PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2003-238128

(43) Date of publication of application: 27.08.2003

(51)Int.CI.

CO1B 31/02

(21)Application number: 2002-043333 (71)Applicant: MITSUBISHI CHEMICALS

CORP

(22)Date of filing:

20.02.2002

(72)Inventor: TAKEHARA HIROAKI

YAMAMOTO TAKAHARU

ARIKAWA MINEYUKI

(54) MANUFACTURING FACILITY FOR FULLERENE AND METHOD OF MANUFACTURING FULLERENE USING THE SAME

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a manufacturing facility for fullerenes, which is not affected on processing of a reaction furnace even if soot adhered on a ceiling part of the reaction furnace is dropped, and to provide a method of manufacturing the fullerenes.

SOLUTION: The fullerenes 10 are manufactured by utilizing the manufacturing facility. The method of manufacturing the fullerenes that an oxygen containing gas and a carbon containing fuel gas are fed into the reaction furnace 11 through a burner 15 equipped as a part of the reaction furnace 11, and reacted under a reduced pressure, wherein the burner 15 is practically placed avoiding just under the place of a soot adhering region 16 of the reaction furnace 11.

LEGAL STATUS

[Date of request for examination]

Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

Date of registration

[Number of appeal against examiner's

decision of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-238128 (P2003-238128A)

(43)公開日 平成15年8月27日(2003.8.27)

(51) Int.C1.7

C01B 31/02

識別記号

101

FI C01B 31/02

デーマコート*(参考) 101F 4G046

審査請求 未請求 請求項の数7

OL (全 6 頁)

(21)出顧番号

特願2002-43333(P2002-43333)

(22)出顧日

平成14年2月20日(2002.2.20)

(71)出願人 000005968

三菱化学株式会社

東京都千代田区丸の内二丁目5番2号

(72)発明者 武原 弘明

福岡県北九州市八幡西区黒崎城石1番1号

三菱化学株式会社内

(72)発明者 山本 陸時

福岡県北九州市八幡西区黒崎城石1番1号

三菱化学株式会社内

(74)代理人 100090697

弁理士 中前 富士男

最終頁に続く

(54) 【発明の名称】 フラーレン類の製造設備及びこれを用いたフラーレン類の製造方法

(57)【要約】

【課題】 仮に反応炉の天井部分に付着した煤が落下しても、反応炉の操業に影響を受けないフラーレン類の製造設備及びこれを用いたフラーレン類の製造方法を提供する。

【解決手段】 反応炉11の一部に設けたバーナー15から酸素含有ガスと炭素含有燃料ガスとを反応炉11内に供給し、減圧下でこれらを反応させて煤を発生させながらフラーレン類を製造するフラーレン類の製造設備10及びその製造方法であって、反応炉11の煤付着領域16の直下位置を実質的に避けて、バーナー15を反応炉11に設けた。

【特許請求の範囲】

【請求項1】 反応炉内に酸反応炉の一部に設けたバー ナーから酸素含有ガスと炭素含有燃料ガスとを供給し、 減圧下でこれらを反応させて煤を発生させながらフラー レン類を製造するフラーレン類の製造設備であって、前 記反応炉の煤付着領域の直下位置を実質的に避けて、前 記パーナーを前記反応炉に設けたことを特徴とするフラ ーレン類の製造設備。

1

【請求項2】 請求項1記載のフラーレン類の製造設備 において、前記反応炉は有底筒状であって、底部に前記 10 バーナーが上部に排気口がそれぞれ備えられ、しかも前 記反応炉は斜めに配置されて、該反応炉の上部に形成さ れる前記煤付着領域の直下領域に前記パーナーが無いか 又は10%以下の範囲で交差していることを特徴とする フラーレン類の製造設備。

【請求項3】 請求項1記載のフラーレン類の製造設備 において、前記反応炉は有底筒状の反応炉本体を備えて その上部に排気口が備えられ、前記バーナーは前記反応 炉本体の側壁に設けられた1又は2以上の短筒部を介し て設けられていることを特徴とするフラーレン類の製造 20 設備。

