Optimization Lecture 11: Interior-point methods

Qingfu Zhang

Dept of CS , CityU

2024

Outline

Inequality constrained minimization

Logarithmic barrier and central path

Barrier method

Phase I methods

Complexity analysis

Generalized inequalities

Inequality constrained minimization

Inequality constrained minimization

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $Ax = b$

we assume

- $ightharpoonup f_i$ convex, twice continuously differentiable
- $A \in \mathbb{R}^{p \times n}$ with rank A = p
- p* is finite and attained
- ightharpoonup problem is strictly feasible: there exists \tilde{x} with

$$\tilde{x} \in \text{dom } f_0, \quad f_i(\tilde{x}) < 0, \quad i = 1, \dots, m, \quad A\tilde{x} = b$$

hence, strong duality holds and dual optimum is attained

Examples

- ► LP, QP, QCQP, GP
- entropy maximization with linear inequality constraints

minimize
$$\sum_{i=1}^{n} x_i \log x_i$$

subject to
$$Fx \le g, \quad Ax = b$$

with dom
$$f_0 = \mathbf{R}_{++}^n$$

▶ differentiability may require reformulating the problem, e.g., piecewise-linear minimization or ℓ_{∞} -norm approximation via LP

Logarithmic barrier and central path

Logarithmic barrier

reformulation via indicator function:

minimize
$$f_0(x) + \sum_{i=1}^m I_-(f_i(x))$$

subject to $Ax = b$

where
$$I_{-}(u) = 0$$
 if $u \le 0, I_{-}(u) = \infty$ otherwise

approximation via logarithmic barrier:

minimize
$$f_0(x) - (1/t) \sum_{i=1}^m \log(-f_i(x))$$

subject to $Ax = b$

- ► an equality constrained problem
- for $t > 0, -(1/t)\log(-u)$ is a smooth approximation of I_-
- ightharpoonup approximation improves as $t \to \infty$

Logarithmic barrier

 $-(1/t) \log u$ for three values of t, and $I_{-}(u)$

Logarithmic barrier function

▶ log barrier function for constraints $f_1(x) \le 0, ..., f_m(x) \le 0$

$$\phi(x) = -\sum_{i=1}^{m} \log (-f_i(x)), \quad \text{dom } \phi = \{x \mid f_1(x) < 0, \dots, f_m(x) < 0\}$$

- convex (from composition rules)
- twice continuously differentiable, with derivatives

$$\nabla \phi(x) = \sum_{i=1}^{m} \frac{1}{-f_i(x)} \nabla f_i(x)$$

$$\nabla^2 \phi(x) = \sum_{i=1}^{m} \frac{1}{f_i(x)^2} \nabla f_i(x) \nabla f_i(x)^T + \sum_{i=1}^{m} \frac{1}{-f_i(x)} \nabla^2 f_i(x)$$

Central path

• for t > 0, define $x^*(t)$ as the solution of

minimize
$$tf_0(x) + \phi(x)$$

subject to $Ax = b$

(for now, assume $x^*(t)$ exists and is unique for each t > 0)

• central path is $\{x^*(t) \mid t > 0\}$

example: central path for an LP

minimize
$$c^T x$$

subject to $a_i^T x \le b_i$, $i = 1, ..., 6$

hyperplane $c^T x = c^T x^*(t)$ is tangent to level curve of ϕ through $x^*(t)$

Dual points on central path

 $ightharpoonup x = x^*(t)$ if there exists a w such that

$$t\nabla f_0(x) + \sum_{i=1}^m \frac{1}{-f_i(x)} \nabla f_i(x) + A^T w = 0, \quad Ax = b$$

▶ therefore, $x^*(t)$ minimizes the Lagrangian

$$L(x, \lambda^*(t), v^*(t)) = f_0(x) + \sum_{i=1}^m \lambda_i^*(t) f_i(x) + v^*(t)^T (Ax - b)$$

where we define $\lambda_i^\star(t) = 1/\left(-tf_i\left(x^\star(t)\right)\right)$ and $v^\star(t) = w/t$

▶ this confirms the intuitive idea that $f_0(x^*(t)) \to p^*$ if $t \to \infty$:

$$p^* \ge g(\lambda^*(t), v^*(t)) = L(x^*(t), \lambda^*(t), v^*(t)) = f_0(x^*(t)) - m/t$$

