Software Qualities: Time Efficiency

Marco Faella

Software Qualities

Summary

- 1. Software qualities and a problem to solve
- 2. Reference implementation
- 3. Time efficiency
- 4. Space efficiency
- 5. Reliability via monitoring
- 6. Reliability via testing
- 7. Readability
- 8. Thread safety
- 9. Generality
- A. Succinctness
- B. The ultimate water container

Code at: https://bitbucket.org/mfaella/exercisesinstyle

Water containers

An API for water containers

double getAmount()

void addWater(double amount)

void connectTo(Container other)

A use case

A use case

```
Container a = new Container(),
          b = new Container(),
          c = new Container(),
          d = new Container();
a.addWater(12);
d.addWater(8);
a.connectTo(b);
System.out.println(a.getAmount()); → 6
b.connectTo(c);
System.out.println(a.getAmount()); → 4
```


A use case

```
Container a = new Container(),
          b = new Container(),
          c = new Container(),
          d = new Container();
a.addWater(12);
d.addWater(8);
a.connectTo(b);
System.out.println(a.getAmount()); → 6
b.connectTo(c);
System.out.println(a.getAmount()); → 4
b.connectTo(d);
System.out.println(a.getAmount()); → 5
```


60 seconds

to imagine your implementation

Reference implementation

The **fields**:

double amount
Set<Container> group

Amount of water in this container

Containers connected *directly or indirectly* to this one, including this one

The **constructor**:

```
public Container() {
    group = new HashSet<Container>();
    group.add(this);
}
```

Memory layout

Connecting two containers

```
public void connectTo(Container other) {
                                                   If they are already
                                                   connected, do nothing
   if (group==other.group) return; —
   int size1 = group.size(),
       size2 = other.group.size();
   double tot1 = amount * size1,
           tot2 = other.amount * size2,
           newAmount = (tot1 + tot2) / (size1 + size2);
   group.addAll(other.group);
                                                   Merge the two groups
   for (Container c: other.group)
                                             Update group of containers
      c.group = group;
                                             connected with other
   for (Container c: group) -
      c.amount = newAmount;
                                             Update amount of all newly
                                             connected containers
```

Time Efficiency

Time efficiency in one slide

Step 0: Do you really need more speed?

Step 1: Asymptotic complexity

Trend for increasing size of the inputs

Step 2: Profiling and optimizing

- 1. Profiling \rightarrow guess, estimate, or measure the following:
 - Usage profile: How often do the clients call each method?
 - **Runtime** profile: Which methods actually take more time?
- Optimize the most common/expensive method(s)

Complexity of reference implementation

Method	Time complexity
getAmount	O(1)
connectTo	O(n)
addWater	O(n)

Can we do better?

And what does "better" mean?

Complexity of multiple methods

Reference:

Method	Time complexity
getAmount	O(1)
connectTo	O(n)
addWater	O(n)

??
incomparable

Alternative 2:

Method	Time complexity
getAmount	O(n)
connectTo	O(1)
addWater	O(1)

Alternative 1:

Method	Time complexity
getAmount	O(1)
connectTo	O(n)
addWater	O(1)

Dominance is a *partial order*

We want: not dominated by anything (*Pareto optimal*)

Can we add water in constant time?

Method	Time complexity
getAmount	O(1)
connectTo	O(n)
addWater	$O(n) \leftarrow O(1)$

Separate group objects

```
A single field:
   Group group = new Group(this);
A nested class:
   private static class Group {
      double amountPerContainer;
      Set<Container> members;
      Group(Container c) {
         members = new HashSet<>();
         members.add(c);
```

[Speed1]

Memory layouts

Can we add water and connect in constant time?

