6.12 In the exercise, it seems that the index U refers to all the subsets of D, and D has $2^{|D|}$ subsets.

The inner product $\phi(A_1)^T \phi(A_2) = \sum_U \phi(A_1) * \phi(A_2)$

The product inside the summation will only be equal to 1 if both $\phi(A_1)$ and $\phi(A_2)$ are equal to 1. This implies that $U \subseteq A_1$ and $U \subseteq A_2$.

 $\sum_{U} \phi(A_1) * \phi(A_2)$ then gives us the number of subsets of D, that are subsets of both A_1 and A_2 .

This is equivalent to the number of subsets of $A_1 \cap A_2$, which is the same as the kernel function given by eqn. $6.27: k(A_1,A_2) = 2^{|A_1 \cap A_2|}$