Lecture 15 - Reshaping and Merging Data

Packages

none! we will use base R

Reshaping Data

- We recently learned how data can be stored in various file types (e.g., .csv, .json, etc.)
- If your data is in tabular form, it turns out you can organize your data in a variety of formats
- Two such formats that are commonly used are
 - Long format
 - Wide format

Long Format vs Wide Format?

- Imagine you are conducting a study on the blood pressure (systolic and diastolic) of set of patients
- You collect blood pressure measurements on each patient across up to three time points
- How would you format the data into a table?
 - Option 1: Each row is a single time point (multiple rows per patient)

^ · · ^ - · · · · · · · · · ·

Option 2: Each row is a single patient

Option 1:

Let's load the following dataset on blood pressure

load blood pressure data
bp_long <- read.csv("https://raw.githubusercontent.com/khasenst/datasets_teaching/refs
view first few lines
bp_long</pre>

A data.frame: 8 × 4

Patient.ID Time.Point Systolic.BP Diastolic.BP

<chr></chr>	<chr></chr>	<int></int>	<int></int>
P001	T1	168	109
P001	T2	151	73
P001	Т3	169	71
P002	T1	124	75
P002	T2	171	73
P002	Т3	171	98
P004	T1	164	79
P004	Т3	112	83

- In the format above,
 - each row is populated with a single blood pressure measurement from a single time point
 - patients are included in multiple rows
- Collecting more time points would increase the number of rows in the dataset, making it a "longer" dataset
- Therefore, we refer to this format as *long format*

Option 2:

Let's load the same dataset on blood pressure but in a different format

load blood pressure data
bp_wide <- read.csv("https://raw.githubusercontent.com/khasenst/datasets_teaching/refs
view first few lines
bp_wide</pre>

A data.frame: 3 × 7

Patient.ID Systolic.BP.T1 Diastolic.BP.T1 Systolic.BP.T2 Diastolic.BP.T2 Syst

•		•	•	
<chr></chr>	<int></int>	<int></int>	<int></int>	<int></int>
P001	168	109	151	73
P002	124	75	NA	NA
P004	164	79	173	105

- In the format above,
 - o each row is populated with a single patient
 - each row contains all repeated measurements (i.e. blood pressures across all time points)
- Collecting more time points would increase the number of columns in the dataset,
 making it a "wider" dataset
- Therefore, we refer to this format as wide format

Converting from Long to Wide Format

- There are several packages that can be used to convert between long and wide formats
 - Base R
 - tidyverse
 - ∘ data.table
 - ∘ janitor

We'll use the reshape() function already included in base R

reshape: Reshape Grouped Data

Description

This function reshapes a data frame between 'wide' format with repeated measurements in separate columns of the same record and 'long' format with the repeated measurements in separate records.

Usage

```
reshape(data, varying = NULL, v.names = NULL, timevar = "time",
    idvar = "id", ids = 1:NROW(data),
    times = seq_along(varying[[1]]),
    drop = NULL, direction, new.row.names = NULL,
    sep = ".",
    split = if (sep == "") {
        list(regexp = "[A-Za-z][0-9]", include = TRUE)
    } else {
        list(regexp = sep, include = FALSE, fixed = TRUE)}
)
```

- To convert long to wide format, we must specify the following arguments in the reshape() function
 - data Data frame you would like to convert to wide or long format
 - timevar Repeated observation variable. This is often "time" but can be variable that characterizes the repeated measurement
 - idvar Variable for which multiple observations are collected. This is often the patient ID in biomedical applications.
 - direction set to "wide" to convert to wide format and "long" to convert to long format

view our data in long format
bp_long

A data.frame: 8 × 4

Patient.ID Time.Point Systolic.BP Diastolic.BP

<chr></chr>	<chr></chr>	<int></int>	<int></int>
P001	T1	168	109
P001	T2	151	73

P001	Т3	169	71
P002	T1	124	75
P002	T2	171	73
P002	Т3	171	98
P004	T1	164	79
P004	Т3	112	83

A data.frame: 3 × 7

Patient.ID Systolic.BP.T1 Diastolic.BP.T1 Systolic.BP.T2 Diastolic.BP.T2 Systolic.BP.T2 Diastolic.BP.T3

