Отчёта по лабораторной работе №7

Команды безусловного и условного переходов в Nasm. Программирование ветвлений.

Барето Вилиан Мануел

Содержание

1	Цель работы								4					
2	Зада	ание												5
3	Выполнение лабораторной работы								6					
	3.1	Реализация переходов в NASM												6
	3.2	Изучение структуры файлы листинга												11
	3.3	Задание для самостоятельной работы				•	•			•	•	•		13
4	Выв	оды												17

Список иллюстраций

5.1	Создаем каталог с помощью команды ткаіг и фаил с помощью	
	команды touch	6
3.2	Заполняем файл	7
3.3	Запускаем файл и смотрим на его работу	7
3.4	Изменяем файл	8
3.5	Запускаем файл и смотрим на его работу	8
3.6	Редактируем файл	9
3.7	Проверяем, сошелся ли наш вывод с данным в условии выводом .	9
3.8	Создаем файл командой touch	9
3.9	Заполняем файл	10
3.10	Смотрим на работу программ	10
	Создаем файл листинга	11
3.12	Изучаем файл	11
3.13	Удаляем операндум из файла	12
3.14	Транслируем файл	12
3.15	Изучаем файл с ошибкой	13
	Создаем файл командой touch	13
3.17	Пишем программу	14
	Смотрим на рабботу программы(всё верно)	14
	Создаем файл командой touch	15
	Пишем программу	15
	Проверяем работу программы	15
3.22	Проверяем работу программы	16

1 Цель работы

Освоить условного и безусловного перехода. Ознакомиться с назначением и структурой файла листинга.

2 Задание

Написать программы для решения системы выражений.

3 Выполнение лабораторной работы

3.1 Реализация переходов в NASM

Создаем каталог для программ ЛБ7, и в нем создаем файл (рис. fig. 3.1).

```
willianmanuelbarreto@fedora:~/work/arch-pc/lab07 Q = ×
willianmanuelbarreto@fedora:~$ mkdir ~/work/arch-pc/lab07
willianmanuelbarreto@fedora:~$ cd ~/work/arch-pc/lab07
willianmanuelbarreto@fedora:~/work/arch-pc/lab07$ touch lab7-1.asm
willianmanuelbarreto@fedora:~/work/arch-pc/lab07$
```

Рис. 3.1: Создаем каталог с помощью команды mkdir и файл с помощью команды touch

Открываем файл в Midnight Commander и заполняем его в соответствии с листингом 7.1 (рис. fig. 3.2).

```
mc [willianmanuelbarreto@fedora]:~/work/arch-pc/lab07 Q ≡ x
lab7-1.asm [-M--] 9 L:[ 1+19 20/ 21] *(324 / 325b) 0010 0х00А [*][X]
%include 'in_out.asm'
SECTION .data
msg1: DB 'Cooбщение № 1',0
msg2: DB 'Cooбщение № 2',0
msg3: DB 'Cooбщение № 3',0
SECTION .text
GLOBAL _start
_start:
_start:
_imp _label2
_label1:
mov eax, msg1
call sprintLF
_label2:
mov eax, msg2
call sprintLF
_label3:
mov eax, msg3
call sprintLF
_label3:
mov eax, msg3
call sprintLF
_end:
call quit
```

Рис. 3.2: Заполняем файл

Создаем исполняемый файл и запускаем его (рис. fig. 3.3).

```
willianmanuelbarreto@fedora:~/work/arch-pc/lab07$ nasm -f elf lab7-1.asm
willianmanuelbarreto@fedora:~/work/arch-pc/lab07$ ld -m elf_i386 -o lab7-1 lab7-1.o
willianmanuelbarreto@fedora:~/work/arch-pc/lab07$ ./lab7-1
Сообщение № 2
Сообщение № 3
willianmanuelbarreto@fedora:~/work/arch-pc/lab07$
```

Рис. 3.3: Запускаем файл и смотрим на его работу

Снова открываем файл для редактирования и изменяем его в соответствии с листингом 7.2 (рис. fig. 3.4).

