Physics 198 Term Paper

Topological Order, Insulators, and Semiconductors

Keshav Balwant Deoskar kdeoskar@berkeley.edu

Contents

1	Introduction	2
2	Landau-Ginzburg Theory of Symmetry-Breaking Phases	2
3	Beyond the Landau-Ginzburg Paradigm: Fractional Quantum Hall States and Topological Order	2
4	Topological Insulators	2
5	Topological Superconductors	2

1 Introduction

In every-day life, we often talk about the different "phases" of matter such as solids, liquids, and gases. In condensed matter physics, there is a more precise meaning to the phrase "phase of matter" where materials can be classified based on their atomic arrangements. In the '80s, there emerged a powerful system for classifying the different orders: the Landau-Ginzburg-Wilson theory of Symmetry Breaking.

For example, the atoms of a gas in a container are uniformly distributed so that if we choose a point and then translate continuously in any direction, the density of particles at the new point is the same. The gas displays *continuous symmetry*. Now if we reduce the temperature and/or apply pressure, causing the gas to form a crystalline solid, we no longer have continuous symmetry; Instead we have repeating patterns at regular intervals i.e. Crystals display *discrete symmetry*. In carrying out the phase transition from gas to solid, we broke the continuous symmetry and obtained discrete symmetry.

In this regime, the hamiltonian has some symmetry group G with subgroup $H \subset G$ which serves as the symmetry group of the system after phase change.

- 2 Landau-Ginzburg Theory of Symmetry-Breaking Phases
- 3 Beyond the Landau-Ginzburg Paradigm: Fractional Quantum Hall States and Topological Order
- 4 Topological Insulators
- 5 Topological Superconductors

References