# Лабораторная работа # 2

Предполагаемый язык выполнения лабораторных работ Python 3. Лабораторные работы выполняются студентами индивидуально или в группах по 2-3 человека (по желанию). По результатам выполнения лабораторной работы необходимо подготовить отчет. Отчет должен содержать описание реализованных вами алгоритмов, ссылку на реализацию, необходимые тесты и таблицы.

## Постановка задачи

- 1. Реализуйте стохастический градиентный спуск для решения линейной регрессии. Исследуйте сходимость с разным размером батча (1 SGD, 2, ..., n-1 Minibatch GD, n GD из предыдущей работы).
- 2. Подберите функцию изменения шага (learning rate scheduling), чтобы улучшить сходимость, например экспоненциальную или ступенчатую.
- 3. Исследуйте модификации градиентного спуска (Nesterov, Momentum, AdaGrad, RMSProp, Adam).
- 4. Исследуйте сходимость алгоритмов. Сравнить различные методы по скорости сходимости, надежности, требуемым машинным ресурсам (объем оперативной памяти, количеству арифметических операций, времени выполнения)
- 5. Постройте траекторию спуска различных алгоритмов из одной и той же исходной точки с одинаковой точностью. В отчете наложить эту траекторию на рисунок с линиями равного уровня заданной функции.

#### Дополнительное задание

- 1. Реализуйте полиномиальную регрессию. Постройте графики восстановленной регрессии для полиномов разной степени.
- 2. Модифицируйте полиномиальную регрессию добавлением регуляризации в модель (L1, L2, Elastic регуляризации).
- 3. Исследуйте влияние регуляризации на восстановление регрессии.

## Критерии оценивания

- 1. Работоспособность и качество кода.
- 2. Полнота отчета: наличие постановки задачи, описания методов, промежуточных выводов, результатов, а также графиков и таблиц, которые их демонстрируют.
- 3. Знание теории, которая лежит в основе применяемых методов.
- 4. Анализ результатов, преимуществ и ограничений методов.

# 5. Дополнительное задание.

Каждый критерий оценивается максимально в 5 баллов. Итого максимальный балл за лабораторную работу: 25 баллов.