Cross-view Geo-localization via Learning Disentangled Geometric Layout Correspondence

Xiaohan Zhang^{1,2}*, Xingyu Li³*, Waqas Sultani⁴, Yi Zhou⁵, Safwan Wshah^{1,2}

¹Department of Computer Science, University of Vermont
²Vermont Complex Systems Center, University of Vermont
³Shanghai Center for Brain Science and Brain-Inspired Technology
⁴Intelligent Machine Lab, Information Technology University
⁵NEL-BITA, School of Information Science and Technology, University of Science and Technology of China

Image geo-localization

Cross-view image geo-localization

Query Image

Reference database

Challenges in cross-view image geo-localization

- Existing CNN-based methods are limited by the nature of CNNs which explore the local correlation among pixels.
- 2. Recent researches explore applying transformers in cross-view geo-localization.

 However, they only implicitly model the spatial information.
- 3. The performance of cross-view geo-localization methods degrades on cross-area benchmarks.

GeoDTR Overview

- 1. CNN backbones extract raw features $\mathbf{r}^{a(g)}$ from input images $I_i^{a(g)}$ augmented by Layout simulation and Semantic augmentation (LS).
- 2. $r^{a(g)}$ are then passed to Geometric Layout Pathway to get layout descriptors $P^{a(g)}$ and Backbone Feature Pathway to produce latent feature $f^{a(g)}$ by Frobenius product.
- 3. A Counterfactual learning paradigm is adopted to generate a counterfactual descriptors $\widehat{P}^{a(g)}$.

Geometric layout extractor

Geometric Layout Extractor takes raw feature r extracted by backbone as input.

A max pooling layer along channel is applied to obtain Saliency feature map M

An Embedding layer projects M into K subspaces. Then combined with index-aware position encoding and K embedding vectors to get $E = [e_1, e_2, \dots e_K]$.

Finally, a transformer is applied to explore correlations in E. After the transformer, another embedding layer produces geometric layout descriptors P.

Counterfactual-based learning process

A counterfactual loss is applied on \hat{f} and \hat{f} to maximize the distance as follow,

$$L_{cf} = \log(1 + e^{-\beta[|f,\hat{f}|_2]})$$

Since \hat{p} is randomly sampled, there is no causal relation between r and \hat{p} .

p is obtained from r by geometric layout extractor

An intervention $do(p = \hat{p})$ is applied on p which replaces p into randomly sampled vectors \hat{p} .

Layout simulation

Layout simulation aims to generate aerial-ground pairs and satisfy the following requirement:

- 1. The generated aerial-ground pairs should keep the correspondence.
- II. The generation process varies the layouts (e.g., the relative position of a house near a road) of the scene in the aerial-ground pairs.
- III. The generation process must maintain the low-level details.

Layout simulation

Aerial image

Polar transformed aerial image

Ground image

Rotation

Flip

Semantic augmentation

Semantic augmentation modifies the low-level features in aerial and ground images

separately by randomly adjusting or applying:

- Brightness
- Contrast
- Saturation
- Gaussian blur
- Image grayscale
- Image posterizing

Training objectives

1. Counterfactual loss:

$$L_{cf}^{a(g)} = \log(1 + e^{-\beta[|f^{a(g)}, \hat{f}^{a(g)}|_2]})$$

2. Soft margin triplet loss:

$$L_{triplet} = \log(1 + e^{\alpha[|f_i^g, f_i^a|_2 - |f_i^g, f_j^a|_2]})$$

3. Total loss:

$$L = L_{triplet} + L_{cf}^{a(g)}$$

Implementation details

- A ResNet-34 is employed as backbone.
- α and β are set to 10 and 5 respectively.
- The model is trained on a single Nvidia V100 GPU for 200 epochs with an AdamW optimizer.
- The number of descriptor K is set to 8.
- Our code can is open-sourced at https://gitlab.com/vail-uvm/geodtr

Experiments Setup

CVUSA:

- 35,532 training pairs
- 8,884 testing pairs.

CVACT:

- 35,532 training pairs
- 8,884 validation pairs (CVACT_val).
- 92,802 testing pairs (CVACT_test).

Evaluation Metrics:

Similar to existing methods, we choose to use

recall accuracy at top K (R@K) for

evaluation purposes. In the following

experiments, we adopt R@1, R@5, R@10, and

R@1%.

