Simulating Space Use

Johannes Signer & Brian Smith

November 2022

Why to simulate?

Different end products are available:

- 1. The individual path
- 2. Where is the animal next?

Some times we are aiming to ${\bf Utilization}\ {\bf Distribution}\ ({\rm UD}).$

The UD is defined as:

The two-dimensional relative frequency distribution of space use of an animal (Van Winkle 1975)

We can distinguish between two different UDs:

- 1. Transient UD (TUD) is the expected space-use distribution over a short time period and is thus sensitive to the initial conditions (e.g., the starting point).
- 2. Steady state UD (SSUD) is the long-term (asymptotically infinite) expectation of the space-use distribution across the landscape.

Think-pair-share: Can we use a HSF/RSF to predict a possible path of the animal.

Predicting space use from HSF

From HSF we can only estimate a SSUD. This is done by using the following formula

$$UD(s_{j}) = \frac{w(s_{j})}{\sum_{j=1}^{G} w(s_{j})} = \frac{\exp(\sum_{i=1}^{n} \beta_{i} x_{i}(s_{j}))}{\sum_{j=1}^{G} \exp(\sum_{i=1}^{n} \beta_{i} x_{i}(s_{j}))}$$

The intercept (β_0) is **not** included.

For iSSF this a bit more complicated

If we take the same approach for iSSFs, we introduce a **bias** because we are neglecting conditional formulation of iSSFs when creating maps.

Article 🗈 Open Access 🕝 🕦

Estimating utilization distributions from fitted step-selection functions

Johannes Signer X, John Fieberg, Tal Avgar

First published: 11 April 2017 | https://doi.org/10.1002/ecs2.1771 | Citations: 24

Corresponding Editor: Lucas N. Joppa.

- Simulations were used to compare two approaches:
 - naive
 - simulation-based

Figure 1: Source Signer et al. 2017

Figure 2: Source Signer et al. 2017

The bias becomes even worse if selection is stronger:

Figure 3: Source Signer et al. 2017

This bias propagates through derived quantities (e.g., home-range size)

Figure 4: Source Signer et al. 2017

Take-home messages

- Simulation allow us to predict space-use in the long term, novel environment or other individuals.
- For iSSA it is important to acknowledge the conditional formulation.
- We can acknowledge the conditional formulation by using simulations.

• Simulating space use from fitted iSSFs received a lot of interest.

Article 🙃 Open Access 🜀 👣

Estimating utilization distributions from fitted step-selection functions

Johannes Signer ⋈, John Fieberg, Tal Avgar

First published: 11 April 2017 | https://doi.org/10.1002/ecs2.1771 | Citations: 42

• Simulating space use from fitted iSSFs received a lot of interest.

RESEARCH ARTICLE

Parametrizing diffusion-taxis equations from animal movement trajectories using step selection analysis

Jonathan R. Potts X, Ulrike E. Schlägel

First published: 17 May 2020 | https://doi.org/10.1111/2041-210X.13406 | Citations: 8

- Simulating space use from fitted iSSFs received a lot of interest.
- Some studies applied this already,

Research Article

Evaluation of Connectivity Among American Black Bear Populations in Georgia

MICHAEL J. HOOKER, JOSEPH D. CLARK, BOBBY T. BOND, MICHAEL J. CHAMBERLAIN

First published: 08 April 2021 | https://doi.org/10.1002/jwmg.22041

- Simulating space use from fitted iSSFs received a lot of interest.
- Some studies applied this already,

```
Research | Open Access | Published: 08 April 2022

Towns and trails drive carnivore movement behaviour, resource selection, and connectivity

Jesse Whittington □, Mark Hebblewhite, Robin W. Baron, Adam T. Ford & John Paczkowski

Movement Ecology 10, Article number: 17 (2022) | Cite this article

1652 Accesses | 264 Altmetric | Metrics
```

- Simulating space use from fitted iSSFs received a lot of interest.
- Some studies applied this already,
- and methods being developed.

Methods in Ecology and Evolution

RESEARCH ARTICLE | ⊕ Open Access | ⓒ •

Assessing the predictive power of step selection functions: How social and environmental interactions affect animal space use

Jonathan R. Potts M. Luca Börger, Bronson K. Strickland, Garrett M. Street
First published: 24 May 2022 | https://doi.org/10.1111/2041-210X.13904

- Simulating space use from fitted iSSFs received a lot of interest.
- Some studies applied this already,
- and methods being developed.

