Asymptotic Divergences and Strong Dichotomy

Xiang Huang ¹ (joint work with Jack H. Lutz ¹, Elvira Mayordomo ², and Donald M. Stull ³)

March 12, 2019

¹Computer Science Department, Iowa State University

²Departamento de Informática e Ingeniería de Sistemas, Instituto de Investigación en Ingeniería de Aragón, Universidad de Zaragoza

³Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France

Overview

Schnorr-Stimm Dichotomy Theorem

Theorem (Schnorr and Stimm 72')

- 1. If S is not normal, then there is a finite-state gambler that wins money at an infinitely-often exponential rate betting on S.
- 2. If S is normal, then any finite-state gambler betting on S loses money at an exponential rate betting on S.

Schnorr-Stimm Dichotomy Theorem

Theorem (Schnorr and Stimm 72')

- 1. If S is not normal, then there is a finite-state gambler that wins money at an infinitely-often exponential rate betting on S.
- 2. If S is normal, then any finite-state gambler betting on S loses money at an exponential rate betting on S.

Question: What are these exponential rates? How to interpret them?

Strong Dichotomy Theorem

Modulo asymptotic caveats, We show that

- 1'. The infinitely-often exponential rate of winning in 1 is $2^{\text{Div}(S||\alpha)|w|}$.
- 2'. The exponential rate of loss in 2 is $2^{-\operatorname{Risk}_G(w)}$.

Strong Dichotomy Theorem

Modulo asymptotic caveats, We show that

- 1'. The infinitely-often exponential rate of winning in 1 is $2^{\text{Div}(S||\alpha)|w|}$.
- 2'. The exponential rate of loss in 2 is $2^{-\operatorname{Risk}_G(w)}$.

This is a **quantify** version of Schnorr-Stimm's dichotomy theorem.

Outline

- 1. Information theory: entropy and divergence
- 2. Asymptotic divergences
- 3. Finite-state gambler and strong dichotomy
- 4. Finite-state dimension

Information Theory: a Short

Introduction

A long time ago, in a galaxy far, far away...

A long time ago, in a galaxy far, far away...

There is a point.

A long time ago, in a galaxy far, far away...

There is a point.

A long time ago, in a galaxy far, far away...

There is a point.

So he therefore believes we need to have $\log \frac{1}{1/4} = 2$ bits to encode the objects in his galaxy. And that is only **his** opinion.

We call $\log \frac{1}{p}$ this point's self-information.

Entropy

A (discrete) probability measure on a nonempty finite set Ω is a function $\pi:\Omega\to[0,1]$ satisfying

$$\sum_{\omega \in \Omega} \pi(\omega) = 1. \tag{1}$$

We write $\Delta(\Omega)$ for the set of all probability measures on Ω . Then the Shannon entropy of π is define as:

$$H(\pi) = \sum_{\omega \in \Omega} \pi(\omega) \log \frac{1}{\pi(\omega)}$$
 (2)

That is, a (weighted) average of the self-information of all points.

Entropy: 2D-plots

Entropy: 3D Probability Measures

Two views of the simplex $\Delta(\{0,1,2\})$. The simplex is part of the plane x+y+z=1.

Entropy: 3D-entropy

 $\ensuremath{\mathsf{3D}}\xspace\text{-entropy}$ plotted on the previous equilateral triangle.

Definition

Let $\alpha, \beta \in \Delta(\Omega)$, where Ω is a nonempty finite set. The Kullback-Leibler divergence (or KL-divergence) of β from α is

$$D(\alpha||\beta) = \sum_{\omega \in \Omega} \alpha(\omega) \log \frac{\alpha(\omega)}{\beta(\omega)} = E_{\alpha} \log \frac{\alpha}{\beta}, \tag{3}$$

where the logarithm is base-2.

Definition

Let $\alpha, \beta \in \Delta(\Omega)$, where Ω is a nonempty finite set. The Kullback-Leibler divergence (or KL-divergence) of β from α is

$$D(\alpha||\beta) = \sum_{\omega \in \Omega} \alpha(\omega) \log \frac{\alpha(\omega)}{\beta(\omega)} = E_{\alpha} \log \frac{\alpha}{\beta}, \tag{3}$$

where the logarithm is base-2.

Note that we can view

$$D(\alpha||\beta) = \sum_{\omega \in \Omega} \alpha(\omega) \log \frac{1}{\beta(\omega)} - \sum_{\omega \in \Omega} \alpha(\omega) \log \frac{1}{\alpha(\omega)}$$

Definition

Let $\alpha, \beta \in \Delta(\Omega)$, where Ω is a nonempty finite set. The Kullback-Leibler divergence (or KL-divergence) of β from α is

$$D(\alpha||\beta) = \sum_{\omega \in \Omega} \alpha(\omega) \log \frac{\alpha(\omega)}{\beta(\omega)} = E_{\alpha} \log \frac{\alpha}{\beta}, \tag{3}$$

where the logarithm is base-2.

Note that we can view

$$D(\alpha||\beta) = \sum_{\omega \in \Omega} \alpha(\omega) \log \frac{1}{\beta(\omega)} - \sum_{\omega \in \Omega} \alpha(\omega) \log \frac{1}{\alpha(\omega)}$$

• $\beta(\omega)$ can be view as "subjective" probability, or a coding scheme.

9

Definition

Let $\alpha, \beta \in \Delta(\Omega)$, where Ω is a nonempty finite set. The *Kullback-Leibler divergence* (or *KL-divergence*) of β from α is

$$D(\alpha||\beta) = \sum_{\omega \in \Omega} \alpha(\omega) \log \frac{\alpha(\omega)}{\beta(\omega)} = E_{\alpha} \log \frac{\alpha}{\beta}, \tag{3}$$

where the logarithm is base-2.

Note that we can view

$$D(\alpha||\beta) = \sum_{\omega \in \Omega} \alpha(\omega) \log \frac{1}{\beta(\omega)} - \sum_{\omega \in \Omega} \alpha(\omega) \log \frac{1}{\alpha(\omega)}$$

- $\beta(\omega)$ can be view as "subjective" probability, or a coding scheme.
- $\alpha(\omega)$ can be view as the "real" probability.

Definition

Let $\alpha, \beta \in \Delta(\Omega)$, where Ω is a nonempty finite set. The Kullback-Leibler divergence (or KL-divergence) of β from α is

$$D(\alpha||\beta) = \sum_{\omega \in \Omega} \alpha(\omega) \log \frac{\alpha(\omega)}{\beta(\omega)} = E_{\alpha} \log \frac{\alpha}{\beta}, \tag{3}$$

where the logarithm is base-2.

Note that we can view

$$D(\alpha||\beta) = \sum_{\omega \in \Omega} \alpha(\omega) \log \frac{1}{\beta(\omega)} - \sum_{\omega \in \Omega} \alpha(\omega) \log \frac{1}{\alpha(\omega)}$$

- $\beta(\omega)$ can be view as "subjective" probability, or a coding scheme.
- $\alpha(\omega)$ can be view as the "real" probability.
- $D(\alpha||\beta)$ measures the difference between the average code-length of a coding scheme and an optimal coding. So it is always ≥ 0 .

Divergence: $D(\alpha||\beta)$, where $\beta = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$

Three views of the function $D(\alpha||\beta)$, where $\beta = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$. It is the upside-down copy of the 3D-entropy function.

Divergence: $D(\alpha||\beta)$, where $\beta = (\frac{1}{6}, \frac{1}{3}, \frac{1}{2})$

Three views of the function $D(\alpha||\beta)$, where $\beta = (\frac{1}{6}, \frac{1}{3}, \frac{1}{2})$.

Divergence: $D(\alpha||\beta)$, where $\beta = (\frac{1}{100}, \frac{1}{2}, \frac{49}{100})$

Three views of the function $D(\alpha||\beta)$, where $\beta = (\frac{1}{100}, \frac{1}{2}, \frac{49}{100})$.

Divergence: the Highest Peak

We have three peaks in the previous plots. Which one is the highest one? And how talk it is?

Proposition (radius of β^1)
The highest peak of $D(\alpha||\beta)$ (with β fixed) equals to $c = \log \left(1/\min_{\omega \in \Omega} \beta(\omega) \right)$.

¹By several COM S 633 students, 17'Fall.

Divergence: the Highest Peak

We have three peaks in the previous plots. Which one is the highest one? And how talk it is?

Proposition (radius of β^1)
The highest peak of $D(\alpha||\beta)$ (with β fixed) equals to $c = \log \left(1/\min_{\omega \in \Omega} \beta(\omega) \right)$.

Remark

The number c will show up later in this talk again.

¹By several COM S 633 students, 17'Fall.

Asymptotic entropies and

divergences

Block Counting

We work in a finite alphabet Σ with $2 \le |\Sigma| < \infty$. For the purpose of this talk, one can treat $\Sigma = \{0,1\}$.

Block Counting

We work in a finite alphabet Σ with $2 \leq |\Sigma| < \infty$. For the purpose of this talk, one can treat $\Sigma = \{0,1\}$.

We write Σ^{ℓ} for the set of strings of length ℓ over Σ , $\Sigma^* = \bigcup_{\ell=0}^{\infty} \Sigma^{\ell}$ for the set of (finite) *strings* over Σ , Σ^{ω} for the set of (infinite) *sequences* over Σ , and $\Sigma^{\leq \omega} = \Sigma^* \cup \Sigma^{\omega}$.

