RStudio Cheat Sheet

by Adela Vrtkova and Martina Litschmannova, Department of Applied Mathematics, FEECS, VŠB-TUO via cheatography.com

Workspace, Using libraries

?boxplot

■ getting help documentation for function boxplot

getwd()

lacktriangledown returning the current working directory

setwd("C:/Users/RStudio")

■ setting the working directory to specified file

install.packages("packageZ")

lacktriangledown downloading and installing a package called packageZ

library (packageZ)

■ activating already installed package called packageZ

packageZ::functionF(x)

lacktriangleright calling function function F from specified package packageZ

moments, EnvStats, dunn.test, lsr, openxlsx, car, epiR

■ important packages

After the hash, I can write whatever.

■ writing notes into the script

Importing data

data = read.csv2("C:/Users/RStudio/data.csv")

■ importing data in csv from specified file and saving as data

data = read.csv2("http://am-nas.vsb.cz/DATA/dataset.csv")

■ importing data in csv from the internet and saving as data

■ importing data in xlsx

Working with data

data = as.data.frame(data)

saving imported data as an object of class data.frame

data.S = stack(data)

■ transferring data table into the standard data matrix

data S omit = na omit(data S)

■ omitting entire rows with missing values (NAs)

Probability distribution - Prefixes

|--|

probability density function f(x) or probability mass function P(X=x)

p- $P(X \le x)$

-pois

q- quantile function

Probability distribution - Discrete

-binom	Binomial distribution $Bi(n,\pi)$
-hyper	Hypergeometric distribution $H(N, M, n)$! R code requires - $H(M, N - M, n)$
-nbinom	Negative binomial distribution $NB(k,\pi)$

! definition in JASP/R - number of unsuccessful trials

Poission distribution $Po(\lambda t)$

Probability distribution - Continuous

- unit	Uniform	distribution	U	(a,b)	

-exp Exponential distribution $Exp(\lambda)$

-norm Normal distribution $N(\mu, \sigma^2)$

I JASP applet Distributions requires $N(\mu, \sigma^2)$

! R code requires - $N(\mu, \sigma)$

EDA for a Qualitative Variable

data\$group = as.factor(data\$group)

■ redefining group variable as factor

table(data\$group)

■ frequency table

barplot(table(data\$group))

■ creating a bar plot

pie(table(data\$group))

■ creating a pie chart

EDA for a Quantitative Variable					
sum mary (data\$values)	summary statistics				
length(data\$values)	sample size (attention if NAs present)				
min(data\$values)	minimum				
mean(data\$values)	arithmetic mean				
quantile(data\$values,probs=0.3)	30% quantile				
max(data\$values)	maximum				
sd(data\$values)	standard deviation				
var(data\$values)	variance				
moments∷skewness(data\$values)	skewness				
moments::kurtosis(data\$values)-3	kurtosis				
boxplot (data\$values)	boxplot				
hist(data\$values)	histogram				
plot(density(data\$values))	plotting kernel density estimation				
qqnorm(data\$values); qqline(data\$values)	QQ-plot				

Function tapply()

tapply(dataS\$values, dataS\$group, mean)

 \blacksquare calculates the mean for values by group in data

tapply(dataS\$values, dataS\$group, quantile, probs=0.4)

calculates the 40% quantile for values by group in data

tapply(dataS\$values, dataS\$group, moments::kurtosis)-3

calculates the kurtosis for values by group in data

Statistical inference - One variable

shapiro test(data\$values)

■ Shapiro-Wilk test

 \blacksquare confidence interval for variance and one-sample Chi-squared test on variance (H_0 : σ^2 = $400,\,H_A$: σ^2 ≠ 400)

t.test(data\$values, mu=5, alternative="less", conf.level=0.95)

 \blacksquare confidence interval for mean and one-sample Student's t-test ($H_0: \mu=5, H_A: \mu<5)$

 \blacksquare confidence interval for median and one-sample Wilcoxon test $(H_0:x_{0,5}=8,H_A:x_{0,5}>8)$

binom.test(x,n,p=0.18,a|ternative="two.sided",conf.|evel=0.95)

 \blacksquare confidence interval for probability and one-sample Binomial test (Clooper-Pearson method) $(H_0:\pi=0.18,H_A:\pi\neq0.18)$

RStudio Cheat Sheet

by Adela Vrtkova and Martina Litschmannova, Department of Applied Mathematics, FEECS, VŠB-TUO via cheatography.com

Statistical inference - Two variables

var.test(data\$valuesA, data\$valuesB)

 \blacksquare confidence interval for the ratio of variances, F-test of equality of variances $(H_0:\sigma_A^2=\sigma_B^2,H_A:\sigma_A^2\neq\sigma_B^2)$

t.test(data\$valuesA, data\$valuesB, alternative="two.sided", var.equal=TRUE, conf.level=0.95)

 \blacksquare confidence interval for the difference of means and two-sample Student's t-test $(H_0:\mu_A=\mu_B,H_A:\mu_A\neq\mu_B)$

t.test(data\$valuesA, data\$valuesB, alternative="greater", var.equal=FALSE, conf.level=0.95)

 \blacksquare confidence interval for the difference of means and Aspin-Welch test $(H_0:\mu_A=\mu_B,H_A:\mu_A>\mu_B)$

 \blacksquare confidence interval for the difference of medians and Mann-Whitney test $(H_0:x_{0,5}^A=x_{0,5}^B,H_A:x_{0,5}^A< x_{0,5}^B)$

prop.test(c(x1,x2),c(n1,n2),~alternative = "two.sided",conf.level = 0.95)

 \blacksquare confidence interval for the difference of probabilities and Test of equality of probabilities $(H_0:\pi_A=\pi_B\,,H_A:\pi_A\neq\pi_B)$

Statistical inference - Three and more variable

bartlett.test(dataS\$values~dataS\$group)

■ Bartlett's test of homogeneity of variances

leveneTest(dataS\$values~dataS\$group) # car package

■ Levene's test of homogeneity of variances

results = aov(dataS\$values~dataS\$group); summary(results)

ANOVA

 $\mathsf{Tukey}\mathsf{HSD}(\mathsf{results})$

 \blacksquare post-hoc analysis after ANOVA (if necessary)

kruskal.test(dataS\$values~dataS\$group)

■ Kruskall-Wallis test

dunn.test(dataS\$values~dataS\$group, altp=TRUE) # dunn.test package

■ post-hoc analysis after Kruskal-Wallis test (if necessary)

Contingency tables

 $tab = table(data\$factor1,\,data\$factor2)$

■ contingency table of two categorical variables factor1 and factor2

tab = matrix(c(12,45,23,54), ncol=2, byrow=TRUE)

■ building a contingency table with *matrix* function (could be improved with *rownames* and *colnames* functions)

mosaicplot(tab)

■ Mosaic plot

cramersV(tab) # |sr package

■ Cramér's V measure of association

 $results = chisq.test(tab); \ results\$expected; \ results\$p.value$

 $\hfill \blacksquare$ Chi-squared test of independence in contingency tables, expected counts and p-value

epi.2by2(tab) # epiR package

■ Chi-squared test of independence, OR, RR and their confidence intervals (dependent on the structure of the table)

Goodness-of-fit test

observed = c(979, 1002, 1015, 980, 1040, 984)expected = c(1/6, 1/6, 1/6, 1/6, 1/6, 1/6)chisq.test(observed, p=expected, rescale.p=TRUE)

■ saving observed counts and expected probabilities, performing the test