Machine Learning for Big Data: Simple Linear Regression

Lionel Fillatre

fillatre@unice.fr

Topics

- Introduction
- Compute the best linear model
- Testing significance
- Residuals analysis
- Conclusion

1 Introduction

Scatter Plots of Two Variables

Simple Linear Regression Model

- The equation that describes how y is related to x and an error term is called the **regression model**.
- The **simple linear regression model** is:

$$y = \beta_0 + \beta_1 x + \varepsilon$$

- β_0 and β_1 are called **parameters of the model**.
- ε is a random variable called the **error term**. Generally, this error is centered:

$$E(\varepsilon) = 0$$

Linear Model $E(y) = \beta_0 + \beta_1 x$

Simple Linear Regression Equation Positive Linear Relationship

Simple Linear Regression Equation

Negative Linear Relationship

Simple Linear Regression Equation

No Relationship

2 Compute the best linear model

Estimated Regression Equation

The estimated equation is:

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

- The graph is called the estimated regression line.
- $\hat{\beta}_0$ is the *y* intercept of the line.
- $\hat{\beta}_1$ is the slope of the line.
- \hat{y} is the estimated value of y for a given x value.

Estimation Process

Least Squares Method

• Least Squares Criterion (SSE = Sum of Squared Errors)

$$SSE = \min_{\beta_0, \beta_1} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

where:

- $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$ = observed value of the dependent variable for the *i*th observation
- $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ = estimated value of the dependent variable for the *i*th observation

Coefficient Equations

Prediction equation

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

• Sample slope

$$\hat{\beta}_{1} = \frac{SS_{xy}}{SS_{xx}} = \frac{\sum (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum (x_{i} - \bar{x})^{2}}$$

Sample Y-intercept

$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}$$
 with $\overline{y} = \frac{1}{n} \sum_{i=1}^n y_i$, $\overline{x} = \frac{1}{n} \sum_{i=1}^n x_i$

Derivation of Estimates (1)

• Least Squares (L-S): Minimize squared error

$$\sum_{i=1}^{n} \varepsilon_{i}^{2} = \sum_{i=1}^{n} (y_{i} - \beta_{0} - \beta_{1} x_{i})^{2}$$

$$0 = \frac{\partial \sum_{i=1}^{n} \varepsilon_{i}^{2}}{\partial \beta_{0}} = \frac{\partial \sum_{i=1}^{n} (y_{i} - \beta_{0} - \beta_{1} x_{i})^{2}}{\partial \beta_{0}}$$

$$= -2(n\overline{y} - n\beta_{0} - n\beta_{1}\overline{x})$$

$$\hat{\beta}_{0} = \overline{y} - \hat{\beta}_{1}\overline{x}$$

Derivation of Estimates (2)

• Least Squares (L-S): Minimize squared error

$$0 = \frac{\partial \sum \mathcal{E}_{i}^{2}}{\partial \beta_{1}} = \frac{\partial \sum (y_{i} - \beta_{0} - \beta_{1} x_{i})^{2}}{\partial \beta_{1}}$$

$$= -2 \sum x_{i} (y_{i} - \beta_{0} - \beta_{1} x_{i})$$

$$= -2 \sum x_{i} (y_{i} - \overline{y} + \beta_{1} \overline{x} - \beta_{1} x_{i})$$

$$\beta_{1} \sum x_{i} (x_{i} - \overline{x}) = \sum x_{i} (y_{i} - \overline{y})$$

$$\beta_{1} \sum (x_{i} - \overline{x}) (x_{i} - \overline{x}) = \sum (x_{i} - \overline{x}) (y_{i} - \overline{y})$$

$$\hat{\beta}_{1} = \frac{SS_{xy}}{SS}$$

3 Testing significance

The Coefficient of Determination

- We compare our fit to a null model $y_i = \alpha + \varepsilon_i$, in which we don't use the independent variable x
- Analysis of Variance = relationship among SST, SSR, SSE

$$SST = SSR + SSE$$

$$\sum (y_i - \bar{y})^2 = \sum (\hat{y}_i - \bar{y})^2 + \sum (y_i - \hat{y}_i)^2$$

where:

- SST = total sum of squares
- SSR = sum of squares due to regression
- SSE = sum of squares due to error

The Coefficient of Determination

The coefficient of determination is:

$$r^2 = SSR/SST$$

where:

- SST = total sum of squares
- SSR = sum of squares due to regression
- r^2 is the proportional reduction in squared error due to the linear regression.
- "Good" values of r^2 vary widely in different fields of application.

