```
### 导入依赖 ###

print(__doc__)
import seaborn as sns
import pandas as pd
import matplotlib.pyplot as plt
from itertools import cycle
from sklearn.metrics import confusion_matrix
from sklearn.metrics import roc_curve, auc
Automatically created module for IPython interactive environment
### 利用一个 3 分类问题, 理解 Confusion matrix 和 ROC curve #注意 pd.read_csv中 sep
参数的选择
y_pred = pd.read_csv('y_predicted_label.csv',sep='\t')
y_test = pd.read_csv('y_true.csv',sep='\t')
y_score = pd.read_csv('y_predicted_score.csv',sep='\t')
y_test
```

|       | class1 | class2 | class3 |
|-------|--------|--------|--------|
| 0     | 0      | 0      | 1      |
| 1     | 0      | 0      | 0      |
| 2     | 1      | 0      | 0      |
| 3     | 0      | 0      | 1      |
| 4     | 0      | 0      | 0      |
| • • • | •••    | •••    | •••    |
| 70    | 0      | 0      | 1      |
| 71    | 0      | 0      | 0      |
| 72    | 1      | 0      | 0      |
| 73    | 1      | 0      | 0      |

|    | class1 | class2 | class3 |
|----|--------|--------|--------|
| 74 | 0      | 0      | 0      |

## 75 rows × 3 columns

## y\_pred

| y_preu | class1 | class2 | class3 |
|--------|--------|--------|--------|
| 0      | 0      | 0      | 1      |
| 1      | 0      | 0      | 0      |
| 2      | 1      | 0      | 0      |
| 3      | 0      | 0      | 1      |
| 4      | 0      | 0      | 0      |
|        |        |        |        |
| 70     | 0      | 0      | 1      |
| 71     | 0      | 0      | 0      |
| 72     | 1      | 0      | 0      |
| 73     | 1      | 0      | 0      |
| 74     | 0      | 0      | 0      |

75 rows × 3 columns

y\_score

|     | class1     | class2     | class3     |
|-----|------------|------------|------------|
| 0   | -0. 763011 | -0. 364825 | 0. 123864  |
| 1   | -0. 202245 | -0. 631444 | -0. 166123 |
| 2   | 0. 118015  | -0. 802631 | -0. 320559 |
| 3   | -0. 907809 | -0. 123955 | 0. 021998  |
| 4   | -0. 011162 | -0. 279135 | -0. 718892 |
| ••• |            |            |            |
| 70  | -0. 414670 | -0. 637059 | 0. 048387  |
| 71  | -0. 304362 | -0. 084254 | -0. 618647 |
| 72  | 0. 188697  | -0. 887959 | -0. 297131 |
| 73  | 0. 249662  | -0. 805075 | -0. 443245 |
| 74  | -0. 399805 | -0. 290168 | -0. 304134 |

## 75 rows × 3 columns

```
###定义初始变量,请将 fpr tpr rpc auc 定义成 dict型 ###

n_classes = 3

fpr = dict()

tpr = dict()

roc_auc = dict()

# 利用一个简单循环 和 roc_curve 函数 roc_curve(y_true, y_score, pos_label=None, sample_weight=None, drop_intermediate=True)

# 其中 y_true 是 样本的真实标签

# y score 是 样本的预测得分

# 提示 利用 pandas 包 操作时 可以利用 pandas.iloc

for i in range(n_classes):

    fpr[i], tpr[i], _ = roc_curve(y_test.iloc[:, i], y_score.iloc[:, i]) #

    roc_auc[i] = auc(fpr[i], tpr[i])
```

```
##利用循环 打印出上述 fpr tpr 生成 roc 曲线
colors = cycle(['aqua', 'darkorange', 'cornflowerblue'])
for i, color in zip(range(n_classes), colors):
   plt.plot(fpr[i], tpr[i], color=color,
          label='ROC curve of class {0} (area = {1:0.2f})'
          ''.format(i, roc_auc[i]))
lw = 2
plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic example')
plt.legend(loc="lower right")
plt.show()
```



#将 one-hot 标签 转化为 list 形式的 3 值标签 pred\_class 已经给出 请对 true\_class 作出 pred\_class= []

```
for i in range(len(y_pred)):
    if y_pred.iloc[i,0] == 1:
        pred_class.append('label_1')
    if y_pred.iloc[i,1] == 1:
        pred_class.append('label_2')
    if y_pred.iloc[i,2] == 1:
        pred_class.append('label_3')
    if y_pred.iloc[i,0] == y_pred.iloc[i,1] == y_pred.iloc[i,2] == 0:
```

```
pred_class.append('no_class')
pred class
true class= []
for i in range(len(y_test)):
   if y_test.iloc[i,0] == 1:
      true class.append('label 1')
   if y_test.iloc[i,1] == 1:
      true class.append('label 2')
   if y_test.iloc[i,2] == 1:
      true_class.append('label_3')
##利用 confusion_matrix 函数 生成混淆矩阵 confusion_matrix(y_true, y_pred,
labels=None, sample weight=None)[source] ¶
cm = confusion_matrix(true_class, pred_class)
cm df = pd.DataFrame(cm,
                 index = ['label_1','label_2','label_3','noclass'],
                 columns = ['label 1','label 2','label 3','noclass'])
plt.figure(figsize=(5.5,4))
sns.heatmap(cm df, annot=True)
plt.title('example of confusion matrix')
plt.ylabel('True label')
plt.xlabel('Predicted label')
Text(0.5, 15.0, 'Predicted label')
```

