零件参数的优化设计

初昀辉 刘晓曦

指导教师:王命宇

(西北工业大学: 西安 710072)

编者按 本文使用田口玄一的三次设计思想。在离散的损失函数条件下找到了最优。对问题的分析条理 清楚、文字表述简高

摘 要 本文河泊了零件参数的最优设计问题。假定标志产品性能的某个参数 y 由零件参数的标定值 和容差决定。本文首先给出了零件参数和产品性能参数的统计模型,然后根据三次设计的思想和方法进 行标定值和容差设计: 先利用直积法做正交试验, 得到不同试验条件下的信噪比和 y 值, 综合考虑这两 项指标, 找出较优的零件参数水平, 并通过方差分析, 确定显著和不显著因素. 通过对显著因素的调整, 使 y 值更接近于目标值,同时使其均方差保持在较小的值上,这样就兼顾了 y 值的准确性和稳定性, 然后再作容差设计.

模型求解用C语言编程实现,并用随机模拟法对结果进行了验证。结果表明,本文所建模型是稳定、 准确、可靠的. 最后得到的零件参数设计与原设计相比,使单位产品总费用由 3165 元降低到 422 元.

一、问题的提出(略)

二、问题的分析

- 1. 要减少质量损失,就必须使次品和废品尽量少。因此应使 y 值接近目标值 y_0 , 同时应使 y 值 的波动尽量小. 也就是说, 要同时考虑 y 的准确性与稳定性.
- 当零件参数的容差固定时,y的准确性与稳定性取决于零件参数的标定值.若标定值不合适, 减小零件容差有可能使质量损失增大,同时成本亦会增大、因此,应首先确定标定值的最优解或较优 解,然后再调整容差.
- 各零件参数对 y 值影响的显著性是不同的,对标定值或容差作调整时,应首先考虑显著性大 的零件参数.

三、符号说明

大写字母表示随机变量

 X_i $(i=1,2,\cdots,7)$: 零件参数; Y: 产品参数; F: 单位产品费用; L: 单位产品质量损失; 小写字母表示确定量

- y:产品参数期望值; yo:产品参数目标值; f:单位产品费用期望值;
- i: 单位产品质量损失期望值; c: 单位产品成本; x_i ($i=1,2,\cdots,7$): 零件参数标定值;
- \bar{y} : 产品参数的随机数; δx_i ($i=1,2,\cdots,7$): 零件参数容差; x_i : 零件参数的随机数;
- σx; (i=1,2,···,7): 零件参数均方差;

四、模型建立

基本假设:大量产品的零件参数视为相互独立的随机变量,且服从正态分布.产品性能取决于零 件参数的标定值和容差.

根据题述条件,有

$$Y = 174.42 \left(\frac{X_1}{X_5}\right) \left(\frac{X_3}{X_2 - X_1}\right)^{0.85} \cdot \sqrt{\frac{1 - 2.62 \left[1 - 0.36 \left(\frac{X_4}{X_2}\right)^{-0.56}\right]^{3/2} \left(\frac{X_4}{X_2}\right)^{1.16}}{X_6 X_7}}$$
(1)

$$F = c + L \tag{2}$$

要使费用最小, 也就是使 F 的期望值最小, 由式 (2) 得

$$f = c + l = c + P\{|Y - 1.5| > 0.3\} \times 9000 + P\{0.1 < |Y - 1.5| < 0.3\} \times 1000$$

因 $Y \in X_1, X_2, \dots, X_7$ 的函数,且 X_1, X_2, \dots, X_7 相互独立且均服从正态分布,故 Y 的分布由 x_1, x_2, \dots, x_7 ..., 27 的均值和方差决定,即由标定值和容差决定,而成本 。是容差的函数,我们称一组零件参数标 定值 x_1,x_2,\dots,x_7 , 容差 $\Delta x_1,\Delta x_2,\dots,\Delta x_7$ 为一个设计方案,需要做的是在给定范围内找到一个设计方 案, 使 f 取得最小值.

五、模型、求解及结果分析

1. 对给定的设计方案,求解费用规握值 f

成本。容易由零件容差求出,下面讨论如何求质量损失期望值1.

因难以确定 证的分布,我们用随机模拟法求 1. 正态随机数的产生方法为:先采用贝斯 - 德拉姆 洗牌技术产生均匀分布随机数,再用反变换法产生正态随机数 [1].

每次试验,产生 7 个相互独立的正态随机数 \tilde{x}_{t} 是服从 $N(x_i, \frac{1}{6}\Delta x_i^2)$ 分布的一个随机数, i= $1,2,\cdots,7$. 由式 (1) 可得一个 \tilde{y} . 重复试检 m 次,统计其中的次品数 n_1 , 废品数 n_2 , 可得

$$l = \frac{1000n_1 + 9000n_2}{m}$$

于是可进一步求出 f, 根据 f 值可评价给定设计方案的优劣.

用原设计的给定值:

$$x_1 = 0.1,$$
 $x_2 = 0.3,$ $x_3 = 0.1,$ $x_4 = 0.1,$ $x_5 = 1.5,$ $x_6 = 16,$ $x_7 = 0.75,$

容差均取最便宜等级. 进行 2 万次随机试验, 得到 f=3165,y=1.7256, 次品率 63.22%, 废品率 25.92%. 由以上数据看出,由于 y 值偏离 yo 太多,使废品率和次品率很高,导致费用很高,因而这是一 个较差的设计方案.

2. 用三次设计法寻求最优设计方案 [2]

所谓"三次设计", 指系统设计、参数设计 (标定值设计)、容差设计, 现在 $y = x_1, x_2, \dots, x_7$ 的关 系式已给出, 故不需作系统设计. 下面给出参数设计和容差设计的过程和数据.

(1) 参数设计

我们以 y 值和信噪比 n 为指标用直积法作正交试验, y 和 n 分别反映了 v 的准确性和稳定性, 综合考虑这两个指标, 定出最优方案的大致范围, 以及各因素对 y 和 n 影响的显著性大小 (由方差分 析得到). 然后调整标定值的区间,再进行试验,重复 2~3 次即可得到标定值的最优解(使用该方法所 能得到的最优解). 限于篇幅,下面只列出主要数据 [2].

(a) 内外表设计 (见图 1);

可控因素水平表和误差因素水平表如下列两表所示.

表 1 可控因素水平表

水平\因素	X 1	X_2	X ₃	X4	X 5	X 6	X 7
1	0.0750	0.2250	0.0750	0.0750	1.1250	12.0	0.56250
2	0.1000	0.3000	0.1000	0.1000	1.5000	16.0	0.74875
3	0.1250	0.3750	0.1250	0.1250	1.8750	20.0	0.93500

表 2 误差因素水平表

水平 \ 因素	ΔX_1	ΔX_2	ΔX_3	ΔX_4	ΔX_{5}	ΔX_6	ΔX_7
1	$0.95X_{1}$	$0.9X_2$	0.9X ₃	$0.9X_{4}$	0.9X ₅	0.9X ₆	$0.95X_{7}$
2	X_1	X 2	X 3	X 4	Xs	X 6	X 7
3	$1.05X_{1}$	$1.1X_{2}$	$1.1X_{3}$	$1.1X_4$	1.1X5	1.1X ₆	1.05.7

(b) 内表数据及信噪比数据的分析

表内数据及信噪比 $(SN ext{ } ext{$ 照 L27(318) 正交表.

- 从下表数据中,综合考虑信噪比和,值、完成:
- (i) 通过对信噪比和 y 值分别作方差分析,得到各因素对信噪比和 y 值影响的显著性大小.
- (ii) 根据(i) 所得出的结果, 选择出各因素的最优水平. 上述(i), (ii) 两项可参看表 4—7.

表 3 信噪比与 Y 值

条件号	信噪比 SN (dB)	Y	条件号	信噪比 SN (dB)	Y
(1)	16.4677	2.4487	(2)	15.0777	2.8423
(3)	14.8275	4.2658	(4)	16.1826	1.6680
(5)	16.3578	2.7210	(6)	15.3444	2.6606
(7)	16.7260	0.9705	(8)	16.1507	1.9220
(9)	15.5037	3.2459	(10)	15.9997	1.0543
(11)	15.8717	2.3448	(12)	14.2480	5.0711
(13)	16.8062	1.0699	(14)	15.9997	1.5868
(15)	15.0114	3.0022	(16)	16.4864	0.7763
(17)	15.9221	2.0031	(18)	15.9997	1.6421
(19)	16.3802	1.3849	(2 0)	15.6225	2.0571
(21)	13.6645	2.2577	(22)	16.4902	0.9919
(23)	15.6765	1.3230	(24)	15.7382	1.9875
(25)	16.2644	1.2865	(26)	16.4027	0.7490
(27)	15.7370	1.3569			

表 4 Y 值方差分析辅助表

水平 \ 因素	X 1	X 2	X ₃	X 4	X 5	X ₆	X 7
(1)	1.2946	2.6363	1.6395	2.0759	2.5272	2.3182	2.1967
(2)	1.9499	1.8901	2.0049	2.0968	2.0612	1.8471	2.1035
(3)	2.8322	1.5503	2.4323	1.9040	1.4883	1.9113	1.7764

表 4 元素由表 3 对应列中同水平条件的 y 值相加并除以水平重复数得到.

