Mathematical Statistics Assignment3

Hanbin.Liu 11912410

3.1 Solution

The pdf of X_i is $f(x_i) = \frac{1}{\theta_2 - \theta_1} \mathbb{1}_{[\theta_1, \theta_2]}(x_i)$. Then the likelihood function is given by

$$L(\theta_1, \theta_2) = \begin{cases} \frac{1}{(\theta_2 - \theta_1)^n} & \theta_1 \le x_{(1)}, \theta_2 \ge x_{(n)}, \\ 0 & otherwise. \end{cases}$$

Then, $\max L(\theta) = \frac{1}{(x_{(n)} - x_{(1)})^n}$ and thus

$$\hat{\theta}_1 = X_{(1)}, \quad \hat{\theta}_2 = X_{(n)}.$$

3.2 Solution

(a) The likelihood function of μ_1 is $L(\mu_1) = \prod_{i=1}^{n_1} \frac{1}{\sigma_1 \sqrt{2\pi}} \exp\left(-\frac{(x_i - \mu_1)^2}{2\sigma_1^2}\right)$, so that

$$l(\mu_1) = c_1 - c_2 \sum_{i=1}^{n} (x_i - \mu_1)^2,$$

where c_1 , c_2 are two constants. Solving $0 = l'(\mu_1)$ yields that $\mu_1 = \frac{1}{n_1} \sum_{i=1}^{n_1} x_i$. Therefore,

$$\hat{\mu}_1 = \frac{1}{n_1} \sum_{i=1}^{n_1} X_i,$$

where $X_i \sim \mathcal{N}(\mu_1, \sigma_1^2)$. Similarly, we have $\hat{\mu}_2 = \frac{1}{n_2} \sum_{i=1}^{n_2} Y_i$, where $Y_i \sim \mathcal{N}(\mu_2, \sigma_2^2)$. Then,

$$\hat{\theta} = \hat{\mu}_1 - \hat{\mu}_2 = \frac{1}{n_1} \sum_{i=1}^{n_1} X_i - \frac{1}{n_2} \sum_{i=1}^{n_2} Y_i.$$

(b) The variance of $\hat{\theta}$ is $Var(\hat{\theta}) = Var(\hat{\mu}_1) + Var(\hat{\mu}_2) = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}$. Let $f(x) = \frac{\sigma_1^2}{x} + \frac{\sigma_2^2}{n-x}$, 0 < x < n. $f'(x) = -\frac{\sigma_1^2}{x^2} + \frac{\sigma_2^2}{(n-x)^2}$. Letting 0 = f'(x), we have $x = \frac{\sigma_1}{\sigma_1 + \sigma_2}n$. Therefore

$$n_1 = \lfloor \frac{\sigma_1}{\sigma_1 + \sigma_2} n \rfloor, \quad n_2 = n - \lfloor \frac{\sigma_1}{\sigma_1 + \sigma_2} n \rfloor,$$

or

$$n_1 = \lceil \frac{\sigma_1}{\sigma_1 + \sigma_2} n \rceil, \quad n_2 = n - \lceil \frac{\sigma_1}{\sigma_1 + \sigma_2} n \rceil.$$

3.4 Solution

Note that

$$a = \frac{1}{4}(\mu_1 + \mu_2 + \mu_3 + \mu_4),$$

$$b = \frac{1}{4}(\mu_1 + \mu_2 - \mu_3 - \mu_4),$$

$$c = \frac{1}{4}(\mu_1 + \mu_3 - \mu_2 - \mu_4).$$

The likelihood function is

$$L(\mu_1, \mu_2, \mu_3, \sigma^2) = \prod_{i=1}^4 \prod_{j=1}^n \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x_{ij} - \mu_i)^2}{2\sigma^2}\right),$$

so that

$$l(\mu_1, \mu_2, \mu_3, \sigma^2) = c + \sum_{i=1}^{4} \left[-\frac{n}{2} \log \sigma^2 - \frac{1}{2\sigma^2} \sum_{j=1}^{n} (x_{ij} - \mu_i)^2 \right],$$

