1. Complementos de funções reais de variável real

baseado no texto de Virgínia Santos, Cálculo com funções de uma variável, 2009/10, pp. 75 — 144

Isabel Brás

UA, 20/9/2016

Cálculo I – Agrup. I 16/17

Resumo dos Conteúdos

- Funções Invertíveis Definições, propriedades e exemplos
- Trigonométricas Inversas (e trigonométricas diretas)
- Oerivação das funções inversas
- Extremos e extremantes de uma função
- Teoremas de Bolzano e de Weierstrass
- Teorema de Rolle
- 🕡 Teorema de Lagrange
- Teorema de Cauchy e Regra de Cauchy

Definição de Função e Notas Introdutórias

Definição

Uma função real de variável real f é uma correspondência que a cada elemento de $D_f \subset \mathbb{R}$ (domínio de f) faz corresponder um e um só elemento de \mathbb{R} . Notação: $f:D_f \to \mathbb{R}$.

- **1** As funções que consideraremos terão sempre domínio em \mathbb{R} . Assim, os domínios para elas considerados deverão ser sempre tomados como subconjuntos de \mathbb{R} , mesmo que tal esteja omisso.
- ② Os alunos devem recapitular de forma autónoma, as várias definições básicas relativas a f.r.v.r., tais como contradomínio, injetividade, sobrejetividade, monotonia, etc. Recomenda-se a leitura atenta do texto "Preliminares sobre funções reais de variável real" disponível em http://elearning.ua.pt/.

Função Invertível

Definição:

 $f \colon D_f \longrightarrow \mathbb{R}$ é uma função injetiva se, para todo o $x_1, x_2 \in D_f$,

$$f(x_1) = f(x_2) \Longrightarrow x_1 = x_2$$

Definição:

Seja $f:D_f o \mathbb{R}$, (onde $D_f \subset \mathbb{R}$), uma função injetiva. A função

$$f^{-1}: CD_f \rightarrow \mathbb{R}$$

 $y \mapsto x$

onde x é tal que f(x) = y, é designada por função inversa de f.

Dizemos que uma função é invertível se admite inversa.

Observações:

- f é invertível sse f é injetiva;
- O contradomínio de f^{-1} é D_f ;
- $\forall x \in D_f$ $f^{-1} \circ f(x) = x$;
- $\forall y \in CD_f \quad f \circ f^{-1}(y) = y;$
- $\forall x \in D_f \ \forall y \in CD_f \ f(x) = y \Leftrightarrow x = f^{-1}(y)$.
- Os gráficos de f e f^{-1} são simétricos relativamente à reta y = x.

Algumas propriedades das funções invertíveis

Proposição:

Se $f:D_f\subset\mathbb{R}\longrightarrow\mathbb{R}$ é estritamente monótona em D_f , então f é injetiva.

Proposição:

Se $f: D_f \subset \mathbb{R} \longrightarrow \mathbb{R}$ é estritamente crescente (resp. estritamente decrescente) em D_f , então f^{-1} é estritamente crescente (resp. estritamente decrescente) em CD_f .

Proposição:

Seja f uma função contínua e estritamente crescente (resp. estritamente decrescente) num intervalo [a,b]. Sejam $c,d \in \mathbb{R}$ tais que f(a)=c e f(b)=d. Então:

- (i) f^{-1} é estritamente crescente em [c, d] (resp. estritamente decrescente em [d, c]);
- (ii) f^{-1} é contínua.

Inversa da função exponencial natural

Função exponencial de base e :

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \longmapsto e^x$$

onde e é o número de Neper, i.e., $\lim_{n\to+\infty} (1+\frac{1}{n})^n = e$.

f é estritamente crescente e portanto invertível. A sua inversa é a função

$$f^{-1}: \mathbb{R}^+ \longrightarrow \mathbb{R}$$
$$x \longmapsto y = \ln x$$

onde $y = \ln x$ se e só se $e^y = x$, para todo o $y \in \mathbb{R}$ e todo o $x \in \mathbb{R}^+$.

logaritmo de x ou logaritmo neperiano de x ou logaritmo natural de x

Ilustração gráfica das funções exponencial natural e logarítmica natural:

Propriedades do logaritmo natural:

