

Departamento de Matemática, Universidade de Aveiro

Cálculo I - Semestre Extraordinário — Primeiro Mini-Teste 27 de Março de 2009

Duração: 1h30m

Justifique todas as respostas e indique os cálculos efectuados.

40 Pontos 1. Considere a função f definida em $\mathbb{R} \setminus \{0\}$ por $f(x) = x e^{\frac{1}{x^2}}$. Determine, caso existam, as assimptotas do gráfico de f.

50 Pontos

(b) Considere a função f definida por $f(x)=\frac{x}{x+1}$. Determine, caso existam, os valores de $c\in\mathbb{R}$ para os quais a tangente ao gráfico de f no ponto (c,f(c)) seja paralela à recta que passa pelos pontos (1,f(1)) e (3,f(3)).

30 Pontos 3. Sejam f uma função diferenciável em $\mathbb R$ tal que f(2)=1=-f(4) e g a função definida em $\mathbb R$ por g(x)=xf(x).

Mostre que a equação g(x) = 0 tem pelo menos uma raiz positiva.

2. (a) Enuncie e interprete geometricamente o Teorema de Lagrange.

80 Pontos

- 4. Considere a função f dada por $f(x) = \arcsin(x^2 1)$.
 - (a) Determine o domínio de f, D_f .
 - (b) Mostre que 1 e 1 são os zeros de f.
 - (c) Diga, justificando, se f é invertível.
 - (d) Sendo $b \in D_f$, b > 0, resolva, em ordem a b, a equação $\arcsin(b^2 1) = \frac{\pi}{6}$.