M1

Filiera teoretică, specializarea matematică - informatică. Filiera vocațională, profil Militar, specializarea matematică - informatică.

- Toți itemii sunt obligatorii. Fiecare item are un singur răspuns corect.
- Se acordă câte 3 puncte pentru fiecare răspuns corect. Se acordă 10 puncte din oficiu.
- Timpul efectiv de lucru este de 3 ore.
- Pentru fiecare item, completati pe foaia de examen, răspunsul pe care-l considerati corect, cu simbolul \circ , iar răspunsurile considerate greșite cu simbolul \times .

În inelul $\mathcal{M}_2(\mathbb{Z}_2)$ se consideră matricele $I_2 = \begin{pmatrix} \hat{1} & \hat{0} \\ \hat{0} & \hat{1} \end{pmatrix}$, $O_2 = \begin{pmatrix} \hat{0} & \hat{0} \\ \hat{0} & \hat{0} \end{pmatrix}$.

- 1. Câte elemente are mulțimea $\mathcal{M}_2(\mathbb{Z}_2)$?
 - **a**) 16;
- **b**) 8:
- **c**) 10;
- **d**) 12.

- **2.** Câte soluții are ecuația $X^2 = O_2$ în $\mathcal{M}_2(\mathbb{Z}_2)$?
- **b**) 4;
- **d**) 6.
- **3.** Câte elemente inversabile față de înmulțire are inelul $\mathcal{M}_2(\mathbb{Z}_2)$?
- **b**) 4;
- **d**) 6.
- **4.** Pentru care din următoarele matrice $A, B \in \mathcal{M}_2(\mathbb{Z}_2)$ avem $AB \neq BA$?

 - $\mathbf{a)} \quad A = \begin{pmatrix} \hat{1} & \hat{0} \\ \hat{0} & \hat{0} \end{pmatrix}, B = \begin{pmatrix} \hat{0} & \hat{0} \\ \hat{0} & \hat{1} \end{pmatrix}; \qquad \qquad \mathbf{b)} \quad A = \begin{pmatrix} \hat{0} & \hat{1} \\ \hat{0} & \hat{0} \end{pmatrix}, B = \begin{pmatrix} \hat{0} & \hat{0} \\ \hat{1} & \hat{0} \end{pmatrix};$ $\mathbf{c)} \quad A = I_2, B = \begin{pmatrix} \hat{1} & \hat{1} \\ \hat{1} & \hat{1} \end{pmatrix}; \qquad \qquad \mathbf{d)} \quad A = O_2, B = \begin{pmatrix} \hat{1} & \hat{0} \\ \hat{0} & \hat{0} \end{pmatrix}.$
- 5. Care din următoarele ecuații este verificată de toate elementele inelului $\mathcal{M}_2(\mathbb{Z}_2)$?
 - a) $X^4 = X^2$;
- **b)** $X^6 = X^2$:
- c) $X^8 = X^2$;
- **d**) $X^4 = X$.

Se consideră polinomul $f = X^4 - 3X + 1$ cu rădăcinile $x_1, x_2, x_3, x_4 \in \mathbb{C}$.

- **6.** Suma $x_1 + x_2 + x_3 + x_4$ este:
- **c**) -3:
- **d**) 4.

- 7. Produsul f(1)f(-1) este:
 - **a**) 5;
- **b**) -5;
- **c**) 1;
- **d**) -1.
- **8.** Numărul de rădăcini raționale ale polinomului f este:
 - **a**) 4:
- **b**) 2:
- **c**) 0;
- **d**) 1.

- **9.** Suma $x_1^4 + x_2^4 + x_3^4 + x_4^4$ este:
- **b**) 0;
- **c**) 4;
- **d**) -4.

- **10.** Multimea $A = \{x \in \mathbb{Q} \setminus \mathbb{Z} \mid f(x) \in \mathbb{Z}\}$ este:
 - a) Formată dintr-un element;
 - **b)** Infinită;
 - c) Finită, având cel puţin 2 elemente;
 - d) Vidă.

11.	Mulţimea $B = \{x$	$\in \mathbb{R} \setminus \mathbb{Q} \mid f(x) \in \mathbb{N} $ es	te:		
	a) Formată dint	er-un element;			
	b) Infinită;	l cel puţin 2 elemente	•		
	d) Vidă.	r cer puşin 2 elemente	,		
12.	Egalitatea ($a + b$ -	$(+c)^3 = a^3 + b^3 + c^3 + c^3$	-3(a+b)(b+c)(c+a)), unde $a, b, c \in \mathbb{C}$, are loc:	
				ai dacă $a = b = c$; d) Nu	
13.			ei $(x^2 - x + 2)^3 = x^6$		
	a) 3;	b) 6;	c) 4;	d) 5.	
14.	Suma soluţiilor re	ale ale ecuației $(2^x -$	$3^x + 5^x)^3 = 8^x - 27^x$	$+125^x$ este:	
	a) 1;		c) -1 ;	1	
				<u> 2</u>	
	Se consideră funcț	ia $f: \mathbb{R} \to \mathbb{R}, f(x) =$	(x-1)(x-2)(x-3)	(x-4).	
15.	Ecuația $f(x) = 0$,	$x \in \mathbb{R}$, are suma solu	ţiilor:		
	a) 10;	b) 0;	c) -10 ;	d) 4.	
16.	Ecuația $f'(x) = 0$	$x \in \mathbb{R}$, are numărul	soluţiilor:		
	a) 0;	b) 2;	c) 1;	d) 3.	
17.	Numărul punctelo	r de extrem local ale	funcției f este:		
	a) 1;	b) 4;	c) 3;	d) 2.	
	Pentru fiecare nun	năr natural nenul n ,	notăm cu $U_n = \{z \in \mathbb{C}\}$	$\mathbb{C} \mid z^n = 1 \}.$	
18.	Numărul i aparțin	e mulţimii:			
	a) U_6 ;	b) $U_2;$	c) U_4 ;	d) U_3 .	
19.	Numărul de eleme	ente ale mulţimii U_4 e	ste:		
	a) 7;	b) 6;	c) 5;	d) 4.	
20.	Suma elementelor	mulţimii U_4 este:			
	a) 0;	b) 1;	c) 4;	d) -1.	
21.	Numărul de eleme	ente ale mulţimii U_6 \cup	U_{15} este:		
	a) 21;	b) 20;	c) 19;	d) 18.	
22.	Mulţimea $U_6 \cap U_4$	este:			
	a) U_2 ;	b) $U_{12};$	c) U_{24} ;	d) U_{10} .	
23.	Suma elementelor	mulţimii $U_6 \cup U_{10} \cup V_{10}$			
	a) 0;	b) 3;	c) -1 ;	d) 1.	
	So gongidorë funct	$f:(0,\infty)\to\mathbb{P}$	$(x) = \ln x$ si integral ele	e $I_n(p)$, unde $n, p \in \mathbb{N}^*$, I_n	$(n) = \int_{-\infty}^{1} (1 - x^p)^n dx$
	se considera funcç	$\text{lia } f: (0,\infty) \to \mathbb{R}, f($	$(x) = \lim_{x \to 0} x$ şi integralere	$e I_n(p)$, unde $n, p \in \mathbb{N}$, I_n	$(p) = \int_0^\infty (1 - x^2) dx.$
24	$I_1(p) = \int_0^1 (1 - x^p)^{-1} dx$	$(a,b) dx n \in \mathbb{N}^* \text{ este:}$			
	5 0		1	1	
	a) $1-p$;	b) $\frac{p}{p+1}$;	c) $\frac{1}{p}$;	d) $1 - \frac{1}{p}$.	
25.	Pentru ce valori n	$p \in \mathbb{N}^*, n \geq 2$, are le	oc egalitatea $I_n(p) =$	$\frac{np}{1}I_{n-1}(p)$?	
		· — ,		np+1	

d) Numai când n = p.

b) Numai când n < p;

(Se poate folosi eventual metoda integrării prin părți)

 $\mathbf{a)} \ \ (\forall) \ n, \, p \in \mathbb{N}^*, \, n \ge 2;$

c) Numai când n > p;

26. Pentru ce valori ale lui $n \in \mathbb{N}^*$ are loc egalitatea $I_n = \frac{n}{n+1} \cdot \frac{2n}{2n+1} \cdot \dots \cdot \frac{n^2}{n^2+1}$?

a) Numai pentru n < 2003;

b) Numai pentru n = 2003;

c) $(\forall) \ n \in \mathbb{N}^*;$

d) Numai pentru n > 2003.

27. f'(x), x > 0, este:

a) $x(\ln x - 1);$ **b)** $\frac{1}{x^2 - 1};$ **c)** $\frac{1}{x};$

d) x.

Mulţimea tuturor valorilor lui $x \in (0, \infty)$ pentru care avem simultan inegalităţile $\frac{1}{x+1} < \ln(x+1) - \ln x < \frac{1}{x}$, este:

(Se poate folosi eventual teorema lui Lagrange)

a) (0,1);

b) $(0, \infty);$

c) $(1, \infty);$

d) (0, e).

 $\lim_{n \to \infty} \left(1 + \frac{1}{n} \right) \left(1 + \frac{1}{2n} \right) \cdot \ldots \cdot \left(1 + \frac{1}{n^2} \right)$ este:

c) 2;

d) *e*.

30. $\lim_{n\to\infty} I_n(n)$ este:

a) ∞ ;

b) 0,5; **c**) 0;

d) 1.

M1

Filiera teoretică, specializarea Stiinte ale naturii; Filiera tehnologică, profil Tehnic, toate specializările - pentru absolvenții claselor a XII-a, promoția 2003

- Toți itemii sunt obligatorii. Fiecare item are un singur răspuns corect.
- Se acordă câte 3 puncte pentru fiecare răspuns corect. Se acordă 10 puncte din oficiu.
- Timpul efectiv de lucru este de 3 ore.
- Pentru fiecare item, completați pe foaia de examen, răspunsul pe care-l considerați corect, cu simbolul \circ , iar răspunsurile considerate greșite cu simbolul \times .

Se consideră șirul $(I_n)_{n\in\mathbb{N}}$, definit prin $I_0(x)=1$ și $I_{n+1}(x)=\int_0^x I_n(t)\ dt$, $(\forall)\ x\in\mathbb{R}$, $(\forall)\ n\in\mathbb{N}$.

- 1. Suma $I_0(1) + I_0(2) + \ldots + I_0(2003)$ este:
 - **a**) 0;
- **b)** 2003:
- c) 2002;
- d) 2004.

- **2.** $I_1(x), x \in \mathbb{R}$, este:
 - \mathbf{a}) x;
- **b**) 1;
- c) $\frac{x}{2}$;
- **d**) 0.

- 3. $I_{10}(x), x \in \mathbb{R}$, este:
- a) $\frac{x}{10}$; b) $10!x^{10}$; c) $\frac{x^{10}}{10!}$;
- **d)** x^{10} .

- 4. $\lim_{n\to\infty} I_n(x), x \in \mathbb{R}$, este:
 - \mathbf{a}) e:
- **b**) 0;
- $\mathbf{c}) \infty;$
- \mathbf{d}) $-\infty$.

- 5. $\lim_{n \to \infty} \frac{I_0(1) + I_1(1) + \ldots + I_n(1)}{n}$ este:
- \mathbf{c}) e;
- **d**) 0.

În sistemul cartezian de coordonate xOy se consideră punctele A(3,4), B(-4,3), C(0,-5) și O(0,0).

- **6.** Suma OA + OB + OC este:
- c) 10;
- **d**) 11.

- 7. Punctele A, B și C se află pe curba:

 - a) $\frac{x^2}{25} \frac{y^2}{16} = 1;$ b) $\frac{x^2}{9} + \frac{y^2}{16} = 1;$ c) x + y = 7; d) $x^2 + y^2 = 25.$

- **8.** Ecuația dreptei AB este:
 - a) $x^2 + y^2 = 25$; b) 7x = y + 25; c) 7y = x + 25; d) $(xy)^2 = 12^2$.

- **9.** Panta dreptei AC este:
 - a) $\frac{1}{9}$; b) $\frac{1}{3}$;
- **c)** 9;
- **d**) 3.

- 10. Aria triunghiului ABC este:
 - **a**) 35;
- **b**) 30;
- **c**) 60;
- **d**) 25.
- 11. Raza cercului circumscris triunghiului ABC este:
- **b**) 5;
- **d**) 4.5.

Se consideră polinomul $f = X^4 - 5X^2 + 1$, cu rădăcinile $x_1, x_2, x_3, x_4 \in \mathbb{C}$.

	a) 1;	b) 0;	c) 3;	d) 2.
14.	Suma $x_1 + x_2 + x_3 + x_4$	x_4 este:		
	a) 5;	b) 0;	c) 1;	d) -5.
15.	Suma $x_1^{2003} + x_2^{2003} + x_3^{2003}$	$x_3^{2003} + x_4^{2003}$ apartine	mulţimii:	
	a) $\mathbb{R}\backslash\mathbb{Q}$;	b) N;	c) $\mathbb{Z}\backslash\mathbb{N};$	\mathbf{d}) $\mathbb{Q}\backslash\mathbb{Z}$.
	Se consideră funcțiile	$f: \mathbb{R} \to \mathbb{R}, \ f(x) =$	$\operatorname{arctg} x - x + \frac{x^3}{3}, g$	$: \mathbb{R} \to \mathbb{R}, \ g(x) = f(x) - \frac{x^5}{5}, \ h : \mathbb{R} \to \mathbb{R},$
	$h(x) = \operatorname{arctg} x.$		9	Ü
16.	$f'(x), x \in \mathbb{R}$, este:			
	a) $-\frac{x^4}{1+x^2}$;	b) $\frac{x^2}{1+x^2}$;	c) $\frac{x^4}{1+x^2}$;	d) $-\frac{1}{1+x^2}$.
17.	$\lim_{x \to 0} \frac{f(x)}{x^5} \text{ este:}$	1		
	a) $\frac{1}{5}$;	b) $-\frac{1}{5}$;	c) 0;	d) ∞.
18.	$g'(x), x \in \mathbb{R}$, este:	m^4	_m 6	σ^4
	a) $-\frac{x^6}{1+x^2}$;	b) $\frac{x}{1+x^2}$;	c) $\frac{x^6}{1+x^2}$;	d) $-\frac{x^4}{1+x^2}$.
19.	$(f(0))^2 + (g(0))^2$ este:			
	a) 1;	b) 0;	$\mathbf{c)} \pi;$	d) 2 ² .
20.	Mulţimea valorilor real $x - \frac{x^3}{3} + \frac{x^5}{5}$, este:	le ale lui x , pentru care	avem adevărate simult	an inegalitățile următoare $x - \frac{x^3}{3} < \operatorname{arctg} x <$
	5 5	b) (0,1);	c) $(1, \infty);$	d) $(-\infty, 0)$.
21.				ptele de ecuații $x=0$ și $x=1$ este un număr
		b) (0, 45; 0, 46);	c) $(0,48;0,5);$	d) (0,41;0,45).
	Pe $\mathbb R$ se consideră lege	a de compoziție "° de	efinită prin $x \circ y = x +$	-y+1. Se știe că legea este asociativă.
22.	Elementul neutru al le	egii "o" este:		
	a) $-2;$	b) 0;	c) 1;	d) -1.
23.	Simetricul elementului	$x \in \mathbb{R}$, față de legea "	o" este:	
	a) $-x+1;$	b) $-x-1;$	$\mathbf{c)} -x;$	d) $-2-x$.
24.	Elementul $(-10) \circ (-9)$	$(0) \circ \ldots \circ 0 \circ 1 \circ \ldots \circ 10$	este:	
	a) 20;	b) 21;	c) 19;	d) 22.
25 .	Numărul de soluții rea	ale ale ecuației $4^x \circ 2^x$	= 21 este:	
	a) 0;	b) 1;	c) 3;	d) 2.
	În mulțimea $\mathscr{M}_2(\mathbb{C})$ se	e consideră matricele A	$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ şi $O_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$
26.	Matricea A^2 este:			
	$\mathbf{a)} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix};$	b) O_2 ;	$\mathbf{c)} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix};$	d) A.

5

d) 3.

12. Câte rădăcini reale are polinomul f?

13. Câte rădăcini raționale are polinomul f?

b) 0;

c) 4;

a) 2;

27. Mulţimea $\{X \in \mathcal{M}_2(\mathbb{C}) \mid XA = AX\}$ este:

a) $\left\{ \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} \mid a \in \mathbb{C} \right\};$ c) $\left\{ \begin{pmatrix} a & 0 \\ b & a \end{pmatrix} \mid a, b \in \mathbb{C} \right\};$

 $\begin{array}{ll} \mathbf{b)} & \left\{ \begin{pmatrix} a & b \\ c & a \end{pmatrix} \mid a,b,c \in \mathbb{C} \right\}; \\ \mathbf{d)} & \left\{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \mid a,b \in \mathbb{C} \right\}. \end{array}$

28. Determinantul matricei A este:

a) 0;

b) 1;

c) -1;

d) 10.

29. Ecuația $Z^2 = O_2$ are în $\mathcal{M}_2(\mathbb{C})$:

a) Un număr finit de soluții, strict mai mare decât 1;

c) O infinitate de soluții;

b) Exact o soluţie;

d) Nici o soluţie.

30. Ecuația $Y^2 = A$ are în $\mathcal{M}_2(\mathbb{C})$:

a) Nici o soluţie;

c) Un număr finit de soluții, strict mai mare decât 1;

b) Exact o soluţie;

d) O infinitate de soluţii.

M1

Filiera teoretică, specializarea matematică - informatică. Filiera vocațională, profil Militar, specializarea matematică - informatică.

\Diamond	Timpul efectiv	de lu	cru este de	3 ore.								
\Diamond	Pentru fiecare	item,	completați	pe fo	aia de	e examen,	răspunsul	рe	care-l	considerați	corect,	cu

simbolul o, iar răspunsurile considerate greșite cu simbolul x.

Toți itemii sunt obligatorii. Fiecare item are un singur răspuns corect.

1. Produsul $\hat{1} \cdot \hat{2} \cdot \ldots \cdot \hat{5}$, calculat în \mathbb{Z}_6 este:

b) 2;

 \mathbf{c}) $\hat{1}$;

Se acordă câte 3 puncte pentru fiecare răspuns corect. Se acordă 10 puncte din oficiu.

d) 3.

