1.0000 相同

005877 与 -45° 角终边相同的角的集合是

003065 与 -45° 角终边相同的角的集合是

0.9344 关联

005886 设角 α 的终边与 $\frac{7}{5}\pi$ 的终边关于 y 轴对称, 且 $\alpha \in (-2\pi, 2\pi)$, 则 $\alpha =$ ______.

003066 设角 α 的终边与角 $\frac{7\pi}{5}$ 的终边关于 y 轴对称, 且 $\alpha \in (0, 2\pi)$, 则 $\alpha =$ _____.

0.9427 相同

$$005906 \frac{\sin x}{|\sin x|} + \frac{|\cos x|}{\cos x} + \frac{\tan x}{|\tan x|} + \frac{|\cot x|}{\cot x}$$
的取值范围是______.
$$003061$$
函数
$$f(x) = \frac{\sin x}{|\sin x|} + \frac{|\cos x|}{\cos x} + \frac{\tan x}{|\tan x|} + \frac{|\cot x|}{\cot x}$$
的值域是______.

003061 函数
$$f(x) = \frac{\sin x}{|\sin x|} + \frac{|\cos x|}{\cos x} + \frac{\tan x}{|\tan x|} + \frac{|\cot x|}{\cot x}$$
 的值域是______.

0.9412 关联

$$005910$$
 函数 $y = \sqrt{\cos x}$ 的定义域是_____.

$$003148$$
 函数 $y = \sqrt{-\cos x}$ 的定义域为______

0.9697 相同

006010 函数
$$f(x) = \log_{\frac{1}{2}}(2\sin x)$$
 的最小值是_____.

$$001506$$
 函数 $f(x) = \log_{\frac{1}{9}}(2\sin x)$ 的最小值是______

0.9949 相同

$$006229$$
 化简
$$\frac{\tan(45^{\circ} - \alpha)}{1 - \tan^{2}(45^{\circ} - \alpha)} \cdot \frac{\sin \alpha \cos \alpha}{\cos^{2} \alpha - \sin^{2} \alpha} = \underline{\qquad}$$

$$003114$$
 化简:
$$\frac{\tan(45^{\circ} - \alpha)}{1 - \tan^{2}(45^{\circ} - \alpha)} \cdot \frac{\sin \alpha \cos \alpha}{\cos^{2} \alpha - \sin^{2} \alpha} = \underline{\qquad}$$

003114 化简:
$$\frac{\tan(45^\circ - \alpha)}{1 - \tan^2(45^\circ - \alpha)} \cdot \frac{\sin \alpha \cos \alpha}{\cos^2 \alpha - \sin^2 \alpha} = \underline{\hspace{1cm}}.$$

0.9538 相同

006886 已知等差数列 $\{a_n\}$ 的首项为 1, 公差为 d, 前 n 项和为 A_n ; 等比数列 $\{b_n\}$ 的首项为 1, 公比为 q(|q|<1), 前 n 项和为 B_n . 记 $S_n=B_1+B_2+\cdots+B_n$, 若 $\lim_{n\to\infty}(\frac{A_n}{n}-S_n)=1$, 求 d 和 q.

003307 已知等差数列 $\{a_n\}$ 的首项为 1, 公差为 d, 前 n 项的和为 A_n ; 等比数列的首项为 1, 公比为 q, |q| < 1, 前 n 项的和为 B_n , 记 $S_n = B_1 + B_2 + \cdots + B_n$, 若 $\lim_{n \to \infty} (\frac{a_n}{n} - S_n) = 1$, 求 $d \in \mathbb{R}$

0.9864 相同

003715 若
$$S_n = \frac{1}{5} + \frac{2}{52} + \frac{1}{53} + \frac{2}{54} + \dots + \frac{1}{52n-1} + \frac{2}{52n}$$
,则 $\lim_{n \to \infty} S_n = \underline{\qquad}$.

006925 利用数学归纳法证明:
$$1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots+\frac{1}{2n-1}-\frac{1}{2n}=\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2n}(n\in\mathbf{N}^*).$$
 000322 用数学归纳法证明: $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots+\frac{1}{2n-1}-\frac{1}{2n}=\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2n}(n$ 为正整数).

000322 用数学归纳法证明:
$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{2n-1} - \frac{1}{2n} = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} (n)$$
 为正整数).

$$007013$$
 若复数 $z = (x-1) + (2x-1)$ i 的模小于 $\sqrt{10}$, 则实数 x 的取值范围是

$$002011$$
 若复数 $z = (x-1) + (2x-1)i$ 的模小于 $\sqrt{10}$, 则实数 x 的取值范围是______

0.9640 相关

$$007092$$
 计算: $i \cdot i^2 \cdot i^3 \cdot \cdots \cdot i^{1997} =$.

0.9500 相同

007123 已知复数 z 满足 |z|=2, 求复数 $w=\frac{z+1}{z}$ 在复平面内的对应点的轨迹.

003535 已知复数 z 满足 |z|=2, 求复数 $w=\frac{1+z}{z}$ 在复平面内的对应点的轨迹.

0.9832 相同

 $007156 \ \ \ \ \ \mathcal{Z} \ \ A = \cos\frac{\pi}{11} + \cos\frac{3\pi}{11} + \cos\frac{5\pi}{11} + \cos\frac{7\pi}{11} + \cos\frac{9\pi}{11}, \ B = \sin\frac{\pi}{11} + \sin\frac{3\pi}{11} + \sin\frac{5\pi}{11} + \sin\frac{7\pi}{11} + \sin\frac{9\pi}{11},$ 求证: $A = \frac{1}{2}, \ B = \frac{1}{2}\cot\frac{\pi}{22}.$

002061 [选做]

 $\ \, \ \, \ddot{\mathcal{L}} \,\, A = \cos\frac{\pi}{11} + \cos\frac{3\pi}{11} + \cos\frac{5\pi}{11} + \cos\frac{7\pi}{11} + \cos\frac{9\pi}{11}, \, B = \sin\frac{\pi}{11} + \sin\frac{3\pi}{11} + \sin\frac{5\pi}{11} + \sin\frac{7\pi}{11} + \sin\frac{9\pi}{11}. \ \, \\ \ \, \dot{\mathcal{L}} \,\, \mathcal{H} = \frac{1}{2}, \, B = \frac{1}{2}\cot\frac{\pi}{22}.$

0.9402 相同

007296 若实系数的一元二次方程的一个根是 $\frac{1}{3} - \frac{4\sqrt{5}}{3}$ i, 则这个方程为_____.

002080 若实系数一元二次方程的一个根是 $\frac{1}{3} - \frac{4\sqrt{5}}{3}$ i, 则这个方程可以是______.

0.9773 相同

007321 若关于 x 的实系数方程 $2x^2 + 3ax + a^2 - a = 0$ 至少布一个模为 1 的根, 求实数 a 的值.

002094 若关于 x 的实系数方程 $2x^2 + 3ax + a^2 - a = 0$ 至少有一个模为 1 的根, 求实数 a 的值.

0.9369 相同

007325 实系数方程 $x^4 - 4x^3 + 9x^2 - ax + b = 0$ 的一个根是 1 + i, 求 a, b 的值, 并解此方程.

002084 已知关于 x 的实系数方程 $x^4 - 4x^3 + 9x^2 - ax + b = 0$ 的一个根是 1 + i, 求 a, b 的值并解此方程.

0.9667 相同

007352 已知半径为 1 的定圆 O 的内接正 n 边形的顶点为 $P_k(k=1,2,\cdots n), P$ 为该圆周上任意一点, 求证: $|PP_1|^2 + |PP_2|^2 + \cdots + |PP_n|^2$ 为一定值.

002075 [选做]

已知半径为 1 的定圆 O 的内接正 n 边形的顶点为 $P_k(k=1,2,\cdots,n)$, P 为该圆周上任意一点,求证: $|PP_1|^2 + |PP_2|^2 + \cdots + |PP_n|^2$ 是一个定值.

0.9796 相同

007447 计算: $C_m^5 - C_{m+1}^5 + C_m^4 = \dots$

002568 计算: $C_m^5 - C_{m+1}^5 + C_m^4 =$ ______.

0.9701 相同

007448 计算: $C_{96}^{94} + C_{97}^{95} + C_{98}^{96} + C_{99}^{97} =$ _______.

002571 计算: $C_{97}^{94} + C_{97}^{95} + C_{98}^{96} + C_{99}^{97} =$ _______

0.9697 关联

002570 计算: $C_2^2 + C_3^2 + C_4^2 + \cdots + C_{100}^2 =$

0.9592 相同

007456 平面内共有 17 个点, 其中有且仅有 5 个点共线, 以这些点中的 3 个点为顶点的三角形共有

个.

