PAS

2024 / 2025

Obsah

1. Pravděpodobnost	4
4.4.7/11.1.7.	
1.1 Základní pojmy	
Náhodný pokus	
Náhodný jev	
Elementární jev	4
1.2 Definice pravděpodobnosti	4
Klasická definice	
Kolmogorova definice	
1.3 Výpočet pravděpodobnosti	6
1.3.1 Náhodné jevy	
Jev jistý Ω	
Jev nemožný 🛭	
Jev opačný k jevu A	
1 0 0	
Neslučitelné jevy	
Podjev1.3.2 Nezávislost jevů a podmíněná pravděpodobnost	
Podmíněná pravděpodobnost	
Nezávislost jevů	
Vzorec pro celkovou pravděpodobnostBayesův vzorec	
Dayesuv vzorec	/
1.4 Senzitivita a specificita testu	8
1.5 Vybrané klasické pravděpodobnostní modely	9
Uspořádaný výběr s vracením	9
Neuspořádaný výběr s vracením	9
Uspořádaný výběr bez vracení	
Neuspořádaný výběr bez vracení	
Náhodná procházka	
Tulloulla prochazita	10
2. Pravděpodobnostní rozdělení	11
2.1 Základní charakteristiky	11
2.1.1 dělení pravděpodobnostního rozdělení	11
2.1.2 funkce určující rozdělení:	11
2.1.3 Střední hodnota a rozptyl	
Střední hodnota a rozptyr	
Rozptyl	
102ргу 1	12
2.2 Vybraná diskrétní rozdělení	
Binomické rozdělení	
Poissonovo rozdělení	13

Hypergeometrické rozdělení	14
2.3 Vybraná spojitá rozdělení	15
Normální rozdělení	
x²-rozdělení	
Beta rozdělení	
3. Statistika	17
3.1 Definice a základní pojmy	
Náhodná veličina	
Populace	
Náhodný výběr	
Populační charakteristika	
Výběrová charakteristika	17
3.2 Typy proměnných	17
3.2.1 popis jednotlivých typů proměnných	18
3.2.2 problémy v datech	
4. Popisné statistiky	10
4. Fopishe statistiky	13
4.1 Popisné statistiky číselné proměnné	19
Popisné statistiky polohy	19
Grafické popisné statistiky	19
Popisné statistiky tvaru rozdělení	20
4.2 Popisné statistiky kategorické proměnné	21
Číselné popisné statistiky nominální proměnné	
Grafické popisné statistiky nominální proměnné	
· · · · · · · · · · · · · · · · ·	
4.3 Testy normality	
Centrální limitní věta	
Zákon velkých čísel	22
5. Odhady populačních charakteristik	23
5.1 Odhad střední hodnoty	23
Bodový odhad střední hodnoty	
Intervalový odhad střední hodnoty	
Bootstrapový interval spolehlivosti pro střední hodnotu	
5.2 Odhad pravděpodobnosti	24
5.3 Odhad rozptylu	25
6. Testování hypotéz	
o. 1630 am ny potez	20
6.1 Základní pojmy	
Testované hypotézy	
Výsledky testu	
P-hodnota	27

6.2 Jednovýběrový test	27
Jednovýběrový t-test	
Znaménkový test	
Wilcoxonův jednovýběrový test	
6.3 Párový test	29
Párový t-test	
Wilcoxonův párový test	
6.4 Dvouvýběrový test	30
Test shody dvou rozptylů	30
Dvouvýběrový t-test pro shodné rozptyly	31
Dvouvýběrový t-test	31
Welchův test	32
Wilcoxonův dvouvýběrový test	32
6.5 Analýza rozptylu – ANOVA	33
6.5.1 Klasická ANOVA	33
Bartlettův test	34
Párové srovnání	34
6.5.2 Kruskal-Wallisův test	36
6.5.3 Dunnův test	36
6.6 ANOVA pro opakované měření	37
6.6.1 Fiedmanův test	37
6.7 Test dobré shody	38
6.8 Test nezávislosti pro kategorická data	39
6.8.1 x ² -test nezávislosti	39
6.8.2 Fisherův exaktní test	39
6.9 Poměr šancí	41
6.10 Korelační koeficient	42
Pearsonův korelačcní koeficient	42
Spearmanův korelační koeficient	42
6.10.1 Korelační test	42
6.10.2 Kendallův korelační koeficient (Kendallovo τ)	43
Kendallovo τ	
7. Statistické modely	44
7.1 Lineární regrese	44
Metoda nejmenších čtverců	
Koeficient determinace	
Předpoklady lineární regrese	

1. Pravděpodobnost

1.1 Základní pojmy

Náhodný pokus

- pokus konaný za přesně daných podmínek, o němž není dopředu známo jak dopadne
- př.: hod kostkou, měření výšky lidí, výsledek studenta u zkoušky...

Náhodný jev

- možný výsledek náhodného pokusu
- př.: na kostce padne sudé číslo, výška člověka bude větší než 170 cm, student zkoušku udělá...

Elementární jev

- nejmenší možné náhodné jevy, nemohou nastat současně, ale musí nastat vždy alespoň jeden z nich
- př.: na kostce padne 1, 2, 3, 4, 5 nebo 6, výška člověka bude 160 cm, student u zkoušky dostane známku
 1, 2, 3 nebo zkoušku neudělá
- součet všech elementárních jevů je prostor všech možných výsledků náhodného pokusu; značíme se Ω

1.2 Definice pravděpodobnosti

Klasická definice

• Mějme prostor elementárních náhodných jevů Ω ; systém množin A – algebru¹ na tomto prostoru; pravděpodobností pak nazveme reálnou funkci P(A) definovanou na algebře A podmnožin prostoru Ω , jestliže platí:

$$A \in A \Rightarrow P(A) \ge 0$$

 $A, B \in A, A \cap B = \emptyset \Rightarrow P(A \cup B) = P(A) + P(B)$
 $P(\Omega) = 1, P(\emptyset) = 0$

- trojice (Ω, A, P) se nazývá klasický pravděpodobnostní prostor
- Př.: Házíme 10 krát mincí a zajímá nás kolikrát padne orel.
 - $-\Omega$ je množina všech kombinací, jak mohou jednotlivé hody dopadnout $\Omega = \{0, 1\} \times \{0, 1\} \times \cdots \times \{0, 1\}$
 - algebra *A* jsou pak všechny možné výsledky pokusu, např.:
 v prvním hodu padne orel, celkem padne orel právě 5x, orel padne méně než 3x atd...
 - funkce P pak přiřadí každému z těchto výsledků hodnotu mezi 0 a 1 pravděpodobnost

Algebra je systém množin pro který platí: jestliže máme dvě množiny A a B z tohoto systému, pak do něj patří i jejich sjednocení, jejich průnik a jejich doplňky.

Kolmogorova definice

• Nechť Ω je neprázdná množina, nechť A je σ -algebra náhodných jevů definovaných na Ω ; pravděpodobností se nazývá reálná funkce P(A) definovaná na A, která pro $A \in A$, A_1 , A_2 , . . . $\in A$, $A_i \cap A_j = \emptyset$ pro všechna i \neq j splňuje:

$$A \in A \Rightarrow P(A) \ge 0$$

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$$

$$P(\Omega) = 1, \qquad P(\emptyset) = 0$$

- rozšíření klasické definice na spočetné, potažmo nespočetné (reálné) množiny Ω
- Př.: Házíme mincí až do doby, dokud nepadne první orel.
 - výsledkem pokusu je počet hodů nutný k dosažení tohoto cíle
 - teoreticky se může stát, že orel nepadne vůbec (v každém hodu je pst ½, že orel nepadne, takže skutečně nemusí padnout)
 - jako množinu Ω pak uvažujeme všechny přirozená čísla Ω = N $\cup \infty$
- Př. 2: Uvažujme běžce, který běží lesem vytyčený okruh. V průběhu běhu ztratil kapesník. Je ochoten okruh opustit na jiném místě, než, kde začal běžet, ale pouze u nejbližšího možného východu. Cestou k tomuto východu bude ztracený kapesník hledat. Východ se nachází po třetině délky okruhu. Jaká je pst, že kapesník najde, když ho mohl ztratit na libovolném místě se stejnou pravděpodobností.
 - množinu Ω teď tvoří všechna reálná čísla na intervalu od 0 do délky okruhu

1.3 Výpočet pravděpodobnosti

- pravděpodobnost množiny A je dána vztahem: $P(A) = \frac{|A|}{|\Omega|}$
 - |A| velikost množiny A = počet možností příznivých jevů A; délka úsečky A
 - $|\Omega|$ velikost celého prostoru elementárních jevů Ω = počet všech možností; velikost celé uvažované úsečky
 - Př.: Házíme dvěma šestistěnnými kostkami, červenou a modrou
 - elementární jevy jsou všechny možné dvojice hodnot (1,1), (1,2), (1,3), . . . , (6,5), (6,6); celkem jich je 36
 - zajímá nás pravděpodobnosti následujících náhodných jevů:
 - na červené kostce padne liché číslo
 - na modré kostce padne číslo dělitelné třemi
 - součet na obou kostkách bude větší nebo rovno 10

1.3.1 Náhodné jevy

Jev jistý Ω

- soubor všech elementárních jevů, tj. celý prostor možných výsledků
- Př.: na kostce padne číslo od jedné do šesti

Jev nemožný Ø

- jev, který neobsahuje ani jeden elementární jev
- Př.: na kostce padne mínus jedna

Jev opačný k jevu A

- tj. A soubor elementárních jevů, které nastanou právě když nenastane jev A
- Př.: na kostce padne sudé číslo, a na kostce padne liché číslo

Neslučitelné jevy

- jevy A a B jsou neslučitelné, když mají prázdný průnik
- Př.: na kostce padne sudé číslo, a na kostce padne 1

Podiev

- jev A je podjevem jevu B, když je jeho částí
- Př.: na kostce padne liché číslo a na kostce padne 3

Je-li P pravděpodobnost definovaná na algebře A a jevy A, B \in A, A \cap B = \emptyset , A_i \in A, 1 \leq i \leq n pak platí:

PAS - 6

$$0 \leq P(A) \leq 1$$

$$P(A^{\circ}) = 1 - P(A)$$

$$A \subset B \Rightarrow P(A) \leq P(B)$$

$$A \subset B \Rightarrow P(B - A) = P(B) - P(A)$$

$$P(A \cup B) = P(A) + P(B)$$

$$P(A_i \cup A_j) = P(A_i) + P(A_j) - P(A_i \cap A_j)$$

$$P\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{1 \leq i \leq j \leq n} A_i - \sum_{1 \leq i \leq j \leq n} P(A_i \cap A_j)$$

$$+ \sum_{1 \leq i \leq j \leq k} P(A_i \cap A_j \cap A_k)$$

$$posledn' rovnost lze zobecnit na $n = \infty$

$$+ \dots + (-1)^{n+1} P\left(\bigcap_{i=1}^{n} A_i\right)$$$$

1.3.2 Nezávislost jevů a podmíněná pravděpodobnost

Podmíněná pravděpodobnost

- hledáme pravděpodobnost jevu A za podmínky že víme, že nastal jev B

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

- předpokládáme P(B) ≥ 0
- Př.: Jaká je pst, že součet bodů na dvou kostkách je větší nebo rovno 10, když víme, že na modré kostce padlo sudé číslo

