Лабораторная работа 3. Введение в работу с Octave

Отчет по лабораторной работе 3

Милёхин Александр НПМмд-02-21

Содержание

1	Цель работы	5
2	Теоретические сведения	6
3	Задание	7
4	Выполнение лабораторной работы	8
5	Выволы	29

List of Figures

4.1	Журналирование сессии	8
4.2	Вычисление выражения	8
4.3	Задание вектора-строки (ковектора)	9
4.4	Задание вектора-столбца (вектора)	9
4.5	Задание матрицы	9
4.6	Задание двух векторов-столбцов	10
4.7	Выполнение операции сложения векторов	10
4.8	Скалярное умножение векторов	10
4.9	Векторное умножение	11
4.10	Вычисление нормы вектора	11
4.11	Задание двух векторов-строк	11
	Вычисление проекции вектора и на вектор v	11
4.13	Введение двух матриц А⊠ и В	12
4.14	Вычисление произведения матриц А⊠В	12
4.15	Вычисление произведения матриц В $\mathbf{X}^{\mathrm{T}}\mathbf{A}\mathbf{X}$	12
4.16	Вычисление выражения	13
	Нахождение определителя	13
4.18	Нахождение обратной матрицы	13
	Нахождение собственных значений матрицы	14
	Вычисление ранга матрицы	14
	Создание вектора значений х	14
4.22	Задание вектора $y = \sin(x)$	15
	Построение графика $y = \sin(x)$	15
	График $y = \sin(x)$	15
4.25	Очистка графика	16
	Вектора х и у	16
	Задание цвета и размера линии	17
4.28	График y = sin(x) после изменения цвета и размера линии	17
	Подгонка диапазона осей	17
	График y = sin(x) после подгонки осей	18
4.31	Отрисовка сетки	18
	График y = $sin(x)$ после отрисовки сетки	19
	Подпись осей	19
4.34	График y = sin(x) после подписи осей	20
	Создание заголовка графика и задание легенды	20
	График y = sin(x) после создания заголовка и задания легенды	21
	Очистка памяти и рабочей области фигуры	21

4.38	Задание двух векторов	22
	Чертеж точек	22
	График с отрисованными точками	22
4.41	Использование команды hold on	23
4.42	Добавление дополнительного графика	23
4.43	Исходный и добавленный графики	23
4.44	Задание сетки, оси и легенды	24
4.45	График после задания сетки, оси и легенды	24
	Очистка памяти и рабочей области фигуры	24
4.47	Очищенная область	25
4.48	Задание вектора х	25
4.49	Построение графика $y=x^2\sin(x)$	25
4.50	Построение графика $y=x^2\sin(x)$ с поэлементными возведением в	
	степень и умножением	26
4.51	График после построения	26
4.52	Сохранение графиков	26
	Сумма	27
	Очистка памяти и рабочей области фигуры	27
4.55	Создание файла loop_for.m	27
4.56	Запуск файла loop_for.m	28
4.57	Создание файла loop_vec.m	28
4.58	Запуск файла loop_vec.m	28
4.59	Завершение записи в файл	28

1 Цель работы

Познакомиться с интерфейсом Octave.

2 Теоретические сведения

Остаче является свободной реализацией языка MATLAB. Графический интерфейс Octave похож на графический интерфейс MATLAB. Язык MATLAB был разработан Кливом Моулером (англ. Cleve Moler) в конце 1970-х годов. Целью разработки служила задача дать студентам факультета возможность использования программных библиотек Linpack и EISPACK без необходимости изучения языка FORTRAN. Язык распространился среди других университетов и был с большим интересом встречен учёными, работающими в области прикладной математики. МАТLAB широко используется для выполнения инженерных и научных расчётов, а также в образовании. В 1984 году была основана компания The MathWorks для коммерциализации MATLAB.

Вся теоретическая часть по использованию интерфейса Octave была взята из инструкции по лабораторной работе №3 на сайте: https://esystem.rudn.ru/pluginfile.php/1284124 octave-intro.pdf

3 Задание

Выполните работу и задокументируйте процесс выполнения.

4 Выполнение лабораторной работы

1. Простейшие операции

• Включим журналирование сессии (см. рис. 1).

Figure 4.1: Журналирование сессии

• Продемонстрируем, что Octave можно использовать как простейший калькулятор. Для этого вычислим выражение (см. рис. 2).

Figure 4.2: Вычисление выражения

• Зададим вектор-строку (ковектор) (см. рис. 3).

Figure 4.3: Задание вектора-строки (ковектора)

• Зададим вектор-столбец (вектор) (см. рис. 4).

Figure 4.4: Задание вектора-столбца (вектора)

• Зададим матрицу (см. рис. 5).

Figure 4.5: Задание матрицы

2. Операции с векторами

• Зададим два вектора-столбца (см. рис. 6).

Figure 4.6: Задание двух векторов-столбцов

• Выполним операцию сложения векторов (см. рис. 7).

Figure 4.7: Выполнение операции сложения векторов

• Произведем скалярное умножение векторов (см. рис. 8).

Figure 4.8: Скалярное умножение векторов

• Произведем векторное умножение (см. рис. 9).

Figure 4.9: Векторное умножение

• Вычислим норму вектора (см. рис. 10).

Figure 4.10: Вычисление нормы вектора

3. Вычисление проектора

• Введем два вектора-строки (см. рис. 11).

Figure 4.11: Задание двух векторов-строк

• Вычислим проекцию вектора и на вектор v (см. рис. 12).

Figure 4.12: Вычисление проекции вектора и на вектор v

4. Матричные операции

• Введем матрицы А⊠ и В (см. рис. 13).

Figure 4.13: Введение двух матриц А**⊠** и В

• Вычислим произведение матриц А⊠В (см. рис. 14).

