Rutherford Schools Physics Project: Algebra in Physics

1 Algebraic manipulation

It is assumed that students will be familiar with the following concepts:

• Basic algebraic manipulation, including rearranging an equation to change the subject of that equation.

For example: rearrange the equation $\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$ to find an expression for u in terms of f and v. So, starting with the equation

$$\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$$

obtain an expression for 1/u by subtracting 1/v from both sides i.e.

$$\frac{1}{f} - \frac{1}{v} = \frac{1}{u} + \frac{1}{v} - \frac{1}{v} = \frac{1}{u}.$$

Before taking the reciprocal to find u it is easiest to put the left-hand side over a common factor fv i.e.

$$\frac{v-f}{fv} = \frac{1}{u}.$$

Now take the reciprocal of both sides to give

$$u = \frac{fv}{v - f}.$$

For example: rearrange the equation $F = mv^2/r$ to find an expression for v in terms of F, m and r.

So, starting with the equation

$$F = \frac{mv^2}{r},$$

to obtain an expression for v^2 multiply both sides by r and divide by m

$$\frac{r}{m}F = \frac{r}{m}\frac{mv^2}{r}.$$

Thus, cancelling m and r on the top and bottom of the expression on the right-hand side gives

$$\frac{r}{m}F = v^2,$$

and taking the square root of both sides we obtain

$$v = \sqrt{\frac{Fr}{m}}.$$

• Substituting numerical values into algebraic equations and using appropriate units.

For example: find the kinetic energy of a particle with a mass of 0.61 kg and a speed of 13 m s⁻¹. The kinetic energy of a particle is given by $E_k = \frac{1}{2}mv^2$, thus

$$E_k = \frac{1}{2}(0.61 \text{ kg})(13 \text{ m s}^{-1})^2 = 52 \text{ J}$$

since energy has the units of joules.

For example: find the force (in newtons) on a particle of mass 11 g if it has an acceleration of 3.2 ${\rm cm~s^{-2}}.$

The force on an accelerating particle is given by F = ma. To calculate the force in newtons the units of m are kg and of a are m s⁻²; thus in this case, to convert from g to kg multiply by 10^{-3} and from cm s⁻² to m s⁻² multiply by 10^{-2} , so

$$F = (11 \times 10^{-3} \text{ kg})(3.2 \times 10^{-2} \text{ m s}^{-2}) = 3.5 \times 10^{-4} \text{ N}$$

In this problem, rearrange the physical formulae and relationships given to obtain an expression for the variable/variables indicated (for example in (i) a = F/m).

- (i) F = ma, subject: a.

- (ii) W = mg, subject: m. (iii) $\rho = \frac{m}{V}$, subject: m. (iv) V = IR, subjects: I, R.

- (iv) V = IR, subjects: I, R. (v) $F = \frac{\Delta p}{\Delta t}$, subject: Δp . (vi) pV = nRT, subject: n. (vii) $F = \frac{Qq}{4\pi\epsilon_0 r^2}$, subject: q. (viii) $F = \frac{mv^2}{r}$, subject: r. (ix) $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$, subjects: R (not 1/R), R_1 (not $1/R_1$). (x) $E_k = \frac{1}{2}mv^2$, subject: v. (xi) $P = \frac{V^2}{R}$, subject V. (xii) $F = -\frac{GMm}{r^2}$, subject: r. (xiii) $F = BIL\sin\theta$, subject: θ .

- (xiii) $F = BIL\sin\theta$, subject: θ .

Solution 1:

Exercise 2: In this problem, rearrange the equations given to obtain an expression for one variable in

- (i) v = u + at, t (in terms of u, v and a) and a (in terms of u, v and t).
- (ii) $s = \frac{1}{2}(u+v)t$, u (in terms of s, v and a) and t (in terms of s, u and v).
- (iii) $s = ut + \frac{1}{2}at^2$, u (in terms of s, a and t), a (in terms of s, u and t), t (in terms of s and a assuming u = 0) and t (in terms of s, u and a).
- (iv) $v^2 = u^2 + 2as$, u (in terms of s, v and a), a (in terms of u, v and s) and s (in terms of u, v and a). Starting with the equations v = u + at and $s = ut + \frac{1}{2}at^2$ eliminate t to show that $v^2 = u^2 + 2as$. Starting with the equations v = u + at and $s = \frac{1}{2}(u + v)t$ show that $s = ut + \frac{1}{2}at^2$.

Solution 2:

Exercise 3: In this problem, calculate the values of the specified quantity using appropriate units.

- (i) Using v = u + at, find v if $u = 3.0 \,\mathrm{m \ s^{-1}}$, $a = 9.8 \,\mathrm{m \ s^{-2}}$ and $t = 2.0 \,\mathrm{s}$. (ii) Using v = u + at, find v if $u = 3.0 \,\mathrm{cm \ s^{-1}}$, $a = 9.8 \,\mathrm{m \ s^{-2}}$ and $t = 2.0 \,\mathrm{ms}$.

Solution 3: