Алгем один кусок

Определители

Перестановки и подстановки

Перестановки и число инверсий

Перестановка

Перестановкой множества числе $1,2,\ldots,n$ называется любая последовательность длины n, в которой каждое число от 1 до n входит в точности один раз.

В Число инверсий

Числом инверсий перестановки называется количество пар вида $(i,j),\; i< j$ таких, что в перестановке g элемент j имеет меньший номер, чем элемент i.

Пример: в перестановке (1,2,4,3) одна инверсия, а в перестановке (4,2,1,3) - 4 инверсии.

🖺 Чётная перестановка

Перестановка называется чётной, если в ней чётное число инверсий, и нечётной, если в ней нечётное число инверсий.

Теорема о чётности перестановки

Теорема

Пусть g - перестановка. Тогда при перестановке любой пары элементов чётность подстановки меняется.

Доказательство

Пусть g имеет m инверсий.

- 1. Рассмотрим случай, когда переставляются соседние элементы. $g=(i_1,\ldots,i_k,i_{k+1},\ldots,i_n)$. Если $i_k< i_{k+1}$, то образуется ровно одна новая инверсия.
- 2. $(i_1,\ldots,i_k,i_{k+1},\ldots,i_{s-1},i_s,\ldots,i_n)$. Мы переставляем i_k и i_s .
 - $(i_1,\ldots,i_k,i_{k+1},,i_{k+2}\ldots,i_k,i_s,\ldots,i_n)$. Мы сделаем s-1-k перестановок соседних элементов, тогда чётность поменяется s-1-k раз.
 - Просто переставляем i_k и i_s . $(i_1,\ldots,i_{k+1},\ldots,i_{k+2},\ldots,i_s,i_k,\ldots,i_n)$. Чётность меняется на 1.
 - Ведём i_s назад на то место, где сейчас находится i_{k+1} , на которой вначале стоял i_k . Снова после s-1-k перестановок чётность поменяется. Осталось заметить, что чётность поменялась нечётное количество раз.

Подстановки

🖺 Подстановка

Подстановка на множестве чисел от 1 до n - биекция на множестве $\{1,2,\dots,n\}$. Подстановку можно записать в следующем виде: $\begin{pmatrix} 1 & 2 & \dots & n \\ i_1 & i_2 & \dots & i_n \end{pmatrix}$. Верхний ряд не обязательно записывать по порядку.

Подстановка состоит из двух перестановок (из перестановки в верхнем ряду и перестановки в нижнем ряду).

🖺 Число инверсий

<u>Числом инверсий</u> подстановки называется сумма чисел инверсии её перестановок.

🖺 Чётность подстановки

Подстановка называется чётной, если её число инверсий чётно.

Теорема о чётности подстановок

Теорема

- 1. Любая подстановка может быть представлена в каноническом виде
- 2. Чётность подстановки не зависит от упорядочения верхнего ряда

Доказательство

- 1. Просто записываем подстановку по порядку. Очевидно, что ей соответствует то же самое отображение
- 2. $\begin{pmatrix} a_1 & \dots & a_i & \dots & a_k & \dots & a_n \\ b_1 & \dots & b_i & \dots & b_k & \dots & b_n \end{pmatrix}$. Переставим в этой подстановке i-й и k-й элементы. При этом сама подстановка не изменится. При этом по предыдущей теореме чётность не изменилась, т.к. одновременно изменились чётности верхнего и нижнего ряда.

Единичные и обратные подстановки

🖹 Единичная подстановка

Подстановка вида
$$\begin{pmatrix} 1 & 2 & \dots & n \\ 1 & 2 & \dots & n \end{pmatrix}$$
 называется единичной.

Для каждой подстановки
$$g=egin{pmatrix}1&2&\ldots&n\\i_1&i_2&\ldots&i_n\end{pmatrix}$$
 есть обратная $g^{-1}=egin{pmatrix}i_1&i_2&\ldots&i_n\\1&2&\ldots&n\end{pmatrix}$

⊘ Чётность обратной подстановки

Обратная подстановка имеет такую же чётность, как исходная.

Определители

Определители малых порядков

$$A = egin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{bmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

- $=a_{11}a_{22}a_{33}-a_{11}a_{23}a_{32}-a_{12}a_{21}a_{33}+a_{12}a_{23}a_{31}+a_{13}a_{21}a_{32}-a_{13}a_{22}a_{31}$
- 1. В каждом слагаемом нет элеметнов, лежащих в одной строке или столбце
- 2. Каждому слагаемому соответствует подстановка $egin{pmatrix} 1 & 2 & 3 \\ i_1 & i_2 & i_3 \end{pmatrix}$, где верхний ряд номера столбцов, нижний ряд номера строк соответствующих элементов.

Определитель в общем случае

Пусть S_n - множество всех подстановок $\{1,2,\ldots,n\}$. Тогда $|S_n|=n!$

🖺 Определитель

Пусть
$$a$$
 - матрица $n imes n$: $egin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \ a_{21} & a_{22} & \dots & a_{2n} \ \dots & \dots & \dots \ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$.

<mark>Определителем</mark> такой матрицы называется число

$$|A| = \det A = \sum_{g \in S_n} (-1)^g a_{1g(1)} a_{2g(2)} \dots a_{ng(n)}$$
. Под g в $(-1)^g$

имеется в виду чётность подстановки g.

Транспонирование матриц

🖺 Транспонированная матрица

Матрица A^T , полученная из A заменой строк на столбцы и столбцов на строки, или симметрией относитеьно главной диагонали A, называется транспонированной к A.

Теорема об определителе транспонированной матрицы

Теорема

$$|A| = |A^T|$$

Доказательство

$$|A| = \sum_{g \in S_n} (-1)^g a_{1g(1)} a_{2g(2)} \dots a_{ng(n)} \quad (*)$$

. Поскольку строки транспонированной матрицы меняются на столбцы (можно сказать, что местами меняются верхняя и нижняя строка каждой перестановки), то

$$|A^T| = \sum_{g \in S_n} (-1)^{g^{-1}} a_{g(1)1} a_{g(2)2} \dots a_{g(n)n} \quad (**)$$

Заметим, что в (*) и в (**) одинаковоке количество слагаемых, и что для каждой подстановки g в |A| эта подстановка есть и в $|A^T|$. Слагаемому $a_{1g(1)}a_{2g(2)}\dots a_{ng(n)}$ соответствует слагаемое $a_{g(1)1}a_{g(2)2}\dots a_{g(n)n}$ (в транспонированной матрице). То есть слагаемые не изменились, то задаются обратными подстановками. Но для обратной подстановки чётность сохраняется, поэтому знаки слагаемых сохраняются.

Теоремы о свойствах определителя

🖺 Минор

Минор матрицы M_{ij} для элемента $rac{\mathbf{a}_{-}\{\mathbf{i}\}}{i}$ получается вычёркиванием i-й строки и j-го столбца из a_{ij}

🖹 Алгебраическое дополнение

Алгебраическим дополнением элемента a_{ij} называется число $A_{ij}=(-1)^{i+j}|M_{ij}|$

Теорема

- 1. $|A| = |A^T|$
- 2. При умножении строки определителя на число, весь определитель умножается на это число
- 3. Если определитель содержит нулевую строку, то он равен нулю.
- 4. Если в определителе поменять местами две строки, то он поменяет знак.
- 5. Если в определителе есть одинаковые строки, то он равен нулю.
- 6. Если в определите есть пропорциональные строки, то он равен нулю.
- 7. Разложение определителя в сумму определителей.

- 8. Если к одной строке определителя прибавить другую строку, умноженную на число, то значение определителя не изменится.
- 9. Разложение по строке: $|A| = a_{k1}A_{k1} + a_{k2}A_{k2} + \cdots + a_{kn}A_{kn}$
- 10. Сумма произведений алегбраических дополнений элементов одной строки на алгебраические дополнения другой строки равна нулю
- 11. Определитель треугольной матрицы равен произведению диагональных элементов
- 12. Любой определитель можно вычислить приведением к треугольному виду.

Все свойства определителя, справедливые для строк, остаются справедливыми для столбцов, и наоборот.

Доказательство

свойству определителя каждое слагаемое умножится на t , поэтому значение определителя уможится на t

3) Следует из 2).

переставить местами строки, в каждом слагаемом поменяется чётность подстановки, то есть слагаемому будет соответствовать оно же со знаком —.

- 5) Следует из свойства 4, т.к. если переставить эти строки местами, то он должен поменять знак, но сам определитель не изменится, поэтому он равен нулю.
- 6) Из свойств 2) и 5)

7)

8) Добавим к m-й строке k-ю, умноженную на t

Во втором определителе имеем пропорциональные строки, т.е. он равен нулю, т.е. исходный определитель не изменился.

9) Достаточно доказать для разложения по первой строке. Рассмотрим определение определителя.

. R_i - все слагаемые, куда входит a_{1i} . Покажем, что $R_i=(-1)^{1+i}M_{1i}$. Очевидно, что слагаемые в R_i и $(-1)^{1+i}M_{1i}$ одни и те же, поскольку при раскрытии определителя мы выбираем по одному слагаемому в каждой строке и в каждом столбце. Осталось показать, что слагаемые входят с правильным знаком. Возьмём элемент $a_{1k}a_{2g(2)}\dots a_{ng(n)}$. Ему соответствует подстановка $g'=\begin{pmatrix}2&\dots&n\\g(2)&\dots&g(n)\end{pmatrix}$, где $g(i)\neq k$. Пусть чётность этой подстановки равна i(g'). В g k стоит на первом месте и вносит дополнительно kg'((k-1)), поэтому i(g)=k-1+i(g'), поэтому каждому слагаемому из $M_{1k}a_{2q}\dots ang(n)$ соответствует слагаемое

 $a_{1k}a_{2q(2)}\dots a_{nq(n)}$, которое в A различается на

 $(-1)^{k-1}=(-1)=(-1)^{k+1}(i(g')$ - число инверсий для исходного слагаемого. Поэтому все элементы из M_{1k} нужно умножить на $(-1)^{k+1}$, из чего получается формула разложения по строке.

10) $a_{k1}A_{m1}+ak2A_{m2}+\cdots+a_{kn}A_{mn}=$ В алгебраических дополнениях A_{ms} нет m-й строки, т.е. получить такую сумму - то жке самое, что взять определитель матрицы, у которой m-я строка совпадает с k-й и разложить по m-й строке.

первому столбцу. Получаем a_{11} на такой же определитель, кроме первой строки. Повторим этот шаг n раз. Очевидно, что определитель разложится в произведение диагональных элементов. 12) Следствие св-в 8) и 11)

Полураспавшаяся матрица

🖺 Полураспавшаяся матрица

Матрица вида $\begin{pmatrix} A & N \\ O & B \end{pmatrix}$, где матрицы A и B - квадратные, O - нулевая матрица называется полураспавшейся.

Теорема об определителе полураспавшейся матрицы

Теорема

$$egin{bmatrix} A & N \ O & B \end{bmatrix} = |A| \cdot |B|$$

Доказательство

Докажем индукцией по порядку матрицы A

1.
$$p=1$$
. $\begin{vmatrix} a_{11} & N \\ O & B \end{vmatrix}$. Таким образом, O - столбец из нулей. Раскладываем матрицу M по первому столбцу и получаем $|M|=a_{11}|B|=|A|\cdot |B|$

2. Пусть доказано для матриц порядка меньшего, чем p:

Теорема об определителе прозведения матриц

Теорема

Если A,B - квадратные матрицы размера n imes n, то $|AB|=|A|\cdot |B|$

Доказательство

Построим специальную матрицу $D=egin{array}{c|c} A & O\\ -E & B \end{array}$, где -E - единичная матрица размера $n\times n$, у которой на главной диагонали стоят -1, а остальные элементы - нули. Очевидно, что D - транспонированная к полураспавшейся, и её определитель $|D|=|A|\cdot |B|$.

Начнём обнулять позиции, где есть элементы b_{ij} . Далее к n+1-му столбцу прибавим второй столбец, умноженный на b_{21} . Далее к n+1-му столбцу прибавим n-ый, умноженный на b_{n1} . Таким образом, в первых n строках получившейся матрицы расположен первый столбец матрицы $A\cdot B$. Проделывая аналогичные действия со n+2-м столбцом, далее - с 2n столбцом, получим следующую

матрицу: $egin{array}{c|c} A & C \\ -E & 0 \end{array}$. Переставим n+1-й столбец с 1-м, n+2-й -

со 2-м, и так далее. Получим определитель следующего вида:

$$(-1)^n egin{bmatrix} C & A \ O & -E \end{bmatrix}$$

Обратная матрица и система линейных уравнений

🖺 Обратная матрица

Матрица B называется <mark>обратной</mark> к матрице A, если AB=BA=E

Теорема: критерий обратимости квадратной матрицы

Теорема

Квадратная матрица обратима \iff её определитель отличен от нуля

Доказательство

1. Пусть A - обратима. Посчитаем

$$\det AA^{-1} = \det A \cdot \det A^{-1} = 1 \implies$$

 $\implies \det A \neq 0, \ \det A^{-1} = (\det A)^{-1}$

2. Умножим присоединённую к A матрицу $(A^\#)^T$ - матрицу алгебраических дополнений к каждому элементу матрицы A на матрицу A, получится матрица, на главной диагонали которой стоят $\det A$. Рассмотрим матрицу, полученную из матрицы A заменой второй строки на первую. Её определитель будет равен нулю Продолжим этот шаг и найдём матрицу

$$A(A^{\#})^T = egin{pmatrix} \det A & 0 & \dots & 0 \ 0 & \det A & \dots & 0 \ \dots & \dots & \dots & \dots \ 0 & 0 & \dots & \det A \end{pmatrix} = \det A \cdot E$$
 $A^{-1} = rac{1}{\det A} (A^{\#})^T$

 $(A^\#)^TA$ - аналогично, т.к. вместо разложения по строке будет разложение по столбцу.

Крамерова система линейных уравнений

🖺 Крамерова система линейных уравнений

$$egin{cases} a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n=b_1\ a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n=b_2\ \cdots\ a_{m1}x_1+a_{m2}x_2+\cdots+a_{mn}x_n=b_m \end{cases}$$

Эта система называется <mark>Крамеровой</mark>, если m=n и $\det A=0$, где A - главная матрица системы.

