Bubba's Center

Flat Top, TN Site Grading Plan

PART I - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.02 SUMMARY

- A. This Section includes the following:
 - 1. Preparing subgrades for slabs-on-grade, walks, pavements, lawns, and plantings.
 - 2. Excavating and backfilling for buildings and structures.
 - 3. Drainage course for slabs-on-grade.
 - 4. Subbase course for concrete walks and pavements.
 - 5. Base course for asphalt paving.
 - 6. Subsurface drainage backfill for walls and trenches.
 - 7. Excavating and backfilling trenches within building lines.
 - 8. Excavating and backfilling trenches for buried mechanical and electrical utilities and pits for buried utility structures.
- B. Related Sections include the following:
 - 1. Division 2 Section "Landscaping" for finish grading, including placing and preparing topsoil for lawns and plantings.
 - 2. Division 3 Section "Cast-in-Place Concrete" for granular course over vapor retarder.
 - 3. Division 15 and 16 Sections for excavating and backfilling buried mechanical and electrical utilities and buried utility structures.

1.03 DEFINITIONS

- A. Backfill: Soil materials used to fill an excavation.
 - 1. Initial Backfill: Backfill placed beside and over pipe in a trench, including haunches to support sides of pipe.
 - 2. Final Backfill: Backfill placed over initial backfill to fill a trench.
- B. Base Course: Layer placed between the subbase course and asphalt paving.

- C. Bedding Course: Layer placed over the excavated subgrade in a trench before laying pipe.
- D. Borrow: Satisfactory soil imported from off-site for use as fill or backfill.
- E. Drainage Course: Layer supporting slab-on-grade used to minimize capillary flow of pore water.
- F. Excavation: Removal of material encountered above subgrade elevations.
 - Additional Excavation: Excavation below subgrade elevations as directed by Architect. Additional excavation and replacement material will be paid for according to Contract provisions for changes in the Work.
 - 2. Bulk Excavation: Excavations more than 10 feet in width and pits more than 30 feet in either length or width.
 - Unauthorized Excavation: Excavation below subgrade elevations or beyond indicated dimensions without direction by Architect. Unauthorized excavation, as well as remedial work directed by Architect, shall be without additional compensation.
- G. Fill: Soil materials used to raise existing grades.
- H. Structures: Buildings, footings, foundations, retaining walls, slabs, tanks, curbs, mechanical and electrical appurtenances, or other man-made stationary features constructed above or below the ground surface.
- I. Subbase Course: Layer placed between the subgrade and base course for asphalt paving, or layer placed between the subgrade and a concrete pavement or walk.
- J. Subgrade: Surface or elevation remaining after completing excavation, or top surface of a fill or backfill immediately below subbase, drainage fill, or topsoil materials.
- K. Utilities include on-site underground pipes, conduits, ducts, and cables, as well as underground services within buildings.

1.04 SUBMITTALS

- A. Product Data: For the following:
 - 1. Each type of plastic warning tape.
 - 2. Separation fabric.
- B. Material Test Reports: From a qualified testing agency indicating and interpreting test results for compliance of the following with requirements indicated:
 - 1. Classification according to ASTM D 2487 of each on-site or borrow soil material proposed for fill and backfill.

2. Laboratory compaction curve according to ASTM D 698 for each on-site or borrow soil material proposed for fill and backfill.

1.05 QUALITY ASSURANCE

A. Geotechnical Testing Agency Qualifications: The Geotechnical testing agency will be hired by the Owner. The Contractor shall coordinate testing requirements with the testing agency and provide access to the site.

1.06 PROJECT CONDITIONS

- A. Existing Utilities: Do not interrupt utilities serving facilities occupied by Owner or others unless permitted in writing by Architect and then only after arranging to provide temporary utility services according to requirements indicated:
 - 1. Notify Owner not less than two days in advance of proposed utility interruptions.
 - 2. Contact utility-locator service for area where Project is located before excavating.
- B. Demolish and completely remove from site existing underground utilities indicated to be removed. Coordinate with utility companies to shut off services if lines are active.

PART II - PRODUCTS

2.01 SOIL MATERIALS

- A. General: Provide borrow soil materials when sufficient satisfactory soil materials are not available from excavations.
- B. Satisfactory Soils: Imported fill soils should consist of low to moderately plastic clay or silt with a plastic index of less than thirty (PI<30). The imported fill should contain no rock fragments larger than 4 inches in any dimension, and should be free from organic matter and other deleterious matter. The on-site soils may be used as engineered fill as approved acceptable by the Owner's Geotechnical testing agency. Existing fill soils will require evaluation by the Owner's Geotechnical testing agency to determine if they can be used as structural fill.
- C. Unsatisfactory Soils: The Geotechnical testing agency observation will determine unsatisfactory soils.
- D. Backfill and Fill: Satisfactory soil materials.
- E. Subbase: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D 2940; with at least 90 percent passing a 1-1/2- inch sieve and not more than 12 percent passing a No. 200 sieve.
- F. Base: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D 2940; with at least 95 percent passing a 1-1/2-inch sieve and not more than 8 percent passing a No. 200 sieve.

- G. Engineered Fill: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D 2940; with at least 90 percent passing a 1-1/2-inch sieve and not more than 12 percent passing a No. 200 sieve.
- H. Bedding: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D 2940; except with 100 percent passing a 1-inch sieve and not more than 8 percent passing a No. 200 sieve.
- I. Drainage Fill: Washed, narrowly graded mixture of crushed stone, or crushed or uncrushed gravel; ASTM D 448; coarse-aggregate grading Size 57; with 100 percent passing a 1-1/2- inch sieve and 0 to 5 percent passing a No. 8 sieve.
- J. Filter Material: Narrowly graded mixture of natural or crushed gravel, or crushed stone and natural sand; ASTM D 448; coarse-aggregate grading Size 67; with 100 percent passing a 1-inch sieve and 0 to 5 percent passing a No. 4 sieve.
- K. Impervious Fill: Clayey gravel and sand mixture capable of compacting to a dense state.

