LÓGICA Y RAZONAMIENTOS

28 de Septiembre de 2019

Proposiciones

Una proposición es una frase del lenguaje de la que tiene sentido afirmar si es verdadera o falsa. Si la proposición es verdadera, diremos que su valor de verdad es 1. Y si la proposición es falsa, diremos que su valor de verdad es 0.

A las proposiciones se las llama también enunciados. Los conceptos "proposición" y "enunciado" son sinónimos.

Llamaremos proposición matemática a una proposición que se refiere a conceptos matemáticos.

Veamos a continuación algunos ejemplos de enunciados matemáticos.

Ejemplos de proposiciones

- 3 + 5 = 8.
- 4 es un número entero.
- La cuarta cifra decimal del número π es 9.
- 3 no es un número primo.
- n es par si y sólo si n+1 es impar.
- 5 es un factor primo de 25.
- 2,3 y 7 son factores primos de 60.
- Si f(x) es una función real polinómica, entonces f(x) es continua.

Proposiciones

Tenemos entonces que "3+5=8" es una proposición verdadera, "4 es un número entero" es verdadera, "la cuarta cifra decimal de π es 9" es falsa, "3 no es un número primo" es falsa, "n es par si y sólo so n+1 es impar" es verdadera, "5 es un factor primo de 25" es verdadera, "2,3,7 son factores primos de 60" es falsa (ya que 7 no es factor primo de 60), y la proposición "si f(x) es una función real polinómica, entonces f(x) es continua" es verdadera.

Por tanto, toda proposición matemática tiene asignado el valor "verdadero" (que representamos por 1) o el valor "falso" (que representamos por 0).

Un ejemplo de una expresión que no es una proposición es la frase "el número natural elegido es un número par", debido a que el número aludido en la frase es desconocido, lo cual impide asignar a esta frase el valor verdadero o el valor falso.

Proposiciones simples y compuestas

Decimos que una proposición es simple, si no puede descomponerse en proposiciones más básicas.

Y decimos que una proposición es compuesta, si no es simple.

En los anteriores ejemplos de proposiciones, tenemos que "3+5=8", "4 es un número entero" y "la cuarta cifra decimal de π es 9" son proposiciones simples. Y el resto de las proposiciones que hemos mostrado son compuestas, ya que cada una de ellas se puede descomponer en proposiciones más básicas.

Proposiciones simples y compuestas

Por ejemplo, la proposición "2,3 y 7 son factores primos de 60", se puede descomponer en las proposiciones "2 es factor primo de 60", "3 es factor primo de 60" y "7 es factor primo de 60".

Asimismo, la proposición "si f(x) es una función real polinómica, entonces f(x) es continua" se puede descomponer en las proposiciones "f(x) es una función real polinómica" y "f(x) es continua".

Obsérvese que la proposición "5 es un factor primo de 25" es compuesta, porque expresa que "5 es un divisor de 25" y "5 es primo".

Las conectivas lógicas

Las Matemáticas avanzan construyendo proposiciones matemáticas a partir de otras ya conocidas, y determinando posteriormente si son verdaderas o falsas. La construcción de estas nuevas proposiciones se hace con las llamadas conectivas lógicas y con los llamados cuantificadores lógicos.

Empezaremos introduciendo las cinco conectivas lógicas, que son la negación, la disyunción, la conjunción, el condicional y el bicondicional.

La negación

La denotamos por el símbolo \neg . Por tanto, si P es una proposición, representamos por $\neg P$ a su negación. Entonces, $\neg P$ es cierta si P es falsa, y $\neg P$ es falsa si P es cierta.

Por ejemplo, la negación de la proposición "4 es un número par" es la proposición "4 es un número impar".

La disyunción

La denotamos por el símbolo \vee . Entonces, si P y Q son proposiciones, denotamos a su disyunción por $P \vee Q$. La tabla de verdad de la disyunción es la siguiente:

P	Q	$P \lor Q$
1	1 1 1	
1	0	1
0	1	1
0	0	0

Por tanto, la proposición $P \lor Q$ es falsa únicamente si P y Q son falsas.

Por ejemplo, consideremos la proposición $R=P\vee Q$, donde P es la proposición " 3<5", y Q es la proposición "10 es un número primo". Como P toma el valor 1, R es verdadera.

La conjunción

La denotamos por el símbolo \wedge . Entonces, si P y Q son proposiciones, denotamos a su conjunción por $P \wedge Q$. La tabla de verdad de la conjunción es la siguiente:

\overline{P}	Q	$P \wedge Q$
1	1	1
1	0	0
0	1	0
0	0	0

Por tanto, la proposición $P \wedge Q$ es verdadera únicamente si P y Q son verdaderas.

Por ejemplo, consideremos la proposición $R=P\wedge Q$, donde P es la proposición "el 4 es un número par", y Q es la proposición "el 9 es un número impar". Como P y Q toman el valor $1,\ R$ es verdadera.

