FONCTIONS VECTORIELLES

Continuité

Solution 1

- 1. En considérant sa dérivée, on montre que l'application $\varphi: x \in \mathbb{R} \mapsto e^x x$ est décroissante sur \mathbb{R}_+ et croissante sur \mathbb{R}_+ . Elle admet donc un minimum en 0. Puisque $\varphi(0) = 1$, φ est strictement positive sur \mathbb{R} et en particulier, ne s'annule pas sur \mathbb{R} . L'exponentielle n'admet donc pas de point fixe sur \mathbb{R} .
- 2. On sait que $\tan x \sim x$ donc $\lim_{x\to 0} \frac{x}{\tan x} = 1$ puis $\lim_{x\to 0} \exp\left(\frac{x}{\tan x}\right) = e$. De même, $\sin x \sim x$ donc $\lim_{x\to 0} \frac{x}{\sin x} = 1$. Ainsi $\lim_{x\to 0} f(x) = e 1$.

On sait que $\lim_{x \to \frac{\pi}{2}} \tan x = \pm \infty$ donc $\lim_{x \to \frac{\pi}{2}} \frac{x}{\tan x} = 0$ puis $\lim_{x \to \frac{\pi}{2}} e^{\frac{x}{\tan x}} = 1$. Puisque $x \mapsto \frac{x}{\sin x}$ est continue en $\frac{\pi}{2}$, $\lim_{x \to \frac{\pi}{2}} \frac{x}{\sin x} = \frac{\pi}{2}$. Ainsi $\lim_{x \to \frac{\pi}{2}} f(x) = 1 - \frac{\pi}{2}$.

3. Tout d'abord, e - 1 > 0 car $e \ge 2$ et $1 - \frac{\pi}{2} < 0$ car $\pi \ge 3$.

Puisque tan ne s'annule pas sur $\left]0, \frac{\pi}{2}\right[, x \mapsto \frac{x}{\tan x}$ est continue sur $\left]0, \frac{\pi}{2}\right[$. Puisque $x \mapsto e^x$ est continue sur $\left[0, \frac{\pi}{2}\right]$.

Comme sin ne s'annule pas sur $\left]0, \frac{\pi}{2}\right[, x \mapsto \frac{x}{\sin x}$ est continue sur $\left]0, \frac{\pi}{2}\right[$.

Ainsi f est continue sur $\left]0, \frac{\pi}{2}\right[$ comme différence de deux fonctions continues sur $\left]0, \frac{\pi}{2}\right[$.

Puisque $\lim_0 f > 0$ et $\lim_{\frac{\pi}{2}} f < 0$, f s'annule sur $\left]0, \frac{\pi}{2}\right[$ en vertu du théorème des valeurs intermédiaires. Il existe donc $b \in \left]0, \frac{\pi}{2}\right[$ tel que f(b) = 0.

4. Tout d'abord,

$$e^z = e^a e^{ib} = e^a (\cos b + i \sin b) = e^a (1 + i \tan b) \cos b = e^a \left(1 + i \frac{b}{a} \right) \cos b = \frac{e^a \cos b}{a} (a + ib) = \frac{e^a \cos b}{a} z$$

Puisque f(b) = 0, $e^a = \frac{b}{\sin b}$. Ainsi

$$\frac{e^a \cos b}{a} = \frac{b}{a \tan b} = 1$$

D'où $e^z = z$.

Solution 2

f est bijective puisque c'est une involution. Puisqu'elle est continue sur l'intervalle \mathbb{R}_+ , elle y est strictement monotone. Si f était strictement décroissante, on aurait $f(x) \leq f(0)$ pour tout $x \in \mathbb{R}_+$, ce qui contredirait la surjectivité de f. Ainsi f est strictement croissante. Soit alors $x \in \mathbb{R}_+$. Supposons que $f(x) \neq x$. On a donc f(x) > x ou f(x) < x. Si f(x) > x, alors $f \circ f(x) > f(x)$ par stricte croissance de f et donc f(x) > f(x) par s

On peut alors conclure que $f = Id_{\mathbb{R}_+}$.

Solution 3

Comme D est un hyperplan affine de \mathbb{R}^2 , il existe une forme linéaire φ sur \mathbb{R}^2 et un réel α tels que $\forall x \in \mathbb{R}^2$, $x \in D \iff \varphi(x) = \alpha$. L'application $\varphi \circ f$ est continue sur I et, quitte à échanger a et b, on peut supposer $\varphi \circ f(a) > \alpha$ et $\varphi \circ f(b) < \alpha$. En appliquant le théorème des valeurs intermédiaires, il existe $c \in I$ tel que $\varphi \circ f(c) = \alpha$ i.e. $f(c) \in D$.

Solution 4

1. De l'inclusion $I \subset f(I)$, on déduit l'existence de c et d appartenant à [a,b] tels que f(c)=a et f(d)=b. f prend donc les valeurs a et b sur I.

1

2. Notons g l'application définie par g(t) = f(t) - t pour $t \in [a, b]$. Nous avons $g(c) = f(c) - c = a - c \le 0$ et $g(d) = f(d) - d = b - d \ge 0$. D'après le théorème des valeurs intermédiaires, il existe $t_0 \in [c, d]$ tel que $g(t_0) = 0$, c'est-à-dire $f(t_0) = t_0$. f admet donc un point fix sur I.

Solution 5

Soit $g: x \mapsto f(x) - x$.

Puisque f est décroissante, f admet une limite finie ou une limite égale à $-\infty$ en $+\infty$. Dans les deux cas, $\lim_{+\infty} g = -\infty$.

De même, f admet une limite finie ou une limite égale à $+\infty$ en $-\infty$. Dans les deux cas, $\lim_{\infty} g = +\infty$.

Comme g est continue, g s'annule sur \mathbb{R} d'après le théorème des valeurs intermédiaires.

De plus, g est strictement décroissante donc injective. Elle s'annule donc exactement une fois, ce qui prouve que f admet un unique point fixe.

Dérivabilité

Solution 6

Soit M une telle application. Tout d'abord,

$$M(0) = M(0+0) = M(0)^2$$

Donc M(0) est une matrice de projecteur.

De plus, pour $(t, h) \in \mathbb{R} \times \mathbb{R}^*$:

$$\frac{\mathbf{M}(t+h)-\mathbf{M}(t)}{h} = \frac{(\mathbf{M}(h)-\mathbf{M}(0))\mathbf{M}(t)}{h} \xrightarrow[h\to 0]{} \mathbf{M}'(0)\mathbf{M}(t)$$

Donc M est dérivable sur \mathbb{R} et pour tout $t \in \mathbb{R}$, M'(t) = M'(0)M(t) pour tout $t \in \mathbb{R}$. De même,

$$\frac{\mathsf{M}(t+h)-\mathsf{M}(t)}{h} = \frac{\mathsf{M}(t)(\mathsf{M}(h)-\mathsf{M}(0))}{h} \xrightarrow[h\to 0]{} \mathsf{M}(t)\mathsf{M}'(0)$$

Donc pour tout $t \in \mathbb{R}$, M'(t) = M(t)M'(0).

Posons A = M'(0) et considérons alors l'application $N : t \mapsto M(t) \exp(-tA)$. Comme le produit matriciel est bilinéaire, N est également dérivable sur \mathbb{R} et

$$\forall t \in \mathbb{R}, \ N'(t) = M'(t) \exp(-tA) - M(t)A \exp(-tA) = 0$$

On en déduit que N est constante égale à N(0) = M(0). Par conséquent, $M(t) = M(0) \exp(tA)$ pour tout $t \in \mathbb{R}$.

Ce qui précède montre également que M(t) et A commutent pour tout $t \in \mathbb{R}$. Notamment M(0) et A commutent.

Réciproquement, soit $A \in \mathcal{M}_n(\mathbb{R})$ et $M_0 \in \mathcal{M}_n(\mathbb{R})$ une matrice de projecteur commutant avec A. Par conséquent, M_0 et $\exp(tA)$ commutent pour tout $t \in \mathbb{R}$. Posons $M: t \mapsto M_0 \exp(tA)$.

$$\forall (s,t) \in \mathbb{R}^2, \ M(s)M(t) = M_0 \exp(sA)M_0 \exp(tA) = M_0^2 \exp(sA) \exp(tA) = M_0 \exp((s+t)A) = M(s+t)$$

Finalement, les applications recherchées sont les applications t: $M_0 \exp(tA)$ avec $A \in \mathcal{M}_n(\mathbb{R})$ et $M_0 \in \mathcal{M}_n(\mathbb{R})$ une matrice de projecteur commutant avec A.

