SDS

Environment-Aware Humanoid Locomotion

- Unitree G1 Humanoid Robot on Isaac Lab Platform
- Comparative Analysis: Environment-Aware vs Foundation-Only
- 4 Terrain Types × 8 Performance Metrics × 2 Modes
- 300N Collision Detection & Multi-Sensor Integration

Project Overview

Systematic comparison of environment-aware vs foundation-only humanoid locomotion using Al-generated reward functions

Comparative Workflow: Environment-Aware vs Foundation-Only

☐ Environment-Aware Pipeline

☐ Terrain Scanning Height Scanner + LiDAR 567 + 152 rays**☐** Feature Detection Gaps, Obstacles, Stairs Classification **□ GPT-5 Analysis** Multi-agent reasoning Adaptive strategy **O Dynamic Rewards** Sensor-driven behavior Adaptive thresholds **☐ Smart Behavior** Context-aware navigation Terrain adaptation

☐ Foundation-Only Pipeline

□ Critical Differences & Implementation

- Behavioral Adaptation: Environment-aware mode shows measurable behavioral changes vs generic walking
- ☐ Performance Metrics: Quantifiable differences in collision avoidance and navigation efficiency
- ☐ Technical Implementation: Controlled comparison demonstrates clear value of environmental sensing

Al Agent Pipeline: GPT-5 Multi-Agent Reward Engineering

☐ GPT-5 Multi-Agent System

Advanced language model coordination for reward engineering

3☐ Code Generation: Reward Engineer creates Python functions with sensor integration 4☐ Iterative Refinement: Code Feedback analyzes training and improves reward functions

Terrain 0: Simple (Flat + Gentle Bumps)

Terrain 2: Obstacles (Discrete avoidance)

Terrain 1: Gaps (Random 20cm-2m gaps)

Terrain 3: Stairs (Ascending & Descending)

Terrain Classification & Environmental Analysis

TERRAIN 0: Simple Baseline locomotion Minimal environmental for Sensors: Basic contact sensing Challenge: Foundation locomotion patterns		
TERRAIN 2: Obsta Discrete obstacles 30cm Path planning required Sensors: LiDAR + collision detection Challenge: Safe navigation & avoidance		_
☐ Real	-Time Environmental Analysis C	apabilities
☐ Height Scanner	☐ LiDAR Sensor	Collision Detection
 567 measurement rays 27×21 grid pattern 2.0m × 1.5m coverage 7.5cm resolution Gap detection & sizing 	 152 distance rays 8 channels × 19 horizontal 180° field of view 10° angular resolution Obstacle detection & mapping 	 300N force threshold Upper body monitoring G1-specific body mapping Real-time impact detection Obstacle collision counting

☐ Environmental Sensing Implementation Impact

☐ Collision Reduction: Fewer upper body impacts on obstacle terrain

☐ Navigation Efficiency: Improved path planning and obstacle avoidance behavior ☐ Adaptive Behavior: Measurable behavioral switching based on terrain classification

Performance Results: Environment-Aware vs Foundation-Only

Advanced Sensor Integration & Collision Detection System

5 300N Upper Body Collision Detection System

Detection Specifications

- 300N force threshold for significant impacts
- Real-time peak force detection with history
- Upper body focus: torso, arms, shoulders only
- Excludes legs (normal locomotion contact)
- G1-specific body part mapping

☐ G1 Body Parts Monitored

- Pelvis & torso link (core body)
- Left/right shoulder links (pitch, roll, yaw)
- Left/right elbow links (pitch, roll)
- Left/right palm links (hand contacts)
- Real-time force magnitude tracking

☐ Multi-Sensor Fusion Architecture

☐ Height Scanner

567-ray grid 2×1.5m coverage

□ LiDAR

152-ray 180° FOV Obstacle detection

Al Fusion Engine

∮ Collision

300N threshold Upper body monitoring

☐ Technical Implementation Achievements

- ☐ Isaac Lab Integration: Direct sensor API access with proper error handling
- Freal-Time Processing: <5ms sensor fusion for 3000+ environments simultaneously
 </p>
- ☐ Precision Monitoring: Exact G1 humanoid body part mapping with 300N threshold
- ☐ Al-Driven Logic: GPT-5 generated adaptive behavior switching based on sensor data
- ☐ Comprehensive Metrics: 8 standardized performance measures across 4 terrain types
- ☐ Iterative Refinement: Multi-agent feedback loop for continuous improvement

□ Project Implementation

Systematic implementation of Al-generated environment-adaptive reward functions with multi-sensor fusion for humanoid robotics

Demonstrated quantifiable performance differences across terrain types