Ex. topics

ICT for Building Design

AY 2020-21

Main overview – step I (design optimization)

Building type	Building type Variable to be optimized						Climate
	U-v	-values			WWR		
Residential	X				Х		Cold, temperate, hot
Office	Х				Х		
Group		Туре		Variable		Clima	ite
#1		Residential		U-value		Oslo	
#2	Residential			U-value		Rome	
#3	Residential			U-value		Athens	
#4		Office		U-value		Oslo	
#5	Office			U-value		Rome	
#6		Office		U-value		Ather	ns
#7		Residential		WWR		Mosc	ow
#8	Residential		WWR			Geneva	
#9		Residential		WWR		Larnaca	
#10		Office		WWR		Moscow	
#11		Office		WWR		Geneva	
#12		Office		WWR		Larnaca	
#13 +		Residential/Office		U/WWR		New York; Miami; Antofagasta	

Main overview – step II (profiling & control)

Building type	Variable to be op	Target			
	ACH	% opening	Scheduling eq.	Shading	
1 building conf.	a.	b.	C.	d.	Q or Temp. or ACH

Group	Target var.	Main season
#i	a.Q	S
#ii	a.T	S
#iii	b.Q	S
#iv	b.T	S
#v	b.ACH	S/W
#vi	c.Q	S/W
#vii	d.Q	S
#viii	d.T	S

Better defined together with prof. Bottaccioli

Group #1-3 | U-value Residential - Step I

- Main objective: describe energy need variations varying the U-value of of opaque surfaces and the U-value of windows.
- seasonal and yearly values are analysed to define correlations using polynomial regressions
- Three WWR configurations are considered (5% 15% 50%)
- Two ventilative cooling mode (on/off) (scheduled)

Group #1-3 | U-value Residential – step I

- Target variable: Q [kwh/m2] (separately summer and winter + annual)
- Input variables: U-value of opaque surfaces, U-value of windows To change the U-value, change insulating layer (0-35cm) in Energy plus for opaque surfaces and change the windows* (0.7-5) (or define at least 3 window configurations) Use design builder to get a translation to U-value or you can use the formula in the lectures directly inside the python script
- Scenario variables: ventilative cooling on/off (in summer) (on mode = 6
 ACH with external temperature 24 to 18°C 24hs/7day, while a critical
 difference between building temperature and external one is set to 3 K for
 effective convection)
- Energy signature will be calculated and different scenarios compared

^{*}Please discuss the way you choose for Window U-value changes.

Group #4-6 | U-value Office - Step I

- Main objective: describe energy need variations varying the U-value of opaque surfaces and the U-value of windows.
- seasonal and yearly values are analysed to define correlations using polynomial regressions
- Three WWR configurations are considered (15% 50% 90%)
- Two ventilative cooling mode (on/off) (scheduled)

Group #4-6 | U-value Office – Step I

- Target variable: Q [kwh/m2] (separately summer and winter, and annual)
- Input variables: U-value of opaque surfaces, U-value of windows To change the U-value, change insulating layer (0-35cm) in Energy plus for opaque surfaces and change the windows* (0.7-5) (or at least 3 window configurations) Use design builder to get a translation to U-value or you can use the formula in the lectures directly inside the python script
- Scenario variables: ventilative cooling on/off (in summer) (on mode = 6
 ACH with external temperature from 24 to 10°C during night (19:00-7:00),
 while a critical difference between building temperature and external one
 is set to 3 K for effective convection)
- Energy signature will be calculated and different scenarios compared

^{*}Please discuss the way you choose for Window U-value changes.

Group #7+ | WWR – Step I

- Main objective: describe energy need variations varying the WWR.
- yearly values are analysed to define correlations using polynomial regressions
- 3 configurations are assumed by modifying the same reference building: not insulated (e.g. envelopes of 50-60's), insulated (current U-value limits for climate zone), highly insulated (U wall half of the limit; Uwind. A/B 1.4; C/D 1, E/F 0.6),
- Two ventilative cooling modes (on/off) (scheduled) summer
- Two shading modes (on/off) summer

Group #7+ | WWR – Step I

- Target variable: Q [kwh/m2] (year balance) assuming all electrical heating + cooling + lighting
- Input variables: window percentage in respect to outdoor facing wall
- Scenario variables: 3 configurations are assumed by modifying the same reference building: not insulated (e.g. envelopes of 50-60's), insulated (current U-value limits for climate zone), highly insulated building (U value walls = ...; U value windows = ...) + 2 shading configurations (on/off) + 2 CNV summer configurations (on/off) (schedule)
- Energy signature will be calculated and different scenarios compared

Each group is characterized by working in a specific climate.	

Office

Residential

Group #1-3 | U-value Residential

Group #4-6 | U-value Office

min. windows' area = 1/8 pavement – you can also consider continuous windows – in office is general bigger than in residential

Group #4-6 | U-value Office

min. windows' area = 1/8 pavement – you can also consider continuous windows – in office is general bigger than in residential

Group #7+ | WWR Residential

Group #7+ | WWR Office

24