1. 강의 개요

수강반 번호		교과 목명	캡스톤디자인프 로젝트	학과	켣]퓨터공학과	학년	시수/ 학점	3/3	담당 교수	변영철	
Email			ejunu.kr	TEL	064	1) 754–3657	교재	1 1 1	L 강의	' 자료 제	<u>구</u>	
교과목 개요	제4차 산업혁명과 관련하여 인공지능 및 머신러닝 전문가는 턱없이 부족하다. 본 교과목에서는 최교과목 퓨터로 하여금 스스로 학습하도록 시킬 수 있는 방법을 배우고 이를 기반으로 사람보다도 훨씬 경										도 훨씬 잘	
주별 강의 계획												
주	월/일 주제				주요 내용							
1		강의소개 및 유의사항			한 학기동안 공부할 강의 내용 및 일정 설명한다.							
2		뉴런과 학습 방법, 실습				뇌를 구성하는 신경세포가 어떻게 동작하고 신경세 포를 연결한 신경망이 어떻게 동작하는지 이해한다.						
3	선형 회귀(Linear Regression), 오류함수, 기울기의 의미, 실 습					회귀의 의미에 대하여 공부하고 회귀를 잘 표현하거 나 그렇지 못한 신경세포의 오류에 대하여 이해한 다. 또한 기울기의 의미를 이해한다.						
4	논리 회귀(Logistic Regression), 이진 결정경계, 신경세포 입력과 결정경계, 실습					1개 뉴런이 만들어내는 논리회귀를 이해하고 이진 결정경계를 이해한다. 신경세포의 입력 수에 따른 결정경계의 모양을 이하한다.						
5	여러 클래스 결정경계, 소프트 맥스, 오류함수, 실습				ΪE	여러 클래스가 존재할 때 이를 위한 결정경계 만들 기, 이를 위한 오류함수를 이해한다.						
6		플레이스 홀더, XOR 문제, 다층뉴런과 비선형 결정경계, 실습				플레이스 홀더의 필요성, XOR 문제 및 이를 해결 하기 위한 방법으로서 비선형 결정경계를 만들기 위 한 다층뉴런, 다층 신경망을 이해한다.						
7	중간고사					중간고사						
8	도넛 찾기, 컨볼루션의 의미, CNN 이해, 이미지넷, CNN 사례, 실습				.,	딥 신경망의 결정판인 CNN에 대하여 학습하고 실 제로 개발해 본다.						
9	논리 회귀(Logistic Regre n), 이진 결정경계, 신경서 입력과 결정경계, 실습			신경세크		1개 뉴런이 만들어내는 논리회귀를 이해하고 이진 결정경계를 이해한다. 신경세포의 입력 수에 따른 결정경계의 모양을 이하한다.						
9	개인별 과제 아이디어			거 발표	표 이제까지 학습한 내용을 바탕으로 획하여 발표한다.			으로 가	! 개인별 과제를 기			
10	데이터 수집 및 가공				개인 과제와 관련한 데이터를 수집하고 가공한다.							
11	데이터 수집 및 가공			-		개인 과제와 관련한 데이터를 수집하고 가공한다.						
12	신경망 훈련 및 테스트				수집한 데이터를 이용하여 신경망을 훈련하고 테스 트한다.							
13	신경망 훈련 및 테스트					수집한 데이터를 이용하여 신경망을 훈련하고 테스						

		트한다.
14	신경망 훈련 및 테스트	수집한 데이터를 이용하여 신경망을 훈련하고 테스 트한다.
15	최종발표	각자 완성한 과제를 발표한다.

2. 강의 진행 방법

- 온라인 강의 (유튜브 김성훈 교수 '모두를 위한 딥러닝 강좌 시즌 1')
- 이론 2시간 + 실습 1시간

3. 강의 교재

• 강의 자료는 깃허브 https://github.com/yungbyun/capstone

4. 평가 방법

- 중간고사 실시
- 기말고사는 개인별 프로젝트로 평가함.
- 프로젝트는 100% 진행된 내용을 고려하여 평가함.
- 중간고사 40% + 최종발표 40% + 리포트 10% + 출석 10% (평가 비율 조정 가능)
- 발표 시 평가 요소: 아이디어 독창성, 난이도, 이해도, 완성도 등을 고려함.