Structure Learning in Infrastructure Networks

Rajasekhar Anguluri

Department of Computer Science and Electrical Engineering
University of Maryland, Baltimore County (UMBC)
rajangul@umbc.edu

Summer Workshop, July 15 – 18, 2024 IIT, Bombay

Structure Learning Problems: Recap

Network Structure = Laplacian's Sparsity Pattern

infrastructure network

sparsity (zero & non-zero) of *L* captures network connections

 \bullet *measurables:* p-dim vectors x and y

•• *full coverage:* access *x* or/and *y*

• partial coverage: sub-vectors of x or/and y

b linear model:

$$Vec(X) = H(Y) Ve(L) + Vec(E)$$
 full coverage

to covariance models:

$$\Omega = L\Omega_{x}L$$

full coverage

$$\Omega_{OO} = K_{OO} - K_{OH} K_{HH}^{-1} K_{HO}$$
 partial

Estimation:

- 1. estimate the vector Ve(L) from data
- 2. estimate matrices Ω and Ω_{OO} from data

Infrastructure Networks have Sparse Edges

Visualization for 494 bus power network: (right) sparsity of the Laplacian matrix (colors represent the intensity of the weights) and (left) graph pattern

Infrastructure Networks have Sparse Edges

Visualization for 1132 bus power network: (right) sparsity of the Laplacian matrix (colors represent the intensity of the weights) and (left) graph pattern

Sparse Estimation: Overview

- Goals: introduce basic concepts in sparse models; the role of convexity in developing an optimization method
 - **Goal 1:** sparse linear regression problem
 - **Goal 2:** sparse inverse covariance estimation problem
 - **Goal 3:** <u>a</u>lternating <u>d</u>irection <u>m</u>ethod of <u>m</u>ultipliers (ADMM)

Sparse Estimation: Overview

Goals: introduce basic concepts in sparse models; the role of convexity in both analysis and optimization

Goal 1: sparse linear regression problem

Goal 2: sparse inverse covariance estimation problem

Goal 3: <u>a</u>lternating <u>d</u>irection <u>m</u>ethod of <u>m</u>ultipliers (ADMM)

Sparse Linear Regression: Basic Problem

Find $\beta \in \mathbb{R}^p$ such that $y = X\beta$

- $X = [x_1, ..., x_p] \in \mathbb{R}^{n \times p}$ is a full rank matrix with $p \gg n$ (high-dimensions)
- A vector is *s*-sparse if has at most *s* non-zero entries

Linear Systems of Equations

Thm: Consider a linear system $y = X\beta$.

- Existence: a solution β exists if and only if $y \in \text{range}(X)$
- Uniqueness: Let β_0 satisfy $y = X\beta$. The "infinite" solutions set: β_0 + Null(X)

Min-norm sol. Let $X \in \mathbb{R}^{n \times p}$ have full row-rank

min
$$||\beta||_2^2$$
 s.t. $y = X\beta$

$$\hat{\beta} = X^T (XX^T)^{-1} y$$

Norms: Finite-dimensional vectors

Def: A norm $||\beta||: \mathbb{R}^p \to [0, \infty)$ is a non-negative function with

$$||\alpha\beta|| = |\alpha| ||\beta||$$
 (positive scaling)

$$||\beta_1 + \beta_2|| = ||\beta_1||_2 + ||\beta_2||_2$$
 (triangle inequality)

$$||\beta|| = 0 \iff \beta = 0$$
 (non-degeneracy)

••
$$\ell_2$$
 - (Euclidean): $||\beta||_2 = (\beta_1^2 + \dots + \beta_p^2)^{1/2}$

••
$$\ell_1$$
 - (Manhattan): $||\beta||_1 = |\beta_1| + \cdots + |\beta_p|$

••
$$\ell_0$$
 - (counting): $||\beta||_0 = |\text{supp}(\beta)|$ (pseudo norm; fails scaling!)