Теорема о единственности решения Крамеровой системы

Теорема

Крамерова система уравнений имеет решение, и притом только одно.

Доказательство

Поскольку $\det A
eq 0$, то $\exists A^{-1}$.

$$Ax = A(A^{-1}b) = (AA^{-1})b = Eb = b$$

Пусть $x=A^{-1}b$

Предположим, что решение не единственно, то есть Ay=b. Тогда $A^{-1}(A_y)=A^{-1}b=(A^{-1}A)y=Ey=y$.

Формула Крамера

$$A^{-1}b = rac{1}{\det A}(A^\#)^Tb = \ = rac{1}{\det A}egin{pmatrix} A_{11} & A_{21} & \dots & A_{n1} \ A_{12} & A_{22} & \dots & A_{n2} \ \dots & \dots & \dots & \dots \ A_{1n} & A_{2n} & \dots & A_{nn} \end{pmatrix}egin{pmatrix} b_1 \ \dots \ b_n \end{pmatrix} =$$

$$=rac{1}{\det A}egin{pmatrix} \det A_1 \ \det A_2 \ \dots \ \det A_n \end{pmatrix}$$

где
$$\det egin{pmatrix} b_1 & a_{12} & \dots & a_{1n} \\ b_2 & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots \\ b_1 & a_{n1} & \dots & a_{nn} \end{pmatrix}$$

& Tip

Таким образом, формула $x=rac{\det A_i}{\det A}$ называется формулой Крамера.

Общее решение систем линейных уравнений

Минор

Выберем в матрице k строк и k столбцов. Возьмём элементы, которые стоят на пересечении этих строк и столбцов. Определитель, стоящий на пересечении этих k строк и k столбцов называется минором k-го порядка.

🖺 Минорный ранг матрицы

Рангом матрицы по минорам называется наивысший порядок отличных от нуля миноров.

Теорема: ранг по минорам совпадает с рангом матрицы

Доказательство

⊘ Дайте

Пацаны зашлите пожалуйста теоремку \ \

🖺 Общее решение системы

Оставим в левой части только переменные x_1,\dots,x_k , а остальные перенесём в правую часть. Тогда система примет вид $\begin{cases} a_{1j_1}x_{j_1}+a_{1j_2}+\dots+a_{1j_k}x_n=b_1-a_{11}x_1-\dots-a_{xadf}x_1\\ \dots & . \end{cases}$. Левые $a_{kj_1}x_{j_1}+a_{kj_2}x_{j_2}+\dots+a_{kj_k}x_k=b_k-\dots$ переменные называются зависимыми, а в правой части - свободными. Тогда каждая зависимая переменная - линейная комбинация свободных. Множество всех решений этой системы называется её общим решением.

🖺 Фундаментальная система решений

Общее решение однородной (базис) системы называется фундаментальной системой решений.

Определитель Вандермонда

Abstract

Пусть даны

n

чисел: x_1,x_2,\ldots,x_n . Определителем Вандермонда называется определитель, в котором в k-й строке записаны степени числа x_k от 0 до n-1.

Теорема: определитель Вандермонда

Теорема

$$W(x_1,\ldots,x_n) = egin{bmatrix} 1 & x_1 & x_1^2 & \ldots & x_1^{n-1} \ 1 & x_2 & x_2^2 & \ldots & x_2^{n-1} \ \ldots & \ldots & \ldots & \ldots \ 1 & x_n & x_n^2 & \ldots & x_n^{n-1} \end{bmatrix} = \Pi_{1 \leq i < j \leq k}(x_j - x_i)$$

Доказательство

Б.И. -
$$n=1$$
, $W(x_1)=1$. При $n=2$:

$$W(x_1,x_2)=egin{bmatrix} 1&x_1\1&x_2 \end{bmatrix}=x_2-x_1$$

Ш.И. Пусть для определителей порядка менее n-1. Из каждого столбца вычтем предыдущий, умноженный на x_1

$$W(x_1,\ldots,x_n) = egin{bmatrix} 1 & x_1 & x_1^2 & \ldots & x_1^{n-1} \ 1 & x_2 & x_2^2 & \ldots & x_2^{n-1} \ \ldots & \ldots & \ldots & \ldots \ 1 & x_n & x_n^2 & \ldots & x_n^{n-1} \end{bmatrix} = \ = egin{bmatrix} 1 & 0 & 0 & \ldots & x_n^{n-1} \ 1 & x_2 - x_1 & x_2^2 - x_2 x_1 & \ldots & x_2^{n-1} - x_1 x_2^{n-2} \ \ldots & \ldots & \ldots & \ldots \ 1 & x_n - x_1 & x_n^2 - x_n x_1 & \ldots & x_n^{n-1} - x_1 x_n^{n-2} \end{bmatrix}$$

Разложим этот определитель по первой строке:

Что является определителем Вандермонда порядка n-1. Воспользуемся формулой:

$$=(x_n-x_1)\cdot \ldots (x_2-x_1)W(x_1,\ldots,x_{n-1})=$$

$$=(x_n-x_1)\dots(x_2-x_1)\Pi_{1\leq i < j \leq n-1}(x_j-x_i)$$

Многочлены

Определение многочлена

Многочлен

Mногочленом над полем F называется выражение вида $f(x)=a_nx^n+a_{n-1}x^{n-1}+\ldots+a_1x+a_0$, где $a_i\in F$, а x -переменная.

🖺 Степень многочлена

Наибольшее n такое, что $a_n \neq 0$ называется степенью многочлена. При этом степень нулевого многочлена по определению равна $-\infty$. Степень многочлена обозначается $\deg f$.

Операции над многочленами

- 1. Сложение
- 2. Умножение на число
- 3. Умножение многочленов

👌 Свойство умножения

$$\deg(f(x)\cdot g(x)) = \deg f(x) + \deg g(x)$$

\nearrow Множество многочленов над полем F

Множество многочленов переменной x над полем F обозначается F[x]

∧ Обратимые многочлены

Для множества многочленов над полем F обратимы являются только многочлены нулевой степени

Замечание: F[x] является коммутативным кольцом с

Доказательство: есть две операции, + и ·. Очевидно, что + - ассоциативно и коммутативно. Умножение также ассоциативно и коммутативно. При этом по сложению и по умножению есть нейтральные элементы.

${\mathfrak G}[x]$ является коммутативным кольцом с 1

Доказательство: есть две операции, + и \cdot . Очевидно, что + ассоциативно и коммутативно. Умножение также ассоциативно и коммутативно. При этом по сложению и по умножению есть нейтральные элементы.

Ассоциированные многочлены

🖺 Ассоциированные многочлены

Многочлены f(x) и g(x) называются <mark>ассоциированными $(f(x)\sim g(x))$, если f(x)=cg(x), где c = некоторое постоянное число (или многочлен степени 0). Они часто имеют схожие свойства.</mark>

Все многочлены нулевой степени ассоциированы с е(x)=1

: ≡ Пример ассоциированных многочленов

$$2x^2 + x + 1 \sim x^2 + rac{1}{2}x + rac{1}{2}$$

Отношение делимости на множестве многочленов

🖺 Делимость многочленов

Многочлен f(x) делится на многочлен g(x), если существует многочлен h(x) такой, что $f(x)=g(x)\cdot h(x)$. Обозначается $g(x)\mid f(x)$ или $f(x)\ \vdots\ g(x)$

≔ Пример делимости многочленов

$$f(x) = x^2 - 3x + 2 = (x-2)(x-1) \ (x-2) \mid f(x) \ (x-1) \mid f(x)$$

Свойства отношения делимости для многочленов

Пусть f(x),g(x)
eq 0

- 1. Рефлексивность f(x)|f(x)
- 2. Транзитивность f(x)|g(x) и $g(x)|h(x) \implies f(x)|h(x)$

Антисимметричность отсутствует, из-за наличия ассоциированных многочленов.

Другие свойства:

- 1. Если $f(x) \mid g(x)$, то имеет место $f(x) \mid (g(x) \cdot h(x))$
- 2. Если $f(x) \mid g(x)$ и $f(x) \mid h(x)$, то $f(x) \mid (g(x) + h(x))$

Теорема о делении с остатком

Теорема

Пусть F - поле и $f(x),g(x)\in F[x]$ и g(x)
eq 0. Тогда $\exists !\ q(x),r(x):f(x)=q(x)\cdot g(x)+r(x)$, при этом $\deg r(x)<\deg g(x)$.

$$q(x)$$
 - частное $r(x)$ - остаток

Доказательство

$$f(x) = a_k x^k + \cdots + a_0$$
 $g(x) = b_m x^m + \cdots + b_0$

- 1. Докажем существование. В случае k < m q(x) = 0, а r(x) = f(x) . В случае $k \geq m$ докажем по индукции по k-m:
 - 1. База индукции: k-m=0. Тогда $r(x)=f(x)-rac{a_k}{b_k}g(x)$ и $q(x)=rac{a_k}{b_k}$
 - 2. Шаг индукции: k-m>0. Предположим, что теорема доказана для всех значений, меньших, чем k-m. Тогда возьмём $q(x)=\frac{a_k}{b_k}x^{k-m}$ и $h(x)=f(x)-\frac{a_k}{b_k}x^{k-m}g(x)$. Тогда $\deg h(x)< k$. Тогда для h(x) воспользуемся предположением индукции. Тогда

$$egin{split} f(x) &= h(x) + rac{a_k}{b_k} x^{k-m} g(x) = \ &= rac{a_k}{b_m} x^{k-m} g(x) + q_1(x) g(x) + r_1(x) = \ &= (rac{a_k}{b_m} x^{k-m} + q_1(x)) g(x) + r_1(x) \end{split}$$

2. Единственность. Предположим, что есть два разложения: $f(x)=q_1(x)g(x)+r_1(x)=q_2(x)g(x)+r_2(x)$. Тогда

$$egin{align} q_1(x)g(x)+r_1(x)&=q_2(x)g(x)+r_2(x)\ q_1(x)g(x)-q_2(x)g(x)&=r_2(x)-r_1(x)\ (q_1(x)-q_2(x))g(x)&=r_2(x)-r_1(x)) \end{array}$$

Если мы умножаем на $g(x) \neq 0$, то степень многочлена не уменьшается. Тогда если $q_1(x) \neq q_2(x)$, то в (*) степени равных многочленов отличаются. Поэтому (*) выполняется только если $q_1(x)=q_2(x) \implies r_1(x)=r_2(x)$.

Наибольший общий делитель

🖺 Наибольший общий делитель

Пусть f(x),g(x) - многочлены над F. Тогда многочлен d(x) называется их <mark>наибольшим общим делителем</mark>, если f(x)=0 и d(x)=0 или $f(x)\neq$ и $g(x)\neq0$ и $orall c(x):c(x)\mid f(x)\wedge c(x)\mid g(x)-c(x)\mid d(x)$

Алгоритм Евклида поиска НОД

Пусть
$$f(x),g(x)\in F[x],g(x)
eq 0$$
 и $f(x)=q_1(x)g(x)+r_1(x),g(x)=q_2(x)r_1(x)+r_2(x)$.

Поделим с остатком f(x) на g(x). Пусть r_1 - остаток. Тогда поделим g(x) на r_1 с остатком r_2 . Теперь поделим r_1 на r_2 с остатком r_3 , и так далее. Алгоритм продолжается, пока мы не получим нулевой остаток. Последний ненулевой остаток r_k - и есть НОД f(x) и g(x).

То, что алгоритм завершится за конечное число шагов следует из того, что на каждом шаге степени остатков уменьшаются \Longrightarrow на каком-то шаге получится нулевой остаток.

Теорема о наибольшем общем делителе

Теорема

Для любой пары $f(x),g(x)\in F[x]$, если d(x) = $\mathrm{HOД}(f(x),g(x))$ существуют многочлены u(x) и v(x) такие, что f(x)u(x)+g(x)v(x)=d(x)

Доказательство

$$f(x)=r_{-1}(x) \ g(x)=r_0(x)$$

- 1. Случай f(x)=g(x)=0. Тогда d(x)=0 и u(x),v(x) любые
- 2. Случай $f(x)=0,\ g(x)
 eq 0.$ Тогда d(x)=g(x), u(x) любой, v(x)=1
- 3. Случай $f(x) \neq 0, \ g(x) \neq 0.$ Из равенств, которые возникают в алгоритме Евклида, можно получить рекуррентные формулы для u(x) и v(x).

Покажем, что для любого остатка, возникающего в алгоритме Евклида, существуют многочлены $u_k(x)$ и $v_k(x)$ такие, что

$$r_k(x) = f(x)u_k(x) + g(x)v_k(x)$$
 .

По алгоритму Евклида:

Пусть
$$f(x)=r_{-1}(x)$$
 и $g(x)=r_0(x)$

$$f(x) = 1 \cdot f(x) + 0 \cdot g(x), u_{-1}(x) = 1 \implies v_{-1}(x) = 0$$

$$g(x)=0\cdot f(x)+1\cdot g(x) \implies u_0(x)=0, v_0(x)=1$$

$$r_1(x) = f(x) - q_1(x)g(x)$$

$$r_1(x) = r_{-1}(x) - q_1(x)r_0(x) =$$

$$egin{split} &= (u_{-1}(x)f(x) + v_{-1}(x)g(x)) + q_1(x)(u_0(x)f(x) + v_0(x)g(x)) = \ &= (u_{-1}(x) - q_1(x)u_0(x))f(x) + (v_{-1}(x) - q_1(x)v_0(x)) \end{split}$$

Если
$$r_{i-1}(x)=u_{i-1}(x)f(x)+v_{i-1}(x)g(x)$$
, а $r_i(x)=u_i(x)f(x)+v_i(x)g(x)$, то

$$r_{i+1}(x) = r_{i-1}(x) - q_i(x) r_i(x) =$$

$$=u_{i-1}(x)f(x)+v_{i-1}(x)g(x)-q_i(x)(u_i(x)f(x)+v_i(x)g(x))=$$

$$=(u_{i-1}(x)-q_i(x)u_i(x))f(x)+(v_{i-1}(x)=q_i(x)v_i(x))v(x)$$

Тогда
$$u_{i+1}(x)=u_{i-1}(x)-q_1(x)u_i(x)$$
 и $u_i+1(x)=v_{i-1}(x)-q_i(x)v_i(x)$

Таким образом, мы видим, что для всех $i\geq 1$ мы имеем разложение $r_i(x)=u_i(x)f(x)+v_i(x)g(x).$ Итак, поскольку d(x) является одним из остатков в алгоритме евклида, то на какомто шаге мы найдём разложение d(x)=u(x)f(x)+v(x)g(x)

Взаимно простые многочлены

🖺 Взаимно простые многочлены

Многочлены называются <mark>взаимно простыми</mark>, если их наибольшим общим делителем является многочлен нулевой степени.

