2 Introduction to Quantum Mechanics

2.1 Linear algebra

目次

1	Exercise 2.1:(Linear dependence: example)	2
2	Exercise 2.2: (Matrix represetations: example)	3
3	復習1:(表現行列の定義)	4
4	Exercise 2.3: (Matrix representation for operator products)	5
5	Exercise 2.4: (Matrix representation for identity)	6
6	Exercise 2.5:	7
7	Exercise 2.6:	8
8	復習 2(内積演算子、外積表現)	9
9	Exercise 2.7:	10
10	Exercise2.8:	11
11	復習 3:(Pauli operators)	12
12	Exercise 2.9:(Pauli operators and the outer product)	13
13	Exercise 2.10:	14
14	Exercise 2.11:(Eigendecomposition of the Pauli matrices)	15
15	Exercise 2.12:	17
16	Exercise 2.13:	17
17	Exercise 2.14:(Anti-linearity of the adjoint)	17
18	Exercise 2.15:	17
19	Exercise 2.16:	18
20	Exercise2.17:	19

1 Exercise 2.1:(Linear dependence: example)

Show that (1, -1), (1, 2) and (2, 1) are linearly dependent.

proof:

$$a_1 \begin{pmatrix} 1 \\ -1 \end{pmatrix} + a_2 \begin{pmatrix} 1 \\ 2 \end{pmatrix} + a_3 \begin{pmatrix} 2 \\ 1 \end{pmatrix} = 0, (a_1, a_2, a_3 \in \mathbb{C})$$
 (1)

とする。

この解の組 (a_1, a_2, a_3) は $t \in \mathbb{C}$ を任意の複素数として、

$$(a_1, a_2, a_3) = (t, t, -t) \tag{2}$$

と表すことが出来る。問題の三つのベクトルが一次独立であれば、 $(a_1,a_2,a_3)=(0,0,0)$ のみが解となるため 不適。よって一次従属である。

2 Exercise 2.2: (Matrix representations: example)

Suppose V is a vector space with basis vectors $|0\rangle$ and $|1\rangle$, and A is a linear operator from V to V such that $A |0\rangle = |1\rangle$ and $A |1\rangle = |0\rangle$. Give a matrix representation for A, with respect to the input basis $|0\rangle$, $|1\rangle$, and the output basis $|0\rangle$, $|1\rangle$. Find input and output bases which give rise to a different matrix representation of A.

proof: V の基底 $\{|v_1\rangle = |0\rangle, |v_2\rangle = |1\rangle \}$ に対して演算子 $A: V \to V$ は、

$$A |v_1\rangle = 0 |v_1\rangle + 1 |v_2\rangle,$$

$$A |v_2\rangle = 1 |v_1\rangle + 0 |v_2\rangle$$

という作用をする。

定義より、演算子 $A: V \to W$ において、V の基底を $\{|v_1\rangle, \cdots, |v_n\rangle\}$

W の基底を $\{|w_1\rangle, \cdots, |w_m\rangle\}$

とすれば、A の行列表現における (i,j) 成分 A_{ij} は

$$A|v_j\rangle = \sum_i A_{ij}|w_i\rangle \tag{1}$$

と定義されている。故に

$$A_{11} = 0, A_{12} = 1, A_{21} = 1, A_{22} = 0.$$

すなわち、

$$A = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right).$$

3 復習1:(表現行列の定義)

線形写像 $f:V\to W$ において、V の基底を $\{v_1,\cdots,v_n\}$, W の基底を $\{w_1,\cdots,w_m\}$ とする。 ここで, 任意の $j(1\leq j\leq n)$ について、 $f(v_j)=\sum_{i=1}^m a_{ij}w_i$ とする。 $(f:V\to W$ より、任意の $j(1\leq j\leq n)$ について $f(v_j)$ は W の基底 $\{w_1,\cdots,w_m\}$ の線型結合で表される。) このとき行列 A の (i,j) 成分を a_{ij} とすれば、

$$[f(v_1), \cdots, f(v_n)] = [w_1, \cdots, w_m] A \tag{1}$$

というような便宜的表記をすることができる。この行列Aeffの表現行列という。

この表現行列の便利な点

V の基底を $\{|v_1\rangle,\cdots,|v_n\rangle\}$ とすると、V の任意の元 v は $v=\sum_{j=1}^n x_jv_j, (\forall j,x_j\in\mathbb{C})$ として表すことが出来る。

$$f(v) = f(\sum_{j=1}^{n} x_j v_j) = \sum_{j=1}^{n} x_j f(v_j) = \sum_{j=1}^{n} x_j \sum_{i=1}^{m} a_{ij} w_i = \sum_{j=1}^{n} \sum_{i=1}^{m} x_j a_{ij} w_i = \sum_{i=1}^{m} (\sum_{j=1}^{n} a_{ij} x_j) w_i$$
 (2)

