

МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа прикладной математики и информатики

Отчёт о выполнении лабораторной работы 3.1.3 Измерение магнитного поля земли

Автор: Чикин Андрей Павлович Б05-304 **Цель работы:** исследовать свойства постоянных неодимовых магнитов; измерить с их помощью горизонтальную и вертикальную составляющие индукции магнитного поля Земли и магнитное наклонение.

В работе используются: неодимовые магниты; тонкая нить для изготовления крутильного маятника; медная проволока; электронные весы; секундомер; измеритель магнитной индукции; штангенциркуль; брусок, линейка и штатив из немагнитных материалов; набор гирь и разновесов.

Теория

Магнитный диполь

Магнитный момент магнитного диполя может быть рассчитан по формуле:

$$m = IS$$

Поле точечного диполя:

$$\mathbf{B}_{\text{дип}} = \frac{\mu_0}{4\pi} \left(\frac{3(\mathbf{m} \cdot \mathbf{r})\mathbf{r}}{r^5} - \frac{\mathbf{m}}{r^3} \right)$$

Во внешнем магнитном поле с индукцией ${\bf B}$ на точеный магнитный диполь ${\bf m}$ действует механический момент сил

$$\mathbf{M} = [\mathbf{m}, \mathbf{B}]$$

При этом потенциальная энергия которой обладает диполь с постоянным **m**, равна

$$W = -(\mathbf{m} \cdot \mathbf{B})$$

Когда диполь ориентирован вдоль внешнего поля, он находится в состоянии равновесия. При этом если $\mathbf{m} \uparrow \uparrow B$, то равновесие устойчивое (минимум энергии), если $\mathbf{m} \uparrow \downarrow B$, то равновесие неустойчивое (максимум энергии). В неоднородном поле на магнитный диполь действует сила:

$$\mathbf{F} = (\mathbf{m} \cdot \nabla) \mathbf{B},$$

В частности, проекция на ось x имеет вид

$$F_x = \mathbf{m}_x \frac{\partial B_x}{\partial x} + \mathbf{m}_y \frac{\partial B_x}{\partial y} + \mathbf{m}_z \frac{\partial B_x}{\partial z}.$$

То есть магнитный диполь в неоднородном поле ориентируется вдоль силовых линий и втягивается в область сильного поля.

Сила, с которой взаимодействуют 2 магнита, оси которых сонаправлены:

$$F_{12} = \mathbf{m}_1 \frac{\partial B_2}{\partial r} = \mathbf{m}_1 \frac{\partial (2\mathbf{m}_2/r^3)}{\partial r} = -\frac{6\mathbf{m}_1\mathbf{m}_2}{r^4} \text{ (ед. СГС)}.$$
 (1)

(при использовании системы СИ нужно домножить на $\mu_0/4\pi$). Здесь магниты притягиваются, если их магнитные моменты сонаправлены, и отталкиваются, если направлены противоположно.

Неодимовые магниты

В работе используются неодимовые магниты шарообразной формы. Магнитное поле намагниченного шара на расстояниях $r \geqslant R$ от центра шара совпадает с полем точечного магнитного диполя, расположенного в центре, магнитный момент \mathbf{m} которого совпадает с полным моментом шара. Внутри шара магнитное поле однородно и равно

$$\mathbf{B}_0 = \frac{\mu_0 \mathbf{m}}{2\pi R^3}$$

В качестве ещё одной характеристики материала магнита используют остаточную намагниченность ${\bf M}.$

$$\mathfrak{m} = \mathbf{M}V$$
,

где $V=\frac{4\pi}{3}R^3$ - объём магнита. Величину $\mathbf{B}_r=\mu_0\mathbf{M}$ называют остаточной индукцией материала (в СГСЭ $B_r=4\pi\mathbf{M}$). Из сказанного выше нетрудно видеть, что индукция \mathbf{B}_p на полсюсах однородно намагниченного шара направлена по нормали к поверхности и совпадает поэтому с индукцией внутри шара $\mathbf{B}_p=\mathbf{B}_0$. Величина B_p связана с остаточной индукцией B_r соотношением

$$B_p = B_o = \frac{2}{3}B_r$$

Определение магнитного момента магнитных шариков

Величину магнитного момента \mathfrak{m} двух одинаковых шариков можно рассчитать, зная их массу m и определив максимальное расстояние r_{max} , на котором они еще удерживают друг друга в поле тяжести. При максимальном расстоянии сила тяжести шариков mg равна силе их магнитного притяжения.

Когда векторы двух магнитных моментов ориентированы вертикально, имеем

$$\mathbf{m} = \sqrt{\frac{2\pi m g r_{max}^4}{3\mu_0}}$$
 (ед. СИ).

Результаты измерений и обработка данных

В начале были проведены подготовительные измерения, данные которых приведены в таблице.