Рис. 3.4: Изменяем файл

Создаем исполняемый файл и запускаем его (рис. fig. 3.5).

```
willianmanuelbarreto@fedora:~/work/arch-pc/lab07$ nasm -f elf lab7-1.asm
willianmanuelbarreto@fedora:~/work/arch-pc/lab07$ ld -m elf_i386 -o lab7-1 lab7-1.o
willianmanuelbarreto@fedora:~/work/arch-pc/lab07$ ./lab7-1
Сообщение № 2
Сообщение № 1
willianmanuelbarreto@fedora:~/work/arch-pc/lab07$
```

Рис. 3.5: Запускаем файл и смотрим на его работу

Снова открываем файл для редактирования и изменяем его, чтобы произошел данный вывод (рис. fig. 3.6).

```
mc[willianmanuelbarreto@fedora]:-/work/arch-pc/lab07

Q ≡ ×

lab7-1.asm [----] 0 L:[ 1+22 23/ 24] *(614 / 683b) 0099 0х063
%include 'in_out.asm'; подключение внешнего файла
SECTION .data
msg1: DB 'Cooбщение № 1',0
msg2: DB 'Cooбщение № 2',0
msg3: DB 'Cooбщение № 2',0
msg3: DB 'Cooбщение № 3',0
SECTION .text
GLOBAL _start
_start:
jmp _label3
_label1:
mov eax, msg1; Вывод на экран строки
call sprintlf; 'Cooбщение № 1'
jmp _end
_label2:
mov eax, msg2; Вывод на экран строки
call sprintlf; 'Cooбщение № 2'
jmp _label1
_label3:
mov eax, msg3; Вывод на экран строки
call sprintlf; 'Cooбщение № 2'
jmp _label2
_end:
call quit; вызов подпрограммы завершения

1Ajuda 2Guarda 3Marcar 4Substi 5Copiar 6Mover 7Local. 8Apagar 9PuxarM 10Sair
```

Рис. 3.6: Редактируем файл

Создаем исполняемый файл и запускаем его (рис. fig. 3.7).

```
willianmanuelbarreto@fedora:~/work/arch-pc/lab07$ nasm -f elf lab7-1.asm
willianmanuelbarreto@fedora:~/work/arch-pc/lab07$ ld -m elf_i386 -o lab7-1 lab7-1.o
willianmanuelbarreto@fedora:~/work/arch-pc/lab07$ ./lab7-1
Сообщение № 3
Сообщение № 2
Сообщение № 1
willianmanuelbarreto@fedora:~/work/arch-pc/lab07$
```

Рис. 3.7: Проверяем, сошелся ли наш вывод с данным в условии выводом

Создаем новый файл (рис. fig. 3.8).

```
willianmanuelbarreto@fedora:~/work/arch-pc/lab07$ touch lab7-2.asm
willianmanuelbarreto@fedora:-/work/arch-pc/lab07$
```

Рис. 3.8: Создаем файл командой touch

Открываем файл в Midnight Commander и заполняем его в соответствии с листингом 7.3 (рис. fig. 3.9).

```
⊕
                   mc [willianmanuelbarreto@fedora]:~/work/arch-pc/lab07 Q =
 lab7-2.asm
                             -] 55 L:[ 1+28 29/ 49] *(925 /1657b) 0010 0x00A [*][X]
section .dat
msg1 db 'Введите В: ',0h
msg2 db "Наибольшее число: ",0h
A dd '20'
C dd '50'
section .bs
max resb 10
global _start
call sprint
mov ecx,B
mov edx,10
call sread
mov ecx,[A] ; 'ecx = A'
mov [max],ecx ; 'max = A'
; ----- Сравниваем 'А' и 'С' (как символы)
cmp ecx,[C] ; Сравниваем 'А' и 'С'
jg check_B ; если 'A>C', то переход на метку 'check_B'.
 1Ajuda 2Guarda 3Marcar 4Substi 5Copiar 6Mover 7Local. 8Apagar 9PuxarM10Sair
```

Рис. 3.9: Заполняем файл

Создаем исполняемый файл и проверяем его работу, вводя разные значения В (рис. fig. 3.10).

```
willianmanuelbarreto@fedora:~/work/arch-pc/lab07$ nasm -f elf lab7-2.asm willianmanuelbarreto@fedora:~/work/arch-pc/lab07$ ld -m elf_1386 -o lab7-2 lab7 -2.0 willianmanuelbarreto@fedora:~/work/arch-pc/lab07$ ./lab7-2 Введите В: 5 Наибольшее число: 50 willianmanuelbarreto@fedora:~/work/arch-pc/lab07$ nasm -f elf lab7-2.asm willianmanuelbarreto@fedora:~/work/arch-pc/lab07$ ld -m elf_1386 -o lab7-2 lab7 -2.0 willianmanuelbarreto@fedora:~/work/arch-pc/lab07$ ./lab7-2 Введите В: 10 Наибольшее число: 50 willianmanuelbarreto@fedora:~/work/arch-pc/lab07$ nasm -f elf lab7-2.asm willianmanuelbarreto@fedora:~/work/arch-pc/lab07$ ld -m elf_1386 -o lab7-2 lab7 -2.0 willianmanuelbarreto@fedora:~/work/arch-pc/lab07$ ./lab7-2 Введите В: 1 Наибольшее число: 50 willianmanuelbarreto@fedora:~/work/arch-pc/lab07$
```