Nezávislost jevů

- jevy A a B jsou nezávislé, když

$$P(A) = P(A|B)$$
 neboli $P(A)P(B) = P(A \cap B)$

 – Př.: jsou jevy "na červené kostce padne liché číslo" a "na modré kostce padne číslo dělitelné třemi" nezávislé

Vzorec pro celkovou pravděpodobnost

– chceme spočítat pst jevu A, když známe pouze podmíněné psti $P(A|H_i)$, kde H_i jsou neslučitelné jevy, jejichž sjednocení je jev jistý, tj. $H_1 \cup H_2 \cup \ldots \cup H_k = \Omega$ a $H_i \cap H_j = \mathcal{S}$ pro všechna i, j

$$P(A) = \sum_{i=1}^{k} P(A|H_i)P(H_i)$$

Bayesův vzorec

– jak vypočítat podmíněnou pravděpodobnost P(A|B) ze znalosti P(B|A)

$$P(A|B) = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|\overline{A})P(\overline{A})} \qquad \text{neboli} \qquad P(H_i|A) = \frac{P(A|H_i)P(H_i)}{\sum_{j=1}^k P(A|H_j)P(H_j)}$$

– pravděpodobnosti P(H_i) se nazývají apriorní a pravděpodobnosti P(H_i|A) aposteriorní

1.4 Senzitivita a specificita testu

- charakteristiky popisující kvalitu nejčastěji u medicínských testů
 - senzitivita testu
 - pravděpodobnost, že test vyjde pozitivně, pokud je osoba nemocná
 - − **P**(test je pozitivní | osoba je nemocná)
 - specificita testu
 - pravděpodobnost, že test vyjde negativně, pokud je osoba zdravá
 - − P(test je negativní | osoba je zdravá)
- Př.: Výzkumu se zúčastnilo 2000 pacientů, z nichž 50 mělo danou nemoc. Všichni podstoupili test na tuto nemoc. Test vyšel pozitivní pro 45 nemocných pacientů a pro 200 zdravých. Spočtěte senzitivitu a specificitu testu a také pravděpodobnost, že člověk bude skutečně nemocný, pokud mu vyjde pozitivní test.

		Skutečnost Nemocný	Zdravý	Celkem
Test	Pozitivní	45	200	245
	Negativní	5	1750	1755
	Celkem	50	1950	2000

- senzitivita testu
 - P(test je pozitivní | osoba je nemocná) = 45 / 50 = 0.9
- specificita testu
 - − P(test je negativní | osoba je zdravá) = 1750 / 1950 = 0.897
- Jsem nemocný, když mám pozitivní test?
 - P(osoba je nemocná | test je pozitivní) = 45 / 245 = 0.184
 - pomocí Bayesovy věty:

$$P(ON|TP) = \frac{P(ON \cap TP)}{P(TP)} = \frac{P(TP|ON)P(ON)}{P(TP|ON)P(ON) + P(TP|OZ)P(OZ)} =$$

$$= \frac{\text{Senzitivita} * \text{podíl nemocných}}{\text{Senzitivita} * \text{podíl nemocných} + (1 - \text{Specificita}) * \text{podíl zdravých}} = \frac{0.9 * 0.025}{0.9 * 0.025 + 0.102 * 0.975} = 0.184$$

1.5 Vybrané klasické pravděpodobnostní modely

Uspořádaný výběr s vracením

- máme urnu, ve které je M rozlišitelných koulí;
 náhodně vytáhneme z urny kouli, zapíšeme si její označení a zase jí vrátíme;
 tah provedeme m-krát;
 záleží-li na pořadí v jakém byly koule taženy, pak prostor elementárních jevů Ω má velikost M^m
- Př.: Uvažujme 8 šachových partií, každá může skončit buď výhrou bílého, výhrou černého nebo remízou. Kolik je možností, jak celý zápas může skončit?

Neuspořádaný výběr s vracením

- opět táhnu m-krát kouli z urny, ve které je M rozlišitelných koulí a kouli po každém tahu vrátím; když mi nezáleží na pořadí, pak prostor elementárních jevů Ω má velikost: $\binom{M-1+m}{m}$
- Př.: Když mi v oněch 8 šachových partiích nezáleží na pořadí a počítám jenom celkový počet výher bílého, černého a celkový počet remíz.

Uspořádaný výběr bez vracení

- z urny, ve které je M rozlišitelných koulí, tahám náhodně m koulí; koule tam nevracím, ale zaznamenávám pořadí, v jakém byly taženy; pak prostor elementárních jevů Ω má velikost: $\binom{M}{m}m!$
- Př.: Kolika způsoby mohu srovnat 5 různě barevných hrnků na polici?

Neuspořádaný výběr bez vracení

- opět táhnu *m-krát* kouli z urny, ve které je *M* rozlišitelných koulí; koule nevracím a nezáleží mi na pořadí, v jakém je táhnu; prostor elementárních jevů Ω má pak velikost: $\binom{M}{m}$
- Př.: Kolika způsoby mohu vybrat 5 žáků ke zkoušení z dvaceti přítomných ve třídě?

Náhodná procházka

- uvažujme částici, která se pohybuje po celočíselné přímce \mathbf{Z} a označme jako S_k její polohu v čase $k=0,1,2,\ldots$
- předpokládejme, že na začátku je částice v bodě 0, tj. S₀ = 0
 a je-li v nějakém časové okamžiku k v bodě a, tak v čase k + 1 je v bodě a 1 s pravděpodobností ½ a v bodě a + 1 také s pravděpodobností ½

$$P(S_{k+1}-S_k=1)=P(S_{k+1}-S_k=-1)=\frac{1}{2}$$

- rozhodování o pohybu částice v každém bodě je náhodné a nezávislé na předchozích krocích
- určeme rozdělení pravděpodobností, kde se bude částice nacházet v čase *n*
- prostor elementárních jevů je $\Omega = \{0, 1\}^n$ a jeho velikost je $|\Omega| = 2^n$
- stav v čase *n* je pak jednoznačně určen počtem pohybů doprava
- označme tento počet kroků doprava jako k (nutně n-k kroků musí být doleva) a skončím v bodě $S_n = k (n-k)$
- pro pravděpodobnost stavu S_n tedy platí:

$$P(S_n = 2k - n) = \frac{\binom{n}{k}}{2^n}$$

- bylo zjištěno, že pokud necháme částici "běhat" nekonečně dlouho, pak s pravděpodobností 1 projde každým bodem $a \in \mathbb{Z}$
- budeme-li zkoumat její návrat do bodu 0, pak k němu dojde s pravděpodobností 1, ale střední doba čekání na tento okamžik bude nekonečná

2. Pravděpodobnostní rozdělení

2.1 Základní charakteristiky

2.1.1 dělení pravděpodobnostního rozdělení

- pravděpodobnostní rozdělení dělíme dle typu proměnné na:

• spojitá

 pro číselné proměnné, které teoreticky mohou nabývat libovolné reálné hodnoty z nějakého intervalu; př.: normální, exponenciální, chí-kvadrát, ...

diskrétní

 pro kategorické proměnné s jasně oddělitelnými kategoriemi, může být i nekonečně mnoho hodnot; př.: binomické, poissonovo, alternativní, ...

2.1.2 funkce určující rozdělení:

• Distribuční funkce

$$F(t) = P(X \le t), t \in \mathbb{R}$$

– neklesající, zprava spojitá, obor hodnot je mezi 0 a 1

Pravděpodobnostní funkce

$$p(t) = P(X = t), t \in \mathbb{R}$$

- definovaná pouze pro diskrétní rozdělení
- nespojitá, nenulová jen v hodnotách, kterých může náhodná veličina nabývat

Hustota

$$f(t) = \frac{d}{dt}F(t)$$

- definovaná pouze pro spojitá rozdělení obdoba pravděpodobnostní funkce, ale nedefinuje konkrétní pravděpodobnosti
- derivace funkce distribuční
- pravděpodobnost jedné konkrétní hodnoty u spojitého rozdělení je 0

2.1.3 Střední hodnota a rozptyl

– další charakteristiky pro diskrétní i spojitá rozdělení je střední hodnota a rozptyl

Střední hodnota

$$\mathsf{E}(\mathsf{X}) = \sum_{i=1}^n \mathsf{X}_i p_i, \qquad \qquad \mathsf{E}\mathsf{X} = \int_{-\infty}^\infty \mathsf{x} \mathsf{f}(\mathsf{x}) \mathsf{d}\mathsf{x}$$

$$E(a + bX) = a + bEX$$

$$E(X + Y) = E(X) + E(Y)$$

Rozptyl

$$\text{Var}(X) = \sum_{i=1}^n (X_i - \mathsf{E}(X))^2 p_i, \text{Var}(X) = \int_{-\infty}^\infty (x - \mathsf{E}(X))^2 f(x) dx$$

– vlastnosti:

$$Var(aX + b) = a^2Var(X)$$

 $Var(X + Y) = Var(X) + Var(Y) + 2cov(X, Y)$

kde cov(X,Y) je kovariance počítaná jako cov(X,Y) $\sum_{i=1}^{n} (X_i - E(X))(Y_i - E(Y))p_iq_i$ nebo cov(X,Y) $\int_{-\infty}^{\infty} (x - E(X))(y - E(Y))f(x,y)dxdy$

2.2 Vybraná diskrétní rozdělení

Binomické rozdělení

- mějme náhodný pokus, který může skončit jedním ze dvou výsledků: úspěch / neúspěch;
 opakujme tento pokus mnohokrát a počítejme počet úspěchů;
 počet úspěchů má binomické rozdělení
- značení Bi(n, p), kde n počet pokusů; p pravděpodobnost úspěchu
- hodnoty pravděpodobnostní funkce:

$$p(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$$

střední hodnota a rozptyl:

$$E(X) = np,$$

$$Var(X) = np(p-1)$$

- Př.: Házíme 10x mincí a počítáme, kolikrát padla panna.
 - počet pokusů je n = 10, pravděpodobnost úspěchu $p = \frac{1}{2}$
 - máme tedy rozdělení **Bi(10, ½)**
 - pravděpodobnostní a distribuční funkce:

• střední hodnota a rozptyl:

$$E(X) = np = 10\frac{1}{2}$$
 $Var(X) = np(1-p) = 10\frac{1}{2}\frac{1}{2} = 2,5$

