Package 'PeakSegDisk'

October 2, 2024

Type Package

Title Disk-Based Constrained Change-Point Detection		
Version 2024.10.1		
Maintainer Toby Dylan Hocking <toby.hocking@r-project.org></toby.hocking@r-project.org>		
Description Disk-based implementation of Functional Pruning Optimal Partitioning with up-down constraints doi:10.18637/jss.v101.i10 > for single-sample peak calling (independently for each sample and genomic problem), can handle huge data sets (10^7 or more).		
License GPL-3		
Depends R (>= 2.10)		
Imports data.table (>= 1.9.8)		
Suggests testthat, ggplot2, future.apply, future, knitr, markdown		
VignetteBuilder knitr		
<pre>URL https://github.com/tdhock/PeakSegDisk</pre>		
BugReports https://github.com/tdhock/PeakSegDisk/issues		
NeedsCompilation yes		
Author Toby Dylan Hocking [aut, cre]		
Repository CRAN		
Date/Publication 2024-10-02 04:30:07 UTC		
Contents		
ChIPreads coef.PeakSegFPOP_df coef.PeakSegFPOP_dir col.name.list fread.first fread.last Mono27ac		

2 ChIPreads

	PeakSegFPOP_df	8
	PeakSegFPOP_dir	10
	PeakSegFPOP_file	13
	PeakSegFPOP_vec	14
	plot.PeakSegFPOP_df	16
	plot.PeakSegFPOP_dir	16
	sequentialSearch_dir	17
	summary.PeakSegFPOP_dir	18
	wc2int	19
	writeBedGraph	20
Index		21

ChIPreads

Reads aligned to hg19 from two ChIP-seq experiments

Description

These data are raw aligned reads which have been mapped to the human genome, hg19. One is sample ID McGill0004, experiment H3K36me3, chr9, chunk H3K36me3_AM_immune/8. The other is sample ID McGill0002, experiment H3K4me3, chr2, chunk H3K4me3_PGP_immune/7. The chunk ID numbers refer to parts of the McGill benchmark data set, https://rcdata.nau.edu/genomic-ml/chip-seq-chunk-db/

Usage

```
data("ChIPreads")
```

Format

A data frame with 40396 observations on the following 4 variables.

experiment either H3K36me3 or H3K4me3

chrom either chr9 or chr2

chromStart 0-based start position of read

chromEnd 1-based end position of read

count number of times a read occured with the given chromStart/end in this sample/experiment

Details

Peak detection algorithm are typically run on a sequence of non-negative integer count data, one data point for each genomic position. These data are useful for proving that peak detection methods are robust to different sequences: (1) spatially correlated, non-independent aligned read coverage; (2) un-correlated, independent representations such as first or last read.

coef.PeakSegFPOP_df

```
coef.PeakSegFPOP_df coef PeakSegFPOP df
```

Description

Create a list of data tables describing PeakSegFPOP model and data.

Usage

Arguments

```
object object
```

Value

list of data tables with named elements segments, loss, data, changes, peaks.

Author(s)

Toby Dylan Hocking <toby.hocking@r-project.org> [aut, cre]

```
coef.PeakSegFPOP_dir coef PeakSegFPOP dir
```

Description

Compute changes and peaks to display/plot.

Usage

Arguments

```
object object
```

4 col.name.list

Value

model list with additional named elements peaks and changes.

Author(s)

Toby Dylan Hocking <toby.hocking@r-project.org> [aut, cre]

col.name.list

col name list

Description

Named list of character vectors (column names of bed/bedGraph/tsv files), used to read data files, which do not contain a header / column names. Each name corresponds to a data/file type, and each value is a character vector of column names expected in that file. loss is for the coverage.bedGraph_penalty=VALUE_loss.tsv file generated by PeakSegFPOP_file; segments is for the coverage.bedGraph_penalty=VALUE_segments.bed generated by PeakSegFPOP_file; coverage is for the coverage.bedGraph file which is used as input to PeakSegFPOP_file.

