Практикум 4

Лоскутова Софья, 615 группа, химический факультет

https://colab.research.google.com/drive/1a0rROz9SmbdGt8GVq_P17mcj7MKCR-Po?usp=sharing

Задание 1

Написана функция, получающая на вход строку SMILES и выдающую на выходе трехмерное представление молекулы в виде объекта RDKit.

Рис. 1 Графическое представление тестовой молекулы

Задание 2

Написана функция, получающую на вход молекулу и значения двугранных углов, и выдающая на выходе трехмерное представление молекулы в виде объекта ASE. Функция возвращающая индексы атомов двугранных углов была ранее написана в ноутбуке. На втором рисунке результат функции CreateConformer (mol_test, [0, 0, 0, 0, 0, 0, 0, 0], True), на третьем — CreateConformer (mol_test, [120, 120, 120, 120, 120, 120, 120], True)

Рис. 2 Тестовая молекула, часть двугранных углов которой равна 0°

Рис. 3 Тестовая молекула, часть двугранных углов которой равна $\pm 120^{\circ}$

Задание 3

Написана функция глобальной оптимизации, для которой на вход подается молекула в представлении RDKit и максимальное число итераций, а на выходе возвращается список двугранных углов, при которых достигается глобальный минимум, и результаты оптимизации после каждой итерации(Trials)

Значения двугранных углов в глобальном минимуме:

Индексы	(10, 0, 1, 12)	(12, 1, 2, 14)	(14, 2, 3, 16)	(16, 3, 4, 18)	(18, 4, 5, 20)	(20, 5, 6, 22)	(22, 6, 7, 25)
Значения	97.154	-178.511	168.395	-49.099	-66.997	25.040	-105.507

Значение энергии в глобальном минимуме: -0.65106

Рис. 4 График энергий

Рис. 5 Конформация тестовой молекулы в глобальном минимуме

Таблица 1. Координаты конформации тестовой молекулы в глобальном минимуме

atom	X	y	Z
С	-4.170793603	0.520374466	-0.003497568
С	-2.916523775	0.013643374	0.637200745
С	-2.125253847	-0.893160972	-0.283254481
С	-2.986732163	-2.102532159	-0.558279256
С	-4.407843967	-1.698078708	-0.937714424
С	-4.805353012	-0.604377993	0.004980038
С	-5.058473257	-1.075606681	1.403055734
С	-4.158700283	-2.22598066	1.726796314
Н	-4.149570628	0.478736144	-1.105171603
Н	-5.016560961	-0.111320041	0.394017831
Н	-4.362250442	1.566590199	0.281165618
Н	-2.248651059	0.877367753	0.901489066
Н	-3.122838282	-0.565565545	1.574635525
Н	-1.198639893	-1.170666489	0.263003166
Н	-1.888962495	-0.323118508	-1.208026384
Н	-2.547294788	-2.618080388	-1.436832082
Н	-3.017177097	-2.735615284	0.335732344
Н	-4.375954013	-1.24045649	-1.965855458
Н	-5.084574137	-2.552507256	-0.967222617
Н	-4.062031669	0.214672606	0.042620689
Н	-5.742910632	-0.149982484	-0.392685953
Н	-4.790708366	-0.240241089	2.088186927
Н	-6.126059491	-1.29906203	1.602944871
Н	-3.382018683	-2.397177613	0.927683967
Н	-4.705040798	-3.178920939	1.810115751
Н	-3.589964509	-2.054547965	2.66397006
	•	•	