1. For
$$i \in \{1,2,3\}$$
 $hi: \{0,1,2,3,4\} \rightarrow \{0,1,2\}$ such that $hi(x) = ix \pmod{3}$ for all $x \in \{0,1,2,3,4\}$

2	0	ı	2	3	4	
4,	0	1	2	O	1	
k2	0	2	l	0	2	
h ₁ h ₂ h ₃	o	O	ð	o	0	

$$M=3$$

For elements 0 and 3, all 3 hash functions cause 0 and 3 to collide.

Since 3 > 3, His not unireaal.

Element 1 and 4 collide for all 3 hash functions as well.

Let X be the random variable representing the number of empty bins and Xi be the indicator random value such that Xi is 1 if the ith bin 2. a) is empty and othermine

$$X = X_1 + X_2 + \cdots + X_n = \sum_{i=1}^{n} X_i$$

 $E[X_i] = 1. P(X_i=1) + U \cdot P(X_i=0) = P(bin i is empty after n balls) = (1-\frac{1}{n})^n$

Expedial faction of empty birs:

Faction of empty
$$h_{inj}$$
:
$$E\left[\frac{X}{A}\right] = \frac{1}{h}E\left[\frac{X}{A}\right] = \frac{1}{h}E\left[\frac{X}{A}\right]$$

$$= \frac{1}{h}\frac{X}{A}E\left[\frac{X}{A}\right]$$

$$= \frac{1}{h}\frac{X}{A}E\left[\frac{X}{A}\right]$$

$$= \frac{1}{h}\frac{X}{A}\left[1-\frac{1}{h}\right]^{n}$$

$$= \left(1-\frac{1}{h}\right)^{n} \quad \text{or} \quad \left(\frac{n-1}{h}\right)^{n}$$

As
$$n \rightarrow \infty$$
, $\lim_{n \rightarrow \infty} \left(1 - \frac{1}{h}\right)^n = \frac{1}{e}$

Let X be the random variable representing the number of balls that go in the bin with the same label

Let X_i be the indicator random variable such that $X_i = 1$ if the 1th ball gues into the 1th bin and 0 otherwise

$$X = X_1 + X_2 + \cdots + X_N = \sum_{j \ge 1}^{n} X_j$$

b)

3.

$$E[Y_i] = I \cdot \Gamma(Y_{i=1}) + 0 \cdot \Gamma(Y_{i=0}) = \Gamma(H_i) \text{ full goe into ith hin} = \frac{1}{N}$$

$$E[X] = E[X_i, X_i] = \frac{1}{2} E[X_i]$$

$$= \frac{1}{2} \frac{1}{2}$$

$$= \frac{1}{2} \frac{1}{2}$$

Expected #pairs of integers =
$$\sum_{n=1}^{\infty} Q(n)$$
 where $Q(n)$ is the # of pairs such that left < night for a particular permutation n

For each pair where 7 < j and ei is to the left of e; in the array of fixed pointon, there are (n-2)! such pairs across all n! permutations

there are
$$(n-2)$$
? $(n-2)$! remutation) erg $e_1 e_2 | \underline{e_3} - \underline{e_n} | - 2 | \underline{e_3} - \underline{e_n} |$

there are (1) choices of positions to place example; such that exists both of ex

:. Expectation of #pairs =
$$\frac{\binom{n}{2}^2 \cdot (n-2)!}{n!} = \frac{\binom{n}{2} \cdot \binom{n}{2}}{n \cdot n-1} = \frac{\binom{n-1}{2}(n)}{n \cdot (n-1)}$$
such that left english

$$= \frac{\binom{n}{1}}{4}$$