Теорема: критерий взаимной простоты многочленов

Теорема

Многочлены f(x) и g(x) являются взаимно простыми $\iff\exists u(x),v(x)\in F[x]$ такие, что f(x)u(x)+g(x)v(x)=1.

Доказательство

- 1. \Longrightarrow очевидено, следует из предыдущей теоремы.
- 2. \Longleftarrow . От противного. Пусть $d(x)=\mathrm{HOД}(f(x),\,g(x))$ и $\deg(d(x))\geq 1.$ Тогда, поскольку d(x) делит левую часть равенства, то $d(x)\mid 1$, но это невозможно, т.к. $\deg d(x)>1.$ Противоречие.

Свойства взаимно простых многочленов

Теорема

- 1. Если $f(x)\mid h(x)$ и $g(x)\mid h(x)$, то $(f(x)g(x))\mid h(x)$
- 2. Если $f(x)\mid (g(x)h(x))$, то $f(x)\mid h(x)$

Доказательство

Пусть f(x)=a(x)h(x), g(x)=b(x)h(x). По критерию взаимной простоты $\exists u(x),g(x):f(x)u(x)+g(x)v(x)=1$. Домножим на h(x):

$$f(x)h(x)u(x)+g(x)h(x)v(x)=h(x) \ f(x)b(x)g(x)u(x)+g(x)a(x)f(x)v(x)=h(x) \ (f(x)g(x))(b(x)u(x)+a(x)v(x))=h(x)$$

 $\implies (f(x)g(x)) \mid h(x)$

Неприводимые (неразложимые) многочлены

🖺 Неприводимый многочлен

Многочлен $f(x) \in F[x]$ называется <mark>неприводимым</mark> над полем F, если его нельзя разложить в произведение многочленов меньшей степени, то есть если $\forall f(x) = g(x)h(x)$ либо $\deg g(x) = \deg f(x)$, либо $h(x) = \deg f(x)$

🖺 Разложимый многочлем

Многочлен $f(x) \in F[x]$ приводим (разложим) над полем F, если существует f(x) = g(x)h(x), где $g(x),h(x) \in F[x]$

Предложение

Теорема

Пусть g неприводим над полем F и $g\mid (h_1(x)h_2(x)\dots h_m(x))$. Тогда существует число i такое, что $g\mid h_i(x)$

Доказательство

Б.И. - для m=1 - очевидно

Ш.И. Предположим, что утверждение доказано для случая, когда менее m сомножителей.

Рассмотрим случай m сомножителей. Пусть $d(x)=\mathrm{HOД}(g(x),h_m(x))$. Тогда $\exists q(x):g(x)=q(x)d(x)$. По условию теоремы g - неприводим, поэтому возможны два случая:

- 1. $\deg d(x) = \deg g$, тогда g(x) и g(x) ассоциированы.
- 2. Если d(x)=1, тогда g(x) и $h_m(x)$ взаимно просты, и, по доказанной лемме, $g(x)\mid h_1(x)\cdot\dots\cdot h_{m-1}(x)$. Тогда по предположению индукции получаем, что найдётся i такое, что $g(x)\mid h_i(x)$

Теорема о разложении многочлена в произведение неприводимых многочленов

Теорема

Каждый многочлен однозначно раскладывается в произведение неприводимых многочленов, с точностью до перестановки сомножителей и ассоциированности.

Доказательство существования

Докажем индукцией по степени многочлена.

- 1. Если f(x) неприводим, то f(x)=f(x)
- 2. Пусть доказано для многочленов степени меньше m. При этом, если f(x) разложим, то f(x)=g(x)h(x). При этом $\deg g(x),\ \deg h(x)<\deg f(x)$, т.к. по предположению индукции g(x) и h(x) раскладываются в произведение неприводимых многочленов.

Доказательство единственности

Предположим, что есть два разложения для f(x):

$$f(x) = g_1(x) \dots g_k(x) = h_1(x) \dots h_m(x)$$

Так как $g_1(x)$ неприводим и $g_1(x)\mid h_1(x)\dots h_m(x)$, то по

доказанному выше предложению существует j такое, что $g_1(x)\mid h_j(x)$. Перенумеруем h(x) и будем считать j=1. Тогда $g_1(x)\mid h_1(x)$. Так как $h_1(x)=q(x)g_1(x)$ и $h_1(x)$ неприводим, то $\deg h_1(x)=\deg g_1(x)$, то есть $h_1(x)$ и $g_1(x)$ ассоциированы.

$$g_1(x)g_2(x)\dots g_k(x)=cg_1(x)h_2(x)\dots h_m(x)$$

Получаем

$$g_2(x) \dots g_k(x) = ch_2(x) \dots h_m(x)$$

И продолжаем аналогичный процесс. Мы найдём для $g_2(x)$ ассоциированный многочлен $h_2(x)$, далее для $g_3(x)$, и т.д.

Корни многочленов

Теорема Безу

Теоерма

Если $f(x) \in F[x]$ и $c \in F$, то остаток от деления f(x) на (x-c) равен f(c)

Доказательство

f(x)=q(x)(x-c)+r. Остаток имеет степерь меньше, чем $\deg q(x)$. Подставим вместо x $c\colon f(c)=q(c)(c-c)+r=r$

🖺 Корень многочлена

Число $c \in F$ называется <mark>корнем многочлена</mark> $f(x) \in F[x]$, если f(x) = 0

Основная теорема алгебры

Теорема

Любой многочлен $f(x) \in \mathbb{C}[x]$ степени не меньше, чем 1, имеет корень.

👌 Следствие из основной теоремы алгебры

Если $f(x) \in F[x]$ имеет степень n, то f(x) имеет ровно n корней над полем $\mathbb C$ (с учетом кратности).

Неприводимость над $\mathbb R$

Лемма о сопряжённых с корнями

Лемма

Пусть $f(x) \in \mathbb{R}[x]$. Если $z \in \mathbb{C}$ является корнем f(x), то и $ar{z}$ тоже является корнем f(x).

Доказательство

 $f(x)=a_nx^n+\cdots+a_0,\;(a_i\in\mathbb{R}).\;z$ - корень $\Longrightarrow f(z)=0.$ Рассмотрим $f(z)=a_nz^n+\cdots+a_1z+a_0=0.$ Возьмём сопряжённое обеих частей равенства:

$$egin{split} \overline{f(z)}&=\overline{a_nz^n+\cdots+a_1z+a_0}=ar{0}\ ar{a}_n(ar{z}^n)+(ar{a}_{n-1})(ar{z}^{n-1})+\cdots+ar{a}_1ar{z}=0 \end{split}$$

Так как все числа a_i - вещественные, то $ar{a}_i=a_i$. Тогда $f(ar{z})_=0$.

Теорема о неразложимости над $\mathbb R$

Теорема

Над R неразложимыми являются только многочлены первой степени и второй с отрицательным дискриминантом.

Доказательство

Так как $\mathbb{R}\subset\mathbb{C}$, то $f(x)\in\mathbb{R}[x]$ имеет в точности n корней над полем \mathbb{C} . Множество корней можно разбить на два типа: вещественные и комплексные. Но по предыдущей лемме если у f(x) есть комплексный корень, сопряжённый с ним также является корнем. Рассмотрим $(x-z)(x-\bar{z})$. Заметим, что этот квадратный трёхчлен неразложим над \mathbb{R} , но имеет коэффициенты из \mathbb{R} .

Рассмотрим многочлен $f(x)=a_3x^3+a_2x^2+a_1x+a_0,\ f(x)\in\mathbb{R}[x]$. Возможны два случая: либо один кореньб действительный и два комплексных, либо все корни действительные. Если два корня комплексные, то он раскладывается на две неразложимые над \mathbb{R} . Ситуации, когда три корня комплексные, а коэффициенты действительные быть не может в силу предыдущей леммы. По индукции - многочлены более высоких степеней раскладываются аналогично.

Разложение многочленов над $\mathbb Q$ и над $\mathbb Z$

🖺 Примитивные многочлены

Многочлен $f(x)\in \mathbb{Z}[x]$ называется <mark>примитивным</mark>, если НОД его коэффициентов равен 1.

Лемма Гаусса

Лемма

Произведение примитивных многочленов $g(x)\cdot h(x)=f(x)$ является примитивным.

Доказательство

 $g(x)=b_kx^k+\cdots+b_1x+b_0$. При этом $\mathrm{HOД}(b_k,\ldots,b_0)=1$ и $h(x)=c_kx^k+\cdots+c_1x+c_0$, $\mathrm{HOД}(c_k,\ldots,c_0)=1$. $f(x)=g(x)\cdot h(x)$, то есть $a_n=c_mb_{n-m}$, $a_{n-1}=c_{m-1}b_m+c_{m-1}b_{n-m}$, $a_i=c_0b_i+c_1b_{i-1}+\cdots+c_ib_{k-i}$. Пусть f(x) - не примитивный. Тогда $\exists d\neq 1$ такое, что d делит любой коэффициент f(x). Будем считать, что d - простое. Возьмём наименьший индекс i_0 такой, что c_{i_0} не делится на d (если все коэффициенты h(x) делятся на d, то h(x) - не примитивный). По аналогии возьмём j_0 такой, что b_{j_0} не делится на d. Рассмотрим коэффициент $a_{i_0+j_0}$ при степени $x^{i_0+j_0}$.

$$a_{i_0+j_0} = c_0 b_{i_0+j_0} + c_1 b_{i_0-1} + \cdots + c_{i_0} b_{j_0} + c_{i_0+1} b_{j_0-1} + \cdots + c_{i_0+j_0} b_0$$

. Тогда $c_{i_0}b_{j_0}$ не делится на d, то есть пришли к противоречию.

Теорема о разложимости над Q

Теорема

Пусть $f(x) \in \mathbb{Z}[x]$. f(x) разложим над \mathbb{Z} тогда и только тогда, когда он разложим над \mathbb{Q} .

Доказательство

От противного. Пусть $f(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0,\ f(x)\in\mathbb{Z}[x]$ разложим над Q, то есть $f(x)=g(x)h(x)\in\mathbb{Q}[x].$ Тогда $g(x)=rac{c_1}{b_1}g_1(x)$ и

$$h\left(x
ight)=rac{c_{2}}{b_{2}}h_{1}(x)$$
. При этом $g_{1}(x)$ и $h_{1}(x)$ - примитивные. Тогда

 $f(x)=a_nx^n+\cdots+a_1x+a_0=g(x)h(x)=rac{c_1c_2}{b_1b_2}g_1(x)h_1(x)$. По лемме Гаусса $g_1(x)h_1(x)$ - примитивный. Если $rac{c_1}{c_2}=rac{p}{q}$, то это означает, что $rac{p}{q}f_1(x)$ - многочлен, то при q
eq 1 хотя бы один из коэффициентов которого - рациональная дробь.

Теорема: признак Эйзенштейна

Теорема

Пусть $f(x)\in\mathbb{Z}[x]$ и $f(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0$ и существует такое простое число p, что:

- 1. p не делит a_n
- **2**. p делит все остальные $a_i \ (i=0,1,\dots,n-1)$
- 3. p^2 не делит a_0

Тогда f(x) неприводим над \mathbb{Q} ./

Доказательство

Пусть $f(x)=a_nx^n+\cdots+a_0\in\mathbb{Z}[x]$ и пусть выполняется условие признака. Тогда предположим, что f(x) - разложим, то есть f(x)=g(x)h(x), где $g(x)=b_kx^k+\cdots+b_1x+b_0$ и $h(x)=c_mx^m+\cdots+c_1x+c_0$. Тогда p^2 не делит $c_0\implies$ либо $p\mid c_0$ и p не делит b_0 , либо наоборот. Пусть $p\mid c_0$ и p не делит b_0 . Тогда $a_1=b_1c_0+c_1b_0$, отсюда, т.к. $p\mid a_1$, то $p\mid c_1$, далее, $a_2=b_2c_0+c_1b_1+c_2b_0$,

отсюда, т.к. $p\mid a_1$, то $p\mid c_1$, далее, $a_2=b_2c_0+c_1b_1+c_2b_0$, отсюда $p\mid c_2$. Продолжая эти рассуждения, получаем что $a_m=b_mc_0+c_mb_1+\cdots+c_mb_0$, то есть $p\mid c_m$, то есть $p\mid a_n$ - противоречие.

Теорема о виде рациональных корней

Теорема

Число $\dfrac{p}{q}$ является корнем многочлена $f(x)=a_nx^n+\cdots+a_1x+a_0$, если $q\mid a_n$ и $p\mid a_0$

Доказательство

Пусть $\dfrac{p}{q}$ является корнем (p и q - взаимно просты). Подставим $f\left(\dfrac{p}{q}\right)=a_n(\dfrac{p}{q})^n+\cdots+a_1\left(\dfrac{p}{q}\right)+a_0=0$. Заметим, что правая

часть делится на $p \implies a_0$ делится на p. Домножим на q^n , a_n аналогично делится на q.

Производная многочлена

🖺 Производная многочлена

Производной многочлена $f(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0$ называется многочлен

$$f'(x) = na_n x^{n-1} + (n-1)a_{n-1} x^{n-1} + \dots + 2a_2 x + a_1$$

Свойства производной многочлена

- 1. $(f(x) \pm g(x))' = f'(x) + g'(x)$
- 2. (f(x)g(x))' = f'(x)g(x) + f(x)g'(x)
- 3. (Cf(x))' = cf'(x)

Доказательство

Можно вывести из определения производной.

