Tentamen i Dataanalys och statistik för I den 5 jan 2016

Tentamen består av åtta uppgifter om totalt 50 poäng. Det krävs minst 20 poäng för betyg 3, minst 30 poäng för 4 och minst 40 för 5.

Examinator: Ulla Blomqvist

Hjälpmedel: Chalmersgodkänd miniräknare, Matematisk statistik (inte den ljusblå)

av Ulla Dahlbom och Håkan Blomqvists formelsamling. Boken eller

formelsamlingen får inte innehålla egna anteckningar.

Jour: Besöker tentamen c:a kl 10.00

Lycka till!

Uppgift 1: Anta att man har två händelser A och B. För dessa gäller att $P(A^C|B^C) = 0.6$, $P(B^C|A^C) = 0.4$ och $P(A \cup B) = 0.8$. Beräkna P(A) och P(B).

(6 poäng)

Uppgift 2: I en liten dagisgrupp finns 5 barn. Beräkna sannolikheten att minst 2 av barnen har samma födelsedag. Anta att året har 365 dagar och att alla födelsedagar är lika sannolika. (6 poäng)

Uppgift 3: Anta att antal bilar som kör in på en bensinstation är Poissonfördelat med en genomsnittlig ankomstfrekvens på 2 bilar på 10 minuter. En nyanställd person räknar antal bilar som anländer en viss timma.

- a) Vad är sannolikheten att det kommer minst 3 bilar till bensinstationen under denna timma?
- b) Anta att en bil just har kört in på bensinstationen. Hur lång tid kan man förvänta sig att det tar tills nästa bil kommer?
- c) Anta att den nyanställde personen har väntat på nästa bil i 2 minuter. Vad är sannolikheten att han/hon får vänta i ytterligare 10 minuter?

(8 poäng)

Uppgift 4: Livslängden, ξ , hos en radioaktiv atom har frekvensfunktionen

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{för } x \ge 0 \\ 0 & \text{för } x < 0 \end{cases}$$

- a) Beräkna P($\xi < E(\xi)$) om λ är okänd.
- b) Vad är väntevärdet och variansen för ξ om λ = 2?

(6 poäng)

Uppgift 5: Man har 300 reella tal som man har beräknat med 5 korrekta decimaler, vilket innebär att felet i varje tal ligger i intervallet ($-0.5 \cdot 10^{-5}$, $0.5 \cdot 10^{-5}$). Beräkna sannolikheten att felet i summan av dessa tal till sitt absolutbelopp är mindre än $0.5 \cdot 10^{-4}$. Felen i de olika talen kan antas vara oberoende och rektangelfördelade i det angivna intervallet. (6 poäng)

Uppgift 6: Längden av en bräda mäts en gång med en tumstock A, en gång med en tumstock B och en gång med en tumstock C. Kalla de uppmätta längderna för x_A , x_B och x_C . Motsvarande stokastiska variabler ξ_A , ξ_B och ξ_C har väntevärdet lika med plankans verkliga längd, men ξ_C har bara en tredjedel så stor standardavvikelse som ξ_A och ξ_B . Vilken av nedanstående förslag är bäst om man vill skatta den sanna längden? Svaret måste motiveras för att du skall få poäng.

a)
$$\frac{x_A + x_B + x_C}{3}$$
 b) x_C
c) $\frac{x_A + x_B + 3x_C}{5}$ d) $\frac{x_A + 7x_C}{8}$

(6 poäng)

Uppgift 7: En glassförsäljare har noterat följande försäljning under en 4-dagars period i juli:

	försäljning i			
Dag	tusentals kr	temp °C	väderlek	kodad väderlek
1	22.4	18	solsken	1
2	20.6	21	regn	0
3	25.4	28	solsken	1
4	21.8	20	solsken	1

I tabellen är väderleken kodad i variabeln med solsken = 1 och regn = 0.

Glassförsäljaren vill kunna uppskatta morgondagens försäljning genom att titta på väderleksrapporten kvällen före där såväl temperatur som väderleken anges.

