str. 1/2Seria: 1

Zadanie A

Oznaczmy (dla a, b, c > 0):

$$f(a,b,c) = \frac{a}{a+b} + \frac{b}{b+c} + \frac{c}{c+a}$$

Oznaczmy ponadto: $X = \{f(a, b, c) | a, b, c > 0\}$

Latwo teraz widzimy, że $f(a,b,c)+f(c,b,a)=\frac{a}{a+b}+\frac{b}{b+a}+\frac{b}{b+c}+\frac{c}{c+b}+\frac{c}{c+a}+\frac{a}{a+c}=3$. Stąd łatwo widac, $\dot{z}e \sup X + \inf X = 3.$

Ponadto mamy, że a+b < a+b+c, a więc $\frac{a}{a+b} > \frac{a}{a+b+c}$. Analogicznie $\frac{b}{b+c} > \frac{b}{a+b+c}$ oraz $\frac{c}{c+a} > \frac{c}{a+b+c}$. Dodając te nierówności stronami uzyskujemy $f(a,b,c) > \frac{a+b+c}{a+b+c} = 1$.

Jednak biorąc $(a, b, c) = (\frac{1}{n^2}, \frac{1}{n}, 1)$ uzyskujemy:

$$x_n = f(\frac{1}{n^2}, \frac{1}{n}, 1) = \frac{n^{-2}}{n^{-2} + n^{-1}} + \frac{n^{-1}}{n^{-1} + 1} + \frac{1}{1 + n^{-2}}$$

Pokażemy, że $\inf_n x_n = 1$, co wraz z $x_n \in X$ oraz $\forall_{x \in X} x > 1$ da, że $\inf_x X = 1$. Mamy już, że $x_n > 1$. Załóżmy jednak, że istnieje większe ograniczenie górne: $1+\epsilon$, dla $\epsilon>0$.

Jednak gdy weźmiemy $n>\frac{2}{\varepsilon}-1$ uzyskamy, że $1+n>\frac{2}{\varepsilon}$, czyli $\frac{\varepsilon}{2}>\frac{1}{1+n}$. Mamy jednak, że $\frac{1}{1+n}=\frac{n^{-2}}{n^{-2}+n^{-1}}=\frac{n^{-1}}{n^{-1}+1}$. Stąd $\frac{\varepsilon}{2}>\frac{n^{-2}}{n^{-2}+n^{-1}}$ oraz $\frac{\varepsilon}{2}>\frac{n^{-1}}{n^{-1}+1}$. Ponadto: $1>\frac{1}{1+n^{-2}}$. Dodając te nierówności stronami uzyskujemy: $1+\varepsilon>x_n$. To zaś oznacza, że $1+\varepsilon$ nie jest ograniczeniem dolnym ciagu (x_n) .

Stąd inf X = 1, a ponieważ sup $X = 3 - \inf X$, to sup X = 2.

Zadanie B

Dowód. Udowodnimy indukcyjnie, że $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$, zaś $\sum_{k=1}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2$.

Dla n = 1 (a nawet dla n = 0, gdy przyjmiemy konwencję, że suma pusta jest równa 0) teza zachodzi.

Załóżmy teraz, że zachodzi ona dla pewnego n = m i udowodnijmy ją dla n = m + 1.

W tym celu zauważmy, że $\sum_{k=1}^{m+1} k = (m+1) + \sum_{k=1}^{m} k \stackrel{z.i.}{=} (m+1) + \frac{m(m+1)}{2}$ oraz $\sum_{k=1}^{m+1} k^3 = (m+1)^3 + \sum_{k=1}^{m} k^3 \stackrel{z.i.}{=} (m+1)^3 + \sum_{k=1}^{m} k^3 \stackrel{z.i.}{$

 $(m+1)^3 + \left(\frac{m(m+1)}{2}\right)^2$, gdzie z.i. nad znakiem równości oznacza skorzystanie z założenia indukcyjnego

Wystarczy więc udowodnić: $\frac{(m+1)(m+2)}{2} \stackrel{?}{=} (m+1) + \frac{m(m+1)}{2} \text{ oraz } \left(\frac{m(m+1)}{2}\right)^2 \stackrel{?}{=} (m+1)^3 + \left(\frac{m(m+1)}{2}\right)^2$ W pierwszym przypadku mamy: $\frac{(m+1)(m+2)}{2} = \frac{(m+1)m+(m+1)2}{2} = \frac{m(m+1)}{2} + (m+1), \text{ co jest poszukiwaną}$

równościa.

W drugim zaś zauważmy, że $\frac{(m+2)^2}{4} = \frac{m^2+4m+4}{4} = \frac{m^2}{4} + (m+1)$. Mnożąc tę równość przez $(m+1)^2$ uzyskujemy: $\left(\frac{(m+1)(m+2)}{2}\right) = (m+1)^3 + \left(\frac{m(m+1)}{2}\right)$, co znów jest poszukiwaną równością

Zadanie C

Rozważmy dwa przypadki:

Przypadek $\pi \in \mathbb{Q}$

Wtedy $\exists_{a,b\in\mathbb{Z}_{+}^{*}}\pi=\frac{a}{b}$. (Możemy przyjąć, że a,b>0, gdyż $\pi>0$).

Jednak wtedy $|\sin a| = |\sin(b\pi)| = |0| = 0$. Łatwo zaś widać, że 0 jest ograniczeniem dolnym na wartości bezwzględne czegokolwiek, skąd wtedy $\inf_{n \in \mathbb{N}^*} |\sin n| = 0$.

Przypadek $\pi \notin \mathbb{Q}$

Znowu widzimy, że 0 jest ograniczeniem dolnym na wartości rozważanego ciągu. Załóżmy jednak, że istnieje większe ograniczenie: $\epsilon > 0$. Oczywiście $\epsilon \leq 1$, gdyż $\sin n \leq 1$.

Termin: 2013-10-18 Analiza matematyczna

Weźmy więc $\delta=\arcsin \varepsilon$. Zauważmy, że $\frac{1}{2\pi} \not\in \mathbb{Q}$ Wtedy na mocy twierdzenia udowodnionego na wykładzie inauguracyjnym, istnieje takie $k\in \mathbb{N}^*$, że $\frac{k}{2\pi}-\lfloor\frac{k}{2\pi}\rfloor\in (0,\frac{\delta}{2\pi})$. Wtedy jednak zauważmy, że $k-2\pi\lfloor\frac{k}{2\pi}\rfloor\in (0,\delta)$. Ale $\sin k=\sin \left(k-2\pi\lfloor\frac{k}{2\pi}\rfloor\right)$. Jednak stąd (i z monotoniczności funkcji sinus), widać, że $0=\sin 0<\sin k<\sin \delta=\varepsilon$, co jest sprzecznością.

Stąd
$$\inf_{n \in \mathbb{N}^*} |\sin n| = 0.$$