Evaluación de Propiedades Físicas 76.48

Serie 3: Cálculo de segundo coeficiente del virial

Ejercicio 1:

La energía mecánica total de un sistema de partículas se describe en Mecánica Clásica mediante la función de Hamilton (Hamiltoniano Clásico)

$$E = H(p,q) = \frac{1}{2m} \sum_{i} p_i^2 + U(q_i).$$

a) Hallar
$$\left(\frac{\partial H}{\partial q_i}\right)_{p_i}$$
 y $\left(\frac{\partial H}{\partial p_i}\right)_{q_i}$

b) ¿Qué significado físico tienen las derivadas? Comparar con el formalismo de Newton.

Ejercicio 2:

Sea una partícula en un tanque de volumen finito, tal que en el interior del tanque la energía potencial es V = 0 y en el exterior $V = \infty$.

Obtener la expresión de la función de partición de traslación en términos de las cantidades de movimiento: p_x , p_y y p_z y las coordenadas: x, y, z.

Ejercicio 3:

Considerar una partícula en una dimensión sujeta a un potencial de la forma

 $V(x)=1/2Kx^2$. Teniendo en cuenta que la frecuencia del oscilador es $v=\frac{1}{2\pi}\sqrt{\frac{K}{m}}$, demostrar que la función de partición cuántica tiende a la clásica si kT >> hv, (hv: el espaciado entre niveles).

Ejercicio 4:

La función de partición clásica de traslación para un gas real tiene la forma: $Q_{CM}=\frac{1}{N!h^{3N}}\iiint.....\int e^{-\frac{E}{kT}}dq_idq_{3N}....dp_idp_{3N}$

donde
$$E = H(p,q) = \frac{1}{2m} \sum_{i} p_i^2 + U(q_i)$$

a) Calcular Q_{CM} para este gas teniendo en cuenta la integral de configuración:

$$Z_N = 4\pi \int_0^\infty r^2 f_{12}(r) dr$$
 con $f_{12}(r) = e^{-\frac{U(r_{ij})}{kT}} - 1$

Siendo
$$U(r_{ij}) = \begin{cases} \infty & si & r \leq r_0 \\ -\varepsilon_0 \left(\frac{r_0}{r}\right)^m & si & r \geq r_0 \end{cases}$$

Con
$$kT \gg \varepsilon_0$$
 y $\varepsilon/kT \ll 1$

- b) Calcular el Segundo Coeficiente del Virial $B = 2\pi N_A \int_0^{\infty} \left[1 e^{-\frac{U(r)}{kT}}\right] r^2 dr$ para este potencial (potencial de Van der Waals).
- c) Expresar la ecuación de estado (EOS) para este potencial con aproximación del virial al segundo coeficiente

Ejercicio 5:

a) Calcular el segundo coeficiente del virial $B(T) = 2\pi N_A \int_0^{\infty} \left[1 - e^{-\frac{U(r)}{kT}}\right] r^2 dr$ para un

 $\text{potencial de esferas duras. } U(r_{ij}) = \begin{cases} \infty & si & r \leq r_0 \\ 0 & si & r \geq r_0 \end{cases}$

- b) ¿Por qué razón B no varía con T?
- c) Calcular la función de Helmholtz y la presión para este gas

Ejercicio 6:

Expresar el coeficiente virial de mezcla de dos moléculas diferentes, A y B, con radios r_A y r_B diferentes, a T = 300 K, que interactúan bajo un potencial de esferas duras:

$$B_{ij} = 2\pi N_A \int_{0}^{\infty} \left[1 - e^{-\frac{U(r_{ij})}{kT}} \right] r^2 dr$$

Tener en cuenta que en la interacción de dos moléculas diferentes hay tres coeficientes de virial diferentes: B_{ij} ; B_{ii} y B_{jj} .

Por otro lado el coeficiente de mezcla binario es:

$$B_{me} z = y_i^2 B_{ii} + 2 y_i y_j B_{ij} + y_j^2 B_{jj}$$

Elegir una fracción cualquiera para la mezcla.

Ejercicio 7:

a) Hallar el segundo coeficiente del virial para el argón (Ar) que se comporta según un potencial de pozo cuadrado con parámetros $\varepsilon/k=95.2$ K, l=1.69 y d=3.07 10^{-8} cm, siendo $d=\sigma$ (diámetro de colisión = distancia entre los centros de los núcleos), ε la profundidad del pozo y l es una constante que define el ancho del pozo.

La función del potencial es
$$U(r) = \begin{bmatrix} \infty & si \ r \le d \\ -\varepsilon & si \ d < r \le l.d \\ 0 & si \ l.d < r \end{bmatrix}$$

- b) Hallar la expresión de T_B (Temperatura de Boyle) para este gas.
- c) Graficar B(T) y analizar el significado de la curva.

- d) Calcular $Z = \frac{PV}{RT} \cong 1 + \frac{BP}{RT}$ para 200 K y 1 atm; 200 K y 10 atm; y 300 K y 1 atm.
- e) A partir de la ecuación del punto anterior, calcular la función de Gibbs residual g^R , entalpía residual h^R y la entropía residual s^R .

Ejercicio 8:

Ajustar los parámetros del potencial de pozo cuadrado ε/k , l y d para el propano con los siguientes datos experimentales:

T(K)	$B(\text{cm}^3/\text{mol})$	T(K)	$B(\text{cm}^3/\text{mol})$
250	-584	350	-276
260	-526	375	-238
270	-478	400	-208
285	-424	430	-177
300	-382	470	-143
315	-344	500	-124
330	-313	550	-97

Ejercicio 9:

Estimar la temperatura de Boyle del siguiente gas real, cuyos datos se dan a continuación, eligiendo un potencial de interacción de pares adecuado.

Datos:

- -El segundo coeficiente del virial tiende asintóticamente a 54,06cm³/mol.
- $-g^{R}(200K, 20 \text{ bar}) = -321.8 \text{ J.mol}^{-1}$
- -Las fuerzas de interacción intermolecular pueden considerarse despreciables más allá de 1,8 veces el diámetro molecular.
- -Se proponen dos modelos para el potencial de interacción de pares: esferas rígidas y pozo cuadrado.

Ejercicio 10:

Se tiene un gas en un sistema cilindro-pistón; el comportamiento del gas puede modelarse con la ecuación del virial truncada después del segundo coeficiente, y las partículas pueden tomarse como esferas rígidas.

- a) Demostrar que la expansión adiabática y contra vacío del gas es isotérmica.
- b) Calcular el cambio de entropía cuando $P_2 = 0.5 P_1$.

Ejercicio 11:

Considerar los potenciales de esferas duras y Lennard-Jones para un fluido determinado. A partir de los mismos, esquematizar gráficos de fugacidad (para la fase vapor) contra presión a diversas temperaturas. Indicar similitudes y diferencias entre los mismos. ¿Cuál es el efecto que predomina a altas temperaturas? (Suponer que el comportamiento del fluido puede describirse adecuadamente por el desarrollo virial truncado al segundo término).