where c is a constant. Solving $0 = \frac{\partial l}{\partial \mu_1}$ yields that $\mu_1 = \frac{1}{n} \sum_{j=1}^n x_{1j}$. Then

$$\hat{\mu}_1 = \frac{1}{n} \sum_{j=1}^n X_{1j}.$$

Similarly, we have

$$\hat{\mu}_2 = \frac{1}{n} \sum_{j=1}^n X_{2j}, \quad \hat{\mu}_3 = \frac{1}{n} \sum_{j=1}^n X_{3j}, \quad \hat{\mu}_4 = \frac{1}{n} \sum_{j=1}^n X_{4j}.$$

And,

$$\frac{\partial l}{\partial \sigma^2} = -\frac{2n}{\sigma^2} + \frac{1}{2} \sum_{i=1}^4 \sum_{j=1}^n (x_{ij} - \mu_i)^2 \frac{1}{\sigma^4} = 0.$$

Then,

$$\hat{\sigma}^2 = \frac{1}{4n} \sum_{i=1}^{4} \sum_{j=1}^{n} (X_{ij} - \hat{\mu}_i)^2.$$

Therefore,

$$\hat{a} = \frac{1}{4}(\hat{\mu}_1 + \hat{\mu}_2 + \hat{\mu}_3 + \hat{\mu}_4) = \frac{1}{4n} \sum_{i=1}^4 \sum_{j=1}^n X_{ij},$$

$$\hat{b} = \frac{1}{4}(\hat{\mu}_1 + \hat{\mu}_2 - \hat{\mu}_3 - \hat{\mu}_4) = \frac{1}{4n} (\sum_{j=1}^n X_{1j} + \sum_{j=1}^n X_{2j} - \sum_{j=1}^n X_{3j} - \sum_{j=1}^n X_{4j}),$$

$$\hat{c} = \frac{1}{4}(\hat{\mu}_1 + \hat{\mu}_3 - \hat{\mu}_2 - \hat{\mu}_4) = \frac{1}{4n} (\sum_{j=1}^n X_{1j} + \sum_{j=1}^n X_{3j} - \sum_{j=1}^n X_{2j} - \sum_{j=1}^n X_{4j}),$$

$$\hat{\sigma}^2 = \frac{1}{4n} \sum_{i=1}^4 \sum_{j=1}^n (X_{ij} - \frac{1}{n} \sum_{j=1}^n X_{ij})^2.$$

3.6 Solution

(a) The joint pdf is

$$\prod_{i=1}^{n} f(x_i; \theta) = \begin{cases} \exp\left(-\sum_{i=1}^{n} (x_i - \theta)\right) & x_i \ge \theta, \\ 0 & otherwise. \end{cases}$$

Then, $L(\theta) = \exp\{n\theta - \sum_{i=1}^{n} x_i\}$, $\theta \le x_{(1)}$. $L(\theta)$ reaches its maximum iff $\theta = x_{(1)}$. Therefore, the MLE of θ is $\hat{\theta} = X_{(1)}$.

$$E(X) = \int_{\theta}^{\infty} x e^{-(x-\theta)} dx = \theta + 1.$$

Thus,

$$\theta + 1 = E(X) = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

The moment estimator of θ is

$$\hat{\theta}^M = \frac{1}{n} \sum_{i=1}^n X_i - 1.$$

$$f(x_1, ..., x_n, \theta) = \prod_{i=1}^n f(x_i; \theta) \times \pi(\theta)$$

= $\exp\{(n-1)\theta - \sum_{i=1}^n x_i\} \cdot \mathbb{1}_{(0,\infty)}(\theta) \cdot \prod_{i=1}^n \mathbb{1}_{(\theta,\infty)}(x_i).$

