Rachunek różniczkowy

• dwa punkty: $P(x_0, f(x_0)), Q(x, f(x))$

- dwa punkty: $P(x_0, f(x_0)), Q(x, f(x))$
- przyrost argumentu

$$\Delta x = x - x_0$$

- dwa punkty: $P(x_0, f(x_0)), Q(x, f(x))$
- przyrost argumentu

$$\Delta x = x - x_0$$

przyrost wartości funkcji

$$\Delta f = f(x) - f(x_0)$$

- dwa punkty: $P(x_0, f(x_0)), Q(x, f(x))$
- przyrost argumentu

$$\Delta x = x - x_0$$

przyrost wartości funkcji

$$\Delta f = f(x) - f(x_0)$$

 średni przyrost wartości funkcji na przedziale $[x_0, x]$

$$\frac{\Delta f}{\Delta x} = \frac{f(x) - f(x_0)}{x - x_0}$$

- dwa punkty: $P(x_0, f(x_0)), Q(x, f(x))$
- przyrost argumentu

$$\Delta x = x - x_0$$

przyrost wartości funkcji

$$\Delta f = f(x) - f(x_0)$$

 średni przyrost wartości funkcji na przedziale $[x_0, x]$

$$\frac{\Delta f}{\Delta x} = \frac{f(x) - f(x_0)}{x - x_0}$$

, czyli współczynnik kierunkowy siecznei

• współczynnik kierunkowy siecznej

$$\frac{\Delta f}{\Delta x} = \frac{f(x) - f(x_0)}{x - x_0}$$

współczynnik kierunkowy siecznej

$$\frac{\Delta f}{\Delta x} = \frac{f(x) - f(x_0)}{x - x_0}$$

współczynnik kierunkowy siecznej

$$\frac{\Delta f}{\Delta x} = \frac{f(x) - f(x_0)}{x - x_0}$$

współczynnik kierunkowy siecznej

$$\frac{\Delta f}{\Delta x} = \frac{f(x) - f(x_0)}{x - x_0}$$

współczynnik kierunkowy siecznej

$$\frac{\Delta f}{\Delta x} = \frac{f(x) - f(x_0)}{x - x_0}$$

współczynnik kierunkowy siecznej

$$\frac{\Delta f}{\Delta x} = \frac{f(x) - f(x_0)}{x - x_0}$$

$$\lim_{x \to x_0} \frac{\Delta f}{\Delta x} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

współczynnik kierunkowy siecznej

$$\frac{\Delta f}{\Delta x} = \frac{f(x) - f(x_0)}{x - x_0}$$

 współczynnik kierunkowy stycznej

$$m = \lim_{x \to x_0} \frac{\Delta f}{\Delta x} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

• równanie stycznej w pkcie P

$$y - f(x_0) = m \cdot (x - x_0)$$

Fizyka

- \bullet s(t) położenie "ciała" w czasie t
- ullet średnia prędkość w danym odcinku czasu $[t_0,t_1]$

$$v_{sr} = \frac{s(t_1) - s(t_0)}{t_1 - t_0} = \frac{\Delta s}{\Delta t}$$

Fizyka

- \bullet s(t) położenie "ciała" w czasie t
- \bullet średnia prędkość w danym odcinku czasu $[t_0,t_1]$

$$v_{sr} = \frac{s(t_1) - s(t_0)}{t_1 - t_0} = \frac{\Delta s}{\Delta t}$$

ullet prędkość chwilowa w danym momencie t_0

$$v_{ch} = \lim_{t_1 \to t_0} v_{sr} = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t}$$

