

2020年春季学期 计算学部《机器学习》课程

Lab3 实验报告

姓名	郭茁宁
学号	1183710109
班号	1837101
电子邮件	gzn00417@foxmail.com

1 实验目的

实现一个 k-means 算法和混合高斯模型,并且用 EM 算法估计模型中的参数。

2 实验要求及实验环境

2.1 实验要求

测试: 用高斯分布产生 k 个高斯分布的数据 (不同均值和方差) (其中参数自己设定)。

- (1) 用 k-means 聚类,测试效果;
- (2) 用混合高斯模型和你实现的 EM 算法估计参数,看看每次迭代后似然值变化情况,考察 EM 算法是否可以获得正确的结果(与你设定的结果比较)。

应用:可以 UCI 上找一个简单问题数据,用你实现的 GMM 进行聚类。

2.2 实验环境

Windows 10, Python 3.6.11, Jupyter notebook

3 实验原理

本实验分为两部分: K-means 和 GMM,这两部分都是属于 EM 算法,而 EM 算法主要分为两步:

• E步: 求期望

• M步: 求最大似然

E 步是调整分布, M 步是根据 E 步得到的分布求得当前分布下取到最大似然时的参数, 然后更新参数, 再次进入 E 步根据得到的参数调整新的分布, 如此往复循环, 直到参数收敛。

3.1 K-means

给定训练样本 $X = \{x_1, x_2, \dots, x_m\}$,和划分聚类的数量 k,给出一个簇划分 $C = C_1, C_2, \dots, C_k$,使得该划分的平方误差E最小化,即使下式取最小值:

$$E = \sum_{i=1}^{k} \sum_{x \in C_i} ||x - \mu_i||_2^2$$
 (1)

其中, $\mu_i = \frac{1}{|C_i|} \sum_{x \in C_i} x_i$,它是簇 C_i 的均值向量。E刻画了簇内样本围绕簇的均值向量的紧密程度,E越小簇内样本的相似度越高。

具体迭代过程如下:

- 1. 根据输入的超参数K首先初始化一些向量(可以从现有的向量中挑选),作为各簇的均值向量。
- 2. 根据初始化的均值向量给出训练样本的一个划分,计算各个训练样本到各个均指向量的距离,找出距离最近的均值向量,并将该样本分至该均值向量所代表的簇。
- 3. 根据新的簇划分,重新计算每个簇的均值向量,如果新的均值向量与旧的均值向量差小于 ε ,则认为算法收敛;否则,更新均值向量,回到第 2 步重新迭代求解。

K-means 算法的流程图如下:

K-means 实现:

```
9
            distance = np.zeros(k)
10
            # 根据中心重新给每个点贴分类标签
            for i in range(X.shape[0]):
11
12
                for j in range(k):
13
                   distance[j] = np.linalg.norm(X[i,:-1] - center[j, :])
14
               X[i, -1] = np.argmin(distance)
15
            # 根据每个点新的标签计算它的中心
16
            new\_center = np.zeros((k, X.shape[1]-1))
17
            count = np.zeros(k)
18
            for i in range(X.shape[0]):
19
                new_center[int(X[i, -1]), :] += X[i, :-1] # 对每个类的所有点坐标求
20
                count[int(X[i, -1])] += 1
            for i in range(k):
21
                new_center[i, :] = new_center[i, :] / count[i] # 对每个类的所有点
    坐标求平均值
23
            if np.linalg.norm(new_center - center) < epsilon: #用差值的二范数表示精
24
                break
25
            else:
26
               center = new_center
27
        return X, center
```

3.2 GMM

多元高斯分布生成的 d 维随机变量 x 的密度函数为:

$$p(x|\mu, \Sigma) = \frac{1}{(2\pi)^{\frac{d}{2}} |\Sigma|^{\frac{1}{2}}} \exp(-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu))$$
 (2)

