Evolution Strategies

KhangTD - KHTN2018

List of content

- I. <u>Problem Statement</u>
- II. Overview of ES
 - A. <u>Basic Ideal and Algorithm</u>
 - B. Recombinations
 - C. <u>Parameters Control</u>
 - D. <u>Survivor Selection</u>
- III. CEM (Cross Entropy Method)

List of content

IV. CMA-ES

- A. <u>Sampling</u>
- B. <u>Selection and Recombination</u>
- C. Adapting the Covariance Matrix
- D. <u>Step-Size Control</u>

I. Problem Statement

Continuous Domain Search/Optimization

• Task: Minimize/Maximize an objective function (fitness function, loss function) in continuous domains. $f{:}\chi\subseteq\mathbb{R}^n\to\mathbb{R}$ $x\mapsto f(x)$

- Black box scenario (direct search scenario)
 - o gradients are not available or not useful
 - o problem domain specific knowledge is used only within the black box

Search costs: number of function evaluations

Continuous Domain Search/Optimization

Goal:

- \circ Fast convergence to the global optimum or to a robust solution **x**
- Solution x with small function value f(x) with least search cost

Problems:

- Exhaustive search is infeasible
- Naive random search takes too long
- Deterministic search is not successful / takes too long

• Approach: Stochastic Search, Evolutionary Algorithms

Some objective function of real-word problem?

IT IS ALMOST TOO GOOD f can be: Rugged Non-se III-cond dimens

0 ...

Nikolaus Hansen

Senior researcher (directeur de recherche) at Inria

The CMA evolution strategy: a comparing review (2006)

The CMA Evolution Strategy: A tutorial (2016)

http://www.cmap.polytechnique.fr/~nikolaus.hansen/

II. Overview of ES

What are Evolution Strategies?

- Evolution Strategies (ES): techniques used in solving continuous domain.
- Evolution Strategies: inverted in early 1960s by Rechenberg and Schewefel.
- Inspired by natural selection.

What are Evolution Strategies?

Evolution Strategies (ES) belong to the big family of Evolutionary Algorithms (EA)

Basic Idea

Discrete Recombination

Simple arithmetic recombination:

Single arithmetic recombination:

Whole arithmetic recombination:

Intermediate Recombination

Takes the average value of all ρ parents (computes the center of mass, the centroid).

Weighted Recombination

- Weighted Recombination is a generalization of intermediate recombination. It takes a weighted average of ρ parents.
- The weight values depend on the fitness ranking, in that better parents never get smaller weights than inferior ones.

Survivor Selection

- ullet Applied create children λ from μ parents by mutation and recombination.
- Two mechanism: Plus (elitist) and comma (non-elitist) selection \circ $(\mu + \lambda)$: selection μ new parents in {parent,offspring}

 \circ (μ, λ) : selection μ new parents in {offspring}

Survivor Selection cont'd

- $(\mu + \lambda)$ is an elitist strategy
- (μ, λ) is truncation selection
- Often (μ, λ) is preferred for:
 - Better in leaving local optima
 - Better in following moving optima
 - Using "plus" selection, bad strategy parameter can survive in population too long, if an individual has relatively good objective variables.

Mutation

The mutation operator introduces ("small") variations by adding a point symmetric perturbation to the result of recombination.

$$m'=m+\sigma\mathcal{N}(0,\mathbf{C})$$

Spherical/Isotropic: C is identity matrix

<u>Axis-parallel:</u> C is diagonal (positive) matrix

General: C is symmetric and PSD matrix

Parameters control

Controlling the parameters of the mutation operator is key to the design of evolution strategies and affects convergence speed.

Fig: Step-size affects convergence¹

Parameters control

- 1/5-th success rule, often applied with Plus selection
 - increase step-size if more than 20% of the new solutions are successful, decrease otherwise
- σ-self-adaptation, applied with Comma selection
 - mutation is applied to the step-size and the better, according to the objective function value, is selected
- path length control (Cumulative Step-size Adaptation, CSA)
 - self-adaptation derandomized and non-localized

(1 + 1)ES

Algorithm 1 (1+1)ES

```
1: Hyperparameters: c_{inc} > 0, c_{dec} > 0
 2: Input: vector m^{(0)} \in \mathbb{R}^d, step-size \sigma^{(0)} \in \mathbb{R}_{>0}
 3:
 4: for t = 0, ..., T - 1 do
        Create 1 offspring by adding a point symmetric perturbation to m^{(t)}
                                              (\epsilon^{(t)}) \sim \mathcal{N}(0, \mathbf{I}_d)
                                              x^{(t)} \leftarrow m^{(t)} + \sigma^{(t)} \epsilon^{(t)}
        Survival selection (1 + 1) and update step-size
        if F(x^{(t)}) \leq F(m^{(t)}) then
         m^{(t+1)} \leftarrow x^{(t)}
         \sigma^{(t+1)} \leftarrow \sigma^{(t)} c_{inc}
10:
        else
         m^{(t+1)} \leftarrow m^{(t)}
11:
         \sigma^{(t+1)} \leftarrow \sigma^{(t)} c_{dec}
12:
        end if
13:
14: end for
```

Test Function

Formula: $f(x) = x_1^2 + x_2^2$

Search domain: $-\infty \leq x_i \leq \infty, \ 1 \leq i \leq 2$

Global minimum: f(x) = f(0) = 0

Sphere Function in 3D

steps 0:
<Figure size 576x396 with 0 Axes> steps 1: 15 10 -10 -15

(1 + lambda) ES

Algorithm 2 $(1 + \lambda)ES$

16: end for

```
1: Hyperparameters: c_{inc} > 0, c_{dec} > 0
 2: Input: vector m^{(0)} \in \mathbb{R}^d, step-size \sigma^{(0)} \in \mathbb{R}_{>0}, number of offspring \lambda > 0
 4: for t = 0, ..., T - 1 do
        Create \lambda offspring by adding a point symmetric perturbation to m^{(t)}
                                       (\epsilon_i^{(t)})_{i=1,\ldots,\lambda} \sim \mathcal{N}(0,\mathbf{I}_d)
                                       x_i^{(t)} \leftarrow m^{(t)} + \sigma^{(t)} \epsilon_i^{(t)}, \quad i = 1, \dots, \lambda
        Find the best solution in the offspring
                                             x_{best}^{(t)} = \underset{x_i^{(t)} \in \text{ offspring}}{\operatorname{argmin}} F(x_i^{(t)})
        x_{best}^{(t)} compete with m^{(t)} and update step-size
        if F(x_{best}^{(t)}) \leq F(m^{(t)}) then
         m^{(t+1)} \leftarrow x_{best}^{(t)}
            \sigma^{(t+1)} \leftarrow \sigma^{(t)} c_{inc}
11:
12:
         else
            m^{(t+1)} \leftarrow m^{(t)}
            \sigma^{(t+1)} \leftarrow \sigma^{(t)} c_{dec}
14:
         end if
```

steps 0:
<Figure size 576x396 with 0 Axes>

steps 1:

