CMPE 110: Computer Architecture Week 2 Performance

Jishen Zhao (http://users.soe.ucsc.edu/~jzhao/)

[Adapted in part from Jose Renau, Mary Jane Irwin, Joe Devietti, Onur Mutlu, and others]

Reminders

TA office hours

- Rebecca Rashkin: Mon 4-5pm, E2-480
- Xin Li: TBD
- Narendra Kumar Govinda Raju: Mon 5:30-6:30pm, BE-312B
- Aziz (Abdulazaz) Albalawi: Thu 5-6pm, BE-312B

Discussion sessions

- Section 1: Tue 08:30 09:35am in Kresge Clrm 327, TA: Aziz
- Section 2: Wed 04:00 05:05pm in Kresge Clrm 327, TA: Rebecca
- Section 3: Wed 05:20 06:25pm in Kresge Clrm 327, TA: Narendra
- Section 4: TBA, TA: Xin

Review: What is computer architecture?

"<u>Technology</u>" Applications/Domains Logic Gates Desktop SRAM Servers **Plans DRAM** Mobile Phones Circuit Techniques Supercomputers Game Consoles Packaging Goals Magnetic Storage Embedded **Function** Flash Memory Performance Reliability Cost/Manufacturability **Energy Efficiency** Time to Market

Today: Performance

- Metrics
 - Latency and throughput
 - Speedup
 - Averaging
- CPU Performance

Performance Metrics

Performance: Latency vs. Throughput

- Latency (execution time): time to finish a fixed task
- Throughput (bandwidth): number of tasks per unit time
 - Different: exploit parallelism for throughput, not latency

- Choose definition of performance that matches your goals
 - Scientific program? latency.
 - Web server? throughput.

Examples

- How to measure the performance of moving people for 10 miles round trip?
 - Car: capacity = 5, speed = 60 miles/hour
 - Bus: capacity = 60, speed = 20 miles/hour
 - Latency: how long does ~ take to move one person for 20 miles?
 - Throughput: how many people can ~ move per hour?

Answer:

- Latency: car = 20 min, bus = 60 min
- Throughput: car = 15 PPH, bus = 60 PPH

Examples

Fastest way to send 10TB of data from US to UK?
 FTP, SMB, Rsync / Robocopy, other?

Used FedEx overnight to deliver the drive

Overnight EXPRESS Shipping

Even 1 Gbps data transfer takes days!

Amazon Does This...

Available Internet Connection	Theoretical Min. Number of Days to Transfer 1TB at 80% Network Utilization	When to Consider AWS Import/Export?
T1 (1.544Mbps)	82 days	100GB or more
10Mbps	13 days	600GB or more
T3 (44.736Mbps)	3 days	2TB or more
100Mbps	1 to 2 days	5TB or more
1000Mbps	Less than 1 day	60TB or more

Amazon Web Services » AWS Import/Export » AWS Import/Export Calculator

What we learned

Measuring performance

Latency & throughput

Comparing Performance - Speedup

- Speedup of A over B
 - X = Latency(B)/Latency(A) (divide by the faster)
 - X = Throughput(A)/Throughput(B) (divide by the slower)
- A is X% faster than B if
 - X = ((Latency(B)/Latency(A)) 1) * 100
 - X = ((Throughput(A)/Throughput(B)) 1) * 100
 - Latency(A) = Latency(B) / (1+(X/100))
 - Throughput(A) = Throughput(B) * (1+(X/100))
- Car/bus example
 - Latency?
 - Throughput?
 - See next slide...

Car/bus example

- Latency: car = 20 min, bus = 60 min
- Throughput: car = 15 PPH, bus = 60 PPH

Speedup?

- Latency:
 - Speedup of car over bus is 3
 - Car is 200% faster than bus
- Throughput:
 - Speedup of bus over car is 4
 - Bus is 300% faster than car

Comparing Performance - Speedup

- Program B runs for 350 cycles

 Execution time * clock frequency

 * Cross of the control of the i.e., second * Hz
- Speedup of A over B?
 - Speedup = 350/200 = 1.75
 - As a percentage: (1.75 1) * 100 = 75% (Program A runs 75%) faster than program B)
- If program C is 50% faster than A, how many cycles does C run for?
 - 133 cycles

Note

- Speedup of A over B
 - X = Latency(B)/Latency(A)
 - X = Throughput(A)/Throughput(B)

What if X < 1?

-- means A is slower than B

Speedup and % Increase and Decrease

- Program A runs for 200 cycles
- Program B runs for 350 cycles
- Percent increase and decrease are not the same.
 - % increase of cycles: ((350 200)/200) * 100 = 75%
 - % decrease of cycles: ((350 200)/350) * 100 = 42.3%

What we learned

Comparing performance

Speedup

Performance metrics

Latency, throughput, speedup

Averaging performance

Mean (Average) Performance Numbers

- Arithmetic: $(1/N) * \Sigma_{P=1..N}$ Latency(P)
 - For units that are proportional to time (e.g., latency)
- **Harmonic**: N / $\sum_{P=1...N}$ 1/Throughput(P)
 - For units that are inversely proportional to time (e.g., throughput)
- You can add latencies, but not throughputs
 - Latency(P1+P2, A) = Latency(P1, A) + Latency(P2, A)
 - Throughput(P1+P2, A) != Throughput(P1, A) + Throughput(P2, A)
- Geometric: $\sqrt[N]{\prod_{P=1..N}}$ Speedup(P)
 - For unitless quantities (e.g., speedup ratios)

For Example...

1 mile @ 30 miles/hour + 1 mile @ 90 miles/hour

- You drive two miles
 - 30 miles per hour for the first mile
 - 90 miles per hour for the second mile

- Question: what was your average speed?
 - Hint: the answer is not 60 miles per hour
 - Why?

Answer: 45 miles/hour

- You drive two miles
 - 30 miles per hour for the first mile
 - 90 miles per hour for the second mile
- Question: what was your average speed?
 - Hint: the answer is not 60 miles per hour
 - 0.03333 hours per mile for 1 mile
 - 0.01111 hours per mile for 1 mile
 - 0.04444 hours for 2 miles
 - = 45 miles per hour
 - !=(30+90)/2

What we learned

Averaging performance

Arithmetic mean for latency Harmonic mean for throughput Geometric mean for speedup

CPU Performance

How to evaluate Latency, throughput, and speedup

CPU Performance Equation

- Latency = seconds / program =
 - (insns / program) * (cycles / insn) * (seconds / cycle)
 - Insns / program: insn count
 - Impacted by program, compiler, ISA
 - Cycles / insn: CPI
 - Impacted by program, compiler, ISA, **micro-arch**
 - Seconds / cycle: clock period (Hz)
 - Impacted by micro-arch, technology
- For low latency (better performance) minimize all three
 - Difficult: often pull against one another
 - Example we have seen: RISC vs. CISC ISAs
 - ± RISC: low CPI/clock period, high insn count
 - ± CISC: low insn count, high CPI/clock period