Pruned dynamic programming for optimal multiple change-point detection

Guillem Rigaill

May 2010

1/27

G. Rigaill () May 2010

Outline

DNA copy number data and multiple change-point detection

Pruned dynamic programming algorithm

G. Rigaill () May 2010 2 / 27

Outline

DNA copy number data and multiple change-point detection

Pruned dynamic programming algorithm

G. Rigaill () May 2010 3 / 27

DNA copy number data

- Gain and loss of DNA:
 - In normal cells: copy number = 2 (pairs of chromosomes)
 - ▶ In tumor cells: copy number \neq 2 on many points of the genome

4/27

G. Rigaill () May 2010

Multiple change-point detection

The data

- A succession of segments that share the same copy number
- The signal is affected by abrupt changes

Segments and segmentations

 \mathcal{M}_K the set of all possible segmentations with K segments $m \in \mathcal{M}_K$ a specific segmentation

 $r \in m$ a segment of m with n_r observations

G. Rigaill () May 2010 5 / 27

Statistical model

Normal homoscedastic segmentation

$$\forall t \in r$$
 $Y_t \sim \mathcal{N}(\mu_r, \sigma^2)$ $\{Y_t\}_t$ are independent

Means

• For a given *m* the estimation is straightforward:

$$\hat{\mu}_r = \frac{1}{n_r} \sum_{t \in r} Y_t$$

Change-points

Maximum likelihood and quadratic loss:

$$min_{m \in \mathcal{M}_K} \left\{ \sum_{r \in m} min_{\mu} \left\{ \sum_{t \in r} (Y_t - \mu)^2 \right\} \right\}$$

G. Rigaill () May 2010

Finding optimal change-point positions?

The problem

- A lot of possible segmentations $\binom{n-1}{K-1}$:
 - $n = 10^5$, $K = 100 \rightarrow 10^{342}$
- Dynamic programming for segmentation (Bellman 1961)

Dynamic programming (DP)

- Time complexity $\Theta(Kn^2)$
- Space complexity $\Theta(n^2)$

Application to Copy Number Data

- Application to CGH data (Picard et al. 2005)
- One of the best methods for CGH data (Lai et al. 2005)

G. Rigaill () May 2010 7 / 27

One example

CGH array

- Use the DP algorithm
 - ▶ to recover the best segmentation in 1, 2, ... K segments
- Select the number of change-points

G. Rigaill () May 2010 8 / 27

Outline

DNA copy number data and multiple change-point detection

Pruned dynamic programming algorithm

G. Rigaill () May 2010 9 / 27

Finding optimal change-point positions?

Space Complexity - Cost matrix $\Theta(n^2)$

• Guédon (2008): $\Theta(Kn^2)$ time and $\Theta(Kn)$ space

Time Complexity $\Theta(Kn^2)$

With a computer of 1.8 GHz

•
$$n = 10^5 \rightarrow 2 - 3 \ hours$$

•
$$n = 10^6 \rightarrow 9 - 10 \ days$$

CGH / SNP profiles:

$$10^4 < n < 10^6$$

G. Rigaill (

How to find change-point positions when *n* is large?

Many different ways

- Heuristics to minimize the least square criterion
 - CART + dynamic programing (Gey and Lebarbier 2008)
- Different optimization problem
 - Lasso (Harchaoui and Lévy-Leduc 2007):

$$min\left\{\sum_{i}(y_i-\beta_i)^2\right\}, \quad \text{ subject to } \sum_{i}|\beta_i-\beta_{i+1}| < s_2$$

- But does not retrieve the optimal solution w.r.t. the quadratic loss

G. Rigaill () May 2010

Optimal change-points w.r.t. the quadratic loss?

Pruned DP algorithm

$$min_{m \in \mathcal{M}_K} \left\{ \sum_{r \in m} min_{\mu} \left\{ \sum_{t \in r} (Y_t - \mu)^2 \right\} \right\}$$

ullet Can be used for large SNP profiles $\sim 10^6$

G. Rigaill () May 2010

Classical DP

Optimization problem

- $\mathcal{M}_{K,t}$: all possible segmentations in K segments up to point t
- $C_{K,t}$: optimal cost in K segments up to point t

$$C_{K,t} = \min_{\{m \in \mathcal{M}_{K,t}\}} \left\{ \sum_{r \in m} \min_{\mu} \left\{ \sum_{t \in r} (Y_t - \mu)^2 \right\} \right\}.$$

Segment additivity: $\Theta(t)$ comparisons at each step $\Rightarrow \Theta(Kn^2)$

$$C_{K,t} = \min_{K-1 \le t_0 < t} \left\{ C_{K-1,t_0} + min_{\mu} \{ \sum_{i=t_0+1}^{t} (Y_i - \mu)^2 \} \right\}$$

- If we know the best solutions in K-1 segments up to any $t_0 < t$
- We get the best solution in K segments up to point t

G. Rigaill () May 2010

Known optimal value of the current segment μ^*

Optimization problem

$$H_{K,t}(\mu^*) = \min_{K-1 \le t_0 < t} \left\{ C_{K-1,t_0} + \sum_{i=t_0}^t (Y_i - \mu^*)^2 \right\}$$

Point additivity: 1 comparison at each step $\Rightarrow \Theta(n)$

$$H_{K,t+1}(\mu^*) = \min \{ H_{K,t}(\mu^*), C_{K-1,t} \} + (Y_{t+1} - \mu^*)^2$$

If we know:

- the best solution in K segments up to point t
- ② the best solution in K-1 segments up to point t
 - We get the best solution in K segments up to point t + 1

G. Rigaill () May 2010

Unknown optimal value of the current segment μ

Test P possible values of μ

- For example a grid of P regularly spaced values
- Run-time in $\Theta(Pn)$
- But does not retrieve the best solution

Test all possible values of μ ?

