Предсказание энергии связи

Рак Алексей

13 декабря 2017 г.

План

🚺 Используемые данные

- Теория
 - Нейронные Сети
 - Свёрточные нейронные сети
 - Атомная свёрточная сеть

Какие данные используются:

• Структура лиганда

- Структура лиганда
- Кі (энергия связи)

- Структура лиганда
- Кі (энергия связи)
- Id белка в pdb

- Структура лиганда
- Кі (энергия связи)
- Id белка в pdb
- Id комлпекса в pdb

- Структура лиганда
- Кі (энергия связи)
- Id белка в pdb
- Id комлпекса в pdb

Пусть для общности $Y=\mathbb{R}^M$, для простоты слоёв только два.

Вектор параметров модели $w \equiv \left(w_{jh}, w_{hm}\right) \in \mathbb{R}^{Hn+H+MH+M}.$

• Позволяют решать широкий класс задач

- Позволяют решать широкий класс задач
- Метод обратного распространения ошибки основанный на простейшем правиле дифференцирования сложной функции, позволяет учить нейронные сети

- Позволяют решать широкий класс задач
- Метод обратного распространения ошибки основанный на простейшем правиле дифференцирования сложной функции, позволяет учить нейронные сети
- Очень много способов улучшать сходимость и качество нейросети:

- Позволяют решать широкий класс задач
- Метод обратного распространения ошибки основанный на простейшем правиле дифференцирования сложной функции, позволяет учить нейронные сети
- Очень много способов улучшать сходимость и качество нейросети:
 - Регуляризация

- Позволяют решать широкий класс задач
- Метод обратного распространения ошибки основанный на простейшем правиле дифференцирования сложной функции, позволяет учить нейронные сети
- Очень много способов улучшать сходимость и качество нейросети:
 - Регуляризация
 - Перетасовка объектов

- Позволяют решать широкий класс задач
- Метод обратного распространения ошибки основанный на простейшем правиле дифференцирования сложной функции, позволяет учить нейронные сети
- Очень много способов улучшать сходимость и качество нейросети:
 - Регуляризация
 - Перетасовка объектов
 - Разные градиентные методы

- Позволяют решать широкий класс задач
- Метод обратного распространения ошибки основанный на простейшем правиле дифференцирования сложной функции, позволяет учить нейронные сети
- Очень много способов улучшать сходимость и качество нейросети:
 - Регуляризация
 - Перетасовка объектов
 - Разные градиентные методы
 - Адаптивный learning rate

- Позволяют решать широкий класс задач
- Метод обратного распространения ошибки основанный на простейшем правиле дифференцирования сложной функции, позволяет учить нейронные сети
- Очень много способов улучшать сходимость и качество нейросети:
 - Регуляризация
 - Перетасовка объектов
 - Разные градиентные методы
 - Адаптивный learning rate
 - Dropout

- Позволяют решать широкий класс задач
- Метод обратного распространения ошибки основанный на простейшем правиле дифференцирования сложной функции, позволяет учить нейронные сети
- Очень много способов улучшать сходимость и качество нейросети:
 - Регуляризация
 - Перетасовка объектов
 - Разные градиентные методы
 - Адаптивный learning rate
 - Dropout
 - Разные функции активации

- Позволяют решать широкий класс задач
- Метод обратного распространения ошибки основанный на простейшем правиле дифференцирования сложной функции, позволяет учить нейронные сети
- Очень много способов улучшать сходимость и качество нейросети:
 - Регуляризация
 - Перетасовка объектов
 - Разные градиентные методы
 - Адаптивный learning rate
 - Dropout
 - Разные функции активации
 - Аугментация (расширение выборки)

- Позволяют решать широкий класс задач
- Метод обратного распространения ошибки основанный на простейшем правиле дифференцирования сложной функции, позволяет учить нейронные сети
- Очень много способов улучшать сходимость и качество нейросети:
 - Регуляризация
 - Перетасовка объектов
 - Разные градиентные методы
 - Адаптивный learning rate
 - Dropout
 - Разные функции активации
 - Аугментация (расширение выборки)

Свёрточные нейронные сети

Свёрточный слой

Пулинг слой

Average Pooling

Max Pooling

Атомная свёрточная сеть

Начальное преобразование данных

Начальное преобразование данных

 На вход поступает матрица атомов, которая содерижт атомный тип каждого атома и его трёхмерные координаты.

Начальное преобразование данных

- На вход поступает матрица атомов, которая содерижт атомный тип каждого атома и его трёхмерные координаты.
- Преобразуем эту матрицу в 2 матрицы R и Z размера (N x M), где N – это число атомов, М – число рассматриваемых соседей (в работе было равно 12).
 - R матрица расстояний до соседей.
 - Z матрица атомных типов соседей.

• На входе этого этапа мы получаем 2 матрицы две матрицы R и Z.

- На входе этого этапа мы получаем 2 матрицы две матрицы R и Z.
- N_{at} число различных атомных типов в данных.

