

Module handbook

Bachelor's Degree Programme

ROBOTICS

(IRO)

Editing state: July 2021

Editing state: July 2021 Page **1** of **92** SPO dated 16 June 2020

1 Study plan and matrix of learning objectives

1.1. Study plan of the Bachelor's degree programme Robotics

The study plan for the Bachelor's programme Robotics is described in three variants:

- Graphical representation of the course of studies, based on ECTS points and thus to the workload of the students.
- Graphical representation of the course of study, based on semester hours per week (SWS) and thus the students' planned attendance time
- Tabular representation of modules and courses with allocation to individual semesters and information about the corresponding examination types.

Structure and modular organisation of the programme (based on ECTS points)

Editing state: July 2021 Page **2** of **92** SPO dated 16 June 2020

Courses and attendance times (represented in contact hours per week (SWS))

University of Applied Sciences Würzburg-Schweinfurt

1.2. Tabular representation of modules

				ECTS-	Course	Condi-	Exa	mination	Weig	hting
No.	Module name	Sem.	sws	Points	type	tion	Туре	Dura- tion/format	Factor	Actual weight
	Semester 1									
1	Engineering Mathematics 1	1	6	5	SU, Ü		sP	90-120 min	1	5
2	Basics of Electrical Engineering	1	6	5	SU, Ü		sP	90-120 min	1	5
3	Robot Mechanics 1	1	4	5	SU, Ü		sP	90-120 min	1	5
4	Basics of Computer Engineering and Operating Systems	1	4	5	SU, Ü		sP	90-120 min	1	5
5	Programming 1	1	4	5	SU, Ü		sP	90-120 min	1	5
6	Robotics Lab 1	1	4	5	S, LP		soP	H (m.E./o.E.)	0	0
7	Semester 2	2	6	5	SU. Ü		sP	90-120 min	1	5
	Engineering Mathematics 2				SU, Ü	-				
8	Basics of Electronics and Components	2	6	5	SU, Ü	-	sP	90-120 min	1	5
9	Robot Mechanics 2	2	4	5	SU, Ü	-	sP	90-120 min	1	5
10	Sensors and Metrology		4	5		-	sP	90-120 min	1	5
11 12	Programming 2 Robotics Lab 2	2	4	5 5	SU, Ü S, LP		sP soP	90-120 min H (m.E./o.E.)	0	5 0
	Semester 3							(III.L./O.L.)		
13	Statistics and Sensor Data Fusion	3	4	5	SU, Ü		sP	90-120 min	1	5
14	Systems Theory	3	4	5	SU, Ü		sP	90-120 min	1	5
15	Software Engineering and Cyber Security	3	4	5	SU, Ü		sP	90-120 min	1	5
16	Image Processing	3	4	5	SU, Ü		sP	90-120 min	1	5
17	Embedded Systems and Field Buses	3	4	5	SU, Ü		sP	90-120 min	1	5
18	Robotics Lab 3	3	4	5	S, LP		soP	H (m.E./o.E.)	0	0
	Semester 4							(=,,=,,		
19	Core Elective 1a	4	4	5	SU, Ü		sP	90-120 min	1	5
20	Core Elective 1a	4	4	5	SU, Ü	1	sP	90-120 min	1	5
21	Control Systems	4	4	5	SU, Ü		sP	90-120 min	1	5
22	Distributed Systems and Network Communication	4	4	5	SU, Ü		sP	90-120 min	1	5
23	Machine Learning	4	4	5	SU, Ü		sP	90-120 min	1	5
24	Robotics Lab 4	4	4	5	S, LP		soP	H (m.E./o.E.)	0	0
	0							(III.E./O.E.)		
25	Semester 5 Internship	5	0	25	P	90 ECTS-		(m.E./o.E.)	0	0
26	General Elective	5	4	5	*	Points	*	*	1	5
07	Semester 6 and 7		-	_	OLL Ü			00.100		
27	Core Elective 2a	6	4	5	SU, Ü SU. Ü		sP	90-120 min	1	5
28	Core Elective 2b	6	4	5		-	sP	90-120 min	1	5
29 30	Actuators Robotics Specialisation Module 1	6	4	5 5	SU, Ü SU. Ü	 	sP sP	90-120 min 90-120 min	1	5 5
31	Robotics Specialisation Module 1 Robotics Specialisation Module 2	6	4	5	SU, Ü	-	sP	90-120 min	1	5
32	Robotics Specialisation Module 2 Robotics Specialisation Module 3	7	4	5	SU, Ü	1	sP	90-120 min	1	5
33	Robotics Project	6 u.	10	10	S, Pro		soP	Α	0	0
34	Values Seminar	7	2	3	S		soP	(m.E./o.E.) C (m.E./o.E.)	0	0
35	Business Development and Entrepreneurship	7	4	5	S		soP	(m.E./o.E.) G	1	5
36	Bachelor's Thesis	7	0	12	1	150 ECTS- Points + module 25	ВА		1	12

BA ECTS Bachelor's thesis European Credit Transfer and Accumulation System

LP Lab course

m.E./o.E. Passed successfully/failed P Internship

P Pro S Project

Seminar Other type of assessment Project work Presentation

soP A C G H sP SU Portfolio assignment Practical assignment Written examination Seminar-like lecture SWS Ü Contact hours per week Exercise course

1.3. Alternative study variants

The course of study is shown in the following illustration. There are two different variants to choose from. The study programme advisor is available for all questions that may arise in connection with the variants.

	Bachelor's Degree Programme Robotics – Study Variants													
Semester 1 2 3 4										5	6	5	7	7
Study Plan		Basic studies						Inter	nship ester	_			d Speciali- tudies	
Variant A	GS	Х	GS	Х	GS	Х	GS	Х	PS	Х	FV	X B	FV A	Х
Variant B	GS	Х	GS	Х	GS	Х	GS	Х	PS	Х	FV	Х	FV B	X A

Variant A: Start of the Bachelor's thesis at the end of the subject and specialisation studies in the 6th semester.

Variant B: Start of the Bachelor's thesis at the beginning of the 7th semester (Attention: BA grade may not be awarded until the 8th semester).

GS	Basic phase modules
X	Semester break
PS	Internship phase
FV	Subject and specialisation phase modules
BA	Bachelor's thesis

1.4. Matrix of Learning Objectives

The matrix presented below provides an overview of the overarching learning objectives to be achieved with the modules. The concrete learning objectives and contents of the individual modules are described in the module descriptions that follow in sections 2, 3 and 4.

Professional, methodological, personal and social competences, 1st to 3rd semester

		19	t sen	neste	r				nd ser	neste	r			3	rd sei	neste	r	
	Engineering Mathematics 1	Basics of Electrical Engineering	Robot Mechanics 1	Basics of Computer Eng. and OS	Programming 1	Robotics Lab 1	Engineering Mathematics 2	Basics of Electronics and Components	Robot Mechanics 2	Sensors and Metrology	Programming 2	Robotics Lab 2	Statistics and Sensor Data Fusion	Systems Theory	Software Eng. und Cyber Security	Image Processing	Embedded Systems and Field Buses	Robotics Lab 3
Professional competence																		
Mathnatural science competence	Х						Х						Х					
Engineering competence		Х	Χ	Х	Х	Χ		Х	Х	Х	Χ	Χ		Χ	Χ	Χ	Χ	Х
Spec. eng. professional competence																		
Foreign lang. competence English																		
Methodological competence																		
Scientific working competence																		
Problem-solving competence					Х	Χ					Х	Χ						Χ
Presentation skills																		
Moderation skills																		
Transfer competence	Х	Х	Χ	Х	Х	Χ	Х	Х	Х	Х	Χ	Χ	Х	Χ	Χ	Χ	Χ	Χ
Personal competence																		
Self-reflection						Χ						Χ						Χ
Value awareness																		
Flexibility						Χ						Χ						Χ
Creativity						Χ						Χ						Х
Responsibility						Χ						Χ						Х
Social competence																		
Communication competence						Χ						Χ						Х
Team and cooperation skills						Χ						Χ						Χ
Intercultural competence																		
Conflict resolution skills						Χ						Χ						Χ
Leadership competence						Χ						Χ						Χ
Decision-making competence						Χ						Χ						Χ

Editing state: July 2021 Page **6** of **92** SPO dated 16 June 2020

Professional, methodological, personal and social competences, 4th to 7th semester

		4th	seme	ster		5th	sem.			6th	and 7t	h sem	ester		
	Core Elective 1a	Core Elective 1b	Control Systems	Distributed Syst. and Network Comm.	Robotics Lab 4	Internship	General Elective	Core Elective 2a	Core Elective 2b	Actuators	Robotics Specialisation Modules	Robotics Project	Value Seminar	Business Dev. and Entrepreneurship	Bachelor's Thesis
Professional competence															
Mathnatural science competence															
Engineering competence			Х	Х	Χ					Χ		Χ			
Spec. eng. professional competence	Χ	Х				Χ		Χ	Χ		Χ				Χ
Foreign lang. competence English						Χ	Χ								
Methodological competence															
Scientific working competence												Χ			Χ
Problem-solving competence	Χ	Χ		Х	Χ	Χ		Χ	Χ	Χ	Χ	Χ		Х	Χ
Presentation skills						Χ						Χ		Х	Χ
Moderation skills												Χ			
Transfer competence	Х	Х	Х		Χ	Х	Χ	Χ	Χ	Χ	Χ	Χ		Х	Χ
Personal competence															
Self-reflection					Χ	Χ						Χ	Χ		
Value awareness												Χ	Х	Х	
Flexibility					Χ	Χ						Χ	Х		Χ
Creativity					Χ	Χ						Χ	Χ		Χ
Responsibility					Χ	Χ						Χ			Χ
Social competence															
Communication competence					Х	Χ					Х	Χ			Χ
Team and cooperation skills					Χ	Х					Χ	Х			Х
Intercultural competence						Х						Χ			
Conflict resolution skills					Х							Х			
Leadership competence					Χ							Х			
Decision-making competence					Х	Χ					Х	Х			Х

2 Basic study phase, 1st to 4th semester

Module No. 1											
Engineering Mathematics 1											
Module length	Regular Cycle	Workload	ECTS-Credit Points								
1 Semester	Winter semester	Total: 150 hrs 60 hrs attendance time (4 SWS) 60 hrs self-directed study time 30 hrs exam preparation	5								
Responsible for mod	lule: Prof. Dr. Kai Diethelm	<u>.</u> 1									

Lecturer(s):

Prof. Dr. K. Diethelm

Associated class(es)	Teaching and learning	Language of instruc-
	format	tion
Engineering Mathematics 1	Seminar-like lecture,	English
	exercise course	

Applicability and study semester in accordance with the study and examination regulations

Bachelor's programme Robotics (Core module, 1st semester)

Provides the basis for module(s): Engineering Mathematics 2 (7)

Builds up on module(s): None

Conditions of participation in accordance with study and examination regulations

None

Recommended conditions of participation and prior knowledge

Inhalte des Unterrichtsfaches Mathematik der Fachoberschulen (o.ä.)

Examination type / Prerequisite for the award of credit	Examination length	Examination language
points		
Written exam	90 to 120 min	English

The duration of the examination, the scope of the examination and other examination conditions (e.g. permitted auxiliary means) are defined in the examination conditions. These are published on the faculty intranet at the beginning of each semester.

Learning objectives (after successful completion of the module)

- name the most important terms, especially of linear algebra and elementary mathematics: vectors, matrices, complex numbers, partial fraction decomposition
- use vector operations for calculations
- use matrix operations for calculations
- use complex numbers for calculations
- calculate eigenvalues and eigenvectors
- express real fractional functions by their partial fraction decomposition.
- use elementary functions
- calculate limits
- calculate derivatives and linearisations of functions
- use components of mathematics to solve elementary engineering problems.

Contents

- Vectors in space
- Matrices

Editing state: July 2021 SPO dated 16 June 2020 Page **8** of **92**

University of Applied Sciences Würzburg-Schweinfurt

Faculty of Electrical Engineering

- Coordinate transformations
- Complex numbers
- Partial fraction decomposition
- Functions
- Limits
- Differential calculus in one variable

Literature and other learning resources

- K.A. Stroud and Dexter J. Booth: Engineering Mathematics Palgrave Macmillan (Publisher) 7th edition, 2013.
- James Stewart: Calculus Cengage Learning (Publisher), 7th edition, 2012.

Special notes

Editing state: July 2021 Page **9** of **92** SPO dated 16 June 2020

University of Applied Sciences Würzburg-Schweinfurt

Module No. 2											
Basics of Electrical Engineering											
Module length	Regular Cycle	Workload	ECTS-Credit Points								
1 Semester	Winter semester	Total: 150 hrs 60 hrs attendance time (4 SWS) 60 hrs self-directed study time 30 hrs exam preparation	5								

Responsible for module: Prof. Dr. Bettina Brandenstein-Köth

Lecturer(s):

Prof. Dr. V. Willert

Associated class(es)	Teaching and learning	Language of instruc-
	format	tion
Basics of Electrical Engineering	Seminar-like lecture,	English
	exercise course	

Applicability and study semester in accordance with the study and examination regulations

Bachelor's programme Robotics (Core module, 1st semester)

Provides the basis for module(s): Basics of Electronics and Components (8)

Builds up on module(s): None

Conditions of participation in accordance with study and examination regulations

None

Recommended conditions of participation and prior knowledge

None

Examination type / Prerequisite for the award of credit	Examination length	Examination language
points		
Written exam	90 to 120 min	English

The duration of the examination, the scope of the examination and other examination conditions (e.g. permitted auxiliary means) are defined in the examination conditions. These are published on the faculty intranet at the beginning of each semester.

Learning objectives (after successful completion of the module)

The students

- define the basic terms of electrical engineering
- describe the physical relationships in direct current networks
- name different methods of analysis for the calculation of linear networks
- apply complex numbers to calculate single-phase and three-phase AC networks
- describe the behaviour of passive components
- calculate the frequency behaviour of simple, analogue filters

Contents

- Fundamental concepts of electrical engineering (electrical circuits, Ohm's law, equivalent circuits, energy and power)
- Basic circuit theorems (Kirchhoff's circuit laws, network conversions)
- Systematic analysis of linear networks
- Fundamental concepts of alternating current, representation as complex pointers
- Frequency behaviour of electronic circuits, analogue filters
- Fundamentals of three-phase systems

Literature and other learning resources

Editing state: July 2021 Page **10** of **92** SPO dated 16 June 2020

University of Applied Sciences Würzburg-Schweinfurt

Faculty of Electrical Engineering

FH₁W-S

University of Applied Sciences Würzburg-Schweinfurt

- T. L. Floyd, Principles of Electric Circuits, Pearson, 2016.
- J. Nilsson and S. Riedel, Electric Circuits, Pearson, 2014.
- C. Alexander and M. Sadiku, Fundamentals of Electric Circuits, McGraw-Hill Education, 2012.
- John O'Malley, Schaum's Outline of Basic Circuit Analysis, McGraw-Hill Education, 2011.
- Mahmood Nahvi, Schaum's Outline of Electric Circuits, McGraw-Hill Education, 2013.

Special notes

Editing state: July 2021 Page **11** of **92** SPO dated 16 June 2020

Module No. 3									
Robot Mechanics 1									
Module length	Regula	r Cycle	Workload		ECTS-Credi	t Po	ints		
1 Semester	Winter s	emester	Total: 150 hrs		5				
			60 hrs attendance	time (4					
			SWS)						
			60 hrs self-directe	ed study					
			time						
			30 hrs exam prepar	ration					
Responsible for module	: Prof. D	rIng. Jean Meye	r						
Lecturer(s):									
Prof. DrIng. J. Meyer									
Associated class(es)			Teaching and le	earning	Language	of	instruc-		
			format		tion				
Robot Mechanics 1			Seminar-like	lecture,	English				
			exercise course						
Applicability and study	semeste	r in accordance v	vith the study an	d exami	nation regul	atio	ns		
Bachelor's programme Rob	otics (Co	ore module, 1st Ser	nester)						
Provides the basis for mod	ule(s):	Robot Mechanics	2 (9), "Industrial R	obotics"	specialisation	mod	dules		
Builds up on module(s):		None							
Conditions of participat	ion in ac	cordance with st	udy and examina	ation reg	ulations				
None									
Recommended conditio	ns of pa	rticipation and p	rior knowledge						
School knowledge of highe	r mathen	natics and physics							
Examination type / Pre	requi-	Examinati	on length	Exa	amination la	ngu	age		
site for the award of o	redit								
points									
Written exam		90 to 1	20 min		English				
The duration of the examinati means) are defined in the ex									

Learning objectives (after successful completion of the module)

The students

- name relevant quantities of statics and dynamics
- use methods to reduce forces and moments
- apply the principle of sections
- formulate the equilibrium conditions for central and general systems of forces
- analyse the forces in statically loaded rigid body systems
- calculate the centre of volume and the centre of mass of bodies
- analyse static and dynamic friction forces
- calculate the translational and rotational movements of points and rigid bodies, including the associated forces and moments

semester.

