Roll No: 205229133

Lab7. Loan Approval Classification using SVM

Objectives

In this lab, you will build a classification model to classify the loan applicants into eligible applicants or not eligible applicants using Support Vector Machine.

Learning Outcomes

After completing this lab, you will be able to

- · Apply data cleaning methods
- Perform EDA and understand who got their loans approved
- · Do feature engineering with One Hot Encoding
- · Create LinearSVC model, train and predict on the data
- · Print accuracy, confusion matrix and classification report
- Compare LinearSVC model with SVC and SGDClassifier models

Business Use Case

Heber Housing Finance deals in all home loans. They have presence across all urban, semi urban and rural areas. Customer first apply for home loan after that company validates the customer eligibility for loan. However doing this manually takes a lot of time. Hence, it wants you to automate the loan approval process (real time) based on customer information. So you should identify all features and build a model that enable the company to approve the load application or not.

The dataset contains the details of 614 loan applicants, where each applicant is described with 12 features. Loan_Status is the target feature (ie., dependent variable) and all others are independent variables.

Step1. [Understand Data]. Using Pandas, import "train_loan.csv" file and print properties such as head, shape, columns, dtype, info and value_counts

In [1]:

```
import pandas as pd
import matplotlib.pyplot as plt

train_data = pd.read_csv('train_loan.csv')
train_data.head()
```

Out[1]:

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	Coapr
0	LP001002	Male	No	0	Graduate	No	5849	
1	LP001003	Male	Yes	1	Graduate	No	4583	
2	LP001005	Male	Yes	0	Graduate	Yes	3000	
3	LP001006	Male	Yes	0	Not Graduate	No	2583	
4	LP001008	Male	No	0	Graduate	No	6000	

←

In [2]:

```
train_data.shape
```

Out[2]:

(614, 13)

In [3]:

```
train_data.columns
```

Out[3]:

In [4]:

train_data.dtypes

Out[4]:

object Loan_ID object Gender Married object Dependents object Education object Self_Employed object ApplicantIncome int64 CoapplicantIncome float64 float64 LoanAmount Loan_Amount_Term float64 float64 Credit_History Property_Area object object Loan_Status dtype: object

In [5]:

train_data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 614 entries, 0 to 613
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	Loan_ID	614 non-null	object
1	Gender	601 non-null	object
2	Married	611 non-null	object
3	Dependents	599 non-null	object
4	Education	614 non-null	object
5	Self_Employed	582 non-null	object
6	ApplicantIncome	614 non-null	int64
7	CoapplicantIncome	614 non-null	float64
8	LoanAmount	592 non-null	float64
9	Loan_Amount_Term	600 non-null	float64
10	Credit_History	564 non-null	float64
11	Property_Area	614 non-null	object
12	Loan_Status	614 non-null	object

dtypes: float64(4), int64(1), object(8)

memory usage: 62.5+ KB

In [6]:

```
train_data.value_counts
```

Out[6]:

			ne.value_coun			Loan_ID	Gender	Married	Depend
ents 0	LP001002	ntion Sel Male	Lf_Employed No	\ 0		Graduat	0	No	
1	LP001002	Male	Yes	1		Graduat		No	
2	LP001005	Male	Yes	0		Graduat		Yes	
3	LP001005	Male	Yes	0	Not	Graduat		No	
4	LP001008	Male	No	0	NOC	Graduat		No	
••			•••			••		•••	
609	LP002978	Female	No	0		Graduat		No	
610	LP002979	Male	Yes	3+		Graduat		No	
611	LP002983	Male	Yes	1		Graduat		No	
612	LP002984	Male	Yes	2		Graduat		No	
613	LP002990	Female	No	0		Graduat		Yes	
0_0	00			·					
	Applicant	:Income	CoapplicantI	ncome	Loan	Amount	Loan_Amo	unt_Term	\
0		5849		0.0		NaN	_	360.0	
1		4583	1	508.0		128.0		360.0	
2		3000		0.0		66.0		360.0	
3		2583	2	358.0		120.0		360.0	
4		6000		0.0		141.0		360.0	
								• • •	
609		2900		0.0		71.0		360.0	
610		4106		0.0		40.0		180.0	
611		8072		240.0		253.0		360.0	
612		7583		0.0		187.0		360.0	
613		4583		0.0		133.0		360.0	
	Credit Hi	stony Dr	roperty_Area	Loan St	tatus				
0	cr carc_ni	1.0	Urban	Loan_5	Y				
1		1.0	Rural		N				
2		1.0	Urban		Y				
3		1.0	Urban		Y				
4		1.0	Urban		Y				
••			•••		•••				
609		1.0	Rural		Υ				
610		1.0	Rural		Y				
611		1.0	Urban		Y				
612		1.0	Urban		Y				
613		0.0	Semiurban		N				
			-						

