Contents

1	Definitions	1
	1.1 Probability	1
2	Global Optimization	2
	2.1 An abstract description of the global optimization problem	2
	2.2 Specifying the inner minimization problem	2
	2.3 Suspected ways to simplify the problem	
	2.4 Constraints for all coupling strategies on a segment	
3	Tightness of the strategies S^L , S^J	3
	3.1 S^L is tight when there is an L -cycle	3
	3.2 An alternative coupling strategy: S^J	
\mathbf{A}	Lemmata	5
	A.1 Properties of f_{ε} and F_{ε}	5
	A 2. For the proof of Theorem 1	

1 Definitions

1.1 Probability

Definition 1.1. The probability $Pr(\rho|X)$ of a path $\rho = q_0 \rightarrow q_1 \rightarrow \cdots \rightarrow q_m$ given an input $X = \langle a_1, \ldots, a_m \rangle$ is defined recursively as the probability that all transitions in ρ are traversed in sequence given the input X starting at state q_0 .

Definition 1.2. Let A be a DiPA, and $s \in seg(A)$ be a segment. The **privacy loss** loss(s) of a segment $s \in seg(A)$ is defined as

$$loss(s) = \sup_{\rho \in seqF(s)} \sup_{X' \sim X} \left(\frac{Pr(\rho|X)}{P(\rho|X')} \right)$$

where X and X' vary over all pairs of neighbouring datasets.

Definition 1.3. Let $f_{\varepsilon}(x)$ be the probability density function of a random variable X with $X \sim Lap(0, 1/\varepsilon)$.

$$f_{\varepsilon}(x) = \frac{\varepsilon}{2} \exp(-\varepsilon |x|)$$

Definition 1.4. Let $F_{\varepsilon}(x)$ be the cumulative distribution function of a random variable X with $X \sim Lap(0, 1/\varepsilon)$.

$$F_{\varepsilon}(x) = P(X \le x) = \begin{cases} \frac{1}{2} \exp(\varepsilon x) & x < 0\\ 1 - \frac{1}{2} \exp(-\varepsilon x) & x \ge 0 \end{cases}$$

2 Global Optimization

2.1 An abstract description of the global optimization problem

Let \mathcal{F} be a finite family of segment sequences. The global optimization problem is to find

$$\max_{s \in \mathcal{F}} \max_{\boldsymbol{\Delta} \in \{-1,0,1\}^{|s|}} \left(\min_{\boldsymbol{\gamma} \in [-1,1]^{|s|}} c_{s,\boldsymbol{\Delta}}^T \cdot \boldsymbol{\gamma} \quad \text{subject to} \quad A_{s,\boldsymbol{\Delta}} \cdot \boldsymbol{\gamma} \ge 0 \right)$$

Here, the inner minimization problem is a linear program, where $A_{s,\Delta}$ is a matrix of constraints that depends on s and Δ . Similarly, $c_{s,\Delta}$ is a vector of costs that depends on s and Δ .

2.2 Specifying the inner minimization problem

Here, we specify how $A_{s,\Delta}$ and $c_{s,\Delta}$ are defined. Let $s = s_1 \hookrightarrow \cdots \hookrightarrow s_n$ be a sequence of segments with total number of transitions m. Let $\Delta \in \{-1,0,1\}^m$ be a vector of input perturbations.

We define some notation as follows:

- Let t_j^i denote the jth transition in segment i, and ε_j^i denote the noise added to the input before that transition.
- Let Δ_i^i denote the entry of Δ that corresponds to the input perturbation for the jth transition in segment i.
- Let γ_j^i denote the entry of $\gamma \in [-1, 1]^m$ that corresponds to the coupling shift for the jth transition in segment i this is to be determined by the inner minimization problem.

Then, the minimization problem over γ is as follows:

$$\min_{\gamma \in [-1,1]^m} \quad \sum_{i=1}^n \sum_{j=1}^{|s_i|} |\gamma_j^i - \Delta_j^i| \varepsilon_i$$
 subject to
$$\gamma_k^i \leq \gamma_0^i \qquad \qquad \text{if } t_k^i \text{ has guard} < \\ \gamma_k^i \geq \gamma_0^i \qquad \qquad \text{if } t_k^i \text{ has guard} \geq \\ \gamma_0^i \leq \gamma_0^k \qquad \qquad \text{if } s_k \hookrightarrow s_i \text{ and guard}(s_i) \text{ is } < \\ \gamma_0^i \geq \gamma_0^k \qquad \qquad \text{if } s_k \hookrightarrow s_i \text{ and guard}(s_i) \text{ is } \geq \\ \gamma_k^i = 0 \qquad \qquad \text{if } t_k^i \text{ outputs insample} \\ \gamma_k^i = \Delta_k^i \qquad \qquad \text{if } t_k^i \text{ belongs to a cycle}$$

This can be rewritten as a linear program using standard techniques, producing a constraint matrix $A_{s,\Delta}$ and a cost vector $c_{s,\Delta}$.

2.3 Suspected ways to simplify the problem

- We might be able to determine the maximizing Δ in the second minimization problem in linear time given $s \in \mathcal{F}$.
 - I suspect this is true since I see that the maximizing Δ always has $\Delta_j^i = -1$ if t_j^i has guard \geq , and $\Delta_j^i = 1$ if t_j^i has guard \leq . In the case that t_j^i has guard true and is an assignment transition, the value of Δ_j^i seems to depend on the costs ε_j^i in the segment s_i .
 - If this is true, we need not check exponentially many Δ in the second maximization problem.
- It might be possible to solve a local minimization problem over segments instead of segment sequences, and then use the results to solve a global constraint system that is much smaller than the one described above.

2.4 Constraints for all coupling strategies on a segment

In this section, we will try to understand the constraints that all valid coupling strategies on a segment must satisfy. For the purpose of this section, we will assume that our DiPA consists of a single segment. This assumption will be relaxed in later sections.

Here are some assumptions that are made throughout this document.

- 1. The noise added to inputs on each state q_i is the same (ε) .
- 2. Since we know tight coupling strategies for segments with cycles, we are restricting our attention to segments with no cycles.
- 3. We will only consider one segment at a time.

Some notation:

- 1. Let N be the number of transitions in the segment.
- 2. The raw input received on the *i*th transition is denoted by a_i .
- 3. If we are considering two datasets $X\langle 1 \rangle$ and $X\langle 2 \rangle$, we will use $a_i\langle 1 \rangle$ to denote the value of a_i in the first dataset, and vice versa for $a_i\langle 2 \rangle$.
- 4. Similarly, we use $x_i\langle 1\rangle$ to denote the random variable representing the value of **insample** before the *i*th transition when A receives the input $X\langle 1\rangle$, and vice versa for $x_i\langle 2\rangle$.

A coupling strategy is a choice of values $\gamma_0, \ldots, \gamma_N$ such that $\gamma_i \in \Gamma$ for all i.

3 Tightness of the strategies S^L , S^J

Last Updated: Wednesday, June 28th, 2023

The relevant definitions and lemmata for proofs in this section are in the appendix. It is also assumed, for now, that all transition outputs are in Γ .

3.1 S^L is tight when there is an L-cycle

Theorem 1. (S^L is tight for segments with L-cycles) Consider a segment $s \in seg(A)$ corresponding to the sequence of states $q_0 \to q_1 \to \cdots \to q_m$. If s contains an L-cycle, then the L-cost of the segment gives a tight upper bound on the privacy loss of the segment. That is,

$$\operatorname{loss}(s) = \exp\left(2\varepsilon_0 + \sum_{i>0: \operatorname{guard}(a_i) = \operatorname{insample} \geq \mathbf{x}} 2\varepsilon_i\right)$$

given that state q_i draws from the distribution $Lap(0,1/\varepsilon_i)$ to noise insample.

Proof. We will prove the result for when $\varepsilon_i = \varepsilon$ for all $i \geq 0$. The proof for the general case goes through in the same fashion. Let f, F be the probability density function and cumulative distribution function of a random variable X with $X \sim Lap(0, 1/\varepsilon)$ as defined in the appendix.

Since s has an L-cycle, there exists a sequence of paths ρ_i for $i \in \mathbb{N}$ each with l_i number of L-transitions such that $\lim_{i \to \infty} l_i = \infty$. Let m be the number of G-transitions in ρ_i . We will assume that this number is the same across all ρ_i .

For each ρ_i , construct the adjacent pair of inputs X_i, X_i' as follows. Let $X_i[j] = 0$ for all $j \in \{1, ..., |\rho_i|\}$, where $|\rho_i|$ is the number of transitions in ρ . Define $X_i[j]$ as follows:

$$X_i[j] = \begin{cases} 1 & \text{if } \rho_i[j] \to \rho_i[j+1] \text{ is an assignment transition or has guard insample} \geq \mathbf{x} \\ -1 & \text{otherwise, in which case } \rho_i[j] \to \rho_i[j+1] \text{ has guard insample} < \mathbf{x} \end{cases}$$

¹Otherwise, s has a G-cycle, and \mathcal{A} is not differentially private. The privacy loss through s is ∞ , which matches the L-cost.

