电力系统分析

一第10章— 电力系统故障分析 ——不对称短路故障分析

主讲教师: 符玲

西南交通大学 电气工程学院

-第10章- 电力系统不对称短路故障分析

- -第10.1节- 叠加原理的应用
- -第10.2节-不对称短路故障复合序网
- -第10.3节- 故障点电流和电压计算

-第10.1节- 叠加原理的应用

-第10.1节-叠加原理的应用

正

序

XX

零序

XX

-第10.1节-叠加原理的应用

- · **各序分量三相对称**:大小、相位关系固定
- 因为三相电路对称,只需给出各序单相电路或序网

・ 序网基本方程

$$\dot{U}_{a1} = \dot{E}_{\Sigma 1} - \dot{I}_{a1} Z_{1\Sigma}$$
 $\dot{U}_{a2} = -\dot{I}_{a2} Z_{2\Sigma}$ $\dot{U}_{a0} = -\dot{I}_{a0} Z_{0\Sigma}$

• 3个方程,6个变量,需补充3个方程。

-第10.1节-叠加原理的应用

・边界条件

・ 边界条件: 短路点处的电压、电流方程

- a 相短路:
- *b*、*c* 两相短路:
- *b、c* 两相接地短路:

$$\dot{U}_{a} = 0, \quad \dot{I}_{b} = 0, \quad \dot{I}_{c} = 0$$
 $\dot{U}_{b} = \dot{U}_{c}, \quad \dot{I}_{a} = 0, \quad \dot{I}_{b} = -\dot{I}_{c}$
 $\dot{U}_{b} = 0, \quad \dot{U}_{c} = 0, \quad \dot{I}_{a} = 0$

用序分量表示

• 边界条件: 故障相的电压、非故障相的电流

▶1. 单相接地短路

• α 相接地短路故障的3个边界条件

$$\dot{U}_{a} = 0, \quad \dot{I}_{b} = 0, \quad \dot{I}_{c} = 0$$

$$\begin{cases}
\dot{U}_{a} = \dot{U}_{a1} + \dot{U}_{a2} + \dot{U}_{a0} = 0 \\
\dot{I}_{b} = a^{2}\dot{I}_{a1} + a\dot{I}_{a2} + \dot{I}_{a0} = 0 \\
\dot{I}_{c} = a\dot{I}_{a1} + a^{2}\dot{I}_{a2} + \dot{I}_{a0} = 0
\end{cases}$$

$$\dot{U}_{a1} + \dot{U}_{a2} + \dot{U}_{a0} = 0$$

边界条件 $\dot{I}_{a1} = \dot{I}_{a2} = \dot{I}_{a0}$

• a 相接地短路故障的复合序网

$$\begin{cases} \dot{U}_{a1} + \dot{U}_{a2} + \dot{U}_{a0} = 0 \\ \dot{I}_{a1} = \dot{I}_{a2} = \dot{I}_{a0} \end{cases}$$

$$\begin{cases} \dot{I}_{a1} = \frac{\dot{E}_{\Sigma}}{j(X_{1\Sigma} + X_{2\Sigma} + X_{0\Sigma})} \\ \dot{I}_{a2} = \dot{I}_{a0} = \dot{I}_{a1} \end{cases}$$

$$\dot{I}_{a}, \ \dot{I}_{b} = 0, \ \dot{I}_{c} = 0$$

• 短路点的短路电流为:

$$\dot{I}_{d}^{(1)} = \dot{I}_{a} = \dot{I}_{a1} + \dot{I}_{a2} + \dot{I}_{a0} = 3\dot{I}_{a1}$$

・ 根据 a 相各序电流求 a 相各序电压

$$\begin{cases} \dot{U}_{a1} = \dot{E}_{\Sigma} - jX_{1\Sigma}\dot{I}_{a1} \\ \dot{U}_{a2} = -jX_{2\Sigma}\dot{I}_{a2} \\ \dot{U}_{a0} = -jX_{0\Sigma}\dot{I}_{a0} \end{cases}$$