Block Counting

We work in a finite alphabet Σ with $2 \le |\Sigma| < \infty$. For the purpose of this talk, one can treat $\Sigma = \{0,1\}$.

We write Σ^{ℓ} for the set of strings of length ℓ over Σ , $\Sigma^* = \bigcup_{\ell=0}^{\infty} \Sigma^{\ell}$ for the set of (finite) *strings* over Σ , Σ^{ω} for the set of (infinite) *sequences* over Σ , and $\Sigma^{\leq \omega} = \Sigma^* \cup \Sigma^{\omega}$.

For nonempty strings $w, x \in \Sigma^*$, we write

$$\#_{\square}(w,x) = \left| \left\{ m \leq \frac{|x|}{|w|} - 1 \mid x[m|w|..(m+1)|w|-1] = w \right\} \right|$$

for the number of block occurrences of w in x. Note that $0 \le \#_{\square}(w,x) \le \frac{|x|}{|w|}$.

For each $S \in \Sigma^{\omega}$, $n \in \mathbb{Z}^+$, and $\lambda \neq w \in \Sigma^*$, the *n*-th *block frequency* of w in S is

$$\pi_{S,n}(w) = \frac{\#_{\square}(w, S[0..n|w|-1])}{n}$$
 (4)

For each $S \in \Sigma^{\omega}$, $n \in \mathbb{Z}^+$, and $\lambda \neq w \in \Sigma^*$, the *n*-th *block frequency* of w in S is

$$\pi_{S,n}(w) = \frac{\#_{\square}(w, S[0..n|w|-1])}{n} \tag{4}$$

Remark

Note that the above w can be of any length. We now fixed a length, and consider the set of string Σ^{ℓ} . We denote $\pi_{S,n}^{(\ell)} = \pi_{S,n} \upharpoonright \Sigma^{\ell}$ be the restriction of the function $\pi_{S,n}$ to the set Σ^{ℓ} of strings of length ℓ .

For each $S \in \Sigma^{\omega}$, $n \in \mathbb{Z}^+$, and $\lambda \neq w \in \Sigma^*$, the *n*-th *block frequency* of w in S is

$$\pi_{S,n}(w) = \frac{\#_{\square}(w, S[0..n|w|-1])}{n} \tag{4}$$

Remark

Note that the above w can be of any length. We now fixed a length, and consider the set of string Σ^{ℓ} . We denote $\pi_{S,n}^{(\ell)} = \pi_{S,n} \upharpoonright \Sigma^{\ell}$ be the restriction of the function $\pi_{S,n}$ to the set Σ^{ℓ} of strings of length ℓ .

Remark

 $\pi_{S,n}^{(\ell)}$ is a rational-valued probability measure on Σ^ℓ .

For each $S \in \Sigma^{\omega}$, $n \in \mathbb{Z}^+$, and $\lambda \neq w \in \Sigma^*$, the *n*-th *block frequency* of w in S is

$$\pi_{S,n}(w) = \frac{\#_{\square}(w, S[0..n|w|-1])}{n} \tag{4}$$

Remark

Note that the above w can be of any length. We now fixed a length, and consider the set of string Σ^{ℓ} . We denote $\pi_{S,n}^{(\ell)} = \pi_{S,n} \upharpoonright \Sigma^{\ell}$ be the restriction of the function $\pi_{S,n}$ to the set Σ^{ℓ} of strings of length ℓ .

Remark

 $\pi_{S,n}^{(\ell)}$ is a rational-valued probability measure on Σ^ℓ .

Remark

Intuitively, this is like we are using Σ^{ℓ} as our alphabet instead. And $\pi_{S,n}^{(\ell)}$ becomes the frequency of each "symbol" of the new alphabet.

Asymptotic divergences

A probability measure $\alpha \in \Delta(\Sigma)$ naturally induces, for each $\ell \in \mathbb{Z}^+$, a probability measure $\alpha^{(\ell)} \in \Delta(\Sigma^\ell)$ defined by

$$\alpha^{(\ell)}(w) = \prod_{i=0}^{|w|-1} \alpha(w[i]). \tag{5}$$

Asymptotic divergences

A probability measure $\alpha \in \Delta(\Sigma)$ naturally induces, for each $\ell \in \mathbb{Z}^+$, a probability measure $\alpha^{(\ell)} \in \Delta(\Sigma^\ell)$ defined by

$$\alpha^{(\ell)}(w) = \prod_{i=0}^{|w|-1} \alpha(w[i]). \tag{5}$$

Definition

Let $\ell \in \mathbb{Z}^+$, $S \in \Sigma^{\omega}$, and $\alpha \in \Delta(\Sigma)$.

