BE -SEMESTER 1&2(NEW SYLLABUS)EXAMINATION- WINTER 2018

Subject Code: 3110014 Date: 07-01-2019

Subject Name: Mathematics - I Time: 10:30 am to 01:30 pm

Total Marks: 70

Instructions:

1. Attempt all questions.

- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Marks

- Q.1 (a) State Cayley– Hamilton theorem. Find eigen values of A and A^{-1} , where $A = \begin{bmatrix} 1 & 2 \\ 0 & 4 \end{bmatrix}$
 - (b) State L' Hospital's Rule. Use it to evaluate $\lim_{x\to 0} \left[\frac{1}{x^2} \frac{1}{\sin^2 x} \right]$
 - (c) Investigate convergence of the following integrals:
 - $(i) \quad \int_5^\infty \frac{5x}{\left(1+x^2\right)^3} \, dx$
 - (ii) $\int_0^\infty \frac{x^{10} \left(1 + x^5\right)}{\left(1 + x\right)^{27}} dx$
- Q.2 (a) Test the convergence of series $\sum_{n=1}^{\infty} \frac{4^n + 5^n}{6^n}$
 - (b) State the p-series test. Discuss the convergence of the series $\sum_{n=2}^{\infty} \frac{n+1}{n^3 3n + 2}$
 - (c) State D'Alembert's ratio test and Cauchy's root test. Discuss the convergence of the following series:
 - (i) $\sum_{n=1}^{\infty} \frac{4^n (n+1)!}{n^{n+1}}$
 - (ii) $\sum_{n=2}^{\infty} \frac{n}{\left(\log n\right)^n}$

- (c) Test the convergence of the series $\frac{1}{1 \cdot 2 \cdot 3} + \frac{x}{4 \cdot 5 \cdot 6} + \frac{x^2}{7 \cdot 8 \cdot 9} + \frac{x^3}{10 \cdot 11 \cdot 12} + \cdots$; $x \ge 0$
- **Q.3** (a) Reduce matrix $A = \begin{bmatrix} 1 & 5 & 3 & -2 \\ 2 & 0 & 4 & 1 \\ 4 & 8 & 9 & -1 \end{bmatrix}$ to row echelon form and find its rank.
 - **(b)** Derive half range sine series of $f(x) = \pi x$, $0 \le x \le \pi$
 - (c) Find the eigen values and corresponding eigen vectors for the matrix A 07

where
$$A = \begin{bmatrix} 1 & 2 & 2 \\ 0 & 2 & 1 \\ -1 & 2 & 2 \end{bmatrix}$$

OR

- **Q.3** (a) Expand $e^{x\sin(x)}$ in power of x up to the terms containing x^6 .
 - (b) Solve system of linear equation by Gauss Elimination method, if solution exists.

$$x+y+2z=9$$
; $2x+4y-3z=1$; $3x+6y-5z=0$

- Find Fourier series of $f(x) = \begin{cases} x, & -1 < x < 0 \\ 2, & 0 < x < 1 \end{cases}$
- Q.4 (a) Discuss the continuity of the function f defined as 03 $f(x,y) = \begin{cases} \frac{x^3 y^3}{x^2 + y^2}; & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$
 - **(b)** Define gradient of a function. Use it to find directional derivative of $f(x, y, z) = x^3 xy^2 z$ at P(1,1,0) in the direction of $\overline{a} = 2\hat{i} 3\hat{j} + 6\hat{k}$.
 - (c) Find the shortest and largest distance from the point (1,2,-1) to the sphere $x^2 + y^2 + z^2 = 24$.

