```
응 {
Writer: Akshay S Tharval
1st draft: Sept 11, 2015
Last modified: Sept 11, 2015
Subject: Assignment Q5b
응 }
clear all %clear stored variables
clc %clear the screen
close all %close all previously created plots
n = 15 % Given number of nodes
deltaPL= 101325/3/25400; % The value of DeltaP/L in terms of Pascal/
Micron
deltaY= 150/(n+1); % Calculating the value of Delta Y
u= 8.9*10^-4; % Viscosity of water at 25 Celcius in Pascal.Seconds
G = deltaY^2*deltaPL/u; %calculating G, which is basically a contains
 all the constants
% Considering the boundary condition
%Creating the sparse matrix using sparse function
D = sparse(1:n,1:n,2*ones(1,n),n,n);
E = sparse(2:n,1:n-1,-1*ones(1,n-1),n,n);
matV = E+D+E'
GMat(1:n)=G; %Creating a vector of G
Vel=inv(matV)*GMat' %Solving the system of equations
Vel = [0; Vel; 0] %Because we consider the boundary condition, we need
to put a zero row on the top and bottom of the output vector
N1= 0:n+1; %Creating an array of for plotting
plot(Vel,N1,'-g') % Creating velocity profile by plotting Velocity at
 each node
n =
    15
matV =
   (1,1)
                2
```

| (2,1)<br>(1,2)<br>(2,2) | -1<br>-1<br>2 |
|-------------------------|---------------|
| (3,2)<br>(2,3)          | -1<br>-1      |
| (3,3)                   | 2             |
| (4,3)                   | -1            |
| (3,4)<br>(4,4)          | -1<br>2       |
| (5,4)                   | -1            |
| (4,5)                   | -1            |
| (5,5)<br>(6,5)          | 2<br>-1       |
| (5,6)                   | -1            |
| (6,6)                   | 2             |
| (7,6)<br>(6,7)          | -1<br>-1      |
| (7,7)                   | 2             |
| (8,7)                   | -1            |
| (7,8)                   | -1<br>2       |
| (8,8)<br>(9,8)          | -1            |
| (8,9)                   | -1            |
| (9,9)                   | 2             |
| (10,9)<br>(9,10)        | -1<br>-1      |
| (10,10)                 | 2             |
| (11,10)                 | -1            |
| (10,11)<br>(11,11)      | -1<br>2       |
| (12,11)                 | -1            |
| (11,12)                 | -1            |
| (12,12)<br>(13,12)      | 2<br>-1       |
| (13,12)                 | -1<br>-1      |
| (13,13)                 | 2             |
| (14,13)                 | -1<br>-1      |
| (13,14)<br>(14,14)      | -1<br>2       |
| (15,14)                 | -1            |
| (14,15)                 | -1            |
| (15,15)                 | 2             |

## Vel =

1.0e+06 \*

0.9849

1.8384

2.5606

3.1516

3.6112

3.9394

- 4.1364
- 4.2021
- 4.1364
- 3.9394
- 3.6112
- 3.1516
- 2.5606
- 1.8384
- 0.9849

## Vel =

1.0e+06 \*

0

- 0.9849
- 1.8384
- 2.5606
- 3.1516
- 3.6112
- 3.9394
- 4.1364
- 4.2021
- 4.1364
- 3.9394
- 3.6112
- 3.1516
- 2.5606
- 1.8384
- 0.9849

0



Published with MATLAB® R2015a