1. The lower ℓ -divergence of α from S is $\operatorname{div}_{\ell}(S||\alpha) = \liminf_{n \to \infty} D(\pi_{S,n}^{(\ell)}||\alpha^{(\ell)}).$

Asymptotic divergences

A probability measure $\alpha \in \Delta(\Sigma)$ naturally induces, for each $\ell \in \mathbb{Z}^+$, a probability measure $\alpha^{(\ell)} \in \Delta(\Sigma^\ell)$ defined by

$$\alpha^{(\ell)}(w) = \prod_{i=0}^{|w|-1} \alpha(w[i]). \tag{5}$$

Definition

Let $\ell \in \mathbb{Z}^+$, $S \in \Sigma^{\omega}$, and $\alpha \in \Delta(\Sigma)$.

- 1. The lower ℓ -divergence of α from S is $\operatorname{div}_{\ell}(S||\alpha) = \liminf_{n \to \infty} D(\pi_{S,n}^{(\ell)}||\alpha^{(\ell)}).$
- 2. The upper ℓ -divergence of α from S is $\mathrm{Div}_{\ell}(S||\alpha) = \limsup_{n \to \infty} D(\pi_{S,n}^{(\ell)}||\alpha^{(\ell)}).$

Asymptotic divergences

A probability measure $\alpha \in \Delta(\Sigma)$ naturally induces, for each $\ell \in \mathbb{Z}^+$, a probability measure $\alpha^{(\ell)} \in \Delta(\Sigma^\ell)$ defined by

$$\alpha^{(\ell)}(w) = \prod_{i=0}^{|w|-1} \alpha(w[i]). \tag{5}$$

Definition

Let $\ell \in \mathbb{Z}^+$, $S \in \Sigma^{\omega}$, and $\alpha \in \Delta(\Sigma)$.

- 1. The lower ℓ -divergence of α from S is $\operatorname{div}_{\ell}(S||\alpha) = \liminf_{n \to \infty} D(\pi_{S,n}^{(\ell)}||\alpha^{(\ell)}).$
- 2. The upper ℓ -divergence of α from S is $\mathrm{Div}_{\ell}(S||\alpha) = \limsup_{n \to \infty} D(\pi_{S,n}^{(\ell)}||\alpha^{(\ell)}).$
- 3. The lower divergence of α from S is $\operatorname{div}(S||\alpha) = \sup_{\ell \in \mathbb{Z}^+} \operatorname{div}_{\ell}(S||\alpha)/\ell$.

Asymptotic divergences

A probability measure $\alpha \in \Delta(\Sigma)$ naturally induces, for each $\ell \in \mathbb{Z}^+$, a probability measure $\alpha^{(\ell)} \in \Delta(\Sigma^\ell)$ defined by

$$\alpha^{(\ell)}(w) = \prod_{i=0}^{|w|-1} \alpha(w[i]). \tag{5}$$

Definition

Let $\ell \in \mathbb{Z}^+$, $S \in \Sigma^{\omega}$, and $\alpha \in \Delta(\Sigma)$.

- 1. The lower ℓ -divergence of α from S is $\operatorname{div}_{\ell}(S||\alpha) = \liminf_{n \to \infty} D(\pi_{S,n}^{(\ell)}||\alpha^{(\ell)}).$
- 2. The upper ℓ -divergence of α from S is $\mathrm{Div}_{\ell}(S||\alpha) = \limsup_{n \to \infty} D(\pi_{S,n}^{(\ell)}||\alpha^{(\ell)}).$
- 3. The lower divergence of α from S is $\operatorname{div}(S||\alpha) = \sup_{\ell \in \mathbb{Z}^+} \operatorname{div}_{\ell}(S||\alpha)/\ell$.
- 4. The upper divergence of α from S is $\mathrm{Div}(S||\alpha) = \sup_{\ell \in \mathbb{Z}^+} \mathrm{Div}_{\ell}(S||\alpha)/\ell$.

Empirical Divergences of One Sequence From Another

Definition

Let $\ell \in \mathbb{Z}^+$ and $S, T \in \Sigma^{\omega}$.

- 1. The lower ℓ -divergence of T from S is $\operatorname{div}_{\ell}(S||T) = \liminf_{n \to \infty} D(\pi_{S,n}^{(\ell)}||\pi_{T,n}^{(\ell)}).$
- 2. The upper ℓ -divergence of T from S is $\mathrm{Div}_{\ell}(S||T) = \limsup_{n \to \infty} D(\pi_{S,n}^{(\ell)}||\pi_{T,n}^{(\ell)}).$
- 3. The lower divergence of T from S is $\operatorname{div}(S||T) = \sup_{\ell \in \mathbb{Z}^+} \operatorname{div}_{\ell}(S||T)/\ell$.
- 4. The upper divergence of T from S is $\operatorname{Div}(S||T) = \sup_{\ell \in \mathbb{Z}^+} \operatorname{Div}_{\ell}(S||T)/\ell$.

Normality

The following notions are essentially due to Borel.

Definition

Let $\alpha \in \Delta(\Sigma)$, $S \in \Sigma^{\omega}$, and $\ell \in \mathbb{Z}^+$.

1. *S* is α - ℓ -normal if, for all $w \in \Sigma^{\ell}$,

$$\lim_{n\to\infty} \pi_{S,n}(w) = \alpha^{(\ell)}(w).$$

2. *S* is α -normal if, for all $\ell \in \mathbb{Z}^+$, *S* is α - ℓ -normal.

Characterization of Normality

Theorem (divergence characterization of normality)

For all $\alpha \in \Delta(\Sigma)$ and $S \in \Sigma^{\omega}$, the following conditions are equivalent.

- (1) S is α -normal.
- (2) $\text{Div}(S||\alpha) = 0.$
- (3) For every α -normal sequence $T \in \Sigma^{\omega}$, Div(S||T) = 0.
- (4) There exists an α -normal sequence $T \in \Sigma^{\omega}$ such that $\operatorname{Div}(S||T) = 0$.

dichotomy

Finite-state gambler and strong

Definition

A finite-state gambler (FSG) is a 4-tuple

$$G = (Q, \delta, s, B),$$

where Q is a finite set of states, $\delta: Q \times \Sigma \to Q$ is the transition function, $s \in Q$ is the start state, and $B: Q \to \Delta_{\mathbb{Q}}(\Sigma)$ is the betting function.

Definition

A finite-state gambler (FSG) is a 4-tuple

$$G = (Q, \delta, s, B),$$

where Q is a finite set of states, $\delta: Q \times \Sigma \to Q$ is the transition function, $s \in Q$ is the start state, and $B: Q \to \Delta_{\mathbb{Q}}(\Sigma)$ is the betting function.

The payoffs in the betting are determined by a payoff probability measure $\alpha \in \Delta(\Sigma)$.

Definition

A finite-state gambler (FSG) is a 4-tuple

$$G = (Q, \delta, s, B),$$

where Q is a finite set of states, $\delta: Q \times \Sigma \to Q$ is the transition function, $s \in Q$ is the start state, and $B: Q \to \Delta_{\mathbb{Q}}(\Sigma)$ is the betting function.

The payoffs in the betting are determined by a payoff probability measure $\alpha \in \Delta(\Sigma)$.

We write $d_{G,\alpha}(w)$ for the gambler G's capital (amount of money) after betting on the successive bits of a prefix $w \sqsubseteq S$, and we assume that the initial capital is $d_{G,\alpha}(\lambda) = 1$.

Definition

A finite-state gambler (FSG) is a 4-tuple

$$G = (Q, \delta, s, B),$$

where Q is a finite set of states, $\delta: Q \times \Sigma \to Q$ is the transition function, $s \in Q$ is the start state, and $B: Q \to \Delta_{\mathbb{Q}}(\Sigma)$ is the betting function.

The payoffs in the betting are determined by a payoff probability measure $\alpha \in \Delta(\Sigma)$.

We write $d_{G,\alpha}(w)$ for the gambler G's capital (amount of money) after betting on the successive bits of a prefix $w \sqsubseteq S$, and we assume that the initial capital is $d_{G,\alpha}(\lambda) = 1$.

Let our capital after seeing $w \sqsubseteq S$ be $d_{G,\alpha}(w)$. The gambler's bets $B(\delta(w))(a)$ of the money that the next symbol of S is an a. If it then turns out to be the case, the gambler's capital will be

$$d_{G,\alpha}(wa) = d_{G,\alpha}(w) \frac{B(\delta(w))(a)}{\alpha(a)}.$$
 (6)

α -martingale

The payoffs in (6) are fair with respect to α , which means that the conditional α -expectation

$$\sum_{\mathsf{a}\in\Sigma}\alpha(\mathsf{a})\mathsf{d}_{\mathsf{G},\alpha}(\mathsf{w}\mathsf{a})$$

of $d_{G,\alpha}(wa)$, given that $w \sqsubseteq S$, is exactly $d_{G,\alpha}(w)$. This says that the function $d_{G,\alpha}$ is an α -martingale.

