Setting the Target

Precise Estimands and the Gap Between Theory and Empirics

Ian Lundberg

Princeton Sociology ilundberg@princeton.edu

Rebecca Johnson

Dartmouth Quantitative Social Science rebecca.ann.johnson @dartmouth.edu Brandon M. Stewart

Princeton Sociology bms4@princeton.edu

4 August 2020. Annual Meeting of the American Sociological Association.
Paper on SocArxiv [link]. Replication code on GitHub [link]. Slides on GitHub [link].
Research reported in this publication was supported by The Eunice Kennedy Shriver
National Institute of Child Health & Human Development of the National Institutes
of Health under Award Number P2CHD047879

"[Variables] empirically perform as theoretically predicted,

State of the field: How methods are used in sociology

"[Variables] empirically perform as theoretically predicted, by displaying statistically significant effects net of other variables in the right direction"

Research goals are defined by hypotheses about model coefficients

Research goals are defined by hypotheses about model coefficients

The goal is only defined within the statistical model

Research goals are defined by hypotheses about model coefficients \downarrow The goal is only defined within the statistical model \downarrow

It becomes impossible to reason about other estimation strategies

Research goals are defined by hypotheses about model coefficients \downarrow The goal is only defined within the statistical model \downarrow It becomes impossible to reason about other estimation strategies

Solution:

State the research goal separately from the estimation strategy

Research goals are defined by hypotheses about model coefficients \downarrow The goal is only defined within the statistical model

It becomes impossible to reason about other estimation strategies

Solution:

Our diagnosis for the source of many methodological problems

State the research goal ← separately from the estimation strategy

A unit-specific quantity aggregated over a target population

Lieberson 1987, Abbott 1988, Freedman 1991, Xie 2013, Hernán 2018

A quantity involving observable data

Pearl 2009, Imbens and Rubin 2015, Morgan and Winship 2015, Elwert and Winship 2014

An algorithm applied to data

Young 2009, Watts 2014, Berk et al. 2019, Molina and Garip 2019

Theory or general goal by argument estimands by assumption estimands by data Estimation Estimation

Theory or general goal by argument by argument by argument by argument by argument estimands by assumption estimands by data Estimation by data

Systematic Review All 32 articles in ASR 2018 using quantitative data Theory or general goal by argument by argument by argument estimands by assumption estimands by data Estimation strategies

Systematic Review All 32 articles in ASR 2018 using quantitative data Clarity about causal claims (if any)

Theory or	Set	Theoretical	Link	Empirical	Learn	Estimation
general goal	by argument	estimands	by assumption	estimands	by data	strategies

Systematic Review All 32 articles in ASR 2018 using quantitative data Clarity about causal claims (if any)

Systematic Review All 32 articles in ASR 2018 using quantitative data

Clarity about causal claims (if any)

18 articles 56% of ASR 7 articles 22% of ASR 7 articles 22% of ASR using quantitative Causal target: Causal target: Descriptive target data Observational data Experiments 0 out of 18 4 out of 7 1 out of 7 articles was clear articles were clear articles was clear

Causal target:

Descriptive target

Clarity about the target population

6 out of 16 articles were clear

Causal target:

data

Theory or general goal by argument by argument by argument by assumption by assumption estimands by data Estimation by data

First two births are the same sex

Theory or general goal by argument Set by argument Theoretical estimands by assumption estimands by data Estimation strategies

First two births are the same sex Third birth

First two births \longrightarrow Third birth \longrightarrow Employed

— At most 53% of mothers have 2+ children

- At most 53% of mothers have 2+ children
- The complier population is at most 7%

- At most 53% of mothers have 2+ children
- The complier population is at most 7%
- Target population: at most $53\% \times 7\% = 4\%$ of mothers

- At most 53% of mothers have 2+ children
- The complier population is at most 7%
- Target population: at most $53\% \times 7\% = 4\%$ of mothers

Causal contrast is limited:

— Having 3 vs. 2 children

Theory or general goal by argument estimands by assumption by assumption by data Estimation by data

Vague statement Effect of motherhood on employment Theory or general goal by argument estimands by assumption estimands by data Estimation by data by data

Effect of motherhood on employment

Vague statement Precise statement

Vague statement Effect of motherhood on employment Precise statement
Effect of having 3 vs. 2 children

causal contrast

Not just problems with instruments.