- На входе этого этапа мы получаем 2 матрицы две матрицы R и Z.
- N_{at} число различных атомных типов в данных.

$$ullet$$
 $K_{ij}^a = egin{cases} 1, Z_{i,j} = \mathcal{N}_a \ 0,$ иначе

- На входе этого этапа мы получаем 2 матрицы две матрицы R и Z.
- N_{at} число различных атомных типов в данных.

$$ullet$$
 $K_{ij}^a = egin{cases} 1, Z_{i,j} = \mathcal{N}_a \ 0,$ иначе

$$\bullet \ (K*R)^a_{ij} = R_{ij}K^a_{ij}$$

- На входе этого этапа мы получаем 2 матрицы две матрицы R и Z.
- N_{at} число различных атомных типов в данных.

$$ullet$$
 $K_{ij}^a = egin{cases} 1, Z_{i,j} = N_a \ 0,$ иначе

- $\bullet \ (K*R)^a_{ij} = R_{ij}K^a_{ij}$
- Применив такие операции мы получаем матрицу E размера (N, M, N_{at})

Атомный пулинговый слой

- На входе этого этапа мы получаем матрицу E размера (N, M, N_{at}).
- $f_s(r_{ij}) = \exp\left(-\frac{(r_{ij}-r_s)^2}{\sigma_s^2}f_c(r_{ij})\right)$

•
$$f_s(r_{ij}) = \exp\left(-\frac{(r_{ij}-r_s)^2}{\sigma_s^2}f_c(r_{ij})\right)$$

•
$$f_s(r_{ij}) = \exp\left(-\frac{(r_{ij}-r_s)^2}{\sigma_s^2}f_c(r_{ij})\right)$$

•
$$f_c(r_{ij}) = \begin{cases} \frac{1}{2} \cos\left(\frac{\pi r_{ij}}{R_c}\right), 0 < r_{ij} < R_c \\ 0, r_{ij} \ge R_c \end{cases}$$

•
$$P_{i,n_a,n_r} = \beta_n \sum_{i=1}^{M} f_{n_r}(E_{ijn_a}) + b_{n_r}$$

•
$$f_s(r_{ij}) = \exp\left(-\frac{(r_{ij}-r_s)^2}{\sigma_s^2}f_c(r_{ij})\right)$$

•
$$f_c(r_{ij}) = \begin{cases} \frac{1}{2} \cos\left(\frac{\pi r_{ij}}{R_c}\right), 0 < r_{ij} < R_c \\ 0, r_{ij} \ge R_c \end{cases}$$

- $P_{i,n_a,n_r} = \beta_n \sum_{i=1}^{M} f_{n_r}(E_{ijn_a}) + b_{n_r}$
- ullet В итоге мы получаем матрицу P размера $(N,\ N_a,\ N_r)$

•
$$f_s(r_{ij}) = \exp\left(-\frac{(r_{ij}-r_s)^2}{\sigma_s^2}f_c(r_{ij})\right)$$

- $P_{i,n_a,n_r} = \beta_n \sum_{i=1}^M f_{n_r}(E_{ijn_a}) + b_{n_r}$
- ullet В итоге мы получаем матрицу P размера ($N,\ N_a,\ N_r$)
- r_s, σ_s обучаемы параметры.

- На входе этого этапа мы получаем матрицу E размера ($N,\ M,\ N_{at}$).
- $f_s(r_{ij}) = \exp\left(-\frac{(r_{ij}-r_s)^2}{\sigma_s^2}f_c(r_{ij})\right)$
- $f_c(r_{ij}) = \begin{cases} \frac{1}{2} \cos\left(\frac{\pi r_{ij}}{R_c}\right), 0 < r_{ij} < R_c \\ 0, r_{ij} \ge R_c \end{cases}$
- $P_{i,n_a,n_r} = \beta_n \sum_{i=1}^{M} f_{n_r}(E_{ijn_a}) + b_{n_r}$
- ullet В итоге мы получаем матрицу P размера (N, N_a, N_r)
- r_s, σ_s обучаемы параметры.
- β, b постоянные выбираемые до обучения.

- На входе этого этапа мы получаем матрицу E размера ($N,\ M,\ N_{at}$).
- $f_s(r_{ij}) = \exp\left(-\frac{(r_{ij}-r_s)^2}{\sigma_s^2}f_c(r_{ij})\right)$
- $f_c(r_{ij}) = \begin{cases} \frac{1}{2} \cos\left(\frac{\pi r_{ij}}{R_c}\right), 0 < r_{ij} < R_c \\ 0, r_{ij} \ge R_c \end{cases}$
- $P_{i,n_a,n_r} = \beta_n \sum_{i=1}^{M} f_{n_r}(E_{ijn_a}) + b_{n_r}$
- ullet В итоге мы получаем матрицу P размера (N, N_a, N_r)
- r_s, σ_s обучаемы параметры.
- β, b постоянные выбираемые до обучения.

- На входе этого этапа мы получаем матрицу E размера (N, N_{at} , N_r).
- N_r это число различных пулинговых фильтров.

- На входе этого этапа мы получаем матрицу E размера (N, N_{at} , N_r).
- N_r это число различных пулинговых фильтров.
- Затем строится двухслойная нейронная сеть, одинаковая для всех атомов, и прогоняют через неё матрицу каждого атома $(1,\ N_{at},\ N_r)$

- На входе этого этапа мы получаем матрицу E размера (N, N_{at} , N_r).
- N_r это число различных пулинговых фильтров.
- Затем строится двухслойная нейронная сеть, одинаковая для всех атомов, и прогоняют через неё матрицу каждого атома $(1,\ N_{at},\ N_r)$
- Для каждого атома получаям по скаляру, которые суммируем, это и есть ответ.

Энергия связи

Коэффициент детерминации

$$R^{2} = 1 - \frac{\hat{\sigma}^{2}}{\hat{\sigma_{y}}^{2}} = 1 - \frac{SS_{res}/n}{SS_{tot}/n} = 1 - \frac{SS_{res}}{SS_{tot}}$$

$$SS_{res} = \sum_{i=1}^{n} (y_{i} - \hat{y_{i}})^{2}$$

$$SS_{tot} = \sum_{i=1}^{n} (y_{i} - \bar{y})^{2}$$

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_{i}$$

 y_i – фактическое значение, $\hat{y_i}$ – расчётное значение

Результаты

