Recall that a simple random walk on a graph is called *recurrent* if it returns to the starting point with probability 1, and *transient* otherwise.

Exercise 1. General knowledge on the recurrence/transience of random walks

Let G be a general graph (locally finite), let v be a vertex of G and $(S_n)_{n\geq 0}$ be a simple random walk starting at v. We denote by \mathbb{P}_v the corresponding probability measure.

- 1. Explain what a simple random walk on G is.
- 2. Prove that $(S_n)_{n>0}$ is recurrent if and only if

$$\sum_{n=0}^{\infty} \mathbb{P}_v \left(S_n = v \right) = \infty.$$

- 3. Let us suppose that G is connected and v, w are vertices of G.
 - (a) Show that a simple random walk on G is recurrent when started from v if and only if it is recurrent when started from w.
 - (b) Show that if a simple random walk $(S_n)_{n\geq 0}$ on G is recurrent when started from v, then for any vertex w of G, $\mathbb{P}_v(\exists n, S_n = w) = 1$ and $\mathbb{P}_w(\exists n, \tilde{S_n} = v) = 1$ where $(\tilde{S_n})_{n\geq 0}$ is a simple random walk on G starting at w.
- 4. Show that a simple random walk on a finite graph is recurrent.
- 5. Show that a simple random walk $(S_n)_{n\geq 0}$ on \mathbb{Z}^d is recurrent if and only if

$$\sum_{n=0}^{\infty} \mathbb{P}_{\vec{0}} \left(S_{2n} = \vec{0} \right) = \infty.$$

Exercise 2. Universality of the recurrence for random walks on \mathbb{Z}

Consider a random walk on \mathbb{Z} defined using identically independent jumps : $S_n = Z_1 + \cdots + Z_n$ (Z_i are i.i.d. \mathbb{Z} -valued random variables). Let us suppose that Z_1 satisfies $\mathbb{E}(|Z_1|) < \infty$.

- 1. Prove that if $\mathbb{E}(Z_1) \neq 0$ then S_n is transient.
- 2. What is the derivative of $\phi(t) = \mathbb{E}(e^{itZ_1})$ at 0? Give the Taylor expansion of $\phi(t)$ at 0 at order 1.
- 3. Using the previous point, prove that if Z_1 is symmetric $(-Z_1$ has the same law as Z_1) then S_n is recurrent. Hint: use the derivation using the Fourier transform as seen in the lesson.