

# AI SUMMER CAMP TRANSFORMER & NLP



## Content

- 1. Natural Language Processing over time
- 2. Transformer Motivation: How an RNN works
- 3. Transformer
  - a. Encoder-Decoder
  - b. Attention
  - c. Word Embedding
  - d. Positional Encoding
  - e. Dropout
  - f. Residual Connection
  - g. Advantages
- 4. Improved Transformers
- 5. Courses on NLP



# Natural Language Processing

#### Common tasks include:

- text classification
- translation
- summarization
- named entity recognition
- dialogue (chatbots)
- question answering

For more info visit <a href="https://paperswithcode.com/area/natural-language-processing">https://paperswithcode.com/area/natural-language-processing</a>



# Machine Translation on WMT2014 English-German



|   |                                       |       |       |      |          | Lessons on Parameter                                                                       |   |   |      |             |   | Global |
|---|---------------------------------------|-------|-------|------|----------|--------------------------------------------------------------------------------------------|---|---|------|-------------|---|--------|
| 1 | Transformer Cycle<br>(Rev)            | 35.14 | 33.54 |      | ✓        | Sharing across Layers in<br>Transformers                                                   | 0 | Ð | 2021 | Transformer | 2 | Al Hub |
| 2 | Noisy back-translation                | 35.0  | 33.8  |      | <b>✓</b> | Understanding Back-<br>Translation at Scale                                                | 0 | Ð | 2018 |             |   |        |
| 3 | Transformer+Rep<br>(Uni)              | 33.89 | 32.35 |      | ~        | Rethinking Perturbations in<br>Encoder-Decoders for Fast<br>Training                       | 0 | Ð | 2021 | Transformer |   |        |
| 4 | T5-11B                                | 32.1  |       |      | ~        | Exploring the Limits of<br>Transfer Learning with a<br>Unified Text-to-Text<br>Transformer | 0 | Ð | 2019 | Transformer |   |        |
| 5 | Transformer + R-Drop                  | 30.91 |       |      | ×        | R-Drop: Regularized Dropout for Neural Networks                                            | 0 | Ð | 2021 | Transformer |   |        |
| 6 | BERT-fused NMT                        | 30.75 |       |      | ×        | Incorporating BERT into Neural Machine Translation                                         | 0 | Ð | 2020 | Transformer |   |        |
| 7 | Data Diversification -<br>Transformer | 30.7  |       |      | ×        | Data Diversification: A Simple<br>Strategy For Neural Machine<br>Translation               | 0 | Ð | 2019 | Transformer |   |        |
| 8 | Mask Attention Network (big)          | 30.4  |       | 215M | ×        | Mask Attention Networks:<br>Rethinking and Strengthen<br>Transformer                       |   | Ð | 2021 |             |   |        |
| 9 | Transformer<br>(ADMIN init)           | 30.1  | 29.5  |      | ×        | Very Deep Transformers for<br>Neural Machine Translation                                   | 0 | Ð | 2020 | Transformer |   |        |
|   |                                       |       |       |      | glo      | balaihub.com                                                                               |   |   |      |             |   |        |



#### **Attention Is All You Need**

## Transformer

Ashish Vaswani\* Google Brain avaswani@google.com Noam Shazeer\* Google Brain noam@google.com Niki Parmar\* Google Research nikip@google.com Jakob Uszkoreit\* Google Research usz@google.com

Llion Jones\* Google Research llion@google.com Aidan N. Gomez\* † University of Toronto aidan@cs.toronto.edu Łukasz Kaiser\* Google Brain lukaszkaiser@google.com

Illia Polosukhin\* † illia.polosukhin@gmail.com

#### **Abstract**

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.

#### globalaihub.com



# Recurrent Neural Network (RNN)

#### The Vanilla RNN Model

#### First time-step (t = 1):

$$\mathbf{h}_1 = tanh \big( W^{xh} \cdot \mathbf{x}_1 + W^{hh} \cdot \mathbf{h}_0 \big)$$

$$\hat{\mathbf{y}}_1 = softmax(W^{hy} \cdot \mathbf{h}_1)$$

$$L_1 = CE(\hat{\mathbf{y}}_1, \mathbf{y}_1)$$

#### In general:

$$\mathbf{h}_{\mathsf{t}} = tanh \big( W^{xh} \cdot \mathbf{x}_t + W^{hh} \cdot \mathbf{h}_{t-1} \big)$$

$$\hat{\mathbf{y}}_t = softmax(W^{hy} \cdot \mathbf{h}_t)$$

$$L_t = CE(\hat{\mathbf{y}}_t, \mathbf{y}_t)$$

#### In total:

$$L = \sum_{t} L_{t}$$





# Backpropagation through time



$$\frac{\partial C_t}{\partial \mathbf{W}} = \sum_{t'=1}^t \frac{\partial C_t}{\partial h_t} \frac{\partial h_t}{\partial h_{t'}} \frac{\partial h_t}{\partial \mathbf{W}}, \text{ where } \frac{\partial h_t}{\partial h_{t'}} = \prod_{k=t'+1}^t \frac{\partial h_k}{\partial h_{k-1}}$$



