PARTIE A

On considère la fonction f définie sur l'intervalle]0; $+\infty[$ par

$$f(x) = \ln x - 2 + x.$$

- **1.** Déterminer les limites de la fonction f en 0 et en $+\infty$.
- 2. Étudier le sens de variation de la fonction f puis dresser son tableau de variations.
- 3. Montrer que l'équation f(x) = 0 admet une unique solution α dans l'intervalle]0; $+\infty[$. Donner un encadrement du nombre α à 10^{-2} près.

PARTIE B

Le plan est muni d'un repère orthonormal $(O, \overrightarrow{i}, \overrightarrow{j})$.

On considère sur le graphique ci-dessous, la courbe représentative $\mathscr C$ de la fonction ln, ainsi que la droite $\mathscr D$ d'équation y=2-x. On note E le point d'intersection de la courbe $\mathscr C$ et de la droite $\mathscr D$.

On considère l'aire en unités d'aire, notée \mathscr{A} , de la partie du plan située au dessus de l'axe des abscisses et au dessous de la courbe \mathscr{C} et de la droite \mathscr{D} .

- 1. Calculer les coordonnées du point E.
- $2. \text{ Soit } I = \int_1^\alpha \ln x \, \mathrm{d}x.$
 - **a.** Donner une interprétation géométrique de *I*.
 - **b.** Démontrer que la fonction F définie sur]0; $+\infty[$ par $F(x) = x(\ln(x) 1)$ est une primitive de $\ln \sup]0$; $+\infty[$. En déduire la valeur de I, en fonction de α .
 - **c.** Montrer que I peut aussi s'écrire $I=-\alpha^2+\alpha+1$ sachant que $f(\alpha)=0$.
- **3.** Calculer l'aire \mathcal{A} en fonction de α .