HASKELL SPACEFLIGHT WORKSHOP

Jonathan Merritt, Luke Clifton YOW! LambdaJam 2019, May 13–15

Version timestamp: 2019-04-30T09:13:24+0000

Table of Contents

1	Intr	oduction	3
2	OD	E Integration and Initial Value Problems	4
	2.1	1D Euler's Method	5
		2.1.1 Radioactive Decay	5
	2.2	Euler's Method for an AffineSpace State	6
		2.2.1 Simple Harmonic Motion	9
	2.3	4th-Order Runge-Kutta Integration	11
	2.4	Simulating Apollo Lunar Ascent	12
Symbols			13
Re	eferences 1		14

1

Introduction

This workshop consists of these published notes and a set of problems contained in the associated GitHub Haskell project.

How much of the notes it will be necessary to read depends on the background of an individual participant. Those who are already familiar with numerical methods might be able to skip most of the notes and simply work on the problems directly. However, we have tried to make the notes fairly comprehensive for newcomers, so that people unfamiliar with numerical methods at least have a starting point.

ODE Integration and Initial Value Problems

The models we use for a spacecraft depend upon a set of variables that represent its state at an instant in time. These state variables typically include:

- Position
- Velocity
- Mass

They may be scalar quantities or vectors, as appropriate to the problem.

Our simulations are all examples of "Initial Value Problems". In an initial value problem, we know the starting state of the spacecraft, and we have a set of first-order ordinary differential equations (ODEs), which describe how its state evolves with time. We will integrate these ODEs to predict the state at future times. Using this approach, we can compute the time history of state variables that are critial to mission or maneuver planning. For example, we might find the trajectory of a spacecraft (its position as a function of time), and check whether it places the spacecraft in a desired orbit.

The motion of a spacecraft depends on multiple forces that might be acting on it. For example:

- Gravity
- Atmospheric drag
- Rocket thrust

Thrust from a rocket engine may be controlled, and control inputs can be modeled easily in our system. Testing the behavior of a control system, particularly under conditions of real-world variations, is a modern practical use of the methods we cover (eg. [1, 2]).

2.1 1D Euler's Method

We can write a set of coupled, first-order ODEs as:

$$\frac{d\mathbf{x}}{dt} = \dot{\mathbf{x}} = f(t, \mathbf{x}) \tag{2.1}$$

Here, \mathbf{x} is the state vector, t is time, and f is some function. In Euler's method, we approximate a step forward in time by adding the product of the gradient, $\dot{\mathbf{x}}$, and the time step, h, to the current state, \mathbf{x} :

$$\mathbf{x}(t+h) \approx \mathbf{x}(t) + \dot{\mathbf{x}} h \tag{2.2}$$

$$\approx \mathbf{x}(t) + f(t, \mathbf{x}(t)) h \tag{2.3}$$

2.1.1 Radioactive Decay

We will begin implementing Euler's method with a 1D state, specialized to Double, using the process of radioactive decay as an example. Radioactive decay has an analytical solution, thus providing a ground truth against which the numerical result can be compared. It only involves a single state variable, N, which can be represented as a Double. Specializing to Double gives us a simple starting point that is close to the approach used in many other programming languages.

In radioactive decay, the rate of decay, \dot{N} , is proportional to the number of moles of radioactive particles that remain at any instant in time, N:

$$\dot{N} = -\lambda N \tag{2.4}$$

where λ is called the decay constant. This equation can be solved by knowing in advance that an exponential function happens to fit exactly the expected equation:

$$N = N_0 \exp\left(-\lambda t\right) \tag{2.5}$$

So that:

$$\dot{N} = -\lambda \left(N_0 \exp\left(-\lambda t\right) \right) \tag{2.6}$$

$$= -\lambda N \tag{2.7}$$

as required. Conventionally, λ is specified in terms of the half-life of an isotope, $t_{(1/2)}$:

at
$$t = 0$$
, $N = N_0$ (2.8)

at
$$t = t_{(1/2)}, \ N = \frac{N_0}{2}$$
 (2.9)

thus:

$$\frac{N_0}{2} = N_0 \exp\left(-\lambda t_{(1/2)}\right) \tag{2.10}$$

$$\ln\left(\frac{1}{2}\right) = -\lambda t_{(1/2)} \tag{2.11}$$

$$\lambda = \frac{\ln 2}{t_{(1/2)}} \tag{2.12}$$

As an example, consider the isotope Plutonium-238 (²³⁸Pu), which has been used in radioisotope thermoelectric generators (RTGs) for spacecraft such as the Voyager 1 and 2 probes. This isotope has a half-life of approximately 87.7 years.

Problem 1: Euler integration specialized to Double.

In the file ODE.hs,

- implement eulerStepDouble, which takes a single step of Euler integration
- implement integrateEulerDouble, which takes multiple steps

In ODEExamples.hs,

• run plotEulerDoubleExpDecay Screen, to view a plot of Euler integration applied to the radioactive decay example

Figure 2.1 shows the result of applying Euler integration to the radioactive decay example. In this figure, it is evident that when smaller time-steps are taken, the Euler method more closely approximates the analytical solution. This is usually the case practically with numerical integration, although there is a limit beyond which smaller time steps will begin to diverge from the correct solution due to accruing floating-point errors. We will see later that raising the polynomial order of the integration approximation can improve accuracy with greater computational efficiency than taking smaller time steps.

