Experiment 8 Clustering Model

211090073 Astik Sonawane

```
In [27]: import pandas as pd
         import numpy as np
         import seaborn as sns
         from matplotlib import pyplot as plt
         import scipy.cluster.hierarchy as sch
         from sklearn.cluster import AgglomerativeClustering
         from sklearn.cluster import KMeans
In [11]: Univ = pd.read_csv(r'C:\Users\HOME\Desktop\DSA\Lab8\Universities.csv')
         Univ.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 25 entries, 0 to 24
         Data columns (total 7 columns):
                       Non-Null Count Dtype
             Column
                       -----
              Univ
                       25 non-null
                                       object
                       25 non-null
             SAT
                                       int64
          1
             Top10
                       25 non-null
                                       int64
             Accept 25 non-null
                                       int64
             SFRatio 25 non-null
                                       int64
          5 Expenses 25 non-null
                                       int64
          6 GradRate 25 non-null
                                       int64
         dtypes: int64(6), object(1)
         memory usage: 1.5+ KB
In [12]: Univ.head()
Out[12]:
               Univ SAT Top10 Accept SFRatio Expenses GradRate
                                                          94
              Brown 1310
                           89
                                  22
                                         13
                                               22704
                                               63575
                                                          81
             CalTech 1415
                                  25
               CMU 1260
                            62
                                  59
                                          9
                                               25026
                                                          72
                                                          88
         3 Columbia 1310
                                  24
                                         12
                                               31510
                            76
             Cornell 1280
                                  33
                                               21864
                                                          90
                                         13
In [14]: # Normalization function (custom Function)
         def norm_func(i):
            x=(i-i.min())/(i.max()-i.min())
             return (x)
```

```
In [17]: #normalized dataframe(considering numerical part of data)
df_norm = norm_func(Univ.iloc[:,1:])
```

In [18]: df_norm

Out[18]:

	SAT	Top10	Accept	SFRatio	Expenses	GradRate
0	0.743902	0.847222	0.105263	0.368421	0.255144	0.900000
1	1.000000	1.000000	0.144737	0.000000	1.000000	0.466667
2	0.621951	0.472222	0.592105	0.157895	0.297461	0.166667
3	0.743902	0.666667	0.131579	0.315789	0.415629	0.700000
4	0.670732	0.763889	0.250000	0.368421	0.239835	0.766667
5	0.817073	0.847222	0.118421	0.210526	0.427512	0.933333
6	0.756098	0.861111	0.210526	0.315789	0.416996	0.933333
7	0.609756	0.638889	0.131579	0.315789	0.208161	0.833333
8	0.963415	0.875000	0.000000	0.263158	0.561699	1.000000
9	0.731707	0.652778	0.394737	0.052632	0.910991	0.666667
10	0.914634	0.916667	0.210526	0.210526	0.476864	0.800000
11	0.621951	0.791667	0.328947	0.263158	0.352609	0.733333
12	0.609756	0.736111	0.368421	0.368421	0.116965	0.900000
13	0.185366	0.138889	0.526316	0.631579	0.026991	0.433333
14	0.902439	0.875000	0.000000	0.105263	0.392120	0.933333
15	0.000000	0.000000	1.000000	0.684211	0.006597	0.066667
16	0.865854	0.861111	0.078947	0.315789	0.505659	0.866667
17	0.170732	0.291667	0.697368	1.000000	0.000000	0.000000
18	0.573171	0.930556	0.342105	0.578947	0.117293	0.366667
19	0.695122	0.652778	0.473684	0.368421	0.540832	0.666667
20	0.426829	0.513889	0.710526	0.526316	0.123307	0.600000
21	0.682927	0.722222	0.289474	0.263158	0.343515	0.766667
22	0.536585	0.680556	0.394737	0.421053	0.084653	0.833333
23	0.195122	0.166667	0.723684	0.473684	0.057462	0.133333
24	0.902439	0.930556	0.065789	0.263158	0.634397	0.966667

```
In [19]: #create dendrogram
dendrogram = sch.dendrogram(sch.linkage(df_norm,method='single'))
```



```
In [20]: #create clusters
hc = AgglomerativeClustering(n_clusters=4,affinity='euclidean',linkage='single')
```

```
In [21]: # save clusters for chart
y_hc = hc.fit_predict(df_norm)
Clusters = pd.DataFrame(y_hc,columns=['Clusters'])
```

c:\Users\HOME\anaconda3\Lib\site-packages\sklearn\cluster_agglomerative.py:1005: FutureWarning: Attribute `affinity` was deprecated in version 1.2 and will be removed in 1.4. Use `me tric` instead warnings.warn(

In [22]: Clusters

Out[22]:

	Clusters
0	0
1	3
2	1
3	0
4	0
5	0
6	0
7	0
8	0
9	0
10	0
11	0
12	0
13	0
14	0
15	0
16	0
17	2
18	0
19	0
20	0
21	0
22	0

In [26]: df_norm['h_clusterid']=Clusters
Univ['h_clusterid']=Clusters
Univ.head()

Out[26]:

		Univ	SAT	Top10	Accept	SFRatio	Expenses	GradRate	h_clusterid
_	0	Brown	1310	89	22	13	22704	94	0
	1	CalTech	1415	100	25	6	63575	81	3
	2	CMU	1260	62	59	9	25026	72	1
	3	Columbia	1310	76	24	12	31510	88	0
	4	Cornell	1280	83	33	13	21864	90	0

K-Means

In [51]: Univ = pd.read_csv(r'C:\Users\HOME\Desktop\DSA\Lab8\Universities.csv')
Univ

Out[51]:

	Univ	SAT	Top10	Accept	SFRatio	Expenses	GradRate
0	Brown	1310	89	22	13	22704	94
1	CalTech	1415	100	25	6	63575	81
2	CMU	1260	62	59	9	25026	72
3	Columbia	1310	76	24	12	31510	88
4	Cornell	1280	83	33	13	21864	90
5	Dartmouth	1340	89	23	10	32162	95
6	Duke	1315	90	30	12	31585	95
7	Georgetown	1255	74	24	12	20126	92
8	Harvard	1400	91	14	11	39525	97
9	JohnsHopkins	1305	75	44	7	58691	87
10	MIT	1380	94	30	10	34870	91
11	Northwestern	1260	85	39	11	28052	89
12	NotreDame	1255	81	42	13	15122	94
13	PennState	1081	38	54	18	10185	80
14	Princeton	1375	91	14	8	30220	95
15	Purdue	1005	28	90	19	9066	69
16	Stanford	1360	90	20	12	36450	93
17	TexasA&M	1075	49	67	25	8704	67
18	UCBerkeley	1240	95	40	17	15140	78
19	UChicago	1290	75	50	13	38380	87
20	UMichigan	1180	65	68	16	15470	85
21	UPenn	1285	80	36	11	27553	90
22	UVA	1225	77	44	14	13349	92
23	UWisconsin	1085	40	69	15	11857	71
24	Yale	1375	95	19	11	43514	96

In [52]: #normalization function from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()
scaled_Univ_df = scaler.fit_transform(Univ.iloc[:,1:])

In [53]: #to find optimum number of cluster # Kmeans aim to choose centroids that minimise inertia or with cluster sum of squares criterion

```
c:\Users\HOME\anaconda3\Lib\site-packages\sklearn\cluster\ kmeans.py:1412: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init`
explicitly to suppress the warning
  super(). check params vs input(X, default n init=10)
c:\Users\HOME\anaconda3\Lib\site-packages\sklearn\cluster\ kmeans.py:1436: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than avai
lable threads. You can avoid it by setting the environment variable OMP NUM THREADS=1.
  warnings.warn(
c:\Users\HOME\anaconda3\Lib\site-packages\sklearn\cluster\ kmeans.py:1412: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init`
explicitly to suppress the warning
  super(). check params vs input(X, default n init=10)
c:\Users\HOME\anaconda3\Lib\site-packages\sklearn\cluster\_kmeans.py:1436: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than avai
lable threads. You can avoid it by setting the environment variable OMP NUM THREADS=1.
  warnings.warn(
c:\Users\HOME\anaconda3\Lib\site-packages\sklearn\cluster\ kmeans.py:1412: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init`
explicitly to suppress the warning
  super(). check params vs input(X, default n init=10)
c:\Users\HOME\anaconda3\Lib\site-packages\sklearn\cluster\ kmeans.py:1436: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than avai
lable threads. You can avoid it by setting the environment variable OMP NUM THREADS=1.
  warnings.warn(
c:\Users\HOME\anaconda3\Lib\site-packages\sklearn\cluster\ kmeans.py:1412: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init`
explicitly to suppress the warning
  super(). check params vs input(X, default n init=10)
c:\Users\HOME\anaconda3\Lib\site-packages\sklearn\cluster\ kmeans.py:1436: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than avai
lable threads. You can avoid it by setting the environment variable OMP NUM THREADS=1.
  warnings.warn(
c:\Users\HOME\anaconda3\Lib\site-packages\sklearn\cluster\ kmeans.py:1412: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init`
explicitly to suppress the warning
  super(). check params vs input(X, default n init=10)
c:\Users\HOME\anaconda3\Lib\site-packages\sklearn\cluster\ kmeans.py:1436: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than avai
lable threads. You can avoid it by setting the environment variable OMP NUM THREADS=1.
  warnings.warn(
c:\Users\HOME\anaconda3\Lib\site-packages\sklearn\cluster\_kmeans.py:1412: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init`
explicitly to suppress the warning
  super(). check params vs input(X, default n init=10)
c:\Users\HOME\anaconda3\Lib\site-packages\sklearn\cluster\ kmeans.py:1436: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than avai
lable threads. You can avoid it by setting the environment variable OMP NUM THREADS=1.
  warnings.warn(
c:\Users\HOME\anaconda3\Lib\site-packages\sklearn\cluster\_kmeans.py:1412: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init`
explicitly to suppress the warning
  super(). check params vs input(X, default n init=10)
c:\Users\HOME\anaconda3\Lib\site-packages\sklearn\cluster\ kmeans.py:1436: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than avai
lable threads. You can avoid it by setting the environment variable OMP NUM THREADS=1.
  warnings.warn(
c:\Users\HOME\anaconda3\Lib\site-packages\sklearn\cluster\ kmeans.py:1412: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init`
explicitly to suppress the warning
  super(). check params vs input(X, default n init=10)
c:\Users\HOME\anaconda3\Lib\site-packages\sklearn\cluster\ kmeans.py:1436: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than avai
lable threads. You can avoid it by setting the environment variable OMP NUM THREADS=1.
  warnings.warn(
c:\Users\HOME\anaconda3\Lib\site-packages\sklearn\cluster\ kmeans.py:1412: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init`
explicitly to suppress the warning
 super(). check params vs input(X, default n init=10)
c:\Users\HOME\anaconda3\Lib\site-packages\sklearn\cluster\ kmeans.py:1436: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than avai
lable threads. You can avoid it by setting the environment variable OMP NUM THREADS=1.
  warnings.warn(
c:\Users\HOME\anaconda3\Lib\site-packages\sklearn\cluster\ kmeans.py:1412: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init`
explicitly to suppress the warning
```

