Predicting Total Wealth: A Predictive Analysis Using the 1991 SIPP Data

Xueshan (Kevin) Peng

Introduction

Loading and Inspecting the Data

Let's take a look at the first 6 rows of the data.

```
data <- read.table('data_tr.txt', head = T)[,-1]
head(data)</pre>
```

```
##
              ira e401
                         nifa
                                 inc hmort
                                              hval hequity educ male twoearn nohs
## 1
                0
                      0
                          100 28146 60150
                                             69000
                                                       8850
                                                               12
                                                                                    0
                                                                                        1
     53550
                                                                      0
                                                                               0
                                                                                    0
## 2 124635
                      0 61010 32634 20000
                                             78000
                                                      58000
                                                                               0
                                                                                       0
                         7549 52206 15900 200000
## 3 192949 1800
                                                     184100
                                                                                    1
                                                                                       0
                                                               11
                                                                      1
                                                                               1
## 4
        -513
                         2487 45252
                                          0
                                                               15
                                                                               1
                                                                                       0
                                                           0
## 5 212087
                0
                      0 10625 33126 90000 300000
                                                     210000
                                                               12
                                                                      0
                                                                               0
                                                                                    0
                                                                                       1
      24400
                0
                         9000 76860 99600 120000
                                                      20400
                                                               15
     smcol col age fsize marr
## 1
         0
              0
                 31
                         5
## 2
          0
                         5
                               0
              1
                 52
                 50
              0
                         3
                               1
              0
                 28
## 4
          1
                               1
                         3
## 5
          0
              0
                 42
                               0
## 6
```

The variables in this dataset is defined as follows:

- tw: Total wealth (in US \$), which is defined as "net financial assets, including Individual Retirement Account (IRA) and 401(k) assets, plus housing equity plus the value of business, property, and motor vehicles"
- ira: individual retirement account (IRA) balance (in US \$).
- e401: Binary variable, where 1 indicates eligibility for a 401(k)-retirement plan, and 0 indicates otherwise.
- nifa: Non-401k financial assets (in US \$).
- inc: Income (in US \$).
- hmort: Home mortgage (in US \$).
- hval: Home value (in US \$).
- hequity: Home value minus home mortgage.
- educ: Education (in years).
- male: Binary variable, where 1 indicates male and 0 indicates otherwise.
- two earn: Binary variable, where 1 indicates two earners in the household, and 0 indicates otherwise.

- nohs, hs, smcol, col: Dummy variables for education levels no high school, high school, some college, college.
- age: Age.
- fsize: Family size.
- marr: Binary variable, where 1 indicates married and 0 indicates otherwise.

colSums(is.na(data))

```
inc
##
          tw
                  ira
                           e401
                                     nifa
                                                        hmort
                                                                   hval hequity
                                                                                        educ
                                                                                                 male
           0
                                                                                           0
##
                     0
                               0
                                         0
                                                   0
                                                             0
                                                                       0
                                                                                 0
                                                                                                     0
                 nohs
                                                col
##
   twoearn
                              hs
                                    smcol
                                                                  fsize
                                                                             marr
                                                           age
##
           0
                     0
                               0
                                         0
                                                   0
                                                             0
                                                                       0
                                                                                 0
```

any(duplicated(data))

[1] FALSE

We can see that the data is in good shape, where categorical variables are already transformed into dummy variables. We can also see that there exists multi-collinearity in education levels (**nohs**, **hs**, **smcol**, **col**) and home-ownership-related variables (**hmort**, **hval**, and **hequity**).

