324

CHAPTER SEVEN

 $SEP(p(\sigma x.WN(x)) + p(\sigma x.WIJ(x)))$

we avoid this problem.

ANSWERS TO EXERCISES

CHAPTER ONE

Exercise 1

(a) If φ is not true in M, then for some $g: M \not\models \varphi$. Then (by the lemma) for all $g: M \not\models \varphi$, hence φ is false in M. Similarly, if φ in not false in M, by the same argument φ is true in M. Hence φ cannot be both not true in M and not false in M. So φ is either true or false in M.

(b) We know that for some $d \in D$: $d \in i(P)$ and for some $d' \in D$: $d' \notin i(P)$. Hence we know that for some g (a g where g(x) = d) $M \models P(x)[g]$ and that for some g' (a g' where g'(x) = d') $M \not\models P(x)[g]$. The first tells us that P(x) is not true, the second that P(x) is not false, so P(x) is undefined. Of course, the same argument applies to $\neg P(x)$.

(c) Take any assignment $g. M \models P(x) \lor \neg P(x)[g]$ iff $M \models P(x)[g]$ or $M \models \neg P(x)[g]$ iff $g(x) \in i(P)$ or $g(x) \notin i(P)$. The latter is of course true (for any g). So for all $g: M \models P(x) \lor \neg P(x)[g]$, so $P(x) \lor \neg P(x)$ is true in M (in any M, for that matter). A similar argument tells you that $P(x) \land \neg P(x)$ is false in M, because there is no g such that $g(x) \in i(P)$ and $g(x) \notin i(P)$.

So you see that, although P(x) and $\neg P(x)$ themselves are undefined, $P(x) \lor \neg P(x)$ and $P(x) \land \neg P(x)$ are not.

Exercise 2

 $\varphi[x]$ and $\forall x \varphi[x]$ are logically equivalent if for every $M: M \models \varphi[x]$ iff $M \models \forall x \varphi[x]$. $M \models \varphi[x]$ iff for every $g: M \models \varphi[x][g]$ iff for every g and every $g: M \models \varphi[x][g_x^d]$ if for every $g: M \models \forall x \varphi[x][g]$ iff $M \models \forall x \varphi[x]$.

Exercise 3

- 1. Every atomic formula has an equal number of left and right brackets.
 - 2. Assume φ has an equal number of left and right brackets. $\neg \varphi$

doesn't introduce any brackets, so $\neg \varphi$ has the same number of left and right brackets. The same holds for $\exists x \varphi$.

3. Assume that each of φ and ψ has an equal number of left and right brackets. $(\varphi \wedge \psi)$ introduces one left and one right bracket, so $(\varphi \wedge \psi)$ has an equal number of left and right brackets as well.

Exercise 4

- (a) Suppose Δ is not deductively closed. This means that for some φ : $\Delta \vdash \varphi$ but $\varphi \notin \Delta$. But then $\Delta \cup \{\varphi\}$ is consistent, and since $\Delta \subseteq \Delta \cup \{\varphi\}$ and $\Delta \neq \Delta \cup \{\varphi\}$, Δ is not maximally consistent.
- (b) Suppose that for some φ : $\Delta \not\vdash \varphi$ and $\Delta \not\vdash \neg \varphi$. Since $\Delta \not\vdash \neg \varphi$, $\Delta \cup \{\varphi\}$ is consistent. But then, because Δ is maximally consistent, $\varphi \in \Delta$. If $\varphi \in \Delta$ then $\Delta \vdash \varphi$. Contradiction.

Exercise 5

Soundness

- (1) if $\Delta \vdash \varphi$ then $\Delta \models \varphi$
- (2) if Δ has a model then Δ is consistent

$$(2) \rightarrow (1)$$

Suppose $\Delta \not\models \varphi$. If $\Delta \not\models \varphi$, Then for some model $M: M \models \Delta$ and $M \not\models \varphi$, hence $\Delta \cup \{ \neg \varphi \}$ has a model. Then (by 2) $\Delta \cup \{ \neg \varphi \}$ is consistent, but then $\Delta \not\models \varphi$.

$$(1) \rightarrow (2)$$

Suppose Δ is inconsistent. Then $\Delta \vdash \bot$. Hence (by 1) $\Delta \models \bot$. But that means that Δ does not have a model.

Completeness

- (1) if $\Delta \models \varphi$ then $\Delta \vdash \varphi$
- (2) if Δ is consistent then Δ has a model

$(2) \rightarrow (1)$

Suppose $\Delta \not\vdash \varphi$. If $\Delta \not\vdash \varphi$, then $\Delta \cup \{ \neg \varphi \}$ is consistent. Then (by 2) $\Delta \cup \{ \neg \varphi \}$ has a model, but then $\Delta \not\models \varphi$.

$$(1) \rightarrow (2)$$

Suppose Δ doesn't have a model. Then $\Delta \models \bot$. Hence (by 1) $\Delta \vdash \bot$, so Δ is inconsistent.

Exercise 6

Suppose every finite subset of Δ has a model. Then (by completeness) every finite subset of Δ is consistent. Then (by definition of consistency) Δ is consistent. Then (by completeness) Δ has a model.

Exercise 7

Fact 3: If φ were to define infinity then $\neg \varphi$ would define finiteness.

Exercise 8

Fact 4: Our set of sentences $\{\varphi_1, \varphi_2, \ldots\}$ defines infinity.

Exercise 9

2 + 2 = 4 means SSO + SSO = SSSSO. SSO + SSO = (axiom 4) S(SSO + SO) = (axiom 4) SS(SSO + O) = (axiom 3) SSSSO.

Exercise 10

The statements expressing that \subseteq is reflective and transitive are just logical tautologies. Antisymmetry follows from logic and extensionality. If $\forall x[x \in A \to x \in B]$ and $\forall x[x \in B \to x \in A]$ then $\forall x[x \in A \leftrightarrow x \in B]$, hence with extensionality A = B.

Exercise 11

Given set A. Comprehension and extensionality tell you that the unique set $\{a \in A: a \neq a\}$ exists, this is of course \emptyset .

Exercise 12

ZF is a first order theory. If ZF is consistent, then any subset of ZF is obviously also consistent, so $ZF - \{F\}$ is consistent.

Exercise 13

Well, nothing because, as I said, we can prove it from the other axioms. But that is not what I meant, suppose we leave out both substitution and separation, what happens? The theory is not going to be inconsistent, because the same argument as above applies. You are just for a lot of sets unable to prove in the resulting theory that they exist.

CHAPTER TWO

Exercise 1

(a) $\langle E, < \rangle$ and $\langle 0, < \rangle$ are substructures of $\langle N, < \rangle$. $\langle E, <, + \rangle$ is a substructure of $\langle N, <, + \rangle$, But not $\langle 0, <, + \rangle$, because **0** is not closed under +. Also not $\langle E, < \rangle$ and $\langle 0, < \rangle$, because they are of the wrong type.

(b) Say that the type of A is a subtype of the type of B if B has relations, operations, special elements corresponding to all relations, operations and special elements of A, but maybe more. Let B' be the result of disregarding in B all the relations, operations and special elements that do not correspond to any in A. Then A is a generalized substructure of B iff A is a substructure of B'.

Besides the ones that are already substructures, $\langle \mathbf{E}, < \rangle$ is a generalized substructure of $\langle \mathbf{N}, <, + \rangle$.

Exercise 2

We know already that $\lambda x.g(f(x))$ is a function from A into C. Suppose $R_A(a,a')$. Then, because f is a homomorphism, $R_B(f(a),f(a'))$, and because g is a homomorphism,

$$R_C(g(f(a)), g(f(a'))).$$

 $g(f(a *_A a'))$

= $g(f(a) *_B f(a'))$ (because f is a homomorphism) = $g(f(a)) *_C g(f(a'))$ (because g is a homomorphism).

Of course, g(f(a)) = a, for the special elements.

Exercise 3

1. h is an isomorphism between A and h(A).

There is no relation between a and the other elements in A, so, trivially, the indicated function preserves the relation. The function is one—one, so indeed it is a bijective homomorphism. But not an isomorphism, because the relation between d and e is not preserved in A.

Exercise 4

- (A) Relational structures
 - (a) not a homomorphism, so it is none of the others either.
 - (b) only a homomorphism.
 - (c) again only a homomorphism
 - (d) epimorphism
 - (e) embedding
 - (f) embedding
 - (g) isomorphism
 - (h) isomorphism
 - (i) automorphism (the trivial automorphism, given by identity)
 - (i) a non-trivial automorphism
 - (k) isomorphism. Strictly speaking not an automorphism, because the first structure is $\langle A, \leq \rangle$ and the second $\langle A, \geq \rangle$. Of course, up to duality those two structures are the same, so in this sense it is an automorphism.
 - (l) homomorphism
 - (B) Algebras.
 - (a) of course also not a homomorphism.
 - (b) homomorphism

- (c) not a homomorphism: $b \wedge c = a$, $f(b \wedge c) = f$, but $f(b) \wedge f(c) = g \wedge g = g$
- (d) not a homomorphism: for the same reason as under (c).

Remark: note the difference between (c) and (d): (c) does preserve \vee (it is called a join-homomorphism), but not \wedge . (d) preserves neither \vee nor \wedge .

- (e) embedding
- (f) not a homomorphism $c \lor d = e$, but $f(c \lor d) = l$ and $f(c) \lor f(d) = k$.
- (g) and (h) are isomorphisms; (i) and (j) are automorphisms; (k) is again an isomorphism (and an automorphism up to duality).
 - (l) homomorphism

Exercise 5

(a)

- 3.
- 4.
- 5.
- 6.
- 7. •
- 8.
- (b) Suppose for some a: R(a, a), then of course R(a, a) and R(a, a), and hence for some a, b (a = b): R(a, b) and R(b, a).
- (c) Suppose R(a, b) and R(b, a). Then, by transitivity, R(a, a), which contradicts irreflexivity.

(d)

Exercise 6

- 1. \leq is reflexive, $a \geq a$ iff $a \leq a$, so \geq is reflexive.
- 2. Assume $a \ge b$ and $b \ge c$. Then we know that $c \le b$ and $b \le a$. \le is transitive, so $c \le a$, hence $a \ge c$.
 - 3. Assume $a \ge b$ and $b \ge a$. Then $b \le a$ and $a \le b$ and hence a = b.