Usage

```
"col.name.list"
```

```
library(PeakSegDisk)
r <- function(chrom, chromStart, chromEnd, coverage){</pre>
  data.frame(chrom, chromStart, chromEnd, coverage)
four <- rbind(</pre>
  r("chr1", 0, 10, 2),
  r("chr1", 10, 20, 10),
  r("chr1", 20, 30, 14),
  r("chr1", 30, 40, 13))
write.table(
  four, tmp <- tempfile(),</pre>
  sep="\t", row.names=FALSE, col.names=FALSE)
  tmp, col.names=col.name.list$coverage)
pstr <- "10.5"
PeakSegFPOP_file(tmp, pstr)
outf <- function(suffix){</pre>
  paste0(tmp, "_penalty=", pstr, "_", suffix)
fread.first(outf("segments.bed"), col.name.list$segments)
fread.first(outf("loss.tsv"), col.name.list$loss)
```

fread.first 5

fread.first

Quickly read first line

Description

Read the first line of a text file. Useful for quickly checking if the coverage.bedGraph_penalty=VALUE_segments.bed file is consistent with the coverage.bedGraph_penalty=VALUE_loss.tsv file. (used by the PeakSegFPOP_dir caching mechanism)

Usage

```
fread.first(file.name,
     col.name.vec)
```

Arguments

file.name Name of file to read.

col.name.vec Character vector of column names.

Value

Data table with one row.

Author(s)

Toby Dylan Hocking <toby.hocking@r-project.org> [aut, cre]

```
library(PeakSegDisk)
r <- function(chrom, chromStart, chromEnd, coverage){</pre>
  data.frame(chrom, chromStart, chromEnd, coverage)
four <- rbind(</pre>
  r("chr1", 0, 10, 2),
  r("chr1", 10, 20, 10),
  r("chr1", 20, 30, 14),
  r("chr1", 30, 40, 13))
write.table(
  four, tmp <- tempfile(),</pre>
  sep="\t", row.names=FALSE, col.names=FALSE)
pstr <- "10.5"
PeakSegFPOP_file(tmp, pstr)
outf <- function(suffix){</pre>
  paste0(tmp, "_penalty=", pstr, "_", suffix)
segments.bed <- outf("segments.bed")</pre>
first.seg.line <- fread.first(segments.bed, col.name.list$segments)</pre>
```

6 fread.last

```
last.seg.line <- fread.last(segments.bed, col.name.list$segments)
loss.tsv <- outf("loss.tsv")
loss.row <- fread.first(loss.tsv, col.name.list$loss)
seg.bases <- first.seg.line$chromEnd - last.seg.line$chromStart
loss.row$bases == seg.bases</pre>
```

fread.last

Quickly read last line

Description

Read the last line of a text file. Useful for quickly checking if the coverage.bedGraph_penalty=VALUE_segments.bed file is consistent with the coverage.bedGraph_penalty=VALUE_loss.tsv file. (used by the PeakSegFPOP_dir caching mechanism)

Usage

```
fread.last(file.name,
     col.name.vec)
```

Arguments

file.name Name of file to read.
col.name.vec Character vector of column names.

Value

Data table with one row.

Author(s)

Toby Dylan Hocking <toby.hocking@r-project.org> [aut, cre]

```
library(PeakSegDisk)
r <- function(chrom, chromStart, chromEnd, coverage){
  data.frame(chrom, chromStart, chromEnd, coverage)
}
four <- rbind(
  r("chr1", 0, 10, 2),
  r("chr1", 10, 20, 10),
  r("chr1", 20, 30, 14),
  r("chr1", 30, 40, 13))
write.table(
  four, tmp <- tempfile(),</pre>
```

Mono27ac 7

```
sep="\t", row.names=FALSE, col.names=FALSE)
pstr <- "10.5"
PeakSegFPOP_file(tmp, pstr)

outf <- function(suffix){
   paste0(tmp, "_penalty=", pstr, "_", suffix)
}
segments.bed <- outf("segments.bed")
first.seg.line <- fread.first(segments.bed, col.name.list$segments)
last.seg.line <- fread.last(segments.bed, col.name.list$segments)

loss.tsv <- outf("loss.tsv")
loss.row <- fread.first(loss.tsv, col.name.list$loss)

seg.bases <- first.seg.line$chromEnd - last.seg.line$chromStart
loss.row$bases == seg.bases</pre>
```

Mono27ac

A small ChIP-seq data set in which peaks can be found using Peak-SegFPOP

Description

The data come from an H3K27ac ChIP-seq experiment which was aligned to the human reference genome (hg19), aligned read counts were used to produce the coverage data; looking at these data in a genome browser was used to produce the labels. ChIP-seq means Chromatin Immunoprecipitation followed by high-throughput DNA sequencing; it is an assay used to characterize genome-wide DNA-protein interactions. In this experiment the protein of interest is histone H3, with the specific modification K27ac (hence the name H3K27ac). Large counts (peaks) therefore indicate regions of the reference genome with high likelihood of interaction between DNA and that specific protein, in the specific Monocyte sample tested.

