Neural Networks

Mohana Meher

17wh1a0567

BVRIT Hyderabad College of Engineering for Women

Agenda

- Deep Learning
- Neural Networks
- Perceptron Learning Algorithm Analogy
- Gradient Descent
- Back Propagation
- Training a Neural Network
- Variants of Neural Network
- Applications of Neural Networks

Deep Learning

ARTIFICIAL INTELLIGENCE

Programs with the ability to learn and reason like humans

MACHINE LEARNING

Algorithms with the ability to learn without being explicitly programmed

DEEP LEARNING

Subset of machine learning in which artificial neural networks adapt and learn from vast amounts of data

Why Neural Networks?

With Neural Networks computers can do things that we don't exactly know how to do.

Motivation behind Neural Networks

The building block of neural net is a neuron. An artificial neuron works the same way a biological neuron works.

Neural Networks

Neural networks are multi-layer networks of neurons (the blue and magenta nodes in the chart below) that we use to classify things, make predictions, etc.

Perceptron

Learning Mode

In this mode, the neuron can be trained to fire or not, for particular input patterns

Using Mode

By taking some input, the trained model produces associated output.

Activation Functions

Hyper Tangent Function

ReLU Function

Sigmoid Function

Identity Function

Escape Marriage Analogy

- Settled with Job
- 2. Performance in Academics
- Going abroad for higher studies

Inputs

X1 > Doing a Job

X2 > performance in Academics

X3 > Went abroad

Weights

$$W1 = 2$$
, $W2 = 2$, $W3 = 6$

Threshold = 5

It will fire if you're going to abroad and will not fire if you're not going abroad irrespective of other inputs.

$$W1 = 2$$
, $W2 = 2$, $W3 = 6$

Threshold = 3

It will fire if X3 or other two inputs are high

W1 > Weight associated with input X1 W2 > Weight associated with input X2

W3 > Weight associated with input X3

Weights

$$2x0 + 2x0 + 6x1 = 6$$

$$W1 = 2$$
, $W2 = 2$, $W3 = 6$

Threshold = 5

It will fire if you're going to abroad and will not fire if you're not going abroad irrespective of other inputs.

$$2x0 + 2x0 + 6x1 = 6$$

$$W1 = 2, W2 = 2, W3 = 6$$

$$2x1 + 2x1 + 6x0 = 4$$

Threshold = 3

It will fire if X3 or other two inputs are high

W1 > Weight associated with input X1 W2 > Weight associated with input X2 W3 > Weight associated with input X3

Neural Networks - Example

1 1 1 1 / / / / / / / / / / / **3 3** 3 3 3 3 3 3 3 3 3 3 3 3 3 3 **なつクコつ** 1 て**11** 1 1 **フラ**クフ 9

28 x 28 784 pixels

Training a neural network

- Absolute Error
- Mean squared error(MSE)
- Gradient Descent
- Back Propagation

Back Propagation

Variants of Neural Networks

- 1. Convolutional Neural Networks (CNNs)
- Long Short Term Memory Networks (LSTMs)
- 3. Recurrent Neural Networks (RNNs)
- 4. Generative Adversarial Networks (GANs)
- 5. Radial Basis Function Networks (RBFNs)
- 6. Multilayer Perceptrons (MLPs)
- 7. Self Organizing Maps (SOMs)
- 8. Deep Belief Networks (DBNs)
- 9. Restricted Boltzmann Machines (RBMs)
- 10. Autoencoders

Artificial Neural Network (ANN)

Convolutional Neural Network (CNN)

Applications of Neural Networks

References

http://neuralnetworksanddeeplearning.com/

- Free online book

https://www.youtube.com/channel/UCYO_jab_esuFRV4b17AJtAw

- 3Blue1Brown, by Grant Sanderson, is some combination of math and entertainment

THANK YOU