

Laguna State Polytechnic University Province of Laguna

Exercise No. 2					
Topic:	Topic 2: Supervised Learning Techniques	Week No.	4		
Course Code:	CSST102	Term:	1st Semester		
Course Title:	Basic Machine Learning	Academic Year:	2024-2025		
Student Name		Section			
Due date		Points			

Exercises for K-Nearest Neighbors (KNN) and Logistic Regression on Breast Cancer Diagnosis Dataset

Exercise 1: Data Exploration and Preprocessing

1. Load and Explore the Data:

- o Load the **Breast Cancer Diagnosis Dataset** into a pandas DataFrame.
- Display the first 10 rows and check for missing values.
- o Explore the distribution of features using descriptive statistics (mean, std, min, max, etc.).

Task:

- Summarize the dataset: How many instances and features are there? Are there any missing values?
- Which features have the highest variance and might be the most important for classification?

2. Preprocessing:

- o Drop irrelevant columns (e.g., id and unnamed columns).
- o Convert the target variable diagnosis (M = Malignant, B = Benign) into numerical format.
- Normalize or standardize the features to ensure they're on the same scale (optional).

Task:

 After preprocessing, split the dataset into 80% training and 20% testing data using train_test_split.

Laguna State Polytechnic University Province of Laguna

Exercise 2: Implementing the K-Nearest Neighbors (KNN) Model

1. Implement a KNN Classifier:

- o Use the KNeighborsClassifier from scikit-learn.
- Train the KNN classifier using the training data (use n_neighbors=5 by default).
- o Predict the tumor diagnosis on the test data.

Task:

- Calculate the accuracy of the KNN model.
- o Present the **confusion matrix** for the predictions.

2. Experiment with Different Values of n_neighbors:

Vary the number of neighbors (e.g., 3, 5, 7, 9) and observe the model's performance.

Task:

- o Plot a graph showing how accuracy changes with different values of n_neighbors.
- o What is the optimal value of n_neighbors based on the accuracy?

Exercise 3: Implementing Logistic Regression

1. Implement a Logistic Regression Classifier:

- Use the LogisticRegression from scikit-learn.
- o Train the model using the training data and predict the test data labels.

Task:

- o Calculate the **accuracy** of the Logistic Regression model.
- Present the confusion matrix and classification report (precision, recall, F1-score).

2. Comparison of KNN and Logistic Regression:

 Compare the performance (accuracy, precision, recall) of both models on the same dataset.

Task:

- o Which model performs better in terms of accuracy and F1-score?
- Discuss which model you think is more appropriate for this classification problem and why.

Laguna State Polytechnic University Province of Laguna

Exercise 4: Hyperparameter Tuning and Cross-Validation

1. Grid Search for Hyperparameter Tuning:

- Use GridSearchCV to tune the hyperparameters of the KNN model.
- Tune parameters such as n_neighbors, weights, and p (for distance metric).

Task:

- Perform cross-validation using GridSearchCV to find the best hyperparameters for KNN.
- Report the best combination of parameters and the corresponding accuracy.

2. Cross-Validation for Logistic Regression:

o Perform **k-fold cross-validation** on the Logistic Regression model (use k=5).

Task:

o Report the cross-validated accuracy for the Logistic Regression model.

Exercise 5: Decision Boundary Visualization

1. Visualizing the Decision Boundary:

- o Reduce the dimensionality of the dataset to 2D using Principal Component Analysis (PCA).
- Visualize the decision boundary of the KNN and Logistic Regression models.

Task:

- o Plot the decision boundary for both models using the top two principal components.
- Discuss how each model separates the malignant and benign tumors in the 2D space.

Inability to follow this instruction will be deducted 5 points each for filename format and late submission per day. Also, cheating and plagiarism will be penalized.

Laguna State Polytechnic University Province of Laguna

Rubric for Exercises on KNN and Logistic Regression

Criteria	Excellent	Good	Satisfactory	Needs Improvement
Criteria	(90-100%)	(75-89%)	(60-74%)	(0-59%)
Exercise 1: Data	Comprehensive data			
Exploration and	exploration with insights into	Adequate exploration of	Basic data exploration	Minimal exploration;
Preprocessing	feature distributions and	data; preprocessing	and preprocessing;	poor handling of missing
(20%)	correlations; data	steps correctly	some issues with	values, scaling, or data
	preprocessing thoroughly	implemented with minor	handling missing data,	preprocessing. Little or
	handled, including	issues; clear feature	scaling, or feature	no meaningful analysis of
	appropriate scaling and	selection and scaling.	selection.	data.
	feature selection.			
Exercise 2: KNN	KNN model is accurately	KNN model implemented	KNN model	Incorrect or incomplete
Implementation	implemented with proper	KNN model implemented with minor issues;	implemented with	Incorrect or incomplete KNN model implementation;
(20%)	hyperparameters; model	performance metrics	noticeable errors or	
	performance is clearly	evaluated correctly but	lack of proper	evaluation metrics
	evaluated using multiple	could include more	evaluation; missing or	missing or poorly
	metrics (accuracy, confusion	insights.	incorrect performance	interpreted.
	matrix, etc.).		metrics.	
Exercise 3: Logistic	Logistic Regression	Logistic Regression	Basic implementation	Poor or incorrect Logistic
Regression	implemented accurately with	implemented with minor		Regression
Implementation	well-documented code;	issues; metrics calculated		implementation; missing
(20%)	metrics like accuracy,	·		evaluation metrics or
	confusion matrix, and	some depth but could be	limited interpretation	incorrect interpretations
	classification report correctly	more detailed.	of results.	of model results.
	calculated and interpreted.			_
Exercise 4:	Thorough tuning of	Hyperparameter tuning	Basic hyperparameter	Poor or no
Hyperparameter	hyperparameters using	and cross-validation	Ituning and cross-	hyperparameter tuning;
Tuning and Cross-	GridSearchCV; cross-	performed with minor	lvalidation: issues with	cross-validation not
Validation (20%)	validation performed	issues; the best	implementation or lack	implemented or incorrectly done; no clear
	correctly; best parameters reported with detailed	parameters identified	of clarity in parameter	parameter selection or
	explanation of results.	but analysis lacks depth.	selection.	results reported.
Exercise 5: Decision	•			
Boundary	visualization of decision	Decision boundary		Minimal or missing
-	boundaries using PCA;	visualizations provided	ľ	visualizations; poor or no
	visualization effectively	but lacking clarity or	poorly executed;	discussion of decision
		depth; discussion of		boundaries; little effort
	classes; thoughtful discussion	•	decision boundaries	to explain class
	of model boundaries.		and class separation.	separation.
Report Quality and	Report is well-organized,	Report is organized with		Report is unclear,
Visualizations	professional, and clearly	minor issues;	Basic report with	disorganized, or
(10%)	explains all steps;	visualizations are present	limited depth and	incomplete;
	visualizations (e.g., confusion		clarity; visualizations	visualizations are
	matrices, accuracy graphs)	the analysis; some	are present but may	missing, irrelevant, or do
	are integrated and support	sections lack clarity or	not fully support the	not support the analysis;
	are integrated and support	Sections lack clarity of	analysis or are unclear.	not support the unarysis,