Poissonovo rozdělení

- sledujeme počet nehod na křižovatce v průběhu jednoho dne;
 za normálních okolností nenastane ani jedna nehoda, nebo nastane jedna, maximálně 2 nehody, ale může se stát, že při náledí jich nastane klidně i 10;
 tato veličina má Poissonovo rozdělení
- značení $Po(\lambda)$, kde λ parametr rozdělení, intenzita
- hodnoty pravděpodobnostní funkce pro k = 0, 1, 2, ...

$$p(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}$$

$$E(X) = \lambda, \quad Var(X) = \lambda$$

- střední hodnota a rozptyl:
- pravděpodobnostní a distribuční funkce Poissonova rozdělení s parametrem $\lambda = 2$:

– předpokládejme binomická rozdělení *Bi(n, pn)*, kde $np_n \rightarrow \lambda$, pak tato binomická rozdělení konvergují k rozdělení Poissonovu s parametrem λ

Hypergeometrické rozdělení

- uvažujme urnu, ve které máme N koulí, z toho A jich je bílých a zbytek černých; z urny postupně vytáhneme n koulí bez vracení; náhodná veličina, která počítá počet bílých koulí mezi vytaženými má hypergeometrické rozdělení
- značení Hy(N, A, n), kde N počet koulí v urně;

A – počet označených koulí v urně;

n – počet tažených koulí

– hodnoty pravděpodobnostní funkce:

$$p(X=k) = \frac{\binom{A}{k}\binom{N-A}{n-k}}{\binom{N}{n}}$$

střední hodnota a rozptyl:

$$E(X) = \frac{nA}{N}$$

$$\mathsf{E}(\mathsf{X}) = \frac{\mathsf{n}\mathsf{A}}{\mathsf{N}}, \qquad \qquad \mathsf{Var}(\mathsf{X}) = \mathsf{n}\frac{\mathsf{A}}{\mathsf{N}} \left(\mathsf{1} - \mathsf{A} \mathsf{N} \mathsf{A} \right) \left(\frac{\mathsf{N} - \mathsf{n}}{\mathsf{N} - \mathsf{1}} \mathsf{N} \right)$$

- Př.: Uvažujme 20 koulí v urně, z toho 8 bílých a z urny vytáhneme 15 koulí.
 - pravděpodobnostní a distribuční funkce:

střední hodnota a rozptyl:

$$\mathsf{E}(\mathsf{X}) = \frac{\mathsf{n}\mathsf{A}}{\mathsf{N}} = 6$$

$$E(X) = \frac{nA}{N} = 6, \qquad Var(X) = n\frac{A}{N} \left(1 - \frac{A}{N}\right) \left(\frac{N-n}{N-1}\right) = 0.95$$

2.3 Vybraná spojitá rozdělení

Normální rozdělení

- jedná se o "hezké" rozdělení, se kterým se dobře pracuje
- toto rozdělení má výška lidí určitého věku, IQ, ...
- ve statistice se nejčastěji používá standardní normální rozdělení N(0, 1)
- značení $N(\mu, \sigma^2)$, kde μ střední hodnota; σ^2 rozptyl
- hustota normálního rozdělení má tvar (Gaussova křivka):

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$$

- vztah mezi hustotou a distribuční funkcí u standardního normálního rozdělení N(0, 1):
 - červeně je na obou grafech zobrazena stejná hodnota
 - hustota a distribuční funkce:

– předpokládejme binomické rozdělení *Bi(n, p)*, kde $0.1 \le p \le 0.9$, pak pro $n \to \infty$ toto rozdělení konverguje k normálnímu s parametry np, np(1 - p)

x²-rozdělení

- rozdělení kvadratických forem
- náhodná veličina $Y = X_1^2 + X_2^2 + \cdots + X_n^2$, kde $X_i \sim N(0, 1)$ jsou nezávislé, má x^2 -rozdělení o n stupních volnosti
- dále je to rozdělení některých testových statistik, zejména těch, týkajících se rozptylu
- hustota a distribuční funkce x²-rozdělení o 5 stupních volnosti:

Beta rozdělení

- rozdělení pravděpodobností nějakého jevu; např.: sledujeme pravděpodobnost, že vybraný člověk má nebo nemá nějakou nemoc
- rozdělení má 2 tvarové parametry, které určují, jak vypadají pravděpodobnosti u 0 a 1
- hustota a distribuční funkce (beta rozdělení s parametry 0.35 a 0.35):

3. Statistika

3.1 Definice a základní pojmy

- zkoumáme náhodnou veličinu na nějaké populaci
- celou populaci změřit neumíme → uděláme náhodný výběr, na kterém změříme sledovanou veličinu a na základě náhodného výběru děláme závěry pro celou populaci
- Př.: Zajímá nás průměrná výška dospělých lidí v celé ČR. Uděláme náhodný výběr o cca 200 lidech a na základě získaných výsledků se snažíme celkovou průměrnou výšku odhadnout. Průměrná výška pro těchto 200 lidí vyšla 175 cm.

Náhodná veličina

– jakákoliv veličina, kterou měříme (v př. výška)

Populace

– soubor, pro nějž chceme udělat nějaký závěr, (v př. dospělí obyvatelé ČR)

Náhodný výběr

 v porovnání s populací malý soubor pozorování, jde o nezávislé, stejně rozdělené náhodné veličiny, (v př. výběr 200 lidí)

Populační charakteristika

– charakteristika popisující populaci, (v př. populační průměr)

Výběrová charakteristika

charakteristika spočítaná na výběru, pomocí níž odhadujeme populační ekvivalent,
 (v př. výběrový průměr)

3.2 Typy proměnných

- číselné (kvantitativní, numerické) proměnné
 - př.: výška, váha, věk, atd...
 - spojité
 - diskrétní
- kategorické (kvalitativní) proměnné
 - př. barva, kraj, povolání, nebo také známka ve škole; číslo, které padne na kostce, atd...
 - **nominální** neuspořádané, př. barva, kraj
 - déle dělíme na polytomické, dichotomické...
 - **ordinální** uspořádané, př. známka, číslo na kostce

3.2.1 popis jednotlivých typů proměnných

– číselné proměnné

- popisné statistiky polohy průměr, medián, vybrané percentily (kvartily, extrémy)
- popisné statistiky variability rozptyl, směrodatná odchylka, mezikvartilové rozpětí, koeficient variace
- popisné statistiky tvaru rozdělení šikmost, špičatost
- grafické charakteristiky krabicový graf, histogram

– nominální proměnné

- číselné charakteristiky absolutní a relativní četnosti
- grafické charakteristiky sloupcový a koláčový graf

ordinální proměnné

- lze použít jak průměr, medián atd.
- pro malé počty kategorií i absolutní a relativní četnost

3.2.2 problémy v datech

– chybějící pozorování

- snažíme se, aby jich bylo co nejmén *e,
- když jich je málo, tak pracujeme bez nich v *etšina statistických
- metod implementovaných v r °uzných softwarech si s tím poradí
- je možné je doplnit na základ *e n *ejakého modelu (imputation

odlehlé hodnoty

- kontrola, zda nedošlo k chyb 'e m 'e rení
- pokud ne, tak z popisných statistik se v řetšinou nevynechávají,
- ale je dobré zmínit, že se jedná o odlehlé hodnoty
- pro popis prom "enné je pak lépe zvolit ukazatele necitlivé na
- odlehlé pozorování
- ze složit řejších analýz se řcasto vynechávají

4. Popisné statistiky

4.1 Popisné statistiky číselné proměnné

Popisné statistiky polohy

- Př.: Mějme náhodný výběr 18-ti dospělých lidí a předpokládejme, že jsme u nich naměřili výšky 176, 184, 167, 193, 174, 182, 181, 179, 187, 165, 168, 172, 184, 178, 160, 168, 171, 159; Spočtěme průměr, medián, kvartily a extrémy.
 - **průměr** z *n* hodnot značených $X_1, X_2, X_3, ..., X_n$: $\overline{X} = \frac{\sum_{i=1}^n X_i}{n}$
 - **medián** z uspořádané řady
 - = hodnota prostřední podle velikosti, nebo průměr prostředních dvou
 - **kvartily** z uspořádané řady
 - hodnoty v jedné (¼) a ve třech čtvrtinách (¾)
 - výpočet kvartilů podle R:
 - výpočet pro obecný *p*-tý percentil vážený průměr dvou sousedních uspořádaných hodnot
 - označme:
 - p číslo mezi 0 a 1, díl dat, které chceme p-tým percentilem oddělit
 - $X_{(k)}$ hodnoty z uspořádané řady, k-tý nejmenší prvek
 - lacktriangle lacktriangle koeficient, kterým se násobí uspořádané hodnoty do váženého průměru

$$p - percentil = (1 - q)X_{(k)} + qX_{(k+1)}$$

 $k = \lfloor 1 + (n-1)p \rfloor$
 $q = 1 + (n-1)p - k$

• extrémy – minimum a maximum

Grafické popisné statistiky

- používáme dva typy grafů:
 - krabicový graf
 - jsou v něm zobrazeny vybrané percentily (medián a kvartily)
 - tykadla dosahují k nejvzdálenějšímu neodlehlému pozorování (odlehlé pozorování se vyznačují zvlášť)
 - odlehlé pozorování je takové, které je od bližšího kvartilu dále než jeden a půl násobek mezikvartilového rozpětí $1.5(Q_3 Q_1)$
 - histogram
 - počet sloupců je určen vybraným pravidlem, nejčastěji se používá *Sturgesovo pravidlo* $k = 1 + 3.32 \log_{10}(n)$ kde n je počet pozorování

výsledky pro výšky dospělých mužů:

průměr – 174.89 medián – 175 kvartily – 168, 181.75 extrémy – 159, 193 Popisné statistiky variability

· rozptyl a směrodatná odchylka

$$\mbox{Var}(X) = \frac{\sum_{i=1}^{n}(X_{i} - \overline{X})^{2}}{n-1}, \qquad \mbox{sd}(X) = \sqrt{\mbox{Var}X}$$

mezikvartilové rozpětí

$$IQR(X) = Q_3 - Q_1$$

• variační koeficient

$$cv(X) = \frac{sd(X)}{\overline{X}}$$

Popisné statistiky tvaru rozdělení

– počítají se ze standardizovaných proměnných, tak zvaných **Z-skórů**

$$Y_i = \frac{X_i - \overline{X}}{\operatorname{sd}(X)}$$

• šikmost

– průměr ze třetích mocnin z-skórů

$$\text{Skew}(X) = \frac{1}{n} \left(\frac{\sum_{i=1}^n (X_i - \overline{X})}{\text{sd}(X)} \right)^3 = \frac{\sum_{i=1}^n Z_i^3}{n}$$

špičatost

– průměr ze čtvrtých mocnin z-skórů

$$\text{Kurt}(X) = \frac{1}{n} \left(\frac{\sum_{i=1}^n (X_i - \overline{X})}{\text{sd}(X)} \right)^4 - 3 = \frac{\sum_{i=1}^n Z_i^4}{n} - 3$$

záporná, nulová a kladná šikmost

záporná, nulová (špičatost normálního rozdělení a kladná špičatost

4.2 Popisné statistiky kategorické proměnné

Číselné popisné statistiky nominální proměnné

– Př.: Mějme náhodný výběr 10-ti dospělých lidí a předpokládejme, že jsme u nich zjišťovali barvu očí. Ve výběru jsme rozlišovali 3 barvy: modrá (M), hnědá (H) a zelená (Z). Zjistili jsme následující barvy M, M, Z, H, H, M, Z, M, H. Popišme zjištěné výsledky.