• 短路点的各相短路电压为:

$$\begin{cases} \dot{U}_{a} = \dot{U}_{a1} + \dot{U}_{a2} + \dot{U}_{a0} = 0 \\ \dot{U}_{b} = a^{2} \dot{U}_{a1} + a \dot{U}_{a2} + \dot{U}_{a0} \\ \dot{U}_{c} = a \dot{U}_{a1} + a^{2} \dot{U}_{a2} + \dot{U}_{a0} \end{cases}$$

▶2. 两相短路

• b、c 相短路故障的3个边界条件

$$\dot{U}_{b} = \dot{U}_{c}, \quad \dot{I}_{a} = 0, \quad \dot{I}_{b} = -\dot{I}_{c}$$

$$\dot{U}_{b} = a^{2}\dot{U}_{a1} + a\dot{U}_{a2} + \dot{U}_{a0}$$

$$= a\dot{U}_{a1} + a^{2}\dot{U}_{a2} + \dot{U}_{a0} = \dot{U}_{c}$$

$$\dot{I}_{a} = \dot{I}_{a1} + \dot{I}_{a2} + \dot{I}_{a0} = 0$$

$$\dot{I}_{b} = a^{2}\dot{I}_{a1} + a\dot{I}_{a2} + \dot{I}_{a0}$$

$$= -(a\dot{I}_{a1} + a^{2}\dot{I}_{a2} + \dot{I}_{a0}) = -\dot{I}_{c}$$

$$\dot{U}_{a1} = \dot{U}_{a2}, \quad \dot{I}_{a0} = 0, \quad \dot{I}_{a1} = -\dot{I}_{a2}$$

$$\dot{\boldsymbol{I}}_{a1} = -\dot{\boldsymbol{I}}_{a2}$$

• b、c 相短路故障的复合序网

$$\begin{vmatrix} \dot{U}_{a1} = \dot{U}_{a2} \\ \dot{I}_{a0} = 0 \\ \dot{I}_{a1} = -\dot{I}_{a2} \end{vmatrix}$$

$$\begin{cases} \dot{I}_{a1} = \frac{\dot{E}_{\Sigma}}{j(X_{1\Sigma} + X_{2\Sigma})} \\ \dot{I}_{a2} = -\dot{I}_{a1}, \quad \dot{I}_{a0} = 0 \end{cases}$$

• 短路点的短路电流为:

$$I_d^{(2)} = I_b = I_c$$

$$= |a^2 \dot{I}_{a1} + a \dot{I}_{a2}|$$

$$= |a \dot{I}_{a1} + a^2 \dot{I}_{a2}| = \sqrt{3} I_{a1}$$

· 根据 a 相各序电流求 a 相各序电压

$$\begin{cases} \dot{U}_{a1} = \dot{E}_{\Sigma} - jX_{1\Sigma}\dot{I}_{a1} \\ \dot{U}_{a2} = -jX_{2\Sigma}\dot{I}_{a2} = \dot{U}_{a1} \\ \dot{U}_{a0} = 0 \end{cases}$$

a 相即非故障相电 压等于故障前电压

• 短路点的各相短路电压为:

$$\begin{cases} \dot{U}_{a} = \dot{U}_{a1} + \dot{U}_{a2} = \dot{E}_{\Sigma} \\ \dot{U}_{b} = a^{2} \dot{U}_{a1} + a \dot{U}_{a2} = -\frac{1}{2} \dot{E}_{\Sigma} \\ \dot{U}_{c} = a \dot{U}_{a1} + a^{2} \dot{U}_{a2} = -\frac{1}{2} \dot{E}_{\Sigma} \end{cases}$$

≻3. 两相接地短路

• b、c 相接地短路故障的3个边界条件

• b、c 相接地短路故障的复合序网

$$\dot{U}_{a1} = \dot{U}_{a2} = \dot{U}_{a0}$$
 $\dot{I}_{a1} + \dot{I}_{a2} + \dot{I}_{a0} = 0$

$$\begin{aligned} \dot{U}_{a1} &= \dot{U}_{a2} = \dot{U}_{a0} \\ \dot{I}_{a1} + \dot{I}_{a2} + \dot{I}_{a0} &= 0 \end{aligned} \begin{cases} \dot{I}_{a1} &= \frac{E_{\Sigma}}{j(X_{1\Sigma} + X_{2\Sigma} /\!/ X_{0\Sigma})} \\ \dot{I}_{a2} &= -\frac{X_{0\Sigma}}{X_{2\Sigma} + X_{0\Sigma}} \dot{I}_{a1} \\ \dot{I}_{a0} &= -\frac{X_{2\Sigma}}{X_{2\Sigma} + X_{0\Sigma}} \dot{I}_{a1} \end{aligned}$$

短路点a相电压的各序分量为:

$$\dot{U}_{a1} = \dot{U}_{a2} = \dot{U}_{a0} = j \frac{X_{2\Sigma} X_{0\Sigma}}{X_{2\Sigma} + X_{0\Sigma}} \dot{I}_{a1}$$

• 短路点非故障相电压为:

• 短路的短路电流为:

$$\begin{cases} \dot{I}_{b} = a^{2}\dot{I}_{a1} + a\dot{I}_{a2} + \dot{I}_{a0} = (a^{2} - \frac{X_{2\Sigma} + aX_{0\Sigma}}{X_{2\Sigma} + X_{0\Sigma}})\dot{I}_{a1} \\ \dot{I}_{c} = a\dot{I}_{a1} + a^{2}\dot{I}_{a2} + \dot{I}_{a0} = (a - \frac{X_{2\Sigma} + a^{2}X_{0\Sigma}}{X_{2\Sigma} + X_{0\Sigma}})\dot{I}_{a1} \end{cases}$$

• 短路电流有效值为:

$$I_d^{(1.1)} = I_b = I_c = \sqrt{3} \sqrt{1 - \frac{X_{0\Sigma} X_{2\Sigma}}{(X_{0\Sigma} + X_{2\Sigma})^2}} I_{a1}$$

>4. 经过渡阻抗 Z_f 短路

・単相接地短路

• 复合序网

>4. 经过渡阻抗 Z_f 短路

• 两相短路

• 复合序网

・ 两相接地<mark>短路</mark>

• 边界条件 $\dot{U}_b = \dot{U}_c = (\dot{I}_b + \dot{I}_c)Z_g, \dot{I}_a = 0$

$$\begin{cases} \dot{U}_{b} = a^{2}\dot{U}_{a1} + a\dot{U}_{a2} + \dot{U}_{a0} = 3\dot{I}_{a0}Z_{g} \\ \dot{U}_{c} = a\dot{U}_{a1} + a^{2}\dot{U}_{a2} + \dot{U}_{a0} = 3\dot{I}_{a0}Z_{g} \\ \dot{I}_{a} = \dot{I}_{a1} + \dot{I}_{a2} + \dot{I}_{a0} = 0 \end{cases}$$

复合序网

▶1. 正序电流的计算

• a 相接地短路

$$\dot{I}_{a1} = \frac{\dot{E}_{\Sigma}}{\dot{j}(X_{1\Sigma} + X_{2\Sigma} + X_{0\Sigma})} \longrightarrow I_{a1} = \frac{E_{\Sigma}}{X_{1\Sigma} + X_{2\Sigma} + X_{0\Sigma}}$$

• *b*、*c* 相短路

$$\dot{I}_{a1} = \frac{\dot{E}_{\Sigma}}{\dot{j}(X_{1\Sigma} + X_{2\Sigma})} \longrightarrow I_{a1} = \frac{E_{\Sigma}}{X_{1\Sigma} + X_{2\Sigma}}$$

