Pop Quiz 1

Section 2 - Time: 50 min

Show your work for full credit. Please read the questions carefully!

n-channel MOSFET

$$i_D = K_n (v_{GS} - V_{Tn})^2$$
 SAT
 $i_D = K_n [2(v_{GS} - V_{Tn})v_{DS} - v_{DS}^2]$ NON-SAT

p-channel MOSFET

$$i_D = K_p (v_{SG} + V_{Tp})^2$$
 SAT
 $i_D = K_p [2(v_{SG} + V_{Tp})v_{SD} - v_{SD}^2]$ NON-SAT

1. (20 points) Draw the small signal ac equivalent of the following circuit.

$$r_d = \frac{V_T}{I_{DQ}}$$

2. (40 points) What are the operating states of the transistors below? Justify your answer. For each, express the value of I_{DS} and V_{DS} .

V6 - 10" V5=9" VGS= 1 V < VTh Vns = 200

3. (40 points) In the circuit shown below, the field effect transistors have threshold voltages, $V_{\it TH}$ = 1V. The transistors' conductance parameters are $K_{n1} = 4K_{n2} = 4mA/V^2$. Determine V_{GS1} , V_{GS2} , V_0 , I_D . Show your work!

$$V_{65} = V_{05}, \qquad I_{D_1} = I_{D_2}$$

$$V_{65} = V_{05}, \qquad V_{05} = V_{05}$$

$$V_{65} = V_{05} = V_{05}$$

$$V_{65} = V_{05} = V_{05}$$

V₆₅₂ =
$$V_{DS_2}$$
 $V_{DS_1} + V_{DS_2} = 8^{\vee}$ (*) (5 points)

If T/R conducting they must be in SAT state because $V_{DS} \ge V_{CS} - V_{Th}$

assume M, and Mz in SAT
$$I_{D_1} = I_{D_2} (KCL) (5 points)$$

$$K_{n_4} \left(V_{65}, -V_{7h} \right)^2 = K_{n_2} \left(V_{65_2} - V_{7h} \right)^2$$
 (5 points)

$$2(V_{DS_1}-1) = (V_{DS_2}-1)$$

 $2V_{DS_1}-1 = V_{DS_2} (5 pc;nts)$

from
$$(\star)$$
 V_{DS} , $+$ V_{DS} $z = 8^{\circ}$ (10 paints)
 $3 V_{DS}$, $=$ 9° \Rightarrow V_{DS} , $=$ 3° \Rightarrow V_{DS} $z = 5^{\circ}$
 V_{CS} , $=$ 3° V_{CS} $z = 5^{\circ}$

$$I_{D_1} = I_{D_2} = 4 \frac{mA}{V^2} \left(3 - 1 \right)^2 = 16 mA \left(\mathbf{5}_{P} cints \right)$$