Chemia

- C(t) stężenie substratu w czasie t
- ullet średnia szybkość reakcji chemicznej w czasie $[t_0,t_1]$

$$r_{sr} = \frac{C(t_1) - C(t_0)}{t_1 - t_0} = \frac{\Delta C}{\Delta t}$$

Chemia

- C(t) stężenie substratu w czasie t
- ullet średnia szybkość reakcji chemicznej w czasie $[t_0,t_1]$

$$r_{sr} = \frac{C(t_1) - C(t_0)}{t_1 - t_0} = \frac{\Delta C}{\Delta t}$$

 \bullet rzeczywista szybkość reakcji chemicznej w czasie t_0

$$r_{rz} = \lim_{\Delta t \to 0} r_{sr} = \lim_{\Delta t \to 0} \frac{\Delta C}{\Delta t}$$

Ekonomia

- \bullet K(w) całkowity koszt produkcji w jednostek jakiegoś dobra
- średnia zmiana koszów produkcji względem przyrostu wielkości produkcji

$$K_{sr} = \frac{\Delta K}{\Delta w}$$

Ekonomia

- \bullet K(w) całkowity koszt produkcji w jednostek jakiegoś dobra
- średnia zmiana koszów produkcji względem przyrostu wielkości produkcji

$$K_{sr} = \frac{\Delta K}{\Delta w}$$

koszt krańcowy (marginalny)

$$KM = \lim_{\Delta t \to 0} K_{sr} = \lim_{\Delta t \to 0} \frac{\Delta K}{\Delta w}$$

Biologia

- \bullet n(t) liczba osobników w populacji w czasie t
- średni przyrost populacji w danym odcinku czasu

$$v_{sr} = \frac{\Delta n}{\Delta t}$$

• przyrost chwilowy w danym momencie

$$v_{ch} = \lim_{\Delta t \to 0} v_{sr} = \lim_{\Delta t \to 0} \frac{\Delta n}{\Delta t}$$

• Informatyka: Szybkość łącza internetowego

- Informatyka: Szybkość łącza internetowego
- Geografia: Zmiana gęstości zaludnienia przy zwiekszającej się odległości od centrum miasta

- Informatyka: Szybkość łącza internetowego
- Geografia: Zmiana gęstości zaludnienia przy zwiekszającej się odległości od centrum miasta
- Meteorologia: Zmiana ciśnienia atmosferycznego wraz ze wzrostem wysokości

- Informatyka: Szybkość łącza internetowego
- Geografia: Zmiana gęstości zaludnienia przy zwiekszającej się odległości od centrum miasta
- Meteorologia: Zmiana ciśnienia atmosferycznego wraz ze wzrostem wysokości
- Psychologia: Szybkość zmiany ilości zapamiętanych informacji wraz z upływem czasu

- Informatyka: Szybkość łącza internetowego
- Geografia: Zmiana gęstości zaludnienia przy zwiekszającej się odległości od centrum miasta
- Meteorologia: Zmiana ciśnienia atmosferycznego wraz ze wzrostem wysokości
- **Psychologia:** Szybkość zmiany ilości zapamiętanych informacji wraz z upływem czasu
- Socjologia: Szybkość rozchodzenia się plotki

- Informatyka: Szybkość łącza internetowego
- Geografia: Zmiana gęstości zaludnienia przy zwiekszającej się odległości od centrum miasta
- Meteorologia: Zmiana ciśnienia atmosferycznego wraz ze wzrostem wysokości
- **Psychologia:** Szybkość zmiany ilości zapamiętanych informacji wraz z upływem czasu
- Socjologia: Szybkość rozchodzenia się plotki
- . . .

Matematyka

ullet średni przyrost wartości funkcji f(x) względem przyrostu x

$$\frac{\Delta f}{\Delta x} = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

Matematyka

 \bullet średni przyrost wartości funkcji f(x) względem przyrostu x

$$\frac{\Delta f}{\Delta x} = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

ullet chwilowy przyrost wartości funkcji względem x

$$\lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

Matematyka

ullet średni przyrost wartości funkcji f(x) względem przyrostu x

$$\frac{\Delta f}{\Delta x} = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

ullet chwilowy przyrost wartości funkcji względem x

$$\lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

czyli, jak szybko rośnie (bądź maleje) funkcja f w danym punkcie (momencie).