Кратные корни

🖺 Кратный корень

Число c является корнем многочлена f(x) кратности k, если множитель (x-c) входит в разложение f(x) в точности k раз.

Теорема о кратности корня производной

Теорема

Пусть число c является корнем многочлена f(x) кратности $k\geq 1$, тогда число c является корнем многочлена f'(x) кратности k-1.

Доказательство

$$f(x) = (x-c)^k g(x) \$,$$
 приэтом $\$(x-c) \$$ неделит $\$g(x)$ $f'(x) = k(x-c)^{k-1} g(x) + (x-c)^k g'(x)$

В обратную сторону: пусть c является корнем кратности m. По доказанному, c - корень кратности m-1 для f'(x). Отсюда

Теорема

Теорема

Пусть $d(x) = \mathrm{HOД}(f(x), \ f'(x))$. Тогда d(x) содержит все кратные множители многочлена f(x)

Доказательство

Разложим многочлен над полем $\mathbb C$. Очевидно, что кратные корни, и только она входят в f(x) и f'(x)

Теорема: интерполяционный многочлен Лагранжа

Теорема

Многочлен f(x) степени n однозначно определяется своими значениями в n+1 попарно различных точках.

Доказательство

Единственность: пусть f(x) и g(x) имеют степень n и совпадают в точках x_0,x_1,\ldots,x_n . Тогда если f(x)=g(x), то h(x)=f(x)-g(x) равен 0 в этих точках. Но тогда это многочлен степени не выше n, и он имеет как минимум n+1 корень. Но т.к. ненулевой многочлен не может иметь корней больше, чем его степень, то $h(x)=0 \implies f(x)=g(x)$

Существование: можно показать, что

$$f(x) = f(x_0) \cdot \left(rac{(x-x_1)(x-x_2) \ldots (x-x_n)}{(x_0-x_1)(x_0-x_2) \ldots (x_0-x_n)}
ight) + f(x_1) \cdot \left(rac{(x-x_0)(x_0-x_1)}{(x_1-x_0)(x_1-x_1)}
ight)$$

Найдём $f(x_0)$: в первом слагаемом все скобки сократятся и останется $f(x_0)$, а остальные слагаемые обнулятся из-за множителя $(x-x_0)$.

Когда подставляется $x=x_1$, остаётся только второе слагаемое, равное $f(x_1)$, остальные обнуляются.

Получаем многочлен, который в точках x_0, x_1, \dots, x_n совпадает со значениями f(x), и поэтому равен f(x).

Многочлен, построенный в доказательстве теоремы, называется интерполяционным многочленом Лагранжа.

Замена базиса

Базисы. Матрицы линейного оператора. Матрица перехода.

У Напоминание

Пусть заданы базисы в пространствах P и Q, и $A:P\mapsto Q$ -линейный оператор. Матрица линейного оператора в базисе P: p_1,\ldots,p_n получается следующим образом: столбцами этой матрицы являются векторы $A(p_i)$. $A_{P,Q}$ - матрица оператора в базисах P и Q. $[x]_p$ - вектор-столбец в базисе P. Тогда $[A(x)]_Q=A_{P,Q}[x]_P$

🖺 Матрица перехода

Дано линейное пространство V и даны два его базиса: P и Q. Матрица перехода от базиса P к базису Q получается следущим образом: координаты векторов базиса Q записываются как столбцы в базисе P. На матрицу перехода можно смотреть, как на матрицу линейного оператора $A_{P,Q}$.

Теорема: преобразование кординат при замене базиса

Теорема

Пусть P и Q - базисы пространства V. Тогда для любого вектора $x \in V$ имеем следующую формулу: $[x]_P = T_{P.O}[x]_O$.

Доказательство

Рассмотрим разложение вектора x в базисах P и Q. Так как это один и тот же вектор, получаем равенство $x=x_1p_1+\dots+x_np_n=x_1q_1+\dots+x_nq_n$. Тогда по определению матрицы перехода $q_1=t_{11}p_1+t_{21}p_2+\dots+t_{n1}p_n,$ $\dots,$ $q_n=t_{1n}p_1+t_{2n}p_2+\dots+t_{nn}p_n$.

$$egin{aligned} x_1p_1+\cdots+x_np_n&=x_1(t_{11}p_1+t_{21}p_2+\cdots+t_{n1}p_n)+\cdots+\ &+x_n(t_{1n}p_1+t_{2n}p_2+\cdots+t_{nn}p_n)=\ &=(x_1t_{11}+\cdots+x_nt_{1n})p_1+\cdots+(x_1t_{n1}+\cdots+x_nt_{nn})p_n \end{aligned}$$

$$egin{cases} x_1=x_1t_11+\dots x_nt_{1n}\ \dots & x_n=x_1t_{n1}+\dots+x_nt_{nn} \end{cases}$$
 Тогда $(x_1 \quad \dots \quad x_n)=egin{pmatrix} t_11 & \dots & t_1n \ \dots & \dots & \dots \ t_{n1} & \dots & t_{nn} \end{pmatrix} egin{pmatrix} x_1 \ \dots \ x_n \end{pmatrix}$, тогда $[x]_P=T_{PQ}[x]_Q$.

Очевидно, что так же можно построить и матрицу обратного перехода T_{QP} , $T_{QP}=(T_{PQ})^{-1}$

Теорема: преобразование матрицы линейного оператора при замене базиса

Теорема

Пусть в пространстве V заданы два базиса P и Q, A - линейный оператор. A_P - матрица оператора A в базисе P. Тогда $A_Q = T_{QP}A_PT_{PQ}$.

Доказательство

$$[Ax]_P=A_P[x]_P=A_PT_{PQ}[x]_Q \ [Ax]_P=T_{PQ}[Ax]_Q=T_{PQ}[Ax]_P$$

Тогда

$$orall x: A_P[x]_P = A_P T_{PQ}[x]_Q = T_{PQ}[Ax]_Q = T_{PQ}[Ax]_P \ T_{PQ} A_Q = A_P T_{PQ} \ A_Q = (T_{PQ})^{-1} A_P T_{PQ} = T_{QP} A_P T_{PQ}$$

Подобные матрицы

🖺 Подобные матрицы

Матрицы A и B называются <mark>подобными</mark>, если существует невырожденная матрица T такая, что $B=T^{-1}AT$

Матрицы оператора в разных базисах являются подобными.

Линейное отображение в пространстве

4 Алярма

С этого момента Расин читает лекции по презентациям $\Gamma e \breve{u} h \alpha$, а не Волкова.

Сопряжённое отображение

🖹 Сопряженное отображение

Пусть L_1 и L_2 - пространства со скалярным произведением. Пусть $f:L_1\mapsto L_2$ - некоторая функция. Функция $g:L_2\mapsto L_1$ сопряжена с функцией f, если для любой пары векторов x и y имеет место (f(x),y)=(x,g(y)). Сопряжённую к f функцию принято обозначать f^* .

Теорема о единственности сопряжённой функции

Теорема

Если для функции f существует сопряжённая функция g, то g - единственна.

Доказательство

От противного. Пусть сопряжённых функций две: g_1 и g_2 . Тогда $\forall x,y:(f(x),y)=(x,g_1(y)),\ (f(x),y)=(x,g_2(y)).$ Тогда $(x,g_1(y))=(x,g_2(y))\implies (x,g_1(y))-(x,g_2(y))=0.$ Тогда $(x,g_1(y)-g_2(y))=0.$ Но так как это выполняется для всех x, то значения g_1 и g_2 совпадают на всей области определения.

Теорема о линейности сопряжённой функции

Теорема

Если у функции f существует сопряжённая g, то g - линейная

Доказательство

orall x,y:(f(x),y)=(x,g(y)). Проверяем свойства линейности:

- 1. $\forall y_1,y_2\in L_2$ покажем, что $g(y_1+y_2)=g(y_1)+g(y_2)$. $f\forall x\in L_1(f(x),y_1+y_2)=(x,g(y_1+y_2)).$ Тогда $(f(x),y_1+y_2)=(f(x),y_1+y_2)=(f(x),y_1)+(f(x),y_2)=(x,g(y_1))+$. Поскольку это имеет место для любого x, то $g(y_1+y_2)=g(y_1)+g(y_2)$
- 2. Расин сказал проверить самостоятельно. Я услышал: "киньте в меня пулл реквестом".

Теорема о повторном взятии сопряжённой функции

Теорема

Если f имеет сопряжённую f^st , то $f^{stst}=f$.

Доказатесьтво

Надо проверить, что orall (x,y): (fst(y),x)=(y,f(x)) .

$$\overline{(f^*(y),x)}=\overline{(x,f*(y))}=\overline{\overline{(f(x),y)}}=\overline{\overline{(y,f(x))}}=\overline{(y,f(x))}$$

Следствие

Если для функции f существует сопряжённая функция, то f - линейная.

Теорема о сопряжённом отображении в пространстве со скалярным произведением

Теорема

Если f - линейное отображение из конечномерного пространства L_1 в пространство L_2 со скалярным произведением, то для f существует сопряжённое отображение.

Доказательство

Пусть u_1,\ldots,u_n - ортонормированный базис в L_1 , v_1,\ldots,v_n - ОНБ в L_2 . Тогда $\forall x,y: (f(x),y)=[f(x)^T]\overline{[y]}=[f\cdot x]^T\overline{[y]}=[x]^T[f]^T\overline{[y]}$ = $[x]^T[f]^T\overline{[y]}=[x]^T\overline{[f]^T}[y]=(x,\overline{[f]^T}[y])$ - по формуле скалярного произведения в ОНБ. Тогда $(a,b)=a_1\overline{b}_1+a_2\overline{b}_2+\cdots+a_n\overline{b}_n$

$$=(a_1,\ldots,a_n)egin{pmatrix} b_1\ \ldots\ b_n \end{pmatrix}$$
 . Мы получили, что линейный оператор с

матрицей f имеет сопряжённый оператор, причём, если базисы ортонормированные, матрица сопряжённого оператора является сопряжённо-транспонированной к исходной.

Теорема: свойства сопряжения

Теорема

Пусть f,g,h - линейные операторы из конечномерного пространства L_1 в L_2 , и lpha - скаляр. Тогда

- 1. $(f+g)^*=f^*+g^*$ 2. $(\alpha f)^*=\overline{\alpha}f^*$ 3. $(fh)^*=h^*f^*$

Доказательство

3)
$$(fh(x),y)=(h(x),f^*(y))=(x,h^*f^*(y))$$

Изометрические отображения

🖺 Изометрическое отображение

Линейное отображение $f:L_1\mapsto L_2$ называется <mark>изометрическим</mark>, если $\forall x,y:(x,y)=(f(x),f(y))$

В Пример

Изометрическое отображение в \mathbb{R}^2 или в \mathbb{R}^3 сохраняет углы между векторами и отношения их длин. Пример такого отображения: поворот плоскости на угол lpha в \mathbb{R}^2 , или отражение относительно оси Ox.

Теорема: критерий изометричности отображения

Теорема

Линейное отображение $f:L_1\mapsto L_2$ изометрично $\iff \forall x \in L_1 : |f(x)| = |x|.$

Доказательство

$$\implies$$
 . $(x,x) = (f(x), f(x)) \iff |x|^2 = |f(x)|^2 \iff |x| = |f(x)|$.

 \longleftarrow . Пусть $\forall x \in L_1: |f(x)| = |x|$, то есть (f(x),f(x)) = (x,x). Подставим вместо x вектор x+y. Получим, что (f(x+y),f(x+y)) = (x+y,x+y). Воспользуемся свойством линейности: (f(x)+f(y),f(x)+f(y)) = (x+y,x+y). $(f(x),f(x))+(f(x),f(y))+(f(y),f(x))+(f(y),f(y))=(x,x)+(x,y_+(y,x)+(y,y)$. Приводим подобные: (f(x),f(y))+(f(y),f(x))=(x,y)+(y,x). Рассмотрим два случая:

- 1. Пространство евклидово. Тогда (a,b)=(b,a). Получаем 2(f(x),f(y))=2(x,y), что фактически является определением изометричности.
- 2. Пространство унитарно. Вместо x подставим вектор ix. Получим (f(ix),f(y))+(f(y),f(ix))=(ix,y)+(y,ix). $i(f(x),f(y))-\bar{i}(f(y),f(x))=i(x,y)+\bar{i}(y,x)$. (f(x),f(y))-(f(y),f(x))=(x,y)-(y,x). Получаем систему уравнений \$\$\begin{cases} (f(x), f(y)) (f(y), f(x)) = (x, y) (y, x) \ (f(x), f(y)) (f(y), f(x)) = (x, y) + (y, x) \end{pmatrix}

Тогда
$$\$2(f(x),f(y))=2(x,y)\implies (f(x),f(y))=(x,y)\$$$

Теорема: второй критерий изометричности

Теорема

Линейное отображение $f:L_1\mapsto L_2$ изометрично $f^*\cdot f:L_1\mapsto L_1$ -тождественное отображение.

Доказательство

 \Longrightarrow . $orall x,y:(x,y)=(f(x),f(y))=(x,f^*f(y))\implies f^*f=y$, т.е. отображение тождественно.

Теорема

Теорема

- 1. Если f изометрическое отображение из L_1 в L_2 , то любую ортонормированную систему векторов пространства L_1 отображение f переводит в ортонормированную систему в L_2 .
- 2. Если f линейное отображение из L_1 в L_2 и оно переводит некоторый ОНБ в ОНБ, то оно изометрично.

Доказательство

- 1. Следует из определения изометричности. (x,y)=(f(x),f(y))=0
- 2. u_1,u_2,\ldots,u_n ОНБ в $L_1.$ $v_1=f(u_1),v_2=f(u_2),\ldots,v_n=f(u_n)$ ОНБ в $L_2.$ Возьмём вектор $x=a_1u_1+\cdots+a_nu_n$. $|x|=\sqrt{a_1^2+\cdots+a_n^2}$ (так как u_1,\ldots,u_n ОНБ). В силу линейности $f(x)=f(a_1u_1+\cdots+a_nu_n)==a_1f(u_1)+\cdots+a_nf(u_n)=a_1v_1+\cdots+a_nv_n$. $|f(x)|=\sqrt{a_1^2+\cdots+a_n^2}$, т.к. v_1,\ldots,v_n ОНБ. Получаем, что |x|=|f(x)|, что является условием изометричности.