Usage

```
data("Mono27ac")
```

Format

A list of 2 data.tables: coverage has 4 columns (chrom, chromStart, chromEnd, count=number of aligned reads at each position on chrom:chromStart-chromEnd); labels has 4 columns (chrom, chromStart, chromEnd, annotation=label at chrom:chromStart-chromEnd). chrom refers to the chromosome on which the data were gathered (chr11), chromStart is the 0-based position before the first base of the data/label, chromEnd is the 1-based position which is the last base of the data/label. Therefore, each chromEnd on each row should be equal to the chromStart of the next row.

8 PeakSegFPOP_df

Source

UCI Machine Learning Repository, chipseq data set, problem directory H3K27ac-H3K4me3_TDHAM_BP/samples/Mono1_580000 Links: https://archive.ics.uci.edu/ml/datasets/chipseq for the UCI web page; https://github.com/tdhock/feature-learning-benchmark for a more detailed explanation.

PeakSegFPOP_df

PeakSeg penalized solver for data.frame

Description

Write data frame to disk then run PeakSegFPOP_dir solver.

Usage

```
PeakSegFPOP_df(count.df,
    pen.num, base.dir = tempdir())
```

Arguments

count.df data.frame with columns count, chromStart, chromEnd. These data will be

saved via writeBedGraph, creating a plain text file with the following four columns: chrom (character chromosome name), chromStart (integer start position), chromEnd (integer end position), count (integer aligned read count on

chrom from chromStart+1 to chromEnd); see also https://genome.ucsc.edu/goldenPath/help/bedgraph.htm

pen.num Non-negative numeric scalar.

base.dir base.dir/chrXX-start-end/coverage.bedGraph will be written, where chrXX is

the chrom column, start is the first chromStart position, and end is the last

chromEnd position.

Value

List of solver results, same as PeakSegFPOP_dir.

Author(s)

Toby Dylan Hocking <toby.hocking@r-project.org> [aut, cre]

```
## Simulate a sequence of Poisson count data.
sim.seg <- function(seg.mean, size.mean=15){
    seg.size <- rpois(1, size.mean)
    rpois(seg.size, seg.mean)
}
set.seed(1)
seg.mean.vec <- c(1.5, 3.5, 0.5, 4.5, 2.5)
z.list <- lapply(seg.mean.vec, sim.seg)</pre>
```

PeakSegFPOP_df 9

```
z.rep.vec <- unlist(z.list)</pre>
## Plot the simulated data sequence.
if(require(ggplot2)){
 count.df <- data.frame(</pre>
    position=seq_along(z.rep.vec),
    count=z.rep.vec)
 gg.count <- ggplot()+</pre>
    geom_point(aes(
      position, count),
      shape=1,
      data=count.df)
 gg.count
## Plot the true changes.
n.segs <- length(seg.mean.vec)</pre>
seg.size.vec <- sapply(z.list, length)</pre>
seg.end.vec <- cumsum(seg.size.vec)</pre>
change.vec <- seg.end.vec[-n.segs]+0.5</pre>
change.df <- data.frame(</pre>
 changepoint=change.vec)
gg.change <- gg.count+
 geom_vline(aes(
    xintercept=changepoint),
    data=change.df)
gg.change
## Plot the run-length encoding of the same data.
z.rle.vec <- rle(z.rep.vec)</pre>
chromEnd <- cumsum(z.rle.vec$lengths)</pre>
coverage.df <- data.frame(</pre>
 chrom="chrUnknown",
 chromStart=c(0L, chromEnd[-length(chromEnd)]),
 chromEnd,
 count=z.rle.vec$values)
gg.rle <- gg.change+
 geom_segment(aes(
    chromStart+0.5, count, xend=chromEnd+0.5, yend=count),
    data=coverage.df)
gg.rle
## Fit a peak model and plot the segment means.
fit <- PeakSegDisk::PeakSegFPOP_df(coverage.df, 10.5)</pre>
gg.rle+
 geom_segment(aes(
    chromStart+0.5, mean, xend=chromEnd+0.5, yend=mean),
    color="green",
    data=fit$segments)
## Default plot method shows data as geom_step.
(gg <- plot(fit))
```