Not just problems with instruments.

— Causal contrast is vague when the treatment is continuous

Not just problems with instruments.

- Causal contrast is vague when the treatment is continuous
- Target population is vague if there are issues of common support

Theory or general goal by argument estimands by assumption estimands by data Estimation strategies

Theory or	Set	Theoretical	Link	Empirical	Learn	Estimation
general goal	by argument	estimands	by assumption	estimands	by data	strategies

Theory or Set Theoretical Link Empirical Learn estimands by argument by argument Estimation strategies

Identification assumptions

Theory or general goal by argument estimands the ordinary of t

Identification assumptions

are essential even for claims that appear to be **non-causal**

Theory or	Set	Theoretical	Link	Empirical	Learn	Estimation
general goal	by argument	estimands	by assumption	estimands	by data	strategies

Theory or general goal by argument estimands the many properties of the string theoretical by assumption to the string of the string the string of the strin

Evidence: Police use lethal force at the same rate against black and white civilians who are stopped.

Theory or general goal by argument estimands the many strategies by assumption to the control of the control of

Evidence: Police use lethal force at the same rate against

black and white civilians who are stopped.

Claim: Police are unbiased

Theory or general goal by argument estimands the many strategies by assumption to the strategies the strategies to the s

Evidence: Police use lethal force at the same rate against

black and white civilians who are stopped.

Claim: Police are unbiased

Why wrong: Only the most dangerous whites are stopped.

We should expect **more** force used against whites.

Evidence: Police use lethal force at the same rate against black and white civilians who are stopped.

Claim: Police are unbiased

Why wrong: Only the most dangerous whites are stopped.

We should expect **more** force used against whites.

Fryer 2019. See a fuller critique by Knox et al. 2020.

Theory or general goal by argument estimands by assumption estimands by data

Learn Estimation strategies

A statistical model enters here (and only here)

Theory or	Set	Theoretical	Link	Empirical	Learn	Estimation
general goal	by argument	estimands	by assumption	estimands	by data	strategies

Theory or Set Theoretical Link Empirical by argument estimands by assumption estimands by data Estimation Strategies

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} \left(\hat{\mathsf{E}}(Y \mid \vec{X} = \vec{x_i}, \mathsf{Motherhood} = \mathsf{Mother}) - \hat{\mathsf{E}}(Y \mid \vec{X} = \vec{x_i}, \mathsf{Motherhood} = \mathsf{Non-mother}) \right)$$

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} \left(\hat{\mathsf{E}}(Y \mid \vec{X} = \vec{x_i}, \mathsf{Motherhood} = \mathsf{Mother}) \right. \\ \left. - \hat{\mathsf{E}}(Y \mid \vec{X} = \vec{x_i}, \mathsf{Motherhood} = \mathsf{Non-mother}) \right) \\ \frac{\mathsf{E}}{\mathsf{e}} \underbrace{\mathbf{e}}_{\mathsf{o}} \underbrace{\mathbf{e}}_{\mathsf{o}$$

Pal and Waldfogel 2017

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} \left(\hat{\mathsf{E}}(Y \mid \vec{X} = \vec{x_i}, \mathsf{Motherhood} = \mathsf{Mother}) \right. \\ \left. - \hat{\mathsf{E}}(Y \mid \vec{X} = \vec{x_i}, \mathsf{Motherhood} = \mathsf{Non-mother}) \right) \\ \frac{\mathsf{E}}{\mathsf{e}^{\mathsf{o}}_{\mathsf{e}}} \underbrace{\mathsf{o}^{0.00}_{-0.01}}_{\mathsf{o}^{\mathsf{o}}_{\mathsf{o}}} \underbrace{\mathsf{o}^{0.00}_{-0.02}}_{\mathsf{o}^{\mathsf{o}}_{\mathsf{o}}} \underbrace{\mathsf{o}^{0.00}_{-0.03}}_{\mathsf{o}^{\mathsf{o}}_{\mathsf{o}}} \underbrace{\mathsf{o}^{0.00}_{-0.03}}_{\mathsf{o}^{\mathsf{o}}_{\mathsf{o}}} \underbrace{\mathsf{o}^{0.00}_{-0.03}}_{\mathsf{o}^{\mathsf{o}}_{\mathsf{o}}_{\mathsf{o}}} \underbrace{\mathsf{o}^{0.00}_{-0.03}}_{\mathsf{o}^{\mathsf{o}}_{\mathsf{o}}_{\mathsf{o}}} \underbrace{\mathsf{o}^{0.00}_{-0.03}}_{\mathsf{o}^{\mathsf{o}}_{\mathsf{o}}_{\mathsf{o}}_{\mathsf{o}}_{\mathsf{o}}_{\mathsf{o}}} \underbrace{\mathsf{o}^{0.00}_{-0.03}}_{\mathsf{o}^{\mathsf{o}}_{\mathsf{o}}_{\mathsf{o}}_{\mathsf{o}}_{\mathsf{o}}_{\mathsf{o}}_{\mathsf{o}}_{\mathsf{o}}} \underbrace{\mathsf{o}^{0.00}_{\mathsf{o}}_{\mathsf{o}}}_{\mathsf{o}^{\mathsf{o}}_{\mathsf$$

Pal and Waldfogel 2017

Pal and Waldfogel 2017

Setting the empirical estimand frees us to learn under more **credible** estimation assumptions

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} \left(\hat{E}(Y \mid \vec{X} = \vec{x_i}, \text{Motherhood} = \text{Mother}) \right)$$

$$- \hat{E}(Y \mid \vec{X} = \vec{x_i}, \text{Motherhood} = \text{Non-mother})$$

$$\frac{\hat{E}(Y \mid \vec{X} = \vec{x_i}, \text{Motherhood} = \text{Non-mother})}{\frac{\hat{E}(Y \mid \vec{X} = \vec{X}, \text{Motherhood} = \text{Non-mother})}{\frac{\hat{E}(Y \mid \vec{X} = \vec{X}$$

Pal and Waldfogel 2017

Theory or general goal by argument estimands by assumption estimands by data Estimation Estimation

It depends on the estimand

ightarrow goals are defined by procedures done to data

ightarrow goals are defined by procedures done to data

Instead, we should set the target nonparametrically

 \rightarrow could be approximated by many candidate procedures

ightarrow goals are defined by procedures done to data

Instead, we should set the target nonparametrically

 \rightarrow could be approximated by many candidate procedures

Estimands bring benefits to everyone.

 \rightarrow goals are defined by procedures done to data

Instead, we should set the target nonparametrically

ightarrow could be approximated by many candidate procedures

Estimands bring **benefits** to everyone.

► Estimands help the analyst to make methodological choices

 \rightarrow goals are defined by procedures done to data

Instead, we should set the target nonparametrically

ightarrow could be approximated by many candidate procedures

Estimands bring benefits to everyone.

- ► Estimands help the analyst to make methodological choices
- ► Estimands help the **reviewer** to pinpoint the step where the link to theory breaks down

 \rightarrow goals are defined by procedures done to data

Instead, we should set the target nonparametrically

ightarrow could be approximated by many candidate procedures

Estimands bring benefits to everyone.

- ► Estimands help the analyst to make methodological choices
- ► Estimands help the **reviewer** to pinpoint the step where the link to theory breaks down
- ► Estimands help the **community** to clarify the contribution of each paper

Paper on SocArxiv. Replication code on GitHub. Slides on GitHub.