James K. Pringle 550.621 Probability Dr. Jim Fill Assignment 2 February 27, 2013

Assignment 2

All the exercises on the transition probabilities handout

1. Let $(\Omega_1, \mathcal{A}_1)$ and $(\Omega_2, \mathcal{A}_2)$ be two measurable spaces and let $\pi_i : \Omega_1 \times \Omega_2 \to \Omega_i$ be the *i*th projection, i = 1, 2. Set

 $\mathcal{C} := \pi_1^{-1}(\mathcal{A}_1) \cup \pi_2^{-1}(\mathcal{A}_2)$, the class of measurable cylinders,

 $\mathcal{R} := \{A_1 \times A_2 : A_1 \in \mathcal{A}_1, A_2 \in \mathcal{A}_2\}, \text{ the class of } \textit{measurable rectangles},$

$$\mathcal{U} := \left\{ \sum_{j \in J} R_j : J \text{ finite, } R_j \in \mathcal{R} \text{ for each } j \right\}.$$

(a) Show \mathcal{C} is closed under complementation.

Proof. Given an element of C of C, we have $C = A_1 \times \Omega_2$ or $C = \Omega_1 \times A_2$ for some $A_1 \in \mathcal{A}_1$ or $A_2 \in \mathcal{A}_2$. The complement of C is $C^c = A_1^c \times \Omega_2$ or $C^c = \Omega_1 \times A_2^c$. Since σ -fields are closed under complementation, $A_1^c \in \mathcal{A}_1$ and $A_2^c \in \mathcal{A}_2$. We have covered all possible cases to show that $C^c \in C$.

(b) Show \mathcal{R} is a π -system.

Proof. Let $A_1 \times A_2 \in \mathcal{R}$ and $B_1 \times B_2 \in \mathcal{R}$. Taking the intersection of both sets, we have

$$(A_1 \times A_2) \cap (B_1 \times B_2) = (A_1 \cap B_1) \times (A_2 \times B_2) \tag{1}$$

Since $A_i \cap B_i \in \mathcal{A}_i$ for i = 1, 2 by the closure under countable intersections of σ -fields, $(A_1 \times A_2) \cap (B_1 \times B_2) \in \mathcal{R}$.

(c) Show $\mathcal U$ is the field generated by $\mathcal C$ (and by $\mathcal R$).

Proof. We already have $\mathcal{C} \subset \mathcal{R} \subset \mathcal{U}$. Let $\langle \mathcal{C} \rangle$ denote the field generated by \mathcal{C} . Let $U \in \mathcal{U}$. By definition, $U = \sum R_j$ (a finite sum). Each R_i in the sum can be written as $A_{i1} \times A_{i2}$. By (1), $A_{i1} \times A_{i2} = (A_{i1} \times \Omega_2) \cap (\Omega_1 \times A_{i2})$, the intersection of elements of \mathcal{C} . Since $\langle \mathcal{C} \rangle$ is generated from finite complementation, union, and intersection of sets in \mathcal{C} , it is clear that each $R_i \in \langle \mathcal{C} \rangle$ (by finite intersection). By

this same reasoning, every rectangle is in $\langle \mathcal{C} \rangle$. Thus $\langle \mathcal{R} \rangle \subset \langle \mathcal{C} \rangle$. Furthermore, $U = \sum R_i \in \langle \mathcal{R} \rangle \subset \langle \mathcal{C} \rangle$ by finite union. This shows $\mathcal{U} \subset \langle \mathcal{R} \rangle \subset \langle \mathcal{C} \rangle$.

Now we show \mathcal{U} is field. Once we have shown that, it will be clear that the smallest field containing \mathcal{C} , which is $\langle \mathcal{C} \rangle$, is a subset of \mathcal{U} . That, combined with $\mathcal{U} \subset \langle \mathcal{C} \rangle$, will show $\mathcal{U} = \langle \mathcal{C} \rangle$. Likewise, that will show that the smallest field containing \mathcal{R} , which is $\langle \mathcal{R} \rangle$, is a subset of \mathcal{U} . That combined with $\mathcal{U} \subset \langle \mathcal{R} \rangle$ will give $\mathcal{U} = \langle \mathcal{R} \rangle$.

