电子科技大学 2016-2017 学年第<u>二</u>学期期<u>末</u>考试<u>A</u>卷

考试科目:	数字逻	逻辑设-	计及应用	考试形	式: _	闭卷	考试日	期:	2017	_年 <u>7</u>	月 <u>5</u>	_日
成绩构质	戊比例:	平时_	30/20 %,	期中	30/2	<u>0</u> %,	小班硕	开讨 <u>2</u>	0_%,	期末_	<u>40 </u> %)

本试卷由<u>V</u>部分构成,共<u>5</u>页。考试时长: <u>120</u>分钟 注: _____

题号	I	II	III	IV	V	合计
得分						

得	分	

- I. Please fill out the correct answers in the brackets "()". $(4' \times 10 = 40')$
- 1. The 74x148 is an 8-input priority encoder with active low inputs and outputs. If its I0, I2 and I4 inputs are activated then the output code is ().
- 2. If a 74x283 4-bit binary adder has A=1011 and B=1100 and C0=0 on its inputs, the 74x283's outputs C4S3S2S1S0 is ().
- 3. If a D flip-flop is constructed by a T flip-flop with an enable input EN, then the input EN=().
- 4. To design a "110111" serial sequence generator by shift-register, () flip-flops are need at least.
- 5. To build a modulus-191 counter, it requires at least () 74x162s, if its initial count is 808, its terminal count is ().
- 6. A sequential circuit whose output depends only on its state is called a () state machine.
- 7. If an odd number of shift-register outputs are connected to the odd-parity circuit in an n-bit LFSR counter, its modulus is().
- 8. The capacity of a memory that has 20 bits address bus and can store 8 bits at each address is ()MB.
- 9. When the input is 00001000 of an 8 bit DAC, the corresponding output voltage is -2V. The output voltage range for the DAC is ()V.

			noose the only one correct X 5=15')	ect answer and fill the ite	m number in the brackets.
	1. If use a cascading in		-	compare only two 4-bits	binary numbers, the 74x85's
	A) ALTBIN:	=0, AEQB	IN=0, AGTBIN=1		AEQBIN=1, AGTBIN=0
	C) ALTBIN:	=1, AEQB	IN=0, AGTBIN=0	D) ALTBIN=1, A	AEQBIN=0, AGTBIN=1
-	2. For an edg	ge-triggere	ed D flip-flop, () is incorrect.	
2	A) A change	in the stat	te of the flip-flop can on	lly at a clock pulse edge	
ļ	B) The state	that the fl	ip-flop goes to depends	on the D input	
1	C) The outpo	ut follows	the input at each clock j	pulse	
ļ	D) None of t	the above	answers		
•	A) The value C) The type	e of the mo	ps used D) The nu	ethod of clocking umber of states in its seque	
	4. With a 1 correct.	00KHz cl	ock frequency for the	decade counter 74x162 f	ree-running mode, () is
	A) $f_{QA} = 50K$	Ήz	B) $f_{QB} = 25KHz$	C) f_{QC} = 12.5KHz	D) f _{QD} =6.25KHz
	5.When an 8	3-bit serial	in/serial out shift registe	er is used for a 16µ s time	delay, the clock frequency
	must be ().			

- (2) Write out the minterm list for F1(QC, QB, QA),F2(QC, QB, QA)和 F3(QC, QB, QA). (6)
- (3) Draw the schematic diagram. (3')

座位号

考场教室

任课教师

Fig. 2

Function table for 74163

Inputs					ırreı	nt St	ate	Next state				Output
CLR_L	LD_L	ENT	ENP	Q_{I}	Q _C	Q_B	Q _A	Q_D	* Q _C *	Q_B^*	Q_A*	RCO
0	Х	Χ	Х	Χ	Χ	Χ	Χ	0	0	0	0	0
1	0	Х	Х	Χ	Χ	Χ	Χ	D	C	В	A	0
1	1	0	Х	Χ	Χ	Χ	Χ	QD	QC	QB	QA	0
1	1	Х	0	Χ	Χ	Χ	Χ	QD	QC	QB	QA	0
1	1	1	1	0	0	0	0	0	0	0	1	0
1	1	1	1	0	0	0	1	0	0	1	0	0
1	1	1	1	0	0	1	0	0	0	1	1	0
1	1	1	1	0	0	1	1	0	1	0	0	0
1	1	1	1				••••••				0	
1	1	1	1	1	1	1	1	0	0	0	0	1

V. Analyze the circuit shown in Fig. 3.

(10')

(6')

- (1) Draw the whole state diagram of (QA QB QC) for 74194.
- (2) Write out the logic function F1(QA,QB,QC) and F2(QA,QB,QC). (4')

Fig. 3

The function table for 74194

lutp	outs		Nex	Function		
S1	S0	QA*	QB*	QC*	QD*	Function
0	0	QA	QB	QC	QD	Hold
0	1	RIN	QA	QB	QC	Shift right
1	0	QB	QC	QD	LIN	Shift left
1	1	Α	В	C	D	Load