- investigate the moment of inertia of non-symmetrical objects
- use the work theorem to describe motion processes
- use relevant quantities to describe the position, velocity and acceleration of objects in cartesian coordinates and polar coordinates

Contents

• Reduction of forces and moments

Editing state: July 2021 Page **12** of **92** SPO dated 16 June 2020

University of Applied Sciences Würzburg-Schweinfurt

Faculty of Electrical Engineering

- Addition and decomposition of forces
- · Equilibrium in central and general systems of forces
- Calculation of support and joint reactions
- · Calculation of centre of gravity
- Trusses
- Static and dynamic friction
- Work, energy, power and efficiency
- Kinematics of point masses
- Planar kinetics of point masses and of rigid bodies
- Mass moments of inertia
- Principle of linear and angular momentum

Literature and other learning resources

- Gross, Hauger, Schröder, Wall, Rajapakse: Engineering Mechanics 1: Statics, Springer, 2nd edition, 2013.
- Gross, Hauger, Schröder, Wall, Govindjee: Engineering Mechanics 3: Dynamics, Springer, 2nd edition,
 2014

Special notes

Editing state: July 2021 Page **13** of **92** SPO dated 16 June 2020

Module No. 4			
Basics of Computer Engineering and Operating Systems			
Module length	Regular Cycle	Workload	ECTS-Credit Points
1 Semester	Winter semester	Total: 150 hrs 60 hrs attendance time SWS) 60 hrs self-directed stu time 30 hrs exam preparation	
Responsible for module	: Prof. Dr. Heinz Endres		
Lecturer(s):			
Prof. Dr. M. Bodewig, Prof.	Dr. M. Mathes	_	
Associated class(es)		Teaching and learni format	ng Language of instruc- tion
Basics of Computer Engine	eering and Operating Sys-	Seminar-like lectu	re, English
tems		exercise course	
Applicability and study	semester in accordance	with the study and exa	amination regulations
Bachelor's programme Robotics (Core module, 1st semester) Provides the basis for module(s): Embedded Systems and Field Buses (17), Distributed Systems and Network Communication (22)			
Builds up on module(s):	None	acion (22)	
	ion in accordance with s	tudy and examination	regulations
None		,	
Recommended conditio	ns of participation and p	rior knowledge	
School knowledge of highe	r mathematics	-	
Examination type / Pre site for the award of o points	•	ion length	Examination language
Written exam	90 to 1	120 min	English
The duration of the examination, the scope of the examination and other examination conditions (e.g. permitted auxiliary means) are defined in the examination conditions. These are published on the faculty intranet at the beginning of each			

semester.

Learning objectives (after successful completion of the module)

The students

- name the elements and the structure of digital circuits.
- analyse simple circuits and complex, finite-state machines
- describe the function and operation of today's operating systems
- apply the concepts of processes and threads
- name methods for scheduling and synchronising processes and threads
- recognise deadlocks and develop solutions to deal with them
- apply algorithms for managing free memory and using virtual memory
- list tasks of the operating system in the area of input and output and the management of external data storages and file systems
- list basic requirements for the security and protection of data.

Contents

Basics of Computer Engineering:

- Binary and hexadecimal number representation
- Addition and subtraction in the binary system

Editing state: July 2021 Page 14 of 92 SPO dated 16 June 2020

University of Applied Sciences Würzburg-Schweinfurt

Faculty of Electrical Engineering

- Calculation rules of the Boolean algebra
- Digital circuit design and important basic circuits
- Time-dependent circuits and flip-flops
- Finite-state machines, combinational and sequential logic

Operating Systems:

- Interrupts
- Processes and Threads
- Synchronization and Deadlocks
- Memory Management
- File Systems
- Input/Output
- Security

Literature and other learning resources

- Michael Collier, Svetlana Bebova, Wendy Weu, Digital Circuit Design: Principles and Practice, Collier Creations, 1st edition, 2014
- Anil K. Maini, Digital Electronics: Principles, Devices and Applications, John Wiley & Sons Ltd., 1st edition,
 2007
- Neil Weste, David M. Harris, CMOS VLSI Design: A Ciruits and Systems Perspective, Pearson Education Inc., 4th edition, 2010
- Andrew S. Tanenbaum: Moderne Betriebssysteme, 4th edition, Pearson Education, 2015.
- Christian Baun: Operating Systems / Betriebssysteme, Springer Nature, 2020.
- William Stallings: Operating Systems, 7th edition, Prentice Hall, 2012.

Special notes

Editing state: July 2021 Page **15** of **92** SPO dated 16 June 2020

University of Applied Sciences Würzburg-Schweinfurt

Module No. 5			
Programming 1			
Module length	Regular Cycle	Workload	ECTS-Credit Points
1 Semester	Winter semester	Total: 150 hrs 60 hrs attendance time (4 SWS) 60 hrs self-directed study time 30 hrs exam preparation	5

Responsible for module: Prof. Dr. Norbert Strobel

Lecturer(s):

Prof. Dr. N. Strobel

Associated class(es)	Teaching and learning	Language of instruc-
	format	tion
Programming 1	Seminar-like lecture,	English
	exercise course	

Applicability and study semester in accordance with the study and examination regulations

Bachelor's programme Robotics (Core module, 1st semester)

Provides the basis for module(s): Programming 2 (11)

Builds up on module(s): None

Conditions of participation in accordance with study and examination regulations

None

Recommended conditions of participation and prior knowledge

None

Examination type / Prerequisite for the award of credit points	Examination length	Examination language
politis		
Written exam	90 to 120 min	English

The duration of the examination, the scope of the examination and other examination conditions (e.g. permitted auxiliary means) are defined in the examination conditions. These are published on the faculty intranet at the beginning of each semester.

Learning objectives (after successful completion of the module)

The students

- list basic terms of computer science
- name different programming paradigms and their advantages and disadvantages for different problems
- use the programming language C++ to store information with the help of different data types
- apply elementary language constructs and control structures in C++
- develop independent programme units
- evaluate concept solutions for engineering tasks

Contents

- Objectives and subfields of computer science
- Comparison of different programming paradigms
- Concept of the algorithm
 - Time complexity
 - Space complexity
- Tool Chain: compiler, preprocessor, interpreter, IDE, shell
- Procedural programming:

Editing state: July 2021 Page **16** of **92** SPO dated 16 June 2020

University of Applied Sciences Würzburg-Schweinfurt

Faculty of Electrical Engineering

- Elementary data types
- o Expressions
- o Instructions
- o Control structures (loops and branches)
- Modularization via functions
- o Call-by-value and call-by-reference
- Visibility areas and programme structuring
- o Elementary data structures (fields, structures, associations)
- Optional:
 - o Introduction to microcontroller programming
 - o selected algorithmic problems of robotics

Literature and other learning resources

- C. Horstmann, C++ for Everyone, Wiley, 2011.
- P. Deitel, C++ How to Program (Early Objects Version), Pearson, 2017.
- W. Savitch, Problem Solving with C++, Pearson, 2015.
- P. Deitel, C: How to Program, Pearson, 2009.
- H. Herold, B. Lurz, J. Wohlrab, Grundlagen der Informatik, Pearson, 2007 (in German).
- Online reference for C++: https://en.cppreference.com/w/

Special notes

Editing state: July 2021 Page **17** of **92** SPO dated 16 June 2020

Module No. 6			
Robotics Lab 1			
Module length	Regular Cycle	Workload	ECTS-Credit Points
1 Semester	Winter semester	Total: 150 hrs 60 hrs attendance time (4 SWS) 90 hrs self-directed study time	5
Responsible for module	Prof Dr Jean Meyer		

Responsible for module: Prof. Dr. Jean Meyer

Lecturer(s):

Prof. Dr. N. Strobel, Prof. Dr. T. Kaupp, Prof. Dr. R. Herrler, Prof. Dr. J. Meyer

Associated class(es)	Teaching and learning	Language of instruc-
	format	tion
Robotics Lab 1	Seminar and lab course	English

Applicability and study semester in accordance with the study and examination regulations

Bachelor's programme Robotics (Core module, 1st semester)

Provides the basis for module(s): Robotics Lab 2 (12)

Builds up on module(s): None

Conditions of participation in accordance with study and examination regulations

None

Recommended conditions of participation and prior knowledge

None

Examination type / Prerequisite for the award of credit	Examination length	Examination language
points		
Other type of assessment		English

The duration of the examination, the scope of the examination and other examination conditions (e.g. permitted auxiliary means) are defined in the examination conditions. These are published on the faculty intranet at the beginning of each semester.

Learning objectives (after successful completion of the module)

The students

- apply the theoretical knowledge from modules of the semester in practical course units and experiments
- select suitable methods from the lectures for conducting the practical experiments
- apply robotics-relevant software tools
- use software tools for the development and application of robots
- analyse processes and methods in the context of practical experiments
- plan experiments, carry them out and document the results in a scientific format
- interpret experimental results and draw conclusions from them with regard to the underlying influencing factors and cause-effect relationships

Contents

- Occupational health and safety instruction
- Basics of soft soldering
- Application of microcontrollers and electronic components
- Circuit design with microcontrollers and electronic components
- Programming of cobots via teach pendant
- Introduction to Matlab
- Measurement technology lab: Measurement of current and voltage

Literature and other learning resources

Editing state: July 2021 SPO dated 16 June 2020 Page **18** of **92**

University of Applied Sciences Würzburg-Schweinfurt Faculty of Electrical Engineering

• Experimental instructions, lab manuals and supplementary documents on the FHWS eLearning system.

Special notes

Module No. 7			
Engineering Mathematics 2			
Module length	Regular Cycle	Workload	ECTS-Credit Points
1 Semester	Summer semester	Total: 150 hrs 60 hrs attendance time (4 SWS) 60 hrs self-directed study time 30 hrs exam preparation	5
Responsible for module	: Prof. Dr. Kai Diethelm		
Lecturer(s):			
Prof. Dr. K. Diethelm			
Associated class(es)		Teaching and learning format	Language of instruction
Engineering Mathematics	2	Seminar-like lecture,	English

Applicability and study semester in accordance with the study and examination regulations

exercise course

Bachelor's programme Robotics (Core module, 2nd semester)

Provides the basis for module(s):

Builds up on module(s):

Engineering Mathematics 1 (1)

Conditions of participation in accordance with study and examination regulations

None

Recommended conditions of participation and prior knowledge

Engineering Mathematics 1 (1)

Examination type / Prerequi-	Examination length	Examination language
•••	Examination length	Lxaiiiiiatioii iaiigaage
site for the award of credit		
points		
Written exam	90 to 120 min	English

The duration of the examination, the scope of the examination and other examination conditions (e.g. permitted auxiliary means) are defined in the examination conditions. These are published on the faculty intranet at the beginning of each semester.

Learning objectives (after successful completion of the module)

The students

- name the most important terms, especially of elementary analysis: Integral calculus of a variable, Fourier series, functions of multiple variables
- calculate (oriented) areas
- calculate Fourier series of periodic functions
- use differential calculus for optimisation
- calculate multiple integrals
- solve linear ordinary differential equations (and systems) using Laplace transformations
- use components of mathematics to solve elementary engineering problems.

Contents

- Integral calculus in a single variable
- Fourier series
- Functions of multiple variables
- Differential calculus in multiple variables
- Multiple integrals
- Differential equations

Editing state: July 2021 Page **20** of **92** SPO dated 16 June 2020

University of Applied Sciences Würzburg-Schweinfurt Faculty of Electrical Engineering

Laplace transforms

Literature and other learning resources

- K.A. Stroud and Dexter J. Booth: Engineering Mathematics Palgrave Macmillan (Publisher) 7th edition, 2013.
- James Stewart: Calculus Cengage Learning (Publisher), 7th edition, 2012.

Special notes

Editing state: July 2021 Page **21** of **92** SPO dated 16 June 2020

University of Applied Sciences Würzburg-Schweinfurt

Module No. 8			
Basics of Electronics and Components			
Module length	Regular Cycle	Workload	ECTS-Credit Points
1 Semester	Summer semester	Total: 150 hrs 60 hrs attendance time (4 SWS) 60 hrs self-directed study time 30 hrs exam preparation	5

Responsible for module: Prof. Dr. Volker Willert

Lecturer(s):

Prof. Dr. V. Willert

Associated class(es)	Teaching and learning	Language of instruc-
	format	tion
Basics of Electronics and Components	Seminar-like lecture,	English
	exercise course	

Applicability and study semester in accordance with the study and examination regulations

Bachelor's programme Robotics (Core module, 2nd semester)

Provides the basis for module(s): None

Builds up on module(s): Basics of Electrical Engineering (2)

Conditions of participation in accordance with study and examination regulations

None

Recommended conditions of participation and prior knowledge

Basics of Electrical Engineering (2)

Examination type / Prerequisite for the award of credit	Examination length	Examination language
pomie		
Written exam	90 to 120 min	English

The duration of the examination, the scope of the examination and other examination conditions (e.g. permitted auxiliary means) are defined in the examination conditions. These are published on the faculty intranet at the beginning of each semester.

Learning objectives (after successful completion of the module)

The students

- state the physical principles for calculating electric and magnetic fields
- construct, calculate and draw electric and magnetic fields
- state the most important passive components and name their properties
- define the physical principles of semiconductor components
- list the properties of bipolar and field effect transistors
- calculate the impedance of electrical circuits made of passive components
- design circuits for diodes and transistor amplifiers and analyse their properties

Contents

- Electric and magnetic fields
- Induction
- Passive components
- Active components
- Semiconductor components
- Circuit engineering

Editing state: July 2021 Page **22** of **92** SPO dated 16 June 2020

University of Applied Sciences Würzburg-Schweinfurt Faculty of Electrical Engineering

Literature and other learning resources

- Hering, Martin, Storer: Physik für Ingenieure, Berlin-Heidelberg, Springer Verlag, 2012
- Wilfried Weißgerber, Elektrotechnik für Ingenieure 1: Gleichstromtechnik und Elektromagnetisches Feld,
 8. Auflage, Vieweg & Teubner, 2008.
- Wilfried Weißgerber: Elektrotechnik für Ingenieure 2: 8. Auflage, Vieweg & Teubner, 2008.
- Siegfried Altmann, Detlef Schlayer: Lehr- und Übungsbuch Elektrotechnik, 4. Auflage, Hanser Verlag München, 2008.
- Hering, Martin, Storer: Physik für Ingenieure, Berlin-Heidelberg, Springer Verlag, 2012
- U. Tietze, Ch. Schenk: Halbleiter-Schaltungstechnik, 12. Auflage, Berlin-Heidelberg-New York, Springer Verlag, 2002

Special notes

Editing state: July 2021 Page 23 of 92 SPO dated 16 June 2020

University of Applied Sciences Würzburg-Schweinfurt

Module No. 9				
Robot Mechanics 2				
Module length	Regular Cycle	Workload	ECTS-Credit Points	
1 Semester	Summer semester	Total: 150 hrs 60 hrs attendance time (4 SWS) 60 hrs self-directed study time 30 hrs exam preparation	5	
Responsible for mod	ule: Prof. Dr. Volker Will	ert		

Lecturer(s):

Prof. Dr. V. Willert

Associated class(es)	Teaching and learning	Language of instruc-
	format	tion
Robot Mechanics 2	Seminar-like lecture,	English
	exercise course	

Applicability and study semester in accordance with the study and examination regulations

Bachelor's programme Robotics (Core module, 2nd semester)

Provides the basis for module(s): Robotics Lab 3 and 4 (18 and 24), Robotics Project (33), "Industrial Ro-

botics" specialisation modules

Builds up on module(s): **Robot Mechanics 1**

Conditions of participation in accordance with study and examination regulations

Recommended conditions of participation and prior knowledge

Robot Mechanics 1 (3)

Examination type / Prerequisite for the award of credit	Examination length	Examination language
points		
Written exam	90 to 120 min	English

The duration of the examination, the scope of the examination and other examination conditions (e.g. permitted auxiliary means) are defined in the examination conditions. These are published on the faculty intranet at the beginning of each semester.

Learning objectives (after successful completion of the module)

The students

- describe robot kinematics and their mechanical and electrical components
- name typical fields of application of robots as well as their application limits
- use the Denavit-Hartenberg convention to describe robot kinematics
- use the Denavit-Hartenberg parameters for coordinate transformation
- calculate the direct and inverse kinematics of a simple robot
- evaluate the suitability of robot grippers for different handling tasks
- describe different robot programming methods and types of robot movement commands
- name fields of application and application limits of human-robot collaboration

Contents

- Historical development
- Classification of robots
- Parts/components
- State of the art + trends and developments
- **Economic aspects**

SPO dated 16 June 2020 Editing state: July 2021 Page **24** of **92**

University of Applied Sciences Würzburg-Schweinfurt

Faculty of Electrical Engineering

- Application examples according to platforms
- Basics of effectors
- Basics of actuators
- · Basics of robot programming
- Coordinate systems
- Description of rotations (rotation matrix, Euler angle, rotation vector)
- Transformation matrices / coordinate transformation
- Denavit-Hartenberg convention
- Forward and backward kinematics
- Human-robot collaboration

Literature and other learning resources

- SICILIANO, B.: Springer handbook of robotics, Springer Science & Business Media, 2008
- CORKE, Peter. Robotics, vision and control: fundamental algorithms in MATLAB® second, completely revised. Springer, 2017

Special notes

Editing state: July 2021 Page **25** of **92** SPO dated 16 June 2020

University of Applied Sciences Würzburg-Schweinfurt

Module No. 10 Sensors and Metrology Module length Regular Cycle Summer semester Total: 150 hrs 60 hrs attendance time (4 SWS) 60 hrs self-directed study time 30 hrs exam preparation

Responsible for module: Prof. Dr. Jürgen Hartmann

Lecturer(s):

Prof. Dr. J. Hartmann, Prof. Dr. J. Meyer

Associated class(es)	Teaching and learning	Language of instruc-
	format	tion
Sensors and Metrology	Seminar-like lecture,	English
	exercise course	

Applicability and study semester in accordance with the study and examination regulations

Bachelor's programme Robotics (Core module, 2nd semester)

Provides the basis for module(s):

Robotics Lab 3 and 4 (18 and 24), Specialisation modules

Builds up on module(s):

Basics of Electrical Engineering (2)

Conditions of participation in accordance with study and examination regulations

None

Recommended conditions of participation and prior knowledge

Basics of Electrical Engineering (2)

Examination type / Prerequisite for the award of credit	Examination length	Examination language
points		
Written exam	90 to 120 min	English

The duration of the examination, the scope of the examination and other examination conditions (e.g. permitted auxiliary means) are defined in the examination conditions. These are published on the faculty intranet at the beginning of each semester.

