第 10 章 α: 重积分的概念和性质

数学系 梁卓滨

2017.07 暑期班

平面薄片的质量

假设

- 区域 D 为平面薄片
- 密度为 μ
- 质量为 m

当薄片均匀时(μ = 常数),

$$m = \mu \cdot \text{Area}(D)$$

• 当薄片非均匀时 ($\mu = \mu(x, y)$ 为 D 上函数),利用微元法可知

$$m = \lim_{\lambda \to 0} \sum_{i=1}^{n} \mu(\xi_i, \, \eta_i) \Delta \sigma_i$$

二重积分的定义

二重积分定义 设

- D 是平面上有界闭区域,
- f(x, y) 是 D 上的有界函数,

若

- 极限 $\lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_i, \eta_i) \Delta \sigma_i$ 存在,且极限
- 与上述 D 的划分、(ξ_i, η_i) 的选取无关,

则定义

$$\iint_{D} f(x, y) d\sigma = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_{i}, \eta_{i}) \Delta \sigma_{i}$$

称为 f(x, y) 在 D 上的二重积分。 $d\sigma$ 称为面积元素。

定理 若 f(x, y) 在有界闭区域 D 上连续,则 $\iint_D f(x, y) d\sigma$ 存在。

二重积分的几何意义

曲顶柱体的体积:

$$V = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_i, \, \eta_i) \Delta \sigma_i = \iint_D f(x, \, y) d\sigma$$

二重积分的性质

性质1(线性性)

$$\iint_{D} \alpha f(x, y) + \beta g(x, y) d\sigma = \alpha \iint_{D} f(x, y) d\sigma + \beta \iint_{D} g(x, y) d\sigma,$$
其中 α , β 是常数。

证明

$$\iint_{D} \alpha f(x, y) + \beta g(x, y) d\sigma$$

$$= \lim_{\lambda \to 0} \sum_{i=1}^{n} [\alpha f(\xi_{i}, \eta_{i}) + \beta g(\xi_{i}, \eta_{i})] \Delta \sigma_{i}$$

$$= \alpha \cdot \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_{i}, \eta_{i}) \Delta \sigma_{i} + \beta \cdot \lim_{\lambda \to 0} \sum_{i=1}^{n} g(\xi_{i}, \eta_{i}) \Delta \sigma_{i}$$

$$= \alpha \iint_{D} f(x, y) d\sigma + \beta \iint_{D} g(x, y) d\sigma$$

性质 2 (积分可加性) 将 D 划分成两部分 D_1 和 D_2 , 则

$$\iint_{D} f(x, y) d\sigma = \iint_{D_{1}} f(x, y) d\sigma + \iint_{D_{2}} f(x, y) d\sigma$$

性质 $3\iint_D 1d\sigma = |D|$ (D 的面积)。特别滴, $\iint_D kd\sigma = k|D|$ 。

性质 4 如果在 D 上成立 $f(x, y) \le g(x, y)$,则 $\iint_D f(x, y) d\sigma \le \iint_D g(x, y) d\sigma$

性质 5 假设在 D 上成立 $m \le f(x, y) \le M$,则

$$m\sigma \leq \iint_D f(x, y) d\sigma \leq M\sigma,$$
 (σ 为 D 的面积)

证明

$$m\sigma = \iint_{D} md\sigma \le \iint_{D} f(x, y)d\sigma \le \iint_{D} Md\sigma = M\sigma$$

例 估计下列积分值的范围

1.
$$I = \iint_D (x^2 + 4y^2 + 9) d\sigma$$
, $D = \{(x, y) | x^2 + y^2 \le 4\}$
2. $I = \iint_D \frac{d\sigma}{\sqrt{x^2 + y^2 + 2xy + 16}}$, $D = \{(x, y) | 0 \le x \le 1, 0 \le y \le 2\}$

2.
$$I = \iint_D \frac{d\sigma}{\sqrt{x^2 + y^2 + 2xy + 16}}, D = \{(x, y) | 0 \le x \le 1, 0 \le y \le 2\}$$

3. $I = \iint_D \frac{d\sigma}{100 + \cos^2 x + \cos^2 y}, D = \{(x, y) | |x| + |y| \le 10\}$

$$9 \le x^2 + 4y^2 + 9 = (x^2 + y^2) + 3y^2 + 9 \le 4 + 3 \cdot 4 + 9 = 25$$

$$\Rightarrow 9|D| \le I \le 25|D| \xrightarrow{|D|=4\pi} 36\pi \le I \le 100\pi$$

