

EGZAMIN MATURALNY W ROKU SZKOLNYM 2018/2019

MATEMATYKA

POZIOM ROZSZERZONY

FORMUŁA DO 2014

("STARA MATURA")

ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-R1

Uwaga: Akceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania.

Zadanie 1. (0-5)

	1. Liczby rzeczywiste. Zdający wykorzystuje pojęcie wartości
	bezwzględnej i jej interpretację geometryczną (1.f).
I. Wykorzystanie	4. Funkcje. Zdający odczytuje z wykresu funkcji: dziedzinę
i tworzenie informacji.	i zbiór wartości, miejsca zerowe, maksymalne przedziały,
	w których funkcja rośnie, maleje, ma stały znak (4.b). Zdający
	sporządza wykres funkcji spełniającej podane warunki (4.c).

Zdający zapisze poprawnie wzór funkcji bez użycia symbolu wartości bezwzględnej oraz narysuje wykres funkcji f.

• zapisze poprawnie wzór funkcji bez użycia symbolu wartości bezwzględnej we wszystkich trzech rozpatrywanych przedziałach

albo

• zapisze poprawnie wzór funkcji bez użycia symbolu wartości bezwzględnej w trzech przypadkach: $\begin{cases} x-1 \ge 0 & \begin{cases} x-1 < 0 & \begin{cases} x-1 < 0 \\ x+2 > 0 \end{cases} \end{cases} \begin{cases} x-1 < 0 & \begin{cases} x-1 < 0 \\ x+2 < 0 \end{cases} \end{cases}$

i na tym zakończy lub dalej popełnia błędy.

- zapisze poprawnie wzór funkcji bez użycia symbolu wartości bezwzględnej w dwóch spośród trzech rozpatrywanych przedziałów
 - zapisze poprawnie wzór funkcji bez użycia symbolu wartości bezwzględnej w dwóch spośród trzech przypadków: $\begin{cases} x-1 \ge 0 \\ x+2 > 0 \end{cases}, \begin{cases} x-1 < 0 \\ x+2 > 0 \end{cases}$

i na tym zakończy lub dalej popełnia błędy.

Rozwiązanie, w którym postęp jest niewielki, ale konieczny na drodze do pełnego

Zdajacy

poprawnie wyznaczy trzy przedziały, w których rozpatruje wzór funkcji f: $(-\infty, -2)$, $(-2,1), (1,+\infty).$

albo

zapisze cztery przypadki, w których rozpatruje wzór funkcji f: $\begin{cases} x-1 \ge 0 \\ x+2 > 0 \end{cases}$, $\begin{cases} x-1 \ge 0 \\ x+2 < 0 \end{cases}$, $\begin{cases} x - 1 < 0 \\ x + 2 > 0 \end{cases} \begin{cases} x - 1 < 0 \\ x + 2 < 0 \end{cases}$

i na tym zakończy lub dalej popełnia błędy.

Przykładowe rozwiazanie

Wzór funkcji f możemy zapisać bez użycia symbolu wartości bezwzględnej.

1) Dla
$$x < -2$$
 otrzymujemy $f(x) = \frac{-(x+2)}{x+2} - x + 3(-x+1) = -1 - x - 3x + 3 = -4x + 2$.
2) Dla $-2 < x < 1$ otrzymujemy $f(x) = \frac{x+2}{x+2} - x + 3(-x+1) = 1 - x - 3x + 3 = -4x + 4$.
3) Dla $x \ge 1$ otrzymujemy $f(x) = \frac{x+2}{x+2} - x + 3(x-1) = 1 - x + 3x - 3 = 2x - 2$.

2) Dla
$$-2 < x < 1$$
 otrzymujemy $f(x) = \frac{x+2}{x+2} - x + 3(-x+1) = 1 - x - 3x + 3 = -4x + 4$.

3) Dla
$$x \ge 1$$
 otrzymujemy $f(x) = \frac{x+2}{x+2} - x + 3(x-1) = 1 - x + 3x - 3 = 2x - 2$

Zatem

$$f(x) = \begin{cases} -4x + 2 & \text{dla} \quad x \in (-\infty; -2) \\ -4x + 4 & \text{dla} \quad x \in (-2; 1) \\ 2x - 2 & \text{dla} \quad x \in \langle 1; +\infty \rangle. \end{cases}$$

Możemy narysować wykres funkcji f.

Zbiorem wartości funkcji f jest przedział $(0, +\infty)$.

Zadanie 2. (0–3)

V. Rozumowanie i argumentacja.	2. Wyrażenia algebraiczne. Zdający dodaje, odejmuje, mnoży i dzieli wyrażenia wymierne; skraca i rozszerza wyrażenia wymierne (2.f).
	wymierne (2.1).

Schemat punktowania

• zapisze nierówność w postaci równoważnej:

$$\frac{(x-y)^2 + a(y-x)}{x(y+a)} > 0 \text{ lub } (x-y)^2 + a(y-x) > 0, \text{ lub } (x-y)^2 > a(x-y)$$

albo

• zapisze, że wystarczy wykazać prawdziwość nierówności $\frac{x+a}{y+a} + \frac{y+a}{x+a} > 2$, wykazując wcześniej prawdziwość nierówności $\frac{y}{x} > \frac{y+a}{x+a}$,

albo

• zapisze, że f'(a) > 0 dla każdego $a \ge 0$, a ponadto zbada monotoniczność funkcji f i stwierdzi, że funkcja f jest rosnąca,

albo

• zapisze, że wykresem funkcji $f(a) = \frac{x+a}{y+a} - \frac{y}{x} - 2$ określonej dla $a \neq -y$ jest hiperbola, której asymptotą poziomą jest, w układzie współrzędnych aOb, prosta o równaniu $b = \frac{y}{x} - 1$, natomiast asymptotą pionową jest prosta o równaniu a = -y oraz zapisze, że w przedziale $(0, +\infty)$ funkcja f jest rosnąca.

• zapisze nierówność w postaci równoważnej:

$$\frac{x^2 + ax + y^2 + ay - 2xy - 2ax}{x(y+a)} > 0 \text{ lub } x^2 + ax + y^2 + ay - 2xy - 2ax > 0, \text{ lub}$$
$$x^2 - 2xy + y^2 \rangle a(x-y)$$

albo

• wykaże, że dla dowolnych liczb 0 < x < y i a > 0 prawdziwa jest nierówność $\frac{y}{x} > \frac{y+a}{x+a}$,

albo

• wyznaczy pochodną funkcji $f(a) = \frac{x+a}{y+a} + \frac{y}{x} - 2$: $f'(a) = \frac{y-x}{(y+a)^2}$,

albo

• zapisze, że wykresem funkcji $f(a) = \frac{x+a}{y+a} - \frac{y}{x} - 2$ określonej dla $a \neq -y$ jest hiperbola, której asymptotą poziomą jest, w układzie współrzędnych aOb, prosta o równaniu $b = \frac{y}{x} - 1$, natomiast asymptotą pionową jest prosta o równaniu a = -y.

Uwaga

Jeżeli zdający prowadzi do końca rozumowanie opisane w zamieszczonym poniżej III sposobie rozwiązania, pomijając uzasadnienie prawdziwości nierówności $\frac{y}{x} > \frac{y+a}{x+a}$, to może otrzymać co najwyżej **2 punkty**.

Przykładowe rozwiązania

I sposób

Nierówność możemy przekształcić w sposób równoważny

$$\frac{\frac{x+a}{y+a} + \frac{y}{x} - 2 > 0,}{\frac{x(x+a) + y(y+a) - 2x(y+a)}{x(y+a)}} > 0,$$

$$\frac{x^2 + ax + y^2 + ay - 2xy - 2ax}{x(y+a)} > 0,$$

$$\frac{(x-y)^2 + a(y-x)}{x(y+a)} > 0.$$

Z założenia y>0, x>0 i a>0. Zatem y+a>0 i x>0, co oznacza, że mianownik ułamka stojącego po lewej strony otrzymanej nierówności jest dodatni. Kwadrat $(x-y)^2$ jest nieujemny, a z założenia x< y wynika, że y-x>0, więc a(y-x)>0. Stąd licznik rozważanego ułamka jest dodatni. W rezultacie otrzymana nierówność jest prawdziwa. To kończy dowód.

II sposób

Z założenia wynika, że y>0, x>0 i a>0. Zatem y+a>0. Mnożąc obie strony nierówności $\frac{x+a}{y+a}+\frac{y}{x}>2$ przez liczbę dodatnią (y+a)x, otrzymujemy

$$x(x+a)+y(y+a) > 2x(y+a),$$

 $x^2+ax+y^2+ay-2xy-2ax > 0,$
 $(x-y)^2+a(y-x) > 0.$

Ta nierówność jest prawdziwa, gdyż $(x-y)^2 > 0$ oraz a(y-x) > 0, bo z założenia x < y i a > 0. To kończy dowód.

III sposób

Wykażemy najpierw, że jeżeli licznik i mianownik ułamka większego od 1 zwiększymy o tę samą liczbę dodatnią, to otrzymamy ułamek mniejszy od wyjściowego, gdyż przy założeniu,

że liczby x, y i a są dodatnie, nierówność $\frac{y+a}{x+a} < \frac{y}{x}$ jest równoważna kolejno nierównościom

$$x(y+a) < y(x+a),$$

$$xy + xa < xy + ya,$$

$$xa < ya,$$

$$x < y$$

$$1 < \frac{y}{x},$$

co jest prawdą.

Zatem $\frac{y}{x} > \frac{y+a}{x+a}$, więc $\frac{x+a}{y+a} + \frac{y}{x} > \frac{x+a}{y+a} + \frac{y+a}{x+a} > 2$, gdyż suma liczby dodatniej i jej odwrotności jest co najmniej równa 2. Ta równość zachodzi wtedy i tylko wtedy, gdy tą liczbą jest 1, co w naszym przypadku nie zachodzi, bo równość $\frac{y+a}{x+a} = 1$ oznaczałaby, że x = y, co jest sprzeczne z założeniem x < y.

IV sposób

Niech
$$f(a) = \frac{x+a}{y+a} + \frac{y}{x} - 2$$
 dla $a \ge 0$.

Obliczamy
$$f'(a) = \frac{1 \cdot (y+a) - 1 \cdot (x+a)}{(y+a)^2} = \frac{y-x}{(y+a)^2}$$
, zatem $f'(a) > 0$ dla każdego $a \ge 0$, więc

f jest funkcją rosnącą. Wobec tego jeśli a > 0, to $f(a) > f(0) = \frac{x}{y} + \frac{y}{x} - 2 \ge 0$, bo suma liczby dodatniej i jej odwrotności jest równa co najmniej 2.

Uwagi

- 1. Prawdziwość nierówności $\frac{x+a}{y+a} + \frac{y+a}{x+a} > 2$ można też uzasadnić, odwołując się do nierówności między średnią arytmetyczną i geometryczną różnych liczb dodatnich $\frac{x+a}{y+a}$ i $\frac{y+a}{x+a}$.
- 2. Uzasadnienie, że funkcja f jest rosnąca w przedziale $(0,+\infty)$ możemy przeprowadzić bez odwoływania się do rachunku pochodnych. Rozwiązanie może wyglądać następująco.

Niech x i y będą dowolnymi dodatnimi liczbami rzeczywistymi takimi, że x < y. Rozważmy funkcję f określoną wzorem $f(a) = \frac{x+a}{y+a} + \frac{y}{x} - 2$ dla każdej liczby rzeczywistej $a \ne -y$. Jest to funkcja homograficzna. Zapiszmy jej wzór w postaci kanonicznej

$$f(a) = \frac{y+a+x-y}{y+a} + \frac{y}{x} - 2 = 1 + \frac{x-y}{y+a} + \frac{y}{x} - 2 = \frac{x-y}{y+a} + \frac{y}{x} - 1.$$

Wykresem tej funkcji jest hiperbola, której asymptotą poziomą jest, w układzie współrzędnych aOb, prosta o równaniu $b=\frac{y}{x}-1$, natomiast asymptotą pionową jest prosta o równaniu a=-y. Ponieważ y>x>0, więc $\frac{y}{x}>1$, co oznacza, że asymptota pozioma leży w I i II ćwiartce układu współrzędnych, zaś asymptota pionowa leży w II i III ćwiartce tego układu. Ponadto x-y<0, więc hiperbola, która jest wykresem funkcji f jest obrazem hiperboli o równaniu $b=\frac{A}{a}$, gdzie A<0, leżącej w II i IV ćwiartce układu współrzędnych, jak na poniższym rysunku.

Wynika stąd, że w przedziale $(-y,+\infty)$ funkcja f jest rosnąca. W szczególności jest ona rosnąca w przedziale $\langle 0,+\infty \rangle$. Zatem dla każdego argumentu a>0 prawdziwa jest nierówność f(a)>f(0). Zauważmy, że $f(0)=\frac{x+0}{y+0}+\frac{y}{x}-2=\frac{x}{y}+\frac{y}{x}-2>2-2=0$, gdyż liczby $\frac{x}{y}$ i $\frac{y}{x}$ są dodatnie, różne od 1 i jedna z nich jest odwrotnością drugiej. W efekcie dla każdego argumentu a>0 prawdziwa jest nierówność

$$f(a) = \frac{x+a}{y+a} + \frac{y}{x} - 2 > 0$$
,

czyli

$$\frac{x+a}{y+a} + \frac{y}{x} > 2.$$

V sposób

Nierówność $\frac{x+a}{y+a} + \frac{y}{x} > 2$ możemy przekształcić w sposób równoważny mnożąc obustronnie przez x(y+a), bo z założenia x(y+a) jest większe od zera. Otrzymujemy

$$x(x+a)+y(y+a) \rangle 2x(y+a)$$

Przekształcamy otrzymaną nierówność

$$x^{2} + xa + y^{2} + ya \rangle 2xy + 2xa,$$

$$x^{2} - 2xy + y^{2} \rangle xa - ya,$$

$$x^{2} - 2xy + y^{2} \rangle a(x - y),$$

$$(x - y)^{2} \rangle a(x - y).$$

Z założenia $x \langle y \text{ i } a \rangle 0$, zatem $a(x-y) \langle 0$, natomiast kwadrat $(x-y)^2$ jest dodatni. W rezultacie otrzymana nierówność jest prawdziwa. To kończy dowód.

Zadanie 3. (0–3)

V. Rozumowanie i argumentacja.	7. Planimetria. Zdający wykorzystuje własności figur podobnych w zadaniach, w tym umieszczonych w kontekście praktycznym. (7.b).
--------------------------------	--

Schemat punktowania

• zapisze, że trójkąty *ASM* i *NLC* lub trójkąty *MKC* i *BTN* są przystające, nie uzasadni tego przystawania i uzasadni tezę

albo

• zapisze dwie proporcje wynikające z podobieństwa trójkątów pozwalające (wraz z równością |AP| = |BP|) wyznaczyć zależność między długościami odcinków ST i AB,

np.:
$$\frac{p}{x} = \frac{a}{h}$$
 i $\frac{|BT|}{h-x} = \frac{a}{h}$

albo

• zapisze dwie proporcje wynikające z twierdzenia Talesa pozwalające (wraz z równością |AP| = |BP|) wyznaczyć zależność między długościami odcinków ST i AB, np.:

$$\frac{p}{x} = \frac{a-p}{b-x} i \frac{a-q}{b-x} = \frac{q}{x},$$

albo

• zapisze długości odcinków AB, AS i BT w zależności od długości odcinków x = |AM|, y = |MC| oraz kąta α w postaci : $|AB| = 2(x+y) \cdot \cos \alpha$, $|AS| = x \cdot \cos \alpha$, $|BT| = y \cdot \cos \alpha$,

albo

• narysuje odcinek *MZ* równoległy do *BC* oraz odcinek *ZN* lub odcinek *NZ* równoległy do *AC* oraz odcinek *MZ*, zapisze, że trójkąty *AMZ* i *ZBN* są równoramienne, ale nie uzasadni, że czworokąt *MZNC* jest równoległobokiem i poprawnie uzasadni tezę i na tym zakończy lub dalej popełni błędy.

Zdajacy

- zapisze, że trójkąty ASM i NLC są przystające lub trójkąty MKC i BTN są przystające albo
 - zapisze, że trójkąty, np. ASM i APC są podobne lub zapisze proporcję wynikającą z tego podobieństwa,

albo

• zapisze proporcję wynikającą z twierdzenia Talesa, np.: $\frac{|AS|}{|AM|} = \frac{|SP|}{|MC|}$,

albo

• obliczy pole trójkąta *ADC* oraz wysokość *CF*: $P_{ADC} = 24\sqrt{3}$, $h = 8\sqrt{3}$,

albo

• wyznaczy długość odcinka AB w zależności od długości odcinków x = |AM|, y = |MC| oraz kąta $\alpha : |AB|^2 = (x+y)^2 + (x+y)^2 - 2 \cdot (x+y) \cdot (x+y) \cdot \cos(180^\circ - 2\alpha)$,

albo

• zapisze dwie zależności: $\frac{|AS|}{|AM|} = \cos \alpha$, $\frac{|BT|}{|BN|} = \cos \alpha$,

albo

• narysuje odcinek MZ równoległy do BC oraz odcinek ZN lub odcinek NZ równoległy do AC oraz odcinek MZ

i na tym zakończy lub dalej popełni błędy.

Uwagi

- 1. Za uzasadnienie przystawania trójkątów prostokątnych np.: *ASM* i *NLC* uznajemy a) powołanie się na cechę przystawania *kbk*, o ile na rysunku nie występują sprzeczne oznaczenia kątów,
 - b) zaznaczenie na rysunku jednej pary odpowiednich kątów ostrych w tych trójkątach.
- 2. W III i IV sposobie rozwiązania nie wymagamy uzasadnienia podobieństwa trójkątów lub powołania się na twierdzenie Talesa.
- 3. Jeżeli zdający rozpatrzy tylko szczególny przypadek, w którym punkty *M* i *N*, są środkami boków *AC* i *BC*, to otrzymuje **0 punktów** za całe rozwiązanie.
- 4. Jeżeli zdający zakłada, że trójkąt *ABC* jest równoboczny i korzysta z tego założenia, to za całe rozwiązanie otrzymuje **0 punktów**.
- 5. Jeżeli zdający przedstawia rozwiązanie, w którym odwołuje się tylko do argumentów pozamatematycznych, np. "przesuwa" punkty *M* i *N* po odcinkach *AC* i *BC* z tymi samymi szybkościami, to może otrzymać **1 punkt** za zauważenie, że rzuty prostokątne na prostą *AB* odcinków równych, z których jeden leży na prostej *AC*, a drugi na prostej *BC* są równe.

Przykładowe rozwiązania

I sposób ("przystawanie trójkątów – I")

Niech P będzie środkiem podstawy AB tego trójkąta. Poprowadźmy przez punkty M i N proste równoległe do podstawy AB trójkąta, a ich punkty przecięcia z prostą CP oznaczmy odpowiednio K i L. Oznaczmy też x = |AM| = |CN|, y = |MC|, p = |AS|, q = |MK|, jak na rysunku.

Ponieważ trójkąt ABC jest równoramienny, więc |NB| = |MC| = y. Trójkąty ASM i NLC są przystające, gdyż oba są prostokątne, |AM| = |CN| oraz $| \not \prec BAC | = | \not \prec ABC | = | \not \prec LNC |$ oraz

 $| \angle AMS | = 90^{\circ} - | \angle BAC | = 90^{\circ} - | \angle LNC | = | \angle NCL |$. Podobnie uzasadniamy, że trójkąty *MKC* i *BTN* są przystające.

Zatem

$$|PT| = |LN| = |AS| = p \text{ oraz } |SP| = |MK| = |TB| = q.$$

Stąd wynika, że

$$|ST| = |SP| + |PT| = q + p = \frac{1}{2} \cdot (2p + 2q) = \frac{1}{2} \cdot |AB|$$

II sposób ("przystawanie trójkątów – II")

Niech P będzie środkiem podstawy AB tego trójkąta. Poprowadźmy przez punkt N prostą równoległą do podstawy AB trójkąta, a punkt jej przecięcia z prostą CP oznaczmy przez L. Oznaczmy też x = |AM| = |CN|, p = |AS|, jak na rysunku.

Trójkąty ASM i NLC są przystające, gdyż oba są prostokątne, |AM| = |CN|,

$$| \angle BAC | = | \angle ABC | = | \angle LNC |$$
 oraz $| \angle AMS | = 90^{\circ} - | \angle BAC | = 90^{\circ} - | \angle LNC | = | \angle NCL |$.

Stąd wynika, że |PT| = |LN| = |AS| = p.

Ponieważ trójkąt ABC jest równoramienny, więc |AP| = |BP|.

Stad wynika, że

$$|ST| = |SP| + |PT| = (|AP| - p) + p = |AP| = \frac{1}{2} \cdot |AB|.$$

Uwaga

Analogiczne rozumowanie możemy przeprowadzić, wychodząc od pary trójkątów przystających *MKC* i *BTN* (oznaczenia jak w I sposobie oceniania).

<u>III sposób</u> ("podobieństwo trójkątów")

Niech P będzie środkiem podstawy AB tego trójkąta. Oznaczmy też x = |AM| = |CN|, b = |AC| = |BC|, a = |AP|, jak na rysunku.

Ponieważ P jest spodkiem wysokości trójkąta równoramiennego, więc |BP| = |AP| = a.

Trójkąty ASM i APC są podobne na mocy cechy kkk, ponieważ obydwa są trójkątami prostokątnymi (odcinki SM i PC są równoległe), a kąt PAC jest kątem wspólnym obu trójkątów. Stąd wynika, że

$$\frac{|AS|}{|AM|} = \frac{|AP|}{|AC|}$$
, czyli $\frac{p}{x} = \frac{a}{b}$.

Stad
$$p = \frac{ax}{b}$$
. Zatem $|SP| = |AP| - p = a - \frac{ax}{b}$.

Ponieważ $NT \parallel CP$ i kąt CBP jest kątem wspólnym, więc na mocy cechy kkk trójkąt BTN jest podobny do trójkąta BPC. Stąd wynika, że

$$\frac{|BT|}{|BN|} = \frac{|BP|}{|BC|}$$
, czyli $\frac{|BT|}{b-x} = \frac{a}{b}$.

Stad
$$|BT| = \frac{a(b-x)}{b}$$
, wiec $|PT| = |BP| - |BT| = a - \frac{a(b-x)}{b} = \frac{ab-ab+ax}{b} = \frac{ax}{b}$.

Zatem

$$|ST| = |SP| + |PT| = a - \frac{ax}{b} + \frac{ax}{b} = a = \frac{1}{2} \cdot |AB|$$

To kończy dowód.

IV sposób ("twierdzenia Talesa")

Niech P będzie środkiem podstawy AB tego trójkąta. Oznaczmy też x = |AM| = |CN|, b = |AC| = |BC|, a = |AP|, p = |AS|, q = |PT|, jak na rysunku.

Ponieważ trójkąt ABC jest równoramienny, a P jest spodkiem jego wysokości, więc |BN| = |MC| = b - x i |BP| = |AP| = a.

