Identificação de Endereços IP Dinâmicos com Dados **Públicos**

Gabriel Pains de Oliveira Cardoso

Leonardo B. Oliveira

Ítalo Cunha

O que são IPs dinâmicos?

> IPs que são associados à dispositivos diferentes esporadicamente

O que são IPs dinâmicos?

> IPs que são associados à dispositivos diferentes esporadicamente

Propriedades de IPs dinâmicos

> Dispositivos distintos utilizam o mesmo IP ao longo do tempo

> Ambiguidades no mapeamento de vulnerabilidades para dispositivos

Propriedades de IPs dinâmicos

> Dispositivos distintos utilizam o mesmo IP ao longo do tempo

> Ambiguidades no mapeamento de vulnerabilidades para dispositivos

Problema

> Não temos como saber quais IPs são dinâmicos

Métodos de identificação

Dados públicos não confiáveis:

- > DNS reverso (RDNS)
- > Busca de indicadores de dinamicidade

```
(ec2-15-229-172-154.sa-east-1.compute.amazonaws.com, dynamic.200-49-28-32.amxinternet.com.br)
```

Métodos de identificação

Dados públicos não confiáveis:

- > DNS reverso (RDNS)
- > Busca de indicadores de dinamicidade

```
(ec2-15-229-172-154.sa-east-1.compute.amazonaws.com, dynamic.200-49-28-32.amxinternet.com.br)
```

Dados privados não disponíveis:

- > Metadados sobre o IP para classificar um bloco
- > Análise de tráfego de rede

Métodos de identificação

Dados públicos não confiáveis:

- > DNS reverso (RDNS)
- > Busca de indicadores de dinamicidade

(ec2-15-229-172-154.sa-east-1.compute.amazonaws.com, dynamic.200-49-28-32.amxinternet.com.br)

Pergunta: é possível alcançar um meio termo?

Dados privados não disponíveis:

- > Metadados sobre o IP para classificar um bloco
- > Análise de tráfego de rede

DynMap

> Propõe um método que seja aplicável de forma geral e que forneça bons resultados

> Utilização de dados públicos de fácil acesso

Rastreio de Dispositivos

É necessário um identificador único para relacionar um IP a um Dispositivo

UDmap:

- > ID do usuário no Hotmail
- > Privado

Rastreio de Dispositivos

É necessário um identificador único para relacionar um IP a um Dispositivo

UDmap:

- > ID do usuário no Hotmail
- > Privado

DynMap:

- > SHA256 do certificado SSL
- > Público

DynMap: Seleção de Blocos Candidatos

Seleção de blocos de IPs *contíguos* que satisfazem:

- 1. Mesmo prefixo IP
- 2. Número mínimo de IPs
- 3. Sem lacunas grandes

150.164.0.0 150.164.255.255

Blocos formados

DynMap: Cálculo da Entropia de Uso por IP

Pergunta: Os certificados de um IP são observadas de forma uniforme nos outros IPs do bloco?

> Matriz Certificados x IPs

Alta dinamicidade Entropia ≈ 1

DynMap: Cálculo da Entropia de Uso por IP

Pergunta: Os certificados de um IP são observadas de forma uniforme nos outros IPs do bloco?

> Matriz Certificados x IPs

Alta dinamicidade Entropia ≈ 1

Baixa dinamicidade Entropia ≈ 0

Cenário 1 se trata de renovação de certificados ao passo que o Cenário 2 se trata da mudança de dispositivos

Ideia: verificar se domínios variam de acordo com os certificados

> Cálculo é feito para cada IP em um bloco

Alta dinamicidade $\frac{Dominios}{Certificados} \approx 1$

Baixa dinamicidade $\frac{Dominios}{Certificados} \approx 0$

Entropia de Uso	Dinamicidade de Domínio	Resultado

Entropia de Uso	Dinamicidade de Domínio	Resultado
0	0	Estático

Entropia de Uso	Dinamicidade de Domínio	Resultado
0	0	Estático
1	1	Dinâmico

Entropia de Uso	Dinamicidade de Domínio	Resultado
0	0	Estático
0	1	Dinâmico
1	1	Dinâmico

Entropia de Uso	Dinamicidade de Domínio	Resultado
0	0	Estático
0	1	Dinâmico
1	1	Dinâmico
*	*	Outlier

Entropia de Uso	Dinamicidade de Domínio	Resultado
0	0	Estático
0	1	Dinâmico
1	0	Dinâmico
1	1	Dinâmico
*	*	Outlier

Número de certificados no bloco 🕇 Alto Prefixo compartilhado Dinâmico por um cluster facebook Número de domínios no bloco Média Alto Baixo Proxy Baixo

Número de certificados no bloco ↑ Alto Prefixo compartilhado Dinâmico por um cluster facebook Número de domínios no bloco Média Alto Baixo Proxy (zero ocorrências nas análises)

Baixo

Entropia de Uso	Dinamicidade de Domínio	Resultado
0	0	Estático
0	1	Dinâmico
		Dinâmico
1	0	Dinâmico (Cluster)
		Dinâmico (Proxy)
1	1	Dinâmico
*	*	Outlier

Preparação dos Experimentos

Aplicação do DynMap em um conjunto de dados de varreduras de rede realizadas pelo Shodan na Internet brasileira

