PAT-NO:

JP409312176A

DOCUMENT-IDENTIFIER: JP 09312176 A

TITLE:

CONNECTING MEMBER, AND STRUCTURE AND METHOD FOR

CONNECTING ELECTRODES USING THIS CONNECTING MEMBER

PUBN-DATE:

December 2, 1997

INVENTOR-INFORMATION:

NAME TSUKAGOSHI, ISAO HIROZAWA, YUKIHISA KOBAYASHI, KOJI OTA, TOMOHISA MATSUOKA, HIROSHI WATANABE, ITSUO TAKEMURA, KENZO SHIOZAWA, NAOYUKI WATANABE, OSAMU

KOJIMA, KAZUYOSHI

ASSIGNEE-INFORMATION:

NAME

COUNTRY

HITACHI CHEM CO LTD

N/A

APPL-NO:

JP08127981

APPL-DATE:

May 23, 1996

INT-CL (IPC): H01R011/01, H01R009/09, H01R043/00

ABSTRACT:

PROBLEM TO BE SOLVED: To provide a connecting member, which can reduce the

flow-out of the electrolyte from an electrode and which has excellent high resolution and excellent connecting reliability, by relatively setting the melt viscosity of a binder component at the time of adhesion equal to that of an insulating adhesive layer or less.

SOLUTION: This connecting member is a multi-layer connecting member obtained

by forming an insulating adhesive layer 2 in at least one surface of a conductive adhesive layer 1, which is formed of a conductive material and a binder and which has conductivity in the pressurizing direction. The insulating adhesive layer 2 can be formed in both surfaces of the conductive adhesive layer 1. Furthermore, the insulating adhesive layer 2 can be formed into the multi-layer structure so as to add an adhering function. The surface of these layer is provided with a separator 5, which can be peeled, at need so as to eliminate the unnecessary adhesiveness and so as to prevent the adhesion of dust. A binder component having melt viscosity at the time of connection at 500 poise or less is desirable. A bonder component having melt viscosity at the time of connection lower than that of the insulating adhesive layer 2 by 0.1-1000 poise is desirable.

COPYRIGHT: (C)1997,JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平9-312176

(43)公開日 平成9年(1997)12月2日

(51) Int.CL ⁶		識別記号	庁内整理番号	FΙ		技術表示箇所			
H01R	11/01		7815-5B	H01R	11/01		C 1		
	9/09				9/09	(
	43/00				43/00		Z		
				審査請求	大韻求	請求項の数16	OL	(全 10 頁)	
(21)出願番号		特顯平8-127981		(71)出題人	000004455				
					日立化	成工業株式会社			
(22)出廣日		平成8年(1996)5		東京都	新宿区西新宿2	丁目1番	1号		
			,	(72)発明者	塚越	功			
					茨城県	下館市大字五所?	雪1150番	地 日立化	
					成工業	株式会社五所官	L場内		
				(72)発明者	廣澤	秦幸			
					茨城県	下館市大字五所?	雪1150番	地 日立化	
					成工業	株式会社五所宮	L場内		
				(72)発明者	小林 5	宏治			
					茨城県	下館市大字五所?	拿1150番	地 日立化	
					成工業	株式会社五所宫	L場内		
				(74)代理人	、弁理士	若林 邦彦			
							展	終質に続く	

(54) 【発明の名称】 接続部材および談接続部材を用いた電極の接続構造並びに接続方法

(57)【要約】

【課題】長時間接続信頼性に優れ、導電粒子と電極との 正確な位置合わせが不要な作業性に優れた、高分解能の 接続部材およびをこれを用いた電極の接続構造を得るこ と。

【解決手段】導電材料とバインダとよりなる加圧方向に 導電性を有する接着層の少なくとも片面に絶縁性の接着 層が形成されてなる多層接続部材であって、バインダ成 分の接続時の溶融粘度が絶縁性接着層に比べ同等以下と したことを特徴とする半導体チップ用の接続部材および 接続構造。

1

【特許請求の範囲】

【請求項1】導電材料とバインダとよりなる加圧方向に 導電性を有する接着層の少なくとも片面に絶縁性の接着 層が形成されてなる多層接続部材であって、バインダ成 分の接続時の溶融粘度が絶縁性接着層に比べ同等以下で あることを特徴とする半導体チップ用の接続部材。

【請求項2】バインダ成分の接続時の溶融粘度が500 ポイズ以下であることを特徴とする請求項1記載の接続 部材。

【請求項3】バインダ成分の接続時の溶融粘度が絶縁性 10 接着層に比べ0.1ポイズから1000ポイズ低いことを特徴とする請求項1記載の接続部材。

【請求項4】バインダ成分と絶縁性接着層とが共通材料を含有してなることを特徴とする請求項1記載の接続部材。

【請求項5】バインダ成分と絶縁性接着層とが接着性に 差を有してなることを特徴とする請求項1記載の接続部 材。

【請求項6】バインダ成分および/または絶縁性接着層に絶縁粒子を含有してなることを特徴とする請求項1記 20 載の接続部材。

【請求項7】導電材料が導電粒子もしくは導電粒子の表面に絶縁被覆を形成してなることを特徴とする請求項1 記載の接続部材。

【請求項8】セパレータが絶縁性接着層に接してなることを特徴とする請求項1記載の接続部材。

【請求項9】半導体チップの接続用電極面の長径と短径の比(L/D)が20以下であることを特徴とする請求項1記載の接続部材。

【請求項10】相対峙する電極列間の少なくとも一方が 30 突出した電極列間の接続構造であって、請求項1記載の 導電材料が相対峙する電極間に存在し、かつ絶縁性接着 層が突出電極の少なくとも基板側の周囲を覆ってなることを特徴とする電極の接続構造。