2. Suma $\hat{1} + \hat{2} + \ldots + \hat{5}$, calculată în \mathbb{Z}_6 este:

 \mathbf{a}) $\hat{0}$;

b) 2:

c) 1;

 \mathbf{d}) $\hat{3}$.

3. Care este ordinul elementului $\hat{2}$ în grupul $(\mathbb{Z}_6, +)$?

a) 4;

b) 6;

d) 3.

4. Câte soluții are în inelul \mathbb{Z}_6 ecuația $\hat{3} \cdot \hat{x} = \hat{0}$?

a) 3;

b) 4;

d) 2.

Se consideră șirurile $(a_n)_{n \in \mathbb{N}^*}$ și $(b_n)_{n \in \mathbb{N}^*}$, $a_n = \frac{1}{2^{1^2}} + \frac{1}{2^{2^2}} + \frac{1}{2^{3^2}} + \ldots + \frac{1}{2^{n^2}}$ și $b_n = a_n + \frac{1}{2n \cdot 2^{n^2}}$, $(\forall) \ n \in \mathbb{N}^*$.

5. Mulțimea $\{n \in \mathbb{N}^* \mid a_n < a_{n+1}\}$, este:

a) Formată dintr-un element;

b) Ø;

c) Finită, având cel puţin 2 elemente;

d) N*.

6. Mulţimea $\{n \in \mathbb{N}^* \mid b_n > b_{n+1}\}$, este:

a) \mathbb{N}^* ;

b) Formată dintr-un element;

c) Ø;

d) Finită, având cel puţin 2 elemente.

7. Știind că șirurile $(a_n)_{n\in\mathbb{N}^*}$ și $(b_n)_{n\in\mathbb{N}^*}$ sunt convergente, notăm $a=\lim_{n\to\infty}a_n$ și $b=\lim_{n\to\infty}b_n$. Atunci a-b este:

b) 0, 25;

c) 0;

d) 0, 5.

8. Numărul $a = \lim_{n \to \infty} a_n$ aparține mulțimii:

a) $\mathbb{Z} - \mathbb{N}$;

b) $\mathbb{Q} - \mathbb{Z}$;

c) $\mathbb{R} - \mathbb{Q}$;

d) ℕ.

Se consideră polinomul $f = X^4 - 14X^2 + 9$, cu rădăcinile $x_1, x_2, x_3, x_4 \in \mathbb{C}$, elementul $a = \sqrt{2} + \sqrt{5}$ și mulțimile $A = \{g(a) \mid g \in \mathbb{Z}[X]\}, B = \{g(a) \mid g \in \mathbb{Z}[X], \operatorname{grad}(g) \le 3\}.$

9. Care dintre elementele următoare nu este rădăcină a polinomului f?

a) $\sqrt{2} + \sqrt{3}$;

b) $\sqrt{2} + \sqrt{5}$;

c) $-\sqrt{2} + \sqrt{5}$; d) $\sqrt{2} - \sqrt{5}$.

10. Suma $x_1 + x_2 + x_3 + x_4$ este:

a) -14;

b) 0;

c) 14;

d) 4.

11. Produsul $x_1 \cdot x_2 \cdot x_3 \cdot x_4$ este:

a) -9;

b) 0;

c) 9;

d) 14.

12 .	Dacă $p\sqrt{2} + q\sqrt{5} + r$	$\sqrt{10} + s = 0, \text{ cu } p, q, \tau$	$r, s \in \mathbb{Q}$, atunci $2p + 5e$	q + 10r + s este:
	a) 5;	b) 0;	c) 7;	d) 2.
13.	Mulţimea $A - B$ este	·•		
	a) Formată dintr-uc) Finită, având ce		b) Infinită;d) Ø.	
	$\hat{\mathbf{I}}\mathbf{n}$ sistemul cartezian	de coordonate xOy se	e consideră punctele A_n	$n_n(n,n^2), n \in \mathbb{N}.$
14.	Panta dreptei A_0A_1 e	este:		
	a) 2;	b) $-2;$	c) 1;	d) -1.
15.	Ecuația dreptei A_0A_1			
	a) $x + y = 0;$	b) $y = x^2;$	c) $x^2 + y = 0;$	$\mathbf{d)} y = x.$
16.	Lungimea segmentulu	ui A_1A_2 este:		
	a) 4;	b) $\sqrt{10}$;	c) 10;	d) 3.
17.	Aria triunghiului A_n	$A_{n+1}A_{n+2}$ este:		
	a) $n+1;$	b) n;	c) 1;	d) 2.
18.	Numărul dreptelor ca	are trec prin câte 2 pu	ncte din mulțimea $\{A_1$	$,A_2,\ldots,A_5\}$ este:
	a) 9;	b) 10;	c) 8;	d) 20.
19.	Câte triunghiuri au v	vârfurile în mulţimea {	$\{A_1, A_2, \dots, A_5\}?$	
	a) 5;	b) 20;	c) 15;	d) 10.
	Se consideră funcția j x .	$f: \mathbb{R} \to \mathbb{R}, f(x) = \sin x$	x . Notăm prin $f^{(n)}(x)$,	, derivata de ordinul n a funcției f , în punctul
20.	Care dintre elementel	le următoare este peri	oadă pentru funcția f ?	
	a) 2π ;	b) 3π ;	c) $\frac{\pi}{2}$;	d) π.
21.	Câte puncte de maxis	m local are funcția f î	In intervalue $[0, 11\pi]$?	
	a) 11;	b) 5;	c) 6;	d) 10.
22.	Aria suprafeței plane	cuprinsă între graficu	l funcției f , axa Ox și	de dreptele de ecuații $x=0$ și $x=2\pi,$ este:
	a) 2;	b) 3;	c) 0;	d) 4.
23.	$\lim_{x \to \infty} \frac{\int_0^x f(t) \ dt}{x} \text{ est}$	٥٠		
20.	$x \to \infty$ $x \to \infty$	·		9
	a) ∞ ;	b) 1;	c) 0;	d) $\frac{2}{\pi}$
24 .	Lungimea maximă a	unui interval inclus în	$[0,2\pi]$, pe care funcția	a f este convexă, este:
	a) π;	b) $\frac{3\pi}{2}$;	$\mathbf{c)} \frac{\pi}{2};$	d) 2π .
25 .	$f^{(2004)}(0)$ este:			
	a) 0;	b) 0,5;	c) -1 ;	d) 1.
	Se consideră matricel	le $A \in \mathcal{M}_{3,4}(\mathbb{C}), A =$	$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix} $ şi $I_3 =$	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$
26.	Rangul matricei A es	ste:		
	a) 4;	b) 3;	c) 2;	d) 1.

27. Soluţia sistemului $\begin{cases} x+y+z+t=1\\ y+z+t=0\\ z+t=0 \end{cases}, \ (x,y,z,t)\in\mathbb{C}\times\mathbb{C}\times\mathbb{C}\times\mathbb{C}, \text{ este:}$

 $\mathbf{a)} \ \ (1,1,-1,-1); \qquad \mathbf{b)} \ \ (1,0,\lambda,-\lambda), \ \lambda \in \mathbb{C}; \qquad \mathbf{c)} \ \ (-1,1,-1,1); \qquad \mathbf{d)} \ \ (1,-1,1-1).$

28. Ecuația $AX = I_3$, cu $X \in \mathcal{M}_{3,4}(\mathbb{C})$:

b) Are un număr finit de soluții strict mai mare decât 1; a) Nu are soluție;

c) Are o infinitate de soluții; d) Are o singură soluție.

29. Matricea I_3A are suma elementelor:

a) 10;

b) 0;

c) 9;

d) 12.

30. Mulţimea $\{Y \in \mathcal{M}_{3,4}(\mathbb{C}) \mid \det(YA) \neq 0\}$ este:

a) Formată dintr-un număr finit de elemente, cel puţin egal cu 2;

b) Vidă;

c) Infinită;

d) Formată dintr-un element.

Filiera teoretică, specializarea Științe ale naturii Filiera tehnologică, profil Tehnic, toate specializările

^	- TD 4	,		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	T. •	• 1		•	J	
$\langle \rangle$	Tot	ı itemii	sunt	obligatorii.	Fiecare	item	are un	sıngur	raspuns	corect.

- Se acordă câte 3 puncte pentru fiecare răspuns corect. Se acordă 10 puncte din oficiu.
- Timpul efectiv de lucru este de 3 ore.
- Pentru fiecare item, completați pe foaia de examen, răspunsul pe care-l considerați corect, cu simbolul \circ , iar răspunsurile considerate greșite cu simbolul \times .
- 1. Suma $1 + 2 + \ldots + 2003$ este:

a) 2003 · 2004;

b) 2003 · 1001;

c) 2003 · 1002;

d) 2002 · 1002.

2. Produsul $\cos 0^{\circ} \cdot \cos 1^{\circ} \cdot \ldots \cdot \cos 179^{\circ} \cdot \cos 180^{\circ}$ este:

a) $-\frac{1}{2^{30}}$; b) $\frac{1}{2^{10} \cdot 3^{10}}$;

c) 0;

d) $\frac{1}{2^{30}}$.

3. Suma $1 + i + i^2 + \ldots + i^{2003}$ este:

a) 1:

b) 0;

 \mathbf{c}) i;

d) 1+i.

4. Produsul $1 \cdot i \cdot i^2 \cdot \ldots \cdot i^{2003}$ este:

a) -1:

b) 1;

 \mathbf{c}) i;

 \mathbf{d}) -i.

5. Suma $\hat{0} + \hat{1} + \hat{2} + \ldots + \hat{12}$ în \mathbb{Z}_{13} este:

b) $\hat{7}$:

c) 1:

d) 0.

Se consideră șirul $(I_n)_{n\in\mathbb{N}^*}$, $I_n = n \int_0^1 x^n \sin x \ dx$.

6. $I_1 = \int_0^1 x \sin x \, dx$ este:

 $a) \sin 1;$

b) $\sin 1 + \cos 1;$ **c)** $\cos 1 - \sin 1;$

7. Dacă $g:[0,1]\to\mathbb{R}$ este o funcție continuă, atunci $\lim_{n\to\infty}\int_0^1 x^ng(x)\ dx$ este:

a) g(0,5);

b) g(1);

c) 0;

d) g(0).

8. Egalitatea $I_n = \sin 1 - \int_0^1 x^n (x \cos x + \sin x) \ dx, \ n \in \mathbb{N}^*$, este adevărată:

(Se poate utiliza metoda integrării prin părți)

- a) Pentru exact o valoare a lui $n \in \mathbb{N}^*$;
- b) Pentru orice $n \in \mathbb{N}^*$;
- c) Pentru nici o valoare a lui $n \in \mathbb{N}^*$;
- d) Pentru un număr finit, strict mai mare decât 1, de valori ale lui $n \in \mathbb{N}^*$.

 $\lim_{n\to\infty} I_n \text{ este:}$

a) $\sin 1$;

b) cos 1;

c) $\sin 1 + \cos 1$;

d) $\sin 1 - \cos 1$.

Se consideră triunghiul dreptunghic ABC cu catetele AB=3 și AC=4.

10. Lungimea ipotenuzei BC este:

a) $\sqrt{12}$;

b) 6;

c) 7;

d) 8.

11.	Aria triunghiului AB		a) 0.	d) 8.
	a) 12;	b) 6;	c) 9;	d) o.
12.	$\cos B$ este:	b) 0 <i>c</i> .	a) 0 e.	1) 0.7
	a) 0,75;	b) 0,6;	c) 0,8;	d) 0,7.
13.		are cade pe ipotenuză e		1) 4
	a) 3;	b) 2;	c) 2,4;	d) 4.
14.		scris triunghiului ABC		
	a) 2,5;	b) 3;	c) 2;	d) 4.
	Se consideră funcția j	$f: \mathbb{R} \setminus \{-1, -2\} \to \mathbb{R}, f($	$(x) = \frac{1}{(x+1)(x+2)}.$	
15.	Câte asimptote vertic	cale are graficul funcției	i <i>f</i> ?	
	a) 2;	b) 3;	c) 1;	d) 0.
16.	$\lim_{x \to 0} \frac{f(x) - f(0)}{x} $ este:			
	a) 0,75;	b) 1;	c) $-0,75;$	d) -1.
17.		$\frac{1}{1} + \frac{1}{x+2}, \ (\forall) \ x \in \mathbb{R} \setminus \{$		
	a) $-\frac{2}{x+1}$;	b) $\frac{2}{x+2}$;	c) 0;	d) $2f(x)$.
18.	Care este mulţimea v	alorilor lui $n \in \mathbb{N}^*$ pent	cru care $f(1) + f(2) +$	$\dots + f(n) = \frac{1}{2} - \frac{1}{n+2}$?
	a) Ø;c) Este formată dir		N*;Este finită, conţinâ	nd cel puţin 2 elemente.
19.	$\lim_{n\to\infty} (f(1)+f(2)+\dots$	(1+f(n)) este:		
	a) 0,5;		c) 1;	d) ∞ .
20.	$\lim_{n \to \infty} n \cdot \left(f(1) + f(2) \right)$	$+\ldots+f(n)-\frac{1}{2}$ este	e:	
	a) $-\infty$;	b) -1 ;	c) 1;	d) ∞ .
21.	Egalitatea $(a^2 + b^2)(a^2 + b^2)$	$e^2 + d^2) = (ac + bd)^2 +$	$(ad - bc)^2$, a, b, c, d \in	C, este adevărată:
				ce $a, b, c, d \in \mathbb{C}$; d) Numai dacă $a = c$.
22.	Dacă $(a^2 + b^2)(c^2 + d^2)$	$(ac + bd)^2 = 0$, atu	unci:	
		$\mathbf{b)} ad = bc;$		d) $a + d = b + c$.
23.	Numărul de elemente	ale mulțimii $\{x \in \mathbb{R} \mid 5$	$(x^4 + x^2) = (2x^2 + x)^2$	² } este:
	a) 0;	b) 3;	c) 1;	d) 2.
9.4	Cuma nëtnatalan galut	tiilar raala ala aquatici t	(4x + 25x)(0x + 40x) =	$(6x + 2\pi x)^2$ agts.

Suma pătratelor soluțiilor reale ale ecuației $(4^x + 25^x)(9^x + 49^x) = (6^x + 35^x)^2$, este:

a) 0; **b**) 5; **c)** 1; **d)** 2.

În mulțimea $\mathcal{M}_2(\mathbb{C})$ se consideră matricele $A=\begin{pmatrix}1&0\\1&-1\end{pmatrix},\,B=\begin{pmatrix}1&2\\0&-1\end{pmatrix}$ și $I_2=\begin{pmatrix}1&0\\0&1\end{pmatrix}$.

Matricea AB - BA este: **25.**

a) $\begin{pmatrix} -2 & 4 \\ 2 & 2 \end{pmatrix}$; **b)** $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$; **c)** $\begin{pmatrix} 2 & -4 \\ -2 & -2 \end{pmatrix}$; **d)** $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.

26. Determinantul matricei A este:

a) -2;**b**) −1; **c)** 0; **d**) 1. **27.** Matricea A^2 este:

- **a)** $I_2;$
- **b)** $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$; **c)** $\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$; **d)** $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

28. Inversa matricei A este:

- **a)** $\begin{pmatrix} -1 & -1 \\ 0 & 1 \end{pmatrix}$; **b)** A;
- $\mathbf{c)} \quad \begin{pmatrix} -1 & 0 \\ 1 & 1 \end{pmatrix};$
- **d**) I_2 .

29. Rangul matricei $X = I_2 + A + A^2 + A^3 + \ldots + A^{2003}$ este:

- **b)** 0;
- **c)** 2004;
- **d**) 1.

30. Mulțimea $\{n \in \mathbb{N}^* \mid (AB)^n = I_2\}$ este:

- a) Formată din exact un element;
- b) Vidă;c) Infinită;
- d) Finită, având ce puţin 2 elemente.

Profil real:matematică fizică, informatică, metrologie - pentru absolvenții claselor a XIII-a (zi, seral și frecvență redusă) promoția 2003 și promoțiile anterioare

- Toți itemii sunt obligatorii. Fiecare item are un singur răspuns corect.
- Se acordă câte 3 puncte pentru fiecare răspuns corect. Se acordă 10 puncte din oficiu.
- Timpul efectiv de lucru este de 3 ore.
- Pentru fiecare item, completati pe foaia de examen, răspunsul pe care-l considerati corect, cu simbolul \circ , iar răspunsurile considerate greșite cu simbolul \times .
- Multimea numerelor reale x pentru care are loc egalitatea

$$1 - x^{2} + (-x^{2})^{2} + \ldots + (-x^{2})^{n} = \frac{1 - (-x^{2})^{n+1}}{1 + x^{2}}, (\forall) n \in \mathbb{N}^{*}$$

este:

- a) $(-\infty, 0]$;
- **b**) ℝ;
- **c**) Ø;
- \mathbf{d}) $[0,\infty)$.