002579 平面内共有17个点,其中有且仅有5个点共线,以这些点中的三个点为顶点的三角形共有

个.

0.9444 关联

005989 求函数
$$y = \frac{\sec^2 x - \tan x}{\sec^2 x + \tan x}$$
 的值域. 006078 求函数 $y = \frac{\sec^2 x - \tan x}{\sec^2 x + \tan x}$ 的值域.

006078 求函数
$$y = \frac{\sec^2 x + \tan x}{\sec^2 x - \tan x}$$
 的值域.

0.9945 相同

$$006107 \ \text{化简} \ \frac{1+\cos\theta-\sin\theta}{1-\cos\theta-\sin\theta} + \frac{1-\cos\theta-\sin\theta}{1+\cos\theta-\sin\theta}.$$

$$006218 \ \text{化简} \colon \frac{1+\cos\theta-\sin\theta}{1-\cos\theta-\sin\theta} + \frac{1-\cos\theta-\sin\theta}{1+\cos\theta-\sin\theta}.$$

1.0000 相同

0.9487 关联

$$006510$$
 函数 $y = \sqrt{\arccos x}$ 的定义域为_______,值域为______

0.9545 关联

$$006496$$
 计算: $\arcsin(\cos 2) =$ ______

$$006497$$
 计算: $\arcsin(\cos 5) =$ ______

0.9748 关联

$$006503$$
 求函数 $f(x) = \sin(x - \frac{\pi}{4})\cos(x + \frac{\pi}{4}), -\frac{\pi}{4} \le x \le \frac{\pi}{4}$ 的反函数. 006504 求函数 $f(x) = \sin(x - \frac{\pi}{4})\cos(x + \frac{\pi}{4}), \frac{\pi}{4} \le x \le \frac{\pi}{2}$ 的反函数.

$$006504$$
 求函数 $f(x) = \sin(x - \frac{\pi}{4})\cos(x + \frac{\pi}{4}), \frac{\pi}{4} \le x \le \frac{\pi}{2}$ 的反函数.

1.0000 关联

$$006582$$
解方程 $\sin 2x - 12(\sin x - \cos x) + 12 = 0.$

$$006625$$
 解方程 $\sin 2x - 12(\sin x - \cos x) + 12 = 0$.

0.9487 相同

$$006855 \lim_{n \to \infty} (1 - \frac{1}{2})(1 - \frac{1}{3})(1 - \frac{1}{4}) \cdots (1 - \frac{1}{n}) = \underline{\hspace{1cm}}.$$

$$006856 \lim_{n \to \infty} (1 - \frac{1}{2^2})(1 - \frac{1}{3^2})(1 - \frac{1}{4^2}) \cdots (1 - \frac{1}{n^2}) = \underline{\hspace{1cm}}.$$

0.9639 相同

$$006909$$
 用数学归纳法证明: $1+2+\cdots+2n=n(2n+1)(n \in \mathbf{N}^*)$.

006923 利用数学归纳法证明:
$$1+2+3+\cdots+2n=n(2n+1)(n \in \mathbf{N}^*)$$
.

0.9459 关联

007034 若复数
$$z$$
 满足 $z + \frac{4}{z} \in \mathbf{R}$, 且 $|z - 2| = 2$, 求 z .

007115 已知复数
$$z$$
 满足 $z + \frac{4}{z} \in \mathbf{R}, |z - 2| = 2, 求 z.$

0.9730 关联

```
007070 若 z 是复数, 判断 "|z|^2 = z^2 恒成立"的真假: ______.
```

$$007071$$
 若 z 是复数, 判断 " $|z|^2 = z^2$ 恒不成立". 的真假:

0.9730 关联

$$007070$$
 若 z 是复数, 判断 " $|z|^2 = z^2$ 恒成立"的真假:

$$007072$$
 若 z 是复数, 判断 " $|z|^2 = |z|^2$ 恒成立"的真假:______.