【請求項11】突出した電極の頂部から基板側にかけて 導電材料の密度が傾斜的に薄いことを特徴とする請求項 10記載の電極の接続構造

【請求項12】少なくとも一方が突出した電極を有する 相対時する電極列間に、請求項1記載の接続部材の絶縁 性接着層が突出した電極側となるように配置し、バイン 40 ダ成分と絶縁性の接着層との接続時の溶融粘度が絶縁性 の接着層に比べて、相対的にバインダ成分が低い条件下 で加熱加圧することを特徴とする電極の接続方法。

【請求項13】絶縁性接着層側に熱源を配し加熱加圧することを特徴とする請求項12記載の電極の接続方法。

【請求項14】少なくとも一方が突出した電極を有する相対時する電極列間に、請求項1記載の接続部材の絶縁性接着層が突出した電極側となるように配置し加熱加圧してなる接続方法において、加熱加圧工程を2段階以上に分割し、その間に接続電極の通電検査工程および/ま 50

たはリペア工程とを必要に応じて行うことを特徴とする の電極の接続方法。

【請求項15】接続電極の保持が可能な程度に接続部材の凝集力を増加せしめて通電検査することを特徴とする 請求項14記載の電極の接続方法。

【請求項16】電極接続部を加圧しながら通電検査する ことを特徴とする請求項14記載の電極の接続方法 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、半導体チップ等の 電子部品と回路板を接着固定すると共に、両者の電極同 士を電気的に接続する接続部材、およびこれを用いた電 極の接続構造並びに接続方法に関する。

[0002]

【従来の技術】近年、電子部品の小型薄型化に伴い、こ れらに用いる回路は高密度、高精細化している。このよ うな電子部品と微細電極の接続は、従来のはんだやゴム コネクタ等では対応が困難であることから、最近では分 解能に優れた異方導電性の接着剤や膜状物(以下接続部 材)が多用されている。この接続部材は、導電粒子等の 導電材料を所定量含有した接着剤からなるもので、この 接続部材を電子部品と電極や回路との間に設け、加圧ま たは加熱加圧手段を構じることによって、両者の電極同 士が電気的に接続されると共に、電極に隣接して形成さ れている電極同士には絶縁性を付与して、電子部品と回 路とが接着固定されるものである。上記接続部材を高分 解能化するための基本的な考えは、導電粒子の粒径を隣 接電極間の絶縁部分よりも小さくすることで隣接電極間 における絶縁性を確保し、併せて導電粒子の含有量をこ の粒子同士が接触しない程度とし、かつ電極上に確実に 存在させることにより、接続部分における導電性を得る ことである。

[0003]

【発明が解決しようとする課題】上記従来の方法は、導 電粒子の粒径を小さくすると、粒子表面積の著しい増加 により粒子が2次番集を起こして連結し、隣接電極間の 絶縁性が保持できなくなる。また、導電粒子の含有量を 減少すると接続すべき電極上の導電粒子の数も減少する ことから、接触点数が不足し接続電極間での導通が得ら れなくなるため、長期接続信頼性を保ちながら接続部材 を高分解能化することは極めて困難であった。すなわ ち、近年の著しい高分解能化すなわち電極面積や隣接電 極間 (スペース) の微細化により、電極上の導電粒子が 接続時の加圧または加熱加圧により、接着剤と共に隣接 電極間に流出し、接続部材の高分解能化の妨げとなって いた。このとき、接着剤の流出を抑制するために、接着 剤を高粘度とすると電極と導電粒子の接触が不十分とな り、相対峙する電極の接続が不可能となる。一方、接着 剤を低粘度とすると、導電粒子の流出に加えてスペース 部に気泡を含みやすく接続信頼性、特に耐湿性が低下し

2

てしまう欠点がある。

【0004】このようなことから、導電粒子含有層と絶 縁性接着層を分離した多層構成の接続部材とし、導電粒 子含有層の接続時における粘度を絶縁性接着層よりも相 対的に高粘度もしくは高凝集力することで、導電粒子を 流動し難くして電極上に導電粒子を保持する試みも、例 えば特開昭61-195179号公報、特開平4-36 6630号公報等にみられる。しかしながらこれらは接 続時に導電粒子含有層が絶縁性接着層に比べ高粘度であ るため、電極と導電粒子の接触が不十分となるために、 接続抵抗値が高いことから接続信頼性が不満足である。 また、接続抵抗値を低下するために導電粒子含有層から 導電粒子をあらかじめ露出させ、電極との接触を得やす い構成とした場合、導電粒子の粒子径を大きくする必要 があり高分解能化に対応できない。なお、このような微 細電極や回路の接続を可能とし、かつ接続信頼性に優れ た接続部材として、両方向の必要部に導電粒子の密集領 域を有する接続部材の提案もある。これによれば、半導 体チップのようなドット状の微細電極の接続が可能とな るものの、導電粒子の密集領域とドット状電極との正確 20 な位置合わせが必要で、作業性に劣る欠点がある。

