Lógica y Computabilidad

Verano de 2023 Segundo Parcial

Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

	Nombre y Apellido:	Nota:			
⊳ Resolver cada ejercicio en una hoja separada .					
⊳ Poner nombre y LU en todas las hojas.					
⊳ Sólo puede usarse una hoja de apuntes personales.	Libreta Universitaria:	Ej. 1	Ej. 2	Ej. 3	Ej. 4
\triangleright Se debe justificar <u>todas</u> las respuestas.			_	_	_
⊳ El parcial se aprueba con al menos 2 ejercicios					
completamente bien resueltos.					

- **Ejercicio 1.** a) Sea \top un conectivo de aridad 0 tal que $v \models \top$ para toda valuación $v y \leftrightarrow$ un conectivo de aridad 2 tal que $v \models \alpha \leftrightarrow \beta$ sii o bien $v \models \alpha \ y \ v \models \beta$, o bien $v \not\models \alpha \ y \ v \not\models \beta$. Demostrar que $\{\top, \leftrightarrow\}$ no es un conjunto de conectivos adecuado.
 - b) Dados Γ_1, Γ_2 dos conjuntos de fórmulas cualesquiera de la lógica proposicional, decidir si son verdaderas o falsas las siguientes afirmaciones:
 - i) Si $\mathbf{Con}(\Gamma_1) = \mathbf{Con}(\Gamma_2)$, entonces $\mathbf{Con}(\Gamma_1 \cap \Gamma_2) = \mathbf{Con}(\Gamma_1 \cup \Gamma_2)$.
 - ii) Si $\mathbf{Con}(\Gamma_1 \cap \Gamma_2) = \mathbf{Con}(\Gamma_1 \cup \Gamma_2)$, entonces $\mathbf{Con}(\Gamma_1) = \mathbf{Con}(\Gamma_2)$.
- **Ejercicio 2.** Se tiene el lenguaje $\mathcal{L} = \{f, g, P\}$ con igualdad, donde los símbolos de función f y g son binarios, y también es binario el símbolo de predicado P. Dado el modelo \mathcal{M} con dominio \mathbb{N}_0 , que define a f como la división entera y a g como el resto de una división, mientras que P se define como la relación \leq habitual, se pide distinguir a cada uno de los elementos del dominio que son números primos.
- **Ejercicio 3.** Sea $\mathcal{Z} = \langle \mathbb{Z}; <_z \rangle$ el modelo usual de los enteros con la relación "es menor a". Considerar un lenguaje de primer orden con igualdad \mathcal{L} con un símbolo de predicado <. Sea la siguiente axiomatización $SQ_{\mathcal{Z}}$ que extiende a SQ con los siguientes axiomas:

$$\mathbf{S1}(\forall x) \neg (x < x) \qquad \qquad \mathbf{S4}(\forall x)(\forall y)(\neg (x = y) \rightarrow (x < y \lor y < x))$$

$$\mathbf{S2}(\forall x)(\forall y)(x < y \rightarrow \neg (y < x)) \qquad \qquad \mathbf{S5}(\forall x)(\exists y)x < y$$

$$\mathbf{S3}(\forall x)(\forall y)(\forall z)((x < y \land y < z) \rightarrow x < z)$$

- a) Demostrar que los axiomas S1 y S4 son válidos en Z.
- **b**) Dar una fórmula φ y un modelo \mathcal{M} tal que:
 - i) todos los axiomas de $SQ_{\mathcal{Z}}$ sean válidos en \mathcal{M} ;
 - ii) $\mathcal{M} \not\models \varphi$;
 - iii) $\mathcal{Z} \models \varphi$.
- c) Asumiendo que $SQ_{\mathcal{Z}}$ es correcto para \mathcal{Z} , demostrar que $SQ_{\mathcal{Z}}$ no es completa respecto a \mathcal{Z} .

Ejercicio 4. Dado el mismo lenguaje de PO \mathcal{L} y el modelo \mathcal{Z} definidos anteriormente:

- a) Demostrar que para todo $i \in \mathbb{N}$, existe una fórmula $\varphi_i(x,y)$ con dos variables libres x e y tal que para toda valuación $v, \mathcal{Z} \models \varphi_i(x,y)[v]$ si y sólo si hay exactamente i elementos que son menores que y y no menores que x.
- b) Demostrar que no es expresable en primer orden la proposición "Para todo par de enteros x e y, si x es menor que y entonces hay una cantidad finita de enteros que son menores que y y no menores que x".