Universitatea Politehnica Timisoara

Camera de Interogatoriu

Proiect realizat de:
Bacer Raul
Bar Bianca

Proiectul consta in detectarea momentelor in care o persoana minte.

Daca se detecteaza astfel de momente, un ventilator va porni pentru a reduce temperatura din camera.

Ulterior, detectorul de minciuni isi va relua activitatea si va continua pana cand interogarea se termina.

Cum functioneaza

Se intampla o singura data

Calculeaza **pulsul mediu** astfel:

- Se defineste un **numar de batai de inima** (ex.: 3), cu acest numar de batai se va calcula media pulsului
- Se face o **suma** din acel numar de batai (ex.: 64+65+63=suma)
- Suma se imparte la numarul de batai si se face media pulsului (ex.: 64)

Cum functioneaza

Se intampla pana se opreste programul:

Verifica daca persoana minte:

- Se citeste pulsul actual
- Se afiseaza pe **LCD** pulsul actual si cel mediu
- Daca pulsul actual **e mai mare** cu un numar de unitati (ex.: 15) decat cel mediu, persoana **minte**; in caz contrar, spune **adevarul**

Minciuna:

- se opreste becul verde
- porneste becul rosu
- se afiseaza pe LCD textul
 "MINCIUNA"
- se afiseaza in consola textul "MINCIUNA"
- porneste ventilatorul, se va invarti pentru un numar specificat de secunde
- se opreste becul rosu
- se sterge textul de pe LCD
- porneste becul verde
- se trece la **urmatoare iteratie** a programului

Adevar:

• se trece la **urmatoarea iteratie** a programului (nu se cauta adevarul)

Componente

• placa Arduino Uno

• breadboard

• bec verde

• **bec** rosu

• senzor de puls

potentiometru

• servo-motor

• ecran LCD 16x2

Variabile si Valori folosite

//SENZOR PULS #include <PulseSensorPlayground.h> PulseSensorPlayground senzorPuls; Aici se initializeaza senzorul de puls (biblioteca este creata pentru astfel de senzori).

//MOTOR
#include <Servo.h>
Servo motor;

Aici se initializeaza servo-motorul.

//LCD #include <LiquidCrystal.h> LiquidCrystal LCD(12,11,10,9,8,7);

Aici se initializeaza LCD-ul si se conecteaza la pinii digitali specificati.

//PINI

const int pinBecV=2;

const int pinBecR=3;

const int pinMotor=4;

const int pinPuls=A0;

Acestia sunt pinii folositi si legati la placa Arduino.

//VALORI
const int secundeMotor=2;
const int bataiPentruMedie=15;
const int pragMinciuna=15;

Acestea sunt valorile folosite in program.

Ele pot fi schimbate pentru o acuratete mai mare a codului.

//PULS int puls;

int numarPuls; int sumaPuls; int pulsMediu;

//MINCIUNA int minciuna;

Acestea sunt variabilele declarate global ce vor fi folosite pe parcursul programului.

Functiile implementate

Unele functii au la final un delay mic pentru ca ceea ce se intampla pe placa sa functioneze "smooth".

citestePuls

```
void citestePuls()
{
  puls=senzorPuls.getBeatsPerMinute();
}
```

Aceasta functie are rolul de a citi pulsul curent de la incheietura mainii.

Implementeaza o alta functie din biblioteca introdusa anterior.

```
void pornesteBec(const int pinBec)
 digitalWrite(pinBec,HIGH);
 delay(10);
void opresteBec(const int pinBec)
 digitalWrite(pinBec,LOW);
 delay(10);
```

pornesteBec opresteBec

Aceste functii au rolul de a porni becul, respectiv de a il opri.

calculeazaPulsMediu

```
void calculeazaPulsMediu()
 sumaPuls=sumaPuls+puls;
 numarPuls=numarPuls+1;
 if(numarPuls==bataiPentruMedie)
  pulsMediu=sumaPuls/numarPuls;
```

Aceasta functie are rolul de a calcula pulsul mediu, proces explicat in slide-ul 3.

Abia dupa ce acesta a fost determinat, programul va incepe sa detecteze minciuni.

verificaMinciuna

```
void verificaMinciuna()
 if(puls>=pulsMediu+pragMinciuna)
  minciuna=1;
 else
  minciuna=0;
```

Aceasta functie are rolul de a observa daca persoana minte, procesul de functionare a fost explicat in slide-ul 4.