Exercise 7

Exercise 8

- 1. Suppose $b \in [a]_{\approx}$. i.e. $b \in \{c: c \approx a\}$, so $b \approx a$. Then $a \approx b$ (because \approx is symmetric), hence $a \in [b]_{\approx}$. Now, if $c \in [a]_{\approx}$, then because $a \in [b]_{\approx}$ and \approx is transitive, $c \in [b]_{\approx}$. The same, the other way round, of course: if $c \in [b]_{\approx}$, then $c \in [a]_{\approx}$, because $b \in [a]_{\approx}$ and \approx is transitive.
 - 2. Since \approx is reflexive, $a \approx a$, so $a \in [a]_{\approx}$ (for any a).
- 3. Suppose that $[a]_{\approx} \cap [b]_{\approx} \neq \emptyset$, say, $c \in [a]_{\approx}$ and $c \in [b]_{\approx}$. Then, by (1) $[a]_{\approx} = [c]_{\approx}$ and $[b]_{\approx} = [c]_{\approx}$, and hence $[a]_{\approx} = [b]_{\approx}$.
- 4. Suppose $a \in A$. Then $a \in [a]_{\approx}$ and hence $a \in \bigcup \{[b]_{\approx} : b \in A\}$. Suppose $a \in \bigcup \{[b]_{\approx} : b \in A\}$. Then for some $[b]_{\approx}$ $(b \in A)$: $a \in [b]_{\approx}$. $[b]_{\approx} = \{a \in A : a \approx b\}$, hence by definition of $[b]_{\approx}$ $a \in A$.

Exercise 9

Suppose $X \le Y$ and $Y \le X$. Then for some $a \in X$, $b \in Y$: aRb and for some $b' \in Y$, $a' \in X$: b'Ra'. We then know the following:

aRb; bRb' (by def. of Y), b'Ra', a'Ra (by def. of X), hence, by transitivity, bRa, but that means (by def. of X) that $b \in X$. Hence $X \cap Y \neq \emptyset$, and thus X = Y (partition).

Exercise 10

Proof of the lemma. (a) Suppose $\exists c: c \le b$ and d(a) = d(c). Obviously $d(b) = d(c) + |\{d: c < d \le b\}|$, so $d(c) \le d(b)$ and hence $d(a) \le d(b)$.

(b) Suppose $d(a) \le d(b)$. Clearly the only interesting situation is the one where a and b are on different branches, where they are incomparable. So suppose that to be the case and say, d(a) = m and d(b) = n, with $m \le n$. So, $|\{c: c \le b\}| = n - 1$. But, of course, we can just count back in $\{c: c \le b\}$, until we find an element $c \in \{c: c \le b\}$, such that $|\{d: d \le c\}| = m - 1$: $c \le b$ and d(c) = d(a).

Proof of the theorem.

Transitivity. Suppose $X \le Y$ and $Y \le Z$. Then for some $a \in X$, $b \in Y$, $a \le b$ and for some $b' \in Y$, $c \in Z$: $b' \le c$. We know that $a \le b$, hence $d(a) \le d(b)$; we know that d(b) = d(b'), hence we know that $d(a) \le d(b')$. Then, by the lemma, we know that there is an $a' \in X$, such that $a' \le b'$. By transitivity, $a' \le c$, hence indeed $X \le Z$.

Antisymmetry.

Suppose $X \le Y$ and $Y \le X$. That means that for some $a \in X b \in Y a \le b$ and for some $b' \in Y a' \in X b' \le a'$. We know (by def.) that d(b) = d(b') and d(a) = d(a'). Since $a \le b$ and $b' \le a'$, it then follows that $d(a) \le d(b)$ and $d(b) = d(b') \le d(a') = d(a')$, so $d(b) \le d(a)$, hence d(a) = d(b), and thus, by definition of X, $b \in X$. Hence, $X \cap Y \ne \emptyset$ and hence X = Y.

Linearity: $X \le Y$ or $Y \le X$.

Suppose $X \not \leq Y$. Then for all $a \in X$, all $b \in Y$: $a \not \leq b$. We know X and Y are non-empty, so take $a \in X$ and $b \in Y$.

 $a \le b$. Now suppose that $d(a) \le d(b)$. Then for some $a' \in X$: $a' \le b$

(by the lemma), contradicting the assumption. So we know that d(b) < d(a). But then, again by the lemma, we know that for some $b' \in Y$: b' < a, and hence we know that $Y \le X$.

Exercise 11

We know that in a semitree for every a and b, there is a unique latest point, earlier than both a and b, call this $\bigcirc(a,b)$, the origin of a and b. If $x \le y$, let us define d(y,x), the distance from y to x as: $d(y,x) = |\{z: x \le z \text{ and } z \le y\}| - 1$.

Since $\bigcirc(a,b) \le a$ and $\bigcirc(a,b) \le b$, $d(a,\bigcirc(a,b))$ and $d(b,\bigcirc(a,b))$ are both well defined. So we can define equidistance as:

$$\approx := \lambda a \lambda b. \ d(a, \bigcirc (a, b)) = d(b, \bigcirc (a, b))$$

This is obviously going to give us the right result.

Exercise 12

Assume that for some $b: a \le b$ and $a' \le b$. Look at $\{c: c \le b\}$. This is, by definition a linear order, and since both a and a' are in it, it follows that $a \le a'$ or $a' \le a$.

Exercise 13

(b) Take any two minimal elements a and b. Either $a \le b$ or $b \le a$ (by linearity). But a < b is false, because b is minimal, and similarity b < a is false, hence a = b.

Exercise 14

(a) The following poset is an example:

So, the posit can be a collection of linear orders.

(b) $\forall x \forall y \exists z [(z \le x \land z \le y) \lor (x \le z \land y \le z)]$. This excludes the previous example: take any a and b: they have a common predecessor c or a common successor, say a predecessor c. Then, by no branching to the future $a \le b$ or $b \le a$. Similarly, if they have a common successor, you use no branching to the past.

(d) A treelike structure is a strict partial order, which is not branching to the past and where every two elements have a common predecessor.

Exercise 15

(a) Because of the following possibility:

a has a direct successor, but the branch between a and b may be dense.

(b) $\langle T, < \rangle$ is discreet iff

$$\forall a \forall b [a < b \rightarrow \exists c [a < c \le b \land \neg \exists d [a < d < c]]$$

Exercise 16

(a) T itself is a linear order in T, so it has a minimal element.

(b) I. Suppose T is not discreet to the future. Then there is an element a that has successors, but no direct successor. Look at $\{b: a < b\}$, the set of all a's successors. This set doesn't have a minimal element (because that would be a's direct successor. This contradicts well foundedness.

II. The ordinal numbers ordered by < are a good example: this structure is linear, continuing to the future and well founded. N with a copy of N behind it is another example. These structures are well founded all right, but not discreet, because ω in the ordinal numbers and the second 0 in N * N don't have a direct predecessor.

Exercise 17

Intuitively we want $\{a, b, d\}$ and $\{a, c, d\}$ to be intervals in a structure like:

They are chains all right, but not convex sets: not everything between a and d is in $\{a, b, d\}$.

Exercise 18

 T_1 and T_2 are chains (because T is already linear). Suppose t < t' < t'' and $t, t'' \in T_1$. Since the cut is a bipartition, either $t' \in T_1$ or $t' \in T_2$. Suppose $t' \in T_2$: then $t'' \in T_1$ and $t' \in T_2$ but not t'' < t', contradicting the definition of cut. So $t' \in T_1$, and T_1 is convex. The same argument for T_2 .

Exercise 19

Suppose $\langle T_1, T_2 \rangle$ determines a transition. Then either T_1 has a maximum and T_2 no minimum or the other way around. Suppose T_1 has a maximum m. m does have successors (because T_2 is non-empty), but doesn't have a direct successor (because T_2 does not have a minimum). So T is not discreet to the future. A similar argument holds for the other case.

Suppose T is not discreet; say, not discreet to the future. That means that there is some element t that has successors, but no direct successor. Look at $\langle \{t': t' \leq t\}, \{t': t < t'\} \rangle$. This is a cut that determines a transition (t) is the maximum of the left part, the right part doesn't have a minimum).

The same argument if T is not discreet to the past.

Exercise 20

The simplest way to go is to simply use the definitions of tree and tree-like structure.

A diabolo is a structure $\langle A, \leq, m \rangle$ where

- 1. $\langle \{a \in A : m \le a\}, \le, m \rangle$ is a tree
- 2. $\{\{a \in A : a \le m\}, \ge, m\}$ is a tree
- 3. $\forall a \in A : a \leq m \text{ or } m \leq a.$

A diabolo-like structure is a structure $\langle A, \leq, m \rangle$ where

- 1. $\langle \{a \in A : m \le a\}, \le, m \rangle$ is a tree-like structure with origin m
- 2. $\langle \{a \in A : a \le m\}, \ge, m \rangle$ is a tree-like structure with origin m
- 3. $\forall a \in A: a \leq m \text{ or } m \leq a$

Exercise 21

(a)
$$\{a\} \qquad \{a,b\} \\ \{b\}$$

(e) [No woman] = $\{\emptyset, \{a\}, \{b\}, \{d\}, \{a, b\}, \{a, d\}, \{b, d\}, \{a, b, d\}\}$

No woman moves entails No woman walks entails No woman walks fast

No woman moves entails No woman skates

Downward entailing:

if $X \in [No \text{ woman}]$ and $Y \subseteq X$ then $Y \in [No \text{ woman}]$

See the graph under (d).

Other example: at most three men

Exercise 22

The posets with three elements are:

2. o

5.

The poset with eight elements is:

1.

2.

3.

4.

5.

CHAPTER THREE

Exercise 1

(a) $PP\varphi \rightarrow P\varphi$ is true on all transitive frames.

Let F be transitive and assume that in some point t $PP\varphi$ is true. That means that for some t' < t $P\varphi$ is true, and hence for some t'' < t' φ is true. Since \leq is transitive, it follows that t'' < t, and hence $P\varphi$ is true in t.

(b) If F is not transitive we can give a counterexample to $PP\varphi \to P\varphi$. Let F be non-transitive, say t'' < t' and t' < t but not t'' < t. Assign 1 to p in t'', and 0 to p in t' (and to all t' such that t' < t). PPp is true in t, but Pp is not true in t. So $PPp \rightarrow Pp$ is false in t, and hence $PP\varphi \rightarrow P\varphi$ is not true on the frame.

Exercise 2

 $F\varphi \rightarrow FF\varphi$ expresses density.

(a) $F\varphi \rightarrow FF\varphi$ is true on all dense frames.

Let F be a dense frame. Assume $F\varphi$ is true in t. That means that for some $t' > t \varphi$ is true in t'. Since F is dense, there is a t'' between t and t'. In t'' $F\varphi$ is true, hence in t $FF\varphi$ is true.

(b) Let F be a non-dense frame. Say, t < t' and nothing is in between t and t'. Assign 1 to p in t', and 0 in all t'' later than t besides t'. Then Fp is true in t, but FFp is false in t. Hence $Fp \to FFp$ is false in t, hence $F\varphi \to FF\varphi$ is not true on the frame.

