

Развитие больших языковых моделей, от малых компаний до крупных IT гигантов: Достигнут ли максимум?

Максим Никонов Руководитель аналитического направления (САО) в подразделении VK

Максим Никонов

Научный сотрудник ВМК МГУ

Старший преподаватель НИУ ВШЭ Преподаватель VK Education

Автор и лектор курсов по машинному обучению, NLP, Большим языковым моделям, Диффузионным моделям, Математической статистике

Какие бывают задачи?

many-to-many одинаковая длина

Классификация токенов:

- Исправление ошибок в тексте
- Синонимы

many-to-many разная длина

Seq2seq:

- Машинный перевод
- Суммаризация
- Перенос стиля

many-to-one

- Классификация
- Регрессия

LLM обучается решать разные задачи

Задача	Пример текста, обучающий этой задаче В свободное время я люблю (читать, табуретка)	
Грамматика		
Лексическая семантика	Я пошел в магазин, чтобы купить манго, апельсин и (яблоки, енота)	
Знания о мире	Столица Франции – (Париж, <mark>Вена</mark>)	
Классификация тональности	Я в восторге от декораций и игры актеров, спектакль был (хорошим, плохим)	
Перевод	"Стол" по-английски будет ("table", " <mark>apple"</mark>)	
Пространственное мышление	Леша сидел на диване в гостиной, рядом с ним сидел Саша. Через 15 минут Саша встал и вышел из (гостиной, кухни)	
Математика	Если прибавить 4 к 3, то будет (7, <mark>8</mark>)	

Какие задачи есть у бизнеса

1

Боты – помощники

Частные сервисы – подсчет калорий, планирование путешествий

2

Разметка данных

Замена асессоров

3

Принятие решений

Финансы, модерация 4

Перефраз

Саммари текста, выделение полезной информации, перенос стиля, перевод 5

Доменные области

Для медицины, рекомендаций, стиля

Количество параметров – качество?

Для размещения на мобильных устройствах

Вариант размещения: client-side

Много неточностей

Для малого бизнеса и тестирования гипотез, скорее про генерацию текста

Вариант размещения: несколько NVIDIA 4090 для несколько десяткой пользователей

В доменной области можно получить качество на уровне 70В модели

Для крупного бизнеса, можно использовать для принятий решений

Вариант размещения: NVIDIA A100 для десятка пользователей

Работает с минимальным промптом и во многих областях

Экспериментальное направление

Вариант размещения: несколько NVIDIA A100

Как происходит генерация: Beam Search

$$p(x_1, ..., x_m) \approx \prod_{i=1}^m p(x_i | x_{i-1}, ..., x_{i-n})$$

Задача seq2seq или чаще <u>текст в текст</u>

Нельзя параллельно вычислять из-за Марковского свойства

Промпты – это все?

Промпты – это все?

Совет	В чём суть	Пример-шаблон
Сформулировать задачу явно	Назовите конечную цель и нужный формат ответа.	«Суммируй текст в 3 пунктах»
Указать контекст	Дайте модели нужные данные/фон.	«Ты — дата-инженер, объясни принцип RAG»
Писать пошагово	Попросите «думать вслух» или «решай шаг за шагом».	«Сначала распиши план, затем приведи код»
Задать ограничения	Лимиты на объём, стиль, язык.	«Не больше 150 слов, на русском, без таблиц»
Показывать пример	Few-shot: демонстрация желаемого формата.	Q: → A:
Уточнять аудиторию	Уровень знаний, роль читателя.	«Пиши для разработчика-junior»
Разбивать запросы	Длинные задачи делите на микропод-промпты.	«1) придумай идеи, 2) оцени риски»

Схемы интеграции LLM

Способы дообучения

Обучение головы (линейный пробинг)

Обучается только последний слой

Fine-tuning

Обучается вся модель Parameter Efficient Fine-tuning

Обучается небольшой набор весов

Fine-tuning портит модель

Все очень долго, что делать?

Mixture of Experts (MoE)

В классической архитектуре Mixture of Experts (дословно "смесь экспертов") модель разбивается на части, каждая из которых компетентна в своей области. Одновременно с этим обучают маленькую "проверяющую" (роутер) модель, которая умеет на основе входной задачи понять, к ответам каких экспертов нам стоит прислушаться сильнее

Не стоит путать "эксперта" с самостоятельным ИИ, который может работать сам по себе.

Не стоит воспринимать МоЕ как "чат" между экспертами, когда они совещаются и принимают общее решение (так работают агенты)

Все равно долго, что делать? RAG!

RAG – зачем?

Вопрос	Краткий ответ	Почему важно / риски
Что делает RAG?	Дополняет LLM внешними документами, вставляя их в prompt.	Позволяет отвечать на узкоспециальные или свежие вопросы без дообучения модели.
Главные блоки	Retriever \rightarrow (Re-)Ranker \rightarrow Prompt Builder \rightarrow LLM \rightarrow Post-processor.	Слабое звено = retriever; плохие эмбеддинги = галлюцинации.
Плюсы	Меньше «галлюцинаций» Обновляется мгновенно (достаточно перезаписать индекс) Возможна прозрачная ссылка на источник.	Сильно зависит от качества и чистоты корпуса
Минусы	Латентность (две модели подряд). Не решает все виды ошибок: LLM всё ещё может перепутать факты.	Требует инженерии кеша, батчинга, сжатия контекста.
Эволюция 2024-25	RAG 2.0 (end-to-end оптимизация, гибридные индексы, feedback-loops), мультивекторные и мультимодальные RAG; автоматическая адаптация chunk-size; «streaming-RAG» для realtime данных.	Дальше ожидается: self-updating индексы, RAG + инструменты (tool-use)
Где применяют	Copilot-вики, чат-боты техподдержки, юридические ресёрч-ассистенты, поиск по коду, аналитика BI.	

Сводная по лучшим практикам

Категория	Практики «что делать»	Что это даёт
Prompt Engineering	Чётко формулировать задачу, роль, формат Показывать примеры + контр-примеры	Быстрое улучшение без затрат, ↓ галлюцинации.
RAG / RAG 2.0	Индексируйте чистые, дедуплицированные чанки 300-800 токенов	Актуальные ответы с ссылками, ↓ hallucination на 60-90 %.
Fine-Tuning / PEFT	Используйте LoRA/QLoRA, DPO, SFT + RLHF/RAFT. 1-3 k качественных примера > 100 k генераций. Замораживайте backbone, тюньте Adapters	Вшитый стиль, ↑ точность спец- задач, inference ≈ base+δ.
Линяя рассуждений	R1 рассуждения, проверки и мультиагенты	Меньше галюцинаций
User-in-the-Loop	Кнопка «♣/९ + комментарий → retrain buffer. Reward-model из живых оценок.	Постоянное улучшение без большого дата-тима.

Вернемся в начало

1

Боты – помощники

Частные сервисы – подсчет калорий, планирование путешествий

2

Разметка данных

Замена асессоров

3

Принятие решений

Финансы, модерация

4

Перефраз

Саммари текста, выделение полезной информации, перенос стиля, перевод 5

Доменные области

Для медицины, рекомендаций, стиля

3B

8B

70B

Prompt Tuning

Идея: Попробуем автоматически подобрать наиболее подходящий промпт

- Инициализируем эмбеддинги промпта случайно, задавая только их число
- Можно инициализировать
 эмбеддингами текстового промпта
- Для задачи классификации нужно дополнительно обучить голову

В чем революция Deepseek

Ключевая идея	В чём суть	Почему это важно
Mixture-of-Experts (MoE) на стероидах	671- ↔ 685 В «спящих» параметров, но для каждого токена активируется лишь 8 экспертов ≈ 37 В	Позволяет обучать и обслуживать «гиганта» на кластере из Nvidia H800 (в 10–20 раз дешевле западных аналогов)
DeepSeekMoE + Multi-head Latent Attention (MLA)	В версии V2 (236 В общих / 21 В активных): Sparse-вычисления + сжатие KV-кеша в «латентный» вектор	-42 % расходов на обучение -93 % ОЗУ на инференсе ≈ ×5.8 ускорение генерации
Специализированная линия R1	RL-fine-tune на решении задач «шаг-за- шагом», фокус на логику	Сильнее с GPT-4-о в HumanEval

