4.2 Linear Regression

Linear Regression - A technique in which a straight line is fitted to a set of points.

Interpolation - when you estimate within the range of data values.

Extrapolation - When you estimate beyond the range of data values

Least Squares Method - Defermines the residuals (vertical deviation from the

4 residuals are possible for points above the line, and regative for points below the line

Le the sum of the squares of the residuals have the least possible value.

We can calculate the equation of the line of best sit using the following formula

We can calculate the equation of the line of best fit using the following formulae:

y = ax	c+b
$a = \frac{n\sum xy - (\sum x)(\sum y)}{2}$	$b = \frac{\sum y}{a} - a \left(\frac{\sum x}{a}\right)$
$a = \frac{1}{n \sum x^2 - (\sum x)^2}$	$b = \frac{-1}{n} - a\left(\frac{-1}{n}\right)$

1

MDM4U

4.2

Unit 4: Two-variable Statistics

Example 1: Researchers monitoring the number of wolves and rabbits in a wildlife reserve think that the wolf population depends on the rabbit population since wolves prey on rabbits. Over a period of 8 years, researchers have collected the following data.

Year	1994	1995	1996	1997	1998	1999	2000	2001
Rabbit Population	61	72	78	76	65	54	39	43
Wolf Population	26	33	42	49	37	30	24	19

al	Determine	the line	of best fit a	and the	correlation	coefficient	for this data. '	

Rubbit (x)	wolf (y)	37.2	42	779
61	26	3721	676	1586
72	33	5184	1089	2376
78	42	6084	1764	32.76
76	49	5776	2401	3724
65	37	4223	1369	2405
54	30	2916	900	1620
39	24	1521	576	936
43	19	1849.	361	817
20 = 488	Zy= 260	Ix= 31,276	Zy = 9136	Zxy = 16,740

$$r = \frac{(5)(16740) - (488)(260)}{\sqrt{[(4x/31,276) - (488)^2][(8/36) - (260)^2]}} \qquad \alpha = \frac{7040}{(2064)} = \frac{1500^{\circ}}{(2064)}$$

$$b = \frac{260}{8} - 0.58\left(\frac{488}{8}\right) = -2.88$$

2

b) Does this data support the researchers' theory?

when three are no move rabbilly popla increases, there are "
inegative"
amounts of
molves T is I more rabbit muns 0.58 non wolves

Example 2: To evaluate the performance of one of its instructors, a driving school tabulates the number of hours of instruction and the drive-test scores for the instructor's students.

a) Analyze this data to determine whether the instructor is an effective teacher or not.

Hours 🗡	Score y	x²	y ²	ху	
10	10 78		6084	780	
15	85 225 7225		1275		
21	96	441	9216	- 2016	
6	75	3 6	5625	450	
18 84		324	7056	1512	
20	20 45 400		2025	900	
12 82		144	6724	984	
x=102	Zy = 545	Zx2 = 1670	Iy= = 43,955	Exy= 7917	

n = 1

$$\int \frac{7(7917) - (102)(545)}{\int \frac{7(1670) - (02)^{2}}{[7(43955) - (545)^{2}]}}$$

 $= \frac{-171}{\sqrt{(1286)(10.660)}} = -0.05$

negative correlation

b) Comment on any data that appears to be unusual.

check y-values for outliers: