ıil

Презентация проекта

Создание прототипа ИИ-системы по анализу текстовых отзывов населения с кластеризацией и визуализацией

Цель проекта

Разработка Streamlit-приложения для:

определения тональности отзывов (позитив/негатив/нейтрал)

📈 оценки уверенности модели

• кластеризации отзывов с помощью PCA и BERT

генерации облаков слов по тональностям

Интерактивное приложение для анализа текстовых отзывов

Используемые технологии

Технологический стек для анализа текстовых отзывов

TF-IDF + Stacking

Векторизация текста и ансамблевая модель для предварительной обработки

BERT (RuBERT)

Предварительно обученная модель для создания семантических эмбеддингов

Logistic Regression

Финальный классификатор для определения тональности текста

PCA

Метод понижения размерности для визуализации кластеров

WordCloud, Plotly, Matplotlib

Библиотеки для создания визуализаций и графиков

Streamlit

Фреймворк для создания интерактивного веб-приложения

Качество предсказания по классам на размеченной выборке

Точность модели по классам тональности

correct_match	False	True	Всего	Точность %
Негатив	285	9715	10000	97.15%
Нейтрально	570	7920	8490	93.29%
Позитив	385	9615	10000	96.15%

Особенности реализации модели

Модель

Используется комбинированный подход — TF-IDF + Stacking + BERT. Финальный классификатор принимает на вход как вероятности от стекингмодели, так и CLS-эмбеддинги из BERT.

\(\) Описание архитектуры

- 1 TF-IDF-векторизация текста
 Преобразование текста в числовые векторы на
 основе частоты слов
- 2 Stacking-модель (бустинг + логрегрессия)
 Промежуточное представление для извлечения признаков
- 3 BERT (RuBERT)
 Выделение семантических признаков (CLSэмбеддинг)
- Финальный классификатор (MLP / логрегрессия)

Архитектура комбинированной модели Входной текст TF-IDF + Stacking **BERT (RuBERT)** Объединение признаков Финальная классификация

Архитектура, обучение, предсказание модели: ссылка

Интерфейс: Ввод и анализ одного отзыва

Приложение позволяет пользователю ввести отзыв и получить:

- Предсказанную тональность
- Уровень уверенности
- График уверенности

😊 Запуск веб-интерфейса в streamlit: ссылка

Фильтрация данных

Распределение по тональности и вероятности

- Гистограмма вероятностей положительного класса
- ii: Столбчатая диаграмма количества по меткам

СЕ Отображение отзывов с низкой уверенностью (менее 65%)

і Гистограмма вероятностей

ії Распределение по тональностям

С≡ Отзывы с низкой уверенностью

№ Если пики ближе к0.5, модель часто сомневается; если ближе к0или1— она уверена.

Кластеризация с помощью РСА

Отзывы отображаются в 2Dпространстве

Эмбеддинги сгенерированы через BERT

Цвета — по тональности

Облака слов по тональности

 Для каждой тональности — облако слов Подпись: топ-5 часто встречающихся слов Автоматически
 фильтруются короткие и
 нерелевантные слова

Позитивные отзывы удобно рекомендую качественно спасибо Топ-5 слов: хорошо отлично рекомендую качественно быстро

Технические сложности и решения

Преодоленные технические вызовы в процессе разработки

Проблема с BERT

BERT не предназначен для прямой интеграции с классическими ML-моделями Решение

Требовалась обёртка, обеспечивающая батчинг, паддинг, работу с GPU/CPU

Ф Конкатенация больших тензоров

Объединение BERT-эмбеддингов и вероятностей стек-модели приводило к высоким требованиям к памяти Решение

Решено путём:

- ✓ Использования батчей при генерации эмбеддингов
- Oграничения на max_length=128
- Работы с float32 вместо float64 для уменьшения размера

Некоторые прогнозы модели имели низкую уверенность Решение

Указан уровень доверия и отдельный вывод слабых предсказаний

Результат

- 🗘 Достижения проекта
 - Интерактивное приложение готово к использованию

Поддерживает массовую обработку и визуальный анализ

тибкая архитектура: можно адаптировать под любую предметную область (отзывы, сообщения и т.д.)

Предпросмотр приложения Анализ текстовых отзывов Обработано отзывов: 28,490 Позитивных: 35.1% Негативных: 35.1% Нейтральных: 29.8% • Визуализация кластеров 2D-визуализация кластеров отзывов

Дальнейшие шаги

✓ Планы развития проекта

Подключение к базе данных

Интеграция с базой данных отзывов в реальном времени для актуального анализа

Обучение по разметке экспертов

Добавление возможности дообучения модели на основе новой разметки от экспертов

Улучшение визуализации

Внедрение продвинутых методов

визуализации

(UMAP, t-SNE) для более точного представления данных

Поддержка английского языка

Расширение функционала для многоязычного

анализа текстов

Дорожная карта развития

Интеграция с базой данных

Ближайшие 3 месяца

Система дообучения модели

3-6 месяцев

Новые методы визуализации

6-9 месяцев

Мультиязычная поддержка

9-12 месяцев