Let $\tilde{a_j}$ be the random variable representing the value of insample before the jth transition in ρ on input X_i . Let $\tilde{b_j}$ be the random variable representing the value of insample before the jth transition in ρ on input X_i' . Further, let $\Gamma_L = \{j : \rho_i[j] \to \rho_i[j+1] \text{ has guard insample} \ge x\}$.

Notice that $\tilde{a_j} = \tilde{b_j} + 1$ for $j \in \Gamma_L$, and $\tilde{a_j} + 1 = \tilde{b_j}$ for $j \in \{0\} \cup \Gamma_G$. Since $\tilde{a_j}$ is distributed as $Lap(X_i[j], 1/\varepsilon)$, we can write its probability density function as $f(x - X_i[j])$, and its cumulative distribution function as $F(x - X_i[j])$. A similar statement holds for $\tilde{b_j}$.

We may now compute and compare $Pr(\rho_i|X_i')$ and $Pr(\rho_i|X_i)$ as follows.

$$\begin{split} \Pr(\rho_i|X_i') &= \int_{-\infty}^{\infty} \Pr(\tilde{b_0} = x) \prod_{j \in \Gamma_L} \Pr(\tilde{b_j} < x) \prod_{j \in \Gamma_G} \Pr(\tilde{b_j} \ge x) \, \mathrm{d}x \\ &= \int_{-\infty}^{\infty} \Pr(\tilde{b_0} = x) \prod_{j \in \Gamma_L} \Pr(\tilde{b_j} < x) \prod_{j \in \Gamma_G} \Pr(\tilde{b_j} \ge x) \, \mathrm{d}x \\ &= \int_{-\infty}^{\infty} f_{\varepsilon}(x - X_i[0]) \prod_{j \in \Gamma_L} F_{\varepsilon}(x - X_i[j]) \prod_{j \in \Gamma_G} (1 - F_{\varepsilon}(x - X_i[j])) \, \mathrm{d}x \\ &= \int_{-\infty}^{\infty} f(x - 1) F(x + 1)^{\ell_i} (1 - F(x - 1))^m \\ &= \int_{-\infty}^{\infty} f(x) F(x + 2)^{\ell_i} (1 - F(x))^m \\ &= \exp(2\varepsilon(m + 1)) \left(\int_{(-\infty, -2) \cup (2, \infty)} f(x) F(x)^{\ell_i} (1 - F(x))^m \, \mathrm{d}x + g(\ell_i) \int_{-2}^2 f(x) F(x + 2)^{\ell_i} (1 - F(x))^m \right) \end{split}$$

with $g(\ell_i) \to 1$ as $\ell_i \to \infty$. As we take $\ell_i \to \infty$, we see that

$$h(\ell_i) := \frac{\left(\int_{(-\infty, -2) \cup (2, \infty)} f(x) F(x)^{\ell_i} (1 - F(x))^m \, \mathrm{d}x + g(\ell_i) \int_{-2}^2 f(x) F(x + 2)^{\ell_i} (1 - F(x))^m \right)}{\Pr(\rho_i | X_i)} \to 1$$

and so as we take the supremum over ρ_i below, we get:

$$loss(s) \ge \sup_{\rho_i} \frac{\Pr(\rho_i | X_i')}{\Pr(\rho_i | X_i)} = \exp(2\varepsilon(m+1)) \sup_{\rho_i} \{h(l_i)\}$$
$$= \exp(2\varepsilon(m+1))$$

We know that S^L is tight, and gives the bound $\exp(2\varepsilon(m+1))$. Thus, we have shown that $\log(s) = \exp(2\varepsilon(m+1))$, as desired.

3.2 An alternative coupling strategy: S^J

Definition 3.1. S^J is a coupling strategy in which we do not couple the noised threshold, but couple the results of all other transitions with twice the cost. [TODO: Describe in more detail]

Theorem 2. Let $s = q_0 \to \cdots \to q_m$ be a segment with only L-transitions. If S^J is the least-cost coupling strategy on s, then it provides a tight bound on loss(s) given by

$$loss(s) = \sum_{i=1}^{m} 2\varepsilon_i$$

Proof. I have a proof for this, but I will add it into this document soon. [TODO]

Figure 1: A segment s with only L-transitions.

