### **Characteristics of Functions**

1. Fully factor each of the following.

a) 
$$60x^5 - 12x^3$$

b) 
$$x^2 - 3x - 10$$

c) 
$$3x^2 - 75y^2$$

d) 
$$6x^2 - 7x - 5$$

2. Simplify each of the following, state restrictions:

a) 
$$\frac{x^2 + 4x - 12}{x^2 - 4} \times \frac{x^2 + 4x + 4}{x + 6}$$

b) 
$$\frac{4x-4}{x^2-1} + \frac{x+7}{x^2-2x-3}$$

3. Simplify the following. Your answer must be in simplest form.

a) 
$$\sqrt{18} + 3\sqrt{8} - 2\sqrt{50}$$

b) 
$$3\sqrt{2}(\sqrt{2} + 9\sqrt{11})$$

b) 
$$3\sqrt{2}(\sqrt{2} + 9\sqrt{11})$$
 c)  $(\sqrt{3} - 4\sqrt{2})(\sqrt{3} + 4\sqrt{2})$ 

4. State the domain and range of the following functions. Provide a sketch of the given relation.

a) 
$$y = -2(x-3)^2 - 3$$



b) 
$$y = \sqrt{x+3} - 1$$



Domain \_\_\_\_\_

Range \_\_\_\_\_

Function? YES or NO (Circle one)

Domain \_\_\_\_\_

Range \_\_\_\_

Function? YES or NO (Circle one)

5. Determine the coordinates of the intersection point(s) for the following system of equations.

$$y = x^2 - 6x + 1$$

$$y = x - 5$$



6. The following transformations are applied to f(x)

- Stretch vertically by a factor of 8
- Stretch horizontally by a factor of 4
- Reflect in the y-axis.
- Translate 2 units left and 1 unit up

Write g(x) with its transformations.

| 7. | Describe, in the appropr           | iate order, the transformations (example:   | HS by 4) that must be applied to |
|----|------------------------------------|---------------------------------------------|----------------------------------|
| th | e base function, $f(x) = \sqrt{x}$ | to obtain the transformed function $g(x)$ . |                                  |

$$g(x) = \frac{1}{3}\sqrt{2x-2} + 11$$

- 8. A rocket is shot from a lighthouse. The height, h, in metres, after t seconds is given by  $h(t) = -3t^2 + 18t + 21$ .
  - a) What is the height of the launching pad?
  - b) What is the maximum height reached by the rocket?

- c) At what time is the maximum height reached?
- d) When does the rocket hit the ground?

e) State the domain and range for this application

9. Find the inverse of the relation  $f(x) = 2x^2 + 4x - 2$ .

10.a) Given 
$$f(x) = (x+1)^2 - 3$$
,

- b) Graph f(x) and  $f^{-1}(x)$
- c) Determine the equation of  $f^{-1}(x)$



11. Given the table of values of f(x), sketch the graph of g(x) = -3f(2(x-1)) + 4

| Points on f(x) | Mapping Rule, new points |
|----------------|--------------------------|
|                |                          |
| (-5,0)         |                          |
| (-3,2)         |                          |
| (0,2)          |                          |
| (1,-1)         |                          |
| (2,1)          |                          |



## **Exponential Functions**

- 1. Evaluate each of the following. Show steps to show your use of the exponent laws
- a) (-5)<sup>2</sup>

- b)  $\frac{5^{-1}}{3^{-2}}$
- c)  $(6^{-2})^2$
- d) 16 4

2. Simplify each of the following. Show steps and your answer should have positive exponents only.

a) 
$$\frac{x^{\frac{2}{5}} \bullet x^{\frac{7}{10}}}{x^{\frac{1}{4}}}$$

b) 
$$(100x)^{\frac{1}{2}} \div (27x^{-2})^{\frac{2}{3}}$$

3. Verify that the tables represent exponential relationships. Find an equation for each set of data.

i)

| × | У    |
|---|------|
| 0 | -2   |
| 1 | -10  |
| 2 | -50  |
| 3 | -250 |

ii)

