МОДУЛЬНА КОНТРОЛЬНА РОБОТА №1 3 ДИСКРЕТНОЇ МАТЕМАТИКИ

Білет 1

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Навести змістовний приклад бінарного відношення, яке ϵ транзитивним і не ϵ антирефлексивним. Показати, що наведене бінарне відношення дійсно ϵ транзитивним і не ϵ антирефлексивним.
- 2. Для логічної формули $A \to \overline{A} \& B$ була побудована таблиця істинності:

А	В	A→Ā∧B
0	0	1
0	1	1
1	0	0
1	1	0

В яких рядках таблиці зроблено помилку?

- А) В першому
- Б) в другому
- В) в першому і третьому
- Г) в останньому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 3. Що означає, що множина B необмежена знизу?
- A) $\exists M = const$, $uo \forall b \in B$: $M \leq b$
- Б) $\exists M = const$, що $\forall b \in B$: M < b
- B) $\exists M = const$, $uo \forall b \in B : M \ge b$
- Γ) $\exists M = const$, $uo \forall b \in B : M > b$
- Д) Для $\forall M = const \exists b \in B : M \leq b$
- E) Для $\forall M = const \exists b \in B : M > b$
- 4. Нехай A обмежена, а B необмежена множина. Якою буде множина $A \cap B$?
- А) нескінченною
- Б) скінченною
- В) може бути як скінченною, так і нескінченною
- Г) необмеженою
- 5. Серед тверджень знайти вірні:
- А) Для основних логічних операцій їх приорітет буде наступним: 1.кон'юнкція, 2. диз'юнкція, 3 всі інші
- Б) Для основних логічних операцій їх приорітет буде наступним: 1. інверсія, 2. кон'юнкція, 3. диз'юнкція, 4 всі інші
- В) Пріоритет логічних операцій визначається лише за допомогою дужок
- Γ) Для основних логічних операцій їх приорітет буде наступним: 1. інверсія, 2. диз'юнкція, 3. кон'юнкція, 4 всі інші

Практика

1. (3 б.) Множина $A = \{1, a, b, 7, \emptyset\}$. Скільки строгих підмножин має ця множина

- Б) 32
- B) 23
- Γ) 31
- Д) 7
- 2. (3 б.) Матриця бінарного відношення, визначеного на множині потужності 5, має наступний вигляд:

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{pmatrix}.$$

По матриці визначити властивості бінарного відношення.

- А) рефлексивне
- Б) антирефлексивне
- Г) симетричне
- Д) антисиметричне
- E) не ε ні рефлексивним, ні антирефлексивним
- Ж) не ε ні симетричним, ні антисиметричним
- 3) матриця не може буги матрицею бінарного відношення, визначеного на множині потужності 5
- 3. (4 б.) Спростити вираз теорії множин : $(A \cup C) \cap (B \cup C) \cap (A \cup D) \cap (B \cup D)$
- A) $A \cap B \cap C \cup D$
- $\mathsf{E}(A \cup B) \cap (C \cup D)$
- B) $(A \cap B) \cap (C \cup D)$
- Γ) $(A \cap B) \cup (C \cap D)$
- Д) порожня множина

Білет 2

Теорія (5 запитань. Кожне питання – 2 бали)

1. Для логічної формули $A \to \overline{A} \to B$ була побудована таблиця істинності:

A	В	A→Ā→B
0	0	0
0	1	1
1	0	0
1	1	1

- А) В першому
- Б) в другому
- В) в третьому
- Г) в останньому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 2. Нехай A, B необмежені множини. Якою буде множина $A \cup B$?
- А) необмеженою

- Б) обмеженою
- В) може бути як обмеженою, так і необмеженою
- Г) може бути скінченною
- 3. Скільки елементів в множині $A = \{\{1, \{1\}\}, Z, \{1, \{2,3\}\}, \emptyset\}, \text{ де } Z \text{множина цілих чисел?}$
- A) 5
- Б) 0
- B) 4
- Г) нескінченно багато
- 4. Обрати вірні твердження:
- А) Скінченна множина може бути необмеженою
- Б) Нескінченна множина може бути обмеженою
- В) Скінченна множина може бути як обмеженою, так і необмеженою
- Г) нескінченна множина не може бути обмеженою
- 5. Навести змістовний приклад бінарного відношення, яке ϵ транзитивним і не ϵ рефлексивним

- 1. (2 б.) Скільки підмножин має множина $A = \{\emptyset\}$.
- А) жодної
- Б) 1
- B) 2
- Γ) 3
- 2. (4 б.) Спростити вираз теорії множин : $(A \cap B) \setminus (A \cap C)$
- A) $(A \cap B) \setminus C$
- β) $A ∩ B ∩ \overline{C}$
- B) $(A \cup B) \setminus C$
- Γ) $(A \cap B) \setminus \overline{C}$
- 3. (3 б.) Матриця бінарного відношення, визначеного на множині потужності 5, має наступний вигляд:

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{pmatrix}.$$

По матриці визначити властивості бінарного відношення.

- А) рефлексивне
- Б) антирефлексивне
- Г) симетричне
- Д) антисиметричне
- E) не ϵ ні рефлексивним, ні антирефлексивним
- Ж) не ε ні симетричним, ні антисиметричним
- 3) матриця не може бути матрицею бінарного відношення, визначеного на множині потужності 5

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Число A називається інфімумом множини X, якщо:
- А) A верхня межа X і для $\forall \varepsilon > 0$ знайдеться такий елемент $x \in X$, що $x < A + \varepsilon$.
- Б) для $\forall \varepsilon > 0$ знайдеться такий елемент $x \in X$, що $x < A + \varepsilon$.
- В) A нижня межа X і для $\forall \varepsilon > 0$ знайдеться такий елемент $x \in X$, що $x < A + \varepsilon$.
- Γ) A це найменша з верхніх меж множини X
- Д) A нижня межа X і для $\forall \varepsilon$ знайдеться такий елемент $x \in X$, що $x < A + \varepsilon$.
- E) A верхня межа X і для $\forall \varepsilon > 0$ знайдеться такий елемент $x \in X$, що $x > A \varepsilon$.
- 2. Для логічної формули $A \& B \to \overline{A}$ була побудована таблиця істинності:

A	В	A∧B→Ā
0	0	1
0	1	1
1	0	0
1	1	1

В яких рядках таблиці зроблено помилку?

- А) В першому
- Б) в другому
- В) в третьому і четвертому
- Г) в першому і четвертому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 3. Навести змістовний приклад бінарного відношення, яке не ε симетричним і не ε антирефлексивним
- 4. Вибрати правильні висловлення:
- A) Якщо $a \in X$ і $a \in Y$, то $X \subseteq Y$ або $Y \subseteq X$
- Б) Якщо $a \in X$ і $a \in Y$, то $X \cap Y \neq \emptyset$
- В) Якщо $a \in X$ і $a \in Y$, то $a \in X \cap Y$
- Γ) Якщо $X \cap Y \neq \emptyset$, то $X \subseteq Y$ або $Y \subseteq X$
- Д) Якщо $X \subseteq Y$ або $Y \subseteq X$, то X = Y
- 5. Нехай A обмежена, а B необмежена множина. Якою буде множина $A \cap B$?
- А) нескінченною
- Б) скінченною
- В) може бути як скінченною, так і нескінченною
- Г) необмеженою

Практика

1. (3 б.) Матриця бінарного відношення, визначеного на множині потужності 5, має наступний вигляд:

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{pmatrix}.$$

По матриці визначити властивості бінарного відношення.

- А) рефлексивне
- Б) антирефлексивне
- Г) симетричне
- Д) антисиметричне
- E) не ϵ ні рефлексивним, ні антирефлексивним
- Ж) не ε ні симетричним, ні антисиметричним
- 3) матриця не може бути матрицею бінарного відношення, визначеного на множині потужності 5
- 2. (3 б.) Бінарне відношення задане на множині $A = \{a,b,c\}$ наступним чином:

$$\rho = \{ \langle a, a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle b, a \rangle \}.$$

Це бінарне відношення ϵ :

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- Д) не є ні симетричним, ні антисиметричним
- E) не ϵ ні рефлексивним, ні антирефлексивним
- 3. (4 б.) Спростити вираз теорії множин : $(A \ B) \cup (A \ C)$
- A) $A \cap \overline{B \cap C}$
- Б) $A \cup \overline{B \cap C}$
- B) $A \setminus (B \cap C)$
- Γ) $A \setminus (B \cup C)$

Білет 4

Теорія (5 запитань. Кожне питання – 2 бали)

1. Для логічної формули $A \vee \overline{B} \longleftrightarrow A$ була побудована таблиця істинності:

A	В	A∨B↔A
0	0	0
0	1	0
1	0	0
1	1	1

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в першому і четвертому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках

- 2. Обрати правильні висловлення:
- А) Якщо множина необмежена, у неї обов'язково не існують точна верхня і точна нижня межі
- Б) Якщо множина обмежена, у неї існує точна верхня і точна нижня межі
- В) Якщо множина обмежена, у неї обов'язково існують верхня і нижня межі, але точна верхня, точна нижня межі можуть не існувати
- Г) Якщо множина необмежена, вона необмежена як знизу, так і зверху.
- 3. Побудувати логічну формулу, яка відповідає складному висловленню: «Якщо я буду жити в гуртожитку і отримаю стипендію в наступному семестрі, то влітку зможу на накопичені гроші або купити новий телефон, або зробити подарунок мамі на день народження».
- A) $A \& B \rightarrow (C \oplus B)$
- $B) A & B \rightarrow (C \vee B)$
- B) $A \& B \rightarrow C \lor B$
- Γ) $(A & B) \rightarrow (C \oplus B)$
- 4. Навести змістовний приклад бінарного відношення, яке ε симетричним і не ε антирефлексивним
- 5. Відомо, що $A \subset B$ і $a \in A \cap B$. Які з наступних тверджень вірні?
- A) $a \in B$
- **Б**) *a* ∉ *A*
- B) $a \notin B \setminus A$
- Γ) $a \in B \setminus A$

1. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ \langle a, b \rangle, \langle a, c \rangle, \langle b, a \rangle \}.$$

Це бінарне відношення ϵ :

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- \Box) не ε ні симетричним, ні антисиметричним
- E) не ϵ ні рефлексивним, ні антирефлексивним
- 2. (4 б.) Спростити вираз теорії множин : $(A | B) \cap (A | C)$
- A) $A \cap \overline{B \cup C}$
- Б) $A \cup \overline{B \cap C}$
- B) $A \setminus (B \cap C)$
- Γ) $A \setminus (B \cup C)$
- 3. (3 б.) Множина $A = \{1,2,3,4\}$. Скільки строгих підмножин має ця множина
- A) 4
- Б) 2
- B) 16
- Γ) 15
- Д) 7

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Яка логічна операція в цій формулі буде виконуватися останньою $A \& B \to \overline{A} \longleftrightarrow A \lor B$?
- А) заперечення
- Б) кон'юнкція
- В) диз'юнкція
- Г) еквівалентність
- Д) імплікація
- 2. Навести змістовний приклад бінарного відношення, яке не ϵ рефлексивним і не ϵ симетричним
- 3. Що означає, що множина В обмежена?
- A) $\exists M = const, M \ge 0$, $u_i o \forall b \in B$: $|b| \le M$
- Б) $\exists M = const$, що $\forall b \in B$: $M \leq b$
- B) $\exists M = const$, $uo \forall b \in B : M \ge b$
- Γ) $\exists M = const, M \ge 0$, $ugo \forall b \in B: |b| < M$
- Д) $\exists M = const, M \ge 0$, що $\forall b \in B$: $|b| \ge M$
- E) $\exists M = const, M \ge 0$, $uqo \forall b \in B$: |b| > M
- 4. Множина $X = \{a, b, c, d, e\}$. Вибрати правильні висловлення:
- A) $\{a,b,c,d\} \not\subset X$
- Б) $\{a\} \in X$
- B) $\{a,b,e\}\subseteq X$
- Γ) $X \in X$
- 5. Для логічної формули $A \& \overline{B} \leftrightarrow A$ була побудована таблиця істинності:

A	В	A∧Ē↔A
0	0	1
0	1	0
1	0	1
1	1	0

В яких рядках таблиці зроблено помилку?

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Γ) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках

Практика

- 1. Нехай множина $A = \{-4,5,0,-3,6\}, B = \{-4,5,0,-3,6,8\}.$ Побудувати симетричну різницю A + B.
- A) $\{-4,5,0,-3,6\}$
- Б) {-4,5,0,-3,6,8}

- B) {8}
- Γ) \emptyset
- Д) {-4,5,0}
- 2. (4 б.) Спростити вираз теорії множин : $(A \cap C) \cup (B \cap C) \cup (A \cap D) \cup (B \cap D)$
- A) $A \cap B \cap C \cup D$
- $\mathsf{F}(A \cup B) \cap (C \cup D)$
- B) $(A \cap B) \cap (C \cup D)$
- Γ) $(A \cap B) \cup (C \cap D)$
- Д) порожня множина
- 3. (3 б.) Матриця бінарного відношення, визначеного на множині потужності 5, має наступний вигляд:

$$\begin{pmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \end{pmatrix}.$$

По матриці визначити властивості бінарного відношення.

- А) рефлексивне
- Б) антирефлексивне
- Г) симетричне
- Д) антисиметричне
- E) не ε ні рефлексивним, ні антирефлексивним
- Ж) не ε ні симетричним, ні антисиметричним
- 3) матриця не може бути матрицею бінарного відношення, визначеного на множині потужності 5

Білет 6

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Що означає, що множина B не обмежена знизу?
- A) $\exists M = const$, $uo \forall b \in B$: M < b
- **b**) $\exists M = const, uo \forall b \in B: M \leq b$
- B) $\exists M = const$, $uo \forall b \in B$: $M \ge b$
- Γ) $\exists M = const, uo \forall b \in B: M > b$
- \square) Для $\forall M = const \exists b \in B : M \leq b$
- E) $A = const \exists b \in B : M \ge b$
- 2. Вибрати правильні висловлення:
- А) Якщо множина обмежена, то вона скінченна;
- Б) Якщо множина нескінченна, то воно не може бути обмеженою
- В) Якщо множина необмежена, то воно нескінченна
- Г) Множина обмежена тоді і тільки тоді, коли вона скінченна
- 3. Для логічної формули $A \to \overline{B} \leftrightarrow A$ була побудована таблиця істинності:

А	В	A→Ē↔A
0	0	1
0	1	0
1	0	1
1	1	0

В яких рядках таблиці зроблено помилку?

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 4. Множини X і Y такі, що їх об'єднання дорівнює універсальній множині, при цьому ці множини не перетинаються, тоді:
- А) одна з множин є порожньою множиною;
- Б) одна з множин ϵ доповненням другої до універсальної множини
- B) одна з множин ϵ універсальною множиною
- Γ) $X \mid Y = \emptyset$
- 5. Навести змістовний приклад бінарного відношення, яке ϵ антисиметричним і не транзитивним

Практика

- 1. (3 б.) Для множини $A = \{1, b, \emptyset\}$ знайти кількість підмножин.
- A) 1
- Б) 2
- B) 3
- Γ) 4
- Д) 7
- E) 8
- 2. (4 б.) Спростити вираз теорії множин : $(A \ B) \cap (A \ C)$
- A) $A \cap \overline{B \cup C}$
- Б) $A \cup \overline{B \cap C}$
- B) $A \setminus (B \cap C)$
- $\Gamma)\ A \backslash \big(B \bigcup C\big)$
- 3. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ \langle a, b \rangle, \langle a, c \rangle, \langle b, a \rangle, \langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle \}.$$

Це бінарне відношення є:

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- Д) не ϵ ні симетричним, ні антисиметричним
- Е) не є ні рефлексивним, ні антирефлексивним

Теорія (5 запитань. Кожне питання – 2 бали)

1. Для логічної формули $\overline{A \to B} \leftrightarrow A$ була побудована таблиця істинності:

A	В	Ā→B ↔A
0	0	1
0	1	0
1	0	1
1	1	0

В яких рядках таблиці зроблено помилку?

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 2. Множина А обмежена зверху. Тоді
- А) вона може не мати верхньої межі
- Б) вона може не мати точної верхньої межі
- В) вона обмежена
- Г) вона може не мати точної нижньої межі
- Д) вона має єдину верхню межу
- Е) вона має нескінченно багато верхніх меж.
- 3. Навести змістовний приклад бінарного відношення, яке не ϵ антисиметричним, ϵ транзитивним
- 4. Яка логічна операція в формулі $A \& B \to \overline{\overline{A} \leftrightarrow \overline{A \vee B}}$ буде виконуватися останньою?
- А) заперечення
- Б) кон'юнкція
- В) диз'юнкція
- Г) еквівалентність
- Д) імплікація
- 5. Відомо, що $A \subset B$ і $a \in B$. Які з наступних тверджень вірні?
- A) $a \in A \cap B$
- \mathbf{F}) $a \notin A$
- B) $A \in B$
- Γ) $a \in B \setminus A$ and $a \in A$

Практика

- 1. (4 б.) Спростити вираз теорії множин : $A \setminus (A \setminus B)$
- A) $A \cup B$
- Б) *A* \ *B*
- B) $A \cap B$
- Γ) $A \cap \overline{B}$
- 2. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ \langle a,b \rangle, \langle b,a \rangle, \langle a,a \rangle, \langle b,b \rangle \}.$$

Це бінарне відношення ϵ :

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- Д) не ε ні симетричним, ні антисиметричним
- E) не ε ні рефлексивним, ні антирефлексивним
- 3. Побудувати симетричну різницю множин A+B, якщо $A = \{a,b,c\}, A = \{c,d,f,h\}$
- A) $\{a, b, d, c, f, h\}$
- Б) {*c*}
- B) $\{a,b,d,f,h\}$
- Γ) $\{d, f, h\}$
- Д) $\{a,b\}$

Білет 8

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Які з наступних тверджень вірні?
- A) $\{\emptyset\}\subset\{a,b\}$
- Б) $\{b\} \subseteq \{a,b\}$
- B) $\{b\} \in \{a, \{b\}\}$
- Γ) $b \subset \{a, \{b\}\}$
- 2. Для логічної формули $A \to \overline{B \leftrightarrow A}$ була побудована таблиця істинності:

A	В	A→B↔A
0	0	1
0	1	0
1	0	1
1	1	0

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 3. Нехай A, B нескінченні множини. Якою буде множина $A \setminus B$?
- А) нескінченною
- Б) скінченною
- В) може бути як скінченною, так і нескінченною
- Г) необмеженою
- 4. Навести змістовний приклад бінарного відношення, яке не ϵ симетричним, ϵ транзитивним
- 5. Що означає, що множина B не обмежена зверху?
- A) $\exists M = const$, $uo \forall b \in B$: $M \leq b$

- Б) $\exists M = const$, що $\forall b \in B$: M < b
- B) $\exists M = const$, $uo \forall b \in B$: $M \ge b$
- $\Gamma) \ \exists M = const, \quad u_io \quad \forall b \in B: \quad M > b$
- Д) Для $\forall M = const \exists b \in B : M \leq b$
- E) Для $\forall M = const \exists b \in B : M \ge b$

- 1. (3 б.) У якому випадку для множин A і B має місце рівність: $A + B = A \cup B$?
- А) якщо множини A і B не перетинаються
- Б) якщо $A \subseteq B$
- B) якщо $B \subseteq A$
- Γ) якщо множини A і B перетинаються
- 2. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ \langle a, b \rangle, \langle b, a \rangle \}.$$

Це бінарне відношення ϵ :

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- Π) не ε ні симетричним, ні антисиметричним
- Е) не є ні рефлексивним, ні антирефлексивним
- 3. (4 б.) Спростити вираз теорії множин : $A \setminus (B \setminus A)$
- A) $A \cup B$
- **Б)** *А\В*
- B) $A \cup (A \cap \overline{B})$
- Γ) $A \cap \overline{B}$

Білет 9

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Навести змістовний приклад бінарного відношення, яке не ε симетричним і не ε антисиметричним
- 2. Яка логічна операція буде виконуватися останньою в формулі $A \& B \to (\overline{A} \leftrightarrow A) \& \overline{A \lor B}$?
- А) заперечення
- Б) кон'юнкція
- В) диз'юнкція
- Г) еквівалентність
- Д) імплікація
- 3. Множина $X = \{1,2,\emptyset,e,N\}$, де N- множина цілих чисел. Вибрати правильні висловлення відносно множини:
- A) потужність множини X дорівнює нескінченності
- Б) X має 32 підмножини
- В) X має нескінченну кількість підмножин
- Γ) X має скінченну кількість підмножин

4. Для логічної формули $A \to \overline{B \& A}$ була побудована таблиця істинності:

A	В	$A - \overline{B \wedge A}$
0	0	0
0	1	1
1	0	1
1	1	0

В яких рядках таблиці зроблено помилку?

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 5. Що означає, що множина B необмежена зверху?
- A) $\exists M = const$, $uo \forall b \in B$: $M \leq b$
- Б) $\exists M = const$, що $\forall b \in B$: M < b
- B) $\exists M = const$, $uo \forall b \in B$: $M \ge b$
- Γ) $\exists M = const$, $uo \forall b \in B : M > b$
- Д) Для $\forall M = const \exists b \in B : M < b$
- E) Для $\forall M = const \exists b \in B : M \ge b$

Практика

- 1. (3 б.) Серед наведених бінарних відношень знайти відношення еквівалентності:
- A) на множині цілих чисел Z: $a \rho b$, якщо a < b
- Б) на множині натуральних чисел N: $a \rho b$, якщо $a \ge b$
- В) на множині людей: $a \rho b$, якщо a ненавидить b
- Γ) на множині працівників одного заводу: $a \rho b$, якщо a підлеглий b
- Д) на множині яблук на прилавку одного магазину: a
 ho b, якщо a має такий самий колір, що і b
- 2. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ < a,b >, < a,a >, < c,c > \}.$$

Це бінарне відношення ϵ :

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- Д) не ϵ ні симетричним, ні антисиметричним
- E) не ϵ ні рефлексивним, ні антирефлексивним
- 3. (4 б.) Спростити вираз теорії множин : $(A \mid C) \mid (B \mid C)$
- A) $A \cap B \cap \overline{C}$
- Б) $A \cap \overline{B} \cap \overline{C}$
- B) $A \cup \overline{B} \cup \overline{C}$
- $\Gamma) \ A \cup \left(\overline{B} \cap \overline{C}\right)$

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Відомо, що $A \subseteq B$ і $a \in A$. Які з наступних тверджень вірні?
- A) $a \in A \cap B$
- Б) $a \subset A$
- B) $A \in B$
- Γ) $a \notin B \cap A$
- 2. Навести змістовний приклад бінарного відношення, яке не ϵ рефлексивним і не ϵ антирефлексивним
- 3. Для логічної формули $\overline{A \to B \& A}$ була побудована таблиця істинності:

А	В	$\overline{A - B \wedge A}$
0	0	0
0	1	0
1	0	1
1	1	0

В яких рядках таблиці зроблено помилку?

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 4. Нехай A обмежена, а B необмежена множина. Якою буде множина $A \cup B$?
- А) необмеженою
- Б) обмеженою
- В) може бути як обмеженою, так і необмеженою
- Г) може бути скінченною
- 5. Яка логічна операція буде в формулі $\overline{A \& (B \to \overline{A}) \longleftrightarrow \overline{A \lor B}}$ виконуватися останньою?
- А) заперечення
- Б) кон'юнкція
- В) диз'юнкція
- Г) еквівалентність
- Д) імплікація

Практика

- 1. (3 б.) Серед наведених бінарних відношень знайти відношення строгого порядку:
- А) на множині цілих чисел Z: $a \rho b$, якщо $a \leq b$
- Б) на множині натуральних чисел N: $a \rho b$, якщо $a \ge b$
- В) на множині людей: $a \rho b$, якщо a знає b
- Γ) на множині працівників одного заводу: $a \rho b$, якщо a працює в одному кабінеті з b
- Д) на множині яблук на прилавку одного магазину: $a \rho b$, якщо a солодше за b
- 2. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ \langle a, b \rangle, \langle b, a \rangle, \langle a, c \rangle, \langle c, a \rangle, \langle a, a \rangle, \langle c, c \rangle \}.$$

Це бінарне відношення є:

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- Д) не ε ні симетричним, ні антисиметричним
- Е) не є ні рефлексивним, ні антирефлексивним
- 3. (4 б.) Спростити вираз теорії множин : $(A \cup C) \cap (B \cup C) \cap (A \cup D) \cap (B \cup D)$
- A) $A \cap B \cap C \cup D$
- $\mathsf{E})\ (A\cup B)\cap (C\cup D)$
- B) $(A \cap B) \cap (C \cup D)$
- Γ) $(A \cap B) \cup (C \cap D)$
- Д) порожня множина

Теорія (5 запитань. Кожне питання – 2 бали)

1. Для логічної формули $A \to \overline{A} \to B$ була побудована таблиця істинності:

А	В	A→Ā→B
0	0	0
0	1	1
1	0	0
1	1	1

- А) В першому
- Б) в другому
- В) в третьому
- Г) в останньому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 2. Нехай A, B необмежені множини. Якою буде множина $A \cup B$?
- А) необмеженою
- Б) обмеженою
- В) може бути як обмеженою, так і необмеженою
- Г) може бути скінченною
- 3. Скільки елементів в множині $A = \{\{1, \{1\}\}, Z, \{1, \{2,3\}\}, \varnothing\}, \text{ де } Z \text{множина цілих чисел?}$
- A) 5
- Б) 0
- B) 4
- Г) нескінченно багато
- 4. Обрати вірні твердження:
- А) Скінченна множина може бути необмеженою
- Б) Нескінченна множина може бути обмеженою
- В) Скінченна множина може бути як обмеженою, так і необмеженою
- Г) нескінченна множина не може бути обмеженою

5. Навести змістовний приклад бінарного відношення, яке ϵ транзитивним і не ϵ рефлексивним

Практика

- 1. (2 б.) Скільки підмножин має множина $A = \{\emptyset\}$.
- А) жодної
- Б) 1
- B) 2
- Γ) 3
- 2. (4 б.) Спростити вираз теорії множин : $(A \cap B) \setminus (A \cap C)$
- A) $(A \cap B) \setminus C$
- A ∩ B ∩ \overline{C}
- B) $(A \cup B) \setminus C$
- Γ) $(A \cap B) \setminus \overline{C}$
- 3. (3 б.) Матриця бінарного відношення, визначеного на множині потужності 5, має наступний вигляд:

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{pmatrix}.$$

По матриці визначити властивості бінарного відношення.

- А) рефлексивне
- Б) антирефлексивне
- Г) симетричне
- Д) антисиметричне
- E) не ϵ ні рефлексивним, ні антирефлексивним
- Ж) не ϵ ні симетричним, ні антисиметричним
- 3) матриця не може бути матрицею бінарного відношення, визначеного на множині потужності 5

Білет 12

Теорія (5 запитань. Кожне питання – 2 бали)

1. Для логічної формули $\overline{A o B} \leftrightarrow A$ була побудована таблиця істинності:

А	В	Ā-B↔A
0	0	1
0	1	0
1	0	1
1	1	0

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках

2. Множина А обмежена зверху. Тоді
А) вона може не мати верхньої межі
Б) вона може не мати точної верхньої межі

- В) вона обмежена
- Г) вона може не мати точної нижньої межі
- Д) вона має єдину верхню межу
- Е) вона має нескінченно багато верхніх меж.
- 3. Навести змістовний приклад бінарного відношення, яке не ϵ антисиметричним, ϵ транзитивним
- 4. Яка логічна операція в формулі $A \& B \to \overline{\overline{A} \leftrightarrow \overline{A \vee B}}$ буде виконуватися останньою?
- А) заперечення
- Б) кон'юнкція
- В) диз'юнкція
- Г) еквівалентність
- Д) імплікація
- 5. Відомо, що $A \subset B$ і $a \in B$. Які з наступних тверджень вірні?
- A) $a \in A \cap B$
- b) $a \notin A$
- B) $A \in B$
- Γ) $a \in B \setminus A$ and $a \in A$

- 1. (4 б.) Спростити вираз теорії множин : $A \setminus (A \setminus B)$
- A) $A \cup B$
- Б) *A\B*
- B) $A \cap B$
- Γ) $A \cap \overline{B}$
- 2. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ \langle a, b \rangle, \langle b, a \rangle, \langle a, a \rangle, \langle b, b \rangle \}.$$

Це бінарне відношення ϵ :

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- \square) не ε ні симетричним, ні антисиметричним
- E) не ϵ ні рефлексивним, ні антирефлексивним
- 3. Побудувати симетричну різницю множин A+B, якщо $A=\{a,b,c\},\ A=\{c,d,f,h\}$
- A) $\{a, b, d, c, f, h\}$
- Б) {c}
- B) $\{a,b,d,f,h\}$
- Γ) $\{d, f, h\}$
- Д) $\{a,b\}$

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Що означає, що множина B не обмежена знизу?
- A) $\exists M = const, \quad uo \quad \forall b \in B: \quad M < b$
- **b**) $\exists M = const$, $uo \forall b \in B$: $M \leq b$
- B) $\exists M = const$, $uo \forall b \in B$: $M \ge b$
- Γ) $\exists M = const$, $u_io \forall b \in B: M > b$
- Д) Для $\forall M = const \exists b \in B: M \leq b$
- E) Для $\forall M = const \exists b \in B: M \ge b$
- 2. Вибрати правильні висловлення:
- А) Якщо множина обмежена, то вона скінченна;
- Б) Якщо множина нескінченна, то воно не може бути обмеженою
- В) Якщо множина необмежена, то воно нескінченна
- Г) Множина обмежена тоді і тільки тоді, коли вона скінченна
- 3. Для логічної формули $A \to \overline{B} \leftrightarrow A$ була побудована таблиця істинності:

A	В	A → Ē ↔ A
0	0	1
0	1	0
1	0	1
1	1	0

В яких рядках таблиці зроблено помилку?

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 4. Множини X і Y такі, що їх об'єднання дорівнює універсальній множині, при цьому ці множини не перетинаються, тоді:
- A) одна з множин ϵ порожньою множиною;
- Б) одна з множин ϵ доповненням другої до універсальної множини
- В) одна з множин ϵ універсальною множиною
- Γ) $X \setminus Y = \emptyset$
- 5. Навести змістовний приклад бінарного відношення, яке ϵ антисиметричним і не транзитивним

Практика

- 1. (3 б.) Для множини $A = \{1, b, \emptyset\}$ знайти кількість підмножин.
- A) 1
- Б) 2
- B) 3
- Γ) 4
- Д) 7
- E) 8
- 2. (4 б.) Спростити вираз теорії множин : $(A \ B) \cap (A \ C)$

- A) $A \cap \overline{B \cup C}$
- Б) $A \cup \overline{B \cap C}$
- B) $A \setminus (B \cap C)$
- Γ) $A \setminus (B \cup C)$
- 3. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ \langle a, b \rangle, \langle a, c \rangle, \langle b, a \rangle, \langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle \}.$$

Це бінарне відношення є:

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- Д) не ε ні симетричним, ні антисиметричним
- Е) не є ні рефлексивним, ні антирефлексивним

Білет 14

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Відомо, що $A \subseteq B$ і $a \in A$. Які з наступних тверджень вірні?
- A) $a \in A \cap B$
- Б) $a \subset A$
- B) $A \in B$
- Γ) $a \notin B \cap A$
- 2. Навести змістовний приклад бінарного відношення, яке не ε рефлексивним і не ε антирефлексивним
- 3. Для логічної формули $\overline{A \to B \& A}$ була побудована таблиця істинності:

А	В	$\overline{A - B \wedge A}$
0	0	0
0	1	0
1	0	1
1	1	0

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Γ) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 4. Нехай A обмежена, а B необмежена множина. Якою буде множина $A \cup B$?
- А) необмеженою
- Б) обмеженою
- В) може бути як обмеженою, так і необмеженою
- Г) може бути скінченною
- 5. Яка логічна операція буде в формулі $\overline{A \& (B \to \overline{A}) \longleftrightarrow \overline{A \lor B}}$ виконуватися останньою?

- А) заперечення
- Б) кон'юнкція
- В) диз'юнкція
- Г) еквівалентність
- Д) імплікація

- 1. (3 б.) Серед наведених бінарних відношень знайти відношення строгого порядку:
- А) на множині цілих чисел Z: $a \rho b$, якщо $a \leq b$
- Б) на множині натуральних чисел N: $a \circ b$, якщо $a \ge b$
- В) на множині людей: $a \rho b$, якщо a знає b
- Γ) на множині працівників одного заводу: $a \rho b$, якщо a працює в одному кабінеті з b
- Д) на множині яблук на прилавку одного магазину: $a \rho b$, якщо a солодше за b
- 2. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ \langle a, b \rangle, \langle b, a \rangle, \langle a, c \rangle, \langle c, a \rangle, \langle a, a \rangle, \langle c, c \rangle \}.$$

Це бінарне відношення ϵ :

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- Д) не ε ні симетричним, ні антисиметричним
- E) не ϵ ні рефлексивним, ні антирефлексивним
- 3. (4 б.) Спростити вираз теорії множин : $(A \cup C) \cap (B \cup C) \cap (A \cup D) \cap (B \cup D)$
- A) $A \cap B \cap C \cup D$
- $\mathsf{F})\ (A\cup B)\cap (C\cup D)$
- B) $(A \cap B) \cap (C \cup D)$
- Γ) $(A \cap B) \cup (C \cap D)$
- Д) порожня множина

Білет 15

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Які з наступних тверджень вірні?
- A) $\{\emptyset\}\subset\{a,b\}$
- Б) $\{b\} \subset \{a,b\}$
- B) $\{b\} \in \{a, \{b\}\}\$
- Γ) $b \subset \{a, \{b\}\}$
- 2. Для логічної формули $A \to \overline{B \leftrightarrow A}$ була побудована таблиця істинності:

A	В	A → B ↔ A
0	0	1
0	1	0
1	0	1
1	1	0

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 3. Нехай A, B нескінченні множини. Якою буде множина $A \setminus B$?
- А) нескінченною
- Б) скінченною
- В) може бути як скінченною, так і нескінченною
- Г) необмеженою
- 4. Навести змістовний приклад бінарного відношення, яке не ε симетричним, ε транзитивним
- 5. Що означає, що множина B не обмежена зверху?
- A) $\exists M = const$, $u_io \forall b \in B$: $M \leq b$
- Б) $\exists M = const$, що $\forall b \in B$: M < b
- B) $\exists M = const, upo \forall b \in B: M \ge b$
- Γ) $\exists M = const$, $uo \forall b \in B : M > b$
- Д) Для $\forall M = const \exists b \in B : M \leq b$
- E) Для $\forall M = const \exists b \in B : M \ge b$

- 1. (3 б.) У якому випадку для множин A і B має місце рівність: $A + B = A \cup B$?
- А) якщо множини A і B не перетинаються
- Б) якщо $A \subseteq B$
- В) якщо $B \subseteq A$
- Γ) якщо множини A і B перетинаються
- 2. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ \langle a, b \rangle, \langle b, a \rangle \}.$$

- Це бінарне відношення ϵ :
- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- Д) не ϵ ні симетричним, ні антисиметричним
- E) не ϵ ні рефлексивним, ні антирефлексивним
- 3. (4 б.) Спростити вираз теорії множин : $A \setminus (B \setminus A)$
- A) $A \cup B$
- **Б)** *A* \ *B*
- B) $A \cup (A \cap \overline{B})$
- Γ) $A \cap \overline{B}$

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Яка логічна операція в цій формулі буде виконуватися останньою $A \& B \to \overline{A} \leftrightarrow A \lor B$?
- А) заперечення
- Б) кон'юнкція
- В) диз'юнкція
- Г) еквівалентність
- Д) імплікація
- 2. Навести змістовний приклад бінарного відношення, яке не ϵ рефлексивним і не ϵ симетричним
- 3. Що означає, що множина В обмежена?
- A) $\exists M = const, M \ge 0$, $u_i o \forall b \in B$: $|b| \le M$
- Б) $\exists M = const$, що $\forall b \in B$: $M \leq b$
- B) $\exists M = const$, $u_io \forall b \in B$: $M \ge b$
- Γ) $\exists M = const, M \ge 0$, $uqo \forall b \in B: |b| < M$
- Д) $\exists M = const, M \ge 0$, що $\forall b \in B$: $|b| \ge M$
- E) $\exists M = const, M \ge 0$, $uo \forall b \in B$: |b| > M
- 4. Множина $X = \{a, b, c, d, e\}$. Вибрати правильні висловлення:
- A) $\{a,b,c,d\} \subset X$
- Б) $\{a\} \in X$
- B) $\{a,b,e\}\subseteq X$
- Γ) $X \in X$
- 5. Для логічної формули $A \& \overline{B} \leftrightarrow A$ була побудована таблиця істинності:

A	В	A∧B↔A
0	0	1
0	1	0
1	0	1
1	1	0

В яких рядках таблиці зроблено помилку?

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках

Практика

- 1. Нехай множина $A = \{-4,5,0,-3,6\}, B = \{-4,5,0,-3,6,8\}.$ Побудувати симетричну різницю A + B.
- A) $\{-4,5,0,-3,6\}$
- Б) {-4,5,0,-3,6,8}
- B) {8}

- Γ) \emptyset
- Д) {-4,5,0}
- 2. (4 б.) Спростити вираз теорії множин : $(A \cap C) \cup (B \cap C) \cup (A \cap D) \cup (B \cap D)$
- A) $A \cap B \cap C \cup D$
- $\mathsf{E}(A \cup B) \cap (C \cup D)$
- B) $(A \cap B) \cap (C \cup D)$
- Γ) $(A \cap B) \cup (C \cap D)$
- Д) порожня множина
- 3. (3 б.) Матриця бінарного відношення, визначеного на множині потужності 5, має наступний вигляд:

$$\begin{pmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \end{pmatrix}.$$

По матриці визначити властивості бінарного відношення.

- А) рефлексивне
- Б) антирефлексивне
- Г) симетричне
- Д) антисиметричне
- E) не ε ні рефлексивним, ні антирефлексивним
- Ж) не ϵ ні симетричним, ні антисиметричним
- 3) матриця не може бути матрицею бінарного відношення, визначеного на множині потужності 5

Білет 17

Теорія (5 запитань. Кожне питання – 2 бали)

1. Для логічної формули $A \vee \overline{B} \leftrightarrow A$ була побудована таблиця істинності:

A	В	A∨B↔A
0	0	0
0	1	0
1	0	0
1	1	1

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в першому і четвертому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 2. Обрати правильні висловлення:
- А) Якщо множина необмежена, у неї обов'язково не існують точна верхня і точна нижня межі
- Б) Якщо множина обмежена, у неї існує точна верхня і точна нижня межі
- В) Якщо множина обмежена, у неї обов'язково існують верхня і нижня межі, але точна верхня, точна нижня межі можуть не існувати

- Г) Якщо множина необмежена, вона необмежена як знизу, так і зверху.
- 3. Побудувати логічну формулу, яка відповідає складному висловленню: «Якщо я буду жити в гуртожитку і отримаю стипендію в наступному семестрі, то влітку зможу на накопичені гроші або купити новий телефон, або зробити подарунок мамі на день народження».
- A) $A \& B \rightarrow (C \oplus B)$
- $B) A & B \rightarrow (C \vee B)$
- B) $A & B \rightarrow C \lor B$
- Γ) $(A & B) \rightarrow (C \oplus B)$
- 4. Навести змістовний приклад бінарного відношення, яке є симетричним і не є антирефлексивним
- 5. Відомо, що $A \subset B$ і $a \in A \cap B$. Які з наступних тверджень вірні?
- A) $a \in B$
- Б) $a \notin A$
- B) $a \notin B \setminus A$
- Γ) $a \in B \setminus A$

1. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ \langle a,b \rangle, \langle a,c \rangle, \langle b,a \rangle \}.$$

Це бінарне відношення ϵ :

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- Λ) не ϵ ні симетричним, ні антисиметричним
- E) не ϵ ні рефлексивним, ні антирефлексивним
- 2. (4 б.) Спростити вираз теорії множин : $(A | B) \cap (A | C)$
- A) $A \cap \overline{B \cup C}$
- Б) $A \cup \overline{B \cap C}$
- B) $A \setminus (B \cap C)$
- Γ) $A \setminus (B \cup C)$
- 3. (3 б.) Множина $A = \{1,2,3,4\}$. Скільки строгих підмножин має ця множина
- A) 4
- Б) 2
- B) 16
- Γ) 15
- Д) 7

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Навести змістовний приклад бінарного відношення, яке ε транзитивним і не ε антирефлексивним. Показати, що наведене бінарне відношення дійсно ε транзитивним і не ε антирефлексивним.
- 2. Для логічної формули $A \to \overline{A} \& B$ була побудована таблиця істинності:

А	В	A→Ā∧B
0	0	1
0	1	1
1	0	0
1	1	0

В яких рядках таблиці зроблено помилку?

- А) В першому
- Б) в другому
- В) в першому і третьому
- Г) в останньому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 3. Що означає, що множина B необмежена знизу?
- A) $\exists M = const$, $u_io \forall b \in B$: $M \leq b$
- Б) $\exists M = const$, що $\forall b \in B$: M < b
- B) $\exists M = const$, $u_io \forall b \in B : M \ge b$
- Γ) $\exists M = const$, $u_i o \forall b \in B$: M > b
- Д) Для $\forall M = const \exists b \in B : M \leq b$
- E) Для $\forall M = const \exists b \in B : M > b$
- 4. Нехай A обмежена, а B необмежена множина. Якою буде множина $A \cap B$?
- А) нескінченною
- Б) скінченною
- В) може бути як скінченною, так і нескінченною
- Г) необмеженою
- 5. Серед тверджень знайти вірні:
- А) Для основних логічних операцій їх приорітет буде наступним: 1.кон'юнкція, 2. диз'юнкція, 3 всі інші
- Б) Для основних логічних операцій їх приорітет буде наступним: 1. інверсія, 2. кон'юнкція, 3. диз'юнкція, 4 всі інші
- В) Пріоритет логічних операцій визначається лише за допомогою дужок
- Γ) Для основних логічних операцій їх приорітет буде наступним: 1. інверсія, 2. диз'юнкція, 3. кон'юнкція, 4 всі інші

Практика

- 1. (3 б.) Множина $A = \{1, a, b, 7, \emptyset\}$. Скільки строгих підмножин має ця множина
- A) 5
- Б) 32
- B) 23
- Γ) 31
- Д) 7

2. (3 б.) Матриця бінарного відношення, визначеного на множині потужності 5, має наступний вигляд:

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{pmatrix}$$

По матриці визначити властивості бінарного відношення.

- А) рефлексивне
- Б) антирефлексивне
- Г) симетричне
- Д) антисиметричне
- E) не ϵ ні рефлексивним, ні антирефлексивним
- Ж) не ϵ ні симетричним, ні антисиметричним
- 3) матриця не може буги матрицею бінарного відношення, визначеного на множині потужності 5
- 3. (4 б.) Спростити вираз теорії множин : $(A \cup C) \cap (B \cup C) \cap (A \cup D) \cap (B \cup D)$
- A) $A \cap B \cap C \cup D$
- $\mathsf{B})\ (A\cup B)\cap (C\cup D)$
- B) $(A \cap B) \cap (C \cup D)$
- Γ) $(A \cap B) \cup (C \cap D)$
- Д) порожня множина

Білет 19

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Число A називається інфімумом множини X, якщо:
- А) A верхня межа X і для $\forall \varepsilon > 0$ знайдеться такий елемент $x \in X$, що $x < A + \varepsilon$.
- Б) для $\forall \varepsilon > 0$ знайдеться такий елемент $x \in X$, що $x < A + \varepsilon$.
- В) A нижня межа X і для $\forall \varepsilon > 0$ знайдеться такий елемент $x \in X$, що $x < A + \varepsilon$.
- Γ) A це найменша з верхніх меж множини X
- Д) A нижня межа X і для $\forall \varepsilon$ знайдеться такий елемент $x \in X$, що $x < A + \varepsilon$.
- E) A верхня межа X і для $\forall \varepsilon > 0$ знайдеться такий елемент $x \in X$, що $x > A \varepsilon$.
- 2. Для логічної формули $A \& B \to \overline{A}$ була побудована таблиця істинності:

А	В	$A \wedge B \rightarrow \overline{A}$
0	0	1
0	1	1
1	0	0
1	1	1

- А) В першому
- Б) в другому
- В) в третьому і четвертому
- Г) в першому і четвертому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках

- 3. Навести змістовний приклад бінарного відношення, яке не ε симетричним і не ε антирефлексивним
- 4. Вибрати правильні висловлення:
- A) Якщо $a \in X$ і $a \in Y$, то $X \subseteq Y$ або $Y \subseteq X$
- Б) Якщо $a \in X$ і $a \in Y$, то $X \cap Y \neq \emptyset$
- В) Якщо $a \in X$ і $a \in Y$, то $a \in X \cap Y$
- Γ) Якщо $X \cap Y \neq \emptyset$, то $X \subseteq Y$ або $Y \subseteq X$
- Д) Якщо $X \subseteq Y$ або $Y \subseteq X$, то X = Y
- 5. Нехай A обмежена, а B необмежена множина. Якою буде множина $A \cap B$?
- А) нескінченною
- Б) скінченною
- В) може бути як скінченною, так і нескінченною
- Г) необмеженою

1. (3 б.) Матриця бінарного відношення, визначеного на множині потужності 5, має наступний вигляд:

$$\begin{pmatrix}
1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 1
\end{pmatrix}.$$

По матриці визначити властивості бінарного відношення.

- А) рефлексивне
- Б) антирефлексивне
- Г) симетричне
- Д) антисиметричне
- E) не ϵ ні рефлексивним, ні антирефлексивним
- Ж) не ϵ ні симетричним, ні антисиметричним
- 3) матриця не може бути матрицею бінарного відношення, визначеного на множині потужності 5
- 2. (3 б.) Бінарне відношення задане на множині $A = \{a,b,c\}$ наступним чином:

$$\rho = \{ \langle a, a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle b, a \rangle \}.$$

Це бінарне відношення ϵ :

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- \bot) не ε ні симетричним, ні антисиметричним
- E) не ε ні рефлексивним, ні антирефлексивним
- 3. (4 б.) Спростити вираз теорії множин : $(A \setminus B) \cup (A \setminus C)$
- A) $A \cap \overline{B \cap C}$
- $\overrightarrow{B}) A \cup \overline{B \cap C}$
- B) $A \setminus (B \cap C)$
- Γ) $A \setminus (B \cup C)$

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Навести змістовний приклад бінарного відношення, яке не ε симетричним і не ε антисиметричним
- 2. Яка логічна операція буде виконуватися останньою в формулі $A \& B \to (\overline{A} \leftrightarrow A) \& \overline{A \lor B}$?
- А) заперечення
- Б) кон'юнкція
- В) диз'юнкція
- Г) еквівалентність
- Д) імплікація
- 3. Множина $X = \{1,2,\emptyset,e,N\}$, де N- множина цілих чисел. Вибрати правильні висловлення відносно множини:
- А) потужність множини X дорівнює нескінченності
- Б) X має 32 підмножини
- В) X має нескінченну кількість підмножин
- Γ) X має скінченну кількість підмножин
- 4. Для логічної формули $A \to \overline{B \& A}$ була побудована таблиця істинності:

А	В	$A - \overline{B \wedge A}$
0	0	0
0	1	1
1	0	1
1	1	0

В яких рядках таблиці зроблено помилку?

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 5. Що означає, що множина B необмежена зверху?
- A) $\exists M = const$, $uo \forall b \in B$: $M \leq b$
- Б) $\exists M = const$, що $\forall b \in B$: M < b
- B) $\exists M = const$, $uo \forall b \in B$: $M \ge b$
- Γ) $\exists M = const$, $uo \forall b \in B : M > b$
- Д) Для $\forall M = const \exists b \in B : M < b$
- E) Для $\forall M = const \exists b \in B : M \ge b$

Практика

- 1. (3 б.) Серед наведених бінарних відношень знайти відношення еквівалентності:
- А) на множині цілих чисел Z: $a \rho b$, якщо a < b
- Б) на множині натуральних чисел N: $a \rho b$, якщо $a \ge b$
- В) на множині людей: $a \rho b$, якщо a ненавидить b
- Γ) на множині працівників одного заводу: $a \rho b$, якщо a підлеглий b
- Д) на множині яблук на прилавку одного магазину: $a \rho b$, якщо a має такий самий колір, що і b

2. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ \langle a, b \rangle, \langle a, a \rangle, \langle c, c \rangle \}.$$

Це бінарне відношення ϵ :

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- Д) не ε ні симетричним, ні антисиметричним
- E) не ε ні рефлексивним, ні антирефлексивним
- 3. (4 б.) Спростити вираз теорії множин : $(A \setminus C) \setminus (B \setminus C)$
- A) $A \cap B \cap \overline{C}$
- Б) $A \cap \overline{B} \cap \overline{C}$
- B) $A \cup \overline{B} \cup \overline{C}$
- Γ) $A \cup (\overline{B} \cap \overline{C})$

Білет 21

Теорія (5 запитань. Кожне питання – 2 бали)

1. Для логічної формули $A \vee \overline{B} \leftrightarrow A$ була побудована таблиця істинності:

А	В	$A \lor \overline{B} \overset{\longleftarrow}{A}$
0	0	0
0	1	0
1	0	0
1	1	1

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в першому і четвертому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 2. Обрати правильні висловлення:
- А) Якщо множина необмежена, у неї обов'язково не існують точна верхня і точна нижня межі
- Б) Якщо множина обмежена, у неї існує точна верхня і точна нижня межі
- В) Якщо множина обмежена, у неї обов'язково існують верхня і нижня межі, але точна верхня, точна нижня межі можуть не існувати
- Г) Якщо множина необмежена, вона необмежена як знизу, так і зверху.
- 3. Побудувати логічну формулу, яка відповідає складному висловленню: «Якщо я буду жити в гуртожитку і отримаю стипендію в наступному семестрі, то влітку зможу на накопичені гроші або купити новий телефон, або зробити подарунок мамі на день народження».
- A) $A \& B \rightarrow (C \oplus B)$
- $\mathsf{F}) \ A \& B \to (C \vee B)$
- B) $A \& B \rightarrow C \lor B$
- Γ) $(A & B) \rightarrow (C \oplus B)$

- 4. Навести змістовний приклад бінарного відношення, яке є симетричним і не є антирефлексивним
- 5. Відомо, що $A \subset B$ і $a \in A \cap B$. Які з наступних тверджень вірні?
- A) $a \in B$
- Б) a ∉ A
- B) $a \notin B \setminus A$
- Γ) $a \in B \setminus A$

1. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ \langle a,b \rangle, \langle a,c \rangle, \langle b,a \rangle \}.$$

Це бінарне відношення ϵ :

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- Д) не ε ні симетричним, ні антисиметричним
- E) не ϵ ні рефлексивним, ні антирефлексивним
- 2. (4 б.) Спростити вираз теорії множин : $(A \ B) \cap (A \ C)$
- A) $A \cap \overline{B \cup C}$
- Б) $A \cup \overline{B \cap C}$
- B) $A \setminus (B \cap C)$
- Γ) $A \setminus (B \cup C)$
- 3. (3 б.) Множина $A = \{1,2,3,4\}$. Скільки строгих підмножин має ця множина
- A) 4
- Б) 2
- B) 16
- Γ) 15
- Д) 7

Білет 22

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Навести змістовний приклад бінарного відношення, яке ε транзитивним і не ε антирефлексивним. Показати, що наведене бінарне відношення дійсно ε транзитивним і не ε антирефлексивним.
- 2. Для логічної формули $A \to \overline{A} \ \& \ B$ була побудована таблиця істинності:

А	В	A→Ā∧B
0	0	1
0	1	1
1	0	0
1	1	0

- А) В першому
- Б) в другому
- В) в першому і третьому
- Г) в останньому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 3. Що означає, що множина В необмежена знизу?
- A) $\exists M = const$, $uo \forall b \in B$: $M \leq b$
- ∃M = const, uo ∀b ∈ B : M < b
- B) $\exists M = const, \quad uo \quad \forall b \in B: \quad M \ge b$
- Γ) $\exists M = const$, $u_i o \forall b \in B$: M > b
- Д) Для $\forall M = const \exists b \in B : M \leq b$
- E) Для $\forall M = const \exists b \in B : M > b$
- 4. Нехай A обмежена, а B необмежена множина. Якою буде множина $A \cap B$?
- А) нескінченною
- Б) скінченною
- В) може бути як скінченною, так і нескінченною
- Г) необмеженою
- 5. Серед тверджень знайти вірні:
- А) Для основних логічних операцій їх приорітет буде наступним: 1.кон'юнкція, 2. диз'юнкція, 3 всі інші
- Б) Для основних логічних операцій їх приорітет буде наступним: 1. інверсія, 2. кон'юнкція, 3. диз'юнкція, 4 всі інші
- В) Пріоритет логічних операцій визначається лише за допомогою дужок
- Γ) Для основних логічних операцій їх приорітет буде наступним: 1.інверсія, 2. диз'юнкція, 3. кон'юнкція, 4 всі інші

- 1. (3 б.) Множина $A = \{1, a, b, 7, \varnothing\}$. Скільки строгих підмножин має ця множина
- A) 5
- Б) 32
- B) 23
- Γ) 31
- Д) 7
- 2. (3 б.) Матриця бінарного відношення, визначеного на множині потужності 5, має наступний вигляд:

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{pmatrix}.$$

По матриці визначити властивості бінарного відношення.

- А) рефлексивне
- Б) антирефлексивне
- Г) симетричне
- Д) антисиметричне
- E) не ϵ ні рефлексивним, ні антирефлексивним

- \mathbb{X}) не ε ні симетричним, ні антисиметричним
- 3) матриця не може бути матрицею бінарного відношення, визначеного на множині потужності 5
- 3. (4 б.) Спростити вираз теорії множин : $(A \cup C) \cap (B \cup C) \cap (A \cup D) \cap (B \cup D)$
- A) $A \cap B \cap C \cup D$
- Б) $(A \cup B) \cap (C \cup D)$
- B) $(A \cap B) \cap (C \cup D)$
- Γ) $(A \cap B) \cup (C \cap D)$
- Д) порожня множина

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Яка логічна операція в цій формулі буде виконуватися останньою $A \& B \to \overline{A} \leftrightarrow A \lor B$?
- А) заперечення
- Б) кон'юнкція
- В) диз'юнкція
- Г) еквівалентність
- Д) імплікація
- 2. Навести змістовний приклад бінарного відношення, яке не ϵ рефлексивним і не ϵ симетричним
- 3. Що означає, що множина В обмежена?
- A) $\exists M = const, M \ge 0$, $uo \forall b \in B: |b| \le M$
- Б) $\exists M = const$, що $\forall b \in B$: $M \le b$
- B) $\exists M = const, \quad uo \quad \forall b \in B: \quad M \ge b$
- Γ) $\exists M = const, M \ge 0$, $u_io \forall b \in B: |b| < M$
- Д) $\exists M = const, M \ge 0$, що $\forall b \in B$: $|b| \ge M$
- E) $\exists M = const, M \ge 0$, $uqo \forall b \in B: |b| > M$
- 4. Множина $X = \{a, b, c, d, e\}$. Вибрати правильні висловлення:
- A) $\{a,b,c,d\} \not\subset X$
- Б) $\{a\} \in X$
- B) $\{a,b,e\}\subseteq X$
- Γ) $X \in X$
- 5. Для логічної формули $A \& \overline{B} \leftrightarrow A$ була побудована таблиця істинності:

A	В	A∧B⊶A
0	0	1
0	1	0
1	0	1
1	1	0

В яких рядках таблиці зроблено помилку?

А) В першому

- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках

- 1. Нехай множина $A = \{-4,5,0,-3,6\}, B = \{-4,5,0,-3,6,8\}.$ Побудувати симетричну різницю A + B.
- A) {-4,5,0,-3,6}
- Б) {-4,5,0,-3,6,8}
- B) {8}
- Γ) Ø
- Д) {-4,5,0}
- 2. (4 б.) Спростити вираз теорії множин : $(A \cap C) \cup (B \cap C) \cup (A \cap D) \cup (B \cap D)$
- A) $A \cap B \cap C \cup D$
- Б) $(A \cup B) \cap (C \cup D)$
- B) $(A \cap B) \cap (C \cup D)$
- Γ) $(A \cap B) \cup (C \cap D)$
- Д) порожня множина
- 3. (3 б.) Матриця бінарного відношення, визначеного на множині потужності 5, має наступний вигляд:

$$\begin{pmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \end{pmatrix}.$$

По матриці визначити властивості бінарного відношення.

- А) рефлексивне
- Б) антирефлексивне
- Г) симетричне
- Д) антисиметричне
- E) не ϵ ні рефлексивним, ні антирефлексивним
- Ж) не ϵ ні симетричним, ні антисиметричним
- 3) матриця не може бути матрицею бінарного відношення, визначеного на множині потужності 5

Білет 24

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Число A називається інфімумом множини X, якщо:
- А) A верхня межа X і для $\forall \varepsilon > 0$ знайдеться такий елемент $x \in X$, що $x < A + \varepsilon$.
- Б) для $\forall \varepsilon > 0$ знайдеться такий елемент $x \in X$, що $x < A + \varepsilon$.
- В) A нижня межа X і для $\forall \varepsilon > 0$ знайдеться такий елемент $x \in X$, що $x < A + \varepsilon$.
- Γ) A це найменша з верхніх меж множини X
- Д) A нижня межа X і для $\forall \varepsilon$ знайдеться такий елемент $x \in X$, що $x < A + \varepsilon$.
- E) A верхня межа X і для $\forall \varepsilon > 0$ знайдеться такий елемент $x \in X$, що $x > A \varepsilon$.
- 2. Для логічної формули $A \& B \to \overline{A}$ була побудована таблиця істинності:

А	В	A∧B→Ā
0	0	1
0	1	1
1	0	0
1	1	1

В яких рядках таблиці зроблено помилку?

- А) В першому
- Б) в другому
- В) в третьому і четвертому
- Г) в першому і четвертому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 3. Навести змістовний приклад бінарного відношення, яке не ε симетричним і не ε антирефлексивним
- 4. Вибрати правильні висловлення:
- A) Якщо $a \in X$ і $a \in Y$, то $X \subseteq Y$ або $Y \subseteq X$
- Б) Якщо $a \in X$ і $a \in Y$, то $X \cap Y \neq \emptyset$
- В) Якщо $a \in X$ і $a \in Y$, то $a \in X \cap Y$
- Γ) Якщо $X \cap Y \neq \emptyset$, то $X \subseteq Y$ або $Y \subseteq X$
- Д) Якщо $X \subseteq Y$ або $Y \subseteq X$, то X = Y
- 5. Нехай A обмежена, а B необмежена множина. Якою буде множина $A \cap B$?
- А) нескінченною
- Б) скінченною
- В) може бути як скінченною, так і нескінченною
- Г) необмеженою

Практика

1. (3 б.) Матриця бінарного відношення, визначеного на множині потужності 5, має наступний вигляд:

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{pmatrix}.$$

По матриці визначити властивості бінарного відношення.

- А) рефлексивне
- Б) антирефлексивне
- Г) симетричне
- Д) антисиметричне
- E) не ϵ ні рефлексивним, ні антирефлексивним
- Ж) не ε ні симетричним, ні антисиметричним
- 3) матриця не може бути матрицею бінарного відношення, визначеного на множині потужності 5
- 2. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ \langle a, a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle b, a \rangle \}.$$

Це бінарне відношення є:

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- Д) не ε ні симетричним, ні антисиметричним
- E) не ε ні рефлексивним, ні антирефлексивним
- 3. (4 б.) Спростити вираз теорії множин : $(A \ B) \cup (A \ C)$
- A) $A \cap \overline{B \cap C}$
- Б) $A \cup \overline{B \cap C}$
- B) $A \setminus (B \cap C)$
- Γ) $A \setminus (B \cup C)$

Білет 25

Теорія (5 запитань. Кожне питання – 2 бали)

1. Для логічної формули $\overline{A \to B} \leftrightarrow A$ була побудована таблиця істинності:

A	В	Ā→B ↔A
0	0	1
0	1	0
1	0	1
1	1	0

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 2. Множина А обмежена зверху. Тоді
- А) вона може не мати верхньої межі
- Б) вона може не мати точної верхньої межі
- В) вона обмежена
- Г) вона може не мати точної нижньої межі
- Д) вона має єдину верхню межу
- Е) вона має нескінченно багато верхніх меж.
- 3. Навести змістовний приклад бінарного відношення, яке не ϵ антисиметричним, ϵ транзитивним
- 4. Яка логічна операція в формулі $A \& B \to \overline{\overline{A} \leftrightarrow \overline{A \vee B}}$ буде виконуватися останньою?
- А) заперечення
- Б) кон'юнкція
- В) диз'юнкція
- Г) еквівалентність
- Д) імплікація
- 5. Відомо, що $A \subset B$ і $a \in B$. Які з наступних тверджень вірні?

- A) $a \in A \cap B$
- **Б**) *a* ∉ *A*
- B) $A \in B$
- Γ) $a \in B \setminus A$ and $a \in A$

- 1. (4 б.) Спростити вираз теорії множин : $A \setminus (A \setminus B)$
- A) $A \cup B$
- Б) *A**B*
- B) $A \cap B$
- Γ) $A \cap \overline{B}$
- 2. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ \langle a, b \rangle, \langle b, a \rangle, \langle a, a \rangle, \langle b, b \rangle \}.$$

Це бінарне відношення ϵ :

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- Д) не ε ні симетричним, ні антисиметричним
- E) не ϵ ні рефлексивним, ні антирефлексивним
- 3. Побудувати симетричну різницю множин A + B, якщо $A = \{a,b,c\}$, $A = \{c,d,f,h\}$
- A) $\{a, b, d, c, f, h\}$
- Б) {*c*}
- B) $\{a,b,d,f,h\}$
- Γ) $\{d, f, h\}$
- Д) $\{a,b\}$

Білет 26

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Які з наступних тверджень вірні?
- A) $\{\emptyset\}\subset\{a,b\}$
- Б) $\{b\} \subseteq \{a,b\}$
- B) $\{b\} \in \{a, \{b\}\}\$
- Γ) $b \subset \{a, \{b\}\}$
- 2. Для логічної формули $A \to \overline{B \leftrightarrow A}$ була побудована таблиця істинності:

	•	
A	В	A→B↔A
0	0	1
0	1	0
1	0	1
1	1	0

- А) В першому
- Б) в другому і третьому

- В) в третьому і четвертому
- Г) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 3. Нехай A, B нескінченні множини. Якою буде множина $A \setminus B$?
- А) нескінченною
- Б) скінченною
- В) може бути як скінченною, так і нескінченною
- Г) необмеженою
- 4. Навести змістовний приклад бінарного відношення, яке не ϵ симетричним, ϵ транзитивним
- 5. Що означає, що множина B не обмежена зверху?
- A) $\exists M = const$, $uo \forall b \in B$: $M \leq b$
- Б) $\exists M = const$, що $\forall b \in B$: M < b
- B) $\exists M = const$, $uo \forall b \in B : M \ge b$
- Γ) $\exists M = const$, $uo \forall b \in B : M > b$
- Д) Для $\forall M = const \exists b \in B : M \leq b$
- E) Для $\forall M = const \exists b \in B : M \ge b$

- 1. (3 б.) У якому випадку для множин A і B має місце рівність: $A + B = A \bigcup B$?
- А) якщо множини A і B не перетинаються
- Б) якщо $A \subset B$
- В) якщо $B \subseteq A$
- Γ) якщо множини A і B перетинаються
- 2. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ \langle a, b \rangle, \langle b, a \rangle \}.$$

Це бінарне відношення є:

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- \bot) не ε ні симетричним, ні антисиметричним
- E) не ϵ ні рефлексивним, ні антирефлексивним
- 3. (4 б.) Спростити вираз теорії множин : $A \setminus (B \setminus A)$
- A) $A \cup B$
- Б) *A\B*
- B) $A \cup (A \cap \overline{B})$
- Γ) $A \cap \overline{B}$

Білет 27

Теорія (5 запитань. Кожне питання – 2 бали)

1. Для логічної формули $A \to \overline{A} \to B$ була побудована таблиця істинності:

А	В	A→Ā→B
0	0	0
0	1	1
1	0	0
1	1	1

В яких рядках таблиці зроблено помилку?

- А) В першому
- Б) в другому
- В) в третьому
- Г) в останньому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 2. Нехай A, B необмежені множини. Якою буде множина $A \cup B$?
- А) необмеженою
- Б) обмеженою
- В) може бути як обмеженою, так і необмеженою
- Г) може бути скінченною
- 3. Скільки елементів в множині $A = \{\{1, \{1\}\}, Z, \{1, \{2,3\}\}, \varnothing\},$ де Z множина цілих чисел?
- A) 5
- Б) 0
- B) 4
- Г) нескінченно багато
- 4. Обрати вірні твердження:
- А) Скінченна множина може бути необмеженою
- Б) Нескінченна множина може бути обмеженою
- В) Скінченна множина може бути як обмеженою, так і необмеженою
- Г) нескінченна множина не може бути обмеженою
- 5. Навести змістовний приклад бінарного відношення, яке ϵ транзитивним і не ϵ рефлексивним

Практика

- 1. (2 б.) Скільки підмножин має множина $A = \{\emptyset\}$.
- А) жодної
- Б) 1
- B) 2
- Γ) 3
- 2. (4 б.) Спростити вираз теорії множин : $(A \cap B) \setminus (A \cap C)$
- A) $(A \cap B) \setminus C$
- β) $A ∩ B ∩ \overline{C}$
- B) $(A \cup B) \setminus C$
- Γ) $(A \cap B) \setminus \overline{C}$
- 3. (3 б.) Матриця бінарного відношення, визначеного на множині потужності 5, має наступний вигляд:

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{pmatrix}.$$

По матриці визначити властивості бінарного відношення.