• b、c 相接地短路

$$\dot{I}_{a1} = \frac{\dot{E}_{\Sigma}}{\dot{J}(X_{1\Sigma} + X_{2\Sigma} \parallel X_{0\Sigma})} \longrightarrow I_{a1} = \frac{E_{\Sigma}}{X_{1\Sigma} + X_{2\Sigma} \parallel X_{0\Sigma}}$$

▶2. 短路电流与正序电流的关系

a 相接地短路

$$|I_d^{(1)} = I_a = |\dot{I}_{a1} + \dot{I}_{a2} + \dot{I}_{a0}| = 3|\dot{I}_{a1}| = 3I_{a1}|$$

• b、c 相短路

$$|I_d^{(2)} = I_b = I_c = |a^2 \dot{I}_{a1} + a \dot{I}_{a2}| = |a \dot{I}_{a1} + a^2 \dot{I}_{a2}| = \sqrt{3}I_{a1}$$

• b、c 相接地短路

$$I_d^{(1.1)} = I_b = I_c = \sqrt{3} \sqrt{1 - \frac{X_{0\Sigma} X_{2\Sigma}}{(X_{0\Sigma} + X_{2\Sigma})^2}} I_{a1}$$

▶3. 正序等效定则

• 不对称短路正序电流的计算通式

$$I_{a1}^{(n)} = \frac{E_{1\Sigma}}{X_{1\Sigma} + X_{\Delta}^{(n)}}$$
 $X_{\Delta}^{(n)}$ ——附加电抗;

・正序等效定则

- 在简单不对称短路的情况下,短路点的正序分量电流,与在短路点每一相中接入附加电抗 $X_{\Delta}^{(n)}$ 后发生三相短路的电流相等。
- 短路电流的绝对值与其正序电流的绝对值成正比, 即:

$$\boldsymbol{I}_{d}^{(n)} = \boldsymbol{m}^{(n)} \boldsymbol{I}_{a1}^{(n)}$$

金属性短路	$X_{\Delta}^{(n)}$	$m^{(n)}$
三相短路	0	1
两相短路	$m{X}_{2\Sigma}$	$\sqrt{3}$
单相接地短路	$X_{2\Sigma} + X_{0\Sigma}$	3
两相接地短路	$m{X_{2\Sigma}} /\!/ m{X_{0\Sigma}}$	$\sqrt{3}\sqrt{1-\frac{X_{2\Sigma}X_{0\Sigma}}{X_{2\Sigma}+X_{0\Sigma}}}$

• 注: **非金属性短路**可根据相应的复合序网求得 $X_{\Delta}^{(n)}$ 和 $m^{(n)}$

$$\dot{E}_{\Sigma} \bigoplus_{-}^{\bullet} \overset{k}{\stackrel{I_{a1}}{\stackrel{I_{a1}}{\longrightarrow}}} \overset{k}{\stackrel{K}{\stackrel{(n)}{\longrightarrow}}}$$

>4. 不对称短路故障支路短路电流和节点故障电压计算

- 1) 计算元件参数,建立各序网,计算各序网络对短路点的等值电抗 $X_{1\Sigma}$ 、 $X_{2\Sigma}$ 及 $X_{0\Sigma}$;
- 2) 根据短路类型,组成复合序网,计算短路点正序电流;
- 3) 短路点正序电流一经算出,即可利用各序电压、电流之间的关系计算短路点的各序电流和电压;
- 4) 将各相的正、负、零序电压或电流相量相加,即得短路点 各相故障电压或各相短路电流;
- 5) 依据正序、负序和零序网络求出电网各支路短路电流和节点电压序分量;
- 6) 同一支路或节点电流或电压各序分量叠加,即为该支路或节点的相电流或电压。

