PROXIMITY/DISTANCE MEASURES-PART 2

Dr. Umarani Jayaraman Assistant Professor

Topic

- Normalized Euclidean Distance
- Quadratic Form Distance

L_p Norm

$$L_p(X,Y) = \left(\sum_{i=1}^d (|x_i - y_i|)^p\right)^{\frac{1}{p}}$$

- □ Where $p=1,2,...,\infty$ and d is the dimension
- \square Depending on the value of p, we get different distance measures.
 - L₂: Euclidean
 - L₁: Manhattan (city block distance)
 - \square L_{∞}: Max (chess board distance)
 - \square L_{-\infty}: Min
- This is also called as Minkowski Norm

L_2 Norm/Euclidean Distance

- When p=2 , in L_p norm, we get the Euclidean distance.
- $lue{}$ This is also called the L_2 norm.

$$D(X,Y) = \left(\sum_{i=1}^{d} |x_i - y_i|^2\right)^{\frac{1}{2}}$$

Normalized Euclidean Distance

- $_{ extsf{ iny P}}$ When p=2 , in $\mathsf{L}_{_{ extsf{ iny P}}}$ norm, we get the Euclidean distance.
- \square This is also called the L_2 norm.

$$NED(X,Y) = \left(\sum_{i=1}^{d} |x_i' - y_i'|^2\right)^{\frac{1}{2}}$$

Each dimension is mean-centered and normalized

$$x_i' = (x_i - \mu_i)/\sigma_i$$

 μ_i and σ_i are the mean and standard deviation of dimension i for all data, i.e., the $i^{\rm th}$ row of ${\bf D}$

Metric? Yes

$$d_Q(x,y) = \sqrt{(x-y)^T A(x-y)}$$

- Quadratic form distance is a cross bin distance
- It specifies cross-dependencies of the dimensions
- It allows comparison of histograms across different bin locations

$$d_Q(x,y) = \sqrt{(x-y)^T A(x-y)}$$

An example in case $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$ of 2-D vectors

$$[(x_1-y_1) \quad (x_2-y_2)] \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} (x_1-y_1) \\ (x_2-y_2) \end{bmatrix} \longrightarrow \text{Scaler value}$$

$$[(x_1-y_1) \quad (x_2-y_2)] \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} (x_1-y_1) \\ (x_2-y_2) \end{bmatrix}$$

$$= [(x_1-y_1) \quad (x_2-y_2)] \begin{bmatrix} A_{11}(x_1-y_1) + A_{12}((x_2-y_2) \\ A_{21}(x_1-y_1) + A_{22}(x_2-y_2) \end{bmatrix}$$

$$= (x_1-y_1)A_{11}(x_1-y_1) + (x_1-y_1)A_{12}(x_2-y_2) + (x_2-y_2)A_{21}(x_1-y_1) + (x_2-y_2)A_{22}(x_2-y_2)$$

$$= A_{11}(x_1-y_1)^2 + A_{12}(x_1-y_1)(x_2-y_2) + A_{21}(x_2-y_2)(x_1-y_1) + A_{22}(x_2-y_2)^2$$

$$d_Q(x,y) = \sqrt{(x-y)^T A(x-y)}$$

- A is similarity matrix of size dxd
- A denotes the <u>similarity (or weight)</u> of dimension i with dimension j
- Note: A is positive semi-definite (for distance to be ≥ 0)

$$d_Q(x,y) = \sqrt{(x-y)^T A(x-y)}$$

- For example $A_{ij}=1-c_{ij}/c_{max}$ for color histograms
- c_{ij} is bin-to-bin distance and c_{max} the maximum distance
- Note
 - If A is an identity matrix, then Euclidean
 - If A is a diagonal matric, then weighted Euclidean
 - ☐ Is it a Metric? Yes, if A is positive definite

QFD represents correlation between dimensions

Application of QFD

- Comparison of color histograms
 - Considers similarity between colors i and j

Application of QFD

Example of histogram

Height (cm)	Frequency
145-150	2
150-155	5
155-160	9
160-165	9
165-170	4
170–175	1

Application of QFD

Image

Histogram of the given image

Comparison of color histograms

- How to find the similarity weights?
 - Distance between the bins
- Bin Distance = difference of indices

Comparison of color histograms

- Let d(i,j) represents distance of bin i and j
- Similarity matrix can be computed as

$$A_{ij} = e^{-\sigma \cdot d(i,j)}$$

where the parameter σ controls the global shape of the similarity matrix

Comparison of color histograms

Test Image

Database Image 1

Database Image 2

Mahalanobis distance

We know the <u>quadratic form distance</u>

$$d_Q(x,y) = \sqrt{(x-y)^T A(x-y)}$$

Replace
 A in quadratic form distance by inverse of covariance matrix ∑ to get
 Mahalanobis distance

$$d_M(x,y) = \sqrt{(x-y)^T \Sigma^{-1} (x-y)}$$

$$d_Q(x,y) = \sqrt{(x-y)^T A(x-y)}$$

- For example $A_{ij}=1-c_{ij}/c_{max}$ for color histograms
- c_{ij} is bin-to-bin distance and c_{max} the maximum distance
- Note
 - If A is an identity matrix, then Euclidean
 - If A is a diagonal matric, then weighted Euclidean
 - If A is an inverse of covariance matrix, then Mahalanobis distance
 - ☐ Is it a Metric? Yes, if A is positive definite

Summary

- Metric distance measure
- Quadratic form distance
- Application of QFD

THANK YOU