Aufgabe A.1 Topologische Grundlagen

Seien (M, O_M) und (N, O_N) zwei Hausdorffräume.

(a) Sei (K, O_K) ein kompakter Raum. Zeigen Sie, dass eine abgeschlossene Menge $A \subset K$ auch kompakt ist.

Sei eine beliebige offene Überdeckung $B_i \in O_K$, $i \in I$ von A gegeben. $A^C \in O_K$ Dann ist $C_i := A^C \cup B_i$ eine offene Überdeckung von K, nach Vorraussetzung ist K kompakt, also existiert eine endliche Teilüberdeckung $(I_n \subset I : |I_n| = n)$:

$$K \subset \bigcup_{i \in I_n} C_i$$

 $B_i = C_i \cap A$, $i \in I_n$ ist dann eine endliche Teilüberdeckung von B_i :

$$A\subset\bigcup_{i\in I_n}B_i$$

(b) Gilt dies auch für beliebige offene Teilmengen?

In \mathbb{R} ist ein offenes Intervall nicht kompakt, zum Beispiel (0,1) ist eine offene Teilmenge einer kompakten Menge, zum Beispiel das Intervall [0,1], die mit der üblichen Topologie ein kompakter topologischer Raum ist. Im Beweis sind die C_i nicht notwendigerweise offen, weshalb nicht unbedingt eine endliche Teilüberdeckung existieren muss.

(c) Zeigen Sie, dass in der Teilraumtopologie Unterräume von M Hausdorffräume sind.

Aufgrund der Teilraumtopologie sind Unterräume *U* auch topologische Räume.

Bleibt zu zeigen, dass in Unterräumen auch die Hausdorffeigenschaft erfüllt ist. Nehmen wir also zwei Punkte $x, y \in U$. Diese besitzen, da $U \subset M$ ein Hausdorffraum ist zwei offene Umgebungen $V_x, V_y \in O_M$, so dass gilt: $V_x \cap V_y = \emptyset$ (disjunkt).

Nun definieren wir U_x , $U_y \subset U$ über $U_x = V_x \cap U_y$, also der Schnitt mit U_x . Diese sind in der Teilraumtopologie U_x , $U_y \in O_U = \{A \cap U | A \in O_M\}$, da V_x , $V_y \in O_M$. Außerdem sind sie disjunkt, da $U_x \cap U_y = V_x \cap U \cap V_y \cap U = V_x \cap V_y = \emptyset$ nach Vorraussetzung. Damit sind diese Punkte durch disjunkte offene Umgebungen getrennt.

(d) Sei $f: M \to N$ stetig und $K \subset M$ überdeckungskompakt (ük). Dann ist $f(K) \subset N$ ebenfalls ük.

Sei eine offene Überdeckung von f(K) gegeben:

$$f(K) \subset \bigcup_{i \in I} A_i \subset N$$

Dann ist folgendes auch eine offene Uberdeckung, da f stetig:

$$K \subset \bigcup_{i \in I} f^{-1}(A_i) \subset M$$

Dann existiert eine endliche Teilüberdeckung $(I_n \subset I : |I_n| = n)$ (K überdeckungskompakt)

$$K \subset \bigcup_{I_n} f^{-1}(A_i) \subset M$$

Das Bild davon ist dann eine endliche Teilüberdeckung der ursprünglichen Überdeckung von f(K):

$$f(K) \subset \bigcup_{I_n} A_i \subset N$$

Aufgabe A.2 Einsteinsche Summenkonvention

- (a) Formulieren Sie mit der Summenkonvention die folgenden Begriffe der Linearen Algebra:
- (1) Standardskalarprodukt des \mathbb{R}^n

$$v \cdot w = v_i w^i = \sum_{i=1}^n v_i w_i$$

(2) Matrix-Vektor-Produkt

$$b = Av$$
 $b^{i} = A^{i}{}_{j}v^{j} = \sum_{j=1}^{n} A^{i}{}_{j}v^{j}$

(3) Matrizenmultiplikation

$$C = AB$$
 $C_{k}^{i} = A_{j}^{i}B_{k}^{j} = \sum_{i=1}^{n} A_{j}^{i}B_{k}^{j}$

(4) Spur einer Matrix

$$Tr(A) = A^{j}_{j} = \sum_{i=1}^{n} A^{j}_{j}$$

(5) Transponieren einer Matrix

$$B = A^T$$
 $B^i_{i} = A^j_{i}$

(b) Das Levi-Civita-Symbol

Wir nehmen an:

$$x = (x^1, x^2, x^3)$$
 $y = (y^1, y^2, y^3)$ $z = (z^1, z^2, z^3)$

Behauptung: Es wird das Kreuzprodukt $z = x \times y$ berechnet.