0.9474 关联

$$007071$$
 若 z 是复数, 判断 " $|z|^2 = z^2$ 恒不成立". 的真假:_______

$$007072$$
 若 z 是复数, 判断 " $|z|^2 = |z|^2$ 恒成立"的真假:

0.9231 关联

$$007072$$
 若 z 是复数, 判断 " $|z|^2 = |z|^2$ 恒成立"的真假:______.

$$007074$$
 若 z 是复数, 判断 " $\sqrt{|z|^2} = |z|$ 恒成立"的真假:______

0.9383 关联

$$007076$$
 若 z 是复数, 判断 " $z + \overline{z}$ 一定是实数"的真假:______.

$$007077$$
 若 z 是复数, 判断 " $z - \overline{z}$ 一定是纯虚数" 的真假:

0.9697 相同

$$007112$$
 已知复数 z 满足 $|z| = 5$, 且 $(3 + 4i)z$ 是纯虚数, 求 z .

$$007233$$
 已知复数 z 满足 $|z| = 5$, 且 $(3 + 4i)z$ 为纯虚数, 求 z .

0.9290 关联

$$007129$$
 利用 $||z_1| - |z_2|| \le |z_1 + z_2| \le |z_2| + |z_2|$,求函数 $y = \sqrt{x^2 + 4} + \sqrt{x^2 - 8x + 17}$ 的最小值及相应的

x.

$$007130$$
 利用 $||z_1| - |z_2|| \le |z_1 + z_2| \le |z_2| + |z_2|$, 求函数 $y = \sqrt{x^2 + 9} - \sqrt{x^2 - 2x + 5}$ 的最大值及相应的 x .

0.9630 关联

$$007140$$
 已知 $|z| = 1$, 求 $|z^2 - z + 1|$ 的最大值和最小值.

$$007141$$
 已知 $|z| = 1$, 求 $|z^2 - z + 2|$ 的最大值和最小值.

0.9434 相同

$$007140$$
 已知 $|z| = 1$, 求 $|z^2 - z + 1|$ 的最大值和最小值.

$$007234$$
 若 $|z| = 1$, 求 $|z^2 - z + 1|$ 的最大值和最小值.

0.9639 关联

$$007143$$
 将复数 $2(\cos{\frac{\pi}{5}} - i\sin{\frac{\pi}{5}})$ 化为三角形式.

$$007143$$
 将复数 $2(\cos{\frac{\pi}{5}}-i\sin{\frac{\pi}{5}})$ 化为三角形式.
$$007144$$
 将复数 $2(-\cos{\frac{\pi}{5}}+i\sin{\frac{\pi}{5}})$ 化为三角形式.

0.9639 关联

$$007143$$
 将复数 $2(\cos \frac{\pi}{5} - i \sin \frac{\pi}{5})$ 化为三角形式.

$$007145$$
 将复数 $-2(\cos\frac{\pi}{5} + i\sin\frac{\pi}{5})$ 化为三角形式.

0.9762 关联

$$007144$$
 将复数 $2(-\cos\frac{\pi}{5} + i\sin\frac{\pi}{5})$ 化为三角形式.

007145 将复数 $-2(\cos{\frac{\pi}{5}} + i\sin{\frac{\pi}{5}})$ 化为三角形式.

0.9684 关联

$$007169$$
 复数 $2(\cos \frac{\pi}{5} - i \sin \frac{\pi}{5})$ 的三角形式为_____.

007169 复数
$$2(\cos\frac{\pi}{5}-i\sin\frac{\pi}{5})$$
 的三角形式为______.
007171 复数 $2(-\cos\frac{\pi}{5}+i\sin\frac{\pi}{5})$ 的三角形式为______.

0.9684 关联

$$007169$$
 复数 $2(\cos \frac{\pi}{5} - i \sin \frac{\pi}{5})$ 的三角形式为_____.

$$007169$$
 复数 $2(\cos\frac{\pi}{5}-\mathrm{i}\sin\frac{\pi}{5})$ 的三角形式为______.
 007172 复数 $-2(\cos\frac{\pi}{5}+\mathrm{i}\sin\frac{\pi}{5})$ 的三角形式为_____.

0.9792 关联

$$007171$$
 复数 $2(-\cos\frac{\pi}{5} + i\sin\frac{\pi}{5})$ 的三角形式为_____

007171 复数
$$2(-\cos\frac{\pi}{5} + i\sin\frac{\pi}{5})$$
 的三角形式为______.
007172 复数 $-2(\cos\frac{\pi}{5} + i\sin\frac{\pi}{5})$ 的三角形式为_____.

