COMP 3711 Design and Analysis of Algorithms

Master Theorem

Divide-and-Conquer Recurrence Examples

Major examples so far

- Maximum Contiguous Subarray & Mergesort
 - Both satisfied T(n) = 2T(n/2) + O(n)
 - $T(n) = O(n \log n)$
- First version of Integer Multiplication
 - T(n) = 4T(n/2) + O(n)
 - $T(n) = O(n^2)$
- Karatsuba Multiplication
 - T(n) = 3T(n/2) + O(n)
 - $T(n) = O(n^{\log_2 3}) = O(n^{1.58...})$

The Master Theorem

Tool for directly (i.e., without expansion or recurrence tree) solving recurrences of form

$$T(n) = aT(n/b) + f(n)$$

where

- $a \ge 1$ and b > 1 are constants and
- f(n) is a (asymptotically) positive polynomial function.
- Initial conditions T(1), T(2), ..., T(k) for some k don't contribute to asymptotic growth
- n/b could be either $\lfloor n/b \rfloor$ or $\lfloor n/b \rfloor$

Visualization for Master Theorem

$$T(n) = aT\left(\frac{n}{b}\right) + f(n), \quad a \ge 1$$
 and $b > 1$ are constants, $c = \log_b a$

The Master Theorem (for equalities)

$$T(n) = aT(n/b) + f(n), \qquad c = \log_b a$$

1. If $f(n) = O(n^{c-\epsilon})$ for some $\epsilon > 0$ => $\mathsf{T}(n) = \Theta(n^c)$ Intuition: the work increases as we go down the levels. Bottom level dominates the total cost.

2. If
$$f(n) = \Theta(n^c)$$
 => $T(n) = \Theta(n^c \log n)$

Intuition: the work remains the same as we go down the levels. All levels contribute equally to the total cost.

3. If
$$f(n) = \Omega(n^{c+\epsilon})$$
 for some $\epsilon > 0 \Rightarrow T(n) = \Theta(f(n))$

(there is an additional condition that we will ignore in this class)

Intuition: the work decreases as we go down the levels. Top level dominates the total cost.

Case 1:
$$T(n) = 5T(\frac{n}{2}) + n^2 = \Theta(n^{\log_2 5})$$

$$T(n) = n^{\log_2 5} + n^2 \sum_{j=0}^{\log_2 n - 1} \left(\frac{5}{4}\right)^j$$

Case 2:
$$T(n) = 4T\left(\frac{n}{2}\right) + n^2 = \Theta(n^2 \log n)$$

Lv	#pr	work/pr	work/lv
0	1	n^2	n^2
1	4	$(n/2)^2$	n^2
2	4 ²	$(n/2^2)^2$	n^2

 $(n/2^i)^2$

$$\log_2 n \qquad 4^{\log_2 n} = n^{\log_2 4} \qquad \qquad 1 \qquad \qquad n^2$$
$$= n^2$$

$$T(n) = n^2 + n^2 \sum_{j=0}^{\log_2 n - 1} 1$$

Case 3:
$$T(n) = 3T(\frac{n}{2}) + n^2 = \Theta(n^2)$$

Lv	#pr	work/pr	work/lv
0	1	n^2	n^2
1	3	$(n/2)^2$	$(3/4)n^2$

2	3^2	$(n/2^2)^2$	$(3/4)^2n^2$
---	-------	-------------	--------------

$$i 3^i (n/2^i)^2 (3/4)^i n^2$$

$$T(n) = n^{\log_2 3} + n^2 \sum_{j=0}^{\log_2 n - 1} \left(\frac{3}{4}\right)^j$$

The Master Theorem (for inequalities)

$$T(n) \le aT(n/b) + f(n), \qquad c = \log_b a$$

1. If
$$f(n) = O(n^{c-\epsilon})$$
 for some $\epsilon > 0$ => $T(n) = O(n^c)$

2. If
$$f(n) = O(n^c)$$
 => $T(n) = O(n^c \log n)$

3. If
$$f(n) = \Omega(n^{c+\epsilon})$$
 for some $\epsilon > 0$ => $T(n) = O(f(n))$

9

The Master Theorem when $f(n) = \Theta(n)$

$$T(n) = aT(n/b) + \Theta(n), \qquad c = \log_b a$$

Note: Inequality version of theorem also holds

- 1. If c > 1, then $T(n) = \Theta(n^c)$
 - ightharpoonup If $T(n) = 4T(n/2) + \Theta(n)$ then $T(n) = \Theta(n^2)$
 - ightharpoonup If $T(n) = 3T(n/2) + \Theta(n)$ then $T(n) = \Theta(n^{\log_2 3}) = \Theta(n^{1.58...})$
- 2. If c = 1, then $T(n) = \Theta(n \log n)$
 - ightharpoonup If $T(n) = 2T(n/2) + \Theta(n)$ then $T(n) = \Theta(n \log n)$
- 3. If c < 1, then $T(n) = \Theta(n)$
 - ightharpoonup If $T(n) = T(n/2) + \Theta(n)$. then $T(n) = \Theta(n)$

More Master Theorem(s)

There are many variations of the Master Theorem. Here's another...

- If T(n) = T(3n/4) + T(n/5) + n then $T(n) = \Theta(n)$
- More generally, given constants $\alpha_i>0$ with $\sum_i \alpha_i<1$ If $T(n)=n+\sum_i T(\alpha_i n)$ then $T(n)=\Theta(n)$

The Master Theorem when f(n) = O(n)

$$T(n) \le aT(n/b) + kn$$
, $a \ge 1$ and $b > 1$ are constants, $c = \log_b a$

- 1. If c > 1, then $T(n) = O(n^c)$
- 2. If c = 1, then $T(n) = O(n \log n)$
- 3. If c < 1, then T(n) = O(n)

Have already worked through two examples of case 1 and one example of case 2. Will now see general proof.

Proof of Inequality Master Theorem when f(n) = O(n)

$$T(n) \le aT(n/b) + kn$$
, $a \ge 1$ and $b > 1$ are constants, $c = \log_b a$

• The total running time is n^c for the bottom level, plus $kn(1+(a/b)+(a/b)^2+\cdots+(a/b)^{\log_b n-1})$ for the rest

$$c = \log_b a$$

Case 1: a > b (c > 1)

$$T(n) \le n^c + kn \sum_{j=0}^{\log_b n - 1} \left(\frac{a}{b}\right)^j.$$

If a > b, increasing geometric series

$$\sum_{j=0}^{\log_b n - 1} \left(\frac{a}{b}\right)^j = \frac{\left((a/b)^{\log_b n} - 1\right)}{a/b - 1} \le \frac{\left(\frac{a}{b}\right)^{\log_b n}}{\frac{a}{b} - 1} = \frac{a^{\log_b n}/b^{\log_b n}}{a/b - 1} = \frac{n^{\log_b a}/n}{a/b - 1} = \frac{n^c/n}{a/b - 1} = \frac{n^{c-1}}{a/b - 1}$$

Hence, for a > b (c > 1)

$$T(n) = O\left(\frac{n^c}{a/b - 1}\right) = O(n^c)$$

Bottom level dominates cost.

Example: If
$$T(n) \le 3T(\frac{n}{2}) + n$$
, $a = 3$, $b = 2$, and $T(n) = O(n^{\log_2 3}) = O(n^{1.58...})$

$$c = \log_b a$$

Case 2:
$$a = b$$
 ($c = 1$)

$$T(n) \le n^c + kn \sum_{j=0}^{\log_b n - 1} \left(\frac{a}{b}\right)^j.$$

If
$$a = b$$

$$\sum_{j=0}^{\log_b n - 1} \left(\frac{a}{b}\right)^j = \log_b n$$

Hence, for a = b (c = 1)

$$T(n) = O(n + kn \log_b n) = O(n \log n)$$

Each level contributes cost *kn*.

Example: If
$$T(n) \le 2T(\frac{n}{2}) + n$$
, $a = 2$, $b = 2$, and $T(n) = O(n \log n)$

Visualization for Case 2 (a = b)

$$T(n) \le aT(n/a) + kn, c = 1$$

0 1 kn kn 1 a kn/a kn 2 a² kn/a² kn	Lv	#pr	work/pr	work/lv
2 a ² kn/a ² kn	0	1	kn	kn
2 a^2 kn/a^2 kn				
,	1	а	kn/a	kn
	2	a^2	kn/a²	kn
i a^i kn/a^i kn	í	a^i	kn/a ⁱ	kn
			7	

$$c = \log_b a$$

Case 3:
$$a < b \quad (c < 1)$$

$$T(n) \le n^c + kn \sum_{j=0}^{\log_b n - 1} \left(\frac{a}{b}\right)^j.$$

If a < b, decreasing geometric series

$$\sum_{j=0}^{\log_b n-1} \left(\frac{a}{b}\right)^j = O(1)$$

Hence, for a < b (c < 1)

$$T(n) = O(n^c + kn) = O(n)$$

Top level (0) dominates the cost.

Example: If
$$T(n) \le 2T(\frac{n}{3}) + n$$
, $a = 2$, $b = 3$, and $T(n) = O(n)$