其中 μ 为 d 维的均值向量, Σ 为 $d \times d$ 的协方差矩阵。

给定训练样本集 $X=\{x_1,x_2,\ldots,x_n\}$,它是一个 $n\times d$ 的矩阵,n 为样本数量,d 为单个样本的维度数量。对于一个样本 x_i ,我们可以认为它是由多个对应维度的多元高斯分布所生成,所以高斯分布的线性叠加来表征数据,假设数据由 k 个高斯分布混合生成:

$$p(x_i) = \sum_{j=1}^k \pi_j p(x_i | u_j, \Sigma_j) \tag{3}$$

其中 μ_j 和 Σ_j 是第 j 个高斯分布的均值和协方差矩阵, π_j 为相应的混合系数,满足 $\sum_{j=1}^k \pi_j = 1$

。因此,我们也可以认为该数据的生成相当于从 k 个高斯分布中挑选出一个所生成,我们设 k 维二值变量 z,这个变量采用了 "1-of-k" 表示方法,其中一个特定的元素 z_j 等于 1,其余所有的元素等于 0。于是 z_j 的值满足 $z_j \in \{0,1\}$ 且 $\sum_j z_j = 1$,则 π_j 加权平均概率值可以表征 z 的分布,也就是说 z

的先验分布为:

$$p(z) = \prod_{j=1}^k \pi_j^{z_j}$$

而在看到 x_i 的情况下 z 的后验概率为:

$$\gamma(z_j) \equiv p(z_j = 1 | x_i) = rac{p(z_j = 1)p(x_i | z_j = 1)}{p(x_i)} = rac{\pi_j p(x_i | \mu_j, \Sigma_j)}{\sum\limits_{l=1}^k \pi_l p(x_i | \mu_l, \Sigma_j)}$$
 (5)

当后验概率已知时,混合高斯模型将训练样本划分成了 k 个簇 $C=C_1,C_2,\ldots,C_k$,对于每一个样本 x_i ,其类别为 j,满足 $j=\arg\max_j \gamma(z_j)$,即选择后验概率最大的类别作为标签类别。因此,当我们观测到样本集 X 时可以采用极大似然估计来求解样本的类别分布:

$$\ln p(X|\pi,\mu,\Sigma) = \ln \prod_{i=1}^{n} p(x_i) = \sum_{i=1}^{n} \ln \sum_{j=1}^{k} \pi_j p(x_i|u_j,\Sigma_j)$$
 (6)

使上式最大化,对 μ_j 求导令导数为0:

$$\frac{\partial \ln p(X|\pi,\mu,\Sigma)}{\partial \mu_j} = \sum_{i=1}^n \frac{\pi_j p(x_i|\mu_j,\Sigma_j)}{\sum_{l=1}^k \pi_l p(x_i|\mu_l,\Sigma_l)} \Sigma_j^{-1}(x_i-\mu_j) = 0 \tag{7}$$

令

$$\gamma(z_{ij}) = \frac{p(z_j = 1|x_i)}{\sum_{j=1}^k p(z_j = 1|x_i)} = \frac{\pi_j p(x_i|\mu_j, \Sigma_j)}{\sum_{l=1}^k \pi_l p(x_i|\mu_l, \Sigma_l)}$$
(8)

则上式解得

$$n_j = \sum_i \gamma(z_{ij})$$

$$\mu_j = \frac{1}{n_j} \sum_{i=1}^n \gamma(z_{ij}) x_i$$

$$(9)$$

同理,对 Σ_j 求导令导数为 0:

$$\frac{\partial \ln p(X|\pi,\mu,\Sigma)}{\partial \Sigma_j} = \sum_{i=1}^n \frac{\pi_j p(x_i|\mu_j,\Sigma_j)}{\sum_{l=1}^k \pi_l p(x_i|\mu_l,\Sigma_l)} (\Sigma_j^{-1} - \Sigma_j^{-1}(x_i - \mu_j)(x_i - \mu_j)^T \Sigma_j^{-1}) = 0 \quad (10)$$

解得

$$\Sigma_{j} = \frac{\sum_{i=1}^{n} \gamma(z_{ij})(x_{i} - \mu_{j})(x_{i} - \mu_{j})^{T}}{n_{j}}$$
(11)

