ASSIGNMENT 8

EE24BTECH11011 - PRANAY

27) The probability density function of the random vector (X, Y) is given by

$$f_{X,Y}(x,y) = \begin{cases} c, 0 < x < y < 1\\ 0, \text{ otherwise} \end{cases}$$
 (1)

1

Then the value of c is equal to ...

- 28) Let $\{X_n\}_{n\geq 1}$ be a sequence of independent and identically distributed normal random variables with mean 4 and variance 1. Then $\lim_{n\to\infty} P\left(\frac{1}{n}\sum_{i=1}^n X_i > 4.006\right)$ is equal to ...
- 29) Let (X_1, X_2) be a random vector following bivariate normal distribution with mean vector (0, 0), Variance (X_1) = Variance (X_2) = 1 and corelation coeffecient ρ , where $|\rho| < 1$. Then $P(X_1 + X_2 > 0)$ is equal to ...
- 30) Let X_1, \ldots, X_n be a random sample from normal distribution with mean μ and variance 1. Let ϕ be the cumulative distribution function of the standard normal distribution. Given $\phi(1.96) = 0.975$, the minimum sample size required such that the length of the 95% confidence interval for μ does NOT exceed 2 is ...
- 31) Let *X* be a random variable with probability density function $f(x; \theta) = \theta e^{-\theta x}$, where $x \ge 0$ and $\theta > 0$. To test H_o : $\theta = 1$ against H_1 : $\theta > 1$, the following test is used:

Reject
$$H_o$$
 if and only if $X > log_e 20$ (2)

Then the size of the test is ...

32) Let $\{X_n\}_{n\geq 0}$ be a discrete time Markov chain on the square space $\{1,2,3\}$ with one-step transisition probability matrix

$$\begin{array}{ccccc}
 & 1 & 2 & 3 \\
1 & \begin{pmatrix} 0.4 & 0.3 & 0.3 \\
0.5 & 0.2 & 0.3 \\
0.2 & 0.4 & 0.4 \end{pmatrix}
\end{array} \tag{3}$$

and initial distribution $P(X_0 = 1) = 0.5$, $P(X_0 = 2) = 0.2$, $P(X_0 = 3) = 0.3$. Then $P(X_1 = 2, X_2 = 3, X_3 = 1)$ (rounded off to three decimal places) is equal to ...

33) Let f be a continuous and positive real-valued function on [0, 1]. Then

$$\int_0^1 f(\sin x) \cos x \, dx \tag{4}$$

is equal to ...

- 34) A random sample of size 100 is classified into 10 class intervals covering all the data points. To test whether the data comes from a normal population with unknown mean and unknown variance, the chi-squared goodness of fit test is used. The degrees of freedom of the test statistic is equal to ...
- 35) For i = 1, 2, 3, 4, let $Y_i = \alpha + \beta x_i + \varepsilon_i$ where x_i 's are fixed covariates and ε_i 's are uncorrelated random variables with mean 0 and variance 3. Here, α and β are unknown parameters. Given the following observations, the variance of the least squares estimator of β is equal to ...

36) Let $a_n = \frac{(-1)^{n+1}}{n!}, n \ge 0$ and $b_n = \sum_{k=0}^n a_k, n \ge 0$. Then, for |x| < 1, the series $\sum_{n=0}^{\infty} b_n x^n$ converges to

a)
$$\frac{-e^{-x}}{1+x}$$

b)
$$\frac{-e^{-x}}{1+x^2}$$

c)
$$\frac{-e^{-x}}{1-x}$$

d)
$$-(1+x)e^{-x}$$

37) Let $\{X_k\}_{k\geq 1}$ be a sequence of independent and indentically distributes Bernoulli random variables with success probability $p \in (0, 1)$. Then as $n \to \infty$

$$\frac{1}{n}\sum_{k=1}^{n}\left(X_{k}\right)^{k}\tag{5}$$

converges almost surely to

b)
$$\frac{1}{1-p}$$

c)
$$\frac{1-p}{p}$$

38) Let X and Y be two independent random variables with χ_m^2 and χ_n^2 distributions, respectively, where m and n are positive integers. Then which of the following statements is true?

- a) For $m < n, P(X > a) \ge P(Y > a)$ for all $a \in \mathbb{R}$.
- b) For m > n, $P(X > a) \ge P(Y > a)$ for all $a \in \mathbb{R}$.
- c) For m < n, P(X > a) = P(Y > a) for all $a \in \mathbb{R}$.
- d) None of the above.
- 39) The matrix

$$\begin{pmatrix} 1 & x & z \\ 0 & 2 & y \\ 0 & 0 & 1 \end{pmatrix} \tag{6}$$

is diagonalizable when (x, y, z) equals

- a) (0,0,1)
- b) (1, 1, 0)
- c) $(\sqrt{2}, \sqrt{2}, 2)$ d) $(\sqrt{2}, \sqrt{2}, \sqrt{2})$