Z twierdzenia Talesa otrzymujemy

$$\frac{|AS|}{|AM|} = \frac{|SP|}{|MC|} \text{ oraz } \frac{|BT|}{|BN|} = \frac{|PT|}{|NC|},$$

czyli

$$\frac{p}{x} = \frac{a-p}{b-x}$$
 oraz $\frac{a-q}{b-x} = \frac{q}{x}$

Stad

$$pb - px = ax - px$$
 oraz $ax - qx = bq - qx$,
 $p = \frac{ax}{b}$ oraz $q = \frac{ax}{b}$.

Zatem

$$|ST| = |SP| + |PT| = a - p + q = a - \frac{ax}{b} + \frac{ax}{b} = a = \frac{1}{2} \cdot |AB|$$

To kończy dowód.

V sposób ("trygonometria")

Oznaczmy $\alpha = | \sphericalangle BAC | = | \sphericalangle ABC |$, x = |AM| = |CN|, y = |MC|, 2a = |AP|, jak na rysunku.

Wtedy |NB| = |BC| - x = |AC| - x = y oraz $| ACB | = 180^{\circ} - 2\alpha$.

Z twierdzenia cosinusów dla trójkąta ABC otrzymujemy

$$|AB|^{2} = |AC|^{2} + |BC|^{2} - 2 \cdot |AC| \cdot |BC| \cdot \cos(180^{\circ} - 2\alpha),$$

$$|AB|^{2} = (x+y)^{2} + (x+y)^{2} - 2 \cdot (x+y) \cdot (x+y) \cdot \cos(180^{\circ} - 2\alpha),$$

$$|AB|^{2} = 2(x+y)^{2} + 2 \cdot (x+y)^{2} \cdot \cos 2\alpha,$$

$$|AB|^{2} = 2(x+y)^{2} \left(1 + \cos^{2} \alpha - \sin^{2} \alpha\right),$$

$$|AB|^{2} = 4(x+y)^{2} \cdot \cos^{2} \alpha.$$

Stąd

$$|AB| = 2(x+y) \cdot \cos \alpha.$$

Z trójkatów ASM i BTN otrzymujemy

$$\frac{|AS|}{|AM|} = \cos \alpha \text{ oraz } \frac{|BT|}{|BN|} = \cos \alpha,$$
$$\frac{|AS|}{x} = \cos \alpha \text{ oraz } \frac{|BT|}{y} = \cos \alpha.$$

Stad

$$|AS| = x \cdot \cos \alpha \text{ oraz } |BT| = y \cdot \cos \alpha.$$

Zatem

$$|ST| = |AB| - |AS| - |BT| = 2(x+y) \cdot \cos \alpha - x \cdot \cos \alpha - y \cdot \cos \alpha = (x+y) \cdot \cos \alpha = \frac{1}{2} \cdot |AB|.$$
 To kończy dowód.

VI sposób ("trójkąty równoramienne")

Narysujmy odcinek MZ równoległy do prostej BC taki, że koniec Z tego odcinka leży na podstawie AB trójkąta ABC oraz odcinek NZ. Oznaczmy też x = |AM| = |CN|, y = |MC|, p = |AS|, q = |TB|, jak na rysunku.

Wtedy kąty odpowiadające AZM i ABC są równe. To oznacza, że trójkąt AZM jest równoramienny. Stąd wynika, że |MZ| = |AM| = |CN| = x. Zatem czworokąt MZNC jest równoległobokiem (jego boki MZ i CN są równoległe i mają równe długości), co oznacza, że |ZN| = |MC| = y. To z kolei oznacza, że trójkąt ZBN jest równoramienny. Punkty S i T to spodki wysokości trójkątów równoramiennych, więc

$$|AS| = |SZ| = p \text{ oraz } |ZT| = |TB| = q$$
.

Stąd

$$|ST| = |SP| + |PT| = q + p = \frac{1}{2} \cdot (2p + 2q) = \frac{1}{2} \cdot |AB|$$
.

To kończy dowód.

Zadanie 4. (0–5)

	5. Ciągi liczbowe. Zdający stosuje wzory na <i>n</i> -ty wyraz i sumę
III. Modelowanie	n początkowych wyrazów ciągu arytmetycznego i ciągu
matematyczne.	geometrycznego, również umieszczone w kontekście
	praktycznym (5.c).

Schemat punktowania

Rozwiązanie pełne 5 p	p.
Zdający wyznaczy szukaną trójkę liczb: $a = 25$, $b = 10$, $c = 4$.	

• obliczy poprawnie dwie trójki liczb a, b, c i nie uwzględni warunku, że ciąg (a+1,b+5,c) musi być arytmetyczny i malejący

albo

• obliczy poprawnie dwie trójki liczb a, b, c i uwzględni warunek, że ciąg (a+1,b+5,c) jest arytmetyczny i malejący, i poda konsekwentną odpowiedź, ale w trakcie rozwiązania popełnia błędy rachunkowe.

<u>Uwaga</u>

Jeśli zdający rozwiąże równanie kwadratowe z jedną niewiadomą i na tym poprzestanie, lub w dalszej części rozwiązania popełnia błędy rzeczowe, to otrzymuje **3 punkty**.

Pokonanie zasadniczych trudności zadania 3 p.

Zdający zapisze równanie z jedną niewiadomą, np.: 100 = a(29 - a) i na tym zakończy lub dalej popełnia błędy.

Rozwiązanie, w którym jest istotny postęp 2 p.

Zdający wykorzysta własność ciągu geometrycznego i własność ciągu arytmetycznego i zapisze np.: $b^2 = ac$ i $b+5 = \frac{a+1+c}{2}$,

i na tym zakończy lub dalej popełnia błędy.

Zdajacy

- wykorzysta własność ciągu geometrycznego i zapisze np.: $b^2 = ac$ albo
 - wykorzysta własność ciągu arytmetycznego i zapisze np.: $b+5=\frac{a+1+c}{2}$

i na tym zakończy lub dalej popełnia błędy.

Przykładowe rozwiązanie

Z własności ciągu geometrycznego otrzymujemy

$$b^2 = ac$$
.

Z własności ciagu arytmetycznego otrzymujemy

$$b+5 = \frac{a+1+c}{2},$$

$$2b+9 = a+c.$$

Stad i z równania a+b+c=39 otrzymujemy

$$b+2b+9=39$$
,
 $3b=30$,
 $b=10$.

Zatem a+c=29 oraz 100=ac. Z pierwszego z tych równań dostajemy c=29-a. Stąd i z drugiego równania otrzymujemy równanie z jedną niewiadomą a

$$100 = a(29-a),$$

$$a^{2} - 29a + 100 = 0,$$

$$(a-4)(a-25) = 0,$$

$$a = 4 \text{ lub } a = 25.$$

Gdy a = 4, to c = 29 - a = 25. Wówczas ciąg (a+1,b+5,c) ma postać (5,15,25). Nie jest to jednak ciąg malejący.

Gdy a=25, to c=29-a=4. Wówczas ciąg (a+1,b+5,c) ma postać (26,15,4). Jest to malejący ciąg arytmetyczny.

Zatem: a = 25, b = 10, c = 4.

Zadanie 5. (0–6)

IV. Użycie i tworzenie strategii.	8. Geometria na płaszczyźnie kartezjańskiej. Zdający rozwiązuje zadania dotyczące wzajemnego położenia prostej i okręgu, oraz dwóch okręgów na płaszczyźnie kartezjańskiej (R8.b).
-----------------------------------	--

Schemat punktowania

I. Rozwiązanie z wykorzystaniem odległości środków okręgów stycznych

Rozwiązanie składa się z trzech etapów:

Pierwszy etap polega na wyznaczeniu środków i promieni obu podanych okręgów oraz ustaleniu warunków ogólnych ich położenia względem siebie.

Za poprawne rozwiązanie tego etapu zdający otrzymuje 2 punkty.

Drugi etap polega na wyznaczeniu równania z jedną niewiadomą, która opisuje warunek styczności zewnętrznej i rozwiązanie tego równania.

Za poprawne rozwiązanie tego etapu zdający otrzymuje 2 punkty.

Trzeci etap polega na wyznaczeniu równania z jedną niewiadomą, która opisuje warunek styczności wewnętrznej i rozwiązanie tego równania.

Za poprawne rozwiązanie tego etapu zdający otrzymuje 2 punkty.

<u>Uwaga</u>

Etapy drugi i trzeci oceniane są niezależnie od siebie.

Podział punktów za pierwszy etap rozwiązania:

Zdający otrzymuje 2 punkty, gdy:

zapisze współrzędne środków i promienie obu okręgów:

$$S_1 = (6,4)$$
, $r_1 = 3$ oraz $S_2 = (a,-2)$, $r_2 = 9$

oraz

zapisze warunki styczności obu okręgów w dwóch przypadkach:

$$|S_1S_2| = r_1 + r_2$$
, $|S_1S_2| = r_2 - r_1$.

Zdający otrzymuje 1 punkt, gdy:

zauważy i zapisze, że są dwa przypadki styczności okręgów, tj. styczność zewnętrzną i wewnętrzną

albo

wyznaczy współrzędne środków okręgów i obliczy promienie obu okręgów.

Podział punktów za **drugi etap** rozwiązania:

Zdajacy otrzymuje 2 punkty, gdy zapisze równanie:

$$\sqrt{(a-6)^2+6^2} = 12$$

i wyznaczy jego rozwiązania: $a = 6(1+\sqrt{3})$ oraz $a = 6(1-\sqrt{3})$.

Zdający otrzymuje 1 punkt, gdy zapisze równanie:

$$\sqrt{(a-6)^2+6^2} = 12.$$

Podział punktów za trzeci etap rozwiązania:

Zdający otrzymuje 2 punkty, gdy zapisze równanie:

$$\sqrt{(a-6)^2 + 6^2} = 6$$

i wyznaczy jego rozwiązanie: a = 6.

Zdający otrzymuje 1 punkt, gdy zapisze równanie:

$$\sqrt{(a-6)^2+6^2} = 6 .$$

Uwagi

- 1. Jeżeli zdający prowadzi poprawne rozumowanie na każdym etapie rozwiązania zadania i rozwiązuje zadanie do końca, ale popełnia jedynie błędy rachunkowe, to może otrzymać co najwyżej **5 punktów**, o ile popełnione błędy nie ułatwiają rozważanego zagadnienia na żadnym etapie rozwiązania.
- 2. Jeżeli zdający prowadzi poprawne rozumowanie na każdym etapie rozwiązania zadania, rozwiązuje zadanie do końca i jedynym błędem, który jednak nie ułatwia rozwiązania zadania na żadnym etapie rozwiązania, jest błąd, polegający na:
 - a) niepoprawnym wyznaczeniu promieni okręgów lub współrzędnych ich środków, to zdający otrzymuje co najwyżej **4 punkty**;
 - b) zastosowaniu niepoprawnej metody wyznaczania odległości środków okręgów, to zdający otrzymuje co najwyżej **4 punkty**;
 - c) zastosowaniu niepoprawnego wzoru " $\sqrt{a^2 + b^2} = \sqrt{a^2} + \sqrt{b^2}$ " lub " $(a \pm b)^2 = a^2 \pm b^2$ ", to zdający otrzymuje co najwyżej **4 punkty**.
- Jeżeli zdający sporządzi poprawną ilustrację graficzną i na tej podstawie zapisze, że dla a = 6 podane okręgi są styczne wewnętrznie i na tym zakończy, to otrzymuje 2 punkty.
- 4. Jeżeli zdający rozważa tylko jeden przypadek styczności okręgów i w tym przypadku rozwiąże zadanie do końca, popełniając jeden błąd opisany w uwadze 2., to otrzymuje co najwyżej **2 punkty**.

