The Ecological Effects of Trait Variation in a u-Predator, v-Prey System

Sam Fleischer, Pablo Chavarria

May 1, 2015

Sigma Xi Student Research Symposium

Advisor: Dr. Jing Li, Mathematics, CSU Northridge Consultant: Dr. Casey terHorst, Biology, Supported By: Pacific Math Alliance, PUMP, CSU Northridge

Overview

- Motivation / Observations in Nature
- Model Formulation
- Preliminary Results
- Future Work

Motivation / Observations in Nature

- Predator/Prey interactions are prevalent in nature
 - Crab vs. gastropod [Saloniemi, 1993]
 - Protist vs. bacteria [terHorst]
- There is trait variation within species
 - Thickness of plant cuticula [Saloniemi, 1993]
 - Strength of gastropod shell [Saloniemi, 1993]
- Incorporating trait variation provides richer dynamics than classical Lotka-Volterra models

Normally Distributed Trait Values

Assume Prey and Predator have normally distributed trait values.

$$p(n, \overline{n}) = \frac{1}{\sqrt{2\pi\beta^2}} \exp\left[-\frac{(n-\overline{n})^2}{2\beta^2}\right]$$

$$p(\mathbf{m}, \overline{\mathbf{m}}) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(\mathbf{m} - \overline{\mathbf{m}})^2}{2\sigma^2}\right]$$

Variables

- $n \equiv \text{Prey Trait Value}$
- $\overline{n} \equiv$ Average Prey Trait Value
- $m \equiv \text{Predator Trait Value}$
- $\overline{m} \equiv$ **Average** Predator Trait Value

- $\beta^2 \equiv \text{Prey Trait Variance}$
- $\sigma^2 \equiv \text{Predator Trait Variance}$

Attack Rate as a function of Normally Distributed Trait Values

Attack Rate is a Function of the Prey's Trait Value and the Predator's Trait Value

$$a(n, \mathbf{m}) = \alpha \exp \left[-\frac{((\mathbf{m} - \mathbf{n}) - \theta)^2}{2\tau^2} \right]$$

Variables

- $n \equiv \text{Prey Trait Value}$
- \bullet $\overline{n} \equiv$ **Average** Prey Trait Value
- $m \equiv \text{Predator Trait Value}$
- $\overline{m} \equiv$ **Average** Predator Trait Value

- $\alpha \equiv \text{Maximum attack rate}$
- ullet $\theta \equiv \text{Optimal trait difference}$
- $\tau^2 \equiv \text{Specialization Constant}$

Attack Rate as a function of Normally Distributed Trait Values

Attack Rate is a Function of the Prey's Trait Value and the Predator's Trait Value

$$a(n, \mathbf{m}) = \alpha \exp \left[-\frac{((\mathbf{m} - \mathbf{n}) - \theta)^2}{2\tau^2} \right]$$

Average Attack Rate

$$\overline{a}(\overline{n}, \overline{m}) = \int_{-\infty}^{\infty} \int_{\infty}^{\infty} a(n, m) \cdot p(n, \overline{n}) \cdot p(m, \overline{m}) \, dn dm \\
= \frac{\alpha \tau}{\sqrt{\sigma^2 + \beta^2 + \tau^2}} \exp \left[-\frac{((\overline{m} - \overline{n}) - \theta)^2}{2(\sigma^2 + \beta^2 + \tau^2)} \right]$$

Variables

- $n \equiv \text{Prey Trait Value}$
- ullet $\overline{n} \equiv$ **Average** Prey Trait Value
- $m \equiv \text{Predator Trait Value}$
- $\overline{m} \equiv$ Average Predator Trait Value

- $\alpha \equiv \text{Maximum attack rate}$
- ullet $\theta \equiv \text{Optimal trait difference}$
- $\tau^2 \equiv \text{Specialization Constant}$
- $oldsymbol{\circ}$ $\beta^2 \equiv \operatorname{Prey}$ Trait Variance
- $\sigma^2 \equiv \text{Predator Trait Variance}$

Intrinsic Growth Rate as a function of the Normally Distributed Trait Value

Prey Growth Rate is is a Function of the Prey's Trait Value

$$r(n) = \rho \exp \left[-\frac{(n-\phi)^2}{2\gamma^2} \right]$$

Variables

- $n \equiv \text{Prey Trait Value}$
- $\overline{n} \equiv$ Average Prey Trait Value

