Описание оригинальной системы команд «Сетунь-70» (до внесения модификаций, датируемых 1975 г.) (с) 2023, Станислав Масловский <stanislav.maslovski@gmail.com>

Регистровая схема машины:

Машинный код «Сетунь-70» представляет собой последовательность 6-тритных трайтов: k = k1,k2,k3,k4,k5,k6

Если k1,k2 = 0,0, то такой трайт кодирует одну из основных (k3 = 0) или специальных (k3 = 1) операций из нижеследующей таблицы.

В этой таблице, Т – вершина стека, S – подвершина стека. Обмен со стеком производится словами по три трайта. Переменная t обозначает первый (старший) трайт Т.

Стрелка вниз

• обозначает перемещение указателя стека вниз на одно слово, т. е. после выполнения операции прежняя подвершина стека (S) становится его новой вершиной (Т).

Тип	Мнемоника	3-код	9-код	Описание	Комментарии
B1	LST	000	0ZW	Сдвиг пары S:Y на t разрядов; ↓	Свиг влево при t > 0 и вправо при t < 0
B2	COT	000 0	0ZX	Переход по смещению в t, если $ S > 3^{17}/2$ (переполнение); \downarrow	ca := t, если переполнение
В3	XNN	000+	0ZY	Нормализация числа с мантиссой в Т:Ү и порядком в е	
B4	E-1	000-0-	0ZZ	e := e - 1	
B5	E=0	000-00	0Z0	e := 0	
В6	E+1	000-0+	0Z1	e := e + 1	
В7	T-E	000-+-	0Z2	T := T - e × 3 ¹²	
B8	E=T	000-+0	0Z3	e := t; ↓	
В9	T+E	000-++	0Z4	T := T + e × 3 ¹²	
B10	CLT	0000	00W	Если S < 0, то переход по смещению в t; ↓	ca := t, если S < 0
B11	CET	0000-0	00X	Если S = 0, то переход по смещению в t; ↓	ca := t, если S = 0
B12	CGT	0000-+	00Y	Если S > 0, то переход по смещению в t; ↓	ca := t, если S > 0
B13	T=C	00000-	00Z	Очищает T и помещает в t адрес текущей команды	
B14	R=T	000000	000	R := T; ↓	
B15	C=T	00000+	001	Безусловный переход в пределах страницы по смещению в t; ↓	ca := t
B16	T=W	0000+-	002	Копирует трайты в вершину стека из ячеек ОЗУ/ПЗУ по ссылке в t	При выходе за пределы страницы генерируется исключение (w = -29)
B17	YFT	0000+0	003	Очищает Ү; ↓	
B18	W=S	0000++	004	Копирует трайты из подвершины стека в ячейки ОЗУ по ссылке в t; ↓	При выходе за пределы страницы генерируется исключение (w = -29)
B19	SMT	000+	01W	Помещает в S результат поразрядного умножения T на S; ↓	
B20	Y=T	000+-0	01X	Y := T; ↓	

