

概述

TP4057ST26P 是一款单节锂离子电池恒流/恒压线性充电器,简单的外部应用电路非常适合便携式设备应用,适合 USB 电源和适配器电源工作,内部采用防倒充电路,不需要外部隔离二极管。热反馈可对充电电流进行自动调节,以便在大功率操作或高环境温度条件下对芯片温度加以限制。

TP4057ST26P充电截止电压为 4.2V, 充电电流可通过外部电阻进行设置。当充电电流降至设定值的 1/10 时, TP4057ST26P 将自动结束充电过程。

当输入电压被移掉后, TP4057ST26P 自动进入低电流待机状态, 将待机电流降至 3uA。

特点

- 最大充电电流: 600mA
- 无需 MOSFET、检测电阻器和隔离二极管
- 智能热调节功能可实现充电速率最大化
- 智能再充电功能
- 预充电压: 4.2V
- C/10 充电终止
- 2.9V 涓流充电阈值
- 单独的充电、结束指示灯控制信号
- 封装形式: SOT23-6L

应用

- 手机、PDA、MP3/MP4
- 蓝牙耳机、GPS
- 充电座
- 数码相机、Mini 音响等便携式设备

典型应用电路

管脚

定购信息

封装	定购型号	包装形式	产品正印
SOT23-6L	TP4057ST26P	Tape and Reel	TP4057ST26P

极限参数(注1)

符号	参数	额定值	单位
VCC	输入电源电压	-0.3~7	V
PROG	PROG 脚电压	-0.3~0.3	V
BAT	BAT 脚电压	-0.3~7	V
CHRG	CHRG 脚电压	-0.3~7	V
T _{BAT_SHT}	BAT 脚短路持续时间	连续	-
I _{BAT}	BAT 脚电流	600	mA
I_{PROG}	PROG 脚电流	600	uA
T _{OP}	工作环境温度	-40~85	$^{\circ}$
T _{STG}	储存温度	-65~125	$^{\circ}$
ESD	HBM	2000	V
LSD	MM	200	V

注 1: 最大极限值是指超出该工作范围芯片可能会损坏。

电气参数(注2,3)

无特殊说明, VIN=12V,Ta=25℃

符号	参数	测试条件	最小值	典型值	最大值	单位
V _{CC}	输入电源电压		4.5	5	5.5	V
V_{FLOAT}	输出浮充电压	0°C≤Ta≤85°C		4.2		V
I _C	恒流充电电流	R _{PROG} =2K,电流模式	450	500	550	mA
I _{TRIKL}	涓流充电电流	$V_{BAT} < V_{TRIKL}, R_{PROG} = 2K$	40	60	80	mA
I _{BAT}	BAT 电流	待机模式(V _{CC} =5V,V _{BAT} =4.2V)		3	5	μA
		睡眠模式,V _{CC} =0		3	5	μA
V_{TRIKL}	涓流充电阈值电压	R _{PROG} =2K,V _{BAT} 上升	2.8	2.9	3.0	V
V _{TRHYS}	涓流充电迟滞电压	R _{PROG} =2K	60	80	100	mV
V_{UV}	Vcc欠压保护阈值电压	Vcc上升	3.5	3.7	3.9	V
V _{UVHYS}	Vcc欠压保护迟滞电压	Vcc下降		0.1		V
V _{ASD}	V _{CC} -V _{BAT} 阈值电压	Vcc上升	60	100	140	mV
		Vcc下降	5	30	50	mV
		R _{PROG} =2K	40	60	80	mA
V_{PROG}	PROG 引脚电压	R _{PROG} =2K,电流模式	0.9	1.0	1.1	V
V_{CHRG}	CHRG脚输出低电压	I _{CHRG} =5 mA		0.3	0.6	V
V _{STDBY}	STDBY脚输出低电压	I _{CHRG} =5 mA		0.3	0.6	V
ΔVRECHRG	再充电电池阈值电压	V _{FLOAT} -V _{RECHRG}	70	100	150	mV
T _{LIM}	限定温度模式结温			115		$^{\circ}\!\mathbb{C}$
R _{ON}	功率 FET 导通电阻			800		mΩ
T _{RECHRG}	再充电比较器滤波时间	V _{BAT} 下降	1	2	3	mS
T _{TERM}	结束比较器滤波时间	I _{BAT} 降至 I _{CHG} /10 以下	1	2	3	mS

注 2: 典型参数值为 25℃条件下测得的标准参数值。

注 3: 规格书的最小、最大规范范围由测试保证,典型值由设计、测试或统计分析保证。

内部框图

工作原理

TP4057ST26P是专门为一节锂离子电池或锂聚合物电池而设计的线性充电器,芯片集成功率晶体管,充电电流可以用外部电阻设定,最大持续充电电流可达600mA,不需要另加阻流二极管和电流检测电阻。TP4057ST26P包含两个漏极开路输出的状态指示端,充电状态指示输出端CHRG和充电完成指示输出端STDBY。充电时管脚CHRG输出低电平,表示充电正在进行。如果电池电压低于2.9V,TP4057ST26P用小电流对电池进行预充电。当电池电压超过2.9V时,采用恒流模式对电池充电,充电电流由 PROG管脚和GND之间的电阻R_{PROG}确定。当电池电压接近4.2V电压时,充电电流逐渐减小,