summary(data)

```
##
                              ira
                                                 e401
                                                                    nifa
           tw
            :-502302
##
    Min.
                        Min.
                                       0
                                           Min.
                                                   :0.0000
                                                              Min.
                                                                              0
##
    1st Qu.:
                3246
                        1st Qu.:
                                       0
                                           1st Qu.:0.0000
                                                              1st Qu.:
                                                                            200
##
    Median :
               25225
                        Median :
                                           Median :0.0000
                                                              Median:
                                                                           1687
                                       0
##
    Mean
               63629
                        Mean
                                   3471
                                           Mean
                                                   :0.3714
                                                              Mean
                                                                         13611
                                                                           8875
##
    3rd Qu.:
               82173
                        3rd Qu.:
                                       0
                                           3rd Qu.:1.0000
                                                              3rd Qu.:
            :1887115
                                :100000
##
    Max.
                        Max.
                                           Max.
                                                   :1.0000
                                                              Max.
                                                                      :1425115
##
          inc
                           hmort
                                                hval
                                                                 hequity
##
                                      0
                                                         0
                                                                     :-40000
    Min.
                 -9
                       Min.
                                          Min.
                                                             Min.
    1st Qu.: 19413
                       1st Qu.:
                                                             1st Qu.:
##
                                      0
                                          1st Qu.:
                                                         0
##
    Median : 31575
                       Median:
                                  8000
                                          Median : 50000
                                                             Median : 10000
##
            : 37177
                               : 30207
                                          Mean
                                                  : 63965
                                                                     : 33757
    Mean
                       Mean
                                                             Mean
##
    3rd Qu.: 48615
                       3rd Qu.: 52000
                                          3rd Qu.: 95000
                                                             3rd Qu.: 48000
##
    Max.
            :242124
                       Max.
                               :150000
                                          Max.
                                                  :300000
                                                             Max.
                                                                     :300000
         educ
##
                          male
                                           twoearn
                                                                nohs
##
    Min.
            : 1.0
                     Min.
                             :0.0000
                                        Min.
                                                :0.0000
                                                           Min.
                                                                   :0.0000
##
    1st Qu.:12.0
                     1st Qu.:0.0000
                                        1st Qu.:0.0000
                                                           1st Qu.:0.0000
##
    Median:12.0
                     Median :0.0000
                                        Median :0.0000
                                                           Median :0.0000
##
                                                           Mean
    Mean
            :13.2
                     Mean
                             :0.2018
                                        Mean
                                                :0.3808
                                                                   :0.1277
##
    3rd Qu.:15.0
                     3rd Qu.:0.0000
                                        3rd Qu.:1.0000
                                                           3rd Qu.:0.0000
##
    Max.
            :18.0
                     Max.
                             :1.0000
                                        Max.
                                                :1.0000
                                                           Max.
                                                                   :1.0000
##
           hs
                            smcol
                                                col
                                                                   age
##
            :0.0000
                               :0.0000
                                                  :0.0000
    Min.
                       Min.
                                          Min.
                                                                     :25.00
                                                             Min.
    1st Qu.:0.0000
                       1st Qu.:0.0000
                                          1st Qu.:0.0000
                                                             1st Qu.:32.00
##
##
    Median :0.0000
                       Median :0.0000
                                          Median :0.0000
                                                             Median :40.00
    Mean
            :0.3819
                               :0.2422
                                          Mean
                                                                     :41.08
##
                       Mean
                                                  :0.2482
                                                             Mean
##
    3rd Qu.:1.0000
                       3rd Qu.:0.0000
                                          3rd Qu.:0.0000
                                                             3rd Qu.:48.00
##
    Max.
            :1.0000
                       Max.
                               :1.0000
                                          Max.
                                                  :1.0000
                                                             Max.
                                                                     :64.00
##
        fsize
                           marr
```

```
##
    Min.
            : 1.00
                     Min.
                             :0.0000
##
    1st Qu.: 2.00
                     1st Qu.:0.0000
    Median: 3.00
                     Median :1.0000
##
            : 2.87
                             :0.6075
    Mean
                     Mean
##
    3rd Qu.: 4.00
                     3rd Qu.:1.0000
            :13.00
                             :1.0000
    Max.
                     Max.
```

While there exist observations where total wealth is negative, it should be noted that the variable includes home equity, which can be negative, so it does not necessarily indicate that there are incorrect data entries.

The variables **ira**, **nohs**, **smcol**, **col**, and **male** exhibited a value of 0 at the 3rd quantile. They are probably a significant number of data points taking on the value of 0. Since **male** is on the list, it should also be noted that most observations are associated with female participants.

Also, the variable **tw**, **nifa**, **hmort**, and **hequity** have means that are much greater than medians, showing signs of large outliers.

In the histogram below, we can visualize the existence of outliers with enormous wealth.

hist(data\$tw)

