cuFLAVR

Aditya Hota, Richard Chen, Kaan Erdogmus CIS 565 Fall 2021 Milestone 2 Presentation

FLAVR: Flow-Agnostic Video Representations for Fast Frame Interpolation

Tarun Kalluri *
UCSD

Deepak Pathak CMU Manmohan Chandraker UCSD

Du Tran Facebook AI

https://tarun005.github.io/FLAVR/

(a) Overview of the proposed architecture

(b) Sampling procedure

Milestones

- Milestone 2 (11/29)
 - Implement architecture for FLAVR
 - Training and classification should be working
- Milestone 3 (12/06)
 - Tune all hyperparameters for best results
 - Incorporate camera or object movement into Path Tracer
- Final Deliverable (12/12)
 - Automated pathway for generating interpolated videos
 - Performance analysis (and potential comparison to PyTorch)

Completed Work

- Milestone 2 (11/29)
 - Implement architecture for FLAVR
 - X Training and classification should be working
- Other progress
 - Implemented 2D convolutions to understand cuDNN API
 - V Set up all latest required dependencies due to new API
 - cuDNN 8.3 with CUDA 11.5 and OpenCV
 - Extracted data from reference model hyperparameters and weights
 - Laid out classes and functions for the codebase
 - Read paper to understand math for spatio-temporal 3D convolution
 - Began implementing layers of FLAVR network

2D Convolutions using cuDNN

- Challenges
 - API backend changes between cuDNN 7 and 8
 - Needed to incorporate new algorithm finding function
 - Lots of errors during setup process (matching all libraries)

Reference Model Data Extraction

- Analyzed the schema for the FLAVR reference model
 - Looked at model for 2x Interpolation, 4x and 8x have similar schema and size
- Extracted hyperparameters both for both learning and inference
- Extracted torch. Tensor instances
 - Matched instances with relevant layers and convolutions; 59 tensor instances
- Challenges:
 - Convert pyTorch tensor instances to cuDNN tensor instances
 - Convert overall schema to a format serializable with C++ and simplify the schema

Next Milestone

- Milestone 3 (12/06)
 - Finish layers for 3D spatio-temporal convolutions and gating
 - Match PyTorch model weights with our cuFLAVR network
 - Convert video into image frames (inference inputs)

References

Papers:

Kalluri, T., Pathak, D., Chandraker, M., & Tran, D. (2020). Flavr: Flow-agnostic video representations for fast frame interpolation. *arXiv preprint arXiv:2012.08512*.

Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., & Paluri, M. (2018). A closer look at spatiotemporal convolutions for action recognition. In *Proceedings of the IEEE* conference on Computer Vision and Pattern Recognition (pp. 6450-6459).

2D Convolutions Guide:

Peter Goldsborough: 2D Convolutions using cuDNN

Q&A