Closure under binary union: Let $U_1, U_2 \in \mathcal{U}$ with $U_i = \sum_{j=1}^{J_i} R_{ij}$, a finite sum over j with i = 1, 2. Notice elements of \mathcal{U} are finite unions of disjoint rectangles. We now show that the union of U_1 and U_2 is a union of disjoint rectangles. Define

$$B_{1k} = R_{1k} \setminus \left(\sum_{j} R_{2j}\right) = R_{1k} \setminus R_{21} \setminus R_{22} \setminus \dots \setminus R_{2J_2}$$
(2)

where here we are evaluating the binary set difference operators from left to right (written that way to avoid copious amounts of parentheses), and $k \in \{1, 2, \dots, K\}$. Since

$$(A_1 \times A_2) \setminus (B_1 \times B_2) = (A_1 \cap B_1^c) \times (A_2 \times B_2^c) + (A_1 \cap B_1) \times (A_2 \times B_2^c) + (A_1 \cap B_1^c) \times (A_2 \times B_2),$$

a sum of rectangles, we have by "quick" induction (quick because the obvious inductive step—a sum of rectangles minus a last rectangle is the sum of each rectangle in the sum minus the last rectangle—is skipped) that (2) is a sum of rectangles. Therefore, each B_{1j} is a sum of rectangles. Since $B_{1j} \subset R_{1j}$ the B_{1j} are mutually disjoint. Then by construction, B_{1j} and R_{2j} are mutually disjoint and their sum is the union is the finite sum of disjoint rectangles equal to the union of U_1 and U_2 . Hence \mathcal{U} is closed under binary union.

Closure under complementation: First a little lemma. Let $R = A_1 \times A_2$ be a rectangle in \mathcal{R} . Then

$$R^{c} = (A_{1}^{c} \times A_{2}) \cup (A_{1} \times A_{2}^{c}) \cup (A_{1}^{c} \times A_{2}^{c})$$

is a finite union of rectangles in \mathcal{R} . Let $U \in \mathcal{U}$. Then $U = \sum_{j=1}^{J} R_j$ for rectangles R_j . We have

$$U^{c} = \left(\sum_{j=1}^{J} R_{j}\right)^{c} = \bigcap_{j=1}^{J} R_{j}^{c} = \bigcap_{j=1}^{J} (\bigcup_{i=1}^{I_{j}} S_{i})$$

where S_i are rectangles by the little lemma. By the distributive law for sets, $\bigcap_{j=1}^{J}(\bigcup_{i=1}^{I_j}S_i)$ is the union of intersections of rectangles (it is hard to write a closed form since I_j is variable). By "quick" induction, the intersection of any finite number of rectangles is a rectangle (the base case is (1), and we skip the obvious inductive step). Therefore, the union of intersections of rectangles is the union of

rectangles, and we have

$$U^{c} = \bigcap_{i=1}^{J} (\bigcup_{i=1}^{I_{j}} S_{i}) = \bigcup_{i=1}^{I} T_{i}$$

where T_i are rectangles and I is finite. Now we show U^c can be reduced to the union of disjoint rectangles. We do the classic trick where we let $B_1 = T_1$, then $B_i = T_i \setminus (\bigcup_{j=1}^{i-1} T_j)$. Then we have $\bigcup_{i=1}^{I} B_i = \bigcup_{i=1}^{I} T_i$ and the B_i are mutually disjoint. Furthermore, by the "quick" induction based on (2), each B_i is a sum of dijoint rectangles. This shows $U^c \in \mathcal{U}$ and we conclude \mathcal{U} is a field. From our argument above, we can finally conclude $\mathcal{U} = \langle \mathcal{C} \rangle$ and $\mathcal{U} = \langle \mathcal{R} \rangle$.

