UMass · CS685 | Advanced Natural Language Processing (2020)

CS685 (2020)· 课程资料包 @ShowMeAl

视频 中英双语字幕 课件 一键打包下载 笔记

官方笔记翻译

代码

作业项目解析

视频·B站[扫码或点击链接]

https://www.bilibili.com/video/BV1BL411t7RV

课件 & 代码・博客[扫码或点击链接]

http://blog.showmeai.tech/umass-cs685

迁移学习

7___

 语言模型
 问答系统
 文本生成
 BERT

 语义解析
 GPT-3

 知识推理
 模型蒸馏

transformer 注列

注意力机制

Awesome Al Courses Notes Cheatsheets 是 <u>ShowMeAl</u> 资料库的分支系列,覆盖最具知名度的 <u>TOP50+</u> 门 Al 课程,旨在为读者和学习者提供一整套高品质中文学习笔记和速查表。

点击课程名称, 跳转至课程**资料包**页面, 一键下载课程全部资料!

机器学习	深度学习	自然语言处理	计算机视觉
Stanford · CS229	Stanford · CS230	Stanford · CS224n	Stanford · CS23In

Awesome Al Courses Notes Cheatsheets· 持续更新中

知识图谱	图机器学习	深度强化学习	自动驾驶
Stanford · CS520	Stanford · CS224W	UCBerkeley · CS285	MIT · 6.S094

微信公众号

资料下载方式 2: 扫码点击底部菜单栏 称为 AI 内容创作者?回复[添砖加瓦]

Transfer learning with neural language models

CS 685, Spring 2020

Advanced Natural Language Processing

Mohit lyyer

College of Information and Computer Sciences University of Massachusetts Amherst

Stuff from last time...

- Project proposals due 9/21, please use Overleaf template
- Still working on making the next homework computationally feasible on Colab, look out for it next week
- Please ask other questions (about logistics / material / etc) in the chatbox!

Do NNs really need millions of labeled examples?

 Can we leverage unlabeled data to cut down on the number of labeled examples we need?

What is transfer learning?

- In our context: take a network trained on a task for which it is easy to generate labels, and adapt it to a different task for which it is harder.
 - In computer vision: train a CNN on ImageNet, transfer its representations to every other CV task
 - In NLP: train a really big language model on billions of words, transfer to every NLP task!

language models for transfer learning

Deep contextualized word representations. Peters et al., NAACL 2018

Previous methods (e.g., word2vec) represent each word type with a single vector

$$play = [0.2, -0.1, 0.5, ...]$$

$$bank = [-0.3, 1.4, 0.7, ...]$$

$$run = [-0.5, -0.3, -0.1, ...]$$

NNs are then used to compose those vectors over longer sequences

Single vector per word

The new-look *play* area is due to be completed by early spring 2010.

Single vector per word

Gerrymandered congressional districts favor representatives who *play* to the party base.

Single vector per word

The freshman then completed the three-point *play* for a 66-63 lead .

Nearest neighbors

$$Dlay = [0.2, -0.1, 0.5, ...]$$

Nearest Neighbors

playing plays
game player
games Play
played football
players multiplayer

Multiple senses entangled

$$Dlay = [0.2, -0.1, 0.5, ...]$$

Nearest Neighbors

playing game games played players VERB

plays player Play football multiplayer

Multiple senses entangled

$$Dlay = [0.2, -0.1, 0.5, ...]$$

Nearest Neighbors

playing game games played players VERB NOUN

plays player Play football multiplayer

Multiple senses entangled

$$Dlay = [0.2, -0.1, 0.5, ...]$$

Nearest Neighbors

playing game games played players VERB NOUN ADJ

plays player Play football multiplayer

Contextual Representations

 Problem: Word embeddings are applied in a context free manner

Solution: Train contextual representations on text corpus

Examples on iPad

History of Contextual Representations

 ELMo: Deep Contextual Word Embeddings, Al2 & University of Washington, 2017

Train Separate Left-to-Right and Right-to-Left LMs

Apply as "Pre-trained Embeddings"

... download new games or play ??

Use all layers of language model

Learned task-specific combination of layers

Contextual representations

ELMo representations are **contextual** – they depend on the entire sentence in which a word is used.

how many different embeddings does ELMo compute for a given word?

ELMo improves NLP tasks

TASK	PREVIOUS SOTA		OUR BASELINE	ELMO + BASELINE	INCREASE (ABSOLUTE/ RELATIVE)
SQuAD	Liu et al. (2017)	84.4	81.1	85.8	4.7 / 24.9%
SNLI	Chen et al. (2017)	88.6	88.0	88.7 ± 0.17	0.7 / 5.8%
SRL	He et al. (2017)	81.7	81.4	84.6	3.2 / 17.2%
Coref	Lee et al. (2017)	67.2	67.2	70.4	3.2 / 9.8%
NER	Peters et al. (2017)	91.93 ± 0.19	90.15	92.22 ± 0.10	2.06 / 21%
SST-5	McCann et al. (2017)	53.7	51.4	54.7 ± 0.5	3.3 / 6.8%

Large-scale recurrent neural language models learn contextual representations that capture basic elements of semantics and syntax

Adding ELMo to existing state-of-the-art models provides significant performance improvement on all NLP tasks.

TensorFlow ™

```
elmo = hub.Module("https://tfhub.dev/google/elmo/1", trainable=True)
embeddings = elmo(
    ["the cat is on the mat", "dogs are in the fog"],
    signature="default",
    as_dict=True)["elmo"]
```


Problem with Previous Methods

- Problem: Language models only use left context or right context, but language understanding is bidirectional.
- Why are LMs unidirectional?

Problem with Previous Methods

- Problem: Language models only use left context or right context, but language understanding is bidirectional.
- Why are LMs unidirectional?
- Reason 1: Directionality is needed to generate a well-formed probability distribution.
 - We don't care about this.

Why not?

Problem with Previous Methods

- Problem: Language models only use left context or right context, but language understanding is bidirectional.
- Why are LMs unidirectional?
- Reason 1: Directionality is needed to generate a well-formed probability distribution.
 - We don't care about this.
- Reason 2: Words can "see themselves" in a bidirectional encoder.

Unidirectional vs. Bidirectional Models

Unidirectional context Build representation incrementally

Bidirectional context Words can "see themselves"

Masked LM

- Solution: Mask out k% of the input words, and then predict the masked words
 - We always use k = 15%

What are the pros and cons of increasing *k*?

Masked LM

- Problem: Mask token never seen at fine-tuning
- Solution: 15% of the words to predict, but don't replace with [MASK] 100% of the time. Instead:
- 80% of the time, replace with [MASK]
 went to the store → went to the [MASK]
- 10% of the time, replace random word
 went to the store → went to the running
- 10% of the time, keep same
 went to the store → went to the store

Next Sentence Prediction

 To learn relationships between sentences, predict whether Sentence B is actual sentence that proceeds Sentence A, or a random sentence

```
Sentence A = The man went to the store.
Sentence B = He bought a gallon of milk.
Label = IsNextSentence
```

```
Sentence A = The man went to the store.
Sentence B = Penguins are flightless.
Label = NotNextSentence
```

This has since been shown to be unimportant (and can be removed e.g., in RoBERTa)

Input Representation

- Use 30,000 WordPiece vocabulary on input.
- Each token is sum of three embeddings
- Single sequence is much more efficient.

Model Architecture

Transformer encoder

- Multi-headed self attention
 - Models context
- Feed-forward layers
 - Computes non-linear hierarchical features
- Layer norm and residuals
 - Makes training deep networks healthy
- Positional embeddings
 - Allows model to learn relative positioning

Model Details

- <u>Data</u>: Wikipedia (2.5B words) + BookCorpus (800M words)
- <u>Batch Size</u>: 131,072 words (1024 sequences * 128 length or 256 sequences * 512 length)
- Training Time: 1M steps (~40 epochs)
- Optimizer: AdamW, 1e-4 learning rate, linear decay
- BERT-Base: 12-layer, 768-hidden, 12-head
- BERT-Large: 24-layer, 1024-hidden, 16-head
- Trained on 4x4 or 8x8 TPU slice for 4 days

Fine-Tuning Procedure

Fine-Tuning Procedure

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

(c) Question Answering Tasks: SQuAD v1.1

(b) Single Sentence Classification Tasks: SST-2, CoLA More details next week!