Strong Dichotomy: Winning

Theorem

Let $\alpha \in \Delta(\Sigma)$, $S \in \Sigma^{\omega}$, and $\gamma < 1$. If S is not α -normal, then there is a finite-state gambler G such that, for infinitely many prefixes $w \sqsubseteq S$,

$$d_{G,\alpha}(w) > 2^{\gamma \operatorname{Div}(S||\alpha)|w|}.$$

Proof. (Sketch)

Step 1 : Let r < 1.By the definition of $\mathrm{Div}(S||\alpha)$ there must exist ℓ such that

$$\mathsf{Div}_{\ell}(S||\alpha) > r \mathsf{Div}(S||\alpha) > 0. \tag{7}$$

Remark

This step get us fix an ℓ .

Step 2 : Fix some (rational) π_0 such that

$$D(\pi_0||\alpha^{(\ell)}) \approx \ell \operatorname{Div}_{\ell}(S||\alpha) > 0.$$
 (8)

Winning: cont.

Remark

The advantage of π_0 is that it is a rational probability. It can be used to implement a finite-state gambler. And $D(\pi_0||\alpha^{(\ell)})/\ell$ is closed to $\mathrm{Div}_\ell(S||\alpha)$ and hence $\mathrm{Div}(S||\alpha)$. The closer, the better.

Step 3: Use π_0 as a gambling strategy. Note that π_0 is probability measure on Σ^ℓ . But our finite-state gambler need to gambler on Σ .

Play the conditional probability trick to fill this gap.

Winning: cont.

Step 4: the resulting gambler can be viewed as gamble on Σ^{ℓ} . Since a string w can be view as (assuming |w| is a multiple of ℓ)

$$w = u_0 u_1 \cdots u_{n-1}$$
, where $|u_i| = \ell$ for $0 \le i \le n-1$.

Then

$$d_{G,\alpha}(w) = \prod_{i=0}^{n-1} \frac{\pi_0(u_i)}{\alpha(u_i)}.$$
 (9)

Winning: cont.

Step 4: the resulting gambler can be viewed as gamble on Σ^{ℓ} . Since a string w can be view as (assuming |w| is a multiple of ℓ)

$$w = u_0 u_1 \cdots u_{n-1}$$
, where $|u_i| = \ell$ for $0 \le i \le n-1$.

Then

$$d_{G,\alpha}(w) = \prod_{i=0}^{n-1} \frac{\pi_0(u_i)}{\alpha(u_i)}.$$
 (9)

$$\log d_{G,\alpha}(w) = \sum_{i=0}^{n-1} \log \frac{\pi_0(u_i)}{\alpha^{(\ell)}(u_i)} = \sum_{|u|=\ell} \#_{\square}(u,w) \log \frac{\pi_0(u)}{\alpha^{(\ell)}(u)},$$

$$= n \sum_{|u|=\ell} \frac{\#_{\square}(u,w)}{n} \log \frac{\pi_0(u)}{\alpha^{(\ell)}(u)} = n \sum_{|u|=\ell} \pi_{S,n}^{(\ell)}(u) \log \frac{\pi_0(u)}{\alpha^{(\ell)}(u)},$$

$$= n \sum_{|u|=\ell} \left[\pi_{S,n}^{(\ell)}(u) \log \frac{\pi_{S,n}^{(\ell)}(u)}{\alpha^{(\ell)}(u)} - \pi_{S,n}^{(\ell)}(u) \log \frac{\pi_{S,n}^{(\ell)}(u)}{\pi_0(u)} \right]$$

$$= n \left(D(\pi_{S,n}^{(\ell)}||\alpha^{(\ell)}) - D(\pi_{S,n}^{(\ell)}||\pi_0) \right) \dots > \gamma Divg(S||\alpha)|w|$$

Strong Dichotomy: Losing

We define the *risk* that G takes in a state $q \in Q$ to be

$$\mathsf{risk}_{\mathsf{G}}(q) = D(\alpha||B(q)).$$

i.e., the divergence of B(q) from not betting. We also define the *total* risk that G takes along a string $w \in \Sigma^*$ to be

$$\operatorname{Risk}_{G}(w) = \sum_{u \sqsubseteq w} \operatorname{risk}_{G}(\delta(u)).$$

Strong Dichotomy: Losing

We define the *risk* that G takes in a state $q \in Q$ to be

$$\mathsf{risk}_{G}(q) = D(\alpha||B(q)).$$

i.e., the divergence of B(q) from not betting. We also define the *total* risk that G takes along a string $w \in \Sigma^*$ to be

$$\operatorname{Risk}_{G}(w) = \sum_{u \sqsubseteq w} \operatorname{risk}_{G}(\delta(u)).$$

Theorem (strong dichotomy theorem) Let $\alpha \in \Delta(\Sigma)$, $S \in \Sigma^{\omega}$, and $\gamma < 1$.

