Il gruppo degli automorfismi

di Gabriel Antonio Videtta

Nota. Nel corso del documento per (G, \cdot) si intenderà un qualsiasi gruppo. Si scriverà gh per indicare $g \cdot h$, omettendo il punto.

Definizione (gruppo degli automorfismi). Si definisce **gruppo degli automorfismi** di un gruppo G il gruppo (Aut(G), \circ) dotato dell'operazione di composizione.

Si può associare ad ogni elemento $g \in G$ un automorfismo particolare φ_g determinato dalla seguente associazione:

$$h \xrightarrow{\varphi_g} ghg^{-1}$$
.

Definizione (gruppo degli automorfismi interni). Si definisce **gruppo degli automorfismi interni** di un gruppo G il gruppo $(\operatorname{Inn}(G), \circ)$ dotato dell'operazione di composizione, dove:

$$\operatorname{Inn}(G) = \{ \varphi_a \mid g \in G \}.$$

Gli automorfismi interni soddisfano alcune proprietà. Per esempio vale che:

$$\varphi_g \circ \varphi_h = \varphi_{gh},$$

così come vale anche che:

$$\varphi_g^{-1} = \varphi_{g^{-1}}.$$

Chiaramente $\text{Inn}(G) \leq \text{Aut}(G)$. Tuttavia vale anche che Inn(G) è un sottogruppo normale di Aut(G). Infatti, se $f \in \text{Aut}(G)$, vale che:

$$f \circ \varphi_q \circ f^{-1} = \varphi_{f(q)} \in \text{Inn}(G).$$

Inoltre, se G è abeliano, φ_g coincide con la sola identità Id (infatti, in tal caso, $\varphi_g(h) = ghg^{-1} = gg^{-1}h = h$).

Si dimostra adesso un teorema fondamentale che mette in relazione Inn(G) con un gruppo quoziente particolare di G, G/Z(G). Preliminarmente, si osserva che Z(G) è un sottogruppo normale di G, e quindi G/Z(G) è effettivamente un gruppo. Allora si può enunciare la:

Proposizione. $Inn(G) \cong G/Z(G)$.

Dimostrazione. Sia $\zeta: G \to \text{Inn}(G)$ la mappa che associa g al proprio automorfismo interno associato φ_g . Si osserva che ζ è un omomorfismo tra gruppi:

$$\zeta(gh) = \varphi_{gh} = \varphi_g \circ \varphi_h = \zeta(g) \circ \zeta(h).$$

Chiaramente ζ è una mappa surgettiva, e quindi $\operatorname{Im} \zeta = \operatorname{Inn}(G)$. Si osserva inoltre che Ker ζ è esattamente il centro di G, Z(G). Infatti, se $g \in \operatorname{Ker} \zeta$, vale che $\zeta(g) = \operatorname{Id}$, e quindi che:

$$ghg^{-1} = h \implies gh = hg \quad \forall h \in G.$$

Allora, per il Primo teorema di isomorfismo, $G/\mathrm{Ker}\,\zeta = G/Z(G) \cong \mathrm{Inn}(G)$.

Il gruppo G/Z(G) risulta particolarmente utile nello studio della commutatività del gruppo. Infatti vale la:

Proposizione. G/Z(G) è ciclico se e solo se G è abeliano (e quindi se e solo se G/Z(G) è banale).

Dimostrazione. Se G è abeliano, G/Z(G) contiene solo l'identità, ed è dunque ciclico. Viceversa, sia gZ(G) un generatore di G/Z(G). Se $h, k \in G$, vale in particolare che esistono $m, n \in \mathbb{N}$ tali per cui $hZ(G) = g^m Z(G)$ e $kZ(G) = g^n Z(G)$. Allora esistono z_1 , $z_2 \in Z(G)$ per cui $h = g^m z_1$ e $k = g^n z_2$.

Si conclude allora che:

$$hk = g^m z_1 g^n z_2 = g^n z_2 g^m z_1 = kh,$$

e quindi G è abeliano (da cui si deduce che G/Z(G) è in realtà banale).

Allora, poiché $\text{Inn}(G) \cong G/Z(G)$, Inn(G) è ciclico se e solo se G è abeliano (e dunque se e solo se è banale). Inoltre, il gruppo Inn(G) risulta utile per definire in modo alternativo (ma equivalente) la nozione di sottogruppo normale. Infatti vale che:

Proposizione. Sia $H \leq G$. Allora $H \leq G$ se e solo se H è φ_g -invariante per ogni $g \in G$ (ossia se $\varphi_g(H) \subseteq H$).

