INT102 Algorithmic Foundations and Problem Solving Greedy Methods

Dr Pengfei Fan Department of Intelligent Science

Learning outcomes

- ✓ Understand what greedy method is
- ✓ Able to apply Prim's algorithm to find minimum spanning tree
- ✓ Able to apply Kruskal's algorithm to find minimum spanning tree
- Able to apply Dijkstra's algorithm to find single-source shortest-paths

^{*}Edsger W. Dijkstra (1930-2002), a noted Dutch pioneer of the science and industry of computing, discovered this algorithm in the mid-1950s. Dijkstra said about his algorithm: "This was the first graph problem I ever posed myself and solved. The amazing thing was that I didn't publish it. It was not amazing at the time. At the time, algorithms were hardly considered a scientific topic."

Single-source shortest-paths

- Consider a (un)directed connected graph G
 - · The edges are labelled by weight
- Given a particular vertex called the **source**
 - Find shortest paths from the source to all other vertices (shortest path means the total weight of the path is the smallest)

Example

Directed Graph G (edge label is weight)

<u>a</u> is source node

thick lines:
shortest path
dotted lines: not
in shortest path

MST and Single-source shortest paths

Optimal substructure of shortestpaths

- · Optimal substructure of a shortestpath
 - A shortest path between two vertices contains other shortest paths within it.

Algorithms

 there are many algorithms to solve this problem, one of them is Dijkstra's algorithm, which assumes the weights of edges are non-negative

- Input: A directed connected weighted graph G and a source vertex s
- Output: For every vertex v in G, find the shortest path from s to v
- Dijkstra's algorithm runs in iterations:
 - in the i-th iteration, the vertex which is the i-th closest to s is found,
 - for every remaining vertices, the current shortest path to s found so far (this shortest path will be updated as the algorithm runs)

 Suppose vertex a is the source, we now show how Dijkstra's algorithm works

•Every vertex ν keeps 2 labels: (1) the weight of the current shortest path from a; (2) the vertex leading to ν on that path, initially as $(\infty, -)$

•For every neighbor u of a, update the weight to the weight of (a, u) and the leading vertex to a. Choose the one with the smallest such weight. chosen 15 9 $(\infty, (\infty, -)$ 20 15, a

shortest path

being considered

new values

11

•For every un-chosen neighbor of vertex **b**, update the weight and leading vertex. Choose among all unchosen vertices the one with smallest weight.

•If a new path with smallest weight is discovered, e.g., for vertex h, the weight is updated. Otherwise, like vertex d, no update.

•Repeat the procedure. After d is chosen, the weight of e and k is updated. Next vertex chosen is h.

Dijkstra's algorithm \bullet After h is chosen, the weight of e and k is updated again. Next vertex chosen is e.

Dijkstra's algorithm \bullet After \bullet is chosen, the weight of f and f is updated again. Next vertex chosen is f.

Dijkstra's algorithm
•After f is chosen, it is NOT necessary to update the weight of k. The final vertex chosen is k.

Dijkstra's algorithm
•At this point, all vertices are chosen, and the shortest path from *a* to every vertex is discovered.

- To describe the algorithm using pseudo code, we give some notations.
- Each vertex v is labelled with two labels:
 - a numeric label d(v) indicates the length of the shortest path from the source to v found so far
 - another label p(v) indicates next-to-last vertex on such path, i.e., the vertex immediately before v on that shortest path

Pseudo code

```
// Given a graph G=(V,E) and a source vertex s
for every vertex v in the graph do
   set d(v) = \infty and p(v) = \text{null}
                                        this should be \emptyset
set d(s) = 0 and V_T = \emptyset
while V - V_T \neq \emptyset do // there is still some vertex left
begin
   choose the vertex u in V - V_T with minimum d(u)
   set V_T = V_T \cup \{u\}
   for every vertex \nu in V - V_T that is a neighbour of u do
       if d(u) + w(u,v) < d(v) then //a shorter path is found
          set d(v) = d(u) + w(u,v) and p(v) = u
```

end

https://www.youtube.com/watch?v=EFg3u_E6eHU&ab_channel=SpanningTree
Example: Question 3 in Week6 Tutorial

