Министерство науки и высшего образования Российской Федерации

Калужский филиал

федерального государственного бюджетного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	Г <u>ИУК «</u>	<u>Информатика</u>	<u>и управление</u>		
КАФЕДРА _ <i>технологии»</i> _			обеспечение	<u>ЭВМ,</u>	информационные

ЛАБОРАТОРНАЯ РАБОТА №3

«ПОСТРОЕНИЕ АНАЛОГОВЫХ ФИЛЬТРОВ»

ДИСЦИПЛИНА: «Цифровая обработка сигнала»

Выполнил: студент гр. ИУК4 -72Б	(Подпись)	_ (<u>Калашников А.С.</u> (Ф.И.О.)
Проверил:	(Подпись)	_(
Дата сдачи (защиты):			
Результаты сдачи (защиты):			
- Балльна	я оценка:		
- Оценка:			

Целью выполнения лабораторной работы является формирование практических навыков построения аналоговых фильтров.

Основными задачами выполнения лабораторной работы являются:

- 1. построить АЧХ аналоговых фильтров с заданными параметрами: фильтр Баттерворта; фильтр Чебышева 1 рода; фильтр Чебышева 2 рода; эллиптический фильтр; фильтр Бесселя;
- 2. осуществить преобразование фильтров прототипов (два вида преобразования).

B	ap	И	aF	ΙT	6

№ вариа нта	n – порядок фильтра	R _p	\mathbf{R}_{s}	Осуществить преобразование в фильтр
6	3	4	35	ФВЧ, полосовой

Ход выполнения лабораторной работы:

АЧХ аналоговых фильтров-прототипов:

1. Фильтр Баттерворта:

```
n = 3;
[z, p, k] = buttap(n);
[b, a] = zp2tf(z, p, k);
w = 0:0.1:5;
h = freqs(b, a, w);
plot(w, abs(h)),
```


Рис.1 Фильтр Баттерворта

2. Фильтр Чебышева первого рода:

```
n = 3;
Rp = 4;
[z, p, k] = cheblap(n, Rp);
[b, a] = zp2tf(z, p, k);
w = 0:0.1:5;
h = freqs(b, a, w);
plot(w, abs(h)),
```


Рис. 2 Фильтр Чебышева первого рода

3. Фильтр Чебышева второго рода:

```
n = 3;
Rs = 35;
[z, p, k] = cheb2ap(n, Rs);
[b, a] = zp2tf(z, p, k);
w = 0:0.1:5;
h = freqs(b, a, w);
plot(w, abs(h)),
```


Рис. 3 Фильтр Чебышева второго рода

4. Эллиптический фильтр:

```
n = 3;
Rp = 4;
Rs = 35;
[z, p, k] = ellipap(n, Rp, Rs);
[b, a] = zp2tf(z, p, k);
w = 0:0.1:5;
h = freqs(b, a, w);
plot(w, abs(h)),
```


Рис.4 Эллиптический фильтр

5. Фильтр Бесселя:

```
n = 3;
[z, p, k] = besselap(n);
[b, a] = zp2tf(z, p, k);
w = 0:0.1:5;
h = freqs(b, a, w);
plot(w, abs(h)),
```


Рис.5 Фильтр Бесселя

6. Преобразование фильтров-прототипов:

6.1. Фильтр Баттерворта-ФВЧ:

```
n = 3;
w0 = 4;
[z, p, k] = buttap(n);
[b, a] = zp2tf(z, p, k);
[b1, a1] = lp2hp(b, a, w0);
w = 0:0.1:5;
h = freqs(b1, a1, w);
plot(w, abs(h)),
```


Рис.6 Фильтр Баттерворта-ФВЧ

6.2. Фильтр Баттерворта-полосовой:

```
n = 3;
w1 = 2;
w2 = 4;
[z, p, k] = buttap(n);
[b, a] = zp2tf(z, p, k);
w0 = sqrt(w1 * w2);
Bw = w2 - w1;
[b1, a1] = lp2bp(b, a, w0, Bw);
w = 0:0.1:5;
h = freqs(b1, a1, w);
plot(w, abs(h)),
```


