Discussion Assignment Unit 6 Math 1201 - College Algebra.

Jasper Albert Nri

October 2021

PART 1

QUESTION

First, create 3 equations of the form ax + by + cz = d, where a, b, c, and d are constants (integers between -5 and 5). For example, x + 2y - z = -1. Perform on your system to obtain a row-echelon form and the solution.

Go to the 3D calculator website GeoGebra: www.geogebra.org/3d?lang=pt and enter each of the equations.

SOLUTION The equations i will be using are

$$x - y + z = 4$$
$$3x - 2y - z = -2$$
$$4x + 3y - 2z = 5$$

Writing the augmented matrix

$$\begin{bmatrix} 1 & -1 & 1 & | & 4 \\ 3 & 2 & -1 & | & -2 \\ 4 & -3 & -2 & | & 5 \end{bmatrix}$$

Performing row operations to obtain row-echelon form.

$$-3R_1 + R_2 = R_2 \rightarrow \begin{bmatrix} 1 & -1 & 1 & | & 4 \\ 0 & 5 & -3 & | & -14 \\ 4 & -3 & -2 & | & 5 \end{bmatrix}$$

$$-4R_1 + R_3 = R_3 \rightarrow \begin{bmatrix} 1 & -1 & 1 & | & 4 \\ 0 & 5 & -3 & | & -14 \\ 0 & 1 & -6 & | & -36 \end{bmatrix}$$
Interchange R_2 and $R_3 \rightarrow \begin{bmatrix} 1 & -1 & 1 & | & 4 \\ 0 & 1 & -6 & | & -36 \\ 0 & 5 & -3 & | & -14 \end{bmatrix}$

Then,

$$-5R_2 + R_3 = R_3 \rightarrow \begin{bmatrix} 1 & -1 & 1 & | & 4 \\ 0 & 1 & -6 & | & -36 \\ 0 & 0 & 27 & | & 166 \end{bmatrix}$$

$$\frac{1}{27}R_3 = R_3 \rightarrow \begin{bmatrix} 1 & -1 & 1 & | & 4 \\ 0 & 1 & -6 & | & -36 \\ 0 & 0 & 1 & | & \frac{166}{27} \end{bmatrix}$$

$$x - y + z = 4$$

$$y - 6z = -36$$

$$z = \frac{166}{27}$$

Substituting z into y - 6z = -36

$$y = -36 + 6z$$

$$y = -36 + 6\left(\frac{166}{27}\right)$$

$$y = \frac{996}{27} - 36$$

$$y = \frac{24}{27}$$

Substituting z and y into x - y + z = 4

$$x - y + z = 4$$

$$x = 4 + y - z$$

$$x = 4 + \frac{24}{27} - \frac{166}{27}$$

$$x = \frac{108 + 24 - 166}{27}$$

$$x = \frac{132 - 166}{27}$$

$$x = -\frac{34}{27}$$

So, the solution is

$$\left(-\frac{34}{27}, \frac{24}{27}, \frac{166}{27}\right)$$

These are the points of intersection between the three planes (Abramson, 2017). The 3D graph of the equation is given below.

PART 2

QUESTION

After you have completed the first task, choose **ONE** of the following to complete your discussion post.

4. Give an example with 2 equations as simple as possible with 3 variables (at least 1 being non-linear, keeping z to the one power on both equations) and describe the potential of GeoGebra to study nonlinear systems.

 ${\bf SOLUTION}$ The First example of a non-linear system with a quadratic equation

$$3x^2 + 3y + z = 10$$

The 3D graph of the equation is given below.

The Second example of a non-linear system with a cubic equation

$$2x^2 + 4y^2 + z = 8$$

The 3D graph of the equation is given below.

Geogebra is a very useful tool plotting the graph of these equations for better visualisation of the points of intersection as it renders it in 3D.

References

Abramson, J. (2017). Algebra and trigonometry. OpenStax, TX: Rice University. Retrieved from https://openstax.org/details/books/algebra-and-trigonometry