Learning objectives (after successful completion of the module)

The students

- classify sensors according to technical and application-related characteristics
- name conversion principles of sensors
- describe methods of signal processing from the analogue electrical raw signal to the digital value
- list different types of proximity switches
- describe the function of sensors for angle and distance measurement as well as other kinematic quantities
- describe the function of sensors for force and torque measurement
- evaluate the suitability of sensors on the basis of relevant parameters for different measuring tasks
- describe the function of sensors for localisation
- select suitable sensors for HRC workstations
- describe the function of 2D and 3D imaging sensors, including analytical models for generating depth images
- select suitable metrological methods in a robotics-relevant context
- calculate the error of metrological systems
- name methods for processing measurement data
- analyse metrological systems

Editing state: July 2021 Page **26** of **92** SPO dated 16 June 2020

University of Applied Sciences Würzburg-Schweinfurt

Faculty of Electrical Engineering

- develop mathematical models to solve metrological tasks independently of the technical system characteristics
- describe the functional principle of A/D and D/A conversion and the circuit implementation
- plan steps for the mathematical modelling of metrological systems
- describe the use of measuring bridges and operational amplifiers

Contents

Sensors:

- Classification of sensors
- Conversion principles (thermal, mechanical, magnetic, optical)
- Sensor characteristics
- Proximity switches
- Sensors for angle and distance measurement as well as other kinematic quantities
- Sensors for force and torque measurement
- Sensors for localisation
- Sensors for MRK workstations
- 2D and 3D cameras

Metrology:

- Fundamentals of metrology, measuring inaccuracies, error calculation
- Measuring system technology, measurement data processing
- Current and voltage measurement
- Basics of A/D and D/A conversion
- Measuring bridges
- Operational amplifiers

Literature and other learning resources

- FRADEN, Jacob. Handbook of modern sensors: physics, designs, and applications. Springer Science & Business Media, 2004
- Bentley, John: Principles of Measurement Systems 4th Edition; Pearson Education, Harlow, 2004
- Beckwit, T.; Marangoni R.; Lienhard, J. V.: Mechanical Measurements, Pearson Education, Harlow, 2006
- Witte, Robert: Electronic Test Instruments, 2nd Edition, Pearson Education, Harlow, 2002
- DIN 1319-1:1995-01 Fundamentals of metrology Part 1: Basic terminology
- DIN 1319-2:2005-10 Fundamentals of metrology Part 2: Terminology related to measuring equipment
- DIN 1319-3:1996-05 Fundamentals of metrology Part 3: Evaluation of measurements of a single measurement, measurement uncertainty
- DIN 1319-4:1999-02 Grundlagen der Messtechnik, Teil 4: Auswertung von Messungen; Meßunsicherheit
- JCGM 100:2008: Guide to the Expression of Uncertainty in Measurement (GUM)

Special notes

University of Applied Sciences Würzburg-Schweinfurt

Module No. 11				
Programming 2				
Module length	Regular Cycle	Workload	ECTS-Credit Points	
1 Semester	Summer semester	Total: 150 hrs 60 hrs attendance time (4 SWS) 60 hrs self-directed study time 30 hrs exam preparation	5	

Responsible for module: Prof. Dr. Marco Schmidt

Lecturer(s):

Prof. Dr. M. Schmidt

Associated class(es)	Teaching and learning	Language of instruc-
	format	tion
Programming 2	Seminar-like lecture,	English
	exercise course	

Applicability and study semester in accordance with the study and examination regulations

Bachelor's programme Robotics (Core module, 2nd semester)

Provides the basis for module(s): Software Engineering and Cyber Security (15)

Builds up on module(s): Programming 1 (5)

Conditions of participation in accordance with study and examination regulations

None

Recommended conditions of participation and prior knowledge

Programming 1 (5)

Examination type / Prerequisite for the award of credit	Examination length	Examination language
points		
Written exam	90 to 120 min	English

The duration of the examination, the scope of the examination and other examination conditions (e.g. permitted auxiliary means) are defined in the examination conditions. These are published on the faculty intranet at the beginning of each semester.

Learning objectives (after successful completion of the module)

The students

- Name concepts of object orientation
- Use suitable classes and objects for object-oriented programming
- Indicate possible relationships between classes and objects and put them into practice.
- Describe complex data structures such as lists, stacks and trees using the C++ Standard Library
- Apply advanced concepts such as generic classes and meta-programming as examples

Contents

Object-oriented programming

- Objects and classes
- Attributes / methods and their visibility
- Abstraction, inheritance, polymorphism, encapsulation
- Association, Aggregation, Composition
- Pre- and postconditions and invariants of classes
- Overloading methods and operators
- Basic algorithms: search and sort
- Composite data structures: lists, stacks, trees, graphs

Editing state: July 2021 Page 28 of 92 SPO dated 16 June 2020

University of Applied Sciences Würzburg-Schweinfurt

Faculty of Electrical Engineering

- Generic classes
- Meta programming and annotations

Optional

- Algorithms for finding optimal paths
- OO Modeling of a robot system
- Selected algorithmic problems of robotics

Literature and other learning resources

- Torsten T. Will: C++ Das umfassende Handbuch, Rheinwerk Computing
- Online reference for C++: https://en.cppreference.com/w/
- P.J. Deitel, H. Deitel, C++ How To Program (Early Objects Version), Pearson, 10th Edition, 2016

Special notes

Editing state: July 2021 Page **29** of **92** SPO dated 16 June 2020

Module No. 12			
Robotics Lab 2			
Module length	Regular Cycle	Workload	ECTS-Credit Points
1 Semester	Summer semester	Total: 150 hrs 60 hrs attendance time (4 SWS) 90 hrs self-directed study time	5

Responsible for module: Prof. Dr. Jean Meyer

Lecturer(s):

Prof. Dr. N. Strobel, Prof. Dr. B. Müller, Prof. Dr. V. Willert, Prof. Dr. J. Meyer

Associated class(es)	Teaching and learning	Language of instruc-
	format	tion
Robotics Lab 2	Seminar and lab course	English

Applicability and study semester in accordance with the study and examination regulations

Bachelor's programme Robotics (Core module, 2nd semester)

Provides the basis for module(s): Robotics Lab 3 (18)
Builds up on module(s): Robotics Lab 1 (6)

Conditions of participation in accordance with study and examination regulations

None

Recommended conditions of participation and prior knowledge

Robotics Lab 1 (6)

* *		
Examination type / Prerequisite for the award of credit	Examination length	Examination language
points		
Other type of assessment		English

The duration of the examination, the scope of the examination and other examination conditions (e.g. permitted auxiliary means) are defined in the examination conditions. These are published on the faculty intranet at the beginning of each semester.

Learning objectives (after successful completion of the module)

The students

- apply the theoretical knowledge from modules of the semester in practical course units and experiments
- select suitable methods from the lectures for conducting the practical experiments
- apply robotics-relevant software tools
- use software tools for the development and application of robots
- analyse processes and methods in the context of practical experiments
- plan experiments, carry them out and document the results in a scientific format
- interpret experimental results and draw conclusions from them with regard to the underlying influencing factors and cause-effect relationships

Contents

- Advanced programming of microcontrollers with standard C/C++
- Programming of a microcontroller-based line follower with standard C/C++
- Operation of industrial drives
- Introduction to the Matlab Robotics System Toolbox
- Tracking with cameras

Literature and other learning resources

• Experimental instructions, lab manuals and supplementary documents on the FHWS eLearning system.

Editing state: July 2021 Page **30** of **92** SPO dated 16 June 2020

University of Applied Sciences Würzburg-Schweinfurt Faculty of Electrical Engineering

Special notes			

Module No. 13			
Statistics and Sensor Data Fusion			
Module length	Regular Cycle	Workload	ECTS-Credit Points
1 Semester	Winter semester	Total: 150 hrs 60 hrs attendance time (4 SWS) 60 hrs self-directed study time 30 hrs exam preparation	5
Responsible for module: Prof. Dr. Gernot Fabeck			
Lecturer(s):			
Prof. Dr. C. Zirkelbach, Prof. Dr. G. Fabeck			

Associated class(es)	Teaching and learning	Language of instruc-
	format	tion
Statistics and Sensor Data Fusion	Seminar-like lecture,	English
	exercise course	

Applicability and study semester in accordance with the study and examination regulations

Bachelor's programme Robotics (Core module, 3rd semester)

Provides the basis for module(s): Machine Learning (23), Specialisation modules

Builds up on module(s): Engineering Mathematics 1 (1) and Engineering Mathematics 2 (7)

Conditions of participation in accordance with study and examination regulations

Recommended conditions of participation and prior knowledge

Engineering Mathematics 1 (1) and Engineering Mathematics 2 (7)

Examination type / Prerequisite for the award of credit	Examination length	Examination language
points		
Written exam	90 to 120 min	English

The duration of the examination, the scope of the examination and other examination conditions (e.g. permitted auxiliary means) are defined in the examination conditions. These are published on the faculty intranet at the beginning of each semester.

Learning objectives (after successful completion of the module)

The students

- use the basic terminology of statistics
- name the role and interaction of descriptive statistics, probability theory and inferential statistics
- recognise and classify the implementation of these components in concrete statistical procedures
- describe the analysis of statistical data and the application of probability theory to the analysis of random processes and the methodical implementation of sampling and its evaluation
- distinguish between the different levels of abstraction at which the fusion of data from several sensors can take place
- represent a dynamic system in the state space
- apply the mathematical method of the Kalman filter for the iterative estimation of system parameters on the basis of observations with errors
- define the pattern recognition problem and the Bayes classifier

Contents

Statistics:

- 1. Descriptive Statistics
 - Analysis of univariate data: Measures of central tendency and of dispersion

Editing state: July 2021 SPO dated 16 June 2020 Page **32** of **92**

University of Applied Sciences Würzburg-Schweinfurt

Faculty of Electrical Engineering

- Analysis of bivariate data: Analysis of correlation, regression analysis, time series analysis
- 2. Probability Calculus
 - Fundamental concepts and important rules of probability calculus
 - Random variables: Probability functions and densities, expected value, variance, important calcula tion rules, important discrete and continuous distributions, law of large numbers, central limit theorem, multivariate distributions, conditional distributions, conditional expected values
- 3. Inductive Statistics
 - Parameter estimation

Sensor Data Fusion:

- 1. Types of sensor data fusion
- 2. State space description of dynamical systems
- 3. Elements of Bayesian statistics
- 4. Structure and function of the classical Kalman filter
- 5. Pattern recognition and Bayes-optimal classifier

Literature and other learning resources

- Diez, D. M./Barr, C. D./Çetinkaya-Rundel, M. (2015): OpenIntro Statistics, 3rd edition, Scotts Valley: CreateSpace Independent Publishing Platform.
- Koch, W. (2014): Tracking and Sensor Data Fusion: Methodological Framework and Selected Applications,
 Berlin: Springer Verlag.
- Ma, H./Yan, L./Xia, Y./Fu M. (2020): Kalman Filtering and Information Fusion, Singapore: Springer & Science Press.
- Schiller, J.J./Srinivasan, R. A./Spiegel, M. R. (2013): Schaum's outline of Probability and Statistics, 4th edition, New York: McGraw-Hill.
- Sullivan, M. (2017): Statistics: Informed Decisions Using Data, 5th edition, London: Pearson.

Special notes

Editing state: July 2021 Page **33** of **92** SPO dated 16 June 2020

University of Applied Sciences Würzburg-Schweinfurt

Module No. 14			
Systems Theory			
Module length	Regular Cycle	Workload	ECTS-Credit Points
1 Semester	Winter semester	Total: 150 hrs 60 hrs attendance time (4 SWS) 60 hrs self-directed study time 30 hrs exam preparation	5

Responsible for module: Prof. Dr. Bernhard Müller

Lecturer(s):

Prof. Dr. R. Hirn, Prof. Dr. B. Müller

Associated class(es)	Teaching and learning	Language of instruc-
	format	tion
Systems Theory	Seminar-like lecture,	English
	exercise course	

Applicability and study semester in accordance with the study and examination regulations

Bachelor's programme Robotics (Core module, 3rd semester)

Provides the basis for module(s): "Mobile Robotics" specialisation modules

Builds up on module(s): Engineering Mathematics 1 (1) and Engineering Mathematics 2 (7)

Conditions of participation in accordance with study and examination regulations

None

Recommended conditions of participation and prior knowledge

Engineering Mathematics 1 (1) and Engineering Mathematics 2 (7)

Examination type / Prerequisite for the award of credit	Examination length	Examination language
politica		
Written exam	90 to 120 min	English

The duration of the examination, the scope of the examination and other examination conditions (e.g. permitted auxiliary means) are defined in the examination conditions. These are published on the faculty intranet at the beginning of each semester.

Learning objectives (after successful completion of the module)

The students

- name basic methods of systems theory
- apply basic methods of systems theory
- develop mathematical description models of technical systems in order to analyse signals and to be able to evaluate the system behaviour independently of the technical system characteristics
- plan and carry out work steps for system analysis
- evaluate their proposed solutions

Contents

- Continuous-time signals and systems
- System analysis using Laplace transform
- System analysis using Fourier transform
- Discrete-time signals and systems
- System analysis using z-transform
- System analysis using Discrete Fourier transform
- Stochastic processes, Kalman filter

Editing state: July 2021 Page **34** of **92** SPO dated 16 June 2020

Literature and other learning resources

- Oppenheim, Alan V.; Willsksy, Alan S.: Signals and Systems, Pearson Education Ltd., 2nd Edition, Harlow,
 2013
- Giron-Sierra, Jose Maria: Digital Signal Processing with Matlab Examples 1, Springer Verlag, Berlin, 2016
- B.P. Lathi, "Linear Systems and Signals", 2. Edition, Oxford University Press, 2005
- Oppenheim, Alan V.; Schafer, Ronald W.: Discrete-time Signal Processing, Pearson Educatin Ltd., 3rd Edition, 2010

Special notes

Editing state: July 2021 Page **35** of **92** SPO dated 16 June 2020

University of Applied Sciences Würzburg-Schweinfurt

Module No. 15			
Software Engineering and Cyber Security			
Module length	Regular Cycle	Workload	ECTS-Credit Points
1 Semester	Winter semester	Total: 150 hrs 60 hrs attendance time (4 SWS) 60 hrs self-directed study time 30 hrs exam preparation	5

Responsible for module: Prof. Dr. Markus Mathes

Lecturer(s):

Prof. Dr. M. Mathes

Associated class(es)	Teaching and learning	Language of instruc-
	format	tion
Software Engineering and Cyber Security	Seminar-like lecture,	English
	exercise course	

Applicability and study semester in accordance with the study and examination regulations

Bachelor's programme Robotics (Core module, 3rd semester)

Provides the basis for module(s): Robotics Project (33)

Builds up on module(s): Programming 1 (5) and Programming 2 (11)

Conditions of participation in accordance with study and examination regulations

None

Recommended conditions of participation and prior knowledge

Programming 1 (5) and Programming 2 (11)

Examination type / Prerequisite for the award of credit	Examination length	Examination language
points		
Written exam	90 to 120 min	English

The duration of the examination, the scope of the examination and other examination conditions (e.g. permitted auxiliary means) are defined in the examination conditions. These are published on the faculty intranet at the beginning of each semester.

Learning objectives (after successful completion of the module)

The students

- give problem-adapted design procedures for software systems
- describe the necessity and the systematic approach to the design and modelling of large-scale software systems
- model software systems at an abstract level
- use relevant methods and techniques to realise and implement the models/designs using appropriate object-oriented programming languages.
- state the advantages of scrambling data packages
- analyse and evaluate procedures with regard to their ability to detect and correct transmission errors
- choose alternatives to establish secure data communication using cryptography
- design encrypted transmissions using simple examples
- indicate basic vulnerabilities in communication systems that can be exploited for hacker attacks
- select suitable countermeasures against hacker attacks
- evaluate the performance of countermeasures against hacker attacks

Contents

Software Engineering

Editing state: July 2021 Page **36** of **92** SPO dated 16 June 2020

University of Applied Sciences Würzburg-Schweinfurt

Faculty of Electrical Engineering

- Concepts of object-oriented design: Classes, objects and interfaces, encapsulation, polymorphism, inheritance and delegation
- Object-oriented design with UML, use of elementary diagram types for modelling static and dynamic system aspects
- Object-oriented implementation of software designs
- · Agile models on the basis of SCRUM
- Optional: Design pattern

Cyber-Security

- Threats
- Attack procedure
- Security on the Internet
- Symmetric key cryptography
- Asymmetric Key Cryptography
- Hash function
- Packet Sniffing: Wireshark

Literature and other learning resources

- Christoph Kecher: UML 2 Das umfassende Handbuch, Rheinwerk Computing
- Christian Ullenboom: Java ist auch eine Insel, Rheinwerk Computing
- Steffen Heinzl, Markus Mathes: Middleware in Java, Springer Vieweg
- LUDWIG, Mark; NOAH, Dr. The giant black book of computer viruses. American Eagle Books, 2017
- BHAIJI, Yusuf: Network Security Technologies and Solutions, 2008
- ERICKSON, Jon. Hacking: Die Kunst des Exploits. Dpunkt-Verlag, 2008.
- LUDWIG, Mark A. The little black book of computer viruses: The basic technology. American Eagle Publications, 1991.

Special notes

Editing state: July 2021 Page **37** of **92** SPO dated 16 June 2020

Faculty of Electrical Engineering

University of Applied Sciences Würzburg-Schweinfurt

Module No. 16						
Image Processing						
Module length	Regular Cycle	Workload	ECTS-Credit Points			
1 Semester	Winter semester	Total: 150 hrs 60 hrs attendance time (4 SWS) 60 hrs self-directed study time 30 hrs exam preparation	5			

Responsible for module: Prof. Dr. Norbert Strobel

Lecturer(s):

Prof. Dr. N. Strobel, Prof. Dr. V. Willert

Associated class(es)	Teaching and learning	Language of instruc-
	format	tion
Image Processing	Seminar-like lecture,	English
	exercise course	

Applicability and study semester in accordance with the study and examination regulations

Bachelor's programme Robotics (Core module, 3rd semester)

Provides the basis for module(s): Core Elective 3D Machine Vision, "Mobile Robotics" and "Humanoid and

Service-Robotics" specialisation modules

Builds up on module(s): Sensors and Metrology (10)

Conditions of participation in accordance with study and examination regulations

None

Recommended conditions of participation and prior knowledge

Sensors and Metrology (10)

Examination type / Prerequi-	Examination length	Examination language
site for the award of credit		
points		
Written exam	90 to 120 min	English

The duration of the examination, the scope of the examination and other examination conditions (e.g. permitted auxiliary means) are defined in the examination conditions. These are published on the faculty intranet at the beginning of each semester.