Solution 7

Supposons que A^T possède nécessairement une valeur propre λ strictement positive. Notons u un vecteur propre associé. Posons $\varphi(t) = u^T x(t)$. Comme $\ell : y \in \mathcal{M}_{n,1}(\mathbb{R}) \mapsto u^T y$ est une forme linéaire, φ est également de classe \mathcal{C}^1 et

$$\forall t \in \mathbb{R}, \ \varphi'(t) = u^{\mathsf{T}} x'(t) = u^{\mathsf{T}} A x(t) = (A^{\mathsf{T}} u)^{\mathsf{T}} x(t) = \lambda u^{\mathsf{T}} x(t) = \lambda \varphi(t)$$

Ainsi $\varphi(t) = \varphi(0)e^{\lambda t}$ pour tout $t \in \mathbb{R}$. Mais comme $\lim_{t \to +\infty} x(t) = 0$, $\lim_{t \to +\infty} \varphi(t) = 0$. On ne peut avoir $\varphi(0) \neq 0$ sinon $\lim_{t \to +\infty} \varphi(t) = \pm \infty$ puisque $\lambda > 0$. Ainsi $\varphi(0) = 0$ puis $\varphi(t) = 0$ pour tout $t \in \mathbb{R}$, ou encore $\ell(x(t)) = 0$ pour tout $t \in \mathbb{R}$.

Si A^{\dagger} ne possède aucune valeur propre strictement positive, on peut néanmoins affirmer que A^{\dagger} possède une valeur propre complexe λ non réelle de partie réelle strictement positive car $tr(A^{\dagger}) = tr(A) > 0$. On note à nouveau u un vecteur propre associé.

\$

ATTENTION! u est un vecteur à coefficients complexes donc on va devoir raisonner un peu différemment que dans le cas précédent.

Comme précédemment, $\varphi(t) = \varphi(0)e^{\lambda t}$ pour tout $t \in \mathbb{R}$. A nouveau, $\lim_{t \to +\infty} \varphi(t) = 0$ car $\lim_{t \to +\infty} x(t) = 0$. Si $\varphi(0) \neq 0$, $|\varphi(t)| = |\varphi(0)|e^{\operatorname{Re}(\lambda)t} \underset{t \to +\infty}{\longrightarrow} +\infty$ donc $\varphi(0) = 0$ puis $\varphi(t) = 0$ pour tout $t \in \mathbb{R}$. On ne peut plus poser $\lambda : y \mapsto u^{\mathsf{T}}y$ car λ serait alors à valeurs dans \mathbb{C} et ne serait pas une forme linéaire sur $\mathcal{M}_{n,1}(\mathbb{R})$. Néanmoins, il existe $(v,w) \in \mathcal{M}_{n,1}(\mathbb{R})^2$ tel que u = v + iw. Comme $u^{\mathsf{T}}x(t) = 0$ pour tout $t \in \mathbb{R}$ et que x est à valeurs dans $\mathcal{M}_{n,1}(\mathbb{R})$, $v^{\mathsf{T}}x(t) = w^{\mathsf{T}}x(t) = 0$ pour tout $t \in \mathbb{R}$. On peut donc poser au choix $\lambda : y \mapsto v^{\mathsf{T}}y$ ou $\lambda : y \mapsto w^{\mathsf{T}}y$.

Solution 8

1. En développant par rapport à la dernière ligne,

$$\forall x \in \mathbb{R}, \ \Delta(x) = (f(b)g(x) - g(b)f(x)) - (f(a)g(x) - g(a)f(x)) + (f(a)g(b) - g(a)f(b))$$

Comme f et g sont continues sur [a,b] et dérivables sur [a,b[, Δ l'est également. De plus,

$$\forall x \in]a, b[, \Delta'(x) = (f(b)g'(x) - g(b)f'(x)) - (f(a)g'(x) - g(a)f'(x)) = (f(b) - f(a))g'(x) - (g(b) - g(a))f'(x)$$

2. Par caractère alterné du déterminant, $\Delta(a) = \Delta(b) = 0$. On peut alors appliquer le théorème de Rolle : il existe $c \in]a,b[$ tel que $\Delta'(c) = 0$ i.e. (g(b) - g(a)) f'(c) = (f(b) - f(a)) g'(c).

Solution 9

Remarquons déjà que $f(0) = f(2 \times 0) = 2f(0)$ et donc $f(0) = 0_E$.

On montre alors aisément par récurrence que pour tout $x \in \mathbb{R}$ et tout $n \in \mathbb{N}$, $f\left(\frac{x}{2^n}\right) = \frac{f(x)}{2^n}$. Par conséquent, pour tout $x \in \mathbb{R}^*$,

$$\frac{f(x)}{x} = \frac{f(x/2^n) - f(0)}{x/2^n - 0} \xrightarrow[n \to +\infty]{} f'(0)$$

Ainsi f(x) = xf'(0) pour tout $x \in \mathbb{R}$ (déjà montré pour x = 0) : f est bien linéaire.

Solution 10

- 1. Comme A commute avec B, on montre sans peine que A commute avec B^k pour tout $k \in \mathbb{N}$ puis que A commute avec P(B) pour tout $P \in \mathbb{K}[X]$ i.e. A commute avec tout élément de $\mathbb{K}[B]$. On propose alors deux méthodes pour conclure. **Première méthode.** Posons $S_p = \sum_{k=0}^{B^k} \frac{B^k}{k!} \in \mathbb{K}[B]$. Alors $AS_p = S_pA$ pour tout $p \in \mathbb{N}$. Comme les applications $X \in \mathcal{M}_n(\mathbb{R}) \mapsto AX$ et $X \in \mathcal{M}_n(\mathbb{R}) \mapsto XA$ sont des endomorphismes d'un espace vectoriel de dimension finie, elles sont continues. Puisque $\lim_{p \to +\infty} S_p = \exp(B)$, on obtient en passant à la limite $A \exp(B) = \exp(B)A$.
 - **Deuxième méthode.** $\mathbb{K}[B]$ est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{K})$ qui est de dimension finie. Ainsi $\mathbb{K}[B]$ est fermé. Notamment, $\exp(B) = \lim_{p \to +\infty} S_p \in \mathbb{K}[B]$. On en déduit que A commute avec $\exp(B)$.
- 2. Les applications $t \mapsto \exp(t(A+B))$, $t \mapsto \exp(-tB)$ et $t \mapsto \exp(-tA)$ sont dérivables de dérivées respectives $t \mapsto (A+B)\exp(t(A+B))$, $t \mapsto -B\exp(-tB)$ et $t \mapsto -A\exp(-tA)$. Comme l'application $(M, N, P) \in \mathcal{M}_n(\mathbb{K})^3 \mapsto MNP$ est trilinéaire, φ est dérivable et

$$\forall t \in [0,1], \ \varphi'(t) = (A+B) \exp(t(A+B)) \exp(-tA) \exp(-tB) - \exp(t(A+B)) \exp(-tB) \exp(-tA) - \exp(t(A+B)) \exp(-tA) \exp(-tA)$$

Remarque. Le programme donne seulement un résultat pour les applications bilinéaires mais on l'étend facilement par récurrence à des applications multilinéaires.

Il est clair que B commute avec t(A + B) et que A commute avec -tB et t(A + B) donc la question précédente montre que

$$\forall t \in [0,1], \ \varphi'(t) = (A+B) \exp(t(A+B)) \exp(-tA) \exp(-tB) - A \exp(t(A+B)) \exp(-tA) \exp(-tB) - B \exp(t(A+B)) \exp(-tA) \exp(-tB) = C$$

3. φ est donc constante sur l'intervalle [0, 1]. En particulier,

$$\exp(A + B) \exp(-B) \exp(-A) = \varphi(1) = \varphi(0) = I_n$$

En posant ψ : $t \in [0,1] \mapsto \exp(-tA) \exp(tA)$, on montre de la même manière que ψ est de classe \mathcal{C}^1 sur [0,1] et que

$$\forall t \in [0, 1], \ \psi'(t) = -A \exp(-tA) \exp(tA) + \exp(-tA)A \exp(tA)$$

Comme A commute avec -tA, A commute avec $\exp(-tA)$ et ψ' est nulle sur [0,1]. Ainsi $\psi(1) = \psi(0)$ donc $\exp(-A)\exp(A) = I_n$. De même, $\exp(-B)\exp(B) = I_n$. En multipliant à droite par l'égalité $\exp(A+B)\exp(-B)\exp(-A) = \varphi(1) = I_n$ par $\exp(A)\exp(B)$, on obtient alors le résultat voulu.

Solution 11

Notons \mathcal{B} une base de \mathbb{R}^2 et posons $\varphi(t) = \det_{\mathcal{B}}(f(t), f(b) - f(a))$. Comme f est continue sur [a, b] (resp. dérivable sur [a, b] et $x \in \mathbb{R}^2 \mapsto \det(x, f(b) - f(a))$ est linéaire, φ est continue sur [a, b] (resp. dérivable sur [a, b]). De plus,

$$\varphi(b) - \varphi(a) = \det_{\mathcal{B}}(f(b), f(b) - f(a)) - \det_{\mathcal{B}}(f(a), f(b) - f(a)) = \det_{\mathcal{B}}(f(b) - f(a), f(b) - f(a)) = 0$$

D'après le théorème de Rolle, il existe $c \in]a, b[$ tel que $\varphi'(c) = 0$. Or

$$\forall t \in]a, b[, \varphi'(t) = \det_{\mathcal{B}}(f'(t), f(b) - f(a))$$

donc

$$\varphi'(c) = \det_{\mathcal{B}}(f'(c), f(b) - f(a)) = 0$$

donc f'(c) est colinéaire à f(b) - f(a).

