## DM Tutorial 9

#### December 17, 2019

1. The following arrays describe a relation R on a set  $A = \{1, 2, 3, 4\}$ :

VERT = [1, 2, 6, 4]

TAIL = [1, 2, 2, 4, 4, 3, 4, 1]

 $\mathrm{HEAD} = [2,\, 2,\, 3,\, 3,\, 4,\, 4,\, 1,\, 3]$ 

NEXT = [8, 3, 0, 5, 7, 0, 0, 0]

Compute both the digraph of R and the matrix  $M_R$ .



- (a)
- (b)

$$\begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

2. Let  $A=B=\{1,2,3\}$  and let  $R=\{(1,1),(1,2),(2,3),(3,1)\}$  and let  $S=\{(2,1),(3,1),(3,2),(3,3)\}$ . Let R and S be the relations from A to B. Compute

(a) 
$$\bar{R}$$
 
$$\bar{R} = \{(1,3), (2,1), (2,2), (3,2), (3,3)\}$$

(b) 
$$R \cap S$$
 
$$R \cap S = \{(3,1)\}$$

(c)  $R \cup S$   $R \cup S = \{(1,1), (1,2), (2,1), (2,3), (3,1), (3,2), (3,3)\}$ 

(d) 
$$S^{-1}$$
 
$$S^{-1} = \{(1,2), (1,3), (2,3), (3,3)\}$$

3. Let  $A=\{2,4,5,7\}$  and let R and S be the relations on A described by xRy if and only if x+y is even and  $M_S=\begin{bmatrix}0&1&0&0\\0&0&1&1\\0&1&1&1\\0&0&0&0\end{bmatrix}$ . List the ordered pairs belonging to the following relations.

$$S = \{(1, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)\}$$

(a) 
$$S^{-1}$$
 
$$S^{-1} = \{(2,1), (3,2), (4,2), (3,2), (3,3), (4,3)\}$$

(b) 
$$S^{-1} \cap R$$

$$R = \{(2, 2), (2, 4), (4, 4), (4, 2), (5, 7), (7, 5)\}$$
$$S^{-1} \cap R = \emptyset$$

(c) 
$$(S^{-1} \circ R)^{-1}$$
  

$$S^{-1} \circ R = \{(3, 2), (3, 4), (4, 2), (4, 4), (3, 2), (3, 4)\}$$

4. Let  $A=\{1,2,3,4\}$  and  $B=\{1,2,3\}$ . The matrices  $M_R$  and  $M_S$  of the relation R and S be the relations from A to B are given by  $M_R=\{1,2,3\}$ .

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}, M_S = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}. \text{ Compute}$$

(a)  $M_{R \cup S}$ 

(b) 
$$M_{R\cap S}$$

$$M_{R \cap S} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

(c) 
$$M_{R^{-1}}$$

i. No inverse.

#### (d) $M_{\bar{S}}$

$$M_{\bar{S}} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

# 5. Let $A = \{a, b, c, d, e\}$ and let the equivalence relations R and S on A be given by

$$M_R = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$M_S = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

### (a) Compute

i. 
$$M_{R \circ R}$$

$$M_{R \circ R} = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \circ \begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

ii.  $M_{S \circ R}$ 

iii.  $M_{R \circ S}$ 

iv.  $M_{S \circ S}$ 

$$M_{S \circ S} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \circ \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

(b) Compute the partition of A corresponding to  $R \cap S$ .

$$M_{R\cap S} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A = \{\{1\}, \{2, 3\}, \{4\}, \{5\}\}$$

- 6. Let  $A = \{1, 2, 3, 4\}$  and a relation R on A is  $R = \{(1, 2), (1, 3), (2, 3), (3, 4)\}$ . Find the reflexive closure and symmetric closure of R.
  - (a) Reflexive closure

$$R \cup \Delta = \{(1,1), (2,2), (3,3), (4,4), (1,2), (1,3), (2,3), (3,4)\}$$

(b) Symmetric closure

$$R \cup R^{-1} = \{(2,1), (3,1), (3,2), (4,3), (1,2), (1,3), (2,3), (3,4)\}$$

- 7. Let  $A = \{1, 2, 3, 4\}$ . For the relation R whose matrix is given, find the matrix of the transitive closure by using Warshall's algorithm. (Note: in exam, you don't actually have to draw so many matrices, its just for my own personal clarity)
  - (a)  $M_R = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ 
    - i.  $W_0$

$$W_0 = \begin{bmatrix} \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{1} & 0 & 1 & 0 \\ \mathbf{0} & 0 & 0 & 1 \\ \mathbf{0} & 0 & 0 & 0 \end{bmatrix}$$

A. 
$$C_1 = 2$$
,  $R_1 = 2$ 

B. 
$$ADD: (2,2)$$

ii.  $W_1$ 

$$W_1 = \begin{bmatrix} 0 & \mathbf{1} & 0 & 0 \\ \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{0} \\ 0 & \mathbf{0} & 0 & 1 \\ 0 & \mathbf{0} & 0 & 0 \end{bmatrix}$$

