Jared Andreatta

MATH 531 Homework 1 Spring 2025 (Due: 19th January, Tuesday)

1. Let $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k\}$ be a set of k orthogonal vectors in \mathbb{R}^n . Show that this set is linearly independent when $k \leq n$. Also explain why this problem does not make sense when k > n.

Proof. We will show that the set $\{x_k\}$ is linearly independent by contradiction. So assume that $\{x_k\}$ is linearly dependent, that is, we can write any vector $x_a \in \{x_k\}$ can be written as a linear combination of all of the other vectors in the set.

$$x_a = \sum_{i=1}^k \alpha_i x_i$$

We also know that all of the vectors in the set are orthogonal to each other, that is, for any vector $x_b \in \{x_k\}$, we have

$$\langle x_a, x_b \rangle = 0$$

when $b \neq a$. We can expand this inner product by using our definition of x_a .

$$\langle \sum_{i=1}^{k} \alpha_i x_i, x_b \rangle = 0$$

Since the vectors in the set are orthogonal, the inner product is only nonzero when a = b. Thus, we can simplify the expression to

$$\langle \alpha_b x_b, x_b \rangle = 0$$

$$a_b\langle x_b, x_b\rangle = 0$$

If x_b is not the nontrivial zero-vector, then the only value of a_b that satisfies the equation is $a_b = 0$, which entails that $a_b = 0$ for b = 1, ..., k. This contradicts the original assumption that the set of vectors $\{x_k\}$ is linearly dependent. Therefore, we can conclude that $\{x_k\}$ is linearly independent. \square

In regards to the second part of the question, it would not hold that the set $\{x_k\}$ is linearly independent. That's because, in the space \mathbb{R}^n , there can only be n independent vectors. If k > n, then it is inevitable that at least one of the vectors in the space can be written as a linear combination of the other vectors in the set.

- 2. Suppose $\mathcal{V}_n \in \mathbb{R}^n$ is a vector space. Prove the following results.
 - (a) $\mathbf{0} \in \mathcal{V}_n$.

Proof. Any vector space is closed under scalar multiplication. This means for any vector $x \in \mathcal{V}_n$, we have that $\alpha x \in \mathcal{V}_n$ for any $\alpha \in \mathbb{R}$. Let $\alpha = 0$. We have $\alpha x = 0 \cdot x = 0$. Since $\alpha x \in \mathcal{V}_n$, then $0 \in \mathcal{V}_n$. \square

(b) If $x \in \mathcal{V}_n$ and $x \perp \mathcal{V}_n$ then x = 0.

Proof. Let $y \in \mathcal{V}_n$ be any vector in \mathcal{V}_n . If $x \perp \mathcal{V}_n$, then that means that $x^T y = 0$ for every y. Given that $x \in \mathcal{V}_n$, for every nonzero y, this implies that x is the zero vector. Hence, x = 0. \square

(c) $\mathcal{V}_n^{\perp} = \{ \boldsymbol{x} : \boldsymbol{x} \perp \mathcal{V}_n \}$ is a vector space.

Proof. We can redefine \mathcal{V}_n^{\perp} using the notion of an inner product as $\mathcal{V}_n^{\perp} = \{x : \langle x, y \rangle = 0 \text{ for every } y \in \mathcal{V}_n\}$. We must now verify that \mathcal{V}_n^{\perp} is closed under addition and scal multiplication, and that $0 \in \mathcal{V}_n^{\perp}$.

First, we check closure under addition. Let $x_1, x_2 \in \mathcal{V}_n^{\perp}$. We have that $\langle x_1 + x_2, y \rangle = \langle x_1, y \rangle + \langle x_2, y \rangle = 0 + 0 = 0$. Therefore, $x_1 + x_2 \in \mathcal{V}_n^{\perp}$.

Next, we check that it is closed under scalar multiplication. Let $\alpha \in \mathbb{R}$ and $x \in \mathcal{V}_n^{\perp}$. We have $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle = \alpha \cdot 0 = 0$. Therefore, $\alpha x \in \mathcal{V}_n^{\perp}$.

Lastly, we verify that $0 \in \mathcal{V}_n^{\perp}$. Let x be any vector in \mathcal{V}_n . We take the dot product $\langle 0, x \rangle = 0 \cdot x = 0$. Clearly, these are orthogonal, which entails that $0 \in \mathcal{V}_n^{\perp}$.

We have proven that \mathcal{V}_n^{\perp} is a subspace of \mathbb{R}^n . Therefore, we can conclude that \mathcal{V}_n^{\perp} is indeed a vector space. \square

3. Let $\{x_1, \ldots, x_k\}$ be a basis of a vector space \mathcal{W} . Then show that $\mathbf{y} \in \mathcal{W}^{\perp}$ if and only if (aka iff) $\mathbf{y} \perp \mathbf{x}_i, i = 1, 2, \ldots, k$.

