Introduction to machine learning

Federica Eduati, Mitko Veta, Cian Scannell

Eindhoven University of Technology Department of Biomedical Engineering

Al: from basic research to clinical application

Molecular Biosensing

Application: ML-enhanced sensors for real-time disease monitoring Impact: Immediate feedback for patient management

5

Systems Biology

Application: Modelling biological systems and pathways

Impact: Deeper understanding of life processes

Wearable Tech

Application: Monitoring chronic diseases (e.g., diabetes)

Impact: Real-time health insights for patient management

Drug discovery

Application: Virtual screening for drug candidates

<u>Impact</u>: Faster drug development

Medical Imaging

Application: Cancer detection from CT, MRIs Impact: Early diagnosis with high accuracy

Machine

learning in

Biomedical

Engineering

Personalised Medicine

Application: Tailoring treatments based on patient data

Impact: Optimised therapy with minimal side effects

Signal Processing

Application: Real-time heart disease monitoring (ECG)

Impact: Early warning of cardiac events

Soft Tissue Engineering

Application: ML-driven design of biomaterials for tissue repair Impact: Improved outcomes in tissue regeneration

Protein engineering

Application: Designing proteins using ML for targeted therapies Impact: Innovations in drug development

Healthcare operations Nanomed

Application: Predicting hospital admissions

Impact: Efficient resource management

Nanomedicine

Application: ML for designing and optimising nanoparticle drug delivery systems

Impact: Targeted treatment with reduced side effects

How Al models have grown over time

Chang et al., Hallmarks of artificial intelligence contributions to precision oncology, *Nature Cancer*, 2025

Choosing the right model for the problem

Model output

- Cancer risk
- Suspicious lesion location
- Cancer (sub)type
- Cancer grade/stage
- Cancer molecular profile
- Survival time
- Metastasis risk
- Recurrence risk
- Radiotherapy dose distribution
- Treatment scheduling
- Patient-trial eligibility scoring
- Therapy response probability
- Therapy toxicity probabilityDrug pair synergy scoring
- Drug/therapy target
- 3D protein/molecule structure
- Molecule affinity scoring
- ...

Chang et al., Hallmarks of artificial intelligence contributions to precision oncology, *Nature Cancer*, 2025

How we approach machine learning

Applications in biomedical engineering

Algorithms

Linear & logistic regression, decision trees, neural networks, clustering

Fundations

Generalisation, bias-variance tradeoff, overfitting, cross-validation, regularisation

Course structure

Week	Lecture	Practical
1	Machine learning fundamentals	Project 0: Introduction
2	Linear and logistic regression	Project 1.1:Linear and logistic regression
3	Regularization for linear models	Project 1.2: Regularization for linear models
4	Methods for classification	Project 1.3: Application of linear models to a case study
5	Neural networks, part 1	Project 2.1:Neural networks, part 1
6	Neural networks, part 2	Project 2.2: Neural networks, part 2
7	Unsupervised learning	Project 2.3: Application of neural networks to a case study

Week 1-7 lectures and practicals (all on Wednesday). Week 8 (the week before the exam) has no lecture nor practical.

Assessment

- ► 70% written exam
- 30% practicals

Practicals: connecting theory and practice

- Work in groups of up to 5
- Mix of programming tasks and open questions
- Purpose:
 - Strengthen theory from lectures
 - See hands-on what ML concepts mean in practice
 - Intermediate feedback on your understanding
- ▶ Two projects are graded (1.3 and 2.3) \rightarrow 30% of final grade (group grade*)

^{*} Individual grades may deviate if needed

Practicals: structure

- Divided in 3 projects
 - Project 0: Introduction (week 1)
 - Project 1: Linear models (weeks 2-4)
 - Project 1.1: Linear and logistic regression
 - Project 1.2: Regularisation for linear models
 - ► Project 1.3: Application of linear models to a case study
 - Project 2: Neural networks (weeks 5-7)
 - Project 2.1:Neural networks, part 1
 - Project 2.2: Neural networks, part 2
 - ► Project 2.3: Application of neural networks to a case study

Practicals: deliverables

- Submit a single zip file per group via Canvas (see submission deadlines in Canvas)
- Must include:
 - One Jupyter notebook
 - with experiments, results, visualisations, and answers to questions
 - Python functions and/or classes (.py files)
 - only if you used them in your notebook
- Clear documentation of your code and reasoning
- ► Follow the rubric on GitHub for grading criteria

Exam: concepts and reasoning

- ▶ Written exam (Week 9) \rightarrow 70% of final grade
- Covers all lecture topics (not just those in practicals)
- Mix of:
 - Multiple choice (concept checks)
 - Open questions (reasoning, interpretation)
- Purpose:
 - Assess your grasp of the fundamentals
 - Test your ability to reason with ML concepts

Study material & tools

- Main guidance: lecture, lecture slides and practicals
- Book: "An introduction to statistical learning with applications in python:, G. James, D. Witten, T. Hastie, R. Tibshirani, J. Taylor

- GitHub repository is used for material dissemination
- Canvas is used for communication and submission/grading
- Lecture schedule is in My Timetable and on GitHub

Your feedback matters

- We are continuously improving this course
- Share your thoughts on:
 - Lecture clarity
 - Practical workload & learning value
 - Exam preparation
 - **...**
- Using suggestion box or talk to us directly
- ► Formal evaluations at the end of the course