

Page FCC ID : 1 of 86 : VPYLB1FJ

Issued date Revised date

: February 22, 2016 : June 2, 2016

SAR TEST REPORT

Test Report No.: 11094714H-A-R1

Applicant

: Murata Manufacturing Co., Ltd.

Type of Equipment

: Communication Module

Model No.

: TYPE1FJ

FCC ID

: VPYLB1FJ

Test regulation

: FCC47CFR 2.1093

Test Result

: Complied

Reported SAR(1g) Value

The highest reported SAR(1g)

Body : 0.301W/kg

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the limits of the above regulation.
- 4. The test results in this report are traceable to the national or international standards.
- 5. This test report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.
- 6. This test report covers SAR technical requirements. It does not cover administrative issues such as Manual or non-SAR test related Requirements. (if applicable)
- 7. This report is a revised version of 11094714H-A. 11094714H-A is replaced with this report.

Date of test:

January 14 to 20, 2016

Representative test engineer:

Satofumi Matsuyama

Engineer

Consumer Technology Division

Approved by:

Pakayuki Shimada

Engineer

Consumer Technology Division

NVLAP LAB CODE: 200572-0

This laboratory is accredited by the NVLAP LAB CODE 200572-0, U.S.A. The tests reported herein have been performed in accordance with its terms of accreditation. *As for the range of Accreditation in NVLAP, you may refer to the WEB address,

http://japan.ul.com/resources/emc_accredited/

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 2 of 86 FCC ID : VPYLB1FJ Issue date : February 22, 2016 Revised date : June 2, 2016

REVISION HISTORY

Original Test Report No.: 11094714H-A

Revision	Test report No.	Date	Page revised	Contents
- (Original)	11094714H-A	February 22, 2016	-	-
1	11094714H-A-R1	June 2, 2016	P.5	Addition of following sentence; WLAN and Bluetooth do not transmit simultaneously. Correction of KDB865664 D01 number
1	11094714H-A-R1	June 2, 2016	P.18	Correction of KDB865664 D01 number
	<u> </u>			

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 3 of 86 FCC ID : VPYLB1FJ Issue date : February 22, 2016 Revised date : June 2, 2016

<u>CONTENTS</u> PAGE

SECTION 1:	Customer information	
SECTION 2:	Equipment under test (E.U.T.)	4
2.1	Identification of E.U.T.	4
2.2	Product description	5
SECTION 3:	Test standard information	6
3.1	Test Specification.	6
3.2	Procedure	
3.3	Exposure limit	7
3.4	Test Location	
SECTION 4:		
4.1	Stand-alone SAR result	
SECTION 5:	Description of the operating mode	
5.1	Output power operating modes.	
5.2	Output power measurement results	
5.3	SAR testing operating modes.	
5.4	Confirmation after SAR testing	
SECTION 6	SAR test exclusion considerations	
61	Standalone SAR test exclusion considerations	
SECTION 7:	Description of the Body setup	
7.1	Test position for Body setup	
	Test surrounding	
8.1	Measurement uncertainty	
	Measurement results	
9.1	Body SAR	
	Test instruments	
	: SAR Measurement data	
1		
2.	•	
APPENDIX2		
1.	·	
2.	·	
3.		
APPENDIX 3		
ALL ENDIA 3	Configuration and peripherals.	
2		
3.	1	
3. 4		
APPENDIX 4		
APPENDIX 4	~ -	
2.	6 1	
3.	6 1	
3. 4.	•	
4.	i nowgraphs of scup	03

Page : 4 of 86 FCC ID : VPYLB1FJ Issue date : February 22, 2016 Revised date : June 2, 2016

SECTION 1: Customer information

Company Name : Murata Manufacturing Co., Ltd.

Address : 1-10-1 Higashikotari, Nagaokakyo-shi, Kyoto 617-8555 Japan

Telephone Number : +81-75-955-6736 Facsimile Number : +81-75-955-6634 Contact Person : Motoo Hayashi

SECTION 2: Equipment under test (E.U.T.)

2.1 Identification of E.U.T.

<Information of the EUT>

Type of Equipment : Communication Module

Model No. : TYPE1FJ

Serial No. : 5 (for WLAN), 9 (for Bluetooth)

Rating : VBAT: Typ. 3.3 V, Min. 3.0 V, Max. 4.8 V

VDDIO*: Typ. 1.8 V or 3.3 V, Min. 1.71 V, Max. 3.63 V

*This doesn't influence the RF Characteristic.

Receipt Date of Sample : November 28, 2015

Country of Mass-production : China

Condition of EUT : Engineering prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification of EUT : No Modification by the test lab

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 5 of 86 FCC ID : VPYLB1FJ Issue date : February 22, 2016 Revised date : June 2, 2016

2.2 Product description

General Specification

Clock frequency(ies) in the system : 37.4 MHz

Operating temperature : -30 deg. C to +70 deg. C

Radio Specification

WLAN (IEEE802.11b/g/n-20)

VLAN (IEEE002.110/g/H-20)				
Equipment Type	Transceiver			
Frequency of Operation	2412 MHz - 2462 MHz			
Type of Modulation	DSSS, OFDM			
Bandwidth & Channel spacing	20 MHz & 5 MHz			
Method of frequency generation	Synthesizer			
Power Supply (inner)	DC 1.2 V / DC 3.3 V			
Antenna Type	Monopole Pattern Antenna			
Antenna Gain	+0.8 dBi			

Bluetooth (Ver. 4.1 with EDR function)

Equipment Type	Transceiver
Frequency of Operation	2402 MHz – 2480 MHz
Type of Modulation	BT: FHSS (GFSK, π/4DQPSK, 8DPSK)
	LE: GFSK
Bandwidth & Channel spacing	BT: 1 MHz & 1 MHz
	LE: 2 MHz & 2 MHz
Method of frequency generation	Synthesizer
Power Supply (inner)	DC 1.2 V / DC 3.3 V
Antenna Type	Monopole Pattern Antenna
Antenna Gain	+0.8 dBi

^{*} WLAN and Bluetooth do not transmit simultaneously.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 $Test\ report\ No.\ :\ 11094714H\text{-}A\text{-}R1$

Page : 6 of 86 FCC ID : VPYLB1FJ Issue date : February 22, 2016 Revised date : June 2, 2016

SECTION 3: Test standard information

3.1 Test Specification

Title : FCC47CFR 2.1093

Radiofrequency radiation exposure evaluation: portable devices.

IEEE Std 1528-2013:

IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

Published RF exposure KDB procedures

	KDB447498D01(v06)	Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies
	KDB447498D02(v02r01)	SAR Measurement Procedures for USB Dongle Transmitters
	KDB648474D04(v01r03) KDB941225D01(v03r01)	SAR Evaluation Considerations for Wireless Handsets 3G SAR MEASUREMENT PROCEDURES
	KDB941225D05(v02r05)	SAR for LTE Devices
	KDB941225D06(v02r01)	SAR test procedures for devices incorporating SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities (Hot Spot SAR)
	KDB941225D07(v01r02)	SAR Evaluation Procedures for UMPC Mini-Tablet Devices
	KDB616217D04(v01r02)	SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers
	KDB865664D01(v01r04)	SAR Measurement Requirements for 100MHz to 6 GHz
	KDB248227D01(v02r02)	SAR Measurement Procedures for 802.11(Wi-Fi) Transmitters
*1	Since host devise was Digital C	Camera, KDB941225D07 was applied to this test report.

¹ Since nost devise was Digital Camera, KDB941223D07 was applied to this test report.

Reference

[1]SPEAG uncertainty document (AN 15-7/AN19-17) for DASY 5 System from SPEAG (Schmid & Partner Engineering AG).

3.2 Procedure

Transmitter	WLAN and Bluetooth				
Test Procedure	Published RF exposure KDB procedures				
Category	FCC47CFR 2.1093				
Note: UL Japan, Inc. 's SAR	Note: UL Japan, Inc. 's SAR Work Procedures 13-EM-W0429 and 13-EM-W0430				

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 7 of 86 FCC ID : VPYLB1FJ Issue date : February 22, 2016 Revised date : June 2, 2016

3.3 Exposure limit

(A) Limits for Occupational/Controlled Exposure (W/kg)

Spatial Average (averaged over the whole body)	Spatial Peak (averaged over any 1g of tissue)	Spatial Peak (hands/wrists/feet/ankles averaged over 10g)	
0.4	8.0	20.0	

(B) Limits for General population/Uncontrolled Exposure (W/kg)

Spatial Average (averaged over the whole body	Spatial Peak (averaged over any 1g of tissue)	Spatial Peak (hands/wrists/feet/ankles averaged over 10g)	
0.08	1.6	4.0	

Occupational/Controlled Environments: are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

General Population/Uncontrolled Environments: are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

NOTE:GENERAL POPULATION/UNCONTROLLED EXPOSURE SPATIAL PEAK(averaged over any 1g of tissue) LIMIT 1.6 W/kg

3.4 Test Location

*Shielded room for SAR testings

UL Japan, Inc. Ise EMC Lab. *NVLAP Lab. code: 200572-0 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone: +81 596 24 8999 Facsimile: +81 596 24 8124

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 8 of 86 FCC ID : VPYLB1FJ Issue date : February 22, 2016 Revised date : June 2, 2016

SECTION 4: Test result

4.1 Stand-alone SAR result

Reported SAR

Measured SAR is scaled to the maximum tune-up tolerance limit by the following formulas.

Reported SAR= Measured SAR [W/kg] · Scaled factor *1

Maximum tune-up tolerance limit is by the specification from a customer.

Body SAR

Mode	1 3	\ 1 /	(Burst power)	up tolerance	Maximum tune- up tolerance limit [mW]*3		factor	Reported SAR [W/kg]
WLAN11b	2412MHz	9.27	8.45	10.50	11.22	0.227	1.327	0.301

Note

WLAN Maximum tune-up tolerance limit

Mode	Maximum tune-up tolerance limit [dBm]	Maximum tune-up tolerance limit [mW]
WLAN 11b	10.50	11.22
WLAN 11g	10.50	11.22
WLAN 11n20	10.50	11.22

Bluetooth Maximum tune-up tolerance limit

Mode	Maximum tune-up tolerance limit [dBm]	Maximum tune-up tolerance limit [mW]
BDR	8.50	7.08
EDR	8.50	7.08
LE	8.50	7.08

^{*} Maximum tune-up tolerance limit(WLAN and Bluetooth) is defined by a customer as Duty100%.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1} Scaled factor = Maximum tune-up tolerance limit [mW] / Measured power [mW]

^{*2} The sample used by the SAR test is not more than 2 dB lower than the maximum tune-up tolerance limit. That is, measured power is included the tune-up tolerance range.

