

2850-106.ST25 SEQUENCE LISTING

<110>	Yokoyama, Shigeyuki Shirouzu, Mikako Sakamoto, Ayako Sakamoto, Kensaku							
<120>	METHOD OF EXPRESSING PROTEINS COMPRISING NON-NATURALLY-OCCURRING AMINO ACIDS (As Amended)							
<130>	P/2850-106							
<140> <141>	10/532,948 2005-11-10							
<150> <151>	PCT/JP03/14028 2003-10-31							
<150> <151>								
<160>	34							
<170>	PatentIn version 3.3							
<210> <211> <212> <213>								
<220> <223>	an artificial base sequence consisting of a leader sequence of human tRNA gene, and the tRNAtyr gene of B. stearothermophilus with a CUA anticodon, but without the terminal CCA sequence and a transcription terminator							
<400> agcgct	1 ccgg tttttctgtg ctgaacctca ggggacgccg acacacgtac acgtcggagg 60							
ggtagc	gaag tggctaaacg cggcggactc taaatccgct ccctttgggt tcggcggttc 120							
gaatccgtcc ccctccagac aagtgcggtt tttttctcca gctcccg 167								
<210> <211> <212> <213>	2 44 DNA Artificial							
<220> <223>	a PCR primer used for amplifying a part of genomic DNA of E. coli							
<400> 2 ggaattccat atggcaagca gtaacttgat taaacaattg caag 44								
<210> <211> <212> <213>	3 50 DNA Artificial							
<220> <223>	a PCR primer used for amplifying a part of genomic DNA of E. Page 1							

coli.

```
<400>
                                                                        50
gccgaagctt gtcgactttc cagcaaatca gacagtaatt ctttttaccg
<210>
       40
<211>
<212>
      DNA
<213> Artificial
<220>
       a PCR primer used in the overlapping extension in the present
<223>
       invention
<400> 4
                                                                        40
aggatcgaag ccgcaagcga gcgcgatcgg gccttgcgcc
<210>
      40
<211>
<212>
      DNA
<213>
      Artificial
<220>
<223>
       a PCR primer used in the overlapping extension in the present
       invention
<220>
      misc_feature
<221>
<222>
      (16)..(16)
<223>
      m represents c or a
<220>
<221>
<222>
      misc_feature
      (17)..(18)
<223> n is a, c, g, or t
<400>
                                                                        40
aggatcgaag ccgcamnnga gcgcgatcgg gccttgcgcc
<210>
       6
<211>
      33
<212>
<213>
      DNA
      Artificial
<220>
       a PCR primer used in the overlapping extension in the present
<223>
       invention
<400> 6
acggtgtggt gctgtctatt ggtggttctg acc
                                                                        33
<210>
      33
<211>
<212>
      DNA
<213> Artificial
<220>
<223> a PCR primer used in the overlapping extension in the present
                                        Page 2
```

invention

	7 tggt gctggcaatt ggtggttctg acc	33
<210> <211> <212> <213>	8 33 DNA Artificial	
<220> <223>	a PCR primer used in the overlapping extension in the present invention	
<400> acggtg1	8 tggt gctgaacatt ggtggttctg acc	33
<210> <211> <212> <213>	9 33 DNA Artificial	
<220> <223>	a PCR primer used in the overlapping extension in the present invention	
<400> acggtg1	9 tggt gctgtgcatt ggtggttctg acc	33
<210> <211> <212> <213>	10 32 DNA Artificial	
<220> <223>	a PCR primer used in the overlapping extension in the present invention	
<400> ttcttcg	10 ggat ccaaccagac tgcgccgcct tc	32
<210> <211> <212> <213>	11 30 DNA Artificial	
<220> <223>	a PCR primer used in the overlapping extension in the present invention	
<400> gatcato	11 ctgg ttaacggaga agtgtttgcc	30
<210> <211> <212> <213>	12 26 DNA Artificial	

```
<220>
       a PCR primer used in the overlapping extension in the present
<223>
       invention
<400> 12
                                                                        26
gaccttcctg tgcgatattg gcaaac
<210>
       13
<211>
      12
<212>
      DNA
<213> Artificial
<220>
<223> the box A consensus sequence
<220>
<221> misc_feature
<222>
      (2)..(2)
<223> r represents g or a
<220>
<221> misc_feature
<222> (5)..(6)
<223> n is a, c, g, or t
<220>
<221>
      misc_feature
<222>
      (10)..(10)
<223> n is a, c, g, or t
<400> 13
                                                                        12
trgcnnagyn gg
      14
11
<210>
<211>
<212> DNA
<213> Artificial
<220>
<223> the box B consensus sequence
<220>
<221> misc_feature <222> (8)..(8)
<223>
      n is a, c, g, or t
<400> 14
                                                                        11
ggttcgantc c
<210>
       15
<211>
      20
<212>
       DNA
<213>
      Artificial
<220>
       a sequence of a primer binding site pbs1
<223>
<400>
      15
```