[614 rows x 13 columns]>

Step2. [Data Cleaning]

- Replace numbers as string by integer in "Dependents" column
- Fill missing data in categorical columns (Gender, Married, Dependents, Education, Self_Employed, Credit_History) by its mode value
- · Handle missing values in numberical columns
- Drop Loan_ID column

```
In [7]:
```

```
train_data.Dependents.value_counts()
Out[7]:
      345
0
      102
1
2
      101
3+
       51
Name: Dependents, dtype: int64
In [8]:
#Replace numbers as string by integer in 'Dependents' column
def string(x):
    if x == '0':
        return 'bad'
    elif x == '1':
        return 'average'
    elif x == '2':
        return 'good'
    else:
        return 'excellent'
In [9]:
train_data['Dependents'] = train_data['Dependents'].apply(string)
In [10]:
train_data.isna().sum()
Out[10]:
Loan_ID
                       0
Gender
                      13
```

Married 3 Dependents 0 Education 0 Self_Employed 32 ApplicantIncome 0 CoapplicantIncome 0 LoanAmount 22 Loan_Amount_Term 14 Credit_History 50 Property Area 0 Loan_Status 0 dtype: int64

In [11]:

```
#categorical
train_data['Gender'].fillna(train_data['Gender'].mode()[0], inplace=True)
train_data['Married'].fillna(train_data['Married'].mode()[0], inplace=True)
train_data['Dependents'].fillna(train_data['Dependents'].mode()[0], inplace=True)
train_data['Loan_Amount_Term'].fillna(train_data['Loan_Amount_Term'].mode()[0], inplace=True)
train_data['Credit_History'].fillna(train_data['Credit_History'].mode()[0], inplace=True)
train_data['Self_Employed'].fillna(train_data['Self_Employed'].mode()[0], inplace=True)
#numerical
train_data['LoanAmount'].fillna(train_data['LoanAmount'].mean(), inplace=True)
```

In [12]:

```
train_data=train_data.drop(['Loan_ID'],axis=1)
```

Step3. [OPTIONAL: Exploratory Data Analysis - Who got their loan approved]

Draw count plot for

- Married?
- · Dependants?
- Graduates?
- · Self-employed?

In [13]:

```
plt.subplot(231)
train_data['Married'].value_counts().plot(kind='bar',title='Gender',figsize = (20,10))
plt.subplot(232)
train_data['Dependents'].value_counts().plot(kind='bar',title='Dependents')
plt.subplot(233)
train_data['Education'].value_counts().plot(kind='bar',title='Education')
plt.subplot(234)
train_data['Self_Employed'].value_counts().plot(kind='bar',title='Self_Employed')
plt.show()
```


Step4. [Extract X and y] from the dataframe

```
In [14]:
```

```
X = train_data.drop(['Loan_Status'],axis=1)
y = train_data.Loan_Status
```

Step5. [One Hot Encoding]

Perform OHE on categorical columns, use this method: X = pd.get_dummies(X)

In [15]:

```
import warnings
warnings.filterwarnings('ignore')
```

In [16]:

```
X = pd.get_dummies(X)
```

Step6. [Model Building]

