Count prime

Count prime

- Given an integer n, return the number of prime numbers that are strictly less than n.
- Input: n = 10
- Output: 4
- Explanation: There are 4 prime numbers less than 10, they are 2, 3, 5, 7.

10 points out of a total 25 points that your program can run n<10⁴

- iterated from i = 2 to i<n</p>
 - iterated from j = 2 to j<i, check that whether i is perfectly divisible by j
 - If i is perfectly divisible by j, i is not a prime number, then terminated the loop
 - Otherwise, i is a prime number.

15 points out of a total 25 points that your program can run 10^5<=n<2.5*10^6 in one second.

- iterated from i = 2 to i<n</p>
 - iterated from j = 2 to j*j<=i, check that whether n is perfectly divisible by j
 - If i is perfectly divisible by j, i is not a prime number, then terminated the loop
 - Otherwise, i is a prime number.

若N為合數 \cdot 且有r個因數 $(r \geq 2)$ 反證明 $P_1, P_2, \cdots, P_r > \sqrt{N}$

$$N = P_1 imes P_2 imes \cdots imes P_r > N^{rac{r}{2}} \ N^{rac{r}{2}} \geq N \ (\because rac{r}{2} \geq 1)$$

 $\because N > N^{rac{r}{2}}$ 和 $N^{rac{r}{2}} \geq N$ 矛盾

:. 反證成立

If it is a composite number, it must have at least one factor $<=\sqrt{n}$

25 points out of a total 25 points that your program can run 3.3*10^6<=n<=5*10^6 in one second.

Sieve of Eratosthenes

algorithm Sieve of Eratosthenes is

input: an integer n > 1.

output: all prime numbers count from 2 through n-1.

let A be an array of Boolean values, indexed by integers 2 to n-1, initially all set to true.

for i = 2, 3, 4, ..., not exceeding
$$\sqrt{n}$$
 do if A[i] is true for j = i^2 , i^2 +i, i^2 +2i, i^2 +3i, ..., not exceeding n do A[j] := false

return all i such that A[i] is true.

10 20 30
20 30
30
40
40
50
60
70
80
90
100
110
120

Prime numbers

Questions?