Numerical Method: Quantum Dynamics Simulation of molecular vibrational wave function with Parallel computing

Schrodinger equation:
$$i\hbar \frac{d\psi}{dt} = H\psi$$

For time-independent Hamiltonian

$$\psi(t+dt) = e^{-i\hat{H}dt}\psi(t)$$

Approximate evolution operator with Chebyshev polynomials

$$e^{-i\widehat{H}dt} \approx \sum_{n=0}^{N} a_n T_n(-i\widehat{H}dt)$$

 T_n : nth order Chebyshev polynomials

The error decreases exponentially with increasing order *n*

Numerical Method: Quantum Dynamics Simulation of molecular vibrational wave function with Parallel computing

The eigenvalues of Hamiltonian H: $\lambda \in [V_{min}, V_{max} + K]$

Define:

Then:

$$R = \frac{(K + V_{max} - V_{min})}{2} dt, \quad G = V_{min} dt$$

$$\omega = \frac{-i[H dt - (R+G)]}{R}, \text{ eig}(\omega) \in [-i, i]$$

$$e^{-iHdt} \approx \sum_{k=0}^{N} a_k T_k(\omega)$$

$$a_k = e^{i(R+G)}C_k J_k(R)$$

 $J_k(R)$: Bessel function, decreases exponentially when $k \geq R$. Choose dt to make $R \sim O(1)$

Reference: J. Chem. Phys. **81**, 3967 (1984)

Numerical Method: Quantum Dynamics Simulation of molecular vibrational wave function with Parallel computing

Recursive relation of Chebyshev polynomials:

$$T_k(\widehat{\omega}) \psi = 2\widehat{\omega} (T_{k-1}(\widehat{\omega}) \psi) + T_{k-2}(\widehat{\omega}) \psi$$

$$T_0(\widehat{\omega}) = 1$$
 , $T_1(\widehat{\omega}) = \widehat{\omega}$

- $\widehat{\omega} \psi$:
- Implemented as matrix vector multiplication.
- Hamiltonian is a sparse matrix.
- We implement the calculation in C++ using MPI.

Numerical Method: Quantum Dynamics Simulation of molecular vibrational wave function with Parallel computing

