Optimization methods. Seminar 9. Conjugate functions

Alexandr Katrutsa

Moscow Institute of Physics and Technology Department of Control and Applied Mathematics

June 28, 2018

Reminder

- Feasible direction cone
- Tangent cone
- Sharp extremum

Definition

Conjugacy again?

- Previously we introduced conjugate (dual) sets and in particular conjugate cones
- Today we consider conjugate (dual) functions
- Further we will introduce dual (conjugate) optimization problem

Definition

A function $f^*: \mathbb{R}^n \to \mathbb{R}$ is called conjugate function of function f and is defined as

$$f^*(\mathbf{y}) = \sup_{\mathbf{x} \in dom\ f} (\mathbf{y}^\mathsf{T} \mathbf{x} - f(\mathbf{x})).$$

Domain of f^* is a set of y, such that the supremum is finite.

Properties and interpretations

- Conjugate function f* is always convex as supremum of linear functions independently of convexity of f
- Young-Fenchel inequality:

$$\mathbf{y}^{\mathsf{T}}\mathbf{x} \leq f(\mathbf{x}) + f^{*}(\mathbf{y})$$

- If f is differentiable, then $f^*(y) = \nabla f^{\mathsf{T}}(x^*)x^* f(x^*)$, where x^* is a supremum point.
- Geometrical interpretation

Examples

- 1. Linear function: $f(x) = a^T x + b$
- 2. Negative entropy: $f(x) = x \log x$
- 3. Indicator function of the set S: $I_S(x) = 0$ iff $x \in S$
- 4. Norm: f(x) = ||x||.
- 5. Squared norm: $f(\mathbf{x}) = \frac{1}{2} ||\mathbf{x}||^2$

Recap

- Conjugate functions
- Young-Fenchel inequality and other properties
- Examples