ODEVC

UNIT I

- 1. Define differential equation
- 2. Define order and degree of differential equation
- 3. Define exact differential equation and give an example
- 4. Define liner and Bernoullis differential equation and give an examples
- 5. State newtons law of cooling ,natural growth and Decay
- 6. Define Integrating factor.
- 7. Find the Integrating factor of $(x^2 + y^2) dx 2xydy = 0$.
- 8. Define Orthogonal Trajectories.
- 9. Find the orthogonal trajectories of the family of curves $x^2 + y^2 = a^2$

Unit-2

- 1. Find the general solution of $y^{11} \Box 4y^1 \Box 13y \Box 0$.
- 2. The Auxiliary equation of a D.E, f(m)=0, has the roots $\Box i\Box$. Write the Complementary function of the related Differential equation.
- 3. solve the D.E $\frac{d^2y}{dx^2} 5\frac{dy}{dx} + 7y = 0$
- 4. Find the Particular integral of $\Box D^2 \Box 9 \Box y \Box \cos 3x = \Box$
- 5. Find the Particular integral of $\Box D \Box 1 \Box^2 y \Box e^{2x}$.
- 6. Find the complementary function of $\frac{d^3y}{dx^3} + 8y = 0$
- 7. Define Wronskian of the functions u(x), v(x), Also find the Wronskian of Sin ax, Cos ax.
- 8. Find $\frac{1}{p}(\sin 3x)$
- 9. Find the general solution of $y^{11} \Box y^1 \Box e^{\Box x}$.
- 10. If m be the repeated root of Auxiliary equation k times, and n be non-repeated root, then write the Complementary function of the D. E.
- 11. Write the real and imaginary parts of e^{imx} .

UNIT-3

- 1. Define Laplace transformation.
- 2. Write the linearity property in Laplace transforms.
- 3. State First Shifting Theorem.
- 4. Find the Laplace transform of sin3t cos2t.
- 5. Find $L\{2\cos 5t 3\sin 3t\}$.
- 6. State Convolution Theorem.
- 7. Define Unit step function and find its Laplace transform.
- 8. State Second Shifting theorem.
- 9. Write the Laplace transform of periodic function f(t) with period T
- 10. Find the Laplace transform of e^{4t} sin2t

UNIT-4

- 1. Define Gradient of a scalar point function.
- 2. Define Solenoidal vector.
- 3. If $\bar{r} = x\bar{\iota} + y\bar{\jmath} + z\bar{k}$ show that div $\bar{r} = 3$.
- 4. Find $\nabla(x^2 yz + z^2)$.
- 5. Define Irrotational vector.
- 6. If $\bar{r} = x\bar{\imath} + y\bar{\jmath} + z\bar{k}$ show that curl $\bar{r} = 0$.
- 7. Find curl F when $F = 3x^2i + (2xz y)j + zk$
- 8. Show that $f = (x + 3y)\overline{t} + (y 3z)\overline{j} + (x 2z)\overline{k}$ is solenoidal.
- 9. Define directional derivative of the function
- 10. Find a unit normal vector to the given surface $x^2y + 2xz = 4$ at the point (2, -2, 3).

UNIT-5

- 1. Define line integral.
- 2. State Gauss Divergence theorem.
- 3. State Stoke's theorem.
- 4. Express the equation $x^2+y^2+z^2=a^2$ in spherical polar coordinates
- 5. State Greens theorem.