On categorification of g-vectors

joint work in progress with Fan Xin, Mikhail Gorsky, Yann Palu, and Pierre-Guy Plamondon

Matthew Pressland

University of Glasgow

ICRA 2022: Universidad de Buenos Aires

Slides: https://bit.ly/3SzZMPG

Definition 1: Coindex

Let $\mathcal C$ be a Hom-finite Krull–Schmidt 2-Calabi–Yau triangulated category.

Let $T \in \mathcal{C}$ be a cluster-tilting object, meaning

$$\mathsf{add}\ T = \{X \in \mathcal{C} : \mathsf{Ext}^1_{\mathcal{C}}(T,X) := \mathsf{Hom}_{\mathcal{C}}(T,\Sigma X) = 0\}.$$

Then for all $X \in \mathcal{C}$ there exists a triangle $X \to T_1 \to T_0 \to \Sigma X$ with $T_0, T_1 \in \operatorname{add} T$.

Define coind $T(X) = [T_1] - [T_0] \in K_0(\text{add } T)$.

Definition 2: Projective presentations

Let A be a finite-dimensional algebra and $M \in \operatorname{mod} A$. Take a minimal projective presentation $P_1 \to P_0 \to M \to 0$.

Then the *g-vector* of M is $[P_1] - [P_0] \in \mathrm{K}_0(\operatorname{proj} A)$.

We will now see that for $\mathcal C$ and $\mathcal T$ as on the previous slide, and $\mathcal A = \operatorname{End}_{\mathcal C}(\mathcal T)^{\operatorname{op}}$, these definitions are compatible.

Connection

Take $X \in \mathcal{C}$, and choose a triangle $X \to \mathcal{T}_1 \to \mathcal{T}_0 \to \Sigma X$ to compute the coindex.

This yields an exact sequence

$$\operatorname{\mathsf{Hom}}_{\mathcal{C}}(T,T_1) \to \operatorname{\mathsf{Hom}}_{\mathcal{C}}(T,T_0) \to \operatorname{\mathsf{Ext}}^1_{\mathcal{C}}(T,X) \to 0$$

of $A = \operatorname{End}_{\mathcal{C}}(T)^{\operatorname{op}}$ -modules.

There are equivalences

 $\operatorname{\mathsf{Hom}}_{\mathcal{C}}(T,-)\colon\operatorname{\mathsf{add}} T\overset{\sim}{\to}\operatorname{\mathsf{proj}} A,\quad\operatorname{\mathsf{Yoneda}}$

 $\operatorname{Ext}^1_{\mathcal C}(T,-)\colon {\mathcal C}/(T)\stackrel{\sim}{ o} \operatorname{\mathsf{mod}} A.$ Buan–Marsh–Reiten, Keller–Reiten, Koenig–Zhu,...

Thus the g-vector of $X \in \mathcal{C}$ is equal to the g-vector of $\operatorname{Ext}^1_{\mathcal{C}}(T,X) \in \operatorname{mod} A$.

Aim

Enhance this relationship to an equivalence of 'categories of g-vectors'.

Extriangulated categories (Nakaoka-Palu '19)

Idea: additive categories with well-behaved 'extension groups' $\mathbb{E}(X, Y)$.

- (0) Exact categories, triangulated categories ($\mathbb{E} = \mathsf{Ext}^1_{\mathcal{C}}$).
- (1) Extension closed subcategories of triangulated categories ($\mathbb{E} = \mathsf{Ext}^1_{\mathcal{C}}$).
- (2) 'Partial stabilisations' $\mathcal{C}/(P)$ for \mathcal{C} Frobenius exact, P projective-injective $(\mathbb{E} = \mathsf{Ext}^1_{\mathcal{C}})$.
- (3) Ex-triangulated categories: Take a triangulated category \mathcal{C} and choose (carefully) a subfunctor $\mathbb{E} \leqslant \operatorname{Ext}^1_{\mathcal{C}}$.

 $\label{eq:Carefully} {\sf Carefully} = {\sf making sure inflations and deflations are closed under composition.} \\ ({\sf Herschend-Liu-Nakaoka})$

Remark

(3) was studied for exact categories by Auslander–Solberg, under the heading of relative homological algebra: the process preserves exactness (but not triangulatedness).

Harp (The Homotopy ARrow category of Projectives)

Let A be a finite-dimensional algebra. Then

$$\mathsf{harp}\, A := \{ P_1 \overset{\varphi}{\longrightarrow} P_0 : P_i \in \mathsf{proj}\, A \} / \mathsf{homotopy}.$$

We have harp $A \xrightarrow{\sim} \mathcal{K}^{[-1,0]}(\operatorname{proj} A) \hookrightarrow \mathcal{K}^{\operatorname{b}}(\operatorname{proj} A)$.