II. Rozwiązanie z wykorzystaniem wspólnej stycznej lub równania kwadratowego z parametrem

Zdający otrzymuje **6 punktów**, gdy wyznaczy wszystkie wartości parametru *a*: a = 6 lub $a = 6 + 6\sqrt{3}$ lub $a = 6 - 6\sqrt{3}$.

Zdający otrzymuje **5 punktów**, gdy wyznaczy tylko jedno z rozwiązań równania z jedną niewiadomą a zapisze równanie kwadratowe z niewiadomą a, np.: a = 6

Zdający otrzymuje **4 punkty**, gdy zapisze równanie wielomianowe z niewiadomą *a*:

$$(a^2 - 12a)^2 = 9(4a^2 - 48a + 288)$$
 lub

$$4^{2} \left(a^{3} - 6a^{2} - 72a + 864\right)^{2} - 4 \cdot 4\left(a^{2} - 12a + 72\right) \cdot \left(a^{4} - 144a^{2} + 9072\right) = 0.$$

Zdający otrzymuje 3 punkty, gdy

• zapisze równanie z niewiadomą *a*: $\frac{\left| (12-2a) \cdot 6 + 12 \cdot 4 + a^2 - 120 \right|}{\sqrt{(12-2a)^2 + 12^2}} = 3$

albo

• zapisze równanie kwadratowe z jedną niewiadomą x (lub y) i parametrem a oraz zapisze, że równanie to musi mieć jedno rozwiązanie, np.:

$$x^{2} + \left(\left(1 - \frac{1}{6}a\right)x + 10 - \frac{1}{12}a^{2}\right)^{2} - 12x - 8\left(\left(1 - \frac{1}{6}a\right)x + 10 - \frac{1}{12}a^{2}\right) + 43 = 0 \text{ oraz } \Delta = 0.$$

Zdający otrzymuje 2 punkty, gdy

• zapisze równanie prostej $(12-2a)x+12y+a^2-120=0$ oraz zapisze współrzędne środka i promień jednego z okręgów oraz zapisze, że okręgi mają dokładnie jeden punkt wspólny, gdy odległość środka jednego okręgu od wspólnej stycznej tych okręgów jest równa promieniowi tego okręgu

albo

• zapisze równanie z jedną niewiadomą x (lub y) i parametrem a, np.:

$$x^{2} + \left(\left(1 - \frac{1}{6}a\right)x + 10 - \frac{1}{12}a^{2}\right)^{2} - 12x - 8\left(\left(1 - \frac{1}{6}a\right)x + 10 - \frac{1}{12}a^{2}\right) + 43 = 0.$$

Zdający otrzymuje 1 punkt, gdy

• zapisze równanie prostej $(12-2a)x+12y+a^2-120=0$

• zapisze współrzędne środka i promień jednego z okręgów oraz zapisze, że okręgi mają dokładnie jeden punkt wspólny, gdy odległość środka jednego okręgu od wspólnej stycznej tych okregów jest równa promieniowi tego okregu.

Uwaga

albo

Jeżeli zdający zapisze równanie prostej, będącej osią potęgową okręgów i traktuje to równanie jak równanie kwadratowe zmiennej a, a następnie wyznacza konkretne wartości x, y, a, sprawdza dla wyznaczonych wartości prawdziwość równania osi potęgowej okręgów i podaje jedno z rozwiązań zadania, to otrzymuje **3 punkty**.

Przykładowe rozwiązania

I sposób

Okrąg o równaniu $x^2+y^2-12x-8y+43=0$ ma środek punkcie $S_1=(6,4)$ i promień $r_1=3$, a okrąg o równaniu $x^2+y^2-2ax+4y+a^2-77=0$ ma środek w punkcie $S_2=(a,-2)$ i promień $r_2=9$. Ponieważ te okręgi mają dokładnie jeden punkt wspólny, więc odległość pomiędzy środkami okręgów jest równa sumie promieni lub różnicy promieni:

$$|S_1S_2| = r_1 + r_2$$
 lub $|S_1S_2| = r_2 - r_1$

Otrzymujemy zatem równania

$$\sqrt{(a-6)^2+6^2} = 12$$
 lub $\sqrt{(a-6)^2+6^2} = 6$

Zatem

$$(a-6)^2 = 108$$
 lub $(a-6)^2 = 0$

Równanie $(a-6)^2=108$ ma dwa rozwiązania: $a=6\left(1+\sqrt{3}\right)$ oraz $a=6\left(1-\sqrt{3}\right)$, natomiast równanie $(a-6)^2=0$ ma jedno rozwiązanie a=6. Zatem podane okręgi są styczne zewnętrznie dla $a=6\left(1+\sqrt{3}\right)$ lub dla $a=6\left(1-\sqrt{3}\right)$, natomiast są okręgami stycznymi wewnętrznie dla a=6.

II sposób (wspólna styczna)

Okrąg o równaniu $x^2+y^2-12x-8y+43=0$ ma środek $S_1=(6,4)$ i promień $r_1=3$, a okrąg o równaniu $x^2+y^2-2ax+4y+a^2-77=0$ ma środek $S_2=(a,-2)$ i promień $r_2=9$.

Okręgi te mają różne promienie, więc te okręgi mają dokładnie jeden punkt wspólny wtedy i tylko wtedy, gdy mają dokładnie jedną wspólną styczną. Tak jest wtedy i tylko wtedy, gdy odległość środka jednego z tych okręgów od tej stycznej jest równa promieniowi tego okręgu. Jeśli tę wspólną styczną oznaczymy przez *k*, to wtedy mamy

$$odl(S_1,k)=3$$
.

Odejmując stronami równania okręgów otrzymujemy

$$(12-2a)x+12y+a^2-120=0$$
.

Jest to równanie wspólnej osi potęgowej tych okręgów. Jeśli teraz istnieją takie wartości parametru a, dla których spełniony jest warunek $odl(S_1,k)=3$, to wtedy ta oś potęgowa jest jednocześnie wspólną styczną tych okręgów. Otrzymujemy zatem równanie

$$\frac{\left| (12-2a)\cdot 6 + 12\cdot 4 + a^2 - 120 \right|}{\sqrt{(12-2a)^2 + 12^2}} = 3,$$
$$\left| a^2 - 12a \right| = 3\sqrt{4a^2 - 48a + 288}.$$

Obie strony tego równania są nieujemne, więc podnosząc je do kwadratu otrzymujemy równanie równoważne

$$(a^{2}-12a)^{2} = 9(4a^{2}-48a+288),$$

$$a^{4}-24a^{3}+144a^{2} = 36a^{4}-432a+2592,$$

$$a^{4}-24a^{3}+108a^{2}+432a-2592=0,$$

$$a^{4}-12a^{3}+36a^{2}-12a^{3}+144a^{2}-432a-72a^{2}+864a-2592=0,$$

$$a^{2}(a^{2}-12a+36)-12a(a^{2}-12a+36)-72(a^{2}-12a+36)=0,$$

$$(a^{2}-12a-72)(a^{2}-12a+36)=0,$$

$$(a^{2}-12a+36-108)(a-6)^{2}=0,$$

$$(a-6)^{2}-36\cdot3)(a-6)^{2}=0,$$

$$(a-6-6\sqrt{3})(a-6+6\sqrt{3})(a-6)^{2}=0.$$

Stad

$$a = 6 + 6\sqrt{3}$$
 lub $a = 6 - 6\sqrt{3}$ lub $a = 6$.

III sposób (równanie kwadratowe z parametrem)

Okrąg o równaniu $x^2 + y^2 - 12x - 8y + 43 = 0$ ma środek $S_1 = (6,4)$ i promień $r_1 = 3$, a okrąg o równaniu $x^2 + y^2 - 2ax + 4y + a^2 - 77 = 0$ ma środek $S_2 = (a, -2)$ i promień $r_2 = 9$.

Okręgi te mają różne promienie, więc te okręgi mają dokładnie jeden punkt wspólny wtedy i tylko wtedy, gdy układ równań

$$x^{2} + y^{2} - 12x - 8y + 43 = 0$$
 i $x^{2} + y^{2} - 2ax + 4y + a^{2} - 77 = 0$

ma dokładnie jedno rozwiązanie. Stąd otrzymujemy kolejno

$$(12-2a)x+12y+a^2-120=0 i x^2+y^2-12x-8y+43=0$$
$$y=\left(1-\frac{1}{6}a\right)x+10-\frac{1}{12}a^2 i x^2+y^2-12x-8y+43=0.$$

Stąd otrzymujemy równanie z niewiadomą x i parametrem a

$$x^{2} + \left(\left(1 - \frac{1}{6}a\right)x + 10 - \frac{1}{12}a^{2}\right)^{2} - 12x - 8\left(\left(1 - \frac{1}{6}a\right)x + 10 - \frac{1}{12}a^{2}\right) + 43 = 0,$$

$$4\left(a^{2} - 12a + 72\right)x^{2} - 4\left(a^{3} - 6a^{2} - 72a + 864\right)x + a^{4} - 144a^{2} + 9072 = 0.$$

Ponieważ $a^2 - 12a + 72 = (a - 6)^2 + 36 > 0$ dla każdego a, więc równanie jest kwadratowe. Zatem układ równań ma dokładnie jedno rozwiązanie wtedy i tylko wtedy, gdy to równanie ma dokładnie jedno rozwiązanie, a tak jest wtedy i tylko wtedy, gdy wyróżnik trójmianu kwadratowego $4(a^2 - 12a + 72)x^2 - 4(a^3 - 6a^2 - 72a + 864)x + a^4 - 144a^2 + 9072$ jest równy 0. Otrzymujemy wiec równanie

$$4^{2} \left(a^{3} - 6a^{2} - 72a + 864\right)^{2} - 4 \cdot 4\left(a^{2} - 12a + 72\right) \cdot \left(a^{4} - 144a^{2} + 9072\right) = 0,$$

$$\left(a^{3} - 6a^{2} - 72a + 864\right)^{2} - \left(a^{2} - 12a + 72\right) \cdot \left(a^{4} - 144a^{2} + 9072\right) = 0,$$

$$-36a^{4} + 864a^{3} - 3888a^{2} - 15552a + 93312 = 0,$$

$$-36a^{4} + 864a^{3} - 3888a^{2} - 15552a + 93312 = 0,$$

$$a^{4} - 24a^{3} + 108a^{2} + 432a - 2592 = 0,$$

$$a^{4} - 12a^{3} + 36a^{2} - 12a^{3} + 144a^{2} - 432a - 72a^{2} + 864a - 2592 = 0,$$

$$a^{2} \left(a^{2} - 12a + 36\right) - 12a\left(a^{2} - 12a + 36\right) - 72\left(a^{2} - 12a + 36\right) = 0,$$

$$\left(a^{2} - 12a - 72\right)\left(a^{2} - 12a + 36\right) = 0,$$

$$\left(a^{2} - 12a + 36 - 108\right)\left(a - 6\right)^{2} = 0,$$

$$\left(a^{6} - 6\sqrt{3}\right)\left(a - 6\right)^{2} = 0,$$

$$\left(a - 6 - 6\sqrt{3}\right)\left(a - 6 + 6\sqrt{3}\right)\left(a - 6\right)^{2} = 0.$$

Stad

$$a = 6 + 6\sqrt{3}$$
 lub $a = 6 - 6\sqrt{3}$ lub $a = 6$.

Zadanie 6. (0-5)

IV. Użycie i tworzenie strategii.	 Wyrażenia algebraiczne. Zdający wykonuje dzielenie wielomianu przez dwumian x – a; stosuje twierdzenie o reszcie z dzielenia wielomianu przez dwumian x – a (R2.b). Równania i nierówności. Zdający rozwiązuje równania
	i nierówności wielomianowe (R3.c).

