

Il tuo partner per la Formazione e la Trasformazione digitale della tua azienda

Note			

SPRING AI

GENERATIVE ARTIFICIAL INTELLIGENCE CON JAVA

Simone Scannapieco

Corso base per Venis S.p.A, Venezia, Italia

Settembre 2025

	LANGUAGE ARTIFICIAL INTELLIGENCE
Note	

LANGUAGE AI ...o NLP

- n
- Sottocampo dell'Al dedicato allo sviluppo di tecnologie per il linguaggio umano
 - Comprensione
 - Elaborazione
 - Generazione
- Utilizzato intercambiabilmente con Natural Language Processing (NLP)
- ▲ Trasversale rispetto alla classificazione canonica

Simone Scannapieco

Spring AI - Corso base

m Venis S.p.A, Venezia, IT

Note		

ı	V	U.	t	6
		$\mathbf{\mathcal{C}}$	L	·

Simone Scannapieco

5/17

m Venis S.p.A, Venezia, IT €

- Modelli che simulano la comprensione e la generazione del linguaggio umano con approcci statistici e modelli della rete neurale
- Predicono la parola successiva in una sequenza in base al contesto...
- calcolando probabilità su ogni singola parola di un dizionario

Spring AI - Corso base

A Qualunque task NLP può essere trasformata in un problema di generazione di testo

Note			

Simone Scannapieco

5/17

m Venis S.p.A, Venezia, IT €

- Modelli che simulano la comprensione e la generazione del linguaggio umano con approcci statistici e modelli della rete neurale
- Predicono la parola successiva in una sequenza in base al contesto...
- calcolando probabilità su ogni singola parola di un dizionario

Spring AI - Corso base

A Qualunque task NLP può essere trasformata in un problema di generazione di testo

Note			

Simone Scannapieco

5/17

m Venis S.p.A, Venezia, IT €

- Modelli che simulano la comprensione e la generazione del linguaggio umano con approcci statistici e modelli della rete neurale
- Predicono la parola successiva in una sequenza in base al contesto...
- calcolando probabilità su ogni singola parola di un dizionario

Spring AI - Corso base

A Qualunque task NLP può essere trasformata in un problema di generazione di testo

Note			

- Modelli che simulano la comprensione e la generazione del linguaggio umano con approcci statistici e modelli della rete neurale
- Predicono la parola successiva in una sequenza in base al contesto. . .
- O . . . calcolando probabilità su ogni singola parola di un dizionario
- A Qualunque task NLP può essere trasformata in un problema di generazione di testo
 - ≜ (thinking) Ho la frase «Mi piace come recita Hugh Laurie!», e devo determinarne il sentiment —
 - 🚨 "Il sentiment della frase «Mi piace come recita Hugh Laurie!» é: "
 - >_ (thinking) Eseguo l'inferenza...—
 - >_ (thinking) Ho ottenuto le seguenti probabilità come prossimo token da generare: «positivo» al 45%, «negativo» al 2%, «cane» al 0.5%, «gatto» al 0.3%...—
 - >_ "Il sentiment della frase «Mi piace come recita Hugh Laurie!» é: positivo"

Processo di sentiment analysis

👺 Simone Scannapieco

Spring AI - Corso base

m Venis S.p.A, Venezia, IT

Note	

- Modelli che simulano la comprensione e la generazione del linguaggio umano con approcci statistici e modelli della rete neurale
- Predicono la parola successiva in una sequenza in base al contesto. . .
- ... calcolando probabilità su ogni singola parola di un dizionario
- A Qualunque task NLP può essere trasformata in un problema di generazione di testo
 - ≜ (thinking) Ho la domanda «Chi ha scritto "L'origine della specie"?» e voglio ottenere la risposta —
 - 📤 "D: Chi ha scritto «L'origine della specie»? R: "
 - >_ (thinking) Eseguo l'inferenza...—
 - >_ (thinking) Ho ottenuto le seguenti probabilità come prossimo token da generare: «Charles» al 25%, «Darwin» al 15%, «cane» al 0.2%, «gatto» al 0.1%,...—
 - >_ "D: Chi ha scritto «L'origine della specie»? R: Charles"
 - "D: Chi ha scritto «L'origine della specie»? R: Charles "
 - >_ (thinking) Eseguo l'inferenza...—
 - >_ (thinking) Ho ottenuto le seguenti probabilità come prossimo token da generare: «Darwin» al 65%, «Charles» al 1%, «cane» al 0.2%, «gatto» al 0.1%,...—
 - >_ "D: Chi ha scritto «L'origine della specie»? R: Charles Darwin"