Exercise 3

(a) Let T be a tautology (for instance $p \vee \neg p$).

$$P\varphi := S(\varphi, T)$$

This says that there is a moment in the past where φ was true and at every later moment a tautology was true, which says just that there is a moment in the past where φ was true.

$$F\varphi := \ U\left(\varphi,T\right)$$

$$H\varphi := \neg P \neg \varphi; \quad G\varphi := \neg F \neg \varphi$$

(b)
$$U(\varphi \wedge U(\neg \varphi \wedge \neg U(\varphi, T), \varphi), \neg \varphi)$$

At some moment t in the future φ is true and before that it was never true. At some moment t' later than $t \neg \varphi$ is true and between t and t' φ is true at every moment. After t' φ is never true again. In other words: after having been false uninterruptedly (from the present), φ will be uninterruptedly true for a while and then never be true again after.

Exercise 4

The semantics given for before is:

$$pBq(t_0) \text{ iff } \exists t_1 < t_0[q(t_1) \land \exists t_2 < t_1[p(t_2)]]$$

 $pB(q \lor r)$ does not entail pBq: if there is a moment in the past where p is true and a later moment where either p or q is true, it doesn't follow that there is a moment in the past where p is true and a later moment where q is true.

The idea is: p before q means: there is a moment in the past where p is true and that moment is before every moment where q is true.

Two alternatives:

$$pBq(t_0)$$
 iff $\exists t_1 < t_0[p(t_1) \land \exists t_2 : t_1 < t_2 < t_0[q(t_2) \land \forall t[t < t_0 \land q(t) \rightarrow t_1 < t]]]$

or

$$pBq(t_0) \text{ iff } \exists t_1 < t_0[p(t_1) \land \forall t_2[t_2 < t_0 \land q(t_2) \to t_1 < t_2]]$$

The first extends the given clause, the second changes it. They share the crucial point that the proposition in the before context is analyzed as being in the antecedent clause of a universal statement, which is a downward entailing context. The second definition makes the before clause indeed downward entailing, the first does not, for the same reason as the original clause was not downward entailing

Take John moved before Mary moved and John moved after Mary moved.

Try to cancel the entailments/implicatures:

- (a) John moved before Mary moved. In fact, John never moved.
- (b) John moved before Mary moved. In fact, Mary never moved.
- (c) John moved after Mary moved. In fact, John never moved.
- (d) John moved after Mary moved. In fact, Mary never moved.

Of these sentences (a), (c) and (d) are clearly contradictions. But (b) doesn't seem to be a contradiction. Consequently, *Mary moved* is an implicature in (b), but an entailment in (d), and *John moved* is an entailment in both.

$$\neg (pAq)(t_0) \text{ iff } \forall t_1 < t_0[p(t_1) \to \forall t_2 < t_1[\neg q(t_2)]]$$

$$\neg (pBq)(t_0) \text{ iff } \forall t_1 < t_0[q(t_1) \to \exists t[t < t_0 \land p(t) \land t_1 \nleq t]]]$$

A model that makes pAq true but qBp false is:

$$t - - t' - - t''$$
 $p q p$

So, First John hit Mary, then she hit him, then he hit her again. If the judge asks me: Did John hit Mary after she hit him, I will certainly say yes. But if the judge asks me: Did Mary hit John before he hit her, I tend to say no, because John started.

CHAPTER FOUR

Exercise 1

The illusion of incompatibility arises if in this dense structure you only check the witness* condition from left to right, i.e. you look at z and z' where z < z', and for those you can't satisfy witness*. But z' and z' are such that z' doesn't precede z, and certainly no subperiod of z' precedes any subperiod of z, so there is no incompatibility.

Exercise 2

1. < is a strict partial order:

Irreflexivity: assume p < p. Then for every $t \in p$: t < t.

Transitivity: assume p < q and q < r. That means that for every $t \in p$ and every $t' \in q$: t < t'. Similarly for every $t' \in q$ and for every $t'' \in r$, t' < t''. Clearly then for every $t \in p$ and every $t' \in r$: t < t', hence p < r.

- 2. \sqsubseteq is a partial order: this is obvious because \subseteq is a partial order.
- 3. Monotonicity: Assume p < q and $r \sqsubseteq p$. p < q means that every point in p is before every point in q. $r \sqsubseteq p$ means that $r \subseteq p$, hence clearly every point in r is before every point in q. The other one goes similarly.
- 4. Convexity. Let p < q < r and $p \sqsubseteq s$ and $r \sqsubseteq s$. This means that p and r are subsets of s and every point in q is later than every point in p but earlier than every point in r. s is a period, hence it is convex, so every point in q is in s, hence $q \sqsubseteq s$.

5. Conjunction: this obviously follows from the second clause of period set.

Exercise 3

- 1. Assume $q \in [p]$ and $q \sqsubseteq r$. Then $p \sqsubseteq r$ and hence $r \in [p]$.
- 2. Assume $q, r \in [p)$. Then $p \sqsubseteq q$ and $p \sqsubseteq r$, hence $p \sqsubseteq q \sqcap r$, hence $q \sqcap r \in [p)$.
 - 3. $p \in [p)$, hence [p) is not empty, hence [p) is consistent.

Exercise 4

- 1. Assume $p \bigcirc_1 q$. That means that for some e in p and some e' in $q: e \bigcirc e'$. The latter means that for some $e'': e'' \sqsubseteq e$ and $e'' \sqsubseteq e'$. Take $r = [e'']_{\approx}$. $r \sqsubseteq p$ and $r \sqsubseteq q$, hence $p \bigcirc_2 q$.
- 2. Assume $p \bigcirc_2 q$. Then for some $r: r \sqsubseteq p$ and $r \sqsubseteq q$. Hence for some $e \in r$ and some $e' \in p$: $e \sqsubseteq e'$ and for some $e'' \in r$ and some $e''' \in q$: $e'' \sqsubseteq e'''$. Since $e, e'' \in q$: $e \approx e''$. Hence $e \sqsubseteq e'''$, so $e \sqsubseteq e'$ and $e' \in p$ and $e \sqsubseteq e'''$ and $e''' \in q$, hence $e' \bigcirc e'''$, hence $p \bigcirc_1 q$.

Exercise 5

(a)

$$a = \{1, 7\}; b = \{2, 4, 7\}; c = \{3, 4, 8\}; d = \{3, 5, 9\}; e = \{6, 9\}$$

 $a < b < c < d < e$

$$\begin{cases} \{b\} & \{c,d\} \\ \{a\} & \{b,c\} \end{cases} & \{d\} & \{e\}$$

$$\{a,b\} & \{c\} & \{d,e\} \end{cases}$$

Let's try to reconstruct the periods. What we would want is:

$$\{a\}$$
 $\{b\}$ $\{c,d\}$ $\{e\}$ $\{b,c\}$ $\{d\}$

But this is not a period set, because $\{b, c\} \cap \{c, d\} = \{c\}$, but there is no period $\{c\}$.

CHAPTER FIVE

Exercise 1

q overlaps the beginning of p: $q \cap p \land \neg \exists r [r \sqsubseteq p \land r < q]$. Similarly q' overlaps the end of p.

Exercise 2

Assume that the period structure is dense and assume that $B\varphi$ holds at p. That means that p can be split in p' where φ is false and p'' where φ is true, with p' < p''. Since the period structure is dense, we can split p' into q and q', with q < q' and p'' into r and r' with r < r'. Consequently, φ is false at q' and true at r. But then $q' \sqcup r$ satisfies condition (1), hence $B\varphi$ does not hold at p.

 $B\varphi$ can only hold at periods p that are the union of two atomic periods t and t' where at t φ is false and at t' φ is true. Clearly in that case condition 1 is satisfied and there is no subperiod for which that holds (clearly $B\varphi$ cannot be true in an atomic period).

Suppose that p is not the union of two atoms but satisfies Condition 1. Partition p in the part where φ is false and the part where φ is true.

There is either a jump, a transition or a gap between those periods (where a jump means that there is an atom overlapping the end of the part where φ is false and an atom overlapping the beginning of the part where φ is true). In all these cases you can find a subperiod of p satisfying Condition 1.

Exercise 3

φ	$\neg \varphi$	$A\varphi$	$\neg A \varphi$	$\varphi \wedge \neg \varphi$	$\varphi \lor \neg \varphi$	$\varphi \wedge \neg A \varphi$	$\varphi \lor \neg A\varphi$	$A\varphi \wedge \neg A\varphi$	$A\varphi \lor \neg A\varphi$
1	0	1	0	0	1	0 .	1	0	1
0	. 1	0	1	0	1	0	1	0	1
*	*	0	1	*	*	*	1	0	1

CHAPTER SIX

Exercise 1

(a) The first one is a lattice, the second isn't: there is not a unique smallest element that is the join of the two elements directly above the bottom.

It is easy to check that all the joins and meets are the same.

We have to show that for all $X \subseteq A$: $\forall X \in A$. Let $X \neq \emptyset$. Look at $\{y \in A : \forall x \in X[x \le y]\}$. This is a subset of A, hence $\land \{y \in A : \forall x \in X[x \le y\} \in A$. This is, of course, $\lor X$. Let $X = \emptyset$.

Since there is no $y \in \emptyset$, trivially $\forall y \in A \forall x \in \emptyset[x \le y]$. Hence $\{y \in A: \forall x \in \emptyset[x \le y]\} = A$. Hence $\{y \in A: \forall x \in \emptyset[x \le y]\} = A$. So $\forall \emptyset = A$.

- (c) This follows directly from the previous considerations: since A is complete $\forall A$ and $\land A$ are in A. $\forall A$ is the maximum of A, $\land A$ is the minimum of A.
- (d) Suppose A has two distinct maximal elements a and b. Since A is a lattice $a \lor b$ exists and $a \le a \lor b$ and $b \le a \lor b$. But then a and b wouldn't be maximal.
- (e) If A is a finite lattice then every subset X of A is finite. Then it follows by the theorem given that for every non-empty subset X of $A \lor X$, $\land X \in A$. This means that A has a minimum $\land A$ and a maximum $\lor A$. By the argumentation under (a) $\lor \emptyset = \land A$, similarly $\land \emptyset = \lor A$, hence $\lor \emptyset$, $\land \emptyset \in A$, so A is complete.

Exercise 2

Let $X \subseteq \text{pow } B$. Then obviously $\bigcup X, \cap X \subseteq B$, hence $\bigcup X, \cap X \in \text{pow } B$.

Exercise 3

The singleton sets.

