Question Number	Scheme	Mar	rks
9(a)	$\cos ADB = \frac{6^2 + x^2 - 12^2}{2 \times 6x} = \frac{x^2 - 108}{12x}$	M1A1	(2)
(b)	$\cos BDC = \frac{6^2 + x^2 - 6^2}{2 \times 6x} = \frac{x^2}{12x}$ $ADB = 180 - BDC \Rightarrow -\frac{x^2}{12x} = \frac{x^2 - 108}{12x}$ $2x^2 = 108 \Rightarrow x = 3\sqrt{6}$	B1	
	$ADB = 180 - BDC \Rightarrow -\frac{x^2}{12x} = \frac{x^2 - 108}{12x}$	M1A1	
	$2x^2 = 108 \Rightarrow x = 3\sqrt{6}$ $AC = 6\sqrt{6}$	A1	(4)
(c)	$\frac{\sin(\theta^{\circ} + \phi^{\circ})}{2x} = \frac{\sin BCD}{12} \Rightarrow \frac{\sin(\theta^{\circ} + \phi^{\circ})}{x} = \frac{\sin BCD}{6}$	M1A1	
	$\frac{\sin\phi^{\circ}}{x} = \frac{\sin BCD}{6}$	M1	
	$\therefore \sin \phi^{\circ} = \sin \left(\theta^{\circ} + \phi^{\circ} \right)$	A1	(4)
(d)	$\sin(\theta^{\circ} + \phi^{\circ}) = \sin\phi^{\circ} \Rightarrow (\theta + \phi) = 180 - \phi \text{ (or } \phi \text{ or } 360 + \phi \text{ (not possible)})$	M1	
	$\therefore \theta = 180 - 2\phi$	A1	(2) [12]

Part	Mark	Notes
(a)	M1	For using a correct cosine rule
		$\cos ADB = \frac{6^2 + x^2 - 12^2}{2 \times 6x} = \frac{x^2 - 108}{12x} \text{ or } 12^2 = x^2 + 6^2 - 2 \times 6 \times x \cos ADB$
	A1	Simplifies to $\cos ADB = \frac{x^2 - 108}{12x}$
(b)	B1	For the correct expression $\cos BDC = \frac{6^2 + x^2 - 6^2}{2 \times 6x} = \frac{x^2}{12x}$
	M1	$\cos BDC = -\cos ADB$ and $\cos BDC = -\frac{x^2}{12x}$ so $-\frac{x^2}{12x} = \frac{x^2 - 108}{12x}$ and attempts to solve
	ALT 1 –	uses triangles BAD and BAC
	B1	For both of the following correct expressions for cos <i>BAD</i> and cos <i>BAC</i> :
		$\cos BAD = \frac{12^2 + x^2 - 6^2}{2 \times 12 \times x} \text{ and } \cos BAC = \frac{12^2 + (2x)^2 - 6^2}{2 \times 12 \times 2x}$
	M1	$\angle BAC = \angle BAD$ so equates their two expressions
		$\frac{12^2 + x^2 - 6^2}{2 \times 12 \times x} = \frac{12^2 + (2x)^2 - 6^2}{2 \times 12 \times 2x} \Rightarrow \frac{108 + x^2}{24x} = \frac{108 + 4x^2}{48x} \text{ and attempts to solve}$
	ALT 2 –	uses triangles BCD and BCA

	B1	For both of the following correct expressions for cos <i>BAD</i> and cos <i>BAC</i> :
		$\frac{1}{1000} \frac{1}{1000} \frac{1}{1000$
		$\cos BCD = \frac{6^2 + x^2 - 6^2}{2 \times 6 \times x} \text{ and } \cos BCA = \frac{6^2 + (2x)^2 - 12^2}{2 \times 6 \times 2x}$
	M1	$\frac{2 \times 6 \times x}{6^2 + x^2 - 6^2} = \frac{6^2 + (2x)^2 - 12^2}{2 \times 6 \times 2x} \Rightarrow x^2 = 2x^2 - 54 \text{ and attempts to solve}$
	Final A	$\begin{array}{ccc} 2 \times 6 \times x & 2 \times 6 \times 2x \\ \mathbf{marks for all three methods} \end{array}$
	A1	For the correct value of $x = 3\sqrt{6}$