| х  | У  |
|----|----|
| -1 | 16 |
| 0  | 8  |
| 1  | 4  |
| 2  | 2  |

|    | 4. The value of a car after it is purchased depreciates according to the formula $V(n) = 26500(0.77)^n$                                                                                           |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | where $V(n)$ is the car's value after a number of years, n.                                                                                                                                       |
| a) | What is the purchase price of the car?                                                                                                                                                            |
| b) | What is the annual rate of depreciation?                                                                                                                                                          |
| c) | What is the car's value at the end of 2 years?                                                                                                                                                    |
|    | 5. A city has 2 million people living in it in 2005. It experienced an average growth in the population of 8.5% per year.                                                                         |
|    | <ul> <li>a) Write an equation that models the population, P, in millions, of this country as a function of the<br/>number of years, n, since 2005.</li> </ul>                                     |
|    | b) What is the city population in 2027?                                                                                                                                                           |
|    | c) Use your equation to determine when the population will double from 2005.                                                                                                                      |
|    | <ul><li>6. A 7-g sample of radioactive plutonium has a half-life of 41 days.</li><li>a) State an equation to represent the amount of plutonium, A, in grams, that remains after t days.</li></ul> |
|    | b) Determine that amount that remains after 90 days.                                                                                                                                              |

# **Trigonometric Functions**

- 1. Determine each exact value. Show all of your steps. (no calculators use special triangles)
- a) cos 120°

b) cot 225°

- 2. Solve for *two* values of  $\theta$  to the nearest degree where  $0^{\circ} \le \theta \le 360^{\circ}$ .
- a)  $\cos \theta = -0.1683$

c)  $\sec \theta = \sqrt{2}$ 

3. A is an angle in standard position. P(3, -4) is a point on the terminal arm of  $\theta$ . Determine the sin and cot ratios for the angle.

4. Find d and h, showing all your work.



5. In  $\triangle ABC$ ,  $\angle C = 50^{\circ}$ , c = 3.1 cm and b = 3.6 cm. Solve for the **two possible** values for  $\angle B$ . Include diagrams in your answer. (ambiguous case)

6. Prove the identity cosx(cscx + tanx) = cotx + sinx

- 7. The graph of the function  $y = \sin x$  is transformed as described below.
  - Stretch the graph horizontally by a factor of 5.
  - Stretch the graph vertically so the new amplitude of the graph is 3 times of the original amplitude.
  - Reflect the graph in the x axis.
  - Translate the graph 1 units up and shift the graph 45° to the right.

Determine an equation of the transformed function.

8. Complete the following chart for the given functions.

| Equation                                  | Amplitude | Period | Phase Shift | Vertical<br>Translation |
|-------------------------------------------|-----------|--------|-------------|-------------------------|
| a) $y = -3\sin(\theta - 80^{\circ}) - 6$  |           |        |             |                         |
| b) $y = 0.5\cos 2\theta - 60^{\circ} + 1$ |           |        |             |                         |

9. Sketch one cycle of  $y = 4 \sin 0.5(\theta + 90^{\circ}) + 3$ 

| Key points | Mapping Rule: |
|------------|---------------|
|            |               |
|            |               |
|            |               |
|            |               |
|            |               |



10. Find two possible equations (one Sine and one Cosine) for the given function.



11. The blue seat on a ferris wheel begins at the top of the ride is at the height h, in m, at a time in t seconds that follows the equation.  $h(t) = -11 \sin(10t) + 12$ 

Sketch the graph

- a) Max. height
- b) Min. height
- c) Time for one rotation
- d) Radius of the wheel
- e) when the blue seat is at a maxiumum

- 1. Find the general term of the sequence 0, 12, 24....
- 2. Find the general term of 3, -3/2, 3/4, .......
- 3. For the arithmetic series -6 1 + 4 ...139 , determine  $S_n$ .