【0005】本発明は、上記欠点に鑑みなされたもので、導電粒子が接続時に電極上から流出し難いので電極上に保持可能であり、かつ電極と導電粒子の接触が得やすく、また接続部に気泡を含み難いことから、長時間接続信頼性に優れ、導電粒子と電極との正確な位置合わせが不要なことから作業性に優れた、半導体チップ類の接続に有用な高分解能の接続部材に関する。すなわち、我々の検討(後述実施例の項に詳述)によれば、接続後の電極上の導電粒子の保持性について、多層の接続部材の30構成と、電極接続面の長径と短径の比(L/D)とに極めて特徴的な事実の存在することが分かり本発明に至った。

[0006]

【課題を解決するための手段】本発明の第1は、導電材 料とバインダとよりなる加圧方向に導電性を有する接着 層の少なくとも片面に絶縁性の接着層が形成されてなる 多層接続部材であって、バインダ成分の接続時の溶融粘 度が、絶縁性接着層に比べ同等以下であることを特徴と する半導体チップ類の接続部材に関する。また本発明の 40 第2は相対峙する電極列間の少なくとも一方が突出した 電極列間の接続構造であって、前記導電材料が相対峙す る電極間に存在し、かつ絶縁性接着層が突出電極の少な くとも基板側の周囲を覆ってなることを特徴とする電極 の構造に関する。また本発明の第3は、少なくとも一方 が突出した電極を有する相対峙する電極列間に、前記接 続部材の絶縁性接着層が突出した電極側となるように配 置し、バインダ成分と絶縁性の接着層との接続時の溶融 粘度が絶縁性の接着層に比べて、相対的にバインダ成分 が低い条件で加熱加圧することを特徴とする電極の接続 50 4

方法に関する。さらに本発明の第4は、絶縁性接着層が 突出した電極関となるように配置し加熱加圧してなる接 続方法において、加熱加圧工程を2段階以上に分割し、 その間に接続電極の通電検査工程および/またはリペア 工程とを必要に応じて行うことを特徴とするの電極の接 続方法に関する。

[0007]

【発明の実施の形態】本発明を図面を参照しながら説明 する。図1は、本発明の一実施例を説明する接続部材の 10 断面模式図である。本発明の接続部材は、導電材料とバ インダとよりなる加圧方向に導電性を有する導電性接着 層1の少なくとも片面に絶縁性接着層2が形成されてな る多層接続部材である。図2のように絶縁性接着層2 は、導電性接着層1の両面に形成しても良い。図1~2 において、図示していないが絶縁性接着層2を、さらに 多層構成として接着性等の機能を付加しても良い。これ らの表面には不要な粘着性やごみ等の付着防止のため に、図1のように剥離可能なセパレータ5が必要に応じ て存在出来る。セパレータ5は、図示していないが表裏 にも形成可能である。図1の場合、セパレータ5が絶縁 性接着層2に接してなるので、例えば片側の基板が平面 電極の場合の仮貼り付けに際して、凹凸の少ない平面電 極側にセパレータ5の存在しない導電性接着層1を形成 出来るので、接続が行いやすので作業性が良く好都合で ある。これらの場合、連続テープ状であると接続作業工 程の連続自動化が図れるので好ましい。

【0008】図3は、加圧方向に導電性を有する導電性 接着層1を説明する断面模式図である。 導電性接着層1 は、導電材料3を含有したバインダ4よりなる。ここに 導電材料4としては、図3 (a)~(g)のようなもの が適用可能である。これらのうち導電材料3は、図3 (c)~(e)のようにバインダ5の厚み方向に単層で 存在できる粒径、すなわちバインダ5の厚みとほぼ同等 の粒径とすることが、接続時に導電材料3が流動しにく いために電極上に導電材料3が保持しやすく好ましい。 導電材料3がバインダ4の厚みとほぼ同等の場合、簡単 な接触により電極と導電可能となり導電性が得やすい。 バインダ4に対する導電材料3の割合は、0.1~20 体積%程度、より好ましくは1~15体積%が、異方導 電性が得やすく好ましい。また厚み方向の導電性を得や すくして高分解能とするために、バインダ5の厚さは膜 形成の可能な範囲で薄い方が好ましく、20 µm以下よ り好ましくは10μm以下である。 導電材料3として は、例えば図3の(a)~(e)の例示のように導電粒 子で形成することが、製造が比較的容易に入手しやすい ことから好ましい。また、導電材料3は、図3(f)の ようにバインダ5に貫通口を設けてめっき等で導電体を 形成したり、図3(g)のようにワイヤ等の導電繊維状 としても良い。

O 【0009】導電粒子としては、Au、Ag、Pt、N

i、Cu、W、Sb、Sn、はんだ等の金属粒子やカー ボン等があり、またこれら導電粒子を核材とするか、あ るいは非導電性のガラス、セラミックス、プラスチック 等の高分子等からなる核材に前記したような材質からな る導電層を被覆形成したもので良い。さらに導電材料6 を絶縁層で被覆してなる絶縁被覆粒子や、導電粒子とガ ラス、セラミックス、プラスチック等の絶縁粒子の併用 等も分解能が向上するので適用可能である。微小な電極 上に1個以上好ましくはなるべく多くの粒子数を確保す 好ましくは 7μ m以下 1μ m以上である。 1μ m以下で は絶縁性接着層を突き破って電極と接触し難い。また、 導電材料3は、均一粒子径であると電極間からの流出が 少ないので好ましい。これら導電粒子の中では、プラス チック等の高分子核材に導電層を形成したものや、はん だ等の熱溶融金属が、加熱加圧もしくは加圧により変形 性を有し、接続時に回路との接触面積が増加し、信頼性 が向上するので好ましい。特に高分子類を核とした場 合、はんだのように融点を示さないので軟化の状態を接 続温度で広く制御でき、電極の厚みや平坦性のばらつき に対応し易いので特に好ましい。また、例えばNiやW 等の硬質金属粒子や、表面に多数の突起を有する粒子の 場合、導電粒子が電極や配線パターンに突き刺さるの で、酸化膜や汚染層の存在する場合にも低い接続抵抗が 得られ、信頼性が向上するので好ましい。

