \gamma A x_k$, $v_k = z_k - z_{k-1}$ and $V_k = [v_k, V_{k-1}(:, 1:q-1)]$.

- ▶ If mod $(k, \bar{q}) = 0$: compute $C_k = H(c_k)$, if $\rho(C_k) < 1$: $\bar{z}_k = z_k + V_k (\sum_{i=1}^s C_k^i)_{(:,1)}$.
- ightharpoonup If $mod(k, \bar{q}) \neq 0$: $\bar{z}_k = z_k$.

Until: $||v_k|| \leq \text{tol}$.

- \blacktriangleright When $s=+\infty$, $\bar{z}_{k,\infty}=\frac{1}{1-\sum_{i=1}^s c_{k,i}}(z_k-\sum_{j=1}^{q-1} c_{k,j}z_{k-j})$ which is equivalent to minimal polynomial extrapolation but using different past points.
- $\|\bar{z}_{k,s} z^*\| \le \|z_{k+s} z^*\| + B_s \epsilon_k \text{ where } \epsilon_k \stackrel{\text{def}}{=} \|V_{k-1} c v_k\| = \mathcal{O}(|\lambda_{q+1}|^k).$

Example

Feasibility problem and ADMM

- ▶ In \mathbb{R}^2 , the trajectory of $\{z_k\}_{k\in\mathbb{N}}$ is a perfect spiral.
- ► Accelerating ADMM via three-point linear prediction.
- A. S. Lewis. Active sets, non-smoothness, and sensitivity. SIAM Journal on Optimization, 13(3):702-725, 2003 • A. Sidi. Vector extrapolation methods with applications, volume 17. SIAM, 2017.
- S. Cabay and L. Jackson. A polynomial extrapolation method for finding limits and anti-limits of vector sequences. SIAM Journal on Numerical Analysis, 13(5):734–752, 1976.

Numerical Experiments

We fix q=6 and two choices of s are considered: s=100 and $s=+\infty$.

Affine constrained minimization

$$\min_{x,y\in\mathbb{R}^n} R(x) + \iota_{\{y:Ky=f\}}(y)$$
 such that $x-y=0$.

LASSO

$$\min_{x,y\in\mathbb{R}^n} R(x) + \frac{1}{2} \|Ky - f\|^2 \quad \text{such that} \quad x - y = 0.$$

Total variation image inpainting

$$\min_{x\in\mathbb{R}^{n\times n},y\in\mathbb{R}^{2n\times n}}\|y\|_1+\iota_{\{x:\mathrm{P}_{\Omega}x=f\}}(x)$$
 such that $\nabla x-y=0.$

NB: oscillatory $cos(\theta_k)$ due to subproblem x_k is solved approximately.

Image quality comparison at iteration step k = 30:

(m) Observed image

(I) Inertial ADMM, PSNR = 26.3203

(n) A^3 DMM s = 100, PSNR = 27.1668 (o) A^3 DMM $s = +\infty$, PSNR = 27.1667