Math 724 Homework 2

Theo Koss

September 2024

Chapter 2

14. Give an example of an open cover of (0,1) which has no finite subcover.

The set

$$\bigcup_{n=1}^{\infty} (0, 1 - \frac{1}{n})$$

Is an open cover of (0,1), because for any $x \in (0,1)$, there is an N such that $1-\frac{1}{N} > x$ (So $x \in (0,1-\frac{1}{N})$), and clearly the sets are open. There is no finite subcover because assume there is, then there is a maximum N. But then $\frac{1}{2N} \in (0,1)$ but it is not in the subset.

25. Prove that every compact metric space K has a countable base, and that K is therefore separable.

Proof. Let K be a compact metric space. For every $n \in \mathbb{N}$, consider the open ball $B(x, \frac{1}{n})$ with radius $\frac{1}{n}$ centered around some $x \in K$. Clearly, this is an open cover of K. Since we have that K is compact, there is a finite subcover $V_n =$ The union of finitely many of the neighborhoods. Say $V_n = \bigcup_{i=1}^N B(x_i, \frac{1}{n})$. Now, taking the union of all of these finite subcovers for each $n \in \mathbb{N}$ is countable, and furthermore, this union is a base of K.

To show K is separable, we must find a coutable, dense subset. Pick one point from each open ball of our base (countably many). Then clearly this subset is countable, and it is dense because V_n covers K.

Chapter 3

- 6. Investigate the behavior (convergence or divergence) of $\sum a_n$ if:
 - (a). $a_n = \sqrt{n+1} \sqrt{n}$ The k-th partial sum:

$$S_k = \sqrt{k+1} - 1$$
 (Everything less than k cancels out!)

Diverges as $k \to \infty$, so the series diverges.

(b). $a_n = \frac{\sqrt{n+1}-\sqrt{n}}{n}$ Similar to above, the k-th partial sum:

$$S_k = \frac{\sqrt{k+1}-1}{k} \to 0 \text{ As } k \to \infty$$

So the series converges.

- (c). $a_n = (\sqrt[n]{n} 1)^n \limsup_{n \to \infty} (\sqrt[n]{n} 1) = 0$ (By theorem 3.20 (c), $\lim_{n \to \infty} \sqrt[n]{n} = 1$). So it converges by the root test.
- (d). $a_n = \frac{1}{1+z^n}$ For complex z.

If $|z| \leq 1$, the series diverges because the terms will always be at least $\frac{1}{2}$, so the limit of partial sums does not converge to 0. For |z| > 1, we can compare to the geometric series $\sum \frac{1}{|z|^n}$ which converges by theorem 3.26. Therefore our series converges.

7. Prove that the convergence of $\sum a_n$ implies the convergence of $\sum \frac{\sqrt{a_n}}{n}$.

Proof. By theorem 1.35, the Schwarz inequality, we have,

$$\left(\sum a_i b_i\right)^2 \leqslant \left(\sum a_i^2\right) \left(\sum b_i^2\right)$$

In our case, $a_i := \sqrt{a_n}$ and $b_i := \frac{1}{n}$. So,

$$\left(\sum \frac{\sqrt{a_n}}{n}\right)^2 \leqslant (\sum a_n)(\sum \frac{1}{n^2})$$

 $\sum a_n$ converges by assumption, and $\sum \frac{1}{n^2}$ converges by theorem 3.28. Therefore $\left(\sum \frac{\sqrt{a_n}}{n}\right)^2$ converges and so $\sum \frac{\sqrt{a_n}}{n}$ also converges.