QQ-Plot Vorzeichentest Wilcoxontest Mann-Whitney-Test

Peter Büchel

HSLU I

Stat: Block 08

Annahme: Normalverteilung

- Bis jetzt: Annahme der Normalverteilung bei Hypothesentests
- Wie kann man überprüfen, ob Daten normalverteilt sind?
- Es gibt mehrere Methoden: Hier graphische Methode

Beispieldatensatz Betondruckfestigkeit

k	$X_{(k)}$
1	24.4
2	27.6
3	27.8
4	27.9
5	28.5
6	30.1
7	30.3
8	31.7
9	32.2
10	32.8
11	33.3
12	33.5
13	34.1
14	34.6
15	35.8
16	35.9
17	36.8
18	37.1
19	39.2
20	39.7

Peter Büchel (HSLU I)

- Messung: Betondruckfestigkeit von n = 20 verschiedenen Proben
- Wie gut können die Daten mit einer Normalverteilung beschrieben werden?

ldee

1/38

Stat: Block 08

Daten schon geordnet:

Peter Büchel (HSLU I)

24.4, 27.6, 27.8, 27.9, 28.5, 30.1, 30.3, 31.7, 32.2, 32.8, 33.3, 33.5, 34.1, 34.6, 35.8, 35.9, 36.8, 37.1, 39.2, 39.7

Stat: Block 08

Mittelwert und Standardabweichung:

```
import pandas as pd
x =
pd.Series([24.4,27.6,27.8,27.9,28.5,30.1,30.3,31.7,32.2,32.8,33.3,33.5,34.1,34.6,35.8,35.9,36.8,37.1,39.
x.mean()
x.std()
## 32.665000000000006
## 4.149733662981784
```

ullet Würden Daten einer Normalverteilung folgen, dann $\mathcal{N}(32.665,4.15^2)$

Peter Büchel (HSLU I) Weitere Tests Stat: Block 08 3/38 Peter Büchel (HSLU I) Weitere Tests Stat: Block 08 4/38

• Nehmen Median und Quartile von x und der Normalverteilung:

- Stimmen diese Werte überein, so liegt Normalverteilung vor
- Besser ersichtlich graphisch: Nächste Folie

Peter Büchel (HSLU I) Weitere Tests Stat: Block 08 5/38

- Horizontale Achse: Theoretische Quantile (Normalverteilung)
- Vertikale Achse: Empirische Quantile (Daten)
- Liegt Normalverteilung vor, so liegen diese Punkte auf einer Geraden
- ullet In Praxis: Es werden viele Quantile genommen, z.B. $q_{0.02},\ldots,q_{0.98}$
- Siehe auch Jupyter Notebook: qq_plot_py.ipynb

QQ-Plot Betondruckfestigkeit: Graphisch

Normal-Plot mit Python

ullet Software: Theoretische Verteilung oft standardisiert $(\mathcal{N}(0,1)$

Stat: Block 08

Nur Umskalierung

Peter Büchel (HSLU I)

- Aussage bleibt: Punkte auf Gerade, so liegt Normalverteilung vor
- Python-Befehl:

st.probplot(x, plot=plt)

Peter Büchel (HSLU I) Weitere Tests Stat: Block 08 7/38 Peter Büchel (HSLU I) Weitere Tests Stat: Block 08 8/38

Beispiele Normalplots für 3 Datensätze mit n = 500

Normalplots von simulierten Standardnormalverteilungen

Nicht-normalverteilte Daten

- Bis jetzt: Annahme der Normalverteilung
- Annahme der Normalverteilung sehr stark und oft nicht gegeben
- Was aber, wenn keine Normalverteilung vorliegt?
- Zwei Möglichkeiten:
 - ▶ Vorzeichentest: Sehr grob, kaum brauchbar
 - ▶ Wilcoxon-Test: Alternative zu *t*-Test, wenn Daten symmetrisch sind, aber nicht normalverteilt

Nicht-Normalverteilte Daten: Vorzeichentest

Modell:

Stat: Block 08

9/38

$$X_1, \ldots, X_n$$
 iid

Stat: Block 08

wobei X_i eine beliebige Verteilung hat

Nullhypothese:

$$H_0: \mu = \mu_0 \quad (\mu \text{ Median})$$

Alternative:

 $H_A: \mu \neq \mu_0$ (oder einseitige Variante)

Teststatistik:

$$V$$
: Anzahl X_i 's mit $(X_i > \mu_0)$

Verteilung der Teststatistik unter H₀:

$$V \sim \text{Bin}(n, \pi_0) \quad \text{mit } \pi_0 = 0.5$$

Peter Büchel (HSLU I) Weitere Tests Stat: Block 08 11/38 Peter Büchel (HSLU I) Weitere Tests Stat: Block 08 12/38

Signifikanzniveau:

 α

Verwerfungsbereich für die Teststatistik:

$$K = [0, c_u] \cup [c_o, n]$$

falls H_A : $\mu \neq \mu_0$.

Grenzen c_{ij} und c_{o} müssen mit Binomialverteilung oder Normalapproximation berechnet werden

Testentscheid: Entscheide, ob der beobachtete Wert der Teststatistik im Verwerfungsbereich der Teststatistik liegt

Beispiel: Vorzeichentest

Beobachtet:

$$x_1 = 13$$
, $x_2 = 9$, $x_3 = 17$, $x_4 = 8$, $x_5 = 14$

• Angenommen:

$$H_0: \mu = \mu_0 = 10, \quad H_A: \mu \neq 10$$

• Vorzeichen von $x_i - \mu_0$:

Binomialtest mit

$$H_0: \pi = 0.5, H_A: \pi \neq 0.5, n = 5, x = 3 \text{ (Anzahl ",+")}$$

Peter Büchel (HSLU I)

Stat: Block 08

13 / 38

Peter Büchel (HSLU I)

Stat: Block 08

Beispiel: Vorzeichentest

• Antwort: Binomialtest mit Python

- Resultat ist *p*-Wert
- Nullhypothese beim Vorzeichentest hier wird nicht verworfen
- Vorteil vom Vorzeichentest: Keine Annahme an Verteilung
- Nachteil vom Vorzeichentest: Kleinere Macht

Nicht-normalverteilte Daten: Wilcoxon-Test

- Kompromiss zwischen Vorzeichen- und t-Test
- Annahme:

$$X_i \sim F$$
 iid, F ist symmetrisch

- Teste Median μ : H_0 : $\mu = \mu_0$ (einseitig oder zweiseitig)
- Intuition der Teststatistik
 - Rangiere

$$|x_i - \mu_0| \rightarrow r_i$$

- ▶ Gib Rängen ursprüngliches Vorzeichen von $(x_i \mu_0)$ ("signed ranks")
- ▶ Teststatistik T: Summe aller Ränge, bei denen $(x_i \mu_0)$ positiv ist
- Falls H_0 stimmt: Rangsumme nicht zu gross und nicht zu klein (in Mitte der gesamten Rangsumme)

Beispiel: Wilcoxon-Test

• Bsp: H_0 : $\mu_0 = 0$

Beobachte:

-1.9, 0.2, 2.9, -4.1, 3.9

• Absolutbeträge:

1.9, 0.2, 2.9, **4.1**, 3.9

Geordnet

0.2, 1.9, 2.9, 3.9, 4.1

• Ränge der Absolutbeträge:

1, 2, 3, 4, 5

• Rangsumme der posititven Gruppe: 1+3+4=8

► Minimale Rangsumme: 0

Maximale Rangsumme: 1+2+3+4+5=15

Peter Büchel (HSLU I)

Weitere Tests

Stat: Block 08

k 08 17 / 38

Peter Büchel (HSLU I)

Weitere Tes

Stat: Block 08

18 / 3

Wicoxon-Test mit Python

Code:

import scipy.stats as st
import numpy as np

x = np.array([-1.9, 0.2, 2.9, -4.1, 3.9])

st.wilcoxon(x, correction=True)

/usr/local/lib/python3.7/dist-packages/scipy/stats/morestats.py:287

warnings.warn("Sample size too small for normal approximation.")