- 2. $\lim_{n\to\infty} \int_0^a \frac{x^{2(n+1)}}{1+x^2} dx$, $a \in [0,1]$, este:
 - **a**) a;
- **b)** $\frac{a}{1+a^2}$; **c)** $\frac{1}{1+a^2}$;
- **d**) 0.
- 3. Mulțimea valorilor lui $a \in \mathbb{R}$ pentru care avem egalitatea

$$\operatorname{arctg} \ a - (-1)^{n+1} \int_0^a \frac{x^{2(n+1)}}{1+x^2} \ dx = a - \frac{a^3}{3} + \frac{a^5}{5} + \ldots + (-1)^n \frac{a^{2n+1}}{2n+1}, \ (\forall) \ n \in \mathbb{N}^*,$$

este:

- a) $(-\infty, 0];$
- **b**) ∅;
- \mathbf{c}) \mathbb{R} :

- 4. $\lim_{n\to\infty} \left(1 \frac{1}{3} + \frac{1}{5} \frac{1}{7} + \dots + \frac{(-1)^n}{2n+1}\right)$ este:
 - **a)** $-1 + \frac{\pi}{4}$; **b)** $\frac{\ln 2}{2}$;
- **c)** ln 2;

Se consideră matricele $A \in \mathcal{M}_{3,4}(\mathbb{C}), A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$ şi $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

- Rangul matricei A este:

- **6.** Soluția sistemului $\begin{cases} x+y+z+t=1\\ y+z+t=0\\ z+t=0 \end{cases}, \ (x,y,z,t) \in \mathbb{C} \times \mathbb{C} \times \mathbb{C} \times \mathbb{C}, \text{ este:}$
 - $\mathbf{a)} \ \ (1,0,\lambda,-\lambda), \ \lambda \in \mathbb{C}; \qquad \mathbf{b)} \ \ (-1,1,-1,1); \qquad \mathbf{c)} \ \ (1,1,-1,-1); \qquad \mathbf{d)} \ \ (1,-1,1,-1).$

- 7. Ecuația $AX = I_3$, cu $X \in \mathcal{M}_{3,4}(\mathbb{C})$ are mulțimea soluțiilor:
 - a) Formată dintr-un număr finit de elemente, cel puțin egal cu 2;
 - b) Vidă;
 - c) Infinită;
 - d) Formată dintr-un element.
- **8.** Matricea I_3A are suma elementelor:
 - **a**) 9;
- **b**) 12;
- **c)** 10;
- **d**) 0.

	a) Vidă;b) Infinită;c) Formată dintr-ud) Formată dintr-u	ın element; ın număr finit de eleme	ente, cel puțin egal cu	2.	
	Se consideră funcția <i>f</i>	$f: \mathbb{R} \to \mathbb{R}, f(x) = \cos x$	x.		
10.	Ce se poate spune des	espre $\lim_{x \to \infty} f(x)$?			
	a) Este egală cu 0;	b) Este egal:	ă cu 1; c) Es	te egală cu −1;	d) Nu există.
11.	Câte puncte de maxir	m local are funcția f în	n intervalul $[0, 11\pi]$?		
	a) 5;	b) 6;	c) 11;	d) 10.	
12 .	Aria suprafeței plane	cuprinsă între graficul	funcției f , axa Ox și	dreptele de ecuații	$x = 0$ şi $x = 2\pi$, este:
	a) 3;	b) 4;	c) 2;	d) 0.	
13.	$\lim_{x \to \infty} \frac{\int_0^x f(t) \ dt}{x} \text{ este}$				
	a) $\frac{2}{\pi}$;	b) 1;	c) ∞ ;	d) 0.	
14.	$\lim_{x \to 0} \frac{f(x) - f(0)}{x} \text{ este:}$:			
	a) 1;	b) 0;	c) 0,5;	d) -1.	
15.	$f^{(2004)}(0)$ este:				
	a) 1;	b) 0,5;	c) -1;	d) 0.	
16.	Produsul $\hat{1} \cdot \hat{2} \cdot \ldots \cdot \hat{5}$,		. ^	-	
	a) Î;	b) 2;	c) 0;	d) 3.	
17.	Suma $\hat{1} + \hat{2} + \ldots + \hat{5}$,		.		
	a) 2;	b) 0;	c) Î;	d) 3̂.	
18.)	elul \mathbb{Z}_6 ecuația $\hat{3}\hat{x} = \hat{0}$?		J) 1	
	, ,	b) 3;	c) 4;	d) 1.	
19.	Cel mai mic număr na	natural nenul n cu prop	prietatea că $\underbrace{2+2+\dots}_{\text{de }n \text{ ori}}$		
	a) 4;	b) 2;	c) 6;	d) 3.	
	În sistemul cartezian	de coordonate xOy se	consideră punctele A	$n(n, n^2), n \in \mathbb{N}.$	
20.	Ecuația dreptei A_0A_1	este:			
	a) $x^2 + y = 0;$	b) $x + y = 0;$	c) $y = x^2;$	$\mathbf{d)} y = x.$	
21.	Lungimea segmentulu	ui $[A_1A_2]$ este:			
	a) 3;	b) 10;	c) $\sqrt{10}$;	d) 4.	
22 .		$A_{n+1}A_{n+2}, n \in \mathbb{N}$ este:			
	a) 2;	b) 1;	c) $n+1;$	d) n.	
23.		are trec prin câte 2 pur			
	a) 5;	b) 4;	c) 8;	d) 6.	

9. Mulțimea $\{Y \in \mathcal{M}_{3,4}(\mathbb{C}) \, | \, \det(YA) \neq 0 \}$ este:

24. Numărul triunghiurilor care au vârfurile în mulțimea $\{A_0, A_1, A_2, A_3\}$ este:

a) 6;

b) 3;

Se consideră polinomul $f = X^4 + X^3 + X^2 + X + 1$, cu rădăcinile $x_1, x_2, x_3, x_4 \in \mathbb{C}$.

25. f(1) este:

a) 7;

b) 6;

c) 4;

d) 5.

26. Suma $x_1 + x_2 + x_3 + x_4$ este:

a) 1;

b) −1;

c) 4;

d) 5.

27. Expresia $f - \left(X^2 + \frac{X}{2}\right) - \left(\frac{X}{2} + 1\right) - \frac{X^2}{2}$ este:

a) 1;

b) X + 1;

c) X-1;

d) 0.

28. Câte rădăcini reale are polinomul f?

a) 0;

b) 4;

c) 2;

d) 3.

29. Mulţimea $\{x \in \mathbb{R} \mid f(x) \le 0\}$ este:

a) ∅;

b) $[-\sqrt{5}, -\sqrt{3}];$ **c)** $[-\sqrt{3}, -\sqrt{2}];$ **d)** [-2, -1].

30. f(i) este:

a) 1+i;

b) 1;

 \mathbf{c}) i;

pentru absolvenții claselor a XII-a, promoția 2003

\Diamond	Toţi itemii sunt obl	ligatorii. Fiecar	e item are un singur	răspuns corect.			
\Diamond	Se acordă câte 3 puncte pentru fiecare răspuns corect. Se acordă 10 puncte din oficiu.						
\Diamond	Timpul efectiv de l	ucru este de 3	ore.				
\Diamond			e foaia de examen, r erate greşite cu simbo	ăspunsul pe care-l consider blul \times .	aţi corect, cu		
Îı	n sistemul cartezian de	coordonate xOy	se consideră punctele A_n	$(n, n^3), n \in \mathbb{N}.$			
1.	Panta dreptei A_0A_1 es	ste:					
	a) $-2;$	b) -1 ;	c) 1;	d) 2.			
2.	Ecuația dreptei A_0A_1	este:					
	a) $x + y = 0;$	$\mathbf{b)} y = x;$	c) $x^3 + y = 0;$	d) $y = x^3$.			
3.	Aria triunghiului A_0A	A_1A_2 este:					
	a) 3;	b) 2;	c) 6;	d) 4.			
4.	Numărul de elemente						
	a) Cuprins între 3 ş	şi 10; b) Infini	t; c) 2; d) Finit	, dar strict mai mare decât 10.			
5.	Câte triunghiuri au vâ						
	a) 5;	b) 4;	c) 2;	d) 3.			
	Se consideră mulțimea	$A = \{1, 2, \dots, 10\}$)}.				
6.	Câte submulţimi cu o	pt elemente are m	ulţimea A?				
	a) 80;	b) 40;	c) 45;	d) 50.			
7.	Câte submulţimi are r	mulţimea A ?					
	a) 1000;	b) 512;	c) 1024;	d) 900.			
8.	În câte submulțimi ale	e mulţimii A se af	lă elementul 1?				
	a) 512;	b) 362;	c) 425;	d) 611.			
9.	Care este numărul ma oricăror două elemente			omulţime a mulţimii A , cu propr	rietatea că suma		
	a) 5;	b) 7;	c) 6;	d) 4.			
L 0.	Care este suma elemen	ntelor mulţimii A	?				
	a) 55;	b) 10!;	c) 66;	d) 45.			
	Se consideră funcțiile	$f_n: \mathbb{R} \to \mathbb{R}, f_0(x)$	$= x^{10} + x^9 + \ldots + x + 1$	şi $f_{n+1}(x) = f_n'(x), (\forall) \ x \in \mathbb{R}$	şi (\forall) $n \in \mathbb{N}$.		
11.	$f_0(1)$ este:						
	a) 10;	b) 12;	c) 11;	d) 9.			
12.	$f_1(0)$ este:						
	a) 10;	b) 0;	c) 45;	d) 1.			
l 3.	$\int_0^1 f_{2003}(x) \ dx \text{ este:}$						
	a) 2002!;	b) $\frac{1}{2003!}$;	c) 2003!;	d) 0.			

14. $\lim_{n\to\infty} f_n(n)$ este:	
---	--

$$\mathbf{a}$$
) e ;

b)
$$\infty$$
;

c)
$$n$$
;

15.
$$\lim_{n \to \infty} \frac{f_0(0) + f_1(0) + \ldots + f_n(0)}{n}$$
 este:

Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^x + e^{-x}$.

16. $f'(x), x \in \mathbb{R}$, este:

a)
$$-e^x - e^{-x}$$
;

b)
$$e^x - e^{-x}$$

b)
$$e^x - e^{-x}$$
; **c)** $-e^x + e^{-x}$; **d)** $e^x + e^{-x}$.

d)
$$e^x + e^{-x}$$

17. $\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1}$ este:

a)
$$e + e^{-1}$$
;

b)
$$e - e^{-1}$$
;

c)
$$-e - e^{-1}$$
;

a)
$$e + e^{-1}$$
; b) $e - e^{-1}$; c) $-e - e^{-1}$; d) $-e + e^{-1}$.

18.
$$\int_0^1 f(x) dx$$
 este:
a) $-e - e^{-1}$; **b)** $-e + e^{-1}$; **c)** $e - e^{-1}$; **d)** $e + e^{-1}$.

a)
$$-e - e^{-1}$$
;

b)
$$-e + e^{-1}$$
;

c)
$$e - e^{-1}$$

d)
$$e + e^{-1}$$
.

19.
$$\lim_{x \to \infty} \frac{\int_0^x f(t) \ dt}{f'(x)} \text{ este:}$$

a)
$$-\infty$$
;

c)
$$\infty$$
;

20. Multimea $\{x \in \mathbb{R} \mid f'(x) > 0\}$ este:

a)
$$(0,\infty)$$
;

b)
$$(-\infty, 1)$$
;

c)
$$(-1, \infty);$$

d)
$$(-\infty, 0)$$
.

21. Multimea
$$\{x \in \mathbb{R} \mid f(x) + f(21x) > f(2x) + f(1986x)\}$$
 este:

c)
$$(0, \infty);$$

$$\mathbf{d}$$
) $(-\infty,0]$

Se consideră matricele $A=\begin{pmatrix}2&1\\-3&-1\end{pmatrix},\ I_2=\begin{pmatrix}1&0\\0&1\end{pmatrix}$ și $O_2=\begin{pmatrix}0&0\\0&0\end{pmatrix}.$

Determinantul matricei A este:

23. Suma elementelor matricei A este:

b)
$$-2;$$

24. Cel mai mic număr natural nenul n, pentru care $A^n = I_2$ este:

25. Matricea
$$I_2 + A + A^2 + ... + A^5$$
 este:

$$\mathbf{a}$$
) A ;

b)
$$I_2$$
:

c)
$$-I_2$$
;

$$\mathbf{d}$$
) O_2 .

26. Determinantul matricei $A + A^2 + ... + A^{2003}$ este:

a)
$$-1$$
;

Se consideră polinomul $f = X^2 - 2X - 1$ cu rădăcinile $x_1, x_2 \in \mathbb{C}$. Notăm $S_n = x_1^n + x_2^n$, $(\forall) n \in \mathbb{N}^*$ și $S_0 = 2$.

27. Rădăcinile polinomului f sunt:

a)
$$x_1 = 1 + \sqrt{2}, x_2 = 1 - \sqrt{2};$$

a)
$$x_1 = 1 + \sqrt{2}, x_2 = 1 - \sqrt{2};$$

b) $x_1 = -1 + \sqrt{2}, x_2 = 1 + \sqrt{2};$
c) $x_1 = -1 + \sqrt{2}, x_2 = 1 + \sqrt{2};$
d) $x_1 = -1 - \sqrt{2}, x_2 = 1 - \sqrt{2}.$

c)
$$r_1 = -1 + \sqrt{2}$$
 $r_2 = -1 - \sqrt{2}$

d)
$$r_1 = -1 - \sqrt{2}$$
 $r_2 = 1 - \sqrt{2}$

28. S_1 este egală cu:

a)
$$-2;$$

b)
$$-1$$
;

29.
$$S_2$$
 este egală cu:

30. Egalitatea $2S_{n+1} + S_n = S_{n+2}, n \in \mathbb{N}$, are loc:

a) $(\forall) \ n \in \mathbb{N};$

- b) Numai pentru n < 2003;
- c) Numai pentru n > 2003;
- d) Numai pentru n = 2003.

pentru absolvenții claselor a XIII-a (zi, seral și frecvență redusă), promoția 2003 și promoțiile anterioare

- ♦ Toţi itemii sunt obligatorii. Fiecare item are un singur răspuns corect.
- ♦ Se acordă câte 3 puncte pentru fiecare răspuns corect. Se acordă 10 puncte din oficiu.
- ♦ Timpul efectiv de lucru este de 3 ore.
- \Diamond Pentru fiecare item, completați pe foaia de examen, răspunsul pe care-l considerați corect, cu simbolul \circ , iar răspunsurile considerate greșite cu simbolul \times .

Pe \mathbb{R} se definește legea "o" prin $x \circ y = 2xy + 2x + 2y + 1$, $(\forall) x, y \in \mathbb{R}$.

- **1.** Elementul $x \circ y$ mai poate fi scris (\forall) $x, y \in \mathbb{R}$:
 - a) 2(x-1)(y-1)-1; b) 2(x+1)(y+1)+1; c) 2(x+1)(y+1)-1; d) 2(x-1)(y-1)+1.
 - Egalitatea $x \circ (y \circ z) = (x \circ y) \circ z$ are loc:
 - a) Numai dacă x = y;

- **b)** Pentru $x, y, z \in \mathbb{R}$;
- c) Numai dacă x + y + z = 0;
- d) Numai dacă x = y = z.
- 3. Mulţimea $\{x \in \mathbb{R} \mid x \circ (-1) = -1\}$ este:
 - **a**) Ø

b) $\{-1\};$

 \mathbf{c}) \mathbb{R} ;

- d) Finită, având cel puțin 2 elemente.
- **4.** Expresia $(-2003) \circ (-2002) \circ \dots \circ (-1) \circ 0 \circ 1 \circ \dots \circ 2002 \circ 2003$ este:
 - **a**) 0;
- **b**) -1;
- **c**) 1;
- **d)** 2003!.

Se consideră șirul de numere naturale $(a_n)_{n\geq 1}, a_n=n^4+4.$

- **5.** Termenul a_1 este:
 - **a**) 8;
- **b**) 4;
- **c)** 16;
- **d**) 5.
- 6. Numărul termenilor șirului $(a_n)_{n>1}$ care sunt numere prime este:
 - a) Cuprins între 2 și 2002;

- **b)** Infinit;
- c) Finit, dar strict mai mare decât 2003;
- **d**) 1.

Se consideră polinomul $f = X^4 + 4$, cu rădăcinile $x_1, x_2, x_3, x_4 \in \mathbb{C}$.

- 7. Polinomul $f (X^2 2X + 2)(X^2 + 2X + 2)$ este:
 - **a**) 0;
- **b)** 4X;
- c) $4X^3$:
- **d**) $4X^2$.

- 8. Numărul de rădăcini reale ale polinomului f este:
 - **a**) 0;
- **b**) 4;
- **c)** 2;
- **d**) 1.

- 9. Suma $x_1 + x_2 + x_3 + x_4$ este:
 - a) 0
- b) 16:
- c) -4;
- **d**) 4.

- **10.** Suma $x_1^4 + x_2^4 + x_3^4 + x_4^4$ este:
 - a) -16;
- **b**) 16;
- **c)** 4;
- **d**) 0.

În mulțimea $\mathcal{M}_2(\mathbb{Z})$ se consideră matricele $A = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 \\ 3 & -1 \end{pmatrix}$ și $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

- **11.** Matricea A^2 este:
 - a) A;
- **b)** $I_2;$
- $\mathbf{c}) \ B;$
- **d**) $I_2 + A$.

12.	Determinantul matric	ei B este:		
	a) 1;	b) -1;	c) -3 ;	d) 3.
13.	Inversa matricei A est	ce:		
	a) A;	b) B;	$\mathbf{c)} -A;$	d) I_2 .
14.	Matricea $AB - BA$ es		,	
	a) $\begin{pmatrix} -6 & 4 \\ 6 & 6 \end{pmatrix}$;	b) $I_2;$	$\mathbf{c)} \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix};$	$\mathbf{d)} \begin{pmatrix} 6 & -4 \\ -6 & -6 \end{pmatrix}.$
15.	Mulţimea $\{n \in \mathbb{N}^* \mid (E_n)^* \mid ($	· ·		
	a) Formată dintr-uc) Finită, având cel	n număr de elemente c l puţin 11 elemente;	suprins între 1 și 10;	b) Infinită;d) Vidă.
	Într-o livadă sunt cire decât au înflorit în ziv	-	it un cireş, apoi în fiec	are zi au înflorit de două ori mai mulți cireși
16.	Câți cireși au înflorit î	în ziua a treia?		
	a) 3;	b) 8;	c) 7;	d) 3.
17.	Câți cireși sunt înflori	iți la sfârșitul zilei a cir	ncea?	
	a) 33;	b) 31;	c) 32;	d) 30.
18.	Cel mai mic număr na este:	atural n , astfel încât la	a sfârșitul celei de-a <i>n</i> -	-a zile să fie înfloriți cel puțin 1000 de cireși,
	a) 9;	b) 10;	c) 12;	d) 11.
	Într-o carte paginile s	unt numerotate începâ	nd cu numărul 1, iar o	orice foaie are două pagini.
19.	Suma numerelor pegir	nilor din primele trei fo	oi este:	
	a) 21;	b) 15;	c) 6;	d) 10.
20.	Suma tuturor numere	lor paginilor din foaia	a zecea și din foaia a c	cincisprezecea este:
	a) 99;	b) 97;	c) 100;	d) 98.
21.	Care dintre următoare	ele elemente poate fi si	ıma tuturor numerelor	paginilor din trei foi ale cărții?
	a) 197;	b) 199;	c) 200;	d) 198.
	Se consideră piramida	ı triunghiulară $VABC$, având toate muchiile	(laterale și ale bazei) egale cu $\boldsymbol{a}.$
22.	Aria totală a piramide		. –	
	a) a^2 ;	b) $2a^2\sqrt{3}$;	c) $4a^2\sqrt{3}$;	d) $a^2\sqrt{3}$.
23.	Înălţimea piramidei es	ste:		
	$\mathbf{a)} \ \frac{a\sqrt{2}}{2};$	b) $\frac{a}{3}$;	c) $\frac{a\sqrt{6}}{3}$;	$\mathbf{d)} \frac{a\sqrt{3}}{3}.$
24.	Volumul piramidei est			
	a) $\frac{a^3}{6}$;	b) $\frac{a^3\sqrt{2}}{3}$;	c) $\frac{a^3\sqrt{3}}{12}$;	d) $\frac{a^3\sqrt{2}}{12}$.
25.	Distanța cea mai mică	ă dintre vârful V și un	punct M situat pe pla	anul bazei (ABC) este:
	a) $\frac{a\sqrt{6}}{3}$;	b) $\frac{a\sqrt{3}}{3}$;	c) $\frac{a}{3}$;	d) $\frac{a}{2}$.
26.	Distanța cea mai mar	e dintre vârful V și un	punct P situat în inte	eriorul sau pe laturile triunghiului ABC este:

Se consideră mulțimea $A = \{10, 11, \dots, 99\}.$

a) 2a;

b) a;

 $\mathbf{d)} \ a\sqrt{3}.$

c) $a\sqrt{2}$;

27. Câte elemente din mulţimea A conţin cifra 2 în scrierea lor?
a) 19;
b) 18;
c) 20;
d) 17.
28. Care este suma elementelor mulţimii A?

