§ 40. Положительно определенные квадратичные формы

Б.М.Верников

Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики

Понятие положительно определенной формы

Квадратичную форму $f(x_1,x_2,\ldots,x_n)$ над полем F можно рассматривать как отображение из множества F^n в F, которое каждому упорядоченному набору скаляров $(x_1^0,x_2^0,\ldots,x_n^0)\in F^n$ ставит в соответствие скаляр $f(x_1^0,x_2^0,\ldots,x_n^0)\in F$. Этот скаляр естественно называеть значением формы $f(x_1,x_2,\ldots,x_n)$ на наборе значений переменных $(x_1^0,x_2^0,\ldots,x_n^0)$. Набор значений переменных $(x_1^0,x_2^0,\ldots,x_n^0)$ называется ненулевым, если найдется $i\in\{1,2,\ldots,n\}$ такой, что $x_i^0\neq 0$.

Во многих приложениях важную роль играют формы над полем \mathbb{R} , значение которых на любом ненулевом наборе значений переменных больше 0. Их изучению и посвящен данный параграф.

Определение

Квадратичная форма $f(x_1, x_2, \dots, x_n)$ над полем \mathbb{R} , значение которой на любом ненулевом наборе значений переменных положительно, называется положительно определенной.

• Всюду далее в этом параграфе рассматриваются только квадратичные формы над полем \mathbb{R} . В явном виде это, как правило, оговариваться не будет.

1-й критерий положительной определенности (1)

1-й критерий положительной определенности

Пусть квадратичная форма $f=f(x_1,x_2,\ldots,x_n)$ имеет канонический вид $t_1y_1^2+t_2y_2^2+\cdots+t_ny_n^2$. Форма f положительно определена тогда и только тогда, когда $t_1,t_2,\ldots,t_n>0$.

Доказательство. Пусть форма f приводится к указанному в формулировке критерия каноническому виду невырожденной линейной заменой переменных

$$\begin{cases} x_1 = b_{11}y_1 + b_{12}y_2 + \dots + b_{1n}y_n, \\ x_2 = b_{21}y_1 + b_{22}y_2 + \dots + b_{2n}y_n, \\ \dots \\ x_n = b_{n1}y_1 + b_{n2}y_2 + \dots + b_{nn}y_n. \end{cases}$$
(1)

Нам понадобится также обратная замена:

$$\begin{cases} y_{1} = c_{11}x_{1} + c_{12}x_{2} + \cdots + c_{1n}x_{n}, \\ y_{2} = c_{21}x_{1} + c_{22}x_{2} + \cdots + c_{2n}x_{n}, \\ \vdots \\ y_{n} = c_{n1}x_{1} + c_{n2}x_{2} + \cdots + c_{nn}x_{n}. \end{cases}$$
(2)

Она тоже невырожденна.

1-й критерий положительной определенности (2)

Необходимость. Предположим, что $t_i\leqslant 0$ для некоторого i. Положим $y_i'=1$ и $y_j'=0$ для всех $j=1,2,\ldots,n,$ $j\neq i$. Подставим в левые части равенств (2) y_1' вместо $y_1,\ y_2'$ вместо $y_2,\ \ldots,\ y_n'$ вместо y_n . Получим неоднородную крамеровскую систему линейных уравнений

$$\begin{cases}
c_{11}x_{1} + c_{12}x_{2} + \cdots + c_{1n}x_{n} = 0, \\
c_{21}x_{1} + c_{22}x_{2} + \cdots + c_{2n}x_{n} = 0, \\
\vdots \\
c_{i-11}x_{1} + c_{i-12}x_{2} + \cdots + c_{i-1n}x_{n} = 0, \\
c_{i1}x_{1} + c_{i2}x_{2} + \cdots + c_{in}x_{n} = 1, \\
c_{i+11}x_{1} + c_{i+12}x_{2} + \cdots + c_{i+1n}x_{n} = 0, \\
\vdots \\
c_{n1}x_{1} + c_{n2}x_{2} + \cdots + c_{nn}x_{n} = 0.
\end{cases}$$
(3)

Матрица этой крамеровской системы совпадает с матрицей замены (2). Поскольку эта замена невырожденна, получаем, что определитель системы (3) отличен от нуля. По теореме Крамера система (3) имеет единственное решение $(x_1', x_2', \dots, x_n')$. Это решение — ненулевое, так как система (3) неоднородна. Поскольку $f(x_1, x_2, \dots, x_n) = t_1 y_1^2 + t_2 y_2^2 + \dots + t_n y_n^2$, имеем

$$f(x'_1, x'_2, \ldots, x'_n) = t_1(y'_1)^2 + t_2(y'_2)^2 + \cdots + t_n(y'_n)^2 = t_i \leq 0.$$

Следовательно, форма f не является положительно определенной. Необходимость доказана.

