2006-2007 学年第二学期 《模拟电子技术》试卷 B 卷

- 一、(8分)电路如图所示,设二极管是理想的,
- (1) 试判断图中的二极管 D_1 是导通还是截止的,并求出 AB 两端的电压 V_{AB} ;
- (2) 当 E=5V, u_i=10sin ω tV 时, 试画出 u_i、u_o的波形。

(a)

(b)

- 二、(8 分)某放大电路中 BJT 三个电极 A、B、C 的电流如图所示,用万用表直流挡测得 I_A = -2mA, I_B = -0.04mA, I_C = 2.04mA。
 - (1) 试分析 A、B、C 中哪个是基极 b、发射极 e、集电极 c,并说明此管是 NPN 还是 PNP 管,它的 $\overline{\beta}$ =?
 - (2) 用万用表怎么判定它是硅管还是锗管?

三、 $(20\,
m eta)$ 图示电路中,已知 R_{b1} =80 $K\Omega$, R_{b2} =40 $K\Omega$, R_{e1} = R_{e2} =1 $K\Omega$, R_{c} =2 $K\Omega$, R_{c} =2 $K\Omega$,晶体管的电流放大系数 β =50,设 N_{bc} = N_{c}

- (1) 画出 C_1 、 C_2 、 C_3 和 C_4 的极性;
- (2) 试估算各静态值 I_B 、 I_C 和 V_{CE} ;
- (3) 求晶体管的输入电阻 r_{be};
- (4) 求电压增益Av,
- (5) 求该放大电路的输入电阻 R_i 和输出电阻 R_o 。

四、(10) 电路如图所示,已知 $R_L=8\,\Omega$, v_i 为正弦波,要求最大输出功率 $P_{om}=9W$ 。BJT 的饱和压降 V_{CES} 可以忽略不计。求:

- (1) 正、负电源 V_{CC} 的最小值;
- (2) 根据 V_{CC} 的最小值, 计算相应的 I_{CM} 、 $|V_{(BR)}|_{CEO}$ 的最小值;
- (3) 输出功率最大 $(P_{om}=9W)$ 时,电源提供的功率 P_{V} ;
- (4) 每个管子的管耗 Pcm 的最小值。

五、(15 分) 下图是一个双端输出的差分式放大电路。已知 Vcc=10V, $-V_{EE}=-10V$, $R_{c1}=R_{c2}=5.6k\Omega$, $R_{e1}=R_{e2}=100\Omega$, $R_{L}=11.2k\Omega$, $\beta=60$, $V_{BE}=0.6V$ 。

- (1) 求Q点(*I*_{B1}、*I*_{C1}、*V*_{CE1});
- (2) 若 V_{i1} =0.01V, V_{i2} =-0.01V, 求输出电压 v_o 值;
- (3) 求电路的差模输入电阻 R_{id} 、共模输入电阻 R_{ic} 和输出电阻 R_0 ;
- (4) 为什么集成电路运算放大器的输入级一般都采用差分式放大电路?

六、 $(15 \, \mathcal{A})$ 图示电路中的 A_1 、 A_2 为理想的集成运放。(1) 试说明级间反馈而是正反馈还是负反馈? 是电压反馈还是电流反馈? 是串联反馈还是并联反馈? 是交流反馈还是直流反

馈? (2) 求深负反馈条件下的闭环电压增益 $\mathbf{A}_{\mathrm{VF}} = \frac{\mathbf{V}_{\mathrm{O}}}{\mathbf{V}_{\mathrm{i}}}$ (设电容的容抗对交流信号可以忽略)。

七、 $(10\,
m 分)$ 电路如图所示, A_1 、 A_2 为理想运放,电容的初始电压 $u_c(0)$ =0。写出 v_{o1} 和 v_{o} 与 v_{i1} 、 v_{i2} 和 v_{i3} 的表达式。

八 (14分)、图示电路, R_1 =2K Ω , R_p =6K Ω , R_2 =2K Ω 。

- (1) 试计算 V_I 和每个整流二极管所承受的最大反向电压 V_{RM} ,并求出输出电压 V_o 的可调范围;
- (2) 简述 A、B、C、D、E 各部分的功用。

第3页共3页