Feuille 1 : Calculs algébriques

Exercice 1.

- 1. Déterminer l'ensemble des $x \in \mathbb{R}$ qui vérifient $-3x + 4 \ge x 3$.
- 2. Déterminer l'ensemble des $x \in \mathbb{R} \setminus \{-\frac{5}{6}\}$ qui vérifient $\frac{-2}{6x+5} > 1$.
- 3. Déterminer l'ensemble des $x \in \mathbb{R}$ qui vérifient $|2-x| \leq 3-x$.
- 4. Déterminer l'ensemble des $x \in \mathbb{R} \setminus \{2, -\frac{2}{3}\}$ qui vérifient $\frac{1}{x-2} < \frac{2}{3x+2}$.

Exercice 2.

- 1. Démontrer qu'il existe $(a,b) \in \mathbb{R}^2$ tel que pour tout $k \in \mathbb{N}^*$, $\frac{1}{k(k+1)} = \frac{a}{k} + \frac{b}{k+1}$.
- 2. En déduire que pour tout $n \in \mathbb{N}^*$, $\sum_{k=1}^n \frac{1}{k(k+1)} = 1 \frac{1}{n+1}$.
- 3. À l'aide de la question 1., montrer que pour tout $n \in \mathbb{N}^*$, $\prod_{k=1}^n \left(\frac{1}{k} \frac{1}{k+1}\right) = \frac{1}{(n+1)(n!)^2}$.

Exercice 3. Montrer que pour tout $(x,y) \in \mathbb{R}^2$, $|xy| \leq \frac{1}{2}(x^2 + y^2)$.

Exercice 4.

- 1. a) Montrer que pour tout $n \in \mathbb{N}$ et tout $x \in \mathbb{R}^*$, $(1-x)\sum_{k=0}^n x^k = 1-x^{n+1}$.
 - b) En déduire $\sum_{k=0}^{n} x^k$.
- 2. Montrer à l'aide de la question 1.a) que pour tout $x \in [-1, 1], |1 x^4| \le 4|1 x|$.

Exercice 5. Soit $n \in \mathbb{N}^*$. Calculer à l'aide du binôme de Newton les sommes $\sum_{k=0}^{n} \binom{n}{k}$ et $\sum_{k=0}^{n} (-1)^k \binom{n}{k}$.

Exercice 6.

- 1. Montrer que pour tout $n \in \mathbb{N}$, $\sum_{k=0}^{n} k = \frac{n(n+1)}{2}$.
- 2. En déduire que pour tout $n \in \mathbb{N}$, $\sum_{k=0}^{n} (2k+1) = (n+1)^2$.

Exercice 7.

- 1. Déterminer l'ensemble des $x \in \mathbb{R}$ qui vérifient $x^2 4x 2 \ge 0$.
- 2. Déterminer l'ensemble des $x \in \mathbb{R}$ qui vérifient $(x+2)^2 < -x$.
- 3. Déterminer l'ensemble des $x \in \mathbb{R}$ qui vérifient $x^3 6x \ge x^2$.

Exercice 8.

- 1. a) Montrer que pour tout $n \in \mathbb{N}$ et tout $p \in [0, n]$, $p \binom{n}{p} = n \binom{n-1}{p-1}$.
 - b) En déduire que pour tout $n \in \mathbb{N}$, $\sum_{p=0}^{n} p \binom{n}{p} = n2^{n-1}$.
- 2. À l'aide de la formule du triangle de Pascal, montrer que pour tout $(p,n) \in \mathbb{N}^2$,

$$\sum_{i=0}^{n} \binom{p+k}{k} = \binom{p+n+1}{n}$$

Exercice 9. Pour $x \in \mathbb{R}$, notons $P(x) = x^3 - x^2 + 2x + 4$.

- 1. Trouver des réels a, b, c tels que pour tout $x \in \mathbb{R}$, $P(x) = (x+1)(ax^2 + bx + c)$.
- 2. Montrer que pour tout $x \in \mathbb{R}$, on a $x^2 2x + 4 \ge 3$.
- 3. En déduire les solutions réelles de l'équation P(x) > |x+1|.

Exercice 10. Soit $n \in \mathbb{N}$.

