Série 2012

Procédures de qualification

Planificatrice-électricienne CFC Planificateur-électricien CFC

Connaissances professionnelles écrites

Pos. 4 Technique des systèmes électriques

Nom, prénom	N° de candidat	Date

Temps: 90 minutes

Auxiliaires: Recueil de formules sans exemple de calcul, calculatrice de poche

(sans banque de données), règle, cercle, équerre et rapporteur.

Cotation: - Le nombre de points maximum est donné pour chaque exercice.

- Pour obtenir le maximum de points, les formules et les calculs doivent figurer dans la solution ainsi que les résultats avec leurs unités soulignés deux fois.

- Le cheminement de la solution doit être clair et son contrôle doit être aisé.
- Pour des exercices avec des réponses à choix multiple, pour chaque réponse fausse il sera déduit le même nombre de points que pour une réponse exacte.
- Si dans un exercice on demande plusieurs réponses vous êtes tenus de répondre à chacune d'elle. Les réponses sont évaluées dans l'ordre où elles sont données. Les réponses données en plus ne sont pas évaluées.
- S'il manque de la place, la solution peut être écrite au dos de la feuille.

Barème: Nombres de points maximum: 49,0

47,0 - 49,0	Points = Note	6,0
42,0 - 46,5	Points = Note	5,5
37,0 - 41,5	Points = Note	5,0
32,0 - 36,5	Points = Note	4,5
27,0 - 31,5	Points = Note	4,0
22,5 - 26,5	Points = Note	3,5
17,5 - 22,0	Points = Note	3,0
12,5 - 17,0	Points = Note	2,5
7,5 - 12,0	Points = Note	2,0
2,5 - 7,0	Points = Note	1,5
0,0 - 2,0	Points = Note	1,0

Les solutions ne sont pas données pour des raisons didactiques

(Décision de la commission des tâches d'examens du 09.09.2008)

Signature des	Points	Note
expertes / experts:	obtenus	

Délai d'attente: Cette épreuve d'examen ne peut pas être utilisée librement comme exercice avant le 1^{er} septembre 2013.

Créé par: Groupe de travail USIE examen de fin d'apprentissage

Planificatrice-électricienne CFC / Planificateur-électricien CFC

Editeur: CSFO, département procédures de qualification, Berne

Technique des systèmes électriques

Exer	cices	maximal	obtenus
1.	Pour quelle raison lors du transport international et national d'énergie utilise-t-on la haute et très haute tension ? Citez 2 raisons.	2	
2.	Citez 2 avantages lorsque l'on installe du matériel sans halogène.	2	
3.	Cochez les cases correspondantes aux disjoncteurs : IN = 13 A, type C et D - Lors d'un I _∞ plus faible, le déclenchement magnétique du disjoncteur type C, s'effectue avant le disjoncteur type D. - Lors d'une petite surcharge de courant, le déclenchement thermique du disjoncteur type C se produit avant le disjoncteur type D. - les classes de limitation du courant ne dépendent pas du type de disjoncteur. - Les disjoncteurs type D ont une plus grande capacité de déclenchement que les disjoncteurs type C.	2	

Technique des systèmes électriques

Exer	cices	Nombre d maximal	e points obtenus
4.	Transformateurs monophasés.	3	
	a) Quel genre de tension peut-on transformer ?		
	b) Un transformateur en fonction produit toujours des pertes par chaleur. Citez les 2 causes de ces pertes par chaleur.		
	c) Citez la relation entre courant,tension et nombre de spires du primaire et du secondaire.		
5.	Citez 4 sources concrètes de champ électromagnétiques (Electrosmog) dans les ménages privés.	2	
6.	a) Quel sera la valeur de l'intensité lumineuse si l'on double la distance entre la source de lumière et le point à éclairer ?	1	
	b) Argumentez votre réponse.	1	

Exer	cices						Nombre d maximal	e points obtenus
7.	a) Com		la table	de véri	té ci-de	ssous selon le schéma de fonction logique	4	
	I ₁		l ₃	I ₄	Q	l ₁ &		
	1	0	1	1		I₂——Q ≥1 ———Q		
	1	0	1	0		1₃		
	1	1	1	0				
	1	0	0	1				
	Un ii	nterrupt	eur acti)	orrespo	ndant à la fonction logique 1.		
8.	3 Piles	grande	ur AAA	sont co	nnecté	es en série.	2	
	Cochez	les cas	ses corr	espond	antes.	Φ 🐱		
						Juste Faux		
	- La c	harge d	lisponib	le triple				
			e la gra s charge			interne la tension aux 🔲 🔲 ment.		
	- La te	ension à	à vide tr	iple.				
	- Le c	ourant (de cour	t-circuit	est troi	s fois plus grand.		