4. For the geometric series 8+32+128 ....., determine S<sub>5</sub>.

5. What is the final amount if you invest \$4444 at 5.3% p/a , compounded quarterly, for 11 years?

6. How much do you need to invest today so that it grows to \$155000 in 30 years? (5.2% interest per annum, compounded monthly)

### **FORMULA PAGE**

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$













| <b>Identities Based on Definitions</b>                             | Identities Derived from Relation                                             | nships                              |
|--------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------|
| Reciprocal Identities                                              | Quotient Identities                                                          | Pythagorean Identities              |
| $\csc \theta = \frac{1}{\sin \theta}$ , where $\sin \theta \neq 0$ | $\tan \theta = \frac{\sin \theta}{\cos \theta}$ , where $\cos \theta \neq 0$ | $\sin^2\theta + \cos^2\theta = 1$   |
| $\sec \theta = \frac{1}{\cos \theta}$ , where $\cos \theta \neq 0$ | $\cot \theta = \frac{\cos \theta}{\sin \theta}$ , where $\sin \theta \neq 0$ | $1 + \tan^2 \theta = \sec^2 \theta$ |
| $\cot \theta = \frac{1}{\tan \theta}$ , where $\tan \theta \neq 0$ |                                                                              | $1 + \cot^2 \theta = \csc^2 \theta$ |

Finding sides: 
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc\cos A$$

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

Right triangles: SOHCAHTOA

$$\sin\theta = \frac{y}{r}$$

$$\sin \theta = \frac{y}{r}$$
  $\cos \theta = \frac{x}{r}$   $\tan \theta = \frac{y}{x}$ 

$$\tan\theta = \frac{y}{x}$$

$$t_n = a + d(n-1)$$

$$S_n = \frac{n}{2} [2a + d(n-1)]$$

$$S_n = \frac{n}{2} (a + t_n)$$

$$t_n = ar^{n-1}$$

$$S_n = \frac{a(r^n - 1)}{r - 1}$$

$$S_n = \frac{t_n \times r - a}{r - 1}$$

$$A = P(1+i)^n$$

$$P = A(1+i)^{-n}$$

### Characteristics of Functions

1. Fully factor each of the following.

a) 
$$60x^5 - 12x^3$$
  
=  $12 \times (5x^2 - 1)$ 

c) 
$$3x^2 - 75y^2$$
  
=  $3(x^2 - 25y^2)$   
=  $3(x+5y)(x-5y)$ 

- b)  $x^2 3x 10$ =(x-5)(x+2)
- d)  $6x^2 7x 5$ = (3x-5)(2x+1) -> 6x2 -6x
- 2. Simplify each of the following, state restrictions:

a) 
$$\frac{x^2 + 4x - 12}{x^2 - 4} \times \frac{x^2 + 4x + 4}{x + 6}$$

$$=\frac{(\chi+0)(\chi-2)}{(\chi+2)(\chi-2)} \times \frac{(\chi+2)(\chi+2)}{(\chi+4)}$$

b) 
$$\frac{4x-4}{x^2-1} + \frac{x+7}{x^2-2x-3}$$

$$= \frac{4(x_{7})}{(x+1)(x_{7})} + \frac{(x+7)}{(x-3)(x+1)}$$

$$= \frac{4}{x+1} + \frac{(x+7)}{(x-3)(x+1)}$$

$$= \frac{4(x-3) + x+7}{(x-3)(x+1)}$$

$$= \frac{4x-12+x+7}{(x-3)(x+1)} - \frac{5x-5}{(x-3)(x+1)}$$

- 3. Simplify the following. Your answer must be in simplest form.
- a)  $\sqrt{18} + 3\sqrt{8} 2\sqrt{50}$ =352 + 652 - 1052

= - 12

- - = 6+27522
- a)  $\sqrt{18} + 3\sqrt{8} 2\sqrt{50}$ b)  $3\sqrt{2}(\sqrt{2} + 9\sqrt{11})$ c)  $(\sqrt{3} 4\sqrt{2})(\sqrt{3} + 4\sqrt{2})$ =  $\sqrt{9} + 4\sqrt{6} 4\sqrt{6} 16\sqrt{4}$

$$=3-16(2)$$

$$= 3 - 32$$
  
=  $-29$ 



a) 
$$y = -2(x-3)^2 - 3$$
  $\sqrt{(3-3)}$ 

-2,-4,-10 ...