Processo di question answering

👺 Simone Scannapieco

Spring AI - Corso base

m Venis S.p.A, Venezia, IT

Note		

6/17

"Il cane non attraversò il fiume perché esso era troppo stanco"

"Il cane non attraversò il fiume perché esso era troppo profondo"

é riferito a "Il cane non attraversò il fiume perché esso era troppo stanco" "Il cane non attraversò il fiume perché esso era troppo profondo" "Il cane non attraversò il fiume perché esso era troppo profondo" Spring Al - Corso base é riferito a ™ Venis S.p.A, Venezia, IT

Note

é riferito a

"Il cane non attraversò il fiume perché esso era troppo stanco

"Il cane non attraversò il fiume perché esso era troppo profondo"

é riferito a allora

allora

- Il significato di alcune parole è dipendente dal significato di altre (parole contestuali)
- L'umano affronta questo processo in maniera inconscia ed istantanea...
- ... ma una macchina?!

LE ORIGINI: ELIZA (1966) IL PRIMO CHATBOT DELLA STORIA

- Sviluppato da Joseph Weizenbaum al MIT
- Simulava una conversazione con uno psicoterapeuta rogersiano
- Utilizzava semplici pattern matching e regole di sostituzione
- Dimostrava quanto facilmente le persone potessero essere ingannate da un programma semplice
- Primo esempio di illusione di comprensione da parte di una macchina

☑ Implementazione ELIZA

Simone Scannapieco

Spring AI - Corso base

m Venis S.p.A, Venezia, IT

Note		

8/17

Trasformazioni grammaticali: regole sintattiche applicate all'input utente

Regole di trasformazione ELIZA ''I am'' -> ''you are'' ''my'' -> ''your'' ''me'' -> ''you'' ... "I am feeling sad today" >_ (thinking) - you are feeling sad today ELIZA, elaborazione, 1966

m Venis S.p.A, Venezia, IT

Spring AI - Corso base

Simone Scannapieco

Note			

€ Template di risposta: frasi predefinite con slot per le sostituzioni

Esempi di template ELIZA

```
''Tell me more about ___''
''What else comes to mind when ___?''
''Why ___?''
...
```

Simone Scannapieco

Spring AI - Corso base

m Venis S.p.A, Venezia, IT

N	ot	e
---	----	---

10 / 17

m Venis S.p.A, Venezia, IT

Regole di pattern matching: riconoscimento di parole chiave nell'input e scelta fra possibili pattern correlati

| ''I think about ___'' -> ''Tell me more about ___'' | ''I am thinking of ___'' -> ''What else comes to mind when you think of ___?'' | ''I am ___'' -> ''Why do you think ___?'' | ... | "I am feeling sad today" | ''Why do you think you are feeling sad today?" | ELIZA, esempio di risposta, 1966

Spring AI - Corso base

Simone Scannapieco

Note		

Strategia di fallback: formule generiche quando non trova pattern

"My whole world is falling apart."
>_ "I see."
(oppure)
>_ "Can you elaborate on that?"
(oppure)
>_ "I see."
(oppure)
>_ "What does that suggest to you?"
(oppure)
>_ "Please go on."
(oppure)
>_ "How does that make you feel?"

ELIZA, esempio di risposta, 1966

Simone Scannapieco

Spring AI - Corso base

🏛 Venis S.p.A, Venezia, IT

Note		

BAG-OF-WORDS RAPPRESENTAZIONE TESTO NON STRUTTURATO

12/17

- Menzionato per la prima volta negli anni '50, popolare negli anni 2000
- Metodo per rappresentare il testo non strutturato in formato numerico
- 1 linguaggio è complicato per i calcolatori

