Solución 2º Parcial Lógica y Computabilidad - Verano 2021

Solución de un alumno

Ejercicio 1

Sea γ una formula proposicional del lenguaje $\{\neg, \rightarrow\}$ tal que ninguna de sus variables proposicionales aparece mas de una vez. Demostrar que γ es una contingencia.

Decimos que una fórmula φ es una contingencia cuando existen v, v' tal que:

$$v \models \varphi \ y \ v' \not\models \varphi$$

Veamos por inducción estructural:

CASO BASE ($\varphi = p$ es un símbolo proposicional): Es una contingencia, simplemente tomamos una valuación $v_1(p) = 1$ y luego tomamos otra $v_2(p) = 0$. Entonces $v_1 \models \varphi$ y $v_2 \not\models \varphi$.

PASO INDUCTIVO:

• Forma $\neg \varphi$ (por HI φ es una contingencia): Como φ es una contingencia entonces existen v y v' tal que

$$v \models \varphi \ y \ v' \not\models \varphi$$

Entonces:

$$v \not\models \neg \varphi \ y \ v' \models \neg \varphi$$

Entonces $\neg \varphi$ es una contingencia.

• Forma $\varphi \to \psi$ (por HI φ y ψ son contingencias): Como ambas son contingencias, entonces existen v_1, v'_1, v_2, v'_2 tal que:

$$v_1 \models \varphi \ y \ v_1' \not\models \varphi$$

$$v_2 \models \psi \ y \ v_2' \not\models \psi$$

Luego:

$$v_2 \models \psi \underset{\text{por def}}{\Rightarrow} v_2 \models (\varphi \rightarrow \psi)$$

Definimos:

$$v_s(p) = \begin{cases} v_1(p) & si \ p \in VAR(\varphi) \\ v_2'(p) & cc \end{cases}$$

Esto lo podemos hacer porque $VAR(\varphi) \cap VAR(\psi) =$ (porque ninguna de sus variables proposicionales aparece más de una vez). Como:

$$v_s \models \varphi \ y \ v_s \not\models \psi$$

$$\Rightarrow_{\text{por def}} v_s \not\models (\varphi \to \psi)$$

Entonces $(\varphi \to \psi)$ es una contingencia.

Entonces γ es una contingencia.

Ejercicio 2

El conjunto de los naturales que tienen resto 2 al dividirlos por 3 es el conjunto:

$$\{2,5,8,\ldots\} = \{2+3\cdot x : x\in\mathbb{N}\}$$

Veamos como expresarlo con el lenguaje \mathcal{L} .

Definimos:

$$\varphi(x): \exists y(x=2+y \land \exists z(z+z+z=y))$$

Cumple que $\varphi(x)$ es verdadero sii x resto 3 es 2.

Entonces la nueva relación se puede expresar como:

$$R = \{v(x) : U \models \varphi[v]\}$$

Ejercicio 3

Queremos ver que SQB correcto con respecto a \mathcal{M} , es decir:

$$SQB \vdash \varphi \Rightarrow \mathcal{M} \models \varphi$$

para toda \mathcal{L} -sentencia φ .

Notemos que:

$$\mathcal{M} \models SQB$$

Entonces, sea φ tal que:

$$SQB \vdash \varphi$$

Entonces también por correctitud:

$$SQB \models \varphi$$

Entonces:

$$SQB \models \varphi \ y \ \mathcal{M} \models SQB \Rightarrow \mathcal{M} \models \varphi$$

Ahora veamos que no es completo con respecto a \mathcal{M} , es decir:

$$\mathcal{M} \models \varphi \Rightarrow SQB \not\vdash \varphi$$

para alguna \mathcal{L} -sentencia.

Definimos:

$$\varphi: \forall xy(E(x,y) \to \exists z(E(y,z)))$$

Que quiere decir: "si te llega algún arco, entonces tenés que tener un arco saliente". Notamos que $\mathcal{M} \models \varphi$.

Veamos por el absurdo que $SQB \not\vdash \varphi$: Suponemos que si. Entonces $SQB \models \varphi$ (por correctitud). Entonces cualquier estructura que satisface SQB también satisface φ .

Definimos el modelo $\mathcal B$ como:

- $B = \{a, b\}$
- $G_B = \{a\}$
- $B_{\mathcal{B}} = \{b\}$
- $E = \{(a, b)\}$

Notamos que este modelo $\mathcal{B} \models SQB$ pero $\mathcal{B} \not\models \varphi$. Absurdo, de suponer que $SQB \vdash \varphi$. Entonces $SQB \not\vdash \varphi$. Entonces $SQB \not\vdash \varphi$. Entonces $SQB \not\vdash \varphi$.

Figure 1: Modelo $\mathcal B$