

AMERICAN METEOROLOGICAL SOCIETY

Bulletin of the American Meteorological Society

EARLY ONLINE RELEASE

This is a preliminary PDF of the author-produced manuscript that has been peer-reviewed and accepted for publication. Since it is being posted so soon after acceptance, it has not yet been copyedited, formatted, or processed by AMS Publications. This preliminary version of the manuscript may be downloaded, distributed, and cited, but please be aware that there will be visual differences and possibly some content differences between this version and the final published version.

The DOI for this manuscript is doi: 10.1175/BAMS-D-12-00248.1

The final published version of this manuscript will replace the preliminary version at the above DOI once it is available.

1 **Advancing drought understanding, monitoring and prediction**

2
3 *Annarita Mariotti, NOAA/OAR Climate Program Office*

4 *Siegfried Schubert, NASA/GSFC GMAO*

5 *Kingtse Mo, NOAA/NWS Climate Prediction Center*

6 *Christa Peters-Lidard, NASA/GSFC Hydrologic Sciences Laboratory*

7 *Andy Wood, NOAA NWS/Northwest River Forecast Center*

8 *Roger Pulwarty, NOAA/OAR Climate Program Office and ESRL/PSD*

9 *Jin Huang, NOAA/NWS Climate Test Bed*

10 *Dan Barrie, NOAA/OAR Climate Program Office*

11

12 Corresponding Author:

13 Dr Annarita Mariotti

14 NOAA/OAR Climate Program Office

15 1315 EastWest Highway

16 Silver Spring, 20910 MD

17 Tel: +1 301 734-1237

18 Annarita.mariotti@noaa.gov

19

20 **Abstract**

21 Despite recent advances in drought understanding, monitoring and forecasting, current drought
22 capabilities still fall short of users' needs, especially the need for skillful and reliable drought forecasts at
23 regional and local scales. To tackle this outstanding and challenging problem, NOAA's Drought Task
24 Force was established in October 2011 as a focused and coordinated research effort drawing from
25 excellence across the broad drought research community, with the ambitious goal of achieving
26 significant new advances in the ability to understand, monitor and predict drought over North America.
27 The NOAA Drought Task Force Meeting (held October 25-26, 2012 in Fort Collins) had the goal to
28 assess work status and advances after the first year of activities, develop future plans and assess near-
29 term research gaps. Highlights of the Drought Task Force meeting and its outcomes are provided in this
30 summary.

TITLE: NOAA Drought Task Force Meeting

What: Over 40 participants including Drought Task Force scientists from multiple academic and federal institutions and invitees from drought service and operational organizations met to discuss the latest drought research advances, prospects for improving current capabilities and outstanding research gaps.

When: October 25-26, 2012

Where: Fort Collins, Colorado

31

32

33 Having the capacity to monitor droughts in near-real time and providing accurate drought prediction
34 from weeks to seasons in advance can greatly reduce the severity of social and economic damage caused

35 by drought, a leading natural hazard for North America. The congressional mandate to establish the
36 National Integrated Drought Information System (NIDIS, Public Law 109-430) in 2006 was a major
37 impulse to develop, integrate and provide drought information to meet the challenges posed by this
38 hazard. Significant progress has been made on many fronts. On the research front, efforts by the broad
39 scientific community have resulted in improved understanding of North American droughts, and
40 improved monitoring and forecasting tools. We now have a better understanding of the droughts of the
41 20th Century including the 1930s' "Dust Bowl"; we have developed a broader array of tools and datasets
42 that enhance the official North American Drought Monitor based on different methodologies such as
43 state-of-the-art land-surface modeling (e.g. the North American Land Data Assimilation System) and
44 remote sensing (e.g., the Evaporative Stress Index) to better characterize the occurrence and severity of
45 drought in its multiple manifestations. In addition we have new tools for drought prediction (including
46 the new NCEP Climate Forecast System v2 for operational prediction and an experimental National
47 Multi-Model Ensemble) and have explored diverse methodologies including ensemble hydrologic
48 prediction approaches. Broad NIDIS-inspired progress is influencing the development of a Global
49 Drought Information System (GDIS) under the auspices of the World Climate Research Program.

