3.	Понятие	ОН	ечеткі	их м	ноже	ствах

Предпосылки появления новой теории

При анализе плохо структурированных задач, связанных с классификацией, обоснованием выбора одной из нескольких альтернатив и т. п. математические методы, основанные на классической (канторовской) теории множеств, не всегда применимы.

Проблема:

во многих случаях отсутствуют формальные признаки принадлежности элемента данному множеству (явления и понятия имеют многозначный и неточный характер).

- Множества людей
 - молодых,
 - среднего возраста,
 - пожилых.
- Множество объектов, расположенных «недалеко от...» или «в районе...» или «на берегу...».
- Множество значений некоторого показателя,
 «незначительно отличающихся» от нормы.

- В 1965 г. в журнале «Information and Control» была опубликована известная статья профессора университета г. Беркли (США) Лофти Заде «Fuzzy Sets» («Нечеткие множества»).
- Развитие теории нечетких множеств попытка преодолеть ограниченность классической теории множеств при моделировании объектов с размытыми, нечеткими границами.
- В основе теории более широкое толкование понятия принадлежности элемента \boldsymbol{x} к данному множеству \boldsymbol{A} .

Характеристическая функция в классической теории множеств

Пусть *U* – универсум (из элементов которого образованы все остальные множества).

Характеристическая функция множества

 $A \subset U$ (характеризует принадлежность или непринадлежность элемента \boldsymbol{x} множеству \boldsymbol{A}) определяется так:

$$f_A(x) = \begin{cases} 1, & \text{если} & x \in A, \\ 0, & \text{если} & x \notin A. \end{cases}$$

Обобщение:

отказ от бинарного характера этой функции; допущение, что функция может принимать любые значения, принадлежащие отрезку [0, 1]

функция принадлежности (характеризует степень принадлежности элемента **х** нечеткому множеству).

Функция принадлежности в теории нечетких множеств

Пусть M – непустое канторовское множество.

Нечетким подмножеством А множества **М** называется множество пар

$$A = \{(x, \mu_A(x)) | x \in M, \mu_A(x) \in [0,1]\},$$

где

$$\mu_A(x)$$
: $M \rightarrow [0,1]$ -

функция принадлежности нечеткого множества А.

Множество **М** называется **базовым множеством** (базовой шкалой).

Функция принадлежности $\mu_{A}(x)$ приписывает каждому элементу $x \in M$ степень его принадлежности к нечеткому множеству A.

При этом

- $\mu_A(x) = 1$ означает полную принадлежность элемента нечеткому множеству;
- $\mu_{A}(x) = 0$ означает отсутствие принадлежности элемента нечеткому множеству;
- $0 \le \mu_A(x) \le 1$ означает частичную принадлежность элемента нечеткому множеству.

Функция принадлежности может быть задана как аналитически, так и набором значений.

Примеры.

1. Пусть M = N (множество натуральных чисел).

Определим нечеткое подмножество **A** – числа, «близкие к 7», функцией принадлежности:

$$\mu_A(x) = \begin{cases} 1 & \text{если } x = 7, \\ 0,8 & \text{если } x = 6 \text{ или } x = 8, \\ 0,5 & \text{если } x = 5 \text{ или } x = 9, \\ 0,2 & \text{если } x = 4 \text{ или } x = 10, \\ 0 & \text{если } x < 4 \text{ или } x > 10. \end{cases}$$

Или:

$$A = \{(4,0.2), (5,0.5), (6,0.8), (7,1), (8,0.8), (9,0.5), (10,0.2)\}.$$

Пусть M = R (множество действительных чисел).
 Функция принадлежности нечеткого подмножества
 A (числа, «близкие к 7»), может иметь вид:

Другой способ:

$$u_{A}(x) = \begin{cases} 1 - \sqrt{\frac{|x-7|}{3}} & \text{если } 4 \le x \le 10, \\ 0 & \text{в противном случае.} \end{cases}$$

Рассмотрим три неточных формулировки:

- 1) «молодой человек»;
- 2) «человек среднего возраста»;
- 3) «пожилой человек».
- В качестве множества **М** рассмотрим числа (возраст в годах), большие нуля.
- Функции принадлежности нечетким множествам, определяемым формулировками 1) 3), могут иметь следующий вид.

20-летний человек относится к нечетким подмножествам:

«Молодые» с функцией принадлежности µ₁=0,8;

«Средний возраст» – с функцией принадлежности $\mu_2 = 0,1$.

Пустое множество

Нечеткое множество **А** называется **пустым** тогда и только тогда, когда

$$\boldsymbol{\mu_A}(\boldsymbol{x}) = 0$$

для всех $x \in M$.

Обозначение такое же, как в классической теории множеств: \emptyset .

Включение нечетких множеств

Нечеткое множество **А содержится в** нечетком множестве **В** тогда и только тогда, когда

$$\mu_A(x) \leq \mu_B(x)$$

для всех $x \in M$.

Обозначение такое же, как в классической теории множеств:

 $A \subset B$.

Иллюстрация включения нечеткого множества \boldsymbol{A} в нечеткое множество \boldsymbol{B} :

Замечание.

В литературе встречается также понятие степени включения нечетких множеств.

Степень включения нечеткого множества \boldsymbol{A} в нечеткое множество \boldsymbol{B} в предыдущем примере равна 1 (полное включение).

