

# 10th Class 2017

|                  |                   |                |
|------------------|-------------------|----------------|
| Math (Science)   | Group-I           | PAPER-II       |
| Time: 2.10 Hours | (Subjective Type) | Max. Marks: 60 |

## (Part-I)

### **2. Write short answers to any SIX (6) questions: (12)**

- (i) Write the name of any two methods for solving a quadratic equation.

**Ans** The name of any two methods for solving a quadratic equation are:

1. Factorization Method.
2. Completing Square Method.

- (ii) Solve:  $x^2 + 2x - 2 = 0$

**Ans** Here,  $a = 1$ ,  $b = 2$ ,  $c = -2$

We may solve the above equation through quadratic formula, so

$$\begin{aligned}
 x &= \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\
 &= \frac{-2 \pm \sqrt{(2)^2 - 4(1)(-2)}}{2(1)} \\
 &= \frac{-2 \pm \sqrt{4 + 8}}{2} \\
 &= \frac{-2 \pm \sqrt{12}}{2} \\
 &= \frac{-2 \pm 2\sqrt{3}}{2} \\
 &= -1 \pm \sqrt{3}
 \end{aligned}$$

- (iii) Evaluate :  $(1 - 3w - 3w^2)^5$

**Ans** Given:

$$(1 - 3w - 3w^2)^5$$

By taking common, we get

$$= [1 - 3(w + w^2)]^5$$

As we know that:

$$w + w^2 = -1$$

$$\begin{aligned} &= [1 - 3(-1)]^5 \\ &= (1 + 3)^5 \\ &= 4^5 \\ &= 1024 \end{aligned}$$

- (iv) Evaluate:  $\omega^{37} + \omega^{38} - 5$ .

**Ans** Given:

$$\begin{aligned} &\omega^{37} + \omega^{38} - 5 \\ &= \omega^{36} \cdot \omega + \omega^{36} \cdot \omega^2 - 5 \\ &= \omega^{36}(\omega + \omega^2) - 5 \\ &= (\omega^3)^{12}(-1) - 5 \\ &= -1 - 5 \\ &= -6 \end{aligned}$$

- (v) Without solving find the sum and the product of roots of quadratic equation:  $3x^2 + 7x - 11 = 0$ .

**Ans** Here,  $a = 3, b = 7, c = -11$

Sum of the roots:

$$S = \alpha + \beta = \frac{-b}{a} = \frac{-7}{3}$$

Product of the roots:

$$P = \alpha\beta = \frac{c}{a} = \frac{-11}{3}$$

- (vi) Write the quadratic equation having the roots:  $-1, -7$ .

**Ans** Sum of the roots:

$$\alpha + \beta = -1 + (-7) = -8$$

Product of the roots:

$$\alpha\beta = (-1)(-7) = 7$$

Thus the quadratic equation will be:

$$x^2 - Sx + P = 0$$

$$x^2 - (-8)x + 7 = 0$$

$$x^2 + 8x + 7 = 0$$

- (vii) Define direct variation.

**Ans** If two quantities are related in such a way that increase (decrease) in one quantity causes increase

(decrease) in the other quantity, then this variation is called direct variation.

(viii) Find the fourth proportional to 8, 7, 6.

**Ans** Let the fourth proportional is  $x$ :

$$8 : 7 :: 6 : x$$

$$8 \times x = 7 \times 6$$

$$x = \frac{42}{8}$$

$$x = \frac{21}{4}$$

(ix) Find  $x$  if  $6 : x :: 3 : 5$ .

**Ans**  $x \times 3 = 6 \times 5$

$$x = \frac{6 \times 5}{3}$$

$$x = \frac{30}{3}$$

$$\boxed{x = 10}$$

---

### 3. Write short answers to any SIX (6) questions: (12)

(i) Define a rational fraction.

**Ans** An expression of the form  $\frac{N(x)}{D(x)}$ , where  $N(x)$  and  $D(x)$  are polynomials in  $x$  with real coefficients and  $D(x) \neq 0$ , is called a rational fraction.

(ii) Resolve  $\frac{1}{x^2 - 1}$  into partial fraction.

