Глубокое обучение и вообще

Соловей Влад и Шигапова Фирюза

15 декабря 2021 г.

Посиделка 11: Transformer

Agenda

- Быстрая история
- seq2seq
- Attention
- Self-attention
- BERT
- ELMO
- Сломанный мозг.....

Быстренькая история взятая из старых лекций

задача seq2seq

спойлер

После этой лекции могут возникнуть огромное количество вопросов - но в современных архитектурах слишком много инженерных хаков, которые лучше осозновать постепенно сами.

Я буду оставлять некоторые ключевые слова того, чтобы вы могли сами залезть поглубже, если такое погружение потребуется.

Задача seq2seq - задача, когда мы хотим предсказать по одной последовательности другую Самая стандартная подобная задача - машинный перевод. Нейронные сети ворвались в эту сферу человеческого прогресса в 2014 году

Метрика

Модели в машинном переводе сравнивают по BLEU score - если в кратце, то эта метрика сравнения полученного машиной перевода и человеческого, насколько мы вообще бъемся. Из проблем данной метрики - если машина перевела правильно, но альтернативно, то BLEU будет низкий....

of the words preceding it.

French sentence (input)

input into the network next, giving the network some view of the sentence already produced and some context

Greedy decoding

При декодировании может быть следующие проблемы - мы декодируем какое-то конкретное слово. Но что делать если это слово некоректное?

Greedy decoding/beam search

Самый простой подход - селектить несколько наиболее вероятных слов, а не одно. Мы получим множество предложений, а потом по какой-то эвристике выбирать лучшее из них. Подход хорош всем, кроме скорости. Ему есть альтернатива - называется beam-search. Какие проблемы мы видим в таком подходе (спойлер, из коробки он не полетел)?

А вот бы использовать не один вектор, а все. Информация то течет и кодируется во всех векторах.....
И да - это классная и разумная идея. Нам на встречу приходит концепци:

И да - это классная и разумная идея. Нам на встречу приходит концепция внимания.

Sequence-to-sequence with attention

Sequence-to-sequence with attention

Sequence-to-sequence with attention

Decoder RNN

Идейно - внимание просто выбирает то из эмбедингов, которое действительно нужно для декодирования. Это просто матричное произведение(а можно взвешивать и без весов) и softmax. У нас все остается дифферинцируемым - берем градиентны, накапливаем инфу в весах сетки.

google

earch

google

В целом глобальное решение было найдено, осталось закидать проблему железом.

Выводы:

- 1. 8 слоев LSTM (8 Карл!)
- 2. в attention 2 слоя dense.
- 3. Собираем слова из морфем пытаемся победить out-of-vacabular.
- 4. Модель стала иногда сексистом и фашистом требуются слишком большие дата сеты, чтобы учить эту большую прелесть.

Attention is all you need!

attention is all you need

Развитие идеи внимания. Статья вышла в 2017 году и стала мамой всех текущих SOTA моделей. А зачем нам вообще что-то, кроме внимания? Давайте напихаем в энкодер и декодер как можно больше внимания и будем такой штукой его учить.

attention is all you need

Encoder

Что мы хотим?

Есть предложение: "The animal didn't cross the street because it was too tired"

Абстракции!

А теперь тоже самое, но словами:

- 1. Query, key ищем связи между словами. Ходим по всем со всеми смотрим насколько они связаны. Query мое текущее слово, key мое слово с которым я сравниваю себя.
- 2. Value то, что мы знаем об этом слове

multi head attention

Соединяем!

1) Concatenate all the attention heads

2) Multiply with a weight matrix W° that was trained jointly with the model

Х

3) The result would be the $\mathbb Z$ matrix that captures information from all the attention heads. We can send this forward to the FFNN

Z

Выходом всего этого дела будут вектора key и value, которые позволят декодеру смотреть на нужные нам кусочки. И бежим смотреть гифки декодера!

Объяснение взято отсюда английский оригинал и отсюда лекции мфти

- 1. У нас нет никаких слоев, кроме dense
- 2. Учится очень классно, находит множество взаимосвязей
- 3. Positional Encoding позволяет учитывать позицию в тексте

Multivariate Time Series

Multivariate Time Series

Multivariate Time Series - Positional Encoding

Positional Encoding позволяет учитывать позицию элемента в последовательности

- 1. Посчитать cos-sin и включить в качестве еще одной характеристики в вектор характеристик: concat([u, cos, sin])
- 2. Создать обучаемый вектор, равный размеру входного вектора характеристик, и сложить его с вектором: $u+W_{pos}$
- 3. Создать обучаемый скаляр и включить в качестве еще одной характеристики в вектор характеристик: $concat([u, scalar_{pos}])$

Multivariate Time Series - что можно после Encoder

MLP

Вытягиваем последовательность в один длинный вектор

Multivariate Time Series - что можно после Encoder RNN

Отдаем на вход RNN сети

Figure 3. Long Short-Term Memory network and LSTM unit.

Multivariate Time Series - что можно после Encoder CNN

Отдаем на вход CNN сети

Tabular Data

1	A User	В	С		D	E	F	G	Н		J	K	L
		Card	Year		Month	Day	Time	Amount	Use Chip	Merchant Name	Merchant City	MCC	Is Fraud?
2	0)	2019	4	21	9:47	\$6.81	Chip	Chevron	Brandon	5541	No
3	0)	2019	4	21	10:38	\$10.07	Chip	Anwar Grocery	Brandon	5411	No
4	0)	2019	4	22	3:53	\$42.61	Chip	Kelly Auto Repair	Brandon	7538	No
5	0)	2019	4	22	7:28	\$47.66	Chip	Barnes & Noble	Brandon	5942	No
6	0)	2019	4	22	10:30	\$9.73	Chip	Applebees	Brandon	5812	No
7	0)	2019	4	23	15:02	\$121.47	Chip	Green Wholesale	Brandon	5300	No
8	0)	2019	4	23	23:20	\$71.66	Online	Frontier Communications	ONLINE	4814	No
9	0)	2019	4	24	10:13	\$11.05	Chip	Applebees	Brandon	5812	No
10	0)	2019	4	24	10:17	\$11.05	Chip	Applebees	Brandon	5812	No

Tabular Data

Figure 1: The architecture of TabTransformer.

Tabular Data

- Для каждой категориальной переменной ставим в соответствие Embedding
- Все категориальные признаки представляем в виде последовательности
- Созданная последовательность идет на вход Transformer

$$E(\mathbf{x}_{cat}) = e_1(x_1), \cdot \cdot \cdot, e_m(x_m)$$