Learning objectives (after successful completion of the module)

The students

- name and describe optical camera systems and associated image formation principles
- list aspects of sampling and quantisation
- distinguish between different image representations and image transformations
- apply different intensity transformations
- perform filter operations in the spatial and frequency domains
- use feature estimation, thresholding and region growing methods to perform segmentation
- handle morphological image processing techniques
- enumerate approaches to motion analysis using 2D images

Contents

- Image Formation
 - o Image Sensing and Acquisition
 - Sampling and Quantization
 - o Image Representations (monochrome, color)
 - o Geometric Image Transforms

Editing state: July 2021 Page **38** of **92** SPO dated 16 June 2020

University of Applied Sciences Würzburg-Schweinfurt

Faculty of Electrical Engineering

- Intensity Transformations
 - o Point Operations
 - o Histogram Processing
- Convolution in the Spatial Domain
- Filtering in the Frequency Domain
- Image Segmentation
 - o Point, Line, and Edge Detection
 - Thresholding
 - o Region-Based Segmentation
- Morphological Image Processing
- Movement analysis and movement compensation
- Selected case studies

Literature and other learning resources

- GONZALES, Rafael C; WOODS, Richard E. Digital Image Processing. Pearson, 2017.
- PETROU, Maria MP; PETROU, Costas. Image processing: the fundamentals. John Wiley & Sons, 2010.
- BURGER, Wilhelm, et al. Principles of digital image processing. London: Springer, 2009.

Special notes

Editing state: July 2021 Page **39** of **92** SPO dated 16 June 2020

English

Module length Regular Cycle Workload Total: 150 hrs 60 hrs attendance time (4 SWS) 60 hrs self-directed study time 30 hrs exam preparation 30 hrs exam preparation 20 hrs self-directed study time 30 hrs exam preparation 30 hrs exam preparation 30 hrs exam preparation 4 hrs. 4 hrs. 4 hrs. 5 hrs. 5 hrs. 5 hrs. 60 hrs self-directed study time 30 hrs exam preparation 30 hrs exam preparation 4 hrs. 5 hrs. 5 hrs. 60 hrs self-directed study time 30 hrs exam preparation 4 hrs. 5 hrs. 5 hrs. 60 hrs attendance time (4 SWS) 60 hrs self-directed study time 30 hrs exam preparation 4 hrs. 5 hrs. 60 hrs. attendance time (4 SWS) 60 hrs self-directed study time 30 hrs. exam preparation 4 hrs. 5 hrs. 60 hrs. attendance time (4 SWS) 5 hrs. 60 hrs. attendance time (4 SWS) 5 hrs. 60 hrs. attendance time (4 SWS) 60 hrs. attendance time (4 SWS) 5 hrs. 60 hrs. attendance time (4 SWS) 5	Module No. 17	Module No. 17						
1 Semester Winter semester Total: 150 hrs 60 hrs attendance time (4 SWS) 60 hrs self-directed study time 30 hrs exam preparation Responsible for module: Prof. Dr. Martin Spiertz Lecturer(s): Prof. Dr. M. Spiertz, Prof. Dr. L. Eckert Associated class(es) Teaching and learning format Seminar-like lecture, exercise course Applicability and study semester in accordance with the study and examination regulations Bachelor's programme Robotics (Core module, 3rd semester) Provides the basis for module(s): Builds up on module(s): Builds up on module(s): Distributed Systems and Network Communication (22) Basics of Computer Engineering and Operating Systems (4), Programming 1 and 2 (5 and 11) Conditions of participation in accordance with study and examination regulations None Recommended conditions of participation and prior knowledge Basics of Computer Engineering and Operating Systems (4), Programming 1 and 2 (5 and 11) Examination type / Prerequises for the award of credit Examination length Examination language	Embedded Systems and Field Buses							
Responsible for module: Prof. Dr. Martin Spiertz Lecturer(s): Prof. Dr. M. Spiertz, Prof. Dr. L. Eckert Associated class(es) Teaching and learning format Embedded Systems and Field Buses Seminar-like lecture, exercise course Applicability and study semester in accordance with the study and examination regulations Bachelor's programme Robotics (Core module, 3rd semester) Provides the basis for module(s): Builds up on module(s): Distributed Systems and Network Communication (22) Basics of Computer Engineering and Operating Systems (4), Programming 1 and 2 (5 and 11) Conditions of participation in accordance with study and examination regulations None Recommended conditions of participation and prior knowledge Basics of Computer Engineering and Operating Systems (4), Programming 1 and 2 (5 and 11) Examination type / Prerequisite for the award of credit Examination length Examination language	Module length	Regula	r Cycle	Workload		ECTS-Cred	it Po	ints
Lecturer(s): Prof. Dr. M. Spiertz, Prof. Dr. L. Eckert Associated class(es) Embedded Systems and Field Buses Applicability and study semester in accordance with the study and examination regulations Bachelor's programme Robotics (Core module, 3rd semester) Provides the basis for module(s): Builds up on module(s): Builds up on module(s): Conditions of participation in accordance with study and examination regulations None Recommended conditions of participation and prior knowledge Basics of Computer Engineering 1 and 2 (5 and 11) Examination type / Prerequisite for the award of credit Teaching and learning Language of instruction English	1 Semester Winter semester		60 hrs attendance time (4 SWS) 60 hrs self-directed study time		5			
Prof. Dr. M. Spiertz, Prof. Dr. L. Eckert Associated class(es) Embedded Systems and Field Buses Applicability and study semester in accordance with the study and examination regulations Bachelor's programme Robotics (Core module, 3rd semester) Provides the basis for module(s): Builds up on module(s): Builds up on module(s): Conditions of participation in accordance with study and examination regulations None Recommended conditions of participation and prior knowledge Basics of Computer Engineering and Operating Systems (4), Programming 1 and 2 (5 and 11) Examination type / Prerequisite for the award of credit Teaching and learning Language of instruction Seminar-like lecture, exercise course Distributed Systems and Network Communication (22) Basics of Computer Engineering and Operating Systems (4), Programming 1 and 2 (5 and 11) Examination type / Prerequisite for the award of credit	Responsible for module	: Prof. D	r. Martin Spiertz					
Associated class(es) Embedded Systems and Field Buses Applicability and study semester in accordance with the study and examination regulations Bachelor's programme Robotics (Core module, 3rd semester) Provides the basis for module(s): Builds up on module(s): Builds up on module(s): Conditions of participation in accordance with study and examination regulations None Recommended conditions of participation and prior knowledge Basics of Computer Engineering 1 and 2 (5 and 11) Examination type / Prerequisite for the award of credit Teaching and learning to instruction Seminar-like lecture, exercise course English	Lecturer(s):							
Embedded Systems and Field Buses Applicability and study semester in accordance with the study and examination regulations Bachelor's programme Robotics (Core module, 3rd semester) Provides the basis for module(s): Builds up on module(s): Distributed Systems and Network Communication (22) Basics of Computer Engineering and Operating Systems (4), Programming 1 and 2 (5 and 11) Conditions of participation in accordance with study and examination regulations None Recommended conditions of participation and prior knowledge Basics of Computer Engineering and Operating Systems (4), Programming 1 and 2 (5 and 11) Examination type / Prerequisite for the award of credit Seminar-like lecture, English E	Prof. Dr. M. Spiertz, Prof. D	r. L. Ecke	rt					
Applicability and study semester in accordance with the study and examination regulations Bachelor's programme Robotics (Core module, 3rd semester) Provides the basis for module(s): Builds up on module(s): Distributed Systems and Network Communication (22) Basics of Computer Engineering and Operating Systems (4), Programming 1 and 2 (5 and 11) Conditions of participation in accordance with study and examination regulations None Recommended conditions of participation and prior knowledge Basics of Computer Engineering and Operating Systems (4), Programming 1 and 2 (5 and 11) Examination type / Prerequisite for the award of credit Examination length Examination language	Associated class(es)		_	earning		of	instruc-	
Bachelor's programme Robotics (Core module, 3rd semester) Provides the basis for module(s): Builds up on module(s): Basics of Computer Engineering and Operating Systems (4), Programming 1 and 2 (5 and 11) Conditions of participation in accordance with study and examination regulations None Recommended conditions of participation and prior knowledge Basics of Computer Engineering and Operating Systems (4), Programming 1 and 2 (5 and 11) Examination type / Prerequisite for the award of credit Distributed Systems and Network Communication (22) Basics of Computer Engineering and Operating Systems (4), Programming 1 and 2 (5 and 11) Examination type / Prerequisite for the award of credit	Embedded Systems and Fig	eld Buses			lecture,	English		
Provides the basis for module(s): Builds up on module(s): Basics of Computer Engineering and Operating Systems (4), Programming 1 and 2 (5 and 11) Conditions of participation in accordance with study and examination regulations None Recommended conditions of participation and prior knowledge Basics of Computer Engineering and Operating Systems (4), Programming 1 and 2 (5 and 11) Examination type / Prerequisite for the award of credit Distributed Systems and Network Communication (22) Basics of Computer Engineering and Operating Systems (4), Programming 1 and 2 (5 and 11) Examination type / Prerequisite for the award of credit	Applicability and study	semeste	r in accordance v	vith the study an	d examir	nation regul	atio	ns
Conditions of participation in accordance with study and examination regulations None Recommended conditions of participation and prior knowledge Basics of Computer Engineering and Operating Systems (4), Programming 1 and 2 (5 and 11) Examination type / Prerequisite for the award of credit Examination length Examination language	Provides the basis for mod	Bachelor's programme Robotics (Core module, 3rd semester) Provides the basis for module(s): Distributed Systems and Network Communication (22)				Program-		
Recommended conditions of participation and prior knowledge Basics of Computer Engineering and Operating Systems (4), Programming 1 and 2 (5 and 11) Examination type / Prerequisite for the award of credit Examination length Examination language			<u> </u>	<u> </u>				
Recommended conditions of participation and prior knowledge Basics of Computer Engineering and Operating Systems (4), Programming 1 and 2 (5 and 11) Examination type / Prerequisite for the award of credit Examination length Examination language	•	ion in ac	cordance with st	udy and examina	ation reg	ulations		
Basics of Computer Engineering and Operating Systems (4), Programming 1 and 2 (5 and 11) Examination type / Prerequisite for the award of credit Examination length Examination language		ns of na	rticination and n	rior knowledge				
Examination type / Prerequi- site for the award of credit Examination length Examination language		-	•		1 and 2 (5 and 11)		
	Examination type / Pre	requi-					angu	age

The duration of the examination, the scope of the examination and other examination conditions (e.g. permitted auxiliary means) are defined in the examination conditions. These are published on the faculty intranet at the beginning of each semester.

90 to 120 min

Learning objectives (after successful completion of the module)

The students

Written exam

- name and evaluate current embedded systems and microcontroller architectures
- classify and analyse different embedded structures
- select suitable embedded systems, design them and realise applications with them
- analyse synchronisation possibilities and error sources on the physical layer
- explain the working principle of the data link layer
- name and evaluate advantages and disadvantages of different bus access methods and
- design bus systems with regard to cycle times, number of participants and other bus properties.

Contents

Embedded Systems:

- Fields of application, definitions and requirements of embedded systems and basic functional groups: Mechanics, sensors, information processing, actuators.
- Structure of embedded systems, microcontroller systems/CPU/MCU, hardware/software co-design,
- Simultaneous and parallel task processing, definition of real-time processing, real-time systems

Editing state: July 2021 Page **40** of **92** SPO dated 16 June 2020

University of Applied Sciences Würzburg-Schweinfurt

Faculty of Electrical Engineering

- Development steps for a microcomputer system, embedded development, test and verification environments, software build process
- Interfaces to peripherals, serial interface
- Polling versus event-driven program processing via interrupts
- Exemplary function groups in detail: digital I/O, hardware timer, A/D converter

Fieldbus systems:

- Digital communication on the physical layer
- Data link layer
- Bus access
- Fieldbuses in detail (CAN, Profibus, Profinet, EtherCAT)

Literature and other learning resources

- Course books, e.g. Schnell, Gerhard; Bussysteme in der Automatisierungs- und Prozesstechnik, Verlag Vieweg Friedr. + Sohn 2006
- Klaus Wüst: Mikroprozessortechnik: Grundlagen, Architekturen, Schaltungstechnik und Betrieb von Mikroprozessoren und Mikrocontrollern, Verlag Springer 2010
- Helmut Bähring: Anwendungsorientierte Mikroprozessoren: Mikrocontroller und Digitale Signalprozessoren, Vieweg+Teubner Verlag, 2011
- MAHALIK, Nitaigour P. (Hg.). Fieldbus technology: industrial network standards for real-time distributed control. Springer Science & Business Media, 2013.
- KLASEN, Frithjof; OESTREICH, Volker; VOLZ, Michael (Hg.). Industrial Communication with Fieldbus and Ethernet. VDE-Verlag, 2011.
- P. Marwedel, Embedded System Design, 3rd edition. Cham: Springer, 2021.

Special notes

Editing state: July 2021 Page **41** of **92** SPO dated 16 June 2020

Faculty of Electrical Engineering

Module No. 18			
Robotics Lab 3			
Module length	Regular Cycle	Workload	ECTS-Credit Points
1 Semester	Winter semester	Total: 150 hrs 60 hrs attendance time (4 SWS) 90 hrs self-directed study time	5
Posnonsible for module	- Draf Dr. Joon Mover		

Responsible for module: Prof. Dr. Jean Meyer

Lecturer(s):

Prof. Dr. T. Kaupp, Prof. Dr. V. Willert

Associated class(es)	Teaching and learning	Language of instruc-
	format	tion
Robotics Lab 3	Seminar and lab course	English

Applicability and study semester in accordance with the study and examination regulations

Bachelor's programme Robotics (Core module, 3rd semester)

Provides the basis for module(s):

Builds up on module(s):

Robotics Lab 4 (24)

Robotics Lab 2 (12)

Conditions of participation in accordance with study and examination regulations

None

Recommended conditions of participation and prior knowledge

Robotics Lab 1 (6) and Robotics Lab 2 (12)

Examination type / Prerequisite for the award of credit points	Examination length	Examination language
Other type of assessment		English

The duration of the examination, the scope of the examination and other examination conditions (e.g. permitted auxiliary means) are defined in the examination conditions. These are published on the faculty intranet at the beginning of each semester.

Learning objectives (after successful completion of the module)

The students

- apply the theoretical knowledge from modules of the semester in practical course units and experiments
- select suitable methods from the lectures for conducting the practical experiments
- apply robotics-relevant software tools
- use software tools for the development and application of robots
- analyse processes and methods in the context of practical experiments
- plan experiments, carry them out and document the results in a scientific format
- interpret experimental results and draw conclusions from them with regard to the underlying influencing factors and cause-effect relationships

Contents

- Offline programming and simulation of industrial robots with RoboDK and subsequent validation with real robots
- Vision-based pick-and-place with Cobots
- Introduction to the Matlab Image Processing Toolbox
- Calibration methods for digital cameras

Literature and other learning resources

Experimental instructions, lab manuals and supplementary documents on the FHWS elearning system

Editing state: July 2021 Page **42** of **92** SPO dated 16 June 2020

University of Applied Sciences Würzburg-Schweinfurt Faculty of Electrical Engineering

Special notes			

Module No. 19							
Core Elective 1A							
Module length	Regular Cycle	Workload	ECTS-Credit Points				
1 Semester	Summer semester	Total: 150 hrs 60 hrs attendance time (4 SWS) 60 hrs self-directed study time 30 hrs exam preparation	5				

Responsible for module: Dean of studies

Lecturer(s):

The lecturers can be found in the descriptions of the individual courses.

Associated class(es)	Teaching and learning	Language of instruc-
	format	tion
See catalogue Core Elective 1	Seminar-like lecture,	English
	exercise course	

One of the courses from the catalogue specified in the curriculum for module 19 (Core Elective 1A) must be selected. The selected course must be different from the selection for module 20 (Core Elective 1B).

Applicability and study semester in accordance with the study and examination regulations

Bachelor's programme Robotics (Core elective module, 4th semester)

Provides the basis for module(s): None

Builds up on module(s): Basic modules of the 1st, 2nd and 3rd semester

Conditions of participation in accordance with study and examination regulations

None

Recommended conditions of participation and prior knowledge

The recommended conditions of participation and prior knowledge can be found in the descriptions of the individual courses.

Examination type / Prerequisite for the award of credit Examination length		Examination language
points		
Written exam	90 to 120 min	English

The duration of the examination, the scope of the examination and other examination conditions (e.g. permitted auxiliary means) are defined in the examination conditions. These are published on the faculty intranet at the beginning of each semester.

Learning objectives (after successful completion of the module)

In the core elective modules, students choose from a catalogue of courses in the fields of robotics according to their preferences and professional expectations. The course-related learning objectives can be found in the descriptions of the individual courses.

Contents

The contents can be found in the descriptions of the individual courses.

Literature and other learning resources

Die Literaturangaben können den Beschreibungen der einzelnen Lehrveranstaltungen entnommen werden.

Module No. 20							
Core Elective 1B	Core Elective 1B						
Module length	Regular Cycle	Workload	ECTS-Credit Points				
1 Semester	Summer semester	Total: 150 hrs 60 hrs attendance time (4 SWS) 60 hrs self-directed study time 30 hrs exam preparation	5				
Responsible for modu	le: Dean of studies						
Lecturer(s):							

The lecturers can be found in the descriptions of the individual courses.

Associated class(es)	Teaching and learning	Language of instruc-
	format	tion
See catalogue Core Elective 1	Seminar-like lecture,	English
	exercise course	

One of the courses from the catalogue specified in the curriculum for module 20 (Core Elective 1B) must be selected. The selected course must be different from the selection for module 19 (Core Elective 1A).

Applicability and study semester in accordance with the study and examination regulations

Bachelor's programme Robotics (Core elective module, 4th semester)

Provides the basis for module(s): None

Builds up on module(s): Basic modules of the 1st, 2nd and 3rd semester

Conditions of participation in accordance with study and examination regulations

None

Recommended conditions of participation and prior knowledge

The recommended conditions of participation and prior knowledge can be found in the descriptions of the individual courses.

Examination type / Prerequisite for the award of credit	Examination length	Examination language
points		
Written exam	90 to 120 min	English

The duration of the examination, the scope of the examination and other examination conditions (e.g. permitted auxiliary means) are defined in the examination conditions. These are published on the faculty intranet at the beginning of each semester.

Learning objectives (after successful completion of the module)

In the core elective modules, students choose from a catalogue of courses in the fields of robotics according to their preferences and professional expectations. The course-related learning objectives can be found in the descriptions of the individual courses.

Contents

The contents can be found in the descriptions of the individual courses.

Literature and other learning resources

The literature references can be found in the descriptions of the individual courses.

Catalogue Core Elective 1

Catalogue of courses for modules 19 (Core Elective 1A) and 20 (Core Elective 1B). The courses are usually offered in the summer semester.

Title of the lecture	Responsible for the lecture
Simulation of Mechatronic Systems	Prof. Dr. Jean Meyer
Digital Signal Processing and State Space Control	Prof. Dr. Bernhard Müller
Development Processes and Legal Basics	Prof. Dr. Jean Meyer

Editing state: July 2021 Page **46** of **92** SPO dated 16 June 2020

Core Elective 1				
Simulation of Mechatronic Systems				
Module Length	Regular Cycle	Workload		
1 Semester	Summer semester	Total: 150 hrs		
		60 hrs attendance time (4 SWS)		
		60 hrs self-directed study time		
		30 hrs exam preparation		
Responsible for the lecture: Prof. Dr. Jean Meyer				

Lecturer(s):

N.N.

Associated class(es)	Teaching and learning	Language of instruc-
	format	tion
Simulation of Mechatronic Systems	Seminar-like lecture,	English
	exercise course	

Recommended conditions of participation and prior knowledge

Engineering Mathematics 1 (1), Engineering Mathematics 2 (7), Basics of Electrical Engineering (2), Robot Mechanics 1 (3), Robotics Lab 1 (6)

Learning objectives

The students

- state the analogies between the common physical quantities, the descriptive equations and the interconnections of electrical, mechanical and fluid-based transmission elements.
- describe overarching interrelationships in the transmission chain
- represent informally described functional chains of mechatronic sub-systems and overall systems in mathematical models
- use selected modelling tools to develop simulation models of mechatronic systems
- describe the application limits of modelling tools
- state the effect of simulation and model parameters
- set simulation and model parameters in a targeted manner
- check the plausibility of the simulation results obtained
- evaluate the effect of model simplifications (e.g. linearisation).

Contents

- Analogies between electrical, mechanical and fluid-based systems according to the potential current and the cross through system
- Standardized procedure for the modeling of physical systems
- Frequently occurring nonlinearities
- Application examples of linear and non-linear mechatronic systems
- Numerical integration algorithms

Literature and other learning resources

- Rolf Isermann, Mechatronische Systeme, Springer, Berlin Heidelberg New York, 2.Auflage 2008.
- Rainer Nollau, Modellbildung und Simulation technischer Systeme, Springer Dordrecht, 2009.
- Jörg Kahlert, Einführung in WinFACT, Fachbuchverlag Leipzig im Carl Hanser Verlag, 2009.

Core Elective 1				
Digital Signal Processing and State Space Control				
Module Length	Length Regular Cycle Workload			
1 Semester	Summer semester	Total: 150 hrs		
		60 hrs attendance time (4 SWS)		
		60 hrs self-directed study time		
		30 hrs exam preparation		
Responsible for the lecture: Prof. Dr. Bernhard Müller				

Responsible for the lecture: Prof. Dr. Bernhard Mulle

Lecturer(s):

Prof. Dr. B. Müller

Associated class(es)	Teaching and learning	Language of instruc-
	format	tion
Digital Signal Processing and State Space Control	Seminar-like lecture,	English
	exercise course	

Recommended conditions of participation and prior knowledge

Engineering Mathematics (1), Engineering Mathematics 2 (7), Basics of Electrical Engineering (2), Basics of Electronics and Components (8), Systems Theory (14)

Learning objectives

The students

- describe time-discrete linear, time-invariant systems and deterministic signals in the time and frequency
- name essential properties of digital signals
- apply the discrete Fourier transform (DFT) and the fast Fourier transform (FFT), respectively
- state essential methods and design procedures for non-recursive (FIR) and recursive (IIR) filters as well as procedures for spectral analysis
- apply spectral analysis methods to concrete examples
- design a mathematical model in state space representation for simple technical systems
- simplify mathematical models by linearisation
- analyse the behaviour of linear and time-invariant dynamic systems with the help of state equations
- use design procedures to design state controls for single-variable systems

Contents

- Description of time-discrete signals and systems in the time domain
- Description in frequency domain: Fourier transformation, frequency response
- Sampling/reconstruction, periodic spectra, aliasing
- Discrete-time non-recursive (FIR) and recursive (IIR) filters, transfer function
- Spectral estimation for discrete-time signals
- Deriviation of LTI state equations
 - Mathematical modelling
 - o Linearization around operating point
- Solution of the state equations, stability, controllability and observability
- Structure and design of linear state-space controllers
- Structure and design of Luenberger observer, separation principle
- Disturbance rejection

Literature and other learning resources

- Oppenheim, V.; Schafer, R. W.: Discrete-time Signal Processing, Prentice Hall, 3rd ed., 2010.
- Proakis, J.G; Manolakis, D.G.: Digital Signal Processing; Pearson, 4th ed., 2013.
- Hsu, H.P.: Schaum's Outline of Signals and Systems; 4th ed., McGraw-Hill, 4th ed., 2019.

Editing state: July 2021 SPO dated 16 June 2020 Page **48** of **92**

University of Applied Sciences Würzburg-Schweinfurt

FH-W-S University of Applied Sciences Würzburg-Schweinfurt

Faculty of Electrical Engineering

- Lyons, R.G.: Understanding Digital Signal Processing; 3rd ed., Addison Wesley, 2010.
- Dorf, R. C.; Bishop, R. H.: Modern Control Systems. 13th ed., Pearson, 2017.
- Nise, N. S.: Control Systems Engineering. International Student Version. 6th ed., John Wiley & Sons, 2011.
- Billingsley, J: Essentials of Control Techniques and Theory. CRC Press, 2010.
- Zhou, K.; Doyle, J. C.; Glover, K.: Robust and Optimal Control, Prentice Hall, 1995.

tion

English

lecture,

Core Elective 1					
Development Processes and Legal Basics					
Module Length	Module Length Regular Cycle Workload				
1 Semester	Sommersemester	Total: 150 hrs			
		60 hrs attendance time (4 SW	S)		
	60 hrs self-directed study time				
	30 hrs exam preparation				
Responsible for the lecture: Prof. Dr. Jean Meyer					
Lecturer(s):					
N.N.					
Associated class(es)		Teaching and learning	Language	of instruc-	

format

Seminar-like

exercise course

Recommended conditions of	f narticination and n	rior knowladga

None

Learning objectives

The students

• name basic development models

Development Processes and Legal Basics

- apply development models to the development of technical products
- state the legal framework of standardisation at European level as well as CE marking and patent law
- describe the legal significance of standards for product development
- list technical standards relevant to robotics
- describe methods of risk analysis and the associated obligations for robot manufacturers
- describe the steps for risk assessment of workplaces and the associated obligations for the employer
- list legal aspects of occupational safety, as well as aspects of quality management.

Contents

- Development processes
- Occupational Safety
- Overview of relevant standards
- Principles of CE marking
- Patent law
- Risk analysis and risk assessment
- Quality Management

Literature and other learning resources

- SCHNEIDER, André. Zertifizierung im Rahmen der CE-Kennzeichnung. Hüthig, 2008.
- KREY, Volker; KAPOOR, Arun. Praxisleitfaden Produktsicherheitsrecht: CE-Kennzeichung-Gefahrenanalyse-Betriebsanleitung-Konformitätserklärung-Produkthaftung-Fallbeispiele. Carl Hanser Verlag GmbH Co KG, 2014.

Faculty of Electrical Engineering

Module No. 21				
Control Systems				
Module length	Regula	r Cycle	Workload	ECTS-Credit Points
1 Semester	Sommer	semester	Total: 150 hrs 60 hrs attendance time (4	5
			SWS)	
			60 hrs self-directed study	
			time	
			30 hrs exam preparation	
Responsible for module: Prof. Dr. Bernhard Müller				
Lecturer(s):				
Prof. Dr. B. Müller, Pro	f. Dr. A. A	li		
Associated class(es)			Teaching and learning	Language of instruc-
			format	tion
Control Systems			Seminar-like lecture,	English
			exercise course	
Applicability and study semester in accordance with the study and examination regulations				
Bachelor's programme Robotics (Core module, 4. Fachsemester)				
Provides the basis for mo	dule(s):	Actuators (29)		
Builds up on module(s):		Systems Theory (14)		
Conditions of participation in accordance with study and examination regulations				

Recommended conditions of participation and prior knowledge

Systems Theory (14)

Examination type / Prerequisite for the award of credit points	Examination length	Examination language
Written exam	90 to 120 min	English
		9

The duration of the examination, the scope of the examination and other examination conditions (e.g. permitted auxiliary means) are defined in the examination conditions. These are published on the faculty intranet at the beginning of each semester.

Learning objectives (after successful completion of the module)

The students

- name basic terminology of control engineering and describe mechanism of the feedback control
- explain static and dynamic behaviour of control-loop components, describe them in time and frequency domain and identify fundamental characteristics of important systems (P, I, D, first-order lag, secondorder-lag etc.)
- explain the working principle of the classical PID control, describe characteristic features and properties of each controller component and select a suitable controller for a given application
- analyse control systems for stability, oscillations, steady-state accuracy and speed of response using openloop frequency response and pole-zero maps
- build a simulation model for a simple control loop and execute a model-based controller design
- use heuristics and empirical methods to select suitable controller structure and adjust its parameters
- design a feedback controller for a single-input-single-output system using analytical using frequency response and pole-placement techniques

Contents

- Introduction
 - o Basic terminology, plan of action, feedback control

Editing state: July 2021 SPO dated 16 June 2020 Page **51** of **92**

University of Applied Sciences Würzburg-Schweinfurt

Faculty of Electrical Engineering

- Behaviour of control system components
 - Deriving system equations
 - o Description in time and frequency domain
 - Transfer function,
 - Modelling and simulation
- PID control
- Control loop analysis
 - o Stability, speed of response, oscillation behaviour, steady-state accuracy
- Controller design
 - o Empirical design methods
 - Model-based control design
 - o Controller design in frequency domain (loop shaping)
 - o Pole placement method / root locus.

Literature and other learning resources

- K. J. Åström and R. M. Murray, Feedback systems: an introduction for scientists and engineers. Princeton, NJ: Princeton University Press, 2009.
- K. Ogata, Modern Control Engineering, 5th ed. Upper Saddle River, NJ: Pearson Education, 2010.
- R. Dorf, R. Bishop, Modern Control Systems, 13th ed. Hoboken, NJ: Pearson Education, 2017.
- H. Unbehauen, Regelungstechnik I, 15th ed. Wiesbaden: Springer Vieweg, 2008.
- J. Lunze, Regelungstechnik 1, 12th ed. Berlin: Springer-Verlag, 2020.

Special notes

Editing state: July 2021 Page **52** of **92** SPO dated **16** June 2020

University of Applied Sciences Würzburg-Schweinfurt

Module No. 22						
Distributed Systems and Network Communication						
Module length	Module length Regular Cycle Workload ECTS-Credit Points					
1 Semester	Summer semester	Total: 150 hrs 60 hrs attendance time (4 SWS) 60 hrs self-directed study time 30 hrs exam preparation	5			

Responsible for module: Prof. Dr. Markus Mathes

Lecturer(s):

Prof. Dr. M. Mathes, Prof. Dr. L. Eckert

Associated class(es)	Teaching and learning	Language of instruc-
	format	tion
Distributed Systems and Network Communication	Seminar-like lecture,	English
	exercise course	

Applicability and study semester in accordance with the study and examination regulations

Bachelor's programme Robotics (Core module, 4th semester)

Provides the basis for module(s): None

Builds up on module(s): Embedded Systems and Field Buses (17)

Conditions of participation in accordance with study and examination regulations

None

Recommended conditions of participation and prior knowledge

Embedded Systems and Field Buses (17)

Examination type / Prerequisite for the award of credit	Examination length	Examination language
M/nith.org.no.	00+- 120	FI!
Written exam	90 to 120 min	English

The duration of the examination, the scope of the examination and other examination conditions (e.g. permitted auxiliary means) are defined in the examination conditions. These are published on the faculty intranet at the beginning of each semester.

Learning objectives (after successful completion of the module)

The students

- name different theoretical models for distributed systems, in particular the different types of transparency
- apply the architectural principles of distributed systems
- describe the special challenges regarding global time, global states and transactions
- develop a parallel algorithm in the Java programming language for a given task in a structured form
- use message- and memory-coupled techniques for programming distributed systems
- apply techniques for the scalability of distributed systems
- select techniques for load balancing, replication and caching
- define the basics of grid and cloud computing
- present network communication methods
- plan deployment concepts and adapt specific requirements accordingly
- set transmission parameters correctly

Contents

Distributed systems:

• Architecture of distributed systems, name services, global time, global state, transactions, CAP theorem.

Editing state: July 2021 Page **53** of **92** SPO dated 16 June 2020

University of Applied Sciences Würzburg-Schweinfurt

Faculty of Electrical Engineering

- Client-server architectures, network communication and protocols for remote procedure call, remote method invocation
- Scalable software architectures, principles of load balancing, application of replication and caching techniques, cloud computing and technical administration

Network Communication:

- TCP-IP stack
- Osi-iso reference model
- Service-oriented architectures
- Cloud computing
- Distributed algorithms

Literature and other learning resources

- Stefan Tilkov und Martin Eigenbrodt: REST und HTTP: Entwicklung und Integration nach dem Architekturstil des
- Web. dpunkt Verlag, 2015.
- Christoph Meinel und Harald Sack: WWW: Kommunikation, Internetworking, Web-Technologien. Springer, 2004.
- Clay Breshears: The Art of Concurrency: A Thread Monkeys Guide to Writing Parallel Applications. OReilly,
 2009
- Wendell Odom: Cisco CCNA Routing und Switching ICND2 200-101: Das offizielle Handbuch zur erfolgreichen Zertifizierung; dpunkt.verlag GmbH 2014
- Comer, Douglas E.: Internetworking with TCP/IP, Vol.1: Principles, Protocols, and Architectures, Prentice Hall International 2000
- Douglas E. Comer: Computernetzwerke und Internets; Verlag Pearson Studium, Prentice Hall, 2000

Special notes

Editing state: July 2021 Page **54** of **92** SPO dated 16 June 2020

Faculty of Electrical Engineering

University of Applied Sciences Würzburg-Schweinfurt

Module No. 23						
Machine Learning						
Module length	Regula	r Cycle	Workload		ECTS-Credit	Points
1 Semester	Sommer	semester	Total: 150 hrs 60 hrs attendance SWS) 60 hrs self-directe time 30 hrs exam prepar	ed study	5	
Responsible for module	Prof. D	r. Rainer Herrler				
Lecturer(s):						
Prof. Dr. R. Herrler						
Associated class(es)			Teaching and le	earning	Language o	of instruc-
			format		tion	
Machine Learning			Seminar-like exercise course	lecture,	English	
Applicability and study s	emeste	r in accordance v	vith the study an	d examii	nation regula	tions
Bachelor's programme Rob	•		,			
Provides the basis for mod	ule(s):		Deep Learning", "M		otics" and "Hu	manoid and
Duilde up on modulo/s).			" specialisation modules nsor Data Fusion (13)			
Builds up on module(s): Conditions of participati	on in ac				ulations	
None None	on m ac	cordance with St	uuy anu examina	ition reg	uiations	
Recommended conditio	ns of na	rticination and n	rior knowledge			
Statistics and Sensor Data I	•	•	iloi kilowicuge			
Examination type / Pre		Examinat	ion length	Exa	amination lan	iguage
site for the award of c	•					00-
points						
Written exam		90 to 1	20 min		English	
The duration of the examination, the scope of the examination and other examination conditions (e.g. permitted auxilia			tted auxiliary			

The duration of the examination, the scope of the examination and other examination conditions (e.g. permitted auxiliary means) are defined in the examination conditions. These are published on the faculty intranet at the beginning of each semester.

Learning objectives (after successful completion of the module)

The students

- classify machine learning as a discipline in the subject area of artificial intelligence
- name areas of application of machine learning in engineering
- list relevant parameters for describing model quality
- state the differences between supervised and unsupervised learning
- select and apply basic machine learning algorithms according to the learning task at hand
- evaluate the success of a machine learning process using appropriate criteria and parameters
- describe the structure of neural networks and the course of the training process
- name different activation functions
- use relevant software tools to solve machine learning tasks
- name requirements for hardware products that arise in connection with machine learning tasks

Contents

- Conceptual classification of "machine learning" and differentiation from other sub-fields of artificial intelligence
- Methods of supervised and unsupervised learning

Editing state: July 2021 Page **55** of **92** SPO dated 16 June 2020

University of Applied Sciences Würzburg-Schweinfurt

Faculty of Electrical Engineering

- Basics concepts of reinforcement learning
- · Basic machine learning algorithms and their application, e.g. k-Means Clustering,
- DBScan, Gaussian Mixture Model, k-Nearest Neighbor, Naive Bayes Classification, Support Vector Machines (SVM), Decision Trees
- Silhouette Score and Silhoutte Graph
- Confusion Matrix
- Structure and functioning of neural networks including activation functions
- Selected software tools
- Hardware for ML applications

Literature and other learning resources

- ALPAYDIN, Ethem. Maschinelles Lernen. Walter de Gruyter GmbH & Co KG, 2019
- FROCHTE, Jörg. Maschinelles Lernen: Grundlagen und Algorithmen in Python. Carl Hanser Verlag GmbH Co KG, 2019
- ALPAYDIN, Ethem. Introduction to machine learning. MIT press, 2020.
- FORSYTH, David, Applied Machine Learning, Springer Nature, 2019

Special notes

Editing state: July 2021 Page **56** of **92** SPO dated 16 June 2020

Module No. 24						
Robotics Lab 4						
Module length	Regular Cycle	Workload	ECTS-Credit Points			
1 Semester	Summer semester	Total: 150 hrs 60 hrs attendance time (4 SWS) 90 hrs self-directed study time	5			

Responsible for module: Prof. Dr. Jean Meyer

Lecturer(s):

Prof. Dr. M. Schmidt, Prof. Dr. R. Herrler, Prof. Dr. B. Müller

Associated class(es)	Teaching and learning	Language of instruc-
	format	tion
Robotics Lab 4	Seminar and lab course	English

Applicability and study semester in accordance with the study and examination regulations

Bachelor's programme Robotics (Core module, 4. semester)

Provides the basis for module(s): Robotics Project (33)
Builds up on module(s): Robotics Lab 3 (18)

Conditions of participation in accordance with study and examination regulations

None

Recommended conditions of participation and prior knowledge

Robotics Lab 1 (6), Robotics Lab 2 (12), Robotics Lab 3 (18)

Examination type / Prerequisite for the award of credit points	Examination length	Examination language
Other type of assessment		English

The duration of the examination, the scope of the examination and other examination conditions (e.g. permitted auxiliary means) are defined in the examination conditions. These are published on the faculty intranet at the beginning of each semester.