Interpretation via KKT conditions

$$x = x^{\star}(t), \lambda = \lambda^{\star}(t), v = v^{\star}(t)$$
 satisfy

- 1. primal constraints: $f_i(x) \le 0, i = 1, ..., m, Ax = b$
- 2. dual constraints: $\lambda \geq 0$
- 3. approximate complementary slackness: $-\lambda_i f_i(x) = 1/t, i = 1, \dots, m$
- 4. gradient of Lagrangian with respect to x vanishes:

$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + A^T v = 0$$

difference with KKT is that condition 3 replaces $\lambda_i f_i(x) = 0$

Force field interpretation

centering problem (for problem with no equality constraints)

minimize
$$tf_0(x) - \sum_{i=1}^m \log(-f_i(x))$$

- force field interpretation
 - $tf_0(x)$ is potential of force field $F_0(x) = -t\nabla f_0(x)$
 - ▶ $-\log(-f_i(x))$ is potential of force field $F_i(x) = (1/f_i(x)) \nabla f_i(x)$
- **b** forces balance at $x^*(t)$:

$$F_0(x^*(t)) + \sum_{i=1}^m F_i(x^*(t)) = 0$$

Example: LP

- ightharpoonup minimize $c^T x$ subject to $a_i^T x \leq b_i, i = 1, \ldots, m$, with $x \in \mathbf{R}^n$
- ▶ objective force field is constant: $F_0(x) = -tc$
- constraint force field decays as inverse distance to constraint hyperplane:

$$F_i(x) = \frac{-a_i}{b_i - a_i^T x}, \quad ||F_i(x)||_2 = \frac{1}{\text{dist}(x, \mathcal{H}_i)}$$

where $\mathcal{H}_i = \left\{ x \mid a_i^T x = b_i \right\}$

Barrier method

Barrier method

given strictly feasible $x, t := t^{(0)} > 0, \mu > 1$, tolerance $\epsilon > 0$. **repeat**

- 1. Centering step. Compute $x^*(t)$ by minimizing $tf_0 + \phi$, subject to Ax = b.
- 2. Update. $x := x^*(t)$.
- 3. Stopping criterion. **quit** if $m/t < \epsilon$.
- 4. Increase $t.t := \mu t$.

- ▶ terminates with $f_0(x) p^* \le \epsilon$ (stopping criterion follows from $f_0(x^*(t)) p^* \le m/t$)
- ightharpoonup centering usually done using Newton's method, starting at current x
- choice of μ involves a trade-off: large μ means fewer outer iterations, more inner (Newton) iterations; typical values: $\mu=10$ or 20
- ightharpoonup several heuristics for choice of $t^{(0)}$

Example: Inequality form LP

- ▶ starts with x on central path $(t^{(0)} = 1$, duality gap 100)
- ▶ terminates when $t = 10^8$ (gap 10^{-6})
- lacktriangle total number of Newton iterations not very sensitive for $\mu \geq 10$

Example: Geometric program in convex form

(m = 100 inequalities and n = 50 variables)

minimize
$$\log \left(\sum_{k=1}^{5} \exp\left(a_{0k}^{T}x + b_{0k}\right)\right)$$
 subject to $\log \left(\sum_{k=1}^{5} \exp\left(a_{ik}^{T}x + b_{ik}\right)\right) \leq 0, \quad i=1,\ldots,m$
$$10^{2}$$

$$10^{0}$$

$$10^{-4}$$

$$10^{-6}$$

$$\mu = 150$$

$$\mu = 50$$

$$\mu = 2$$
Newton iterations

Family of standard LPs

$$(A \in \mathbf{R}^{m \times 2m})$$

minimize
$$c^T x$$

subject to $Ax = b$, $x \ge 0$

 $m=10,\ldots,1000$; for each m, solve 100 randomly generated instances

number of iterations grows very slowly as m ranges over a 100: 1 ratio

Phase I methods

Phase I methods

barrier method needs strictly feasible starting point, i.e., x with

$$f_i(x) < 0, \quad i = 1, ..., m, \quad Ax = b$$

- (like the infeasible start Newton method, more sophisticated interior-point methods do not require a feasible starting point)
- ▶ phase I method forms an optimization problem that
 - is itself strictly feasible
 - finds a strictly feasible point for original problem, if one exists
 - certifies original problem as infeasible otherwise
- phase II uses barrier method starting from strictly feasible point found in phase I