- a) Hjälp honom genom att skatta koefficienterna a, b_1 och b_2 i en multipel regressionsmodell $\hat{y} = a + b_1x_1 + b_2x_2$ där x_1 är temperaturen och x_2 är den kodade väderleken.
- b) Anta att väderprognosen en kväll sa att vädret nästa dag skulle vara soligt med en temperatur på 25 °C. Använd den multipla regressionsmodellen för att uppskatta försäljningen den dag som prognosen gäller.

(6 poäng)

Uppgift 8: En viss växt kan ha vita, skära eller röda blommor. Betrakta avkomman till plantorna med skära blommor. Enligt en teori bör 25% av dotterplantorna ha vita blommor, 50% skära blommor och 25% röda blommor. Man observerade vid ett tillfälle att av 140 dotterplantor hade 33 vita blommor, 81 skära blommor och 26 röda blommor. Testa om ovanstående teori kan vara falsk. Använd 5%:s signifikansnivå. (6 poäng)

Lösningar till Dataanalys och statistik 20160105

Uppgift 1: $P(A^C|B^C) = 0.6$, $P(B^C|A^C) = 0.4$ och $P(A \cup B) = 0.8$.

Använd de Morgans sats $P(A^{C} \cap BC) = 1 - P(A \cup B) = 1 - 0.8 = 0.2$

$$P(B^{C} \mid A^{C}). = \frac{P(A^{C} \cap B^{C})}{P(A^{C})} = 0.4 \implies P(A^{C}) = \frac{0.2}{0.4} = \frac{1}{2}$$

$$P(A^{C} | B^{C}). = \frac{P(A^{C} \cap B^{C})}{P(B^{C})} = 0.6 \implies P(B^{C}) = \frac{0.2}{0.6} = \frac{1}{3}$$

dvs

$$P(A^{C}) = \frac{1}{2} \implies P(A) = \frac{1}{2}$$

$$P(B^C) = \frac{1}{3}$$
 \Rightarrow $P(B) = \frac{2}{3}$

Uppgift 2: A = minst 2 barn har samma födelsedag. \Rightarrow A^C = inget av barnen har samma födelsedag

$$P(A) = 1 - P(A^{C}) = 1 - \frac{365}{365} \cdot \frac{364}{365} \cdot \frac{363}{365} \cdot \frac{362}{365} \cdot \frac{363}{365} \approx 1 - 0.9729 = 0.0271$$

Uppgift 3: $\xi = \text{antal bilar}$ $\xi = \text{Po}(\lambda = 2 \text{ bilar/10 min})$

a) Räkna om λ till antal bilar/ 60 minuter. λ = 12 bil/ 60 min

$$P(\xi \ge 3) = 1 - P(\xi \le 2) = 1 - e^{-12} \cdot (\frac{12^0}{0!} + \frac{12^1}{1!} + \frac{12^2}{2!}) \approx 1 - 0.0005 = 0.9995$$

b) $\eta = \text{tiden mellan två bilar}$ $\eta = \text{Exp}(\lambda = 2 \text{ bilar/10 min})$

$$E(\eta) = \frac{1}{\lambda} = \frac{10 \text{ minuter}}{2 \text{ bilar}} = \frac{5 \text{ min}}{\text{bil}} = 5 \text{ min}$$

c) Räkna om λ till minuter. $\lambda = 0.2$ bilar/min

$$P(\xi>12\mid\xi>2) = \frac{P(\xi>12\cap\xi>2)}{P(\xi>2)} = \frac{P(\xi>12)}{P(\xi>2)} = \frac{1-P(\xi<12)}{1-P(\xi<2)} = \frac{e^{-12\cdot0.2}}{e^{-2\cdot0.2}} = e^{-10\cdot0.2} \approx 0.1353$$

Uppgift 4: ξ = livslängden ξ = exponentialfördelad $E(\xi)$ = $1/\lambda$

$$F(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 - e^{-\lambda x} & \text{for } x \ge 0 \end{cases}$$

a)
$$P(\xi < E(\xi)) = P(\xi < 1/\lambda) = F(\frac{1}{\lambda}) = 1 - e^{-\lambda \cdot \frac{1}{\lambda}} = 1 - e^{-1} \approx 0.633$$

b)
$$E(\xi) = 1/\lambda = 1/2 = 0.5$$
 $Var(\xi) = 1/\lambda^2 = 1/4 = 0.25$

Uppgift 5: ξ_i = felets storlek ξ_i är R[$-0.5 \cdot 10^{-5}$, $0.5 \cdot 10^{-5}$] $f(x) = \frac{1}{b-a} = \frac{1}{10^{-5}}$ i ovanstående interval