- Split X and y for training and testing
- Using StandardScaler, fit_transform on X_train and transform on X_test values
- · create LinearSVC model, train and test
- · print accuracy value
- Print confusion matrix between y_test and y_pred
- · Print classification report

In [17]:

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3,random_state=0)
```

In [18]:

```
from sklearn.preprocessing import StandardScaler
scale = StandardScaler()
```

In [19]:

```
ss = scale.fit_transform(X_train)
ss1 = scale.transform(X_test)
```

In [20]:

```
from sklearn.svm import LinearSVC
model = LinearSVC()
model.fit(ss,y_train)
```

Out[20]:

LinearSVC()

In [21]:

```
Lsvc_y_pred = model.predict(ss1)
Lsvc_y_pred
```

Out[21]:

```
'Υ',
                                  'Υ',
                                                      'Υ',
array(['Y',
               'Υ',
                      'Υ',
                                         'N',
                                               'Υ',
                                                            'N',
                                  'Υ',
                                               'N',
                            'Y'
                      'Y'
                                         'Y'
                                                      'N'
                                                            'Y'
                                                                         'Y'
               'Y', 'N',
                            'N',
                                  'Y',
                                         'Y',
                                                      'Y'
                                               'Y'
                                                                   'N'
                                  'Y'
                                         'Y'
                                               'Y'
                                                      'Y'
                     'N',
               'Y'
                      'Y'
                            'Y'
                                  'Y'
                                         'Y'
                                                      'Y'
                                                            'N'
                                                                   'Υ'
                                                                         'Y'
                                                                               'N'
                                               'Y'
               'Y'
                      'Y'
                                   'Y'
                                         'Y'
                                                      'Y'
                                                                   'Y'
                                                            'Y'
                                                                               'N'
                                         'Y',
                     'Y'
                                  'Y'
                                                      'Y'
         'Y', 'N',
                                               'Y'
                                                                   'Y'
                                  'N',
                            'Y'
                                         'Y'
                                                      'Y'
                                                                   'Y'
               'Υ'
                     'N',
                                               'Y'
                                                                         'Υ'
                                                                                      'Υ'
                            'Y'
                                                      'Y'
                                                                   'Y'
               'Y'
                                  'Y'
                                         'Y'
                                               'Υ'
                                                            'Υ
                                                                                'N'
                      'Y'
                                                                         'N'
                                  'N',
                                                            'N',
                                         'Y'
                      'Y'
                                                      'Y'
                                  'Υ',
                                         'Υ',
                                               'Υ',
                                                      'Y'
                     'Υ'
            , 'Y'
                     'Y'
                                        'N',
                                                     'Y'
                            'Y'
                                  'Y'
                                               'N'
                                                            'Y'
                                                                  'Y'
                                                                               'Y'
                                                                         'N'
                                                                                      'Y'
                                         'Υ',
             'Y'
                            'Y',
                                               'Υ',
                                                     'Υ',
                                                                         'Y',
                                                                               'Υ',
                                  'Y'
                                                            'Υ',
                                                                  'Y'
                     'Y'
                     'Υ',
         'Y', 'N',
                           'Y', 'Y',
                                        'Y',
                                               'Y', 'Y', 'Y', 'Y', 'Y',
         'Y', 'Y', 'Y'], dtype=object)
```

In [22]:

```
from sklearn.metrics import accuracy_score,confusion_matrix, classification_report
accuracy_score(y_test,Lsvc_y_pred)
```

Out[22]:

0.8324324324324325

In [23]:

```
confusion_matrix(y_test,Lsvc_y_pred)
```

Out[23]:

In [24]:

```
print(classification_report(y_test,Lsvc_y_pred))
```

	precision	recall	f1-score	support
N	0.92	0.43	0.59	51
Υ	0.82	0.99	0.89	134
accuracy			0.83	185
macro avg	0.87	0.71	0.74	185
weighted avg	0.85	0.83	0.81	185

Step7. [Performance Comparisons]

1. Compare the performance of LinearSVC against LogisticRegression

In [25]:

```
from sklearn.linear_model import LogisticRegression

lgr= LogisticRegression()
lgr.fit(ss,y_train)
lr_y_pred = lgr.predict(ss1)

from sklearn.svm import LinearSVC

l_svc = LinearSVC()
l_svc.fit(ss,y_train)
lsvc_y_pred = l_svc.predict(ss1)

print("LogisticRegression:",accuracy_score(y_test,lr_y_pred))
print("LinearSVC :",accuracy_score(y_test,lsvc_y_pred))
```

LogisticRegression: 0.8324324324324325 LinearSVC : 0.8324324324324325

In [26]:

```
from sklearn import svm,model_selection
models = []
models.append(('SVC', LinearSVC()))
models.append(('LR', LogisticRegression()))
# evaluate each model in turn
results = []
names=[]
scoring = 'accuracy'
for name, model in models:
    kfold = model_selection.KFold(n_splits=10)
    cv_results = model_selection.cross_val_score(model, X_train, y_train, cv=kfold, scoring
    results.append(cv_results)
    names.append(name)
    msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())
    print(msg)
# boxplot algorithm comparison
fig = plt.figure()
fig.suptitle('Comparison between different MLAs')
ax = fig.add_subplot(111)
plt.boxplot(results)
plt.show()
```

SVC: 0.564120 (0.138692) LR: 0.797231 (0.070487)

Comparison between different MLAs

2. Compare the performance of LinearSVC against SGDClassifier

In [27]:

```
from sklearn.linear model import SGDClassifier
modelss = []
modelss.append(('SVC', LinearSVC()))
modelss.append(('SGD', SGDClassifier()))
# evaluate each model in turn
results = []
names=[]
scoring = 'accuracy'
for name, model in modelss:
    kfold = model selection.KFold(n splits=10)
    cv_results = model_selection.cross_val_score(model, X_train, y_train, cv=kfold, scoring
    results.append(cv_results)
    names.append(name)
    msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())
    print(msg)
# boxplot algorithm comparison
fig = plt.figure()
fig.suptitle('Comparison between different MLAs')
ax = fig.add_subplot(111)
plt.boxplot(results)
plt.show()
```

SVC: 0.577796 (0.156098) SGD: 0.529236 (0.153889)

Comparison between different MLAs

In [28]:

```
from sklearn.linear_model import SGDClassifier

sgd = SGDClassifier()
sgd.fit(ss,y_train)
sgdc_y_pred = sgd.predict(ss1)

from sklearn.svm import LinearSVC

l_svc = LinearSVC()
l_svc.fit(ss,y_train)
lsvc_y_pred = l_svc.predict(ss1)

print("SGDClassifier:", accuracy_score(y_test,sgdc_y_pred))
print("LinearSVC :",accuracy_score(y_test,lsvc_y_pred))
```

SGDClassifier: 0.6324324324324324 LinearSVC : 0.8324324324324325

3. Compare LinearSVC against SVC with various kernels such as 'linear', 'poly', 'rbf' and 'sigmoid'

In [29]:

```
from sklearn.svm import SVC
1 svc = LinearSVC()
l_svc.fit(ss,y_train)
lsvc_y_pred = l_svc.predict(ss1)
poly_svc = svm.SVC(kernel='poly', C = 1.0)
poly svc.fit(ss,y train)
psvc_y_pred=poly_svc.predict(ss1)
rbf svc = svm.SVC(kernel='rbf', C = 1.0)
rbf svc.fit(ss,y train)
rbfsvc_y_pred=rbf_svc.predict(ss1)
sigmoid svc = svm.SVC(kernel='sigmoid', C = 1.0)
sigmoid svc.fit(ss,y train)
sigsvc_y_pred=sigmoid_svc.predict(ss1)
                   :",accuracy_score(y_test,lsvc_y_pred))
print("LinearSVC
print("poly SVC
                   :",accuracy_score(y_test,psvc_y_pred))
                   :",accuracy_score(y_test,rbfsvc_y_pred))
print("rbf SVC
print("Sigmoid SVC :",accuracy_score(y_test,sigsvc_y_pred))
```

LinearSVC : 0.8324324324324325 poly SVC : 0.8162162162162 rbf SVC : 0.8324324324324325 Sigmoid SVC : 0.8054054054054054

In [30]:

```
modelsss = []
modelsss.append(('SVC', LinearSVC()))
modelsss.append(('SVC POLY', svm.SVC(kernel='poly', C = 1.0)))
modelsss.append(('SVC rbf', svm.SVC(kernel='rbf', C = 1.0)))
modelsss.append(('SVC POLY', svm.SVC(kernel='sigmoid', C = 1.0)))
# evaluate each model in turn
results = []
names=[]
scoring = 'accuracy'
for name, model in modelsss:
    kfold = model selection.KFold(n splits=10)
    cv_results = model_selection.cross_val_score(model, X_train, y_train, cv=kfold, scoring
    results.append(cv_results)
    names.append(name)
    msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())
    print(msg)
# boxplot algorithm comparison
fig = plt.figure()
fig.suptitle('Comparison between different MLAs')
ax = fig.add_subplot(111)
plt.boxplot(results)
plt.show()
```

SVC: 0.605980 (0.091265) SVC POLY: 0.671096 (0.047891) SVC rbf: 0.666445 (0.055735) SVC POLY: 0.603710 (0.092483)

Comparison between different MLAs

4. Interpret the results

In [31]:

```
import numpy as np
from sklearn.metrics import roc_curve
from sklearn.metrics import precision_score
from sklearn.metrics import recall score
from sklearn.metrics import auc
MLA = [model,lgr,sgd,poly_svc,rbf_svc,sigmoid_svc]
MLA_columns = []
MLA_compare = pd.DataFrame(columns = MLA_columns)
row index = 0
for alg in MLA:
    predicted = alg.fit(ss, y_train).predict(ss1)
    predicted=np.where(predicted=='Y',1,0)
    y_testb=np.where(y_test=='Y',1,0)
    fp, tp, th = roc_curve(y_testb, predicted)
    MLA_name = alg.__class__.__name__
    MLA_compare.loc[row_index,'MLA used'] = MLA_name
    MLA_compare.loc[row_index, 'Train Accuracy'] = round(alg.score(ss,y_train), 4)
    MLA_compare.loc[row_index, 'Test Accuracy'] = round(alg.score(ss1,y_test), 4)
    MLA_compare.loc[row_index, 'Precission'] = precision_score(y_testb, predicted)
    MLA_compare.loc[row_index, 'Recall'] = recall_score(y_testb, predicted)
    MLA_compare.loc[row_index, 'AUC'] = auc(fp, tp)
    row index+=1
MLA_compare
```

Out[31]:

	MLA used	Train Accuracy	Test Accuracy	Precission	Recall	AUC
0	SVC	0.7506	0.8054	0.810127	0.955224	0.683494
1	LogisticRegression	0.8042	0.8324	0.819876	0.985075	0.708224
2	SGDClassifier	0.7203	0.7514	0.818841	0.843284	0.676544
3	SVC	0.8368	0.8162	0.820513	0.955224	0.703102
4	SVC	0.8135	0.8324	0.819876	0.985075	0.708224
5	SVC	0.7506	0.8054	0.810127	0.955224	0.683494

In [32]:

```
import seaborn as sns
# Creating plot to show the train accuracy
plt.subplots(figsize=(8,4))
sns.barplot(x="MLA used", y="Train Accuracy",data=MLA_compare,palette='hot',edgecolor=sns.c
plt.xticks(rotation=90)
plt.title('MLA Train Accuracy Comparison')
plt.show()
```

