ECN 101

Introduction to Electronics and Communication Engineering

Important info

Groups

Project

Teaching assistant
 Mandeep, PhD 1st Yr, ECE
 +91-9068348789

Review

Forward bias $(V = V_f)$

Reverse bias
$$(V = -V_r)$$

- (1) Hole diffusion
- (2) Hole drift

- (3) Electron diffusion
- (4) Electron drift

Bandgap

Free carriers

Solar Cells

The transistor

Transistor

Amplification and switching

- Key characteristic:
 - The transistor is a three-terminal device with the feature that the current through two terminals can be controlled by small changes we make in the current or voltage at the third terminal.
 - This control feature allows us to amplify small ac signals or to switch the device from an on state to an
 off state and back.
 - These two operations, amplification and switching, are the basis of a host of electronic functions.
 - This forms the basis for both bipolar junction transistors and field effect transistors.

```
Active mode

J_1 \rightarrow f \cdot b \cdot \text{Res} = 0

J_2 \rightarrow 8 \cdot b \cdot \text{Kes} = \infty
```


The transistor action

$$E = i_D R + v_D$$

- If an ac source is added to the control voltage
 - We can achieve large variations in iD by making small changes in VG
 - For example if VG changes by value of 0.25V, Vd varies about its dc 2V.
 - Thus the amplification of the ac signal is 2/0.25 = 8.
 - we can switch from the bottom of the load line to almost the top by appropriate changes in V_G.

For BJTs, this kind of control is achieved by current control.

Transistors: BJT

The first transistor

One p-n junction is forward biased, the other one is reverse biased.

Basic mechanism

The idea

Junction Field Effect Transistor: JFETs

Field-Effect Transistors

Gate control

Field Effect Transistors

MOSFETs

Different regimes as V_D is varied.