- $\rho \equiv Maximum Growth Rate$
- ullet $\phi \equiv \operatorname{Prey}$ Optimum Trait Value
- $\gamma^2 \equiv$ Stabilizing Selection Constant

Intrinsic Growth Rate as a function of the Normally Distributed Trait Value

Prey Growth Rate is is a Function of the Prey's Trait Value

$$r(n) = \rho \exp \left[-\frac{(n-\phi)^2}{2\gamma^2} \right]$$

Averge Growth Rate

$$\overline{r}(\overline{n}) = \int_{-\infty}^{\infty} r(n) \cdot p(n, \overline{n}) dn$$

$$= \frac{\rho \gamma}{\sqrt{\beta^2 + \gamma^2}} \exp\left[-\frac{(n - \phi)^2}{2\gamma^2}\right]$$

Variables

- $n \equiv \text{Prey Trait Value}$
- $\overline{n} \equiv$ Average Prey Trait Value

- $\rho \equiv Maximum Growth Rate$
- $\phi \equiv \text{Prey Optimum Trait Value}$
- $\gamma^2 \equiv$ Stabilizing Selection Constant
- $\beta^2 \equiv \text{Prey Trait Variance}$

Fitness Assumptions

- Prey experiences logistic growth in absence of predator
- Predator experiences exponential decay in absence of prey

$$Y(N, n, M, m) = r(n) \left(1 - \frac{N}{K}\right) - Ma(n, m)$$

$$W(N, n, M, m) = eNa(n, m) - d$$

Variables

- N ≡ Prey Density
- $n \equiv \text{Prey Trait Value}$
- $M \equiv \text{Predator Density}$
- m ≡ Predator Trait Value

- $r \equiv$ Intrinsic Prey Growth Rate Function
- $K \equiv \text{Prey Carrying Capacity}$
- $d \equiv \text{Predator Death Rate}$
- $e \equiv \text{Efficiency}$

Average Fitness

$$\overline{Y}(N, \overline{n}, M, \overline{m}) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} Y(N, n, M, m) \cdot p(m, \overline{m}) \cdot p(n, \overline{n}) \, dm dn$$

$$= \overline{r}(\overline{n}) \left(1 - \frac{N}{K} \right) - M \overline{a}(\overline{n}, \overline{m})$$

$$\overline{W}(N, \overline{n}, M, \overline{m}) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} W(N, n, M, m) \cdot p(m, \overline{m}) \cdot p(n, \overline{n}) \, dm dn$$

$$= e N \overline{a}(\overline{n}, \overline{m}) - d$$

Variables

- N ≡ Prey Density
- $\overline{n} \equiv$ Average Prey Trait Value
- $M \equiv \text{Predator Density}$
- m

 Average Predator Trait
 Value

- $\bar{r} \equiv$ Average Intrinsic Prey Growth Rate Function
- $K \equiv \text{Prey Carrying Capacity}$
- $d \equiv \text{Predator Death Rate}$
- e ≡ Efficiency → ← □ → ← □ → □ ▼ → へへ

Ecological Components

$$\begin{split} \frac{dN}{dt} &= N \cdot \overline{Y}(N, \overline{n}, M, \overline{m}) = N \bigg[\overline{r}(\overline{n}) \left(1 - \frac{N}{K} \right) - M \overline{a}(\overline{n}, \overline{m}) \bigg] \\ \frac{dM}{dt} &= M \cdot \overline{W}(N, \overline{n}, M, \overline{m}) = M [eN \overline{a}(\overline{n}, \overline{m}) - d] \end{split}$$

$$\xrightarrow{\overline{r(\overline{n})N(1-\frac{N}{K})}} N \xrightarrow{\overline{a}(\overline{n},\overline{m})MN} - \xrightarrow{e\overline{a}(\overline{n},\overline{m})MN} M$$

Variables

- N ≡ Prey Density
- $\bar{n} \equiv$ **Average** Prey Trait Value
- $M \equiv \text{Predator Density}$
- $\overline{m} \equiv \text{Average}$ Predator Trait Value

