ResNet with one-neuron hidden layers is a Universal Approximator

Hongzhou Lin Stefanie Jegelka **presenter**: Shen Yuan

PP図人氏大學 高瓴人工智能学院
RENMIN UNIVERSITY OF CHINA Gaoling School of Artificial Intelligence Gaoling School of Artificial Intelligence

Outline

Introduction

Contribution
A motivating example

Universal approximation theorem

Outline of the proof A increasing trapezoid function Adjusting function values

Conclusion

Outline

Introduction

Contribution A motivating example

Universal approximation theorem Outline of the proof A increasing trapezoid function Adjusting function values

Conclusion

Contribution

The main contribution of this paper is to show that **ResNet with one single** neuron per hidden layer is enough to provide universal approximation as the depth goes to infinity.

More precisely, we show that for any Lebesgue-integrable ¹ function $f: \mathbb{R}^d \to \mathbb{R}$, for any $\epsilon > 0$, there exists a ResNet R with ReLU activation and one neuron per hidden layer such that

$$\int_{\mathbb{R}^d} |f(x) - R(x)| \mathrm{d}x \le \epsilon \tag{1}$$

 $^{^{1}\}mathrm{A}$ function f is Lebesgue-integrable if $\int_{\mathbb{R}^{d}}|f(x)|\mathrm{d}x<\infty.$

A motivating example

We begin by empirically exploring the difference between narrow fully connected networks, with *d* neurons per hidden layer, and ResNet via a simple example: **classifying the unit ball in the plane**.

Figure 2: Decision boundaries obtained by training fully connected networks with width d=2 per hidden layer (top row) and ResNet (bottom row) with one neuron in the hidden layers on the unit ball classification problem. The fully connected networks fail to capture the true function, in line with the theory stating that width d is too narrow for universal approximation. ResNet in contrast approximates the function well, empirically supporting our theoretical results.

Outline

Introduction
Contribution
A motivating example

Universal approximation theorem

Outline of the proof A increasing trapezoid function Adjusting function values

Conclusion

Universal approximation theorem

Theorem 3.1 (Universal Approximation of ResNet). For any $d \in \mathbb{N}$, the family of ResNet with one-neuron hidden layers and ReLU activation function can universally approximate any $f \in l_1(\mathbb{R}^d)$. In other words, for any $\epsilon > 0$, there is a ResNet R with finitely many layers such that

$$\int_{\mathbb{R}^d} |f(x) - R(x)| \mathrm{d}x \le \epsilon \tag{2}$$

Outline of the proof

Target piecewise constant functions

Given a piecewise constant function h, there is a subdivision $-\infty < a_0 < a_1 < \ldots < a_M < +\infty$ such that

$$h(x) = \sum_{k=1}^{M} h_k \mathbf{1}_{x \in [a_{k-1}, a_k)},$$
(3)

A basic residual block

Figure 1: The basic residual block with one neuron per hidden layer.

A basic residual block is a function $\mathcal{T}_{U,V,u}$ from \mathbb{R}^d to \mathbb{R}^d defined by

$$\mathcal{T}_{U,V,u}(x) = V \operatorname{ReLU}(Ux + u) + x = V[Ux + u]_{+} + x \tag{4}$$

where $U \in \mathbb{R}^{1 \times d}$, $V \in \mathbb{R}^{d \times 1}$, $u \in \mathbb{R}$ and the ReLU actiovation function is defined by

$$ReLU(x) = \max(x, 0) = [x]_{+}$$
(5)

A basic residual block

Figure 1: The basic residual block with one neuron per hidden layer.

The resulting ResNet is a combination of several basic residual blocks and a final linear output layer:

$$R(x) = \mathcal{L} \circ \mathcal{T}_N \circ \mathcal{T}_{N-1} \circ \dots \circ \mathcal{T}_0(x)$$
 (6)

where $\mathcal{L}: \mathbb{R}^d \to \mathbb{R}$ is a linear operator and \mathcal{T}_i are basic one-neuron residual blocks.

Basic operations

Proposition 3.2 (Basic operations). The following operations are realizable by a single basic residual block of ResNet with one neuron:

- (a) Shifting by a constant: $R^+ = R + c$ for any $c \in \mathbb{R}$;
- ▶ (b) *Min or Max with a constant:* $R^+ = \min\{R, c\}$ or $R^+ = \max\{R, c\}$ for any $c \in \mathbb{R}$;
- (c) Min or Max with a linear transformation: $R^+ = \min\{R, \alpha R + \beta\}$ (or max) for any $\alpha, \beta \in \mathbb{R}$;

where R represents the input layer in the basic residual block and R^+ the output layer.

Basic operations

$$\mathcal{T}_{U,V,u}(x) = V[Ux + u]_+ + x \tag{7}$$

- \blacktriangleright (a) V = c. U = 0. u = 1:
- (b) $R^+ = max\{R, c\} = R + max\{0, c R\} = [-R + c]_+ + R$;
- (c) $R^+ = max\{R, \alpha R + \beta\} = R + max\{0, (\alpha 1)R + \beta\} = [(\alpha 1)R + \beta]_+ + R$;

Initialization of the induction

for m = 0, we start with the identity function and sequentially build ²

$$R^{+} = \max\{x, a_{0}\} = x + [a_{0} - x]_{+}(\text{Cutting off } x \leq a_{0});$$

$$R^{++} = R^{+} - a_{0}(\text{Shifting});$$

$$R_{0} = R^{++} - \frac{(\|h\|_{\infty} + \delta)}{\delta} [R^{++}]_{+}$$
(8)

Figure 11: An illustration of constructing the initial function R_0 .

 $[|]h||_{\infty} = \max_{k=1,\dots,M} |h_k|$ is the infinity norm.

A trapezoid function

Figure 3: A trapezoid function, which is a continuous approximation of the indicator function. The parameter δ measures the quality of the approximation.

A trapezoid function is constant on the segment $I_k^{\delta} = [a_{k-1} + \delta, a_k - \delta]$ and linear in the δ -tolerant region $I_k \setminus I_k^{\delta}$.

Induction from R_m to R_{m+1}

Given R_m , we stack three modules of one-neuron residual blocks on top of it to build R_{m+1} . More precisely, we use R_m as input and sequentially perform

(a)
$$R_{m}^{+} = \max\{R_{m}, -(1 + \frac{1}{m+1})R_{m}\};$$

(b) $R_{m}^{++} = \min\{R_{m}^{+}, -R_{m}^{+} + \frac{(m+2)\|h\|_{\infty}}{\delta}(a_{m+1} - a_{m})\};$
(c) $R_{m+1} = \min\{R_{m}^{++}, (m+2)\|h\|_{\infty}\};$
(9)

Figure 5: The construction of R_{m+1} based on R_m . We build the next trapezoid function (red) and keep the previous ones (blue) unchanged.

A increasing trapezoid function

With this sequential construction, we can build a increasing trapezoid function as shown in Figure 4.

$$R_{m+1} = \begin{cases} R_m, & \text{if } x < a_m, \\ \frac{(m+2)\|h\|_{\infty}}{\delta}(x - a_m), & \text{if } x \in [a_m, a_m + \delta), \\ (m+2)\|h\|_{\infty}, & \text{if } x \in [a_m + \delta, a_{m+1} - \delta) = I_{m+1}^{\delta}, \\ -\frac{(m+2)\|h\|_{\infty}}{\delta}(x - a_{m+1}), & \text{if } x \in [a_{m+1} - \delta, +\infty). \end{cases}$$
(10)

Figure 4: An increasing trapezoid function, which is a special case of grid indicator function when d = 1, is trapezoidal on each subdivision with increasing constant value from left to right.

Before Adjusting, we remark that $R_M \to -\infty$ as $x \to \infty$.

$$R_M = -\frac{(m+1)\|h\|_{\infty}}{\delta}(x-a_m), \text{ if } x \in [a_m - \delta, +\infty). \tag{11}$$

This negative tail can be easily removed by a max operator:

$$R_M^* = \max\{R_M, 0\},$$
 (12)

For any $k = M, \dots, 1$, we sequentially construct R_{k-1}^* with

$$R_{k-1}^* = R_k^* + \frac{h_k - (k+1)\|h\|_{\infty}}{\|h\|_{\infty}} [R_k^* - k\|h\|_{\infty}]_+$$
(13)

Figure 6: An illustration of the function adjustment procedure applied to the top level sets. At each step, we adjust one I_{δ}^{δ} to the desired function value h_k .

For any $k = M, \dots, 0$, we show that R_k^* satisfies

- ▶ $R_k^* = 0$ on $(-\infty, a_0]$ and $[a_M, +\infty)$;
- $ightharpoonup R_k^* = h_j ext{ on } I_j^\delta ext{ for any } j = M, \dots, k+1;$
- $ightharpoonsign R_k^* = (j+1) \|h\|_{\infty} \text{ on } I_j^{\delta} \text{ for any } j=k,\ldots,1;$
- ho R_k^* is bounded with $-\|h\|_{\infty} \le R_k^* \le (k+1)\|h\|_{\infty}$.

Figure 6: An illustration of the function adjustment procedure applied to the top level sets. At each step, we adjust one I_k^{δ} to the desired function value h_k .

The final R_0^* is the desired approximation of h. More precisely, the R_0^* satisfies

- ► $R_0^* = 0$ on $(-\infty, a_0]$ and $[a_M, +\infty)$.
- $ightharpoonup R_0^* = h_k ext{ on } I_k^{\delta} = [a_{k-1} + \delta, a_k \delta] ext{ for any } k = 1, \dots, M.$
- $ightharpoonup R_0^*$ is bounded with $-\|h\|_{\infty} \le R_0^* \le \|h\|_{\infty}$.

As a result, the difference between R_0^* and h can be bounded by

$$\int_{\mathbb{R}} |R_0^*(x) - h(x)| \mathrm{d}x \le 4M\delta \|h\|_{\infty} \tag{14}$$

which can be made arbitrarily small by choosing an appropriate δ .

My result

My result

$$\begin{split} \int_{\mathbb{R}} |R_0^*(x) - h(x)| \mathrm{d}x &\leq \sum_{k=1}^M (\frac{1}{2}\delta(k+1) \|h\|_{\infty} \cdot 2 + \delta h_k \cdot 2) \\ &= \sum_{k=1}^M (\delta(k+1) \|h\|_{\infty} + 2\delta h_k) \\ &\leq \sum_{k=1}^M (\delta(k+1) \|h\|_{\infty} + 2\delta \|h\|_{\infty}) \\ &= \delta \|h\|_{\infty} \sum_{k=1}^M ((k+1) + 2) \\ &= \delta \|h\|_{\infty} \cdot M \cdot \frac{4 + (M+3)}{2} \\ &= \frac{M+7}{2} M \delta \|h\|_{\infty} \end{split}$$

(15)

Outline

Introduction

Contribution
A motivating example

Universal approximation theorem

Outline of the proof A increasing trapezoid function Adjusting function values

Conclusion

Conclusion

- ► This paper has shown a universal approximation theorem for the ResNet structure with one unit per hidden layer.
- ► This paper prove the theorem by very interesting constructions and induction step by step.