Домашнее задание по предмету «Архитектура вычислительных систем» №3

Выполнила Шелемех Е.В, группа БПИ206

1. Описание полученного задания

Номер варианта – 226 -> условие задачи – 2, номер функции – 17

Условие задачи:

2. Плоская	1. Круг	Цвет фигуры	Вычисление
геометрическая	(целочисленные	(перечислимый тип) =	периметра фигуры
фигура,	координата центра	{красный,	(действительное
размещаемая в	окружности, радиус)	оранжевый,	число)
координатной	2. Прямоугольник	желтый, зеленый,	
сетке	(целочисленные	голубой, синий,	
	координаты левого	фиолетовый}	
	верхнего и правого		
	нижнего углов)		
	3. Треугольник		
	(целочисленные		
	координаты трех		
	углов)		

Функция обработки данных в контейнере:

17. Упорядочить элементы контейнера по убыванию используя сортировку с помощью разделения (Quick Sort). В качестве ключей для сортировки и других действий используются результаты функции, общей для всех альтернатив.

Описание работы программы

Запуск программы осуществляется из командной строки, в которой указываются: имя запускаемой программы; имя файла с исходными данными; имя файла с выходными данными. В файле с исходными данными в первой строке должен находится тип ввода данных: "random" или "file". Если тип ввода - "random", то во второй строке должно быть положительное число менее 10000, т.е кол-во генерируемых фигур. Если тип ввода - "file", то в последующих строках вводится информация о фигурах в формате:

- 1. тип фигуры (целое число от 1 до 3 включительно)
- 2. данные о фигуре
 - 2.1 если треугольник: цвет a_x a_y b_x b_y c_x c_y
 - 2.2 если прямоугольник: цвет а x a y b x b y
 - 2.3 если круг: цвет center_x center_y radius

цвет – целое от 0 до 6; a_x, a_y, b_x, b_y, c_x, c_y, center_x, center_y, radius – целые числа;

Результат работы программы, т.е вывод элементов контейнера до сортировки и вывод элементов контейнера после сортировки, помещается в выходной файл, указанный пользователем в качестве аргумента при запуске программы.

2. Архитектура

Отображение содержимого классов

Отображение на память некоторых методов классов

Стек вызовов

3. Характеристики

Количество заголовочных файлов = 0

Количество модулей реализации = 6

Общий размер исходных текстов программы = 10.3 Кб

Время выполнения программы(на приложенных тестовых наборах):

Входной	Тип ввода	Описание	Выходной файл	Время выполнения		
файл	данных	тестового		процед.	00П+	динам.
		набора		пар-ма	стат.тип	тип.
				+		
				стат.тип.		
tests\test1.txt	Из файла	8 элементов	tests\output_test1.txt	9мс	Змс	1.2мс
tests\test2.txt	Из файла	11 элементов	tests\output_test2.txt	5мс	4мс	1.3мс
tests\test3.txt	рандом	66 ранд.	tests\output_test3.txt	7мс	4мс	4мс
		элементов				
tests\test4.txt	рандом	Некорректное	tests\output_test4.txt	Змс	Змс	1мс
		число				
		элементов				
tests\test5.txt	Некорректный	-	tests\output_test5.txt	1мс	Змс	1мс
	тип ввода					
tests\test6.txt	рандом	1000 ранд.	tests\output_test6.txt	15мс	11мс	62мс
		элементов				
tests\test7.txt	рандом	10000 эл-ов	tests\output_test7.txt	173мс	142мс	705мс

4. Сравнение

Отличия от процедурного и ООП подходов:

- 1. Размер исходных текстов программы значительно уменьшился в сравнении с процедурным и ООП подходами.
- 2. Время выполнения на маленьких объемах данных уменьшилось, но при вводе большого кол-ва элементов программа с динамической типизацией на python работает значительно медленнее, чем программы с другими подходами.
- 3. Динамическая типизация позволяет объявлять переменные без указания их типа.
- 4. Динамическая типизация значительно сокращает время написания программы.
- 5. Отсутствие явно указанного типа на этапе компиляции повышает вероятность ошибок во время исполнения.