super()._check_params_vs_input(X, default_n_init=10)

c:\Users\HOME\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1436: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.

warnings.warn(


```
In [55]: #build cluster algorithm
from sklearn.cluster import KMeans
clusters_new = KMeans(4,random_state=42)
clusters_new.fit(scaled_Univ_df)
```

c:\Users\HOME\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1412: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning super()._check_params_vs_input(X, default_n_init=10)

c:\Users\HOME\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1436: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.

warnings.warn(

Out[55]: KMeans(n_clusters=4, random_state=42)

2, 0, 1])

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
In [56]: clusters_new.labels_
Out[56]: array([1, 3, 2, 1, 2, 1, 1, 2, 1, 3, 1, 2, 2, 0, 1, 0, 1, 0, 2, 2, 2, 2,
```

```
In [57]: #assign clusters to data set
         Univ['clusterid_new'] = clusters_new.labels_
In [58]: # Standardized values
         clusters_new.cluster_centers_
Out[58]: array([[-1.93029211, -1.98148647, 1.59348244, 1.63857398, -1.23359906,
                  -1.68680366],
                 [0.80273428, 0.68086062, -0.90136381, -0.43159988, 0.44062556,
                  0.79526289],
                 [-0.12658888, 0.06407139, 0.2224667, 0.04516743, -0.38064332,
                   0.02028221],
                 [0.88122441, 0.5787432, -0.24316128, -1.56078563, 2.38759968,
                  -0.3064867 ]])
In [59]: # Assuming you want to drop the column named 'clusterid new'
         Univ.drop(columns=['Univ'], inplace=True)
In [60]: Univ.groupby('clusterid_new').agg(['mean']).reset_index()
Out[60]:
             clusterid_new
                               SAT
                                               Accept SFRatio
                                                                Expenses GradRate
                                       Top10
                              mean
                                       mean
                                                mean
                                                        mean
                                                                    mean
                                                                             mean
                      0 1061.500000 38.750000 70.000000
                                                              9953.000000 71.750000
          0
                                                        19.25
                      1 1351.666667 89.444444 21.777778
                                                        11.00 33615.555556 93.777778
                      2 1253.000000 77.700000 43.500000
                                                        12.90 22008.200000 86.900000
          3
                      3 1360.000000 87.500000 34.500000
                                                         6.50 61133.000000 84.000000
In [61]: Univ.head()
Out[61]:
             SAT Top10 Accept SFRatio Expenses GradRate clusterid_new
          0 1310
                            22
                                    13
                                         22704
                                                     94
                                                                  1
          1 1415
                    100
                                         63575
                                                     81
                                                                  3
                            25
                                    6
                                                     72
                                                                  2
          2 1260
                     62
                            59
                                    9
                                         25026
                                                                  1
          3 1310
                    76
                            24
                                   12
                                         31510
                                                     88
          4 1280
                    83
                                         21864
                                                     90
                                                                  2
                            33
                                   13
In [ ]:
```