10 PeakSegFPOP_dir

```
## Plot data as points to verify the step representation.
gg+
  geom_point(aes(
    position, count),
    color="grey",
    shape=1,
    data=count.df)
```

PeakSegFPOP_dir

PeakSeg penalized solver with caching

Description

Main function/interface for the PeakSegDisk package. Run the low-level solver, PeakSegFPOP_file, on one genomic segmentation problem directory, and read the result files into R. Actually, this function will first check if the result files are already present (and consistent), and if so, it will simply read them into R (without running PeakSegFPOP_file) – this is a caching mechanism that can save a lot of time. To run the algo on an integer vector, use PeakSegFPOP_vec; for a data.frame, use PeakSegFPOP_df. To compute the optimal model for a given number of peaks, use sequentialSearch_dir.

Usage

```
PeakSegFPOP_dir(problem.dir,
    penalty.param, db.file = NULL)
```

Arguments

problem.dir

Path to a directory like sampleID/problems/chrXX-start-end which contains a coverage.bedGraph file with the aligned read counts for one genomic segmentation problem. This must be a plain text file with the following four columns: chrom (character chromosome name), chromStart (integer start position), chromEnd (integer end position), count (integer aligned read count on chrom from chrom-Start+1 to chromEnd); see also https://genome.ucsc.edu/goldenPath/help/bedgraph.html. Note that the standard coverage.bedGraph file name is required; for full flexibility the user can run the algo on an arbitrarily named file via PeakSegFPOP_file (see that man page for an explanation of how storage on disk happens).

penalty.param

non-negative numeric penalty parameter (larger values for fewer peaks), or character scalar which can be interpreted as such. 0 means max peaks, Inf means no peaks.

db.file

character scalar: file for writing temporary cost function database – there will be a lot of disk writing to this file. Default NULL means to write the same disk where the input bedGraph file is stored; another option is tempfile() which may result in speedups if the input bedGraph file is on a slow network disk and the temporary storage is a fast local disk.

PeakSegFPOP_dir

Details

Finds the optimal change-points using the Poisson loss and the PeakSeg constraint (changes in mean alternate between non-decreasing and non-increasing). For N data points, the functional pruning algorithm is $O(\log N)$ memory. It is $O(N \log N)$ time and disk space. It computes the exact solution to the optimization problem in vignette("Examples", package="PeakSegDisk").

Value

Named list of two data.tables:

segments has one row for every segment in the optimal model,
loss has one row and contains the following columns:

penalty same as input parameter

segments number of segments in optimal model

peaks number of peaks in optimal model

bases number of positions described in bedGraph file

bedGraph.lines number of lines in bedGraph file

total.loss total Poisson loss = $\sum_{i} m_i - z_i * \log(m_i)$ = mean.pen.cost*bases-penalty*peaks

mean.pen.cost mean penalized cost = (total.loss+penalty*peaks)/bases

equality.constraints number of adjacent segment means that have equal values in the optimal solution

mean.intervals mean number of intervals/candidate changepoints stored in optimal cost functions – useful for characterizing the computational complexity of the algorithm

max.intervals maximum number of intervals

megabytes disk usage of *.db file seconds timing of PeakSegFPOP_file

Author(s)

Toby Dylan Hocking <toby.hocking@r-project.org> [aut, cre]

```
data(Mono27ac, package="PeakSegDisk", envir=environment())
data.dir <- file.path(
  tempfile(),
  "H3K27ac-H3K4me3_TDHAM_BP",
  "samples",
  "Mono1_H3K27ac",
  "S001YW_NCMLS",
  "problems",
  "chr11-60000-580000")
dir.create(data.dir, recursive=TRUE, showWarnings=FALSE)
write.table(
  Mono27ac$coverage, file.path(data.dir, "coverage.bedGraph"),</pre>
```