Самосопряжённые операторы

🖺 Самосопряжённое преобразование

Линейное преобразование называется $\mathsf{camoconpя}$ жённым, если $f=f^*$

В Собственный вектор

Пусть f - лин. преобразование лин. пространства L над полем F. Вектор $x\in L,\ x\neq 0$ называется собственным, если $\exists a\in F: f(x)=ax$, при этом число a называется собственным значением оператора f.

Нахождение собственных векторов

$$[f] = egin{pmatrix} a_{11} & \dots & a_{1n} \ \dots & \dots & \dots \ a_{n1} & \dots & a_{nn} \end{pmatrix}$$

Перейдём к системе уравнений
$$egin{pmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} egin{pmatrix} y_1 \\ \dots \\ y_n \end{pmatrix}.$$

$$egin{cases} a_{11}y_1 + \cdots + a_{1n}y_n = ay_1 \ a_{21}y_1 + \cdots + a_{2n}y_n = ay_2 \ \cdots \ a_{n1}y_1 + \cdots + a_{nn}y_n = ay_n \end{cases}$$

Построим матрицу системы:

$$C = egin{pmatrix} a_{11} - a & a_{12} & \dots & a_{1n} \ a_{21} & a_{22} - a & \dots & a_{2n} \ \dots & \dots & \dots & \dots \ a_{n1} & a_{n2} & \dots & a_{nn} - a \end{pmatrix}$$

Матрица C:[f]-aE называется характеристической матрицей оператора. Поскольку собственный вектор $y\neq 0$, то система с матрицей имеет ненулевое решение, то есть её определитель навен 0. В противном случае по правилу Крамера система имеет единственное нулевое решение. Таким образом, число a является собственным значением линейного оператора $\iff |[f]-aE|=0$.

🖺 Характеристический многочлен

Определитель характеристической матрицы называетсфя характеристическим многочленом.

Теорема о собственных числах

Теорема

Собственные значения линейного оператора являются корнями его характеристического многочлена. Каждый корень характеристического многочлена - собственное число линейного преобразования f.

Доказательство

 \Longrightarrow . См. выше - сведение к матрице системы? \Longleftarrow . Пусть A - корень характеристического многочлена. Тогда |[f]-aE|=0. Тогда ранг характеристической матрицы меньше числа неизвестных n. Таким образом, размерность пространства решений равна n-r, то есть существует ненулевое решение $y=(y_1,\ldots,y_n)$. Это означает, что f[y]=a[y].

Пример нахождения собственных значений и собственных векторов

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
.

1. Составляем характеристическое уравнение.

$$egin{array}{|c|c|c|c|c|} 1-a & 1 \ 1 & 1-a \end{array} = (1-a)^2-1=0.$$
 Тогда $a_1=0, a_2=2.$

2. Для каждого собственного значения находим собственный вектор. $(A-a_1E)\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$. Тогда $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$. Решаем систему, получаем собственнй вектор.

Теорема о независимости хар. многочлена от выбора базиса

Теорема

Характеристический многочлен не зависит от выбора базиса.

Доказательство

$$P$$
 и Q - базисы. Тогда $[f]_Q=T_{QP}[f]_PT_{PQ}=T^{-1}[f]_PT$. $|[f]_Q-aE|=|T^{-1}[f]_PT-aE|=|T^{-1}[f]_PT-aT^{-1}T|=|[f]_P-aE|$

Следствие

Собственные значения и собственне векторы не зависят от выбора базиса, то есть однозначно определяются линейным оператором.

Теорема о корнях характеристического многочлена самосопряжённого оператора

Теорема

Все корни характеристического многочлена самосопряжённого линейного оператора - действительные числа.

Доказательство

Пусть a - собственное значение, соответствующее вектору y. Тогда f(y)=ay.

$$a(y,y)=(ay,y)=(f(y),y)=(y,f^*(y))=(y,f(y))=(y,ay)=ar{a}(y,y)$$
. Тогда $a=ar{a}$, то есть $a\in\mathbb{R}$.

Теорема: критерий самосопряжённости

Теорема

Линейное преобразование конечномерного пространства со скалярным произведением самосопряжённое \iff существует ОНБ из собственных векторов, собственные числа которых действительны.

Доказательство

 \Longrightarrow . Индукция по размерности пространства. Б.и.: $\dim L=1$. Возьмём базисный вектор u . Тогда этот базисный вектор - собственный с некторым собственным значением a . Ш.и.: пусть утверждение доказано для размерности $\dim L=n-1$. Докажем для пространства размерности n . По предыдущей теореме все корни хар. многочлена действительны, значит есть собственное значение a_1 , которому соответствует собственный вектор u_1 . Рассмотрим подпространство $[u_1]^\perp$ - ортогональное дополнение. По теореме об ортогональном дополнении, $L=< u_1>\oplus < u_1>^\perp$. Пусть $x\in [u_1]^\perp$. Тогда $(f(x),u_1)=(x,f^*(u_1))=(x,f(u_1))=(x,au_1)=a(x,u_1)=0$ - т.к. x из ортогонального дополнения. Мы показали, что если $x\in [u_1]^\perp$, то f(x) остаётся в том же пространстве. Таким образом, f на $[u_1]^\perp$ является самосопряжённым линейным оператором. Поскольку $\dim[u_1]^\perp=n-1$, то по предположению индукции в $[u_1]^\perp$ есть ОНБ $u-2,\ldots,u_n$. Тогда u_1,\ldots,u_n - ОНБ в L .

 \longleftarrow . Пусть u_1,u_2,\ldots,u_n - ОНБ собственных вектором и a_1,\ldots,a_n - собственные значения.

 $f(u_1)=a_1u_1, f(u_2)=au_2,\dots,f(u_n)=a_nu_n.$ Тогда $f(u_1)=a_1u_1=a_1\cdot u_1+0\cdot u_2+\dots+0\cdot u_n.$ Очевидно, что матрица оператора f равна сопряжённо-транспонированной, так как она диагональная и все элементы на главной диагонали действительные. Тогда f - самосопряжённый оператор.

Несовместные СЛУ

Решение несовместной системы

Пусть дана несовместная система линейных уравнений.

$$\left\{egin{aligned} a_{11}x_1 + \cdots + a_{1n}x_n &= b_1 \ a_{21}x_1 + \cdots + a_{2n}x_n &= b_2 \ \cdots \ a_{m1}x_1 + \cdots + a_{mn}x_n &= b_m \end{aligned}
ight.$$

Будем смотреть на матрицу системы как на матрицу линейного оператора. Пусть задан некоторый базис e_1,\dots,e_n . Столбцы матрицы A - координаты образов векторов базиса.

$$u_1 = Ae_1, u_2 = Ae_2, \dots, u_n = Ae_n$$
.

Вектор Ax лежит в образе оператора A, то есть систему можно переписать следующим образом: $Ax=b \Longrightarrow$

$$egin{pmatrix} a_{11} \ \ldots \ a_{m1} \end{pmatrix} x_1 + egin{pmatrix} a_{12} \ \ldots \ a_{m2} \end{pmatrix} x_2 + \cdots + egin{pmatrix} a_{1n} \ \ldots \ a_{mn} \end{pmatrix} x_n = egin{pmatrix} b_1 \ \ldots \ b_n \end{pmatrix}$$

Система несовместна $\iff b$ не является линейной комбинацией векторов u_1,\dots,u_n , и, следовательно $b\not\in {\rm Im}\ A$. Тогда (псевдо)решением несовместной системы можно считать такой вектор x^* , что $|Ax^*-b|$ имеет минимальное значение.

🖺 (Псевдо)решение системы

Псевдорешением несовместной системы уравнений является такой вектор x^* , что $|Ax^*-b|$ имеет наименьшее значение. (A - матрица системы, b - столбец свободных членов)

Геометрически понятно, что

$$egin{cases} (u_1,b-y^*) = 0 \ (u_2,b-y^*) = 0 \ \dots \ (u_n,b-y^*) = 0 \end{cases}$$

эта система однородна, поэтому она всегда имеет решение. Раскроем скобки:

$$egin{cases} (u_1,y^*) = (u_1,b) \ (u_2,y^*) = (u_2,b) \ \dots \ (u_m,y^*) = (u_m,b) \end{cases}$$

Тогда по свойствам скалярного произведения

$$egin{cases} u_1^T y^* = u_1^T b \ \dots \ u_m^T y^* = u_m^T b \end{cases}$$

$$egin{cases} (Ae_1)^T A x^* &= (Ae_1)^T b \ \dots \ (Ae_m)^T A x^* &= (Ae_m)^T b \ egin{cases} e_1^T A^T A x^* &= e_1^T A^T b \ \dots \ e_m^T A^T A x^* &= e_m^T A^T b \end{cases}$$

Первое уравнение означает, что векторы A^TAx^* и A^Tb имеют одинаковые координаты. Второе уравнение означает, что векторы A^TAx^* и A^Tb имеют одинаковые координаты. m-е уравнение означает, что векторы A^TAx^* и A^Tb имеют одинаковые координаты. Следовательно векторы A^TAx^* и A^Tb равны. Мы получили систему уравнений $A^TAx^*=A^Tb$. Она совместна, т.к. кратчайшее расстояние между векторами существует. Решение этой системы - x^* - является её псевдорешением.

При этом была также решена задача поиска вектора x^{st} , который минимизирует расстояние до вектора b.

Метод наименьших квадратов

нет блин квадрат наименьших методов

Пусть дано множество точек плоскости $(x_1,y_1),\ldots,(x_n,y_n)$. Нужно найти прямую, которая минимизирует сумму квадратов расстояний от этой прямой до каждой из этих точек.

Пусть y=kx+b - уравнение данной прямой.

$$S = \min \sum_{i=1}^n (y_i - (kx+b))^2$$
. Нам неизвестны коэффициенты k и b .

Тогда можно составить систему
$$egin{cases} rac{\partial S}{\partial k}=0 \ rac{\partial S}{\partial b}=0 \end{cases}$$

Если случай не двумерный, нужно найти приближённое решение в виде $y=a_1x_1+\cdots+a_nx_n$. $(x_{11},\ldots,x_{1n}\;;\;y_1)$, \ldots , $(x_{m1},\ldots,x_{1n}\;;\;y)$.

Тогда нужно решить систему

$$egin{cases} y_1 = a_1 x_{11} + \dots + a_n x_{1n} \ y_2 = a_1 x_{21} + \dots + a_n x_{2n} \ \dots \ y_m = a_1 x_{m1} + \dots + a_n x_{mn} \end{cases}$$

Тогда нужно решить несовместную систему с
$$A=egin{pmatrix} x_{11}&\ldots&x_{1n}\ x_{21}&\ldots&x_{2n}\ \cdots&\cdots&x_{m1}&\ldots&x_{mn} \end{pmatrix}$$

и
$$b = egin{pmatrix} y_1 \ y_2 \ \dots \ y_m \end{pmatrix}$$

Сингулярное разложение

Сингулярное представление линейного отображения

Введение

Ранее было показано, что изометрическое отображение переводит любой ОНБ в ОНБ. Очевидно, что для произвольного линейного оператора такое не обязательно выполняется.

Можно ли для данного отображения $f:L_1\mapsto L_2$ в L_1 подобрать такой ОНБ, который переводится в ортогональную систему векторов L_2 ?

Пусть существует такой базис u_1,u_2,u_3 . Тогда $b_1=f(u_1),b_2=f(u_2),b_3=f(u_3)$, b_1,b_2,b_3 - ортогональны. Если теперь поделить b_1,b_2,b_3 на длины, то получим ортонормированную систему векторов v_1,v_2,v_3 . Тогда получим числа $\sigma_1,\sigma_2,\sigma_3$ такие, что $f(u_1)=\sigma_1v_1,\,f(u_2)=\sigma_2v_2,\,f(u_3)=\sigma_3v_3$. Это похоже на самосопряжённый оператор.

Для каждого отображения f можно рассмотреть отображение $f\circ f^*$. Это отображение самосопряжённое.

Лемма

Лемма

Бро, понимаешь, есть два пространства L_1 и L_2 , они конечномерные и со скалярным произведением. И есть еще одно отображение f, которое линейное и переводит векторы из L_1 в L_2 . Тогда $\ker f\circ f^*=\ker f$

Доказательство

$$\Longrightarrow$$
 . Пусть $x\in\ker f$, то есть $f(x)=0$. Тогда $(f\circ f^{)}(x)=f^{*}(f(x))=f^{*}(0)=0\implies x\in\ker f^{*}$.

$$\longleftarrow$$
 . Пусть $x\in\ker f\circ f^*$. Тогда рассмотрим $(f(x),f(x))=(x,f^*(f(x))=(x,(f\circ f^*)(x))=(x,0)=0$

Следствие

 $\mathrm{r}(f)$ - ранг оператора f.Тогда $\mathrm{r}\left(f
ight)=\mathrm{r}(f^{st}).$

Доказательство следствия

По теореме о размерности ядра и образа (о ранге и дефекте) линейного оператора,

 $\mathrm{r}(f)+\dim\ker f=r(f\circ f^*)+\dim\ker(f\circ f^*)=\dim L_1$. Тогда размерности образов этих преобразований равны.

Теорема о сингулярном разложении

Теорема

Пусть L_1 , L_2 - конечномерные пространства со скалярным произведением, $f:L_1\mapsto L_2$, f ненулевое. Пусть $m=\dim L_1$, $n=\dim L_2$, r - ранг отображения f. Тогда существуют ОНБ u_1,u_2,\ldots,u_n в L_1 и ОНБ v_1,\ldots,v_n в L_2 такие, что $\begin{cases} f(u_i)=\sigma_iv_i & |1\leq i\leq r\\ f(u_i)=0 & |r< i\leq m \end{cases}$. При этом числа σ_i определены однозначно и не зависят от выбора базиса u_1,\ldots,u_m . При этом числа σ_i называются сингулярными числами оператора.

