UNIVERSITÉ DE MONTRÉAL

23.5 LAKY

23.5 LAKY

DEVOIR 1

PAR

CHENGZONG JIANG (20122046)
MICHAEL PLANTE (20182677)

BACCALAURÉAT EN INFORMATIQUE FACULTÉ DE L'ÉDUCATION PERMANENTE

VANESSA THIBAULT-SOÙCY (20126808) JAYDAN ALADRO (20152077)

TRAVAIL PRÉSENTÉ À GENA HAHN DANS LE CADRE DU COURS IFT 2105 INTRODUCTION À L'INFORMATIQUE THÉORIQUE Par définition, on sait que $L \subseteq L^*$, car L^* est une concaténation de tous les mots d'un langage L, pour tout langage L. Cela implique donc que $(L^*)^*$ est une concaténation de L^* avec lui-même. Comme $(L^*)^*$ contient un mot w_k , où $k \ge 0$, alors $w_k \in L^*$. On peut dire que $L^* \subseteq (L^*)^*$.

Ainsi, $(L^*)^*\supseteq L^*$ est vrai. $\mathsf{P}(L^*)$ west $\mathsf{P}(L^*)$ of $\mathsf{P}(L^*)$

Supposons un mot $w \in (L^*)^*$, ou $w = w_1...w_n$ pour $n \ge 0$ où chaque $w_i \in w$, avec $0 \le i \le n$, $w_i \in L^*$. Nous pouvons alors réécrire chaque w_i comme $w_i = w_{i1}...w_{in}$ où chaque $w_{ij} \in w_i$, avec $0 \le j \le n$, $w_{ij} \in L$. Cela montre que $w = w_{11}...w_{1n}...w_{nn} \in L$.

On peut donc voir que w est la concaténation d'un nombre fini de mots du langage L, qui est concaténer avec lui-même pour former L^* , qui est ensuite concaténé pour former $(L^*)^*$.

Ceci démontre que $(L^*)^* \subseteq L^*$ est vrai.

 \therefore Par preuve directe, nous avons montré que $(L^*)^* = L^*$.

Z= { } nist Question 2 Pour un alphabet $\Sigma = \{\}$ Si $L = \{\epsilon\}$, nous avons que $L^2 = L$. Comme $L^2 = L \cdot L = \{\epsilon\epsilon\} = \{\epsilon\}$. Ainsi, $L^2 = L$. Si $L = \{\emptyset\}$, $L^2 = L \cdot L = \{\emptyset\emptyset\} = \{\emptyset\}$. Ainsi, $L^2 = L$. Sachant que L^2 est la concaténation du langage L avec lui-même deux fois, il n'existe pas une infinité de langage sur un même aphabet tel que $L^2 = L$. En effet, si $L = \{a\}, L^2 = \{aa\}, L \neq L^2$.

Question 3

K=* 77 5/15

Montrons par induction que pour tout k > 0, $L^k = L$ avec k = *:

— Le cas de base est k=2. Nous avons $L^k=L$ pour k=2. $L^2=L$ est vrai.

— On suppose que pour k=*, l'équation $L^k=L$ est vraie. Montrons alors le cas pour k+1 que : $L^{k+1}=L$ est vraie.

$$L^{k+1} = L^k \cdot L$$

$$= L \cdot L \quad \text{car } L^k = L \text{ par hypothèse d'induction}$$

$$= L^2$$

$$= L \quad \text{car } L^2 = L$$

— Donc $L^{k+1} = L$. On peut conclure par induction que $L^k = L$ pour k = *.

* viss pres un entier On al peut pres faire Cela.