发电机 G: 120MVA, 10.5kV, $x''_d = x_2 = 0.14$

变压器 T_1 、 T_2 : 60MVA, U_k % = 10.5

双回架空线: 105km, $x_1 = 0.4\Omega$ / km, $x_0 = 3x_1$

负荷: L-1:60MVA, L-2:40MVA, $x_1=1.2$, $x_2=0.35$

正常运行时D点电压: $\dot{U}_{D(0)} = 109 \angle 0^{\circ} \text{kV}$

变压器 T_1 为 Y_0 / \triangle -11接线。

解: 1) 参数计算

以 S_B =120MVA, U_B = U_{av}

2) 构建各序网络

• 正序网络

发电机: $X_1=0.14\times 120/120=0.14$

变压器T1: $X_2=0.105\times120/60=0.21$

负荷L-1: $X_3=1.2\times120/60=2.4$

线路: $X_{4-5}=0.4/2\times105\times120/115^2=0.1905$

变压器T2: $X_6=0.105\times120/60=0.21$

负荷L-2: $X_5=1.2\times120/40=3.6$

负序网络

发电机: X₁=0.14×120/120=0.14

变压器T1: $X_2=0.105\times120/60=0.21$

负荷L-1: $X_3=0.35\times120/60=0.7$

线路: $X_{4-5}=0.4/2\times105\times120/115^2=0.1905$

变压器T2: $X_6=0.105\times120/60=0.21$

负荷L-2: X₅=0.35×120/40=1.05

• 零序网络

L-1

负荷L-1: X₃=30.35×120/60=0.7

线路: $X_{4-5}=3\times0.4/2\times105\times120/115^2=0.5716$

变压器T2: $X_6=0.105\times120/60=0.21$

• 序网的合成

复合序网

3) 根据复合序网计算短路点各序电流、电压

$$\begin{split} \dot{I}_{D1} &= -j \frac{\dot{U}_{D(0)}}{X_{1\Sigma} + X_{2\Sigma} + X_{0\Sigma}} \\ &= -j \frac{0.948}{0.468 + 0.367 + 0.166} = -j0.947 \end{split}$$

$$\dot{U}_{D1} = j(X_{2\Sigma} + X_{0\Sigma})\dot{I}_{D1}$$

= $j(0.367 + 0.166)(-j0.947)$
= 0.505

$$\dot{U}_{D2} = -jX_{2\Sigma}\dot{I}_{D1}$$

= $-j0.367 \times (-j0.947) = -0.348$

$$\dot{U}_{D0} = -jX_{0\Sigma}\dot{I}_{D1}$$

$$= -j0.166 \times (-j0.947) = -0.157$$

4) 求短路点各相电流、电压

 $=-0.2355+j0.7387=0.775\angle 107.68^{\circ}$

$$\dot{I}_{b} = \dot{I}_{D0} + \dot{I}_{D1} + \dot{I}_{D2} = -j2.841$$

$$\dot{I}_{c} = \dot{I}_{D0} + a^{2}\dot{I}_{D1} + a\dot{I}_{D2} = 0$$

$$\dot{U}_{b} = \dot{U}_{D0} + \dot{U}_{D1} + \dot{U}_{D2} = 0$$

$$\dot{U}_{c} = \dot{U}_{D0} + a^{2}\dot{U}_{D1} + a\dot{U}_{D2}$$

$$= -0.157 + \left(-\frac{1}{2} - j\frac{\sqrt{3}}{2}\right) \times 0.505 + \left(-\frac{1}{2} + j\frac{\sqrt{3}}{2}\right) \times -0.348$$

$$= -0.2355 - j0.7387 = 0.775 \angle 252.32^{\circ}$$

$$\dot{U}_{a} = \dot{U}_{D0} + a\dot{U}_{D1} + a^{2}\dot{U}_{D2}$$

$$= -0.157 + \left(-\frac{1}{2} + j\frac{\sqrt{3}}{2}\right) \times 0.505 + \left(-\frac{1}{2} - j\frac{\sqrt{3}}{2}\right) \times -0.348$$

End

