Applicant : Bonnert et al.

Serial No. : 10/521,325

Filed : August 15, 2005

Page : 2 of 11

Amendments to the Claims:

This listing of claims replaces all prior versions and listings of claims in the application:

Listing of Claims:

1. (Previously Presented) A compound of formula (I) or a pharmaceutically acceptable salt thereof:

$$R^1$$
 CO_2H
 R^2
 $S(O)_{n}$
 R^3

in which:

n represents 1 or 2;

 R^1 is one or more substituents independently selected from halogen, CN, nitro, $SO_2R^4, OR^4, SR^4, SOR^4, SO_2NR^5R^6, CONR^5R^6, NR^9SO_2R^4, NR^9CO_2R^4, NR^9COR^4, aryl, C_2-C_6$ alkenyl, C_2-C_6 alkynyl or C_{1-6} alkyl, the latter five groups being optionally substituted by one or more substituents independently selected from halogen, OR^7 and $NR^8R^9, NR^8R^9, S(O)_xR^7$ where x is 0, 1 or 2;

R² is hydrogen, halogen, CN, SO₂R⁴ or CONR⁵R⁶, COR⁴ or C₁-alkyl, the latter group being optionally substituted by one or more substituents independently selected from halogen atoms, OR⁸ and NR⁵R⁶, S(O),R⁷ where x is 0.1 or 2;

Applicant : Bonnert et al.
Serial No. : 10/521,325
Filed : August 15, 2005
Page : 3 of 11

R³ is aryl or a 5-6 membered aromatic ring containing one or more heteroatoms selected from N, S and O, each of which is optionally substituted by one or more substituents independently selected from halogen, CN, nitro, SO₂R⁴, OH, OR⁴, SR⁴, SOR⁴, SO₂NR⁵R⁶, CONR⁵R⁶, NR⁹CO₂R⁴, NR⁹CO₂R⁴, NR⁹COR⁴, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkyl, the latter three groups being optionally substituted by one or more substituents independently selected from halogen atoms. OR⁷ and NR⁵R⁶, S(O),R⁷ where x is 0.1 or 2:

 R^4 represents aryl, heteroaryl, or C_1 - C_6 alkyl, all of which are optionally substituted by one or more substituents independently selected from halogen atoms, aryl, heteroaryl, OR^{10} and $NR^{11}R^{12}S(O)_xR^{13}$ (where x=0, 1 or 2), $CONR^{14}R^{15}$, $NR^{14}COR^{15}$, $SO_2NR^{14}R^{15}$, $NR^{14}SO_2R^{15}$, CN, nitro:

R⁵ and R⁶ independently represent a hydrogen atom, a C₁-C₆ alkyl group, or an aryl group, the latter two of which are optionally substituted by one or more substituents independently selected from halogen atoms, aryl, OR¹³ and NR¹⁴R¹⁵, CONR¹⁴R¹⁵, NR¹⁴COR¹⁵,SO₂NR¹⁴R¹⁵, NR¹⁴SO₃R¹⁵, CN. nitro:

or

 R^5 and R^6 together with the nitrogen atom to which they are attached can form a 3-8 membered saturated heterocylic ring optionally containing one or more atoms selected from O, $S(O)_x$ where x is 0, 1 or 2, NR^{16} , and the ring itself is optionally substituted by C_1 - C_3 alkyl;

 R^7 and R^{13} independently represent a C_1 - C_6 alkyl group, or an aryl or group all of which are optionally substituted by halogen atoms;

R⁸ represents a hydrogen atom, C(O)R⁹, C₁-C₆ alkyl (optionally substituted by halogen atoms, or an aryl group, which also is optionally substituted by one or more fluorine atoms); or an aryl group, which is optionally substituted by one or more halogen atoms;

each of R^9 , R^{10} , R^{11} , R^{12} , R^{14} , R^{15} , independently represents a hydrogen atom, C_1 - C_6 alkyl, or an aryl group (all of which are optionally substituted by one or more halogen atoms); and

R¹⁶ is hydrogen, C₁₋₄ alkyl, -C(O)C₁-C₄ alkyl, C(O)YC₁-C₄alkyl, Y is O or NR⁷.

