NAMA	: RAHMAT MEKAZO
NIM	: 09010282327039
KELAS	: MI 3A
MK	: PRAKTIKUM JARKOM

• Routing RIP

Rahmat Mekazo 09010282327039

1. Buatlah IP Address di PC

No	Nama Device	Alamat	Netmask	Gateway
1	PC1	192.168.1.10	255.255.255.0	192.168.1.1
2	PC2	192.168.2.10	255.255.255.0	192.168.2.1
3	PC3	192.168.3.10	255.255.255.0	192.168.3.1

ROUTER R1

Router 09010282327039#show ip route rip

192.168.1.0/24 is variably subnetted, 2 subnets, 2 masks

- R 192.168.2.0/24 [120/1] via 192.168.100.2, 00:00:27, FastEthernet0/1
- R 192.168.3.0/24 [120/2] via 192.168.100.2, 00:00:27, FastEthernet0/1 192.168.200.0/30 is subnetted, 1 subnets
- R 192.168.200.0 [120/1] via 192.168.100.2, 00:00:27, FastEthernet0/1

Router 09010282327039#

ROUTER R2

Router 09010282327039#show ip route rip

- R 192.168.1.0/24 [120/1] via 192.168.100.1, 00:00:19, FastEthernet0/1
 - 192.168.2.0/24 is variably subnetted, 2 subnets, 2 masks
- R 192.168.3.0/24 [120/1] via 192.168.200.2, 00:00:15, FastEthernet1/0

Router 09010282327039#

ROUTER R3

Router_09010282327039#show ip route rip

- R 192.168.1.0/24 [120/2] via 192.168.200.1, 00:00:21, FastEthernet0/1
- R 192.168.2.0/24 [120/1] via 192.168.200.1, 00:00:21, FastEthernet0/1 192.168.100.0/30 is subnetted, 1 subnets
- R 192.168.100.0 [120/1] via 192.168.200.1, 00:00:21, FastEthernet0/1

Router 09010282327039#

2. Lakukan PING dan Traceroute dari PC1 ke PC2 dan PC3, PC2 ke PC1 dan PC3, serta PC3 ke PC1 dan PC2.

N	Sumber	Tujuan	Hasil	
No			Ya	Tidak
4	DC4	PC2	Ya	
1	PC1	PC3	Ya	

	DC2	PC1	Ya	
2	PC2	PC3	Ya	

0	DCO	PC1	Ya	
3	PC3	PC2	Ya	

• Routing EIGRP

1. Buat Pengalamat di PC

No	Nama Device	Alamat	Netmask	Gateway
1	PCA	192.168.1.10	255.255.255.0	192.168.1.1
2	PCB	192.168.2.10	255.255.255.0	192.168.2.1
3	PCC	192.168.3.10	255.255.255.0	192.168.3.1

ROUTER A

RouterA_09010282327039#

ROUTER B

RouterB 09010282327039#

ROUTER C

RouterC 09010282327039#

2. Lakukan PING dan Traceroute dari PCA ke PCB dan PCC, PCB ke PCA dan PCC, serta PCC ke PCA dan PCB.

No	Sumber	Tujuan	Hasil	
No			Ya	Tidak
1	PCA	PCB	Ya	
		PCC	Ya	

DCD	PCA	Ya	
PCB	PCC	Ya	

2	PCC	PCA	Ya	
3	PCC	PCB	Ya	

Tabel hasil Ping.

```
Cisco Packet Tracer PC Command Line 1.0
C:\>ping 192.168.1.10
Pinging 192.168.1.10 with 32 bytes of data:
Reply from 192.168.1.10: bytes=32 time=23ms TTL=128
Reply from 192.168.1.10: bytes=32 time=36ms TTL=128
Reply from 192.168.1.10: bytes=32 time=19ms TTL=128
Reply from 192.168.1.10: bytes=32 time<1ms TTL=128
Ping statistics for 192.168.1.10:
   Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
   Minimum = 0ms, Maximum = 36ms, Average = 19ms
C:\>ping 192.168.2.10
Pinging 192.168.2.10 with 32 bytes of data:
Request timed out.
Reply from 192.168.2.10: bytes=32 time=2ms TTL=126
Reply from 192.168.2.10: bytes=32 time=11ms TTL=126
Reply from 192.168.2.10: bytes=32 time<1ms TTL=126
Ping statistics for 192.168.2.10:
   Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),
Approximate round trip times in milli-seconds:
   Minimum = 0ms, Maximum = 11ms, Average = 4ms
```

```
C:\>ping 192.168.3.10
Pinging 192.168.3.10 with 32 bytes of data:
Request timed out.
Reply from 192.168.3.10: bytes=32 time=13ms TTL=125
Reply from 192.168.3.10: bytes=32 time<1ms TTL=125
Reply from 192.168.3.10: bytes=32 time=1ms TTL=125
Ping statistics for 192.168.3.10:
    Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),
Approximate round trip times in milli-seconds:
   Minimum = 0ms, Maximum = 13ms, Average = 4ms
C:\>ping 192.168.4.10
Pinging 192.168.4.10 with 32 bytes of data:
Request timed out.
Reply from 192.168.4.10: bytes=32 time=1ms TTL=126
Reply from 192.168.4.10: bytes=32 time=11ms TTL=126
Reply from 192.168.4.10: bytes=32 time=11ms TTL=126
Ping statistics for 192.168.4.10:
    Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),
Approximate round trip times in milli-seconds:
   Minimum = 1ms, Maximum = 11ms, Average = 7ms
```

- **Menurut penjelasan saya:** Laporan ini secara keseluruhan menampilkan hasil konfigurasi dan pengujian konektivitas jaringan menggunakan protokol RIP dan EIGRP, serta verifikasi koneksi antar perangkat dalam jaringan tersebut.
- Analisa yang saya dapatkan dari Laporan tersebut:
 Keberhasilan Routing: Kedua protokol routing (RIP dan EIGRP) berhasil membentuk tabel routing yang memungkinkan konektivitas antar perangkat dalam jaringan.
 Keunggulan EIGRP dibanding RIP: Walaupun RIP berhasil dalam jaringan ini, EIGRP memiliki keunggulan dalam hal efisiensi dan skalabilitas untuk jaringan yang lebih besar.
 Penggunaan di Masa Depan: Untuk jaringan yang dinamis dan kompleks, EIGRP atau protokol routing yang lebih canggih akan lebih efisien daripada RIP.
- **Kesimpulannya**, laporan ini menunjukkan bahwa EIGRP menawarkan performa yang lebih baik dalam skenario jaringan yang memerlukan efisiensi dan keandalan yang lebih tingg

