Varieties Over C And Embeddings Into Projective Space

Lukas Zobernig

The University of Auckland

Introduction

Part 1 (Specific Example)

- Curves
- Weil Divisors on Curves
- Riemann-Roch for Curves
- Ad hoc Example of Projective Embedding

Part 2 (General Theory)

- Cartier Divisors and Line Bundles
- ► Linear Systems (Linear Series)
- Linear Systems and Rational Maps
- (Very) Ampleness
- Compact Riemann Surfaces

Part 1 (Specific Example)

Curves

Let us look at some simple nontrivial algebraic varieties: Curves.

- Specifically, we consider projective curves,
- ▶ i.e. projective varieties of dimension 1.
- These can have singular points in general,
- but let us restrict to smooth projective curves for simplicity;
- those are smooth everywhere, i.e. no point is a singular point.

Over \mathbb{C} , smooth projective curves are simply the compact Riemann surfaces, so we can also keep that picture in mind.

Weil Divisors on Curves

In general, a (Weil) divisor on a variety X is a formal sum of irreducible codimension-1 subvarieties of X.

Definition (Weil Divisors on Curves)

Let C be a curve, then a **Weil divisor** D is a formal sum

$$D=\sum_{P\in C}n_P(P),$$

such that all but finitely many $n_P = 0$. Denote by $\deg(D) = \sum n_P$ the degree of D.

Definition (Divisor of a Function)

Let $f \in k(C)$ be a function on C, then the divisor $\operatorname{div}(f)$ is defined as

$$\operatorname{div}(f) = \sum_{P \in C} \operatorname{ord}_{P}(f)(P),$$

where $\operatorname{ord}_{P}(f)$ is the **order of vanishing** of f at P. Such divisors are called **principal**.

Weil Divisors on Curves

- ▶ Divisors form a group under addition: ${3(P) + 2(Q)} + {1(Q)} = {3(P) + 3(Q)}$.
- A divisor is called **effective** if all coefficients are non-negative, write $D \ge 0$. Write $D_1 \ge D_2$ if $D_1 D_2 \ge 0$.
- ▶ We call two divisors D and D' linearly equivalent, if there exists $f \in k(C)$ such that $D = D' + \operatorname{div}(f)$ (i.e. if D D' is principal).
- Divisors up to linear equivalence form the so called **Picard** or **divisor class** group Pic(C).

Examples

- ▶ On \mathbb{A}^1 every **prime** divisor (i.e. single point) is the divisor of a single function. Hence $\operatorname{Pic}(\mathbb{A}^1)$ is trivial.
- ▶ On \mathbb{P}^1 every degree-0 divisor is principal. Hence there is an isomorphism $\operatorname{Pic}(\mathbb{P}^1) \cong \mathbb{Z}$.

Riemann-Roch for Curves

Definition (Riemann-Roch Space)

Let D be a divisor on a curve C and denote by L(D) the finite dimensional k-vector space of "functions with poles no worse than D", i.e.

$$L(D) = \{ f \in k(C)^* \mid \operatorname{div}(f) \ge -D \} \cup \{0\}.$$

Denote its dimension by $\ell(D) = \dim_k L(D)$.

- ▶ If deg(D) < 0 then $L(D) = \{0\}$ and $\ell(D) = 0$.
- Linearly equivalent divisors have isomorphic Riemann-Roch spaces.

Theorem (Riemann-Roch for Curves)

Let C be a smooth projective curve and let K_C be a canonical divisor on C. Then the genus g of C and every divisor D on C satisfy

$$\ell(D) - \ell(K_C - D) = \deg(D) - g + 1.$$

Riemann-Roch for Curves

- As an immediate corollary we get that if deg(D) > 2g 2 then $\ell(D) = deg(D) g + 1$.
- ► This means that if a divisor has high enough degree, we can immediately compute the dimension of its associated Riemann-Roch space.
- ▶ For example, for genus 1 curves we find the easy relation $\ell(D) = \deg(D)$ if $\deg(D) > 0$.
- We can now use this result and explicit bases for Riemann-Roch spaces to give an ad hoc example of a projective embedding.

Ad hoc Example of Projective Embedding

Definition (Elliptic Curve)

An **elliptic curve** is a pair (E,O), where E is a smooth curve of genus 1 and $O \in E$ a rational point.

- Fix some elliptic curve (E, O). Consider the divisor n(O) for $n \ge 1$ on E.
- ▶ By the previous slides we have $\ell(n(O)) = \deg(n(O)) = n$ for all $n \ge 1$.
- The space L(n(O)) contains at least the constant functions, so L(2(O)) has a basis $\{1, x\}$ for some function $x \in k(E)$.
- ▶ Then L(3(O)) has a basis $\{1, x, y\}$ for some other function $y \in k(E)$. Hence, x has a pole of exact order 2 at O and similarly y has a pole of exact order 3 at O.
- ► Continuing, we have bases $L(4(O)) = \{1, x, y, x^2\}$, $L(5(O)) = \{1, x, y, x^2, xy\}$.
- ► Finally, in L(6(O)) we have the **seven** functions $1, x, y, x^2, xy, x^3, y^2$. Hence, there is a linear relation- (which we can normalise to) $y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$.

Ad hoc Example of Projective Embedding

- ▶ The spaces L(2(O)) with basis $\{1, x\}$ and L(3(O)) with basis $\{1, x, y\}$ give morphisms to \mathbb{P}^1 and \mathbb{P}^2 , respectively.
- ▶ We have the 2 : 1 ramified double cover

$$\phi: E \to \mathbb{P}^1,$$

$$(x, y) \mapsto [x:1],$$

$$O \mapsto [1:0].$$

This is not an embedding, since L(2(O)) does not contain enough functions.

▶ We have the closed immersion (which is bijective onto its image)

$$\phi: E \to \mathbb{P}^2,$$

$$(x, y) \mapsto [x: y: 1],$$

$$O \mapsto [0: 1: 0].$$

This is an embedding, and L(3(O)) contains enough functions to define it.

Part 2 (General Theory)

Cartier Divisors and Line Bundles

Next, we will change from the language of divisors to the language of line bundles.

- This is easier to understand if we work with Cartier divisors.
- ▶ For **nice enough** varieties Weil and Cartier divisors can be interchanged freely.
- ▶ We use that a codimension-1 subvariety of a normal variety is locally defined as the zeroes and poles of a single function.

Definition (Cartier Divisor)

A **Cartier divisor** on a variety X is an equivalence class of collections of pairs $(U_i, f_i)_{i \in I}$ such that:

- ightharpoonup The U_i are open sets covering X,
- ▶ The f_i are nonzero rational functions in $k(U_i) = k(X)$, and
- ▶ $f_i f_j^{-1} \in \mathcal{O}(U_i \cap U_j)^*$, i.e. $f_i f_j^{-1}$ has no poles or zeroes on the overlap $U_i \cap U_j$.

For a function $f \in k(X)$ we have its associated Cartier divisor $\operatorname{div}(f) = \{(X, f)\}.$

Cartier Divisors and Line Bundles

Recall that a **line bundle** \mathcal{L} on a variety X is a **vector bundle** whose fibers are 1-dimension vectors spaces. To a Cartier divisor $(U_i, f_i)_{i \in I}$ we can associate a **line bundle** in the following way:

- ▶ Consider the trivial line bundles $U_i \times \mathbb{A}^1 \to U_i$,
- and glue them via the isomorphism

$$(U_i \cap U_j) \times \mathbb{A}^1 \to (U_i \cap U_j) \times \mathbb{A}^1$$

 $(x,\lambda) \mapsto (x,\lambda(f_if_j^{-1})(x)).$

For a divisor D, denote by $\mathcal{O}(D)$ the associated line bundle.