ES Algorithm

```
Algorithm 1 (\mu/\rho, +\lambda)-Self-Adaptation ES
      Input: \rho, \lambda, \mu \in \mathbb{N}_+
 1 Initialize (\mathcal{P}^0_{\mu} \leftarrow \{(\mathbf{x}^0_i, \mathbf{s}^0_i, F(\mathbf{x}^0_i)), i = 1, 2, \dots, \mu\})
 2 g ← 0
  3 while Termination Condition is not satisfied do
             \widetilde{\mathcal{P}}_{\lambda}^{g} \leftarrow \emptyset
             for i \leftarrow 1 to \mu do
  5
                    (x_i, s_i) \leftarrow \text{recombine} \left( \text{select\_mates} \left( \mathcal{P}_{\mu}^g, \rho \right) \right)
                   \widetilde{s}_i \leftarrow \mathbf{s} \quad \mathbf{mutation}(s_i)
                   \tilde{x}_i \leftarrow \mathbf{x} \quad \mathbf{mutation}(x_i)
                   F_i \leftarrow F(\widetilde{x}_i)
10
             end
             \widetilde{\mathcal{P}}_{\lambda}^{g} \leftarrow \left\{ \left( \widetilde{x}_{i}, \widetilde{s}_{i}, \widetilde{F}_{i} \right), \quad i = 1, 2, \dots, \lambda \right\}
11
             switch selection type do
12
                    case (\mu, \lambda) do
13
                        \mathcal{P}^{g+1}_{\mu} \leftarrow \mathbf{selection}(\widetilde{\mathcal{P}}^g_{\lambda}, \mu)
14
                    end
15
                    case (\mu + \lambda) do
16
                       P_{\mu}^{g+1} \leftarrow selection(\tilde{P}_{\lambda}^{g}, P_{\mu}^{g}, \mu)
17
18
                    end
             end
19
             g \leftarrow g + 1
21 end
```

Summary

Encoding	Real vectors
Recombination	Discrete or intermediate
Mutation	Random additive perturbation (uniform, Gaussian, Cauchy)
Parents selection	Uniformly random
Survivors selection	(μ,λ) or $(\mu+\lambda)$
Particularity	Self-adaptive mutation parameters

III. CEM

Fig:

Algorithm 3 CEM

- 1: **Hyperparameters:** $\sigma_{init} \in R_{>0}$ 2: **Input:** function F, vector $\mu_0 \in \mathbb{R}^d$,
 - 3: number of sample N, number of elite set N_e ,
 - 4: Initialize: $\Sigma_0 = \sigma_{init} \mathbf{I}_d$
 - 5:
 - 6: **for** t = 0, ..., T 1 **do**
- 7: Sample N search points x_1, \ldots, x_N from $\mathcal{N}(\mu_t, \Sigma_t)$ 8: Evaluate the samples x_1, \ldots, x_N on F
- 9: Select top N_e search points $(z_i)_{i=1,...,N_e}$
- 10: Update the parameters of the distribution

$$\mu_{t+1} = \frac{1}{N_e} \sum_{i=1}^{N_e} z_i$$

$$\Sigma_{t+1} = \frac{1}{N_e} \sum_{i=1}^{N_e} (z_i - \mu_{t+1}) (z_i - \mu_{t+1})^T$$

Some modify to prevent premature convergence

Algorithm 4 CEM

```
1: Hyperparameters: extra variance \epsilon, \sigma_{init} \in R_{>0}
 2: Input: function F, vector \mu_0 \in \mathbb{R}^d,
               number of sample N, number of elite set N_e,
 4: Initialize: \Sigma_0 = \sigma_{init} \mathbf{I}_d
              (w_i)_{i=1,...,N_e}, where w_i = \frac{1}{N_e}
or w_i = \frac{\log(N_e+1) - \log(i)}{\sum_{i=1}^{N_e} \log(N_e+1) - \log(i)}
 5:
 6:
 7:
 8: for t = 0, ..., T - 1 do
        Sample N search points x_1, \ldots, x_N from \mathcal{N}(\mu_t, \Sigma_t)
10:
        Evaluate the samples x_1, \ldots, x_N on F
        Select top N_e search points (z_i)_{i=1,\ldots,N_e}
11:
        Update the parameters of the distribution
12:
```

$$\mu_{t+1} = \sum_{i=1}^{N_e} w_i z_i$$

$$\Sigma_{t+1} = \sum_{i=1}^{N_e} w_i (z_i - \mu_t) (z_i - \mu_t)^T + \epsilon \mathbf{I}_d$$

add to some noise and use for μ_t updating Σ_{t+1}

IV. CMA-ES

A. Sampling

Sampling

New search points is generated by sampling a multivariate normal distribution:

$$egin{aligned} \mathbf{x}_k^{(g+1)} &\sim \mathbf{m}^{(g)} + \sigma^{(g)} \mathcal{N}(\mathbf{0}, \mathbf{C}^{(g)}), \ orall k = 1, \dots, \lambda \end{aligned}$$

Where,

Step size $\sigma \in \mathbb{R}_+$ control the step length

The covariance matrix $\mathbf{C} \in \mathbb{R}^{n \times n}$ determines the shape of the distribution ellipsoid

Why Normal Distribution?

Approximates many natural phenomena so well

Only stable distribution with finite variance

Most convenient way to generate isotropic search points

Maximum entropy distribution with finite variance

B. Selection and Recombination

Selection and Recombination

New mean value is computed as

$$\mathbf{m}^{(g+1)} = \mathbf{m}^{(g)} + c_m \sum_{i=1}^{\lambda} w_i (\mathbf{x}_{i:\lambda}^{(g+1)} - \mathbf{m}^{(g)})$$
$$\sum_{i=1}^{\mu} w_i = 1, \quad w_1 \ge w_2 \ge \dots \ge w_{\mu} > 0$$

Where,

 $c_{\rm m} \leq 1$ is a learning rate, usually set to 1.

 $w_{i=1...\mu} \in \mathbb{R}_{>0}$, positive weight coefficients for recombination

$$\{x_{i:\lambda}\mid i=1\dots\lambda\}=\{x_i\mid i=1\dots\lambda\} ext{ and } f(x_{1:\lambda})\leq \dots \leq f(x_{\mu:\lambda})\leq f(x_{\mu+1:\lambda})\leq \dots,$$

Selection and Recombination

Intermediate recombination:

$$w_m := \begin{cases} \frac{1}{\mu}, & \text{for } 1 \leq m \leq \mu, \\ 0, & \text{otherwise,} \end{cases}$$

Weighted recombination:

$$w_m := \begin{cases} \frac{\ln\left(\frac{\lambda+1}{2}\right) - \ln m}{\sum_{k=1}^{\mu} \left(\ln\left(\frac{\lambda+1}{2}\right) - \ln k\right)}, & \text{for } 1 \le m \le \mu, \\ 0, & \text{otherwise} \end{cases}$$

$$\mu_{\text{eff}} = \left(\frac{\|\boldsymbol{w}\|_1}{\|\boldsymbol{w}\|_2}\right)^2 = \frac{\|\boldsymbol{w}\|_1^2}{\|\boldsymbol{w}\|_2^2} = \frac{\left(\sum_{i=1}^{\mu} |w_i|\right)^2}{\sum_{i=1}^{\mu} w_i^2} = \frac{1}{\sum_{i=1}^{\mu} w_i^2}$$

 $m \leftarrow m + \sigma y_w, \quad y_w = \sum_{i=1}^{\mu} w_i y_{i:\lambda}, \quad y_i \sim \mathcal{N}_i(\mathbf{0}, \mathbf{C})$

 $m \leftarrow m + \sigma y_w, \quad y_w = \sum_{i=1}^{\mu} w_i y_{i:\lambda}, \quad y_i \sim \mathcal{N}_i(\mathbf{0}, \mathbf{C})$

initial distribution, $\mathbf{C} = \mathbf{I}$

initial distribution,
$$\mathbf{C} = \mathbf{I}$$

$$m{m} \leftarrow m{m} + \sigma m{y}_w, \quad m{y}_w = \sum_{i=1}^{\mu} w_i m{y}_{i:\lambda}, \quad m{y}_i \sim \mathcal{N}_i(\mathbf{0}, \mathbf{C})$$

 y_w , movement of the population mean m (disregarding σ)

C. Adapting the Covariance Matrix

Adaptation of the covariance matrix amounts to learning a second order model of the underlying objective function similar to the approximation of the inverse Hessian matrix in the quasi-Newton method in classical optimization.

$$\frac{\partial}{\partial x} f(x_i + \Delta x) = 0$$

$$\frac{\partial}{\partial x} f(x_i) + \frac{\partial}{\partial x} \frac{\partial}{\partial x} f(x_i) \Delta x = 0$$
Gradient Hessian

$$\frac{\partial}{\partial x} f(x_i + \Delta x) = 0$$
$$g + H\Delta x = 0$$

$$\frac{\partial}{\partial x} f(x_i + \Delta x) = 0$$
$$\Delta x = -H^{-1} g$$

Estimating the Covariance Matrix From Scratch

Estimate the distribution variance within the sampled points

$$\mathbf{C}_{EMNA_{global}}^{(g+1)} = \frac{1}{\sigma^{(g)2}} \sum_{i=1}^{\mu} w_i \left(\mathbf{x}_{i:\lambda}^{(g+1)} - \mathbf{m}^{(g+1)} \right) \left(\mathbf{x}_{i:\lambda}^{(g+1)} - \mathbf{m}^{(g+1)} \right)^T$$

Estimate variances of sampled steps

$$\mathbf{C}_{\mu}^{(g+1)} = \frac{1}{\sigma^{(g)2}} \sum_{i=1}^{\mu} w_i \left(\mathbf{x}_{i:\lambda}^{(g+1)} - \mathbf{m}^{(g)} \right) \left(\mathbf{x}_{i:\lambda}^{(g+1)} - \mathbf{m}^{(g)} \right)^T$$

Estimating the Covariance Matrix From Scratch

Rank-µ-Update

To achieve fast search, the population size must be small

→ It is not impossible to get a reliable estimator for good covariance matrix

Information from previous generations is used additionally.

$$\mathbf{C}^{(g+1)} = \left(1 - c_{\mu} \sum_{i} w_{i}\right) \mathbf{C}^{(g)} + c_{\mu} \sum_{i=1}^{\lambda} w_{i} \mathbf{y}_{i:\lambda}^{(g+1)} \mathbf{y}_{i:\lambda}^{(g+1)T}$$

Where,

$$\mathbf{y}_{i:\lambda}^{(g+1)} = \left(\mathbf{x}_{i:\lambda}^{(g+1)} - \mathbf{m}^{(g)}\right) / \sigma^{(g)}$$

$$c_{\mu} \le 1 \text{ learning rate}$$

Cumulation The Evolution Path

Evolution Path: Conceptually, the evolution path is the search path the strategy takes over a number of generation steps. It can be expressed as a sum of consecutive steps of the mean m.

History information is accumulated in the evolution path

Cumulation The Evolution Path

- Cumulation is a widely used technique and also know as
 - Exponential smoothing in time series, forecasting
 - Exponentially weighted moving average
 - Iterate averaging in stochastic approximation
 - Momentum in the back-propagation algorithm for ANNs
 - 0 ...

The simplest form of **exponential smoothing** is given by the formulas:

$$s_0 = x_0 \ s_t = \alpha x_t + (1 - \alpha) s_{t-1}, \quad t > 0$$

where α is the *smoothing factor*, and $0 < \alpha < 1$.

