МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ

МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (национальный исследовательский университет)

Институт №8 «Компьютерные науки и прикладная математика»

Кафедра 806 «Вычислительная математика и программирование»

Отчёт по лабораторным работам

по дисциплине «Системы программирования»

Студент группы М8О-201Б-21 Голов Александр Юрьевич
Принял:
Доцент кафедры 806
Киндинова Виктория Валерьевна

Дата:

Выполнил:

Практическая работа №1 (1-3 лаб.)

Лабораторные работы №1-2

Формулировка задания:

Спроектировать грамматику для трёх заданных паттернов. Составить наоснове разработанных регулярных грамматик конечные автоматы, распознающие эквивалентные им языки.

Спроектируем грамматику для заданного языка:5.2.

```
pattern = 192 \ .168 \ .1 \ .1 \ .168 \ .1 Автоматная грамматика:
```

```
\begin{split} L(\text{pattern}) &= L(\text{"192}.168.1.\text{\d}\{1,3\}\text{"}) = L(192.168.1.\{0\text{-}9\},\\ 192.168.1.(\{0\text{-}9\})^2,\\ 192.168.1.(\{0\text{-}9\})^3 \\ ) \\ G(T,\,V,\,P,\,S_0) &= G(\\ &\quad \{192.168.1.,\,0,\,1,\,2,\,3,\,4,\,5,\,6,\,7,\,8,\,9\},\\ &\quad \{S_0,\,A,\,B,\,C,\,D\},\\ &\quad \{p_1,\,p_2,\,p_3,\,p_4,\,p_5\},S_0 \\ ) \\ \end{split}
```

Правила регулярной грамматики: p_1 : $S_0 \rightarrow$

P₂:
$$\mathbf{A} \to 0\mathbf{B} \mid 1\mathbf{B} \mid ... \mid 9\mathbf{B} \quad p_3 : \mathbf{B} \to 0\mathbf{C} \mid 1\mathbf{C} \mid$$

... $\mid 9\mathbf{C} \mid \mathbf{C}p_4 : \mathbf{C} \to 0\mathbf{D} \mid 1\mathbf{D} \mid ... \mid 9\mathbf{D} \mid \mathbf{D}p_5 : \mathbf{D}$
 $\to \varepsilon$

Пример цепочек:

$$\mathbf{S_0} = >^1 192.168.1.\mathbf{A} = >^2 192.168.1.1\mathbf{B} = >^3 192.168.1.12\mathbf{C} = >^4 192.168.1.123\mathbf{D} = >^5 192.168.1.123$$

$$\mathbf{S_0} = >^1 192.168.1.\mathbf{A} = >^2 192.168.1.1\mathbf{B} = >^3 192.168.1.12\mathbf{C} = >^4 192.168.1.12\mathbf{D} = >^5 192.168.1.12$$

$$\mathbf{S_0} = >^1 192.168.1.\mathbf{A} = >^2 192.168.1.1\mathbf{B} = >^3 192.168.1.1\mathbf{C} = >^4 192.168.1.1\mathbf{D} = >^5 192.168.1.12$$

Конечный автомат:

$$\begin{split} L(KA) &= L(G) \\ KA &= (\textbf{Q}, \boldsymbol{\Sigma}, \boldsymbol{\delta}, \textbf{S}_0, \textbf{F}), \, \text{где} \\ \textbf{Q} &= \{\textbf{S}_0, \textbf{A}, \textbf{B}, \textbf{C} \ \textbf{q}_f\}, \, \boldsymbol{\Sigma} = \{0\text{-9}, \, 192.168.1.\}, \, \textbf{S}_0 = \textbf{S}_0, \, \textbf{F} = \textbf{q}_f, \\ \boldsymbol{\delta} &= \{ \\ 1. \, \, \delta(\textbf{S}_0, \, 192.168.1.) = \{\textbf{A}\}, \\ 2. \, \, \delta(\textbf{A}, \, 0) &= \{\textbf{B}\}, \end{split}$$

```
...
11. \ \delta(\mathbf{A}, 9) = \{\mathbf{B}\},
12. \ \delta(\mathbf{B}, 0) = \{\mathbf{C}\},
...
21. \ \delta(\mathbf{B}, 9) = \{\mathbf{C}\},
22. \ \delta(\mathbf{B}, \epsilon) = \{\mathbf{q}_{\mathbf{f}}\},
23. \ \delta(\mathbf{C}, 0) = \{\mathbf{D}\},
...
32. \ \delta(\mathbf{C}, 9) = \{\mathbf{D}\},
33. \ \delta(\mathbf{C}, \epsilon) = \{\mathbf{q}_{\mathbf{f}}\},
34. \ \delta(\mathbf{D}, \epsilon) = \{\mathbf{q}_{\mathbf{f}}\},
\}
```

Примеры конфигурации КА:

1. (S₀, 192.168.1.1)
$$\mid^1$$
 (A, 1) \mid^3 (B, $epsilon$) \mid^{22} (q_f, $epsilon$)

2. (**S**₀, 192.168.1.12)
$$| ^{1}$$
 (**A**, 12) $| ^{3}$ (**B**, 2) $| ^{14}$ (**C**, ε) $| ^{33}$ (**q**_f, ε)

3. (**S**₀, 192.168.1.123)
$$\mid$$
 (**A**, 123) \mid (**B**, 23) \mid (**C**, 3) \mid (**D**, ϵ) \mid (**q**_f, ϵ)

Рисунок 1 — Диаграмма автомата

Программа:

```
for (int i = 0; i < 10; i++)
    ka1.AddRule("A", i.ToString(), "B");

for (int i = 0; i < 10; i++)
    ka1.AddRule("B", i.ToString(), "C");

ka1.AddRule("B", "", "qf");

for (int i = 0; i < 10; i++)
    ka1.AddRule("C", i.ToString(), "D");

ka1.AddRule("C", "", "qf");

ka1.AddRule("D", "", "qf");
```

```
Enter line to execute 1:
192.168.1.25
Length: 12
i :12
curr: qf
chineSymbol belongs to language
```

Рисунок 2 — Вывод конечного автомата

Лемма о накачке:

Формальное утверждение. Длина накачки р принимается более длины самой длинной цепочки языка L, такое что цепочка w из L длины по меньшей мере р может быть записана как w = xyz, где y - это подцепочка, которую можно накачать (удалить или повторить произвольное число раз, так что результат останется в L).

```
\forall L \subseteq \Sigma^* (regular(L) => 1. любой язык L \subseteq \Sigma^* регулярный если 2. существует целое p \ge 1 такое что (\forall w \in L ( (|w| \ge p) => 3. для любой цепочки языка |w| \ge p (\exists x, y, z \in \Sigma^* (w = xyz => 4. найдется w = xyz такое что (|y| \ge 1^* |xy| \le p^* i \ge 0^* (xy^iz \in L)) 5. у повторяется i раз )) )) )) ), на x и z ограничений не накладывается. \forall L \subseteq \Sigma^* (regular(L) \Rightarrow (\exists p \ge 1 (\forall w \in L((|w| \ge p) \Rightarrow (\exists x, y, z \in \Sigma^* (w = xyz \Rightarrow (|y| \ge 1 \land |xy| \le p \land \forall i \ge 0 (xy^iz \in L)))))))))
```

```
1.1
Введите:
1 - Показать пример.
2 - Проверить цепочку.
3 - Завершить.
2
Введите строчку для проверки: 192.168.1.111
Проверить цепочку:
1 - на принадлежность регулярному языку
2 - на принадлежность кс-языку
3 - найти все повторения
Введите 1 или 2 или 3: 1
Для цепочки: 192.168.1.111
192.168.1. 1^2 1
Цепочка принадлежит регулярному языку
Вывести все повторения? (1 - да, 0 - нет): 1
192.168.1. 1^3
192.168 .1^2 1^2
192.168.1. 1^2 1
192.168 .1^2 11
```

Рисунок 3 – Лемма о накачке

Проектирование ДКА:

```
Automate definition:
Q: S0 A Baf af Caf Daf
Sigma: e 0 1 2 3 4 5 6 7 8 9 192.168.1.
00: S0
F: Baf af Caf Daf
DeltaList:
 delta(S0,192.168.1.,-> (A
 delta(A,0,-> (Bqf
 delta(Bqf,e,-> (qf
 delta(Bqf,0,-> (Cqf
 delta(Cqf,e,-> (qf
 delta(Cqf,0,-> (Dqf
 delta(Dqf,e,-> (qf
 delta(Cqf,1,-> (Dqf
 delta(Cqf,2,-> (Dqf
 delta(Cqf,3,-> (Dqf
 delta(Cqf,4,-> (Dqf
 delta(Cqf,5,-> (Dqf
 delta(Cqf,6,-> (Dqf
 delta(Cqf,7,-> (Dqf
 delta(Cqf,8,-> (Dqf
 delta(Cqf,9,-> (Dqf
 delta(Bqf,1,-> (Cqf
 delta(Bqf,2,-> (Cqf
 delta(Bqf,3,-> (Cqf
 delta(Bqf,4,-> (Cqf
 delta(Bqf,5,-> (Cqf
 delta(Bqf,6,-> (Cqf
 delta(Bqf,7,-> (Cqf
 delta(Bqf,8,-> (Cqf
 delta(Bqf,9,-> (Cqf
 delta(A,1,-> (Bqf
 delta(A,2,-> (Bqf
 delta(A,3,-> (Bqf
 delta(A,4,-> (Bqf
 delta(A,5,-> (Bqf
 delta(A,6,-> (Bqf
 delta(A,7,-> (Bqf
 delta(A,8,-> (Bqf
 delta(A,9,-> (Bqf
Enter line to execute:
192.168.1.1
Length: 11
i :11
curr: qf
chineSymbol belongs to language
```

Рисунок 4 – Детерменированный конечный автомат

7.1. pattern = $^{\prime\prime}+?\d\{0,2\}\-?\d\{4,5\}\-?\d\{5,6\}$

Автоматная грамматика:

$$\begin{split} L(\text{pattern}) &= L(\text{"}^+?\d\{0,2\}\-?\d\{4,5\}\-?\d\{5,6\}\") \\ G(T,\,V,\,P,\,S_0) &= G(\{+,\,\text{-},\,0,\,\dots,\,9\},\,\{S_0,\,A_0,\,A_1,\,A_2,\,B_0,\,\dots,\,B_5,\,C_0,\,\dots,\,C_6\},\,\{p_1,\,\dots,\,p_{17}\},\,S_0) \end{split}$$

