Limbaje formale, automate și compilatoare

Curs 11

Gramatici LR(1)

Definiţie

• Fie G = (V, T, S, P) o gramatică redusă. Un articol LR(1) pentru gramatica G este o pereche (A $\rightarrow \alpha \bullet \beta$, a), unde A $\rightarrow \alpha \beta$ este un articol LR(0), iar a \in FOLLOW(A) (# în loc de ϵ).

Definiţie

- Articolul (A \rightarrow β 1 β 2, a) este valid pentru prefixul viabil $\alpha\beta$ 1 dacă are loc derivarea
 - S dr \Rightarrow * α Au $\Rightarrow \alpha\beta1\beta2u$
 - iar a = 1:u (a = # dacă $u = \varepsilon$).

Teorema

ο O gramatică G = (V, T, S, P) este gramatică LR(1) dacă şi numai dacă oricare ar fi prefixul viabil φ, nu există două articole distincte, valide pentru φ, de forma(A → α • , a), (B → β • γ, b) unde a ∈ FIRST(γb).

Gramatici LR(1)

- Nu există conflict deplasare/reducere. Un astfel de conflict înseamnă două articole ($A \rightarrow \alpha \bullet$, a) şi ($B \rightarrow \beta \bullet a\beta$ ', b) valide pentru același prefix.
- Nu există conflict reducere/reducere. Un astfel de conflict înseamnă două articole complete($A \rightarrow \alpha \bullet$, a) şi ($B \rightarrow \beta \bullet$, a) valide pentru același prefix
- Pentru a verifica dacă o gramatică este LR(1) se construiește automatul LR(1) în mod asemănător ca la LR(0):
 - Automatul are ca stări mulțimi de articole LR(1)
 - Tranzițiile se fac cu simboluri ce apar după punct
 - Închiderea unei mulțimi de articole se bazează pe faptul că dacă articolul ($B \to \beta \bullet A\beta$ ', b) este valid pentru un prefix viabil φ atunci toate articolele de forma ($A \to \bullet \alpha$, a)unde a \in FIRTS(α a) sunt valide pentru același prefix.

Procedura de închidere LR(1)

```
flag= true;
while( flag) {
   • flag= false;
   ∘ for ( (A \rightarrow \alpha \bullet B\beta, a) ∈ I) {
     • for B \rightarrow Y \in P)
        • for ( b \in FIRST(\betaa)) {
          • if (B \rightarrow \bullet \gamma, b) \notin I)  {
             • I = I U \{(B \rightarrow \bullet \gamma, b)\};
             flag = true;
          }//endif
        }//endforb
     }//endforB
     }//endforA
}//endwhile
  return I;
```

Automatul LR(1)

```
▶ t0 = închidere((S' \rightarrow • S,#));T={t<sub>0</sub>};marcat(t<sub>0</sub>)=false;
while (\exists t \in T\&\& !marcat(t)) \{ // marcat(t) = false \}
   • for (X \in \Sigma) {
   \circ t' = \Phi;
      • for ((A \rightarrow \alpha \bullet X\beta , a) \in t)
         • t' = t' \cup \{ (B \rightarrow \alpha X \bullet \beta , a) \mid (B B \rightarrow \alpha \bullet X\beta, a) \in t \};
         • if (t' \neq \Phi) {
            • t' = închidere( t' );
            • if( t'T) {
               T= T U{ t' };
               marcat( t' ) = false;
            }//endif
            • q(t, X) = t';
         } //endif
     } //endfor
   o marcat( t ) = true;
} // endwhile
```

Automatul LR(1)

Teorema

- Automatul M construit în algoritmul 2 este determinist şi L(M) coincide cu mulţimea prefixelor viabile ale lui G. Mai mult, pentru orice prefix viabil γ , g(t₀, γ) reprezintă mulţimea articolelor LR(1) valide pentru γ .
- Automatul LR(1) poate fi folosit pentru a verifica dacă
 G este LR(1)
 - Conflict reducere/reducere: Dacă în T există o stare ce conține articole de forma ($A \rightarrow \alpha \bullet$, a), ($B \rightarrow \beta \bullet$, a) atunci gramatica nu este LR(1);
 - Conflict deplasare/reducere: Dacă în Texistă o stare ce conține articole de forma ($A \rightarrow \alpha \bullet$, a) și ($B \rightarrow \beta_1 \bullet a\beta_2$, b), atunci G nu este LR(1).
 - O gramatică este LR(1) dacă orice stare t ∈ T este liberă de conflicte

 \rightarrow S \rightarrow L=R|R, L \rightarrow *R|a, R \rightarrow L

 $(S' \rightarrow \bullet S, \#)$ $(S \rightarrow \bullet L=R, \#)$ $(S \rightarrow \bullet R, \#)$ $(L \to \bullet *R, \{=,\#\})$ $(L \rightarrow \bullet a, \{=,\#\})$ $(R \rightarrow \bullet L, \#)$

6 $(S \rightarrow L=\bullet R, \#)$ $(R \rightarrow \bullet L, \#)$ $(L \rightarrow \bullet *R, \#)$ $(L \rightarrow \bullet a, \#)$

 $(S' \rightarrow S \bullet, \#)$ 8

 $(S \rightarrow L \bullet = R, \#)$ $(R \to L \bullet, \#)$ $(L \rightarrow *R \bullet, \{=,\#\})$ $(R \rightarrow L \bullet, \{=,\#\})$

12 $(L \rightarrow a \bullet, \#)$ $(S \rightarrow R \bullet, \#)$

5 $(L \rightarrow a \bullet, \{=,\#\})$

9 $(S \rightarrow L=Re, \#)$

10 $(R \to L^{\bullet}, \#)$

13 $(L \rightarrow *R \bullet, \#)$

 $(L \to * \bullet R, \{=, \#\})$ $(R \rightarrow \bullet L, \{=, \#\})$ $(L \to \bullet *R, \{=, \#\})$ $(L \rightarrow \bullet a, \{=, \#\})$