2. Let Ω_1 and Ω_2 be two spaces; set $\Omega = \Omega_1 \times \Omega_2$. Let $X : \Omega \to \Psi$ (respectively, $A \subset \Omega$). The section of X (resp., of A) at $\omega_1 \in \Omega_1$ is defined to be the function $X_{\omega_1} : \Omega_2 \to \Psi$ (resp., the set $A_{\omega_1} \subset \Omega_2$) given by $X_{\omega_1}(\omega_2) = X(\omega_1, \omega_2)$ (resp., by $A_{\omega_1} = \{\omega_2 \in \Omega_2 : (\omega_1, \omega_2) \in A\}$).

Show that $(I_A)_{\omega_1} = I_{A_{\omega_1}}$ for $A \subset \Omega$ and $(X^{-1}(B))_{\omega_1} = X_{\omega_1}^{-1}(B)$ for $B \subset \Psi$.

Proof. Let $A \subset \Omega$. Suppose $\omega_2 \in A_{\omega_1}$. Thus $(\omega_1, \omega_2) \in A$. Therefore, $I_{A_{\omega_1}}(\omega_2) = 1$ and $(I_A)_{\omega_1}(\omega_2) = I_A(\omega_1, \omega_2) = 1$. And we see both functions agree. Now suppose $\omega_2 \notin A_{\omega_1}$. Then $(\omega_1, \omega_2) \notin A$. Thus $I_{A_{\omega_1}}(\omega_2) = 0$ and $(I_A)_{\omega_1}(\omega_1) = I_A(\omega_1, \omega_2) = 0$. And we conclude $(I_A)_{\omega_1} = I_{A_{\omega_1}}$ for $A \subset \Omega$.

For the second part, note for all $B \subset \Psi$

$$(X^{-1}(B))_{\omega_1} = \{\omega_2 \in \Omega_2 : (\omega_1, \omega_2) \in X^{-1}(B)\}$$

$$= \{\omega_2 \in \Omega_2 : X(\omega_1, \omega_2) \in B\}$$

$$= \{\omega_2 \in \Omega_2 : X_{\omega_1}(\omega_2) \in B\}$$

$$= (X_{\omega_1})^{-1}(B)$$

$$= X_{\omega_1}^{-1}(B)$$

as desired.

3. Notations are the same as Problem 2. Let $i_{\omega_1}:\Omega_2\to\Omega$ be the injection mapping defined by

$$i_{\omega_1}(\omega_2) = (\omega_1, \omega_2).$$

Show that

$$A_{\omega_1} = i_{\omega_1}^{-1}(A), \qquad X_{\omega_1} = X \circ i_{\omega_1}.$$

Proof. For the first part, notice

$$A_{\omega_1} = \{ \omega_2 \in \Omega_2 : (\omega_1, \omega_2) \in A \}$$

$$= \{ \omega_2 \in \Omega_2 : i_{\omega_1}(\omega_2) \in A \}$$

$$= (i_{\omega_1})^{-1}(A)$$

$$= i_{\omega_1}^{-1}(A)$$

as desired. Also, for all $\omega_2 \in \Omega_2$ it is the case that

$$X_{\omega_1}(\omega_2) = X(\omega_1, \omega_2) = X(i_{\omega_1}(\omega_2)) = X \circ i_{\omega_1}(\omega_2).$$

Hence $X_{\omega_1} = X \circ i_{\omega_1}$ as desired.

4. Let Ψ be an uncountable set, and let \mathcal{B} be the σ -field in Ψ generated by the singletons. (\mathcal{B} consists of the countable and co-countable subsets of Ψ .) Take $(\Omega_1, \mathcal{A}_1) = (\Psi, \mathcal{B}) = (\Omega_2, \mathcal{A}_2)$. Consider the diagonal $\Delta := \{(\psi, \psi) : \psi \in \Psi\}$ of $\mathcal{A} = \mathcal{B} \otimes \mathcal{B}$. Show that every section of Δ is in \mathcal{B} , but $\Delta \notin \mathcal{A}$.