对于混合系数 π_j ,还需要满足约束条件 $\sum_{j=1}^k \pi_j = 1$ 。构造拉格朗日多项式:

$$\ln p(X|\pi,\mu,\Sigma) + \lambda(\sum_{j=1}^{k} \pi_j - 1)$$
(12)

对 π_i 求导,令导数为0:

$$\frac{\partial \ln p(X|\pi,\mu,\Sigma) + \lambda(\sum_{j=1}^{k} \pi_j - 1)}{\partial \pi_j} = \sum_{i=1}^{n} \frac{p(x_i|\mu_j,\Sigma_j)}{\sum_{l=1}^{k} \pi_l p(x_i|\mu_l,\Sigma_l)} + \lambda = 0$$
(13)

同乘 π_i 并将 $j \in \{1, 2, \ldots, k\}$ 代入相加得:

$$\sum_{j=1}^{k} \pi_{j} rac{p(x_{i}|\mu_{j}, \Sigma_{j})}{\sum_{l=1}^{k} \pi_{l} p(x_{i}|\mu_{l}, \Sigma_{l})} + \lambda \sum_{j=1}^{k} \pi_{j} = 0$$
 (14)

将约束条件代入:

$$\sum_{i=1}^{n} \left(\frac{\sum_{j=1}^{k} \pi_{j} p(x_{i} | \mu_{j}, \Sigma_{j})}{\sum_{l=1}^{k} \pi_{l} p(x_{i} | \mu_{l}, \Sigma_{l})} \right) + \lambda \sum_{j=1}^{k} \pi_{j} = n + \lambda = 0$$
(15)

即
$$\lambda=-n$$
,代入 $\sum_{i=1}^n rac{p(x_i|\mu_j,\Sigma_j)}{\displaystyle\sum_{l=1}^k \pi_l p(x_i|\mu_l,\Sigma_l)} + \lambda = 0$ 中,得

$$\pi_j = \frac{n_j}{n} \tag{16}$$

GMM 算法过程如下:

1. 随机初始化参数 $\pi_i, \mu_i, \Sigma_i, i \in \{1, 2, ..., k\}$

2. E 步:根据式 $\gamma(z_j)=rac{\pi_j p(x_i|\mu_j,\Sigma_j)}{\frac{k}{\sum_{l=1}^{k}\pi_l p(x_i|\mu_l,\Sigma_j)}}$ 计算每个样本由各个混合高斯成分生成的后验概率

3. M 步: 用下式更新参数 $\pi_i, \mu_i, \Sigma_i, i \in \{1, 2, \ldots, k\}$

$$\pi_j = \frac{n_j}{n}$$

$$\mu_j = \frac{1}{n_j} \sum_{i=1}^n \gamma(z_{ij}) x_i$$

$$\Sigma_j = \frac{\sum_{i=1}^n \gamma(z_{ij}) (x_i - \mu_j) (x_i - \mu_j)^T}{n_j}$$

$$(17)$$

4. 如果参数值不再发生变化,根据 $j = rg \max_j \gamma(z_j)$ 计算标签 j,否则,返回第 2 步

E 步实现:

```
def e_step(x, mu_list, sigma_list, pi_list):
        e步,求每个样本由各个混合高斯成分生成的后验概率
        k = mu_list.shape[0]
 6
        gamma_z = np.zeros((x.shape[0], k))
        for i in range(x.shape[0]):
            pi\_times\_pdf\_sum = 0
9
            pi_times_pdf = np.zeros(k)
10
            for j in range(k):
11
                pi_times_pdf[j] = pi_list[j] * multivariate_normal.pdf(x[i],
    mean=mu_list[j], cov=sigma_list[j])
12
                pi_times_pdf_sum += pi_times_pdf[j]
13
            for j in range(k):
                gamma_z[i, j] = pi_times_pdf[j] / pi_times_pdf_sum
14
```