- 1. Montrer que $\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$.
- 2. Montrer que $\sum_{k=0}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2.$
- 3. En déduire que $\sum_{i=0}^{n} \left(\sum_{j=0}^{i} ij \right) = \frac{n(n+1)(3n^2 + 7n + 2)}{24}$.

Exercice 11. Soit $n \in \mathbb{N}$.

- 1. Montrer que pour tout $k \in [0, n]$, $\binom{n}{k} = \binom{n}{n-k}$.
- 2. Montrer que pour tout $k \in [0, n-1]$, $\binom{2n}{k} < \binom{2n}{k+1}$. En déduire que pour tout $k \in [0, 2n]$, $\binom{2n}{k} \leq \binom{2n}{n}$.
- 3. Montrer que $\binom{2n}{n} \ge \frac{2^{2n}}{2n+1}$. (Indication : on pourra commencer en majorant $\sum_{k=0}^{2n} \binom{2n}{k}$).

Exercice 12. Soient x, y deux réels tels que $0 < x \le y$. On pose $m = \frac{x+y}{2}$, $g = \sqrt{xy}$ et $\frac{1}{h} = \frac{1}{2} \left(\frac{1}{x} + \frac{1}{y} \right)$. On appelle m, g, et h respectivement la moyenne arithmétique, la moyenne géométrique, et la moyenne harmonique de x et de y. L'objectif de cet exercice est de montrer que

- 1. Montrer les ingalités
 - a) $x \le m \le y$.
 - b) $x \leq g \leq y$.
 - c) $x \le h \le y$.
- 2. Montrer que $g \le m$. (Indication : Montrer que $m g = \frac{1}{2}(\sqrt{x} \sqrt{y})^2$).
- 3. Utiliser la question 2. pour montrer que $h \leq g$. (Indication : Remarquer que $\frac{1}{h}$ est la moyenne arithmétique de $\frac{1}{x}$ et de $\frac{1}{y}$).
- 4. Conclure.

Feuille 1 : Calculs algébriques – Correction

Exercice 1.

1.
$$-3x + 4 \ge x - 3 \Leftrightarrow 4 + 3 \ge x + 3x \Leftrightarrow \frac{7}{4} \ge x \Leftrightarrow x \in \left[-\infty; \frac{7}{4}\right]$$
.

2.
$$\frac{-2}{6x+5} > 1 \text{ et } x \neq -\frac{5}{6} \Leftrightarrow \frac{6x+7}{6x+5} < 0 \text{ et } x \neq -\frac{5}{6} \Leftrightarrow x \in \left] -\frac{5}{6}; -\frac{7}{6} \right[.$$

3.
$$|2-x| \le 3-x \Leftrightarrow \begin{cases} 2-x \le 3-x \\ x \le 2 \end{cases}$$
 ou $\begin{cases} x-2 \le 3-x \\ x \ge 2 \end{cases} \Leftrightarrow \begin{cases} 2 \le 3 \\ x \le 2 \end{cases}$ ou $\begin{cases} x+x \le 3+2 \\ x \ge 2 \end{cases} \Leftrightarrow x \le 2$ ou $2 \le x \le \frac{5}{2} \Leftrightarrow x \in \left[-\infty; \frac{5}{2}\right].$

4.
$$\frac{1}{x-2} < \frac{2}{3x+2}$$
 et $x \notin \left\{2; -\frac{2}{3}\right\} \Leftrightarrow \frac{1}{x-2} - \frac{2}{3x+2} < 0$ et $x \notin \left\{2; -\frac{2}{3}\right\} \Leftrightarrow \frac{x+6}{(x-2)(3x+2)} < 0$ et $x \notin \left\{2; -\frac{2}{3}\right\}$.

On dresse un tableau de signes :

x	$-\infty$		-6		$-\frac{2}{3}$		2	$+\infty$
x+6		_	0	+		+	+	
(x-2)(3x+2)		+		+	0	_	+ 0	
$\frac{x+6}{(x-2)(3x+2)}$		_	0	+		_	+	

L'ensemble cherché est $]+\infty; -6[\cup]-\frac{2}{3}; 2[.$

Exercice 2.