Proof. Since \mathcal{B} is generated by the singletons of Ψ , it follows that $\mathcal{A} = \mathcal{B} \otimes \mathcal{B}$ is generated by sets of the form $\{\psi\} \times \Psi$ and $\Psi \times \{\psi\}$ for all $\psi \in \Psi$. Let

$$\mathcal{S} = \{ \{ \psi \} \times \Psi \mid \psi \in \Psi \} \cup \{ \Psi \times \{ \psi \} \mid \psi \in \Psi \},$$

and with the new notation, $A = \sigma(S)$.

Suppose, by way of contradiction, $\Delta \in \sigma(\mathcal{S})$. Problem 2.9 in Billingsley states

Theorem. If $B \in \sigma(\mathscr{A})$, then there exists a countable subclass \mathscr{A}_B of \mathscr{A} such that $B \in \sigma(\mathscr{A}_B)$.

In the current solution, by problem 2.9, there exists some countable sublass \mathcal{S}_{Δ} of \mathcal{S} such that $\Delta \in \sigma(\mathcal{S}_{\Delta})$. Now it is possible to write out the members of \mathcal{S}_{Δ} . We conclude

$$\mathcal{S}_{\Delta} = \{ \{\psi_i\} \times \Psi \mid i \in I_1 \} \cup \{\Psi \times \{\psi_i\} \mid i \in I_2 \},$$

Where I_1 and I_2 are at most countable indexing sets and could possibly be empty. Let $Q = \{\psi_i \mid i \in I_1 \cup I_2\}$ so that Q is the set of all elements of Ψ that form a singleton cylinder in \mathcal{S}_{Δ} .

Let \mathcal{P} be the class containing Q^c and the singletons $\{\psi_i\}$ where $i \in I_1 \cup I_2$. Let \mathcal{P}' be the class of countable unions of sets (or blocks) in the partition $[P_1 \times P_2 : P_1, P_2 \in \mathcal{P}]$ (partition of $\Psi \times \Psi$) and let \mathcal{P}' include the empty set. (An example, for demonstration, of an element in \mathcal{P}' is the set $\{\psi_1\} \times \{\psi_1\} \cup \{\psi_2\} \times Q^c$). We claim (i) \mathcal{P}' is a σ -field and (ii) $\sigma(\mathcal{S}_{\Delta}) \subset \mathcal{P}'$.

- (i) By definition, \mathcal{P}' includes the empty set. Since \mathcal{P} is countable, then the blocks of the partition $[P_1 \times P_2 : P_1, P_2 \in \mathcal{P}]$ are countable. The union of all those blocks is $\Psi \times \Psi$, which is therefore contained in \mathcal{P}' . A set of \mathcal{P}' is the countable union of blocks of the partition, and that set's complement is the countable union of all the other blocks. Thus \mathcal{P}' is closed under complementation. Finally, \mathcal{P}' is closed under countable union by definition. Hence \mathcal{P}' has the three properties of a σ -field.
- (ii) The elements of S_{Δ} are contained in \mathcal{P}' since

$$\{\psi_i\} \times \Psi = \left(\bigcup_{P \in \mathcal{P}} \{\psi_i\} \times P\right) \in \mathcal{P}' \text{ and similarly}$$

$$\Psi \times \{\psi_i\} = \left(\bigcup_{P \in \mathcal{P}} P \times \{\psi_i\}\right) \in \mathcal{P}'.$$

By (i), \mathcal{P}' is a σ -field containing \mathcal{S}_{Δ} . Thus $\sigma(\mathcal{S}_{\Delta}) \subset \mathcal{P}'$ and $\Delta \in \mathcal{P}'$.

