1. Square Root, Powers, and Exponent Laws

平方根 (Square Root):

- 平方根是一个数,乘以它自身会得到原数。例如, $\sqrt{9}=3$,因为 $3\times 3=9$ 。
- 平方根公式:

$$\sqrt{a} = b$$
 (如果 $b^2 = a$)

负数的平方根:在实数范围内,没有负数的平方根。

指数 (Powers) 和指数法则 (Exponent Laws):

乘方: aⁿ 表示将 a 乘以自己 n 次。

指数法则:

1. 乘法法则: $a^m \times a^n = a^{m+n}$

2. 除法法则: $\frac{a^n}{a^n} = a^{m-n}$

3. **幂的幂**: $(a^m)^n = a^{m \times n}$

4. 乘方与乘法: $a \times a^n = a^{n+1}$

5. **0次幂**: $a^0 = 1$ (对于 $a \neq 0$)

6. 负指数: $a^{-n} = \frac{1}{a^n}$

2. Finance: Simple Interest / Compound Interest

简单利息 (Simple Interest):

简单利息公式:

$$I = P \times r \times t$$

其中:

- I 是利息
- P 是本金
 - r 是年利率 (小数形式)
- t 是时间 (年)
- 总金额:

$$A = P + I = P(1 + r \times t)$$

复利 (Compound Interest):

复利公式:

$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$

其中:

- A 是复利后的金额
- P 是本金
- r 是年利率 (小数形式)
- n 是每年复利次数
- t 是时间(年)

3. Rational Numbers (有理数)

- **有理数 (Rational Numbers)**: 有理数是可以表示为 $\frac{a}{b}$ 的数,其中 a 和 b 是整数,且 $b \neq 0$ 。
- 加减法举例:
 - 计算 ³/₄ + ⁵/₆:
 - 1. 找到公分母: 4和6的最小公倍数是12。
 - 2. 将分数转换为相同的分母:

$$\frac{3}{4} = \frac{9}{12}, \quad \frac{5}{6} = \frac{10}{12}$$

3. 进行加法:

$$\frac{9}{12} + \frac{10}{12} = \frac{19}{12}$$

 $\frac{9}{12}+\frac{10}{12}=\frac{19}{12}$ 结果为 $\frac{19}{12}$,也可以表示为带分数 $1\frac{7}{12}$ 。 $1\frac{7}{8}=\frac{3}{4}$:

- 计算 ⁷/₈ ³/₁₀:
 - 1. 找到公分母: 8和10的最小公倍数是40。
 - 2. 将分数转换为相同的分母:

$$\frac{7}{8} = \frac{35}{40}, \quad \frac{3}{10} = \frac{12}{40}$$

3. 进行减法:

$$\frac{35}{40} - \frac{12}{40} = \frac{23}{40}$$

4. Linear Relations

- 线性关系 (Linear Relations): 是形如 y=mx+b 的关系,其中 m 是斜率,b 是 y 截距。
- 斜率 (Slope): 斜率 m 可以通过两个点 (x_1,y_1) 和 (x_2,y_2) 计算:

$$m = rac{y_2 - y_1}{x_2 - x_1}$$

• y 截距 (Y-Intercept): 线性方程的 b 值,表示当 x=0 时,y 的值。

5. Polynomials (多顶式)

• 多项式 (Polynomials):是由常数、变量和非负整数次幂组成的表达式。一般形式为:

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

其中, $a_n, a_{n-1}, \ldots, a_0$ 为常数,且 n 为多项式的最高次幂。

- 多项式的加减法:将同类项相加或相减。
- 多项式的乘法:使用分配律进行乘法运算。

$$(a+b)(c+d) = ac + ad + bc + bd$$

6. Linear Equations (线性方程) 与 Inequality (不等式)

线性方程 (Linear Equations):

线性方程是形如 ax + b = 0 的方程,解线性方程的方法是通过代数运算解出 x。

- 标准形式: ax + b = 0, 其中 a 和 b 为常数, x 为未知数。
- 解法:

$$ax + b = 0 \implies x = -\frac{b}{a}$$

例如: 解方程 3x-5=0:

$$3x = 5 \quad \Rightarrow \quad x = \frac{5}{3}$$

所以, $x = \frac{5}{3}$ 是方程的解。

线性不等式 (Linear Inequality):

线性不等式类似于线性方程,但它表示的是两个表达式之间的大小关系。其形式一般为:

$$ax + b > 0$$
, $ax + b \ge 0$, $ax + b < 0$, $ax + b \le 0$

这些不等式代表了一个范围,而不是一个具体的解。

- 不等式解法:解线性不等式的步骤类似于解线性方程,只不过解的形式通常是一个范围。
 - 步骤 1: 将常数项移到另一边。
 - 步骤 2: 如果不等式的两边同时乘或除以一个负数,记得要反转不等式的方向。

示例 1: 解不等式 2x-3>5

1. 移项:

$$2x > 5 + 3$$

2. 两边同时除以 2:

$$x > \frac{8}{2}$$

所以,解为x>4,即x必须大于4。

示例 2: 解不等式 $-3x + 7 \le 4$

1. 移项:

$$-3x \le 4 - 7$$

$$-3x \leq -3$$

2. 两边同时除以-3(注意:除以负数时不等式方向要反转):

$$x \ge 1$$

所以,解为 $x \ge 1$,即 x 必须大于或等于 1。

7. Similarity and Scale Factors (相似性与比例系数)

相似三角形 (Similar Triangles):

两个三角形是相似的,意味着它们的形状相同,大小不同,且对应的角相等,边的比例相同。

如何判断三角形是否相似?

要判断两个三角形是否相似,通常使用以下几个条件(定理):

1. AA (角角相似准则):

- 如果两个三角形的两个对应角相等,则这两个三角形相似。
- 例如,若三角形 △ABC 和 △DEF 中, ∠A = ∠D 和 ∠B = ∠E, 则 △ABC ~
 △DEF。

2. SSS (边边边相似准则):

- 如果两个三角形的对应边的比相等,则这两个三角形相似。
- 例如,若ABC ~ △DEF。

3. SAS (边角边相似准则):

- 如果两个三角形的两边的比相等,且夹角相等,则这两个三角形相似。
- 例如,若 AB DE = AC DF 且 ∠A = ∠D,则 △ABC ~ △DEF。

相似三角形的性质:

- 对应角相等:如果两个三角形相似,则它们的对应角相等。
- 对应边成比例:如果两个三角形相似,则它们的对应边的比是相同的,称为比例系数 (scale factor)。

比例系数 k 是两个相似三角形对应边的比,且满足:

对应边
$$1 = k$$

例如,如果 $\triangle ABC$ 和 $\triangle DEF$ 相似,且 $\frac{AB}{DE}=\frac{BC}{EF}=\frac{CA}{FD}=k$,那么 k 就是它们的比例系数。

面积和体积的比例:

• 面积比例:相似三角形的面积比例是它们的比例系数的平方。

$$\frac{A_1}{A_2} = k^2$$

其中, A_1 和 A_2 分别是两个相似三角形的面积。

• 体积比例: 如果是相似的立体图形, 体积比例是比例系数的立方。

$$\frac{V_1}{V_2} = k^3$$

其中, V_1 和 V_2 分别是两个相似立体图形的体积。