UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

TAREA 3. Análisis Funcional y Aplicaciones I. 525401.

Segundo Semestre 2006.

Operadores adjuntos en espacios de Hilbert.

Sean E y F dos espacios de Hilbert y $T \in \mathcal{L}(E, F)$.

- 1. Usando los visto en clases (Capítulo II, Brezis) y el teorema de Representación de Riesz, pruebe que T^* (adjunto de T) se identifica a un operador de $\mathcal{L}(F, E)$ mediante los productos internos de E y F, y además
 - (a) $||T|| = ||T^*||$,
 - (b) la aplicación $T \mapsto T^*$ es antilineal e isométrica de $\mathcal{L}(E, F)$ en $\mathcal{L}(F, E)$,
 - (c) $(T^*)^* = T$,
 - (d) $||T^* \circ T|| = ||T||^2$.

Un elemento $U \in \mathcal{L}(E, F)$ se dice unitario ssi $U^* \circ U = Id_E$ y $U \circ U^* = Id_F$. Un elemento $T \in \mathcal{L}(E)$ se dice normal si $T^* \circ T = T \circ T^*$.

- 2. Pruebe que las siguientes afirmaciones son equivalentes
 - (a) el operador T es unitario
 - (b) el operador T es sobreyectivo y $T^* \circ T = Id_E$
 - (c) el operador T es una isometría en F.
- 3. Pruebe que si $T \in \mathcal{L}(E)$ es normal, entonces $ker(T) = ker(T^*)$, y luego $E = kerT \oplus \overline{ImT}$ con suma ortogonal.

Convergencia Débil.

- 4. Pruebe que en ℓ^1 la convergencia débil es equivalente a la convergencia fuerte sin embargo las topologias fuerte y débil no coinciden.
- 5. Sea $(u_n)_{n\in\mathbb{N}}$ una sucesión en un espacio de Hilbert H. Pruebe que $u_n\to u$ en H-fuerte ssi $\Big\{u_n\rightharpoonup u$ en H-débil y $\|u_n\|\to \|u\|$ en $\mathbb{R}\Big\}$.
- 6. Construya una sucesión acotada de $L^1(\mathbb{R})$ que no posea ninguna subsucesión convergente débil. Deduzca que $L^1(\mathbb{R})$ no es reflexivo.

Indicación: Considere φ_n de $L^1(\mathbb{R})$ definida como la función característica de [n, n+1].

Fecha de Entrega: 11 de Octubre de 2006.

MSC/msc

(27-Septiembre-2006)