

STM32F2 高低温死机问题

前言

本篇讨论了一个 STM32F2 在用户产品进行高低温测试死机的例子。

问题:

某用户使用 STM32F2 进行产品设计。当进行高低温试验时,发现高温时产品死机。

分析:

首先,芯片的工作范围是在温度 85 摄氏度以下。经了解,客户实测的温箱温度在 70 摄氏度左右,并未超过限制。然而,客户也表示芯片表面温度较高,有可能恰好达到了 85 摄氏度。此点需要进一步排查。

进一步了解,在产品中芯片工作在 120MHz。而当频率降低到 60MHz 时也一切正常。由此推测,此问题可能并非由温度导致。

分析原理图,发现 Vcap 引脚上电容接的过小,没有达到 2.2uF。而产品手册中明确标明了这一点:

不论此问题是否是导致这个问题的原因,这点都必须加以改进,消除隐患。

进一步了解软件,发现客户的代码中没有对 Flash 等待周期进行设置。 查询手册可得知,只有当芯片工作于较低频率时,才可以不加等待周期。而具体这个频率是多少,和 芯片的工作电压也有关系。

Wait states (WS) (LATENCY)	HCLK - Cortex [®] -M3 clock frequency (MHz)			
	Voltage range 2.7 to 3.6 V	Voltage range 2.4 to 2.7 V	Voltage range 2.1 to 2.4 V	Voltage range 1.8 ⁽¹⁾ to 2.1 V
0 WS (1 CPU cycle)	0 < HCLK ≤ 30	0 < HCLK ≤ 24	0 < HCLK ≤ 18	0 < HCLK ≤ 16
1 WS (2 CPU cycles)	30 <hclk 60<="" td="" ≤=""><td>24 < HCLK≤ 48</td><td>18 < HCLK ≤ 36</td><td>16 < HCLK ≤ 32</td></hclk>	24 < HCLK≤ 48	18 < HCLK ≤ 36	16 < HCLK ≤ 32
2 WS (3 CPU cycles)	60 < HCLK ≤ 90	48 < HCLK ≤ 72	36 < HCLK ≤ 54	32 < HCLK ≤ 48
3 WS (4 CPU cycles)	90 < HCLK ≤ 120	72 < HCLK ≤ 96	54 < HCLK ≤ 72	48 < HCLK ≤ 64
4 WS (5 CPU cycles)		96 < HCLK ≤ 120	72 < HCLK ≤ 90	64 < HCLK ≤ 80
5 WS (6 CPU cycles)			90 < HCLK ≤ 108	80 < HCLK ≤ 96
6 WS (7 CPU cycles)			108 < HCLK ≤ 120	96 < HCLK ≤ 112
7 WS (8 CPU cycles)				112 < HCLK ≤ 120

根据客户产品上芯片的实际工作条件,将 Flash 等待周期调整为 4。

经过以上措施,高温试验时一切正常。

由此可以看出,对于一些表面很象的原因还需要仔细分析、耐心查找,才能找到真正的症结所在。

重要通知 - 请仔细阅读

意法半导体公司及其子公司("ST")保留随时对ST产品和/或本文档进行变更、更正、增强、修改和改进的权利,恕不另行通知。买方在订货之前应获取关于ST产品的最新信息。ST产品的销售依照订单确认时的相关ST销售条款。

买方自行负责对ST 产品的选择和使用, ST 概不承担与应用协助或买方产品设计相关的任何责任。

ST 不对任何知识产权进行任何明示或默示的授权或许可。

转售的ST 产品如有不同于此处提供的信息的规定,将导致ST 针对该产品授予的任何保证失效。

ST 和ST 徽标是ST 的商标。所有其他产品或服务名称均为其各自所有者的财产。

本文档中的信息取代本文档所有早期版本中提供的信息。

© 2015 STMicroelectronics - 保留所有权利