5/23/22, 3:37 PM Calculus I - Integrals

Paul's Online Notes

Home / Calculus I / Integrals

Chapter 5 : Integrals

In this chapter we will be looking at integrals. Integrals are the third and final major topic that will be covered in this class. As with derivatives this chapter will be devoted almost exclusively to finding and computing integrals. Applications will be given in the following chapter. There are really two types of integrals that we'll be looking at in this chapter: Indefinite Integrals and Definite Integrals. The first half of this chapter is devoted to indefinite integrals and the last half is devoted to definite integrals. As we will see in the last half of the chapter if we don't know indefinite integrals we will not be able to do definite integrals.

Here is a quick listing of the material that is in this chapter.

Indefinite Integrals – In this section we will start off the chapter with the definition and properties of indefinite integrals. We will not be computing many indefinite integrals in this section. This section is devoted to simply defining what an indefinite integral is and to give many of the properties of the indefinite integral. Actually computing indefinite integrals will start in the next section.

Computing Indefinite Integrals – In this section we will compute some indefinite integrals. The integrals in this section will tend to be those that do not require a lot of manipulation of the function we are integrating in order to actually compute the integral. As we will see starting in the next section many integrals do require some manipulation of the function before we can actually do the integral. We will also take a quick look at an application of indefinite integrals.

Substitution Rule for Indefinite Integrals – In this section we will start using one of the more common and useful integration techniques – The Substitution Rule. With the substitution rule we will be able integrate a wider variety of

5/23/22, 3:37 PM Calculus I - Integrals

functions. The integrals in this section will all require some manipulation of the function prior to integrating unlike most of the integrals from the previous section where all we really needed were the basic integration formulas.

More Substitution Rule – In this section we will continue to look at the substitution rule. The problems in this section will tend to be a little more involved than those in the previous section.

Area Problem – In this section we start off with the motivation for definite integrals and give one of the interpretations of definite integrals. We will be approximating the amount of area that lies between a function and the *x*-axis. As we will see in the next section this problem will lead us to the definition of the definite integral and will be one of the main interpretations of the definite integral that we'll be looking at in this material.

Definition of the Definite Integral – In this section we will formally define the definite integral, give many of its properties and discuss a couple of interpretations of the definite integral. We will also look at the first part of the Fundamental Theorem of Calculus which shows the very close relationship between derivatives and integrals

Computing Definite Integrals – In this section we will take a look at the second part of the Fundamental Theorem of Calculus. This will show us how we compute definite integrals without using (the often very unpleasant) definition. The examples in this section can all be done with a basic knowledge of indefinite integrals and will not require the use of the substitution rule. Included in the examples in this section are computing definite integrals of piecewise and absolute value functions.

Substitution Rule for Definite Integrals – In this section we will revisit the substitution rule as it applies to definite integrals. The only real requirements to being able to do the examples in this section are being able to do the substitution rule for indefinite integrals and understanding how to compute definite integrals in general.

© 2003 - 2022 Paul Dawkins Page Last Modified : 6/6/2018