Problem definition Some elementary concepts Some elementary models Decomposing the time series Towards more elaborate models: ARMA models

NDA: Time Series Analysis

Lionel Tabourier

LIP6 - CNRS and Sobonne University

first_name.last_name@lip6.fr

January 2020

Bibliography

Formal content:

- Peter Brockwell and Richard Davis
 Introduction to Time Series and Forecasting
- William Thistleton and Tural Sadigov
 MOOC Coursera: Practical Time Series Analysis

Informal guide in python:

• www.machinelearningplus.com/time-series/

Illustrative datasets:

- data.world/datasets/time-series
- www.kaggle.com/tags/time-series

Outline

- Problem definition
- Some elementary concepts
- Some elementary models
- Decomposing the time series
- 5 Towards more elaborate models: ARMA models

Outline

- Problem definition
- Some elementary concepts
- Some elementary models
- Decomposing the time series
- 5 Towards more elaborate models: ARMA models

What is time series analysis

Definition

Set of observations $\{x_t\}$, recorded at time $t \in T_0$

Think of each x_t as a realization from a distribution

Specificities of the problem

A unique realization of the process

- ⇒ necessary to make assumptions
- observe time series, identify particularities
- choose a family of models X_t to represent data
- check the goodness of the model

What is time series analysis

Definition

Set of observations $\{x_t\}$, recorded at time $t \in T_0$

Think of each x_t as a realization from a distribution

Specificities of the problem

A unique realization of the process

- ⇒ necessary to make assumptions
- observe time series, identify particularities
- choose a family of models X_t to represent data
- check the goodness of the model

Assumptions for this course

Restrictions to a subfamily of problems

- discrete time series (discrete time set)
- fixed time steps (time resolution)
- univariate (one single variable over time)
 - ightarrow processes have values in $\mathbb R$

And only a few approaches

• e.g. no Fourier analysis

Average global land temperature (per month)

Average global land temperature (per month)

Number of airplane crashes (per year)

Daily demand of power obtained with coal in GB (per year)

Goals of time series analysis

- Have a simplified description of the data
 → improve our understanding (ex: climate data)
- Test an assumption
 ex: is there a significant measurable global warming?
- Filter: separate signal from noise
 ex: known physical signal broadcast → filter noise
- Predict future values
 ex: predict the future demand for a product
- Simulate a process in a complex model
 ex: expectation for the GDP to predict economic activity

Analyse from Greek $análusis \sim unravel \Rightarrow decompose$ Decompose the time series into parts, for example:

First step

- identify the existence of a trend (tendance)
- uncover seasonal variations (variations saisonnières)
- detect changes of behavior
- spot outliers (valeurs aberrantes)

First step

- identify the existence of a trend (tendance)
- uncover seasonal variations (variations saisonnières)
- detect changes of behavior
- spot outliers (valeurs aberrantes)

First step

- identify the existence of a trend (tendance)
- uncover seasonal variations (variations saisonnières)
- detect changes of behavior
- spot outliers (valeurs aberrantes)

First step

- identify the existence of a trend (tendance)
- uncover seasonal variations (variations saisonnières)
- detect changes of behavior
- spot outliers (valeurs aberrantes)

First step

Plot the time series to:

- identify the existence of a trend (tendance)
- uncover seasonal variations (variations saisonnières)
- detect changes of behavior
- spot outliers (valeurs aberrantes)

→ subjective components in this analysis

Decomposing the time series

The classical decomposition

Classical decomposition of the time series

$$X_t = s_t + m_t + r_t$$

- seasonality s_t
- trend m_t
- remainder r_t

Outline

- Problem definition
- Some elementary concepts
- Some elementary models
- Decomposing the time series
- 5 Towards more elaborate models: ARMA models

Mean and covariance of a time series

Two fundamental definitions

Let $\{X_t\}$ a time series with $\mathbb{E}[X_t^2] < \infty$ (finite variance) rk: here we consider X_t as a model

• **mean function** of X_t , defined for all t:

$$\mu_X(t) = \mathbb{E}[X_t]$$

• covariance function of X_t , defined for all r, s:

$$\gamma_X(r,s) = Cov(X_r, X_s) = \mathbb{E}[(X_r - \mu_X(r))(X_s - \mu_X(s))]$$

Informal definition

A process is **stationary** (*stationnaire*) if its statistical properties are similar when shifted in time

Remarks:

- stationarity is a property of a model (not of data)
- stationary processes are simpler to investigate
 - ⇒ usual to transform a TS to obtain a stationary process

Informal definition

A process is **stationary** (*stationnaire*) if its statistical properties are similar when shifted in time

Formal definition

A process is said to be weakly stationary if

- the mean function $\mu_X(t)$ is independent of t
- γ_X(t + h, t) is independent of t for any h (including h = 0)
 h is called the lag (décalage)

Informal definition

A process is **stationary** (*stationnaire*) if its statistical properties are similar when shifted in time

Formal definition

A process is said to be strictly (or strongly) stationary if

• $\forall n$ and $\forall h$

$$P(X_1 = x_1, ..., X_n = x_n) = P(X_{1+h} = x_1, ..., X_{n+h} = x_n)$$

Unless specified otherwise, we talk about weak stationarity in the following

Informal definition

A process is **stationary** (*stationnaire*) if its statistical properties are similar when shifted in time

Formal definition

A process is said to be strictly (or strongly) stationary if

• $\forall n$ and $\forall h$

$$P(X_1 = x_1, ..., X_n = x_n) = P(X_{1+h} = x_1, ..., X_{n+h} = x_n)$$

Unless specified otherwise, we talk about weak stationarity in the following

Autocorrelation function

Notice that for a stationary time series: $\gamma_X(t+h,t) = \gamma_X(h)$ \Rightarrow the covariance function γ_X has one variable (the lag)

Definition

For a stationary time series:

• the autocovariance function at lag h is:

$$\gamma_X(h) = Cov(X_{t+h}, X_t)$$

• the **autocorrelation function** (ACF) at lag *h* is:

$$\rho_X(h) = \frac{\gamma_X(h)}{\gamma_X(0)}$$

Concepts well defined on models, but what about real data? Let $\{x_1, \ldots, x_n\}$ be a series of observations

Sample mean

• the sample mean estimator is

$$\overline{x} = \frac{1}{n} \sum_{t=1}^{n} x_t$$

Concepts well defined on models, but what about real data? Let $\{x_1, \dots, x_n\}$ be a series of observations

Sample autocovariance function

• the sample autocovariance function estimator is

$$\hat{\gamma}(h) = \frac{1}{n} \sum_{t=1}^{n-|h|} (x_{t+|h|} - \overline{x}).(x_t - \overline{x}), -n < h < n$$

remark: notice the denominator (because of mathematical properties)

• the sample autocorrelation function estimator is

$$\hat{\rho}(h) = \frac{\hat{\gamma}(n)}{\hat{\gamma}(0)}$$
, $-n < h < n$. Note that $\hat{\rho}(h) \in [-1; 1]$

15/41

Data with strong trend:

slow decay of correlations with h

Data with strong seasonality:

periodicity on the ACF (here monthly measures ⇒ period = 12)

Outline

- Problem definition
- Some elementary concepts
- Some elementary models
- Decomposing the time series
- 5 Towards more elaborate models: ARMA models

What is a time series model?

Definition

Time series model: specification of the joint distributions of a sequence of random variables X_t of which the observed data is supposed to be the realization

Remarks:

- suppose to know $\forall n$ the distribs $P(X_1 = x_1, ..., X_n = x_n)$ \Rightarrow in most case too many parameters...
- in practice, we focus on first and second order moments:
 - expected values $\mathbb{E}[X_t]$
 - and expected products $\mathbb{E}[X_{t+h}X_t]$, h = 1, 2, ...