Правила регулярной грамматики:

$$\begin{array}{l} p_1 \colon S_0 \! \to + A_0 \mid A_0 \\ \\ p_2 \colon A_0 \to 0 A_1 \mid \dots \mid 9 A_1 \mid A_1 \\ \\ p_3 \colon A_1 \to 0 A_2 \mid \dots \mid 9 A_2 \\ \\ p_4 \colon A_2 \to - B_0 \mid B_0 \\ \\ p_5 \colon B_0 \to 0 B_1 \mid \dots \mid 9 B_1 \\ \\ \dots \\ \\ p_9 \colon B_4 \to 0 B_5 \mid \dots \mid 9 B_5 \mid B_5 \\ \\ p_{10} \colon B_5 \to - C_0 \mid C_0 \\ \\ p_{11} \colon C_0 \to 0 C_1 \mid \dots \mid 9 C_1 \\ \\ \dots \\ \\ p_{16} \colon C_5 \to 0 C_6 \mid \dots \mid 9 C_6 \mid C_6 \\ \\ p_{17} \colon C_6 \to \epsilon \end{array}$$

Пример цепочек:

$$\begin{split} \mathbf{S_0} = >^1 + \mathbf{A_0} = >^2 + 9\mathbf{A_1} = >^3 + 91\mathbf{A_2} = >^4 + 91 - \mathbf{B_0} = >^5 + 91 - 96\mathbf{B_1} = >^6 + 91 - 96\mathbf{B_2} = >^7 + 91 - 967\mathbf{B_3} = >^8 + 91 - 9678\mathbf{B_4} = >^9 + 91 - 96789\mathbf{B_5} = >^{10} + 91 - 96789\mathbf{C_0} = >^{11} + 91 - 967896\mathbf{C_1} = >^{12} + 91 - 9678967\mathbf{C_2} = >^{13} + 91 - 96789671\mathbf{C_3} = >^{14} + 91 - 967896710\mathbf{C_4} = >^{15} + 91 - 9678967101\mathbf{C_5} = >^{16} + 91 - 9678967101\mathbf{C_6} = >^{17} + 91 - 9678967101 \end{split}$$

Конечный автомат:

$$\begin{split} L(KA) &= L(G) \\ KA &= (\mathbf{Q},\, \boldsymbol{\Sigma},\, \boldsymbol{\delta},\, \mathbf{S}_0,\, \mathbf{F}),\, \text{где} \\ \mathbf{Q} &= \{\,\, \mathbf{S}_0,\, \mathbf{A}_0,\, \mathbf{A}_1,\, \mathbf{A}_2,\, \mathbf{B}_0,\, ...,\, \mathbf{B}_5,\, \mathbf{C}_0,\, ...,\, \mathbf{C}_6,\, \mathbf{q}_f\}, \\ \boldsymbol{\Sigma} &= \{+,\, -,\, 0\text{-}9\}, & \mathbf{S}_0 &= \mathbf{S}_0, & \mathbf{F} &= \mathbf{q}_f, \end{split}$$

$$\begin{split} & \boldsymbol{\delta} = \{ \\ & 1. \ \delta(\mathbf{S_0}, +) = \{\mathbf{A_0}\}, \\ & 2. \ \delta(\mathbf{S_0}, \, \epsilon) = \{\mathbf{A_0}\}, \\ & 3. \ \delta(\mathbf{A_0}, \, 0) = \{\mathbf{A_1}\}, \\ & \cdots \\ & 13. \ \delta(\mathbf{A_0}, \, \epsilon) = \{\mathbf{A_1}\}, \end{split}$$

```
14. \delta(\mathbf{A_0}, \, \epsilon) = \{\mathbf{A_2}\},
15. \delta(\mathbf{A_1}, \, 0) = \{\mathbf{A_2}\},
...
25. \delta(\mathbf{A_2}, \, -) = \{\mathbf{B_0}\},
26. \delta(\mathbf{A_2}, \, \epsilon) = \{\mathbf{B_0}\},
27. \delta(\mathbf{B_0}, \, 0) = \{\mathbf{B_1}\},
...
77. \delta(\mathbf{B_4}, \, \epsilon) = \{\mathbf{B_5}\},
78. \delta(\mathbf{B_5}, \, -) = \{\mathbf{C_0}\},
79. \delta(\mathbf{B_5}, \, \epsilon) = \{\mathbf{C_0}\},
80. \delta(\mathbf{C_0}, \, 0) = \{\mathbf{C_1}\},
...
140. \delta(\mathbf{C_5}, \, \epsilon) = \{\mathbf{C_6}\},
141. \delta(\mathbf{C_6}, \, \epsilon) = \{\mathbf{q_f}\}
```

Примеры конфигурации КА:

```
\begin{array}{l} (\mathbf{S_0}, +91\text{-}9678967101) \mid ^{1}(\mathbf{A_0}, 91\text{-}9678967101) \mid ^{12}(\mathbf{A_1}, 1\text{-}9678967101) \mid ^{14}\\ (\mathbf{A_2}, -9678967101) \mid ^{25}(\mathbf{B_0}, 9678967101) \mid ^{36}(\mathbf{B_1}, 678967101) \mid ^{43}\\ (\mathbf{B_2}, 78967101) \mid ^{54}(\mathbf{B_3}, 8967101) \mid ^{65}(\mathbf{B_4}, 967101) \mid ^{76}(\mathbf{B_5}, 967101) \mid ^{79}\\ (\mathbf{C_0}, 967101) \mid ^{89}(\mathbf{C_1}, 67101) \mid ^{96}(\mathbf{C_2}, 7101) \mid ^{107}(\mathbf{C_3}, 101) \mid ^{111}(\mathbf{C_4}, 01) \mid ^{120}\\ (\mathbf{C_5}, 1) \mid ^{131}(\mathbf{C_6}, \epsilon) \mid ^{141}(\mathbf{q_f}, \epsilon) \end{array}
```


Рисунок 5 – Диаграмма преобразованного атвомата

Программа:

```
"B5", "C0", "C1", "C2", "C3", "C4", "C5", "C6", "qf"},
               new List<Symbol>() { "", "+", "-", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9" },
               new List<Symbol>() { "qf" },
"S0");
ka2.AddRule("S0", "+", "A0");
ka2.AddRule("S0", "", "A0");
for (int i = 0; i < 2; i++)
  for (int j = 0; j < 10; j++)
     ka2.AddRule("A" + i.ToString(), j.ToString(), "A" + (i + 1).ToString());
ka2.AddRule("A0", "", "A1");
ka2.AddRule("A0", "", "A2");
ka2.AddRule("A2", "-", "B0");
ka2.AddRule("A2", "", "B0");
for (int i = 0; i < 5; i++)
  for (int j = 0; j < 10; j++)
     ka2.AddRule("B" + i.ToString(), j.ToString(), "B" + (i + 1).ToString());
ka2.AddRule("B4", "", "B5");
ka2.AddRule("B5", "-", "C0");
ka2.AddRule("B5", "", "C0");
for (int i = 0; i < 6; i++)
  for (int j = 0; j < 10; j++)
     ka2.AddRule("C" + i.ToString(), j.ToString(), "C" + (i + 1).ToString());
ka2.AddRule("C5", "", "C6");
ka2.AddRule("C6", "", "qf");
```

```
Enter line to execute 2:
+91-9678967101
Length: 14
i :14
curr: qf
chineSymbol belongs to language
```

Рисунок 6 – Проверка цепочки на принадлежность к языку

Лемма о накачке:

```
1.1
Введите:
1 - Показать пример.
2 - Проверить цепочку.
3 - Завершить.
Введите строчку для проверки: +12-3344556677
Проверить цепочку:
1 - на принадлежность регулярному языку
2 - на принадлежность кс-языку
3 - найти все повторения
Введите 1 или 2 или 3: 1
Для цепочки: +12-3344556677
+12- 3^2 44556677
Цепочка принадлежит регулярному языку
Вывести все повторения? (1 - да, 0 - нет): 1
+12-33445566 7^2
+12- 3^2 44556677
+12-33 4^2 556677
+12-3344 5^2 6677
+12-334455 6^2 7^2
+12- 3^2 4^2 556677
+12- 3^2 445566 7^2
+12-33 4^2 5^2 6677
+12-33 4^2 5566 7^2
+12-3344 5^2 6^2 7^2
+12-334455 6^2 77
+12- 3^2 4^2 5^2 6677
+12- 3^2 4^2 5566 7^2
+12- 3^2 4455 6^2 7^2
+12-33 4^2 5^2 6^2 7^2
+12-3344 5^2 66 7^2
+12-3344 5^2 6^2 77
```

Рисунок 7 – Лемма о накачке для регулярного выражения

Практическая работа №2 (4-8 лаб.)

Лабораторные работы №4-8

Заданная грамматика:

 $G = \{(a, b, c, d, f, epsilon, z, r, t, g), (S, A, B, C, D, R, T, H, G, V), (A \rightarrow bC, B \rightarrow cA, C \rightarrow dD, D \rightarrow R, R \rightarrow f, S \rightarrow aABT, T \rightarrow epsilon, H \rightarrow z, G \rightarrow r, S \rightarrow gV, V \rightarrow Vt, V \rightarrow t), S\}$

Лабораторная работа №4: Устранить из КС-грамматики бесполезные символы и е-правила

Определение. Символ $a \in T \cup V$ называется *бесполезным* в КС-грамматике G, если он *непроизводящий* или *недостижимый*.

Рассмотрим алгоритмы и их применение.

1. Устранение непроизводящих символов

Определение. Нетерминальный символ $A \in V$ называется *производящим*, если из него можно вывести терминальную цепочку, т.е. если существует вывод $A \Rightarrow^+ \alpha$, где $\alpha \in T^+$. В противном случае символ называется непроизводящим.

Построить каноническую форму множества ситуаций.

