Lab 4-2 Report

組別:第1組 姓名:游承緯 312580044 符顥瀚 312510154

1. Design block diagram – datapath, control-path

- 2. The interface protocol between firmware, user project and testbench
 - Firmware 和 Testbench 之間的 interface protocol:
 - Given script to compile
 - oriscv32-unknown-elf-gcc -I../../firmware -o counter_la_fir.elf ..
 - · Transform .elf to .hex
 - o riscv32-unknown-elf-objcopy -O verilog counter_la_fir.elf counter_la_fir.hex

Spiflash: Firmware code 會以.hex 的形式 load 進 testbench 中的 Spiflash top

module

● Firmware 和 User Project 之間的 interface protocol:

有 Wishbone 和 Logic Analyzer 兩種 interface protocol 可以使用

Wishbone:

```
// Wishbone Slave ports (WB MI A)
input wb_clk_i,
input wb_rst_i,
input wbs_stb_i,
input wbs_cyc_i,
input wbs_we_i,
input [3:0] wbs_sel_i,
input [31:0] wbs_dat_i,
input [31:0] wbs_adr_i,
output reg wbs_ack_o,
output reg [31:0] wbs_dat_o,
```

Wishbone 是我們 Lab 中主要使用的 interface protocol

Logic Analyzer:

```
// Logic Analyzer Signals
input [127:0] la_data_in,
output [127:0] la_data_out,
input [127:0] la_oenb,
```

有 128 個 input 以及 128 個 output, 但在這次 Lab 中未使用。

● User Project、firmware 和 Testbench 之間的 interface protocol:

硬體跑的結果會透過 mprj_io 與 testbench 溝通。當 firmware code 執行到一個階段會去設定 mprj_io 的值,而 testbench 會去 check 它的值。

3. Waveform and analysis of the hardware/software behavior.

RISC-V program coeff, len

Checkbits == 'hAB40, CPU 開始執行 firmware code

Checkbits == 'hA5', testbench 收到 start mark', latency-timer start

RISC-V sends X[n] to FIR (ap_signal[4] == 1 , wishbone 把 data 送進 fir。並把 ap_signal[4]歸 0 ,等 Yn 輸出才能拉起來為 1)

RISC-V received Y[n] from FIR(Y[n] is ready)

Checkbits[7:0] == 'hA5', testbench 收到 end mark', record latency-timer

4. What is the FIR engine theoretical throughput, i.e. data rate? Actually measured throughput?

因為只有一個乘法器,且總共有 11 個 tap,理論上每 12 個 cycle 可以輸出 一個 output,所以 throughput 為 32bits / 12cycles(300ns)

但由於我們在實作 FIR engine 時,沒有使用 pipeline 來處理 data,導致 Bram 使用效率低落。

所以實際的 throughput 如上圖,為 32bits / 159cycles(3975ns)

5. What is latency for firmware to feed data?

如上圖所示, input 進來的間隔是 20425ns

- 6. What techniques used to improve the throughput?
 - 盡量讓 control 訊號有效縮短不同 protocol 之間轉換的 delay

7. Does bram12 give better performance, in what way?

我們這組在這次的 Lab 是使用兩個 bram11 來儲存 input 及 tap, 所使用的面積會相較使用 bram12 儲存 input 來的小。使用兩個大小相同的 bram 也比較不會在設計時產生問題,以避免使用額外的控制訊號。

而若是我們是使用 bram12 來儲存 input,好處是我們可以使用多出來的位置,可能可以用來預先儲存 input,省下一點 cycle。相對的,這樣會增加設計的複雜性,需要額外的邏輯來確保正常運作。

我認為,這兩個方式的 performance 差距不大,但使用兩個相同大小的 bram 來設計會簡化許多,所以更傾向去使用 bram11。

- 8. Can you suggest other method to improve the performance?
 - 使用多個乘加器來增加平行度
 - 使用 read / write pointer 來實作可以將資料進行 pipeline 運算的 FIR engine
 - 使用 Shift registers 來取代 Bram 來儲存 data,減少 Bram 所需的 delay

9. Syn Report

1. Slice Logic					
Site Type	Used	Fixed	Prohibited	Available	Util%
Slice LUTs*	528	0	0	53200	0.99
LUT as Logic	464	0	0	53200	0.87
LUT as Memory	64	0	0	17400	0.37
LUT as Distributed RAM	64	0			
LUT as Shift Register	0	0			
Slice Registers	409	0	0	106400	0.38
Register as Flip Flop	377	0	0	106400	0.35
Register as Latch	32	0	0	106400	0.03
F7 Muxes	0	0	0	26600	0.00
F8 Muxes	0	0	0	13300	0.00
+	+	+	+	+	++

2. Memory								
Site Type	Used	Fixed	+ Prohibite	+ ed	Available	-++ Util%		
Block RAM Tile RAMB36/FIFO*	1 1	0		0	140 140			
RAMB36E1 only RAMB18 +	1 0 	 0 +	 	0 +	280	 0.00 -+		
3. DSP								
+				+				
Site Type Us	sed Fi		rohibited	Av +	ailable	Uti1% +		
DSPs DSP48E1 only		0	0	 !	220	1.36		
+		-		+				
4. IO and GT Specific	-							
+ Site Type		+ Use	+d Fixed	+ Pr	ohibited	Available	-+	† I
+ Bonded IOB		30:	+ 1 0	+ 	+ 0	 125	240.80	
Bonded IPADs Bonded IOPADs			0 0 0 0		0 0	2 130	0.00 0.00	
PHY CONTROL			0 0		0		0.00	
PHASER_REF		j (9 j 0 j	İ	0 j	4	0.00	İ
OUT_FIFO			0 0	ļ	0		0.00	
IN_FIFO			0 0 0 0		0	16	!	
IDELAYCTRL IBUFDS			0 0 0 0	 _	0 0	4 121	!	
PHASER OUT/PHASER (OUT PHY		0 0		0	16	!	
PHASER_IN/PHASER_IN	_		9 0	i	0	16		
IDELAYE2/IDELAYE2_F		AY j	oj o	ĺ	0 j	200	i 0.00	i _
ILOGIC			0 0	ļ	0	125		
OLOGIC			0	I	0	125	0.00	
+		+	#	+			-+	t .

Design Timin	ng Summary						
WNS(ns)		TNS Failing Endpoints	WHS(ns) 0.079		WPWS(ns) 6.250	TPWS Failing Endpoints	
All user speci	ified timing						