- 1. Pour tout $k \in \mathbb{N}^*$, $\frac{1}{k(k+1)} = \frac{k+1-k}{k(k+1)} = \frac{k+1}{k(k+1)} \frac{k}{k(k+1)} = \frac{1}{k} \frac{1}{k+1}$. On obtient a = 1 et b = -1.
- 2. Pour tout $n \in \mathbb{N}^*$, $\sum_{k=1}^n \frac{1}{k(k+1)} = \sum_{k=1}^n \left(\frac{1}{k} \frac{1}{k+1}\right) = \sum_{k=1}^n \frac{1}{k} \sum_{k=1}^n \frac{1}{k+1} = \sum_{k=1}^n \frac{1}{k} \sum_{k=2}^{n+1} \frac{1}{k} = 1 \frac{1}{n+1}$.
- 3. Pour tout $n \in \mathbb{N}^*$, $\prod_{k=1}^n \left(\frac{1}{k} \frac{1}{k+1}\right) \prod_{k=1}^n \frac{1}{k(k+1)} = \frac{1}{\prod_{k=1}^n k} \frac{1}{\prod_{k=1}^n (k+1)} = \frac{1}{n!} \frac{1}{\prod_{k=2}^{n+1} k} = \frac{1}{n!} \frac{1}{(\prod_{k=1}^n k)(n+1)} = \frac{1}{(n!)^2(n+1)}.$

Exercice 3. Pour tout $(x,y) \in \mathbb{R}^2$, $(x+y)^2 \ge 0$, soit $x^2 + y^2 + 2xy \ge 0$, soit $-xy \le \frac{1}{2}(x^2 + y^2)$.

De même, pour tout $(x,y) \in \mathbb{R}^2$, $(x-y)^2 \ge 0$, soit $x^2 + y^2 - 2xy \ge 0$, soit $xy \le \frac{1}{2}(x^2 + y^2)$.

Si x et y sont de même signe, |xy| = xy et donc $|xy| \le \frac{1}{2}(x^2 + y^2)$.

Sinon, |xy| = -xy et donc $|xy| \le \frac{1}{2}(x^2 + y^2)$.

Finalement, pour tout $(x, y) \in \mathbb{R}^2$, $|xy| \le \frac{1}{2}(x^2 + y^2)$.

Exercice 4.

1. a) Pour tout
$$n \in \mathbb{N}$$
 et tout $x \in \mathbb{R}^*$, $(1-x)\sum_{k=0}^n x^k = \sum_{k=0}^n x^k - \sum_{k=0}^n x^{k+1} = \sum_{k=0}^n x^k - \sum_{k=1}^{n+1} x^k = 1 - x^{n+1}$.

b) Pour tout
$$n \in \mathbb{N}$$
 et tout $x \in \mathbb{R}^*$, $\sum_{k=0}^n x^k = \begin{cases} n+1 & \text{si } x=1, \\ \frac{1-x^{n+1}}{1-x} & \text{sinon.} \end{cases}$

2. D'après 1.a), pour tout
$$x \in [-1; 0[\cup]0; 1]$$
, $|1 - x^4| = 1 - x^4 = (1 - x) \sum_{k=0}^{3} x^k = (1 - x)(1 + x + x^2 + x^3)$.

L'étude de la fonction $x \mapsto 1 + x + x^2 + x^3$ montre que pour tout $x \in [-1; 1], 0 \le 1 + x + x^2 + x^3 \le 4$. Donc, pour tout $x \in [-1; 0[\cup]0; 1], |1 - x^4| = 1 - x^4 \le 4(1 - x) \le 4|1 - x|$.

Enfin, pour tout x = 0, $|1 - x^4| = 0$ et 4|1 - x| = 4, donc $|1 - x^4| \le 4|1 - x|$.

Exercice 5. Soit $n \in \mathbb{N}^*$.

$$\sum_{k=0}^{n} \binom{n}{k} = \sum_{k=0}^{n} \binom{n}{k} 1^{k} 1^{n-k} = (1+1)^{n} = 2^{n}$$

$$\sum_{k=0}^{n} (-1)^{k} \binom{n}{k} = \sum_{k=0}^{n} \binom{n}{k} (-1)^{k} 1^{n-k} = (-1+1)^{n} = 0.$$

Exercice 6.