Learning objectives (after successful completion of the module)

The students

- apply the theoretical knowledge from modules of the semester in practical course units and experiments
- select suitable methods from the lectures for conducting the practical experiments
- apply robotics-relevant software tools
- use software tools for the development and application of robots
- analyse processes and methods in the context of practical experiments
- plan experiments, carry them out and document the results in a scientific format
- interpret experimental results and draw conclusions from them with regard to the underlying influencing factors and cause-effect relationships

Contents

- Introduction to Linux and ROS:
 - Introduction to the ROS framework
 - Introduction to ROS Gazebo and rviz
 - Programming of a mobile platform with ROS
- Introduction to Machine Learning with Matlab
- Control Systems lab:

Design, simulation and testing of conventional controllers

Literature and other learning resources

Editing state: July 2021 Page **57** of **92** SPO dated **16** June 2020

University of Applied Sciences Würzburg-Schweinfurt Faculty of Electrical Engineering

• Experimental instructions, lab manuals and supplementary documents on the FHWS eLearning system.

Special notes

Editing state: July 2021 Page **58** of **92** SPO dated 16 June 2020

Special notes

3 Internship phase, 5th semester

Internship			
Module length	Regular Cycle	Workload	ECTS-Credit Points
1 Semester	Winter semester	Total: 750 hrs 700 hrs attendance time (industry) 50 hrs preparation for th industry internship	
Responsible for module:	: Internship coordinat		
Lecturer(s):			
Not applicable			
Associated class(es)		Teaching and learni format	ing Language of instruc-
Not applicable		Internship	Not applicable
Applicability and study s	semester in accordan	ce with the study and ex	amination regulations
Provides the basis for modu	` '	nesis (36)	
Builds up on module(s): Conditions of participati Minimum of 90 ECTS-Points Recommended condition	Modules of the form in accordance with strom successfully com	he basic study phase th study and examination pleted modules.	regulations
Builds up on module(s): Conditions of participati Minimum of 90 ECTS-Points Recommended condition None	Modules of the continuation in accordance with strom successfully comins of participation and continuation a	he basic study phase th study and examination pleted modules. nd prior knowledge	
Builds up on module(s): Conditions of participati Minimum of 90 ECTS-Points Recommended condition	Modules of the continuous of t	he basic study phase th study and examination pleted modules.	regulations Examination language
Builds up on module(s): Conditions of participati Minimum of 90 ECTS-Points Recommended condition None Examination type / Presite for the award of conditions	Modules of the continuous of the continuous	he basic study phase th study and examination pleted modules. nd prior knowledge	
Builds up on module(s): Conditions of participati Minimum of 90 ECTS-Points Recommended condition None Examination type / Presite for the award of compoints Not applicable Proof of successful completion	Modules of the internship by med	t applicable ans of an internship certificate is points.	Examination language
Builds up on module(s): Conditions of participati Minimum of 90 ECTS-Points Recommended condition None Examination type / Presiste for the award of condition points Not applicable	Modules of the internship by med	t applicable ans of an internship certificate is points.	Examination language Not applicable
Builds up on module(s): Conditions of participati Minimum of 90 ECTS-Points Recommended condition None Examination type / Presite for the award of compoints Not applicable Proof of successful completion Learning objectives (after	Modules of the fon in accordance with strom successfully common sof participation and requiredit No on of the internship by medical successful completes.	t applicable ans of an internship certificate in points.	Examination language Not applicable
Builds up on module(s): Conditions of participati Minimum of 90 ECTS-Points Recommended condition None Examination type / Presiste for the award of compoints Not applicable Proof of successful completion Learning objectives (after Students transfer the engine	Modules of the fon in accordance with strom successfully common sof participation and requiredit No on of the internship by medical successful completes.	t applicable ans of an internship certificate in points.	Examination language Not applicable is required for the award of credit
Builds up on module(s): Conditions of participati Minimum of 90 ECTS-Points Recommended condition None Examination type / Presite for the award of compoints Not applicable Proof of successful completion Learning objectives (after Students transfer the enginesion of engineers. Contents	Modules of the form in accordance with some successfully common and the form of the internship by medical sering knowledge they	the basic study phase the study and examination apleted modules. Ind prior knowledge ination length It applicable ans of an internship certificate in points. It ion of the module) It have acquired by applying in	Examination language Not applicable is required for the award of credit

Module No. 26 General Elective					
1 Semester	Winter semester	Total: 150 hrs 60 hrs attendance time (4 SWS) 60 hrs self-directed study time 30 hrs exam preparation	5		

Responsible for module: Faculty of Applied Natural Sciences and Humanities

Lecturer(s):

All lecturers of general electives

Associated class(es)	Teaching and learning	Language of instruc-
	format	tion
2 modules as selected by the student from the course	Seminar-like lecture,	English or foreign langu-
catalogue for general elective modules (2 SWS each)	exercise course	age

Applicability and study semester in accordance with the study and examination regulations

Bachelor's programme Robotics (Core module, 5th semester)

Provides the basis for module(s): None Builds up on module(s): None

Conditions of participation in accordance with study and examination regulations

None

Recommended conditions of participation and prior knowledge

None

Examination type / Prerequisite for the award of credit points	Examination length	Examination language
Dependent on the module cho-	Dependent on the module cho-	Dependent on the module cho-
sen; see respective specifications	sen; see respective specifications	sen; see respective specifications

The duration of the examination, the scope of the examination and other examination conditions (e.g. permitted auxiliary means) are defined in the examination conditions. These are published by the faculty of Applied Natural Sciences and Humanities (FANG).

Learning objectives (after successful completion of the module)

The course-specific learning objectives are described on the website the faculty of Applied Natural Sciences and Humanities (see below).

Contents

- Impartment of general knowledge
- Honing key skills like presentation and communication skills
- Foreign languages
- The modules offered as well as the course descriptions can be found in the respective catalogues for general elective modules:
 - o For Schweinfurt:

http://fang.fhws.de/studium/allgemeinwissenschaftliche wahlpflichtfaecher/angebote in schweinfurt/aktuelles und termine.html

For Würzburg:

http://fang.fhws.de/studium/allgemeinwissenschaftliche wahlpflichtfaecher/ange-bote in wuerzburg/aktuelles und termine.html

Editing state: July 2021 Page **60** of **92** SPO dated **16** June 2020

Literature and other learning resources

• In accordance with description in the course catalogue; lecture notes may be available on the university's e-learning site.

- Specific online courses by the Virtual University of Bavaria are also available.
- Some courses include excursions and guest lectures.

4 Subject- and Specialisation studies, 6th and 7th semester

Module No. 27						
Core Elective 2A						
Module length	Regula	r Cycle	Workload		ECTS-Credit F	oints
1 Semester	Summer	semester	Total: 150 hrs 60 hrs attendance SWS) 60 hrs self-direct time 30 hrs exam prepa	ed study	5	
Responsible for mod	ule: Dean o	f studies				
Lecturer(s):						
The lecturers can be fo	und in the de	escriptions of the ir	ndividual courses.			
Associated class(es)			Teaching and I	earning	Language of	instruc-
			format		tion	
See catalogue Core Ele	ctives 2		Seminar-like exercise course	lecture,	English	
One of the courses from selected	_	specified in the curric be different from the	ulum for module 27	-	-	lected. The
Applicability and stu	dy semeste	r in accordance v	vith the study an	d exami	nation regulati	ons
Bachelor's programme	Robotics (Co	re elective, 6th ser	nester)			
		ı				
Provides the basis for n		None				
Builds up on module(s)		L	pasic study period (1st to 4th semester)			
Conditions of partici	pation in ac	cordance with st	udy and examin	ation reg	ulations	
None						
Recommended cond	•	•				
The recommended corindividual courses.	iditions of pa	articipation and pr	ior knowledge can	be found	I in the descript	ions of the
Examination type / site for the award points	_	Examinat	ion length	Exa	amination lang	guage
Written exar	n	90 to 1	.20 min		English	
The duration of the exam	nation the sc	ı one of the evaminati	on and other examin	ation condi	itions (e.a. nermiti	ed auxilian

site for the award of credit		
points		
Written exam	90 to 120 min	English
The duration of the examination, the sco	ope of the examination and other examina	ntion conditions (e.a. permitted auxiliary

means) are defined in the examination conditions. These are published on the faculty intranet at the beginning of each semester.

Learning objectives (after successful completion of the module)

In the core elective modules, students choose from a catalogue of courses in the fields of robotics according to their preferences and professional expectations. The course-related learning objectives can be found in the descriptions of the individual courses.

Contents

The contents can be found in the descriptions of the individual courses.

Literature and other learning resources

The literature references can be found in the descriptions of the individual courses.

Module No. 28				
Core Elective 2B				
Module length	Regular Cycle	Workload	ECTS-Credit Points	
1 Semester	Summer semester	Total: 150 hrs 60 hrs attendance time (4 SWS) 60 hrs self-directed study time 30 hrs exam preparation	5	

Responsible for module: Dean of studies

Lecturer(s):

The lecturers can be found in the descriptions of the individual courses.

Associated class(es)	Teaching and learning	Language of instruc-
	format	tion
See catalogue Core Electives 2	Seminar-like lecture,	English
	exercise course	

One of the courses from the catalogue specified in the curriculum for module 28 (Core Elective 2B) must be selected. The selected course must be different from the selection for module 27 (Core Elective 2A).

Applicability and study semester in accordance with the study and examination regulations

Bachelor's programme Robotics (Core elective, 6th semester)

Provides the basis for module(s): None

Builds up on module(s): Modules of the basic study period (1st to 4th semester)

Conditions of participation in accordance with study and examination regulations

None

Recommended conditions of participation and prior knowledge

The recommended conditions of participation and prior knowledge can be found in the descriptions of the individual courses.

Examination type / Prerequisite for the award of credit	Examination length	Examination language
points		
Written exam	90 to 120 min	English

The duration of the examination, the scope of the examination and other examination conditions (e.g. permitted auxiliary means) are defined in the examination conditions. These are published on the faculty intranet at the beginning of each semester.

Learning objectives (after successful completion of the module)

In the core elective modules, students choose from a catalogue of courses in the fields of robotics according to their preferences and professional expectations. The course-related learning objectives can be found in the descriptions of the individual courses.

Contents

The contents can be found in the descriptions of the individual courses.

Literature and other learning resources

The literature references can be found in the descriptions of the individual courses.

Catalogue Core Electives 2

Catalogue of courses for modules 27 (Core Elective 2A) and 28 (Core Elective 2B). The courses are usually offered in the summer semester.

Title of the lecture	Responsible for the lecture
Deep Learning	Prof. Dr. Rainer Herrler
3D Machine Vision	Prof. Dr. Volker Willert
Advanced Kinematics	Prof. Dr. Jean Meyer
Robot Programming	Prof. Dr. Tobias Kaupp

Faculty of Electrical Engineering

University of Applied Sciences Würzburg-Schweinfurt

Core Elective 2		
Deep Learning		
Module length	Regular Cycle	Workload
1 Semester	Summer semester	Total: 150 hrs
		60 hrs attendance time (4 SWS)
		60 hrs self-directed study time
		30 hrs exam preparation

Responsible for the lecture: Prof. Dr. Rainer Herrler

Lecturer(s):

Prof. Dr. R. Herrler

Associated class(es)	Teaching and learning	Language of instruc-
	format	tion
Deep Learning	Seminar-like lecture,	English
	exercise course	

Recommended conditions of participation and prior knowledge

Machine Learning (23)

Learning objectives

The students

- describe the structure of neural networks and the function of the individual network elements
- demonstrate the learning process in a neural network at node level
- list different network structures as well as corresponding application examples
- describe the algorithms of forward and backward propagation
- describe the application of neural networks in the context of image recognition
- list different types of neural networks
- assess the suitability of neural networks with regard to the data basis and the desired result
- name application possibilities and application limits of transfer learning
- apply transfer learning to simple problems with the help of software tools
- use software tools to develop and apply neural networks
- define requirements for the necessary hardware in the context of deep learning.

Contents

- Structure and function of neural networks
- Classification of Deep Neural Networks (DNNs)
- Image recognition with DNN
- Forward Propagation and Backward Propagation
- Selected types of neural networks, e.g. CNN, RNN, LSTM, DAG
- Transfer learning
- Analysis and optimisation of neural networks
- Software tools for Deep Learning applications
- Deep reinforcement learning
- Hardware for Deep Learning applications

Literature and other learning resources

- GOODFELLOW, Ian; BENGIO, Yoshua; COURVILLE, Aaron. Deep learning. MIT press, 2016
- OSINGA, Douwe. Deep Learning Cookbook: Practical Recipes to Get Started Quickly. "O'Reilly Media, Inc.", 2018.
- RASHID, Tariq. Neuronale Netze selbst programmieren: ein verständlicher Einstieg mit Python. O'Reilly, 2017.

Special notes

Editing state: July 2021 Page **65** of **92** SPO dated **16** June 2020

Core Elective 2			
3D Machine Vision			
Module length	Regular Cycle	Workload	
1 Semester	Summer semester	Total: 150 hrs	
		60 hrs attendance time (4 SWS)	
		60 hrs self-directed study time	
		30 hrs exam preparation	
Responsible for the lecture: Prof. Dr. Volker Willert			
Lecturer(s):			

Prof. Dr. V. Willert

Associated class(es)	Teaching and learning	Language of instruc-
	format	tion
3D Machine Vision	Seminar-like lecture,	English
	exercise course	

Recommended conditions of participation and prior knowledge

Image Processing (16)

Learning objectives

The students

- name different 3D imaging techniques
- describe the functional principles of 3D imaging techniques
- list application-related advantages and disadvantages of 3D imaging techniques
- state the camera calibration procedure
- name relevant calibration parameters
- list aspects of storing and processing point clouds
- use point clouds to determine the position and pose of objects
- evaluate application limits of methods for position determination depending on the data basis
- name basic functions of the OpenCV library for 3D machine vision applications name the tools of the OpenCV library for 3D machine vision applications
- select tools from the OpenCV library for robotics-relevant tasks

Contents

- 3D camera systems and 3D reconstruction:
 - o TOF
 - o Stereo
 - Strip light projection
- Camera calibration
- Structure from motion (SfM)
- 3D position and pose estimation
- Point clouds
- Introduction to OpenCV (e.g. in Matlab)
- Application examples: 3D object recognition, gesture recognition, object tracking

Literature and other learning resources

- DAVIES, E. Roy. Computer vision: principles, algorithms, applications, learning. Academic Press, 2017
- SÜßE, Herbert; RODNER, Erik. Bildverarbeitung und Objekterkennung. Springer Fachmedien Wiesbaden,
- JOSHI, Prateek; ESCRIVÁ, David Millán; GODOY, Vinicius. OpenCV By Example. Packt Publishing Ltd, 2016.
- CORKE, Peter. Robotics, vision and control: fundamental algorithms in MATLAB® second, completely revised. Springer, 2017

SPO dated 16 June 2020 Editing state: July 2021 Page **66** of **92**

University of Applied Sciences Würzburg-Schweinfurt Faculty of Electrical Engineering

Special notes			

Core Elective 2				
Advanced Kinematics				
Module Length	Regular Cycle	Workload		
1 Semester	Summer semester	Total: 150 hrs 60 hrs attendance time (4 SWS) 60 hrs self-directed study time 30 hrs exam preparation		
Responsible for the lecture: Prof. Dr. Jean Meyer				

Lecturer(s):

N.N.

Associated class(es)	Teaching and learning	Language of instruc-
	format	tion
Advanced Kinematics	Seminar-like lecture,	English
	exercise course	

Recommended conditions of participation and prior knowledge

Robot Mechanics 1 (3) and Robot Mechanics 2 (9)

Learning objectives

The students

- list different parallel kinematics
- name application-specific advantages and disadvantages of parallel kinematics
- develop the forward and backward kinematics of complex parallel kinematics
- state lightweight construction potentials for robot kinematics
- quantify weight savings through lightweight construction measures for selected kinematics
- describe essential elements of soft kinematics and their function
- examine control-specific aspects of soft actuators

Contents

Parallel kinematics:

- Parallel platforms: Elements and structure
- Dynamics of parallel platforms
- Forward and inverse kinematics

Lightweight construction:

- Importance of lightweight construction for robotics
- Lightweight materials
- Lightweight construction
- Lightweight production

Soft Robotics:

- Basics of pneumatic actuators
- Control of pneumatic actuators
- Electroactive polymers for actuators

Literature and other learning resources

- VERL, Alexander, et al. Soft Robotics. Berlin, Germany:: Springer, 2015.
- LIU, Xin-Jun; WANG, Jinsong. Parallel Kinematics Type, Kinematics and Optimal Design, Springer, Berlin, Germany, 2014
- STAICU, Stefan. Dynamics of Parallel Robots. Springer International Publishing, 2019.

