Открытая олимпиада по математике

19 декабря 2017

Указания

1. Пример

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}$$

2. Пример

$$x_n = \begin{cases} 1, & n - \text{простое,} \\ 0, & n - \text{непростое.} \end{cases}$$

3. Обозначим интеграл

$$I = \int_{-1}^{1} \frac{x^{2k} + 2017}{2018^x + 1} \, dx,$$

и сделаем замену t = -x.

$$I = \int_{-1}^{1} \frac{t^{2k} + 2017}{2018^t + 1} \cdot 2018^t dt,$$

После сложения данных интегралов

$$2I = \int_{-1}^{1} (x^{2k} + 2017) \ dx = \frac{2}{2k+1} + 2 \cdot 2017.$$

4. Заметим, что для функции $g(x) = 3 - \frac{9}{x}$ верно, что g(g(g(x))) = x. Откуда получаем систему из трех неизвестных:

$$\begin{cases} f(x) + f\left(3 - \frac{9}{x}\right) = x - \frac{9}{x} \\ f\left(3 - \frac{9}{x}\right) + f\left(-\frac{9}{x - 3}\right) = 3 - \frac{9}{x} - \frac{9}{3 - \frac{9}{x}} \\ f\left(-\frac{9}{x - 3}\right) + f\left(x\right) = -\frac{9}{x - 3} - \frac{9}{-\frac{9}{x - 3}} \end{cases}$$

для всех $x \neq 0$, $x \neq 3$. Откуда находим решение $f(x) = x - \frac{3}{2}$ для всех $x \neq 0$, $x \neq 3$. С учетом непрерывности, получаем, что функция доопределяется на всех числовой прямой в таком же виде.

- 5. Достаточно использовать 2 факта:
 - 1) все лучи исходящие из фокуса параболы после отражения идут параллельно оси симметрии параболы;
 - 2) биссектрисы внутренних односторонних углов при параллельных прямых перпендикулярны.
- 6. Все нечетные n подходят. Для этого достаточно вспомнить, что биномиальные коффициенты обладают свойством симметрии $C_n^k = C_n^{n-k}$. В случае четного n, согласно постулату Бертрана среди чисел от n/2 до n существует простое. Причем степень данного простого числа будет нечетна, чего не может быть.
- 7. Замена $b_n = \pi a_n$ дает последовательность:

$$\begin{cases} b_0 = \pi - 1, \\ b_{n+1} = b_n - \sin b_n. \end{cases}$$

Правая часть b_n —sin b_n положительна и ограничена на $(0; \pi-1)$. Несложно показать, что последовательность будет убывающей. Следовательно, она сходится. Предел легко найти из предельного перехода: $b = \pi n$. Так как предел должен лежать в $[0; \pi-1]$, то это 0. Ответ: π .

8. Заметим, что $f(n,k) + f(k,n) = 2^{n+k+1}$. Это можно доказать по индукции. Ответ: $f(n,n) = 4^n$.