МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Ижевский государственный технический университет имени М.Т. Калашникова» Кафедра «Программное обеспечение»

Отчет

по лабораторной работе N = 2

«Триангуляция»

по дисциплине «Проектирование и конструирование ПО»

Выполнил студент группы Б20-191-2:	Камитов С.С.
Принял: доцент	Еланцев М.О

Ижевск

Триангуляция

Прототипы экранных форм:

1. Форма регистрации

Форма регистрации нужна для создания нового пользователя в системе для последующей авторизации в системе, для этого можно авторизоваться через социальные сети, либо же создать аккаунт и ввести ФИО, логин (e-mail), телефон, пароль, кликнув на соответствующие кнопки.

2. Форма авторизации

Вход Для Участников		
Логин		
Username		
Пароль		
Password		
Забыли пароль?	Регистрация	Вход
Вой	ти через аккаунт	
(M)	ВКонтакте	
(%)	ВКонтакте Google	

Форма необходима для авторизации пользователей в системе, для этого используется логин и пароль, можно будет войти так же через социальные сети и при необходимости нажать на "Забыли пароль?" для восстановления пароля, также с формы авторизации можно перейти на форму регистрации.

3. Форма главной страницы

Форма главной страницы, необходима для: генерации триангуляции (ввести точки необходимо вручную), архив триангуляции (файлы уже ранее сгенерированные пользователем), загрузить файл с координатами (можно загрузить файл с координатами точек, после чего построить триангуляцию), редактирование триангуляции (можно изменить параметры триангуляции).

4. Форма архива триангуляций

Форма архива триангуляций необходима для просмотра уже когда-то сгенерированных картинок, их можно сохранить в любом формате, можно также удалить, либо отредактировать.

5. Форма генерации триангуляции

В этой форме по порядку в поле ввода записываются координаты точек, также после ввода можно сразу сгенерировать триангуляцию. Можно выбрать алгоритм триангуляции (бывают медленные, но точные или быстрые, но менее точные). Также можно указать параметры линий перед построением триангуляции, указать плоскость построения (если точки 3х мерные).

6. Форма редактирования триангуляции

Форма редактирования необходима для доработки триангуляции, например, увеличить четкость, увеличить яркость, добавить размытие. Также после преобразований можно сохранить триангуляцию или же загрузить свою и редактировать.

Диаграмма сущностей (ER):

Разработка арі системы:

1. addUser – добавление пользователя в базу данных

Входная информация:

Имя	Тип	Описание
переменной		
name	string	Логин пользователя
password	string	Пароль пользователя в зашифрованном виде
date	long	Дата входа пользователя в систему
uuidUser	uuid	Идентификатор пользователя

Выходной информации нет.

2. deleteUser – удаление пользователя из базы данных

Имя	Тип	Описание
переменной		
login	string	Логин пользователя
uuidUser	uuid	Идентификатор пользователя

Выходной информации нет.

3. saveTriangulation – сохранение триангуляции в базе данных

Имя переменной	Тип	Описание
edge	List <edge></edge>	Линии триангуляции
uuidTriangulation	uuid	Идентификатор триангуляции

Выходной информации нет.

4. deleteTriangulation – удаление триангуляции в базе данных

Имя переменной	Тип	Описание
uuidTriangulation	uuid	Идентификатор триангуляции

Выходной информации нет.

5. loadFileTriangulation – загрузка файла триангуляции на сервер

Имя	Тип	Описание
переменной		
file	MultyPartFile	Файл с координатами

Выходная информация: List<Point3D> points (массив точек)

6. getArchiveTriangulation – загрузка файлов триангуляции из базы данных

Имя	Тип	Описание
переменной		
triangulations	List <picture></picture>	Файлы с триангуляциями

Выходная информация: List<Picture> picture (массив файлов триангуляции)

7. resetPassword – поиск пользователя в базе данных и сброс его пароля

Имя	Тип	Описание
переменной		
uuidUser	uuid	Идентификатор триангуляции
userName	string	Имя пользователя

Выходной информации нет, т.к. новый пароль сохраняется в бд.

8. setAlgorithm – установка алгоритма триангуляции

Имя	Тип	Описание
переменной		
algorithm	string	Алгоритм триангуляции

Выходной информации нет.

9. getTriangulation – поиск триангуляции в базе данных

Имя переменной	Тип	Описание
nameTriangulation	string	Имя триангуляции
uuid	uuid	Идентификатор триангуляции

Выходная информация: файл с триангуляцией

Иерархическая структура работ

<u>Оценка времени выполнения проекта по методу PERT</u>

- $N_{\phi} = 6$ экранные формы
- N_c = 6 сущностей
- N_м = 9 методов арі

Оценим количество часов для выполнения работ (оптимистично, пессимистично и средне):

Экранные формы:

 $O_{\varphi}=3$ ч — оптимистическая оценка для создания экранных форм $P_{\varphi}=8$ ч — пессимистичная оценка для создания экранных форм $M_{\varphi}=2$ ч — средняя оценка для создания экранных форм

Сущности:

 $O_c = 24$ ч — оптимистическая оценка для создания сущностей $P_c = 40$ ч — пессимистичная оценка для создания сущностей $M_c = 16$ ч — средняя оценка для создания сущностей

Арі методы:

 $O_{\text{\tiny M}} = 4$ ч — оптимистическая оценка для создания арі методов $P_{\text{\tiny M}} = 7$ ч — пессимистичная оценка для создания арі методов

 $M_{\scriptscriptstyle M} = 3$ ч – средняя оценка для создания арі методов

$$E_i = \frac{(O_i + 4M_i + P_i)}{6}$$

$$E_{\varphi} = \left(O_{\varphi} + 4M_{\varphi} + P_{\varphi}\right) \, / \, 6 = \left(3 + 4 \, * \, 2 + 8\right) \, / \, 6 = 3.2$$

$$E_c = (O_c + 4M_c + P_c) / 6 = (24 + 4 * 16 + 40) / 6 = 21.3$$

$$E_{M} = (O_{M} + 4M_{M} + P_{M}) / 6 = (4 + 4 * 4 + 7) / 6 = 4.5$$

$$CKO_i = (P_i - O_i) / 6$$

$$CKO_{\phi} = (P_{\phi} - O_{\phi}) / 6 = (8 - 3) / 6 = 0.8$$

$$CKO_c = (P_c - O_c) / 6 = (40 - 24) / 6 = 2.6$$

$$CKO_{M} = (P_{M} - O_{M}) / 6 = (7 - 4) / 6 = 0.5$$

$$E = \sum_{i} N_i E_i = 6 * 3.2 + 6 * 21.3 + 9 * 4.5 = 19.2 + 127.8 + 40.5 = 187.5$$

$$CKO = \sqrt{\sum N_i CKO_i^2} = \sqrt{6*0.8^2 + 6*2.6^2 + 9*0.5^2} = 7$$
 человеко часов

$$E_{\text{общ}} = E + 2CKO = 187.5 + 2 * 7 = 201.5$$
 человеко часов

$$E_{\text{итог}} = E_{\text{общ}} * 4 = 201.5 * 4 = 806$$
 человеко часов

$$P_{\rm M} = \frac{E_{\rm MTOF}}{132} = 6$$
 месяцев — будет делать один человек

Диаграмма Ганта:

