EHB 308E 1 / 1

Homework 1

- 1. A PCM system has 16 levels in its Quantizer with step size of Δ Volts, and each sample is represented by 4 bits. Then, bits are pulse-shaped using NRZ and sent through channel. Assume that the channel causes burst errors of 2 bits at a time. In other words, when an error happens in channel, it causes errors in 2 successive bits.
 - a. Calculate the expected noise power on uncoded sample when one channel error occurs in random location in time.
 - b. What is the maximum error in Volts that can occur on a sample?
 - c. Suggest a technique (a new mapping or bit reordering) to reduce the maximum possible error on a sample, and find the reduced max error in Volts.
 - d. Repeat (a) with the suggested technique and compare it with the original result. Do you see an improvement on expected noise power?
- 2. Show that Raised Cosine pulse can be written using only the sinc functions as:

$$p_{\text{RC}}(t) = \frac{\pi}{4} \cdot \text{sinc}\left(\frac{t}{T}\right) \cdot \left[\text{sinc}\left(\alpha \frac{t}{T} - \frac{1}{2}\right) + \text{sinc}\left(\alpha \frac{t}{T} + \frac{1}{2}\right)\right]$$

Hint: Express $P_{\rm RC}\left(f\right)=\mathcal{F}\{p_{\rm RC}\left(t\right)\}$ as convolution of a rectangular function with a windowed (time-limited) cosine function of period $2\alpha/T$.

- 3. Design a 2-PAM (NRZ) system in MATLAB using rectangular pulse in time at transmitter by following steps below:
 - a. Generate 1000 random bits (Binary vector of size 1000)
 - b. Map those bits to 2-PAM symbols, a_{ν}
 - c. Generate a vector of length 5000 representing $m(t) = \sum_k a_k \delta(t kT_{sym})$ by padding 4 zeros after every a_k (e.g., $\delta(t T_{sym}) \rightarrow [0\ 0\ 0\ 0\ 1\ 0\ 0\ 0]$)
 - d. Generate a vector representing $x_c(t) = m(t) * g_T(t)$ by using a rectangular pulse for transmitter filter. $g_T(t) \rightarrow [1 \ 1 \ 1 \ 1]$. (Use conv() function in MATLAB)
 - e. Generate noisy received vector per $y(t) = x_c(t) + n_W(t)$ where $\sigma_{n_W}^2 = 1$. Use randn() function to generate the noise vector.
 - f. Directly sample y(t) vector by factor of 5 (take every 5th sample in vector) and get 1000 samples back
 - g. Decode 1000 bits from noisy symbols with an appropriate decision rule for NRZ signaling, and calculate the BER (# bits in error / # total bits)
 - h. Now, apply an appropriate matched filter to y(t) before sampling, then repeat (f) and (g). Compare the BER with the one found in (g).

```
N = 10000; % number of bits bits = randn(N,1) > 0; % randomly generated vector of bits a_k = ...
```