表 5 Y 值方差分析表

因素	平方和 S	自由度 f	均方和 V	F
X_1	10.717	2	5.358	32.177
X 2	5.555	2	2.778	16.680
X 3	2.834	2	1.417	8.510
X 4	0.202	2	0.101	0.605
X 5	4.874	2	2.437	14.635
X 6	1.175	2	0.587	3.528
X 7	0.877	2	0.438	2.633
e	1.998	12	0.167	0.000
T	28.233	26	0.000	0.000

由于 a=0.05 时, F(2,12)=3.89,a=0.01 时, F(2,12)=6.93 ,从表 5 可得: 对 Y 值影响最显著的因 素是 X_1, X_2, X_5, X_3 .

水平 \ 因素	<i>X</i> ₁	X 2	X ₃	X 4	X_5	X ₆	X 7
(1)	147.804	138.160	141.705	139.303	142.638	141.980	142.604
(2)	143.081	143.607	142.324	142.547	142.345	142.310	142.337
(3)	136.074	145.193	142.931	145.110	141.976	142.870	142.018

表 6 信噪比 SN 方差分析辅助表

表 7 信噪比 SN 方差分析液

因素	平方和 S	自由度力	均方和V	F
X_1	7.740	2	3.870	3 0.893
\overline{X}_2	3.624	2	1.512	12.071
X_3	0.083	2	0.042	0.331
X 4	0.882	2	0.941	7 .513
X 5	0.024	2	0.012	0.098
X 6	0.026	2	0.013	0.106
X 7	0.019	2	0.010	0.076
e	1.503	12	0.125	0.000
T	14.303	26	0.000	0.000

由表 7 的 F 值可得:对信噪比影响最显著的因素是 \dot{x}_1, x_2, x_3, x_4 , 因素 X_i $(i=1,2,\cdots,7)$ 最优水 平的选择依据以下原则进行:

- (i) 若 x_i 对 y 影响显著,则从表 4 第 i 列中,选取值最接近目标值 $y_0=1.5$ 的水平作为最优水 平.
 - (ii) 若 x. 对信噪比影响显著,则从表 6 第 i 列中,选取数值最大的水平作为最优水平.
 - (iii) 若 x_i 对信噪比和 y 值影响都显著或都不显著,则按表 4 选取.

采用上述原则的理由是:

- (i) 当 x; 只对一个指标显著时,显然应根据该指标选取最优水平.
- (ii) 当 x; 对两指标都显著或都不显著时,应优先考虑使 y 接近 1.5, 因为准确性比稳定性更重 要一些,

对最后结果的验证也表明了上述原则的合理性.

按照上述步骤可得到一组较优的水平,以该组值作为中心值,将搜索区间长度变为原来的一半, 重复上述步骤, 共进行 3 次之后, 得到一组认为是最佳的标定值:

$$x_1 = 0.0975,$$
 $x_2 = 0.3000,$ $x_3 = 0.1000,$ $x_4 = 0.1000,$ $x_5 = 1.5500,$ $x_6 = 16.400,$ $X_7 = 0.8431$

(2) 容差设计

我们以上述最优标定值为基础,对各零件参数的容差等级进行穷举搜索(共 108 种),得到了一 组使费用最少的组合为

$$x_1 : B,$$
 $x_2 : B$ $x_3 : B,$ $x_4 : C$ $x_5 : C,$ $x_6 : B$ $x_7 : B.$

这样就得到了完整的零件参数设计.

(3) 结果验证

用 20000 次随机试验对上述最优设计方案的验证结果为: y = 1.5009, f = 422, 次品率为 16.52%, 废品率 0.01%, 显然大大优于原设计。

五、模型优缺点分析及改进措施

该模型人为假设少,因而能比较准确地反映实际情况,模型求解时充分考虑了准确性和稳定性, 采用了合理的择优原则,因而该模型可靠性好.

在容差设计中,我们采用了穷举法,这是考虑到容差等级少,穷举法必定能找到最佳组合,且运 算量也不大. 但作为一种一般方法, 若容差等级增多, 则运算量会急剧增大.

3. 改进措施:

当容差等级较多时,容差设计可采用正交试验法,亦可进行方差分析。找到对误差影响最大的因 素,进行有针对性的调整,这样虽然不一定能没到最佳值。但总可以找到比较优的解,当运算量很大 时,这是实际可行的方法.

参考文献

- [1] 杨惠中,汪懿辅著,数值计算方法与C语言工程函数库,科学出版社,北京, 1996.
- [2] 中国现场纪计研究会三次设计组,全国总工会电教中心编著,正交法和三次设计,科学出版社,北京,1985.
- [3] 陈兆能,邱泽麟,余经洪编著,试验分析与设计,上海交通大学出版社,上海,1991.
- [4] 谭浩强编著 C 程序设计,清华大学出版社,北京, 1995.

	可控因紫 说		7.1.2	$egin{array}{cccccccccccccccccccccccccccccccccccc$
安国家			验与 5N 比引	2 2 : : : : : : : : : : : : : : : : : :
1 2 : : 27	$L_{27}(3^{13})$	y ₁ y ₂ : : : y ₂ 7	η_1 η_2 \vdots η_{27}	

图 1