^{*3} Maximum tune-up tolerance limit is defined as maximum timed-average value. (Considering to maximum duty cycle of WLAN.)

Page : 9 of 86 FCC ID : VPYLB1FJ Issue date : February 22, 2016 Revised date : June 2, 2016

SECTION 5: Description of the operating mode

5.1 Output power operating modes

Mode	Frequency	Test Frequency	Remarks
	Band		
WLAN	2412-2462MHz	2412MHz (1 ch)	DSSS(11b)
		2437MHz (6 ch)	
		2462MHz (11 ch)	
Bluetooth	2402-2480MHz	2402MHz	BDR
		2441MHz	
		2480MHz	
Bluetooth	2402-2480MHz	2402MHz	LE
		2440MHz	
		2480MHz	

^{*}The power value of the EUT was set for testing as follows (setting value might be different from product specification value):

Power settings: WLAN: 9

BT/LE: 5.5dBm

Software: WLAN: wireless test firmware Ver.128

BT/LE: Blue tool 1.8.9.3

Any conditions under the normal use do not exceed the condition of setting.

In addition, end users cannot change the settings of the output power of the product.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}This setting of software is the worst case.

Page : 10 of 86 FCC ID : VPYLB1FJ Issue date : February 22, 2016 Revised date : June 2, 2016

5.2 Output power measurement results

Output power measurement for WLAN

11b **1Mbps**

Freq.	Reading	Cable	Atten.	Result		Duty	Result	
		Loss	Loss	(Frame power)		factor	(Burst power)	
[MHz]	[dBm]	[dB]	[dB]	[dBm] [mW]		[dB]	[dBm]	[mW]
2412	-1.65	0.85	10.07	9.27	8.45	0.00	9.27	8.45
2437	-1.88	0.85	10.07	9.04	8.02	0.00	9.04	8.02
2462	-1.92	0.85	10.07	9.00	7.94	0.00	9.00	7.94

Sample Calculation:

Result (Frame power) = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Result (Burst power) = Frame power + Duty factor

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 11 of 86 FCC ID : VPYLB1FJ Issue date : February 22, 2016 Revised date : June 2, 2016

Output power measurement for Bluetooth(BDR/EDR)

DH₅

ſ	Freq.	Reading	Cable	Atten.	Result		Duty	Result	
ı			Loss	Loss	(Frame power)		factor	(Burst power)	
L	[MHz]	[dBm]	[dB]	[dB]	[dBm] [mW]		[dB]	[dBm]	[mW]
I	2402	-4.65	0.85	9.74	5.94	3.93	1.10	7.04	5.06
	2441	-4.46	0.85	9.74	6.13	4.10	1.10	7.23	5.28
	2480	-3.81	0.85	9.74	6.78	4.76	1.10	7.88	6.14

Sample Calculation:

Result (Frame power) = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Result (Burst power) = Frame power + Duty factor

Page : 12 of 86 FCC ID : VPYLB1FJ Issue date : February 22, 2016 Revised date : June 2, 2016

Output power measurement for Bluetooth(LE)

BT LE

Freq.	Reading	Cable	Atten.	Result		Duty	Result	
		Loss	Loss	(Frame	power)	factor	(Burst power)	
[MHz]	[dBm]	[dB]	[dB]	[dBm] [mW]		[dB]	[dBm]	[mW]
2402	-6.17	0.85	9.74	4.46	2.79	1.79	6.25	4.22
2440	-6.05	0.85	9.74	4.58	2.87	1.79	6.37	4.34
2480	-5.81	0.85	9.74	4.82	3.03	1.79	6.61	4.58

Sample Calculation:

Result (Frame power) = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Result (Burst power) = Frame power + Duty factor

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 $Test\ report\ No.\ :\ 11094714H\text{-}A\text{-}R1$

Page : 13 of 86 FCC ID : VPYLB1FJ Issue date : February 22, 2016 Revised date : June 2, 2016

5.3 SAR testing operating modes

The operating mode for SAR testing was decided by the output power

Mode	Frequency Band	Test Frequency	Note
WLAN	2412-2462MHz	2412MHz (1 ch) *1	DSSS(11b) *2

*The power value of the EUT was set for testing as follows (setting value might be different from product specification value):

Power settings: WLAN: 9

Software: WLAN: wireless test firmware Ver.128

*This setting of software is the worst case.

Any conditions under the normal use do not exceed the condition of setting.

In addition, end users cannot change the settings of the output power of the product.

*1 Highest measured output power channel was tested initially according to KDB248227D01.

The other channel was not required since SAR value of highest measured output power channel was less than 0.8W/kg.

*2 SAR is not required for the following 2.4 GHz OFDM conditions according to KDB248227D01.

When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is $\leq 1.2 \text{ W/kg}$.

5.4 Confirmation after SAR testing

It was checked that the power drift [W] is within +/-5%. The verification of power drift during the SAR test is that DASY5 system calculates the power drift by measuring the e-filed at the same location at beginning and the end of the scan measurement for each test position.

DASY5 system calculation Power drift value[dB] =20log(Ea)/(Eb)

Before SAR testing : Eb[V/m]

After SAR testing : Ea[V/m]

Limit of power drift[W] = +/-5%

X[dB]=10log[P]=10log(1.05/1)=10log(1.05)-10log(1)=0.212dB

from E-filed relations with power.

 $p=E^2/\eta=E^2/$

Therefore, The correlation of power and the E-filed

 $XdB=10log(P)=10log(E)^2=20log(E)$

Therefore,

The calculated power drift of DASY5 System must be the less than +/-0.212dB.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 14 of 86 FCC ID : VPYLB1FJ Issue date : February 22, 2016 Revised date : June 2, 2016

SECTION 6 SAR test exclusion considerations

6.1 Standalone SAR test exclusion considerations

The following is based on KDB447498D01.

1) The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

f(GHz) is the RF channel transmit frequency in GHz

Power and distance are rounded to the nearest mW and mm before calculation

The result is rounded to one decimal place for comparison

The test exclusions are applicable only when the minimum test separation distance is ≤ 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is ≤ 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

WLAN 2.4GHz

Band	Standalone SAR tested	Positiom	Mode	Upper frequency of band *1	Maximum tune-up tolerance limit *4	Min distance *2	Calculation of exclusion *3
WLAN	Ø	Front	11b	2462 [MHz] (11ch)	10.5 [dBm] 11.22 [mW] 11 [mW]*5	5.00 [mm]	3.5
WLAN	Ø	Rear	11b	2462 [MHz] (11ch)	10.5 [dBm] 11.22 [mW] 11 [mW]*5	5.00 [mm]	3.5
WLAN	Ø	Left	11b	2462 [MHz] (11ch)	10.5 [dBm] 11.22 [mW] 11 [mW]*5	5.00 [mm]	3.5
WLAN	Ø	Left tilt	11b	2462 [MHz] (11ch)	10.5 [dBm] 11.22 [mW] 11 [mW]*5	5.00 [mm]	3.5
WLAN	Ø	Тор	11b	2462 [MHz] (11ch)	10.5 [dBm] 11.22 [mW] 11 [mW]*5	5.00 [mm]	3.5
WLAN	Ø	Bottom	11b	2462 [MHz] (11ch)	10.5 [dBm] 11.22 [mW] 11 [mW]*5	5.00 [mm]	3.5

WLAN 2.4GHz

Band	Standalone SAR tested	Positiom	Mode	Upper frequency of band *1	Maximum tune-up tolerance limit *4	Min distance	Calculation of threshold*6
WLAN		Right	11b	2462 [MHz] (11ch)	10.5 [dBm] 11.22 [mW] 11 [mW]*5	109 [mm]	686 [mW]

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 15 of 86 FCC ID : VPYLB1FJ Issue date : February 22, 2016 Revised date : June 2, 2016

Bluetooth(BDR/LE)

Band	Standalone SAR tested	Positiom	Mode	Upper frequency of band *1	Maximum tune-up tolerance limit *4	Min distance *2	Calculation of exclusion *3
Bleutooth		Front	BDR/EDR/LE	2480 [MHz] (79ch)	8.5 [dBm] 7.08 [mW] 7 [mW]*5	5.00 [mm]	2.2
Bleutooth		Rear	BDR/EDR/LE	2480 [MHz] (79ch)	8.5 [dBm] 7.08 [mW] 7 [mW]*5	5.00 [mm]	2.2
Bleutooth		Left	BDR/EDR/LE	2480 [MHz] (79ch)	8.5 [dBm] 7.08 [mW] 7 [mW]*5	5.00 [mm]	2.2
Bleutooth		Left tilt	BDR/EDR/LE	2480 [MHz] (79ch)	8.5 [dBm] 7.08 [mW] 7 [mW]*5	5.00 [mm]	2.2
Bleutooth		Тор	BDR/EDR/LE	2480 [MHz] (79ch)	8.5 [dBm] 7.08 [mW] 7 [mW]*5	5.00 [mm]	2.2
Bleutooth		Bottom	BDR/EDR/LE	2480 [MHz] (79ch)	8.5 [dBm] 7.08 [mW] 7 [mW]*5	5.00 [mm]	2.2

Bluetooth(BDR/LE)

Rand	Standalone SAR tested	Positiom	Mode	Upper frequency of band *1	Maximum tune-up tolerance limit *4	Min distance	Calculation of threshold*6
Bluetooth		Right	BDR/EDR/LE	2480 [MHz] (79ch)	8.5 [dBm] 7.08 [mW] 7 [mW]*5	109 [mm]	685 [mW]

- *1 The upper frequency of the frequency band was used in order to calculate standalone SAR test exclusion considerations.
- *2 When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion. Refer to Appendix 4.
- *3 [(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ If it is Calculation of exclusion ≤ 3.0 standalone SAR test is excluded.
- *4 Maximum tune-up tolerance limit is by the specification from a customer.
- *5 Maximum tune-up tolerance limit(mW) is rounded to one decimal place.
- *6 [(3·50)/($\sqrt{f_{(GHz)}}$)) + (test separation distance 50 mm)·(f(MHz)/150)] mW at > 100 MHz and \leq 1500 MHz [(3·50)/($\sqrt{f_{(GHz)}}$)) + (test separation distance 50 mm)·10] mW at > 1500 MHz and \leq 6 GHz

If it is maximum tune-up tolerance limit < Threshold, standalone SAR test is excluded.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 16 of 86 FCC ID : VPYLB1FJ Issue date : February 22, 2016 Revised date : June 2, 2016

WLAN 2.4GHz and Bluetooth

Based on KDB941225D07, UMPC mini-tablet devices must be tested for 1-g SAR on all surfaces and side edges with a transmitting antenna located at \leq 25 mm from that surface or edge, at 5 mm separation from a flat phantom, for the data modes, wireless technologies and frequency bands supported by the device to determine SAR compliance.

