Type-checking Linearity in Core: Semantic Linearity for a Lazy Optimising Compiler

Rodrigo Mesquita

Advisor: Bernardo Toninho

Haskell has Linear Types!

Haskell has Linear Types!
A linear function — consumes its argument *exactly once*

Haskell has Linear Types!
A linear function — consumes its argument *exactly once*

```
bad :: Ptr \multimap IO ()
bad x = \mathbf{do}
free x
free x
```

Haskell has Linear Types!
A linear function — consumes its argument *exactly once*

```
bad :: Ptr \longrightarrow IO ()

bad x = \mathbf{do}

free x

free x
```

$$ok :: Ptr \multimap IO ()$$

 $ok x = free x$

Haskell

Core is both lazy and typed

Core is both lazy and typed

Core is both lazy and typed

Core should be both lazy and linearly typed

So, why isn't Core linear?

Optimised programs stop *looking* linear

So, why isn't Core linear?

Optimised programs stop looking linear

let
$$y = free x in y$$

 \Longrightarrow
let $y = free x in free x$

So, why isn't Core linear?

Optimised programs stop looking linear

let
$$y = free x in y$$

 \Longrightarrow
let $y = free x in free x$

Linearity is ignored in Core, or most programs would be rejected

• Programs are still linear *semantically* because of laziness

- Programs are still linear semantically because of laziness
- Key insight: Under lazy evaluation,

syntactic occurrence \Rightarrow consuming a resource syntactic linearity \neq semantic linearity

- Programs are still linear semantically because of laziness
- Key insight: Under lazy evaluation,
 syntactic occurrence ⇒ consuming a resource
 syntactic linearity ≠ semantic linearity
- We type syntactic linearity in Core, but that is not enough

- Programs are still linear semantically because of laziness
- Key insight: Under lazy evaluation,
 syntactic occurrence ⇒ consuming a resource
 syntactic linearity ≠ semantic linearity
- We type syntactic linearity in Core, but that is not enough
- Optimisations push laziness x linearity to the limit

Our Contributions

• Linear Core: a type system that understands semantic linearity in the presence of laziness

Our Contributions

- Linear Core: a type system that understands semantic linearity in the presence of laziness
- We proved Linear Core and multiple optimising transformations to be sound

Our Contributions

- Linear Core: a type system that understands semantic linearity in the presence of laziness
- We proved Linear Core and multiple optimising transformations to be sound
- We implemented Linear Core as a GHC plugin

Semantic Linearity, by example

Semantic Linearity: Lets

```
let y = free ptr
in if condition
  then y
  else return ptr
```

Semantic Linearity: Lets

```
let y = free ptr
in if condition
  then y
  else return ptr
```

Resources in lets are only consumed if the binder is evaluated

case
$$(x, y)$$
 of $(a, b) \rightarrow something \ a \ b$

case
$$(x, y)$$
 of $(a, b) \rightarrow something \ a \ b$

case
$$(x, y)$$
 of $(a, b) \rightarrow something \times y$

case
$$(x, y)$$
 of $(a, b) \rightarrow something \ a \ b$

case
$$(x, y)$$
 of $(a, b) \rightarrow something x y$

case *free*
$$x$$
 of *Result* $v \rightarrow free x$

case
$$(x, y)$$
 of $(a, b) \rightarrow something \ a \ b$

case free
$$x$$
 of Result $v \rightarrow free x$

case
$$(x, y)$$
 of $(a, b) \rightarrow something \times y$

case use
$$x$$
 of Result $v \rightarrow ()$

case
$$(x, y)$$
 of $(a, b) \rightarrow something \ a \ b$

case
$$(x, y)$$
 of $(a, b) \rightarrow something x y$

case *free*
$$x$$
 of *Result* $v \rightarrow free x$

case use
$$x$$
 of Result $v \rightarrow ()$

Resources are kind of consumed if the expression is evaluated

Linear Core

```
let y_{\{ptr\}} = free \ ptr
in if condition
then y_{\{ptr\}}
else return ptr
```

```
let y_{\{ptr\}} = free \ ptr
in if condition
then y_{\{ptr\}}
else return ptr
```

```
\cdot; ptr \vdash \mathbf{let} \ y = free \ ptr \ \mathbf{in} \ \dots
```

```
let y_{\{ptr\}} = free \ ptr
in if condition
then y_{\{ptr\}}
else return ptr
```

```
\cdot; ptr \vdash free \ ptr
\overline{\cdot; ptr \vdash \mathbf{let} \ y = free \ ptr \ \mathbf{in} \ \dots}
```

```
let y_{\{ptr\}} = free \ ptr
in if condition
then y_{\{ptr\}}
else return ptr
```

```
y:_{\{ptr\}}; ptr \vdash free \ ptr
y:_{\{ptr\}}; ptr \vdash \mathbf{if} \ condition \dots
y:_{\{ptr\}}; ptr \vdash \mathbf{let} \ y = free \ ptr \ \mathbf{in} \dots
```