Schemat punktowania

Rozwiązanie pełne 5 p	١.
Zdający wyznaczy miejsca zerowe: $2, -3, -\frac{1}{2}$.	

równanie
$$m^3 - 4m + 3 = 0$$
 ma trzy rozwiązania: $m = 1$, $m = \frac{-1 - \sqrt{13}}{2}$, $m = \frac{-1 + \sqrt{13}}{2}$

i na tym zakończy lub dalej popełnia błędy.

$$2 \cdot 2^3 + (m^3 + 2) \cdot 2^2 - 11 \cdot 2 - 2(2m + 1) = 0$$
 i $2 \cdot (-1)^3 + (m^3 + 2) \cdot (-1)^2 - 11 \cdot (-1) - 2(2m + 1) = 6$ i na tym zakończy lub dalej popełnia błędy.

- zapisze warunek W(2) = 0 lub równanie $2 \cdot 2^3 + (m^3 + 2) \cdot 2^2 11 \cdot 2 2(2m + 1) = 0$ albo
 - zapisze warunek W(-1) = 6 lub równanie

$$2 \cdot (-1)^3 + (m^3 + 2) \cdot (-1)^2 - 11 \cdot (-1) - 2(2m+1) = 6$$

i na tym zakończy lub dalej popełnia błędy.

Przykładowe rozwiązanie

Z twierdzenie Bezoute'a wynika, że W(2) = 0, czyli

$$2 \cdot 2^{3} + (m^{3} + 2) \cdot 2^{2} - 11 \cdot 2 - 2(2m + 1) = 0,$$

$$16 + 4m^{3} + 8 - 22 - 4m - 2 = 0,$$

$$4m^{3} - 4m = 0,$$

$$4m(m^{2} - 1) = 0,$$

$$4m(m - 1)(m + 1) = 0,$$

$$m = 0 \text{ lub } m = 1 \text{ lub } m = -1.$$

Z twierdzenia o reszcie z dzielenie wielomianu przez dwumian liniowy otrzymujemy W(-1) = 6, czyli

$$2 \cdot (-1)^{3} + (m^{3} + 2) \cdot (-1)^{2} - 11 \cdot (-1) - 2(2m + 1) = 6,$$

$$-2 + m^{3} + 2 + 11 - 4m - 2 = 6,$$

$$m^{3} - 4m + 3 = 0.$$

Jednym z rozwiązań tego równania jest m=1, gdyż $1^3-4\cdot 1+3=0$. Zatem wielomian $P(m)=m^3-4m+3$ jest podzielny przez m-1. Dzielenie to wykonamy przy pomocy algorytmu Hornera

Zatem $P(m) = (m-1)(m^2 + m - 3)$. Pozostałe pierwiastki wielomianu P to pierwiastki trójmianu kwadratowego $m^2 + m - 3$. Obliczmy te pierwiastki

$$\Delta = 1^2 - 4 \cdot 1 \cdot (-3) = 13$$
, $\sqrt{\Delta} = 13$
 $m_1 = \frac{-1 - \sqrt{13}}{2}$, $m_2 = \frac{-1 + \sqrt{13}}{2}$.

Zatem jest tylko jedna szukana wartość m = 1.

Dla m=1 wielomian W(x) przyjmuje postać:

$$2x^3 + 3x^2 - 11x - 6$$
.

Szukamy pierwiastków tego wielomianu stosując dzielenie przez dwumian x-2 i otrzymujemy:

$$W(x) = (x-2)(2x^2 + 7x + 3).$$

Rozkładamy wielomian na czynniki stopnia pierwszego: $2(x-2)(x+3)\left(x+\frac{1}{2}\right)$.

Miejscami zerowymi są: $2, -3, -\frac{1}{2}$.

Uwaga

Nie musimy rozwiązywać obu otrzymanych równań. Po rozwiązaniu pierwszego z nich wystarczy sprawdzić, która z wyznaczonych wartości m jest rozwiązaniem drugiego równania. Ponieważ $0^3 - 4 \cdot 0 + 3 = 3 \neq 0$, więc m = 0 nie jest poszukiwaną wartością m.

Ponieważ $1^3 - 4 \cdot 1 + 3 = 0$, więc dla m = 1 spełnione są wszystkie warunki zadania.

Ponieważ $(-1)^3 - 4 \cdot (-1) + 3 = 8 \neq 0$, więc m = 0 nie jest poszukiwaną wartością m.

Zadanie 7. (0–4)

II. Wykorzystanie i interpretowanie reprezentacji.	6. Trygonometria. Zdający rozwiązuje równania i nierówności trygonometryczne (R6.e).
--	--

Schemat punktowania

Rozwiązanie pełne
Zdający wyznaczy wszystkie rozwiązania równania w podanym przedziale:
$x = 0$ lub $x = \pi$, lub $x = 2\pi$, lub $x = \frac{7\pi}{6}$, lub $x = \frac{11\pi}{6}$.
Pokonanie zasadniczych trudności zadania3 p.
Zdający
• rozwiąże jedno z równań $\sin x = 0$ lub $\sin x = -\frac{1}{2}$ w przedziale $\langle 0, 2\pi \rangle$
albo
• wyznaczy wszystkie rozwiązania równań $\sin x = 0$ i $\sin x = -\frac{1}{2}$ w zbiorze R .
Rozwiązanie, w którym postęp jest istotny
i na tym zakończy lub dalej popełnia błędy.

Uwagi

- 1. Jeżeli zdający popełnił błąd przy rozwiązywaniu równania kwadratowego i otrzymał równanie sprzeczne lub równanie, którego wszystkie rozwiązania są spoza przedziału $\langle -1,1\rangle$, to może otrzymać co najwyżej **1 punkt**.
- 2. Jeżeli zdający popełnił błąd przy rozwiązywaniu równania kwadratowego i otrzymał równanie, które ma tylko jedno rozwiązanie z przedziału $\langle -1,1 \rangle$, to może otrzymać co najwyżej **2 punkty.**
- 3. Jeżeli zdający popełnił błąd przy rozwiązywaniu równania kwadratowego i otrzymał równanie, które ma dwa rozwiązania z przedziału $\langle -1,1 \rangle$, przy czym co najmniej jedno z nich jest z przedziału (-1,1), to może otrzymać co najwyżej **3 punkty**
- 4. Jeżeli zdający poda rozwiązanie bez stosownego uzasadnienia, to otrzymuje 0 punktów.

Zadanie 8. (0-4)

strategii	7. Planimetria. Zdający znajduje związki miarowe w figurach płaskich z zastosowaniem twierdzenia sinusów i twierdzenia cosinusów (R7.d).
-----------	--

Schemat punktowania

Pokonanie zasadniczych trudności zadania3 p.

Zdający zapisze równanie wymierne z jedną niewiadomą a, np.:

$$a^2 = 256 + a^2 + 12a + 36 - 2 \cdot 16 \cdot (a+6) \cdot \frac{1}{2}$$
 lub $a^2 = \frac{49}{\left(\frac{1}{7}\right)^2}$, lub $\frac{1}{7} = \frac{7}{a}$, lub

$$a^2 = (8\sqrt{3})^2 + (a-2)^2$$
, lub $a^2 = (\sqrt{192})^2 + (a-2)^2$, lub $16^2 \cdot a + a^2 \cdot 6 = (a+6)(14^2 + a \cdot 6)$, lub

$$48a^2 = 49(a^2 - 49)$$
, lub $49(1 - \frac{49}{a^2}) = 48$, lub $\frac{a}{\frac{4\sqrt{3}}{7}} = \frac{14}{2 \cdot \frac{4\sqrt{3}}{7} \cdot \frac{1}{7}}$, lub $\frac{a}{14} = \frac{7}{2}$, lub

$$16^{2} = (a+6)^{2} + a^{2} - 2 \cdot (a+6) \cdot a \cdot \frac{2a^{2} - 14^{2}}{2a^{2}}, \text{ lub } (a+11)(a-5) \cdot 5 \cdot 11 = (24\sqrt{3} + 4\sqrt{3} \cdot a)^{2}.$$

• obliczy $\cos \alpha = \frac{1}{2}$ oraz zapisze równanie wynikające z twierdzenia cosinusów dla trójkąta *ABC*: $a^2 = 16^2 + (a+6)^2 - 2 \cdot 16 \cdot (a+6) \cdot \cos \alpha$

albo

• obliczy $\cos \omega = \frac{1}{7}$ oraz zapisze równanie wynikające z twierdzenia cosinusów dla trójkąta *BCD*, np.: $14^2 = a^2 + a^2 - 2 \cdot a \cdot a \cdot \cos(180^\circ - 2\omega)$ lub $a^2 = a^2 + 14^2 - 2 \cdot 14a \cdot \cos \omega$,

albo

• obliczy
$$\sin \omega = \frac{4\sqrt{3}}{7}$$
 oraz $\sin (180^\circ - 2\omega) = 2 \cdot 4 \frac{\sqrt{3}}{7} \cdot \frac{1}{7}$,

albo

• obliczy $\cos \omega = \frac{1}{7}$ oraz zapisze równanie wynikające z definicji cosinusa w trójkącie BCD: $\cos \omega = \frac{|ED|}{q}$,

albo

• obliczy |AF|=8, $|CF|=8\sqrt{3}$ oraz wyznaczy długość odcinka BF w zależności od a: |BF|=a-2,

albo

• obliczy pole trójkąta ADC, wyznaczy pole trójkąta BCD w zależności od a oraz wyznaczy stosunek pól trójkątów ADC i BCD w zależności od a: $P_{ADC} = 24\sqrt{3}$,

$$P_{BCD} = 7\sqrt{a^2 - 49} , \frac{P_{ADC}}{P_{BCD}} = \frac{6}{a} ,$$

albo

zapisze równanie pierwiastkowe z niewiadomą a: $a = \frac{4\sqrt{3}}{\frac{7}{a}\sqrt{1-\frac{49}{a^2}}}$,

albo

• obliczy pole trójkąta ADC, wysokość CF oraz długość odcinka DF: $P_{ADC}=24\sqrt{3}$, $|CF|=8\sqrt{3}$, |DF|=2,

albo

• zapisze układ równań z dwiema niewiadomymi a i $\cos \beta$: $16^2 = (a+6)^2 + a^2 - 2 \cdot (a+6) \cdot a \cdot \cos \beta \text{ i } 14^2 = a^2 + a^2 - 2 \cdot a \cdot a \cdot \cos \beta,$

albo

• obliczy pole trójkąta ADC oraz wyznaczy pola trójkątów ABC i BCD w zależności od a: $P_{ADC} = 24\sqrt{3}$, $P_{ABC} = \sqrt{(a+11)(a-5)\cdot 5\cdot 11}$, $P_{BCD} = \frac{1}{2}\cdot 8\sqrt{3}\cdot a$

i na tym zakończy lub dalej popełnia błędy.

