

Sources and Monitors

2019 CSNS McStas School

2019 CSNS McStas School

McStas

- A source component generates Monte Carlo neutrons.
 In McStas terms this means:
 - Set the neutron state to something representative of the source we are trying to model.
 - i.e.: insert values in the neutron state vector {x,y,z, vx,vy,vz, t, sx,sy,sz, p} drawn from appropriate distributions.

EXAMPLE:

Neutrons from a uniform wavelength distribution emerging from a circular aperture.

2019 CSNS McStas School

Access the docs

IMPORTANT:

All (and more) of this information can be found in the online pdf component documentation, e.g.

http://www.mcstas.org/documentation/manual/mcstas-2.5-components.pdf

- also distributed with your McStas installation - mcdoc -c

The component documentation along with the command:

"mcdoc <component_you_are_searching_for>" are your best friends when using McStas

Sources: Example 1

Neutron spatial coordinates are picked from a uniform distribution on a circle with radius R.

6. marts 2019

Sources: Example 1

Length of the velocity vector encodes the wavelength

2019 McStas school @ CSNS

SNS

Sources: Example 1

Neutron velocity vector is picked to point at a ROI.

In McStas: this is defined by the parameters: focus_xw, focus_yh, and dist

6. marts 2019 2019 McStas school @ CSNS 6

Sources: Example 1

TRACE

```
COMPONENT origin = Progress_bar()
AT(0,0,0) ABSOLUTE

COMPONENT src = Source_simple(
   radius=0.05, lambda0=2.5, dlambda=1.5,
   focus_xw=0.1, focus_yh=0.1, dist=5)
AT(0,0,0) RELATIVE origin
```

2019 CSNS McStas School

McStas

6. marts 2019

Monitors: in general

Monitors:

Intensity probe of the beam

Detectors:

Should detect all neutrons → Efficiency as high as possible

2019 CSNS McStas School

McStas

SIMULATIONS (McStas):

In McStas:

- We can program monitors and detectors to behave any way we like. We refer to both of those indistinguishably as 'monitors'.
- E.g. monitor with Efficiency =100% and Transparency=100%
- With exception of PSD_Detector that models a "physical" He³ detector)

2019 CSNS McStas School

Monitors: Example PSD_monitor

When the simulation has been completed, the detected intensity in pixel (i,j) is:

$$I(i,j) = \sum_{x_k, y_k \in pixel(i,j)} p_k; k = ray number.$$

... during simulation, the pixels are maintained as running sums.

2019 CSNS McStas School

Monitors: Example PSD_monitor and L_monitor

2019 CSNS McStas School

源


```
TRACE
COMPONENT origin = Progress bar()
AT(0,0,0) ABSOLUTE
COMPONENT src = Source simple(
   radius=0.05, lambda0=2.5, dlambda=1.5,
   focus xw=0.1, focus yh=0.1, dist=5)
AT(0,0,0) RELATIVE origin
COMPONENT psd = PSD monitor(
   xwidth=0.2, yheight=0.2, filename="psd.dat")
AT (0,0,5) RELATIVE src
COMPONENT lm = L monitor(
   xwidth=0.2, yheight=0.2, filename="lm.dat",
   Lmin=0, Lmax=8)
AT (0,0,5+0.01) RELATIVE src
```


> Neutrons are directed towards a square target.

Source_div:

➤ Square surface emitting neutrons from either uniform or Gaussian wavelength (or energy) distribution.

➤ Neutrons have a divergence defined by either uniform or Gaussian distribution.

2019 CSNS McStas School

McStas

Source_simple docs

2019 CSNS McStas School

McStas

Try "mcdoc Source_simple" or

(in GUI) Help → mcdoc Component Reference → (In Webpage) Source_simple

Source_simple docs

2019 CSNS McStas School

McStas

Try "mcdoc Source_simple"

(in GUI) Help → mcdoc Component Reference → (In Webpage) Source_simple

Description

The routine is a circular neutron source, which aims at a square target centered at the beam (in order to improve MC-acceptance rate). The angular divergence is then given by the dimensions of the target. The neutron energy is uniformly distributed between lambda0-dlambda and lambda0+dlambda or between E0-dE and E0+dE. The flux unit is specified in n/cm2/s/st/energy unit (meV or Angs).

This component replaces Source flat, Source flat lambda, Source flux and Source flux lambda.

2019 McS

Source_simple docs

2019 CSNS McStas School

McStas

Name	Unit	Description	Default
radius	m	Radius of circle in (x,y,0) plane where neutrons are generated.	0.1
yheight	m	Height of rectangle in (x,y,0) plane where neutrons are generated.	0
xwidth	m	Width of rectangle in (x,y,0) plane where neutrons are generated.	0
dist	m	Distance to target along z axis.	0
focus_xw	m	Width of target	.045
focus_yh	m	Height of target	.12
E0	meV	Mean energy of neutrons.	0
dE	meV	Energy half spread of neutrons (flat or gaussian sigma).	0
lambda0	AA	Mean wavelength of neutrons.	0
dlambda	AA	Wavelength half spread of neutrons.	0
flux	1/(s*cm**2*st*energy unit)	flux per energy unit, Angs or meV if flux=0, the source emits 1 in 4*PI whole space.	1
gauss	1	Gaussian (1) or Flat (0) energy/wavelength distribution	0
target_index	1	relative index of component to focus at, e.g. next is +1 this is used to compute 'dist' automatically.	+1

McStas: Source simple - Mozilla Firefox

Q Search

2019

Monitors: Example PSD_monitor and L_monitor

2019 CSNS McStas School

McStas

Let's do a practical exercise to do precisely this:

Head on over to:

Exercise 1 - Sources and Monitors on github