Professor: Dr. Luo November 6, 2022

MATH 574 Homework 11

Collaboration:

Problem 1 Let $n \in \mathbb{N}$. Prove that if $a \equiv c \pmod{n}$ and $b \equiv d \pmod{n}$, then $ab \equiv cd \pmod{n}$.

Solution.

We have that $x \equiv y \pmod{n}$ if and only if n|(x-y) for $n \in \mathbb{N}$, $x, y \in \mathbb{Z}$.

Let $a, b, c, d \in \mathbb{Z}$ and $n \in \mathbb{N}$. Assume that $a \equiv c \pmod{n}$ and $b \equiv d \pmod{n}$, so n | (a - c) and n | (b - d). By definition then, there must exist $k, m \in \mathbb{Z}$ such that a - c = kn and b - d = mn. Rearranging, we have a = mn + c and b = kn + d. Multiplying, we have

$$ab = (mn + c)(kn + d) = kmn^2 + dmn + ckn + cd.$$

Rearranging again, we must have $k, m \in \mathbb{Z}$ such that

$$ab - cd = kmn^2 + dmn + ckn = n(kmn + dm + ck).$$

Since kmn + dm + ck is simply the product and sum of integers, it is an integer, so we can write ab - cd as an integer multiple of n and thus n|(ab - cd). So $ad \equiv cd \pmod{n}$ by definition.

Problem 2 Which elements of \mathbb{Z}_{12} are invertible? For each element that is invertible, give its inverse.

Solution.

An element z of \mathbb{Z}_{12} is invertible if and only if z and 12 are co-prime, meaning that $\gcd(z, 12) = 1$. This is the case for $z \in \{1, 5, 7, 11\}$.

- The inverse of 1 is 1: $(1)(1) = 1 \equiv 1 \pmod{12}$.
- The inverse of 5 is 5: $(5)(5) = 25 \equiv 1 \pmod{12}$.
- The inverse of 7 is 7: $(7)(7) = 49 \equiv 1 \pmod{12}$.
- The inverse of 11 is 11: $(11)(11) = 121 \equiv 1 \pmod{12}$.

Problem 3 Let $n \in \mathbb{N}$. Define a function $f : \mathbb{Z}_n \to \mathbb{Z}_n$ by $f([a]) = [a^2]$.

- (a) Prove that, if n = 1 or n = 2, then f is bijective.
- (b) Prove that for $n \geq 3$, f is not injective. (Hint: try to find two different elements $[a] \neq [b]$ such that f([a]) = f([b]).)

Solution.

(a) We have that $\mathbb{Z}_n = \{[0]_n, [1]_n, [2]_n, \dots, [n-1]_n\}$, and that $[k]_n = \{s : s \equiv k \pmod{n}\}$.

Nathan Bickel

First, let n = 1. Then, we have $f : \mathbb{Z}_1 \to \mathbb{Z}_1$ where $\mathbb{Z}_1 = \{[0]_1\}$. Since $f([a]) = [a^2]$, we have

$$f = \left\{ \left(\left[0\right]_1, \left[0^2\right]_1 \right) \right\} = \left\{ \left(\left[0\right]_1, \left[0\right]_1 \right) \right\}.$$

It is easy to see that this is a bijection because $[0]_1$ is mapped to uniquely from $[0]_1$.

Next, let n=2. Then, we have $f: \mathbb{Z}_2 \to \mathbb{Z}_2$ where $\mathbb{Z}_2 = \{[0]_2, [1]_2\}$. Since $f([a]) = [a^2]$, we have

$$f = \left\{ \left(\left[0\right]_2, \left[0^2\right]_2 \right), \left(\left[1\right]_2, \left[1^2\right]_2 \right) \right\} = \left\{ \left(\left[0\right]_2, \left[0\right]_2 \right), \left(\left[1\right]_2, \left[1\right]_2 \right) \right\}.$$

This is also a bijection because $[0]_1$ is mapped to uniquely from $[0]_1$ and $[1]_2$ is mapped to uniquely from

(b) Now let $n \in \mathbb{N}$ such that $n \geq 3$. Then, we have $f([n-1]_n) = [(n-1)^2]_n$. We claim that

$$\left[\left(n-1 \right)^2 \right]_n = [1]_n.$$

To prove this, observe that

$$n|n(n-2)$$
 $(n-2 \text{ must be an integer})$
 $\Rightarrow n|n^2 - 2n$
 $\Rightarrow n|n^2 - 2n + 1 - 1$
 $\Rightarrow n|(n-1)^2 - 1$
 $\Rightarrow (n-1)^2 \equiv 1 \pmod{n}$ (by definition)
 $\Rightarrow \left[(n-1)^2\right]_n = [1]_n$. (both representatives of same class)

So $f([n-1]_n) = [1]_n$. We also have that $f([1]_n) = [1^2]_n = [1]_n$. But since n > 2, $[n-1]_n \neq [1]_n$. So f is not injective.

