Home Credit Default Risk

Group 13 (Phase - 3)

William Cutchin
wcutchin@iu.edu

Krisha Mehta
krimeht@iu.edu

Kunal Mehra

<u>kumehra@iu.edu</u>

Kalyani Malokar kmalokar@iu.edu

Outline:

- Project Description
- Summary Visual EDA
- ML Pipeline
- Modeling Pipeline Description
- Feature Engineering
- Hyperparameter Tuning
- Results and discussion of results
- Conclusion and next steps

Project Description

- Home Credit Group looks to use alternative data that will help them decide if they are able to lend to these individuals and to predict their client's repayment abilities.
- Here we are using various machine learning and statistical models like Logistic Regression and Random Forest Classifier and Decision Tree to get these predictions.
- Our goal in this phase is to perform feature engineering and hyperparameter tuning on the selected features and train model using best parameters and setting.
- We aim at cleaning and preprocessing techniques on the data, perform feature Engineering, and hyperparameter tuning as we build pipeline after examining the accuracies of explored pipelines.

Summary Visual EDA

- The use of Kernel
 Distribution Estimation
 was extremely helpful
 when examining
 separation of target
 distributions
- Heatmaps were essential in understanding correlations and feature selection

Feature Engineering

- Process of feature Engineering
 - Take the secondary table
 - Build new features for the data
 - Run Correlation Analysis on the new table including the new features
 - Select the features with a correlation above the specified threshold
 - Merge this new highly correlated table to the main train set
- We chose this method since correlation to the target seems to be an accurate predictor of data significance

```
Feature Engineering: Feature Creation
    ## term of credit granted to the individual with the loan
    bur_merge['BUR_END_DAY_RATIO'] = bur_merge['DAYS_CREDIT_ENDDATE'] / bur_merge['DAYS_CREDIT']
    bur_merge['BUR_END_DAY_RATIO'].replace([np.inf, -np.inf], np.nan, inplace=True)
    bur_merge['BUR_END_DAY_RATIO'] = bur_merge['BUR_END_DAY_RATIO'].fillna(bur_merge['BUR_END_DAY_RATIO'].mean())
    bur_merge['BUR_DEBT_ANNUITY_RATIO'] = bur_merge['AMT_CREDIT_SUM_DEBT'] / bur_merge['AMT_ANNUITY']
    bur_merge['BUR_DEBT_ANNUITY_RATIO'].replace([np.inf, -np.inf], np.nan, inplace=True)
    bur_merge['BUR_DEBT_ANNUITY_RATIO'] = bur_merge['BUR_DEBT_ANNUITY_RATIO'].fillna(bur_merge['BUR_DEBT_ANNUITY_RATIO'].mean())
    bur_merge('BUR_DEBT_LIMIT_RATIO') = bur_merge('AMT_CREDIT_SUM_DEBT') / bur_merge('AMT_CREDIT_SUM_LIMIT')
    bur_merge['BUR_DEBT_LIMIT_RATIO'].replace([np.inf, -np.inf], np.nan, inplace=True)
    bur_merge['BUR_DEBT_LIMIT_RATIO'] = bur_merge['BUR_DEBT_LIMIT_RATIO'].fillna(bur_merge['BUR_DEBT_LIMIT_RATIO'].mean())
    bur_merge['BUR_CREDIT_ANNUITY_RATIO'] = bur_merge['ANT_CREDIT_SIM'] / bur_merge['ANT_ANNUITY']
bur_merge['BUR_CREDIT_ANNUITY_RATIO'].replace([np.inf, -np.inf], np.nan, inplace=True)
    bur_merge['BUR_CREDIT_ANNUITY_RATIO'] = bur_merge['BUR_CREDIT_ANNUITY_RATIO'].fillna(bur_merge['BUR_CREDIT_ANNUITY_RATIO'].mean())
    bur_merge['BUR_CREDIT_DEBT_RATIO'] = bur_merge['AMT_CREDIT_SUM'] / bur_merge['AMT_CREDIT_SUM_DEBT']
    bur_merge['BUR_CREDIT_DEBT_RATIO'].replace([np.inf, -np.inf], np.nan, inplace=True)
    bur_merge['BUR_CREDIT_DEBT_RATIO'] = bur_merge['BUR_CREDIT_DEBT_RATIO'].fillna(bur_merge['BUR_CREDIT_DEBT_RATIO'].mean())
    bur_menge['BUR_DAY_UPDATE_DIFF'] = bur_menge['DAYS_CREDIT'] - bur_menge['DAYS_CREDIT_UPDATE']
```