Daca pulsul indica minciuna, variabila "minciuna" va fi setata pe 1, in caz contrar pe 0.

```
void existaMinciuna()
 opresteBec(pinBecV);
 pornesteBec(pinBecR);
 scrieLCD(0,1,"MINCIUNA!",-1);
 scrieConsola("MINCIUNA!",-1);
 pornesteMotor();
 opresteBec(pinBecR);
 scrieLCD(0,1,"
                        ",-1);
 pornesteBec(pinBecV);
```

existaMinciuna

Aceasta functie are rolul de a face actiunile ce trebuiesc facute cand exista o minciuna, proces explicat in slide-ul 5.

pornesteMotor

```
void pornesteMotor()
{
  motor.write(0);
  delay(secundeMotor*1000);
  motor.write(90);
  delay(300);
}
```

Aceasta functie are rolul de a porni motorul pentru un numar specificat de secunde.

```
void scrieConsola(char* sir, int valoare)
 if(valoare!=-1)
  Serial.print(sir);
  Serial.print(valoare);
  Serial.println();
 else
  Serial.print(sir);
  Serial.println();
                                 scrieConsola
```

Aceasta functie are rolul de a scrie in consola. Daca variabila "valoare" are valoarea -1, se va scrie in consola doar variabila "sir". Daca variabila "valoare" are valoarea diferita de -1, se vor scrie in consola variabilele "sir" si "valoare".

```
void scrieLCD(int coloana, int linie, char* sir, int valoare)
 LCD.setCursor(coloana,linie);
 int i;
 for(i=0;i<16;i++)
  LCD.print(" ");
 LCD.setCursor(coloana,linie);
 if(valoare!=-1)
  LCD.print(sir);
  LCD.print(valoare);
 else
  LCD.print(sir);
 delay(10);
```

Aceasta functie are rolul de a scrie pe LCD. Daca variabila "valoare" are valoarea -1, se va scrie pe LCD

doar variabila "sir". Daca variabila "valoare" are valoarea diferita de -1, se vor scrie pe LCD variabilele "sir" si

Variabilele "coloana" si "linie" indica pozitia cursorului pe LCD.

"valoare".

scrieLCD

```
void setup()
 pinMode(pinBecV,OUTPUT); Initializez pinii cu valori de input/output.
 pinMode(pinBecR,OUTPUT);
 pinMode(pinMotor,OUTPUT);
                                                   setup
 pinMode(pinPuls,INPUT);
 senzorPuls.analogInput(pinPuls);.....Initializez senzorul de puls si il pornesc.
 senzorPuls.begin();
 motor.attach(pinMotor); ......Initializez servo-motorul.
 LCD.begin(16,2); "Pornesc LCD-ul.
 minciuna=0; ......Initializez variabilele globale:
 numarPuls=0;

    minciuna, este 1 daca exista minciuna

 sumaPuls=0;

    numarPuls, reprezinta cate batai de inima

 pulsMediu=0;
                                         au fost citite
 pornesteBec(pinBecV);

    sumaPuls, suma acelor batai citite

 Serial.begin(9600);

    pulsMediu este sumaPuls/numarPuls
```

```
void loop()
 citestePuls();.....
                          scrieConsola("Puls: ",puls);
                                                        pe LCD.
 scrieLCD(0,0,"Puls: ",puls);
 if(pulsMediu==0).....
                          Daca nu exista puls mediu (nu s-
                                           au facut destule iteratii pentru a il
  calculeazaPulsMediu();
                                                calcula), se va calcula.
                              Daca exista puls mediu:

    se scrie in consola si pe LCD

  scrieConsola("Puls mediu: ",pulsMediu);

    se verifica daca e minciuna (daca

  scrieLCD(0,0,"Puls: ",puls);
  scrieLCD(9,0,"Med: ",pulsMediu);
                                              este minciuna, se vor face actiunile
  verificaMinciuna();
                                              enumerate pe slide-ul 5)
  if(minciuna==1)
  existaMinciuna();
 scrieConsola("",-1);
 delay(500);
```

Conectarea pinilor

Servo-motor

Semnal -> 4 (Arduino Digital)

Power -> Breadboard +

Ground -> Breadboard -

Ecran LCD

```
GND -> Breadboard -
             VDD -> Breadboard +
          VO -> Mijloc (Potentiometru)
           RS -> 12 (Arduino Digital)
              RM -> Breadboard -
            E -> 11 (Arduino Digital)
           D4 -> 10 (Arduino Digital)
            D5 -> 9 (Arduino Digital)
            D6 -> 8 (Arduino Digital)
            D7 -> 7 (Arduino Digital)
BLA -> Breadboard + (si rezistenta de 220 OHM)
              BLK -> Breadboard -
```

Potentiometru

Stanga -> Breadboard Mijloc -> VO (LCD)

Dreapta -> Breadboard +

Senzor de puls

Semnal -> A0 (Arduino Analog)

Power -> Breadboard +

Ground -> Breadboard -

Arduino

Power:

5V -> Breadboard +

GND -> Breadboard -

Digital:

2 -> Bec Verde

3 -> Bec Rosu

4 -> Servo-motor

7 -> D7 (LCD)

8-> D6 (LCD)

9 -> D5 (LCD)

10 -> D4 (LCD)

11 -> E (LCD)

12 -> RS (LCD)

Analog:

A0 -> Senzor de puls

Schema proiectului

