FOREIGN TECHNOLOGY DIV WRIGHT-PATTERSON AFB OHIO

APPROXIMATE METHOD OF CALCULATING AERODYNAMIC WING CHARACTERIST--ETC(U)

SEP 77 V A GRAYVORONSKIY

FTD-ID(RS)T-1636-77

NL AD-A065 869 UNCLASSIFIED NL ADA 065869 8 M// END DATE FILMED 4-79

FOREIGN TECHNOLOGY DIVISION

APPROXIMATE METHOD OF CALCULATING AERODYNAMIC WING CHARACTERISTICS IN THE PRESENCE OF A CYLINDRICAL BODY

рà

V. A. Grayvoronskiy

Approved for public release; distribution unlimited.

8 11 09 143

EDITED TRANSLATION

FTD-ID(RS)T-1636-77

14 September 1977

MICROFICHE NR: 44D - 77-C-00/165

APPROXIMATE METHOD OF CALCULATING AERODYNAMIC WING CHARACTERISTICS IN THE PRESENCE OF A CYLINDRICAL BODY

By: V. A. Grayvoronskiy

English pages: 13

Source: Samoletostroyeniye i Tekhnika Vozdushnogo

Flota, Khar'kov, No. 23, 1970, PP. 3-8

Country of origin: USSR

Translated by: Carol S. Nack

Requester: FTD/PDRS

Approved for public release; distribution unlimited

ACCESSION N	White Spotles
198	Buit Section
JAANHOUNCE:	_
JUSTIFICATIO	X
OY	Byth 1: 1/1 data reacts
	N/ATMAZITUTY (Cold
	N/COLUMN COLUMN

THIS TRANSLATION IS A RENDITION OF THE ORIGINAL FOREIGN TEXT WITHOUT ANY ANALYTICAL OR EDITORIAL COMMENT. STATEMENTS OR THEORIES ADVOCATED OR IMPLIED ARE THOSE OF THE SOURCE AND DO NOT NECESSARILY REFLECT THE POSITION OR OPINION OF THE FOREIGN TECHNOLOGY DIVISION.

PREPARED BY:

TRANSLATION DIVISION FOREIGN TECHNOLOGY DIVISION WP-AFB, OHIO.

FTD

ID(RS)T-1636-77

Date 14 Sept19 77

U. S. BOARD ON GEOGRAPHIC NAMES TRANSLITERATION SYSTEM

Block	Italic	Transliteration	Block	Italic	Transliteration
Aa	A a	A, a	Рр	PP	R, r
Бб	B 6	B, b	Сс	Cc	S, s
Вв	B .	V, v	Тт	T m	T, t
۲۲	r .	G, g	Уу	yy	U, u
Дд	Дд	D, d	Фф	Ø ø	F, f
Еe	E .	Ye, ye; E, e*	X ×	X x	Kh, kh
ж ж	ж ж	Zh, zh	Цц	4 4	Ts, ts
3 э	3 ,	Z, z	4 4	4 4	Ch, ch
Ии	Ии	I, 1	Шш	Шш	Sh, sh
Йй	A a	У, у	Щщ	Щщ	Sheh, sheh
Нн	KK	K, k	Ъъ	3 1	"
Лл	ЛА	L, 1	Ыы	ы ы	Y, y
Мм	Мм	M, m	Ьь	b •	•
Нн	Н н	N, n	Ээ	9 1	Е, е
0 0	0 0	0, 0	Юю	10 no	Yu, yu
Пп	П n	P, p	Яя	Яя	Ya, ya

^{*}ye initially, after vowels, and after b, b; e elsewhere. When written as ë in Russian, transliterate as yë or ë. The use of diacritical marks is preferred, but such marks may be omitted when expediency dictates.

