Computing Galois groups of Fano problems

Thomas Yahl thomas jyahl@tamu.edu

arXiv:

Texas A&M University
June 2022

The problem of lines on a cubic surface

- Cayley and Salmon showed there are 27 distinct lines that lie on a smooth cubic surface.
- Schläfli determined these lines lie in a "remarkable configuration"
- A <u>Fano problem</u> is the problem of enumerating r-planes on a variety.

Fano problems

- Let X_F ⊆ Pⁿ be the complete intersection defined by homogeneous polynomials F = (f₁,..., f_s) with deg f_i = d_i.
- Enumerate the r-planes $\ell \in \mathbb{G}(r, \mathbb{P}^n)$ that lie on X_F .

This is a Fano problem of type (r, n, d_{\bullet}) when there are finitely many r-planes on X_F .

Fano problems

- Let X_F ⊆ Pⁿ be the complete intersection defined by homogeneous polynomials F = (f₁,..., f_s) with deg f_i = d_i.
- Enumerate the r-planes $\ell \in \mathbb{G}(r,\mathbb{P}^n)$ that lie on X_F .

This is a Fano problem of type (r, n, d_{\bullet}) when there are finitely many r-planes on X_F .

• The Fano scheme $V_r(X_F)$ is the subscheme of $\mathbb{G}(r,\mathbb{P}^n)$ of r-planes that lie on X_F .

Fano problems

- Let X_F ⊆ Pⁿ be the complete intersection defined by homogeneous polynomials F = (f₁,..., f_s) with deg f_i = d_i.
- Enumerate the r-planes $\ell \in \mathbb{G}(r,\mathbb{P}^n)$ that lie on X_F .

This is a Fano problem of type (r, n, d_{\bullet}) when there are finitely many r-planes on X_F .

- The <u>Fano scheme</u> $V_r(X_F)$ is the subscheme of $\mathbb{G}(r, \mathbb{P}^n)$ of r-planes that lie on X_F .
- [Debarre/Manivel] The combinatorial data (r, n, d_{\bullet}) determines a Fano problem when $n-s-2r \geq 0$ and

$$(r+1)(n-r) - \sum_{i=1}^{s} {d_{i+r} \choose r} = 0.$$

Examples

Debarre and Manivel determined the number of solutions to a general Fano problem of type (r, n, d_{\bullet}) . Write this number as $N(r, n, d_{\bullet})$.

We list all Fano problems with less than 1000 solutions below.

r	n	d•	$N(r, n, d_{\bullet})$	
1	4	(2, 2)	16	
1	3	(3)	27	
2	6	(2, 2)	64	
3	8	(2, 2)	256	
1	7	(2, 2, 2, 2)	512	
1	6	(2,2,3)	720	

Incidence correspondence

Write $\mathbb{C}^{(r,n,d_{\bullet})}$ for the parameter space of homogeneous forms $F=(f_1,\ldots,f_s)$ in n+1 variables of degrees $d_{\bullet}=(d_1,\ldots,d_s)$.

There is an incidence correspondence

- $\Gamma_{(r,n,d_{\bullet})}$ is irreducible.
- deg $\pi_{(r,n,d_{\bullet})} = N(r,n,d_{\bullet}).$
- $\pi_{(r,n,d_{\bullet})}$ restricts to a covering space over a Zariski open set.

Galois groups of Fano problems

- The Galois group, $\mathcal{G}_{(r,n,d_{\bullet})}$, of the Fano problem determined by (r,n,d_{\bullet}) is the monodromy group of $\pi_{(r,n,d_{\bullet})}$.
- [Jordan],[Harris] $G_{(1,3,(3))} = E_6$.
- [Harris] For $n \ge 4$, $\mathcal{G}_{(1,n,(2n-3))}$ is symmetric.
- [Hashimoto/Kadets] $\mathcal{G}_{(r,2r+2,(2,2))} = D_{2r+3}$.
- [Hashimoto/Kadets] If $d_{\bullet} \neq (3), (2, 2)$ then $\mathcal{G}_{(r,n,d_{\bullet})}$ contains the alternating group.

<u>Goal:</u> Use computational methods to <u>prove</u> remaining Galois groups contain a simple transposition.

Harris' method of proof and our plan

Find $F \in \mathbb{C}^{(r,n,d_{\bullet})}$ such that $V_r(X_F)$ is one point of multiplicity 2 and $N(r,n,d_{\bullet})-2$ smooth points.

- Heuristically choose $F \in \mathbb{C}^{(r,n,d_{\bullet})}$.
- Show V_r(X_F) contains a point of multiplicity 2 by exact computation.
- Show there are $N(r, n, d_{\bullet}) 2$ smooth points by numerical certification.

