MAT 299 - Proofs and Problem Solving

Mr. Ryan Evaul Southern New Hampshire University

Fall Semester 2018

Contents

1 Quiz 1 - Sunday, November $18^{\rm th}, \, 2018$

5

Quiz 1 - Sunday, November 18th, 2018

Problem 1 (20 points) Let W represent that a car is white, let N represent that a car is new, and let M represent that a car is mine. Analyze the logical form of the following statements:

- 1. If the car is not white and new, then it is mine. $(\neg W \land N) \rightarrow M$
- 2. The car being white or new is a sufficient condition for it being not mine. $(W \lor N) \to \neg M$
- 3. The car is mine if and only if it is new and not white. $M \leftrightarrow (N \land \neg W)$

Problem 2 (20 points) Make a truth table for $\neg P \rightarrow (Q \land \neg R)$.

P	Q	R	$\neg P$	$\neg R$	$(Q \land \neg R)$	$\neg P \to (Q \land \neg R)$
T	T	T	F	F	F	T
T	T	F	F	T	T	T
T	F	T	F	F	F	T
T	F	F	F	T	F	T
F	T	T	T	F	F	F
F	T	F	T	T	T	T
F	F	T	T	F	F	F
F	F	F	T	T	F	F

Problem 3 (20 points) Consider the statement $\forall x \exists ! y(2x - 3y = 1)$.

- 1. Is this true or false if the universe of discourse is $x, y \in \mathbb{Q}$? Either provide a proof to show that this is true or provide a counterexample to show that this is false.
- 2. Is this true or false if the universe of discourse is $x, y \in \mathbb{N}$? Either provide a proof to show that this is true or provide a counterexample to show that this is false.

Problem 4 (20 points). Let A = x, y, z and B = w, x, y.

1. List the elements of $\mathcal{O}A$.