Linear Core: Lets

```
let y_{\{ptr\}} = free \ ptr
in if condition
then y_{\{ptr\}}
else return ptr
```

```
y:_{\{ptr\}}; ptr \vdash free \ ptr
y:_{\{ptr\}}; ptr \vdash \mathbf{if} \ condition...
y:_{\{ptr\}}; ptr \vdash \mathbf{let} \ y = free \ ptr \ \mathbf{in} \ ...
```

Let-binders don't consume resources

- Annotate *let*-vars with linear resources (Δ) used in its body
- ullet Using a *let*-var equates to using its annotated context (Δ)

Case scrut evaluate to WHNF, unless they are already in WHNF

Case scrut evaluate to WHNF, unless they are already in WHNF

case
$$(x, y)$$
 of $(a, b) \rightarrow something \times y$

Case scrut evaluate to WHNF, unless they are already in WHNF

case
$$(x, y)$$
 of $(a, b) \rightarrow something \times y$

case *free*
$$x$$
 of *Result* $v \rightarrow free x$

Case scrut evaluate to WHNF, unless they are already in WHNF

case
$$(x, y)$$
 of $(a, b) \rightarrow something \times y$

case free
$$x$$
 of Result $v \rightarrow$ free x

Key idea: We need to branch on WHNF-ness

case
$$(x, y)$$
 of $(a_{\{x\}}, b_{\{y\}}) \rightarrow use \times y$

case
$$(x, y)$$
 of $(a_{\{x\}}, b_{\{y\}}) \rightarrow use \times y$

$$\overline{\cdot; x, y \vdash \mathbf{case}\ (x, y)\ \mathbf{of}\ (a, b) \rightarrow \ldots}$$

case
$$(x, y)$$
 of $(a_{\{x\}}, b_{\{y\}}) \rightarrow use \times y$

$$\frac{\cdot; x, y \vdash (x, y)}{\cdot; x, y \vdash \mathsf{case}\; (x, y) \; \mathsf{of}\; (a, b) \to \dots}$$

case
$$(x, y)$$
 of $(a_{\{x\}}, b_{\{y\}}) \rightarrow use \times y$

$$\frac{\cdot; x, y \vdash (x, y)}{\cdot; x, y \vdash \mathsf{case}\; (x, y) \; \mathsf{of}\; (a, b) \to \dots}$$

- Scrutinee resources are available in the body
- Pattern variables are annotated with corresponding scrutinee variables

case
$$(x, y)$$
 of $(a_{\{x\}}, b_{\{y\}}) \rightarrow use \times y$

$$\frac{\cdot; x, y \vdash (x, y)}{a:_{\{x\}}, b:_{\{y\}}; x, y \vdash use \ x \ y} \cdot; x, y \vdash case \ (x, y) \ of \ (a, b) \rightarrow \dots$$

- Scrutinee resources are available in the body
- Pattern variables are annotated with corresponding scrutinee variables

```
case free x of Result v \rightarrow free x
```

```
case free x of Result y \rightarrow free x
```

```
\cdot; x \vdash case free x of ...
```

case free
$$x$$
 of Result $v \rightarrow$ free x

$$\cdot$$
; $x \vdash free \ x$
 \vdots ; $x \vdash case \ free \ x \ of \dots$

case free
$$x$$
 of Result $v \rightarrow$ free x

$$\frac{\cdot; x \vdash \textit{free } x}{\cdot; x \vdash \textit{case free } x \; \textit{of} \; \dots}$$

Scrutinee resources are irrelevant in the body

- They cannot be instantiated with *Var*
- But must still be used exactly once

case free
$$x$$
 of Result $v \rightarrow$ free x

$$\frac{v:_{\{[x]\}}; [x] \vdash free \ x}{v:_{\{[x]\}}; [x] \vdash free \ x}$$

$$\vdots; x \vdash \mathbf{case} \ free \ x \ \mathbf{of} \ \dots$$

Scrutinee resources are irrelevant in the body

- They cannot be instantiated with *Var*
- But must still be used exactly once

Metatheory: Linear Core

- Not obvious whether these rules make sense together
- We proved the system is type safe via preservation + progress

Metatheory: Linear Core

- Not obvious whether these rules make sense together
- We proved the system is type safe via preservation + progress
 - Irrelevance lemma
 - Linear-var substitution lemma
 - + substitution on case alternatives
 - Δ-var substitution lemma
 - + substitution on case alternatives
 - Unr-var substitution lemma
 - + substitution on case alternatives

