

Model Fitting: The Basic Concept

Created by Cara Brook and Michelle Evans

Presented by Michelle Evans

E2M2 December 2022

Model Fitting in Science

- 1. Define your research question
- 2. Formulate a hypothesis
- 3. Collect Data
- 4. Construct a model that demonstrates your hypothesis
- 5. Assess model fit: assuming our model is true, how likely are we to recover the observed data?
- 6. Optimize parameters behind the model to result in best model fit

Model Fitting in Science

- 1. Define your research question
- 2. Formulate a hypothesis
- 3. Collect Data
- 4. Construct a model that demonstrates your hypothesis
- 5. Assess model fit: assuming our model is true, how likely are we to recover the observed data?
- 6. Optimize parameters behind the model to result in best model fit

Statistical and Mechanistic

Statistical models are data-driven

Goal: find patterns and correlations in data

What is the trend in Madagascar's forest cover through time?

1. Construct a model that represents our hypothesis

What is the trend in Madagascar's **forest cover** through **time**?

Forest = slope*year + intercept

$$Y = mx + b$$

Linear regression

2. Assess model fit

Given our model (y= mx +b), how likely are we to recover the observed data?

Least squares =
$$\sum_{i}$$
 (data_i - prediction_i)²

Slope (m)	Intercept (b)
-2200	4.5e6

Slope (m)	Intercept (b)
-2200	4.5e6
-4500	9.4e6

Slope (m)	Intercept (b)
-2200	4.5e6
-4500	9.4e6
-2000	4.7e6

Slope (m)	Intercept (b)
-2200	4.5e6
-4500	9.4e6
-2000	4.7e6
-2293	5.2e6

What do we learn from this model?

Model:

Parameters:

$$y = mx + b$$

$$m = -2293$$

$$b = 5,200,000$$

The slope (m) is negative, so there is a **negative relationship** between time and forest cover.

What do we learn from this model?

Model:

Parameters:

$$y = mx + b$$

$$m = -2293$$

$$b = 5,200,000$$

The slope (m) is negative, so there is a **negative relationship** between time and forest cover.

This model does not explain causation.

We want to understand what happened, when it happened, and why it happened

Build a model that uses explicit **processes** to recover the same outcomes (**"states"**) as our data

We want to understand what happened, when it happened, and why it happened

Build a model that uses explicit **processes** to recover the same outcomes (**"states"**) as our data

What states are in our data?

We want to understand what happened, when it happened, and why it happened

Build a model that uses explicit **processes** to recover the same outcomes (**"states"**) as our data

What states are in our data?

Forest

Savanna

We want to understand what happened, when it happened, and why it happened

Build a model that uses explicit **processes** to recover the same outcomes (**"states"**) as our data

What states are in our data?

What processes are in our data?

1. Construct a model

$$\frac{dF}{dt} = rF\frac{K-N}{K} - \gamma FS$$

$$\frac{dS}{dt} = \gamma F S \frac{K - N}{K}$$

2. Assess model fit

Our model predicts forest would decline faster than the data do

What does this suggest about our guess for the slash and burn rate?

3. Optimize the model

Identify the value for the slash and burn rate that minimizes the sum of least squares

3. Optimize the model

Identify the value for the slash and burn rate that minimizes the sum of least squares

Fit the model with this optimized value...

Does this optimal value result in a model that better matches the data?

Whether fitting statistical or mechanistic models:

Statistical: identify patterns and correlations in data

Mechanistic: understand the processes (what, when, why) that resulted in the data

Three steps

- Construct a model that fits your hypothesis
- 2. Assess model fit to the data
- Optimize parameters in the model that result in the best model fit