Problem 4 Suppose $m, n \in \mathbb{Z}$ are not both 0. Let $d = \gcd(m, n)$. Prove that $\gcd(\frac{m}{d}, \frac{n}{d}) = 1$.

Solution.

Without loss of generality, assume $m \neq 0$. If n = 0, then $d = \gcd(m, 0) = m$, and $\gcd\left(\frac{m}{m}, \frac{0}{m}\right) = \gcd(1, 0) = 1$.

Now, let $n \neq 0$, and assume that $\gcd\left(\frac{m}{d}, \frac{n}{d}\right) > 1$. Then, there exists some $d' \in \mathbb{N}$ such that $d' \mid \frac{m}{d}$ and $d' \mid \frac{n}{d}$. Thus, there exist some $k_1, k_2 \in \mathbb{Z}$ such that $d'k_1 = \frac{m}{d}$ and $d'k_2 = \frac{n}{d}$, and consequently $d'dk_1 = m$ and $d'dk_2 = n.$

So we can write that d'd|m and d'd|n, and thus d'd is a common divisor of m and n. Since d'>1, it follows that d'd > d. However, d is chosen to be the greatest common divisor of m and n, so this is a contradiction because there cannot be a common divisor larger than d. Thus we must have $d' = \gcd\left(\frac{m}{m}, \frac{0}{m}\right) \le 1$. Since 1 divides any integer, $gcd\left(\frac{m}{m}, \frac{0}{m}\right) = 1$.

Problem 5 Let $a, b \in \mathbb{Z}$ not both zero. Prove or disprove:

- (a) If gcd(a, b) = 1, then $gcd(a^2, b^2) = 1$.
- (b) If gcd(a, b) = 1, then gcd(a, 2b) = 1.

Solution.

Homework 11 MATH 574

(a) For $a, b \in \mathbb{N}$ such that $a \geq 2, b \geq 2$: From the fundamental theorem of arithmetic, we can write $a = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_m^{\alpha_m}$ as the product of m primes p_i raised to powers α_i and $b = q_1^{\beta_1} q_2^{\beta_2} \dots q_n^{\beta_n}$ as the product of n primes q_i raised to powers β_i . Consequently, $a^2 = p_1^{2\alpha_1} p_2^{2\alpha_2} \dots p_m^{2\alpha_m}$ and $b^2 = q_1^{2\beta_1} q_2^{2\beta_2} \dots q_n^{2\beta_n}$.

Since gcd(a, b) = 1, a and b have no factors greater than 1 in common and thus the sets $\{p_1, p_2, \ldots, p_m\}$ and $\{q_1, q_2, \ldots, q_n\}$ are disjoint (since all of these elements are greater than 1). Since a^2 and b^2 have the same set of factors and simply have powers doubled from a and b, a^2 and b^2 also have no prime factors in common. So $gcd(a^2, b^2) = 1$.

If a or b are less than -1, we can use the prime factorization of -a or -b with the same reasoning. If $|a| \le 1$ and $|b| \le 1$ (with at least one nonzero), then the gcd must be 1 because a number cannot have a factor greater than the absolute value of itself. So in all cases, $\gcd(a,b) = 1 \implies \gcd(a^2,b^2) = 1$.

(b) This is false. For example, take a=2 and b=1. Then, we can write gcd(a,b)=gcd(2,1)=1, but $gcd(a,2b)=gcd(2,2)=2\neq 1$.

Problem 6 Let $n \in \mathbb{Z}$. Prove that gcd(n, n+2) = 1 if and only if n is odd.

Solution.

We first prove that if gcd(n, n + 2) = 1 then n is odd. If n is even, then so is n + 2. So if gcd(n, n + 2) is 1, then n must be odd: if it were even, then n + 2 would be as well and the gcd would be at least 2 rather than 1.

We next prove that if n is odd, then gcd(n, n+2) = 1. Assume that $gcd(n, n+2) \neq 1$. Then, we have some $d \in \mathbb{N}, d \geq 2$ such that d = gcd(n, n+2). So d|n and d|(n+2), and by definition there exist $k_1, k_2 \in \mathbb{Z}$ such that $dk_1 = n$ and $dk_2 = n+2$.