29. Câte elemente din mulțimea A au în scrierea lor cifre egale?

b) 45 · 109;

a) 10; **b)** 11; **c)** 8; **d)** 9.

c) 45 · 110;

d) 50 · 109.

30. Câte elemente are mulțimea A?

a) 50 · 210;

a) 88; **b)** 89; **c)** 90; **d)** 91.

clase de economic, fizică-chimie, chimie-biologie, militar, industrial, agricol, silvic, sportiv pentru absolvenții claselor a XIII-a (zi, seral și frecvență redusă), promoția 2003 și promoțiile anterioare

$\langle \rangle$	Toti itemii si	unt obligatorii.	Fiecare item	are un singur	răspuns corect.

- Se acordă câte 3 puncte pentru fiecare răspuns corect. Se acordă 10 puncte din oficiu. \Diamond
- Timpul efectiv de lucru este de 3 ore.
- Pentru fiecare item, completați pe foaia de examen, răspunsul pe care-l considerați corect, cu simbolul \circ , iar răspunsurile considerate greșite cu simbolul \times .

1. Egalitatea
$$(a^2 + b^2)(c^2 + d^2) = (ac + bd)^2 + (ad - bc)^2$$
, $a, b, c, d \in \mathbb{C}$, are loc:

- a) Numai pentru a = b = c = d; b) Numai pentru a = b;
- c) Pentru orice $a, b, c, d \in \mathbb{C}$; d) Numai pentru a = c.

2. Dacă
$$(a^2 + b^2)(c^2 + d^2) - (ac + bd)^2 = 0$$
, $a, b, c, d \in \mathbb{C}$, atunci:

a)
$$ad = bc$$
;

a)
$$ad = bc$$
; b) $a + b + c + d = 0$; c) $ac + bd = 0$; d) $a + d = b + c$.

c)
$$ac + bd = 0$$
:

$$a + d = b + c$$
.

3. Numărul de elemente ale mulțimii $\{x \in (0, \infty) \mid 25[(\log_2 x)^2 + (\log_3 x)^2] = (4\log_2 x + 3\log_3 x)^2\}$ este:

b) 3;

c) 0;

4. Suma pătratelor soluțiilor reale ale ecuației $(4^x + 25^x)(9^x + 49^x) = (6^x + 35^x)^2$ este:

a) 5;

b) 0;

c) 2;

Se consideră funcțiile $f_n: \mathbb{R} \to \mathbb{R}$, $f_0(x) = \cos x$ și $f_{n+1}(x) = f'_n(x)$, (\forall) $n \in \mathbb{N}$ și (\forall) , $x \in \mathbb{R}$.

5. $f_0(\pi)$ este:

a) -1;

b) π ;

c) 1;

d) 0.

6. $f_1(\pi)$ este:

a) 0,5;

b) -1;

c) 0;

d) 1.

7. $\int_0^{2\pi} f_1(x) \ dx$ este:

a) 0;

b) 4;

d) 2.

8. $f_{10}(x), x \in \mathbb{R}$, este:

a) $\cos x$;

b) $\sin x$;

 \mathbf{c}) $-\sin x$;

9. $\lim_{n\to\infty} \frac{f_0(x) + f_1(x) + \ldots + f_n(x)}{n}, x \in \mathbb{R}, \text{ este:}$

b) $\cos x$;

 \mathbf{c}) $\sin x$;

d) 0.

În sistemul cartezian de coordonate xOy se consideră punctele A(2,0), B(0,2), C(-2,0), D(0,-2), O(0,0).

10. Segmentul AB are lungimea:

a) $2\sqrt{3}$;

b) $2\sqrt{2}$;

c) 4;

d) 2.

11. Suma OA + OB + OC + OD este:

a) 2;

b) 6;

c) 4;

12. Ecuația dreptei AC este:

a) xy = 0;

b) $x^2 + y^2 = 1;$ **c)** $x^2 = 1;$

13. Produsul $AB \cdot BC \cdot CD \cdot DA$ este:

a) 64;

b) 128;

c) 16;

În mulţimea $\mathcal{M}_2(\mathbb{C})$ se consideră matricele $A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}$ şi $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

14. Matricea $AB - B$ a) $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$;		c) $\begin{pmatrix} 2 & -4 \\ -2 & -2 \end{pmatrix}$;	$\mathbf{d)} \begin{pmatrix} -2 & 4 \\ 2 & 2 \end{pmatrix}.$
15. Determinantul m	atricei A este:		
a) 0;	b) -1 ;	c) 1;	d) -2 .
16. Matricea A^2 este	:		
a) I_2 .	b) B:	c) $I_2 + A$	d) A

19. Mulțimea $\{n \in \mathbb{N}^* \mid (AB)^n = I_2\}$ este:

Se consideră funcția $f: \mathbb{R} \setminus \{-1, 0\} \to \mathbb{R}, f(x) = \frac{1}{x(x+1)}$

Câte asimptote verticale are graficul funcției f?

a) 1; b) 2; c) 0; d) 3.
21. Expresia
$$f(x) - \frac{1}{x} + \frac{1}{x+1}$$
, $x \in \mathbb{R} \setminus \{-1, 0\}$, este:

a) 0;
$$x + 1$$

b) $-\frac{2}{x+1}$; c) $2f(x)$; d) $\frac{2}{x}$

22.
$$\int_{1}^{2} f(x) dx$$
 este:
a) $\ln \frac{3}{4}$; **b)** $\ln 2$; **c)** $\ln 3$; **d)** $\ln \frac{4}{3}$.

23. Egalitatea
$$f(1) + f(2) + ... + f(n) = 1 - \frac{1}{n+1}$$
, $n \in \mathbb{N}^*$, este adevărată:

a) Numai pentru $n > 2003$;

b) Numai pentru $n < 2003$;

c) Numai pentru $n = 2003$;

d) $(\forall) \ n \in \mathbb{N}^*$.

24.
$$\lim_{n \to \infty} (f(1) + f(2) + \dots + f(n))$$
 este:

a)
$$\infty$$
; b) 2; c) 0,5; d) 1.

25.
$$\lim_{x \to \infty} \frac{1}{\ln x} \int_{1}^{x} f(t) dt$$
 este:
a) ∞ ; **b)** 2; **c)** 1; **d)** 0.

27. Produsul
$$1 \cdot i \cdot i^2 \cdot ... \cdot i^{2003}$$
 este:
a) 1; **b)** -1; **c)** i ; **d)** $-i$.

28. Suma
$$1 + i + i^2 + ... + i^{2003}$$
 este:
a) $i;$ **b)** $1 + i;$ **c)** $0;$ **d)** $1.$

29. Suma
$$\hat{0} + \hat{1} + \hat{2} + ... + \widehat{12}$$
 în \mathbb{Z}_{13} este:
a) $\hat{6}$; **b)** $\hat{1}$; **c)** $\hat{0}$; **d)** $\hat{7}$.

30. Produsul
$$\hat{1} \cdot \hat{2} \cdot ... \cdot \widehat{12}$$
 în \mathbb{Z}_{13} este:
a) $\hat{3}$; **b)** $\hat{1}$; **c)** $\hat{2}$; **d)** $\widehat{12}$.

\Diamond	Toţi itemii sunt obligatorii. Fiecare item are un singur răspuns corect.					
\Diamond	Se acordă câte 3 puncte pentru fiecare răspuns corect. Se acordă 10 puncte din oficiu.					
\Diamond	Timpul efecti	Timpul efectiv de lucru este de 3 ore.				
\Diamond			pe foaia de examen iderate greșite cu sir	răspunsul pe care-l consid bolul \times .	erați corect, cu	
S	se consideră mulț	imea $A = \{1, 2,, 10\}$	}.			
1.		irul maxim de element cele alese, nu se divid		imea A , cu proprietatea că oric	are două elemente	
	a) 3;	b) 5;	c) 6;	d) 4.		
2.	Câte submulţin	ni cu două elemente ar	e mulţimea A ?			
	a) 57;	b) 55;	c) 50;	d) 45.		
3.	Câte submulţin	ni nevide ale mulţimii	A au proprietatea că su	na elementelor lor este egală cu	5?	
	a) 4;	b) 3;	c) 2;	d) 1.		
	Pe \mathbb{R} se defineş	te legea de compoziție	"o" prin $x \circ y = 2xy -$	4x - 4y + 10.		
4.		mai poate fi scris, $(\forall x + 2) - 2$; b) $2(x + 2)$		(2)(y+2)-2; d) $(2(x-2)(y-1))$	-2)+2.	
5.	Egalitatea ($x \circ$	$y) \circ z = x \circ (y \circ z)$ are	loc:			
	a) Numai câic) Numai câi		b) Pentru orice id) Numai când a	umere reale $x, y, z;$ = $y = z.$		
6.	Elementul neut	ru al legii "o" este:				
	a) 0;	b) 1;	c) 2;	d) 2, 5.		
7.	Ecuația $2^x \circ 4^x$	= 2 are suma soluțiile	or egală cu:			

- **8.** Mulţimea $\{x \in \mathbb{R} \mid x \circ 2 = 2\}$ este:
 - a) Formată dintr-un element;
- **b**) ∅;

c) 1,5;

 \mathbf{c}) \mathbb{R} :

- d) Finită, având cel puţin 2 elemente.
- 9. Elementul $(-2003) \circ (-2002) \circ \ldots \circ (-1) \circ 0 \circ 1 \circ \ldots \circ 2002 \circ 2003$ este:
 - a) 1:
- b) 2:

b) 1;

- **c**) 0;
- **d**) -1.

d) 2.

Se consideră funcția $f: \mathbb{R} \setminus \{-2, -1\} \to \mathbb{R}, f(x) = \frac{1}{(x+1)(x+2)}$

- **10.** Expresia $f(x) \frac{1}{x+1} + \frac{1}{x+2}$, $x \in \mathbb{R} \setminus \{-2, -1\}$, este:
 - **a**) 0
- **b)** 2f(x);
- c) $\frac{2}{x+2}$;
- **d)** $-\frac{2}{x+1}$.
- 11. Numărul de asimptote verticale la graficul funcției f este:
 - a) 2:
- **b**) 3;
- **c**) 0;
- **d**) 1.
- 12. Aria suprafeței plane cuprinse între graficul funcției f, axa Ox și dreptele x=0 și x=1, este:
 - **a)** arctg 2;
- **b)** $\ln \frac{4}{3}$;
- c) $\ln \frac{3}{4}$;
- **d**) 1

13.	$\lim_{x \to \infty} x^2 f(x) \text{ este}$:		
	a) ∞ ;	b) 0,5;	c) 0;	d) 1.
14.	$\lim_{n \to \infty} (f(0) + f(1))$	$)+\ldots+f(n))$ este:		

 \mathbf{b}) ∞ ;

Se consideră polinoamele $f = X^2 - 4X + 3$, $g = X^n$, $n \in \mathbb{N}^*$, şi matricele $A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$, $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ şi $O_2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.

d) e.

d) $A + I_2$.

15. Rădăcinile polinomului f sunt:

a) 1;

a)
$$x_1 = -1$$
, $x_2 = 3$; b) $x_1 = 1$, $x_2 = -3$; c) $x_1 = 1$, $x_2 = 3$; d) $x_1 = -1$, $x_2 = -3$.
16. Matricea A^2 este:

17. $f(A) = A^2 - 4A + 3I_2$ este:

a)
$$\begin{pmatrix} 4 & 1 \\ 1 & 4 \end{pmatrix}$$
; b) $\begin{pmatrix} 4 & 2 \\ 2 & 4 \end{pmatrix}$; c) $\begin{pmatrix} 4 & 5 \\ 5 & 4 \end{pmatrix}$; d) $\begin{pmatrix} 5 & 4 \\ 4 & 5 \end{pmatrix}$.

c) 0,5;

a) O_2 ; b) A; c) I_2 ; 18. Restul împărțirii polinomului g la polinomul f este:

a)
$$\frac{3^n-1}{2}X + \frac{3-3^n}{2}$$
; b) $\frac{3^n+1}{2}X + \frac{3^n-3}{2}$; c) $\frac{3^n+1}{2}X + \frac{3^n+3}{2}$; d) $\frac{3^n-1}{2}X + \frac{3^n+3}{2}$.

19. Pentru ce valori $n \in \mathbb{N}^*$ este adevărată egalitatea $A^n = \frac{1}{2} \begin{pmatrix} 3^n + 1 & 3^n - 1 \\ 3^n - 1 & 3^n + 1 \end{pmatrix}$?

a) Pentru exact o valoare a lui $n \in \mathbb{N}^*$;

b) Pentru un număr finit de valori ale lui $n \in \mathbb{N}^*$, mai mare decât 2;

c) Pentru orice $n \in \mathbb{N}^*$;

d) Pentru nicio valoare a lui $n \in \mathbb{N}^*$.

20. Produsul $\sin(-90^\circ) \cdot \sin(-89^\circ) \cdot \dots \cdot \sin(-1^\circ) \cdot \sin 1^\circ \cdot \dots \cdot \sin 89^\circ \cdot \sin 90^\circ$ este:

a)
$$-\frac{1}{2^{45}}$$
; **b)** $\frac{1}{3^{30}}$; **c)** $\frac{1}{2^{45}}$; **d)** 0.

21. Suma $\cos 0^{\circ} + \cos 1^{\circ} + \ldots + \cos 179^{\circ} + \cos 180^{\circ}$ este:

a)
$$0,5;$$
 b) $1;$ **c)** $-1;$ **d)** $0.$

Se consideră funcțiile $f_n: \mathbb{R} \to \mathbb{R}, f_0(x) = xe^x, f_{n+1}(x) = f_n'(x), (\forall) \ n \in \mathbb{N}, (\forall) \ x \in \mathbb{R}.$

22. $f_1(x), x \in \mathbb{R}$, este:

a)
$$e^x(x-1);$$
 b) $e^x + x;$ c) $xe^x;$ d) $e^x(x+1).$

23. Ecuația $f_2(x) = 0$ are soluția:

a)
$$x = 0;$$
 b) $x = -2;$ **c)** $x = 2;$ **d)** $x = 1.$

24. $f_{2003}(0)$ este: **a)** -2003; **b)** 2003!; **c)** 2003!

25. $\lim_{x \to \infty} \frac{f_{n+1}(x)}{f_n(x)}, n \in \mathbb{N}^*, \text{ este:}$

a)
$$\infty$$
; **b)** 1; **c)** 0; **d)** $\frac{n+1}{n}$.

26. Asimptota orizontală la graficul funcției f_0 către $-\infty$ este:

a)
$$y = x;$$
 b) $y = 1;$ **c)** $y = 0;$ **d)** $y = xe^{x}.$

În sistemul cartezian de coordonate xOy se consideră punctele $A(-1,\sqrt{3}),\,B(-1,-\sqrt{3}),\,C(2,0).$

27. Perimetrul triunghiului ABC este:

a) $2\sqrt{3}$;

b) $3\sqrt{3}$;

c) $6\sqrt{3}$;

d) 6.

28. Aria triunghiului ABC este:

a) 3:

b) 9;

c) $3\sqrt{3}$;

d) 4.

 ${\bf 29.}~$ Raza cercului circumscris triunghiului ABC este:

a) $\sqrt{3}$;

b) 1;

c) $\sqrt{2}$;

d) 2.

30. Măsura unghiului A din triunghiul ABC este:

a) 60°:

b) 30°;

c) 90°;

d) 45°.

profil umanist: pentru absolvenții claselor a XIII-a (zi, seral și frecvență redusă) promoția 2003 și promoțiile anterioare

\wedge	Toti itomii au	nt obligatorii	Figgs it om	one un cincum	răspuns corect.
< <i>></i>	тоы пеши ѕи	m, obligatorii,	r jecare iliem	are un singur	raspuns corect.

- Se acordă câte 3 puncte pentru fiecare răspuns corect. Se acordă 10 puncte din oficiu.
- Timpul efectiv de lucru este de 3 ore.
- Pentru fiecare item, completați pe foaia de examen, răspunsul pe care-l considerați corect, cu simbolul o, iar răspunsurile considerate greșite cu simbolul x.

Pe mulțimea numerelor complexe se consideră legea de compoziție "o", definită prin $x \circ y = xy + ix + iy - 1 - i$.

1. Elementul $x \circ y$ mai poate fi scris (\forall) $x, y \in \mathbb{C}$:

a)
$$(x-i)(y-i)-i;$$
 b) $(x+i)(y+i)+i;$ **c)** $(x-i)(y-i)+i;$ **d)** $(x+i)(y+i)-i.$

2. Egalitatea $(x \circ y) \circ z = x \circ (y \circ z)$ este adevărată:

a) Pentru orice
$$x, y, z \in \mathbb{C}$$
; b) Numai dacă $x = y = z$; c) Numai dacă $x = i$; d) Numai dacă $x = y$.

3. Multimea valorilor lui $n \in \mathbb{N}^*$, pentru care egalitatea

$$x_1 \circ x_2 \circ \ldots \circ x_n = (x_1 + i)(x_2 + i) \cdot \ldots \cdot (x_n + i) - i$$

este adevărată, (\forall) $x, y, z \in \mathbb{C}$, este:

4. Expresia $(-100i) \circ (-99i) \circ \ldots \circ (-i) \circ 0 \circ i \circ 2i \circ \ldots \circ 99i \circ 100i$ este:

a) 1; **b)**
$$-i$$
; **c)** 0; **d)** i .

