Instituto de Matemática e Estatística Monografia dos curso Organização de Computadores

Arquitetura do Console Nintendo 64

Professor: Siang Wun Song

Alunos: Antônio Augusto Abello

Gustavo Estrela de Matos

Lucas Romão Silva

Conteúdo

1	Introdução	2
2	Principais Componentes do Nintendo64	2
3	Chip NEC VR4300	2
	3.1 Formato de instrução	3
4	Chin SGI RCP	5

1 Introdução

2 Principais Componentes do Nintendo64

3 Chip NEC VR4300

O chip NEC VR4300 é o principal processador no Nintendo64, responsável principalmente por processar a lógica dos jogos e, também audio. Esse processador foi desenvolvido pela empresa japonesa NEC e implementa a arquitetura de conjunto de instruções MIPS, desenvolvida pela empresa de mesmo nome. A arquitetura MIPS define um conjunto de instruções do tipo RISC, reduced instruction set computer.

O processador VR4300 possuia uma arquitetura compatível com instruções de 64 bits, apesar de grande parte das instruções do Nintendo 64 serem de apenas 32 bits. Especificamente nesse console, o processador da NEC trabalhava a uma frenquência de 93,75 MHz.

3.1 Formato de instrução

Cada instrução do processador é formada por 32 bits, e elas podem ser separadas em três categorias: *I-type*, *J-Type* e *R-Type*.

As intruções do tipo *l-Type* são formadas por 5 bits, op, que determinam a operação; 5 bits em rs e mais 5 em rt, que determinam os registradores que estão sendo operados; e mais 16 bits, *immediate*, que pode representar ou um enderço ou uma constante. Exemplos de instruções desse tipo são as instruções *load* e *store*.

Figura 2: Formato de uma instrução I-Type

As intruções do tipo *J-Type* são usadas para controlar o fluxo do programa. Para isso, esse tipo de instrução pode pular para um pedaço específico do código por via de um *jump* ou um *branch*. Quando uma instrução do tipo *jump* é executada, o desvio sempre acontece, ao contrário da instrução *branch* na qual é possível determinar uma condição para o desvio. No

Figura 1: Um diagrama com os principais componentes do processador VR4300

VR4300 essas intruções são formadas por 5 bits, op, que determinam a operação; e mais 26 bits target, que determinam o endereço do possível desvio. Quando a instrução é um desvio obrigatório, os 26 bits estão todos disponíveis para determinar o endereço de destino, mas no caso de um branch o valor de target só pode determinar um offset de 16 bits relativo ao registrador PC.

Figura 3: Formato de uma instrução *J-Type*

As instruções do tipo R-Type envolvem apenas o uso de registradores. Exemplos de instruções desse tipo são aquelas que fazem operações aritméticas entre dois registradores e guardam o resultado em um terceiro registrador. Essas instruções são formadas por 5 bits op; 5 bits para cada um dos três registradores rs, rt e rd; 5 bits sa que definem um shift para o resultado; e mais 6 bits para function.

Code	Operation
0	Add
1	Subtract
2	Multiply
3	Divide
4	Square root
5	Absolute value
6	Transfer
7	Sign reverse
8	Convert to 64-bit fixed-point, rounded to nearest/even
9	Convert to 64-bit fixed-point, rounded toward zero
10	Convert to 64-bit fixed-point, rounded to $+\infty$
11	Convert to 64-bit fixed-point, rounded to $-\infty$
12	Convert to 32-bit fixed-point, rounded to nearest/even
13	Convert to 32-bit fixed-point, rounded toward zero
14	Convert to 32-bit fixed-point, rounded to $+\infty$
15	Convert to 32-bit fixed-point, rounded to $-\infty$
16-31	Reserved
32	Convert to single floating-point
33	Convert to double floating-point
34	Reserved
35	Reserved
36	Convert to 32-bit fixed-point
37	Convert to 64-bit fixed-point
38–47	Reserved
8–63	Floating-point compare

Tabela 1: Lista de todas as possíveis funções em uma instrução do tipo $R\text{-}\mathit{Type}\ [1].$

4 Chip SGI RCP

Referências

[1] NEC V_R4300 , V_R4305 , V_R4310 64-bit processor User's Manual 7^{th} edition. Japan, 2000.