Simone Scannapieco

Dil testo perde significato quando rappresentato da 0 e 1

Spring AI - Corso base

♦ Focus principale: rappresentare il linguaggio in modo strutturato per l'uso da parte dei calcolatori

m Venis S.p.A, Venezia, IT

Note		

BAG-OF-WORDS: COME FUNZIONA PROCESSO DI TOKENIZZAZIONE E CREAZIONE DEL VOCABOLARIO

- 1 Tokenizzazione: processo di divisione delle frasi in parole individuali o sotto-parole (token) Rispetto a un delimitatore (specifico o wildcard) e una blacklist
- Creazione del vocabolario: estrazione di entità uniche dai token
 - Applicando estrazione della radice (stemming)
 - Vettore ordinato di radici
- Conteggio delle parole: rappresentazione numerica basata sulla frequenza

ote	

BAG-OF-WORDS: COME FUNZIONA PROCESSO DI TOKENIZZAZIONE E CREAZIONE DEL VOCABOLARIO

13 / 17

m Venis S.p.A, Venezia, IT

Note		

Spring AI - Corso base

Simone Scannapieco

BAG-OF-WORDS: COME FUNZIONA PROCESSO DI TOKENIZZAZIONE E CREAZIONE DEL VOCABOLARIO

- 1 Tokenizzazione: processo di divisione delle frasi in parole individuali o sotto-parole (token)
 - Rispetto a un delimitatore (specifico o wildcard) e una blacklist
- 2 Creazione del vocabolario: estrazione di entità uniche dai token
 - Applicando estrazione della radice (stemming)
 - ▲ Vettore ordinato di radici
- 3 Conteggio delle parole: rappresentazione numerica basata sulla frequenza

							,	Vo	cab	ool	ario								
	che	bel	ca	ne	avere		ma	Ī	il	1	mio	Ī	gatto	1	essere	Ī	più	1	bello
$\frac{1}{2}$	2 0	1 0		1	1 0		0 1		0		0 1		0 1		0 1		0 1		0 1
1 "Che	еb	el _	can	e			ch	e.	ł	na	į!"								

in the set of the set

Vettori bag-of-words

Simone Scannapieco

Spring AI - Corso base

m Venis S.p.A, Venezia, IT

Note		

BAG-OF-WORDS LIMITAZIONI

- Perdita dell'ordine: frasi diammetralmente opposte hanno la medesima rappresentazione
- Mancanza di semantica: Non cattura il significato delle parole
- Nessuna generalizzazione: i sinonimi sono trattati come elementi totalmente separati
- Alta dimensionalità: Vocabolari enormi con molti zeri

	V	'oc	abolario			
	Simone	1	mangiare	1	la	insalata
$\frac{1}{2}$	1 1		1 1		1	1 1

Problema dell'ordine delle parole

Simone Scannapieco

Spring AI - Corso base

m Venis S.p.A, Venezia, IT

Note		

BAG-OF-WORDS LIMITAZIONI

- Perdita dell'ordine: frasi diammetralmente opposte hanno la medesima rappresentazione
- Mancanza di semantica: Non cattura il significato delle parole
- Nessuna generalizzazione: i sinonimi sono trattati come elementi totalmente separati
- Alta dimensionalità: Vocabolari enormi con molti zeri
 - 4 "Concetti come «Re» e «Regina» dovrebbero essere correlati..."
 - "Sinonimi come «felice» e «gioioso» dovrebbero avere una rappresentazione simile..."
 - Le con parole come «pitone» e «serpente», una generalizzazione dell'altra?!"

Mancanza di relazioni semantiche

Simone Scannapieco

Spring AI - Corso base

m Venis S.p.A, Venezia, IT

Note			

BAG-OF-WORDS LIMITAZIONI

- Perdita dell'ordine: frasi diammetralmente opposte hanno la medesima rappresentazione
- Mancanza di semantica: Non cattura il significato delle parole
- Nessuna generalizzazione: i sinonimi sono trattati come elementi totalmente separati
- Alta dimensionalità: Vocabolari enormi con molti zeri

♣ "Fornisci una stima del vocabolario usato in Wikipedia." > _ "[...] English Wikipedia: ordine di grandezza $10^5 - 10^7$ [...]. Tutte le Wikipedie insieme (tutte le lingue, forme di parola): ordine di grandezza $10^5 - 10^8$ [...].

"Quindi un documento Wikipedia in Bag-Of-Words sarebbe rappresentato da un vettore di dimensione almeno 10⁵?!"