5. Ecuația $x \circ x \circ x \circ x = 1 - i$ are în \mathbb{C} :

a) 2 soluţii; b) 3 soluţii; c) o soluţie; d) 4 soluţii. Se consideră matricele
$$A = \begin{pmatrix} 1 & 5 \\ 0 & -1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 0 \\ 2 & -1 \end{pmatrix}$ şi $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

6. Determinantul matricei A este:

7. Matricea A^2 este:

a)
$$A + I_2;$$
 b) $I_2;$ **c)** $B;$ **d)** $A.$

8. Matricea A^{2003} este:

a) B;

9. Matricea
$$AB - BA$$
 este:

b) $A + I_2$;

a)
$$\begin{pmatrix} 10 & 10 \\ 4 & -10 \end{pmatrix}$$
; b) $\begin{pmatrix} 10 & -10 \\ -4 & -10 \end{pmatrix}$; c) $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$; d) I_2 .

10. Multimea $\{n \in \mathbb{N}^* \mid (BA)^n = I_2\}$ este:

11. Produsul $\hat{1} \cdot \hat{2} \cdot \ldots \cdot \hat{7}$ în \mathbb{Z}_8 este:

a)
$$\hat{2}$$
; **b)** $\hat{6}$; **c)** $\hat{0}$; **d)** $\hat{4}$.

 \mathbf{d}) I_2 .

12.	Suma $\hat{1} + \hat{2} + \ldots +$	$\widehat{10}$ în \mathbb{Z}_{11} este:		
	$\mathbf{a)} \ \widehat{10};$	b) 0;	$\mathbf{c)} \hat{6};$	d) ŝ.
13.	În \mathbb{Z}_6 ecuația $\hat{3}\hat{x} =$	$\hat{0}$ are:		
	a) o soluţie;	b) 3 soluţii;	c) 2 soluţii;	d) 4 soluţii.
14	În \mathbb{Z}_c equatia \hat{x}^3 —	\hat{x} are:		

15. Cel mai mare număr natural n pentru care $2^0 + 2^1 + 2^2 + \ldots + 2^n < 2003$ este: **b**) 10;

c) 11;

c) 4 soluţii; d) 3 soluţii.

d) y = 1.

Se consideră funcția $f:[0,\infty)\to\mathbb{R},\, f(x)=\frac{x}{x+1}+\frac{x+1}{x+2}$

b) 6 soluții;

16. Expresia $f(x) - 2 + \frac{1}{x+1} + \frac{1}{x+2}$, $x \in [0, \infty)$, este:

a) 2 soluţii;

a) 4; **b)** 0; **c)** -2; **d)**
$$2\left(\frac{1}{x+1} + \frac{1}{x+2}\right)$$
.

17. Asimptota orizontală către $+\infty$, la graficul funcției f este: **a)** y = 0; **b)** y = 2;c) y = -2;

18.
$$f'(x), x \in [0, \infty)$$
, este:
a) $-\frac{1}{(x+1)^2} - \frac{1}{(x+2)^2}$; b) $\frac{1}{(x+1)^2} + \frac{1}{(x+2)^2}$;
c) $\ln(x+1) + \ln(x+2)$; d) $-\ln(x+1) - \ln(x+2)$.

19. $\int_{0}^{1} f(x) dx$ este: **b)** $2 + \ln 3$; **c)** $2 - \ln 3$; **d)** $-2 - \ln 3$. a) $-2 + \ln 3$;

20. $\frac{1}{x} \int_0^x f(t) dt$ este: **b**) 0; **c)** 2; **a**) 1; d) ∞ .

Se consideră polinoamele $f = X^2 + X + 1$ cu rădăcinile $x_1, x_2 \in \mathbb{C}$ și $g = X^3 - 1$.

21. Restul împărțirii polinomului q la polinomul f este: **d)** X + 1. **a**) 0; **b)** X; **c**) 1;

22. Expresia $x_1^3 - x_2^3$ este: c) -1; **d**) 1.

23. Suma $x_1 + x_2 + x_1x_2$ este: **b)** 0; **c)** -1; **d**) -2.

24. Suma $x_1^{2004} + x_2^{2004}$ este: **b)** -2; c) -1; **d**) 0.

25. Suma $1 + x_1 + x_1^2 + \ldots + x_1^{21}$ este: **d**) -1.

Se consideră funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = (x+1)^3 - x^3$.

26. $f'(x), x \in \mathbb{R}$, este: **a)** 6x + 3; \mathbf{b}) 6x; c) 3x + 1; **d**) 2x + 1.

27. Funcția f este strict crescătoare pe intervalul: **b)** $[-1,\infty);$ **c)** $(-\infty,1];$ **d)** $(-\infty,0].$ a) $\left[-\frac{1}{2},\infty\right)$;

28. Valoarea minimă a funcției f este:

a) 1;

b) $\frac{1}{4}$;

c) $\frac{1}{2}$;

29. Funcția f este convexă:

a) Numai pe intervalul $[0, \infty)$;

c) Pe \mathbb{R} ;

b) Numai pe intervalul $(-\infty, 0]$;

d) Numai pe intervalul [-1, 1].

30. $\lim_{n \to \infty} \frac{f(0) + f(1) + \dots + f(n)}{n^3}$ este: **a)** 1; **b)** $\frac{1}{3}$;

c) ∞ ;

d) 0.

\Diamond	Toți itemii sunt obligatorii. Fiecare item are un singur răspuns corect.				
\Diamond	Se acordă câte 3 puncte pentru fiecare răspuns corect. Se acordă 10 puncte din oficiu.				
\Diamond	Timpul efectiv de lucru este de 3 ore.				
\Diamond	Pentru fiecare item, completați pe foaia de examen, răspunsul pe care-l considerați corect, cu simbolul \circ , iar răspunsurile considerate greșite cu simbolul \times .				
S	se consideră mulți	mea $A = \{1, 2, \dots, 7\}.$			
1.	Câte submulţim	i cu număr impar de el	lemente are mulţimea	. A?	
	a) 36;	b) 64;	c) 49;	d) 128.	
2.	Care este media	aritmetică a elementel	or mulţimii A ?		
	a) 3;	b) 4;	c) 5;	d) 4, 5.	
3.	Câte submulţim	i cu două elemente are	mulţimea A ?		
	a) 49;	b) 42;	c) 21;	d) 20.	
4.	Care este media	geometrică a elemente	elor pare din mulţime	a <i>A</i> ?	
	a) $\sqrt{24}$;	b) $\sqrt{12}$;	c) 4;	d) $\sqrt[3]{48}$.	
	Un triunghi drep	otunghic ABC are cate	etele cu lungimile de	6 și respectiv 8.	
5.	Cât este lungime	ea ipotenuzei?			
	a) 11;	b) 12;	c) 9;	d) 10.	
6.	Care este aria tr	iunghiului?			
	a) 48;	b) 20;	c) 24;	d) 30.	
7.	Care este lungin	nea înălțimii care cade	pe ipotenuză?		
	a) 5;	b) 4;	c) 4,8;	d) 2, 4.	
8.	Care este perime	etrul triunghiului cu vá	arfurile în mijloacele l	aturilor triunghiului ABC?	
	a) 12;	b) 15;	c) 10;	d) 14.	
9.	Care este aria tr	iunghiului cu vârfurile	în mijloacele laturilo	r triunghiului ABC?	
	a) 10;	b) 5;	c) 12;	d) 6.	
10.	Care este cel ma	i mic număr natural n	enul n , pentru care n	! > 100?	
	a) 7;	b) 4;	c) 5;	d) 6.	
11.	Care este cel ma	i mare număr natural	nenul n , pentru care	$2^n < 2003?$	
	a) 9;	b) 12;	c) 11;	d) 10.	
12.	Câte numere de	4 cifre se pot forma ut	cilizând cifrele 1, 2, 3	?	
	a) 70;	b) 80;	c) 64;	d) 81.	
13.		i mare număr de eleme iferite, dintre cele alese		n mulţimea $\{1,2,\ldots,11\}$, cu proprietat celălalt?	ea că oricare
	a) 4;	b) 6;	c) 7;	d) 5.	
	Se consideră nur	mărul $\frac{1}{13} = 0, a_1 a_2 a_3 \dots$	$a_n \dots$		

14.	Suma $a_1 + a_2$ este:	1) 0) 10	1) =	
		b) 9;	c) 13;	d) 7.	
15.	Produsul $a_1 \cdot a_2 \cdot$ a) 7^{2003} ;	a_{2003} este: b) 0;	c) 2003!;	d) 13 ²⁰⁰³ .	
16.	Cifra a_{2003} este:				
	a) 7;	b) 3;	c) 6;	d) 2.	
	Se consideră funcția .	$f: \mathbb{R} \to \mathbb{R}, f(x) = x^2$	-3x + 2. Notăm cu x	$x_1, x_2 \in \mathbb{R}$ soluţiile ecuaţiei $f(x) = 0$	= 0.
17.	f(0) este:				
	a) 0;	b) -1 ;	c) 2;	d) 1.	
18.	Suma $x_1 + x_2$ este:				
	a) $-2;$	b) 3;	c) -3 ;	d) 2.	
19.	Produsul $x_1 \cdot x_2$ este:				
	a) $-0,5;$	b) -2 ;	c) 2;	d) 0, 5.	
20.	Mulţimea $\{x \in \mathbb{R} \mid f(x)\}$				
	a) $(0,2);$	b) (1,3);	c) $(-\infty, 0);$	d) (1,2).	
21.	Produsul $f(0) \cdot f(1)$	$\dots \cdot f(2003)$ este:			
	a) 2003!;	b) 0;	c) 2002!;	d) 2004!.	
	Se consideră în plan o	mulţime M formată di	in 10 puncte cu propri	etatea că oricare trei dintre ele sur	nt necoliniare.
22.	Numărul dreptelor ca	are trec prin câte 2 pur	ncte din mulțimea M	este:	
	a) 100;	b) 90;	c) 50;	d) 45.	
23.	Câte triunghiuri pot	avea vârfurile în punct	ele din mulţimea M ?		
	a) 360;	b) 720;	c) 120;	d) 240.	
24.	Dacă un triunghi are	cel puţin două axe de	simetrie, atunci acest	a este:	
	a) Dreptunghic;	b) Isoscel, dar nu e	echilateral; c) Eo	chilateral; d) Obtuzunghic	
25 .	Dacă mulțimea A are elemente are mulțime		ea B are 7 elemente is	ar mulţimea $A \cap B$ are 3 element	e, atunci câte
	a) 12;	b) 17;	c) 11;	d) 14.	
26.	O marfă costă 200 de	e euro și s-a redus preț	ul cu 20%. Câți euro	costă acum marfa?	
	a) 160;	b) 220;	c) 240;	d) 180.	
27.	Numărul soluțiilor ec	ruației $2^x = -1$ este:			
	a) 0;	b) 1;	c) 3;	d) 2.	
28.	Suma soluțiilor ecuaț		este:		
	a) 2;	b) 3;	c) 1;	d) 0.	
29.	Suma $1 + 2 + 3 +$	+2003 este:			
	a) 2003 · 1001;	b) 2003 · 1002;	c) 2002 · 2003;	d) 2003 · 2004.	
30.	Numărul $\sqrt{2}$ este ega	al cu $1, a_1 a_2 a_3 \dots$ Cât	este $a_1 + a_2 + a_3$?		
	a) 10;	b) 8;	c) 6;	d) 9.	

SESIUNEA AUGUST M1

Se acordă câte 3 puncte pentru fiecare răspuns corect. Se acordă 10 puncte din oficiu.

c) 100°;

c) 3;

Pentru fiecare item, completați pe foaia de examen, răspunsul pe care-l considerați corect, cu

d) 60°.

d) 2.

Toţi itemii sunt obligatorii. Fiecare item are un singur răspuns corect.

simbolul \circ , iar răspunsurile considerate greșite cu simbolul \times .

Se consideră triunghiul ABC cu lungimile laturilor 3, 4 și 5.

b) 80°;

b) 4;

1. Măsura unghiului care se opune laturii egale cu 5 este:

2. Raza cercului circumscris triunghiului ABC este:

a) 90° ;

a) 2,5;

Specializarea matematică-informatică pentru absolvenții claselor a XII-a, promoția 2003

Timpul efectiv de lucru este de 3 ore.

3.	Aria triunghiului ABC	C este:				
	a) 6;	b) 7;	c)	12;	d)	5.
4.	Suma cosinusurilor un	ghiurilor triunghiului 2	ABC	C este:		
	a) 2,4;	b) 2;	c)	1, 4;	d)	1.
5.	Suma înălţimilor triun	ighiului ABC este:				
	a) 8;	b) 9;	c)	9, 6;	d)	9, 4.
	Se consideră funcția f punctul x .	$f: \mathbb{R} \to \mathbb{R}, \ f(x) = e^x(x)$	$x^{2} +$	-x). Notăm prin f	?(n)(x), derivata de ordinul n a funcției f în
6.	Cât este $\lim_{x \to 0} \frac{f(x) - f(x)}{x}$	<u>(0)</u> ?				
	a) 1;	b) 0;	c)	5;	d)	2.
7.	Ce se poate spune des	pre asimptota la grafic	ul f	uncției f către $-\infty$?	
	a) Este dreapta $y = x$	x; b) Este dreapta y	y = 1	1; c) Nu există;		d) Este dreapta $y = 0$.
8.	Câte puncte de inflexi	une are graficul funcție	ei f'	?		
	a) 3;	b) 0;	c)	2;	d)	1.
9.	Mulţimea $\{n \in \mathbb{N}^* \mid f^{(n)}\}$	$e^{n}(x) = e^x(x^2 + (2n + 1)^n)$	1)x	$+n^2$), $(\forall) x \in \mathbb{R}$ } e	ste:	
	a) N*;c) Finită, având cel	mult 2003 elemente;		b) Vidă;d) Finită, având	cel	puţin 2003 elemente.
10.	$\lim_{n \to \infty} \frac{f'(0) + f''(0) + .}{n^3}$	$ + f^{(n)}(0)$ este:				
	a) 0;	b) 1;	c)	0, (3);	d)	∞ .
	Se consideră mulțimea	$M = \{1, 2, 3, \dots, 8\}.$				
11.	Media aritmetică a ele	mentelor mulţimii M	este	:		
	a) 8;	b) 4,5;	c)	5;	d)	6.
12 .	Numărul de submulțin	ni cu șase elemente ale	mu	ılţimii M este:		
	a) 32;	b) 64;	c)	28;	d)	30.

13.	Numărul total de s	submulțimi ale mulțir	mii M este:		
	a) 8!;	b) 3 ⁸ ;	c) 2^8 ;	d) 8 ⁸ .	
14.	Câte elemente are	mulţimea $\{(a,b) \mid a,b\}$	$\in M, a < b, a$ divide p	b = b?	
	a) 12;	b) 13;	c) 11;	d) 10.	
15.	Numărul de progre M este:	esii aritmetice de trei e	elemente cu rația stric	t pozitivă care se pot forma cu elemente	ele mulţimii
	a) 12;	b) 11;	c) 10;	d) 13.	
16.	Câte elemente inve	ersabile față de înmul	ţire are inelul \mathbb{Z}_{12} ?		
	a) 4;	b) 8;	c) 3;	d) 6.	
17.	Câte polinoame de	grad mai mic sau eg	al cu 4 conține inelul	$\mathbb{Z}_2[X]$?	
	a) 16;	b) 15;	c) 32;	d) 8.	
18.	Câte soluții are în	inelul \mathbb{Z}_6 ecuația $\hat{4}\hat{x}$	$=\hat{0}$?		
	a) 1;	b) 4;	c) 3;	d) 2.	
			$\int \frac{\pi}{2}$	$\int \frac{\pi}{2}$	
				$d_n = \int_0^{\frac{\pi}{2}} (\sin x)^n dx$, $(\forall) \ n \ge 1$ şi şirul	$(w_n)_{n\in\mathbb{N}^*},$
	$w_n = \frac{1}{2} \cdot \frac{3}{4} \cdot \dots \cdot \frac{2n}{n}$	$\frac{n-1}{2n} \cdot \sqrt{2n+1}, \ (\forall) \ i$	$n \ge 1$.		
19.	I_0 este egal cu:		ar.	<i>a</i>	
	a) 2;	b) 1;	c) $\frac{\pi}{2}$;	$\mathbf{d)} -\frac{\pi}{2}.$	
20.	I_1 este:				
	a) 2;	b) 1;	c) $-2;$	d) -1.	
21.	Mulțimea $\left\{n \in \mathbb{N} \mid \right.$	$n \ge 2, I_n = \frac{n-1}{n} I_n.$	$_{-2}$ este:		
	(Se poate folosi eve	entual metoda integrà	írii prin părți)		
	 a) N − {0,1}; c) Finită, având 	cel mult 2003 elemen	b) Vidă; d) Finită,	având cel puţin 2004 elemente.	
22.	Mulțimea $\left\{n \in \mathbb{N}^*\right\}$	$\left\{ 1 \le \frac{I_n}{I_{n+1}} \le \frac{n+1}{n} \right\}$	este:		
	a) Vidă;	1 1, 2002 1	b) №*;	^ 1 1 4 0004 1	
	_	cel mult 2003 elemen	nte; d) Finita,	având cel puţin 2004 elemente.	
23.	$\lim_{n\to\infty}\frac{I_n}{I_{n+1}} \text{ este:}$				
		b) 1;	c) 0,5;	d) 0.	
24.	Ştiind că $\frac{I_{2n}}{I_{2n+2}} =$	$(w_n)^2 \cdot \frac{\pi}{2}, \ (\forall) \ n \in \mathbb{N}^*$	s, atunci $\lim_{n\to\infty} w_n$ ester		
	a) $\sqrt{\frac{2}{\pi}}$;	b) 1;	c)	$\sqrt{\frac{\pi}{2}};$ d) 0.	
	Se consideră polin $S_k = x_1^k + x_2^k + x_3^k.$		+ 1, cu rădăcinile x	$x_1, x_2, x_3 \in \mathbb{C}$. Pentru orice $k \in \mathbb{N}^*$,	notăm cu
25.	f(-1)f(1) este:				
	a) 4;	b) 6;	c) $-2;$	d) -8.	
26.	Numărul de rădăci	ni raționale ale polin	omului f este:		
	a) 1;	b) 0;	c) 2;	d) 3.	

27. Numărul de rădăcini reale ale polinomului f este:

a) 1;

b) 3;

c) 2

d) 0.