Choosing $F \in \mathbb{C}^{(r,n,d_{\bullet})}$ and verifying conditions

Choose F by presecribing a subscheme of $V_r(X_F)$.

- Fix an r-plane $\ell \in \mathbb{G}(r,\mathbb{P}^n)$ and a tangent vector $v \in \mathcal{T}_\ell \mathbb{G}(r,\mathbb{P}^n)$.
- Choose general F so that $\ell \in V_r(X_F)$ and $v \in T_\ell V_r(X_F)$.

When ℓ and v are chosen exactly, F can be chosen exactly as well.

- [Shub] simple double points are isolated.
- The remaining $N(r, n, d_{\bullet}) 2$ solutions can be enumerated and isolated by certification.
 - \blacksquare α -theory
 - interval arithmetic

Smale's α -theory

Given a system $G: \mathbb{C}^m \to \mathbb{C}^m$ and $x \in \mathbb{C}^m$, there are associated quantities $\alpha(G, x)$, $\beta(G, x)$, and $\gamma(G, x)$.

Theorem (Smale et al.)

If G and x are such that

$$\alpha(G,x)<\frac{13-3\sqrt{17}}{4},$$

then x converges (quadratically) under Newton's method to a solution y of G. Further, $||x-y|| \le 2\beta(G,x)$.

- When G and x are given by exact coordinates, this provides means of isolating the solution y.
- alphaCertified will check the inequality above and certify the isolating balls are disjoint.

Interval Arithmetic

Given a system $G: \mathbb{C}^m \to \mathbb{C}^m$, $x \in \mathbb{C}^m$, and $Y \in GL_m(\mathbb{C})$, the Krawczyk operator $K_{x,Y}$ on the space of complex intervals generalizes the Newton operator.

Theorem (Krawczyk)

If G, x, and I are such that

$$K_{x,Y}(I) \subseteq I$$
,

then I contains a zero of G.

- Certifies computations using floating point arithmetic.
- HomotopyContinuation.jl will attempt to find a complex interval around an approximate solution to isolate solutions.

Timings

Timing: The reported timings for verifying the simple double point and certifying the remaining solutions is given below.

 $({\tt alphaCertified}, {\tt HomotopyContinuation.jl})$

r	n	d_{ullet}	$\deg(r, n, d_{\bullet})$	alCer(h)	HomCo (s)
1	7	(2,2,2,2)	512	2.66	.61
1	6	(2,2,3)	720	2.88	.87
2	8	(2, 2, 2)	1024	27.32	1.57
1	5	(3,3)	1053	2.69	.32
1	5	(2,4)	1280	6.09	.73
1	10	(2,2,2,2,2)	20480	-	15.44
1	9	(2,2,2,2,3)	27648	-	25.97
2	10	(2,2,2,2)	32768	-	36.67
1	8	(2,2,3,3)	37584	-	38.23

Results

Theorem (Y.)

The Fano problems with $d_{\bullet} \neq (3), (2,2)$ and less than 40,000 solutions have full symmetric Galois group.

 This shows the 9 shown Fano problems have full symmetric Galois group, which was previously unknown.

Data for these systems and code verifying the data is available at github.com/tjyahl/FanoGaloisGroups

Moving forward & Bottlenecks

There is more to do!

- (In progress) Generate and verify data for larger Fano problems.
 Current bottleneck is memory!
- Turn this into a proof for ALL Fano problems with $d_{\bullet} \neq (3), (2, 2)$.
- Explore using numerical certification to prove more about Galois groups.

Thank you all for your time!

P. Breiding and S. Timme.

HomotopyContinuation.il: A Package for Homotopy Continuation in Julia.

In International Congress on Mathematical Software, pages 458-465. Springer, 2018.

O. Debarre and L. Manivel.

Sur la variété des espaces linéaires contenus dans une intersection complète.

Mathematische Annalen, 312:549–574, 1998.

J. Harris.

Galois groups of enumerative problems.

Duke Math. Journal, 46(4):685-724, 1979.

References ii

S. Hashimoto and B. Kadets.

38406501359372282063949 and all that: Monodromy of Fano problems.

International Mathematics Research Notices. 2020. rnaa275. arxiv:2002.04580.

J. Hauenstein and F. Sottile.

Algorithm 921: alphaCertified: Certifying solutions to polynomial systems.

ACM Trans. Math. Softw., 38(4):28, 2012.

C. Jordan.

Traité des Substitutions et des Équations algébriques. Gauthier-Villars, Paris, 1870.

[1, 2, 3, 4, 5, 6]