	<chr></chr>	<int></int>	<int></int>	<int></int>	<int></int>
1	P001	168	109	151	73
4	P002	124	75	171	73
7	P004	164	79	NA	NA

Converting from Wide to Long Format

• The syntax for converting from wide to long format is a bit more difficult since we need to specify more arguments

reshape: Reshape Grouped Data

Description

This function reshapes a data frame between 'wide' format with repeated measurements in separate columns of the same record and 'long' format with the repeated measurements in separate records.

llsane

```
reshape(data, varying = NULL, v.names = NULL, timevar = "time",
    idvar = "id", ids = 1:NROW(data),
    times = seq_along(varying[[1]]),
    drop = NULL, direction, new.row.names = NULL,
    sep = ".",
    split = if (sep == "") {
        list(regexp = "[A-Za-z][0-9]", include = TRUE)
    } else {
        list(regexp = sep, include = FALSE, fixed = TRUE)}
}
```

- To convert wide to long format, we must specify the following arguments in the reshape() function
 - data Data frame you would like to convert to wide or long format
 - varying Specifies the columns that we need to be combined into long format
 - idvar Variable for which multiple observations are collected. This is often the patient ID in biomedical applications.
 - v.names Names for the resulting value columns (Systolic and Diastolic)
 - timevar The name of the column for time points
 - times The labels for the time points
 - direction Set to "wide" to convert to wide format and "long" to convert to long format

view our data in wide format
bp_wide

A data.frame: 3 × 7

Patient.ID Systolic.BP.T1 Diastolic.BP.T1 Systolic.BP.T2 Diastolic.BP.T2 Systolic.BP.T2 Diastolic.BP.T2 Systolic.BP.T2 Diastolic.BP.T2 Systolic.BP.T2 Systolic.BP.T2 Systolic.BP.T2 Diastolic.BP.T2 Systolic.BP.T2 Systolic.BP.T2 Systolic.BP.T2 Diastolic.BP.T2 Diastolic.BP.

	<chr></chr>	<int></int>	<int></int>	<int></int>	<int></int>
1	P001	168	109	151	73
4	P002	124	75	171	73
7	P004	164	79	NA	NA

A data.frame: 9 × 4

Patient.ID Time.Point Systolic Diastolic

	<chr></chr>	<chr></chr>	<int></int>	<int></int>
P001.T1	P001	T1	168	109
P002.T1	P002	T1	124	75
P004.T1	P004	T1	164	79
P001.T2	P001	T2	151	73
P002.T2	P002	T2	171	73
P004.T2	P004	T2	NA	NA
P001.T3	P001	Т3	169	71
P002.T3	P002	Т3	171	98
P004.T3	P004	Т3	112	83

• The reshape() function tends to provide verbose row names, but we know how to remove them!

```
# we can reorder by patient, then time
bp_long <- bp_long[order(bp_long$Patient.ID, bp_long$Time.Point),]
# remove rownames produced by the reshape() function
rownames(bp_long) <- NULL
# view our data in long format
bp_long</pre>
```

P001	T1	168	109
P001	T2	151	73
P001	Т3	169	71
P002	T1	124	75
P002	T2	171	73
P002	Т3	171	98
P004	T1	164	79
P004	T2	NA	NA
P004	Т3	112	83

✓ When to use Long vs Wide Format?