28. Suma $x_1 + x_2 + x_3$ este:

a) 1:

b) 0

c) 3;

d) 2.

29. Mulţimea $\{k \in \mathbb{N} \mid S_{k+3} - 4S_{k+1} + S_k = 0\}$ este:

a) ∅;

b) Finită, având cel mult 2003 elemente;

c) ℕ;

d) Finită, având cel puţin 2004 elemente.

30. Mulţimea $\{n \in \mathbb{N} \mid S_n \in \mathbb{Z}\}$ este:

a) N;

b) Finită, având cel mult 2003 elemente;

c) Finită, având cel puţin 2004 elemente;

d) Ø.

Filiera teoretică, specializarea Științe ale naturii Filiera tehnologică, profil Tehnic, toate specializările

\Diamond	Toţi itemii sunt obligatorii. Fiecare item are un singur răspuns corect.					
\Diamond	Se acordă câte 3 puncte pentru fiecare răspuns corect. Se acordă 10 puncte din oficiu.					
\Diamond	Timpul efectiv de	lucru este de 3 or	e.			
\Diamond	Pentru fiecare item, completați pe foaia de examen, răspunsul pe care-l considerați corect, cu simbolul \circ , iar răspunsurile considerate greșite cu simbolul \times .					
x.	e consideră funcția f	$: \mathbb{R} \to \mathbb{R}, f(x) = \{x\}$	$(1 - \{x\})$, unde prin	x } am notat partea fracționară	a numărului real	
1.	Câte dintre numerele	f(0,25), f(0,5), f(0,5)	(0,75) şi $f(1)$, sunt ega	ale cu $f(0)$?		
	a) 1;	b) 3;	c) 0;	d) 2.		
2.	Care dintre următoa a) 0,25;	rele numere reprezint b) $0,5$;	ă perioadă pentru fu: c) 1;	ncția f ? d) $0,75$.		
3.	Cât este $\lim_{x\to 0} f(x)$?					
	$\mathbf{a)} 0;$	b) Nu există;	c) 1;	d) -1.		
4.	Cum este mulţimea p a) Vidă; c) Finită, având co	punctelor în care func el puţin 2004 element	b) Finită, a	ă? vând cel mult 2003 elemente;		
5.	Care este aria supraf	feței plane mărginite	de graficul funcției f	axa Ox și de dreptele de ecuați	i x = 0 i x = 1?	
	a) 1;	b) 0, 1(6);	c) $0, 2;$	d) 0, 5.		
	Pe \mathbb{R} se consideră leg	gea de compoziție "°	definită prin $x \circ y =$	x+y+1. Se știe că legea "o"	este asociativă.	
6.	Elementul neitru al l	legii "o" este:				
		_	c) 0;	d) 1.		
7.	Simetricul elementul	ui $x \in \mathbb{R}$, față de lege	ea "o" este:			
	a) $-x+1;$	b) $-x-1;$	c) $-2-x$;	$\mathbf{d)} -x.$		
8.	Elementul $(-10) \circ (-10)$	$-9) \circ \ldots \circ 0 \circ 1 \circ \ldots \circ$	10) este:			
	a) 20;	b) 22;	c) 19;	d) 21.		
9.	Numărul de soluții re					
	a) 0;	b) 2;	c) 3;	d) 1.		
	Se consideră funcțiile $I_n: \mathbb{R} \to \mathbb{R}, I_0(x) = 1$ și $I_{n+1}(x) = \int_0^x I_n(t) \ dt$, $(\forall) \ x \in \mathbb{R}, \ (\forall) \ n \in \mathbb{N}$.					
10.	Suma $I_0(1) + I_0(2) +$	$-\ldots + I_0(2003)$ este:				
	a) 2003;	b) 0;	c) 2004;	d) 2002.		
11.	$I_1(x), x \in \mathbb{R}$ este:					
	a) 0;	b) $\frac{x}{2}$;	$\mathbf{c)} x;$	d) 1.		
12.	$I_{10}(x), x \in \mathbb{R}$ este:					
	a) 10x;	b) $10!x^{10};$	c) $\frac{x^{10}}{10!}$;	d) x^{10} .		

13.	$\lim_{n\to\infty} I_n(x), \ x\in\mathbb{R} \text{ este}$	e:		
	a) ∞ ;		c) e;	d) 0.
14.	$\lim_{n\to\infty}\frac{I_0(1)+I_1(1)+.}{n}$	$\ldots + I_n(1)$ este:		
	a) ∞;	b) 0;	c) 1;	d) <i>e</i> .
	Se consideră polinomi	$\text{ul } f = X^4 - 4X^2 + 1,$	cu rădăcinile x_1, x_2, x_3	$_3, x_4 \in \mathbb{C}.$
15.	Suma $f(-1) + f(1)$ es	ste:		
	a) 2;	b) -4;	c) 6;	d) -8.
16.	Câte rădăcini rațional	le are polinomul f ?		
	a) 2;	b) 0;	c) 1;	d) 3.
17.	Cum sunt soluțiile ecu	uației $x^2 - 4x + 1 = 0$,	, rezolvată în mulțimea	numerelor complexe?
	a) Reale, una pozitc) Reale şi pozitive		b) Reale şi negad) Complexe ne	
18.	Câte rădăcini reale ar	e polinomul f ?		
	a) 3;	b) 0;	c) 2;	d) 4.
19.	Suma $x_1 + x_2 + x_3 +$			
	a) $-5;$	b) 1;	c) 5;	d) 0.
20.	Produsul $x_1 \cdot x_2 \cdot x_3$.	x_4 este:		
	a) -1 ;	b) $-5;$	c) 1;	d) 5.
	În mulțimea $\mathscr{M}_2(\mathbb{C})$ s	e consideră matricele .	$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ și $O_2 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.
21.	Matricea A^2 este:			
	a) A;	$\mathbf{b)} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix};$	c) O_2 ;	$\mathbf{d)} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}.$
22.	Determinantul matric	eei A este:		
	a) -1 ;	b) 10;	c) 0;	d) 1.
23.	Ecuația $Z^2 = O_2$ are	în $\mathscr{M}_2(\mathbb{C})$:		
		de soluții, strict mai m t de soluții mai mari c soluții.		
24.	Ecuația $Y^2 = A$ are în	n $\mathscr{M}_2(\mathbb{C})$:		
	a) Un număr finit cc) Nicio soluție;	de soluții, strict mai m		Exact o soluție; O infinitate de soluții.
	În sistemul cartezian	de coordonate xOy se	consideră punctele $A($	(3,4), B(-4,3), C(0,-5) şi $O(0,0)$.
25.	Suma $OA + OB + OC$	C este:		
	a) 15;	b) 10;	c) 12;	d) 11.

27. Ecuația dreptei AB este:

26. Punctele A, B și C se află pe curba:

a) $(xy)^2 = 12^2$; b) 7y = x + 25; c) 7x = y + 25; d) $x^2 + y^2 = 25$.

a) $\frac{x^2}{25} - \frac{y^2}{16} = 1;$ b) $\frac{x^2}{9} + \frac{y^2}{16} = 1;$ c) $x^2 + y^2 = 25;$ d) x + y = 7.

28. Panta dreptei AC este:

- **a)** 3;
- **b)** 9;
- c) $\frac{1}{3}$;
- **d**) $\frac{1}{9}$.

29. Aria triunghiului ABC este:

- **a)** 30;
- **b)** 35;
- **c)** 60;
- **d**) 25.

 ${\bf 30.}\;\;$ Raza cercului circumscris triunghiului ABC este:

- **a**) 5;
- **b)** 3;
- **c)** 4, 5;
- **d**) 4.

Proba d

Profil real: matematică-fizică, informatică, metrologie pentru absolvenții claselor a XIII-a (zi, seral și frecvență redusă) promoția 2003 și promoțiile anterioare

- Toți itemii sunt obligatorii. Fiecare item are un singur răspuns corect.
- Se acordă câte 3 puncte pentru fiecare răspuns corect. Se acordă 10 puncte din oficiu.
- Timpul efectiv de lucru este de 3 ore.
- Pentru fiecare item, completați pe foaia de examen, răspunsul pe care-l considerați corect, cu simbolul \circ , iar răspunsurile considerate greșite cu simbolul \times .

Se consideră integralele I_n , $n \in \mathbb{N}$, unde $I_0 = \int_0^{\frac{\pi}{2}} dx$ și $I_n = \int_0^{\frac{\pi}{2}} (\cos x)^n dx$, (\forall) $n \geq 1$ și șirul $(w_n)_{n \in \mathbb{N}^*}$, $w_n = \frac{1}{2} \cdot \frac{3}{4} \cdot \dots \cdot \frac{2n-1}{2n} \cdot \sqrt{2n+1}, \ (\forall) \ n \ge 1.$

- 1. I_0 este egal cu:
 - **a)** $-\frac{\pi}{2}$; **b)** 2; **c)** $\frac{\pi}{2}$;
- **d**) 1.

- 2. I_1 este:
 - **a**) 1;
- **b**) 2;
- **d**) -1.

3. Mulțimea $\left\{n \in \mathbb{N} \mid n \geq 2, I_n = \frac{n-1}{n}I_{n-2}\right\}$ este:

(Se poate folosi eventual metoda integrării prin părți)

- a) Finită, având cel puţin 2004 elemente;
- b) Vidă;
- c) Finită, având cel mult 2003 elemente;
- **d**) $\mathbb{N} \{0, 1\}.$
- **4.** Mulţimea $\left\{ n \in \mathbb{N}^* \mid 1 \le \frac{I_n}{I_{n+1}} \le \frac{n+1}{n} \right\}$ este:
 - a) Finită, având cel mult 2003 elemente;
- **b**) N*;

c) Vidă;

d) Finită, având cel puţin 2004 elemente.

- 5. $\lim_{n \to \infty} \frac{I_n}{I_{n+1}}$ este:
- **b**) ∞;
- **c)** 0,5;
- **d**) 0.
- **6.** Ştiind că $\frac{I_{2n}}{I_{2n+2}} = (w_n)^2 \cdot \frac{\pi}{2}$, (\forall) $n \in \mathbb{N}^*$, atunci $\lim_{n \to \infty} w_n$ este:
 - **a)** 1;
- **b)** $\sqrt{\frac{2}{\pi}};$
 - **c)** 0;

Se consideră mulțimea $M = \{1, 2, 3, \dots, 8\}.$

- 7. Media aritmetică a elementelor multimii M este:
- **b**) 6;
- **d**) 5.
- 8. Numărul de submulțimi cu șase elemente ale mulțimii M este:
- **b**) 32;
- **d**) 30.
- Numărul total de submulțimi ale mulțimii M este:
 - a) 8^8 :

- **d**) 3⁸.
- **10.** Câte elemente are mulţimea $\{(a,b) \mid a,b \in M, a < b, a \text{ divide pe } b\}$?
 - **a)** 11;
- **b**) 13;
- **c)** 12;
- **d**) 10.

11.	Numărul de progresi M este:	i aritmetice de trei ele	emente cu r	ația strict pozit	ivă care se pot forma cu elementele mulţimii
	a) 11;	b) 12;	c) 13	;	d) 10.
	Se consideră funcția punctul x .	$f: \mathbb{R} \to \mathbb{R}, \ f(x) = \epsilon$	$e^x(x^2+x).$	Notăm prin f	$^{(n)}(x)$, derivata de ordinul n a funcției f în
12.	Cât este $\lim_{x \to 0} \frac{f(x) - f(x)}{x}$	$\frac{f(0)}{f(0)}$?			
	a) 2;	b) 5;	c) 1;		d) 0.
13.		espre asimptota la grande x ; b) Nu există;		· · ·	? a $y = 1$; d) Este dreapta $y = 0$.
14.	Câte puncte de infle	xiune are graficul fun	cţiei f ?		
	a) 1;	b) 0;	c) 3;		d) 2.
15.		$f^{(n)}(x) = e^x(x^2 + (2n^2))$ well mult 2003 elemente	e; b)	\mathbb{N}^* ;	ste: cel puţin 2004 elemente.
16.	$\lim_{n\to\infty} \frac{f'(0) + f''(0) + \dots + f''(0)}{n^2}$	$\frac{1}{3} \dots + f^{(n)}(0)$ este:			
	$\mathbf{a)} 1;$		c) 0;		d) 0, (3).
	Se consideră polinor $S_k = x_1^k + x_2^k + x_3^k$ $A = \{g(a) \mid g \in \mathbb{Q}[X]$, iar $S_0 = 3$. Fie a	- 1, cu răd o rădăcină	lăcinile $x_1, x_2,$ a polinomului	$x_3\in\mathbb{C}.$ Pentru orice $k\in\mathbb{N}^*,$ notăm cu $f,\ B=\{h(a) h\in\mathbb{Q}[X],\mathrm{grad}(h)<3\}$ și
17.	f(-1)f(1) este:				
	a) $-15;$	b) -5 ;	c) 15	;	d) -3.
18.	Numărul de rădăcini	i raționale ale polinor	nului f est	e:	
	a) 2;	b) 3;	c) 1;		d) 0.
19.	Numărul de rădăcini	i reale ale polinomulu	i f este:		
	a) 3;	b) 0;	c) 1;		d) 2.
20.	Suma $x_1 + x_2 + x_3 \in$				
		b) 0;	c) 1;		d) 2.
21.		$_{k+3} - 5S_{k+1} + S_k = 0$		7.7	
	a) Ø;c) Finită, având c	el mult 2003 elemente	/	N; Finită, având	cel puţin 2004 elemente.
22.	Mulțimea $\{n \in \mathbb{N} \mid S\}$	$n \in \mathbb{Z}$ este:			
	a) N;c) Finită, având c	el puţin 2004 element		Finită, având \emptyset .	cel mult 2003 elemente;
23.	Mulţimea $A - B$ est	e:			
	a) Infinită;c) Vidă;				cel mult 2003 elemente; cel puţin 2004 elemente.
24.	Care dintre elemente	ele următoare din mu	lţimea B e	ste egal cu $\frac{1}{a}$?	
		b) $a^2 - 5a;$		α	d) a.

25. Mulțimea $(B, +, \cdot)$ formează o structură de:

(Prin "+" și "·" înțelegem adunarea și înmulțirea numerelor complexe)

- a) Nu formează nicio structură;
- **b)** Corp necomutativ;

c) Corp comutativ;

d) Inel comutativ care nu este corp.

În sistemul cartezian de coordonate xOy se consideră punctele A(1,0), B(0,1), C(-1,0), D(0,-1) şi O(0,0).

26. Segmentul AB are lungimea:

- **a)** $\sqrt{3}$;
- **b**) 1;
- c) $\sqrt{2}$;
- **d**) 2.

27. Suma OA + OB + OC + OD este:

- **a**) 1;
- **b**) 4;
- **c)** 2;
- **d**) 0.

28. Panta dreptei AB este:

- **a**) 0;
- **b**) -1;
- **c)** 1;
- **d**) -2.

29. Ecuația dreptei AC este:

- **a)** xy = 0;
- **b)** $x^2 = 1;$
- c) y = 0; d) $x^2 + y^2 = 1.$

30. Aria patrulaterului ABCD este:

- **a**) 3;
- **b**) 4;
- **c)** 2;
- **d**) 1.

Se acordă câte 3 puncte pentru fiecare răspuns corect. Se acordă 10 puncte din oficiu.

(c) 0, 5;

Pentru fiecare item, completați pe foaia de examen, răspunsul pe care-l considerați corect, cu

d) 0, 5.

d) 1.

 \Diamond Toţi itemii sunt obligatorii. Fiecare item are un singur răspuns corect.

simbolul \circ , iar răspunsurile considerate greșite cu simbolul \times .

b) -1; **c**) 1;

1. Suma $\sin(-90^\circ) + \sin(-89^\circ) + \dots + \sin(-1^\circ) + \sin 0^\circ + \sin 1^\circ + \dots + \sin 89^\circ + \sin 90^\circ$ este:

pentru absolvenții claselor a XII-a, promoția 2003

Timpul efectiv de lucru este de 3 ore.