Рис. 3.10: Смотрим на работу программ

3.2 Изучение структуры файлы листинга

Создаем файл листинга дла программы lab7-2.asm (рис. fig. 3.11).

```
willianmanuelbarreto@fedora:~/work/arch-pc/lab07$ nasm -f elf -l lab7-2.lst lab
7-2.asm
willianmanuelbarreto@fedora:~/work/arch-pc/lab07$
```

Рис. 3.11: Создаем файл листинга

Открываем файл листинга с помощью команды mcedit и изучаем его (рис. fig. 3.12).

Рис. 3.12: Изучаем файл

Строка 33: 0000001D-адрес в сегменте кода, ВВ01000000-машинный код, mov ebx,1-присвоение переменной есх значения 1.

Строка 34: 00000022-адрес в сегменте кода, В804000000-машинный код, mov eax,4-присвоение переменной eax значения 4.

Строка 35 00000027-адрес в сегменте кода, CD80-машинный код, int 80h-вызов ядра.

Открываем файл и удаляем один операндум (рис. fig. 3.13).

Рис. 3.13: Удаляем операндум из файла

Транслируем с получением файла листинга (рис. fig. 3.14).

```
willianmanuelbarreto@fedora:~/work/arch-pc/lab07$ nasm -f elf -l lab7-2.lst lab 7-2.asm lab7-2.asm:18: error: invalid combination of opcode and operands willianmanuelbarreto@fedora:~/work/arch-pc/lab07$ ls in_out.asm lab7-1.a lab7-1.o lab7-2.asm lab7-3.asm lab7-1 lab7-1.asm lab7-2 lab7-2.lst willianmanuelbarreto@fedora:~/work/arch-pc/lab07$
```

Рис. 3.14: Транслируем файл

При трансляции файла, выдается ошибка, но создаются исполнительный файл lab7-2 и lab7-2.lst

Снова открываем файл листинга и изучаем его (рис. fig. 3.15).

```
∄
              mc [willianmanuelbarreto@fedora]:~/work/arch-pc/lab07
                       -] 40 L:[170+29 199/225] *(12299/14419b) 0109 0x06[*][X
                                        msg1 db 'Введите В: ',0h
   3 00000009 B8D182D0B520423A20-
   3 00000012 00
                                       msg2 db "Наибольшее число: ",0h
   4 00000013 D09DD0B0D0B8D0B1D0-
   4 0000001C BED0BBD18CD188D0B5-
   4 00000025 D0B520D187D0B8D181-
   4 0000002E D0BBD0BE3A2000.
   5 00000035 32300000
                                        C dd '50'
   6 00000039 35300000
  14 000000E8 B8[00000000]
  15 000000ED E81DFFFFFF
                                        call sprint
  17 000000F2 B9[0A000000]
  19 000000F7 E847FFFFF
                                                    - Преобразование 'В' из симв
                                        call atoi ; Вызов подпрограммы перевода
  22 00000101 E896FFFFF
                                        mov [B],eax ; запись преобразованного
6Mover 7Local. <mark>8</mark>Apagar <mark>9</mark>PuxarM<mark>10</mark>Sair
```

Рис. 3.15: Изучаем файл с ошибкой

3.3 Задание для самостоятельной работы

ВАРИАНТ-20

Напишите программу нахождения наименьшей из 3 целочисленных переменных Выбрать из табл. 7.5 в соответствии с вариантом, полученнымпри выполнении лабораторной работы № 7. Создайте исполняемый файл и проверьте его работу.

