Test di Calcolo Numerico

Ingegneria Informatica 17/02/2022

1) Si vuole calcolare la funzione

$$f(x,y) = x^2 + y^3$$

in un punto $P_0 \in [0, 1] \times [1, 2]$.

Per avere un errore assoluto $|\delta_f| \leq 10^{-2}$, quali limitazioni devono soddisfare l'errore assoluto algoritmico $|\delta_a|$ e gli errori assoluti $|\delta_x|$ e $|\delta_y|$?

2) La matrice

$$A = \left(\begin{array}{rrrr} 5 & 2 & 7 & 1 \\ 0 & 1 & 0 & -1 \\ -1 & 3 & 1 & -1 \\ 0 & 1 & 0 & 2 \end{array}\right)$$

è riducibile?

Se A risulta riducibile, indicare una matrice di permutazione che la riduce.

3) La matrice

$$A = \begin{pmatrix} 3+4i & 1 & 0 & -1\\ -1 & 2+3i & 1 & 0\\ 1 & -1 & 3+5i & 0\\ 2i & 0 & -1 & 2+4i \end{pmatrix}$$

ha un autovalore nullo?

La matrice A ha autovalori reali?

4) È data la funzione $f(x) = 2x^3 - x^2 - x + 2$. Calcolare il polinomio $P_2(x)$ di interpolazione relativo ai punti $x_0 = 0$, $x_1 = 1$ e $x_2 = -1$. Posto $E_2(x) = f(x) - P_2(x)$, determinare

$$\max_{x \in [-1,1]} |E_2(x)|$$
.

SOLUZIONE

- 1) Si pongono $|\delta_a| < \frac{1}{2}10^{-2}$ e $|\delta_d| < \frac{1}{2}10^{-2}$. Risultano $A_x = 2$ e $A_y = 12$ per cui $|\delta_x| < \frac{1}{8}10^{-2}$ e $|\delta_y| < \frac{1}{48}10^{-2}$. Quindi, per rientrare nella limitazione richiesta, basta introdurre x troncato alla terza cifra decimale, y arrotondato alla quarta cifra decimale e arrotondare il risultato dell'operazione alla seconda cifra decimale.
- 2) La matrice data risulta riducibile ed una matrice che la riduce è data da $P = (e^{(4)}|e^{(2)}|e^{(3)}|e^{(1)}).$
- 3) I cerchi di Gershgorin relativi alla matrice data non intersecano l'asse reale e alla loro unione non appartiene l'origine del piano di Gauss. Ne deriva che il numero 0 non può essere autovalore della matrice e non sono presenti autovalori reali.
- 4) Il polinomio $P_2(x)$ risulta $P_2(x) = -x^2 + x + 2$. Da questo segue $E_2(x) = 2x^3 2x$. Dallo studio della derivata prima si ottiene che $\max_{x \in [-1,1]} |E_2(x)|$ si ottiene per $x = \pm \frac{1}{\sqrt{3}}$. Infine, si ha

$$\max_{x \in [-1,1]} |E_2(x)| = \frac{4}{3} \frac{1}{\sqrt{3}}.$$