הפרד ומשול

Kleinberg/Tardos-2 פרק 7 ב-

קונוולוציה מרחק עריכה

כפל פולינומים

$$p(x) = a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_1 x + a_0$$

$$q(x) = b_{n-1} x^{n-1} + b_{n-2} x^{n-2} + \dots + b_1 x + b_0$$

<u>הפלט</u>: פולינום המכפלה

$$p(x)\cdot q(x) = c_{2n-2} x^{2n-2} + c_{2n-3} x^{2n-3} + \cdots + c_0$$

שימו לב:

$$c_{i} = \sum_{j=0}^{l} a_{j} b_{i-j}$$

$$c = a * b$$

.b-ו a הווקטור c הווקטור c הווקטור c הווקטור

$$c = a * b$$

$$a = 213$$

$$b = 220$$

213

022

46860

במימוש פשוט מספר פעולות החשבון הדרושות:

 $O(n^2)$

האצת חישוב קונוולוציה

- .X₀, X₁, ..., X_{2n-1} נקודות q-ı p ב- q. 1
- (p·q)(x_i) = $p(x_i)\cdot q(x_i)$ פעולות חשבון: $p \cdot q$ באותן נקודות ע"י $p \cdot q$ באותן ערכי $p \cdot q$ באותן ערכי $p \cdot q$
- 3. עכשיו אפשר לשחזר את p·q יש לנו 2n שורשים של הפולינום p·q x שהוא ממעלה 2n-2.

?שאלה: איך מבצעים את צעדים 1 ו-3 ביעילות

האצת חישוב קונוולוציה

- .X₀, X₁, ..., X_{2n-1} נקודות q-ı p ב- q-ı p. 1.
- (p·q)(x_i) = $p(x_i)\cdot q(x_i)$ פעולות חשבון: $p \cdot q$ באותן נקודות ע"י $p \cdot q$ בעולות חשבון: $p \cdot q$
- 3. עכשיו אפשר לשחזר את p·q יש לנו 2n שורשים של הפולינום p·q x שהוא ממעלה 2n-2.

?שאלה: איך מבצעים את צעדים 1 ו-3 ביעילות

הרעיון הכללי: נבחר קבוצת נקודות מיוחדת, שעבורה קל לחשב את כל הערכים ולשחזר את התוצאה במהירות.

שורשי יחידה מרוכבים

הגדרה: מספר מרוכב ω הוא שורש יחידה מסדר ω מתקיים $\omega^n=1$

פ^{2πki/n} שורשי יחידה מסדר ח. אלו המספרים k=0,1,2,...,n-1 עבור 1-1,2 k=0,1,2,...,n-1

 $\omega_n = \omega_n^{-1} = e^{2\pi i/n}$ שורש היחידה העיקרי מסדר $\omega_n^{-1} = e^{2\pi i/n}$ שורש היחידה העיקרי מסדר $\omega_n^{-0}, \, \omega_n^{-1}, \, \omega_n^{-2}, \, ..., \, \omega_n^{-1}$ כל שורשי היחידה הם

 $(\mathbb{Z}_n,+)$ -קבוצת השורשים תחת כפל היא חבורה איזומורפית ל

תכונות של שורשי היחידה

```
הם (\omega_n^0)^2, (\omega_n^1)^2, (\omega_n^2)^2, ..., (\omega_n^{n-1})^2 הם 1. אם ח זוגי, אזי (\omega_n^0)^2, ..., (\omega_n^{n-1})^2 הם (\omega_n^0)^2, ווגי, אזי (\omega_n^0)^2, ..., (\omega_n^{n-1})^2 הם (\omega_n^0)^2, ווגי, אזי (\omega_n^0)^2, ווגי, אווגי, אווגי,
```

 $\mathbf{v}^{k} = ((\omega_{n}^{k})^{0}, (\omega_{n}^{k})^{1}, (\omega_{n}^{k})^{2}, ..., (\omega_{n}^{k})^{n-1})$ בור 1-1 מהווים בסיס אורתוגונלי למרחב $\mathbf{k} = 0, 1, 2, ..., n-1$ הווקטורי \mathbf{c}^{n} .

התמרת Fourier הדיסקרטית

 $v^0, v^1, v^2, ..., v^{n-1}$ בבסיס $a \in \mathbb{C}^n$ בלוקטור במיס הגדרה: הצגה של וקטור $a \in \mathbb{C}^n$ של a by Fourier נקראת התמרת

:סיס: הם ההטלות של a אברי הבסיס <u>Fourier מקדמי</u>

$$Y_k(a) = a \cdot v^k = \sum a_i (\omega_n^k)^i$$

שימו לב: זו בדיוק הצבה של ω_n^k בפולינום $Y(a) = a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \cdots + a_1 x + a_0$

חישוב התמרת Fourier הדיסקרטית

הנחה: n הוא חזקה של 2 (אחרת נוסיף אברי 0 ל-a).