 $E(\xi) = 0$ på grund av symmetrin

$$Var(\xi) = \int_{a}^{b} x^{2} f(x) dx - \left[E(\xi) \right]^{2} = \int_{-0.5 \cdot 10^{-5}}^{0.5 \cdot 10^{-5}} x^{2} \frac{1}{10^{-5}} dx = \frac{1}{10^{-5}} \left[\frac{x^{3}}{3} \right]_{-0.5 \cdot 10^{-5}}^{0.5 \cdot 10^{-5}} = \frac{0.25 \cdot 10^{-10}}{3}$$

Eftersom antal fel är stort (n= 300) så kommer centrala gränsvärdessatsen att användas

$$\eta = \text{summan av } 300 \text{ fel}$$

$$\eta = \xi_1 + \xi_2 + \dots + \xi_{300}$$

$$E(\eta) = E(\xi_1) + E(\xi_2) + \dots + E(\xi_{300}) = 300 \cdot 0 = 0$$

$$Var(\eta) = Var(\xi_1) + \dots + Var(\xi_{300}) = 300 \cdot \frac{0.25 \cdot 10^{-10}}{3} = 0.25 \cdot 10^{-8}$$

$$P(|\eta| \leq 0.5 \cdot 10^{-4} \) = P(-\frac{0.5 \cdot 10^{-4} - 0}{\sqrt{0.25 \cdot 10^{-8}}} < Z < \ \frac{0.5 \cdot 10^{-4} - 0}{\sqrt{0.25 \cdot 10^{-8}}}) = P(-1 < Z < 1) = 10^{-4} + 10^{-4$$

$$P(Z<1) - P(Z<-1) = P(Z<1) - (1 - P(Z<1) = 0.8413 - (1 - 0.8413) = 0.6826$$

Uppgift 6:
$$S(\xi_A) = \sigma$$
 $S(\xi_B) = \sigma$ och $S(\xi_C) = \frac{\sigma}{3}$ \Rightarrow

$$\Rightarrow$$
 Var(ξ_A) = σ^2 och Var(ξ_B) = σ^2 Var(ξ_C) = $\frac{\sigma^2}{9}$

Vi söker den sammanvägningen där summan av vikterna = 1 och variansen är minst

Fortsättning uppgift 6

a)
$$\frac{X_A + X_B + X_C}{3}$$
 Summan av vikterna: $\frac{1+1+1}{3} = 1$ väntevärdesriktig

Variansen:
$$Var(\frac{\xi_{A} + \xi_{B} + \xi_{C}}{3}) = \frac{1}{9}[Var(\xi_{A}) + Var(\xi_{B}) + Var(\xi_{C})] = \frac{1}{9}(\sigma^{2} + \sigma^{2} + \frac{\sigma^{2}}{9}) = \frac{19}{81}\sigma^{2} \approx 0.235 \sigma^{2}$$

Variansen:
$$Var(\xi_C) = \frac{\sigma^2}{9} \approx 0.111\sigma^2$$

c)
$$\frac{X_A + X_B + 3X_C}{5}$$
 Summan av vikterna: $\frac{1+1+3}{5} = 1$ väntevärdesriktig

Variansen:
$$Var(\frac{\xi_{A} + \xi_{B} + 3\xi_{C}}{5}) = \frac{1}{25} \left[Var(\xi_{A}) + Var(\xi_{B}) + 9 Var(\xi_{C}) \right] =$$

$$= \frac{1}{25} \left(\sigma^{2} + \sigma^{2} + \frac{9}{9} \sigma^{2} \right) = \frac{3}{25} \sigma^{2} \approx 0.12 \sigma^{2}$$

d)
$$\frac{x_A + 7x_C}{8}$$
 Summan av vikterna: $\frac{1+7}{8} = 1$ väntevärdesriktig