How to scale up from animal movement decisions to spatiotemporal patterns: An approach via step selection

Jonathan R. Potts¹ | Luca Börger^{2,3} |

$$(\mathbf{s}, t + \Delta t)$$

We want to model the probability that the animals moves to position ${\bf s}$ at time $t+\Delta t$

$$(\mathbf{s}, t + \Delta t) | u(\mathbf{s}', t)$$

We want to model the probability that the animals moves to position **s** at time $t + \Delta t$, given it is a position **s**' at time t.

$$(\mathbf{s}, t + \Delta t)|u(\mathbf{s}', t) =$$

We want to model the probability that the animals moves to position \mathbf{s} at time $t + \Delta t$, given it is a position \mathbf{s}' at time t. The **redistribution kernel** consists of two components:

$$(\mathbf{s}, t + \Delta t) | u(\mathbf{s}', t) = \frac{w(\mathbf{X}(\mathbf{s}); \beta(\Delta t))}{}$$

We want to model the probability that the animals moves to position \mathbf{s} at time $t+\Delta t$, given it is a position \mathbf{s}' at time t. The **redistribution kernel** consists of two components:

• The movement-free habitat-selection function $w(X(s); \beta(\Delta t))$

$$(\mathbf{s},t+\Delta t)|u(\mathbf{s}',t) = \frac{w(\mathbf{X}(\mathbf{s});\beta(\Delta t))\phi(\theta(\mathbf{s},\mathbf{s}'),\gamma(\Delta t))}{}$$

We want to model the probability that the animals moves to position \mathbf{s} at time $t+\Delta t$, given it is a position \mathbf{s}' at time t. The **redistribution kernel** consists of two components:

- The movement-free habitat-selection function $w(X(s); \beta(\Delta t))$
- The selection-free movement kernel $\phi(\theta(\mathbf{s},\mathbf{s}'),\gamma(\Delta t))$

$$(\mathbf{s}, t + \Delta t)|_{u}(\mathbf{s}', t) = \underbrace{\frac{w(\mathbf{X}(\mathbf{s}); \beta(\Delta t))\phi(\theta(\mathbf{s}, \mathbf{s}'), \gamma(\Delta t))}{\int_{\tilde{\mathbf{s}} \in G} w(\mathbf{X}(\tilde{\mathbf{s}}); \beta(\Delta t))\phi(\theta(\tilde{\mathbf{s}}, \mathbf{s}'); \gamma(\Delta t))d\tilde{\mathbf{s}}}_{\text{Normalizing constant}}$$

We want to model the probability that the animals moves to position \mathbf{s} at time $t+\Delta t$, given it is a position \mathbf{s}' at time t. The **redistribution kernel** consists of two components:

- The movement-free habitat-selection function $w(\mathbf{X}(\mathbf{s}); \beta(\Delta t))$
- The selection-free movement kernel $\phi(\theta(\mathbf{s},\mathbf{s}'),\gamma(\Delta t))$

 At a given position generate a set of possible location the animal could reach each within one time step (= selection-free movement kernel). There are two ways to generate these locations:

- At a given position generate a set of possible location the animal could reach each within one time step (= selection-free movement kernel). There are two ways to generate these locations:
 - Stochastic approximation of the selection-free movement kernel (using the uncorrected tentative distributions).

- At a given position generate a set of possible location the animal could reach each within one time step (= selection-free movement kernel). There are two ways to generate these locations:
 - Stochastic approximation of the selection-free movement kernel (using the uncorrected tentative distributions).
 - Generate a grid of around a the position and weight each cell according to the movement kernel (be careful we are moving from polar to euclidean coordinates here).
- 2. Habitat covariates are weighted with the selection coefficients to obtain the movement-free habitat-selection function.

- At a given position generate a set of possible location the animal could reach each within one time step (= selection-free movement kernel). There are two ways to generate these locations:
 - Stochastic approximation of the selection-free movement kernel (using the uncorrected tentative distributions).
 - Generate a grid of around a the position and weight each cell according to the movement kernel (be careful we are moving from polar to euclidean coordinates here).
- 2. Habitat covariates are weighted with the selection coefficients to obtain the movement-free habitat-selection function.
- 3. The selection-free movement kernel and the movement-free selection-function are then multiplied and normalized.

What is next?

- We can either work with the redistribution kernels for each relocation, or
- sample one location as the next point to move to. This could be repeated many times and we can simulate a new track from the model that we fitted.

To illustrate the use of simulation, we fitted an iSSF to tracking data of a single African buffalo^{1,2}.