Rank-One-Update

For any positive definite symmetric C,

$$\mathbf{C} = d_1^2 \boldsymbol{b}_1 \boldsymbol{b}_1^{\mathrm{T}} + \dots + d_N^2 \boldsymbol{b}_N \boldsymbol{b}_N^{\mathrm{T}}$$

 d_i : square root of the eigenvalue of C

 \boldsymbol{b}_i : eigenvector of \mathbf{C} , corresponding to d_i

The multivariate normal distribution $\mathcal{N}(m, \mathbf{C})$

Rank-One-Update

The adaptation increases the likelihood of successful steps

$$C^{(g+1)} = (1-c_1)C^{(g)} + c_1 y_{g+1} y_{g+1}^{\mathsf{T}}$$

Rank-One-Update

Because $yy^T = (-y)(-y)^T$ the sign information is lost.

$$\mathbf{p}_{c}^{(g+1)} = (1 - c_{c})\mathbf{p}_{c}^{(g)} + \sqrt{c_{c}(2 - c_{c})\mu_{eff}} \frac{\mathbf{m}^{(g+1)} - \mathbf{m}^{(g)}}{\sigma^{(g)}}$$

$$\mathbf{C}^{(g+1)} = (1 - c_1)\mathbf{C}^{(g)} + c_1\mathbf{p}_c^{(g+1)}\mathbf{p}_c^{(g+1)T}$$

Combining Rank-µ-Update and Cumulation

CMA update of the covariance matrix combines Rank-µ-Update and Rank-One-Update

$$\boldsymbol{C}^{(g+1)} = (1 - c_1 - c_{\mu} \sum w_j) \boldsymbol{C}^{(g)}$$

$$= (1 - c_1 - c_{\mu} \sum w_j) \boldsymbol{C}^{(g)}$$

$$+ c_1 \boldsymbol{p}_c^{(g+1)} \boldsymbol{p}_c^{(g+1)^{\mathsf{T}}} + c_{\mu} \sum_{i=1}^{\lambda} w_i \boldsymbol{y}_{i:\lambda}^{(g+1)} \left(\boldsymbol{y}_{i:\lambda}^{(g+1)}\right)^{\mathsf{T}}$$

$$= rank-n \text{ update}$$

D. Step-Size Control

Step-Size Control

A larger step size leads to faster parameter update

Utilize an evolution path

Single steps cancel each other off and thus evolution path is short.

→ Decrease σ

Ideal case: single steps are uncorrelated.

Single steps point to the same direction and thus evolution path is long.

→ Increase σ

Step-Size Control

Constructs an conjugate *evolution path* \mathbf{p}_{σ} by summing up a consecutive sequence of moving steps

$$\mathbf{p}_{\sigma}^{(g+1)} = (1 - c_{\sigma})\mathbf{p}_{\sigma}^{(g)} + \sqrt{c_{\sigma}(2 - c_{\sigma})\mu_{eff}}\mathbf{C}^{(g) - \frac{1}{2}}\frac{\mathbf{m}^{(g+1)} - \mathbf{m}^{(g)}}{\sigma^{(g)}}$$

$$\ln \sigma^{(g+1)} = \ln \sigma^{(g)} + \frac{c_{\sigma}}{d_{\sigma}} \left(\frac{\|\mathbf{p}_{\sigma}^{(g+1)}\|}{\mathbf{E}\|\mathcal{N}(\mathbf{0}, \mathbf{I})\|} - 1 \right)$$
$$\sigma^{(g+1)} = \sigma^{(g)} \exp \left(\frac{c_{\sigma}}{d_{\sigma}} \left(\frac{\|\mathbf{p}_{\sigma}^{(g+1)}\|}{\mathbf{E}\|\mathcal{N}(\mathbf{0}, \mathbf{I})\|} - 1 \right) \right)$$

Algorithm

```
Algorithm 2 (\mu/\mu_w, \lambda)-CMA-ES [3]
      Input: \mathbf{m} \in \mathbb{R}^n, \lambda, \sigma \in \mathbb{R}_+
22 Initialize: C = I, p_{\sigma} = 0 và p_{c} = 0
23 Set: c_c \approx 4/n, c_\sigma \approx 4/n, c_1 \approx 2/n^2, c_\mu \approx \mu_w/n^2, c_1 + c_\mu \leq 1, d_\sigma \approx 1 + \sqrt{\frac{\mu_w}{n}}
        và w_{i=1,...,\lambda} sao cho \mu_w = \frac{1}{\sum_{i=1}^{\mu} w^2} \approx 0.3\lambda
24 while Termination Condition is not satisfied do
             /* Lấy mẫu, sinh ra các phần tử mới
                                                                                                                                                                */
           \mathbf{x}_i = \mathbf{m} + \sigma \mathbf{y}_i, \mathbf{y}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \forall i = 1, ... \lambda
25
            /* Cập nhật giá tri trung bình
                                                                                                                                                                */
          \mathbf{m} \leftarrow \mathbf{m} + \sigma \mathbf{y}_w, trong đó \mathbf{y}_w = \sum_{i=1}^{\mu} \mathbf{y}_{i:\lambda}
26
            /* Cập nhật ma trận hiệp phương sai
                                                                                                                                                                */
          \mathbf{p}_c \leftarrow (1 - c_c)\mathbf{p}_c + \mathbb{I}_{\{\|\mathbf{p}_c\| \le 1\}} \sqrt{c_\sigma(2 - \sigma)\mu_w \mathbf{y}_w}
27
            \mathbf{C} \leftarrow (1 - c_1 - c_{\mu})\mathbf{C} + c_1\mathbf{p}_c\mathbf{p}_c^T + c_{\mu}\sum_{i=1}^{\mu}\mathbf{y}_{i:\lambda}\mathbf{y}_{i:\lambda}^T
                                                                                                                                                                */
            /* Câp nhất bước di chuyển
          \mathbf{p}_{\sigma} \leftarrow (1 - c_{\sigma})\mathbf{p}_{\sigma} + \sqrt{c_{\sigma}(2 - \sigma)\mu_{w}}\mathbf{C}^{-\frac{1}{2}}\mathbf{y}_{w}
         \sigma \leftarrow \sigma \times \exp \left( \frac{c_{\sigma}}{d_{\sigma}} \left( \frac{\|\mathbf{p}_{\sigma}\|}{\mathbf{E} \|\mathcal{N}(\mathbf{0}, \mathbf{I})\|} - 1 \right) \right)
31 end
```


Link blog: A Visual Guide to Evolution Strategies

Advantage of CMA-ES

Non-separable problem

• The derivative of objective function is not available

High dimension problems (n large)

Very large search space

CMA-ES Limitations

Partly separable problem

• The derivative of objective function is easily available

Small dimension (n << 10)

Small running times (number off-evaluations < 100n)