Exercise

1. Find the shortest paths from vertex <u>a</u> to all other vertices

Exercise - Shortest paths from a

order of selection: (a,b), (a,f), (b,c), (f,e), (c,d)

Compare the solution with Exercise-MST

Exercise - MST

order of selection: (b,f), (c,f), (a,b), (f,e), (e,d)

Questions:

- Correctness: Does Dijkstra's algorithm always find the shortest paths?
- Complexity: what is the time complexity of Dijkstra's algorithm?

Correctness of Dijkstra's Algorithm

Observation (loop invariant):

Prior to each loop, for each $v \in S$, d[v] is the length of the shortest path from s to v.

Complexity of Dijkstra's Algorithm (optional)

Depends on the data structure to represent the graph G=(V, E) and the implementation of priority queue.

If G is represented by adjacency list and priority queue is implemented by minheap, then the answer is $O(|E|\log|V|)$

Learning outcomes

- ✓ Understand what greedy method is
- ✓ Able to apply Prim's algorithm to find minimum spanning tree
- ✓ Able to apply Kruskal's algorithm to find minimum spanning tree
- ✓ Able to apply Dijkstra's algorithm to find single-source shortest-paths

Does Greedy algorithm always return the best solution?

Knapsack Problem

- Input: Given n items with weights w_1 , w_2 , ..., w_n and values v_1 , v_2 , ..., v_n , and a knapsack with capacity W.
- Output: Find the most valuable subset of items that can fit into the knapsack.
- Application: A transport plane is to deliver the most valuable set of items to a remote location without exceeding its capacity.

Example 1

$$w = 10$$
 $w = 20$ $w = 30$ $v = 60$ $v = 100$ $v = 120$ item 3

	total	total
subset	<u>weight</u>	<u>value</u>
ф	0	0
{1}	10	60
{2}	20	100
{3}	30	120
{1,2}	30	160
{1,3}	40	180
{2,3}	50	220
{1,2,3}	60	N/A

- Greedy: pick the item with the next largest value if total weight <= capacity.
- · Result:
 - > item 3 is taken, total value = 120, total weight = 30
 - > item 2 is taken, total value = 220, total weight = 50
 - > item 1 cannot be taken

Does this always work?

Example 2

	total	total		total	total	
subset	<u>weight</u>	<u>value</u>	<u>subset</u> v	veight	value	
ф	0	0	{2,3}	7	52	
{1}	7	42	{2,4}	8	37	
{2}	3	12	{3,4}	9	65	
{3}	4	40	{1,2,3}	14	N/A	
{4 }	5	25	{1,2,4}	15	N/A	
{1,2}	10	54	{1,3,4}	16	N/A	
{1,3}	11	N/A	{2,3,4}	12	N/A	
{1,4}	12	N/A	{1,2,3,4}	19	N/A	3

32

capacity = 10

- Greedy: pick the item with the next largest value if total weight <= capacity.
- Result:
 - item 1 is taken, total value = 42, total weight = 7
 - item 3 cannot be taken
 - item 4 cannot be taken
 - item 2 is taken, total value = 54, total weight = 10

not the best!!

capacity = 10

Also work for Example 1?

• Greedy 2: pick the item with the next largest value/weight if total weight <= capacity.

Result:

- item 3 is taken, total value = 40, total weight = 4
- item 1 cannot be taken
- item 4 is taken, total value = 65, total weight = 9
- item 2 cannot be taken

knapsack

capacity = 50

knapsack

- Greedy: pick the item with the next largest value/weight if total weight <= capacity.
- · Result:
 - > item 1 is taken, total value = 60, total weight = 10
 - > item 2 is taken, total value = 160, total weight = 30
 - > item 3 cannot be taken

Not the best!!

Lesson Learned: Greedy algorithm does NOT always return the best solution