m 步实现:

```
def m_step(x, mu_list, gamma_z):
     2
     3
                                    m步,根据公式更新参数
                                     0.00
     4
     5
                                     k = mu_list.shape[0]
     6
                                    n = x.shape[0]
     7
                                    dim = x.shape[1]
     8
                                    mu_list_new = np.zeros(mu_list.shape)
    9
                                     sigma_list_new = np.zeros((k, dim, dim))
10
                                     pi_list_new = np.zeros(k)
11
                                   for j in range(k):
12
                                                      n_j = np.sum(gamma_z[:, j])
13
                                                      pi_list_new[j] = n_j / n # 计算新的pi
14
15
                                                      gamma = gamma_z[:, j]
16
                                                      gamma = gamma.reshape(n, 1)
17
                                                      mu_list_new[j, :] = (gamma.T @ x) / n_j # 计算新的mu
18
                                                      sigma_list_new[j] = ((x - mu_list[j]).T @ np.multiply((x - mu_list[j])).T = ((x - mu_list[j]).T = ((x - mu_list[j])).T = ((x - mu_list[
                  mu_list[j]), gamma)) / n_j # 计算新的sigma
                                     return mu_list_new, sigma_list_new, pi_list_new
19
20
```

GMM 主算法:

```
while True:
    gamma_z = e_step(x, mu_list, sigma_list, pi_list)
    mu_list, sigma_list, pi_list = m_step(x, mu_list, gamma_z)
    new_log_l = log_likelihood(x, mu_list, sigma_list, pi_list)
    if (old_log_l - new_log_l) < epsilon:
        break</pre>
```

4 实验结果与分析

4.1 k=3, 各分布距离较远

生成 k=3 的 2 维数据测试 K-Means 和 GMM 的效果,各高斯分布的均值和协方差矩阵均不同。

各高斯分布的均值: [[26][810][82]]

Real Data Distribution 15.0 12.5 10.0 7.5 5.0 2.5

8

10

12

14

4.1.1 K-means

0

2

0.0

-2.5

下图的各中心坐标: [[8.01793576 1.79108972] [8.03150573 10.1021806] [2.24065269 5.92428314]]

下图的各中心坐标: [[8.0836514 10.09409582] [2.13241573 6.07466331] [7.90305055 1.85080409]]

下图的各中心坐标: [[7.90305055 1.85080409] [2.13241573 6.07466331] [8.0836514 10.09409582]]

从图中可以看出,随着精度的增大,准确率都在 0.98,变化不大,但精度从 1 变为 1e-5 时,求得的聚类中心准确度增大了。

4.1.2 **GMM**

Iterations	log	likelihood
0	0	-6144.654659
1	10	-2263.041207

Iterations	log	likelihood
0	0	-12380.649487
1	10	-2259.168385
2	20	-2250.432389

epsilon=1e-05, iterations=28, accuracy=0.9866666666666667

Iterations	log	likelihood
0	0	-12380.649487
1	10	-2259.168385
2	20	-2250.432389
3	30	-2250.427813
4	40	-2250.427810

epsilon=1e-10, iterations=44, accuracy=0.9866666666666667

可以看出,在本条件下,GMM 得到的结果要比 K-means 得到的结果好一些。分类结果都在 0.993 以上,随精度的变化不大,所以推断它已经收敛到了一定程度,甚至各参数不再发生变化,再看各次运行时的最大似然对数,发现最大似然对数确实在增大,而大约从第 30 次迭代开始,就不再发生变化了,这也就解释了为什么在这些精度下不随精度的增大而变化。

4.2 k=5, 各分布距离较近

生成 k=5 的 2 维数据测试 K-Means 和 GMM 的效果,各高斯分布的均值和协方差矩阵均不同。

各高斯分布的均值: [[2 2] [2 8] [5 5] [8 2] [8 8]]

4.2.1 K-means

下图的各中心坐标: [[2.18968489 1.84342438] [4.06214076 6.49533675] [7.70264307 7.75145059] [7.64093616 2.08442801] [0.81632472 7.85715666]]

下图的各中心坐标: [[7.65555593 7.96246481] [5.15908774 4.67890905] [1.81425092 7.94398898] [2.02856111 1.76633677] [8.16967029 1.60086774]]