- А) рефлексивне
- Б) антирефлексивне
- Г) симетричне
- Д) антисиметричне
- E) не ϵ ні рефлексивним, ні антирефлексивним
- Ж) не ε ні симетричним, ні антисиметричним
- 3) матриця не може бути матрицею бінарного відношення, визначеного на множині потужності 5

Білет 28

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Відомо, що $A \subseteq B$ і $a \in A$. Які з наступних тверджень вірні?
- A) $a \in A \cap B$
- b) $a \subset A$
- B) $A \in B$
- Γ) $a \notin B \cap A$
- 2. Навести змістовний приклад бінарного відношення, яке не ϵ рефлексивним і не ϵ антирефлексивним
- 3. Для логічної формули $\overline{A \to B \& A}$ була побудована таблиця істинності:

А	В	$\overline{A - B \wedge A}$
0	0	0
0	1	0
1	0	1
1	1	0

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 4. Нехай A обмежена, а B необмежена множина. Якою буде множина $A \cup B$?
- А) необмеженою
- Б) обмеженою
- В) може бути як обмеженою, так і необмеженою
- Г) може бути скінченною
- 5. Яка логічна операція буде в формулі $\overline{A \& (B \to \overline{A}) \longleftrightarrow \overline{A \lor B}}$ виконуватися останньою?
- А) заперечення
- Б) кон'юнкція
- В) диз'юнкція

- Г) еквівалентність
- Д) імплікація

- 1. (3 б.) Серед наведених бінарних відношень знайти відношення строгого порядку:
- А) на множині цілих чисел Z: $a \rho b$, якщо $a \leq b$
- Б) на множині натуральних чисел N: $a \rho b$, якщо $a \ge b$
- В) на множині людей: $a \rho b$, якщо a знає b
- Γ) на множині працівників одного заводу: $a \rho b$, якщо a працює в одному кабінеті з b
- Д) на множині яблук на прилавку одного магазину: $a \rho b$, якщо a солодше за b
- 2. (3 б.) Бінарне відношення задане на множині $A = \{a,b,c\}$ наступним чином:

$$\rho = \{ \langle a, b \rangle, \langle b, a \rangle, \langle a, c \rangle, \langle c, a \rangle, \langle a, a \rangle, \langle c, c \rangle \}.$$

- Це бінарне відношення є:
- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- Д) не ϵ ні симетричним, ні антисиметричним
- E) не ϵ ні рефлексивним, ні антирефлексивним
- 3. (4 б.) Спростити вираз теорії множин : $(A \cup C) \cap (B \cup C) \cap (A \cup D) \cap (B \cup D)$
- A) $A \cap B \cap C \cup D$
- Б) $(A \cup B) \cap (C \cup D)$
- B) $(A \cap B) \cap (C \cup D)$
- $\Gamma) (A \cap B) \cup (C \cap D)$
- Д) порожня множина

Білет 29

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Навести змістовний приклад бінарного відношення, яке не ε симетричним і не ε антисиметричним
- 2. Яка логічна операція буде виконуватися останньою в формулі $A \& B \to (\overline{A} \leftrightarrow A) \& \overline{A \lor B}$?
- А) заперечення
- Б) кон'юнкція
- В) диз'юнкція
- Г) еквівалентність
- Д) імплікація
- 3. Множина $X = \{1,2,\emptyset,e,N\}$, де N- множина цілих чисел. Вибрати правильні висловлення відносно множини:
- А) потужність множини X дорівнює нескінченності
- Б) X має 32 підмножини
- В) X має нескінченну кількість підмножин
- Γ) X має скінченну кількість підмножин
- 4. Для логічної формули $A \to \overline{B \& A}$ була побудована таблиця істинності:

A	В	$A - \overline{B \wedge A}$
0	0	0
0	1	1
1	0	1
1	1	0

В яких рядках таблиці зроблено помилку?

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 5. Що означає, що множина B необмежена зверху?
- A) $\exists M = const$, $uo \forall b \in B$: $M \leq b$
- Б) $\exists M = const$, що $\forall b \in B$: M < b
- B) $\exists M = const$, $uo \forall b \in B$: $M \ge b$
- Γ) $\exists M = const$, $uo \forall b \in B : M > b$
- Д) Для $\forall M = const \exists b \in B : M < b$
- E) Для $\forall M = const \exists b \in B : M \ge b$

Практика

- 1. (3 б.) Серед наведених бінарних відношень знайти відношення еквівалентності:
- А) на множині цілих чисел Z: $a \rho b$, якщо a < b
- Б) на множині натуральних чисел N: $a \rho b$, якщо $a \ge b$
- В) на множині людей: $a \rho b$, якщо a ненавидить b
- Γ) на множині працівників одного заводу: $a \rho b$, якщо a підлеглий b
- Д) на множині яблук на прилавку одного магазину: $a \rho b$, якщо a має такий самий колір, що і b
- 2. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ \langle a, b \rangle, \langle a, a \rangle, \langle c, c \rangle \}.$$

Це бінарне відношення ϵ :

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- Д) не ϵ ні симетричним, ні антисиметричним
- Е) не є ні рефлексивним, ні антирефлексивним
- 3. (4 б.) Спростити вираз теорії множин : $(A \mid C) \mid (B \mid C)$
- A) $A \cap B \cap \overline{C}$
- Б) $A \cap \overline{B} \cap \overline{C}$
- B) $A \cup \overline{B} \cup \overline{C}$
- Γ) $A \cup (\overline{B} \cap \overline{C})$

Теорія (5 запитань, Кожне питання – 2 бали)

1. Що означає, що множина B не обмежена знизу?

A) $\exists M = const$, $uo \forall b \in B$: M < b

b) $\exists M = const, uo \forall b \in B: M \leq b$

B) $\exists M = const$, $uo \forall b \in B$: $M \ge b$

 Γ) $\exists M = const$, $u_io \forall b \in B$: M > b

Д) Для $\forall M = const \exists b \in B: M \leq b$

E) Для $\forall M = const \exists b \in B: M \ge b$

- 2. Вибрати правильні висловлення:
- А) Якщо множина обмежена, то вона скінченна;
- Б) Якщо множина нескінченна, то воно не може бути обмеженою
- В) Якщо множина необмежена, то воно нескінченна
- Г) Множина обмежена тоді і тільки тоді, коли вона скінченна
- 3. Для логічної формули $A \to \overline{B} \longleftrightarrow A$ була побудована таблиця істинності:

А	В	A→Ē↔A
0	0	1
0	1	0
1	0	1
1	1	0

В яких рядках таблиці зроблено помилку?

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Γ) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 4. Множини X і Y такі, що їх об'єднання дорівнює універсальній множині, при цьому ці множини не перетинаються, тоді:
- A) одна з множин ϵ порожньою множиною;
- Б) одна з множин ϵ доповненням другої до універсальної множини
- В) одна з множин ϵ універсальною множиною
- Γ) $X \mid Y = \emptyset$
- 5. Навести змістовний приклад бінарного відношення, яке ϵ антисиметричним і не транзитивним

Практика

- 1. (3 б.) Для множини $A = \{1, b, \emptyset\}$ знайти кількість підмножин.
- A) 1
- Б) 2
- B) 3
- Γ) 4
- Д) 7
- E) 8

- 2. (4 б.) Спростити вираз теорії множин : $(A \ B) \cap (A \ C)$
- A) $A \cap \overline{B \cup C}$
- Б) $A \cup \overline{B \cap C}$
- B) $A \setminus (B \cap C)$
- Γ) $A \setminus (B \cup C)$
- 3. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ \langle a, b \rangle, \langle a, c \rangle, \langle b, a \rangle, \langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle \}.$$

Це бінарне відношення є:

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- Д) не ε ні симетричним, ні антисиметричним
- E) не ε ні рефлексивним, ні антирефлексивним

Білет 31

Теорія (5 запитань. Кожне питання – 2 бали)

1. Для логічної формули $\overline{A \to B} \leftrightarrow A$ була побудована таблиця істинності:

А	В	Ā→B ↔A
0	0	1
0	1	0
1	0	1
1	1	0

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 2. Множина А обмежена зверху. Тоді
- А) вона може не мати верхньої межі
- Б) вона може не мати точної верхньої межі
- В) вона обмежена
- Г) вона може не мати точної нижньої межі
- Д) вона має єдину верхню межу
- Е) вона має нескінченно багато верхніх меж.
- 3. Навести змістовний приклад бінарного відношення, яке не ε антисиметричним, ε транзитивним
- 4. Яка логічна операція в формулі $A \& B \to \overline{\overline{A} \leftrightarrow \overline{A \vee B}}$ буде виконуватися останньою?
- А) заперечення
- Б) кон'юнкція
- В) диз'юнкція
- Г) еквівалентність
- Д) імплікація

- 5. Відомо, що $A \subset B$ і $a \in B$. Які з наступних тверджень вірні?
- A) $a \in A \cap B$
- **Б**) *a* ∉ *A*
- B) $A \in B$
- Γ) $a \in B \setminus A$ and $a \in A$

- 1. (4 б.) Спростити вираз теорії множин : $A \setminus (A \setminus B)$
- A) $A \cup B$
- Б) *A\B*
- B) $A \cap B$
- Γ) $A \cap \overline{B}$
- 2. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ \langle a, b \rangle, \langle b, a \rangle, \langle a, a \rangle, \langle b, b \rangle \}.$$

Це бінарне відношення є:

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- Д) не ε ні симетричним, ні антисиметричним
- E) не ε ні рефлексивним, ні антирефлексивним
- 3. Побудувати симетричну різницю множин A+B, якщо $A=\{a,b,c\},\ A=\{c,d,f,h\}$
- A) $\{a, b, d, c, f, h\}$
- Б) {c}
- B) $\{a,b,d,f,h\}$
- Γ) $\{d, f, h\}$
- Д) $\{a,b\}$

Білет 32

Теорія (5 запитань. Кожне питання – 2 бали)

1. Для логічної формули $A \to \overline{A} \to B$ була побудована таблиця істинності:

Α	В	A→Ā→B
0	0	0
0	1	1
1	0	0
1	1	1

- А) В першому
- Б) в другому
- В) в третьому
- Г) в останньому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках

- 2. Нехай A, B необмежені множини. Якою буде множина $A \cup B$? A) необмеженою Б) обмеженою
- В) може бути як обмеженою, так і необмеженою
- Γ) може бути скінченною
- 3. Скільки елементів в множині $A = \{\{1, \{1\}\}, Z, \{1, \{2,3\}\}, \varnothing\},$ де Z множина цілих чисел?
- A) 5
- Б) 0
- B) 4
- Г) нескінченно багато
- 4. Обрати вірні твердження:
- А) Скінченна множина може бути необмеженою
- Б) Нескінченна множина може бути обмеженою
- В) Скінченна множина може бути як обмеженою, так і необмеженою
- Г) нескінченна множина не може бути обмеженою
- 5. Навести змістовний приклад бінарного відношення, яке ϵ транзитивним і не ϵ рефлексивним

- 1. (2 б.) Скільки підмножин має множина $A = \{\emptyset\}$.
- А) жодної
- Б) 1
- B) 2
- Γ) 3
- 2. (4 б.) Спростити вираз теорії множин : $(A \cap B) \setminus (A \cap C)$
- A) $(A \cap B) \setminus C$
- $\mathbf{b})\ A \cap B \cap \overline{C}$
- B) $(A \cup B) \setminus C$
- Γ) $(A \cap B) \setminus \overline{C}$
- 3. (3 б.) Матриця бінарного відношення, визначеного на множині потужності 5, має наступний вигляд:

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{pmatrix}.$$

По матриці визначити властивості бінарного відношення.

- А) рефлексивне
- Б) антирефлексивне
- Г) симетричне
- Д) антисиметричне
- $\stackrel{\smile}{E}$) не $\stackrel{\smile}{\epsilon}$ ні рефлексивним, ні антирефлексивним
- Ж) не ε ні симетричним, ні антисиметричним
- 3) матриця не може бути матрицею бінарного відношення, визначеного на множині потужності 5

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Навести змістовний приклад бінарного відношення, яке не ε симетричним і не ε антисиметричним
- 2. Яка логічна операція буде виконуватися останньою в формулі $A \& B \to (\overline{A} \leftrightarrow A) \& \overline{A \lor B}$?
- А) заперечення
- Б) кон'юнкція
- В) диз'юнкція
- Г) еквівалентність
- Д) імплікація
- 3. Множина $X = \{1,2,\emptyset,e,N\}$, де N- множина цілих чисел. Вибрати правильні висловлення відносно множини:
- А) потужність множини X дорівнює нескінченності
- Б) X має 32 підмножини
- В) X має нескінченну кількість підмножин
- Γ) X має скінченну кількість підмножин
- 4. Для логічної формули $A \to \overline{B \& A}$ була побудована таблиця істинності:

А	В	$A \rightarrow \overline{B \wedge A}$
0	0	0
0	1	1
1	0	1
1	1	0

В яких рядках таблиці зроблено помилку?

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 5. Що означає, що множина B необмежена зверху?
- A) $\exists M = const, \quad uo \quad \forall b \in B: \quad M \leq b$
- Б) $\exists M = const$, що $\forall b \in B$: M < b
- B) $\exists M = const$, $uo \forall b \in B$: $M \ge b$
- Γ) $\exists M = const$, $uo \forall b \in B : M > b$
- Д) Для $\forall M = const \exists b \in B : M < b$
- E) Для $\forall M = const \exists b \in B : M \ge b$

Практика

- 1. (3 б.) Серед наведених бінарних відношень знайти відношення еквівалентності:
- A) на множині цілих чисел Z: $a \rho b$, якщо a < b
- Б) на множині натуральних чисел N: $a \rho b$, якщо $a \ge b$
- В) на множині людей: $a \rho b$, якщо a ненавидить b
- Γ) на множині працівників одного заводу: $a \rho b$, якщо a підлеглий b
- Д) на множині яблук на прилавку одного магазину: $a \circ b$, якщо a має такий самий колір, що і b

2. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ \langle a, b \rangle, \langle a, a \rangle, \langle c, c \rangle \}.$$

- Це бінарне відношення є:
- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- Д) не ε ні симетричним, ні антисиметричним
- E) не ε ні рефлексивним, ні антирефлексивним
- 3. (4 б.) Спростити вираз теорії множин : $(A \setminus C) \setminus (B \setminus C)$
- A) $A \cap B \cap \overline{C}$
- Б) $A \cap \overline{B} \cap \overline{C}$
- B) $A \cup \overline{B} \cup \overline{C}$
- Γ) $A \cup (\overline{B} \cap \overline{C})$

Білет 34

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Навести змістовний приклад бінарного відношення, яке ε транзитивним і не ε антирефлексивним. Показати, що наведене бінарне відношення дійсно ε транзитивним і не ε антирефлексивним.
- 2. Для логічної формули $A \to \overline{A} \& B$ була побудована таблиця істинності:

А	В	A→Ā∧B
0	0	1
0	1	1
1	0	0
1	1	0

- В яких рядках таблиці зроблено помилку?
- А) В першому
- Б) в другому
- В) в першому і третьому
- Г) в останньому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 3. Що означає, що множина В необмежена знизу?
- A) $\exists M = const$, $uo \forall b \in B$: $M \leq b$
- Б) $\exists M = const$, що $\forall b \in B$: M < b
- B) $\exists M = const$, $uo \forall b \in B$: $M \ge b$
- Γ) $\exists M = const$, $uo \forall b \in B$: M > b
- Д) Для $\forall M = const \exists b \in B : M \leq b$
- E) Для $\forall M = const \exists b \in B : M > b$
- 4. Нехай A обмежена, а B необмежена множина. Якою буде множина $A \cap B$?
- А) нескінченною

- Б) скінченною
- В) може бути як скінченною, так і нескінченною
- Г) необмеженою
- 5. Серед тверджень знайти вірні:
- А) Для основних логічних операцій їх приорітет буде наступним: 1.кон'юнкція, 2. диз'юнкція, 3 всі інші
- Б) Для основних логічних операцій їх приорітет буде наступним: 1. інверсія, 2. кон'юнкція, 3. диз'юнкція, 4 всі інші
- В) Пріоритет логічних операцій визначається лише за допомогою дужок
- Г) Для основних логічних операцій їх приорітет буде наступним: 1. інверсія, 2. диз'юнкція, 3. кон'юнкція, 4 всі інші

- 1. (3 б.) Множина $A = \{1, a, b, 7, \emptyset\}$. Скільки строгих підмножин має ця множина
- A) 5
- Б) 32
- B) 23
- Γ) 31
- Д) 7
- 2. (3 б.) Матриця бінарного відношення, визначеного на множині потужності 5, має наступний вигляд:

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{pmatrix}.$$

По матриці визначити властивості бінарного відношення.

- А) рефлексивне
- Б) антирефлексивне
- Г) симетричне
- Д) антисиметричне
- E) не ϵ ні рефлексивним, ні антирефлексивним
- Ж) не ϵ ні симетричним, ні антисиметричним
- 3) матриця не може бути матрицею бінарного відношення, визначеного на множині потужності 5
- 3. (4 б.) Спростити вираз теорії множин : $(A \cup C) \cap (B \cup C) \cap (A \cup D) \cap (B \cup D)$
- A) $A \cap B \cap C \cup D$
- $\mathbf{E}(A \cup B) \cap (C \cup D)$
- B) $(A \cap B) \cap (C \cup D)$
- Γ) $(A \cap B) \cup (C \cap D)$
- Д) порожня множина

Білет 35

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Які з наступних тверджень вірні?
- A) $\{\emptyset\}\subset\{a,b\}$
- Б) $\{b\} \subseteq \{a,b\}$

- B) $\{b\} \in \{a, \{b\}\}\$
- Γ) $b \subset \{a, \{b\}\}$
- 2. Для логічної формули $A \to \overline{B \leftrightarrow A}$ була побудована таблиця істинності:

	-	3
A	В	$A \rightarrow \overline{B} \leftrightarrow \overline{A}$
0	0	1
0	1	0
1	0	1
1	1	0

В яких рядках таблиці зроблено помилку?

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 3. Нехай A, B нескінченні множини. Якою буде множина $A \mid B$?
- А) нескінченною
- Б) скінченною
- В) може бути як скінченною, так і нескінченною
- Г) необмеженою
- 4. Навести змістовний приклад бінарного відношення, яке не ε симетричним, ε транзитивним
- 5. Що означає, що множина B не обмежена зверху?
- A) $\exists M = const$, $uo \forall b \in B$: $M \leq b$
- Б) $\exists M = const$, що $\forall b \in B$: M < b
- B) $\exists M = const$, $uo \forall b \in B$: $M \ge b$
- Γ) $\exists M = const$, $u_i o \forall b \in B$: M > b
- Д) Для $\forall M = const \exists b \in B : M \leq b$
- E) Для $\forall M = const \exists b \in B : M \ge b$

Практика

- 1. (3 б.) У якому випадку для множин A і B має місце рівність: $A + B = A \cup B$?
- А) якщо множини A і B не перетинаються
- Б) якщо $A \subseteq B$
- В) якщо $B \subseteq A$
- Γ) якщо множини A і B перетинаються
- 2. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ \langle a, b \rangle, \langle b, a \rangle \}.$$

Це бінарне відношення ϵ :

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- Д) не ϵ ні симетричним, ні антисиметричним
- E) не ε ні рефлексивним, ні антирефлексивним

- 3. (4 б.) Спростити вираз теорії множин : $A \setminus (B \setminus A)$
- A) $A \cup B$
- **Б)** *A* \ *B*
- B) $A \cup (A \cap \overline{B})$
- Γ) $A \cap \overline{B}$

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Яка логічна операція в цій формулі буде виконуватися останньою $A \& B \to \overline{A} \leftrightarrow A \lor B$?
- А) заперечення
- Б) кон'юнкція
- В) диз'юнкція
- Г) еквівалентність
- Д) імплікація
- 2. Навести змістовний приклад бінарного відношення, яке не ϵ рефлексивним і не ϵ симетричним
- 3. Що означає, що множина В обмежена?
- A) $\exists M = const, M \ge 0$, $uo \forall b \in B: |b| \le M$
- Б) $\exists M = const$, що $\forall b \in B$: $M \leq b$
- B) $\exists M = const, \quad uo \quad \forall b \in B: \quad M \ge b$
- Γ) $\exists M = const, M \ge 0$, $uo \forall b \in B: |b| < M$
- Д) $\exists M = const, M \ge 0$, що $\forall b \in B$: $|b| \ge M$
- E) $\exists M = const, M \ge 0$, $uo \forall b \in B$: |b| > M
- 4. Множина $X = \{a, b, c, d, e\}$. Вибрати правильні висловлення:
- A) $\{a,b,c,d\} \not\subset X$
- Б) $\{a\} \in X$
- B) $\{a,b,e\}\subseteq X$
- Γ) $X \in X$
- 5. Для логічної формули $A \& \overline{B} \leftrightarrow A$ була побудована таблиця істинності:

A	В	A∧Ē↔A
0	0	1
0	1	0
1	0	1
1	1	0

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому

- Г) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках

- 1. Нехай множина $A = \{-4,5,0,-3,6\}, B = \{-4,5,0,-3,6,8\}.$ Побудувати симетричну різницю A + B.
- A) {-4,5,0,-3,6}
- Б) {-4,5,0,-3,6,8}
- B) {8}
- $\Gamma) \varnothing$
- Д) {-4,5,0}
- 2. (4 б.) Спростити вираз теорії множин : $(A \cap C) \cup (B \cap C) \cup (A \cap D) \cup (B \cap D)$
- A) $A \cap B \cap C \cup D$
- Б) $(A \cup B) \cap (C \cup D)$
- B) $(A \cap B) \cap (C \cup D)$
- Γ) $(A \cap B) \cup (C \cap D)$
- Д) порожня множина
- 3. (3 б.) Матриця бінарного відношення, визначеного на множині потужності 5, має наступний вигляд:

$$\begin{pmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \end{pmatrix}.$$

По матриці визначити властивості бінарного відношення.

- А) рефлексивне
- Б) антирефлексивне
- Г) симетричне
- Д) антисиметричне
- E) не ϵ ні рефлексивним, ні антирефлексивним
- Ж) не ε ні симетричним, ні антисиметричним
- 3) матриця не може бути матрицею бінарного відношення, визначеного на множині потужності 5

Білет 37

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Що означає, що множина B не обмежена знизу?
- A) $\exists M = const, \quad uo \quad \forall b \in B: \quad M < b$
- **b**) $\exists M = const, \quad uo \quad \forall b \in B : \quad M \leq b$
- B) $\exists M = const, upo \forall b \in B: M \ge b$
- Γ) $\exists M = const$, $uo \forall b \in B : M > b$
- Д) Для $\forall M = const \exists b \in B: M \leq b$
- E) Для $\forall M = const \exists b \in B: M \ge b$
- 2. Вибрати правильні висловлення:
- А) Якщо множина обмежена, то вона скінченна;
- Б) Якщо множина нескінченна, то воно не може бути обмеженою

- В) Якщо множина необмежена, то воно нескінченна
- Г) Множина обмежена тоді і тільки тоді, коли вона скінченна
- 3. Для логічної формули $A \to \overline{B} \leftrightarrow A$ була побудована таблиця істинності:

A	В	A → Ē ↔ A
0	0	1
0	1	0
1	0	1
1	1	0

В яких рядках таблиці зроблено помилку?

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 4. Множини X і Y такі, що їх об'єднання дорівнює універсальній множині, при цьому ці множини не перетинаються, тоді:
- А) одна з множин є порожньою множиною;
- Б) одна з множин є доповненням другої до універсальної множини
- B) одна з множин ϵ універсальною множиною
- Γ) $X \mid Y = \emptyset$
- 5. Навести змістовний приклад бінарного відношення, яке ε антисиметричним і не транзитивним

Практика

- 1. (3 б.) Для множини $A = \{1, b, \emptyset\}$ знайти кількість підмножин.
- A) 1
- Б) 2
- B) 3
- Γ) 4
- Д) 7
- E) 8
- 2. (4 б.) Спростити вираз теорії множин : $(A \ B) \cap (A \ C)$
- A) $A \cap \overline{B \cup C}$
- Б) $A \cup \overline{B \cap C}$
- B) $A \setminus (B \cap C)$
- Γ) $A \setminus (B \cup C)$
- 3. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ \langle a,b \rangle, \langle a,c \rangle, \langle b,a \rangle, \langle a,a \rangle, \langle b,b \rangle, \langle c,c \rangle \}.$$

Це бінарне відношення ϵ :

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- E) не ϵ ні рефлексивним, ні антирефлексивним

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Число A називається інфімумом множини X, якщо:
- А) A верхня межа X і для $\forall \varepsilon > 0$ знайдеться такий елемент $x \in X$, що $x < A + \varepsilon$.
- Б) для $\forall \varepsilon > 0$ знайдеться такий елемент $x \in X$, що $x < A + \varepsilon$.
- В) A нижня межа X і для $\forall \varepsilon > 0$ знайдеться такий елемент $x \in X$, що $x < A + \varepsilon$.
- Γ) A це найменша з верхніх меж множини X
- Д) A нижня межа X і для $\forall \varepsilon$ знайдеться такий елемент $x \in X$, що $x < A + \varepsilon$.
- E) A верхня межа X і для $\forall \varepsilon > 0$ знайдеться такий елемент $x \in X$, що $x > A \varepsilon$.
- 2. Для логічної формули $A \& B \to \overline{A}$ була побудована таблиця істинності:

A	В	A∧B→Ā
0	0	1
0	1	1
1	0	0
1	1	1

В яких рядках таблиці зроблено помилку?

- А) В першому
- Б) в другому
- В) в третьому і четвертому
- Г) в першому і четвертому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 3. Навести змістовний приклад бінарного відношення, яке не ε симетричним і не ε антирефлексивним
- 4. Вибрати правильні висловлення:
- A) Якщо $a \in X$ і $a \in Y$, то $X \subseteq Y$ або $Y \subseteq X$
- Б) Якщо $a \in X$ і $a \in Y$, то $X \cap Y \neq \emptyset$
- В) Якщо $a \in X$ і $a \in Y$, то $a \in X \cap Y$
- Γ) Якщо $X \cap Y \neq \emptyset$, то $X \subseteq Y$ або $Y \subseteq X$
- Д) Якщо $X \subseteq Y$ або $Y \subseteq X$, то X = Y
- 5. Нехай A обмежена, а B необмежена множина. Якою буде множина $A \cap B$?
- А) нескінченною
- Б) скінченною
- В) може бути як скінченною, так і нескінченною
- Г) необмеженою

Практика

1. (3 б.) Матриця бінарного відношення, визначеного на множині потужності 5, має наступний виглял:

$$\begin{pmatrix}
1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 1
\end{pmatrix}.$$

По матриці визначити властивості бінарного відношення.

- А) рефлексивне
- Б) антирефлексивне
- Г) симетричне
- Д) антисиметричне
- E) не ϵ ні рефлексивним, ні антирефлексивним
- Ж) не ε ні симетричним, ні антисиметричним
- 3) матриця не може буги матрицею бінарного відношення, визначеного на множині потужності 5
- 2. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ \langle a, a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle b, a \rangle \}.$$

Це бінарне відношення є:

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- Д) не ε ні симетричним, ні антисиметричним
- Е) не є ні рефлексивним, ні антирефлексивним
- 3. (4 б.) Спростити вираз теорії множин : $(A \ B) \cup (A \ C)$
- A) $A \cap \overline{B \cap C}$
- Б) $A \cup \overline{B \cap C}$
- B) $A \setminus (B \cap C)$
- Γ) $A \setminus (B \cup C)$

Білет 39

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Відомо, що $A \subseteq B$ і $a \in A$. Які з наступних тверджень вірні?
- A) $a \in A \cap B$
- Б) $a \subset A$
- B) $A \in B$
- Γ) $a \notin B \cap A$
- 2. Навести змістовний приклад бінарного відношення, яке не ε рефлексивним і не ε антирефлексивним
- 3. Для логічної формули $\overline{A \to B \& A}$ була побудована таблиця істинності:

A	В	A→B∧A
0	0	0
0	1	0
1	0	1
1	1	0

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках

- 4. Нехай A обмежена, а B необмежена множина. Якою буде множина $A \cup B$?
- А) необмеженою
- Б) обмеженою
- В) може бути як обмеженою, так і необмеженою
- Г) може бути скінченною
- 5. Яка логічна операція буде в формулі $\overline{A \& (B \to \overline{A}) \longleftrightarrow \overline{A \lor B}}$ виконуватися останньою?
- А) заперечення
- Б) кон'юнкція
- В) диз'юнкція
- Г) еквівалентність
- Д) імплікація

- 1. (3 б.) Серед наведених бінарних відношень знайти відношення строгого порядку:
- А) на множині цілих чисел Z: $a \rho b$, якщо $a \le b$
- Б) на множині натуральних чисел N: $a \rho b$, якщо $a \ge b$
- В) на множині людей: $a \rho b$, якщо a знає b
- Γ) на множині працівників одного заводу: $a \rho b$, якщо a працює в одному кабінеті з b
- Д) на множині яблук на прилавку одного магазину: $a \rho b$, якщо a солодше за b
- 2. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ \langle a, b \rangle, \langle b, a \rangle, \langle a, c \rangle, \langle c, a \rangle, \langle a, a \rangle, \langle c, c \rangle \}.$$

Це бінарне відношення є:

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- Д) не ε ні симетричним, ні антисиметричним
- E) не ϵ ні рефлексивним, ні антирефлексивним
- 3. (4 б.) Спростити вираз теорії множин : $(A \cup C) \cap (B \cup C) \cap (A \cup D) \cap (B \cup D)$
- A) $A \cap B \cap C \cup D$
- $\mathsf{E}(A \cup B) \cap (C \cup D)$
- B) $(A \cap B) \cap (C \cup D)$
- Γ) $(A \cap B) \cup (C \cap D)$
- Д) порожня множина

Білет 40

Теорія (5 запитань. Кожне питання – 2 бали)

1. Для логічної формули $A \vee \overline{B} \leftrightarrow A$ була побудована таблиця істинності:

А	В	A∨Ē↔A
0	0	0
0	1	0
1	0	0
1	1	1

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в першому і четвертому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 2. Обрати правильні висловлення:
- А) Якщо множина необмежена, у неї обов'язково не існують точна верхня і точна нижня межі
- Б) Якщо множина обмежена, у неї існує точна верхня і точна нижня межі
- В) Якщо множина обмежена, у неї обов'язково існують верхня і нижня межі, але точна верхня, точна нижня межі можуть не існувати
- Г) Якщо множина необмежена, вона необмежена як знизу, так і зверху.
- 3. Побудувати логічну формулу, яка відповідає складному висловленню: «Якщо я буду жити в гуртожитку і отримаю стипендію в наступному семестрі, то влітку зможу на накопичені гроші або купити новий телефон, або зробити подарунок мамі на день народження».
- A) $A \& B \rightarrow (C \oplus B)$
- Б) $A \& B \rightarrow (C \lor B)$
- B) $A & B \rightarrow C \lor B$
- Γ) $(A & B) \rightarrow (C \oplus B)$
- 4. Навести змістовний приклад бінарного відношення, яке є симетричним і не є антирефлексивним
- 5. Відомо, що $A \subset B$ і $a \in A \cap B$. Які з наступних тверджень вірні?
- A) $a \in B$
- Б) $a \notin A$
- B) $a \notin B \setminus A$
- Γ) $a \in B \setminus A$

1. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ \langle a, b \rangle, \langle a, c \rangle, \langle b, a \rangle \}.$$

Це бінарне відношення ϵ :

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- \bot) не ε ні симетричним, ні антисиметричним
- E) не ϵ ні рефлексивним, ні антирефлексивним
- 2. (4 б.) Спростити вираз теорії множин : $(A \mid B) \cap (A \mid C)$
- A) $A \cap \overline{B \cup C}$
- Б) $A \cup \overline{B \cap C}$
- B) $A \setminus (B \cap C)$
- Γ) $A \setminus (B \cup C)$
- 3. (3 б.) Множина $A = \{1,2,3,4\}$. Скільки строгих підмножин має ця множина

Б) 2

B) 16

Γ) 15

Д) 7

Білет 41

Теорія (5 запитань. Кожне питання – 2 бали)

1. Навести змістовний приклад бінарного відношення, яке ε транзитивним і не ε антирефлексивним. Показати, що наведене бінарне відношення дійсно ε транзитивним і не ε антирефлексивним.

