UNIVERSIDADE TUIUTI DO PARANÁ VINÍCIUS MARCONDES VIEIRA

COMO O ESTUDO DE ONDAS GRAVITACIONAIS CONTRIBUI PARA A MEDIÇÃO DA EXPANSÃO DO UNIVERSO

VINÍCIUS MARCONDES VIEIRA

COMO O ESTUDO DE ONDAS GRAVITACIONAIS CONTRIBUI PARA A MEDIÇÃO DA EXPANSÃO DO UNIVERSO

Trabalho de Conclusão de Curso apresentado ao curso de Bacharelado em Ciência da Computação da Faculdade de Ciências Exatas e de Tecnologia da Universidade Tuiuti do Paraná, como requisito à obtenção ao grau de Bacharel.

Orientador: Prof. Chauã Queirolo

SUMÁRIO

1	INTRODUÇÃO	3
2	FUNDAMENTAÇÃO TEÓRICA	4
3	REVISÃO DA LITERATURA	5
4	METODOLOGIA	6
5	RESULTADOS EXPERIMENTAIS	7
6	CONCLUSÃO	8
RFFFRÉ	ÎNCIAS	g

1 INTRODUÇÃO

O estudo de ondas gravitacionais, previstas pela Teoria da Relatividade Geral de Albert Einstein (BERTOLAMI; GOMES, 2017), tem ampliado o escopo da astrofísica e da cosmologia. A detecção dessas ondas, que são perturbações no espaço-tempo geradas por eventos astrofísicos extremos, foi realizada pela primeira vez em 2015 pela colaboração LIGO (BERTOLAMI; GOMES, 2017; AGUIAR, 2018). Essa conquista abriu novas possibilidades para a observação do universo, complementando métodos tradicionais baseados em radiação eletromagnética.

Um dos campos que mais se beneficiou desse avanço é a cosmologia, especialmente na medição da taxa de expansão do universo, descrita pela constante de Hubble. Métodos convencionais para a medição dessa constante, como o estudo de supernovas Tipo la e o mapeamento do fundo cósmico de micro-ondas, apresentam limitações (SILVA, 2021). Ondas gravitacionais oferecem uma alternativa, permitindo a medição direta do *redshift* e, consequentemente, uma estimativa mais precisa da constante de Hubble (SILVA, 2021).

Este artigo tem como objetivo explorar a contribuição das ondas gravitacionais na medição da expansão do universo. Serão abordados os princípios fundamentais das ondas gravitacionais, os métodos de detecção e como essas detecções podem ser aplicadas para estimar parâmetros cosmológicos (RAMOS; MALUF, 2019; SILVA, 2021). A análise se baseia em uma revisão da literatura atual e nos mais recentes desenvolvimentos na área.

2 FUNDAMENTAÇÃO TEÓRICA

Esta seção abordará os conceitos teóricos que fundamentam o estudo de ondas gravitacionais e sua aplicação na medição da expansão do universo. Serão discutidas as bases da Teoria da Relatividade Geral, a natureza e detecção de ondas gravitacionais, bem como os métodos atuais para estimar a constante de Hubble. O objetivo é fornecer o contexto teórico necessário para compreender as implicações práticas e cosmológicas desses fenômenos.

3 REVISÃO DA LITERATURA

Esta seção apresenta uma revisão de estudos e pesquisas anteriores que exploram o papel das ondas gravitacionais na astrofísica e na cosmologia. O foco será em trabalhos que abordam a medição da constante de Hubble e outros parâmetros cosmológicos através do uso de ondas gravitacionais, fornecendo um panorama do estado atual do campo e identificando lacunas que o presente estudo busca preencher.

A labela 1 lista os principais trabalhos estudados para a realização do presente artigo.

Hope on regin	♥	TABELA 1 – Trabalhos Kelacionados ⋅		
ما ملاي	Autor(es)	Ano	Foco do Estudo	
* '	Bertolami & Gomes	2017	Fundamentos de Ondas Gravitacionais	
	Aguiar	2018	Detecção e Fontes de Ondas Gravitacionais	
	Ramos & Maluf	2019	Radiação Emitida por Pulsares Binários	
	Silva	2021	Aplicações em Cosmologia	

FONT: O próprio autor, 2023.

4 METODOLOGIA

Esta seção descreve a metodologia adotada para a realização deste estudo, que se baseia em uma pesquisa bibliográfica abrangente. Foram selecionados artigos científicos, relatórios e outros documentos acadêmicos que abordam o papel das ondas gravitacionais na astrofísica e na cosmologia, com ênfase na medição da constante de Hubble. O objetivo é sintetizar os métodos e descobertas mais relevantes da literatura para fornecer uma visão consolidada do estado atual do campo.

A Figura 1 ilustra um Interferômetro de Michelson, instrumento fundamental na detecção de ondas gravitacionais. Este dispositivo é empregado para quantificar minúsculas flutuações no espaço-tempo.

FIGURA 1 – Interferómetro de Michelso.

FONTE: (BERTOLAMI; GOMES, 2017).

Usan Valeonline 13

5 RESULTADOS EXPERIMENTAIS

Esta seção apresenta os resultados obtidos a partir da pesquisa bibliográfica realizada, focando em como as ondas gravitacionais têm sido utilizadas para medir a expansão do universo. Serão discutidas as principais descobertas, métodos e implicações desses estudos, permitindo uma avaliação crítica da eficácia e precisão das técnicas baseadas em ondas gravitacionais para estimar parâmetros cosmológicos como a constante de Hubble.

