BAB 2

Metabolisme

METABOLISME

- berasal dari kata metabole (Yunani) yang berarti berubah
- keseluruhan proses reaksi kimia yang terjadi pada sel tubuh mahluk hidup, baik reaksi pemecahan maupun penyusunan senyawa kimia tertentu

METABOLISME

Dikelompokkan menjadi 2, yaitu :

1. Anabolisme

yaitu penyusunan senyawa komplek dari senyawa sederhana dengan bantuan energi dari luar.

Contoh peristiwa: Fotosintesis dan kemosintesis

2. Katabolisme

yaitu pemecahan senyawa kompleks menjadi senyawa sederhana dengan membebaskan energi. Contoh katabolisme adalah respirasi dan fermentasi

B. Enzim

Enzim

Pengertian

 Protein yang bertindak sebagai biokatalisator

Sifat-sifat

- Enzim adalah protein
- Bekerja spesifik
- Berfungsi sebagai katalis
- Diperlukan dalam jumlah sedikit
- Bekerja secara bolak-balik
- Dipengaruhi faktor lingkungan

Cara kerja enzim

Menurunkan
 energi aktivasi
 (energi yang
 diperlukan untuk
 reaksi)

1. Cara Kerja Enzim

Substrat + Enzim → Kompleks enzim-substrat → Enzim + Produk

Kunci Gembok (*lock and key***)**

Induksi Pas (inducet fit)

2. Faktor yang Memengaruhi Kerja Enzim

a. Temperatur

b. Perubahan pH

c. Konsentrasi Enzim

d. Inhibitor Enzim

3. Nomenklatur dan Klasifikasi Enzim

Enzim diberi nama dengan menambah akhiran —ase pada nama substrat yang diubah oleh enzim tersebut.

Penggolongan enzim:

- Golongan hidrolase, enzim yang dengan penambahan air atau dengan adanya air dapat mengubah suatu substrat menjadi hasil akhir, misalnya karboksilase, protease, dan lipase.
- Golongan desmolase, yaitu enzim yang dapat memecah ikatan
 C C atau C N, misalnya enzim peroksidase, dehidrogenase, katalase, dan transaminase.

C. Katabolisme Karbohidrat

Metabolisme

Katabolisme

Bertujuan untuk pembongkaran atau penguraian suatu molekul

Anabolisme

Bertujuan untuk penyusunan atau sintesis suatu molekul

Respirasi Aerob

Respirasi Anaerob

fotosintesis

Skema Proses Glikolisis

Skema Siklus Krebs

Skema Transpor Elektron

Respirasi Aerob dan Respirasi Anaerob

Pengubahan asam piruvat menjadi etanol:

$$\begin{array}{c} \text{CH}_3.\text{CO.COOH} \xrightarrow{\text{piruvat}} & \text{CH}_3.\text{CHO} + \text{CO}_2 \\ \text{(asetaldehida)} & \\ & & \\$$

Pengubahan asam piruvat menjadi asam susu (asam laktat):

$$\begin{array}{c} \text{CH}_3.\text{CO.COOH + NAD.H}_2 \xrightarrow{\text{dehidrogenase}} \text{CH}_3.\text{CHOH.COOH + NAD+ + energi} \\ \text{(asam piruvat)} \end{array}$$

Perbedaan antara Fermentasi Alkohol dan Cuka

Faktor Pembeda	Fermentasi Alkohol	Fermentasi Cuka
Keperluan O2	Tanpa O2 bebas	Memerlukan O2 bebas
Mikroorganisme	Saccharomyces	Bakteri asam cuka
Bahan dasar	C6H12O6 (gula)	C2H5OH (alkohol)
Hasil	Alkohol dan CO2	Asam cuka dan H2O
Reaksi kimia	C6H12O6 → 2C2H5OH + 2CO2 + 28 K	C2H5OH → CH3COOH + H2O + 15 Kal

Fermentasi Alkohol

$$C_6H_{12}O_6 \rightarrow 2CO_2 + 2C_2H_5OH + 2ATP$$

(a) Tahapan fermentasi alkohol. (b) Jamur ragi (yeast).

D. Anabolisme Karbohidrat

Jan Ingenhousz membuktikan bahwa pada proses fotosintesis dilepaskan O2 (oksigen).

Gambar 2.10 Perangkat percobaan Ingenhousz

Skema Reaksi Terang

Aliran Elektron Nonsiklik

Gambar 2.11 Skema perjalanan elektron nonsiklik selama reaksi terang

Skema Reaksi Terang

Aliran Elektron Siklik

Siklus Asimilasi C dalam Organisme Fotoautotrop

Perbandingan antara Fotosintesis dan Kemosintesis

Faktor Pembanding	Fotosintesis	Kemosintesis
Bahan Dasar	CO2 dan H2O	CO2 dan H2O
Sumber Energi	Sinar matahari	Zat-zat kimia
Pelaku	Tumbuhan berklorofil	Tumbuhan tidak berklorofil, misalnya bakteri
Hasil	Karbohidrat/glukosa	Glukosa

Ferrobacillus

Jalur Hatch-Slack (C4)

Struktur Tumbuhan C3 dan C4

Gambar 2.15 (a) Penampang daun tumbuhan C_3 , dan (b) penampang daun tumbuhan C_4

Jalur CAM pada tumbuhan Crassulaceae

E. Keterkaitan Proses Katabolisme dan Anabolisme

Faktor-faktor yang Memengaruhi Katabolisme dan Anabolisme

	Faktor	Pengaruh pada Laju Katabolisme	Pengaruh pada Laju Anabolisme
a.	Luar 1. Cahaya	Mempercepat	Mempercepat
	2. Suhu	Mempercepat (pada rentang 0° - 45°C)	Di atas suhu optimum menurunkan karena merusak enzim
	3. CO2	Menurunkan laju respirasi	Meningkatkan, pada kadar optimal
	4. O2	Mempercepat	Menghambat
	5. H2O	Menurunkan	Berpengaruh tidak langsung
	6. Unsur/senyawa kimia	Dalam jumlah sedikit meningkatkan dan dalam jumlah banyak menurunkan	Kekurangan unsur N menghambar sintesis klorofil sehingga menurunkan laju anabolisme
b.	Dalam	 Substrat respirasi mempercepat laju katabolisme Laju katabolisme dipengaruhi oleh kuantitas dan kualitas protoplasma 	 Laju anabolisme dipengaruhi oleh: Klorofil Membuka menutupnya stomata Anatomi daun Morfologi daun Hambatan pada transportasi hasil fotosintesis

E. Keterkaitan Metabolisme Karbohidrat, Lemak, dan Protein