Independent Identically Distributed noise model

IID noise

independant:

$$P(X_1 = x_1, ..., X_n = x_n) = P(X_1 = x_1) \cdot ... \cdot P(X_n = x_n)$$

• identically distributed: $P(X_t = x) = P(X_{t'} = x)$

IID noise is obviously stationary

ex: repeated coin flipping with heads=1, tails=-1 should be IID noise

Independent Identically Distributed noise model

IID noise

independant:

$$P(X_1 = x_1, ..., X_n = x_n) = P(X_1 = x_1) \cdot ... \cdot P(X_n = x_n)$$

• identically distributed: $P(X_t = x) = P(X_{t'} = x)$

IID noise is obviously stationary ex: repeated coin flipping with heads=1, tails=-1 should be IID noise

White noise (bruit blanc)

Special case IID noise with

- 0 mean: $E[X_t] = 0$
- autocovariance function:

$$\gamma_X(h) = \sigma^2$$
 if $h = 0$ and $\gamma_X(h) = 0$ if $h \neq 0$

8/41

Random Walk model

How to build a random walk? (marche aléatoire)

Suppose $\{X_t\}$ is IID noise, then $\{S_t\}$ defined as:

$$S_t = X_1 + \ldots + X_t$$

is a random walk

Random Walk model

How to build a random walk? (marche aléatoire)

Suppose $\{X_t\}$ is IID noise, then $\{S_t\}$ defined as:

$$S_t = X_1 + \ldots + X_t$$

is a random walk

Remarks:

- is a random walk stationary?
- it's a summation of an IID process
- and conversely $X_t = S_t S_{t-1}$

Random Walk model

How to build a random walk? (marche aléatoire)

Suppose $\{X_t\}$ is IID noise, then $\{S_t\}$ defined as:

$$S_t = X_1 + \ldots + X_t$$

is a random walk

Remarks:

- is a random walk stationary? No
- it's a summation of an IID process
- and conversely $X_t = S_t S_{t-1}$

Outline

- Problem definition
- Some elementary concepts
- Some elementary models
- Decomposing the time series
- 5 Towards more elaborate models: ARMA models

How to analyze a time series? (2)

Second step:

- (if necessary) transform data
- remove the trend and seasonal components to get stationary residuals (résidus)

Residual time series obtained (remainder) should be stationary, but not necessarily IID noise...

Back to the classical decomposition

Classical decomposition of the time series

$$X_t = s_t + m_t + r_t$$

- seasonality s_t
- trend m_t
- remainder r_t

What is the difference between seasonality and trend?

$$s_{t+d} = s_t$$
 and $\sum_{j=1}^d s_j = 0$

Back to the classical decomposition

Classical decomposition of the time series

$$X_t = s_t + m_t + r_t$$

- seasonality s_t
- trend m_t
- remainder r_t

What is the difference between seasonality and trend?

$$s_{t+d} = s_t$$
 and $\sum_{j=1}^d s_j = 0$

22/41

Method 1: model and regression

→ cf. course Regression

E.g.: 2nd order polynomial model with least squares regression

Minimize
$$\sum_{t=1}^{n} (x_t - m_t)^2$$
, with $m_t = a_0 + a_1 t + a_2 t^2$

Method 1: model and regression

→ cf. course Regression

E.g.: 2nd order polynomial model with least squares regression

Minimize
$$\sum_{t=1}^{n} (x_t - m_t)^2$$
, with $m_t = a_0 + a_1 t + a_2 t^2$

Then we plot the residuals $\{x_t - m_t\}$

Questions to ask oneself:

- Does it look stationary? Perceptible trend?
- Does it look like noise? Is it smooth? Do we see stretch of values of the same sign?

What is a moving average? (moyenne mobile)

To smooth (*rendre lisse*) a signal x_t , one possibility:

$$x'_t = \frac{1}{2q+1} \sum_{h=-q}^{h=+q} x_{t-h} , \ q < t < n-q$$

What is a moving average? (moyenne mobile)

To smooth (*rendre lisse*) a signal x_t , one possibility:

$$x'_t = \frac{1}{2q+1} \sum_{h=-q}^{h=+q} x_{t-h}, \ q < t < n-q$$

What is a moving average? (moyenne mobile)

To smooth (*rendre lisse*) a signal x_t , one possibility:

$$x'_t = \frac{1}{2q+1} \sum_{h=-q}^{h=+q} x_{t-h}, \ q < t < n-q$$

What is a moving average? (moyenne mobile)