Доказательство

 $f\circ f^*: L_1\mapsto L_1$ - самосопряжённый оператор, так как $(f\circ f^*)^*=(f^*)^*\circ (f^*)=f\circ f^*.$ Поэтому в L_1 существует ОНБ u_1,u_2,\ldots,u_n из собственных векторов оператора $f\circ f^*.$ Тогда по доказанному выше следствию $r(f\circ f^*)=r(f)=r.$ При этом только r собственных чисел отличны от нуля. Пусть a_1,\ldots,a_m - собственные числа данных собственных векторов. Пусть $f(u_i)=z_i\ (i=1\ldots m).$ Тогда $(z_i,z_j)=(f(u_i),f(u_j)=(u_i,f^*(f(u_j)))=(u_i,(f\circ f^*)(u_j))=(u_j,\bar a_ju_j)=\bar a_j(u_i,u_j))=0.$ Тогда $(z_i,z_j)\neq 0 \Longrightarrow z_i\neq 0.$ При $i=j\ (z_i,z_j)=a_i(u_i,u_i)=a_i.\ a_i=(z_i,z_i)=|z_i|^2.$ Тогда $\sigma_i=\sqrt{a_i}=|z_i|.$ Тогда $v_i=\frac{z_i}{|z_i|}\Longrightarrow v_i=\frac{1}{\sigma_i}z_i.$ Получили, что v_1,\ldots,v_r - ортонормированная система и $f(u_i)=z_i=\sigma_iv_i\ (i=1,\ldots,r),\ f(u_i)=0,\ (i=r+1,\ldots,m)$

Теперь докажем единственность чисел $\sigma_1, \ldots, \sigma_m$. Рассмотрим матрицу отображения F в базисах u_i и v_i .

$$[f] egin{pmatrix} \sigma_1^2 & 0 & \dots & 0 & 0 \ 0 & \sigma_2^2 & \dots & 0 & 0 \ \dots & \dots & \dots & \dots \ 0 & 0 & \dots & \sigma_r^2 & 0 \ \dots & \dots & \dots & \dots \ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$
 , $[f^*] = egin{pmatrix} \sigma_1^2 & 0 & \dots & 0 & 0 \ 0 & \sigma_2^2 & \dots & 0 & 0 \ \dots & \dots & \dots & \dots \ 0 & 0 & \dots & \sigma_r^2 & 0 \ \dots & \dots & \dots & \dots \ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$. При

этом первая матрица размера m imes n, а вторая - n imes m. Поэтому

$$[f\circ f^*]=egin{pmatrix} \sigma_1^2 & 0 & \dots & 0 & 0\ 0 & \sigma_2^2 & \dots & 0 & 0\ \dots & \dots & \dots & \dots\ 0 & 0 & \dots & \sigma_r^2 & 0\ \dots & \dots & \dots & \dots\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$
 - матрица $n imes n$. При этом $\sigma_1^2,\dots,\sigma_r^2$. Осталось заметить, что собственные числа определя

 $\sigma_1^2, \dots, \sigma_r^2$. Осталось заметить, что собственные числа определяются однозначно, так как мы по условию брали их положительными. При этом $\sigma_1, \dots, \sigma_r$ называются <mark>сингулярными числами</mark>. Для определённости можно упорядочить их по убыванию.

Теорема о свойствах наибольшего сингулярного числа.

Теорема

Пусть L_1,L_2 - конечномерные пространства со скалярным произведением. Пусть $f:L_1\mapsto L_2$ - ненулевое отображение. Тогда $orall x\in L_1:|f(x)|\leq \sigma_1|x$, где σ_1 - наибольшее сингулярное число.

Доказательство

Возьмём $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r$ - сингулярные числа. Тогда u_1,u_2,\ldots,u_m - соответствующий ОНБ из собственных векторов. Пусть $x=a_1u_1+\cdots+a_mu_m$. Тогда $f(x)=a_1f(u_1)+\cdots+a_mf(u_m)=a_1\sigma_1v_1+\cdots+a_r\sigma_rv_r=a_1\sigma_1v_1+\cdots+a_r\sigma_rv_r$. Так как v_1,\ldots,v_r - ортонормированная система, то $|f(x)|^2=(f(x),f(x))=(a_1\sigma_1v_1+\cdots+a_r\sigma_rv_r)=$ Ребятки, записать не успел, наблюдайте скриншот Расина.

$$= \sigma_1^2 (|a_1|^2 + \dots + |a_r|^2) = \sigma_1^2 |x|^2$$
 пояснение : $x = a_1 u_1 + \dots + a_m u_m$ $u_1, \dots, u_m - \text{OHB}$ $|x|^2 = (x, x) = \dots$

Следствие

Наибольшее сингулярное значение σ это $\max_{|x|=1}|f(x)$.

??Что??

В соответствующих ОНБ матрица оператора f имеет вид

$$[f] egin{pmatrix} \sigma_1^2 & 0 & \dots & 0 & 0 \ 0 & \sigma_2^2 & \dots & 0 & 0 \ \dots & \dots & \dots & \dots & \dots \ 0 & 0 & \dots & \sigma_r^2 & 0 \ \dots & \dots & \dots & \dots & \dots \ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$
 Продолжение с этого момента:

Теорема о сингулярном разложении матрицы

Теорема

1. Пусть A - матрица над $\mathbb C$. Тогда существуют положительные числа $\sigma_1 \geq \cdots \geq \sigma_r > 0$ и такие унитарные матрицы U и V

такие, что
$$A=Vegin{pmatrix} \sigma_1^2 & 0 & \dots & 0 & 0 \ 0 & \sigma_2^2 & \dots & 0 & 0 \ \dots & \dots & \dots & \dots & \dots \ 0 & 0 & \dots & \sigma_r^2 & 0 \ \dots & \dots & \dots & \dots & \dots \ 0 & 0 & 0 & 0 & 0 \end{pmatrix}U$$

2. Пусть A - матрица над $\mathbb C$. Тогда существуют положительные числа $\sigma_1 \geq \cdots \geq \sigma_r > 0$ и такие *ортогональные матрицы* U и V

такие, что
$$A=Vegin{pmatrix} \sigma_1^2 & 0 & \dots & 0 & 0 \\ 0 & \sigma_2^2 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \sigma_r^2 & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} U$$

Доказательство

Следует из предыдущего.

Псевдообратное отображение

О что это было?...

Пусть $f:L_1\mapsto L_2$ - линейное отображение в пространстве со скалярным произведением. Пусть $m=\dim L_1, n=\dim L_2$. По теореме о сингулярном разложении существуют ОНБ u_1,\dots,u_m в L_1 и v_1,\ldots,v_n в L_2 . При этом для некоторого r для всех $i \in 1, \dots, r$ $f(u_i) = \sigma_i v_i$ и $f(u_i) = 0$, если $i = r+1, \dots, m$. σ_i - сингулярные числа, $\sigma_i>0, 1\leq i\leq r.$ $f(u_i)=\sigma_i v_i, \ i=1\dots r.$

Рассмотрим для
$$L_2$$
 отображение $g(v_i)=rac{1}{\sigma_i}u_i$, при $i=1,\ldots,r$. Рассмотрим отображение $f^+(y)=egin{cases}g(y):y\in < v_1,\ldots,v_r>0,y\in < v_{r+1},\ldots,v_n\end{cases}$

🖺 Псевдообратное отображение

Отображение $f^+(y): L_2 \mapsto L_1$ (см. выше) называется псевдообратным к отображению f.

Приложения сингулярного разложения

Формулировка задачи

Пусть даны точки M_1, \dots, M_n . Нужно провести прямую таким образом, чтобы сумма расстояний от точек до этой прямой была наименьшей.

Abstract

Пусть дано линейное пространство L, M - его подпространство, r - некоторый вектор. Множество векторов вида $r+M=\Pr +u:u\in M\}$ называется линейным многообразием в L. При этом M называется направляющим подпространством для многообразия r+M.

Лемма о линейных многообразиях

Лемма

$$r+M=s+M\iff r-s\in M$$
.

Доказательство

 \Longrightarrow . $u\in r+M,\; s+M$. Тогда $u=r+m_1=s+m_2$. Таким образом, $r-s\in M$

 \longleftarrow . Расин сказал доказать самосотятельно.

Теорема

Теорема

Предположим, что для любых векторов x_1, \dots, x_n линейное многообразие r+M имеет размерность k и таково, что для любого многообразия r'+M' размерности не более k выполняется

неравенство
$$\sum\limits_{i=1}^n (\,d(x_i,r+M))^2 \leq \sum\limits_{i=1}^n (\,d(x_i,r'+M'))^2$$
 . Тогда $r+M=rac{x_1+x_2+\cdots+x_n}{n}+M$, где $d(x_i,r'+M')$ - длина ортогональное проекции вектора x_i-r' на подпространство M .

Ljrfpftkmcndj

Рассмотрим
$$s=rac{x_1+x_2+\cdots+x_n}{n}$$
 . Пусть $w_i=x_i-s$

(ортогональная составляющая вектора x_i-s)

$$\sum_{i=1}^n (x_i - s) = (ar{x}_1 + \dots + ar{x}_n - nar{s}) = ar{x}_1 + \dots + ar{x}_n - (ar{x}_1 + \dots + ar{x}_n) = 0$$

В частности
$$w_1+\cdots+w_n=0$$
, и, следовательно $w_n=-w_1-\cdots-w_{n-1}$

Пусть r - вектор как в условии теоремы. Рассмотрим ортогональную составляющую t=s-r на подпространство M.

$$\begin{split} &x_i - r = (x_i - s) + (s - r) = w_i + t. \\ &\sum_{i=1}^{n} (d(x_i, r + M))^2 = \sum_{i=1}^{n} (d(x_i - r, M))^2 = \\ &= \sum_{i=1}^{n} |w_i + t|^2 = \sum_{i=1}^{n-1} |w_i + t|^2 + |w_n + t|^2 = \\ &= \sum_{i=1}^{n-1} |w_i + t|^2 + |-w_1 - \dots - w_{n-1} + t|^2 = \\ &= \sum_{i=1}^{n-1} |w_i + t|^2 + |t - \sum_{i=1}^{n-1} w_i|^2 = \\ &= \sum_{i=1}^{n-1} ((w_i, w_i) + (w_i, t) + (t, w_i) + (t_t)) + (t, t) - \\ &- \left(t, \sum_{i=1}^{n-1} w_i\right) - \left(\sum_{i=1}^{n-1} w_i, t\right) + \left(\sum_{i=1}^{n-1} w_i, \sum_{i=1}^{n-1} w_i\right) = \\ &= \sum_{i=1}^{n-1} |w_i|^2 + \left(\sum_{i=1}^{n-1} w_i, t\right) + \left(t, \sum_{i=1}^{n-1} w_i\right) + (n-1)|t^2| + |t^2| - \end{split}$$

$$egin{aligned} &-\left(t,\sum_{i=1}^{n-1}w_i
ight)-\left(\sum_{i=1}^{n-1}w_i,t
ight)+\left(\sum_{i=1}^{n-1}w_i,\sum_{i=1}^{n-1}w_i
ight)=\ &=\sum_{i=1}^{n-1}|w_i|^2+n|t^2|+(w_n,w_n)=\ &=\sum_{i=1}^{n-1}|w_i|^2+n|t^2|+|w_n|^2=\sum_{i=1}^{b}|w_i|^2+n|t^2| \end{aligned}$$

Поскольку у ортогональной составоябщей вектора r длина наименьшая по предположению, то

$$egin{split} \sum_{i=1}^n |w_i|^2 + n|t^2| & \geq \sum_{i=1}^n |w_i|^2 = \ & = \sum +i = 1^n \, d(x_i, s+M)^2 \geq \sum \, d(x_i, r+M)^2 \end{split}$$

Поскольку изначально раскладывалась правая часть неравенства и она совпадает с левой, то

$$\sum_{i=1}^n |w_i|^2 + n |t^2| = \sum_{i=1}^n |w_i|^2$$

4 YPA

ЭТА ШЛЯПА КОНЧИЛАСЬ

Линейные и квадратичные функции и формы

Билинейные функции

🖺 Билинейная функция

Пусть L - линейное пространство над F. Тогда отображение $f:L imes L \mapsto F$ называется <mark>билинейным</mark>, если:

1.
$$f(\alpha x, y) = f(x, \alpha y) = \alpha f(x, y)$$

2.
$$f(x_1 + x_2, y = f(x_1, y) + f(x_2, y)$$

3.
$$f(x, y_1 + y_2) = f(x, y_1) + f(x, y_2)$$

Пусть a_1,a_2,\ldots,a_n - базис L. Тогда $x=lpha_1a_1+lpha_2a_2+\cdots+lpha_na_n$ и $y=eta_1a_1+eta_2a_2+\cdots+eta_na_n$

$$f(x,y) = lpha_1 eta_1 f(a_1,a_1) + lpha_1 eta_2 (a_1,a_2) + \dots + lpha_1 eta_n f(a_1,a_n) + lpha_2 eta_1 f(a_2,a_1) + lpha_2 eta_2 (a_2,a_2) + \dots + lpha_2 eta_n f(a_2,a_n) + \dots + lpha_n eta_1 f(a_n,a_1) + lpha_n eta_2 (a_n,a_2) + \dots + lpha_n eta_n f(a_n,a_n)$$

Пусть $\gamma_{ij} = f(a_i, a_j)$. Тогда $[f] = (\gamma_{ij})$

$$G = egin{pmatrix} (a_1,a_1) & (a_1,a_2) & \dots & (a_1,a_n) \ (a_2,a_1) & (a_2,a_2) & \dots & (a_2,a_n) \ \dots & \dots & \dots & \dots \ (a_n,a_1) & (a_n,a_2) & \dots & (a_n,a_n) \end{pmatrix}$$
 - матрица Грамма

$$f(x,y) = [x]^t [f][y]$$

Билинейные формы

🖺 Формы

 $egin{array}{ll} egin{array}{ll} egin{array} egin{array}{ll} egin{array}{ll} egin{array}{ll} egin{a$

🖺 Билинейная форма

Многочлен от двух систем переменных, линейный по каждой из этих систем, называется <mark>билинейной формой</mark>.

Теорема о линейном пространстве линейных функций

Теорема

Линейные функции относительно операций сложения и умножения на элементы поля образуют линейное пространство.

