北京航空航天大学

2012~2013 学年第 1 学期

数字信号处理_期末考试试卷

(2013 年 1 月 8 日)
学号:
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\frac{1}{0}$ $\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{5}$ 1
$X(k)$ 为其 6 点傅里叶变换,则可求得 $X(e^{j0}) =, X(e^{j\infty}) =,$
X(0) =
2.复指数序列 $e^{j0.5n}$ (其中 $-\infty$ < n < ∞)的傅里叶变换(DTFT)为、
$e^{j0.5n}u[n]$ 的 z 变换为、 $x[n] = e^{j\frac{2\pi}{N}mn}(0 < m < N)$ 的 N 点 DFT 为;
3.单位脉冲响应为 $h[n] = \delta[n] - \delta[n-1]$ 的系统是(时变、非时变)(因
果、非因果)(稳定、不稳定)(线性、非线性)系统;
x(n)
x(n) 2 4 8 16 32 $y(n)$
图 1 某 LTI 系统的横截型结构
4.某 LTI 系统的横截型结构如图 1 所示,该系统的单位脉冲响应为,系统函数
为, 该系统(是否)线性相位系统;
5.FIR 滤波器的窗函数设计法中,阻带衰减取决于,加特定形状窗口条件下,过
渡带宽度取决于;
6.一个时间连续的实信号 $x_c(t)$,带宽限制在 5KHz 以下,即对于 $ \Omega \ge 2\pi (5000), X_C(j\Omega) = 0$
以每秒 10000 个样本的采样率对信号 $x_c(t)$ 进行采样,得到一个长度为 N=1000 的序列
$x[n] = x_c(nT)$ 。 $x[n]$ 的 N 点 DFT 记作 $X[k]$ 。若已知 $X[400] = 1 + j$,则 $X[]=1-j,k=400$
对应 $X_{\mathcal{C}}(j\Omega)$ 的连续频率是 $\Omega_{\scriptscriptstyle k}=$ rad/s , 在该连续频率处

$$X_C(j\Omega_k) = \underline{\hspace{1cm}};$$

- 7.任何信号通过线性时不变的离散时间系统不可能产生比输入信号本身更多的频率分量()。
- 8.离散时间系统的极点全部在 Z 平面的单位圆内,则系统一定是稳定的 ()
- 9.因果线性时不变系统的其单位冲激响应未必是正半轴序列 ()
- 10.线性常系数差分方程无论初始状态为何,总是代表线性时不变系统 ()
- 11.线性时不变离散时间系统存在系统函数,则频率响应必存在且连续 ()
- 二、(12分)某LTI因果系统用下面差分方程描述:

$$y(n)=0.9y(n-1)+x(n)+0.9x(n-1)$$

- a)求系统函数 H(z)及单位脉冲响应 h(n);
- b)写出系统频率响应函数 $H(e^{j\omega})$ 的表达式,说明该系统为低通滤波器还是高通滤波器?
- c)该系统是否存在因果稳定的逆系统?
- 三、(15 分) 在图 3 所示系统中, 输入连续信号 $x_c(t)$ 的频谱 $X_c(j\Omega)$ 是带限的, 即 $|\Omega| \ge \Omega_N$

时,
$$X_C(j\Omega) = 0$$
。离散时间系统 $H(e^{j\omega}) = \begin{cases} 1 & |\omega| \leq \omega_c \\ 0 & 其它 \end{cases}$

- (a) 为了使 $v_c(t) = x_c(t)$, 采样周期 T 最大可以取多少?
- (b) 要使整个系统等效为低通滤波器,确定 T的取值范围?
- (c)若给定采样频率 $1/T=20 {
 m KHz}$,整个系统等效为截止频率为 $3 {
 m KHz}$ 的理想低通滤波器,确定 ω_c 及 Ω_N 的取值范围。

四、 $(15\, eta)$ 已知序列 $x[n]=4\delta[n]+3\delta[n-1]+2\delta[n-2]+\delta[n-3]$,其 6 点离散傅里叶变换(DFT)用 X[k] 表示。

- a) 若序列 y[n] 的长度为 6, 其 6 点离散傅里叶变换为 $Y[k] = W_6^{4k} X[k]$, 求 y[n];
- b) # x[n] * x[n]; c) # x[n] (4) x[n];

五、(10分)采用 Kaiser 窗函数法设计一个广义线性相位的数字低通滤波器,经验公式如下

$$\beta = \begin{cases} 0.1102(A - 8.7) & A > 50 \\ 0.5842(A - 21)^{0.4} + 0.07886(A - 21) & 21 \le A \le 50 \\ 0.0 & A < 21 \end{cases} \qquad M = \frac{A - 8}{2.285\Delta\omega}$$

要求性能指标为: $\omega_p=0.4\pi$, $\omega_s=0.6\pi$, 通带纹波 $\delta_1=0.005$, 阻带纹波 $\delta_2=0.001$ 。 确定该滤波器的参数 β 、最小阶次及延迟。

六、 $(8 \, \mathcal{O})$ 研究一个如图所示长度为 N 的有限长序列 x[n],实线表示序列在 0 和 N-1 之间取值的包络,x,[n]是 x[n]后面补上 N 个零的长度为 2N 的有限长序列。

x[n]的 N 点 DFT 用 X[k] 表示, $x_1[n]$ 的 2N 点 DFT 用 $X_1[k]$ 表示,能否用 $X_1[k]$ 表示得出 X[k] ,说明理由。

七、(15 分)考虑两个实值有限长序列 h[n]和 x[n], $0 \le n \le 58$,若线性卷积为 y[n] = x[n]*h[n],该线性卷积可用 DFT 进行计算,即分别计算出 H[k]、X[k],然后通过 IDFT 计算出 $y[n] = IDFT\{X[k]H[k]\}$ 。试问:

- (a) 计算 H[k]、X[k]的最小点数是多少?
- (b) 若有复数基 2-FFT 程序可供使用,如何构造一序列 z[n],通过一次调用该程序,并经简单计算得到 H[k]和 X[k],写出实现步骤。