To smooth (*rendre lisse*) a signal x_t , one possibility:

$$x'_t = \frac{1}{2q+1} \sum_{h=-q}^{h=+q} x_{t-h}, \ q < t < n-q$$

can also be seen as a method to isolate the trend

Method 2: moving average

$$m_t = \frac{1}{2q+1} \sum_{h=-q}^{h=+q} x_{t-h} , \ q < t < n-q$$

can also be seen as a method to isolate the trend

Method 2: moving average

$$m_t = \frac{1}{2q+1} \sum_{h=-q}^{h=+q} x_{t-h} , \ q < t < n-q$$

can also be seen as a method to isolate the trend

Method 2: moving average

$$m_t = \frac{1}{2q+1} \sum_{h=-q}^{h=+q} x_{t-h}, \ q < t < n-q$$

can also be seen as a method to isolate the trend

Method 2: moving average

$$m_t = \frac{1}{2q+1} \sum_{h=-q}^{h=+q} x_{t-h} , \ q < t < n-q$$

Regression

Which model? Harmonic regression

$$s_{t} = a_{0} + \sum_{i=1}^{k} a_{j} cos\left(\frac{2\pi t}{T_{j}}\right) + b_{j} sin\left(\frac{2\pi t}{T_{j}}\right)$$

Regression

Which model? Harmonic regression

$$s_t = a_0 + \sum_{j=1}^k a_j cos\left(\frac{2\pi t}{T_j}\right) + b_j sin\left(\frac{2\pi t}{T_j}\right)$$

Regression

Which model? Harmonic regression

$$s_t = a_0 + \sum_{j=1}^k a_j cos\left(\frac{2\pi t}{T_j}\right) + b_j sin\left(\frac{2\pi t}{T_j}\right)$$

Regression

Which model? Harmonic regression

$$s_t = a_0 + \sum_{j=1}^k a_j cos\left(\frac{2\pi t}{T_j}\right) + b_j sin\left(\frac{2\pi t}{T_j}\right)$$

About pre-processing

Second step:

- (if necessary) transform data
- remove the trend and seasonal components to get stationary residuals

When is it necessary to transform data?

Some cases

- if outliers → discard them if justified
 ex: external stimulus, mistake in data acquisition, . . .
- if obvious different regimes
 - → break data into homogeneous segments
- if noise or seasonality component increases with level
 - ightarrow logarithmic transformation of the data

About pre-processing

Second step:

- (if necessary) transform data
- remove the trend and seasonal components to get stationary residuals

When is it necessary to transform data?

Some cases

- if outliers → discard them if justified
 ex: external stimulus, mistake in data acquisition, . . .
- if obvious different regimes
 - → break data into homogeneous segments
- if noise or seasonality component increases with level
 - \rightarrow logarithmic transformation of the data

Logarithmic transformation

If fluctuations (seasonality, noise) grow with magnitude...

... after logarithmic transform

→ c.f. course *Regression* (heteroscedasticity)

Conduct similar analysis on the transformed time series and reverse the transformations in the end to make predictions etc.

Logarithmic transformation

If fluctuations (seasonality, noise) grow with magnitude...

... after logarithmic transform

→ c.f. course Regression (heteroscedasticity)

Conduct similar analysis on the transformed time series and reverse the transformations in the end to make predictions etc.

Logarithmic transformation

If fluctuations (seasonality, noise) grow with magnitude...

... after logarithmic transform

→ c.f. course Regression (heteroscedasticity)

Conduct similar analysis on the transformed time series and reverse the transformations in the end to make predictions etc.

Outline

- Problem definition
- Some elementary concepts
- Some elementary models
- Decomposing the time series
- 5 Towards more elaborate models: ARMA models

How to analyze a time series? (3)

Third step:

fit the residuals

For this purpose, we introduce new families of models

What is autoregression?

auto means self ⇒ regression from itself

The most basic AR model: 1st order regression or AR(1)

 $\{X_t\}$ is a series satisfying:

$$X_t = \phi X_{t-1} + W_t$$

where W_t is a white noise (0 means, σ^2 variance)

if stationary, we can check that $\mathbb{E}[X_t] = 0$ and

$$\gamma_X(h) = \phi^{|h|} \gamma_X(0) = \phi^{|h|} \frac{\sigma^2}{1-\phi^2}$$

Note: random walk is AR(1) with $\phi = 1$, in general assume $|\phi| < 1$ w. AR(1)

Suppose AR(1) model for residuals r_t , how to compute ϕ ?