下图的各中心坐标: [[2.02856111 1.76633677] [7.68489141 8.01662037] [8.13186743 1.61606551] [1.7762265 7.95586774] [5.18796523 4.80202908]]

epsilon=1e-10, iterations=9, accuracy=0.89

4.2.2 **GMM**

Iterations	log	likelihood
0	0	-14676.491323
1	10	-4042.639637

0 -3707.327401 1 10 -4066.759192 2 20 -4064.114970 3 30 -4052.819666 4 40 -4033.756962 5 50 -3990.930686 6 60 -3946.121933 7 70 -3955.944642 8 80 -4010.409120 9 90 -4039.433624 10 100 -4048.449899 11 110 -4050.732952 12 120 -4051.318926 13 130 -4051.489652 14 140 -4051.549530 15 150 -4051.549530 15 150 -4051.59484 16 160 -4051.591836 18 180 -4051.594721 19 190 -4051.59683 20 200 -4051.59693 21 210 -4051.597507 23 230 -4051.597655 25 250 -4051.597603 26 260 -40	Iterations	log	likelihood
2 20 -4064.114970 3 30 -4052.819666 4 40 -4033.756962 5 50 -3990.930686 6 60 -3946.121933 7 70 -3955.944642 8 80 -4010.409120 9 90 -4039.433624 10 100 -4048.449899 11 110 -4050.732952 12 120 -4051.318926 13 130 -4051.489652 14 140 -4051.549530 15 150 -4051.549530 15 150 -4051.591836 18 180 -4051.591836 18 180 -4051.594721 19 190 -4051.596187 20 200 -4051.596933 21 210 -4051.597605 23 230 -4051.597605 24 240 -4051.597605 25 250 -4051.597603 26 260 -4051.597700 28 <	0	0	-3707.327401
3 30 -4052.819666 4 40 -4033.756962 5 50 -3990.930686 6 60 -3946.121933 7 70 -3955.944642 8 80 -4010.409120 9 90 -4039.433624 10 100 -4048.449899 11 110 -4050.732952 12 120 -4051.318926 13 130 -4051.549530 15 150 -4051.591836 16 160 -4051.596187 20 200 -4051.596187 20 200 -4051.597507 23 230 -4051.597605 24 240 -4051.597605 26 260 -4051.597700 28 280 -4051.597700	1	10	-4066.759192
4 40 -4033.756962 5 50 -3990.930686 6 60 -3946.121933 7 70 -3955.944642 8 80 -4010.409120 9 90 -4039.433624 10 100 -4048.449899 11 110 -4050.732952 12 120 -4051.318926 13 130 -4051.489652 14 140 -4051.594530 15 150 -4051.594530 15 150 -4051.594530 16 160 -4051.59484 16 160 -4051.591836 18 180 -4051.594721 19 190 -4051.596187 20 200 -4051.596933 21 210 -4051.597507 23 230 -4051.597605 24 240 -4051.597655 25 250 -4051.597693 27 270 -4051.597700 28 280 -4051.597703	2	20	-4064.114970
5 50 -3990.930686 6 60 -3946.121933 7 70 -3955.944642 8 80 -4010.409120 9 90 -4039.433624 10 100 -4048.449899 11 110 -4050.732952 12 120 -4051.318926 13 130 -4051.489652 14 140 -4051.549530 15 150 -4051.574484 16 160 -4051.586110 17 170 -4051.591836 18 180 -4051.594721 19 190 -4051.596187 20 200 -4051.596933 21 210 -4051.597507 23 230 -4051.597605 24 240 -4051.597605 25 250 -4051.597693 27 270 -4051.597700 28 280 -4051.597703	3	30	-4052.819666
6 60 -3946.121933 7 70 -3955.944642 8 80 -4010.409120 9 90 -4039.433624 10 100 -4048.449899 11 110 -4050.732952 12 120 -4051.318926 13 130 -4051.597655 15 150 -4051.597693 21 210 -4051.597700 28 280 -4051.597700	4	40	-4033.756962
7 70 -3955.944642 8 80 -4010.409120 9 90 -4039.433624 10 100 -4048.449899 11 110 -4050.732952 12 120 -4051.318926 13 130 -4051.489652 14 140 -4051.549530 15 150 -4051.574484 16 160 -4051.586110 17 170 -4051.591836 18 180 -4051.594721 19 190 -4051.596187 20 200 -4051.596933 21 210 -4051.597507 23 230 -4051.597605 24 240 -4051.597680 25 250 -4051.597693 27 270 -4051.597700 28 280 -4051.597703	5	50	-3990.930686
8 80 -4010,409120 9 90 -4039,433624 10 100 -4048,449899 11 110 -4050,732952 12 120 -4051,318926 13 130 -4051,489652 14 140 -4051,549530 15 150 -4051,59484 16 160 -4051,591836 18 180 -4051,591836 18 180 -4051,596187 20 200 -4051,596933 21 210 -4051,597693 21 210 -4051,597605 24 240 -4051,597655 25 250 -4051,597693 27 270 -4051,597700 28 280 -4051,597703	6	60	-3946.121933
9 90 -4039,433624 10 100 -4048,449899 11 110 -4050,732952 12 120 -4051,318926 13 130 -4051,549530 15 150 -4051,574484 16 160 -4051,591836 18 180 -4051,594721 19 190 -4051,596187 20 200 -4051,596187 20 200 -4051,596933 21 210 -4051,597507 23 230 -4051,597605 24 240 -4051,597655 25 250 -4051,597693 27 270 -4051,597700 28 280 -4051,597700	7	70	-3955.944642