2.02 ACCESSORIES

- A. Detectable Warning Tape: Acid- and alkali-resistant polyethylene film warning tape manufactured for marking and identifying underground utilities, minimum 6 inches wide and 4 mils thick, continuously inscribed with a description of utility, with metallic core encased in a protective jacket for corrosion protection, detectable by metal detector when tape is buried up to 30 inches deep; colored as follows:
 - 1. Red: Electric.
 - 2. Yellow: Gas, oil, steam, and dangerous materials.
 - 3. Orange: Telephone and other communications.
 - 4. Blue: Water systems.
 - 5. Green: Sewer systems.

PART III - EXECUTION

3.01 PREPARATION

- A. Protect structures, utilities, sidewalks, pavements, and other facilities from damage caused by settlement, lateral movement, undermining, washout, and other hazards created by earthwork operations.
- B. Protect subgrades and foundation soils against freezing temperatures or frost. Provide protective insulating materials as necessary.
- C. Provide erosion-control measures to prevent erosion or displacement of soils and discharge of soil-bearing water runoff or airborne dust to adjacent properties and walkways.

3.02 DEWATERING

- A. Prevent surface water and ground water from entering excavations, from ponding on prepared subgrades, and from flooding Project site and surrounding area.
- B. Protect subgrades from softening, undermining, washout, and damage by rain or water accumulation.
 - Reroute surface water runoff away from excavated areas. Do not allow water to accumulate in excavations. Do not use excavated trenches as temporary drainage ditches.
 - 2. Install a dewatering system to keep subgrades dry and convey ground water away from excavations. Maintain until dewatering is no longer required.

3.03 EXPLOSIVES

A. Explosives: Do not use explosives.

3.04 EXCAVATION, GENERAL

- A. Unclassified Excavation: Excavation to subgrade elevations regardless of the character of surface and subsurface conditions encountered, including rock, soil materials, and obstructions.
 - 1. If excavated materials intended for fill and backfill include unsatisfactory soil materials and rock, replace with satisfactory soil materials.

3.05 EXCAVATION FOR STRUCTURES

- A. Excavate to indicated elevations and dimensions within a tolerance of plus or minus 1 inch. Extend excavations a sufficient distance from structures for placing and removing concrete formwork, for installing services and other construction, and for inspections.
 - 1. Excavations for Footings and Foundations: Do not disturb bottom of excavation. Excavate by hand to final grade just before placing concrete reinforcement. Trim bottoms to required lines and grades to leave solid base to receive other work.
 - Excavation for Underground Tanks, Basins, and Mechanical or Electrical Utility Structures: Excavate to elevations and dimensions indicated within a tolerance of plus or minus 1 inch. Do not disturb bottom of excavations intended for bearing surface.

3.06 EXCAVATION FOR WALKS AND PAVEMENTS

A. Excavate surfaces under walks and pavements to indicated cross sections, elevations, and grades.

3.07 EXCAVATION FOR UTILITY TRENCHES

A. Excavate trenches to indicated gradients, lines, depths, and elevations.

- 1. Beyond building perimeter, excavate trenches to allow installation of top of pipe below frost line.
- B. Excavate trenches to uniform widths to provide a working clearance on each side of pipe or conduit. Excavate trench walls vertically from trench bottom to 12 inches higher than top of pipe or conduit, unless otherwise indicated.
 - 1. Clearance: 12 inches on each side of pipe or conduit.
- C. Trench Bottoms: Excavate trenches 4 inches deeper than bottom of pipe elevation to allow for bedding course. Hand excavate for bell of pipe.
 - 1. Excavate trenches 6 inches deeper than elevation required in rock or other unyielding bearing material to allow for bedding course.

3.08 APPROVAL OF SUBGRADE

- A. Notify Architect when excavations have reached required subgrade.
- B. If Architect or Soils Engineer determines that unsatisfactory soil is present, continue excavation and <u>replace with compacted backfill or fill material as directed</u>.
- C. Proof roll subgrade with heavy pneumatic-tired equipment to identify soft pockets and areas of excess yielding. Do not proof roll wet or saturated subgrades.
- D. Reconstruct subgrades damaged by freezing temperatures, frost, rain, accumulated water, or construction activities, as directed by Architect.

3.09 UNAUTHORIZED EXCAVATION

- A. Fill unauthorized excavation under foundations or wall footings by extending bottom elevation of concrete foundation or footing to excavation bottom, without altering top elevation. Lean concrete fill may be used when approved by Architect.
 - 1. Fill unauthorized excavations under other construction or utility pipe as directed by Architect.

3.10 STORAGE OF SOIL MATERIALS

- A. Stockpile borrow materials and satisfactory excavated soil materials. Stockpile soil materials without intermixing. Place, grade, and shape stockpiles to drain surface water. Cover to prevent windblown dust.
 - 1. Stockpile soil materials away from edge of excavations. Do not store within drip line of remaining trees.

3.11 BACKFILL

A. Place and compact backfill in excavations promptly, but not before completing the following:

- 1. Construction below finish grade including, where applicable, dampproofing, waterproofing, and perimeter insulation.
- 2. Surveying locations of underground utilities for record documents.
- 3. Inspecting and testing underground utilities.
- 4. Removing concrete formwork.
- 5. Removing trash and debris.

3.12 UTILITY TRENCH BACKFILL

- A. Place and compact bedding course on trench bottoms and where indicated. Shape bedding course to provide continuous support for bells, joints, and barrels of pipes and for joints, fittings, and bodies of conduits.
- B. In areas where trench is under paved areas, backfill remainder of trench with Bedding or Engineered fill to subgrade.
- A. Backfill trenches excavated under footings and within 18 inches of bottom of footings; fill with concrete to elevation of bottom of footings.
- B. Provide 4-inch-thick, concrete-base slab support for piping or conduit less than 30 inches below surface of roadways. After installing and testing, completely encase piping or conduit in a minimum of 4 inches of concrete before backfilling or placing roadway subbase.
- C. Coordinate backfilling with utilities testing.
- D. Install warning tape directly above utilities, 12 inches below finished grade, except 6 inches below subgrade under pavements and slabs.

