

Business Presentation

Contents

Business Problem Overview and Approach

Data Overview

EDA

Hypothesis Tests

Business Insights and Recommendations

Business Problem Overview and Solution Approach

Core business idea

 Analyze the interests of the users and determine if the new feature will acquire new suscribers

Problem to tackle

- Identify the user segments for the user groups control and treatment.
- Identify deficiencies if any in the current target segmentation

Financial implications

Expand the business by acquiring new subscribers.

Data Overview

Variable	Description
1. user_id	This represents the user ID of the person visiting the website.
2. group	This represents whether the user belongs to the first group (control) or the second group (treatment).
3. landing_page	This represents whether the landing page is new or old.
4. time_spent_on_the_page	This represents the time (in minutes) spent by the user on the landing page.
5. converted	This represents whether the user gets converted to a subscriber of the news portal or not.
6. language_preferred	This represents the language chosen by the user to view the landing page.

Observations	100
Variables	6

Note:

- There are no missing values.
- time_spent_on_the_page is the only numerical variable and the rest are object variable. All the object variables have been converted to categorical variables.

Exploratory Data Analysis – time_spent_on_the_page

- Most of the users use the page between 4 -6.5 minutes.
- Mean time_spent_on_the_page is 5.4 minutes and the median is 5.4 minutes.
- 1. time_spent_on_the page doesnot have any outliers.

EDA – Categorical Variables– Group, landing_page

• **Observation**: 50% of the customers belong to the group control and the rest belong to the group treatment.

 Observation: The landing_page of 50% of the users is old and the rest is new.

EDA – Categorical Variables – language_preferred, converted

Observation:

Most of the user either prefer Spanish or French

• Observation:

Out of 100, 54% percent of the users have subscribed.

EDA – group count by converted, language_preferred

Observation:

- There are more users from treatment group who converted to subscriber of the news portal.
- There are more user from control group who did not convert to a subscriber.

Observation:

 Number of users who choose French, Spanish and English are same among both the groups control and treatment.

EDA - converted count by language_preferred, landing_page

Observations:

The users who converted to subscriber mostly preferred English.

The users who didnot convert to subscriber mostly preferred French language.

Observation

- 1. The users who converted to subscriber mostly preferred new_landing_page.
- 2.The users who didnot convert to subscriber preferred old_landing_page.

EDA – group count by landing_page, Time_spent_on_the page Vs group

Observation

- Control group preferred old_landing_page.
- treatment group preferred new_landing_page.

Observations

1. The mean time spent on the page by treatment group users is greater than control group users.

EDA - Time_spent_on_the_page Vs landing_page, Time_spent_on_the_page Vs converted

Observations

The mean time spent on the new page is greater than the mean time spent on the old page.

Observations

 The user who has subscribed for the news portal spends more time than the user who didnot subscribe.

EDA - Time_spent_on_the_page Vs converted, Time_spent_on_the_page Vs language_preferred

Observations

 The user who has subscribed for the news portal spends more time than the user who didnot subscribe.

Observations

1. The users who prefer English slightly spend more time than the users who prefer Spanish or French

Correlation between time_spent_on_the_page, group and language_preferred

Observations

Among treatment group users, those who prefer English spend more time on the page and those who prefer Spanish spend lesser time.

Among control group users, those who prefer Spanish spend more time on the page and those who prefer English spend lesser time.

Correlation between time_spent_on_the_page, group and landing_page

Observations

Treatment group spends more time on the page than control group as all the treatment group users prefer new landing page.

Correlation between time_spent_on_the_page, converted and group

Observations

1.Among both control and treatment users, time spent on the page is more among the users who have subscribed

Correlation between time_spent_on_the_page, converted and landing_page

Observations

Among both subscribers and non-subscriber, most of the users preferred new_landing_page. The time spent on new landing page is more than the old landing page

Correlation between time_spent_on_the_page, converted and language_preferred

Observation

1. time_spent_on_new_landing_page is more irrespective of the language preferred

Correlation between time_spent_on_the_page, converted and language_preferred

Observations

- 1. Subscribers spend more time than non-subscribers.
- 2. Among subscribers, users who prefer French spend more.
- 3. Among non subscribers, users who prefer Spanish spend more time.
- 4.Among subscribers, users who prefer English and Spanish spend equal amont of time as there is only slight difference.

group Vs time_spent_on_the_page

Observation

The time spent on page by the control group varies from -2 to 12 showing more variation than the treatment group.

language_preferred vs time_spent_on_the_page

Observations

Users who prefer English and French spend more time on the Page than users who prefer Spanish

Hypothesis Tests

• Do the users spend more time on new landing page than the old landing page.

Visual Analysis

Observation

- 1. Time spent on the page on new landing page is more than the old landing page.
- 2. The mean time spent on the new page is 6.1 minutes and the mean time spent on the old page is 4.5 minutes.