W fizyce: prędkość, gęstość, natężenie prądu, moc; w chemii: szybkość reakcji, ściśliwość; w biologii: szybkość przyrostu populacji, prędkość przepływu krwi; w ekonomii: koszt marginalny, zysk marginalny; w geologii: prędkość przepływu ciepła; w psychologii: szybkość poprawy wyników uczenia; w socjologii: szybkość rozprzestrzeniania informacji ...

W fizyce: prędkość, gęstość, natężenie prądu, moc; w chemii: szybkość reakcji, ściśliwość; w biologii: szybkość przyrostu populacji, prędkość przepływu krwi; w ekonomii: koszt marginalny, zysk marginalny; w geologii: prędkość przepływu ciepła; w psychologii: szybkość poprawy wyników uczenia; w socjologii: szybkość rozprzestrzeniania informacji ...

czyli przyrost wartości f(x) względem x,

W fizyce: prędkość, gęstość, natężenie prądu, moc; w chemii: szybkość reakcji, ściśliwość; w biologii: szybkość przyrostu populacji, prędkość przepływu krwi; w ekonomii: koszt marginalny, zysk marginalny; w geologii: prędkość przepływu ciepła; w psychologii: szybkość poprawy wyników uczenia; w socjologii: szybkość rozprzestrzeniania informacji ...

czyli przyrost wartości f(x) względem x, czyli miara tego jak szybko funkcja rośnie bądź maleje,

W fizyce: prędkość, gęstość, natężenie prądu, moc; w chemii: szybkość reakcji, ściśliwość; w biologii: szybkość przyrostu populacji, prędkość przepływu krwi; w ekonomii: koszt marginalny, zysk marginalny; w geologii: prędkość przepływu ciepła; w psychologii: szybkość poprawy wyników uczenia; w socjologii: szybkość rozprzestrzeniania informacji ...

czyli przyrost wartości f(x) względem x, czyli miara tego jak szybko funkcja rośnie bądź maleje,

POCHODNA FUNKCJI

Definicja

Niech funkcja f będzie określona w pewnym otoczeniu $U(x_0)$.

Pochodną właściwą funkcji y = f(x) w punkcie x_0 , oznaczaną symbolem $f'(x_0)$, nazywamy granicę właściwą

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

o ile ta granica istnieje.

Definicja

Niech funkcja f będzie określona w pewnym otoczeniu $U(x_0)$.

Pochodną właściwą funkcji y = f(x) w punkcie x_0 , oznaczaną symbolem $f'(x_0)$, nazywamy granicę właściwą

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

o ile ta granica istnieje. Mówimy wtedy, że funkcja f jest **różniczkowalna** w punkcie x_0 .

Definicja

Niech funkcja f będzie określona w pewnym otoczeniu $U(x_0)$.

Pochodną właściwą funkcji y = f(x) w punkcie x_0 , oznaczaną symbolem $f'(x_0)$, nazywamy granicę właściwą

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

o ile ta granica istnieje. Mówimy wtedy, że funkcja f jest **różniczkowalna** w punkcie x_0 . Jeżeli f jest różniczkowalna w każdym punkcie przedziału I, to mówimy, że jest różniczkowalna na przedziałe I.

Definicja

Niech funkcja f będzie określona w pewnym otoczeniu $U(x_0)$.

Pochodną właściwą funkcji y = f(x) w punkcie x_0 , oznaczaną symbolem $f'(x_0)$, nazywamy granicę właściwą

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

o ile ta granica istnieje. Mówimy wtedy, że funkcja f jest **różniczkowalna** w punkcie x_0 . Jeżeli f jest różniczkowalna w każdym punkcie przedziału I, to mówimy, że jest różniczkowalna na przedziałe I.

Jeżeli funkcja jest określona tylko w jednostronnym otoczeniu x_0 , $U_{-}(x_0)$ lub $U_{+}(x_0)$, to mówimy o pochodnej **lewo-** i **prawostronnej**, oznaczanej odpowiednio $f'_{-}(x_0)$ i $f'_{+}(x_0)$.

