Chep 3.2

Z-transform of a sequence (can be input, output, impulse response, etc.) X[n] is a function X(z)  $\frac{Z-tensform}{Symfrom} + that Symfrom - 00 to 00$   $\frac{X(Z)}{Z-tensform} = \frac{Z-tensform}{Z-tensform}$   $\frac{Z-tensform}{Z-tensform} = \frac{Z-tensform}{Z-tensform}$ defined by

$$\overline{X}(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n}$$

Where the Variable Z is an complex number. The Z-transform is also a complex number. So be sure to do your review on complex numbers!

Ex: 
$$h[n] = \frac{1}{0}$$

$$H(z) = h[0]z^{-0} + h[1]z^{-1} = a+az^{-1}$$

$$X(z) = x[-3]z^{-(-3)} + x[-a]z^{-(-a)}$$

$$= 2z^{3} + 2z^{2}$$

$$= 4xa + ba = z - t$$

so you can see that finding the Z-transform for X[n] with finite number of nonzero is trivial

Finding the Z-transform when X[n] is infinite length (i.e. X[n]=  $\frac{1}{2}$ ),  $\cos(\omega_0 n)$ ,  $e^{i\omega_0 n}$ ,...) means we need to be a bit more coreful

1) Since the Z-transform requires summation from -00 to 00, it may be that X(Z=3+j2)=00. In this case the Z-transform does not exist for Z=3+j2.

For any given sequence X[n], the set of values of Z for which X(Z) converges is known as the region of convergence. (ROC)

Values of Z for unich Z(Z)=0 one called the Z(Q)=0 one called the Z(Q)=0 one called the Z(Q)=0

values of Z for which X(z) = cP are called the poles of X(z). ROC can not contain any poles

If poles and zeros are complex numbers, then they appear in complex conjugate pairs

Stace Z and H(z) are complex numbers, we Visualize the region of convergence in the

heal imagney plane

$$ex$$
)
 $H(z) = \lambda + \lambda z^{-1}$ 
 $H(z=0) = \lambda$ 

ROC = the entire real ord imaginary plane

2) For common signals, we have z-tansform pairs

there is no z for which H(z)=00

$$X(z) = \sum_{n=-\infty}^{\infty} S(n) z^{-n} = z^{0} = 1$$
, ROC: All  $z$ 

$$X(z) = \sum_{n=-\infty}^{\infty} u(n) z^{-n} = \sum_{n=0}^{\infty} z^{-n} = z^0 + z^1 + z^2 + ...$$

If 
$$Z=1$$
,  $X(Z)=\frac{1}{6}$  = world ending!!, non converse!! =  $\infty$ 



The region of convergence can not contain Z=1.

So ROC can either be



2) 12/1



We need one addition piece of information. That is to realize that U[n] is an infinite duration, hight-sided sequence

$$z_{nJ} = z_{nJ} = z_{nJ}$$
 (8)

X[n] is right-sided

$$T(z) = \sum_{n=-\infty}^{\infty} \alpha^{n} u[n] z^{n} = \sum_{n=-\infty}^{\infty} (\alpha z^{n})^{n}$$

$$= | + \alpha z^{-1} + \alpha^2 z^{-2} + \alpha^3 z^{-3} + \dots$$

By geometric series, we know the summation converges to if 12/7/a/

Zeros: there is no zero in the system

poles: one pole at Z=a

ROC: 12/L/al

Therefore

A a

ROC: 1217/a1

00

Since  $X[n] = a^n u[n]$  is a night-sided Sequence, we know ROC is |Z| > |a|

4) 
$$\chi [n] = -\alpha u[-n-1] \chi [n]$$
 is left-sided
$$= \begin{cases} 0, & n \ge 0 \\ -\alpha, & n < 0 \end{cases}$$

$$X(z) = \sum_{n=-\infty}^{\infty} -\alpha^n u[-n-1] z^{-n} = -\sum_{n=-\infty}^{\infty} (\alpha z^{-1})^n$$

$$= -\alpha^1 z (1+\alpha^1 z+\alpha^2 z^2 + \dots)$$
geometric series converges if  $|z| < |\alpha|$ 

We also know ROC: 121<1a1 since X[n] is a left sided sequence

|    | Sequence $x[n]$              | z-Transform $X(z)$                                                         | ROC     |
|----|------------------------------|----------------------------------------------------------------------------|---------|
|    | $\delta[n]$                  | 1                                                                          | All z   |
| 2. | u[n]                         | $\frac{1}{1-z^{-1}}$                                                       | z  > 1  |
|    | $a^nu[n]$                    | $\frac{1}{1-az^{-1}}$                                                      | z  >  a |
| ١. | $-a^nu[-n-1]$                | $\frac{1}{1-az^{-1}}$                                                      | z  <  a |
| i. | $na^nu[n]$                   | $\frac{az^{-1}}{(1-az^{-1})^2}$                                            | z  >  a |
| j. | $-na^nu[-n-1]$               | $\frac{az^{-1}}{(1-az^{-1})^2}$                                            | z  <  a |
|    | $(\cos \omega_0 n) u[n]$     | $\frac{1 - (\cos \omega_0)z^{-1}}{1 - 2(\cos \omega_0)z^{-1} + z^{-2}}$    | z  > 1  |
|    | $(\sin \omega_0 n) u[n]$     | $\frac{(\sin \omega_0)z^{-1}}{1 - 2(\cos \omega_0)z^{-1} + z^{-2}}$        | z  > 1  |
| ). | $(r^n\cos\omega_0 n)u[n]$    | $\frac{1 - (r\cos\omega_0)z^{-1}}{1 - 2(r\cos\omega_0)z^{-1} + r^2z^{-2}}$ | z  > r  |
| ). | $(r^n \sin \omega_0 n) u[n]$ | $\frac{(r\sin\omega_0)z^{-1}}{1 - 2(r\cos\omega_0)z^{-1} + r^2z^{-2}}$     | z  > r  |

A pole and a zero can cancel each other other if they are in the same location. This is called a pole-zero cancellation. In this case, the region may be in the ROC since the pole is cancelled.

$$E_{x}$$
:  $X(z) = \frac{1 - Z^{-(Mti)}}{1 - Z^{-1}}$ 

Poles at Z=1M+1 Zeros at Z=1. What are they?  $Z^{m+1} = 1 = e^{j0} = e^{j2\pi} = e^{j4\pi} = e^{j6\pi}$   $Z^{m+1} = i\frac{4\pi}{m!}$  Z=1, e, e
, e
, e
, e

The zero at Z=1 concels the pole at Z=1