AULA 1: INTRODUÇÃO

Introdução

Segundo a autora Neide Franco, o conjunto de números representáveis em qualquer máquina é finito, portanto discreto, ou seja, não e possível representar em uma máquina todos os números de um dado intervalo [a; b].

A implicação imediata desse fato é que o resultado de uma simples operação aritmética ou o cálculo de uma função, realizadas neste conjunto de números, podem conter erros. A menos que medidas apropriadas sejam tomadas, essas imprecisões causadas, por exemplo, por:

- 1. Simplificações no modelo matemático, necessárias para se obter um modelo matemático solúvel;
- 2. Erros de truncamento (troca de uma serie infinita por uma finita);
- 3. Erros de arredondamento, devido a própria estrutura da máquina;
- 4. Erros nos dados, dados imprecisos obtidos experimentalmente, ou arredondados na entrada podem diminuir, e algumas vezes destruir, a precisão dos resultados.

Assim, o objetivo inicial é o estudo dos erros inerentes a estrutura computacional, dar subsídios para evitá-los e interpretar os resultados obtidos.

Fontes de Erros

- Suponha que você está diante do seguinte problema: você está em cima de um edificio que não sabe a altura, mas precisa determiná-la. Tudo que tem em mãos é uma bola de metal e um cronômetro. O que fazer?
- Conhecemos também a equação onde:

$$d = d_0 + v_0 t + (1/2)at^2$$

- d é a posição final;
- do é a posição inicial;
- Vo é a velocidade inicial;
- t é o tempo percorrido;
- a é a aceleração.

Erros na modelagem

- A bolinha foi solta do topo do edificio e marcou-se no cronômetro que ela levou 2 segundos para atingir o solo. Com isso podemos conclui a partir da equação acima que a altura do edificio é de 19,6 metros.
- Essa resposta é confiável? Onde estão os erros?
- Erros de modelagem:
 - Resistência do ar,
 - Velocidade do vento,
 - Forma do objeto, etc.
- Estes erros estão associados, em geral, à simplificação do modelo matemático.

- Erros de resolução:
 - Precisão dos dados de entrada

(Ex. Precisão na leitura do cronômetro para t = 2,3 segundos, h = 25,92 metros, gravidade);

- Forma como os dados são armazenados;
- Operações numéricas efetuadas;
- Erro de truncamento (troca de uma série infinita por uma série finita).

Representação numérica

- Exemplo 1: Calcule a área de uma circunferência de raio igual a 100m.
- Resultados obtidos:
 - 1. $A = 31400 \text{m}^2$;
 - 2. $A = 31416m^2$;
 - $3. A = 31415,92654m^2.$
- Como justificar as diferenças entre os resultados apresentados no exemplo? É possível obter exatamente esta área?

- Os erros ocorridos dependem da representação do número (neste caso, do numero pi) na máquina utilizada e do número máximo de dígitos usados na sua representação.
- O número pi, por exemplo, não pode ser representado através de um numero finito de dígitos decimais. No exemplo anterior, o número foi escrito como 3,14, 3,1416 e 3,141592654 respectivamente.
- Para cada representação foi obtido um resultado diferente, e o erro neste caso depende exclusivamente da aproximação escolhida para pi.

- Qualquer que seja a circunferência, a sua área nunca será obtida exatamente de forma numérica!
- Logo, qualquer cálculo que envolva números que não podem ser representados através de um número finito de dígitos não fornecerá como resultado um valor exato.
- Assim, voltamos novamente a ideia de que o conjunto dos números representáveis em qualquer máquina é finito, e portanto, discreto, ou seja não é possível representar em uma máquina todos os números de um dado intervalo [a,b].
- A representação de um número depende da BASE escolhida e do número máximo de dígitos usados na sua representação.

Conversão de número decimal para binário

Para convertermos um número decimal em um número binário, devemos aplicar um método para a parte intera e um método para a parte fracionária.

 $(2345)_{10} \rightarrow (x)_2$

Usando o método das divisões sucessivas.

Dividir até que o último quociente seja menor que a base

Para números fracionários utilizamos a regra da multiplicação.

Obs. O fato de um número não ter representação finita no sistema binário pode acarretar a ocorrência de erros aparentemente inexplicáveis nos cálculos dos dispositivos eletrônicos.

Conversão de número binário para decimal

$$(10111)_{2} \rightarrow (x)_{10}$$

$$(10111)_{2} = \underbrace{1x2^{4}}_{16} + \underbrace{0x2^{3}}_{16} + \underbrace{1x2^{2}}_{14} + \underbrace{1x2^{0}}_{12} = 23 = (23)_{10}$$

$$(110,11)_{2} \rightarrow (x)_{10}$$

$$(110,11)_{2} \rightarrow (x)_{10}$$

$$(110,11)_{2} = \underbrace{1x2^{2}}_{4} + \underbrace{1x2^{1}}_{4} + \underbrace{0x2^{0}}_{2} + \underbrace{1x2^{-1}}_{12} + \underbrace{1x2^{-2}}_{4} = 6,75 = (6,75)_{10}$$

$$\underbrace{d_{1}}_{4} + \underbrace{2}_{4} + \underbrace{0}_{4} + \underbrace{1}_{4} + \underbrace{1}_{4}$$

Exercício

Nem todo número real na base decimal possui uma representação finita na base binária. Faça a conversão de (0,1) na base 10 para a base 2 e explique a resposta encontrada. Em seguida, coloque o número encontrado na base 10 novamente. Observe o resultado.

0,1	0,2	0,4	0,8	0,6	0,2
x 2	x 2_	x 2	x 2	x 2	<u>x 2</u>
	<u>0,4</u>				<u>0,4</u>

Observe-se que as multiplicações começam a se repetir, impossibilitando que se chegue a um resultado com a parte fracionária nula. Portanto o 0,1, da base 10 , tem a seguinte representação na base 2:

$$(0,1)_{10} = (0,0001100110011...)_2$$

Ou seja, 0,10 da base 10 não tem representação finita na base 2 podendo ser representado, nesta base, somente de forma aproximada.

Em um computador com tamanho de palavra de 16 bits, $(0,1)_{10}$ é armazenado como $(0,0001100110011001)_2$

 $(0,0999908447265625)_{10}$

Produzindo, portanto, um erro da ordem de 9 x 10⁻⁶.

Número em outras bases

Dado o número 12.20 que está na base 4, representá-lo na base 3.

1. Representar o (12.20)₄ na base 10:

12 =
$$2 \times 4^{0} + 1 \times 4^{1} = 6$$
,
0.20 = $2 \times 4^{-1} + 0 \times 4^{-2} = \frac{2}{4} = 0.5$

Portanto: $(12.20)_4 = (6.5)_{10}$.

2. Representar $(6.5)_{10}$ na base 3:

$$\begin{array}{c|c}
6 & 3 \\
\hline
0 & 2
\end{array} (6)_{10} = (20)_3$$

$$0.5 \times 3 = 1.5$$

 $0.5 \times 3 = 1.5$
 \vdots

Assim: $(12.20)_4 = (20.111...)_3$. Observe que o número dado na base 4 tem representação exata na base 4, mas não na base 3.

Exercícios

Resolver a lista 01 - exercícios 3 ao 5

Representação de um número inteiro

A representação de um número inteiro não apresenta dificuldade. Qualquer computador trabalha internamente com uma base fixa β , onde β é um inteiro ≥ 2 e é escolhido como uma potência de 2.

Assim, dado um número inteiro $n \neq 0$, ele possui uma única representação:

$$n = \pm (n_{-k} n_{-k+1} \dots n_{-1} n_0) = \pm (n_0 \beta^0 + n_{-1} \beta^1 + \dots + n_{-k} \beta^k)$$

onde n_i , $i=0,-1,\ldots,-k$ são inteiros satisfazendo $0 \le n_i \le \beta$ e $n_{-k} \ne 0$.

Exemplo 2. Na base $\beta = 10$, o número 1997 é representado por:

$$1997 = 7 \times 10^{0} + 9 \times 10^{1} + 9 \times 10^{2} + 1 \times 10^{3}$$

e é armazenado como n_{-3} n_{-2} n_{-1} n_0 .

Representação de um número real por ponto fixo

A representação de um número real no computador pode ser feita por representação em *Ponto Fixo* ou *Ponto Flutuante*,

(i) Representação em Ponto Fixo: Dado um número real $x \neq 0$, ele será representado em ponto fixo por:

$$x = \pm \sum_{i=k}^{n} x_i \beta^{-1},$$

onde k e n são inteiros satisfazendo k < n e, usualmente, $k \le 0$ e n > 0 e os x_i são inteiros satisfazendo $0 \le x_i < \beta$.