Sparse Linear Regression: ℓ_0 - Minimization

find a sparse $\beta \in \mathbb{R}^p$ by solving the ℓ_0 - norm minimization:

$$(P_0) \quad \begin{array}{l} \underset{\beta \in \mathbb{R}^p}{\text{minimize } \|\beta\|_0} \\ \text{subject to } y = X\beta \end{array}$$

Sparse Linear Regression: ℓ_0 - Minimization

- •• ℓ_0 minimization is a combinatorial problem
- •• ℓ_0 minimization is equivalent to column selection
- exhaustive search in exponential in s (for a s sparse vector)

Sparse Linear Regression: ℓ_0 - Minimization

Exercise: suppose that the sparse solution to (P0) contains $s \le p$ non-zero entries. Show that the exhaustive search algorithm should check at least $\sum_{j=1}^{s-1} {}^{p}C_{j}$ subsets.

$$\sum_{j=1}^{p} \binom{p}{j} = 2^{p}$$

 $2^{512} = 13407807929942597099574024998205846127479365820592393377723561443721\\ 76403007354697680187429816690342769003185818648605085375388281194656\\ 9946433649006084096.$

Greedy Search or Convex Relaxation?

• original problem: computationally infeasible

$$(P_0)$$
 $\displaystyle egin{array}{ll} \min & \|eta\|_0 \ & eta \in \mathbb{R}^p \ & \mathrm{subject \, to} \,\, y = Xeta \ \end{array}$

- **greedy approach:** search over subsets in an "intelligent" way
- convex approach: replace ℓ_0 norm with ℓ_1 norm: (why?)

Convex Sets

A set $K \subseteq \mathbb{R}^p$ (or $\mathbb{R}^{p \times p}$) is convex if, for all $x, y \in K$, the line segment connecting x and y is in K

Convex Function

A function $f: K \to \mathbb{R}$ is convex if its curve lies below any chord joining two of its points

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

$$f: \mathbb{R}^{n} \to \mathbb{R}$$

$$(x, f(y))$$

Convex Function

A function $f: K \to \mathbb{R}$ is convex iff when restricted to any line that intersects its domain is convex; that is,

$$g(t) = f(x + tv)$$
 is convex, $dom(g) = \{t | x + tv \in dom(f)\}$
for all $x \in dom(f)$ and $v \in \mathbb{R}^n$

Convex Optimization Problem

- minimization: minimize a "convex" function over a convex set
- maximization: maximize a "concave" function over a convex set

advantages:

- local minima are global minima
- polynomial time-algorithms with convergence
- beautiful theory: linear algebra, matrices, analysis, probability

ℓ_1 - norm: "right" convex relaxation of ℓ_0

$$(P_0) \begin{array}{c} \underset{\beta \in \mathbb{R}^p}{\text{minimize}} \|\beta\|_0 \\ \text{subject to } y = X\beta \end{array} \qquad (P_p) \begin{array}{c} \underset{\beta \in \mathbb{R}^p}{\text{minimize}} \|\beta\|_q^q \\ \text{subject to } y = X\beta \end{array}$$

norm balls $||\beta||_q^q \le 1$: (convex to non-convex; smooth to sharp corners)

ℓ_1 - norm: "right" convex relaxation of ℓ_0

$$(P_0) \begin{array}{c} \underset{\beta \in \mathbb{R}^p}{\text{minimize}} \|\beta\|_0 \\ \text{subject to } y = X\beta \end{array} \qquad (P_p) \begin{array}{c} \underset{\beta \in \mathbb{R}^p}{\text{minimize}} \|\beta\|_q^q \\ \text{subject to } y = X\beta \end{array}$$

contours $||\beta||_q^q = 1$ touching the linear subspace $\{\beta : y = X\beta\}$

Statistical Learning vs Compressed Sensing

heuristic and intuitive explanation of ℓ_1 relaxation can be rigorously analyzed by one either (i) statistical learning or (ii) compressed sensing

compressed sensing:

- design matrix *X* is random and user choice
- non-asymptotic analysis with focus on correct support recovery (sparsity pattern)

statistical learning:

- design matrix *X* is non-random
- asymptotic and non-asymptotic analysis
- prediction error; estimation consistency; and model selection error (sparsity pattern)
- wide applications (generalized linear models, graphical models, Bayesian networks, etc.,)

ℓ_1 - Minimization Problems: Noisy Setting

exercise: show all three forms are equivalent and convex.