Hans-Georg Beyer

A research professor at the <u>Research Center Business</u> <u>Informatics</u>

Simplify Your Covariance Matrix Adaptation Evolution Strategy (2017)

https://homepages.fhv.at/hgb/

MA-ES

```
Algorithm 2 (\mu/\mu_w, \lambda)-CMA-ES [3]
      Input: \mathbf{m} \in \mathbb{R}^n, \lambda, \sigma \in \mathbb{R}_+
22 Initialize: C = I, p_{\sigma} = 0 và p_{c} = 0
23 Set: c_c \approx 4/n, c_\sigma \approx 4/n, c_1 \approx 2/n^2, c_\mu \approx \mu_w/n^2, c_1 + c_\mu \leq 1, d_\sigma \approx 1 + \sqrt{\frac{\mu_w}{\sigma}}
        và w_{i=1,...,\lambda} sao cho \mu_w = \frac{1}{\sum_{i=1}^{\mu} w^2} \approx 0.3\lambda
24 while Termination Condition is not satisfied do
             /* Lấy mẫu, sinh ra các phần tử mới
            \mathbf{x}_i = \mathbf{m} + \sigma \mathbf{y}_i, \quad \mathbf{y}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \quad \forall i = 1, \dots \lambda
25
             /* Cập nhật giá trị trung bình
                                                                                                                                                                  */
            \mathbf{m} \leftarrow \mathbf{m} + \sigma \mathbf{y}_w, trong đó \mathbf{y}_w = \sum_{i=1}^{\mu} \mathbf{y}_{i:\lambda}
26
            /* Cập nhật ma trận hiệp phương sai
           \mathbf{p}_c \leftarrow (1-c_c)\mathbf{p}_c + \mathbb{I}_{f||\mathbf{p}_c|| \le 1} \sqrt{c_\sigma (2-\sigma)\mu_w \mathbf{y}_w}
27
             \mathbf{C} \leftarrow (1 - c_1 - c_\mu)\mathbf{C} + c_1\mathbf{p}_c\mathbf{p}_c^T + c_\mu\sum_{i=1}^{\mu}\mathbf{y}_{i:\lambda}\mathbf{y}_{i:\lambda}^T
            /* Câp nhất bước di chuyển
                                                                                                                                                                  */
           \mathbf{p}_{\sigma} \leftarrow (1 - c_{\sigma})\mathbf{p}_{\sigma} + \sqrt{c_{\sigma}(2 - \sigma)\mu_{m}}\mathbf{C}^{-\frac{1}{2}}\mathbf{v}_{m}
           \sigma \leftarrow \sigma \times \exp \left( \frac{c_{\sigma}}{d_{-}} \left( \frac{\|\mathbf{p}_{\sigma}\|}{\mathbf{E} \|\Lambda'(\mathbf{0}, \mathbf{I})\|} - 1 \right) \right)
31 end
```

$(\mu/\mu_w, \lambda)$ -CMA-ES

Initialize
$$(\mathbf{y}^{(0)}, \sigma^{(0)}, g := 0, \mathbf{p}^{(0)} := \mathbf{0},$$

$$\mathbf{s}^{(0)} := \mathbf{0}, \mathbf{C}^{(0)} := \mathbf{I}$$
 (C1)

(C2)

(C5)

$$\mathbf{M}^{(g)} := \sqrt{\mathbf{C}^{(g)}} \tag{C3}$$

For
$$l := 1$$
 To λ (C4)

$$\tilde{\mathbf{z}}_{i}^{(g)} := \mathcal{N}_{i}(\mathbf{0}, \mathbf{I}) \tag{C5}$$

$$\tilde{\mathbf{d}}_{I}^{(g)} := \mathbf{M}^{(g)} \tilde{\mathbf{z}}_{I}^{(g)} \tag{C6}$$

$$\mathbf{I}_{l}^{(g)} := \mathbf{M}^{(g)} \mathbf{Z}_{l}^{(g)} \tag{C6}$$

$$\tilde{\mathbf{y}}_{l}^{(g)} := \mathbf{y}^{(g)} + \sigma^{(g)}\tilde{\mathbf{d}}_{l}^{(g)} \tag{C7}$$

$$\tilde{f}_{t}^{(g)} := f(\tilde{\mathbf{v}}_{t}^{(g)}) \tag{C8}$$

$$(a+1)$$
 (a) (a) (a) (a)

$$\mathbf{y}^{(g+1)} := \mathbf{y}^{(g)} + \sigma^{(g)} \left\langle \tilde{\mathbf{d}}^{(g)} \right\rangle_{w} \tag{C11}$$

$$\mathbf{s}^{(g+1)} := (1 - c_s)\mathbf{s}^{(g)} + \sqrt{\mu_{\text{eff}}c_s(2 - c_s)} \left\langle \tilde{\mathbf{z}}^{(g)} \right\rangle_w \quad (C12)$$

$$\mathbf{p}^{(g+1)} := (1 - c_p)\mathbf{p}^{(g)} + \sqrt{\mu_{\text{eff}}c_p(2 - c_p)} \left\langle \tilde{\mathbf{d}}^{(g)} \right\rangle_{\!\!w} \quad \text{(C13)}$$

$$\mathbf{C}^{(g+1)} := (1 - c_1 - c_w)\mathbf{C}^{(g)} + c_1\mathbf{p}^{(g+1)}(\mathbf{p}^{(g+1)})^{\mathrm{T}}$$

$$+ c_w \left\langle \tilde{\mathbf{d}}^{(g)} \left(\tilde{\mathbf{d}}^{(g)} \right)^{\mathrm{T}} \right\rangle_w$$
 (C14)

$$\sigma^{(g+1)} := \sigma^{(g)} \exp \left[\frac{c_s}{d_{\sigma}} \left(\frac{\|\mathbf{s}^{(g+1)}\|}{\mathrm{E}\left[\|\mathcal{N}(\mathbf{0}, \mathbf{I})\|\right]} - 1 \right) \right]$$
(C15)

