第二章 线性规划

修贤超

https://xianchaoxiu.github.io

目录

- 2.1 线性规划问题及其数学模型
- 2.2 图解法
- 2.3 单纯形法原理
- 2.4 单纯形法计算步骤
- 2.5 单纯形法的进一步讨论
- 2.6 线性规划的对偶问题
- 2.7 对偶问题的基本性质

单纯形法原理

- 先找出一个基可行解,判断其是否为最优解,如果否,则转换到相邻的基可 行解,并使目标函数值不断增大,一直找到最优解为止
- 迭代步骤
 - □ 第一步: 求初始基可行解, 列出初始单纯形表
 - □ 第二步: 最优性检验
 - 第三步: 从一个基可行解转换到相邻的目标函数值更大的基可行解,列出新的单纯形表
 - □ 第四步: 重复二、三步, 一直到计算结束为止
- 单纯形表: 为检验一个基可行解是否最优,需要将其目标函数值与相邻基可 行解的目标函数值进行比较

■ 考虑线性规划问题

$$\max z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

$$\begin{cases} x_1 + a_{1,m+1} x_{m+1} + \dots + a_{1,n} x_n = b_1 \\ x_2 + a_{2,m+1} x_{m+1} + \dots + a_{2,n} x_n = b_2 \\ \dots \\ x_m + a_{m,m+1} x_{m+1} + \dots + a_{m,n} x_n = b_m \\ x_1, \dots, x_n \ge 0 \end{cases}$$

■ 系数矩阵的增广矩阵

$$A = \begin{bmatrix} 1 & 0 & \cdots & 0 & a_{1,m+1} & \cdots & a_{1,n} & b_1 \\ 0 & 1 & \cdots & 0 & a_{2,m+1} & \cdots & a_{2,n} & b_2 \\ \vdots & \vdots & & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & a_{m,m+1} & \cdots & a_{m,n} & b_m \end{bmatrix}$$

■ 选取 $m \times m$ 的单位矩阵作为可行基,得到初始单纯形表

	$c_j \rightarrow$		c_1	 c_m		c_{j}		c_n
\mathbf{C}_{B}	\mathbf{X}_{B}	b	$ x_1 $	 $ x_m $		x_j		x_n
c_1	$\begin{vmatrix} x_1 \\ x_2 \\ \vdots \end{vmatrix}$	b_1	1	 0		a_{1j}		a_{1n}
c_2	x_2	b_2	0	 0	• • •	a_{2j}		a_{2n}
:	:	:	:	:		:		:
c_m	$\begin{array}{c} \vdots \\ x_m \end{array}$	b_m	0	 1	• • •	a_{mj}		a_{mn}
C	$z_j - z_j$		0	 0		σ_{j}		σ_n

■ 检验数
$$\sigma_j = c_j - z_j = c_j - \sum_{i=1}^m c_i a_{ij}$$

■ 例 1

max
$$z = 2x_1 + x_2$$

s.t.
$$\begin{cases} 5x_2 \le 15 \\ 6x_1 + 2x_2 \le 24 \\ x_1 + x_2 \le 5 \\ x_1, x_2 \ge 0 \end{cases}$$

■标准化

$$\max z = 2x_1 + x_2$$
s.t.
$$\begin{cases} 5x_2 + x_3 = 15 \\ 6x_1 + 2x_2 + x_4 = 24 \\ x_1 + x_2 + x_5 = 5 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

■ 系数矩阵

$$A = \begin{bmatrix} 0 & 5 & 1 & 0 & 0 \\ 6 & 2 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

■列出初始单纯形表

	$c_j \rightarrow$		2	1	0	0	0
\mathbf{C}_B	\mathbf{X}_{B}	b	$ x_1 $	$ x_2 $	$ x_3 $	x_4	$ x_5 $
0	x_3	15	0	5	1	0	0
0	x_4	24	6	2	0	1	0
0	$\begin{array}{c c} x_3 \\ x_4 \\ x_5 \end{array}$	5	1	1	0	0	1
C	$z_j - z_j$		2	1	0	0	0

第二步: 最优性检验

■ 如果所有检验数

$$\sigma_j = c_j - \sum_{i=1}^m c_i a_{ij} \le 0$$

且基变量中不含有人工变量,则停止,得到最优解

■如果存在

$$\sigma_j = c_j - \sum_{i=1}^m c_i a_{ij} > 0$$

且有 $P_j \leq 0$,则停止迭代,问题为无界解

■ 否则转三步

第二步: 最优性检验

	$c_j \rightarrow$		2	1	0	0	0
	\mathbf{X}_{B}	'	'	'		'	'
0	$\begin{array}{c c} x_3 \\ x_4 \\ x_5 \end{array}$	15	0	5	1	0	0
0	x_4	24	6	2	0	1	0
0	x_5	5	1	1	0	0	1
C	$z_j - z_j$		2	1	0	0	0