(noisy basis pursuit)

$$\min_{eta \in \mathbb{R}^p} \|y - Xeta\|_2^2$$
 subject to $\|eta\|_1 \leq t$

(no fancy name!)

$$\min_{eta \in \mathbb{R}^p} \frac{1}{2} \|y - Xeta\|_2^2 + \lambda \|eta\|_1$$
 LASSO

•• regularization parameter λ is determined empirically often

ℓ_1 - Minimization Problems: Noisy Setting

exercise: show all three forms are equivalent and convex.

$$egin{aligned} & \min _{eta \in \mathbb{R}^p} & \|eta\|_1 \ & ext{subject to } \|y-Xeta\|_2 \leq arepsilon \end{aligned}$$

(noisy basis pursuit)

$$\min_{eta \in \mathbb{R}^p} \|y - Xeta\|_2^2$$
 subject to $\|eta\|_1 \leq t$

(no fancy name!)

A Toy Numerical Example (OLS vs LASSO)

$$y = X\beta + \epsilon \text{ (with } \epsilon_i \sim N(0, \sigma_e^2) \text{ and } X_{ij} \sim N(0, 1)$$

$$eta = egin{bmatrix} 0 \ 2 \ 0 \ -3 \ 0 \end{bmatrix}$$

OLS	LASSO
0.2523	0
1.7341	2.0933
2.2651	0
-3.8986	-2.4351
0.1073	-0.3054

OLS	LASSO
0.0505	0
1.6480	1.5579
0.4530	0
-3.0418	-2.1472
0.0215	0

$$n=6; \sigma_e^2=0.5$$

$$\lambda = 0.1890$$

$$n = 6; \sigma_e^2 = 0.1$$

$$\lambda = 0.9625$$

$$n = 20; \sigma_e^2 = 0.1$$

$$\lambda = 0.5874$$

LASSO: Insights

- least absolute shrinkage and selection operator (LASSO)
- statistics: popularized by R.Tibshirani in 1990s (dates to 1970)
- signal processing: popularized by D. Donoho in 1990s.
- solution requires iterative techniques (e.g., ADMM)
- for $X^TX = I$, LASSO admits closed form solution (see first two papers in the references)

Soft-thresholding Operator

soft-thresholding or shrinkage operator (see supplement as well)

Sparse Estimation: Overview

- **Goals:** introduce basic concepts in sparse models; the role of convexity in both analysis and optimization
 - **Goal 1:** sparse linear regression problem
 - **Goal 2:** sparse inverse covariance estimation problem
 - **Goal 3:** <u>a</u>lternating <u>d</u>irection <u>m</u>ethod of <u>m</u>ultipliers (ADMM)

Maximum Likelihood Estimate of $\Omega = \Sigma^{-1}$

- let $\gamma \sim \mathcal{N}(0, \Omega^{-1})$, where Ω is the $p \times p$ inverse covariance matrix
- probability density function:

$$f(y) = rac{1}{\sqrt{(2\pi)^p \det\left(\Omega^{-1}
ight)}} \exp\left(-y^T \Omega y/2
ight)$$

• unconstrained MLE of Ω based on i.i.d $y_1, ..., y_K$

$$\max_{\Omega \succ 0} \underbrace{f(y_1)f(y_2)\dots f(y_K)}_{\ell(S_K;\Omega)}$$

Exercise problems

- (K ≥ p) MLE: Ω = S_K⁻¹
 (K < p) MLE does not exist

MLE: Exercise Problems

show that the MLE for Σ is **not** a convex optimization problem:

$$\widehat{\Sigma} = \max_{\Sigma > 0} - [\log(\det \Sigma) + \text{Tr}(S_K \Sigma^{-1})]$$

where $S_K = \frac{1}{K} \sum_{k=1}^K y_k y_k^T$; and > 0 means positive definiteness of matrix