2. Для логічної формули $A \to \overline{A} \& B$ була побудована таблиця істинності:

А	В	A→Ā∧B
0	0	1
0	1	1
1	0	0
1	1	0

В яких рядках таблиці зроблено помилку?

- А) В першому
- Б) в другому
- В) в першому і третьому
- Г) в останньому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 3. Що означає, що множина B необмежена знизу?
- A) $\exists M = const. \quad uo \quad \forall b \in B: \quad M \leq b$
- Б) $\exists M = const$, що $\forall b \in B$: M < b
- B) $\exists M = const$, $uo \forall b \in B$: $M \ge b$
- Γ) $\exists M = const$, $uo \forall b \in B$: M > b
- Д) Для $\forall M = const \exists b \in B : M \leq b$
- E) $A = const \exists b \in B : M > b$
- 4. Нехай A обмежена, а B необмежена множина. Якою буде множина $A \cap B$?
- А) нескінченною
- Б) скінченною
- В) може бути як скінченною, так і нескінченною
- Г) необмеженою
- 5. Серед тверджень знайти вірні:
- А) Для основних логічних операцій їх приорітет буде наступним: 1.кон'юнкція, 2. диз'юнкція, 3 всі інші
- Б) Для основних логічних операцій їх приорітет буде наступним: 1. інверсія, 2. кон'юнкція, 3. диз'юнкція, 4 всі інші
- В) Пріоритет логічних операцій визначається лише за допомогою дужок
- Γ) Для основних логічних операцій їх приорітет буде наступним: 1. інверсія, 2. диз'юнкція, 3. кон'юнкція, 4 всі інші

Практика

1. (3 б.) Множина $A = \{1, a, b, 7, \emptyset\}$. Скільки строгих підмножин має ця множина

- A) 5
- Б) 32
- B) 23
- Γ) 31
- Д) 7
- 2. (3 б.) Матриця бінарного відношення, визначеного на множині потужності 5, має наступний вигляд:

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{pmatrix}$$

По матриці визначити властивості бінарного відношення.

- А) рефлексивне
- Б) антирефлексивне
- Г) симетричне
- Д) антисиметричне
- Е) не є ні рефлексивним, ні антирефлексивним
- Ж) не ε ні симетричним, ні антисиметричним
- 3) матриця не може буги матрицею бінарного відношення, визначеного на множині потужності 5
- 3. (4 б.) Спростити вираз теорії множин : $(A \cup C) \cap (B \cup C) \cap (A \cup D) \cap (B \cup D)$
- A) $A \cap B \cap C \cup D$
- $\mathsf{F})\ (A\cup B)\cap (C\cup D)$
- B) $(A \cap B) \cap (C \cup D)$
- Γ) $(A \cap B) \cup (C \cap D)$
- Д) порожня множина

Білет 42

Теорія (5 запитань. Кожне питання – 2 бали)

1. Для логічної формули $A \to \overline{A} \to B$ була побудована таблиця істинності:

А	В	A→Ā→B
0	0	0
0	1	1
1	0	0
1	1	1

- А) В першому
- Б) в другому
- В) в третьому
- Г) в останньому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 2. Нехай A, B необмежені множини. Якою буде множина $A \cup B$?
- А) необмеженою

- Б) обмеженою
- В) може бути як обмеженою, так і необмеженою
- Г) може бути скінченною
- 3. Скільки елементів в множині $A = \{\{1, \{1\}\}, Z, \{1, \{2,3\}\}, \emptyset\}, \text{ де } Z \text{множина цілих чисел?}$
- A) 5
- Б) 0
- B) 4
- Г) нескінченно багато
- 4. Обрати вірні твердження:
- А) Скінченна множина може бути необмеженою
- Б) Нескінченна множина може бути обмеженою
- В) Скінченна множина може бути як обмеженою, так і необмеженою
- Г) нескінченна множина не може бути обмеженою
- 5. Навести змістовний приклад бінарного відношення, яке ϵ транзитивним і не ϵ рефлексивним

- 1. (3 б.) Скільки підмножин має множина $A = \{\emptyset\}$.
- А) жодної
- Б) 1
- B) 2
- Γ) 3
- 2. (4 б.) Спростити вираз теорії множин : $(A \cap B) \setminus (A \cap C)$
- A) $(A \cap B) \setminus C$
- β) $A ∩ B ∩ \overline{C}$
- B) $(A \cup B) \setminus C$
- Γ) $(A \cap B) \setminus \overline{C}$
- 3. (3 б.) Матриця бінарного відношення, визначеного на множині потужності 5, має наступний вигляд:

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{pmatrix}.$$

По матриці визначити властивості бінарного відношення.

- А) рефлексивне
- Б) антирефлексивне
- Г) симетричне
- Д) антисиметричне
- E) не ϵ ні рефлексивним, ні антирефлексивним
- Ж) не ε ні симетричним, ні антисиметричним
- 3) матриця не може бути матрицею бінарного відношення, визначеного на множині потужності 5

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Число A називається інфімумом множини X, якщо:
- A) A верхня межа X і для $\forall \varepsilon > 0$ знайдеться такий елемент $x \in X$, що $x < A + \varepsilon$.
- Б) для $\forall \varepsilon > 0$ знайдеться такий елемент $x \in X$, що $x < A + \varepsilon$.
- В) A нижня межа X і для $\forall \varepsilon > 0$ знайдеться такий елемент $x \in X$, що $x < A + \varepsilon$.
- Γ) A це найменша з верхніх меж множини X
- Д) A нижня межа X і для $\forall \varepsilon$ знайдеться такий елемент $x \in X$, що $x < A + \varepsilon$.
- Е) A верхня межа X і для $\forall \varepsilon > 0$ знайдеться такий елемент $x \in X$, що $x > A \varepsilon$.
- 2. Для логічної формули $A \& B \to \overline{A}$ була побудована таблиця істинності:

A	В	$A \wedge B \rightarrow \overline{A}$
0	0	1
0	1	1
1	0	0
1	1	1

В яких рядках таблиці зроблено помилку?

- А) В першому
- Б) в другому
- В) в третьому і четвертому
- Г) в першому і четвертому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 3. Навести змістовний приклад бінарного відношення, яке не ε симетричним і не ε антирефлексивним
- 4. Вибрати правильні висловлення:
- A) Якщо $a \in X$ і $a \in Y$, то $X \subseteq Y$ або $Y \subseteq X$
- Б) Якщо $a \in X$ і $a \in Y$, то $X \cap Y \neq \emptyset$
- В) Якщо $a \in X$ і $a \in Y$, то $a \in X \cap Y$
- Γ) Якщо $X \cap Y \neq \emptyset$, то $X \subseteq Y$ або $Y \subseteq X$
- Д) Якщо $X \subset Y$ або $Y \subset X$, то X = Y
- 5. Нехай A обмежена, а B необмежена множина. Якою буде множина $A \cap B$?
- А) нескінченною
- Б) скінченною
- В) може бути як скінченною, так і нескінченною
- Г) необмеженою

Практика

1. (3 б.) Матриця бінарного відношення, визначеного на множині потужності 5, має наступний виглял:

$$\begin{pmatrix}
1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 1
\end{pmatrix}.$$

По матриці визначити властивості бінарного відношення.

- А) рефлексивне
- Б) антирефлексивне
- Г) симетричне
- Д) антисиметричне
- E) не ϵ ні рефлексивним, ні антирефлексивним
- Ж) не ϵ ні симетричним, ні антисиметричним
- 3) матриця не може буги матрицею бінарного відношення, визначеного на множині потужності 5
- 2. (3 б.) Бінарне відношення задане на множині $A = \{a,b,c\}$ наступним чином:

$$\rho = \{ \langle a, a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle b, a \rangle \}.$$

Це бінарне відношення ϵ :

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- Д) не ϵ ні симетричним, ні антисиметричним
- E) не ϵ ні рефлексивним, ні антирефлексивним
- 3. (4 б.) Спростити вираз теорії множин : $(A \ B) \cup (A \ C)$
- A) $A \cap \overline{B \cap C}$
- Б) $A \cup \overline{B \cap C}$
- B) $A \setminus (B \cap C)$
- Γ) $A \setminus (B \cup C)$

Білет 44

Теорія (5 запитань. Кожне питання – 2 бали)

1. Для логічної формули $A \vee \overline{B} \leftrightarrow A$ була побудована таблиця істинності:

А	В	A∨B⇔A
0	0	0
0	1	0
1	0	0
1	1	1

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в першому і четвертому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 2. Обрати правильні висловлення:
- А) Якщо множина необмежена, у неї обов'язково не існують точна верхня і точна нижня межі
- Б) Якщо множина обмежена, у неї існує точна верхня і точна нижня межі
- В) Якщо множина обмежена, у неї обов'язково існують верхня і нижня межі, але точна верхня, точна нижня межі можуть не існувати
- Г) Якщо множина необмежена, вона необмежена як знизу, так і зверху.

3. Побудувати логічну формулу, яка відповідає складному висловленню: «Якщо я буду жити в гуртожитку і отримаю стипендію в наступному семестрі, то влітку зможу на накопичені гроші або купити новий телефон, або зробити подарунок мамі на день народження». А) $A \& B \to (C \oplus B)$ Б) $A \& B \to (C \lor B)$ В) $A \& B \to C \lor B$ Г) $(A \& B) \to (C \oplus B)$
4. Навести змістовний приклад бінарного відношення, яке ε симетричним і не ε антирефлексивним
5. Відомо, що $A \subset B$ і $a \in A \cap B$. Які з наступних тверджень вірні? А) $a \in B$ Б) $a \notin A$ В) $a \notin B \setminus A$ Г) $a \in B \setminus A$
Практика 1. (3 б.) Бінарне відношення задане на множині $A = \{a,b,c\}$ наступним чином: $\rho = \{ < a,b>, < a,c>, < b,a> \}.$
Це бінарне відношення є: А) рефлексивним Б) симетричним В) антирефлексивним Г) антисиметричним Д) не є ні симетричним, ні антисиметричним Е) не є ні рефлексивним, ні антирефлексивним
2. (4 б.) Спростити вираз теорії множин : $(A \setminus B) \cap (A \setminus C)$ А) $A \cap \overline{B \cup C}$ Б) $A \cup \overline{B \cap C}$ В) $A \setminus (B \cap C)$ Г) $A \setminus (B \cup C)$
3. (3.б.) Множина $A = \{1, 2, 3, 4\}$. Скільки строгих підмножин має пя множина

- A) 4
- Б) 2
- B) 16
- Γ) 15
- Д) 7

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Яка логічна операція в цій формулі буде виконуватися останньою $A \& B \to \overline{A} \leftrightarrow A \lor B$?
- А) заперечення
- Б) кон'юнкція
- В) диз'юнкція
- Г) еквівалентність
- Д) імплікація

- 2. Навести змістовний приклад бінарного відношення, яке не ϵ рефлексивним і не ϵ симетричним
- 3. Що означає, що множина В обмежена?

A)
$$\exists M = const, M \ge 0$$
, $uo \forall b \in B: |b| \le M$

Б)
$$\exists M = const$$
, що $\forall b \in B$: $M \leq b$

B)
$$\exists M = const$$
, $uo \forall b \in B : M \ge b$

$$\Gamma$$
) $\exists M = const, M \ge 0$, $uqo \forall b \in B: |b| < M$

Д)
$$\exists M = const, M \ge 0$$
, що $\forall b \in B$: $|b| \ge M$

E)
$$\exists M = const, M \ge 0$$
, $uo \forall b \in B$: $|b| > M$

- 4. Множина $X = \{a, b, c, d, e\}$. Вибрати правильні висловлення:
- A) $\{a,b,c,d\} \not\subset X$

Б)
$$\{a\} \in X$$

B)
$$\{a,b,e\}\subseteq X$$

$$\Gamma$$
) $X \in X$

5. Для логічної формули $A \& \overline{B} \leftrightarrow A$ була побудована таблиця істинності:

A	В	A∧Ē⊶A
0	0	1
0	1	0
1	0	1
1	1	0

В яких рядках таблиці зроблено помилку?

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках

Практика

- 1. Нехай множина $A = \{-4,5,0,-3,6\}, B = \{-4,5,0,-3,6,8\}.$ Побудувати симетричну різницю A + B.
- A) $\{-4,5,0,-3,6\}$
- Б) {-4,5,0,-3,6,8}
- B) {8}
- $\Gamma) \varnothing$
- Д) {-4,5,0}
- 2. (4 б.) Спростити вираз теорії множин : $(A \cap C) \cup (B \cap C) \cup (A \cap D) \cup (B \cap D)$
- A) $A \cap B \cap C \cup D$
- Б) $(A \cup B) \cap (C \cup D)$
- B) $(A \cap B) \cap (C \cup D)$
- $\Gamma) (A \cap B) \cup (C \cap D)$
- Д) порожня множина

3. (3 б.) Матриця бінарного відношення, визначеного на множині потужності 5, має наступний вигляд:

$$\begin{pmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \end{pmatrix}.$$

По матриці визначити властивості бінарного відношення.

- А) рефлексивне
- Б) антирефлексивне
- Г) симетричне
- Д) антисиметричне
- E) не ϵ ні рефлексивним, ні антирефлексивним
- Ж) не ε ні симетричним, ні антисиметричним
- 3) матриця не може бути матрицею бінарного відношення, визначеного на множині потужності 5

Білет 46

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Що означає, що множина B не обмежена знизу?
- A) $\exists M = const$, $uo \forall b \in B$: M < b
- **b**) $\exists M = const, \quad uo \quad \forall b \in B: \quad M \leq b$
- B) $\exists M = const$, $uo \forall b \in B$: $M \ge b$
- Γ) $\exists M = const$, $ugo \forall b \in B : M > b$
- Д) Для $\forall M = const \exists b \in B: M \leq b$
- E) Для $\forall M = const \exists b \in B: M \ge b$
- 2. Вибрати правильні висловлення:
- А) Якщо множина обмежена, то вона скінченна;
- Б) Якщо множина нескінченна, то воно не може бути обмеженою
- В) Якщо множина необмежена, то воно нескінченна
- Г) Множина обмежена тоді і тільки тоді, коли вона скінченна
- 3. Для логічної формули $A \to \overline{B} \leftrightarrow A$ була побудована таблиця істинності:

А	В	A→Ē↔A
0	0	1
0	1	0
1	0	1
1	1	0

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках

- 4. Множини X і Y такі, що їх об'єднання дорівнює універсальній множині, при цьому ці множини не перетинаються, тоді:
- А) одна з множин є порожньою множиною;
- Б) одна з множин є доповненням другої до універсальної множини
- B) одна з множин ϵ універсальною множиною
- Γ) $X \mid Y = \emptyset$
- 5. Навести змістовний приклад бінарного відношення, яке ϵ антисиметричним і не транзитивним

- 1. (3 б.) Для множини $A = \{1, b, \emptyset\}$ знайти кількість підмножин.
- A) 1
- Б) 2
- B) 3
- Γ) 4
- Д) 7
- E) 8
- 2. (4 б.) Спростити вираз теорії множин : $(A \ B) \cap (A \ C)$
- A) $A \cap \overline{B \cup C}$
- Б) $A \cup \overline{B \cap C}$
- B) $A \setminus (B \cap C)$
- Γ) $A \setminus (B \cup C)$
- 3. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ \langle a, b \rangle, \langle a, c \rangle, \langle b, a \rangle, \langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle \}.$$

Це бінарне відношення ϵ :

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- Π) не ε ні симетричним, ні антисиметричним
- E) не ϵ ні рефлексивним, ні антирефлексивним

Білет 47

Теорія (5 запитань. Кожне питання – 2 бали)

1. Для логічної формули $\overline{A o B} \longleftrightarrow A$ була побудована таблиця істинності:

А	В	Ā→B ↔A
0	0	1
0	1	0
1	0	1
1	1	0

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках

2. Множина А обмежена зверху.	Тоді
А) вона може не мати верхньої м	ежі

- Б) вона може не мати точної верхньої межі
- В) вона обмежена
- Г) вона може не мати точної нижньої межі
- Д) вона має єдину верхню межу
- Е) вона має нескінченно багато верхніх меж.
- 3. Навести змістовний приклад бінарного відношення, яке не ϵ антисиметричним, ϵ транзитивним
- 4. Яка логічна операція в формулі $A \& B \to \overline{\overline{A} \leftrightarrow \overline{A \vee B}}$ буде виконуватися останньою?
- А) заперечення
- Б) кон'юнкція
- В) диз'юнкція
- Г) еквівалентність
- Д) імплікація
- 5. Відомо, що $A \subset B$ і $a \in B$. Які з наступних тверджень вірні?
- A) $a \in A \cap B$
- Б) a ∉ A
- B) $A \in B$
- Γ) $a \in B \setminus A$ and $a \in A$

- 1. (4 б.) Спростити вираз теорії множин : $A \setminus (A \setminus B)$
- A) $A \cup B$
- **Б)** *A* \ *B*
- B) $A \cap B$
- Γ) $A \cap \overline{B}$
- 2. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ \langle a, b \rangle, \langle b, a \rangle, \langle a, a \rangle, \langle b, b \rangle \}.$$

- Це бінарне відношення ϵ :
- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- Д) не ε ні симетричним, ні антисиметричним
- E) не ϵ ні рефлексивним, ні антирефлексивним
- 3. Побудувати симетричну різницю множин A+B, якщо $A=\{a,b,c\},\ A=\{c,d,f,h\}$
- A) $\{a, b, d, c, f, h\}$
- Б) {*c*}
- B) $\{a, b, d, f, h\}$
- Γ) $\{d, f, h\}$
- Д) $\{a,b\}$

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Які з наступних тверджень вірні?
- A) $\{\emptyset\}\subset\{a,b\}$
- Б) $\{b\} \subseteq \{a,b\}$
- B) $\{b\} \in \{a, \{b\}\}\$
- Γ) $b \subset \{a, \{b\}\}$
- 2. Для логічної формули $A \to \overline{B \leftrightarrow A}$ була побудована таблиця істинності:

A	В	A→Ā
0	0	1
0	1	0
1	0	1
1	1	0

В яких рядках таблиці зроблено помилку?

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 3. Нехай A, B нескінченні множини. Якою буде множина $A \setminus B$?
- А) нескінченною
- Б) скінченною
- В) може бути як скінченною, так і нескінченною
- Г) необмеженою
- 4. Навести змістовний приклад бінарного відношення, яке не ϵ симетричним, ϵ транзитивним
- 5. Що означає, що множина B не обмежена зверху?
- A) $\exists M = const$, $uo \forall b \in B$: $M \leq b$
- Б) $\exists M = const$, що $\forall b \in B$: M < b
- B) $\exists M = const$, $uo \forall b \in B$: $M \ge b$
- Γ) $\exists M = const$, $uo \forall b \in B : M > b$
- Д) Для $\forall M = const \exists b \in B : M \leq b$
- E) Для $\forall M = const \exists b \in B : M \ge b$

Практика

- 1. (3 б.) У якому випадку для множин A і B має місце рівність: $A + B = A \cup B$?
- А) якщо множини A і B не перетинаються
- Б) якщо $A \subset B$
- B) якщо $B \subseteq A$
- Γ) якщо множини A і B перетинаються
- 2. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ \langle a, b \rangle, \langle b, a \rangle \}.$$

Це бінарне відношення ϵ :

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- Д) не ϵ ні симетричним, ні антисиметричним
- E) не ε ні рефлексивним, ні антирефлексивним
- 3. (4 б.) Спростити вираз теорії множин : $A \setminus (B \setminus A)$
- A) $A \cup B$
- Б) *A* \ *B*
- B) $A \cup (A \cap \overline{B})$
- Γ) $A \cap \overline{B}$

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Навести змістовний приклад бінарного відношення, яке не ε симетричним і не ε антисиметричним
- 2. Яка логічна операція буде виконуватися останньою в формулі $A \& B \to (\overline{A} \leftrightarrow A) \& \overline{A \lor B}$?
- А) заперечення
- Б) кон'юнкція
- В) диз'юнкція
- Г) еквівалентність
- Д) імплікація
- 3. Множина $X = \{1,2,\emptyset,e,N\}$, де N- множина цілих чисел. Вибрати правильні висловлення відносно множини:
- А) потужність множини X дорівнює нескінченності
- Б) X має 32 підмножини
- В) X має нескінченну кількість підмножин
- Γ) X має скінченну кількість підмножин
- 4. Для логічної формули $A \to \overline{B \ \& \ A}$ була побудована таблиця істинності:

А	В	$A \rightarrow \overline{B \wedge A}$
0	0	0
0	1	1
1	0	1
1	1	0

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Γ) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 5. Що означає, що множина B необмежена зверху?
- A) $\exists M = const$, $uo \forall b \in B$: $M \leq b$

- Б) $\exists M = const$, що $\forall b \in B$: M < b
- B) $\exists M = const. \quad uo \quad \forall b \in B: \quad M \ge b$
- Γ) $\exists M = const$, $u_io \forall b \in B$: M > b
- Д) Для $\forall M = const \exists b \in B : M < b$
- E) Для $\forall M = const \exists b \in B : M \ge b$

- 1. (3 б.) Серед наведених бінарних відношень знайти відношення еквівалентності:
- A) на множині цілих чисел Z: $a \rho b$, якщо a < b
- Б) на множині натуральних чисел N: $a \rho b$, якщо $a \ge b$
- В) на множині людей: $a \rho b$, якщо a ненавидить b
- Γ) на множині працівників одного заводу: $a \circ b$, якщо a підлеглий b
- Д) на множині яблук на прилавку одного магазину: $a \rho b$, якщо a має такий самий колір, що і b
- 2. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ \langle a, b \rangle, \langle a, a \rangle, \langle c, c \rangle \}.$$

- Це бінарне відношення ϵ :
- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- Д) не ε ні симетричним, ні антисиметричним
- E) не ϵ ні рефлексивним, ні антирефлексивним
- 3. (4 б.) Спростити вираз теорії множин : $(A \setminus C) \setminus (B \setminus C)$
- A) $A \cap B \cap \overline{C}$
- Б) $A \cap \overline{B} \cap \overline{C}$
- B) $A \cup \overline{B} \cup \overline{C}$
- Γ) $A \cup (\overline{B} \cap \overline{C})$

Білет 50

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Відомо, що $A\subseteq B$ і $a\in A$. Які з наступних тверджень вірні?
- A) $a \in A \cap B$
- Б) $a \subset A$
- B) $A \in B$
- Γ) $a \notin B \cap A$
- 2. Навести змістовний приклад бінарного відношення, яке не ε рефлексивним і не ε антирефлексивним
- 3. Для логічної формули $\overline{A \to B \& A}$ була побудована таблиця істинності:

A	В	$\overline{A - B \wedge A}$
0	0	0
0	1	0
1	0	1
1	1	0

В яких рядках таблиці зроблено помилку?			
А) В першому			
Б) в другому і третьому В) в третьому і четвертому			
Г) в другому			
Д) помилки немає в жодному рядку			
Е) помилки в усіх рядках			
4. Нехай A - обмежена, а B – необмежена множина. Якою буде множина $A \cup B$?			
А) необмеженою			
Б) обмеженою			
В) може бути як обмеженою, так і необмеженою			
Г) може буги скінченною			
5. Яка логічна операція буде в формулі $\overline{A \& (B \to \overline{A})} \leftrightarrow \overline{A \lor B}$ виконуватися останньою?			
А) заперечення			
Б) кон'юнкція			
В) диз'юнкція Г) еквівалентність			
Д) імплікація			
A) minimage			
Практика			
1. (3 б.) Серед наведених бінарних відношень знайти відношення строгого порядку: А) на множині цілих чисел Z : $a \rho b$, якщо $a \leq b$			
Б) на множині натуральних чисел N: $a \rho b$, якщо $a \ge b$			
В) на множині людей: $a\rho b$, якщо a знає b			
Г) на множині працівників одного заводу: $a\rho b$, якщо a працює в одному кабінеті з b			
\Box) на множині яблук на прилавку одного магазину: $a \rho b$, якщо a солодше за b			
ду на вножни жогук на примажу одного магазиту. иро, жидо и облодие за о			
2. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:			
$\rho = \{ \langle a, b \rangle, \langle b, a \rangle, \langle a, c \rangle, \langle c, a \rangle, \langle a, a \rangle, \langle c, c \rangle \}.$			
Це бінарне відношення ϵ :			
А) рефлексивним			
Б) симетричним			

- В) антирефлексивним
- Г) антисиметричним
- Λ) не ϵ ні симетричним, ні антисиметричним
- E) не ε ні рефлексивним, ні антирефлексивним
- 3. (4 б.) Спростити вираз теорії множин : $(A \cup C) \cap (B \cup C) \cap (A \cup D) \cap (B \cup D)$
- A) $A \cap B \cap C \cup D$
- $\mathsf{B})\ (A\cup B)\cap (C\cup D)$
- B) $(A \cap B) \cap (C \cup D)$
- Γ) $(A \cap B) \cup (C \cap D)$
- Д) порожня множина

Теорія (5 запитань. Кожне питання – 2 бали)

1. Для логічної формули $A \to \overline{A} \to B$ була побудована таблиця істинності:

А	В	A→Ā→B
0	0	0
0	1	1
1	0	0
1	1	1

В яких рядках таблиці зроблено помилку?

- А) В першому
- Б) в другому
- В) в третьому
- Г) в останньому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 2. Нехай A, B необмежені множини. Якою буде множина $A \cup B$?
- А) необмеженою
- Б) обмеженою
- В) може бути як обмеженою, так і необмеженою
- Г) може бути скінченною
- 3. Скільки елементів в множині $A = \{\{1, \{1\}\}, Z, \{1, \{2,3\}\}, \varnothing\},$ де Z множина цілих чисел?
- A) 5
- Б) 0
- B) 4
- Г) нескінченно багато
- 4. Обрати вірні твердження:
- А) Скінченна множина може бути необмеженою
- Б) Нескінченна множина може бути обмеженою
- В) Скінченна множина може бути як обмеженою, так і необмеженою
- Г) нескінченна множина не може бути обмеженою
- 5. Навести змістовний приклад бінарного відношення, яке ϵ транзитивним і не ϵ рефлексивним

Практика

- 1. (2 б.) Скільки підмножин має множина $A = \{\emptyset\}$.
- А) жодної
- Б) 1
- B) 2
- Γ) 3
- 2. (4 б.) Спростити вираз теорії множин : $(A \cap B) \setminus (A \cap C)$
- A) $(A \cap B) \setminus C$
- A ∩ B ∩ \overline{C}
- B) $(A \cup B) \setminus C$
- Γ) $(A \cap B) \setminus \overline{C}$
- 3. (3 б.) Матриця бінарного відношення, визначеного на множині потужності 5, має наступний вигляд:

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{pmatrix}.$$

По матриці визначити властивості бінарного відношення.

- А) рефлексивне
- Б) антирефлексивне
- Г) симетричне
- Д) антисиметричне
- E) не ϵ ні рефлексивним, ні антирефлексивним
- Ж) не ε ні симетричним, ні антисиметричним
- 3) матриця не може бути матрицею бінарного відношення, визначеного на множині потужності 5

Білет 52

Теорія (5 запитань. Кожне питання – 2 бали)

1. Для логічної формули $\overline{A \to B} \leftrightarrow A$ була побудована таблиця істинності:

A	В	Ā→B ↔A
0	0	1
0	1	0
1	0	1
1	1	0

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 2. Множина А обмежена зверху. Тоді
- А) вона може не мати верхньої межі
- Б) вона може не мати точної верхньої межі
- В) вона обмежена
- Г) вона може не мати точної нижньої межі
- Д) вона має єдину верхню межу
- Е) вона має нескінченно багато верхніх меж.
- 3. Навести змістовний приклад бінарного відношення, яке не ϵ антисиметричним, ϵ транзитивним
- 4. Яка логічна операція в формулі $A \& B \to \overline{\overline{A} \leftrightarrow \overline{A \vee B}}$ буде виконуватися останньою?
- А) заперечення
- Б) кон'юнкція
- В) диз'юнкція
- Г) еквівалентність
- Д) імплікація
- 5. Відомо, що $A \subset B$ і $a \in B$. Які з наступних тверджень вірні?

- A) $a \in A \cap B$
- **Б**) *a* ∉ *A*
- B) $A \in B$
- Γ) $a \in B \setminus A$ aδο $a \in A$

- 1. (4 б.) Спростити вираз теорії множин : $A \setminus (A \setminus B)$
- A) $A \cup B$
- Б) *A* \ *B*
- B) $A \cap B$
- Γ) $A \cap \overline{B}$
- 2. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ \langle a, b \rangle, \langle b, a \rangle, \langle a, a \rangle, \langle b, b \rangle \}.$$

Це бінарне відношення є:

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- Д) не ε ні симетричним, ні антисиметричним
- E) не ϵ ні рефлексивним, ні антирефлексивним
- 3. Побудувати симетричну різницю множин A + B, якщо $A = \{a,b,c\}$, $A = \{c,d,f,h\}$
- A) $\{a, b, d, c, f, h\}$
- Б) {*c*}
- B) $\{a,b,d,f,h\}$
- Γ) $\{d, f, h\}$
- Д) $\{a,b\}$

Білет 53

- 1. Що означає, що множина B не обмежена знизу?
- A) $\exists M = const$, $uo \forall b \in B$: M < b
- B) $\exists M = const$, $uo \forall b \in B$: $M \leq b$
- B) $\exists M = const$, $uo \forall b \in B$: $M \ge b$
- Γ) $\exists M = const$, $u_io \forall b \in B: M > b$
- \square) Для $\forall M = const \exists b \in B : M \leq b$
- E) $A = const \exists b \in B : M \ge b$
- 2. Вибрати правильні висловлення:
- А) Якщо множина обмежена, то вона скінченна;
- Б) Якщо множина нескінченна, то воно не може бути обмеженою
- В) Якщо множина необмежена, то воно нескінченна
- Г) Множина обмежена тоді і тільки тоді, коли вона скінченна
- 3. Для логічної формули $A \to \overline{B} \longleftrightarrow A$ була побудована таблиця істинності:

A	В	A→B↔A
0	0	1
0	1	0
1	0	1
1	1	0

В яких рядках таблиці зроблено помилку?

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 4. Множини X і Y такі, що їх об'єднання дорівнює універсальній множині, при цьому ці множини не перетинаються, тоді:
- А) одна з множин є порожньою множиною;
- Б) одна з множин ϵ доповненням другої до універсальної множини
- B) одна з множин ϵ універсальною множиною
- Γ) $X \setminus Y = \emptyset$
- 5. Навести змістовний приклад бінарного відношення, яке є антисиметричним і не транзитивним

Практика

- 1. (3 б.) Для множини $A = \{1, b, \emptyset\}$ знайти кількість підмножин.
- A) 1
- Б) 2
- B) 3
- Γ) 4
- Д) 7
- E) 8
- 2. (4 б.) Спростити вираз теорії множин : $(A \ B) \cap (A \ C)$
- A) $A \cap \overline{B \cup C}$
- Б) $A \cup \overline{B \cap C}$
- B) $A \setminus (B \cap C)$
- $\Gamma)\ A \backslash \big(B \bigcup C\big)$
- 3. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ \langle a, b \rangle, \langle a, c \rangle, \langle b, a \rangle, \langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle \}.$$

Це бінарне відношення є:

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- E) не ϵ ні рефлексивним, ні антирефлексивним

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Відомо, що $A \subset B$ і $a \in A$. Які з наступних тверджень вірні?
- A) $a \in A \cap B$
- Б) $a \subset A$
- B) $A \in B$
- Γ) $a \notin B \cap A$
- 2. Навести змістовний приклад бінарного відношення, яке не ε рефлексивним і не ε антирефлексивним
- 3. Для логічної формули $\overline{A \to B \& A}$ була побудована таблиця істинності:

A	В	$\overline{A - B \wedge A}$
0	0	0
0	1	0
1	0	1
1	1	0

В яких рядках таблиці зроблено помилку?