Solution 12

1. Soit $u: t \in I \mapsto f(t) \land f'(t)$. Comme le produit vectoriel est bilinéaire et que f et f' sont de classe \mathcal{C}^1 sur I, u est de classe \mathcal{C}^1 sur I et

$$\forall t \in \mathcal{I}, \ u'(t) = f'(t) \wedge f'(t) + f(t) \wedge f''(t) = 0_{\mathbb{R}^3}$$

car f'(t) est colinéaire avec lui-même de même et f''(t) est colinéaire avec f(t). On en déduit que u est constante sur I. Comme $(f(t_0), f'(t_0))$ est libre, $u(t_0) \neq 0_{\mathbb{R}^3}$. Pour tout $t \in I$, f(t) est orthogonal à $u(t) = u(t_0)$. Ainsi f est à valeurs dans le plan vectoriel admettant $u(t_0)$ comme vecteur normal.

2. Notons \mathcal{B} une base orthonormale du plan précédent. Alors l'aire A(t) du triangle défini dans l'énoncé et $A(t) = \frac{1}{2} \det_{\mathcal{B}}(f(t), f'(t))$. Comme $\det_{\mathcal{B}}$ est bilinéaire, on montre comme précédement que A est de classe \mathcal{C}_1 sur I et que

$$\forall t \in I, \ A'(t) = \frac{1}{2} \det_{\mathcal{B}}(f'(t), f'(t)) + \det_{\mathcal{B}}(f(t), f''(t)) = 0$$

pour les mêmes raisons que précédemment. Ainsi A est constante sur I.

Solution 13

1. Soit HR(*n*) l'hypothèse de récurrence :

«Il existe un polynôme
$$P_{n-1}$$
 tel que $\forall x \in \mathbb{R}, f^{(n)}(x) = \frac{P_{n-1}(x)}{(1+x^2)^n}$.»

HR(1) est vraie : il suffit de prendre $P_0 = 1$.

Supposons HR(n) pour un certain $n \ge 1$. Alors pour $x \in \mathbb{R}$:

$$f^{(n+1)}(x) = \frac{P'_{n-1}(x)}{(1+x^2)^n} - \frac{2nxP_{n-1}(x)}{(1+x^2)^{n+1}} = \frac{(1+x^2)P'_{n-1}(x) - 2nxP_{n-1}(x)}{(1+x^2)^{n+1}}$$

Il suffit donc de prendre $P_n = (1 + X^2)P'_{n-1} - 2nXP_{n-1}$.

Par récurrence, HR(n) est vraie pour tout $n \in \mathbb{N}^*$.

Si P_{n-1} et Q_{n-1} sont deux polynômes vérifiant la condition de l'énoncé, alors ils coïncident sur \mathbb{R} . Ils sont donc égaux. D'où l'unicité.

2. Commençons par la parité. Soit HR(n) l'hypothèse de récurrence :

« P_n a la parité de n.»

HR(0) est vraie puisque $P_0 = 0$ est pair. Supposons HR(n-1) pour un certain $n \ge 1$.

• Si n est pair, n-1 est impair donc P_{n-1} est impair d'après HR(n-1). Mais alors P'_{n-1} et XP_{n-1} sont pairs. Or $P_n = (1+X^2)P'_{n-1} - 2nXP_{n-1}$ donc P_n est pair.

• Si n est impair, n-1 est pair donc P_{n-1} est pair d'après HR(n-1). Mais alors P'_{n-1} et XP_{n-1} sont impairs. Or $P_n = (1+X^2)P'_{n-1} - 2nXP_{n-1}$ donc P_n est impair.

Donc HR(n) est vraie. Par récurrence, HR(n) est vraie pour tout $n \in \mathbb{N}$.

Occupons-nous maintenant du degré et du coefficient dominant. Soit HR(n) l'hypothèse de récurrence :

«deg $P_n = n$ et le coefficient dominant de P_n est (n + 1)! si n est pair, -(n + 1)! si n est impair.»

HR(0) est vraie puisque $P_0 = 1$. Supposons HR(n-1) pour un certain $n \ge 1$. On a donc deg $P_{n-1} = n - 1$.

- Si n est pair, n-1 est impair et le coefficient dominant de P_{n-1} est -n!. On a deg $P'_{n-1} = n-2$ (éventuellement $-\infty$ si n=1) et le coefficient dominant de P'_{n-1} est -(n-1)n! (pas de coefficient dominant si n=1). Donc deg $(1+X^2)P'_{n-1} = n$ (éventuellement $-\infty$ si n=1) et le coefficient dominant de $(1+X^2)P'_{n-1}$ est -(n-1)n! (pas de coefficient dominant si n=1). De même, deg $2nXP_{n-1} = n$ et le coefficient dominant de $2nXP_{n-1}$ est -2nn!. Puisque $-(n-1)n! + 2nn! = (n+1)! \neq 0$, on en déduit que deg $P_n = n$ et que le coefficient dominant de P_n est (n+1)!.
- Si n est impair, n-1 est pair et le coefficient dominant de P_{n-1} est n!. On a deg $P'_{n-1}=n-2$ (éventuellement $-\infty$ si n=1) et le coefficient dominant de P'_{n-1} est (n-1)n! (pas de coefficient dominant si n=1). Donc deg $(1+X^2)P'_{n-1}=n$ (éventuellement $-\infty$ si n=1) et le coefficient dominant de $(1+X^2)P'_{n-1}$ est (n-1)n! (pas de coefficient dominant si n=1). De même, deg $2nXP_{n-1}=n$ et le coefficient dominant de $2nXP_{n-1}$ est 2nn!. Puisque $(n-1)n!-2nn!=-(n+1)!\neq 0$, on en déduit que deg $P_n=n$ et que le coefficient dominant de P_n est -(n+1)!.

Ainsi HR(n) est vraie. Par conséquent, HR(n) est vraie pour tout $n \in \mathbb{N}$.

- 3. Comme deg $P_{n-1}=n-1<2n$ pour $n\geq 1$, $P_{n-1}(x)=\sum_{x\to \pm\infty}(1+x^2)^n$. On en déduit que $\lim_{x\to \pm\infty}f^{(n)}(x)=0$ pour tout $n\geq 1$.
- **4.** Remarquons tout d'abord que les zéros de $f^{(n)}$ sont les zéros de P_{n-1} . Soit HR(n) l'hypothèse de récurrence :

 $\ll f^{(n)}$ s'annule au moins n-1 fois.»

HR(1) est évidemment vraie. Supposons HR(n) pour un certain $n \ge 1$. Si n = 1, $\lim_{x \to +\infty} f^{(2)}(x) = 0$, donc $f^{(2)}$ s'annule au moins une fois sur \mathbb{R} d'après une généralisation classique du théorème de Rolle. Si n > 1, $f^{(n)}$ possède au moins n - 1 zéros que nous noterons $x_1 < \dots < x_{n-1}$. En appliquant le théorème de Rolle à $f^{(n)}$ sur chacun des intervalles $[x_i, x_{i+1}]$, on montre que $f^{(n+1)}$ s'annule au moins une fois sur chacun des intervalles $]x_i, x_{i+1}[$. En appliquant la même généralisation du théorème de Rolle à $f^{(n)}$ sur les intervalles $]-\infty, x_1[$ et $[x_{n-1}, +\infty[$, on montre que $f^{(n+1)}$ s'annule au moins une fois sur chacun des intervalles $]-\infty, x_1[$ et $]x_{n-1}, +\infty[$. On fait le compte : on a monté que $f^{(n+1)}$ s'annule au moins n fois. Ainsi HR(n) est vraie. Par récurrence HR(n) est vraie pour tout $n \ge 1$. Comme les zéros de $f^{(n+1)}$ sont les zéros de $f^{(n+1)}$ sont les zéros de $f^{(n+1)}$ on a prouvé que $f^{(n+1)}$ admet au plus $f^{(n)}$ racines comptées avec multiplicité. On en déduit que toutes les racines de $f^{(n)}$ sont réelles et simples.

Solution 14

1. On note HR(n) la propriété à démontrer.

 $\mathrm{HR}(0)$ est vraie en posant $\mathrm{P}_0=1$. Supposons $\mathrm{HR}(n)$ vraie pour un certain $n\in\mathbb{N}$. Alors il existe $\mathrm{P}_n\in\mathbb{R}[\mathrm{X}]$ tel que

$$\forall t \in \mathbb{R}_{+}^{*}, \ f^{(n)}(t) = \frac{P_{n}(t)e^{-\frac{1}{t}}}{t^{2n}}$$

En dérivant, on obtient

$$\forall t \in \mathbb{R}_{+}^{*}, \ f^{(n+1)}(t) = \frac{\left(t^{2} P_{n}'(t) - 2nt P_{n}(t) + P_{n}(t)\right) e^{-\frac{1}{t}}}{t^{2(n+1)}}$$

En posant $P_{n+1} = X^2 P'_n - 2nX P_n + P_n$, on e donc

$$\forall t \in \mathbb{R}_+^*, \ f^{(n+1)}(t) = \frac{P_{n+1}(t)e^{-\frac{1}{t}}}{t^{2(n+1)}}$$

Ainsi HR(n + 1) est vraie.

Par récurrence, HR(n) est vraie pour tout $n \in \mathbb{N}$.

