МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе №3

по дисциплине «Организация ЭВМ и систем»

Тема: Представление и обработка целых чисел. Организация ветвящихся процессов

Вариант 11

Студентка гр.1381	 Рымарь М.И.
Преподаватель	Ефремов М.А

Санкт-Петербург

Цель работы.

Изучить представление и обработку целых чисел на языке Ассемблер. Научиться организовывать ветвящиеся процессы.

Задание.

Разработать на языке Ассемблера программу, которая по заданным целочисленным значениям параметров a, b, i, k вычисляет:

- а) значения функций i1 = f1(a, b, i) и i2 = f2(a, b, i);
- b) значения результирующей функции res = f3(i1, i2, k),

где вид функций f1 и f2 определяется из табл. 2, а функции f3 - из табл.3 по цифрам шифра индивидуального задания (n1, n2, n3), приведенным в табл.4. Значения a, b, i, k являются исходными данными, которые должны выбираться студентом самостоятельно и задаваться в процессе исполнения программы в режиме отладки. При этом следует рассмотреть всевозможные комбинации параметров a, b и k, позволяющие проверить различные маршруты выполнения программы, а также различные знаки параметров a и b.

Вариант №11

/ -(4*i+3), при a>b	/ 2*(i+1)-4, при a>b	/ min(i1 , 6), при k=0
$f2 = <$ \ $6*i-10$, при $a <= b$	$f6 = <$ \ $5-3*(i+1)$, при $a <= b$	f5 = < $ i1 + i2 $, при $k/=0$

Выполнение работы.

- 1. Были созданы три сегмента: сегмент стека (AStack), сегмент данных (DATA) и сегмент кода (CODE). Метки сегментов были записаны в соответствующие регистры с помощью директивы ASSUME (полное определение сегментов). Исходный код программы см. в приложении А.
- 2. В сегменте DATA были объявлены переменные a, b, i, k, i1, i2, res. В этом сегменте будут меняться некоторые переменные во время тестирования.
- 3. В сегменте СОDE была создана процедура Main, в которой написаны инструкции для успешного завершения программы после операции ret. Для

выполнения задания использовались следующие переходы, чтобы избежать обращение к процедурам:

- 1). ЈМР (сокращение от JUMP) команда безусловного перехода. Выполняет безусловный переход в указанное место. В процедуре Маіп используется в случае, когда а больше b, чтобы избежать выполнение кода в обратном случае. Также используется в f3_1 и f3_2, чтобы перейти к записи результата вычисления функции.
- 2). JLE (Jump Less Equal) команда, выполняющая короткий переход, если первый операнд меньше второго операнда или равен ему при выполнении операции сравнения с помощью команды стр. В процедуре Маіп используется в самом начале для перехода к метке AlessB, если а не больше b; также используется в f3_1 при условии k=0, то есть: если |i1| <= 6, то переход к метке min.
- 3). JGE (Jump Greater Equal) команда, выполняющая короткий переход, если первый операнд больше второго операнда или равен ему при выполнении сравнения с помощью команды стр. Используется в процедуре Main в двух случаях: ABSi1 и ABSi2, чтобы осуществить переход к f3, если i1>=0, или к метке f3_2, если i2>=0.
- 4). JNE (Jump Not Equal) команда, выполняющая короткий переход, если первый операнд не равен второму операнду. Используется в f3, чтобы при k=0 избежать выполнение кода при k/=0.

Тестирование.

Чтобы проверить корректность работы программы, было проведено три теста.

1. Результаты работы программы при a=5; b=-1; i=2; k=0 представлены в табл.1.

i1	i2	res	Правильность
			результата
000B (11)	0002(2)	0006 (6)	Верно

Таблица 1 – Результаты первого теста

2. Результаты работы программы при a=2; b=4; i=-3; k=0 представлены в табл.2.

i1	i2	res	Правильность
			результата
001C (28)	000B(11)	0006 (6)	Верно

Таблица 2 – Результаты второго теста

2. Результаты работы программы при a=2; b=4; i=-3; k=5 представлены в табл.3.

i1	i2	res	Правильность
			результата
001C (28)	000B(11)	0027 (39)	Верно

Таблица 3 – Результаты третьего теста

Выводы.