10 100 -4048.449899 11 110 -4050.732952 12 120 -4051.318926 13 130 -4051.489652 14 140 -4051.549530 15 150 -4051.574484 16 160 -4051.586110 17 170 -4051.591836 18 180 -4051.594721 19 190 -4051.596187 20 200 -4051.596933 21 210 -4051.597507 23 230 -4051.597605 24 240 -4051.597655 25 250 -4051.597693 27 270 -4051.597700 28 280 -4051.597703	8	80	-4010.409120
11 110 -4050.732952 12 120 -4051.318926 13 130 -4051.489652 14 140 -4051.549530 15 150 -4051.574484 16 160 -4051.586110 17 170 -4051.591836 18 180 -4051.594721 19 190 -4051.596187 20 200 -4051.596933 21 210 -4051.597313 22 220 -4051.597507 23 230 -4051.597605 24 240 -4051.597655 25 250 -4051.597680 26 260 -4051.597700 28 280 -4051.597703	9	90	-4039.433624
12 120 -4051.318926 13 130 -4051.489652 14 140 -4051.549530 15 150 -4051.574484 16 160 -4051.586110 17 170 -4051.591836 18 180 -4051.594721 19 190 -4051.596187 20 200 -4051.596933 21 210 -4051.597313 22 220 -4051.597507 23 230 -4051.597605 24 240 -4051.597680 26 260 -4051.597693 27 270 -4051.597700 28 280 -4051.597703	10	100	-4048.449899
13 130 -4051.489652 14 140 -4051.549530 15 150 -4051.574484 16 160 -4051.586110 17 170 -4051.591836 18 180 -4051.594721 19 190 -4051.596187 20 200 -4051.596933 21 210 -4051.597313 22 220 -4051.597507 23 230 -4051.597605 24 240 -4051.597655 25 250 -4051.597680 26 260 -4051.597700 28 280 -4051.597703	11	110	-4050.732952
14 140 -4051.549530 15 150 -4051.574484 16 160 -4051.586110 17 170 -4051.591836 18 180 -4051.594721 19 190 -4051.596187 20 200 -4051.596933 21 210 -4051.597313 22 220 -4051.597605 24 240 -4051.597655 25 250 -4051.597680 26 260 -4051.597693 27 270 -4051.597700 28 280 -4051.597703	12	120	-4051.318926
15 150 -4051.574484 16 160 -4051.586110 17 170 -4051.591836 18 180 -4051.594721 19 190 -4051.596187 20 200 -4051.596933 21 210 -4051.597313 22 220 -4051.597507 23 230 -4051.597605 24 240 -4051.597655 25 250 -4051.597680 26 260 -4051.597693 27 270 -4051.597700 28 280 -4051.597703	13	130	-4051.489652
16 160 -4051.586110 17 170 -4051.591836 18 180 -4051.594721 19 190 -4051.596187 20 200 -4051.596933 21 210 -4051.597313 22 220 -4051.597507 23 230 -4051.597605 24 240 -4051.597655 25 250 -4051.597680 26 260 -4051.597693 27 270 -4051.597700 28 280 -4051.597703	14	140	-4051.549530
17 170 -4051.591836 18 180 -4051.594721 19 190 -4051.596187 20 200 -4051.596933 21 210 -4051.597313 22 220 -4051.597507 23 230 -4051.597605 24 240 -4051.597655 25 250 -4051.597680 26 260 -4051.597693 27 270 -4051.597700 28 280 -4051.597703	15	150	-4051.574484
18 180 -4051.594721 19 190 -4051.596187 20 200 -4051.596933 21 210 -4051.597313 22 220 -4051.597507 23 230 -4051.597605 24 240 -4051.597655 25 250 -4051.597680 26 260 -4051.597703 27 270 -4051.597700 28 280 -4051.597703	16	160	-4051.586110
19 190 -4051.596187 20 200 -4051.596933 21 210 -4051.597313 22 220 -4051.597507 23 230 -4051.597605 24 240 -4051.597655 25 250 -4051.597680 26 260 -4051.597693 27 270 -4051.597700 28 280 -4051.597703	17	170	-4051.591836
20 200 -4051.596933 21 210 -4051.597313 22 220 -4051.597507 23 230 -4051.597605 24 240 -4051.597655 25 250 -4051.597680 26 260 -4051.597693 27 270 -4051.597700 28 280 -4051.597703	18	180	-4051.594721
21 210 -4051.597313 22 220 -4051.597507 23 230 -4051.597605 24 240 -4051.597655 25 250 -4051.597680 26 260 -4051.597693 27 270 -4051.597700 28 280 -4051.597703	19	190	-4051.596187
22 220 -4051.597507 23 230 -4051.597605 24 240 -4051.597655 25 250 -4051.597680 26 260 -4051.597693 27 270 -4051.597700 28 280 -4051.597703	20	200	-4051.596933
23 230 -4051.597605 24 240 -4051.597655 25 250 -4051.597680 26 260 -4051.597693 27 270 -4051.597700 28 280 -4051.597703	21	210	-4051.597313
24 240 -4051.597655 25 250 -4051.597680 26 260 -4051.597693 27 270 -4051.597700 28 280 -4051.597703	22	220	-4051.597507
25 250 -4051.597680 26 260 -4051.597693 27 270 -4051.597700 28 280 -4051.597703	23	230	-4051.597605
26 260 -4051.597693 27 270 -4051.597700 28 280 -4051.597703	24	240	-4051.597655
27 270 -4051.597700 28 280 -4051.597703	25	250	-4051.597680
28 280 -4051.597703	26	260	-4051.597693
	27	270	-4051.597700
20 200 4054 507705	28	280	-4051.597703
29 290 -4051.597/05	29	290	-4051.597705