Доказательство

$$\alpha(f+g) = \alpha f + \alpha g$$

lpha(f+g)(x,y) = lpha(f(x,y)+g(x,y)) = lpha(f(x,y))+lpha(g(x,y)) = (lpha f+lpha g)(x,y)

При этом размерность пространства билинейных функций n^2 , где n - количество аргументов.

Симметричные билинейные функции

🖺 Симметричная билинейная функция

Билинейная функция f называется <mark>симметричной</mark>, если orall x,y:f(x,y)=f(y,x). Матрица такой функции симметрична.

Квадратичные функции

🖺 Квадратичная функция

 $f:L\mapsto F$ - <mark>квадратичная</mark>, если \exists билинейная функция g такая, что f(x)=g(x,x). Тогда $f(x)=[x]^t[g][x]$

Теорема:

Теорема

Для любой квадратичной функции существует единственная билинейная функция, из которой она получается

Доказательство

Доказательство. Пусть g(x) — квадратичная функция на пространстве L, f(x, y) — порождающая её билинейная функция. Ясно, что f(y, x) — это тоже билинейная функция.

? Как связаны матрицы функций f(x, y) и f(y, x)?

Рассмотрим билинейную функцию $h(x, y) = \frac{1}{2}(f(x, y) + f(y, x))$. Ясно, что функция h(x, y) симметрична. Кроме того, $h(x, x) = \frac{1}{2}(f(x, x) + f(x, x)) = f(x, x) = g(x)$.

Пусть теперь f(x, y) — симметрическая билинейная функция, порождающая квадратичную функцию g(x), т.е. g(x) = f(x, x).

g(x) — функция одной переменной, а получить мы хотим функцию f(x, y) двух переменных. Как этого добиться?

g(x + y) = f(x + y, x + y) = f(x, x) + f(x, y) + f(y, x) + f(y, y) = g(x) + 2f(x, y) + g(y).Значит,

$$f(x, y) = \frac{1}{2}(g(x + y) - g(x) - g(y)),$$

т.е. функция f(x, y) однозначно восстанавливается по функции g(x).

Квадратичные формы

🖺 Квадратичная форма

Однородный многочлен второй степени от одной системы переменных называется квадратичной формой. Матрица квадратичной формы - это матрица симметричной билинейной функции, из которой она получилась.

Матричный вид

Легко проверить, что квадратичную форму

$$f(x_1,\dots,x_n)=a_{11}x_1^2+\dots+a_{nn}x_n^2+a_{12}x_1x_2+\dots+a_{n-1\,n}x_{n-1}x_n$$
 можно записать в матричном виде

$$f = (x_1, \dots, x_n) egin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \ a_{21} & a_{22} & \dots & a_{2n} \ \dots & \dots & \dots & \dots \ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} egin{pmatrix} x_1 \ x_2 \ \dots \ x_n \end{pmatrix}$$

Невыдрожденная замена переменных

Даны наборы переменных x_1,x_2,\dots,x_n и y_1,y_2,\dots,y_n . Тогда, если $x_1=b_{11}y_1+\dots+b_{1n}y_n$, $x_2=b_{21}y_1+\dots+b_{2n}y_n$, \dots , $x_n=b_{n1}+\dots+b_{nn}y_n$. Тогда мы имеем невырожденную замену x=By.

Замечание о невырожденной замене

Замечание

Если к квадратичной форме $f = X^T A X$ применить невырожденную замену x = B y, то получим квадратичную форму с матрицей $B^T A B$.

Доказательство

$$f = (BY)^T A (BY) = Y^T B^T A B Y$$

Конгруэнтные матрицы

П Конгруэнтные матрицы

Матрицы A и B конгруэнтны, если существует невырожденная C такая, что $A=C^TBC$. Очевидно, что отношение конгруэнтности является отношением эквивалентности. Таким образом, если одна квадратичная форма получается невырожденной заменой из другой, то их матрицы конгруэнтны.

Замечание о конгруэнтных матрицах

Замечание

Конгруэнтные матрицы либо имеют определители равные нулю, либо одинаковых знаков.

Доказательство

$$|B| = |C^T A C| = |C^T||A||C| = |C||A||C| = |C|^2|A|$$

Канонический вид

🖺 Канонический вид

Квадратичная форма имеет <mark>канонический вид</mark>, если её матрица диагональна (или в самой квадратичной форме есть только квадраты.)

Тоеорема о приведении к квадратичной форме

Теорема

Из любой квадратичной формы с помощью невырожденной замены переменных можно получить квадратичную форму в каноническом виде.

Метод Лагранжа. Доказательство.

1 случай. $a_{11} \neq 0$. Тогда собираем всё с x_1 и получаем $f(x_1,\ldots,x_n)=a_{11}x_1^2+2a_{12}x_1x_2+2a_{13}x_1x_3+\cdots+2a_{1n}x_1x_n+a_{22}x_2^2+\cdots+a_{nn}x_n^2+2a_{23}x_2x_3+\cdots+2a_{2n}x_2x_n+\cdots+2a_{n-1,n}x_{n-1}x_n$

Выделяем полный квадрат:

$$f(x_1,\ldots,x_n)=a_{11}x_1^2+2a_{12}x_1x_2+2a_{13}x_1x_3+\cdots+2a_{1n}x_1x_n+f'(x_2,\ldots;x_n)$$

4 Я черешня

украдите у расина пожалуйста

2 случай. $a_{11}=a_{22}=\cdots=a_{nn}=0$. Тогда получаем квадрат перед x_1 : делаем замену $x_1=y_1-y_2, x_2=y_1+y_2, x_3=y_3,\ldots,x_n=y_n$. Получаем квадратичную форму, у которой первая переменная в квадрате. Приходим к случаю 1.

Указанная замена будет невырожденной, так как

$$C = egin{pmatrix} 1 & -1 & 0 & \dots & 0 \ 1 & 1 & 0 & \dots & 0 \ 0 & 0 & 1 & \dots & 0 \ \dots & \dots & \dots & \dots \ 0 & 0 & 0 & \dots & 1 \end{pmatrix}$$
 . Её определитель равен двум.

Замечание о последовательности невырожденных замен

Замечание

Последовательность невырожденных замен является невырожденной заменой.

Доказательство

$$X=BY,\;Y=CZ\implies X=BY=B(CZ)=(BC)Z$$

Метод приведения к главным осям

Матрица квадратичной формы A является симметричной \implies у неё есть ОНБ из собственных векторов \implies она диагонализирума. Тогда $A=T_{ES}DT_{SE}$. Матрица перехода невырождена, то есть замена невырожденная.

Теорема: закон инерции квадратичных форм

Теорема

Если квадратичная форма над R приведена двумя различными невырожденными преобразованиями к каноническому виду, то полученные формы имеют одинаковое число положительных, отрицательных и нулевых коэффициентов при квадратах.

Доказательство

Предположим, что мы привели квадратичную форму $f = X^TAX$ к каноническому виду $g = Y^TDY$. Пусть замена имеет вид X = TY, где матрица T ортогональна (метод приведения к главным осям). В этом случае $f - Y^TT^TATY$, $g = Y^TDY$. Таким образом, $D = T^TAA^T$. Ранги матриц A и D совпадают, поэтому $r(AB) \leq \min \, r(A) \, r(B)$. Поэтому количество нулевых коэффициентов совпадает.

Предположим теперь, что форма f приводится к каноническому виду невырожденной линейной заменой x=Ty:

$$f(y_1,\ldots,y_n)=t_1y_1^2+\cdots+t_ky_k^2-t_{k+1}y_{k+1}^2-\cdots-t_{k+1}y_{k+1}^2, \ t_i>0,\ i=1,\ldots,k+l$$

Предположим теперь, что форма f приводится к каноническому виду другой невырожденной линейной заменой x=Sz:

$$egin{align} f(y_1,\ldots,y_n) &= s_1 z_1^2 + \cdots + s_p z_p^2 - s_{p+1} z_{p+1}^2 - \cdots - s_{p+1} z_{p+1}^2, \ &s_i > 0, \ i = 1,\ldots,p+q \end{aligned}$$

Таким образом, у нас k+l=p+q. Будем считать, что k < p. Замены переменных в общем виде:

$$x=Ty: egin{array}{ll} x_1=b_{11}y_1+\cdots+b_{1n}y_n \ \ldots \ x_n=b_{n1}y_1+\cdots+b_{nn}y_n \end{array} \implies y=T^{-1}x$$

$$egin{aligned} x = Sz: & egin{cases} x_1 = c_{11}z_1 + \cdots + c_{1n}z_n \ & \ldots & \Longrightarrow \ y = S^{-1}Y \ & x_n = c_{n1}z_1 + \cdots + c_{nn}z_n \ & egin{cases} y_1 = d_{11}x_1 + \cdots + d_{1n}x_n \ & \ldots \ & y_n = d_{n1}x_1 + \cdots + d_{nn}x_n \ & \sum_{i=1}^n f_{i1}x_i + \cdots + f_{in}x_n \ & \ldots \ & \sum_{i=1}^n f_{in}x_i + \cdots + f_{in}x_n \ & \ldots \ & \sum_{i=1}^n f_{in}x_i + \cdots + f_{in}x_n \ & \ldots \ & \sum_{i=1}^n f_{in}x_i + \cdots + f_{in}x_n \ & \ldots \ & \sum_{i=1}^n f_{in}x_i + \cdots + f_{in}x_n \ & \ldots \ & \sum_{i=1}^n f_{in}x_i + \cdots + f_{in}x_n \ & \ldots \ & \sum_{i=1}^n f_{in}x_i + \cdots + f_{in}x_n \ & \ldots \ & \sum_{i=1}^n f_{in}x_i + \cdots + f_{in}x_n \ & \ldots \ & \sum_{i=1}^n f_{in}x_i + \cdots + f_{in}x_n \ & \ldots \ & \sum_{i=1}^n f_{in}x_i + \cdots + f_{in}x_n \ & \ldots \ & \sum_{i=1}^n f_{in}x_i + \cdots + f_{in}x_i \ & \ldots \ & \sum_{i=1}^n f_{in}x_i + \cdots \$$

Покажем, что существует ненулевой набор переменных x_1,\dots,x_n такой, что $y_1=y_2=\dots=y_k=z_{p+1}=z_{p+2}=\dots=z_n=0$. Таким образом, получаем систему линейных уравнений:

$$egin{cases} d_{11}x_1+\cdots+d_{1n}x_n=0\ \cdots\ d_{k1}x_1+\cdots+d_{kn}x_n=0\ f_{p+11}x_1+\cdots+f_{p+1n}x_n=0\ \cdots\ f_{n1}x_1+\cdots+f_{nn}x_n=0 \end{cases}$$

В этой системе k+n-p < n уравнений, она однородна \Longrightarrow их бесконечно много, то есть существует ненулевое решение x_1',\dots,x_n' . Такому решению однородной системы соответствуют решения

$$egin{cases} x_1' = c_{11}z_1 + \cdots + c_{1n}z_n \ \dots & \Longrightarrow \ y = S^{-1}Y \ x_n' = c_{n1}z_1 + \cdots + c_{nn}z_n \end{cases} \implies y = S^{-1}Y \ egin{cases} x_1' = b_{11}y_1 + \cdots + b_{1n}y_n \ \dots & \Longrightarrow \ y = T^{-1}x \ x_n' = b_{n1}y_1 + \cdots + b_{nn}y_n \end{cases}$$

По предположению выше:

$$y_1 = y_2 = \dots = y_k = z_{p+1} = z_{p+2} = \dots = z_n = 0$$

А значит

$$y_1'=y_2'=\cdots=y_k'=z_{p+1}'=z_{p+2}'=\cdots=z_n'=0$$

Тогда

$$f(x_1',\dots,x_n') = f(y_1',\dots,y_n') = t_1(y_1)^2 + \dots + t_n(y_n)^2 =$$

$$egin{split} &= -t_{k+1}(y_1)^2 - \dots - t_{k+1}(y_n)^2 \ &f(x_1',\dots,x_n') = f(z_1',\dots,z_n') = s_1(z_1)^2 + \dots - s_n(z_n)^2 = \ &= s_1(z_1)^2 + \dots + s_p(z_p)^2 \end{split}$$

Таким образом, мы получили противоречие: при одинаковом наборе переменных получились числа разных знаков, которые по предположению должны быть равны.

Эквивалентность квадратичных форм

🖺 Эквивалентные квадратичные формы

Квадратичные формы f и g называются <mark>эквивалентными</mark>, если одна из них может быть получена из другой с помощью невырожденной линейной замены.

Теорема об эквивалентности квадратичных форм

Теорема

Квадратичные формы эквивалентны тогда и только тогда, когда они имеют одинаковый положительный и отрицательный индекс инерции.

Доказательство

 \Longrightarrow пусть $f\sim g$, т.е. существует невырожденная замена переменных X=TY, приводящая f к g. Пусть Y=SZ - замена, приводящая g к форме h, имеющей канонический вид.

$$X = TY = T(SZ) = (TS)Z$$

то есть f приводится к h.

Таким образом, мы получаем, что f и g приводятся к одной и той же канонической форме, то есть положительные и отрицательные индексы у них совпадают.