OR

- **Q.4** (a) Find the extreme values of $x^3 + 3xy^2 3x^2 3y^2 + 4$
 - (b) Evaluate $\int_0^2 \int_0^{\sqrt{4-x^2}} (x^2 + y^2) dy dx$ by changing into polar coordinates.
 - (c) (i) If $u = x^2y + y^2z + z^2x$ then find out $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z}$
 - (ii) If $x^3 + y^3 = 6xy$ then find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$
- Q.5 (a) Evaluate $\iint_R y \sin(xy) dA$, where R is the region bounded by x = 1, x = 2, 03 y = 0 and $y = \frac{\pi}{2}$.
 - By changing the order of integration, evaluate $\int_{0}^{3} \int_{x}^{3} \frac{x dx dy}{x^2 + y^2}$
 - (c) Find the volume below the surface $z = x^2 + y^2$, above the plane z = 0, and inside the cylinder $x^2 + y^2 = 2y$.

OR

- Q.5 (a) Evaluate integral $\iint_R \frac{rdrd\theta}{\sqrt{a^2 + r^2}}$ over the region R which is one loop of $r^2 = a^2 \cos 2\theta$
 - **(b)** Evaluate the integral $\int_1^e \int_1^{\log y} \int_1^{e^x} (x^2 + y^2) dz dx dy$.
 - (c) Find the volume of the solid obtained by rotating the region R enclosed by the curves y = x and $y = x^2$ about the line y = 2.

Seat No.: _____

Enrolment No.____

Total Marks: 70

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- I & II (NEW) EXAMINATION - WINTER 2019

Date: 17/01/2020 Subject Code: 3110014 **Subject Name: Mathematics – I**

Time: 10:30 AM TO 01:30 PM

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

			MARKS
Q.1	(a)	Find the equations of the tenagent plane and normal line to the surface $x^2 + y^2 + z^2 = 3$ at the point $(1,1,1)$	03
	(b)	Evaluate $\lim_{x\to 0} \frac{xe^x - \log(1+x)}{x^2}$	04
	(c)	Using Gauss Elimination method solve the following system $-x+3y+4z=30$ 3x+2y-z=9 2x-y+2z=10	07
Q.2	(a)	Test the convergence of the series $\frac{1}{2} + \left(\frac{2}{5}\right)^2 + \left(\frac{3}{5}\right)^3 + \dots + \left(\frac{n}{2n+1}\right)^n + \dots$	03
	(b)	Discuss the Maxima and Minima of the function $3x^2 - y^2 + x^3$	04
	(c)	Find the fourier series of $f(x) = \frac{(\pi - x)}{2}$ in the interval $(0,2\pi)$	07
	(c)	OR Change the order of integration and evaluate $\int_0^1 \int_x^1 \sin y^2 dy dx$	07
Q.3	(a)	Find the value of $\beta\left(\frac{7}{2},\frac{5}{2}\right)$	03
	(b)	Obtain the fourier cosine series of the function $f(x) = e^x$ in the range $(0,l)$	04
	(c)	Find the maximum and minimum distance from the point (1,2,2) to the sphere $x^2 + y^2 + z^2 = 36$	07
		OR	
Q.3	(a)	Test the convergence of the series $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots$	03
	(b)	Evaluate $\iint (x^2 - y^2) dx dy$ over the triangle with the vertices (0,1),	04

04

Find the volume of the solid generated by rotating the plane region **(c)** bounded by $y = \frac{1}{x}$, x=1 and x=3 about the X axis. Evaluate $\int_0^{\pi} \int_0^{\sin \theta} r \, dr \, d\theta$

07

(a)

Q.4

(1,1), (1,2)