11 $(L \rightarrow *\bullet R, \#)$ $(R \rightarrow \bullet L, \#)$ $(L \rightarrow \bullet *R, \#)$ $(L \rightarrow \bullet a, \#)$

Tabela de tranziție

g	a	II	*	S	L	R
0	5		4	1	2	3
1						
2		6				
3						
4	5		4		8	7
5						
6	12		11		10	9
7						
8						
9						
10						
11	12		11		10	13
12						
13						

Construcția tabelei de analiză LR(1)

```
\rightarrow for (t \in T)
  o for (a ∈ T) ACTIUNE(t, a) = "eroare";
  • for (A \in V) GOTO(t, A) = "eroare";
▶ for(t ∈ T){
  • for ((A \rightarrow \alpha \bullet a\beta, L) \in t)
    ACTIUNE(t,a)="D g(t, a)";//deplasare in g(t, a)
  • for ((B \rightarrow \gamma \bullet, L) \in t) \{// \text{ acceptare sau reducere}\}
    • for (c \in L) {
       • if(B == 'S') ACTIUNE(t, a) = "acceptare";
       • else ACTIUNE(t,c)="R B\rightarrow \gamma'';//reducere cu B\rightarrow \gamma
       }//endfor
  • }// endfor
  • for (A \in N) GOTO(t, A) = q(t, A);
}//endfor
```

 \bullet 0:S' \rightarrow S, 1:S \rightarrow L=R, 2:S \rightarrow R, 3:L \rightarrow *R, 4:L \rightarrow a, 5:R \rightarrow L

	ACŢIUNE			GOTO			
STARE	a	=	*	#	S	L	R
0	D 5		D 4		1	2	3
1				acceptare			
2		D 6		R5			
3				R2			
4	D 5		D 4			8	7
5		R4		R4			
6	D12		D11			10	9
7		R3		R3			
8		R5		R5			
9				R1			
10				R5			
11	D12		D 11			10	13
12				R4			
13				R3			

- Fie cuvintele
 - ***a
 - ∘ a=**a
 - *a=**a
- Analiza LR(1)?

Gramatici LALR(1)

Definiţie

 Fie t o stare în automatul LR(1) pentru G. Nucleul acestei stări este mulţimea articolelor LR(0) care apar ca prime componente în articolele LR(1) din t.

Defininiţie

 Două stări t₁ şi t₂ ale automatului LR(1) pentru gramatica G sunt echivalente dacă au acelaşi nucleu.

Gramatici LALR(1)

- Fiecare stare a automatului LR(1) este o mulţime de articole LR(1). Pornind de la două stări t_1 şi t_2 putem vorbi de starea t1 \cup t2.
 - Fie $t_1 = \{(L \rightarrow *R., \{=, \# \})\}, t_2 = \{(L \rightarrow *R., \#)\}, \text{ atunci}$ $t_1 \cup t_2 = t_1 \text{ pentru că } t_2 \subset t_1 \text{ .}$

Definiţie

• Fie G gramatică LR(1) şi M = (Q, Σ , g, t0, Q) automatul LR(1) corespunzător. Spunem că gramatica G este LALR(1) (Look Ahead LR(1)) dacă oricare ar fi perechea de stări echivalente t_1 , t_2 din automatul LR(1), starea $t_1 \cup t_2$ este liberă de conflicte.

Tabela de analiză LALR(1)

- Intrare: Gramatica G = (N, T, S, P) augmentată cu S' → S;
- leşire: Tabela de analiză LALR(1) (ACŢIUNE şi GOTO).
- Algoritm:
 - 1. Se construieşte automatul LR(1), $M = (Q, \Sigma, g, t_0, Q)$ Fie $Q = \{t_0, t_1, ..., t_n\}$. Dacă toate stările din Q sunt libere de conflict, urmează 2, altfel algoritmul se oprește deoarece gramatica nu este LR(1).
 - 2. Se determină stările echivalente din Q şi, prin reuniunea acestora, se obţine o nouă mulţime de stări Q' = {t'₀, t'₁,..., t'_m}
 - 3. Dacă în Q' există stări ce conțin conflicte, algoritmul se oprește deoarece gramatica G nu este LALR(1).

Tabela de analiză LALR(1)

- 4. Se construiește automatul M' = (Q', Σ , g', t'0, Q'), unde \forall t' \in Q':
 - 5. Dacă t' \in Q atunci g'(t', X) = g(t, X), \forall X \in Σ ;
 - 6. Dacă t' = $t_1 \cup t_2 \cup ..., t_1, t_2, ... \in \mathbb{Q}$, atunci
 - 7. $g'(t', X) = g(t1, X) \cup g(t2, X) \cup$
- 8. Se aplică algoritmul pentru construirea tabelei de parsare LR(1) pornind de la automatul M'. Tabela obţinută se numeşte tabela LALR(1) pentru gramatica G.

Pentru gramatica discutată anterior avem $4 \cup 11 = 4$, $5 \cup 12 = 5$, $7 \cup 13 = 7$, $8 \cup 10 = 8$

	ACŢIUNE				GOTO		
STAR	a =		*	#	S	L	R
E							
0	D5		D 4		1	2	3
1				acceptare			
2		D 6		R5			
3				R2			
4	D5		D 4			8	7
5		R4		R4			
6	D5		D 4			8	9
7		R3		R3			
8		R5		R5			
9				R1			

Există gramatici LR(1) care nu sunt LALR(1).

- \circ S \rightarrow aAb | bAd | aBd | bBb
- A → e
- $\circ B \rightarrow e$