Cherry-Picking Evaluation Metrics: Report

Team: team_49

Student IDs: 17316735, 17311349, 17311213

Total Time Required (in hours): 25

Cherry Picking Evaluation Metrics (Rank Frequency) 12 10 Frequency 8 6 4 2 **#** 0 Rank 1 Rank 3 Rank 4 Rank 2 Random forest 0 0 # Decision Tree 9 1 0 0 = K Nearest Neoghbor 0 **♦** Logistics 0 10

Findings/Answer (200-300 words)

Our observation showed that Decision Tree algorithm performed better than our Novel Algorithm Random Forest overall metrics.

 According to our results on skin-no-skin datasets- Random Forest, Decision Tree and K-Nearest Neighbor have performed consistently on all evaluation metrics. However Logistic regression failed on the consistent performance on all metrics. On Sum-without-noise database, we observed different performances of the K-Nearest Algorithm and Random forest algorithms on different metrics. Where we can observe performance for K-Nearest Algorithm at 0.9916 and 0.9926 on f1_weighted and accuracy metrics respectively, we make completely opposite observations on f1_macro, precison_macro, and recall_macro evaluating at 0.686, 0.68 and 0.69 respectively.

• The same was true for **Logistic regression**, with f1_macro evaluating to 0.49 vs 0.87, precision_macro evaluating to 0.61 vs 0.87 and recall_macro evaluating to 0.45 vs 0.88 on the sum_without_noise and skin-no-skin datasets respectively, while all other algorithms performed consistently well in both the datasets on all metrics.

Therefore, we can conclude that algorithm performance cannot be judged using a single evaluation metric. Each metric evaluates algorithm differently focusing on different parts.

Additional Information

- Taking up the whole records from the dataset for execution had taken long execution time so we have considered 500,000 of rows for creating our dataset.
- Random Forest was taken as Novel algorithm and remaining 3 are the baseline
- Sum dataset was not suitable Logistics Regression Algorithm
- Unfortunately, we could not come up with any made-up metrics

Data, Algorithms, etc.

Novel Algorithm	Random forest
Baseline Algorithm 1	Decision Tree
Baseline Algorithm 2	K Nearest Neighbor - 6
Baseline Algorithm 3	Logistics
Dataset 1	Skin-noskin
Dataset 2	Sum dataset(Without Noise)
Common Metric 1	f1_macro
Common Metric 2	f1_weighted
Common Metric 3	precision_macro
Common Metric 4	recall_macro
Common Metric 5	accuracy
Made Up Metric 1	None
Made Up Metric 2	None

Contributions (max. 200 words)

17311213 implemented Decision Tree Algorithm

17311349 implemented Random forest and Logistic Regression

17616735 implemented K-Nearest Algorithm with 6 neighbors.

Everyone contributed equally for report generation.