【請求項4】 請求項3記載のフラーレン類の製造設備 において、前記短筒部は、前記反応炉本体の軸心に対し て外側に下り傾斜に設けられていることを特徴とするフ ラーレン類の製造設備。

【請求項5】 請求項1記載のフラーレン類の製造設備 において、前記パーナーは、前記反応炉の側壁に設けら れていることを特徴とするフラーレン類の製造設備。

【請求項6】 請求項5記載のフラーレン類の製造設備 において、前記パーナーは実質的に環状となっているこ 30 とを特徴とするフラーレン類の製造設備。

【請求項7】 請求項1~6のいずれか1項に記載のフ ラーレン類の製造設備を用いて、炭素含有燃料ガス及び 酸素含有ガスを噴き出す前記パーナーの上に煤を落下さ せることなく、前記反応炉内で炭素含有燃料ガスと酸素 含有ガスとを反応させて連続的にフラーレン類を製造す るフラーレン類の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、フラーレン類(C 40 so、Cro、Cro、Cro、Cro、Coo を含む) の製造設備及びこ れを用いたフラーレン類の製造方法に関する。

[0002]

【従来の技術】フラーレンは、ダイヤモンド、黒鉛に次 ぐ第三の炭素同素体の総称であり、C。。、C7。等に代表 されるような5員環と6員環のネットワークで閉じた中 空殼状の炭素分子である。フラーレンの存在が最終的に 確認されたのは比較的最近の1990年のことであり、 比較的新しい炭素材料であるが、その特殊な分子構造ゆ え特異的な物理的性質を示すことが認められ、例えば以 50 ナーの上に落下し難いので、フラーレン類の製造を継続

下のような広範囲な分野に渡り、革新的な用途開発が急 速に展開されつつある。

(1) 超硬材料への応用

フラーレンを前駆体とすることで微細結晶粒子をもつ人 工ダイヤモンド等の精製が可能となるため、付加価値の ある耐摩耗材料への利用が期待されている。

(2) 医薬品への応用

フラーレン薄膜に金属カリウムをドープすると18Kと いう高い転移温度を持つ超伝導材料を作り出すことがで きることが発見され、多方面から注目を集めている。

(3)半導体装置への応用

レジストにC。。を混ぜることでレジスト構造がより一層 強化されることを利用し、次世代半導体製造への応用が 期待されている。各種炭素数のフラーレンの中でも、C 。。及びC、。は比較的合成が容易であり、それゆえ今後の 需要も爆発的に髙まることが予想されている。現在知ら れているフラーレンの製造方法としては、レーザー蒸着 法、抵抗加熱法、アーク放電法、高周波誘導加熱法、燃 焼法、ナフタリン熱分解法等があるが、燃焼炉中でヘリ ウム等の不活性ガスと酸素との酸素含有ガスと、ベンゼ ン、トルエン等の原料をガス化した炭素含有燃料ガスと を反応炉内で不完全燃焼させる燃焼法が比較的製造コス トが安価である。

[0003]

【発明が解決しようとする課題】この燃焼法において は、例えば、図7に示すようにフラーレン類の製造設備 を構成する反応炉(燃焼炉)50内にそれぞれ炭素含有 燃料ガスと酸素含有ガスとをバーナー51を介して導入 し、減圧下で不完全燃焼させているのが一般的であるの で、炭素を主体とする煤が発生し、この煤が反応炉50 の天井52部分に付着し、付着量が多くなると重力によ って反応炉50の下方に落下していた。とのため、反応 炉50の底部53に設けられたバーナー51上に煤が落 ちて、バーナー51からの炭素含有燃料ガス及び酸素含 有ガスの噴き出しに支障を生じるという問題があった。 なお、54は排気口を示す。本発明はかかる事情に鑑み てなされたもので、仮に反応炉に付着した煤が落下して も、反応炉の操業に影響を受けないフラーレン類の製造 設備及びこれを用いたフラーレン類の製造方法を提供す ることを目的とする。

[0004]