WilcoxonResult(statistic=7.0, pvalue=1.0)

- Hier noch Warnung: Da Datengrösse mit 5 sehr klein
- Damit Python p-Wert richtig berechnen kann, muss n > 20

Übersicht der Tests

Test	Annahme			$n_{ m min}$ bei $lpha=0.05$	Macht für ein Beispiel (1)	
	σ_X bekannt	$X_i \sim N$	Symm. Verteilung	iid		
Z	X	×	×	x	1	89 %
t		×	x	х	2	79 %
Wilcoxon			x	x	6	79 %
VZ				х	5	48 %

(1): $X_i \sim \mathcal{N}(\mu, \sigma^2)$, n = 10; $H_0: \mu = 0$; $H_A: \mu \neq 0$; $\alpha = 0.05$ Macht berechnet für konkrete Alternative: $X_i \sim \mathcal{N}(1, 1)$

Peter Büchel (HSLU I) Weitere Tests Stat: Block 08 19/38 Peter Büchel (HSLU I) Weitere Tests Stat: Block 08 20/38

Wilcoxon-Test versus t-Test

- Wilcoxon-Test meistens t-Test oder Vorzeichen-Test vorzuziehen
- Er hat in vielen Situationen oftmals wesentlich *grössere Macht*, und selbst in den ungünstigsten Fällen ist er nie viel schlechter
- Wenn man trotzdem den *t*-Test verwendet, dann sollte man die Daten auch graphisch ansehen, damit wenigstens grobe Abweichungen von der Normalverteilung entdeckt werden
- Insbesondere sollte der Normal-Plot angeschaut werden

Vergleich von zwei Stichproben

- Mögliche Fragestellungen:
 - ▶ Vergleich von zwei Messverfahren (Messgerät *A* vs. Messgerät *B*): Gibt es einen signifikanten Unterschied?
 - ▶ Vergleich von zwei Herstellungsverfahren (A vs. B): Welches hat die besseren Eigenschaften (z.B. bzgl. einer Festigkeitsgrösse)?
 - ► Werden männliche Dozenten von weiblichen Studierenden besser als von männlichen Studierenden bewertet?
 - ► Sammeln jeweils Daten von zwei Gruppen

Peter Büchel (HSLU I)

Weitere Tests

Stat: Block 08 21 / 38

Peter Büchel (HSLU I)

Moitoro Tost

Stat: Block 08 2

22 / 3

Gepaarte Stichproben

- Beispiel Messgeräte: Jeden Prüfkörper mit beiden Messgeräten messen
- Pro Versuchseinheit (hier: Prüfkörper) zwei Beobachtungen (einmal Gerät A und einmal Gerät B)
- Man spricht auch von gepaarten Stichproben
- Beide Beobachtungen sind *nicht* unabhängig, da an der *gleichen* Versuchseinheit zwei Mal gemessen wird!

Ungepaarte (unabhängige) Stichproben

- Beispiel der beiden Herstellungsverfahren: Stichprobe von Verfahren
 A und eine andere Stichprobe von Verfahren
- Beobachtungen sind hier unabhängig; "es gibt nichts, was sie verbindet"
- Man spricht von ungepaarten (oder unabhängigen) Stichproben

Peter Büchel (HSLU I) Weitere Tests Stat: Block 08 23/38 Peter Büchel (HSLU I) Weitere Tests Stat: Block 08 24/36

Unterscheidung gepaart versus ungepaarte Stichproben

Gepaarte Stichproben

- Jede Beobachtung einer Gruppe kann eindeutig einer Beobachtung der anderen Gruppe zugeordnet werden
- Stichprobengrösse ist in beiden Stichprobengrössen können ver-Gruppen zwangsläufig gleich

Ungepaarte Stichproben

- Keine Zuordnung von Beobachtungen möglich
- schieden sein (müssen aber nicht!)
- Man kann die eine Gruppe vergrössern, ohne dass man die andere vergrössert