3.13 FILL

- A. Preparation: Remove vegetation, topsoil, debris, unsatisfactory soil materials, obstructions, and deleterious materials from ground surface before placing fills.
- B. Plow, scarify, bench, or break up sloped surfaces steeper than 1 vertical to 4 horizontal so fill material will bond with existing material.
- C. Place and compact fill material in layers to required elevations as follows:
 - 1. Under grass and planted areas, use satisfactory soil material.
 - 2. Under walks and pavements, use satisfactory soil material.
 - 3. Under steps and ramps, use engineered fill.
 - 4. Under building slabs, use engineered fill.
 - 5. Under footings and foundations, use engineered fill.

3.14 MOISTURE CONTROL

- A. Uniformly moisten or aerate subgrade and each subsequent fill or backfill layer before compaction to within 3 percent of optimum moisture content.
 - 1. Do not place backfill or fill material on surfaces that are muddy, frozen, or contain frost or ice.
 - 2. Remove and replace, or scarify and air-dry, otherwise satisfactory soil material that exceeds optimum moisture content by 3 percent and is too wet to compact to specified dry unit weight.

3.15 COMPACTION OF BACKFILLS AND FILLS

- A. Place backfill and fill materials in layers not more than 8 inches in loose depth for material compacted by heavy compaction equipment, and not more than 4 inches in loose depth for material compacted by hand-operated tampers.
- B. Place backfill and fill materials evenly on all sides of structures to required elevations, and uniformly along the full length of each structure.
- C. Compact soil to not less than the following percentages of maximum dry unit weight according to ASTM D 698:
 - Under structures, building slabs, steps, and pavements, scarify and recompact top 12 inches of existing subgrade and each layer of backfill or fill material at 98 percent.
 - 2. Under walkways, scarify and recompact top 6 inches below subgrade and compact each layer of backfill or fill material at 95 percent.
 - 3. Under lawn or unpaved areas, scarify and recompact top 6 inches below subgrade and compact each layer of backfill or fill material at 85 percent.

3.16 GRADING

- A. General: Uniformly grade areas to a smooth surface, free from irregular surface changes. Comply with compaction requirements and grade to cross sections, lines, and elevations indicated.
 - 1. Provide a smooth transition between adjacent existing grades and new grades.
 - 2. Cut out soft spots, fill low spots, and trim high spots to comply with required surface tolerances.
- B. Site Grading: Slope grades to direct water away from buildings and to prevent ponding. Finish subgrades to required elevations within the following tolerances:
 - 1. Lawn or Unpaved Areas: Plus or minus 1 inch.
 - 2. Walks: Plus or minus 1/2 inch...
 - 3. Pavements: Plus or minus 1/2 inch.

C. Grading inside Building Lines: Finish subgrade to a tolerance of 1/2 inch when tested with a 10-foot straightedge.

3.17 SUBSURFACE DRAINAGE

- A. Drainage Piping: Drainage pipe is specified in Division 2 Section "Subdrainage."
- B. Subsurface Drain: Place a layer of drainage fabric around perimeter of drainage trench as indicated. Place a 6-inch course of filter material on drainage fabric to support drainage pipe. Encase drainage pipe in a minimum of 12 inches of filter material and wrap in drainage fabric, overlapping sides and ends at least 6 inches.
 - 1. Compact each course of filter material to 95 percent of maximum dry unit weight according to ASTM D 698.
- C. Drainage Backfill: Place and compact filter material over subsurface drain, in width indicated, to within 12 inches of final subgrade. Overlay drainage backfill with one layer of drainage fabric, overlapping sides and ends at least 6 inches.
 - 1. Compact each course of filter material to 95 percent of maximum dry density according to ASTM D 698.

3.18 SUBBASE AND BASE COURSES

- A. Under pavements and walks, place subbase course on prepared subgrade and as follows:
 - Place base course material over subbase.
 - Compact subbase and base courses at optimum moisture content to required grades, lines, cross sections, and thickness to not less than 98 percent of maximum dry density according to ASTM D 698.
 - 3. Shape subbase and base to required crown elevations and cross-slope grades.
 - 4. When thickness of compacted subbase or base course is 6 inches or less, place materials in a single layer.
 - 5. When thickness of compacted subbase or base course exceeds 6 inches, place materials in equal layers, with no layer more than 6 inches thick or less than 3 inches thick when compacted.

3.19 DRAINAGE COURSE

- A. Under slabs-on-grade, place drainage course on prepared subgrade and as follows:
 - 1. Compact drainage course to required cross sections and thickness to not less than 98 percent of maximum dry unit weight according to ASTM D 698.
 - 2. When compacted thickness of drainage course is 6 inches or less, place materials in a single layer.
 - 3. When compacted thickness of drainage course exceeds 6 inches, place materials in equal layers, with no layer more than 6 inches thick or less than 3 inches thick when compacted.

3.20 FIELD QUALITY CONTROL

- A. Testing Agency: Owner will engage a Geotechnical engineering firm to perform field quality assurance testing.
- B. Allow testing agency to inspect and test subgrades and each fill or backfill layer. Proceed with subsequent earthwork only after test results for previously completed work comply with requirements.
- C. Footing Subgrade: At footing subgrades, at least one test of each soil stratum will be performed to verify design-bearing capacities. Subsequent verification and approval of other footing subgrades may be based on a visual comparison of subgrade with tested subgrade when approved by Engineer.
- D. Testing agency will test compaction of soils in place according to ASTM D 1556, ASTM D 2167, ASTM D 2922, and ASTM D 2937, as applicable. Tests will be performed at the following locations and frequencies:
 - 1. Paved and Building Slab Areas: At subgrade and at each compacted fill and backfill layer, at least one test for every 2000 sq. ft. or less of paved area or building slab, but in no case fewer than three tests.
 - 2. Foundation Wall Backfill: At each compacted backfill layer, at least one test for each 100 feet or less of wall length, but no fewer than two tests.
 - 3. Trench Backfill: At each compacted initial and final backfill layer, at least one test for each 150 feet or less of trench length, but no fewer than two tests.
- E. When testing agency reports that subgrades, fills, or backfills have not achieved degree of compaction specified, scarify and moisten or aerate, or remove and replace soil to depth required; recompact and retest until specified compaction is obtained.

