A shortcut to the genetic basis of Neurodegenerative Diseases

Lior Sivan Schapiro

Supervisors: Prof. Michal Linial and Roni Rasnic

The Timeline

O1 O2 O3 O4 O5

Biological Phase I Phase II Results Future Work

01

Biological Background

Neurodegenerative Diseases

Cells in the brain lose function over time and ultimately die

Examples- Alzheimer's disease, Parkinson's disease (PD), ALS

The risk of being affected increases dramatically with age

Constraint

Rank of genic functional intolerance to mutation variants using evolutionary conservation of protein sequences within species.

More than 150,000 human genomes (exomes) where tested

02

Phase I

Can we learn from a healthy population about the genetic basis of Neurodegenerative Diseases?

changes that interrupt the protein function

Re-calculation of the pLoF score – WHY?

Category	Expected SNVs	Observed SNVs	Constraint metrics	
pLoF	<u>7</u>	0	pLI = 0.88 o/e = $0 (0 - 0.43)$	0 • 1

Re-calculation of the pLoF score – WHY?

0:19952

1: 32299

Population Frequencies ₉								
Population	Allele Count	Allele Number						
Ashkenazi Jewish	0	10370						
▶ East Asian	0	19952						
European (Finnish)	0	25122						
▶ South Asian	0	30616						
European (non- Finnish)	4	129196						
▶ Other	4	7228						
Latino/Admixed American	22	35440						
African/African- American	384	24972						
xx	223	129500						
XY	191	153396						
Total	414	282896						