12 PeakSegFPOP_dir

```
col.names=FALSE, row.names=FALSE, quote=FALSE, sep="\t")
## Compute one model with penalty=1952.6
(fit <- PeakSegDisk::PeakSegFPOP_dir(data.dir, 1952.6))</pre>
summary(fit)#same as fit$loss
## Visualize that model.
ann.colors <- c(</pre>
 noPeaks="#f6f4bf",
 peakStart="#ffafaf",
 peakEnd="#ff4c4c",
 peaks="#a445ee")
if(require(ggplot2)){
 lab.min <- Mono27ac$labels[1, chromStart]</pre>
 lab.max <- Mono27ac$labels[.N, chromEnd]</pre>
 plist <- coef(fit)</pre>
 gg <- ggplot()+
    theme_bw()+
    geom_rect(aes(
      xmin=chromStart/1e3, xmax=chromEnd/1e3,
      ymin=-Inf, ymax=Inf,
      fill=annotation),
      color="grey",
      alpha=0.5,
      data=Mono27ac$labels)+
    scale_fill_manual("label", values=ann.colors)+
    geom_step(aes(
      chromStart/1e3, count),
      color="grey50",
      data=Mono27ac$coverage)+
    geom_segment(aes(
      chromStart/1e3, mean,
      xend=chromEnd/1e3, yend=mean),
      color="green",
      size=1,
      data=plist$segments)+
    geom_vline(aes(
      xintercept=chromEnd/1e3, linetype=constraint),
      color="green",
      data=plist$changes)+
    scale_linetype_manual(
      values=c(
        inequality="dotted",
        equality="solid"))
 print(gg+coord_cartesian(xlim=c(lab.min, lab.max)/1e3, ylim=c(0, 10)))
 ## Default plotting method only shows model.
 print(gg <- plot(fit))</pre>
 ## Data can be added on top of model.
 print(
   gg+
      geom_step(aes(
        chromStart, count),
```

PeakSegFPOP_file 13

PeakSegFPOP_file

PeakSegFPOP using disk storage

Description

Run the PeakSeg Functional Pruning Optimal Partitioning algorithm, using a file on disk to store the O(N) function piece lists, each of size O(log N). This is a low-level function that just runs the algo and produces the result files (without reading them into R), so normal users are recommended to instead use PeakSegFPOP_dir, which calls this function then reads the result files into R.

Usage

```
PeakSegFPOP_file(bedGraph.file,
    pen.str, db.file = NULL)
```

Arguments

bedGraph.file character scalar: tab-delimited tabular text file with four columns: chrom, chromStart, chromEnd, coverage. The algorithm creates a large temporary file in the
same directory, so make sure that there is disk space available on that device.

pen.str character scalar that can be converted to a numeric scalar via as.numeric: nonnegative penalty. More penalty means fewer peaks. "0" and "Inf" are OK. Character is required rather than numeric, so that the user can reliably find the results in the output files, which are in the same directory as bedGraph.file, and
named using the penalty value, e.g. coverage.bedGraph_penalty=136500650856.439_loss.tsv

db.file character scalar: file for writing temporary cost function database – there will
be a lot of disk writing to this file. Default NULL means to write the same disk

where the input bedGraph file is stored; another option is tempfile() which may result in speedups if the input bedGraph file is on a slow network disk and the

Value

A named list of input parameters, and the temporary cost function database file size in megabytes.

Author(s)

Toby Dylan Hocking <toby.hocking@r-project.org> [aut, cre]

temporary storage is a fast local disk.

14 PeakSegFPOP_vec

Examples

```
r <- function(chrom, chromStart, chromEnd, coverage){</pre>
  data.frame(chrom, chromStart, chromEnd, coverage)
four <- rbind(</pre>
  r("chr1", 0, 10, 2),
  r("chr1", 10, 20, 10),
  r("chr1", 20, 30, 14),
  r("chr1", 30, 40, 13))
dir.create(prob.dir <- tempfile())</pre>
coverage.bedGraph <- file.path(prob.dir, "coverage.bedGraph")</pre>
write.table(
  four, coverage.bedGraph,
  sep="\t", row.names=FALSE, col.names=FALSE)
pstr <- "10.5"
result.list <- PeakSegDisk::PeakSegFPOP_file(coverage.bedGraph, pstr)</pre>
dir(prob.dir)
## segments file can be read to see optimal segment means.
outf <- function(suffix){</pre>
  paste0(coverage.bedGraph, "_penalty=", pstr, suffix)
segments.bed <- outf("_segments.bed")</pre>
seg.df <- read.table(segments.bed)</pre>
names(seg.df) <- col.name.list$segments</pre>
seg.df
## loss file can be read to see optimal Poisson loss, etc.
loss.tsv <- outf("_loss.tsv")</pre>
loss.df <- read.table(loss.tsv)</pre>
names(loss.df) <- col.name.list$loss</pre>
loss.df
```

PeakSegFPOP_vec

PeakSeg penalized solver for integer vector

Description

Convert integer data vector to run-length encoding, then run PeakSegFPOP_df.

