Lexical Analysis

Implementation: Finite Automata

Outline

- Specifying lexical structure using regular expressions
- Finite automata
 - Deterministic Finite Automata (DFAs)
 - Non-deterministic Finite Automata (NFAs)
- Implementation of regular expressions
 RegExp => NFA => DFA => Tables

Notation

 There is variation in regular expression notation

Excluded range:

```
complement of [a-z] = [^a-z]
```

Regular Expressions in Lexical Specification

 Given a string s and a reg. exp. R, is s ∈ L(R)?

But a yes/no answer is not enough!

Instead: partition the input into tokens

We adapt regular expressions to this goal

Regular Expressions => Lexical Spec.

- 1. Write a rexp for the lexemes of each token
 - − Number = digit

 √
 - Keyword = 'if' + 'else' + ...
 - Identifier = letter (letter + digit)*
 - OpenPar = '('
 - **—** ...

Regular Expressions => Lexical Spec.

2. Construct R, matching all lexemes for all tokens

$$R = Keyword + Identifier + Number + ...$$

= $R_1 + R_2 + ...$

Regular Expressions => Lexical Spec.

- 3. Let input be $x_1...x_n$) all the characters of the program

 For $1 \le i \le n$ check $x_1...x_i \in L(R)$ from the input (program)
- 4. If success, then we know that $x_1...x_i \in L(R_i)$ for some j
- 5. Remove $x_1...x_i$ from input and go to (3)

Ambiguities (1)

- There are ambiguities in the algorithm
- How much input is used? What if
 - $-x_1...x_i \in L(R)$ and also
 - $-x_1...x_K \in L(R)$
- e.g. = and ==
- Rule: Pick longest possible string in L(R)
 - The "maximal munch"
 - We as humans do that.

Ambiguities (2)

- Which token is used? What if
 - $-x_1...x_i \in L(R_i)$ and also
 - $-x_1...x_i \in L(R_k)$
- e.g. 'if' could be an identifier or a keyword;
- which one to choose?
- Rule: use rule listed first (j if j < k)
 - Treats "if" as a keyword, not an identifier
- i.e. the one listed first is given higher priority

Error Handling

- What if
 - No rule matches a prefix of input ?
- Problem: Can't just get stuck ...
- A compiler needs to give feedback to the user
 e.g. where the error is in the file (line number)
- Solution: reg. exp. that takes all strings (It), it will come to it only if the etring doesn't mother without of the previous reg. congs..
 - Write a rule matching all "bad"strings
 - Put it last (lowest priority)

Summary

- Regular expressions provide a concise notation for string patterns
- Use in lexical analysis requires small extensions
 - To resolve ambiguities
 - To handle errors
- Good algorithms known
 - Require only single pass over the input
 - Few operations per character (table lookup)

Finite Automata

- Regular expressions = specification
- Finite automata = implementation
- A finite automaton consists of
 - An input alphabet Σ
 - A set of states \$
 - A start state n
 - A set of accepting states F ⊆S
 - A set of transitions state \rightarrow input state

Finite Automata

Transition

$$s_1 \rightarrow a s_2$$

- Is read
- In state s₁ on input "a" go to state s₂
- If end of input and in accepting state => accept
- Otherwise => reject
 - If it terminates in state s that not a member of F
 - Or it gets stuck because there is not transition from state s1 on input a (i.e. never reaches the end of input).

Finite Automata State Graphs

- A state
- The start state
- An accepting state

· A transition

A Simple Example

A finite automaton that accepts only "1"

Another Simple Example

- A finite automaton accepting any number of
 1's followed by a single 0
- Alphabet: {0,1}

And Another Example

- Alphabet {0,1}
- What language does this recognize?