- When to use long format?
 - The majority of the time, we want our data in long format
 - Most functions for statistical modeling and data visualization require data to be in long format
 - Long format is more appropriate when each individual has varying numbers of repeated observations
- When to use wide format?
 - Wide format is more efficient for data storage
 - Wide format is more efficient for data summaries
 - Wide format is more appropriate when each individual has an equal number of observations

Merging Data using Joins

- In data science, we often analyze data from different sources
- This requires us to combine/merge/join the data into a single data frame
- To merge or join datasets is to combine the rows from x and y based on values in a common variable, also known as a "key"
- There are a variety of ways to join datasets
- We will cover the four most common

• In base R, the function merge() allows us to perform these join operations

merge: Merge Two Data Frames

Description

Merge two data frames by common columns or row names, or do other versions of database join operations.

Usage

```
# S3 method for data.frame
merge(x, y, by = intersect(names(x), names(y)),
    by.x = by, by.y = by, all = FALSE, all.x = all, all.y = all,
    sort = TRUE, suffixes = c(".x",".y"), no.dups = TRUE,
    incomparables = NULL, ...)
```

- To join or merge two datasets, we must specify the following arguments in the merge() function
 - x The left data frame in the merge
 - y The right data frame in the merge
 - by.x Column in data frame x used in the merge
 - by.y Column in data frame y used in the merge
 - o all.x if TRUE, keep all data from data frame x; default is FALSE
 - \circ all.y if TRUE, keep all data from data frame y; default is FALSE

Inner joins

- Consider two data frames x (left) and y (right)
- Inner Join Combines the rows between x and y based on values in a common variable
 - \circ If values in the common variable are not in both x and y, their data are excluded
- For example, let's perform an inner join to merge the following two datasets
 - Blood pressure
 - Demographics

```
# load blood pressure data
```

bp <- read.csv("https://raw.githubusercontent.com/khasenst/datasets_teaching/refs/he</pre>

load demographics data

demo <- read.csv("https://raw.githubusercontent.com/khasenst/datasets_teaching/refs/he</pre>

blood pressure data
bp

A data.frame: 8 × 4

Patient.ID	Time.Point	Systolic.BP	Diastolic.BP	
<chr></chr>	<chr></chr>	<int></int>	<int></int>	
P001	T1	168	109	
P001	T2	151	73	
P001	Т3	169	71	
P002	T1	124	75	
P002	T2	171	73	

P002	T3	171	98
P004	T1	164	79
P004	Т3	112	83

demographics data
demo

	A data.frame: 3 × 4				
Sex	Ethnicity	Age	id		
<chr></chr>	<chr></chr>	<int></int>	<chr></chr>		
Male	Hispanic	63	P001		
Female	Other	53	P003		
Female	White	39	P004		

- The inner join is performed using the script below
- Since patient 002 and patient 003 are NOT in both data frames, their data is excluded

bp_inner

A data.frame: 5 × 7

Sex	Ethnicity	Age	Diastolic.BP	Systolic.BP	Time.Point	Patient.ID
<chr></chr>	<chr></chr>	<int></int>	<int></int>	<int></int>	<chr></chr>	<chr></chr>
Male	Hispanic	63	109	168	T1	P001
Male	Hispanic	63	73	151	T2	P001
Male	Hispanic	63	71	169	Т3	P001
Female	White	39	79	164	T1	P004
Female	White	39	83	112	Т3	P004

Left joins

- Consider two data frames x (left) and y (right)
- Left Join Combines the rows between x and y based on values in a common variable
 - \circ If values in the common variable are in y but not x, their data are excluded
 - \circ If values in the common variable are in x but not y, their data are still included
- For example, let's perform an left join to merge the following two datasets
 - Blood pressure
 - Demographics

blood pressure data
bp

A data.frame: 8 × 4

Patient.ID	Time.Point	Systolic.BP	Diastolic.BP
<chr></chr>	<chr></chr>	<int></int>	<int></int>
P001	T1	168	109
P001	T2	151	73
P001	Т3	169	71
P002	T1	124	75
P002	T2	171	73
P002	Т3	171	98
P004	T1	164	79
P004	Т3	112	83

demographics data
demo

```
A data.frame: 3 × 4
   id
         Age Ethnicity
                              Sex
<chr> <int>
                   <chr>>
                           <chr>>
P001
          63
                Hispanic
                            Male
P003
          53
                   Other Female
P004
          39
                   White Female
```