El condicional

Si P y Q son dos proposiciones, a la proposición "si P entonces Q" la llamamos proposición condicional, y la representamos por $P \to Q$ o por $P \Rightarrow Q$. Decimos entonces que P es el antecedente del condicional, y Q el consecuente.

La tabla de verdad del condicional es la siguiente:

\overline{P}	Q	$P \Rightarrow Q$
1	1	1
1	0	0
0	1	1
0	0	1

El condicional

Por tanto, la proposición $P\Rightarrow Q$ es falsa únicamente si P es verdadera y Q es falsa. Por tanto, si P es falsa, el condicional $P\Rightarrow Q$ es verdadero. Esto es así, porque de un antecedente falso se deduce cualquier cosa.

Por ejemplo, consideremos la proposición $P\Rightarrow Q$, donde P es la proposición "8 es un número par", y Q es la proposición "el 8 es suma de dos números iguales". Como P y Q son verdaderas, $P\Rightarrow Q$ es también verdadera.

Sin embargo, la proposición condicional "si un número natural es múltiplo de 3 y múltiplo de 120 entonces es múltiplo de 360" es falsa, ya que 120 es múltiplo de 3 y múltiplo de él mismo, pero no es múltiplo de 360.

El condicional

Una proposición condicional $P \Rightarrow Q$ significa:

- (1) P implica Q.
- (2) Si P entonces Q.
- (3) P es condición suficiente para Q.
- (4) Q es condición necesaria para P.

Por tanto, las afirmaciones (1), (2), (3) y (4) son sinónimas.

El bicondicional

Si P y Q son dos proposiciones, a la proposición " P si y sólo si Q" la llamamos proposición bicondicional, y la representamos por $P \leftrightarrow Q$ o por $P \Leftrightarrow Q$. Su tabla de verdad es la siguiente

P	Q	$P \Leftrightarrow Q$
1	1	1
1	0	0
0	1	0
0	0	1

Por tanto, la proposición $P \Leftrightarrow Q$ es verdadera si y sólo si P y Q toman el mismo valor de verdad.

Por ejemplo, consideremos la proposición $P\Leftrightarrow Q$, donde P es la proposición "8 es un número par", y Q es la proposición "8 es divisible por 3". Como P toma el valor 1 y Q toma el valor 0, $P\Leftrightarrow Q$ es falsa.

El conjunto Prop(X)

Suponemos que X es un conjunto de variables, que representan a las proposiciones simples. Definimos entonces el conjunto de proposiciones $\mathsf{Prop}(X)$ como el conjunto de elementos generados por las siguientes reglas:

- Si $P \in X$ entonces $P \in Prop(X)$.
- Si $A \in \mathsf{Prop}(X)$ entonces $\neg A \in \mathsf{Prop}(X)$.
- Si $A, B \in \mathsf{Prop}(X)$, entonces $(A \vee B), (A \wedge B), (A \to B), (A \leftrightarrow B) \in \mathsf{Prop}(X)$.

El conjunto Prop(X)

Por ejemplo,, si $P,Q,R\in X$, las siguientes expresiones son elementos de $\operatorname{Prop}(X)$:

P.

$$\neg (P \to (Q \land R)).$$

$$((P \lor Q) \leftrightarrow (\neg P \to Q)).$$

Para no tener que escribir tantos paréntesis, eliminaremos los paréntesis más externos y seguiremos el siguiente orden de prioridad para las conectivas:

- 1. La negación ¬.
- 2. Las conectivas \vee y \wedge , ambas con la misma prioridad.
- 3. Las conectivas \rightarrow y \leftrightarrow , ambas con la misma prioridad.

Por tanto, podemos escribir $\neg(P \to (Q \land R))$ como $\neg(P \to Q \land R).$

Y podemos escribir $((P \lor Q) \leftrightarrow (\neg P \to Q))$ como $P \lor Q \leftrightarrow (\neg P \to Q)$.

Definimos una interpretación como una asignación de los valores de verdad a los elementos del conjunto $\operatorname{Prop}(X)$ que preserva las tablas de verdad de las conectivas lógicas, es decir, tal que para todo $A,B\in\operatorname{Prop}(X)$ se cumplen las siguientes condiciones:

- (1) $I(\neg A) = \neg I(A)$.
- (2) $I(A \vee B) = I(A) \vee I(B)$.
- (3) $I(A \wedge B) = I(A) \wedge I(B)$.
- (4) $I(A \rightarrow B) = I(A) \rightarrow I(B)$.
- (5) $I(A \leftrightarrow B) = I(A) \leftrightarrow I(B)$.

Obsérvese que, dadas una interpretación I y una proposición $A \in \mathsf{Prop}(X)$, el valor de I(A) sólo depende de los valores de I para las variables que aparezcan en A.

