A. Parallel engine

time limit: 1 second memory limit: 16 megabytes

แผนการของแก๊ง "กม-หัน-ลัง" ได้ถูกทำลายลงไปโดยผู้กองหรรม หัวหน้าของแก๊งก็ยังถูกจับไปอีกด้วย ทำให้ ลูกน้องของแก๊งนี้ต้องหนีไปหากลุ่มองค์กรชั่วร้ายระดับกาแล็กซี ที่มีชื่อว่า "Dark cluster" โดยเป้าหมายขององค์กรนี้ ก็เหมือนตัวร้ายทั่วๆไปในการ์ตูน คือการยึดครองดวงดาวต่างๆ นั่นเอง

องค์กรนี้เป็นองค์กรที่ยิ่งใหญ่มากมีการซื้อตัวนักวิทยาศาสตร์จากดวงดาวต่างๆ มาช่วยในการทำงานวิจัยชั่ว ร้าย เช่น ผลิตน้ำแข็งปิ้ง ผลิตยางรถไฟ หรือแม้แต่ สร้างล้อให้กับเรือ (มันเป็นอะไรที่น่ากลัวมาก) และโปรเจคใหม่คือ การสร้างเครื่องยนต์ชนิดพิเศษสำหรับยานอวกาศเพื่อการสำรวจดวงดาวได้รวดเร็วยิ่งขึ้น

และในที่สุดเหล่านักวิทยาศาสตร์ นำโดย ดร.จัยชักร จากดาวนาเม็ก ก็ได้สร้างสรรค์ผลงานชิ้นเอก เป็น เครื่องยนต์ที่ประกอบด้วย 2 ส่วนคือ ส่วนรับพลังงาน และส่วนแยกเชื้อเพลิง โดยเชื้อเพลิงของเครื่องยนต์ชนิดนี้ต้องใช้ สารที่ประกอบไปด้วยธาตุชนิดพิเศษที่ให้พลังงาน E_i จากธาตุที่ i และกลุ่มของธาตุจะถูกส่งกลับไปกลับมาระหว่าง ส่วนรับพลังงาน และส่วนแยกเชื้อเพลิง โดยมีเงื่อนไขดังนี้

- 1. เริ่มต้นธาตุทั้งหมดจะถือว่าอยู่ในกลุ่มเดียวกัน และไหลเข้าสู่ส่วนรับพลังงาน
- 2. เมื่อกลุ่มของธาตุแต่ละกลุ่มมาถึงส่วนรับพลังงาน ส่วนนี้จะสร้างพลังงานตามค่า E_i ของแต่ละธาตุและส่ง แต่ละกลุ่มเข้าสู่ส่วนแยกเชื้อเพลิง โดยแต่ละกลุ่มที่ส่งได้จะต้องมีธาตุเป็นส่วนประกอบมากกว่า 1 ธาตุ ถ้ามีเพียง 1 ธาตุ กลุ่มดังกล่าวจะถูกกำจัดไปเป็นไอเสีย และไม่ถูกส่งต่อไปที่ส่วนแยกเชื้อเพลิง
- 3. ส่วนแยกเชื้อเพลิงมีหน้าที่แยกธาตุแต่ละกลุ่มออกเป็น 2 กลุ่มย่อย จะแยกอย่างไรก็ได้ โดยที่จะต้องมีอย่าง น้อย 1 ธาตุในแต่ละกลุ่มย่อย (เช่น ถ้ามี 2 กลุ่ม ธาตุจะถูกแบ่งเป็นกลุ่มย่อยได้ไม่เกิน 4 กลุ่ม) จากนั้นส่งแต่ละกลุ่ม ย่อยที่แบ่งแล้ว กลับไปที่ส่วนรับพลังงาน
- 4. ทำตามขั้นตอนที่ 2 และ 3 ไปเรื่อยๆจนกว่าธาตุทั้งหมดจะกลายเป็นไอเสียและนำมาใช้เป็นเชื้อเพลิงต่อไม่ ได้

ตัวอย่างเช่น ถ้ามีธาตุอยู่ 3 ชนิดที่ให้พลังงานดังนี้ 3 1 และ 5 หน่วย ธาตุทั้งสามจะอยู่ที่ส่วนรับพลังงานโดย พลังงานที่ได้จาก $\{3, 1, 5\}$ เท่ากัน 3+1+5=9 หน่วย จากนั้นถูกส่งไปที่ส่วนแยกเชื้อเพลิง ที่ส่วนนี้เราจะแยก อย่างไรก็ได้ เช่น $\{3, 1\}$ $\{5\}$ หรือ $\{3\}$ $\{1, 5\}$ หรือ $\{1\}$ $\{3, 5\}$ สมมติว่าแยกเป็น $\{1\}$ $\{3, 5\}$ ทั้งสองกลุ่มจะถูกส่งกลับไปที่ ส่วนรับพลังงานอีกครั้ง โดยจะได้พลังงานจาก $\{1\}=1$ หน่วย และ $\{3, 5\}$ อีก 8 หน่วย จากนั้น $\{1\}$ จะถูกกำจัดเป็นไอ เสีย และ $\{3, 5\}$ ถูกส่งไปที่ส่วนแยกเชื้อเพลิง และถูกแยกเป็น $\{3\}$ $\{5\}$ ได้วิธีเดียว แล้วส่งทั้ง $\{3\}$ และ $\{5\}$ ไปที่ส่วนรับ พลังงานเป็นครั้งสุดท้ายได้พลังงาน 3 และ 5 ก่อนกลายเป็นไอเสียในที่สุด นั่นคือจะได้พลังงานรวมจากวิธีการนี้ ทั้งหมด 9+1+8+3+5=26

และคุณในฐานะโปรแกรมเมอร์ขององค์กรชั่วร้ายแห่งนี้มีหน้าที่ที่จะต้องเขียนโปรแกรมให้กับส่วนแยกเชื้อ เพลิงของเครื่องยนต์พิเศษชนิดนี้เพื่อให้ได้พลังงานมากที่สุด

ข้อมูลนำเข้า

บรรทัดแรกประกอบด้วยจำนวนเต็ม 1 จำนวนคือ N แทนจำนวนของธาตุทั้งหมด โดย 1 \le N \le 22500 บรรทัดที่ 2 ประกอบด้วยจำนวนเต็ม N จำนวน คือ E_i เป็นพลังงานของธาตุที่ i (1 \le i \le N, 1 \le E_i \le 10 9)

ข้อมูลส่งออก

เป็นจำนวนเต็มจำนวนเดียว คือ ค่าพลังงานรวมจากเครื่องยนต์ที่มากที่สุดที่เป็นไปได้

30% ของข้อมูลทดสอบ: N ≤ 1000 50% ของข้อมูลทดสอบ: N ≤ 20000

100% ของข้อมูลทดสอบ: ไม่มีเงื่อนไขเพิ่มเติม

ตัวอย่างข้อมูลนำเข้า	ตัวอย่างข้อมูลส่งออก
3 3 1 5	26
1 100	100