Rappel: Limite d'une suite.

Déf Soit (an) ne N une suite de nombres reels.

 $\lim_{n\to\infty} a_n = \ell \iff \forall \mathcal{E} > 0 \exists n_0 \in \mathcal{M} : \forall n \ge n_0 = > |a_n - \ell| \le \mathcal{E}.$

Quel que soit E>O, il existe no EN tel que la gueue de la suite (an), n=no se trouve dans l'intervalle [l-E, l+E]. En général, no dépend de E.

Ex Soit $p \in \mathbb{Q}$, p > 0. Considérons la suite $a_0 = 1$, $a_n = \frac{1}{nP}$, $n \ge 1$.

Alors $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{1}{nP} = 0$

Dén: Soit E>O. On cherche no EN: Ynzho, Imp-0/EE (=> mp EE $\angle = \frac{1}{\varepsilon} \le N^{\rho} \angle = \frac{1}{\varepsilon^{\frac{1}{\rho}}} \le N \quad \left(\text{voir Exercice} : Si \ D < x \le y = \right) \times X^{m} \le y^{m} = t \times x^{\frac{1}{m}} \le y^{\frac{1}{m}} \quad \forall m \in |\mathcal{N}|^{*} \right)$ Si on choisit $n_0 = \left(\frac{1}{\mathcal{E}_P^+}\right) + 1 > \frac{1}{\mathcal{E}_P^+}$, on a $\forall h \ge n_0 \Rightarrow n \ge n_0 > \frac{1}{\mathcal{E}_P^{\prime\prime}} <=$

 $\langle = \rangle \frac{1}{n} \leq \frac{1}{n_o} \langle \mathcal{E}^{\frac{1}{p}} \langle = \rangle \frac{1}{n_o} \leq \frac{1}{n_o} \langle \mathcal{E} \rangle = \rangle$ la définition est satisfaite

=> $\lim_{n\to\infty} \frac{1}{h^p} = 0$ $\forall p>0$ En fait, la limite est zéro pour tout p>0.

Exercice: $\forall x, y \in \mathbb{R}: \ 0 < x \le y => x^m \le y^m \ ef \ x^m \le y^m$ $\forall m \in \mathbb{N}^*$ $\frac{\text{Dém:}}{\text{Aussi, } y_1 - x_2 \geq 0} \text{ (1) Soient } x_1, x_2, y_1, y_2 \in \mathbb{R} : 0 < x_1 \leq y_1 \text{ et } 0 < x_2 \leq y_2 \text{ . Alors } y_1 - x_1 \geq 0, x_2 > 0 \Rightarrow x_1 < x_2 < y_2 > 0 \text{ . Alors } y_1 < x_2 < x_$ (2) $Si\ 0 < x \le y \Longrightarrow X^2 \le y^2$, $X^3 \le y^3$ et ainsi de suite (par récurrence) $\Longrightarrow X^m \le y^m$ $\forall m \in N^*$ (3) Demontrons que $X^m \le y^m$. Par contraposée: $y^m < x^m \stackrel{(2)}{=} > (y^m)^m < (x^m)^m > y < x$, contradiction avec la condition $0 < x \le y$.

Proposition (unicité de la limite). Soit $(a_n)_{n\in\mathbb{N}}$ une suite convergente et supposons que $a\in\mathbb{R}$ et $b\in\mathbb{R}$ sont des limites de (a_n) . Alors a=bDém: Soit E > 0 = > puisque lim $a_n = a \exists h_o \in \mathbb{N}$. $\forall h \ge h_o$, $|a_n - a| \le \frac{\varepsilon}{2}$ cussi, puisque lim $a_n = b \exists m_o \in \mathbb{N} : \forall n \ge m_o, |a_n - b| \le \frac{\varepsilon}{2}$ Donc $\forall n \geq \max(n_0, m_0) = |\alpha - b| = |\alpha - a_n + a_n - b| \leq |\alpha - a_n| + |a_n - b| \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$ iné aliké triangulaire $\Rightarrow \forall \varepsilon \geq 0, |\alpha - b| \leq \varepsilon \Rightarrow \alpha = b.$ Exercice: |X+Y| = |X|+|Y| \ \ X, Y \in \ (inégalité triangulaire.) Dém: $\forall x,y \in \mathbb{R}$ on a: $X \leq |X| = \frac{1}{2} - X \leq |X|$; $y \leq |y| = \frac{1}{2} - y \leq |y|$. Alors si $(x+y) \geq 0 \Rightarrow |x+y| = x+y \leq |x|+|y|$ Si $(x+y) < 0 \Rightarrow |x+y| = -x-y \leq |x|+|y|$

1//

 E_{x} $\alpha_{n} = (-1)^{n}$ est divergente.