$$g := g + 1 \tag{C16}$$

$(\mu/\mu_w,\lambda)$ -MA-ES		$(\mu/\mu_w,\lambda)$ -CMA-ES	
Initialize $(\mathbf{y}^{(0)}, \sigma^{(0)}, g := 0, \mathbf{s}^{(0)} := 0, \mathbf{M}^{(0)} := \mathbf{I})$	(M1)	Initialize $(\mathbf{y}^{(0)}, \sigma^{(0)}, g := 0, \mathbf{p}^{(0)} := 0,$ $\mathbf{s}^{(0)} := 0, \mathbf{C}^{(0)} := \mathbf{I})$	(C1)
Repeat	(M2)	Repeat	(C2)
For $l := 1$ To λ	(M3)	$\mathbf{M}^{(g)} := \sqrt{\mathbf{C}^{(g)}}$	(C3)
$ ilde{\mathbf{z}}_l^{(g)} := oldsymbol{\mathcal{N}}_l(0, \mathbf{I})$	(M4)	For $l:=1$ To λ	(C4)
$ ilde{\mathbf{d}}_{t}^{(g)} := \mathbf{M}^{(g)} ilde{\mathbf{z}}_{t}^{(g)}$	(M5)	$ar{\mathbf{z}}_l^{(g)} := oldsymbol{\mathcal{N}}_l(0, \mathbf{I})$	(C5)
i i	20 20	$ ilde{\mathbf{d}}_l^{(g)} := \mathbf{M}^{(g)} ilde{\mathbf{z}}_l^{(g)}$	(C6)
$\tilde{f}_l^{(g)} := f\left(\mathbf{y}^{(g)} + \sigma^{(g)}\tilde{\mathbf{d}}_l^{(g)}\right)$	(M6)	$ ilde{\mathbf{y}}_l^{(g)} := \mathbf{y}^{(g)} + \sigma^{(g)} ilde{\mathbf{d}}_l^{(g)}$	(C7)
End	(M7)	$ ilde{f}_l^{(g)} := f(ilde{\mathbf{y}}_l^{(g)})$	(C8)
SortOffspringPopulation	(M8)	End	(C9)
(a+1) (a) (a) (a)	(3.40)	SortOffspringPopulation	(C10)
$\mathbf{y}^{(g+1)} := \mathbf{y}^{(g)} + \sigma^{(g)} \left\langle \tilde{\mathbf{d}}^{(g)} \right\rangle_{\!\!w}$	(M9)	$\mathbf{y}^{(g+1)} := \mathbf{y}^{(g)} + \sigma^{(g)} \left\langle \tilde{\mathbf{d}}^{(g)} ight angle_{w}$	(C11)
$\mathbf{s}^{(g+1)} := (1 - c_s)\mathbf{s}^{(g)} + \sqrt{\mu_{\text{eff}}c_s(2 - c_s)} \left\langle \tilde{\mathbf{z}}^{(g)} \right\rangle_w$	(M10)	$\mathbf{s}^{(g+1)} := (1 - c_s)\mathbf{s}^{(g)} + \sqrt{\mu_{\text{eff}}c_s(2 - c_s)} \left\langle \tilde{\mathbf{z}}^{(g)} \right\rangle_w$	(C12)
$\mathbf{M}^{(g+1)} := \mathbf{M}^{(g)} \Big[\mathbf{I} + \frac{c_1}{2} \left(\mathbf{s}^{(g+1)} \left(\mathbf{s}^{(g+1)} \right)^{\mathrm{T}} - \mathbf{I} \right)$		$\mathbf{p}^{(g+1)} := (1 - c_p)\mathbf{p}^{(g)} + \sqrt{\mu_{\text{eff}}c_p(2 - c_p)} \left\langle \tilde{\mathbf{d}}^{(g)} \right\rangle_w$	(C13)
$+\frac{c_w}{2}\left(\left\langle \tilde{\mathbf{z}}^{(g)}(\tilde{\mathbf{z}}^{(g)})^{\mathrm{T}}\right\rangle -\mathbf{I}\right)\right]$	(M11)	$\mathbf{C}^{(g+1)} := (1 - c_1 - c_w)\mathbf{C}^{(g)} + c_1\mathbf{p}^{(g+1)}(\mathbf{p}^{(g+1)})^{\mathrm{T}}$	
2 ((/w /)		$+ c_w \left\langle \tilde{\mathbf{d}}^{(g)} (\tilde{\mathbf{d}}^{(g)})^{\mathrm{T}} \right\rangle$	(C14)
$\sigma^{(g+1)} := \sigma^{(g)} \exp \left[\frac{c_s}{d_{\sigma}} \left(\frac{\ \mathbf{s}^{(g+1)}\ }{\mathbb{E}\left[\ \mathcal{N}(0, \mathbf{I})\ \right]} - 1 \right) \right]$	(M12)	$\sigma^{(g+1)} := \sigma^{(g)} \exp \left[\frac{c_s}{d_{\sigma}} \left(\frac{\left\ \mathbf{s}^{(g+1)} \right\ }{\mathrm{E} \left[\left\ \mathcal{N}(0, \mathbf{I}) \right\ \right]} - 1 \right) \right]^{\gamma_w}$	(C15)
g := g + 1	(M13)	g:=g+1	(C16)
Until(termination condition(s) fulfilled)	(M14)	Until(termination condition(s) fulfilled)	(C17)

Removing the p and the C in CMA-ES

$$\mathbf{M}^{(g)}\mathbf{s}^{(g+1)} = (1 - c_s)\mathbf{M}^{(g)}\mathbf{s}^{(g)} + \sqrt{\mu_{\text{eff}}c_s(2 - c_s)} \left\langle \mathbf{M}^{(g)}\tilde{\mathbf{z}}^{(g)} \right\rangle_w$$
$$= (1 - c_s)\mathbf{M}^{(g)}\mathbf{s}^{(g)} + \sqrt{\mu_{\text{eff}}c_s(2 - c_s)} \left\langle \tilde{\mathbf{d}}^{(g)} \right\rangle_w.$$

Provided that
$$c_p = c_s$$
, \Longrightarrow $c_p = c_s$ \Leftrightarrow $\mathbf{M}^{(g)}\mathbf{s}^{(g)} = \mathbf{p}^{(g)}$ \Rightarrow $\mathbf{M}^{(g)}\mathbf{s}^{(g+1)} = \mathbf{p}^{(g+1)}$

Provided that $\mathbf{M}^{(g+1)} \simeq \mathbf{M}^{(g)}$ asymptotically holds for $N \to \infty$, \mathbf{p} can be drop

Removing the p and the C in CMA-ES

The c_p/c_s ratio is only a slightly decreasing function of N that does not deviate too much from 1. Therefore, one would not expect a much pronounced influence on the performance of the CMA-ES.