2. Produsul $\cos 0^{\circ} \cdot \cos 1^{\circ} \cdot \ldots \cdot \cos 179^{\circ} \cdot \cos 180^{\circ}$ este:

b) -1;

a) 0;

	Se consideră funcția .	$f: \mathbb{R} \setminus \{-1, -2\} \to \mathbb{R}, f$	$f(x) = \frac{1}{(x+1)(x+2)}$.	
3.	Expresia $f(x) - \frac{1}{x+1}$	$\frac{1}{1} + \frac{1}{x+2}, \ x \in \mathbb{R} \setminus \{-1,$	$,-2$ } este:	
	a) $2f(x);$	b) $-\frac{2}{x+1}$;	c) 0;	$\mathbf{d)} \ \frac{2}{x+2}.$
4.	Numărul de asimptot	te verticale la graficul f	uncției f este:	
	a) 1;	b) 0;	c) 2;	d) 3.
5.	Aria suprafeței plane	cuprinse între graficul	funcției f , axa Ox și c	dreptele $x = 0$ și $x = 1$ este:
	a) 1;	b) $\ln \frac{3}{4}$;	c) $\ln \frac{4}{3}$;	d) arctg 2.
6.	$\lim_{x \to \infty} x^2 f(x)$ este:			
	a) 0,5;	b) 1;	c) 0;	d) ∞.
7.	$\lim_{n\to\infty} (f(0)+f(1)+\dots$	$\dots + f(n)$) este:		
	a) 0,5;		c) 1;	$\mathbf{d)} \;\; \infty.$
	Se consideră mulțime	ea $A = \{1, 2, \dots, 10, 11, \dots, 10, \dots,$	12}.	
8.	Câte submulţimi cu c	două elemente are mulț	imea A ?	
	a) 54;	b) 57;	c) 50;	d) 55.
9.	Câte submulţimi nev	ide ale mulţimii A au p	proprietatea că suma el	lementelor lor este egală cu 5?
	a) 1;	b) 3;	c) 4;	d) 2.
10.	Care este probabilita	tea ca alegând un elem	ent din mulțimea A , a	cesta să fie număr par?
	a) $0, (45);$	b) 0,5;	c) 0,4;	d) 0, (5).
	Se consideră funcțiile	$f_n: \mathbb{R} \to \mathbb{R}, f_0(x) = x$	$e^x $	$(\forall) \ n \in \mathbb{N}, \ (\forall) \ x \in \mathbb{R}.$
11.	$f_1(x), x \in \mathbb{R}$ este:			
	a) $e^x(x-1);$	b) $e^x(x+1);$	c) xe^x ;	$\mathbf{d)} \ e^x + x.$
12.	Ecuația $f^{(n)}(x) = 0$ a	are soluţia:		
	a) $x = 1;$	b) $x = 2;$	c) $x = -2;$	d) $x = 0$.
13.	$f_{2003}(0)$ este:			
	a) 2003!;	b) 2002;	c) -2003 ;	d) 2003.
			41	

14.	$\lim_{x \to \infty} \frac{f_{n+1}(x)}{f_n(x)}, n \in \mathbb{N}^*,$	este:			
	a) ∞;	b) 1;	c)	$\frac{n+1}{n}$;	d) 0.
15.	Asimptota orizontală l	la graficul funcției f_0 c	eătre	$e^{-\infty}$ este:	
	a) $y = 0;$	b) $y = x + 1;$	c)	y=1;	$\mathbf{d)} y = x.$
	Pe $\mathbb R$ se definește legea	a de compoziție "o" pr	$\sin x$	$x \circ y = xy - 2x - 2y$	y+6.
16.	Elementul $x \circ y$ mai p	oate fi scris $(\forall) x, y \in$	\mathbb{R} :		
		b) $(x-2)(y-2)+2;$		(x+2)(y-2)+2;	d) $(x+2)(y+2)-2$.
17.	Egalitatea $x \circ (y \circ z)$ =	$= x \circ (y \circ z)$ are loc:			
	a) Numai când y =c) Numai când x =			b) Oricare ar fid) Numai când	numerele reale $x, y, z;$ x = y.
18.	Elementul neutru al le	egii "o" este:			
	a) 1;	b) 2;	c)	3;	d) 0.
19.	Ecuația $2^x \circ 4^x = 2$ ar	e suma soluţiilor egală	cu:		
	a) 1;	b) 3;	c)	1, 5;	d) 2.
20.	Mulţimea $\{x \in \mathbb{R} \mid x \circ$	$2 = 2$ } este:			
	a) R;c) Formată dintr-un	ı element.;		b) Finită, avândd) Ø.	l cel puţin 2 elemente;
21.	Elementul $(-2003) \circ ($	$-2002) \circ \ldots \circ (-1) \circ 0$	01	oo2002 o 2003 o	este:
	a) -1;	b) 2;		0;	d) 1.
	Se consideră polinoan $O_2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$	$nele f = X^2 - 3X +$	2, g	$g = X^n, n \in \mathbb{N}^*$	şi matricele $A=\begin{pmatrix}2&1\\0&1\end{pmatrix},\;I_2=\begin{pmatrix}1&0\\0&1\end{pmatrix}$ şi
22.	Rădăcinile polinomulu	i f sunt:			
	a) $x_1 = 1, x_2 = 2;$	b) $x_1 = -1, x_2 =$	= 2;	c) $x_1 = -1, x_2$	$x_2 = -2;$ d) $x_1 = 1, x_2 = -2.$
23.	Matricea A^2 este:				
	a) 2 A·	b) $\begin{pmatrix} 4 & 3 \end{pmatrix}$.	c)	$A + I_{2}$.	d) $A - I_0$

a)
$$2A$$
; b) $\begin{pmatrix} 4 & 3 \\ 0 & 1 \end{pmatrix}$; c) $A + I_2$; d) $A - I_2$.

24. $f(A) = A^2 - 3A + 2I_2$ este:

a)
$$A$$
; b) $A + I_2$; c) O_2 ; d) I_2 .

25. Restul împărțirii polinomului g la polinomul f este:

a)
$$(2^{n}+1)X+2+$$
 b) $(2^{n}+1)X+2-$ c) $(2^{n}-1)X+2+$ d) $(2^{n}-1)X+2 2^{n}$; 2^{n} ; 2^{n} .

26. Egalitatea $A^n=\begin{pmatrix} 2^n & 2^n-1 \\ 0 & 1 \end{pmatrix},\, n\in\mathbb{N}^*,$ este adevărată:

 $\mathbf{a)} \quad (\forall) \ n \in \mathbb{N}^*;$

b) Pentru un număr finit de valori ale lui $n \in \mathbb{N}^*$, mai mare decât 2;

c) Pentru nicio valoare a lui $n \in \mathbb{N}^*$;

d) Pentru exact o valoare a lui $n \in \mathbb{N}^*$.

În sistemul cartezian de coordonate xOy se consideră punctele $A(-1,\sqrt{3}), B(-1,-\sqrt{3}), C(2,0)$.

27. Perimetrul triunghiului *ABC* este:

a) 6; **b)**
$$3\sqrt{3}$$
; **c)** $6\sqrt{3}$; **d)** $2\sqrt{3}$.

28. Aria triunghiului *ABC* este:

a) 4;

b) 3;

c) $3\sqrt{3}$;

d) 9.

29. Raza cercului circumscris triunghiului ABC este:

a) $\sqrt{3}$;

b) 2;

c) $\sqrt{2}$;

d) 1.

 ${\bf 30.}~$ Măsura unghiuluiA din triunghiulABC este:

a) 45°;

b) 60°;

c) 30°;

d) 90°.

Profil pedagogic. Pentru absolvenții claselor a XIII-a (zi, seral și frecvență redusă) promoția 2003 și promoțiile anterioare

\Diamond	Tot	i itemii	isunt	obligatorii.	Fiecare	item	are	un	singur	răspuns	core	ct

Se acordă câte 3 puncte pentru fiecare răspuns corect. Se acordă 10 puncte din oficiu.

- Timpul efectiv de lucru este de 3 ore.
- Pentru fiecare item, completați pe foaia de examen, răspunsul pe care-l considerați corect, cu simbolul \circ , iar răspunsurile considerate greșite cu simbolul \times .

Se consideră polinomul $f = X^3 - 5X + 1$, cu rădăcinile $x_1, x_2, x_3 \in \mathbb{C}$. Pentru orice $k \in \mathbb{N}^*$, notăm cu $S_k =$ $x_1^k + x_2^k + x_3^k$, iar $S_0 = 3$.

1. f(-1)f(1) este:

a) -5;

b) -15;

c) 15;

d) −3.

2. Numărul de rădăcini raționale ale polinomului f este:

a) 2;

b) 1;

d) 0.

3. Numărul de rădăcini reale ale polinomului f este:

b) 3;

d) 1.

4. Suma $x_1 + x_2 + x_3$ este:

a) 3;

b) 2;

c) 0;

d) 1.

5. Mulţimea $\{k \in \mathbb{N} \mid S_{k+3} - 4S_{k+1} + S_k = 0\}$ este:

c) Finită, având cel puţin 2004 elemente;

d) Finită, având cel mult 2003 elemente.

6. Multimea $\{n \in \mathbb{N} \mid S_n \in \mathbb{Z}\}$ este:

a) Finită, având cel puțin 2004 elemente;

b) ℕ;

d) Finită, având cel mult 2003 elemente.

Se consideră matricele $A = \begin{pmatrix} 3 & -7 \\ 1 & -2 \end{pmatrix}$, $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ și $O_2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.

7. Determinantul matricei A este:

a) 2;

b) 3;

c) 1;

d) −1.

8. Suma elementelor matricei A^3 este:

a) 1;

b) 0;

c) 2;

d) -2.

9. Cel mai mic număr natural nenul n, pentru care $A^n = I_2$ este:

d) 3.

10. Matricea $I_2 + A + A^2 + ... + A^5$ este:

c) I_2 ;

 \mathbf{d}) O_2 .

11. Determinantul matricei $A + A^2 + ... + A^{2003}$ este:

a) -1;

c) 0;

d) 2003.

Pe \mathbb{R} se definește legea de compoziție " \circ " prin $x \circ y = xy + x + y$.

12. Elementul $x \circ y$ mai poate fi scris $(\forall) x, y \in \mathbb{R}$:

a) (x+1)(y+1)-1; b) (x-1)(y-1)+1; c) (x-1)(y-1)-1; d) (x+1)(y+1)+1.

13.	Egalitatea $x \circ (y \circ z)$ a) Numai dacă $x + c$ c) Oricare ar fi num	y + z = 0;		Numai dacă $x =$ Numai dacă $x =$	
14.	Multimea $\{x \in \mathbb{R} \mid x \circ \mathbf{a}\}$ $\{-1\}$; c) \mathbb{R} ;	$(-1) = -1$ } este:	1	Finită, având co	el puţin 2 elemente;
15.	Expresia (-2003) o (- a) 2003!;	$-2002) \circ \dots \circ (-1) \circ 0 \circ$ b) 1;	1 ∘ o c) −1		: 1) 0.
	Într-o lună, ziua de jo	oi a fost de trei ori în z	ile cu nu	ımăr par.	
16.	Câte zile de joi a avu a) 4;	t luna respectivă? b) 5;	c) 7;	d	1) 6.
17.	În ce dată a fost prima a) 1;	na zi de joi a lunii respe b) 3;	ective? c) 2;	d	1) 4.
18.	Ce zi a fost în data de a) Marţi;	e 15 a lunii respective? b) Vineri;	c) Mi	dercuri; d	l) Joi.
	Într-un plan se consid	leră pentagonul convex	ABCD	E.	
19.	Câte drepte au două a) 25;	puncte comune cu mul- b) 15;	ţimea {2 c) 20		1) 10.
20.	Câte triunghiuri au to a) 20;	oate vârfurile în mulţin b) 15;	nea $\{A, \}$		1) 25.
21.	Câte diagonale are pe a) 10;	entagonul convex ABC b) 15;	DE? c) 20	; d	1) 5.
22.	Care este suma măsu: a) 900°;	rilor unghiurilor pentag b) 540°;	gonului o		1) 720°.
23.	Care este numărul ma a) 4;	axim de unghiuri ascuţ b) 3;	ite pe ca c) 2;		un poligon convex cu 10 laturi? 1) 5.
	Se consideră mulțime	a $A = \{1, 2, 3, \dots, 9\}.$			
24 .	Media aritmetică a el a) 7;	ementelor mulţimii $A \in \mathbf{b}$) 5;	este: c) 9;	d	1) 6.
25 .		mi cu şase elemente ale b) 72;		nii A este:	l) 81.
26.		mulţimi ale mulţimii A b) 9!;	,		l) 2 ⁹ .
27 .					vă care se pot forma cu elementele mulţimii
	a) 12;	b) 16;	c) 10	; d	d) 14.
	Se consideră numărul	$a = 2^{2003}$.			
28.	Câte cifre are număru	ıl a scris în baza 2?			
	a) 2004;	b) 2003;	c) 20	01; d	d) 2002.

29.	Care este număru	l de cifre "0"	folosite pentru scrierea în	baza 2 a numărului a
	a) 2000;	b) 1;	c) 2003;	d) 1000.
30	Caro osto suma ci	frolor numöru	ului a seris în baza 27	

30. Care este suma cifrelor numărului a, scris în baza 2? (Suma se calculează în baza 10)

a) 1000; b) 2003; c) 2; d) 1.

Proba d

Clase de: economie, fizică-chimie, chimie-biologie, militar (real), industrial, agricol, silvic, sportiv (real) pentru absolvenții claselor a XIII-a (zi, seral și frecvență redusă), promoția 2003 și promoțiile anterioare

\wedge	Toți itemii sunt	ablicatorii	Figgoro	itam	000 110	ain au	nŏanıma	aanaat
\vee	rogi nemni sum	obligatorii.	riecare	пеш	are un	singur	raspuns	corect.

- Se acordă câte 3 puncte pentru fiecare răspuns corect. Se acordă 10 puncte din oficiu.
- Timpul efectiv de lucru este de 3 ore.
- Pentru fiecare item, completați pe foaia de examen, răspunsul pe care-l considerați corect, cu simbolul \circ , iar răspunsurile considerate greșite cu simbolul \times .

Pe \mathbb{R} se consideră legea de compoziție " \circ " definită prin $x \circ y = x + y + 1$. Se știe că legea " \circ " este asociativă.

1. Elementul neutru al legii "o" este:

a) -1;

b) -2;

c) 0;

d) 1.

2. Simetricul elementului $x \in \mathbb{R}$, față de legea "o" este:

a) -2-x;

b) -x+1;

d) -x-1.

3. Elementul $(-10) \circ (-9) \circ \ldots \circ 0 \circ 1 \circ \ldots \circ 9 \circ 10$ este:

b) 20;

d) 22

4. Numărul de soluții reale ale ecuației $4^x \circ 2^x = 21$ este:

a) 2;

b) 0:

d) 3.

În sistemul cartezian de coordonate xOy se consideră punctele A(3,4), B(-4,3), C(0,-5) și O(0,0).

5. Suma OA + OB + OC este:

a) 12;

b) 15;

c) 11;

d) 10.

6. Câte drepte au câte două puncte în mulțimea $\{A, B, C, D, O\}$?

a) 5;

b) 8;

c) 6;

d) 4.

7. Ecuația dreptei AB este:

a) $x^2 + y^2 = 25$; b) $(xy)^2 = 12^2$; c) 7x = y + 25; d) 7y = x + 25.

8. Panta dreptei AC este:

b) 9;

d) 3.

9. Câte triunghiuri au toate vârfurile în mulțimea $\{A, B, C, O\}$?

a) 5;

d) 3.

Se consideră funcțiile $I_n: \mathbb{R} \to \mathbb{R}$, $I_0(x) = 1$ și $I_{n+1}(x) = \int_0^x I_n(t) \ dt$, $(\forall) \ n \in \mathbb{N}$, $(\forall) \ x \in \mathbb{R}$.

10. Suma $I_0(1) + I_0(2) + \ldots + I_0(2003)$ este:

a) 2002;

b) 2004;

c) 0;

d) 2003.

11. $I_1(x), x \in \mathbb{R}$ este:

 \mathbf{a}) x;

b) 0;

c) $\frac{x}{2}$;

d) 1.

12. $I_{10}(x), x \in \mathbb{R}$ este:

b) $10!x^{10}$;

c) 10x;

d) x^{10} .

13. $\lim_{n\to\infty} I_n(x), x \in \mathbb{R}$ este:

a) 0;

 \mathbf{b}) ∞ ;

c) $-\infty$;

d) *e*.

14.	$\lim_{n\to\infty}\frac{I_0(1)+I_1(1)+.}{n}$	$\ldots + I_n(1)$ este:				
	$n \to \infty$ n a) 0;	b) e;	c)	∞ ;	d)	1.
	Se consideră funcția f	$f: \mathbb{R} \to \mathbb{R}, f(x) = (x - x)$	1)(a	(x-2)(x-3)(x-4)	Į).	
15.		$-5x+5)^2-1$ are loc			,	
10.	a) Numai pentru x			pentru $x \leq 0$;		
	c) $(\forall) \ x \in \mathbb{R};$	d) Nur	mai	pentru $x \ge 0$.		
16.		\mathbb{R} are suma soluţiilor:		10	1)	4
17	a) -10 ;	b) 0;		10;	d)	4.
17.	a) 0;	R are numărul soluțiib) 3;		2;	d)	1.
18.		e extrem local ale funct		,	-,	
	a) 1;	b) 4;		2;	d)	3.
19.	Numărul punctelor de	e inflexiune ale graficul	ui fu	ncției f este:		
	a) 2;	b) 1;	c)	4;	d)	3.
20.	$\lim_{x \to \infty} \frac{xf'(x)}{f(x)} \text{ este:}$					
	$a \rightarrow 0$ $f(x)$	b) ∞;	c)	1;	d)	0.
	Se consideră polinomi	$\text{il } f = X^4 - 5X^2 + 1, \alpha$	n ră	dăcinile x_1 x_2 x_3	r_A	∈ (C.
91			Ju 10	addonino w ₁ , w ₂ , w ₃	,4	c o .
21.	Suma $f(-1) + f(1)$ es a) 6;	b) 0;	c)	-3;	d)	-6.
22.	Câte rădăcini rațional	le are polinomul f ?	ŕ		ŕ	
	a) 1;	b) 0;	c)	2;	d)	3.
23.		ecuației $x^2 - 5x + 1 = 0$	0?			
	a) Reale şi pozitivec) Reale şi negative			b) Reale, una ped) Complexe ne		vă și una negativă;
24.	Câte rădăcini reale ar			, .		
	a) 3;	b) 4;	c)	2;	d)	0.
25.	Suma $x_1 + x_2 + x_3 + \dots$	x_4 este:				
	a) 0;	b) 5;	c)	-5;	d)	1.
26.	Produsul $x_1 \cdot x_2 \cdot x_3 \cdot $ a) 0;	x_4 este: b) 1;	a)	-5;	d)	5
		,	,	,		
	În mulțimea $\mathcal{M}_2(\mathbb{C})$ se	e consideră matricele A	4 =	$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} $ şi $O_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$	$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$).
27.	Matricea A^2 este:					
	a) O_2 ;	b) A;	c)	$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix};$	d)	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$.
28.	Determinantul matric	ei A este:				
	a) 1;	b) 10;	c)	0;	$\mathbf{d})$	-1.

29. Ecuația $Z^2 = O_2$ are în $\mathscr{M}_2(\mathbb{C})$:

a) Un număr finit de soluții, strict mai mare decât 1;

b) O infinitate de soluţii;

c) Nicio soluţie;

d) Exact o soluție.

- **30.** Ecuația $Y^2 = A$ are în $\mathcal{M}_2(\mathbb{C})$:
 - a) O infinitate de soluții;
 - b) Exact o soluţie;
 - c) Nicio soluţie;
 - d) Un număr finit de soluții, strict mai mare decât 1.

- Toţi itemii sunt obligatorii. Fiecare item are un singur răspuns corect.
- Se acordă câte 3 puncte pentru fiecare răspuns corect. Se acordă 10 puncte din oficiu.
- Timpul efectiv de lucru este de 3 ore.
- Pentru fiecare item, completați pe foaia de examen, răspunsul pe care-l considerați corect, cu simbolul o, iar răspunsurile considerate greșite cu simbolul x.

Se consideră matricele $A = \begin{pmatrix} 2 & -3 \\ 1 & -1 \end{pmatrix}$, $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ și $O_2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.

- 1. Determinantul matricei A este:
 - **a)** 3;
- **c)** 2;
- **d**) 1.

