

Magnetismo ed elettromagnetismo

Barretta magnetica

Linee di forza

L'azione del campo è tangente alla linea

Intensità costante lungo ogni linea

Diminuisce all'aumentare della distanza

Esempio di arto con domini cellulari disorientati e orientati dopo un trattamento (magneto terapia) Origine dell'orientamento del magnetismo

Induzione campo magnetico

Rappresenta la capacità magnetizzante che il magnete è in grado di produrre nello spazio circostante

Campo magnetico generato da un filo rettilineo

Forza magnetomotrice

F= N * 1

- N = numero di spire
- I = intensità di corrente

Solenoide

$$H = \frac{N * I}{L}$$

Filo rettilineo

$$H = \frac{I}{2 * \pi * d}$$

Induzione e permeabilità magnetica

$$B = \mu_0 H$$

- Vettore induzione magnetica
- • μ_0 = 1,257* 10⁻⁶ H/m

Flusso magnetico

$$\phi = Bs\cos(\alpha)$$

- Rappresenta l'effetto complessivo del vettore B sulla superficie S considerata
- α è l'inclinazione del campo rispetto alla superficie

Forza elettromotrice indotta

$$\varepsilon = -\frac{\Delta \phi}{\Delta t}$$

- La forza elettromotrice indotta in un circuito chiuso è proporzionale alla velocità di variazione del flusso concatenato col circuito stesso
- Si crea quando una spira, immersa in un campo magnetico, viene spostata o il flusso cambia

Induttanza

$$L = \frac{\phi}{i}$$

- La variazione di corrente genera un variazione del flusso magnetico
- Dannosa quando non si vogliono cadute di tensione indesiderata
- Utile quando si sfrutta questo fenomeno (motori o trasformatori)

Apertura circuito

$$I = I'(e^{-\frac{t-t_0}{\tau}})$$

- La corrente tende a zero, ma l'autoinduzione limita l'andamento
- •τ = L/R è la costante di tempo
- Andamento esponenziale decrescente

Chiusura circuito

$$I = I'(1 - e^{-\frac{t}{\tau}})$$

- La corrente deve passare da zero a regime, si crea un'autoinduzione che rallenta
- •τ = L/R è la costante di tempo
- Andamento esponenziale crescente

Energia magnetica in un circuito

$$U = \frac{L * I^2}{2}$$

- Viene accumulata durante la fase di chiusura e restituita durante la fase di apertura
- Non viene dissipata, ma solo scambiata tra generatore e circuito

Mutua induzione tra circuiti

- Se due circuiti elettrici sono vicini, si influenzano uno con l'altro
 - Cambia l'intensità della corrente o si sposta un circuito
 → fem nell'altro
- $M = \frac{\phi_2}{i_1} = \frac{\phi_1}{i_2}$ \rightarrow Coefficiente di mutua induzione
- Tensioni indotte reciprocamente

•
$$\varepsilon_1 = -M \frac{\Delta_{i_2}}{\Delta t} e \varepsilon_2 = -M \frac{\Delta_{i_1}}{\Delta t}$$

• Le tensioni indotte sono legate alla rapidità di variazione delle correnti nei solenoidi

Mutua induzione tra circuiti

- Notevole importanza nelle macchine elettriche dove la mutua induzione dipende dalla frequenza della corrente alternata
 - Nei trasformatori c'è scambio di energia attraverso il flusso variabile che li accoppia mutuamente
 - Nei sistemi trifase la parte rotante può trasformare la potenza elettrica prelevata dalla rete in potenza meccanica grazie al flusso che passa dallo statore al rotore

Mutua induzione tra circuiti accoppiati

•
$$M_t = {}^+_- k \sqrt{L_1 * L_2}$$

- L sono le induttanze dei circuiti
- K è un numero puro tra 0 e 1 che esprime la qualità dell'accoppiamento
- Positivo se producono flusso nello stesso verso, negativo altrimenti

•
$$U_m = \frac{L_1 * I_1^2}{2} + \frac{L_2 * I_2^2}{2} + M * I_1 * I_2$$

• Energia magnetica complessiva, comprensiva dell'energia mutua del campo

Forze tra campo magnetico e corrente

- Spira in movimento avvolta in un campo magnetico
 - $\Delta L = F * \Delta h$ è il lavoro per spostare la spira
 - $\Delta L_e = \varepsilon * I * \Delta t = B * I * v * I * \Delta t$
 - $\Delta L = \Delta L_e$
- $\bullet F = B * l * I$
 - Regola della mano sinistra: indice su B e medio su I

Elettromagnete

- Nucleo a ferro di cavallo con avvolgimento su entrambe le colonne
- Viene fatta passare corrente che crea le polarità N e S, che inducono sulla sbarra mobile polarità opposte

$$\bullet F_p = \frac{B^2 * S}{\mu_0}$$

- Forza portante
- B è induzione al traferro
- S la sezione
- La sbarra, spostandosi, crea un lavoro meccanico
 - Relè elettromeccanici, elettroserrature

Materiali paramagnetici, diamagnetici e ferromagnetici

- Idealmente abbiamo il vuoto, nella realtà ci sono i materiali
- $B = \mu_0 * H \rightarrow B = \mu_0 * \mu_r * H$
 - μ_r è la permeabilità relativa del materiale considerato
 - Indica di quante volte l'induzione magnetica aumenta rispetto al vuoto
- Diamagnetici: μ_r <1
- Paramagnetici: $\mu_r > 1$
- Ferromagnetici: $\mu_r >> 1$

Comportamento dei materiali ferromagnetici

- Il materiale ferromagnetico ha un comportamento non lineare al variare di H
 - μ_r cambia in funzione di H
- Punto di Curie
 - L'agitazione termica annulla la magnetizzazione
 - Usato prima della lavorazione

Ciclo di isteresi

