Numerical Solutions of Differential Equations: HW1

Thomas Garrett & Weicker David $8^{\rm th}$ February 2016

Introduction

This is the introduction bitches!

1 Conservation laws

blabla

2 Heat Equation

2.1 Flux vector

2.2 Q(t)

We are now interested in computing:

$$Q(t) = \int_0^1 \int_0^1 q(x, y, t) dx dy$$

Using the fundamental theorem of calculus, we have :

$$Q(t) = Q(0) + \int_0^t Q'(\tau)d\tau$$

The initial condition gives :

$$Q(0) = \int_0^1 \int_0^1 q(x, y, 0) dx dy = \int_0^1 \int_0^1 0 dx dy = 0$$

We also know that (using the definition of Q):

$$Q'(t) = \frac{d}{dt} \left(\int_0^1 \int_0^1 q(x, y, t) dx dy \right) = \int_0^1 \int_0^1 q_t(x, y, t) dx dy$$

We are now going to use the PDE to substitute q_t . This yields:

$$Q'(t) = \int_0^1 \int_0^1 q_t(x, y, t) dx dy = \int_0^1 \int_0^1 \nabla \cdot (\nabla q(x, y, t)) dx dy + \int_0^1 \int_0^1 S(x, y, t) dx dy$$

With divergence theorem, and if S means the boundary of the domain and \mathbf{n} the outward unit normal to the boundary, we have :

$$Q'(t) = \oint_{S} \nabla q(x, y, t) \cdot \mathbf{n} \, ds + \int_{0}^{1} \int_{0}^{1} S(x, y, t) dx dy$$

Because the given boundary condition given is:

$$\nabla q(x, y, t) \cdot \mathbf{n} = 0$$

We finally have:

$$Q'(t) = \int_0^1 \int_0^1 S(x, y, t) dx dy$$

This yields an expression for Q as a function of t.

$$Q(t) = \int_0^t \int_0^1 \int_0^1 S(x, y, \tau) dx dy d\tau$$

Because S is a given function, this expression can always be computed as a function of t.

3 Discretization and implementation

blabla yo!

4 Numerical results

blabla bitches

5 Refinements

blabla