一. 单项选择(每题1分,共50分)

空格号	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
答案	В	С	A	D	A	В	C	C	D	В
空格号	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)
答案	A	A	D	D	С	D	A	C	В	D
空格号	(21)	(22)	(23)	(24)	(25)	(26)	(27)	(28)	(29)	(30)
答案	С	В	В	С	A	В	В	D	С	A
空格号	(31)	(32)	(33)	(34)	(35)	(36)	(37)	(38)	(39)	(40)
答案	С	A	A	D	С	A	В	В	D	В

二. (15分)

三. (15分)

(13/)	
	$P_{ m R} = rac{P_{ m T}}{10^3} = 36{ m mW}$
	SSB 输出信噪比等于输入信噪比,为 $\frac{P_{\mathrm{R}}}{N_0W} = \frac{36 \times 10^{-3}}{2 \times 10^{-9} \times 10 \times 10^3} = 1800$
	AM 输出信噪比等于 DSB-SC 输出信噪比乘以调制效率。DSB-SC 输出信噪比同 SSB 输出信
	噪 比 。 AM 复包络为 $A+m(t)$, $a=rac{ m(t) _{\max}}{A}=rac{\sqrt{C_mP_m}}{A}$, $P_m=rac{A^2a^2}{C_m}$,效率为
	$\left rac{P_m}{A^2+P_m} = rac{a^2}{a^2+C_m} = rac{1}{9} ight.$,输出信噪比为 $rac{1800}{9} = 200$
	FM 解调输出信噪比为 $\frac{3\times4^2}{8} imes1800=10800$

四. (15分)

四. (13 刀 /	
	$P_2(f) = rac{4}{T_{ m s}} G(f) ^2 = 4 { m sinc}^2(fT_{ m s})$
	$P_s(f) = P_1(f) + 4P_2(f) = 17\operatorname{sinc}^2(fT_s)$
	$s(t) = \sum_{n=-\infty}^{\infty} -3a_n g(t-nT_{ m s}) = -3s_1(t)$
	$P_s(f) = 9P_1(f) = 9 { m sinc}^2(fT_{ m s})$
	$s(t) = \sum_{n=-\infty}^{\infty} c_n g(t-nT_{ m s}) , \;\; ot \exists t ot = c_n = a_n - 2b_n \circ \operatorname{E}[c_n] = 0$
	$egin{aligned} & \mathrm{E}\left[\left(a_{n}-2b_{n} ight)\left(a_{m}-2b_{m} ight) ight] = \mathrm{E}\left[a_{n}a_{m} ight] - 2\mathrm{E}\left[a_{n}b_{m} ight] - 2\mathrm{E}\left[b_{n}a_{m} ight] + 4\mathrm{E}\left[b_{n}b_{m} ight] \end{aligned}$
	$= \left\{egin{array}{ll} 21, & m=n \ 0, & m eq n \end{array} ight.$
	$P_s(f) = 21 \operatorname{sinc}^2(fT_{\mathrm{s}})$

五. (15分)

$$\begin{split} h(t) &= g(T_{\rm b} - t) = g(t) = \begin{cases} 1, & 0 \leq t \leq T_{\rm b} \\ 0 & \text{else} \end{cases} \\ y &= \int_{-\infty}^{\infty} \left[g(T_{\rm b} - \tau) + n_{\rm w}(T_{\rm b} - \tau) \right] h(\tau) \mathrm{d}\tau = \int_{0}^{T_{\rm b}} \left[g(\tau) + n_{\rm w}(T_{\rm b} - \tau) \right] \mathrm{d}\tau = T_{\rm b} + Z \quad , \quad \not\exists \quad \uparrow \\ Z \sim \mathcal{N} \bigg(0, \frac{N_{0}T_{\rm b}}{2} \bigg), \quad \not\exists \text{所求均值为} T_{\rm b} \, , \quad \not\exists \vec{E} \not\ni \frac{T_{\rm b}N_{0}}{2} \end{split}$$

$$\begin{aligned} \text{BER} &= \frac{1}{2} \operatorname{erfc} \bigg(\frac{T_{\rm b}}{\sqrt{2\sigma^{2}}} \bigg) = \frac{1}{2} \operatorname{erfc} \bigg(\sqrt{\frac{T_{\rm b}}{N_{0}}} \bigg) \quad (\not\exists \vec{E} \not\vdash \vec{E$$