В ходе выполнения лабораторной работы было изучено представление и обработка целых чисел, и организация ветвящихся процессов. Для выполнения задания была написана программа, которая вычисляет значения функций согласно заданным условиям.

ПРИЛОЖЕНИЕ А ИСХОДНЫЙ КОД ПРОГРАММ

Hазвание файла: lab3.asm AStack SEGMENT STACK DW 12 DUP(?)

```
AStack ENDS

DATA SEGMENT

a DW 2

b DW 4

i DW -3

k DW 5

i1 DW 0

i2 DW 0

res DW 0
```

CODE SEGMENT

DATA ENDS

ASSUME CS:CODE, DS:DATA, SS:AStack

```
Main PROC FAR

push DS

sub AX, AX

push AX

mov AX, DATA

mov DS, AX

mov AX, i

; i+1
```

mov CX, a cmp CX, b

add AX, 1

jle AlessB

AmoreB:

```
shl AX, 1
; 2*(i+1)-4 = 2i-2
sub AX, 4
mov i2, AX
; 4i-4
```

```
shl AX, 1
    ; 4i+3
    add AX, 7
    = (4i+3)
    neg AX
    mov i1, AX
    jmp ABSi1
AlessB:
    mov BX, AX
    shl AX, 1
    shl AX, 1
    ; 3*(i+1)
    sub AX, BX
    ; -3*(i+1)
    neg AX
    ; 5-3*(i+1) = -3i+2
    add AX, 5
    mov i2, AX
    ; -6i+4
    shl AX, 1
    ; -6i+10
    add AX, 6
    ; 6i-10
    neg AX
    mov i1, AX
ABSi1:
    mov CX, i1
    cmp CX, 0
    jge f3
    neg il
f3:
    mov CX, k
    cmp CX, 0
    jne ABSi2
f3 1:
    mov CX, i1
    cmp CX, 6
    jle min
    mov AX, 6
    jmp f3res
min:
    mov AX, i1
    jmp f3res
```

```
mov CX, i2
    cmp CX, 0
    jge f3 2
   neg i2
f3 2:
   mov AX, i1
    add AX, i2
    jmp f3res
f3res:
   mov res, AX
    ret
Main ENDP
CODE ENDS
   END Main
     Название файла: lab2.lst
Microsoft (R) Macro Assembler Version 5.10
                                                           10/20/22
15:46:2
Page 1-1
0000
                                                      AStack SEGMENT
STACK
0000 0000[
                                                    DW 12 DUP(?)
3333
]
0018
                                                     AStack ENDS
0000
                                                     DATA SEGMENT
0000 0002
                                                a DW 2
0002 0004
                                                b DW 4
0004 FFFD
                                                i DW -3
0006 0005
                                                k DW 5
0000 8000
                                                i1 DW 0
0000 A000
                                                i2 DW 0
000C 0000
                                                res DW 0
000E
                                                     DATA ENDS
0000
                                                    CODE SEGMENT
ASSUME CS:CODE, DS:DATA, SS:AStack
0000
                                                     Main PROC FAR
0000 1E
                                                    push DS
0001 2B C0
                                                    sub AX, AX
0003 50
                                                    push AX
0004 B8 ---- R
                                               mov AX, DATA
0007 8E D8
                                                    mov DS, AX
0009 A1 0004 R
                                               mov AX, i
; i+1
```

ABSi2:

000C 05 0001 000F 8B 0E 0000 R 0013 3B 0E 0002 R 0017 7E 15	add AX, 1 mov CX, a cmp CX, b jle AlessB
0019	AmoreB:
; 2*i+2 0019 D1 E0 ; 2*(i+1)-4 = 2i-2	shl AX, 1
001B 2D 0004 001E A3 000A R ; 4i-4	sub AX, 4 mov i2, AX
0021 D1 E0 ; 4i+3	shl AX, 1
0023 05 0007 ; -(4i+3)	add AX, 7
0026 F7 D8 0028 A3 0008 R 002B EB 1B 90	neg AX mov i1, AX jmp ABSi1
002E	AlessB:
002E 8B D8	mov BX, AX
0030 D1 E0 0032 D1 E0	shl AX, 1 shl AX, 1
; 3*(i+1)	
Microsoft (R) Macro Assembler Version 5.10 15:46:2 Page 1-2	10/20/22
0034 2B C3 ; -3*(i+1)	sub AX, BX
; -3*(i+1) 0036 F7 D8	sub AX, BX neg AX
; -3*(i+1) 0036 F7 D8 ; 5-3*(i+1) = -3i+2 0038 05 0005	
; -3*(i+1) 0036 F7 D8 ; 5-3*(i+1) = -3i+2 0038 05 0005 003B A3 000A R	neg AX
; -3*(i+1) 0036 F7 D8 ; 5-3*(i+1) = -3i+2 0038 05 0005 003B A3 000A R ; -6i+4 003E D1 E0	neg AX add AX, 5
; -3*(i+1) 0036 F7 D8 ; 5-3*(i+1) = -3i+2 0038 05 0005 003B A3 000A R ; -6i+4 003E D1 E0 ; -6i+10	neg AX add AX, 5 mov i2, AX shl AX, 1
; -3*(i+1) 0036 F7 D8 ; 5-3*(i+1) = -3i+2 0038 05 0005 003B A3 000A R ; -6i+4 003E D1 E0 ; -6i+10 0040 05 0006 ; 6i-10	neg AX add AX, 5 mov i2, AX
; -3*(i+1) 0036 F7 D8 ; 5-3*(i+1) = -3i+2 0038 05 0005 003B A3 000A R ; -6i+4 003E D1 E0 ; -6i+10 0040 05 0006 ; 6i-10 0043 F7 D8	neg AX add AX, 5 mov i2, AX shl AX, 1 add AX, 6 neg AX
; -3*(i+1) 0036 F7 D8 ; 5-3*(i+1) = -3i+2 0038 05 0005 003B A3 000A R ; -6i+4 003E D1 E0 ; -6i+10 0040 05 0006 ; 6i-10 0043 F7 D8 0045 A3 0008 R 0048	neg AX add AX, 5 mov i2, AX shl AX, 1 add AX, 6 neg AX mov i1, AX ABSi1:
; -3*(i+1) 0036 F7 D8 ; 5-3*(i+1) = -3i+2 0038 05 0005 003B A3 000A R ; -6i+4 003E D1 E0 ; -6i+10 0040 05 0006 ; 6i-10 0043 F7 D8 0045 A3 0008 R 0048 0048 8B 0E 0008 R	neg AX add AX, 5 mov i2, AX shl AX, 1 add AX, 6 neg AX mov i1, AX ABSi1: mov CX, i1
; -3*(i+1) 0036 F7 D8 ; 5-3*(i+1) = -3i+2 0038 05 0005 003B A3 000A R ; -6i+4 003E D1 E0 ; -6i+10 0040 05 0006 ; 6i-10 0043 F7 D8 0045 A3 0008 R 0048	neg AX add AX, 5 mov i2, AX shl AX, 1 add AX, 6 neg AX mov i1, AX ABSi1:
; -3*(i+1) 0036 F7 D8 ; 5-3*(i+1) = -3i+2 0038 05 0005 003B A3 000A R ; -6i+4 003E D1 E0 ; -6i+10 0040 05 0006 ; 6i-10 0043 F7 D8 0045 A3 0008 R 0048 0048 8B 0E 0008 R 004C 83 F9 00 004F 7D 04 0051 F7 1E 0008 R	neg AX add AX, 5 mov i2, AX shl AX, 1 add AX, 6 neg AX mov i1, AX ABSi1: mov CX, i1 cmp CX, 0 jge f3 neg i1
; -3*(i+1) 0036 F7 D8 ; 5-3*(i+1) = -3i+2 0038 05 0005 003B A3 000A R ; -6i+4 003E D1 E0 ; -6i+10 0040 05 0006 ; 6i-10 0043 F7 D8 0045 A3 0008 R 0048 0048 8B 0E 0008 R 004C 83 F9 00 004F 7D 04	neg AX add AX, 5 mov i2, AX shl AX, 1 add AX, 6 neg AX mov i1, AX ABSi1: mov CX, i1 cmp CX, 0 jge f3
; -3*(i+1) 0036 F7 D8 ; 5-3*(i+1) = -3i+2 0038 05 0005 003B A3 000A R ; -6i+4 003E D1 E0 ; -6i+10 0040 05 0006 ; 6i-10 0043 F7 D8 0045 A3 0008 R 0048 0048 8B 0E 0008 R 004C 83 F9 00 004F 7D 04 0051 F7 1E 0008 R 0055 0055 8B 0E 0006 R 0059 83 F9 00	neg AX add AX, 5 mov i2, AX shl AX, 1 add AX, 6 neg AX mov i1, AX ABSi1: mov CX, i1 cmp CX, 0 jge f3 neg i1 f3: mov CX, k cmp CX, 0
; -3*(i+1) 0036 F7 D8 ; 5-3*(i+1) = -3i+2 0038 05 0005 003B A3 000A R ; -6i+4 003E D1 E0 ; -6i+10 0040 05 0006 ; 6i-10 0043 F7 D8 0045 A3 0008 R 0048 0048 8B 0E 0008 R 004C 83 F9 00 004F 7D 04 0051 F7 1E 0008 R 0055 0055 8B 0E 0006 R 0059 83 F9 00 005C 75 15	neg AX add AX, 5 mov i2, AX shl AX, 1 add AX, 6 neg AX mov i1, AX ABSi1: mov CX, i1 cmp CX, 0 jge f3 neg i1 f3: mov CX, k cmp CX, 0 jne ABSi2
; -3*(i+1) 0036 F7 D8 ; 5-3*(i+1) = -3i+2 0038 05 0005 003B A3 000A R ; -6i+4 003E D1 E0 ; -6i+10 0040 05 0006 ; 6i-10 0043 F7 D8 0045 A3 0008 R 0048 0048 8B 0E 0008 R 004C 83 F9 00 004F 7D 04 0051 F7 1E 0008 R 0055 0055 8B 0E 0006 R 0059 83 F9 00	neg AX add AX, 5 mov i2, AX shl AX, 1 add AX, 6 neg AX mov i1, AX ABSi1: mov CX, i1 cmp CX, 0 jge f3 neg i1 f3: mov CX, k cmp CX, 0