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 4. Нехай A обмежена, а B необмежена множина. Якою буде множина $A \bigcup B$?
- А) необмеженою
- Б) обмеженою
- В) може бути як обмеженою, так і необмеженою
- Г) може бути скінченною
- 5. Яка логічна операція буде в формулі $\overline{A \& (B \to \overline{A}) \longleftrightarrow \overline{A \lor B}}$ виконуватися останньою?
- А) заперечення
- Б) кон'юнкція
- В) диз'юнкція
- Г) еквівалентність
- Д) імплікація

Практика

- 1. (3 б.) Серед наведених бінарних відношень знайти відношення строгого порядку:
- А) на множині цілих чисел Z: $a \rho b$, якщо $a \leq b$
- Б) на множині натуральних чисел N: $a \rho b$, якщо $a \ge b$
- В) на множині людей: $a \rho b$, якщо a знає b
- Γ) на множині працівників одного заводу: $a \circ b$, якщо a працює в одному кабінеті з b
- Д) на множині яблук на прилавку одного магазину: $a \rho b$, якщо a солодше за b
- 2. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ \langle a, b \rangle, \langle b, a \rangle, \langle a, c \rangle, \langle c, a \rangle, \langle a, a \rangle, \langle c, c \rangle \}.$$

Це бінарне відношення ϵ :

А) рефлексивним

- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- \Box) не ε ні симетричним, ні антисиметричним
- E) не ϵ ні рефлексивним, ні антирефлексивним
- 3. (4 б.) Спростити вираз теорії множин : $(A \cup C) \cap (B \cup C) \cap (A \cup D) \cap (B \cup D)$
- A) $A \cap B \cap C \cup D$
- Б) $(A \cup B) \cap (C \cup D)$
- B) $(A \cap B) \cap (C \cup D)$
- Γ) $(A \cap B) \cup (C \cap D)$
- Д) порожня множина

Білет 55

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Які з наступних тверджень вірні?
- A) $\{\emptyset\}\subset\{a,b\}$
- Б) $\{b\} \subseteq \{a,b\}$
- B) $\{b\} \in \{a, \{b\}\}\$
- Γ) $b \subset \{a, \{b\}\}$
- 2. Для логічної формули $A \to \overline{B \leftrightarrow A}$ була побудована таблиця істинності:

A	В	A→B↔A
0	0	1
0	1	0
1	0	1
1	1	0

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 3. Нехай A, B нескінченні множини. Якою буде множина $A \mid B$?
- А) нескінченною
- Б) скінченною
- В) може бути як скінченною, так і нескінченною
- Г) необмеженою
- 4. Навести змістовний приклад бінарного відношення, яке не ϵ симетричним, ϵ транзитивним
- 5. Що означає, що множина B не обмежена зверху?
- A) $\exists M = const$, $u_io \forall b \in B$: $M \leq b$
- Б) $\exists M = const$, що $\forall b \in B$: M < b
- B) $\exists M = const, \quad u_io \quad \forall b \in B: \quad M \ge b$

- Γ) $\exists M = const$, $uo \forall b \in B : M > b$
- Д) Для $\forall M = const \exists b \in B : M \leq b$
- E) Для $\forall M = const \exists b \in B : M \ge b$

- 1. (3 б.) У якому випадку для множин A і B має місце рівність: $A + B = A \cup B$?
- А) якщо множини A і B не перетинаються
- Б) якщо $A \subseteq B$
- B) якщо $B \subseteq A$
- Γ) якщо множини A і B перетинаються
- 2. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ \langle a, b \rangle, \langle b, a \rangle \}.$$

Це бінарне відношення ϵ :

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- Π) не ϵ ні симетричним, ні антисиметричним
- E) не ϵ ні рефлексивним, ні антирефлексивним
- 3. (4 б.) Спростити вираз теорії множин : $A \setminus (B \setminus A)$
- A) $A \cup B$
- **Б)** *А\В*
- B) $A \cup (A \cap \overline{B})$
- Γ) $A \cap \overline{B}$

Білет 56

- 1. Яка логічна операція в цій формулі буде виконуватися останньою $A \& B \to \overline{A} \leftrightarrow A \lor B$?
- А) заперечення
- Б) кон'юнкція
- В) диз'юнкція
- Г) еквівалентність
- Д) імплікація
- 2. Навести змістовний приклад бінарного відношення, яке не ϵ рефлексивним і не ϵ симетричним
- 3. Що означає, що множина B обмежена?
- A) $\exists M = const, M \ge 0$, $u_io \forall b \in B: |b| \le M$
- Б) $\exists M = const$, що $\forall b \in B$: $M \leq b$
- B) $\exists M = const, \quad uo \quad \forall b \in B: \quad M \ge b$
- Γ) $\exists M = const, M \ge 0$, $uo \forall b \in B: |b| < M$
- Д) $\exists M = const, M \ge 0$, що $\forall b \in B$: $|b| \ge M$
- E) $\exists M = const, M \ge 0$, $uo \forall b \in B: |b| > M$

4. Множина $X = \{a, b, c, d, e\}$. Вибрати правильні висловлення:

A)
$$\{a,b,c,d\} \not\subset X$$

Б)
$$\{a\} \in X$$

B)
$$\{a,b,e\}\subseteq X$$

$$\Gamma$$
) $X \in X$

5. Для логічної формули $A \& \overline{B} \leftrightarrow A$ була побудована таблиця істинності:

А	В	A∧Ē↔A
0	0	1
0	1	0
1	0	1
1	1	0

В яких рядках таблиці зроблено помилку?

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках

Практика

1. Нехай множина $A = \{-4,5,0,-3,6\}, B = \{-4,5,0,-3,6,8\}.$ Побудувати симетричну різницю A + B.

- B) {8}
- $\Gamma) \varnothing$
- Д) {-4,5,0}

2. (4 б.) Спростити вираз теорії множин : $(A \cap C) \cup (B \cap C) \cup (A \cap D) \cup (B \cap D)$

- A) $A \cap B \cap C \cup D$
- Б) $(A \cup B) \cap (C \cup D)$
- B) $(A \cap B) \cap (C \cup D)$
- Γ) $(A \cap B) \cup (C \cap D)$
- Д) порожня множина

3. (3 б.) Матриця бінарного відношення, визначеного на множині потужності 5, має наступний вигляд:

$$\begin{pmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \end{pmatrix}.$$

По матриці визначити властивості бінарного відношення.

- А) рефлексивне
- Б) антирефлексивне

- Г) симетричне
- Д) антисиметричне
- E) не ε ні рефлексивним, ні антирефлексивним
- Ж) не ϵ ні симетричним, ні антисиметричним
- 3) матриця не може бути матрицею бінарного відношення, визначеного на множині потужності 5

Білет 57

Теорія (5 запитань. Кожне питання – 2 бали)

1. Для логічної формули $A \vee \overline{B} \leftrightarrow A$ була побудована таблиця істинності:

A	В	$A \lor \overline{B} \leftrightarrow A$
0	0	0
0	1	0
1	0	0
1	1	1

В яких рядках таблиці зроблено помилку?

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в першому і четвертому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 2. Обрати правильні висловлення:
- А) Якщо множина необмежена, у неї обов'язково не існують точна верхня і точна нижня межі
- Б) Якщо множина обмежена, у неї існує точна верхня і точна нижня межі
- В) Якщо множина обмежена, у неї обов'язково існують верхня і нижня межі, але точна верхня, точна нижня межі можуть не існувати
- Г) Якщо множина необмежена, вона необмежена як знизу, так і зверху.
- 3. Побудувати логічну формулу, яка відповідає складному висловленню: «Якщо я буду жити в гуртожитку і отримаю стипендію в наступному семестрі, то влітку зможу на накопичені гроші або купити новий телефон, або зробити подарунок мамі на день народження».
- A) $A \& B \rightarrow (C \oplus B)$
- $B) A & B \rightarrow (C \vee B)$
- B) $A \& B \rightarrow C \lor B$
- Γ) $(A & B) \rightarrow (C \oplus B)$
- 4. Навести змістовний приклад бінарного відношення, яке ϵ симетричним і не ϵ антирефлексивним
- 5. Відомо, що $A \subset B$ і $a \in A \cap B$. Які з наступних тверджень вірні?
- A) $a \in B$
- Б) $a \notin A$
- B) $a \notin B \setminus A$
- Γ) $a \in B \setminus A$

Практика

1. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ \langle a, b \rangle, \langle a, c \rangle, \langle b, a \rangle \}.$$

Це бінарне відношення ϵ :

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- Д) не ε ні симетричним, ні антисиметричним
- E) не ϵ ні рефлексивним, ні антирефлексивним
- 2. (4 б.) Спростити вираз теорії множин : $(A \ B) \cap (A \ C)$
- A) $A \cap \overline{B \cup C}$
- Б) $A \cup \overline{B \cap C}$
- B) $A \setminus (B \cap C)$
- Γ) $A \setminus (B \cup C)$
- 3. (3 б.) Множина $A = \{1,2,3,4\}$. Скільки строгих підмножин має ця множина
- A) 4
- Б) 2
- B) 16
- Γ) 15
- Д) 7

Білет 58

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Навести змістовний приклад бінарного відношення, яке ε транзитивним і не ε антирефлексивним. Показати, що наведене бінарне відношення дійсно ε транзитивним і не ε антирефлексивним.
- 2. Для логічної формули $A \to \overline{A} \& B$ була побудована таблиця істинності:

А	В	A→Ā∧B
0	0	1
0	1	1
1	0	0
1	1	0

- А) В першому
- Б) в другому
- В) в першому і третьому
- Г) в останньому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 3. Що означає, що множина B необмежена знизу?
- A) $\exists M = const$, $u_io \forall b \in B$: $M \le b$
- Б) $\exists M = const$, що $\forall b \in B$: M < b
- B) $\exists M = const$, $uo \forall b \in B$: $M \ge b$
- Γ) $\exists M = const$, $uo \forall b \in B$: M > b

- Д) Для $\forall M = const \exists b \in B : M \leq b$
- E) Для $\forall M = const \exists b \in B: M > b$
- 4. Нехай A обмежена, а B необмежена множина. Якою буде множина $A \cap B$?
- А) нескінченною
- Б) скінченною
- В) може бути як скінченною, так і нескінченною
- Г) необмеженою
- 5. Серед тверджень знайти вірні:
- А) Для основних логічних операцій їх приорітет буде наступним: 1.кон'юнкція, 2. диз'юнкція, 3 всі інші
- Б) Для основних логічних операцій їх приорітет буде наступним: 1. інверсія, 2. кон'юнкція, 3. диз'юнкція, 4 всі інші
- В) Пріоритет логічних операцій визначається лише за допомогою дужок
- Γ) Для основних логічних операцій їх приорітет буде наступним: 1. інверсія, 2. диз'юнкція, 3. кон'юнкція, 4 всі інші

- 1. (3 б.) Множина $A = \{1, a, b, 7, \emptyset\}$. Скільки строгих підмножин має ця множина
- A) 5
- Б) 32
- B) 23
- Γ) 31
- **Д**) 7
- 2. (3 б.) Матриця бінарного відношення, визначеного на множині потужності 5, має наступний вигляд:

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{pmatrix}.$$

По матриці визначити властивості бінарного відношення.

- А) рефлексивне
- Б) антирефлексивне
- Г) симетричне
- Д) антисиметричне
- E) не ϵ ні рефлексивним, ні антирефлексивним
- Ж) не ε ні симетричним, ні антисиметричним
- 3) матриця не може бути матрицею бінарного відношення, визначеного на множині потужності 5
- 3. (4 б.) Спростити вираз теорії множин : $(A \cup C) \cap (B \cup C) \cap (A \cup D) \cap (B \cup D)$
- A) $A \cap B \cap C \cup D$
- $\mathsf{E}(A \cup B) \cap (C \cup D)$
- B) $(A \cap B) \cap (C \cup D)$
- Γ) $(A \cap B) \cup (C \cap D)$
- Д) порожня множина

Білет 59

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Число A називається інфімумом множини X, якщо:
- А) A верхня межа X і для $\forall \varepsilon > 0$ знайдеться такий елемент $x \in X$, що $x < A + \varepsilon$.
- Б) для $\forall \varepsilon > 0$ знайдеться такий елемент $x \in X$, що $x < A + \varepsilon$.
- В) A нижня межа X і для $\forall \varepsilon > 0$ знайдеться такий елемент $x \in X$, що $x < A + \varepsilon$.
- Γ) A це найменша з верхніх меж множини X
- Д) A нижня межа X і для $\forall \varepsilon$ знайдеться такий елемент $x \in X$, що $x < A + \varepsilon$.
- Е) A верхня межа X і для $\forall \varepsilon > 0$ знайдеться такий елемент $x \in X$, що $x > A \varepsilon$.
- 2. Для логічної формули $A \& B \to \overline{A}$ була побудована таблиця істинності:

A	В	$A \wedge B \rightarrow \overline{A}$
0	0	1
0	1	1
1	0	0
1	1	1

В яких рядках таблиці зроблено помилку?

- А) В першому
- Б) в другому
- В) в третьому і четвертому
- Г) в першому і четвертому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 3. Навести змістовний приклад бінарного відношення, яке не ε симетричним і не ε антирефлексивним
- 4. Вибрати правильні висловлення:
- A) Якщо $a \in X$ і $a \in Y$, то $X \subseteq Y$ або $Y \subseteq X$
- Б) Якщо $a \in X$ і $a \in Y$, то $X \cap Y \neq \emptyset$
- В) Якщо $a \in X$ і $a \in Y$, то $a \in X \cap Y$
- Γ) Якщо $X \cap Y \neq \emptyset$, то $X \subseteq Y$ або $Y \subseteq X$
- Д) Якщо $X \subseteq Y$ або $Y \subseteq X$, то X = Y
- 5. Нехай A обмежена, а B необмежена множина. Якою буде множина $A \cap B$?
- А) нескінченною
- Б) скінченною
- В) може бути як скінченною, так і нескінченною
- Г) необмеженою

Практика

1. (3 б.) Матриця бінарного відношення, визначеного на множині потужності 5, має наступний виглял:

$$\begin{pmatrix}
1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 1
\end{pmatrix}.$$

По матриці визначити властивості бінарного відношення.

- А) рефлексивне
- Б) антирефлексивне
- Г) симетричне
- Д) антисиметричне
- E) не ϵ ні рефлексивним, ні антирефлексивним
- Ж) не ε ні симетричним, ні антисиметричним
- 3) матриця не може бути матрицею бінарного відношення, визначеного на множині потужності 5
- 2. (3 б.) Бінарне відношення задане на множині $A = \{a,b,c\}$ наступним чином:

$$\rho = \{ \langle a, a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle b, a \rangle \}.$$

Це бінарне відношення ϵ :

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- Д) не ε ні симетричним, ні антисиметричним
- Е) не є ні рефлексивним, ні антирефлексивним
- 3. (4 б.) Спростити вираз теорії множин : $(A \ B) \cup (A \ C)$
- A) $A \cap \overline{B \cap C}$
- Б) $A \cup \overline{B \cap C}$
- B) $A \setminus (B \cap C)$
- Γ) $A \setminus (B \cup C)$

Білет 60

- 1. Навести змістовний приклад бінарного відношення, яке не ε симетричним і не ε антисиметричним
- 2. Яка логічна операція буде виконуватися останньою в формулі $A \& B \to (\overline{A} \leftrightarrow A) \& \overline{A \lor B}$?
- А) заперечення
- Б) кон'юнкція
- В) диз'юнкція
- Г) еквівалентність
- Д) імплікація
- 3. Множина $X = \{1,2,\emptyset,e,N\}$, де N- множина цілих чисел. Вибрати правильні висловлення відносно множини:
- А) потужність множини X дорівнює нескінченності
- Б) X має 32 підмножини
- В) X має нескінченну кількість підмножин
- Γ) X має скінченну кількість підмножин
- 4. Для логічної формули $A \to \overline{B \& A}$ була побудована таблиця істинності:

A	В	$A - \overline{B \wedge A}$
0	0	0
0	1	1
1	0	1
1	1	0

В яких рядках таблиці зроблено помилку?

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Γ) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 5. Що означає, що множина B необмежена зверху?
- A) $\exists M = const$, $uo \forall b \in B$: $M \leq b$
- Б) $\exists M = const$, що $\forall b \in B$: M < b
- B) $\exists M = const$, $uo \forall b \in B$: $M \ge b$
- Γ) $\exists M = const$, $uo \forall b \in B$: M > b
- Д) Для $\forall M = const \exists b \in B : M < b$
- E) Для $\forall M = const \exists b \in B : M \ge b$

Практика

- 1. (3 б.) Серед наведених бінарних відношень знайти відношення еквівалентності:
- А) на множині цілих чисел Z: $a \rho b$, якщо a < b
- Б) на множині натуральних чисел N: $a \rho b$, якщо $a \ge b$
- В) на множині людей: $a \rho b$, якщо a ненавидить b
- Γ) на множині працівників одного заводу: $a \rho b$, якщо a підлеглий b
- Д) на множині яблук на прилавку одного магазину: $a \circ b$, якщо a має такий самий колір, що і b
- 2. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ \langle a, b \rangle, \langle a, a \rangle, \langle c, c \rangle \}.$$

Це бінарне відношення ϵ :

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- Д) не ϵ ні симетричним, ні антисиметричним
- E) не ϵ ні рефлексивним, ні антирефлексивним
- 3. (4 б.) Спростити вираз теорії множин : (A | C) | (B | C)
- A) $A \cap B \cap \overline{C}$
- Б) $A \cap \overline{B} \cap \overline{C}$
- B) $A \cup \overline{B} \cup \overline{C}$
- Γ) $A \cup (\overline{B} \cap \overline{C})$

Теорія (5 запитань. Кожне питання – 2 бали)

1. Для логічної формули $A \vee \overline{B} \leftrightarrow A$ була побудована таблиця істинності:

A	В	A∨B ↔A
0	0	0
0	1	0
1	0	0
1	1	1

В яких рядках таблиці зроблено помилку?

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в першому і четвертому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 2. Обрати правильні висловлення:
- А) Якщо множина необмежена, у неї обов'язково не існують точна верхня і точна нижня межі
- Б) Якщо множина обмежена, у неї існує точна верхня і точна нижня межі
- В) Якщо множина обмежена, у неї обов'язково існують верхня і нижня межі, але точна верхня, точна нижня межі можуть не існувати
- Г) Якщо множина необмежена, вона необмежена як знизу, так і зверху.
- 3. Побудувати логічну формулу, яка відповідає складному висловленню: «Якщо я буду жити в гуртожитку і отримаю стипендію в наступному семестрі, то влітку зможу на накопичені гроші або купити новий телефон, або зробити подарунок мамі на день народження».
- A) $A \& B \rightarrow (C \oplus B)$
- $B) A & B \rightarrow (C \vee B)$
- B) $A \& B \rightarrow C \lor B$
- Γ) $(A & B) \rightarrow (C \oplus B)$
- 4. Навести змістовний приклад бінарного відношення, яке є симетричним і не є антирефлексивним
- 5. Відомо, що $A \subset B$ і $a \in A \cap B$. Які з наступних тверджень вірні?
- A) $a \in B$
- Б) $a \notin A$
- B) $a \notin B \setminus A$
- Γ) $a \in B \setminus A$

Практика

1. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \left\{ < a, b >, < a, c >, < b, a > \right\}.$$

Це бінарне відношення ϵ :

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- Д) не ϵ ні симетричним, ні антисиметричним
- E) не ϵ ні рефлексивним, ні антирефлексивним

- 2. (4 б.) Спростити вираз теорії множин : $(A \ B) \cap (A \ C)$
- A) $A \cap \overline{B \cup C}$
- Б) $A \cup \overline{B \cap C}$
- B) $A \setminus (B \cap C)$
- Γ) $A \setminus (B \cup C)$
- 3. (3 б.) Множина $A = \{1,2,3,4\}$. Скільки строгих підмножин має ця множина
- A) 4
- Б) 2
- B) 16
- Γ) 15
- Д) 7

Білет 62

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Навести змістовний приклад бінарного відношення, яке ε транзитивним і не ε антирефлексивним. Показати, що наведене бінарне відношення дійсно ε транзитивним і не ε антирефлексивним.
- 2. Для логічної формули $A \to \overline{A} \& B$ була побудована таблиця істинності:

А	В	A→Ā∧B
0	0	1
0	1	1
1	0	0
1	1	0

- А) В першому
- Б) в другому
- В) в першому і третьому
- Г) в останньому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 3. Що означає, що множина B необмежена знизу?
- A) $\exists M = const$, $uo \forall b \in B$: $M \leq b$
- Б) $\exists M = const$, wo $\forall b \in B$: M < b
- B) $\exists M = const, \quad uo \quad \forall b \in B: \quad M \ge b$
- Γ) $\exists M = const$, $uo \forall b \in B: M > b$
- Д) Для $\forall M = const \exists b \in B : M \leq b$
- E) Для $\forall M = const \exists b \in B : M > b$
- 4. Нехай A обмежена, а B необмежена множина. Якою буде множина $A \cap B$?
- А) нескінченною
- Б) скінченною
- В) може бути як скінченною, так і нескінченною
- Г) необмеженою

- 5. Серед тверджень знайти вірні:
- А) Для основних логічних операцій їх приорітет буде наступним: 1.кон'юнкція, 2. диз'юнкція, 3 всі інші
- Б) Для основних логічних операцій їх приорітет буде наступним: 1. інверсія, 2. кон'юнкція, 3. диз'юнкція, 4 всі інші
- В) Пріоритет логічних операцій визначається лише за допомогою дужок
- Γ) Для основних логічних операцій їх приорітет буде наступним: 1. інверсія, 2. диз'юнкція, 3. кон'юнкція, 4 всі інші

- 1. (3 б.) Множина $A = \{1, a, b, 7, \emptyset\}$. Скільки строгих підмножин має ця множина
- A) 5
- Б) 32
- B) 23
- Γ) 31
- Д) 7
- 2. (3 б.) Матриця бінарного відношення, визначеного на множині потужності 5, має наступний вигляд:

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{pmatrix}.$$

По матриці визначити властивості бінарного відношення.

- А) рефлексивне
- Б) антирефлексивне
- Г) симетричне
- Д) антисиметричне
- E) не ϵ ні рефлексивним, ні антирефлексивним
- Ж) не ε ні симетричним, ні антисиметричним
- 3) матриця не може бути матрицею бінарного відношення, визначеного на множині потужності 5
- 3. (4 б.) Спростити вираз теорії множин : $(A \cup C) \cap (B \cup C) \cap (A \cup D) \cap (B \cup D)$
- A) $A \cap B \cap C \cup D$
- $\mathsf{E}(A \cup B) \cap (C \cup D)$
- B) $(A \cap B) \cap (C \cup D)$
- Γ) $(A \cap B) \cup (C \cap D)$
- Д) порожня множина

Білет 63

- 1. Яка логічна операція в цій формулі буде виконуватися останньою $A \& B \to \overline{A} \leftrightarrow A \lor B$?
- А) заперечення
- Б) кон'юнкція
- В) диз'юнкція
- Г) еквівалентність
- Д) імплікація

- 2. Навести змістовний приклад бінарного відношення, яке не ϵ рефлексивним і не ϵ симетричним
- 3. Що означає, що множина В обмежена?

A)
$$\exists M = const, M \ge 0$$
, $uo \forall b \in B: |b| \le M$

Б)
$$\exists M = const$$
, що $\forall b \in B$: $M \leq b$

B)
$$\exists M = const, \quad uo \quad \forall b \in B: \quad M \ge b$$

$$\Gamma$$
) $\exists M = const, M \ge 0$, $uqo \forall b \in B: |b| < M$

Д)
$$\exists M = const, M \ge 0$$
, що $\forall b \in B$: $|b| \ge M$

E)
$$\exists M = const, M \ge 0$$
, $uo \forall b \in B$: $|b| > M$

- 4. Множина $X = \{a, b, c, d, e\}$. Вибрати правильні висловлення:
- A) $\{a,b,c,d\} \not\subset X$

Б)
$$\{a\} \in X$$

B)
$$\{a,b,e\}\subseteq X$$

$$\Gamma$$
) $X \in X$

5. Для логічної формули $A \& \overline{B} \leftrightarrow A$ була побудована таблиця істинності:

A	В	A∧B↔A
0	0	1
0	1	0
1	0	1
1	1	0

В яких рядках таблиці зроблено помилку?

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках

Практика

- 1. Нехай множина $A = \{-4,5,0,-3,6\}, B = \{-4,5,0,-3,6,8\}.$ Побудувати симетричну різницю A + B.
- A) $\{-4,5,0,-3,6\}$
- Б) {-4,5,0,-3,6,8}
- B) {8}
- $\Gamma) \varnothing$
- Д) {-4,5,0}
- 2. (4 б.) Спростити вираз теорії множин : $(A \cap C) \cup (B \cap C) \cup (A \cap D) \cup (B \cap D)$
- A) $A \cap B \cap C \cup D$
- $\stackrel{\frown}{\mathrm{B}}(A \cup B) \cap (C \cup D)$
- B) $(A \cap B) \cap (C \cup D)$
- $\Gamma) (A \cap B) \cup (C \cap D)$

Д) порожня множина

3. (3 б.) Матриця бінарного відношення, визначеного на множині потужності 5, має наступний вигляд:

$$\begin{pmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \end{pmatrix}.$$

По матриці визначити властивості бінарного відношення.

- А) рефлексивне
- Б) антирефлексивне
- Г) симетричне
- Д) антисиметричне
- E) не ε ні рефлексивним, ні антирефлексивним
- \mathbb{X}) не ε ні симетричним, ні антисиметричним
- 3) матриця не може бути матрицею бінарного відношення, визначеного на множині потужності 5

Білет 64

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Число A називається інфімумом множини X, якщо:
- А) A верхня межа X і для $\forall \varepsilon > 0$ знайдеться такий елемент $x \in X$, що $x < A + \varepsilon$.
- Б) для $\forall \varepsilon > 0$ знайдеться такий елемент $x \in X$, що $x < A + \varepsilon$.
- В) A нижня межа X і для $\forall \varepsilon > 0$ знайдеться такий елемент $x \in X$, що $x < A + \varepsilon$.
- Γ) A це найменша з верхніх меж множини X
- Д) A нижня межа X і для $\forall \varepsilon$ знайдеться такий елемент $x \in X$, що $x < A + \varepsilon$.
- Е) A верхня межа X і для $\forall \varepsilon > 0$ знайдеться такий елемент $x \in X$, що $x > A \varepsilon$.
- 2. Для логічної формули $A \& B \to \overline{A}$ була побудована таблиця істинності:

A	В	A∧B→Ā
0	0	1
0	1	1
1	0	0
1	1	1

- А) В першому
- Б) в другому
- В) в третьому і четвертому
- Г) в першому і четвертому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 3. Навести змістовний приклад бінарного відношення, яке не ε симетричним і не ε антирефлексивним
- 4. Вибрати правильні висловлення:
- A) Якщо $a \in X$ і $a \in Y$, то $X \subseteq Y$ або $Y \subseteq X$

- Б) Якщо $a \in X$ і $a \in Y$, то $X \cap Y \neq \emptyset$
- В) Якщо $a \in X$ і $a \in Y$, то $a \in X \cap Y$
- Γ) Якщо $X \cap Y \neq \emptyset$, то $X \subseteq Y$ або $Y \subseteq X$
- Д) Якщо $X \subseteq Y$ або $Y \subseteq X$, то X = Y
- 5. Нехай A обмежена, а B необмежена множина. Якою буде множина $A \cap B$?
- А) нескінченною
- Б) скінченною
- В) може бути як скінченною, так і нескінченною
- Г) необмеженою

1. (3 б.) Матриця бінарного відношення, визначеного на множині потужності 5, має наступний вигляд:

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{pmatrix}.$$

По матриці визначити властивості бінарного відношення.

- А) рефлексивне
- Б) антирефлексивне
- Г) симетричне
- Д) антисиметричне
- E) не ε ні рефлексивним, ні антирефлексивним
- Ж) не ε ні симетричним, ні антисиметричним
- 3) матриця не може бути матрицею бінарного відношення, визначеного на множині потужності 5
- 2. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ \langle a, a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle b, a \rangle \}.$$

Це бінарне відношення ϵ :

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- Д) не ε ні симетричним, ні антисиметричним
- E) не ϵ ні рефлексивним, ні антирефлексивним
- 3. (4 б.) Спростити вираз теорії множин : $(A \ B) \cup (A \ C)$
- A) $A \cap \overline{B \cap C}$
- Б) $A \cup \overline{B \cap C}$
- B) $A \setminus (B \cap C)$
- Γ) $A \setminus (B \cup C)$

Білет 65

Теорія (5 запитань. Кожне питання – 2 бали)

1. Для логічної формули $A \to B \leftrightarrow A$ була побудована таблиця істинності:

A	В	Ā→B ↔A
0	0	1
0	1	0
1	0	1
1	1	0

В яких рядках таблиці зроблено помилку?

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 2. Множина А обмежена зверху. Тоді
- А) вона може не мати верхньої межі
- Б) вона може не мати точної верхньої межі
- В) вона обмежена
- Г) вона може не мати точної нижньої межі
- Д) вона має єдину верхню межу
- Е) вона має нескінченно багато верхніх меж.
- 3. Навести змістовний приклад бінарного відношення, яке не ϵ антисиметричним, ϵ транзитивним
- 4. Яка логічна операція в формулі $A \& B \to \overline{\overline{A} \leftrightarrow \overline{A} \vee B}$ буде виконуватися останньою?
- А) заперечення
- Б) кон'юнкція
- В) диз'юнкція
- Г) еквівалентність
- Д) імплікація
- 5. Відомо, що $A \subset B$ і $a \in B$. Які з наступних тверджень вірні?
- A) $a \in A \cap B$
- Б) a ∉ A
- B) $A \in B$
- Γ) $a \in B \setminus A$ and $a \in A$

Практика

- 1. (4 б.) Спростити вираз теорії множин : $A \setminus (A \setminus B)$
- A) $A \cup B$
- Б) *A* \ *B*
- B) $A \cap B$
- Γ) $A \cap \overline{B}$
- 2. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ \langle a, b \rangle, \langle b, a \rangle, \langle a, a \rangle, \langle b, b \rangle \}.$$

Це бінарне відношення ϵ :

- А) рефлексивним
- Б) симетричним

- В) антирефлексивним
- Г) антисиметричним
- Д) не ε ні симетричним, ні антисиметричним
- E) не ε ні рефлексивним, ні антирефлексивним
- 3. Побудувати симетричну різницю множин A + B, якщо $A = \{a,b,c\}$, $A = \{c,d,f,h\}$
- A) $\{a,b,d,c,f,h\}$
- Б) {c}
- B) $\{a,b,d,f,h\}$
- Γ) $\{d, f, h\}$
- Д) $\{a,b\}$

Білет 66

- 1. Які з наступних тверджень вірні?
- A) $\{\emptyset\}\subset\{a,b\}$
- Б) $\{b\} \subseteq \{a,b\}$
- B) $\{b\} \in \{a, \{b\}\}\$
- Γ) $b \subset \{a, \{b\}\}$
- 2. Для логічної формули $A \to \overline{B \leftrightarrow A}$ була побудована таблиця істинності:

A	В	A→B↔A
0	0	1
0	1	0
1	0	1
1	1	0

- В яких рядках таблиці зроблено помилку?
- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 3. Нехай A, B нескінченні множини. Якою буде множина $A \mid B$?
- А) нескінченною
- Б) скінченною
- В) може бути як скінченною, так і нескінченною
- Г) необмеженою
- 4. Навести змістовний приклад бінарного відношення, яке не ϵ симетричним, ϵ транзитивним
- 5. Що означає, що множина B не обмежена зверху?
- A) $\exists M = const$, $uo \forall b \in B$: $M \leq b$
- Б) $\exists M = const$, що $\forall b \in B$: M < b
- B) $\exists M = const$, $uo \forall b \in B : M \ge b$
- Γ) $\exists M = const$, $uo \forall b \in B : M > b$

Д) Для $\forall M = const \exists b \in B : M \leq b$

E) Для $\forall M = const \exists b \in B : M \ge b$

Практика

1. (3 б.) У якому випадку для множин A і B має місце рівність: $A + B = A \cup B$?

А) якщо множини A і B не перетинаються

Б) якщо $A \subseteq B$

B) якщо $B \subseteq A$

 Γ) якщо множини A і B перетинаються

2. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ \langle a, b \rangle, \langle b, a \rangle \}.$$

Це бінарне відношення є:

А) рефлексивним

Б) симетричним

В) антирефлексивним

Г) антисиметричним

 $\vec{\Pi}$) не $\vec{\varepsilon}$ ні симетричним, ні антисиметричним

E) не ε ні рефлексивним, ні антирефлексивним

3. (4 б.) Спростити вираз теорії множин : $A \setminus (B \setminus A)$

A) $A \cup B$

Б) *A* \ *B*

B) $A \cup (A \cap \overline{B})$

 Γ) $A \cap \overline{B}$

Білет 67

Теорія (5 запитань. Кожне питання – 2 бали)

1. Для логічної формули $A \to \overline{A} \to B$ була побудована таблиця істинності:

А	В	A→Ā→B
0	0	0
0	1	1
1	0	0
1	1	1

В яких рядках таблиці зроблено помилку?