3.21 PROTECTION

- A. Protecting Graded Areas: Protect newly graded areas from traffic, freezing, and erosion. Keep free of trash and debris.
- B. Repair and reestablish grades to specified tolerances where completed or partially completed surfaces become eroded, rutted, settled, or where they lose compaction due to subsequent construction operations or weather conditions.
 - 1. Scarify or remove and replace soil material to depth as directed by Architect; reshape and recompact.
- C. Where settling occurs before Project correction period elapses, remove finished surfacing, backfill with additional soil material, compact, and reconstruct surfacing.
 - Restore appearance, quality, and condition of finished surfacing to match adjacent work, and eliminate evidence of restoration to the greatest extent possible.

3.22 DISPOSAL OF SURPLUS AND WASTE MATERIALS

A. Disposal: Remove surplus satisfactory soil and waste material, including unsatisfactory soil, trash, and debris, and legally dispose of it off Owner's property.

PART I - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.02 SUMMARY

- A. This Section includes storm drainage outside the building.
- B. Related Sections include the following:
 - 1. Division 2 Section "Foundation Drainage Systems" for foundation drains connecting to storm drainage.
 - 2. Division 3 Section "Cast-in-Place Concrete" for concrete structures.

1.03 DEFINITIONS

- A. ABS: Acrylonitrile-butadiene-styrene plastic.
- B. EPDM: Ethylene-propylene-diene-monomer rubber.
- C. PE or HDPE: Polyethylene plastic, or High Density Polyethylene plastic.
- D. PVC: Polyvinyl chloride plastic.
- E. CMP: Corrugated Metal Pipe
- F. RCP: Reinforced Concrete Pipe

1.04 PERFORMANCE REQUIREMENTS

A. Gravity-Flow, Nonpressure-Piping Pressure Ratings: At least equal to system test pressure.

1.05 SUBMITTALS

- A. Shop Drawings: Include plans, elevations, details, and attachments for the following:
 - 1. Precast concrete manholes and other structures, including frames, covers, and grates.
 - 2. Cast-in-place concrete manholes and other structures, including frames, covers, and grates.
- B. Design Mix Reports and Calculations: For each class of cast-in-place concrete.
- C. Field Test Reports: Indicate and interpret test results for compliance with performance requirements.

1.06 DELIVERY, STORAGE, AND HANDLING

A. Do not store plastic structures, pipe, and fittings in direct sunlight.

- B. Protect pipe, pipe fittings, and seals from dirt and damage.
- C. Handle precast concrete manholes and other structures according to manufacturer's written rigging instructions.

1.07 PROJECT CONDITIONS

- A. Site Information: Perform site survey, research public utility records, and verify existing utility locations.
- B. Locate existing structures and piping to be closed and abandoned.
- C. Existing Utilities: Do not interrupt utilities serving facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary utility services according to requirements indicated:
 - Notify owner not less than two days in advance of proposed utility interruptions.
 - 2. Do not proceed with utility interruptions without ownert's written permission.

PART II - PRODUCTS

2.02 PIPING MATERIALS

A. Refer to Part 3 "Piping Applications" Article for applications of pipe and fitting materials.

2.03 PIPES AND FITTINGS

- A. Hub-and-Spigot, Cast-Iron Soil Pipe and Fittings: ASTM A 74, gray iron, for gasketed joints.
 - 1. Gaskets: ASTM C 564, rubber, compression type, thickness to match class of pipe.
- B. Hubless Cast-Iron Soil Pipe and Fittings: CISPI 301 or ASTM A 888, gray iron, for coupling joints.
 - Cast-Iron, Heavy-Duty Couplings: ASTM C 1277, assembly with housing of gray iron complying with ASTM A 48, stainless-steel bolts, and rubber sealing gasket complying with ASTM C 564.
- C. Ductile-Iron Sewer Pipe: ASTM A 746, for push-on joints.
 - 1. Standard-Pattern, Ductile-Iron Fittings: AWWA C110, ductile or gray iron, for push-on joints.
 - 2. Gaskets: AWWA C111, rubber.
- D. Ductile-Iron Culvert Pipe: ASTM A 716, for push-on joints.
 - 1. Standard-Pattern, Ductile-Iron Fittings: AWWA C110, ductile or gray iron, for push-on joints.
 - 2. Gaskets: AWWA C111, rubber.
- E. Corrugated-Steel Pipe: ASTM A 760/A 760M, Type I, made from ASTM A 929/A 929M, zinc-coated steel sheet for banded joints.

- 1. Fittings: Fabricated to types indicated and according to same standards as pipe.
- 2. Connecting Bands: Standard couplings made for corrugated-steel pipe to form soiltight joints.
- F. Corrugated-Aluminum Pipe: ASTM B 745/B 745M, Type I, made from ASTM B 744/B 744M, aluminum-alloy sheet for banded joints.
 - 1. Fittings: Fabricated to types indicated and according to same standards as pipe.
 - Connecting Bands: Standard couplings made for corrugated-aluminum pipe to form soiltight joints.
- G. Corrugated PE or HDPE Pipe and Fittings: ASTM F 405, ASTM F 667, AASHTO M 252, and AASHTO M 294.
 - 1. Soiltight Couplings: ASTM F 405, ASTM F 667, AASHTO M 252, and AASHTO M 294, corrugated, matching pipe and fittings to form soiltight joints.
- H. PVC Sewer Pipe and Fittings: According to the following:
 - PVC Sewer Pipe and Fittings, NPS 15 and Smaller: ASTM D 3034, SDR 35, for solvent-cemented or gasketed joints.
 - a. Gaskets: ASTM F 477, elastomeric seals.
 - 2. PVC Sewer Pipe and Fittings, NPS 18 and Larger: ASTM F 679, T-1 wall thickness, bell and spigot for gasketed joints.
 - a. Gaskets: ASTM F 477, elastomeric seals.
- I. Reinforced-Concrete Sewer Pipe and Fittings: ASTM C 76, Class III, Wall B, for gasketed joints.
 - 1. Gaskets: ASTM C 443, rubber.