Error: object 'gdp' not found Traceback:

Étapes suivantes : (Expliquer l'erreur

```
merged <- merge(x</pre>
                       = gdp
                       = population,
                 by.x = "country",
                 by.y = "country",
                 all.x = TRUE,
                 all.y = FALSE)
     Error: object 'gdp' not found
     Traceback:

    .handleSimpleError(function (cnd)

            watcher$capture_plot_and_output()
            cnd <- sanitize_call(cnd)</pre>
            watcher$push(cnd)
            switch(on_error, continue = invokeRestart("eval_continue"),
                 stop = invokeRestart("eval_stop"), error = NULL)
      . }, "object 'gdp' not found", base::quote(eval(expr, envir)))
 Étapes suivantes : (
                    Expliquer l'erreur
merged <- merge(x</pre>
                       = gdp,
                       = population,
                 by.x = "country",
                 by.y = "country",
                 all.x = FALSE,
                 all.y = TRUE)
     Error: object 'gdp' not found
     Traceback:

    .handleSimpleError(function (cnd)

      . {
            watcher$capture_plot_and_output()
            cnd <- sanitize_call(cnd)</pre>
            watcher$push(cnd)
            switch(on_error, continue = invokeRestart("eval_continue"),
                 stop = invokeRestart("eval_stop"), error = NULL)
      . }, "object 'gdp' not found", base::quote(eval(expr, envir)))
 Étapes suivantes : ( Expliquer l'erreur
merged <- merge(x</pre>
                       = gdp,
                       = population,
                 by.x = "country",
                 by.y = "country",
                 all.x = TRUE,
                 all.y = TRUE)
     Error: object 'gdp' not found
     Traceback:
```

Étapes suivantes : Expliquer l'erreur

- The left join is performed using the script below
- Since patient 003 is only in the "right" data frame, their data is excluded
- Since patient 002 is only in the "left" data frame, their data is included, but they have no demographic information

bp_left

A data.frame: 8 × 7

Patient.ID	Time.Point	Systolic.BP	Diastolic.BP	Age	Ethnicity	Sex
<chr></chr>	<chr></chr>	<int></int>	<int></int>	<int></int>	<chr></chr>	<chr></chr>
P001	T1	168	109	63	Hispanic	Male
P001	T2	151	73	63	Hispanic	Male
P001	Т3	169	71	63	Hispanic	Male
P002	T1	124	75	NA	NA	NA
P002	T2	171	73	NA	NA	NA
P002	Т3	171	98	NA	NA	NA
P004	T1	164	79	39	White	Female
P004	Т3	112	83	39	White	Female

Right joins

- Consider two data frames x (left) and y (right)
- Right Join Combines the rows between x and y based on values in a common variable
 - \circ If values in the common variable are in x but not y, their data are excluded
 - o If values in the common variable are in y but not x, their data are still included
- For example, let's perform an right join to merge the following two datasets
 - Blood pressure
 - Demographics

blood pressure data
bp

A data.frame: 8 × 4

Patient.ID	Time.Point	Systolic.BP	Diastolic.BP
<chr></chr>	<chr></chr>	<int></int>	<int></int>
P001	T1	168	109
P001	T2	151	73
P001	Т3	169	71
P002	T1	124	75
P002	T2	171	73
P002	Т3	171	98
P004	T1	164	79
P004	Т3	112	83

demographics data
demo

A data.frame: 3 × 4						
Sex	Age Ethnicity		id			
<chr></chr>	<chr></chr>	<int></int>	<chr></chr>			
Male	Hispanic	63	P001			
Female	Other	53	P003			
Female	White	39	P004			