【課題を解決するための手段】前記目的に沿う第1の発 明に係るフラーレン類の製造設備は、反応炉内に該反応 炉の一部に設けたバーナーから酸素含有ガスと炭素含有 燃料ガスとを供給し、減圧下でこれらを反応させて煤を 発生させなからフラーレン類を製造するフラーレン類の 製造設備であって、前記反応炉の煤付着領域の直下位置 を実質的に避けて、前記パーナーを前記反応炉に設けて いる。これによって、煤付着領域から落下する煤がバー

50

的にできる。また、第2の発明に係るフラーレン類の製 造設備は、第1の発明に係るフラーレン類の製造設備に おいて、前記反応炉は有底筒状であって、底部に前記バ ーナーが上部に排気口がそれぞれ備えられ、しかも前記 反応炉は斜めに配置されて、該反応炉の上部に形成され る前記煤付着領域の直下領域に前記バーナーが無いか又 は10%以下の範囲で交差している。また、第3の発明 に係るフラーレン類の製造設備は、第1の発明に係るフ ラーレン類の製造設備において、前記反応炉は有底筒状 の反応炉本体を備えてその上部に排気口が備えられ、前 記パーナーは前記反応炉本体の側壁に設けられた1又は 2以上の短筒部を介して設けられている。第4の発明に 係るフラーレン類の製造設備は、第3の発明に係るフラ ーレン類の製造設備において、前記短筒部は、前記反応 炉本体の軸心に対して外側に下り傾斜に設けられてい る。

【0005】第5の発明に係るフラーレン類の製造設備 は、第1の発明に係るフラーレン類の製造設備におい て、前記パーナーは、前記反応炉の側壁に設けられてい る。第6の発明に係るフラーレン類の製造設備は、第5 の発明に係るフラーレン類の製造設備において、前記バ ーナーは実質的に環状となっている。そして、第7の発 明に係るフラーレン類の製造方法は、第1~第6の発明 に係るフラーレン類の製造設備を用い、炭素含有燃料ガ ス及び酸素含有ガスを噴き出す前記バーナーの上に煤を 落下させるととなく、前記反応炉内で炭素含有燃料ガス と酸素含有ガスとを反応させて連続的にフラーレン類を 製造している。なお、第1~第7の発明において、バー ナーは炭素含有燃料ガスと酸素含有ガスが予めプリミッ クスされてバーナーのノズルから噴出する場合と、炭素 30 含有燃料ガスを噴出するノズルと酸素含有ガスを噴出す るノズルとは別々に設けられている場合を含む。更に、 酸素含有ガスには、純酸素の他にヘリウル、アルゴン等 の不活性ガスが混入して希釈されている場合も含む。 [0006]

【発明の実施の形態】続いて、添付した図面を参照しつ つ、本発明を具体化した実施の形態につき説明し、本発 明の理解に供する。ことに、図1は本発明の第1の実施 の形態に係るフラーレン類の製造設備の概略側断面図、 図2は本発明の第2の実施の形態に係るフラーレン類の 40 製造設備の概略側断面図、図3は本発明の第3の実施の 形態に係るフラーレン類の製造設備の概略側断面図、図 4は図3における矢視A-A断面図、図5は本発明の第 4の実施の形態に係るフラーレン類の製造設備の概略側 断面図、図6は図5における矢視B-B断面図である。 【0007】図1に示すように、本発明の第1の実施の 形態に係るフラーレン類の製造設備10は、傾斜配置さ れた反応炉(燃焼炉)11を有している。 反応炉11の 側壁12は、ステンレス鋼、耐熱鋼等の材料からなる殻 体とその内側に貼られた耐火材とを有して構成されてい

