Алгоритмы и модели вычислений.

Задание 3: Сложность вычислений, классы Р, NР

Сергей Володин, 272 гр.

задано 2014.02.27

Задача 2

f(n) = poly(n) — время работы машины M из условия на входе x длины n. За каждый такт машина читает не более одного символа, поэтому количество прочитанных символов $|y_r| \leq f(n)$. Причем машина не могла читать их не подряд, так как за один такт головка смещается на $\leq \pm 1$ ячеек.

- 1. Если $x \in L$, то, по условию, $\exists y \colon M(x,y) = 1$. Возьмем y' = y[1...f(n)], тогда |y'| = O(poly(|x|)). Тогда $M(x,y') \equiv M(x,y)$, так как машина «не заметит» изменение длины слова (к суффиксу она не обращалась).
- 2. Если $\exists y' \in \Sigma^{f(|x|)} : M(x,y') = 1$, то возьмем y = y', и по условию, $x \in L$.

Получаем $x \in L \Leftrightarrow \exists y' \in \Sigma^{f(|x|)} \colon M(x,y') = 1$. МТ полиномиальна по |x|, значит, полиномиальна по |x#y|. Получаем $L \in \mathsf{NP}$, в качестве полиномиального по |x| сертификата берем y'(x) = y(x)[1...f(|x|)], где f(n) — полином из условия полиномиальности МТ по |x|.

(каноническое) Задача 8

Модифицируем доказательство из Кормена. Вход — массив A, |A| = n. Количество целиком заполненных групп из 9-ти элементов, медиана которых меньше x не меньше, чем $\lceil \frac{1}{2} \lceil \frac{n}{9} \rceil \rceil - 2$. Две группы не учитываются, так как в одной из них само x, а другая может не быть заполнена целиком. В каждой такой группе 5 элементов, не превышающих свою медиану, поэтому $A_{< x}$ — количество элементов A, меньших x будет $A_{< x} \geqslant 5\lceil \frac{1}{2} \lceil \frac{n}{9} \rceil \rceil - 2 \geqslant \frac{5}{18}n - 10$. Аналогично $A_{> x} \geqslant \frac{5}{18}n - 10$. Тогда размеры групп $A_{\leqslant x}, A_{\geqslant x} \leqslant n - \frac{5}{18}n + 10 = \frac{13}{18}n + 10$. Рекуррентность:

$$T(n) = T(\lceil \frac{n}{9} \rceil) + T(\frac{13}{18}n + 10) + O(n).$$

Фиксируем n. Пусть $T(n') \leqslant cn$ для правой части (доказательство по дереву рекурсии, от листьев к корню). Пусть функция $O(n) \leqslant an$. Тогда $T(n) \leqslant c(\frac{n}{9}+1+\frac{13}{18}n+10)+an=n(\frac{5}{6}c+a)+11c$. Докажем, что эта величина также меньше cn (шаг индукции) при некоторых c: $n(\frac{5}{6}c+a-c)+11c \leqslant 0 \Leftrightarrow n(a-\frac{c}{6})+11c \leqslant 0$. Возьмем c=7a, откуда получим требуемое (при достаточно больших n неравенство выполнено).

(каноническое) Задача 11

 $\mathbf{M}_{p imes q}^{\mathbb{Z},S}$ — множество матриц $||a_{ij}||$ размера p imes q с целыми коэффициентами, такими, что $|a_{ij}| \leqslant S$. S = 10000, m = 2014. Язык $\{0,1\}^* \supset L_n = \{ \mathrm{bin}(m,n,A,b) \big| m \in \mathbb{N}, \ (A,b) \in \mathbf{M}_{m imes n}^{\mathbb{Z},S} imes \mathbf{M}_{m imes 1}^{\mathbb{Z},S}, \ Ax = b \ -$ несовместна $\}$ — двоичные записи несовместных систем линейных уравнений с целыми коэффициентами (функция bin кодирует матрицу в двоичной записи).