1-й критерий положительной определенности (3)

Достаточность. Пусть x_1', x_2', \ldots, x_n' — произвольный ненулевой набор значений переменных формы f. Подставив их в равенства (2), получим набор y_1', y_2', \ldots, y_n' значений переменных y_1, y_2, \ldots, y_n . Если $y_1' = y_2' = \cdots = y_n' = 0$, то, подставив эти значения в правые части равенств (1), получим, что $x_1' = x_2' = \cdots = x_n' = 0$. Следовательно, набор y_1', y_2', \ldots, y_n' — ненулевой. Поскольку, по условию, $t_1, t_2, \ldots, t_n > 0$, имеем

$$f(x_1',x_2',\ldots,x_n')=t_1(y_1')^2+t_2(y_2')^2+\cdots+t_n(y_n')^2>0.$$

Следовательно, форма f положительно определена.

Критерий Сильвестра (1)

Для того, чтобы сформулировать еще один критерий положительной определенности формы, нам понадобится одно новое понятие.

Определение

Пусть $A=(a_{ij})$ — квадратная матрица порядка n. Миноры этой матрицы, расположенные в ее первых k строках и первых k столбцах (для всех $k=1,2,\ldots,n$) называются *угловыми минорами* матрицы A. Угловой минор порядка k обозначается через Δ_k .

В частности, $\Delta_1 = a_{11}$ и $\Delta_n = |A|$.

Критерий Сильвестра (2-й критерий положительной определенности)

Квадратичная форма положительно определена тогда и только тогда, когда все угловые миноры ее матрицы положительны.

Доказательство проведем индукцией по числу переменных формы f. Обозначим это число через n.

База индукции очевидна: форма от одной переменной имеет вид $a_{11}x_1^2$. Ясно, что она положительно определена тогда и только тогда, когда $a_{11}>0$, а единственным угловым минором матрицы $A=(a_{11})$ этой формы является число a_{11} .

Критерий Сильвестра (2)

extstyle ex

$$f(x_1, x_2, ..., x_n) = g(x_1, x_2, ..., x_{n-1}) + a_{nn}x_n^2 + + 2a_{1n}x_1x_n + 2a_{2n}x_2x_n + ... + 2a_{n-1}x_{n-1}x_n,$$
(4)

где $g(x_1,x_2,\ldots,x_{n-1})$ — сумма всех слагаемых формы $f(x_1,x_2\ldots,x_n)$, не содержащих x_n . Обозначим матрицу формы f через A, а угловые миноры этой матрицы — через Δ_1,\ldots,Δ_n .

Необходимость. Предположим, что форма f положительно определена. Если форма $g(x_1,x_2,\ldots,x_{n-1})$ не является положительно определенной, то существует ненулевой набор значений переменных $(x_1',x_2',\ldots,x_{n-1}')$ такой, что $g(x_1',x_2',\ldots,x_{n-1}') \leqslant 0$. Тогда

$$f(x'_1, x'_2, \ldots, x'_{n-1}, 0) = g(x'_1, \ldots, x'_{n-1}) \leq 0,$$

что противоречит положительной определенности формы f. Таким образом, форма g положительно определена. По предположению индукции, ее угловые миноры, совпадающие с минорами $\Delta_1, \Delta_2, \ldots, \Delta_{n-1}$, положительны. Сделаем замену X=TY, которая приводит форму f к каноническому виду, и обозначим через D (диагональную) матрицу полученной формы. Из 1-го критерия положительной определенности вытекает, что |D|>0.

Критерий Сильвестра (3)

В силу замечания об изменении матрицы формы при замене переменных, $D = T^{\top}AT$. Следовательно,

$$|D| = |T^{\top}AT| = |T^{\top}| \cdot |A| \cdot |T| = |T|^2 \cdot |A|.$$

Отсюда
$$\Delta_n = |A| = \frac{|D|}{|T|^2} > 0.$$

Достаточность. Предположим теперь, что $\Delta_1, \Delta_2, \ldots, \Delta_n > 0$. По предположению индукции форма $g(x_1, x_2, \ldots, x_{n-1})$ положительно определена. Пусть

$$\begin{cases} x_1 = t_{11}y_1 + t_{12}y_2 + \dots + t_{1n-1}y_{n-1}, \\ x_2 = t_{21}y_1 + t_{22}y_2 + \dots + t_{2n-1}y_{n-1}, \\ \dots \\ x_{n-1} = t_{n-11}y_1 + t_{n-12}y_2 + \dots + t_{n-1n-1}y_{n-1} \end{cases}$$
(5)

— невырожденная линейная замена переменных, которая приводит форму g к каноническому виду $b_{11}y_1^2+b_{22}y_2^2+\cdots+b_{n-1}{}_{n-1}y_{n-1}^2$. Поскольку форма g положительно определена, из 1-го критерия положительной определенности вытекает, что

$$b_{11}, b_{22}, \dots, b_{n-1}, b_{n-1} > 0.$$
 (6)

Критерий Сильвестра (4)

Подставив правые части равенств (5) в правую часть равенства (4), получим форму

$$f(y_{1}, y_{2}, \dots, y_{n-1}, x_{n}) = b_{11}y_{1}^{2} + b_{22}y_{2}^{2} + \dots + b_{n-1} + b_{n-1}y_{n-1}^{2} + a_{nn}x_{n}^{2} + 2a_{1n}(t_{11}y_{1} + t_{12}y_{2} + \dots + t_{1}n_{-1}y_{n-1})x_{n} + 2a_{2n}(t_{21}y_{1} + t_{22}y_{2} + \dots + t_{2}n_{-1}y_{n-1})x_{n} + \dots + 2a_{n-1}n(t_{n-11}y_{1} + t_{n-12}y_{2} + \dots + t_{n-1}n_{-1}y_{n-1})x_{n} = b_{11}y_{1}^{2} + b_{22}y_{2}^{2} + \dots + b_{n-1}n_{-1}y_{n-1}^{2} + a_{nn}x_{n}^{2} + 2(a_{1n}t_{11} + a_{2n}t_{21} + \dots + a_{n-1n}t_{n-11})y_{1}x_{n} + 2(a_{1n}t_{12} + a_{2n}t_{22} + \dots + a_{n-1n}t_{n-12})y_{2}x_{n} + \dots + 2(a_{1n}t_{1}n_{-1} + a_{2n}t_{2}n_{-1} + \dots + a_{n-1n}t_{n-1n})y_{n-1}x_{n}.$$

Полагая $b_{in}=a_{1n}t_{1i}+a_{2n}t_{2i}+\cdots+a_{n-1\,n}t_{n-1\,i}$ для всех $i=1,2,\ldots,n-1$, имеем:

$$f(y_1, y_2, \dots, y_{n-1}, x_n) = b_{11}y_1^2 + b_{22}y_2^2 + \dots + b_{n-1} + b_{n-1}y_{n-1}^2 + a_{nn}x_n^2 + b_{n-1}y_1x_n + 2b_{2n}y_2x_n + \dots + 2b_{n-1}y_{n-1}x_n.$$

Критерий Сильвестра (5)

Выделив полный квадрат по каждой из переменных $y_1, y_2, \ldots, y_{n-1},$ получим:

$$f(y_1, y_2, \dots, y_{n-1}, x_n) = b_{11} \left(y_1 + \frac{b_{1n}}{b_{11}} \cdot x_n \right)^2 + b_{22} \left(y_2 + \frac{b_{2n}}{b_{22}} \cdot x_n \right)^2 + \dots +$$

$$+ b_{n-1} \cdot b_{n-1} \left(y_{n-1} + \frac{b_{n-1} \cdot n}{b_{n-1} \cdot n} \cdot x_n \right)^2 +$$

$$+ \left(a_{nn} - \frac{b_{1n}^2}{b_{11}} - \frac{b_{2n}^2}{b_{22}} - \dots - \frac{b_{n-1}^2 \cdot n}{b_{n-1} \cdot n-1} \right) x_n^2.$$

Сделаем замену переменных

$$\begin{cases} y_1 = z_1 & -\frac{b_{1n}}{b_{11}} \cdot x_n, \\ y_2 = z_2 & -\frac{b_{1n}}{b_{11}} \cdot x_n, \\ \vdots \\ y_{n-1} = z_{n-1} - \frac{b_{n-1}}{b_{n-1}} \cdot x_n, \\ x_n = z_n. \end{cases}$$

Обозначим матрицу этой замены через T.

Критерий Сильвестра (6)

Поскольку

$$T = \begin{pmatrix} 1 & 0 & \cdots & 0 & -\frac{b_{1n}}{b_{11}} \\ 0 & 1 & \cdots & 0 & -\frac{b_{2n}}{b_{11}} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 & -\frac{b_{n-1}}{b_{n-1}n-1} \\ 0 & 0 & \cdots & 0 & 1 \end{pmatrix},$$

имеем |T|=1. В частности, наша замена невырожденна. В результате этой замены форма f перейдет в форму

$$b_{11}z_1^2+b_{22}z_2^2+\cdots+b_{n-1}{}_{n-1}z_{n-1}^2+b_{nn}z_n^2,$$

где $b_{nn}=a_{nn}-\frac{b_{1n}^2}{b_{11}}-\frac{b_{2n}^2}{b_{22}}-\cdots-\frac{b_{n-1\,n}^2}{b_{n-1\,n-1}}.$ Обозначим матрицу этой формы через D. Эта матрица диагональна, а на ее главной диагонали стоят числа $b_{11},b_{22},\ldots,b_{nn}.$ Поскольку $D=T^\top AT$, а $|T^\top|=|T|=1$, имеем

$$b_{11}b_{22}\cdots b_{n-1}{}_{n-1}b_{nn}=|D|=|T^{\top}AT|=|T^{\top}|\cdot|A|\cdot|T|=|A|=\Delta_n.$$

Из (6) и того факта, что $\Delta_n > 0$, вытекает, что

$$b_{nn}=\frac{\Delta_n}{b_{11}b_{22}\cdots b_{n-1\,n-1}}>0.$$

В силу 1-го критерия положительной определенности, форма f положительно определена.