Exemplo 3. Na base 10, o número 1997.16 é representado por:

$$1997.16 = \sum_{i=-3}^{2} x_i \beta^{-i} = 1 \times 10^3 + 9 \times 10^2 + 9 \times 10^1 + 7 \times 10^0 + 1 \times 10^{-1} + 6 \times 10^{-2}$$

e é armazenado como $x_{-3} x_{-2} x_{-1} x_0 . x_1 x_2$.

Representação no número real por ponto flutuante

A representação de números reais mais utilizada em máquinas é a de ponto flutuante. Este número possui três partes:

sinal, parte fracionária (mantissa) e o expoente

$$m = \pm d_1 d_2 d_3 \dots d_t \times \beta^e$$

 $d_{i's}$: dígitos da parte fracionária, $d_1 \neq 0$, $0 \leq d_i \leq \beta-1$

 β : base (em geral 2, 10 ou 16),

t: no de dígitos na mantissa.

e: expoente inteiro.

Em outras palavras, $0.d_1d_2d_3...d_t$ é uma fração na base b, também chamada de **mantissa**, com $0 \le d_i \le b-1$, para todo i = 1,2,3,...,t, sendo t o número máximo de dígitos da mantissa que é determinado pelo comprimento de palavra do computador; **e** é um expoente que varia em um intervalo dado pelos limites da máquina utilizada.

Esse tipo de representação é chamada de ponto flutuante pois o ponto da fração "flutua" conforme o número a ser representado e sua posição é expressa pelo expoente e.

Equivalente à: (0,00011001100110011....)₂

$x=34,2 \text{ (decimal)}; \beta=10; t=4$	$x=0,1 \text{ (decimal)}; \beta=2; t=9$
$x=0,3420 \times 10^2$	$x=0,110011001\times 2^{-3}$

Exemplos

Número na base decimal	Representação em ponto flutuante	mantissa	base	Expoente
1532	0.1532×10 ⁴	0.1532	10	4
15.32	0.1532×10 ²	0.1532	10	2
0.00255	0.255×10 ⁻²	0.255	10	-2
10	0.10×10 ²	0.10	10	2
10	0.1010×2 ⁴	0.1010	2	4

Outros exemplos

$$x_1 = 0.35$$
 $x_2 = -5.172$ $x_3 = 0.0123$ $x_4 = 5391.3$ $x_5 = 0.0003$,

onde todos estão na base $\beta = 10$, em ponto flutuante na forma normalizada.

Temos:

$$0.35 = (3 \times 10^{-1} + 5 \times 10^{-2}) \times 10^{0} = 0.35 \times 10^{0}$$

$$-5.172 = -(5 \times 10^{-1} + 1 \times 10^{-2} + 7 \times 10^{-3} + 2 \times 10^{-4}) \times 10^{1} = -0.5172 \times 10^{1}$$

$$0.0123 = (1 \times 10^{-1} + 2 \times 10^{-2} + 3 \times 10^{-3}) \times 10^{-1} = 0.123 \times 10^{-1}$$

$$5391.3 = (5 \times 10^{-1} + 3 \times 10^{-2} + 9 \times 10^{-3} + 1 \times 10^{-4} + 3 \times 10^{-5}) \times 10^{4} = 0.53913 \times 10^{4}$$

$$0.0003 = (3 \times 10^{-1}) \times 10^{-3} = 0.3 \times 10^{-3}$$

Notação: para representar um sistema numérico em ponto flutuante normalizado, na base β , com t dígitos significativos e com limites dos expoentes m e M, usamos $F(\beta, t, m, M)$.

Assim, um número em $F(\beta, t, m, M)$ será representado por:

$$\pm 0.d_1 d_2 \ldots, d_t \times \beta^e$$

onde $d_1 \neq 0$ e $-m \leq e \leq M$.

Considere o sistema F(10, 3, 2, 2). Represente neste sistema os números do Exemplo Neste sistema, um número será representado por:

$$0.d_1 d_2 d_3 \times 10^e$$
,

onde $-2 \le e \le 2$. Assim:

$$0.35 = 0.350 \times 10^{0},$$

 $-5.172 = -0.517 \times 10^{1},$
 $0.0123 = 0.123 \times 10^{-1}$

Note que os números 5391.3 e 0.0003 não podem ser representados no sistema, pois 5391.3 = 0.539×10^4 e, portanto, o expoente é maior que 2, causando **overflow**. Por outro lado, $0.0003 = 0.300 \times 10^{-3}$ e, assim, o expoente é menor do que -2, causando **underflow**.