2. Notons g la restriction de f à \mathbb{R}^* . g est clairement de classe \mathcal{C}^{∞} sur \mathbb{R}^* par opérations sur les fonctions de classe \mathcal{C}^{∞} . Soit $n \in \mathbb{N}$. Par croissances comparées, $\lim_{t \to 0^+} g^{(n)}(t) = 0$ et on a évidemment $\lim_{t \to 0^-} g^{(n)}(t) = 0$ puisque $g^{(n)}$ est nulle sur \mathbb{R}^* . Ainsi $\lim_{t \to 0} g^{(n)}(t) = 0$. Ceci prouve que g est prolongeable par continuité en 0 en une fonction de classe \mathcal{C}^{∞} sur \mathbb{R} . Mais puisque f est continue en 0 (étudier les limites en 0^+ et 0^-), f = g et donc f est de classe \mathcal{C}^{∞} sur \mathbb{R} .

Solution 15

Notons a et b les abscisses respectives de A et B. Pour simplifier, nous supposerons a < b. Le fait que B soit sur la tangente à C en A se traduit par :

$$f(b) = f(a) + f'(a)(b-a)$$
 ou encore $\frac{f(b) - f(a)}{b-a} = f'(a)$

De même, on cherche donc un point M d'abscisse c vérifiant :

$$f(a) = f(c) + f'(c)(a - c)$$

Définissons une fonction g sur I par $\begin{cases} g(x) = \frac{f(x) - f(a)}{x - a} & \text{pour } x \in I \setminus \{a\} \\ g(a) = f'(a) \end{cases}$ gest continue sur [a, b] comme quotient de fonctions continues

dont le dénominateur ne s'annule pas. Comme f est dérivable en a, g est continue en a. g est donc continue sur [a,b]. De plus, g est dérivable sur]a,b[comme quotient de fonctions dérivables dont le dénominateur ne s'annule pas. Enfin, g(b)=g(a)=f'(a). D'après le théorème de Rolle, il existe $c \in]a,b[$ tel que g'(c)=0. Or pour $x \in]a,b[$, $g'(x)=\frac{f'(x)(x-a)-f(x)+f(a)}{(x-a)^2}$. On a donc

$$f'(c)(c - a) - f(c) + f(a) = 0$$

ce qui est bien l'égalité annoncée plus haut.

Intégration

Solution 16

1. Comme $\|\cdot\|$ est une norme d'algèbre, $\|A^k\| \le \|A\|^k$ pour tout $k \in \mathbb{N}$. Or $\|A\| < 1$ donc la série géométrique $\sum_{k \in \mathbb{N}} \|A\|^k$ converge. Par majoration, la série $\sum_{k \in \mathbb{N}} \|A^k\|$ converge également i.e. la série $\sum_{k \in \mathbb{N}} A^k$ converge absolument. Comme $\mathcal{M}_n(\mathbb{C})$ est de dimension finie, la série $\sum_{k \in \mathbb{N}} A^k$ converge. L'endomorphisme $X \in \mathcal{M}_n(\mathbb{C}) \mapsto AX$ est continu puisque $\mathcal{M}_n(\mathbb{C})$ est de dimension finie. Ceci nous permet d'affirmer que

$$A \sum_{k=0}^{+\infty} A^k = \sum_{k=0}^{+\infty} A^{k+1}$$

puis que

$$(I_n - A) \sum_{k=0}^{+\infty} A^k = \sum_{k=0}^{+\infty} A^k - \sum_{k=0}^{+\infty} A^{k+1} = I_n$$

donc $I_n - A \in GL_n(\mathbb{C})$ et $(I_n - A)^{-1} = \sum_{k=0}^{+\infty} A^k$.

2. Remarquons déjà que $z \neq 0$ puisque $|z| > ||A|| \ge 0$. Remarquons alors que $zI_n - A = z\left(I_n - \frac{1}{z}A\right)$ et que $\left\|\frac{1}{z}A\right\| = \frac{||A||}{|z|} < 1$. D'après la question précédente, $I_n - \frac{1}{z}A$ est inversible et

$$\left(\mathbf{I}_n - \frac{1}{z}\mathbf{A}\right)^{-1} = \sum_{k=0}^{+\infty} \frac{\mathbf{A}^k}{z^k}$$

Comme $zI_n - A = z\left(I_n - \frac{1}{z}A\right)$, $zI_n - A$ est également inversible et

$$(zI_n - A)^{-1} = \frac{1}{z} \sum_{k=0}^{+\infty} \frac{A^k}{z^k} = \sum_{k=0}^{+\infty} \frac{A^k}{z^{k+1}}$$

3. D'après la question précédente,

$$\int_{-\pi}^{\pi} (re^{i\theta})^{k+1} (re^{i\theta} \mathbf{I}_n - \mathbf{A})^{-1} \ \mathrm{d}\theta = \int_{-\pi}^{\pi} (re^{i\theta})^{k+1} \sum_{p=0}^{+\infty} \frac{\mathbf{A}^p}{r^{p+1} e^{i(p+1)\theta}} \ \mathrm{d}\theta = r^k \int_{-\pi}^{\pi} \sum_{p=0}^{+\infty} \frac{\mathbf{A}^p}{r^p} e^{i(k-p)\theta} \ \mathrm{d}\theta$$

Posons $u_p:\theta\mapsto \frac{\mathbf{A}^p}{r^p}e^{i(k-p)\theta}$. Alors $\|u_p\|_\infty=\frac{\|\mathbf{A}^p\|}{r^p}\leq \left(\frac{\|\mathbf{A}\|}{r}\right)^p$ donc la série $\sum_{p\in\mathbb{N}}u_p$ converge normalement et donc uniformément sur le segment $[-\pi,\pi]$. Par interversion série/intégrale,

$$\int_{-\pi}^{\pi} \sum_{p=0}^{+\infty} \frac{\mathbf{A}^p}{r^p} e^{i(k-p)\theta} \ \mathrm{d}\theta = \sum_{p=0}^{+\infty} \int_{-\pi}^{\pi} \frac{\mathbf{A}^p}{r^p} e^{i(k-p)\theta} \ \mathrm{d}\theta = \sum_{p=0}^{+\infty} \frac{\mathbf{A}^p}{r^p} \int_{-\pi}^{\pi} e^{i(k-p)\theta} \ \mathrm{d}\theta = \sum_{p=0}^{+\infty} \frac{\mathbf{A}^p}{r^p} \cdot 2\pi \delta_{k,p} = 2\pi \frac{\mathbf{A}^k}{r^k}$$

On en déduit le résultat voulu.

4. Posons $\chi_A = \sum_{k=0}^n \alpha_k X^k$. Alors

$$\begin{split} \chi_{\mathbf{A}}(\mathbf{A}) &= \sum_{k=0}^{n} \alpha_k \mathbf{A}^k \\ &= \sum_{k=0}^{n} \frac{\alpha_k}{2\pi} \int_{-\pi}^{\pi} (re^{i\theta})^{k+1} (re^{i\theta} \mathbf{I}_n - \mathbf{A})^{-1} \; \mathrm{d}\theta \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} re^{i\theta} \sum_{k=0}^{n} \alpha_k re^{ik\theta} (re^{i\theta} \mathbf{I}_n - \mathbf{A})^{-1} \; \mathrm{d}\theta \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} re^{i\theta} \chi_{\mathbf{A}} (re^{i\theta}) (re^{i\theta} \mathbf{I}_n - \mathbf{A})^{-1} \; \mathrm{d}\theta \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} re^{i\theta} \det(re^{i\theta} \mathbf{I}_n - \mathbf{A}) (re^{i\theta} \mathbf{I}_n - \mathbf{A})^{-1} \; \mathrm{d}\theta \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} re^{i\theta} \cot(re^{i\theta} - \mathbf{A})^{\top} \; \mathrm{d}\theta \end{split}$$

d'après la formule de la comatrice.

5. Remarquons que chaque coefficient de $com(re^{i\theta} - A)^T$ est un polynôme en $re^{i\theta}$. Ainsi les coefficients de $re^{i\theta}$ com $(re^{i\theta} - A)^T$ sont des polynômes en $re^{i\theta}$ de coefficients constants nuls. Leur intégrale sur $[-\pi, \pi]$ est donc nulle. On en déduit que $\chi_A(A) = 0$.