The Correlation Coefficient

 The correlation coefficient gives the strength and direction of the relationship.

• Sample Correlation Coefficient $r_{xy} = (\text{sign of } \hat{\beta}_1) \sqrt{r^2}$

where:

• $\hat{\beta}_1$ = the slope of the estimated regression equation

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

Model Assumptions

- Conventional assumptions about the error term ε
 - 1. The error ε is a random variable with mean of zero.
 - 2. The variance of ε , denoted by σ^2 , is the same for all values of the independent variable.
 - 3. The values of ε are independent.
 - 4. The error ε is a normally distributed random variable.

Testing for Significance

- To test for a significant regression relationship, we must conduct a hypothesis test to determine whether the value of β_1 is zero.
- Two tests are commonly used
 - t Test
 - *F* Test (not presented here)
- Both tests require an estimate of σ^2 , the variance of ε in the regression model.

Testing for Significance

- An estimate of σ^2 :
 - The mean square error (MSE) provides the estimate of σ^2 :

$$\widehat{\sigma^2}$$
 = MSE = SSE/(n-2)

where

SSE =
$$\sum (y_i - \hat{y}_i)^2 = \sum (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$$

- An estimate $\hat{\sigma}$ of σ :
 - To compute $\hat{\sigma}$ we take the square root of $\widehat{\sigma^2}$.
 - The resulting $\hat{\sigma}$ is called the standard error of the estimate.

Testing for Significance: t Test

• Hypotheses:

$$H_o$$
: $\beta_1 = 0$
 H_i : $\beta_1 \neq 0$

• Test Statistic:
$$t = \frac{\hat{\beta}_1}{s_{\hat{\beta}_1}}$$

where
$$s_{\hat{\beta}_i} = \frac{\hat{\sigma}}{\sqrt{\sum (x_i - \bar{x})^2}}$$

Testing for Significance: t Test

- Rejection Rule:
 - Reject H_0 if $t < -t_{\alpha/2}$ or $t > t_{\alpha/2}$

- · where:
- $t_{\alpha/2}$ is based on a t distribution with n 2 degrees of freedom
- $t_{\alpha/2}$ is the t value providing an area of $\alpha/2$ in the upper tail of the t distribution.
- Meaning of α :
 - the significance level α is the probability of rejecting the null hypothesis when it is true.
 - For example, a significance level of 0.05 indicates a 5% risk of concluding that a difference exists when there is no actual difference.

25

Some Cautions about the Interpretation of Significance Tests

- Rejecting H_0 : $\beta_1 = 0$ and concluding that the relationship between x and y is significant does not enable us to conclude that a **cause-and-effect relationship** is present between x and y.
- Just because we are able to reject H_o : $\beta_1 = 0$ and demonstrate statistical significance does not enable us to conclude that there is a **linear relationship** between x and y.

Residual for observation i

$$\hat{\varepsilon}_i = y_i - \hat{y}_i$$

• Standardized Residual for observation *i*

$$t_i = \frac{\hat{\varepsilon}_i}{\hat{\sigma}\sqrt{1 - h_i}}$$

where:
$$h_i = \frac{1}{n} + \frac{(x_i - \bar{x})^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

Residual Plot: Good pattern

Residual Plot: Nonconstant variance

Residual Plot: Model form not adequate

How is a Simple Linear Regression Analysis done? A Protocol

5 Conclusion

Conclusion

Linear regression: a very famous parametric method!

Many tools for interpreting the results

Interpretation should be done carefully

Extension to multiple linear regression