Построить управляющую таблицу для функции перехода g(x) и действий f(u)

16.1 LR(0) using g(X), f(a)

16.2 LR(0) using g(X), f(a) example

16.3 LR(1) using g(X), f(a)

16.4 LR(1) using g(X), f(a) example

- 1. Составить множество V_p нетерминалов, для которых найдется хотя бы одно правило, правая часть которого не содержит нетерминалов.
- 2. Если найдено такое правило, что все нетерминалы, стоящие в его правой части уже занесены в $V_{\mathfrak{p}}$, то добавить в $V_{\mathfrak{p}}$ нетерминал, стоящий в его левой части.
- 3. Если на шаге 2, V_p больше не пополняется, то V_p содержит все производящие нетерминалы грамматики, а все нетерминалы не попавшие в него являются непроизводящими.

14

```
i = 0
  V_p^i = \emptyset
  do
     i = i + 1:
     for each (A \rightarrow \alpha \in P, \alpha \in (T \cup V^{i-1}_{p})^{+})
         if (A \notin V^{i-1}_{p})

V^{i}_{p} = V^{i-1}_{p} \cup \{A\}   //V^{i}_{p} = \{A \mid (A \rightarrow \alpha) \in P, \alpha \in (T \cup V^{i-1}_{p})^{+}\}
     end foreach
  while (V_p^i \neq V_p^{i-1})
  if (S \notin V_p^i) S - непроизводящий символ, то определить S \in V_p^i
   n = 0
   foreach (A \in V_p^i)
       if |\alpha| \ge n, (A \rightarrow \alpha \in P)) при n = 0 если есть A \rightarrow \epsilon
            n = |\alpha|
            S = A
       end
   end foreach
  end
1) V^1 = \{ \mathbf{R}, \mathbf{T}, \mathbf{H}, \mathbf{G}, \mathbf{V} \} – для этих нетерминалов нашлось хотя бы одно правило, правая часть
    которого не содержит нетерминалов
2) V^2 = \{R, T, H, G, V, D, S\} - если найдено такое правило, что все нетерминалы, стоящие в его
    правой части уже занесены в V, то добавить в V нетерминал, стоящий в его левой части
3) V^3 = \{R, T, H, G, V, D, S, C\}
4) V^4 = \{R, T, H, G, V, D, S, C, A\}
5) V^5 = \{R, T, H, G, V, D, S, C, A, B\} => все нетерминалы производящие
Тогда P' = P = \{p_1, ..., p_{12}\}
p_1: A \rightarrow bC,
p_2: B \to cA,
p_3: C \rightarrow dD,
p_4: D \rightarrow R,
p_5: R \to f
p_6: S \rightarrow aABT,
p_7: T \rightarrow \varepsilon,
p_8: H \rightarrow z
p_9: G \rightarrow r,
p_{10}: S \rightarrow gV,
p_{11}: V \rightarrow Vt,
p_{12}: V \rightarrow t
G1 = \{(a, b, c, d, f, \epsilon, z, r, t, g), (S, A, B, C, D, R, T, H, G, V), P', S\}
```

2. Устранение недостижимых символов (VTr – множество недостижимых символов)

 VT_r - множество достижимых символов (нетерминальных и терминальных). **Утверждение.** Если нетерминал A в левой части правила грамматик G является достижимым, то достижимы и все символы α правой части этого правила $A \to \alpha$. $VT_r = \{x \mid A \to \alpha, x \in \alpha, \alpha \subseteq (V \cup T)^*\}$

Шаг1. Построить множество VT_r^i - достижимых терминалов и не терминалов.

Шаг 2. Построить Р", Т', V'.

$$\begin{array}{l} P'' = \varnothing \\ \text{for each } (A \to \{X_1, X_2, ..., X_n \ \}, \ A, \ X_1, X_2, ..., X_n \in VT_r^i \) \in P \\ P'' := P'' \cup (A \to \{X_1, X_2, ..., X_n\}) \\ \text{end for each} \end{array}$$

$$T' := T \cap VT^{i}_{r}$$

$$V' := V \cap VT^{i}_{r}$$

- 1) $VT^1 = \{S\}$
- 2) $VT^2 = \{S, a, A, B, T, g, V\}$
- 3) $VT^3 = \{S, a, A, B, T, g, V, b, C, c, \epsilon, t\}$
- 4) $VT^4 = \{S, a, A, B, T, g, V, b, C, c, \varepsilon, t, \mathbf{d}, \mathbf{D}\}$
- 5) $VT^5 = \{S, a, A, B, T, g, V, b, C, c, \varepsilon, t, d, D, \mathbf{R}\}\$
- 6) $VT^6 = \{S, a, A, B, T, g, V, b, C, c, \epsilon, t, d, D, R, f\}$

Так, в VT не вошли символы $\{z,r,H,G\}$. Тогда $P^{"}=\{p_1,\,...,\,p_{10}\}$

```
p_1: A \rightarrow bC,
```

 $p_2: B \to cA$,

 $p_3: C \rightarrow dD$,

 $p_4: D \rightarrow R$,

 $p_5: R \rightarrow f$

 $p_6: S \rightarrow aABT$,

 $p_7: T \to \varepsilon$,

 $p_8: S \rightarrow gV$,

 $p_9: V \rightarrow Vt$,

 $p_{10}: V \rightarrow t$

$$G' = \{(a, b, c, d, f, \epsilon, t, g), (S, A, B, C, D, R, T, V), P'', S\}$$

3. Устранить из КС-грамматики є-правила

КС-грамматика называется *неукорачивающей* КС-грамматикой (НКС-грамматикой, КС-грамматикой без ε -правил) при условии, что P не содержит $S \to \varepsilon$ и S не встречается в правах частях остальных правил.

В грамматике с правилами вида $A \rightarrow \varepsilon$ длина выводимой цепочки при переходе от k-го шага к (k+1)-му уменьшается. Поэтому грамматики с правилами вида $A \rightarrow \varepsilon$ называются укорачивающими.

Восходящий синтаксический разбор в укорачивающих грамматиках сложнее по сравнению с разбором в неукорачивающих грамматиках, т.к. при редукции необходимо отыскать такой фрагмент входной цепочки, в которую можно вставить пустой символ.

Для произвольной КС-грамматики, порождающей язык без пустой цепочки, можно построить эквивалентную неукорачивающую КС-грамматику.

Построение множества V_в укорачивающих (обнуляемых) нетерминалов.

1. Алгоритм построение множества укорачивающих нетерминалов

Утверждение. Нетерминал A - укорачивающий (обнуляемый) если A =>∗ ε.

- 1.А укорачивающий для правила $A \to \varepsilon$ (см. Шаг 1.).
- 2.А укорачивающий для правила $A \to B_1B_2 \dots B_k$, если каждый нетерминал B_1 в правиле укорачивающий (см. Шаг 2.).

```
Вход: КС грамматика G = (T, V, P, S).

Выход: V_{\epsilon} = \{ A \mid A \Rightarrow^{+} \epsilon, A \in V \}

Шаг 1. Построить множество V_{\epsilon}^{i} - укорачивающих нетерминалов для правил вида A \to \epsilon.

i = 0

V_{\epsilon}^{i} = \emptyset

foreach (A \in V)

if (A \to \epsilon) \in P /\!\!/ A \to \epsilon правило укорачивающиеся

V_{\epsilon}^{i} := V_{\epsilon}^{i} \cup \{A\}

end
end foreach
```

1) $V^0 = \{T\}$ - (множество укорачивающих нетерминалов для правил вида $A \to \epsilon$)

Шаг 2. Построить множество V^i_{ϵ} - укорачивающих нетерминалов для правил вида $A \to \epsilon$. $A \to B_1B_2$. . . B_k , если каждый нетерминал B_1 в правиле укорачивающий. $V^i_{\epsilon} = V^{i-1}_{\epsilon} \cup \{A \mid (A \to \alpha) \in P \text{ и } \alpha \in (V^{i-1}_{\epsilon})^+\}$. $\alpha \in (V^{i-1}_{\epsilon})^+$ - рассматриваются только правила, содержащие в правых частях только нетерминальные укорачивающие символы: $A \to \alpha$, например $A \to CDF$.

```
do

i = i + 1

V^{i \cdot 1}_{\epsilon} = V^{i}_{\epsilon}

for each ((A \rightarrow \alpha) \in P \bowtie \alpha \in (V^{i \cdot 1}_{\epsilon})^{+})

V^{i}_{\epsilon} := V^{i \cdot 1}_{\epsilon} \cup A

end

while (V^{i \cdot 1}_{\epsilon} \neq V^{i}_{\epsilon})
```

 $B_1B_2...B_k$, если каждый нетерминал B_i в правиле укорачивающий. Однако в данном примере таких правил нет.

Итак, множество укорачивающих терминалов: $V = \{T\}$.

2. Алгоритм устранения эпсилон-правил

Алгоритм устранения ϵ -правил в КС-грамматике основан на использовании множества укорачивающих нетерминалов. Алгоритм преобразует КС-грамматику с ϵ -правилами в эквивалентную КС-грамматику. Пусть $X_i \in \{X \mid (T \cup V) \cup \{\epsilon\}, \ 0 < i \le k \ \}$. Построить из $\{X_1, X_2, ..., X_k\}$ множество цепочек в которых, либо присутствует, либо устранён каждый из нетерминалов V_{ϵ} .

```
Вход: G' = (T, V_{\epsilon}^{i}, P, S)
           Выход: G'' = (T, V', P', S')
           P' = \emptyset
           for each (A \rightarrow X_1, X_2, ..., X_k \in P, X_1 \neq \varepsilon)
              V'_{\varepsilon} = \{ [X_1, X_2, ..., X_k] \cap V_{\varepsilon \mid X_i < X_m} \}
                                                                               V'<sub>є</sub> - упорядоченное мн-во
              if (V'_{\varepsilon} = \emptyset)
                  P' = P' \cup A \rightarrow X_1, X_2, ..., X_k
                                                построить A \rightarrow \{Y_1, Y_2, ..., Y_k\}
                 Y = \emptyset
                 for each \ a \in \{\alpha = \{\ \chi_{i,...,\ X_m}\ \} \subseteq \ {V'}_\epsilon{}^+| \quad |\alpha| \le |{V'}_\epsilon| \ \text{if} \ \chi_{i} < \chi_m\ \}
                     for each v \in a
                        foreach (X_i \in \{X_1, X_2, ..., X_k\}, A \neq X_i) правило A \rightarrow A бессмысленно
                           if X_i = v
                              Y_i = \varepsilon
                           end
                           Y = Y \cup Y_i
                       end foreach
                       P' = P' \cup (A \rightarrow \{Y_1, Y_2, ..., Y_k\})
                   end foreach
                 end foreach
              end
           end foreach
           if (S \in V_{\epsilon})
               V' = V' \cup \{S'\}
              P' = P' \cup (S' \rightarrow S \mid \varepsilon)
            end
            Положить G'' = (T, V', P', S').
G' = \{(a, b, c, d, f, \varepsilon, t, g), (S, A, B, C, D, R, V), P, S\}, где P = \{p_1, ..., p_9\}
p_1: A \rightarrow bC,
p_2: B \to cA
p_3: C \rightarrow dD,
p_4: D \rightarrow R,
p_5: R \rightarrow f
p_6: S \rightarrow aAB,
```

```
\begin{aligned} p_7 &: S \to gV, \\ p_8 &: V \to Vt, \\ p_9 &: V \to t \end{aligned}
```

```
Delete e-rules:
Executing:
e-rules:
T -> e
NoShortNoTerms : T
V1:: S A B C D R T V
       e-rules have benn deleted!
Prules:
A -> bC
B -> cA
C -> dD
D -> R
R -> f
S -> aABT
S -> aAB
S -> gV
V -> Vt
V -> t
               Deleting unuseful symbols
Executing:
Vp:RDCABSV
Vr:SaABbCdDRfcgVt
T1:abdfcgt
V1:SABCDRV
       Unuseful symbols have been deleted
Prules:
S -> aAB
A -> bC
C -> dD
D -> R
R -> f
B -> cA
S -> gV
V -> t
```

Рисунок 8 – Удаление эпсилон-правил

1. Устранить из КС-грамматики цепные правила.

Алгоритм устранения цепных правил

Правило вида А→B, где A и B - нетерминалы называется цепным.

Вход: КС грамматика G = (T, V, P, S). **Выход**: Эквивалентная КС грамматика G' = (T, V, P', S) без цепных правил.

Шаг 1. Для каждого правила $X {\to} A {\,\subseteq\,} P$ построить множество всех цепных символов $V^i{}_X$.

```
foreach (X \in V) — построить множество V_X = \{A \mid X \Rightarrow^+ A\} i = 0 V_X^i = \{X\} do i++ foreach (X \in V^{i-1}_X, X \rightarrow A \in P, A \in V) V_X^i = V^{i-1}_X \cup \{A\} end while (V_X^i \neq V^{i-1}_X) end
```

Шаг 2. Для каждого цепного правила $A \to R \in P$, Построить правила $A \to Y \rho$ без цепных символов $Y \not\in V_A^i$. Добавить в P' не цепные правила.

```
\begin{array}{l} P'=\varnothing \\ \text{foreach } (A \!\!\!\! \to \!\!\!\! \alpha R \beta \in P) \\ \text{ if } (\alpha = \epsilon, \beta = \epsilon, R \in V^i_A) \quad \text{цепное правило} \\ \text{ foreach } (R \in V^i_A) \quad \text{ найти правую не цепную часть правила} \\ \text{ if } (R \to Y \rho \in P, Y \not\in V^i_A) \\ P' = P' \; \cup \; \{ \; A \!\!\!\! \to \! Y \rho \; \} \\ \text{ end} \\ \text{ end} \\ \text{ else} \\ P' = P' \; \cup \; \{ \; A \!\!\!\! \to \! \alpha R \beta \} \\ \text{ end} \\ \end{array}
```

Цепные правила: $D \rightarrow R$

$$V^1 = \{R\}$$

Правила $D \to R, R \to f$, "заменим" на $D \to f$

```
ChainRule Deleting:
Executing:
ChainRules:
D -> R
Deleting...
Chainrules have been deleted;
Prules:
S -> aAB
S -> gV
A -> bC
B -> cA
C -> dD
R -> f
V -> t
V -> Vt
D -> f
```

2. Устранить из КС-грамматики левую рекурсию.

Определение. Нетерминал КС-грамматики называется *рекурсивным*, если $A \Rightarrow^+ \alpha A \beta$, для некоторых α и β . Если $\alpha = \epsilon$, то A называется *певорекурсивным*, если $\beta = \epsilon$, то A называется *праворекурсивным*. Грамматика, имеющая хотя бы один леворекурсивный нетерминал, называется *певорекурсивной*. Грамматика, имеющая хотя бы один праворекурсивный, нетерминал называется *праворекурсивной*.

Алгоритм Устранения непосрественной левой рекурсии

Вход: КС грамматика $G = (T, V, P, S_0)$, без ε -правил (вида $A \to \varepsilon$).

Выход: Эквивалентная приведенная КС грамматика $G' = (T, V, P', S'_0)$.

1. Упорядочить нетерминалы V по возрастанию $V = [A_1, A_2, ..., A_n]$. Преобразоваить правила $A_i \to \alpha$ так, чтобы цепочка α начиналась либо с терминала, либо с такого A_i , что i > i. i = 1.

foreach i от 1 до n

foreach j от 1 до i-1

2. Множество A_i правил — это $A_i \to A_i \alpha_1 \mid ... \mid A_i \alpha_m \mid \beta_1 \mid ... \mid \beta_p$, где ни одна цепочка β_i не начинается с A_k , если $k \leq i$. Заменим A_i - правила правилами:

$$A_i \rightarrow \beta_1 | ... | \beta_p | \beta_1 A_i' | ... | \beta_p A_i'$$

$$A_i' \rightarrow \alpha_1 | \dots | \alpha_m | \alpha_1 A_i' | \dots | \alpha_m A_i'$$

где A_i ' — новый символ. Правые части всех A_i - правил начинаются теперь с терминала или с A_k для некоторого k > i.

- 3. Если i = n, то останов и получена грамматика G', иначе j = i, i = i + 1.
- 4. Заменить каждое правило вида $A_i \to A_j \alpha$ правилами $A_i \to \beta_1 \alpha | ... | \beta_m \alpha$, где $A_j \to \beta_1 | ... | \beta_m -$ все A_j правила.

Так как правая часть каждого A_j – правила начинается уже с терминала или с A_k для k > j, то и правая часть каждого A_i – правила будет обладать этим же свойством.

5. Если j = i - 1, перейти к шагу 2, иначе j = j + 1 и перейти к шагу 4.

Если ε присутствовал в языке исходной грамматики, добавим новый начальный символ S' и правила S' \rightarrow S | ε .

Левая рекурсия $V \rightarrow Vt$

Заменим правило $V \rightarrow Vt$, на правила $V \rightarrow tV'$, $V' \rightarrow tV'|t$

```
Left recursion:
V -> Vt

Left Recursion delete.
Prules:
S -> aAB
S -> gV
A -> bC
B -> cA
C -> dD
D -> f
R -> f
V -> t
V' -> t
V' -> tV'
```

Рисунок 10 – Левая рекурсия

Приведенная грамматика:

```
Normal Grammatic:
T : a b d f c g t
V : S A B C D R V V'
Prules:
S -> aAB
S -> gV
A -> bC
B -> cA
C -> dD
D -> f
R -> f
V -> t
V' -> t
V' -> t
V' -> tStart symbol: S
```

Рисунок 11 – Приведённая грамматика

```
Console.WriteLine("Grammar:");
regGr.Debug("T", regGr.T);
regGr.Debug("T", regGr.V);
regGr.DebugPrules();
Grammar G1 = regGr.EpsDelete();
G1.DebugPrules();
Grammar G2 = G1.unUsefulDelete();
G2.DebugPrules();
Grammar G3 = G2.ChainRuleDelete();
G3.DebugPrules();
Grammar G4 = G3.LeftRecursDelete_new6();
G4.DebugPrules();
// G4 - приведенная грамматика
Console.WriteLine("-----
Console.WriteLine("Normal Grammatic:");
G4.Debug("T", G4.T);
G4.Debug("V", G4.V);
G4.DebugPrules();
Console.Write("Start symbol: ");
Console.WriteLine(G4.S0 + "\n");
```

Лабораторная работа №6: Определить форму КС-грамматики и сделать ее приведение.

Определение 7. КС грамматика G = (T, V, P, S) называется грамматикой в нормальной форме Грейбах, если в ней нет ϵ -правил, т.е. правил вида $A \to \epsilon$, и каждое правило из P отличное от $S \to \epsilon$, имеет вид $A \to a\alpha$, где $a \in T$, $\alpha \subseteq V^*$.

Также полезно представлять грамматику в нормальной форме Хомского, что позволяет упростить рассмотрение ее свойств.

Определение 8. КС грамматика G = (T, V, P, S) называется грамматикой в нормальной форме Хомского, если каждое правло из P имеет один из следующих видов:

- A→ BC, где A, B, C∈V;
- A → a, где a ∈ T;
- 3. $S \rightarrow \varepsilon$, если $\varepsilon \in L(G)$, причем S не встречается в правых частях правил.

Приведенная грамматика не является грамматикой в нормальной форме Хомского, так как присутствует правило: $S \to aAB$.

Приведенная грамматика является грамматикой в нормальной форме Грейбах, так как в ней нет – ϵ -правил, и каждое правило имеет вид $A \to a\alpha$, где $a \in T$, $\alpha \subset V^*$.

Лабораторная работа №7: Спроектировать МП-автомат для приведенной КС-грамматики.

Приведённая грамматика:

```
G=(T,\,V,\,P,\,S),\, \mbox{где} T=\{a,\,b,\,c,\,d,\,f,\,t,\,g\},\,\,V=\{S,\,A,\,B,\,C,\,D,\,R,\,V,\,V'\},\,S_0=S, P=\{
```

```
p_1: A \rightarrow bC
p_2: B \to cA,
p_3: C \rightarrow dD,
p_4: D \rightarrow f,
p_5: R \rightarrow f
p_6: S \rightarrow aAB,
p_7: S \to gV,
p_8: V \rightarrow t,
p_9: V \rightarrow tV',
p_{10}: V' \rightarrow t,
p_{11}: V' \rightarrow tV'
Цепочки вывода:
S = >^7 gV = >^8 gt
S =>^6 aAB =>^1 abCB =>^3 abdDB =>^4 abdfB =>^2 abdfcA =>^1 abdfcbC =>^3 abdfcbdD =>^4 abdfcbdf
         Определение 9. МП автомат – это семерка объектов
         M\Pi = (Q, \Sigma, \Gamma, \delta, q_0, z_0, F)

    Q – конечное множество состояний устройства управления;

         ∑ - конечный алфавит входных символов;
         Г - конечный алфавит магазинных символов;
         \delta - функция переходов, отображает множества Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma в множество
      конечных подмножеств множества Q \times \Gamma^*, \delta: Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma \to Q \times \Gamma^*
         q_0 - начальное состояние, q_0 \in Q;
         z_0 - начальный символ магазина, z_0 \in \Gamma;
         F - множество заключительных состояний, F \subseteq O.
        Алгоритм 3.8. По КС-грамматике G = (T, V, P, S) можно построить МП
     автомат, L(MП) = L(G). Пусть МП = ({q}, \Sigma, \Sigma \cup V, \delta, q, S, {q}), где \delta
     определяется следующим образом:
         1. Если A \rightarrow \alpha - правило грамматики G, то \delta(q, \epsilon, A) = (q, \alpha).

 δ(q, a, a) = {(q, ε)} для всех a ∈ Σ.

L(M\Pi) = L(G)
M\Pi = (Q, \Sigma, \Gamma, \delta, q_0, z_0, F):
Q = \{q\}, \Sigma = T, \Gamma = T \cup V, \delta = \delta, q_0 = q_0, z_0 = S_0, F = \{q\}
M\Pi = (\{q\}, \{a, b, c, d, f, t, g\}, \{a, b, c, d, f, t, g, S, A, B, C, D, R, V, V'\}, \delta, q_0, S, \{q\})
\delta = \{
1. \delta(q, \epsilon, A) = \{(q, bC)\},\
2. \delta(q, \varepsilon, B) = \{(q, cA)\},\
3. \delta(q, \varepsilon, C) = \{(q, dD)\},\
```

4. $\delta(q, \epsilon, D) = \{(q, f)\},\$

```
5. \delta(q, \epsilon, R) = \{(q, f)\},\
6. \delta(q_0, \epsilon, S) = \{(q, aAB)\},\
7. \delta(q_0, \epsilon, S) = \{(q, gV)\},\
8. \delta(q, \epsilon, V) = \{(q, t)\},\
9. \delta(q, \epsilon, V) = \{(q, tV')\},\
10. \delta(q, \epsilon, V') = \{(q, t)\},\
11. \delta(q, \epsilon, V') = \{(q, tV')\},\
12. \delta(q, a, a) = \{(q, \epsilon)\}, \ \forall \ a \in \Sigma \}
```

Последовательность тактов МП-автомата для цепочки abdfcbdf:

```
 \begin{array}{l} (q_0, abdfcbdf, S) \mid ^6 (q, abdfcbdf, aAB) \mid ^{12} (q, bdfcbdf, AB) \mid ^1 (q, bdfcbdf, bCB) \mid ^{12} \quad (q, dfcbdf, CB) \mid ^3 (q, dfcbdf, dDB) \mid ^{12} (q, fcbdf, DB) \mid ^4 (q, fcbdf, fB) \mid ^{12} (q, cbdf, B) \mid ^2 (q, cbdf, cA) \mid ^{12} (q, bdf, A) \mid ^1 (q, bdf, bC) \mid ^{12} (q, df, C) \mid ^3 (q, df, dD) \mid ^{12} (q, f, D) \mid ^4 (q, f, f) \mid ^{12} (q, \epsilon, \epsilon) \end{array}
```

```
Debug KC-Grammar Prules:
A -> bC
B -> cA
C -> dD
D -> f
R -> f
  -> aAB
  -> gV
  -> t
  -> tV'
   -> t
V' -> tV'
Delta rules:
 delta(q, \varepsilon, A) \rightarrow (q, b, C)
                                                delta(q, \epsilon, C) \rightarrow (q, d, D)
 delta(q, \varepsilon, B) \rightarrow (q, c, A)
                                                step 1
 delta(q, \epsilon, C) \rightarrow (q, d, D)
                                                delta(q,d,d) \rightarrow (q,\epsilon)
 delta(q, \varepsilon, D) \rightarrow (q, f)
                                                step 2 d d
 delta(q, \varepsilon, R) \rightarrow (q, f)
                                                step 3 d
                                                step 1
 delta(q, \varepsilon, S) \rightarrow (q, a, A, B)
                                                delta(q, \varepsilon, D) \rightarrow (q, f)
 delta(q, \varepsilon, S) \rightarrow (q, g, V)
 delta(q, \varepsilon, V) \rightarrow (q, t)
                                                step 1
 delta(q, \varepsilon, V) \rightarrow (q, t, V')
                                                delta(q,f,f) \rightarrow (q,\epsilon)
 delta(q, \varepsilon, V') \rightarrow (q, t)
                                                step 2 f f
 delta(q, \varepsilon, V') \rightarrow (q, t, V')
                                                step 3 f
 delta(q,a,a) \rightarrow (q,\epsilon)
                                                step 1
 delta(q,b,b) \rightarrow (q,\epsilon)
                                                delta(q, \varepsilon, B) \rightarrow (q, c, A)
 delta(q,c,c) \rightarrow (q,\epsilon)
                                                step 1
 delta(q,d,d) \rightarrow (q,\epsilon)
                                                delta(q,c,c) \rightarrow (q,\epsilon)
 delta(q,f,f) \rightarrow (q,\epsilon)
                                                step 2 c c
 delta(q,t,t) \rightarrow (q,\epsilon)
                                                step 3 c
 delta(q,g,g) \rightarrow (q,\epsilon)
                                                step 1
 delta(q0,\epsilon,z0) \rightarrow (qf,\epsilon)
                                                delta(q, \varepsilon, A) \rightarrow (q, b, C)
                                                step 1
Enter the line
                                                delta(q,b,b) \rightarrow (q,\epsilon)
abdfcbdf
                                                step 2 b b
 step 1
                                                step 3 b
 delta(q, \varepsilon, S) \rightarrow (q, a, A, B)
                                                step 1
 step 1
                                                delta(q, \epsilon, C) \rightarrow (q, d, D)
 delta(q,a,a) \rightarrow (q,\epsilon)
                                                step 1
 step 2 a a
                                                delta(q,d,d) \rightarrow (q,\epsilon)
 step 3 a
                                                step 2 d d
 step 1
                                                step 3 d
 delta(q, \varepsilon, A) \rightarrow (q, b, C)
                                                step 1
 step 1
                                                delta(q, \varepsilon, D) \rightarrow (q, f)
 delta(q,b,b) \rightarrow (q,\epsilon)
                                                step 1
 step 2 b b
                                                delta(q,f,f) \rightarrow (q,\epsilon)
 step 3 b
                                                step 2 f f
 step 1
                                                step 3 f
 delta(q, \epsilon, C) \rightarrow (q, d, D)
                                               True
```

Рисунок 12 – МП-автомат

```
var CFGrammar = new Grammar(new List<Symbol>() { "a", "b", "c", "d", "f", "t", "g" },
                new List<Symbol>() { "S", "A", "B", "C", "D", "R", "V", "V" },
                            "S");
CFGrammar.AddRule("A", new List<Symbol>() { "b", "C" });
CFGrammar.AddRule("B", new List<Symbol>() { "c", "A" });
CFGrammar.AddRule("C", new List<Symbol>() { "d", "D" });
CFGrammar.AddRule("D", new List<Symbol>() { "f" });
CFGrammar.AddRule("R", new List<Symbol>() { "f" });
CFGrammar.AddRule("S", new List<Symbol>() { "a", "A", "B" });
CFGrammar.AddRule("S", new List<Symbol>() { "g", "V" });
CFGrammar.AddRule("V", new List<Symbol>() { "t" });
CFGrammar.AddRule("V", new List<Symbol>() { "t", "V" });
CFGrammar.AddRule("V", new List<Symbol>() { "t" });
CFGrammar.AddRule("V", new List<Symbol>() { "t", "V" });
Console.Write("Debug KC-Grammar");
CFGrammar.DebugPrules();
var pda = new PDA(CFGrammar);
pda.Debug();
Console.WriteLine("\nEnter the line :");
Console. WriteLine (pda. Execute (Console. ReadLine ()). To String ());\\
```

Практическая работа №3 (9-10 лаб.)

Лабораторная работа №9: Для LL(k) анализатора построить управляющую таблицу М.

Определение: КС-грамматика G = (T, V, P, S) без ε -правил называется простой LL(1) грамматикой (ѕграмматикой, разделенной грамматикой), если для каждого $v \in V$ все его альтернативы начинаются различными терминальными символами. Единица в названии алгоритма означает, что при чтении анализируемой цепочки, находящейся на входной ленте, входная головка может заглядывать вперед на один символ.

FIRST(A) — это множество первых терминальных символов, которыми начинаются цепочки, выводимые из нетерминала $A \in V$:

FIRST(A) =
$$\{a \in T \mid A \Rightarrow^+ a\beta, \, \Gamma \neq \beta \in (T \cup V)^*\}$$

Обобщим определение множества FIRST так, чтобы его можно было применить для правил произвольного вида. Множество FIRST(α) состоит из множества терминальных символов, которыми начинаются цепочки, выводимые из цепочки α .

FOLLOW(A) – это множество следующих терминальных символов, которые могут встретиться непосредственно справа от нетерминала в некоторой сентенциальной форме:

FOLLOW(A) =
$$\{a \in T \mid S \Rightarrow^* \alpha A \gamma \text{ и } a = FIRST(\gamma)\}$$

Магазин содержит цепочку $Xa\perp$ (см. рис. 1.17), где Xa — цепочка магазинных символов (X - верхний символ магазина), а символ (\bot) — специальный символ, называемый маркером дна магазина. Если верхним символом магазина является маркер дна, то магазин пуст. Выходная лента содержит цепочку номеров правил π , представляющую собой текущее состояние левого разбора.

Исходная грамматика:

```
G = (T, V, P, S), rдe

T = {a, b, c, d, f, t, g}, V = {S, A, B, C, D, R, V, V'}, S<sub>0</sub> = S,

P = {

p_1: A → bC,

p_2: B → cA,

p_3: C → dD,

p_4: D → f,

p_5: R → f,

p_6: S → aAB,

p_7: S → gV,

p_8: V → t,

p_9: V → tV',

p_{10}: V' → t,
```

Сделаем приведение к LL(1) для построения управляющей таблицы, проведя факторизацию

Метод: для каждого нетерминала A находим самый длинный префикс α , общий для двух или большего числа альтернатив. Если $\alpha \neq \epsilon$, т.е. имеется нетривиальный общий префикс, заменим все продукции $A \to \alpha\beta1 \mid \alpha\beta2 \mid \dots \mid \alpha\beta n \mid \gamma$, где γ представляет все альтернативы, не начинающиеся с α , продукциями

$$A \rightarrow \alpha A' \mid \gamma$$

 $A' \rightarrow \beta 1 \mid \beta 2 \mid \dots \mid \beta n$

Здесь A' — новый нетерминал. Выполняем это преобразование до тех пор, пока никакие две альтернативы нетерминала не будут иметь общий префикс.

```
\begin{split} G_{\varphi} &= (T,\,V',\,P',\,S),\, \text{где} \\ T &= \{a,\,b,\,c,\,d,\,f,\,t,\,g\},\,\,V' = \{S,\,A,\,B,\,C,\,D,\,R,\,V,\,V',\,T\},\,S_0 = S,\,\\ P' &= \{\\ p_1\colon A \to bC,\\ p_2\colon B \to cA,\\ p_3\colon C \to dD,\\ p_4\colon D \to f,\\ p_5\colon R \to f,\\ p_6\colon S \to aAB,\\ p_7\colon S \to gV,\\ p_8\colon V \to tT,\\ p_9\colon V' \to tT,\\ p_{10}\colon T \to V',\\ p_{11}\colon T \to \epsilon \\ \} \end{split}
```

Алгоритм построения управляющей таблицы M для LL(1)-грамматики

Вход: LL(1)-грамматика G = (T, V, P, S)

Выход: Управляющая таблица М для грамматики G.

Таблица M определяется на множестве (V U T U $\{L\}$) \times (T U $\{\epsilon\}$) по правилам:

- 1. Если $A \to \beta$ правило вывода грамматики с номером i, то $M(A, a) = (\beta, i)$ для всех $a \neq \epsilon$, принадлежащих множеству FIRST(β). Если $\epsilon \in FIRST(\beta)$, то $M(A, b) = (\beta, i)$ для всех $b \in FOLLOW(A)$.
- 2. M(a, a) = BЫБРОС для всех $a \in T$.
- 3. $M(\bot, \varepsilon) = ДОПУСК.$
- 4. В остальных случаях $M(X, a) = O \coprod U B KA$ для $X(V \cup T \cup \{\bot\})$ и $a \in T \cup \{\epsilon\}$

Таблица 1 — Управляющая таблица для LL(1)-грамматики

	a	b	c	d	f	t	g	3
S	(aAB, 6)						(gv, 7)	
A		(bC, 1)						
В			(cA, 2)					
С				(dD, 3)				
D					(f, 4)			

R					(f, 5)			
V						(tT, 8)		
V'						(tT, 9)		
T						(V', 10)		(ε, 11)
a	ВЫБРОС							
b		ВЫБРОС						
c			ВЫБРОС					
d				ВЫБРОС				
f					ВЫБРОС			
t						ВЫБРОС		
g							ВЫБРОС	
1								ДОПУС

Пустые клетки в таблице означают ОШИБКУ.

Аналитичекое представление для таблицы М:

Таблица 2 — Аналитическое представление управляющей таблицы

Правило грамматики	Множество	Значение М
$p_1: A \to bC$	$FIRST(A) = \{b\}$	M(A, b) = (bC, 1)
$p_2: B \to cA$	$FIRST(B) = \{c\}$	M(B, c) = (cA, 2)
$p_3: C \rightarrow dD$	$FIRST(C) = \{d\}$	M(C, d) = (dD, 3)
$p_4: D \to f$	$FIRST(D) = \{f\}$	M(D, f) = (f, 4)
$p_5: R \to f$	$FIRST(R) = \{f\}$	M(R, f) = (f, 5)
$p_6: S \rightarrow aAB$	$FIRST(S) = \{a\}$	M(S, a) = (aAB, 6)
$p_7: S \to gV$	$FIRST(S) = \{g\}$	M(S, g) = (gV, 7)
$p_8: V \rightarrow tT$	$FIRST(V) = \{t\}$	M(V, t) = (tT, 8)
$p_9: V' \rightarrow tT$	$FIRST(V') = \{t\}$	M(V', t) = (tT, 9)
$p_{10}: T \rightarrow V'$	$FIRST(T) = \{t\}$	M(T, t) = (V', 10)
$p_{11}: T \to \varepsilon$	$FIRST(T) = \{\epsilon\}$	$M(T, \varepsilon) = (\varepsilon, 11)$

<u>Лабораторная работа №10: Аналитически написать правила вывода для цепочки LL(k)</u> анализатора.

<u>Шаг 1.</u> Алгоритм находится в начальной конфигурации (abdfcbdf, $S_0 \bot$, ϵ), где $S_0 = S$ Значение управляющей таблицы M(K, f) = (A, B, 1), при этом выполняются следующие действия:

- Заменить верхний символ магазина R цепочкой V.
- Не сдвигать читающую головку.
- На выходную ленту поместить номер использованного правила 1.

Шаг 2. Получаем следующие конфигурации:

Таблица 3 — Конфигурации цепочек

Текущая конфигурация	Значение М
(abdfcbdf, S_{\perp} , ϵ)	M(S, a) = (aAB, 6)
(abdfcbdf, aAB⊥, 6) ∤	М(а, а) = ВЫБРОС
(bdfcbdf, AB⊥, 6) ∤	M(A, b) = (bC, 1)
(bdfcbdf, bCB⊥, 61) ∤	M(b, b) = BЫБРОС
(dfcbdf, CB⊥, 61) ∤	M(C, d) = (dD, 3)
(dfcbdf, dDB⊥, 613) ∤	M(d, d) = BЫБРОС
(fcbdf, DB⊥, 613)	M(D, f) = (f, 4)
(fcbdf, fB⊥, 6134) }	M(f, f) = BЫБРОС
(cbdf, B⊥, 6134) ∤	M(B, c) = (cA, 2)
(cbdf, cA⊥, 61342) ∤	M(c, c) = ВЫБРОС
(bdf, A⊥, 61342) ∤	M(A, b) = (bC, 1)
(bdf, bC⊥, 613421) }	M(b, b) = BЫБРОС
(df, C⊥, 613421) ∤	M(C, d) = (dD, 3)
(df, dD⊥, 6134213) ∤	M(d, d) = BЫБРОС
(f, D⊥, 6134213) }	M(D, f) = (f, 4)
(f, f⊥, 61342134) ∤	M(f, f) = ВЫБРОС
(ε, ⊥, 61342134) ∤	$M(\bot, \varepsilon) = ДОПУСК$

<u>Лабораторная работа №11: Реализовать управляющую таблицу М Для LL(k) анализатора.</u>

```
9.1
Создадим таблицу. Сначала создадим по столбцу для каждого из этих терминалов:
a, b, c, d, f, t, g, ,
Также создаем строку для Эпсилон
Рассмотрим нетерминал S
   Первый символ правила S -> aAB - a
   Это правило заносим в таблицу на пересечении строки нетерминала S и столбца терминала а
   Первый символ правила S -> gV - g
   Это правило заносим в таблицу на пересечении строки нетерминала S и столбца терминала g
Рассмотрим нетерминал А
   Первый символ правила A -> bC - b
   Это правило заносим в таблицу на пересечении строки нетерминала А и столбца терминала b
Рассмотрим нетерминал В
   Первый символ правила В -> сА - с
   Это правило заносим в таблицу на пересечении строки нетерминала В и столбца терминала с
Рассмотрим нетерминал С
   Первый символ правила C -> dD - d
   Это правило заносим в таблицу на пересечении строки нетерминала C и столбца терминала d
Рассмотрим нетерминал D
   Первый символ правила D -> f - f
   Это правило заносим в таблицу на пересечении строки нетерминала D и столбца терминала f
Рассмотрим нетерминал R
   Первый символ правила R -> f - f
   Это правило заносим в таблицу на пересечении строки нетерминала R и столбца терминала f
Рассмотрим нетерминал V
   Первый символ правила V -> tT - t
   Это правило заносим в таблицу на пересечении строки нетерминала V и столбца терминала t
Рассмотрим нетерминал V'
   Первый символ правила V' -> tT - t
   Это правило заносим в таблицу на пересечении строки нетерминала V' и столбца терминала t
Рассмотрим нетерминал Т
   Первый символ правила T -> V' - t
   Это правило заносим в таблицу на пересечении строки нетерминала T и столбца терминала t
   Первый символ правила Т ->
   Это правило заносим в таблицу на пересечении строки нетерминала Т и столбца терминала
Введите строку:
abdfcbdf
Допуск. Цепочка символов = L(G).
61342134
```

Рисунок 13 – Построение управляющей таблицы для LL(K)-анализатора

```
LL.AddRule("D", new List<Symbol>() { "f" });
LL.AddRule("R", new List<Symbol>() { "f" });
LL.AddRule("S", new List<Symbol>() { "a", "A", "B" });
LL.AddRule("S", new List<Symbol>() { "g", "V" });
LL.AddRule("V", new List<Symbol>() { "t", "T" });
LL.AddRule("V"', new List<Symbol>() { "t", "T" });
LL.AddRule("T", new List<Symbol>() { "V"" });
LL.AddRule("T", new List<Symbol>() { " " });
var parser = new LLParser(LL);
Console. WriteLine("Введите строку: ");
string stringChain = Console.ReadLine();
var chain = new List<Symbol> { };
foreach (var x in stringChain)
  chain.Add(new Symbol(x.ToString()));
if (parser.Parse(chain))
{
  Console. WriteLine("Допуск. Цепочка символов = L(G).");
  Console.WriteLine(parser.OutputConfigure);
else
{
  Console. WriteLine ("He допуск. Цепочка символов He = L(G).");
```

Практическая работа №4 (12-16 лаб.)

