WEST

Generate Collection

Print

Search Results - Record(s) 1 through 1 of 1 returned.

☐ 1. Document ID: SU 962212 A

L1: Entry 1 of 1

File: DWPI

Sep 30, 1982

DERWENT-ACC-NO: 1983-733133

DERWENT-WEEK: 198332

COPYRIGHT 2003 DERWENT INFORMATION LTD

TITLE: Removal of organic material from aq. waste - by electrolysis with passage of oxygen-contg. gas and waste through mixed granules of titanium and silicon carbide

in an electrical field

INVENTOR: PITORA, N F; PUCHKOV, A I ; SAFIULLIN, N F

PATENT-ASSIGNEE:

ASSIGNEE CODE
KHARK RAIL TRANSPT KHRAR

PRIORITY-DATA: 1979SU-2858049 (December 25, 1979)

PATENT-FAMILY:

PUB-NO PUB-DATE LANGUAGE PAGES MAIN-IPC

SU 962212 A September 30, 1982 004

INT-CL (IPC): C02F 1/46

ABSTRACTED-PUB-NO: SU 962212A

BASIC-ABSTRACT:

Waste contg. organic cpds. is treated with O-contg. gas in a layer of granulated electrically conducting material located between electrodes in a field. A suitable material is a mixt. of 4-5 mm. particles of titanium and silicon carbide in the ratio (in wt.%): 12-15:85-88. The method gives a higher degree of purificn. at an electricity consumption 1.5-2 times lower than the previous method using Al and silicon carbide packing.

Waste from a hydrothermal chamber was treated for 20 sec. at a current of 20-30 amp. and 80-100 V. The optimum purificn. was obtd. using a mixt. of Ti:SiC of 15:85%, and the electricity consumption was 3-5 watt hr./cu.m., the content of organic material being reduced from 164 to 12.3 mg/l. and the COD from 1024 to 92.4 mg/l. Bul.36/30.9.82 (4pp)

TITLE-TERMS: REMOVE ORGANIC MATERIAL AQUEOUS WASTE ELECTROLYTIC PASSAGE OXYGEN CONTAIN GAS WASTE THROUGH MIX GRANULE TITANIUM SILICON CARBIDE ELECTRIC FIELD

DERWENT-CLASS: D15 X25

CPI-CODES: D04-B08;

EPI-CODES: X25-H03;

SECONDARY-ACC-NO:

CPI Secondary Accession Numbers: C1983-076234 Non-CPI Secondary Accession Numbers: N1983-139963

Display Format: FULL Change Format

Previous Page Next Page

С юз Советских С циалистических Республик

Государственный комитет СССР по делам изобретений и открытий

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(61) Дополнительное к авт. свид-ву-

(22) Заявлено 251279 (21) 2858049/23-26

с присоединением заявки №

(23) Приоритет

Опубликовано 30.09.82.Бюллетень № 36

Дата опубликования описания 3009.82

(51) M. Kn.³ C 02 F 1/46

(53) УДК 628. .543(088.8)

(72) Авторы изобретения

Н.Ф. Сафиуллин, А.И. Пучков и Н.Ф. Питора

10

(71) Заявитель

Харьковский институт инженеров железнодорожного транспорта им. С.М. Кирова

(54) СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД ОТ ОРГАНИЧЕСКИХ ПРИМЕСЕЙ

Изобретение относится к способам очистки сточных вод, содержащих органические примеси, и может быть истользовано, например при очистке сточных вод предприятий органического синтеза.

Известен способ очистки сточных вод от органических примесей путем обработки их в слое зернистого токопроводящего материала, помещенного в межэлектролизное пространство поля электропроводного материала могут быть использованы гранулы алюминя, карбида кремния, находящегося в псевдоожиженном состоянии при подаче в межэлектродное пространство кислородсодержащего газа [1].

Недостатком известного способа является значительный расход электроэнергии на очистку $(5-10 \text{ кВт. ч/м}^3)$, а кроме того, невысокая степень очистки.

Цель изобретения - повышение степени очистки сточных вод, содержаших органические примеси и снижение энергозатрат на проведение процесса.

Поставленная цель достигается тем, что при обработк сточных вод в слое зернистого токопроводящего

материала, помещенного в межэлектродное пространство поля электрического тока с подачей кислородсодержащего газа, в качестве зернистого токопроводящего материала используют смесь частиц титана и карбида кремния при следующем соотношении компонентов, вес. %:

Титан 12-15 Карбид кремния 85-88 Используют токопроводятий материал с размером частиц 4-5 мм.

