

Voltage Regulators

LM79LXXAC Series 3-Terminal Negative Regulators

General Description

The LM79LXXAC series of 3-terminal negative voltage regulators features fixed output voltages of -5V, -12V, and -15V, with output current capabilities in excess of 100 mA. These devices were designed using the latest computer techniques for optimizing the packaged IC thermal/electrical performance. The LM79LXXAC series, even when combined with a minimum output compensation capacitor of $0.1~\mu$ F, exhibits an excellent transient response, a maximum line regulation of $0.07\%~V_O/V$, and a maximum load regulation of $0.01\%~V_O/m$ A.

The LM79LXXAC series also includes, as self-protection circuitry: safe operating area circuitry for output transistor power dissipation limiting, a temperature independent short circuit current limit for peak output current limiting, and a thermal shutdown circuit to prevent excessive junction temperature. Although designed primarily as fixed voltage regulators, these devices may be combined with simple external circuitry for boosted and/

or adjustable voltages and currents. The LM79LXXAC series is available in the 3-lead TO-92 package.

For applications requiring other voltages, see LM137 data sheet.

Features

- Preset output voltage error is less than ±5% over load, line and temperature
- Specified at an output current of 100 mA
- lacksquare Easily compensated with a small 0.1 μF output capacitor
- Internal short-circuit, thermal and safe operating area protection
- Easily adjustable to higher output voltages
- Maximum line regulation less than 0.07% V_{OUT}/V
- Maximum load regulation less than 0.01% VOUT/mA
- TO-92 package

Typical Applications

Fixed Output Regulator C1* + C2** -VIN O LM79LXXACZ O -VOUT

*Required if the regulator is located far from the power supply filter. A 1 μ F aluminum electrolytic may be substituted.

Adjustable Output Regulator

Connection Diagram

TO-92 Plastic Package (Z)

Order Numbers LM79L05ACZ LM79L12ACZ LM79L15ACZ See NS Package Z03A

^{**}Required for stability. A 1 µF aluminum electrolytic may be substituted.

Absolute Maximum Ratings

Input Voltage

V_O = -5V, -12V and -15V
Internal Power Dissipation (Note 1)
Operating Temperature Range
Maximum Junction Temperature
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

-35V
Internally Limited
0°C to +70°C
+125°C
-55°C to +150°C
300°C

Electrical Characteristics (Note 2) T_i = 0°C to +125°C unless otherwise noted.

OUTPUT VOLTAGE				5V			−12V			15V		
INPUT VOLTAGE (unless otherwise noted)				-10V			–17V			-20V		
	PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
٧o	Output Voltage	$T_J = 25^{\circ}C$, $I_O = 100 \text{ mA}$	-5.2	-5	-4.8	-12.5	-12	-11.5	-15.6	-15	-14.4	
		$1 \text{ mA} \leq I_0 \leq 100 \text{ mA}$.	-5.25		-4.75	-12.6		-11.4	-15.7		-14.25	
		$V_{MIN} \le V_{IN} \le V_{MAX}$	$(-20 \le V_{1N} \le -7.5)$		$(-27 \le V_{1N} \le -14.8)$			$(-30 \le V_{1N} \le -18)$			٧	
		$1 \text{ mA} \le I_{\text{O}} \le 40 \text{ mA}$	-5.25		-4.75	-12.6		-11.4	-15.75		-14.25	
		$V_{MIN} \le V_{IN} \le V_{MAX}$	(-20	≤VIN:	≤-7)	(-27≤	< VIN ≤	-14.5)	(−30 ≤	V _{IN} ≤	-17.5)	
ΔVO	Line Regulation	$T_J = 25^{\circ}C$, $I_O = 100 \text{ mA}$,	60 -			45			45	mV
		$V_{MIN} \le V_{IN} \le V_{MAX}$	(-20	≤ VIN ≤	-7.3)	(−27 ≤	VIN ≤	-14.6)	. (−30 <	.vin≤	17.7)	V
		$T_J = 25^{\circ}C$, $I_O = 40 \text{ mA}$			60			45			45	mV
١	•	VMIN S VIN S VMAX	$(-20 \le V_{1N} \le -7)$			$(-27 \le V_{1N} \le -14.5)$			$(-30 \le V_{IN} \le 17.5)$			V
Δ۷0	Load Regulation	T _J = 25°C,										
		1 mA ≤ I _O ≤ 100 mA	`		50	١.	,	100			125	mV
		1 mA ≤ l _O ≤ 40 mA			30		,	50			75 ·	mV
Δ۷Ο	Long Term Stability	I _O = 100 mA		20			48	* .		60		mV/1000 hr
IQ	Quiescent Current	IO = 100 mA		2	6		2	6		, 2	6	mA
		T _J = 125 °C, I _O = 40 mA			5.5			5.5			5.5	mA
ΔΙα	Quiescent Current Change	$1 \text{ mA} \le I_0 \le 100 \text{ mA}$			0.3			0.3			0.3	mA
		$1 \text{ mA} \leq I_0 \leq 40 \text{ mA}$			0.1			0.1			0.1	l ma
		IO = 100 mA			0.25			0.25			. 0.25	mA
		VMIN S VIN S VMAX	(-20	≤ VIN ≤	7.5)	(−27 ≤	< VIN ≤	-14.8)	(30	≤V _{IN} ≤	⊆–18)	٧
Vn	Output Noise Voltage	T _J = 25°C, I _O = 100 mA,		40			96			120		μV
		f = 10 Hz10 kHz '		,								
ΔVIN	Ripple Rejection	T _J = 25°C, I _O = 100 mA,	50		1	52			50			dB
Δ۷ο	Rippie Rejection	f = 120 Hz										
,	Input Voltage Required	T,j = 25°C										
	to Maintain Line	IO = 100 mA			-7.3			-14.6			-17.7	
	Regulation	IO = 40 mA	i		-7.0	l .		-14.5			-17.5	Į v

Note 1: Thermal resistance, junction to ambient, of the TO-92 (Z) package is 180°C/W when mounted with 0.40 inch leads on a PC board, and 160°C/W when mounted with 0.25 inch leads on a PC board.

Note 2: To ensure constant junction temperature, low duty cycle pulse testing is used.

Typical Performance Characteristics

TA - AMBIENT TEMPERATURE (°C)

Typical Applications (Continued)

±15V, 100 mA Dual Power Supply