– tabulka absolutních a relativních četností:

Barva	Značení	Absolutní	Relativní %
Modrá	<i>n</i> ₁	4	40%
Hnědá	n_2	4	40%
Zelená	n_3	2	20%
Celkem	n	10	100%

– relativní četnost: $p_i = \frac{n_i}{n}$

Grafické popisné statistiky nominální proměnné

sloupcový a koláčový graf – v absolutních počtech nebo procentech

4.3 Testy normality

– většina statistických postupů odvozena pro normální rozdělení → třeba zjistit, zda ho veličina má či ne

grafické testy

- histogram a pravděpodobnostní graf

• číselné testy

– např.: Shapiro-Wilkův, Andersonův-Darlingův, Kolmogorovův-Smirnovův, Lillieforsův a další

Centrální limitní věta

- definice: Rozdělení součtu nezávislých, stejně rozdělených náhodných veličin konverguje k normálnímu pro počet těchto náhodných veličin rostoucí nade všechny meze.
- v praxi to znamená, že čím více hodnot sčítáme / průměrujeme, tím spíše bude mít průměr normální rozdělení
- rozdělení průměru 30-ti hodnot z beta rozdělení:

Zákon velkých čísel

- definice: Průměr nezávislých, stejně rozdělených náhodných veličin konverguje ke střední hodnotě jejích rozdělení pro počet těchto náhodných veličin rostoucí nade všechny meze.
- v praxi to znamená, že výběrový průměr dobře odhaduje skutečnou střední hodnotu a že se jedná o tzv. nestranný odhad
- **nestranný odhad** střední hodnota odhadu se rovná odhadovanému parametru: $\mathbf{E}\overline{\mathbf{X}} = \mathbf{E}\mathbf{X}$

5. Odhady populačních charakteristik

5.1 Odhad střední hodnoty

Bodový odhad střední hodnoty

– Př.: Mějme situaci, kdy potřebujeme odhadnout průměrnou výšku dospělých lidí v celé ČR. Náhodně jsme vybrali a změřili 500 lidí. Výběrový průměr vyšel 173.12 cm a výběrová směrodatná odchylka 8.9 cm.

Odhadněte populační průměr výšky dospělých lidí.

- nejlepší bodový odhad je výběrový průměr: $\overline{X} = 173.12$
- jaká je pravděpodobnost, že se populační průměr bude rovnat přesně tomuto číslu?
- střední chyba odhadu průměru: $SEM = \frac{sd(X)}{\sqrt{n}}$

Intervalový odhad střední hodnoty

- chceme interval, ve kterém se s vysokou pravděpodobností bude nacházet skutečný populační průměr / skutečná střední hodnota
- tento interval závisí na:
 - výběrový průměr leží ve středu intervalu spolehlivosti
 - *výběrový rozptyl* čím větší variabilitu výběr má, tím širší bude interval spolehlivosti
 - *počet pozorování* čím více pozorování, tím přesnější odhad mám, tím užší bude interval spolehlivosti
 - **požadovaná spolehlivost** čím spolehlivější výsledek chci, tj. čím větší pravděpodobnost, že výběrový průměr bude ležet uvnitř intervalu spolehlivosti, tím širší interval dostanu

interval spolehlivosti

• základem fakt, že výběrový průměr má asymptoticky normální rozdělení (CLV)

$$\overline{X} \sim N(\mu, \sigma/\sqrt{n}),$$

kde μ je teoretická střední hodnota

 σ je teoretická směrodatná odchylka

n je počet pozorován

- interval spolehlivosti pro střední hodnotu má tvar: $(\overline{X} q(1 \alpha/2)\sigma/\sqrt{n}, \overline{X} + q(1 \alpha/2)\sigma/\sqrt{n})$ kde $q(1 \alpha/2)$ je kvantil teoretického rozdělení
 - o znám-li skutečný rozptyl $\sigma 2 \to \text{používá se kvantil standardního normálního rozdělení N(0, 1)}$
 - o musím-li odhadnout $\sigma 2$ pomocí výběrového rozptylu \rightarrow používá se kvantil t-rozdělení o n-1 stupních volnosti
- výpočet 95% intervalu spolehlivosti pro uvedený příklad:
 - teoretický rozptyl není znám; známe: $\overline{X} = 173.12$, sd(X) = 8.9, n = 500, $\alpha = 0.05$.

$$(\overline{X} - t_{n-1}(1 - \alpha/2)\operatorname{sd}(X)/\sqrt{n}, \overline{X} + t_{n-1}(1 - \alpha/2)\operatorname{sd}(X)/\sqrt{n})$$

173.12 - 1.96 × 8.9/ $\sqrt{500}$, 173.12 + 1.96 × 8.9/ $\sqrt{500}$

172.34, 173.9

Se spolehlivostí 95% bude skutečný populační průměr výšky mužů ležet v intervalu od 172.34 cm do 173.9 cm

Bootstrapový interval spolehlivosti pro střední hodnotu

- uvažujme dostupný náhodný výběr jako "základnu" dat
- realizujme *B* bootstrapových výběrů velikosti *n* na této základně výběr s opakováním (každá naměřená hodnota má pst být vybrána *1/n*)
- z každého výběru spočteme výběrový průměr
- meze bootstrapového intervalu spolehlivosti jsou $\alpha/2$ a $1 \alpha/2$ -tý kvantil z vektoru průměrů
- počet bootstrapových výběrů má být minimálně B = 1000, lépe B = 10000

Př.: Uvažujme měření hladiny cukru v krvi. Bylo změřeno 150 mužů s průměnou hodnotou cukru 4.38 a směrodatnou odchylkou 3.4. Histogram je uveden níže.

Klasický interval spolehlivosti vyšel 3.83 – 4.93 (v grafu zeleně).

Bootstrapový interval spolehlivosti vyšel 3.78 – 4.89 (v grafu fialově).

5.2 Odhad pravděpodobnosti

- předpokládejme binomické rozdělení s parametrem p, který chci odhadnout z dat
- Př.: Ze 100 hodů šestistěnnou kostkou padla šestka 20 krát.
 Jak odhadnout pravděpodobnost, že padne 6?
 - nejlepším bodovým odhadem psti je relativní četnosti: $\hat{p} = 20/100 = 1/5$
 - interval spolehlivosti vychází z faktu, že: $p = (\hat{p} p)/\sqrt{p(1-p)/n} \sim N(0,1)$ pro $n\hat{p}(1-\hat{p}) > 9$
 - → tedy pro velká n má relativní četnost normální rozdělení
 - interval spolehlivosti pro pravděpodobnost je: $\left(\hat{p}-z(1-\alpha/2)\sqrt{\hat{p}(1-\hat{p})/n},\hat{p}+z(1-\alpha/2)\sqrt{\hat{p}(1-\hat{p})/n}\right)$
 - pro výše uvedený hod kostkou vychází 0.135 0.265

5.3 Odhad rozptylu

- jako bodový odhad populačního rozptylu používáme výběrový rozptyl: $Var(X) = \frac{\sum_{i=1}^{n}(X_i-\overline{X})^2}{n-1}$
- nestranný odhad
- označme výběrový rozptyl jako s^2 a teoretický rozptyl jako σ^2 , pak náhodná veličina $\chi=(n-1)s^2/\sigma^2$ má χ^2 rozdělení o n stupních volnosti
- **x**² není symetrické
- intervalový odhad pro rozptyl je: $\left(\frac{(n-1)s^2}{\chi_n^2(1-\alpha/2)}, \frac{(n-1)s^2}{\chi_n^2(\alpha/2)}\right)$

6. Testování hypotéz

6.1 Základní pojmy

- používáme, když potřebujeme ověřit nějaké tvrzení, např.
 - nový lék je lepší než ten stávající
 - průměrná výška lidí se za posledních 50 let zvýšila
 - výnosy z jednotlivých druhů jabloní se liší
 - krevní tlak závisí na hmotnosti

Testované hypotézy

- při statistickém rozhodování testujeme proti sobě 2 hypotézy:
 - Nulovou hypotézu (H_0)
 - je v ní vždy pouze jedna varianta
 - př.: nový lék je stejný jako ten stávající; výnosy druhů jabloní jsou stejné; proměnné spolu nesouvisí
 - Alternativní hypotézu (*H*₁)
 - obsahuje více možností (např. interval)
 - je v ní to, co chceme prokázat
 - př. nový lék je lepší než ten stávající; výnosy druhů jabloní se liší; proměnné spolu souvisí

Výsledky testu

- na základě statistického testu uděláme jedno ze dvou rozhodnutí:
 - *zamítneme* nulovou hypotézu tím jsme prokázali platnost alternativy
 - nezamítneme nulovou hypotézu tím jsme neprokázali nic
- při rozhodování můžeme udělat chybu:
 - *chyba prvního druhu* **hladina významnosti (α)**
 - zamítneme H₀, přestože platí
 - závažnější z obou chyb

	Skuteche plati H_0	Skutecne plati H ₁
Zamítáme H ₀	Chyba I. druhu	OK
	$\leq \alpha$	síla testu
Nezamítáme H ₀	OK	Chyba II. druhu
		β

- chyba druhého druhu (β)
 - **ne**zamítneme H_0 , přestože neplatí
 - hodnota 1 − β se nazývá síla testu
 - za dané hladiny významnosti chceme test co nejsilnější
- dle toho, co testujeme, a dle typu dat vybereme vhodný statistický test, kterým budeme o platnosti testovaných hypotéz rozhodovat
- rozhodnutí můžeme udělat buď na základě:
 - porovnání testové statistiky (T) a kritické hodnoty (c, jsou tabelovány)
 - porovnání p-hodnoty a hladiny významnosti (α)
- platí, že:
 - absolutní hodnota testové statistiky $|T| \ge c$ nebo p-hodnota $\le \alpha$ potom ZAMÍTÁME H_0
 - absolutní hodnota testové statistiky |T| < c nebo p-hodnota $> \alpha$ potom NEZAMÍTÁME H_0

P-hodnota

- s testovou statistikou se většinou pracuje při ručním výpočtu
- statistické softwary vrací jako výsledek testu *p-hodnotu*
 - aktuální dosažená hladina testu
 - pravděpodobnost, že za platnosti H₀ nastal výsledek, jaký nastal, nebo jakýkoliv jiný, který ještě více odpovídá alternativě
 - definice p-hodnoty se týká testové statistiky
- (ne)zamítnout H₀ nestačí, tento výsledek je třeba interpretovat vzhledem k položené otázce

6.2 Jednovýběrový test

Jednovýběrový t-test

- nejjednodušším testem je jednovýběrový test o střední hodnotě
- testujeme H_0 : střední hodnota = μ_0 proti jedné ze tří alternativ:
 - H_1 : střední hodnota $\neq \mu_0$
 - H_1 : střední hodnota < μ_0
 - H_1 : střední hodnota > μ_0
- není-li řečeno jinak, testujeme na hladině významnosti $\alpha = 0.0$
- *testová statistika* jednovýběrového t-testu je: $T = \frac{\overline{X} \mu_0}{\operatorname{sd}(X)} \sqrt{n}$
 - za platnosti nulové hypotézy má t-rozdělení o *n 1* stupních volnosti
 - testovou statistiku *T* porovnáváme s kritickými hodnotami kvantily t-rozdělení
 - nebo na základě ní vypočteme p-hodnotu
- předpokladem jednovýběrového t-testu je, že průměr testované veličiny má *normální rozdělení* (díky CLV většinou splněno):
 - ověřit normalitu testované proměnné
 - souvislost mezi statistikou T a intervalem spolehlivosti
- Př.: Bylo změřeno 222 jedenáctiletých dětí. Průměrná výška tohoto výběru je 148.8 cm, a směrodatná odchylka výšky vyšla 7.1. Dá se předpokládat, že průměrná výška všech jedenáctiletých dětí v ČR je menší než 150 cm?
 - testované hypotézy:

 H_0 : průměrná výška = 150 cm H_1 : průměrná výška < 150 cm

- testujeme na hladině významnosti $\alpha = 0.05$
- testová statistika: $T = \frac{\overline{X} \mu_0}{\text{sd}(X)} \sqrt{n} = \frac{148.8 150}{7.1/\sqrt{222}} = -2.5618$
- tuto hodnotu porovnám s kvantilem t-rozdělení $t_{221}(1-0.05) = 1.65$
- jelikož testová statistika je v absolutní hodnotě větší než kritická hodnota, zamítám nulovou hypotézu
- p-hodnota vyšla p = 0.005 < 0.05, což také vede na zamítnutí nulové hypotézy
- Závěr: Prokázala jsem, že průměrná výška jedenáctiletých dětí je menší než 150 cm.

Znaménkový test

- neparametrický test o střední hodnotě
 - pro data, která nemají normální rozdělení
 - není založen na průměru, ale na znaménkách odchylek od mediánu
- testované hypotézy:
 - $\mathbf{H_0}$: medián = $\mathbf{m_0}$
 - $\mathbf{H_1}$: medián $\neq m_0$ nebo $> m_0$ nebo $< m_0$
- postup:
 - označme Z počet kladných odchylek od mediánu $X_i m_0$
 - za platnosti H_0 má Z binomické rozdělení Bi(n, 1/2)
 - pro velká *n* je možné použít i transformaci

$$U = \frac{2Z - n}{\sqrt{n}}$$

za platnosti H_0 má U normální rozdělení N(0, 1)

- Př.: *Uvažujme naměřené věky otců* 30, 28, 36, 38, 28, 26, 29, 37, 25, 50 a testujme hypotézu, že medián věku otců je 33 let, tj. testujeme:
 - H₀: medián věku otců je 33 let
 - ∘ H₁: medián věku otců není 33 let
 - spočteme rozdíly $X_i m_0$: -3, -5, 3, 5, -5, -7, -4, 4, -8, 17
 - kladných hodnot je mezi nimi Z = 4
 - p-hodnota testu vychází 0.75, což je hodnota větší než α (= 0.05) a H_0 tedy **ne**zamítáme
 - použitím U-transformace dostaneme U = -0.632 a p-hodnotu 0.527
 - závěr: Střední hodnota věku otců může být 33.

Wilcoxonův jednovýběrový test

- neboli Mann-Whitneyův test
- neparametrický test
 - používá se, když proměnná nemá normální rozdělení
 - založen na pořadích
 - silnější než znaménkový test
 - testované hypotézy zůstávají stejné (testuje hodnotu mediánu)
- postup:
 - spočítají se rozdíly od testované hodnoty $X_i m_0$
 - určí se jejich znaménko
 - určí se pořadí absolutních hodnot rozdílů
 - spočítá se součet těchto pořadí pařících kladným rozdílům
 - označme S^+ součet pořadí kladných rozdílů a S^- součet pořadí záporných rozdíl, musí platit:

$$S^+ + S^- = n(n+1)/2$$

– pro větší \boldsymbol{n} lze užít transformaci

$$U = \frac{S^{+} - \frac{1}{4}n(n+1)}{\sqrt{\frac{1}{24}n(n+1)(2n+1)}}$$

která má za platnosti H_0 normální N(0, 1) rozdělení

– Př.: Stejný příklad s věky otců 30, 28, 36, 38, 28, 26, 29, 37, 25, 50 a opět testujme hypotézu, že medián věku otců je 33 let, tj. testujeme:

H₀: medián věku otců je 33 let
H₁: medián věku otců není 33 let

• spočteme rozdíly $X_i - m_0$: -3, -5, 3, 5, -5, -7, -4, 4, -8, 17 a jejich absolutním hodnotám přiřadíme pořadí 1.5, 6, 6, 8, 3.5, 3.5, 9, 10

• sečteme kladné (tučné) pořadí $S^+ = 21$ a záporné pořadí $S^- = 34$

• testová statistika vychází U = -0.66 a p-hodnota 0.51 je větší než α (= 0.05), H_0 tedy **ne**zamítáme

• závěr: Střední hodnota věku otců může být 33.

6.3 Párový test

Párový t-test

- párový test se používá v případě, že porovnáváme střední hodnotu ve dvou závislých výběrech, např.:
 - Jsou otcové v průměru o 10 cm vyšší než matky?
 - o Mají praváci silnější pravou ruku než levou?
 - Klesl pacientům po podání léku krevní tlak?
- ať je otázka formulována jakkoliv, tak test porovnává průměrné hodnoty

– postup:

- při aplikaci testu je důležité udržet párová data u sebe
- pro všechny páry vypočteny rozdíly: $R_i = X_i Y_i$
- dále je testována střední hodnota těchto rozdílů, tedy je aplikován jednovýběrový t-test na hodnoty rozdílu
- Př.: Bylo měřeno 222 dětí v jedenáctém a dvanáctém roce věku. Průměrná výška jedenáctiletých vyšla 148.8 cm, u dvanáctiletých pak 154.9 cm. Směrodatná odchylka u jedenáctiletých vyšla 7.1 cm, u dvanáctiletých pak 7.9 cm. Průměrná hodnota rozdílu výšek vyšla 6.1 cm a směrodatná odchylka 2.8 cm. Vyrostly děti mezi jedenáctým a dvanáctým rokem v průměru alespoň o 5 cm?
 - do testové statistiky vkládáme charakteristiky rozdílu (tedy nikoliv rozdíl průměrů, ale průměr rozdílů): $T = \frac{\overline{X} \mu_0}{\text{sd}(X)} \sqrt{n} = \frac{6.1 5}{2.8} \sqrt{222} = 5.9$
 - tuto testovou statistiku porovnáváme s kvantilem t-rozdělení $t_{221}(1-0.05) = 1.65$
 - jelikož testová statistika je větší než příslušný kvantil, zamítám nulovou hypotézu
 - p-hodnota pro tento případ vychází p = 7.26×10^{-9} , což je menší než $\alpha = 0.05$
 - závěr: Prokázali jsme, že mezi jedenáctým a dvanáctým rokem děti vyrostly v průměru o více než o 5 cm.

Wilcoxonův párový test

- dva závislé výběry, které nesplňují předpoklad normality, porovnáváme pomocí párového Wilcoxonova testu:
 - testované hypotézy zůstávají stejné jako u párového t-testu
 - spočítají se rozdíly v rámci párů: $R_i = X_i Y_i$
 - otestuje se normalita rozdílů
 - pokud rozdíly nemají normální rozdělení, použije se jednovýběrový Wilcoxonův test

6.4 Dvouvýběrový test

- porovnává střední hodnotu dvou nezávislých výběrů
- testované hypotézy:
 - H_0 : střední hodnota X střední hodnota Y = 0
 - H_1 : střední hodnota X střední hodnota $Y \neq 0$, < 0, > 0
- kontrolují se zde 2 předpoklady
 - normalitu dat
 - shodu rozptylů
- vybíráme jeden ze tří testů:
 - dvouvýběrový t-test pro normální data a shodné rozptyly
 - Welchův dvouvýběrový test pro normální data a různé rozptyly
 - Wilcoxonův dvouvýběrový test pro data, která nemají normální rozdělení

Test shody dvou rozptylů

- test shody rozptylů se vyhodnocuje i u nenormálních dat
- testované hypotézy
 - H₀: rozptyly se ve výběrech neliší
 - H₁: rozptyly se ve výběrech liší
- testová statistika testu je

$$F = \frac{\text{Var}(X)}{\text{Var}(Y)} \sim F_{n_1 - 1, n_2 - 1}$$

a za platnosti H_0 má F-rozdělení o $n_1 - 1$ a $n_2 - 1$ stupních volnosti

Dvouvýběrový t-test pro shodné rozptyly

– testová statistika tohoto testu má tvar:

$$T = rac{\overline{X} - \overline{Y} - \mu_0}{\mathcal{S}} \sqrt{rac{n_1 n_2}{n_1 + n_2}}$$

kde

$$S = \frac{1}{n_1 + n_2 - 2} \left(\sum_{i=1}^{n_1} (X_i - \overline{X})^2 + \sum_{i=1}^{n_2} (Y_i - \overline{Y})^2 \right)$$

a n_1 , n_2 je rozsah výběru X, respektive Y

– za platnosti nulové hypotézy má tato statistika t-rozdělení o $n_1 + n_2 - 2$ stupních volnosti

Dvouvýběrový t-test

– Př.: Ve výběru mám 222 jedenáctiletých dětí, z toho 159 hochů a 63 dívek. Průměrná hmotnost hochů vyšla 38.1 kg a u dívek 39.1. Směrodatná odchylka pro hochy vyšla 6.7 kg a pro dívky 7.1. Je hmotnost jedenáctiletých dětí v průměru stejná pro hochy jako pro dívky?

