CSE 632: Analysis of Algorithms II: Randomized Algorithms

Spring 2024

Lecture 14: RSA Cryptosystem

Lecturer: Zongchen Chen

1 RSA Cryptosystem

RSA (Rivest–Shamir–Adleman) is a public-key cryptosystem, one of the oldest widely used for secure data transmission.

Algorithm 1 Key generation

- 1: Choose two random n-bit primes p and q
- 2: Compute N = pq
- 3: Find e which is relatively prime to (p-1)(q-1) (i.e., $\gcd(e,(p-1)(q-1))=1) \triangleright \text{Typically by trying } e=3,5,7,11,\ldots$ The most commonly chosen value for e is $2^{16}+1=65537$
- 4: Compute $d \equiv e^{-1} \mod (p-1)(q-1)$

 \triangleright Using the extended Euclidean algorithm

5: Public Key: (N, e)

▷ Release them

Private Key: d

▶ Keep it secrete

Algorithm 2 Encryption

Input: a message represented as an integer m where $0 \le m < N$, public key (N, e)

1: Compute the ciphertext $c \equiv m^e \mod N$

▶ Using fast modular exponentiation algorithm

return c

Algorithm 3 Decryption

Input: a ciphertext c where $0 \le c < N$, private key d

1: Compute the message $m \equiv c^d \mod N$

return m

Security. Given the public key (N, e), we believe it is computationally intractable to factor N = pq and find the private key d. See also the RSA problem.

Correctness. The correctness of RSA is guaranteed by the following results from number theory.

Theorem 1 (Fermat's Little Theorem). Let p be a prime number. For all $a \in \mathbb{N}$ such that $a \not\equiv 0 \mod p$, it holds

$$a^{p-1} \equiv 1 \mod p$$
.

Lemma 2. Suppose N=pq where p,q are distinct primes. Let $e \in \mathbb{N}$ be relatively prime to (p-1)(q-1) and $d \equiv e^{-1} \mod (p-1)(q-1)$. For any $m \in \mathbb{N}$, it holds

$$m^{ed} \equiv m \mod N$$
.

Remark 3. If $c \equiv m^e \mod N$ is the ciphertext, then Lemma 2 shows that

$$c^d \equiv (m^e)^d \equiv m^{ed} \equiv m \mod N.$$

This shows the correctness of RSA.

Proof of Theorem 1. Let $a_i = (ia \mod p)$ where $i = 1, \ldots, p-1$. We claim that

$$\{a_1,\ldots,a_{p-1}\}=\{1,\ldots,p-1\}$$

as two sets. To see this, notice that $a_i = a_j$ iff $ia \equiv ja \mod p$, which happens iff i = j since $a \not\equiv 0 \mod p$ and a^{-1} exists. Thus, $a_i \neq a_j$ for all $i \neq j$. Moreover, $a_i = (ia \mod p) \neq 0$ since both $i, a \not\equiv 0 \mod p$. This shows the claim.

Taking product in both sets, we deduce that

$$(p-1)! = \prod_{i=1}^{p-1} a_i \equiv \prod_{i=1}^{p-1} ia \equiv (p-1)! \cdot a^{p-1} \mod p.$$

Since p is prime, we have $(p-1)! \not\equiv 0 \mod p$ and hence its inverse exists. It follows that

$$a^{p-1} \equiv 1 \mod p$$
,

as desired. \Box

Proof of Lemma 2. Notice that $m^{ed} \equiv m \mod pq$ iff $m^{ed} \equiv m \mod p$ and $m^{ed} \equiv m \mod q$ (in other words, $pq \mid m^{ed} - m$ iff $p \mid m^{ed} - m$ and $q \mid m^{ed} - m$). We shall prove $m^{ed} \equiv m \mod p$ and the argument for q is the same

If $m \equiv 0 \mod p$, then we trivially have $m^{ed} \equiv 0 \equiv m \mod p$. Assume $m \not\equiv 0 \mod p$. Since $d \equiv e^{-1} \mod (p-1)(q-1)$, there exists $k \in \mathbb{N}$ such that ed = k(p-1)(q-1) + 1. It follows that

$$m^{ed} = m^{k(p-1)(q-1)+1} = (m^{p-1})^{k(q-1)} \cdot m \equiv (1)^{k(q-1)} \cdot m \equiv m \mod p$$

where we apply Fermat's little theorem.

2 Generation of Random Primes

In both fingerprinting and RSA algorithms, we need to generate n-bit prime numbers uniformly at random. Recall that, $\pi(x)$ is the number of prime numbers less than or equal to x.

Theorem 4 (Prime Number Theorem). For $x \ge 17$, it holds

$$\pi(x) \ge \frac{x}{\log x}.$$

So, for a random n-bit number x, we have

$$\Pr(x \text{ is prime}) = \frac{\pi(2^n)}{2^n} \ge \frac{1}{n}.$$

Algorithm 4 Generating random primes

- 1: Choose an n-bit number x u.a.r.
- 2: Check if x is prime or not
- 3: if Yes then

return x

4: **else**

return Failure

5: **end if**

When Algorithm 4 outputs a prime number, it is a uniformly random one. We need to run O(n) trials of Algorithm 4 in expectation to find a random prime, and $O(n \log n)$ trials to have failure probability at most 1/poly(n).

3 Primality Test

In Algorithm 4, a crucial step is to determine if a given number x is prime or not. In this section we give two primality tests that can accomplish this goal.

3.1 Fermat test

Recall that Fermat's little theorem states that if x is prime, then $a^{x-1} \equiv 1 \mod x$ for all $a \in \{1, \dots, x-1\}$.

