Part A

1. Find the value of x and y of which, $x = 4^{2y+3}$ and $2x = 8^{y+2}$	
	$\dot{x} = 0$, are real and negative.
2. If $0 < k < 1$, show that the roots of the quadratic equation $(1-k)x^2 + x + k$	
2. If $0 < k < 1$, show that the roots of the quadratic equation $(1-k)x^2 + x + k$	
2. If $0 < k < 1$, show that the roots of the quadratic equation $(1-k)x^2 + x + k$	
2. If $0 < k < 1$, show that the roots of the quadratic equation $(1-k)x^2 + x + k$	
2. If $0 < k < 1$, show that the roots of the quadratic equation $(1-k)x^2 + x + k$	
2. If $0 < k < 1$, show that the roots of the quadratic equation $(1-k)x^2 + x + k$	
2. If $0 < k < 1$, show that the roots of the quadratic equation $(1-k)x^2 + x + k$	
2. If $0 < k < 1$, show that the roots of the quadratic equation $(1-k)x^2 + x + k$	
2. If $0 < k < 1$, show that the roots of the quadratic equation $(1-k)x^2 + x + k$	
2. If $0 < k < 1$, show that the roots of the quadratic equation $(1-k)x^2 + x + k$	
2. If $0 < k < 1$, show that the roots of the quadratic equation $(1-k)x^2 + x + k$	
2. If $0 < k < 1$, show that the roots of the quadratic equation $(1-k)x^2 + x + k$	
2. If $0 < k < 1$, show that the roots of the quadratic equation $(1-k)x^2 + x + k$	
2. If $0 < k < 1$, show that the roots of the quadratic equation $(1-k)x^2 + x + k$	
2. If $0 < k < 1$, show that the roots of the quadratic equation $(1-k)x^2 + x + k$	
2. If $0 < k < 1$, show that the roots of the quadratic equation $(1-k)x^2 + x + k$	
2. If $0 < k < 1$, show that the roots of the quadratic equation $(1-k)x^2 + x + k$	
2. If $0 < k < 1$, show that the roots of the quadratic equation $(1-k)x^2 + x + k$	

3.	. $f(x)$ is a polynomia Find the remainder v			2 and $(x + 1)$ is a factor	or of $f(x)$.
	(*	$:-1$) $_{-1}$ (.	$\left(\frac{x+1}{x+1}\right) = \frac{\pi}{x}$		
4.	Solve. $\tan^{-1}\left(\frac{x}{x}\right)$	$\left(\frac{-1}{-2}\right) + \tan^{-1}\left(\frac{-1}{2}\right)$	$(x+2)^{-}4$		
4.	Solve. $\tan^{-1} \left(\frac{x}{x} \right)$	$\frac{1}{-2}$ + tan $\frac{1}{2}$	$(x+2)^{-}4$	 	
4.	Solve. $\tan^{-1}\left(\frac{x}{x}\right)$	$\frac{1}{2}$ + tan $\frac{1}{2}$	x+2) 4 	 	
4.	Solve. $\tan^{-1}\left(\frac{x}{x}\right)$	$\frac{1}{2}$ + tan $\frac{1}{2}$	x + 2) 4 	 	
4.	Solve. $\tan^{-1}\left(\frac{x}{x}\right)$	$\frac{1}{2}$ + tan $\frac{1}{2}$	x + 2) 4 	 	
4.	Solve. $\tan^{-1}\left(\frac{x}{x}\right)$	$\frac{1}{2}$ + tan	x + 2) - 4 		

5. Find the general solutions. $sin 2\theta + cos 2\theta = sin \theta - cos \theta + 1$
6. From the usual notation of the triangle ABC, if $b + c = ka$, where $k \neq 1$ and $k \in \Re^+$
Show that $\cot \frac{B}{2} \cdot \cot \frac{C}{2} = \left(\frac{k+1}{k-1}\right)$
Show that $\cot \frac{B}{2} \cdot \cot \frac{C}{2} = \left(\frac{k+1}{k-1}\right)$
Show that $\cot \frac{B}{2} \cdot \cot \frac{C}{2} = \left(\frac{k+1}{k-1}\right)$
Show that $\cot \frac{B}{2} \cdot \cot \frac{C}{2} = \left(\frac{k+1}{k-1}\right)$
Show that $\cot \frac{B}{2} \cdot \cot \frac{C}{2} = \left(\frac{k+1}{k-1}\right)$
Show that $\cot \frac{B}{2} \cdot \cot \frac{C}{2} = \left(\frac{k+1}{k-1}\right)$
Show that $\cot \frac{B}{2} \cdot \cot \frac{C}{2} = \left(\frac{k+1}{k-1}\right)$
Show that $\cot \frac{B}{2} \cdot \cot \frac{C}{2} = \left(\frac{k+1}{k-1}\right)$
Show that $\cot \frac{B}{2} \cdot \cot \frac{C}{2} = \left(\frac{k+1}{k-1}\right)$
Show that $\cot \frac{B}{2} \cdot \cot \frac{C}{2} = \left(\frac{k+1}{k-1}\right)$