 \longleftarrow . Предположим, что f и g имеют одинаковые положительные и отрицательные индексы. Это означает, что f приводится к форме h_1 заменой X=TX', а g приводится к форме h_2 заменой Y=SY'. Переименовав коэффициенты, можно получить

$$h_1 = a_1 {x_1'}^2 + \cdots + a_k {x_k'}^2 - a_{k+1} {x_{k+1}'}^2 - \cdots - a_{k+1} {x_{k+1}'}^2$$

$$h_2 = b_1 {y_1'}^2 + \dots + b_k {y_k'}^2 - b_{k+1} {y_{k+1}'}^2 - \dots - b_{k+1} {y_{k+1}'}^2$$

Делаем замену:

$$x_1=\sqrt{rac{b_1}{a_1}}y_1 \ x_{k+1}=\sqrt{rac{b_{k+1}}{a_{k+1}}}y_{k+1} \ X'=UY'$$

Переходим линейной заменой от f к g

$$f
ightarrow^T h_1
ightarrow^U h_2
ightarrow^{S^{-1}} g$$

Положительно определённые квадратичные формы

🖺 Положительно определённая квадратичная форма

Квадртичная форма называется <mark>положительно определённой</mark>, если на каждом ненулевом наборе значений она принимает положительное значение

Теорема о каноническом виде положительно определённой формы

Теорема

Квадратичная форма $f(x_1,x_2,\dots,x_n)$ положительно определена \iff в любом её каноническом виде $t_1x_1^2+\dots+t_nx_n^2$ $(t_1>0,\dots,t_n>0)$

Доказательство

 \Longrightarrow . Если форма приводится к такому каноническому виду заменой X=TY

$$f(x_1,\ldots,x_n)=f(y_1,\ldots,y_n)=t_1y_1^2+\cdots+t_ny_n^2$$

то получается положительно определённая квадратная форма

 $\longleftarrow f$ - положительна определена, но при этом получаем $t_n < 0$.

$$f(x_1,\ldots,x_n)=f(y_1,\ldots,y_n)=t_1y_1^2+\cdots+t_ny_n^2$$

при наборе $y_1=\dots=y_{n-1}=0, y_n=1$ положительно определена.

$$f(0,0,\ldots,1) < 0 \ egin{cases} y_1 = d_{11}x_1 + \cdots + d_{1n}x_n \ \ldots \ y_n = d_{n1}x_1 + \cdots + d_{nn}x_n \end{cases} \Longrightarrow$$

$$\implies egin{cases} d_{11}x_1 + \cdots + d_{1n}x_n = 0 \ \ldots \ d_{n1}x_1 + \cdots + d_{nn}x_n = 1 \end{cases}$$

Теорема: критерий Сильвестра

🖺 Угловые миноры

Пусть A - квадратная матрица, для каждого k миноры, расположенные в первых k столбцах, называются <mark>угловыми минорами</mark>.

Теорема

Квадратичная форма является положительно определённой \iff все угловые миноры её матрицы положительны.

Доказательство из википедии

Пусть q(x) — положительно определённая квадратичная форма. Тогда j-й диагональный элемент положителен, так как $q(e_j)>0$, где e_j - вектор со всеми нулевыми координатами, кроме j-й При приведении матрицы к каноническому виду в силу невырожденности угловых миноров стро́ки не нужно будет переставлять, поэтому в итоге знаки главных миноров матрицы не изменятся. А в каноническом виде диагональные элементы положительны, а значит и миноры положительны; следовательно, (так как их знак не менялся при преобразованиях) у положительно определённой квадратичной формы в любом базисе главные миноры матрицы положительны.

 \longleftarrow . Дана симметричная квадратичная форма, все угловые миноры которой положительны. Рассмотрим сначала первый диагональный элемент в каноническом виде: его знак определяется первым угловым минором. Далее, знак числа $\frac{\Delta_{i+1}}{\Delta_i}$ определяет знак (i+1) -го элемента в диагональном виде. Получается, что в каноническом виде все элементы на диагонали положительные, то есть квадратичная форма определена положительно.

Доказательство из более надёжного источника

Теорема (Сильвестр, 1852)

Квадратичная форма над $\mathbb R$ положительно определена тогда и только тогда, когда все угловые миноры ее матрицы положительны.

Доказательство. Необходимость. Пусть форма $q(x_1,x_2,\ldots,x_n)=X^TAX$ положительно определена. Тогда из нее невырожденной линейной заменой переменных можно получить форму

$$\alpha_1 y_1^2 + \alpha_2 y_2^2 + \dots + \alpha_n y_n^2,$$
 (*)

где $\alpha_1,\alpha_2,\dots,\alpha_n>0$. Матрица формы (*) диагональна и ее определитель равен $\alpha_1\alpha_2\dots\alpha_n>0$. На прошлой лекции мы отмечали, что если форма g получена из формы q невырожденной линейной заменой переменных, то определители матриц форм q и g либо оба положительны, либо оба отрицательны, либо оба равны 0. В нашем случае определитель матрицы формы (*) положителен, откуда и определитель $|A|=\Delta_n$ положителен.

Осталось заметить, что если форма $q(x_1, x_2, \dots, x_n)$ положительно определена, то такова и форма от k переменных $q(x_1, x_2, \dots, x_k, \underbrace{0, \dots, 0}_{n-k})$.

Матрица этой формы есть A_k , откуда $|A_k| = \Delta_k > 0$.

Достаточность. Предположим, что $\Delta_1, \Delta_2, \dots, \Delta_n > 0$. По следствию о LDU-разложении симметрической матрицы $A = U^T D U$ для некоторых

верхней унитреугольной матрицы
$$U$$
 и матрицы $D=\begin{pmatrix} \delta_1 & 0 & \dots & 0 \\ 0 & \delta_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \delta_n \end{pmatrix}.$

Тогда $q=X^TAX=X^TU^TDUX=(UX)^TDUX=Y^TDY$, где Y:=UX. Итак, замена Y=UX приводит форму $q=X^TAX$ к каноническому виду

$$\delta_1 y_1^2 + \delta_2 y_2^2 + \dots + \delta_n y_n^2.$$

Поскольку $A_k = U_k^T D_k U_k$ и определители унитреугольных матриц равны 1, имеем $\Delta_k = |A_k| = |D_k| = \delta_1 \delta_2 \cdots \delta_k$.

Отсюда $\delta_1=\Delta_1>0$ и $\delta_i=\frac{\Delta_i}{\Delta_{i-1}}>0$ для всех $i=2,\dots,n.$ Поэтому форма q положительно определена.

Доказательство Расина

ТАМ $n o \infty^{\infty^{\infty^{\infty}}}$ страниц, вы чего

Квадрики на плоскости

Эллипс

🖺 Эллипс

Эллипсом называется множество всех точек плоскости, координаты которых в подходящей системе координат удовлетворяют каноническому уравнению эллипса вида $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, \ a,b>0.$ Система координат, для которой справедливо это уравнение, называется канонической

🖺 Вершины эллипса

Точки $(-a,0),\;(a,0),\;(0,-b),\;(0,b)$ называются вершинами эллипса

🖺 Фокусы эллипса

Число c>0 такое, что $c^2=a^2+b^2$, называется фокусным расстоянием эллипса, точки $F_1(-c,0),\ F_2(c,0)$ называются фокусами эллипса

🖺 Фокальный радиус

Для любой точки эллипса M длины отрезков $|MF_1|$ и $MF_2|$ называются фокальными радиусами точки M.

🖺 Эксцентриситет эллипса

Число $e=rac{c}{a}$ называется эксцентриситетом эллипса.

🖺 Директрисы эллипса

Прямые с уравнениями $x=\pm \frac{a}{e}$ называются директрисами эллипса.

Лемма

Точка M(x,y) принадлежит эллипсу \iff её фокальные радиусы равны $r_1=a-ex,\ r_2=a+ex$

Доказательство

Из уравнения эллипса получаем $y^2=b^2-rac{b^2}{a^2}x^2$

$$egin{split} r_2 &= |F_2 M| = \sqrt{(x-c)^2 + y^2} = \sqrt{x^2 - 2cx + c^2 + b^2 - rac{b^2}{a^2}x^2} = \ &= \sqrt{x^2 \left(1 - rac{b^2}{a^2}
ight) - 2cx + (c^2 + b^2)} = \sqrt{rac{c^2}{a^2}} = e^2 \end{split}$$

Аналогично для r_2

Теорема: фокальное свойство

Теорема

Точка M принадлежит эллипсу $\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1\iff r_1+r_2=2a$

Доказательство

$$\implies . \;\; r_1 + r_2 = |F_1 M| + |F_2 M| = (a + ex) + (a - ex) = 2a$$

$$\longleftarrow$$
 . Пусть теперь $M(x,y)$ для которой $|MF_1|+|MF_2|=2a$.
$$\sqrt{(x-c)^2+y^2}+\sqrt{(x+c)^2+y^2}=2a$$

$$\sqrt{(x-c)^2+y^2}=2a-\sqrt{(x+c)^2+y^2}$$
 $x^2-2cx+c^2+y^2=4a^2-4a\sqrt{(x+c)^2+y^2}+x^2+2cx+c^2+y2$
$$-2cx=4a^2-4a\sqrt{(x+c)^2+y^2}+2cx$$
 $a\sqrt{(x+c)^2+y^2}=a^2+cx\implies$ $\Rightarrow a^2(x^2+2cx+c^2+y^2)=a^4+2a^2cx+c^2x^2$ $x^2(a^2-c^2)+a^2y^2=a^4-a^2c^2$ $b^2x+a^2y^2=a^2(a^2-c^2)$

$$b^2x^2 + a^2y^2 = a^2b^2 \ rac{x^2}{a^2} + rac{y^2}{b^2} = 1$$

To есть M принадлежит эллипсу.

Теорема: директориальное свойство эллипса

Теорема

Точка M принадлежит эллипсу \iff отношение расстояния от M до фокуса к отношению расстояния до соответствующей директрисы равно эксцентриситету

Доказательство

 \Longrightarrow . Возьмём правый фокус и правую директрису. $d=rac{a}{e}$

$$d=|MD|=\left|rac{a}{e}-x
ight|=\left|rac{a-ex}{e}
ight| \ rac{|F_2M|}{d}=rac{|a-ex|}{\left|rac{a-ex}{e}
ight|}=e$$

 \Longleftarrow . Пусть M(x,y) - произвольная точка плоскости такая, что $\dfrac{|F_2M|}{d(M,l)}=e$.

$$egin{aligned} rac{\sqrt{(x-c)^2+y^2}}{\left|x-rac{a}{e}
ight|} &= e \ & \sqrt{(x-c)^2+y^2} = e \left|x-rac{a}{e}
ight| \ & \sqrt{(x-c)^2+y^2} = |ex-a| \ & x^2-2cx+c^2+y^2 = e^2x^2-2eax+a^2 \ & (1-e^2)x^2+y^2 = a^2-c^2 \end{aligned}$$

После преобразований получаем уравнение эллипса, что и требовалось доказать.

Гипербола

🖺 Гипербола

Гиперболой называется геометрическое место точек плоскости, которые в подходящей системе координат удовлетворяют уравнению $\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1$.

🖹 Фокусное расстояние гиперболы

Число c>0 такое, что $c^2=a^2+b^2$, называется фокусным расстоянием гиперболы.

🖹 Эксцентриситет гиперболы

Число $e=rac{c}{a}$ называется <mark>эксцентриситетом</mark> гиперболы, e>1

🖺 Асимптоты гиперболы

Прямые $y=\pm rac{b}{a}x$ - асимптоты гиперболы

🖺 Вершины гиперболы

Точки $(\pm a,0)$ - вершины гиперболы

Доказательство формулы асимптот

покажем, что
$$y=\pm\frac{b}{a}x$$
 асимптоты
$$\frac{y^2}{b^2}=\frac{x^2}{a^2}-1$$

$$\lim_{x\to+\infty}\frac{\frac{b}{a}x}{b\sqrt{\frac{x^2}{a^2}-1}}=\lim_{x\to+\infty}\frac{x}{a\sqrt{\frac{x^2}{a^2}-1}}=\lim_{x\to+\infty}\frac{1}{\sqrt{x^2-a^2}}=\lim_{x\to+\infty}\frac{1}{\sqrt{1-(a^2)}}$$
 Ra

Лемма: Свойства фокальных радиусов

Лемма : если точка
$$M(x,y)$$
 принадлежит гиперболе, то
$$r_{1 \text{пр.}} = ex + a, \, r_{2 \text{пр.}} = ex - a,$$

$$r_{1 \text{лев.}} = -ex - a, \, r_{2 \text{лев.}} = -ex + a,$$

Док — во : аналогично доказательству для эллипса, просто здесь отдельно рассматриваем случай, когда точка лежит на правой ветви и когда на левой

Теорема: фокальное свойство гиперболы

Теорема

Точка M(x,y) принадлежит гиперболе $\iff |r_1-r_2|=a$

Доказательство

Доказательство тоже аналогичное вполне, и мы его с вами

Теорема: директориальное свойство гиперболы

Теорема

Точка M(x,y) принадлежит гиперболе \iff отношение расстояния от точки M до соответствующей директрисы равно эксцентриситету

Доказательство

кто?

Парабола

🖺 Парабола

Парабола - множество всех точек плоскости, которые в подходящей системе координат имеют уравнение $y^2=2px$

Теорема: директориальное свойство параболы

Теорема

Точка M(x,y) принадлежит параболе \iff расстояние до фокуса равно расстоянию до директрисы

Доказательство

$$y^2 = 2px$$
. $F(\frac{p}{2}, 0)$.

$$|MF|=\sqrt{\left(x-rac{p}{2}
ight)^2+y^2}=\sqrt{\left(x-rac{p}{2}
ight)^2+2px}=$$

$$x = \sqrt{x^2 - px + rac{p^2}{4} + 2px} = \sqrt{x^2 + px + rac{p^2}{4}} = \left| x + rac{p}{2}
ight|^2$$

Классификация квадрик на плоскости

🖺 Квадрика на плоскости

Квадрикой на плоскости, или кривой второго порядка называется множество всех точек плоскости, координаты которых в подходящей системе координат удовлетворяют

уравнению второго порядка с двумя неизвестными. Уравнение имеет вид:

$$Ax^2 + 2Bxy + Cy^2 + Dx + Fy + G = 0$$

Теорема о классификации квадрик

Теорема

Любая квадрика на плоскости является либо эллипсом, либо гиперболой, либо параболой, либо парой прямых (пересекающиеся, параллельные, совпадающие), либо точкой, либо пустым множеством.

Доказательство

Половину доказательства Расина я не услышал, поэтому вот.

∧ Сюда смотри

Здесь нормальное доказательство

Квадрики в пространстве

4 ВНИМАНИЕ

Расин читал эту тему максимально неподробно (а писал я ещё менее подробно), поэтому я её УДАЛИЛ. Рекомендую отправиться прямиком сюда:

http://kadm.kmath.ru/files/alggeom45.pdf
http://kadm.kmath.ru/files/alggeom46.pdf
http://kadm.kmath.ru/files/alggeom47.pdf