Solution 17

1. Pour simplifier, posons $M = \max_{t \in [a,b]} ||f'(t)||$. Par inégalité triangulaire,

$$\left\| \int_a^b f(t) \, dt \right\| \le \int_a^b \|f(t)\| \, dt$$

De plus,

$$\forall t \in [a, b], \ f(t) = f(a) + \int_a^t f'(u) \ du = \int_a^t f'(u) \ du$$

A nouveau par inégalité triangulaire,

$$\forall t \in [a, b], \ \|f(t)\| \le \int_a^t \|f'(u)\| \ du \le M(t - a)$$

En reprenant ce qui précède

$$\left\| \int_{a}^{b} f(t) \, dt \right\| \leq \int_{a}^{b} M(t-a) \, dt = \frac{M(b-a)^{2}}{2}$$

2. D'après la relation de Chasles,

$$\int_{a}^{b} f(t) dt = \int_{a}^{\frac{a+b}{2}} f(t) dt + \int_{\frac{a+b}{2}}^{b} f(t) dt$$

Par inégalité triangulaire,

$$\left\| \int_{a}^{b} f(t) \, dt \right\| \leq \left\| \int_{a}^{\frac{a+b}{2}} f(t) \, dt \right\| + \left\| \int_{\frac{a+b}{2}}^{b} f(t) \, dt \right\| \leq \int_{a}^{\frac{a+b}{2}} \|f(t)\| \, dt + \int_{\frac{a+b}{2}}^{b} \|f(t)\| \, dt$$

D'une part

$$\forall t \in \left[a, \frac{a+b}{2}\right], \ f(t) = f(a) + \int_a^t f'(u) \ \mathrm{d}u = \int_a^t f'(u) \ \mathrm{d}u$$

donc

$$\forall t \in \left[a, \frac{a+b}{2}\right], \ \|f(t)\| \le \int_a^t \|f'(u)\| \ \mathrm{d}u \le \mathrm{M}(t-a)$$

puis

$$\int_{a}^{\frac{a+b}{2}} \|f(t)\| dt \le \int_{a}^{\frac{a+b}{2}} M(t-a) dt = \frac{M(b-a)^2}{8}$$

D'autre part

$$\forall t \in \left[\frac{a+b}{2}, b\right], \; f(t) = f(b) - \int_t^b f'(u) \; \mathrm{d}u = -\int_t^b f'(u) \; \mathrm{d}u$$

donc

$$\forall t \in \left[\frac{a+b}{2}, b\right], \|f(t)\| \le \int_{t}^{b} \|f'(u)\| du \le M(b-t)$$

puis

$$\int_{\frac{a+b}{2}}^{b} \|f(t)\| dt \le \int_{\frac{a+b}{2}}^{b} M(b-t) dt = \frac{M(b-a)^2}{8}$$

On en déduit finalement que

$$\left\| \int_{a}^{b} f(t) \, dt \right\| \le 2 \cdot \frac{M(b-a)^{2}}{8} = \frac{M(b-a)^{2}}{4}$$

Sommes de Riemann

Solution 18

On peut écrire $u_n = \sum_{k=0}^{n-1} \sqrt{k(n-k)} = n^2 \frac{1}{n} \sum_{k=0}^{n-1} \sqrt{\frac{k}{n} \left(1 - \frac{k}{n}\right)}$. On reconnaît une somme de Riemann.

$$\frac{1}{n} \sum_{k=0}^{n-1} \sqrt{\frac{k}{n} \left(1 - \frac{k}{n}\right)} \underset{n \to +\infty}{\longrightarrow} I = \int_0^1 \sqrt{x(1-x)} \, dx$$

On met le trinôme sous la racine sous forme canonique :

$$I = \int_0^1 \sqrt{\frac{1}{4} - \left(x - \frac{1}{2}\right)^2} dx = \frac{1}{2} \int_0^1 \sqrt{1 - (2x - 1)^2} dx$$

Effectuons le changement de variables u = 2x - 1:

$$I = \frac{1}{4} \int_{-1}^{1} \sqrt{1 - u^2} \, \mathrm{d}u$$

Or $\int_{-1}^{1} \sqrt{1-u^2} \, du$ est l'aire du demi-disque unité et vaut donc $\frac{\pi}{2}$. On en déduit que $I = \frac{\pi}{8}$ puis que $u_n \sim \frac{\pi}{8} n^2$.

Solution 19

Les racines de $X^{2n}-1$ sont les complexes $z_k=e^{i\frac{k\pi}{n}}$ pour $k\in[-n+1,n]$. Mais pour $k\in[1,n-1,z_{-k}=\overline{z_k}]$ donc

$$X^{2n} - 1 = (X - 1)(X + 1) \prod_{k=1}^{n-1} (X - z_k)(X - \overline{z_k}) = (X^2 - 1) \prod_{k=1}^{n-1} \left(X^2 - 2X \cos \frac{k\pi}{n} + 1 \right)$$

Notons I l'intégrale à calculer. On a

$$I = \frac{1}{2} \int_{-\pi}^{\pi} \ln(r^2 - 2r\cos\theta + 1) d\theta$$

Par parité de cos, on peut affirmer que

$$I = \int_0^{\pi} \ln(r^2 - 2r\cos\theta + 1) d\theta$$

Pour $n \in \mathbb{N}^*$, posons :

$$S_n = \frac{\pi}{n} \sum_{k=0}^{n-1} \ln \left(r^2 - 2r \cos \frac{k\pi}{n} + 1 \right)$$

Comme $\theta \mapsto \ln(r^2 - 2r\cos\theta + 1)$ est continue sur $[0, \pi]$, la suite (S_n) converge vers I d'après le théorème sur les sommes de Riemann. Mais d'après ce qui précède

$$S_n = \frac{\pi}{n} \ln \left(\prod_{k=0}^{n-1} r^2 - 2r \cos \frac{k\pi}{n} + 1 \right)$$

$$= \frac{\pi}{n} \ln \left((r-1)^2 \prod_{k=1}^{n-1} r^2 - 2r \cos \frac{k\pi}{n} + 1 \right)$$

$$= \frac{\pi}{n} \ln \left((r-1)^2 \frac{r^{2n} - 1}{r^2 - 1} \right)$$

$$= \frac{\pi}{n} \ln \left(\frac{r-1}{r+1} r^{2n} - 1 \right)$$

$$= \frac{\pi}{n} \ln(r^{2n} - 1) + \frac{\pi}{n} \ln \frac{r-1}{r+1}$$

Tout d'abord, $\frac{\pi}{n} \ln \frac{r-1}{r+1} \longrightarrow_{n \to +\infty} 0$. Puis

$$\frac{\pi}{n}\ln(r^{2n}-1) = 2\pi\ln r + \frac{\pi}{n}\ln\left(1 - \frac{1}{r^{2n}}\right) \underset{n \to +\infty}{\longrightarrow} 2\pi\ln r$$

On en déduit que $I = 2\pi \ln r$.

Solution 20

1. On reconnaît une somme de Riemann. Puisque $x \mapsto \ln(1+x)$ est continue sur [0,1],

$$\lim_{n \to +\infty} S_n = \int_0^1 \ln(1+x) \, dx = \left[(1+x) \ln(1+x) - (1+x) \right]_0^1 = 2 \ln 2 - 1 = \ln(4) - 1$$

2. Soit $n \in \mathbb{N}^*$. Tout d'abord,

$$\ln(u_n) = \ln(4) + \ln(n) + \frac{1}{n} \sum_{k=1}^n \ln(k) - \frac{1}{n} \sum_{k=1}^{2n} \ln(k)$$

$$= \ln(4) + \ln(n) - \frac{1}{n} \sum_{k=n+1}^{2n} \ln(k)$$

$$= \ln(4) + \ln(n) - \frac{1}{n} \sum_{k=1}^n \ln(n+k)$$

$$= \ln(4) + \ln(n) - \frac{1}{n} \sum_{k=1}^n \ln\left(\frac{n+k}{n}\right) - \frac{1}{n} \sum_{k=1}^n \ln(n)$$

$$= \ln(4) - S_n$$

Ainsi la suite $(\ln(u_n))$ converge vers 1. On en déduit que la suite (u_n) converge vers e.

Solution 21

On pense évidemment à une somme de Riemann. On aurait eu directement le résultat si le terme général de la somme avait été $f\left(\frac{k}{n}\right)g\left(\frac{k}{n}\right)$ ou $f\left(\frac{k+1}{n}\right)g\left(\frac{k+1}{n}\right)$. L'idée est donc de se ramener à une telle somme. Le fait que g est supposée être de classe \mathcal{C}^1 et non \mathcal{C}^0 donne un indice. Posons pour commencer

$$S_n = \frac{1}{n} \sum_{k=0}^{n-1} f\left(\frac{k}{n}\right) g\left(\frac{k+1}{n}\right)$$

$$T_n = \frac{1}{n} \sum_{k=0}^{n-1} f\left(\frac{k}{n}\right) g\left(\frac{k}{n}\right)$$

$$|S_n - T_n| \le \frac{1}{n} \sum_{k=0}^{n-1} \left| f\left(\frac{k}{n}\right) \right| \left| g\left(\frac{k+1}{n}\right) - g\left(\frac{k}{n}\right) \right|$$

Comme f est de classe \mathcal{C}^0 sur le segment [0,1] elle y est bornée. Notons alors M un majorant de |f|.

Comme g est de classe C^1 sur le segment [0,1], sa dérivée g' y est continue. g' est donc bornée sur le segment [0,1]. En notant K un majorant de |g'|, l'inégalité des accroissements finis montre que g est K-lipschitzienne sur [0,1].