Re-calculation of the pLoF score

Chromosomal VCF files

Nr.	x/c		y/c	N	r.	x/c		v/c	Nr.	x/c		y/c	Ni	r.	x/c		y/c					
1	1.000000	0.0	0120	0 2	4 0	.482550	0.0	84896	47	0.00121	8 -0.	.005703	70)	0.55226	4 -4	0.0282	223				
2	0.998782	0.0	00147	7 2	5 0	.447736	0.0	85686	48	0.00486	6 -0.	.010608	71	ı	0.58682	4 -4	0.0260	065				
3	0.99513	Nr.	v	/c		/e	Nr.	x/c		v/c	Nr.	x/	c	_	v/c	Nr.	1 0	x/c		y/c	1	
4	0.98907	1		00000		01200	24	0.4825	70	0.084896	47	0.001		0	005703	70	_	52264		28223	-	
5	0.98063	2		8782		01477	25	0.4823		0.085686	48	0.001			010608	71		86824		26065	-	
6	0.96984	3		5134		12315	26	0.4131		0.085751	49	0.004		_	014852	72		20961		123746	-	
7	0.95677	4		0074		13794		0.4131		0.065791		0.010			014892			54500		20140	-	
8	0.94147	5	0.9		_	/c	y/c	-	Nr.	x/c	y/	-	Nr.		x/c	ÿ	_	Nr.		c/e	y/c	1
9	0.92402	6	0.9	1		00000	0.001			0.482550	0.084		47		001218	-0.00		70		52264	-0.028223	-
10	0.90450	7	0.9		2101		0.001			0.482330	0.084					-9.00		71	0.10		-0.028223	-
11	0.88302	8	0.9	2		98782 95134	0.001			0.447736	0.085		48		004866	-0.01		72		86824 20961	-0.020065	-
12	0.85967	9	0.9	4	0.95	50104	0.002	010	20	0.415176	0.080	1614	49	0.0	10920	-0.01	4002	12	0.6.	10607	-0.023740	-
13	0.8345€	10	0.9	5	0.9	Nr.	x/c		y/c	Nr.	x/	c	y/c		Nr.	X/	c	y/c		Nr.	x/c	y/c
14	0.80783	11	0.8	6	0.9	1	1.0000	00 0.	00120	0 24	0.482	550 (0.0848	96	47	0.001	218	-0.005	703	70	0.552264	-0.0282
15	0.77959	12	0.8	7	0.9	2	0.9987	82 0.	00147	7 25	0.447	736	0.0856	86	48	0.004	866	-0.010	608	71	0.586824	-0.0260
16	0.7500€	13	0.8	8	0.9	3	0.9951	34 0.	00231	5 26	0.413	176	0.0857	51	49	0.010	926	-0.014	852	72	0.620961	-0.0237
17	0.71918	14	0.8	9	0.9	4	0.9890	74 0.	00372	4 27	0.379	039	0.0850	91	50	0.019	369	-0.018	516	73	0.654509	-0.0213
18	0.68730	15	0.7	10	0.9	5	0.9806	31 0.	00571	4 28	0.345	492	0.0838	47	51	0.030	154	-0.021	663	74	0.687303	-0.0188
19	0.65450	16	0.7	11	0.8	6	0.9698	46 0.	00829	0 29	0.312	697	0.0820	81	52	0.043	227	-0.024	350	75	0.719186	-0.0164
20	0.6209€	17	0.7	12	0.8	7	0.9567	73 0.	01144	7 30	0.280	814	0.0798	31	53	0.058	526	-0.026	632	76	0.750000	-0.0141
21	0.58682	18	0.6	13	0.8	8	0.9414	74 0.	01517	5 31	0.250	000 (0.0771	36	54	0.075	976	-0.028	555	77	0.779596	-0.01209
22	0.5522€	19	0.6	14	0.8	9	0.9240	24 0.	01944	5 32	0.220	404 (0.0740	28	55	0.095	492	-0.030	165	78	0.807831	-0.0103
23	0.51745	20	0.6	15	0.7	10	0.9043	09 0.	02421	1 33	0.192	169	0.0705	40	56	0.116	978	-0.031	502	79	0.834565	-0.0090
	1	21	0.5	16	0.7	11	0.8830	22 0.	02941	3 34	0.165	435 (0.0666	98	57	0.140	330	-0.032	600	80	0.859670	-0.0079
	1	22	0.5	17	0.7	12	0.8596	70 0.	03496	33 35	0.140	330	0.0625	24	58	0.165	435	-0.033	488	81	0.883022	-0.0069
	1	23	0.5	18	0.6	13	0.8343	65 0.	04074	10 36	0.116	978	0.0580	40	59	0.192	169	-0.034	188	82	0.904509	-0.0060
	1		-	19	0.6	14	0.8078	31 0.	04657	2 37	0.095	492	0.0532	57	60	0.220	404	-0.034	714	83	0.924024	-0.0051
				20	0.6	15	0.7793	96 0.	05214	10 38	0.075	976	0.0481	93	61	0.250	000	-0.035	074	84	0.941474	-0.0043
				21	0.5	16	0.7500	00 0.	05739	7 39	0.058	526	0.0428	60	62	0.280	814	-0.035	267	85	0.956773	-0.0036
				22	0.5	17	0.7191	86 0.	06237	4 40	0.043	227	0.0372	70	63	0.312	697	-0.035	287	86	0.969846	-0.0029
				23	0.5	18	0.6873	03 0.	06702	9 41	0.030	154	0.0314	43	64	0.345	492	-0.035	123	87	0.980631	-0.0023
				-0	510	19	0.6543	09 0.	07130	6 42	0.019	369	0.0254	00	65	0.379	039	-0.034	755	88	0.989074	-0.0018
						20	0.6209	61 0.	07514	12 43	0.010	926	0.0191	72	66	0.413	176	-0.034	143	89	0.995134	-0.0015
						21	0.5868	24 0.	07847	7 44	0.004	866	0.0128	06	67	0.447	736	-0.033	160	90	0.998782	-0.0012
						22	0.5522	64 0.	08124	19 45	0.001	218	0.0063	71	68	0.482	550	-0.031	820	91	1.000000	-0.0012
						23	0.5174	50 0.	08340	3 46	0.000	000	0.0000	00	69	0.517	450	-0.030	159			