Zdający

• obliczy $\cos \alpha = \frac{1}{2}$

albo

• zapisze równanie wynikające z twierdzenia cosinusów dla trójkąta *ABC*: $a^2 = 16^2 + (a+6)^2 - 2 \cdot 16 \cdot (a+6) \cdot \cos \alpha \text{ lub } 16^2 = (a+6)^2 + a^2 - 2 \cdot (a+6) \cdot a \cdot \cos \beta$,

albo

• obliczy $\cos \delta = -\frac{1}{7}$ lub $\cos \omega = \frac{1}{7}$,

albo

• zapisze, że $\cos \omega = \frac{|ED|}{a}$ lub $\cos \omega = \frac{7}{a}$,

albo

• zapisze układ dwóch równań z dwiema niewiadomymi: $16^2 = h^2 + (x+6)^2$ oraz $14^2 = h^2 + x^2$, albo

• obliczy pole trójkąta ADC i wyznaczy pole trójkąta BCD w zależności od a – długości boku BC: $P_{ADC} = 24\sqrt{3}$, $P_{BCD} = 7\sqrt{a^2 - 49}$,

albo

• obliczy pole trójkąta ADC i wyznaczy pola trójkątów ABC i BCD w zależności od a – długości boku BC oraz $\sin \beta$: $P_{ADC} = 24\sqrt{3}$, $P_{ABC} = \frac{1}{2} \cdot (a+6) \cdot a \cdot \sin \beta$,

$$P_{BCD} = \frac{1}{2} \cdot a \cdot a \cdot \sin \beta \,,$$

albo

• obliczy pole trójkąta ADC oraz wysokość CF: $P_{ADC} = 24\sqrt{3}$, $|CF| = 8\sqrt{3}$,

albo

• zapisze równanie wynikające z twierdzenia cosinusów dla trójkąta *BCD*: $14^2 = a^2 + a^2 - 2 \cdot a \cdot a \cdot \cos \beta$

i na tym zakończy lub dalej popełnia błędy.

Uwagi

- 1. Jeżeli zdający realizuje strategię rozwiązania i popełnia jedynie błędy rachunkowe, to może otrzymać **3 punkty**, o ile popełnione błędy nie ułatwiają rozważanego zagadnienia na żadnym etapie rozwiązania.
- 2. Jeżeli zdający pominie współczynnik $\frac{1}{2}$ we wzorze na pole trójkąta, to może otrzymać

3 punkty za rozwiązanie zadania konsekwentnie do końca.

- 3. Jeżeli zdający realizuje strategię rozwiązania i jedynym błędem, który jednak nie ułatwia rozważania zagadnienia na żadnym etapie rozwiązania, jest błąd, polegający na niepoprawnym zastosowaniu:
 - a) twierdzenia cosinusów lub twierdzenia sinusów, lub niewłaściwym podstawieniu do wzoru z tego twierdzenia,
 - b) definicji funkcji trygonometrycznej,
- c) wzoru Herona,
- d) twierdzenia Pitagorasa,
- e) wzoru redukcyjnego,
- f) wzoru na pole trójkata z sinusem kata między bokami,
- g) twierdzenia Stewarta,
- h) wzoru $\sqrt{a^2 b^2} = \sqrt{a^2} \sqrt{b^2}$ " lub $\sqrt{a + b^2} = a^2 + b^2$ ",

to zdający otrzymuje co najwyżej 2 punkty za rozwiązanie całego zadania.

- 4. Jeżeli zdający realizuje strategię rozwiązania, i popełnia jeden błąd, wymieniony w uwadze 3., a ponadto popełnia błędy rachunkowe, to otrzymuje **1 punkt**.
- 5. Jeżeli zdający stosuje przybliżenia funkcji trygonometrycznych i tym samym zmienia aspekt rozważanego zagadnienia, to może otrzymać co najwyżej **3 punkty** za całe rozwiązanie.
- 6. Jeżeli zdający zakłada, że kąt *CAD* ma miarę 60 stopni, to może uzyskać jedynie punkty za te cześci rozwiązania, w których nie korzysta z tego nieuprawnionego założenia.

Przykładowe rozwiązania

I sposób

Przyjmijmy oznaczenia jak na rysunku.

Z twierdzenia cosinusów dla trójkąta ADC otrzymujemy

$$14^2 = 16^2 + 6^2 - 2 \cdot 16 \cdot 6 \cdot \cos \alpha$$
.

Stad

$$\cos \alpha = \frac{16^2 + 6^2 - 14^2}{2 \cdot 16 \cdot 6} = \frac{1}{2}.$$

Zatem $\alpha = 60^{\circ}$.

Z twierdzenia cosinusów dla trójkąta ABC otrzymujemy

$$a^{2} = 16^{2} + (a+6)^{2} - 2 \cdot 16 \cdot (a+6) \cdot \cos \alpha,$$

$$a^{2} = 256 + a^{2} + 12a + 36 - 2 \cdot 16 \cdot (a+6) \cdot \frac{1}{2},$$

$$4a = 196,$$

$$a = 49.$$

Obwód trójkąta ABC jest równy

$$L_{ABC} = 16 + 6 + 2 \cdot 49 = 120$$
.

II sposób

Przyjmijmy oznaczenia jak na rysunku.

Z twierdzenia cosinusów dla trójkąta ADC otrzymujemy

$$16^2 = 14^2 + 6^2 - 2 \cdot 14 \cdot 6 \cdot \cos \delta$$
.

Stąd

$$\cos \delta = \frac{14^2 + 6^2 - 16^2}{2 \cdot 14 \cdot 6} = -\frac{1}{7}$$
.

Zatem

$$\cos \omega = \cos (180^{\circ} - \delta) = -\cos \delta = -\left(-\frac{1}{7}\right) = \frac{1}{7}$$
.

Z twierdzenia cosinusów dla trójkąta BCD otrzymujemy

$$14^{2} = a^{2} + a^{2} - 2 \cdot a \cdot a \cdot \cos(180^{\circ} - 2\omega),$$

$$196 = 2a^{2} (1 + \cos 2\omega),$$

$$a^{2} = \frac{98}{1 + \cos 2\omega} = \frac{98}{1 + 2\cos^{2}\omega - 1} = \frac{49}{\cos^{2}\omega} = \frac{49}{\left(\frac{1}{7}\right)^{2}} = 49^{2}, \ a = 49$$

albo

$$a^2 = a^2 + 14^2 - 2 \cdot 14a \cdot \cos \omega$$
,

$$28a \cdot \frac{1}{7} = 196$$
, $a = 49$,

albo z twierdzenia sinusów otrzymujemy

$$\frac{a}{\sin \omega} = \frac{14}{\sin(180^\circ - 2\omega)}$$

$$\sin(180^\circ - 2\omega) = \sin 2\omega = 2\sin \omega \cdot \cos \omega$$

$$\sin(180^\circ - 2\omega) = 2 \cdot \frac{4\sqrt{27}}{21} \cdot \frac{3}{21} = \frac{24\sqrt{27}}{441}$$

$$\frac{a}{4\sqrt{27}} = \frac{14}{2 \cdot \frac{4\sqrt{27}}{21} \cdot \frac{3}{21}}$$

$$a = \frac{14}{\frac{6}{21}} = 49.$$

Więc obwód trójkąta ABC jest równy

$$L_{ABC} = 16 + 6 + 2 \cdot 49 = 120$$
.

III sposób

Przyjmijmy oznaczenia jak na rysunku.

Z twierdzenia cosinusów dla trójkąta ADC otrzymujemy

$$16^2 = 14^2 + 6^2 - 2 \cdot 14 \cdot 6 \cdot \cos \delta.$$

Stad

$$\cos \delta = \frac{14^2 + 6^2 - 16^2}{2 \cdot 14 \cdot 6} = -\frac{1}{7}$$
.

Zatem

$$\cos \omega = \cos \left(180^{\circ} - \delta\right) = -\cos \delta = -\left(-\frac{1}{7}\right) = \frac{1}{7}.$$

Trójkąt *BCD* jest równoramienny, więc spodek *E* wysokości *BE* tego trójkąta jest środkiem boku *CD*. Zatem

$$\cos \omega = \frac{|ED|}{a},$$
$$\frac{1}{7} = \frac{7}{a}$$

Stąd a = 49, więc obwód trójkąta ABC jest równy

$$L_{ABC} = 16 + 6 + 2 \cdot 49 = 120$$
.

IV sposób

Poprowadźmy wysokość CF trójkąta ABC i przyjmijmy oznaczenia jak na rysunku.

Z twierdzenia cosinusów dla trójkąta ADC otrzymujemy

$$14^2 = 16^2 + 6^2 - 2 \cdot 16 \cdot 6 \cdot \cos \alpha$$
.

Stąd

$$\cos \alpha = \frac{16^2 + 6^2 - 14^2}{2.16.6} = \frac{1}{2}$$
.

Zatem $\alpha = 60^\circ$. Trójkąt AFC jest więc połową trójkąta równobocznego o boku długości 16. Stąd |AF| = 8 i $|CF| = 8\sqrt{3}$.

W rezultacie |DF| = |AF| - |AD| = 8 - 6 = 2 oraz |BF| = |BD| - |DF| = a - 2.

Z twierdzenia Pitagorasa dla trójkąta BCF otrzymujemy

$$a^{2} = (8\sqrt{3})^{2} + (a-2)^{2},$$

$$a^{2} = 192 + a^{2} - 4a + 4$$

$$4a = 196,$$

$$a = 49.$$

Obwód trójkata ABC jest równy

$$L_{ABC} = 16 + 6 + 2 \cdot 49 = 120$$
.

V sposób

Poprowadźmy wysokość CF trójkąta ABC i przyjmijmy oznaczenia jak na rysunku.

Z twierdzenia Pitagorasa dla trójkątów AFC i DFC otrzymujemy

$$16^{2} = h^{2} + (x+6)^{2} \text{ oraz } 14^{2} = h^{2} + x^{2},$$

$$256 = h^{2} + x^{2} + 12x + 36 \text{ oraz } 196 = h^{2} + x^{2},$$

$$220 = 196 + 12x \text{ oraz } h^{2} = 196 - x^{2},$$

$$24 = 12x \text{ oraz } h^{2} = 196 - x^{2},$$

$$x = 2 \text{ oraz } h = \sqrt{196 - 2^{2}} = \sqrt{192}.$$

Zatem |BF| = |BD| - |DF| = a - 2.

Z twierdzenia Pitagorasa dla trójkata BCF otrzymujemy

$$a^{2} = (\sqrt{192})^{2} + (a-2)^{2},$$

$$a^{2} = 192 + a^{2} - 4a + 4$$

$$4a = 196,$$

$$a = 49.$$

Obwód trójkata ABC jest równy

$$L_{ABC} = 16 + 6 + 2 \cdot 49 = 120$$
.

VI sposób

Przyjmijmy oznaczenia jak na rysunku.

Z twierdzenia Stewarta dla trójkąta ABC otrzymujemy

$$16^{2} \cdot a + a^{2} \cdot 6 = (a+6)(14^{2} + a \cdot 6),$$

$$6a^{2} + 256a = (a+6)(6a+196),$$

$$3a^{2} + 128a = 3a^{2} + 116a + 588$$

$$12a = 588,$$

$$a = 49.$$

Obwód trójkata ABC jest równy

$$L_{ABC} = 16 + 6 + 2 \cdot 49 = 120$$
.

VII sposób

Przyjmijmy oznaczenia jak na rysunku.

Obliczmy pole trójkąta ADC ze wzoru Herona.

Połowa obwodu tego trójkąta jest równa $p = \frac{16+14+6}{2} = 18$, więc

$$P_{ADC} = \sqrt{18 \cdot \left(18 - 16\right) \cdot \left(18 - 14\right) \cdot \left(18 - 6\right)} = \sqrt{18 \cdot 2 \cdot 4 \cdot 12} = 24\sqrt{3} \; .$$

Trójkąt $BC\!D$ jest równoramienny, więc wysokość hopuszczona na bok $C\!D$ jest równa

$$h = \sqrt{a^2 - 7^2} = \sqrt{a^2 - 49} \ .$$

Zatem

$$P_{BCD} = \frac{1}{2} \cdot 14\sqrt{a^2 - 49} = 7\sqrt{a^2 - 49}$$
.

