Fourier Analysis on Coset Spaces

Brian Forrest presented by Alan Kydd

April 2, 2004

Introduction

G a locally compact group, H a closed subgroup of G. We define and study natural analogs of the Fourier and Fourier-Stieltjes algebras for G/H, and show that when H is compact, A(G/H) can be used to study the nature of G/H in a manner similar to the group case.

Table of Contents

- 1. Defining A(G/H) and B(G/H)
- 2. Structure of A(G/K) for compact subgroup K
- 3. Weak amenability of A(G)

Defining A(G/H) and B(G/H)

Notation

Let H be a closed subgroup of G. $q:G\to G/H$ denotes the canonical quotient map. \tilde{x} denotes the left coset xH. We have an isomorphism between C(G/H) and $C(G:H)=\{f\in C(G/H): f(xh)=f(x)\ \forall x\in G,\ h\in H\}$ via the map $\tilde{f}\mapsto f$, where $f=\tilde{f}\circ q$. We denote the equivalence class of all continuous unitary representations of G by Σ_G . For $\pi\in\Sigma_G$, we let A_π denote the closed linear span of the coefficient functions of π , and we denote the weak-* closure of A_π by B_π . For ρ , the left regular representation of G on $L_2(G)$, A_ρ is usually denoted A(G).

Definition 1

$$B(G:H) = \{u \in B(G) : u(xh) = u(x) \ \forall \ x \in G, \ h \in H\},$$
$$A(G:H) = \{u \in B(G:H) : q(\text{supp } u) \text{ compact in } G/H\}^{-\|\cdot\|_{B(G)}}.$$

- **Proposition 2** (i) B(G : H), A(G : H) are closed subalgebras of B(G). Moreover, A(G : H) is a closed ideal in B(G : H).
 - (ii) B(G:H) is unital.
 - (iii) $A(G:H) \cap A(G) \neq \{0\}$ iff H is compact.
 - (iv) A(G:H) = B(G:H) iff G/H is compact.

We know that A(G:H) is isometrically isomorphic to A(G/H) when H is compact and normal. We can do better:

Proposition 3 Let H be a closed normal subgroup of G. Then B(G:H) and A(G:H) are isometrically isomorphic to B(G/H) and A(G/H) respectively.

Theorem 4 Let H be a closed subgroup of G. Then there exists a projection $P: B(G) \to B(G:H)$ with $||P|| \le 1$.

In general, P does not map A(G) onto A(G:H). However, for compact subgroup K, we have

$$P(f)(x) = P_K(f)(x) := \int_K f(xk)dk.$$

Thus we have the following corollary:

Corollary 5 Let K be a compact subgroup of G. Then P_K is a continuous projection of B(G) onto B(G:K). The restriction of P_K to A(G) is a projection of A(G) onto A(G:K).

The analog of the Fourier Algebra for the coset space G/H is usally considered to be the space A_{π_H} , where π_H is the quasi-regular representation of G determined by H. This definition has two major problems.

Problem I. A_{π_H} is in general not an algebra.

For example, when K is a compact subgroup, A_{π_H} is an algebra iff $A_{\pi_H} = A_{\pi_{K_1}}$, where $K_1 = \cap_{x \in G} x K x^{-1}$. Since K_1 is normal, $A_{\pi_{K_1}} = A(G/K_1)$ (Arsac, 1976).

We can say more:

Proposition 6 Let K be a compact subgroup of G. Then $A(G : K) = A_{\pi}$ for some $\pi \in \Sigma_G$ iff K is normal.

Problem II. It is possible to have two distinct closed subgroups H_1 , H_2 , and yet $A_{\pi_{H_1}} = A_{\pi_{H_2}}$, even when these subgroups are compact (Arsac, 1976).

Proposition 7 Let K_1 , K_2 be compact subgroups of G. Then $A(G:K_1)=A(G:K_2)$ iff $K_1=K_2$. If G is a [SIN]-group and H_1 , H_2 are closed subgroups of G with $H_1 \neq H_2$, then $A(G:H_1) \neq A(G:H_2)$.

Corollary 8 Let K_1 , K_2 be compact subgroups of G. Then $B(G:K_1)=B(G:K_2)$ iff $K_1=K_2$. If G is a [SIN]-group, then $B(G:H_1)=B(G:H_2)$ for H_1 , H_2 closed subgroups of G, iff $H_1=H_2$.

Proof: in either case, f_1 as constructed above is in $B(G:K_2)$ $[B(G:H_2)]$, but not in $B(G:K_1)$ $[B(G:H_1)]$. \square

In light of the above problems for A_{π_H} , A(G:H) and B(G:H) are more useful analogs for G/H of the Fourier and Fourier-Stieltjes algebras.

