Comparing heuristics for the Steiner tree problem.

Antoine Huchet

February 15, 2018

Mutation variation.

Figure: Comparaison for $\lambda=5$, $\mu=2$ and mutation variation of classic elitist selection (in blue), elitist selection on offsprings (in orange), fitness proportional (in green), Boltzmann with constant T=1000 (in red) and Threshold selection with constant parameter T=-150 (in purple)

Crossover variation.

Figure: Comparaison for $\lambda=5$, $\mu=2$ and crossover variation of classic elitist selection (in blue), elitist selection on offsprings (in orange), fitness proportional (in green), Boltzmann with constant T=1000 (in red) and Threshold selection with constant parameter T=-150 (in purple)

Both variations.

Figure: Comparaison for $\lambda=5$, $\mu=2$ and multiple variation of classic elitist selection (in blue), elitist selection on offsprings (in orange), fitness proportional (in green), Boltzmann with constant T=1000 (in red) and Threshold selection with constant parameter T=-150 (in purple)

Elitist selection.

Figure: Comparaison for $\lambda=5$, $\mu=2$ and classic elitist selection of mutation variation (in blue), crossover variation (in orange) and another variation consisting of a mix of both (in green).

Elitist offsprings selection.

Figure: Comparaison for $\lambda=5$, $\mu=2$ and offsprings elitist selection of mutation variation (in blue), crossover variation (in orange) and another variation consisting of a mix of both (in green).

Fitness selection.

Figure: Comparaison for $\lambda=5$, $\mu=2$ and Fitness proportional selection of mutation variation (in blue), crossover variation (in orange) and another variation consisting of a mix of both (in green).

Boltzmann selection for constant T = 1000.

Figure: Comparaison for $\lambda=5$, $\mu=2$ and Boltzmann selection with constant parameter T=1000 of mutation variation (in blue), crossover variation (in orange) and another variation consisting of a mix of both (in green).

Threshold selection with T = -150.

Figure: Comparaison for $\lambda=5$, $\mu=2$ and threshold selection with constant parameter T=-150 of mutation variation (in blue), crossover variation (in orange) and another variation consisting of a mix of both (in green).

Threshold selection with T = -80.

Figure: Comparaison for $\lambda=5$, $\mu=2$ and threshold selection with constant parameter T=-80 of mutation variation (in blue), crossover variation (in orange) and another variation consisting of a mix of both (in green).

Final heuristic.

Figure: Comparaison for $\lambda=11,~\mu=3$ and Boltzmann selection with constant parameter T=1000 and mutation variation (in blue)