2.
$$16 \le x^2 + y^2 + 2xy + 16 = (x+y)^2 + 16 \le 3^2 + 16 = 25$$
$$\Rightarrow \frac{1}{5} \le \frac{1}{\sqrt{x^2 + y^2 + 2xy + 16}} \le \frac{1}{4}$$

$$\Rightarrow \quad \frac{1}{5}|D| \le I \le \frac{1}{4}|D| \quad \stackrel{|D|=2}{\Longrightarrow} \quad \frac{2}{5} \le I \le \frac{1}{2}$$
10 章 a : 重积分的概念和性质

例 估计下列积分值的范围

1.
$$I = \iint_D (x^2 + 4y^2 + 9) d\sigma$$
, $D = \{(x, y) | x^2 + y^2 \le 4\}$

2.
$$I = \iint_D \frac{d\sigma}{\sqrt{x^2 + y^2 + 2xy + 16}}, D = \{(x, y) \mid 0 \le x \le 1, 0 \le y \le 2\}$$

3.
$$I = \iint_D \frac{d\sigma}{100 + \cos^2 x + \cos^2 y}$$
, $D = \{(x, y) | |x| + |y| \le 10\}$

$$\frac{1}{102} \le \frac{1}{100 + \cos^2 x + \cos^2 y} \le \frac{1}{100}$$

$$\Rightarrow \quad \frac{1}{102}|D| \le I \le \frac{1}{100}|D| \quad \xrightarrow{|D|=200} \quad \frac{50}{51} \le I \le 2$$

$$= |x| + |y| = 10$$

- $x \ge 0$, $y \ge 0$ 时, x + y = 10
- $x \ge 0$, $y \le 0$ 时, x y = 10
- $x \le 0$, $y \ge 0$ 时, -x + y = 10

例 设
$$D = \{(x,y) | (x-2)^2 + (y-1)^2 \le 2\}$$
,比较以下两个积分大小:

$$I_1 = \iint_D (x+y)^2 d\sigma, \qquad I_2 = \iint_D (x+y)^3 d\sigma$$

解

如图,在比区域 D 上成立

$$x + y \ge 1$$

$$(x+y)^2 \le (x+y)^3$$

所以

$$I_1 \leq I_2$$

性质 6(二重积分的中值定理) 设函数 f(x, y) 在闭区域 D 上连续, |D| 是 D 的面积,则在 D 上至少存在一点 (ξ, η) ,使得

$$\iint_D f(x, y) d\sigma = f(\xi, \eta) \cdot |D|.$$

证明 因为

$$m \cdot |D| \le \iint_D f(x, y) d\sigma \le M \cdot |D| \quad \Rightarrow \quad m \le \frac{1}{|D|} \iint_D f(x, y) d\sigma \le M$$

由闭区域上连续函数的中值定理可知:存在 $(\xi, \eta) \in D$,使得

$$f(\xi, \eta) = \frac{1}{|D|} \iint_{D} f(x, y) d\sigma,$$

即

$$\iint_{D} f(x, y) d\sigma = f(\xi, \eta) \cdot |D|.$$

二重积分中值定理的几何直观

积分的对称性

性质 设闭区域 D 关于 x 轴对称,

- 若 f(x, y) 关于 y 是奇函数 (即: f(x, -y) = -f(x, y)),则 $\iint_{\mathbb{R}} f(x, y) d\sigma = 0$
- 若 f(x, y) 关于 y 是偶函数 (即: f(x, -y) = f(x, y)),则 $\iint_D f(x, y) d\sigma = 2 \iint_{D_1} f(x, y) d\sigma = 2 \iint_{D_2} f(x, y) d\sigma$

积分的对称性

性质 设闭区域 D 关于 y 轴对称,

• 若 f(x, y) 关于 x 是奇函数 (即: f(-x, y) = -f(x, y)), 则

$$\iiint_D f(x, y) d\sigma = 0$$

• 若 f(x, y) 关于 x 是偶函数 (即: f(-x, y) = f(x, y)),则

$$\iint_D f(x, y) d\sigma = 2 \iint_{D_3} f(x, y) d\sigma = 2 \iint_{D_4} f(x, y) d\sigma$$

例 设
$$D = \{(x, y) | x^2 + y^2 \le 1\}$$
,则

$$\iint_D x^2 + y^2 d\sigma = 4 \iint_{D_{\pm \pm}} x^2 + y^2 d\sigma$$

例 计算
$$\iint_D (2x + 3y\sqrt{1-x^2})d\sigma$$
,
其中 $D = \{(x,y)|x^2+y^2 \le 1\}$

解 原式 = $2 \iint_{\Omega} x d\sigma + 3 \iint_{\Omega} y \sqrt{1 - x^2} d\sigma = 0$.