2.04 SPECIAL PIPE COUPLINGS AND FITTINGS

- A. Sleeve-Type Pipe Couplings: ASTM C 1173, rubber or elastomeric sleeve and band assembly fabricated to mate with OD of pipes to be joined, for nonpressure joints.
 - 1. Sleeve Material for Concrete Pipe: ASTM C 443, rubber.
 - 2. Sleeve Material for Cast-Iron Soil Pipe: ASTM C 564, rubber.
 - 3. Sleeve Material for Plastic Pipe: ASTM F 477, elastomeric seal.
 - 4. Sleeve Material for Dissimilar Pipe: Compatible with pipe materials being joined.
- B. Bushing-Type Pipe Couplings: ASTM C 1173, rubber or elastomeric bushing fabricated to mate with OD of smaller pipe and ID of adjoining larger pipe, for nonpressure joints.
 - 1. Material for Concrete Pipe: ASTM C 443, rubber.
 - 2. Material for Cast-Iron Soil Pipe: ASTM C 564, rubber.
 - 3. Material for Plastic Pipe: ASTM F 477, elastomeric seal.
 - 4. Material for Dissimilar Pipe: Compatible with pipe materials being joined.
- C. Ductile-Iron Expansion Joints: Three-piece assembly of telescoping sleeve with gaskets and restrained-type, ductile-iron, bell-and-spigot end sections complying with AWWA C110 or AWWA C153. Include rating for 250-psig minimum working pressure and for expansion indicated. Include PE film, pipe encasement.

2.05 MANHOLES

- A. Normal-Traffic Precast Concrete Manholes: ASTM C 478, precast, reinforced concrete, of depth indicated, with provision for rubber gasketed joints.
 - 1. Diameter: 48 inches minimum, unless otherwise indicated.
 - 2. Ballast: Increase thickness of precast concrete sections or add concrete to base section, as required to prevent flotation.
 - 3. Base Section: 6-inch minimum thickness for floor slab and 4-inch minimum thickness for walls and base riser section, and having separate base slab or base section with integral floor.
 - 4. Riser Sections: 4-inch minimum thickness, and lengths to provide depth indicated.
 - 5. Top Section: Eccentric-cone type, unless concentric-cone or flat-slab-top type is indicated. Top of cone of size that matches grade rings.
 - 6. Gaskets: ASTM C 443, rubber.
 - 7. Grade Rings: Include two or three reinforced-concrete rings, of 6- to 9-inch total thickness, that match 24-inch-diameter frame and cover.
 - 8. Steps: Fiberglass, individual steps or ladder. Include width that allows worker to place both feet on one step and is designed to prevent lateral slippage off step. Cast or anchor into base, riser, and top section sidewalls with steps at 12- to 16-inch intervals. Omit steps for manholes less than 60 inches deep.
 - 9. Pipe Connectors: ASTM C 923, resilient, of size required, for each pipe connecting to base section.
- B. Heavy-Traffic Precast Concrete Manholes: ASTM C 913; designed according to ASTM C 890 for A-16, heavy-traffic, structural loading; of depth, shape, and dimensions indicated, with provision for rubber gasketed joints.
 - 1. Ballast: Increase thickness of one or more precast concrete sections or add concrete to structure, as required to prevent flotation.
 - Gaskets: Rubber.
 - 3. Grade Rings: Include two or three reinforced-concrete rings, of 6- to 9-inch total thickness, that match 24-inch-diameter frame and cover.
 - 4. Steps: Fiberglass, individual steps or ladder. Include width that allows worker to place both feet on one step and is designed to prevent lateral slippage off step. Cast or anchor into base, riser, and top section sidewalls with steps at 12- to 16-inch intervals. Omit steps for manholes less than 60 inches deep.
 - 5. Pipe Connectors: ASTM C 923, resilient, of size required, for each pipe connecting to base section.
- C. Cast-in-Place Concrete Manholes: Construct of reinforced-concrete bottom, walls, and top; designed according to ASTM C 890 for A-16, heavy-traffic, structural loading; of depth, shape, dimensions, and appurtenances indicated.
 - 1. Ballast: Increase thickness of concrete, as required to prevent flotation.
 - 2. Grade Rings: Include two or three reinforced-concrete rings, of 6- to 9-inch total thickness, that match 24-inch-diameter frame and cover.
 - 3. Steps: Fiberglass, individual steps or ladder. Include width that allows worker to place both feet on one step and is designed to prevent lateral slippage off step. Cast or anchor into sidewalls with steps at 12- to 16-inch intervals. Omit steps for manholes less than 60 inches deep.

D. Manhole Frames and Covers: ASTM A 536, Grade 60-40-18, ductile-iron castings designed for heavy-duty service. Include 24-inch ID by 7- to 9-inch riser with 4-inch minimum width flange, and 26-inch-diameter cover. Include indented top design with lettering "STORM SEWER" cast into cover.