Substituting for n, we can then write $dk_1 = dk_2 - 2$ and subsequently $2 = d(k_2 - k_1)$. Since we assumed $d \ge 2$, we need $d = \frac{2}{k_2 - k_1} \ge 2$, which implies $1 \ge k_2 - k_1$. Since k_2 must be a larger integer than k_1 as dk_2 is larger than dk_1 , we must have an equality with $k_2 - k_1 = 1$ or equivalently $k_2 = k_1 + 1$.

Substituting into our original equalities, we get $dk_1 = n$ and $dk_2 = d(k_1 + 1) = dk_1 + d = n + 2$. Thus, $dk_1 = dk_1 + d - 2$, which implies d = 2. Since d is the gcd of n and n + 2, we must have 2|n and thus n is even if $gcd(n, n + 2) \neq 1$. Therefore, gcd(n, n + 2) = 1 if and only if n is odd.

Problem 7 Let $a, b \in \mathbb{Z}$ not both zero. If gcd(a, b) = 1 and $a \mid n$ and $b \mid n$, prove that $ab \mid n$.

Solution.

For $a, b, n \in \mathbb{N}$ such that $a \geq 2, b \geq 2, n \geq 2$: From the FTA, we can write $a = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$ as the product of k primes p_i raised to powers α_i and $b = q_1^{\beta_1} q_2^{\beta_2} \dots q_m^{\beta_m}$ as the product of m primes q_i raised to powers β_i . Since $\gcd(a, b) = 1$, a and b have no factors greater than 1 in common and thus the sets $\{p_1, p_2, \dots, p_m\}$ and $\{q_1, q_2, \dots, q_n\}$ are disjoint (since all of these elements are greater than 1). We can use the FTA also write $n = r_1^{\gamma_1} r_2^{\gamma_2} \dots r_n^{\gamma_n}$ as the product of n primes r_i raised to powers γ_i .

Since a|n and b|n, part of the prime factorization of n must include $a=p_1^{\alpha_1}p_2^{\alpha_2}\dots p_k^{\alpha_k}$ and another part must include $b=q_1^{\beta_1}q_2^{\beta_2}\dots q_m^{\beta_m}$. Since a and b are coprime, there is no overlap. Thus, we can write $n=j\left(p_1^{\alpha_1}p_2^{\alpha_2}\dots p_k^{\alpha_k}\right)\left(q_1^{\beta_1}q_2^{\beta_2}\dots q_m^{\beta_m}\right)=jab$ for some $j\in\mathbb{Z}$. Thus, ab|n.

If a, b, or n are less than -1, we can use the prime factorization of -a, -b or -n with the same reasoning. If $|a| \le 1$ and $|b| \le 1$ (and not zero), then the statement must be true because of identity properties. So in all cases, $a|n,b|n \implies ab|n$.

Nathan Bickel

Problem 8 Let $a, b \in \mathbb{N}$. Define the least common multiple lcm(a, b) as the smallest positive integer that is a multiple of both a and b. Prove that ab = lcm(a, b) if and only if gcd(a, b) = 1.

Solution.

We first prove that $ab = \operatorname{lcm}(a, b) \Longrightarrow \operatorname{gcd}(a, b) = 1$. Let $a, b \in \mathbb{N}$. Assume to the contrary that $\operatorname{gcd}(a, b) = d$ for some d > 1. So d|a and d|b, and we can write $a = dk_1$ and $b = dk_2$ for some $k_1, k_2 \in \mathbb{Z}$. Thus, $d^2|ab$, because $ab = (dk_1)(dk_2) = d^2k_1k_2$. So $a|\frac{ab}{d}$ because we can write $\frac{ab}{d} = (dk_1)k_2 = ak_2$ and $b|\frac{ab}{d}$ because we can write $\frac{ab}{d} = k_1(dk_2) = k_1b$. So $\frac{ab}{d}$ is a multiple of a and b, and therefore ab cannot be the least common multiple since d > 1 and thus $\frac{ab}{d} < ab$. Therefore $ab = \operatorname{lcm}(a, b) \Longrightarrow \operatorname{gcd}(a, b) = 1$.

We now prove that $gcd(a,b) = 1 \implies ab = lcm(a,b)$. Let $a,b \in \mathbb{N}$. Assume gcd(a,b) = 1 and lcm(a,b) = m for some m < ab. So a|m and b|m, and thus by the result from (7) ab|m. But since a positive number cannot have a factor greater than itself, we cannot have m < ab, a contradiction. Therefore $gcd(a,b) = 1 \implies ab = lcm(a,b)$.

So gcd(a,b) = 1 if and only if ab = lcm(a,b).