

Kannur University

Department of Mathematical Sciences Real Analysis – Minor 3

August – December 2025

Maximum Marks: 16 Time: 50 Minutes Date: 29-09-2025

Instructions: Answer all questions. Each question carrie 3.5 marks. Justify each answer clearly.

1. In which of the following cases does there exist a continuous and onto function $f:X\to Y$?

- a) X = (0,1), Y = (0,1]
- b) X = [0, 1], Y = (0, 1)
- c) $X = (0, 1), Y = \mathbb{R}$
- d) $X = (0, 2), Y = \{0, 1\}$

2. Which of the following statements is/are true?

- (a) There exists a continuous map $f: \mathbb{R} \to \mathbb{R}$ such that $f(\mathbb{R}) = \mathbb{Q}$.
- (b) There exists a continuous map $f: \mathbb{R} \to \mathbb{R}$ such that $f(\mathbb{R}) = \mathbb{Z}$.
- (c) There exists a continuous map $f: \mathbb{R} \to \mathbb{R}^2$ such that

$$f(\mathbb{R}) = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}.$$

(d) There exists a continuous map $f:[0,1]\cup[2,3]\to\{0,1\}$.

3. Let E be a subset of \mathbb{R} . Then the characteristic function $\chi_E : \mathbb{R} \to \mathbb{R}$ is continuous if and only if

- (a) E is closed
- (b) E is open
- (c) E is both open and closed
- (d) E is neither open nor closed

4. If f is defined on E, the **graph of** f is the set of points (x, f(x)), for $x \in E$. In particular, if E is a set of real numbers, and f is real-valued, the graph of f is a subset of the plane.

Suppose E is compact, and prove that f is continuous on E if and only if its graph is compact.

5. Discuss the continuity and uniform continuity of the function $f:(0,1)\to\mathbb{R}$ defined by $f(x)=\frac{1}{x}$.