Method	Time complexity
getAmount	O(n)
connectTo	O(1)
addWater	O(1)

Reference:

Method	Time complexity
getAmount	O(1)
connectTo	O(n)
addWater	O(n)

Yes! Circular lists + laziness

[Speed2]

Two circular lists can be merged in constant time

Complexity of Speed2

Method	Time complexity	
getAmount	O(n) Dis	stribute water
connectTo	(1/1)	rge 2 circular lists, don't uch water amounts
addWater	O(1) — Ac	ld water <i>locally</i>

Implementation of Speed2

```
The fields:
    double amount;
    Container next;

Connecting two containers:

    public void connectTo(Container other) {
        Container oldNext = next;
        next = other.next;
        other.next = oldNext;
}
```

Warning

We are not checking if *this* and *other* are already connected! (And we cannot check in constant time)

Can we do *everything* in constant time?

Method	Time complexity
getAmount	O(1)
connectTo	O(1)
addWater	O(1)

No, but...

Union-find trees

[Speed3]

- Classical data structure for maintaining disjoint sets
- Given a set of elements e₁, ..., e_n
- Initially, each element is isolated (a singleton)
- **Union** operation: Given two elements, *merge their sets*
- **Find** operation: Given an element, obtain the *representative* of its set

 To check if two elements are in the same set, check if their representatives are the same

Union-find trees: implementation

- Each set is a *parent-pointer tree*
- Each node has three fields: amount, parent, size

Implementation of Speed3

The fields:

```
double amount;
Container parent = this;
int size = 1;
```

No constructor is needed

Groups of containers as union-find trees

- **getAmount** (*find* operation):
 - find the root of that tree
 - return the amount field of the root
 - while applying path compression

- **connectTo** (*union* operation):
 - find the roots of both trees (and check that they are different)
 - merge the two trees by turning one root into a child of the other root
 - while applying the *link-by-size policy*

Link-by-size policy

When merging two trees,

link the smallest one to the root of the largest one

Link-by-size policy: worst case

Link-by-size ensures logarithmic worst-case height

Figure from Seriously Good Software, by M. Faella © 2020 Manning Publications

Path compression

When navigating from a node to the root, transform each node along the path into a **direct child of the root**

Path compression: implementation

```
public double getAmount() {
   Container root = findRootAndCompress();
   return root.amount;
}
```

```
private Container findRootAndCompress() {
   if (parent != this)
     parent = parent.findRootAndCompress();
   return parent;
}
```


Worst-case complexities

Method	Time complexity
getAmount	$O(\log n)$
connectTo	$O(\log n)$
addWater	$O(\log n)$

That doesn't seem fair...

A reminder: types of complexity bounds

Worst-case complexity Worst possible input/use case

Average-case complexity Average over a given *distribution* of inputs

Amortized complexity Average over a long sequence of operations

For algorithms that make *investments* for a future *benefit*

Amortized Complexity

Amortized complexity

- Fix a **sequence of n operations** on a data structure
- Compute its total cost T(n)
- The amortized complexity of the sequence is T(n)/n
 - Every step has average cost T(n)/n

ArrayList has initial capacity 10

It grows when full:

```
int newCapacity = oldCapacity + (oldCapacity >> 1);
...
elementData = Arrays.copyOf(elementData, newCapacity);
```

What's the complexity of insertion (method add)?

- Worst-case: linear
- Amortized: ??

Consider a sequence of n insertions

$$\text{Total cost:} \quad \cos(n) = \underbrace{1+1+\ldots+1}_{10 \text{ adds}} + \underbrace{15}_{\text{grow}} + \underbrace{1+1+\ldots+1}_{5 \text{ adds}} + \underbrace{22}_{\text{grow}} + 1 + 1 + \ldots$$