If S is α -normal, then, for every finite-state gambler G, for all but finitely many prefixes $w \sqsubseteq S$,

$$d_{G,\alpha}(w) < 2^{-\gamma \operatorname{Risk}_G(w)}$$
.

Remark

1. By Agafonov theorem, If S is α -normal, then it behaves quite random. In the sense that no matter in what state q, the probability q sees an a is $\alpha(a)$.

Remark

- 1. By Agafonov theorem, If S is α -normal, then it behaves quite random. In the sense that no matter in what state q, the probability q sees an a is $\alpha(a)$.
- 2. A gambling strategy B(q) that is not the same with α is consider taking a risk of risk_G(q).

Remark

- 1. By Agafonov theorem, If S is α -normal, then it behaves quite random. In the sense that no matter in what state q, the probability q sees an a is $\alpha(a)$.
- 2. A gambling strategy B(q) that is not the same with α is consider taking a risk of risk_G(q).
- 3. The rate of losing the the risk a gambler accumulates along the way of gambling S.

Finite-state dimension

Hard times: the Age of Inflation

Finite-state dimension

For each $\alpha \in \Delta(\Sigma)$ and each $S \in \Sigma^{\omega}$, define the sets

$$\mathfrak{G}^{\alpha}(S) = \left\{ s \in [0, \infty) \middle| (\exists \mathsf{FSG} \ G) \limsup_{w \to S} \alpha^{|w|}(w)^{1-s} d_{G,\alpha}(w) = \infty \right\}$$

Finite-state dimension

For each $\alpha \in \Delta(\Sigma)$ and each $S \in \Sigma^{\omega}$, define the sets

$$\mathfrak{G}^{\alpha}(S) = \left\{ s \in [0, \infty) \middle| (\exists \mathsf{FSG} \ G) \limsup_{w \to S} \alpha^{|w|}(w)^{1-s} d_{G,\alpha}(w) = \infty \right\}$$

and

$$\mathfrak{G}_{\mathsf{str}}^{\alpha}(S) = \left\{ s \in [0, \infty) \middle| (\exists \mathsf{FSG} \ G) \liminf_{w \to S} \alpha^{|w|}(w)^{1-s} d_{G,\alpha}(w) = \infty \right\}$$

Definition (Lutz 11') Let $\alpha \in \Delta(\Sigma)$ and $S \in \Sigma^{\omega}$.

- 1. The finite-state α -dimension of S is $\dim_{FS}^{\alpha}(S) = \inf \mathfrak{G}^{\alpha}(S)$.
- 2. The finite-state strong α -dimension of S is $Dim_{FS}^{\alpha}(S) = \inf \mathfrak{G}_{str}^{\alpha}(S)$

Asymptotic Entropy

Definition

Let $S \in \Sigma^{\omega}$. We define the following asymptotic entropy.

- 1. $H_{+}^{(\ell)}(S) = \frac{1}{\ell} \limsup_{n \to \infty} H(\pi_{S,n}^{(\ell)}).$
- 2. $H^+(S) = \sup_{\ell} H_+^{(\ell)}$.
- 3. $H_{-}^{(\ell)}(S) = \frac{1}{\ell} \liminf_{n \to \infty} H(\pi_{S,n}^{(\ell)}).$
- 4. $H^{-}(S) = \sup_{\ell} H_{-}^{(\ell)}$.

A Bound for Finite-state Dimension

Theorem

For all $\alpha \in \Delta(\Sigma)$ and $S \in \Sigma^{\omega}$. Then,

$$\dim_{\mathsf{FS}}^{\alpha}(S) \leq \frac{H^{+}(S)}{H^{+}(S) + \mathsf{Div}(S||\alpha)}$$

and

$$\mathsf{Dim}^{\alpha}_{\mathsf{FS}}(\mathit{S}) \leq \frac{\mathit{H}^{-}(\mathit{S})}{\mathit{H}^{-}(\mathit{S}) + \mathsf{div}(\mathit{S}||\alpha)}.$$

A Bound for Finite-state Dimension

Theorem

For all $\alpha \in \Delta(\Sigma)$ and $S \in \Sigma^{\omega}$. Then,

$$\dim_{\mathsf{FS}}^{\alpha}(S) \leq \frac{H^{+}(S)}{H^{+}(S) + \mathsf{Div}(S||\alpha)}$$

and

$$\mathsf{Dim}^{\alpha}_{\mathsf{FS}}(S) \leq \frac{H^{-}(S)}{H^{-}(S) + \mathsf{div}(S||\alpha)}.$$

Proof:

- Unpack the $\alpha^{|w|}(w)^{1-s}$, express it with asymptotic divergence and entropy.
- Apply (the winning side of) strong dichotomy theorem to the $d_{G,\alpha}(w)$ part.

