Kokeessa saa käyttää laskinta sekä MAOL-taulukoita. Tehtäväpaperin lopussa on joukko kaavoja, jotka saattavat olla hyödyllisiä.

1. Satunnaismuuttujien X ja Y yhteistiheysfunktio on

$$f(x,y) = 3x$$
, kun $0 < y < x < 1$,

ja nolla muualla. Johda lauseke (a) X:n reunatiheysfunktiolle ja (b) Y:n reunatiheysfunktiolle, sekä ilmoita näiden lausekkeiden pätevyysalueet. (c) Laske odotusarvo E(XY).

2. Tarkastellaan hierarkkista mallia

$$X|Y \sim \operatorname{Exp}(Y)$$

 $Y \sim \operatorname{Gam}(\alpha, 1),$

jossa $\alpha > 1$. (Tehtäväpaperin lopussa on selvitetty eksponenttijakauman ja gammajakauman ominaisuuksia.) Laske (a) EX ja (b) ehdollinen tiheysfunktio $f_{Y|X}(y \mid x)$ (kun x > 0).

3. Olkoot X ja Y riippumattomia satunnaismuuttujia, joilla kummallakin on eksponenttijakauma odotusarvolla yksi. Määritellään

$$U = Y, \quad V = \frac{X}{Y}.$$

Johda kaava muuttujien U ja V yhteistiheysfunktiolle. Johda lisäksi muuttujan V reunatiheysfunktio.

- 4. Olkoon n-ulotteisella satunnaisvektorilla \mathbf{X} normaalijakauma $N_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, jossa $\boldsymbol{\Sigma}$ on kääntyvä matriisi, jolle tunnetaan hajotelma $\boldsymbol{\Sigma} = \mathbf{A}\mathbf{A}^T$, jossa \mathbf{A} on kääntyvä neliömatriisi. Määritellään satunnaisvektori \mathbf{Y} kaavalla $\mathbf{Y} = \mathbf{A}^{-1}(\mathbf{X} \boldsymbol{\mu})$.
- a) Mikä on satunnaisvektorin ${\bf Y}$ odotusarvovektori ja kovarianssimatriisi? Mikä on satunnaisvektorin ${\bf Y}$ jakauma?
- b) Olkoon **V** kokoa $k \times n$ oleva matriisi (jossa $k \leq n$), jolle **VV**^T = **I**. Mikä on satunnaismuuttujan $Z = ||\mathbf{VY}||^2 = (\mathbf{VY})^T(\mathbf{VY})$ jakauma?

Kaavoja

• Gammajakauman $Gam(\alpha, \lambda)$ tiheysfunktio on

$$f(z) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} z^{\alpha-1} \exp(-\lambda z), \qquad z > 0.$$

- Jos $Z \sim \operatorname{Gam}(\alpha, \lambda)$ ja $r > -\alpha$, on $EZ^r = \frac{\Gamma(\alpha + r)}{\Gamma(\alpha)} \frac{1}{\lambda^r}$.
- Eksponenttijakauma $\text{Exp}(\lambda)$ on sama kuin $\text{Gam}(1,\lambda)$.
- Gammafunktion funktionaaliyhtälö: $\Gamma(t+1) = t \Gamma(t)$, kun t > 0.
- Yhteys kertomaan: $\Gamma(n+1)=n!$, kun $n\geq 0$ on kokonaisluku.
- Jos **A** on kääntyvä matriisi, niin $(\mathbf{A}^T)^{-1} = (\mathbf{A}^{-1})^T$.