Nama : EKO Saputra NIM : 2014 20001

kelas olt3A

MK: Analisis Numerik

I Selegaikan sistem persamaan Linier berikut dongan motode Eliminasi Gaus 1

> X1+2xx+xx=x 3x1+6x2=9 2x1+8x2+4x3=6

2. Jika log(10) = 1 dan log(100) = 2, maka caribh

a. log(25) = c. persamaan interpolacinya.

b. log(25) =

3. Caribh akar pendekatan funggi: f(x) = x3- x-1, a=0,1 dan x0=2

4. Gunakan aturan trapesium dan simpson untuk mencari suatu hilai hompiran untuk: Y = X4 dengan mengambil batas X=1 dan X>4, Serta subinterval (h=8)

5. Tenjukan deret Toylor dan dorfet Maclaurant dari Fungsi:

af(x) = cos(x) f(x) = cn(x+1)

Dawab:

1 1 2 3 2 3 6 0 9 2 8 4 6

1	1	2	3	2
1	0	0	-9	3
1	0	9	-2	7

0 4 - 2 2

1	1	7	3	2	
	0	1	-0,5	0,5	
1	^	^		2	1

01049 1944 0000031

superior of even from the confess well marcas and what

(-

(100-10)

b) Log (25)

(100-10)

= 1+0,16 = 1,16

c) Persamaan Interpolaci

1,87

1>

3.	[feragi	10	XI	X2	F (X2)	F(XO) F(X7)	(xo - xi)
	1	1	2	1,5	0,875	-0,875	1
	2		15	1,75	-0, 291	0, 299	0,5

4. Fx = x +4	×	f(x)
	with the	1
Xo = (1,325	3,574
η >8	2	16
h = 0,375	2	16
	3	81
	3	18
	ч	256

Jadi luas > 122, 2729

5. a) $f(R) = \cos(2)$ = $\cos(2) + \frac{d}{dx} (\cos(4)) (2) (x-2) + \frac{d^2}{dx^2} (\cos(x)) (2) (x-2)^2 + \frac{d^3}{dx^3} (\cos(x)) (2)$ $(x-2)^3 + \dots$

$$= \cos(7) + -\sin(2)(x-2) + -\cos(2)(x-2)^{2} + \sin(2)(x-2)^{3} + \cos(2)(x-2)^{4}$$

$$= \cos(7) + -\sin(2)(x-2) + -\cos(2)(x-2)^{2} + \sin(2)(x-2)^{3} + \cos(2)(x-2)^{4}$$

$$= \cos(7) + -\sin(2)(x-2) + -\cos(2)(x-2)^{2} + \sin(2)(x-2)^{3} + \cos(2)(x-2)^{4}$$

=
$$\cos(x) - \sin(x)(x-x) - \cos(x)(x-x)^{2} + \sin(x)(x-x)^{3} + \cos(x)(x-x)^{4} + \cdots$$

Maclourens :

=
$$1 + \frac{d}{4x} (\cos(x))(0) \times + \frac{d^2}{4x^2} (\cos(x))(0) \times + \frac{d^2}{4x^3} (\cos(x))(0) + ...$$

$$= \sum_{n=0}^{\infty} (-1)^{n} \times^{2n}$$
 (2n)!

$$= \frac{d}{dx} (\ln (1+x))(2) = \frac{1}{3}$$

$$\frac{d2}{dx^2} (\ln (1+x))(2) - \frac{1}{9}$$

$$\frac{d^{3} (\ln(1+x))(2) = \frac{2}{27}}{dx^{3}}$$

$$\frac{d^{4} (\ln(1+x))(2) = -\frac{2}{27}}{dx^{4}}$$

Macburens: