Latente Variabelen en Structurele Vergelijkingsmodellen

Toegepaste data-analyse

Inhoudsopgave

1	Con	Confirmatorische Factor Analyse (CFA)							
	1.1	Doelstelling							
	1.2	Het standaard CFA model							
	1.3	Unidimensioneel versus multidimensioneel meetmodel							
	1.4	Reflectieve versus Formatieve indicatoren							
	1.5	Identificatie unidimensioneel CFA model							
	1.6	Schatten van de parameters in het CFA model							
	1.7	Model fitmaten							
	1.8	Model evaluatie							
2	Imp	Implementatie CFA in lavaan en interpretatie							
	2.1	ECR-RC voor kinderen en adolescenten							
3	SEN	SEM in vogelvlucht							
	3.1	Inleiding							
	3.2	Predictoren van jobtevredenheid							

3.3	Stappen om SEM uit te voeren: 2 stappen	47
3.4	Modelvergelijkingen	77

1 Confirmatorische Factor Analyse (CFA)

1.1 Doelstelling

- de primaire doelstelling van Confirmatorische Factor Analyse (CFA) is om na te gaan of een *a priori* vastgelegde factor-structuur in overeenstemming is met de data
 - de factor-structuur bepaalt het aantal latente variabelen (factoren), de relatie tussen de indictatoren en de factoren, de covarianties tussen de factoren, etc...
 - deze factor-structuur is gebaseerd op eerder onderzoek (EFA?) en/of theoretische argumenten
- CFA is altijd de eerste stap om later een structureel vergelijkingsmodel te fitten; zolang het 'meetmodel' niet adequaat is, heeft het geen zin om de structurele relaties tussen de 'factoren' te bestuderen

Voorbeeld

- ECR-R: Experiences in Close Relationships Scale-Revised:
 - één van de meest gebruikte maten van hechting bij volwassenen
 - 2 fundamentele dimensies in hechting: angstige en vermijdende hechting
- specifieke maat voor kinderen en jongvolwassen?
 - studie bij 514 kinderen tussen 10 en 14 jaar
 - originele items aangepast aan kinderen: 36 items op 7-punt likertschaal ('1=strongly disagree' tot '7=strongly agree')

- voorbeelden items angstige hechting:
 - I'm afraid my mother will stop loving me
 - I get angry because my mother doesn't give me enough love and support
- voorbeelden items vermijdende hechting:
 - I don't like telling my mother how I feel deep down inside.
 - I prefer not to get too close to my mother.
- identieke set van items werd voorgelegd aan de kinderen over de vaders

ONDERZOEKSVRAGEN:

Vinden we bij kinderen/jongvolwassenen ook een 2-delige factor-structuur? Vinden we hier ook een goede inhoudsvaliditeit en discriminante validiteit?

- Inhoudsvaliditeit ('content validity') slaat op de vraag of de test- of vragenlijst items representatief zijn voor de constructen die men probeert te meten.
- Discriminante validiteit ('discriminant validity') is dat aspect van constructvaliditeit dat betrekking heeft op de vraag of een bepaalde methode/vragenlijst in staat is verschillende begrippen van elkaar te onderscheiden (discrimineren).

1.2 Het standaard CFA model

Eigenschappen 'standaard' CFA model

Een standaard CFA model heeft de volgende drie eigenschappen:

- 1. elke indicator y is een continue variabele die beïnvloed wordt door twee mogelijke oorzaken:
 - (a) de latente variabele (factor) waarvan de indicator een deelaspect hoort te meten
 - (b) alle overige oorzaken die een invloed kunnen hebben op y: de nietgeobserveerde error-term e
- de error-termen zijn niet gecorreleerd met elkaar, en niet gecorreleerd met de factoren
- 3. alle correlaties tussen de factoren zijn niet-geanalyseerd

Elementen van het standaard CFA model: indicatoren en factoren

- de indicatoren beschouwen we als endogene variabelen; de factoren als exogene variabelen
- de indicatoren zijn bedoeld (deelaspecten van) de factoren te 'meten'
 - vaak zijn het items van een vragenlijst
 - of scores op een subtesten (bvb. in een intelligentie-test)

- de factoren corresponderen met hypothetische constructen die niet (direct) observeerbaar zijn
 - vaak gaan we de factoren benoemen naar het hypothetisch construct (bvb. 'sociale steun' of 'borderline personality'). Let wel: dit betekent niet noodzakelijk dat de factor dit construct meet (=naming fallacy)
- de schattingen van de 'directe effecten' van de factoren op de indicatoren noemt men *factorladingen*
- we kunnen die factorladingen interpreteren als regressiecoëfficiënten:

$$y_1 = \lambda_{11}\eta_1 + e_1$$

• de regressiecoëfficiënten kunnen we *standaardiseren* (door zowel de indicatoren als de factoren te standaardiseren)

Elementen van het standaard CFA model: error-termen

- we beschouwen de error termen als exogene variabelen (net zoals de disturbance termen in padanalyse)
- het effect van de error term op de indicator representeert het gecombineerd effect van
 - alle (weggelaten of onbekende) variabelen die een invloed hebben op de indicator (bvb. methode effecten)
 - meetfout
- de variantie van de error term noemt men de 'unieke' variantie van de indicator (eigen aan de indicator, versus gemeenschappelijk met de overige indicatoren)
- het direct effect van de error term op de indicator wordt gefixeerd op 1: op die manier leggen we de schaal vast van de error term

1.3 Unidimensioneel versus multidimensioneel meetmodel

Men maakt onderscheid tussen een unidimensioneel versus een multidimensioneel meetmodel.

- unidimensioneel:
 - het standaard CFA model
 - elke indicator is gerelateerd aan slechts 1 factor
 - de error termen zijn niet gecorreleerd
- multidimensioneel:
 - het CFA model bevat mogelijks kruisladingen: een indicator is gerelateerd aan meer dan 1 factor
 - het CFA model bevat mogelijks error-correlaties:
 een correlatie (covariantie) tussen twee error-termen

Voorbeeld: multidimensioneel meet-model

1.4 Reflectieve versus Formatieve indicatoren

- reflectieve indicatoren worden beïnvloed door een factor
- formatieve indicatoren hebben een effect op de factor (en niet omgekeerd)
- bijvoorbeeld: de factor 'socio-economische status' (SES) wordt beïnvloed door geobserveerde variabelen zoals inkomen, opleiding, beroep, etc....
- modellen waar dit voorkomt zijn geen CFA modellen (meer)

1.5 Identificatie unidimensioneel CFA model

Er zijn (minstens) 3 voorwaarden opdat een CFA model geïdentificeerd zou zijn:

- het aantal vrije parameters is kleiner dan (of gelijk aan) het aantal datapunten:
 - net zoals bij padanalyse is het aantal datapunten gelijk aan het aantal (nietredundante) elementen van de variantie-covariantie matrix: p(p+1)/2
- 2. een minimum aantal indicatoren per factor:
 - voor een CFA met (slechts) 1 factor: minstens drie indicatoren
 - voor een CFA met meerdere factoren: minstens twee indicatoren per factor
- 3. elke latente variabele heeft een vaste schaal
 - de error-termen: schaal wordt bepaald door de indicator (wegens direct effect gefixeerd op 1)
 - voor de factoren zijn er twee mogelijkheden: UVI of ULI