• test shody rozptylů:

– testová statistika:
$$F = \frac{\text{Var}(X)}{\text{Var}(Y)} = \frac{45.1}{50.6} = 0.89$$

- p-hodnota = 0.56 $> \alpha = 0.05$
- nulovou hypotézu **ne**zamítáme
- rozptyly ve skupinách jsou přibližně stejné a můžeme použít dvouvýběrový t-test pro shodné rozptyly

• testujeme:

 $^{\circ}$ H_0 : hmotnost hochů a hmotnost dívek se neliší hmotnost hoch $^{\circ}u$ – hmotnost dívek = 0

H₁ : hmotnost hoch °u a dívek se liší
 hmotnost hoch °u – hmotnost dívek ≠ 0

• grafické porovnání:

- testová statistika: $T = \frac{\overline{X} \overline{Y} \mu_0}{S} \sqrt{\frac{n_1 n_2}{n_1 + n_2}} = \frac{38.1 39.1}{6.83} \sqrt{\frac{159 \times 63}{159 + 63}} = -1.001$
- porovnáváme s kvantilem t-rozdělení $t_{220}(1-0.025)=1.97$ (kvantil pro oboustrannou alternativu)
- testová statistika je v absolutní hodnotě menší než tento kvantil, tak nulovou hypotézu **ne**zamítám
- p-hodnota = $0.3151 > \alpha = 0.05$
- závěr: Na hladině významnosti 5% jsem neprokázala, že by se hmotnost jedenáctiletých hoch °u a dívek lišila.

Welchův test

– testová statistika tohoto testu má tvar:

$$T = rac{\overline{X} - \overline{Y} - \mu_0}{\sqrt{rac{ extsf{Var}(extsf{X})}{n_1} + rac{ extsf{Var}(extsf{Y})}{n_2}}}$$

a za platnosti nulové hypotézy má t-rozdělení o v stupních volnosti, kde

$$\nu = \frac{(\text{Var}(\textbf{X})/n_1 + \text{Var}(\textbf{Y})/n_2)^2}{\frac{(\text{Var}(\textbf{X})/n_1)^2}{n_1 - 1} + \frac{(\text{Var}(\textbf{Y})/n_2)^2}{n_2 - 1}}$$

kritické hodnoty je možno odvodit, přestože v není celé číslo

Wilcoxonův dvouvýběrový test

- používá se pro porovnání dvou nezávislých výběrů, které nesplňují předpoklad normality
- test založen na pořadích hodnot sdruženého výběru
- postup:
 - oba výběry se spojí do jednoho sdruženého
 - sdružený výběr se uspořádá podle velikosti a každé pozorování dostane své pořadí
 - pro oba výběry se vypočte součet pořadí a následně i průměrné pořadí
 - pokud jsou si průměrná pořadí podobná, výběry se mezi sebou významně neliší
- technický výpočet: označme T_1 , T_2 součet pořadí v prvním, respektive druhém výběru
- dále vypočteme:

$$U_1 = n_1 n_2 + \frac{n_1(n_1+1)}{2} - T_1, U_2 = n_1 n_2 + \frac{n_2(n_2+1)}{2} - T_2,$$

kde n_1 , n_2 jsou rozsahy jednotlivých výběrů

- přesný test porovnává hodnotu $min(U_1, U_2)$ s kritickou hodnotou
- asymptoticky platí, že

$$U_0 = \frac{U_1 - \frac{1}{2}n_1n_2}{\sqrt{\frac{n_1n_2}{12}(n_1 + n_2 + 1)}}$$

má za platnosti H_0 N(0, 1) rozdělení

- Př.: Chceme porovnat výsledky testů studentů v Ústí nad Labem a v Liberci. Studenti v Ústí dostali bodová ohodnocení 45, 79, 81, 56, 53, 77. Studenti v Liberci získali ohodnocení 76, 62, 84, 80, 41, 79, 66. Testujeme:
 - ∘ *H*₀ : Studenti v Ústí a v Liberci jsou stejní
 - *H*₁: Studenti v Ústí a v Liberci se liší
 - srovnáme všechny hodnoty do řady:

- následně jim přiřadíme pořadí:
- **1**, 2, 3, 4, **5**, **6**, 7, 8, 9.5, **9.5**, 11, 12, **13**

poté vypočteme

$$T_1 = 38.5;$$
 $T_2 = 52.5$
 $U_1 = 24.5;$ $U_2 = 17.5$
 $U_0 = 0.5$

- p = 0.6678
- p-hodnota > α a tedy **ne**zamítáme nulovou hypotézu
- neprokázal se rozdíl mezi studenty v Ústí a v Liberci

6.5 Analýza rozptylu - ANOVA

- střední hodnotu ve více než ve dvou nezávislých výběrech porovnáváme pomocí analýzy rozptylu
 testované hypotézy:
 - H₀: všechny střední hodnoty jsou stejné
 - H₁: alespoň jedna střední hodnota se liší
- máme 2 předpoklady: normalitu a shodu rozptylů
- -3 testy:
 - *Klasická ANOVA* pro normální data a shodné rozptyly
 - *Welchova ANOVA* pro normální data a různé rozptyly
 - Kruskal-Wallisova ANOVA pro data, která nemají normální rozdělení

6.5.1 Klasická ANOVA

- pro shodné rozptyly porovnává variabilitu mezi výběry s variabilitou v rámci výběrů
- označení: X_{ii} i-té pozorování z j-tého výběru

 \overline{X}_{i} průměr *i*-tého výběru

 $\overline{X}_{...}$ celkový průměr všech pozorování

 n_i rozsah i-tého výběru a k počet výběrů

$$SST = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (X_{ij} - \overline{X}_{..})^2$$

rozložení celkové variability SST na variabilitu vysvětlenou výběry (mezi výběry) SS_A a variabilitu nevysvětlenou (zbytkovou, v rámci výběrů) SS_e

$$SST = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (X_{ij} - \overline{X}_{..})^2 =$$

$$= \sum_{i=1}^{k} n_i (\overline{X}_{i.} - \overline{X}_{..})^2 + \sum_{i=1}^{k} \sum_{j=1}^{n_i} (X_{ij} - \overline{X}_{i.})^2 =$$

$$= SSA + SSe$$

výstupem tabulka analýzy rozptylu:

	Součty	Stupně	Průměrné	Testová	p-hodnota
	čtverců	volnosti	čtverce	statistika	
Faktor A	SSA		Gir i	F = MSA/MSe	р
Chyba e	SSe	dfe = n - k	$MSe = \frac{SSe}{dle}$		
Celkem	SST	dft = n - 1			

- za platnosti nulové hypotézy má testová statistika F-rozdělení o k – 1 a n – k stupních volnosti

Bartlettův test

test shody rozptylů ve více výběrech

testované hypotézy

• H₀: rozptyly jsou shodné

• H₁ : rozptyly se liší

– testová statistika je založena na výběrových rozptylech v každém výběru zvlášť

označme Var(X)_i výběrový rozptyl v *i-tém* výběru, pak :

$$S^{2} = \frac{\sum_{i=1}^{k} (n_{i} - 1) \text{Var}(X)_{i}}{n - k},$$

$$C = 1 + \frac{1}{3(k - 1)} \left(\sum_{i=1}^{k} \frac{1}{n_{i} - 1} - \frac{1}{n - k} \right)$$

– testová statistika

$$B = \frac{1}{C} \left((n - k) \ln S^2 - \sum_{i=1}^{k} (n_i - 1) \ln \text{Var}(X)_i \right)$$

má za platnosti nulové hypotézy x^2 -rozdělení o k-1 stupních volnosti

Párové srovnání

 vzájemné srovnání všech dvojic výběrů se pomocí **Tukeyho testu**, případně **Tukeyho HSD test** pro různě velké výběry

– testované hypotézy pro všechny dvojice *i* a *j*:

• H₀: střední hodnoty μ_i a μ_j jsou stejné

H₁: střední hodnoty μ_i a μ_i se liší

– testové statistiky mají tvar: $Q = \frac{|\overline{X}_{i.} - \overline{X}_{j.}|}{s^*}$, kde $s^* = \sqrt{\frac{SSe}{n(n-k)}}$

– rozdělení těchto statistik nazýváme studentizované rozpětí a má své vlastní tabelované kritické hodnoty

Př. – ANOVA: Byla měřena koncentrace mědi v těle ryb. Porovnáváno bylo 5 rybníků, kde z každého byl vyloven vzorek 7-mi ryb. Výběrové průměry pro jednotlivé rybníky vyšly 0.57, 0.48, 0.50, -0.06 a 0.33. Liší se od sebe tyto rybníky?

testované hypotézy

 \circ H_0 : všechny rybníky jsou stejné

 \circ H_1 : alespoň jeden rybník se liší

• grafické porovnání:

- pro výběr správné verze analýzy rozptylu otestujme nejprve shodu rozptylů ve všech výběrech
- tyto rozptyly vyšly postupně: 0.10, 0.08, 0.10, 0.08, 0.02
- testované hypotézy
 - ∘ H₀: rozptyly jsou shodné
 - ∘ H₁: rozptyly se liší
- testová statistika *Bartlettova* testu vyšla 3.67 při *čtyřech* stupních volnosti, což dává *p-hodnotu* 0.45
- p-hodnota větší než α = 0.05 → nulovou hypotézu **ne**zamítáme a můžeme použít klasickou ANOVU pro shodné rozptyly
- tabulka analýzy rozptylu:

	Součty čtverců	Stupně volnosti	Průměrné čtverce	Testová statistika	<i>p</i> -hodnota
Rybník	1.796	4	0.4491	5.896	0.00127
Rybník Chyba	2.285	30	0.0762		
Celkem	4.081	34			

- p-hodnota vyšla menší než α = 0.05 → nulovou hypotézu zamítáme a rybníky se mezi sebou významně liší
- párové srovnání vrátí tabulku:

	rozdíl	dolní mez	horní mez	p-hodnota
B-A	-0.08485714	-0.51274077	0.3430265	0.9777112
C-A	-0.07314286	-0.50102648	0.3547408	0.9871500
D-A	-0.63114286	-1.05902648	-0.2032592	0.0015454
E-A	-0.23914286	-0.66702648	0.1887408	0.4960690
C-B	0.01171429	-0.41616934	0.4395979	0.9999904
D-B	-0.54628571	-0.97416934	-0.1184021	0.0070956
E-B	-0.15428571	-0.58216934	0.2735979	0.8319549
D-C	-0.55800000	-0.98588362	-0.1301164	0.0057762
E-C	-0.16600000	-0.59388362	0.2618836	0.7920009
E-D	0.39200000	-0.03588362	0.8198836	0.0850175

• graf pro párové srovnání pro dvojici rybníků, kde interval spolehlivosti neobsahuje svislou čárkovanou čáru (nulu), pak v ní je významný rozdíl

• závěr: Rybníky se v koncentraci mědi v těle ryb významně liší, konkrétně se liší rybník D od rybníků A, B a C.