Para todos $x, y \in \mathbb{R}^+$ e todo $\alpha \in \mathbb{R}$,

Inversa da função exponencial de base a

$$(a > 0, a \neq 1, a \neq e)$$

Função exponencial de base a :

$$g : \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \longmapsto a^{x}$$

Se a>1, g é estritamente crescente, e se a<1, g é estritamente decrescente. Nos dois casos, g é portanto invertível. A inversa de g é a função

$$g^{-1} : \mathbb{R}^+ \longrightarrow \mathbb{R}$$
$$x \longmapsto y = \log_a x$$

onde $y = \log_a x$ sse $a^y = x$, para todo o $y \in \mathbb{R}$ e todo o $x \in \mathbb{R}^+$.

logaritmo de x na base a

Ilustração gráfica das funções exponencial e logarítmica de base a:

Caso a > 1:

Caso 0 < a < 1:

Propriedades dos logaritmos:

Para todos $x, y \in \mathbb{R}^+$ e todo $\alpha \in \mathbb{R}$,

- $\log_2(xy) = \log_2 x + \log_2 y$

onde $a, b \in \mathbb{R}^+ \setminus \{1\}$.

Exercício:

Prove as propriedades anteriores.

Inversa da função seno

Função seno:

$$\operatorname{sen} : \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto \operatorname{sen} x$$

Algumas propriedades da função seno:

- Domínio: \mathbb{R} ; Contradomínio: [-1,1]
- Função periódica de período 2π , isto é,

$$\operatorname{sen} x = \operatorname{sen} (x + 2k\pi)$$
, qualquer que seja $x \in \mathbb{R}$ e $k \in \mathbb{Z}$.

- Função ímpar
- Não é injetiva;

• Esboço gráfico da função seno:

A função seno não é injetiva em \mathbb{R} , mas a restrição

$$f: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \longrightarrow \mathbb{R}$$

$$x \longmapsto \operatorname{sen} x$$

já é injetiva. f é a chamada restrição principal da função seno.

A inversa de f é chamada de função arco seno, denota-se por arcsen , e define-se do seguinte modo

$$\text{arcsen} : [-1,1] \longrightarrow \mathbb{R}$$

$$x \longmapsto y = \operatorname{arcsen} x$$

onde

$$y = \operatorname{arcsen} x$$
 sse sen $y = x$, para todos os $x \in [-1, 1]$ e $y \in [-\frac{\pi}{2}, \frac{\pi}{2}]$.

arco cujo o seno é x

Esboço gráfico da função arco seno:

Inversa da função cosseno

Função coseno: $x \longmapsto \cos x$

Algumas propriedades da função cosseno:

- Domínio: \mathbb{R} ; Contradomínio: [-1, 1]
- Função periódica de período 2π , isto é,

$$\cos x = \cos(x + 2k\pi)$$
, qualquer que seja $x \in \mathbb{R}$ e $k \in \mathbb{Z}$.

- Função par
- Não é injetiva.

• Esboço gráfico da função cosseno:

A função cosseno não é injetiva em \mathbb{R} , mas a restrição

$$h: [0,\pi] \longrightarrow \mathbb{R}$$

$$x \longmapsto \cos x$$

já é injectiva. h é a chamada restrição principal da função cosseno. A inversa de h é chamada função arco cosseno, denota-se por arcos, e define-se do seguinte modo

onde

$$y = \arccos x$$
 sse $\cos y = x$, para todos os $x \in [-1, 1]$ e $y \in [0, \pi]$.

arco cujo o cosseno é x

Esboço gráfico da função arco cosseno:

Inversa da função tangente

Função tangente:
$$\operatorname{tg}:D\subset\mathbb{R}\longrightarrow\mathbb{R}$$
 $x\longmapsto\operatorname{tg}x$

Algumas propriedades da função tangente:

- Domínio: $D = \{x \in \mathbb{R} : x \neq \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z}\}$
- Contradomínio: R
- Função periódica de período π , isto é,

$$\operatorname{tg} x = \operatorname{tg} (x + k\pi)$$
, qualquer que seja $x \in D$ e $k \in \mathbb{Z}$.