A. 
$$C_2 = \{1, 2\}$$

B. 
$$R_2 = \{1, 2, 3\}$$

C. 
$$ADD: \{(1,1), (1,2), (2,1), (2,2), (3,1), (3,2)\}$$

iii.  $W_2$ 

$$W_2 = \begin{bmatrix} 1 & 1 & \mathbf{0} & 0 \\ 1 & 1 & \mathbf{1} & 0 \\ \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{1} \\ 0 & 0 & \mathbf{0} & 0 \end{bmatrix}$$

A. 
$$C_3 = \{1\}$$

B. 
$$R_3 = \{1, 2, 4\}$$

C. 
$$ADD: \{(1,1), (2,1), (4,1)\}$$

iv. 
$$W_3$$

$$W_3 = \begin{bmatrix} 1 & 1 & 0 & \mathbf{0} \\ 1 & 1 & 1 & \mathbf{0} \\ 1 & 1 & 0 & \mathbf{1} \\ \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix}$$

A. 
$$C_4 = \{3\}$$

B. 
$$R_4 = \{1\}$$

C. 
$$ADD: \{(1,3)\}$$

v.  $W_4(M_{R^{\infty}})$ , transitive closure

$$W_4 = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

(b) 
$$M_R = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

i. 
$$W_0$$

$$W_0 = \begin{bmatrix} \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ 0 & 0 & 1 & \mathbf{1} \\ 0 & 1 & 1 & \mathbf{1} \\ 0 & 0 & 0 & \mathbf{1} \end{bmatrix}$$

A. 
$$R_0 = \{2\}$$

B. 
$$C_0 = \{2, 3, 4\}$$

C. 
$$ADD: \{(2,2), (2,3), (2,4)\}$$

ii. 
$$W_1$$

$$W_1 = \begin{bmatrix} 0 & 1 & \mathbf{0} & 0 \\ \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\ 0 & 1 & \mathbf{1} & 1 \\ 0 & 0 & \mathbf{0} & 1 \end{bmatrix}$$

A. 
$$R_1 = \{2, 3, 4\}$$

B. 
$$C_1 = \{2, 3\}$$

C. 
$$ADD: \{(2,2), (2,3), (3,2), (3,3), (4,2), (4,3)\}$$

iii.  $W_2$ 

$$W_2 = \begin{bmatrix} 0 & 1 & \mathbf{0} & 0 \\ 0 & 1 & \mathbf{1} & 1 \\ \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\ 0 & 1 & \mathbf{1} & 1 \end{bmatrix}$$

A. 
$$R_2 = \{2, 3, 4\}$$

B. 
$$C_2 = \{2, 3, 4\}$$

C. Add 
$$\{(2,4),(3,4),(4,4)\}$$
 (Basically  $W_3 = W_2$ )

iv.  $W_3$ 

$$W_3 = \begin{bmatrix} 0 & 1 & 0 & \mathbf{0} \\ 0 & 1 & 1 & \mathbf{1} \\ 0 & 1 & 1 & \mathbf{1} \\ \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{1} \end{bmatrix}$$

A. 
$$R_3 = \{4\}$$

B. 
$$C_3 = \{2, 3, 4\}$$

C. Nothing new again,  $W_4 = W_3$ 

v.  $W_4$ , or transitive closure, or  $M_{R^{\infty}}$ 

$$M_{R^{\infty}} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$

8. Let  $A = \{1, 2, 3, 4\}$  and let R and S be relations on A described by

$$M_R = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$M_S = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

Use Warshall's algorithm to compute the transitive closure of  $R \cup S$ 

$$M_{R \cup S} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \cup \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$

(a) Start of Warshall,  $W_0$ 

$$W_0 = \begin{bmatrix} \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{1} \\ \mathbf{0} & 1 & 0 & 0 \\ \mathbf{0} & 1 & 1 & 0 \\ \mathbf{0} & 1 & 1 & 1 \end{bmatrix}$$

i. 
$$R_1 = \{1, 2, 4\}, C_1 = \{1\}$$

ii. 
$$ADD: \{(1,1), (2,1), (4,1)\}$$

(b)  $W_1$ 

$$W_1 = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

i. 
$$R_2 = \{1, 2, 3, 4\}$$

ii. 
$$C_2 = \{1, 2\}$$

iii. 
$$ADD: \{(1,1), (1,2), (2,1), (2,2), (3,1), (3,2), (4,1), (4,2)\}$$

(c)  $W_2$ 

$$W_2 = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

i. 
$$R_3 = \{3, 4\}$$

ii. 
$$C_3 = \{1, 2, 3, 4\}$$

iii. 
$$ADD: \{(3,1), (3,2), (3,3), (3,4), (4,1), (4,2), (4,3), (4,4)\}$$

(d)  $W_3$ 

$$W_3 = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

i. 
$$R_4 = \{1, 2, 3, 4\}$$

ii. 
$$C_4 = \{1, 3, 4\}$$

iii. 
$$ADD: \{(1,1), (1,3), (1,4), (2,1), (2,3), (2,4), (3,1), (3,3), (3,4), (4,1), (4,3), (4,4)\}$$

(e)  $W_4$ , or the transitive closure, or  $M_{R^{\infty}}$