Schaal factoren: UVI of ULI

Er zijn twee courante manieren om de schaal vast te leggen van de factoren:

- Unit Loading Identification (ULI): de niet-gestandaardiseerde regressie-coëfficiënt (factorlading) van één bepaalde indicator van deze factor wordt op 1 gefixeerd; men noemt deze indicator de referentie indicator
- 2. *Unit Variance Identification* (UVI): de variantie van de factor wordt op 1 gefixeerd

- aantal geobserveerde variabelen: p=3
- aantal variantie/covarianties: p(p+1)/2 = 6 $Var(y_1)$, $Var(y_2)$, $Var(y_3)$ $Covar(y_1, y_2)$, $Covar(y_1, y_3)$, $Covar(y_2, y_3)$

• we hebben

$$y_1 = 1 \eta + e_1$$

$$y_2 = \lambda_2 \eta + e_2$$

$$y_3 = \lambda_3 \eta + e_3$$

- met $Covar(\eta, e_1) = Covar(\eta, e_2) = Covar(\eta, e_3) = 0$
- veronderstel gecentreerde variabelen met gemiddelde 0
- Voor de varianties:

$$Var(y_1) = E[y_1y_1]$$

$$= E[(\eta + e_1)(\eta + e_1)]$$

$$= E(\eta \eta) + E(\eta e_1) + E(e_1 \eta) + E(e_1 e_1)$$

$$= Var(\eta) + Var(e_1)$$

$$Var(y_2) = \lambda_2^2 Var(\eta) + Var(e_2)$$
$$Var(y_3) = \lambda_3^2 Var(\eta) + Var(e_3)$$

Voor de covarianties:

$$Cov(y_1, y_2) = E[y_1y_2]$$

$$= E[(\eta + e_1)(\lambda_2\eta + e_2)]$$

$$= E(\lambda_2\eta\eta) + E(\lambda_2\eta e_1) + E(e_2\eta) + E(e_1e_2)$$

$$= \lambda_2 Var(\eta)$$

$$Cov(y_1, y_3) = \lambda_3 Var(\eta)$$

$$Cov(y_2, y_3) = \lambda_2 \lambda_3 Var(\eta)$$

- 6 parameters te schatten: λ_2 , λ_3 , $Var(\eta)$, $Var(e_1)$, $Var(e_2)$ en $Var(e_3)$
- aantal vrijheidsgraden=6-6=0: 'just identified' model

UVI versus ULI

- voor een standaard CFA model zou het geen verschil mogen maken
- nadeel ULI: welke indicator moeten we kiezen?
- voordeel UVI: alle factorladingen zijn vrije parameters
- nadeel UVI: enkel voor exogene factoren

1.6 Schatten van de parameters in het CFA model

- · enkel via SEM software!
- standaard procedure voor continue indicatoren: Maximum Likelihood (ML) schatting vertrekkende van de variantie/covariantie matrix (niet de correlatie matrix)
- assumptie: alle indicatoren zijn van intervalniveau en bovendien multivariaat normaal verdeeld
 - indien indicatoren weliswaar continu maar scheef-verdeeld zijn, is een correctie nodig (bvb. de Satorra-Bentler correctie)
 - voor 'likert scales' wordt soms gesuggereerd om somscores te berekenen op basis van een (klein) aantal likert items die samenhoren; vervolgens hanteert men deze somscores als (continue) indicatoren; men noemt dit item parceling

1.7 Model fitmaten

- in principe is de interpretatie van parameters slechts zinvol indien het (pad)model de data adequaat *fit*
- SEM software rapporteert doorgaans een waaier van fitmaten
 - de chi-kwadraat toets
 - incrementele maten zoals de CFI, TLI
 - overige maten: RMSEA, SRMR, ...

de chi-kwadraat toets

- $\chi_M^2 = (N-1) F_{ML}$ met N steekproefgrootte en F_{ML} geminimalizeerde fit-functie
- onder H_0 ('het model fit de data') heeft χ_M^2 een χ^2 -verdeling met het aantal vrije parameters als aantal degrees of freedom (als de steekproef voldoende groot is en uitgaande van een multivariate normaalverdeling)
- in een gesatureerd model is $\chi^2_M=0$: het model fit perfect de data (elke geobserveerde covariantie is gelijk aan de model-geïmpliceerde covariantie)
- als de fit van een over-geïdentificeerd model dat niet correct gespecifiëerd is slechter wordt, stijgt de waarde van χ^2_M
- als χ^2_M niet statistisch significant is, kunnen we enkel besluiten dat het model consistent is met de covariantie data, niet dat het model correct is

incrementele maten: CFI

- CFI Comparative Fit Index (Bentler)
 - $CFI=1-rac{\chi_M^2-df_M}{\chi_B^2-df_B}$ als $\chi_M^2>df_M$, anders 1
 - incrementele maat voor de relatieve verbetering in fit van model M versus baseline model B (model B veronderstelt geen covarianties tussen geobserveerde variabelen)
 - CFI > 0.95 indicatie voor een goede fit

RMSEA en SRMR

- RMSEA: Root Mean Square Error of Approximation
 - $RMSEA = \sqrt{\frac{\chi_M^2 df_M}{df_M(N-1)}}$ als $\chi_M^2 df_M > 0$, anders 0
 - RMSEA < 0.05 indicatie voor goede fit
- SRMR: Standardized Root MeanSquare Residual
 - een maat voor de gemiddelde absolute correlatie residu (het verschil tussen geobserveerde en model-geïmpliceerde correlatie)
 - SRMR < 0.08 voor acceptabele fit

1.8 Model evaluatie

De essentie van CFA: past ('fit') het model goed met de data of niet? Drie aspecten dienen we te evalueren:

- 1. algemene 'goodness-of-fit' (of 'lack-of-fit') maten:
 - de χ^2 statistiek is idealiter niet significant (zeldzaam met grote N)
 - vuistregels: CFI > 0.95, RMSEA < 0.05, SRMR < 0.08
 - deze vuistregels zijn vaak het onderwerp van discussie in de SEM literatuur
- 2. specifieke oorzaken van misfit; daarvoor bestuderen we:
 - de (gestandaardiseerde) residuals (= de verschillen tussen de geobserveerde en geïmpliceerde elementen van de variantie/covariantie matrix)
 - de modification indices

- 3. interpreteerbaarheid, grootte en significantie van de parameterwaarden
 - 'ongeldige' parameterschattingen (bvb. negatieve error-varianties, negatieve factor-varianties, correlaties groter dan 1.0) zijn een signaal dat er problemen zijn (te kleine sample, slecht gespecifieerd model, ...)
 - zijn de factorladingen in de 'juiste' richting (positief of negatief)?
 - zijn alle 'vrije parameters' (factorladingen, factor-correlaties, errorvarianties) significant? (zo niet, kunnen we ze weglaten?)
 - zijn de standaardfouten van de 'vrije parameters' niet excessief hoog?
 - is de covariantie/correlatie tussen de factoren in de juiste richting (positief of negatief)?

2 Implementatie CFA in lavaan en interpretatie

2.1 ECR-RC voor kinderen en adolescenten

Items die peilen naar angstige hechting:

Items die peilen naar vermijdende hechting:

- We focussen hier op de items gerelateerd aan de moeder
- 'Items assessing anxiety and avoidance were each parceled into 6 groups of 3 randomly selected items. ... Our choice for a parceling approach above an item-level CFA is informed by the current studies' sample sizes... (N=514). ... The number of parameters that has to be estimated in relation to the sample size would be out of proportion. ... A desirable goal is to have the ratio of the number of cases to the number of free parameters be 20:1 or 10:1.'
- Satorra-Bentler correctie gebruikt.
- model-specificatie: 2 factoren met elk 6 indicatoren

ULI-approach

Code:

```
modelECR<-'vermijding="vermmA_2+vermmB_2+vermmC_2+vermmB_2+vermmF_2
angst=-angstmA_2+angstmB_2+angstmC_2+angstmD_2+angstmE_2+angstmF_2'
fitECR1<-cfa(modelECR, data=ECR, test="satorra.bentler")
summary(fitECR1, fit.measures=T, standardized=T)</pre>
```

Output:

Estimator Optimization method Number of free parameters	ML NLMINB 25	
	Used	Total
Number of observations	506	514
Model Test User Model:		
	Standard	Robust
Test Statistic	169.384	123.621
Degrees of freedom	53	53
P-value (Chi-square)	0.000	0.000
Scaling correction factor		1.370
Satorra-Bentler correction		
Model Test Baseline Model:		
Test statistic	4330.782	3228.201
Degrees of freedom	66	66

P-value Scaling correction factor	0.000	0.000 1.342				
User Model versus Baseline Model:						
Comparative Fit Index (CFI) Tucker-Lewis Index (TLI)	0.973 0.966					
Robust Comparative Fit Index (CFI) Robust Tucker-Lewis Index (TLI)		0.977 0.972				
Loglikelihood and Information Criteria:						
Loglikelihood user model (HO) Loglikelihood unrestricted model (H1)	-7921.684 -7836.992					
Akaike (AIC) Bayesian (BIC) Sample-size adjusted Bayesian (BIC)	15893.368 15999.031 15919.678	15999.031				
Root Mean Square Error of Approximation:						
RMSEA 90 Percent confidence interval - lower 90 Percent confidence interval - upper P-value RMSEA <= 0.05	0.066 0.055 0.077 0.010	0.041				
Robust RMSEA 90 Percent confidence interval - lower 90 Percent confidence interval - upper		0.060 0.046 0.074				
Standardized Root Mean Square Residual:						
SRMR	0.041	0.041				

Parameter Estimates:

Standard err Information Information	ors Standard Expected saturated (h1) model Structured					
Latent Variabl	es:					
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
vermijding =	-					
vermmA_2	1.000				1.228	0.780
vermmB_2	0.861	0.043	19.912	0.000	1.057	0.811
vermmC_2	0.920	0.045	20.381	0.000	1.129	0.826
vermmD_2	0.820	0.044	18.613	0.000	1.006	0.769
vermmE_2	0.955	0.044	21.732	0.000	1.173	0.869
vermmF_2	0.900	0.042	21.568	0.000	1.105	0.864
angst = ~						
angstmA_2	1.000				0.772	
angstmB_2	1.188	0.082		0.000	0.917	
angstmC_2	1.262	0.085	14.790	0.000	0.975	0.815
angstmD_2	1.221	0.079		0.000	0.943	0.867
angstmE_2	1.200			0.000		
angstmF_2	1.211	0.080	15.199	0.000	0.935	0.849
Covariances:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
vermijding -	-					
angst	0.577	0.065	8.867	0.000	0.609	0.609
Variances:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
.vermmA_2	0.969	0.069	14.064	0.000	0.969	0.391
.vermmB_2	0.580	0.043	13.619	0.000	0.580	0.342
.vermmC_2	0.592	0.044	13.345	0.000	0.592	0.317
.vermmD_2	0.701	0.049		0.000	0.701	
.vermmE_2	0.447	0.037	12.227	0.000	0.447	0.245

.vermmF_2	0.416	0.034	12.398	0.000	0.416	0.254
.angstmA_2	0.953	0.063	15.071	0.000	0.953	0.615
.angstmB_2	0.513	0.037	13.692	0.000	0.513	0.379
.angstmC_2	0.480	0.036	13.226	0.000	0.480	0.336
.angstmD_2	0.294	0.025	11.795	0.000	0.294	0.249
.angstmE_2	0.527	0.038	13.708	0.000	0.527	0.380
.angstmF_2	0.340	0.027	12.411	0.000	0.340	0.280
vermijding	1.508	0.147	10.266	0.000	1.000	1.000
angst	0.596	0.079	7.511	0.000	1.000	1.000

- de ML-aanpak neemt observaties met ontbrekende items niet mee
- SB- $\chi^2(53)=123.6,\,p<0.001$: geen indicatie voor goede fit, maar andere fitmaten: $CFI=0.978,\,RMSEA=0.051$ OK
- ULI: 1 factorlading bij elke factor gefixeerd op 1, variantie latente vermijding en angst zijn 1.508 en 0.596
- alle gestandardizeerde factorladingen voor angstige hechting >0.62 en voor vermijdende hechting >0.77
- de correlatie tussen vermijdende en angstige hechting is 0.61

UVI-approach

CODE:

```
modelECR<-'vermijding='vermmA_2+vermmB_2+vermmC_2+vermmD_2+vermmE_2+vermmF_2
angst='angstmA_2+angstmB_2+angstmC_2+angstmD_2+angstmE_2+angstmF_2'
fitECR2<-cfa(modelECR,data=ECR,std.lv=T,test="satorra.bentler")
summary(fitECR2,fit.measures=T,standardized=T)</pre>
```

OUTPUT:

Estimator Optimization method Number of free parameters	ML NLMINB 25	
Number of observations	Used 506	Total 514
Model Test User Model:		
Test Statistic Degrees of freedom P-value (Chi-square) Scaling correction factor Satorra-Bentler correction	Standard 169.384 53 0.000	123.621 53
Model Test Baseline Model:		
Test statistic Degrees of freedom	4330.782 66	3228.201 66

P-value Scaling correction factor	0.000	0.000 1.342
User Model versus Baseline Model:		
Comparative Fit Index (CFI) Tucker-Lewis Index (TLI)	0.973 0.966	
Robust Comparative Fit Index (CFI) Robust Tucker-Lewis Index (TLI)		0.977 0.972
Loglikelihood and Information Criteria:		
Loglikelihood user model (HO) Loglikelihood unrestricted model (H1)	-7921.684 -7836.992	
Akaike (AIC) Bayesian (BIC) Sample-size adjusted Bayesian (BIC)	15893.368 15999.031 15919.678	15999.031
Root Mean Square Error of Approximation:		
RMSEA 90 Percent confidence interval - lower 90 Percent confidence interval - upper P-value RMSEA <= 0.05	0.066 0.055 0.077 0.010	
Robust RMSEA 90 Percent confidence interval - lower 90 Percent confidence interval - upper		0.060 0.046 0.074
Standardized Root Mean Square Residual:		
SRMR	0.041	0.041

Parameter Estimates:

Standard erro	rs			Standard Expected		
Information s	aturated (hl)	model	St	ructured		
Latent Variable						
Datent variable	Estimate	Std Err	z-value	P(> z)	Std lv	Std.all
vermijding =		ocu.bli	2 10200	2 (* 121)	000.11	oca.all
vermmA 2	1.228	0.060	20.532	0.000	1.228	0.780
vermmB 2	1.057	0.049		0.000	1.057	0.811
vermmC 2	1.129			0.000	1.129	
vermmD 2	1.006			0.000	1.006	
vermmE 2	1.173			0.000	1.173	
vermmF 2	1.105	0.046		0.000	1.105	0.864
angst =						
angstmA_2	0.772	0.051	15.021	0.000	0.772	0.621
angstmB_2	0.917	0.044	20.760	0.000	0.917	0.788
angstmC_2	0.975	0.045	21.829	0.000	0.975	0.815
angstmD_2	0.943	0.039	24.041	0.000	0.943	0.867
angstmE_2	0.927	0.045	20.720	0.000	0.927	0.787
angstmF_2	0.935	0.040	23.233	0.000	0.935	0.849
Covariances:						
covarrances.	Estimate	Std Err	z-value	P(> z)	Std lv	Std.all
vermijding				- (- 1-17		
angst	0.609	0.032	19.181	0.000	0.609	0.609
. ,						
Variances:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
.vermmA_2	0.969	0.069	14.064	0.000	0.969	0.391
.vermmB_2	0.580	0.043	13.619	0.000	0.580	0.342
.vermmC_2	0.592	0.044	13.345	0.000	0.592	0.317
.vermmD_2	0.701	0.049	14.197	0.000	0.701	0.409
.vermmE_2	0.447	0.037	12.227	0.000	0.447	0.245

.vermmF_2	0.416	0.034	12.398	0.000	0.416	0.254
.angstmA_2	0.953	0.063	15.071	0.000	0.953	0.615
.angstmB_2	0.513	0.037	13.692	0.000	0.513	0.379
.angstmC_2	0.480	0.036	13.226	0.000	0.480	0.336
.angstmD_2	0.294	0.025	11.795	0.000	0.294	0.249
.angstmE_2	0.527	0.038	13.708	0.000	0.527	0.380
.angstmF_2	0.340	0.027	12.411	0.000	0.340	0.280
vermijding	1.000				1.000	1.000
angst	1.000				1.000	1.000

- · identieke fit
- UVI: niet factorladingen gefixeerd op 1, maar varianties

3 SEM in vogelvlucht

3.1 Inleiding

- SEM is een algemene techniek om de (lineaire) samenhang tussen variabelen te modelleren
- vertrekpunt: de samenhang tussen de geobserveerde variabelen wordt samengevat in een geobserveerde variantie/covariantie matrix (S)
- SEM probeert de structuur (lees: de correlatiepatronen) in deze geobserveerde variantie/covariantie matrix te beschrijven/verklaren door een model voorop te stellen met als mogelijke ingrediënten:
 - latente variabelen (cf. CFA)
 - regressies (directe en indirecte effecten) (cf. padanalyse)
 - eventueel niet-verklaarde correlaties/covarianties (dubbele pijlen)
- het model kan typisch worden weergegeven via een paddiagram

Paddiagram

3.2 Predictoren van jobtevredenheid

- onderzoek bij 263 universiteit werknemers
- 4 latente variabelen, elk gemeten door 3 indicatoren:
 - 'constructive thinking'
 - 'dysfunctional thinking'
 - 'subjective well-being'
 - 'job satisfaction'
- "They hypothesized that constructive thinking reduces dysfunctional thinking, which leads to an enhanced sense of well-being, which in turn results in greater job satisfaction. They also predicted that dysfunctional thinking directly affects job satisfaction."

Geobserveerde variantie/covariantie matrix

workl	work2	work3	happy	moodl	mood2	performl	perform2	approval	beliefs	selftalk	imagery
0.88	0.64	0.56	0.14	0.21	0.10	-0.11	-0.16	-0.18	0.05	0.06	0.11
0.64	1.03	0.57	0.15	0.24	0.13	-0.11	-0.15	-0.18	0.07	0.03	0.18
0.56	0.57	0.88	0.09	0.18	0.11	-0.11	-0.14	-0.13	0.06	-0.04	0.06
0.14	0.15	0.09	0.32	0.21	0.07	-0.10	-0.12	-0.10	-0.01	-0.04	0.04
0.21	0.24	0.18	0.21	0.58	0.18	-0.12	-0.14	-0.14	0.08	-0.04	0.10
0.10	0.13	0.11	0.07	0.18	0.27	-0.04	-0.07	-0.08	0.05	0.00	0.02
-0.11	-0.11	-0.11	-0.10	-0.12	-0.04	0.34	0.27	0.24	-0.03	-0.03	-0.07
-0.16	-0.15	-0.14	-0.12	-0.14	-0.07	0.27	0.37	0.26	-0.05	-0.03	-0.04
-0.18	-0.18	-0.13	-0.10	-0.14	-0.08	0.24	0.26	0.53	0.01	-0.01	-0.06
0.05	0.07	0.06	-0.01	0.08	0.05	-0.03	-0.05	0.01	0.51	0.23	0.40
0.06	0.03	-0.04	-0.04	-0.04	0.00	-0.03	-0.03	-0.01	0.23	1.26	0.43
0.11	0.18	0.06	0.04	0.10	0.02	-0.07	-0.04	-0.06	0.40	0.43	1.00
	0.88 0.64 0.56 0.14 0.21 0.10 -0.11 -0.16 -0.18 0.05	0.88 0.64 0.64 1.03 0.56 0.57 0.14 0.55 0.21 0.24 0.10 0.13 -0.11 -0.11 -0.16 -0.15 -0.18 -0.18 0.05 0.07 0.06 0.03	0.88 0.64 0.56 0.64 1.03 0.57 0.56 0.57 0.88 0.14 0.15 0.09 0.21 0.24 0.18 0.10 0.13 0.11 -0.11 -0.11 -0.11 -0.16 -0.15 -0.14 -0.18 -0.18 -0.13 0.05 0.07 0.06 0.06 0.03 -0.06	$\begin{array}{cccccccccccccccccccccccccccccccccccc$							

Op de diagonaal vindt men de varianties van de 12 geobserveerde indicatoren. De covarianties zijn moeilijker te interpreteren. Correlaties zijn zinvoller:

	workl	work2	work3	happy	moodl	mood2	performl	perform2	approval	beliefs	selftalk	imagery
workl	1.000	0.668	0.635	0.263	0.290	0.207	-0.206	-0.280	-0.258	0.080	0.061	0.113
work2	0.668	1.000	0.599	0.261	0.315	0.245	-0.182	-0.241	-0.244	0.096	0.028	0.174
work3	0.635	0.599	1.000	0.164	0.247	0.231	-0.195	-0.238	-0.185	0.094	-0.035	0.059
happy	0.263	0.261	0.164	1.000	0.486	0.251	-0.309	-0.344	-0.255	-0.017	-0.058	0.063
moodl	0.290	0.315	0.247	0.486	1.000	0.449	-0.266	-0.305	-0.255	0.151	-0.051	0.138
mood2	0.207	0.245	0.231	0.251	0.449	1.000	-0.142	-0.230	-0.215	0.141	-0.003	0.044
performl	-0.206	-0.182	-0.195	-0.309	-0.266	-0.142	1.000	0.753	0.554	-0.074	-0.040	-0.119
perform2	-0.280	-0.241	-0.238	-0.344	-0.305	-0.230	0.753	1.000	0.587	-0.111	-0.040	-0.073
approval	-0.258	-0.244	-0.185	-0.255	-0.255	-0.215	0.554	0.587	1.000	0.016	-0.018	-0.084
beliefs	0.080	0.096	0.094	-0.017	0.151	0.141	-0.074	-0.111	0.016	1.000	0.284	0.563
selftalk	0.061	0.028	-0.035	-0.058	-0.051	-0.003	-0.040	-0.040	-0.018	0.284	1.000	0.379
imagery	0.113	0.174	0.059	0.063	0.138	0.044	-0.119	-0.073	-0.084	0.563	0.379	1.000

De fundamentele hypothese

• de fundamentele hypothese in SEM is:

$$H_0: \mathbf{\Sigma} = \mathbf{\Sigma}(\boldsymbol{\theta})$$

- Σ : de populatie covariantie matrix
- $\Sigma(\theta)$: de model-geïmpliceerde covariantie-matrix
- θ : alle (vrije en onbekende) parameters in het model
- elk model + parameters impliceert een specifiek patroon voor de elementen van de variantie/covariantie matrix
- we proberen een zuinig model te vinden dat goed past bij de data

3.3 Stappen om SEM uit te voeren: 2 stappen

- 1. behandel eerst het meetmodel
 - alle 'enkelvoudige pijlen' (regressies) tussen de latente varibelen worden vervangen door 'dubbele pijlen' (covarianties)
 - dit is gewoon CFA
 - · herspecifieer het meetmodel indien nodig
 - zolang de fit van het 'meetmodel' niet adequaat is, heeft het geen zin om de structurele component toe te voegen
- 2. fit het volledige model
 - indien het structureel deel meer restrictief is dan het meetmodel: vergelijk het meetmodel met het volledig model (modelvergelijkingstoets)
 - zijn er geen drastische verschuivingen in het meetmodel (bvb. factorladingen die plots veel groter/kleiner worden)? Zo ja, probleem!

Stap 1: Meetmodel: One-factor Model?

Implementatie met lavaan in R

```
# variantie-covariantie matrix inlezen
sds <- c(.939, 1.017, .937, .562, .760, .524, .585, .609, .731, .711, 1.124, 1.001)
COR <- !
1 000
  668 1 000
  .635 .599 1.000
  .263 .261 .164 1.000
  .290 .315 .247 .486 1.000
  .207 .245 .231 .251 .449 1.000
 -.206 -.182 -.195 -.309 -.266 -.142 1.000
 -.280 -.241 -.238 -.344 -.305 -.230 .753 1.000
 -.258 -.244 -.185 -.255 -.255 -.215 .554 .587 1.000
  .080 .096 .094 -.017 .151 .141 -.074 -.111 .016 1.000
  .061 .028 -.035 -.058 -.051 -.003 -.040 -.040 -.018 .284 1.000
  .113 .174 .059 .063 .138 .044 -.119 -.073 -.084 .563 .379 1.000 '
COV <- lavaan:::getCov(COR, sds = sds, names = c("work1", "work2", "work3",
                      "happy", "mood1", "mood2", "perform1", "perform2",
                      "approval", "beliefs", "selftalk", "imagery"))
# meetmodel
model1<- 'all="work1 + work2 + work3 + happy + mood1 + mood2 +
              perform1 + perform2 + approval + beliefs + selftalk + imagery'
# fitten model
fit1 <- cfa(model1, sample.cov=COV, sample.nobs=263)
# toon resultaten met gedetailleerde fitmaten
summary (fit1, fit.measures=T)
```

Academieiaar 2020-2021

Output:

Estimator	ML
Optimization method	NLMINB
Number of free parameters	24
Number of observations	263
Model Test User Model:	
Test statistic	566.797
Degrees of freedom	54
P-value (Chi-square)	0.000
Model Test Baseline Model:	
Test statistic	1087.490
Degrees of freedom	66
P-value	0.000
User Model versus Baseline Model:	
Comparative Fit Index (CFI)	0.498
Tucker-Lewis Index (TLI)	0.386
Loglikelihood and Information Criteria:	
Loglikelihood user model (HO)	-3376.334
Loglikelihood unrestricted model (H1)	-3092.936
Akaike (AIC)	6800.668
Bayesian (BIC)	6886.400
Sample-size adjusted Bayesian (BIC)	6810.309

Root Mean Square Error of Approximation:

RMSEA				0.190
90 Percent conf:	idence inte	rval - lo	wer	0.176
90 Percent conf:	idence inte	rval - up	per	0.204
P-value RMSEA <=	= 0.05	-	-	0.000
Standardized Root	Mean Squar	e Residua	1:	
SRMR				0.143
Parameter Estimate	es:			
Standard errors				Standard
Information				Expected
Information satu	urated (h1)	model	St	ructured
Latent Variables:				
	Estimate	Std.Err	z-value	P(> z)
all = "				
workl	1.000			
work2		0.202		
work3		0.182		
happy		0.115		
moodl	0.825			
mood2	0.417	0.097	4.305	0.000
performl	-1.087	0.159	-6.826	0.000
perform2	-1.215	0.175	-6.951	0.000
approval	-1.165	0.180	-6.457	0.000
beliefs	0.230	0.116	1.972	0.049
selftalk	0.126	0.180	0.701	0.483
imagery	0.379	0.166	2.291	0.022
Variances:				
	Estimate			
.work1	0.704	0.064	10.987	0.000

.work2	0.847	0.077	11.048	0.000
.work3	0.741	0.067	11.118	0.000
.happy	0.250	0.023	10.962	0.000
.mood1	0.457	0.042	10.962	0.000
.mood2	0.243	0.022	11.227	0.000
.perform1	0.135	0.016	8.319	0.000
.perform2	0.112	0.016	6.844	0.000
.approval	0.296	0.030	9.876	0.000
.beliefs	0.494	0.043	11.432	0.000
.selftalk	1.256	0.110	11.463	0.000
.imagery	0.973	0.085	11.418	0.000
all	0.174	0.049	3.534	0.000

- aantal datapunten $p = 12 \rightarrow p \times (p+1)/2 = 78$
- aantal parameters:
 - 11 factorladingen
 - 12 residuele varianties voor de indicatoren en 1 variantie voor de latente factor
- df = 78 24 = 54
- $\chi_M^2(54) = 566.80, p < .001$: slechte fit
- ook CFI, RMSEA, ...: indicatie voor slechte fit

Stap 1: Four-factor Model?