Por ejemplo, si $A=\neg p\to (q\vee r)$ donde p,q,r son variables de X, entonces por las reglas (1)-(5) tenemos que

$$I(A) = I(\neg p \to q \lor r) = \neg I(p) \to (I(q) \lor I(r)).$$

Por tanto, I(A) sólo depende de I(p),I(q) e I(r). Así pues, hay exactamente ocho posibles interpretaciones para A, que son las siguientes:

- 1. $I_1(p) = 1, I_1(q) = 1, I_1(r) = 1.$
- 2. $I_2(p) = 1, I_2(q) = 1, I_2(r) = 0.$
- 3. $I_3(p) = 1, I_3(q) = 0, I_3(r) = 1.$
- 4. $I_4(p) = 1, I_4(q) = 0, I_4(r) = 0.$
- 5. $I_5(p) = 0, I_5(q) = 1, I_5(r) = 1.$
- 6. $I_6(p) = 0, I_6(q) = 1, I_6(r) = 0.$
- 7. $I_7(p) = 0, I_7(q) = 0, I_7(r) = 1.$
- 8. $I_8(p) = 0, I_8(q) = 0, I_8(r) = 0.$

Podemos entonces utilizar la siguiente tabla de verdad para evaluar $\cal A$ en todas sus posibles interpretaciones:

p	q	r	$\neg p$	$q \lor r$	$\neg p \to (q \lor r)$
1	1	1	0	1	1
1	1	0	0	1	1
1	0	1	0	1	1
1	0	0	0	0	1
0	1	1	1	1	1
0	1	0	1	1	1
0	0	1	1	1	1
0	0	0	1	0	0

Tautologías y contradicciones

Una proposición A es una tautología, si I(A)=1 para toda interpretación I, lo cual significa que la tabla de verdad para A da siempre 1.

Por ejemplo, la proposición $A=((p\to q)\wedge p)\to q$ es una tautología, ya que su tabla de verdad da siempre 1:

p	q	$p \rightarrow q$	$(p \to q) \land p$	$((p \to q) \land p) \to q$
1	1	1	1	1
1	0	0	0	1
0	1	1	0	1
0	0	1	0	1

Tautologías y contradicciones

Una proposición A es una contradicción, si I(A)=0 para toda interpretación I, lo cual significa que la tabla de verdad para A da siempre 0.

Por ejemplo, la proposición $A=(p\vee q)\wedge (\neg p\wedge \neg q)$ es una contradicción, ya que su tabla de verdad da siempre 0:

\overline{p}	q	$\neg p$	$\neg q$	$p \lor q$	$\neg p \land \neg q$	$(p \lor q) \land (\neg p \land \neg q)$
1	1	0	0	1	0	0
1	0	0	1	1	0	0
0	1	1	0	1	0	0
0	0	1	1	0	1	0

Proposiciones equivalentes

Dos proposiciones A y B son equivalentes, si tienen el mismo significado. Formalmente, si $A,B\in \operatorname{Prop}(X)$, esto significa que I(A)=I(B) para toda interpretación I, es decir, las tablas de verdad para A y B dan el mismo resultado.

Si A y B son proposiciones equivalentes, escribiremos $A \equiv B$.

Por ejemplo, las proposiciones $p \lor q$ y $\neg p \to q$ son equivalentes, ya que sus tablas de verdad dan el mismo resultado:

Proposiciones equivalentes

\overline{p}	q	$p \lor q$
1	1	1
1	0	1
0	1	1
0	0	0

\overline{p}	q	$\neg p$	$\neg p \rightarrow q$
1	1	0	1
1	0	0	1
0	1	1	1
0	0	1	0

Por tanto, $p \lor q \equiv \neg p \to q$.

Proposiciones equivalentes

Sin embargo, las fórmulas $p \to q$ y $q \to p$ no son equivalentes, ya que sus tablas de verdad dan resultados distintos.

\overline{p}	q	$p \rightarrow q$	$q \rightarrow p$
1	1	1	1
1	0	0	1
0	1	1	0
0	0	1	1

Observamos en la tabla que para las interpretaciones pq=10 y pq=01 los valores de verdad de $p\to q$ y $q\to p$ son distintos. Por tanto, $p\to q$ y $q\to p$ no son equivalentes.

Observación

Si $A, B \in Prop(X)$, son equivalentes las siguientes condiciones:

- (1) $A \equiv B$.
- (2) Para toda interpretación I, I(A) = 1 si y sólo si I(B) = 1.
- (3) Para toda interpretación I, I(A) = 0 si y sólo si I(B) = 0.
- (4) $A \Leftrightarrow B$ es una tautología.

Se observa fácilmente que las cuatro afirmaciones (1),(2),(3) y (4) significan los mismo, y por tanto son equivalentes.