Exer	cices	Nombre d maximal	e points obtenus
9.	Expliquez la fonction d'une diode couplée en parallèle à un relais à courant continu.	2	
10.	Un condensateur est selon le schéma équivalent ci-contre alimenté du réseau en 230 V / 50 Hz. R = 150 Ω; C = 44 μF. a) Déterminez les courants I, I _R et I _C . Schéma équivalent b) Quel est l'angle de déphasage du circuit ?	3	

Exer	cices	Nombre d maximal	obtenus
11.	Dans une bobine de relais alimentée en 48 V AC, circule un courant de 20mA. Lorsque l'on alimente cette même bobine en 48 V DC, il y circule un courant de 120 mA.	3	
	Calculez:		
	a) L'impédance de la bobine.		
	b) La résistance de la bobine.		
	c) L'inductance de la bobine.		
12.	Un diviseur de tension dont $R_1 = 60 \Omega$ et $R_2 = 40 \Omega$ est alimenté par une tension de 60 V. a) Calculez la tension de sortie à vide U_2 de ce diviseur de tension.	3	
	b) Calculez la tension de sortie de ce diviseur de tension lorsque l'on y raccorde une résistance de charge de 160 Ω.		

Exer	cices	Nombre d maximal	e points obtenus
13.	Un moteur et un dispositif de chauffage par résistance (installation de ventilation) sont raccordés au réseau triphasé.	3	
	Calculez pour toute l'installation: 3 x 400 V / 50 Hz		
	a) La puissance active. $P = 6 \text{ kW} \qquad P_{ab} = 4 \text{ kW} $ $P_{ab} = 4 \text{ kW} $		
	b) La puissance réactive.		
	c) La puissance apparente.		
14.	L'illustration ci-contre nous montre le principe d'une installation moderne de traitement d'eau chaude.	3	
	a) Comment nomme-t-on cette installation ?		
	b) Citez les 4 composants mentionnés sur l'illustration.		
	1 =		
	2 =		
	3 =		
	4 =		

Exercices	Nombre d maximal	e points obtenus
 Une entreprise consomme en moyenne 28 KW de puissance active et respectivement 37 kvar de puissance réactive. Quel est: a) Le facteur de puissance pour la charge non compensée ? b) Le facteur de puissance, lorsque l'on raccorde en parallèle, une batterie de compensation de 15 kvar ? c) La puissance réactive après compensation de l'installation ? Le problème peut être résolu graphiquement ou par calcul. Pour la solution graphique utiliser svp le quart de cercle dessiné. Echelle: 1 cm	3	

Technique des systèmes électriques

Exer	cices	Nombre d maximal	e points obtenus
16.	Le propriétaire d'une maison, a fait installer il y a 10 ans un éclairage à basse tension comprenant 8 lampes halogènes de 35 W. Pour des raisons d'économie d'énergie, il désire maintenant les remplacer par des modules LED 3 W. Les lampes halogènes installées ont un rendement lumineux de 20 lm/W, les modules LED prévus 70 lm/W. Combien de modules LED 3 W doit-on installer pour obtenir le même rendement lumineux ?	2	
17.	Un voltmètre numérique dispose d'un affichage à 4,5 chiffres. Sa classe de précision est de 0,5 et son erreur d'affichage de ± 3 digits. Quelle est l'erreur absolue affichée, lorsqu'avec cet appareil on mesure une tension de 240 V ?	2	

Exercices	Nombre d maximal	le points obtenus
19. L'enroulement primaire d'un transformateur de sonnerie (selon dessin) a 2300 spires. L'enroulement secondaire est divisé en rapport1:2 Entre les bornes 0 et 2, nous mesurons une tension à vide de 12 V.	310	
a) Calculez le nombre de spires au secondaire des enroulements partiels. b) Quelle tension à vide (à l'exception des 12 V) peut-on aussi mesurer sur ce transformateur ?		
Total	49	