- 检验数 $\sigma_i > 0$,因此初始基可行解不是最优解
- 按照单纯形法转第三步

第三步: 基可行解转化

- 从一个基可行解转换到相邻的目标函数更大的基可行解,列出新的单纯形表
 - \square 确定换入变量 x_k (最大增加原则)

$$\sigma_k = \max_j \left\{ \sigma_j \mid \sigma_j > 0 \right\}$$

☐ 确定换出变量 *x*_l(最小比值原则)

$$\theta = \min_{i} \left\{ \frac{b_i}{a_{ik}} \mid \frac{a_{ik}}{a_{ik}} > 0 \right\} = \frac{b_l}{a_{lk}}$$

确定 x_l 为换出变量, a_{lk} 为主元素

第三步: 基可行解转化

■ 用换入变量 x_k 替换基变量中的换出变量 x_l , 得到一个新的基

$$(\mathbf{P}_1,\ldots,\mathbf{P}_{l-1},\mathbf{P}_k,\mathbf{P}_{l+1},\ldots,\mathbf{P}_m)$$

进行初等变换

$$\mathbf{P}_k = egin{bmatrix} a_{1,k} \ a_{2,k} \ dots \ a_{l,k} \ dots \ a_{m,k} \end{bmatrix}$$
 高斯消元 $\mathbf{P}_l = egin{bmatrix} 0 \ 0 \ dots \ 1 \ dots \ 0 \end{bmatrix}$

第三步: 基可行解转化

	$c_j \rightarrow$		2	1	0	0	0
\mathbf{C}_{B}	\mathbf{X}_{B}	b	$ x_1 $	x_2	$ x_3 $	x_4	x_5
0	$\begin{array}{c c} x_3 \\ \underline{x_4} \\ x_5 \end{array}$	15	0	5	1	0	0
0	x_4	24	[6]	2	0	1	0
0	$\overline{x_5}$	5	1	1	0	0	1
C	$z_j - z_j$		2	1	0	0	0

- \square 因 $\sigma_1 > \sigma_2$, 确定 x_1 为换入变量
- $\Theta = \min\left\{\infty, \frac{24}{6}, \frac{5}{1}\right\} = 4$, 确定 6 为主元素
- □ x₄ 为换出变量

第四步: 重复二、三步

	$c_j \rightarrow$		2	1	0	0	0
\mathbf{C}_{B}	\mathbf{X}_{B}	b	$ x_1 $	$\underline{x_2}$	x_3	$ x_4 $	x_5
0	x_3	15	0	5	1	0	0
2	x_1	4	1	2/6	0	1/6	0
0	$\underline{x_5}$	1	0	[4/6]	0	$\begin{vmatrix} 0\\1/6\\-1/6\end{vmatrix}$	1
C	$z_j - z_j$		0	1/3	0	-1/3	0

- \Box 因 $\sigma_2 > 0$, 确定 x_2 为换入变量
- \bigcirc $\theta = \min\left\{\frac{15}{5}, \frac{4}{2/6}, \frac{1}{4/6}\right\} = \frac{6}{4}$, 确定 4/6 为主元素
- □ x₅ 为换出变量

第四步: 重复二、三步

	$c_j \rightarrow$		2	1	0	0	0
\mathbf{C}_{B}	\mathbf{X}_{B}	b	$ x_1 $	x_2	$ x_3 $	$ x_4 $	x_5
0	x_3	15/2	0	0	1	5/4	-15/2
2	x_1	7/2	1	0	0	5/4 1/4	-1/2
1	x_2	3/2	0	1		-1/4	3/2
	$c_j - z$, j	0	0	0	-1/4	-1.2

- \Box 所有检验数 $\sigma_i \leq 0$, 得到最优解 $\mathbf{X} = (7/2, 3/2, 15/2, 0, 0)^{\top}$
- 代入目标函数得最优值 $z^* = 2x_1 + x_2 = 17/2$

■ 用单纯形法求解线性规划问题

max
$$z = 2x_1 + 3x_2$$

s.t.
$$\begin{cases} x_1 + 2x_2 \le 8 \\ 4x_1 \le 16 \\ 4x_2 \le 12 \\ x_1, x_2 \ge 0 \end{cases}$$

■标准化

$$\max z = 2x_1 + 3x_2 + 0x_3 + 0x_4 + 0x_5$$
s.t.
$$\begin{cases} x_1 + 2x_2 + x_3 = 8 \\ 4x_1 + x_4 = 16 \\ 4x_2 + x_5 = 12 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