Определение. LR(0) ситуация - это правило грамматики с точкой в некоторой позиции правой части, например [A \rightarrow w₁ • w₂], если A \rightarrow w₁w₂ – правило КС-грамматики.

Пример. Для правила $S \to (S)$ можно получить 4 ситуации:

```
[S \to \bullet (S)][S \to (\bullet S)]
```

 $[S \rightarrow (S \bullet)]$

 $[S \rightarrow (S)^{\bullet}]$

Замечание. LR(0)-ситуация не содержит аванцепочку и, поэтому при ее записи можно опускать квадратные скобки.

- II. Построение SL(0) анализатора на основе LR(0)-ситуаций, функций замыкания CLOSURE и перехода GOTO.
 - Шаг 1. Построение управляющей таблицы M = [f(u), g(x)];
 - Пронумеровать правила продукций. Построить пополненную грамматику G' для исходной грамматики G.
 - 2.Построить множества ситуаций и построение KA для множества ситуаций каждое множество ситуаций состояние KA;
 - 3. Построить отношение действий f(u) на основе КА.
 - Шаг 3. Применить алгоритм перенос-свёртка.

Существует два способа построения LR(k) анализаторов:

- 1. На основе активных префиксов (построения расширенного магазинного алфавита) и отношения OBLOW:
- 2. Построение SL(0) анализатора на основе LR(0)-ситуаций, функций замыкания CLOSURE и перехода GOTO

Построим вторым способом LR(k) анализатор для заданной грамматики:

```
G = (T, V, P, S), rde
T = \{a, b, c, d, f, t, g\}, V = \{S, A, B, C, D, R, V, V'\}, S_0 = S,
P = \{
p_1: A \rightarrow bC,
p_2: B \rightarrow cA,
p_3: C \rightarrow dD,
p_4: D \rightarrow f,
p_5: R \rightarrow f,
p_6: S \rightarrow aAB,
p_7: S \rightarrow gV,
p_8: V \rightarrow t,
p_9: V \rightarrow tV',
p_{10}: V' \rightarrow t,
p_{11}: V' \rightarrow tV'
}
```

Шаг 1. Определение ситуаций и построение конечного автомата

Пусть I — множество LR(0)-ситуаций KC-грамматики G. Тогда назовем замыканием множества I множество ситуаций CLOSURE(I), построенное по следующим правилам:

- 1. Включить в CLOSURE(I) все ситуации из I.
- 2. Если ситуация $A \to \alpha$ •В β уже включена в CLOSURE(I) и $B \to \gamma$ правило грамматики, то добавить в множество CLOSURE(I) ситуацию $B \to \bullet \gamma$ при условии, что там ее еще нет.
 - Наличие ситуации $A \to \alpha$ •В β в множестве CLOSURE(I) говорит о том, что в некоторый момент разбора может встретиться во входном потоке анализатора подстрока, выводимая из В β .
 - Если в грамматике имеется правило $B \to \gamma$, то также может встретиться во входном потоке анализатора подстрока, выводимая из γ , следовательно, в CLOSURE(I) нужно включить ситуацию $B \to \bullet \gamma$.
- 3. Повторять правило 2, до тех пор, пока в CLOSURE(I) нельзя будет включить новую ситуацию.

Пополненная грамматика G содержит еще одно правило: $S' \to S$:

```
G = (T, V, P, S, S'), где
T = \{a, b, c, d, f, t, g\}, V = \{S, A, B, C, D, R, V, V'\}, S_0 = S,
P = {
 p_0: S \to S',
 p_1: A \rightarrow bC
 p_2: B \to cA,
 p_3: C \rightarrow dD,
 p_4: D \rightarrow f
 p_5: R \rightarrow f
 p_6: S \rightarrow aAB,
 p_7: S \rightarrow gV,
 p_8: V \rightarrow t,
 p_9: V \rightarrow tV',
 p_{10}: V' \rightarrow t,
 p_{11}: V' \rightarrow tV'
 1. I_0 = \{S' \rightarrow S\}
 2. I_0 = \{S' \rightarrow S, S \rightarrow aAB, S \rightarrow gV\}
```

Если *I*-множество ситуаций, допустимых для некоторого активного префикса γ , то GOTO(I,X) — это множество ситуаций, допустимых для активного префикса γX .

Аргументами функции GOTO(I,X) являются множество ситуаций I и символ грамматики X.

Определение. Функция GOTO(I, X) определяется как замыкание множества всех ситуаций [$A \rightarrow \alpha X \cdot \beta$], таких что [$A \rightarrow \alpha \cdot X \beta$] $\in I$

```
\begin{split} &I_0 = \{S' {\rightarrow} \cdot S, \, S {\rightarrow} \cdot aAB, \, S {\rightarrow} \cdot gV\} \\ &GOTO(I_0, \, a) = \{S {\rightarrow} a \cdot AB, \, A {\rightarrow} \cdot bC\} = I_1 \\ &GOTO(I_0, \, g) = \{S {\rightarrow} g \cdot V, \, V {\rightarrow} \cdot t, \, V {\rightarrow} \cdot tV'\} = I_2 \end{split}
```

$$\begin{split} & \text{GOTO}(I_0,S) = \{S' \to S \cdot\} = I_3 \\ & \text{GOTO}(I_1,b) = \{A \to b \cdot C, C \to \cdot dD\} = I_4 \\ & \text{GOTO}(I_1,A) = \{S \to aA \cdot B, B \to \cdot cA\} = I_5 \\ & \text{GOTO}(I_2,t) = \{V \to t \cdot, V \to t \cdot V', V' \to \cdot t, V' \to \cdot tV'\} = I_6 \\ & \text{GOTO}(I_2,t) = \{S \to gV \cdot\} = I_7 \\ & \text{GOTO}(I_2,V) = \{S \to gV \cdot\} = I_7 \\ & \text{GOTO}(I_4,d) = \{C \to d \cdot D, D \to \cdot f\} = I_8 \\ & \text{GOTO}(I_4,d) = \{C \to d \cdot D, D \to \cdot f\} = I_8 \\ & \text{GOTO}(I_4,C) = \{A \to bC \cdot\} = I_9 \\ & \text{GOTO}(I_5,c) = \{B \to c \cdot A, A \to \cdot bC\} = I_{10} \\ & \text{GOTO}(I_5,B) = \{S \to aAB \cdot\} = I_{11} \\ & \text{GOTO}(I_6,t) = \{V' \to t \cdot, V' \to t \cdot V', V' \to \cdot t, V' \to \cdot tV'\} = I_{12} \\ & \text{GOTO}(I_6,V') = \{V \to tV' \cdot\} = I_{13} \\ & \text{GOTO}(I_8,f) = \{D \to f'\} = I_{14} \\ & \text{GOTO}(I_8,D) = \{C \to dD \cdot\} = I_{15} \\ & \text{GOTO}(I_{10},b) = \{A \to b \cdot C, C \to \cdot dD\} = I_4 - y \text{ke otmeyeho} \\ & \text{GOTO}(I_{12},t) = \{V' \to t \cdot, V' \to t \cdot V', V' \to \cdot t, V' \to \cdot tV'\} = I_{12} - y \text{ke otmeyeho} \\ & \text{GOTO}(I_{12},t) = \{V' \to t \cdot, V' \to t \cdot V', V' \to \cdot t, V' \to \cdot tV'\} = I_{12} - y \text{ke otmeyeho} \\ & \text{GOTO}(I_{12},V') = \{V' \to t \cdot, V' \to t \cdot V', V' \to \cdot t, V' \to \cdot tV'\} = I_{12} - y \text{ke otmeyeho} \\ & \text{GOTO}(I_{12},V') = \{V' \to t \cdot, V' \to t \cdot V', V' \to \cdot t, V' \to \cdot tV'\} = I_{12} - y \text{ke otmeyeho} \\ & \text{GOTO}(I_{12},V') = \{V' \to t \cdot, V' \to t \cdot V', V' \to \cdot t, V' \to \cdot tV'\} = I_{12} - y \text{ke otmeyeho} \\ & \text{GOTO}(I_{12},V') = \{V' \to t \cdot, V' \to t \cdot V', V' \to \cdot t, V' \to \cdot tV'\} = I_{12} - y \text{ke otmeyeho} \\ & \text{GOTO}(I_{12},V') = \{V' \to t \cdot, V' \to t \cdot V', V' \to \cdot t, V' \to \cdot tV'\} = I_{12} - y \text{ke otmeyeho} \\ & \text{GOTO}(I_{12},V') = \{V' \to t \cdot, V' \to t \cdot V', V' \to \cdot t, V' \to \cdot tV'\} = I_{12} - y \text{ke otmeyeho} \\ & \text{GOTO}(I_{12},V') = \{V' \to t \cdot, V' \to t \cdot V', V' \to \cdot t, V' \to \cdot tV'\} = I_{12} - y \text{ke otmeyeho} \\ & \text{GOTO}(I_{12},V') = \{V' \to t \cdot, V' \to t \cdot V', V' \to \cdot t, V' \to \cdot tV'\} = I_{12} - y \text{ke otmeyeho} \\ & \text{GOTO}(I_{12},V') = \{V' \to t \cdot, V' \to t \cdot V', V' \to \cdot t, V' \to$$

Каноническая форма множества ситуаций

Построение канонической системы множеств LR(0)— ситуаций:

$$1 \varphi = \emptyset$$

- 2. Включить в ϕ множество $I_0 = CLOSURE([S' \rightarrow \bullet S])$, которое в начале «не отмечено».
 - 3. Если множество ситуаций I, входящее в систему, «не отмечено», то:
 - отметить множество I;
 - вычислить для каждого символа $X \in (V \cup \Sigma)$ значение I' = GOTO(I,X);
- если множество $I' \neq \emptyset$ и еще не включено в ϕ , то включить его в систему множеств как «неотмеченное» множество.
- Повторять шаг 3, пока все множества ситуаций системы ф не будут отмечены.

