

QCRI at IWSLT 2013: Experiments in Arabic-English and English-Arabic Spoken Language Translation

Hassan Sajjad, Francisco Guzmán, Preslav Nakov, Ahmed Abdelali, Kenton Murray, Fahad Al Obaidli, Stephan Vogel Qatar Computing Research Institute

1. Baseline System

Train: TED 2013 training data;

• **Dev**: dev2010; Dev test: tst2010;

Maximum sentence length: 100 tokens;

• English truecasing: For AR→EN only;

• Word alignments: IBM4 + grow-diag-final-and;

Maximum phrase length: 7 tokens;

Language model: 5-gram;

• Reordering: msd-bidirectional-fe, mono-punct;

•Tuning: PRO.

3. Arabic Segmentation

Arabic segmentation schemes

D0, D1, D2, D3, S2, ATB (using MADA)

2. Adaptation

- Phrase table combination (TED+UN)
 - Three additional features
 - F1 if a phrase pair came from TED
 - F2 if a phrase pair came from UN
 - F3 if a phrase pair came from both TED and UN
 - Preferring TED data performs best
 - +0.6 BLEU points
- Backoff phrase tables (TED,UN)
 - n-gram order 6 or less
 - +0.6 BLEU points
- Modified Moore-Lewis filtering on UN
 - -0.3 BLEU points (UN filtered combined with TED)

4. System Combination

- 1. Decoder settings
 - OSM, MBR, 100 translations per input phrase
- 2. Arabic segmentations
 - D0, D1, D2, D3, S2, ATB
- 3. Adaptation
 - Phrase table combination
- 4. Decoders
 - Moses, cdec, Jane

System combination: +0.6 BLEU points over best individual system

5. QCRI Normalizer for Arabic Output and References

- Translating into Arabic:
 - Spelling inconsistencies (Ta Marbuta, Alef)
 - Punctuation symbols (Arabic & English mixed)
 - Digits (Arabic & Indian mixed)
 - Diacritics (with, without or wrong)
- Evaluation unfairly penalizes the translation output
- Solution: Use MADA+Aramorph to normalize the translation and the reference before evaluation
 - Punctuation symbols (to English)
 - Digits (to Arabic, i.e. 0-9)
 - Diacritics (dropped)
 - Fixed potential spelling errors of Alef, Ta Marbuta, Alef Maqsura, etc.
- Also: Reattach waw, normalize ".."

6. Arabic – English

Incremental improvement (ATB segmentation)

Major Improvement (tst2010) **EN-AR** AR-EN +0.2 Operation Sequence Model (OSM) +0.6 +0.6 Interpolated LM (Int. LM) +1.5 +0.2 Adaptation +0.6 Translations per input phrase +0.1 -0.1 System combination +0.6 +0.9 +3.4 Total

7. Official Scores

		tst2011	tst2012	tst2013
AR-EN	Primary	27.8	30.3	30.5
	Secondary	26.9	28.7	30.0
EN-AR	Primary	15.5	15.5	15.8
	Secondary	15.2	15.7	15.7
EN-AR (SLT)	Primary	_	_	10.3
	Secondary	_	_	10.3

Primary: system combination. Secondary: best individual system

8. Conclusion & Future Work

+3.4 BLEU points over the baseline AR→EN system

What helped most

- System combination
- Interpolated language model
- Adaptation using full UN data
- Operation sequence model
- PRO with fixed BLEU+1

Future work

Why less improvement for EN→AR than for AR→EN?

^{*} The system uses OSM and MBR with baseline settings