- 2. Suma elementelor matricei A^3 este:
 - **a)** 1;
- **b)** -2;
- **c**) 0;
- **d**) 2.
- 3. Cel mai mic număr natural nenul n, pentru care $A^n = I_2$ este:
- **b**) 4;
- **c**) 5;
- **d**) 3

- **4.** Matricea $I_2 + A + A^2 + ... + A^5$ este:
 - **a)** $-I_2$; **b)** O_2 ;
- \mathbf{c}) A;
- \mathbf{d}) I_2 .
- **5.** Determinantul matricei $A + A^2 + ... + A^{2003}$ este:
 - a) -1;
- c) 2003;
- **d**) 1.

Se consideră funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = e^x + e^{-x}$.

- **6.** $f'(x), x \in \mathbb{R}$, este:
 - a) $-e^x + e^{-x}$; b) $-e^x e^{-x}$; c) $e^x + e^{-x}$; d) $e^x e^{-x}$.

- $\lim_{x \to 1} \frac{f(x) f(1)}{x 1} \text{ este:}$ **a)** $-e + e^{-1}$; **b)** $e + e^{-1}$; **c)** $e e^{-1}$; **d)** $-e e^{-1}$. $\int_0^1 f(x) \, dx \text{ este:}$ **a)** $-e e^{-1}$; **b)** $e e^{-1}$; **c)** $-e + e^{-1}$; **d)** $e + e^{-1}$. 7. $\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1}$ este:

- 8. $\int_0^1 f(x) dx$ este:

- 9. $\lim_{x \to \infty} \frac{\int_0^x f(t) \ dt}{f'(x)}$ este:
- b) $-\infty$;
- **c)** 1;
- \mathbf{d}) ∞ .

- 10. Multimea $\{x \in \mathbb{R} \mid f'(x) > 0\}$ este:
- **b**) $(-1, \infty)$;
- c) $(-\infty, 0)$;
- **d**) $(-\infty, 1)$.
- **11.** Mulțimea $\{x \in \mathbb{R} \mid f(x) + f(27x) > f(5x) + f(1985x)\}$ este:
 - a) $(-\infty, 0)$;
- **b**) ℝ;
- c) $(0, \infty)$;
- **d**) Ø.

Se consideră mulțimea $A = \{1, 2, \dots, 9\}.$

- 12. Câte submulțimi are mulțimea A?
 - **a)** 510;
- **b**) 512;
- c) 500;
- **d**) 525.

13.	Câte submulţimi cu	două elemente are mulț	ţimea	A?		
	a) 40;	b) 80;	c)	36;	d)	50.
14.	Care este probabilita	itea ca alegând un elem	nente	al mulţimii A , ace	sta s	ă fie număr par?
	a) $0,4;$	b) $0, (5);$	c)	0, 5;	d)	0, (4).
15.	În câte submulțimi a	le mulțimii A se află si	multa	an elementele 1 și 2	2?	
	a) 256;	b) 100;	c)	128;	d)	130.
16.	Care este media arit	metică a elementelor m	ulţim	ii A?		
	a) 6;	b) 10;	c)	4;	d)	5.
	Se consideră funcțiile	$e f_n : \mathbb{R} \to \mathbb{R}, f_0(x) = x$	$c^{100} +$	$x^{99} + \ldots + x + 1$	şi f_n	$f'_{n+1}(x) = f'_{n}(x), (\forall) \ x \in \mathbb{R} \text{ si } (\forall) \ n \in \mathbb{N}.$
17.	$f_0(1)$ este:					
	a) 100;	b) 101;	c)	99;	d)	102.
18.	$f_1(0)$ este:					
	a) 100;	b) 1;	c)	0;	d)	99.
19.	$\int_0^1 f_{2003}(x) \ dx \text{ este:}$					
			- \	20021.	-11	1
00	a) 2003!;	b) 0;	c)	2002!;	d)	1.
20.	$\lim_{n\to\infty} f_n(n) \text{ este:}$				_,	
	,	b) 0;	c)	n;	d)	e.
21.	$\lim_{n \to \infty} \frac{f_0(0) + f_1(0) + f_2(0)}{n}$	$\dots + f_n(0)$ este:				
	a) 0;	b) ∞;	c)	e;	d)	0, 5.
	Se consideră funcția	$f: \mathbb{Z} \to \mathbb{Z}, \ f(x) = 2x -$	- 1, (\	\forall) $x \in \mathbb{Z}$.		
22.	Suma $f(1) + f(2) +$	+ $f(2003)$ este:				
			c)	2003 · 2004;	d)	2003!.
23.	Mulţimea $\mathbb{Z} - \{f(x)\}$	$ x \in \mathbb{Z} $ este:				
	a) Infinită;	el puţin 2004 elemente;		b) Vidă;	l col :	mult 2003 elemente.
24					i CCi .	muit 2009 elemente.
24.		$\mathbb{Z} \mid (h \circ f)(x) = x, \ (\forall) \ x$ el puţin 2004 elemente;		b) Infinită;		
	c) Vidă;	or payin 2001 elemente,			d cel	mult 2003 elemente.
25.		$\mathbb{Z} \mid (f \circ g)(x) = x, \ (\forall) \ x \in \mathbb{Z}$		este:		
	a) Finită, având cc) Vidă;	el puţin 2004 elemente;		b) Finită, avândd) Infinită.	l cel :	mult 2003 elemente;
	În sistemul cartezian	de coordonate xOy se	consi	ideră punctele A_n	(n, n^2)	$(n), n \in \mathbb{N}.$
26.	Panta drepte i ${\cal A}_0{\cal A}_1$	este:				
	a) -1 ;	b) 1;	c)	2;	d)	-2.
27.	Ecuația dreptei A_0A					
	$\mathbf{a)} y = x;$	b) $x^2 + y = 0;$	c)	x + y = 0;	d)	$y = x^2$.
28.	Aria triunghiului A_0			0	• • •	4
	a) 4;	b) 2;	c)	3;	d)	1.

29. Numărul de elemente ale mulțimii $\{n \in \mathbb{N} \mid A_n \in A_0 A_1\}$ este: **a)** Cuprins între 3 și 10; **b)** Finit, dar strict mai mare decât 10; **c)** 2; **d)** Infinit.

30. Câte triunghiuri au toate vârfurile în mulțimea $\{A_0, A_1, A_2, A_3\}$?

a) 2; **b)** 4; **c)** 5; **d)** 3.

Proba f

Profil umanist. Pentru absolvenții claselor a XIII-a (zi, seral și frecvență redusă), promoția 2003 și promoțiile anterioare

^	TD 11 11 11 11	1 1	T7	•	\cup	
Κ.	Toti itemii sunt	obligatorii.	riecare nem	are un singur	rasbuns	corecu

 \Diamond Se acordă câte 3 puncte pentru fiecare răspuns corect. Se acordă 10 puncte din oficiu.

♦ Timpul efectiv de lucru este de 3 ore.

♦ Pentru fiecare item, completaţi pe foaia de examen, răspunsul pe care-l consideraţi corect, cu simbolul ∘, iar răspunsurile considerate greşite cu simbolul ×.

Se consideră funcțiile $f: \mathbb{R} \to \mathbb{R}$, f(x) = (x-1)(x-2)(x-3)(x-4) și $g: \mathbb{R} \to \mathbb{R}$, $g(x) = x^2 - 5x + 5$.

1.	Egalitatea	f(x)) = (a(x)	$)^2 - 1$	este	adevărată:
_ .	Egantatea	112	<i>,</i> — (4121	, ,	Colc	aucvarata.

a) Numai pentru x < 0;

b) Numai pentru x > 0;

c) $(\forall) \ x \in \mathbb{R};$

d) Numai pentru x = 0.

2. Numărul de soluții reale ale ecuației g(x) = 0 este:

a) 1;

b) 0;

c) 3;

d) 2.

3. Valoarea minimă pe \mathbb{R} a funcției f este:

a) 0:

b) -1;

c) 2;

d) 1

4. Numărul de puncte de minim ale funcției f este:

a) 3;

b) 1;

c) 4;

d) 2.

5. Numărul de puncte de inflexiune ale graficului funcției f este:

a) 1:

b) 3;

c) 0

d) 2.

Se consideră matricele $A = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 \\ 2 & -1 \end{pmatrix}$ și $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

6. Determinantul matricei *B* este:

a) 1;

b) -6;

c) -1;

d) 5.

7. Matricea A^2 este:

a) $A + I_2$;

b) B;

c) A

 \mathbf{d}) I_2 .

8. Matricea A^{2003} este:

a) B:

b) I_2 ;

c) $A+I_2$

d) A.

9. Matricea $A + A^2 + ... + A^{2004}$ este:

a) $1002(A+I_2)$;

b) A;

c) $2004(A+I_2);$

d) I.

10. Mulţimea $\{n \in \mathbb{N}^* \mid (BA)^n \neq I_2\}$ este:

a) Finită, având cel puţin 11 elemente;

b) Infinită, dar diferită de N*;

c) Finită, având între 1 și 10 elemente;

d) N*

Se consideră funcția $f:[0,\infty)\to\mathbb{R}, \ f(x)=\frac{1}{(x+1)(x+2)}$

11. Expresia $f(x) - \frac{1}{x+1} + \frac{1}{x+2}$, $x \in [0, \infty)$, este:

a) $\frac{2}{x+2}$

b) 0;

c) -8;

d) 4

12. Asimptotă către $+\infty$, la graficul funcției f este:

a) y = 0;

b) y = 1;

 $\mathbf{c)} \quad y = x;$

d) y = -2.

13.	$\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} \text{ este:}$			0.19(0)	•		
14	a) 1; $\int_0^1 f(x) \ dx \text{ este:}$	b) -0, 25;	c)	-0, 13(8);	d)	0.	
14.	30	b) $-2 + \ln 3;$	c)	$2 + \ln 3;$	d)	$\ln 4 - \ln 3.$	
15.	$\lim_{x \to \infty} x^2 f(x) \text{ este:}$						
	a) 1;	b) ∞;	c)	0;	d)	0, 5.	
	Se consideră polinoan	$\text{nele } f = X^2 - X + 1 \text{ cm}$	ı ră	dăcinile $x_1, x_2 \in \mathbb{C}$	şi g	$=X^3+1.$	
16.		nomului g la polinomul b) $X + 1;$		este: 0;	d)	1.	
17.	Expresia $x_1^3 - x_2^3$ este a) 0;		c)	-1;	d)	i.	
18.	Suma $x_1 + x_2 + x_1 x_2$	este:					
	a) -1;		c)	-2;	d)	2.	
19.	Suma $x_1^{2004} + x_2^{2004}$ es a) -1;		c)	-2;	d)	0.	
20.	Suma $1 + x_1 + x_1^2 + x_2^2 + x_3^2 + x_3^2$			_			
	$\mathbf{a)} i;$	b) 1;	ĺ	0;		-1.	
	Pe mulţimea numerele	or complexe se consider	ă le	gea de compoziție '	°°,	definită prin $x \circ y = xy - ix - iy - 1 + i$.	
21.		poate fi scris $(\forall) x, y, z$ b) $(x-i)(y-i)+i;$			d)	(x-i)(y-i)-i.	
22.		$=(x\circ y)\circ z$ este adevà					
	a) Numai dacă $x =$ c) Pentru orice x, y	$y, z \in \mathbb{C};$ b) Number $z \in \mathcal{C};$ d) Number $z \in \mathcal{C};$	nai nai	dacă $x = y$; dacă $x = y = z$.			
23.	Mulţimea $\{x \in \mathbb{C} \mid x \circ \mathbb{C} \}$			b) Finită având	ا مما	nutin 2 clamentes	
	a) Formată dintr-uc) C;	n element;		 b) Finită, având cel puţin 2 elemente; d) Infinită, dar diferită de C. 			
24.	Expresia $(-100i) \circ (-100i)$	$-99i) \circ \ldots \circ (-i) \circ 0 \circ i$	\circ (2i	$i) \circ \ldots \circ (99i) \circ (100)$			
	a) 0;	b) 1;	c)	i;	d)	-i.	
25.	Ecuația $x \circ x \circ x \circ x =$ a) 4 soluții;		c)	3 soluţii;	d)	o soluţie.	
26.	Produsul $\hat{1} \cdot \hat{2} \cdot \ldots \cdot \hat{8}$			•			
	a) 4;		c)	$\hat{2}$;	d)	0.	
27.	În \mathbb{Z}_6 ecuația $\hat{x}^3 = \hat{x}$ a) 3 soluții;		c)	6 soluţii;	d)	2 soluții.	
28.				1 0			
	Cel mai mic număr na	atural n pentru care 2^0	+2	$2^1 + 2^2 + \ldots + 2^n >$	> 200	03 este:	
		atural n pentru care 2^0 b) 11;		$2^{1} + 2^{2} + \ldots + 2^{n} > 9;$		03 este: 12.	
29.	a) 10; Suma $\hat{1} + \hat{2} + + \hat{8}$	b) 11; $\hat{\text{nn}} \mathbb{Z}_9 \text{ este:}$	c)	9;	d)	12.	
	a) 10;	 b) 11; în Z₉ este: b) 5; 	c)			12.	

\Diamond	Toţi itemii sunt obligatorii. Fiecare item are un singur răspuns corect.							
\Diamond	Se acordă câte 3 puncte pentru fiecare răspuns corect. Se acordă 10 puncte din oficiu.							
\Diamond	Timpul efectiv de lucru este de 3 ore.							
\Diamond	Pentru fiecare item, completați pe foaia de examen, răspunsul pe care-l considerați corect, cu simbolul \circ , iar răspunsurile considerate greșite cu simbolul \times .							
Se consideră mulțimea $A = \{1, 2, \dots, 7, 8\}.$								
1.	Care este media aritmetică a elementelor mulțimii A ?							
	a) 4,5;	b) 3;	c) 4;	d) 5.				
2.	Câte submulţimi c	cu două elemente are	mulţimea A ?					
	a) 28;	b) 64;	c) 20;	d) 56.				
3.	Care este media ge	eometrică a elemente	lor divizibile cu 3 din n	ulţimea A ?				
	a) $\sqrt{18}$;	b) $\sqrt{24}$;	c) $\sqrt{12}$;	d) 3				
4.	Câte submulțimi c	eu număr impar de el	emente are mulţimea A	?				
	a) 128;	b) 100;	c) 64;	d) 36.				
5.	Câte perechi (a, b)	$\in A \times A$ verifică rela	ația $a+b=9$?					
	a) 9;	b) 10;	c) 8;	d) 6.				
6.	Câte submulțimi ale mulțimii A au suma elementelor egală cu 5 ?							
	a) 5;	b) 2;	c) 3;	d) 4.				
	Se consideră numărul $\frac{1}{21} = 0, a_1 a_2 a_3 \dots a_n \dots$							
7.	Suma $a_1 + a_2$ este	:						
	a) 5;	b) 9;	c) 3;	d) 4.				
8.	Produsul $a_1 \cdot a_2 \cdot \ldots \cdot a_{2003}$ este:							
	a) 0;	b) 13 ²⁰⁰³ ;	c) 2003!;	d) 7^{2003} .				
9.	Cifra a_{2003} este:							
	a) 6;	b) 1;	c) 9;	d) 7.				
10.	De câte ori apare cifra 4 în primele 2003 zecimale ale numărului $\frac{1}{21}$?							
	a) 334;	b) 665;	c) 333;	d) 332.				
11.	Care este cel mai mic număr natural n , cu proprietatea că $2^n > 2003$?							
	a) 9;	b) 10;	c) 1;	d) 12.				
12.	Care este cel mai mic număr natural nenul n pentru care $n! > 1000$?							
	a) 9;	b) 6;	c) 8;	d) 7.				
13.	Câte numere de 5 cifre se pot forma utilizând cifrele 4 și 9?							
	a) 25;	b) 32;	c) 64;	d) 10.				
	Se consideră în plan o mulțime M formată din 5 puncte cu proprietatea că oricare trei dintre ele sunt necoliniare.							

14. Numărul dreptelor care trec prin câte 2 puncte din mulțime
a ${\cal M}$ este:

- and a disposion come tree print come a pariette and interprinted in
- **a)** 10;
- **b**) 25;
- **c)** 20;
- **d**) 15.

15.	a) 10;	avea toate variurile in i	mulţimea <i>M !</i> c) 15;	d) 20.		
16				gon convex cu 5 laturi este:		
16.	a) 5;	b) 2;	c) 3;	d) 4.		
				,		
	Un triunghi ABC dreptunghic are catetele cu lungimile de 12 şi 16.					
17.	Cât este lungimea ipo		V 22	N		
	a) 18;	b) 22;	c) 20;	d) 19.		
18.	Care este aria triunghiului?					
	a) 96;	b) 48;	c) 100;	d) 192.		
19.	-	potenuzei care cade pe i	_	1) 15		
	a) 10;	b) 9, 6;	c) 12, 4;	d) 15.		
20.		triunghiului cu vârfuril				
	a) 28;	b) 30;	c) 24;	d) 20.		
21.						
	a) 48;	b) 12;	c) 10;	d) 24.		
	Se consideră funcția j	$f: \mathbb{R} \to \mathbb{R}, f(x) = x^2 -$	$5x + 6$. Notăm cu x_1 ,	$x_2 \in \mathbb{R}$ soluțiile ecuației $f(x) = 0$.		
22.	Numărul $f(0)$ este:					
	a) 1;	b) -1 ;	c) 6;	d) 0.		
23.	Suma $x_1 + x_2$ este:					
	a) 6;	b) 5;	c) -5 ;	d) -6.		
24.	Produsul x_1x_2 este:					
	a) -6 ;	b) 6;	c) -5 ;	d) 5.		
25.	Mulţimea $x \in \mathbb{R} \mid f(x)$) < 0 este:				
	a) $(0,2);$	b) $(2,3);$	c) $(1,3);$	d) $(-\infty,0)$.		
26.	Produsul $f(0) \cdot f(1)$					
	a) 0;	b) 2002!;	c) 2003!;	d) 2004!.		
27.	Suma soluțiilor ecuației $9^x - 4 \cdot 3^x + 3 = 0$ este:					
	a) 1;	b) 0;	c) 3;	d) 4.		
28.	O marfă costă 200 eu	ro și și-a mărit prețul c	cu 20%. Câți euro cost	ă acum marfa?		
	a) 180;	b) 160;	c) 240;	d) 220.		
29.	Dacă mulțimea A are are mulțimea $A \cup B$?	_	B are 7 elemente iar m	nulțimea $A\cap B$ are 3 elemente, câte elemente		
	a) 12;	b) 15;	c) 13;	d) 11.		
30.	Numărul soluțiilor ecuației $2^x = -2$ este:					
	a) 3;	b) 0;	c) 2;	d) 1.		