Figure 2:

Hypothesis 3.1. For segments which contain only L-transitions and for which the J-cost exceeds the L-cost, S^L is tight.

Proof. I think this is true from the graph above, but I need to prove it.

Note June 28 2023: I think this is not true for segments that contain both L-transitions and G-transitions.

A Lemmata

A.1 Properties of f_{ε} and F_{ε}

Lemma 3. For $x \leq 0$, we have

$$F_{\varepsilon}(x) = \exp(2\varepsilon)F_{\varepsilon}(x-2)$$

and equivalently for $x \leq -2$, we have

$$F_{\varepsilon}(x+2) = \exp(2\varepsilon)F_{\varepsilon}(x)$$

Lemma 4. For $x \ge 0$, we have

$$1 - F_{\varepsilon}(x) = \exp(2\varepsilon)(1 - F_{\varepsilon}(x+2))$$

Lemma 5. For $x \ge 0$, we have

$$f_{\varepsilon}(x) = \exp(2\varepsilon) f_{\varepsilon}(x+2)$$

A.2 For the proof of Theorem 1

Lemma 6.

$$\int_{-\infty}^{-2} f_{\varepsilon}(x) F_{\varepsilon}(x+2)^{\ell} (1 - F_{\varepsilon}(x))^m dx = \exp(2\varepsilon\ell) \int_{-\infty}^{-2} f_{\varepsilon}(x) F_{\varepsilon}(x)^{\ell} (1 - F_{\varepsilon}(x))^m dx$$

Proof. From Lemma 3, we have that

$$\int_{-\infty}^{-2} f_{\varepsilon}(x) F_{\varepsilon}(x+2)^{\ell} (1 - F_{\varepsilon}(x))^{m} dx = \int_{-\infty}^{-2} f_{\varepsilon}(x) (\exp(2\varepsilon) F_{\varepsilon}(x))^{\ell} (1 - F_{\varepsilon}(x))^{m} dx$$
$$= \exp(2\varepsilon\ell) \int_{-\infty}^{-2} f_{\varepsilon}(x) F_{\varepsilon}(x)^{\ell} (1 - F_{\varepsilon}(x))^{m} dx$$

Lemma 7.

$$\int_0^\infty f_{\varepsilon}(x) F_{\varepsilon}(x+2)^{\ell} (1 - F_{\varepsilon}(x))^m dx = \exp(2\varepsilon m) \int_2^\infty f_{\varepsilon}(x) F_{\varepsilon}(x)^{\ell} (1 - F_{\varepsilon}(x))^m dx$$

Proof. From Lemma 4 and 5, we have that

$$\int_0^\infty f_{\varepsilon}(x) F_{\varepsilon}(x+2)^{\ell} (1 - F_{\varepsilon}(x))^m \, \mathrm{d}x = \int_0^\infty \exp(2\varepsilon) f_{\varepsilon}(x+2) F_{\varepsilon}(x+2)^{\ell} (\exp(2\varepsilon) (1 - F_{\varepsilon}(x+2)))^m \, \mathrm{d}x$$

$$= \exp(2\varepsilon m) \int_0^\infty f_{\varepsilon}(x+2) F_{\varepsilon}(x+2)^{\ell} (1 - F_{\varepsilon}(x+2))^m \, \mathrm{d}x$$

$$= \exp(2\varepsilon (m+1)) \int_2^\infty f_{\varepsilon}(x) F_{\varepsilon}(x)^{\ell} (1 - F_{\varepsilon}(x))^m \, \mathrm{d}x$$

Lemma 8. There exists a function $q: \mathbb{N} \to \mathbb{R}$ such that

$$\int_{-2}^{0} f_{\varepsilon}(x) F_{\varepsilon}(x+2)^{\ell} (1 - F_{\varepsilon}(x))^{m} dx = g(\ell) \exp(2\varepsilon(m+1)) \int_{-2}^{2} f_{\varepsilon}(x) F_{\varepsilon}(x)^{\ell} (1 - F_{\varepsilon}(x))^{m} dx$$

with $g(\ell) \to 1$ as $\ell \to \infty$.

Proof. I'm not sure yet how to prove this, although I strongly suspect that the (m+1) term comes from the fact that $f_{\varepsilon}(x)$ is the derivative of $-(1-F_{\varepsilon}(x))$, and it is taken to the *m*th power. Its integral should behave like a polynomial of degree m+1 evaluated at 2, which corresponds to $\exp(2\varepsilon(m+1))$.