- plot r_t as a function of r_{t-1} (lag-1 plot)
- linear fit, slope is ϕ

Suppose AR(1) model for residuals r_t , how to compute ϕ ?

- plot r_t as a function of r_{t-1} (lag-1 plot)
- linear fit, slope is ϕ

Now, compute we compute the "residuals of residuals":

$$r_t - \phi r_{t-1}$$

Is it much better?

Now, compute we compute the "residuals of residuals":

$$r_t - \phi r_{t-1}$$

Is it much better?

Problem definition
Some elementary concepts
Some elementary models
Decomposing the time series
Towards more elaborate models: ARMA models

Testing if the residuals time series is IID: method 1

General idea: suppose IID random variables What should we observe? Is it the case?

Testing if the residuals time series is IID: method 1

General idea: suppose IID random variables What should we observe? Is it the case?

Sample ACF criterion

Theorem (admitted):

- suppose x_t IID with mean 0 and variance 1 (white noise)
- if *n* large enough, $\hat{\rho}_X(h)$ is approx. distributed as $\mathcal{N}(0, \frac{1}{\sqrt{n}})$

In practice, consider the 95% confidence interval: we measure how many values fall out of $\left[\frac{-1.96}{\sqrt{n}}, \frac{+1.96}{\sqrt{n}}\right]$

→ c.f. course Hypothesis testing

Testing if the residuals time series is IID: method 1

General idea: suppose IID random variables What should we observe? Is it the case?

Sample ACF criterion

Theorem (admitted):

- suppose x_t IID with mean 0 and variance 1 (white noise)
- if *n* large enough, $\hat{\rho}_x(h)$ is approx. distributed as $\mathcal{N}(0, \frac{1}{\sqrt{n}})$

General idea: suppose IID random variables What should we observe? Is it the case?

Sample ACF criterion

Theorem (admitted):

- suppose x_t IID with mean 0 and variance 1 (white noise)
- if *n* large enough, $\hat{\rho}_X(h)$ is approx. distributed as $\mathcal{N}(0, \frac{1}{\sqrt{n}})$

General idea: suppose IID random variables What should we observe? Is it the case?

Turning point test

Turning point x_i (only defined for 1 < i < n): if $x_i \ge x_{i-1}$ and $x_i \ge x_{i+1}$ or x_i if $x_i \le x_{i-1}$ and $x_i \le x_{i+1}$

- Probability that a point is a turning point if IID? $\frac{2}{3}$
- $\Rightarrow \mu_T = \mathbb{E}[T_n] = \frac{2(n-2)}{3}$, with T_n number of turning points

•
$$Var(T_n) = \mathbb{E}[T_n^2] - \mathbb{E}[T_n]^2 \Rightarrow \sigma_T^2 = Var(T_n) = \frac{16n - 29}{90}$$

If x_i is IID, T_n is approximately $\mathcal{N}(\mu_T, \sigma_T^2)$

• test if 1.96 $> \frac{T_n - \mu_T}{\sigma_T} > -1.96$ for the 95% CI

General idea: suppose IID random variables What should we observe? Is it the case?

Turning point test

Turning point x_i (only defined for 1 < i < n): if $x_i \ge x_{i-1}$ and $x_i \ge x_{i+1}$ or x_i if $x_i \le x_{i-1}$ and $x_i \le x_{i+1}$

- Probability that a point is a turning point if IID? $\frac{2}{3}$
- $\Rightarrow \mu_T = \mathbb{E}[T_n] = \frac{2(n-2)}{3}$, with T_n number of turning points

•
$$Var(T_n) = \mathbb{E}[T_n^2] - \mathbb{E}[T_n]^2 \Rightarrow \sigma_T^2 = Var(T_n) = \frac{16n - 29}{90}$$

If x_i is IID, T_n is approximately $\mathcal{N}(\mu_T, \sigma_T^2)$

• test if 1.96 $> \frac{T_n - \mu_T}{\sigma_T} > -1.96$ for the 95% CI

General idea: suppose IID random variables What should we observe? Is it the case?

