ME 165: Basic Mechanical Engineering

Robotics

Sakib Javed

Department of Mechanical Engineering
Bangladesh University of Engineering and Technology (BUET)
Dhaka-1000, Bangladesh

Lecturer

sakibjaved@me.buet.ac.bd

What is Robotics?

Robotics is the branch of mechanical engineering, electrical engineering, and computer science that deals with the design, construction, operation, and application of robots in human endeavors.

International Organization for Standardization (ISO) Definition:

An automatically controlled, reprogrammable, multipurpose manipulator programmable in three or more axes, which may be either fixed in place or mobile for use in industrial automation applications.

How Robotics Related with CSE!!

- Programming and Control Systems
- > Artificial Intelligence & Machine Learning
- Embedded Systems
- Data Structures & Algorithms
- Cybersecurity
- Human-Robot Interaction (HRI)

Ancient and Classical Eras

Mythology & Automata:

- •Ancient myths, like the Greek tale of **Talos**, a giant bronze robot, show early human fascination with artificial beings.
- •In the 3rd century BCE, the Hero of Alexandria built simple steam-powered devices and automata using gears and pneumatics.

Medieval Period

•Al-Jazari (1206 CE):

 An Islamic engineer who designed mechanical water clocks, musical automata, and even an early programmable humanoid robot (a boat with musicians).

•Da Vinci's Robot (1495):

Leonardo da Vinci sketched a **mechanical knight** that could sit, wave

arms, and move its head.

18th to 19th Century

•Mechanical Wonders:

 Inventors like Jacques de Vaucanson created life-like automata, such as a duck that could "digest" food.

•Industrial Revolution:

 The rise of automated factory machinery using punch cards later influenced computer and robot control systems.

@Pinterest

20th Century: Birth of Modern Robotics

•1920: The word "robot" first appears in Karel Čapek's play R.U.R. (Rossum's Universal Robots)—from the Czech word robota (forced labor).

•1942: Isaac Asimov introduces the Three Laws of Robotics in his science fiction stories.

@Wikipedia

20th Century: Birth of Modern Robotics

•1950s-60s:

- First, industrial robots, like Unimate, were developed and used in General Motors factories.
- •1969: Stanford creates Shakey the Robot, an early Al-powered mobile robot.

@Henry Ford

@Wikipedia

21st Century and Beyond

•Humanoid Robots:

 Robots like ASIMO (by Honda) and Atlas (by Boston Dynamics) showcase agility and human-like motion.

•AI & Machine Learning:

 Robots now learn tasks, interact with humans, and adapt to new environments.

•Robots in Daily Life:

 Vacuuming robots, robotic surgeries, autonomous vehicles, and social robots like Pepper.

•Space Robots:

 Rovers like Curiosity and Perseverance explore Mars, while robotic arms help aboard the ISS.

Modern Robots

Sojourner rover, deployed by Pathfinder in 1997 by NASA Landed on Mars.

Asimo by Honda

Modern Robots

MIT's Kismet: A robot that exhibits expressions e.g., happy, sad, surprise, disgust.

Sophia: Imitates human gestures and facial expressions and can answer certain questions and make simple conversations on predefined topics

Modern Robots

Various facial expressions of MIT's Kismet.

Evaluation

Advantages:

- ➤ Robotics and automation can, in many situations, increase the productivity, safety, efficiency, quality, and consistency of products.
- ➤ Robots can work in hazardous environments (such as radiation, darkness, hot and cold, ocean bottoms, space, and so on) without the need for life support, comfort, or concern for safety.
- Robots need no environmental comfort like lighting, air conditioning, ventilation and noise protection.
- > Robots work continuously without tiring or fatigue or boredom.
- ➤ Robots have repeatable precision at all times unless something happens to them, or unless they wear out.
- Robots can be much more accurate than humans.
- ➤ Robots and their accessories and sensors can have capabilities beyond those of humans.
- > Robots can process multiple stimuli or tasks simultaneously.

Disadvantages:

- ➤ Robots replace human workers, causing economic hardship, worker dissatisfaction and resentment, and the need for retraining the replaced workforce.
- ➤ Robots lack the capability to respond in emergencies, unless the situation is predicted and the response is included in the system.
- Safety measures are needed to ensure that they do not injure operators and other machines that are working with them
- ➤ Robots have limited capabilities in cognition, creativity, decision making, and understanding.
- ➤ Robots are costly due to: Initial cost of equipment and installation, need for integration into the manufacturing processes, need for programming, etc.

Application

- Manufacturing: Automates assembly and packing.
- Healthcare: Assists in surgeries and rehab.
- Agriculture: Helps with planting and harvesting.
- Logistics: Moves and sorts products.
- Exploration: Used in space and underwater.
- Military: Drones, bomb disposal, and surveillance.
- Service: Household tasks like cleaning.
- **Entertainment**: Robot performers and interactive shows.
- Education: Teaches STEM and helps students.
- Construction: Assists in building and 3D printing.
- Retail: Customer service and inventory management.

Classification

Function:

- Industrial Robots: Used in manufacturing (e.g., assembly, welding).
- Service Robots: Assist with tasks like cleaning or healthcare (e.g., Roomba, surgical robots).
- Humanoid Robots: Resemble humans (e.g., Boston Dynamics' Atlas).
- Exploration Robots: Used in space or deep-sea exploration (e.g., Mars rovers).
- Military Robots: For defence and surveillance (e.g., drones, bomb disposal robots).

@Boston Dynamics

Classification

Mobility:

- Stationary Robots: Fixed in place (e.g., industrial arms).
- Mobile Robots: Can move (e.g., wheeled robots, drones, underwater robots).

Control:

- Autonomous Robots: Perform tasks without human input (e.g., self-driving cars).
- Teleoperated Robots: Controlled remotely (e.g., bomb disposal robots).
- Hybrid Robots: Combine both autonomous and manual control.

Classification

Application:

- Medical: Assist with surgeries or rehabilitation.
- Educational: Used in teaching (e.g., LEGO Mindstorms).
- Entertainment: Perform or interact for entertainment (e.g., theme park robots).

Power Source:

- Electric Robots: Powered by batteries (e.g., most modern robots).
- Pneumatic/Hydraulic Robots: Use air or fluid for movement (e.g., industrial robots)

Laws of Robotics

Laws of Robotics

Isaac Asimov proposed three laws of Robotics to guide the behavior of Robotics

First Law: Do not harm human being

A robot may not injure a human being or, through inaction, allow a human being to come to harm.

Second Law: Obey human being

A robot must obey the orders given it by human beings except where such orders would conflict with the First Law.

Third Law: Protects itself from harm

A robot must protect its own existence as long as such protection does not conflict with the First or Second Law.

Thank You