- ▶ We have $\mathcal{O}(D+D') = \mathcal{O}(D) \otimes \mathcal{O}(D')$, and
- $ightharpoonup \mathcal{O}(-D) = \mathcal{O}(D)^{\vee}$ (the dual line bundle).

Examples

Hyperplane on \mathbb{P}^n

- ▶ Denote by $\mathcal{O}(1)$ on \mathbb{P}^n the line bundle associated to a hyperplane.
- ▶ The global sections $H^0(\mathbb{P}^n, \mathcal{O}(1))$ are generated by linear forms,
- ightharpoonup a possible basis is $\{x_0,\ldots,x_n\}$ (the usual coordinate functions on \mathbb{P}^n).

Higher Powers

- Similary, denote by $\mathcal{O}(d)$ the line bundle obtained by tensoring $\mathcal{O}(1)$ with itself d times.
- ▶ Then the global sections $H^0(\mathbb{P}^n, \mathcal{O}(d))$ are the homogeneous polynomials of degree d,
- ▶ a possible basis is $\{X_1^{i_1} \cdots X_n^{i_n}\}_{i_1+\cdots+i_n=d}$.

Linear Systems (Linear Series)

Recall that to a divisor D we have associated the Riemann-Roch (vector) space

$$L(D) = \{ f \in k(C)^* \mid \operatorname{div}(f) \ge -D \} \cup \{0\}.$$

The set of effective divisors linearly equivalent to D is then parametrised by the projective space

$$\mathbb{P}(\mathit{L}(D)) \cong \mathbb{P}^{\ell(D)-1}$$

via

$$\mathbb{P}(L(D)) \to \{D' \mid D' \ge 0, D' \sim D\}$$

$$f \mod k^* \mapsto D + \operatorname{div}(f).$$

Definition (Linear System)

A linear system (or sometimes linear series) on a variety X is a set of effective divisors all linearly equivalent to a fixed divisor D and parametrised by a linear subvariety of $\mathbb{P}(L(D))$. We call the set of all effective divisors linearly equivalent to D a complete linear system, and denote it by |D|.

More on Linear Systems

Definition (Base Points)

- ▶ The set of **base points** of a linear system *L* is the intersection of the supports of all divisors in *L*.
- ▶ A linear system is called **base point free** if this intersection is empty.
- ▶ Similarly a divisor D is base point free if |D| is base point free.

Linear Systems and Line Bundles

There is a useful connection between (complete) linear systems and global sections of line bundles.

- ▶ Let D be a divisor, and consider its Riemann-Roch space L(D).
- ▶ Then the space of sections $H^0(X, \mathcal{O}(D))$ is in bijection with the functions in L(D).
- ▶ Hence, for a line bundle E on X, we find a linear system by choosing a subspace of $H^0(X, E)$.

Linear Systems and Rational Maps

- ▶ Let *L* be a linear system of dimension *n*, say parametrised by $\mathbb{P}(V) \subset \mathbb{P}(L(D))$.
- ▶ Select a basis f_0, \ldots, f_n of $V \subset L(D)$.

Definition

The **rational map associated to** L is the map

$$\phi_L: X \to \mathbb{P}^n,$$

 $x \mapsto [f_0(x): \cdots : f_n(x)].$

This clearly gives a "good rational map" outside the base points of L (recall that a projective point cannot have all coordinates zero).

(Very) Ampleness

The important question to ask is now: When does a linear system L give an embedding, i.e. when is ϕ_L a morphism mapping X isomorphically onto its image $\phi_L(X)$?

Definition ((Very) Ampleness)

- ▶ A linear system L on a projective variety X is **very ample** if $\phi_L : X \to \mathbb{P}^n$ is an embedding.
- A divisor D or a line bundle $\mathcal{O}(D)$ is called very ample, if the complete linear system |D| is very ample.
- A divisor D or a line bundle $\mathcal{O}(D)$ is called **ample**, if some positive multiple or power is very ample.