$\frac{\pi}{3}$	each other	r, their resulta	nt is $\sqrt{14} N$. Find the magi	nitude of these two	o forces.
8. If <u>a.</u> (<u>a</u>	$+\underline{b}$) = $\underline{0}$	and $ \underline{b} = 2 \underline{a} $	and, find th	e angle betwee	n <u>a</u> . and <u>b</u>	

9. ABC is a triangle. D, E and F are points on the sides	BC, AC and AE	such that $\frac{1}{1}$	$\frac{BD}{DC} = \frac{C}{E}$	$\frac{E}{A} = \frac{AF}{FB} = \frac{AF}{FB}$	= <i>k</i>
Show that $\overrightarrow{AD} + \overrightarrow{BE} + \overrightarrow{CF} = \underline{0}$					
					• • • • • • •
					• • • • • • •
					• • • • • •
	• • • • • • • • • • • • • • • • • • • •				
	• • • • • • • • • • • • • • • • • • • •				
	•••••				
10. ABCD is a rectangle of AB = 4m and BC = 3m	D	>2N		C	
10. ABCD is a rectangle of AB = 4m and BC = 3m Show that the resultant is parallel to AC. Find the length if AE, where E is a point on AB such that the resultant pass through.	21/2	>2N		C 411	
Show that the resultant is parallel to AC. Find the length if AE, where E is a point on AB such that the resultant pass through.		>2N		C 42 B	
Show that the resultant is parallel to AC. Find the length if AE, where E is a point on AB		>2N >		C 42 B	
Show that the resultant is parallel to AC. Find the length if AE, where E is a point on AB such that the resultant pass through.		6.Ю			
Show that the resultant is parallel to AC. Find the length if AE, where E is a point on AB such that the resultant pass through.					
Show that the resultant is parallel to AC. Find the length if AE, where E is a point on AB such that the resultant pass through.					
Show that the resultant is parallel to AC. Find the length if AE, where E is a point on AB such that the resultant pass through.					
Show that the resultant is parallel to AC. Find the length if AE, where E is a point on AB such that the resultant pass through.					
Show that the resultant is parallel to AC. Find the length if AE, where E is a point on AB such that the resultant pass through.					
Show that the resultant is parallel to AC. Find the length if AE, where E is a point on AB such that the resultant pass through.					
Show that the resultant is parallel to AC. Find the length if AE, where E is a point on AB such that the resultant pass through.					
Show that the resultant is parallel to AC. Find the length if AE, where E is a point on AB such that the resultant pass through.					
Show that the resultant is parallel to AC. Find the length if AE, where E is a point on AB such that the resultant pass through.					
Show that the resultant is parallel to AC. Find the length if AE, where E is a point on AB such that the resultant pass through.					

......

- 11. (a) Let $f(x) = ax^3 + bx^2 + 2x + c$ a polynomial function of degree three. (x-1) is a factor of f(x). When f(x) is divided by x(x+1), the remainder is 6(x+1). Find the values of the constants a, b and c. Express f(x) as a product of linear factors.
 - (b) Express $\frac{1}{(x+3)(x+1)}$ in partial fractions.

Hence show that
$$\frac{4}{(x+3)^2(x+1)^2} = \frac{1}{(x+3)^2} - \frac{1}{(x+1)} + \frac{1}{(x+3)} + \frac{1}{(x+3)^2}$$

(c). Prove that $\log_p q = \frac{\log_r q}{\log_r p}$

If
$$x = log_{2a}a$$
, $y = log_{3a}2a$ and $z = log_{4a}3a$, show that $xyz + 1 = 2yz$

- 12. (a). Let $f(x) = 2x^2 + 4x 1$ and $g(x) = -x^2 4x + k$, where $k \in \Re$. Express each f(x) and g(x) in the form of $p(x+q)^2 + r$, where $p, q, r \in \Re$. Hence write the coordinates and the nature of the turning points, of each function. Draw the graphs of y = f(x) and y = g(x) for k > (-4), in a same coordinate plane. Hence write the range of k values such that $x_i = x_i + 1$ and $x_i = x_i + 1$ and $x_i = x_i + 1$.
 - (b). α and β are roots of the equation $x^2 ax + b = 0$ where b > 0. Show that $\alpha^2 + \beta^2 = a^2 - 2b$. Deduce the value of $\alpha^3 + \beta^3$ in terms of a, and b. Hence obtain the quadratic equation whose roots are λ and μ of which $\lambda = (\alpha^3 - a\alpha^2)$ and $\mu = (\beta^3 - a\beta^2)$ in the form of $Ax^2 + Bx + C = 0$. Find whether the roots λ and μ are real or not, for the values of $a \in (-2\sqrt{b}, 2\sqrt{b})$
 - (c). The quadratic equations $x^2 + 2px q = 0$ and $x^2 qx + 2p = 0$ have common root. If $q + 2p \neq 0$, show that 1 + 2p q = 0.
- 13. (a). Find the range of values of x which satisfy the inequality $\frac{x}{x+1} \ge \frac{2x}{x-2}$
 - (b). (i) Draw the graph of y = |2x + 3| and hence draw the graph of y = |2x + 3| 3 in the same coordinate plane.
 - (ii) Draw the graph of y = |2x + 3| 3 and $y = 1 + \left| \frac{x}{2} 1 \right|$ in a same coordinate plane other than in (i). Hence solve the inequality $|2x + 3| \left| \frac{x}{2} 1 \right| > 4$
- 14. (a) . Prove the following identity. $\cos 2\alpha \cos 4\alpha = 2(\cos^2 \alpha \cos^2 2\alpha)$ Deduce that, $\cos 36^0 - \cos 72^0 = \frac{1}{2}$
 - (b). State the cosine rule.

