Taller de programación de sistemas. Diseño del ensamblador.

Práctica No. 6. Obtener el código máquina de los direccionamientos indizados simples (de 5, 9 y 16 bits). Modificar el programa de la práctica no. 5 para que sea capaz de obtener el código máquina de los direccionamientos indizados simples.

- Leer cada línea del archivo temporal.
- Por cada línea del archivo temporal, debemos de dividir la línea en 4 partes:
 - VALOR
 - ETIQUETA
 - CODOP
 - OPERANDO
- Una vez identificadas las partes se procede a analizar la información encontrada, por cada modo de direccionamiento distinto el procedimiento es distinto, se explican a continuación.

INDIZADO 5 BITS:

- Buscar en el TABOP el valor de la variable CODOP.
- Recuperar del TABOP el código máquina en formato hexadecimal.

Agregar por cada línea del archivo de instrucciones el código máquina encontrado.

LINEA	CONTLOC	ETIQUETA	CODOP	OPER	MODDIR	CODMAQ
1	0000	NULL	ORG	\$0		
2	0000	NULL	LDAA	,X	IDX	A600
3	0002	NULL	LDAA	0,X	IDX	A600
4	0004	NULL	LDAA	1,X	IDX	A601
5	0006	NULL	LDAA	15,X	IDX	A60F
6	0008	NULL	LDAA	-1,X	IDX	A61F
7	000A	NULL	LDAA	-16,X	IDX	A610
8	000C	NULL	STAB	-8,Y	IDX	6B58
9	000E	NULL	END	NULL		

Si buscamos en el TABOP la instrucción LDAA encontramos que:

- el código máquina calculado para IDX es A6.
- el código máquina por calcular dice "xb" y se corresponde con un byte.

Postbyte Code (xb)	Source Code Syntax	Valores de "rr". X=00, Y=01, SP=10, PC=11
rr0nnnn	,r	n=-16 a +15
	n,r	r puede ser X, Y, SP o PC
	-n,r	

Si tenemos ,X o tenemos 0,X entonces:

- rr = 00 porque el registro X=00
- nnnnn = 00000 porque la sintaxis ,X equivale a 0,X
- sustituyendo en rr0nnnn tenemos:
 - 00000000
 - tomando los primero 4 bits es igual a 0.
 - tomando los segundos 4 bits es igual a 0
 - el resultado es 00
- Concatenar el valor encontrado en el TABOP con el valor del byte XB, quedando entonces A600.

INDIZADO 9 BITS:

- Buscar en el TABOP el valor de la variable CODOP.
- Recuperar del TABOP el código máquina en formato hexadecimal.

Agregar por cada línea del archivo de instrucciones el código máquina encontrado

LINEA	CONTLOC	ETIQUETA	CODOP	OPER	MODDIR	CODMAQ
1	0000	NULL	ORG	\$0		
2	0000	NULL	LDAA	255,X	IDX1	A6E0FF
3	0003	NULL	LDAA	34,X	IDX1	A6E022
4	0006	NULL	LDAA	-18,X	IDX1	A6E1EE
5	0009	NULL	LDAA	-256,X	IDX1	A6E100
6	000C	NULL	LDAA	-20,Y	IDX1	A6E9EC
7	000F	NULL	END	NULL		

Si buscamos en el TABOP la instrucción LDAA encontramos que:

- el código máquina calculado para IDX1 es A6.
- el código máquina por calcular dice "xbff" y se corresponde con dos bytes.

Postbyte Code (xb)	Source Code Syntax	Valores de "rr". X=00, Y=01, SP=10, PC=11
111rr0zs	n,r	z=0
	-n,r	s=0 positivo, 1 negativos
		r puede ser X, Y, SP o PC

Si tenemos 255,X entonces:

- rr = 00 porque el registro X=00
- z=0
- s=0 para cuando el valor sea positivos y 1 para cuando sean negativos
- sustituyendo en 111rr0zs tenemos:
 - 11100000
 - tomando los primero 4 bits es igual a E.
 - tomando los segundos 4 bits es igual a 0
 - el resultado es E0
- Concatenar el valor encontrado en el TABOP con el valor del byte "xb", quedando entonces A6E0
- Concatenar el valor del operando "255" en la posición del "ff", quedando entonces A6E0FF.

INDIZADO 16 BITS:

- Buscar en el TABOP el valor de la variable CODOP.
- Recuperar del TABOP el código máquina en formato hexadecimal.

Agregar por cada línea del archivo de instrucciones el código máquina encontrado

LINEA	CONTLOC	ETIQUETA	CODOP	OPER	MODDIR	CODMAQ
1	0000	NULL	ORG	\$0		
2	0000	NULL	LDAA	31483,X	IDX2	A6E27AFB
3	0004	NULL	END			

Si buscamos en el TABOP la instrucción LDAA encontramos que:

- el código máquina calculado para IDX2 es A6.
- el código máquina por calcular dice "xbeeff" y se corresponde con tres bytes.