Hypothesis test (contd)

Significance of the test	Assumptions	Test Distribution
	1. Continuuous data -	
	time_spent_on_the_page	
	2. Normally distributed population or	
	sample size > 30	
	3. Independent populations	
Test for the equality of two	4. Known population standard	
population means	deviations 1 and 2	Standard Normal Distribution
	5. Random Sampling from the	
H0:μ1=μ2	population σ	Two independent sample z-test

We will test the null hypothesis

$$H_0: \mu_1 = \mu_2$$

against the alternate hypothesis

$$H_a: \mu_1 > \mu_2$$

Insight

As the p_value (7.6896e-05) which is much less than the level of significance 0.05. We reject the null hypothesis. Thus, from the statistical evidence we can say that time spent on new landing page is more than time spent on old landing page.

Hypothesis test

Is the conversion rate for the new page greater than the conversion rate for the old page.

Visual Analysis

Observation

- 1.Among the users who prefer new landing page, there are more users who converted to subscriber.
- 2.Among the users who prefer old landing page, there are less subscribers.

Hypothesis test (contd)

Assumptions	Test Distribution
Binomially distributed and	
Independent populations	
Random sampling from the	
populations.	
When both mea(np) and n(1-p) are	
greater than or equal to 10, binomial	
distribution can be approximated by	Test Statistic Distribution
a normal distribution	Two proportions z-test
	Binomially distributed and Independent populations Random sampling from the populations. When both mea(np) and n(1-p) are greater than or equal to 10, binomial distribution can be approximated by

Let p_1, p_2 be the conversion rates of new landing and old landing pages

The manufacturer will test the null hypothesis

$$H_0: p_1 = p_2$$

against the alternate hypothesis

$$H_a: p_1 > p_2$$

Hypothesis test (contd.)

$$np_1 = 50 \cdot \frac{33}{50} = 33 \ge 10$$

$$n(1 - p_1) = 50 \cdot \frac{50 - 33}{50} = 17 \ge 10$$

$$np_2 = 50 \cdot \frac{21}{50} = 21 \ge 10$$

$$n(1 - p_2) = 50 \cdot \frac{50 - 21}{50} = 29 \ge 10$$

Insight

 $p_value = 0.016$

As the p_value is less than the level of significance 0.05, we reject the null hypothesis.

Thus, from the statistical analysis we can say conversion rate for the new page greater than the conversion rate for the old page.

Hypothesis test

Does the converted status depend on the preferred language?

Visual Analysis

Observation

- 1. There are more subscribers who prefer to use English language.
- 2. There are more non-subscribers who prefer French.

Contingency Table

language_preferred	English	French	Spanish
converted			
no	11	19	16
yes	21	15	18

Hypothesis test(contd.)

Significance of the test	Assumptions	Test Distribution
	Categorical Variables.	
	Expected value of the number of	
	observations in each level of the	
In the contingency table, H0:	variable is at least 5.	Test Statistic Distribution
The row and column	Random sampling from the	Chi-square test of
variables are independent.	population	Independence.

We will test the null hypothesis.

\$H_0: Converted status is independent preferred language

against the alternative hypothesis

\$H_a: Converted status depends on preferred language

Insight

 $p_{value} = 0.2129$

P value is greater than the level of significance 0.05. We fail to reject the null hypothesis. Hence, we have enough statistical significance to conclude that Converted status is independent of the language_preferred at 5% significance level.

Hypothesis Test

Is mean time spent on the new page same for the different language users.

Visual Analysis

Observation

- 1.Among the users who prefer English, French and Spanish, the users prefer to use new_landing_page.
- 2. The time spent on the new landing page is more than old landing page irrespective of the language preferred.

Hypothesis test(contd.)

Significance of the test	Assumptions	Test Distribution
\$H_0: Mean time spent on the		
new page is same for different		
language users.		
against the alternative		
hypothesis		
	The population are normally	
\$H_a: Mean time spent on the	distributed.	
new page is different for	Samples are independent simple	Test Statistic Distribution
different language users.	random samples.	One-way ANOVA F-test

Hypothesis test(Contd.)

Shapiro- Wilk's test

We will test the null hypothesis

\$H 0: time spent on the page follow normal distribution

against the alternative hypothesis

\$H a: time spent on the page doesnot follow normal distribution

p_value = 0.80 Since, p_valus is larger than 0.05 we fail to reject the null hypothesis follow normal distribution.

Levene's test

p_value = 0.467
Since, p_value is slightly larger than 0.05, we fail to reject the null hypothesis of homogeneity of variances

Finding p_value using f_oneway

Hypothesis test(Contd.)

p_value = 0.432

```
Multiple Comparison of Means - Tukey HSD, FWER=0.05

group1 group2 meandiff p-adj lower upper reject

English French -0.4673 0.7259 -2.0035 1.069 False

English Spanish -0.8285 0.401 -2.3647 0.7078 False

French Spanish -0.3612 0.816 -1.874 1.1516 False
```

From the above pairwise comparison, looking at the reject column we can say that the mean_time_spent_on_the_new_page is not so different between (English and French), (English and Spanish) and (French and Spanish)

Business Insights and Recommendations

- Use the new landing page as it is making users spend more time on the portal than the old landing page.
 - Also, it has been found that more time spent is directly related to the more subscriptions.

 Among the different language users, Spanish users spent time the least indicating the new landing page is counter effective in spanish. Hence considering revising the landing page for non-english users to improve subscriptions even more.

greatlearning Power Ahead

Happy Learning!