Spectrum of commutative branch rings

Use \coverimage{filename} to add an image

Contents

1	Semi-normed Rings and Modules		
	1.1	Semi-normed algebraic structures	1
	1.2	Banach rings	2
	1.3	Examples	3
2 Spectrum		ectrum	4
	2.1	Definition	4
		Examples	

1 Semi-normed Rings and Modules

1.1 Semi-normed algebraic structures

Definition 1.1. Let M be an abelian group. A *semi-norm* on M is a function $\|\cdot\|: M \to \mathbb{R}_+$ such that

- ||0|| = 0;
- $\forall x, y \in M, ||x + y|| \le ||x|| + ||y||.$

If we further have $||x|| = 0 \iff x = 0$, then we say $||\cdot||$ is a norm. A semi-normed abelian group (resp. normed abelian group) is an abelian group equipped with a semi-norm (resp. norm).

Definition 1.2. Let $\|\cdot\|_1$ and $\|\cdot\|_2$ be two semi-norms on an abelian group M. We say $\|\cdot\|_1$ is bounded by $\|\cdot\|_2$ if there exists a constant C>0 such that $\forall x\in M, \|x\|_1\leq C\|x\|_2$.

Remark 1.3. If two semi-norms (resp. norms) on an abelian group M are bounded by each other, then they induce the same topology on M.

Definition 1.4. Let M be a semi-normed abelian group and $N \subseteq M$ be a subgroup. The *residue* semi-norm on the quotient group M/N is defined as

$$||x + N||_{M/N} = \inf_{y \in N} ||x + y||_M.$$

Remark 1.5. The residue semi-norm is a norm if and only if N is closed in M.

Definition 1.6. Let M and N be two semi-normed abelian groups. A group homomorphism $f: M \to N$ is called bounded if there exists a constant C > 0 such that $\forall x \in M, \|f(x)\|_N \le C\|x\|_M$. A bounded homomorphism $f: M \to N$ is called admissible if the induced isomorphism $M/\ker f \to \operatorname{Im} f$ is an isometry, i.e., $\forall x \in M, \|f(x)\|_N = \inf_{y \in \ker f} \|x + y\|_M$.

Date: October 23, 2025, Author: Tianle Yang, My Homepage

Definition 1.7. Let R be a ring (commutative with unity). A *semi-norm* on R is a semi-norm $\|\cdot\|$ on the underlying abelian group of R such that $\forall x, y \in R, \|xy\| \le \|x\| \|y\|$ and $\|1\| = 1$. A *semi-normed ring* is a ring equipped with a semi-norm.

Definition 1.8. A semi-norm $\|\cdot\|$ on a ring R is called *multiplicative* if $\forall x, y \in R, \|xy\| = \|x\| \|y\|$. It is called *power-multiplicative* if $\forall x \in R, \|x^n\| = \|x\|^n$ for all integers $n \ge 1$. A power-multiplicative semi-norm is also called *uniform*.

Remark 1.9. Let **k** be a field. Recall that a *valuation* on **k** is a function $v: \mathbf{k} \to \mathbb{R} \cup \{\infty\}$ such that

- (non-degeneracy) $v(x) = \infty \iff x = 0$;
- (normalization) v(1) = 0;
- (additivity) $\forall x, y \in \mathbf{k}, v(xy) = v(x) + v(y)$;
- (triangle inequality) $\forall x, y \in \mathbf{k}, v(x+y) \ge \min\{v(x), v(y)\}.$

Yang: To be checked.

Definition 1.10. Let $(R, \|\cdot\|_R)$ be a normed ring. A *semi-normed R-module* is a pair $(M, \|\cdot\|_M)$ where M is an R-module and $\|\cdot\|_M$ is a semi-norm on the underlying abelian group of M such that there exists C > 0 with $\forall a \in R, x \in M, \|ax\|_M \le C \|a\|_R \|x\|_M$.

Yang: To be continued...

1.2 Banach rings

Definition 1.11. A semi-norm (resp. norm) on an abelian group M induces a pseudo-metric (resp. metric) d(x,y) = ||x-y|| on M. A semi-normed (resp. normed) abelian group M is called *complete* if it is complete as a pseudo-metric (resp. metric) space.

Let R be a normed ring and M, N be semi-normed R-modules. There is a natural semi-norm on the tensor product $M \otimes_R N$ defined as

$$||z||_{M\otimes_{R}N} = \inf \left\{ \sum_{i} ||x_{i}||_{M} ||y_{i}||_{N} : z = \sum_{i} x_{i} \otimes y_{i}, x_{i} \in M, y_{i} \in N \right\}.$$

Definition 1.12. Let R be a complete normed ring and M, N complete semi-normed R-modules. The complete tensor product $M \widehat{\otimes}_R N$ is defined as the completion of the semi-normed R-module $M \otimes_R N$.

Definition 1.13. A Banach ring is a complete normed ring.

Definition 1.14. Let $(A, \|\cdot\|_A)$ be a normed algebraic structure (e.g., a normed vector space, a normed ring, etc.). The *completion* of A is the smallest complete normed algebraic structure A^c such that A is isometrically embedded in A^c . Yang: To be continued.