Then,

$$p(\theta|x) \propto e^{(n-1)\theta} \cdot \mathbb{1}_{(0,x_{(1)})}(\theta).$$

i.e. $p(\theta|x) = c \cdot e^{(n-1)\theta} \cdot \mathbbm{1}_{(0,x_{(1)})}(\theta)$. Solving $1 = \int_{-\infty}^{\infty} c \cdot e^{(n-1)\theta} \cdot \mathbbm{1}_{(0,x_{(1)})}(\theta) d\theta$ yields that

$$c = \frac{n-1}{e^{(n-1)x_{(1)}} - 1}.$$

Therefore,

$$E(\theta|x) = \int_0^{x_{(1)}} \theta \cdot \frac{n-1}{e^{(n-1)x_{(1)}} - 1} \cdot e^{(n-1)\theta} d\theta$$
$$= \frac{[(n-1)x_{(1)} - 1]e^{(n-1)x_{(1)}} + 1}{(n-1)(e^{(n-1)x_{(1)}} - 1)}$$

is the Bayesian estimate of θ , and

$$\frac{[(n-1)X_{(1)}-1]e^{(n-1)X_{(1)}}+1}{(n-1)(e^{(n-1)X_{(1)}}-1)}$$

is the Bayesian estimator of θ .

3.7 Solution

(a)

$$E(X) = \theta$$
, $E(t_1(X)) = E(X) = \theta$, $E(t_2(X)) = E(\frac{1}{2}) = \frac{1}{2}$.

Therefore, $t_1(X)$ is unbiased, $t_2(X)$ is unbiased iff $\theta = \frac{1}{2}$.

(b) The MSE of $t_1(X)$ is given by

$$E(X - \theta)^2 = Var(X) = \theta - \theta^2.$$

The MSE of $t_2(X)$ is given by

$$E(\frac{1}{2} - \theta)^2 = \theta^2 - \theta + \frac{1}{4}.$$

The difference of the MSE of $t_2(X)$ and $t_1(X)$ is

$$\phi(\theta) = \theta^2 - \theta + \frac{1}{4} - (\theta - \theta^2) = 2\theta^2 - 2\theta + \frac{1}{4}$$

Two zero points of this function are $\theta_1 = \frac{2-\sqrt{2}}{4}$, $\theta_2 = \frac{2+\sqrt{2}}{4}$. Hence,

$$\begin{cases} MSE(t_1(X)) > MSE(t_2(X)) & \text{if } \frac{2-\sqrt{2}}{4} < \theta < \frac{2+\sqrt{2}}{4}, \\ MSE(t_1(X)) \leq MSE(t_2(X)) & \text{if } 0 < \theta \leq \frac{2-\sqrt{2}}{4} \text{ or } \frac{2+\sqrt{2}}{4} \leq \theta < 1. \end{cases}$$

3.10 Solution

(a)

$$f(x;\theta) = \frac{1}{\sqrt{2\pi\theta}} \exp\left(-\frac{(x-\mu_0)^2}{2\theta}\right), \quad \theta > 0.$$

$$L(\theta) = \left(\frac{1}{\sqrt{2\pi\theta}}\right)^n \exp\left(-\frac{1}{2\theta}\sum_{i=1}^n (x_i - \mu_0)^2\right), \quad \theta > 0.$$

$$l(\theta) = -\frac{n}{2}\log(2\pi\theta) - \frac{1}{2\theta}\sum_{i=1}^n (x_i - \mu_0)^2, \quad \theta > 0.$$

Solving $0 = l'(\theta)$ yields that

$$\theta = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu_0)^2.$$

Then,

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu_0)^2.$$

(b) $X_1, ..., X_n \stackrel{iid}{\sim} \mathcal{N}(\mu_0, \theta)$, thus $\frac{(X_i - \mu_0)^2}{\theta} \sim \mathcal{X}^2(1)$. Let $Y_i = \frac{(X_i - \mu_0)^2}{\theta}$, then $\hat{\theta} = \frac{\theta}{n} \sum_{i=1}^n Y_i$, and $\sum_{i=1}^n Y_i \sim \mathcal{X}^2(n)$. Hence

$$E(\hat{\theta}) = \frac{\theta}{n} E(\sum_{i=1}^{n} Y_i) = \frac{\theta}{n} \cdot n = \theta,$$

$$Var(\hat{\theta}) = \frac{\theta^2}{n^2} Var(\sum_{i=1}^{n} Y_i) = \frac{\theta^2}{n^2} \cdot 2n = \frac{2\theta^2}{n}.$$

