LECTURE 4

§10. EXAMPLES (continuation)

Definition 2. The mean of the posterior distribution $f(\theta|x_1, x_2, ..., x_n)$ denoted by θ^* , is called Bayes estimate for θ .

Example 10. Using a random sample of size 2, estimate the proportion p of defectives produced by a machine when we assume our prior distribution to be

$$p$$
 0.1 0.2 $f(p)$ 0.6 0.4

Solution: Let X be the number of defectives in our sample. Then the probability distribution for our sample is

$$f(x|p) = {2 \choose x} p^x (1-p)^{2-x}, \qquad x = 0, 1, 2.$$

From the fact that

$$f(x,p) = f(x|p) f(p),$$

we can set up the following table:

$$f(x,p)$$
 0 1 2
0.1 0.486 0.108 0.006
0.2 0.256 0.128 0.016

The marginal distribution for X is then

We obtain the posterior distribution from the formula f(p|x) = f(x,p)/g(x). Hence we have

$$p$$
 0.1
 0.2

 $f(p|x=0)$
 0.655
 0.345

 p
 0.1
 0.2

 $f(p|x=1)$
 0.458
 0.542

 p
 0.1
 0.2

 $f(p|x=2)$
 0.273
 0.727

from which we get

$$p^* = (0.1)(0.655) + (0.2)(0.345) = 0.1345$$
, if $x = 0$
= $(0.1)(0.458) + (0.2)(0.542) = 0.1542$, if $x = 1$
= $(0.1)(0.273) + (0.2)(0.727) = 0.1727$, if $x = 2$.

Example 11. Repeat the previous example using the uniform prior distribution f(p) = 1, 0 .

Solution: As before, we find that

$$f(x|p) = {2 \choose x} p^x (1-p)^{2-x}, \quad x = 0, 1, 2.$$

Now

$$f(x,p) = f(x|p) f(p) = {2 \choose x} p^x (1-p)^{2-x} =$$

$$= (1-p)^2, \quad x = 0, \quad 0
$$= 2 p(1-p), \quad x = 1, \quad 0
$$= p^2, \quad x = 2, \quad 0$$$$$$

and the marginal distribution for X is obtained by evaluating the integral

$$g(x) = \int_0^1 (1-p)^2 dp = \frac{1}{3},$$
 for $x = 0$

$$= \int_0^1 2 p (1-p) dp = \frac{1}{3}, \quad \text{if } x = 1$$
$$= \int_0^1 p^2 dp = \frac{1}{3}, \quad \text{if } x = 2.$$

The posterior distribution is then

$$f(p|x) = \frac{f(x,p)}{g(x)} = 3\binom{2}{x} p^x (1-p)^{2-x} =$$

$$= 3(1-p)^2, \quad x = 0, \quad 0
$$= 6p(1-p), \quad x = 1, \quad 0
$$= 3p^2, \quad x = 2, \quad 0$$$$$$

from which we evaluate the point estimate of our parameter to be

$$p^* = 3 \int_0^1 p(1-p)^2 dp = \frac{1}{4}, \quad \text{if } x = 0$$
$$= 6 \int_0^1 p^2 (1-p) dp = \frac{1}{2}, \quad \text{if } x = 1$$
$$= 3 \int_0^1 p^3 dp = \frac{3}{4}, \quad \text{if } x = 2.$$

Comparing these estimates with the values obtained by classical procedures, we see that p^* and \hat{p} are equivalent if x = 1, but that $\hat{p} = 0$ for x = 0 and $\hat{p} = 1$ for x = 2.

A $(1-\alpha)100\%$ Bayesian interval for the parameter θ can be constructed by finding an interval centered at the posterior mean that contains $(1-\alpha)100\%$ of the posterior probability.

Definition 3. The interval $a < \theta < b$ will be called a $(1 - \alpha)100\%$ Bayes interval for θ if

$$\int_{\theta^*}^b f(\theta|x_1, x_2, ..., x_n) d\theta = \int_a^{\theta^*} f(\theta|x_1, x_2, ..., x_n) d\theta = \frac{1 - \alpha}{2}.$$