지능시스템 Intelligent Systems

Lecture 0 – Introduction to Artificial Intelligence and Deep Learning

교수 소개

온성권 중위(진)

- 학사 146기
- University of Oxford 학.석사 졸업

Machine Learning 전공

- Reinforcement Learning (강화학습) 연구
 - Oxford Robotics Institute (ORI), Applied Reinforcement Learning in Robotics 연구

연락처:

- 단재관 336호, (043)290-6584
- 개인 폰번호: 010-5791-1038
- E-mail: 21-10612@mnd.go.kr

일정 (1/2)

세부 강의계획 (<u>월1</u>-2, <u>화3</u>-4)

주차	월	주	일	교육 내용	수업방식
1	8	5	28	Introduction to Reinforcement Learning, MDP, and Open	강의식
			29	Al Gym	0-1-7
2	9	1	4	* 휴강 (해외항법/ 9. 5. ~ 9.)	-
_			5		
3		2	11	* 휴강 (국군의날 훈련/9.11.~26.)	
			12		
4		3	18		
•			19		-
5		4	25		
3			26		
6		1	2	Bellman Equation * 임시 공휴일의 경우, 보충수업	강의식
			3	* 휴강 (개천절 휴일)	-
7		2	9	* 휴강 (한글날 휴일)	-
			10	Value-based Algorithms (MC, <u>SARSA</u> , <u>Q-Learning</u>)	강의식
8	10	3	16	중간시험(지필고사/ 비중 30%)	
			17		

일정 (2/2)

중간고사: 필기시험 30% 기말고사 필기시험 30% 수시평가

- 문제풀이 과제 1회 or 2회
 20%
- 코딩리포트 1회 20%

9		4	23 24	DQN + variants (double, PER, duel, Rainbow)	강의식
10		5	30 31	* 휴강 (무용기 결승/ 성무제)	_
- 11	. 11	1	6	Policy Gradients (REINFORCE)	강의식
11		I	7	Advantage Actor Critic (A2C)	
12		2	13	Proximal Policy Optimization (PPO)	
12			14	Deep Deterministic Policy Gradient (DDPG & <u>TD3)</u>	
13		3	20	Soft Actor Critic (SAC)	
15		3	21	Model-based Algorithms (SimPLe, World Models)	
14		4	27	Tree Search and <u>Alphago</u>	
14		4	28	과제 리뷰	
15		1	4	Python Revision	
13		1	5	* 휴강(미래 항공우주 학술대회)	-
16		•	11	Implementation Practice	강의식
16	12	2	12	Implementation Practice	
17			18	Implementation Practice	
17		3	19	Implementation Practice	
18		4	25	* 휴강 (크리스마스 휴일)	-
10			26	Revision	강의식

참고 자료

공식 교재:

- ▶박성수, "수학으로 풀어보는 강화학습 원리와 알고리즘"
- 추가 추천 교재:
- ▶오가와 유타로, "Pytorch를 활용한 강화학습/심증강화학습실전 입문"
- Sutton, Barto, "Reinforcement Learning"
- ➤ Ravichandiran, "Deep Reinforcement Learning with Python"
- ▶사이토 고키, "Deep Learning from Scratch(밑바닥부터 시작하는 딥러닝)"
- ▶최건호, "파이토치 첫걸음"

What is Artificial Intelligence?

Wikipedia:

A.I. is the intelligence of machines or software, as opposed to the intelligence of human beings or animals.

Oxford Website:

The capacity of computers or other machines to exhibit or simulate intelligent behaviour

Chat GPT-3.5:

A.I. refers to the simulation of human-like intelligence in machines, enabling them to perform tasks that typically require human cognitive functions such as learning, reasoning, problem-solving, and decision-making.

Artificial Intelligence sub fields

Machine/Deep Learning sub fields

Supervised Learning (SL): Learning from data with correct labels.

Unsupervised Learning (UL): Learning from data **without labels**. The main objective is the clustering and grouping of data.

Reinforcement Learning (RL):
Learning through interactions with the
environment, and constantly collecting **reward signals**, which act similar to labels in SL.
However, the rewards are not absolutely
trustworthy.

Supervised Learning (SL)

Hand-written digits recognition.

Face detection and recognition.

SPAM mail detection

Unsupervised Learning (UL)

Anomaly Detection

Personalized Recommender Engines

Reinforcement Learning (RL) How is it different from SL?

Supervised Learning:

Given $\mathcal{D} = \{X_i, y_i\}$, Learn how to predict y from X

Usually assumes

- i.i.d data (Independent, Identically Distributed)
- Known ground-truth outputs in training (A.K.A labels)

Reinforcement Learning:

- Data is not i.i.d.: previous outputs influence future inputs!
- Ground-truth labels are not given
 - We only know the reward!
- Data is constantly generated via interactions with the environment.

Reinforcement Learning (RL) How is it different from SL?

Supervised Learning

computer program [object label]

Reinforcement Learning

Input: X

Output: y

Data: $\mathcal{D} = \{X_i, y_i\}$

Goal: $f_{\theta}(X_i) \approx y_i$

Input: state, s_t at each time step

Output: action, a_t , at each time step

Data: $(s_1, a_1, r_1, ..., s_T, a_T, r_T)$

Goal: learn π_{θ} : $s_t \rightarrow a_t$

to maximize $\sum_t r_t$

Actions: muscle contractions Observations: sight, smell

Rewards: food

Actions: Controls of F-16 (throttle, rudder, etc....)
Observations: a new coordinate of the fighter,
distance to the adversary, bullets left, etc...

Actions: move

Observations: a new state of the play

Complex Physical Tasks

Discover optimum solutions!

Discover optimum solutions!

"Move 37" in Lee Sedol Alphago match: Reinforcement Learning "Discovers" a move that surprises everyone

Data-driven AI VS RL

Data-Driven Al

- + learns about the real world from data
- doesn't try to do **better** than the data

Reinforcement Learning

- + optimizes a goal with emergent behavior
- but need to figure out how to use at scale!