Informatyka Analiza Matematyczna 11 / 23

4 回 > 4 回 > 4 至 > 4 至 >

•
$$f(x) = \frac{1}{1+x} \le x = 2$$

•
$$f(x) = \frac{1}{1+x} \le x = 2$$

$$g(x) = |x| \le x = 0$$

$$f(x) = \frac{1}{1+x} \le x = 2$$

•
$$g(x) = |x| \le x = 0$$

•
$$p(x) = \sqrt[3]{x} \le x = 0$$

•
$$f(x) = \frac{1}{1+x} \le x = 2$$

•
$$g(x) = |x| \le x = 0$$

$$p(x) = \sqrt[3]{x} \le x = 0$$

•
$$q(x) = \begin{cases} \frac{1}{x-2} & , x \le 1 \\ x^2 + x - 3 & , x > 1 \end{cases}$$
 w $x = 1$

•
$$f(x) = \frac{1}{1+x} \le x = 2$$

•
$$g(x) = |x| \le x = 0$$

$$p(x) = \sqrt[3]{x} \le x = 0$$

•
$$q(x) = \begin{cases} \frac{1}{x-2} & , x \le 1 \\ x^2 + x - 3 & , x > 1 \end{cases}$$
 w $x = 1$

•
$$r(x) = \begin{cases} \frac{1}{x-2} & , x \le 1 \\ x^2 - 3x + 1 & , x > 1 \end{cases}$$
 w $x = 1$

•
$$f(x) = \frac{1}{1+x} \le x = 2$$

•
$$g(x) = |x| \le x = 0$$

$$p(x) = \sqrt[3]{x} \le x = 0$$

•
$$q(x) = \begin{cases} \frac{1}{x-2} & , x \le 1 \\ x^2 + x - 3 & , x > 1 \end{cases}$$
 w $x = 1$

•
$$r(x) = \begin{cases} \frac{1}{x-2} & , x \le 1 \\ x^2 - 3x + 1 & , x > 1 \end{cases}$$
 w $x = 1$

•
$$s(x) = \begin{cases} \frac{1}{x-2} & , x \le 1 \\ x^2 - 3x & , x > 1 \end{cases}$$
 w $x = 1$

Twierdzenie (warunek konieczny istnienia pochodnej)

Jeżeli funkcja jest różniczkowalna w $x = x_0$ to jest ciągła w $x = x_0$.

Twierdzenie (warunek konieczny istnienia pochodnej)

Jeżeli funkcja jest różniczkowalna w $x=x_0$ to jest ciągła w $x=x_0$.

Uwaga!

Twierdzenie odwrotne: "Jeżeli f jest ciągła to jest różniczkowalna". nie jest prawdziwe

Twierdzenie (warunek konieczny istnienia pochodnej)

Jeżeli funkcja jest różniczkowalna w $x = x_0$ to jest ciągła w $x = x_0$.

Uwaga!

Twierdzenie odwrotne: "Jeżeli f jest ciągła to jest różniczkowalna". nie jest prawdziwe

Twierdzenie przeciwstawne

Jeżeli funkcja NIE jest ciągła w $x=x_0$ to NIE jest różniczkowalna w $x=x_0$.

Pochodna funkcji

• $f'(x_0)$ można policzyć dla wszystkich punktów $x_0 \in X \subset D_f$

Pochodna funkcji

- $f'(x_0)$ można policzyć dla wszystkich punktów $x_0 \in X \subset D_f$
- \bullet czyli f'jest również funkcją x

Pochodna funkcji

- $f'(x_0)$ można policzyć dla wszystkich punktów $x_0 \in X \subset D_f$
- \bullet czyli f'jest również funkcją x