Exercise 4

Define in terms of the intersection operation \cap in the interval lattice the new operation \wedge :

Let i and i' be non-singleton intervals. Define:

$$i \wedge i' := i \cap i'$$
 if $i \cap i'$ is not a singleton
:= \emptyset if $i \cap i'$ is a singleton

Then eleiminate all singletons from the structure. The structure is a complete atomless lattice. To get a structure that is neither atomless, nor atomic, leave, say, one atom $\{t\}$ and modify the above definition replacing 'not a singleton' by 'not a singleton except $\{t\}$ ' twice.

Exercise 5

A.1. $\langle A, * \rangle$ is a semilattice, so * is idempotent, commutative and associative. Let \leq_{\wedge} be as given.

a. \leq_{\wedge} is a partial order.

 $- \leq_{\wedge}$ is reflexive: $a \leq_{\wedge} a$. This means a * a = a, which is idempotency.

 $- \le_{\wedge}$ is transitive. Assume $a \le_{\wedge} b$ and $b \le_{\wedge} c$. a * b = a and b * c = b. Then a * c = a * b * c (using the first) = a * b (using the second) = a (using the first).

 $- \leq_{\wedge}$ is antisymmetric. Assume $a \leq_{\wedge} b$ and $b \leq_{\wedge} a$. This means a * b = a and b * a = b, then, by commutativity a = b.

b. * is meet in \leq_{\wedge}

 $-a*b \le a$. This means (a*b)*a = a*b. (a*b)*a = (b*a)*a = b*(a*a) = b*a.

– Similarly, $a * b \leq_{\land} b$.

– Assume $c \leq_{\wedge} a$ and $c \leq_{\wedge} b$. Then c*a=c and c*b=c. Then c*(a*b)=(c*a)*b=c*b=c. Hence $c \leq_{\wedge} a*b$, so indeed a*b is the meet of a and b. So we have proved that $\langle A, \leq_{\wedge} \rangle$ is a meet semilattice.

2. The argument that $\langle A, \leq_{\vee} \rangle$ is a join semilattice goes in exactly the same way:

a. \leq_{\vee} is a partial order.

 $- \leq_{\vee}$ is reflexive: $a \leq_{\vee} a$. This means a * a = a, which is idempotency.

 $- \le_{\lor}$ is transitive. Assume $a \le_{\lor} b$ and $b \le_{\lor} c$. a * b = b and b * c = c. Then a * c = a * b * c (using the second) = b * c (using the first) = c (using the second).

 $- \le_{\lor}$ is antisymmetric. Assume $a \le_{\lor} b$ and $b \le_{\lor} a$. This means a * b = b and b * a = a, then, by commutativity a = b.

b. * is join in \leq_{\vee} .

 $-a \le a * b$. This means a * (a * b) = a * b. a * (a * b) = (a * a) * b = a * b.

- Similarly, $b \leq_{\vee} a * b$.

- Assume $a \le c$ and $b \le c$. Then a * c = c and b * c = c. Then (a * b) * c = a * (b * c) = a * c = c, hence $a * b \le c$, so indeed a * b is the join of a and b. So we have proved that $\langle A, \leq c \rangle$ is a join semilattice.

B. Let $\langle A, \leqslant \rangle$ be a join semilattice and $\langle A, \vee \rangle$ be the semilattice we get when we take join as an operation. We define in $\langle A, \vee \rangle$: $a \leqslant' b$ iff $a \vee b = b$.

Claim: $a \le' b$ iff $a \le b$. This means that we have to prove: $a \le b$ iff $a \lor b = b$. This just follows from the fact that \lor is join in $\langle A, \le \rangle$.

Let $\langle A, * \rangle$ be a semilattice. Define $a \leq_{\vee} b := a * b = b$. Form $\langle A, \leq_{\vee} \rangle$. This is, as proved, a join semilattice. We form $\langle A, \vee \rangle$.

Claim: $a \lor b = a * b$. This follows obviously from the fact that we defined \leq_{\lor} that way.

C. The only thing that does hold is that we can regard a join semilattice as a meet semilattice (by turning it upside down). $\langle A, \leqslant_{\wedge} \rangle$ is a meet semilattice and $\langle A, \leqslant_{\vee} \rangle$ a join semilattice, but they are not the same structure, in particular $\leqslant_{\wedge} \neq \leqslant_{\vee}$. In fact, $\leqslant_{\wedge} = \geqslant_{\vee}$.

Exercise 6

The definition of atomic says that every non-zero element has an atom below it. Atoms, however are defined as elements that have only 0 below them. The definition of atom, hence, presupposes that the structure has a zero, hence $\langle A, \leqslant \rangle$ has a zero. Then $\forall \emptyset \in A$ and hence A is complete.

Exercise 7

(a) No. The diamond is a substructure of this structure:

It can be checked that this is a substructure by checking the joins and meets of a, b and c (1 and 0, resp.).

(b) Yes. It may look at first sight as if the structure under (a) is a substructure of this in mirror image, but if you check the distributive laws on a, b, c in the following structure, you will see that they hold here:

Exercise 8

If a has two complements b and c, then the restriction of the lattice to $\{a, b, c, 0, 1\}$ is the diamond, so the diamond is a sublattice, contradicting distributivity. We can also prove it algebraically (of course): assume: $a \wedge b = a \wedge c = 0$ and $a \vee b = a \vee c = 1$.

$$b \wedge c = b \wedge c$$

$$0 \vee (b \wedge c) = 0 \vee (b \wedge c)$$

$$(b \wedge a) \vee (b \wedge c) = (a \wedge c) \vee (b \wedge c)$$

$$b \wedge (a \vee c) = c \wedge (a \vee b) \text{ (by distributivity)}$$

$$b \wedge 1 = c \wedge 1$$

$$b = c$$

Exercise 9

(a) We know that $a \lor \neg a = \neg a \lor \neg \neg a = 1$ and we know that $a \land \neg a = \neg a \land \neg \neg a = 0$. By using the first:

$$(a \lor \neg a) \land (\neg \neg a \lor \neg a) = 1$$

and by distributivity $(a \land \neg \neg a) \lor \neg a = 1$. By using the second: $(a \land \neg a) \land (\neg \neg a \land \neg a) = 0$ and by associativity commutativity and idempotency $(a \land \neg \neg a) \land \neg a = 0$. Hence $(a \land \neg \neg a)$ is the complement of $\neg a$, so $(a \land \neg \neg a) = \neg \neg a$. Hence $\neg \neg a \le a$.

Again by using the first: $(a \lor \neg a) \lor (\neg \neg a \lor \neg a) = 1$ and by ass. comm. and idem. $(a \lor \neg \neg a) \lor \neg a = 1$. Again using the second: $(a \land \neg a) \lor (\neg \neg a \land \neg a) = 0$ and by distributivity $(a \lor \neg \neg a) \land \neg a = 0$. Hence $(a \lor \neg \neg a)$ is also the complement of $\neg a$: $(a \lor \neg \neg a) = \neg \neg a$, hence $a \le \neg \neg a$. Hence $a = \neg \neg a$.

(b)
$$(a \wedge b) \wedge (\neg a \vee \neg b) = (\text{by distributing } (a \wedge b))$$

 $(a \wedge b \wedge \neg a) \vee (a \wedge b \wedge \neg b) = 0$
 $(a \wedge b) \vee (\neg a \vee \neg b) = (\text{by distributing } (\neg a \vee \neg b))$
 $(a \vee \neg a \vee \neg b) \wedge (b \vee \neg a \vee \neg b) = 1$

Hence $(\neg a \lor \neg b)$ is the complement of $(a \land b)$, so $a \land b =$

 $\neg (\neg a \lor \neg b)$. Thus $\neg (a \land b) = \neg \neg (\neg a \lor \neg b) = \neg a \lor \neg b$. The other one goes similarly.

(c) The first one is not complemented. In the picture of Exercise 7 b does not have a complement.

The second one is complemented:

Exercise 10

Assume $a \lor b = 1$.

$$(b \land \neg a) \land a = 0$$

$$(b \land \neg a) \lor a = (b \lor a) \land (\neg a \lor a) = b \lor a = 1$$

Hence $b \vee \neg a$ is the complement of a, so $b \vee \neg a = \neg a$, hence $b \leq \neg a$. Assume $b \leq \neg a$. Then $b \wedge \neg a = b$. Hence $b \wedge a = (b \wedge \neg a) \wedge a = 0$. So $b \wedge a = 0$. We have proved:

$$a \lor b = 1$$
 entails $b \le \neg a$ entails $a \land b = 0$

A mirror argument shows:

$$a \wedge b = 0$$
 entails $\neg a \leq b$ entails $a \vee b = 1$.

This proves that all of $a \wedge b = 0$; $a \vee b = 1$; $b \leq \neg a$; $a \leq \neg b$ are equivalent.

Exercise 11

(a)

First: obviously none of $\{a\}$, $\{b\}$, $\{c\}$ generate the whole lattice. $\{a, b\}$ only generates itself.

$$\{b, c\}$$
 generates $\{b, c, 0, 2\}$
 $\{a, c\}$ generates $\{a, c, 1, 5\}$

So none of these generate the whole structure.

By the above considerations $\{a, b, c\}$ generates at least $\{a, b, c, 0, 1, 2, 5\}$. 3 is generated as the meet of a and 2; 4 is generated as the join of b and 5, hence indeed the whole structure is generated and as argued, minimally.

(b)

1.
$$\{\{a\}, \{b\}, \{c\}\}\$$

2.
$$\{\{a,b\},\{a,c\},\{b,c\}\}$$

3.
$$\{\{a\}, \{b\}, \{a, c\}, \{b, c\}\}$$

4.
$$\{\{a\}, \{c\}, \{a, b\}, \{b, c\}\}$$

5.
$$\{\{b\}, \{c\}, \{a, b\}, \{a, c\}\}$$

(c) Example

For the new sets of minimal generations you have to add x and y to the old sets.

(d) It has to be generated under the operations. In a Boolean lattice, the operations are \land and \lor . You need minimally four elements: the four atoms (the case is similar to (b) above).

As a Boolean algebra the operations are \land , \lor and \neg . To generate it as a Boolean algebra you only need two elements. In the example of Exercise 9c, e and f generate the Boolean algebra. They bring in $\neg e$ and $\neg f$. By taking meets this brings in 0, a, b and c. Taking complements brings in 1, $\neg a$, $\neg b$, $\neg c$. The join of e and f brings in $\neg d$, hence complements brings in d. The join of e and e brings in e, hence complements e.

Exercise 12

 \approx is clearly an equivalence relation (because = is). So we have to show: if $a \approx a'$ and $b \approx b'$ then:

$$(a \wedge b) \approx (a' \wedge b')$$

 $(a \vee b) \approx (a' \vee b')$

So assume $a \approx a'$ and $b \approx b'$. That means that h(a) = h(a') and h(b) = h(b'). Since h is a homomorphism $h(a \wedge b) = h(a) \wedge h(b) = h(a') \wedge h(b') = h(a' \wedge b')$. Hence $a \wedge b \approx a' \wedge b'$. Similarly for \vee .