Ponieważ trójkąty ADC i BCD mają wspólną wysokość opuszczoną z wierzchołka C, więc

$$\frac{P_{ADC}}{P_{BCD}} = \frac{6}{a},$$

czyli

$$\frac{24\sqrt{3}}{7\sqrt{a^2 - 49}} = \frac{6}{a},$$
$$4a\sqrt{3} = 7\sqrt{a^2 - 49}$$

Stad

$$48a^{2} = 49(a^{2} - 49),$$

$$48a^{2} = 49a^{2} - 49^{2},$$

$$a^{2} = 49^{2}.$$

Zatem

$$a = 49$$
.

Obwód trójkąta ABC jest równy

$$L_{ABC} = 16 + 6 + 2 \cdot 49 = 120$$
.

VIII sposób

Przyjmijmy oznaczenia jak na rysunku.

Obliczmy pole trójkąta ADC ze wzoru Herona.

Połowa obwodu tego trójkąta jest równa $p = \frac{16+14+6}{2} = 18$, więc

$$P_{ADC} = \sqrt{18 \cdot (18 - 16) \cdot (18 - 14) \cdot (18 - 6)} = \sqrt{18 \cdot 2 \cdot 4 \cdot 12} = 24\sqrt{3}$$
.

Pola trójkątów ABC i BCD są równe odpowiednio

$$P_{ABC} = \frac{1}{2} \cdot (a+6) \cdot a \cdot \sin \beta \text{ oraz } P_{BCD} = \frac{1}{2} \cdot a \cdot a \cdot \sin \beta.$$

Ponieważ, $P_{ABC} = P_{BDC} + P_{ADC}$, więc

$$\frac{1}{2} \cdot (a+6) \cdot a \cdot \sin \beta = \frac{1}{2} \cdot a^2 \cdot \sin \beta + 24\sqrt{3} ,$$

$$a^2 \sin \beta + 6a \sin \beta = a^2 \sin \beta + 48\sqrt{3} ,$$

$$a \sin \beta = 8\sqrt{3} ,$$

$$a = \frac{8\sqrt{3}}{\sin \beta}$$

$$a = \frac{8\sqrt{3}}{2 \sin \frac{\beta}{2} \cos \frac{\beta}{2}}$$

(1)
$$a = \frac{4\sqrt{3}}{\sin\frac{\beta}{2}\cos\frac{\beta}{2}}.$$

Ponieważ trójkąt *BCD* jest równoramienny, więc wysokość opuszczona na podstawę *CD* dzieli ten trójkąt na dwa przystające trójkąty prostokątne. Zatem

$$\sin\frac{\beta}{2} = \frac{7}{a} \,.$$

Z jedynki trygonometrycznej otrzymujemy

(3)
$$\cos \frac{\beta}{2} = \sqrt{1 - \sin^2 \frac{\beta}{2}} = \sqrt{1 - \frac{49}{a^2}}.$$

Z (1), (2) i (3) otrzymujemy równanie z niewiadomą a

$$a = \frac{4\sqrt{3}}{\frac{7}{a}\sqrt{1 - \frac{49}{a^2}}}.$$

Stad

$$a \cdot \frac{7}{a} \sqrt{1 - \frac{49}{a^2}} = 4\sqrt{3},$$

$$7 \sqrt{1 - \frac{49}{a^2}} = 4\sqrt{3},$$

$$49 \left(1 - \frac{49}{a^2}\right) = 48,$$

$$49 - \frac{49^2}{a^2} = 48,$$

$$1 = \frac{49^2}{a^2},$$

$$a^2 = 49^2.$$

Zatem

$$a = 49$$

Obwód trójkata ABC jest równy

$$L_{ABC} = 16 + 6 + 2 \cdot 49 = 120$$
.

IX sposób

Poprowadźmy wysokości CF i BE trójkąta BCD i przyjmijmy oznaczenia jak na rysunku.

Obliczmy pole trójkąta ADC ze wzoru Herona.

Połowa obwodu tego trójkąta jest równa $p = \frac{16+14+6}{2} = 18$, więc

$$P_{ADC} = \sqrt{18 \cdot (18 - 16) \cdot (18 - 14) \cdot (18 - 6)} = \sqrt{18 \cdot 2 \cdot 4 \cdot 12} = 24\sqrt{3}$$

Odcinek CF jest też wysokością trójkąta ADC, więc pole tego trójkąta jest równe

$$P_{ADC} = \frac{1}{2} \cdot |AD| \cdot h = \frac{1}{2} \cdot 6 \cdot h = 3h.$$

Otrzymujemy zatem

$$3h = 24\sqrt{3} ,$$
$$h = 8\sqrt{3} .$$

Z twierdzenia Pitagorasa dla trójkata CDF otrzymujemy

$$|DF|^2 = |CD|^2 - |CF|^2$$
,
 $|DF|^2 = 14^2 - (8\sqrt{3})^2 = 4$.

Stad |DF| = 2.

Trójkąt *BCD* jest równoramienny, więc spodek *E* wysokości *BE* tego trójkąta jest środkiem podstawy *CD*. Zatem

$$|DE| = \frac{1}{2} \cdot |CD| = \frac{1}{2} \cdot 14 = 7$$
.

Trójkąty *CDF* i *BDE* są podobne, gdyż oba są prostokątne i mają wspólny kąt ostry przy wierzchołku *D*. Zatem

$$\frac{|DB|}{|DE|} = \frac{|CD|}{|DF|},$$

$$\frac{a}{14} = \frac{7}{2},$$

$$a = 49$$

Obwód trójkąta ABC jest równy

$$L_{ABC} = 16 + 6 + 2 \cdot 49 = 120$$
.

X sposób

Przyjmijmy oznaczenia jak na rysunku.

Z twierdzenia cosinusów dla trójkąta BCD otrzymujemy

$$14^2 = a^2 + a^2 - 2 \cdot a \cdot a \cdot \cos \beta$$

Stad

$$\cos \beta = \frac{2a^2 - 14^2}{2a^2}$$
.

Z twierdzenia cosinusów dla trójkąta ABC otrzymujemy

$$16^{2} = (a+6)^{2} + a^{2} - 2 \cdot (a+6) \cdot a \cdot \cos \beta.$$

Stąd i z poprzednio otrzymanego równania otrzymujemy równanie z jedną niewiadomą a

$$16^{2} = (a+6)^{2} + a^{2} - 2 \cdot (a+6) \cdot a \cdot \frac{2a^{2} - 14^{2}}{2a^{2}},$$

$$256a = a(a+6)^{2} + a^{3} - (a+6)(2a^{2} - 196),$$

$$256a = a^{3} + 12a^{2} + 36a + a^{3} - 2a^{3} - 12a^{2} + 196a + 6 \cdot 196,$$

$$24a = 6 \cdot 196,$$

$$a = 49.$$

Obwód trójkata ABC jest równy

$$L_{ABC} = 16 + 6 + 2 \cdot 49 = 120$$
.

XI sposób

Poprowadźmy wysokość CF trójkąta BCD i przyjmijmy oznaczenia jak na rysunku.

Obliczmy pole trójkąta ADC ze wzoru Herona.

Połowa obwodu tego trójkąta jest równa $p = \frac{16+14+6}{2} = 18$, więc

$$P_{ADC} = \sqrt{18 \cdot (18 - 16) \cdot (18 - 14) \cdot (18 - 6)} = \sqrt{18 \cdot 2 \cdot 4 \cdot 12} = 24\sqrt{3}$$

Odcinek CF jest też wysokością trójkąta ADC, więc pole tego trójkąta jest równe

$$P_{ADC} = \frac{1}{2} \cdot |AD| \cdot h = \frac{1}{2} \cdot 6 \cdot h = 3h.$$

Otrzymujemy zatem

$$3h = 24\sqrt{3} ,$$
$$h = 8\sqrt{3} .$$

Pole trójkata BCD jest wiec równe

$$P_{BCD} = \frac{1}{2} \cdot \left| BD \right| \cdot h = \frac{1}{2} \cdot 8\sqrt{3} \cdot a = 4\sqrt{3} \cdot a \ .$$

Zapiszmy pole trójkąta ABC, stosując wzór Herona. Połowa obwodu trójkąta ABC jest równa

$$p = \frac{a+6+a+16}{2} = a+11,$$

więc

$$P_{ABC} = \sqrt{(a+11)(a+11-16)(a+11-a-6)(a+11-a)} = \sqrt{(a+11)(a-5)\cdot 5\cdot 11} \; .$$

Ponieważ $P_{ABC} = P_{ACD} + P_{BCD}$, więc otrzymujemy

$$\sqrt{(a+11)(a-5)\cdot 5\cdot 11} = 24\sqrt{3} + 4\sqrt{3} \cdot a$$
.

Obie strony tego równania są dodatnie, więc podnosząc je do kwadratu otrzymujemy równanie równoważne

$$(a+11)(a-5) \cdot 5 \cdot 11 = 1728 + 576a + 48a^{2},$$

$$55a^{2} + 330a - 3025 = 48a^{2} + 576a + 1728.$$

$$7a^{2} - 246a - 4753 = 0.$$

$$\Delta = (-246)^{2} - 4 \cdot 7 \cdot (-4753) = 193600, \ \sqrt{\Delta} = 440,$$

$$a = \frac{246 - 440}{14} < 0 \text{ lub } a = \frac{246 + 440}{14} = 49.$$

Obwód trójkąta ABC jest równy

$$L_{ABC} = 16 + 6 + 2 \cdot 49 = 120$$
.

Zadanie 9. (0–6)

III. Modelowanie	3. Równania i nierówności. Zdający stosuje wzory Viète'a
matematyczne.	(R3.a).

Schemat punktowania

Rozwiązanie składa się z trzech etapów.

Pierwszy etap polega na wyznaczeniu wszystkich wartości parametru m, dla których funkcja kwadratowa f ma dwa różne pierwiastki rzeczywiste, a więc na rozwiązaniu nierówności $2m+1\neq 0$ oraz $\Delta>0$: $m\neq -\frac{1}{2}$ i $m\in \left(-\frac{4}{7},4\right)$.

Za poprawne rozwiązanie tego etapu zdający otrzymuje 2 punkty.

Zdający otrzymuje **1 punkt** za I etap rozwiązania, jeśli rozwiąże warunek $\Delta > 0$: $m \in \left(-\frac{4}{7}, 4\right)$.

Uwaga

Jeżeli zdający rozwiąże nierówność $\Delta \ge 0$ i nie odrzuci przypadku $\Delta = 0$ lub pominie założenie $2m+1 \ne 0$, to za ten etap otrzymuje **0 punktów**.

Drugi etap polega na wyznaczeniu tych wartości parametru m, dla których pierwiastki x_1 , x_2 spełniają warunek $(x_1 - x_2)^2 \ge 1 - 5x_1x_2$. Za ten etap rozwiązania zdający otrzymuje **3 punkty**. Podział punktów za drugi etap rozwiązania.

Zdający otrzymuje **3 punkty**, gdy wyznaczy wszystkie wartości parametru m, dla których prawdziwa jest nierówność $(x_1 + x_2)^2 - 4x_1x_2 \ge 1 - 5x_1x_2$: $m \in \langle -5, -\frac{1}{2} \rangle \cup \left(-\frac{1}{2}, 0\right\rangle$.