Proof. First, we define \mathcal{W}^{\perp} , which is the orthogonal complement to \mathcal{W} , as $\mathcal{W}^{\perp} = \{y : y^T x = 0 \text{ for every } x \in \mathcal{W}\}$. Now, assume that $y \in \mathcal{W}^{\perp}$. Since the set $\{x_1, ..., x_k\}$ forms a basis for \mathcal{W} , then we know that $x_i \in \mathcal{W}$ for i = 1, ..., k. Since $y \in \mathcal{W}^{\perp}$, we know that it is orthogonal to every vector in \mathcal{W} , so by definition, $y^T x_i = 0$ for i = 1, ..., k. Thus, $y \perp x_i$ for i = 1, ..., k.

Next, assume $y \perp x_i$ for i=1,...,k. We note that y is orthogonal to all of the basis vectors, which implies that y is orthogonal to the space spanned by $\{x_1,...,x_k\}$. This means that, by definition, y is in the orthogonal complement of \mathcal{W} , or $y \in \mathcal{W}^{\perp}$. Thus, we conclude that $y \in \mathcal{W}^{\perp}$ iff $y \perp x_i$ for i=1,...,k. \square

4. Recall the Cauchy-Schwartz inequality for two vectors, \mathbf{x} and \mathbf{y} in \mathbb{R}^n

$$|\mathbf{x}^T \mathbf{y}| \le ||\mathbf{x}|| ||\mathbf{y}||$$

use this inequality to show that the sample correlation coefficient between two data vectors is always in the range [-1, 1]

Proof. Let \tilde{x} and \tilde{y} be the mean-centered vectors of their corresponding data vector, that is, $\tilde{x} = (x_1 - \bar{x}, ..., x_n - \bar{x} \text{ and } \tilde{y} = (y_1 - \bar{y}, ..., y_n - \bar{y})$ where \bar{x} and \bar{y} are their respective means. The sample correlation coefficient r can be written as such:

$$r = \frac{\tilde{x}^T \tilde{y}}{\|\tilde{x}\| \|\tilde{y}\|}$$

We can apply the Cauchy-Schwarz inequality to the numerator term.

$$|\tilde{x}^T \tilde{y}| \le ||\tilde{x}|| ||\tilde{y}||.$$

We divide both sides by $\|\tilde{x}\|\|\tilde{y}\|$, so as to match the correlation coefficient. Note that the denominator term can be written as an absolute value since $\|\cdot\| \ge 0$ if the vector inside the norm is nonzero.

$$\left|\frac{\tilde{x}^T\tilde{y}}{\|\tilde{x}\|\|\tilde{y}\|}\right| = \frac{\|\tilde{x}\|\|\tilde{y}\|}{\|\tilde{x}\|\|\tilde{y}\|} \to |r| \le 1$$

Since the LHS term is an absolute value, this implies that $r \in [-1, 1]$. \square

5. Recall the projection of a vector \mathbf{y} onto \mathbf{x} is given by $\hat{\mathbf{y}} = \beta \mathbf{x}$ with $\beta = (\mathbf{x}^T \mathbf{y})/(\mathbf{x}^T x)$ Using the fact that $\|\mathbf{y} - \hat{\mathbf{y}}\| \ge 0$ for all \mathbf{x} and \mathbf{y} prove the Cauchy-Schwartz inequality

Proof. We have that $\hat{y} = \beta x$ with $\beta = \frac{x^T y}{x^T x}$, and $\|y - \hat{y}\| \ge 0$. First, we square both sides of the inequality. This operation yields $\|y - \hat{y}\|^2 \ge 0$. We can expand the LHS of the inequality.

$$||y - \hat{y}||^2 = \langle y - \hat{y}, y - \hat{y} \rangle$$

= $(y - \hat{y})(y - \hat{y})$
= $||y||^2 - 2\beta x^T y + ||\beta x||^2$

Next, we substitute for β .

$$||y||^{2} - 2\beta x^{T}y + ||\beta x||^{2} = ||y||^{2} - 2\frac{x^{T}y}{||x||^{2}}(x^{T}y) + \frac{(x^{T}y)^{2}}{(||x||^{2})^{2}}||x||^{2}$$
$$= ||y||^{2} - \frac{(x^{T}y)^{2}}{||x||^{2}}$$

Now, we go back to the original inequality and rearrange it.

$$||y||^2 - \frac{(x^T y)^2}{||x||^2} \ge 0$$
$$||y||^2 \ge \frac{(x^T y)^2}{||x||^2}$$
$$||y||^2 ||x||^2 \ge (x^T y)^2$$

We take the square root of both sides then we flip the inequality to find

$$\sqrt{\|y\|^2 \|x\|^2} \ge \sqrt{(x^T y)^2}$$
$$|x^T y| \le \|x\| \|y\|$$

Thus, we have proven the Cauchy-Schwarz inequality. \square

6. Extra Credit Who were Cauchy and Schwarz in the equality given in the previous problem? If you could go to dinner with either one who would you choose?

Augustin-Louis Cauchy was a French mathematician born in the 18th century. Cauchy was a pioneer in the field of mathematical analysis and has several mathematical tools/concepts named after him, such as Cauchy sequences and Cauchy-Schwarz inequality. He is also well known for his contributions to complex analysis and physics. Hermann Schwarz was a German mathematician that was born later in the 19th century. He was best known for his pioneering contributions to the field of complex analysis. If I had to choose, I would have dinner with Cauchy. I think it'd be interesting to pick the brain of a pioneer of a field that fascinates, but also troubles, so many mathematics students to this day.