GREEK ALPHABET

Alpha	Α	α	α	Nu	N	ν	
Beta	В	β		Xi	Ξ	ξ	
Gamma	Γ	Υ		Omicron	0	0	
Delta	Δ	δ		Pi	Π	π	
Epsilon	E	ε	•	Rho	P	ρ	
Zeta	Z	ζ		Sigma	Σ	σ	5
Eta	Н	η		Tau	T	τ	
Theta	Θ	θ	\$	Upsilon	T	υ	
Iota	I	ι		Phi	Φ	φ	ф
Kappa	K	n	K	Chi	X	X	
Lambda	Λ	λ		Psi	Ψ	Ψ	
Mu	M	μ		Omega	Ω	ω	

RUSSIAN AND ENGLISH TRIGONOMETRIC FUNCTIONS

Russ	sian	English
sin		sin
cos		cos
tg		tan
ctg		cot
sec		sec
cose	ec	csc
sh		sinh
ch		cosh
th		tanh
cth		coth
sch		sech
cscl	n	csch
arc	sin	sin ⁻¹
arc	cos	cos ⁻¹ tan ⁻¹
arc	tg	tan-1
arc	ctg	cot ⁻¹
arc	sec	sec-1
arc	cosec	csc ⁻¹
arc	sh	sinh ⁻¹
arc	ch	cosh-1
arc	th	tanh-1
arc	eth	coth ⁻¹
arc	sch	sech-1
arc	csch	csch ⁻¹
rot		curl
lg		log
TR		TOR

GRAPHICS DISCLAIMER

All figures, graphics, tables, equations, etc. merged into this translation were extracted from the best quality copy available.

1636

APPROXIMATE METHOD OF CALCULATING AERODYNAMIC WING CHARACTERISTICS IN THE PRESENCE OF A CYLINDRICAL BODY

V. A. Gray voronskiy

The continuous flow of a steady perfect incompressible fluid about the combination of a wing with a small aspect ratio and a cylindrical body is considered in the nonlinear formulation.

The wing is considered to be thin, slightly curved, and its surface is near the plane of the meridian.

In order to solve the problem, wing cantilevers are simulated by a system of oblique horseshoe vortices. It is assumed that the bound lifting vortices are arranged like those of an isolated wing [1]. The

free vortices converge with the wing surface [2]. The cylindrical hody is replaced by a flat dipole and a system of vortices which are the reflection of the wing vortex system. The free vortices of the wing are assumed to be stepped with sufficiently small spacing t (Fig. 1) when constructing the reflected vortex system. The position of the reflected points of the vortex system is determined from the formula

$$r^* = \frac{a^2}{r} \,, \tag{1}$$

where r* and r are the distances from the axis of the cylinder to the reflected point and the point being reflected, respectively; a is the radius of the cylinder. Here the value and direction of the sections parallel to the axis of the cylinder do not change during reflection, while the sections perpendicular to the axis of the cylinder are transformed into peripheral arcs.

We will introduce the dimensionless coordinates

$$\xi = \frac{x_1}{\delta}; \ \eta = \frac{y_1}{\delta}; \quad \zeta = \frac{z_1}{\delta},$$

where

$$\delta = \frac{L}{4n}(1-\sigma)$$

L is the wingspan; n is the number of elements into which the

cantilever is broken down in the direction of the span;

$$a = \frac{2a}{L}$$
.

Using v to designate the horseshoe vortex in the direction of axis of $(1 \le v \le n)$ and μ - in the direction of axis of $(1 \le \mu \le m)$, we will have the following geometric relationships for the vortex system.

The angle of sweep of the reflected bound wortex -

$$\chi_{\nu\mu}^{\bullet} = -\operatorname{arctg}\left(\frac{\operatorname{tg}\chi_{\mu}}{\delta_{\nu}^{\bullet}}\right),$$
 (2)

where $b_{i}^{*} = \frac{a^{2}}{2} \left(\frac{\zeta_{i} - \zeta_{i-1}}{\zeta_{i} \cdot \zeta_{i-1}} \right)$

is the half-span of the reflected horseshoe wortex.

The coordinates of the breaking points of the reflected free vortices are determined by the formulae:

$$\eta_{\nu\mu(a)}^{\bullet} = \frac{a^{2}st \operatorname{tg} \gamma_{\nu\mu}}{(\operatorname{st} \operatorname{tg} \gamma_{\nu\mu})^{2} + (a + 2\nu)^{2}};$$

$$\zeta_{\nu\mu(a)}^{\bullet} = \frac{a^{2}(a + 2\nu)}{(\operatorname{st} \operatorname{tg} \gamma_{\nu\mu})^{2} + (a + 2\nu)^{2}};$$
(3)

Here s is the sequence numbe of the stage of an arbitrary stepped vortex (s = 0, 1, 2, ..., N); is the angle of inclination of the free vortex, which is far away from the axis of the cylinder. The angle of inclination of the free vortex, which converges with element v=1 and is close to the cylinder's axis, is assumed to be equal to zero.

The boundary conditions of the inpenetrability of the wing at points j, q are:

$$1 + \frac{a^2}{(a+2j-1)^2} + (V_{12}^a)_{jq} = 0 \quad (1 < j < n, \ 1 < q \le m), \tag{4}$$

where

$$(V_{\gamma z}^a)_{jq} = \frac{(V_{\gamma z})_{jq}}{V_m \sin \alpha};$$

 $(V_{n})_{n}$ is the velocity from the vortex system in the direction of axis on. The angles of incination of the free vortices to plane $\xi \circ \zeta$

are determined by the direction of the local velocity at point F, whose projection on plane for is a certain distance Δb from the trailing edge of the cantilever cross section (Pig. 1). Here the formula for determining the direction of a free vortex with numbers i, p is

$$tg \gamma_{ip} = \frac{1 + a^2 \frac{\zeta_i^2 - \tau_{ip}^2}{(\zeta_i^2 + \eta_{i,n}^2)^2} + (V_{\tau_i^2}^*)_{ip}}{\cot a + (V_{\tau_i^2}^*)_{ip}} \quad (1 \le i \le n, \ 1 \le p \le m), \tag{5}$$

where $(V_{ij}^a)_{ip}, (V_{ij}^a)_{ip}$ is the velocity at point $(\xi_{ip}, \tau_{iip}, \zeta_i)$ from the vortex systems.

The velocity operator in direction k can be written as:

$$(V_{AB}^{\bullet})_{0} = \sum_{f=1}^{2} \sum_{\mu=1}^{m} \left\{ \Gamma_{\nu\mu}^{a} \left[(V_{A})_{0}^{c_{\nu\mu}} + (W_{A})_{0}^{f_{\mu\nu}} + (V_{r,\kappa}^{\bullet})_{0}^{f_{\nu\mu}s} + (V_{a,\kappa}^{\bullet})_{0}^{c_{\nu\mu}s} + (W_{A}^{\bullet})_{0}^{f_{\mu\nu}s} \right]_{[\nu,\omega]}^{+} + \sum_{\nu=2}^{n} \Gamma_{\nu\mu}^{a} \left[(V_{A})_{0}^{c_{\nu\mu}} - (V_{A}^{\bullet})_{0}^{f_{\nu}s-1,\kappa} + (W_{A}^{\bullet})_{0}^{f_{\mu\nu}} + (V_{r,\kappa}^{\bullet})_{0}^{c_{\nu\mu}s} + (V_{a,\kappa}^{\bullet})_{0}^{f_{\nu\nu}s} - (V_{r,\kappa}^{\bullet})_{0}^{f_{\nu}s-1\mu s} - (V_{a,\kappa}^{\bullet})_{0}^{f_{\nu}s-1\mu s} + (W_{A}^{\bullet})_{0}^{f_{\mu\nu}} \right\},$$
(6)

where $\Gamma^*_{\nu\mu} = \frac{\Gamma_{\nu\mu}}{4\pi\delta V_n \sin a}$; $\Gamma_{\nu\mu}$ is the intensity of the ν , μ -th vortex; $(V_a)_0^{\nu\mu}$, $(W_a)_0^{\nu\nu}$ are the velocities from the corresponding free and bound vortices of identical intensity; $(V_{r,\mu}^*)_0^{\nu\mu}$, $(V_{a,\mu}^*)_0^{\nu\mu}$, $(W_a^*)_0^{\nu\mu}$ is the velocity from the reflected horizontal, vertical, and bound vortex segments, respectively.

Coefficient f determines the cantilever. In view of the insignificant effect of values $(V_{\bullet k}^*)_{\circ}^{\prime \mu s}$ on the solution, they can be disregarded.

