

Programmazione Lineare Intera: Introduzione

Alessandro Hill

Basato sul materiale di <u>Daniele Vigo (D.E.I.)</u> rev. 1.1(AH) – 2024

Programmazione Lineare Intera

(P)
$$z_P = \min c^T x$$

 $A \ x \ge d$
 $x \ge 0$, intere

- vincoli di interezza: non lineari
 - x intera \Leftrightarrow s
 - $\Leftrightarrow \sin \pi x = 0$
 - x binaria
- $\Leftrightarrow x(x-1) = x^2 x = 0$
- PLI ≈ NLP
- in realtà la non linearità del problema è "concentrata" nella prescrizione di interezza

Rilassamento continuo di PLI

rimuovendo il vincolo di interezza:

rilassamento continuo C(P) "associato" a P

$$\mathbf{Z}_{C(P)} \leq \mathbf{Z}_{P}$$

Dim.: si cerca il minimo in un insieme più ampio

Rilassamento continuo (2)

Th.: se la soluzione del rilassamento continuo è ammissibile per P (= è intera), allora è ottima per P

Dim.:

- $1) \quad z_{C(P)} \leq z_P$
- 2) $x_{C(P)}$ è ammissibile per P

$$\Rightarrow z_{C(P)} = c^T x_{C(P)} \ge z_P \Rightarrow z_{C(P)} = z_P$$

Problemi ed algoritmi

- Algoritmo esatto: determina la soluzione ottima
 - Se il problema è "difficile" il tempo di calcolo necessario ad un algoritmo esatto cresce molto rapidamente (= esponenzialmente) con la dimensione del problema
 - Si risolvono in modo esatto problemi "piccoli"
 - Molti problemi reali sono "difficili" e "grandi"
- Algoritmo euristico o approssimato:
 - determina in tempo ragionevole una soluzione ammissibile di "buona" qualità
 - Si risolvono problemi "grandi"
 - In alcuni casi è possibile dare garanzie sulla qualità della soluzione ottenuta (Es. al più il 1.5 volte la soluzione ottima)

Algoritmo (euristico) per PLI

```
begin
```

```
determina con simplesso la soluzione x di C(P)
  if C(P) impossibile then STOP (P impossibile)
  else
      if C(P) illimitato then STOP
            (P illimitato, salvo casi particolari)
      else
        if x intero then STOP (x sol. ottima di P)
        else
            "arrotonda" ogni x_i frazionaria all' intero più vicino
end
```

Che soluzioni produce questo algoritmo?

CASO 1: soluzioni utili

- Problemi per cui i valori delle variabili della soluzione ottima sono molto elevati
- Es. pezzi da produrre (elevata quantità)

	C(P)	C(P) arrotondato
$x_1 =$	2449.51	2450
$x_2 =$	14301.1	14301
$x_3 =$	7800.92	7801
$\max x_1 + x_2 + x_3$	24551.53	24552
$3x_1 + x_2 \le 21650$	21649.63	21651

CASO 2: soluzioni inutili

- Problemi in cui i valori delle variabili decisionali all' ottimo sono molto piccoli:
 - Numero di edifici da realizzare
 - Numero di veicoli da assegnare ad un servizio
 - Opportunità di una scelta
 - uso o meno di un tratto di strada in un percorso (sì/no)
 - •
- La parte frazionaria non è trascurabile e l'arrotondamento può produrre facilmente soluzioni non ammissibili

CASO 2: soluzioni inutili (2)

 Soluzione intera e continua possono essere molto "lontane"

CASO 3: soluzioni non ammissibili

Nessuno dei quattro punti interi attorno a x_{C(P)}
è ammissibile per P

Formulazioni equivalenti

• dato $z_P = min\{c^T x : x \in X\}$ esistono molte formulazioni equivalenti:

$$z_P = min \{c^T x : Ax \ge d, x \ge 0, x \text{ intero}\}$$

 i corrispondenti rilassamenti continui non sono però equivalenti!

Confronto di formulazioni

- Esistono formulazioni migliori di altre ?
- Una formulazione $Q^1 = \{A^1x = d^1, x \ge 0\}$ valida per P è migliore di una formulazione $Q^2 = \{A^2x = d^2, x \ge 0\}$ se $Q^1 \subset Q^2$

Se Q^1 e Q^2 sono due formulazioni di un problema di min con $Q^1 \subset Q^2$, allora $z_{C(Q^1)} \ge z_{C(Q^2)}$

Formulazione "ideale" di PLI

Esiste una formulazione "ideale" di PLI ?
 Def.: Dato un insieme S ⊆ Rⁿ si dice convex hull (guscio convesso) di S il più piccolo insieme convesso conv(S) che contiene S

• Se X è un insieme di punti interi, conv(X) è un politopo \tilde{P} i cui vertici sono tutti punti *interi*

Algoritmi generali per PLI

- Metodi esatti tradizionali (anni 60-oggi):
 - Metodo dei piani di taglio (cutting planes)
 - Branch-and-Bound
 - Programmazione Dinamica
- •
- Metodi esatti più avanzati (anni 90-oggi):
 - Branch-and-Bound + Cutting planes =
 Branch-and-Cut
 - Branch-and-Price/Column generation