Let k be the number of "grow" steps during n insertions:

$$10 * 1.5^k \ge n$$
$$k \ge \log_{1.5} \frac{n}{10}$$

So, k is the smallest integer that is at least $\log_{1.5} \frac{n}{10}$

Consider a sequence of n insertions

Total cost:
$$cost(n) = \underbrace{1+1+\ldots+1}_{10 \text{ adds}} + \underbrace{15}_{grow} + \underbrace{1+1+\ldots+1}_{5 \text{ adds}} + \underbrace{22}_{grow} + 1 + 1 + \ldots,$$

$$cost(n) = 10 + (15 + 5) + (22 + 7) + (33 + 11) + \dots
= 10 + (15 * 1 + 5 * 1) + (15 * 1.5 + 5 * 1.5) + (15 * (1.5)^2 + 5 * (1.5)^2) + \dots
= 10 + \sum_{i=0}^{k} (15 * (1.5)^i + 5 * (1.5)^i)
= 10 + 20 \sum_{i=0}^{k} (1.5)^i$$

$$cost(n) = 10 + 20\sum_{i=0}^{k} (1.5)^{i}$$

where $k = \log_{1.5} \frac{n}{10}$

Apply this formula:

$$\sum_{i=0}^{k} a^{i} = \frac{a^{k+1} - 1}{a - 1}$$

$$cost(n) = 10 + 20 * \frac{1.5^{\left(\log_{1.5} \frac{n}{10} + 1\right)} - 1}{1.5 - 1}
= 10 + 20 * \frac{1.5 * 1.5^{\left(\log_{1.5} \frac{n}{10}\right)} - 1}{0.5}
= 10 + 20 * 2 * \left(1.5 * \frac{n}{10} - 1\right)
= 10 + 60 * \frac{n}{10} - 40
= 6 * n - 30
= O(n).$$

Amortized complexity of dynamic resizing

- When you grow by any constant factor, the complexity of n insertions is linear in n
- So, the amortized complexity of a single insertion is constant (O(1))

This technique is **pervasive** in programming languages:

- In Java, this applies to ArrayList, HashMap and HashSet
- In C++, this applies to vector, unordered_map, unordered_set
- In Python, this applies to lists and dictionaries
- etc.

Back to union-find trees

• Thanks to the link-by-size policy and path compression, the complexity of any sequence of *m* find and union operations is *almost* linear in *m*

Theorem [Tarjan, 1975]

Any sequence of m union or find operations on n elements takes at most O(m $\alpha(n)$) time, where $\alpha()$ is the *inverse* Ackermann function.

- $\alpha(n)$ is at most 4 for all n up to 10^{80}
- Cost of a single operation is essentially constant

Amortized complexity of Speed3

Scenario	Amortized time complexity
A sequence of m operations on n containers	$O(m*\alpha(n))$

Inverse Ackermann function

Comparing implementations

(Bytes per container when 1000 containers are connected in 100 groups of 10)

Let's run it

Experiment 1:

20k constructor40k addWater20k connectTo20k getAmount

Version	Time (msec)
Reference	2 300
Speed1	26
Speed2	505
Speed3	6

Experiment 2:

20k constructor40k addWater20k connectTo1 getAmount

Version	Time (msec)
Reference	2300
Speed1	25
Speed2	4
Speed3	5

Let's Run It

- 1. Create 20k containers and add some water
- 2. Connect containers in 10K pairs
- 3. Add some water to each pair
- 4. Query the amount in each pair
- 5. Connect pairs until they are all connected, while adding water and querying the amount

Total: 20k constructor

40k addWater

20k connectTo

20k getAmount

Version	Time (msec)
Reference	2 300
Speed1	26
Speed2	505
Speed3	6

Let's Run It Again

- 1. Create 20k containers and add some water
- 2. Connect containers in 10K pairs
- 3. Add some water to each pair
- 4. Query the amount in each pair
- Connect pairs until they are all connected, while adding water and querying the amount
- 6. Query the final amount

Total: 20k constructor

40k addWater

20k connectTo

1 getAmount

Version	Time (msec)
Reference	2300
Speed1	25
Speed2	4
Speed3	5

Time efficiency: conclusions

Conclusion 0: Do you really need more speed?

Conclusion 1: Trust asymptotic complexity

In its various forms ...

Conclusion 2: Profiling and optimizing

- Pay attention to your usage profile
- Consider shifting the effort from one place to another

Further reading

Kevin Wayne's slides on union-find trees:

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/UnionFind.pdf