Modelo de Repulsão dos Pares Eletrónicos da Camada de Valência (RPECV) (Capítulo 10)

Permite-nos prever a geometria da molécula admitindo que os pares de eletrões em torno do átomo central vão orientar-se no espaço de forma a minimizar a repulsão electrostática entre si (eletrões ligantes ou isolados).

As moléculas possuem a fórmula geral: AB_x

ωι.

A – átomo central

B - átomos em torno do átomo central

x - nº de átomos em torno do átomo central

1

1

RPECV

	N.º de pares de e-ligantes	N.º de pares		
Classe	no átomo central	isolados no átomo central	Disposição pares de eletrões	Geometria molecular
AB_2	2	0	linear	linear
AB_3	3	0	triangular plana	triangular plana B

N.º de pares de e- ligantes N.º de pares Disposição pares no átomo isolados no Geometria átomo central de eletrões molecular Classe central AB_2 2 0 linear

Cloreto de Berílio (BeCl₂)

2

2

Trifluoreto de Boro (BF3)

3

1

RPECV

Classe	N.º de pares de e- ligantes no átomo central	N.º de pares isolados no átomo central	Disposição pares de eletrões	Geometria molecular
AB_2	2	0	linear	linear
AB_3	3	0	triangular plana	triangular plana
AB_4	4	0	tetraédrica	tetraédrica
			109.5°	B B B

RPECV

Classe	N.º de pares de e- ligantes no átomo central	N.º de pares isolados no átomo central	Disposição pares de eletrões	Geometria molecular
AB_2	2	0	linear	linear
AB ₃	3	0	triangular plana	triangular plana
AB_4	4	0	tetraédrica	tetraédrica
AB ₅	5	0	bipiramidal trigonal	bipiramidal trigonal
			: 120° :	B B B 7

Metano (CH₄)

Pentacloreto de fósforo (PCI₅)

RPECV

Classe	N.º de pares de e- ligantes no átomo	N.º de pares isolados no átomo central	Disposição pares de eletrões	Geometria molecular
010000	<u>central</u>		40 01011000	molecular
AB_2	2	0	linear	linear
AB ₃	3	0	triangular plana	triangular plana
AB_4	4	0	tetraédrica	tetraédrica
AB ₅	5	0	bipiramidal trigonal	bipiramidal trigonal
AB_6	6	0	octaédrica	octaédrica
9			90°	B B

Hexafluoreto de enxofre (SF₆)

10

O que acontece se existirem pares isolados em torno do átomo central?

10

12

11

11

Moléculas com pares de eletrões não ligantes

As moléculas possuem a fórmula geral: $\mathbf{AB_xE_y}$

A – átomo central

B – átomos em torno do átomo central

x - nº de átomos em torno do átomo central

E – pares de eletrões não ligantes em torno do átomo central

 y – nº de pares de eletrões não ligantes em torno do átomo central

13

13

RPECV

	N.º de pares de e-ligantes	N.º de pares		
Classe	no átomo central	isolados no átomo central	Disposição pares de electrões	Geometria molecular
AB_4	4	0	tetraédrica	tetraédrica
AB₃E	3	1	tetraédrica	piramidal trigonal
			B B B	

RPECV

RPECV

Disposição pares

de electrões

triangular

plana

triangular

planar

Geometria

molecular

triangular

plana

angular

NO₂-

14

N.º de pares

isolados no

átomo central

0

N.º de pares de e- ligantes

no átomo

central

3

2

Classe

 AB_3

 AB_2E

14

	N.º de pares de e- ligantes	N.º de pares		
Classe	no átomo central	isolados no átomo central	Disposição pares de electrões	Geometria molecular
AB_4	4	0	tetraédrica	tetraédrica
AB₃E	3	1	tetraédrica	piramidal trigonal
AB ₂ E ₂	2	2	tetraédrica BAAA B	angular O H H

15

15

1

17

17

19

Momentos Dipolares e Moléculas Polares

A polaridade das moléculas depende da sua geometria

Momento dipolar:

$$\mu = Q \times r$$

Q = carga (C)

região pobre em eletrões

H
F $\delta +$ $\delta -$ as (m)

r = distância entre cargas (m)

1 D (debye) =
$$3.36 \times 10^{-30}$$
 C m

19

Previsão da Geometria Molecular

- 1. Desenhe a estrutura de Lewis da molécula.
- 2. Conte o número de pares isolados e de pares ligantes em redor do átomo central.
- 3. Utilize o modelo de RPECV para prever a geometria da molécula.

Quais são as geometrias moleculares de SO₂ e CF₄?

 AB_2E

No modelo simplificado as ligações duplas são contabilizadas como 1 par de eletrões AB₄

Tetraédrica

angular

18

18

20

20

Quais das seguintes moléculas tem momento dipolar? $H_2O,\,CO_2,\,SO_2$ e CH_4

21 22

22

- 3) Para as moléculas seguintes:
 - a) PCl₃
 - c) H₂O
 - d) AlF₃
 - e) CHCl₃
 - f) PCl₅
 - g) SF₆
- a) Utilize o modelo RPECV (Repulsão dos Pares de Eletrões da Camada de Valência) para prever a sua geometria.