LinkedIn Page: jinzhao-feng-3bb328154

Github: https://github.com/jif078/
Address: 29 Tall Oak, Irvine, CA92603
Cell Phone: 858-568-4448
E-mail: jif078@eng.ucsd.edu

Jinzhao Feng

Summary

Solid knowledge in supervised/unsupervised machine learning algorithms Hand-on experience in deploying Machine Learning/Deep Learning models Experience in data management systems, such as SQL, Hadoop, Spark Looking for a job related to data science or machine learning

Skills

Big Data: SQL server, Hadoop, Spark

Machine Learning: Scikit-learn, Xgboost, Pandas, Numpy

Deep Learning: Pytortch, Tensorflow, Keras

Plantform: Windows, Mac Os, Linux

Cloud Environment: AWS, Microsoft Azure Programming: Python, SQL, Matlab, Java

Education

University of California, San Diego	Sep.2016-Jun.2018
M.S in Electrical and Computer Engineering	San Diego, USA
Nanjing University of Posts and Telecommunications B.Eng. in Communication Engineering	Sep.2012-Jul.2016 Nanjing, China
New York Institute of Technology (Joint Program)	Sep.2012-Jul.2016
B.S. in Communication Engineering	New York, USA

Coursework

Statistical Learning, Machine Learning for Image Processing, Parameters estimation, Machine Learning for Physical Application, Digital Image Processing, Programming for Data Analysis, Elements of Machine Intelligence, Information Theory

Project Experience

Trigger Word Detection

Jan.2018 - Mar.2018

- Aimed to wake up a system by recognizing a trigger word in an audio recording.
- Collected dataset by synthesizing speech and noise, and then digitalized these audios.
- Implemented a RNN model with 2 layer GRUs (128 hidden state) for training.
- Used a dense + sigmoid layer to make a prediction $(0\sim1)$ at each time step.
- Test accuracy was as high as 94% for a threshold of 0.5.

Autonomous driving by Convolutional Neural Network

Oct.2017 - Dec.2017

- Aimed to build a fast and accurate car detection system for a self-driving car.
- Implemented YOLO algorithm by Keras to train pictures taken by a camera in a car.
- Selected correct test outputs (bounding boxes) among lots of overlapping boxes by applying score-thresholding and non-max suppression.
- All required vehicles can be successfully detected with a threshold 0.6.

Source Localization in Ocean Waveguide

Mar.2018 - Jun.2018

- Aimed to track a ship in ocean from its noise data by using machine learning model.
- Added label (range index in ocean) on noise data for supervised learning
- Implement three different models, Feed-Forward Neural Network, Support Vector Machine and Random Forest.
- SVM with a linear kernel achieved lowest mean absolute percentage error, 4.98%.
- Report Link: http://noiselab.ucsd.edu/ECE228/Reports/Report1.pdf

Real Estate Price Analysis

Jan.2017 - May.2017

- Used Numpy and Pandas to clean and format Data downloaded from Zillow Research
- Applied Linear Regression Model on datum to predict real estate price and analyze return of investment both in long term (since 1996) and short term (since 2011)
- The result suggests investors to purchase houses in 92113 with 19.67% return every year, while 92121 only has 6.04% in the past 6 years.
- Github Link: https://github.com/paulszh/San-Diego-Real-Estate-and-Rental-Price-Analysis

Honor & Award

- Dean's Honor List (GPA> 3.5/4.0), New York Institute of Technology Mar.2015&Oct.2015
- Presidential Honor List (GPA> 3.7/4.0), New York Institute of Technology Feb 2013&Feb2014