Applicant : Bonnert et al. Serial No.: 10/521,325 Filed : August 15, 2005

Page : 4 of 11

- 2. (Original) A compound according to claim 1 in which n is 2.
- 3. (Previously presented) A compound according to claim 1 in which R¹ is halogen, nitrile, C₁. ealkyl or SO2R4, NO2, NR9COR4, NR9SO2R4, aryl, NR5R6.
- 4. (Previously presented) A compound according to claim 1 in which the R¹ substituent(s) is/are in the 4- and/or 5- position.
- (Previously presented) A compound according claim 1 in which R² is C₁₋₆alkyl.
- 6. (Original) A compound according to claim 4 in which R3 is phenyl substituted by halogen.
- 7. (Previously presented) A compound according to claim 1 selected from:

```
3-[(4-chlorophenyl)sulfonyl]-2,5-dimethyl-1H-indol-1-acetic acid;
```

5-chloro-3-[(4-chlorophenyl)sulfonyl]-2-methyl-1H-indole-1-acetic acid;

6-chloro-3-[(4-chlorophenyl)sulfonyl]-2-methyl-1H-indole-1-acetic acid;

7-chloro-3-[(4-chlorophenyl)sulfonyl]-2-methyl-1H-indole-1-acetic acid;

5-chloro-3-[(4-chlorophenyl)sulfonyl]-4-cyano-2-methyl-1H-indole-1-acetic acid;

5-chloro-3-[(4-chlorophenyl)sulfonyl]-6-cyano-2-methyl-1H-indole-1-acetic acid;

3-[(4-chlorophenyl)sulfonyl]-2,5-dimethyl-1H-indole-1-acetic acid;

3-[(4-chlorophenyl)sulfonyl]-4-(ethylsulfonyl)-7-methoxy-2-methyl-1H-indole-1-acetic acid;

3-[(4-chlorophenyl)sulfonyl]-5-cyano-2-methyl-1H-indole-1-acetic acid;

3-[(4-chlorophenyl)sulfonyl]-5-cyano-2-methyl-1H-indole-1-acetic acid;

5-chloro-3-[(4-chlorophenyl)sulfonyl]-2-methyl-1H-indole-1-acetic acid,

4-chloro-3-[(4-chlorophenyl)sulfonyl]-2-methyl-1H-indole-1-acetic acid;

3-[(4-methoxyphenyl)sulfonyl]-2,5-dimethyl-1H-indol-1-acetic acid;

3-[(3-methoxyphenyl)sulfonyl]-2,5-dimethyl-1H-indol-1-acetic acid;

3-[(2-Chlorophenyl)sulfonyl]-2,5-dimethyl-1H-indol-1-acetic acid;

3-[(3-Chlorophenyl)sulfonyl]-2.5-dimethyl-1H-indol-1-acetic acid;

3-[(4-Cyanophenyl)sulfonyl]-2,5-dimethyl-1H-indole-1-acetic acid;

3-[(2-methylphenyl)sulfonyl]-2,5-Dimethyl-1H-indol-1-acetic acid;

Applicant : Bonnert et al.
Serial No. : 10/521,325
Filed : August 15, 2005
Page : 5 of 11

3-[(2-ethylphenyl)sulfonyl]-2,5-dimethyl-1H-indol-1-acetic acid;

3-[(4-chlorophenyl)sulfonyl]-2-methyl-4-nitro-1H-indole-1-acetic acid;

4-(Acetylamino)-3-[(4-chlorophenyl)sulfonyl]-2-methyl-1H-indole-1-acetic acid;

3-[(4-chlorophenyl)sulfonyl]-2-methyl-4-[(methylsulfonyl)amino]- 1H-indole-1-acetic acid;

3-[(4-chlorophenyl)sulfonyl]-4-(ethylamino)-2-methyl-1H-indole-1-acetic acid;

3-[(2,6-Dichlorophenyl)sulfonyl]-2,5-dimethyl-1H-indole-1-acetic acid;

3-[(4-chlorophenyl)sulfonyl]-2-methyl-4-phenyl-1H-indole-1-acetic acid

3-[(4-chlorophenyl)sulfonyl]-5-fluoro-2-methyl-1H-indole-1-acetic acid,

3-[(3-chlorophenyl)sulfonyl]-5-fluoro-2-methyl- 1H-indole-1-acetic acid, and

5-fluoro-2-methyl-3-[[4-(trifluoromethyl)phenyl]sulfonyl]- 1H-indole-1-acetic acid,

or a pharmaceutically acceptable salt thereof.

8-9. (Cancelled)

10. (Previously presented) A method of treating asthma or rhinitis, the method comprising administering to a patient a therapeutically effective amount of a compound of formula (I), or a pharmaceutically acceptable salt as defined in claim 1.

11-13. (Cancelled)

- 14. (Previously Presented) A process for the preparation of a compound of formula (I) of claim 1 which comprises:
 - (a) oxidation of a compound of formula (II):

$$\begin{array}{c}
0\\
OR^{11}\\
R^{1}\\
S=R^{3}
\end{array}$$

(II)

in which R17 is hydrogen or alkyl and R1, R2 and R3 are as defined in claim 1, or

Applicant : Bonnert et al.
Serial No. : 10/521,325
Filed : August 15, 2005
Page : 6 of 11

(b) reaction of a compound of formula (III):

$$R^1$$
 R^2
 $S(O)_n - R$
(III)

in which R1, R2 and R3 are as defined in claim 1, with a compound of formula (IV):

where R¹⁸ is an alkyl group and L is a leaving group in the presence of a base, and optionally thereafter (a) or (b) in any order:

- hydrolysing the ester group R¹⁷ or R¹⁸ to the corresponding acid
- removing any protecting group
- · forming a pharmaceutically acceptable salt.

Applicant : Bonnert et al. Serial No. : 10/521,325 Filed : August 15, 2005

Page : 7 of 11

15. (Currently Amended) A compound of formula (II):

$$R^1$$
 S R^3

wherein:

R17 is hydrogen or alkvl:

 R^1 is one or more substituents independently selected from halogen, CN, nitro, SO_2R^4 , CO_3R^4 , CO

 R^2 is hydrogen, halogen, CN, SO_2R^4 or $CONR^5R^6$, COR^4 or $C_{1.7}$ alkyl, the latter group being optionally substituted by one or more substituents independently selected from halogen atoms, OR^8 and NR^5R^6 , $S(O)_8R^7$ where x is 0,1 or 2;

 R^3 is aryl or a 5-6 membered aromatic ring containing one or more heteroatoms selected from N, S and O, each of which is optionally substituted by one or more substituents independently selected from halogen, CN, nitro, SO_2R^4 , OH, OR^4 , SR^4 , SOR^4 , $SO_2NR^5R^6$, $CONR^5R^6$, NR^5R^6 , $NR^9SO_2R^4$, $NR^9CO_2R^4$, NR^9COR^4 , C_2 -C6 alkenyl, C_2 -C6 alkynyl, C_1 -C6 alkyl, the latter three groups being optionally substituted by one or more substituents independently selected from halogen atoms, OR^7 and NR^8R^9 , $S(O)_RR^7$ where x is 0,1 or 2;

 R^4 represents aryl, heteroaryl, or $C_{1^{\circ}}C_{6}$ alkyl, all of which are optionally substituted by one or more substituents independently selected from halogen atoms, aryl, heteroaryl, OR^{10} and

Applicant : Bonnert et al.

Serial No. : 10/521,325

Filed : August 15, 2005

Page : 8 of 11

 $NR^{11}R^{12}\,S(O)_xR^{13}\,(where\,\,x=0,\,1\,\,or\,\,2),\,CONR^{14}R^{15},\,NR^{14}COR^{15},SO_2NR^{14}R^{15},\,NR^{14}SO_2R^{15},\\CN,\,nitro;$

 R^5 and R^6 independently represent a hydrogen atom, a C_1 - C_6 alkyl group, or an aryl group, the latter two of which are optionally substituted by one or more substituents independently selected from halogen atoms, aryl, OR^{13} and $NR^{14}R^{15}$, $CONR^{14}R^{15}$, $NR^{14}COR^{15}$, $SO_2NR^{14}R^{15}$, $NR^{14}SO_3R^{15}$, CN, nitro;

0

 R^5 and R^6 together with the nitrogen atom to which they are attached can form a 3-8 membered saturated heterocylic ring optionally containing one or more atoms selected from O, $S(O)_x$ where x is 0, 1 or 2, NR^{16} , and the ring itself optionally substituted by C_1 - C_3 alkyl;

 R^7 and R^{13} independently represent a C_1 - C_6 alkyl group, or an aryl or group all of which are optionally substituted by halogen atoms;

 R^8 represents a hydrogen atom, $C(O)R^9$, $C_{1^-}C_6$ alkyl (optionally substituted by halogen atoms, or an aryl group, which is optionally substituted by one or more fluorine atoms); an aryl group, which is optionally substituted by one or more halogen atoms;

each of R^9 , R^{10} , R^{11} , R^{12} , R^{14} , R^{15} , independently represents a hydrogen atom, C_1 - C_6 alkyl, or an aryl group (all of which are optionally substituted by one or more halogen atoms); and

 $R^{16} \text{ is hydrogen, } C_{1\text{--}4} \text{ alkyl, -C(O)} C_{1\text{--}}C_{4} \text{ alkyl, C(O)} Y C_{1\text{--}}C_{4} \text{alkyl, Y is O or NR}^7.$

- 16. (New) A compound according to claim 15 in which the R¹ substituent(s) is/are in the 4-and/or 5- position.
- 17. (New) A compound according claim 15 in which R2 is C1-6alkyl.
- 18. (New) A compound according to claim 15 in which R³ is phenyl substituted by halogen.
- (New) A compound according to claim 15 in which R¹ is one or more substituents independently selected from NR⁹SO₂R⁴ and NR⁹COR⁴.

Applicant: Bonnert et al. Attorney's Docket No.: 06275-435US1 / 100770-1P US

Serial No. : 10/521,325 Filed : August 15, 2005

Page : 9 of 11

20. (New) A compound according to claim 19 in which the R^1 substituent(s) is/are in the 4-and/or 5- position.

- 21. (New) A compound according claim 19 in which R² is C₁₋₆alkyl.
- 22. (New) A compound according to claim 19 in which R³ is phenyl substituted by halogen.