elde edilir. Dizeklerin yeniden düzenlenmesi ve iki dizeğin toplanması işlemi P_1 ve daha sonra çıkacak P_1 altmatrisleri üzerinde yinelenirse,

elde edilir. Demek ki bağlı çizgelere ilişkin çakışım matrisinin aşaması d-1 dir. Öyleyse bu gözlemin bir genellemesi olarak aşağıdaki teoremi verebiliriz.

Teorem 3.3.1 p parçadan oluşan $\zeta(d,a)$ çizgisine ilişkin çakışım matrisinin aşaması d-p dir.

n çevresi olan bir çizgedeki i nci çevreyi C_i ile gösterelim.

Tanım 3.3.1 Ç(d, a) nın $n \ge a$ boyutundaki <u>çevre matrisi</u>, $B = [b_{ij}] \ j$ ninci ayrıt, i ninci çevrede ise (değilse) $b_{ij} = 1 \ (b_{ij} = 0)$ olarak tanımla nır.

Şekil 3.3.1 deki C(4,6) çizgesine ilişkin çevre matrisini,