Forme biliniare și forme pătratice

- 1. Fie K un corp cu $charK \neq 2$, V un K-spaţiu vectorial şi $B(\cdot, \cdot): V \times V \to K$ o formă bilineară. Arătaţi că B se poate descompune în suma dintre o formă simetrică şi una anti-simetrică.
- 2. Fie $B(\cdot,\cdot): V\times V\to K$ o formă biliniară simetrică. Arătați că B este nedegenerată (adică B(x,y)=0 pentru orice $y\in V$ implică x=0) dacă și numai dacă $x\mapsto B(x,\cdot): V\to V^*$ este un izomorfism.
- 3. Fie B o formă biliniară nedegenerată pe spațiul vectorial V și $W \subset V$. Notăm cu $W^{\perp} = \{x \in V | B(x, y) = 0, \forall y \in W\}$. Arătați că
 - (a) $\dim W + \dim W^{\perp} = \dim V$;
 - (b) $(W^{\perp})^{\perp} = W$.
- 4. Fie V un spațiu vectorial și B o formă biliniară simetrică. Notăm cu $\operatorname{rad}_B(V) = V^{\perp}$. Determinați $\operatorname{rad}_B(V)$ pentru $V = \mathbb{R}^4$ și $B(x,y) = x_1y_1 + 2x_1y_2 + 2x_2y_1 x_1y_3 x_3y_1$.
 - Calculați dim $rad_B(V)$ pentru o formă bilineară peste un spațiu V de dimensiune n.
- 5. Fie $V = \mathbb{R}^4$ şi forma biliniară $B(x, y) = x_1y_1 2x_2y_1 + 3x_3y_1 + 2x_3y_2 x_3y_3$. Determinați dim V_1 şi dim V_2 , unde $V_1 = \{x \in V | B(x, y) = 0\}$ şi $V_2 = \{y \in V | B(x, y) = 0\}$.
- 6. Fie K un corp de caracteristică 2, V un K-spaţiu vectorial şi $Q:V\to K$ of formă pătratică. Arătaţi că forma biliniară asociată este antisimetrică. Arătaţi că forma pătratică $Q:\mathbb{F}_2^2\to\mathbb{F}_2$, Q(x,y)=xy nu este diagonalizabilă.