Implementation for Fast direct sparse solvers

Guanchun Li, Zhe Chen

Courant, NYU

December 9th, 2020

Intro

- ► Fast direct sparse solvers(FDSS)¹: linear or close-to-linear complexity
 - Assume $O(m^{\alpha})$ for m-by-m Schur complement matrix
 - $\alpha < 2$ Geometric sum dominated by the *leaves*. Complexity is O(N).
 - $\alpha = 2$ Every term has the same weight. Complexity is $O(n^2L) = O(N \log N)$.
 - $\alpha>2$ Geometric sum dominated by the *root*. Complexity is $O(n^{\alpha})=O(N^{\alpha/2})$.

Elliptic PDEs in a unit square $[0,1]^2$ in 2D with Dirichlet BC:

- **1** Laplace Eq. $-\Delta u = 0$, $u = \sin(\pi x) \exp(\pi y)$
- ② Helmhotz Eq. $-\Delta u = \kappa^2 u$, $u = \sin(\kappa x) + \cos(\kappa y)$

FDSS

¹https://github.com/CecilMartin/Fast-Direct-Sparse-Solvers

Sweeping scheme

Figure 1: Partition of sweeping scheme, $n_1 = 21, n_2 = 10$

Buffered sweeping scheme

Figure 2: Partition of buffered sweeping scheme, $n_1 = 1 + m(b+1)$

Compressible

Figure 3: Skeletonization factorization of Schur complement, Laplace 5pt stencil, $N=16^{[2,3,4]}$

Complexity for Laplace

Figure 4: Laplace 5pt stencil, Sweeping scheme, $N=4^{[2,...,7]}$

FDSS Guanchun Li, Zhe Chen

Complexity for Helmhotz

Figure 5: Helmhotz equation, 5pt stencil, $\kappa/(2\pi)=0,1,10,20$

Complexity for Buffered sweeping

Figure 6: Buffered sweeping scheme, Laplace 5pt stencil, $n_1 = 169$; b = [0, 1, 2, 3, 5, 6, 7, 11, 20, 23, 41, 83]