Summary of Bertomeu, Cheynel, Xuejun, and Liang (2020, WP)

Shunsuke Matsuno *

November 7, 2020

Setting

- The manager privately observes a signal about the value of the firm.
 - \circ x: the signal of the fundamental value.
 - * full support on $\mathbb R$
 - * p.d.f. $f(\cdot)$
 - * c.d.f $F(\cdot)$
- The manager can manage report with cost.
 - $\circ \ \theta^{-1}$: marginal manipulation cost
- Investors value the firm as a function of reported earnings.
 - $\circ x \mapsto R(x) \in \mathbb{R}$: the firm's reporting strategy
 - $\circ \gamma : \mathbb{R} \ni r \to \gamma(r) \in \mathbb{R}$: investors' pricing strategy
 - o Investors respond to earnings with

$$\bar{\gamma}(r) = \mathbb{E}\left[\alpha(\tilde{x}) \mid \bar{R}(\tilde{x}) = r\right].$$

- * $\bar{R}(\cdot)$: investors conjecture about $R(\cdot)$
- * $\alpha(\cdot)$: the mapping between unmanaged earnings and value.
- * $\alpha(\cdot)$ is assumed to be increasing and differentiable.
- The manager chooses the reporting strategy to maximize her utility

$$R(x) \in \underset{r}{\arg\max} \bar{\gamma}(r) - \frac{1}{\theta}\psi(r-x).$$
 (1)

- $\circ \psi(\cdot)$: cost function
 - * twice-differentiable, convex, and $\psi(0) = \psi'(0) = 0$.
- We focus on the following fully separating equilibrium (which is perfect Bayesian Nash equilibrium):

Definition. A fully separating equilibrium is the pair of $R(\cdot)$ and $\gamma(\cdot)$ satisfying the following conditions.

- (i) R and γ are increasing.
- (ii) Beliefs are correct:

$$\bar{R}(\cdot) = R(\cdot), \quad \bar{\gamma}(\cdot) = \gamma(\cdot).$$

(iii) Optimization: the manager solves Equation (1).

^{*}smatsuno@g.ecc.u-tokyo.ac.jp

Estimation

• The FOC of the manage's problem (1) is

$$\gamma'(R(x)) = \frac{1}{\theta}\psi'(R(x) - x). \tag{2}$$

- We now investigate the distribution of r.
 - \circ Since r = R(x) and x has pdf f, by change of variables we have

$$g(r) = \frac{1}{R'(R^{-1}(r))} f(R^{-1}(r)). \tag{3}$$

- \circ Note that R is increasing in the equilibrium.
- Apply the implicit function theorem on Equation (2).
 - \circ Let

$$h(x, R(x)) := \gamma'(R(x)) - \frac{1}{\theta}\psi'(R(x) - x).$$

 \circ Since h(x, R(x)) = 0 by the FOC, we have

$$R'(x) = -\frac{\theta^{-1}\psi''(R(x) - x)}{\gamma''(R(x)) - \theta^{-1}\psi''(R(x) - x)}.$$
(4)

• Using (4), we have

$$R'(R^{-1}(r)) = -\frac{\theta^{-1}\psi''(r-R^{-1}(r))}{\gamma''(r)-\theta^{-1}\psi''(r-R^{-1}(r))}$$

• Substituting this expression into (3), we obtain

$$g(r;\theta) = -\frac{\gamma''(r) - \theta^{-1}\psi''(r - R^{-1}(r))}{\theta^{-1}\psi''(r - R^{-1}(r))} f(R^{-1}(r)).$$
 (5)

• Therefore, we can estimate θ by MLE:

$$\hat{\theta} = \arg\max_{\theta} \frac{1}{n} \sum_{i} \ln g(r_i; \theta).$$

- However, we cannot compute $g(r;\theta)$ since we do not know the following components:
 - $\circ \psi$: cost function
 - \rightarrow Specify as quadratic cost for any bias $b(r) := r R^{-1}(r)$

$$\psi(b) = b^2$$
.

- \circ f: distribution of unmanaged earnings x
 - \rightarrow Assume that $x \sim \mathcal{N}(m_x, \sigma_x)$
- $\circ \gamma$: pricing strategy
 - \rightarrow Can non-parametrically estimate by regressing observed price on reported earnings, r.
- \circ b: bias
 - \rightarrow By Equation (2), the bias satisfies

$$b(r) = (\psi')^{-1}(\theta \gamma'(r))$$
$$= \frac{1}{2}\theta \gamma'(r). \qquad \therefore \text{ quadratic cost}$$

• Under the above specifications, we can compute an estimated likelihood by

$$\hat{g}(r;\theta,m_x,\sigma_x) := (1 - \hat{\gamma}''(r)\frac{\theta}{2})\frac{1}{\sigma_x}\phi\left(\frac{r - \frac{\theta}{2}\hat{\gamma}'(r) - m_x}{\sigma_x}\right). \tag{6}$$

- $\circ \phi$ is the p.d.f. of standard normal distribution.
- To see this, note that $f(R^{-1}(r)) = f(r b(r))$ and $x \equiv r b(r)$ can be written $x = \sigma_x z m_x$, where $z \sim \mathcal{N}(0, 1)$.

Step-by-Step

- 1. Estimate $\gamma(\cdot)$
 - Regress observed stock prices, $\{p_i\}_{i=1}^n$, on earnings surprises, $\{r_i\}_{i=1}^n$ with third order polynomial:

$$p_i = a_0 + a_1 r_i + a_2 r_i^2 + a_3 r_i^3 + \varepsilon_i.$$

• Then, we get

$$\hat{\gamma}(r_i) = \hat{a}_0 + \hat{a}_1 x_i + \hat{a}_2 x_i^2 + \hat{a}_i x_i^3,$$

$$\hat{\gamma}'(r_i) = \hat{a}_1 + 2\hat{a}_2 x_i + 3\hat{a}_3 x_i^2,$$

$$\hat{\gamma}''(r_i) = 2\hat{a}_2 + 6\hat{a}_3 x_i.$$

- Alternatively, we can use non-parametric method and numerical differentiation.
 - In fact, the original paper uses a cubic splines.
 - \circ I suspect that the polynomial specification may not work well when (i) the empirical support of r_i is wide and/or (ii) there is a significant discontinuity around zero.
- 2. Compute likelihood function
 - Using the estimated likelihood function (6), compute the likelihood of observing reported earnings $\{r_i\}_{i=1}^n$:

$$\mathcal{L}(\theta, m_x, \sigma_x \mid r) := \frac{n}{\sigma_x} + \sum_{i=1}^n (1 - \hat{\gamma}''(r_i) \frac{\theta}{2}) + \sum_{i=1}^n \phi\left(\frac{r - \frac{\theta}{2}\hat{\gamma}'(r) - m_x}{\sigma_x}\right).$$

• Maximize \mathcal{L} w.r.t. (θ, m_x, σ_x) .