

Week 2

After this lecture, you will:

- Understand the challenges of **semantic representation**
- Know about 2 techniques of **topic modeling**:
 - SVD
 - LDA

Previously in Text Representations

- Lexical Representations
- Vocabulary = list of unique token / word / term / lemma / n-grams appearing in the corpus
- 1 dimension = 1 item of the vocabulary
- Raw Counts or TF-IDF
- Preprocessing (lemmatizing, stemming, stopping, ...)
- In a lexical representation, a text is seen as an assembly of words

- Semantic = deals with meaning
- **Text** as a gathering of **topics** ("science", "business", "sport", ...)
- These **topics** are responsible for the **terms** that appear
 - Each topic has a list of **terms**
 - Topic "business" → "revenue", "operations", etc...
 - Topic "sport" → "goal", "league", "ranking", etc...
 - Think about "terms more likely to appear when talking about the topic"

TOPIC

- Weighted list of terms (word / n-gram / stem ...)
- Each term has a weight
 - Important terms with high weight
 - Less important terms with low weight

DOCUMENT

- Weighted list of topics
- Vector representation:
 - 1 dimension = 1 topic
 - Coefficient = weight of topic in document

In Practice

"How did Vogue Magazine talk about Health?"

• How many articles?

• Using which words?

Challenge

- Discover the topics from text
- We will see 2 techniques:
 - Singular Value Decomposition (SVD)
 - Latent Dirichlet Allocation (LDA)

SVD

- Discover the topics from text
- Factorization of the Term-Document Matrix
- Based on Linear Algebra
- 3 matrices
 - $U \rightarrow terms / topics$
 - $\sum \rightarrow \text{topics}$
 - $V \rightarrow documents / topics$
- Term-Document Matrix = $U * \sum * V$

Factorization U

Term-Document Matrix

	d ₁	d ₂	d_3	d ₄	d ₅	d ₆
ship	1	0	1	0	0	0
boat	0	1	0	0	0	0
ocean	1	1	0	0	0	0
wood	1	0	0	1	1	0
tree	0	0	0	1	0	1

ship	-0.44	-0.30	0.57	0.58	0.25
boat	-0.13	-0.33	-0.59	0.00	0.73
ocean	-0.48	-0.51	-0.37	0.00	-0.61
wood	-0.70	0.35	0.15	-0.58	0.16
tree	-0.26	0.65	-0.41	0.58	-0.09

	2.16	0.00	0.00	0.00	0.00
	0.00	1.59	0.00	0.00	0.00
Σ	0.00	0.00	1.28	0.00	0.00
	0.00	0.00	0.00	1.00	0.00
	0.00	0.00	0.00	0.00	0.39

d ₁	d ₂	d_3	d_4	d ₅	d ₆
-0.75	-0.28	-0.20	-0.45	-0.33	-0.12
-0.29	-0.53	-0.19	0.63	0.22	0.41
0.28	-0.75	0.45	-0.20	0.12	-0.33
0.00	0.00	0.58	0.00	-0.58	0.58
-0.53	0.29	0.63	0.19	0.41	-0.22

Dimension Reduction 2 dims

boat -0.44 -0.30 boat -0.13 -0.33 ocean -0.48 -0.51 wood -0.70 0.35 tree -0.26 0.65

Approximate Term-Document Matrix

	d ₁	d ₂	d_3	d ₄	d ₅	d ₆
ship	0.85	0.52	0.28	0.13	0.21	-0.08
boat	0.36	0.36	0.16	-0.20	-0.02	-0.18
ocean	1.01	0.72	0.36	-0.04	0.16	-0.21
wood	0.97	0.12	0.20	1.03	0.62	0.41
tree	0.12	-0.39	-0.08	0.90	0.41	0.49

abla	2.16	0.00
2	0.00	1.59

	d ₁	d ₂	d_3	d ₄	d ₅	d_6
V'	-0.75	-0.28	-0.20	-0.45	-0.33	-0.12
	-0.29	-0.53	-0.19	0.63	0.22	0.41

Dimension Reduction

The term-document matrix we have could correspond to the texts:

D2: I cruised the ocean on a boat.

D3: I sail on a ship

(hypothesis: cruise / sail are stopwords)

$$\cos(d_2, d_3) = 0.95$$

Topic-Document Matrix

d ₁	d ₂	d_3	d_4	d_5	d ₆
-0.75	-0.28	-0.20	-0.45	-0.33	-0.12
-0.29	-0.53	-0.19	0.63	0.22	0.41

$$\cos(d_2, d_3) = 0.0$$

Term-Document Matrix

	d ₁	d ₂	d ₃	d ₄	d_5	d ₆
ship	1	0	1	0	0	0
boat	0	1	0	0	0	0
ocean	1	1	0	0	0	0
wood	1	0	0	1	1	0
tree	0	0	0	1	0	1

SVD

See the notebook "SVD"

Document Topics: Computer 01

Religion

Space

Joe,

ideas.

Computer_02

: 0.07

: 0.09

: 0.05 : 0.32

your description sounds like one of the gravity probe spacecraft

- Discover the topics from text
- Generative Model
- The Bag of Word is generated by random process
- Process:
 - 1 document = sum of weighted topics
 - 1 topic = probability distribution over dictionary

- 2 Topics:
 - "Sports" with words:
 - "football" P=0.4
 - "ronaldo" P=0.2
 - "goal" P=0.2
 - "world cup" P=0.2
 - "Business"
 - "revenue" P=0.6
 - "tax" P=0.3
 - "benefit" P=0.1

- 1 Document
 - 0.8 "Sport" + 0.2 "Business"
- Bag of Words:
 - 80% of the time we draw from "Sport"
 - 20% of the time we draw from "Business"
- 5-word long BoW
 - Football: 1, Ronaldo: 1, goal: 2
 - Business: revenue: 1
 - "Football star Ronaldo's revenue grows as he scores goal after goal."

- Given a collection of documents
- Given a **number of topics**
- Infer the distribution of topics in documents
- Infer the distribution of words in topics

- Discover Distribution
 - Of topics in documents
 - Of words in topics
- Machine Learning task
 - Python implementation in gensim or sklearn
 - Details of the learning task are out of scope

LDA - Evaluation

• Intrinsic Evaluation = evaluation of the topic / word

distributions

• Coherence metrics

• Umass, CV, UCI

- Given a collection of documents
 - Try multiple values of K
 - Select highest coherence

See the notebook "LDA"

