Electrochemical Impedance Spectroscopy

M. Skocic, PhD Electrochemistry and Materials

 $m{\mathcal{E}}$ lectrochemistry χ pertise $m{\mathcal{C}}$ orrosion

Contents

Introduction

Basics

Applications

Introduction

There are 2 categories of electrochemical techniques: time domain and frequency domain [1].

Time domain:

- ▶ Voltammetry: I = f(U).
- ▶ Chronoamperometry: ΔU , I(t).
- ▶ Zero Resistance Ammeter: $\int j_{gal} \cdot dt$.
- **.**..

Frequency domain:

- ► Electrochemical Impedance Spectroscopy: EIS.
- PhotoElectrochemical Impedance Spectroscopy: PEIS.

Advantages of EIS:

- Measurement in small perturbations (approximately linear).
- ▶ Different processes have different time constants.
- ightharpoonup Large frequency range from μHz to GHz.

Assume a black box with terminals.

One applies a voltage and measures the current response (or vice versa).

Periodic signal with an angular frequency $\omega = 2\pi f$ with $0 \le \omega < \infty$:

- ▶ Voltage $V(\omega) = V_0 e^{j\omega t}$
- ▶ Voltage $I(\omega) = I_0 e^{j\omega t \Phi}$

What is EIS?

The complex impedance is determined from the imposed voltage/current and the measured current/voltage through the Ohm's law:

$$Z(\omega) = \frac{V(\omega)}{I(\omega)} = \frac{V_0}{I_0} e^{j\Phi} = Z_0 e^{j\Phi}$$

Therefore:

- resistive behavior: $ReZ = Z_0 \cdot \cos Φ$
- ► capacitive/Inductive behavior $ImZ = Z_0 \cdot \sin Φ$

Sometimes, the complex admittance $Y(\omega)$ can also be used which is defined as the inverse of the complex impedance $Z(\omega)$

$$Y(\omega) = \frac{1}{Z(\omega)}$$

The impedance $Z(\omega)$ can be represented in two different ways:

- Nyquist plot: represents the real and imaginary parts of $Z(\omega)$ using cartesian coordinates.
- Bode plot: shows the phase shift and magnitude changes in the rang of applied frequencies.

The Bode plot has great advantages for observing phase changes. Therefore, it is useful for the study of sensors, filters, and transistors in electronic devices.

The Nyquist plot provides a better insight into the possible mechanisms.

Among these two types of representations, the Nyquist plot is more often used to analyze the characteristics of electrochemical processes occurring during corrosion.

Nyquist Plot

Bode Plot - Modulus

Bode Plot - Phase

Series and parallel connections

Series connections: $Z_1 - Z_2 - \ldots - Z_n$

$$Z_{eq} = \sum_{i=1}^{n} Z_i$$

Parallel connections: $Z_1 / Z_2 / ... / Z_n$

$$\frac{1}{Z_{eq}} = \sum_{i+1}^{n} \frac{1}{Z_i}$$

$$Z_{eq} = \left(\sum_{i=1}^{n} \frac{1}{Z_i}\right)^{-1}$$

The circuit model for EIS consists of a combination of electrical circuit elements:

- ideal elements:
 - resistors (R)
 - capacitors (C)
 - inductors (L)
- nonideal capacitor-like element: Constant Phase Element (CPE or Q)
- diffusion elements:
 - semi-infinite Warburg (W)

Basics

- Finite Length Warburg (W_{δ} or O)
- Finite Space Warburg (W_m or T)

The circuit model represents the entire system of the electrochemical cell.

The aim is to build an optimal circuit model that is physically meaningful and minimizes the number of variables.

Circuit Elements

Circuit Elements and Physical Parameters

Simplified Randles Circuit

Randles Circuit

References I

 A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd ed. New York: John Wiley & Sons, Inc., 2001.