- $\bar{r} \equiv$ Average Intrinsic Prey Growth Rate Function
- \bullet $K \equiv$ Prey Carrying Capacity
- $d \equiv \text{Predator Death Rate}$

Evolutionary Components

 The evolution of the average trait value is always in the direction which increases the mean fitness in the population. [Lande, 1976]

$$\begin{split} \frac{d\overline{n}}{dt} &= \beta_G^2 \frac{\partial \overline{Y}}{\partial \overline{n}} = \beta_G^2 \left[\overline{r}(\overline{n}) \left(1 - \frac{N}{K} \right) \frac{(\phi - \overline{n})}{\beta^2 + \gamma^2} + \frac{M(\theta - (\overline{m} - \overline{n}))}{\sigma^2 + \beta^2 + \tau^2} \overline{a}(\overline{m}, \overline{n}) \right] \\ \frac{d\overline{m}}{dt} &= \sigma_G^2 \frac{\partial \overline{W}}{\partial \overline{m}} = \sigma_G^2 \frac{eN(\theta - (\overline{m} - \overline{n}))}{\sigma^2 + \beta^2 + \tau^2} \overline{a}(\overline{m}, \overline{n}) \end{split}$$

Variables

- $N \equiv \text{Prey Density}$
- $\overline{n} \equiv$ **Average** Prey Trait Value
- M ≡ Predator Density
- $\overline{m} \equiv$ Average Predator Trait Value

- $\phi \equiv \text{Prey Optimum Trait Value}$
- $\gamma^2 \equiv$ Stabilizing Selection Constant
- $\overline{r} \equiv$ Average Intrinsic Prey Growth Rate Function
- $\beta_G^2 \equiv \text{Prey genetic variance}$
- ullet $\sigma_{\it G}^2 \equiv$ Predator genetic variance

The Complete 1×1 Model (One Predator Species, One Prey Species)

Ecological Components

$$\begin{split} \frac{dN}{dt} &= N \cdot \overline{Y}(N, \overline{n}, M, \overline{m}) = N \bigg[\overline{r}(\overline{n}) \left(1 - \frac{N}{K} \right) - M \overline{a}(\overline{n}, \overline{m}) \bigg] \\ \frac{dM}{dt} &= M \cdot \overline{W}(N, \overline{n}, M, \overline{m}) = M [eN \overline{a}(\overline{n}, \overline{m}) - d] \end{split}$$

Evolutionary Components

$$\begin{split} \frac{d\overline{n}}{dt} &= \beta_G^2 \frac{\partial \overline{Y}}{\partial \overline{n}} = \beta_G^2 \left[\overline{r}(\overline{n}) \left(1 - \frac{N}{K} \right) \frac{(\phi - \overline{n})}{\beta^2 + \gamma^2} + \frac{M(\theta - (\overline{m} - \overline{n}))}{\sigma^2 + \beta^2 + \tau^2} \overline{a}(\overline{m}, \overline{n}) \right] \\ \frac{d\overline{m}}{dt} &= \sigma_G^2 \frac{\partial \overline{W}}{\partial \overline{m}} = \sigma_G^2 \frac{eN(\theta - (\overline{m} - \overline{n}))}{\sigma^2 + \beta^2 + \tau^2} \overline{a}(\overline{m}, \overline{n}) \end{split}$$

$$\frac{dN}{dt} = N \cdot \overline{Y}(N, \overline{n}, M, \overline{m}) \qquad \qquad \frac{d\overline{n}}{dt} = \beta_G^2 \frac{\partial \overline{Y}}{\partial \overline{n}}$$

$$\frac{dM}{dt} = M \cdot \overline{W}(N, \overline{n}, M, \overline{m}) \qquad \qquad \frac{d\overline{m}}{dt} = \sigma_G^2 \frac{\partial \overline{W}}{\partial \overline{m}}$$

Extinction

$$(N^*, M^*, \overline{n}^*, \overline{m}^*) = (0, 0, \underline{\hspace{1em}}, \underline{\hspace{1em}})$$

Exclusion

$$(N^*,M^*,\overline{n}^*,\overline{m}^*)=(K,0,_,_)$$

$$\frac{dN}{dt} = N \cdot \overline{Y}(N, \overline{n}, M, \overline{m}) \qquad \qquad \frac{d\overline{n}}{dt} = \beta_G^2 \frac{\partial \overline{Y}}{\partial \overline{n}}$$

$$\frac{dM}{dt} = M \cdot \overline{W}(N, \overline{n}, M, \overline{m}) \qquad \qquad \frac{d\overline{m}}{dt} = \sigma_G^2 \frac{\partial \overline{W}}{\partial \overline{m}}$$

Extinction *Unstable*

$$(N^*,M^*,\overline{n}^*,\overline{m}^*)=(0,0,_,_)$$

Exclusion

$$(N^*, M^*, \overline{n}^*, \overline{m}^*) = (K, 0, _, _)$$

$$\frac{dN}{dt} = N \cdot \overline{Y}(N, \overline{n}, M, \overline{m}) \qquad \qquad \frac{d\overline{n}}{dt} = \beta_G^2 \frac{\partial \overline{Y}}{\partial \overline{n}}$$

$$\frac{dM}{dt} = M \cdot \overline{W}(N, \overline{n}, M, \overline{m}) \qquad \qquad \frac{d\overline{m}}{dt} = \sigma_G^2 \frac{\partial \overline{W}}{\partial \overline{m}}$$

Extinction *Unstable*

$$(N^*,M^*,\overline{n}^*,\overline{m}^*)=(0,0,_,_)$$

Exclusion Locally stable under certain conditions

$$(N^*, M^*, \overline{n}^*, \overline{m}^*) = (K, 0, _, _)$$

$$\frac{dN}{dt} = N \cdot \overline{Y}(N, \overline{n}, M, \overline{m}) \qquad \qquad \frac{d\overline{n}}{dt} = \beta_G^2 \frac{\partial \overline{Y}}{\partial \overline{n}}$$

$$\frac{dM}{dt} = M \cdot \overline{W}(N, \overline{n}, M, \overline{m}) \qquad \qquad \frac{d\overline{m}}{dt} = \sigma_G^2 \frac{\partial \overline{W}}{\partial \overline{m}}$$

Extinction *Unstable*

$$(N^*, M^*, \overline{n}^*, \overline{m}^*) = (0, 0, \underline{}, \underline{})$$

Exclusion Locally stable under certain conditions

$$(N^*, M^*, \overline{n}^*, \overline{m}^*) = (K, 0, _, _)$$

Necessary Conditions for Locally Stable Exclusion:

- $d > e\overline{a}(\overline{m}^*, \overline{n}^*)K$
- $\bullet ((\overline{m}^* \overline{n}^*) \theta)^2 < \sigma^2 + \beta^2 + \tau^2$

$$\frac{dN}{dt} = N \cdot \overline{Y}(N, \overline{n}, M, \overline{m}) \qquad \qquad \frac{d\overline{n}}{dt} = \beta_G^2 \frac{\partial Y}{\partial \overline{n}}$$

$$\frac{dM}{dt} = M \cdot \overline{W}(N, \overline{n}, M, \overline{m}) \qquad \qquad \frac{d\overline{m}}{dt} = \sigma_G^2 \frac{\partial \overline{W}}{\partial \overline{m}}$$

Coexistence

$$(N^*, M^*, \overline{n}^*, \overline{m}^*) = (\frac{d\sqrt{A}}{e\alpha\tau} , \frac{\rho\gamma\sqrt{A}}{\alpha\tau\sqrt{B}} \left(1 - \frac{d\sqrt{A}}{Ke\alpha\tau}\right) , \theta , \theta + \phi)$$
 where $A = \sigma^2 + \beta^2 + \tau^2$ and $B = \beta^2 + \gamma^2$

$$\frac{dN}{dt} = N \cdot \overline{Y}(N, \overline{n}, M, \overline{m}) \qquad \qquad \frac{d\overline{n}}{dt} = \beta_G^2 \frac{\partial Y}{\partial \overline{n}}$$

$$\frac{dM}{dt} = M \cdot \overline{W}(N, \overline{n}, M, \overline{m}) \qquad \qquad \frac{d\overline{m}}{dt} = \sigma_G^2 \frac{\partial \overline{W}}{\partial \overline{m}}$$

