Programmazione e Calcolo Scientifico

Home Content

SOLIDI PLATONICI

PRESENTAZIONE PROGETTO DI GRUPPO NOEMI LAINÀ S311037 ULDERICO GUZZARDI S307530

Start

Home Content

Programmazione e Calcolo Scientifico - Solidi Geodetici Home Content PolygonalLibrary **STRUCT** S PolygonalMesh Cell0Dso unsigned int NumCell0Ds o vector<unsigned int> Cell0DsId Eigen::MatrixXd Cell0DsCoordinates o vector<unsigned int> Cell0DsShortPath Cell1Ds- unsigned int NumCell1Ds o vector<unsigned int> Cell1DsId o Eigen::MatrixXi Cell1DsExtrema vector<unsigned int> Cell1DsShortPath o vector<unsigned int> Cell1DsEsistente Rappresenta un poligono costituito da: Utilizza: CellOD (vertici) -Cell2Ds- STL (vector) - Cell1D (lati) unsigned int NumCell2Ds Eigen (MatrixXd, MatrixXi) Cell2D (facce) vector<unsigned int> Cell2DsId o vector<unsigned int> Cell2DsNumVert o vector<unsigned int> Cell2DsNumEdg vector<vector<unsigned int>> Cell2DsVertices o vector<vector<unsigned int>> Cell2DsEdges ·Cell3Ds··· o unsigned int NumCell3Ds unsigned int Cell3Dsld o unsigned int Cell3DsNumVert unsigned int Cell3DsNumEdg unsigned int Cell3DsNumFaces vector<unsigned int> Cell3DsVertices vector<unsigned int> Cell3DsEdges

vector<unsigned int> Cell3DsFaces

Home Content

vector<vector<unsigned int>> strati_vertici

Esempio: memorizzazione per strati sui vertici, e suddivisione per "parallelogrammi" per le facce triangolari (b=3).

Esempio: Tetraedro ed Icosaedro con triangolazione I classe

Home Content

3 "CATEGORIE" DI VERTICI:

- 1. Vertici della triangolazione di classe 1 vector<vector<unsigned int>> strati_vertici
- 2. Baricentri
 vector<vector<unsigned int>> strati_baricentri
- 3. **Vertici intermedi** *vector<vector<unsigned int>> strati_intermedi*

Esempio: tetraedro con triangolazione II classe

Home Content

- map<vector<unsigned int>, vector<unsigned int>> lati_facce
- map<unsigned int, vector<unsigned int>> vertici_facce
- map<unsigned int, vector<unsigned int>> adiacenti

Poliedro inizale		Duale
vertici_poliedro	\rightarrow	vertici_duale = facce_poliedro
num_lati	\rightarrow	num_lati
facce_poliedro	\rightarrow	facce_duale = vertici_poliedro

Home Content

• Eseguita dopo la triangolazione e/o costruzione del duale

• cell1Ds_properties[0].Label = "Lati Esistenti"; cell1Ds_properties[0].UnitLabel = "-"; cell1Ds_properties[0].NumComponents = 1;

• mesh.Cell0DsCoordinates(j,i)= mesh.Cell0DsCoordinates(j,i)/norma [j = 0, 1, 2 relative ad asse x, y, z]

Home Content

- Algoritmo di Dijkstra
- vector<vector<pair<unsigned int, double>>> LA(N)

- priority_queue<pair<double, unsigned int>, vector<pair<double, unsigned int>>,
 greater<pair<double, unsigned int>>> pq;
- celloDs_properties[0].Label = "ShortPathVertici";("ShortPathLati")
 celloDs_properties[0].UnitLabel = "-";
 celloDs_properties[0].NumComponents = 1;

Esempio: cammino minimo su icosaedro proiettato con triangolazione II classe

Home Content

- Costruzione poliedro (5 Test)
- Controllo esistenza e appartenenza vertici/lati (3 Test)
- Triangolazione (5 Test)
- Duale (1 Test)
- Proiezione sulla sfera (1 Test)
- Cammino minimo (1 Test)

Home Content

GRAZIE PER 'N' L'ATTENZIONE.

