Assignment #1

(Jul 28, 2025)

Coordinate Systems and Transformation: Sadiku Chaps 2 & 3, Griffiths Chap 1

1. Express the following points in cylindrical and spherical coordinates:

- (a) P(2,5,-1)
- (b) Q(-3,4,0)
- (c) R(6,2,-4)

2. Express the following points in Cartesian coordinates:

- (a) $P_1(2,30^\circ,5)$
- (b) $P_2(1, 90^\circ, -3)$
- (c) $P_3(10, \pi/4, \pi/3)$
- (d) $P_4(4,30^\circ,60^\circ)$

3. Convert the following vectors to cylindrical and spherical systems:

(a)
$$\mathbf{F} = \frac{x \, \mathbf{a}_x + y \, \mathbf{a}_y + 4 \mathbf{a}_z}{\sqrt{x^2 + y^2 + z^2}}$$

(b)
$$\mathbf{G} = (x^2 + y^2) \left[\frac{x \, \mathbf{a}_x}{\sqrt{x^2 + y^2 + z^2}} + \frac{y \, \mathbf{a}_y}{\sqrt{x^2 + y^2 + z^2}} + \frac{z \, \mathbf{a}_z}{\sqrt{x^2 + y^2 + z^2}} \right]$$

4. Express the following vectors in rectangular coordinates:

- (a) $\mathbf{A} = \rho \sin \phi \, \mathbf{a}_{\rho} + \rho \cos \phi \, \mathbf{a}_{\phi} 2z \, \mathbf{a}_{z}$
- (b) $\mathbf{B} = 4r \cos \phi \, \mathbf{a}_r + r \, \mathbf{a}_{\phi}$
- **5.** Given a vector field $\mathbf{H} = xy^2z \,\mathbf{a}_x + x^2yz \,\mathbf{a}_y + xyz^2 \,\mathbf{a}_z$
 - (a) Express this vector field in cylindrical and spherical coordinates.
 - (b) In both cylindrical and spherical coordinates, determine \mathbf{H} at (3, -4, 5).
- **6.** Let $\mathbf{A} = \rho \cos \phi \, \mathbf{a}_{\rho} + \rho z^2 \sin \phi \, \mathbf{a}_{z}$
 - (a) Transform A into rectangular coordinates and calculate its magnitude at point (3, -4, 0).
 - (b) Transform A into spherical system and calculate its magnitude at point (3, -4, 0).

7. Let Let $\mathbf{H} = 5\rho \sin \phi \, \mathbf{a}_{\rho} - \rho z \cos \phi \, \mathbf{a}_{\phi} + 2\rho \, \mathbf{a}_{z}$. At point $P(2, 30^{\circ}, -1)$, find:

- (a) a unit vector along **H**
- (b) the component of **H** parallel to \mathbf{a}_x
- (c) the component of **H** normal to $\rho = 2$
- (d) the component of **H** tangential to $\phi = 30^{\circ}$

- 8. Let $\mathbf{A} = (2z \sin\phi)\mathbf{a}_{\rho} + (4\rho + 2\cos\phi)\mathbf{a}_{\phi} 3\rho z\mathbf{a}_{z}$ and $\mathbf{B} = \rho\cos\phi\mathbf{a}_{\rho} + \sin\phi\mathbf{a}_{\phi} + \mathbf{a}_{z}$.
 - (a) Find the minimum angle between **A** and **B** at $(1, 60^{\circ}, -1)$.
 - (b) Determine a unit vector normal to both **A** and **B** at $(1, 90^{\circ}, 0)$.
- **9.** If $\mathbf{J} = r \sin \theta \cos \phi \, \mathbf{a}_r \cos 2\theta \sin \phi \, \mathbf{a}_\theta + \tan \frac{\theta}{2} \ln r \, \mathbf{a}_\phi$ at $T(2, \pi/2, 3\pi/2)$, determine the vector component of \mathbf{J} that is:
 - (a) Parallel to \mathbf{a}_z
 - (b) Normal to surface $\phi = 3\pi/2$
 - (c) Tangential to the spherical surface r = 2
 - (d) Parallel to the line y = -2, z = 0
- **10.** Given the vector field $\mathbf{H} = \rho z \cos \phi \, \mathbf{a}_{\rho} + e^{-2} \sin \frac{\phi}{2} \, \mathbf{a}_{\phi} + \rho^2 \, \mathbf{a}_z$. At a point $(1, \frac{\pi}{3}, 0)$, find
 - (a) $\mathbf{H} \cdot \mathbf{a}_x$
 - (b) $\mathbf{H} \times \mathbf{a}_{\theta}$
 - (c) The vector component of **H** normal to surface $\rho = 1$
 - (d) The scalar component of **H** tangential to the plane z = 0
- 11. If $\mathbf{A} = 3 \mathbf{a}_r + 2 \mathbf{a}_\theta 6 \mathbf{a}_\phi$ and $\mathbf{B} = 4 \mathbf{a}_r + 3 \mathbf{a}_\phi$, determine
 - (a) $\mathbf{A} \cdot \mathbf{B}$
 - (b) $|\mathbf{A} \times \mathbf{B}|$
 - (c) The vector component of **A** along \mathbf{a}_z at $(1, \pi/3, 5\pi/4)$
- 12. Using the differential length dl, find the length of each of the following curves:
 - (a) $\rho = 3$, $\pi/4 < \phi < \pi/2$, z = constant
 - (b) r = 1, $\theta = 30^{\circ}$, $0 < \phi < 60^{\circ}$
 - (c) $r = 4, 30^{\circ} < \theta < 90^{\circ}, \phi = \text{constant}$
- 13. Calculate the areas of the following surfaces using the differential surface area dS:
 - (a) $\rho = 2$, 0 < z < 5, $\pi/3 < \phi < \pi/2$
 - (b) z = 1, $1 < \rho < 3$, $0 < \phi < \pi/4$
 - (c) r = 10, $\pi/4 < \theta < 2\pi/3$, $0 < \phi < 2\pi$
 - (d) 0 < r < 4, $60^{\circ} < \theta < 90^{\circ}$, $\phi = constant$
- **14.** Use the differential volume dv to determine the volumes of the following regions:
 - (a) 0 < x < 1, 1 < y < 2, -3 < z < 3
 - (b) $2 < \rho < 5$, $\pi/3 < \phi < \pi$, -1 < z < 4
 - (c) 1 < r < 3, $\pi/2 < \theta < 2\pi/3$, $\pi/6 < \phi < \pi/2$