Special notes

Editing state: July 2021 Page **68** of **92** SPO dated **16** June 2020

Core Elective 2					
Robot Programming					
Module length	Regular Cycle	Workload			
1 Semester	Summer semester	Total: 150 hrs			
		60 hrs attendance time (4 SWS)			
		60 hrs self-directed study time			
		30 hrs exam preparation			
Responsible for the lecture: Prof. Dr. Tobias Kaupp					

Lecturer(s):

N.N.

Associated class(es)	Teaching and learning	Language of instruc-
	format	tion
Robot Programming	Seminar-like lecture,	English
	exercise course	

Recommended conditions of participation and prior knowledge

Programming 1 (5) and Programming 2 (11)

Learning objectives

The students

- name selected proprietary robot programming languages
- state different types of robot programming
- develop simple programs for stationary industrial robots using blending and including sensors information
- use graphical programming environments to create programs
- design ROS programs for mobile robots
- describe information processing in ROS
- list relevant tools and libraries for use in ROS
- describe the procedure for developing simulations in Gazebo
- name the application possibilities of ROS-Industrial and list application examples

Contents

Programming of industrial robots:

- Proprietary and standardized robot programming languages
- Fundamentals of path control
- Types of programming
- Structure of robot programs
- Access of input/output-interfaces
- Integration and utilization of sensor data
- Blending
- Application of motion modes T1/T2/Auto
- Graphical programming

Robot Operating System (ROS):

- Architecture and working environment
- Robot Software Architectures
- Relevant tools and libraries
- ROS-Industrial
- Simulation in Gazebo and application examples

Literature and other learning resources

Editing state: July 2021 Page **69** of **92** SPO dated **16** June 2020

University of Applied Sciences Würzburg-Schweinfurt

Faculty of Electrical Engineering

- QUIGLEY, Morgan; GERKEY, Brian; SMART, William D. Programming Robots with ROS: a practical introduction to the Robot Operating System. "O'Reilly Media, Inc.", 2015.
- MAHTANI, Anil, et al. Effective robotics programming with ROS. Packt Publishing Ltd, 2016.
- PIRES, J. Norberto. Industrial robots programming: building applications for the factories of the future. Springer Science & Business Media, 2007.

Special notes

Editing state: July 2021 Page **70** of **92** SPO dated 16 June 2020

Module No. 29					
Actuators					
Module length	Regular Cycle	Workload	ECTS-Credit Points		
1 Semester	Summer semester	Total: 150 hrs 60 hrs attendance time (4 SWS) 60 hrs self-directed study time 30 hrs exam preparation	5		
Responsible for module: Prof. Dr. Bernhard Müller					

Responsible for module: Prof. Dr. Bernhard Müller

Lecturer(s):

Prof. Dr. B. Müller

Associated class(es)	Teaching and learning	Language of instruc-
	format	tion
Actuators	Seminar-like lecture,	English
	exercise course	

Applicability and study semester in accordance with the study and examination regulations

Bachelor's programme Robotics (Core module, 6th semester)

Provides the basis for module(s):

Builds up on module(s): Control Systems (21)

Conditions of participation in accordance with study and examination regulations

Recommended conditions of participation and prior knowledge

Control Systems (21)

Examination type / Prerequisite for the award of credit points	Examination length	Examination language
politis		
Written exam	90 to 120 min	English

The duration of the examination, the scope of the examination and other examination conditions (e.g. permitted auxiliary means) are defined in the examination conditions. These are published on the faculty intranet at the beginning of each semester.

Learning objectives (after successful completion of the module)

The students

- state the physical principles, structure and function of electric drives
- develop the mathematical relationships for describing the functional chains for electric motors
- design electric drive systems on the basis of technical requirements
- analyse the technical requirements of controlled drives
- develop drive systems based on the components
- plan the necessary work steps for the development of drives in a targeted manner, carry them out practically and critically evaluate the results

Contents

- Magnetic circuits
- Operating principles of electromechanical energy converters and overview about design variants
- Modelling the mechanics of drive systems
- DC motors
 - o Construction
 - Mathematical modelling
 - Stationary operating behavior

SPO dated 16 June 2020 Editing state: July 2021 Page **71** of **92**

University of Applied Sciences Würzburg-Schweinfurt

Faculty of Electrical Engineering

- Control of electrical drives
 - o Fundamentals of power electronics
 - o Cascaded feedback-control structure
 - o Design of current, speed and position controllers
 - o Constraints in practice
- Permanent-magnet synchronous motors
 - Construction
 - o Mathematical modelling
 - o Space vectors and field-oriented control

Literature and other learning resources

- Specovius, Joachim: Grundkurs Leistungselektronik, Vieweg+Teubner, 2011
- Schröder, Dirk: Elektrische Antriebe Grundlagen, 5. Auflage, Springer, 2013
- Schröder, Dirk: Elektrische Antriebe Regelung von Antriebssystemen, 3. Auflage, Springer, 2009
- Hughes: Electric Motors and Drives: Fundamentals, Types and Applications, Newens, 4th ed., 2013
- Mohan et al.: Power Electronics, John Wiley & Sons, 3rd. ed., 2002
- Teigelkötter, Johannes: Energieeffiziente elektrische Antriebe, Vieweg+Teubner, 2013

Specialisation "Industrial Robotics"

Industrial Robotics			
Module length	Regular Cycle	Workload	ECTS-Credit Points
2 Semester	Sommersemester	Total: 150 hrs	15
		60 hrs attendance time (4	
		SWS)	
		60 hrs self-directed study	
		time	
		30 hrs exam preparation	

Responsible for specialisation: Prof. Dr. Jean Meyer

Lecturer(s):

The lecturers can be found in the descriptions of the individual courses.

Associated class(es)	Teaching and learning for-	Language of instruc-
	mat	tion
Dynamics of industrial robots (4 SWS)	Seminar-like lecture, exercise course	English
Automation and production technology (4 SWS)	Seminar-like lecture, exercise course	English
Collaborative robotics (4 SWS)	Seminar-like lecture, exercise course	English

Applicability and study semester in accordance with the study and examination regulations

Bachelor's programme Robotics (Specialisation module, 6th and 7th semester)

Conditions of participation in accordance with study and examination regulations

None

Recommended conditions of participation and prior knowledge

Basic study phase modules (1st to 4th semester)

Examination type / Prerequisite for the award of credit points	Examination length	Examination language
3 x Written exam	3 x 90 to 120 min	English

The duration of the examination, the scope of the examination and other examination conditions (e.g. permitted auxiliary means) are defined in the examination conditions. These are published on the faculty intranet at the beginning of each semester.

Learning objectives (after successful completion of the module)

The learning objectives can be found in the descriptions of the individual courses.

Contents

The contents can be found in the descriptions of the individual courses.

Literature and other learning resources

The literature references can be found in the descriptions of the individual courses.

Module No. 30 – Specialisation "Industrial Robotics"		
Dynamics of industrial robots		
Module Length	Regular Cycle	Workload
1 Semester	Summer semester	Total: 150 hrs
		60 hrs attendance time (4 SWS)
		60 hrs self-directed study time
		30 hrs exam preparation

Responsible for the lecture: Prof. Dr. Jean Meyer

Lecturer(s):

N.N.

Associated class(es)	Teaching and learning Language of instruc-
	format tion
Dynamics of industrial robots	Seminar-like lecture, English
	exercise course

Recommended conditions of participation and prior knowledge

Robot Mechanics 1 (3) and Robot Mechanics 2 (9)

Learning objectives

The students

- use the Jacobi matrix to describe the speed of the kinematic chain
- use the Jacobi matrix to describe forces and moments
- describe force control in a cobot
- use the Newton-Euler and Lagrange equations to describe accelerated motion
- describe path planning for industrial robots with up to 6 axes
- recognise singularities and describe possible solutions to avoid them

Contents

- Speed and acceleration of the kinematic chain
- Direct and inverse kinematics of complex industrial robots
- Force control
- Newton-Euler and Lagrange equation
- Jacobi matrix
- Singularities
- Path planning

Literature and other learning resources

- MARECZEK, Jörg Grundlagen der Roboter-Manipulatoren-Band 1: Modellbildung von Kinematik und Dynamik, Springer, Berlin, 2020
- MARECZEK, Jörg. Grundlagen der Roboter-Manipulatoren–Band 2: Pfad-und Bahnplanung, Antriebsauslegung, Regelung, Springer, Berlin, 2020.

Module No. 31 – Specialisation "Industrial Robotics"			
Automation and production technology			
Module length	Regular Cycle	Workload	
1 Semester	Summer semester	Total: 150 hrs	
		60 hrs attendance time (4 SWS)	
		60 hrs self-directed study time	

30 hrs exam preparation

Verantwortlich für die Lehrveranstaltung: Prof. Dr. Jean Meyer

Lecturer(s):

N.N.

Associated class(es)	Teaching and learning	Language of instruc-
	format	tion
Automation and production technology	Seminar-like lecture,	English
	exercise course	

Recommended conditions of participation and prior knowledge

Robot Mechanics 1 (3) and Robot Mechanics 2 (9)

Learning objectives

The students

- name elements of automation technology
- design simple automation processes with electromechanical actuators
- select components for simple automated production processes
- list different gripper techniques
- select grippers for specific tasks
- calculate parameters relevant for the design of grippers
- describe the integration of PLCs in production processes
- name relevant protocols and interfaces in industrial communication
- describe the possible applications of IoT technologies in the industrial environment

Contents

- Selection and design of grippers
- Planning of automated production lines
- Handling and processing with industrial robots
- Assembly processes
- PLC technology
- Industrial communication
- IoT in the industrial environment

Literature and other learning resources

- WELLENREUTHER, Günter; ZASTROW, Dieter. Automatisieren mit SPS: Theorie und Praxis. Springer-Verlag, 2005
- HEIMBOLD, Tilo. Einführung in die Automatisierungstechnik: Automatisierungssysteme, Komponenten, Projektierung und Planung. Carl Hanser Verlag GmbH Co KG, 2014

Module No. 32 – Specialisation "Industrial Robotics"			
Collaborative Robotics			
Module length	Regular Cycle	Workload	
1 Semester	Winter semester	Total: 150 hrs	
		60 hrs attendance time (4 SWS)	
		60 hrs self-directed study time	
		30 hrs exam preparation	

Verantwortlich für die Lehrveranstaltung: Prof. Dr. Jean Meyer

Lecturer(s):

N.N.

Associated class(es)	Teaching and learning	Language of instruc-
	format	tion
Collaborative Robotics	Seminar-like lecture,	English
	exercise course	

Recommended conditions of participation and prior knowledge

Robot Mechanics 1 (3) and Robot Mechanics 2 (9)

Learning objectives

The students

- name safety-relevant standards in dealing with collaborative robots
- list types of human-robot collaboration
- assess the automation potential through the use of collaborative robots
- select safety-relevant components to complement collaborative workplaces
- evaluate the design of collaborative workstations from a process and safety point of view
- describe the sensors for measuring forces and moments and their installation in collaborative robots
- describe methods of electromechanical force control
- define technical limits of force control including kinematic aspects

Contents

- Application areas and potentials of collaborative robots
- Types of human-robot collaboration
- Safety-relevant components for collaborative workplaces
- Grippers for HRC applications
- Legal framework (norms and standards)
- Structure and design of collaborative workplaces
- Torque/force sensors in collaborative robots
- Control concepts for force control

Literature and other learning resources

- FRANKE, Jörg (Hg.). Handbuch Mensch-Roboter-Kollaboration. Carl Hanser Verlag GmbH Co KG, 2019
- BUXBAUM, Hans-Jürgen, Mensch-Roboter-Kollaboration, Springer Gabler, Wiesbaden, 2020

Specialisation "Mobile Robotics"

Mobile Robotics			
Module length	Regular Cycle	Workload	ECTS-Credit Points
2 Semester	Summer semester and win-	Total: 150 hrs	15
	ter semester	60 hrs attendance time (4	
		SWS)	
		60 hrs self-directed study	
		time	
		30 hrs exam preparation	

Responsible for specialisation: Prof. Dr. Tobias Kaupp

Lecturer(s):

The lecturers can be found in the descriptions of the individual courses.

Associated class(es)	Teaching and learning for-	Language of instruc-
	mat	tion
Localisation and mapping (4 SWS)	Seminar-like lecture, exercise course	English
Aerial drones (4 SWS)	Seminar-like lecture, exercise course	English
Navigation and mobile platforms (4 SWS)	Seminar-like lecture, exercise course	English

Applicability and study semester in accordance with the study and examination regulations

Bachelor's programme Robotics (Specialisation modules, 6th and 7th semester)

Conditions of participation in accordance with study and examination regulations

None

Recommended conditions of participation and prior knowledge

Basic study phase modules (1st to 4th semester)

Examination type / Prerequisite for the award of credit	Examination length	Examination language
Pomos		
3 x Written exam	3 x 90 to 120 min	English

The duration of the examination, the scope of the examination and other examination conditions (e.g. permitted auxiliary means) are defined in the examination conditions. These are published on the faculty intranet at the beginning of each semester.

Learning objectives (after successful completion of the module)

The learning objectives can be found in the descriptions of the individual courses.

Contents

The contents can be found in the descriptions of the individual courses.

Literature and other learning resources

The literature references can be found in the descriptions of the individual courses.

Module No. 30 – Specialisation "Mobile Robotics"			
Localisation and mapping			
Module Length	Regular Cycle Workload		
1 Semester	Sommersemester	Total: 150 hrs	
		60 hrs attendance time (4 SWS)	
		60 hrs self-directed study time	
30 hrs exam preparation			
Personsible for the lecture Prof. Dr. Tobias Kaupp			

Responsible for the lecture: Prof. Dr. Tobias Kaupp

Lecturer(s):

N.N.

Associated class(es)	Teaching and learning	Language of instruc-
	format	tion
Localisation and mapping	Seminar-like lecture,	English
	exercise course	

Recommended conditions of participation and prior knowledge

Sensors and Metrology (10), Statistics and Sensor Data Fusion (13)

Learning objectives

The students

- describe the function of sensors for perception in in- and outdoor applications
- name sensor- and application-specific challenges that are relevant for perception
- distinguish between methods for landmark and path marker detection
- assess the accuracy and application limits of global localisation methods
- describe the particle filter and Kalman filter in the context of localisation
- enumerate environment models
- use the concept of odometry for localisation
- list the challenges associated with the SLAM algorithm
- implement the SLAM algorithm in a programming language

Contents

- Perception in indoor and outdoor areas
- Landmark and path marker recognition
- GPS/IMU-based localisation
- Particle filter and Kalman filter in localisation
- Environment models
- Odometry in the context of mobile platforms
- SLAM

Literature and other learning resources

- SIEGWART, Roland; NOURBAKHSH, Illah Reza; SCARAMUZZA, Davide. *Introduction to autonomous mobile robots*. MIT press, 2011.
- THRUN, S.; Burgard, W.; Fox, D., Probabilistic Robotics, MIT Press, 2005
- KUDRIASHOV, Andrii, et al. SLAM Techniques Application for Mobile Robot in Rough Terrain.
- NÜCHTER, Andreas. 3D robotic mapping: the simultaneous localization and mapping problem with six degrees of freedom. Springer, 2008.

Module No. 31 – Specialisation "Mobile Robotics"			
Aerial drones			
Module length	Regular Cycle	Workload	
1 Semester	Summer semester	Total: 150 hrs	
		60 hrs attendance time (4 SWS)	
		60 hrs self-directed study time	
30 hrs exam preparation			
Pagnoncible for the lecture: Prof. Dr. Tobias Kaupp			

Responsible for the lecture: Prof. Dr. Tobias Kaupp

Lecturer(s):

N.N.

Associated class(es)	Teaching and learning	Language of instruc-
	format	tion
Aerial drones	Seminar-like lecture,	English
	exercise course	

Recommended conditions of participation and prior knowledge

Sensors and Metrology (10)

Learning objectives

The students

- name relevant sensors for flight control of commercial and non-commercial drones
- describe the concept of visual odometry
- define components and techniques for flight and attitude control
- plan application-specific power requirements of drones
- specify aerodynamic aspects of drones
- list drone platforms
- list components for energy supply and define them in terms of power and capacity
- describe common methods for data transmission in exchange with ground-based stations
- select electric drives for drones
- list relevant legal regulations for the operation of drones
- state which authorities must be contacted for the operation of drones requiring a licence

Contents

- Sensors for flight control
- Visual odometry
- Flight / attitude control technology
- Power requirements and power limits
- Aerodynamics of aircraft and drones
- Drone platforms
- Power supply
- Data transmission
- Electric drives for drones
- Legal aspects

Literature and other learning resources

• NONAMI, Kenzo, et al. Autonomous flying robots: unmanned aerial vehicles and micro aerial vehicles. Springer Science & Business Media, 2010.

Module No. 32 – Specialisation "Mobile Robotics"		
Navigation and mobile platforms		
Module length	Regular Cycle Workload	
1 Semester	Winter semester	Total: 150 hrs
		60 hrs attendance time (4 SWS)
		60 hrs self-directed study time
		30 hrs exam preparation

Responsible for the lecture: Prof. Dr. Tobias Kaupp

Lecturer(s):

N.N.

Associated class(es)	Teaching and learning	Language of instruc-
	format	tion
Navigation and mobile Plattformen	Seminar-like lecture,	English
	exercise course	

Recommended conditions of participation and prior knowledge

Robot Mechanics 2 (9)

Learning objectives

The students

- describe the construction of land-based as well as water and underwater platforms for mobile robots
- name steering types of wheel-driven robots
- describe the kinematics of land-based robots
- evaluate approaches for local and global path planning
- describe methods for obstacle avoidance
- handle approaches for obstacle detection and obstacle avoidance
- carry out map-based navigation according to different target criteria on the basis of examples

Contents

- Land-based, water and underwater platforms for mobile robots
- Steering of wheel-driven platforms
- Types of locomotion
- Kinematics of land-based robots
- Path planning with path map, cell map and potential field methods
- Obstacle avoidance
- Navigation architectures

Literature and other learning resources

- ANTONELLI, Gianluca; ANTONELLI, G. Underwater robots. Switzerland: Springer International Publishing, 2014.
- CHATTERJEE, Amitava; RAKSHIT, Anjan; SINGH, N. Nirmal. Vision based autonomous robot navigation: algorithms and implementations. Springer, 2012.