Exercise 13

 \approx is the relation $\lambda a \lambda a' . h(a) = h(b)$.

- 1. f clearly is a surjection.
- 2. f is an injection.

Assume $f([a]_{\approx}) = f([a']_{\approx})$ that means that h(a) = h(a'), but then $a \approx a'$ and $[a]_{\approx} = [a']_{\approx}$.

f is a homomorphism.

Since \approx is a congruence relation: $[a \wedge a']_{\approx} = [a]_{\approx} \wedge [a']_{\approx}$. Hence

$$f(([a]_{\approx} \land [a']_{\approx})$$

$$= f([a \land a']_{\approx}) = h(a \land a') = h(a) \land h(a')$$

$$= f([a]_{\approx}) \land f([a']_{\approx})$$

Similarly for \vee .

Exercise 14

Exercise 15

(a) Let F be a filter in L. If $a, b \in F$ then $a \land b \in F$, by definition. If $a, b \in F$ then, since $a \le a \lor b$, $a \lor b \in F$. Hence F is a sublattice of L.

Let $a, b \in F$ and assume $a \le x \le b$, then obviously $x \in F$, since F is a filter, so F is convex.

(b) Assume that F is a filter. Then:

if
$$a, b \in F$$
 then $a \land b \in F$ (filter)
if $a \land b \in F$ then $a, b \in F$ because $a \land b \le a, b$

– Assume that F is a non-empty subset of A such that $a, b \in F$ iff $a \wedge b \in F$. Then obviously if $a, b \in F$ and $a \wedge b \in F$.

Suppose $a \in F$ and $a \le b$. Then $a = a \land b$, hence $a \land b \in F$, hence $b \in F$. So F is a filter.

This proves the equivalence of the first definition.

- If F is a filter we have proved that it is a sublattice of L. Let $a \in F$ and $b \in L$. $a \le a \lor b$, hence, because F is a filter $a \lor b \in F$.
- Let F be a sublattice of L such that if $a \in F$ and $b \in L$ then $a \lor b \in F$. If $a, b \in F$, then because F is a sublattice and hence closed under \land ,

 $a \wedge b \in F$. Let $a \in F$ and $a \le b$. Then $b = a \vee b$, $a \vee b \in F$, hence $b \in F$. So F is a filter.

This proves the equivalence of the second definition.

Non-empty subset I of L is an ideal in L iff

 $a \lor b \in I \text{ iff } a, b \in I.$

I is an ideal in L iff I is a sublattice of L such that:

if $a \in I$ and $b \le a$ then $a \land b \in I$.

Exercise 16

If L is a finite lattice every subset of L, hence every filter in L is finite. Thus $F = \{a_1, \ldots, a_n\}$. Since F is closed under conjunction it has a minimal element $a_1 \wedge \cdots \wedge a_n$ and it is the principle filter generated by that minimal element.

Exercise 17

Prime filters: none Ultrafilters: b, c, d

Prime filters: b, c, e, fUltrafilters: e, f

 $\{1, a, b, d\}$ $\{1, a, e, c\}$ $\{1, b, c, f\}$ are the prime filters and the ultrafilters.

Exercise 18

Let F be a prime filter. Hence if $a \lor b \in F$ then either $a \in F$ or $b \in F$. Suppose $a, b \in L - F$. Then, because F is prime, $a \lor b \in L - F$. Suppose $a \in L - F$ and $b \le a$. If $b \in F$, then $a \in F$, because F is a filter, hence $b \in L - F$. So L - F is an ideal, and since F is a proper filter $L - F \ne L$, so L - F is a proper ideal.

Assume that $a \wedge b \in L - \hat{F}$ and assume that both $a \in F$ and $b \in F$. Then, because F is a filter $a \wedge b \in F$, contradiction. Hence either $a \in L - F$ or $b \in L - F$, hence L - F is a prime ideal. The other side goes in the same way.

Exercise 19

Let F be a proper filter and assume that for every a: either $a \in F$ or $\neg a \in F$. Assume that $b \notin F$, then $\neg b \in F$.

Since $b \wedge \neg b = 0$ this means that b is incompatible with F, hence F is an ultrafilter.

Exercise 20

Let F be a prime filter and assume that $a \notin F$. $a \lor \neg a \in F$, hence, since F is prime, $\neg a \in F$. Hence F is an ultrafilter.

Exercise 21

There is no countable powerset Boolean algebra. If B is finite then pow B is finite, if B is countable, then pow B is uncountable.

REFERENCES

Anscombe, E., 1964, 'Before and after', in: Philosophical Review 73.

Bach, E., 1979, 'Tenses and aspects as functions of verb-phrases', in: Rohrer (Ed.), *Time, Tense and Quantifiers*, Niemeyer, Tübingen.

Ballmer, T., 1982, 'The answer is: as faltz as keen(an)', in: Theoretical Linguistics 9.

Bealer, G., 1982, Quality and Concept, Clarendon Press, Oxford.

Bealer, G. and U. Mönnich, 1989, 'Property theories', in: Gabbay and Guenthner (Eds.), Handbook of Philosophical Logic IV, Kluwer, Dordrecht.

Bennett, M., 1975, Some Extensions of a Montague Fragment of English, Diss. UCLA, IULC, Bloomington.

van Benthem, J., 1977, 'Tense logic and standard logic', in: Logique et Analyse 80.

van Benthem, J., 1983, The Logic of Time, Kluwer, Dordrecht.

van Benthem, J., 1984, 'Correspondence theory', in: Gabbay and Guenthner (Eds.), Handbook of Philosophical Logic II, Kluwer, Dordrecht.

Bunt, H., 1985, Mass Terms and Model Theoretic Semantics, Cambridge UP, Cambridge (U.K.).

Burgess, J., 1984, 'Basic tense logic', in: Gabbay and Guenthner (Eds.), *Handbook of Philosophical Logic II*, Kluwer, Dordrecht.

Chierchia, G., 1984, Topics in the Syntax and Semantics of Infinitives and Gerunds, Diss. UMass, Amherst, GLSA, Amherst; also Garland, New York (1989).

Chierchia, G. and R. Turner, 1988, 'Semantics and property theory', in: Linguistics and Philosophy 11.

Chierchia, G. and S. McConnell-Ginet, 1990, Meaning and Grammar, Cambridge UP, Cambridge (MA).

Cooper, R., 1983, Quantification and Syntactic Theory, Kluwer, Dordrecht.

Cresswell, M., 1977, 'Interval semantics and logical words', in: Rohrer (Ed.), On the Logical Analysis of Tense and Aspect, TBL Verlag, Tübingen. Reprinted in Cresswell (1985).

Cresswell, M., 1985, Adverbial Modification, Kluwer, Dordrecht.

van Dalen, D., 1986, 'Intuitionistic logic', in: Gabbay and Guenthner (Eds.), *Handbook of Philosophical Logic III*, Kluwer, Dordrecht.

Dowty, D., 1979, Word Meaning and Montague Grammar, Kluwer, Dordrecht.

Dowty, D., Wall, R., and S. Peters, 1981, Introduction to Montague Semantics, Kluwer, Dordrecht.

Dummett, M., 1973, 'The philosophical basis of intuitionistic logic', in Dummett, *Truth and other Enigmas*, Harvard UP, Cambridge (MA).

Dummett, M., 1977, Elements of Intuitionism, Oxford UP, Oxford.

Enç, M., 1981, Tense without Scope, Diss. U. of Wisconsin, Madison.

Fine, K., 1975, 'Truth, vagueness and logic', in Synthese 30.

Gallin, D., 1975, Intensional and Higher-order Modal Logic, North Holland, Amsterdam. Gamut, 1990, Logic, Language and Meaning (two volumes), U. of Chicago Press,

Chicago.

- Grätzer, G., 1978a, Universal Algebra, 2nd edition, Springer, New York.
- Grätzer, G., 1978b, General Lattice Theory, Birkhäuser, Basel.
- Groenendijk, J. and M. Stokhof, 1982, 'Semantic analysis of wh-complements', in: Linguistics and Philosophy 5.
- Groenendijk, J. and M. Stokhof, 1985, Studies in the Semantics of Questions and the Pragmatics of Answers, Diss. U. of Amsterdam.
- Heinämäki, O., 1977, Semantics of English Temporal Connectives, Diss. U. of Texas, Austin, IULC, Bloomington.
- Hendriks, H., 1987, 'Type change in semantics: the scope of quantification and coordination', in: Klein and van Benthem (Eds.), *Categories*, *Polymorphisms and Unification*, Edinburgh/Amsterdam.
- Hinrichs, E., 1981, 'Temporale Anaphore im Englischen', Magisterarbeit, U. of Tübingen.
- Hinrichs, E., 1985, A Compositional Semantics for Aktionsarten and NP reference in English, Diss. Ohio State U., Columbus.
- Hodges, W., 1983, 'Elementary predicate logic', in: Gabbay and Guenthner (Eds.), Handbook of Philosophical Logic I, Kluwer, Dordrecht.
- Humberstone, L., 1979, 'Interval semantics for tense logic', in: *Journal of Philosophical Logic* 8.
- Janssen, T., 1983, Foundations and Applications of Montague Grammar, Diss. U. of Amsterdam, Mathematical Centre, Amsterdam.
- Kadmon, N. and F. Landman, 1990, 'Polarity sensitive any and free choice any', in: Stokhof and Toorenvliet (Eds.), Proceedings of the Seventh Amsterdam Colloquium, ITLI. Amsterdam.
- Kamp, H., 1968, Tense Logic and the Theory of Linear Order, Diss. UCLA.
- Kamp, H., 1970, 'Formal properties of now', in: Theoria 37.
- Kamp, H., 1975, 'Two theories about adjectives', in: Keenan (Ed.), Semantics for Natural Language, Cambridge UP, Cambridge (UK).
- Kamp, H., 1979a, 'Events, instants and temporal reference', in: Bäuerle, Egli and von Stechow (Eds.), Semantics from Different Points of View, Springer, Berlin.
- Kamp, H., 1979b, 'Some remarks on the logic of change. Part I', in: Rohrer (Ed.), *Time*, *Tense and Quantifiers*, Niemeyer, Tübingen.
- Kaplan, D., 1978, 'Dthat', in Cole (Ed.), Syntax and Semantics 9: Pragmatics, Academic Press, New York.
- Keenan, E. and L. Faltz, 1985, *Boolean Semantics for Natural Language*, Kluwer, Dordrecht.
- Krifka, M., 1990, 'Four thousand ships passed through the lock', in: *Linguistics and Philosophy* 13.
- Kripke, S., 1965, 'Semantical analysis of intuitionistic logic I', in: Crossley and Dummett (Eds.), Formal Systems and Recursive Functions, North Holland, Amsterdam.
- Ladusaw, W., 1980, Polarity Sensitivity as Inherent Scope Relations, Diss. U. of Texas, Garland, New York.
- Landman, F., 1986, *Towards a Theory of Information*, Diss. U. of Amsterdam, GRASS 6, Foris, Dordrecht.
- Landman, F., 1989, 'Groups I' and 'groups II', in: Linguistics and Philosophy 12.
- Landman, F., 1990, 'Partial information, modality and intentionality', in: Hanson (Ed.), *Information, Language and Cognition*, U. of British Columbia Press, Vancouver.