Iterations	log	likelihood
30	300	-4051.597706
31	310	-4051.597706
32	320	-4051.597706
33	330	-4051.597706
34	340	-4051.597706
35	350	-4051.597706
36	360	-4051.597706
37	370	-4051.597706
38	380	-4051.597706
39	390	-4051.597706
40	400	-4051.597706
41	410	-4051.597706
42	420	-4051.597706
43	430	-4051.597706
44	440	-4051.597706
45	450	-4051.597706
46	460	-4051.597706
47	470	-4051.597706
48	480	-4051.597706
49	490	-4051.597706
50	500	-4051.597706

epsilon=1e-05, iterations=506, accuracy=0.819

Iterations	log	likelihood
0	0	-5469.695696
1	10	-4148.762105
2	20	-4134.919184
3	30	-4128.936608
4	40	-4121.168586
5	50	-4114.312090
6	60	-4107.529935
7	70	-4098.785358
8	80	-4077.555265
9	90	-4052.803917
10	100	-4020.465108
11	110	-3976.456995
12	120	-3941.825622
13	130	-3973.274595
14	140	-4015.355576
15	150	-4028.747247
16	160	-4031.841581
17	170	-4032.537464
18	180	-4032.698684
19	190	-4032.737935
20	200	-4032.748141
21	210	-4032.751023
22	220	-4032.751924
23	230	-4032.752241
24	240	-4032.752366
25	250	-4032.752422
26	260	-4032.752449
27	270	-4032.752463
28	280	-4032.752471
29	290	-4032.752475