₩ Stepx-2

b) 
$$y = \sqrt{x+3} - 1$$



| JX    | (x-3,y-1) |
|-------|-----------|
| (0,0) | (-3, -1)  |
| (111) | (-2.0)    |
| (4,2) | (+1,1)    |
| (9,3) | (6,2)     |

Domain 5x6R3

Range YES or NO (Circle one)

Domain  $\{x \in R, x \ge -3\}$ Range  $\{y \in R, y \ge -1\}$ Function? (ES) or NO (Circle one)

5. Determine the coordinates of the intersection point(s) for the following system of equations.

$$y = x^2 - 6x + 1$$
  $(x-3)^2 - 8$ 

$$y = x - 5$$



POIs are (6,1) and (1,-4)

x2-6x+1=x-5  $x^{2}-7x+6=0$ (x-6)(x-1)=0 x=6 x=6 x=1 y=6-5 y=1-5 y=-4

- 6. The following transformations are applied to f(x)
  - Stretch vertically by a factor of 8
  - Stretch horizontally by a factor of 4
  - Reflect in the y-axis.
  - Translate 2 units left and 1 unit up

Write g(x) with its transformations.

$$g(x) = 8 f [-4(x+2)] + 1$$



7. Describe, *in the appropriate order*, the transformations (example: HS by 4) that must be applied to the base function,  $f(x) = \sqrt{x}$ , to obtain the transformed function g(x).

$$g(x) = \frac{1}{3}\sqrt{2x-2} + 11$$

Factor & PLX-1)

VC x 3 HC x Z H.T. I up

- 8. A rocket is shot from a lighthouse. The height, h, in metres, after t seconds is given by  $h(t) = -3t^2 + 18t + 21$ .
  - a) What is the height of the launching pad?

b) What is the maximum height reached by the rocket?

$$h(t) = -3(t^2-6t)+21$$

$$= -3(t^2-6t+9-9)+21$$

$$= -3(t-3)^2+27+21$$

$$= -3(t-3)^2+48$$
so max height is 48 m

 $\begin{array}{ccc}
-3t(t-6) \\
-3t(t-6) \\
4 & 4 & 4 \\
+v=3 \\
h(3) = -3(3)^2 + 18(3+2) \\
h(3) = 48
\end{array}$ 

c) At what time is the maximum height reached?

d) When does the rocket hit the ground?

$$0 = -3(t^2 - 6t - 7)$$

$$0 = -3(t - 7)(t + 1)$$

$$6 = 7$$

$$6 = 7$$

or quad formula t= -b + Jb2-4ac 2a

So it hits The grand @ 7 seconds.

e) State the domain and range for this application

9. Find the inverse of the relation  $f(x) = 2x^2 + 4x - 2$ 

$$y = 2(x^{2} + 2x + 1 - 1) - 2$$

$$y = 2(x + 1)^{2} - 1$$

$$x = 2(y+1)^{2} - 4$$
 $\frac{x+4}{2} = (y+1)^{2}$ 
 $\frac{1}{\sqrt{x+4}} = y+1$ 

$$\frac{0}{x^{2}-2(y+1)^{2}-4}$$

$$\frac{x+4}{2}=(y+1)^{2}$$

$$\frac{1}{x^{2}}=y+1$$

- 10.a) Given  $f(x) = (x+1)^2 3$ , Vertex (-1, -3)
  - b) Graph f(x) and f<sup>-1</sup>(x)
  - c) Determine the equation of  $f^{-1}(x)$

ermine the equation of 
$$f^{-1}(x)$$

$$y = (x+1)^{2} - 3$$

$$x = (y+1)^{2} - 3$$

$$x + 3 = (y+1)^{2}$$

$$\pm (x+3) = (y+1)^{2}$$



11. Given the table of values of f(x), sketch the graph of g(x) = -3f(2(x-1)) + 4

| Points on f(x)  (x,y)- | Mapping Rule and new points $(\frac{x}{2} + 1, -3y + 1)$ |
|------------------------|----------------------------------------------------------|
| (-5,0)                 | 9 (-1.5, 4)                                              |
| (-3,2)                 | 7 (-0.5 , -2)                                            |
| (0,2) -                | 1 (1, -2)                                                |
| (1,-1) -               | 7 (1.5, 7)                                               |
| (2,1)                  | 2 (1)                                                    |
| 94-                    |                                                          |