Definition 1.15. Let R be a Banach ring. For each $f \in R$, the spectral radius of f is defined as

$$\rho(f) = \lim_{n \to \infty} ||f^n||^{1/n}.$$

Proposition 1.16. Let R be a Banach ring. The spectral radius $\rho(\cdot)$ defines a power-multiplicative semi-norm on R that is bounded by the given norm on R.

Definition 1.17. Let R be a Banach ring. The *uniformization* of R is the Banach ring with the universal property among all bounded morphisms from R to uniform Banach rings. Yang: To be continued.

Proposition 1.18. Let R be a Banach ring. The completion of R with respect to the spectral radius $\rho(\cdot)$ is the uniformization of R.

Yang: To be continued...

1.3 Examples

Example 1.19. Let R be arbitrary ring. The *trivial norm* on R is defined as ||x|| = 0 if x = 0 and ||x|| = 1 if $x \neq 0$. The ring R equipped with the trivial norm is a normed ring.

Example 1.20. The fields \mathbb{C} and \mathbb{R} equipped with the usual absolute value are complete fields.

Example 1.21. The field \mathbb{Q}_p of p-adic numbers equipped with the p-adic norm is a complete non-Archimedean field.

Example 1.22. Let R be a banach ring and r > 0 be a real number. We define the ring of absolutely convergent power series over \mathbf{k} with radius r as

$$R < T/r > := \left\{ \sum_{n=0}^{\infty} a_n T^n \in R[[T]] : \sum_{n=0}^{\infty} \|a_n\| r^n < \infty \right\}.$$

Equipped with the norm $\|\sum_{n=0}^{\infty} a_n T^n\| = \sum_{n=0}^{\infty} \|a_n\| r^n$, the ring R < T/r > is a Banach ring. Yang: To be checked.

Example 1.23. Let **k** be a non-Archimedean complete field. The affinoid **k**-algebra is defined as

$$\mathbf{k}\{T_1/r_1, \dots, T_n/r_n\} := \left\{ \sum_{I \in \mathbb{N}^n} a_I T^I \in \mathbf{k}[[T_1, \dots, T_n]] \ : \ \lim_{|I| \to \infty} |a_I| r^I = 0 \right\},$$

where $r=(r_1,\ldots,r_n)$ is an n-tuple of positive real numbers and $T^I=T_1^{i_1}\cdots T_n^{i_n}$ for $I=(i_1,\ldots,i_n)$, and $|I|=i_1+\cdots+i_n$. Equipped with the norm $\|\sum_{I\in\mathbb{N}^n}a_IT^I\|=\sup_{I\in\mathbb{N}^n}|a_I|r^I$, the affinoid **k**-algebra $\mathbf{k}\{T_1/r_1,\ldots,T_n/r_n\}$ is a Banach **k**-algebra.

Yang: To be continued...

2 Spectrum

2.1 Definition

Definition 2.1. Let R be a Banach ring. The *spectrum* $\mathcal{M}(R)$ of R is defined as the set of all multiplicative semi-norms on R that are bounded with respect to the given norm on R. For every point $x \in \mathcal{M}(R)$, we denote the corresponding multiplicative semi-norm by $|\cdot|_x$. We equip $\mathcal{M}(R)$ with the weakest topology such that for each $f \in R$, the evaluation map $\mathcal{M}(R) \to \mathbb{R}_+$, defined by $x \mapsto |f|_x$, is continuous.

For $x \in \mathcal{M}(R)$, the kernel of the multiplicative semi-norm $|\cdot|_x$ is a closed prime ideal of R, denoted by \mathcal{D}_x . The semi-norm $|\cdot|_x$ induces a multiplicative norm on the residue field $\kappa(x) = \operatorname{Frac}(R/\mathcal{D}_x)$, denoted by $|\cdot|_x$ as well.

Definition 2.2. Let R be a Banach ring. A character of R is a bounded ring homomorphism $\chi: R \to K$, where K is a complete valued field. Two characters $\chi_1: R \to K_1$ and $\chi_2: R \to K_2$ are said to be equivalent if there exists an isometric field extension L of both K_1 and K_2 such that the following diagram commutes:

$$\begin{array}{ccc}
R & \xrightarrow{\chi_1} & K_1 \\
\chi_2 & & \downarrow \\
K_2 & \longrightarrow L
\end{array}$$

Definition 2.3. Let $f: R \to S$ be a bounded ring homomorphism of Banach rings. The *pullback* map $f^*: \mathcal{M}(S) \to \mathcal{M}(R)$ is defined by $f^*(x) = x \circ f$ for each $x \in \mathcal{M}(S)$. Yang: To be revised.

Proposition 2.4. Let R be a Banach ring. The spectrum $\mathcal{M}(R)$ is in bijection with the equivalence classes of characters of R.

Theorem 2.5. Let R be a Banach ring. The spectrum $\mathcal{M}(R)$ is a nonempty compact Hausdorff space.

Proof. Yang: To be continued.

2.2 Examples