The image is extension-closed, and so harp A is naturally extriangulated.

Projective objects are those of the form $0 \to P$, and injectives of the form $P \to 0$. (Objects $P \xrightarrow{\sim} P$ are projective-injective, but also 0.)

Relative harp

Choose additionally $e = e^2 \in A$, and define

$$\operatorname{harp}_e A := \{ P_1 \xrightarrow{\varphi} P_0 \in \operatorname{harp} A : e \cdot \operatorname{coker} \varphi = 0 \}.$$

Note that $harp_0 A = harp A$.

For
$$A = \frac{\boxed{1}}{r} \underbrace{\boxed{2}}_{p} / (pq, qr)$$
 and $e = e_1 + e_2$,

$$\mathsf{harp}_e(A) = \frac{|(P_1 \to 0)|}{|(P_2 \to 0)|} \frac{|(P_1 \to 0)|}{|(P_2 \to P_*) - \dots - (P_* \to 0)|}$$

Proposition (FGPPP)

In $\operatorname{harp}_e(A)$, injectives are $P \to 0$, while projectives are $P \stackrel{\varphi}{\longrightarrow} Q$ such that $P \in \operatorname{add} Ae$. In particular, $Ae \to 0$ is projective-injective.

Main Theorem

Two situations:

- (1) $\mathcal C$ is the Amiot cluster category of a Jacobi-finite quiver with potential, with initial cluster-tilting object $\mathcal T$.
- (2) ${\cal C}$ is a Krull–Schmidt stably 2-Calabi–Yau Frobenius exact category, with cluster-tilting object ${\cal T}$.

Write $A = \operatorname{End}_{\mathcal{C}}(T)^{\operatorname{op}}$ with e corresponding to projective summands of T (so e = 0 in case (1)).

Theorem (FGPPP)

In situations (1) and (2), there is a full and dense functor $G:\mathcal{C}\to \operatorname{harp}_e A$ given by

$$GX = (\operatorname{\mathsf{Hom}}_{\mathcal{C}}(T, T_1) \to \operatorname{\mathsf{Hom}}_{\mathcal{C}}(T, T_0))$$

for $X \to T_1 \to T_0$ with $T_i \in \text{add } T$ either a carefully chosen triangle (1) or arbitrary short exact sequence (2). We have

$$\ker G = \begin{cases} (T \to \Sigma^{-1}T), & (1) \\ 0. & (2) \end{cases}$$

Preservation of structure

Give $\mathcal C$ the relative extriangulated structure $\mathbb E_{\mathcal T}$ with extriangles $X \to Y \to Z$ such that

$$\operatorname{coind}_{\mathcal{T}}(Y) = \operatorname{coind}_{\mathcal{T}}(X) + \operatorname{coind}_{\mathcal{T}}(Z).$$

Proposition (Padrol-Palu-Pilaud-Plamondon, 19⁺, cf. Palu '08)

The injectives and projectives in $(\mathcal{C}, \mathbb{E}_T)$ are given respectively by (the preimage under stabilisation of) add T and add $\Sigma^{-1}T$ respectively.

Proposition (FGPPP)

If $\mathcal C$ is extriangulated and $\mathcal I\subseteq (\mathsf{inj}\to\mathsf{proj})$ is an ideal, then $\mathcal C/\mathcal I$ is naturally extriangulated.

Theorem (FGPPP)

Using the extriangulated structure induced from \mathbb{E}_T on $\mathcal{C}/\ker G$, we obtain an equivalence

$$\mathcal{C}/\ker G \xrightarrow{\sim} \operatorname{harp}_{e} A$$

of extriangulated categories.

Corollaries

Corollary

In case (1), if A is selfinjective then $(C, \mathbb{E}_T) \simeq \text{harp } A$.

Proof.

We have $\Sigma^2 T = T$ because A is selfinjective (Koenig–Zhu, Iyama–Oppermann) so

$$\mathsf{Hom}_{\mathcal{C}}(T,\Sigma^{-1}T)=\mathsf{Hom}_{\mathcal{C}}(T,\Sigma T)=0$$

because T is rigid.

Corollary

In case (2), harp_e A is exact.

Proof.

Since \mathcal{C} is exact, so is $(\mathcal{C}, \mathbb{E}_T) \simeq \mathsf{harp}_{\mathsf{e}}(A)$ (Auslander–Solberg).

Example 1 (A₂ cluster category)

Example 2 (A_2 preprojective algebra)

