What is claimed is:

control information.

5

A method of processing a plurality of Z vectors, each Z vector including Z elements, 1 each element including K bits, where Z is a positive integer greater than 1 and K is a positive 2 integer greater than zero, the plurality of Z vectors corresponding to a binary codeword, portions 3 of said binary codeword having a direct mapping relationship to a plurality of transmission units, 4 said plurality of Z vectors being stored in a set of D memory arrays, where D is an integer 5 greater than zero, each memory array including Z rows of memory locations, each memory 6 7 location of a row corresponding to a different array column, each array column corresponding to a different one of said plurality of Z vectors, each Z vector identifying one column in each of 8 said D memory arrays, the method comprising: 9 generating a series of sets of control information, each set of control information 10 including: 11 i) a transmission unit identifier; 12 ii) a Z vector identifier; 13 iii) a row identifier; and 14 for at least one generated set of control information: 15 reading P times K divided by D bits, where P is a positive integer greater than 16 zero, from each column identified by the Z vector identified by the Z vector identifier included 17 in said at least one generated set of control information. 18 The method of claim 1, 2. wherein said method of processing is performed by a transmission device prior to 2 transmission of said transmission units; 3 wherein D is 1; and 4 wherein K is 1. 5 3. The method of claim 2, further comprising: for said at least one generated set of control information: 2 generating from said P bits read from memory, a portion of the transmission unit 3 identified by the transmission unit identifier included in said at least one generated set of

1	4. The method of claim 3,				
2	wherein said plurality of Z vectors includes n of said plurality of Z vectors, where n				
3	positive integer greater than 1; and				
4	wherein generating a series of sets of control information further includes:				
5	incrementing a Z vector identifier value by n divided by M, where M is the				
6	number of portions of the transmission unit having a direct mapping relationship to a				
7	portion of the binary codeword said portion of the binary codeword including M times P				
8	bits.				
1	5. The method of claim 4,				
2	wherein each portion of a transmission unit is a symbol; and				
3	wherein the transmission unit is a dwell.				
1	6. The method of claim 3, wherein generating a series of sets of control information further				
2	includes:				
3	incrementing the Z vector identifier value M times;				
4	after incrementing the Z vector value M times:				
5	i) resetting the Z vector identifier value to the Z vector identifier value existing a				
6	the start of said incrementing; and				
7	ii) incrementing a row identifier value by P.				
1	7. The method of claim 6, wherein generating a series of sets of control information further				
2	includes:				
3	after incrementing the row identifier value Z divided by P times, where Z divided by P				
4	times is an integer,				
5	setting the row identifier value to zero; and				
6	incrementing the Z vector identifier value by a preselected positive integer value.				

- 1 8. The method of claim 7, wherein said preselected positive integer value is one.
- 1 9. The method of claim 2, wherein said binary codeword is a low density parity check codeword.

1	10.	The method of claim 1,				
2		wherein said method of processing is used to process received transmission units; and				
3		wherein K is an integer greater than zero and is a number of bits used to represent a soft				
4	value	value corresponding to one bit of said binary codeword.				
1	11.	The method of claim 10, where D is equal to K or 1.				
1	12.	The method of claim 11, further comprising:				
2		for said at least one generated set of control information:				
3		supplying the P bits read from memory to a demodulator.				
1	13.	The method of claim 10, further comprising:				
2		for said at least one generated set of control information:				
3		generating from said P bits read from memory, a portion of the transmission unit				
4		identified by the transmission unit identifier included in said each generated set of				
5		control information.				
1	14.	The method of claim 13,				
2		wherein said plurality of Z vectors includes n of said Z vectors, where n is a positive				
3	intege	r greater than 1; and				
4		wherein generating a series of sets of control information further includes:				
5		incrementing a Z vector identifier value n divided by M, where M is the number				
6		of portions of the transmission unit having a mapping relationship to a portion of the				
7		binary codeword said portion of the binary codeword including M times P bits.				
1	15.	The method of claim 13, wherein generating a series of sets of control information				
2		r includes:				
3		incrementing a row identifier value by P incrementing the Z vector identifier value				
4	M tim					
5		after incrementing the Z vector value M times:				
6		i) resetting the Z vector identifier value to the Z vector identifier value existing at				
7		the start of said incrementing; and				
8	ji) inc	rementing a row identifier value by P.				
_	,					

1	16.	The method of claim 15, wherein generating a series of sets of control information
2	further	includes:
3		after incrementing the row identifier value Z divided by P times, where Z divided by P
4	times is	s an integer,

setting the row identifier value to zero; and

5

6

7

8

9

10

- 6 incrementing the Z vector identifier value by a preselected positive integer value.
- 1 17. The method of claim 16, wherein said preselected positive integer value is one.
- 1 18. The method of claim 10, wherein said binary codeword is a low density parity check codeword.
- 1 19. An apparatus for processing a plurality of Z vectors, each Z vector including Z elements,
 2 each element including K bits, where Z is a positive integer greater than 1 and K is a positive
 3 integer greater than zero, the plurality of Z vectors corresponding to a binary codeword, portions
 4 of said binary codeword having a direct mapping relationship to a plurality of transmission units,
 5 said apparatus comprising:
 - memory including a set of D memory arrays for storing said plurality of Z vectors, where D is an integer greater than zero, each memory array including Z rows of memory locations, each memory location of a row corresponding to a different array column, each array column corresponding to a different one of said plurality of Z vectors, each Z vector identifying one column in each of said D memory arrays;
- memory access control module for generating a series of sets of control information, each set of control information including:
- i) a transmission unit identifier;
- ii) a Z vector identifier;
- iii) a row identifier; and
- means for reading P times K divided by D bits, from said memory, where P is a positive integer greater than zero, from each column identified by the Z vector identified by the Z vector identifier included at least one generated set of control information.

1	20.	The method of claim 1,			
2		wherein D is 1; and			
3		wherein K is 1.			
1	21.	The method of claim 19, wherein said memory access control modules includes:			
2		a first counter for generating said Z vector identifier; and			
3		a second counter for generating said row identifier.			
1	22.	A machine readable medium comprising machine executable instructions for controlling			
2	a computer device to process a plurality of Z vectors, each Z vector including Z elements, each				
3	element including K bits, where Z is a positive integer greater than 1 and K is a positive integer				
4	greater than zero, the plurality of Z vectors corresponding to a binary codeword, portions of said				
5	binary codeword having a direct mapping relationship to a plurality of transmission units, said				
6	machine execuatable instructions including instructions used to control the computer device to:				
7	generate a series of sets of control information, each set of control information including				
8		i) a transmission unit identifier;			
9		ii) a Z vector identifier; and			
10		iii) a row identifier; and			
11		for at least one generated set of control information:			
12		read P times K divided by D bits, where P is a positive integer greater than zero,			
13		from each column identified by the Z vector identified by the Z vector identifier included			
14		in said at least one generated set of control information.			