Now we seek the contradiction. Set

$$D = \Delta \setminus (\bigcup_{\psi \in Q} \{\psi\} \times \{\psi\}) \subset Q^c \times Q^c.$$

We have $D \in \mathcal{P}'$ by the closure properties of \mathcal{P}' . Since Q^c is uncountable, there exist ψ_1 and ψ_2 in Q^c with $\psi_1 \neq \psi_2$. It follows that (ψ_1, ψ_2) is an element of $Q^c \times Q^c$ but it is not an element of D. Thus D is a strict subset of $Q^c \times Q^c$. Since $D \in \mathcal{P}'$ it is equal to U, some countable union of sets in the partition from above. One of those sets in the union that is U must be $Q^c \times Q^c$ (if not, then D is not in U). However, D is a strict subset $Q^c \times Q^c \subset U$. Thus $D \neq U$. This is our contradiction. Therefore $\Delta \neq \sigma(\mathcal{S}) = \mathcal{A}$ as desired. However, for all $\psi_0 \in \Psi$, the section

$$\Delta_{\psi_0} = \{ \psi : (\psi_0, \psi) \in \Psi \times \Psi \} = \{ \psi : (\psi, \psi_0) \in \Psi \times \Psi \} = \{ \psi_0 \}$$

is an element of \mathcal{B} .

5. A transition probability is defined as follows:

A mapping $T: \Omega_1 \times \mathcal{A}_2 \to [0,1]$ is called a transition probability from $(\Omega_1, \mathcal{A}_1)$ to $(\Omega_2, \mathcal{A}_2)$ (briefly, from Ω_1 to Ω_2) if

- (1) $T(\omega_1; \cdot)$ is a probability measure on $(\Omega_2, \mathcal{A}_2)$ for each $\omega_1 \in \Omega_1$, and
- (2) $T(\cdot; A_2)$ is A_1 -measurable for each $A_2 \in A_2$.

Show that given (1), then (2) holds if $T(\cdot; A_2)$ is \mathcal{A}_1 -measurable for all A_2 in some π -system generating \mathcal{A}_2 .

Proof. Let (1) be true. Let $T(\cdot; A_2)$ be \mathcal{A}_1 -measurable for all A_2 in some π -system \mathscr{P} generating \mathcal{A}_2 . Define

$$\mathscr{G} = \{A_2 \in \mathcal{A}_2 : T(\cdot; A_2) \text{ is } \mathcal{A}_1\text{-measurable } \}$$

We now show that \mathscr{G} is a λ -system. Contains Ω_2 : By (1), we have $T(\omega_1; \Omega_2) = 1$ for all $\omega_1 \in \Omega_1$. Thus $T(\cdot; \Omega_2)$ is a constant function. Hence it is \mathcal{A}_1 -measurable, and $\Omega_2 \in \mathscr{G}$. Closure under proper difference: Now suppose B_1 and B_2 are elements of \mathscr{G} with $B_1 \subset B_2$. By (1), it follows $T(\omega_1; B_2 \setminus B_1) = T(\omega_1; B_2) - T(\omega_1; B_1)$ for all $\omega_1 \in \Omega_1$. Since, $T(\cdot; B_1)$ and $T(\cdot; B_2)$ are \mathcal{A}_1 -measurable, then, by the corollary to Theorem 3.1.5 in Chung (the closure theorem), their difference, $T(\cdot; B_2 \setminus B_1)$, is \mathcal{A}_1 -measurable and is therefore a member of \mathscr{G} . Closure under increasing union: Finally, let B_1, B_2, \cdots be a sequence of sets in \mathscr{G} with $B_n \subset B_{n+1}$ for all $n \geq 1$. By (1) and the properties of a probability measure (i.e. monotone sequential continuity from below), for all $\omega_1 \in \Omega_1$ it is true that

$$\lim_{n \to \infty} T(\omega_1; B_n) = T(\omega_1; \cup_n B_n)$$

and the limit exists because it is the limit of a bounded monotone increasing. By Theorem 13.4 in Billingsley, since the limit of \mathcal{A}_1 -measurable $T(\cdot; B_n)$ exists everywhere (on Ω_1), then that limit, $T(\cdot; \cup_n B_n)$, is \mathcal{A}_1 -measurable. Thus it is in \mathscr{G} . We can conclude that \mathscr{G} is a λ -system.