- 1. Рассмотрим $w_j^i = (\mid \mid i \mid 0 \mid \ldots \mid 0 \mid \mid, \mid \mid j \mid \mid)$. При $i = 0, j \in \{1,2\}$ система несовместна, поэтому $\text{bin}(w_1^0)$, $\text{bin}(w_2^0) \in L_{2014}$. При $i = 1, j \in \{1,2\}$ система совместна, поэтому $\text{bin}(w_1^1)$, $\text{bin}(w_2^1) \notin L_{2014}$
- 2. (а) Опишем алгоритм и докажем его корректность. Рассмотрим расширенную матрицу $C = ||A|b||^{\square}$. Модуль ее элементов не превосходит L. Будем применять к ней последовательно элементарные операции над строками S_i , получая матрицу $C_i' = ||A_i'|b_i'||^{\square}$. Поскольку $Ax = b \Leftrightarrow A_i'x = b_i'$ (системы эквивалентны), исходная система совместна \Leftrightarrow полученная после операций система совместна. Применим метод Гаусса (прямой ход) к матрице C (ненулевые элементы берем не из последнего столбца), состоящий из элементарных операций над строками. Пусть в i-й строке найден столбец j с ненулевым элементом $a_{ij} \neq 0$. Перед методом Гаусса переставим строки так, чтобы j'(i) = i (ненулевые элементы на главной диагонали) элементарная операция над столбцами (т.е. переобозначим неизвестные). После прямого хода метода Гаусса получим матрицу

$$C' = \begin{vmatrix} 1 & & * & & & b'_1 \\ & \ddots & & & * & \vdots \\ \mathbf{0} & & 1 & & & b'_r \\ 0 & \dots & 0 & 0 & 0 & 0 & b'_{r+1} \\ & & & \dots & & \\ 0 & \dots & 0 & 0 & 0 & 0 & b'_n \end{vmatrix}$$

Единицы получились именно на диагонали, так как столбцы были переставлены. r-я строка является последней ненулевой (в противном случае можно продолжить метод Гаусса)

- (b) Докажем, что система несовместна $\Leftrightarrow \exists i \in \overline{r+1,n} \colon b_i' \neq 0$
 - і. \models Имеем уравнение $0^T x = 1$
 - іі. \implies (от противного) Пусть система несовместна, и все b_i отличны от нуля. Выполним метод Гаусса до конца, убрав «*» выше единиц на диагонали. Левее столбца b' не могла получится строка из нулей (по алгоритму вычитаем i-ю строку из всех строк выше, поэтому i-я единица на диагонали останется). Поэтому выше нет строк вида $\|0$... 0 $1\|$. Но их нет и ниже r-й строки, поэтому их нет вовсе. Метод Гаусса привел матрицу к упрощенному виду, и по Предложению 1 (Беклемишев, стр. 151) система совместна противоречие.
- (c) Рассмотрим метод Гаусса. Пусть $\{C_k\}_{k=0}^r$ преобразованные матрицы, C_i матрица после i шагов алгоритма (рассмотрены первые i строк). $C_0 \equiv C$. Обозначим элементы матрицы $A_k = \left\|a_k^{ij}\right\|$. Пусть алгоритм выполнил k-1 шагов. Рассмотрим изменение элементов матрицы на k-м шаге.

- і. k-я строка делится на a_{k-1}^{kk} , поэтому $a_k^{kj} = \frac{a_{k-1}^{kj}}{a_k^{kk}}$,
- $ii. \ k$ -я строка вычитается из всех k < i-х ниже
 - А. В k-м столбце нули ниже главной диагонали: $a_k^{ik} = 0, i > k$.
 - В. В k < j-м столбце k < i-й строки $a_k^{ij} = a_{k-1}^{ij} a_{k-1}^{ik} \frac{a_{k-1}^{kj}}{a_{k-1}^{kk}}$.

«Вынесем за скобки» индекс k-1 (в этой формуле он один для всех a_{k-1}): $a_k^{ij} = \left(\frac{a^{ij}a^{kk}-a^{kj}a^{ik}}{a_{kk}}\right)_{k-1}$ Пусть дана матрица $A:m\times n$. Определим $\Delta_{j_1,\ldots,j_t}^{i_1,\ldots,i_t}$ — определитель подматрицы, полученной из A вычеркиванием всех строк кроме i_1,\ldots,i_t и всех столбцов кроме j_1,\ldots,j_t .

C этим обозначением $a_k^{ij} = \left(\frac{\Delta_k^{ki}}{\Delta_k^k}\right)_{k-1}$

- (d) (Задача 11.3)
 - і. (Я проверил для k <= 3, т.е. утвверждение не доказано). Получим по индукции формулу $a_k^{ij} = \frac{\Delta_{12...kj}^{12...kj}}{\Delta_{12...k}^{12...k}}$???
 - іі. Из формулы выше следует, что получающиеся при промежуточных вычислениях числители и знаменатили элементов матрицы ограничены сверху $\max(|\Delta_{12...kj}^{12...ki}|, |\Delta_{12...k}^{12...k}|)$. По формуле полного разложения для числителя

 $\Delta_{12...kj}^{12...ki} = \sum_{t_1,...,t_{k+1}} (-1)^{\mathrm{sign}(t_1,...,t_{k+1})} a_{xx} \cdot ... \cdot a_{xx}$ (индексы опущены), что по модулю

 $|\Delta_{12...kj}^{12...ki}| \leq [\max(m,n)]! \max_{A,b} |a_{ij}|^{\max(m,n)} \leq 1$. Обозначим $M = \max(m,n)$, получим $\leq M^M h^M = (Mh)^M$. Аналогично для знаменателя.