Specialisation Humanoid and Service Robotics

Humanoid and Service Robotics			
Module length	Regular Cycle	Workload	ECTS-Credit Points
2 Semester	Summer and winter semes-	Total: 150 hrs	15
	ter	60 hrs attendance time (4	
		SWS)	
		60 hrs self-directed study	
		time	
		30 hrs exam preparation	

Responsible for specialisation: Prof. Dr. Marco Schmidt

Lecturer(s):

The lecturers can be found in the descriptions of the individual courses.

Associated class(es)	Teaching and learning for-	Language of instruc-
	mat	tion
Human Robot Interaction (HRI) I (4 SWS)	Seminar-like lecture, exercise course	English
Speech recognition and speech synthesis (4 SWS)	Seminar-like lecture, exercise course	English
Human Robot Interaction (HRI) II (4 SWS)	Seminar-like lecture, exercise course	English

Applicability and study semester in accordance with the study and examination regulations

Bachelor's programme Robotics (Specialisation modules, 6th and 7th semester)

Conditions of participation in accordance with study and examination regulations

None

Recommended conditions of participation and prior knowledge

Basic study phase modules (1st to 4th semester)

Examination type / Prerequisite for the award of credit	Examination length	Examination language
Pomos		
3 x Written exam	3 x 90 to 120 min	English

The duration of the examination, the scope of the examination and other examination conditions (e.g. permitted auxiliary means) are defined in the examination conditions. These are published on the faculty intranet at the beginning of each semester.

Learning objectives (after successful completion of the module)

The learning objectives can be found in the descriptions of the individual courses.

Contents

The contents can be found in the descriptions of the individual courses.

Literature and other learning resources

The literature references can be found in the descriptions of the individual courses.

Module No. 30 – Specialisation "Humanoid and Service Robotics"		
Human Robot Interaction (HRI) I		
Module Length	Regular Cycle	Workload
1 Semester	Summer semester	Total: 150 hrs
		60 hrs attendance time (4 SWS)
		60 hrs self-directed study time
		30 hrs exam preparation

Responsible for the lecture: Prof. Dr. Marco Schmidt

Lecturer(s):

N.N.

Associated class(es)	Teaching and learning	Language of instruc-
	format	tion
Human Robot Interaction (HRI) I	Seminar-like lecture,	English
	exercise course	

Recommended conditions of participation and prior knowledge

Robot Mechanics 2 (9), Sensors and Metrology (10)

Learning objectives

The students

- give examples for the application of service robots
- list criteria that are important for the acceptance of service robots
- select human-robot interfaces according to context
- describe approaches to multimodal communication
- assess dialogue designs using the example of a humanoid robot
- describe socially compatible design principles
- name examples of application and possibilities of visual recognition procedures in the context of service robotics

Contents

- Application of service robots, e.g. in care, in the home, in teaching.
- Acceptance of service robots
- Human-robot interfaces
- Multimodal communication
- Dialogue design
- Socially compatible design of robots and social HRI
- Application examples for visual recognition of gestures, attention status, state of mind/facial expression,
 age

Literature and other learning resources

- SIEGWART, Roland; NOURBAKHSH, Illah Reza; SCARAMUZZA, Davide. Introduction to autonomous mobile robots. MIT press, 2011
- BARTNECK, Christoph, et al. Mensch-Roboter-Interaktion: Eine Einführung. Carl Hanser Verlag GmbH Co KG, 2020
- MAHAPATRA, Abhijit; ROY, Shibendu Shekhar; PRATIHAR, Dilip Kumar. Multi-body Dynamic Modeling of Multi-legged Robots. Springer Nature, 2020

Module No. 31 – Specialisation "Humanoid and Service Robotics"		
Speech recognition and synthesis		
Module length	Regular Cycle	Workload
1 Semester	Summer semester	Total: 150 hrs
		60 hrs attendance time (4 SWS)
		60 hrs self-directed study time
30 hrs exam preparation		

Responsible for the lecture: Prof. Dr. Marco Schmidt

Lecturer(s):

N.N.

Associated class(es)	Teaching and learning	Language of instruc-
	format	tion
Speech recognition and synthesis	Seminar-like lecture,	English
	exercise course	

Recommended conditions of participation and prior knowledge

Machine Learning (23)

Learning objectives

The students

- name methods for processing audio data and their function
- · describe methods for speech recognition
- state aspects of psychoacoustics
- name audio codecs and their advantages and disadvantages
- select Deep Learning based approaches for selected challenges related to speech and text processing
- describe methods for audio data compression
- state fields of application for verbal communication systems and their application limits
- apply methods of speech synthesis
- discuss sentence formation models using examples

Contents

Speech recognition:

- Methods of audio data processing (spectral analysis, noise reduction, feature extraction, etc.)
- Models and methods of speech recognition (Hidden Markov Models, Deep Neuronal Networks [DNN])
- Psychoacoustics
- Audio codecs
- Audio data compression
- Selected DL applications for speech and text processing, e.g. text classification, sentiment analysis,
 Word2vec

Speech synthesis:

- Application fields of verbal communicating systems ("speaking systems")
- Methods of speech synthesis:
 - Articulatory synthesis
 - o Parametric synthesis
- Linguistic morphology structure of words and inflectional forms
- Generative grammar models of sentence formation

Literature and other learning resources

- PFISTER, Beat; KAUFMANN, Tobias. Sprachverarbeitung. Springer Berlin Heidelberg, 2008
- YU, Dong; DENG, Li. AUTOMATIC SPEECH RECOGNITION. Springer london limited, 2016

Editing state: July 2021 Page **83** of **92** SPO dated 16 June 2020

University of Applied Sciences Würzburg-Schweinfurt Faculty of Electrical Engineering

 BARTNECK, Christoph, et al. Mensch-Roboter-Interaktion: Eine Einführung. Carl Hanser Verlag GmbH Co KG, 2020

Special notes

Editing state: July 2021 Page **84** of **92** SPO dated 16 June 2020

Module No. 32 – Specialisation "Humanoid and Service Robotics"			
Human Robot Interaction (HRI) II			
Module Length	Regular Cycle	Workload	
1 Semester	Winter semester	Total: 150 hrs	
		60 hrs attendance time (4 SWS)	
		60 hrs self-directed study time	
30 hrs exam preparation			

Responsible for the lecture: Prof. Dr. Marco Schmidt

Lecturer(s):

N.N.

Associated class(es)	Teaching and learning	Language of instruc-
	format	tion
Human Robot Interaction (HRI) II	Seminar-like lecture,	English
	exercise course	

Recommended conditions of participation and prior knowledge

Robot Mechanics 2 (9), Control Systems (21), Machine Learning (23)

Learning objectives

The students

- name methods of bionic optimisation
- list examples of bionically optimised/inspired elements in robotics
- represent parts of the human locomotion system as a kinematic model
- describe the structure of 2-legged and multi-legged platforms
- formulate requirements for the actuators of legged platforms
- differentiate modes of legged locomotion
- formulate requirements for the control technology for legged robots on the basis of the kinematics and the modes of locomotion
- develop kinematic models for legged platforms
- describe human-inspired learning and human transfer learning using the example of humanoid robots
- describe the use of reinforcement learning to develop movement patterns for locomotion of legged robots

Contents

- Methods of bionic optimisation
- Selected examples of applied bionics in robotics
- Anthropomorphic design of robots
- 2- and multi-legged platforms
- Modes of legged locomotion (walking, running, jumping)
- Kinematic description of legged platforms
- Design, elements and structure of legged kinematics
- Human-inspired motion and human transfer learning
- Reinforcement learning in the context of legged locomotion

Literature and other learning resources

- KAJITA, Shuuji, et al. Introduction to humanoid robotics. Springer Berlin Heidelberg, 2014.
- HARADA, Kensuke; YOSHIDA, Eiichi; YOKOI, Kazuhito (Hg.). Motion planning for humanoid robots. Springer Science & Business Media, 2010
- GOSWAMI, Ambarish; VADAKKEPAT, Prahlad (Hg.). Humanoid robotics: a reference. Netherlands: Springer, 2019.

Special notes

Editing state: July 2021 Page **85** of **92** SPO dated **16** June 2020

Module No. 33			
Robotics Project			
Module length	Regular Cycle	Workload	ECTS-Credit Points
2 Semester	Summer and winter semester	Total: 300 hrs 150 hrs attendance time (10 SWS) 150 hrs self-directed study time	10

Responsible for module: Prof. Dr. Jean Meyer

Lecturer(s):

Professors of the Faculty of Electrical Engineering, Mechanical Engineering, Applied Natural and Human Sciences and Computer Science and teaching assistants

Associated class(es)	Teaching and learning	Language of instruc-	
	format	tion	
Robotics Project	Seminar, Projekt	English	

Applicability and study semester in accordance with the study and examination regulations

Bachelor's programme Robotics (Core module, 6th and 7th Semester)

Provides the basis for module(s): None

Builds up on module(s): Robotics Lab 1, 2, 3 and 4 (6, 12, 18, 24)

Conditions of participation in accordance with study and examination regulations

None

Recommended conditions of participation and prior knowledge

Robotics Lab 1, 2, 3 and 4 (6, 12, 18, 24)

Examination type / Prerequi- site for the award of credit points	Examination length	Examination language
Other type of examination in the form of a project work according to §7 study and examination regulations (SPO) (consisting of a documentation and personal presentation)	During the 6th and 7th semester	English

The successful completion of the project, the preparation of the project documentation and the presentation within the framework of a final presentation are prerequisites for the award of credit points.

Learning objectives (after successful completion of the module)

The students

- solve a project task either with a scientific character or with concrete practical relevance
- schedule the sequence of the individual realisation steps in the form of a timetable
- monitor the progress of the project
- include the financial framework conditions in the planning
- document the project including the relevant intermediate steps in the form of a project thesis
- defend the project work within the framework of a professional presentation with subsequent discussion

Contents

In the robotics project, students are given a robotics-specific development task to implement in small groups. The topics of the projects are individually defined and professionally supervised.

In the project, the students apply the theoretical knowledge they have gained in previous courses. In addition, they expand their extracurricular competences in the following areas:

- Project management
- documentation
- teamwork

Editing state: July 2021 Page **86** of **92** SPO dated **16** June 2020

University of Applied Sciences Würzburg-Schweinfurt Faculty of Electrical Engineering

• presentation techniques.	
Literature and other learning resources	
Learning resources on the FHWS eLearning.	
Special notes	

Regular Cycle	Workload	ECTS-Credit Points
Winter semester	Total: 90 hrs 30 hrs attendance time (2 SWS) 60 hrs self-directed study time	3
		Winter semester Total: 90 hrs 30 hrs attendance time (2 SWS) 60 hrs self-directed study time

Responsible for module: Prof. Dr. Jean Meyer

Lecturer(s):

N.N.

Associated class(es)	Teaching and learning format	Language of instruction
Value Seminar	Seminar	English

Applicability and study semester in accordance with the study and examination regulations

Bachelor's programme Robotics (Core module, 7th semester)

Provides the basis for module(s): None Builds up on module(s): None

Conditions of participation in accordance with study and examination regulations

None

Recommended conditions of participation and prior knowledge

Machine Learning (23)

Examination type / Prerequi- site for the award of credit points	Examination length	Examination language
Other type of examination in the form of a presentation	During the 7th semester	English

The successful presentation is a prerequisite for the award of credit points.

Learning objectives (after successful completion of the module)

The students

- recognise and evaluate potential ethical conflicts arising from the use of robots and artificial intelligence
- name conflicts that arise from the economic competition between robots and human labour.
- describe aspects of data protection in the context of the application of robots and AI by governmental organisations
- formulate the risks of highly developed AI

Contents

Discussion and reflection of issues from the fields of robotics and AI in the context of ethical aspects and sustainability.

Literature and other learning resources

- BARTNECK, Christoph, et al. Ethik in KI und Robotik. Carl Hanser Verlag GmbH Co KG, 2019
- RATH, Matthias; KROTZ, Friedrich; KARMASIN, Matthias. Maschinenethik. Springer Fachmedien Wiesbaden, 2019

Special notes

Editing state: July 2021 Page **88** of **92** SPO dated 16 June 2020

Module No. 35	Module No. 35			
Business Developn	nent ai	nd Entrepren	eurship	
Module length	Regula	r Cycle	Workload	ECTS-Credit Points
1 Semester	Winter s	emester	Total: 150 hrs	5
			60 hrs attendance time (4	
			SWS)	
			90 hrs self-directed study	
			time	
Responsible for module	Responsible for module: Prof. Dr. Volker Bräutigam			
Lecturer(s):				
Prof. Dr. V. Bräutigam				
Associated class(es)	Associated class(es) Teaching and learning Language of instruc-			Language of instruc-
			format	tion
Business Development and	d Entrepre	eneurship	Seminar	English
Applicability and study semester in accordance with the study and examination regulations				
Bachelor's programme Robotics (Core module, 7th semester)				
Provides the basis for mod	ule(s):	None		
Builds up on module(s):		None		

Conditions of participation in accordance with study and examination regulations

None

Recommended conditions of participation and prior knowledge

None

Examination type / Prerequisite for the award of credit points	Examination length	Examination language
Other type of examination in the form of a portfolio §7 SPO	During the 7th semester	English

The successful preparation of the portfolio is a prerequisite for the award of credit points.

Learning objectives (after successful completion of the module)

The students

- use professional skills in building up a new business model and discuss an existing one, possibly their own, as a basis for founding new companies or innovating existing ones
- apply methodical knowledge about entrepreneurial thinking and acting, business models, presentation techniques, team building measures, communication channels (e.g. interview situation, Lego Serious Play), market research tools
- plan the necessary steps in founding a new start-up with e.g. an overview of government funding opportunities, personal financial security, patent rights, key figures and business plan
- apply interdisciplinary skills such as intercultural competences, personality building measures according to the requirements of the VUCA world, leadership responsibility and resilience.

Contents

The seminar provides knowledge about the design, structure and use of different business models. In addition to the business idea, the development and operation of a business model requires a suitable team, special forms of fundraising, special forms of presentation and special features of the business plan. This is consolidated in a practice-oriented manner through the use of a business game at the end of the semester and tested "gamified" on the market.

In addition, it is essential to centrally develop the personality of the founders in order to achieve a holistic, competence-oriented entrepreneurship education.

Editing state: July 2021 SPO dated 16 June 2020 Page **89** of **92**

University of Applied Sciences Würzburg-Schweinfurt Faculty of Electrical Engineering

Optional: Elaboration of the learning outcomes using the example of an own business idea in a technological environment, especially robotics.

Literature and other learning resources

- Osterwalder, Alexander; Pigneur, Yves (2010): Business Model Generation: A Handbook for Visionaries, Game Changers, and Challengers. Wiley Verlag
- Osterwalder, Alexander; Pigneur, Yves et al. (2014): Value Proposition Design: How to create Products and Services Customers Want (Strategyzers). Wiley Verlag
- Bijedic, Teita (2013): Entwicklung unternehmerischer Persönlichkeit im Rahmen einer Entrepreneurship Education. Hampp Verlag
- Ries, Eric (2011): The Lean Startup: How Constant Innovation Creates Radically Successful Businesses. Portfolio Pingu-in.

Special notes

Editing state: July 2021 Page **90** of **92** SPO dated 16 June 2020

University of Applied Sciences Würzburg-Schweinfurt

Module No. 36 Bachelor's Thesis Module length 1 Semester Winter semester Workload Total: 360 hrs Attendance time at the FHWS (discussion with supervisor) ca. 6 hrs 354 hrs self-directed study time

Responsible for module: Dean of studies

Lecturer(s):

Supervisor (examiner) appointed by the examination committee (examiner)

Associated class(es)	Teaching and learning	Language of instruc-
	format	tion
Not applicable	Not applicable	Not applicable

Applicability and study semester in accordance with the study and examination regulations

Bachelor's programme Robotics (Core module, 7th semester)

Provides the basis for module(s): None Builds up on module(s): None

Conditions of participation in accordance with study and examination regulations

- Minimum of 150 ECTS-Points from successfully completed modules
- Internship (25) completed successfully

Recommended conditions of participation and prior knowledge

Learning objectives of all the degree programme modules achieved

Examination type / Prerequi-	Examination length	Examination language
site for the award of credit		
points		
Bachelor's thesis according to §8 study and examination reulations (SPO)	Completion period if completed in one continuous period, generally 10 weeks (see Special Notes for further details)	English
Successful completion of the Bachelor's thesis is a prerequisite for the award of credit points.		

Learning objectives (after successful completion of the module)

The students

- apply their subject and methodological knowledge independently and across subjects/modules to a problem from the subject area of the degree programme
- develop an engineering solution on a scientific basis
- assess the impact of engineering solutions in the social and ecological environment
- use professional ethical principles and standards as a basis for their actions
- critically evaluate their existing knowledge
- recognise missing knowledge and competence deficits
- expand their existing knowledge on their own responsibility
- critically reflect on their own work
- apply project management methods to achieve desired goals in limited time and with limited resources and budgets
- fit into the social environment of e.g. a company
- present their results and their approach in a comprehensible way and according to the principles of scientific work in a written technical report

Contents

Editing state: July 2021 Page **91** of **92** SPO dated 16 June 2020

University of Applied Sciences Würzburg-Schweinfurt

Faculty of Electrical Engineering

Independent solution of an engineering task from the subject area of the degree programme on a scientific basis.

Literature and other learning resources

- Relevant literature in accordance with the topic of the Bachelor's thesis
- Balzert et al.: Wissenschaftliches Arbeiten. W3L GmbH, 2. Auflage, 2011
- H. Hering, L. Hering: Technische Berichte. Springer Vieweg, 7. Auflage, 2015

- The completion period from the topic being set to the submission of the Bachelor's thesis may not exceed three months.
- Exception: If the Bachelor's thesis is assigned no later than one month after the start of the 7th semester, the period must not exceed five months.
- With the agreement of the examination committee, the Bachelor's thesis may be completed in an institution outside the university if supervision by a university's examiner is guaranteed.