Gepaarte versus ungepaarte Stichproben

- Beispiel Augeninnendruck: Ein Auge wird behandelt, das andere nicht (gepaarter Test ist angebracht)
- Gemäss Vorraussetzungen dürfte auch ein ungepaarter Test angewendet werden

Ungepaart: Intuition Teststatistik: $T = \frac{\overline{X} - \overline{Y}}{\widehat{G}}$

Gepaart: Differenz $D_i = X_i - Y_i$ Teststatistik $T = \frac{D}{\widehat{g_2}}$

Peter Büchel (HSLU I)

Stat: Block 08

25 / 38

Peter Büchel (HSLU I)

Stat: Block 08

Statistischer Test für gepaarte Stichproben mit Python

• Gepaarte Stichproben:

$$X_i \sim \mathcal{N}(\mu_X, \sigma_X^2)$$
 und $Y_i \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$

Betrachten Differenzen:

$$D_i = X_i - Y_i$$

- Führen einen t-Test durch mit der Teststatistik D_i
- Normalerweise Nullhypothese

$$E(D) = \mu_D = 0$$

also kein Unterschied

• Falls die Daten nicht normalverteilt: Wilcoxon- oder Vorzeichentest

Statistischer Test für gepaarte Stichproben mit Python

Code

```
import scipy.stats as st
from scipy.stats import norm, t, binom
import numpy as np
from pandas import Series
vorher = Series([25, 25, 27, 44, 30, 67, 53, 53, 52, 60, 28])
nachher = Series([27, 29, 37, 56, 46, 82, 57, 80, 61, 59, 43])
st.ttest_rel(nachher, vorher)
## Ttest_relResult(statistic=4.271608818429545, pvalue=0.0016328499219
```

- ttest_rel: rel für related
- Output statistics:...: Wert mit dem der p-Wert berechnet wird (keine physikalische Bedeutung)

Peter Büchel (HSLU I) Stat: Block 08 27 / 38 Peter Büchel (HSLU I) Weitere Tests Stat: Block 08 28 / 38

- Output pvalue:...: Wert für Testentscheid
- *p*-Wert ist mit 0.0016 unter Signifikanzniveau und somit wird Nullhypothese verworfen
- Es gibt einen statistisch signifikanten Unterschied zwischen vorher und nachher
- Vertrauensintervall:

```
vorher = Series([25, 25, 27, 44, 30, 67, 53, 53, 52, 60, 28])
nachher = Series([27, 29, 37, 56, 46, 82, 57,80, 61, 59, 43])
dif = nachher - vorher

t.interval(alpha=.95, df=dif.size-1, loc=dif.mean(),
scale=dif.std()/np.sqrt(dif.size))
## (4.91430993515407, 15.631144610300478)
```

- Unterschied auf 5 % Signifikanzniveau signifikant, weil P-Wert kleiner
 5 %
- 95 %-Vertrauensintervall: Unterschieds in den Gruppenmittelwerten
- ullet Mit 95 % W'keit ist Gruppenmittelwert von x um eine Zahl im Bereich

[4.91431, 15.63114]

grösser als der Gruppenmittelwert von y

Peter Büchel (HSLU I)

Weitere Tests

Stat: Block 08

ock 08 20 / 3

Peter Büchel (HSLU I)

Weitere Tests

Stat: Block 08

30 / 38

Statistischer Test für ungepaarte Stichproben mit Python

- Ungepaarte Stichproben: Daten X_i und Y_i normalverteilt, aber ungepaart
- Beispiel: Schmelzwärme von Eis: Zwei-Stichproben t-Test für ungepaarte Stichproben mit Nullhypothese $\mu_X = \mu_Y$:

```
x = Series([79.98, 80.04, 80.02, 80.04, 80.03, 80.03, 80.04,
79.97, 80.05,80.03, 80.02, 80.00, 80.02])

y = Series([80.02, 79.94, 79.98, 79.97, 80.03, 79.95, 79.97])

st.ttest_ind(x, y, equal_var=False)
## Ttest_indResult(statistic=2.839932638516127, pvalue=0.018660
```