<u>Par absurde</u>: Supposons qu'il existe la limite l∈ R. Soit $\mathcal{E} = \frac{1}{4} \implies \exists n_0 \in \mathbb{W}: \forall n \ge n_0 \quad |a_n - \ell| \le \frac{1}{4}$

 $\alpha_{2k} = 1$, $\alpha_{2k+1} = -1$ $\forall k \in \mathbb{N} = \forall 2k \geq n_0$, $2k + 1 \geq n_0$, on a

 $|\alpha_{2k} - \ell| = |1 - \ell| \le \frac{1}{4}$ $|\alpha_{2k+1} - \ell| = |-1 - \ell| \le \frac{1}{4}$

 $2 = |l-|+(-1-l)| \le |l-|l+|-|-l| \le \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$ absurde. => $a_n = (-1)^n$ est divergente.

1-E 1+E
-1 (1)
an

Proposition Toute suite convergente est bornée.

Dém: Soit liman = l ER => Soit E = 1 => Ino EN: Vn>no, lan-l) < 1

 $\ell=$ $\ell-1 \leq \alpha_n \leq \ell+1$

Soit $S = \{a_0, a_1, \dots a_{n_0-1}\}$ ensemble fini => $\exists \max S$, $\min S$

=> la suite (an) est bornée par min (min S, l-1) et max (max S, l+1).

 $a_{n}, n \leq n_{o}-1$ $a_{n}, n \geq n_{o}$ $a_{n}, n \geq n_{o}$ => dans ce cas, min S < an < l+1. thep.

La réciproque de la Proposition est fausse: an = (-1)ⁿ est bornée, mais divergente.

```
§ 2.3. Opérations algébriques sur les limites.
Proposition. Soient (an) et (bn) deux suites convergentes, lim an = a; lim bn = b.
 (1) lim (an ± bn) = a ± 6
                                                    Voir [DZ §2,33]
(2) lim (an. bn) = a.b
 (3) \lim_{n\to\infty} \left(\frac{a_n}{b_n}\right) = \frac{\alpha}{b} S: \lim_{n\to\infty} b_n = b \neq 0
lim (an + bn) = a + b
Remarques 1 (a_n + b_n) convergente => Soit (a_n) et (b_n) convergentes, soit (a_n) et (b_n) divergentes.

Dém: Si (b_n) convergente => par (i) => a_n = (a_n + b_n) - b_n est convergente
      \angle X a_n = h, b_n = -h => a_n + b_n = n - h = 0 \forall h \in \mathbb{N} => (a_n + b_n) est convergente divergentes
```

- 62-2 Soit (an) et (bn) telles que lim (bn-an) = 0. Alors soit lim an = lim bn, Soit les suites (an let (bn) sont divergentes (Exercice, suivre 1 3 Linéairité de la limite: s, lim an = a, limbre = b. Alors tp, g ER on a: $\lim_{n\to\infty} (pa_n + qb_n) = pa + qb \quad (Idée: \lim_{n\to\infty} a_n = a \Rightarrow \forall \varepsilon > 0 \exists n_0 \in \mathbb{N}:$ $\forall n \ge n_0, p > 0 \Rightarrow -\frac{\varepsilon}{p} = a_n - a \le \frac{\varepsilon}{p} \Rightarrow -\varepsilon \le pa_n - pa \le \varepsilon \Rightarrow \lim_{n\to\infty} p \cdot a_n = pa.$ 4 (an. bn) convergente. $=> E_{x}: \quad \alpha_{n} = (-1)^{n}, \quad \beta_{n} = (-1)^{n} + \frac{1}{n+1}; \quad \alpha_{n} \cdot \beta_{n} = 1 + \frac{(-1)^{n}}{n+1} \xrightarrow[n \to \infty]{} 1 \quad \text{convergente}$ divergentes=> S_i limbu = $b \neq 0$. Alors $a_n = \frac{a_n \cdot b_n}{b_n}$ est convergente, pour Proposition (3)

=> Si limbn = 0. Alors (an) peut être convergente ou divergente. $\underbrace{Ex} \quad \text{an} = (h+1) \quad , \quad \beta_h = \frac{1}{h+1} \implies \lim_{n \to \infty} \frac{1}{h+1} = 0 \quad ; \quad \alpha_n \cdot \beta_n = 1 \implies \lim_{n \to \infty} \alpha_n \cdot \beta_n = 1$ $\text{divergente} \quad \text{divergente}$

5 Si lim $a_n = 0$, alors la suite $(\frac{1}{a_n})$ est divergente. Dém' $\forall \varepsilon > 0 \exists n \in \mathbb{N} : \forall h \ge n : |\alpha_i - 0| \le \varepsilon <=> |\alpha_n| \le \varepsilon <=> |\alpha_n| \ge \frac{\varepsilon}{\varepsilon}$ Soit M>0 et $\varepsilon = \frac{1}{M}$ => $\forall n \ge n_0$, $\left|\frac{1}{a_n}\right| \ge \frac{1}{\varepsilon} = M$ => $\left(\frac{1}{a_n}\right)$ n'est pas bornée => divergente.

$$X_{n} = a_{p} n^{p} + a_{p} n^{p-1} + \dots + a_{i} n + a_{0} , \quad a_{i} \in \mathbb{R}, \quad a_{p} \neq 0$$

$$Y_{n} = b_{q} n^{q} + b_{q-i} n^{q-1} + \dots + b_{i} n + b_{0} , \quad b_{i} \in \mathbb{R}, \quad b_{q} \neq 0$$

P,9 EN* $h \in \mathbb{N}^*$

Alors
$$\lim_{n\to\infty} \left(\frac{X_n}{Y_n}\right)$$

Alors
$$\lim_{n\to\infty} \left(\frac{x_n}{y_n}\right) \begin{cases} 0, & \text{si } p < q \\ \frac{a_p}{b_q}, & \text{si } p = q \\ \text{divergente}, & \text{si } p > q \end{cases}$$

$$\frac{\sum_{i=1}^{n} \frac{x_{i}}{y_{i}} = \frac{a_{i} n^{p} + \dots + a_{i} n_{i} + a_{o}}{b_{q} n^{q} + \dots + b_{i} n_{i} + b_{o}} = \frac{n^{p}}{n^{q}} \frac{\left(a_{p} + a_{p-r} \frac{1}{n} + \dots + \frac{a_{o}}{n^{p}}\right)}{\left(b_{q} + b_{q-r} \frac{1}{n} + \dots + \frac{b_{o}}{n^{q}}\right)} = \frac{n^{p}}{n^{q}} \frac{u_{n}}{v_{n}}.$$

$$\lim_{n\to\infty}\frac{u_n}{v_n}=\frac{a_p+a_{p+n}+\ldots+a_o\frac{1}{h^p}}{b_q+b_{q+n}+\ldots+b_o\frac{1}{h^q}}=\frac{a_p}{b_q}\neq 0.$$

Si
$$P < q \implies \lim_{n \to \infty} \frac{h^p}{h^q} = \lim_{n \to \infty} \frac{1}{h^{q-p}} = 0 \implies \lim_{n \to \infty} \frac{\chi_n}{\chi_n} = \lim_{n \to \infty} \frac{h^p}{h^q} \cdot \frac{\chi_n}{\chi_n} = 0.$$

Si
$$p=q=$$
 lim $\frac{n^p}{h^q}=\lim_{n\to\infty}1=1=$ $\lim_{n\to\infty}\frac{x_n}{y_n}=\lim_{n\to\infty}\frac{h^p}{h^q}\cdot\frac{u_n}{v_n}=\frac{a_p}{b_q}$

Si
$$P > q = 1$$
 $N = \infty$ $N = \infty$

$$\lim_{h\to\infty} \frac{100n^2 + 5n + 12}{3n^3 + 2n + 7} = \lim_{h\to\infty} \frac{1}{n} \frac{100 + \frac{57}{n} + \frac{12}{h^2}}{3 + \frac{2}{h^2} + \frac{7}{h^3}} = 0$$

\$ 2.4 Relation d'ordre.

Proposition. Soit (an) et (bn) deux suites convergentes, liman = a Supposons que $\exists m_0 \in \mathbb{N}$. $\forall n \ge m_0$, $a_n \ge b_n$. Alors $a \ge b$ $\lim_{n \to \infty} b_n = b$

Dim: par contraposée. Supposons que b>a Soit $\mathcal{E}=\frac{b-a}{4}$. $\exists n_6 \in \mathbb{N}: a-\mathcal{E} \leq a_n \leq a+\mathcal{E}$ et $b-\mathcal{E} \leq b_n \leq b+\mathcal{E}$ then $a=a+\mathcal{E}$ of $a=a+\mathcal{E}$ and $a=a+\mathcal{E}$ of $a=a+\mathcal{E}$ of a=a

$$\frac{dn, n \ge n_0}{dn, n \ge n_0}$$

 $\forall n > n_0 =$ $\alpha_n \leq \alpha + \mathcal{E} = \alpha + \frac{b-\alpha}{4} < \alpha + \frac{b-\alpha}{2} = \frac{\alpha+b}{2} = b - \frac{b-\alpha}{2} < b - \frac{b-\alpha}{4} = b - \mathcal{E} \leq b_n$ $\forall n > n_0$.

=> Vnzno, an lbn. Mais on a la condition Vnzmo, an zbn.

=> $\forall n \ge \max(n_o, m_o)$ on a $(a_n < b_n)$ et $(a_n \ge b_n)$, contradiction.

Soient (an), (bn), (cn) trois suites telles que

(1) lim an = lim Cn = l.

(2) $\exists k \in \mathbb{N}: \forall n \geq k \rightarrow a_n \leq b_n \leq C_n$ Alors $\lim_{h \to \infty} b_n = \ell$.

Dém: Soit E>O => In. EN: Yuzho, on a:

 $-\mathcal{E} \leq Q_{H} - \ell \leq \mathcal{E}$ et $-\mathcal{E} \leq C_{H} - \ell \leq \mathcal{E}$.

 $\forall n \geq k$ => $a_n - \ell \leq b_n - \ell \leq c_n - \ell$

 $\forall n > \max(n_0, k) =>$

 $-\mathcal{E} \leq \alpha_{n} - \ell \leq \beta_{k} - \ell \leq C_{n} - \ell \leq \mathcal{E}$

=> - E & Bn-l & E <=> | Bn-l | & E.

 $\stackrel{\text{(dif)}}{=} \lim_{h \to \infty} b_n = l$.

(Cn)

- 65-