- Função ímpar
- Não é injetiva
- $(\operatorname{tg} x)' = \frac{1}{\cos^2 x}$, para todo o $x \in D$

• Esboço gráfico da função tangente:

A restrição restrição principal da função tangente

$$\begin{array}{ccc} h : &] - \frac{\pi}{2}, \frac{\pi}{2} [& \longrightarrow & \mathbb{R} \\ & x & \longmapsto & \operatorname{tg} x \end{array}$$

é injetiva. A inversa de h é chamada função arco tangente, denota-se por arctg, e define-se do seguinte modo

$$\operatorname{arctg} : \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto y = \operatorname{arctg} x$$

onde

$$y = \operatorname{arctg} x$$
 sse $\operatorname{tg} y = x$, para todos os $x \in \mathbb{R}$ e $y \in]-\frac{\pi}{2}, \frac{\pi}{2}[$.

arco cuja tangente é x

Esboço gráfico da função arco tangente:

Inversa da função cotangente

Função cotangente: cotg :
$$D \subset \mathbb{R} \longrightarrow \mathbb{R}$$
 $\times \mapsto \operatorname{cotg} x = \frac{\cos x}{\sin x}$

Algumas propriedades da função cotangente:

- Domínio: $D = \{x \in \mathbb{R} : x \neq k\pi, k \in \mathbb{Z}\}$
- Contradomínio: R
- Função periódica de período π , isto é,

$$\cot x = \cot (x + k\pi)$$
, qualquer que seja $x \in D$ e $k \in \mathbb{Z}$.

- Função ímpar
- Não é injetiva.
- $(\cot x)' = -\frac{1}{\sin^2 x}$, para todo o $x \in D$

• Esboço gráfico da função cotangente:

A restrição principal da função cotangente

$$\begin{array}{ccc} h : &]0, \pi[& \longrightarrow & \mathbb{R} \\ & x & \longmapsto & \cot x \end{array}$$

é injetiva. A inversa de h é chamada função arco cotangente, denota-se por $\operatorname{arccotg}$, e define-se do seguinte modo

onde

$$y = \operatorname{arccotg} x$$
 sse $\operatorname{cotg} y = x$, para todos os $x \in \mathbb{R}$ e $y \in]0, \pi[$.

arco cuja cotangente é x

Esboço gráfico da função arco cotangente:

Inversa da função secante

Algumas propriedades da função secante:

- Domínio: $D = \{x \in \mathbb{R} : x \neq \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z}\}$
- Contradomínio: $]-\infty,-1] \cup [1,+\infty[$
- Função periódica de período 2π , isto é,

$$\sec x = \sec(x + 2k\pi)$$
, qualquer que seja $x \in D$ e $k \in \mathbb{Z}$.

- Função par;
- Não é injetiva;
- $(\sec x)' = \tan x \sec x$, qualquer que seja $x \in D$.

• Esboço gráfico da função secante:

A restrição restrição principal da função secante

$$\begin{array}{cccc} h : & [0, \frac{\pi}{2}[\cup]\frac{\pi}{2}, \pi] & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & \sec x \end{array}$$

é injetiva. A inversa de h é chamada função arco secante, denota-se por arcsec, e define-se do seguinte modo

onde, para todos os $x\in]-\infty,-1]\cup [1,+\infty[$ e $y\in [0,\pi]\setminus \{\frac{\pi}{2}\}$,

$$y = \operatorname{arcsec} x$$
 sse $\sec y = x$, .

arco cuja secante é x

Esboço gráfico da função arco secante:

Inversa da função cossecante

Função cossecante:

cosec :
$$D \subset \mathbb{R} \longrightarrow \mathbb{R}$$

 $x \longmapsto y = \operatorname{cosec} x = \frac{1}{\operatorname{sen} x}$

Algumas propriedades da função cossecante:

- Domínio: $D = \{x \in \mathbb{R} : x \neq k\pi, k \in \mathbb{Z}\}$
- Contradomínio: $]-\infty,-1] \cup [1,+\infty[$
- Função ímpar
- $(\csc x)' = -\cot x \csc x$, para todo o $x \in D$.

A função cossecante não é injetiva em D, mas é-o em $\left[-\frac{\pi}{2},0\right]\cup\left[0,\frac{\pi}{2}\right]$ (restrição principal da cossecante). À inversa dessa restrição chama-se função arco cossecante. (Escreva a sua definição formal!)

Diferenciabilidade (breve recapitulação)

Definição:

Sejam $f: D_f \longrightarrow \mathbb{R}$ uma função e $a \in D_f$ um ponto interior de D_f . Caso exista o limite

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$
, (podendo ser $+\infty$ ou $-\infty$),

a f'(a) chama-se derivada da função f no ponto a. Neste caso, f diz-se derivavel em a. Se f'(a) for finita dizemos que f é diferenciavel em a.