Zdający otrzymuje 2 punkty, gdy zapisze nierówność wymierną z jedną niewiadomą m,

np.:
$$\left(\frac{-(m+2)}{2m+1}\right)^2 + \frac{m-3}{2m+1} - 1 \ge 0$$

Zdający otrzymuje 1 punkt, gdy

• zapisze nierówność w postaci nierówności z niewiadomymi $x_1 \cdot x_2$ i $x_1 + x_2$, np.: $(x_1 + x_2)^2 - 4x_1x_2 \ge 1 - 5x_1x_2$

albo

• zapisze nierówność z niewiadomą m, ale nie będzie to nierówność wymierna, np.:

$$\left(\frac{-(m+2)-\sqrt{-7m^2+24m+16}}{2(2m+1)} - \frac{-(m+2)+\sqrt{-7m^2+24m+16}}{2(2m+1)}\right)^2 \ge \\
\ge 1 - 5 \cdot \frac{-(m+2)-\sqrt{-7m^2+24m+16}}{2(2m+1)} \cdot \frac{-(m+2)+\sqrt{-7m^2+24m+16}}{2(2m+1)}$$

Trzeci etap polega na wyznaczeniu części wspólnej zbiorów rozwiązań nierówności z etapów I i II oraz podaniu odpowiedzi: $m \in \left(-\frac{4}{7}, -\frac{1}{2}\right) \cup \left(-\frac{1}{2}, 0\right)$.

Za poprawne rozwiązanie tego etapu zdający otrzymuje 1 punkt.

Uwagi

1. W przypadku otrzymania na jednym z etapów – I lub II – zbioru pustego lub zbioru *R* jako zbioru rozwiązań nierówności przyznajemy **0 punktów** za III etap.

- 2. W przypadku otrzymania w II etapie zbioru rozwiązań, będącego podzbiorem lub nadzbiorem zbioru rozwiązań z I etapu przyznajemy **0 punktów** za III etap.
- 3. W przypadku rozwiązania z błędami, nieprzekreślającymi poprawności rozumowania, za ostatni etap przyznajemy **1 punkt** jedynie wówczas, gdy zdający poprawnie wykona etap I i popełnia błędy w rozwiązaniu nierówności z etapu II lub gdy popełnia błędy w etapie I i dobrze rozwiąże etap II (uwaga 3. ma zastosowanie, gdy nie zachodzą przypadki 1. i 2.).

Przykładowe rozwiązanie

Na to, aby funkcja kwadratowa f miała dwa różne pierwiastki rzeczywiste potrzeba i wystarcza, żeby spełnione były następujące warunki: $2m+1\neq 0$ oraz $\Delta>0$. Zatem $m\neq -\frac{1}{2}$ oraz

$$(m+2)^{2}-4(2m+1)(m-3)>0,$$

$$m^{2}+4m+4-4(2m^{2}-5m-3)>0,$$

$$-7m^{2}+24m+16>0,$$

$$-7m^{2}+28m-4m+16>0,$$

$$-7m(m-4)-4(m-4)>0,$$

$$-(m-4)(7m+4)>0$$

$$m \in \left(-\frac{4}{7},4\right).$$

Warunek $(x_1 - x_2)^2 \ge 1 - 5x_1x_2$ możemy zapisać w postaci równoważnej

$$x_1^2 - 2x_1x_2 + x_2^2 \ge 1 - 5x_1x_2,$$

$$(x_1 + x_2)^2 - 4x_1x_2 \ge 1 - 5x_1x_2,$$

$$(x_1 + x_2)^2 + x_1x_2 - 1 \ge 0.$$

Ze wzorów Viete'a otrzymujemy

$$\left(\frac{-(m+2)}{2m+1}\right)^{2} + \frac{m-3}{2m+1} - 1 \ge 0,$$

$$\frac{(m+2)^{2} + (m-3)(2m+1) - (2m+1)^{2}}{(2m+1)^{2}} \ge 0,$$

$$\frac{m^{2} + 4m + 4 + 2m^{2} - 5m - 3 - 4m^{2} - 4m - 1}{(2m+1)^{2}} \ge 0,$$

$$\frac{-m^{2} - 5m}{(2m+1)^{2}} \ge 0$$

$$-m(m+5)(2m+1)^{2} \ge 0,$$

$$m \in \langle -5, -\frac{1}{2} \rangle \cup \left(-\frac{1}{2}, 0\right\rangle.$$

W rezultacie wszystkie warunki zadania są spełnione dla

$$m\neq -\frac{1}{2} \text{ i } m\in \left(-\frac{4}{7},4\right) \text{ i } m\in \left\langle -5,-\frac{1}{2}\right\rangle \cup \left(-\frac{1}{2},0\right\rangle,$$
czyli dla $m\in \left(-\frac{4}{7},-\frac{1}{2}\right) \cup \left(-\frac{1}{2},0\right).$

Zadanie 10. (0-3)

	10. Elementy statystyki opisowej. Teoria prawdopodobieństwa
III. Modelowanie	i kombinatoryka. Zdający wykorzystuje wzory na liczbę
matematyczne.	permutacji, kombinacji i wariacji do zliczania obiektów
	w sytuacjach kombinatorycznych. (R10.a).

Schemat punktowania

Rozwiązanie pełne3 p.

Zdający obliczy szukane prawdopodobieństwo: $P(A) = \frac{8}{27}$.

• obliczy $|\Omega| = 9 \cdot 9 \cdot 9 = 729$ i zapisze, że zdarzeniami elementarnymi sprzyjającymi zdarzeniu A są ciągi postaci: (a,b,a), (a,a,b), (b,a,a), gdzie $a,b \in \{1,2,3,4,5,6,7,8,9\}$ i $a \neq b$

albo

• obliczy
$$|\Omega| = 9 \cdot 9 \cdot 9 = 729 \text{ i } |A| = 9 \cdot 8 \cdot 3 = 216 \text{ lub } |A| = {9 \choose 2} \cdot 6 = 216$$

i na tym zakończy lub dalej popełnia błędy.

• obliczy $|\Omega| = 9 \cdot 9 \cdot 9 = 729$

albo

• zapisze, że zdarzeniami elementarnymi sprzyjającymi zdarzeniu A są ciągi postaci: (a,b,a), (a,a,b), (b,a,a), gdzie $a,b \in \{1,2,3,4,5,6,7,8,9\}$ i $a \neq b$,

i na tym zakończy lub dalej popełnia błędy.

Przykładowe rozwiązanie

Jest to model klasyczny Zbiór wszystkich zdarzeń elementarnych Ω jest zbiorem wszystkich ciągów (a,b,c), gdzie $a,b,c \in \{1,2,3,4,5,6,7,8,9\}$. Zatem $|\Omega| = 9 \cdot 9 \cdot 9 = 729$.

Niech A oznacza zdarzenie polegające na tym, że dokładnie dwie spośród trzech wylosowanych liczb będą równe.

Zdarzeniu A sprzyjają wszystkie zdarzenia elementarne postaci (a,b,a), (a,a,b), (b,a,a), gdzie $a,b \in \{1,2,3,4,5,6,7,8,9\}$ i $a \neq b$. Ciągów każdej z tych postaci jest $9 \cdot 8 \cdot 1$. Zatem liczba zdarzeń elementarnych sprzyjających zdarzeniu A jest równa

$$|A| = 9 \cdot 8 \cdot 3.$$

Prawdopodobieństwo zdarzenia A jest równe

$$P(A) = \frac{|A|}{|\Omega|} = \frac{9 \cdot 8 \cdot 3}{9 \cdot 9 \cdot 9} = \frac{8}{27}.$$

Zadanie 11. (0-6)

I STrategii	9. Stereometria. Zdający wyznacza związki miarowe
	w wielościanach i bryłach obrotowych z zastosowaniem
	trygonometrii (9.b).

Schemat punktowania

- obliczy wysokości ścian bocznych ostrosłupa, zapisze wzór na pole powierzchni całkowitej ostrosłupa: $h_a=15$ i $h_b=20$ i na tym zakończy lub dalej popełnia błędy albo
 - obliczy pole powierzchni całkowitej ostrosłupa, popełniając w trakcie rozwiązania błędy rachunkowe.

Zdający obliczy wysokość ostrosłupa: h = 12 i na tym zakończy lub dalej popełnia błędy. <u>Uwaga</u>

Jeśli zdający zapisze równanie z niewiadomą h (lub $tg\alpha$ lub $tg\beta$) i na tym poprzestanie, to otrzymuje **3 punkty.**

Rozwiązanie, w którym jest istotny postęp 2 p.

Zdający wyznaczy tangensy obu kątów α i β w zależności od wysokości ostrosłupa oraz zapisze zależność między tangensami tych kątów: $tg\alpha = \frac{h}{9}$, $tg\beta = \frac{h}{16}$, $tg\beta = \frac{1}{tg\alpha}$ i na tym zakończy lub dalej popełnia błędy.

wyznaczy tangens jednego z kątów α lub β w zależności od wysokości ostrosłupa: $tg\alpha = \frac{h}{9}, tg\beta = \frac{h}{16}$

albo

• zapisze zależność między tangensami kątów α i β , np.: $tg\beta = \frac{1}{tg\alpha}$ i na tym zakończy lub dalej popełnia błędy.

3 3 1

Uwaga

Jeżeli zdający prowadzi poprawne rozumowanie, w którym przyjmuje, że kąty α i β są dane, ale nie sprawdza, czy spełniają warunek: $\alpha + \beta = 90^{\circ}$, to może otrzymać co najwyżej **4 punkty** za całe rozwiązanie.

Przykładowe rozwiazanie

Ponieważ przeciwległe ściany boczne ABS i CDS są nachylone do płaszczyzny podstawy ostrosłupa pod tym samym kątem, więc trójkąt EFS, w którym wierzchołki E i F to rzuty prostokątne punktu S na proste odpowiednio AB i CD, jest równoramienny. Stąd wynika, że spodek O wysokości SO ostrosłupa leży na osi symetrii prostokąta ABCD przechodzącej przez środki boków BC i AD. Tak samo wnioskujemy, że O leży na osi symetrii prostokąta ABCD przechodzącej przez środki boków AB i CD. Zatem O to środek symetrii podstawy ostrosłupa, a punkty E, M, F i N są środkami krawędzi tej podstawy. Pozostałe oznaczenia przyjmijmy jak na rysunku.

Długości odcinków MO i EO są równe $|MO| = \frac{1}{2}|AB| = 16$ i $|EO| = \frac{1}{2}|BC| = 9$.

Z definicji tangensa kata ostrego w trójkącie EOS i w trójkącie MOS otrzymujemy

$$tg\alpha = \frac{h}{|EO|} i tg\beta = \frac{h}{|MO|},$$
$$tg\alpha = \frac{h}{9} i tg\beta = \frac{h}{16}.$$

Ponieważ $\alpha + \beta = 90^{\circ}$, więc $tg\beta = tg(90^{\circ} - \alpha) = \frac{1}{tg\alpha}$. Stąd

$$tg\alpha \cdot tg\beta = 1,$$

$$\frac{h}{9} \cdot \frac{h}{16} = 1,$$

$$h^2 = 9 \cdot 16,$$

$$h = 3 \cdot 4 = 12.$$

Z twierdzenia Pitagorasa dla trójkątów EOS i MOS otrzymujemy

$$h_a^2 = |EO|^2 + h^2 \text{ i } h_b^2 = |NO|^2 + h^2,$$

$$h_a^2 = 9^2 + 12^2 = 81 + 144 = 225 \text{ i } h_b^2 = 16^2 + 12^2 = 256 + 144 = 400,$$

$$h_a = 15 \text{ i } h_b = 20.$$

Pole powierzchni całkowitej ostrosłupa jest równe

$$P_c = P_{ABCD} + 2P_{ABS} + 2P_{BCS} = 18 \cdot 32 + 2 \cdot \frac{1}{2} \cdot 32 \cdot 15 + 2 \cdot \frac{1}{2} \cdot 18 \cdot 20 = 1416 \; .$$