No.	Position	WLAN and	Bluetooth	
		Test required	Antenna	Separation of antenna to EUT's surfaces and edges [mm]
1	Front	\square	Internal	4.1
2	Rear	abla	Internal	9.4
3	Left	V	Internal	3.23
4	Left tilt	Ŋ	Internal	3.07
5	Right		Internal	109.48
6	Тор		Internal	44.93
7	Bottom	\square	Internal	9.8

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 17 of 86 FCC ID : VPYLB1FJ Issue date : February 22, 2016 Revised date : June 2, 2016

SECTION 7: Description of the Body setup

7.1 Test position for Body setup

i) Procedure for SAR testing

-The tested procedure was performed according to the KDB 941225 D07 (SAR Evaluation Procedures for UMPC Mini-Tablet Devices).

ii) Test mode

WLAN 2.4 GHz	Data transmission mode (11b)
--------------	------------------------------

iii) Test position

No.	Position	Test	WLAN	Bluetooth
		distance	Tested	Tested
1	Front	0mm	Ŋ	
2	Rear	0mm	\square	
3	Left	0mm	\square	
4	Left tilt	0mm	\square	
5	Right	0mm		
6	Тор	0mm		
7	Bottom	0mm	\square	

^{*}The test was conservatively performed with test distance 0mm.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 18 of 86 FCC ID : VPYLB1FJ Issue date : February 22, 2016 Revised date : June 2, 2016

SECTION 8: Test surrounding

8.1 Measurement uncertainty

This measurement uncertainty budget is suggested by IEEE Std 1528(2013) and IEC62209-2:2010, and determined by Schmid & Partner Engineering AG (DASY5 Uncertainty Budget). Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04 Section 2.8.1., when the highest measured SAR(1g) within a frequency band is < 1.5W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std.1528 (2013) is not required in SAR reports submitted for equipment approval.

<0.3 – 3GHz range Body>

	U	ncertai	Probability		(ci)	Sta	andard	vi
Error Description	va	alue ±	distribution	divisor	1g	(1g	g)	or
								veff
Measurement System								
Probe calibration	±	6.00	Normal	1	1	±	6.00	∞
Axial isotropy of the probe	±	4.7	Rectangular	$\sqrt{3}$	0.7	±	1.9	∞
Spherical isotropy of the probe	±	9.6	Rectangular	$\sqrt{3}$	0.7	±	3.9	∞
Boundary effects	±	1.0	Rectangular	$\sqrt{3}$	1	±	0.6	∞
Probe linearity	±	4.7	Rectangular	$\sqrt{3}$	1	±	2.7	∞
Detection limit	±	1.0	Rectangular	√3	1	±	0.6	∞
Modulation response	±	2.4	Rectangular	$\sqrt{3}$	1	±	1.4	∞
Readout electronics	±	0.3	Normal	1	1	±	0.3	∞
Response time	±	0.8	Rectangular	$\sqrt{3}$	1	±	0.5	∞
Integration time	±	2.6	Rectangular	$\sqrt{3}$	1	±	1.5	∞
RF ambient Noise	±	3.0	Rectangular	$\sqrt{3}$	1	±	1.7	∞
RF ambient Reflections	±	3.0	Rectangular	$\sqrt{3}$	1	±	1.7	∞
Probe Positioner	±	0.4	Rectangular	$\sqrt{3}$	1	±	0.2	∞
Probe positioning	±	2.9	Rectangular	√3	1	±	1.7	∞
Max.SAR Eval.	±	2.0	Rectangular	$\sqrt{3}$	1	±	1.2	∞
Test Sample Related		-	-					
Device positioning	±	2.9	Normal	1	1	±	2.9	4
Device holder uncertainty	±	3.6	Normal	1	1	±	3.6	4
Power drift	±	5.0	Rectangular	$\sqrt{3}$	1	±	2.9	∞
Power Scaling	+	0.0	Rectangular	$\sqrt{3}$	1	±	0.0	∞
Phantom and Setup								
Phantom uncertainty	±	6.1	Rectangular	$\sqrt{3}$	1	±	3.5	∞
Algorithm for correcting SAR for deviations in permittivity and conductivity	±	1.9	Normal	1	1	±	1.9	∞
Liquid conductivity (meas.)	+	2.2	Rectangular	1	0.78	+	1.7	∞
Liquid permittivity (meas.)	-	4.0	Rectangular	1	0.23	-	0.9	∞
Liquid conductivity		5.2	Rectangular	√3	0.78	_	2.3	oc
- temp.unc (below 2deg.C.)		3.2	Rectangular	13	0.76		2.3	ω
Liquid permittivity		0.8	Dootongular	$\sqrt{3}$	0.23		0.1	00
- temp.unc (below 2deg.C.)	*	0.0	Rectangular	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	0.23	=	0.1	\sim
			•	-	-	•		
Combined Standard Uncertainty						±	11.428	
Expanded Uncertainty (k=2)						±	22.9	

^{*.} Table of uncertainties are listed for ISO/IEC 17025.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 19 of 86 FCC ID : VPYLB1FJ Issue date : February 22, 2016 Revised date : June 2, 2016

SECTION 9: Measurement results

9.1 Body SAR

(1)Method of measurement

Step.1 The searching for the worst position. *1*2*3

Note:

*1 Highest measured output power channel was tested initially according to KDB248227D01.

The other channel was not required since SAR value of highest measured output power channel was less than 0.8W/kg.

*2 SAR is not required for the following 2.4 GHz OFDM conditions according to KDB248227D01.

When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg. Refer to (4) OFDM mode exclusion considerations.

*3 Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg in accordance to KDB865664 D1.

(2) Simulated Tissue Liquid Parameter confirmation

The dielectric parameters were checked prior to assessment using the DAKS dielectric probe kit.

The dielectric parameters measurement is reported in each correspondent section.

			DIELEC	CTRIC P	ARAMET	TERS MEA	SUREME	ENT RESU	LTS		
Date	Ambient Temp. [deg.c]	Relative Humidity [%]	Liquid type	Liquid Temp. [deg.c]	Measured Frequency [MHz]	Parameters	Target Value	Measured	Deviation [%]	Limit [%]	Remark
					2000	er	53.3	-	-	-	*1
_	-	-	•	-	2000	σ [mho/m]	1.52	-	-	-	. 1
14-Jan	24.0	43	MSL	23.5	2412	er	52.8	50.7	-4.0	+/-5	*2
14-Jan	24.0	43	2450	23.3	2412	σ [mho/m]	1.90	1.88	-0.9	+/-5	. 2
20-Jan	24.0	35	MSL	23.5	2412	er	52.8	51.5	-2.5	+/-5	*2
20-Jan	24.0	33	2450	23.3	2412	σ [mho/m]	1.90	1.94	2.2	+/-5	. 2
					2450	er	52.7	-	-	-	*1
_	-	-	1	-	2430	σ [mho/m]	1.91	-	-	•	- 1

 $[\]epsilon r$: Relative Permittivity / σ : Coductivity

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1} The Target value is a parameter defined in KDB 865664D01.

^{*2} The dielectric parameters should be linearly interpolated between the closest pair of target frequencies to determine the applicable dielectric parameters corresponding to the device test frequency.

Page : 20 of 86 FCC ID : VPYLB1FJ Issue date : February 22, 2016 Revised date : June 2, 2016

(3)Result of Body SAR

	BODY SAR MEASUREMENT RESULTS												
Fre	Measured Maximum tune- power up tolerance Frequency Modulation (Burst power) limit Section EUT Set-up Con		EUT Set-up Conditi	ons Separation	Measured SAR(1g) [W/kg]	Scaled factor *1	Reported SAR(1g) [W/kg] *2						
Channel	[MHz]		[dBm]	[mW]	[dBm]	[mW]		Antenna	Position	[mm]			
Step.1 T	he searching	for the wors	t positio	n									
1	2412	11b 1Mbps	9.27	8.45	10.50	11.22	Flat	Fixed	Front	0	0.026	1.327	0.035
1	2412	11b 1Mbps	9.27	8.45	10.50	11.22	Flat	Fixed	Rear	0	0.015	1.327	0.020
1	2412	11b 1Mbps	9.27	8.45	10.50	11.22	Flat	Fixed	Left	0	0.227	1.327	0.301
1	2412	11b 1Mbps	9.27	8.45	10.50	11.22	Flat	Fixed	Left tilt	0	0.109	1.327	0.145
1	2412	11b 1Mbps	9.27	8.45	10.50	11.22	Flat	Fixed	Bottom	0	0.070	1.327	0.093

^{*1} Scaled factor = Maximum tune-up tolerance limit [mW] / Measured power [mW]

OFDM mode exclusion considerations

OFDM was excluded from the following table according to KDB248227D01.

	limit [*] li		e-up tolerance	OFDM scaled factor *3	Estimated SAR of OFDM Reported SAR(1g) [W/kg] *4		Standalone SAR tested
DS	SSS	OFDM(11g/n20)				
[dBm]	[mW]	[dBm]	[mW]				
10.50	11.22	10.50	11.22	1.000	0.301	< 1.2	

^{*3} OFDM scaled factor = Maximum tune-up tolerance limit of OFDM [mW] / Maximum tune-up tolerance limit of DSSS [mW]

^{*2} Reported SAR= Measured SAR [W/kg] · Scaled factor

^{*4} Estimated SAR of OFDM= Reported SAR of DSSS[W/kg] · OFDM scaled factor

Page : 21 of 86
FCC ID : VPYLB1FJ
Issue date : February 22, 2016
Revised date : June 2, 2016