【0010】バインダ4と絶縁性接着層2は、熱可塑性 材料や、熱や光により硬化性を示す材料が広く適用でき る。これらは接着性の大きいことが好ましい。これらの なかでは、接続後の耐熱性や耐湿性に優れることから、 硬化性材料の適用が好ましい。なかでもエポキシ系接着 30 剤は、短時間硬化が可能で接続作業性が良く、分子構造 上接着性に優れるので特に好ましい。エポキシ系接着剤 は、例えば高分子量のエポキシ、固形エポキシと液状工 ポキシ、ウレタンやポリエステル、アクリルゴム、NB R、シリコーン、ナイロン等で変性したエポキシを主成 分とし、硬化剤や触媒、カップリング剤、充填剤等を添 加してなるものが一般的である。本発明のバインダ成分 4と絶縁性接着層2とは、各成分中に共通材料を1%以 上好ましくは5%以上含有すると、両層の界面接着力が 向上するので好適である。共通材料としては、主材料や 40 硬化剤等がより効果的である。

【0011】本発明においては、バインダ成分の接続時 の溶融粘度が、絶縁性接着層に比べ同等以下であること を特徴とする。この点について、図4~5を用いて説明 する。図4は、バインダ成分4と絶縁性接着層2との加 熱時の溶融粘度を示す模式説明図である。本願は、接続 時の温度下でバインダ成分4(A)が絶縁性接着層2

(B) に比べ相対的に同等以下であり、好ましくはこの 時の(A)と(B)の粘度の差を0.1~1000ポイ ズ程度とし、より好ましくは1~200ポイズとするこ 50 きる。この時、測定時に反応が進行し粘度の変化が生じ

とが特徴である。粘度の差が大き過ぎると電極と粒子と の接触が不十分になりやすい。後述する図5でも説明す るが、接続時の接触と流動過程のバランスから電極上に 粒子を保持し、かつ電極と粒子との接触を有効に得るた めに好ましい粘度範囲が存在する。同様な理由により、 接続時の溶融粘度は、バインダ成分が500ポイズ以下 で行うことが好ましく、この時、絶縁性接着層が100 0ポイズ以下であることがより好ましい。

【0012】図5(a)に示す接触過程で、まず導電材 るには、15μm以下の小粒径粒子が好適であり、より 10 料3が相対的に溶融粘度が、同等以上の絶縁性接着層2 に埋め込まれあるいは一部が捕捉された状態で、導電材 料3の位置が保持される。次いで図5 (b)の流動過程 において、絶縁性の接着層の軟化により導電材料3が突 出電極12と接触し、平面電極13との間で導電可能と なる。バインダ成分の接続時の溶融粘度が絶縁性接着層 に比べ、低粘度である好ましい実施態様の場合、絶縁性 接着層2は、導電材料3の保持が可能で隣接する突出電 極間のスペースを気泡の無い状態で接続できる。この場 合、絶縁性接着層2の軟化促進のために、接続部材の絶 緑性接着層が突出した電極側となるように配置し、絶縁 性接着層側に熱源を配し加熱加圧することがさらに好ま しい。この時、加熱加圧工程を2段階以上に分割し、必 要に応じて通電検査工程および/またはリペア工程とを 含む電極の接続方法とすることも可能である。加熱加圧 工程を2段階以上に分解することで、接着剤の硬化反応 に伴う流動過程の粘度制御が可能になるので、気泡の無 い良好な接続が可能となる。加えて硬化型接着剤の問題 点であるリペア性の付与が可能となる。

> 【0013】通電検査工程は、接続電極の保持が可能な 程度に、接続部材の凝集力を増加せしめ、あるいは電極 接続部を加圧しながら行うことができる。通電極検査 は、例えば両電極からリード線を取り出し接続抵抗の測 定や動作試験により可能である。この時、導電材料3と 電極との接触状態の外観検査も、併用もしくは独立して 行うことも出来る。リペア性とは、不要部の接着剤を除 去して溶剤等で清浄化し再接続することである。一般的 に硬化型接着剤は、硬化終了後に網状構造が発達し、熱 や溶剤等に不溶不融性となり、清浄化が極めて困難なた め従来から問題視されていた。加熱加圧工程の第一段階 で、例えば導電材料3が突出電極12と接触し、平面電 極13との間で導通可能な状態で両電極の通電検査を行 う。この時、不良電極の接続部があれば、この状態でリ ペアし再接続を行う。接着剤は、未硬化あるいは硬化反 応の不十分な状態なので、剥離し易く溶剤にも浸され易 くリペア作業が容易である。

【0014】溶融粘度の測定法としては、バインダ成分 4と絶縁性接着層2とを相対的に比較できれば良く特に 規定しないが、同一の方法とすることが好ましく、例え ば高温下の測定が可能な一般的な回転式粘度計を使用で る例えば熱硬化系配合の場合は、硬化剤を除去したモデル配合での測定値を採用出来る。バインダ成分4と絶縁性接着層2との接続時の溶融粘度に差を設ける方法としては、材料の分子量や分子の絡み合いよる固有粘度の組み合わせや、増粘材としての充填剤の選択、および硬化系における反応速度の相違制御等が一般的である。本発明の接続部材料の製法としては、例えば導電性接着層1と、絶縁性接着層2をラミネートしたり、積層して順次塗工する等の方法が採用できる。