(Very) Ampleness

Theorem (Very Ampleness for General Varieties)

A linear system L on a variety X is very ample if and only if it satisfies the following two conditions:

- ▶ (Separation of points.) For any pair of points $x, y \in X$ there is a divisor $D \in L$ such that $x \in D$ and $y \notin D$.
- ▶ (Separation of tangents.) For every nonzero tangent $t \in T_x(X)$ there is a divisor $D \in L$ such that $x \in D$ and $t \notin T_x(D)$.

Theorem (Very Ampleness for Curves)

Let D be a divisor on a curve C.

- ▶ The divisor D is base point free if and only if for all $P \in C$ we have $\ell(D (P)) = \ell(D) 1$.
- The divisor D is very ample if and only if for all $P, Q \in C$ we have $\ell(D (P) (Q)) = \ell(D) 2$.

Examples

Recall our example from earlier, the line bundle $\mathcal{O}(1)$ associated to a hyperplane on \mathbb{P}^n .

- Let $X = [x_0 : \cdots : x_n] \in \mathbb{P}^n$. Clearly $\mathcal{O}(1)$ is very ample, as $\phi_{\mathcal{O}(1)}(X) = [x_0 : \cdots : x_n]$. This is just the identity embedding of $\mathbb{P}^n \to \mathbb{P}^n$.
- lackbox Let n=1, then $\mathcal{O}(2)$ on \mathbb{P}^1 gives an embedding $\mathbb{P}^1 o \mathbb{P}^2$ via

$$\phi_{\mathcal{O}(2)}: \mathbb{P}^1 \to \mathbb{P}^2,$$

 $[x:y] \mapsto [x^2:xy:y^2].$

- ▶ In general we see that $\mathcal{O}(d)$ on \mathbb{P}^n is very ample for all $d \geq 1$.
- ▶ On the other hand, $\mathcal{O}(d)$ for d < 1 has no global sections and hence is not even ample.

Examples

Recall our example from Part 1; we computed the dimensions $\ell(n(O))$ for the divisor n(O) (where O was a rational point on an elliptic curve E).

- ▶ We found $\ell(n(O)) = \deg(n(O)) = n$ for all $n \ge 1$.
- From our example we now understand that (O) and 2(O) are ample,
- ightharpoonup and that 3(O) is very ample.
- One could also check this via the theorem on very ampleness for curves we saw earlier:
 - For all points $P, Q \in E$ we have the divisors (P) and (P) + (Q) of degree 1 and 2, respectively.
 - ▶ Plugging it into the required relations shows exactly that 3(O) is very ample.

Compact Riemann Surfaces

For compact Riemann surfaces (i.e. smooth projective curves over \mathbb{C}) this all boils down to the theory of **theta functions**.

- ▶ By integrating homology of complex torus C of genus g we find **period lattice** $\Lambda \subset \mathbb{C}^g$ with $\Lambda = \mathbb{Z}^g + \tau \mathbb{Z}^g$, and $\operatorname{Pic}(C) \cong \mathbb{C}^g / \Lambda$ as varieties.
- ► The function $\theta(z,\tau) = \sum_{m \in \mathbb{Z}^g} \exp(\pi i m^T \tau m + 2\pi i m^T z)$ has as divisor a translate of a so call **theta divisor** Θ .
- ► The divisor Θ is ample and 3Θ is very ample, i.e. we find projective embedding $\mathbb{C}^g / \Lambda \to \mathbb{P}(L(3\Theta))$.
- In genus 1 the Weierstrass \wp -function and its derivative \wp' form a basis, and we find the usual model $\wp'(z)^2 = 4\wp(z)^3 g_2\wp(z) g_3$, and the embedding $\mathbb{C}/(\mathbb{Z}+\tau\,\mathbb{Z}) \to \mathbb{P}^2$ via $z \mapsto [\wp(z):\wp'(z):1]$.
- ▶ In genus 2 the space is spanned by 16 theta functions and we find an embedding $\mathbb{C}^2/(\mathbb{Z}^2+\tau\,\mathbb{Z}^2)\to\mathbb{P}^{15}$.

Questions?