> Certificado: *fingerprint* SHA256 do certificado SSL

> Nome de domínio: common name do certificado SSL

Preparação dos Experimentos

Aplicação do DynMap em um conjunto de dados de varreduras de rede realizadas pelo Shodan na Internet brasileira

- > Certificado: *fingerprint* SHA256 do certificado SSL
- > Nome de domínio: common name do certificado SSL
- > Outubro 2023 Dezembro 2023
- > 1.422.737 endereços IP distintos
- > Validação por correlação

Nome da Rede	Número de IPs		
Amazon	75000		
Locaweb	12000		
Microsoft	6000		
Totvs	2600		
BRC Telecom	1600		
Deznet Telecom	1200		
Akamai	1000		
Secrelnet Informatica	1000		
AMX Internet	1000		
Vitoria Networks	1000		

Nome da Rede	Número de IPs
Amazon	75000
Locaweb	12000
Microsoft	6000
Totvs	2600
BRC Telecom	1600
Deznet Telecom	1200
Akamai	1000
Secrelnet Informatica	1000
AMX Internet	1000
Vitoria Networks	1000

Tamanho mínimo de bloco = 8				
Nome da Rede Número de IPs				
Amazon	75000			
Locaweb	12000			
Microsoft	6000			
Totvs	2600			
BRC Telecom	1600			
Deznet Telecom	1200			
Akamai	1000			
Secrelnet Informatica	1000			
AMX Internet	1000			
Vitoria Networks	1000			

Tamanho mínimo de bloco = 128				
Nome da Rede Número de IPs				
Amazon	8500			
Locaweb	8500			
Microsoft	4000			
Deznet Telecom	1200			
AMX Internet	1000			
Vitoria Networks	1000			
Digo Internet	900			
Pcsupri Informatica	700			
Secrelnet Informatica	700			
Megalynk Sistemas	600			

1156 Redes

Tamanho mínimo de bloco = 8				
Nome da Rede Número de IPs				
Amazon	75000			
Locaweb	12000			
Microsoft	6000			
Totvs	2600			
BRC Telecom	1600			
Deznet Telecom	1200			
Akamai	1000			
Secrelnet Informatica	1000			
AMX Internet	1000			
Vitoria Networks	1000			

Tamanho mínimo de bloco = 128				
Nome da Rede Número de IPs				
Amazon	8500			
Locaweb	8500			
Microsoft	4000			
Deznet Telecom	1200			
AMX Internet	1000			
Vitoria Networks	1000			
Digo Internet	900			
Pcsupri Informatica	700			
Secrelnet Informatica	700			
Megalynk Sistemas	600			

51 Redes

Maiores tipos de rede por categoria de IP

Tipo	Dinâmico	Proxy	Cluster
Empresarial	86,7%	12,3%	1,0%
Conteúdo (CDN)	44,2%	50,3%	5,5%
Fibra/DSL/ISP	59,2%	19,3%	21,5%
NSP	26,0%	35,6%	38,4%
Educação/Pesquisa	65,4%	18,3%	16,2%
Governamental	38,6%	39,7%	21,7%
Serviços de rede	34,5%	52,4%	13,1%
Sem fins lucrativos	2,5%	77,7%	19,8%

Conclusão

> DynMap é capaz de identificar IPs claramente dinâmicos

> Introdução de duas subcategorias de blocos de IPs: proxy e cluster

> Foco em tratar de anomalias que provém da utilização de dados públicos

Conclusão

> DynMap é capaz de identificar IPs claramente dinâmicos

> Introdução de duas subcategorias de blocos de IPs: proxy e cluster

> Foco em tratar de anomalias que provém da utilização de dados públicos

Conclusão

> DynMap é capaz de identificar IPs claramente dinâmicos

> Introdução de duas subcategorias de blocos de IPs: proxy e cluster

> Foco em tratar de anomalias que provém da utilização de dados públicos

Obrigado!

> Email para contato: gabrielpains@dcc.ufmg.br

Análise e Categorização de IPs

Tabela 3: Relação de endereços IP dinâmicos e DNS Reverso

Expressão Regular	B = 8		B = 128	
.*dyn.*	272	0,19%	868	2,39%
.*cloud.*	949	0,65%	5614	15,46%
.*server.*	319	0,22%	43	0,12%
.*compute.*	22982	15,85%	3003	8,27%
.*hospeda.*	316	0,22%	1228	3,38%

Análise e Categorização de IPs

Tabela 3: Relação de endereços IP dinâmicos e DNS Reverso

Expressão Regular	B=8		pressão Regular $B=8$ $B=12$		= 128
. * dyn. *	272	0,19%	868	2,39%	
.*cloud.*	949	0,65%	5614	15,46%	
.*server.*	319	0,22%	43	0,12%	
.*compute.*	22982	15,85%	3003	8,27%	

Restante	6938	4,79%	3768	10,38%
RDNS indisponível	110891	76,48%	21012	57,87%

Suavização de variâncias bruscas transientes de entropia

> Aplicação do filtro da mediana como janela deslizante

Suavização de variâncias bruscas transientes de entropia

> Aplicação do filtro da mediana como janela deslizante

Suavização de variâncias bruscas transientes de entropia

> Aplicação do filtro da mediana como janela deslizante

Após aplicação do filtro, são selecionados:

> Sub-blocos de IPs contíguos sem lacunas cuja métrica de dinamicidade é alta

Após aplicação do filtro, são selecionados:

> Sub-blocos de IPs contíguos sem lacunas cuja métrica de dinamicidade é alta