50 Despite these advances, current drought monitoring and forecasting capabilities still fall short of users'
51 needs, especially the need for skillful and reliable drought forecasts at regional and local scales. To
52 tackle this outstanding, challenging problem, focused and coordinated research efforts are needed,
53 drawing from excellence across the broad drought research community. To meet this challenge, NOAA's
54 Drought Task Force was established in October 2011 with the ambitious goal of achieving significant
55 new advances in the ability to understand, monitor and predict drought over North America. The Task
56 Force (duration is October 2011 – September 2014) is an initiative of NOAA's Climate Program Office
57 Modeling, Analysis, Predictions, and Projections (MAPP) program in partnership with NIDIS. It brings

58 together over thirty leading MAPP-funded drought scientists from multiple academic and federal
59 institutions (involves scientists from NOAA's research laboratories and centers, NASA, U.S.
60 Department of Agriculture, NCAR and many universities), in a concerted research effort that builds on
61 individual MAPP research projects. These projects span the wide spectrum of drought research needed
62 to make fundamental advances, from those aimed at the basic understanding of drought mechanisms to
63 those aimed at testing new drought monitoring and prediction tools for operational and service purposes
64 (as part of NCEP's Climate Test Bed). The Drought Task Force provides focus and coordination to
65 MAPP drought research activities, and also facilitates synergies with other national and international
66 drought research efforts, including those by the GDIS (more information about the NOAA Drought Task
67 Force can be found at

68 <http://cpo.noaa.gov/ClimatePrograms/ModelingAnalysisPredictionsandProjections/MAPPTaskForces/DroughtTa>
69 [skForce.aspx](http://cpo.noaa.gov/ClimatePrograms/ModelingAnalysisPredictionsandProjections/MAPPTaskForces/DroughtTa)).

70 The NOAA Drought Task Force Meeting was held with the intent to assess work status and advances
71 after the first year of activities, develop future plans and assess near-term research gaps (for more
72 information regarding the Drought Task Force meeting visit
73 <http://cpo.noaa.gov/ClimatePrograms/ModelingAnalysisPredictionsandProjections/MAPPTaskForces/DroughtTa>
74 [kForce/DTFYear1Meeting.aspx](http://cpo.noaa.gov/ClimatePrograms/ModelingAnalysisPredictionsandProjections/MAPPTaskForces/DroughtTa)). The first day of the meeting was conducted jointly with NOAA's 37th
75 Climate Diagnostics and Prediction Workshop in order to share Drought Task Force research with the
76 broader community, receive feedback, and identify synergies with other activities. Day 1 included oral
77 sessions on *Drought Monitoring and Data Assimilation, Drought and Hydroclimate Prediction, Physical*
78 *Mechanisms and Case Studies for Extreme Hydroclimate Events, Drought Information and Services*, and
79 an evening poster session. The multiple presentations by Drought Task Force investigators showing
80 results from their ongoing research projects were complemented by presentations from the broader

81 community. The second day dedicated most of its time to planning and discussion with several main
82 goals: 1) Make direct connections between the Drought Task Force participants and service
83 organizations that have a stake in Drought Task Force research outcomes; 2) Sum-up Year One Drought
84 Task Force accomplishments and make plans for Year Two; and 3) Discuss near-term drought research
85 gaps and explore linkages with the developing GDIS. Invitees of the Day 2 meeting included all Task
86 Force participants and selected representatives of the drought service organizations (including
87 representatives from the Drought Mitigation Center, Regional Integrated Sciences and Assessment teams
88 (RISAs), NIDIS Pilots, and Regional Climate Centers). Highlights of the Drought Task Force meeting
89 outcomes are provided below.

90

91 **Summary of Drought Task Force Year One activities** As part of its Year One efforts, the Task Force
92 has developed a drought test-bed framework that individual research groups can use to test/evaluate
93 methods and ideas. Central to this is a focus on three high-profile North American droughts which are
94 key areas for NIDIS early warning system development (1998-2004 western US drought, 2006-2007 SE
95 US drought, 2011- 2012 Tex-Mex drought over the Southern Plains). The framework facilitates
96 collaboration among projects, defines metrics to assess the quality of monitoring and prediction
97 products, and helps to develop an experimental drought monitoring and prediction system that
98 incorporates and assesses recent advances. Three working groups (WG) were formed to address the
99 major aspects of the test-bed: 1) WGI - Metrics: to define and apply metrics to evaluate advances in
100 drought monitoring and prediction 2) WGII - Case Studies: to analyze drought cases by integrating all
101 aspects of drought research and 3) WGIII - Experimental System: to incorporate research advances in an
102 experimental drought monitoring and prediction system and assess improvements. To date, the Drought
103 Task Force has proposed a *Journal of Hydrometeorology* special collection entitled “Advances in

104 Drought Monitoring and Prediction” that will include research papers from individual Task Force
105 members as well as a number of collective papers.

106

107 **Drought Task Force Plans for Year Two** In the coming year, the Drought Task Force plans to build on
108 the foundation of collaboration established in Year One by continuing to press the overarching goal of
109 evaluating drought science, and by concentrating efforts in several specific areas. High-level goals
110 include:

- 111 1. Improving our understanding of the nature of drought, its manifestations and causes, and
112 improving narrative communication thereof (key issues include the role of soil moisture,
113 ocean conditions, evaporative demand, land surface-precipitation-temperature relationships,
114 cross-temporal and cumulative aspects of drought risk).
- 115 2. Quantifying current monitoring and prediction capabilities, and particularly improvements
116 attributable to the Drought Task Force projects.
- 117 3. Identifying and investigating areas that offer the most promise for improving operational
118 capabilities, and strengthening the drought research to operations connection with active
119 linkages, in preparation for Year Three.

120

121 In order to achieve the above goals, the Task Force activities will be organized around specific themes
122 consisting of 1) drought relevant science issues, 2) drought narratives, and 3) research to operational
123 capabilities (RtC, for short). These themes recognize the multiple and important roles the Drought Task
124 Force can play to advance drought science and service capabilities. Specific roles include 1) stimulating
125 progress on basic drought science issues, 2) addressing the ongoing North American drought and
126 possible future droughts to facilitate discussions on causes and develop narrative explanations thereof,

127 and 3) assessing recent progress in drought monitoring and prediction, with an eye towards advancing
128 operational/service capabilities, building on the metrics and case studies framework developed during
129 Year One. The planned “narrative” activities will occur twice a year and focus on the analysis of recent
130 past droughts and provide a venue to discuss research results regarding manifestations and scientific
131 explanations of the droughts. The “RtC” activities will also take place on a six-monthly basis and in
132 contrast to the “narrative” activities will focus primarily on the three historical test-bed droughts selected
133 by the WG-Case Studies and the application of the metrics agreed upon by the WG-Metrics to provide a
134 benchmark against which to test new operational and service capabilities. The Drought Task Force
135 “narrative” activities will result in Drought Reports describing and explaining, from a research
136 perspective, recent past droughts. The findings from the RtC activities will be summarized in an RtC
137 Report, a “living document” assessing progress in capabilities that will be regularly updated.

138

139 **Near-Term Research Gaps** Attendees discussed near-term drought research gaps and potential future
140 research directions focusing on drought 1) understanding, 2) monitoring, 3) prediction, and 4) improving
141 drought information systems. Questions that stimulated discussion included: *What are current gaps in
142 understanding the mechanisms that control the development (onset, duration, demise, intensity,
143 frequency) of U.S. drought in its various manifestations? Are there gaps in current capabilities to
144 monitor U.S. drought? How does our prediction skill compare with expected predictability over the
145 U.S.? What are the most promising new methodologies, models and observations to be explored to
146 improve drought prediction? What are the gaps in current leading drought information (monitoring and
147 prediction) systems contributing to NIDIS? Which of these gaps are “science-limited” and requiring
148 research? What major contributions can the Drought Task Force bring in the broader international
149 context?* A collective Drought Task Force paper, in preparation for the *Journal of Hydrometeorology*

150 special collection, will summarize major outcomes of this discussion.

151

152 Overall, the meeting represented an important milestone for the NOAA Drought Task Force. It helped
153 assess progress since its inception and reinforce collaborations among Drought Task Force participants
154 and make new connections within and outside of the Task Force. It provided a major push towards
155 formulating a plan forward for the group that takes into account diverse input, including that of the
156 drought research stakeholders and individual scientists involved in the research, hence building upon the
157 foundation of user-requirements, impacts assessments, applications, and on-going research projects.

158

159 **Acknowledgements**

160 The Drought Task Force meeting organizers would like to thank the organizers of NOAA's 37th Climate
161 Diagnostics and Prediction Workshop, especially Wayne Higgins and Mike Halpert of the NOAA
162 Climate Prediction Center. They would also like to thank the staff that worked to prepare the meeting
163 and provide logistical support: Amy Butler and Melissa Ou from the Climate Prediction Center, Joanne
164 Divico from Colorado State University, and William Chong from the Climate Program Office.