$$a^0=(a_0,a_2,a_4,...,a_{n-2})$$
 - ל a חלק את $a^1=(a_1,a_3,a_5,...,a_{n-1})$ - ל a חלק את $Y^0(x)=a_{n-2}$ $x^{n/2-1}+a_{n-4}$ $x^{n/2-2}+\cdots+a_2$ $x+a_0$ $y^1(x)=a_{n-1}$ $x^{n/2-1}+a_{n-3}$ $x^{n/2-2}+\cdots+a_3$ $x+a_1$ - אזי $Y(x)=Y^0(x^2)+x$ $Y^1(x^2)$ - ל $Y(\omega_n^0)$, $Y(\omega_n^1)$, ..., $Y(\omega_n^{n-1})$ - $Y^0((\omega_n^0)^2)$, $Y^0((\omega_n^1)^2)$, ..., $Y^0((\omega_n^{n-1})^2)$ - $Y^0((\omega_n^0)^2)$, $Y^1((\omega_n^1)^2)$, ..., $Y^1((\omega_n^{n-1})^2)$ - $Y^1((\omega_n^0)^2)$, $Y^1((\omega_n^1)^2)$, ..., $Y^1((\omega_n^{n-1})^2)$ - $Y^1((\omega_n^0)^2)$, $Y^1((\omega_n^1)^2)$, ..., $Y^1((\omega_n^{n-1})^2)$ - $Y^1((\omega_n^1)^2)$ - $Y^1($

FFT אלגוריתם

```
FFT(a,n)
  if n = 1 then return a
  a^0 \leftarrow (a_0, a_2, ..., a_{n-2})
  a^1 \leftarrow (a_1, a_3, ..., a_{n-1})
  v^0 \leftarrow FFT(a^0, n/2)
  y^1 \leftarrow FFT(a^1, n/2)
  \omega \leftarrow 1
  for k \leftarrow 0 to n/2 - 1 do
   y_k \leftarrow y_k^0 + \omega y_k^1
    y_{k+n/2} \leftarrow y_k^0 - \omega y_k^1
    \omega \leftarrow \omega \cdot e^{2\pi i/n}
  end for
return y
```

שימושים נוספים:

- עיבוד אותות •
- דחיסה (ADSL,) (JPEG
 - י זיהוי תבניות

סיבוכיות

:נסמן בT(n) את זמן הריצה עבור $a\in \mathbb{C}^n$ אזי

T(n) = 2 T(n/2) + O(n).

T(n) = O(n log n) פתרון נוסחת הרקורסיה:

חזרה לקונוולוציה

נתונים שני פולינומים p,q ממעלה n עם מקדמים a,b בהתאמה. c = a * b כלומר, $p \cdot q$ את מקדמי $p \cdot q$ כלומר, c = a * b כלומר, c = a * b פאל וקטורים מממד 2n. a,b,c נתייחס לכל סדרות המקדמים a,b,c כאל וקטורים מממד $a * b = Y_k(a) \cdot Y_k(b)$ מתקיים $a * b = FFT^{-1}(FFT(a) \odot FFT(b))$

 $V_{2n}^{-1}(j,k) = \omega_{2n}^{-jk} / 2n^{-k}$

החישוב דומה ל-FFT. הסיבוכיות הכוללת היא (O(n log n.

Vandermonde אלו מטריצות

y χ ε	G	С	G	Α	T	С
ε 3						
С						
G						
T						
T						
С						
A						

y x	3	G	С	G	Α	Т	С	3
ε								
С								
G								
T								
С								
A								
3								

y x	3	G	С	G	Α	7	С	3
3								
С								(1 년 1 년 1 년 1 년 1 년 1 년 1 년 1 년 1 년 1
G								
T	3	2	2	2	2	2	3	
T								
С								
Α								
3								

y x	3	G	С	G	Α	7	С	3
3								
С								
G								
T	3	2	2	2	2	2	3	
T								
С								
Α								
3		6	5	4	3	2	1	0

y x	3	G	С	G	Α	T	С	3
3								
С								
G								
Т	3	2	2	2	2	2	3	
T								
С								
Α		5	4	3	2	2	1	1
3								

y x	3	G	С	G	Α	T	С	3
3								
С								
G								
T	3	2	2	2	2	2	3	
Т								
С		4	3	3	3	2	1	2
A								
3								

y x	3	G	С	G	Α	T	С	3
3								
С								
G								
T	3	2	2	2	2	2	3	
T		4	4	3	2	1	2	3
С								
Α								
3								

y x	3	G	С	G	Α	-	С	3
3								
С								
G								
T	3	2	2	2	2	2	3	
T		4	4	3	2	1	2	3
С							S	
Α								
3								

y x	3	G	С	G	Α	-	С	ε
3								
С								
G								
T	3	2	2	2	2	2	3	
T		4	4	3	2	1	2	3
С								
Α								
3								

סיבוכיות

ח-ו m ו-ריצה עבור זוג מחרוזות באורך m ו-ריצה עבור זוג מחרוזות באורך m ו-ריצה עבור זוג מחרוזות באורך c⋅m, בהתאמה. חישוב שתי השורות האמצעיות עולה c⋅m, עבור קבוע c לשהו.

 $m-m' \times n/2$ ו- $m' \times n/2$ שתי הבעיות המתקבלות הן בגודל

```
T(m,n) \le c \cdot mn + T(m',n/2) + T(m-m',n/2) \le c \cdot mn + c \cdot mn/2 + c \cdot mn/4 + \dots = 2c \cdot mn = O(mn).
```

סיבוכיות המקום: (O(min{m,n})