Project Design Phase-II Technology Stack (Architecture & Stack)

Date	23 june 2025	
Team ID	LTVIP2025TMID47753	
Project Name	Visualizing Housing Market Trends: An Analysis of	
	Sale Prices and Features	
Maximum Marks	4 marks	

Technical Architecture – Housing Trends Visualization System

This system ingests and processes housing data from multiple sources (e.g., APIs like Zillow, Realtor, government census datasets), stores it in a central database, and presents it through an interactive dashboard using modern web technologies.

Technical Architecture:

Architectural Diagram

Table 1: System Components and Responsibilities

Component	Technology	Responsibility	
Data Ingestion Layer	Python scripts / Apache Airflow	Collect and transform raw data from APIs	
Data Storage	PostgreSQL + PostGIS / MongoDB	3 Store housing data, trends, geospatial info	
Backend Services	Node.js + Express / Flask	Expose APIs, handle logic and queries	
Authentication	Firebase / OAuth2 / JWT	User login, registration, and session management	
Frontend	React.js + Mapbox / Leaflet	Display housing trends, maps, filters, charts	
Visualization Libraries	D3.js, Chart.js, Recharts	Render graphs and interactive charts	
ML & Analytics Layer (Optional) Python, scikit-learn	Predict trends, perform data modeling	
Deployment/Hosting	AWS / Heroku / Vercel	Host application and data pipelines	

Table 2: Data Flow and Interactions

Step	From	То	Data Type	Description
1	External APIs (Zillow, OSM) ETL/Data Pipeline	JSON, CSV, GeoJSON	I Raw housing & geo data collected periodically
2	Data Pipeline	Database	Structured data	Cleaned, normalized housing and geo-location data
3	Frontend (user action)	Backend API	HTTP request	Fetch filtered trends or geo data
4	Backend API	Database	SQL query	Retrieve requested data
5	Backend API	Frontend	JSON	Send data to render in UI
6	Frontend	Visualization Libraries	Structured JSON	Render visualizations dynamically

Step From	То	Data Type	Description
7 User	Authentication Service	Credentials	Register/login via email, Google, etc.

References:

https://c4model.com/

https://developer.ibm.com/patterns/online-order-processing-system-during-pandemic/

https://www.ibm.com/cloud/architecture

https://aws.amazon.com/architecture

https://medium.com/the-internal-startup/how-to-draw-useful-technical-architecture-diagrams-2d20c9fda90d