Name:	
J#:	Dr. Clontz
Date:	

MASTERY QUIZ DAY 15

Math 237 – Linear Algebra Fall 2017

Version 1 Fall 2017 Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standar	d V2.	Mark:					
Determine if	$\begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix} $ is a lin	near com	bination of the vectors	$\begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix},$	$\begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix}$, and	$\begin{bmatrix} 5 \\ 1 \\ -6 \end{bmatrix}$

Standard S1.
$$\begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 3 \\ -1 \\ 1 \end{bmatrix}, \text{ and } \begin{bmatrix} 2 \\ 0 \\ -2 \end{bmatrix} \text{ are linearly dependent or linearly independent}$$

Standard S3.

Mark:

Let W be the subspace of \mathcal{P}_3 given by $W = \text{span} \left(\left\{ x^3 + x^2 + 2x + 1, 3x^3 + 3x^2 + 6x + 3, 3x^3 - x^2 + 3x - 2, 7x^3 - x^2 + 8x - 3 \right\} \right)$. Find a basis for W.

Standard S4.

Mark:

Let W be the subspace of $M_{2,2}$ given by $W = \operatorname{span}\left(\left\{\begin{bmatrix} 2 & 0 \\ -2 & 0 \end{bmatrix}, \begin{bmatrix} 3 & 1 \\ 3 & 6 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}\right\}\right)$. Compute the dimension of W.

Additional Notes/Marks