Definicja

 ${\bf Funkcjq}$ pochodną funkcji fnazywamy funkcję daną wzorem

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

określoną w zbiorze $X \subset D_f$

$$f'(x) = y'(x) =$$

$$f'(x) = y'(x) = \frac{df}{dx} = \frac{dy}{dx} =$$

$$f'(x) = y'(x) = \frac{df}{dx} = \frac{dy}{dx} = \frac{d}{dx}(f(x))$$

$$f'(x) = y'(x) = \frac{df}{dx} = \frac{dy}{dx} = \frac{d}{dx}(f(x))$$

$$f'(a) = y'(a) =$$

$$f'(x) = y'(x) = \frac{df}{dx} = \frac{dy}{dx} = \frac{d}{dx}(f(x))$$

$$f'(a) = y'(a) = \left. \frac{df}{dx} \right|_{x=a} = \left. \frac{dy}{dx} \right|_{x=a}$$

 \bullet pochodna jest funkcją \Rightarrow można narysować jej wykres

Przykład

 \bullet pochodna jest funkcją \Rightarrow można narysować jej wykres

Przykład

 \bullet pochodna jest funkcją \Rightarrow można narysować jej wykres

Przykład

 \bullet pochodna jest funkcją \Rightarrow można narysować jej wykres

Przykład

$$\bullet \ \frac{d}{dx}\left(c\right) =$$

- $\frac{d}{dx}(c) = 0$ $\frac{d}{dx}(x^a) =$

- \bullet $\frac{d}{dx}(c) = 0$
- $\frac{d}{dx}(e^x) = e^x$
- \bullet $\frac{d}{dx}(a^x) = a^x \ln a$

- \bullet $\frac{d}{dx}(c)=0$
- \bullet $\frac{d}{dx}(x^a) = a x^{a-1}$
- $\frac{d}{dx}(e^x) = e^x$
- \bullet $\frac{d}{dx}(a^x) = a^x \ln a$
- \bullet $\frac{d}{dx} (\ln |x|) =$

- \bullet $\frac{d}{dx}(c)=0$
- \bullet $\frac{d}{dx}(x^a) = a x^{a-1}$
- $\frac{d}{dx}(e^x) = e^x$
- \bullet $\frac{d}{dx}(a^x) = a^x \ln a$
- \bullet $\frac{d}{dx}(\ln|x|) = \frac{1}{x}$
- \bullet $\frac{d}{dx}(\log_a |x|) = \frac{1}{x \ln a}$