Definition 5 (Fermat Witness). We say $a \in \{1, \dots, x-1\}$ is a Fermat witness if $a^{x-1} \not\equiv 1 \mod x$.

Claim 6. • If x is prime, then there is no Fermat witness.

• If x is composite, then there exists a Fermat witness.

Proof. The first claim is due to Fermat's little theorem. For the second claim, observe that for any $a \in \{1, \ldots, x-1\}$ such that $\gcd(a, x) > 1$, we have $a^{x-1} \not\equiv 1 \mod x$ since $a^{x-1} \mod x$ is a multiple of $\gcd(a, x)$. \square

Algorithm 5 Fermat primality test

Input: an n-bit number x

- 1: Choose $a \in \{1, ..., x 1\}$ u.a.r.
- 2: Compute $a^{x-1} \mod x$
- 3: **if** $a^{x-1} \equiv 1 \mod x$ **then**

return Yes

4: **else**

return No

5: end if

 $\triangleright a^{x-1} \not\equiv 1 \mod x$ and so a is a Fermat witness

Definition 7 (Non-trivial Fermat Witness). We say $a \in \{1, ..., x-1\}$ is a non-trivial Fermat witness if $a^{x-1} \not\equiv 1 \mod x$ and $\gcd(a, x) = 1$.

The proof of Claim 6 shows that every composite x has at least one trivial Fermat witness. Those having only trivial Fermat witnesses are called Carmichael numbers.

Definition 8 (Carmichael Number). A composite x is called a Carmichael number if it has no non-trivial Fermat witness.

Remark 9. Equivalently, a composite x is Carmichael iff $a^x \equiv a \mod x$ for all a.

Remark 10. There are infinitely many Carmichael numbers, but they are very rare. Smallest Carmichael numbers are 561, 1105, 1729...

Lemma 11. If x is composite and not Carmichael, then

$$\Pr\left(a \text{ is a Fermat witness}\right) \geq \frac{1}{2}.$$

The success probability of Algorithm 5 is summarized in the table below.

	Pr(return Yes)	Pr(return No)
x is prime	1	0
x is composite & not Carmichael	$\leq \frac{1}{2}$	$\geq \frac{1}{2}$
x is Carmichael	No guarantee (give up)	

Proof of Lemma 11. Let b be a non-trivial Fermat witness, i.e., $b^{x-1} \not\equiv 1 \mod x$ and $\gcd(b,x) = 1$. Let

$$F = \{ f \in \{1, \dots, x - 1\} : f^{x - 1} \not\equiv 1 \bmod x \}$$

be the set of Fermat witnesses, and let

$$G = \{1, \dots, x-1\} \setminus F = \{g \in \{1, \dots, x-1\} : g^{x-1} \equiv 1 \mod x\}$$

be the complement. We need to show |F| > |G|.

Consider a mapping

$$\varphi: G \to F$$
$$q \mapsto bq \bmod x.$$

Notice that,

$$(bg)^{x-1} = b^{x-1}g^{x-1} \equiv b^{x-1} \not\equiv 1 \mod x.$$

Hence, $\varphi(g) = (bg \mod x) \in F$; namely, the image of φ is indeed contained in F. We show that φ is injective. Observe that $\varphi(g_1) = \varphi(g_2)$ iff $bg_1 \equiv bg_2 \mod x$, which happens iff $g_1 = g_2$ since $\gcd(b, x) = 1$ and hence $b^{-1} \mod x$ exists. Therefore, $\varphi(g_1) \neq \varphi(g_2)$ for all $g_1 \neq g_2$, showing that φ is an injective mapping. Consequently, |G| < |F| and the lemma follows.

3.2Miller-Rabin test

Definition 12 (Square Root of 1). We say $y \in \{1, \dots, x-1\}$ is a square root of 1 if $y^2 \equiv 1 \mod x$.

Definition 13 (Non-trivial Square Root of 1). We say $y \in \{1, ..., x-1\}$ is a non-trivial square root of 1 if $y^2 \equiv 1 \mod x$ and $y \neq 1, x - 1$.

Claim 14. If x is prime, then there is no non-trivial square root of 1.

Proof. Notice that $y^2 \equiv 1 \mod x$ is equivalent to $(y-1)(y+1) \equiv 0 \mod x$. Since x is prime, this happens iff $y - 1 \equiv 0 \mod x$ or $y + 1 \equiv 0 \mod x$. The claim then follows.

Algorithm 6 Miller-Rabin primality test

Input: an n-bit odd number x

- 1: Find integers t, u such that $x 1 = 2^t u$ where $t \ge 1$ and u is odd
- 2: Choose $a \in \{1, ..., x 1\}$ u.a.r.
- 3: **for** i = 0 to t **do**
- Compute $a^{2^i u} \mod x$

▶ This can be done recursively

5: end for

6: **if** $a^{2^t u} = a^{x-1} \not\equiv 1 \mod x$ **then**

return No

 $\triangleright a$ is a Fermat witness

7: else if $a^{2^i u} \equiv 1 \mod x$ and $a^{2^{i-1} u} \not\equiv \pm 1 \mod x$ for some i then

 $\triangleright a^{2^{i-1}u}$ is a non-trivial square root of 1

return No

8: **else**

return Yes

9: end if

The success probability of Algorithm 6 is summarized in the table below. The proof is omitted.

	Pr(return Yes)	Pr(return No)
x is prime	1	0
x is odd composite	$\leq \frac{1}{2}$	$\geq \frac{1}{2}$