Devoir Sur Table n°4 – Durée : 4h

L'utilisation de la calculatrice, des feuilles/notes de cours ou d'exercices est interdite.

La présentation, la rédaction, la clarté et la précision des raisonnements entreront dans l'appréciation de la copie.

Les résultats non encadrés/soulignés/surlignés ne seront pas pris en compte.

Exercice 1 : La "fonction moyenne"

Soit $f \in C(\mathbb{R}, \mathbb{R})$. On définit sa "fonction moyenne" g par : $\forall x \in \mathbb{R}^*$, $g(x) = \frac{1}{2x} \int_{-x}^x f(t) dt$.

- 1. Etude de cas particuliers : Pour chacune des fonctions f suivantes, calculer l'expression explicite de g(x) pour $x \in \mathbb{R}^*$, puis justifier que g est prolongeable par continuité en 0.
 - (a) $f: t \mapsto \cos(2t)$ (b) $f: t \mapsto t\sin(t)$ (c) $f: t \mapsto \frac{t^3 e^{-t^2}}{1 + t^6}$.
- 2. On revient au cas de $f \in C(\mathbb{R}, \mathbb{R})$ quelconque. On pourra introduire une primitive F de f sur \mathbb{R} .
 - (a) Etudier la parité de la fonction g.
 - (b) Montrer que g est de classe C^1 sur \mathbb{R}^* et exprimer sa dérivée g' à l'aide de f et de g.
 - (c) Montrer que g est prolongeable par continuité en 0, avec : $\lim_{x\to 0} g(x) = f(0)$.

Exercice 2 : Une famille d'intégrales et de sommes infinies

Pour tous $a, b \in \mathbb{N}^*$ on introduit les notations suivantes :

$$I(a,b) = \int_0^1 \frac{t^{b-1}}{1+t^a} dt, \quad \forall n \in \mathbb{N}, \ S_n(a,b) = \sum_{k=0}^n \frac{(-1)^k}{ak+b}, \quad S(a,b) = \lim_{n \to +\infty} S_n(a,b)$$

L'objectif de cet exercice est de démontrer qu'en fait : $\forall a, b \in \mathbb{N}^*$, I(a, b) = S(a, b).

- 1. Justifier que pour tous $a, b \in \mathbb{N}^*$, l'intégrale I(a, b) est bien définie.
- 2. Compléter le programme suivant pour que l'appel de graphe (a,b) affiche une figure représentant la fonction $t \mapsto \frac{t^{b-1}}{1+t^a}$ sur le segment [0,1]. On recopiera tout le programme sur sa copie.

- 3. (a) Calculer les valeurs I(1,1) et I(2,1).
 - (b) Déterminer l'expression de I(a, a) pour tout $a \in \mathbb{N}^*$.
 - (c) Pour tous $a, b \in \mathbb{N}^*$, montrer les inégalités : $0 \leqslant I(a, b + 1) \leqslant I(a, b) \leqslant I(a + 1, b) \leqslant \frac{1}{b}$.
 - (d) Pour tous $a, b \in \mathbb{N}^*$, montrer que $I(a, b) + I(a, a + b) = \frac{1}{b}$.
- 4. Compléter le programme suivant pour que l'appel de grapheS(a,b,n) affiche une figure représentant les n premiers termes de la suite $(S_n(a,b))_{n\in\mathbb{N}}$. On recopiera tout le programme sur sa copie.

- 5. Soient $a, b \in \mathbb{N}^*$. On cherche dans cette question à justifier l'existence de $S(a, b) = \lim_{n \to +\infty} S_n(a, b)$.
 - (a) Montrer que les suites $u = (S_{2n}(a,b))_{n \in \mathbb{N}}$ et $v = (S_{2n+1}(a,b))_{n \in \mathbb{N}}$ sont adjacentes.
 - (b) En déduire que $S(a,b) \in \mathbb{R}$ est bien défini.
 - (c) Etablir un lien entre $S_n(a, a+b)$ et $S_{n+1}(a, b)$ et déduire que : $S(a, b) + S(a, a+b) = \frac{1}{b}$.
- 6. On cherche pour finir à montrer que I(a,b) = S(a,b).
 - (a) Montrer que pour tout $n \in \mathbb{N}$, $S_n(a,b) = \int_0^1 t^{b-1} \left(\sum_{k=0}^n (-t^a)^k\right) dt$.
 - (b) Montrer que pour tout $n \in \mathbb{N}$ et $t \in [0,1]$, $\left| \frac{1}{1+t^a} \sum_{k=0}^n (-t^a)^k \right| \leqslant t^{a(n+1)}$.
 - (c) En déduire, pour tout $n \in \mathbb{N}$, la majoration : $\left| I(a,b) S_n(a,b) \right| \leqslant \frac{1}{a(n+1)+b}$.
 - (d) Conclure que I(a,b) = S(a,b).
- 7. Application : Quelles sont les valeurs des "sommes infinies" $\sum_{k=0}^{+\infty} \frac{(-1)^k}{k+1}$ et $\sum_{k=0}^{+\infty} \frac{(-1)^k}{2k+1}$?

Problème: Fonction génératrice d'une variable aléatoire

Si X est une variable aléatoire finie à valeurs entières (c'est à dire avec $X(\Omega) \subset \mathbb{N}$), sa **fonction génératrice** est la fonction $G_X : \mathbb{R} \to \mathbb{R}$ définie par l'expression :

$$\forall t \in \mathbb{R}, \ G_X(t) = E(t^X) = \sum_{k \in X(\Omega)} t^k P(X = k).$$

Dans ce problème, on considère d'abord le cas particuliers des lois usuelles. Ensuite, on démontre quelques propriétés générales des fonctions génératrices. On étudie enfin un exemple d'application de cette notion.

Partie I - Pour des lois usuelles

Dans chaque question de cette partie, on déterminera l'expression explicite de $G_X(t)$ pour tout $t \in \mathbb{R}$.

- 1. On suppose que X est une variable aléatoire certaine (i.e "constante") égale à $c \in \mathbb{N}$. Déterminer la fonction G_X .
- 2. On suppose que X suit la loi de Bernoulli de paramètre $p \in [0,1]$. Déterminer la fonction G_X .
- 3. On suppose que X suit la loi uniforme sur [1, n], avec $n \in \mathbb{N}^*$. Déterminer la fonction G_X .
- 4. On suppose que X suit la loi binomiale de paramètres $n \in \mathbb{N}^*$ et $p \in [0,1]$. Déterminer la fonction G_X .

Partie II - Propriétés générales

On se place maintenant dans le cas général où X est une variable aléatoire finie à valeurs entières quelconque.

- 5. Justifier que G_X est indéfiniment dérivable sur \mathbb{R} (i.e dérivable autant de fois qu'on le souhaite).
- 6. (a) Que vaut $G_X(1)$?
 - (b) Montrer que $(G_X)'(1) = E(X)$.
 - (c) Calculer de même $(G_X)''(1)$ sous la forme de l'espérance d'une certaine variable aléatoire. En déduire une expression de V(X) en fonction de $(G_X)'(1)$ et $(G_X)''(1)$.
- 7. En utilisant la fonction génératrice déterminée en question 4., retrouver les formules donnant l'expression de l'espérance et de la variance d'une loi $\mathcal{B}(n,p)$.

On considère à présent X et Y deux variables aléatoires finies de supports

$$X(\Omega) = [0, n]$$
 et $Y(\Omega) = [0, m]$, avec $n, m \in \mathbb{N}$.

8. Montrer que "la fonction génératrice caractérise la loi", c'est à dire :

Si $G_X = G_Y$ alors X et Y ont la même loi de probabilité.

9. On suppose que X et Y sont des variables aléatoires indépendantes, c'est à dire que :

$$\forall i \in \llbracket 0,n \rrbracket, \forall j \in \llbracket 0,m \rrbracket, \ P\Big([X=i] \cap [Y=j]\Big) = P(X=i) \times P(Y=j).$$

On s'intéresse à la variable aléatoire Z = X + Y.

(a) Justifier que pour tout
$$k \in [0, n+m]$$
, $P(Z=k) = \sum_{i=0}^{n} P(X=i)P(Y=k-i)$.

