

Bank Purchase Classification Case Study

Final Presentation

Farha Jabin Oyshee, Devika Chandnani, Dylan Huey, Camillo

28-Nov-2022

Background – Bank Purchase Classification case study

- ABC Bank wants to sell it's term deposit product to customers and before launching the product they want to develop a model which help them in understanding whether a particular customer will buy their product or not (based on customer's past interaction with bank or other Financial Institution).
- Objective: Analyze previous bank customer data to propose an efficient solution for ABC banks upcoming marketing campaign. Identify trends in the data to ultimately create a model to help predict which customers will be most likely to purchase the new product

The analysis has been divided into four parts:

- Data Understanding
- Finding target groups
 - How we found the target groups
- Recommendations for model building

Background – Data Cleaning and Outlier Removal

- The dataset already came without any unusable data points and was able to be used immediately
 - We have provided a screenshot of the number of null columns after importing the data
- There were some outliers within the age and campaign categories and replaced their values with the upper and

lower IQR boundaries

Data Understanding

Data Understanding - Campaign types

This graph shows the comparison of campaign reach by category and that the campaign reaches more than 50% more customers on a mobile phone compared to a telephone. This will help when determining what the target demographic will be.

Data Understanding - Campaign types

Campaign Outreach by Month:

- Best performing month: May
- Campaign performed the best during the summer months (May-Aug)
- Campaign performed the worst during winter months (Oct-Jan)
- Focus on campaign success early on as it quickly drops in effectiveness

Target Group Identification - Age

Target Group Identification - Age

Age:

- Most popular age groups:
 - o 26-40 y/o
 - o 41-60 y/o
- No significant trends between age group and loans
- Highest number of "yes" from the two most popular age groups
 - This may be caused by larger sample size
- We cannot recommend age as a target group on its own

Target Group Identification - Economic Perspectives

Correlation between attributes:

- Employment rate, consumer confidence index, and consumer price index all had high correlations
- These factors may give more insight about target client groups
- We may find that clients who have higher confidence and price index are more likely to purchase the product

Target Group Identification - Employment and Occupation

Target Group Identification - Occupation and Other Factors

Target Group Identification - Education and Occupation

Target Group Identification - Final Thoughts

Final Thoughts and Recommendations:

- After exploring many factors and groups, the bank should choose highly efficiency target groups and dates for their ad campaign
 - Suggested date: January April
 - Suggested groups:
 - Occupation: admin, blue-collar, student, technician
 - Age: 26-40, 17-25
 - Marital Status: married, single (top occupations only)
 - Education: University degree or professional course
- Many useful target groups, but occupation has the largest impact on predicting the purchase rate

Model Selection and Execution

Thoughts and Recommendations for ML Model Selection:

- Model should predict whether a client will purchase the new product based on a variety of different data inputs
- We will test 6 different algorithms and choose the best
 - Linear algorithms: logistic regression, linear discriminant analysis
 - Nonlinear algorithms: classification and regression trees, support vector machines, Gaussian Naive Bayes, K-nearest neighbors
- Initial results are shown, but a further analysis of model building will be covered in the final report

ScaledLR: 0.860654 (0.034861) ScaledLDA: 0.857459 (0.038983) ScaledKNN: 0.715261 (0.037793) ScaledCART: 0.649699 (0.045427) ScaledNB: 0.826131 (0.038275) ScaledSVM: 0.823826 (0.040493)

Feature Variable Correlation

Feature Variable Correlation:

0.4

- On the side we have provided a heatmap of all the correlations of the respective input variables
- As seen, there are no strong correlations between any two features
 - We could have potentially set a threshold value of 0.8 or -0.8

Model Building

Building the Final Model:

- Before building out the final model, the training dataset was standardized
 - Inputs were scaled to generate predictions
- We chose to use a gradient boosting model for the final model selection
- Using the hold-out dataset the model scored an accuracy of 90%
- The next slide shows a graph of the precision and recall curves

	12] 29]]				
		precision	recall	f1-score	support
	0	0.95	0.98	0.97	654
	1	0.71	0.48	0.57	61
accuracy				0.94	715
macr	o avg	0.83	0.73	0.77	715
weighte	d avg	0.93	0.94	0.93	715

Precision and Recall Curves

Final Model

Building the Final Model:

- The model was fitted using logistic regression
- Parameter tuning was utilized to determine the models overall accuracy
 - The mean accuracy was 93%
- The classification report shows a precision value of 93%
 - No false positives were labeled
- In conclusion, we believe the bank would be able to confidently use our model to predict client purchase outcomes!

The mean accuracy of the model is: 0.9314685314685315

Confusion Matrix: [[652 [47 14]] Classification Report: precision recall f1-score support 0.93 1.00 9.96 654 0.88 0.23 0.36 61 9.93 715 accuracy macro avg 0.90 0.61 0.66 715 weighted avg 0.93 0.93 0.91 715

Thank you!