**Ans**

$$\frac{1}{x^2 - 1} = \frac{1}{(x + 1)(x - 1)}$$

$$\frac{1}{x^2 - 1} = \frac{A}{x + 1} + \frac{B}{x - 1}$$

$$1 = \frac{A}{(x + 1)} (x^2 - 1) + \frac{B}{(x - 1)} (x^2 - 1)$$

$$1 = A(x - 1) + B(x + 1) \quad (i)$$

Put  $x = 1$  in (i)

$$1 = A(1 - 1) + B(1 + 1)$$

$$1 = 0 + 2B$$

$$2B = 1$$

$$\boxed{B = \frac{1}{2}}$$

Similarly, put  $x = -1$  in (i),

$$1 = A(-1 - 1) + B(-1 + 1)$$

$$1 = A(-2) + 0$$

$$1 = -2A$$

$$\Rightarrow -2A = 1$$

$$\boxed{A = \frac{-1}{2}}$$

Finally, by putting the values in (i), we have

$$\frac{1}{x^2 - 1} = \frac{1}{2(x - 1)} - \frac{1}{2(x + 1)}$$

(iii) Define subset.

**Ans** If A and B are two sets and every element of A is a member of B, then A is called subset of B.

(iv) If  $L = \{a, b, c\}$ ,  $M = \{3, 4\}$ , then find  $L \times M$ .

**Ans**  $L \times M = \{a, b, c\} \times \{3, 4\}$

$$L \times M = \{(a, 3), (a, 4), (b, 3), (b, 4), (c, 3), (c, 4)\}$$

(v) Find domain and range of the binary relation,  
 $R = \{(1, 1), (2, 2), (3, 3), (4, 4)\}$ .

**Ans** Dom R = {1, 2, 3, 4}

Range R = {1, 2, 3, 4}

(vi) If  $(2a + 5, 3) = (7, b - 4)$ , find a, b.

**Ans** By comparing the values, we get

$$2a + 5 = 7 ; 3 = b - 4$$

$$2a = 7 - 5 ; 3 + 4 = b$$

$$2a = 2 ; 7 = b$$

$$a = \frac{2}{2} ; \Rightarrow \boxed{b = 7}$$

$$\boxed{a = 1}$$

Thus,  $\{a = 1, b = 7\}$ .

(vii) Write two properties of arithmetic mean.

**Ans** Two properties of arithmetic mean are:

1. Mean is affected by change in origin.
2. Sum of the deviations of the variable  $X$  from its mean is always zero.

(viii) Define mode.

**Ans** Mode is defined as the most frequent value in the data.

(ix) The sugar contents for a random sample of 6 packs of juices of a certain brand are found to be 2.3, 2.7, 2.5, 2.9, 3.1 and 1.9 milligram, find the median.

**Ans** Arranging the values by increasing order 1.9, 2.3, 2.5, 2.7, 2.9, 3.1.

$$\begin{aligned}\text{Median} &= \frac{1}{2} [\text{size of } (3^{\text{rd}} + 4^{\text{th}}) \text{ values}] \\ &= \frac{2.5 + 2.7}{2} \\ &= 2.6 \text{ Milligram}\end{aligned}$$

#### 4. Write short answers to any SIX (6) questions: (12)

(i) Define radian measure of an angle.

**Ans** The angle subtended at the centre of the circle by an arc, whose length is equal to the radius of the circle is called one Radian.

(ii) Convert  $15^\circ$  to radian.

$$\begin{aligned}15^\circ &= 15 \times \frac{\pi}{180} \text{ radian} \\ &= \frac{\pi}{12} \text{ radian}\end{aligned}$$

(iii) Find 'r', when  $l = 56 \text{ cm}$ ,  $\theta = 45^\circ$ .

**Ans**  $l = 56 \text{ cm}$ ,  $\theta = 45^\circ$ ,  $r = ?$

By converting the  $\theta$  into radians,

$$45^\circ = 45 \times \frac{\pi}{180} \text{ radian}$$

$$= \frac{\pi}{4} \text{ radians}$$

We have,

$$\begin{aligned}l &= r\theta \\ \Rightarrow r &= \frac{l}{\theta} \\ &= \frac{56}{\frac{\pi}{4}} \\ &= \frac{56 \times 4}{\pi} \\ r &= 71.27 \text{ cm}\end{aligned}$$

(iv) What is meant by zero dimension?