Итак, числители и знаменатели элементов матрицы, получающихся при промежуточных вычислениях, ограничены сверху $(Mh)^M$, где $M=\max(m,n)$.

(е) Для оценки времени работы приведен псевдокод:

```
//M[i][j] - matrix A/b
    for(i = 1; i <= m; i++) // rows i=1...m</pre>
 3
       for(j = 1; j <= n; j++) // find j: aij != 0</pre>
 4
 5
         if (M[i][j] != 0) // found
 6
 7
            C = M[i][i];
 8
 9
            // dividing i-th row by non-zero element for (k = 1; i \le n + 1; i++)
10
11
              M[i][k] /= C;
12
13
            for (k = i + 1; k \le m; k++) // subtracting from row k down
14
15
16
               for(1 = 1; 1 <= n + 1; 1++) // column l
    M[k][1] -= M[i][1] * C;</pre>
17
18
19
            }
20
21
            break;
22
23
       }
24
    }
```

- (f) Храним в МТ рациональные числа как числитель и знаменатель. Оценим их сверху. Вернемся к формуле 2(c)iiB, запишем ее в виде $a_k^{ij} = \frac{\frac{a_1}{a_2} \frac{b_1}{b_2} \frac{c_1}{c_1} \frac{d_1}{d_2}}{\frac{a_1}{a_2}} = \frac{a_1b_1c_2d_2 c_1d_1a_2b_2}{b_2c_2d_2a_1}$. Если числители и знаменатели на k-1 шаге ограничены L, то на k+1-м они будут ограничены $2L^4$. Рассуждая по индукции, на последнем шаге получим, что они ограничены $2(...2(2(2L^4)^4)...)^4$, где возведение в четвертую степень происходит количество раз, равное рангу матрицы (количество шагов алгоритма). Но он не превосходит n=2014. Поэтому максимальный модуль числа фиксирован. Получаем, что арифметические операции выполняются за O(1).
- (g) Оценим время работы как $T(A,b,m) \leqslant m \times n \times (O(1) + n \times O(1) + m \times (O(1) + n \times O(1))) \stackrel{n=2014}{=} O(m^2)$. $\text{bin}(\cdot) \text{двоичная}$ запись числа. Длина входа $I(A,b,m) = (mn+m) \min_{A,b} |\text{bin}(a_{ij})| = \Omega(m) \geqslant cm$, поэтому $T(A,b,m) \leqslant c_1 m^2 \leqslant cI^2(A,b,m) = O(I^2)$.

(каноническое) Задача 12

(a) Используем быстрое возведение в степень по модулю d. Умножаем числа не более, чем по 2|d| бит. Остаток от деления считается за квадрат длины битовой записи. Псевдокод:

```
number power(a, b, d)
1
2
   {
       if(b == 0) return(1);
3
4
       if(b \% 2 == 0)
5
       {
6
          number x = power(a, b / 2, d);
7
          return((x * x) % d);
8
       }
9
       else
10
       {
          number x = power(a, (b - 1) / 2, d);
11
12
          x = (x * x) % d;
13
          return((a * x) % d);
14
       }
15
   }
16
   ans = (power(a, b, d) == (c \% d));
```

На каждом шаге второй аргумент уменьшается как минимум вдвое, поэтому высота дерева рекурсии $h \leq \log_2 b$. На каждом шаге производятся операции над числами битовой длины не более $2\log d$, на листе дерева рекурсии (b=0) выполняется O(1) операций. Последний шаг (сравнение) выполняется за $O(\log d)$ операций. Сложность арифметических операций не более, чем квадратичная по длине битовой записи.

Получаем $T(a,b,c,d) \leq \log_2 b \cdot O(\log^2 d) + O(1) = O(\log^2 d \log b)$. Длина входа $I(a,b,c,d) = \log a + \log b + \log c + \log d$, поэтому $T = O(I^3)$.