Exemplo 1: Vejamos os sistemas de ponto flutuante de algumas máquinas antigas: HP 25, F(10,9,-98,100); Texas SR 50 e HP 41C, F(10,10,-98,100); Texas SR 52, F(10,12,-98,100); IBM 360/370, F(16,6,-64,63); Burroughs B 6700, F(8,13,-51,77). Comparando com sua calculadora ou seu microcomputador, estas máquinas podem ser ditas obsoletas, no ponto de vista do sistema de ponto flutuante?

Máquina e Aritmética	β	t	e_{min}	$e_{ m max}$
Cray-1 Precisão Simples	2	48	-8192	8191
Cray-1 Precisão Dupla	2	96	-8192	8191
DEC VAX formato G	2	53	-1023	1023
Dupla				
DEC VAX formato D	2	56	-127	127
Dupla				
Calculadoras HP 28 e 48G	10	12	-499	499
IBM 3090 Precisão Simples	16	6	-64	63
IBM 3090 Precisão Dupla	16	14	-64	63
IBM 3090 Precisão	16	28	-64	63
Extendida				
IEEE Precisão Simples	2	24	-126	127
IEEE Precisão Dupla	2	53	-1022	1023
PDP 11	2	24	-128	127
Control Data 6600	2	48	-976	1070

Para entender melhor

 Os números reais podem ser representados por uma reta contínua. Entretanto, em ponto flutuante, podemos representar apenas pontos discretos na reta real.

□ Exercício 1:

Considere o número F (2, 3, 1, 2). Quantos e quais números podem ser representados neste sistema?

Temos que $\beta = 2$, então os dígitos podem ser 0 ou 1; m = 1 e M = 2, então, $-1 \le e \le 2$ e t = 3. Assim, os números são da forma:

$$\pm 0.d_1 d_2 d_3 \times \beta^e$$

Logo, temos: duas possibilidades para o sinal, uma possibilidade para d_1 , duas possibilidades para d_2 e d_3 e quatro possibilidades para β^e . Fazendo o produto $2 \times 1 \times 2 \times 2 \times 4 = 32$. Assim, neste sistema podemos representar 33 números, visto que o zero faz parte de qualquer sistema.

Para responder quais são os números, notemos que as formas da mantissa são: 0.100, 0.101, 0.110 e 0.111, e as formas de β^e são: 2^{-1} , 2^0 , 2^1 e 2^2 . Assim, obtemos os seguintes números:

$$0.100 \times \begin{cases} 2^{-1} &= (0.25)_{10} \\ 2^{0} &= (0.5)_{10} \\ 2^{1} &= (1.0)_{10} \\ 2^{2} &= (2.0)_{10} \end{cases}$$

desde que $(0.100)_2 = (0.5)_{10}$;

$$0.101 \times \begin{cases} 2^{-1} &= (0.3125)_{10} \\ 2^{0} &= (0.625)_{10} \\ 2^{1} &= (1.25)_{10} \\ 2^{2} &= (2.5)_{10} \end{cases}$$

desde que $(0.101)_2 = (0.625)_{10}$;

$$0.110 \times \begin{cases} 2^{-1} &= (0.375)_{10} \\ 2^{0} &= (0.75)_{10} \\ 2^{1} &= (1.5)_{10} \\ 2^{2} &= (3.0)_{10} \end{cases}$$

desde que $(0.110)_2 = (0.75)_{10}$;

$$0.111 \times \begin{cases} 2^{-1} &= (0.4375)_{10} \\ 2^{0} &= (0.875)_{10} \\ 2^{1} &= (1.75)_{10} \\ 2^{2} &= (3.5)_{10} \end{cases}$$

desde que $(0.111)_2 = (0.875)_{10}$.

