AMENDMENTS TO THE CLAIMS

- 1. (Currently Amended) A COS treatment apparatus for a gasified gas containing H₂S, H₂O, O₂, and CO, which comprises:
- a first reactor into which the gasified gas is to be introduced, the gas having a temperature of at least 300°C; and
- a second reactor located at a downstream side of a gasified gas flow with respect to the first reactor,

wherein the first reactor comprises an O₂ removal catalyst for accelerating the following reaction:

$$2H_2S + 2CO + O_2 \rightarrow 2COS + 2H_2O$$
,

the O_2 removal catalyst being a consisting of TiO_2 eatalyst carrying and Cr_2O_3 or consisting of TiO_2 and NiO_3 and

wherein the second reactor comprises a COS conversion catalyst.

2-3. (Cancelled)

- 4. (Original) The COS treatment apparatus according to claim 1, wherein said $\rm O_2$ removal catalyst is located in a higher-temperature region with respect to said COS conversion catalyst.
- 5. (Currently Amended) A COS treatment method for a gasified gas containing H₂S, H₂O, O₂, and CO, the method comprising:

removing O₂ from the gas by using [[a]] an O₂ removal catalyst consisting of TiO₂ entalyst earrying and Cr₂O₃ or consisting of TiO₂ and NiO at a gas temperature of at least 300°C to accelerate the following reaction:

$$2H_2S + 2CO + O_2 \rightarrow 2COS + 2H_2O$$
; and

after the removing of O_2 from the gas, converting COS contained in the gas to H_2S by using a COS conversion catalyst.

6-7. (Cancelled)

- 8. (Previously Presented) The COS treatment method according to claim 5, wherein said removing O₂ from the gas is performed at a higher temperature with respect to said converting COS to H₂S.
- 9. (Previously Presented) A COS treatment apparatus for a gasified gas containing H_2S , H_2O , O_2 , and CO, comprising:

a reactor into which the gasified gas is to be introduced, the reactor comprising a TiO_2 catalyst carrying Cr_2O_3 and BaO, wherein the TiO_2 catalyst carrying Cr_2O_3 and BaO is an O_2 removal catalyst for accelerating the following reaction:

$$2H_2S + 2CO + O_2 \rightarrow 2COS + 2H_2O$$

and wherein the TiO2 catalyst carrying Cr2O3 and BaO is a COS conversion catalyst.

10. (Previously Presented) A COS treatment method for a gasified gas containing H_2S , H_2O , O_2 , and CO, the method comprising:

removing O_2 from the gas by using a TiO_2 catalyst carrying Cr_2O_3 and BaO to accelerate the following reaction:

$$2H_2S + 2CO + O_2 \rightarrow 2COS + 2H_2O$$
; and

simultaneously converting COS to H₂S by using the TiO₂ catalyst carrying Cr₂O₃ and BaO.