

Série C - session 2007 : problème 2 - corrigé

Partie A: Etude de la fonction f

I - Etude de la fonction la fonction q

1 - Variation de q

g est définie par $g(x) = \ln(x+1) - x + \frac{x^2}{2} - \frac{x^3}{3}$ sur [0, +\infty]

La dérivée de g est :

$$g'(x) = \frac{1}{1+x} - 1 + x - x^2 = \frac{-x^3}{1+x}$$

pour tout $x \ge 0$, $g'(x) \le 0$ donc g est décroissante sur $[0, +\infty[$

- signe de q(x)

Comme g est décroissante sur $[0,+\infty[$, alors pour tout $x \ge 0$, $g(x) \le g(0)$, Or g(0) = 0, d'où $g(x) \le 0$ sur $[0, +\infty[$

2- Montrons que pour tout $x \ge 0$ on a : $\ln(1+x) - x + \frac{x^2}{2}$

Posons

$$\varphi(x) = \ln(x+1) - x + \frac{x^2}{2}$$

On a

$$\varphi'(x) = \frac{x^2}{x+1} \ge 0$$

donc ϕ est croissante sur [0 , + ∞ [

comme $\varphi(0) = 0$, on a :

$$\ln(x+1) - x + \frac{x^2}{2} \ge 0$$

En combinant

$$0 \le \ln(x+1) - x + \frac{x^2}{2}$$
 et $g(x) \le 0$

On a

$$-\frac{x^2}{2} \le \ln(x+1) - x \le -\frac{x^2}{2} + \frac{x^3}{3}$$

En divisant par x^2 (x>0)

$$-\frac{1}{2} \le \frac{\ln(1+x) - x}{x^2} \le -\frac{1}{2} + \frac{x}{3}$$

II - 1-a) Continuité de f à droite de 0

On a

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{\ln(1+x)}{x} = 1$$

donc

$$\lim_{x\to 0^+} f(x) = 1 = f(0), \quad \text{f est continue à droite de 0}$$

-Dérivabilité de f à droite de 0

On a

$$\frac{f(x) - f(0)}{x - 0} = \frac{\ln(1 + x) - x}{x^2}$$

D'après I-2)

$$-\frac{1}{2} \le \lim_{x \to 0^+} \frac{\ln(1+x) - x}{x^2} \le \lim_{x \to 0^+} \left(-\frac{1}{2} + \frac{x}{3}\right)$$

alors

$$f_d'(0) = \lim_{x \to 0^+} \frac{\ln(1+x) - x}{x^2} = -\frac{1}{2}$$

f est donc dérivable à droite de 0, et f_d (0) = $-\frac{1}{2}$

b) Tangente en x = 0 : (T): $y = -\frac{x}{2} + 1$

(T):
$$y = -\frac{x}{2} + 1$$

c) - Variation de h sur [0 , +∞[

la dérivée de h est :

$$h'(x) = -\ln(x+1)$$

- signe de h(x)

On a

$$h'(x) \le 0$$
 sur $[0, +\infty[$

alors h est décroissante sur [0 , +∞[

Comme h(0) = 0, on a $h(x) \le h(0)$, d'où $h(x) \le 0$

d) Dérivée de f

$$f'(x) = \frac{x - (x+1)\ln(x+1)}{x^2(x+1)} = \frac{h(x)}{x^2(x+1)}$$
 et $f'(0) = -\frac{1}{2}$

Comme
$$x^2(x+1) \ge 0$$
, on a

$$sg[f(x)] = sg[h(x)]$$

$$f'(x) < 0$$
 sur $[0, +\infty[$

e) Tableau de variation de f

f est décroissant sur $[0,+\infty[$

Courbe(C) et tangente (T)

2- Encadrement de F(1)

$$-\frac{1}{2} \le \frac{\ln(1+t)-t}{t^2} \le -\frac{1}{2} + \frac{t}{3}$$

$$-\frac{t}{2} + 1 \le f(t) \le \frac{t^2}{3} - \frac{t}{2} + 1$$
 pour $t \ge 0$

$$\int_0^x \left(-\frac{t}{2} + 1 \right) dt \leq \int_0^x f(tx) \, dt \, \leq \int_0^x \! \left(\frac{t^2}{3} - \frac{t}{2} + 1 \right) dt$$

$$-\frac{x^2}{4} + x \le F(x) \le \frac{x^3}{9} - \frac{x^2}{4} + x$$

D'où, en prenant x = 1

$$\frac{3}{4} \le F(1) \le \frac{31}{36}$$

Conclusion : L'aire A du domaine plan limitée par (C), l'axe Ox et les droites d'équations x = 0 et x = 1 est A = F(1). 4 cm²

et

$$3\,\text{cm}^2 \le A \le \frac{31}{9}\,\text{cm}^2$$

Partie B: Etude de la suite (Un)

I - Majoration de | f '(x) |

1- Image par f de l'intervalle I = [0 , 1]

f étant décroissante sur I, on a, pour tout x de I, $f(1) \le f(x) \le f(0)$ i.e. $\ln 2 \le f(x) \le 1$ d'où $f(I) \subset [0,1]$

2- Montrons que l'équation f(x) = x admet une solution unique $\alpha \in I$.