SECTION 10 Test instruments

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
MPM-08	Power Meter	Anritsu	ML2495A	6K00003338	AT	2015/10/08 * 12
MPSE-11	Power sensor	Anritsu	MA2411B	011737	AT	2015/10/08 * 12
MAT-56	Attenuator(10dB)	Suhner	6810.19.A	-	AT	2015/01/08 * 12
MOS-19	Thermo-Hygrometer	Custom	CTH-201	0001	AT	2015/12/08 * 12
MNA-03	Vector Reflectometer	Copper Mountain Technologies	PLANAR R140	0030913	SAR	2015/10/30 * 12
MDPK-03	Dielectric assessment kit	Schmid&Partner Engineering AG	DAK-3.5	0008	SAR	2015/03/10 * 12
MOS-37	Digital thermometer	LKM electronic	DTM3000	-	SAR	2015/07/07 * 12
COTS-MSAR- 04	Dielectric assessment software	Schmid&Partner Engineering AG	DAK		SAR	-
MPM-11	Dual Power Meter	Agilent	E4419B	MY45102060	SAR	2015/08/04 * 12
MPSE-15	Power sensor	Agilent	E9301A	MY41498311	SAR	2015/08/04 * 12
MPSE-16	Power sensor	Agilent	E9301A	MY41498313	SAR	2015/08/04 * 12
MRFA-24	Pre Amplifier	R&K	R&K CGA020M602- 2633R	B30550	SAR	2015/06/15 * 12
MSG-10	Signal Generator	Agilent	N5181A	MY47421098	SAR	2015/11/16 * 12
MAT-78	Attenuator	Telegrartner	J01156A0011	0042294119	SAR	Pre Check
MPM-15	Power Meter	Agilent	N1914A	MY53060017	SAR	2015/06/15 * 12
MPSE-21	Power sensor	Agilent	N8482H	MY52460010	SAR	2015/06/15 * 12
MHDC-12	Dual Directional Coupler	Hewlett Packard	772D	2839A0016	SAR	Pre Check
MDA-07	Dipole Antenna	Schmid&Partner Engineering AG	D2450V2	713	SAR	2013/09/10 * 36
MMSL2450	Tissue simulation liqud (Body)	Schmid&Partner Engineering AG	MSL2450V2	SL AA 245 BA	SAR*Daily Check Target Value ±5%	Pre Check
MDAE-02	Data Acquisition Electronics	Schmid&Partner Engineering AG	DAE4	1369	SAR	2015/05/22 * 12
MPB-08		Schmid&Partner Engineering AG	EX3DV4	3917	SAR	2015/05/29 * 12
MPSAM-04	SAM Phantom	Schmid&Partner Engineering AG	QD000P40CD	1762	SAR	2015/05/11 * 12
MPF-03	2mm Oval Flat Phantom	Schmid&Partner Engineering AG	QDOVA001BB	1203	SAR	2015/05/11 * 12
MDH-04	Device holder	Schmid&Partner Engineering AG	Mounting device for transmitter	-	SAR	Pre Check
MOS-35	Digital thermometer	HANNA	Checktemp 4	-	SAR	2015/07/07 * 12
COTS-MSAR- 03	Dasy5	Schmid&Partner Engineering AG	DASY5	-	SAR	-
MRBT-03	SAR robot	Schmid&Partner Engineering AG	TX60 Lspeag	F13/5PP1D1/A/ 01	SAR	2015/06/23 * 12

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 22 of 86 FCC ID : VPYLB1FJ Issue date : February 22, 2016 Revised date : June 2, 2016

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
MDAE-03	Data Acquisition Electronics	Schmid&Partner Engineering AG	DAE4	1372	SAR	2015/06/15 * 12
MPB-09	Dosimetric E-Field Probe	Schmid&Partner Engineering AG	EX3DV4	3922	SAR	2015/06/17 * 12
MPF-04	2mm Oval Flat Phantom	Schmid&Partner Engineering AG	QDOVA001BB	1207	SAR	2015/05/11 * 12
MDH-03	Device holder	Schmid&Partner Engineering AG	Mounting device for transmitter	-	SAR	Pre Check
MOS-35	Digital thermometer	HANNA	Checktemp 4	-	SAR	2015/07/07 * 12
COTS-MSAR- 03	Dasy5	Schmid&Partner Engineering AG	DASY5	-	SAR	-
MRBT-04	SAR robot	Schmid&Partner Engineering AG	TX60 Lspeag	F13/5PPLA1/ A/01	SAR	2015/06/23 * 12
SAR Room					Daily check Ambient Noise	e<0.012W/kg

The expiration date of the calibration is the end of the expired month.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 23 of 86 FCC ID : VPYLB1FJ Issue date : February 22, 2016 Revised date : June 2, 2016

APPENDIX 1: SAR Measurement data

1. Evaluation procedure

The evaluation was performed with the following procedure:

Step 1: Measurement of the E-field at a fixed location above the ear point or central position of flat phantom was used as a reference value for assessing the power drop.

Step 2: The SAR distribution at the exposed side of head or body position was measured at a distance of each device from the inner surface of the shell. The area covered the entire dimension of the antenna of EUT and the horizontal grid spacing was 15 mm x 15 mm, 12 mm x 12 mm or 10mm x 10mm. Based on these data, the area of the maximum absorption was determined by spline interpolation.

Step 3: Around this point found in the Step 2 (area scan), a volume of 30mm x 30mm x 30mm or more was assessed by measuring 7 x 7 x 7 points at least for below 3GHz and a volume of 28 mm x 28mm x 22.5mm or more was assessed by measuring 8 x 8 x 6(ratio step method (*1)) points at least for 5GHz band.

And for any secondary peaks found in the Step2 which are within 2dB of maximum peak and not with this Step3 (Zoom scan) is repeated. On the basis of this data set, the spatial peak SAR value was evaluated under the following procedure:

- (1). The data at the surface were extrapolated, since the center of the dipoles is 1mm(EX3DV4) away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation was based on a least square algorithm [4]. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
- (2). The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed by the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one-dimensional splines with the "Not a knot"-condition (in x, y and z-directions) [4], [5]. The volume was integrated with the trapezoidal-algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average.
- (3). All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

Step 4: Re-measurement of the E-field at the same location as in Step 1.

*1. Ratio step method parameters used;

The first measurement point: 2mm from the phantom surface, the initial grid separation: 2mm, subsequent graded grid ratio: 1.5 These parameters comply with the requirement of the KDB 865664D01.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11094714H-A-R1
Page : 24 of 86
FCC ID : VPYLB1FJ
Issue date : February 22, 2016
Revised date : June 2, 2016

2. Measurement data

WLAN 2.4G 11b 1Mbps 2412MHz Front 0mm

Communication System: UID 0, WLAN (0); Communication System Band: 11b/g/n; Frequency: 2412 MHz; Duty Cycle:

1:1

Medium parameters used (interpolated): f = 2412 MHz; $\sigma = 1.942 \text{ S/m}$; $\varepsilon_r = 51.462$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(7.49, 7.49, 7.49); Calibrated: 2015/06/17;

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2015/06/15

Phantom: ELI v5.0 TP1207 (30deg probe tilt); Type: QDOVA002AA; Serial: TP:1207 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (81x121x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.0547 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.163 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 0.0570 W/kg

SAR(1 g) = 0.026 W/kg; SAR(10 g) = 0.010 W/kgMaximum value of SAR (measured) = 0.0384 W/kg

Date: 2016/01/20

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11094714H-A-R1
Page : 25 of 86
FCC ID : VPYLB1FJ
Issue date : February 22, 2016
Revised date : June 2, 2016

WLAN 2.4G 11b 1Mbps 2412MHz Rear 0mm

Communication System: UID 0, WLAN (0); Communication System Band: 11b/g/n; Frequency: 2412 MHz; Duty Cycle: 1-1

Medium parameters used (interpolated): f = 2412 MHz; $\sigma = 1.882$ S/m; $\varepsilon_r = 50.682$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3917 (add ConvF); ConvF(7.15, 7.15, 7.15); Calibrated: 2015/08/13;

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1369; Calibrated: 2015/05/22

Phantom: ELI v5.0 (30deg probe tilt); Type: QDOVA002AA; Serial: TP:1203 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (81x61x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.0318 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.774 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 0.0380 W/kg

SAR(1 g) = 0.015 W/kg; SAR(10 g) = 0.00675 W/kgMaximum value of SAR (measured) = 0.0264 W/kg

Date: 2016/01/14

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11094714H-A-R1
Page : 26 of 86
FCC ID : VPYLB1FJ
Issue date : February 22, 2016
Revised date : June 2, 2016

WLAN 2.4G 11b 1Mbps 2412MHz Left 0mm

Communication System: UID 0, WLAN (0); Communication System Band: 11b/g/n; Frequency: 2412 MHz; Duty Cycle: 1·1

Medium parameters used (interpolated): f = 2412 MHz; $\sigma = 1.882$ S/m; $\varepsilon_r = 50.682$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3917 (add ConvF); ConvF(7.15, 7.15, 7.15); Calibrated: 2015/08/13;

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1369; Calibrated: 2015/05/22

Phantom: ELI v5.0 (30deg probe tilt); Type: QDOVA002AA; Serial: TP:1203 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (61x91x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.535 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.53 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 0.720 W/kg

SAR(1 g) = 0.227 W/kg; SAR(10 g) = 0.083 W/kg

Maximum value of SAR (measured) = 0.454 W/kg

Date: 2016/01/14

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

Test report No. : 11094714H-A-R1
Page : 27 of 86
FCC ID : VPYLB1FJ
Issue date : February 22, 2016
Revised date : June 2, 2016

WLAN 2.4G 11b 1Mbps 2412MHz Left tilt 0mm

Communication System: UID 0, WLAN (0); Communication System Band: 11b/g/n; Frequency: 2412 MHz; Duty Cycle: 1·1

Medium parameters used (interpolated): f = 2412 MHz; $\sigma = 1.882$ S/m; $\varepsilon_r = 50.682$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3917 (add ConvF); ConvF(7.15, 7.15, 7.15); Calibrated: 2015/08/13;

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1369; Calibrated: 2015/05/22

Phantom: ELI v5.0 (30deg probe tilt); Type: QDOVA002AA; Serial: TP:1203 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (71x91x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.254 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.94 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 0.396 W/kg

SAR(1 g) = 0.109 W/kg; SAR(10 g) = 0.037 W/kg

Maximum value of SAR (measured) = 0.244 W/kg

Date: 2016/01/14

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11094714H-A-R1
Page : 28 of 86
FCC ID : VPYLB1FJ
Issue date : February 22, 2016
Revised date : June 2, 2016

WLAN 2.4G 11b 1Mbps 2412MHz Bottom 0mm

Communication System: UID 0, WLAN (0); Communication System Band: 11b/g/n; Frequency: 2412 MHz; Duty Cycle: 1·1

Medium parameters used (interpolated): f = 2412 MHz; $\sigma = 1.882$ S/m; $\varepsilon_r = 50.682$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3917 (add ConvF); ConvF(7.15, 7.15, 7.15); Calibrated: 2015/08/13;

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1369; Calibrated: 2015/05/22

Phantom: ELI v5.0 (30deg probe tilt); Type: QDOVA002AA; Serial: TP:1203 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (61x61x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.118 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.187 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 0.143 W/kg

SAR(1 g) = 0.070 W/kg; SAR(10 g) = 0.033 W/kgMaximum value of SAR (measured) = 0.110 W/kg

Date: 2016/01/14

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 29 of 86 FCC ID : VPYLB1FJ Issue date : February 22, 2016 Revised date : June 2, 2016

APPENDIX2: System Check

1. System check result Body 2450MHz

(1) Simulated Tissue Liquid Parameter confirmation

(=)											
	DIELECTRIC PARAMETERS MEASUREMENT RESULTS										
Date	Ambient Temp. [deg.c]	Relative Humidity [%]	Liquid type	Liquid Temp. [deg.c]	Measured Frequency [MHz]	Parameters	Target Value	Measured	Deviation [%]	Limit [%]	Remark
14-Jan	24.0	43	MSL	23.5	2450	er	52.7	50.6	-4.1	+/-5	*1
14-Jaii	24.0	43	2450	23.3	2430	σ [mho/m]	1.95	1.93	-1.0	+/-5	- 1
20-Jan	24.0	35	MSL	23.5	2450	er	52.7	51.3	-2.6	+/-5	*1
20-Jan	24.0	33	2450	23.3	2430	σ [mho/m]	1.95	1.99	2.0	+/-5	. 1

 $[\]epsilon$ r: Relative Permittivity / σ : Coductivity

^{*1} The Target value is a parameter defined in KDB 865664D01.

