極限と四則演算の可換性」 (前回のつづき)

問題 実数引 (スハ)n=1, イソハ)n=1 は収束していると仮定する、以下を示せ、

- (1) $\{x_n+y_n\}_{n=1}^{\infty}$ も収率して、 $\{x_n+y_n\}=\{x_n+y_n\}=\{x_n+y_n\}=\{x_n+y_n\}$ の $\{x_n+y_n\}=\{x_n+y$
- (2) $\left\{-\chi_{n}\right\}_{n=1}^{\infty}$ も収集して、 $\lim_{n\to\infty}\left(-\chi_{n}\right)=-\lim_{n\to\infty}\chi_{n}$
- (4) $\lim_{n\to\infty} \lambda_n \neq 0$ のとき、ある N_0 か存在して、 $n \geq N_0$ ならは、 $\lambda_n \neq 0$ となり、 実数引 $\left(\frac{1}{\lambda_n}\right)_{n=N_0}^{\infty}$ は収事して、 $\lim_{n\to\infty} \frac{1}{\lambda_n} = \frac{1}{\lim_{n\to\infty} \lambda_n}$.

距離空間のあいだの写像子:X→Yが連続であることと、距離空間内X内の収集する任意の点列{an/mil に対して、Y内の点列{f(an)/mil も収束して、Jim f(an) = f(Jim an) が成立することは同値なので、上の問題の結果は四則演算の連続性と同値である。しかし、直接の記明も見せておこう。

言正明 d=limon, B=limonとかく、

(1) 任意に 5>0 をとる.

 $\{\chi_n\}_{n=1}^{\infty}$ は χ_n に χ_n 来 χ_n に χ_n 来 χ_n に χ_n な χ_n が 存在して、 χ_n な χ_n χ_n に χ_n に χ_n に χ_n な χ_n が 存在して、 χ_n な χ_n χ_n に χ_n に χ_n の χ_n の χ_n に、 χ_n と χ_n の χ_n に、 χ_n と χ_n の χ_n の χ_n に、 χ_n と χ_n の χ_n

 $|\chi_{n}+y_{n}-(\lambda+\beta)|=|(\chi_{n}-\lambda)+(y_{n}-\beta)|\leq |\chi_{n}-\lambda|+|y_{n}-\beta|<\frac{\xi}{2}+\frac{\xi}{2}=\xi.$ これで $|\chi_{n}+y_{n}|_{n=1}^{\infty}$ が $|\chi_{n}+y_{n}|_{n=1}^{\infty}$ が $|\chi_{n}+y_{n}|_{n=1}^{\infty}$ が $|\chi_{n}+y_{n}|_{n=1}^{\infty}$ が $|\chi_{n}+y_{n}|_{n=1}^{\infty}$

(2)任意にも>0をとる.

 $\{x_n\}_{n=1}^{\infty}$ は d に収率しているので、あるNか存在して、NMN ならは" $|x_n-a|$ くを、ゆうに、NMN ならは" $|(-x_n)-(-a)|=|x_n-a|$ ($\{-x_n\}_{n=1}^{\infty}\}$ が 一 d に収束することが示された、

(3)任意に至>0をとる。

 $\{y_n\}_{n=1}^{\infty}$ は β に 収ましているので、ある N_2 かで存在して、 $n \ge N_2$ なら $\alpha'' |y_n - \beta| < 1$ となり、 $|y_n| = |y_n - \beta + \beta| \le |y_n - \beta| + |\beta| < 1 + |\beta|$ となる、 $\{x_n\}_{n=1}^{\infty}$ は dに収ましているので、ある N_3 かで存在して、 $n \ge N_3$ ならは $|x_n - d| < \frac{\varepsilon/2}{1 + |\beta|}$ 、 $\{y_n\}_{n=1}^{\infty}$ は β に 収事しているので、ある N_1 かで存在して、 $n \ge N_1$ ならは $|y_n - \beta| < \frac{\varepsilon/2}{1 + |\beta|}$. $\|y_n\|_{n=1}^{\infty}$ は β に 収事しているので、ある N_1 かで存在して、 $n \ge N_1$ ならは $|y_n - \beta| < \frac{\varepsilon/2}{1 + |\beta|}$. $\|y_n\|_{n=1}^{\infty}$ は β に 収事しているので、ある N_1 かで存在して、 $n \ge N_1$ ならは $|y_n - \beta| < \frac{\varepsilon/2}{1 + |\alpha|}$.

$$\begin{split} \left| \lambda_{n} y_{n} - \alpha \beta \right| &= \left| \lambda_{n} y_{n} - \alpha y_{n} + \alpha y_{n} - \alpha \beta \right| \leq \left| \lambda_{n} y_{n} - \alpha y_{n} \right| + \left| \alpha y_{n} - \alpha \beta \right| \\ &= \left| \lambda_{n} - \alpha \right| \left| y_{n} \right| + \left| \alpha \right| \left| y_{n} - \beta \right| \\ &\leq \frac{\varepsilon/2}{1 + |\beta|} \left(1 + |\beta| \right) + \left(1 + |\alpha| \right) \frac{\varepsilon/2}{1 + |\alpha|} = \varepsilon \,, \end{split}$$

これで {かいかりから かい メβに収車することかい示された,

(4) d= lim xn +0 より, | d) >0 である. 任意にを>0をとる、 (火り)のははに収まするので、あるN,が存在して、neN,ならは、12(n-x)くしく $||x_n|| = ||x_n - d + d|| \ge -||x_n - d| + |d|| > -\frac{|d|}{2} + |d| = \frac{|d|}{2}$

 $\{x_n\}_{n=1}^{\infty} は & |x_n-x| < \frac{|x_n^2|^2 \epsilon}{|x_n-x|^2},$

ゆえに、n \geq max $\{N_1, N_2\}$ とすると、 $|x_n| > \frac{|a|}{2} > 0 より特に x_n \neq 0 であり、$ $\left| \frac{1}{|x_n - \frac{1}{|x|}} \right| = \frac{|x_n - a|}{|x|||x_n||} < \frac{|a|^2 \epsilon/2}{|a| \cdot |a|/2} = \epsilon.$ これで、 $\left(\frac{1}{|x_n|}\right)_{n=N_1}^{\infty}$ が、 $\frac{1}{|x|} = 0$ で、 $\frac{1}$