BabySoC: Compact RISC-V SoC Project Overview

Project Introduction

- Goal: Create a compact, open-source SoC based on the RVMYTH RISC-V core.
- Key Features:
 - Integrates Phase-Locked Loop (PLL) for accurate clocking.
 - Features a 10-bit Digital-to-Analog Converter (DAC).
 - Enables communication with analog devices (audio/video output).
 - Uses Sky130 technology for fabrication and experimentation.
 - Serves as an educational platform with thorough documentation.

1. System on a Chip (SoC): The Basics

- Single chip containing all computer components.
- Components:
 - CPU
 - Memory (RAM, ROM, Flash)
 - I/O Ports
 - GPU (optional)
 - Digital Signal Processor (DSP)
 - Power Management
 - Optional features: wireless, security modules

Advantages:

- Space-saving: smaller devices.
- Energy efficiency: less power use.
- High performance: fast internal communication.
- Cost-effective: fewer separate parts.
- Reliability: less prone to hardware failure.
- · Applications:
 - Smartphones/tablets
 - Wearables (smartwatches)
 - IoT/sensor devices

• Embedded systems in cars/TVs/appliances

2. Types of SoCs

- Microcontroller-based:
 - Simple control tasks, low power (IoT, appliances).
- Microprocessor-based:
 - Powerful, runs OS, used in phones/tablets.
- Application-Specific:
 - Tuned for special tasks (graphics, AI, networking).
- SoC Design Flow:
 - Block diagram/specification
 - RTL design/simulation
 - Synthesis/Place & Route
 - Verification/fabrication

3. VSDBabySoC Architecture

- Core Components:
 - RVMYTH (RISC-V CPU): Open-source, customizable basic processor.
 - PLL: Generates stable/synchronized clock signals.
 - DAC: Converts digital data to analog output.
- Operation Flow:
 - Initialization triggers PLL for clock sync.
 - RVMYTH updates register (r17) for continuous output.
 - DAC converts output to analog signals for device interfacing.
- Applications:
 - Sends audio/video to TVs and phones.

4. Phase-Locked Loop (PLL)

- Function: Matches output clock frequency/phase to input reference signal.
- Block Diagram Elements:
 - Phase Detector: compares inputs, generates error signal.

- Loop Filter: smooths error signal.
- VCO: adjusts output frequency.
- Advantages:
 - Mitigates clock distribution delay/jitter.
 - Adapts to multiple frequency requirements.
 - Corrects errors (ppm) from crystal clocks.
 - Handles frequency drift (temperature/aging).

5. Digital-to-Analog Converter (DAC)

- Role: Converts digital signals (binary) into analog voltage.
- Types:
 - Weighted Resistor DAC: uses various resistors for conversion.
 - R-2R Ladder DAC: uses repeating resistor networks for scalable design.
- VSDBabySoC Feature: Uses a 10-bit DAC for higher resolution analog signals.

6. Summary of Project Impact

- Demonstrates integration of open-source RISC-V core with critical analog and digital peripherals.
- Showcases digital-to-analog interfacing for multimedia output.
- Provides a hands-on platform for SoC, analog, and clock design education.
- Illustrates practical design challenges (timing, synchronization, signal conversion) in modern embedded systems.