BI practical

Perform data clustering using clustering algorithm in python or r studio.

Practical 8- k-means clustering

- newiris <-iris
- newiris\$Species <- NULL
- (kc <- kmeans(newiris,3))
- table(iris\$Species,kc\$cluster)
- plot(newiris[c("Sepal.Length", "Sepal.Width")], col=kc\$cluster)
- points(kc\$centers[,c("Sepal.Length","Sepal.Width")],col=1:3,pc h=8,cex=2)

practical9-linear regression

```
> x < c(151,174,138,186,128,136,179,163,152,131)
> y < c(63.81.56.91.47.57.76.72.62.48)
> relation <- lm(y\sim x)
> print(relation)
> print(summary(relation))
> a <- data.frame(x = 170)
> result <- predict(relation,a)
> print(result)
> png(file = "linearregression.png")
                        "blue",main = "Height
    plot(y,x,col
                                                       &
                                                             weight
Regression", abline(lm(x\sim y)), cex = 1.3, pch = 16, xlab = "weight in
Kg",ylan = "Height in cm")
    plot(y,x,col
                 = "blue",main = "Height
                                                       &
                                                             weight
Regression", abline(lm(x\sim y)), cex = 1.3, pch = 16, xlab = "weight in
Kg",ylab = "Height in cm")
> dev.off()
```

Now go to files and search for linearregression.png file open it and show to miss.

Decision tree (practical 7)

```
> install.packages("party")
```

```
> library(party)
> print(head(readingSkills))
> library(party)
> input.dat <- readingSkills[c(1:105),]
> png(file = "decision_tree.png")
> output.tree <- ctree(nativeSpeaker ~ age + shoeSize + score, data = input.dat)
> plot(output.tree)
> dev.off()
```

Search for decision tree.png in files show output to miss

Implementation of classification algorithm in R programming.

```
> rainfall <-c(799,1174.8,865.1,1334.6,635.4,918.5,685.5,998.6,784.2,985,882.8,1071)
> rainfall.timeseries <- ts(rainfall,start = c(2012,1),frequency = 12)
> print(rainfall.timeseries)
> png(file = "rainfall.png")
> plot(rainfall.timeseries)
> dev.off()
```

Go to files section and search for rainfall.png and show it to miss

Write a python program to read data from csv file

Step 1- open pycharm

Step2- go to file -> settings ->python interpreter download pandas, metapolib and seaborn and then click ok

Create a python file names data analysis.py and then copy this code

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

# Read data from a CSV file (Ensure 'data.csv' exists in your project folder)
file_path = "data.csv"
df = pd.read_csv(file_path)

print("\nDataset Information:")
print(df.info())

# Show the first 5 rows
print("\nFirst 5 Rows:")
print(df.head())
```

```
print("\nSummary Statistics:")
print(df.describe())
print("\nUnique Value Counts in Categorical Columns:")
print(df.nunique())
print("\nMissing Values in Each Column:")
print(df.isnull().sum())
print("\nMost Frequent Values in Each Column:")
print(df.mode().iloc[0])
if 'Category' in df.columns and 'Price' in df.columns:
  category avg price = df.groupby('Category')['Price'].mean()
  print("\nAverage Price per Category:")
  print(category avg price)
if 'Price' in df.columns:
  print("\nTop 5 Most Expensive Items:")
  print(df.sort values(by='Price', ascending=False).head())
if df.select dtypes(include=['number']).shape[1] > 1:
  print("\nCorrelation Matrix:")
numeric df = df.select dtypes(include=['number']) # Select only numeric columns
if not numeric df.empty: # Check if there are numeric columns
  print("\nCorrelation Matrix:")
  print(numeric_df.corr()) # Compute correlation only for numbers
  import matplotlib.pyplot as plt
  import seaborn as sns
  plt.figure(figsize=(8, 6))
  sns.heatmap(numeric df.corr(), annot=True, cmap="coolwarm", linewidths=0.5)
  plt.title("Correlation Matrix Heatmap")
  plt.show()
else:
  print("\nNo numerical data available for correlation analysis.")
  plt.figure(figsize=(8, 6))
  sns.heatmap(df.corr(), annot=True, cmap="coolwarm", linewidths=0.5)
  plt.title("Correlation Matrix Heatmap")
  plt.show()
now create a new file name data.csv
and add this code
```

Product, Category, Price, Rating, Stock

Book1, Fiction, 9.99, 4.2, 50

Book2, Science, 12.50, 4.5, 30

Book3, Fiction, 15.99, 3.9, 20

Book4, History, 18.75, 4.1, 15

Book5, Science, 22.99, 4.8, 10

Now right click on data analysis file and run the file show pink vala box ka photo to miss

A student has received marks in 4 subjects and total of average marks based on potential improvement in subject 4 .claculate the total marks and average marks using excel formula

Step1- open excel add 4 subject marks and name of the student create total and average marks column and apply the formula to it Use sum and avg formula from top right corner

Apply what-if analysis for the above improvement in subject 4

Goto excel

Add subject names and marks
Use excel sum and avg formula

For improvement in sub4 follow

- 1- goto data
- 2- what-if
- 3- scenario manager
- 4- add a scenario (improvement in sub4)
- 5- changing cell (put subject 4 ka cell)
- 6- ok
- 7- enter value for changing cells
- 8- ok
- 9- show (the value will get updated)

Data Modelling and Analytics with Pivot Table and pivot chart in Excel

Open excel enter this data

Student Name Subject Marks Semester

John Doe	Math	85	Semester 1
John Doe	Science	78	Semester 1
John Doe	English	90	Semester 1
Jane Smith	Math	88	Semester 1
Jane Smith	Science	80	Semester 1
Jane Smith	English	92	Semester 1
Alex Brown	Math	75	Semester 2
Alex Brown	Science	82	Semester 2
Alex Brown	English	89	Semester 2
Emily White	Math	91	Semester 2
Emily White	Science	84	Semester 2
Emily White	English	95	Semester 2

Step2- select the entire table

Step3- go to insert tavb-> click pivotable

Step4- create pivotable window:

- Ensure the range is correct.
- Select **New Worksheet** (or Existing Worksheet where you want the Pivot Table).
- Click OK.

After inserting the PivotTable, a **PivotTable Fields** pane appears on the right.

- Drag "Student Name" to the Rows section.
- Drag "Subject" to the Columns section.

- Drag "Marks" to the Values section (It will automatically sum the marks).
- Drag "Semester" to the Filters section.

<u>Create ETL map and setup schedule for exhibition.</u> <u>And</u>

Data visualization using power BI Refer manual practical 2 and 3

Okay bye 🤡