(b) Слова, соответсвующие $(1,1,1,2), (1,2,1,2) \in L, (1,1,2,2), (1,2,2,2) \notin L$

(каноническое) Задача 13

 2

3

5

6

0

2

5 6

Бинпоиском ищем корень 2014 степени. L=1, R- вход. Шагов $\log_2 R = \log_2 2^t = t$, возводим числа $<=2^t$ в 2014 степень за $\log^{2014} 2^t = t^{2014}$. Псевдокод:

```
number L = 1;
  number R = X = input();
  number M, B = 2014;
4
  while (R - L > 1)
  {
    M = (R + L) / 2;
    if(power(M, B) < X)</pre>
      R = M;
    else L = M;
  }
  ans = 0;
3
  if(power(L, B) == X)
           ans = 1;
  else if(power(R, B) == X)
           ans = 1:
```

Поддерживается свойство: ответ всегда лежит в [L,R]. На каждой итерации цикла |R-L| уменьшается вдвое, откуда цикл совершает $O(\log X)$ итераций. На каждой производится возведение в степень B=2014 за $O(\log^{2014} X)$. Последние сравнения занимают $O(\log^{2014} X)$, поэтому $T(I) = O(\log X) \cdot O(\log^{2014} X) + O(\log^{2014} X) = O(\log^{2015} X)$, где длина входа I-Iдлина битовой записи числа X, т.е. $I = \Theta(\log X)$, откуда $T = O(I^{2015})$.

(каноническое) Задача 14

Определение замкнутости Р относительно .*:

```
\forall L \in \mathsf{P} \hookrightarrow L^* \in \mathsf{P}.
```

Пусть $L \in \mathsf{P}$. Тогда $\exists \ \mathsf{MT} \ M$: время ее работы $T(|w|) = f(|w|) = \mathsf{poly}(|w|)$. Построим другую $\mathsf{MT} \ M'$, которая будет разными способами разбивать входное слово $w \in L^*$ на подслова $w = w_n ... w_n$, и проверять $w_i \in L$ за полиномиальное время по $|w_i|$. Перебираем правые границы слов, запоминаем те, в которых могут заканчиваться слова из L. Левые границы берем из множества правых границ (+1). Если правая граница n — слово найдено.

Всего подслов не больше, чем $|w|^2$ (выбираем левую и правую границу), поэтому время работы МТ M' $T'(|w|) \leq |w^2| \max f(|w_i|) \leq |w^2| \operatorname{poly}(|w|) = \operatorname{poly}(|w|) \Rightarrow L^* \in \mathsf{P}.$

(каноническое) Задача 15

(не дописано)

1. *DA*

- (а) $DA, L(\cdot) = \varnothing$. Обходом графа в ширину ищем пути из принимающего состояния. Время T = O(|V| + |E|), где |V| и |E| количества вершин и ребер соответственно. Длина входа I описание графа. $I = \Theta(|V|^2)$ (матрица смежности). $|E| \leqslant |V|^2$, поэтому $T = O(|V|^2) = O(I)$.
- (b) $DA, |L(\cdot)| = \infty$. Ищем циклы в графе обходом в ширину.
- (c) $DA, w \in L(\cdot)$. Переходим по графу за O(|w|). Если перешли в принимающее состояние автомата МТ переходит в $q \in Acc$. МТ останавливается в любом случае, так как для каждого символа слова совершается один переход в автомате за ограниченное сверху время.
- (d) $DA, w \notin L(\cdot)$. Решаем предыдущую разрешимую задачу и выдаем противоположный ответ.

2. NA

- (a) Работает тот же алгоритм, что и для DA.
- (b) Работает тот же алгоритм, что и для DA.
- (c) Храним не одно состояние автомата, а множество состояний, в котором он может оказаться при прочтении префикса слова. Поддерживаем это свойство для каждого нового символа. В конце, если среди множества есть принимающие состояния автомата, МТ переходит в принимающее состояние.
- (d) Предыдущая задача, противоположный ответ.
- 3. R. Строим НКА за линейное по размеру R время. Далее аналогично.
- 4. G.
- 5. $\mathcal{A}, \mathcal{B} \mathcal{A}$ КА. Построим минимальные \mathcal{A} КА за полиномиальное по |A| + |B| время: на каждом шаге алгоритма количество состояний уменьшается, поэтому количество шагов не превосходит $|\mathcal{A}|$. На каждом шаге выполняется полиномиальное число действий (от количества состояний). Проверим изоморфность двух минимальных \mathcal{A} КА за |A| + |B|. Длина входа $|A|^2 + |B|^2$ (графы входных автоматов заданы матрицами смежности).