0.0.1 Гомоморфизмы. Виды и свойства гомоморфизмов.

определение. Пусть даны алгебраические структуры (G,\cdot) и (G',\odot) . Гомоморфизмом называется отображение (функция) $f:G\to G'$, такое, что

$$\forall (a,b \in G)[f(a \cdot b) = f(a) \odot f(b)]$$

определение. Инъективный гомоморфизм называется мономорфизмом.

определение. Сюръективный гомоморфизм называется эпиморфизмом.

определение. Биективный гомоморфизм называется изоморфизмом.

определение. Гомоморфизм структуры в себя называется эндоморфизмом.

определение. Изоморфизм структуры в себя называется автоморфизмом.

Пример.

 $f:M_n(\mathbb{R})\to\mathbb{R}$, где f(A)=|A|, является гомоморфизмом моноидов $(M_n(\mathbb{R}),\cdot)$ и (\mathbb{R},\cdot) .

Теорема.

Суперпозиция гомоморфизмов является гомоморфизмом.

доказательство. Пусть даны алгебраические структуры $(G,\cdot), (G',\odot)$ и (G'',\times) и гомоморфизмы $f:G\to G'$ и $g:G'\to G''$. Нужно доказать, что $h:G\to G''$, такое, что $h=g\circ f$, является гомоморфизмом. Проверим определение гомоморфизма непосредственно для $\forall (a,b\in G)$:

$$h(a \cdot b) = (g \circ f)(a \cdot b) = g(f(a \cdot b)) = g(f(a) \odot f(b)) =$$

$$g(f(a)) \times g(f(b)) = h(a) \times h(b)$$

Доказано.

Теорема.

При гомоморфизме групп нейтральный элемент переходит в нейтральный.

доказательство. Пусть (G,\cdot) и (G',\odot) - группы с нейтральными элементами e и e' соответственно, $f:G\to G'$ - гомоморфизм. Нужно доказать, что f(e)=e'.

Пусть f(e) = x.

Тогда $x \cdot e = x = f(e) = f(e \cdot e) = f(e) \odot f(e) = x \odot x$, т. е. $x \odot e' = x \odot x$, откуда по закону сокращения x = e'.

Доказано.

Замечание.

Требование группы в теореме существенно: существуют моноиды, для которых образом нейтрального элемента при гомоморфизме является элемент, отличный от нейтрального. Рассмотрим множества $A=\{e';x;a\}$ и $B=\{e;c\}$. Определим коммутативные операции на этих множествах:

$$e' \cdot e' = e'$$

$$e' \cdot x = x$$

$$e' \cdot a = a$$

$$x \cdot x = x$$

$$x \cdot a = a$$

$$a \cdot a = a$$

$$e \odot e = e$$

$$e \odot c = c$$

$$c \odot c = c$$

Тогда e' и e - нейтральные элементы моноидов (A,\cdot) и (B,\odot) соответственно. Введём теперь функцию $f:B\to A$: $f(e)=x,\ f(c)=a$. Несложную проверку того, что f - гомоморфизм, предоставляем читателю.

Теорема.

Отображение, обратное к изоморфизму, является изоморфизмом.

доказательство. Пусть дан изоморфизм $f:(G,\cdot)\to (G',\odot)$. Чтобы отображение $f^{-1}:(G',\odot)\to (G,\cdot)$ было изоморфизмом, необоходимо и достаточно (по определению), чтобы оно было биективным гомоморфизмом. Так как биективность отображения обратима, достаточно доказать, что f^{-1} - гомоморфизм.

Действительно, $\forall (x,y\in G')\exists !(a\in G)\exists !(b\in G)[f(a)=x,f(b)=y].$ Тогда

$$f(a \cdot b) = f(a) \odot f(b) \Rightarrow$$

$$f^{-1}(f(a \cdot b)) = f^{-1}(f(a) \odot f(b)) \Rightarrow$$

$$a \cdot b = f^{-1}(x \odot y) \Rightarrow$$

$$f^{-1}(x) \cdot f^{-1}(y) = f^{-1}(x \odot y)$$

Доказано.

Теорема.

Пусть даны группы $(G,\cdot),\ (G',\odot)$ и гомоморфизм $f:G\to G'.$ Тогда $\forall (a\in G)[f(a^{-1})=(f(a))^{-1}].$

Доказательство.

$$f(a) \odot f(a^{-1}) = f(a \cdot a^{-1}) = f(e) = e' = f(a) \odot (f(a))^{-1}$$

Отсюда по правилу сокращения в группе $f(a^{-1}) = (f(a))^{-1}$.

Доказано.

определение. Пусть дано отображение $f: G \to G'$. Множество $f(G) \subset G'$ называется образом отображения f и обозначается $\mathrm{Im} f$.

определение. Пусть дан гомоморфизм групп $f: G \to G'$. Ядром $\operatorname{Ker} f$ гомоморфизма f называется множество всех элементов G, которые гомоморфизм f переводит в нейтральный элемент e' группы G'.

Очевидно, что ядро любого гомоморфизма групп непусто, т. к. содержит единичный элемент e исходной группы G.

Теорема: критерий мономорфизма.

Гомоморфизм групп является мономорфизмом тогда и только тогда, когда его ядро состоит ровно из нейтрального элемента.

доказательство. Пусть дан гомоморфизм групп $f:(G,\cdot)\to (G',\odot),\ e$ и e' - нейтральные элементы G и G' соответственно.

необходимость. Пусть f - мономорфизм. Тогда по определению мономорфизма $|\mathrm{Ker} f|=1$. Так как нейтральный элемент e всегда входит в ядро, то $\mathrm{Ker} f=\{e\}.$

достаточность. Пусть
$$\operatorname{Ker} f = \{e\}$$
 и $f(a) = f(b)$. Тогда $(f(a))^{-1} \odot f(b) = (f(a))^{-1} \odot f(a) \Rightarrow$ $(f(a))^{-1} \odot f(b) = e' \Rightarrow$ $f(a^{-1}) \odot f(b) = e' \Rightarrow$ $f(a^{-1} \cdot b) = e' \Rightarrow$ $a^{-1} \cdot b = e \Rightarrow$ $b = a$,

то есть гомоморфизм f инъективен, следовательно, является мономорфизмом.

Доказано.