Observações:

- $a \in \mathbb{R}$ é um ponto interior de $S \subset \mathbb{R}$ se existir uma vizinhança de a contida em S, *i.e.*, se, $\exists \varepsilon > 0$ tal que $V_{\varepsilon}(a) \subset S$.
- f diz-se diferenciável num subconjunto aberto^a de D_f se for diferenciável em cada um dos pontos.

a conjunto constituído apenas por pontos interiores, por exemplo um intervalo aberto

Teorema da derivada da função inversa:

Sejam $f:[a,b] \longrightarrow \mathbb{R}$ uma função estritamente monótona e contínua e f^{-1} a inversa de f. Se f é diferenciável em $x_0 \in]a,b[$ e $f'(x_0) \neq 0$, então f^{-1} é diferenciável em $y_0 = f(x_0)$ e

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)}$$
.

Exercício:

Sendo $f: [1,4] \to \mathbb{R}$ contínua e estritamente crescente tal que f(2)=7 e $f'(2)=\frac{2}{3}$, podemos concluir que existe $(f^{-1})'(7)$? Caso exista, qual é o seu valor?

Derivação das funções trigonométricas inversas

Resulta do Teorema da derivada da função inversa que:

1
$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}, \forall x \in]-1,1[$$

(arccos
$$x$$
)' = $-\frac{1}{\sqrt{1-x^2}}$, $\forall x \in]-1,1[$

$$(\operatorname{arccotg} x)' = -\frac{1}{1+x^2} , \ \forall x \in \mathbb{R}$$

Exercício:

Prove as igualdades de 1 a 4, usando o Teorema da Derivada da Função Inversa.

Extremos locais de uma função

Definições:

Sejam $f: D_f \subset \mathbb{R} \longrightarrow \mathbb{R}$ e $a \in D_f$.

• a é um maximizante local de f se existir $\delta > 0$ tal que

$$\forall x \in V_{\delta}(a) \cap D_f \quad f(x) \leq f(a)$$
.

Nesse caso, f(a) diz-se um máximo local de f.

• a é um minimizante local de f se existir $\delta > 0$ tal que

$$\forall x \in V_{\delta}(a) \cap D_f \quad f(a) \leq f(x)$$
.

Neste caso, f(a) diz-se um mínimo local de f.

- Máximos e mínimos locais chamam-se extremos locais.
- Maximizantes e minimizantes locais chamam-se extremantes locais.

Extremos globais de uma função

Definições:

Sejam $f: D_f \subset \mathbb{R} \longrightarrow \mathbb{R}$ e $a \in D_f$.

• a é um maximizante global de f se

$$\forall x \in D_f \ f(x) \leq f(a)$$

Nesse caso, f(a) diz-se o máximo global de f.

• a é um minimizante global de f se

$$\forall x \in D_f \ f(a) \leq f(x)$$
.

Neste caso, dizemos que f(a) é o mínimo global de f.

- Máximo e mínimo global chamam-se extremos globais.
- Maximizantes e minimizantes globais chamam-se extremantes globais.

Continuidade (breve recapitulação)

Definições:

Sejam $f: D_f \longrightarrow \mathbb{R}$, $x_0 \in D_f$ e $S \subset D_f$.

- (i) f é contínua em x_0 se $\lim_{x \to x_0} f(x)$ existe e é finito e $\lim_{x \to x_0} f(x) = f(x_0)$. Caso contrário, dizemos que f é descontínua em x_0 .
- (ii) f é contínua em S se f é contínua em todo o ponto de S.

Observações (continuidade em intervalos):

- Se S = [a, b] podemos falar em continuidade lateral: se $\lim_{x \to a^+} f(x) = f(a)$ dizemos que f é contínua à direita em a e se $\lim_{x \to b^-} f(x) = f(b)$ dizemos que f é contínua à esquerda em b;
- ② Se $S = [a, +\infty[(resp. S =] \infty, a])$ podemos falar de continuidade à direita em a (resp. continuidade à esquerda em a);
- **3** Sendo S um intervalo, f é contínua em S se f é contínua no interior de S e contínua lateralmente nos extremos de S que pertencem a S.