2.2 Euler's Method for an AffineSpace State

We will now generalize Euler's method using the abstractions available in the vector-space package. The necessary constraints are captured in Listing 1. Don't panic if this seems a lot to take in, since we'll see a few concrete examples.

The first concept we introduce is the difference between an AffineSpace and its associated VectorSpace. In the present context, points in the AffineSpace are points belonging to the state space of the problem, of type state (eg. position, velocity, etc). Vectors of the associated VectorSpace, of type diff, represent deltas or differences between the points (eg. an offset of position, a delta in velocity, etc). We can add a vector to a point to obtain a new point, but we don't sum points directly. Similarly, we can multiply a vector by a scalar, but we cannot multiply a point by a scalar. Most widely-used frameworks for numerical integration do not make this distinction.

Radioactive Decay of Pu-238 - Analytical vs Euler

Figure 2.1: Comparison of Euler integration with the analytical result for radioactive decay of the isotope ²³⁸Pu. The solid line shows the analytical solution while the points demonstrate the Euler approximation for different time steps.

Listing 1: Constraints for Euler's method generalized by vector-space.

Next is the concept of a linear map representing the derivative: time :-* diff. In our case, where we deal with finite differences, this constructor can be considered analogous to a (linear) function of type time -> diff. What this function represents is the delta, diff, which arises from taking a time-step, h, of type time. A very simple illustration of the linear map is shown in Listing 2, with a version for vectors shown in Listing 3. The linear function assumes that the function it has been provided is linear, and it memoizes the values of that function along each basis vector of the vector space.

```
> :set -XFlexibleContexts
> import Data.LinearMap ((:-*), linear, lapply)
> f = (*) 5 :: Double -> Double
> lm = linear f
> :t lm
lm :: Double :-* Double
> :force lm
lm = Data.LinearMap.LMap (Just 5.0)
> lapply lm 1.0
5.0
> lapply lm 2.0
10.0
```

Listing 2: A scalar linear map. Once the map has been defined (by the linear function), the lapply function multiplies the input vector (a Double) by the memoized value along the unit basis vector.

Listing 3: A vector linear map, using tuples for vectors. This provides a better view of the memoisation that is occurring under the hood. The construction of a matrix-like representation (but with automatic dimension checking) is evident.

Finally, we need to describe the operations that can be used on instances of AffineSpace and its associated VectorSpace:

lapply m h applies linear map m to vector h

p .+ v adds vector v to point pa ^+ b adds vector a to vector b

These operations are sufficient to implement the generalized form of Euler's method.

2.2.1 Simple Harmonic Motion

To motivate the generalized form of Euler's method, let's consider simple harmonic motion (SHM), with two scalar state variables:

- Position, r
- Velocity, v

The data type State in ODEExamples. hs describes this state, which is the AffineSpace of the problem. It introduces statically type-checked units from the units package for length and velocity. The data type DState is the corresponding VectorSpace of the problem, representing deltas in the state.

In SHM, a linear spring force, F, is proportional to the position, r, with a spring constant, k:

$$F = -kr (2.13)$$

This is combined with the equations of motion of a point mass to produce the following governing ODE:

$$\dot{\mathbf{x}} = \begin{bmatrix} \dot{r} \\ \dot{v} \end{bmatrix} = \begin{bmatrix} v \\ -kr/m \end{bmatrix} \tag{2.14}$$

where v is the velocity and m is the mass. If the initial conditions of the problem at t=0 are t=0 and t=0 then the analytical solution is:

$$\mathbf{x}(t) = \begin{bmatrix} r_0 \cos(\omega t) \\ -\omega r_0 \sin(\omega t) \end{bmatrix}$$
 (2.15)

in which ω is the angular velocity, given by:

$$\omega = \sqrt{\frac{k}{m}} \tag{2.16}$$

This analytical solution can be differentiated twice manually to confirm that it satisfies the governing ODE, and values substituted to confirm that it satisfies the initial conditions.

Problem 2: Generalized Euler integration.

In the file ODE.hs,

- implement eulerStep
- implement integrate and integrateWithDiff

In ODEExamples.hs,

• run plotEulerSHM Screen, to view a plot of the position state variable, computed by Euler integration of SHM equations

Simple Harmonic Motion - Analytical vs Euler

Figure 2.2: Comparison of Euler integration with the analytical result for the position variable of a simple harmonic oscillator. The solid line shows the analytical solution while the points demonstrate the Euler approximations for different time steps.

Figure 2.2 shows the position variable of a simple harmonic oscillator example. Once again, the smaller the time step, the more closely the result tracks the analytical solution.

2.3 4th-Order Runge-Kutta Integration

We have used Euler integration so far because it introduced the concepts we rely on from vector-space. However, there is a more common default for numerical integration of ODEs: the 4th-Order Runge-Kutta method (RK4). RK4 is the default in Matlab and SciPy (in those packages it is typically used with an embedded 5th-order approximation for step-size control; something we won't implement here). RK4 is usually a much better choice than the Euler method in terms of the accuracy/performance tradeoff.