Usage

```
PeakSegFPOP_vec(count.vec,
     pen.num)
```

Arguments

count.vec integer vector, noisy non-negatve count data to segment.

pen.num Non-negative numeric scalar.

PeakSegFPOP_vec 15

Value

List of solver results, same as PeakSegFPOP_dir.

Author(s)

Toby Dylan Hocking <toby.hocking@r-project.org> [aut, cre]

```
## Simulate a sequence of Poisson data.
sim.seg <- function(seg.mean, size.mean=15){</pre>
  seg.size <- rpois(1, size.mean)</pre>
  rpois(seg.size, seg.mean)
}
set.seed(1)
seg.mean.vec < c(1.5, 3.5, 0.5, 4.5, 2.5)
z.list <- lapply(seg.mean.vec, sim.seg)</pre>
z.rep.vec <- unlist(z.list)</pre>
## Plot the simulated data.
if(require(ggplot2)){
  count.df <- data.frame(</pre>
    position=seq_along(z.rep.vec),
    count=z.rep.vec)
  gg.count <- ggplot()+
    geom_point(aes(
      position, count),
      shape=1,
      data=count.df)
  print(gg.count)
  ## Plot the true changepoints.
  n.segs <- length(seg.mean.vec)</pre>
  seg.size.vec <- sapply(z.list, length)</pre>
  seg.end.vec <- cumsum(seg.size.vec)</pre>
  change.vec <- seg.end.vec[-n.segs]+0.5</pre>
  change.df <- data.frame(</pre>
    changepoint=change.vec)
  gg.change <- gg.count+
    geom_vline(aes(
      xintercept=changepoint),
      data=change.df)
  print(gg.change)
  ## Fit a peak model and plot it.
  fit <- PeakSegDisk::PeakSegFPOP_vec(z.rep.vec, 10.5)</pre>
  print(
    gg.change+
      geom_segment(aes(
        chromStart+0.5, mean, xend=chromEnd+0.5, yend=mean),
        color="green",
        data=fit$segments)
  ## A pathological data set.
```

```
z.slow.vec <- 1:length(z.rep.vec)
fit.slow <- PeakSegDisk::PeakSegFPOP_vec(z.slow.vec, 10.5)
rbind(fit.slow$loss, fit$loss)
}</pre>
```

Description

Plot a PeakSeg model with attached data.

Usage

Arguments

```
x ... ...
```

Value

a ggplot.

Author(s)

Toby Dylan Hocking toby.hocking@r-project.org [aut, cre]

```
\verb"plot.PeakSegFPOP_dir" plot PeakSegFPOP dir
```

Description

Plot a PeakSeg model with attached data.

Usage

sequentialSearch_dir 17

Arguments

```
x ... ...
```

Value

a ggplot.

Author(s)

Toby Dylan Hocking toby.hocking@r-project.org [aut, cre]

sequentialSearch_dir Compute PeakSeg model with given number of peaks

Description

Compute the most likely peak model with at most the number of peaks given by peaks.int. This function repeated calls PeakSegFPOP_dir with different penalty values, until either (1) it finds the peaks.int model, or (2) it concludes that there is no peaks.int model, in which case it returns the next simplest model (with fewer peaks than peaks.int). The first pair of penalty values (0, Inf) is run in parallel via the user-specified future plan, if the future.apply package is available.

Usage

```
sequentialSearch_dir(problem.dir,
    peaks.int, verbose = 0)
```

Arguments

problem.dir problemID directory in which coverage.bedGraph has already been computed.

If there is a labels.bed file then the number of incorrect labels will be computed

in order to find the target interval of minimal error penalty values.

peaks.int int: target number of peaks.

verbose numeric verbosity: if >0 then cat is used to print a message for each penalty.

Value

Same result list from PeakSegFPOP_dir, with an additional component "others" describing the other models that were computed before finding the optimal model with peaks.int (or fewer) peaks. Additional loss columns are as follows: under=number of peaks in smaller model during binary search; over=number of peaks in larger model during binary search; iteration=number of times PeakSegFPOP has been run.