Using the graph, we can determine that removing the outliers with **tw** above \$1,000,000 would be appropriate.

```
data = subset(data, data$tw<1000000)
summary(data)

## tw ira e401 nifa</pre>
```

```
:-502302
                                                  :0.0000
##
    Min.
                       Min.
                                          Min.
                                                            Min.
##
    1st Qu.:
                3213
                       1st Qu.:
                                          1st Qu.:0.0000
                                                            1st Qu.:
                                                                        200
                                     0
                                          Median :0.0000
    Median:
               25100
                       Median:
                                     0
                                                            Median :
                                                                       1649
               61545
                                                 :0.3714
##
    Mean
                       Mean
                                  3444
                                          Mean
                                                            Mean
                                                                    : 12132
##
    3rd Qu.:
              81774
                       3rd Qu.:
                                     0
                                          3rd Qu.:1.0000
                                                            3rd Qu.:
                                                                      8771
                                                 :1.0000
##
    Max.
           : 967800
                               :100000
                                          Max.
                                                                    :898000
                       Max.
                                                            Max.
##
         inc
                           hmort
                                              hval
                                                              hequity
##
    Min.
           :
                 -9
                      Min.
                             :
                                    0
                                         Min.
                                                :
                                                       0
                                                           Min.
                                                                   :-40000
##
    1st Qu.: 19386
                      1st Qu.:
                                    0
                                         1st Qu.:
                                                       0
                                                           1st Qu.:
##
    Median : 31527
                      Median :
                                 8000
                                         Median : 50000
                                                           Median : 10000
##
    Mean
           : 37043
                              : 30152
                                         Mean
                                                : 63743
                                                           Mean
                                                                   : 33592
                      Mean
    3rd Qu.: 48543
##
                      3rd Qu.: 51750
                                         3rd Qu.: 95000
                                                           3rd Qu.: 48000
           :200997
                                                :300000
                              :150000
##
    Max.
                                                                   :300000
                      Max.
                                         Max.
                                                           Max.
                         male
                                          twoearn
                                                             nohs
##
         educ
##
    Min.
           : 1.0
                    Min.
                            :0.0000
                                      Min.
                                              :0.000
                                                        Min.
                                                               :0.0000
##
    1st Qu.:12.0
                    1st Qu.:0.0000
                                       1st Qu.:0.000
                                                        1st Qu.:0.0000
##
    Median:12.0
                    Median :0.0000
                                      Median : 0.000
                                                        Median :0.0000
    Mean
##
           :13.2
                            :0.2019
                                              :0.381
                                                               :0.1278
                    Mean
                                      Mean
                                                        Mean
##
    3rd Qu.:15.0
                    3rd Qu.:0.0000
                                      3rd Qu.:1.000
                                                        3rd Qu.:0.0000
##
    Max.
            :18.0
                            :1.0000
                                      Max.
                                              :1.000
                                                               :1.0000
##
          hs
                           smcol
                                              col
                                                                 age
##
                              :0.0000
    Min.
            :0.0000
                      Min.
                                         Min.
                                                :0.0000
                                                           Min.
                                                                   :25.00
                                                           1st Qu.:32.00
##
    1st Qu.:0.0000
                      1st Qu.:0.0000
                                         1st Qu.:0.0000
##
    Median : 0.0000
                      Median : 0.0000
                                         Median :0.0000
                                                           Median :40.00
##
    Mean
           :0.3822
                      Mean
                              :0.2422
                                         Mean
                                                :0.2478
                                                           Mean
                                                                   :41.06
##
    3rd Qu.:1.0000
                      3rd Qu.:0.0000
                                         3rd Qu.:0.0000
                                                           3rd Qu.:48.00
           :1.0000
                              :1.0000
                                                :1.0000
                                                                   :64.00
##
    Max.
                      {\tt Max.}
                                         Max.
                                                           Max.
##
        fsize
                           marr
##
   Min.
           : 1.00
                     Min.
                             :0.0000
    1st Qu.: 2.00
                     1st Qu.:0.0000
##
    Median: 3.00
                     Median :1.0000
##
    Mean
           : 2.87
                     Mean
                             :0.6071
##
    3rd Qu.: 4.00
                     3rd Qu.:1.0000
##
    Max.
            :13.00
                             :1.0000
                     Max.
```

Testing and Removing Multi-collinearity

Let's test whether removing different educational level predictors affect my model's performance, gauged by (MSPE). For simplicity sake, I did not use k-fold cross validation.

```
k <- 10
set.seed(123)
rand <- sample(nrow(data), floor(nrow(data)/k))
train <- setdiff(c(1:nrow(data)), rand)
y_rand <- data$tw[rand]

regnohs <- lm(tw ~ 1 + hs + smcol + col, data = data[train,])
reghs <- lm(tw ~ 1 + nohs + smcol + col, data = data[train,])
regsmcol <- lm(tw ~ 1 + nohs + hs + col, data = data[train,])
regcol <- lm(tw ~ 1 + nohs + hs + smcol, data = data[train,])

prnohs <- predict(regnohs, newdata = data[rand,])
prhs <- predict(reghs, newdata = data[rand,])</pre>
```

```
prsmcol <- predict(regsmcol, newdata = data[rand,])
prcol <- predict(regcol, newdata = data[rand,])

MSEnohs <- mean((y_rand-prnohs)^2)
MSEhs <- mean((y_rand-prhs)^2)
MSEsmcol <- mean((y_rand-prsmcol)^2)
MSEcol <- mean((y_rand-prcol)^2)

c(MSEnohs, MSEhs, MSEsmcol, MSEcol)</pre>
```

[1] 9119936474 9119936474 9119936474 9119936474

No difference in performance is found between removing different terms for multi-collinearity. For interpretability, we choose to remove **hs** for education level.

More Feature Selections

Since **hequity** represents home value minus home mortgage, it is intuitively a better predictor of total wealth than **hval** or **hmort** itself. Hence, choosing **hequity** over **hval** and **hmort** is the more sensible choice.