Podemos representar também por uma tabela

Seja o sistema de ponto flutuante F = F(2, 3, -1, 2). Como a base é dois, os dígitos possíveis são 0 ou 1. Assim, como os números deste sistema devem ter até três dígitos, as mantissas podem ser: 0.100, 0.101, 0.110 e 0.111. Estes números representam, respectivamente, as quantidades 1, 5/4, 3/2 7/4. E mais, os expoentes da base possíveis são -1, 0, 1 ou 2. Portanto, na tabela abaixo escrevemos (em negrito) todos os números positivos do sistema de ponto flutuante, já colocados na base dez:

Expoentes		Mantissas			
e	2 ^e	0.100	0.101	0.110	0.111
-1	1/2	1/4	5/16	3/8	7/16
0	1	1/2	5/8	3/4	7/8
1	2	1	5/4	3/2	7/4
2	4	2	5/2	3	7/2

Exercício 2

Considerando o mesmo sistema F(2,3,1,2)

represente os números: $x_1 = 0.38$, $x_2 = 5.3$ e $x_3 = 0.15$ dados na base 10.

□ Solução do exercício 2:

$$(0.38)_{10} = 0.110 \times 2^{-1}$$
, $(5.3)_{10} = 0.101 \times 2^{3}$ $e(0.15)_{10} = 0.100 \times 2^{-2}$.

apenas o primeiro número pode ser representado no sistema,

pois para o segundo teremos overflow e, para o terceiro, underflow.

Exercício 3: Numa máquina que opera no sistema $\beta = 10; t = 3; e \in [-5,5]$

Portanto, F (10, 3, 5, 5), qual o maior e o menor número desta máquina em módulo?

Resposta do exercício 3

□ Nesta máquina, em módulo, o

menor número, em módulo: $m = (0.100) \times 10^{-5} = 10^{-6}$

maior número, em módulo: $M = (0.999) \times 10^5 = 99900$

Outros exemplos

Ex: (4)

Considere F(2,2,-1,2), com número normalizado, isto é, $d_1 \neq 0$. Os números serão:

$$\pm .10 \times 2^{e}$$
 ou $\pm .11 \times 2^{e}$, sendo $-1 \le e \le 2$.

Convertendo para decimal, temos:

$$.10 = \frac{1}{2}$$
 e $.11 = \frac{3}{4}$

Com isso, os únicos números positivos representáveis nesse computador são:

Mantissa

Expoentes

$$1/2 \times 2^{e}$$

$$3/4 \times 2^{e}$$
 para $e=-1, 0, 1 e 2$

$$e = -1, 0, 1 e 2$$

Ou seja, $\frac{1}{4}$, $\frac{1}{2}$, 1, 2, $\frac{3}{8}$, $\frac{3}{4}$, $\frac{3}{2}$ e 3, que podem ser representados na reta numerada:

Alem desses números, os seus respectivos números negativos e o numero zero também serão representados.

Representação dos números

O conjunto de números de números reais é infinito, entretanto, a sua representação em um sistema de ponto flutuante é limitada, pois é um sistema **finito**. Essa limitação tem duas origens:

- A) a faixa dos expoentes é limitada ($e_{\min} \le e \le e_{\max}$);
- B) a mantissa representa um número finito de números ($\beta^{t-1} \le m \le \beta^{t-1}$)

Faixa dos expoentes é limitada ($e_{\min} \le e \le e_{\max}$);

Sempre que uma operação aritmética produz um número com expoente superior ao expoente máximo, tem-se o fenômeno de "overflow". De forma similar, operações que resultem em expoente inferior ao expoente mínimo tem-se o fenômeno de "underflow".

Reta numerada do ex. (3)

No caso do exemplo dado, pode-se observar qual as regiões que ocorrem o overflow e o underflow. Neste caso, considera-se a parte positiva e negativa da aritmética do exemplo.

Exercícios

- Exercícios
 - Resolver a lista 01 exercícios 1, 2, 6 e 7

SURPRESAAAA!!!

Número total de elementos de uma aritmética de ponto flutuante

$$n. \ de \ elementos = 2(\beta - 1)\beta^{t-1}(e_{\max} - e_{\min} + 1) + 1$$

Para contabiliza os números negativos

Para o numero zero

Linguagem de programação

Em qualquer linguagem é possível especificar a representação que deve ser usada para os números a serem armazenados em uma dada variável. Na linguagem C, para **números inteiros** - *int* 2 bytes => (-32768, 32767).

No caso da representação de **ponto flutuante** - *float* => número máximo de dígitos na base binária igual a 24 (t=24) e expoente entre -126 e 127. Portanto, uma variável declarada como *float* pode armazenar números reais entre $\sim 10^{-38}$ e $\sim 10^{38}$.