Therefore, by central limit theorem, we have

$$\frac{\hat{\theta} - \theta}{\sqrt{\frac{2\theta^2}{n}}} \xrightarrow{L} Z \text{ as } n \to \infty,$$

where $Z \sim \mathcal{N}(0, 1)$. Then

$$\sqrt{n}(\hat{\theta} - \theta) = \sqrt{2}\theta \cdot \frac{\hat{\theta} - \theta}{\sqrt{\frac{2\theta^2}{n}}} \xrightarrow{L} Z_1 \text{ as } n \to \infty,$$

where $Z_1 \sim \mathcal{N}(0, 2\theta^2)$. i.e. the asymptotic distribution of $\sqrt{n}(\hat{\theta} - \theta)$ is $\mathcal{N}(0, 2\theta^2)$.

3.13 Solution

(a)

$$f(x_1, ..., x_n; \theta) = \prod_{i=1}^{n} e^{-(x_i - \theta)} \cdot \mathbb{1}_{(\theta, \infty)}(x_i)$$
$$= e^{n\theta - \sum_{i=1}^{n} x_i} \cdot \mathbb{1}_{(\theta, \infty)}(x_{(1)})$$
$$= e^{n\theta} \mathbb{1}_{(\theta, \infty)}(x_{(1)}).$$

Therefore, $Y_1 = \min(X_1, ..., X_n)$ is sufficient for θ . The pdf of Y_1 is $f_{Y_1}(y) = nf(y)[1 - F(y)]^{n-1}$. Since the cdf of X is

$$F(x) = \int_{-\infty}^{x} e^{-(t-\theta)} \cdot \mathbb{1}_{(\theta,\infty)}(t) dt$$
$$= (1 - e^{\theta - x}) \mathbb{1}_{(\theta,\infty)}(x).$$

Then,

$$f_{Y_1}(y) = ne^{-(y-\theta)} \mathbb{1}_{(\theta,\infty)}(y) [e^{\theta-y} \mathbb{1}_{(\theta,\infty)}(y)]^{n-1}$$

= $ne^{n(\theta-y)} \mathbb{1}_{(\theta,\infty)}(y)$.

Note that

$$E(h(Y_1)) = \int_{\theta}^{\infty} h(y) n e^{n(\theta - y)} dy,$$

and $E(h(Y_1)) = 0$ for all $-\infty < \theta < \infty$ if and only if

$$\int_{\theta}^{\infty} h(y)e^{-ny} dy = 0 \quad \text{for all } -\infty < \theta < \infty.$$

Differentiating both sides of this identity with respect to θ produces

$$h(\theta)e^{-n\theta} = 0,$$

which in turn implies $h(\theta) = 0$ for all $-\infty < \theta < \infty$. Therefore, Y_1 is a complete sufficient statistic for θ .

(b) Suppose the function is g(y), then

$$E(g(Y)) = \int_{\theta}^{\infty} g(y) n e^{n(\theta - y)} dy = n e^{n\theta} \int_{\theta}^{\infty} g(y) e^{-ny} dy = \theta.$$

Let $\phi(x) = g(x)e^{-nx}$, $\Phi(x) = \int \phi(x) dx$, then

$$\int_{\theta}^{\infty} \phi(x) \, dx = \frac{\theta}{ne^{n\theta}} = -\frac{x}{ne^{nx}} \bigg|_{\theta}^{\infty}.$$

Therefore,

$$\Phi(x) = -\frac{x}{ne^{nx}}$$

and thus

$$\phi(x) = \Phi'(x) = (x - \frac{1}{n})e^{-nx},$$

$$g(y) = \frac{\phi(y)}{e^{-ny}} = y - \frac{1}{n}.$$

Hence, the function of Y_1 is $g(Y_1) = Y_1 - \frac{1}{n}$.