【0015】本発明の接続部材を用いた電極の接続構造 10 とその製法について、図6~8により説明する。図6は、チップ基板11に形成された突出電極12と、基板13の平面電極14とが、本発明の接続部材を介して接続された構造である。すなわち、相対峙する電極列間の少なくとも一方が突出した電極列間の接続構造であって相対峙する電極間12-14間に導電材料3が存在し、かつ突出電極12の周囲15よりも導電材料の密度が高い状態で存在し、相対峙する電極列間が接続される。また、絶縁性接着層2が突出電極12の少なくとも突出する電極の周囲15を覆っている。ここに平面電極14 20 は、基板11面からの凹凸がないか、あっても数μm以下とわずかな場合をいう。これらを例示すると、アディティブ法や薄膜法で得られた電極類が代表的である。

【0016】図7は、基板に形成された電極が突出電極 12と12'同士の場合である。すなわち、図2で示し た両面に絶縁性接着層2および2'を有する接続部材を 介して接続した構造である。絶縁性接着層2および2' は、それぞれ突出電極12と12'の突出する電極の周 囲を覆っており、また、チップ基板面11および基板面 13と接している。図8は、基板に形成された電極が突 30 出電極12と凹状電極16の場合である。この場合も凹 状電極16を図6に示した平面電極14に置き換えた形 で可能である。ここに凹状電極16の例として、例えば 半導体チップ類の突出電極 (バンプ) 形成前のA 1 パッ ド等があり、不要部は絶縁層18で被覆される。絶縁層 18はシリカ、窒化ケイ素、ポリイミド等が使用され、 厚みは数μmが一般的である。図8の場合、チップ類に 突出電極が形成不要であり、低コスト化が可能である。 【0017】図6~8においては、導電性接着層1と絶 縁性接着層2が境界を形成している場合を図示したが両 40 層は混合されても良く、また図9のように突出した電極 12の頂部17から基板11側にかけて、導電材料3の 密度が傾斜的に薄くなる構成でも良い。 図6~8におい て、チップ基板11としては、シリコン、ガリウムーヒ 素、ガリウムーリン、水晶、サファイア、ガーネット、 フェライト等の半導体類がある。 基板13としては、ポ リイミドやポリエステル等のプラスチックフィルム、ガ ラス繊維/エポキシ等の複合体、シリコン等の半導体、 ガラスやセラミックス等の無機質等を例示できる。突出 電極12は、バンプ類の他に各種回路類や端子類も含む 50

ことができる。なお、図6~8で示した各種電極類は、 それぞれ任意に組み合わせて適用できる。ここにチップ 基板11の突出電極12は、半導体チップの接続用電極 面の長径と短径の比(L/D)が20以下であることが 好ましく、1~10であることがより好ましい。この理

由は、本発明の接続部材を用いた接続後の電極上の導電 粒子の保持性が、L/Dの上記範囲内で良好なことによ

【0018】接続後の電極上の導電粒子の保持性について、多層の接続部材の構成と、電極接続面の長径と短径の比(L/D)とに極めて特徴的な事実の存在する理由については十分に明らかとなっていないが、接着剤の流動する際の方向性と熱伝達性の影響と考えられる。本発明の接続部材を用いた電極の接続方法は、接続部材の絶縁性接着層2が突出した電極12側となるように配置し、バインダ成分と絶縁性の接着層との接続時の溶融粘度が絶縁性の接着層に比べて、相対的にバインダ成分の方が低い条件下で加熱加圧する。

[0019]

【作用】本発明によれば、バインダ成分の接続時の溶融 粘度が絶縁性接着層に比べ、同等以下であるので、電極 の接続時に、導電性接着層1の導電材料3が相対的に溶 融粘度が同等以上の絶縁性接着層2に埋め込まれ、ある いは一部が捕捉された状態で接触し、突出電極12上に 導電材料3の位置が保持される。次いで、絶縁性の接着 層の軟化流動により、導電材料3が突出電極12と接触 し導通可能となる。この時絶縁性接着層2は、バインダ 成分4に比べ粘度が高く、導電材料3の保持が可能であ り、隣接する突出電極間のスペース部分を気泡の無い状態で接続できる。本発明によれば、半導体チップ等の接 続用電極面の長径と短径の比(L/D)が小さな場合、 微小な突出電極12上に多くの導電材料3が確実に保持 されるので接続信頼性が高く、また高価な導電材料を効 率良く適用できるので省資源的である。

【0020】本発明によれば、突出電極12上に導電材 料3が確実に保持され導通可能となるので、導通検査の 信頼性が向上する。接着剤は、未硬化あるいは硬化反応 の不十分な状態で導通検査可能なのでリペア作業が容易 である。絶縁性接着層2は、突出した電極12側となる ように配置するので、隣接電極間の絶縁性と分解能が向 上する。加えて、絶縁性接着層2の溶融粘度が高い構成 の場合に、接続圧力が加わらないので隣接電極間に導電 材料3が一層流入しにくい。 導電性接着層1の導電材料 3は、全面に均一に分散されてなるので、導電粒子と電 極との正確な位置合わせが不要なことから作業性に優れ る。接着層は、その目的に応じ、例えば電極基板の材質 に適合した接着性を示す組み合わせが可能なことから材 料の選択肢が拡大し、接続部の気泡減少等により、やは り接続信頼性が向上する。また一方を溶剤に可溶性もし くは膨潤性としたり、あるいは耐熱性に差を持たせるこ

とで、一方の基板面から優先的に剥離可能とし、再接続 するいわゆるリペア性を付与することも可能となる。あ るいは電極基板の材質にに適合した任意の組み合わせと することも可能であり、電極と導電粒子の接触が得やす く、製法も簡単である。また、接着層を接続部の外には み出させ封止材的作用により、補強や防湿効果を得るこ ともできる。

[0021]

【実施例】以下実施例でさらに詳細に説明するが、本発 明はこれに限定されない。

実施例1

(1) 導電性接着層の作製

フェノキシ樹脂(高分子量エポキシ樹脂)とマイクロカ プセル型潜在性硬化剤を含有する液状エポキシ樹脂 (エ ポキシ当量185)の比率を30/70とし、酢酸エチ ルの30%溶液を得た。この溶液に、粒径4±0.2 μ mのポリスチレン系粒子にNi/Auの厚さ0.2/ 0.02 μmの金属被覆を形成した導電性粒子を8体積 %添加し、混合分散した。この分散液をセパレータ(シ リコーン処理ポリエチレンテレフタレートフィルム、厚 20 み40µm) にロールコータで塗布し、110℃で20 分乾燥し、厚み5 µmの導電性接着層を得た。この接着 層の硬化剤を除去したモデル配合の粘度を、デジタル粘 度計HV-8 (株式会社レスカ製)により測定した。1 50℃における粘度は80ポイズであった。

【0022】(2)絶縁性接着層の形成と接続部材の作

(1)の配合比を40/60とし導電性接着層から導電 性粒子を除去し、厚み15µmのシートを前記(1)と 同様に作製した。まず(1)の導電性接着層面と(2) の接着層面とをゴムロール間で圧延しながらラミネート した。以上で図1の2層構成の厚みが20µmの多層接 続部材を得た。前記と同様に測定した絶縁性接着層の1 50℃における粘度は280ポイズであった。したがっ て150℃における導電性接着層と絶縁性接着層との粘 度の差は、200ポイズである。

【0023】(3)接続

評価用ICチップ(シリコン基板、2×12mm、高さ 5 mm、長辺側2辺にバンプと呼ばれる50μm φ、高さ20μmの金電極が300個形成)と、ガラス 40 1.1mm上に酸化インジウム厚み0.2μm(IT ○、表面抵抗20Ω/□) の薄膜回路を有する平面電極 とを接続した。ガラス側のITO電極を前記ICチップ のバンプ電極サイズに対応させ周辺に測定用のリードを 引き出した。接続部材をICチップの大きさよりも若干 大きい2.5×14mmに切断し、平面電極側に導電性 接着層がくるようにして仮接続した。基板が平滑である ことに加え接続部材の有する粘着性により、貼り付けが 容易でこの後のセパレータ剥離も簡単であった。次にI Cチップのバンプと、平面電極とを位置合わせし、15 50 150℃における粘度の差を変化させた。結果を前述実

10

O℃、30kgf/mm2、15秒で加熱加圧し接続体 を得た。この時接続装置の熱源は絶縁性の接着層側に配 置し、平面電極側に導電性接着層を配置した。

【0024】(4)評価

この接続体の断面を研磨し顕微鏡で観察したところ、図 6相当の接続構造であった。隣接電極間のスペースは気 泡混入がなく粒子が球状であったが、電極上は粒子が圧 縮変形され上下電極と接触保持されていた。相対峙する 電極間を接続抵抗、隣接する電極間を絶縁抵抗として評 10 価したところ、接続抵抗は1Ω以下、絶縁抵抗は1010 **Ω以上であり、これらは85℃、85%RH1000時** 間処理後も変化が殆どなく良好な長期信頼性を示した。 本実施例における電極上 (50μmφ=1962.5μ m2)の接続に寄与している有効平均粒子数は、20個 (最大23個、最小18個、以下同様に表示)であっ た。接続に寄与している有効粒子とは、接続面をガラス 側から顕微鏡 (×100) で観察し、電極との接触によ り光沢を有しているものとした。またL/Dは50μm φ (直径) のなので1.0である。本実施例では、バン プ上の粒子は圧縮変形され上下電極と接触保持されてい た。隣接バンプ間に気泡混入がなく、良好な長期信頼性 を示した。導電粒子は、相対峙する電極間距離のばらつ きに応じて粒子の変形度が異なり、部分的にバンプに食 い込むものも見られ、全電極において良好な接続を得

【0025】比較例1

実施例1と同様であるが、厚みが20µmの従来構成の 単層の導電性接着層を得た。実施例1と同様に評価した ところ、電極上 (50 µm φ) の粒子数は最大13個、 最小0個であり、電極上に有効粒子の無いものが見ら れ、また実施例1に比べ最大と最小のばらつきが大きか った。また、接続体の絶縁抵抗を測定したところショー ト不良が発生した。接続時に導電粒子が電極上から流出 し、隣接電極間(スペース部)での絶縁性が保持できな くなったと見られる。

【0026】実施例2

実施例1の導電性接着層の他の面に、さらに同様に絶縁 性接着層を形成し、図2の3層構成の多層接続部材を得 た。また、実施例1のガラス平面電極に代えて、ポリイ ミドフィルム上に、高さ18µmの銅の回路を有する2 層FPC回路板とした。実施例1と同様に接続し、図7 相当の接続体を得た。実施例1と同様に評価したところ 良好な接続特性を示した。電極上の有効粒子数は、突出 電極同士の接続なので粒子が流出しやすい構成にもかか わらず、全電極において10個以上の確保が可能であっ た。