	DIELECTRIC PARAMETERS MEASUREMENT RESULTS										
Date	Ambient Temp. [deg.c]	Relative Humidity [%]	Liquid type	Liquid Temp. [deg.c]	Measured Frequency [MHz]	Parameters	Target Value	Measured	Deviation [%]	Limit [%]	Remark
14-Jan	24.0	43	MSL	23.5	2450	er	52.2	50.6	-3.1	+/-6	*2 *3
14-Jaii	24.0	43	2450	23.3	2430	σ [mho/m]	2.00	1.93	-3.5	+/-6	. 2 . 3
20-Jan	24.0	35	MSL	23.5	2450	er	52.2	51.3	-1.6	+/-6	*2 *3
20-Jan	24.0	33	2450	23.3	2430	σ [mho/m]	2.00	1.99	-0.5	+/-6	. 2 . 3

 $[\]epsilon$ r: Relative Permittivity / σ : Coductivity

(2) System check result (for calibration by manufacture)

	SYSTEM CHECK								
	Frequency		SAR 1g [W/kg]						
Date	1 2	Forward Power	Conversion 1W	Target Value(1W)	Deviation	Limit	Remark		
	[MHz]	Measured	Calculation	,	[%]	[%]			
14-Jan	2450.00	12.80	51.20	50.40	1.6	+/-10	*4		
20-Jan	2450.00	13.30	53.20	50.40	5.6	+/-10	*4		

^{*4} The taget value is the parameter defined in SAR measured x4(12.6 x 4 = 50.4) in manufacturer calibrated dipole (D2450V2 SN:713) Please refer to "SAR result with Body TSL of Appendix 2 2. System Check Dipole (D2450V2 SN:713)".

^{*2} The target value is the calibrated dipole Body TSL parameters. (D2450V2 SN:713, Measured Body TSL parameters)

^{*3} The limit is for deviation provided by manufacture.

Test report No. : 11094714H-A-R1
Page : 30 of 86
FCC ID : VPYLB1FJ
Issue date : February 22, 2016
Revised date : June 2, 2016

BODY 2450MHz System Check DATA / Dipole 2450MHz / Forward Conducted Power: 250mW

Communication System: UID 0, CW (0); Communication System Band: D2450 (2450.0 MHz); Frequency: 2450 MHz;

Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.93 \text{ S/m}$; $\varepsilon_r = 50.565$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3917 (add ConvF); ConvF(7.15, 7.15, 7.15); Calibrated: 2015/08/13;

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1369; Calibrated: 2015/05/22

Phantom: ELI v5.0 (30deg probe tilt); Type: QDOVA002AA; Serial: TP:1203 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (71x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 21.5 W/kg

Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 107.1 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 26.8 W/kg

SAR(1 g) = 12.8 W/kg; SAR(10 g) = 5.9 W/kg

Maximum value of SAR (measured) = 21.6 W/kg

Date: 2016/01/14

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 11094714H-A-R1
Page: 31 of 86
FCC ID: VPYLB1FJ
Issue date: February 22, 2016
Revised date: June 2, 2016

BODY 2450MHz System Check DATA / Dipole 2450MHz / Forward Conducted Power: 250mW

Communication System: UID 0, CW (0); Communication System Band: D2450 (2450.0 MHz); Frequency: 2450 MHz;

Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.93 \text{ S/m}$; $\varepsilon_r = 50.565$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3917 (add ConvF); ConvF(7.15, 7.15, 7.15); Calibrated: 2015/08/13;

Sensor-Surface: 0mm (Fix Surface)

Electronics: DAE4 Sn1369; Calibrated: 2015/05/22

Phantom: ELI v5.0 (30deg probe tilt); Type: QDOVA002AA; Serial: TP:1203 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Z Scan (1x1x31): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Maximum value of SAR (measured) = 10.2 W/kg

Date: 2016/01/14

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 11094714H-A-R1
Page: 32 of 86
FCC ID: VPYLB1FJ
Issue date: February 22, 2016
Revised date: June 2, 2016

BODY 2450MHz System Check DATA / Dipole 2450MHz / Forward Conducted Power: 250mW

Communication System: UID 0, CW (0); Communication System Band: D2450 (2450.0 MHz); Frequency: 2450 MHz;

Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.989 \text{ S/m}$; $\varepsilon_r = 51.346$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(7.49, 7.49, 7.49); Calibrated: 2015/06/17;

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2015/06/15

Phantom: ELI v5.0 TP1207 (30deg probe tilt); Type: QDOVA002AA; Serial: TP:1207 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (71x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 21.8 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 108.4 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 28.1 W/kg

SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.11 W/kg

Maximum value of SAR (measured) = 22.5 W/kg

Date: 2016/01/20

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 11094714H-A-R1
Page: 33 of 86
FCC ID: VPYLB1FJ
Issue date: February 22, 2016
Revised date: June 2, 2016

BODY 2450MHz System Check DATA / Dipole 2450MHz / Forward Conducted Power: 250mW

Communication System: UID 0, CW (0); Communication System Band: D2450 (2450.0 MHz); Frequency: 2450 MHz;

Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.989 \text{ S/m}$; $\varepsilon_r = 51.346$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(7.49, 7.49, 7.49); Calibrated: 2015/06/17;

Sensor-Surface: 0mm (Fix Surface)

Electronics: DAE4 Sn1372; Calibrated: 2015/06/15

Phantom: ELI v5.0 TP1207 (30deg probe tilt); Type: QDOVA002AA; Serial: TP:1207 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Z Scan (1x1x31): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Maximum value of SAR (measured) = 13.6 W/kg

Date: 2016/01/20

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 34 of 86 FCC ID : VPYLB1FJ Issue date : February 22, 2016

Revised date : June 2, 2016

System Check Dipole (D2450V2,S/N:713) SAR Calibration Certificate - Dipole 2450MHz

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

UL Japan (PTT) Client

Certificate No: D2450V2-713_Sep13

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE Object D2450V2 - SN: 713 QA CAL-05.v9 Calibration procedure(s) Calibration procedure for dipole validation kits above 700 MHz September 10, 2013 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) ID# Primary Standards Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 01-Nov-12 (No. 217-01640) Oct-13 Power sensor HP 8481A US37292783 01-Nov-12 (No. 217-01640) Oct-13 Reference 20 dB Attenuator SN: 5058 (20k) 04-Apr-13 (No. 217-01736) Apr-14 Type-N mismatch combination SN: 5047.3 / 06327 04-Apr-13 (No. 217-01739) Apr-14 Reference Probe ES3DV3 SN: 3205 28-Dec-12 (No. ES3-3205 Dec12) Dec-13 DAE4 SN: 601 25-Apr-13 (No. DAE4-601_Apr13) Apr-14 Secondary Standards ID# Check Date (in house) Scheduled Check MY41092317 18-Oct-02 (in house check Oct-11) Power sensor HP 8481A In house check: Oct-13 RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-11) In house check: Oct-13 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-12) In house check: Oct-13 Israe El-Naoug Laboratory Technician Calibrated by: Approved by: Katja Pokovic Technical Manager Issued: September 10, 2013 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-713_Sep13

Page 1 of 8

Page : 35 of 86 FCC ID : VPYLB1FJ Issue date : February 22, 2016 Revised date : June 2, 2016

Calibration Laboratory of Schmid & Partner Engineering AG

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

Accredited by the Swiss Accreditation No.: SCS 108

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-713_Sep13 Page 2 of 8

Certificate No. D2450V2-713_Sep13 Fage 2 of 6

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 36 of 86 FCC ID : VPYLB1FJ Issue date : February 22, 2016

Revised date : June 2, 2016

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.4 ± 6 %	1.83 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.0 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	51.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.05 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.1 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.2 ± 6 %	2.00 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	****	****

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.6 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	49.7 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.89 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.4 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-713_Sep13 Page 3 of 8

: 37 of 86 Page FCC ID : VPYLB1FJ

Issue date : February 22, 2016

Revised date : June 2, 2016

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.8 Ω + 0.7 jΩ
Return Loss	- 34.4 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.7 Ω + 2.8 jΩ
Return Loss	- 30.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.162 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 05, 2002

Certificate No: D2450V2-713_Sep13

Page 4 of 8

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 38 of 86
FCC ID : VPYLB1FJ
Issue date : February 22, 2016
Revised date : June 2, 2016

DASY5 Validation Report for Head TSL

Date: 10.09.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 713

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.83$ S/m; $\varepsilon_r = 39.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.52, 4.52, 4.52); Calibrated: 28.12.2012;

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 25.04.2013

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.095 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 26.7 W/kg

SAR(1 g) = 13 W/kg; SAR(10 g) = 6.05 W/kgMaximum value of SAR (measured) = 17.0 W/kg

0 dB = 17.0 W/kg = 12.30 dBW/kg

Certificate No: D2450V2-713_Sep13 Page 5 of 8

Page : 39 of 86 FCC ID : VPYLB1FJ Issue date : February 22, 2016 Revised date : June 2, 2016

Impedance Measurement Plot for Head TSL

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 40 of 86
FCC ID : VPYLB1FJ
Issue date : February 22, 2016
Revised date : June 2, 2016

DASY5 Validation Report for Body TSL

Date: 10.09.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 713

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2 \text{ S/m}$; $\varepsilon_r = 52.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.42, 4.42, 4.42); Calibrated: 28.12.2012;

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 25.04.2013

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.095 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 26.1 W/kg

SAR(1 g) = 12.6 W/kg; SAR(10 g) = 5.89 W/kg Maximum value of SAR (measured) = 16.7 W/kg