Postbyte Code (xb)	Source Code Syntax	Valores de "rr". X=00, Y=01, SP=10, PC=11
111rr0zs	n,r	z=1
		s=0 positivos, 1 negativos
		r puede ser X, Y, SP o PC

Si tenemos 31483,X entonces:

- rr = 00 porque el registro X=00
- z=1
- s=0 para positivos y 1 cuando sean negativos
- sustituyendo en 111rr0zs tenemos:
 - 11100010
 - tomando los primero 4 bits es igual a E.
 - tomando los segundos 4 bits es igual a 2
 - el resultado es E2
- Concatenar el valor encontrado en el TABOP con el valor del byte "xb", quedando entonces A6E2
- Concatenar el valor del operando "31483" en la posición del "eeff", quedando entonces A6E27AFB.

INDIZADO PRE/POST INCREMENTO/DECREMENTO:

- Buscar en el TABOP el valor de la variable CODOP.
- Recuperar del TABOP el código máquina en formato hexadecimal.

Agregar por cada línea del archivo de instrucciones el código máquina encontrado

0 -0-	F			0 1		
LINEA	CONTLOC	ETIQUETA	CODOP	OPER	MODDIR	CODMAQ
1	0000	NULL	ORG	\$0		
2	0000	NULL	STAA	1,-SP	IDX	6AAF
3	0002	NULL	STAA	1,SP-	IDX	6ABF
4	0004	NULL	STX	2,SP+	IDX	6EB1
5	0006	NULL	STX	2,+SP	IDX	6EA1
6	000E	NULL	END	NULL		

Si buscamos en el TABOP la instrucción STAA encontramos que:

- el código máquina calculado para IDX es 6A.
- el código máquina por calcular dice "xb" y se corresponde con un byte.

Si buscamos en el TABOP la instrucción STX encontramos que:

- el código máquina calculado para IDX es 6E.
- el código máquina por calcular dice "xb" y se corresponde con un byte

Postbyte Code (xb)	Source Code Syntax	Valores de "rr". X=00, Y=01, SP=10, PC=11
rr1pnnnn	n,-r	p=pre(0)
	n,+r	p=post(1)
	n,r-	
	n,r+	n=1 a 8
		r puede ser X, Y, o SP (recuerde que el signo se toma del pre o post) +8=0111 +7=0110

+6=0101
+5=0100
+4=0011
+3=0010
+2=0001
+1=0000
-1=1111
-2=1110
-3=1101
-4=1100
-5=1011
-6=1010
-7=1001
-8=1000

Si tenemos 1,-SP entonces:

- rr = 10 porque el registro sp=10
- nnnn = 1111 porque la sintaxis 1,-SP (se interpreta como -1)
- p=0 porque es "Pre"
- sustituyendo en rr1pnnnn tenemos:
 - 10101111
 - tomando los primero 4 bits es igual a A.
 - tomando los segundos 4 bits es igual a F
 - el resultado es AF
- Concatenar el valor encontrado en el TABOP con el valor del byte XB, quedando entonces 6AAF.

INDIZADO DE ACUMULADOR:

- Buscar en el TABOP el valor de la variable CODOP.
- Recuperar del TABOP el código máquina en formato hexadecimal.

• Agregar por cada línea del archivo de instrucciones el código máquina encontrado

LINEA	CONTLOC	ETIQUETA	CODOP	OPER	MODDIR	CODMAQ
1	0000	NULL	ORG	\$0		
2	0000	NULL	LDAA	В,Х	IDX	A6E5
3	0002	NULL	LDAA	A,X	IDX	A6E4
4	0004	NULL	LDAA	D,X	IDX	A6E6
5	0006	NULL	END	NULL		

Si buscamos en el TABOP la instrucción LDAA encontramos que:

- el código máquina calculado para IDX es A6.
- el código máquina por calcular dice "xb" y se corresponde con un byte.

Postbyte Code (xb)	Source Code Syntax	Valores de "rr". X=00, Y=01, SP=10, PC=11
111rr1aa	A,r	aa:
	B,r	00=A
	D,r	01=B
		10=D
		r puede ser X, Y, SP o PC

Si tenemos B,X entonces:

- rr = 00 porque el registro X=00
- aa = 01 porque el registro B=01
- sustituyendo en 111rr1aa tenemos:
 - 11100101
 - tomando los primero 4 bits es igual a E.
 - tomando los segundos 4 bits es igual a 5
 - el resultado es E5
- Concatenar el valor encontrado en el TABOP con el valor del byte XB, quedando entonces A6E5.

Reporte:

Características del reporte.

- 1. En formato PDF con las hojas numeradas.
- 2. No debe de tener faltas de ortografía.
- 3. Debe de tener el nombre del alumno, grupo, fecha de entrega.
- 4. Descripción del reporte:
- Describir los algoritmos utilizados para calcular los bytes xb para cada uno de los posibles modos indizados.