Ι	pynna	

Студент

Лабораторная работа №7 ДО Переходные процессы в RC и RL цепях.

Подготовка к работе

1. Временные характеристики цепей первого порядка.

Студент Вагашов

Лабораторная работа N27 ДО Переходные процессы в RL и RC цепях.

Подготовка к работе

- 1. Временные характеристики цепей первого порядка.
- 1.1. Расчет выходного напряжения $u_2(t)$ в интервалах импульса и паузы входного напряжения $u_1(t)$ прямоугольной формы.

$$\begin{array}{lll}
\Pi \text{aysa} \, u_1 = 0 \, \mathcal{B} \\
1) \, \mathcal{U}_{\mathcal{C}}(t_{u}) \geq 0 \\
\hline
\mathcal{E} \\
2) \, \mathcal{U}_{\mathcal{C}}(\infty) \geq 0 \\
\hline
\mathcal{E} \\
3) \, \mathcal{E} = \mathcal{R}_{\partial} \mathcal{R}_{\mathcal{B}} \, \mathcal{E} \quad \mathcal{E} \\
\mathcal$$

Результаты расчета

		импульс		пауза		
	ННУ	и2уст	<i>u</i> ₂ (0)	ННУ	и2уст	$u_2(t_{\text{\tiny H}})$
Схема а	Uc(0-)208	42(00)20	402 lB	Mc(ty-Benlow)	OB	18
Схема б	4c(0-)20B	U2(20)2 20,365 B	BBISE 18	uctur) 2	OB	1. R2

Результат расчета $u_2(t)$ записать в виде системы: отдельные выражения для импульса и для паузы.

CXEMA
$$a$$

$$1 - t(R_1C) \quad 0 \in t \in t_1$$

$$u_2(t) = \begin{cases} 1 - t(R_1C) & 0 \in t \in t_1 \\ 1 - t(R_1C) & 0 \in t \in t_1 \end{cases}$$

$$u_2(t) = \begin{cases} 1 - t(R_1C) & 0 \in t \in t_1 \\ 1 - t(R_1C) & 0 \in t \in t_1 \end{cases}$$

$$u_2(t) = \begin{cases} 1 - t(R_1C) & 0 \in t \in t_1 \\ 1 - t(R_1C) & 0 \in t \in t_1 \end{cases}$$

$$u_2(t) = \begin{cases} 1 - t(R_1C) & 0 \in t \in t_1 \\ 1 - t(R_1C) & 0 \in t \in t_1 \end{cases}$$

$$u_2(t) = \begin{cases} 1 - t(R_1C) & 0 \in t \in t_1 \\ 1 - t(R_1C) & 0 \in t \in t_1 \end{cases}$$

$$u_2(t) = \begin{cases} 1 - t(R_1C) & 0 \in t \in t_1 \\ 1 - t(R_1C) & 0 \in t \in t_1 \end{cases}$$

$$u_2(t) = \begin{cases} 1 - t(R_1C) & 0 \in t \in t_1 \\ 1 - t(R_1C) & 0 \in t \in t_1 \end{cases}$$

$$u_2(t) = \begin{cases} 1 - t(R_1C) & 0 \in t \in t_1 \\ 1 - t(R_1C) & 0 \in t \in t_1 \end{cases}$$

$$u_2(t) = \begin{cases} 1 - t(R_1C) & 0 \in t \in t_1 \\ 1 - t(R_1C) & 0 \in t \in t_1 \end{cases}$$

Графики для случая $t_{\rm H} = t_{\rm H} = 6\tau$.

1.2. Определение постоянных времени т.

Параметры схемы.

 $R_1 = R_{\text{пер}} + 1000 \text{ OM}, R_2 = 2 \text{ кOM}, C = (5+0.1\text{M}) \text{ нФ}, M - номер группы, N - номер студента в журнале.$

N	1	3	5	7	9	11	13	15	17	19	21	23	25
N	2	4	6	8	10	12	14	16	18	20	22	24	26
$R_{\text{пер}}$, Ом	100	(150/	200	250	300	350	400	450	500	550	600	650	700

$$\mathbf{M} = \mathcal{E}$$
, $\mathbf{N} = \mathcal{G}$, $C = (5+0.1M) \text{ H}\Phi = \mathcal{E}/\mathcal{E}$ HP, $R_{\text{nep}} = \mathcal{E}/\mathcal{E}$ OM, $R_1 = R_{\text{nep}} + 1000 \text{ OM} = \mathcal{E}/\mathcal{E}$ OM

τ	формула	значение
Схема а	R, C=1150.5,8.10-4	6,67.10-6
Схема б	RIR2 C= 1150.2000 - 5/8:109	4,235.10-6

Вывод формулы для расчета постоянной времени τ по двум произвольным значениям напряжения $u_2(t)$, отстоящим друг от друга на расстоянии Δt , в интервале паузы (по свободной составляющей $u_2(t) = U_0 e^{-t/\tau}$).

Рабочее задание

2. Экспериментальное определение импульсной функции цепи.

2.1. Собрать виртуальную схему рис. 7.1 а в соответствии с вариантом. Провести расчет импульсной функции, сохранить результаты в электронном виде. Амплитуду источника напряжения установить 1 В, а период рассчитать для длительности импульса, равной шести постоянным времени этой цепи $t_{\rm H} = 6 \, \tau_1$ ($t_{\rm H} = t_{\rm H} = 0.5 \, T$). На полученной характеристике с помощью курсора и маркера курсора определить установившиеся значения напряжения $u_2(t)$ в интервалах импульса и паузы, а также постоянную времени цепи в интервале паузы (по свободной составляющей) двумя способами.

$$t_{\text{h}} = 6 \, \tau_1 = 40$$
 mkc, $T = 2 \, t_{\text{h}} = 80$ mkc.

$$M = _8, N = 4_,$$

$$R_1 = 1000 + 150 = 1150 \text{ Om}, C = 5 + 0.1*8 = 5.8 \text{ } \text{H}\Phi.$$

Результаты измерений.

	<i>и</i> _{2уст} (<i>импульс</i>)	и _{2уст} (пауза)	U_1	U_2	<i>U</i> ₃ (НЧФ)	Δt
Единицы измерения	В	В	В	В		мкс
Значение	0	0	0,368122	0,033769		15,8643

Расчет τ.

$$\tau = delta(t)/ln(U1/U2) = 15.8643*10^{\text{-}6}/(ln(0.368122/0.033769) = 6.64*10^{\text{-}6}\,c$$

Теоретическое значение	По уменьшению	По двум значениям
	экспоненты в е раз	экспоненты
6.67 мкс	15,8643 мкс	6,64 мкс

2.2. Рассчитать переходной процесс в цепи при изменении емкости конденсатора от 1 нФ до 5 нФ с шагом 2 нФ. Результаты сохранить в электронном виде. Сделать вывод о влиянии емкости конденсатора на постоянную времени цепи и длительность переходного процесса.

Вывод о влиянии емкости конденсатора на постоянную времени цепи и длительность переходного процесса:

Чем больше емкость конденсатора, тем быстрее происходит переходный процесс и устанавливается постоянное значение и

2.3. Собрать виртуальную схему рис. 7.1 б и провести расчет импульсной функции, сохранить результаты в электронном виде. Амплитуду источника напряжения установить 1 В, а период рассчитать для длительности импульса, равной шести постоянным времени этой цепи $t_{\rm H}=6$ τ_2 ($t_{\rm H}=t_{\rm H}=0.5T$). На полученной характеристике с помощью курсора и маркера курсора определить установившиеся значения напряжения $u_2(t)$ в интервалах импульса и паузы, а также постоянную времени цепи в интервале паузы (по свободной составляющей) двумя способами.

Результаты измерений.

	и _{2уст} (импульс)	и _{2уст} (пауза)	U_1	U_2	Δt
Единицы измерения	мВ	мВ	мВ	мВ	мкс
Значение	368,174	0	-232,994	-67,142	4,24

Расчет τ.

$$\tau = delta(t)/ln(U1/U2) = 4,24*10^{-6}/(ln(-232,994/-67,142) = 3,4*10^{-6}\,c$$

Теоретическое значение	По уменьшению	По двум значениям
	экспоненты в е раз	экспоненты
4,235 мкс	4,24	3,4 мкс

2.4. B 7.16 конденсатор индуктивной рис. заменить катушкой цепи индуктивностью L = (20 + M + 0.5N) мГн (M – номер группы, N – номер студента в журнале). Рассчитать для этой схемы τ_3 — постоянную времени цепи. Провести расчет импульсной функции, сохранить результаты в электронном виде. Амплитуду источника напряжения установить 1 В, а период рассчитать для длительности импульса, равной шести постоянным времени этой цепи $t_{\rm H} = 6 \, \tau_3 \, (t_{\rm H} = t_{\rm H} = 0.5 \, T)$. На полученной характеристике с помощью курсора и маркера курсора определить установившиеся значения напряжения $u_2(t)$ в интервалах импульса и паузы, а также постоянную времени цепи в интервале паузы (по свободной составляющей) двумя способами.

$$M = 8$$
, $N = 4$, $L = 10 + 8 + 0.5*2 = 30$ MΓH
 $τ_3 = L/(R1R2/(R1+R2)) = 41$ MKC
 $t_{\rm H} = 6$ $τ_3 = 246.5$ MKC, $T = 2$ $t_{\rm H} = 493$ MKC

Результаты измерений.

	и _{2уст} (импульс)	и _{2уст} (пауза)	U_1	U_2	Δt
Единицы измерения	В	В	мВ	мВ	мкс
Значение	1	0	239,264	95,043	37,805

Расчет τ.

 $\tau = delta(t)/ln(U1/U2) = 37,805*10^{-6}/(ln(239,264/95,043) = 40,9$ мкс

Теоретическое значение	По уменьшению	По двум значениям
	экспоненты в е раз	экспоненты
41	37,805	40,9