Metatheory: Optimising Transformations

- Inlining
- β -reduction
- β -reduction with sharing
- β -reduction for multiplicity abstractions
- Case-of-known-constructor
- Full laziness
- Local transformations (three of them)
- η -expansion
- η -reduction
- Binder swap
- Reverse binder swap (contentious!)
- Case-of-case

GHC Plugin: Linear Core Implementation

We implemented Linear Core as a GHC plugin

Library	Total Accepted	Total Rejected	Unique Rejected	Linear modulo Call-by-name	Linear Rejected	¬ Linear Rejected	Unknown Rejected
linear-smc	19438	4	1	1	0	0	0
priority- sesh	6781	19	1	0	0	0	1
linear-base	112311	538	87	10	8	2	67

Figure: Linear Core Plugin on Linear Libraries

• Linear Core is a suitable type system for Core, as it understands the interaction between linearity and laziness that the optimiser pushes to the limit

- Linear Core is a suitable type system for Core, as it understands the interaction between linearity and laziness that the optimiser pushes to the limit
- Not every single program is accepted by Linear Core
 - Future work: multiplicity coercions
 - Discuss linearity modulo call-by-name
 - Iron out quirks (rewrite rules, ...)

- Linear Core is a suitable type system for Core, as it understands the interaction between linearity and laziness that the optimiser pushes to the limit
- Not every single program is accepted by Linear Core
 - Future work: multiplicity coercions
 - Discuss linearity modulo call-by-name
 - Iron out quirks (rewrite rules, ...)
- Builds on the shoulders of Linear Haskell and Linear Mini-Core

- Linear Core is a suitable type system for Core, as it understands the interaction between linearity and laziness that the optimiser pushes to the limit
- Not every single program is accepted by Linear Core
 - Future work: multiplicity coercions
 - Discuss linearity modulo call-by-name
 - Iron out quirks (rewrite rules, ...)
- Builds on the shoulders of Linear Haskell and Linear Mini-Core
- There's much more in the thesis!

Fim

 $(\lambda x. \mathbf{case} \ x \mathbf{of} \ _ \to x)$

$$(\lambda x. \mathbf{case} \ x \mathbf{of} \ _ \to x)$$
 $\Longrightarrow_{\mathrm{call} \ \mathrm{by} \ \mathrm{name}}$

```
(\lambda x. \mathbf{case} \ x \mathbf{of} \ \_ \to x)
\Longrightarrow_{\mathrm{call} \ \mathrm{by} \ \mathrm{name}}
\mathbf{case} \ \mathit{free} \ x \mathbf{of} \ \_ \to \mathit{free} \ x
```

```
(\lambda x. \mathbf{case} \ x \mathbf{of} \ \_ \to x)
\Longrightarrow_{\mathrm{call} \ \mathrm{by} \ \mathrm{name}}
\mathbf{case} \ \mathit{free} \ x \mathbf{of} \ \_ \to \mathit{free} \ x
\Longrightarrow_{\mathrm{call} \ \mathrm{by} \ \mathrm{need}}
```

```
(\lambda x. \ \mathbf{case} \ x \ \mathbf{of} \ \_ \to x)
\Longrightarrow_{\mathrm{call} \ \mathrm{by} \ \mathrm{name}}
\mathbf{case} \ \mathit{free} \ x \ \mathbf{of} \ \_ \to \mathit{free} \ x
\Longrightarrow_{\mathrm{call} \ \mathrm{by} \ \mathrm{need}}
\mathbf{let} \ y = \mathit{free} \ x \ \mathbf{in} \ \mathbf{case} \ y \ \mathbf{of} \ \_ \to y
```

System FC

 System F_C is a polymorphic lambda calculus with explicit type-equality coercions

System FC

- System F_C is a polymorphic lambda calculus with explicit type-equality coercions
- A coercion σ₁ ~ σ₂ can be used to safely cast an expression e of type σ₁ to type σ₂, written e ▶ σ₁ ~ σ₂.

System FC

Definition (Syntax)

$$u ::= x \mid K$$
 Variables and data constructors
 $e ::= u$ Term atoms
 $| \Lambda a:\kappa. \ e \mid e \varphi$ Type abstraction/application
 $| \lambda x:\sigma. \ e \mid e_1 \ e_2$ Term abstraction/application
 $| \mathbf{let} \ x:\sigma = e_1 \ \mathbf{in} \ e_2$
 $| \mathbf{case} \ e_1 \ \mathbf{of} \ \overline{p \to e_2}$
 $| e \blacktriangleright \gamma$ Cast
 $| \mathbf{e} \ \mathbf{k} \ \overline{b:\kappa} \ \overline{x:\sigma}$ Pattern