る(以下の実施の形態においても基本的には同じ)。側 壁12の上部は徐々に縮径する天井部13が一体的に連 結され、その頂上部に排気口14が設けられている。排 気口14には取付け用フランジが設けられている場合も ある。そして、この反応炉11の軸心は鉛直線に対して 10~80度(好ましくは20~70度の範囲)で傾い て設置されている。また、有底筒状の反応炉11の底部 には炭素含有燃料ガス及び酸素含有ガスを噴き出す多数 のノズルを有するパーナー15が設けられている。この パーナー15から炭素含有燃料ガス及び酸素含有ガスを 10 徐々に噴き出し、反応炉11内で減圧下で不完全燃焼さ せると、煤が発生して天井部13に煤が付着する煤付着 領域16が形成される。とのパーナー15は炭素含有燃 料ガスと酸素含有ガスとをプリミックスして反応炉11 内に噴出するものであってもよいし、炭素含有燃料ガス と酸素含有ガスとを別々に噴出口又はパイプから噴出す るものであってもよい(以下の実施の形態においても同 じ)。

【0008】煤付着領域16と煤非不着領域との境界 は、パーナー15の外周線を反応炉11の軸心に対して 平行に上方に延長し (図1において線分a、bでその対 向稜線が示されている)、天井部13と交差する円によ って囲まれる領域であると解される。その理由は、反応 炉11の側壁12は円筒状であり、バーナー15の実質 的直径は反応炉11の内径の85~98%となって、反 応炉11の内径に近く、パーナー15の外周円に沿って 不完全燃焼したガス及び煤が上昇し、天井部13でガス の流れが変わって煤が付着するからである。そして、実 際的にはガスの流れが大きく変わる中心に近い部分の煤 の付着度合いが大きく、その周囲ほど煤の付着度合いが 少なくなる。従って、煤付着領域16の直下位置領域 (図1において垂線cより右側) は煤の落下領域となる ので、この煤落下領域17にバーナー15が存在しない ことがより好ましいが、パーナー15が10%以下の範 囲で交差しても実際上支障がないことになる。なお、実 際的には煤非付着領域にも煤は付着することもあるが、 との場合は付着する煤の量が少ないので、大きな問題と はならない。

【0009】続いて、図2に示す本発明の第2の実施の 形態に係るフラーレン類の製造設備について説明する が、前記実施の形態と同一の構成要素については同一の 番号を付してその詳しい説明を省略する (以下の実施の 形態においても同じ)。との実施の形態では、フラーレ ン類の製造設備は、その反応炉19が上部に屈曲部20 を有し、10~80度(より好ましくは20~70度) の範囲で斜めに傾いた反応炉本体19aの底部にバーナ -15が設けられている。バーナー15の外周円dを反 応炉19の軸心に沿って斜め上方に延長させると、屈曲 部20の部分に煤付着領域21が形成される。バーナー 15はこの煤付着領域21の直下位置領域(図2におい

て線分eより右側)から外れて設けられている。なお、

噴出する多数のノズル(パイプ)を有している。なお、 パーナー39の各噴出口は、下部側壁38から僅少の範 囲で突出している場合と、下部側壁38に一致する場合 と、下部側壁38から半径方向外側に配置される場合 (図6に破線で示す)がある。バーナー39の各噴出口 が僅少の範囲で突出する場合には、上部からの煤がバー ナー39の突出部分の上に多少被るが、噴出口の上に煤

が被るわけではなく、従って、パーナー39の有効部分

が実質的に煤付着領域32の直下にあることにはならな

先の実施の形態で述べたように、バーナー15の上面積 の10%以内の範囲で煤付着領域21の直下位置領域に 交差してもよい。なお、23は反応炉本体19aに連続 する水平配置された反応終了部を示し、この下流側に排 気口が設けられている。前記実施の形態に係る反応炉1 1、19においては、その底部が水平面に対して傾斜し ているが、図1、図2に示すように、その底部24、2 5を水平配置し、バーナー15も水平に配置する場合も 本発明は適用される。

