19 Aprile 2018 - Analisi Esplorativa

Cognome:			
Nome:			
Matricola:			
Tipologia d'esame:	□ 12 CFU	□ 15 CFU	

Prova scritta - fila A

Si svolgano gli esercizi riportando il risultato dove indicato. Durata: 60 minuti

Esercizio 1 (13 punti)

Si consideri la seguente matrice dei dati X relativi alle 10 aziende più importanti nel mondo (fonte: Forbes Global 2000):

	Vendite (in miliardi di \$)	Profitto (in miliardi di \$)
Citigroup	108.28	17.05
General Electric	152.36	16.59
American Intl Group	95.04	10.91
Bank of America	65.45	14.14
HSBC Group	62.97	9.52
ExxxonMobil	263.99	25.33
Royal Dutch/Shell	265.19	18.54
BP	285.06	15.73
ING Group	92.01	8.10
Toyota Motor	165.68	11.13

Si risponda alle seguenti domande:

a. Riportare il vettore delle medie \bar{x} e la matrice di varianze/covarianze S, arrotondando al **secondo** decimale:

Vendite Profitto ## Vendite 6728.81 273.26 ## Profitto 273.26 23.57

b. Si riporti la proporzione di varianza spiegata dalla prima componente principale calcolata sulla base di $S: \sum_{p \times p}$

$$\frac{\lambda_1}{\lambda_1 + \lambda_2} = \dots$$

dove λ_1 e λ_2 sono gli autovalori di S, arrotondando alla terza cifra decimale.

[1] 0.998

c. Si calcoli il coefficiente di correlazione tra la j-sima colonna \tilde{x}_j della matrice dei dati centrati $\tilde{X}_n = 1$ punteggi y_1 della prima componente principale, arrotondando il calcolo al **sesto decimale**:

$$\operatorname{Corr}(\tilde{x}_1, y_1) = \dots,$$
 $\operatorname{Corr}(\tilde{x}_2, y_1) = \dots$

- ## Vendite
- -0.999998
- ## Profitto
- ## -0.687407
 - d. Si riporti nel grafico seguente, la lunghezza del semiasse maggiore e quella del semiasse minore dell'ellisse

$$(x-\bar{x})' S_{p \times p}^{-1} (x-\bar{x}) = 1$$

arrotondando al secondo decimale.

Attaching package: 'ellipse'

The following object is masked from 'package:graphics':

##

##

pairs

- e. Sulla base dei risultati ottenuti nei punti a. d., ritenete preferibile calcolare le componenti principali sulla base della matrice di correlazione $\underset{p \times p}{R}$? Motivare la risposta.
- f. Si ottengano tre gruppi di aziende utilizzando il metodo gerarchico basato sulla matrice delle distanze di Lagrange e il legame completo. Riportare i nomi delle aziende presenti nei tre gruppi:

##	Citigroup	General Electric	American Intl Group
##	1	2	1
##	Bank of America	HSBC Group	ExxxonMobil
##	1	1	3
##	Royal Dutch/Shell	BP	ING Group
##	3	3	1
##	Toyota Motor		
##	2		

Gruppo 1: \dots

Gruppo 2: \dots

Gruppo 3: ..

g. Si calcoli la distanza di Mahalanobis di ciascuna unità statistica dal baricentro e si riportino i nomi delle aziende che superano il valore 1.4.

[1] "Bank of America" "ExxxonMobil" "BP"

Aziende con $d_M(u_i, \bar{x}) > 1.4$: ...

h. Dimostrare, esplicitando tutti i passaggi e le quantità coinvolte, che $\det(S) = \prod_{j=1}^p \lambda_j$, dove λ_j sono gli autovalori di una generica matrice di varianze/covarianze $S \atop p \times p$

19 Aprile 2018 - Analisi Esplorativa

Prova scritta - fila B

Si svolgano gli esercizi riportando il risultato dove indicato. Durata: 60 minuti

Esercizio 2 (13 punti)

Si consideri il seguente il modello fattoriale ad 1 fattore:

$$x_1 = 0.9f + u_1$$
$$x_2 = 0.7f + u_2$$
$$x_3 = 0.5f + u_3$$

con le varianze specifiche pari a $\psi_1 = 0.19$, $\psi_2 = 0.51$ e $\psi_3 = 0.75$.

a. Riportare la matrice di correlazione prevista dal modello fattoriale ad 1 fattore:

$$\mathbb{C}\operatorname{orr}(\underset{p\times 1}{x}) = \Lambda\Lambda' + \Psi =$$

- ## [,1] [,2] [,3] ## [1,] 1.00 0.63 0.45 ## [2,] 0.63 1.00 0.35 ## [3,] 0.45 0.35 1.00
 - b. Il numero di parametri corrispondenti al modello fattoriale ad un fattore (senza vincoli) è pari a
 - c. Riportare i valori delle comunalità:

$$h_1^2 = \dots \qquad \qquad h_2^2 = \dots \qquad \qquad h_3^2 = \dots$$

- ## [,1] ## [1,] 0.81 ## [2,] 0.49 ## [3,] 0.25
 - d. Si supponga di aver osservato n=20 unità statistiche, e di aver calcolato la seguente matrice di correlazione

$$R_{3\times3} = \left[\begin{array}{ccc} 1 & 0.5 & 0.4 \\ & 1 & 0.3 \\ & & 1 \end{array} \right].$$

Sulla base dalla matrice di correlazione R, si stimi il modello fattoriale con k=1 fattori utilizzando il metodo della massima verosimiglianza senza effettuare **nessuna rotazione**. Riportare, arrotondando al **secondo decimale**, i seguenti valori

$$\hat{\Lambda}_{p imes k} = \left[\begin{array}{c} \hat{\Psi}_{p imes p} = \end{array} \right]$$

```
## [,1] [,2] [,3]
## [1,] 1.0 0.5 0.4
## [2,] 0.5 1.0 0.3
## [3,] 0.4 0.3 1.0
## [1] 0.82 0.61 0.49
## [1] 0.33 0.62 0.76
```


g. Dimostrare che la matrice di centramento
$$\underset{n \times n}{H}$$
 è idempotente, giustificano tutti i passaggi.

h. Dimostrare, esplicitando tutti i passaggi, e specificando tutte le quantità coinvolte, che la matrice di varianze/covarianze S è semi-definita positiva, esplicitando tutti i passaggi.