- Lewis, D., 1973, Counterfactuals, Harvard UP, Cambridge (MA).
- Lewis, D., 1979, 'Scorekeeping in a language game', in: Bäuerle, Egli and von Stechow (Eds.), Semantics from Different Points of View, Springer, Berlin.
- Linebarger, M., 1987, 'Negative polarity and grammatical representation', in: *Linguistics and Philosophy* 10.
- Link, G., 1983, 'The logical analysis of plurals and mass terms: a lattice-theoretical approach', in: Bäuerle, Schwarze and von Stechow (Eds.), *Meaning*, *Use and the Interpretation of Language*, deGruyter, Berlin.
- Link, G., 1984, 'Hydras. On the logic of relative clause constructions with multiple heads', in: Landman and Veltman (Eds.), *Varieties of Formal Semantics*, GRASS 3, Foris, Dordrecht.
- Link, G., forthcoming, 'Plural', in: Wunderlich and von Stechow (Eds.), *Handbook of Semantics*.
- Link, G., 1987, 'Algebraic semantics of event structures', in Groenendijk, Stokhof and Veltman (Eds.), *Proceedings of the Sixth Amsterdam Colloquium*, ITLI, Amsterdam.
- Montague, R., 1970, 'Universal Grammar', in: *Theoria* 36, reprinted in: Thomason (Ed.), 1974, *Formal Philosophy*, Yale UP, New Haven.
- Montague, R., 1973, 'The proper treatment of quantification in ordinary English', in: Hintikka, Moravcsik and Suppes (Eds.), *Approaches to Natural Language*, Kluwer, Dordrecht. Reprinted in: Thomason (Ed.), 1974, *Formal Philosophy*, Yale UP, New Haven.
- Oversteegen, E., 1989, Tracking Time, Diss. U. of Utrecht.
- Parsons, T., 1989, 'The progressive in English: events, states and processes', in: *Linguistics and Philosophy* 12.
- Partee, B., 1973, 'Some structural analogies between tenses and pronouns in English', in: *Journal of Philosophy* **70**.
- Partee, B., 1984, 'Nominal and temporal anaphora', in: Linguistics and Philosophy 7.
- Partee, B. and M. Rooth, 1983, 'Generalized conjunction and type ambiguity', in: Bäuerle, Schwarze and von Stechow (Eds.), *Meaning*, *Use and the Interpretation of Language*, de Gruyter, Berlin.
- Partee, B., A. ter Meulen, and R. Wall, 1990, Mathematical Methods in Linguistics, Kluwer, Dordrecht.
- Pelletier, J. and L. Schubert, 1989, 'Mass expressions', in: Gabbay and Guenthner (Eds.), Handbook of Philosophical Logic IV, Kluwer, Dordrecht.
- Pinkal, M., 1984, 'Consistency and context change: the sorites paradox', in: Landman and Veltman (Eds.), *Varieties of Formal Semantics*, GRASS 3, Foris, Dordrecht.
- Prior, A., 1967, Past, Present and Future, Oxford UP, Oxford.
- Reichenbach, H., 1947, Elements of Symbolic Logic, U. of California Press, Berkeley.
- Scha, R., 1981, 'Distributive, collective and cumulative quantification', in: Groenendijk, Janssen and Stokhof (Eds.), *Formal Methods in the Study of Language*, Mathematical Centre Tracts, Amsterdam. Reprinted in Groenendijk, Janssen and Stokhof (Eds.), 1983, *Truth*, *Interpretation*, *Information*, GRASS 2, Foris, Dordrecht.
- Scott, D., 1979, 'Identity and existence in intuitionistic logic', in: Fourman, Mulvey and Scott (Eds.), *Applications of Sheaves. Proceedings Durham 1977*, Springer, Berlin.
- Stalnaker, R., 1968, 'A theory of conditionals', in: Rescher (Ed.), *Studies in Logical Theory*, Blackwell, London.

- Stalnaker, R., 1978, 'Assertion', in Cole (Ed.), Syntax and Semantics 9: Pragmatics, Academic Press, New York.
- Taylor, B., 1977, 'Tense and continuity', in: Linguistics and Philosophy 1.
- Thomason, R., 1984, 'Combinations of tense and modality', in: Gabbay and Guenthner (Eds.), *Handbook of Philosophical Logic II*, Kluwer, Dordrecht.
- Tichy, P., 1985, 'Do we need interval semantics', in: Linguistics and Philosophy 8.
- Van Fraassen, B., 1971, Formal Semantics and Logic, Macmillan, New York.
- Veltman, F., 1985, Logics for Conditionals, Diss. U. of Amsterdam.
- Vlach, F., 1981, 'The semantics of the progressive', in: Tedeschi and Zaenen (Eds.), Syntax and Semantics 14: Tense and Aspect, Academic Press, New York.
- Westerstål, D., 1988, 'Quantifiers in Formal and Natural Languages', in: Gabbay and Guenthner (Eds.), *Handbook of Philosophical Logic IV*, Kluwer, Dordrecht.
- Whorf, B., 1956, 'Science and Linguistics', in: Carroll (Ed.), Language, Thought and Reality, Wiley, New York.

INDEX

Absorption 236–283	propositional 8
Algebra, Boolean x, 95, 117, 128, 177,	quantifier 8
247–283, 351	schemata 7, 40, 46
complete atomic 262-267, 284-324	Axiomatic theory 7
free complete atomic 287–324	
powerset 267-283, 354	Bach, E. 121
representation theorem for 280	Background context 160
representation theorem for complete	Ballmer, T. 294
atomic 280–283	Bar 109–120
Kleene 162	Base step 9, 15, 63
Lindenbaum 95, 283	Bealer, G. 32
relational 72-120	Bennett, M. 300
universal 70-120, 248-267	Benthem, J. van ix, 121, 127, 135, 171,
Algebraic semantics, functional	176, 177, 180, 186, 200
completeness and expressibility	Beth comb 156
127–135	frame 154–156
Anscombe, E. 140	model 150–152, 154–156
Antisymmetric relation 83-105	semantics 154-156
Antisymmetry 238, 327, 332, 346	Bijection 51–69, 185, 258–267, 290,
Approximation, first order 30	292
set of 181–186	notion of 70–120
Arbitrary consistent theory 18	Bijective homomorphism 76–120, 329,
Argument, transfer 33	330
Arithmetics, Peano 29, 36–69	Binary relation 70–120
Assignment function 4, 5, 26, 28,	Bivalence principle 211, 222–233
128–135, 304, 320	Blockset, maximal 315–324
Associativity 236-283, 346, 348	Boolean algebra x, 95, 117, 128, 177,
Asymmetric relation 83–105	247–283, 351
Atomic lattice 242–283	join homomorphism 301–324
Atomicity condition 175	lattice 247–283
Atomless lattice 240–283	semantics 284–299
Automorphism 77-120, 329, 330	Bound, lower 234–283
Axiom, empty set 48	Bounded distributive lattice 246–283
foundation 53–69	lattice 240
identity 8	Branch 109–120
infinity 58	Brouwer intuitionism 146
of choice 55–69, 115	Burgess, J. 121
of pair 49, 50	
of separation 46	Cantor mathematical construction 36
of sum 49, 50	set theory 45

500
theorem 65
Cardinal number 54–69, 258, 259
Cardinality, finite 21
infinite 21
notion of 54–69
Cartesian product 49, 50, 51, 72
Chain ix, 109–120
maximal ix
Change, intervals events and 197–233
Kamp's logic of 221-233
moment of 211-218
Characteristic function 70–120
Chierchia, G. viii, x, 32, 44 Choice, axiom of 55–69, 115
Choice, axiom of 55–69, 115
function 55–69
Closure, deductive 10, 36
downward 202
Co-final 103–120
Co-initial 103–120
Cohen's forcing technique 60 Comb, Beth 156
Comb, Beth 156
Common predecessor 334, 335
successor 334, 335
Commutativity 236–283
Compactness theorem 13, 19, 29, 31 Complemented lattice 247–283
Complemented lattice 247–283
Completability 158
Completability 158 Complete atomic Boolean algebra
262–267, 284–324
lattice 269–283
bounded 265-267
Completed change principle 233
Completeness 326, 327
functional 128–135
notion of 256-267
theorem 13, 18, 19, 24, 29, 31, 36
Comprehension axiom schema 26
Comprehension, principle of 45
Condition, atomicity 175
conjunction 174
difection 1/4
disjunction 174
Congruence relation 95–105, 251–254
352
Congruence structure 95–105
Conjunction 188–196, 288–299, 342
condition 174

Connected relation 83-105

Constant function 37, 70-120 individual 24, 37, 159 and predicate 33-44 logical 3, 7, 33–44 mathematical 33-44, 45 non-logical 4, 33-44 non-mathematical 33-44 non-primitive logical 7 predicate 37 Constructions with partial orders 171-196 Context, background 160 set 99 Continuum hypothesis 56–69 Convex set 110-120 sublattice 267-283 Convexity 188-196, 341 principle 176 Cooper, R. 30 Correctness theorem 29 Countable model 60-69 Cressell, M. 200, 208 Dalen, D. van 145, 152 Deductive closure 10, 36 Definability, first order 1 Definition, entailment 7 truth 5, 26 Dense linear order 64 theory of 35-44 without endpoints 64-69 Density 339 principle 176 Diabolo 335, 336 Diagram, Hasse 86 Diamond 245, 265, 347, 348 Direct interpretation 75 Direction condition 174 Discreet change principle 233 structure 138 Discreetness 108-120 Disjunction 288-299 condition 174 Distance structure 104-120 Distributive lattice 244–283 set theoretic representation of x Distributivity 314–324, 348 Domain function 153