Instructions

B21	SAT	000+-+	01Y	Помещает в S результат поразрядного порогового сложения Т и S; ↓	
B22	S-T	000+0-	01Z	S := S - T; ↓	
B23	TDN	000+00	010	T := -T	
B24	S+T	000+0+	011	S := S + T; ↓	
B25	LBT	000++-	012	S:Y := S × 3 ¹⁸ + T × R × 3 ² ; ↓	
B26	L*T	000++0	013	$R := S, S:Y := T \times R \times 3^2; \downarrow$	
B27	LHT	000+++	014	$S:Y := S \times 3^{18} + Y + T \times R \times 3^{2}; \downarrow$	
S1	CG1	00+	02W	Чтение из первого канала в вершину стека: $T := 0$, $t := \pm g[1,1:6]$	Плюс, когда g[-1,7] = 1, и минус, когда g[-1,7] = 0.
52	CG2	00+0	02X	Чтение из второго канала в вершину стека: $T := 0$, $t := \pm g[2,1:6]$	Плюс, когда g[0,7] = 1, и минус, когда g[0,7] = 0.
S3	CG3	00++	02Y	Чтение из третьего канала в вершину стека: $T := 0$, $t := \pm g[3,1:6]$	Плюс, когда $g[+1,7] = 1$, и минус, когда $g[+1,7] = 0$.
S4	CF1	00+-0-	02Z	Копирует внешнюю страницу f[-1,q[-1]] в ОЗУ по указателю из t; ↓	
S5	CF2	00+-00	020	Копирует внешнюю страницу f[0,q[0]] в ОЗУ по указателю из t; ↓	
S6	CF3	00+-0+	021	Копирует внешнюю страницу f[+1,q[+1]] в ОЗУ по указателю из t; ↓	
S7	LQ1	00+-+-	022	q[-1] := T[5:12], SUIT(-1)	Активизирует асинхронную процедуру поиска страницы на МБ1
S8	LQ2	00+-+0	023	q[0] := T[5:12], SUIT(0)	Активизирует асинхронную процедуру поиска страницы на МБ2
S9	LQ3	00+-++	024	q[+1] := T[5:12], SUIT(+1)	Активизирует асинхронную процедуру поиска страницы на МБЗ
S10	СР	00+0	03W	Копирует указатель стека ph:pa в вершину стека	z := 0; z[5:6] := ph; z[9:11] := pa; T := z;
S11	EXP	00+0-0	03X	Обменивает текущий указатель стека с резервным	z[1:5] := p[1:5]; p[1:5]:= p[6:10]; p[6:10] := z[1:5];
S12	LP	00+0-+	03Y	Загружает значение из вершины стека в указатель стека	z := T; ph := z[5:6]; pa := z[9:11];
S13	CMC	00+00-	03Z	Копирует cb в вершину стека, обменивает содержимое cb и cc	
S14	RMC	00+000	030	Возврат из макрокоманды	z[1:12] := c[9:20]; c[9:20] := c[21:32]; c[21:32] := z[1:12]; c[1:4] := z[3:6]; c[5:8] := z[9:12];
S15	LMC	00+00+	031	Загружает в cb значение из вершины стека, старое cb → cc; ↓	z := T; c[21:32] := c[9:20]; c[9:20] := z[1:12];
S16	LH1	00+0+-	032	Загружает указатель страниц h[-1] из вершины стека; ↓	z := T; h[-1] := z[4:6];
S17	LH2	00+0+0	033	Загружает указатель страниц h[0] из вершины стека; ↓	z := T; h[0] := z[4:6];
S18	LH3	00+0++	034	Загружает указатель страниц h[+1] из вершины стека; ↓	z := T; h[+1] := z[4:6];
S19	LU1	00++	04W	Загружает управляющий регистр первого канала BB; ↓	u[-1, 1:4] := t; a[-1] := 1;
S20	LU2	00++-0	04X	Загружает управляющий регистр второго канала BB; ↓	u[1, 1:4] := t; a[1] := 1;
S21	LU3	00++-+	04Y	Загружает управляющий регистр третьего канала ВВ; ↓	u[+1, 1:4] := t; a[+1] := 1;
S22	LF1	00++0-	04Z	Выгружает страницу с номером из t во внешнюю память f[-1,q[-1]]	
S23	LF2	00++00	040	Выгружает страницу с номером из t во внешнюю память f[0,q[0]]	
S24	LF3	00++0+	041	Выгружает страницу с номером из t во внешнюю память f[+1,q[+1]]	
S25	LG1	00+++-	042	Запись в первый канал из вершины стека; ↓	TRANSOUT(-1);
S26	LG2	00+++0	043	Запись во второй канал из вершины стека; ↓	TRANSOUT(0);
S27	LG3	00++++	044	Запись в третий канал из вершины стека; ↓	TRANSOUT(+1);

Если k1,k2,k3 = 0,0,-1 то такой трайт кодирует макрооперацию (системный вызов).

Если хотя бы один из тритов k1,k2 отличен от нуля, то такой трайт интерпретируется как ссылка на операнд, подлежащий загрузке в вершину стека. Формат ссылки:

- k1 задает длину операнда в трайтах, равную k1+2
- k2 выбирает регистр приписки, используемый для адресации страницы: h[k2]
- k[3:6] адрес первого трайта операнда (в пределах страницы)

Поскольку недопустим слог-адрес у которого k [1:2]=0, то при использовании регистра приписки h[0] (т.е. h2) длина операнда не может быть равной двум слогам.

Операнды в памяти хранятся в порядке от старших разрядов к младшим (big-endian).

В зависимости от значения в регистре с1, машина может находиться в трех режимах:

- с1 = -1: режим пользователя. В этом режиме разрешены команды основного типа (В1-В27) и макрооперации. Прерывания разрешены.
- c1 = 0: режим макрооперации. В этот режим машина переходит при встрече кода макрооперации. В этом режиме разрешены основные и специальные (S1-S27) операции. Новые макрооперации в этом режиме запрещены. Прерывания разрешены.
- с1 = +1: системый режим. В этом режиме доступны основные и специальные операции. Машина исходно стартует в этом режиме. Прерывания и макрооперации запрещены.

Исполнение макрооперации заключается в сохранении текущего значения св сс, а значения св сь, помещении на стек слога с t = m[-13, ka], где ka = k[3:6] из кода макрооперации, и перехода к инструкции из m[-13,-13]. Возврат из макрооперации происходит по команде RMC, которая восстанавливает ранее сохраненное значение с из сb.