Algebra 1R

by a moron :3 21.03.2137

1 Powtorka z poprzedniego roku

1.1 Grupy, pierscienie, ciala

Dzialanie na zbiorze X:

$$\Phi: X \times X \to X.$$

zwykle zapisywane jako xy, $x \cdot y$, x + y.

Element neutralny – takie e, ze dla kazdego $x \in X$ ex = xe = x. Dzialanie ma co najwyzej jeden element neutralny.

Element odwrotny do x to takie y, ze xy = yx = e. Jesli dzialanie jest laczne, to ma co najwyzej jeden element odwrotny do danego x.

.....

Homomorfizm algebry $\mathscr{X}=(X,\{\cdot\})$ na algebre $\mathscr{Y}=(Y,\{\circ\})$ nazywamy przeksztalcenie $f:X\to Y$ spelniajace dla kazdego $a,b\in X$

$$f(a \cdot b) = f(a) \circ f(b).$$

- \bullet monomorfizm f jest 1-1
- ullet epimorfizm f jest "na"
- ullet izomorfizm f jest 1-1 i "na"
- ullet endomorfizm kiedy $\mathscr{Y}=\mathscr{X}$
- automorfizm enodmorfizm bedacy izomorfizmem

.....

Polgrupa to niepusty zbior z dzialaniem lacznym.

GRUPA to niepusty zbior z lacznym dzialaniem i elementem neutralnym (zwanym jednos-cia grupy) oraz elementami odwrotnymi dla kazdego elementu.

 \hookrightarrow grupa abelowa (przemienna) – grupa z dzialaniem przemiennym

Zbior G z dzialaniem \cdot jest grupa, jesli:

- 1. $(\forall a, b, c \in G) (ab)c = a(bc)$
- 2. $(\exists e \in G)(\forall a \in G) ea = ae = e$
- 3. $(\forall a \in G)(\exists b \in G) ab = ba = e$
- *4. $(\forall a, b \in G) \ ab = ba \ \text{w grupie} \ abelowej$

PIERSCIEN to niepusty zbior X z dwoma dzialaniami $(\cdot, +, \text{ mnozenie i dodawanie})$, ktory spelnia:

- 1. zbior X z + jest grupa abelowa
- 2. · jest laczne
- 3. $(\forall~x,y,z\in X)~x\cdot(y+z)=x\cdot y+x\cdot z~\wedge~(x+y)\cdot z=x\cdot z+y\cdot z$

Kolejne dzikie nazwy ★:

- * pierscien przemienny jesli mnozenia jest przemienne
- * pierscien z jednoscia dla mnozenia istnieje element neutralny

CIALO to pierscien przemienny, ktory dla kazdego elementu $\neq 0$ ma element odwrotny

Niech G bedzie grupa, a e jej elementem neutralnym. Wowczas:

$$\hookrightarrow a, b \in G \implies (ab)^{-1} = b^{-1}a^{-1}$$

$$\hookrightarrow a \in G \text{ i } n = 1, ..., n \ a^{-n} = (a^n)^{-1} = (a^{-1})^n$$

$$\begin{tabular}{lll} \hookrightarrow & {\tt dla} \ m,n \ \in \ {\tt Z} \ {\tt oraz} \ a \ \in \ G \ {\tt mamy} \ a^{mn} \ =^* \\ (a^m)^n \end{tabular}$$

- \hookrightarrow dla G grupy abelowej i $n \in \mathbb{Z}$ $(ab)^n = ^*$ a^nb^n
- * trzeba udowodnic, ale mi sie nie chce

 $H\subseteq G$ jest podgrupa G, jesli jest grupa ze wzgledu na te same dzialania, czyli wystarczy, ze

$$(\forall a, b \in H) \ ab^{-1} \in H.$$

Jelsi $a\in G$ i istnieja $n\in\mathbb{N},\ n\geq 1$, takie, ze $a^n=e$, to mowimy ze n jest rzedem elementu $a\ (n=o(a))$. Jesli takie n nie istnieja, to a ma rzad nieskonczony $(o(a)=\infty)$.

- \hookrightarrow grupa torsyjna wszystkie elementy maja rzad skonczony
- \hookrightarrow grupa beztorsyjna wszystkie elementy maja rzad nieskonczony $\it Jesli~n~=~o(a)~oraz~a^N~=~e~to~n|N$, fajny

dowodzik, ale leniem jestem