【0010】次に、図3、図4に示す本発明の第3の実 施の形態に係るフラーレン類の製造設備について説明す る。第3の実施の形態に係るフラーレン類の製造設備の 反応炉26は、直立配置された有底筒状の反応炉本体2 7を備え、その上部中央に排気口28が設けられてい る。反応炉本体27の下部側壁29には複数(との実施 の形態では6)の短筒部30が反応炉本体27の軸心に 対して外側に下り傾斜に、平面視して放射状に設けら れ、その底部30aにバーナー31がそれぞれ設けられ ている。このパーナー31は前記したパーナー15と実 質的に同じである。との実施の形態の場合には、煤付着 領域32は反応炉本体27の天井部33に形成される。 この理由は、各パーナー31から噴出された炭素含有燃 料ガスと酸素含有ガスとは反応炉本体27で不完全燃焼 し、図示しない排気ボンブ (又は真空ボンブ) の吸引に よって上方に移動し、天井部33に衝突して煤が付着す るからである。

【0011】バーナー31はこの煤付着領域32の直下 領域から避けて配置されているので、バーナー31の上 に煤が溜まることはない。煤は反応炉本体27の底部3 4に溜まる。との実施の形態では反応炉本体27の底部 34は平面状にしているが、図3に2点鎖線で示すよう に、逆円錐台状の煤回収部35を設け落下する煤を回収 して、例えば、その下部に設けたロータリバルブを介し て定期的に外部に排出するようにするのが好ましい。と れによって、フラーレン類の連続製造が可能となる。な お、短筒部30の角度は任意であり、水平面に対して0 度又は0度を超え80度の範囲で設置することが可能で あるが、短筒部30は出来るだけ短いのが好ましく、施 15~50度)で設けるのがよい。

【0012】図5、図6には本発明の第3の実施の形態 に係るフラーレン類の製造設備を更に発展させた本発明 の第4の実施の形態に係るフラーレン類の製造設備を示 すが、図に示すように、反応炉36は反応炉本体37を 有し、その下部側壁38に環状のパーナー39が設けら れている。このパーナー39も基本的にはパーナー15 と同じであって、ブリミックスされた炭素含有燃料ガス と酸素含有ガスとを噴出するノズルを有するか、あるい は炭素含有燃料ガスと酸素含有ガスとをそれぞれ独立に 50

10 い。

30

【0013】パーナー39が下部側壁38と一致する場 合、及びパーナー39が下部側壁38から半径方向外側 に位置する場合には、バーナー39上に煤が被ることが ないので、極めて有効であるが、反応炉本体37の直径 が大きい場合には、炭素含有燃料ガスと酸素含有ガスと の反応が反応炉本体37の周囲で行われるので反応炉3 6の利用率が下がる。従って、第3の実施の形態に係る 反応炉26と同様、第4の実施の形態に係る反応炉36 は、中型又は小型のフラーレン類の製造設備に好ましく 適用される。第3、第4の実施の形態に係るフラーレン 類の製造設備においては、各パーナー31、38は上下 方向に1段であったが、2段あるいは3段以上とするこ ともできる。これによって、より効率的にフラーレン類 を製造できる。

【0014】本発明は個々の実施の形態に限定されるも のではなく、以上に説明した各実施の形態の構成要素を 組み合わせてフラーレン類の製造設備を構成する場合に も本発明は適用される。また、実施の形態においては、 炭素含有燃料ガスとしては任意のものを使用でき、例え ば、メタン、エタン、プロパン、エチレン、プロピレン 等の直鎖又は分岐鎖を有する脂肪族飽和若しくは不飽和 炭化水素、ベンゼン、トルエンの他、オルト、メタ、バ ラのキシレン、ナフタリン、アントラセン等の芳香族炭 化水素やこれらの混合物等がある。燃焼法における燃焼 方法や状態はフラーレンが生成する条件であれば、任意 の条件を設定してよいが、一般的には、ヘリウム、アル ゴン等の不活性ガスと酸素の混合ガス(酸素含有ガス) を用いて、前述の炭素含有燃料ガスを不完全燃焼させる 方法を用いる。この際の燃焼温度は、炭素含有燃料ガス 工上の都合からも、0~60度の範囲(更に好ましくは 40 の種類にもよるが、通常1000~2100℃、より好 ましくは1200~1700℃程度である。また、燃焼 における炭素含有燃料ガスと酸素含有ガスとの割合も適 宜選択すればよいが、理論燃焼酸素含有ガス量に対し て、より少ない酸素含有ガス量となる。また、反応炉内 の圧力は、フラーレンが製造可能な圧力であれば任意で あるが、一般的には、10~600torr、より好ま しくは10~100 torrであるのがよい。

【発明の効果】請求項1~6記載のフラーレン類の製造 設備及び請求項7記載のフラーレン類の製造方法は、以

上の説明から明らかなように、反応炉の煤付着領域の直 下位置を実質的に避けて、バーナーを反応炉に設けたの で、バーナーの上に煤が被さって、炭素含有燃料ガスや 酸素含有ガスの発生が制限されることがない。従って、 保守点検が容易となる他、長時間連続運転が可能とな る。特に、請求項2記載のフラーレン類の製造設備にお いては、反応炉は有底筒状であって、底部にパーナーが 上部に排気口がそれぞれ備えられ、しかも反応炉は斜め に配置されて、反応炉の上部に形成される煤付着領域の 直下領域にバーナーが無いか又は10%以下の範囲で交 10 の製造設備の概略側断面図である。 差しているので、実質的にバーナーの上に煤が被さらな い。更には、落下する煤が反応炉の一方側に偏るので、 煤の回収が容易となる。請求項3記載のフラーレン類の 製造設備においては、反応炉は有底筒状の反応炉本体を 備えてその上部に排気口が備えられ、バーナーは反応炉 本体の側壁に設けられた1又は2以上の短筒部を介して 設けられているので、バーナーには確実に煤が被ること がなく、長期連続運転が可能となる。更には、酸素含有 ガスと炭素含有燃料ガスの不完全燃焼 (即ち、反応) が 炉の側壁側でなく中央側で行われるので、反応炉本体の 20 耐火構造の設計が容易となる。

【0016】請求項4記載のフラーレン類の製造設備 は、短筒部は、反応炉本体の軸心に対して外側に下り傾 斜に設けられているので、炭素含有燃料ガスや酸素含有 ガスの噴出がやや上を向くととになり、ガスの流れがよ り層流に近づき、よりフラーレン類の発生効率が増す。 請求項5記載のフラーレン類の製造設備は、バーナー は、反応炉の側壁に設けられているので、煤が被ること はない。更に、酸素含有ガスと炭素含有燃料ガスの不完米 * 全燃焼が炉の側壁側でなく中央側で行われるので、反応 炉本体の耐火構造の設計が容易となる。 請求項6 記載の フラーレン類の製造設備は、バーナーは実質的に環状と なっているので、より均一に酸素含有ガスと炭素含有燃 料ガスとを炉心に向けて吹き出すことができる。

【図面の簡単な説明】

(5)

【図1】本発明の第1の実施の形態に係るフラーレン類 の製造設備の概略側断面図である。

【図2】本発明の第2の実施の形態に係るフラーレン類

【図3】本発明の第3の実施の形態に係るフラーレン類 の製造設備の概略側断面図である。

【図4】図3における矢視A-A断面図である。

【図5】本発明の第4の実施の形態に係るフラーレン類 の製造設備の概略側断面図である。

【図6】図5における矢視B-B断面図である。

【図7】フラーレン類の製造に使用する反応炉の説明図 である。

【符号の説明】

10:フラーレン類の製造設備、11:反応炉、12: 側壁、13:天井部、14:排気口、15:バーナー、 16:煤付着領域、17:煤落下領域、19:反応炉、 19a:反応炉本体、20:屈曲部、21:煤付着領 域、23:反応終了部、24、25:底部、26:反応 炉、27:反応炉本体、28:排気口、29:下部側 壁、30:短筒部、30a:底部、31:パーナー、3 2: 煤付着領域、33: 天井部、34: 底部、35: 煤 回収部、36:反応炉、37:反応炉本体、38:下部 側壁、39:バーナー

フロントページの続き

福岡県北九州市八幡西区黒崎城石1番1号 三菱化学株式会社内 Fターム(参考) 4G046 CA02 CB02 CC01 CC09