■ 第一步: 求初始基可行解, 列出初始单纯形表

	$c_j \rightarrow$		2	3	0	0	0
\mathbf{C}_{B}	$ \mathbf{X}_{B} $	b	$ x_1 $	$ x_2 $	$ x_3 $	x_4	$ x_5 $
0	$\begin{array}{ c c } x_3 \\ x_4 \\ x_5 \end{array}$	8	1	2	1	0	0
0	x_4	16	4	0	0	1	0
0	x_5	12	0	4	0	0	1
C	$z_j - z_j$		2	3	0	0	0

■ 第二步: 检验数大于零, 因此初始基可行解不是最优解

■ 第三步: 基可行解的转换

	$c_j \rightarrow$		2	3	0	0	0
\mathbf{C}_{B}	$ \mathbf{X}_{B} $	b	$ x_1 $	$\underline{x_2}$	x_3	$ x_4 $	$ x_5 $
0	x_3	8	1	2	1	0	0
0	x_4	16	4	0	0	1	0
0	$\begin{array}{c c} x_3 \\ x_4 \\ \underline{x_5} \end{array}$	12	0	[4]	0	0	1
C	$z_j - z_j$		2	3	0	0	0

- \square 因 $\sigma_2 > \sigma_1$, 确定 x_2 为换入变量
- $m{\Box}$ $\theta = \min\left\{rac{8}{2}, \infty, rac{12}{4}
 ight\} = 3$, 确定 4 为主元素
- □ x₅ 为换出变量

■具体过程

■ 第四步: 重复二、三步

	$c_j \rightarrow$		2	3	0	0	0
\mathbf{C}_{B}	$ \mathbf{X}_{B} $	b	$\underline{x_1}$	$ x_2 $	$ x_3 $	x_4	$ x_5 $
0	x_3	2	[1]	0	1	0	$ \begin{array}{ c c } -1/2 \\ 0 \\ 1/4 \end{array} $
0	$\overline{x_4}$	16	4	0	0	1	0
3	x_2	3	0	1	0	0	1/4
	$z_j - z_j$		2	0	0	0	-3/4

- \Box 因 $\sigma_1 > 0$, 确定 x_1 为换入变量
- $egin{aligned} egin{aligned} egin{aligned} eta & \theta = \min\left\{ rac{2}{1}, rac{16}{4}, \infty
 ight\} = 2 \end{aligned}$,确定 1 为主元素
- □ x₃ 为换出变量

■ 具体过程

■ 第四步: 重复二、三步

- \Box 因 $\sigma_5 > 0$, 确定 x_5 为换入变量
- $\theta = \min\left\{-, \frac{8}{2}, \frac{3}{1/4}\right\} = 4$, 确定 2 为主元素 (为什么不能选 -1/2?)
- □ x4 为换出变量

■ 具体过程

■ 第四步: 重复二、三步

($c_j \rightarrow$		2	3	0	0	0
\mathbf{C}_{B}	\mathbf{X}_{B}	$\mid \mathbf{b} \mid$	x_1	$ x_2 $	x_3	$ x_4 $	$\underline{x_5}$
2	x_1	4	1	0	0	1/4	0
0	x_5	4	0	0	-2	1/2	1
3	x_2	2	0	1	1/2	$ \begin{array}{ c c c } & 1/4 \\ & 1/2 \\ & -1/8 \end{array} $	0
$c_{:}$	$j-z_j$		0	0	-3/2	-1/8	0

- \square 所有检验数 $\sigma_i \leq 0$,得到最优解
- \Box 最优值 $z^* = 2x_1 + 3x_2 = 14$

课堂练习1

■ 用单纯形法求解线性规划问题

max
$$z = 50x_1 + 100x_2$$

s.t.
$$\begin{cases} x_1 + x_2 \le 300 \\ 2x_1 + x_2 \le 400 \\ x_2 \le 250 \\ x_1, x_2 \ge 0 \end{cases}$$

课堂练习1(答案)

■ 经过分析得到

$c_j \rightarrow$			50	100	0	0	0
\mathbf{C}_{B}	$ \mathbf{X}_{B} $	b	$ x_1 $	$ x_2 $	$ x_3 $	$ x_4 $	$\underline{x_5}$
50	$ x_1 $	50	1	0	1	0	-1
0	x_4	50	0	0	-2	1	1
100	x_2	250	0	1	$\begin{array}{ c c } & 1 \\ -2 \\ & 0 \end{array}$	0	1
($z_j - z_j$	j	0	0	-50	0	-50

- 所有检验数 $\sigma_i \leq 0$, 得到唯一最优解
- **最优解** $X = (50, 250, 0, 50, 0)^{\mathsf{T}}$
- **最优值** $z^* = 50x_1 + 100x_2 = 27500$

小结

- ■单纯形表
- 检验数
- 计算步骤
 - □ 第一步: 列出初始单纯形表
 - □ 第二步: 最优性检验
 - □ 第三步: 基可行解转化
 - □ 第四步: 重复二、三步, 一直到计算结束为止

Q&A

Thank you!

感谢您的聆听和反馈