Neuro candidates

2 lists with 18k gene and their data

\angle	Α	В	С
1	gene	alternate allele	total number of alleles
2	SRY	2	31405
3	RPS4Y1	4	30845
4	ZFY	1	27888
5	TGIF2LY	1	31546
6	PCDH11Y	10	217243
7	TSPY2	4	40795

	А	В	С
1	gene	alternate allele	total number of alleles
2	SRY	2	31405
3	RPS4Y1	4	30845
4	ZFY	1	27888
5	TGIF2LY	1	31546
6	PCDH11Y	10	217243
7	TSPY2	4	40795

$$observedSNV_{gene} = \sum_{altarnate \in var \ lof_var \in gene X} variant$$

$$expectedSNV_{gene} = \frac{\sum_{altarnate \in var} \sum_{lof_var \in geneX} variant}{2}$$

Re-calculation of the pLoF score

$$observedSNV_{gene} = \sum_{altarnate \in var\ lof_var \in geneX} variant$$

Assumption

One of the PLOF mutation:

transcript ablation

Splice acceptor variant

Splice donor variant

Stop gained

frameshift variant

- Alternate allele $> 0 \rightarrow \text{total} ++$
- $\frac{Total \ allele \ number}{2}$ s.t every person has 1

2 lists of 18,000 genes
with their sum of
alternate allele count
and total number of
allele count

Fisher exact and Bonferroni Correction

$$p = \frac{(a+b)!(c+d)!(a+c)!(b+d)!}{a!\,b!\,c!\,d!\,n!}$$

$$\alpha^* = 1 - \left(1 - \frac{\alpha}{n}\right)^n$$

p = p - value a, b, c, d = values of table n = set size $\alpha = given alpha$

Using Fisher p-value as pLoF score

			altearante allele = num of Lof var	total count = total vars	
18k	×	non – neuro	20	20,000	20020
genes		candidates	30	30,000	30030
			50	50000	50,050

Gene's constraint distribution of European

Gene's constraint distribution of European

Most of the genes have p-value = $1 \rightarrow$ can change and have number of variants

Constraint in different populations

European = 1249

Asian = 567

Constraint in different populations

European = 1249

Asian = 567

Ontology results of the most suspected genes

	Homo sapiens (REF)		<u>u</u>	<u>pload_1</u> (▼ <u>Hiera</u>	<u>rchy</u>	NEW! (?)	
GO biological process complete	<u>#</u>	<u>#</u>	expected	Fold Enrichment	<u>+/-</u>	raw P value	FDR
detection of chemical stimulus involved in sensory perception of smell	<u>441</u>	<u>28</u>	4.28	6.54	+	1.19E-14	1.87E-10
→ detection of chemical stimulus involved in sensory perception	<u>486</u>	<u>28</u>	4.72	5.93	+	1.15E-13	4.53E-10
4-detection of stimulus involved in sensory perception	<u>554</u>	<u>30</u>	5.38	5.58	+	6.49E-14	3.41E-10
<u> </u>	<u>973</u>	<u>31</u>	9.45	3.28	+	8.87E-09	1.55E-05
<u> </u>	<u>1380</u>	<u>36</u>	13.40	2.69	+	7.30E-08	1.15E-04
<u> </u>	<u>2040</u>	<u>39</u>	19.81	1.97	+	4.30E-05	4.85E-02
4detection of stimulus	<u>718</u>	<u>33</u>	6.97	4.73	+	2.55E-13	8.05E-10
<u> </u>	<u>522</u>	<u>28</u>	5.07	5.52	+	5.99E-13	1.58E-09
<u> </u>	<u>542</u>	<u>28</u>	5.26	5.32	+	1.42E-12	3.20E-09
<u> </u>	<u>468</u>	<u>28</u>	4.54	6.16	+	4.77E-14	3.77E-10
G protein-coupled receptor signaling pathway	<u>1329</u>	<u>34</u>	12.91	2.63	+	2.79E-07	4.00E-04
cellular component organization	<u>5775</u>	<u>29</u>	56.08	.52	-	7.90E-06	9.58E-03
← cellular component organization or biogenesis	<u>5999</u>	<u>29</u>	58.26	.50	-	2.06E-06	2.70E-03
cellular nitrogen compound metabolic process	<u>3407</u>	<u>13</u>	33.09	.39	-	4.63E-05	4.87E-02
<u> </u>	<u>7570</u>	<u>35</u>	73.51	.48	-	3.53E-09	6.97E-06

03

Phase II

Can Early Onset of Complex Diseases

be a hint for Etiology?

