Incremental Verification of Neural Networks Guided by Counterexample Potentiality

SE4AI: Deep learning model formal verification

Guanqin Zhang

Supervisor: AP.Yulei Sui¹, Dr. Dilum Bandara², Dr.Shiping Chen²

¹UNSW School of Computer Science and Engineering ²CSIRO DATA61

January 9, 2024

Adversarial Input Perturbation

Nerual Network N

Label 8

Adversarial Input Perturbation

x_0

Nerual Network N

Label 8

Nerual Network N

Label 6

Neural Network Robustness

Local robustness

(1) Given: A network model $N: \mathbb{R}^n \to \mathbb{R}^m$, (I_p, ϵ) -adversary region, i.e., $\{x' \mid \|x' - x_0\|_p \le \epsilon\}, p = \infty$

Neural Network Robustness

Local robustness

- (1) Given: A network model $N: \mathbb{R}^n \to \mathbb{R}^m$, (I_p, ϵ) -adversary region, i.e., $\{x' \mid \|x' x_0\|_p \le \epsilon\}, p = \infty$
- (2) To Certify: $\forall x \in \{x' \mid ||x'-x_0||_p \le \epsilon\}, N_{s_0}(x) N_{s_1}(x) > 0$ where s_0 is the correct output label and s_1 is another output result.

Previous Works

- 1. Scalable but imprecise
 - (approximate) Linear relaxation [ICML 2018]
 - (approximate) Abstract interpretation [S&P 2018, POPL 2019]

Previous Works

- 1. Scalable but imprecise
 - (approximate) Linear relaxation [ICML 2018]
 - (approximate) Abstract interpretation [S&P 2018, POPL 2019]
- 2. Precise but lacks scalability (time complexity is high, cannot handle large scale of network)
 - (exact verification) SMT solving [CAV 2017]
 - (adversarial attack) PGD crafts samples [CVPR 2017]
 - (metamorphic testing) neural coverage [ASE 2018]

Neural Network Deployment Workflow

Neural Network Deployment Workflow

(3) Problem: The number of input cases in the adversary region is infinite: We cannot compute each N(x') for all separately.

Inspiration-Transferable verification

OOPSLA2022:FANC

Abstraction Template for $\langle \Phi, \Psi \rangle$

Branch and Bound for Verification

A widely used DNN complete verification technology.

Bound: Efficient incomplete verification

Branch: Split verification problem into subproblem

Branch and Bound for Verification

Challenge 1: How could we store the information and pass it on regarding bab?

Technique 1: Reuse

- ► Skip all unsolved problems.
- ► Start Reuse with all solved constraint on M*

Guided by Counterexample

Challenge2: The Reuse template is not enough to verify M*.

Technique 2: Olive-G: Scoring Greedy Strategy

Technique 2: Olive-G: Scoring Greedy Strategy

- ▶ Update the constraint from each step.
- Scoring subproblem

Evaluation Setup

▶ Baseline:

 B_1 : DeepZ

B₂ Gurobi-based Lp verifier.

▶ Verification Properties:

Benchmark	Application	Neurons	Instances	Number
ACAS Xu ACAS Xu	Control Safety	300	$\{M_1\ldotsM_{45}\} imes\{p_1\ldots p_{10}\}$	186
RL rl2022benchmarks	Reinforcement Learning	128-512	$\{M_{46} \dots M_{48}\} \times \{p_{11} \dots p_{196}\}$	296
MNIST muller2022third	Computer Vision	512-1.5k	$\{M_{49}\ldotsM_{52}\} \times \{p_{197}\ldots p_{230}\}$	90

▶ Modulate Networks: Quantization to *INT*8, *INT*16; Retraining

Results

Model	Baseline	Similar Network	Our Tools
ACAS_Xu	B_1	INT16	8.3X
ACAS_Xu	B_2	INT8	2.6X
RL	B_1	INT16	4.7X
RL	B_2	INT8	1.2X
MNIST	B_1	INT16	3.7X
MNIST	B_2	INT8	2.1X

Summary

Neural Network Deployment Workflow

(3) Problem: The number of input cases in the adversary region is infinite: We cannot compute each N(x') for all separately.

Guided by Counterexample

Challenge2: The Reuse template is not enough to verify M*.

Branch and Bound for Verification

Challenge 1: How could we store the information and pass it on regarding bab?

Results

Model	Baseline	Similar Network	Our Tools
ACAS_Xu	B_1	INT16	8.3X
ACAS_Xu	B_2	INT8	2.6X
RL	B_1	INT16	4.7X
RL	B_2	INT8	1.2X
MNIST	B_1	INT16	3.7X
MANICT	D.	INITO	217

16 / 18

Quote: Deterministic

Complete Verification: A verifier is complete if it never reports false negatives (under all possible conditions).

Given enough time, the problem can be split and solved completely.

Quote: Deterministic

any approximation approaches, they are always approximated and never solved by an exact approach, so they never achieve completeness.