Boosting Financial Trend Prediction with Twitter Mood Based on Selective Hidden Markov Models

Yifu Huang¹, Shuigeng Zhou^{1*}, Kai Huang¹ and Jihong Guan²

¹Shanghai Key Lab of Intelligent Information Processing
School of Computer Science, Fudan University
{huangyifu, sgzhou, kaihuang14}@fudan.edu.cn

²Department of Computer Science and Technology, Tongji University
jhguan@tongji.edu.cn

DASFAA 2015, Hanoi, Vietnam

The Start

Accuracy: **91.967%**

The Start (Cont.)

But under certain circumstance

Outline

- Overview
- 2 Method
- 3 Experiment
- 4 Conclusion

Summary

- What?
 - Make more accurate and controllable stock prediction
- Why?
 - Analyze and model the causality behind stock trend
 - Design and implement more practical prediction method
- How?
 - Accuracy: exploit society mood
 - Controllability: adopt selective prediction

Workflow

Mood Extraction

- Behavior finance
 - Individual mood -> individual decision
 - Society mood -> society decision
- Society mood measurement
 - Twitter, sense the world
- POMS Bipolar Lexicon
 - Composed-anxious (Com.), agreeable-hostile (Agr.), elated-depressed (Ela.), confident-unsure (Con.), energetic-tired (Ene.), clearheaded-confused (Cle.)
 - Expanding by WordNet synsets

Mood Extraction (Cont.)

- Efficient extractation under MapReduce framework
 - Twitter data is large, so map it to different nodes, extract poms vector from each tweet, and reduce them to overall poms index
- Map (offset, line, date, poms_individual)
 - Filter
 - Ignore {http:, www.}, hold {i feel, makes me, ...}
 - Stem
 - Agreed -> agree, disabled -> disable, ...
 - Analyze
 - Seren -> composed, shaki -> anxious, ...
- Reduce (date, poms_individual, date, poms_society)
 - Average

Mood Evaluation

- Granger Causality Analysis
 - Determine whether one time series is useful in forecasting another
- Y: growth rate of financial index; X: each Twitter mood

$$Y_t = y_0 + \sum_{i=1}^{lag} y_i Y_{t-i} + \varepsilon_t$$
 (1)

$$Y_{t} = y_{0} + \sum_{i=1}^{lag} y_{i} Y_{t-i} + \sum_{i=1}^{lag} x_{i} X_{t-i} + \varepsilon_{t}.$$
 (2)

Multi-stream sHMM

- Hidden Markov Models -> HMM
 - Generative probabilistic model with latent states, where hidden state transitions and visible observation emissions are assumed to be Markov processes
- Selective prediction -> sHMM
 - Identify risk state set and prevent predictions that are made from them
- Multiple stream -> Multi-stream sHMM
 - Treat historical financial trend and Twitter mood trends as multiple observation sequences generated by sHMM

Multi-stream sHMM - Training

Multi-stream sHMM - Training - Refine

Multi-stream sHMM - Prediction

Multi-stream sHMM (Cont.)

- Large-scale performance evaluation
 - Random initialization number is large, so map Multi-stream sHMM to different nodes, get error rate from each model after train and predict, and reduce them to overall error rate
- Map (offset, line, reject_bound, error_rate)
 - Train
 - Predict
- Reduce (reject_bound, error_rate, reject_bound, avg_error_rate)
 - Average

Twitter Mood

Financial Index

Results of Granger Causality Analysis

Table 1: p_{value} results of S&P500 and NYSE for Twitter2009 (all $p_{value}^* \le 0.1$).

Lag	S&P500						NYSE Com. Agr. Ela. Con. Ene. Cle.					
	Com.	Agr.	Ela.	Con.	Ene.	Cle.	Com.	Agr.	Ela.	Con.	Ene.	Cle.
1	0.704	0.226	0.681	0.696	0.535	0.270	0.739	0.179	0.756	0.625	0.529	0.385
								0.372				
								0.096*				
								0.134				
5								0.258				
6								0.061*				
7	0.428	0.148	0.331	0.262	0.955	0.218	0.364	0.094*	0.418	0.231	0.941	0.296

Table 2: p_{value} results of S&P500 and NYSE for Twitter2011 (all $p_{value}^* \leq 0.1$).

Lag	S&P500							NYSE					
	Com.	Agr.			Ene.								
1	0.352				0.223								
2	0.690				0.082*								
3	0.876				0.172								
4	0.886				0.241								
5	0.929				0.328							0.475	
6	0.872				0.266							0.523	
7	0.885	0.476	0.999	0.524	0.109	0.621	0.840	0.413	1.000	0.472	0.071*	0.587	

Prediction Performance Comparison

Table 3: Comparison with six methods using Twitter mood.

	Error Rate (%)								
Model	Twitte	er2009	Twitter 2011						
	S&P500	NYSE	S&P500	NYSE					
VAR	26.667	33.333	46.667	44.444					
HMM	36.667	46.667	44.444	54.444					
CRF	40.000	40.000	45.556	44.444					
SVM	40.000	46.667	50.000	44.444					
NN	36.667	46.667	37.778	32.222					
cDPM	40.000	43.333	48.889	38.889					
	39.715(1.0)	45.802(1.0)	45.796(1.0)	45.802(1.0)					
$\mathbf{msHMM}(C_B)$	30.055(0.5)	35.972(0.5)	42.408(0.5)	35.972(0.5)					
$ \mathbf{msim}(c_B) $	$22.209(0.3)^*$	$33.227(0.3)^*$	$36.622(0.2)^*$	$31.869(0.1)^*$					
	8.033 (0.1)	32.694 (0.1)	35.380 (0.1)	31.869 (0.1)					

Prediction Performance Comparison (Cont.)

Fig. 4: Risk Coverage Curves for Twitter2009.

Prediction Performance Comparison (Cont.)

Fig. 5: Risk Coverage Curves for Twitter2011.

Conclusion and Future Work

- Our method not only performs better than the state-of-the-art methods, but also provides a controllability mechanism to financial trend prediction
- Explore multivariate GCA to select the optimal combination of multiple Twitter moods to improve prediction performance

The End

Thank you!

References I

- [1] Dmitry Pidan, Ran El-Yaniv: Selective Prediction of Financial Trends with Hidden Markov Models. NIPS 2011:855-863
- [2] Johan Bollen, Huina Mao, Xiao-Jun Zeng: Twitter mood predicts the stock market. J. Comput. Science (JOCS) 2(1):1-8 (2011)
- [3] Jianfeng Si, Arjun Mukherjee, Bing Liu, Qing Li, Huayi Li, Xiaotie Deng: Exploiting Topic based Twitter Sentiment for Stock Prediction. ACL 2013:24-29