- The right join is performed using the script below
- Since patient 002 is only in the "left" data frame, their data is excluded
- Since patient 003 is only in the "right" data frame, their data is included, but they have no blood pressure information

bp_right

A data.frame: 6 × 7

Patient.ID	Time.Point	Systolic.BP	Diastolic.BP	Age	Ethnicity	Sex
<chr></chr>	<chr></chr>	<int></int>	<int></int>	<int></int>	<chr></chr>	<chr></chr>
P001	T1	168	109	63	Hispanic	Male
P001	T2	151	73	63	Hispanic	Male
P001	Т3	169	71	63	Hispanic	Male
P003	NA	NA	NA	53	Other	Female
P004	T1	164	79	39	White	Female
P004	Т3	112	83	39	White	Female

Full joins

- Consider two data frames x (left) and y (right)
- Full Join Combines the rows between x and y based on values in a common variable
 - o If values in the common variable are in x but not y, their data are still included
 - If values in the common variable are in y but not x, their data are still included

- For example, let's perform an full join to merge the following two datasets
 - Blood pressure
 - Demographics

blood pressure data
bp

A data.frame: 8 × 4

Patient.ID Time.Point Systolic.BP Diastolic.BP

<chr></chr>	<chr></chr>	<int></int>	<int></int>
P001	T1	168	109
P001	T2	151	73
P001	Т3	169	71
P002	T1	124	75
P002	T2	171	73
P002	Т3	171	98
P004	T1	164	79
P004	Т3	112	83

demographics data
demo

A data.frame: 3 × 4

Sex	Ethnicity	Age	id
<chr>></chr>	<chr></chr>	<int></int>	<chr></chr>
Male	Hispanic	63	P001
Female	Other	53	P003
Female	White	39	P004

• The full join is performed using the script below

- Since patient 002 is only in the "left" data frame, their data is included, but they have no demographic information
- Since patient 003 is only in the "right" data frame, their data is included, but they have no blood pressure information

bp_full

A data.frame: 9 × 7

Sex	Ethnicity	Age	Diastolic.BP	Systolic.BP	Time.Point	Patient.ID
<chr></chr>	<chr></chr>	<int></int>	<int></int>	<int></int>	<chr></chr>	<chr></chr>
Male	Hispanic	63	109	168	T1	P001
Male	Hispanic	63	73	151	T2	P001
Male	Hispanic	63	71	169	Т3	P001
NA	NA	NA	75	124	T1	P002
NA	NA	NA	73	171	T2	P002
NA	NA	NA	98	171	Т3	P002
Female	Other	53	NA	NA	NA	P003
Female	White	39	79	164	T1	P004
Female	White	39	83	112	Т3	P004

Why are joins important?

- Merges/joins enable you study relationships in data from different sources
- For example, we can use the results of a join to visualize the relationship between blood pressure and sex at birth
- We'll do this a bit differently from above to show variations of what we've covered

Load the dataset

```
# load blood pressure data
```

bp <- read.csv("https://raw.githubusercontent.com/khasenst/datasets_teaching/refs/he</pre>

load demographics data

demo <- read.csv("https://raw.githubusercontent.com/khasenst/datasets_teaching/refs/he</pre>

bp

A data.frame: 3 × 7

Patient.ID Systolic.BP.T1 Diastolic.BP.T1 Systolic.BP.T2 Diastolic.BP.T2 Syst

<chr></chr>	<int></int>	<int></int>	<int></int>	<int></int>
P001	168	109	151	73
P002	124	75	NA	NA
P004	164	79	173	105

demo

A data.frame: 3 × 4						
Sex	Age Ethnicity		id			
<chr>></chr>	<chr></chr>	<int></int>	<chr></chr>			
Male	Hispanic	63	P001			
Female	Other	53	P003			
Female	White	39	P004			

