

TD module production de données omics – protéomique.

Thibaut Léger - 03/06/2020

Un run LC-MS/MS a été réalisé à partir d'une digestion par la trypsine d'un lysat total d'un organisme (à déterminer lors du TD). On s'intéresse particulièrement à une protéine. Le spectre MS2 d'un de ses peptides est donné ci-dessous.

 Trouver la séquence du peptide à partir du spectre MS2 (déconvolué) acquis en LC-MS/MS. (masses des acides aminés et nomenclature de fragmentation des peptides en annexe cidessous).

- 2) Retrouver l'identité de la molécule et l'espèce concernée avec Blastp. (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins)
- 3) Trouver la séquence et des informations sur la protéine sur Uniprot. (https://www.uniprot.org/). Quelle est la localisation intracellulaire de cette protéine ?
- 4) Réaliser une digestion théorique de la protéine à partir de la séquence en fasta trouvée dans Uniprot avec PeptideMass (https://web.expasy.org/peptide mass/). De quel peptide peut-il s'agir ?
- 5) Créer un fichier mgf (avec un éditeur de texte, ex : Notepad) et retrouver l'identité de la molécule avec Mascot (Matrix Science,
 - http://www.matrixscience.com/cgi/search_form.pl?FORMVER=2&SEARCH=MIS).
 - Rq: pour le fichier mgf, voir l'annexe ci-dessous.
 - Rq 1: Autres solutions : Maxquant et Perseus (https://maxquant.net/maxquant/), non applicable ici.
- 6) Est-ce que le profil d'abondance des isotopologues correspond au profil théorique obtenu par MIDAs (https://www.ncbi.nlm.nih.gov/CBBresearch/Yu/midas/index.html)?

Rq: possibilité d'utiliser le package R Rdisop pour vérifier. (https://bioconductor.org/packages/release/bioc/html/Rdisop.html)

- 7) Ma protéine est-elle facilement analysable ? -> GMPDB (https://gpmdb.thegpm.org/)
- 8) Est-ce que ma protéine possède des partenaires protéiques connus ? -> String (https://string-db.org/), Biogrid (https://string-db.org/).
- 9) Des analyses de protéomique quantitative ont été réalisées avec une autre levure, *Candida albicans*. Ces analyses consistent à comparer les protéomes des formes hyphe (pathogène) et levure (dissémination). L'export de cette analyse de quantification relative est donné en pièce jointe. Il s'agira ici d'identifier les protéines différentielles entre les deux conditions F1 et F2 du fichier et de réaliser des analyses d'enrichissement en termes de Gene Ontology à l'aide de la fonction GO term Finder du site Candida Genome Database (CGD, http://www.candidagenome.org/cgi-bin/GO/goTermFinder).

Ces analyses de termes GO devraient vous permettre de retrouver parmi les échantillons F1 et F2, celui qui correspond à la forme hyphe et celui qui correspond à la forme levure.

Rq: pour d'autres espèces, il est possible d'utiliser par exemple SGD (Saccharomyces cerevisiae), Panther (http://www.pantherdb.org/), Cytoscape avec ses plugins BINGO, CLUEGO ou l'algorithme Gene Set Enrichment Analysis (GSEA) pour de nombreuses espèces.

10) Que représente la photo ci-dessous ?

ANNEXES:

A] Masses des acides aminés :

Name	3-letter code	1-letter code	Residue Mass	Immonium ion	Related ions	Composition
Alanine	Ala	A	71.03711	44		C ₃ H ₅ NO
Arginine	Arg	R	156.10111	129	59,70,73,87,100,112	C ₆ H ₁₂ N ₄ O
Asparagine	Asn	N	114.04293	87	70	C ₄ H ₆ N ₂ O ₂
Aspartic Acid	Asp	D	115.02694	88	70	C ₄ H ₅ NO ₃
Cysteine	Cys	С	103.00919	76		C ₃ H ₅ NOS
Glutamic Acid	Glu	E	129.04259	102		C ₅ H ₇ NO ₃
Glutamine	Gln	Q	128.05858	101	56,84,129	C5H8N2O2
Glycine	Gly	G	57.02146	30		C ₂ H ₃ NO
Histidine	His	Н	137.05891	110	82,121,123,138,166	C ₆ H ₇ N ₃ O
Isoleucine	Ile	I	113.08406	86	44,72	C ₆ H ₁₁ NO
Leucine	Leu	L	113.08406	86	44,72	C ₆ H ₁₁ NO
Lysine	Lys	K	128.09496	101	70,84,112,129	C ₆ H ₁₂ N ₂ O
Methionine	Met	M	131.04049	104	61	C5H9NOS
Phenyalanine	Phe	F	147.06841	120	91	C ₉ H ₉ NO
Proline	Pro	P	97.05276	70		C ₅ H ₂ NO
Serine	Ser	S	87.03203	60		C ₃ H ₅ NO ₂
Threonine	Thr	T	101.04768	74		C ₄ H ₇ NO ₂
Tryptophan	Trp	w	186.07931	159	11,117,130,132,170,100	C ₁₁ H ₁₀ N ₂ O
Tyrosine	Tyr	Y	163.06333	136	91,107	C ₉ H ₉ NO ₂
Valine	Val	V	99.06841	72	44,55,69	C ₅ H ₉ NO

B] Nomenclature de fragmentation des peptides :

C] Structure d'un fichier mgf :

BEGIN IONS

TITLE=scan=1317 centroided 200 most intense (50 total peaks)

RTINSECONDS=297.916

PEPMASS=???? 12066.720502853394

CHARGE=1+

430.1 4000

... (à compléter)

END IONS