В общем случае степень включения трактуется как

$$I(A \subset B) = \min_{x \in T} \mu_B(x),$$

где

$$T = \{x \in M \mid \mu_A(x) \le \mu_B(x), \mu_A(x) > 0\}.$$

Равенство нечетких множеств

Нечеткое множество **А равно** нечеткому множеству **В** тогда и только тогда, когда

$$\mu_A(x) = \mu_B(x)$$

для всех $x \in M$.

Обозначение: A = B.

Замечание.

В литературе используется также понятие степени равенства нечетких множеств.

Операции над нечеткими множествами

□ Объединение нечетких множеств.

Объединением нечетких множеств $A, B \subset M$ называется нечеткое множество $A \cup B$, определяемое функцией принадлежности

$$\mu_{A \cup B}(x) = \mu_A(x) \lor \mu_B(x) = \max\{\mu_A(x), \mu_B(x)\}$$

для каждого $x \in M$.

Пусть $M = \{1, 2, 3, 4, 5, 6, 7\},$ нечеткие множества \boldsymbol{A} и \boldsymbol{B} определены функциями принадлежности

$$\mu_A(x) = \begin{cases} 0.9 & \text{если } x = 3, \\ 1 & \text{если } x = 4, \\ 0.6 & \text{если } x = 6, \\ 0 & \text{если } x \notin \{3,4,6\}; \end{cases} \mu_B(x) = \begin{cases} 0.7 & \text{если } x = 3, \\ 1 & \text{если } x = 5, \\ 0.4 & \text{если } x = 6, \\ 0 & \text{если } x \notin \{3,5,6\}. \end{cases}$$

Тогда
$$\mu_{A \cup B}(x) = \begin{cases} 0,9 & \text{если } x = 3,\\ 1 & \text{если } x = 4,\\ 1 & \text{если } x = 5,\\ 0,6 & \text{если } x = 6,\\ 0 & \text{если } x \in \{1,2,7\}. \end{cases}$$

Другой способ записи:

$$A = \{(3,0.9), (4,1), (6,0.6)\}, B = \{(3,0.7), (5,1), (6,0.4)\},$$

тогда

$$A \cup B = \{(3,0.9), (4,1), (5,1), (6,0.6)\}.$$

Иллюстрация объединения нечетких множеств **А** и **В**:

□ Пересечение нечетких множеств.

Пересечением нечетких множеств $A, B \subset M$ называется нечеткое множество $A \cap B$, определяемое функцией принадлежности

$$\mu_{A \cap B}(x) = \mu_A(x) \wedge \mu_B(x) = \min\{\mu_A(x), \mu_B(x)\}$$

для каждого $x \in M$.

1. Пусть $M = \{1, 2, 3, 4, 5, 6, 7\},$

нечеткие множества \boldsymbol{A} и \boldsymbol{B} определены функциями принадлежности

$$\mu_A(x) = \begin{cases} 0.9 & \text{если } x = 3, \\ 1 & \text{если } x = 4, \\ 0.6 & \text{если } x = 6, \\ 0 & \text{если } x \notin \{3,4,6\}; \end{cases} \mu_B(x) = \begin{cases} 0.7 & \text{если } x = 3, \\ 1 & \text{если } x = 5, \\ 0.4 & \text{если } x = 6, \\ 0 & \text{если } x \notin \{3,5,6\}. \end{cases}$$

Тогда

$$\mu_{A\cap B}(x) = egin{cases} 0.7 & \text{если } x=3, \ 0.4 & \text{если } x=6, \ 0 & \text{если } x\in\{1,2,4,5,7\}. \end{cases}$$

Другой способ записи:

$$A = \{(3,0.9), (4,1), (6,0.6)\}, B = \{(3,0.7), (5,1), (6,0.4)\},$$

тогда

$$A \cap B = \{(3, 0.7), (6, 0.4)\}.$$

2. Пусть

$$A = \{(1,0.3), (2,0.6)\}, B = \{(3,0.7), (4,0.4)\}.$$

Тогда

$$A \cap B = \emptyset$$
.

Иллюстрация пересечения нечетких множеств **А** и **В**:

Замечание.

В литературе встречаются и другие, отличные от приведенных выше, определения операций объединения и пересечения нечетких множеств.

□ Дополнение нечеткого множества.

Дополнением нечеткого множества $A \subset M$ называется нечеткое множество \overline{A} , определяемое функцией принадлежности

$$\mu_{\overline{A}}(x) = 1 - \mu_{A}(x)$$

для каждого $x \in M$.

Пусть $M = \{1, 2, 3, 4, 5, 6\},$

нечеткое множество \boldsymbol{A} определено следующим образом:

$$A = \{(2,0.3), (3,1), (5,0.7), (6,0.9)\},\$$

т. е.

$$\mu_A(x) = \begin{cases} 0,3 & \text{если } x = 2, \\ 1 & \text{если } x = 3, \\ 0,7 & \text{если } x = 5, \\ 0,9 & \text{если } x = 6, \\ 0 & \text{если } x = 1 \text{ или } x = 4. \end{cases}$$

Тогда

$$\overline{A} = \{(1,1), (2,0.7), (4,1), (5,0.3), (6,0.1)\}.$$

Ī

При этом:

$$A \cup \overline{A} = \{(1,1), (2,0.7), (3,1), (4,1), (5,0.7), (6,0.9)\} \neq M,$$

И

$$A \cap \overline{A} = \{(2,0.3), (5,0.3), (6,0.1)\} \neq \emptyset$$
.