 $^{^{1}}$ For details of the data see: Getz et al. 2007 LoCoH: Nonparameteric kernel methods for constructing home ranges and utilization distributions. PLoS ONE

 $^{^2\}mathsf{Cross}$ et al. 2016. Data from: Nonparameteric kernel methods for constructing home ranges and utilization distributions. Movebank Data Repository. DOI:10.5441/001/1.j900f88t.

To illustrate the use of simulation, we fitted an iSSF to tracking data of a single African buffalo^{1,2}.

We fitted three different models using amt:

¹For details of the data see: Getz et al. 2007 LoCoH: Nonparameteric kernel methods for constructing home ranges and utilization distributions. PLoS ONE

 $^{^2}$ Cross et al. 2016. Data from: Nonparameteric kernel methods for constructing home ranges and utilization distributions. Movebank Data Repository. DOI:10.5441/001/1.j900f88t.

To illustrate the use of simulation, we fitted an iSSF to tracking data of a single African buffalo^{1,2}.

We fitted three different models using amt:

1. Base model: case_ ~ cos(ta_) + sl_ + log(sl_) +
 water_dist_end

 $^{^{1}}$ For details of the data see: Getz et al. 2007 LoCoH: Nonparameteric kernel methods for constructing home ranges and utilization distributions. PLoS ONE

 $^{^2}$ Cross et al. 2016. Data from: Nonparameteric kernel methods for constructing home ranges and utilization distributions. Movebank Data Repository. DOI:10.5441/001/1.j900f88t.

To illustrate the use of simulation, we fitted an iSSF to tracking data of a single African buffalo^{1,2}.

We fitted three different models using amt:

- 1. Base model: case_ ~ cos(ta_) + sl_ + log(sl_) +
 water_dist_end
- 2. Home-range model: case_ ~ cos(ta_) + sl_ +
 log(sl_) + water_dist_end + x2_ + y2_ + I(x2_^2 +
 y2_^2)

 $^{^{1}}$ For details of the data see: Getz et al. 2007 LoCoH: Nonparameteric kernel methods for constructing home ranges and utilization distributions. PLoS ONE

 $^{^2}$ Cross et al. 2016. Data from: Nonparameteric kernel methods for constructing home ranges and utilization distributions. Movebank Data Repository. DOI:10.5441/001/1.j900f88t.

To illustrate the use of simulation, we fitted an iSSF to tracking data of a single African buffalo^{1,2}.

We fitted three different models using amt:

- 1. Base model: case_ ~ cos(ta_) + sl_ + log(sl_) +
 water_dist_end
- 2. Home-range model: case_ $^{\sim}$ cos(ta_) + sl_ + log(sl_) + water_dist_end + x2_ + y2_ + I(x2_^2 + y2_^2)
- 3. River model: case_ $^{\sim}$ cos(ta_) + sl_ + log(sl_) + water_dist_end + x2_ + y2_ + I(x2_^2 + y2_^2) + I(water_crossed_end != water_crossed_start)

 $^{^{1}}$ For details of the data see: Getz et al. 2007 LoCoH: Nonparameteric kernel methods for constructing home ranges and utilization distributions. PLoS ONE

²Cross et al. 2016. Data from: Nonparameteric kernel methods for constructing home ranges and utilization distributions. Movebank Data Repository. DOI:10.5441/001/1.j900f88t.

The setting

The observed track

Base model: case_ ~ cos(ta_) + sl_ + log(sl_) +
water_dist_end

Home-range model: case_ $^{\sim}$ cos(ta_) + sl_ + log(sl_) + water_dist_end + x2_ + y2_ + I(x2_^2 + y2_^2)

River model: case_ $^{\sim}$ cos(ta_) + sl_ + log(sl_) + water_dist_end + x2_ + y2_ + I(x2_^2 + y2_^2) + I(water_crossed_end != water_crossed_start)

Key resources/publications

- Avgar, T., Potts, J. R., Lewis, M. A., & Boyce, M. S. (2016). Integrated step selection analysis: bridging the gap between resource selection and animal movement. Methods in Ecology and Evolution, 7(5), 619-630.
- Potts, J. R., & Schlägel, U. E. (2020). Parametrizing diffusion-taxis equations from animal movement trajectories using step selection analysis. Methods in Ecology and Evolution, 11(9), 1092-1105.
- Signer, J., Fieberg, J., & Avgar, T. (2017). Estimating utilization distributions from fitted step-selection functions. Ecosphere, 8(4), e01771.