• variable change: let $\Omega = \Sigma^{-1}$. Show the MLE for Ω is a convex optimization:

$$\widehat{\Omega} = \max_{\Omega > 0} \left[\log(\det \Omega) - \text{Tr}(S_K \Omega) \right]$$

hint: use the convexity of the restricted line segment method

Gaussian Graphical Models: Quick Review

inverse covariance matrices can be sparse:

$$egin{bmatrix} y_1 \ y_2 \ y_3 \end{bmatrix} \sim \mathcal{N}(0,\Sigma) \qquad \Sigma = \left[egin{array}{ccc} 2 & 1 & 1 \ 1 & 2 & 1 \ 1 & 1 & 1 \end{array}
ight] \qquad \Omega = \Sigma^{-1} = \left[egin{array}{ccc} 1 & 0 & -1 \ 0 & 1 & -1 \ -1 & -1 & 3 \end{array}
ight]$$

 $\Sigma_{12}^{-1} = 0$ means y_1 and y_2 are independent conditioned on y_3

Sparse Inverse Covariance Matrix Estimation

•• ℓ_1 – MLE for inverse covariance estimation:

$$\widehat{\Omega} = \max_{\Omega > 0} \left[\log(\det \Omega) - \text{Tr}(S_K \Omega) \right] - \lambda ||\Omega||_1$$

- $||\Omega||_1$ is the ℓ_1 norm on the off-diagonal entries
- for $\lambda > 0$, the ℓ_1 –MLE problem is convex (so a unique solution)
- •• ℓ_1 MLE as a minimization problem (we use this often than the max)

$$\widehat{\Omega} = \min_{\Omega > 0} \left[\text{Tr}(S_K \Omega) - \log(\det \Omega) \right] + \lambda ||\Omega||_1$$

Sparse Inverse Covariance with Hidden Nodes

for the observed inverse covariance matrix we have

$$\Omega_{OO} = K_{OO} - K_{OH}K_{HH}^{-1}K_{HO} \triangleq \Theta - \overline{L}$$

let the sample covariance : $\bar{S}_K = \frac{1}{K} \sum_{k=1}^K y_{O,k} y_{O,k}^T$ and consider the MLE

$$\widehat{\Omega} = \min_{\Theta, \overline{L} > 0} \left[\text{Tr}(\overline{S}_K(\Theta - \overline{L})) - \log(\det(\Theta - \overline{L})) \right] + \lambda ||\Theta||_1 + \alpha \text{Tr}(\overline{L})$$
subject to $\Theta - \overline{L} > 0$; $\overline{L} \ge 0$

- the MLE is jointly convex in (Θ, \overline{L}) ; and $\alpha, \lambda > 0$ is user defined; $Tr(\overline{L})$ is the sum of singular values
- •• the ADMM method is described in the handwritten notes supplement
- we skip how to decompose $K_{OO} = S + M$; (for context see slides for day 2) and details are in [2]

Beyond Simple Sparse Models

Loss(β ; data) + Regularizer(β)

other losses (e.g., likelihoods)

- generalized linear models (exponential family noise)
- Gaussians and Ising models (Markov random fields)
- Principal component and factor analysis

structure beyond naïve sparsity

- elastic Net
- fused Lasso
- block l1-lq norms (group Lasso)
- non-convex penalties

Sparse Estimation: Overview

- **Goals:** introduce basic concepts in sparse models; the role of convexity in both analysis and optimization
 - **Goal 1:** sparse linear regression problem
 - **Goal 2:** sparse inverse covariance estimation problem
 - **Goal 3:** <u>a</u>lternating <u>d</u>irection <u>m</u>ethod of <u>m</u>ultipliers (ADMM)

Alternating Direction Method of Multipliers

- decomposes complex into simpler problems
- suitable for large-scale and distributed optimization
- easy to handle non-differentiable functions (e.g., ℓ_1 norm)
- robust convergence properties
- old (1976) but gold technique