Применение гранул алюминия или гранул алюминия в смеси с карбидом кремния не обеспечивает продолжительности работы установки в связи с тем, что гранулы алюминия в процессе работы окисляются и на их поверхности образуется нетокопроводящая прочная окисная пленка, препятствующая образованию электроразрядов. Для удаления последней требуется дополнительная периодическая жиминеская обработка (через каждые 10-

25 12 ч). Алюминий относится к амфотерным металлам и в агрессивных средах (кислых и щелочных водах) подвержен разрушению. В связи с этим в пред-

зо пользовать гранулы титана, к торый

4

не подвергается окислению и коррозионно стоек к агрессивным средам. Титан рекомендуется использовать в смеси с карбидом кремния.

Соотношение смеси, состоящей из 12-15% титана и 88-85% карбида кремния, найдено экспериментально. Такое соотношение позволяет снизить в целом электросопротивление всей загрузки в 1,5-2 раза. Произвольное варъирование соотношения металла в загрузке не дает желаемого эффекта очистки. При увеличении содержания металла от 15 и более процентов возможно образование короткого замыкания, во избежание которого требует- ; 15 ся включение в электрическую цепь дополнительного сопротивления, что приводит к большому расходу электро-энергии. Увеличение размера зерен свыше 5 мм не позволяет создать кипящее состояние (псевдоожиженное) токопроводящей загрузки. Следовательно, искрообразование отсутствует, загрузка работает как токопроводник,

окисление загрязнений не происходит. Эффект очистки равен нулю. Уменьшение размера зерен менее 4 мм приводит к выносу загрузки из реакционной зоны очистительного аппарата. В связи с этим происходит уменьшение количества токопроводящей загрузки, а следовательно, уменьшение общего количества искрообразований в реакционной зоне, что отрицательно влияет на эффект очистки.

Сравнительные данные приведены в табл. 1.

Результаты опытов представлены в табл. 2.

Как следует из представленных данных, применение предлагаемого способа позволяет снизить расход энергии в 1,5-2 раза и повысить степень очистки сточных вод от растворенных органических примесей, что позволяет использовать их в оборотном водоснабжении и предотвратить загрязнение окружающей среды.

Таблица 1

· · · · · · · · · · · · · · · · · · ·					
Источники сточ- ных вод (СВ)	Вид загрузки	Время пребы- вания СВ в аппа-	Химиче потреб кислор ХПК, м	ление ода,	Расход электро- энергии,
	8	рате,	ДО ОЧИ- СТКИ	после очист- ки	кВч/м ³
Сточные воды гидротерыичес- ких камер	Смесь (карбид кремния + титан) 15% Ті размер гранул 4-5 мм	20	1024	92,4	3–5
	Смесь (SiC+Ti) 15% Ti 6-8 мм	20	1024	1024	3-5
	CMECЬ (SiC+Ti) 15% Ti 1-3 мм	20	1024	876	3-5

Источники сточнык вод (СВ)	Вид загруз- ки	Время пребы- вания	Bemecraa, rupyemme mr/n	, экстра- эфиром, I	Химическое потребление кислорода,	ское ление эда,	Сила Напр Тока, ние, А	Напряже- ние, В	Раскод элект- розне-
· ·		anna- pare, cek	до Очистки	после очистки	XIIK, мг/л 0 ₂ до после очист- очист-	T(N 02 HOCHE OVINCT-		•	prhh,
Сточные воды гид- ротермы-	Карбид кремния (про-			7		-			!
ческих камер	Torun)	70	164	35	1024	225,63 10-20	10-20	150-	4-10
	Смесь карбида крем-			· · · ·			. •	007	
	HHA+ THTAH (15%Ti)	50	164	12,3	1024	92,4	20-30	- 08	3-5
Сточные воды клее- приготови- тельного	Карбид кремния (прото- тип)	04	112	, 80	4 8	52,3	10-20	150-	41.10
o X	CMeca Kaponga Kpem-				•			500	
	титан 15% Ті	40	112	. 1	848	32,2	20-30	80-	3-5

Формула изобретения

1. Способ очистки сточных вод от органических примесей путем обработки их в слое зернистого токопроводящего материала, помещенного в межэлектродное пространство поля электрического тока с подачей в межэлектродное пространство кислородсодержащего газа, отличающийся тем, что, с целью повышения степени очистки и снижение расхода электроэнергии, в качестве зернистого токопроводящего материала используют

смесь частиц титана и карбида кремния при следующих соотношениях компонентов, вес. %:

Титан 12-15

85-88

Карбид кремния

2. Способ по п. 1, отличающ и й с я тем, что используют токопроводящий материал с размером частиц 4-5 мм.

Источники информации, 10 принятые во внимание при экспертизе 1. Авторское свидетельство СССР

N 467038, кл. C 02 F 1/46, 1972 (прототип).

Составитель Т. Барабаш Корректор Г. Решетник Редактор А. Власенко Техред М.Надь Заказ 7375/32 Тираж 981 Подписное ВНИИПИ Государственного комитета СССР по делам изобретений и открытий 113035, Москва, X-35, Раушская наб., д. 4/5 филиал ППП "Патент", г. Ужгород, ул. Проектная, 4