Table 4. Comparison of physical properties between HST 10 and two other well-studied proplyds

I Inita

	Units	Note	LV Z	HS1 1	HS1 10
Coordinate-based designation		1	167-317	177-341	182-413
Relation to ionizing source					
Projected distance, D'	"	2	7.83	25.84	56.7
Inclination, i	0	3	50	70	150
True distance, D	pc	4	0.022	0.059	0.242
Ionized cusp					
Ionization front radius, r_0	AU	5	53.	136.	247.
Peak electron density, n ₀	10^6 cm^{-3}	6	2.0	0.4	0.1
Ionization parameter		7	0.012	0.008	0.002
Cusp mass-loss rate, \dot{M}	$10^{-7} \ M_{\odot} \ {\rm yr}^{-1}$	8	2.6	2.5	2.1
Molecular disc					
Disc effective temperature: $T_{\rm d}$	K	9	95	58	29
Disc mass $M_{\rm d}$	$10^{-3} \ M_{\odot}$	10	1.6	2.7	5.4
Disc radius R _d	AU	11	34	89	160
Evaporation time, t_{evap}	10^4 yr	12	0.6	1.1	2.6
Notes: (1) O'dell & Wen (1004)	(2) Angular cana	ration from	al Ori C (O'Dal	1 1009) (3) In	clination of

Mata

13/2

HCT 1

HCT 10

Notes: (1) O'dell & Wen (1994) (2) Angular separation from θ^1 Ori C (O'Dell 1998) (3) Inclination of proplyd axis to line of sight estimated from kinematic studies of the velocity–ionization correlation in emission lines from the cusp (Henney & O'Dell 1999; Henney et al. 2002). Proplyds with $i > 90^{\circ}$ have their head pointing away from the observer. (4) $D = D'/\sin i$. (5) Estimated from fitting evaporation models to the H α profiles of the cusps Henney & Arthur (1998). (6) LV 2 from [C III] density (Henney et al. 2002); HST 1 and HST 10 from model fitting (this paper and Mesa-Delgado et al. 2012). (7) $F/(n_0 c)$. (8) Calculated by integrating model mass fluxes over the area of the cusp. (9) Radiative equilibrium temperature, assuming that 25% of the bolometric flux from θ^1 Ori C reaches the surface of the disk (see also Robberto et al. 2002). (10) Estimated from observed fluxes at 880 μ m (Mann & Williams 2010) after subtracting the contribution from ionized free-free emission, assuming optically thin dust emission with opacity $\kappa_{\nu} = 0.034$ cm² g⁻¹ and dust temperature equal to the effective temperatures derived above. (11) Directly estimated from HST images from HST 10. For LV 2 and HST 1, we assume $r_{\rm d} = 0.65r_{\rm 0}$, see Figure 10. (12) Nominal mass loss timescale: $M_{\rm d}/\dot{M}$.