0 dB = 16.7 W/kg = 12.23 dBW/kg

Certificate No: D2450V2-713_Sep13 Page 7 of 8

Page : 41 of 86 FCC ID : VPYLB1FJ Issue date : February 22, 2016

Revised date : June 2, 2016

Impedance Measurement Plot for Body TSL

Certificate No: D2450V2-713_Sep13

Page 8 of 8

Page : 42 of 86 FCC ID : VPYLB1FJ Issue date : February 22, 2016 Revised date : June 2, 2016

D2450V2 Calibration for Impedance and Return-loss

Equipment	Dipole Antenna	Model	D2450V2
Manufacture	Schmid&Partner Engineering AG	Serial	713
Tested by	Tomohisa Nakagawa		

1. Test environment

Date	July 21, 2015		
Ambient Temperature	24.0 deg.C	Relative humidity	50%RH

2. Equipment used

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date *
Control ivo.		TVI CITAL CONTROL CONT	1110401110	Scriarivo	Test Item	Interval(month)
EST-54	Network Analyzer	Hewlett Packard	8753ES	US39171615	SAR	2015/05/05 * 12
EST-08	Calibration Kit	Agilent	85032B	3217A12903	SAR	2015/05/04 * 12
MPF-04	2mm Oval Flat	Schmid&Partner	QDOVA001BB	1207	SAR	2015/05/11 * 12
	Phantom	Engineering AG				
MPSAM-04	SAM Phantom	Schmid&Partner	QD000P40CD	1762	SAR	2015/05/11 * 12
		Engineering AG				
MOS-38	Digital thermometer	HANNA	Checktemp 4	-	SAR	2015/04/28 * 12
MOS-31	Thermo-Hygrometer	Custom	CTH-201	3101	SAR	2015/07/07 * 12
HSL2450						Daily check
MSL2450						Daily check
SAR room1						Daily check

3. Test Result

Impeadance, Transformed to feed point	Head	Deviation	Tolerance	Result
Calibration (SPEAG) 2013/09/10	51.8 Ω+0.7jΩ	-	-	-
Calibration(ULJ)2015/7/21	50.94Ω+0.86jΩ	$-0.9\Omega+0.2j\Omega$	$+/-5\Omega+/-5j\Omega$	Complied

Return loss	Head	Deviation	Tolerance	Result
Calibration (SPEAG) 2013/09/10	-34.4dB	-	-	-
Calibration(ULJ)2015/7/21	-37.97dB	-3.5dB	-34.4 *+/-20%	Complied
Impeadance, Transformed to feed point	Body	Deviation	Tolerance	Result
Calibration (SPEAG) 2013/09/10	$48.7\Omega + 2.8j\Omega$	-	-	-
Calibration(ULJ)2015/7/21	$50.53\Omega + 2.48j\Omega$	$+1.8\Omega + /-0.3i\Omega$	$+/-5\Omega+/-5i\Omega$	Complied

Return loss	Body	Deviation	Tolerance	Result
Calibration (SPEAG) 2013/09/10	-30.0dB	-	-	-
Calibration(ULJ)2015/7/21	-31.95dB	-1.95dB	-30.0 *+/-20%	Complied

^{*}Tolerance : According to the KDB450824D02

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 43 of 86 FCC ID : VPYLB1FJ Issue date : February 22, 2016 Revised date : June 2, 2016

Measurement Plots

<Head Liquid>

<Body Liquid>

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 44 of 86 FCC ID : VPYLB1FJ Issue date : February 22, 2016 Revised date : June 2, 2016

3. System check uncertainty

The uncertainty budget has been determined for the DASY5 measurement system according to the SPEAG documents and is given in the following Table.

Repeatability Budget for System Check

<0.3 – 3GHz range Body>

	Uncertainty	Probability		(ci)	Standard	vi	
Error Description	value ± %	distribution	divisor	1g	(1g)	or veff	
Measurement System		•					
Probe calibration	± 1.8	Normal	1	1	± 1.8	∞	
Axial isotropy of the probe	± 0.0	Rectangular	√3	1	± 0.0	∞	
Spherical isotropy of the probe	± 0.0	Rectangular	√3	0	± 0.0	∞	
Boundary effects	± 0.0	= 0.0 Rectangular		1	± 0.0	∞	
Probe linearity	± 0.0	Rectangular	$\sqrt{3}$	1	± 0.0	∞	
Detection limit	± 0.0	Rectangular	$\sqrt{3}$	1	± 0.0	∞	
Modulation response	± 0.0	Rectangular	√3	1	± 0.0	∞	
Readout electronics	± 0.0	Normal	1	1	± 0.0	∞	
Response time	± 0.0	Rectangular	√3	1	± 0.0	∞	
Integration time	± 0.0	Rectangular	$\sqrt{3}$	1	± 0.0	∞	
RF ambient Noise	± 0.0	Rectangular	$\sqrt{3}$	1	± 0.0	∞	
RF ambient Reflections	± 0.0	Rectangular	$\sqrt{3}$	1	± 0.0	<u>∞</u>	
Probe Positioner	± 0.4	Rectangular	$\sqrt{3}$	1	± 0.2	σο 	
Probe positioning	± 2.9	Rectangular	$\sqrt{3}$	1	± 1.7	σο 	
Max.SAR Eval.	± 0.0	Rectangular	$\sqrt{3}$	1	± 0.0	σο 	
Test Sample Related	± 0.0	rectangular	13	1	± 0.0	-	
Deviation of	± 0.0	Normal	$\sqrt{3}$	1	± 0.0	∞	
Dipole Axis to	± 0.0						
Liquid Distance	± 2.0	Normal	$\sqrt{3}$	1	± 1.2	∞	
Input power and			,		+		
SAR drift meas.	± 3.4	Rectangular	$\sqrt{3}$	1	± 2.0	∞	
Phantom and Setup							
Phantom uncertainty	± 4.0	Rectangular	$\sqrt{3}$	1	± 2.3	∞	
Algorithm for		rectungular	13	1	<u> </u>	-	
correcting SAR							
for deviations	± 1.9	Normal	1	1	± 1.9	∞	
in permittivity							
and conductivity							
Liquid conductivity	± 5.0	Pootongula-	1	0.78	+ 3.9	oo	
(meas.)	≖ 3.0	Rectangular	1	0.78	T 3.9	w	
Liquid permittivity			1		+		
(meas.)	± 5.0	Rectangular	1	0.26	- 1.3	∞	
Liquid conductivity		 	1	1	†		
- temp.unc	± 1.7	Rectangular	$\sqrt{3}$	0.78	± 0.8	∞	
(below 2deg.C.)	1.,		"	1.,0			
Liquid permittivity							
- temp.unc	± 0.3	Rectangular	$\sqrt{3}$	0.23	± 0.0	∞	
(below 2deg.C.)		I ~					
	<u>-</u>	-	-	•			
Combined Standard Uncertainty ± 6.144							
Expanded Uncertainty					± 12.3		

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 45 of 86 FCC ID : VPYLB1FJ Issue date : February 22, 2016 Revised date : June 2, 2016

APPENDIX 3: System specifications

1. Configuration and peripherals

The DASY5 system for performing compliance tests consist of the following items:

- a) A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- b) An isotropic field probe optimized and calibrated for the targeted measurement.
- c) A data acquisition electronic (DAE), which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- d) The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.
- e) The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- f) The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- g) A computer running WinXP and the DASY5 software.
- h) Remote control with teaches pendant and additional circuitry for robot safety such as warning lamps, etc.
- i) The phantom, the device holder and other accessories according to the targeted measurement.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 46 of 86 FCC ID : VPYLB1FJ Issue date : February 22, 2016 Revised date : June 2, 2016

2. Specifications

a)Robot TX60L

Number of Axes 6 **Nominal Load** 2 kg : **Maximum Load** : 5kg Reach 920mm Repeatability +/-0.03mm **Control Unit** CS8c **Programming Language** VAL3 Weight 52.2kg

Manufacture : Stäubli Robotics

b)E-Field Probe

 Model
 :
 EX3DV4

 Serial No.
 :
 3917, 3922

Construction : Symmetrical design with triangular core

Built-in shielding against static charges

PEEK enclosure material

(resistant to organic solvents, e.g., glycol ether)

Frequency: 10 MHz to > 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)

Directivity : +/-0.3 dB in HSL (rotation around probe axis)

+/-0.5 dB in tissue material (rotation normal probe axis)

Dynamic Range : 10uW/g to > 100 mW/g;Linearity

+/-0.2 dB(noise: typically < 1 uW/g)

Dimensions : Overall length: 337 mm (Tip: 20 mm)

Tip diameter: 2.5mm (Body: 12 mm)

Typical distance from probe tip to dipole centers: 1 mm

Application : Highprecision dosimetric measurement in any exposure scenario

(e.g., very strong gradient fields). Only probe which enables compliance

testing for frequencies up to 6GHz with precision of better 30%.

Manufacture : Schmid & Partner Engineering AG

EX3DV4 E-field Probe

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 47 of 86 Page FCC ID : VPYLB1FJ Issue date : February 22, 2016 Revised date : June 2, 2016

c)Data Acquisition Electronic (DAE4)

Features Signal amplifier, multiplexer, A/D converter and control logic

Serial optical link for communication with DASY5 embedded system (fully remote controlled)

Two step probe touch detector for mechanical surface detection and emergency robot stop

Measurement Range -100 to +300 mV (16 bit resolution and two range settings: 4mV, 400mV) :

Input Offset voltage $< 5 \mu V$ (with auto zero)

Input Resistance $200\;M\Omega$ **Input Bias Current** < 50 fA

Battery Power > 10 h of operation (with two 9.6 V NiMH accus)

Dimension 60 x 60 x 68 mm :

Manufacture Schmid & Partner Engineering AG

d)Electro-Optic Converter (EOC)

Version EOC 61 :

Description : for TX60 robot arm, including proximity sensor

Manufacture : Schmid & Partner Engineering AG

e)DASY5 Measurement server

Features Intel ULV Celeron 400MHz

128MB chip disk and 128MB RAM

16 Bit A/D converter for surface detection system

Vacuum Fluorescent Display

Robot Interface

Serial link to DAE (with watchdog supervision) Door contact port (Possibility to connect a light curtain) Emergency stop port (to connect the remote control)

Signal lamps port Light beam port

Three Ethernet connection ports

Two USB 2.0 Ports Two serial links

Expansion port for future applications

Dimensions (L x W x H) 440 x 241 x 89 mm

Schmid & Partner Engineering AG Manufacture

f) Light Beam Switches

LB5 Version : Dimensions (L x H) : 110 x 80 mm **Thickness** 12 mm Beam-length 80 mm :

Manufacture Schmid & Partner Engineering AG :

g)Software

Item Dosimetric Assessment System DASY5 :

Type No. SD 000 401A, SD 000 402A : Software version No. DASY52, Version 52.6 (1) **Manufacture / Origin** Schmid & Partner Engineering AG

h)Robot Control Unit

Weight 70 Kg **AC Input Voltage** selectable Manufacturer Stäubli Robotics

UL Japan, Inc.

Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 $Test\ report\ No.\ :\ 11094714H\text{-}A\text{-}R1$

Page : 48 of 86 FCC ID : VPYLB1FJ Issue date : February 22, 2016 Revised date : June 2, 2016

i)Phantom and Device Holder

Phantom

Type : SAM Twin Phantom V4.0

Description: The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin

(SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with

the robot.

Material : Vinylester, glass fiber reinforced (VE-GF)

Shell Material:FiberglassThickness:2.0 +/-0.2 mm

Dimensions: Length: 1000 mm Width: 500 mm Height: adjustable feet

Volume : Approx. 25 liters

Manufacture : Schmid & Partner Engineering AG

Type : 2mm Flat phantom ERI4.0

Description: Phantom for compliance testing of handheld and body-mounted wireless

devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with the latest draft of the standard IEC 62209 Part II and all known tissue simulating liquids. ELI4 has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is supported by software version DASY4.5 and higher and is compatible with

all SPEAG dosimetric probes and dipoles.

Material : Vinylester, glass fiber reinforced (VE-GF)

Shell Thickness : $2.0 \pm 0.2 \text{ mm (sagging: } <1\%)$

Filling Volume : approx. 30 liters

Dimensions: Major ellipse axis: 600 mm Minor axis: 400 mm

Manufacture : Schmid & Partner Engineering AG

Device Holder

In combination with the Twin SAM Phantom V4.0/V4.0c or ELI4, the Mounting Device enables the rotation of the mounted transmitter device in spherical coordinates. Rotation point is the ear opening point. Transmitter devices can be easily and accurately positioned according to IEC, IEEE, FCC or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat).

Material : POM

Laptio Extensions kit

Simple but effective and easy-to-use extension for Mounting Device that facilitates the testing of larger devices according to IEC 62209-2 (e.g., laptops, cameras, etc.). It is lightweight and fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin-SAM, ELI4 Phantoms.

Material : POM, Acrylic glass, Foam

Urethane

For this measurement, the urethane foam was used as device holder.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 49 of 86 FCC ID : VPYLB1FJ Issue date : February 22, 2016 Revised date : June 2, 2016

j)Simulated Tissues (Liquid)

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for required for routine SAR evaluation.

Mintone (0/)		Frequency (MHz)									
Mixture (%)	4	50	9	900		1800		1950		2450	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	
Water	38.91	46.21	40.29	50.75	55.24	70.17	55.41	69.79	55.0	68.64	
Sugar	56.93	51.17	57.90	48.21	-	-	-	-	-	-	
Cellulose	0.25	0.18	0.24	0.00	-	-		-	-	-	
Salt (NaCl)	3.79	2.34	1.38	0.94	0.31	0.39	0.08	0.2	-	-	
Preventol	0.12	0.08	0.18	0.10	-				-	-	
DGMBE	-	-	-	-	44.45	29.44	44.51	30.0	45.0	31.37	
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5	
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78	

Note:DGMBE(Diethylenglycol-monobuthyl ether)

The simulated tissue (liquid) of 1800MHz was used for the test frequency of 1700MHz to 1800MHz.

Mintuna (0/)	Frequen	cy(MHz)
Mixture (%)	650&750	1450
Tissue Type	Head and Body	Head and Body
Water	35-58%	52-75%
Sugar	40-60%	-
Cellulose	<0.3%	-
Salt (NaCl)	0-6%	<1%
Preventol	0.1-0.7%	-
DGMBE	-	25-48%

N/* (0/)	Frequency(MHz)					
Mixture (%)	5800					
Tissue Type	Head	Body				
Water	64.0	78.0				
Mineral Oil	18.0	11.0				
Emulsifiers	15.0	9.0				
Additives and salt	3.0	2.0				

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 50 of 86 FCC ID : VPYLB1FJ

Issue date : February 22, 2016 Revised date : June 2, 2016

3. Dosimetric E-Field Probe Calibration (EX3DV4, S/N: 3917)

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service sulsse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Hent UL Japan (Vitec)

Certificate No: EX3-3917_May15

GALIBRATION GERTIFICATE

Object

EX3DV4 - SN:3917

Calibration procedure(s)

QA CAL-01.v9, QA CAL-12.v9, QA CAL-23.v5, QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

Calibration date:

May 29, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration	
Power meter E4419B	GB41293874	01-Apr-15 (No. 217-02128)	Mar-16	
Power sensor E4412A	MY41498087	01-Apr-15 (No. 217-02128)	Mar-16	
Reference 3 dB Attenuator SN: S5054 (3c)		01-Apr-15 (No. 217-02129)	Mar-16	
Reference 20 dB Attenuator SN: S5277 (20x)		01-Apr-15 (No. 217-02132)	Mar-16	
Reference 30 dB Attenuator SN: S5129 (30b)		01-Apr-15 (No. 217-02133)	Mar-16	
Reference Probe ES3DV2	SN: 3013	30-Dec-14 (No. ES3-3013_Dec14)	Dec-15	
DAE4	SN: 660	14-Jan-15 (No. DAE4-660_Jan15)	Jan-16	
Secondary Standards	ID	Check Date (in house)	Scheduled Check	
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16	
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-14)	In house check: Oct-15	

Name Function Signature
Calibrated by: Jeton Kastrati Laboratory Technician

Approved by: Katja Pokovic Technical Manager

Issued: June 1, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-3917_May15

Page 1 of 11

: 51 of 86 FCC ID : VPYLB1FJ

Issue date : February 22, 2016 : June 2, 2016

Revised date

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

tissue simulating liquid NORMx,y,z sensitivity in free space sensitivity in TSL / NORMx,y,z ConvF DCP diode compression point

crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters A, B, C, D

Polarization φ φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

information used in DASY system to align probe sensor X to the robot coordinate system Connector Angle

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement

Techniques", June 2013
b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF).
- $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-3917 May15

Page 2 of 11

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 52 of 86
FCC ID : VPYLB1FJ
Issue date : February 22, 2016
Revised date : June 2, 2016

EX3DV4 – SN:3917 May 29, 2015

Probe EX3DV4

SN:3917

Manufactured: December 18, 2012 Calibrated: May 29, 2015

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-3917_May15 Page 3 of 11

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 53 of 86 : VPYLB1FJ FCC ID

Issue date : February 22, 2016 : June 2, 2016 Revised date

May 29, 2015 EX3DV4-SN:3917

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3917

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	0.53	0.44	0.45	± 10.1 %
DCP (mV) ^B	106.0	102.0	95.0	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^{l:} (k=2)
0	CW	Х	0.0	0.0	1.0	0.00	106.1	±3.0 %
		Υ	0.0	0.0	1.0		108.8	
		Z	0.0	0.0	1.0		109.4	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: EX3-3917_May15

Page 4 of 11

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).
^B Numerical linearization parameter: uncertainty not required.
^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

: 54 of 86 : VPYLB1FJ FCC ID

Issue date : February 22, 2016 : June 2, 2016 Revised date

May 29, 2015 EX3DV4- SN:3917

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3917

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
300	45.3	0.87	11.73	11.73	11.73	0.10	1.20	± 13.3 %
450	43.5	0.87	10.49	10.49	10.49	0.15	1.20	± 13.3 %
650	42.5	0.89	10.41	10.41	10.41	0.09	1.20	± 13.3 %
750	41.9	0.89	10.03	10.03	10.03	0.31	1.03	± 12.0 %
835	41.5	0.90	9.60	9.60	9.60	0.20	1.51	± 12.0 %
900	41.5	0.97	9.41	9.41	9.41	0.36	0.96	± 12.0 %
1450	40.5	1.20	8.76	8.76	8.76	0.45	0.90	± 12.0 %
1640	40.3	1.29	8.25	8.25	8.25	0.26	0.80	± 12.0 %
1750	40.1	1.37	8.33	8.33	8.33	0.30	0.80	± 12.0 %
1900	40.0	1.40	7.94	7.94	7.94	0.33	0.80	± 12.0 %
1950	40.0	1.40	7.68	7.68	7.68	0.27	0.80	± 12.0 %

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

*At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

*Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX3-3917_May15 Page 5 of 11

: 55 of 86 Page : VPYLB1FJ FCC ID

Issue date : February 22, 2016 : June 2, 2016 Revised date

May 29, 2015 EX3DV4-SN:3917

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3917

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
300	58.2	0.92	11.06	11.06	11.06	0.06	1.15	± 13.3 %
450	56.7	0.94	11.16	11.16	11.16	0.09	1.15	± 13.3 %
650	55.9	0.96	10.12	10.12	10.12	0.09	1.15	± 13.3 %
750	55.5	0.96	9.81	9.81	9.81	0.26	1.21	± 12.0 %
835	55.2	0.97	9.79	9.79	9.79	0.24	1.28	± 12.0 %
900	55.0	1.05	9.50	9.50	9.50	0.33	1.04	± 12.0 %
1450	54.0	1.30	8.17	8.17	8.17	0.16	1.76	± 12.0 %
1640	53.8	1.40	8.24	8.24	8.24	0.32	0.98	± 12.0 %
1750	53.4	1.49	7.85	7.85	7.85	0.27	1.03	± 12.0 %
1900	53.3	1.52	7.66	7.66	7.66	0.35	0.93	± 12.0 %
1950	53.3	1.52	7.85	7.85	7.85	0.33	0.91	± 12.0 %

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

**At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

**Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX3-3917_May15 Page 6 of 11

Page : 56 of 86 : VPYLB1FJ FCC ID

Issue date : February 22, 2016 : June 2, 2016 Revised date

EX3DV4-- SN:3917

May 29, 2015

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: EX3-3917_May15

Page 7 of 11

Page : 57 of 86 FCC ID : VPYLB1FJ Issue date : February 22, 2016 Revised date : June 2, 2016

EX3DV4- SN:3917 May 29, 2015

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

(4),

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: EX3-3917_May15

Page 8 of 11

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 58 of 86 FCC ID : VPYLB1FJ Issue date : February 22, 2016 Revised date : June 2, 2016

EX3DV4- SN:3917 May 29, 2015

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-3917_May15 Page 9 of 11

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 59 of 86 FCC ID : VPYLB1FJ

Issue date : February 22, 2016 Revised date : June 2, 2016

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 60 of 86 FCC ID : VPYLB1FJ Issue date : February 22, 2

Issue date : February 22, 2016 Revised date : June 2, 2016

EX3DV4- SN:3917 May 29, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3917

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	66.3
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Certificate No: EX3-3917_May15 Page 11 of 11

Page : 61 of 86 FCC ID : VPYLB1FJ

Issue date : February 22, 2016 Revised date : June 2, 2016

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client UL Japan (Vitec)

certificate No: EX3-3917 Aug 15

Object

EX3DV4 - SN:3917

Calibration procedure(s)

QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

Calibration date:

August 13, 2015 (Additional Conversion Factors)

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	01-Apr-15 (No. 217-02128)	Mar-16
Power sensor E4412A	MY41498087	01-Apr-15 (No. 217-02128)	Mar-16
Reference 3 dB Attenuator	SN: S5054 (3c)	01-Apr-15 (No. 217-02129)	Mar-16
Reference 20 dB Attenuator	SN: S5277 (20x)	01-Apr-15 (No. 217-02132)	Mar-16
Reference 30 dB Attenuator	SN: S5129 (30b)	01-Apr-15 (No. 217-02133)	Mar-16
Reference Probe ES3DV2	SN: 3013	30-Dec-14 (No. ES3-3013_Dec14)	Dec-15
DAE4	SN: 660	14-Jan-15 (No. DAE4-660_Jan15)	Jan-16
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-14)	In house check: Oct-15

	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technician	Eller
Approved by:	Kalja Pokovic	Technical Manager	Klly
			Issued: August 13, 2015
This calibration certificat	e shall not be reproduced except in f	all without written approval of the lab	oratory.