ADMM: General Recipe

 $\bullet \bullet$ general problem form (with f, g convex):

minimize_{x,z}
$$f(x) + g(z)$$

subject to $Ax + Bz = c$

$$L_{\rho}(x,y,z) = f(x) + g(z) + \nu^{T}(Ax + Bz - c) + (\rho/2)||Ax + Bz - c||_{2}^{2}$$

$$x^{k+1} := \mathrm{argmin}_x L_
ho \left(x, z^k, y^k
ight)$$
 // x- minimization $z^{k+1} := \mathrm{argmin}_z L_
ho \left(x^{k+1}, z, y^k
ight)$ // z- minimization

$$v^{k+1} := v^k + \rho \left(Ax^{k+1} + Bz^{k+1} - c\right)$$
 // multiplier update

ADMM for LASSO

LASSO problem:

minimize
$$(1/2)||y - X\beta||_2^2 + \lambda ||\beta||_1$$

ADMM form:

minimize
$$(1/2)||y - X\beta||_2^2 + \lambda ||z||_1$$

subject
$$\beta - z = 0$$

ADMM (scaled):

$$eta^{k+1} := \left(X^T X +
ho I
ight)^{-1} \left(X^T y +
ho (z^k - v^k)
ight)$$
 // x- minimization
$$z^{k+1} := S(eta^{k+1} + v^k, \lambda/
ho)$$
 // element-wise soft thresholding
$$v^{k+1} := v^k + \left(eta^{k+1} - z^{k+1}
ight)$$
 // multiplier update

Source: https://stanford.edu/~boyd/admm.html

ADMM for Sparse Inverse Covariance Matrix

MLE (minimization) problem:

minimize
$$\operatorname{Tr}(S\Omega) - \log \det(\Omega) + \lambda \|\Omega\|_1$$

ADMM form:

minimize
$$\operatorname{Tr}(S\Omega) - \log \det(\Omega) + \lambda ||Z||_1$$

subject to
$$\Omega - Z = 0$$

ADMM (scaled):

$$\Omega^{k+1} := rgmin_{\Omega} \left(\operatorname{Tr}(S\Omega) - \log \det \Omega + (
ho/2) \left\| \Omega - Z^k + U^k
ight\|_F^2
ight)$$
 // X- minimization $Z^{k+1} := S \left(\Omega^{k+1} + U^k, \lambda/
ho
ight)$ // soft thresholding $U^{k+1} := U^k + (\Omega^{k+1} - Z^{k+1})$ // multiplier update

Source: https://stanford.edu/~boyd/admm.html

To learn more...

Contact: rangulur@asu.edu https://rajanguluri.github.io (lecture notes: coming soon)

Books:

- I. Rish and G. Grabarnik (2014). Sparse modeling: theory, algorithms, and applications, CRC press
- ► J. Suzuki (2021). Sparse estimation with math and Python, Springer.
- ► F. Bach et.al. (2012). Optimization with sparsity-inducing penalties, Now Publishers (free online).
- T Hastie, R. Tibshirani, and M. Wainwright (2015). Statistical learning with sparsity, CRC press (free online)
- M. Nagahara (2020). Sparsity methods for systems and control, Now Publishers (free online)
- J. Wright and Y. Ma (2022). High-dimensional analysis with low-dimensional models, Cambridge Press (free online)

Papers:

- N. Gauraha (2018). Introduction to the lasso: A convex optimization approach for high-dimensional problems, Resonance 23 (4), 439-464
- № N. Gauraha (2016). Constraints and conditions: the Lasso oracle-inequalities, arXiv:1603.06177 (2016).
- M. Drton and M.H. Maathuis (2017). Structure learning in graphical modeling, Annual Review of Statistics and Its App., 4(1), 365-393
- Y. Zhao and X. Huo (2018). A survey of numerical algorithms that can solve the Lasso problems, Wiley Interdisciplinary Reviews: Computational Statistics, 15(4), e1602 (free online)
- * K. Scheinberg and S. Ma (2012). Optimization methods for sparse inverse covariance selection. In Optimization for Machine Learning, MIT press.