## **Exponential Functions**

1. Evaluate each of the following. Show steps to show your use of the exponent laws

a) 
$$(-5)^2$$
 b)  $\frac{3}{3^{-2}}$ 

$$= 25$$

$$= \frac{3^2}{5}$$

$$= \frac{9}{4}$$

c) 
$$(6^{-2})^2$$
 d)  $16^{\frac{3}{4}}$   
=  $6^{-4}$  =  $\sqrt{10}$   
=  $\frac{1}{1296}$  =  $8$ 

2. Simplify each of the following. Show steps and your answer should have positive exponents only.

a) 
$$\frac{x^{\frac{2}{5}} \cdot x^{\frac{7}{10}}}{x^{\frac{1}{4}}} = \frac{x^{\frac{7}{10}}}{x^{\frac{1}{10}}} = \frac{x^{\frac{7}{10}}}{x^{\frac{1}{10}}} = \frac{x^{\frac{17}{10}}}{x^{\frac{17}{20}}} = \frac{x^{\frac{17}{20}}}{x^{\frac{5}{120}}} = x^{\frac{17}{20}}$$

b) 
$$(100x)^{\frac{1}{2}} \div (27x^{-2})^{\frac{2}{3}}$$

$$= \sqrt{100} \times \sqrt{12}$$

ii)

3. Verify that the tables represent exponential relationships. Find an equation for each set of data.

| , <b>x</b> | У    | Common lat |
|------------|------|------------|
| 0          | -2   | 7:5        |
| 1          | -10  | K: <       |
| 2          | -50  |            |
| 3          | -250 | コノッ う      |

| <b>x</b> . | v  | 1.      |
|------------|----|---------|
| -1         | 16 | 5: 112  |
| 0 .        | 8  | 112     |
| 1          | 4  | -       |
| 2          | 2  | 1): 112 |

Common Cato

- 4. The value of a car after it is purchased depreciates according to the formula  $V(n) = 26500(0.77)^n$ where V(n) is the car's value after a number of years, n.
- a) What is the purchase price of the car?

$$V(0) = 26500 (0.77)$$

$$= $26500$$
b) What is the annual rate of depreciation?

c) What is the car's value at the end of 2 years?

$$V(2) = 26500(0.77)^{2}$$
  
= \$15 711,85

- 5. A city has 2 million people living in it in 2005. It experienced an average growth in the population of 8.5% per year.
- a) Write an equation that models the population, P, in millions, of this country as a function of the number of years, n, since 2005.

$$P(n) = 2(1.085)^n$$

b) What is the city population in 2027?

$$P(22) = 2(1.085)^{22}$$

$$12 \text{ million people in } 2027$$

c) Use your equation to determine when the population will double from 2005.

$$4 = 2(1.085)^{2}$$
  
 $2 = 1.085^{9}$   
 $\log 2/\log 1.085$   $n = 8.5$  years.

- A 7-g sample of radioactive plutonium has a half-life of 41 days.
  - a) State an equation to represent the amount of plutonium, A, in grams, that remains after t days.

b) Determine that amount that remains after 90 days.

$$A = 7(1/2)^{90/41}$$

1.5g after 90 days

6. It will be.

double in

## **Trigonometric Functions**

1. Determine each exact value. Show all of your steps. (no calculators – use special triangles)

S A T C

a)  $\cos 120^{\circ}$   $\int_{-1}^{2} \cos 120^{\circ} = -\frac{1}{2}$ 

 $\cos \Theta = \frac{\text{adj}}{\text{hyp}}$   $\cos 120^{\circ} = -\frac{1}{2}$ 

tan 45' = 1/1 tan 225° = 1/1 tan 225° = 1/1 cot 225 = 1 cot 9 = adj/opp

Cot 8 = -1/-1 = 1

2. Solve for *two* values of  $\theta$  to the nearest degree where  $0^{\circ} \le \theta \le 360^{\circ}$ .

a)  $\cos \theta = -0.1683$ 

d= cus-1 (0.1683)

cost is neg.

 $Q2 \Theta = 180 - 80$  = 100  $Q3 \Theta = 180 + 80 = 260$ 

c)  $\sec \theta = \sqrt{2}$   $\cos \theta = \frac{1}{\sqrt{2}}$ 

special triangles & = 45°

600 10 pos in Q 144

Q4: 0=360-45

3. A is an angle in standard position. P(3, -4) is a point on the terminal arm of  $\theta$ . Determine the sin and cot ratios for the angle.