(b) Démontrer alors que : $\forall t \in \mathbb{R}, \ G_Z(t) = G_X(t) \times G_Y(t)$.

Partie III - Pokémon (oui)

Soit $N \ge 2$ et $r \in [1, N]$ deux entiers. On fait les hypothèses suivantes :

- Il existe, sur le marché, un total de N cartes Pokémon différentes, numérotées de la carte n°1 à la n°N.
- Parmi les N cartes existantes, il y a seulement r cartes holographiques, qui sont les plus recherchées. On considère qu'il s'agit des cartes numérotées de $1 \ alpha r$.

David, collectionneur invétéré, achète un paquet contenant une sélection aléatoire de cartes.

• On suppose que chacune des cartes du paquet a été choisie uniformément au hasard parmi les N cartes existantes, indépendamment des autres. En particulier, une même carte peut apparaître plusieurs fois dans le paquet acheté par David.

David dispose toutes les cartes qu'il a acheté face cachée, en ligne, avant de les retourner une par une. Pour tout $n \in \mathbb{N}^*$, on considère la variable aléatoire :

 X_n = nombre de cartes holographiques <u>distinctes</u> obtenues après que David a retourné n cartes.

Par convention, on pose $X_0 = 0$.

L'objectif de cet exercice est de déterminer l'expression de $E(X_n)$ en fonction de n.

- 10. Déterminer la loi de probabilité de X_1 . Quelle loi usuelle reconnait-on?
- 11. Justifier que pour tout $n \in \mathbb{N}^*$, $X_n(\Omega) \subset \llbracket 0,r \rrbracket$ et $X_n(\Omega) \subset \llbracket 0,n \rrbracket$. Quel est, précisément, le support de X_n ?
- 12. Pour tout $n \in \mathbb{N}^*$, démontrer la relation

$$\forall k \in [0, r], \ P(X_n = k) = \frac{N - r + k}{N} P(X_{n-1} = k) + \frac{r - k + 1}{N} P(X_{n-1} = k - 1).$$

Pour tout $n \in \mathbb{N}^*$, G_{X_n} désigne la fonction génératrice de la variable aléatoire X_n . Pour simplifier les notations, on pose simplement $g_n = G_{X_n}$.

- 13. (a) Justifier que pour tout $n \in \mathbb{N}^*$: $\forall t \in \mathbb{R}, \ g_n(t) = \sum_{i=1}^n t^k P(X_n = k)$.
 - (b) Pour tout $n \in \mathbb{N}^*$, démontrer la relation :

$$\forall t \in \mathbb{R}, \ g_n(t) = \frac{N - r + rt}{N} g_{n-1}(t) + \frac{t(1-t)}{N} g'_{n-1}(t) \ (\star)$$

14. Indication : On rappelle les résultats du 6.(a) et du 6.(b).

En dérivant la relation (\star) , établir que pour tout $n \in \mathbb{N}^*$, $E(X_n) = \left(1 - \frac{1}{N}\right)E(X_{n-1}) + \frac{r}{N}$

- 15. (a) En déduire, pour tout $n \in \mathbb{N}$, l'expression de $E(X_n)$ en fonction de n, r et N.
 - (b) Déterminer $\lim_{n\to+\infty} E(X_n)$.

Pourquoi cette valeur est-elle cohérente vis à vis de l'expérience réalisée par David?

- 16. Pour finir, on s'intéresse à la variance de X_n .

 (a) Etablir que pour tout $n \in \mathbb{N}^*$, $g_n''(1) = \frac{2r-2}{N}E(X_{n-1}) + \left(1 \frac{2}{N}\right)g_{n-1}''(1)$.
 - (b) On admet l'expression (démontrable par récurrence avec la relation précédente) :

$$\forall n \in \mathbb{N}, \ g_n''(1) = r(r-1)\left(1 + \left(1 - \frac{2}{N}\right)^n - 2\left(1 - \frac{1}{N}\right)^n\right).$$

Montrer finalement que $\lim_{n\to +\infty} V(X_n) = 0$.

*** Fin du sujet ***