Chapitre 1: Multiples, diviseurs, nombres premiers

Cours

Si on a trois nombres a, b et c tels que

$$a \times b = c$$

On dit que

- a et b sont des diviseurs de c.
- c est un multiple de a et de b.
- On dit que c est <u>divisible</u> par a et b.

Exemple

- 2 est un diviseur de 6.
- 7 est un diviseur de 21.
- 6 est un multiple de 2.
- 6 est un multiple de 3.
- 48 est un multiple de 4.

Cours : Critères de divisibilité

Parfois, on peut rapidement savoir si un nombre est un diviseur d'un autre nombre.

- Si le dernier chiffre d'un nombre est pair, ce nombre est un multiple de 2.
- Si la somme des chiffres d'un nombre est un multiple de 3, ce nombre est un multiple de 3.
- Si le dernier chiffre d'un nombre est 0 ou 5, ce nombre est un multiple de 5.
- Si la somme des chiffres d'un nombre est un multiple de 9, ce nombre est un multiple de 9.

Exemple

- 1244 est un multiple de 2, car 4 est un multiple de 2.
- 546 est un multiple de 3, car 5 + 4 + 6 = 15, qui est un multiple de 3.
- 200, 15, 35... Sont des multiples de 5.
- 279 est un multiple de 9, car 2 + 7 + 9 = 18 est un multiple de 9.

Cours

Une division euclidienne se fait entre deux nombres entiers a et b. Il en résulte un

quotient et un reste.

$$\begin{array}{c|c} a & b \\ \vdots & \mathsf{quotient} \\ \mathsf{reste} & \end{array}$$

 $a = b \times quotient + reste$

On obtient le quotient en soustrayant b aux chiffres de a.

Exemple

Faisons par exemple la division euclidienne de 377 par 12 :

On obtient ainsi un **quotient** de 31, et un **reste** de 5.

Cours

Un nombre premier est un nombre qui n'a que 1 et lui même comme diviseurs.

Note : il y a une **infinité** de nombres premiers.

Exemple

2, 3, 5 et 7 sont des nombres premiers.

On peut obtenir tous les nombres premiers entre 1 et 100 en utilisant un crible d'Eratosthène :

Règles:

- Barrer le nombre 1.
- Entourer le 2 (premier nombre non barré), puis barrer tous ses multiples.
- Entourer le premier nombre ni entouré ni barré, et barrer tous ses multiples.
- Répéter la consigne précédente, jusqu'à ce que tous les nombres soient soit entourés soit barrés.

*	2	3	**	5	Ø	7	×	X	10
11	12	13	14	25	16	17	18	19	20
24	22	23	24	25	26	27	28	29	360
31	32	33	34	35	36	37	38	39	340
41	42	43	44	45	46	47	48	49	50
54	52	53	54	5 5	56	5 ₹	58	59	360
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	34	78	79	36 0
81	82	83	8 4	85	36	87	38	89	390
91	92	93	94	95	36	97)	38 C	99	100

Cours : Décomposition en nombres premiers

Tout nombre peut être <u>décomposé</u> en un produit de nombres premiers.

Pour trouver tous les diviseurs premiers d'un nombre, il faut essayer de diviser ce nombre par **tous** les nombres premiers qui lui sont inférieurs, jusqu'à n'avoir que des nombres premiers.

Exemple

- On veut décomposer 15 en nombres premiers :
 - 15 n'est pas un multiple de 2.
 - 15 est un multiple de 3 : on écrit $15 = 3 \times 5$.
 - 3 et 5 sont tous les deux premiers, donc on peut s'arrêter là.
- On veut décomposer 18 en nombres premiers :
 - 18 est un multiple de 2 : on écrit $18 = 2 \times 9$.
 - 9 n'est pas un multiple de 2.
 - 9 est un multiple de 3 : on écrit $18 = 2 \times 3 \times 3$.
 - 2 et 3 sont tous les deux premiers, donc on peut s'arrêter là.

On remarque que le même nombre premier peut apparaître **plusieurs fois** dans la décomposition!

- On veut décomposer 231 en nombres premiers :
 - Grâce aux Critères de divisibilité, on peut déterminer que 231 et un multiple de 3 : on écrit 231 = 3 x 77.
 - 77 n'est pas un multiple de 2.

- 77 n'est pas un multiple de 3.
- 77 n'est pas un multiple de 5.
- 77 est un multiple de 7 : on écrit 231 = $3 \times 7 \times 11$.
- 3, 7 et 11 sont tous premiers, donc on peut s'arrêter là.
- $32 = 2 \times 16 = 2 \times 2 \times 8 = 2 \times 2 \times 2 \times 4 = 2 \times 2 \times 2 \times 2 \times 2 \times 2$.

Cours

Le PGCD est le Plus Grand Commun Diviseur : c'est le plus grand nombre qui divise deux nombres donnés.

Pour le calculer :

- On fait la liste des diviseurs premiers des deux nombres.
- On prend tous les nombres qui apparaissent dans les deux listes, et on les multiplient entre eux.

Exemple

On veut calculer le PGCD de 12 et de 20 (noté PGCD(12, 20)) :

$$12 = 2 \times 2 \times 3$$

 $20 = 2 \times 2 \times 5$

$$20 = (2) \times (2) \times 5$$

Donc PGCD(12, 20) = $2 \times 2 = 4$.

Exemple

On veut calculer le PGCD de 60 et de 126 :

$$60 = (2) \times 2 \times (3) \times 5$$

$$60 = 2 \times 2 \times 3 \times 5$$

$$126 = 2 \times 3 \times 3 \times 7$$

Donc PGCD(60, 126) = $2 \times 3 = 6$.