**Ans** Projection of a vertical line segment  $\overline{CD}$  on a line segment  $\overline{AB}$  is a point on  $\overline{AB}$  which is of zero dimension.

(v) Define chord of a circle.

**Ans** The joining of any two points on the circumference of the circle is called chord of a circle.

(vi) Define tangent to a circle.

**Ans** A tangent to a circle is the straight line which touches the circumference at one point only.

(vii) What is meant by sector of a circle?

**Ans** The sector of a circle is an area bounded by any two radii and the arc intercepted between them.

(viii) Define circumangle.

**Ans** A circumangle is subtended between any two chords of a circle, having common point on its circumference.

(ix) Define inscribed circle.

**Ans** A circle which touches the three sides of a triangle internally is known as inscribed circle.

**(Part-II)**

**NOTE:** Attempt THREE (3) questions in all. But question No. 9 is Compulsory.

**Q.5.(a) Solve the equation by completing square: (4)**

$$11x^2 - 34x + 3 = 0$$

**Ans**

$$11x^2 - 34x = -3$$

$$x^2 - \frac{34}{11}x = \frac{-3}{11}$$

Adding  $\left(\frac{17}{11}\right)^2$  on both sides,

$$x^2 - 2(x)\left(\frac{17}{11}\right) + \left(\frac{17}{11}\right)^2 = \frac{-3}{11} + \left(\frac{17}{11}\right)^2$$

$$\left(x - \frac{17}{11}\right)^2 = \frac{-3}{11} + \frac{289}{121}$$

$$= \frac{-33 + 289}{121}$$

$$= \frac{256}{121}$$

Taking square root on both sides, we have

$$x - \frac{17}{11} = \pm \frac{16}{11}$$

$$x = \frac{17}{11} \pm \frac{16}{11}$$

$$x = \frac{17}{11} + \frac{16}{11} ; x = \frac{17}{11} - \frac{16}{11}$$

$$= \frac{17 + 16}{11} ; = \frac{17 - 16}{11}$$

$$= \frac{33}{11} ; x = \frac{1}{11}$$

$$x = 3$$

(b) If  $\alpha, \beta$  are the roots of equation  $lx^2 + mx + n = 0$ ,  
( $l \neq 0$ ), then find the value of  $\frac{1}{\alpha^2} + \frac{1}{\beta^2}$ . (4)

**Ans**  $a = l, b = m, c = n$

$$\alpha + \beta = \frac{-b}{a} = \frac{-m}{l}$$

$$\alpha\beta = \frac{c}{a} = \frac{n}{l}$$

$$\begin{aligned}\frac{1}{\alpha^2} + \frac{1}{\beta^2} &= \frac{\alpha^2 + \beta^2}{\alpha^2\beta^2} \\ &= \frac{(\alpha + \beta)^2 - 2\alpha\beta}{(\alpha\beta)^2}\end{aligned}$$

$$= \frac{\left(\frac{-m}{l}\right)^2 - 2\left(\frac{n}{l}\right)}{\left(\frac{n}{l}\right)^2}$$

$$= \frac{\frac{m^2}{l^2} - \frac{2n}{l}}{\frac{n^2}{l^2}}$$

$$= \frac{\frac{m^2 - 2ln}{l^2}}{\frac{n^2}{l^2}}$$

$$= \frac{1}{n^2} (m^2 - 2ln)$$

Q.6.(a) Using theorem of componendo-dividendo find

the value of:  $\frac{x+2y}{x-2y} + \frac{x+2z}{x-2z}$  if  $x = \frac{4yz}{y+z}$ . (4)

**Ans**

$$x = \frac{4yz}{y+z}$$

$$\frac{x}{2y} = \frac{2z}{y+z}$$

$$\begin{aligned}\frac{x+2y}{x-2y} &= \frac{2z+y+z}{2z-y-z} \\ \frac{x+2y}{x-2y} &= \frac{y+3z}{z-y}\end{aligned}\tag{1}$$

Similarly,

$$\begin{aligned}\frac{x}{2z} &= \frac{2y}{y+z} \\ \frac{x+2z}{x-2z} &= \frac{2y+y+z}{2y-y-z} \\ &= \frac{3y+z}{y-z} \\ &= -\left(\frac{3y+z}{z-y}\right) \\ \frac{x+2z}{x-2z} &= \frac{-3y-z}{z-y}\end{aligned}\tag{2}$$