Definition 9 We define A(G/H), the Fourier algebra of the coset space G/H, to be the subalgebra of C(G/H) identified with A(G:H).

Definition 10 We define B(G/H), the Fourier-Stieltjes algebra of the coset space G/H, to be the subalgebra of C(G/H) identified with B(G:H).

When H is a compact subgroup, A(G/H) and B(G/H) have many of the same properties of A(G), B(G).

Definition 11 AP(G/H) is the set of all $f \in C(G/H)$ such that the set $\{xf : x \in G\}$ is relatively compact in the norm topology of C(G/H) (Skantharajah, 1985).

Definition 12 WAP(G/H) is the set of all $f \in C(G/H)$ such that the set $\{xf : x \in G\}$ is relatively compact in the weak topology of C(G/H) (Skantharajah, 1985).

Proposition 13 Let H be a closed subgroup of G. Then,

- (i) $B(G/H) \subseteq WAP(G/H)$, and $B(G/H) \cap AP(G/H)$ is the space identified with $B(G:H) \cap AP(G)$.
- (ii) $B(G/H) \cap AP(G/H)$ is a complemented subalgebra of B(G/H) with the Radon-Nikodym property.

Recall that A(G) is sup-norm dense in $C_0(G)$. For a compact subgroup K, A(G/K) is also sup-norm dense in $C_0(G/K)$. However, when H is not compact, there may exist $f \in C_0(G/H)$ such that $f \notin WAP(G/H)$ (Chou). Thus A(G/H) may not separate the points of G/H. The proof of Proposition 7 gives the following result.

Theorem 14 Let G be a [SIN]-group with a closed subgroup H. Then A(G/H) separates points in G/H. This next proposition extends a result of Herz (1973).

Proposition 15 Let K be a compact subgroup of G. Let H be a closed subgroup of G such that $K \subseteq H$. Then every $\tilde{u} \in A(H/K)$ extends to a function $\tilde{u}_1 \in A(G/K)$ with $\|\tilde{u}\|_{A(H/K)} = \|\tilde{u}_1\|_{A(G/K)}$.

We can extend a $u \in B(H)$ to some $v \in B(G)$ when G is a [SIN]-group or if H is normal (Cowling, Rodway, 1979).

Proposition 16 Let H be a closed subgroup of G. Assume that either G is a [SIN]-group or that H is normal. Let H_1 be another closed subgroup containing H. Then every $u \in B(H_1/H)$ extends to a $v \in B(G/H)$ with the same norm.

Structure of A(G/K) for compact subgroup K

Notation

Let \mathcal{A} be a semisimple commutative Banach algebra. $\Delta(\mathcal{A})$ denotes the maximal ideal space of \mathcal{A} . Given any closed set A of $\Delta(\mathcal{A})$, we define the following ideals:

 $I(A) = \{ u \in \mathcal{A} : u(x) = 0 \ \forall \ x \in A \}$

 $j(A) = \{u \in I(A) : \text{supp } u \text{ is compact}\}$

J(A) = the norm closure of j(A) in I(A).

A is said to be of spectral sythesis if I(A) = J(A). A is said to be of weak spectral synthesis if for each $u \in I(A)$, there exists a positive integer n such that $u^n \in J(A)$. We say that (weak) spectral sythesis fails if there exists a closed subset A of $\Delta(A)$ that is not a set of (weak) spectral synthesis.

Definition 17 A multiplier of A is a linear operator T on A for which T(uv) = uT(v). We denote the set of all such mps by $\mathcal{M}(A)$, a Banach space with the operator norm.

Definition 18 Let \mathcal{X} be a Banach \mathcal{A} -bimodule. A derivation of \mathcal{A} on \mathcal{X} is a linear map $D: \mathcal{A} \to \mathcal{X}$ such that D(uv) = uD(v) + D(u)v for every $u, v \in \mathcal{A}$.

Theorem 19 A(G/K) is a regular commutative Banach algebra with $\Delta A(G/K) = G/K$.

Proof outline: Let $\tilde{x}_0 \in G/K$. $\delta_{\tilde{x}_0}(\tilde{u}) = \tilde{u}(\tilde{x}_0)$ is continuous multiplicative linear functional on A(G/K).