En reprenant l'inégalité précédente, on obtient donc

$$|S_n - T_n| \le \frac{1}{n} \sum_{k=0}^{n-1} \frac{MK}{n} = \frac{MK}{n}$$

ou encore

$$T_n - \frac{MK}{n} \le S_n \le T_n + \frac{MK}{n}$$

Or on sait que $\lim_{n\to+\infty} T_n = \int_0^1 f(t)g(t) dt$ d'après le théorème sur les sommes de Riemann appliqué à la fonction continue fg et que $\lim_{n\to+\infty} \frac{MK}{n} = 0$ donc le théorème des gendarmes montre que

$$\lim_{n \to +\infty} S_n = \int_0^1 f(t)g(t) dt$$

Formules de Taylor

Solution 22

Soit $k \in [0, n]$. f est de classe \mathcal{C}^2 sur $\left[0, \frac{k}{n^2}\right]$ donc on peut utiliser l'inégalité de Taylor-Lagrange pour f sur $\left[0, \frac{k}{n^2}\right]$ au premier ordre :

$$\left| f\left(\frac{k}{n^2}\right) - f'(0)\frac{k}{n^2} \right| \le \frac{M}{2} \left(\frac{k}{n^2}\right)^2$$

où M est un majorant de |f''| sur [0,1]. Par inégalité triangulaire, on a :

$$\left| S_n - f'(0) \sum_{k=0}^n \frac{k}{n^2} \right| \le \frac{M}{2} \sum_{k=0}^n \frac{k^2}{n^4}$$

Or on sait que $\sum_{k=0}^{n} k = \frac{n(n+1)}{2}$ et $\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$. Ainsi

$$\left| \mathbf{S}_n - f'(0) \frac{n(n+1)}{2n^2} \right| \le \frac{\mathbf{M}}{2} \frac{n(n+1)(2n+1)}{6n^4}$$

On a
$$\lim_{n \to +\infty} \frac{n(n+1)}{2n^2} = \frac{1}{2}$$
 et $\lim_{n \to +\infty} \frac{n(n+1)(2n+1)}{6n^4} = 0$ donc $\lim_{n \to +\infty} S_n = \frac{f'(0)}{2}$.

Solution 23

1. Comme f est nulle sur $\left[\frac{1}{2}; +\infty\right[$, $f^{(n)}(x) = 0$ pour $n \in \mathbb{N}$ et $x > \frac{1}{2}$. Comme f est \mathcal{C}^{∞} , les $f^{(n)}$ sont continues et donc $f^{(n)}\left(\frac{1}{2}\right) = 0$ pour $n \in \mathbb{N}$.

Appliquons l'inégalité de Taylor-Lagrange entre $\frac{1}{2}$ et 0 :

$$\left| f(0) - \sum_{k=0}^{n-1} \frac{1}{2^k k!} f^{(k)} \left(\frac{1}{2} \right) \right| \le \frac{1}{2^n n!} \sup_{\left[0; \frac{1}{2}\right]} \left| f^{(n)} \right|$$

On a vu précédemment que $f^{(k)}\left(\frac{1}{2}\right)=0$. Par ailleurs, $\sup_{\left[0;\frac{1}{2}\right]}\left|f^{(n)}\right|\leq\sup_{\mathbb{R}_{+}}\left|f^{(n)}\right|$ (on a même égalité). Enfin, f(0)=1 par hypothèse donc on obtient le résultat voulu.

2. Soit $n \ge 1$. Supposons $\sup_{\mathbb{R}_+} |f^{(n)}| = 2^n n!$ et posons

$$g(x) = f(x) - (1 - 2x)^n, \forall x \in \mathbb{R}_+.$$

On a donc $g^{(n)}(x) = f^{(n)}(x) - (-1)^n 2^n n!$. Montrons par récurrence finie décroissante sur $k \in [1; n]$ que $g^{(k)}$ est de signe constant sur $[0; \frac{1}{2}]$. D'après notre hypothèse, c'est clair pour k = n. Supposons $g^{(k)}$ de signe constant pour un certain k tel que $1 < k \le n$. Alors $g^{(k-1)}$ est monotone. Or

$$g^{(k-1)}(x) = f^{(k-1)}(x) - \frac{n!}{(n-k+1)!} (1 - 2x)^{n-k+1}$$

donc $g^{(k-1)}\left(\frac{1}{2}\right) = 0$ (puisque n-k+1>0). Ainsi $g^{(k-1)}$ est de signe constant sur $\left[0;\frac{1}{2}\right]$. Donc, par récurrence, g' est de signe constant sur $\left[0;\frac{1}{2}\right]$ et g est monotone sur $\left[0;\frac{1}{2}\right]$. Comme $g(0)=g\left(\frac{1}{2}\right)=0$, g est nulle sur $\left[0;\frac{1}{2}\right]$. Or $g^{(n)}\left(\frac{1}{2}\right)=-(-1)^n2^nn!\neq 0$. Il y a donc contradiction.

Solution 24

Soit $x \in \left[-\frac{1}{\lambda}; \frac{1}{\lambda}\right]$. L'inégalité de Taylor-Lagrange entre 0 et x au rang n donne :

$$|f(x)| \le \frac{|x|^n}{n!} \sup_{[0;x]} |f^{(n)}| \le |\lambda x|^n < 1.$$

En faisant tendre n vers $+\infty$, on obtient f(x) = 0.

Montrons par récurrence sur $k \in \mathbb{N}^*$ que f est nulle sur $\left] - \frac{k}{\lambda}; \frac{k}{\lambda} \right[$. On a vu que c'était vrai pour k = 1. Supposons-le vrai pour un $k \in \mathbb{N}^*$. Considérons les fonctions :

Comme f est nulle sur $\left] - \frac{k}{\lambda}; \frac{k}{\lambda} \right[$ par hypothèse de récurence et que les $f^{(n)}$ sont continues, on a donc :

$$f^{(n)}\left(-\frac{k}{\lambda}\right) = f^{(n)}\left(\frac{k}{\lambda}\right) = 0, \forall n \in \mathbb{N},$$

c'est-à-dire

$$g_1^{(n)}(0) = g_2^{(n)}(0) = 0 \forall n \in \mathbb{N}.$$

De plus $\sup_{\mathbb{R}} \left| g_1^{(n)} \right| = \sup_{\mathbb{R}} \left| g_2^{(n)} \right| = \sup_{\mathbb{R}} \left| f^{(n)} \right|$. Donc g_1 et g_2 vérifient les mêmes hypothèses que f: elles sont donc nulles $\sup_{\mathbb{R}} \left| -\frac{1}{\lambda}; \frac{1}{\lambda} \right|$. Par conséquent, f est nulle $\sup_{\mathbb{R}} \left| -\frac{k+1}{\lambda}; \frac{k+1}{\lambda} \right|$.

Par récurrence, f est donc nulle sur tout intervalle $\left] -\frac{k}{\lambda}; \frac{k}{\lambda} \right[$ où $k \in \mathbb{N}^*$: elle est donc nulle sur \mathbb{R} .

Solution 25

On a clairement $\varphi(b) = 0$. On choisit donc A tel que $\varphi(a) = 0$. Il suffit ainsi de choisir A tel que :

$$A\frac{(b-a)^{n+1}}{(n+1)!} = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^k - f(b)$$
 (*)

Comme f est de classe \mathcal{C}^n sur [a,b] et n+1 fois dérivable sur [a,b], φ est continue sur [a,b] et dérivable sur [a,b]. D'après le théorème de Rolle, il existe $c \in]a, b[$ tel que $\varphi'(c) = 0$. Or, pour $x \in]a, b[$:

$$\varphi'(x) = -\sum_{k=0}^{n} f^{(k+1)}(x)k!(b-x)^{k} + \sum_{k=1}^{n} \frac{f^{(k)}(x)}{(k-1)!}(b-x)^{k-1} - A\frac{(b-x)^{n}}{n!}$$

Par télescopage, on obtient :

$$\varphi'(x) = -\frac{f^{(n+1)}(x)}{n!}(b-x)^n - A\frac{(b-x)^n}{n!}$$

Comme $\varphi'(c) = 0$, on obtient :

$$A + f^{(n+1)}(c) = 0$$

Il suffit alors d'utiliser la relation (*) pour obtenir l'égalité voulue.

Solution 26

1. Soit l'hypothèse de récurrence : $\forall x \in]-1, +\infty[, \ f^{(n)}(x) = \frac{(-1)^{n-1}(n-1)!}{(1+x)^n} \times$. **Initialisation :** Pour tout $x \in]-1, +\infty, \ f'(x) = \frac{1}{1+x} = \frac{(-1)^0 0!}{(1+x)^0}$. Donc HR(1) est vraie.

Hérédité: On suppose HR(n) vraie pour un certain $n \in \mathbb{N}^*$. On a donc pour tout $x \in]-1, +\infty[$, $f^{(n)}(x) = \frac{(-1)^{n-1}(n-1)!}{(1+x)^n}$. En dérivant, on obtient

$$\forall x \in]-1, +\infty[, \ f^{(n+1)}(x) = \frac{(-1)^n n!}{(1+x)^{n+1}}$$

Conclusion : HR(n) est vraie pour tout $n \in \mathbb{N}^*$.

2. Comme f est de classe \mathcal{C}^{∞} , on peut appliquer l'inégalité de Taylor-Lagrange entre 0 et 1 à un ordre $n \in \mathbb{N}^*$ quelconque. Pour $t \in [0,1]$, $|f^{(n+1)}(t)| \leq n!$ donc

$$\left| f(1) - \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} (1-0)^{k} \right| \le n! \frac{(1-0)^{n+1}}{(n+1)!}$$

On en déduit que

$$|\ln 2 - u_n| \le \frac{1}{n+1}$$

3. Il est immédiat que (u_n) converge vers ln(2).

REMARQUE. On peut alors noter $\sum_{n=0}^{+\infty} \frac{(-1)^{n-1}}{n} = \ln 2$.