Parkinson in numbers

60% 40%

10M people worldwide

60k new cases every year

52B\$ every year

GWAS - genome wide association study

GWAS - genome wide association study

substantia nigra an... Show more >

Studies 54

Associations 505

What data did we have from GWAS?

(Functional Alteration Bias Recovery In Coding-regions)

Assess the impact of mutations on gene/protein function

- Find genes more damaged than expected
 - Given this number of *random* mutations

FABRIC output

1	uniprot_id	symbol	chr	overall_z_value	overall_pval	overall_fdr_significance	overall_fdr_qval
2	S4R3Y5	MTRNR2L	1	-2.220891562	0.111111111	FALSE	0.228958549
3	Q4KMX7	FAM106A	17	-1.28556089	0.061311263	FALSE	0.142174949
4	Q5JQF8		X	-1.090634791	0.068965517	FALSE	0.156388068
5	A0A075B6P5	IGKV2-28	2	-1.076343589	0.432989691	FALSE	0.613729799
6	P01593	IGKV1D-3	2	-0.850532119	0.121932632	FALSE	0.245920771
7	Q86YR6	POTED	21	-0.845584393	0.086815871	FALSE	0.188505458
8	S4R3P1	MTRNR2L:	4	-0.837559411	0.234137303	FALSE	0.404099638
9	Q8NHZ8	CDC26	9	-0.834219789	0.00085341	TRUE	0.003540289
10	O95013	OR4F21	8	-0.772694291	0.247840382	FALSE	0.420351121
11	Q9BTY7	HGH1	8	-0.759830842	0.488584475	FALSE	0.661896051
12	P01624	IGKV3-15	2	-0.743705832	0.641509434	FALSE	0.78273921
13	Q5EBN2	TRIM61	4	-0.674288599	0.540540541	FALSE	0.705391255
14	P01597	IGKV1-39	2	-0.628736726	0.626506024	FALSE	0.772964802
15	Q8NH02	OR2T29	1	-0.62486385	0.219727393	FALSE	0.385156066
16	Q6NT46	GAGE2A	X	-0.622272709	0.291996584	FALSE	0.472044923
17	BOFP48	UPK3BL	7	-0.620947386	0.372608163	FALSE	0.554923327
18	Q9UGB4	C20orf187	20	-0.618681218	0.19980723	FALSE	0.357822628
19	A6NI03	TRIM64B	11	-0.605519673	0.236615436	FALSE	0.40708471
20	Q8NG35		8	-0.577461066	0.370034572	FALSE	0.552833868
21	POCV98	TSPY3	Υ	-0.568874036	0.614886731	FALSE	0.765105904
22	A6NE82	MBD3L3	19	-0.566757434	0.456831032	FALSE	0.635034059
23	Q9UND3	NPIPA1	16	-0.559052222	0.470638017	FALSE	0.646784763
24	O43261	DLEU1	13	-0.544280904	0.117836461	FALSE	0.239435363
25	Q96P64	AGAP4	10	-0.544044917	0.36951088	FALSE	0.552235365

Network of Parkinson genes identified by FABRIC

25 genes were marked as "significant" (positive selection) for early onset, none for late onset

What's Next?

Run fabric on the 94 constraint genes in order to test how damaged, they are.

Run fabric on the 94 constraint genes in order to test how damaged, they are.

Compare between
other population &
Run on more diseases
like Alzheimer

Run fabric on the 94 constraint genes in order to test how damaged, they are.

Compare between
other population &
Run on more diseases
like Alzheimer

Analyze exomes
from UK bio-bank
& build predictor
for individuals

Michal, Amir and Roni