6.5.2 Kruskal-Wallisův test

- přímé zobecnění Wilcoxonova dvouvýběrového testu pro více než 2 výběry
- postup (stejný jako u dvouvýběrového Wilcoxonova testu):
 - srovnáme všechny naměřené hodnoty do řady
 - určíme jejich pořadí
 - sečteme pořadí pro jednotlivé výběry: T_1, \ldots, n_k

kde **k** je počet výběrů

– testová statistika:

$$Q = \frac{12}{n(n+1)} \sum_{i=1}^{k} \frac{T_i}{n_i} - 3(n+1)$$

má za platnosti H₀ x²-rozdělení

6.5.3 Dunnův test

- párové srovnání pro data, která nemají normální rozdělení
- testová statistika porovnávající *i-tý* a *j-tý* výběr:

$$D = \frac{\left(\left|\frac{T_i}{n_i} - \frac{T_j}{n_j}\right|\right)}{\sqrt{\frac{n(n+1)}{12}\left(\frac{1}{n_i} + \frac{1}{n_j}\right)}}$$

− v případě, že v datech jsou shodné hodnoty a je tedy třeba dělit pořadí, používá se statistika:

$$D = \frac{\left(\left|\frac{T_{i}}{n_{i}} - \frac{T_{j}}{n_{j}}\right|\right)}{\sqrt{\frac{n(n+1) - \sum_{l=1}^{r} (S_{j}^{3} - S_{l})/(n-1)}{12} \left(\frac{1}{n_{i}} + \frac{1}{n_{j}}\right)}}$$

kde S₁ je počet *l-té* shodné hodnoty

- tato statistika má za platnosti H₀ N(0, 1)-rozdělení
- pro vícenásobné porovnání se pak použijí upravené p-hodnoty, aby byla udržena celková hladina testu

6.6 ANOVA pro opakované měření

- pro porovnání několika závislých vývěrů
- příklady, kdy použít:
 - Ochutnávka jogurtů: 20 lidí ochutnává a hodnotí každý všech 5 porovnávaných vzorků jogurtu.
 - Měření opakovaná v čase: chceme hodnotit vývoj pacientova zdravotního stavu v čase. Pro 30 pacientů děláme opakovaná měření játrových testů.
- testujeme hypotézy:
 - H0 : Střední hodnoty výběrů se neliší
 - H1 : Střední hodnoty výběrů se liší
- porovnává se variabilita mezi výběry s variabilitou zbytkovou
- zbytkovou variabilitu získáme tak, že od variability v rámci výběrů odečteme variabilitu mezi jedinci

$$SST = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (X_{ij} - \overline{X}_{..})^2 =$$

$$= \sum_{i=1}^{k} n_i (\overline{X}_{i.} - \overline{X}_{..})^2 + \sum_{i=1}^{k} \sum_{j=1}^{n_i} (X_{ij} - \overline{X}_{i.})^2 =$$

$$= SSA + SSe$$

$$SSz = SSe - SSS = SSe - k \sum_{j=1}^{n_i} (\overline{X}_{.j} - \overline{X}_{..})^2$$

- test je pak založen na porovnání SS_A a SS_z

6.6.1 Fiedmanův test

- neparametrický test porovnávající závislé výběry
- postup:
 - stanoví se pořadí hodnot v rámci každého jedince
 - pro každý výběr se spočte součet a průuměr pořadí
 - označme tyto průměry r̄_i

– testová statistika:
$$Q = \frac{12n}{k(k+1)} \sum_{i=1}^{k} \left(\overline{r}_{i} - \frac{k+1}{2} \right)^{2}$$

za platnosti nulové hypotézy má x^2 -rozdělení o k-1 stupních volnosti

6.7 Test dobré shody

- test o pravděpodobnostním rozdělení kategorické proměnné
 - proměnná s Multinomickým rozdělením (zobecnění Binomického rozdělení)
 - proměnná může nabývat *k* hodnot/kategorií
 - uděláme *n* pokusů
 - počítáme, kolikrát nastala která kategorie
 - měříme proměnné X_1, \ldots, X_k
 - označme p_i pst, že nastane *i-tá* kategorie
- multinomické rozdělení je dáno pravděpodobnostmi: $P(X_1 = c_1, \dots, X_k = c_k) = \frac{n!}{c_1! \cdot \dots \cdot c_k!} p_1^{c_1} \cdot \dots \cdot p_k^{c_k}$
- dále platí, že: $\mathsf{E}(X_i) = np_i, \quad \mathsf{Var}(X_i) = np_i(1-p_i)$
- testované hypotézy:
 - $\mathbf{H}_0 : \mathbf{p}_1 = \mathbf{\pi}_1, \ldots, \mathbf{p}_k = \mathbf{\pi}_k$
 - H_1 : neplatí $p_1 = \pi_1, ..., p_k = \pi_k$
- testová statistika: $\chi^2 = \sum_{i=1}^k \frac{(c_i n\pi_i)^2}{np_i}$

za platnosti H_0 má x^2 -rozdělení o k-1 stupních volnosti

- předpokladem je, že všechny očekávané četnosti $n\pi_i$, jsou větší než 5
- tímto testem můžeme testovat, zda náhodná veličina má nějaké konkrétní rozdělení
- Př.: Házíme 50 krát šestistěnnou kostkou a počítáme, kolikrát padla která hodnota. Jednička padla 8x, dvojka 5x, trojka 12x, čtyřka 7x, pětka 9x a šestka také 9x. Můžeme o kostce říci, že je spravedlivá?
 - testujeme hypotézy:
 - \circ $H_0: p_1 = p_2 = \ldots = p_6 = 1/6$
 - \circ H₁: alespoň jedna z pravděpodobností p₁, . . . , p₆ se nerovná 1/6
- Př.: Naměřili jsme hodnoty: c_1 = 8, c_2 = 5, c_3 = 12, c_4 = 7, c_5 = 9, c_6 = 9 Teoretická hodnota $n\pi_i$ = 50 × 1/6 = 8.3333. Dosadíme do vzorce a dostaneme:

$$\chi^2 = \frac{(8 - 8.3333)^2}{8.3333} + \frac{(5 - 8.3333)^2}{8.3333} + \frac{(12 - 8.3333)^2}{8.3333} + \frac{(7 - 8.3333)^2}{8.3333} + \frac{(9 - 8.3333)^2}{8.3333} = 3.28$$

- kritická hodnota x^2 -rozdělení o 5-ti stupních volnosti je $\chi_5^2 = 11.07$ p-hodnota p = 0.6569
- testová statistika je větší než kritická hodnota a p-hodnota menší než α, tedy
 nezamítáme nulovou hypotézu
- závěr: Neprokázali jsme, že by kostka byla falešná.

6.8 Test nezávislosti pro kategorická data

6.8.1 x²-test nezávislosti

- vztah dvou kategorických proměnných popisujeme *tabulkou absolutních četností*označíme:
 - X_1, \ldots, X_k hodnoty jedné kategorické proměnné
 - Y_1, \ldots, Y_l hodnoty druhé kategorické proměnné
 - $n_{i,j}$ četnost současného výskytu znaků X_i , Y_j
 - n_i marginální četnost znaku X_i
 - n_{ij} marginální četnost znaku Y_{ij}
 - *n* celkový počet pozorování

	Y_1		Y_I	
<i>X</i> ₁	n _{1,1}		n _{1,1}	<i>n</i> _{1.}
÷		٠		:
X_k	n _{k,1}		$n_{k,l}$	n _k .
	<i>n</i> _{.1}		$n_{.l}$	n

- kontingenční tabulka absolutních četností má tvar:
- testované hypotézy:
 - H₀ : proměnné na sobě nezávisí
 - H₁: proměnné na sobě závisí
- test je založen na porovnání
 - pozorovaných četností n_{ij}
 - očekávaných četností $n_i n_j / n$ vychází z definice nezávislosti $P(A \cap B) = P(A)P(B)$

- testová statistika:
$$X^2 = \sum_{i=1}^k \sum_{j=1}^l \frac{(pozorovane_{i,j} - ocekavane_{i,j})^2}{ocekavane_{i,j}} = \sum_{i=1}^k \sum_{j=1}^l \frac{(n_{i,j} - n_{i,n_{j}}/n)^2}{n_{i,n_{j}}/n}$$

za platnosti H_0 má x^2 -rozdělení o (k-1)(l-1) stupních volnosti

6.8.2 Fisherův exaktní test

- test nezávislosti pro malá data
 - když není splněn předpoklad x^2 -testu, tj. některá očekávaná četnost je menší než 5
 - počítá přímo p-hodnotu ke konkrétní tabulce
 - známý též jako Fisherův faktoriálový test
- pro čtyřpolní tabulku:

$$\begin{array}{c|ccccc} & Y_1 & Y_2 & \\ \hline X_1 & n_{11} & n_{12} & n_{1.} \\ X_2 & n_{21} & n_{22} & n_{2.} \\ \hline & n_{.1} & n_{.2} & n \end{array}$$

se p-hodnota vypočítá následujícím způsobem:

$$p = \frac{n_{1.}! n_{2.}! n_{.1}! n_{.2}!}{n! n_{11}! n_{12}! n_{21}! n_{22}!}$$

– pro větší tabulky je test složitější

– Př.: U 204 mužů s jedním rizikovým faktorem ischemické choroby srdeční bylo zjišťováno vzdělání a kategorie kouření. Výsledky jsou shrnuty v následující tabulce absolutních četností. Souvisí spolu tyto dvě veličiny?

	ZŠ	SŠ	۷Š
bývalý kuřák	6	10	11
nekuřák	13	22	23
slabý kuřák	52	39	18
silný kuřák	6	1	3

 vztah dvou kategorických proměnných se zobrazuje pomocí sloupcového grafu (můžeme zobrazovat pomocí řádkových nebo sloupcových procent)

testované hypotézy

o H₀: kouření se vzděláním nesouvisí

o H₁: kouření se vzděláním souvisí

výsledky testu

• testová statistika x^2 testu 21.286 > 12.59, kvantil x^2 -rozdělení s 6 stupni volnosti

 \circ p-hodnota 0.00163 < α = 0.05

 \circ p-hodnotu Fisherova exaktního testu $0.00084 < \alpha = 0.05$

• některé očekávané četnosti jsou menší než 5 (není splněn předpoklad x^2 testu)

o na základě Fisherova testu zamítáme nulovou hypotézu

závěr: Prokázali jsme, že kouření se vzděláním souvisí.