А) В першому

Б) в другому

В) в третьому

Г) в останньому

Д) помилки немає в жодному рядку

Е) помилки в усіх рядках

2. Нехай A, B — необмежені множини. Якою буде множина $A \cup B$?

А) необмеженою

Б) обмеженою

В) може бути як обмеженою, так і необмеженою

Г) може бути скінченною

- 3. Скільки елементів в множині $A = \{\{1, \{1\}\}, Z, \{1, \{2,3\}\}, \varnothing\},$ де Z множина цілих чисел?
- A) 5
- Б) 0
- B) 4
- Г) нескінченно багато
- 4. Обрати вірні твердження:
- А) Скінченна множина може бути необмеженою
- Б) Нескінченна множина може бути обмеженою
- В) Скінченна множина може бути як обмеженою, так і необмеженою
- Г) нескінченна множина не може бути обмеженою
- 5. Навести змістовний приклад бінарного відношення, яке ϵ транзитивним і не ϵ рефлексивним

- 1. (2 б.) Скільки підмножин має множина $A = \{\emptyset\}$.
- А) жодної
- Б) 1
- B) 2
- Γ) 3
- 2. (4 б.) Спростити вираз теорії множин : $(A \cap B) \setminus (A \cap C)$
- A) $(A \cap B) \setminus C$
- Б) $A \cap B \cap \overline{C}$
- B) $(A \cup B) \setminus C$
- Γ) $(A \cap B) \setminus \overline{C}$
- 3. (3 б.) Матриця бінарного відношення, визначеного на множині потужності 5, має наступний вигляд:

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{pmatrix}.$$

По матриці визначити властивості бінарного відношення.

- А) рефлексивне
- Б) антирефлексивне
- Г) симетричне
- Д) антисиметричне
- E) не ε ні рефлексивним, ні антирефлексивним
- Ж) не ϵ ні симетричним, ні антисиметричним
- 3) матриця не може буги матрицею бінарного відношення, визначеного на множині потужності 5

Білет 68

Теорія (5 запитань. Кожне питання – 2 бали)

1. Відомо, що $A \subseteq B$ і $a \in A$. Які з наступних тверджень вірні?

- Б) $a \subset A$
- B) $A \in B$
- Γ) $a \notin B \cap A$
- 2. Навести змістовний приклад бінарного відношення, яке не ε рефлексивним і не ε антирефлексивним
- 3. Для логічної формули $\overline{A \to B \& A}$ була побудована таблиця істинності:

А	В	Ā→B∧Ā
0	0	0
0	1	0
1	0	1
1	1	0

В яких рядках таблиці зроблено помилку?

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 4. Нехай A обмежена, а B необмежена множина. Якою буде множина $A \cup B$?
- А) необмеженою
- Б) обмеженою
- В) може бути як обмеженою, так і необмеженою
- Г) може бути скінченною
- 5. Яка логічна операція буде в формулі $\overline{A \& (B \to \overline{A}) \longleftrightarrow \overline{A \lor B}}$ виконуватися останньою?
- А) заперечення
- Б) кон'юнкція
- В) диз'юнкція
- Г) еквівалентність
- Д) імплікація

Практика

- 1. (3 б.) Серед наведених бінарних відношень знайти відношення строгого порядку:
- А) на множині цілих чисел Z: $a \rho b$, якщо $a \leq b$
- Б) на множині натуральних чисел N: $a \rho b$, якщо $a \ge b$
- В) на множині людей: $a \rho b$, якщо a знає b
- Γ) на множині працівників одного заводу: $a \rho b$, якщо a працює в одному кабінеті з b
- Д) на множині яблук на прилавку одного магазину: $a \rho b$, якщо a солодше за b
- 2. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ \langle a, b \rangle, \langle b, a \rangle, \langle a, c \rangle, \langle c, a \rangle, \langle a, a \rangle, \langle c, c \rangle \}.$$

Це бінарне відношення ϵ :

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- Д) не ε ні симетричним, ні антисиметричним

- E) не ε ні рефлексивним, ні антирефлексивним
- 3. (4 б.) Спростити вираз теорії множин : $(A \cup C) \cap (B \cup C) \cap (A \cup D) \cap (B \cup D)$
- A) $A \cap B \cap C \cup D$
- $\mathsf{F}(A \cup B) \cap (C \cup D)$
- B) $(A \cap B) \cap (C \cup D)$
- Γ) $(A \cap B) \cup (C \cap D)$
- Д) порожня множина

Білет 69

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Навести змістовний приклад бінарного відношення, яке не ε симетричним і не ε антисиметричним
- 2. Яка логічна операція буде виконуватися останньою в формулі $A \& B \to (\overline{A} \leftrightarrow A) \& \overline{A \lor B}$?
- А) заперечення
- Б) кон'юнкція
- В) диз'юнкція
- Г) еквівалентність
- Д) імплікація
- 3. Множина $X = \{1,2,\emptyset,e,N\}$, де N- множина цілих чисел. Вибрати правильні висловлення відносно множини:
- А) потужність множини Х дорівнює нескінченності
- Б) X має 32 підмножини
- В) X має нескінченну кількість підмножин
- Γ) *X* має скінченну кількість підмножин
- 4. Для логічної формули $A \to \overline{B \& A}$ була побудована таблиця істинності:

А	В	$A - \overline{B \wedge A}$
0	0	0
0	1	1
1	0	1
1	1	0

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 5. Що означає, що множина B необмежена зверху?
- A) $\exists M = const$, $uo \forall b \in B$: $M \leq b$
- Б) $\exists M = const$, wo $\forall b \in B$: M < b
- B) $\exists M = const$, $uo \forall b \in B$: $M \ge b$
- Γ) $\exists M = const$, $uo \forall b \in B : M > b$
- Д) Для $\forall M = const \exists b \in B : M < b$

E) Для $\forall M = const \exists b \in B : M \ge b$

Практика

- 1. (3 б.) Серед наведених бінарних відношень знайти відношення еквівалентності:
- А) на множині цілих чисел Z: $a \rho b$, якщо a < b
- Б) на множині натуральних чисел N: $a \rho b$, якщо $a \ge b$
- В) на множині людей: $a \rho b$, якщо a ненавидить b
- Γ) на множині працівників одного заводу: $a \rho b$, якщо a підлеглий b
- Д) на множині яблук на прилавку одного магазину: $a \circ b$, якщо a має такий самий колір, що і b
- 2. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ \langle a, b \rangle, \langle a, a \rangle, \langle c, c \rangle \}.$$

Це бінарне відношення ϵ :

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- Д) не ϵ ні симетричним, ні антисиметричним
- E) не ϵ ні рефлексивним, ні антирефлексивним
- 3. (4 б.) Спростити вираз теорії множин : $(A \setminus C) \setminus (B \setminus C)$
- A) $A \cap B \cap \overline{C}$
- Б) $A \cap \overline{B} \cap \overline{C}$
- B) $A \cup \overline{B} \cup \overline{C}$
- Γ) $A \cup (\overline{B} \cap \overline{C})$

Білет 70

- 1. Що означає, що множина B не обмежена знизу?
- A) $\exists M = const$, $uo \forall b \in B$: M < b
- **b**) $\exists M = const$, $uo \forall b \in B : M \leq b$
- B) $\exists M = const$, $uo \forall b \in B$: $M \ge b$
- Γ) $\exists M = const$, $u_io \forall b \in B: M > b$
- Д) Для $\forall M = const \exists b \in B: M \leq b$
- E) Для $\forall M = const \exists b \in B: M \ge b$
- 2. Вибрати правильні висловлення:
- А) Якщо множина обмежена, то вона скінченна;
- Б) Якщо множина нескінченна, то воно не може бути обмеженою
- В) Якщо множина необмежена, то воно нескінченна
- Г) Множина обмежена тоді і тільки тоді, коли вона скінченна
- 3. Для логічної формули $A \to \overline{B} \leftrightarrow A$ була побудована таблиця істинності:

А	В	A→Ē↔A
0	0	1
0	1	0
1	0	1
1	1	0

В яких рядках таблиці зроблено помилку?

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 4. Множини X і Y такі, що їх об'єднання дорівнює універсальній множині, при цьому ці множини не перетинаються, тоді:
- А) одна з множин є порожньою множиною;
- Б) одна з множин ϵ доповненням другої до універсальної множини
- B) одна з множин ϵ універсальною множиною
- Γ) $X \mid Y = \emptyset$
- 5. Навести змістовний приклад бінарного відношення, яке є антисиметричним і не транзитивним

Практика

- 1. (3 б.) Для множини $A = \{1, b, \emptyset\}$ знайти кількість підмножин.
- A) 1
- Б) 2
- B) 3
- Γ) 4
- Д) 7
- E) 8
- 2. (4 б.) Спростити вираз теорії множин : $(A | B) \cap (A | C)$
- A) $A \cap \overline{B \cup C}$
- Б) $A \cup \overline{B \cap C}$
- B) $A \setminus (B \cap C)$
- $\Gamma)\ A \backslash \big(B \bigcup C\big)$
- 3. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ \langle a, b \rangle, \langle a, c \rangle, \langle b, a \rangle, \langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle \}.$$

Це бінарне відношення є:

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- Д) не ε ні симетричним, ні антисиметричним
- Е) не є ні рефлексивним, ні антирефлексивним

Теорія (5 запитань. Кожне питання – 2 бали)

1. Для логічної формули $\overline{A \to B} \leftrightarrow A$ була побудована таблиця істинності:

A	В	Ā→B ↔A
0	0	1
0	1	0
1	0	1
1	1	0

В яких рядках таблиці зроблено помилку?

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 2. Множина А обмежена зверху. Тоді
- А) вона може не мати верхньої межі
- Б) вона може не мати точної верхньої межі
- В) вона обмежена
- Г) вона може не мати точної нижньої межі
- Д) вона має єдину верхню межу
- Е) вона має нескінченно багато верхніх меж.
- 3. Навести змістовний приклад бінарного відношення, яке не ϵ антисиметричним, ϵ транзитивним
- 4. Яка логічна операція в формулі $A \& B \to \overline{\overline{A} \leftrightarrow \overline{A} \lor B}$ буде виконуватися останньою?
- А) заперечення
- Б) кон'юнкція
- В) диз'юнкція
- Г) еквівалентність
- Д) імплікація
- 5. Відомо, що $A \subset B$ і $a \in B$. Які з наступних тверджень вірні?
- A) $a \in A \cap B$
- \mathbf{b}) $a \notin A$
- B) $A \in B$
- Γ) $a \in B \setminus A$ and $a \in A$

Практика

- 1. (4 б.) Спростити вираз теорії множин : $A \setminus (A \setminus B)$
- A) $A \cup B$
- Б) *A\B*
- B) $A \cap B$
- Γ) $A \cap \overline{B}$
- 2. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ < a,b >, < b,a >, < a,a >, < b,b > \}.$$

Це бінарне відношення ϵ :

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- Д) не ε ні симетричним, ні антисиметричним
- Е) не є ні рефлексивним, ні антирефлексивним
- 3. Побудувати симетричну різницю множин A + B, якщо $A = \{a, b, c\}$, $A = \{c, d, f, h\}$
- A) $\{a, b, d, c, f, h\}$
- Б) {*c*}
- B) $\{a,b,d,f,h\}$
- Γ) $\{d, f, h\}$
- Д) $\{a,b\}$

Білет 72

Теорія (5 запитань. Кожне питання – 2 бали)

1. Для логічної формули $A \to \overline{A} \to B$ була побудована таблиця істинності:

А	В	A→Ā→B
0	0	0
0	1	1
1	0	0
1	1	1

- А) В першому
- Б) в другому
- В) в третьому
- Г) в останньому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 2. Нехай A, B необмежені множини. Якою буде множина $A \cup B$?
- А) необмеженою
- Б) обмеженою
- В) може бути як обмеженою, так і необмеженою
- Г) може бути скінченною
- 3. Скільки елементів в множині $A = \{\{1, \{1\}\}, Z, \{1, \{2,3\}\}, \emptyset\}, \text{ де } Z \text{множина цілих чисел?}$
- A) 5
- Б) 0
- B) 4
- Г) нескінченно багато
- 4. Обрати вірні твердження:
- А) Скінченна множина може бути необмеженою
- Б) Нескінченна множина може бути обмеженою
- В) Скінченна множина може бути як обмеженою, так і необмеженою

- Г) нескінченна множина не може бути обмеженою
- 5. Навести змістовний приклад бінарного відношення, яке ε транзитивним і не ε рефлексивним

- 1. (2 б.) Скільки підмножин має множина $A = \{\emptyset\}$.
- А) жодної
- Б) 1
- B) 2
- Γ) 3
- 2. (4 б.) Спростити вираз теорії множин : $(A \cap B) \setminus (A \cap C)$
- A) $(A \cap B) \setminus C$
- β $A ∩ B ∩ \overline{C}$
- B) $(A \cup B) \setminus C$
- Γ) $(A \cap B) \setminus \overline{C}$
- 3. (3 б.) Матриця бінарного відношення, визначеного на множині потужності 5, має наступний вигляд:

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{pmatrix}.$$

По матриці визначити властивості бінарного відношення.

- А) рефлексивне
- Б) антирефлексивне
- Г) симетричне
- Д) антисиметричне
- E) не ϵ ні рефлексивним, ні антирефлексивним
- Ж) не ε ні симетричним, ні антисиметричним
- 3) матриця не може буги матрицею бінарного відношення, визначеного на множині потужності 5

Білет 73

- 1. Навести змістовний приклад бінарного відношення, яке не ε симетричним і не ε антисиметричним
- 2. Яка логічна операція буде виконуватися останньою в формулі $A \& B \to (\overline{A} \leftrightarrow A) \& \overline{A \lor B}$?
- А) заперечення
- Б) кон'юнкція
- В) диз'юнкція
- Г) еквівалентність
- Д) імплікація
- 3. Множина $X = \{1,2,\emptyset,e,N\}$, де N- множина цілих чисел. Вибрати правильні висловлення відносно множини:
- А) потужність множини X дорівнює нескінченності
- Б) X має 32 підмножини

- В) X має нескінченну кількість підмножин
- Γ) X має скінченну кількість підмножин
- 4. Для логічної формули $A \to \overline{B \& A}$ була побудована таблиця істинності:

A	В	$A - \overline{B \wedge A}$
0	0	0
0	1	1
1	0	1
1	1	0

В яких рядках таблиці зроблено помилку?

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 5. Що означає, що множина B необмежена зверху?
- A) $\exists M = const$, $uo \forall b \in B$: $M \leq b$
- Б) $\exists M = const$, що $\forall b \in B$: M < b
- B) $\exists M = const, \quad uo \quad \forall b \in B: \quad M \ge b$
- Γ) $\exists M = const$, $uo \forall b \in B : M > b$
- Д) Для $\forall M = const \exists b \in B : M < b$
- E) Для $\forall M = const \exists b \in B : M \ge b$

Практика

- 1. (3 б.) Серед наведених бінарних відношень знайти відношення еквівалентності:
- А) на множині цілих чисел Z: $a \rho b$, якщо a < b
- Б) на множині натуральних чисел N: $a \rho b$, якщо $a \ge b$
- В) на множині людей: $a \rho b$, якщо a ненавидить b
- Γ) на множині працівників одного заводу: $a \rho b$, якщо a підлеглий b
- Д) на множині яблук на прилавку одного магазину: $a \rho b$, якщо a має такий самий колір, що і b
- 2. (3 б.) Бінарне відношення задане на множині $A = \{a,b,c\}$ наступним чином:

$$\rho = \{ \langle a, b \rangle, \langle a, a \rangle, \langle c, c \rangle \}.$$

Це бінарне відношення ϵ :

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- Д) не ε ні симетричним, ні антисиметричним
- Е) не є ні рефлексивним, ні антирефлексивним
- 3. (4 б.) Спростити вираз теорії множин : (A | C) | (B | C)
- A) $A \cap B \cap \overline{C}$
- Б) $A \cap \overline{B} \cap \overline{C}$
- B) $A \cup \overline{B} \cup \overline{C}$

Білет 74

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Навести змістовний приклад бінарного відношення, яке ε транзитивним і не ε антирефлексивним. Показати, що наведене бінарне відношення дійсно ε транзитивним і не ε антирефлексивним.
- 2. Для логічної формули $A \to \overline{A} \& B$ була побудована таблиця істинності:

А	В	A→Ā∧B
0	0	1
0	1	1
1	0	0
1	1	0

В яких рядках таблиці зроблено помилку?

- А) В першому
- Б) в другому
- В) в першому і третьому
- Γ) в останньому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 3. Що означає, що множина B необмежена знизу?
- A) $\exists M = const, uo \forall b \in B: M \leq b$
- Б) $\exists M = const$, що $\forall b \in B$: M < b
- B) $\exists M = const, \quad uo \quad \forall b \in B: \quad M \ge b$
- Γ) $\exists M = const$, $uo \forall b \in B$: M > b
- Д) Для $\forall M = const \exists b \in B : M \leq b$
- E) Для $\forall M = const \exists b \in B : M > b$
- 4. Нехай A обмежена, а B необмежена множина. Якою буде множина $A \cap B$?
- А) нескінченною
- Б) скінченною
- В) може бути як скінченною, так і нескінченною
- Г) необмеженою
- 5. Серед тверджень знайти вірні:
- А) Для основних логічних операцій їх приорітет буде наступним: 1.кон'юнкція, 2. диз'юнкція, 3 всі інші
- Б) Для основних логічних операцій їх приорітет буде наступним: 1. інверсія, 2. кон'юнкція, 3. диз'юнкція, 4 всі інші
- В) Пріоритет логічних операцій визначається лише за допомогою дужок
- Γ) Для основних логічних операцій їх приорітет буде наступним: 1. інверсія, 2. диз'юнкція, 3. кон'юнкція, 4 всі інші

Практика

- 1. (3 б.) Множина $A = \{1, a, b, 7, \emptyset\}$. Скільки строгих підмножин має ця множина
- A) 5
- Б) 32

Д) 7

2. (3 б.) Матриця бінарного відношення, визначеного на множині потужності 5, має наступний вигляд:

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{pmatrix}.$$

По матриці визначити властивості бінарного відношення.

- А) рефлексивне
- Б) антирефлексивне
- Г) симетричне
- Д) антисиметричне
- E) не ϵ ні рефлексивним, ні антирефлексивним
- Ж) не ε ні симетричним, ні антисиметричним
- 3) матриця не може бути матрицею бінарного відношення, визначеного на множині потужності 5
- 3. (4 б.) Спростити вираз теорії множин : $(A \cup C) \cap (B \cup C) \cap (A \cup D) \cap (B \cup D)$
- A) $A \cap B \cap C \cup D$
- Б) $(A \cup B) \cap (C \cup D)$
- B) $(A \cap B) \cap (C \cup D)$
- Γ) $(A \cap B) \cup (C \cap D)$
- Д) порожня множина

Білет 75

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Які з наступних тверджень вірні?
- A) $\{\emptyset\}\subset\{a,b\}$
- Б) $\{b\} \subseteq \{a,b\}$
- B) $\{b\} \in \{a, \{b\}\}\$
- Γ) $b \subset \{a, \{b\}\}$
- 2. Для логічної формули $A \to \overline{B \leftrightarrow A}$ була побудована таблиця істинності:

A	В	A→B↔Ā
0	0	1
0	1	0
1	0	1
1	1	0

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в другому
- Д) помилки немає в жодному рядку

- Е) помилки в усіх рядках
- 3. Нехай A, B нескінченні множини. Якою буде множина $A \setminus B$?
- А) нескінченною
- Б) скінченною
- В) може бути як скінченною, так і нескінченною
- Г) необмеженою
- 4. Навести змістовний приклад бінарного відношення, яке не ϵ симетричним, ϵ транзитивним
- 5. Що означає, що множина B не обмежена зверху?
- A) $\exists M = const$, $u_io \forall b \in B$: $M \leq b$
- Б) $\exists M = const$, що $\forall b \in B$: M < b
- B) $\exists M = const. \quad uo \quad \forall b \in B: \quad M \ge b$
- Γ) $\exists M = const$, $uo \forall b \in B : M > b$
- Д) Для $\forall M = const \exists b \in B : M \leq b$
- E) Для $\forall M = const \exists b \in B : M \ge b$

- 1. (3 б.) У якому випадку для множин A і B має місце рівність: $A + B = A \cup B$?
- А) якщо множини A і B не перетинаються
- Б) якщо $A \subseteq B$
- B) якщо $B \subseteq A$
- Γ) якщо множини A і B перетинаються
- 2. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ \langle a, b \rangle, \langle b, a \rangle \}.$$

Це бінарне відношення ϵ :

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- \square) не ε ні симетричним, ні антисиметричним
- E) не ϵ ні рефлексивним, ні антирефлексивним
- 3. (4 б.) Спростити вираз теорії множин : $A \setminus (B \setminus A)$
- A) $A \cup B$
- Б) *A* \ *B*
- B) $A \cup (A \cap \overline{B})$
- Γ) $A \cap \overline{B}$

Білет 76

- 1. Яка логічна операція в цій формулі буде виконуватися останньою $A \& B \to \overline{A} \leftrightarrow A \lor B$?
- А) заперечення
- Б) кон'юнкція
- В) диз'юнкція
- Г) еквівалентність

Д) імплікація

- 2. Навести змістовний приклад бінарного відношення, яке не ϵ рефлексивним і не ϵ симетричним
- 3. Що означає, що множина В обмежена?

A)
$$\exists M = const, M \ge 0$$
, $u_i o \forall b \in B$: $|b| \le M$

Б)
$$\exists M = const$$
, що $\forall b \in B$: $M \leq b$

B)
$$\exists M = const$$
, $uo \forall b \in B : M \ge b$

$$\Gamma$$
) $\exists M = const, M \ge 0$, $uo \forall b \in B: |b| < M$

Д)
$$\exists M = const, M \ge 0$$
, що $\forall b \in B$: $|b| \ge M$

E)
$$\exists M = const, M \ge 0$$
, $uqo \forall b \in B$: $|b| > M$

- 4. Множина $X = \{a, b, c, d, e\}$. Вибрати правильні висловлення:
- A) $\{a,b,c,d\} \not\subset X$

Б)
$$\{a\} \in X$$

B)
$$\{a,b,e\}\subseteq X$$

$$\Gamma$$
) $X \in X$

5. Для логічної формули $A \& \overline{B} \leftrightarrow A$ була побудована таблиця істинності:

A	В	A∧Ē↔A
0	0	1
0	1	0
1	0	1
1	1	0

В яких рядках таблиці зроблено помилку?

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках

Практика

- 1. Нехай множина $A = \{-4,5,0,-3,6\}, B = \{-4,5,0,-3,6,8\}.$ Побудувати симетричну різницю A + B.
- A) $\{-4,5,0,-3,6\}$
- Б) {-4,5,0,-3,6,8}
- B) {8}
- Γ) \emptyset
- Д) {-4,5,0}
- 2. (4 б.) Спростити вираз теорії множин : $(A \cap C) \cup (B \cap C) \cup (A \cap D) \cup (B \cap D)$
- A) $A \cap B \cap C \cup D$
- Б) $(A \cup B) \cap (C \cup D)$
- B) $(A \cap B) \cap (C \cup D)$

- Γ) $(A \cap B) \cup (C \cap D)$
- Д) порожня множина
- 3. (3 б.) Матриця бінарного відношення, визначеного на множині потужності 5, має наступний вигляд:

$$\begin{pmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \end{pmatrix}.$$

По матриці визначити властивості бінарного відношення.

- А) рефлексивне
- Б) антирефлексивне
- Г) симетричне
- Д) антисиметричне
- E) не ϵ ні рефлексивним, ні антирефлексивним
- Ж) не ϵ ні симетричним, ні антисиметричним
- 3) матриця не може бути матрицею бінарного відношення, визначеного на множині потужності 5

Білет 77

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Що означає, що множина B не обмежена знизу?
- A) $\exists M = const$, $uo \forall b \in B$: M < b
- **b**) $\exists M = const$, $uo \forall b \in B$: $M \leq b$
- B) $\exists M = const$, $uo \forall b \in B$: $M \ge b$
- Γ) $\exists M = const$, $u_io \forall b \in B$: M > b
- Д) Для $\forall M = const \exists b \in B: M \leq b$
- E) $A = const \exists b \in B : M \ge b$
- 2. Вибрати правильні висловлення:
- А) Якщо множина обмежена, то вона скінченна;
- Б) Якщо множина нескінченна, то воно не може бути обмеженою
- В) Якщо множина необмежена, то воно нескінченна
- Г) Множина обмежена тоді і тільки тоді, коли вона скінченна
- 3. Для логічної формули $A \to \overline{B} \longleftrightarrow A$ була побудована таблиця істинності:

A	В	A⊸Ē⊶A
0	0	1
0	1	0
1	0	1
1	1	0

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в другому
- Д) помилки немає в жодному рядку

- Е) помилки в усіх рядках
- 4. Множини X і Y такі, що їх об'єднання дорівнює універсальній множині, при цьому ці множини не перетинаються, тоді:
- А) одна з множин є порожньою множиною;
- Б) одна з множин є доповненням другої до універсальної множини
- В) одна з множин ϵ універсальною множиною
- Γ) $X \mid Y = \emptyset$
- 5. Навести змістовний приклад бінарного відношення, яке ϵ антисиметричним і не транзитивним

- 1. (3 б.) Для множини $A = \{1, b, \emptyset\}$ знайти кількість підмножин.
- A) 1
- Б) 2
- B) 3
- Γ) 4
- Д) 7
- E) 8
- 2. (4 б.) Спростити вираз теорії множин : $(A \ B) \cap (A \ C)$
- A) $A \cap \overline{B \cup C}$
- Б) $A \cup \overline{B \cap C}$
- B) $A \setminus (B \cap C)$
- Γ) $A \setminus (B \cup C)$
- 3. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ \langle a, b \rangle, \langle a, c \rangle, \langle b, a \rangle, \langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle \}.$$

Це бінарне відношення є:

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- \square) не ε ні симетричним, ні антисиметричним
- E) не ϵ ні рефлексивним, ні антирефлексивним

Білет 78

- 1. Число A називається інфімумом множини X, якщо:
- А) A верхня межа X і для $\forall \varepsilon > 0$ знайдеться такий елемент $x \in X$, що $x < A + \varepsilon$.
- Б) для $\forall \varepsilon > 0$ знайдеться такий елемент $x \in X$, що $x < A + \varepsilon$.
- В) A нижня межа X і для $\forall \varepsilon > 0$ знайдеться такий елемент $x \in X$, що $x < A + \varepsilon$.
- Γ) A це найменша з верхніх меж множини X
- Д) A нижня межа X і для $\forall \varepsilon$ знайдеться такий елемент $x \in X$, що $x < A + \varepsilon$.
- E) A верхня межа X і для $\forall \varepsilon > 0$ знайдеться такий елемент $x \in X$, що $x > A \varepsilon$.
- 2. Для логічної формули $A \& B \to \overline{A}$ була побудована таблиця істинності:

A	В	A∧B→Ā
0	0	1
0	1	1
1	0	0
1	1	1

- А) В першому
- Б) в другому
- В) в третьому і четвертому
- Г) в першому і четвертому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 3. Навести змістовний приклад бінарного відношення, яке не ε симетричним і не ε антирефлексивним
- 4. Вибрати правильні висловлення:
- A) Якщо $a \in X$ і $a \in Y$, то $X \subseteq Y$ або $Y \subseteq X$
- Б) Якщо $a \in X$ і $a \in Y$, то $X \cap Y \neq \emptyset$
- В) Якщо $a \in X$ і $a \in Y$, то $a \in X \cap Y$
- Γ) Якщо $X \cap Y \neq \emptyset$, то $X \subseteq Y$ або $Y \subseteq X$
- Д) Якщо $X \subseteq Y$ або $Y \subseteq X$, то X = Y
- 5. Нехай A обмежена, а B необмежена множина. Якою буде множина $A \cap B$?
- А) нескінченною
- Б) скінченною
- В) може бути як скінченною, так і нескінченною
- Г) необмеженою

Практика

1. (3 б.) Матриця бінарного відношення, визначеного на множині потужності 5, має наступний вигляд:

$$\begin{pmatrix}
1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 1
\end{pmatrix}$$

По матриці визначити властивості бінарного відношення.

- А) рефлексивне
- Б) антирефлексивне
- Г) симетричне
- Д) антисиметричне
- E) не ϵ ні рефлексивним, ні антирефлексивним
- Ж) не ε ні симетричним, ні антисиметричним
- 3) матриця не може бути матрицею бінарного відношення, визначеного на множині потужності 5
- 2. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ \langle a, a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle b, a \rangle \}.$$

Це бінарне відношення
А) рефлексивним
Б) симетричним

- В) антирефлексивним
- Г) антисиметричним
- Д) не ε ні симетричним, ні антисиметричним
- E) не ε ні рефлексивним, ні антирефлексивним

€:

- 3. (4 б.) Спростити вираз теорії множин : $(A \setminus B) \cup (A \setminus C)$
- A) $A \cap \overline{B \cap C}$
- Б) $A \cup \overline{B \cap C}$
- B) $A \setminus (B \cap C)$
- Γ) $A \setminus (B \cup C)$

Білет 79

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Відомо, що $A \subseteq B$ і $a \in A$. Які з наступних тверджень вірні?
- A) $a \in A \cap B$
- Б) $a \subset A$
- B) $A \in B$
- Γ) $a \notin B \cap A$
- 2. Навести змістовний приклад бінарного відношення, яке не ϵ рефлексивним і не ϵ антирефлексивним
- 3. Для логічної формули $\overline{A \to B \& A}$ була побудована таблиця істинності:

А	В	$\overline{A - B \wedge A}$
0	0	0
0	1	0
1	0	1
1	1	0

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 4. Нехай A обмежена, а B необмежена множина. Якою буде множина $A \cup B$?
- А) необмеженою
- Б) обмеженою
- В) може бути як обмеженою, так і необмеженою
- Г) може бути скінченною
- 5. Яка логічна операція буде в формулі $\overline{A \& (B \to \overline{A})} \longleftrightarrow \overline{A \lor B}$ виконуватися останньою?
- А) заперечення
- Б) кон'юнкція
- В) диз'юнкція

- Г) еквівалентність
- Д) імплікація

- 1. (3 б.) Серед наведених бінарних відношень знайти відношення строгого порядку:
- А) на множині цілих чисел Z: $a \rho b$, якщо $a \leq b$
- Б) на множині натуральних чисел N: $a \rho b$, якщо $a \ge b$
- В) на множині людей: $a \rho b$, якщо a знає b
- Γ) на множині працівників одного заводу: $a \rho b$, якщо a працює в одному кабінеті з b
- Д) на множині яблук на прилавку одного магазину: $a \rho b$, якщо a солодше за b
- 2. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ \langle a, b \rangle, \langle b, a \rangle, \langle a, c \rangle, \langle c, a \rangle, \langle a, a \rangle, \langle c, c \rangle \}.$$

Це бінарне відношення ϵ :

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- Д) не ϵ ні симетричним, ні антисиметричним
- E) не ϵ ні рефлексивним, ні антирефлексивним
- 3. (4 б.) Спростити вираз теорії множин : $(A \cup C) \cap (B \cup C) \cap (A \cup D) \cap (B \cup D)$
- A) $A \cap B \cap C \cup D$
- Б) $(A \cup B) \cap (C \cup D)$
- B) $(A \cap B) \cap (C \cup D)$
- $\Gamma) (A \cap B) \cup (C \cap D)$
- Д) порожня множина

Білет 80

Теорія (5 запитань. Кожне питання – 2 бали)

1. Для логічної формули $A \vee \overline{B} \leftrightarrow A$ була побудована таблиця істинності:

A	В	A∨Ē⊶A
0	0	0
0	1	0
1	0	0
1	1	1

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в першому і четвертому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 2. Обрати правильні висловлення:
- А) Якщо множина необмежена, у неї обов'язково не існують точна верхня і точна нижня межі
- Б) Якщо множина обмежена, у неї існує точна верхня і точна нижня межі

- В) Якщо множина обмежена, у неї обов'язково існують верхня і нижня межі, але точна верхня, точна нижня межі можуть не існувати
- Г) Якщо множина необмежена, вона необмежена як знизу, так і зверху.
- 3. Побудувати логічну формулу, яка відповідає складному висловленню: «Якщо я буду жити в гуртожитку і отримаю стипендію в наступному семестрі, то влітку зможу на накопичені гроші або купити новий телефон, або зробити подарунок мамі на день народження».
- A) $A \& B \rightarrow (C \oplus B)$
- $B) A & B \rightarrow (C \vee B)$
- B) $A \& B \rightarrow C \lor B$
- Γ) $(A & B) \rightarrow (C \oplus B)$
- 4. Навести змістовний приклад бінарного відношення, яке є симетричним і не є антирефлексивним
- 5. Відомо, що $A \subset B$ і $a \in A \cap B$. Які з наступних тверджень вірні?
- A) $a \in B$
- **Б**) *a* ∉ *A*
- B) $a \notin B \setminus A$
- Γ) $a \in B \setminus A$

1. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ \langle a, b \rangle, \langle a, c \rangle, \langle b, a \rangle \}.$$

Це бінарне відношення ϵ :

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- Д) не ϵ ні симетричним, ні антисиметричним
- E) не ϵ ні рефлексивним, ні антирефлексивним
- 2. (4 б.) Спростити вираз теорії множин : $(A \mid B) \cap (A \mid C)$
- A) $A \cap \overline{B \cup C}$
- Б) $A \cup \overline{B \cap C}$
- B) $A \setminus (B \cap C)$
- Γ) $A \setminus (B \cup C)$
- 3. (3 б.) Множина $A = \{1,2,3,4\}$. Скільки строгих підмножин має ця множина
- A) 4
- Б) 2
- B) 16
- Γ) 15
- Д) 7

- 1. Навести змістовний приклад бінарного відношення, яке ε транзитивним і не ε антирефлексивним. Показати, що наведене бінарне відношення дійсно ε транзитивним і не ε антирефлексивним.
- 2. Для логічної формули $A \to \overline{A} \& B$ була побудована таблиця істинності:

A	В	A→Ā∧B
0	0	1
0	1	1
1	0	0
1	1	0

- А) В першому
- Б) в другому
- В) в першому і третьому
- Γ) в останньому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 3. Що означає, що множина В необмежена знизу?
- A) $\exists M = const$, $uo \forall b \in B$: $M \leq b$
- $\exists M = const$, wo $\forall b \in B$: M < b
- B) $\exists M = const$, $uo \forall b \in B$: $M \ge b$
- Γ) $\exists M = const$, $uo \forall b \in B$: M > b
- Д) Для $\forall M = const \exists b \in B : M \leq b$
- E) Для $\forall M = const \exists b \in B : M > b$
- 4. Нехай A обмежена, а B необмежена множина. Якою буде множина $A \cap B$?
- А) нескінченною
- Б) скінченною
- В) може бути як скінченною, так і нескінченною
- Г) необмеженою
- 5. Серед тверджень знайти вірні:
- А) Для основних логічних операцій їх приорітет буде наступним: 1.кон'юнкція, 2. диз'юнкція, 3 всі інші
- Б) Для основних логічних операцій їх приорітет буде наступним: 1. інверсія, 2. кон'юнкція, 3. диз'юнкція, 4 всі інші
- В) Пріоритет логічних операцій визначається лише за допомогою дужок
- Γ) Для основних логічних операцій їх приорітет буде наступним: 1. інверсія, 2. диз'юнкція, 3. кон'юнкція, 4 всі інші

Практика

- 1. (3 б.) Множина $A = \{1, a, b, 7, \emptyset\}$. Скільки строгих підмножин має ця множина
- A) 5
- Б) 32
- B) 23
- Γ) 31
- Д) 7
- 2. (3 б.) Матриця бінарного відношення, визначеного на множині потужності 5, має наступний вигляд:

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{pmatrix}.$$

По матриці визначити властивості бінарного відношення.