3.17 Solution

(a)

$$E(X) = \sum_{k=1}^{\infty} kp(1-p)^{k-1} = p\sum_{k=1}^{\infty} (1-p)^{k-1}.$$

Since $\frac{x}{1-x} = \sum_{k=1}^{\infty} x^k$, we have

$$\frac{1}{(1-x)^2} = (\frac{x}{1-x})' = (\sum_{k=1}^{\infty} x^k)' = \sum_{k=1}^{\infty} kx^{k-1}.$$

Hence, $E(X) = p \cdot \frac{1}{[1-(1-p)]^2} = \frac{1}{p}$. Then,

$$\frac{1}{p} = E(X) = \frac{1}{n} \sum_{i=1}^{n} X_i$$
$$\hat{p}^M = \frac{n}{\sum_{i=1}^{n} X_i}.$$

(b) Likelihood and log-likelihood functions:

$$L(p) = \prod_{i=1}^{n} \Pr(X_i = k_i) = p^n \prod_{i=1}^{n} (1 - p)^{k_i - 1}$$
$$l(p) = n \log p + \sum_{i=1}^{n} (k_i - 1) \log(1 - p)$$

Solving l'(p) = 0 yields that $p = \frac{n}{\sum_{i=1}^{n} k_i}$. Thus the MLE of p is $\hat{p} = n/(\sum_{i=1}^{n} X_i)$. (c)

$$f(k_1, ..., k_n, p) = \prod_{i=1}^{n} \Pr(X_i = k_i) \times f(p)$$

where $f(p) = 1, p \in [0, 1]$. Then

$$f(k_1, ..., k_n, p) = p^n \prod_{i=1}^n (1-p)^{k_i-1}.$$

$$f(p|k_1,...,k_n) \propto f(k_1,...,k_n,p) = p^n \prod_{i=1}^n (1-p)^{k_i-1}.$$

Then,

$$f(p|k_1,...,k_n) = c \cdot p^n \prod_{i=1}^n (1-p)^{k_i-1}.$$

Solving $1 = \int_0^1 f(p|k_1, ..., k_n) dp$ yields that $c = \frac{1}{B(n+1, (\sum_{i=1}^n k_i) - n + 1)}$. Therefore, the posterior distribution of p is $\text{Beta}(n+1, (\sum_{i=1}^n k_i) - n + 1)$. And thus

$$E(p|k_1,...,k_n) = \frac{n+1}{n+1+(\sum_{i=1}^n k_i)-n+1} = \frac{n+1}{(\sum_{i=1}^n k_i)+2},$$

and $(n+1)/((\sum_{i=1}^{n} X_i) + 2)$ is the Bayesian estimator of p.

3.19 Proof

(a) $X \sim \text{Poisson}(\theta)$, then

$$f(x;\theta) = e^{-\theta} \frac{\theta^x}{x!} = e^{-\theta} \cdot \frac{1}{x!} \cdot \exp[\ln \theta \cdot x], \quad x = 0, 1, \dots$$

(b) $Y \sim \text{Exponential}(\theta)$, then

$$f(y;\theta) = \theta e^{-\theta y} = \theta \cdot 1 \cdot \exp[-\theta \cdot y], \quad y \ge 0$$

(c) $\prod_{i=1}^{n} f(x_i; \theta) = \prod_{i=1}^{n} a(\theta)b(x_i) \exp[c(\theta)d(x_i)]$ $= a^n(\theta) \prod_{i=1}^{n} b(x_i) \cdot \exp[c(\theta) \sum_{i=1}^{n} d(x_i)]$ $= a^n(\theta) \cdot \exp[c(\theta) \sum_{i=1}^{n} d(x_i)] \times \prod_{i=1}^{n} b(x_i)$

Therefore, $\sum_{i=1}^{n} d(X_i)$ is a sufficient statistics of θ .

