

Examination

: Third Sessional

DHARMSINH DESAI UNIVERSITY, NADIAD FACULTY OF TECHNOLOGY B.TECH. SEMESTER VI [CE]

SUBJECT: (CE-610) ADVANCED COMPUTER ARCHITECTURE

Seat No

Date Time		: 20/03/2025 Day : Th : 2.30 PM to 3.45 PM Max. Marks : 36	ursday	
INSTR	UCTIO	ONS:		
1. 2.	Figures to the right indicate maximum marks for that question. The symbols used carry their usual meanings.			
3.		sume suitable data, if required & mention them clearly.		
4.	Draw neat sketches wherever necessary.			
CO2-R	Q.1 a)	Do as directed. Fill in the blanks	[12	J
		 i. The TSS descriptor is stored only in the ii. The maximum size of the I/O permission bit map in iii. In TSS descriptor minimum value of LIMIT is iv. Address of branch instruction is stored in 	S	
CO2-N	b)	State true or false and justify: Busy bit prevents reloading of an active task in 80386.		
CO2-U	c)	Explain the concept of hyper-threading.		
CO3-U	d)	What is the cost of a parallel algorithm, and under what conditions is a parallel algorithm considered cost-optimal?		
CO3-C	e)	Design a pseudocode algorithm to compute the OR of n bits using a Common CRCW PRAM model.		
СО3-Е	f)	Consider two 5x5 matrices A and B interconnected as mesh multiplication algorithm is run on this mesh network i. In how many steps would this algorithm end? ii. In which step processor P _{4, 3} would compute the val		
	Q.2	Attempt Any Two	[12]	
CO2-U	b)	i. Explain the NT (Nested Task) flag in the 80386 pro affect task switching in a multitasking environment.	?	
CO2 4		ii. What is IO Permission Bitmap? Draw and explain it		
CO2-A	b)	Explain how task switching occurs in the 80386 processor and Task Gate. Provide necessary diagrams and examples v	where applicable.	
CO2-N	c)	 Draw the format of IDT and give the steps followed occurs using an Interrupt Gate. 		
		ii. Suppose an exception handler needs to switch to a using a Task Gate in the IDT. Describe how the ID and how the CPU performs the task switch.	new privileged task T entry would differ [3]	

[4]

- CO3-C

 i. Consider an unsorted sequence of 16 numbers given by [6]

 S = < 37, 12, 54, 06, 45, 72, 08, 60, 03, 33, 26, 67, 15, 71, 47, 09 >.

 Create a bitonic sorting network for S to produce a sorted sequence in ascending order. Leaving first and last stage draw the detailed network for the intermediate stages.
- CO3-N

 ii. Analyze the network created in (i) to give the recurrence relation for the depth of the network. Use this recurrence relation to find the depth of the network.
- CO3-C b) Consider two sorted sequences given by S1 = < 02, 03, 06, 08 > and S2 = <01, 04, 05, 07 >. Create an Odd-Even Merging network OEM (4, 4). Give the recurrence relation for calculating the depth of the network.

OR

- CO3-C a) Consider an unsorted sequence of 16 numbers given by

 S = < 33, 31, 02, 05, 18, 16, 01, 04, 09, 08, 07, 63, 72, 03, 91, 23>

 Create an Odd Even Merge sorting network for n=16 to produce a sorted sequence in ascending order. Leaving the last stage draw the detailed network for the rest of the stages. Give the depth and the size of the network.
- CO3-C b) Consider a bitonic sequence given by S = < 06, 08, 12, 37, 45, 54, 60, 72, 71, 67, 47, 33, 26, 15, 09, 03> Create a bitonic merging network to produce the sorted sequence in ascending order.

Bloom's Taxonomy levels: R-Remembering, U- Understanding, A-Applying, N-Analyzing, E- Evaluating, C-Creating