Coexistence | Locally stable under certain conditions

$$(N^*, M^*, \overline{n}^*, \overline{m}^*) = (\frac{d\sqrt{A}}{e\alpha\tau} , \frac{\rho\gamma\sqrt{A}}{\alpha\tau\sqrt{B}} \left(1 - \frac{d\sqrt{A}}{Ke\alpha\tau}\right) , \theta , \theta + \phi)$$
 where $A = \sigma^2 + \beta^2 + \tau^2$ and $B = \beta^2 + \gamma^2$

$$\frac{dN}{dt} = N \cdot \overline{Y}(N, \overline{n}, M, \overline{m}) \qquad \qquad \frac{d\overline{n}}{dt} = \beta_G^2 \frac{\partial \overline{Y}}{\partial \overline{n}}
\frac{dM}{dt} = M \cdot \overline{W}(N, \overline{n}, M, \overline{m}) \qquad \qquad \frac{d\overline{m}}{dt} = \sigma_G^2 \frac{\partial \overline{W}}{\partial \overline{m}}$$

Coexistence | Locally stable under certain conditions

$$(N^*, M^*, \overline{n}^*, \overline{m}^*) = \left(\frac{d\sqrt{A}}{e\alpha\tau}, \frac{\rho\gamma\sqrt{A}}{\alpha\tau\sqrt{B}}\left(1 - \frac{d\sqrt{A}}{Ke\alpha\tau}\right), \theta, \theta + \phi\right)$$
where $A = \sigma^2 + \beta^2 + \tau^2$ and $B = \beta^2 + \gamma^2$

Necessary Condition for Locally Stable Coexistence:

$$\bullet \ \frac{\sigma_{G}^{2}}{\beta_{G}^{2}} > \frac{\rho \gamma}{d\sqrt{B}} \left(1 - \frac{d\sqrt{A}}{Ke\alpha\tau} \right) \left(1 - \frac{A}{B} \right)$$

Figures - 1×1 - Stable Exclusion

Figures - 1×1 - Stable Coexistence

Sam Fleischer, Pablo Chavarria

Figures - 1 × 1 - Stable Cycles (Red Queen Dynamics) [Kindrik, Kondrashov, 1994]

Prey Fitness

$$Y(N, n, M, m) = r(n) \left(1 - \frac{N}{K}\right) - Ma(n, m)$$

Predator Fitness

$$W(N, n, M, m) = eNa(n, m) - d$$

Prey Fitness

$$Y(N, n, M, m) = r(n) \left(1 - \frac{N}{K}\right) - Ma(n, m)$$

$$\downarrow$$

$$Y_j(N_j, n_j, [M_i]_{i=1}^u, [m_i]_{i=1}^u) = r_j(n_j) \left(1 - \frac{N_j}{K_i}\right) - \sum_{i=1}^u M_i a_{ij}(n_j, m_i)$$

Predator Fitness

$$W(N, n, M, m) = eNa(n, m) - d$$

Notation

$$[x_i]_{i=1}^u = x_1, \dots, x_u$$

Prey Fitness

$$Y(N, n, M, m) = r(n) \left(1 - \frac{N}{K} \right) - Ma(n, m)$$

$$\downarrow$$

$$Y_{j}(N_{j}, n_{j}, [M_{i}]_{i=1}^{u}, [m_{i}]_{i=1}^{u}) = r_{j}(n_{j}) \left(1 - \frac{N_{j}}{K_{i}} \right) - \sum_{i=1}^{u} M_{i} a_{ij}(n_{j}, m_{i})$$

Predator Fitness

$$W(N, n, M, m) = eNa(n, m) - d$$

$$\downarrow$$

$$W_i([N_j]_{j=1}^{\nu}, [n_j]_{j=1}^{\nu}, M_i, m_i) = \sum_{j=1}^{\nu} \left[e_{ij} N_j a_{ij}(n_j, m_i) \right] - d_i$$