$$\lambda = 4 + \lfloor 3 \ln N \rfloor, \quad \mu = \lfloor \frac{\lambda}{2} \rfloor,$$

$$\mu_{\text{eff}} = \frac{1}{\sum_{m=1}^{\mu} w_m^2},$$

$$c_p = \frac{\mu_{\text{eff}}/N + 4}{2\mu_{\text{eff}}/N + N + 4},$$

$$c_s = \frac{\mu_{\text{eff}} + 2}{\mu_{\text{eff}} + N + 5}.$$

Removing the p and the C in CMA-ES

$$\mathbf{M}^{(g+1)} \left(\mathbf{M}^{(g+1)} \right)^{\mathrm{T}}$$

$$= \mathbf{M}^{(g)} \left[\mathbf{I} + c_1 \left(\mathbf{s}^{(g+1)} \left(\mathbf{s}^{(g+1)} \right)^{\mathrm{T}} - \mathbf{I} \right) + c_w \left(\left\langle \tilde{\mathbf{z}}^{(g)} \left(\tilde{\mathbf{z}}^{(g)} \right)^{\mathrm{T}} \right\rangle_{w} - \mathbf{I} \right) \right] \left(\mathbf{M}^{(g)} \right)^{\mathrm{T}}$$

$$\mathbf{M}^{(g+1)} = \mathbf{M}^{(g)} \left[\mathbf{I} + \frac{c_1}{2} \left(\mathbf{s}^{(g+1)} \left(\mathbf{s}^{(g+1)} \right)^{\mathrm{T}} - \mathbf{I} \right) \right.$$

$$\left. + \frac{c_w}{2} \left(\left\langle \tilde{\mathbf{z}}^{(g)} \left(\tilde{\mathbf{z}}^{(g)} \right)^{\mathrm{T}} \right\rangle_{w} - \mathbf{I} \right) + \dots \right] \text{ and }$$

$$\left. c_w = \min \left(1 - c_1, \ \alpha_{cov} \frac{\mu_{\text{eff}} + 1/\mu_{\text{eff}} - 2}{(N+2)^2 + \alpha_{cov}\mu_{\text{eff}}/2} \right) \right.$$

CMA-ES vs MA-ES

CMA-ES vs MA-ES

Fig. 8. Left figure: On the evolution of the minimal and the maximal eigenvalues of \mathbf{C} (black curves) and $\mathbf{M}\mathbf{M}^{\mathrm{T}}$ (red curves) for a $(1800/1800_{I}, 3600)$ -CMA-ES and $(1800/1800_{I}, 3600)$ -MA-ES, respectively, on the N=30-dimensional Sphere model. Right figure: Corresponding condition number dynamics.

Fast MA-ES (matrix x vector)

$$\mathbf{M}^{(g+1)} = \mathbf{M}^{(g)} \left[\mathbf{I} + \frac{c_1}{2} \left(\mathbf{s}^{(g+1)} (\mathbf{s}^{(g+1)})^{\mathrm{T}} - \mathbf{I} \right) + \frac{c_w}{2} \left(\left\langle \tilde{\mathbf{z}}^{(g)} (\tilde{\mathbf{z}}^{(g)})^{\mathrm{T}} \right\rangle_{w} - \mathbf{I} \right) + \dots \right]$$

$$\mathbf{M}^{(t+1)} \leftarrow \left(1 - \frac{c_1}{2} - \frac{c_{\mu}}{2}\right) \mathbf{M}^{(t)} + \frac{c_1}{2} \mathbf{d}_{\sigma}^{(t)} (\mathbf{p}_{\sigma}^{(t)})^T + \frac{c_{\mu}}{2} \sum_{i=1}^{\mu} w_i \mathbf{d}_{i:\lambda}^{(t)} (\mathbf{z}_{i:\lambda}^{(t)})^T, \quad \blacksquare \qquad O(n^2)$$

$$\mathbf{M}^{(t+1)} \leftarrow \mathbf{M}^{(t)} \left[\mathbf{I} + \frac{c_1}{2} \left(\boldsymbol{p}_{\sigma}^{(t+1)} (\boldsymbol{p}_{\sigma}^{(t+1)})^T - \mathbf{I} \right) + \frac{c_{\mu}}{2} \left(\sum_{i=1}^{\mu} \boldsymbol{w}_i \boldsymbol{z}_{i:\lambda}^{(t)} (\boldsymbol{z}_{i:\lambda}^{(t)})^T - \mathbf{I} \right) \right],$$

By omitting the rank- μ update for the sake of simplicity (i.e., by setting $c\mu = 0$), we obtain:

$$\mathbf{M}^{(1)} \leftarrow \mathbf{I} + \frac{c_1}{2} \left(\pmb{p}_{\sigma}^{(1)} (\pmb{p}_{\sigma}^{(1)})^T - \mathbf{I} \right) = \left(1 - \frac{c_1}{2} \right) \mathbf{I} + \frac{c_1}{2} \pmb{p}_{\sigma}^{(1)} (\pmb{p}_{\sigma}^{(1)})^T$$

$$\boldsymbol{d}_{i}^{(1)} = \mathbf{M}^{(1)} \boldsymbol{z}_{i}^{(1)} = \left(\left(1 - \frac{c_{1}}{2} \right) \mathbf{I} + \frac{c_{1}}{2} \boldsymbol{p}_{\sigma}^{(1)} (\boldsymbol{p}_{\sigma}^{(1)})^{T} \right) \boldsymbol{z}_{i}^{(1)} = \boldsymbol{z}_{i}^{(1)} \left(1 - \frac{c_{1}}{2} \right) + \frac{c_{1}}{2} \boldsymbol{p}_{\sigma}^{(1)} \left((\boldsymbol{p}_{\sigma}^{(1)})^{T} \boldsymbol{z}_{i}^{(1)} \right) \boldsymbol{z}_{i}^{(1)} = \boldsymbol{z}_{i}^{(1)} \left(1 - \frac{c_{1}}{2} \right) + \frac{c_{1}}{2} \boldsymbol{p}_{\sigma}^{(1)} \left((\boldsymbol{p}_{\sigma}^{(1)})^{T} \boldsymbol{z}_{i}^{(1)} \right) \boldsymbol{z}_{i}^{(1)} = \boldsymbol{z}_{i}^{(1)} \left(1 - \frac{c_{1}}{2} \right) \boldsymbol{z}_{i}^{(1)} \boldsymbol{z}_{i$$

 $(p_{\sigma}^{(1)})^T z^{(1)}$ is a scalar does not require $\mathbf{M}^{(1)}$ to be stored in memory.

$$\boldsymbol{d}_{i}^{(t)} = \mathbf{M}^{(t)} \boldsymbol{z}_{i}^{(t)} = \mathbf{M}^{(t-1)} \mathbf{P}^{(t)} \boldsymbol{z}_{i}^{(t)} = \mathbf{M}^{(t-1)} \underbrace{\left(\left(1 - \frac{c_{1}}{2}\right)\mathbf{I} + \frac{c_{1}}{2} \boldsymbol{p}_{\sigma}^{(t)} (\boldsymbol{p}_{\sigma}^{(t)})^{T}\right)}_{:=\mathbf{P}^{(t)}} \boldsymbol{z}_{i}^{(t)}$$

$$\boldsymbol{d}_{i}^{(t)} = \left(\left(1 - \frac{c_{1}}{2}\right)\mathbf{I} + \frac{c_{1}}{2} \boldsymbol{p}_{\sigma}^{(1)} (\boldsymbol{p}_{\sigma}^{(1)})^{T}\right) \cdot \dots$$