Page 4

agcgag	tgtt aaccctgcct	20
<210> <211> <212> <213>	16 20 DNA Artificial	
<220> <223>	a sequence of a primer binding site pbs2	
<400> cgacta	16 cgat attcgcgcag	20
<210> <211> <212> <213>	17 12 DNA Artificial	
<220> <223>	a sequence of a BstXI-1 site	
<400> ccagca	17 gact gg	12
<210> <211> <212> <213>	18 12 DNA Artificial	
<220> <223>	a sequence of a BstXI-2 site	
<400> ccagct	18 tcct gg	12
<210> <211> <212> <213>	19 63 DNA Artificial	
<220> <223>	a nucleotide sequence coding a short peptide used for substitution of green fluorescent protein (cyanfluorescent mutation)	
<400> atggga	19 acta gtccatagtg gtggaattct gcagatatcc agcacagtgg cggccgccgc	60
gtc		63
<210> <211> <212> <213>	20 11 DNA Artificial	
<220> <223>	another box B consensus sequence	

```
<220>
<221>
       misc_feature
<222>
       (8)..(8)
<223>
       n is a, c, g, or t
<400> 20
                                                                                11
agttcgantc t
<210>
        21
<211>
        31
<212>
       DNA
       Artificial
<213>
<220>
<223>
       a sequence of a primer used for amplifying the sequence of SEQ ID
        No. 1
<400> 21
                                                                                31
cacagaattc tcgggagctg gagaaaaaaa c
<210>
        22
<211>
        30
<212>
       DNA
<213>
       Artificial
<220>
        a sequence of another primer used for amplifying the sequence of
<223>
        SEQ ID No. 1
<400> 22
cacaaagctt agcgctccgg tttttctgtg
                                                                                30
<210>
       23
<211>
       40
<212>
       DNA
       Artificial
<213>
<220>
       a sequence of a primer set used for amplifying a fragment having
<223>
       a primer binding site pbs1 upstream of the sequence of SEQ ID No. 1 and BstXI-1 site downstream thereof
                                                                                40
agcgagtgtt aaccctgcct agcgctccgg tttttctgtg
<210>
       24
       38
<211>
<212>
       DNA
<213>
       Artificial
<220>
       a sequence of a primer set used for amplifying a fragment having a primer binding site pbs1 upstream of the sequence of SEQ ID No.
<223>
        1 and BstXI-1 site downstream thereof
<400> 24
                                                                                38
acacacccag cagactggcg ggagctggag aaaaaaac
```

```
<210>
        25
<211>
        38
<212>
       DNA
<213> Artificial
<220>
<223>
        a sequence of a primer set used for amplifying a fragment having
        a BstXI-1 site upstream of the sequence of SEQ ID No. 1 and
        another BstXI-1 site downstream from the first BstXI-1 site
<400> 25
                                                                               38
acacacccag cagactggag cgctccggtt tttctgtg
<210>
       26
<211>
       38
<212> DNA
<213> Artificial
<220>
       a sequence of a primer set used for amplifying a fragment having a BstXI-1 site upstream of the sequence of SEQ ID No. 1 and another BstXI-1 site downstream from the first BstXI-1 site
<223>
<400> 26
                                                                               38
acacacccag cttcctggcg ggagctggag aaaaaaac
<210>
       27
<211>
       38
<212>
       DNA
<213>
       Artificial
<220>
       a sequence of a primer set used for amplifying a fragment having
<223>
       a BstXI-2 site upstream of the sequence of SEQ ID No. 1 and a
       primer binding site pbs-2
<400>
                                                                               38
acacacccag cttcctggag cgctccggtt tttctgtg
<210>
       28
<211>
       40
<212>
       DNA
<213>
      Artificial
<220>
<223>
       a sequence of a primer set used for amplifying a fragment hving a
        BstXI-2 site upstream of the sequence of SEQ ID No. \bar{1} and a
       primer binding site pbs-2
<400>
                                                                               40
ctgcgcgaat atcgtagtcg cgggagctgg agaaaaaaac
<210>
       29
<211>
       424
<212>
       PRT
<213> Escherichia coli
<400>
```

Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val 1 5 10 15 Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly 20 25 30 Pro Ile Ala Leu Tyr Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His 35 40 45 Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Gln Gln Ala 50 60 Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly 65 70 75 80 Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr 85 90 95 Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu 100 105 110 Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asn Tyr Asp 115 120 125 Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys 130 135 140 His Phe Ser Val Asn Gln Met Ile Asn Lys Glu Ala Val Lys Gln Arg 145 150 155 160 Leu Asn Arg Glu Asp Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn 165 170 175 Leu Leu Gln Gly Tyr Asp Phe Ala Cys Leu Asn Lys Gln Tyr Gly Val 180 185 190 Val Leu Gln Ile Gly Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly 195 200 205 Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr 210 220 Val Pro Leu Ile Thr Lys Ala Asp Gly Thr Lys Phe Gly Lys Thr Glu 225 230 235 240 Gly Gly Ala Val Trp Leu Asp Pro Lys Lys Thr Ser Pro Tyr Lys Phe 245 250 255

Tyr	Gln	Phe	Trp 260	Ile	Asn	Thr	Ala	Asp 265	Ala	Asp	∨al	Tyr	Arg 270	Phe	Leu	
Lys	Phe	Phe 275	Thr	Phe	Met	Ser	Ile 280	Glu	Glu	Ile	Asn	Ala 285	Leu	Glu	Glu	
Glu	Asp 290	Lys	Asn	Ser	Gly	Lys 295	Ala	Pro	Arg	Ala	G]n 300	Tyr	val	Leu	Ala	
Glu 305	Gln	val	Thr	Arg	Leu 310	val	His	Gly	Glu	Glu 315	Gly	Leu	Gln	Ala	Ala 320	
Lys	Arg	Ile	Thr	G1u 325	Cys	Leu	Phe	Ser	Gly 330	Ser	Leu	Ser	Ala	Leu 335	Ser	
Glu	Ala	Asp	Phe 340	Glu	Gln	Leu	Ala	G]n 345	Asp	Gly	val	Pro	Met 350	Val	Glu	
Met	Glu	Lys 355	Gly	Ala	Asp	Leu	Met 360	Gln	Ala	Leu	Val	Asp 365	Ser	Glu	Leu	
Gln	Pro 370	Ser	Arg	Gly	Gln	Ala 375	Arg	Lys	Thr	Ile	Ala 380	Ser	Asn	Ala	Ile	
Thr 385	Ile	Asn	Gly	Glu	Lys 390	Gln	Ser	Asp	Pro	G]u 395	Tyr	Phe	Phe	Lys	Glu 400	
Glu	Asp	Arg	Leu	Phe 405	Gly	Arg	Phe	Thr	Leu 410	Leu	Arg	Arg	Gly	Lys 415	Lys	
Asn	Tyr	Cys	Leu 420	Ile	Cys	Trp	Lys									
<210> 30 <211> 135 <212> DNA <213> Artificial																
<220 <223	3> a				f one		the	indu	ıced	expr	essi	on s	syste	ems p	orepared	in
<pre><400> 30 tctccctatc agtgatagag atcggagggg tagcgaagtg gctaaacgcg gcggactcta 60</pre>																
aatccgctcc ctttgggttc ggcggttcga atccgtcccc ctccagacaa gtgcggtttt 12									120							
tttctccagc tcccg										135						

<210>	31	
<211> <212>	145 DNA	
<213>	Artificial	
<220> <223>	a sequence of one of the induced expression systems prepared in Example 1 (TetBst1)	
<400> tctccci	31 tatc agtgatagag atccgtacac gtcggagggg tagcgaagtg gctaaacgcg	60
gcggac	tcta aatccgctcc ctttgggttc ggcggttcga atccgtcccc ctccagacaa $oldsymbol{1}$	20
gtgcgg	tttt tttctccagc tcccg	45
<210> <211> <212> <213>	32 155 DNA Artificial	
<220> <223>	a sequence of one of the induced expression systems prepared in Example 2 (TetBst2)	
<400> tctccc	32 tatc agtgatagag atccgccgac acacgtacac gtcggagggg tagcgaagtg	60
gctaaa	cgcg gcggactcta aatccgctcc ctttgggttc ggcggttcga atccgtcccc $^{-1}$	20
ctccag	acaa gtgcggtttt tttctccagc tcccg 1	55
<210> <211> <212> <213>	33 85 DNA Escherichia coli	
<400> ggtgggg	33 gttc ccgagcggcc aaagggagca gactctaaat ctgccgtcac agacttcgaa	60
ggttcg	aatc cttccccac cacca	85
<210> <211> <212> <213>	34 85 DNA Bacillus stearothermophilus	
<400> ggaggg	34 gtag cgaagtggct aaacgcggcg gactctaaat ccgctccctt tgggttcggc	60
aattca	aatc cotcccctc cacca	85