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

GLUE Results

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.9	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	88.1	91.3	45.4	80.0	82.3	56.0	75.2
BERT _{BASE}	84.6/83.4	71.2	90.1	93.5	52.1	85.8	88.9	66.4	79.6
$\mathrm{BERT}_{\mathrm{LARGE}}$	86.7/85.9	72.1	91.1	94.9	60.5	86.5	89.3	70.1	81.9

MultiNLI

<u>Premise</u>: Hills and mountains are especially

sanctified in Jainism.

Hypothesis: Jainism hates nature.

<u>Label</u>: Contradiction

CoLa

<u>Sentence</u>: The wagon rumbled down the road.

Label: Acceptable

<u>Sentence</u>: The car honked down the road.

<u>Label</u>: Unacceptable

Effect of Model Size

- Big models help a lot
- Going from 110M -> 340M params helps even on datasets with 3,600 labeled examples
- Improvements have not asymptoted

Multilingual BERT

Trained single model on 104 languages from Wikipedia. Shared 110k
 WordPiece vocabulary.

System	English	Chinese	Spanish
XNLI Baseline - Translate Train	73.7	67.0	68.8
XNLI Baseline - Translate Test	73.7	68.4	70.7
BERT - Translate Train	81.9	76.6	77.8
BERT - Translate Test	81.9	70.1	74.9
BERT - Zero Shot	81.9	63.8	74.3

- XNLI is MultiNLI translated into multiple languages.
- Always evaluate on human-translated Test.
- <u>Translate Train</u>: MT English Train into Foreign, then fine-tune.
- <u>Translate Test</u>: MT Foreign Test into English, use English model.
- Zero Shot: Use Foreign test on English model.

Common Questions

- Why did no one think of this before?
- Better question: Why wasn't contextual pre-training popular before 2018 with ELMo?
- Good results on pre-training is >1,000x to 100,000 more expensive than supervised training.
 - E.g., 10x-100x bigger model trained for 100x-1,000x as many steps.
 - Imagine it's 2013: Well-tuned 2-layer, 512-dim LSTM sentiment analysis gets 80% accuracy, training for 8 hours.
 - Pre-train LM on same architecture for a week, get 80.5%.
 - Conference reviewers: "Who would do something so expensive for such a small gain?"

Common Questions

- The model must be learning more than "contextual embeddings"
- Alternate interpretation: Predicting missing words (or next words) requires learning many types of language understanding features.
 - syntax, semantics, pragmatics, coreference, etc.
- Implication: Pre-trained model is much bigger than it needs to be to solve specific task
- Task-specific model distillation words very well

UMass · CS685 | Advanced Natural Language Processing (2020)

CS685 (2020)· 课程资料包 @ShowMeAl

视频 中英双语字幕 课件 一键打包下载 笔记

官方笔记翻译

代码

作业项目解析

视频·B站[扫码或点击链接]

https://www.bilibili.com/video/BV1BL411t7RV

课件 & 代码・博客[扫码或点击链接]

http://blog.showmeai.tech/umass-cs685

迁移学习

7___

 语言模型
 问答系统
 文本生成
 BERT

 语义解析
 GPT-3

 知识推理
 模型蒸馏

transformer 注列

注意力机制

Awesome Al Courses Notes Cheatsheets 是 <u>ShowMeAl</u> 资料库的分支系列,覆盖最具知名度的 <u>TOP50+</u> 门 Al 课程,旨在为读者和学习者提供一整套高品质中文学习笔记和速查表。

点击课程名称, 跳转至课程**资料包**页面, 一键下载课程全部资料!

机器学习	深度学习	自然语言处理	计算机视觉
Stanford · CS229	Stanford · CS230	Stanford · CS224n	Stanford · CS23In

Awesome Al Courses Notes Cheatsheets· 持续更新中

知识图谱	图机器学习	深度强化学习	自动驾驶
Stanford · CS520	Stanford · CS224W	UCBerkeley · CS285	MIT · 6.S094

微信公众号

资料下载方式 2: 扫码点击底部菜单栏 称为 AI 内容创作者?回复[添砖加瓦]