# Long Short Term Memory (LSTM)





## Transformer





## Encoder Decoder



 $x^{<t>}$  = [ pollution<t-1>, dew point, temperature, pressure, wind direction, wind speed, snow, rain]



# Word Embedding



https://projector.tensorflow.org/



## Attention







## **Scaled Dot Product Attention**

$$attention(Q,K,V) = softmax(\frac{QK^T}{\sqrt{d}})V$$
 (4)

- Q -> query
- K -> key
- V -> value





(1)



$$softmax(-7) = 10^{-6}$$

$$softmax(5) = 0.88$$

$$softmax(3) = 0.12$$

(2)



koşarken yemek yedik

$$10^{-6}$$
  $-3$   $1$   $+ 0.88$   $2$   $-1$   $+ 0.12$   $2$   $1$ 

yemek'

= 2  $-0.76$  (3)







|         | 10 | -7         | -5 |     | 0.99 | 10-6 | 10-5 |     |
|---------|----|------------|----|-----|------|------|------|-----|
|         | -7 | 5          | 3  | _   |      |      |      | e)  |
| softmax | -5 | 3          | 5  | ) = | 10-4 | 0.80 | 0.19 | (6) |
| _       |    | $\sqrt{2}$ | 9  | _ / | 10-4 | 0.19 | 0.80 |     |



| 0.99 | <b>10</b> <sup>-6</sup> | 10-5 |
|------|-------------------------|------|
| 10-4 | 0.80                    | 0.19 |
| 10-4 | 0.19                    | 0.80 |



| -3 | 1  |  |
|----|----|--|
| 2  | -1 |  |
| 2  | 1  |  |

| -2.97 | 0.99  | koşarken  |
|-------|-------|-----------|
| 1.98  | -0.61 | yemek (7) |
| 1.98  | 0.61  | yedik     |





globalaihub.com







# Positional Encoding

Solution #1





# Positional Encoding

Solution #2





# Positional Encoding

Solution #3

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{model}})$$
  
 $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})$ 



https://www.youtube.com/watch?v=dichIcUZfOw

$$PE_{(pos,2i)} = \sin\left(\frac{pos}{100\overline{00}}\right)$$







# Dropout



(a) Standard Neural Net



(b) After applying dropout.



## **Residual Connection**





# Complexity

Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations for different layer types. n is the sequence length, d is the representation dimension, k is the kernel size of convolutions and r the size of the neighborhood in restricted self-attention.

| Layer Type                  | Complexity per Layer     | Sequential<br>Operations | Maximum Path Length |
|-----------------------------|--------------------------|--------------------------|---------------------|
| Self-Attention              | $O(n^2 \cdot d)$         | O(1)                     | O(1)                |
| Recurrent                   | $O(n \cdot d^2)$         | O(n)                     | O(n)                |
| Convolutional               | $O(k \cdot n \cdot d^2)$ | O(1)                     | $O(log_k(n))$       |
| Self-Attention (restricted) | $O(r \cdot n \cdot d)$   | O(1)                     | O(n/r)              |



# Advantages

parallelizable (thus faster)

computationally less complex (most of the time)

better capture longer dependencies

more interpretable



# **Improved Transformers**

- BERT
- GPT
- T5
- BART
- Pegasus
- XLM
- Reformer
- Longformer
- ELECTRA
- Roberta
- ..



## **Vision Transformers**

AN IMAGE IS WORTH 16x16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE

https://arxiv.org/pdf/2010.11929.pdf





## Courses & Resources

- Stanford University NLP w/ DL <a href="http://web.stanford.edu/class/cs224n/">http://web.stanford.edu/class/cs224n/</a>
- Huggingface <a href="https://huggingface.co/course/chapter1">https://huggingface.co/course/chapter1</a>
- Deeplearning.ai NLP -

https://www.deeplearning.ai/program/natural-language-processing-specialization/



# Bibliography

- <a href="https://user.ceng.metu.edu.tr/~skalkan/DL/week13.pdf">https://user.ceng.metu.edu.tr/~skalkan/DL/week13.pdf</a>
- <a href="https://kazemnejad.com/blog/transformer-architecture-positional-encoding/">https://kazemnejad.com/blog/transformer-architecture-positional-encoding/</a>
- <a href="https://www.youtube.com/watch?v=dichIcUZfOw">https://www.youtube.com/watch?v=dichIcUZfOw</a>
- https://arxiv.org/pdf/1706.03762.pdf