Turning point test

Turning point x_i (only defined for 1 < i < n): if $x_i \ge x_{i-1}$ and $x_i \ge x_{i+1}$ or x_i if $x_i \le x_{i-1}$ and $x_i \le x_{i+1}$

- Probability that a point is a turning point if IID? $\frac{2}{3}$
- $\Rightarrow \mu_T = \mathbb{E}[T_n] = \frac{2(n-2)}{3}$, with T_n number of turning points

•
$$Var(T_n) = \mathbb{E}[T_n^2] - \mathbb{E}[T_n]^2 \Rightarrow \sigma_T^2 = Var(T_n) = \frac{16n - 29}{90}$$

If x_i is IID, T_n is approximately $\mathcal{N}(\mu_T, \sigma_T^2)$

• test if 1.96 $> \frac{T_n - \mu_T}{\sigma_T} > -1.96$ for the 95% CI

General idea: suppose IID random variables What should we observe? Is it the case?

In our example (airplane crashes):

- T_n^{res} = 64 on the residuals
- T_n^{resAR1} = 59 on the residuals of the residuals (after AR1)

⇒ both pass this test

Now let's think of the Moving Average process as a model

MA(1) model

 W_t is white noise signal = weighted average of noise at t and of noise at t-1

$$\bullet X_t = \beta_0 W_t + \beta_1 W_{t-1}$$

•
$$X_t = \beta_0 W_t + \beta_1 W_{t-1} + \ldots + \beta_q W_{t-q}$$

Now let's think of the Moving Average process as a model

MA(q) model

 W_t is white noise signal = weighted average of noise at t and q previous steps

•
$$X_t = \beta_0 W_t + \beta_1 W_{t-1}$$

•
$$X_t = \beta_0 W_t + \beta_1 W_{t-1} + \ldots + \beta_q W_{t-q}$$

$$X_t = \beta_0 W_t + \beta_1 W_{t-1} + \ldots + \beta_q W_{t-q}$$

Some characteristics

- Stationary process mean and autocovariance at lag h do not depend on time Ex: prove if $h \le q$, $Cov(X_t, X_{t+h}) = \sigma^2 \sum_{i=0}^{q-h} \beta_i \beta_{i+h}$
- ACF cuts off at lag q

$$X_t = \beta_0 W_t + \beta_1 W_{t-1} + \ldots + \beta_q W_{t-q}$$

Some characteristics

- Stationary process mean and autocovariance at lag h do not depend on time Ex: prove if $h \le q$, $Cov(X_t, X_{t+h}) = \sigma^2 \sum_{i=0}^{q-h} \beta_i \beta_{i+h}$
- ACF cuts off at lag q

AR(1) model

 W_t is white noise signal = noise and (weighted) influence of the signal at t-1

$$\bullet X_t = \phi X_{t-1} + W_t$$

$$X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + \ldots + \phi_p X_{t-p} + W_t$$

AR(p) model

 W_t is white noise signal = noise and influence of the signal at p previous steps

$$X_t = \phi X_{t-1} + W_t$$

$$X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + \ldots + \phi_p X_{t-p} + W_t$$

$$X_{t} - \phi_{1}X_{t-1} - \phi_{2}X_{t-2} - \ldots - \phi_{p}X_{t-p} = W_{t}$$

Some characteristics

- Stationary process? $\rightarrow P(x) = 1 \phi_1 x \phi_2 x^2 \dots \phi_p x^p$ if all its roots are out of the unit circle, then AR(p) stationary example: AR(1), $P(x) = 1 \phi x \Rightarrow root$ is $\frac{1}{\phi} \Rightarrow |\phi| < 1$
- smoother decay, no cut-off (as with MA models)

