Pesquisa Operacional

Arthur Ricardo, Danilo Henrique, Italo Nicácio Setembro 2019

1 Plano mestre de produção

Uma fábrica produz o produto final p_1 . A demanda por p_1 para as próximas T semanas é conhecida e dada por d_t , t=1,..., T. A fábrica dispõe de 800 horas semanais de mão-de-obra. A produção de 1 unidade de p_1 exige 2 unidades do produto intermediário p_2 e 3 do produto c_1 . A produção de 1 unidade do produto p_2 exige 1 unidade do produto p_2 exige 1 unidade do produto p_2 exige 2 do produto p_2 exige 2 unidade. Entretanto, os custos de aquisição são de p_2 exige 2 reais por unidade. Entretanto, cada pedido de compra tem um custo fixo de CF reais. Todos os 4 tipos de produtos podem ser mantidos em estoque de uma semana para outra, no entanto existe um custo de p_2 , p_2 , p_3 , p_4 , p_5 , p_6 , p_7 , p_8 , p_8 , p_8 , p_8 , p_9 ,

O objetivo é decidir para as T semanas o quanto vai ser produzido de cada produto p_1 e p_2 e quanto se vai comprar de c_1 e de c_2 de forma a atender todas as demandas e minimizar o custo total de compras e estoques.

2 Modelagem do problema

2.1 Solução

Como solução do problema, modelamos a função objetivo na seguinte forma: É um somatório de semana a semana para verificar o custo da compra do produto e do seu armazenamento no estoque, assim podemos minimizar o custo dos produtos e do estoque.

Logo, desenvolvemos restrições para as variáveis do estoque. Inicialmente as variáveis dos produtos no estoque começam com 0, e com isso aplicamos as restrições para cada produto na semana T.

E por fim, associamos os produtos p_1 e p_2 com c_1 e c_2 .

2.2 Modelo Matemático

Variáveis:

 $x_{p_1}^t$: Quantidade do produto p_1 produzido na semana t.

 $\boldsymbol{x}_{p_2}^t \colon$ Quantidade do produto p_2 produzido na semana t.

 $\boldsymbol{y}_{c_1}^t$: Quantidade do produto c_1 produzido na semana t.

 $\boldsymbol{y}_{c_2}^t$: Quantidade do produto c_2 produzido na semana t.

 p_t : Variável binária para saber se o produto foi comprado ou não.

 d_t : Demanda pelo produto p_1 na semana t.

 $E_{p_1}^t$: Estoque do produto p_1 na semana 0.

 $E_{p_2}^t$: Estoque do produto p_2 na semana 0.

 $E_{c_1}^t$: Estoque do produto c_1 na semana 0.

 $E_{c_2}^t$: Estoque do produto c_2 na semana 0.

 $\forall_t \in 1, ..., T$. Sendo T a quantidade de semanas.

Modelo:

Minimizar:

$$\sum_{t=1}^{T} (cc_1.y_1^t + cc_2.y_2^t + E_{c_1}^t.cec_1 + E_{c_2}^t.cec_2 + E_{p_t}^t.cep_1 + E_{p_2}^t.cep_2 + CF.p_t)$$
 (1)

S.A

$$x_{p_1}^t + x_{p_2}^t \le 800, \quad \forall_t \in T \quad (tempo)$$
 (2)

$$\sum_{i=1}^{t} x_{p_i}^i \ge \sum_{i=1}^{t} d_i, \quad \forall_t \in T \quad (demanda)$$
 (3)

$$y_{c_1}^t + y_{c_2}^t \le p_t \quad \sum_{i=1}^t (d_i * 9), \forall_t \in T$$
 (4)

$$E_{p_1}^0 = 0, \ E_{p_2}^0 = 0, \ E_{c_1}^0 = 0, \ E_{c_2}^0 = 0$$
 (5)

$$E_{p_1}^t = \sum_{i=1}^t (x_{p_i}^i - d_i), \quad \forall_t \in T$$
 (6)

$$E_{p_2}^t = \sum_{i=1}^t (x_{p_2}^i - 2x_{p_1}^i), \quad \forall_t \in T$$
 (7)

$$E_{c_1}^t = \sum_{i=1}^t (y_{c_1}^i - (3x_{p_1}^i + x_{p_2}^i)), \quad \forall_t \in T$$
 (8)

$$E_{c_2}^t = \sum_{i=1}^t (y_{c_2}^i - (2x_{p_2}^i)), \quad \forall_t \in T$$
(9)

$$2x_{p_1}^t \le x_{p_2}^t + E_{p_2}^{t-1}, \quad \forall_t \in T$$
 (10)

$$x_{p_2}^t + 3x_{p_1}^t \le y_{c_1}^t + E_{c_1}^{t-1}, \quad \forall_t \in T$$
 (11)

$$2x_{p_2}^t \ge y_{c_2}^t + E_{c_2}^{t-1}, \quad \forall_t \in T$$
 (12)

Restrições:

- (1) Função objetivo apresentada na introdução.
- (2) Temos a restrição que controla as horas semanais de produção,como cada produto leva uma hora pra ficar pronto basta fazer com que a soma das quantidades de cada produto produzido na semana seja menor ou igual que a quantidade horas disponível que no nosso caso é 800.
 - (3) A produção do produto final deve ser maior que a demanda.
- (4) temos a restrição que controla a variável p_t , para essa restrição foi utilizado o método da $Big\ M$ para evitar uma restrição que seja não linear. Para o valor de M foi utiliza a d_t (que é a demanda de P_1 na semana t) multiplicado por 9 que é a quantidade total dos produtos c_1 e c_2 necessária para produzir uma unidade de P_1 . Como p_t é uma variável binaria se $y_{c_1}^t$ ou $y_{c_2}^t$ for maior que 0 p_t assumira valor 1 e valor 0 caso contrario.
 - (5) As variáveis iniciais para o estoque de cada produto na semana 0.
- (6) Restrição de estoque para saber o quanto foi produzido do produto P_1 na semana i menos a demanda por esse produto na semana i.
- (7) Restrição de estoque para a variável P_2 pois, para cada produto P_1 é preciso de 2 do produto intermediário P_2 .
- (8) Restrição de estoque do produto c_1 pois, para fabricar o produto P_1 é preciso de 3 produtos c_1 e para fabricar o produto p_2 é preciso 1 produto do c_1 e o que eu tenho no estoque é a produção menos a demanda do produto naquela semana.
- (9) Restrição de estoque do produto c_2 pois, para cada produto p_2 é preciso de 2 do produto c_2
- (10) Esta restrição diz que: O que foi comprado do c_1 mais o que eu tinha no estoque de c_1 na semana anterior tem que ser maior ou igual que 3 vezes x_{p_1} mais x_{p_2} pois, para produzir P_1 é necessário 3 c_1 e para produzir P_2 é necessário apenas um de c_1 .
- (11) Esta restrição diz que: O que foi produzido de P_2 mais o que eu tinha no estoque de P_2 na semana anterior tem que ser maior ou igual que 2 vezes x_{p_1} pois, para produzir P_1 é necessário 2 P_2 .
- (12) Esta restrição diz que: O que foi comprado de c_2 mais o que eu tinha no estoque de c_2 na semana anterior tem que ser menor ou igual a 2 vezes o produto p_2