Basic phase I method

introduce slack variable s in **phase I problem**

minimize(over
$$x, s$$
) s
subject to $f_i(x) \le s, \quad i = 1, \dots, m$
 $Ax = b$

with optimal value \bar{p}^*

- if $\bar{p}^* < 0$, original inequalities are strictly feasible
- if $\bar{p}^* > 0$, original inequalities are infeasible
- ightharpoonup $ar{p}^* = 0$ is an ambiguous case
- start phase I problem with
 - any \tilde{x} in problem domain with $A\tilde{x} = b$
 - $ightharpoonup s = 1 + \max_i f_i(\tilde{x})$

Sum of infeasibilities phase I method

minimize **sum** of slacks, not max:

minimize
$$\mathbf{1}^T s$$

subject to $s \ge 0$, $f_i(x) \le s_i$, $i = 1, ..., m$
 $Ax = b$

- for infeasible problems, produces a solution that satisfies many (but not all) inequalities
- can weight slacks to set priorities (in satisfying constraints)

Example

- ▶ infeasible set of 100 linear inequalities in 50 variables
- left: basic phase I solution; satisfies 39 inequalities
- right: sum of infeasibilities phase I solution; satisfies 79 inequalities

Example: Family of linear inequalities

- $Ax \le b + \gamma \Delta b$; strictly feasible for $\gamma > 0$, infeasible for $\gamma < 0$
- ightharpoonup use basic phase I, terminate when s < 0 or dual objective is positive
- lacktriangle number of iterations roughly proportional to $\log(1/|\gamma|)$

Complexity analysis

Number of outer iterations

- ightharpoonup in each iteration duality gap is reduced by exactly the factor μ
- number of outer (centering) iterations is exactly

$$\left\lceil \frac{\log\left(m/\left(\epsilon t^{(0)}\right)\right)}{\log\mu}\right\rceil$$

plus the initial centering step (to compute $x^*(t^{(0)})$)

we will bound number of Newton steps per centering iteration using self-concordance analysis

Complexity analysis via self-concordance

same assumptions as on slide 4, plus:

- \triangleright sublevel sets (of f_0 , on the feasible set) are bounded
- $tf_0 + \phi$ is self-concordant with closed sublevel sets

Second condition

- holds for LP, QP, QCQP
- may require reformulating the problem, e.g.,

minimize
$$\sum_{i=1}^{n} x_i \log x_i \longrightarrow \min \sum_{i=1}^{n} x_i \log x_i$$

subject to $Fx \leq g$ subject to $Fx \leq g$, $x \geq 0$

 needed for complexity analysis; barrier method works even when self-concordance assumption does not apply

Newton iterations per centering step

- we compute $x^+ = x^*(\mu t)$, by minimizing $\mu t f_0(x) + \phi(x)$ starting from $x = x^*(t)$
- ▶ from self-concordance theory,

#Newton iterations
$$\leq \frac{\mu t f_0(x) + \phi(x) - \mu t f_0(x^+) - \phi(x^+)}{\gamma} + c$$

 $ightharpoonup \gamma, c$ are constants (that depend only on Newton algorithm parameters)

Newton iterations per centering step

- we will bound numerator $\mu t f_0(x) + \phi(x) \mu t f_0(x^+) \phi(x^+)$
- with $\lambda_i = \lambda_i^*(t) = -1/(tf_i(x))$, we have $-f_i(x) = 1/(t\lambda_i)$, so

$$\phi(x) = \sum_{i=1}^{m} -\log\left(-f_i(x)\right) = \sum_{i=1}^{m} \log\left(t\lambda_i\right)$$

SO

$$\phi(x) - \phi(x^{+}) = \sum_{i=1}^{m} (\log(t\lambda_{i}) + \log(-f_{i}(x^{+})))$$
$$= \sum_{i=1}^{m} \log(-\mu t\lambda_{i}f_{i}(x^{+})) - m\log\mu$$

Newton iterations per centering step

using
$$\log u \le u - 1$$
 we have $\phi(x) - \phi(x^+) \le -\mu t \sum_{i=1}^m \lambda_i f_i(x^+) - m - m \log \mu$, so $\mu t f_0(x) + \phi(x) - \mu t f_0(x^+) - \phi(x^+)$ $\le \mu t f_0(x) - \mu t f_0(x^+) - \mu t \sum_{i=1}^m \lambda_i f_i(x^+) - m - m \log \mu$ $= \mu t f_0(x) - \mu t \left(f_0(x^+) + \sum_{i=1}^m \lambda_i f_i(x^+) + v^T (Ax^+ - b) \right) - m - m \log \mu$ $= \mu t f_0(x) - \mu t L(x^+, \lambda, v) - m - m \log \mu$ $\le \mu t f_0(x) - \mu t g(\lambda, v) - m - m \log \mu$ $= m(\mu - 1 - \log \mu)$

using $L(x^+, \lambda, nu) \ge g(\lambda, \nu)$ in second last line and $f_0(x) - g(\lambda, \nu) = m/t$ in last line