Begründung: Komponentenweise nachrechnen:

$$z^{1} = \sum_{i=1}^{3} \sum_{j=1}^{3} \epsilon_{ij}^{1} x^{i} y^{j}$$

$$= \sum_{i=1}^{3} \left(\epsilon_{i2}^{1} x^{i} y^{2} + \epsilon_{i3}^{1} x^{i} y^{3} \right)$$

$$= \epsilon_{32}^{1} x^{3} y^{2} + \epsilon_{23}^{1} x^{2} y^{3}$$

$$= x^{2} y^{3} - x^{3} y^{2}$$

Analog für die anderen Komponenten (zyklische Vertauschung der Indizes)

$$z = (x^2y^3 - x^3y^2, x^3y^1 - x^1y^3, x^1y^2 - x^2y^1)$$

(c) Beweisen Sie für $f, g \in \mathcal{C}^1(\mathbb{R}, \mathbb{R}^n)$, dass

$$\frac{d}{dt} \langle f(t), g(t) \rangle = \left\langle \frac{d}{dt} f(t), g(t) \right\rangle + \left\langle f(t), \frac{d}{dt} g(t) \right\rangle$$

$$\frac{d}{dt} \langle f(t), g(t) \rangle = \frac{d}{dt} f^{i}(t) g^{i}(t)$$

$$= \sum_{i=1}^{n} \frac{d}{dt} f^{i}(t) g^{i}(t)$$

$$= \sum_{i=1}^{n} \frac{df^{i}(t)}{dt} g^{i}(t) + f^{i}(t) \frac{dg^{i}(t)}{dt}$$

$$= \sum_{i=1}^{n} \frac{df^{i}(t)}{dt} g^{i}(t) + \sum_{i=1}^{n} \frac{dg^{i}(t)}{dt} f^{i}(t)$$

$$= \left\langle \frac{d}{dt} f(t), g(t) \right\rangle + \left\langle f(t), \frac{d}{dt} g(t) \right\rangle$$

Aufgabe A.3 Einige Karten

(a) Sei $U \subset \mathbb{R}^n$ eine beliebige offene Menge in der Standardtopologie. Statten Sie nun U mit einer n-dimensionalen Karte aus.

$$f: \mathbb{R}^n \to \mathbb{R}^n: x \mapsto x$$

Ist eine Karte von U, da Bild und Urbild U jeweils offen sind, und die Identität bijektiv ist.

- (b) Ist diese Konstruktion auch für beliebige abgeschlossene Mengen des \mathbb{R}^n möglich? Nein, da die Abbildung dann nicht bijektiv von einer offenen Menge in eine offene Menge abbildet.
- (c) Stereographische Projektion ist Karte der S^n . Weitere Karten für 2(n+1) Hemisphären $U_{i,\pm}$ für $i=1,\ldots,n+1$. Braucht man alle Hemisphären für Überdeckung? Kartenwechsel $\to \mathscr{C}^1$ -Atlas? Für die Hemisphären $U_{1,\pm}$ gibt es zum Beispiel folgende Karte (Polarkoordinaten):

$$\phi_{1,\pm}: \underset{i=1}{\overset{n}{\times}} \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \subset \mathbb{R}^n \to \mathbb{R}^{n+1} \quad \left(\phi^1, \ldots, \phi^n\right) \mapsto \left(\pm \cos\left(\phi^1\right), \ldots, \pm \sin\left(\phi^1\right) \ldots \sin\left(\phi^n\right)\right)$$

Für die $U_{i,\pm}$ ergibt sich dann die Karte aus der Abbildung f^i Verknüpft mit $\phi_{1,\pm}$, wobei:

$$f: \mathbb{R}^{n+1} \to \mathbb{R}^{n+1} \quad (x^1, \dots, x^n) \mapsto (x^n, x^1, \dots, x^{n-1})$$