# 秋学期 深層学習ゼミ

2章 パーセプトロン

#### 2.1 パーセプトロンとは



# パーセプトロン(parceptron)

アメリカのローゼンブラットという研究者によっ て1957年に考案されたアルゴリズム

ニューラルネットワークの起源となるアルゴリズ ムでもある.



#### 2.1 パーセプトロンとは



#### 数式で表すと

$$y = egin{cases} 0 & (b+w_1x_1+w_2x_2 \leq 0) \ 1 & (b+w_1x_1+w_2x_2 > 0) \end{cases}$$



### 2.2 単純な論理回路

# 2.2.1 ANDゲート



```
def AND(x1, x2):
   x = np.array([x1, x2])
   w = np.array([0.5, 0.5])
   b = 0.7
    tmp = np.sum(w*x) + b
    if tmp <= 0:
       return 0
    else:
        return 1
```

| <b>x</b> 1 | x2 | у |
|------------|----|---|
| 0          | 0  | 0 |
| 1          | 0  | 0 |
| 0          | 1  | 0 |
| 1          | 1  | 1 |

#### 2.2 単純な論理回路

#### 2.2.2 NANDゲート



```
def NAND(x1, x2):
    x = np.array([x1, x2])
    w = np.array([-0.5, -0.5])
   b = 0.7
    tmp = np.sum(w*x) + b
    if tmp <= 0:
       return 0
    else:
       return 1
```

| x1 | x2 | у |
|----|----|---|
| 0  | 0  | 1 |
| 1  | 0  | 1 |
| 0  | 1  | 1 |
| 1  | 1  | 0 |

### 2.2 単純な論理回路

# 2.2.2 ORゲート



```
def OR(x1, x2):
   x = np.array([x1, x2])
   w = np.array([0.5, 0.5])
   b = -0.2
    tmp = np.sum(w*x) + b
    if tmp <= 0:
       return 0
    else:
        return 1
```

| x1 | x2 | у |
|----|----|---|
| 0  | 0  | 0 |
| 1  | 0  | 1 |
| 0  | 1  | 1 |
| 1  | 1  | 1 |

# 2.4 パーセプトロンの限界 2.4.1 XORゲート



def XOR(x1, x2): \*\* \*\* \*\* ここに処理を書いてみよう 11 11 11 return

| x1 | x2 | у |
|----|----|---|
| 0  | 0  | 0 |
| 1  | 0  | 1 |
| 0  | 1  | 1 |
| 1  | 1  | 0 |

# 2.4 パーセプトロンの限界

# 2.4.2 線形と非線形



#### XOR回路では

●と●を直線で分けることができないだから...



# 2.5 多層パーセプトロン



```
from AND import AND
from OR import OR
from NAND import NAND
def XOR(x1, x2):
    s1 = NAND(x1, x2)
    s2 = OR(x1, x2)
    y = AND(s1, s2)
    return y
```