$$\begin{split} &\phi = \{\\ &I_0 = \{S' \rightarrow \cdot S, \, S \rightarrow \cdot aAB, \, S \rightarrow \cdot gV\},\\ &I_1 = \{S \rightarrow a \cdot AB, \, A \rightarrow \cdot bC\},\\ &I_2 = \{S \rightarrow g \cdot V, \, V \rightarrow \cdot t, \, V \rightarrow \cdot tV'\},\\ &I_3 = \{S' \rightarrow S \cdot\},\\ &I_4 = \{A \rightarrow b \cdot C, \, C \rightarrow \cdot dD\},\\ &I_5 = \{S \rightarrow aA \cdot B, \, B \rightarrow \cdot cA\},\\ &I_6 = \{V \rightarrow t \cdot, \, V \rightarrow t \cdot V', \, V' \rightarrow \cdot t, \, V' \rightarrow \cdot tV'\},\\ &I_7 = \{S \rightarrow gV \cdot\},\\ &I_8 = \{C \rightarrow d \cdot D, \, D \rightarrow \cdot f\},\\ &I_9 = \{A \rightarrow bC \cdot\},\\ &I_{10} = \{B \rightarrow c \cdot A, \, A \rightarrow \cdot bC\},\\ \end{split}$$

```
\begin{split} &I_{11} = \{S {\longrightarrow} aAB {\cdot}\}, \\ &I_{12} = \{V' {\longrightarrow} t {\cdot}, \ V' {\longrightarrow} t {\cdot} V', \ V' {\longrightarrow} {\cdot} t, \ V' {\longrightarrow} {\cdot} t V'\}, \\ &I_{13} = \{V {\longrightarrow} t V' {\cdot}\}, \\ &I_{14} = \{D {\longrightarrow} f {\cdot}\}, \\ &I_{15} = \{C {\longrightarrow} dD {\cdot}\}, \\ &I_{16} = \{B {\longrightarrow} cA {\cdot}\}, \\ &I_{17} = \{V' {\longrightarrow} t V' {\cdot}\} \ \} \end{split}
```

Используя каноническую систему LR(0)—множеств, можно представить функцию GOTO в виде диаграммы детерминированного конечного автомата. Диаграмма переходов ДКА для активных префиксов грамматики:

Рисунок 14 – Диаграмма переходов автомата

Шаг 2. Построение управляющей таблицы. Алгоритм построения управляющей таблицы М для LR(0)-грамматик основывается на рассмотрении пар грамматических вхождений, которые могут быть представлены соседними магазинными символами в процессе разбора допустимых цепочек.

1. Если операция $[s_m, a_i] = \Pi$ еренос(s), синтаксический анализатор выполняет перенос в стек очередного состояния s и его конфигурация становится

$$(s_0s_1...s_ms, a_{i+1}...a_n\$)$$

Символ a_i хранить в стеке не нужно (он может быть восстановлен из s). Текущим входным символом становится a_{i+1} .

2. Если операция $[s_m, a_i] = C$ вертка(i) правила p_i : $A \rightarrow \beta$, синтаксический анализатор выполняет свертку в два шага и его конфигурация становится

$$(s_0s_1...s_{m-r}s, a_ia_{i+1}...a_n\$)$$

- здесь r длина β , а $s = GOTO[s_{m-r}, A]$.
- 2.1. Определяется правило для свертки і и левый нетерминал: p_i : $A \rightarrow \alpha$.
- 2.2. Синтаксический анализатор снимает г символов состояний с вершины стека, что переносит на вершину стека состояние s_{m-r} . При свертке текущий входной символ не изменяется. (Удаляется из верхней части магазина $|\alpha|$ символов в соответствии с правилом C(i), где i номер правила, $A \rightarrow \alpha$, $|\alpha|$ длина правой части правила).
- 2.3. После чего на вершину стека помещается s, запись из GOTO[s_{m-r} , A]. (По правилу для свертки i и левый нетерминал: p_i : $A \rightarrow \alpha$, определяется по таблице переходов состояние, которое должно быть занесено в стек)

Последовательность символов грамматики $X_{m-r+1}...X_m$ всегда соответствует α , правой части продукции свертки.

- 3. Если операция $[s_m, a_i]$ = допуск синтаксический анализ завершается.
- 4. Если операция $[s_m, a_i] =$ ошибка синтаксический анализатор вызывает программу восстановление после ошибки.

Таблица 4 — Управляющая табллица для LR(0)-анализатора

	Управляющая таблица																				
т	Управляю f(u) a b c d f t g П1 П4 П6														(x)	x)					
I	a	b	С	d	f	t	g	Τ	S	A	В	С	D	R	V	V'					
0	П1						П2		3												
1		Π4								5											
2						П6									7						
3								Д													
4												9	8								
5			П10								11										
6	C8	C8	C8	C8	C8	П12	C8	C8								13					
7	C7	C7	C7	C7	C7	C7	C7	C7													
8					П14								15								
9	C1	C1	C1	C1	C1	C1	C1	C1													
10										16											
11	C6	C6	C6	C6	C6	C6	C6	C6													
12	C10	C10	C10	C10	C10	П12	C10	C10								17					
13	C9	C9	C9	C9	C9	C9	C9	C9													
14	C4	C4	C4	C4	C4	C4	C4	C4													
15	C3	C3	С3	C3	C3	C3	C3	C3													
16	C2	C2	C2	C2	C2	C2	C2	C2													
17	C11	C11	C11	C11	C11	C11	C11	C11													

Применение алгоритма «перенос-свёртка» для разбора цепочки символов на ленте.

Работа алгоритма описывается в терминах конфигураций, представляющих собой тройки вида (α T, α X, π), где α T — цепочка магазинных символов, Тверхний символ_магазина, Т кодирует некий префикс цепочки (символ состояния), α X — необработанная часть входной цепочки, α X — выход, построенный к настоящему моменту времени.

Распознавание цепочки gt:

```
(0,\,\text{gt}\bot\,,\,\epsilon) \models^\Pi (0\,\,2,\,\text{t}\bot\,,\,\epsilon) \models^\Pi (0\,\,2\,\,6,\,\bot\,,\,\epsilon) \models^C (0\,\,2\,\,7,\,\bot\,,\,8) \models^C (0\,\,3,\,\bot\,,\,8\,\,7) \models^\Pi (0\,\,2,\,\epsilon) \models^\Pi (0\,\,2,\,
```

```
I_10 = CLOSURE(B \rightarrow c.A)
B -> c.A
A -> .bC
I 11 = CLOSURE(S \rightarrow aAB.)
S -> aAB.
I 12 = CLOSURE( V' -> t. )
V' -> t.
V' -> t.V'
/' -> .t
/' -> .tV'
I_13 = CLOSURE( V -> tV'. )
/ -> tV'.
I_14 = CLOSURE(D \rightarrow f.)
D -> f.
I 15 = CLOSURE(C \rightarrow dD.)
 -> dD.
I_16 = CLOSURE(B \rightarrow cA.)
B -> cA.
I_17 = CLOSURE(V' \rightarrow tV'.)
V' -> tV'.
LR-automate
Automate definition:
Q: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Sigma: a b c d f t g $ S A B C D R V V' S'
00: 0
F: 3 6 7 9 11 12 13 14 15 16 17
DeltaList:
delta(0,a,-> (1
delta(0,g,-) (2
delta(0,S,-> (3
delta(1,b,-> (4
delta(1,A,-> (5
delta(2,t,-) (6
delta(2,V,-) (7
delta(4,d,-> (8
delta(4,C,-> (9
delta(5,c,-> (10
delta(5,B,-> (11
delta(6,t,-> (12
delta(6,V',-> (13
delta(8,f,-> (14
delta(8,D,-> (15
delta(10,b,-> (4
delta(10,A,-> (16
delta(12,t,-> (12
delta(12,V',-> (17
```

Contol table M a b		d	f	t	I	g	l	\$	S	I	Α	l	в	С	I	D	F	≀	٧	v'	I	s'	I
0 S 1	I	l	I	l	S	2	l		3	Ī			I		I	I		١		I	I		Ī
1 S	4						l 			I	5		١		I	١		١			١		I
2				S 6	l		l			I			I		I	١		١	7	I	١		1
3							 	Α		<u> </u>					I			١			١		I
4		S 8			1		l 			<u> </u>		 		9	I			١			1		I
5	S10				1		l 			<u> </u>		 	11		1						1		1
6 R 8 R	8 R 8	R 8	R 8	S12	R	8 8	R	8		I 		 	I		1			1		13	3		1
7 R 7 R	7 R 7	R 7	R 7	R 7	R	7	R	7		I 		 	I		1	<u> </u>		1		1			1
8	1	 	S14				 			I 		 	I		1	15		1		1			1
9 R 1 R	1 R 1	R 1	R 1	R 1	R	1	R	1		I 		 	<u> </u>		1	ا				<u> </u>			1
10 S	4 	 	 		 		 			I 	16	 	<u> </u>		1	ا				<u> </u>	1		1
11 R 6 R	6 R 6	R 6	R 6	R 6	R	6	R	6		<u> </u>		 	<u> </u>		1	ا				1	1		1
12 R10 R1	0 R10	R10	R10	S12	R	10	R	10		 		 	<u> </u>					1		1 17	7		1
13 R 9 R	9 R 9	R 9	R 9	R 9	R	9	R	9		<u> </u>		 	<u> </u>		1	ا					1		1
14 R 4 R	4 R 4	R 4	R 4	R 4	R	4	R	4		<u> </u>		 	<u> </u>		1	<u>ا</u> 					1		1
15 R 3 R	3 R 3	R 3	R 3	R 3	R	3	R	3		 		 	١		I	١				I	١		1
16 R 2 R	2 R 2	R 2	R 2	R 2	R	2	R	2		 		 				١				l			1
17 R11 R1	1 R11	R11	R11	R11	R	11	R	11		I		I	I		I	I		I		I	1		I
Введите строк	y:																						
gt																							
Введена строк	a: gt																						
Строка допущен Вывод: 78	a																						

Рисунок 15 – Пример управляющей таблицы для LR(0)-анализатора