【0026】実施例3~5および比較例2~3

実施例1と同様であるが、絶縁性接着層のフェノキシ樹 脂と液状エポキシ樹脂の配合比を変えることで、両層の 11

施例1と共に表1に示す。各実施例では、電極上の有効 粒子数が多くばらつきも比較的少なく、実施例1と同様 に良好な接続特性を示した。比較例2では、粘度の差が 大きすぎるため絶縁性接着層から導電粒子が露出できず に電極上に有効粒子が見られず、接続が不可能であっ た。比較例3は、接続部材の構成を実施例1と逆にした* * 従来から知られている 2 層構成であるが、有効粒子数が 少なく電極上に有効粒子の無いものが見られ、また実施 例1に比べ最大と最小のばらつきが大きかった。

12

[0027]

【表1】

	バインダ粘度 (ポイズ)	粘度の差 (ポイズ)	電極上の有効粒子数 (個/50μmφ)
実施例3	200	0	13 (11~15)
実施例4	200	1	19 (17~22)
実施例1	80	200	20 (18~23)
実施例5	80	1000	16 (16~22)
比較例2	80	10000	なし
比較例3	200	-120	6 (0~14)

【0028】比較例4~5

平行電極の接続として実施例2のFPC回路板同士を接 /D=30)した。比較例4は、実施例1の接続部材に よる接続であるが、50μmφに換算した電極上の有効 粒子数は9個(0~16)と実施例1に比べ1/2以下 であった。比較例5は、比較例3の接続部材による接続 であるが、有効粒子数は18個(14~24)と比較例 3に比べて向上した。これらの結果から、L/Dの大き な回路板のような平行電極の接続の場合と、半導体チッ プ電極のようなL/Dの小さなドット状電極の場合とで※

※は、接続部材の最適構成が異なることが分かった。この 理由については不明であるが、接続時の熱伝達性や接着 続(電極幅D=50 μ m、接続幅L=1500 μ m、L 20 剤の流動がL/Dの影響で変化するためと考えられる。 【0029】実施例6~8

> 実施例1と同様であるが、ICチップ接続面のバンプ形 状を変化させた。バンプは長径をICチップの中央に向 けた。結果を表2に示す。L/D=1~10の各実施例 では、電極上の有効粒子数が多く、ばらつきが比較的少 なく、実施例1と同様に良好な接続特性を示した。

[0030] 【表2】

	バンプ形状 (μm)	長径と短径の比 (L/D)	電極上の有効粒子数 (個/50μmφ)
実施例6	50×50	1.41	24 (22~27)
実施例7	20×100	5.0	162 (141~182)
実施例8	20×200	10.0	245 (228~253)

【0031】実施例9

実施例1と同様であるが、ICチップ接続面のバンプを 形成しなかった。すなわち、A1配線の必要部にパッド 合SiO2)で覆われた凹状電極の半導体チップであ り、図8の構成である。この場合、半導体チップに導電 性接着層側を仮接続した。本実施例では実施例1と同様 に良好な接続特性を示し、チップ類への突出電極が形成 不要であり、極めて経済的であった。

【0032】実施例10

実施例2の接続部材と同様であるが、導電性粒子の粒子 径を7 μmとし導電性接着層厚みを7 μmとした。また 絶縁性接着層の厚みを片側25μm、他の面を50μm に形成した。電極は、QFP形ICのリード(厚み10★50

- ★0μm、ピッチ300μm、電極幅350μm、接続幅 3000µm、L/D=8.6)であり、ガラスエポキ シ基板上の銅の厚み35μmの端子と接続した。 本構成 が形成され、パッド以外は厚み1μmの絶縁層(この場 40 は図7類似であるが、ICのリード側(片側)に基板の ない構成である。本実施例は、高さの大きな電極同士の 接続であるが、電極ずれがなく良好な接続特性を示し た。導電性シート中の導電材料は図示していないが、粒 子は圧縮変形され上下電極と接触保持されていた。隣接 電極間に気泡混入がなく、良好な長期信頼性を示した。 本実施例では、基板のない部分もリード高さに沿って接 着層が形成され、リードを固定できた。電極上の有効粒 子数は、全電極において10個以上の確保が可能であっ た。
 - 【0033】実施例11~12

実施例1と同様であるが、ガラス基板上に5個のICチ ップを搭載できる基板に変更し、加熱加圧工程を2段階 とした。まず、150℃、20kgf/mm2で、2秒 後に加圧しながら各接続点の接続抵抗をマルチメータで 測定検査した(実施例11)。同様であるが他の一方 は、150℃、20kgf/mm2、3秒後に接続装置 から除去した。加熱加圧により接着剤の凝集力が向上し たので、各ICチップは、ガラス側に仮固定が可能で無 加圧で同様に検査(実施例12)した。両実施例ともに 1個のICチップが異常であった。そこで異常チップを 10 剥離して新規チップで前記同様の接続を行ったところ、 いずれも良好であった。両実施例ともに接着剤は硬化反 応の不十分な状態なので、チップの剥離や、その後のア セトンを用いた清浄化も極めて簡単であり、リペア作業 が容易であった。以上の通電検査工程およびリペア工程 の後で、150℃、20kgf/mm2、15秒で接続 したところ、両実施例ともに良好な接続特性を示した。 バンプ上の有効粒子数は、全電極において19個以上の 確保が可能であった。本実施例では実施例1に比べバン プ上の有効粒子数が増加し、電極上からの流出が少な い。加熱加圧工程を2段階としたので、粒子の保持性が さらに向上したと見られる。