35/4

$$X_t - \phi_1 X_{t-1} - \phi_2 X_{t-2} - \ldots - \phi_p X_{t-p} = W_t$$

Some characteristics

- Stationary process? $\rightarrow P(x) = 1 \phi_1 x \phi_2 x^2 \dots \phi_p x^p$ if all its roots are out of the unit circle, then AR(p) stationary example: AR(1), $P(x) = 1 \phi x \Rightarrow root \text{ is } \frac{1}{\phi} \Rightarrow |\phi| < 1$
- smoother decay, no cut-off (as with MA models)

5/41

How to find AR(p) ACF coefficients?

$$X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + \ldots + W_t$$

Yule-Walker equations

We have seen that for AR(1):

$$\gamma(h) = \phi^{|h|}\gamma(0) = \phi^{|h|} \frac{\sigma^2}{1 - \phi^2}$$

Note that it would diverge with h if $|\phi| > 1$, AR(1) stationary $\Leftrightarrow |\phi| < 1$

What about the general case? If stationary,

$$\gamma(h) = \phi_1 \gamma(h-1) + \phi_2 \gamma(h-2) + \dots \\ \rho(h) = \phi_1 \rho(h-1) + \phi_2 \rho(h-2) + \dots$$

→ these are called the Yule-Walker equations

How to find AR(p) ACF coefficients?

$$X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + \ldots + W_t$$

Yule-Walker equations

We have seen that for AR(1):

$$\gamma(h) = \phi^{|h|}\gamma(0) = \phi^{|h|} \frac{\sigma^2}{1 - \phi^2}$$

Note that it would diverge with h if $|\phi| > 1$, AR(1) stationary $\Leftrightarrow |\phi| < 1$

What about the general case? If stationary,

$$\gamma(h) = \phi_1 \gamma(h-1) + \phi_2 \gamma(h-2) + \dots$$

 $\rho(h) = \phi_1 \rho(h-1) + \phi_2 \rho(h-2) + \dots$

→ these are called the Yule-Walker equations

How to find AR(p) ACF coefficients?

Illustration on a practical case

$$X_t = \frac{1}{3}X_{t-1} + \frac{1}{2}X_{t-2} + W_t$$

From MA to AR

Considering the MA(1) process:

$$\begin{array}{rcl} X_{t} & = & W_{t} + \beta W_{t-1} \\ \Rightarrow W_{t} & = & X_{t} - \beta W_{t-1} \\ \Rightarrow W_{t} & = & X_{t} - \beta (X_{t-1} - \beta W_{t-2}) \\ \Rightarrow W_{t} & = & X_{t} - \beta X_{t-1} + \beta^{2} X_{t-2} - \beta^{3} X_{t-3} + \dots \\ \Rightarrow X_{t} & = & W_{t} + \beta X_{t-1} - \beta^{2} X_{t-2} + \beta^{3} X_{t-3} - \dots \end{array}$$

In other words, MA(1) is an AR(∞) process

More generally, any MA(q) can be seen as an AR(∞) process (if MA(q) is invertible)

From MA to AR

Considering the MA(1) process:

$$\begin{array}{rcl} X_t & = & W_t + \beta W_{t-1} \\ \Rightarrow W_t & = & X_t - \beta W_{t-1} \\ \Rightarrow W_t & = & X_t - \beta (X_{t-1} - \beta W_{t-2}) \\ \Rightarrow W_t & = & X_t - \beta X_{t-1} + \beta^2 X_{t-2} - \beta^3 X_{t-3} + \dots \\ \Rightarrow X_t & = & W_t + \beta X_{t-1} - \beta^2 X_{t-2} + \beta^3 X_{t-3} - \dots \end{array}$$

In other words, MA(1) is an AR(∞) process

More generally, any MA(q) can be seen as an AR(∞) process (if MA(q) is invertible)

From AR to MA

$$X_{t} = W_{t} + \phi X_{t-1} \Rightarrow X_{t} = W_{t} + \phi (W_{t-1} + \phi X_{t-2}) \Rightarrow X_{t} = W_{t} + \phi W_{t-1} + \phi^{2} W_{t-2} + \phi^{3} X_{t-3} + \dots$$

