

S3-Euclidean Spaces Part II

Linear Algebra
Ingeniería del Software-Universidad de Oviedo
Juan Luis Fernández Martínez
Ana Cernea

Orthogonality

- Orthogonality: Two vectors \mathbf{u} , \mathbf{v} are orthogonal if \mathbf{u} . $\mathbf{v} = 0$.
- Unit vector: $\frac{\mathbf{u}}{\|\mathbf{u}\|}$
- Orthogonal basis:
 - $V = \langle v_1, v_2, ..., v_n \rangle$
 - $v_1 \cdot v_2 = 0$.
- Theorem: Any vector in an Euclidean project any non-null vector ${\bf u}$, can be decomposed in a vector in the direction of ${\bf v}$ and another which is orthogonal to ${\bf v}$.

Orthogonal projections

Orthogonal projections

Orthogonal complement

Orthogonal projections into a subspace

Linear Algebra-Software Engineering. Universidad de Oviedo 2020

Bit of Practice

Considering in \mathbb{R}^2 the Gram matrix:

$$G = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$

- 1. Finding the norm of $\mathbf{u} = (1,1)$.
- 2. The angle that forms $\mathbf{u} = (1,1)$ and $\mathbf{v} = (1,-1)$. Are they orthogonal?
- 3. Find one vector orthogonal to \mathbf{u} .

Considering in \mathbb{R}^3 the scalar product that in the canonic basis has the following Gram matrix:

$$G = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$$

- 1. Finding the angle that forms $\mathbf{u} = (1,0,0)$ and $\mathbf{v} = (0,1,0)$. Are they orthogonal?
- 2. Confirm that $\mathbf{u} \cdot \mathbf{v} = ||\mathbf{u}|| ||\mathbf{v}|| \cos \langle \mathbf{u}, \mathbf{v} \rangle$

Orthogonal projection

V can be vector space of infinite dimension

W is always a subspace of finite dimension

Orthogonal projection- The normal equations

What happens is the basis set of **W** is orthogonal?

$$\alpha_k = \frac{\mathbf{v}.\,\mathbf{b}_k}{\|\mathbf{b}_k\|^2}$$

And if the basis set is orthonormal?

$$\alpha_k = \mathbf{v}.\,\mathbf{b}_k$$

Bit of Practice

1. Finding the orthogonal projection of $f(x) = e^x$, $x \in [0,1]$ onto

$$\mathbf{W} = \langle 1, x, x^2 \rangle.$$

2. Finding the orthogonal projection of $\mathbf{v} = (1,1,-2)$ onto

$$\mathbf{W} = \{(x, y, z) : x + z = 0\}.$$

3. Finding the orthogonal projection of the matrix $A = \begin{pmatrix} 1 & 2 \\ 1 & -2 \end{pmatrix}$ into the subspace of symmetric matrices.

Do we obtain the same result using the column-wise and the row-wise scalar product?

Gram-Schmidt method

Linear Algebra-Software Engineering. Universidad de Oviedo 2020

Bit of Practice

- 1. Finding an orthogonal basis $\mathbf{W} = \langle 1, x, x^2 \rangle, x \in [0,1]$ using the common scalar product defined in $C_{[0,1]}^0$
- 2. Finding an ortogonal bases of

$$\mathbf{W} = \{(x, y, z) : x + z = 0\},\$$

using the scalar product in \mathbb{R}^3 .

3. Finding an ortogonal basis of the subspace of symmetric matrices in $M_{3\times3}(\mathbb{R})$ using the columnwise scalar product.