StuDocu.com

Sample/practice exam Fall 2016, questions

Intermediate Statistics (Carnegie Mellon University)

Practice Questons for Test 3

1. Let $X_1, \ldots, X_n \sim p(x; \theta)$ where

$$p(x;\theta) = \theta e^{-x\theta}$$

for x > 0 and $\theta > 0$. Find the mle $\widehat{\theta}$. Find the Fisher information. Find the limiting distribution of $\widehat{\theta}$. Find the Wald test for

$$H_0: \theta = \theta_0$$
 versus $H_1: \theta \neq \theta_0$.

Find the likelihood ratio test. Find a $1-\alpha$ asymptotic confidence interval for $\psi = \log \theta$.

2. Let $X_1, \ldots, X_n \sim N(\theta, 1)$. Consider testing

$$H_0: \theta = \theta_0 \qquad H_1: \theta \neq \theta_0.$$

Suppose we reject H_0 when $|W| > z_{\alpha/2}$ where $W = \sqrt{n}(\overline{X} - \theta_0)$ Suppose that the true value of the parameter is $\theta > \theta_0$. Show that $\beta(\theta) \to 1$ as $n \to \infty$ where $\beta(\theta)$ is the power function.

3. Let

$$\mathrm{KL}(p_{\theta}, p_{\nu}) = \int p_{\theta}(x) \log \left(\frac{p_{\theta}(x)}{p_{\nu}(x)} \right) dx.$$

Assume that $\theta \in \mathbb{R}$. Let $\nu = \theta + \epsilon$ where ϵ is small. Show that

$$KL(p_{\theta}, p_{\nu}) = \frac{\epsilon^2}{2}I(\theta) + o(\epsilon^2)$$

where I is the Fisher information.

4. The asymptotic standard error of the mle is

se =
$$(I_n(\theta))^{-1/2} = (nI(\theta))^{-1/2}$$

where $I(\theta)$ is the Fisher information function. Suppose that $I(\theta) > 0$ and that $I(\theta)$ is a continuous function. Show that

$$\frac{\widehat{\mathrm{se}}}{\mathrm{se}} \stackrel{P}{\to} 1$$

where $\widehat{\text{se}} = (I_n(\widehat{\theta}))^{-1/2}$.

5. Let $X_1, \ldots, X_n \sim N(\theta, 1)$. Consider the following estimator:

$$\widehat{\theta} = \begin{cases} \overline{X}_n & = \text{if } |\overline{X}_n| > \frac{1}{n^{1/4}} \\ 0 & = \text{if } |\overline{X}_n| < \frac{1}{n^{1/4}}. \end{cases}$$

Find the limiting distribution of $\widehat{\theta}$ when $\theta \neq 0$. Find the limiting distribution of $\widehat{\theta}$ when $\theta = 0$.

6. Let $X \sim \text{Binomial}(n, p)$. Consider testing

$$H_0: p = p_0$$
 versus $H_1: p \neq p_0$.

- (a) Construct the Wald test. Show that the power tends to 1 as $n \to \infty$ when $p > p_0$.
- (b) Construct the (asymptotic) likelihood ratio test.
- 7. Let $X_1, \ldots, X_n \sim \text{Bernoulli}(p)$. Let $\psi = \log(p/(1-p))$.
 - (a) Find the mle $\widehat{\psi}$ of ψ and find the limiting distribution of $\widehat{\psi}$.
 - (b) Find the Wald test for testing

$$H_0: \psi = 0$$
 versus $H_1: \psi \neq 0$.

(c) Construct asymptotic confidence sets for ψ by (i) inverting the Wald test; (ii) by inverting the likelihood ratio test.