2.06 CATCH BASINS

- A. Normal-Traffic, Precast Concrete Catch Basins: ASTM C 478, precast, reinforced concrete, of depth indicated, with provision for rubber gasketed joints.
 - Base Section: 6-inch minimum thickness for floor slab and 4-inch minimum thickness for walls and base riser section, and having separate base slab or base section with integral floor.
 - 2. Riser Sections: 4-inch minimum thickness, 48-inch diameter, and lengths to provide depth indicated.
 - 3. Top Section: Eccentric-cone type, unless concentric-cone or flat-slab-top type is indicated. Top of cone of size that matches grade rings.
 - 4. Gaskets: ASTM C 443, rubber.
 - 5. Grade Rings: Include two or three reinforced-concrete rings, of 6- to 9-inch total thickness, that match 24-inch-diameter frame and grate.
 - 6. Steps: Fiberglass, individual steps or ladder. Include width that allows worker to place both feet on one step and is designed to prevent lateral slippage off step. Cast steps or anchor ladder into base, riser, and top section sidewalls at 12- to 16-inch intervals. Omit steps for catch basins less than 60 inches deep.
 - 7. Pipe Connectors: ASTM C 923, resilient, of size required, for each pipe connecting to base section.
- B. Heavy-Traffic, Precast Concrete Catch Basins: ASTM C 913, precast, reinforced concrete; designed according to ASTM C 890 for A-16, heavy-traffic, structural loading; of depth, shape, and dimensions indicated, with provision for rubber gasketed joints.
 - Gaskets: Rubber.
 - 2. Grade Rings: Include two or three reinforced-concrete rings, of 6- to 9-inch total thickness, that match 24-inch-diameter frame and grate.
 - 3. Steps: Fiberglass, individual steps or ladder. Include width that allows worker to place both feet on one step and is designed to prevent lateral slippage off step. Cast steps or anchor ladder into base, riser, and top section sidewalls at 12- to 16-inch intervals. Omit steps for catch basins less than 60 inches deep.
 - 4. Pipe Connectors: ASTM C 923, resilient, of size required, for each pipe connecting to base section.
- C. Cast-in-Place Concrete, Catch Basins: Construct of reinforced concrete; designed according to ASTM C 890 for structural loading; of depth, shape, dimensions, and appurtenances indicated.
 - 1. Bottom, Walls, and Top: Reinforced concrete.
 - 2. Channels and Benches: Concrete.
 - 3. Steps: Fiberglass, individual steps or ladder. Include width that allows worker to place both feet on one step and is designed to prevent lateral slippage off step. Cast steps or anchor ladder into sidewalls at 12- to 16-inch intervals. Omit steps for catch basins less than 60 inches deep.
- D. Frames and Grates: ASTM A 536, Grade 60-40-18, ductile iron designed for heavy-duty service. Include flat grate with small square or short-slotted drainage openings.

- 1. Size: 24 by 24 inches minimum, unless otherwise indicated.
- 2. Grate Free Area: Approximately 50 percent, unless otherwise indicated.
- E. Frames and Grates: ASTM A 536, Grade 60-40-18, ductile iron designed for heavy-duty service. Include 24-inch ID by 7- to 9-inch riser with 4-inch minimum width flange, and 26-inch-diameter flat grate with small square or short-slotted drainage openings.
 - 1. Grate Free Area: Approximately 50 percent, unless otherwise indicated.

2.07 STORMWATER INLETS

- A. Curb Inlets: Made with vertical curb opening, of materials and dimensions according to utility standards.
- B. Combination Inlets: Made with vertical curb and horizontal gutter openings, of materials and dimensions according to utility standards. Include heavy-duty frames and grates.
- C. Frames and Grates: Heavy-duty frames and grates according to utility standards.

2.08 CONCRETE

- A. General: Cast-in-place concrete according to ACI 318, ACI 350R, and the following:
 - Cement: ASTM C 150, Type II.
 - 2. Fine Aggregate: ASTM C 33, sand.
 - 3. Coarse Aggregate: ASTM C 33, crushed gravel.
 - Water: Potable.
- B. Portland Cement Design Mix: 4000 psi minimum, with 0.45 maximum water-cementitious ratio.
 - 1. Reinforcement Fabric: ASTM A 185, steel, welded wire fabric, plain.
 - 2. Reinforcement Bars: ASTM A 615/A 615M, Grade 60, deformed steel.
- C. Structure Channels and Benches: Factory or field formed from concrete. Portland cement design mix, 4000 psi minimum, with 0.45 maximum water-cementitious ratio.
 - 1. Include channels and benches in manholes.
 - a. Channels: Concrete invert, formed to same width as connected piping, with height of vertical sides to three-fourths of pipe diameter. Form curved channels with smooth, uniform radius and slope.
 - 1) Invert Slope: 1 percent through manhole.
 - b. Benches: Concrete, sloped to drain into channel.
 - 1) Slope: 4 percent.
 - 2. Include channels in catch basins.
 - a. Channels: Concrete invert, formed to same width as connected piping, with height of vertical sides to three-fourths of pipe diameter. Form curved channels with smooth, uniform radius and slope.
 - 1) Invert Slope: 1 percent through catch basin.
- D. Ballast and Pipe Supports: Portland cement design mix, 3000 psi minimum, with 0.58 maximum water-cementitious ratio.
 - 1. Reinforcement Fabric: ASTM A 185, steel, welded wire fabric, plain.
 - 2. Reinforcement Bars: ASTM A 615/A 615M, Grade 60, deformed steel.