- Merge the blood pressure data and demographic data
- Since we want all information from both datasets, we will use a full join

check our work
bp_full

A data.frame: 4 × 10

Patient.ID Systolic.BP.T1 Diastolic.BP.T1 Systolic.BP.T2 Diastolic.BP.T2 Syst

_		_		_
<chr></chr>	<int></int>	<int></int>	<int></int>	<int></int>
P001	168	109	151	73
P002	124	75	NA	NA
P003	NA	NA	NA	NA
P004	164	79	173	105

- Notice that we merged the data in wide format, which is fine
- We can convert the data to long format using the reshape() function

check our work
bp_long

A data.frame: 12 × 7

	Patient.ID	Age	Ethnicity	Sex	Time.Point	Systolic	Diastolic
	<chr></chr>	<int></int>	<chr></chr>	<chr></chr>	<chr></chr>	<int></int>	<int></int>
P001.T1	P001	63	Hispanic	Male	T1	168	109
P002.T1	P002	NA	NA	NA	T1	124	75
P003.T1	P003	53	Other	Female	T1	NA	NA
P004.T1	P004	39	White	Female	T1	164	79
P001.T2	P001	63	Hispanic	Male	T2	151	73
P002.T2	P002	NA	NA	NA	T2	NA	NA
P003.T2	P003	53	Other	Female	T2	NA	NA
DUU/ IS	DUUN	30	\1/hita	Female	тэ	172	105

F VV7.14	1 UU 1	JJ	v v i iit ⊂	ı GiliaiG	۱۷	110	100
P001.T3	P001	63	Hispanic	Male	Т3	169	71
P002.T3	P002	NA	NA	NA	Т3	171	98
P003.T3	P003	53	Other	Female	Т3	NA	NA
P004.T3	P004	39	White	Female	Т3	112	83

• Reorganizing the data

```
# we can reorder by patient, then time
bp_long <- bp_long[order(bp_long$Patient.ID, bp_long$Time.Point),]</pre>
```

A data.frame: 12 × 7

	/ (data.iidillo. 12 /					
Diastolic	Systolic	Time.Point	Sex	Ethnicity	Age	Patient.ID
<int></int>	<int></int>	<chr></chr>	<chr></chr>	<chr></chr>	<int></int>	<chr></chr>
109	168	T1	Male	Hispanic	63	P001
73	151	T2	Male	Hispanic	63	P001
71	169	Т3	Male	Hispanic	63	P001
75	124	T1	NA	NA	NA	P002
NA	NA	T2	NA	NA	NA	P002
98	171	Т3	NA	NA	NA	P002
NA	NA	T1	Female	Other	53	P003
NA	NA	T2	Female	Other	53	P003
NA	NA	Т3	Female	Other	53	P003
79	164	T1	Female	White	39	P004
105	173	T2	Female	White	39	P004
83	112	Т3	Female	White	39	P004

hn l∩nø

[#] remove rownames produced by the reshape() function
rownames(bp_long) <- NULL</pre>

[#] view our data in long format
bp_long

~~_±~...6

A data.frame: 12 × 7

Ethnicity	Sex	Age	Diastolic	Systolic	Time.Point	Patient.ID
<chr></chr>	<chr></chr>	<int></int>	<int></int>	<int></int>	<chr></chr>	<chr></chr>
Hispanic	Male	63	109	168	T1	P001
Hispanic	Male	63	73	151	T2	P001
Hispanic	Male	63	71	169	Т3	P001
NA	NA	NA	75	124	T1	P002
NA	NA	NA	NA	NA	T2	P002
NA	NA	NA	98	171	Т3	P002
Other	Female	53	NA	NA	T1	P003
Other	Female	53	NA	NA	T2	P003
Other	Female	53	NA	NA	Т3	P003
White	Female	39	79	164	T1	P004
White	Female	39	105	173	T2	P004
White	Female	39	83	112	Т3	P004

- Perform our data analysis!
- Note this is an example and we would need a larger sample size to come up with conclusions!

Systolic Blood Pressure by Sex