3.20 Solution

(a) $Y = X_1^2$, then

$$f_Y(y) = f_X(\sqrt{y}) \frac{1}{2\sqrt{y}} = \frac{\sqrt{y}}{\sigma^2} e^{-\frac{y}{2\sigma^2}} \frac{1}{2\sqrt{y}} = \frac{1}{2\sigma^2} e^{-\frac{1}{2\sigma^2}y}.$$

Hence, $X_1^2 \sim \text{Exponential}(\beta)$ with $\beta = \frac{1}{2\sigma^2}$.

(b) Note that

$$\log f(x;\sigma) = \log x - 2\log \sigma - \frac{x^2}{2\sigma^2},$$

$$\frac{d\log f(x;\sigma)}{d\sigma} = -\frac{2}{\sigma} + \frac{x^2}{\sigma^3},$$

$$\frac{d^2\log f(x;\sigma)}{d\sigma^2} = \frac{2}{\sigma^2} - \frac{3x^2}{\sigma^4}.$$

Then,

$$I(\sigma) = E\left\{-\frac{d^2 \log f(X; \sigma)}{d\sigma^2}\right\}$$
$$= E\left(\frac{3X^2}{\sigma^4} - \frac{2}{\sigma^2}\right)$$
$$= \frac{4}{\sigma^2},$$

so that $I_n(\sigma) = nI(\sigma) = \frac{4n}{\sigma^2}$, and the C-R lower bound of σ is $\frac{1}{I_n(\sigma)} = \frac{\sigma^2}{4n}$.

"Method 1" Let $\theta = \sigma^2$, then

$$\log f(x;\theta) = \log x - \log \theta - \frac{x^2}{2\theta},$$

$$\frac{d \log f(x;\theta)}{d\theta} = -\frac{1}{\theta} + \frac{x^2}{2\theta^2},$$

$$\frac{d^2 \log f(x;\theta)}{d\theta^2} = \frac{1}{\theta^2} - \frac{x^2}{\theta^3}.$$

Thus,

$$I(\theta) = E\left\{-\frac{d^2 \log f(X; \theta)}{d\theta^2}\right\}$$
$$= E\left(\frac{X^2}{\theta^3} - \frac{1}{\theta^2}\right)$$
$$= \frac{1}{\theta^2},$$

so that $I_n(\theta) = nI(\theta) = \frac{n}{\theta^2}$, and the C-R lower bound of σ^2 is $\frac{1}{I_n(\sigma^2)} = \frac{\sigma^4}{n}$. "Method 2" Let $g(\sigma)$ be a function of σ , then we have

$$\frac{d\log f(x;\sigma)}{d\sigma} = \frac{d\log f(x;\sigma)}{dg(\sigma)} \cdot \frac{dg(\sigma)}{d\sigma}.$$

Then

$$E(\frac{d\log f(x;\sigma)}{d\sigma})^{2} = E(\frac{d\log f(x;\sigma)}{dg(\sigma)} \cdot \frac{dg(\sigma)}{d\sigma})^{2}$$
$$= [g'(\sigma)]^{2} E(\frac{d\log f(x;\sigma)}{dg(\sigma)})^{2}.$$

i.e.

$$I(\sigma) = [g'(\sigma)]^2 I(g(\sigma)).$$

Therefore, $I_n(\sigma) = [g'(\sigma)]^2 I_n(g(\sigma))$, and hence

$$\frac{1}{I_n(g(\sigma))} = [g'(\sigma)]^2 \frac{1}{I_n(\sigma)}.$$

Particularly, let $g(\sigma) = 2\sigma$, we obtain

$$\frac{1}{I_n(\sigma^2)} = (2\sigma)^2 \cdot \frac{1}{I_n(\sigma)} = 4\sigma^2 \cdot \frac{\sigma^2}{4n} = \frac{\sigma^4}{n}.$$