In other words, AR(1) is an MA(∞) process

More generally, any AR(p) can be seen as an MA(∞) process (if AR(p) is invertible)

From AR to MA

$$X_{t} = W_{t} + \phi X_{t-1} \Rightarrow X_{t} = W_{t} + \phi (W_{t-1} + \phi X_{t-2}) \Rightarrow X_{t} = W_{t} + \phi W_{t-1} + \phi^{2} W_{t-2} + \phi^{3} X_{t-3} + \dots$$

In other words, AR(1) is an MA(∞) process

More generally, any AR(p) can be seen as an MA(∞) process (if AR(p) is invertible)

The ARMA models

ARMA(p,q) model

ARMA(p,q) model is a combination of AR(p) and MA(q) model:

$$X_t = \phi_1 X_{t-1} + \ldots + \phi_p X_{t-p} + W_t + \beta_1 W_{t-1} + \ldots + \beta_q W_{t-q}$$

As for AR(p) and MA(q) parameters can be found from the ACF

In practice

- fit the residuals with several (low) values of p and q
- select what is the best model
- ⇒ complete model:

trend + seasonality + ARMA(p,q) residuals

The ARMA models

ARMA(p,q) model

ARMA(p,q) model is a combination of AR(p) and MA(q) model:

$$X_t = \phi_1 X_{t-1} + \ldots + \phi_p X_{t-p} + W_t + \beta_1 W_{t-1} + \ldots + \beta_q W_{t-q}$$

As for AR(p) and MA(q) parameters can be found from the ACF

In practice

- fit the residuals with several (low) values of p and q
- select what is the best model
- ⇒ complete model:

trend + seasonality + ARMA(p,q) residuals

- How to choose p and q of an ARMA process?
 → useful to define partial ACF
- How to find the coefficients of an ARMA process?
 → transform it in a MA(∞) or AR(∞) process
- How do we select the best models?
 → complexity criteria and the overfitting problem
- How to deal more systematically with the trend?
 → differentiation method
- How do we make a prediction with our model?
 → extrapolate complete model to future values

- How to choose p and q of an ARMA process?
 → useful to define partial ACF
- How to find the coefficients of an ARMA process?
 → transform it in a MA(∞) or AR(∞) process
- How do we select the best models?
 → complexity criteria and the overfitting problem
- How to deal more systematically with the trend?
 → differentiation method

- How to choose p and q of an ARMA process?
 → useful to define partial ACF
- How to find the coefficients of an ARMA process? \rightarrow transform it in a $MA(\infty)$ or $AR(\infty)$ process
- How do we select the best models?
 - → complexity criteria and the overfitting problem
- How to deal more systematically with the trend?
 → differentiation method
- How do we make a prediction with our model?

 A sytrapolate complete model to future values.

- How to choose p and q of an ARMA process?
 → useful to define partial ACF
- How to find the coefficients of an ARMA process? \rightarrow transform it in a $MA(\infty)$ or $AR(\infty)$ process
- How do we select the best models?
 - → complexity criteria and the overfitting problem
- How to deal more systematically with the trend?
 - → differentiation method
- How do we make a prediction with our model?
 → extrapolate complete model to future values

- How to choose p and q of an ARMA process?
 → useful to define partial ACF
- How to find the coefficients of an ARMA process? \rightarrow transform it in a $MA(\infty)$ or $AR(\infty)$ process
- How do we select the best models?
 - → complexity criteria and the overfitting problem
- How to deal more systematically with the trend?
 - → differentiation method
- How do we make a prediction with our model?
 - → extrapolate complete model to future values

Longer term perspectives

- Traditional Box-Jenkins decomposition improvements: ARIMA, SARIMA
- Spectral methods using Fourier transform
- Learning methods: neural networks (seq2seq)

Studying time series in python

Among several options, pandas library

A few useful functions:

- Load data as dataframe: read_csv from pandas library
- Moving average: rolling from pandas library
- Fitting: curve_fit in scipy.optimize library
- Autocorrelation function: plot_ACF in statsmodels library
- ARMA model fit:
 ARMA.fit in statsmodels library