TP4057ST26P进入恒压充电模式。当充电电流减小到充电结束阈值时,充电周期结束,CHRG端输出高阻态,STDBY端输出低电位。 充电结束阈值是恒流充电电流的10%。

当电池电压降到再充电阈值4.1V以下时,TP4057ST26P自动开始新的充电周期。芯片内部的高精度电压基准源、误差放大器和电阻分压网络确保电池端调制电压的精度在1%以内,满足锂离子电池和锂聚合物电池的要求。当输入电压低于欠压锁定阈值电压或者输入电压低于电池电压时,充电器进入低功耗的睡眠模式,此时电池端消耗的电流小于 3uA。

TP4057ST26P 内部的智能温度控制电路在芯片的结温超过125℃时自动降低充电电流,这个功能可以使用户最大限度的利用芯片的功率处理能力,不用担心因为过热而损坏芯片或者外部元器件。这样,用户在设计充电电流时,可以不用考虑最坏情况,而只是根据典型情况进行设计因为在最坏情况下,TP4057ST26P会自动减小充电电流。

引脚功能

CHRG(PIN1):充电状态指示端

当充电器向电池充电时, CHRG引脚被内部开关拉到低电平,表示充电正在进行; 否则CHRG管脚处于高阻态。

GND(PIN2):电源地

BAT(PIN3):电池正连接端

将电池的正端连接到此管脚。无VCC接入或者电池充满进入待机状态后,BAT管脚的漏电流小于3uA,BAT管脚向电池提供充电电流和4.2V的限制电压。

Vcc(PIN4):输入电压正端

此管脚的电压为内部电路的工作电源。V_{CC}输入电压必须大于欠压锁定阈值且同时大于BAT电压100mV时,充电才会开始。当V_{CC}输入电压低于欠压锁定阈值或V_{CC}与BAT管脚的电压差小于30mV时,TP4057ST26P将进入低功耗的停机模式,此时BAT管脚的消耗电流小于3uA。

STDBY(PIN5):充电完成指示端

当电池充电完成时,STDBY被内部开关拉到低电平,表示充电完成。除此之外,STDBY管脚将处于高阻态。

PROG(PIN6):恒流充电电流设置端

从PROG管脚连接一个电阻到GND 可以对充电电流进行设定。设定电阻器和充电电流采用下列公式来计算: R_{PROG}=1000V/I_{BAT}

根据需要的充电电流I_{BAT}来确定电阻器R_{PROG}的阻值。在 涓流充电阶段,此管脚的电压被调制在 0.1V; 在恒流充 电阶段,此管脚的电压被固定在1V。

应用说明

充电终止

当充电电流在达到最终浮充电压之后降至设定值的1/10

时,充电过程结束。该条件是通过采用一个内部滤波比较器对PROG引脚进行监控来检测的,当PROG引脚电压降 至100mV以下的时间超过2ms时,充电终止。

智能再充电

在待机模式中,TP4057ST26P对BAT引脚电压进行监控,只有当BAT引脚电压低于再充电阈值电压4.1V时(对应电池容量80%~90%),才会开始新的充电循环,重新对电池进行充电,这就避免了对电池进行不必要的反复充电,有效延长电池的使用寿命。

增加热调节电阻

降低IC的V_{CC}与BAT两端的压降能够显著减少IC中的耗。在热调节时,这具有增加充电电流的作用。实现方式可以在输入电源与V_{CC}之间串联一个0.5Ω的电阻或正向导通压降小于0.5V的二极管,从而将一部分功率耗掉。

充电电流软启动

TP4057ST26P 内置了软启动路。当一个充电循环被启动时,充电电流将在20uS的时间从零逐渐上升至恒流充电电流。

充电状态指示器

TP4057ST26P有两个漏极开路状态指示输出端,CHRG和STDBY,当充电器处于充电状态时,CHRG被拉到低电平,充电结束后,CHRG为高阻态,STDBY被拉到低电平。

如果不使用状态指示功能时,将不用的状态指示输出端 浮空或接地。下表示装态指示功能总结:

充电状态	红灯(CHRG)	绿灯(STDBY)
正在充电	亮	灭
充电完成	灭	亮
欠压、温度过高	灭	灭
BAT接10uF电容	闪烁(T≈3S)	亮

智能温度控制

TP4057ST26P内部集成了智能温度控制功能,当芯片温度高于115℃时,会自动减小充电电流。该功能允许用户提高给定电路板功率处理能力的上限而没有损坏TP4057ST26P的风险。在保证充电器将在最坏情况条件下自动减小电流的前提下,可根据典型(而不是最坏情况)环境温度来设定充电电流。

封装外形尺寸 <u>SOT23-6L</u>