Solution 27

- 1. Si $M_0 = 0$, alors f est constamment nulle donc $M_0 = M_1 = M_2 = 0$ et l'inégalité est vérifiée. Si $M_2 = 0$, alors f est affine. Mais comme f est bornée, f est constante. On a donc $M_1 = 0$ et l'inégalité est encore vérifiée.
- 2. Comme f est de classe \mathcal{C}^2 , on peut appliquer l'inégalité de Taylor-Lagrange à l'ordre 2 entre x et x+h, ce qui donne le résultat voulu.

3. Par inégalité triangulaire,

$$\begin{split} |f'(x)h| &\leq |f'(x)h + f(x) - f(x+h)| + |f(x+h) - f(x)| \\ &\leq \frac{\mathsf{M}_2 h^2}{2} + |f(x+h)| + |f(x)| \\ &\leq \frac{\mathsf{M}_2 h^2}{2} + 2\mathsf{M}_0 \end{split}$$

Puisque h > 0,

$$|f'(x)| \le \frac{M_2 h}{2} + \frac{2M_0}{h}$$

- **4.** g est dérivable sur \mathbb{R}_+^* et pour $t \in \mathbb{R}_+^*$, $g'(t) = b \frac{a}{t^2}$. On a donc $g'(t) \le 0$ pour $0 < t \le \sqrt{\frac{a}{b}}$ et $g'(t) \ge 0$ pour $t \ge \sqrt{\frac{a}{b}}$. On en déduit que g admet un minimum en $\sqrt{\frac{a}{b}}$ et que celui-ci vaut $g\left(\sqrt{\frac{a}{b}}\right) = 2\sqrt{ab}$.
- 5. L'inégalité

$$|f'(x)| \le \frac{\mathsf{M}_2 h}{2} + \frac{2\mathsf{M}_0}{h}$$

étant valable pour tout h > 0, elle est notamment valable pour h minimisant le membre de droite. Il suffit alors d'appliquer la question précédente avec $a = 2M_0$ et $b = \frac{M_2}{2}$. On en déduit que

$$|f'(x)| \le 2\sqrt{2M_0 \times \frac{M_2}{2}} = 2\sqrt{M_0 M_2}$$

Cette dernière inégalité étant valable pour tout $x \in \mathbb{R}$, on a par passage à la borne supérieure :

$$M_1 \le 2\sqrt{M_0 M_2}$$

Solution 28

1. Soit $n \in \mathbb{N}$. La formule de Taylor avec reste intégral assure que $R_n(x) = \int_0^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt$. En effectuant le changement de variable t = xu, on obtient

$$R_n(x) = \frac{x^{n+1}}{n!} \int_0^1 (1-u)^n f^{(n+1)}(xu) \, du$$

Comme $f^{(n+1)}$ est positive,

$$|R_n(x)| = \frac{|x|^{n+1}}{n!} \int_0^1 (1-u)^n f^{(n+1)}(xu) du$$

De même,

$$R_n(r) = \frac{r^{n+1}}{n!} \int_0^1 (1-u)^n f^{(n+1)}(ru) du$$

Mais $f^{(n+1)}$ est croissante sur I puisque $f^{(n+2)}$ est positive sur I. Ainsi puisque x < r, $f^{(n+1)}(xu) \le f^{(n+1)}(ru)$ pour tout $u \in [0,1]$ puis

$$\int_0^1 (1-u)^n f^{(n+1)}(xu) \, du \le \int_0^1 (1-u)^n f^{(n+1)}(ru) \, du$$

On en déduit l'inégalité demandée.

2. Soit $x \in I$. Il existe $r \in]0$, R[tel que |x| < r. D'après la question précédente, pour tout $n \in \mathbb{N}$:

$$|\mathcal{R}_n(x)| \le \frac{|x|^{n+1}}{r^{n+1}} \mathcal{R}_n(r)$$

D'une part, l'expression intégrale de $R_n(r)$ montre que $R_n(r) \ge 0$. D'autre part, $f(r) = S_n(r) + R_n(r)$ et $S_n(r) \ge 0$ en tant que somme de termes positifs. Ainsi $R_n(r) \le f(r)$. La suite $(R_n(r))_{n \in \mathbb{N}}$ est donc bornée. Puisque |x| < r, $\frac{|x|^{n+1}}{r^{n+1}}R_n(r) \xrightarrow[n \to +\infty]{} 0$. On en déduit que $R_n(x) \xrightarrow[n \to +\infty]{} i.e. (S_n(x))_{n \in \mathbb{N}}$ converge vers f(x).

Solution 29

Soit $k \in [0, n]$. f est de classe \mathcal{C}^2 sur $\left[0, \frac{k}{n^2}\right]$ donc on peut utiliser l'inégalité de Taylor-Lagrange pour f sur $\left[0, \frac{k}{n^2}\right]$ au premier ordre :

$$\left| f\left(\frac{k}{n^2}\right) - f'(0)\frac{k}{n^2} \right| \le \frac{M}{2} \left(\frac{k}{n^2}\right)^2$$

où M est un majorant de |f''| sur [0,1]. Par inégalité triangulaire, on a :

$$\left| \mathbf{S}_n - f'(0) \sum_{k=0}^n \frac{k}{n^2} \right| \le \frac{\mathbf{M}}{2} \sum_{k=0}^n \frac{k^2}{n^4}$$

Or on sait que $\sum_{k=0}^{n} k = \frac{n(n+1)}{2}$ et $\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$. Ainsi

$$\left| S_n - f'(0) \frac{n(n+1)}{2n^2} \right| \le \frac{M}{2} \frac{n(n+1)(2n+1)}{6n^4}$$

On a $\lim_{n \to +\infty} \frac{n(n+1)}{2n^2} = \frac{1}{2}$ et $\lim_{n \to +\infty} \frac{n(n+1)(2n+1)}{6n^4} = 0$ donc $\lim_{n \to +\infty} S_n = \frac{f'(0)}{2}$.

Solution 30

- 1. Il est clair que $\lim_0 g = 0$. g est donc prolongeable par continuité en 0.
- **2.** g est dérivable sur]0,1] et pour tout $x \in]0,1]$,

$$g'(x) = 1 + \ln(x)$$

Ainsi g' est strictement négative sur $]0, e^{-1}[$, s'annule en e^{-1} et est strictement positive sur $]e^{-1}, 1]$. g est donc strictement décroissante sur $[0, e^{-1}]$ et strictement croissante sur $[e^{-1}, 1]$.

3. Tout d'abord, $-g(x) - x = -x(\ln x + 1) \ge 0$ pour tout $x \in]0, e^{-1}]$. En particulier, $-g(t_0) \ge t_0$. On a évidemment $t_0 \le t_n \le e^{-1}$ pour n = 0. Supposons que ce soit vrai pour un certain $n \in \mathbb{N}$. Par croissance de -g sur $[0, e^{-1}]$, $-g(t_0) \le -g(t_n) \le -g(e^{-1})$ donc a fortiori $t_0 \le t_{n+1} \le e^{-1}$. On a donc bien montré par récurrence que

$$\forall n \in \mathbb{N}, \ t_0 \le t_n \le e^{-1}$$

4. Fixons $x \in [t_0, e^{-1}]$. Comme g est de classe \mathcal{C}^2 (et même \mathcal{C}^∞) sur $[x, e^{-1}]$, on peut appliquer l'inégalité de Taylor-Lagrange à l'ordre 1.

$$|g(x) - g(e^{-1}) - g'(e^{-1})(x - e^{-1})| \le \frac{|x - e^{-1}|^2 \max_{[x, e^{-1}]} |g''|}{2}$$

Or $g'(e^{-1}) = 1 + \ln(e^{-1}) = 0$ et

$$\max_{[x,e^{-1}]} |g''| = \max_{t \in [x,e^{-1}]} \frac{1}{t} = \frac{1}{x \le \frac{1}{t_0}}$$

On en déduit que

$$|g(x) - g(e^{-1})| \le \frac{|x - e^{-1}|^2}{2t_0}$$

5. D'après la question précédente,

$$|t_1 - e^{-1}| = |g(t_0) - g(e^{-1})| \le \frac{|t_0 - e^{-1}|^2}{2t_0} = \frac{(e^{-1} - t_0)^2}{2t_0}$$

Donc l'inégalité à établir est vraie lorsque n = 1.

Supposons qu'elle le soit pour un certain $n \in \mathbb{N}^*$. Alors

$$|t_{n+1} - e^{-1}| = |g(t_n) - g(e^{-1})| \le \frac{|t_n - e^{-1}|^2}{2t_0} \le \frac{1}{2t_0} \left(2t_0 \left(\frac{e^{-1} - t_0}{2t_0}\right)^{2^n}\right)^2 = 2t_0 \left(\frac{e^{-1} - t_0}{2t_0}\right)^{2^{n+1}}$$

Par récurrence, l'inégalité est vraie pour tout $n \in \mathbb{N}^*$.