1. Pour tout
$$n \in \mathbb{N}$$
, $2\sum_{k=0}^{n} k = \sum_{k=0}^{n} k + \sum_{k=0}^{n} (n-k) = \sum_{k=0}^{n} k + \sum_{k=0}^{n} n - \sum_{k=0}^{n} k = n\sum_{k=0}^{n} 1 = n(n+1)$, soit $\sum_{k=0}^{n} k = \frac{n(n+1)}{2}$.

2.
$$\sum_{k=0}^{n} (2k+1) = 2\sum_{k=0}^{n} k + \sum_{k=0}^{n} 1 = 2\frac{n(n+1)}{2} + (n+1) = (n+1)^{2}$$
.

Exercice 7.

- 1. Le trinôme $x^2 4x 2$ a pour discriminant $\Delta = 8$ et donc pour racines $x_1 = 2 2\sqrt{2}$ et $x_2 = 2 + \sqrt{2}$. Comme a = 1 > 0, $x^2 - 4x - 2 \ge 0$ pour $x \in \left] -\infty; 2 - \sqrt{2} \right] \cup [2 + \sqrt{2}; +\infty[$.
- 2. $(x+2)^2 < -x \Leftrightarrow x^2 + 5x + 4 < 0$.

Le trinôme $x^2 + 5x + 4$ a pour discriminant $\Delta = 9$ et donc pour racines $x_1 = -4$ et $x_2 = -1$. Comme a = 1 > 0, $x^2 + 5x + 4 < 0$ pour $x \in]-4; -1[$.

3. $x^3 - 6x \ge x^2 \Leftrightarrow x^3 - x^2 - 6x \ge 0 \Leftrightarrow x(x^2 - x - 6) \ge 0$.

Le trinôme $x^2 - x - 6$ a pour discriminant $\Delta = 25$ et donc pour racines $x_1 = -2$ et $x_2 = 3$.

Comme a = 1 > 0, on obtient le tableau de signes :

x	$-\infty$		-2		0		3		$+\infty$
x		_		_	0	+		+	
$x^2 - x - 6$		+	0	_		_	0	+	
$x^3 - x^2 - 6x$		_	0	+	0	_	0	+	

L'ensemble des réels x tels que $x^3 - 6x \ge x^2$ est : $[-2; 0] \cup [3; +\infty[$.

Exercice 8.

1. a) Pour tout $n \in \mathbb{N}$ et tout $p \in [0, n]$,

$$p\binom{n}{p} = p \frac{n!}{p!(n-p)!} = \frac{n(n-1)!}{(p-1)!(n-p)!} = n \frac{(n-1)!}{(p-1)!((n-1)-(p-1))!} = n \binom{n-1}{p-1}.$$

b) Pour tout $n \in \mathbb{N}$,

$$\sum_{p=0}^{n} p \binom{n}{p} = \sum_{p=1}^{n} p \binom{n}{p} = \sum_{p=1}^{n} n \binom{n-1}{p-1} = n \sum_{p=1}^{n} \frac{(n-1)!}{(p-1)!(n-p)!} = n \sum_{p=0}^{n-1} \frac{(n-1)!}{(p)!(n-p-1)!} = n \sum_{p=0}^{n-1} \binom{n-1}{p} = n 2^{n-1} \text{ d'après l'exercice 5.}$$

2. Pour tout $(p,n) \in \mathbb{N}^2$,

$$\sum_{k=0}^{n} \binom{p+k}{k} = \binom{p}{0} + \binom{p+1}{1} + \sum_{k=2}^{n} \binom{p+k}{k}$$

$$= \underbrace{\binom{p+1}{0} + \binom{p+1}{1}}_{k} + \sum_{k=2}^{n} \binom{p+k}{k}$$

$$= \underbrace{\binom{p+2}{1}}_{k} + \binom{p+2}{2} + \sum_{k=3}^{n} \binom{p+k}{k}$$

$$= \underbrace{\binom{p+3}{2}}_{k} + \binom{p+3}{3} + \sum_{k=4}^{n} \binom{p+k}{k}$$

$$= \dots$$

$$= \binom{p+n+1}{n}$$

Exercice 9.