- Close values of μ correspond to the same last optimal change-point
- We need to store critical values of μ corresponding to a change in the last optimal breakpoint

G. Rigaill () May 2010

Candidate last change point: cost functions

Cost function $Cost_{k,t'}(\mu)$

• Best candidate in k segments with a last change-point at t':

$$\forall t' < t \qquad h_{k,t,t'}(\mu) = C_{k-1,t'} + \sum_{i=t'+1}^{t} \gamma(Y_i, \mu),$$

Update

$$\forall t > t'$$
 $h_{k,t+1,t'}(\mu) = h_{k,t,t'}(\mu) + \gamma(Y_{t+1},\mu)$

Optimal solution

$$H_{k,t}(\mu) = \min_{\{t' \in [k-1,t-1]\}} \{ h_{k,t,t'}(\mu) \}.$$

$$C_{k,t} = min_{\mu} \{ H_{k,t}(\mu) \}$$

G. Rigaill () May 2010

Candidate last change point: winning intervals

Set of winning intervals $Set_{k,t'}$

Set of values such that a last change-point at t' is optimal:

$$S_{k,t,t'} = \{ \mu \mid h_{k,t,t'}(\mu) = H_{k,t}(\mu) \}.$$

• Set of values such that a change at t' is better than a change at t:

$$I_{k,t,t'} = \{ \mu \mid h_{k,t,t'}(\mu) \leq C_{k-1,t} \}.$$

Update and Pruning

Update:

$$\begin{array}{lcl} \forall \ t>t'\geq k, & S_{k,t+1,t'} & = & S_{k,t,t'} \cap I_{k,t,t'} \\ \forall \ t'\geq k, & S_{k,t',t'}, & = & \mathbb{I}_{\mathbb{R}}(\cup_{t\in \llbracket k-1,t'-1\rrbracket}I_{k,t,t'}) \end{array}$$

• Pruning: $S_{k,t,t'} = \emptyset$ \Rightarrow $\forall t^* \geq t$ $S_{k,t^*,t'} = \emptyset$

G. Rigaill () May 2010

Candidate	Cost function	Set of Intervals
t'=1	$\textit{Cost}_{2,1} = 0 + (0.5 - \mu)^2$	$Set_{2,1} = [-0.5, 0.5]$

Candidate	Cost function	Set of Intervals
t'=1	$Cost_{2,1} = 0.25 - \mu + \mu^2$	$Set_{2,1} = [0.146, 0.5]$
t'=2	$Cost_{2,2} = C_{1,2} = 0.125$	$Set_{2,2} = [-0.5, 0.146]$

19/27

G. Rigaill () May 2010

Candidate	Cost function	Set of Intervals
t'=1	$Cost_{2,1} = 0.41 - 1.8\mu + 2\mu^2$	$Set_{2,1} = [0.146, 0.5]$
t'=2	$Cost_{2,2} = 0.285 - 0.8\mu + \mu^2$	$Set_{2,2} = [-0.5, 0.146]$

Candidate	Cost function	Set of Intervals
t'=1	$Cost_{2,1} = 0.41 - 1.8\mu + 2\mu^2$	$Set_{2,1} = [0.190, 0.5]$
t' = 3	$Cost_{2,3} = C_{1,3} = 0.14$	$Set_{2,3} = [-0.5, 0.190]$

G. Rigaill () May 2010 21 / 27

Worst case and empirical time complexity

Worst case

- Corresponds to a maximum number of intervals
- At worst 2n 1 intervals.
- Worst complexity in time: O(Kn²)
- Space complexity: $\Theta(Kn)$ space
- At worst equivalent to the classic DP algorithm

Empirical complexity

• In practice very few candidates \rightarrow runtime $\ll O(n^2)$

G. Rigaill () May 2010 22 / 27

Number of intervals stored at each step

• A simulated sequence of 3.10⁶ observations:

Number of intervals at each step:

Less than 30 points compared to a worst case of $6.10^6 - 1$

G. Rigaill () May 2010

Empirical time complexity

Time to analyze sequences of increasing size

- Computer of 1.8GHz
- For $n = 10^6$ and K = 50: 3 minutes instead of 10 days

G. Rigaill () May 2010 24 / 27

Empirical time complexity

Real Data

- Computer of 3.16GHz
- GEO GSE17359 dataset 2 × 18 × 24 chromosomes

G. Rigaill () May 2010 25 / 27

Conclusion

- Optimal segmentation w.r.t. the quadratic loss
- At worst in $O(Kn^2)$
- In practice
 - For $n = 10^5$ and K = 100 several seconds
 - For $n = 10^6$ and K = 100 a few minutes
- Can be generalized to other losses
 - For example: Poisson model

G. Rigaill () May 2010 26 / 27

Thank you

Aknowledgements

- Stéphane Robin, Emilie Lebarbier, Michel Koskas, Tristan Mary-Huard
- Emmanuel Barillot, Philippe Hupé, Tatiana Popova
- Thierry Dubois, Bérengère Marty, Virginie Maire, Aurélie Dumont-Telliez, Marion Richardson

G. Rigaill () May 2010 27 / 27