Implementatie met lavaan in R:

Output:

Estimator Optimization method Number of free parameters	ML NLMINB 30
Number of observations	263
Model Test User Model:	
Test statistic	62.468

Degrees of freedom P-value (Chi-square)	48 0.078
Model Test Baseline Model:	
Test statistic Degrees of freedom P-value	1087.490 66 0.000
User Model versus Baseline Model:	
Comparative Fit Index (CFI) Tucker-Lewis Index (TLI)	0.986 0.981
Loglikelihood and Information Criteria:	
Loglikelihood user model (HO) Loglikelihood unrestricted model (H1)	-3124.170 -3092.936
Akaike (AIC) Bayesian (BIC) Sample-size adjusted Bayesian (BIC)	6308.340 6415.505 6320.390
Root Mean Square Error of Approximation:	
RMSEA 90 Percent confidence interval - lower 90 Percent confidence interval - upper P-value RMSEA <= 0.05	0.034 0.000 0.056 0.880
Standardized Root Mean Square Residual:	
SRMR	0.040

Standard error	's			tandard		
Information				xpected		
Information sa	turated (h1)	model	Str	uctured		
Latent Variables		0. 1 5		D (1 1 1)	0.1.1	0. 1 11
JohSatisfation	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
					0 706	0 000
work1 work2	1.000	0 001	10 760	0.000	0.786	0.839
	1.035	0.081	12.763	0.000	0.814	0.802
work3	0.891	0.073	12.147	0.000	0.701	0.749
Wellbeing = "						
happy	1.000				0.339	0.604
moodl	1.792	0.246	7.297	0.000	0.607	0.800
mood2	0.817	0.126	6.482	0.000	0.277	0.529
DysThinking = "						
performl	1.000				0.486	0.832
perform2	1.129	0.080	14.062	0.000	0.548	0.902
approval	0.992	0.089	11.177	0.000	0.482	0.660
ConThinking = "						
beliefs	1.000				0.460	0.649
selftalk	1.053	0.178	5.914	0.000	0.485	0.432
imagery	1.889	0.329	5.739	0.000	0.870	0.871
Covariances:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
JobSatisfation						
Wellbeing	0.124	0.026	4.786	0.000	0.468	0.468
DysThinking	-0.131	0.030	-4.447	0.000	-0.344	-0.344
ConThinking	0.060	0.029	2.090	0.037	0.165	0.165
Wellbeing						
DysThinking	-0.077	0.016	-4.817	0.000	-0.468	-0.468
ConThinking	0.025	0.013	1.896	0.058	0.162	0.162
DysThinking						
ConThinking	-0.028	0.017	-1.640	0.101	-0.124	-0.124
-						

Variances:

	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
.work1	0.261	0.042	6.229	0.000	0.261	0.297	
.work2	0.368	0.050	7.399	0.000	0.368	0.357	
.work3	0.384	0.044	8.684	0.000	0.384	0.439	
.happy	0.200	0.022	8.993	0.000	0.200	0.635	
.mood1	0.207	0.045	4.635	0.000	0.207	0.360	
.mood2	0.197	0.020	9.889	0.000	0.197	0.720	
.performl	0.105	0.016	6.706	0.000	0.105	0.308	
.perform2	0.069	0.017	4.013	0.000	0.069	0.186	
.approval	0.300	0.030	10.178	0.000	0.300	0.564	
.beliefs	0.292	0.042	6.871	0.000	0.292	0.579	
.selftalk	1.023	0.097	10.507	0.000	1.023	0.813	
.imagery	0.242	0.123	1.972	0.049	0.242	0.242	
JobSatisfation	0.618	0.081	7.615	0.000	1.000	1.000	
Wellbeing	0.115	0.025	4.537	0.000	1.000	1.000	
DysThinking	0.236	0.031	7.608	0.000	1.000	1.000	
ConThinking	0.212	0.049	4.295	0.000	1.000	1.000	

- model $\chi^2(48) = 62.47, p = .078$: de exact-fit hypothese niet verworpen
- ook RMSEA=0.034 en CFI=0.986 wijzen op goede fit
- het four-factor model is significant beter dan het one-factor model: $\chi^2_D(6)=504.33, p<.001$
- kunnen we de fit nog verbeteren?

Modificatie indices (afgekort: 'mi'):

- geassocieerd met een bepaalde, gefixeerde parameter
- geeft de voorspelde daling in χ^2 -maat van het model weer als de parameter vrij gelaten wordt
- hoe groter de waarde van de mi, hoe beter de voorspelde verbetering in de fit van het model als die extra vrije parameter wordt toegevoegd
- het model herspecifiëren a.d.h.v. modificatie-indices is een voorbeeld van *data-driven* modelontwikkeling
- vaak worden mi groter dan 5 of 10 geselecteerd

```
epc sepc.lv sepc.all sepc.nox
56 DysThinking = happy 6.875 -0.235 -0.114
                                             -0.204
                                                     -0.204
102
        happy -- mood2 5.380 -0.040 -0.040
                                             -0.202
                                                    -0.202
        happy -- beliefs 5.273 -0.040 -0.040
106
                                             -0.165
                                                    -0.165
     perform2 -- beliefs 5.161 -0.031 -0.031
                                            -0.216
128
                                                    -0.216
130
      perform2 -- imagery 6.185 0.047 0.047 0.363
                                                    0.363
     approval -- beliefs 5.938 0.050 0.050 0.170
131
                                                    0.170
```

Toegepaste data-analyse

• één van de grootste mi voor de covariantie tussen de indicatoren 'happy' en 'mood2' van het latente construct 'subjective well-being': dit kan wijzen op een gezamelijke weggelaten oorzaak van deze indicatoren

Four-factor Model met bijkomende residuele correlatie

Implementatie met lavaan in R:

Output:

Estimator Optimization method Number of free parameters	ML NLMINB 31
Number of observations	263
Model Test User Model:	
Test statistic Degrees of freedom	56.662 47
P-value (Chi-square)	0.158

Model Test Baseline Model:	
Test statistic Degrees of freedom P-value	1087.490 66 0.000
User Model versus Baseline Model:	
Comparative Fit Index (CFI) Tucker-Lewis Index (TLI)	0.991 0.987
Loglikelihood and Information Criteria:	
Loglikelihood user model (H0) Loglikelihood unrestricted model (H1)	-3121.267 -3092.936
Akaike (AIC) Bayesian (BIC) Sample-size adjusted Bayesian (BIC)	6304.534 6415.270 6316.985
Root Mean Square Error of Approximation:	
RMSEA 90 Percent confidence interval - lower 90 Percent confidence interval - upper P-value RMSEA <= 0.05	0.028 0.000 0.052 0.936
Standardized Root Mean Square Residual:	
SRMR	0.037
Parameter Estimates:	
Standard errors Information	Standard Expected

Structured

Information saturated (hl) model

Information	saturated (h1)	model	Str	uctured		
Latent Variabl	es:					
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
JobSatisfati	on = -					
workl	1.000				0.786	0.839
work2	1.035	0.081	12.770	0.000	0.814	0.802
work3	0.891	0.073	12.145	0.000	0.700	0.749
Wellbeing = 7						
happy	1.000				0.376	0.671
moodl	1.490	0.219	6.799	0.000	0.561	0.739
mood2	0.821	0.126	6.535	0.000	0.309	0.591
DysThinking	= -					
performl	1.000				0.485	0.830
perform2	1.133	0.080	14.105	0.000	0.549	0.904
approval	0.993	0.089	11.175	0.000	0.481	0.660
ConThinking	=~					
beliefs	1.000				0.460	0.648
selftalk	1.056	0.178	5.922	0.000	0.486	0.433
imagery	1.890	0.331	5.717	0.000	0.870	0.870
Covariances:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
.happy						
.mood2	-0.043	0.018	-2.390	0.017	-0.043	-0.243
JobSatisfati	on					
Wellbeing	0.138	0.028		0.000	0.466	0.466
DysThinkir				0.000	-0.344	-0.344
ConThinkir		0.029	2.090	0.037	0.165	0.165
Wellbeing ~~						
DysThinkir		0.017	-5.139	0.000	-0.480	-0.480
ConThinkir	ıg 0.024	0.014	1.685	0.092	0.140	0.140
DysThinking						
ConThinkir	ıg -0.028	0.017	-1.637	0.102	-0.124	-0.124