Dimostrazione. Se H è normale, allora $\varphi_g(h) = ghg^{-1}$ appartiene ad H per definizione. Allo stesso modo dire che H è φ_g -invariante equivale a dire che $gHg^{-1} \subseteq H$ per ogni $g \in G$.

In generale, se $H \leq G$, vale che la restrizione $\varphi_g|_H$ è ancora un omomorfismo ed è in particolare un elemento di $\operatorname{Aut}(H)$. Infatti $\varphi_g|_H$ è ancora iniettiva, e per ogni $h \in H$ vale che:

$$\varphi_g(g^{-1}hg) = h,$$

mostrando la surgettività di $\varphi_g|_H$ (infatti $g^{-1}hg\in H).$

Si può estendere questa idea considerando i sottogruppi di G che sono f-invarianti per ogni scelta di $f \in \text{Aut}(G)$.

Definizione (sottogruppo caratteristico). $H \leq G$ si dice sottogruppo caratteristico di G se H è f-invariante per ogni $f \in \text{Aut}(G)$.

In particolare, $H \leq G$ è un sottogruppo caratteristico di G se ogni automorfismo di G si riduce, restringendolo su H, ad un automorfismo di H. Infatti, se $f(H) \subseteq H$, vale anche che $f^{-1}(H) \subseteq H \implies H \subseteq f(H)$, e quindi f(H) = H (da cui la surgettività dell'omomorfismo in H).

Chiaramente ogni sottogruppo caratteristico è un sottogruppo normale (infatti è in particolare φ_g -invariante per ogni scelta di $g \in G$), ma non è vero il contrario. Per esempio, si definisca l'automorfismo η per $(\mathbb{Q}, +)$ tale per cui:

$$x \stackrel{\eta}{\mapsto} x/2.$$

Si osserva facilmente che η è un automorfismo. Dal momento che $(\mathbb{Q}, +)$ è abeliano, ogni suo sottogruppo è normale. In particolare $(\mathbb{Z}, +) \triangleleft (\mathbb{Q}, +)$. Tuttavia $\eta(\mathbb{Z}) \not\subseteq \mathbb{Z}$ (e quindi \mathbb{Z} non è caratteristico in \mathbb{Q}).

Esiste tuttavia, per qualsiasi scelta di gruppo G, un sottogruppo che è caratteristico, Z(G) (oltre che G stesso ed il sottogruppo banale). Infatti, se $z \in Z(G)$ e $g \in G$, vale che:

$$f(z)g = f(z)f(f^{-1}(g)) = f(zf^{-1}(g)) = f(f^{-1}(g)z) = gf(z) \quad \forall f \in Aut(G),$$

e quindi $f(Z(G)) \subseteq Z(G)$ per ogni scelta di $f \in Aut(G)$.

Inoltre, se $H \leq G$ è l'unico sottogruppo di un certo ordine (o è comunque caratterizzato univocamente da una proprietà invariante per automorfismi), H è anche caratteristico (infatti gli automorfismi preservano le cardinalità essendo bigezioni).

Esempio (Aut(S_3) $\cong S_3$). Si osserva che $Z(S_3)$ deve essere obbligatoriamente banale¹. Infatti, se non lo fosse, $Z(S_3)$ potrebbe avere come cardinalità gli unici divisori positivi di $|S_3| = 6$, ossia 2, 3 e 6 stesso. In tutti e tre i casi $S_3/Z(S_3)$ sarebbe ciclico, e quindi S_3 sarebbe abeliano, \mathcal{E} .

Poiché allora $Z(S_3)$ è banale, S_3 è isomorfo a $\text{Inn}(S_3) \leq \text{Aut}(S_3)$. Pertanto $|\text{Aut}(S_3)| \geq |S_3| = 6$. Ogni automorfismo è determinato dalle immagini dei propri generatori, e quindi ci sono al più $3 \cdot 2 = 6$ scelte dal momento che $S_3 = \langle (1,2), (1,2,3) \rangle$. Allora $|\text{Aut}(S_3)| \leq 6$, da cui si deduce che $|\text{Aut}(S_3)| = 6$.

Dacché $\operatorname{Aut}(S_3)$ ha lo stesso numero di elementi del suo sottogruppo $\operatorname{Inn}(S_3)$, deve valere l'uguaglianza tra i due insiemi, e quindi $\operatorname{Aut}(S_3) = \operatorname{Inn}(S_3)$. Si conclude dunque che $\operatorname{Aut}(S_3) \cong S_3$.

¹In generale $Z(S_n)$ è banale per $n \geq 3$.