 $\dots \cdot \left(\left(1 - \frac{c_1}{2} \right) \mathbf{I} + \frac{c_1}{2} \boldsymbol{p}_{\sigma}^{(t-1)} (\boldsymbol{p}_{\sigma}^{(t-1)})^T \right) \cdot \left(\left(1 - \frac{c_1}{2} \right) \mathbf{I} + \frac{c_1}{2} \boldsymbol{p}_{\sigma}^{(t)} (\boldsymbol{p}_{\sigma}^{(t)})^T \right) \boldsymbol{z}_i^{(t)}$

Using the last m vector (direction vectors) to update matrix M

Algorithm 1 CMA-ES, MA-ES and LM-MA-ES

```
1: given n \in \mathbb{N}_+, \lambda = 4 + \lfloor 3 \ln n \rfloor, \mu = \lfloor \lambda/2 \rfloor, w_i = \frac{\ln(\mu + \frac{1}{2}) - \ln i}{\sum_{i=1}^{\mu} (\ln(\mu + \frac{1}{2}) - \ln i)} for i = 1, \dots, \mu, \mu_w = 1
         \frac{1}{\sum_{\mu=w^2}^{\mu}}, c_{\sigma} = \frac{\mu_w + 2}{n + \mu_w + 5}, c_c = \frac{4}{n + 4}, c_1 = \frac{2}{(n + 1.3)^2 + \mu_w}, c_{\mu} = \min \left(1 - c_1, \frac{2(\mu_w - 2 + 1/\mu_w)}{(n + 2)^2 + \mu_w}\right),
          m = 4 + |3 \ln n|, c_{\sigma} = \frac{2\lambda}{n}, c_{d,i} = \frac{1}{1.5i - 1n}, c_{c,i} = \frac{\lambda}{4i - 1n} for i = 1, \dots, m
 2: initialize t \leftarrow 0, \mathbf{y}^{(t=0)} \in \mathbb{R}^n, \sigma^{(t=0)} > 0, \mathbf{p}_{\sigma}^{(t=0)} = 0, \mathbf{p}_{c}^{(t=0)} = 0, \mathbf{C}^{(t=0)} = 1, \mathbf{M}^{(t=0)} = 1
         \mathbf{m}_{i}^{(t=0)} \in \mathbb{R}^{n}, \mathbf{m}_{i}^{(t=0)} = \mathbf{0} \text{ for } i = 1, \dots, m
  3: repeat
             for i \leftarrow 1, \dots, \lambda do
                   z_i^{(t)} \leftarrow \mathcal{N}(\mathbf{0}, \mathbf{I})
                    if t \mod \frac{n}{3} = 0 then \mathbf{M}^{(t)} \leftarrow \sqrt{\mathbf{C}^{(t)}} else \mathbf{M}^{(t)} \leftarrow \mathbf{M}^{(t-1)}
                                                                                                                                                                                           D CMA-ES
                   \boldsymbol{d}_{i}^{(t)} \leftarrow \mathbf{M}^{(t)} \boldsymbol{d}_{i}^{(t)}
                                                                                                                                                                for j \leftarrow 1, \ldots, \min(t, m) do
                                                                                                                                                                                    ▷ LM-MA-ES
                          d_i^{(t)} \leftarrow (1 - c_{d,j})d_i^{(t)} + c_{d,j}m_j^{(t)}\left((m_j^{(t)})^Td_i^{(t)}\right)
                                                                                                                                                                                     ▷ LM-MA-ES
                 \mathbf{f}_{i}^{(t)} \leftarrow f(\mathbf{v}^{(t)} + \sigma^{(t)}\mathbf{d}_{i}^{(t)})
12: \mathbf{y}^{(t+1)} \leftarrow \mathbf{y}^{(t)} + \sigma^{(t)} \sum_{i=1}^{\mu} w_i \mathbf{d}_{i:\lambda}^{(t)} \Rightarrow the symbol i: \lambda denotes i-th best sample on f
13: p_{\sigma}^{(t+1)} \leftarrow (1 - c_{\sigma})p_{\sigma}^{(t)} + \sqrt{\mu_w c_{\sigma}(2 - c_{\sigma})} \sum_{i=1}^{\mu} w_i z_{i+1}^{(t)}
            \mathbf{p}_{c}^{(t+1)} \leftarrow (1 - c_{c})\mathbf{p}_{c}^{(t)} + \sqrt{\mu_{w}c_{c}(2 - c_{c})} \sum_{i=1}^{\mu} w_{i}\mathbf{d}_{i}^{(t)}
                                                                                                                                                                                           ▷ CMA-ES
              \mathbf{C}^{(t+1)} \leftarrow (1 - c_1 - c_\mu)\mathbf{C}^{(t)} + c_1 \mathbf{p}_c(\mathbf{p}_c^{(t)})^T + c_\mu \sum_{i=1}^{\mu} w_i \mathbf{d}_{i\cdot i}^{(t)} (\mathbf{d}_{i\cdot i}^{(t)})^T

▷ CMA-ES

              \mathbf{M}^{(t+1)} \leftarrow \mathbf{M}^{(t)} \left[ \mathbf{I} + \frac{c_1}{2} \left( \mathbf{p}_{\sigma}^{(t)} (\mathbf{p}_{\sigma}^{(t)})^T - \mathbf{I} \right) + \frac{c_{\mu}}{2} \left( \sum_{i=1}^{\mu} w_i \mathbf{z}_{i:\lambda}^{(t)} (\mathbf{z}_{i:\lambda}^{(t)})^T - \mathbf{I} \right) \right]

▷ MA-ES

              for i \leftarrow 1, \ldots, m do
17:
                                                                                                                                                                                     ▷ LM-MA-ES
                     \mathbf{m}_{i}^{(t+1)} \leftarrow (1 - c_{c,i})\mathbf{m}_{i}^{(t)} + \sqrt{\mu_{w}c_{c,i}(2 - c_{c,i})}\sum_{i=1}^{\mu} w_{i}z_{i,i}^{(t)}
18:
                                                                                                                                                                                     ▷ LM-MA-ES
             \sigma^{(t+1)} \leftarrow \sigma^{(t)} \cdot \exp \left[ \frac{c_{\sigma}}{2} \left( \frac{\|\mathbf{p}_{\sigma}^{(t+1)}\|^2}{n} - 1 \right) \right]
```