Hyperparameter Tuning

The models we have selected are Logistic Regression, Random Forest and Decision Tree. For them the hyperparameters we chose are as follows:

Logistic Regression - Selected the C parameter to control the penalty strength, the penalty parameter to determine the type of loss to use and solver was kept as saga.

Random Forest - Selected max_depth parameter to control the number of levels allowed in each decision tree, max_features parameter for selecting number of features considered at every step and n_estimators parameter to select number of trees.

```
params = {
         'rf_max_depth': [5, 10, 15, 20, 50],
         'rf_max_features': ['log2', 'sqrt'],
         'rf_n_estimators': [1, 10, 50, 100]}
```

Decision Tree - Selected criterion parameter to measure the quality of the split, max_depth parameter to select the maximum depth of the tree and min_samples_leaf to select the minimum number of samples required to be at a leaf node.

```
0.712 (+/-0.006) for {'rf_max_depth': 5, 'rf_max_features':
0.638 (+/-0.001) for {'rf max depth': 50, 'rf max features'
0.699 (+/-0.004) for ('rf max depth': 50, 'rf max features':
Best roc_auc score: 0.734
       rf max depth: 18
       rf max features: 'sgrt'
     GridSearch results: (roc_auc, hyperparam Combo)
              oth': 10, 'rf_max_features': 'sqrt', 'rf_n_estimators': 100}, 0.7336096338317161
```

ML Pipeline

Results and discussion of results

- We can see that as we trained our data on the newly created features the AUC dropped, mainly because of a reduction of features
- However we have found that Random Forest Classifier Performs the best on this set

	exp_name	Train Acc	Valid Acc	Test Acc	Train AUC	Valid AUC	Test AUC
4	Best_Param_Decision_Tree	0.9200	0.9164	0.9194	0.7106	0.7005	0.7012
1	Best_Param_Logistic_Reg	0.9200	0.9164	0.9195	0.7290	0.7314	0.7295
2	Best_Param_Random_Forest	0.9202	0.9164	0.9194	0.8013	0.7371	0.7334
3	Best_Param_Decision_Tree	0.9200	0.9164	0.9194	0.7106	0.7005	0.7012

	exp_name	Train Acc	Valid Acc	Test Acc	Train AUC	Valid AUC	Test AUC	8
0	Baseline_Logistic_Regression	0.9199	0.9165	0.9193	0.7534	0.7542	0.7511	
1	Baseline_Logistic_Regression	0.9201	0.9167	0.9195	0.7556	0.7569	0.7521	
2	Baseline_Logistic_Regression	0.9201	0.9167	0.9194	0.7556	0.7569	0.7521	
3	FE_Baseline_Logistic_Regression	0.9200	0.9165	0.9195	0.7293	0.7318	0.7296	

4Ps: Past, Present, Planned, Problems

Past: Context of the Project

 The HCDR Project aims to predict if customers of Home Credit are able to repay a loan without a recorded credit score or agreed upon metric.

Present: What we have done

- Done Feature analysis, engineering, selection based on correlation
- Hyperparameter tuning with gridsearch over our algorithms

Planned:

 Dig deeper into the RandomForestClassifier Algorithm and use neural networks in our final submission

Problems:

Final training on the larger dataset with additional features.

Conclusion and next steps

- In this phase we merged the datasets and extracted all possible features.
- We preprocessed the data and found the most relevant features to the Target variable and prediction.
- We then created our own features based on the most correlated features which contributed to the prediction.
- We featured the data performing OHE and applied imputing methods to fix the data before feeding it to the model.
- In our next phase, we will be implementing a deep learning model using PyTorch for classification and regression and also build a multi-headed load default system.