Iterations	log	likelihood
30	300	-4032.752478
31	310	-4032.752479
32	320	-4032.752480
33	330	-4032.752480
34	340	-4032.752480
35	350	-4032.752481
36	360	-4032.752481
37	370	-4032.752481
38	380	-4032.752481
39	390	-4032.752481
40	400	-4032.752481
41	410	-4032.752481
42	420	-4032.752481
43	430	-4032.752481
44	440	-4032.752481
45	450	-4032.752481
46	460	-4032.752481
47	470	-4032.752481
48	480	-4032.752481
49	490	-4032.752481
50	500	-4032.752481
51	510	-4032.752481
52	520	-4032.752481
53	530	-4032.752481
54	540	-4032.752481
55	550	-4032.752481
56	560	-4032.752481
57	570	-4032.752481
58	580	-4032.752481

epsilon=1e-10, iterations=588, accuracy=0.769

可以看出在精度较低时,GMM 的效果并不好,但提高精度后,准确率和大幅度提升,最后比 K-means 的分类效果要好一点。

4.3 UCI 数据集

• K-means

[[6.39425287 2.93103448 5.09425287 1.75632184] [5.006 3.418 1.464 0.244] [5.37692308 2.47692308 3.64615385 1.13846154]]

[[5.006 3.418 1.464 0.244] [5.9016129 2.7483871 4.39354839 1.43387097] [6.85 3.07368421 5.74210526 2.07105263]]

[[5.006 3.418 1.464 0.244] [5.9016129 2.7483871 4.39354839 1.43387097] [6.85 3.07368421 5.74210526 2.07105263]]

• GMM

Iterations	log	likelihood
0	0	-242.877279
1	10	180.646535

Iterations	log	likelihood
0	0	-220.377579
1	10	136.639877
2	20	178.635141
3	30	222.721534
4	40	226.810323
5	50	228.682437
6	60	245.465852

Iterations	log	likelihood
0	0	-340.267489
1	10	180.479148
2	20	167.034569
3	30	167.032893
4	40	167.032705
5	50	167.032697
6	60	167.032696
7	70	167.032696
8	80	167.032696
9	90	167.032696

5 结论

K-Means 实际上假设数据式呈球状分布,假设使用的欧式距离来衡量样本与各个簇中心的相似度(假设数据的各个维度对于相似度计算的作用是相同的),它的簇中心初始化对于最终的结果有很大的影响,如果选择不好初始的簇中心值容易使之陷入局部最优解;与之相比 GMM 使用更加一般的数据表示即高斯分布,GMM 使用 EM 算法进行迭代优化,因为其涉及到隐变量的问题,没有之前的完全数据,而是在不完全数据上进行。

K-Means 其实就是一种特殊的高斯混合模型,假设每种类在样本中出现的概率相等均为 $\frac{1}{k}$,而且假设高斯模型中的每个变量之间是独立的,即变量间的协方差矩阵是对角阵,这样我们可以直接用欧氏距离作为 K-Means 的协方差去衡量相似性;K-Means 对响应度也做了简化,每个样本只属于一个类,即每个样本属于某个类响应度为 1,对于不属于的类响应度设为 0,算是对 GMM 的一种简化。而在高斯混合模型中,每个类的数据出现在样本中的概率为,用协方差矩阵替代 K-Means 中的欧式距离去度量点和点之间的相似度,响应度也由离散的 0,1 变成了需要通过全概率公式计算的值。由于 GMM 不像 K-means 做了很多假设,所以分类最终效果比 K-Means 好,但是 GMM-EM 算法过于细化,容易被噪声影响,所以适合对 K-Means 的分类结果进行进一步优化。