6. Remarquons que

$$\frac{e^{-1} - t_0}{2t_0} = \frac{e^{-1}}{2t_0} - \frac{1}{2}$$

Puisque $t_0 \in \left] \frac{e^{-1}}{3}, e^{-1} \right[$,

$$\frac{1}{2} < \frac{e^{-1}}{2t_0} < \frac{3}{2}$$

Ainsi

$$0<\frac{e^{-1}-t_0}{2t_0}<1$$

Posons $q = \frac{e^{-1} - t_0}{2t_0}$. La suite géométrique (q^n) converge donc vers 0. Sa suite extraite (q^{2^n}) converge également vers 0. Puisque

$$\forall n \in \mathbb{N}^*, |t_n - e^{-1}| \le 2t_0 q^n$$

la suite (t_n) converge vers e^{-1} .

Courbes paramétrées

Solution 31

Tout d'abord, x est définie et dérivable sur $\mathbb{R} \setminus \{\pm 1\}$ et y est définie et dérivable sur $\mathbb{R} \setminus \{1\}$.

- Symétries : On ne détecte pas de symétrie particulière.
- <u>Variations</u>: On a $\begin{cases} x'(t) = -\frac{t^2 + 1}{(t^2 1)^2} \\ y'(t) = \frac{t(t 2)}{(t 1)^2} \end{cases}$. On en déduit les variations de x et y.

t	-∞ -	-1 0	1	2 +	-∞
Signe de $x'(t)$	_	1	_ _	-1 -	
Variations de <i>x</i>	0	+∞	+∞	$\frac{2}{3}$	0
Variations de y		$\frac{1}{2}$	-∞ +∞	4	∞
Signe de $y'(t)$	+ 3,	/4 + 0		0 +	

• Branches infinies: Lorsque t tend vers $\pm \infty$, la courbe admet la droite d'équation x = 0 pour asymptote verticale. Lorsque t tend vers 1, la courbe admet la droite d'équation $y = -\frac{1}{2}$ comme asymptote horizontale.

Lorsque t tend vers 1, $\frac{y(t)}{x(t)} = t(t+1) \xrightarrow[t \to 1]{} 2$ et

$$y(t) - 2x(t) = \frac{t(t+2)}{t+1} \xrightarrow[t\to 1]{} \frac{3}{2}$$

La courbe admet donc la droite d'équation $y = 2x + \frac{3}{2}$ pour asymptote oblique. Nous pouvons préciser la position relative de la courbe et de cette asymptote en posant u = t - 1 de sorte que :

$$\frac{t(t+2)}{t+1} = \frac{(1+u)(3+u)}{2+u} = \frac{3}{2} \left(1 + \frac{5}{6}u + o(u) \right)$$

La courbe est donc au-dessous de son asymptote quand t tend vers 1^- et au-dessus quand t tend vers 1^+ .

• Tracé:

• Points doubles: Montrons que la courbe admet un point double. Soient donc $t_1, t_2 \in \mathbb{R} \setminus \{\pm 1\}$ distincts. Alors

$$\begin{cases} x(t_1) = x(t_2) \\ y(t_1) = y(t_2) \end{cases} \iff \begin{cases} \frac{t_1}{t_1^2 - 1} = \frac{t_2}{t_2^2 - 1} \\ \frac{t_1^2}{t_1 - 1} = \frac{t_2^2}{t_2 - 1} \end{cases}$$

$$\iff \begin{cases} t_1(t_2^2 - 1) = t_2(t_1^2 - 1) \\ t_1^2(t_2 - 1) = t_2^2(t_1 - 1) \end{cases}$$

$$\iff \begin{cases} (t_2 - t_1)(t_1t_2 + 1) = 0 \\ (t_1 - t_2)(t_1t_2 - (t_1 + t_2)) = 0 \end{cases}$$

$$\iff \begin{cases} t_1t_2 = -1 \\ t_1 + t_2 = -1 \end{cases}$$

Ainsi t_1 et t_2 sont les racines de $X^2 + X - 1$, d'où l'unicité du point double à savoir (-1, -1).

Par ailleurs.

$$x'(t_1)x'(t_2) + y'(t_1)y'(t_2) = \frac{(t_1^2 + 1)(t_2^2 + 1)}{(t_1^2 - 1)^2(t_2^2 - 1)^2} + \frac{t_1(t_1 - 2)t_2(t_2 - 2)}{(t_1 - 1)^2(t_2 - 1)^2}$$

$$= \frac{(t_1^2 + 1)(t_2^2 + 1) + t_1t_2(t_1 - 2)(t_2 - 2)(t_1 + 1)^2(t_2 + 1)^2}{(t_1^2 - 1)^2(t_2^2 - 1)^2}$$

$$= \frac{(t_1^2 + 1)(t_2^2 + 1) + t_1t_2(t_1 - 2)(t_2 - 2)((t_1 + 1)(t_2 + 1))^2}{(t_1^2 - 1)^2(t_2^2 - 1)^2}$$

Or

$$t_1t_2 = -1$$

$$(t_1 - 2)(t_2 - 2) = t_1t_2 - 2(t_1 + t_2) + 4 = 5$$

$$(t_1 + 1)(t_2 + 1) = t_1t_2 + t_1 + t_2 + 1 = 1$$

$$(t_1^2 + 1)(t_2^2 + 1) = (t_1t_2)^2 + t_1^2 + t_2^2 + 1 = (t_1t_2)^2 + (t_1 + t_2)^2 - 2t_1t_2 + 1 = 5$$

donc

$$x'(t_1)x'(t_2) + y'(t_1)y'(t_2) = 0$$

Les tangentes sont orthogonales en le point double.

Solution 32

- 1. On a $\begin{cases} x(\frac{1}{t}) = -y(t) \\ y(\frac{1}{t}) = -x(t) \end{cases}$. Les points M(t) et M($\frac{1}{t}$) sont donc symétriques par rapport à la droite Δ d'équation y = -x. On étudie donc sur [0,1] et on complète par une syémtrie d'axe Δ .
- 2. On a $x'(t) = \ln t + 1$ et $y'(t) = \frac{1 \ln t}{t^2}$. De plus, $\lim_{t \to 0^+} x(t) = 0$ et $\lim_{t \to 0^+} y(t) = -\infty$ On en déduit le tableau de variations pour $t \in]0,1]$.

t	()	e^{-1}		1
Signe de $x'(t)$		_	0	+	1
Variations de x		0	$-e^{-1}$		0
Variations de y $-\infty$ 0					, 0
Signe de $y'(t)$		+	$2e^2$	+	1

La courbe présente une tangente verticale au point $M(\frac{1}{e})$ et admet la droite d'équation x=0 comme asymptote verticale.

Solution 33

1. Comme x est impaire et y est paire, on peut étudier pour $t \in \mathbb{R}_+$ et obtenir \mathcal{C} par une symétrie d'axe (Oy). On a clairement

$$\begin{cases} x'(t) = 12t^2 \\ y'(t) = 12t^3 \end{cases}$$

Ainsi x et y sont croissantes sur \mathbb{R}_+ . Le point de paramétre 0 est singulier mais $\lim_{t\to 0} \frac{y'(t)}{x'(t)} = 0$ donc \mathcal{C} admet une tangente horizontale (d'équation y=0) en ce point.

2. Remarquons que la tangente au point d'abscisse $t \in \mathbb{R}^*$ a pour équation

$$(x - x(t))y'(t) - (y - y(t))x'(t) = 0$$

ou encore

$$tx - y = 4t^4$$

Comme \mathcal{C} admet une tangente horizontale au point de paramètre 0, cette équation est encore valable lorsque t = 0. Il passe en un point M(x, y) deux tangentes à \mathcal{C} perpendiculaires entre elles si et seulement si il existe $(t, \tau) \in \mathbb{R}^2$ tel que $t\tau = -1$ et

$$\begin{cases} tx - y = 4t^4 \\ \tau x - y = 4\tau^4 \end{cases}$$

Ceci équivaut à l'existence de $t \in \mathbb{R}^*$ tel que

$$\begin{cases} tx - y = 4t^4 \\ -\frac{1}{t}x - y = \frac{4}{t^4} \end{cases}$$

La résolution de ce système donne

$$\begin{cases} x = t^3 - t + \frac{1}{t} - \frac{1}{t^3} \\ y = -t^2 + 1 - \frac{1}{t^2} \end{cases}$$

On étudie donc la courbe paramétrée par

$$\begin{cases} x(t) = t^3 - t + \frac{1}{t} - \frac{1}{t^3} \\ y(t) = -t^2 + 1 - \frac{1}{t^2} \end{cases}$$

A nouveau, x est impaire et y est paire donc on peut limiter l'étude à $t \in \mathbb{R}_+^*$ et compléter par une symétrie d'axe (Oy). Mais on remarque également que x(1/t) = -x(t) et y(1/t) = y(t) donc on peut en fait limiter l'étude à $t \in]0,1]$. On obtient sans peine

$$\forall t \in]0,1], \begin{cases} x'(t) = 3t^2 - 1 - \frac{1}{t^2} + \frac{3}{t^4} = \frac{(1+t^2)(3t^4 - 4t^2 + 3)}{t^4} \ge 0\\ y'(t) = -2t + \frac{2}{t^3} = \frac{2(1-t^4)}{t^3} \ge 0 \end{cases}$$