•
$$\frac{d}{dx}(e^x) = e^x$$

$$\bullet \ \frac{d}{dx}\left(a^x\right) = a^x \ln a$$

$$\bullet \ \frac{d}{dx} \left(\ln |x| \right) = \frac{1}{x}$$

•
$$\frac{d}{dx} (\log_a |x|) = \frac{1}{x \ln a}$$

•
$$\frac{d}{dx}(\sin x) = \cos x$$

•
$$\frac{d}{dx}(e^x) = e^x$$

$$\bullet \ \frac{d}{dx}\left(a^x\right) = a^x \ln a$$

$$\bullet \ \frac{d}{dx} \left(\ln |x| \right) = \frac{1}{x}$$

•
$$\frac{d}{dx}(\log_a |x|) = \frac{1}{x \ln a}$$

$$\bullet \ \frac{d}{dx}\left(\sin x\right) = \cos x$$

$$\bullet \ \frac{d}{dx}(\cos x) = -\sin x$$

•
$$\frac{d}{dx}(\tan x) = \frac{1}{\cos^2 x}$$

$$\bullet \ \frac{d}{dx}\left(\cot x\right) = -\frac{1}{\sin^2 x}$$

•
$$\frac{d}{dx}(e^x) = e^x$$

$$\bullet \ \frac{d}{dx} \left(\ln |x| \right) = \frac{1}{x}$$

•
$$\frac{d}{dx} (\log_a |x|) = \frac{1}{x \ln a}$$

$$\bullet \ \frac{d}{dx}\left(\sin x\right) = \cos x$$

$$\bullet \ \frac{d}{dx}(\cos x) = -\sin x$$

•
$$\frac{d}{dx}(\tan x) = \frac{1}{\cos^2 x}$$

$$\bullet \ \frac{d}{dx}\left(\cot x\right) = -\frac{1}{\sin^2 x}$$

•
$$\frac{d}{dx}(\arcsin x) = \frac{1}{\sqrt{1-x^2}}$$

•
$$\frac{d}{dx}(\arccos x) = -\frac{1}{\sqrt{1-x^2}}$$

•
$$\frac{d}{dx} (\arctan x) = \frac{1}{1+x^2}$$

•
$$\frac{d}{dx} (\operatorname{arccot} x) = -\frac{1}{1+x^2}$$

Jeżeli f i g są różniczkowalne w punkcie x_0 , to

Jeżeli f i g są różniczkowalne w punkcie x_0 , to

•
$$(f \pm g)'(x_0) = f'(x_0) \pm g'(x_0)$$

Jeżeli f i g są różniczkowalne w punkcie x_0 , to

•
$$(f \pm g)'(x_0) = f'(x_0) \pm g'(x_0)$$

$$(c \cdot f)'(x_0) = c \cdot f'(x_0)$$

Jeżeli f i g są różniczkowalne w punkcie x_0 , to

•
$$(f \pm g)'(x_0) = f'(x_0) \pm g'(x_0)$$

$$(c \cdot f)'(x_0) = c \cdot f'(x_0)$$

•
$$(f \cdot g)'(x_0) =$$

$$(f \cdot g)'(x_0) \neq f'(x_0) \cdot g'(x_0)$$

Jeżeli f i g są różniczkowalne w punkcie x_0 , to

•
$$(f \pm g)'(x_0) = f'(x_0) \pm g'(x_0)$$

$$\bullet (c \cdot f)'(x_0) = c \cdot f'(x_0)$$

•
$$(f \cdot g)'(x_0) = f'(x_0) \cdot g(x_0) + f(x_0) \cdot g'(x_0)$$

$$(f \cdot g)'(x_0) \neq f'(x_0) \cdot g'(x_0)$$

Jeżeli f i g są różniczkowalne w punkcie x_0 , to

•
$$(f \pm g)'(x_0) = f'(x_0) \pm g'(x_0)$$

$$(c \cdot f)'(x_0) = c \cdot f'(x_0)$$

•
$$(f \cdot g)'(x_0) = f'(x_0) \cdot g(x_0) + f(x_0) \cdot g'(x_0)$$

$$\bullet \left(\frac{f}{g}\right)'(x_0) =$$

$$(f \cdot g)'(x_0) \neq f'(x_0) \cdot g'(x_0)$$

$$\left(\frac{f}{g}\right)'(x_0) \neq \frac{f'(x_0)}{g'(x_0)}$$

Jeżeli f i g są różniczkowalne w punkcie x_0 , to

•
$$(f \pm g)'(x_0) = f'(x_0) \pm g'(x_0)$$

$$(c \cdot f)'(x_0) = c \cdot f'(x_0)$$

•
$$(f \cdot g)'(x_0) = f'(x_0) \cdot g(x_0) + f(x_0) \cdot g'(x_0)$$

•
$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0) \cdot g(x_0) - f(x_0) \cdot g'(x_0)}{g(x_0)^2}$$

$$(f \cdot g)'(x_0) \neq f'(x_0) \cdot g'(x_0)$$

$$\left(\frac{f}{g}\right)'(x_0) \neq \frac{f'(x_0)}{g'(x_0)}$$

EVERY TIME YOU DO THIS:

Sean Bean dies on-screen

Pochodna funkcji złożonej

Niech
$$f(x)=(h\circ g)(x)=h(g(x))=h(u).$$
 Wówczas
$$\frac{df}{dx}=\frac{dh}{du}\cdot\frac{du}{dx}$$
lub

$$(h \circ g)'(x) = h'(g(x)) \cdot g'(x)$$

Pochodna funkcji złożonej

Niech $f(x) = (h \circ g)(x) = h(g(x)) = h(u)$. Wówczas

$$\frac{df}{dx} = \frac{dh}{du} \cdot \frac{du}{dx}$$

lub

$$(h \circ g)'(x) = h'(g(x)) \cdot g'(x)$$

Pochodna funkcji odwrotnej

Jeżeli $f'(x_0) \neq 0$ i f^{-1} istnieje w pewnym otoczeniu $U(x_0)$, to pochodna f^{-1} w punkcie $y_0 = f(x_0)$ istnieje i wyraża się wzorem

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)}$$

4 D > 4 D > 4 E > 4 E > E 900

• Jeżeli f' ma pochodną w x_0 , to nazywamy ją **pochodną drugiego rzędu** (albo drugą pochodną) i oznaczamy symbolem $f''(x_0)$

- Jeżeli f' ma pochodną w x_0 , to nazywamy ją **pochodną drugiego rzędu** (albo drugą pochodną) i oznaczamy symbolem $f''(x_0)$
- pochodną drugiej pochodnej nazywamy **pochodną trzeciego** rzędu, $f'''(x_0)$

- Jeżeli f' ma pochodną w x_0 , to nazywamy ją **pochodną drugiego rzędu** (albo drugą pochodną) i oznaczamy symbolem $f''(x_0)$
- pochodną drugiej pochodnej nazywamy **pochodną trzeciego** rzędu, $f'''(x_0)$
- pochodną trzeciej pochodnej nazywamy **pochodną czwartego** rzędu, $f^{(4)}(x_0)$

- Jeżeli f' ma pochodną w x_0 , to nazywamy ją **pochodną drugiego rzędu** (albo drugą pochodną) i oznaczamy symbolem $f''(x_0)$
- pochodną drugiej pochodnej nazywamy **pochodną trzeciego** rzędu, $f'''(x_0)$
- pochodną trzeciej pochodnej nazywamy **pochodną czwartego** rzędu, $f^{(4)}(x_0)$
- . . .

- Jeżeli f' ma pochodną w x_0 , to nazywamy ją **pochodną drugiego rzędu** (albo drugą pochodną) i oznaczamy symbolem $f''(x_0)$
- pochodną drugiej pochodnej nazywamy **pochodną trzeciego** rzędu, $f'''(x_0)$
- pochodną trzeciej pochodnej nazywamy **pochodną czwartego** rzędu, $f^{(4)}(x_0)$
- . .

$$f'(x), f''(x), f'''(x), f^{(4)}(x), \dots f^{(n)}(x)$$

- Jeżeli f' ma pochodną w x_0 , to nazywamy ją **pochodną drugiego rzędu** (albo drugą pochodną) i oznaczamy symbolem $f''(x_0)$
- pochodną drugiej pochodnej nazywamy **pochodną trzeciego** rzędu, $f'''(x_0)$
- pochodną trzeciej pochodnej nazywamy **pochodną czwartego** rzędu, $f^{(4)}(x_0)$
- ...

$$f'(x), \quad f''(x), \quad f'''(x), \quad f^{(4)}(x), \dots f^{(n)}(x)$$

$$\frac{df}{dx}, \quad \frac{d^2f}{dx^2}, \quad \frac{d^3f}{dx^3}, \quad \frac{d^4f}{dx^4}, \dots \frac{d^nf}{dx^n}$$

イロト 4回ト 4 三ト 4 三 ト 1 三 り00

Oznaczenia

Leibniz

$$\frac{df}{dx}$$
, $\frac{d^2f}{dx^2}$, $\frac{d^3f}{dx^3}$

Lagrange

$$f'(x)$$
, $f''(x)$, $f^{(2)}(x)$, $f'''(x)$, $f^{(3)}(x)$

Newton

$$\dot{y}, \quad \ddot{y}$$

Euler

$$Df(x)$$
, $D^2f(x)$, $D^3f(x)$