Epsilon Moves

• Another kind of transition: ε-moves

Machine can move from state A to state B without reading input

Deterministic and Nondeterministic Automata

- Deterministic Finite Automata (DFA)
 - One transition per input per state
 - No ε-moves
- Nondeterministic Finite Automata (NFA)
 - Can have multiple transitions for one input in a given state
 - -Can have ε-moves

Execution of Finite Automata

- A DFA can take only one path through the state graph
 - Completely determined by input
- NFAs can choose
 - Whether to make ε-moves
 - Which of multiple transitions for a single input to take

Acceptance of NFAs

An NFA can get into multiple states

- Input: 1 0 0
- States: {A} {A,B} {A,B,C}
- Rule: NFA accepts if it can get to a final state

NFA vs. DFA

equivalent on power

 NFAs and DFAs recognize the <u>same</u> set of languages (regular languages)

- DFAs are faster to execute
 - There are no choices to consider

NFA vs. DFA

 For a given language NFA can be simpler than DFA

· DFA can be exponentially larger than NFA

not always sometimes NFA has more states than equiv. DFA

Regular Expressions to Finite Automata

High-level sketch

Regular Expressions to NFA (1)

- For each kind of rexp, define an NFA
 - Notation: NFA for rexp M

For ε

For input a

Regular Expressions to NFA (2)

Regular Expressions to NFA (3)

For A*

Example of RegExp -> NFA conversion

 Consider the regular expression (1+0)*1

• The NFA is

ε-closure of a state

- ε-closure of a state s is a set of states that consists of s and all other states that I can reach from s by making ε-moves only.
- Example
 - ε -closure(B) = {B, C, D}
 - ε -closure(G) = {G, H, I, A, B, C, D}

NFA to DFA. Remark

- An NFA may be in many states at any time
- How many different states?
- If there are N states, the NFA must be in some subset of those N states
- How many subsets are there?

```
- 2N-1 i.e., finitely many

to know the state
in the subset set
or not conver
```

scenario, I need to make each subset of NFA states as a state in DFA.

Coxponentially)

NFA	DFA
States: S	States : subset of S
Start state: s ∈ S	Start state: ∈-closure(s)
Final states: F subset of S	Final state: { X X∩F ≠φ }
	ey: (EKRJS) (1 EJ 3 # #
The transition function:	The transition function:
$a(x) = \{ y \mid x \in X \land x \rightarrow a y \}$	$X \rightarrow a Y$ if $Y = \epsilon$ -closure(a(X))
such that	

NFA to DFA: The Trick

- Simulate the NFA
- Each state of DFA
 - = a non-empty subset of states of the NFA
- Start state
 - = the set of NFA states reachable through εmoves from NFA start state
- Add a transition $S \rightarrow a S'$ to DFA iff
 - S' is the set of NFA states reachable from any state in S after seeing the input a, considering ε-moves as well

NFA -> DFA Example

 $\{EJGHIABCD\} \cap \{J\} \neq \emptyset = \{\}$

Implementation

- A DFA can be implemented by a 2D table T
 - One dimension is "states"
 - Other dimension is "input symbol"
 - For every transition $S_i \rightarrow a S_k$ define T[i,a] = k
- DFA "execution"
 - If in state S_i and input a, read T[i,a] = k and skip to state S_k
 - Very efficient

Table Implementation of a DFA

algorithm

```
i=0;
State=0;
While(input[i]){
    State=A[state, input[i++]];
→ if(State EF) then

Accept

else

Reject
```

Taken from here: https://stackoverflow.com/ questions/10626414/design-anondeterministic-finite-automatain-c-incorrect-output

```
current = { Initial }
for each char in input:
next = { }
for each state in current:
for each state in current:
next = { }
next = {
```

NFA Algorithm

Implementation of the NFA itself

* We can track the exploration of paths by using graph search algorithm (Depth-First Breadth-First).

Trade off between speed and space

DFAs

- time Faster: we are in one state at any given time.
- memory \rightarrow less compact: there could be a large number of states $2^{N}-1$.

NFAs

- slower (the loop has to deal with set of states rather than one state),
- concise