Logic of Computer Science Lecture 5: Proof Techniques and Strategy

Emmanuel Kwesi Tandoh

University of Mines and Technology (UMaT)

June 2025

Knowledge | Truth | Excellence

Why Proof Techniques Matter

Real-World Importance of Proofs

In programming, systems design, and AI, proofs are how we guarantee correctness.

- Sorting Algorithm: Prove it truly sorts any input.
- **Authentication Protocol**: Show it's secure under attack assumptions.
- Compiler Optimization: Prove the transformation preserves semantics.

Kev Takeawav

Proofs are not just theoretical — they are your guarantee of **trust in systems**.

2/12

2. Learning Objectives

By the end of this lecture, you should be able to:

- Distinguish and apply direct proof, proof by contrapositive, and proof by contradiction.
- Plan proofs effectively by breaking complex statements into sub-goals.
- Identify which proof technique is most suitable for a given theorem.

3. Direct Proof vs. Contrapositive

3.1 Direct Proof

Goal: Prove an implication $P \rightarrow Q$

Method

- **Assume** *P* is true.
- Use definitions, algebra, and earlier results to derive Q.

Example

Prove: If n is even, then n + 1 is odd.

- Assume n = 2k for some integer k.
- Then n + 1 = 2k + 1, which is odd by definition.

3.2 Proof by Contrapositive

Key Idea

An implication $P \to Q$ is logically equivalent to its contrapositive: $\neg Q \to \neg P$.

When to Use

Use this method when assuming $\neg Q$ makes the argument easier or more natural.

Method

- Assume $\neg Q$
- Show that $\neg P$ logically follows

3.3 Proof by Contradiction

Goal

Prove P by assuming $\neg P$ and reaching a contradiction.

Example: $\sqrt{2}$ is irrational

- Assume $\sqrt{2} = a/b$ in lowest terms
- $2 = a^2/b^2 \Rightarrow a^2 = 2b^2 \Rightarrow aevenLeta = 2k \Rightarrow b$ also even
- Contradicts lowest terms assumption

4. Proof Planning Strategy

Steps to Success

- Understand what to prove
- Choose suitable proof technique
- Break down complex statements
- Work backwards if needed
- Outline steps before full proof

5. Example Walkthrough

Theorem

If n^2 is even, then n is even.

Proof (Contrapositive)

- Assume *n* is odd: n = 2k + 1
- Then $n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$
- $\Rightarrow n^2$ is odd
- ... If n^2 is even, n is even

6. In-Class Strategy Workshop

Activity

Work on one of the following:

- The sum of two odd integers is even.
- Every factor of a prime is either 1 or itself.
- If $a \mid bc$ and gcd(a, b) = 1, then $a \mid c$.

Tasks

- Choose a proof technique
- Outline steps (5–7 bullets)
- Present to the class

7. Summary Key Takeaways

Summary

- Direct: forward logic
- Contrapositive: flip and simplify
- Contradiction: assume negation and find inconsistency
- Plan before proof

References I

- D. Gries and F. B. Schneider, *A Logical Approach to Discrete Math*, Springer-Verlag, 1993.
- K. H. Rosen, Discrete Mathematics and Its Applications, 7th ed., McGraw-Hill, 2011.
- P. Halmos, Naive Set Theory, Van Nostrand, 1960.

Thank You!

12 / 12

E. K. Tandoh (UMaT) Lecture 5 – Proof Techniques June 2025