Simulation of Hawkes Process

Suhas Shastry

Poisson Process

Homogeneous

$$P\{X(t) = n\} = e^{-\lambda t} \frac{(\lambda t)^n}{n!}$$
 $n = 0,1,2,...$

Homogeneous Poisson process with rate=1

Inhomogeneous

$$P\{X(t) = n\} = e^{-\lambda t} \frac{(\lambda t)^n}{n!}$$
 $n = 0,1,2,...$ $P\{X(t) = n\} = e^{-\Lambda(t)} \frac{\{\Lambda(t)\}^n}{n!}$ $n = 0,1,2,...$

Inhomogoneous Poisson Process with rate=t/2

Hawkes Process (Thinning Procedure)

$$\Lambda(t) = \lambda_0 + \sum_{t_i < t} \alpha e^{-\beta(t - t_i)}$$

Hawkes Process, lambda = 1, alpha = 2, beta = 3

Thank you

Simulation of Hawkes Process Suhas Shastry

shastrys@oregonstate.edu

https://rstudio.cloud/spaces/4116/project/113564