Certificate No: EX3-3917_Aug15

Page 1 of 8

: 62 of 86 Page FCC ID : VPYLB1FJ

Issue date : February 22, 2016 : June 2, 2016

Revised date

Calibration Laboratory of Schmid & Partner **Engineering AG** usstrasse 43, 8004 Zurich, Switzerland

S

C

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

tissue simulating liquid TSL NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point

crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters CF A. B. C. D

Polarization o φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close
- proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF).
- $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,v,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Page 2 of 8 Certificate No: EX3-3917 Aug15

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 63 of 86 FCC ID : VPYLB1FJ Issue date : February 22, 2016 Revised date : June 2, 2016

EX3DV4 - SN:3917 August 13, 2015

Probe EX3DV4

SN:3917

Additional Conversion Factors

Manufactured: December 18, 2012 Calibrated: August 13, 2015

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-3917_Aug15

Page 3 of 8

: 64 of 86 Page : VPYLB1FJ FCC ID Issue date

: February 22, 2016 : June 2, 2016 Revised date

August 13, 2015

EX3DV4-SN:3917

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3917

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	0.53	0.44	0.45	± 10.1 %
DCP (mV) ^B	106.0	102.0	95.0	

Modulation Calibration Parameters

	UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc [±] (k=2)
	0	CW	Х	0.0	0.0	1.0	0.00	145.7	±3.3 %
	4-7		Υ	0.0	0.0	1.0		149.5	
1		1000000	Z	0.0	0.0	1.0		128.7	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

B Numerical linearization parameter: uncertainty not required.

Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field unknew.

: 65 of 86 : VPYLB1FJ FCC ID

Issue date : February 22, 2016 Revised date : June 2, 2016

EX3DV4-SN:3917 August 13, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3917

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
2450	39.2	1.80	7.03	7.03	7.03	0.38	0.80	± 12.0 %
3500	37.9	2.91	6.89	6.89	6.89	0.33	1.10	± 13.1 %

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

**A frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

**Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX3-3917_Aug15 Page 5 of 8

: 66 of 86 : VPYLB1FJ FCC ID

Issue date : February 22, 2016 Revised date : June 2, 2016

August 13, 2015 EX3DV4-SN:3917

DASY/EASY - Parameters of Probe: EX3DV4- SN:3917

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
2450	52.7	1.95	7.15	7.15	7.15	0.32	0.90	± 12.0 %
3500	51.3	3.31	6.41	6.41	6.41	0.41	1.07	± 13.1 %

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

**At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

**Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX3-3917_Aug15

Page 6 of 8

Page : 67 of 86 FCC ID : VPYLB1FJ Issue date : February 22, 2016

Revised date : June 2, 2016

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 68 of 86 FCC ID : VPYLB1FJ Issue date : February 22, 2016

Revised date : June 2, 2016

EX3DV4_ SN:3917 August 13, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3917

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	66.3
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Certificate No: EX3-3917_Aug15 Page 8 of 8

Page : 69 of 86 FCC ID : VPYLB1FJ

Issue date : February 22, 2016 Revised date : June 2, 2016

4. Dosimetric E-Field Probe Calibration (EX3DV4, S/N: 3922)

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

UL Japan (Vitec)

Certificate No: EX3-3922_Jun15

CALIBRATION CERTIFICATE

Object EX3DV4 - SN:3922

Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

Calibration date: June 17, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID .	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	01-Apr-15 (No. 217-02128)	Mar-16
Power sensor E4412A	MY41498087	01-Apr-15 (No. 217-02128)	Mar-16
Reference 3 dB Attenuator	SN: S5054 (3c)	01-Apr-15 (No. 217-02129)	Mar-16
Reference 20 dB Attenuator	SN: S5277 (20x)	01-Apr-15 (No. 217-02132)	Mar-16
Reference 30 dB Attenuator	SN: S5129 (30b)	01-Apr-15 (No. 217-02133)	Mar-16
Reference Probe ES3DV2	SN: 3013	30-Dec-14 (No. ES3-3013_Dec14)	Dec-15
DAE4	SN: 660	14-Jan-15 (No. DAE4-660_Jan15)	Jan-16
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-14)	In house check: Oct-15

Calibrated by:

Name
Israe Elnaouq
Laboratory Technician

Signature

Laboratory Technician

Approved by:

Katja Pokovic
Technical Manager

Issued: June 18, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-3922_Jun15 Page 1 of 11

Page : 70 of 86 FCC ID : VPYLB1FJ

Issue date : February 22, 2016 Revised date : June 2, 2016

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

tissue simulating liquid TSL NORMx,y,z sensitivity in free space sensitivity in TSL / NORMx,y,z ConvE diode compression point DCP

crest factor (1/duty_cycle) of the RF signal CF A, B, C, D modulation dependent linearization parameters

Polarization φ ϕ rotation around probe axis

9 rotation around an axis that is in the plane normal to probe axis (at measurement center), Polarization 9

i.e., $\vartheta = 0$ is normal to probe axis

information used in DASY system to align probe sensor X to the robot coordinate system Connector Angle

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,v,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Page 2 of 11 Certificate No: EX3-3922_Jun15

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 71 of 86 FCC ID : VPYLB1FJ Issue date : February 22, 2016 Revised date : June 2, 2016

EX3DV4 – SN:3922 June 17, 2015

Probe EX3DV4

SN:3922

Manufactured: March 8, 2013 Calibrated: June 17, 2015

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: EX3-3922_Jun15

Page 3 of 11

: 72 of 86 Page FCC ID : VPYLB1FJ

Issue date : February 22, 2016

Revised date : June 2, 2016

June 17, 2015 EX3DV4-SN:3922

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3922

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.37	0.45	0.50	± 10.1 %
DCP (mV) ^B	104.8	103.1	100.7	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc [⊨] (k=2)
0	CW	X	0.0	0.0	1.0	0.00	134.1	±3.3 %
		Y	0.0	0.0	1.0		131.4	
		Z	0.0	0.0	1.0		141.4	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

: 73 of 86 Page : VPYLB1FJ FCC ID Issue date : February 22, 2016 Revised date : June 2, 2016

June 17, 2015 EX3DV4-SN:3922

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3922

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
2450	39.2	1.80	7.39	7.39	7.39	0.23	1.15	± 12.0 %
2600	39.0	1.96	7.20	7.20	7.20	0.34	0.95	± 12.0 %
5200	36.0	4.66	5.35	5.35	5.35	0.30	1.80	± 13.1 %
5250	35.9	4.71	5.10	5.10	5.10	0.30	1.80	± 13.1 %
5300	35.9	4.76	5.07	5.07	5.07	0.30	1.80	± 13.1 %
5500	35.6	4.96	4.85	4.85	4.85	0.35	1.80	± 13.1 %
5600	35.5	5.07	4.62	4.62	4.62	0.40	1.80	± 13.1 %
5750	35.4	5.22	4.75	4.75	4.75	0.40	1.80	± 13.1 %
5800	35.3	5.27	4.60	4.60	4.60	0.40	1.80	± 13.1 %

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency

Page 5 of 11 Certificate No: EX3-3922_Jun15

below 300 MHZ is ± 10, 25, 40, 50 and 70 MHZ for Convr assessments at 30, 64, 126, 150 and 220 MHZ respectively. According validity can be extended to ± 110 MHZ.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip

diameter from the boundary.

Page : 74 of 86 FCC ID : VPYLB1FJ

Issue date : February 22, 2016 Revised date : June 2, 2016

EX3DV4- SN:3922 June 17, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3922

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
2450	52.7	1.95	7.49	7.49	7.49	0.30	0.80	± 12.0 %
2600	52.5	2.16	7.28	7.28	7.28	0.30	0.80	± 12.0 %
5250	48.9	5.36	4.46	4.46	4.46	0.40	1.90	± 13.1 %
5600	48.5	5.77	3.87	3.87	3.87	0.50	1.90	± 13.1 %
5750	48.3	5.94	4.08	4.08	4.08	0.50	1.90	± 13.1 %

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Certificate No: EX3-3922_Jun15 Page 6 of 11

FAt frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

the ConvF uncertainty for indicated target tissue parameters.

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Page : 75 of 86 : VPYLB1FJ FCC ID Issue date : February 22, 2016 Revised date : June 2, 2016

June 17, 2015 EX3DV4-SN:3922

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Page : 76 of 86 FCC ID : VPYLB1FJ Issue date : February 22, 2016 Revised date : June 2, 2016

June 17, 2015 EX3DV4- SN:3922

Receiving Pattern (ϕ), $9 = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Page : 77 of 86 FCC ID : VPYLB1FJ Issue date : February 22, 2016 Revised date : June 2, 2016

EX3DV4- SN:3922 June 17, 2015

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-3922_Jun15 Page 9 of 11

Page : 78 of 86 FCC ID : VPYLB1FJ Issue date : February 22, 2016 Revised date : June 2, 2016

EX3DV4- SN:3922 June 17, 2015

Conversion Factor Assessment

Deviation from Isotropy in Liquid

Error (ϕ , ϑ), f = 900 MHz

Certificate No: EX3-3922_Jun15 Page 10 of 11

Page : 79 of 86 FCC ID : VPYLB1FJ Issue date : February 22, 2016 Revised date : June 2, 2016

EX3DV4- SN:3922 June 17, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3922

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	73.4
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Certificate No: EX3-3922_Jun15 Page 11 of 11