1. On cherche des réels a, b, c tels que pour tout $x \in \mathbb{R}$, $P(x) = (x+1)(ax^2 + bx + c) = ax^3 + (a+b)x^2 + (b+c)x + c$.

Donc pour tout $x \in \mathbb{R}$, $ax^3 + (a+b)x^2 + (b+c)x + c = x^3 - x^2 + 2x + 4$, ce qui n'est possible que si :

$$\begin{cases} a=1\\ a+b=-1\\ b+c=2\\ c=4 \end{cases} \text{ soit } \begin{cases} a=1\\ b=-2\\ c=4 \end{cases}.$$

- 2. $x^2 2x + 4 \ge 3 \Leftrightarrow x^2 2x + 1 \ge 0 \Leftrightarrow (x 1)^2 \ge 0$, ce qui est vrai pour tout x réel.
- 3. D'après 2., pour tout x réel $P(x) \geq 3(x+1)$.

En particulier, pour tout réel x > -1, P(x) > (x + 1), soit P(x) > |x + 1|.

D'autre part, pour tout réel $x \le -1$, $P(x) \le 0$ et $|x+1| \ge 0$.

Donc l'inéquation P(x) > |x+1| a pour solutions $]-1; +\infty[$.

Exercice 10. Soit $n \in \mathbb{N}$.

1. Pour tout $k \in \mathbb{N}$, $(k+1)^3 - k^3 = 3k^2 + 3k + 1$.

Donc,
$$\sum_{k=0}^{n} ((k+1)^3 - k^3) = \sum_{k=0}^{n} (3k^2 + 3k + 1)$$

soit, $\sum_{k=1}^{n+1} k^3 - \sum_{k=0}^{n} k^3 = 3 \sum_{k=0}^{n} k^2 + 3 \sum_{k=0}^{n} k + \sum_{k=0}^{n} 1$
soit, $(n+1)^3 = 3 \sum_{k=0}^{n} k^2 + 3 \frac{n(n+1)}{2} + (n+1)$.

$$\sum_{k=0}^{n} k^2 = \frac{1}{3} \left((n+1)^3 - \frac{3n(n+1)}{2} - (n+1) \right) = \frac{(n+1)\left(2(n+1)^2 - 3n - 2\right)}{6} = \frac{(n+1)(2n^2 + 4n + 2 - 3n - 2)}{6} = \frac{(n+$$

2. Pour tout $k \in \mathbb{N}$, $(k+1)^4 - k^4 = 4k^3 + 6k^2 + 4k + 1$.

Donc,
$$(n+1)^4 = 4\sum_{k=0}^n k^3 + 6\sum_{k=0}^n k^2 + 4\sum_{k=0}^n k + \sum_{k=0}^n 1$$
.
soit,

$$\sum_{k=0}^{n} k^{3} = \frac{1}{4} \left((n+1)^{4} - 6 \frac{n(n+1)(2n+1)}{6} - 4 \frac{n(n+1)}{2} - (n+1) \right)$$

$$= \frac{(n+1)(n^{3} + 3n^{2} + 3n + 1 - 2n^{2} - n - 2n - 1)}{4}$$

$$= \frac{(n+1)(n^{3} + n^{2})}{4} = \left(\frac{n(n+1)}{2} \right)^{2}$$

3.

$$\begin{split} \sum_{i=0}^{n} \left(\sum_{j=0}^{i} ij \right) &= \sum_{i=0}^{n} \left(i \sum_{j=0}^{i} j \right) = \sum_{i=0}^{n} i \frac{i(i+1)}{2} = \frac{1}{2} \sum_{i=0}^{n} (i^{3} + i^{2}) \\ &= \frac{1}{2} \left(\frac{n^{2}(n+1)^{2}}{4} + \frac{n(n+1)(2n+1)}{6} \right) = \frac{n(n+1)(3n^{2} + 3n + 4n + 2)}{24} \\ &= \frac{n(n+1)(3n^{2} + 7n + 2)}{24} \end{split}$$

Exercice 11. Soit $n \in \mathbb{N}$.