Total number of Newton iterations

$$\# \text{Newton iterations} \leq \textit{N} = \left\lceil \frac{\log \left(m / \left(t^{(0)} \epsilon \right) \right)}{\log \mu} \right\rceil \left(\frac{m (\mu - 1 - \log \mu)}{\gamma} + c \right)$$

N versus μ for typical values of γ, c ; m=100, initial duality gap $\frac{m}{t^{(0)}e}=10^5$

- ightharpoonup confirms trade-off in choice of μ
- lacktriangle in practice, #iterations is in the tens; not very sensitive for $\mu \geq 10$

Polynomial-time complexity of barrier method

• for $\mu = 1 + 1/\sqrt{m}$:

$$N = O\left(\sqrt{m}\log\left(\frac{m/t^{(0)}}{\epsilon}\right)\right)$$

- ▶ number of Newton iterations for fixed gap reduction is $O(\sqrt{m})$
- multiply with cost of one Newton iteration (a polynomial function of problem dimensions), to get bound on number of flops
- \blacktriangleright this choice of μ optimizes worst-case complexity; in practice we choose μ fixed and larger

Generalized inequalities

Generalized inequalities

minimize
$$f_0(x)$$

subject to $f_i(x) \leq_{K_i} 0$, $i = 1, ..., m$
 $Ax = b$

- ▶ f_0 convex, $f_i : \mathbf{R}^n \to \mathbf{R}^{k_i}, i = 1, ..., m$, convex with respect to proper cones $K_i \in \mathbf{R}^{k_i}$
- we assume
 - $ightharpoonup f_i$ twice continuously differentiable
 - $ightharpoonup A \in \mathbf{R}^{p \times n}$ with rank A = p
 - p* is finite and attained
 - problem is strictly feasible; hence strong duality holds and dual optimum is attained
- examples of greatest interest: SOCP, SDP

Generalized logarithm for proper cone

- $\psi: \mathbf{R}^q \to \mathbf{R}$ is **generalized logarithm** for proper cone $K \subseteq \mathbf{R}^q$ if:
 - ▶ dom $\psi = \text{int } K \text{ and } \nabla^2 \psi(y) \prec 0 \text{ for } y >_K 0$
 - $\psi(sy) = \psi(y) + \theta \log s$ for $y >_K 0, s > 0(\theta \text{ is the degree of } \psi)$

examples

- ▶ nonnegative orthant $K = \mathbf{R}_+^n : \psi(y) = \sum_{i=1}^n \log y_i$, with degree $\theta = n$
- **>** positive semidefinite cone $K = \mathbf{S}_+^n : \psi(Y) = \log \det Y$, with degree $\theta = n$
- lacksquare second-order cone $K=\left\{y\in\mathbf{R}^{n+1}\mid \left(y_1^2+\cdots+y_n^2
 ight)^{1/2}\leq y_{n+1}
 ight\}$:

$$\psi(y) = \log (y_{n+1}^2 - y_1^2 - \dots - y_n^2)$$
 with degree $(\theta = 2)$

Properties

• (without proof): for $y >_K 0$,

$$\nabla \psi(y) \ge_{K^*} 0, \quad y^T \nabla \psi(y) = \theta$$

▶ nonnegative orthant $\mathbf{R}_{+}^{n}: \psi(y) = \sum_{i=1}^{n} \log y_{i}$

$$\nabla \psi(y) = (1/y_1, \dots, 1/y_n), \quad y^T \nabla \psi(y) = n$$

> positive semidefinite cone $\mathbf{S}_{+}^{n}:\psi(Y)=\log\det Y$

$$\nabla \psi(Y) = Y^{-1}, \quad \operatorname{tr}(Y \nabla \psi(Y)) = n$$

lacksquare second-order cone $K=\left\{y\in\mathbf{R}^{n+1}\mid \left(y_1^2+\cdots+y_n^2
ight)^{1/2}\leq y_{n+1}
ight\}$:

$$\nabla \psi(y) = \frac{2}{y_{n+1}^2 - y_1^2 - \dots - y_n^2} \begin{bmatrix} -y_1 \\ \vdots \\ -y_n \\ y_{n+1} \end{bmatrix}, \quad y^T \nabla \psi(y) = 2$$

Logarithmic barrier and central path

logarithmic barrier for $f_1(x) \leq_{K_1} 0, \ldots, f_m(x) \leq_{K_m} 0$:

$$\phi(x) = -\sum_{i=1}^{m} \psi_{i}(-f_{i}(x)), \quad \text{dom } \phi = \{x \mid f_{i}(x) \prec_{K_{i}} 0, i = 1, \dots, m\}$$

- ψ_i is generalized logarithm for K_i , with degree θ_i
- $ightharpoonup \phi$ is convex, twice continuously differentiable

central path: $\{x^*(t) \mid t > 0\}$ where $x^*(t)$ is solution of

minimize
$$tf_0(x) + \phi(x)$$

subject to $Ax = b$

Dual points on central path

 $x = x^*(t)$ if there exists $w \in \mathbf{R}^p$,

$$t\nabla f_0(x) + \sum_{i=1}^m Df_i(x)^T \nabla \psi_i \left(-f_i(x)\right) + A^T w = 0$$

 $(Df_i(x) \in \mathbf{R}^{k_i \times n} \text{ is derivative matrix of } f_i)$

▶ therefore, $x^*(t)$ minimizes Lagrangian $L(x, \lambda^*(t), v^*(t))$, where

$$\lambda_i^{\star}(t) = \frac{1}{t} \nabla \psi_i \left(-f_i \left(\mathbf{x}^{\star}(t) \right) \right), \quad \mathbf{v}^{\star}(t) = \frac{\mathbf{w}}{t}$$

• from properties of $\psi_i: \lambda_i^{\star}(t) >_{K_i^{\star}} 0$, with duality gap

$$f_0(x^*(t)) - g(\lambda^*(t), v^*(t)) = (1/t) \sum_{i=1}^m \theta_i$$

Example: Semidefinite programming

(with $F_i \in \mathbf{S}^p$)

minimize
$$c^T x$$

subject to $F(x) = \sum_{i=1}^n x_i F_i + G \leq 0$

- logarithmic barrier: $\phi(x) = \log \det \left(-F(x)^{-1} \right)$
- ▶ central path: $x^*(t)$ minimizes $tc^Tx \log \det(-F(x))$; hence

$$tc_i - \operatorname{tr}\left(F_iF\left(x^*(t)\right)^{-1}\right) = 0, \quad i = 1, \dots, n$$

▶ dual point on central path: $Z^*(t) = -(1/t)F(x^*(t))^{-1}$ is feasible for

maximize
$$\operatorname{tr}(GZ)$$

subject to $\operatorname{tr}(F_iZ) + c_i = 0, \quad i = 1, \dots, n$
 $Z > 0$

▶ duality gap on central path: $c^T x^*(t) - \operatorname{tr}(GZ^*(t)) = p/t$

Barrier method

given strictly feasible $x, t := t^{(0)} > 0, \mu > 1$, tolerance $\epsilon > 0$. repeat

- 1. Centering step. Compute $x^*(t)$ by minimizing $tf_0 + \phi$, subject to Ax = b.
- 2. Update. $x := x^*(t)$.
- 3. Stopping criterion. quit if $(\sum_i \theta_i)/t < \epsilon$.
- 4. Increase $t.t := \mu t$.

- \triangleright only difference is duality gap m/t on central path is replaced by $\sum_i \theta_i/t$
- number of outer iterations:

$$\left\lceil \frac{\log\left(\left(\sum_{i}\theta_{i}\right)/\left(\epsilon t^{(0)}\right)\right)}{\log\mu}\right\rceil$$

► complexity analysis via self-concordance applies to SDP, SOCP

Example: SOCP

Example: SDP

Example: Family of SDPs

 $(A \in \mathbf{S}^n, x \in \mathbf{R}^n)$

minimize $\mathbf{1}^T x$ subject to $A + \mathbf{diag}(x) \ge 0$

 $n = 10, \dots, 1000$; for each n solve 100 randomly generated instances

Primal-dual interior-point methods

- more efficient than barrier method when high accuracy is needed
- update primal and dual variables, and κ , at each iteration; no distinction between inner and outer iterations
- often exhibit superlinear asymptotic convergence
- search directions can be interpreted as Newton directions for modified KKT conditions
- can start at infeasible points
- cost per iteration same as barrier method