32 +42=12 25=12  $\sin \Theta = \frac{-4}{5}$ 

 $\tan \theta = -\frac{4}{3} \rightarrow \cot \theta = -\frac{3}{4}$ 

4. Find d and h, showing all your work.

$$d = \frac{30 \sin 50}{\sin 10}$$



 $h = 114.6 \sim$ 

5. In  $\triangle ABC$ ,  $\angle C = 50^{\circ}$ , c = 3.1 cm and b = 3.6 cm. Solve for the **two possible** values for  $\angle B$ . Include diagrams in your answer. (ambiguous case)



$$3.6$$
  $3.1$   $R = 63^{\circ}$ 



6. Prove the identity cosx(cscx + tanx) = cotx + sinx

COSTX (CSCX+ tanx)

<u>es</u> cotatsing

LS=RS Boidenty 15 true.

- 7. The graph of the function  $y = \sin x$  is transformed as described below.
  - Stretch the graph horizontally by a factor of 5.
  - Stretch the graph vertically so the new amplitude of the graph is 3 times of the original amplitude.
  - Reflect the graph in the x axis.
  - Translate the graph 1 units up and shift the graph 45° to the right.

Determine an equation of the transformed function.

8. Complete the following chart for the given functions.

| Equation                                  | Amplitude | Period | Phase Shift | Vertical<br>Translation |
|-------------------------------------------|-----------|--------|-------------|-------------------------|
| a) $y = -3\sin(\theta - 80^{\circ}) - 6$  | 3         | 360°   | 80°right    | Cedour                  |
| b) $y = 0.5\cos 2\theta - 60^{\circ} + 1$ | 0.2       | 180    | 35° right   | Lup.                    |

9. Sketch one cycle of  $y = 4\sin 0.5(\theta + 90^\circ) + 3$ 

| J. Sketch One cycle | OI .          |
|---------------------|---------------|
| Key points          | (2x-90, 4y+3) |
| (0,0) -             | ) (-40,3)     |
| (90,1) -            | ) (90,7)      |
| (180,0) -           | ) (270,3)     |
| (270,-1)            | > (WOD)       |
| (360,0)             | (630, 3)      |



amp= 4 per = 720° axis y=3 10. Find two possible equations (one Sine and one Cosine) for the given function.



or y = - 2605(3x)-6 11. The blue seat on a ferris wheel begins at the top of the ride is at the height h, in m, at a time in t seconds that follows the equation.  $h(t) = -11 \sin 10t + 12$ 

Sketch the graph



a) Max. height

b) Min. height

c) Time for one rotation

d) Radius of the wheel

e) when the blue seat is at a maxiumum

### **Discrete Functions**

1. Find the general term of the sequence 0, 12, 24....

$$t_n = a + d(n-1)$$
  
= 0 + 12(n-1)

2. Find the general term of 3, -3/2, 3/4, .......

$$t_n = ar^{n-1}$$
 $t_n = 3(-1/2)^{n-1}$ 

アニーララ3 ニーランタ ニー3/6=-112

3. For the arithmetic series -6 - 1 + 4  $\dots$ 139 , determine  $S_n$ .

$$t_n = a + (n-1)d$$
 $139 = -6 + (n-1)(5)$ 
 $139 = -6 + 5n-5$ 
 $150 = 5n$ 
 $30 = n$ 

 $S_{30} = \frac{30}{2} \left[ 2(-6) + (30-)(5) \right]$   $S_{30} = 15 \left( -12 + 145 \right)$   $= 15 \left( 133 \right)$   $S_{30} = 1995$ 

4. For the geometric series 8+32+128 ...., determine  $S_5$ .

$$S_5 = 8(1023)$$

$$S_5 = 8(1023)$$

 $S_n = \frac{\alpha(r^{n-1})}{r^{n-1}}$  $S_{\bar{r}} = 2728$ 

5. What is the final amount if you invest \$4444 at 5.3% p/a , compounded quarterly, for 11 years?

05 Final anators 15 \$7930,58

6. How much do you need to invest today so that it grows to \$155000 in 30 years? (5.2% interest per annum, compounded monthly)

$$P = 155 000 (1 + 0.052)$$

So Insest \$ 32 681.05 today.