By hypothesis, $\mathscr{P} \subset \mathscr{G}$, whence by the π - λ theorem we have $\sigma(\mathscr{P}) = \mathcal{A}_2 \subset \mathscr{G}$. By the definition of \mathscr{G} , it is clear $\mathscr{G} \subset \mathcal{A}_2$. Therefore $\mathscr{G} = \mathcal{A}_2$, which demonstrates (2).

6. Let $(\Omega_1, \mathcal{A}_1)$, $(\Omega_2, \mathcal{A}_2)$ be measurable spaces, $\Omega = \Omega_1 \times \Omega_2$, $\mathcal{A} = \mathcal{A}_1 \otimes \mathcal{A}_2$. Let M be a probability on $(\Omega_1, \mathcal{A}_1)$, and let $(T_{\omega_1})_{\omega_1 \in \Omega_1}$ be a transition probability from Ω_1 to Ω_2 . Let $\mathscr{G} = \{A \in \mathcal{A} : \omega_1 \mapsto T_{\omega_1}(A_{\omega_1}) \text{ is } \mathcal{A}_1\text{-measurable}\}$. Show that

$$T_{\omega_1}((A_1 \times A_2)_{\omega_1}) = I_{A_1}(\omega_1)T_{\omega_1}(A_2).$$
 (3)

Also show \mathscr{G} contains the π -system \mathcal{R} .

Proof. Calculating,

$$T_{\omega_1}((A_1 \times A_2)_{\omega_1}) = T(\omega_1; (A_1 \times A_2)_{\omega_1}) = \begin{cases} T(\omega_1; \emptyset) = 0 & \text{if } \omega_1 \notin A_1 \\ T(\omega_1; A_2) = T_{\omega_1}(A_2) & \text{if } \omega_1 \in A_1 \end{cases}$$

Since,

$$I_{A_1}(\omega_1)T_{\omega_1}(A_2) = \begin{cases} 0 & \text{if } \omega_1 \notin A_1 \\ T_{\omega_1}(A_2) & \text{if } \omega_1 \in A_1 \end{cases},$$

we have (3), as desired.

To show \mathscr{G} contains \mathcal{R} , let $R = A_1 \times A_2 \in \mathcal{R}$. Our task is to show that the function on Ω_1 that sends $\omega_1 \mapsto T_{\omega_1}(R_{\omega_1})$ is a \mathcal{A}_1 -measurable function. By the (3), we have

$$T_{\omega_1}(R_{\omega_1}) = T_{\omega_1}((A_1 \times A_2)_{\omega_1}) = I_{A_1}(\omega_1)T_{\omega_1}(A_2).$$

Since T_{ω_1} is a transition probability, for all $\omega_1 \in \Omega_1$, we have $T_{\omega_1}(A_2)$ is constant. The product of \mathcal{A}_1 -measurable functions (an indicator and a constant function) is measurable by the corollary to Theorem 3.1.5 in Chung (the closure theorem). Hence $T_{\omega_1}(R_{\omega_1})$ is measurable and $R \in \mathcal{G}$. Therefore, $\mathcal{R} \subset \mathcal{G}$.

7. Notations are the same as Problem 6. Show that \mathscr{G} is a λ -system.

Proof. Contains Ω : Since for all $\omega_1 \in \Omega_1$, we have $T_{\omega_1}(\Omega_{\omega_1}) = T_{\omega_1}(\Omega_2) = 1$ is constant, then $\omega_1 \mapsto T_{\omega_1}(R_{\omega_1})$ is \mathcal{A}_1 -measurable. Closure under complementation: Let $A \in \mathcal{G}$. Thus $\omega_1 \mapsto T_{\omega_1}(A_{\omega_1})$ is \mathcal{A}_1 -measurable. Then, since sectioning commutes with set operations,

$$\omega_1 \mapsto T_{\omega_1}((A^c)_{\omega_1}) = T_{\omega_1}((A_{\omega_1})^c) = 1 - T_{\omega_1}(A_{\omega_1})$$

is A_1 -measurable by the closure theorem. Closure under countable union of disjoint sets: Let B_1, B_2, \cdots be mutually disjoint elements of \mathscr{G} . Then for all $\omega_1 \in \Omega_1$ we have

$$\omega_1 \mapsto T_{\omega_1} \left(\left(\lim_{I \to \infty} \bigcup_{i=1}^I B_i \right)_{\omega_1} \right) = T_{\omega_1} \left(\lim_{I \to \infty} \bigcup_{i=1}^I (B_i)_{\omega_1} \right) \quad \text{since sectioning commutes}$$

$$= \lim_{I \to \infty} T_{\omega_1} \left(\bigcup_{i=1}^I (B_i)_{\omega_1} \right)$$

by monotone sequential continuity from below, and that limit exists because it is the limit of a bounded, monotone increasing sequence. Thus by Theorem 13.4 in Billingsley, we have $\omega_1 \mapsto T_{\omega_1} \left(\left(\lim_{I \to \infty} \bigcup_{i=1}^I B_i \right)_{\omega_1} \right)$ is measurable. Hence, $\lim_{I \to \infty} \bigcup_{i=1}^I B_i \in \mathscr{G}$. We conclude \mathscr{G} is a λ -system.

8. Notations are the same as Problem 6. Let M be a probability on $(\Omega_1, \mathcal{A}_1)$. The set function MT, defined on \mathcal{A} is

$$MT(A) := \int_{\Omega_1} T_{\omega_1}(A_{\omega_1}) M(d\omega_1).$$

Furthermore, for any nonnegative A-random variable X on Ω , the map TX on Ω_1 is defined as

$$\omega_1 \mapsto \int_{\Omega_2} X_{\omega_1}(\omega_2) T_{\omega_1}(d\omega_2)$$

Let \mathcal{G} denote the collection of \mathcal{A} -measurable nonnegative random variables X such that $\omega_1 \mapsto \int_{\Omega_2} X_{\omega_1}(\omega_2) T_{\omega_1}(\mathrm{d}\omega_2)$ is A_1 -measurable and $\langle MT, X \rangle = \langle M, TX \rangle$. Show that $I_A \in \mathcal{G}$ for every $A \in \mathcal{A}$.

Proof. Let $A \in \mathcal{A}$. By problem 2 of this homework, we have $(I_A)_{\omega_1} = I_{A_{\omega_1}}$. Thus

$$\omega_1 \mapsto \int_{\Omega_2} (I_A)_{\omega_1}(\omega_2) T_{\omega_1}(d\omega_2) = \int_{\Omega_2} I_{A_{\omega_1}}(\omega_2) T_{\omega_1}(d\omega_2)$$
 (4)

$$= \int_{A_{\omega_1}} T_{\omega_1}(d\omega_2) \tag{5}$$

$$=T_{\omega_1}(A_{\omega_1})\tag{6}$$

is \mathcal{A}_1 -measurable by the reasoning that follows after problem 7 in the course slides (that $\mathscr{G} = \mathcal{A}$).

For the second part, calculating gives

$$\langle MT, I_A \rangle = \int_{\Omega} I_A(\omega) MT(d\omega)$$

$$= \int_A MT(d\omega)$$

$$= MT(A)$$

$$= \int_{\Omega_1} T_{\omega_1}(A_{\omega_1}) M(d\omega_1) \quad \text{by the definition of } MT$$

$$= \int_{\Omega_1} \left(\int_{\Omega_2} I_{A_{\omega_1}}(\omega_2) T_{\omega_1}(d\omega_2) \right) M(d\omega_1) \quad \text{by } (4) = (6)$$

$$= \int (TI_A) dM \quad \text{by the definition of } TI_A$$

$$= \langle M, TI_A \rangle$$

Thus $I_A \in \mathcal{G}$.

Acknowledgements

I would like to thank Tianchen for TeXing some of the problems. That saved time. I am grateful to Jason for spending time with me to explain problems 4 and 5, and for proving Problem 2.9 in Billingsley in Fall 2012. Also, I explained problem 4 to most of the biostats people, so they may have similar notation and methods to mine.