Amendments to the Claims

- 1. (Canceled)
- 2. (Currently Amended) The network according to claim [[1]]13, wherein said fiber optical feeder ring is transparent.
- 3. (Currently Amended) The network according to claim [[1]]13, wherein said fiber optical distribution ring is transparent.
- 4. (Currently Amended) The network according to claim [[1]]13, wherein said fiber optical feeder ring is unidirectional.
- 5. (Currently Amended) The network according to claim [[1]]13, wherein said network node provides optical carriers for said fiber optical feeder ring and said network node further comprises:
 - a plurality of WDM sources;
 - a corresponding plurality of WDM receivers;
 - a multiplexer; and
 - a demultiplexer.
- 6. (Currently Amended) The network according to claim [[1]]13, wherein said at least one access node further comprises an optical add-drop multiplexer (OADM), further wherein said OADM defines distribution loops in which a single wavelength forms a virtual ring, said virtual ring being accessible by said at least one end station.
 - 7. (Previously Presented) The network according to claim 6, wherein said OADM is static.
- 8. (Previously Presented) The network according to claim 7, wherein said static OADM consists of pairs of waveguide grating routers (WGRs).
- 9. (Previously Presented) The network according to claim 7, wherein said static OADM consists of a single waveguide grating router (WGR).
- 10. (Previously Presented) The network according to claim 6, wherein said OADM is reconfigurable.

- 11. (Currently Amended) The network according to claim [[1]]13, wherein said at least one access node further comprises an optical amplifier for simultaneously amplifying all wavelengths on the fiber optical feeder ring.
- 12. (Currently Amended) The network according to claim [[1]]13, wherein said End Station further comprises an optical amplifier used as a channel equalizer in order to compensate for a loss in said fiber optical distribution loop and associated optical components allowing said optical amplifier to be shared over all wavelengths.

13. (Currently Amended) A WDM fiber optical ring network for communicating information in a
metro access area using one or more wavelengths, which can be shared by a plurality of user terminals,
comprising:
a fiber optical feeder ring;
at least one fiber optical distribution ring;
a network node (NN) for providing an only optical carrier signal transmitted across said optical feeder
ring and said at least one fiber optical distribution ring;
at least one access node (AN) for permitting only selected wavelengths of said optical carrier signals
to be transmitted along said at least one fiber optical distribution ring, said network node and said at least one
access node connected via said fiber optical feeder ring; and
at least one end station (ES) connected via said fiber optical distribution ring to said at least one
access node, wherein a user terminal in said plurality of user terminals is attached to said at least one end
station; The network according to claim 1,
wherein information comprises:

wherein information comprises:

downstream data packets; optical chalkboard packets consisting of a recognizable pattern; and control signals.

- 14. (Currently Amended) The network according to claim [[1]]13, wherein said at least one end station further comprises:
 - a receiver for downstream packets; and
- a semiconductor optical amplifier (SOA), which amplifies and modulates light to create upstream data.

- 15. (Currently Amended) The network according to claim [[1]]13, wherein said at least one end station further comprises:
 - a receiver for downstream packets; and a polarization independent modulator.
- 16. (Previously Presented) The network according to claim 14, wherein said SOA is wavelength independent and impresses data on the optical carriers provided to a wavelength independent modulator by said network node.
- 17. (Previously Presented) The network according to claim 5, wherein one of said plurality of WDM sources and said multiplexer create data packets at a wavelength, said data packets being sent downstream over said WDM fiber optical ring network, and further wherein one of said plurality of corresponding WDM receivers detects data packets sent upstream.
- 18. (Previously Presented) The network according to claim 14, wherein said at least one end station further comprises a passive splitter, which taps a portion of said light for said receiver to decode downstream packets and passes a remaining portion of said light to said SOA.
- 19. (Previously Presented) The network according to claim 18, wherein said plurality of corresponding receivers convert said downstream packets into electrical signals.

Claims 20 - 32 (Canceled)