	A1	For $AC = 6\sqrt{6}$
(c)	M1	Uses sine rule on triangle ABC: $\frac{\sin(\theta^{\circ} + \phi^{\circ})}{2x} = \frac{\sin BCD}{12} \Rightarrow \frac{\sin(\theta^{\circ} + \phi^{\circ})}{x} = \frac{\sin BCD}{6}$
	A1	Achieves the correct expression for $\sin(\theta^{\circ} + \phi^{\circ}) = \frac{x \sin BCD}{6}$
	M1	Uses sine rule on triangle BDC : $\frac{\sin \phi^{\circ}}{x} = \frac{\sin BCD}{6} \Rightarrow \left(\sin \phi^{\circ} = \frac{x \sin BCD}{6}\right)$
	A1	Shows that $\sin \phi^{\circ} = \sin (\theta^{\circ} + \phi^{\circ})$ with no errors
	ALT 1 -	Uses exact values for the trigonometric ratios and the expansion for $\sin (A + B)$
	M1	Finds $\cos \theta = \frac{7}{8} \Rightarrow \sin \theta = \frac{\sqrt{15}}{8}$ or $\cos \phi = \frac{1}{4} \Rightarrow \sin \phi = \frac{\sqrt{15}}{4}$
		Accept $\theta = 28.95^{\circ}$ or $\phi = 75.52^{\circ} \Rightarrow \sin \phi = 0.968$
	A1	Finds $\cos \theta = \frac{7}{8} \Rightarrow \sin \theta = \frac{\sqrt{15}}{8}$ and $\cos \phi = \frac{1}{4} \Rightarrow \sin \phi = \frac{\sqrt{15}}{4}$
		Accept $\theta = 28.95^{\circ}$ and $\phi = 75.52^{\circ} \Rightarrow \sin \phi = 0.968$
	M1	Expands $\sin\left(\theta + \phi\right) = \frac{\sqrt{15}}{8} \times \frac{1}{4} + \frac{\sqrt{15}}{4} \times \frac{7}{8} = \left(\frac{\sqrt{15}}{4}\right)$
		Or $\sin(\theta + \phi)^{\circ} = \sin(28.95^{\circ})\cos(75.52^{\circ}) + \sin(75.52^{\circ})\cos(28.95^{\circ}) = 0.968 = \sin\phi^{\circ}$
	A1	Shows that $\sin(\theta + \phi) = \frac{\sqrt{15}}{4}$ and $\sin \phi = \frac{\sqrt{15}}{4}$ so $\sin(\theta + \phi) = \sin \phi$ with no errors.
		If they use approximate values for $\sin \theta$ and ϕ withhold this final mark so A0
		Uses $\angle BCD = 52.2^{\circ}$
	M1	Finds $\angle BCD = 52.2^{\circ}$ using cosine rule and applies sine rule on triangle ABC
		$\frac{\sin\left(\theta^{\circ} + \phi^{\circ}\right)}{6\sqrt{6}} = \frac{\sin 52.2^{\circ}}{12}$
	Λ 1	· ·
	A1	Shows that $\sin(\theta^{\circ} + \phi^{\circ}) = 0.968$
	M1	Uses sine rule on triangle <i>BD</i> : $\frac{\sin \phi^{\circ}}{3\sqrt{6}} = \frac{\sin 52.2^{\circ}}{6} \Rightarrow \sin \phi^{\circ} = 0.968 = \sin(\theta^{\circ} + \phi^{\circ})$
(1)	A1	If they use an approximate value for angle <i>BCD</i> withhold this final mark so A0
(d)	M1	For writing $\sin \phi^{\circ} = \sin (180 - \phi)^{\circ} \Rightarrow \theta^{\circ} + \phi^{\circ} = 180^{\circ} - \phi^{\circ}$
	A1	For rearranging $\theta^{\circ} + \phi^{\circ} = 180^{\circ} - \phi^{\circ}$ to achieve $\theta = 180 - 2\phi$. This is a show question and there must be no errors here.