Equations (4) and (5) are solved by the method of successive approximations. The numerical calculations showed that the nature of the convergence of the solution due to the iteration process corresponds to the case of an isolated wing [2]. The effect of values Ab, t on the solution is insignificant.

Using N. Ye. Zhukovskiy's theorem on lift "on a small scale," after simple transformations we will obtain the following for coefficients c_n and c_n in the j-th cross section:

$$(c_n)_j = \frac{2\pi\lambda_k \left(\frac{1}{\eta_{ik}} + 1\right) \sin^2\alpha}{n - \left(1 - \frac{1}{\eta_{ik}}\right)(2j - 1)} \sum_{p=1}^m \Gamma_{jp}^* \left[\cot\beta \alpha + (V_{\xi z}^*)_{jp} - (V_{\zeta z}^*)_{jp} \tan\beta \chi_p\right]; \quad (7)$$

$$(c_m)_j = -\frac{2\pi\lambda_k \left(\frac{1}{\eta_{ik}} + 1\right) \sin^2\alpha}{m \left[2n - \left(1 - \frac{1}{\eta_{ik}}\right)(2j - 1)\right]} \sum_{p=1}^m \Gamma_{jp}^* \left[\cot\beta \alpha + (V_{\xi z}^*)_{jp} - \left(1 - \frac{1}{\eta_{ik}}\right)(2j - 1)\right] = 1$$

$$-\left(1 \frac{\alpha^*}{\alpha^*}\right)_{jp} \tan\beta \chi_p\right] \quad (p - 0.75). \quad (8)$$

For the wing on the whole

$$c_{a} = \frac{2\pi\lambda_{b}\sin^{2}\alpha}{n^{2}} \sum_{j=1}^{a} \sum_{p=1}^{a} \Gamma_{jp}^{a} \left[\operatorname{ctg} z + (V_{\xi z}^{a})_{jp} - (V_{\xi z}^{a})_{jp} \operatorname{tg} \chi_{p} \right];$$

$$m_{z} = -\frac{2\pi\lambda_{b}\sin^{2}\alpha}{n^{2}} \sum_{j=1}^{a} \sum_{p=1}^{m} \Gamma_{jp}^{a} \left[\operatorname{ctg} \alpha + (V_{\xi z}^{a})_{jp} - (V_{\xi z}^{a})_{jp} \operatorname{tg} \chi_{p} \right] \times \left(\frac{p - 0.75}{m} + \frac{2j - 1}{b_{b}} \operatorname{tg} \chi_{p} \right), \tag{10}$$

where λ_{K} is the aspect ratio of the cantilever; b_{1} is the root chord; $\eta_{K} = \frac{b_{1}}{b_{KOMM}} (b_{KOMM})$ is the tip chord of the cantilever).

The numerical calculations made by computer agree satisfactorily with the experimental data. Figure 2 shows the distribution of the coefficient of normal force over the span $-\frac{z}{z-2}=2\frac{-a}{L-2a}$ for a straight wing ($\lambda_{\rm K}=2.00$, $\sigma=0.185$) which is centrally located on the cylindrical body. Figure 3 shows a graph of the dependence $\varepsilon_{\rm K}=f(\alpha)$ of the combination of a wing and a cylindrical body ($\lambda_{\rm K}=0.61$, $\sigma=0.39$, $\lambda_{\rm MT}=10$). The lift coefficient was determined from the formula

$$c_{y} = c_{yx}(k_{e} + \Delta R_{e}) + c_{yx.\tau} \frac{S_{w}}{S_{x}}. \tag{11}$$

 c_{yx} is the lift coefficient of isolated wing cantilevers; k_{x} , λk_{x} are the coefficients which consider the effect of the cylindrical body on the cantilever, and vice versa, respectively; c_{yx} is the

lift coefficient of the isolated body: S_{u} . S_{k} are the areas of the middle of the cylindrical body and the wing cantilever: c_{yk} . k_{u} is the lift coefficient of the cantilever in the presence of the cylindrical body, determined by this method. Δk_{u} was determined by the theory of thin bodies.

The lift coefficient of an isolated housing was calculated from the Allen formula [3]:

$$c_{y,n\tau} = 2\alpha + c_{xu} \cdot \frac{S_{naan}}{S_{M}} \sin^{2} \alpha,$$
(12)

 $c_{\text{xm.}}$ was assumed to be equal to 0.35, which agreed with the experimental data for an isolated housing; S_{man} is the area of the housing in the plane.

Figure 4 shows the characteristic distribution of the normal velocities in the cross section of the cylinder calculated for a vortex system with one free vortex (Γ * Sin α =1; σ =0,5) at γ = 15° and γ = 0°.

The value $(V_{is})_{js}$ was disregarded in the theoretical calculations.

Bibliography

- 1. S. M. Belotserkovskiy. Thin Supporting Surface in a Subsonic Gas Flow. Izd. "Nauka," 1965.
- S. D. Yermolenko, A. V. Rovnykh. Nonlinear Theory of Supporting Surfaces. "Izd. Vuzov, Aviatsionnaya tekhnika," 1967, No.
 2.
- 3. H. R. Kelly. Estimation of Normal-Force, Drag, and Pitching-Moment Coefficients for Blunt-Based Solids of Revolution at Large Angles of Attack, IAS, VIII, August 1954, V. 21.

Pig. 1.

KBY: (1) Arbitrary stepped vortex.

Fig. 2.

KEY: (1) Nonlinear method. (2) Linear method. (3) Experiment.

Fig. 3.

KEY: (1) Nonlinear method. (2) Linear method. (3) Experiment.

DOC = 1636

Fig. 4.

KEY: (1) Normal velocity from free vortex (1), with consideration of reflected (2), complete vortex system (3).

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION	READ INSTRUCTIONS BEFORE COMPLETING FORM	
1. REPORT NUMBER	2. GOVT ACCESSION NO.	
FTD-ID(RS)T-1636-77		
4. TITLE (and Subtitle) APPROXIMATE METHO	D OF	5. TYPE OF REPORT & PERIOD COVERED
CALCULATING AERODYNAMIC WING		cs
IN THE PRESENCE OF A CYLINDR	ICAL BODY	Translation
		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(a)		8. CONTRACT OR GRANT NUMBER(s)
V A Crowyonoughtw		
V. A. Grayvoronskiy		
B. DEDEODMING ODGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK
9. PERFORMING ORGANIZATION NAME AND ADDRESS Foreign Technology Division		AREA & WORK UNIT NUMBERS
Air Force Systems Command		
U. S. Air Force		
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
		1970
		13. NUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS(if differen	t from Controlling Office)	15. SECURITY CLASS. (of this report)
		UNCLASSIFIED
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)		
Approved for public release;	distribution	unlimited
17. DISTRIBUTION STATEMENT (of the abstract entered	in Black 20. If different fro	m Report)
18. SUPPLEMENTARY NOTES		
d. Supplementant notes		
10 25 25 25 25 25 25 25 25 25 25 25 25 25	J. J. J. W. L. Black augher	
19. KEY WORDS (Continue on reverse side if necessary an	id identity by block number,	
20. ABSTRACT (Continue on reverse side if necessary and	d (d	
ADSTRACT (COMMISSE ON FEVERSE SINGE IT RECESSARY BIN	a racinity by brock number)	
03.00		
01;20		

DISTRIBUTION LIST

DISTRIBUTION DIRECT TO RECIPIENT

ORGAN	IZATION	MICROFICHE	ORGAN	IZATION	MICROFICHE
A205 A210 B344 C043 C509 C510	DMATC DMAAC DIA/RDS-3C USAMIIA BALLISTIC RES LABS AIR MOBILITY R&D LAB/FIO	1 2 8 1 1	E053 E017 E404 E408 E410 E413	AF/RDXTR-W AEDC AFWL ADTC ESD	1 1 1 1 2
D008 H300 P005 P055	PICATINNY ARSENAL AVIATION SYS COMD USALIC FSTC MIA REDSTONE NISC USALCE (USAREUR)	1 1 5 1 1 1		CCN ETID NIA/PHS NICD	1 3 1 5
NASA/	KSI	1			•