import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, mean_absolute_error

Step 1: Load and preprocess the data

data = pd.read_csv('/content/superstore_dataset2011-2015.csv',encoding = 'ISO-8859-1')
data

	Row ID	Order ID	Order Date	Ship Date	Ship Mode	Customer ID	Customer Name	Segment	
0	42433	AG- 2011- 2040	1/1/2011	6/1/2011	Standard Class	TB-11280	Toby Braunhardt	Consumer	Coı
1	22253	IN-2011- 47883	1/1/2011	8/1/2011	Standard Class	JH-15985	Joseph Holt	Consumer	
2	48883	HU- 2011- 1220	1/1/2011	5/1/2011	Second Class	AT-735	Annie Thurman	Consumer	E
3	11731	IT-2011- 3647632	1/1/2011	5/1/2011	Second Class	EM- 14140	Eugene Moren	Home Office	S
4	22255	IN-2011- 47883	1/1/2011	8/1/2011	Standard Class	JH-15985	Joseph Holt	Consumer	
51285	32593	CA- 2014- 115427	31-12- 2014	4/1/2015	Standard Class	EB- 13975	Erica Bern	Corporate	
51286	47594	MO- 2014- 2560	31-12- 2014	5/1/2015	Standard Class	LP-7095	Liz Preis	Consumer	
51287	8857	MX- 2014- 110527	31-12- 2014	2/1/2015	Second Class	CM- 12190	Charlotte Melton	Consumer	ı
51288	6852	MX- 2014- 114783	31-12- 2014	6/1/2015	Standard Class	TD- 20995	Tamara Dahlen	Consumer	
51289	36388	CA- 2014- 156720	31-12- 2014	4/1/2015	Standard Class	JM- 15580	Jill Matthias	Consumer	1
51290 rows × 24 columns									
%									
4									•

Verify the column names in the dataset
print(data.columns)

model.fit(X_train, y_train)

```
▼ LinearRegression
LinearRegression()
```

```
# Step 4: Make predictions on the testing set
y_pred = model.predict(X_test)

# Step 5: Evaluate the model's performance
mse = mean_squared_error(y_test, y_pred)
mae = mean_absolute_error(y_test, y_pred)

print('Mean Squared Error:', mse)
print('Mean Absolute Error:', mae)
```

Mean Squared Error: 235030.11272933218 Mean Absolute Error: 208.39740720539112

Colab paid products - Cancel contracts here