Notation

$$[x_i]_{i=1}^u = x_1, \ldots, x_u$$

Average Fitness

$$\begin{split} \overline{Y}_{j}(N_{j}, \overline{n_{j}}, [M_{i}]_{i=1}^{u}, [\overline{m_{i}}]_{i=1}^{u}) \\ &= \int_{\mathbb{R}^{u+1}} Y_{j} \cdot \prod_{i=1}^{u} \left[p_{i}(m_{i}, \overline{m_{i}}) \right] \cdot p(n, \overline{n}) \prod_{i=1}^{u} \left[dm_{i} \right] dn_{j} \\ &= \overline{r_{j}}(\overline{n_{j}}) \left(1 - \frac{N_{j}}{K_{j}} \right) - \sum_{i=1}^{u} M_{i} \overline{a}_{ij}(\overline{n}_{j}, \overline{m}_{i}) \end{split}$$

$$\begin{split} \overline{W}_{i}(N_{j}, \overline{n_{j}}, [M_{i}]_{i=1}^{u}, [\overline{m_{i}}]_{i=1}^{u}) \\ &= \int_{\mathbb{R}^{u+1}} W_{i} \cdot p_{i}(m_{i}, \overline{m_{i}}) \cdot \prod_{j=1}^{v} \left[p(n_{j}, \overline{n}_{j}) \right] dm_{i} \prod_{j=1}^{v} \left[dn_{j} \right] \\ &= \sum_{i=1}^{v} \left[e_{ij} N_{j} \overline{a}_{ij} (\overline{n}_{j}, \overline{m}_{i}) \right] - d_{i} \end{split}$$

The Complete $u \times v$ Model - (u Predator Species, v Prey Species)

Ecological Components

$$\frac{dN_{j}}{dt} = N_{j}\overline{Y_{j}} = N_{j}\left[\overline{r_{j}}(\overline{n_{j}})\left(1 - \frac{N_{j}}{K_{j}}\right) - \sum_{i=1}^{u} M_{i}\overline{a}_{ij}(\overline{n}_{j}, \overline{m}_{i})\right]$$

$$\frac{dM_{i}}{dt} = M_{i}\overline{W_{i}} = M_{i}\left[\sum_{j=1}^{v}\left[e_{ij}N_{j}\overline{a}_{ij}(\overline{m}_{i}, \overline{n}_{j})\right] - d_{i}\right]$$

Evolutionary Components

$$\begin{split} \frac{d\overline{n}_{j}}{dt} &= \beta_{Gj}^{2} \frac{\partial \overline{Y_{j}}}{\partial \overline{n}_{j}} = \beta_{Gj}^{2} \left[\overline{r_{j}} (\overline{n_{j}}) \left(1 - \frac{N_{j}}{K_{j}} \right) \frac{(\phi_{j} - \overline{n_{j}})}{\beta_{j}^{2} + \gamma_{j}^{2}} \right. \\ &+ \sum_{i=1}^{u} \left[\frac{M_{i} (\theta_{ij} - (\overline{m_{i}} - \overline{n_{j}}))}{\sigma_{i}^{2} + \beta_{j}^{2} + \tau_{ij}^{2}} \overline{a}_{ij} (\overline{m_{i}}, \overline{n_{j}}) \right] \right] \\ \frac{d\overline{m}_{i}}{dt} &= \sigma_{Gi}^{2} \sum_{i=1}^{v} \left[\frac{e_{ij} N_{j} (\theta_{ij} - (\overline{m_{i}} - \overline{n_{j}}))}{\sigma_{i}^{2} + \beta_{i}^{2} + \tau_{ii}^{2}} \overline{a}_{ij} (\overline{m_{i}}, \overline{n_{j}}) \right] \end{split}$$

The Complete $u \times v$ Model - (u Predator Species, v Prey Species)

Future Work

- Two prey species in apparent competition via one generalist predator
- Two predator species in competition for one prey
- One specialist predator competing with one generalist predator for two prey
- Two specialist predators competing with one generalist predator for two prey species
- Further analysis of the general $u \times v$ model
- Intraguild predation

Thank You!

- CSUN Chapter of Sigma Xi
- Dr. Daniel Katz, and all other organizers of this Sigma Xi Symposium
- National Science Foundation
- Dr. Helena Noronha
- Pacific Math Alliance PUMP Undergraduate Research Groups
- California State University, Northridge
- Dr. Jing Li and Dr. Casey terHorst

Questions?

