Shuyi Jin sj445

ECE 590: Theory and Practice of Algorithms

October 9, 2024

Homework 4

Question 1.

- 1. Give context-free grammars for the following languages. Describe the language derived by each variable in your grammar. Is your grammer is ambigous? Why or why not?
 - (a) $\{x\#y|: x,y \in \{0,1\}^*, |x| \neq |y| \lor x = y^R\}$ (Recall that y^R denotes the reverese of y; for example, $0101^R = 1010$.)
 - (b) $\{a^m b^n c^p : m + n = p\}$

(a)

Define a CFG for the language:

$$L = \{x \# y \mid x, y \in \{0, 1\}^*, |x| \neq |y| \text{ or } x = y^R\}$$

where y^R denotes the reverse of y.

Grammar Definition

Variables: S — Start symbol

A — Generates strings where $|x| \neq |y|$

B — Generates strings where $x = y^R$

Productions:

$$\begin{split} S &\to A \,|\, B \\ A &\to 0A \,|\, 1A \,|\, 0A0 \,|\, 1A1 \,|\, 0B1 \,|\, 1B0 \,|\, \#A \,|\, \#B \\ B &\to 0B0 \,|\, 1B1 \,|\, \epsilon \end{split}$$

Language Derived: S: Derives the language L where either $|x| \neq |y|$ or $x = y^R$.

A: Derives strings where $|x| \neq |y|$.

B: Derives strings where $x = y^R$.

Ambiguity: The grammar is **unambiguous** because each string in the language can only be derived uniquely, either by satisfying $|x| \neq |y|$ (via A) or $x = y^R$ (via B).

(b)
$$L = \{a^mb^nc^p \mid m+n=p\}$$

Grammar:

$$S \to XcS \mid \epsilon$$
$$X \to a \mid b$$

Where: X represents either an 'a' or a 'b', and ensures that the appropriate number of 'c''s follows. S ensures that the sum of m (the number of 'a''s) and n (the number of 'b''s) equals p (the number of 'c''s).

Ambiguity: This grammar is also **not ambiguous**, as the structure ensures a unique derivation where the number of 'a's and 'b's must match the number of 'c's.

Question 2. implementation You can find the description on Canvas under Assignments \rightarrow Programming Assignments \rightarrow DFA2. Submit the programming assignment to Gradescope.

Just as submitted on canvas.