Proof Sketch Cont.

$$\begin{split} \alpha^{|w|}(w)^{1-s} d_{G,\alpha}(w) &= d_{G,\alpha}(w) 2^{(1-s)\log\alpha^{|w|}(w)} \\ &= d_{G,\alpha}(w) 2^{(1-s)\frac{|w|}{\ell}} \sum_{|u|=\ell} \frac{\#_{\square}(u,w)}{|w|/\ell} \log\alpha(u) \\ &= d_{G,\alpha}(w) 2^{(1-s)\frac{|w|}{\ell}} \sum_{|u|=\ell} \pi_{S,n}^{(\ell)}(u)\log\alpha(u) \\ &= d_{G,\alpha}(w) 2^{-(1-s)\frac{|w|}{\ell}} \sum_{|u|=\ell} \pi_{S,n}^{(\ell)}(u) \left(\log\frac{\pi_{S,n}^{(\ell)}(u)}{\alpha(u)} - \log\pi_{S,n}^{(\ell)}(u)\right) \\ &= d_{G,\alpha}(w) 2^{-(1-s)\frac{|w|}{\ell}} \left(D(\pi_{S,n}^{(\ell)}||\alpha^{(\ell)}) + H(\pi_{S,n}^{(\ell)})\right) \\ &> 2^{\gamma \operatorname{Div}(S||\alpha)|w| - (1-s)\frac{|w|}{\ell}} \left(D(\pi_{S,n}^{(\ell)}||\alpha^{(\ell)}) + H(\pi_{S,n}^{(\ell)})\right) \end{split}$$

The last inequality is the competition of "winning rate" and "inflation rate". We just want the total rate be positive infinitely often.

Divergence Theorem for Normality and Finite-state Dimensions

Theorem (Lutz² 08')

If α and β are positive probability measure on Σ , then, for every β -normal sequence $S \in \Sigma^{\omega}$,

$$\dim_{\mathsf{FS}}^{\alpha}(S) = \dim_{\mathsf{FS}}^{\alpha}(S) = \frac{H(\beta)}{H(\beta) + D(\beta||\alpha)}$$

 $^{^2\}mbox{\ensuremath{A}}$ Divergence Formula for Randomness and Dimension

Divergence Theorem for Normality and Finite-state Dimensions

Theorem (Lutz² 08')

If α and β are positive probability measure on Σ , then, for every β -normal sequence $S \in \Sigma^{\omega}$,

$$\dim_{\mathsf{FS}}^{\alpha}(S) = \mathsf{Dim}_{\mathsf{FS}}^{\alpha}(S) = \frac{H(\beta)}{H(\beta) + D(\beta||\alpha)}$$

Note that it is obvious that if S is β -normal, then

$$\frac{H(\beta)}{H(\beta) + D(\beta||\alpha)} = \frac{H^+(S)}{H^+(S) + \mathsf{Div}(S||\alpha)}$$

²A Divergence Formula for Randomness and Dimension

Divergence Theorem for Normality and Finite-state Dimensions

Theorem (Lutz² 08')

If α and β are positive probability measure on Σ , then, for every β -normal sequence $S \in \Sigma^{\omega}$,

$$\dim_{\mathsf{FS}}^{\alpha}(S) = \mathsf{Dim}_{\mathsf{FS}}^{\alpha}(S) = \frac{H(\beta)}{H(\beta) + D(\beta||\alpha)}$$

Note that it is obvious that if S is β -normal, then

$$\frac{H(\beta)}{H(\beta) + D(\beta||\alpha)} = \frac{H^+(S)}{H^+(S) + \mathsf{Div}(S||\alpha)}$$

That is, equality in the previous theorem holds if S is β -dimension sequence, for some $\beta \in \Delta(\Sigma)$. Hence the bound is tight.

²A Divergence Formula for Randomness and Dimension

Another Bound: the return of *c*

As a special case of the previous bound, we have

Theorem

For all $\alpha \in \Delta(\Sigma)$ and $S \in \Sigma^{\omega}$ let $c = \log(1/\min_{a \in \Sigma} \alpha(a))$. Then,

$$\dim_{\mathsf{FS}}^{\alpha}(\mathit{S}) \leq 1 - \mathsf{Div}(\mathit{S}||\alpha)/c$$

and

$$\mathsf{Dim}^{\alpha}_{\mathsf{FS}}(\mathit{S}) \leq 1 - \mathsf{div}(\mathit{S}||\alpha)/c.$$

Thank you for your time!