A labela 2 resume os principais resultados obtidos a partir da pesquisa bibliográfica realizada.

TABELA 2 – Resultados Baseados nos Artigos Lidos

Autor(es)	Resultado Principal	Implicações
Bertolami & Gomes	Detecção direta de ondas gravitacionais	Novas possibilidades em astrofísica
Aguiar	Discussão sobre métodos de detecção	Avanços na precisão da detecção
Ramos & Maluf	Teoria aplicada a pulsares binários	Compreensão da radiação gravitacional
Silva	Método para medir a constante de Hubble	Precisão na medição da expansão do universo

FONTE: O próprio autor, 2023.

6 CONCLUSÃO

REFERÊNCIAS

AGUIAR, O. D. Astrofísica de ondas gravitacionais. 2018. Disponível em: http://mtc-m21c.sid.inpe.br/col/sid.inpe.br/mtc-m21c/2019/01.31.16.38/doc/10_ Astrofisica%20de%20Ondas%20Gravitacionais 2018.pdf>.

BERTOLAMI, O.; GOMES, C. Ondas gravitacionais. *Revista Casa das Ciências*, 2017. Disponível em: https://rce.casadasciencias.org/rceapp/pdf/2017/051/.

BROWN, A.; GREEN, B. New methods for detecting gravitational waves. *Journal of Advanced Astrophysics*, v. 58, n. 2, p. 200–210, 2020.

JOHNSON, E.; WILLIAMS, M. Measuring the hubble constant with gravitational waves. In: IEEE. *Proceedings of the International Conference on Astrophysics*. [S.I.], 2021. p. 123–130.

RAMOS, M. P.; MALUF, R. V. Sobre a teoria de einstein para ondas gravitacionais e sua aplicação no estudo da radiação emitida por um pulsar binário. 2019. Disponível em: ">https://www.scielo.br/j/rbef/a/RcgxnBRyfGj3LHxc5MKPfPg/?format=pdf&lang=pt>">https://www.scielo.br/j/rbef/a/RcgxnBRyfGj3LHxc5MKPfPg/?format=pdf&lang=pt>">https://www.scielo.br/j/rbef/a/RcgxnBRyfGj3LHxc5MKPfPg/?format=pdf&lang=pt>">https://www.scielo.br/j/rbef/a/RcgxnBRyfGj3LHxc5MKPfPg/?format=pdf&lang=pt>">https://www.scielo.br/j/rbef/a/RcgxnBRyfGj3LHxc5MKPfPg/?format=pdf&lang=pt>">https://www.scielo.br/j/rbef/a/RcgxnBRyfGj3LHxc5MKPfPg/?format=pdf&lang=pt>">https://www.scielo.br/j/rbef/a/RcgxnBRyfGj3LHxc5MKPfPg/?format=pdf&lang=pt>">https://www.scielo.br/j/rbef/a/RcgxnBRyfGj3LHxc5MKPfPg/?format=pdf&lang=pt>">https://www.scielo.br/j/rbef/a/RcgxnBRyfGj3LHxc5MKPfPg/?format=pdf&lang=pt>">https://www.scielo.br/j/rbef/a/RcgxnBRyfGj3LHxc5MKPfPg/?format=pdf&lang=pt>">https://www.scielo.br/j/rbef/a/RcgxnBRyfGj3LHxc5MKPfPg/?format=pdf&lang=pt>">https://www.scielo.br/j/rbef/a/RcgxnBRyfGj3LHxc5MKPfPg/?format=pdf&lang=pt>">https://www.scielo.br/j/rbef/a/RcgxnBRyfGj3LHxc5MKPfPg/?format=pdf&lang=pt>">https://www.scielo.br/j/rbef/a/RcgxnBRyfGj3LHxc5MKPfPg/?format=pdf&lang=pt>">https://www.scielo.br/j/rbef/a/RcgxnBRyfGj3LHxc5MKPfPg/?format=pdf&lang=pt>">https://www.scielo.br/j/rbef/a/RcgxnBRyfGj3LHxc5MKPfPg/?format=pdf&lang=pt>">https://www.scielo.br/j/rbef/a/RcgxnBRyfGj3LHxc5MKPfPg/?format=pdf&lang=pt>">https://www.scielo.br/j/rbef/a/RcgxnBRyfGj3LHxc5MKPfPg/?format=pdf&lang=pt>">https://www.scielo.br/j/rbef/a/RcgxnBRyfGj3LHxc5MKPfPg/?format=pt/>https://www.scielo.br/j/rbef/a/RcgxnBryfGj3LHxc5MKPfPg/?format=pt/>https://www.scielo.br/j/rbef/a/RcgxnBryffyg/a/RcgxnBryffyg/a/RcgxnBryffyg/a/RcgxnBryffyg/a/RcgxnBryffyg/a/RcgxnBryffyg/a/RcgxnBryffyg/a/RcgxnBryffyg/a/RcgxnBryffyg/a/RcgxnBryffyg/a/RcgxnBryffyg/a/RcgxnBryffyg/a/RcgxnBryffyg/a/RcgxnBryffyg/a/RcgxnBryffyg/a/RcgxnBryffyg/a

SILVA, H. L. Fundamentos das ondas gravitacionais: Aplicações em astrofísica e cosmologia. 2021. Disponível em: https://repositorio.ufrn.br/bitstream/123456789/45691/1/Fundamentosondasgravitacionais_Silva_2021.pdf.

SMITH, J.; DOE, J. *Gravitational Waves and Cosmology*. New York, NY: Cosmic Press, 2022.