Variansen:
$$Var(\frac{\xi_A + 7\xi_C}{8}) = \frac{1}{64} \left[Var(\xi_A) + 49 Var(\xi_C) \right] =$$
$$= \frac{1}{64} \left(\sigma^2 + \frac{49}{9} \sigma^2 \right) = \frac{58}{576} \sigma^2 \approx 0.100 \sigma^2$$

Välj alternativ d) dvs
$$\frac{x_A + 7x_C}{8}$$

Uppgift 7: $y = försäljning i hundratals kronor <math>x_1 = temperatur$, $x_2 = kodad vädervariabel$

$$n = 4 \qquad \sum_{i=1}^{4} x_{1i} = 87 \qquad \sum_{i=1}^{4} x_{2i} = 3 \qquad \sum_{i=1}^{4} y_{i} = 90.2 \qquad \sum_{i=1}^{4} x_{1i} \cdot x_{2i} = 66$$

$$\sum_{i=1}^{4} x_{1i}^{2} = 1949 \qquad \sum_{i=1}^{4} x_{2i}^{2} = 3 \qquad \sum_{i=1}^{4} x_{1i} \cdot y_{i} = 1983 \qquad \sum_{i=1}^{4} x_{2i} \cdot y_{i} = 69.6$$

a) normalekvationerna ger följande ekvationssystem:

Fortsättning uppgift 7

$$\begin{cases} 4a + 87b_1 + 3b_2 = 90.2 & E[1] - E[3] \longrightarrow \\ 87a + 1949b_1 + 66b_2 = 1983 & 87a + 1949b_1 + 66b_2 = 1983 \\ 3a + 66b_1 + 3b_2 = 69.6 & 3a + 66b_1 + 3b_2 = 69.6 \end{cases}$$

$$\begin{bmatrix} a + 21b_1 = 20.6 \\ 21a + 497b_1 = 451.8 \\ 3a + 66b_1 + 3b_2 = 69.6 \end{bmatrix} E[2] - 21E[1] \longrightarrow \begin{cases} a + 21b_1 = 20.6 \\ 56b_1 = 19.2 \\ 3a + 66b_1 + 3b_2 = 69.6 \end{cases}$$

$$\Rightarrow \begin{cases} b_1 = \frac{19.2}{56} \approx 0.343 \\ a = 20.6 - 21 \cdot \frac{19.2}{56} = 13.4 \\ b_2 = \frac{69.6 - 3 \cdot 13.4 - 66 \cdot \frac{19.2}{56}}{3} \approx 2.257 \end{cases}$$

Modellen blir $\hat{y} = 13.4 + 0.34x_1 + 2.26x_2$

b)
$$x_1 = 25^{\circ}$$
 $x_2 = 1$ (solsken) \Rightarrow $\hat{y} = 13.4 + 0.34 \cdot 25 + 2.26 \cdot 1 = 24.16$

Uppgift 8:

Steg 1: H₀: fördelningen 0.25 0.50 0.25

H₁: inte fördelningen 0.25 0.50 0.25

Steg 2: $\alpha = 0.05$

Steg 3: Välj testvariabeln $\chi^2 = \sum_{i=1}^{6} \frac{(O_i - E_i)^2}{E_i}$

Steg 4:

Vi ställer nu upp de observerade och de förväntade värdena i en tabell.

Fortsättning uppgift 8 på nästa sida

Fortsättning uppgift 8

	vita	skära	röda	Totalt
Obs antal, Oi	33	81	26	140
Pi	0.25	0.50	0.25	1
Förväntat antal, Ei	35	70	35	140

$$\chi^2 = \frac{\left(33 - 35\right)^2}{35} + \frac{\left(81 - 70\right)^2}{70} + \frac{\left(26 - 35\right)^2}{35} = 4.16 < 5.99$$

Värdet hamnar i acceptansområdet.

Steg 5: H₀ kan inte förkastas. Undersökningen motsäger inte hypotesen att färgen på dotterplantorna har den fördelning som teorin säger.