FALL 2025 EEL4742 - Embedded Systems - Homework 1

Q1 [20 Points]. For the questions below, write the code using the masks that are pre-defined in the header file. (e.g.,: BIT0 = 0000 0001; BIT1 = 0000 0010; ...; BIT7 = 1000 0000). Perform the operations below on the 8-bit variable (uint_8t data).

(Part a) Write code that performs the three operations below. Perform each operation independently of the others.

- Set bit 5.
- · Clear bit 5.
- Invert bit 5.

(Part b) Write code that performs the three operations below. Perform each operation independently of the others.

- · Set bits 2 and 3.
- · Clear bits 2 and 3.
- Invert bits 2 and 3.
- Set bit 2 and clear bit 3.

(Part c) Write an if-condition line for each of the cases below. Perform each operation independently of the others.

- Check if bit 4 is 1.
- · Check if bit 4 is 0.
- · Check if bits 4.5 are 1.1.
- Check if bit 4 is 0 and bit 5 is 1.
- Check if bits 4. 5 are 0.0.

Q2 [25 Points]. A module on the microcontroller is configured using a control register called CTL that has the format shown below.

SLP	CLK	CAP	IE	ı
2 bits	3bits	2bits	1 bit	

- SLP: selects sleep mode; value between 0 and 3
- CLK: selects clock speed; value between 0 and 7
- CAP: selects built-in capacitor value; choice between 0 and 3
- IE: interrupt enable bit (1: enable/ 0: disable)

To support programming the device, the environment has declared the symbolic constants:

SLP_3:	<u>11</u> 00	0000
SLP_2:	<u>10</u> 00	0000
SLP_1:	<u>01</u> 00	0000
SLP_0:	0000	0000
CLK_7:	00 <u>11</u>	<u>1</u> 000
CLK_6:	00 <u>11</u>	0000
 CLK_0:	00 <u>00</u>	<u>0</u> 000
CAP_3:	0000	0 <u>11</u> 0
 CAP_0:	0000	0 <u>00</u> 0
IE:	0000	000 <u>1</u>

Perform all the operations below using the masks defined above.

(Part a) Write a line of code that configures the module as the following: (Sleep mode 3)(Clock speed 4)(Capacitor value 1)(Interrupts enabled)

(Part b) For the operation above, show the masks used and the final value of CTL in binary.

(Part c) Write a piece of code that changes SLP to 1. The current value of SLP is unknown.

(Part d) Write an if-condition line that checks if SLP=3.

(Part e) Write an if-condition that checks if the current value of CLK is either of (0, 2, 4, 6).

Q3 [20 Points]. Answer the following questions regarding memory specification.

(Part a) A memory is byte addressable and has a 18-bit address. All the addresses are valid. What is the total size of the memory?

• (Part c) A memory is byte addressable and has a total size of 17,408 bytes (17 KB). What is the smallest address size that can be used for this memory?

Q4 [20 Points]. Answer the following questions regarding memory specification.

(Part a) A microcontroller's memory map allocates the FLASH code space to the address range [0x0500 to 0x0CFF]. What is the code size, in bytes, that is supported by this microcontroller?

(Part b) The vector table contains memory addresses (a vector is a memory address). In a certain MSP430 device, the vector table is in the range [0xFFC0 to 0xFFFF]. The memory address is 16-bit. How many vectors does this vector table support?

Homework Policies

- (I) Homework 1 is due by 11:59PM on Sunday 09/14/2025. Late submissions will be penalized unless prior arrangements have been made with the instructor. The standard late penalty is a 10% deduction for each day late. Assignments more than one week late will not be accepted unless there's an exception (with prior communication with the instructor).
- (II) All homework must be submitted electronically (PDF) via Webcourses. Ensure that your file is properly named (e.g., "Lastname_Firstname_EEL4742_HW1.pdf"). If you encounter technical issues during submission, you must notify the instructor before the due date by email.
- (III) All submitted work must be your own. Plagiarism, including copying from other students, online sources, or using GPTs, is strictly prohibited. Any instances of plagiarism will result in a zero for the assignment.
- (IV) If you believe there has been a grading error, you may request a regrade within one week of receiving your graded assignment.
- (V) Remember to show your work for full credit. If you provide only the final answer, you will earn partial credit.
- (VI) For certain assignments, you may be required to attend a check-off meeting (in-person or online) with the instructor after submission. During this meeting, you will discuss your solution, explain your approach, and answer questions about your work. Failure to attend a required check-off meeting, or inability to explain your solution, may result in a reduction of your grade for that assignment.