1. Pour tout
$$k \in [0, n]$$
, $\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n!}{(n-k)!(n-(n-k))!} = \binom{n}{n-k}$.

2. Soit
$$k \in [0, n-1]$$
, $\binom{2n}{k+1} = \frac{(2n)!}{(k+1)!(2n-k-1)!} = \frac{2n-k}{k+1} \frac{(2n)!}{k!(2n-k)!} = \frac{2n-k}{k+1} \binom{2n}{k}$. Or, pour tout $k \in [0, n-1]$, $k \le n-1$ et $2n-k \ge n+1$, soit $2n-k > k+1$ et $\binom{2n}{k+1} > \binom{2n}{k}$. On déduit de cette inégalité, que pour $k \in [0, n-1]$, $\binom{2n}{k} < \binom{2n}{k+1} < \binom{2n}{k+1} < \binom{2n}{k+2} < \cdots < \binom{2n}{n}$. De plus, d'après 1., pour tout $k \in [0, n-1]$, $\binom{2n}{2n-k} = \binom{2n}{k} < \binom{2n}{n}$. Comme pour tout $k \in [0, n-1]$, $2n-k \in [n+1, 2n]$, pour tout $k \in [n+1, 2n]$, $\binom{2n}{k} < \binom{2n}{n}$. Finalement, pour tout $k \in [0, 2n]$, $\binom{2n}{k} \le \binom{2n}{n}$.

3. D'après 2.,
$$\sum_{k=0}^{2n} {2n \choose k} \le \sum_{k=0}^{2n} {2n \choose n}$$
.

Or, d'une part, d'après l'exercice 5.,
$$\sum_{k=0}^{2n} \binom{2n}{k} = 2^{2n}$$
 et d'autre part $\sum_{k=0}^{2n} \binom{2n}{n} = \binom{2n}{n} \sum_{k=0}^{2n} 1 = \binom{2n}{n} (2n+1)$.

Donc,
$$2^{2n} \le (2n+1) \binom{2n}{n}$$
 et $\binom{2n}{n} \ge \frac{2^{2n}}{2n+1}$.

Exercice 12. Soient x, y deux réels tels que $0 < x \le y$.

1. a)
$$x = \frac{x}{2} + \frac{x}{2} \le \frac{x}{2} + \frac{y}{2} \le \frac{y}{2} + \frac{y}{2} = y$$
, soit $x \le m \le y$.

b) Par croissance de la fonction racine carrée sur
$$[0; +\infty[$$
, on a $0 < \sqrt{x} \le \sqrt{y}$.
Donc, $x = (\sqrt{x})^2 \le \sqrt{xy} \le (\sqrt{x})^2 = y$, soit $x \le g \le y$.

c)
$$\frac{1}{h}$$
 est la moyenne arithmétique de $\frac{1}{x}$ et $\frac{1}{y}$.
On a $0 < \frac{1}{y} \le \frac{1}{x}$, soit d'après 1.a), $0 < \frac{1}{y} \le \frac{1}{h} \le \frac{1}{x}$.

Par décroissance de la fonction inverse sur $]0; +\infty[$, on en déduit que $x \le h \le y$.

2.
$$m - g = \frac{x + y}{2} - \sqrt{xy} = \frac{1}{2} \left(\left(\sqrt{x} \right)^2 - 2\sqrt{xy} + \left(\sqrt{y} \right)^2 \right) = \frac{1}{2} \left(\sqrt{x} - \sqrt{y} \right)^2$$
.

On en déduit que $m - g \ge 0$, $g \le m$.

3. Comme
$$\frac{1}{h}$$
 est la moyenne arithmétique de $\frac{1}{x}$ et $\frac{1}{y}$, d'après mla question 2., $\frac{1}{\sqrt{xy}} \le \frac{1}{h}$, soit $0 < \frac{1}{g} \le \frac{1}{h}$. Par décroissance de la fonction inverse sur $]0; +\infty[$, on en déduit que $g \ge h$.

4. D'après 1.a) et c) et 2. et 3., on obtient
$$x \le h \le g \le m \le y$$
.