Создаем новый файл (рис. fig. 3.16).

```
willianmanuelbarreto@fedora:~/work/arch-pc/lab07$ touch lab7-3.asm willianmanuelbarreto@fedora:~/work/arch-pc/lab07$
```

Рис. 3.16: Создаем файл командой touch

Открываем его и пишем программу, которая выберет наименбшее число из трех(2 числа уже в программе, 3е вводится из консоли) (рис. fig. 3.17).

```
mc [willianmanuelbarreto@fedora]:~/work/arch-pc/lab07
                            --] 29 L:[ 1+29 30/ 50] *(960 /1743b) 0010 0x00A [*][X]
 ab7-3.asm
%include
section .dat
msg1 db 'Введите В: ',0h
msg2 db "Наименьшее число: ",0h
A dd '24
min resb 10
B resb 10
section
global _start
_start:
call sprint
mov edx,10
mov eax,B
mov [B],eax ; запись преобразованного числа в
; ----- Записываем 'A' в переменную 'max'
mov ecx,[A] ; 'ecx = A'
mov [min],ecx ; 'max = A'
сmp есх,[С] ; Сравниваем 'А' и 'С
 1Ajuda 2Guarda 3Marcar 4Substi 5Copiar 6Mover 7Local. 8Apagar 9PuxarM10Sair
```

Рис. 3.17: Пишем программу

Транслируем файл и смотрим на работу программы (рис. fig. 3.18).

```
willianmanuelbarreto@fedora:~/work/arch-pc/lab07$ nasm -f elf lab7-3.asm willianmanuelbarreto@fedora:~/work/arch-pc/lab07$ ld -m elf_i386 -o lab7-3 lab7-3.o willianmanuelbarreto@fedora:~/work/arch-pc/lab07$ ./lab7-3 Введите В: 98 Наименьшее число: 24 willianmanuelbarreto@fedora:~/work/arch-pc/lab07$
```

Рис. 3.18: Смотрим на рабботу программы(всё верно)

2. Напишите программу, которая для введенных с клавиатуры значений
и
вычисляет значение заданной функции
м(м) и выводит результат вычислений. Вид функции
м(м) выбрать из таблицы 7.6 вариантов заданий в соответствии с вариантом, полученным при выполнении лабораторной работы № 7. Создайте исполняемый файл и проверьте его работу для значений

⊠и ⊠из 7.6.

Создаем новый файл (рис. fig. 3.19).

```
willianmanuelbarreto@fedora:~/work/arch-pc/lab07$ touch lab7-4.asm willianmanuelbarreto@fedora:~/work/arch-pc/lab07$
```

Рис. 3.19: Создаем файл командой touch

Открываем его и пишем программу, которая решит систему уравнений, при даных, введенных в консоль (рис. fig. 3.20).

```
∄
                  mc [willianmanuelbarreto@fedora]:~/work/arch-pc/lab07
                           --] 0 L:[ 1+ 0 1/ 42] *(0 / 660b) 0037 0x025 [*][X]
 ab7-4.asm
%include
SECTION
msg_a: DB 'Введите значение переменной а: ', 0 res: DB 'Результат: ', 0
SECTION
x: RESB 80
a: RESB 80
GLOBAL _start
mov eax, msg_x
mov ecx, x
mov edx, 80
mov eax, x
call atoi
mov edi, eax
mov eax, msg_a
mov ecx, a
mov edx, 80
mov esi, eax
cmp edi, esi
 1Ajuda 2Guarda 3Marcar 4Substi 5Copiar 6Mover 7Local. 8Apagar 9PuxarM10Sain
```

Рис. 3.20: Пишем программу

Транслируем файл и проверяем его работу при x=1 и a=2(рис. fig. 3.21).

```
willianmanuelbarreto@fedora:~/work/arch-pc/lab07$ nasm -f elf lab7-4.asm willianmanuelbarreto@fedora:~/work/arch-pc/lab07$ ld -m elf_i386 -o lab7-4 lab7-4.o willianmanuelbarreto@fedora:~/work/arch-pc/lab07$ ./lab7-4 Введите значение переменной х: 5 Введите значение переменной а: 7 Результат: 12
```

Рис. 3.21: Проверяем работу программы

Транслируем файл и проверяем его работу при x=2 и a=1(рис. fig. 3.22).

```
willianmanuelbarreto@fedora:~/work/arch-pc/lab07$ nasm -f elf lab7-4.asm willianmanuelbarreto@fedora:~/work/arch-pc/lab07$ ld -m elf_i386 -o lab7-4 lab7 -4.o willianmanuelbarreto@fedora:~/work/arch-pc/lab07$ ./lab7-4 Введите значение переменной х: 6 Введите значение переменной а: 4 Результат: 4 willianmanuelbarreto@fedora:~/work/arch-pc/lab07$
```

Рис. 3.22: Проверяем работу программы

4 Выводы

Мы познакомились с структурой файла листинга, изучили команды условного и безусловного перехоа.