【0034】実施例13

実施例1の接続部材と同様であるが、導電粒子を表面に 凹凸有するカルボニルニッケル (平均粒径3 µm) と し、添加量4体積%、導電性接着層の厚みを5μmに変 更した。また絶縁性接着層をカルボキシル変性SEBS (スチレンーエチレンーブチレンースチレンブロック共 重合体)とマイクロカプセル型潜在性硬化剤を含有する 液状エポキシ樹脂 (エポキシ当量185) の比率を20 /80とし、厚み15µmのシートを前記と同様に作製 し、前記導電性接着層面とラミネートした。同様に測定 した150℃における粘度は100ポイズであった。 し たがって導電性接着層と絶縁性接着層との粘度の差は2 0ポイズである。実施例1と同様に評価したところ、電 極に導電粒子の先端が食い込んでおり、電極上の有効粒 子数は、100個以上が確保できた。接続抵抗、絶縁抵 抗、長期信頼性ともに良好あった。本実施例では、導電 性接着層と絶縁性接着層とで、高分子成分を変えたので 接着後に、絶縁性接着層側の面から綺麗に剥離可能であ 40 った。このことは、リペア作業の容易さを意味する。導 電性接着層と絶縁性接着層とのTMA(熱機械分析)に よる引っ張り法で求めたTg(ガラス転移点)は、前者 が125℃、後者が100℃であった。これはリペア作 業において剥離温度を高温とした場合、接着層の耐熱性 の差を利用して剥離可能であり、凝集力の差を設け易い ことから剥離作業に有効である。

【0035】実施例14~16

実施例1の接続部材と同様であるが、絶縁粒子として実 【図9】本発明の施例1の導電性粒子の核体であるポリスチレン系粒子を 50 示す断面模式図。

14

1体積%、導電性接着層(実施例14)、絶縁性接着層(実施例15)、および両層(実施例16)にそれぞれ混合分散した。実施例1と同様に評価したところ、接続抵抗、絶縁抵抗、長期信頼性ともに良好であった。絶縁粒子の添加量が少ないので、各実施例で流動性に対する影響は見られなかった。実施例14では、導電性粒子の間に絶縁粒子が分散され導電性接着層のみの異方導電性の分解能向上に有効であった。実施例15は、絶縁性接着層の絶縁性保持に有効で、実施例16は、実施例14~15の両者の特徴を有していた。実施例14と16の絶縁粒子は、電極間で導電粒子と同様に変形保持された。

【0036】実施例17

実施例1の接続部材と同様であるが、導電粒子の表面を 絶縁被覆処理を行った。すなわち、平均粒径4μmの導 電粒子の表面を、ガラス転移点127℃のナイロン樹脂 で厚み約0.2μm被覆し、添加量を15体積%に増加 した。実施例1と同様に評価したが、良好な接続特性を 示した。本実施例では、電極上の粒子数が著しく増加し 20 た。電極接続部は、接続時の熱圧による絶縁層およびバインダの軟化により導通可能であるが、隣接電極列のスペース部は熱圧が少なく導電材料の表面が絶縁層で被覆 されたままなので、絶縁性も良好であった。バンプ上の 有効粒子数は、全電極で30個以上の確保が可能であった。本構成では、導電材料のバインダに対する濃度を高 密度に構成できた。

[0037]

【発明の効果】以上詳述したように本発明によれば、バインダ成分の接続時の溶融粘度が相対的に絶縁性の接着層に比べて同等以下であることから、電極上からの流出が少ない。したがって、高分解能かつ接続信頼性に優れた接続部材およびこれを用いた電極の接続構造並びに接続方法が提供できる。

【図面の簡単な説明】

- 【図1】本発明の接続部材を示す断面模式図。
- 【図2】本発明の他の接続部材を示す断面模式図。
- 【図3】本発明における導電性接着層を示す断面模式 図

【図4】本発明における接着剤層の溶融粘度を示す線) 図。

【図5】本発明における接続過程を示す説明図(a)

【図6】本発明の接続部材を用いた電極の接続構造例を 示す断面模式図。

【図7】本発明の接続部材を用いた電極の接続構造例を 示す断面模式図。

【図8】本発明の接続部材を用いた電極の接続構造例を 示す断面模式図。

【図9】本発明の接続部材を用いた電極の接続構造例を 元才斯面棋式図

フロントページの続き

(72)発明者 太田 共久 (72)発明者 竹村 賢三 茨城県下館市大字五所宮1150番地 日立化 成工業株式会社五所宮工場内 会社筑波開発 (72)発明者 松岡 寛 (72)発明者 塩沢 直行 茨城県下館市大字五所宮1150番地 日立化 成工業株式会社五所宮工場内 会社筑波開発 渡辺 伊津夫 (72)発明者 渡辺 治 茨城県つくば市和台48 日立化成工業株式 茨城県つくば市

会社筑波開発研究所内

茨城県つくば市和台48 日立化成工業株式 会社筑波開発研究所内 (72)発明者 塩沢 直行 茨城県つくば市和台48 日立化成工業株式 会社筑波開発研究所内 渡辺 治 茨城県つくば市和台48 日立化成工業株式 会社筑波開発研究所内 (72)発明者 和良 茨城県つくば市和台48 日立化成工業株式 会社筑波開発研究所内