Problema della dimensionalità

Simone Scannapieco

Spring AI - Corso base

m Venis S.p.A, Venezia, IT

Note			

WORD EMBEDDINGS (2013) WORD 2 VEC E LE RAPPRESENTAZIONI DENSE

15/17

m Venis S.p.A, Venezia, IT

- Word2Vec: primo tentativo di successo per catturare il significato del testo negli embeddings
- Embeddings: rappresentazioni vettoriali di dati che tentano di catturarne il significato
- Addestrato su enormi quantità di dati testuali
 - British National Corpus
 - English Wikipedia
 - Google News
 - English Gigaword
 - **()** ...

👺 Simone Scannapieco

- Utilizza reti neurali per generare rappresentazioni semantiche
- ▲ Grandezza della rappresentazione vettoriale limitata a priori

Spring AI - Corso base

Note

WORD2VEC: COME FUNZIONA APPRENDIMENTO DELLE RELAZIONI TRA PAROLE

- Principio fondamentale: parole che appaiono in contesti simili tendono ad avere significati simili
- Addestramento: predire se due parole sono vicine in una frase
- Risultato: parole con significati simili hanno embeddings vicini nello spazio

🖺 "[...] Il mio cane ama dormire nella sua cuccia [...]"

🖺 "[...] Il veterinario ha deciso di sterilizzare il gatto [...]"

*[...] Mentre giocava, il mio cane si è fatto male e l'ho dovuto portare dal veterinario [...]"

*[...] Ho comprato una cuccia per il mio gatto, ma continua a preferire il divano! [...]"

>_ (thinking) — Devo capire quali termini condividono gli stessi contesti linguistici...—

Principio alla base di Word2Vec

You shall know a word by the company it keeps.

Ipotesi distributiva, John Rupert Firth, 1957

Simone Scannapieco

Spring AI - Corso base

m Venis S.p.A, Venezia, IT

Note		

WORD2VEC: COME FUNZIONA APPRENDIMENTO DELLE RELAZIONI TRA PAROLE

- Principio fondamentale: parole che appaiono in contesti simili tendono ad avere significati simili
- Addestramento: predire se due parole sono vicine in una frase
- Risultato: parole con significati simili hanno embeddings vicini nello spazio

1 "[...] Il mio cane ama dormire nella sua cuccia [...]"

"[...] Mentre giocava, il mio cane si è fatto male e l'ho dovuto portare dal veterinario [...]"

*[...] Ho comprato una cuccia per il mio gatto, ma continua a preferire il divano! [...]"

>_ (thinking) — Devo avvicinare le rappresentazioni di «cane» e «gatto» nello spazio perché condividono spesso gli stessi vicini «veterinario» e «cuccia»! —

Addestramento di Word2Vec

Simone Scannapieco

Spring AI - Corso base

m Venis S.p.A, Venezia, IT

Note		

WORD2VEC: COME FUNZIONA APPRENDIMENTO DELLE RELAZIONI TRA PAROLE

- Principio fondamentale: parole che appaiono in contesti simili tendono ad avere significati simili
- Addestramento: predire se due parole sono vicine in una frase
- Risultato: parole con significati simili hanno embeddings vicini nello spazio
 - >_ "«Computer» è simile a «laptop», «pc», «desktop», «workstation», ..."
 - >_ "«Re» sta a «uomo» come «Regina» sta a «donna»!"
 - >_ "«Lunedì», «martedì», «mercoledì», ...sono correlate."

Proprietà emergenti: sinonimie, classificazioni, relazionalità

▶ Portale Word2Vec

Spring AI - Corso base

m Venis S.p.A, Venezia, IT

Note		

WORD2VEC

- Polisemia: confusione con parole utilizzabili con diversi significati in contesti diversi
- Contesti insufficienti: parole rare potrebbero non avere abbastanza esempi

>_ (thinking) — Ma...«cannonata» in senso bellico...O calcistico? —

Problema della polisemia

👺 Simone Scannapi	eco
-------------------	-----

Spring AI - Corso base

m Venis S.p.A, Venezia, IT

Note		

WORD2VEC

- n
- Polisemia: confusione con parole utilizzabili con diversi significati in contesti diversi
- Contesti insufficienti: parole rare potrebbero non avere abbastanza esempi

>_ (thinking) — Non ho molto capito il senso delle parole «supercazzola», «scappellamento» e «Antani»...—

Amici miei, 1975

:	Simone	Scanna	nieco
	OIITIOTIC	Ocumina	PICCO

Spring AI - Corso base

m Venis S.p.A, Venezia, IT

Note		