• ttest_ind: rel für independent

- *p*-Wert ist 0.018 unter dem Signifikanzniveau und somit wird die Nullhypothese verworfen
- Es gibt einen statistisch signifikanten Unterschied zwischen den beiden Mittelwerten
- Unterschied auf 5 % Signifikanzniveau signifikant, weil p-Wert kleiner als 5 %
- Unterschied in den Gruppenmittelwerten

Peter Büchel (HSLU I) Weitere Tests Stat: Block 08 31/38 Peter Büchel (HSLU I) Weitere Tests Stat: Block 08 32/

Bemerkungen

- st.ttest_rel() und st.ttest_ind() kennen nur zweiseitigen Test
- Bei einseitigem Test: Ausgegebener p-Wert halbieren
- st.wilcoxon() kennt ab SciPy Version 1.3.0 alternative="..." (greater, less, two-sided)
- Für frühere Versionen von SciPy kommt eine Fehlermeldung

Peter Büchel (HSLU I) Weitere Tests

Stat: Block 08 33 / 38

Stat: Block 08

35 / 38

Peter Büchel (HSLI

Peter Büchel (HSLU I)

Weitere Tes

Stat: Block 08 3

Stat: Block 08

36 / 38

34 / 3

Übersicht: Tests für ungepaarte Stichproben

Test	Annahme			n_{\min} falls $(n = m)$ bei $\alpha = 0.05$	Macht für ein Beispiel (1)	
	$\sigma_X = \sigma_Y$	$X_i \sim N$ $Y_i \sim N$	F, G haben gleiche Form	iid pro Gruppe		
$t \ (\sigma_X = \sigma_Y)$	×	×	x	×	2	57%
$t \ (\sigma_X eq \sigma_Y)$		×		×	2	56%
MW U-Test	×		x	×	4	53%

(1): $X_i \sim \mathcal{N}(\mu_X, \sigma^2)$, $Y_i \sim \mathcal{N}(\mu_Y, \sigma^2)$ n = m = 10; $H_0: \mu_X = \mu_Y$; $H_A: \mu_X \neq \mu_Y$; $\alpha = 0.05$

Macht berechnet für konkrete Alternative: $X_i \sim \mathcal{N}(0,1), \ Y_i \sim \mathcal{N}(1,1)$

Mann-Whitney U-Test (aka Wilcoxon Rank-sum Test)

- Falls Daten nicht normalverteilt
- $X_i \sim F$, $i=1,\ldots,n$; $Y_j \sim G$, $j=1,\ldots m$ $H_0: F=G$ $H_A: F=G+\delta \ (\delta \neq 0)$ (oder einseitig) (d.h., Verteilungen sind verschoben, haben aber gleiche From)
- Code

Nullhypothese wird verworfen

Übersicht Statistische Tests (stetige Verteilungen)

Peter Büchel (HSLU I) Weitere Tests

Python-Befehle

Peter Büchel (HSLU I)

• Allgemein:

```
import scipy.stats as st
```

• Einstichprobenstest mit Datensatz x:

```
▶ t-Test: st.ttest_1samp(x, popmean=...)
```

- ► Wilcoxon-Test: st.wilcoxon(x, alternative="...")
- Zweistichprobenstest mit gepaarten Datensätzen x,y:

```
▶ t-Test: st.ttest_rel(x, y)
```

- ► Wilcoxon-Test: st.wilcoxon(x, y, alternative="...")
- Zweistichprobenstest mit *ungepaarten* Datensätzen x,y:
 - ▶ t-Test: st.ttest_ind(x, y, equal_var=False)
 - ► Wilcoxon-Test: st.mannwhitneyu(x, y, alternative="...")

Stat: Block 08

37 / 38

Bemerkung

- st.ttest_... kennt keine Alternative und gibt immer den zweiseitigen *p*-Wert an
- Für einseitigen Test: Output des p-Wertes halbieren

Peter Büchel (HSLU I) Weitere Tests Stat: Block 08 38 / 38