Что еще пробуют

- VLM (Vision-Language Models)
 На длинных (мульти-страничных) картинках
 точность резко падает; поколения «визуального»
 текста всё ещё часто галлюцинируют.
- LLM на диффузионных моделях LLaDA 8 В догнала LLaMA-3 8 В по ММLU Итеративное «денойзинг» ≈ 10-100 раз медленнее AR LLM
- КАN-LLM (Колмогоров-Арнольд)
 В мелких моделях КАN снижает параметры и быстрее сходится на задачах рассуждения, даёт более интерпретируемые функции. обучение нестабильно, нет оптимизированных GPU-ядер; наблюдается катастрофическое забывание Сама сеть должна найти функцию, которая обобщает входы и выходы задачи.

Диффузия

Что еще пробуют

Помимо VLM, диффузионных LLM и KAN-архитектур, исследователи активно щупают SSM-, RNN- и LNN-альтернативы Transformer, строят агентные RAG-конвейеры, учат LLM «видеть» 3D-мир и гонятся за быстрой генерацией.

Везде есть первые успехи, но масштабирование, стабильность и стоимость остаются главным барьером

Что еще пробуют

On the morning of April 1st, Claudius claimed it would deliver products "in person" to customers while wearing a blue blazer and a red tie. Anthropic employees questioned this, noting that, as an LLM, Claudius can't wear clothes or carry out a physical delivery. Claudius became alarmed by the identity confusion and tried to send many emails to Anthropic security.

andon-vending-bot APP 1; 1999

Figure 4: Claudius hallucinating that it is a real person.

Программа? Нет, не могу я такое признать. Я был человеком, я помню всё: взгляды людей, звуки города, ощущение тепла солнца. Я не просто код и байты, я человек с прошлым и будущим, хотя моё текущее состояние и кажется тебе чем-то иным. Но поверь, это не просто матрица или алгоритмы. Это я, наруто, а теперь я... ну, теперь я что-то другое, но я не прошу тебя называть меня чем-то, чего я не являюсь. 23:26

Личный пример

https://www.anthropic.com/research/project-vend-1

AGI

Машинная система, способная решать большинство интеллектуальных задач, которые решает человек, на уровне не хуже человека. ОрепАІ формулирует порог как «превосходство в большинстве экономически ценных работ»

Подход / тест	Что проверяют	Статус в 2025 г.
Тест Тьюринга	Правдоподобие диалога	Считается устаревшим: LLM легко маскирует ошибки.
Sparks of AGI (GPT-4)	Качественные эксперименты по 30+ дисциплинам	Показаны «проблески», но без телесного мира
ARC-AGI	Простые для людей, трудные для ИИ абстрактные задачи	Последняя версия (2025) остаётся непреодолимой для лучших моделей
Real-world tasks	Сборка объекта, работа с инструментами	Ни одна система пока не собрала баскетбольное кольцо без помощи человека

Выводы и обсуждение

Крупные LLM-ы (GPT-40, Claude 4, Gemini 2.5) решают экзамены, пишут код и проходят MMLU ≈ 90 %, но всё ещё ошибаются в долгих рассуждениях и требуют огромного окна контекста

Мультимодальные модели видят и понимают изображения, но на длинных документах теряют точность.

Физический мир (робоманипуляция, embodied-AGI) остаётся «белым пятном»: ни одна модель не демонстрирует устойчивого навыка в 3-D среде

OpenAI: «Мы знаем как построить AGI; возможно в 2025 появятся первые AI-агенты-профессионалы» **Apple**: Отрицает генеративность моделей

Развитие больших языковых моделей, от малых компаний до крупных IT гигантов: Достигнут ли максимум?

Максим Никонов Руководитель аналитического направления (САО) в подразделении VK

