Practice Exam Questions Week Linear Algebra SOLUTIONS.

1. Consider the following matrix A and vectors \mathbf{v}_1 and \mathbf{v}_2 :

$$A = \begin{bmatrix} 1 & -1 & 0 & 1 \\ 1 & -1 & 0 & 1 \\ -1 & 0 & 1 & 1 \\ 3 & -1 & -2 & -1 \end{bmatrix}, \quad \mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ -1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$

a. Show that \mathbf{v}_1 and \mathbf{v}_2 are both eigenvectors of A. What are the corresponding eigenvalues?

$$\begin{bmatrix} 1 & -1 & 0 & 1 \\ 1 & -1 & 0 & 1 \\ -1 & 0 & 1 & 1 \\ 3 & -1 & -2 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$$

So, y, is an eigenvector of A with eigenvalue -1.

$$\begin{bmatrix} 1 & -1 & 0 & 1 \\ 1 & -1 & 0 & 1 \\ -1 & 0 & 1 & 1 \\ 3 & -1 & -2 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

So, y_2 is an eigenvector of A with eigenvalue 1.

b. Show that 0 is an eigenvalue of A.

Row, and row 2 of A are the same. Mence, A is not invertible and thus o is an eigenvalue of A.

c. Compute a basis for the eigenspace of A for the eigenvalue 0.

Hence, a basis for the eigenspace of $\lambda=0$ is $\begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$

d. Compute a basis for Nul A. Nul $A = N_{11} (A - 0.T) = RIGRASSICAL.$ Of the second seco	l λ=0.	
Nul A = Nul (A-0.I) = eigenspare of Mence, a basis for Nul A 3 also	$\binom{1}{1}$	-71
	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} c \\ 1 \end{bmatrix}$, }

e. Is the matrix A diagonalizable? If it is, determine a matrix M such that $M^{-1}AM$ is a diagonal matrix. If it is not, explain why not.

We found three distinct eigenvalues: -1, 1, 0. Moreover, eigenvalue o has multiplicity two. Therefore, the sum of the dimensions of the eigenspecies equals N=4. Hence, A is diagonalizable.

Then, A=MDM-' and thus D=M-'AM.

f. Compute the matrix A^9 .

2. True or false? If the given statement is true, give a brief explanation. If it is false, give a counterexample.

a. If A = QR and Q is invertible, then A is similar to B = RQ;

b. An elementary row operation on A does not change the determinant of A.

An elementary row operation on A does not change the determinant of A. False. Consider $A = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$ with det A = 2.

Moreover, $A \sim \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$ and det I = 1.

So, the elementary row operation did change the determinant of A.

c. If λ is an eigenvalue of A, then it is also an eigenvalue of A^{T}

True. For finding eigenvalues of A, we need to solve $\det(A^T-\lambda I)=0$. Note that $\det(A^T-\lambda I)=\det(A^T-\lambda I^T)=\det(A-\lambda I)^T=\det(A-\lambda I)$.

Since $\det(A-II)$ gives the eigenvalues of A , and because $\det(A^T-II)=\det(A-II)$, the eigenvalues of A and A^T are the same
d. Each eigenvalue of A is also an eigenvalue of A^2 . False. Consider $A = \begin{cases} 2 & 0 \end{cases}$ with eigenvalues 2 and 2 .
False. Consider $A = \{20\}$ with eigenvalues 2 and 2 . $A^2 = \{40\}$ with eigenvalues 4 and 4 .
e. If M is a (2×2) matrix such that dim Nul A equals 1, then M has one eigenvalue equal to 0.
False. Consider M= [0] with dim Nul A=1, but with two
eigenvalues equal to zero.
f. Let B be an $(n \times n)$ matrix. Let \mathbf{e}_1 be the first column of the identity matrix I_n . If \mathbf{e}_1 is an eigenvector of B with eigenvalue 1, then the first column of B is \mathbf{e}_1 .
True. e , is an eigenvector of B with eigenvalue, so $Be_{,=}e_{,.}$ Note that multiplying each row of B with the vector e , has the effect of picturing up the first entry in each row. Hence, equivalently it selects the first column of B . So, $Be_{,=}e_{,.}$ Hence, e , e .
g. Any invertible matrix can also be diagonalized. False. Consider $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. $det(A) = 1 \neq 0$, so A is invertible. Eigenvalues of A cure: 1 and 1 .
A-1. $I = \{0, 1\}$. Hence, the dimension of the eigenspace of $\lambda=1$ is 1. Hence, the sum of the dimensions of the eigenspaces equals $1 < 2 = n$. And thus A is not diagonalizable.
Mence, the sum of the dimensions of the eigenspaces equals $1 < 2 = n$. And thus A is not diagonalizable.
h. If A and B are 2×2 matrices which can both be diagonalized, then their sum $C = A + B$ can also be diagonalized.
False. Consider $A = \begin{bmatrix} 0 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 \end{bmatrix}$.
Both A and B have distinct eigenvalues and therefore they are
diagonalizable. However C= A+B=[1] is not diagonalizable. (see g.).
i. If K and L are 3×3 matrices and \mathbf{v} is an eigenvector of K and also of L , then \mathbf{v} is an eigenvector of the matrix product KL .
True y is an eigenvector of K , so $Ky = \lambda y$ for some λ in R y is an eigenvector of Z , so $Zy = \beta y$ for some β in R
Then, $KLv = K(Bv) = BKv = Bdv = yv$ with y in IR.
therefore, v is also an eigenvector of KL with eigenvalue $y = 182$.

g.

j. If \mathbf{x} is an eigenvector of an invertible matrix P, then it is also an eigenvector

True. x is an eigenvector of P, so $Px = \lambda x$ where $x \neq 0$ => $P'Px = P'(\lambda x) => Tx = \lambda(P'x) => x = \lambda(P'x)$. Since P is invertible, we know $\lambda \neq 0$ and thus we can multiply with $\frac{1}{\lambda}$. Hence, $P'x = \frac{1}{\lambda}x$.

Therefore, \propto is also an eigenvector of P^- , with eigenvalue $\frac{1}{\lambda}$.

3. Consider the following matrix Q:

$$Q = \left[\begin{array}{rrr} -1 & 0 & 1 \\ -3 & 4 & 1 \\ 0 & 0 & 2 \end{array} \right]$$

Find the characteristic polynomial and the eigenvalues of Q

det $(Q_1-\lambda I)$ = $\begin{vmatrix} -1-\lambda & 0 & 1 & | = (2-\lambda)\cdot(-1)^{3+3} & | -1-\lambda & 0 & | \\ -3 & 4-\lambda & 1 & | & -3 & 4-\lambda \end{vmatrix}$ = $(2-\lambda)(-1-\lambda)(4-\lambda)$ The characteristic equation is $(2-\lambda)(-1-\lambda)(4-\lambda)=0$.
Hence, the eigenvalues of Q_1 are Q_2 , Q_3 and Q_4 .