

Convolution with even-sized kernels and symmetric padding

Shuang Wu, Guanrui Wang, Pei Tang, Feng Chen, Luping Shi

- Exploration of convolution kernel sizes (2 × 2, 3 × 3, 4 × 4, 5 × 5)
- Quantify the shift problem in even-sized kernels (2 × 2, 4 × 4)
- Proposing symmetric padding convolutions (C2sp, C4sp)
- The advantages of this approach:
- + Neat and embeddable units for most CNN models
- + Improved classification accuracy (CIFAR, ImageNet)
- + Improved quality of GANs (CIFAR, LSUN, CelebA)
- Less parameter, FLOPs, training memory and time

Problem Formulation

- Even-sized kernels: rarely discussed, performance degradation
- No central point, resulting in 0.5 pixel shift for each convolution layer.
- The shift is cumulative: $\mathcal{F}_n\left[\boldsymbol{p}-(\frac{n}{2},\frac{n}{2})\right]\overset{\text{approx}}{\longleftarrow}\mathcal{F}_0(\boldsymbol{p})$

- The information erosion of padding
- Like an ice chip melting in the water
- zero-padding erode the information
- $Q_n = \frac{1}{hw} \sum_{\boldsymbol{p} \in h \times w} |\mathcal{F}_n(\boldsymbol{p})|$, $Q_n < Q_{n-1}$
- Asymmetry accelerates the erosion
- Provides explanations for degradation in very deep neural networks (ResNet paper)

Symmetric Padding

- Introducing symmetry by group-padding strategy
- $\sum_{\boldsymbol{\delta} \in \mathcal{R}} \boldsymbol{\delta} \neq (0,0) \rightarrow \sum_{i=1}^{c_i} \sum_{\boldsymbol{\delta} \in \pi(i)} \boldsymbol{\delta} = (0,0)$ • $\pi(i)$: padding policy for input channel i
- + Highly extendable (other kernel size)

 $3 \rightarrow 5$

- Asymmetry input FM → Symmetry output FM
- $\mathcal{R} \to \mathcal{R}_+ = \{\mathcal{R}_{LT}, \mathcal{R}_{LB}, \mathcal{R}_{RT}, \mathcal{R}_{RB}\}$
- + None Params/FLOPs
- + Neat implementation in computation libraries

 $3 \rightarrow 5$

Symmetric padding

Conv 2x2

 $[c_i, c_o, 2, 2]$

Improved Performance

Classification results:

Model (ImageNet)	Error	Params	FLOPs
Model (ImageNet)	(%)	(M)	(M)
ResNet-50 C3	23.8	25.5	4089
ResNet-50 C2sp	24.0	19.3	3062
DenseNet-121 C3	24.6	8.0	2834
DenseNet-121 C2sp	25.1	6.7	2143
ResNet-50 0.5x C3	26.8	6.9	1127
ResNet-50 0.5x C2	29.8	5.3	870
ResNet-50 0.5x C2sp	27.3	5.3	870
ResNet-50 0.5x C2sp optim	26.8	5.8	573
ShuffleNet v2 2.0x	26.6	7.4	591
MoibleNet v2 1.4x	25.8	6.1	582

•	Image o	eneration	tasks	(GAN
	IIIIaye y	Jeneralion	laono	

				_
Model	CIFAR10	LSUN	CelebA	
C5	26.54 ± 1.38	30.84 ± 1.13	33.90 ± 3.77	
C3	24.12 ± 0.47	36.04 ± 7.10	43.39 ± 5.78	1
C4	26.45 ± 1.50	39.17 ± 5.52	37.93 ± 7.54	1
C4sp	24.86 ± 0.41	24.61 ± 2.45	30.22 ± 3.02	
C2	1	Non-convergenc	e	١
C2sp	23.35 ± 0.26	27.73 ± 6.76	31.25 ± 4.86	_

Model (CIEAD 10)	Error	Params	
Model (CIFAR10)	(%)	(M)	
NASNet-A	3.41	3.3	
PNASNet-5	3.41	3.2	
AmoebaNet-A	3.34	3.2	
Wide-DenseNet C3	3.81	3.4	
Wide-DenseNet C2sp	3.54	3.2	
NASNet-A + cutout	2.65	3.3	
Wide-DenseNet C2sp	2.44	2.2	
+ cutout + mixup	2.44	3.2	

Exploration of Kernel Sizes

- Model: ResNet & DenseNet, Dataset: CIFAR10/100
- Only replace each C3 by a C2, C4, C5, C2sp or C4sp
- C2 is inferior to C3 and saturate much faster as the network deepens C2sp save 30%-50% parameters and FLOPs compared with C3
- Edge effect dominate the information erosion (C4, C5)

Reduced Overheads

C2sp vs other compact CNN building blocks

- [1] Wu, B., et al. Shift: A zero flop, zero parameter alternative to spatial convolutions. ICCV'18.
- [2] Sandler, M., et al. Mobilenetv2: Inverted residuals and linear bottlenecks. CVPR'18.
- [3] He, K., Sun, J. Convolutional neural networks at constrained time cost. CVPR'15.