INDEX

LIST OF FIGURES	
ABSTRACT	
CHAPTER 1: INTRODUCTION	1
1.1 IoT	1
1.2 Motivation	2
1.3 Objective	2
CHAPTER 2: HARDWARE	3
2.1 Raspberry Pi 3	3
2.1.1 Description	3
2.1.2 Technical Specifications	4
2.1.3 Features	4
2.1.4 Processor	5
2.1.5 Performance	5
2.1.6 Overclocking	5
2.1.7 Networking	6
2.1.8 Peripherals	7
2.1.9 Video	7
2.1.10 Real time clock	8
2.2 H Bridge Motor driver	8
2.2.1 Description	8
2.2.2 Features	9
2.2.3 Working	10
2.2.4 Pins	10
2.2.5 Specifications	11
2.3 Power Bank	11
2.4 Li ion battery	12

CHAPTER 3: VEHICLE BUILDING	14
3.1 Prototype block diagram	14
3.2 Connections	14
CHAPTER 4: SOFTWARE IMPLEMENTATION	19
4.1 WebIOPi	19
4.2 HTML	19
CHAPTER 5: EXECUTION	21
CHAPTER 6: CONCLUSION AND FUTURE SCOPE	22
6.1 Conclusion	22
6.2 Applications	22
6.3 Limitations	23
REFERENCES	24

LIST OF FIGURES

Figure Number	Description	Page Number
1.1.	Internet of Things	1
2.1.	Raspberry Pi 3B+	3
2.2.	L298 Dual H-Bridge Motor Drive IC	8
2.3.	Lithium-ion battery	12
3.1.	Prototype Block Diagram	14
3.2.	Raspberry Pi 3 Pinout	15
5.1.	Web User Interface	21

ABSTRACT

Internet of Things (IoT) has acquired significant recognition and progress in recent

years. IoT has enabled the integration of physical devices to create an ecosystem with

improved efficiency, accuracy and economic benefit in addition to reduced human

intervention. Sophisticated sensors and chips are embedded in physical devices which

securely communicate with an Internet of Things platform. The platform runs analytics

on the data after which the most valuable data is shared with applications that address

industry-specific needs.

One such research area includes vehicle guiding, wherein a locomotive is completely

manoeuvred through an interface connected to the internet. A prototype of a fully

steerable car through the commands issued by the user on an interface has been

described. IoT allows the car to be controlled remotely, however, the prerequisite

condition is a stable internet connection. The Raspberry Pi 3B+ has been used as the

main controller in the prototype build. Also included is an H-Bridge Motor Driver

Integrated Circuit to facilitate easy and independent control of two motors each in either

direction. A webpage or a mobile application can be used as an aforementioned user

interface. In this research, the compatibility of WebIOPi with Raspberry Pi has resulted

in its utilization as a webpage user interface on a mobile handset.

Keywords: Internet of Things, Raspberry Pi, Vehicle Guiding System, H bridge

motor driver

ii