Including years of education (educ) along with education levels is redundant. Considering that diplomas are usually much more important than years of education, prioritizing education level over years of education is appropriate.

```
data <- data[, !(names(data) %in% c("hs", "hval", "hmort", "educ"))]</pre>
```

Creating a Linear Baseline Model

Using Lasso and Forward/Backward Stepwise Selection

We will strive to create a linear baseline model. This will serve as a baseline to compare to when we later add nonlinear transformations and interaction terms.

For this approach, we are going to include all the features in the dataset. We will let the feature selection algorithms, Lasso and Stepwise Selection, to select the features for us.

For better accuracy, I employed 10-fold cross validation. Leave-one-out cross validation would yield a even more accurate result, but doing so on a dataset containing 7919 observations would take too much computational power.

```
library(MASS)
library(glmnet)

n <- nrow(data)
k <- 10
set.seed(123)
id <- sample(rep(1:k, length=n))
MSPE.stepwise_backward <- MSPE.stepwise_forward <- MSPE.lasso <- rep(NA, k)

for (f in 1:k){
   test <- (id == f)</pre>
```

```
train <- (id != f)
  # Stepwise
  full <- lm(tw ~ ., data=data[train,])</pre>
  null <- lm(tw ~ 1, data=data[train,])</pre>
  forward <- stepAIC(null, scope=list(lower=null, upper=full), trace = FALSE, direction='forward')</pre>
  backward <- stepAIC(full, scope=list(lower=null, upper=full), trace = FALSE, direction='backward')</pre>
  pr.stepwise_forward <- predict(forward, newdata=data[test,])</pre>
  pr.stepwise_backward <- predict(backward, newdata=data[test,])</pre>
  # Lasso
  response_var <- "tw"
  y <- data[[response_var]]</pre>
  X <- as.matrix(data[ , !(names(data) %in% response_var)])</pre>
  X.train <- as.matrix(X[train,])</pre>
  y.train <- y[train]</pre>
  X.test <- X[test,]</pre>
  lasso.cv <- cv.glmnet(x = X.train, y = y.train, nfolds = k, alpha = 1)</pre>
  lasso <- glmnet(x = X.train, y = y.train, lambda = lasso.cv$lambda.min, alpha = 1)</pre>
  pr.lasso <- predict(lasso, newx=X.test)</pre>
  # MSPE
  MSPE.stepwise_forward[f] <- mean((y[test] - pr.stepwise_forward)^2)</pre>
  MSPE.stepwise_backward[f] <- mean((y[test] - pr.stepwise_backward)^2)</pre>
  MSPE.lasso[f] <- mean((y[test] - pr.lasso)^2)</pre>
}
# Check MSPE
c(mean(MSPE.lasso), mean(MSPE.stepwise_forward), mean(MSPE.stepwise_backward))
```

[1] 1427662119 1427849850 1427849850

As shown in the results above, Lasso yielded a lower MSPE than forward or backward stepwise selection.

Let's now inspect the coefficients that Lasso chose and their associated p-values.

Since Lasso performs both variable selection and shrinkage, leading to biased coefficient estimates, traditional significance tests for coefficients (like p-values) are not straightforwardly available. Therefore, we use the hdi (High Dimensional Inference) package to approximate the p-values.

```
library(hdi)

response_var <- "tw"
y <- data[[response_var]]
X <- as.matrix(data[ , !(names(data) %in% response_var)])

lasso_cv <- cv.glmnet(X, y, alpha = 1)
best_lambda <- lasso_cv$lambda.min

lasso_model <- glmnet(X, y, lambda = best_lambda, alpha = 1)</pre>
```

```
lasso_inference <- hdi::lasso.proj(X, y)</pre>
print(lasso_inference$pval)
                         e401
                                      nifa
                                                               hequity
##
            ira
                                                     inc
## 7.802417e-203 6.990767e-18 0.000000e+00 6.008738e-24 0.000000e+00
          \mathtt{male}
                 twoearn
                                      nohs
                                                   smcol
## 1.497555e-03 1.286912e-07 8.743909e-01 2.139569e-01 8.645575e-01
                        fsize
            age
## 9.360306e-08 7.926808e-01 5.224558e-02
print(coef(lasso_model))
## 14 x 1 sparse Matrix of class "dgCMatrix"
                         s0
## (Intercept) -1.576371e+04
## ira
              1.606418e+00
## e401
              7.935739e+03
## nifa
             1.102051e+00
## inc
              2.500733e-01
## hequity
             1.081333e+00
## male
              3.169643e+03
```

twoearn -5.386380e+03

1.006324e+03

2.470886e+02

1.473061e+03

nohs ## smcol

col

age ## fsize ## marr