Posons

$$\Psi(x) = f(x) - x$$

On a

$$\Psi'(x) = f'(x) - 1 = \frac{h(x)}{x^2(x+1)} - 1$$

Comme $h(x) \le 0$ (d'après Partie II – 1c), $\psi'(x) \le 0$ sur I. Il s'ensuit que ψ est continue et strictement décroissante sur I.

On a
$$\psi(0) = f(0) - 0 = 1 > 0$$
 et $\psi(1) = f(1) - 1 = \ln 2 - 1 < 0$

D'après le théorème de la valeur intermédiaire, il existe un unique α de I tel que $\psi(\alpha)$ = 0 D'où f(x) = x admet une solution unique $\alpha \in I$.

3 - Dérivée de
$$k: x \mapsto x^3 + x^2 + 2x - 2(x+1)\ln(x+1)$$

On a

$$k'(x) = 3x^2 + 2x - 2\ln(x+1)$$

- variation de k'(x) pour $x \ge 0$

La dérivée de k' est

$$k''(x) = \frac{6x^2 + 8x}{x + 1}$$

donc pour $x \ge 0$, $k''(x) \ge 0$, ce qui implique k' croissante sur $[0, +\infty)$

- signe de k'(x) et de k(x)

On a, pour $x \ge 0$, $k'(x) \ge k'(0)$ avec k(0)=0. Alors $k'(x) \ge 0$ sur $[0, +\infty[$.

La fonction k est donc croissante sur $[0, +\infty [$, ce qui implique, $k(x) \ge k(0)$

Comme k(0) = 0, on a $k(x) \ge 0$ sur $[0, +\infty [$.

4- Majoration de | f'(x) |

On a

$$f'(x) + \frac{1}{2} = \frac{x - (x+1)\ln(x+1)}{x^2(x+1)} + \frac{1}{2}$$

Ou encore

$$f'(x) + \frac{1}{2} = \frac{k(x)}{x^2(x+1)}$$

Comme $k(x) \ge 0$ sur [0, 1], on a $f'(x) + \frac{1}{2} \ge 0$

D'où

$$-\frac{1}{2} \le f'(x) \le 0$$

On en conclut que, pour tout x de I, $|f'(x)| \le \frac{1}{2}$

II - Etude de la suite (Un)

1- Montrons que pour tout $n \in IN$, $U_n \in I$

On a $U_0 \in I$,

Supposons que $U_{n} \in \ I$ et montrons que $U_{n+1} \in \ I$.

Comme $f(I) \subset [0,1]$, $U_n \in I$ implique $f(U_n) \in I$. Donc $U_{n+1} \in I$.

Conclusion : pour tout $n \in IN$, $U_n \in I$

2- Montrons, que pour tout entier naturel n, $|U_{n+1} - \alpha| \le \frac{1}{2} |U_n - \alpha|$.

f est dérivable sur I et $|f'(x)| \le \frac{1}{2}$, alors pour tous réels a et b de I,

on a:
$$|f(b) - f(a)| \le \frac{1}{2} |b - a|$$

on pose $a=\alpha \ \ \text{et} \ \ b=U_n$

alors
$$|f(U_n) - f(\alpha)| \le \frac{1}{2} |U_n - \alpha|$$

ce qui implique
$$|U_{n+1} - \alpha| \le \frac{1}{2} |U_n - \alpha|$$

3- Montrons, par récurrence, que pour tout entier naturel n,
$$\mid U_n$$
 - $\alpha \mid \leq \frac{1}{2^n}$

Pour n = 0,
$$U_0$$
 = 0 et $\alpha \in [0, 1]$, alors $|U_0 - \alpha| \le \frac{1}{2^0}$

Supposons que, pour un certain rang n,
$$|U_n - \alpha| \le \frac{1}{2^n}$$

$$\text{pour un certain rang n + 1, } \mid U_{n+1} - \alpha \mid \leq \frac{1}{2} \mid U_n - \alpha \mid \leq \frac{1}{2} \times \frac{1}{2^n}$$

c'est-à-dire
$$|U_{n+1}-\alpha|\leq \frac{1}{2^{n+1}}, \quad \text{Donc, c'est vrai pour n+1}$$

Conclusion : pour tout entier naturel n, $|U_n - \alpha| \le \frac{1}{2^n}$

4- limite de Un quand n tend vers +∞

On a:
$$\lim_{n\to +\infty} |U_n - \alpha| \le \lim_{n\to +\infty} \frac{1}{2^n}$$

Comme
$$\lim_{n\to +\infty}\frac{1}{2^n}=0 \qquad \text{ on a } \lim_{n\to +\infty}U_n=\alpha$$