03

Express $f(x) = 2x^3 + 3x^2 - 8x + 7$ in terms of (x-2) **(b)**

04

	(c)	Using Gauss-Jordan method find A^{-1} for $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix}$	07					
Q.4	(a)	OR Using Cayley-Hamilton Theorem find A^{-1} for $A = \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}$	03					
	(b)	Evaluate $\int_0^\infty \frac{dx}{x^2+1}$	04					
	(c)	Test the convergence of the series $\frac{x}{1\cdot 2} + \frac{x^2}{3\cdot 4} + \frac{x^3}{5\cdot 6} + \frac{x^4}{7\cdot 8} + \cdots$	07					
Q.5	(a)	Evaluate $\int_0^1 \int_1^2 xy dy dx$	03					
	(b)	Find the eigen values and eigenvectors of the matrix $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 2 & 2 \end{bmatrix}$	04					
	(c)	If $u = f(x-y, y-z, z-x)$ then show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$	07					
0.5	OR (a) Find the directional derivatives of $f = xy^2 + yz^2$ at the point (2,-1,1), in							
Q.S	(a)	the direction of $i+2j+2k$.	03					
	(b)	Test the convergence of the series $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^2+1}$	04					
	(c)	Evaluate $\iiint xyz dx dy dz$ over the positive octant of the sphere $x^2 + y^2 + z^2 = 4$	07					

BE- SEMESTER-I & II (NEW) EXAMINATION - WINTER 2020

Subject Code:3110014 Date:16/03/2021

 ${\bf Subject\ Name:} {\bf Mathematics-I}$

Time:10:30 AM TO 12:30 PM Total Marks:47

Instructions:

- 1. Attempt any THREE questions from Q1 to Q6.
- 2. Q7 is compulsory.
- 3. Make suitable assumptions wherever necessary.
- 4. Figures to the right indicate full marks.

Marks

- Q.1 (a) Expand $\sin x$ in powers of $(x \pi/2)$.
 - (b) Evaluate $\lim_{x \to 0} \frac{\tan^2 x x^2}{x^2 \tan^2 x}$.
 - (c) (i) Check the convergence of $\int_{4}^{\infty} \frac{3x+5}{x^4+7} dx.$
 - (ii) The region between the curve $y = \sqrt{x}$, $0 \le x \le 4$ and the line x = 4 is revolved about the x axis to generate a solid. Find its volume.
- Q.2 (a) If $u = \cos ec^{-1} \left(\frac{x+y}{x^2+y^2} \right)$, show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \tan u$.
 - (b) Check the convergence of the series $\sum_{n=1}^{\infty} \frac{2^n + 5}{3^n}$.
 - (c) (i) Test the convergence of the series $\sum_{n=1}^{\infty} (\sqrt{n+1} \sqrt{n})$.
 - (ii) Test the convergence of $\sum_{n=1}^{\infty} \frac{2^n}{n^3 + 1}$.
- **Q.3** (a) Solve the following equations by Gauss' elimination method: 03 x + y + z = 6, x + 2y + 3z = 14, 2x + 4y + 7z = 30.
 - (b) If u = f(x y, y z, z x), prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$.
 - (c) (i) Find the equation of the tangent plane and normal line to the surface $x^2 + 2y^2 + 3z^2 = 12$ at (1, 2, -1).
 - (ii) For $f(x, y) = x^3 + y^3 3xy$, find the maximum and minimum values. **04**
- Q.4 (a) Find the rank of the matrix $\begin{bmatrix} 8 & 0 & 0 & 16 \\ 0 & 0 & 0 & 6 \\ 0 & 9 & 9 & 9 \end{bmatrix}$.
 - (b) If u = f(x + at) + g(x at), prove that $\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2}$.

(c)
(i) Show that the function
$$f(x, y) = \begin{cases} \frac{2x^2y}{x^3 + y^3}, (x, y) \neq (0, 0) \\ 0, (x, y) = (0, 0) \end{cases}$$
 is not

continuous at the origin.

- (ii) Find the shortest distance from the point (1,2,2) to the sphere $x^2 + y^2 + z^2 = 16$.
- Q.5 (a) Use Gauss-Jordan method to find A^{-1} , if $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix}$.
 - Using Caley-Hamilton theorem find A^2 , if $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$. Also find A^{-1} .
 - (c) Find the Fourier cosine series for $f(x) = x^2, 0 < x < \pi$. Hence show that $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} = \frac{\pi^2}{12}.$
- **Q.6** (a) Evaluate $\iint_R e^{2x+3y} dA$, where R is the triangle bounded by x = 0, y = 0, x + y = 1.
 - (b) Find the eigen values and eigen vectors for the matrix $\begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$.
 - (c) Evaluate $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} dA$ by changing the order of integration.
- Q.7 $\int_{0}^{\pi/2} \int_{a(1-\cos\theta)}^{a} r^2 dr d\theta.$ Evaluate $\int_{0}^{\pi/2} \int_{a(1-\cos\theta)}^{a} r^2 dr d\theta.$

Q.7 Find the area enclosed within the curves y = 2 - x and $y^2 = 2(2 - x)$. 05

BE - SEMESTER-1/2 EXAMINATION - WINTER 2021 Subject Code:3110014 Date:19/03/2022 **Subject Name: Mathematics - 1** Time: 10:30 AM TO 01:30 PM Total Marks:70 **Instructions:** 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks. 4. Simple and non-programmable scientific calculators are allowed. **MARKS Q.1** (a) If $u = \log(\tan x + \tan y + \tan z)$ then show that 03 $sin2x \frac{\partial u}{\partial x} + sin2y \frac{\partial u}{\partial y} + sin2z \frac{\partial u}{\partial z} = 2$ Evaluate 04 **(b)** $\lim_{x\to 0} \frac{e^x - e^{-x} - 2\log(1+x)}{x\sin x}$ Find the extreme values of the function (c) 07 $f(x,y) = x^3 + y^3 - 3x - 12y + 20$ Use Ratio test to check the convergence of the series Q.203 $\sum_{n=0}^{\infty} \frac{2^n + 1}{3^n + 1}$ (b) Find the Maclaurin's series of cosx and use it to find the series 04 of sin^2x . Find the Fourier series of $f(x) = x^2$ in the interval $(0,2\pi)$ and **07** hence deduce that $\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \cdots$ Find the Fourier series of $f(x) = 2x - x^2$ in the interval 07 (0,3). (a) Find the directional derivative of f(x, y, z) = xyz at the point Q.3 03 P(-1,1,3) in the direction of the vector $\bar{a} = \hat{i} - 2\hat{j} + 2\hat{k}$. Find the rank of the matrix $\begin{bmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \end{bmatrix}$ by reducing to **(b)** 04 row echelon form. Find the eigenvalues and corresponding eigenvectors of the **07** (c) matrix $A = \begin{bmatrix} 4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$ 03

Q.3 (a) If
$$u = f(x - y, y - z, z - x)$$
, then prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$

(b) Find the inverse of the following matrix by Gauss-Jordan method:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix}$$

07

03

04

07

04

07

03

04

07

(c) Verify Cayley-Hamilton theorem for the following matrix and use it to find A^{-1}

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$$

 $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$ If 1 is an eigenvalue of the matrix $\begin{bmatrix} 2 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ then find its $\mathbf{Q.4}$ (a)

corresponding eigen vector.

- **(b)** Expand $2x^3 + 7x^2 + x 1$ in powers of (x 2)
- Solve following system by using Gauss Jordan method

$$x + 2y + z - w = -2$$

$$2x + 3y - z + 2w = 7$$

$$x + y + 3z - 2w = -6$$

$$x + y + z + w = 2$$
OR

Q.4 (a) Use integral test to show that the following infinite series is 03 convergent

$$\sum_{n=1}^{\infty} \frac{1}{n(1 + \log^2 n)}$$

(b) For the odd periodic function defined below, find the Fourier series

$$f(x) = \begin{cases} -1, & -1 < x < 0 \\ 1, & 0 < x < 1 \end{cases}$$
 Determine the radius and interval of convergence of the

following infinite series

$$x - \frac{x^2}{4} + \frac{x^3}{9} - \frac{x^4}{16} + \cdots$$

Q.5 (a) Show the following limit does not exist using different path approach

$$\lim_{(x,y)\to(0,0)} \frac{2x^2y^2}{x^4 + y^4}$$

Evaluate the following integral along the region R

$$\iint_{R} (x+y)dydx$$

where R is the region bounded by x = 0, x = 2, y = x, y = xx + 2. Also, sketch the region.