0067 006A 006D		0006 1E 90		mov i jmp : min	f3res		
006D		0008 R 18 90	mov AX, i1 jmp f3res				
0077	83	0E 000A R F9 00	mov CX, i2 cmp (ABSi2: CX, i2 cmp CX, 0			
007A 007C 0080		04 1E 000A R	r	jge : neg i2 f3	_		
0080 0083	03	0008 R 06 000A R 01 90		mov AX, i1 add AX, i2	f3res		
008A 008D 008E	A3 CB	000C R	n	mov res, A ret Mai	X n ENDP		
008E END M	ain			COD	E ENDS		
Micro 15:46 Symbo	:2	t (R) Macro Assembler Version 5.	10		10/20/22		
Segme	nts	and Groups:					
N a m	е		Length	Align	Combine Class		
CODE			0018 008E 000E	PARA NON	E		
Symbo	ls:						
N a m							
	е		Type	Value	Attr		
ABSI1 ABSI2 ALESS			Type L WORD L NEAR L NEAR L NEAR L NEAR	0000 DAT 0048 COD 0073 COD	A E E E		
ABSI1 ABSI2 ALESS AMORE	 B . B .		L WORD L NEAR L NEAR L NEAR	0000 DAT 0048 COD 0073 COD 002E COD	A E E E		
ABSI1 ABSI2 ALESS AMORE B .			L WORD L NEAR L NEAR L NEAR L NEAR	0000 DAT 0048 COD 0073 COD 002E COD 0019 COD 0002 DAT 0055 COD 008A COD 005E COD	A E E E A E E		
ABSI1 ABSI2 ALESS AMORE B . F3 . F3RES F3_1 F3_2 I . I1 .			L WORD L NEAR L NEAR L NEAR L WORD L WORD L NEAR L NEAR L NEAR L NEAR	0000 DAT 0048 COD 0073 COD 002E COD 0019 COD 0002 DAT 0055 COD 008A COD 005E COD	A E E E E E E E E A		

MAIN								•		F PROC 0000 CODE Length = 008E	3
MIN										L NEAR 006D CODE	
RES										L WORD 000C DATA	
@CPU										TEXT 0101h	
@FILE	ENZ	MA	3							TEXT lab3	
@VERS	SIC	NC								TEXT 510	

- 97 Source Lines
- 97 Total Lines
- 25 Symbols

48014 + 461293 Bytes symbol space free

- 0 Warning Errors
 0 Severe Errors