From (1) and (2), we have

$$\begin{aligned}\frac{x+2y}{x-2y} + \frac{x+2z}{x-2z} &= \frac{y+3z}{z-y} + \frac{-3y-z}{z-y} \\ &= \frac{y+3z-3y-z}{z-y} \\ &= \frac{2z-2y}{z-y} \\ &= \frac{2(z-y)}{z-y} \\ &= 2\end{aligned}$$

(b) Resolve into partial fractions:  $\frac{x-11}{(x-4)(x+3)}$ . (4)

**Ans**  $\frac{x-11}{(x-4)(x+3)} = \frac{A}{x-4} + \frac{B}{x+3}$

$$x-11 = A(x+3) + B(x-4) \quad \text{(i)}$$

Put  $x = 4$ ,  $x = -3$  in (i)

$$\text{Firstly, } 4-11 = A(4+3) + B(4-4)$$

$$-7 = A(7) + 0$$

$$\Rightarrow 7A = -7$$

$$A = -1$$

And

$$-3 - 11 = A(-3 + 3) + B(-3 - 4)$$

$$-14 = 0 + B(-7)$$

$$\Rightarrow -7B = -14$$

$$B = 2$$

So,

$$\frac{x - 11}{(x - 4)(x + 3)} = \frac{-1}{x - 4} + \frac{2}{x + 3}$$

**Q.7.(a)** If  $U = \{1, 2, 3, \dots, 10\}$ ,  $A = \{1, 3, 5, 7, 9\}$ ,  $B = \{1, 4, 7, 10\}$ , then verify that  $A - B = A \cap B'$ . (4)

**Ans** L.H.S =  $A - B$

$$= \{1, 3, 5, 7, 9\} - \{1, 4, 7, 10\}$$

$$= \{3, 5, 9\}$$

(i)

$$B' = U - B$$

$$= \{1, 2, 3, \dots, 10\} - \{1, 4, 7, 10\}$$

$$= \{2, 3, 5, 6, 8, 9\}$$

$$R.H.S = A \cap B'$$

$$= \{1, 3, 5, 7, 9\} \cap \{2, 3, 5, 6, 8, 9\}$$

$$= \{3, 5, 9\}$$

(ii)

So, proved from (i) and (ii),

$$L.H.S = R.H.S$$

$$A - B = A \cap B'$$

**(b)** Calculate the variance for the data: (4)

10, 8, 9, 7, 5, 12, 8, 6, 8, 2

**Ans**

| X  | $X^2$ |
|----|-------|
| 10 | 100   |
| 8  | 64    |
| 9  | 81    |
| 7  | 49    |
| 5  | 25    |
| 12 | 144   |
| 8  | 64    |

|    |     |
|----|-----|
| 6  | 36  |
| 8  | 64  |
| 2  | 4   |
| 75 | 631 |

Here,  $\Sigma X = 75$ ,  $\Sigma X^2 = 631$ ,  $n = 10$

$$\begin{aligned}\text{Variance} = S^2 &= \frac{\Sigma X^2}{n} - \left(\frac{\Sigma X}{n}\right)^2 \\ &= \frac{631}{10} - \left(\frac{75}{10}\right)^2 \\ &= 63.1 - 56.25 \\ S^2 &= 6.85\end{aligned}$$

**Q.8.(a) Prove that:  $\sin \theta (\tan \theta + \cot \theta) = \sec \theta$ . (4)**

**Ans** L.H.S =  $\sin \theta (\tan \theta + \cot \theta)$

$$\begin{aligned}&= \sin \theta \left( \frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta} \right) \\ &= \sin \theta \left( \frac{\sin^2 \theta + \cos^2 \theta}{\cos \theta \sin \theta} \right) \\ &= \sin \theta \left( \frac{1}{\cos \theta \sin \theta} \right) \\ &= \frac{1}{\cos \theta} \\ &= \sec \theta \\ &= \text{R.H.S}\end{aligned}$$

Proved

**(b) Draw two perpendicular tangents to a circle of radius 3 cm.**

**Ans**



## **Step of Construction:**

### **Steps:**

1. Take a point O.
2. Take O as centre and draw circle of radius 3 cm.
3. Take AOB any diameter of the circle.
4. Draw  $m\angle BOC = 90^\circ$ ,  $m\angle AOC = 90^\circ$ .
5. Draw tangents at point A, C. These are  $\vec{CP}$ ,  $\vec{AQ}$ .

### **Result:**

$\vec{AQ}$ ,  $\vec{CP}$  are required tangents at point D at  $90^\circ$ .

**Q.9. Prove that if two chords of a circle are congruent, then they will be equidistant from the centre. (4)**

**Ans** ➤



**Given:**

$\overline{AB}$  and  $\overline{CD}$  are two equal chords of a circle with centre at O.

So that  $\overline{OH} \perp \overline{AB}$  and  $\overline{OK} \perp \overline{CD}$ .

**To prove:**

$$m\angle OAH = m\angle OCK$$

**Construction:**

Join O with A and O with C.

So that we have  $\angle rt\Delta^s$  OAH and OCK.

**Proof:**

| Statements                                                                                                                                                                                                                              | Reasons                                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\overline{OH}$ bisects chord $\overline{AB}$<br>i.e., $m\overline{AH} = \frac{1}{2} m\overline{AB}$ (i)                                                                                                                                | $\overline{OH} \perp \overline{AB}$ By Theorem 3                                                                                                         |
| Similarly, $\overline{OK}$ bisects chord $\overline{CD}$<br>i.e., $m\overline{CK} = \frac{1}{2} m\overline{CD}$ (ii)                                                                                                                    | $\overline{OK} \perp \overline{CD}$ By Theorem 3                                                                                                         |
| But $m\overline{AB} = m\overline{CD}$ (iii)                                                                                                                                                                                             | Given                                                                                                                                                    |
| Hence, $m\overline{AH} = m\overline{CK}$ (iv)                                                                                                                                                                                           | Using (i), (ii) & (iii)                                                                                                                                  |
| Now in $\angle rt \Delta^s OAH \leftrightarrow OCK$<br>hyp $\overline{OA} = \text{hyp } \overline{OC}$<br>$m\overline{AH} = \overline{CK}$<br>$\therefore \Delta OAH \cong \Delta OCK$<br>$\Rightarrow m\overline{OH} = m\overline{OK}$ | Given $\overline{OH} \perp \overline{AB}$ and $\overline{OK} \perp \overline{CD}$<br>Radii of the same circle<br>Already proved in (iv)<br>H.S postulate |

OR

Prove that the measure of a central angle of a minor arc of a circle, is double that of the angle subtended by the corresponding major arc.

**Ans**



**Given:**

$\widehat{AC}$  is an arc of a circle with center O; whereas  $\angle AOC$  is the central angle and  $\angle ABC$  is circumangle.

**To prove:**

$$m\angle AOC = 2m\angle ABC$$

**Construction:**

Join B with O and produce it to meet the circle at D.

Write angles  $\angle 1, \angle 2, \angle 3, \angle 4, \angle 5$  and  $\angle 6$  as shown in the figure.

**Proof:**

| Statements                                                   | Reasons                                                |
|--------------------------------------------------------------|--------------------------------------------------------|
| As $m\angle 1 = m\angle 3$ (i)                               | Angles opposite to equal sides in $\triangle OAB$ .    |
| and $m\angle 2 = m\angle 4$ (ii)                             | Angles opposite to equal sides in $\triangle OBC$ .    |
| Now $m\angle 5 = m\angle 1 + m\angle 3$ (iii)                | External angle is the sum of internal opposite angles. |
| Similarly,                                                   |                                                        |
| $M\angle 6 = m\angle 2 + m\angle 4$ (iv)                     |                                                        |
| Again                                                        |                                                        |
| $M\angle 5 = m\angle 3 + m\angle 3 = 2m\angle 3$ (v)         | Using (i) and (iii)                                    |
| And                                                          |                                                        |
| $m\angle 6 = m\angle 4 + m\angle 4 = 2m\angle 4$ (vi)        | Using (ii) and (iv)                                    |
| $\Rightarrow m\angle 5 + m\angle 6 = 2m\angle 3 + m\angle 4$ | Adding (v) and (vi)                                    |
| $\Rightarrow m\angle AOC = 2(m\angle 3 + m\angle 4)$         |                                                        |
| $= 2m\angle ABC$                                             |                                                        |