Change the order of integration and hence evaluate the same. Do sketch the region.

$$\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} dy dx$$
OR

Q.5 (a) The following integral is an improper integral of which type? 03 **Evaluate**

$$\int_{0}^{\infty} \frac{dx}{x^2 + 1}$$

(b) If $x = rsin\theta cos\varphi$, $y = rsin\theta sin\varphi$, $z = rcos\theta$, then find the 04 jacobian

$$\frac{\partial(x,y,z)}{\partial(r,\theta,\varphi)}$$

 $\frac{\partial(x,y,z)}{\partial(r,\theta,\varphi)}$ (c) Find the volume of the solid generated by rotating the region bounded by $y = x^2 - 2x$ and y = x about the line y = 4. **07**

BE - SEMESTER-I &II (NEW) EXAMINATION - SUMMER-2019

Subject Code: 3110014 Date: 06/06/2019

Subject Name: Mathematics – I

Time: 10:30 AM TO 01:30 PM **Total Marks: 70**

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Marks

- Q.1 03
 - 04
 - (a) Use L'Hospital's rule to find the limit of $\lim_{x \to 1} \left(\frac{x}{x-1} \frac{1}{\ln x} \right)$. (b) Define Gamma function and evaluate $\int_0^\infty e^{x^2} dx$. (c) Evaluate $\int_0^3 \int_{\frac{\sqrt{x}}{3}}^1 e^{y^2} dy dx$. 07
- 03 **Q.2** (a) Define the convergence of a sequence (a_n) and verify whether the sequence whose n^{th} term is $a_n = \left(\frac{n+1}{n-1}\right)^n$ converges or not.
 - (b) Sketch the region of integration and evaluate the integral 04 $\iint_R (y-2x^2)dA$ where R is the region inside the square |x| + |y| = 1.
 - (c) (i) Find the sum of the series $\sum_{n\geq 2} \frac{1}{4^n}$ and $\sum_{n\geq 1} \frac{4}{(4n-3)(4n+1)}$. **07** (ii) Use Taylor's series to estimate sin38°.

- integrals $\int_0^\infty \int_0^\infty \frac{1}{(1+x^2+v^2)^2} dx dy$ (c) Evaluate **07** the $\int_0^1 \int_{\sqrt[3]{z}}^1 \int_0^{\ln 3} \frac{\pi e^{2x} \sin \pi y^2}{y^2} dx dy dz.$
- 03 Q.3 (a) If an electrostatic field E acts on a liquid or a gaseous polar dielectric, the net dipode moment P per unit volume is P(E) = $\frac{e^{E} + e^{-E}}{e^{E} - e^{-E}} - \frac{1}{E}$. Show that $\lim_{E \to 0^{+}} P(E) = 0$.
 - (b) For what values of the constant k does the second derivative test guarantee that $f(x,y) = x^2 + kxy + y^2$ will have a saddle point at (0,0)? A local minimum at (0,0)?
 - (c) Find the series radius and interval of convergence for $\sum_{n=0}^{\infty} \frac{(3x-2)^n}{n}$. For what values of x does the series converge absolutely?

- (a) Determine whether the integral $\int_0^3 \frac{dx}{x-1}$ converges or diverges. 03 **Q.3**
 - Find the volume of the solid generated by revolving the region 04 bounded by $y = \sqrt{x}$ and the lines y = 1, x = 4 about the line y = 1.

04

07

(c)	Check	the	convergence	of	the	series	07
$\sum_{n=1}^{\infty} \frac{(\ln n)^3}{n^3}$ and $\sum_{n=0}^{\infty} (-1)^n (\sqrt{n+\sqrt{n}} - \sqrt{n})$.							

- Q.4 (a) Show that the function $f(x,y) = \frac{2x^2y}{x^4+y^2}$ has no limit as (x,y) approaches to (0,0).
 - (b) Suppose f is a differentiable function of x and y and $g(u, v) = f(e^u + sinv, e^u + cosv)$. Use the following table to calculate $g_u(0,0), g_v(0,0), g_u(1,2)$ and $g_v(1,2)$.

$\frac{\partial u}{\partial x}$				
	f	g	f_{χ}	f_{y}
(0,0)	3	6	4	8
(1,2)	6	3	2	5

(c) Find the Fourier series of 2π -periodic function f(x) = 07 $x^2, 0 < x < 2\pi$ and hence deduce that $\frac{\pi^2}{6} = \sum_{n=0}^{\infty} \frac{1}{n^2}$.

OR

- Q.4 (a) Verify that the function $u = e^{-\alpha^2 k^2 t} \cdot sinkx$ is a solution f the heat conduction euation $u_t = \alpha^2 u_{xx}$.
 - (b) Find the half-range cosine series of the function $f(x) = \begin{cases} 2, & -2 < x < 0 \\ 0, & 0 < x < 2 \end{cases}$
 - (c) Find the points on the sphere $x^2 + y^2 + z^2 = 4$ that are closest to and farthest from the point (3,1,-1).
- Q.5 (a) Find the directional derivative $D_u f(x, y)$ if $f(x, y) = x^3 3xy + 4y^2$ and u is the unit vector given by angle $\theta = \frac{\pi}{6}$. What is $D_u f(1,2)$?
 - (b) Find the area of the region bounded y the curves y = sinx, y = cosx and the lines x = 0 and $x = \frac{\pi}{4}$.
 - (c) Prove that $A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$ is diagonalizable and use it to find A^{13} .

OR

- Q.5 (a) Define the rank of a matrix and find the rank of the matrix $A = \begin{bmatrix} 2 & -1 & 0 \\ 4 & 5 & -3 \\ 1 & -4 & 7 \end{bmatrix}$.
 - (b) Use Gauss-Jordan algorithm to solve the system of linear equations $2x_1 + 2x_2 x_3 + x_5 = 0$ $-x_1 - x_2 + 2x_3 - 3x_4 + x_5 = 0$ $x_1 + x_2 - 2x_3 - x_5 = 0$ $x_3 + x_4 + x_5 = 0$
 - (c) State Cayley-Hamilton theorem and verify if for the matrix $A = \begin{bmatrix} 4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$.

