Translating Mathematical Functions To Code With Time Asymptotic Analysis

Michal Špano

2022-04-19

Suppose the following for some finite $k, M = \{m_1, m_2, \dots, m_k\} \land N = \{n_1, n_2, \dots, n_k\}$:

$$f(k) = \prod_{i=1}^{k} \sum_{j=1}^{k} \left(m_i \times n_j \right)$$

The given **function** can be similarly expressed as:

$$f(k) = \left(\sum_{j=1}^{k} m_1 \times n_j\right) \times \left(\sum_{j=1}^{k} m_2 \times n_j\right) \times \dots \times \left(\sum_{j=1}^{k} m_{k-1} \times n_j\right) \times \left(\sum_{j=1}^{k} m_k \times n_j\right)$$

Or even more explicitly:

$$f(k) = \left[(m_1 \times n_1) + (m_1 \times n_2) + \dots + (m_1 \times n_j) \right] + \dots + \left[(m_i \times n_1) + (m_i \times n_2) + \dots + (m_i \times n_j) \right]$$

Code translation in Python3

The proposed function f(k) is implemented below.

```
Code translation in Python3

Suppose M, N are lists of some fixed size k

"""

product: int = 1

for m_i in M:
    sum_buffer: int = 0.
    for n_j in N:
        sum_buffer += (m_i * n_j)
    product *= sum_buffer
```

Code analysis

Let product be 1 in the initial state, that is, for some value v_1 computed in the first iteration of the outer for loop holds: product $= v_1$. Thus, product $= \prod_{i=0}^k v_i$ for k-th iteration. Furthermore, let $\operatorname{sum_buffer}$ (previously indicated as v_i) be initially 0 in each iteration of the outer for loop, so for each iteration in the inner for loop, $\operatorname{sum_buffer}$ equals to the sum of all terms of N, namely n_j , multiplied by some current constant m_c , thus $\operatorname{sum_buffer} = \sum_{j=1}^k m_c \times n_j$, where c is a constant and $c \leq k$.

Time complexity

According to **asymptotic analysis**, the lower and the upper bounds of such algorithm remain **identical**, and, undeniably, any case holds the same running time complexity. Thus, we compute the average (and, frankly, the only possible) running time as $\Theta(k^2)$ where the only variable affecting the real running speed is the value of k. Assume the parabolic function $g(k) = k^2$, where k is an integer and $k \ge 1$.