6.9 Poměr šancí

 uvažujme dvouhodnotovou veličinu ve dvou populacích (např. sledujeme výskyt chřipky ve městě a na venkově)

	Chřipku má	Chřipku nemá	
Město	<i>n</i> ₁₁	n ₁₂	<i>n</i> _{1.}
Venkov	<i>n</i> ₂₁	n ₂₂	<i>n</i> _{2.}
	n _{.1}	n _{.2}	n

- rozdíl mezi populacemi je možné popsat poměrem šancí
 - šance "mít chřipku proti nemít chřipku"

$$Odds = \frac{P(\text{má chřipku})}{P(\text{nemá chřipku})}$$

 poměr šancí je podíl šancí v obou populacích (kolikrát je větší šance na chřipku ve městě než na venkově)

definice poměru šancí:

$$OR = \frac{n_{11}n_{22}}{n_{12}n_{21}}$$

- testované hypotézy:
 - H_0 : OR = 1, šance jsou stejné
 - H₁ : OR ≠ 1, šance se v populacích liší

– testová statistika je rovna:

$$Z = \frac{\ln(OR)}{\sqrt{\frac{1}{n_{11}} + \frac{1}{n_{12}} + \frac{1}{n_{21}} + \frac{1}{n_{22}}}}$$

a za platnosti nulové hypotézy má N(0, 1) rozdělení

– Př.: *Uvažujme následující čtyřpolní tabulku*:

	Chřipku má	Chřipku nemá	
Město	58	17	75
Venkov	32	30	62
	90	47	137

- šance mít chřipku ve městě vychází 58/17 = 3.41
- šance mít chřipku na venkově vychází 32/30 = 1.07
- poměr šancí ve městě vs. na venkově vychází 3.41/1.07 = 3.2
 - → ve městě je více než třikrát větší šance mít chřipku než na venkově
- testová statistika 3.27 > 1.96 kritická hodnota
- p-hodnota $0.001 < \alpha = 0.05$
- zamítáme nulovou hypotézu
- závěr: Ve městě je významně větší šance dostat chřipku než na venkově.

6.10 Korelační koeficient

- použití, když je cílem výzkumu zjistit, zda spolu lineárně souvisí dvě číselné proměnné
- rozlišujeme tři základní korelační koeficienty:

• Pearsonův korelační koeficient

– používá se pokud obě proměnné mají přibližně normální rozdělení

• Spearmanův korelační koeficient

 používá se, pokud máme obě proměnné spojité, ale alespoň jedna z nich nemá normální rozdělení

Kendallův korelační koeficient

- používá se, pokud pracujeme s kategorickými uspořádanými (ordinálními) veličinami
- korelační koeficient měří *lineární závislost* dvou proměnných hodnotou z intervalu < −1, 1 >:
 - Cor(X, Y) = −1 značí absolutní nepřímou závislost
 - Cor(X, Y) = 0 značí lineární nezávislost/ nekorelovanost
 - Cor(X, Y) = 1 značí absolutní přímou závislost
- hodnota korelačního koeficientu říká, jak těsný je vztah mezi proměnnými

Pearsonův korelačcní koeficient

$$\begin{aligned} \text{Cor}(\mathsf{X},\mathsf{Y}) &=& \frac{\text{Cov}(\mathsf{X},\mathsf{Y})}{\sqrt{\text{Var}(\mathsf{X})\text{Var}(\mathsf{Y})}} = \\ &=& \frac{\sum_{i=1}^n (X_i - \overline{X})(Y_i - \overline{Y})}{\sqrt{\sum_{i=1}^n (X_i - \overline{X})^2 \sum_{i=1}^n (Y_i - \overline{Y})^2}} \end{aligned}$$

Spearmanův korelační koeficient

– se počítá dle stejného vzorce, jen místo původně naměřených hodnot se do něj vkládají pořadí

6.10.1 Korelační test

- testované hypotézy:
 - H₀: korelační koeficient = 0
 - H_1 : korelační koeficient $\neq 0$,
 - H_1 : korelační koeficient > 0,
 - H₁: korelační koeficient < 0
- za platnosti nulové hypotézy platí, že testová statistika pro $T = \frac{\text{Cor}(X,Y)}{\sqrt{1-\text{Cor}(X,Y)^2}}\sqrt{(n-2)}$

má *t*-rozdělení o n − 2 stupních volnosti

- Př.: Do výzkumu bylo zahrnuto 204 mužů s jedním rizikovým faktorem ischemické choroby srdeční. Zjišťujeme, zda spolu souvisí výška a hmotnost těchto mužů?
 - graf
 (z grafu je patrná rostoucí závislost
 mezi oběma proměnnými)

- testované hypotézy
 - H₀: váha a výška spolu nesouvisí, korelační koeficient = 0
 - H₁: váha a výška spolu souvisí, korelační koeficient ≠ 0
- pearsonův korelační koeficient vyšel 0,5
- testová statistika: $T = \frac{\text{Cor}(X,Y)}{\sqrt{1-\text{Cor}(X,Y)^2}} \sqrt{(n-2)} = \frac{0.5}{\sqrt{1-0.25}} \sqrt{202} = 8.19.$

je větší než kvantil t-rozdělení $t_{202}(1 - 0.975) = 1.97$

- p-hodnota testu vyšla 2.926 * 10^{-14} , což je menší než $\alpha = 0.05$
 - → nulovou hypotézu tedy zamítáme
- závěr: Souvislost mezi váhou a výškou je průkazná. Spearmanův korelační koeficient vyšel 0.48.

6.10.2 Kendallův korelační koeficient (Kendallovo τ)

- pro ordinální veličiny
 - označme porovnávané proměnné X a Y
 - dvojici pozorování označme jako souhlasnou (konkordantní), pokud:

$$X_i < X_j \& Y_i < Y_j$$
 nebo $X_i > X_j \& Y_i > Y_j$

• dvojici pozorování označme jako nesouhlasnou (diskordantní), pokud:

$$X_i < X_j \& Y_i > Y_j$$
 nebo $X_i > X_j \& Y_i < Y_j$

Kendallovo τ

- založeno na rozdílu počtu souhlasných (n_s) a počtu nesouhlasných (n_n) dvojic
- vzorec: $\tau = \frac{n_s n_n}{n} = \frac{2}{n(n-1)} \sum_{i < j} \operatorname{sign}(X_i X_j) \operatorname{sign}(Y_i Y_j)$
- rozptyl tohoto koeficientu: $Var(\tau) = \frac{2(2n+5)}{9n(n-1)}$
- testová statistika τ / $Var(\tau)$ má za platnosti nulové hypotézy asymptoticky N(0, 1) rozdělení
- pokud se v datech opakují hodnoty
 - pro proměnné se *stejným* počtem možných hodnot

$$\tau_B = \frac{n_s - n_n}{\sqrt{(n_0 - n_1)(n_0 - n_2)}},$$

kde $n_0 = n(n-1)/2$, $n_1 = \sum_i t_i(t_i-1)/2$ a t_i jsou počty shodných hodnot u proměnné X, $n_1 = \sum_i u_i(u_i-1)/2$ a u_i jsou počty shodných hodnot u proměnné Y.

• pro proměnné s *různým* počtem možných hodnot

$$\tau_C = \frac{2(n_s - n_n)}{n^2 \frac{m-1}{m}},$$

kde \boldsymbol{m} je minimální počet hodnot u obou proměnných

- výpočet rozptylů a následných testových statistik pro τ_B a τ_C je složitý (výpočet pomocí softwarů)

7. Statistické modely

7.1 Lineární regrese

- popisuje příčinnou závislost
- terminologie
 - nezávisle proměnná X příčina
 - závisle proměnná Y důsledek
- odhad lineárního modelu ve tvaru:

$$Y_i = \beta_0 + \beta_1 X_i + e_i$$

kde:

- Y_i jsou hodnoty závisle proměnné
- X_i jsou hodnoty nezávisle proměnné
- β_0 je absolutní člen
- β_1 je lineární člen
- e_i jsou náhodné chyby
- grafický popis pomocí bodového grafu, nutné dodržení os pro proměnné:
 - na x-ovou osu se kreslí **ne**závisle proměnná
 - na y-ovou osu se kreslí závisle proměnná
- regresní model je rovnice přímky proložené daty

Metoda nejmenších čtverců

– odhad probíhá metodou nejmenších čtverců, která minimalizuje součet druhých mocnin residuí

$$\min \sum_{i=1}^{n} R_i^2 = \min \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 = \min_{b_0, b_1} \sum_{i=1}^{n} (Y_i - (b_0 + b_1 X_i))^2$$

- \hat{Y}_i jsou odhady / predikce b₀ a b₁ jsou odhady regresních koeficientů
- pomocí modelu je možné predikovat budoucí hodnoty závisle proměnné

$$\hat{Y}_0=b_0+b_1x_0$$

(např. ze známé výšky můžeme predikovat očekávanou hmotnost)

Koeficient determinace

- procento variability závisle proměnné vysvětlené modelem: $R^2 = 1 \frac{\sum_{i=1}^{n} (Y_i \hat{Y}_i)^2}{\sum_{i=1}^{n} (Y_i \overline{Y}_i)^2} = \text{cor}(X, Y)^2$
- na základě modelu lze též zkonstruovat test nezávislosti.
- testované hypotézy:
 - H_0 : Proměnná Y (váha) na proměnné X (výšce) lineárně nezávisí, $\beta_1 = 0$
 - H_1 : Proměnná Y (váha) na proměnné X (výšce) lineárně závisí, $\beta_1 \neq 0$
- test je založen na faktu, že $b_1/se(b_1) \sim N(0, 1)$, kde b_1 je odhad lineárního členu β_1 a $se(b_1)$ je jeho střední chyba

- Př.: Pokračujme v příkladu s muži s jedním rizikovým faktorem ischemické choroby srdeční.
 Popište lineární závislost hmotnosti na výšce.
 - odhadnutý model má tvar: $Y_i = -66.85 + 0.85X_i$
 - střední chyba odhadu lineárního členu vyšla 0.1, testová statistika testu nezávislosti 8.19, p-hodnota $< 2.9 \times 10^{-14} < \alpha = 0.05$
 - zamítáme nulovou hypotézu nezávislosti
 - koeficient determinace vyšel 0.2493
 - závěr: Můžeme tedy říci, že u mužů s jedním rizikovým faktorem ischemické choroby srdeční hmotnost na výšce závisí. Závislost je přímá a vysvětlí se jí 25% variability závisle proměnné (hmotnosti).

Předpoklady lineární regrese

- lineární regrese má své předpoklady
 - Mezi proměnnými je skutečně lineární vztah
 - Residua jsou nezávislá
 - Residua mají normální rozdělení
 - Stabilita rozptylu
 - V datech nejsou vlivná pozorování
- jednotlivé předpoklady můžeme hodnotit buď na základě znalosti dat (nezávislost), nebo grafickými případně číselnými testy
- ukázka grafických testů předpokladu
 - 1. graf: lineární vztah červená čára nemá mít trend
 - 2. graf: normalita residuí body mají ležet na přímce
 - 3. graf: stabilita rozptylu červená čára nemá mít trend
 - 4. graf: body nemají překročit meze (čárkované křivky)

