Universidade Federal De Campina Grande Departamento De Engenharia Elétrica Laboratório De Arquitetura De Sistemas Digitais – LASD Prof. Rafael B. C. Lima

Aluno:	
Matrícula:	Data:

Sprint 9 – Programação em Assembly – Processador MIPS

Descrição geral do problema: Agora que o hardware do seu processador MIPS já está pronto, você pode programa-lo, em assembly, como qualquer outro microcontrolador. Escreva códigos, em assembly, para resolver os problemas propostos e em seguida rode-os no seu próprio processador MIPS.

Requisitos mínimos:

Abra o projeto da Sprint8 e edite-o para incluir as funcionalidades dessa sprint. **Obs: "File > Open Project"** e NÃO "File > Open".

- Assumindo que o hardware do seu processador já está pronto, alimente-o com um clock de 1KHz. Como a CPU é de ciclo único, isso significa que cada instrução levará 1ms para ser executada.
- 2. Implemente uma rotina, em assembly de MIPS, para calcular a sequência de Fibonacci
 - Conecte as chaves SW[7:0] na entrada paralela do seu processador;
 - Conecte a posição w_d1x4, do LCD, na saída paralela do seu processador;
 - Escreva uma rotina que leia um valor "n" da entrada paralela e retorne, na saída paralela, o enésimo elemento da sequência de Fibonacci (0,1, 1, 2, 3, 5, 8, 13, 21, 34...)
- 3. Teste sua rotina com variados valores de entrada.

Relembrando o conjunto de instruções suportadas pela CPU

Instrução	Descrição	Algoritmo
ADD \$X, \$Y, \$Z	Adicionar	\$X = \$Y + \$Z
SUB \$X, \$Y, \$Z	Subtrair	\$X = \$Y - \$Z
AND \$X, \$Y, \$Z	AND Bit a bit	\$X = \$Y & \$Z
OR \$X, \$Y, \$Z	OR Bit a bit	\$X = \$Y \$Z
NOR \$X, \$Y, \$Z	NOR Bit a bit	\$X = ~(\$Y \$Z)
SLT \$X, \$Y, \$Z	Menor que	\$X = 1 se \$Y < \$Z e 0 c.c.
LW \$X, i(\$Y)	Carregar da memória	\$X <= Cont. do end. (\$Y+ i)
SW \$X, i(\$Y)	Armazenar na memória	End. (\$Y+ i) <= \$X
BEQ \$X, \$Y, i	Desviar se igual	Se \$X == \$Y, PC = PC + 1 + i
ADDi \$X, \$Y, i	Adicionar Imediato	\$X = \$Y + i
Ji	Desvio incondicional	PC = i

Tabela 1 – Conjunto de instruções MIPS suportadas pela CPU do LASD

Desafio (Valendo +0,5 na média geral)

• O aluno que fizer o código do item 2 em MENOS instruções, receberá a pontuação extra. Postar nesse LINK! Em caso de empate, quem enviar primeiro ganha os pontos.