Downward closure 202 entailing 118, 142-170, 337, 340 Dowty, D. viii, 76, 200, 201, 204, 206, 210, 211, 213 Duality 87-105, 235-283 Dummett, M. 145 Element, maximal 158, 181, 236, 305, Element, minimal 105-120, 139 Embedding 76–120, 329, 330 Empty set 51 axiom 48 Enc. M. 121 Endpoints, dense linear order without 64-69 theory of 36-44 Entailing, downward 118, 142–170, 337, 340 definition of 7 Epimorphism 76-120, 329 strong 82–120 Equivalence relation 84–105 partial order and 83-105 partition and ix Event model 226 structure x, 186-196 Expressibility, algebraic semantics functional completeness and 127-135 Expression, semantics of x Extended 103-120 Extension 97-105, 292 negative 158-170 positive 158–170 Extensionality 327 Faltz, L. 258, 284-324 Filter 352, 353 ideals and 267-283 maximally proper 271–283 notion of 180-186 prime 271-283, 353, 354 proper 271–283, 354 representation ix Fine, K. 158, 162-165 Finitary relation 72–120 Finite cardinality 21

intersection property 271–283 lattice 353 Finiteness 327 First order approximation 30 definability 1 language 2, 4, 10, 14, 17, 24 lexicon 2, 3 logic 1, 2-13, 20, 21, 24, 26 notion of 1 predicate logic 2, 7 quantification 31 sentence 10, 12, 22, 33 theory 1, 12, 19, 20, 32–44, 328 Forcing technique, Cohen's 60 Formalism, Hilbert's 43 Formalization in semantics vii Formula induction 9 Foundation axiom 53-69 Fraassen, B. Van 164 Frame, Beth 154-156 Kripke 152-154 vagueness 158-170 Free complete atomic Boolean algebra 287-324 Free join semilattice 304-312 Free lattice x, 258–267 Freedom postulate 177 Frege's reconstruction 42 Function, assignment 4, 5, 26, 28, 128–135, 304, 320 characteristic 70-120 choice 55-69 constant 37, 70–120 domain 152 identity 70-120, 258 interpretation 28, 122, 156, 304, 319 inverse 70-120 n-place truth 128-135 notion of 70-125 space 51 truth 128-135 Functional completeness 128-135 type logic 27 Gallin, D. 28, 132 Gamut, viii Generalized continuum hypothesis 56-69

theorem 65	Constant function 37, 70-120
Cardinal number 54–69, 258, 259	individual 24, 37, 159
Cardinality, finite 21	and predicate 33-44
infinite 21	logical 3, 7, 33-44
notion of 54–69	mathematical 33-44, 45
Cartesian product 49, 50, 51, 72	non-logical 4, 33-44
Chain ix, 109–120	non-mathematical 33-44
maximal ix	non-primitive logical 7
Change, intervals events and 197–233	predicate 37
Kamp's logic of 221–233	Constructions with partial orders
moment of 211-218	171–196
Characteristic function 70–120	Context, background 160
Chierchia, G. viii, x, 32, 44	set 99
Choice, axiom of 55–69, 115	Continuum hypothesis 56-69
function 55–69	Convex set 110-120
Closure, deductive 10, 36	sublattice 267–283
downward 202	Convexity 188-196, 341
Co-final 103–120	principle 176
Co-initial 103–120	Cooper, R. 30
Cohen's forcing technique 60	Correctness theorem 29
Comb, Beth 156	Countable model 60–69
Common predecessor 334, 335	Cressell, M. 200, 208
successor 334, 335	0.000001, 1/1/ 200, 200
Commutativity 236–283	Dalen, D. van 145, 152
Compactness theorem 13, 19, 29, 31	Deductive closure 10, 36
Complemented lattice 247–283	Definability, first order 1
Completability 158	Definition, entailment 7
Complete atomic Boolean algebra	truth 5, 26
262–267, 284–324	Dense linear order 64
lattice 269–283	theory of 35–44
bounded 265–267	without endpoints 64–69
Completed change principle 233	Density 339
Completeness 326, 327	principle 176
functional 128–135	Diabolo 335, 336
notion of 256–267	Diagram, Hasse 86
theorem 13, 18, 19, 24, 29, 31, 36	Diamond 245, 265, 347, 348
Comprehension axiom schema 26	Direct interpretation 75
Comprehension, principle of 45	Direction condition 174
Condition, atomicity 175	Discreet change principle 233
conjunction 174	structure 138
direction 174	Discreetness 108–120
disjunction 174	Disjunction 288–299
Congruence relation 95–105, 251–254,	condition 174
352	Distance structure 104–120
	Distributive lattice 244–283
Congruence structure 95–105 Conjunction 188–196, 288–299, 342	set theoretic representation of x
•	•
condition 174	Distributivity 314–324, 348
Connected relation 83–105	Domain function 153

Downward closure 202	intersection property 271-283
entailing 118, 142-170, 337, 340	lattice 353
Dowty, D. viii, 76, 200, 201, 204, 206,	Finiteness 327
210, 211, 213	First order approximation 30
Duality 87–105, 235–283	definability 1
Dummett, M. 145	language 2, 4, 10, 14, 17, 24
	lexicon 2, 3
Element, maximal 158, 181, 236, 305,	logic 1, 2–13, 20, 21, 24, 26
345	notion of 1
Element, minimal 105-120, 139	predicate logic 2, 7
Embedding 76–120, 329, 330	quantification 31
Empty set 51	sentence 10, 12, 22, 33
axiom 48	theory 1, 12, 19, 20, 32-44, 328
Enç, M. 121	Forcing technique, Cohen's 60
Endpoints, dense linear order without	Formalism, Hilbert's 43
64–69	Formalization in semantics vii
theory of 36–44	Formula induction 9
Entailing, downward 118, 142-170, 337,	Foundation axiom 53–69
340	Fraassen, B. Van 164
definition of 7	Frame, Beth 154-156
Epimorphism 76–120, 329	Kripke 152–154
strong 82–120	vagueness 158–170
Equivalence relation 84–105	Free complete atomic Boolean algebra
partial order and 83–105	287–324
partition and ix	Free join semilattice 304-312
Event model 226	Free lattice x, 258–267
structure x, 186–196	Freedom postulate 177
Expressibility, algebraic semantics	Frege's reconstruction 42
functional completeness and	Function, assignment 4, 5, 26, 28,
127–135	128–135, 304, 320
Expression, semantics of x	characteristic 70–120
Extended 103–120	choice 55-69
Extension 97–105, 292	constant 37, 70-120
negative 158–170	domain 152
positive 158–170	identity 70-120, 258
Extensionality 327	interpretation 28, 122, 156, 304, 31
Zintonolomming 52.	inverse 70–120
Faltz, L. 258, 284-324	n-place truth 128–135
Filter 352, 353	notion of 70–125
ideals and 267–283	space 51
maximally proper 271–283	truth 128–135
notion of 180–186	Functional completeness 128–135
prime 271–283, 353, 354	type logic 27
proper 271–283, 354	type togic 2.
	Gallin, D. 28, 132
representation ix Fine, K. 158, 162–165	Gamut, viii
	Generalized continuum hypothesis
Finitary relation 72–120 Finite cardinality 21	56–69
THIRD CALUMATRY 41	JU UJ

302 INL	JEA .
quantifier theory 256-267	level term, set of 25
Generated lattice x, 248–267	variable 24
Gödel's incompleteness theorem 29, 30,	Individuals, n-place predicate of
42, 43, 44	constant 24
Grätzer, G. 70, 234, 245, 254, 258, 259	predicate constant of l-place properties
Grammar, Montague 75, 97	of 24
Graph 83–105	Induction, formula 9
Groenendijk, J. 97, 98, 101, 135	hypothesis 63–69
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	schema 38
Hasse diagram 86	step 9, 15, 63
Heinämäki, O. 140	Inference rule 7, 8, 14, 40
Hendriks, H. 294, 295	Infimum notion 234–283
Henkin proof 14	Infinite cardinality 21
theory 15–19	structure 33
Heyting algebra 153	Infinity axiom 58
Hilbert's formalism 43	Information structure ix, 145–156
	Initial number 55–69
Hinrichs, E. 135, 140, 200	Injection 185, 269, 280, 351
Hodges, W. 1	notion of 70–120
Homomorphic image 259–267	Injective homomorphism 76–120
Homomorphism 74–120, 239, 251–254,	Instant tense logic 121–127, 135–145
258, 293, 298, 299, 328, 329,	time structure ix
351, 352	Intension 97–105
bijective 76–120, 329, 330	Interpretation, direct 75
Boolean join 301–32	function 28, 122, 156, 304, 319
injective 76–120	Intersection 89–105
natural 94–120	Interval semantics 197–201
strong 76–120	
Humberstone, L. 201–211	logic of change in 201–211 time ix
deduction system 203	Intervals, events and change 197–233
Hypothesis, continuum 56–69 generalized continuum 56–69	Intransitive relation 83–105
induction 63–69	Intuitionism 43
illuction 05–09	Brouwer 146
Ideala filtons and 267, 202	Intuitionistic logic 145–152
Ideals, filters and 267–283	Inverse function 70–120
Idempotency 236–283, 346, 348	Irreflexive relation 83–105
Identity axiom 8	Irreflexivity 189–196, 330, 341
function 70–120, 258	Isomorphism 61–69, 76–120, 185,
Image, homomorphic 259–267	258–267, 290, 292, 297, 329,
Immediate predecessor 106–120	330
successor 106–120	partial 64–69
Incomparable 86–105	
Incompatibility principle 212–218,	Janssen, T. 76
221–233	Join 234–283, 344
Incompleteness theorem 40, 42	semilattice x, 242–283, 301–324, 346,
Inconsistency, notion of 19	347
Individual and predicate constant 33–44	
constant 24, 37, 159	Kadmon, N. x, 142

TATISTICS

```
Kamp, H. 133-135, 158, 162-166,
        169–171, 186–196, 211
  logic of change 221–233
Kaplan, D. 135
Keenan, E. 258, 284–324
Kleene algebra 162
  logic 161
  truth table 214
Krifka, M. 314
Kripke, S. 145-156
  frame 152-154
  model 150-154
  semantics for predicate logic 153-156
  semantics for propositional logic 152,
        153
Ladusaw, W. 142
Landman, F. 138, 142, 160, 168, 301,
        303, 309, 322
Language 303
  first order 2, 4, 10, 14, 17, 24
  second order 24-33
  type logical 27
Larson, R. 140
Lattice 234-283
  atomic 242-283
  atomless 240-283
   Boolean 247-283
   bounded 240
     distributive 246-283
   complemented 247-283
   complete 269-283
     atomic bounded 265-267
   distributive 244-283
   finite 353
   free x, 258-267
   generated x, 248-267
   Morgan 162
   powerset 240-283
   properties of x
   set theoretic 240-283
   representation theorem for distributive
         279
   semantics with 284-324
Law, Leibniz' 27
   Morgan's 247
 Lemma, Lindenbaum's 11, 18
   Zorn's 55, 115-120
```

Lewis, D. 138, 167 Lexicon, first order 2, 3 Lindenbaum algebra 95, 283 lemma 11.18 Lindström' theorem 23, 29 Linear order 84–105, 333 properties of ix theory of 35-44 Linearity 224, 332 principle 175 Linebarger, M. 142 Link, G. 138, 200, 255, 300-313, 317 Löwenheim-Skolem theorem 13, 19–22, 24, 29, 31–33, 36, 40, 60–69 Logic ix first order 1, 2, 13, 20, 21, 24, 26, 27 instant tense 121-127, 135-145 intuitionistic 145-152 Kleene 161 minimal 148 minimal tense 122-127 Montague's intensional 132, 284–324 of change in interval semantics 201-211 of plurality and mass nouns 317-324 predicate 135 Priorian tense ix, 121–170, 199 propositional tense 134 second order 24-33 set theory and 1 sorted first order 30 31 tense ix third order 27 unsorted first order 30 Veltman's data 168 Logical constant 3, 7, 33-44 Logicism 42 Lower bound 234-283 Mass nouns 312-324 logic of plurality and 317-324 Mathematical and logical structures viii techniques viii Mathematical constant 33-44, 45 construction, Cantor 36 Maximal blockset 315-324 Maximal chain ix

principle 116-120, 273-283

304	INDEX
element 158, 181, 236, 305, 345 filters, representation through 180–186 Maximally consistent theory 18 proper filter 271–283 McConnell-Ginet, S. viii, x Meaning postulate 33–44, 160, 169 Meet 234–283, 344 semilattice 242–283, 346, 347	Non-logical constant 4, 33–44 individual and predicate constant 3 Non-mathematical constant 33–44 Non-primitive logical constant 7 Notion, bijection 70–120 cardinality 54–69 completeness 256–267 filter 180–186 first order 1
Metalogic ix, 13-24	function 70-120
Meulen, A. ter viii	inconsistency 19
Minimal element 105-120, 139	infimum 234–283
logic 148	injection 70–120
tense logic 122–127	relation 70-120
Mönnich, U. 32	structure and homomorphism ix
Model, Beth 150-152, 154-156	supremum 234–283
countable 60–69	surjection 70-120
event 226	vague 41
Kripke 150–154	Nouns, mass 313–324
theory 13	Number, cardinal 54-69, 258, 259
vagueness 167	initial 55–69
Modus ponens 149	ordinal 53–69, 334
Modus tollens 149	theory 36–44
Moment of change 211–218	0 71 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Monotonicity 188–196, 214, 341 principle 176	Operator, Priorian tense 201–211
Montague, R. 76, 284–324	Order, dense linear 64
grammar 75, 97	linear 84–105, 333
intensional logic 132, 284–324	theory of 124
semantics 34, 59	partial ix, 39, 42, 47, 70–120, 346 total 84–105
Morgan lattice 162	Ordinal number 53–69, 334
Morgan's law 247	Oversteegen, E. 138, 140
Thougail o law 277	Oversicegen, E. 136, 140
n-place predicate constant 2 of individuals 24	Pair, axiom of 49, 50 Paradox, Russell 42, 45, 59
predicate variable 24	Skolem's 60
quantifier 130–135	Parsons, T. 200
tense 131–135	Partee, B. viii, 121, 140, 166, 284, 288,
truth function 128–135	290
Natural deduction system 7	Partial information and vagueness
homomorphism 94–120	156–170
numbers, Von Neumann's set theoret	
definition of 52	order ix, 39, 42, 47, 70–120, 346
Negation 288–299	constructions with 171–196
Negative extension 158–170	equivalence relation and 83–105
Non-contingencies, set of 41	strict 85–105
Non-discreet structure 125	semantics with 121–170
Non-empty set 53	set theoretic representation of ix

theory of 34-44 Partition 88-105, 315-324 equivalence relation and ix Peano arithmetics 29, 36-69 Pelletier, J. 317 Pentagon 245, 265 Period structure 104-120, 171-186 Peters, S. viii, 76 Pinkal, M. 170 Pluralization 306-312 Plurals 300-312 mass nouns and, semantics of x Point generated period structure 179-186 properties of 182-186 Positive extension 158–170 Postulate, freedom 177 meaning 33-44, 160, 169 Power set 50 Boolean algebra 267-283, 354 lattice 240-283 Precisification 158 Precision state 158-170 Predecessor, common 334, 335 immediate 106-120 Predicate constant 37 *n*-place 2 non-logical individual and 3 of l-place properties of individuals level term, set of 25 logic 135 first order 2, 7 Kripke semantics for 153-156 Preorder 84-105 Prime filter 271-283, 353, 354 Principle, bivalence 211, 222-233 completed change 233 convexity 176 density 176 discreet change 233 incompatibility 212-218, 221-233 linearity 175 maximal chain 116-120, 273-283 monotonicity 176 of comprehension 45 separation 176, 224-233 transfer 176

witness 176, 177 Prior, A. 121, 127 Priorian tense logic ix, 121-170, 199 tense operator 201–211 Product, Cartesian 49, 50, 51, 72 Proper filter 271-283, 354 Properties of finite intersection 271–283 of lattices x of linear order ix of partial orders in temporal setting ix of point 182-186 second order 26 Propositional axiom 8 logic, Kripke semantics for 152, 153 tense logic 134 Ouantification, first order 31 second order 31 Ouantifier axiom 8 *n*-place 130–135 Realism 43 Reconstruction, Frege's 42 Refinement 89-105, 160 Reflexive relation 83-105 Reflexivity 238, 331, 332, 346 Reichenbach, H. 121 Relation, antisymmetric 83–105 asymmetric 83-105

binary 70-120 congruence 95–105, 251–254, 352 connected 83-105 equivalence 84-105 finitary 72-120 intransitive 83-105 irreflexive 83-105 notion of 70-120 reflexive 83-105 symmetric 83–105 theory of 83-105 transitive 83-105 unconnected 86-105 Relational algebra 72-120 structure 72-120 Representation, filter ix theorem for Boolean algebras 280 for complete atomic Boolean algebras 280-283

367

366	INDEX
for distributive lattices 279	theoretic lattice 240-283
through maximal filters 180–186	representation of distributive
Rooth, M. 284, 288, 290, 294	lattices x
Rule, inference 7, 8, 14, 40	of partial orders ix
Russell paradox 42, 45, 59	universe 52–69
0.1 . D. 000	theory ix, 36-44
Scha, R. 300	logic and 1
Schema, axiom 7, 40, 46	Singularization 306–312
comprehension axiom 26	Skolem's paradox 60
induction 38	Sorted first order logic 30, 31
substitution 51	Soundness 326
Schubert, L. 317	Space, function 51
Scott, D. 152	Stalnaker, R. 99, 135, 167
Second order language 24–33	State, precision 158–170
logic 24–33	Step, base 9, 15, 63
property 26	induction 9, 15, 63
quantification 31	Stokhof, J. 97, 98, 101
Semantics 304–312, 319–324	Stokhof, M. 135
Beth 154–156	Stone's theorem 275–279
Boolean 284–299	Strict partial order 85–105
formalization in vii	theory of 35–44
interval 197–201	Strong epimorphism 82–120
Montague 34, 59	homomorphism 76–120
of expression x	Structure and homomorphism, notion of
of plurals and mass nouns x	ix
with lattices 284–324	congruence 95–105
with partial orders 121–170	discreet 138
Semilattice 346, 347	distance 104–120
free join 304–312	event x, 186–196
join x, 242–283, 301–324, 346, 347	infinite 33
meet 242–283, 346, 347	information ix, 145-156
sub-join 305	instant time ix
Semitree 333	mathematical and logical viii
structure 103–120	non-discreet 125
Sentence 4	period 104-120, 171-186
first order 10, 12, 22, 33	point generated period 179-186
Separation, axiom of 46	relational 72–120
principle 176, 224–233	semitree 103–120
Set, context 99	tree-like 103–120
convex 110-120	witnessed period 178-186
empty 51	Sub-join semilattice 305
non-empty 53	Sublattice, convex 267–283
of approximation 181–186	Substitution schema 51
of individual level term 25	Successor, common 334, 335
of non-contingencies 41	immediate 106–120
of predicate level term 25	set 52
power 50	Sum, axiom of 49, 50
successor 52	Supervaluation 164 219

structure ix Supremum notion 234–283 Surjection 51-69, 185, 280, 351 notion of 70-120 Symmetric relation 83-105 Syntax 303, 304, 318-324 System, Humberstone's deduction 203 natural deduction 7 Table, Kleene truth 214 Taylor, B. 201 Techniques, mathematical and logical Temporal setting, properties of partial orders in ix Tense logic ix n-place 131-135 Theorem, Cantor's 65 compactness 19, 29, 31 completeness 13, 18, 19, 24, 29, 31, 36 correctness 29 Gödel's 29, 30, 42-44 Lindström's 23 Löwenheim-Skolem 13, 19-22, 24, 29, 31–33, 36, 40, 60–69 Stone's 275-279 Theory, arbitrary consistent 18 axiomatic 7 Cantor set 45 first order 1, 12, 19, 20, 32–44, 328 generalized quantifier 256-267 Henkin 15-19 Lindström's 29 maximally consistent 18 model 13 number 36-44 of dense linear order 35-44 without endpoints 36-44 of linear order 35-44, 124 without endpoints 35-44 of partial order 34-44 of relations 83-105 of strict partial order 35-44 set ix, 36-44 type 59 Zermelo-Fraenkel set 44-69 Third order logic 27

Thomason, R. 101 Tichv. P. 137 Time interval ix Total order 84-105 Transfer 224 argument 33 principle 176 Transitive relation 83–105 Transitivity 188–196, 238, 330–332, 338, 341, 346 Tree-like structure 103-120 Truth definition 5, 26 function 128-135 value 122, 128-135, 200, 202, 228-233 Turner, R. 32 Type logical language 27 theory 59 Ultrafilter 271-283, 290, 291, 353, 354 Unconnected relation 86-105 Unification 90-105 Universal algebra 70-120, 248-267 Universe, set theoretic 52-69 Unsorted first order logic 30 Vague notion 41 Vagueness 217, 227-233 frame 158-170 model 167 partial information and 156-170 Value, truth 122, 128–135, 200, 202, 228-233 Variable, individual 24 n-place predicate 24 Veltman, F. ix, 168 data logic 168 Vlach, F. 197 Wall, R. viii, 76

Well-foundedness 108-120, 126 Whorf, B. 134 Witness 17, 18, 314-324, 341 principle 176 177 period structure 178–186

Zermelo-Fraenkel set theory 44-69 Zorn's lemma 55, 115-120