Author(s)

Toby Dylan Hocking <toby.hocking@r-project.org> [aut, cre]

Examples

```
## Create simple 6 point data set discussed in supplementary
## materials. GFPOP/GPDPA computes up-down model with 2 peaks, but
## neither CDPA (PeakSegDP::cDPA) nor PDPA (jointseg)
r <- function(chrom, chromStart, chromEnd, coverage){</pre>
 data.frame(chrom, chromStart, chromEnd, coverage)
}
supp <- rbind(</pre>
 r("chr1", 0, 1, 3),
 r("chr1", 1, 2, 9),
 r("chr1", 2, 3, 18),
 r("chr1", 3, 4, 15),
 r("chr1", 4, 5, 20),
 r("chr1", 5, 6, 2)
)
data.dir <- file.path(tempfile(), "chr1-0-6")</pre>
dir.create(data.dir, recursive=TRUE)
write.table(
 supp, file.path(data.dir, "coverage.bedGraph"),
 sep="\t", row.names=FALSE, col.names=FALSE)
## register a parallel future plan to compute the first two
## penalties in parallel during the sequential search.
if(interactive() && requireNamespace("future"))future::plan("multisession")
## Compute optimal up-down model with 2 peaks via sequential search.
fit <- PeakSegDisk::sequentialSearch_dir(data.dir, 2L)</pre>
if(require(ggplot2)){
 ggplot()+
    theme_bw()+
   geom_point(aes(
      chromEnd, coverage),
      data=supp)+
    geom_segment(aes(
      chromStart+0.5, mean,
      xend=chromEnd+0.5, yend=mean),
      data=fit$segments,
      color="green")
}
```

```
summary.PeakSegFPOP_dir
```

summary PeakSegFPOP dir

Description

Summary of PeakSegFPOP_dir object.

wc2int 19

Usage

```
## S3 method for class 'PeakSegFPOP_dir'
summary(object,
...)
```

Arguments

```
object object
```

Value

Data table with one row and columns describing model summary.

Author(s)

Toby Dylan Hocking <toby.hocking@r-project.org> [aut, cre]

wc2int wc2int

Description

Convert we output to integer number of lines.

Usage

```
wc2int(wc.output)
```

Arguments

wc.output

Character scalar: output from wc.

Value

integer

Author(s)

Toby Dylan Hocking <toby.hocking@r-project.org> [aut, cre]

20 writeBedGraph

writeBedGraph

Write bedGraph file

Description

Write a data.frame in R to a bedGraph file on disk. This must be a plain text file with the following four columns: chrom (character chromosome name), chromStart (integer start position), chromEnd (integer end position), count (integer aligned read count on chrom from chromStart+1 to chromEnd); see also https://genome.ucsc.edu/goldenPath/help/bedgraph.html

Usage

```
writeBedGraph(count.df,
      coverage.bedGraph)
```

Arguments

```
count.df data.frame with four columns: chrom, chromStart, chromEnd, count. coverage.bedGraph
```

file path where data will be saved in plain text / bedGraph format.

Value

NULL (same as write.table).

Author(s)

Toby Dylan Hocking <toby.hocking@r-project.org> [aut, cre]

```
library(PeakSegDisk)
data(Mono27ac, envir=environment())
coverage.bedGraph <- file.path(</pre>
 tempfile(),
  "H3K27ac-H3K4me3_TDHAM_BP",
  "samples",
  "Mono1_H3K27ac",
  "S001YW_NCMLS",
  "problems",
  "chr11-60000-580000",
  "coverage.bedGraph")
dir.create(
 dirname(coverage.bedGraph),
 recursive=TRUE, showWarnings=FALSE)
writeBedGraph(Mono27ac$coverage, coverage.bedGraph)
fread.first(coverage.bedGraph, col.name.list$coverage)
fread.last(coverage.bedGraph, col.name.list$coverage)
```

Index

```
* datasets
    ChIPreads, 2
    Mono27ac, 7
cat, 17
ChIPreads, 2
coef.PeakSegFPOP_df, 3
coef.PeakSegFPOP\_dir, 3
col.name.list,4
fread.first, 5
fread.last, 6
Mono27ac, 7
{\tt PeakSegDisk}~({\tt PeakSegFPOP\_dir}),~10
PeakSegFPOP_df, 8, 10, 14
PeakSegFPOP_dir, 5, 6, 8, 10, 13, 15, 17, 18
PeakSegFPOP_file, 4, 10, 13
PeakSegFPOP_vec, 10, 14
plot.PeakSegFPOP_df, 16
plot.PeakSegFPOP_dir, 16
sequentialSearch_dir, 10, 17
\verb|summary.PeakSegFPOP_dir|, 18|
wc2int, 19
writeBedGraph, 8, 20
```