SENSOR PACKAGE DESIGN

- Solar Petal
 - Will hold 5 solar cells that will produce 16 volts.
 - 3 of these items.
 - Round end to take force from water.
 - Going to have the wires and cells enclosed.

SOLAR CELLS CONT.

- More solar cells were added to the design.
 - Volts: 25 volts

SOLAR CELLS

Soldered together solar cell in parallel and series.

• Volts: 16 V

• Amps: 7.9 milliamps.

SOLAR CELLS UPDATE

- Solar cells have been given DC stepdown.
 - To decrease voltage and increase amperage.
 - The battery and solar cells both have DC step-down.
 - Voltage: 5V.
 - Amps: 15 milliamps.

SENSOR PACKAGE DESIGN CONT.

- Solar connecter
 - Will connect all solar petals to the sensor package.
 - Will have metal top for the magnets.
 - A DC stepdown to drop the voltage from 16 to around 5-6 Volts.
 - Current 15 milliamps.

BATTERY CHARGER

- Will be connected to the solar cells.
- The diode is used to prevent voltage backlash.
- Will charge a battery from the solar cells.

BATTERY CHARGING SYSTEM

 https://www.circuitbasics.com/how-to-use-solar-panels-topower-the-arduino/

SCHEMATIC

YOUTUBE VIDEO EXAMPLE PROJECT

https://www.youtube.com/watch?v=37kGva3NW8w

SETUP FOR MORE BATTERIES