ここで、

$$x = \left(\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array}\right)$$

とすると、 $\sum_{j=1}^n a_{ij} x_j$ は $(\mathbf{m},1)$ ベクトル Ax の i 成分となる。ここで特に (2) において、

$$f(v) = \sum_{j=1}^{n} x_j f(v_j) = \sum_{i=1}^{m} (\sum_{j=1}^{n} a_{ij} x_j) w_i$$
 (3)

が成立していることに注意すると、(1)の表記を用いて

$$[f(v)] = [f(v_1), \dots, f(v_n)]x = [w_1, \dots, w_m]Ax$$
 (4)

と表すことが出来る。すなわち、V の基底 $\{v_1,\cdots,v_n\}$ に対する v の係数ベクトル x で W の基底 $\{w_1,\cdots,w_m\}$ の係数を Ax と表すことが出来る。これが表現行列の便利な点である。

4 Exercise 2.3: (Matrix representation for operator products)

Suppose A is a liear operator from vector space V to vector space W, and B is a linear operator from vector space W to vector space X. Let $|v_i\rangle$, $|w_j\rangle$ and $|x_k\rangle$ be bases for the vector spaces V, W, and X, respectively.

Show that the matrix representation for the linear transformation BA is the matrix product of the matrix representations for B and A, with respect to the appropriate bases.

proof:

V,W,X の次元をそれぞれ n,m,l とし、基底をそれぞれ $\{|v_1\rangle,\cdots,|v_n\rangle\}$, $\{|w_1\rangle,\cdots,|w_m\rangle\}$, $\{|x_1\rangle,\cdots,|x_l\rangle\}$ とする。

このとき A, B について行列表現の定義より、任意の $i, (1 \le i \le n), j, (1 \le j \le m)$ において、

$$A|v_i\rangle = \sum_{j=1}^m a_{ji} |w_j\rangle, \qquad (1)$$

$$B|w_j\rangle = \sum_{k=1}^l b_{kj} |x_k\rangle \tag{2}$$

と表すことが出来る。これより、

$$(BA) |v_i\rangle = B(A |v_i\rangle)$$

$$= B(\sum_{j=1}^m a_{ji} |w_j\rangle)$$

$$= \sum_{j=1}^m a_{ji}B |w_j\rangle$$

$$= \sum_{j=1}^m \sum_{k=1}^l a_{ji}b_{kj} |x_k\rangle$$

$$= \sum_{k=1}^l (\sum_{j=1}^m b_{kj}a_{ji}) |x_k\rangle.$$

これより, 演算子 $BA:V\to X$ の行列表現の (k,i) 成分は $\sum_{j=1}^m b_{kj}a_{ji}$ と表され、これは A,B それぞれの行列表現による行列の積の (k,i) 成分に等しい。

5 Exercise 2.4: (Matrix representation for identity)

Show that the identity operator on a vector space V has a matrix representation which is one along the diagonal and zero everywhere else, if the matrix representation is taken with respect to the same input and output bases. This matrix is known as the identity matrix.

proof: ベクトル空間 V の基底を $\{|v_1\rangle, \cdots, |v_n\rangle\}$, V 上の identity operator を I とする。このとき、任意の $j, (1 \le j \le n)$ について

$$I |v_j\rangle = \sum_{i=0}^n a_{ij} |v_i\rangle$$
$$= |v_j\rangle.$$

すなわち、

$$a_{ij} = \begin{cases} 1 & (i=j) \\ 0 & (i \neq j) \end{cases}$$

このような数を (i,j) 成分に持つ行列は、対角成分が1でその他が0の行列である。

6 Exercise 2.5:

Verify that (\cdot, \cdot) just defined is an inner product on \mathbb{C}^n .

7 Exercise 2.6:

Show that any inner product (\cdot,\cdot) is cojugate-linear in the first argument ,

$$\left(\sum_{i} \lambda_{i} \left| w_{i} \right\rangle, \left| v \right\rangle\right) = \sum_{i} \lambda_{i}^{*}(\left| w_{i} \right\rangle, \left| v \right\rangle). \tag{1}$$

proof: 内積の定義 (本文 p.65) より、

$$(|v\rangle, \sum_{i} \lambda_{i} |w\rangle) = \sum_{i} \lambda_{i} (|v\rangle, |w_{i}\rangle),$$
 (2)

$$(|v\rangle, |w\rangle) = (|w\rangle, |v\rangle)^*. \tag{3}$$

ゆえに、

$$(\sum_{i} \lambda_{i} |w_{i}\rangle, |v\rangle) = (\sum_{i} \lambda_{i} |w_{i}\rangle, |v\rangle)^{**}$$

$$= ((\sum_{i} \lambda_{i} |w_{i}\rangle, |v\rangle)^{*})^{*}$$

$$= (|v\rangle, \sum_{i} \lambda_{i} |w_{i}\rangle)^{*}$$

$$= (\sum_{i} \lambda_{i} (|v\rangle, |w_{i}\rangle)^{*}$$

$$= \sum_{i} \lambda_{i}^{*} (|v\rangle, |w_{i}\rangle)^{*}$$

$$= \sum_{i} \lambda_{i}^{*} (|w_{i}\rangle, |v\rangle).$$

ゆえに、内積は第一引数に関して反線型 (conjugate-linear) である。

8 復習 2(内積演算子、外積表現)

(内積演算子):標準的な量子力学における内積 $(|v\rangle,|w\rangle)$ の表記は $\langle v|w\rangle$ であり、 $\langle v|$ はベクトル $|v\rangle$ の双対ベクトルを表す; 双対ベクトルとは、内積を有するベクトル空間 V から $\mathbb C$ への線型演算子であり、 $\langle v|(|w\rangle) \equiv \langle v|w\rangle \equiv (|v\rangle,|w\rangle)$ として定義される。

(外積表現): $|v\rangle$, $|w\rangle$ をそれぞれ内積ベクトル空間 V,W のベクトルとする。このとき $|w\rangle$ $\langle v|$ を V から W への線型演算子として次式で定義する。

$$(|w\rangle\langle v|)(|v'\rangle) \equiv |w\rangle\langle v|v'\rangle = \langle v|v'\rangle|w\rangle.$$

 $|i\rangle$, $(1\leq i\leq n)$ をベクトル空間 V の任意の正規直交基底とする。このとき任意のベクトル $|v\rangle$ は $v_i\in\mathbb{C}$, $(1\leq i\leq n)$ を用いて $|v\rangle=\sum_i v_i\,|i\rangle$ と表すことが出来る。 $\langle i|v\rangle=v_i$ であることに注意すると、

$$(\sum_{i}\left|i\right\rangle \left\langle i\right|)\left|v\right\rangle =\sum_{i}\left|i\right\rangle \left\langle i|v\right\rangle =\sum_{i}v_{i}\left|i\right\rangle =\left|v\right\rangle .$$

ゆえに

$$\sum_{i} |i\rangle \langle i| = I.$$

これは、正規直交基底による completeness relation として知られている。これを応用することで任意の線型 演算子を外積表現で表すことが出来る。

 $A:V \to W$ を線型演算子, $|v_i\rangle$ を V の正規直交基底、 $|w_i\rangle$ を W の正規直交基底とする。このとき、

$$\begin{split} A &= I_W A I_V \\ &= \sum_{ij} \left| w_j \right\rangle \left\langle w_j | A | v_i \right\rangle \left\langle v_i | \right. \\ &= \sum_{ij} \left\langle w_j | A | v_i \right\rangle \left| w_j \right\rangle \left\langle v_i | \right. \end{split}$$

ここで、正規直交基底 $|v_k\rangle$ に対する A の作用は $A|v_k\rangle=\sum_j \langle w_j|A|v_k\rangle|w_j\rangle$ となる。これより、A の基底 $|v_i\rangle$, $|w_j\rangle$ に対する表現行列の (i,j) 成分を a_{ij} とすれば

$$a_{ij} = \langle w_i | A | v_i \rangle$$

となる。

9 Exercise 2.7:

Verify that $|w\rangle \equiv (1,1)$ and $|v\rangle \equiv (1,-1)$ are orthogonal. What are the normalized forms of these vectors?

proof:

 $\langle w|v\rangle = 1 \times 1 + 1 \times (-1) = 0.$

ゆえに $|w\rangle\,,|v\rangle$ は直交している。また、ベクトル $|v\rangle$ の正規化ベクトル $|v'\rangle$ は、

$$|v'\rangle \equiv \frac{|v\rangle}{\sqrt{\langle v|v\rangle}}\tag{1}$$

で与えられる。

ゆえに、 $|w\rangle$, $|v\rangle$ それぞれの正規化ベクトル $|w'\rangle$, $|v'\rangle$ は

$$|w'\rangle \equiv \frac{|w\rangle}{\sqrt{\langle w|w\rangle}}$$

$$= \frac{(1,1)}{\sqrt{1\cdot 1+1\cdot 1}}$$

$$= \frac{1}{\sqrt{2}}(1,1),$$

$$|v'\rangle \equiv \frac{|v\rangle}{\sqrt{\langle v|v\rangle}}$$

$$= \frac{(1,-1)}{\sqrt{1\cdot 1+(-1)\cdot (-1)}}$$

$$= \frac{1}{\sqrt{2}}(1,-1).$$

10 Exercise 2.8:

Prove that the Gram-Schmidt procedure produces an orthonormal basis for V.

proof: 帰納法による。内積を有するベクトル空間 V において、 $|w_1\rangle$, \cdots , $|w_d\rangle$ を基底集合とする。p.66 のグラム・シュミットの正規直交化法により、正規直交基底集合 $|v_1\rangle$, \cdots , $|v_d\rangle$ を作る。このとき、

$$|v_1\rangle = \frac{|w_1\rangle}{\||w_1\rangle\|}. (1)$$

ゆえに、同じベクトル同士の内積が実数かつ負でないことに注意すれば、

$$\langle v_1 | v_1 \rangle = \frac{1}{\| |w_1\rangle \|^2} \langle w_1 | w_1 \rangle$$
$$= \frac{1}{\| \sqrt{\langle w_1 | w_1\rangle} \|^2} \langle w_1 | w_1 \rangle$$
$$= 1.$$

これより、 $|v_k\rangle$, $(1 \le k \le d)$ において、k=1 のとき $\{|v_1\rangle\}$ の元は正規かつ直交している。(実際は元が一つしかないため直交していると考えにくいが、詳しく言えば、 $\{|v_1\rangle\}$ の任意の元 $|i\rangle$, $|j\rangle$ について

$$\langle i|j\rangle = \delta_{ij}$$

が成立しているということである。)

ここで、k=n のときまでグラムシュミットの正規直交化法を行ったことによる集合 $\{|v_1\rangle,\cdots,|v_n\rangle\}$ が正規直交基底集合となっているとする。このとき、 $|v_{n+1}\rangle$ を

$$|v_{n+1}\rangle \equiv \frac{|w_{n+1}\rangle - \sum_{i=1}^{n} \langle v_i | w_{n+1}\rangle |v_i\rangle}{\||w_{n+1}\rangle - \sum_{i=1}^{n} \langle v_i | w_{n+1}\rangle |v_i\rangle \|}$$
(2)

と定義すると、任意の $k, (1 \leq k \leq n)$ について $\{|v_1\rangle, \cdots, |v_n\rangle\}$ が正規直交基底集合となっていることから、

$$\begin{split} \langle v_k | v_{n+1} \rangle &= \frac{1}{\parallel |w_{n+1}\rangle - \sum_{i=1}^n \langle v_i | w_{n+1}\rangle |v_i\rangle \parallel} (\langle v_k | w_{n+1}\rangle - \sum_{i=1}^n \langle v_i | w_{n+1}\rangle \langle v_k | v_i\rangle) \\ &= \frac{1}{\parallel |w_{n+1}\rangle - \sum_{i=1}^n \langle v_i | w_{n+1}\rangle |v_i\rangle \parallel} (\langle v_k | w_{n+1}\rangle - \langle v_k | w_{n+1}\rangle) \\ &= 0 \end{split}$$

また、 $\langle v_{n+1}|v_{n+1}\rangle=1$ は定義 (2) より明らかである。ゆえに $\{|v_1\rangle,\cdots,|v_{n+1}\rangle\}$ は正規直交基底集合である。すなわちこのようにして作られた基底集合 $\{|v_1\rangle,\cdots,|v_d\rangle\}$ は正規直交基底集合をなす。

11 復習 3:(Pauli operators)

$$\begin{split} \sigma_0 &\equiv I \equiv \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right], \sigma_1 \equiv X \equiv \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right], \\ \sigma_2 &\equiv Y \equiv \left[\begin{array}{cc} 0 & -i \\ i & 0 \end{array} \right], \sigma_3 \equiv Z \equiv \left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right]. \end{split}$$

12 Exercise 2.9:(Pauli operators and the outer product)

The Pauli matrices can be considered as operators with respect to an orthonormal basis $|0\rangle$, $|1\rangle$ for a two-dimensional Hilbert space. Express each of the Pauli operators in the outer product notation. proof: 復習 3 より $\{|0\rangle, |1\rangle\}$ を基底とするベクトル空間上の演算子 I, X, Y, Z の外積表現はそれぞれ,

$$\begin{split} I &= \left| 0 \right\rangle \left\langle 0 \right| + \left| 1 \right\rangle \left\langle 1 \right|, \\ X &= \left| 1 \right\rangle \left\langle 0 \right| + \left| 0 \right\rangle \left\langle 1 \right|, \\ Y &= i \left| 0 \right\rangle \left\langle 1 \right| - i \left| 1 \right\rangle \left\langle 0 \right|, \\ Z &= \left| 0 \right\rangle \left\langle 0 \right| - \left| 1 \right\rangle \left\langle 1 \right|. \end{split}$$

(外積表現については復習2も参照して下さい。)

13 Exercise 2.10:

Suppose $|v_i\rangle$ is an orthonormal basis for an inner product space V. What is the matrix representation for the operator $|v_j\rangle \langle v_k|$, with respect to the $|v_i\rangle$ basis?

 ${f proof:}\;|v_j\rangle\,\langle v_k|$ 自体が基底 $|v_i\rangle$ に関する外積表現であるので、この演算子の表現行列は (k,j) 成分が 1 で、それ以外は 0 の行列である。(外積表現については、復習 2 を参照して下さい。)

14 Exercise 2.11:(Eigendecomposition of the Pauli matrices)

Find the eigenvectors, eigenvalues, and diagonal representations of the Pauli matrices X,Y,and~Z. proof: 線型演算子 A の対角化表現は、A の固有値 λ_i と対応する固有ベクトル $|i\rangle$ を用いて $A=\sum_i \lambda_i |i\rangle \langle i|$ として表される。対角化表現が可能な演算子を対角化可能という。

そのため、まずI, X, Y, Zの固有値の固有ベクトルを求め、その後対角化表現を求める。

•
$$I \bowtie range I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \sharp \mathfrak{h},$$

$$\det(I - xE) = \begin{vmatrix} 1 - x & 0 \\ 0 & 1 - x \end{vmatrix}$$
$$= (1 - x)^{2}.$$

ゆえに固有値は 1 で、対応する固有ベクトルは $|0_I\rangle=\left(\begin{array}{c}1\\0\end{array}\right),\,|1_I\rangle=\left(\begin{array}{c}0\\1\end{array}\right).$ これより、 $I=|0_I\rangle\,\langle 0_I|+|1_I\rangle\,\langle 1_I|.$

•
$$X \bowtie X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \sharp \mathfrak{h}$$

$$\det(X - xE) = \begin{vmatrix} -x & 1\\ 1 & -x \end{vmatrix}$$
$$= (x - 1)(x + 1).$$

ゆえに固有値は 1, -1 で, 対応する固有ベクトルは / 1 \

固有値 1 に関して $|0_X\rangle = \frac{1}{\sqrt{2}}\begin{pmatrix} 1\\1 \end{pmatrix}$,固有値-1 に関して $|1_X\rangle = \frac{1}{\sqrt{2}}\begin{pmatrix} 1\\-1 \end{pmatrix}$. これより, $X = |0_X\rangle\langle 0_X| - |1_X\rangle\langle 1_X|$.