RK4 is definitely not the final word though! The popular Numerical Recipes textbook recommends an 8th-order method (Dopr853) for general production use in non-stiff systems [3]. Specialized integrators may also be used for particular problems. The Apollo Guidance Computer used Nyström's Method to perform integration for efficiency and because of the dominant effect of a single, central gravitational force in most situations [4]. Long-duration astrodynamics problems, such as those concerning solar-system formation, or the behaviour of orbits over thousands of years, may have to use symplectic integrators to achieve reasonable accuracy (eg. [5]). We don't investigate these methods here because of time limitations, and because RK4 is both easy to implement and entirely sufficient for the examples.

We will only supply the equations for RK4 here and refer readers elsewhere (eg. [3, 6]) for a complete derivation:

$$\mathbf{k_1} = h f(t, \mathbf{x}) \tag{2.17}$$

$$\mathbf{k_2} = h f(t + \frac{1}{2}h, \mathbf{x} + \frac{1}{2}\mathbf{k_1})$$
 (2.18)

$$\mathbf{k_3} = h f(t + \frac{1}{2}h, \mathbf{x} + \frac{1}{2}\mathbf{k_2})$$
 (2.19)

$$\mathbf{k_4} = h f(t+h, \mathbf{x} + \mathbf{k_3}) \tag{2.20}$$

$$\mathbf{x}(t+h) \approx \mathbf{x} + \frac{1}{6}\mathbf{k_1} + \frac{1}{3}\mathbf{k_2} + \frac{1}{3}\mathbf{k_3} + \frac{1}{6}\mathbf{k_4}$$
 (2.21)

The vectors $\mathbf{k}_1 \dots \mathbf{k}_4$ can be treated as stages of the computation, and are good candidates for let-floating. However, be aware that these equations do not directly represent the Haskell code. Instead, when implementing them, some care must be taken to consider what components are computed by lapply, what operations are adding vectors, and what operations are offsetting a point by a vector. Determining these are left as part of the exercise.

¹The Draper Lab Apollo documents do refer to RK4 though, as "The usual fourth-order Runge-Kutta integration". Apparently it has a long history as the "go to" approach!

Problem 3: Runge-Kutta Integration.

In the file ODE.hs,

• implement rk4Step

In ODEExamples.hs,

• run plotSHMComparison Screen, to view a plot of Euler vs RK4 for the SHM example, using the same number of function evaluations

Figure 2.3 shows the comparison of Euler's method and RK4, for the same number of function evaluations. It is clear that RK4 much more closely approximates the analytical result.

Simple Harmonic Motion - Analytical, Euler and RK4

Figure 2.3: Comparison of Euler and RK4 integrations, for the same number of function evaluations, with the analytical result of a simple harmonic oscillator.

2.4 Simulating Apollo Lunar Ascent

WIP.

Symbols

- *f* A function.
- *F* Total force, scalar (N).
- h Time step (s).
- k Spring constant (N/m).
- m Mass (kg).
- *N* Number of moles of a substance.
- N_0 Number of moles of a substance at t = 0.
- *r* Position, scalar (m).
- r_0 Position, scalar, at t = 0 (m).
- t Time (s).
- $t_{(1/2)}$ Radioactive half life (s).
- v Velocity, scalar (m/s).
- **x** System state vector.
- λ Radioactive decay constant (1/s).
- ω Angular frequency (1/s).

References

- [1] J. L. Prince, P. N. Desai, E. M. Queen, and M. R. Grover, "Mars phoenix entry, descent and landing simulation design and modelling analysis," *Journal of Spacecraft and Rockets*, vol. 48, no. 5, pp. 754–764, 2011. [Online]. Available: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20080033126.pdf
- [2] G. L. Brauer, D. E. Cornick, and R. Stevenson, *Capabilities and Applications of the Program to Optimize Simulated Trajectories (POST). Program Summary Document. NASA CR-2770.* NASA, 1977. [Online]. Available: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770012832.pdf
- [3] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, *Numerical Recipes 3rd Edition: The Art of Scientific Computing*, 3rd ed. New York, NY, USA: Cambridge University Press, 2007.
- [4] G. M. Levine, Ed., *Apollo: Guidance, Navigation and Control*. Charles Stark Draper Laboratory, MIT, 1971, vol. Section 5: Guidance Equations (Rev. 11). [Online]. Available: https://www.ibiblio.org/apollo/Documents/j2-80-R-567-SEC5-REV11_text.pdf
- [5] H. Rein and D. Tamayo, "JANUS: a bit-wise reversible integrator for N-body dynamics," *Monthly Notices of the Royal Astronomical Society*, vol. 473, no. 3, pp. 3351–3357, 09 2017. [Online]. Available: https://arxiv.org/abs/1704.07715
- [6] R. H. Battin, *An introduction to the Mathematics and Methods of Astrodynamics, Revised Edition*. American Institute of Aeronautics and Astronautics, 1999.