UNIVERSIDADE FEDERAL DE SANTA CATARINA PROGRAMA DE PÓS-GRADUAÇÃO EM ENG. DE AUTOMAÇÃO E SISTEMAS DAS410058 - APRENDIZADO DE MÁQUINA THAYS DA CRUZ FRANCO – 202203199

1. ENTROPIA TOTAL

S = 17 exemplos

Classe	Quantidade		
Bola	5 exemplos		
Losango	6 exemplos		
Quadrado	6 Exemplos		

$$E(s) = \left(-\frac{5}{17}log_2\frac{5}{17}\right) + \left(-\frac{6}{17}log_2\frac{6}{17}\right) + \left(-\frac{6}{17}log_2\frac{6}{17}\right)$$
$$E(s) = 0.519 + 0.530 + 0.530 = 1.579$$

2. GANHO

Para X1:

Figura 1 - Valores e classes para atributo X1

x1 → †	classificacao
0	bola
0	quadrado
1	bola
2	bola
2	quadrado
4	bola
4	quadrado
4	quadrado
4	quadrado
6	losango
8	bola
8	losango
8	losango
8	quadrado
9	losango
9	losango
10	losango

fonte: Próprio autor (2022)

$$V = \{A = valores \le 5; B = valores > 5\}$$

 $Sv - S_{vA} = 9$ exemplos, sendo 4 bolas e 5 quadrados;

 $S_{vB} = 8$ exemplos, sendo 6 losangos, 1 quadrado e 1 bola;

$$E(S_{vA}) = \left(-\frac{4}{9}\log_2\frac{4}{9}\right) + \left(-\frac{5}{9}\log_2\frac{5}{9}\right) = 0.519 + 0.471 = 0.990$$

$$E(S_{vB}) = \left(-\frac{1}{8}\log_2\frac{1}{8}\right) + \left(-\frac{6}{8}\log_2\frac{6}{8}\right) + \left(-\frac{1}{8}\log_2\frac{1}{8}\right) = 0.375 + 0.311 + 0.375$$

$$= 1.061$$

Portanto,

$$G(S, X1) = 1.579 - \left(\frac{9}{17} * 0.990 + \frac{8}{17} * 1.061\right) = 0.556$$

Para X2:

Figura 2 - Valores e classes para atributo X2

		_
x2		-
1	bola	
1	bola	
3	bola	
3	losango	
3	losango	
4	bola	
4	losango	
5	bola	
5	losango	
5	losango	
7	quadrado	
9	quadrado	
9	quadrado	
9	losango	
10	quadrado	
10	quadrado	
10	quadrado	

fonte: Próprio autor (2022)

Atributo para particionar = valor ≤ 6

$$V = \{A = valores \le 6; B = valores > 6\}$$

 $Sv - S_{vA} = 10$ exemplos, sendo 5 bolas e 5 losangos;

 $S_{vB} = 7$ exemplos, sendo 6 quadrados e 1 losango;

$$E(S_{vA}) = \left(-\frac{5}{10}\log_2\frac{5}{10}\right) + \left(-\frac{5}{10}\log_2\frac{5}{10}\right) = 0.5 + 0.5 = 1$$

$$E(S_{vB}) = \left(-\frac{6}{7}\log_2\frac{6}{7}\right) + \left(-\frac{1}{7}\log_2\frac{1}{7}\right) = 0.190 + 0.401 = 0.591$$

Portanto,

$$G(S, X2) = 1.579 - \left(\frac{10}{17} * 1 + \frac{7}{17} * 0.591\right) = 0.747$$

Sendo assim, o atributo de maior ganho é o x2

3. ÁRVORES DE DECISÃO

Figura 3 - Árvore de decisão elaborada no passo-a-passo

fonte: Próprio autor (2022)

Figura 4 - Árvore de decisão elaborada pelo programa Weka utilizando o algoritmo J48

fonte: Weka

4. RESULTADOS E DISCUSSÃO

Foi utilizado o algoritmo J48 por trabalhar com atributos com valores numéricos e assim determinar limites para classificação. Para a classificação manual foram determinados os valores de ocorrência para cada classe e escolhido um limiar. Para os valores de X2, por exemplo, há ocorrência de bola e losango para 1, 3, 4 e 5, e há ocorrência de quadrado e losango para 7, 9 e 10, ao desconsiderar o losango, o limiar está entre 5 e 7, portanto 6 (5+7/2).

Quadro 1 - comparativo de resultados

Resultado esperado	J48 - Weka		Manual	
bola	bola	ok	bola	ok
bola	bola	ok	bola	ok
losango	losango	ok	losango	ok
losango	quadrado	X	losango	ok
quadrado	quadrado ok quad		quadrado	ok
quadrado	quadrado	ok	quadrado	ok
bola	bola	ok	bola	ok
bola	losango	X	losango	X
bola	quadrado	X	bola	ok
quadrado	ado quadrado ok quadra		quadrado	ok
losango	quadrado x losango		losango	ok
bola	losango x bola		ok	
bola	losango x losango		losango	X
bola	quadrado	X	bola	ok
quadrado	quadrado	ok	quadrado	ok
quadrado	quadrado	ok	bola	X
losango	losango	ok	bola	X
losango	losango	ok	losango	ok

fonte: Próprio autor (2022)

Para os valores verificados, o programa retornou 65% de acerto e a árvore manual obteve 82% de acerto. É necessário considerar que há pontos que não tem o comportamento esperado, e, portanto, incrementam a desordem do grupo amostral. O ideal seria retirar os pontos para que houvesse uma melhor classificação da árvore de decisão.