•
$$Y$$
 について $Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ より、

$$det(Y - xE) = \begin{vmatrix} x & -i \\ i & x \end{vmatrix}$$
$$= (x+1)(x-1).$$

ゆえに固有値は1,-1で,対応する固有ベクトルは

固有値
$$1$$
 に関して $|0_Y\rangle=\frac{1}{\sqrt{2}}\begin{pmatrix}1\\-i\end{pmatrix}$,固有値 -1 に関して $|1_Y\rangle=\frac{1}{\sqrt{2}}\begin{pmatrix}-i\\1\end{pmatrix}$ これより、 $Y=|0_Y\rangle\langle 0_Y|-|1_Y\rangle\langle 1_Y|$.

$$det(Z - xE) = \begin{vmatrix} 1 - x & 0 \\ 0 & -1 - x \end{vmatrix}$$
$$= (1 - x)(1 + x)$$

ゆえに固有値は 1,-1 で,対応する固有ベクトルは

固有値
$$1$$
 に関して $|0_Z\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ 固有値 -1 に関して $|1_Z\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. これより、 $Z = |0_Z\rangle \langle 0_Z| - |1_Z\rangle \langle 1_Z|$.

15 Exercise 2.12:

16 Exercise 2.13:

If $|w\rangle$ and $|v\rangle$ are any two vectors, show that $(|w\rangle \langle v|)^{\dagger} = |v\rangle \langle w|$. proof: $(|w\rangle \langle v|)^{\dagger} = (\langle v|)^{\dagger} (|w\rangle)^{\dagger} = |v\rangle \langle w|$.

17 Exercise 2.14:(Anti-linearity of the adjoint)

Show that the adjoint operation is anti-linear,

$$(\sum_{i} a_i A_i)^{\dagger} = \sum_{i} a_i^* A_i^{\dagger}.$$

 $proof: ベクトル空間 V の任意のベクトル <math>|v\rangle, |w\rangle$ に対して,

$$(|v\rangle, \sum_{i} a_{i}A_{i} |w\rangle) = \sum_{i} a_{i}(|v\rangle, A_{i} |w\rangle)$$

$$= \sum_{i} a_{i}(A_{i}^{\dagger} |v\rangle, |w\rangle)$$

$$= (\sum_{i} a_{i}^{*}A_{i}^{\dagger} |v\rangle, |w\rangle).$$

ここで内積が第一引数に関して反線型であることと、第二引数に関して線型であることを用いた。

18 Exercise 2.15:

Show that $(A^{\dagger})^{\dagger} = A$.

proof: ベクトル空間 V の任意のベクトル $|v\rangle$, $|w\rangle$ について

$$(|v\rangle, A^{\dagger} |w\rangle) = (A^{\dagger} |w\rangle, |v\rangle)^{*}$$
$$= (|w\rangle, A |v\rangle)^{*}$$
$$= (A |v\rangle, |w\rangle).$$

19 Exercise 2.16:

Show that any projector P satisfies the equation $P^2 = P$. proof:

$$P^{2} = \left(\sum_{i=1}^{k} |i\rangle \langle i|\right) \left(\sum_{j=1}^{k} |j\rangle \langle j|\right)$$

$$= \sum_{i=1}^{k} \sum_{j=1}^{k} (|i\rangle \langle i|) (|j\rangle \langle j|)$$

$$= \sum_{i=1}^{k} \sum_{j=1}^{k} |i\rangle \langle i|j\rangle \langle j|$$

$$= \sum_{i=1}^{k} \sum_{j=1}^{k} |i\rangle \delta_{ij} \langle j|$$

$$= \sum_{i=1}^{k} |i\rangle \langle i|$$

$$= P.$$

20 Exercise2.17:

Show that a normal matrix is Hermitian if and only if it has real eigenvalues. proof: 行列 A が正規行列であるとする。すなわち $AA^\dagger=A^\dagger A$. ここで A が実数の固有値 λ と対応する固有ベクトル $|\lambda\rangle$ を持つとする。このとき $(,A\,|\lambda\rangle)$