Seat No.: _____

Enrolment No.____

GUJARAT TECHNOLOGICAL UNIVERSITY

C L :	4	BE- SEMESTER-I & II(NEW)EXAMINATION - SUMMER 2022	2022
•		Code:3110014 Date:02-08	-2022
•		Name: Mathematics - 1	1 50
		:30 AM TO 01:30 PM Total Mai	rks://
Instru		Attempt all questions.	
		Make suitable assumptions wherever necessary.	
		Figures to the right indicate full marks.	
	4.	Simple and non-programmable scientific calculators are allowed.	Marks
Ο 1	(a)	σ. 1	03
Q.1	(a)	Is $\sum_{p=1}^{\infty} \frac{1}{n^p}$ convergent for $p > 1$? Justify your answer.	03
		$\overline{n=1} n^r$	
	(b)	$\sin x - \sin a$	02
	(~)	(1) Find $\lim_{x \to a} \frac{\sin x - \sin a}{(x-a)^2}$	~ _
		(2) Is $\int_{-\infty}^{\infty} \frac{\sin^2 x}{x^2}$ convergent? Justify your answer.	02
	(.)	0 3	0.4
	(c)	(1) Find the length of curve	04
		$f(x) = \frac{x^3}{12} + \frac{1}{x}, \ 1 \le x \le 4$.	
		(2) Prove that	
		Gamma $(n) = (n-1)$ Gamma $(n-1)$.	03
0.4	(.)	•	0.2
Q.2	(a)	Investigate the convergence of $\sum_{i=1}^{\infty} \frac{n^2}{7^n}$.	03
		$\frac{1}{1}7^n$	
	(b)	∞ 2^n (1) ²	04
	(D)	Investigate the convergence of $\sum_{n=1}^{\infty} \frac{2^n (n!)^2}{(2n)!}$	04
	(-)	n-1 ()	07
	(C)	Find Fourier series of $f(x) = x^2$, $-\pi < x < \pi$.	07
	(c)	$ \begin{array}{ccc} \mathbf{OR} \\ f(x) &= x & -1 < x < 0 \end{array} $	07
	(C)	Find Fourier series of $f(x) = x, -1 < x < 0$ $= 2, 0 < x < 1$	07
Q.3	(a)		03
Q.S	(u)	\mathbf{y}	00
	(b)	$P(1,1)$. Find the tengent plane of $-x^x$ and x at $P(0,0,0)$	04
		8 · · · · · · · · · · · · · · · · · · ·	07
	(c)	Find local extreme values of $f(x, y) = xy - x^2 - y^2 - x$.	07
Q.3	(a)	Explain second derivative test for local extreme values.	03
٧.٠	(b)	•	04
	(c)		07
	(-)	x + y + 2z = 5 using method of Lagrange multipliers.	· ·
Q.4	(a)	1 2	03
ζ.,	(••)	Evaluate $\int_{y=0}^{1} \int_{x=0}^{2} \frac{1}{\sqrt{4-x^2}\sqrt{1-y^2}} dxdy$.	0.0
		$y=0 \ x=0 \ \sqrt{4-x^2} \sqrt{1-y^2}$	

1

	(b)	Evaluate the integral $\int_{0}^{2} \int_{0}^{1} \frac{1}{3} e^{y^{2}} dy dx$	04
	(c)	by change of order. (1) Find the area of the region covered by $x = 1$, $x = 4$, $y = 0$ and $y = \sqrt{x}$.	04
		(2) Evaluate $\int_{x=0}^{1} \int_{y=0}^{x^{1/4}} \int_{z=0}^{y^2} \sqrt{z} \ dz \ dy \ dx$	03
Q.4	(a)	OR Evaluate $\iint xy \ dA$ where R is the region	03
		bounded by x axis, the ordinate $x = 2a$ and the curve $x^2 = 4ay$.	
	(b)	Evaluate the integral $\int_{y=0}^{1} \int_{x=0}^{\cos^{-1} y} e^{\sin x} dx dy$ by change of order.	04
	(c)	(1) Change in to polar coordinates then solve $\int_{0}^{2} \int_{0}^{\sqrt{4-x^2}} e^{-(x^2+y^2)} dy dx.$	04
		(2) Let $x + y = u$ and $y = uv$ are given transformations. Find	03
Q.5	(a)	Jacobian for change of variables. Find characteristic equation of $A = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 2 & 1 \\ 2 & 0 & 1 \end{bmatrix}$.	03
	(b)	Find Maclaurin's series for $f(x) = e^{2x} \sinh x$ and show at least up to x^4	04
	(c)	term. Solve $x + y + w = 1$, $2x + z + w = 3$, $2y + z + 2w = 2$.	07
Q.5	(a)	Show that give matrix $A = \begin{bmatrix} 0 & 1 \\ -2 & -1 \end{bmatrix}$ satisfies its Characteristic	03
	(b)	equation. Show that $\sum_{n=2}^{\infty} \frac{(-1)^n}{\ln n}$ converges.	04
	(c)	Show that $A = \begin{bmatrix} 0 & 1 & 0 \\ -2 & -1 & 2 \\ -4 & -8 & 7 \end{bmatrix}$ is diagonalizable. Find the matrix of	07
		eigen vectors and diagonal matrix.	