Teorema de Bolzano

Teorema dos valores intermédios ou Teorema de Bolzano:

Seja $f:[a,b]\to\mathbb{R}$ uma função. Se f é contínua em [a,b] e $f(a)\neq f(b)$, então,

para todo o y entre f(a) e f(b), existe $c \in]a, b[$ tal que f(c) = y.

Corolário:

Seja $f:[a,b]\longrightarrow \mathbb{R}$ uma função contínua. Se $f(a)\cdot f(b)<0$, então existe $c\in]a,b[$ tal que f(c)=0.

Teorema de Weierstrass

Teorema de Weierstrass (ou Teorema dos valores mínimo e máximo):

Sejam $f: D_f \longrightarrow \mathbb{R}$ e $[a, b] \subset D_f$, onde a < b. Se f é contínua em [a, b], então f atinge em [a, b] máximo e mínimo globais (isto é, existem $x_1, x_2 \in [a, b]$ tais que $f(x_1) \le f(x) \le f(x_2), \forall x \in [a, b]$.

Observação sobre o Teorema de Weierstrass:

 Esses máximo e mínimo globais poderão ser atingidos nos extremos do intervalo.

Condição necessária de existência de extremo local

(em pontos onde f é diferenciável)

Proposição (Teorema de Fermat):

Seja $f:]a, b[\longrightarrow \mathbb{R}$ uma função diferenciável em $c \in]a, b[$. Se c é um extremante local de f então f'(c) = 0.

Ilustração gráfica:

Observações:

- O recíproco da proposição do slide anterior não é verdadeiro. De facto, existem funções com derivada nula em determinado ponto e esse ponto não é extremante.
 - Veja, por exemplo, $f(x) = x^3$, no ponto x = 0.
- Pode acontecer que a derivada de f não exista num dado ponto x_0 , mas x_0 ser extremante. Veja os seguintes exemplos:
 - f(x) = |x|, no ponto $x_0 = 0$.
 - $f(x) = \begin{cases} \frac{1}{x^2} & \text{se } x \neq 0 \\ 0 & \text{se } x = 0 \end{cases}$, no ponto $x_0 = 0$

Definição:

Seia $f: D_f \longrightarrow \mathbb{R}$ uma função diferenciável em $c \in int(D_f)$. Se f'(c) = 0dizemos que c é ponto crítico de f.

Teorema de Rolle:

Seja f uma função contínua em [a, b] e diferenciável em [a, b]. Se f(a) = f(b), então existe $c \in]a, b[$ tal que f'(c) = 0

Ilustração Gráfica:

Corolários do Teorema de Rolle

Corolário:

Seja f uma função contínua em [a,b] e diferenciável em]a,b[. Então entre dois zeros de f existe pelo menos um zero de f'.

Corolário:

Seja f uma função contínua em [a, b] e diferenciável em]a, b[. Então entre dois zeros consecutivos de f' existe, no máximo, um zero de f.

Exercício:

Mostrar que a função definida por $f(x) = \operatorname{sen} x - x$ tem um único zero no intervalo $[-\pi, \pi]$.

Teorema de Lagrange:

Seja f uma função contínua em [a,b] e diferenciável em]a,b[. Então, existe $c\in]a,b[$ tal que

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Ilustração Gráfica:

Consequências do Teorema de Lagrange (sobre a monotonia)

Proposição:

Sejam $I \subset \mathbb{R}$ um intervalo e $f: I \longrightarrow \mathbb{R}$ uma função contínua em I e diferenciável em int(I). Então

- (i) Se f'(x) = 0, para todo o $x \in int(I)$, então f é constante em I.
- (ii) Se $f'(x) \ge 0$, para todo o $x \in int(I)$, então f é crescente em I.
- (iii) Se $f'(x) \leq 0$, para todo o $x \in int(I)$, então f é decrescente em I.
- (iv) Se f'(x) > 0, para todo o $x \in int(I)$, então f é estritamente crescente em 1.
- (v) Se f'(x) < 0, para todo o $x \in int(I)$, então f é estritamente decrescente em 1.

Condição suficiente para a existência de extremo local para função contínua (em ponto onde esta poderá ser não diferenciável):

Proposição:

Seja $f: D_f \longrightarrow \mathbb{R}$ uma função contínua em $[a, b] \subset D_f$ e diferenciável em [a, b[, exceto possivelmente em $c \in]a, b[$. Então,

(i) se

$$f'(x) > 0$$
, para todo o $x < c$ e $f'(x) < 0$, para todo o $x > c$, então, $f(c)$ é um máximo local de f ;

(ii) se

$$f'(x) < 0$$
, para todo o $x < c$ e $f'(x) > 0$, para todo o $x > c$, então, $f(c)$ é um mínimo local de f .

Condição suficiente de segunda ordem para que um ponto crítico seja extremante

Proposição:

Seja c um ponto crítico de f num intervalo a, b. Admitamos que f é contínua em a, b e f'' existe e é finita em todo o ponto de a, b. Então verificam-se as condições seguintes:

- (i) se f''(c) > 0, então f admite em c um mínimo local;
- (ii) se f''(c) < 0, então f admite em c um máximo local.

Teorema de Cauchy:

Sejam f e g duas funções contínuas em [a,b] e diferenciáveis em]a,b[. Se $g'(x) \neq 0$, para todo o $x \in]a,b[$, então existe $c \in]a,b[$ tal que

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

Observação:

Do Teorema de Cauchy pode estabelecer-se uma regra — Regra de Cauchy — de grande utilidade no cálculo de limites quando ocorrem indeterminações do tipo $\frac{\infty}{\infty}$ ou $\frac{0}{0}$.

Nos cinco slides seguintes enunciam-se as várias formas dessa regra.

Regra de Cauchy

Proposição (RC.1):

Sejam f e g funções diferenciáveis em I=]a,b[tais que, para todo o $x\in I,\ g(x)\neq 0$ e $g'(x)\neq 0$. Se

$$\lim_{x \to a^+} f(x)$$
 e $\lim_{x \to a^+} g(x)$ são ambos nulos ou ambos infinitos

e existe o limite

$$\lim_{x \to a^+} \frac{f'(x)}{g'(x)}$$

$$\lim_{x\to a^+} \frac{f(x)}{g(x)} = \lim_{x\to a^+} \frac{f'(x)}{g'(x)}.$$

Proposição (RC.2):

Sejam f e g funções diferenciáveis em I=]a,b[tais que, para todo o $x\in I,\ g(x)\neq 0$ e $g'(x)\neq 0$. Se

$$\lim_{x \to b^-} f(x)$$
 e $\lim_{x \to b^-} g(x)$ são ambos nulos ou ambos infinitos

e existe o limite

$$\lim_{x \to b^{-}} \frac{f'(x)}{g'(x)}$$

$$\lim_{x \to b^{-}} \frac{f(x)}{g(x)} = \lim_{x \to b^{-}} \frac{f'(x)}{g'(x)}.$$

Proposição (RC.3):

Sejam I =]a, b[e $c \in I$. Sejam f e g funções definidas em $I \setminus \{c\}$ e diferenciáveis em $I \setminus \{c\}$, tais que $g(x) \neq 0$, para todo o $x \in I \setminus \{c\}$. Se

$$g'(x) \neq 0$$
, para todo o $x \in I \setminus \{c\}$,

 $\lim_{x \to c} f(x)$ e $\lim_{x \to c} g(x)$ são ambos nulos ou ambos infinitos

e existe o limite

$$\lim_{x \to c} \frac{f'(x)}{g'(x)}$$

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}.$$

Proposição (RC.4):

Sejam f e g funções definidas em $I =]a, +\infty[$ e diferenciáveis em I, com $g(x) \neq 0$, para todo o $x \in I$.

Suponhamos que $g'(x) \neq 0$, para todo o $x \in I$.

Se

$$\lim_{x \to +\infty} f(x)$$
 e $\lim_{x \to +\infty} g(x)$ são ambos nulos ou ambos infinitos

е

existe
$$\lim_{x \to +\infty} \frac{f'(x)}{g'(x)}$$

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{f'(x)}{g'(x)}$$

Proposição (RC.5):

Sejam f e g funções definidas em $I =]-\infty, b[$ e diferenciáveis em I, com $g(x) \neq 0$, para todo o $x \in I$.

Suponhamos que $g'(x) \neq 0$, para todo o $x \in I$.

Se

$$\lim_{x \to -\infty} f(x)$$
 e $\lim_{x \to -\infty} g(x)$ são ambos nulos ou ambos infinitos

е

existe
$$\lim_{x \to -\infty} \frac{f'(x)}{g'(x)}$$

$$\lim_{x \to -\infty} \frac{f(x)}{g(x)} = \lim_{x \to -\infty} \frac{f'(x)}{g'(x)}$$