- А) рефлексивне
- Б) антирефлексивне
- Г) симетричне
- Д) антисиметричне
- E) не ϵ ні рефлексивним, ні антирефлексивним
- Ж) не ε ні симетричним, ні антисиметричним
- 3) матриця не може бути матрицею бінарного відношення, визначеного на множині потужності 5
- 3. (4 б.) Спростити вираз теорії множин : $(A \cup C) \cap (B \cup C) \cap (A \cup D) \cap (B \cup D)$
- A) $A \cap B \cap C \cup D$
- $\mathsf{E}(A \cup B) \cap (C \cup D)$
- B) $(A \cap B) \cap (C \cup D)$
- Γ) $(A \cap B) \cup (C \cap D)$
- Д) порожня множина

Білет 82

Теорія (5 запитань. Кожне питання – 2 бали)

1. Для логічної формули $A \to \overline{A} \to B$ була побудована таблиця істинності:

A	В	A→Ā→B
0	0	0
0	1	1
1	0	0
1	1	1

- А) В першому
- Б) в другому
- В) в третьому
- Г) в останньому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 2. Нехай A, B необмежені множини. Якою буде множина $A \cup B$?
- А) необмеженою
- Б) обмеженою
- В) може бути як обмеженою, так і необмеженою
- Г) може бути скінченною
- 3. Скільки елементів в множині $A = \{\{1, \{1\}\}, Z, \{1, \{2,3\}\}, \emptyset\}, \text{ де } Z \text{множина цілих чисел?}$
- A) 5
- Б) 0
- B) 4

- Г) нескінченно багато
- 4. Обрати вірні твердження:
- А) Скінченна множина може бути необмеженою
- Б) Нескінченна множина може бути обмеженою
- В) Скінченна множина може бути як обмеженою, так і необмеженою
- Г) нескінченна множина не може бути обмеженою
- 5. Навести змістовний приклад бінарного відношення, яке ϵ транзитивним і не ϵ рефлексивним

- 1. (2 б.) Скільки підмножин має множина $A = \{\emptyset\}$.
- А) жодної
- Б) 1
- B) 2
- Γ) 3
- 2. (4 б.) Спростити вираз теорії множин : $(A \cap B) \setminus (A \cap C)$
- A) $(A \cap B) \setminus C$
- β) $A ∩ B ∩ \overline{C}$
- B) $(A \cup B) \setminus C$
- Γ) $(A \cap B) \setminus \overline{C}$
- 3. (3 б.) Матриця бінарного відношення, визначеного на множині потужності 5, має наступний вигляд:

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{pmatrix}.$$

По матриці визначити властивості бінарного відношення.

- А) рефлексивне
- Б) антирефлексивне
- Г) симетричне
- Д) антисиметричне
- E) не ϵ ні рефлексивним, ні антирефлексивним
- Ж) не ϵ ні симетричним, ні антисиметричним
- 3) матриця не може бути матрицею бінарного відношення, визначеного на множині потужності 5

Білет 83

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Число A називається інфімумом множини X, якщо:
- А) A верхня межа X і для $\forall \varepsilon > 0$ знайдеться такий елемент $x \in X$, що $x < A + \varepsilon$.
- Б) для $\forall \varepsilon > 0$ знайдеться такий елемент $x \in X$, що $x < A + \varepsilon$.
- В) A нижня межа X і для $\forall \varepsilon > 0$ знайдеться такий елемент $x \in X$, що $x < A + \varepsilon$.
- Γ) A це найменша з верхніх меж множини X
- Д) A нижня межа X і для $\forall \varepsilon$ знайдеться такий елемент $x \in X$, що $x < A + \varepsilon$.
- Е) A верхня межа X і для $\forall \varepsilon > 0$ знайдеться такий елемент $x \in X$, що $x > A \varepsilon$.

2. Для логічної формули $A \& B \to \overline{A}$ була побудована таблиця істинності:

A	В	A∧B→Ā
0	0	1
0	1	1
1	0	0
1	1	1

В яких рядках таблиці зроблено помилку?

- А) В першому
- Б) в другому
- В) в третьому і четвертому
- Г) в першому і четвертому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 3. Навести змістовний приклад бінарного відношення, яке не ε симетричним і не ε антирефлексивним
- 4. Вибрати правильні висловлення:
- A) Якщо $a \in X$ і $a \in Y$, то $X \subseteq Y$ або $Y \subseteq X$
- Б) Якщо $a \in X$ і $a \in Y$, то $X \cap Y \neq \emptyset$
- В) Якщо $a \in X$ і $a \in Y$, то $a \in X \cap Y$
- Γ) Якщо $X \cap Y \neq \emptyset$, то $X \subseteq Y$ або $Y \subseteq X$
- Д) Якщо $X \subseteq Y$ або $Y \subseteq X$, то X = Y
- 5. Нехай A обмежена, а B необмежена множина. Якою буде множина $A \cap B$?
- А) нескінченною
- Б) скінченною
- В) може бути як скінченною, так і нескінченною
- Г) необмеженою

Практика

1. (3 б.) Матриця бінарного відношення, визначеного на множині потужності 5, має наступний виглял:

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{pmatrix}.$$

По матриці визначити властивості бінарного відношення.

- А) рефлексивне
- Б) антирефлексивне
- Г) симетричне
- Д) антисиметричне
- E) не ϵ ні рефлексивним, ні антирефлексивним
- Ж) не ϵ ні симетричним, ні антисиметричним
- 3) матриця не може бути матрицею бінарного відношення, визначеного на множині потужності 5
- 2. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ \langle a, a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle b, a \rangle \}.$$

Це бінарне відношення ϵ :

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- Д) не ε ні симетричним, ні антисиметричним
- E) не ϵ ні рефлексивним, ні антирефлексивним
- 3. (4 б.) Спростити вираз теорії множин : $(A \ B) \cup (A \ C)$
- A) $A \cap \overline{B \cap C}$
- Б) $A \cup \overline{B \cap C}$
- B) $A \setminus (B \cap C)$
- Γ) $A \setminus (B \cup C)$

Білет 84

Теорія (5 запитань. Кожне питання – 2 бали)

1. Для логічної формули $A \vee \overline{B} \leftrightarrow A$ була побудована таблиця істинності:

A	В	$A \lor \overline{B} \leftrightarrow A$
0	0	0
0	1	0
1	0	0
1	1	1

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в першому і четвертому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 2. Обрати правильні висловлення:
- А) Якщо множина необмежена, у неї обов'язково не існують точна верхня і точна нижня межі
- Б) Якщо множина обмежена, у неї існує точна верхня і точна нижня межі
- В) Якщо множина обмежена, у неї обов'язково існують верхня і нижня межі, але точна верхня, точна нижня межі можуть не існувати
- Г) Якщо множина необмежена, вона необмежена як знизу, так і зверху.
- 3. Побудувати логічну формулу, яка відповідає складному висловленню: «Якщо я буду жити в гуртожитку і отримаю стипендію в наступному семестрі, то влітку зможу на накопичені гроші або купити новий телефон, або зробити подарунок мамі на день народження».
- A) $A \& B \rightarrow (C \oplus B)$
- $B) A & B \rightarrow (C \vee B)$
- B) $A \& B \rightarrow C \lor B$
- Γ) $(A & B) \rightarrow (C \oplus B)$
- 4. Навести змістовний приклад бінарного відношення, яке ϵ симетричним і не ϵ антирефлексивним

A) $a \in B$ \mathbf{F}) $a \notin A$ B) $a \notin B \setminus A$ Γ) $a \in B \setminus A$ Практика 1. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином: $\rho = \{ \langle a, b \rangle, \langle a, c \rangle, \langle b, a \rangle \}.$ Це бінарне відношення ϵ : А) рефлексивним Б) симетричним В) антирефлексивним Г) антисиметричним \square) не ε ні симетричним, ні антисиметричним E) не ε ні рефлексивним, ні антирефлексивним 2. (4 б.) Спростити вираз теорії множин : $(A \setminus B) \cap (A \setminus C)$ A) $A \cap \overline{B \cup C}$ Б) $A \cup \overline{B \cap C}$ B) $A \setminus (B \cap C)$ Γ) $A \setminus (B \cup C)$ 3. (3 б.) Множина $A = \{1,2,3,4\}$. Скільки строгих підмножин має ця множина A) 4 Б) 2 B) 16 Γ) 15 Д) 7 Білет 85 Теорія (5 запитань. Кожне питання – 2 бали) 1. Яка логічна операція в цій формулі буде виконуватися останньою $A \& B \to \overline{A} \leftrightarrow A \lor B$? А) заперечення Б) кон'юнкція В) диз'юнкція Г) еквівалентність Д) імплікація 2. Навести змістовний приклад бінарного відношення, яке не ϵ рефлексивним і не ϵ симетричним 3. Що означає, що множина B обмежена?

5. Відомо, що $A \subset B$ і $a \in A \cap B$. Які з наступних тверджень вірні?

A) $\exists M = const, M \ge 0$, $u_i o \forall b \in B$: $|b| \le M$

E) $\exists M = const$, $u_io \forall b \in B$: $M \le b$ B) $\exists M = const$, $u_io \forall b \in B$: $M \ge b$

- Γ) $\exists M = const, M \ge 0$, $uo \forall b \in B$: |b| < M
- Д) $\exists M = const, M \ge 0$, що $\forall b \in B$: $|b| \ge M$
- E) $\exists M = const, M \ge 0$, $uqo \forall b \in B$: |b| > M
- 4. Множина $X = \{a, b, c, d, e\}$. Вибрати правильні висловлення:
- A) $\{a,b,c,d\} \not\subset X$
- Б) $\{a\} \in X$
- B) $\{a,b,e\}\subseteq X$
- Γ) $X \in X$
- 5. Для логічної формули $A \& \overline{B} \leftrightarrow A$ була побудована таблиця істинності:

A	В	A∧Ē↔A
0	0	1
0	1	0
1	0	1
1	1	0

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках

Практика

- 1. Нехай множина $A = \{-4,5,0,-3,6\}, B = \{-4,5,0,-3,6,8\}.$ Побудувати симетричну різницю A + B.
- A) $\{-4,5,0,-3,6\}$
- Б) {-4,5,0,-3,6,8}
- B) {8}
- $\Gamma) \varnothing$
- Д) {-4,5,0}
- 2. (4 б.) Спростити вираз теорії множин : $(A \cap C) \cup (B \cap C) \cup (A \cap D) \cup (B \cap D)$
- A) $A \cap B \cap C \cup D$
- Б) $(A \cup B) \cap (C \cup D)$
- B) $(A \cap B) \cap (C \cup D)$
- $\Gamma) (A \cap B) \cup (C \cap D)$
- Д) порожня множина
- 3. (3 б.) Матриця бінарного відношення, визначеного на множині потужності 5, має наступний вигляд:

$$\begin{pmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \end{pmatrix}.$$

По матриці визначити властивості бінарного відношення.

- А) рефлексивне
- Б) антирефлексивне
- Г) симетричне
- Д) антисиметричне
- E) не ϵ ні рефлексивним, ні антирефлексивним
- Ж) не ϵ ні симетричним, ні антисиметричним
- 3) матриця не може бути матрицею бінарного відношення, визначеного на множині потужності 5

Білет 86

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Що означає, що множина B не обмежена знизу?
- A) $\exists M = const$, $uo \forall b \in B$: M < b
- \mathbf{B}) $\exists M = const$, $u_i o \forall b \in B$: $M \leq b$
- B) $\exists M = const$, $u_io \forall b \in B$: $M \ge b$
- Γ) $\exists M = const$, $uo \forall b \in B: M > b$
- \square) Для $\forall M = const \exists b \in B : M \leq b$
- E) Для $\forall M = const \exists b \in B: M \ge b$
- 2. Вибрати правильні висловлення:
- А) Якщо множина обмежена, то вона скінченна;
- Б) Якщо множина нескінченна, то воно не може бути обмеженою
- В) Якщо множина необмежена, то воно нескінченна
- Г) Множина обмежена тоді і тільки тоді, коли вона скінченна
- 3. Для логічної формули $A \to \overline{B} \longleftrightarrow A$ була побудована таблиця істинності:

A	В	A→Ē↔A
0	0	1
0	1	0
1	0	1
1	1	0

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 4. Множини X і Y такі, що їх об'єднання дорівнює універсальній множині, при цьому ці множини не перетинаються, тоді:
- А) одна з множин є порожньою множиною;

- Б) одна з множин є доповненням другої до універсальної множини
- В) одна з множин є універсальною множиною
- Γ) $X \mid Y = \emptyset$
- 5. Навести змістовний приклад бінарного відношення, яке є антисиметричним і не транзитивним

- 1. (3 б.) Для множини $A = \{1, b, \emptyset\}$ знайти кількість підмножин.
- A) 1
- Б) 2
- B) 3
- Γ) 4
- <u>Д</u>) 7
- E) 8
- 2. (4 б.) Спростити вираз теорії множин : $(A \ B) \cap (A \ C)$
- A) $A \cap \overline{B \cup C}$
- Б) $A \cup \overline{B \cap C}$
- B) $A \setminus (B \cap C)$
- Γ) $A \setminus (B \cup C)$
- 3. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ \langle a, b \rangle, \langle a, c \rangle, \langle b, a \rangle, \langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle \}.$$

Це бінарне відношення ϵ :

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- Д) не ϵ ні симетричним, ні антисиметричним
- E) не ϵ ні рефлексивним, ні антирефлексивним

Білет 87

Теорія (5 запитань. Кожне питання – 2 бали)

1. Для логічної формули $\overline{A
ightarrow B} \leftrightarrow A$ була побудована таблиця істинності:

А	В	Ā→B ↔A
0	0	1
0	1	0
1	0	1
1	1	0

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Γ) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 2. Множина А обмежена зверху. Тоді
- А) вона може не мати верхньої межі

- Б) вона може не мати точної верхньої межі
- В) вона обмежена
- Г) вона може не мати точної нижньої межі
- Д) вона має єдину верхню межу
- Е) вона має нескінченно багато верхніх меж.
- 3. Навести змістовний приклад бінарного відношення, яке не ϵ антисиметричним, ϵ транзитивним
- 4. Яка логічна операція в формулі $A \& B \to \overline{\overline{A} \leftrightarrow \overline{A \vee B}}$ буде виконуватися останньою?
- А) заперечення
- Б) кон'юнкція
- В) диз'юнкція
- Г) еквівалентність
- Д) імплікація
- 5. Відомо, що $A \subset B$ і $a \in B$. Які з наступних тверджень вірні?
- A) $a \in A \cap B$
- Б) *a* ∉ *A*
- B) $A \in B$
- Γ) $a \in B \setminus A$ and $a \in A$

- 1. (4 б.) Спростити вираз теорії множин : $A \setminus (A \setminus B)$
- A) $A \cup B$
- Б) *A* \ *B*
- B) $A \cap B$
- Γ) $A \cap \overline{B}$
- 2. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ \langle a, b \rangle, \langle b, a \rangle, \langle a, a \rangle, \langle b, b \rangle \}.$$

Це бінарне відношення ϵ :

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- Д) не ε ні симетричним, ні антисиметричним
- E) не ϵ ні рефлексивним, ні антирефлексивним
- 3. Побудувати симетричну різницю множин A+B, якщо $A=\{a,b,c\},\ A=\{c,d,f,h\}$
- A) $\{a,b,d,c,f,h\}$
- Б) {*c*}
- B) $\{a,b,d,f,h\}$
- Γ) $\{d, f, h\}$
- $Д) \{a,b\}$

1. Які з наступних тверджень вірні?

- A) $\{\emptyset\}\subset\{a,b\}$
- Б) $\{b\} \subseteq \{a,b\}$
- B) $\{b\} \in \{a, \{b\}\}\$
- Γ) $b \subset \{a, \{b\}\}$
- 2. Для логічної формули $A \to \overline{B \leftrightarrow A}$ була побудована таблиця істинності:

А	В	$A \rightarrow \overline{B} \leftrightarrow \overline{A}$
0	0	1
0	1	0
1	0	1
1	1	0

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 3. Нехай A, B нескінченні множини. Якою буде множина $A \setminus B$?
- А) нескінченною
- Б) скінченною
- В) може бути як скінченною, так і нескінченною
- Г) необмеженою
- 4. Навести змістовний приклад бінарного відношення, яке не ε симетричним, ε транзитивним
- 5. Що означає, що множина B не обмежена зверху?
- A) $\exists M = const$, $uo \forall b \in B$: $M \leq b$
- Б) $\exists M = const$, що $\forall b \in B$: M < b
- B) $\exists M = const$, $uo \forall b \in B$: $M \ge b$
- Γ) $\exists M = const$, $uo \forall b \in B$: M > b
- Д) Для $\forall M = const \exists b \in B : M \leq b$
- E) Для $\forall M = const \exists b \in B : M \ge b$

Практика

- 1. (3 б.) У якому випадку для множин A і B має місце рівність: $A + B = A \bigcup B$?
- A) якщо множини A і B не перетинаються
- Б) якщо $A \subseteq B$
- B) якщо $B \subseteq A$
- Γ) якщо множини A і B перетинаються
- 2. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ \langle a, b \rangle, \langle b, a \rangle \}.$$

Це бінарне відношення ϵ :

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним

- Г) антисиметричним
- Д) не ε ні симетричним, ні антисиметричним
- E) не ε ні рефлексивним, ні антирефлексивним
- 3. (4 б.) Спростити вираз теорії множин : $A \setminus (B \setminus A)$
- A) $A \cup B$
- **Б)** *A* \ *B*
- B) $A \cup (A \cap \overline{B})$
- Γ) $A \cap \overline{B}$

Білет 89

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Навести змістовний приклад бінарного відношення, яке не ε симетричним і не ε антисиметричним
- 2. Яка логічна операція буде виконуватися останньою в формулі $A \& B \to (\overline{A} \leftrightarrow A) \& \overline{A \lor B}$?
- А) заперечення
- Б) кон'юнкція
- В) диз'юнкція
- Г) еквівалентність
- Д) імплікація
- 3. Множина $X = \{1,2,\emptyset,e,N\}$, де N- множина цілих чисел. Вибрати правильні висловлення відносно множини:
- A) потужність множини X дорівнює нескінченності
- Б) Х має 32 підмножини
- В) X має нескінченну кількість підмножин
- Γ) X має скінченну кількість підмножин
- 4. Для логічної формули $A \to \overline{B \& A}$ була побудована таблиця істинності:

A	В	$A \rightarrow \overline{B \wedge A}$
0	0	0
0	1	1
1	0	1
1	1	0

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 5. Що означає, що множина B необмежена зверху?
- A) $\exists M = const$, $uo \forall b \in B$: $M \leq b$
- Б) $\exists M = const$, що $\forall b \in B$: M < b
- B) $\exists M = const$, $uo \forall b \in B$: $M \ge b$

- Γ) $\exists M = const$, $uo \forall b \in B : M > b$
- Д) Для $\forall M = const \exists b \in B : M < b$
- E) Для $\forall M = const \exists b \in B : M \ge b$

- 1. (3 б.) Серед наведених бінарних відношень знайти відношення еквівалентності:
- А) на множині цілих чисел Z: $a \rho b$, якщо a < b
- Б) на множині натуральних чисел N: $a \rho b$, якщо $a \ge b$
- В) на множині людей: $a \rho b$, якщо a ненавидить b
- Γ) на множині працівників одного заводу: $a \rho b$, якщо a підлеглий b
- Д) на множині яблук на прилавку одного магазину: $a \rho b$, якщо a має такий самий колір, що і b
- 2. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ \langle a, b \rangle, \langle a, a \rangle, \langle c, c \rangle \}.$$

Це бінарне відношення є:

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- Д) не ϵ ні симетричним, ні антисиметричним
- E) не ϵ ні рефлексивним, ні антирефлексивним
- 3. (4 б.) Спростити вираз теорії множин : $(A \mid C) \mid (B \mid C)$
- A) $A \cap B \cap \overline{C}$
- Б) $A \cap \overline{B} \cap \overline{C}$
- B) $A \cup \overline{B} \cup \overline{C}$
- Γ) $A \cup (\overline{B} \cap \overline{C})$

Білет 90

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Відомо, що $A \subseteq B$ і $a \in A$. Які з наступних тверджень вірні?
- A) $a \in A \cap B$
- Б) $a \subset A$
- B) $A \in B$
- Γ) $a \notin B \cap A$
- 2. Навести змістовний приклад бінарного відношення, яке не ε рефлексивним і не ε антирефлексивним
- 3. Для логічної формули $\overline{A \to B \ \& \ A}$ була побудована таблиця істинності:

А	В	$\overline{A - B \wedge A}$
0	0	0
0	1	0
1	0	1
1	1	0

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 4. Нехай A обмежена, а B необмежена множина. Якою буде множина $A \cup B$?
- А) необмеженою
- Б) обмеженою
- В) може бути як обмеженою, так і необмеженою
- Г) може бути скінченною
- 5. Яка логічна операція буде в формулі $\overline{A \& (B \to \overline{A}) \leftrightarrow \overline{A \lor B}}$ виконуватися останньою?
- А) заперечення
- Б) кон'юнкція
- В) диз'юнкція
- Г) еквівалентність
- Д) імплікація

- 1. (3 б.) Серед наведених бінарних відношень знайти відношення строгого порядку:
- А) на множині цілих чисел Z: $a \rho b$, якщо $a \leq b$
- Б) на множині натуральних чисел N: $a \rho b$, якщо $a \ge b$
- В) на множині людей: $a \rho b$, якщо a знає b
- Γ) на множині працівників одного заводу: $a \circ b$, якщо a працює в одному кабінеті з b
- Д) на множині яблук на прилавку одного магазину: $a \rho b$, якщо a солодше за b
- 2. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ \langle a, b \rangle, \langle b, a \rangle, \langle a, c \rangle, \langle c, a \rangle, \langle a, a \rangle, \langle c, c \rangle \}.$$

Це бінарне відношення ϵ :

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- Λ) не ϵ ні симетричним, ні антисиметричним
- E) не ϵ ні рефлексивним, ні антирефлексивним
- 3. (4 б.) Спростити вираз теорії множин : $(A \cup C) \cap (B \cup C) \cap (A \cup D) \cap (B \cup D)$
- A) $A \cap B \cap C \cup D$
- $\mathsf{F})\ (A \cup B) \cap (C \cup D)$
- B) $(A \cap B) \cap (C \cup D)$
- Γ) $(A \cap B) \cup (C \cap D)$
- Д) порожня множина

Білет 91

Теорія (5 запитань. Кожне питання – 2 бали)

1. Для логічної формули $A \to \overline{A} \to B$ була побудована таблиця істинності:

A	В	A→Ā→B
0	0	0
0	1	1
1	0	0
1	1	1

- А) В першому
- Б) в другому
- В) в третьому
- Г) в останньому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 2. Нехай A, B необмежені множини. Якою буде множина $A \cup B$?
- А) необмеженою
- Б) обмеженою
- В) може бути як обмеженою, так і необмеженою
- Г) може бути скінченною
- 3. Скільки елементів в множині $A = \{\{1, \{1\}\}, Z, \{1, \{2,3\}\}, \varnothing\}, \text{ де } Z \text{множина цілих чисел?}$
- A) 5
- Б) 0
- B) 4
- Г) нескінченно багато
- 4. Обрати вірні твердження:
- А) Скінченна множина може бути необмеженою
- Б) Нескінченна множина може бути обмеженою
- В) Скінченна множина може бути як обмеженою, так і необмеженою
- Г) нескінченна множина не може бути обмеженою
- 5. Навести змістовний приклад бінарного відношення, яке ϵ транзитивним і не ϵ рефлексивним

Практика

- 1. (2 б.) Скільки підмножин має множина $A = \{\emptyset\}$.
- А) жодної
- Б) 1
- B) 2
- Γ) 3
- 2. (4 б.) Спростити вираз теорії множин : $(A \cap B) \setminus (A \cap C)$
- A) $(A \cap B) \setminus C$
- A ∩ B ∩ \overline{C}
- B) $(A \cup B) \setminus C$
- $\Gamma) \; \big(A \cap B\big) \backslash \, \overline{C}$
- 3. (3 б.) Матриця бінарного відношення, визначеного на множині потужності 5, має наступний вигляд:

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{pmatrix}.$$

По матриці визначити властивості бінарного відношення.

- А) рефлексивне
- Б) антирефлексивне
- Г) симетричне
- Д) антисиметричне
- E) не ϵ ні рефлексивним, ні антирефлексивним
- Ж) не ε ні симетричним, ні антисиметричним
- 3) матриця не може бути матрицею бінарного відношення, визначеного на множині потужності 5

Білет 92

Теорія (5 запитань. Кожне питання – 2 бали)

1. Для логічної формули $\overline{A \to B} \leftrightarrow A$ була побудована таблиця істинності:

A	В	Ā→B ↔A
0	0	1
0	1	0
1	0	1
1	1	0

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 2. Множина А обмежена зверху. Тоді
- А) вона може не мати верхньої межі
- Б) вона може не мати точної верхньої межі
- В) вона обмежена
- Г) вона може не мати точної нижньої межі
- Д) вона має єдину верхню межу
- Е) вона має нескінченно багато верхніх меж.
- 3. Навести змістовний приклад бінарного відношення, яке не ϵ антисиметричним, ϵ транзитивним
- 4. Яка логічна операція в формулі $A \& B \to \overline{\overline{A} \leftrightarrow \overline{A \vee B}}$ буде виконуватися останньою?
- А) заперечення
- Б) кон'юнкція
- В) диз'юнкція
- Г) еквівалентність
- Д) імплікація
- 5. Відомо, що $A \subset B$ і $a \in B$. Які з наступних тверджень вірні?

- A) $a \in A \cap B$
- **Б**) *a* ∉ *A*
- B) $A \in B$
- Γ) $a \in B \setminus A$ and $a \in A$

- 1. (4 б.) Спростити вираз теорії множин : $A \setminus (A \setminus B)$
- A) $A \cup B$
- Б) *A* \ *B*
- B) $A \cap B$
- Γ) $A \cap \overline{B}$
- 2. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ \langle a, b \rangle, \langle b, a \rangle, \langle a, a \rangle, \langle b, b \rangle \}.$$

Це бінарне відношення ϵ :

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- Д) не ε ні симетричним, ні антисиметричним
- E) не ϵ ні рефлексивним, ні антирефлексивним
- 3. Побудувати симетричну різницю множин A+B, якщо $A = \{a,b,c\}, A = \{c,d,f,h\}$
- A) $\{a, b, d, c, f, h\}$
- Б) {*c*}
- B) $\{a,b,d,f,h\}$
- Γ) $\{d, f, h\}$
- Д) $\{a,b\}$

Білет 93

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Що означає, що множина B не обмежена знизу?
- A) $\exists M = const$, $uo \forall b \in B$: M < b
- B) $\exists M = const$, $uo \forall b \in B$: $M \leq b$
- B) $\exists M = const$, $uo \forall b \in B$: $M \ge b$
- Γ) $\exists M = const$, $uqo \forall b \in B$: M > b
- Д) Для $\forall M = const \exists b \in B: M \leq b$
- E) $A = const \exists b \in B : M \ge b$
- 2. Вибрати правильні висловлення:
- А) Якщо множина обмежена, то вона скінченна;
- Б) Якщо множина нескінченна, то воно не може бути обмеженою
- В) Якщо множина необмежена, то воно нескінченна
- Г) Множина обмежена тоді і тільки тоді, коли вона скінченна
- 3. Для логічної формули $A \to \overline{B} \longleftrightarrow A$ була побудована таблиця істинності:

A	В	A→B↔A
0	0	1
0	1	0
1	0	1
1	1	0

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 4. Множини X і Y такі, що їх об'єднання дорівнює універсальній множині, при цьому ці множини не перетинаються, тоді:
- А) одна з множин є порожньою множиною;
- Б) одна з множин ϵ доповненням другої до універсальної множини
- B) одна з множин ϵ універсальною множиною
- Γ) $X \mid Y = \emptyset$
- 5. Навести змістовний приклад бінарного відношення, яке ϵ антисиметричним і не транзитивним

Практика

- 1. (3 б.) Для множини $A = \{1, b, \emptyset\}$ знайти кількість підмножин.
- A) 1
- Б) 2
- B) 3
- Γ) 4
- Д) 7
- E) 8
- 2. (4 б.) Спростити вираз теорії множин : $(A | B) \cap (A | C)$
- A) $A \cap \overline{B \cup C}$
- Б) $A \cup \overline{B \cap C}$
- B) $A \setminus (B \cap C)$
- $\Gamma)\ A \backslash \big(B \bigcup C\big)$
- 3. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ \langle a, b \rangle, \langle a, c \rangle, \langle b, a \rangle, \langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle \}.$$

Це бінарне відношення є:

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- Д) не ε ні симетричним, ні антисиметричним
- E) не ϵ ні рефлексивним, ні антирефлексивним

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Відомо, що $A \subseteq B$ і $a \in A$. Які з наступних тверджень вірні?
- A) $a \in A \cap B$
- Б) $a \subset A$
- B) $A \in B$
- Γ) $a \notin B \cap A$
- 2. Навести змістовний приклад бінарного відношення, яке не ε рефлексивним і не ε антирефлексивним
- 3. Для логічної формули $\overline{A \to B \& A}$ була побудована таблиця істинності:

A	В	$\overline{A - B \wedge A}$
0	0	0
0	1	0
1	0	1
1	1	0

В яких рядках таблиці зроблено помилку?