<i>т,</i> мг	B_p , мТл	<i>d</i> , мм
830 ± 0.001	600 ± 1	6 ± 0.1

Таблица 1: Подготовительные измерения

Измерение магнитного момента шариков

Метод А

Предельное расстояние, на котором шарики удерживали друг друга в поле силы тяжести:

$$r_{max} = (2.2 \pm 0.1)$$
cm

Тогда по формуле $\mathbf{m} = \sqrt{\frac{r_{max}^4 mg}{6}}$

$$\mathbf{m} = (57 \pm 2) \text{ ед. СГС } (\varepsilon = 3\%)$$

Метод Б

Найдем массу гири, при коротой цепочка отрывается:

$$m \approx (220 \pm 5)_{\Gamma}$$

$$F = m_{max}g \approx 1.08 \ F_0 = \frac{3m^2}{8R^4}$$

$$\mathbf{m} = \sqrt{\frac{d^4 m_{max}g}{6.5}}$$

$$\mathbf{m} = (66)$$

$$\mathbf{m} = (66 \pm 2) \text{ ед. СГС } (\varepsilon = 3\%)$$

Рассчитаем намагниченность материала:

$$\mathbf{M} = \frac{\mathbf{m}}{V} = (560 \pm 15) \text{ ед. СГС}$$

Тогда остаточная индукция:

$$B_r = 4\pi M = (7000 \pm 200)$$
 ед. СГС

Можем также рассчитать индукцию на полюсе магнита:

$$B_p = \frac{2}{3}B_r = (4600 \pm 100)$$
 ед. СГС

Определение горизонтальной проекции магнитного поля Земли

Была собрана установка для измерения периода малых колебаний магнитной стрелки. Данные измерений приведены в таблице. По данным из таблицы строим график T(n).

n_{map}	5T, c	<i>T</i> , c
3	4,0	0,8
4	5,8	1,1
5	6,5	1,3
6	8,5	1,7
7	10,3	2,1
8	12,0	2,4
9	13,7	2,8
10	14,9	3,0
11	16,5	3,2
12	18,0	3,6

Таблица 2: Зависимость периода колебаний от количества шариков в магнитной стрелке

При малых колебаниях:

$$J_n\theta'' + \mathbf{m}_n B_h\theta = 0$$
, $J_n = \frac{1}{3}n^3 m R^2$, $\mathbf{m}_n = \mathbf{m} \cdot n$

Отсюда находим период колебаний:

$$T(n) = 2\pi \sqrt{\frac{mR^2}{3mB_h}} \cdot n, \qquad \frac{T(n)}{n} = k, \qquad k = 0.31$$

Отсюда находим горизонтальную состовляющую магнитного поля земли:

$$B_h = \frac{4\pi^2 m R^2}{3k^2 \mathbf{m}} = (1, 81 \pm 0, 49) \cdot 10^{-5} \text{ Tm } (\varepsilon = 25\%)$$

Определение вертикальной проекции магнитного поля Земли

Подвешиваем четное число шариков за центр и пытаемся уравновесить момент сил магнитного поля с помощью дополнительных грузиков в виде проволок. Были получены следующие данные. По полученым данным был построен график.

n_{map}	$m_{ m rp}$, г	$r_{\rm rp}$, cm	$\mathcal{M}, H \cdot M \cdot 10^{-5}$
4	0,35	0,6	2,1
6	0,19	1,2	2,7
8	0,17	1,8	3,1
10	0,16	2,4	3,8
12	0,14	3	4,3

Таблица 3: Зависимость момента от количества шариков в «магнитной стрелке»

Здесь принята погрешность измерения уравновешивающей массы за 5%. Выразим вертикальную составляющую магнитного поля:

$$\mathcal{M}_n = m_{\rm rp} g r_{\rm rp} = n \mathbf{m} B_v$$

$$B_v = \frac{\mathcal{M}_n}{n \mathbf{m}} = (5, 54 \pm 0, 69) \cdot 10^{-5} \ (\varepsilon = 9, 6\%)$$

Теперь можем посчитать полную величину индукции и магнитное наклонение:

$$|B| = \sqrt{B_h^2 + B_v^2} = (5, 83 \pm 0, 66) \cdot 10^{-5} \text{ Tm} (\varepsilon = 11\%)$$

$$\operatorname{tg} \beta = \frac{B_v}{B_h} = 3,07 \pm 0,49 \quad (\varepsilon = 16\%) \quad \to \beta = 72,0^{\circ} \pm 8,9^{\circ} \quad (\varepsilon = 13,5\%)$$

Можно также рассчитать теоретическое значение β на широте москвы $\varphi=56^\circ$ в предположении, что Земля - однородно намагниченный шар:

$$\beta = \arctan \frac{\frac{2P_m \sin \varphi}{R^3}}{\frac{-P_m \cos \varphi}{R^3}} \approx 71^{\circ}$$

Табличные данные магнитного поля в Москве приведены ниже:

$$B_{\mathrm{Ta6}\pi} = 5 \cdot 10^{-5} \,\mathrm{Tr} \quad \beta_{\mathrm{Ta6}\pi} \approx 74^{\circ} - 78^{\circ}$$

Выводы

В данной лабораторной работе были изучены характеристики неодимовых магнитов, а также вертикальная и горизонтальная составляющая магнитного поля.

- 1. Остаточная намагниченность $B_p = (4600 \pm 100)$ ед. СГС совпадает по порядку с измеренными значениями $B_{p_{\text{табл}}} \approx 6000$ ед. СГС.
- 2. Значения B_h и B_v также совпадают по порядку с табличными. По значению могут не совпадать, так как в кабинете еще есть электронные устройства, имеющие также своё магнитное поле. Полная величина индукции совпадает с табличными данными в пределах погрешности.
- 3. Погрешности в измерениях компонент магнитного поля высоки ввиду неточности эксперимента.
- 4. Магнитное наклонение совпадает с табличными данными в пределах погрешности.