PART III - EXECUTION

3.01 EARTHWORK

A. Excavating, trenching, and backfilling are specified in Division 2 Section "Earthwork."

3.02 PIPING APPLICATIONS

- A. General: Include watertight, silttight, or soiltight joints, unless watertight or silttight joints are indicated.
- B. Refer to Part 2 of this Section for detailed specifications for pipe and fitting products listed below. Use pipe, fittings, and joining methods according to applications indicated.
- C. Gravity-Flow Piping: Use the following:
 - 1. NPS 3: Hub-and-spigot, Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
 - 2. NPS 3: Ductile-iron sewer pipe; standard-pattern, ductile-iron fittings; gaskets; and
 - 3. NPS 4 to NPS 6: Hub-and-spigot, Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
 - 4. NPS 4 to NPS 6: Hubless cast-iron soil pipe and fittings, couplings, and coupled joints.
 - 5. NPS 4 and NPS 6: Corrugated-steel pipe and fittings, connecting bands, and banded joints.
 - 6. NPS 4 and NPS 6: Corrugated PE drainage tubing and fittings, soiltight couplings, and coupled joints.
 - 7. NPS 4 and NPS 6: PVC sewer pipe and fittings, solvent-cemented joints, or gaskets and gasketed joints.
 - 8. NPS 8 to NPS 15: Ductile-iron sewer pipe; standard-pattern, ductile-iron fittings; gaskets; and gasketed joints in NPS 8 to NPS 12. Use ductile-iron culvert pipe; standard-pattern, ductile-iron fittings; gaskets; and gasketed joints in NPS 14 to NPS 16.
 - 9. NPS 8 to NPS 15: Corrugated-steel pipe and fittings, connecting bands, and banded joints.
 - 10. NPS 8 to NPS 15: Corrugated-aluminum pipe and fittings, connecting bands, and banded joints.
 - 11. NPS 8 to NPS 15: Corrugated PE drainage tubing and fittings, soiltight couplings, and coupled joints in NPS 8 and NPS 10. Use corrugated PE pipe and fittings, soiltight couplings, and coupled joints in NPS 12 and NPS 15.
 - 12. NPS 8 to NPS 15: PVC sewer pipe and fittings, solvent-cemented joints, or gaskets and gasketed joints.
 - 13. NPS 8 to NPS 15: NPS 12 and NPS 15 reinforced-concrete sewer pipe and fittings, gaskets, and gasketed joints. Do not use nonreinforced pipe instead of reinforced concrete pipe in NPS 8 and NPS 10.
 - 14. NPS 18 to NPS 36: Corrugated-steel pipe and fittings, connecting bands, and banded joints.
 - 15. NPS 18 to NPS 36: Corrugated-aluminum pipe and fittings, connecting bands, and banded joints.

- 16. NPS 18 to NPS 36: Corrugated PE pipe and fittings; corrugated, soiltight couplings; and coupled joints.
- 17. NPS 18 to NPS 36: Reinforced-concrete sewer pipe and fittings, gaskets, and gasketed joints.
- 18. NPS 42 to NPS 120: Corrugated-steel pipe and fittings, connecting bands, and banded joints.
- 19. NPS 42 to NPS 120: Corrugated-aluminum pipe and fittings; connecting bands; and banded joints.
- 20. NPS 42 and NPS 48: Similar pattern to corrugated PE pipe and fittings; corrugated, soiltight couplings; and coupled joints.
- 21. NPS 42 to NPS 144: Reinforced-concrete sewer pipe and fittings, gaskets, and gasketed joints.

3.03 SPECIAL PIPE COUPLING AND FITTING APPLICATIONS

- A. Special Pipe Couplings: Use where required to join piping and no other appropriate method is specified. Do not use instead of specified joining methods.
 - 1. Use the following pipe couplings for nonpressure applications:
 - a. Sleeve type to join piping, of same size, or with small difference in OD.
 - b. Increaser/reducer-pattern, sleeve type to join piping of different sizes.
 - c. Bushing type to join piping of different sizes where annular space between smaller piping's OD and larger piping's ID permits installation.
 - 2. Use pressure-type pipe couplings for force-main joints. Include PE film, pipe encasement.
- B. Special Pipe Fittings: Use where indicated. Include PE film, pipe encasement.

3.04 INSTALLATION, GENERAL

- A. General Locations and Arrangements: Drawing plans and details indicate general location and arrangement of underground storm drainage piping. Location and arrangement of piping layout take design considerations into account. Install piping as indicated, to extent practical.
- B. Install piping beginning at low point, true to grades and alignment indicated with unbroken continuity of invert. Place bell ends of piping facing upstream. Install gaskets, seals, sleeves, and couplings according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements. Maintain swab or drag in line, and pull past each joint as it is completed.
- C. Use manholes for changes in direction, unless fittings are indicated. Use fittings for branch connections, unless direct tap into existing sewer is indicated.
- D. Use proper size increasers, reducers, and couplings where different sizes or materials of pipes and fittings are connected. Reducing size of piping in direction of flow is prohibited.
- E. Install gravity-flow piping and connect to building's storm drains, of sizes and in locations indicated. Terminate piping as indicated.
 - 1. Install piping pitched down in direction of flow, at minimum slope of 1 percent, unless otherwise indicated.

F. Extend storm drainage piping and connect to building's storm drains, of sizes and in locations indicated. Terminate piping as indicated.

3.05 PIPE JOINT CONSTRUCTION AND INSTALLATION

- A. General: Join and install pipe and fittings according to installations indicated.
- B. Refer to Division 2 Section "Utility Materials" for basic piping joint construction and installation.
- C. Hub-and-Spigot, Cast-Iron Soil Pipe and Fittings: With rubber gaskets according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook." Use gaskets that match class of pipe and fittings.
- D. Hubless Cast-Iron Soil Pipe and Fittings: With CISPI-type couplings according to CISPI 310 and CISPI's "Cast Iron Soil Pipe and Fittings Handbook."
- E. Hubless Cast-Iron Soil Pipe and Fittings: With heavy-duty-type couplings according to CISPI 310, CISPI's "Cast Iron Soil Pipe and Fittings Handbook," and coupling manufacturer's written instructions.
- F. Ductile-Iron Sewer Pipe with Ductile-Iron Fittings: According to AWWA C600.
- G. Install with top surfaces of components, except piping, flush with finished surface.
- H. Corrugated-Steel Pipe: Join and install according to ASTM A 798. Use standard joints made with coupling bands, unless otherwise indicated.
- I. Corrugated-Steel Pipe: Join and install according to ASTM A 798. Use soiltight joints made with coupling bands and gaskets, unless otherwise indicated.
- J. PE Pipe and Fittings: As follows:
 - 1. Join pipe, tubing, and fittings with couplings for soiltight joints according to manufacturer's written instructions.
 - Install according to ASTM D 2321 and manufacturer's written instructions.
 - 3. Install corrugated piping according to the Corrugated Polyethylene Pipe Association's "Recommended Installation Practices for Corrugated Polyethylene Pipe and Fittings."
- K. PVC Pressure Pipe and Fittings: Join and install according to AWWA M23.
- L. PVC Sewer Pipe and Fittings: As follows:
 - 1. Join pipe and gasketed fittings with gaskets according to ASTM D 2321.
 - 2. Install according to ASTM D 2321.
- M. Concrete Pipe and Fittings: Install according to ACPA's "Concrete Pipe Installation Manual." Use the following seals:
 - 1. Round Pipe and Fittings: ASTM C 443, rubber gaskets.