0.9262 关联

007243 复平面内, 两点 A, B 分别对应于非零复数 $\alpha, \beta,$ 若 $\alpha = \pm \beta i,$ 判断 $\triangle OAB$ 的形状 (O 为原点).

007246 复平面内, 两点 A,B 分别对应于非零复数 $\alpha,\beta,$ 若 $\frac{\alpha}{\beta}=1+\mathrm{i},$ 判断 $\triangle OAB$ 的形状 (O 为原点).

0.9412 关联

007244 复平面内,两点 A,B 分别对应于非零复数 $\alpha,\beta,$ 若 $\frac{\alpha}{\beta}=\pm\sqrt{3}\mathrm{i},$ 判断 $\triangle OAB$ 的形状 (O 为原点).

007245 复平面内,两点 A,B 分别对应于非零复数 $\alpha,\beta,$ 若 $\frac{\alpha}{\beta}=\frac{1+\sqrt{3}\mathrm{i}}{2},$ 判断 $\triangle OAB$ 的形状 (O 为原点).

0.9434 关联

007244 复平面内,两点 A,B 分别对应于非零复数 $\alpha,\beta,$ 若 $\frac{\alpha}{\beta}=\pm\sqrt{3}\mathrm{i}$,判断 $\triangle OAB$ 的形状 (O 为原点). 007246 复平面内,两点 A,B 分别对应于非零复数 $\alpha,\beta,$ 若 $\frac{\alpha}{\beta}=1+\mathrm{i}$,判断 $\triangle OAB$ 的形状 (O 为原点).

0.9333 关联

007245 复平面内,两点 A,B 分别对应于非零复数 $\alpha,\beta,$ 若 $\frac{\alpha}{\beta}=\frac{1+\sqrt{3}\mathrm{i}}{2}$,判断 $\triangle OAB$ 的形状 (O 为原点). 007246 复平面内,两点 A,B 分别对应于非零复数 $\alpha,\beta,$ 若 $\frac{\alpha}{\beta}=1+\mathrm{i}$,判断 $\triangle OAB$ 的形状 (O 为原点).

0.9459 关联

007276 已知 $z_n=(\frac{1+\mathrm{i}}{2})^n(n\in\mathbf{N})$. 记 $a_n=|z_{n+1}|-|z_n|(n\in\mathbf{N})$,求数列 $\{a_n\}$ 所有项之和. 007277 已知 $z_n=(\frac{1+\mathrm{i}}{2})^n(n\in\mathbf{N})$. 记 $b_n=|z_{n+2}-z_n|(n\in\mathbf{N})$,求数列 $\{b_n\}$ 所有项之和.

0.9873 相同

007353 由 1,2,3,4,5,6 这 6 个数字可以组成多少个数字不重复且是 6 的倍数的五位数?

007430 由 1, 2, 3, 4, 5, 6 这 6 个数字可组成多少个数字不重复且是 6 的倍数的五位数?

0.9811 相同

007357 从 1,3,5,7 这 4 个数字中任取 3 个, 从 0,2,4 这 3 个数字中任取 2 个, 可以组成多少个无重复数字 的五位数?

007520 从 1,3,5,7 这 4 个数字中任取 3 个, 从 0,2,4 这 3 个数字中任取 2 个, 共可组成多少个无重复数字 的五位数?

1.0000 相同

007530 求 $(1+x+x^2)(1-x)^{10}$ 展开式中含 x^4 项的系数.

007595 求 $(1+x+x^2)(1-x)^{10}$ 展开式中含 x^4 项的系数.

0.9948 相同

007649 求证:
$$C_n^0 C_n^1 + C_n^1 C_n^2 + \dots + C_n^{n-1} C_n^n = \frac{(2n)!}{(n-1)!(n+1)!}$$

0.9524 关联

007651 利用
$$kC_n^k = nC_{n-1}^{k-1}$$
, 求证: $C_n^1 + 2C_n^2 + 3C_n^3 + \dots + nC_n^n = n \cdot 2^{n-1}$.

007653 利用
$$kC_n^k = nC_{n-1}^{k-1}$$
, 求证: $C_n^0 + 2C_n^1 + 3C_n^2 + \dots + (n+1)C_n^n = (n+2) \cdot 2^{n-1}$.