Suppose $\tilde{\Phi} \in \Delta(A(G/K))$. We can identify $\tilde{\Phi}$ with $\Phi \in A(G:K)^*$. A(G:K) is complemented in A(G) by Corollary 5. Thus there exists $\Gamma \in VN(G)$ with $P_K^*(\Phi) = \Gamma$ and $\Gamma|_{A(G:K)} = \Phi$. $\Phi \neq 0$, so $\Gamma \neq 0$. It can be shown that $\operatorname{supp}\Gamma = x_0K$ for some $x_0 \in G$. x_0K is a set of spectral sythesis for A(G) (Forrest, 1992), therefor Γ is the weak-* norm limit of $\Psi = \sum_{i=1}^n a_i L_{x_i}$, where $x_i \in x_0K$. But $L_{x_i}|_{A(G:H)} = \Phi = \delta_{\widetilde{x}_0}$. It can be shown that the map $\widetilde{x}_0 \mapsto \delta_{\widetilde{x}_0}$ is a homeomorphism of G/K onto $\Delta(A(G/K))$. \square

Theorem 20 Let G be a locally compact group with compact subgroup K. The following are equivalent:

- (i) G is amenable
- (ii) G/K is an amenable coset space
- (iii) A(G/K) has a bounded approximate identity consisting of functions with compact support in G/K
- (iv) A(G/K) weakly factorizes

Corollary 21 Let G be an amenable locally compact group with a compact subgroup K. Then $\mathcal{M}(A(G/K)) = B(G/K)$ and the usual norms agree.

Proposition 22 Let K be a compact subgroup of G. Let $\tilde{E} \subset G/K$ be a set for which (weak) spectral synthesis fails in A(G/K). Then (weak) spectral synthesis fails for $q^{-1}(\tilde{E})$ in A(G/K). In particular, if (weak) spectral synthesis fails for A(G/K), then (weak) spectral synthesis fails for A(G).

Corollary 23 Let G be a locally compact group for whiuch A(G) admits (weak) spectral synthesis. Then G is totally disconnected.

Corollary 24 Let G be a locally compact group with a compact subgroup K. Then each singleton $\{x\} \subset G/K$ is a set of spectral synthesis for A(G/K). Furthermore, if G is amenable, then every finite subset of G/K is a set of spectral synthesis.

Proposition 25 Let G be amenable with compact subgroup K. Let $\{x_1, \ldots, x_n\}$ be a finite subset of G/K. Then $I = I_{G/K}\{x_1, \ldots, x_n\}$ has a bounded approximate identity $\{u_\alpha\}$ in $A(G/K) \cap C_c(G/K)$.

Theorem 26 Let K be a compact subgroup of G. The following are equivalent:

- (i) G is amenable
- (ii) If I is a cofinite ideal of A(G/K), then $I = I(\{x_1, \dots, x_n\})$ where $n = \operatorname{codim}(I)$
- (iii) Every cofinite ideal in A(G/K) has a bounded approximate identity
- (iv) Each homomorphism of A(G/K) with finite dimensional range is continuous

This theorem is a generalization of Forrest (1988)

Theorem 27 Let K be a compact subgroup of G. The following are equivalent:

- (i) G is amenable
- (ii) Every derivation from A(G/K) into a Banach A(G/K)bimodule is continuous.

Weak amenability of A(G)

Definition 28 A commutative Banach algebra A is weakly amenable if every continuous derivation from A into a commutative Banach A-bimodule is identically zero.

A(G) is weakly amenable if G is discrete (Forrest, 1988). If G is the rotation group on \Re^3 , then A(G) is not weakly amenable (Johnson, 1994). Very little is know about the class of groups G for which A(G) is amenable. We show that this class contains all totally disconnected groups.

Theorem 29 Let H be an open subgroup of G. Then A(G/H) is weakly amenable.

Proof: Let $D: A(G/H) \to \mathcal{X}$ be a continuous derivation into a commutative Banach A(G/H)-bimodule. Let \tilde{u} be an idempotent in A(G/H). Then $D(\tilde{u}) = D(\tilde{u}^n) = nD(\tilde{u})$ for $n \geq 2$. Thus $D(\tilde{u}) = 0$. H is open, so the linear span of the idempotents is dense in A(G/H). Hence D is identically zero. \square

Lemma 30 Let G be totally disconnected. Let $u \in A(G)$ and $\epsilon > 0$. Then there exists an open compact subgroup K and a $v \in A(G:K)$ such that $\|u - v\|_{A(G)} < \epsilon$.

Theorem 31 Let G be disconnected. Then A(G) is weakly amenable.

Proof: Let $D:A(G)\to \mathcal{X}$ be a continuous derivation into a commutative Banach A(G)-bimodule. Let K be a compact open subgroup of G. The restriction of D to A(G:K) determines a derivation of A(G/K). By Theorem 29, D is zero on each A(G:K). By Lemma 30 each $u\in A(G)$ can be approximated within ϵ by some $v\in A(G:K)$ for some open compact subgroup K. Thus D=0. \square

Proposition 32 Let G_1 , G_2 be such that $A(G_i)$ is weakly amenable for i = 1, 2. Then $A(G_1 \times G_2)$ is also weakly amenable.

Corollary 33 Let $G = G_1 \times G_2$ where G_1 is abelian and G_2 is totally disconnected. Then A(G) is weakly amenable.