From the usual notation of a triangle ABC, if a^2, b^2 and c^2 are consecutive terms of an arithmetic progression, using the cosine rule appropriately,

show that
$$\frac{\sin 3B}{\sin B} = \left(\frac{a^2 - c^2}{2ac}\right)^2$$

(c) . Let
$$f(\mathbf{x}) = \sin^2 x - 2\sqrt{3}\sin x.\cos x - \cos^2 x$$
 in the form of $R\cos(2x - \alpha)$, where $R < 0$ and $0 < \alpha < \frac{\pi}{2}$ are constants to be determined. Hence show that $-2 \le f(x) \le 2$. Draw the graph of $\mathbf{y} = f(\mathbf{x})$ in the range $0 \le x \le \pi$. Hence find the values of \mathbf{k} , such that $\sin^2 x - \cos^2 x = k + 2\sqrt{3}\sin x.\cos x$ hold three distinct roots.

- 15. (a). Define the scalar product of two non zero vectors \underline{a} and \underline{b} .

 OABC is a parallelogram with $\overrightarrow{OA} = \underline{a}$ and $\overrightarrow{OC} = \underline{c}$. Find \overrightarrow{OB} and \overrightarrow{AC} in terms of \underline{a} and \underline{c} . If OB and AC are perpendicular to each other and $|\underline{a} + \underline{c}| = |\underline{a} \underline{c}|$.

 Using the knowledge of vectors, show that OABC is a square.
 - (b). Define the cross product of two non zero vectors \underline{a} . and \underline{b} Let $\underline{a} = 2\underline{i} 3\underline{j} + \underline{k}$ and $\underline{b} = 3\underline{i} + \underline{j} 2\underline{k}$, Find $\underline{a} \times \underline{b}$, where $\underline{i}, \underline{j}$ and \underline{k} are unit vectors with usual meaning with the OXYZ planes.
 - (c). A and B are two points of which $\overrightarrow{OA} = \underline{a}$ and $\overrightarrow{OB} = \underline{b}$. P is a point such that $\overrightarrow{OP} = 2\underline{a}$ and Q is a point on OB of which OQ: QB = 2:1. Show that $\overrightarrow{OR} = \underline{a} + \lambda(\underline{b} \underline{a})$, for $\lambda \in \Re$ Obtain another similar expression for \overrightarrow{OR} . Hence find the ratio of which AR : RB.
- 16. (a). Two unlike parallel forces P and Q (P > Q), act at two points A and B respectively such that they are perpendicular to the line AB of length d. Find the magnitude and direction of the resultant and show that the distance from A to the point where the line of action of the resultant cuts AB is $\frac{Qd}{P-Q}$. If Q = 10N, P = 12N and d = 4m, find the magnitude, direction and the line of action of the resultant. What will happen when P = Q.
 - (b). ABC is an equilateral triangle of side a units. D, E and F are the mid points of the sides AB, BC and AC respectively. Forces of Newton 5, 3, 1, 2, λ and μ , acts along the sides \overrightarrow{AB} , \overrightarrow{BC} , \overrightarrow{CA} , \overrightarrow{DE} , \overrightarrow{EF} , and \overrightarrow{FD} respectively. Show that the system cannot be in equilibrium.
 - (i) If the system reduced to a couple, find the value of $\ \lambda \$ and $\ \mu \$.
 - (ii). If the system reduced to a single force pass through D, and $\mu=2N$, Find the value of λ . Find the magnitude of this resultant and the direction made with BC.
- 17. (a). Two equal smooth spheres of radius a and weight w, wholly within a smooth fixed spherical bowl of radius 3a. They are in equilibrium in a symmetrical position.

 Show that the reaction between the bowl and a sphere is $\frac{2\sqrt{3}}{3}w$.

Find the reaction between two spheres.

(b). The center of gravity of a uniform rod AB is at G. This rod is hanging over at a point O, by means of two inextensible string parts AO and BO (AO > BO), such that $A\hat{O}G = \alpha$ and $B\hat{O}G = \beta$. In the position of equilibrium, the inclination of the rod to the horizontal is θ .

Using the **Cot formula**, show that
$$sin\theta = \frac{sin(\beta - \alpha)}{\sqrt{sin^2(\beta - \alpha) + 4sin^2 \alpha . sin^2 \beta}}$$

If the tension of the two string parts AO and BO are T_1 , T_2 and the weight of the rod is w,

using the **Lami's rule**, Show that
$$\sin \theta = \frac{T_1^2 - T_2^2}{w\sqrt{2(T_1^2 + T_2^2) - w^2}}$$