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 4. Нехай A обмежена, а B необмежена множина. Якою буде множина $A \bigcup B$?
- А) необмеженою
- Б) обмеженою
- В) може бути як обмеженою, так і необмеженою
- Г) може бути скінченною
- 5. Яка логічна операція буде в формулі $\overline{A \& (B \to \overline{A}) \longleftrightarrow \overline{A \lor B}}$ виконуватися останньою?
- А) заперечення
- Б) кон'юнкція
- В) диз'юнкція
- Г) еквівалентність
- Д) імплікація

Практика

- 1. (3 б.) Серед наведених бінарних відношень знайти відношення строгого порядку:
- А) на множині цілих чисел Z: $a \rho b$, якщо $a \le b$
- Б) на множині натуральних чисел N: $a \rho b$, якщо $a \ge b$
- В) на множині людей: $a \rho b$, якщо a знає b
- Γ) на множині працівників одного заводу: $a \circ b$, якщо a працює в одному кабінеті з b
- Д) на множині яблук на прилавку одного магазину: $a \rho b$, якщо a солодше за b
- 2. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ \langle a, b \rangle, \langle b, a \rangle, \langle a, c \rangle, \langle c, a \rangle, \langle a, a \rangle, \langle c, c \rangle \}.$$

Це бінарне відношення ϵ :

А) рефлексивним

- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- Д) не ϵ ні симетричним, ні антисиметричним
- Е) не є ні рефлексивним, ні антирефлексивним
- 3. (4 б.) Спростити вираз теорії множин : $(A \cup C) \cap (B \cup C) \cap (A \cup D) \cap (B \cup D)$
- A) $A \cap B \cap C \cup D$
- $\mathsf{E}(A \cup B) \cap (C \cup D)$
- B) $(A \cap B) \cap (C \cup D)$
- Γ) $(A \cap B) \cup (C \cap D)$
- Д) порожня множина

Білет 95

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Які з наступних тверджень вірні?
- A) $\{\emptyset\}\subset\{a,b\}$
- Б) $\{b\} \subseteq \{a,b\}$
- B) $\{b\} \in \{a, \{b\}\}\$
- Γ) $b \subset \{a, \{b\}\}$
- 2. Для логічної формули $A \to \overline{B \leftrightarrow A}$ була побудована таблиця істинності:

А	В	A→B↔A
0	0	1
0	1	0
1	0	1
1	1	0

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 3. Нехай A, B нескінченні множини. Якою буде множина $A \mid B$?
- А) нескінченною
- Б) скінченною
- В) може бути як скінченною, так і нескінченною
- Г) необмеженою
- 4. Навести змістовний приклад бінарного відношення, яке не ϵ симетричним, ϵ транзитивним
- 5. Що означає, що множина B не обмежена зверху?
- A) $\exists M = const$, $u_io \forall b \in B$: $M \leq b$
- Б) $\exists M = const$, що $\forall b \in B$: M < b
- B) $\exists M = const$, $uo \forall b \in B : M \ge b$

- Γ) $\exists M = const$, $uo \forall b \in B$: M > b
- Д) Для $\forall M = const \exists b \in B : M \leq b$
- E) Для $\forall M = const \exists b \in B : M \ge b$

- 1. (3 б.) У якому випадку для множин A і B має місце рівність: $A + B = A \cup B$?
- А) якщо множини A і B не перетинаються
- Б) якщо $A \subseteq B$
- B) якщо $B \subseteq A$
- Γ) якщо множини A і B перетинаються
- 2. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ \langle a, b \rangle, \langle b, a \rangle \}.$$

Це бінарне відношення ϵ :

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- Π) не ϵ ні симетричним, ні антисиметричним
- E) не ϵ ні рефлексивним, ні антирефлексивним
- 3. (4 б.) Спростити вираз теорії множин : $A \setminus (B \setminus A)$
- A) $A \cup B$
- Б) *A\B*
- B) $A \cup (A \cap \overline{B})$
- Γ) $A \cap \overline{B}$

Білет 96

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Яка логічна операція в цій формулі буде виконуватися останньою $A \& B \to \overline{A} \leftrightarrow A \lor B$?
- А) заперечення
- Б) кон'юнкція
- В) диз'юнкція
- Г) еквівалентність
- Д) імплікація
- 2. Навести змістовний приклад бінарного відношення, яке не ϵ рефлексивним і не ϵ симетричним
- 3. Що означає, що множина В обмежена?
- A) $\exists M = const, M \ge 0$, $uo \forall b \in B : |b| \le M$
- Б) $\exists M = const$, що $\forall b \in B$: $M \leq b$
- B) $\exists M = const$, $uo \forall b \in B$: $M \ge b$
- Γ) $\exists M = const, M \ge 0$, $u_io \forall b \in B$: |b| < M
- Д) $\exists M = const, M \ge 0$, що $\forall b \in B$: $|b| \ge M$
- E) $\exists M = const, M \ge 0$, $uqo \forall b \in B: |b| > M$

4. Множина $X = \{a, b, c, d, e\}$. Вибрати правильні висловлення:

A)
$$\{a,b,c,d\} \not\subset X$$

Б)
$$\{a\} \in X$$

B)
$$\{a,b,e\}\subseteq X$$

$$\Gamma$$
) $X \in X$

5. Для логічної формули $A \& \overline{B} \leftrightarrow A$ була побудована таблиця істинності:

А	В	A∧Ē↔A
0	0	1
0	1	0
1	0	1
1	1	0

В яких рядках таблиці зроблено помилку?

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках

Практика

1. Нехай множина $A = \{-4,5,0,-3,6\}, B = \{-4,5,0,-3,6,8\}.$ Побудувати симетричну різницю A + B.

A)
$$\{-4,5,0,-3,6\}$$

$$\Gamma) \varnothing$$

2. (4 б.) Спростити вираз теорії множин : $(A \cap C) \cup (B \cap C) \cup (A \cap D) \cup (B \cap D)$

A)
$$A \cap B \cap C \cup D$$

$$\mathsf{F})\ \big(A\cup B\big)\cap \big(C\cup D\big)$$

B)
$$(A \cap B) \cap (C \cup D)$$

$$\Gamma$$
) $(A \cap B) \cup (C \cap D)$

Д) порожня множина

3. (3 б.) Матриця бінарного відношення, визначеного на множині потужності 5, має наступний вигляд:

$$\begin{pmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \end{pmatrix}$$

По матриці визначити властивості бінарного відношення.

- А) рефлексивне
- Б) антирефлексивне
- Г) симетричне

- Д) антисиметричне
- E) не ϵ ні рефлексивним, ні антирефлексивним
- Ж) не ϵ ні симетричним, ні антисиметричним
- 3) матриця не може бути матрицею бінарного відношення, визначеного на множині потужності 5

Білет 97

Теорія (5 запитань. Кожне питання – 2 бали)

1. Для логічної формули $A \vee \overline{B} \leftrightarrow A$ була побудована таблиця істинності:

A	В	A∨Ē⊶A
0	0	0
0	1	0
1	0	0
1	1	1

В яких рядках таблиці зроблено помилку?

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в першому і четвертому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 2. Обрати правильні висловлення:
- А) Якщо множина необмежена, у неї обов'язково не існують точна верхня і точна нижня межі
- Б) Якщо множина обмежена, у неї існує точна верхня і точна нижня межі
- В) Якщо множина обмежена, у неї обов'язково існують верхня і нижня межі, але точна верхня, точна нижня межі можуть не існувати
- Г) Якщо множина необмежена, вона необмежена як знизу, так і зверху.
- 3. Побудувати логічну формулу, яка відповідає складному висловленню: «Якщо я буду жити в гуртожитку і отримаю стипендію в наступному семестрі, то влітку зможу на накопичені гроші або купити новий телефон, або зробити подарунок мамі на день народження».
- A) $A \& B \rightarrow (C \oplus B)$
- $B) A & B \rightarrow (C \vee B)$
- B) $A \& B \rightarrow C \lor B$
- Γ) $(A & B) \rightarrow (C \oplus B)$
- 4. Навести змістовний приклад бінарного відношення, яке ϵ симетричним і не ϵ антирефлексивним
- 5. Відомо, що $A \subset B$ і $a \in A \cap B$. Які з наступних тверджень вірні?
- A) $a \in B$
- Б) $a \notin A$
- B) $a \notin B \setminus A$
- Γ) $a \in B \setminus A$

Практика

1. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ < a,b>, < a,c>, < b,a> \}.$$

Це бінарне відношення ϵ :

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- Д) не ε ні симетричним, ні антисиметричним
- E) не ε ні рефлексивним, ні антирефлексивним
- 2. (4 б.) Спростити вираз теорії множин : $(A \setminus B) \cap (A \setminus C)$
- A) $A \cap \overline{B \cup C}$
- Б) $A \cup \overline{B \cap C}$
- B) $A \setminus (B \cap C)$
- Γ) $A \setminus (B \cup C)$
- 3. (3 б.) Множина $A = \{1,2,3,4\}$. Скільки строгих підмножин має ця множина
- A) 4
- Б) 2
- B) 16
- Γ) 15
- Д) 7

Білет 98

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Навести змістовний приклад бінарного відношення, яке ϵ транзитивним і не ϵ антирефлексивним. Показати, що наведене бінарне відношення дійсно ϵ транзитивним і не ϵ антирефлексивним.
- 2. Для логічної формули $A \to \overline{A} \& B$ була побудована таблиця істинності:

А	В	A→Ā∧B
0	0	1
0	1	1
1	0	0
1	1	0

- А) В першому
- Б) в другому
- В) в першому і третьому
- Г) в останньому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 3. Що означає, що множина B необмежена знизу?
- A) $\exists M = const$, $uo \forall b \in B$: $M \leq b$
- Б) $\exists M = const$, що $\forall b \in B$: M < b
- B) $\exists M = const$, $uo \forall b \in B$: $M \ge b$
- Γ) $\exists M = const$, $uo \forall b \in B$: M > b
- Д) Для $\forall M = const \exists b \in B : M \leq b$
- E) Для $\forall M = const \exists b \in B : M > b$

- 4. Нехай A обмежена, а B необмежена множина. Якою буде множина $A \cap B$? А) нескінченною Б) скінченною В) може бути як скінченною, так і нескінченною Г) необмеженою 5. Серед тверджень знайти вірні: А) Для основних логічних операцій їх приорітет буде наступним: 1.кон'юнкція, 2. диз'юнкція, 3 – всі інші Б) Для основних логічних операцій їх приорітет буде наступним: 1. інверсія, 2. кон'юнкція, 3. диз'юнкція, 4 – всі інші В) Пріоритет логічних операцій визначається лише за допомогою дужок Г) Для основних логічних операцій їх приорітет буде наступним: 1. інверсія, 2. диз'юнкція, 3. кон'юнкція, 4 – всі інші Практика 1. (3 б.) Множина $A = \{1, a, b, 7, \emptyset\}$. Скільки строгих підмножин має ця множина A) 5 Б) 32 B) 23 Γ) 31 Д) 7 2. (3 б.) Матриця бінарного відношення, визначеного на множині потужності 5, має наступний вигляд:
 1
 1
 1
 0
 1

 1
 0
 1
 0
 0
 1

 1
 0
 1
 1
 1
 1
 По матриці визначити властивості бінарного відношення. А) рефлексивне Б) антирефлексивне Г) симетричне Д) антисиметричне E) не ϵ ні рефлексивним, ні антирефлексивним Ж) не ε ні симетричним, ні антисиметричним
- 3) матриця не може бути матрицею бінарного відношення, визначеного на множині потужності 5
- 3. (4 б.) Спростити вираз теорії множин : $(A \cup C) \cap (B \cup C) \cap (A \cup D) \cap (B \cup D)$
- A) $A \cap B \cap C \cup D$
- $\mathsf{E}(A \cup B) \cap (C \cup D)$
- B) $(A \cap B) \cap (C \cup D)$
- Γ) $(A \cap B) \cup (C \cap D)$
- Д) порожня множина

Білет 99

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Число A називається інфімумом множини X, якщо:
- А) A верхня межа X і для $\forall \varepsilon > 0$ знайдеться такий елемент $x \in X$, що $x < A + \varepsilon$.

- Б) для $\forall \varepsilon > 0$ знайдеться такий елемент $x \in X$, що $x < A + \varepsilon$.
- В) A нижня межа X і для $\forall \varepsilon > 0$ знайдеться такий елемент $x \in X$, що $x < A + \varepsilon$.
- Γ) A це найменша з верхніх меж множини X
- Д) A нижня межа X і для $\forall \varepsilon$ знайдеться такий елемент $x \in X$, що $x < A + \varepsilon$.
- Е) A верхня межа X і для $\forall \varepsilon > 0$ знайдеться такий елемент $x \in X$, що $x > A \varepsilon$.
- 2. Для логічної формули $A \& B \to \overline{A}$ була побудована таблиця істинності:

A	В	A∧B→Ā
0	0	1
0	1	1
1	0	0
1	1	1

- А) В першому
- Б) в другому
- В) в третьому і четвертому
- Г) в першому і четвертому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 3. Навести змістовний приклад бінарного відношення, яке не ε симетричним і не ε антирефлексивним
- 4. Вибрати правильні висловлення:
- A) Якщо $a \in X$ і $a \in Y$, то $X \subset Y$ або $Y \subset X$
- Б) Якщо $a \in X$ і $a \in Y$, то $X \cap Y \neq \emptyset$
- В) Якщо $a \in X$ і $a \in Y$, то $a \in X \cap Y$
- Γ) Якщо $X \cap Y \neq \emptyset$, то $X \subseteq Y$ або $Y \subseteq X$
- Д) Якщо $X \subset Y$ або $Y \subset X$, то X = Y
- 5. Нехай A обмежена, а B необмежена множина. Якою буде множина $A \cap B$?
- А) нескінченною
- Б) скінченною
- В) може бути як скінченною, так і нескінченною
- Г) необмеженою

Практика

1. (3 б.) Матриця бінарного відношення, визначеного на множині потужності 5, має наступний вигляд:

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{pmatrix}.$$

По матриці визначити властивості бінарного відношення.

- А) рефлексивне
- Б) антирефлексивне

- Г) симетричне
- Д) антисиметричне
- E) не ε ні рефлексивним, ні антирефлексивним
- Ж) не ϵ ні симетричним, ні антисиметричним
- 3) матриця не може бути матрицею бінарного відношення, визначеного на множині потужності 5
- 2. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ < a, a >, < a, b >, < a, c >, < b, a > \}.$$

Це бінарне відношення є:

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- Д) не ϵ ні симетричним, ні антисиметричним
- Е) не є ні рефлексивним, ні антирефлексивним
- 3. (4 б.) Спростити вираз теорії множин : $(A \ B) \cup (A \ C)$
- A) $A \cap \overline{B \cap C}$
- Б) $A \cup \overline{B \cap C}$
- B) $A \setminus (B \cap C)$
- Γ) $A \setminus (B \cup C)$

Білет 100

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Навести змістовний приклад бінарного відношення, яке не ε симетричним і не ε антисиметричним
- 2. Яка логічна операція буде виконуватися останньою в формулі $A \& B \to (\overline{A} \leftrightarrow A) \& \overline{A \lor B}$?
- А) заперечення
- Б) кон'юнкція
- В) диз'юнкція
- Г) еквівалентність
- Д) імплікація
- 3. Множина $X = \{1,2,\emptyset,e,N\}$, де N- множина цілих чисел. Вибрати правильні висловлення відносно множини:
- A) потужність множини X дорівнює нескінченності
- Б) X має 32 підмножини
- В) X має нескінченну кількість підмножин
- Γ) X має скінченну кількість підмножин
- 4. Для логічної формули $A \to \overline{B \& A}$ була побудована таблиця істинності:

A	В	$A - \overline{B \wedge A}$
0	0	0
0	1	1
1	0	1
1	1	0

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 5. Що означає, що множина B необмежена зверху?
- A) $\exists M = const$, $u_i o \forall b \in B$: $M \leq b$
- $\exists M = const$, wo $\forall b \in B$: M < b
- B) $\exists M = const$, $uo \forall b \in B$: $M \ge b$
- Γ) $\exists M = const$, $uo \forall b \in B : M > b$
- Д) Для $\forall M = const \exists b \in B : M < b$
- E) Для $\forall M = const \exists b \in B : M \ge b$

- 1. (3 б.) Серед наведених бінарних відношень знайти відношення еквівалентності:
- A) на множині цілих чисел Z: $a \rho b$, якщо a < b
- Б) на множині натуральних чисел N: $a \rho b$, якщо $a \ge b$
- В) на множині людей: $a \rho b$, якщо a ненавидить b
- Γ) на множині працівників одного заводу: $a \rho b$, якщо a підлеглий b
- Д) на множині яблук на прилавку одного магазину: $a \rho b$, якщо a має такий самий колір, що і b
- 2. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ \langle a, b \rangle, \langle a, a \rangle, \langle c, c \rangle \}.$$

Це бінарне відношення ϵ :

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- \square) не ε ні симетричним, ні антисиметричним
- E) не ϵ ні рефлексивним, ні антирефлексивним
- 3. (4 б.) Спростити вираз теорії множин : (A | C) | (B | C)
- A) $A \cap B \cap \overline{C}$
- Б) $A \cap \overline{B} \cap \overline{C}$
- B) $A \cup \overline{B} \cup \overline{C}$
- Γ) $A \cup (\overline{B} \cap \overline{C})$

Білет 101

Теорія (5 запитань. Кожне питання – 2 бали)

1. Для логічної формули $A \vee \overline{B} \leftrightarrow A$ була побудована таблиця істинності:

A	В	A∨Ē↔A
0	0	0
0	1	0
1	0	0
1	1	1

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в першому і четвертому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 2. Обрати правильні висловлення:
- А) Якщо множина необмежена, у неї обов'язково не існують точна верхня і точна нижня межі
- Б) Якщо множина обмежена, у неї існує точна верхня і точна нижня межі
- В) Якщо множина обмежена, у неї обов'язково існують верхня і нижня межі, але точна верхня, точна нижня межі можуть не існувати
- Г) Якщо множина необмежена, вона необмежена як знизу, так і зверху.
- 3. Побудувати логічну формулу, яка відповідає складному висловленню: «Якщо я буду жити в гуртожитку і отримаю стипендію в наступному семестрі, то влітку зможу на накопичені гроші або купити новий телефон, або зробити подарунок мамі на день народження».
- A) $A \& B \rightarrow (C \oplus B)$
- $\mathsf{F}) \ A \& B \to (C \vee B)$
- B) $A \& B \rightarrow C \lor B$
- Γ) $(A & B) \rightarrow (C \oplus B)$
- 4. Навести змістовний приклад бінарного відношення, яке є симетричним і не є антирефлексивним
- 5. Відомо, що $A \subset B$ і $a \in A \cap B$. Які з наступних тверджень вірні?
- A) $a \in B$
- Б) a ∉ A
- B) $a \notin B \setminus A$
- Γ) $a \in B \setminus A$

Практика

1. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

$$\rho = \{ < a,b>, < a,c>, < b,a> \}.$$

Це бінарне відношення ϵ :

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- Д) не ε ні симетричним, ні антисиметричним
- E) не ϵ ні рефлексивним, ні антирефлексивним
- 2. (4 б.) Спростити вираз теорії множин : $(A \setminus B) \cap (A \setminus C)$
- A) $A \cap \overline{B \cup C}$
- Б) $A \cup \overline{B \cap C}$
- B) $A \setminus (B \cap C)$
- Γ) $A \setminus (B \cup C)$
- 3. (3 б.) Множина $A = \{1,2,3,4\}$. Скільки строгих підмножин має ця множина

- A) 4
- Б) 2
- B) 16 Γ) 15
- Д) 7

Білет 102

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Навести змістовний приклад бінарного відношення, яке ϵ транзитивним і не ϵ антирефлексивним. Показати, що наведене бінарне відношення дійсно ϵ транзитивним і не ϵ антирефлексивним.
- 2. Для логічної формули $A \to \overline{A} \& B$ була побудована таблиця істинності:

А	В	A→Ā∧B
0	0	1
0	1	1
1	0	0
1	1	0

В яких рядках таблиці зроблено помилку?

- А) В першому
- Б) в другому
- В) в першому і третьому
- Г) в останньому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 3. Що означає, що множина B необмежена знизу?
- A) $\exists M = const, \quad uo \quad \forall b \in B: \quad M \leq b$
- $\exists M = const$, wo $\forall b \in B$: M < b
- B) $\exists M = const$, $uo \forall b \in B$: $M \ge b$
- Γ) $\exists M = const$, $uo \forall b \in B$: M > b
- Д) Для $\forall M = const \exists b \in B : M \leq b$
- E) Для $\forall M = const \exists b \in B : M > b$
- 4. Нехай A обмежена, а B необмежена множина. Якою буде множина $A \cap B$?
- А) нескінченною
- Б) скінченною
- В) може бути як скінченною, так і нескінченною
- Г) необмеженою
- 5. Серед тверджень знайти вірні:
- А) Для основних логічних операцій їх приорітет буде наступним: 1.кон'юнкція, 2. диз'юнкція, 3 всі інші
- Б) Для основних логічних операцій їх приорітет буде наступним: 1. інверсія, 2. кон'юнкція, 3. диз'юнкція, 4 всі інші
- В) Пріоритет логічних операцій визначається лише за допомогою дужок
- Γ) Для основних логічних операцій їх приорітет буде наступним: 1. інверсія, 2. диз'юнкція, 3. кон'юнкція, 4 всі інші

Практика

- 1. (3 б.) Множина $A = \{1, a, b, 7, \varnothing\}$. Скільки строгих підмножин має ця множина A) 5 Б) 32 В) 23
- Г) 31 Д) 7
- 2. (3 б.) Матриця бінарного відношення, визначеного на множині потужності 5, має наступний вигляд:

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{pmatrix}.$$

По матриці визначити властивості бінарного відношення.

- А) рефлексивне
- Б) антирефлексивне
- Г) симетричне
- Д) антисиметричне
- E) не ϵ ні рефлексивним, ні антирефлексивним
- Ж) не ϵ ні симетричним, ні антисиметричним
- 3) матриця не може бути матрицею бінарного відношення, визначеного на множині потужності 5
- 3. (4 б.) Спростити вираз теорії множин : $(A \cup C) \cap (B \cup C) \cap (A \cup D) \cap (B \cup D)$
- A) $A \cap B \cap C \cup D$
- $\mathsf{E}(A \cup B) \cap (C \cup D)$
- B) $(A \cap B) \cap (C \cup D)$
- $\Gamma) (A \cap B) \cup (C \cap D)$
- Д) порожня множина

Білет 103

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Яка логічна операція в цій формулі буде виконуватися останньою $A \& B \to \overline{A} \leftrightarrow A \lor B$?
- А) заперечення
- Б) кон'юнкція
- В) диз'юнкція
- Г) еквівалентність
- Д) імплікація
- 2. Навести змістовний приклад бінарного відношення, яке не ϵ рефлексивним і не ϵ симетричним
- 3. Що означає, що множина B обмежена?
- A) $\exists M = const, M \ge 0$, $u_i o \forall b \in B$: $|b| \le M$
- Б) $\exists M = const$, що $\forall b \in B$: $M \leq b$
- B) $\exists M = const$, $uo \forall b \in B : M \ge b$
- Γ) $\exists M = const, M \ge 0$, $ugo \forall b \in B: |b| < M$
- Д) $\exists M = const, M \ge 0$, що $\forall b \in B$: $|b| \ge M$

E)
$$\exists M = const, M \ge 0$$
, $uo \forall b \in B$: $|b| > M$

4. Множина $X = \{a, b, c, d, e\}$. Вибрати правильні висловлення:

A)
$$\{a,b,c,d\} \not\subset X$$

Б)
$$\{a\} \in X$$

B)
$$\{a,b,e\}\subseteq X$$

$$\Gamma$$
) $X \in X$

5. Для логічної формули $A \& \overline{B} \leftrightarrow A$ була побудована таблиця істинності:

A	В	A∧B↔A
0	0	1
0	1	0
1	0	1
1	1	0

В яких рядках таблиці зроблено помилку?

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках

Практика

1. Нехай множина $A = \{-4,5,0,-3,6\}$, $B = \{-4,5,0,-3,6,8\}$. Побудувати симетричну різницю A + B.

A)
$$\{-4,5,0,-3,6\}$$

$$\Gamma$$
) \emptyset

2. (4 б.) Спростити вираз теорії множин : $(A \cap C) \cup (B \cap C) \cup (A \cap D) \cup (B \cap D)$

A)
$$A \cap B \cap C \cup D$$

Б)
$$(A \cup B) \cap (C \cup D)$$

B)
$$(A \cap B) \cap (C \cup D)$$

$$\Gamma$$
) $(A \cap B) \cup (C \cap D)$

Д) порожня множина

3. (3 б.) Матриця бінарного відношення, визначеного на множині потужності 5, має наступний вигляд:

$$\begin{pmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \end{pmatrix}.$$

По матриці визначити властивості бінарного відношення.

- А) рефлексивне
- Б) антирефлексивне
- Г) симетричне
- Д) антисиметричне
- E) не ϵ ні рефлексивним, ні антирефлексивним
- Ж) не ε ні симетричним, ні антисиметричним
- 3) матриця не може бути матрицею бінарного відношення, визначеного на множині потужності 5

Білет 104

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Число A називається інфімумом множини X, якщо:
- А) A верхня межа X і для $\forall \varepsilon > 0$ знайдеться такий елемент $x \in X$, що $x < A + \varepsilon$.
- Б) для $\forall \varepsilon > 0$ знайдеться такий елемент $x \in X$, що $x < A + \varepsilon$.
- В) A нижня межа X і для $\forall \varepsilon > 0$ знайдеться такий елемент $x \in X$, що $x < A + \varepsilon$.
- Γ) A це найменша з верхніх меж множини X
- Д) A нижня межа X і для $\forall \varepsilon$ знайдеться такий елемент $x \in X$, що $x < A + \varepsilon$.
- Е) A верхня межа X і для $\forall \varepsilon > 0$ знайдеться такий елемент $x \in X$, що $x > A \varepsilon$.
- 2. Для логічної формули $A \& B \to \overline{A}$ була побудована таблиця істинності:

A	В	A∧B→Ā
0	0	1
0	1	1
1	0	0
1	1	1

- А) В першому
- Б) в другому
- В) в третьому і четвертому
- Г) в першому і четвертому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 3. Навести змістовний приклад бінарного відношення, яке не ε симетричним і не ε антирефлексивним
- 4. Вибрати правильні висловлення:
- A) Якщо $a \in X$ і $a \in Y$, то $X \subseteq Y$ або $Y \subseteq X$
- Б) Якщо $a \in X$ і $a \in Y$, то $X \cap Y \neq \emptyset$
- В) Якщо $a \in X$ і $a \in Y$, то $a \in X \cap Y$
- Γ) Якщо $X \cap Y \neq \emptyset$, то $X \subseteq Y$ або $Y \subseteq X$
- Д) Якщо $X \subset Y$ або $Y \subset X$, то X = Y
- 5. Нехай A обмежена, а B необмежена множина. Якою буде множина $A \cap B$?
- А) нескінченною
- Б) скінченною
- В) може бути як скінченною, так і нескінченною
- Г) необмеженою

1. (3 б.) Матриця бінарного відношення, визначеного на множині потужності 5, має наступний вигляд:

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{pmatrix}.$$

По матриці визначити властивості бінарного відношення.

- А) рефлексивне
- Б) антирефлексивне
- Г) симетричне
- Д) антисиметричне
- E) не ϵ ні рефлексивним, ні антирефлексивним
- Ж) не ϵ ні симетричним, ні антисиметричним
- 3) матриця не може бути матрицею бінарного відношення, визначеного на множині потужності 5
- 2. (3 б.) Бінарне відношення задане на множині $A = \{a,b,c\}$ наступним чином:

$$\rho = \{ \langle a, a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle b, a \rangle \}.$$

Це бінарне відношення ϵ :

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- Д) не ε ні симетричним, ні антисиметричним
- E) не ϵ ні рефлексивним, ні антирефлексивним
- 3. (4 б.) Спростити вираз теорії множин : $(A \ B) \cup (A \ C)$
- A) $A \cap \overline{B \cap C}$
- Б) $A \cup \overline{B \cap C}$
- B) $A \setminus (B \cap C)$
- Γ) $A \setminus (B \cup C)$

Білет 105

Теорія (5 запитань. Кожне питання – 2 бали)

1. Для логічної формули $\overline{A \to B} \leftrightarrow A$ була побудована таблиця істинності:

A	В	Ā→B ↔A
0	0	1
0	1	0
1	0	1
1	1	0

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому

Г) в другому Д) помилки немає в жодному рядку Е) помилки в усіх рядках
2. Множина А обмежена зверху. ТодіA) вона може не мати верхньої межіБ) вона може не мати точної верхньої межі
В) вона обмежена
Г) вона може не мати точної нижньої межі Д) вона має єдину верхню межу
Е) вона має нескінченно багато верхніх меж.
3. Навести змістовний приклад бінарного відношення, яке не ϵ антисиметричним, ϵ транзитивним
4. Яка логічна операція в формулі $A \& B \to \overline{\overline{A} \leftrightarrow \overline{A \vee B}}$ буде виконуватися останньою?
A) заперечення Б) кон'юнкція
В) диз'юнкція
Г) еквівалентність
Д) імплікація
5. Відомо, що $A \subset B$ і $a \in B$. Які з наступних тверджень вірні?
A) $a \in A \cap B$
β $β$ $β$ $β$ $β$ $β$ $β$ $β$ $β$ $β$
Γ) $a \in B \setminus A$ afor $a \in A$
Практика
1. (4 б.) Спростити вираз теорії множин : $A \setminus (A \setminus B)$
A) $A \cup B$ B) $A \setminus B$
B) $A \cap B$
Γ) $A \cap \overline{B}$
2. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:
$\rho = \{ \langle a, b \rangle, \langle b, a \rangle, \langle a, a \rangle, \langle b, b \rangle \}.$
Це бінарне відношення ϵ : А) рефлексивним
Б) симетричним
В) антирефлексивним
Γ) антисиметричним Π) не ϵ ні симетричним, ні антисиметричним
Е) не є ні рефлексивним, ні антирефлексивним
3. Побудувати симетричну різницю множин $A+B$, якщо $A=\{a,b,c\},\ A=\{c,d,f,h\}$
A) $\{a,b,d,c,f,h\}$
Б) { <i>c</i> }
B) $\{a,b,d,f,h\}$
Γ) $\{d, f, h\}$
\mathcal{A}) $\{a,b\}$

Теорія (5 запитань. Кожне питання – 2 бали)

- 1. Які з наступних тверджень вірні?
- A) $\{\emptyset\}\subset\{a,b\}$
- Б) $\{b\} \subseteq \{a,b\}$
- B) $\{b\} \in \{a, \{b\}\}\$
- Γ) $b \subset \{a, \{b\}\}$
- 2. Для логічної формули $A \to \overline{B \leftrightarrow A}$ була побудована таблиця істинності:

A	В	A→Ā
0	0	1
0	1	0
1	0	1
1	1	0

В яких рядках таблиці зроблено помилку?

- А) В першому
- Б) в другому і третьому
- В) в третьому і четвертому
- Г) в другому
- Д) помилки немає в жодному рядку
- Е) помилки в усіх рядках
- 3. Нехай A, B нескінченні множини. Якою буде множина $A \setminus B$?
- А) нескінченною
- Б) скінченною
- В) може бути як скінченною, так і нескінченною
- Г) необмеженою
- 4. Навести змістовний приклад бінарного відношення, яке не ε симетричним, ε транзитивним
- 5. Що означає, що множина B не обмежена зверху?
- A) $\exists M = const$, $wo \forall b \in B$: $M \leq b$
- Б) $\exists M = const$, що $\forall b \in B$: M < b
- B) $\exists M = const$, $u_i o \forall b \in B$: $M \ge b$
- Γ) $\exists M = const$, $u_i o \forall b \in B$: M > b
- Д) Для $\forall M = const \exists b \in B: M \leq b$
- E) Для $\forall M = const \exists b \in B : M \ge b$

Практика

- 1. (3 б.) У якому випадку для множин A і B має місце рівність: $A + B = A \cup B$?
- А) якщо множини A і B не перетинаються
- Б) якщо $A \subseteq B$
- B) якщо $B \subseteq A$
- Γ) якщо множини A і B перетинаються

2. (3 б.) Бінарне відношення задане на множині $A = \{a, b, c\}$ наступним чином:

 $\rho = \{ \langle a, b \rangle, \langle b, a \rangle \}.$

Це бінарне відношення ϵ :

- А) рефлексивним
- Б) симетричним
- В) антирефлексивним
- Г) антисиметричним
- $\vec{\Pi}$) не ε ні симетричним, ні антисиметричним
- E) не ϵ ні рефлексивним, ні антирефлексивним
- 3. (4 б.) Спростити вираз теорії множин : $A \setminus (B \setminus A)$
- A) $A \cup B$
- **Б)** *А\В*
- $\stackrel{\cdot}{\mathrm{B)}}\ A \cup \left(A \cap \overline{B}\right)$
- Γ) $A \cap \overline{B}$