Experiment – CVUSA same-area

Method	R@1	R@5	R@10	R@1%
FusionGAN	48.75%	-	81.27%	95.98%
CVFT	61.43%	84.69%	90.49%	99.02%
SAFA	81.15%	94.23%	96.85%	99.49%
SAFA†	89.84%	96.93%	98.14%	99.64%
DSM [†]	91.93%	97.50%	98.54%	99.67%
CDE†	92.56%	97.55%	98.33%	99.57%
L2LTR	91.99%	97.68%	98.65%	99.75%
L2LTR†	94.05%	98.27%	98.99%	99.67%
TransGeo	94.08%	98.36%	99.04%	99.77%
SEH†	95.11%	98.45%	99.00%	99.78%
Ours w/LS	93.76%	98.47 %	99.22 %	99.85%
Ours w/ LS†	95.43%	98.86%	99.34%	99.86%

Experiment – CVACT same-area

Method	CVACT_val				CVACT_test				
Tito Car	R@1	R@5	R@10	R@1%	R@1	R@5	R@10	R@1%	
CVFT	61.05%	81.33%	86.52%	95.93%	26.12%	45.33%	53.80%	71.69%	
SAFA	78.28%	91.60%	93.79%	98.15%	-	-	-	-	
SAFA†	81.03%	92.80%	94.84%	98.17%	55.50%	79.94%	85.08%	94.49%	
DSM†	82.49%	92.44%	93.99%	97.32%	35.63%	60.07%	69.10%	84.75%	
CDE†	83.28%	93.57%	95.42%	98.22%	61.29%	85.13%	89.14%	98.32%	
L2LTR	83.14%	93.84%	95.51%	98.40 %	58.33%	84.23%	88.60%	95.83%	
L2LTR†	84.89%	94.59%	95.96%	98.37%	60.72%	85.85%	89.88%	96.12%	
TransGeo	84.95%	94.14%	95.78%	98.37%	-	-	-	-	
SEH†	84.75%	93.97%	95.46%	98.11%	-	-	-	-	
Ours w/LS	85.43 %	94.81%	96.11%	98.26%	62.96%	87.35 %	90.70%	98.61%	
Ours w/ LS†	86.21%	95.44%	96.72%	98.77 %	64.52%	88.59%	91.96%	98.74 %	

${\bf Experiment-Cross-area}$

Model	Task	R@1	R@5	R@10	R@1%
SAFA† DSM† L2LTR† TransGeo Ours w/ LS Ours w/ LS†	CVUSA ↓ CVACT	33.66% 47.55% 37.81% 43.72%	52.93% 52.17% 70.58% 61.57% 66.99% 75.62%	59.74% 77.39% 69.86% 74.61%	
SAFA‡ DSM† L2LTR† TransGeo Ours w/ LS Ours w/ LS†	CVACT ↓ CVUSA	18.47% 33.00% 18.99% 29.85%	36.55% 34.46% 51.87% 38.24% 49.25% 64.66%	42.28% 60.63% 46.91% 57.11%	The second second second

Experiment – LS on other methods

$LS+other\ methods$		Same-area				Cross-area			
	Configuration	R@1	R@5	R@10	R@1%	R@1	R@5	R@10	R@1%
Trained on CVUSA	SAFA SAFA w/ LS	89.84% 88.19%	96.93% 96.48%	98.14% 98.20%	99.64% 99.74%	30.40% 37.15%	52.93% 60.31%	62.29% 69.20%	85.82% 89.15%
	L2LTR L2LTR w/ LS	94.05% 93.62%	98.27% 98.46%	98.99% 99.03%	99.67% 99.77%	47.55% 52.58%	70.58% 75.81 %	77.52% 82.19 %	91.39% 93.51%
	GeoDTR w/o LS GeoDTR w/ LS	95.23% 95.43 %	98.71% 98.86 %	99.26% 99.34 %	99.79% 99.86%	47.79% 53.16%	70.52% 75.62%	77.52% 81.90%	92.20% 93.80 %
Trained on CVACT	SAFA SAFA w/ LS	81.03% 79.88%	92.80% 92.84%	94.84% 94.71%	98.17% 97.96%	21.45% 25.42%	36.55% 42.30%	43.79% 50.36%	69.83% 76.49%
	L2LTR L2LTR w/ LS	84.89% 83.49%	94.59% 94.93%	95.96% 96.44%	98.37% 98.68%	33.00% 37.69%	51.87% 57.78%	60.63% 66.22%	84.79% 89.63%
	GeoDTR w/o LS GeoDTR w/ LS	87.42 % 86.21%	95.37% 95.44 %	96.50% 96.72 %	98.65% 98.77%	29.13% 44.07 %	47.86% 64.66 %	56.21% 72.08 %	81.09% 90.09 %

Learned descriptors visualization

Summary

- 1. In this paper, we propose **GeoDTR** which disentangles geometric information from raw features to better captures the correspondence between aerial and ground images.
- 2. We propose **layout simulation and semantic augmentation (LS)** techniques that improve the performance of GeoDTR (as well as existing models) on cross-area experiments.
- 3. We introduce a novel **counterfactual-based learning schema** that guides GeoDTR to better grasp the spatial configurations and therefore produce better latent feature representations.

Related links

Contact Email: Xiaohan.Zhang@uvm.edu

Homepage: https://zxh009123.github.io/

Gitlab link: https://gitlab.com/vail-uvm/geodtr

arXiv link: https://arxiv.org/abs/2212.04074

Thanks for watching!