Variances:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
.work1	0.260	0.042	6.231	0.000	0.260	0.297
.work2	0.368	0.050	7.394	0.000	0.368	0.357
.work3	0.384	0.044	8.692	0.000	0.384	0.439
.happy	0.173	0.025	6.877	0.000	0.173	0.550
.moodl	0.261	0.044	5.970	0.000	0.261	0.453
.mood2	0.178	0.022	8.133	0.000	0.178	0.651
.perform1	0.106	0.016	6.783	0.000	0.106	0.311
.perform2	0.068	0.017	3.975	0.000	0.068	0.183
.approval	0.300	0.029	10.186	0.000	0.300	0.564
.beliefs	0.292	0.043	6.862	0.000	0.292	0.580
.selftalk	1.022	0.097	10.496	0.000	1.022	0.812
.imagery	0.242	0.123	1.965	0.049	0.242	0.242
JobSatisfation	0.618	0.081	7.616	0.000	1.000	1.000
Wellbeing	0.142	0.031	4.643	0.000	1.000	1.000
DysThinking	0.235	0.031	7.598	0.000	1.000	1.000
ConThinking	0.212	0.049	4.285	0.000	1.000	1.000

- de exact-fit hypothese wordt niet verworpen: $\chi^2(47)=56.66, p=.158$
- ook RMSEA, CFI, ... wijzen op goede fit
- dit four-factor model met extra correlatie heeft een significant betere fit dan het model zonder extra correlatie: $\chi^2_D(1)=5.80, p=.016$
- nu het meetdeel is vastgelegd, kunnen we focussen op het structureel deel

SEM with Directed Arrows

Implementatie in lavaan in R:

Output:

Estimator	ML
Optimization method	NLMINB
Number of free parameters	31
Number of observations	263
Model Test User Model:	
Test statistic	56.662
Degrees of freedom	47
P-value (Chi-square)	0.158

Model Test Baseline Model:

Test statistic Degrees of freedom P-value	1087.490 66 0.000
User Model versus Baseline Model:	
Comparative Fit Index (CFI) Tucker-Lewis Index (TLI)	0.991 0.987
Loglikelihood and Information Criteria:	
Loglikelihood user model (HO) Loglikelihood unrestricted model (H1)	-3121.267 -3092.936
Akaike (AIC) Bayesian (BIC) Sample-size adjusted Bayesian (BIC)	6304.534 6415.270 6316.985
Root Mean Square Error of Approximation:	
RMSEA 90 Percent confidence interval - lower 90 Percent confidence interval - upper P-value RMSEA <= 0.05	0.028 0.000 0.052 0.936
Standardized Root Mean Square Residual:	
SRMR	0.037
Parameter Estimates:	
Standard errors Information Information saturated (hl) model	Standard Expected Structured

Latent Variables:				
	Estimate	Std.Err	z-value	P(> z)
JobSatisfation =	-			
work1	1.000			
work2	1.035	0.081	12.770	0.000
work3	0.891	0.073	12.145	0.000
Wellbeing = -				
happy	1.000			
mood1	1.490	0.219	6.799	0.000
mood2	0.821	0.126	6.535	0.000
DysThinking = "				
performl	1.000			
perform2	1.133	0.080	14.105	0.000
approval	0.993	0.089	11.175	0.000
ConThinking = "				
beliefs	1.000			
selftalk	1.056	0.178		
imagery	1.890	0.331	5.717	0.000
Regressions:				
	Estimate	Std.Err	z-value	P(> z)
DysThinking -				
ConThinking	-0.131	0.078	-1.681	0.093
Wellbeing -				
DysThinking	-0.365	0.064	-5.664	0.000
ConThinking	0.067	0.061	1.096	0.273
JobSatisfation 7				
DysThinking	-0.242	0.130	-1.863	0.063
ConThinking	0.160	0.120	1.331	0.183
Wellbeing	0.797	0.202	3.946	0.000
Covariances:				
	Estimate	Std.Err	z-value	P(> z)
.happy .mood2	-0.043	0.018	-2.390	0.017
. IIIOOUZ	-0.043	0.018	-2.390	0.017

/ariances:				
	Estimate	Std.Err	z-value	P(> z)
.work1	0.260	0.042	6.231	0.000
.work2	0.368	0.050	7.394	0.000
.work3	0.384	0.044	8.692	0.000
.happy	0.173	0.025	6.877	0.000
.moodl	0.261	0.044	5.970	0.000
.mood2	0.178	0.022	8.133	0.000
.perform1	0.106	0.016	6.783	0.000
.perform2	0.068	0.017	3.975	0.000
.approval	0.300	0.029	10.186	0.000
.beliefs	0.292	0.043	6.862	0.000
.selftalk	1.022	0.097	10.496	0.000
.imagery	0.242	0.123	1.965	0.049
.JobSatisfatio	n 0.467	0.066	7.063	0.000
.Wellbeing	0.108	0.025	4.398	0.000
.DysThinking	0.231	0.031	7.579	0.000
ConThinking	0.212	0.049	4.285	0.000

- identiek dezelfde fit als voorgaand model: zelfde aantal 'paden' tussen de factoren
- SEM kan met andere woorden geen indicatie geven over de richting van de effecten!!
- we krijgen nu wel informatie over de padcoëfficiënten

• kunnen we het structureel deel nog verder vereenvoudigen?

SEM with Directed Arrows -2

Implementatie in lavaan in R:

```
semmodel2<-- JobSatisfation = work1 + work2 + work3
Wellbeing = happy + mood1 + mood2
DysThinking = perform1 + perform2 + approval
ConThinking = beliefs + selftalk + imagery
# correlated residual
happy - mood2
# regressies
DysThinking - ConThinking
Wellbeing - DysThinking
JobSatisfation - DysThinking + Wellbeing
...
fitsem2 <- cfa(semmodel2, sample.cov=COV, sample.nobs=263)
summary(fitsem2,fit.measures=T,standardized=T)</pre>
```

Output

Estimator	ML
Optimization method	NLMINB
Number of free parameters	29
Number of observations	263
Model Test User Model:	
Test statistic	60.010
Degrees of freedom	49
P-value (Chi-square)	0.135

Model Test Baseline Model:

Academieiaar 2020-2021

Test statistic Degrees of freedom P-value	1087.490 66 0.000
User Model versus Baseline Model:	
Comparative Fit Index (CFI) Tucker-Lewis Index (TLI)	0.989 0.985
Loglikelihood and Information Criteria:	
Loglikelihood user model (HO) Loglikelihood unrestricted model (H1)	-3122.941 -3092.936
Akaike (AIC) Bayesian (BIC) Sample-size adjusted Bayesian (BIC)	6303.882 6407.474 6315.530
Root Mean Square Error of Approximation:	
RMSEA 90 Percent confidence interval - lower 90 Percent confidence interval - upper P-value RMSEA <= 0.05	0.029 0.000 0.052 0.931
Standardized Root Mean Square Residual:	
SRMR	0.043
Parameter Estimates:	
Standard errors Information Information saturated (hl) model	Standard Expected Structured

Latent Variables:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
JobSatisfation =	-					
work1	1.000				0.787	0.840
work2	1.031	0.081	12.730	0.000	0.811	0.799
work3	0.891	0.073	12.158	0.000	0.702	0.750
Wellbeing = -						
happy	1.000				0.380	0.677
mood1	1.467	0.216	6.775	0.000	0.557	0.734
mood2	0.818	0.125	6.545	0.000	0.310	0.594
DysThinking = -						
performl	1.000				0.485	0.831
perform2	1.131	0.080	14.145	0.000	0.549	0.902
approval	0.993	0.089	11.180	0.000	0.482	0.660
ConThinking = -						
beliefs	1.000				0.463	
selftalk	1.060	0.178	5.941		0.491	
imagery	1.860	0.331	5.625	0.000	0.862	0.863
Regressions:			_			
p. m	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
DysThinking -	0 120	0 070		0 074	0 100	0 100
ConThinking	-0.139	0.078	-1.787	0.074	-0.133	-0.133
Wellbeing ~	-0.377	0.065	-5.827	0.000	-0.482	-0.482
DysThinking JobSatisfation -	-0.3//	0.065	-5.82/	0.000	-0.482	-0.482
	-0.258	0.131	-1.975	0.048	-0.159	-0.159
DysThinking Wellbeing	0.805	0.131	3.995	0.048	0.388	0.388
weilbeing	0.805	0.201	3.995	0.000	0.300	0.300
Covariances:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
.happy						
.mood2	-0.044	0.018	-2.457	0.014	-0.044	-0.254
Variances:						

	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
.work1	0.259	0.042	6.175	0.000	0.259	0.295
.work2	0.372	0.050	7.454	0.000	0.372	0.361
.work3	0.382	0.044	8.651	0.000	0.382	0.437
.happy	0.171	0.025	6.716	0.000	0.171	0.542
.moodl	0.265	0.044	6.083	0.000	0.265	0.461
.mood2	0.177	0.022	8.033	0.000	0.177	0.648
.perform1	0.105	0.016	6.782	0.000	0.105	0.309
.perform2	0.069	0.017	4.042	0.000	0.069	0.186
.approval	0.300	0.029	10.185	0.000	0.300	0.564
.beliefs	0.289	0.043	6.665	0.000	0.289	0.574
.selftalk	1.017	0.097	10.441	0.000	1.017	0.808
.imagery	0.255	0.124	2.062	0.039	0.255	0.256
.JobSatisfation	0.474	0.067	7.085	0.000	0.764	0.764
.Wellbeing	0.111	0.025	4.409	0.000	0.768	0.768
.DysThinking	0.231	0.030	7.589	0.000	0.982	0.982
ConThinking	0.215	0.050	4.262	0.000	1.000	1.000

- het effect van 'constructive thinking' op 'dysfunctional thinking' is niet significant (p=.074)
- 'dysfunctional thinking' heeft wel een significant (negatief) effect op 'wellbeing' (p < .001) en op 'job satisfaction' (p = .048)
- 'well-being' heeft een significant (positief) effect op 'job satisfaction' (p < .001)

• de hypotheses van de onderzoekers worden slechts gedeeltelijk bevestigd door de data

3.4 Modelvergelijkingen

- 2 modellen zijn genest als het ene model een submodel is van het andere
- de chi-kwadraat difference χ^2_D laat toe de statistische significantie van de verbetering in de fit te onderzoeken als vrije parameters worden toegevoegd
- H_0 stelt dat de fit van beide modellen gelijk is
- $\chi_D^2 = \chi_s^2 \chi_l^2$ en $df_D = df_s df_l$ met 's' het kleiner (small) model met minder parameters en daarom meer vrijheidsgraden (df), en 'l' het groter (large) model met meer parameters en minder vrijheidsgraden
- als H_0 verworpen wordt, fit het groter model met meer vrij geschatte parameters beter dan het kleiner model dat deze parameters fixeert; als H_0 niet verworpen wordt, kunnen we kiezen voor het eenvoudiger model

Samengevat:

Model	χ_M^2	df_M	χ_D^2	df_D	RMSEA	CFI	SRMR
Measurement Model			_				
1-factor CFA	566.80 ^a	54	-	-	.190	.498	.143
4-factor CFA	62.47 ^b	48	504.32 ^a	6	.034	.986	.040
4-factor CFA with add. res.	56.66 ^C	47	5.80^{d}	1	.028	.991	.037
Structural regression model							
Just-identified model (6 paths)	56.66 ^C	47	-		.028	.991	.037
Over-identified model (4 paths)	60.01 ^e	49	$_{3.35}f$	2	.029	.989	.043

 $[\]overline{{}^{a}_{p} < 0.001, {}^{b}_{p} = .078, {}^{c}_{p} = .158, {}^{d}_{p} = .016, {}^{e}_{p} = .135, {}^{f}_{p} = .188}$

Quiz-time

Onderstaande figuur toont een CFA-model voor de 'Mental Processing Scale of the 1st Edition of Kaufman Assessment Battery for Children', een cognitieve test voor kinderen tussen 2,5 en 12,5 jaar. De ontwikkelaars van de test claimen dat de 8 subtesten voorgesteld in onderstaande figuur 2 factoren meten, 'sequential processing' en 'simultaneous processing'. De eerste 3 taken $(seq1, \ldots, seq3)$ worden verondersteld 'sequential processing' te meten, de laatste 5 taken $(sim1, \ldots, sim5)$ worden verondersteld de 'simultaneous processing' te meten.

Welk van de volgende uitspraken is correct over het voorgestelde CFA-model?

- (A) Dit is een unidimensioneel meetmodel.
- (B) Dit is een multidimensioneel meetmodel met kruisladingen maar zonder error-correlaties.
- (C) Dit is een multidimensioneel meetmodel met error-correlaties maar zonder kruisladingen.
- (D) Dit is een multidimensioneel meetmodel met error-correlaties en kruisladingen.

Referenties

Bandalos, D. L., & Finney, S. J. (2001). Item parceling issues in structural equation modeling. In G. A. Marcoulides & R. E. Schumacker (Eds.), *Advanced structural equation modeling: New developments and techniques*. Mahwah, NJ: Lawrence Erlbaum Associates, Inc.

Bollen, K. A., & Lennox, R. (1991). Conventional wisdom on measurement: A structural equation perspective. *Psychological Bulletin*, 110.

Brenning, K., Soenens, B., Braet, C. & Bosmans, G. (2011) An adaption of the Experiences in Close Relationships Scale-Revised for use with children and adolescents. *Journal of Social and Personal Relationships*, 28, 1048-1072.

Cattell, R. B. (1978). The Scientific Use of Factor Analysis in Behavioral and Life Sciences. New York: Plenum.