Protein Structure and Visualization -Photosynthesis

Peter Schellenerg

Friday 03.11.2023

Cofactors for light absorption

$$H_{3}C$$
 $H_{3}C$
 $H_{3}C$
 $H_{3}C$
 $H_{4}C$
 $H_{5}C$
 H

Chlorophyll: Photosynthesis

Open tetrapyrolls: light detection, Photosynthesis

Pheophytin: Photosynthesis

Retinal: light detection, Photosynthesis, Singulet-Oxygen Quencher

LUMO +1

LUMO

HOMO

HOMO -1

Photosynthesis

Reaction centers: Recieve and translate excitation energy into electrical potential across a membrane

- -Bacterial non-oxygenic reaction centers
- -Reaction centers of cyanobacteria and plants (oxygenic) (Evolutionary time tag: minimum 2.8 billion years old)

Antenna pigments: Absorb light, transform its wavelength and eventually transfer to the reaction center

Structures of Reaction Centers

R. viridis is a model!

More important: R. sphaeroides

Membrane proteins (as always) are resistant to crystallization (and X-ray diffraction studies)

Deisenhofer, Michel and Huber solved *R.viridis* structure in 1984 (Nobel Prize same year!)

Four peptides: L, M, H (and cytochrome)

No electron transfer appears to occur through M

Special Pair: A Dimer of Interacting Monomers

$$\Phi_{1a} \cdot \Phi_{20} \xrightarrow{\uparrow \vec{\mu}_1} \Psi_{A} \xrightarrow{\Delta E_+} \Phi_{10} \cdot \Phi_{2a}$$

$$\Phi_{10} \cdot \Phi_{20}$$

$$\Psi_{A_{+}} = \frac{1}{\sqrt{2}} \left(\Phi_{1a} \cdot \Phi_{20} + \Phi_{10} \cdot \Phi_{2a} \right) \qquad \Psi_{A_{-}} = \frac{1}{\sqrt{2}} \left(\Phi_{1a} \cdot \Phi_{20} - \Phi_{10} \cdot \Phi_{2a} \right)$$

$$V_{WW} = \frac{\vec{\mu}_1 \cdot \vec{\mu}_2}{r_{12}} \left(1 - 3\cos^2 \theta \right) \quad \downarrow \quad \checkmark \quad \longleftarrow$$

$$\Delta E_{+} = \langle \Psi_{A_{+}} | V_{WW} | \Psi_{A_{+}} \rangle = +\Delta E$$

$$\Delta E_{-} = \langle \Psi_{A_{-}} | V_{WW} | \Psi_{A_{-}} \rangle = -\Delta E$$
Splitting into

Splitting into two lines

Charge separation in bacterial reaction centers

Charge separation analog to electronic transition – Marcus theory

The Franck-Condon principle applies: electrons move much faster than nuclei. No change in nuclear configuration during the electron transfer: transition is vertical.

There is also energy conservation during the transition: transition is horizontal.

Conclusion: electron transfer only occurs in nuclear configuration at crossing point.

Oxygenic Photosynthesis

PSI (*P700*) and *PSII* (*P680*)

All chlorophyll is part of either LHC, PSI or PSII

PSI absorbs at 700 nm

PSII absorbs at 680 nm

Chloroplasts given light at 680 and 700 nm simultaneously yield more O_2 than the sum of amounts when each is used alone

Site of Photosynthesis in Plants

Enlargement

The Z- scheme of oxygenic photosynthesis

What does each photosystem do?

PSII oxidizes water (termed "photolysis")

PSI reduces NADP+

ATP is generated by establishment of a proton gradient as electrons flow from PSII to PSI

Oxygen evolution by PSII

requires accumulation of four oxidizing equivalents

PSII (P680) cycles through five oxidation states

1 e is removed in each of four steps

Fifth step involves H_2O oxidized to $O_2 + 4H^+$

Flash dependent oxygen development

Oxygen Evolving Complex

 $Mn(III)_2 Mn(IV)_2$

Mn(IV)

Overall scheme

Antenna functional scheme

Garrett & Grisham: Biochemistry, 2/e

Figure 22.9

Saunders College Publishing

The excitation is trapped by the reaction centre chlorophyll because its lowest excited state has a lower energy than those of the antenna pigment (chlorophyll) molecules.

At the reaction centre, the excited state chlorophyll loses an electron (becomes oxidized) by photooxidation, to an acceptor molecule.

Spectral coverage

Solar spectrum and absorption of chromophores

Chlorosomes

80% BChl

6% Carotinoids

6% Lipids

2% Protein

Chlorosome BChl: syn-anti self-aggregation

Organization of Photosystem II

Phycobilisomes

Phycobilin chromatophores

Excitonic interaction and excitation transfer

The excitation energy is transferred between the LH2 rings, to the LH1 antenna, and finally to the reaction center. Below are estimates of the times involved.

For the longer transfer times, Förster transfer mechanism is invoked, while for the fast transfer times, coherent energy transfer is the mechanism.

Spectral assignments of LH-II

(From PhD Theels John Kennis, RUL, september 1997)

Single molecule spectroscopy

Photosynthetic antenna pigment: Light harvesting complex II

Homogeneous vs. Inhomogeneous broadening

Inhomogenously or homogenously broadened spectrum?

Thomas Schmidt et al Leiden Les Houches Seminar

Single molecule spectroscopy

Photosynthetic antenna pigment: Light harvesting complex II

B800 is weakly coupled, B850 is strongly coupled eg. in an excitonic state

Thomas Schmidt et al Leiden Les Houches Seminar

Aggregate arrangements

Dark states in LH2 revealed by 2-dimensional spectroscopy

Marco Ferretti, Ruud Hendrikx, Elisabet Romero, June Southall, Richard J. Cogdell, Vladimir I. Novoderezhkin, Gregory D. Scholes & Rienk van Grondelle

Classification of spectroscopic Aggregates