- N. System Piping Joints: Make joints using system manufacturer's couplings, unless otherwise indicated.
- O. Join piping made of different materials or dimensions with couplings made for this application. Use couplings that are compatible with and that fit both systems' materials and dimensions.

3.06 MANHOLE INSTALLATION

- A. General: Install manholes, complete with appurtenances and accessories indicated.
- B. Set tops of frames and covers flush with finished surface of manholes that occur in pavements. Set tops 3 inches above finished surface elsewhere, unless otherwise indicated.
- C. Install precast concrete manhole sections with gaskets according to ASTM C 891.
- D. Construct cast-in-place manholes as indicated.
- E. Install fiberglass manholes according to manufacturer's written instructions.

3.07 CATCH-BASIN INSTALLATION

- A. Construct catch basins to sizes and shapes indicated.
- B. Set frames and grates to elevations indicated.

3.08 STORM DRAINAGE INLET AND OUTLET INSTALLATION

- A. Construct inlet head walls, aprons, and sides of reinforced concrete, as indicated.
- B. Construct riprap of broken stone, as indicated.
- C. Install outlets that spill onto grade, anchored with concrete, where indicated.
- D. Install outlets that spill onto grade, with flared end sections that match pipe, where indicated.
- E. Construct energy dissipators at outlets, as indicated.

3.09 CONCRETE PLACEMENT

A. Place cast-in-place concrete according to ACI 318 and ACI 350R.

3.10 DRAINAGE SYSTEM INSTALLATION

- A. Assemble and install components according to manufacturer's written instructions.
- B. Install with top surfaces of components, except piping, flush with finished surface.

- C. Assemble channel sections to form slope down toward drain outlets. Use sealants, adhesives, fasteners, and other materials recommended by system manufacturer.
- D. Embed channel sections and drainage specialties in 4-inch minimum concrete around bottom and sides.
- E. Fasten grates to channel sections if indicated.
- F. Embed trench sections and drainage specialties in 4-inch minimum concrete around bottom and sides.

3.11 CLEANOUT INSTALLATION

- A. Install cleanouts and riser extension from sewer pipe to cleanout at grade. Use castiron soil pipe fittings in sewer pipes at branches for cleanouts and cast-iron soil pipe for riser extensions to cleanouts. Install piping so cleanouts open in direction of flow in sewer pipe.
- B. Set cleanout frames and covers in earth in cast-in-place concrete block, 18 by 18 by 12 inches deep. Set with tops 1 inch above surrounding earth grade.
- C. Set cleanout frames and covers in concrete pavement with tops flush with pavement surface.

3.12 DRAIN INSTALLATION

- A. Install type of drains in locations indicated.
- B. Fasten grates to drains if indicated.
- C. Set drain frames and covers with tops flush with pavement surface.

3.13 CLOSING ABANDONED STORM DRAINAGE SYSTEMS

- A. Abandoned Piping: Close open ends of abandoned underground piping indicated to remain in place. Include closures strong enough to withstand hydrostatic and earth pressures that may result after ends of abandoned piping have been closed. Use either procedure below:
 - 1. Close open ends of piping with at least 8-inch-thick, brick masonry bulkheads.
- B. Abandoned Structures: Excavate around structure as required and use one procedure below:
 - 1. Remove structure and close open ends of remaining piping.
 - Backfill to grade according to Division 2 Section "Earthwork."

3.14 FIELD QUALITY CONTROL

- A. Clear interior of piping and structures of dirt and superfluous material as work progresses. Maintain swab or drag in piping, and pull past each joint as it is completed.
 - 1. In large, accessible piping, brushes and brooms may be used for cleaning.

- 2. Place plug in end of incomplete piping at end of day and when work stops.
- 3. Flush piping between manholes and other structures to remove collected debris, if required by authorities having jurisdiction.
- B. Inspect interior of piping to determine whether line displacement or other damage has occurred. Inspect after approximately 24 inches of backfill is in place, and again at completion of Project.
 - 1. Submit separate reports for each system inspection.
 - 2. Defects requiring correction include the following:
 - a. Alignment: Less than full diameter of inside of pipe is visible between structures.
 - b. Deflection: Flexible piping with deflection that prevents passage of ball or cylinder of size not less than 92.5 percent of piping diameter.
 - c. Crushed, broken, cracked, or otherwise damaged piping.
 - d. Infiltration: Water leakage into piping.
 - e. Exfiltration: Water leakage from or around piping.
 - 3. Replace defective piping using new materials, and repeat inspections until defects are within allowances specified.
 - 4. Reinspect and repeat procedure until results are satisfactory.
- C. Test new piping systems, and parts of existing systems that have been altered, extended, or repaired, for leaks and defects.
 - 1. Do not enclose, cover, or put into service before inspection and approval.
 - 2. Test completed piping systems according to authorities having jurisdiction.
 - 3. Leaks and loss in test pressure constitute defects that must be repaired.
 - 4. Replace leaking piping using new materials, and repeat testing until leakage is within allowances specified.

END OF SECTION 02630