

100111110

可编程逻辑器件工艺及结构

主讲:何宾

Email: hebin@mail.buct.edu.cn

2018.08

I, OLOGIJIJOGGO

在这种技术的器件中,所有逻辑的连接都是靠熔丝连接的。 熔丝器件是一次可编程的,一旦编程,永久不能改变。

熔丝未编程的结构

熔丝编程的结构

思考题:这种工艺的优势和劣势?

反熔丝技术和熔丝技术相反,在未编程时,未编程时,成高阻 状态。编程结束后,形成连接。反熔丝器件是一次可编程的,一 旦编程,永久不能改变。(注:优势和劣势和前面一样)

熔丝未编程的结构

熔丝编程的结构

可编程逻辑器件工艺 --SRAM工艺

基于静态存储器SRAM的可编程器件,值被保存在SRAM的晶体管中。只要供电,器件信息就不会丢失。特点:

- (1) SRAM存储数据需要消耗大量的硅面积
- (2) 断电后数据丢失。
- (3) 这种器件可以反复的编程和修改。

绝大多数的FPGA都采用这种工艺,这就是为什么FPGA外部都需要有一个PROM芯片来保存设计代码的原因。

思考题:此处所说的"设计代码"的含义是什么?

可编程逻辑器件工艺 --掩膜工艺(ROM)

ROM是非易失性的器件。系统断电后,信息被保留在存储单元中。ROM单元保存了行和列数据,形成一个阵列,每一列有负载电阻使其保持逻辑1,每个行列的交叉有一个关联晶体管和一个掩膜连接。其特点:

- (1) 可以读出信息,但是不能写入信息。
- (2) 这种技术实现代价比较高,在实际中很少使用。

可编程逻辑器件工艺 --掩膜工艺(ROM)

T.						
1	地	址		数	据	
1	A ₁	Ao	D ₃	D ₂	D ₁	Do
1	0	0	0	1	0	1
	0	1	1	0	1	1
	1	0	0	1	0	0
	1	1	1	1	1	0

W_0	$=\overline{A_0}$	$\cdot \overline{A_1}$
W_1	$=A_0$	$\cdot \overline{A_1}$
W_2	$=\overline{A_0}$	$\cdot A_1$
W_3	$=A_0$	$\cdot A_1$

$$D_{3} = W_{1} + W_{3}$$

$$D_{2} = W_{0} + W_{2} + W_{3}$$

$$D_{1} = W_{1} + W_{3}$$

$$D_{0} = W_{0} + W_{1}$$

PROM是非易失性的,系统断电后,信息被保留在存储单元中。PROM单元保存了行和列数据,形成一个阵列,每一列有负载电阻使其保持逻辑1,每个行列的交叉有一个关联晶体管和一个掩膜连接。特点:

- (1) PROM器件可以编程一次,以后只能读数据而不能写入 新的数据。
 - (2) 如果可以多次编程就成为EPROM, EEPROM技术。

可编程逻辑器件工艺 --PROM工艺(熔丝连接)

可编程逻辑器件工艺 --FLASH工艺

采用FLASH工艺的芯片,其檫除速度比PROM技术要快的多。 FLASH工艺可采用多种结构,与EPROM单元类似的具有一个浮 置栅晶体管单元和EEPROM器件的薄氧化层特性。