Рис. 7 Фильтр Баттерворта-полосовой

6.3. Фильтр Чебышева первого рода-ФВЧ:

```
n = 3;
Rp = 4;
w0 = 4;
[z, p, k] = cheblap(n, Rp);
[b, a] = zp2tf(z, p, k);
[b1, a1] = lp2hp(b, a, w0);
w = 0:0.1:5;
h = freqs(b1, a1, w);
plot(w, abs(h)),
```


Рис. 8 Фильтр Чебышева первого рода-ФВЧ

6.4. Фильтр Чебышева первого рода-полосовой:

```
n = 3;
Rp = 4;
w1 = 2;
w2 = 4;
[z, p, k] = cheblap(n, Rp);
[b, a] = zp2tf(z, p, k);
w0 = sqrt(w1 * w2);
Bw = w2 - w1;
[b1, a1] = lp2bp(b, a, w0, Bw);
w = 0:0.1:5;
h = freqs(b1, a1, w);
plot(w, abs(h)),
```


Рис. 9 Фильтр Чебышева первого рода-полосовой

6.5. Фильтр Чебышева второго рода-ФВЧ:

```
n = 3;
Rs = 35;
w0 = 4;
[z, p, k] = cheb2ap(n, Rs);
[b, a] = zp2tf(z, p, k);
[b1, a1] = lp2hp(b, a, w0, Bw);
w = 0:0.1:5;
h = freqs(b1, a1, w);
plot(w, abs(h)),
```


Рис.10 Фильтр Чебышева второго рода-ФВЧ

6.6. Фильтр Чебышева второго рода- полосовой:

```
n = 3;
Rs = 35;
w1 = 2;
w2 = 4;
[z, p, k] = cheb2ap(n, Rs);
```

```
[b, a] = zp2tf(z, p, k);
w0 = sqrt(w1 * w2);
Bw = w2 - w1;
[b1, a1] = lp2bp(b, a, w0, Bw);
w = 0:0.1:5;
h = freqs(b1, a1, w);
plot(w, abs(h)),
```


Рис.11 Фильтр Чебышева второго рода-полосовой

6.7. Эллиптический фильтр-ФВЧ:

```
n = 3;
Rp = 4;
Rs = 35;
w0 = 4;
[z, p, k] = ellipap(n, Rp, Rs);
[b, a] = zp2tf(z, p, k);
[b1, a1] = lp2hp(b, a, w0, Bw);
w = 0:0.1:5;
h = freqs(b1, a1, w);
plot(w, abs(h)),
```


Рис.12 Эллиптический фильтр-ФВЧ

6.8. Эллиптический фильтр-полосовой:

```
n = 3;
Rp = 4;
Rs = 35;
w1 = 2;
w2 = 4;
[z, p, k] = ellipap(n, Rp, Rs);
[b, a] = zp2tf(z, p, k);
w0 = sqrt(w1 * w2);
Bw = w2 - w1;
[b1, a1] = lp2bp(b, a, w0, Bw);
w = 0:0.1:5;
h = freqs(b1, a1, w);
plot(w, abs(h)),
```


Рис.13 Эллиптический фильтр-полосовой

6.9. Фильтр Бесселя-ФВЧ:

```
n = 3;
w0 = 4;
[z, p, k] = besselap(n);
[b, a] = zp2tf(z, p, k);
[b1, a1] = lp2hp(b, a, w0, Bw);
w = 0:0.1:5;
h = freqs(b1, a1, w);
plot(w, abs(h)),
```


Рис.14 Фильтр Бесселя-ФВЧ

6.10. Фильтр Бесселя-полосовой:

```
n = 3;
w1 = 2;
w2 = 4;
[z, p, k] = besselap(n);
[b, a] = zp2tf(z, p, k);
w0 = sqrt(w1 * w2);
Bw = w2 - w1;
[b1, a1] = lp2bp(b, a, w0, Bw);
w = 0:0.1:5;
h = freqs(b1, a1, w);
plot(w, abs(h)),
```


Рис.15 Фильтр Бесселя-полосовой

Вывод: в результате выполнения данной лабораторной работы были получены практические навыки построения аналоговых фильтр