Trig Final (Solution v1)

- You can use a calculator (like Desmos)
- You should have a unit-circle with special angles and coordinates marked.

Question 1

In the figure below, we see a circle and a central angle that subtends an arc. The radius is 68 meters. The arc length is 110 meters. What is the angle measure in radians?

$$\theta = \frac{L}{r} \qquad r = \frac{L}{\theta} \qquad L = r\theta$$

 $\theta = 1.618$ radians.

Question 2

Consider angles $\frac{-17\pi}{6}$ and $\frac{11\pi}{4}$. For each angle, use a spiral with an arrow head to \mathbf{mark} the angle on a circle below in standard position. Then, find \mathbf{exact} expressions for $\cos\left(\frac{-17\pi}{6}\right)$ and $\sin\left(\frac{11\pi}{4}\right)$ by using a unit circle (provided separately).

Find $cos(-17\pi/6)$

$$\cos(-17\pi/6) = \frac{-\sqrt{3}}{2}$$

Find $sin(11\pi/4)$

$$\sin(11\pi/4) = \frac{\sqrt{2}}{2}$$

Question 3

If $\tan(\theta) = \frac{-12}{5}$, and θ is in quadrant IV, determine an exact value for $\cos(\theta)$.

Ignore any negatives and the quadrant, and draw a right triangle (based on SOHCAHTOA) in standard (quadrant I) orientation.

Solve the Pythagorean Equation

$$5^{2} + 12^{2} = C^{2}$$

$$C = \sqrt{5^{2} + 12^{2}}$$

$$C = 13$$

Rescale the triangle so the hypotenuse is 1. Reflect the triangle into Quadrant IV in a unit circle.

$$\cos(\theta) = \frac{5}{13}$$

Question 4

A mass-spring system oscillates vertically with a frequency of 3.77 Hz, a midline at y = -8.3 meters, and an amplitude of 5.7 meters. At t = 0, the mass is at the maximum height. Write an equation to model the height (y in meters) as a function of time (t in seconds).

Any of these equations would get full credit.

$$y = 5.7\cos(2\pi 3.77t) - 8.3$$

or

$$y = 5.7\cos(7.54\pi t) - 8.3$$

or

$$y = 5.7\cos(23.69t) - 8.3$$