©2024 ELEANORWAISS.GITHUB.IO **ACADEMIC WEAPON** date keywords subject 3 Dec 2024 topic Test 2 Debrief Mean - 66 intinite degree polynomial Recall: Power Series = Cn(x-a) Centered of a coefficients in TR

Converges on some "internal of conjungues" Ch 7 Series Jolhs 4 Ch 8 Nonlinear Nightman $\frac{1}{1-\chi} = \sum_{k>0}^{\infty} \chi^{k} \qquad \underline{1} = (-1,1)$ $\frac{1}{1+\chi} = \sum_{k=0}^{\infty} (-1)^{k} \chi^{k}$ $e^{x} = \sum_{k=0}^{\infty} \frac{\chi^{k}}{k!} \quad I = \mathbb{R}$ Crive polynomial approximation to any piecewise continuous (Stone Weierstrauss) A from is analytic iff 3 open I > xo on which I = \(\int \chi_{\text{L}} \cho_{\text{L}} \chi_{\text{L}} \chi_{\text{L}} \chi_{\text{L}} \cho Taylor's theorem (building a power series using so derivatives), a actually a weaker condition than analyticity Recall a (x) y" + a, (x) y' + a, (x) y = 0 ~> y" + p(x)y' + q(x)y = 0 2nd order, linear homog Unless p, q constants non-autonomous X:5 ordinary: f p, q are analytic in x × :5 Singular if not If x_0 is ordinary, then 3! 2 linearly independent solutions $y = \sum_{n=0}^{\infty} C_n (x - x_0)^n$ converging on $|x - x_0| \angle R$ where R = distance from x_0 to nearest singular point Theorem 4y"+y=0 Could y=e"t this, but we wont! such that R =0. £x ~ y"+ 4y=0 Let $x_0 = 0$, guess $y = \frac{z}{n_0}$ both analytic on z (or z) $y' = \sum_{n=1}^{\infty} v_1 c_n x^{n-1}$ $y'' = \sum_{n=1}^{\infty} v_1 c_n x^{n-2}$ => 4(k+2)(k·1) c + c = 0 + K = Z>0

©2024 ELEANORWAISS.GITHUE	3.IU		Î	ACADEMIC WEAPON
subject			date	keywords
topic				
			-Ск	
				Recursive vilation/ difference equation
		k =	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 7 , 5
		k -	-c,	c, <u>1</u>
			3 4.3.2	C ₀ C ₀ 1
		1 -	2 9 4 - 4.4.3	$\frac{7^3}{4^3}$ 3.2 = $\frac{7^2}{4^7}$
		V->	5 4.54	- 43 5.3.2 - V2 5!
			20 aut 0 (1 1 2 1 1 6
			Y = Z CKX = Co	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
			7	C1 (X - 43 x3 + 455 x5 - 43.71 x7 +
				90 (-Dk y2k / 0 5 (-1)k y2
			- C _o	