Figure 4.14: Вычисление произведения матриц А⊠В

Figure 4.15: Вычисление произведения матриц В**⊠**^ТА**⊠**

• Вычислим 2А⊠ - 4Î, где Î есть единичная матрица (см. рис. 16).

Figure 4.16: Вычисление выражения

• Найдем определитель |А⊠| (см. рис. 17).

Figure 4.17: Нахождение определителя

• Найдем обратную матрицу А**⊠**⁻¹ (см. рис. 18).

Figure 4.18: Нахождение обратной матрицы

• Найдем собственные значения матрицы (см. рис. 19).

Figure 4.19: Нахождение собственных значений матрицы

• Вычислим ранг матрицы (см. рис. 20).

Figure 4.20: Вычисление ранга матрицы

5. Построение простейших графиков

• Построим график функции sin(x) на интервале [0, 2π]. Создадим вектор значений x (см. рис. 21).

Figure 4.21: Создание вектора значений х

• Зададим вектор y = sin(x) (см. рис. 22).

Figure 4.22: Задание вектора y = sin(x)

• Построим график (см. рис. 23.1, 23.2).

Figure 4.23: Построение графика $y = \sin(x)$

Figure 4.24: График y = sin(x)

• Улучшим внешний вид графика. Сначала очистим получившийся график (см. рис. 24.1). Заметим, что заданные вектора х и у сохранились (см. рис. 24.2).

Figure 4.25: Очистка графика

Figure 4.26: Вектора x и y

• Зададим красный цвет для линии и сделаем ее потолще (см. рис. 25.1, 25.2).

Figure 4.27: Задание цвета и размера линии

Figure 4.28: График y = sin(x) после изменения цвета и размера линии

• Подгоним диапазон осей (см. рис. 26.1, 26.2).

Figure 4.29: Подгонка диапазона осей

Figure 4.30: График у = sin(x) после подгонки осей

• Нарисуем сетку (см. рис. 27.1, 27.2).

Figure 4.31: Отрисовка сетки

Figure 4.32: График у = sin(x) после отрисовки сетки

• Подпишем оси (см. рис. 28.1, 28.2).

Figure 4.33: Подпись осей

Figure 4.34: График у = sin(x) после подписи осей

• Сделаем заголовок графика и зададим легенду (см. рис. 29). В результате получим следующий график (см. рис. 30).

Figure 4.35: Создание заголовка графика и задание легенды

Figure 4.36: График у = sin(x) после создания заголовка и задания легенды

6. Два графика на одном чертеже

• Начертим два графика на одном чертеже. Очистим память и рабочую область фигуры (см. рис. 31).

Figure 4.37: Очистка памяти и рабочей области фигуры

• Зададим два вектора (см. рис. 32).

Figure 4.38: Задание двух векторов

• Начертим эти точки, используя кружочки, как маркеры (см. рис. 33, 34).

Figure 4.39: Чертеж точек

Figure 4.40: График с отрисованными точками

• Чтобы добавить к нашему текущему графику ещё один, нужно использовать команду hold on (см. рис. 35).

Figure 4.41: Использование команды hold on

• Добавим график регрессии (см. рис. 36, 37).

Figure 4.42: Добавление дополнительного графика

Figure 4.43: Исходный и добавленный графики

• Зададим сетку, оси и легенду (см. рис. 38). В результате получим следующий график (см. рис. 39).

Figure 4.44: Задание сетки, оси и легенды

Figure 4.45: График после задания сетки, оси и легенды

7. График $y=x^2\sin(x)$

• Очистим память и рабочую область фигуры (см. рис. 40, 41).

Figure 4.46: Очистка памяти и рабочей области фигуры

(4.1843, 5.9342)

Figure 4.47: Очищенная область

• Зададим вектор х (см. рис. 42).

Figure 4.48: Задание вектора х

• Построим график $y=x^2\sin(x)$ (см. рис. 43).

Figure 4.49: Построение графика $y=x^2\sin(x)$

Ничего не получилось. Действительно, мы задали в выражении матричное умножение. В то время, как нам необходимо поэлементное.

• Построим график $y=x^2\sin(x)$, используя поэлементное возведение в степень .^ и поэлементное умножение (см. рис. 44, 45).

Figure 4.50: Построение графика $y=x^2\sin(x)$ с поэлементными возведением в степень и умножением

Figure 4.51: График после построения

• Сохраним графики в виде файлов (см. рис. 46).

Figure 4.52: Сохранение графиков

8. Сравнение циклов и операций с векторами

• Сравним эффективность работы с циклами и операций с векторами. Для этого вычислим сумму 3.1 (см. рис. 47).

$$\sum_{n=0}^{1000000} \frac{1}{n^2}.$$
(3.1)

Figure 4.53: Cymma

• Очистим память и рабочую область фигуры (см. рис. 48). Вычислим сумму с помощью цикла, создадим файл loop-for.m, функции tic и toc служат для запуска и остановки таймера (см. рис. 49).

Figure 4.54: Очистка памяти и рабочей области фигуры

Figure 4.55: Создание файла loop_for.m

• Запустим файл loop-for.m (см. рис. 50).

Figure 4.56: Запуск файла loop_for.m

• Вычислим сумму с помощью операций с векторами. Создадим файл loopvec.m (см. рис. 51), запустим его (см. рис. 52).

Figure 4.57: Создание файла loop vec.m

Figure 4.58: Запуск файла loop_vec.m

Во втором случае сумма вычисляется значительно быстрее.

• Завершим запись в файл (см. рис. 53).

Figure 4.59: Завершение записи в файл

5 Выводы

Я познакомился с некоторыми простейшими операциями в Octave.