Steady-State Stokes Equations For Impressible Flow

Caiyou Yuan

January 31, 2019

1 Algorithm

1.1 Continuous Equations

2D steady-state Stokes equations for impressible flow are

$$\begin{cases}
-\Delta \vec{u} + \nabla p &= \vec{F} \\
\nabla \cdot \vec{u} &= 0
\end{cases}$$
(1)

where $\vec{u} = [u, v]^T$, $\vec{F} = [f, g]^T$. Sometimes, it's preferable to rewrite the above equations as

$$\begin{cases}
-\Delta u + \partial_x p = f \\
-\Delta v + \partial_y p = g \\
\partial_x u + \partial_y v = 0
\end{cases}$$
(2)

1.2 Finite Difference Equations

Discretize (2), we get

$$\begin{cases}
(-\Delta)_h u_h + (\partial_x)_h p_h = f_h \\
(-\Delta)_h v_h + (\partial_y)_h p_h = g_h \\
(\partial_x)_h u_h + (\partial_y)_h v_h = 0
\end{cases}$$
(3)

where $(\cdot)_h$ denotes the discretization on the uniform grid whose grid size is h. We can rewrite (3) in matrix form, so we'll see it's actually a saddle points problem.

$$\begin{bmatrix} A_h & B_h \\ B_h^T & 0 \end{bmatrix} \begin{bmatrix} U_h \\ p_h \end{bmatrix} = \begin{bmatrix} F_h \\ 0 \end{bmatrix} \tag{4}$$

where

$$A_h = \begin{bmatrix} (-\Delta)_h & 0\\ 0 & (-\Delta)_h \end{bmatrix} \quad B_h = \begin{bmatrix} (\partial_x)_h\\ (\partial_y)_h \end{bmatrix} \quad U_h = \begin{bmatrix} u_h\\ v_h \end{bmatrix}$$
 (5)

Here we discretize (2) on an uniform staggered grid. In 2D case, the grid define cells, and each cell has 4 face. The discretion of x-component velocity u is defined at the center of x-faces of cells, i.e., faces perpendicular to the x-coordinate. The discretion of y-component velocity v is defined at the y-faces. Discretion of pressure p is located at the cell centers.

On sucn a staggered grid, we discretize the x/y-component momentum equation in x/y-face centers, and impressible condition $\nabla \cdot \vec{u} = 0$ at cell centers. Laplacian operator is approximated by five points scheme, while partial derivative is approximated by center difference.

Figure 1: Staggered Grid in 2D (Location 1 store u, Location 2 store v)

1.3 Distributive Gauss-Seidal Method

Conventional Gauss-Seidal Method is not appliable for solving finite difference equation (4), for its coefficient matrix has zero diagonal elements. So, here we use the so-called DGS method. DGS method firstly conducts Gauss-Seidal procedure for components u_h and v_h . Then, for each cell,

1. Compute current residual

$$r_{ij} = F_{ij}^p - [(\partial_x)_h u_{ij} + (\partial_y)_h v_{ij}]$$

Although here $F_{ij}^p = 0$ actually, we don't omit it for the multigrid method ¹.

2. Eliminate current residual

$$u_{i+1/2,j} = u_{i+1/2,j} + \delta; u_{i-1/2,j} = u_{i-1/2,j} - \delta; v_{i+1/2,j} = v_{i+1/2,j} + \delta; v_{i-1/2,j} = v_{i-1/2,j} - \delta;$$
(6)

where $\delta = r_{ij}h/4$

3. Update pressure p

$$p_{i,j} = p_{i,j} + 4\delta/h;$$

$$p_{i+1,j} = p_{i+1,j} - \delta/h;$$

$$p_{i-1,j} = p_{i-1,j} - \delta/h;$$

$$p_{i,j+1} = p_{i,j+1} - \delta/h;$$

$$p_{i,j-1} = p_{i,j-1} - \delta/h;$$
(7)

The pressure changes are in the way such that momentum-equations residuals at all points remain unchange. If the cell is located near the boundary, the above procedure has some tiny modifications. All situations are graphically presented as Figure 2.

 $^{^{1}}$ In multigrid method, we have to solve the residual equations on the coarser grid, and now the right hand side on the p component is not zero probably.

Figure 2: DGS Update Cases

1.4 Multigrid Technique

Just as conventional Gauss-Seidal method, DGS has the same limits:

- 1. Converge speed is slow;
- 2. Converge speed declines when grid gets finer.

Multigrid Method overcome such limits, get a much better result. See the results.

2 Numerical Test

Set problem region $\Omega = [0, 1]^2$

$$f(x,y) = -4\pi^2 (2\cos(2\pi x) - 1)\sin(2\pi y) + x^2$$

$$g(x,y) = 4\pi^2 (2\cos(2\pi y) - 1)\sin(2\pi x)$$
(8)

So the true solution for (2) is

$$u(x,y) = (1 - \cos(2\pi x))\sin(2\pi y)$$

$$v(x,y) = -(1 - \cos(2\pi y))\sin(2\pi x)$$

$$p(x,y) = x^3/3 - 1/12$$
(9)

The boundary condition is given accordingly. Numerical test results are listed as followed,

	DGS V-Cycle Results		
Num	n=128	n=256	n=512
1	8.31191e+00	1.04701e+01	1.37668e + 01
2	5.14701e-01	5.93665 e - 01	7.21926e-01
3	3.79273e-02	4.12965 e-02	4.67891 e- 02
4	3.02427e-03	3.18206e-03	3.42251 e-03
5	2.53225e-04	2.61750 e-04	2.72443e-04
6	2.18033e-05	2.23540e-05	2.28567e-05
7	1.90423e-06	1.94612e-06	1.97266e-06
8	1.67320e-07	1.70904 e-07	1.72546e-07
9	1.47222e-08	1.50547e-08	1.51765 e - 08
10	1.29381e-09	1.32663e-09	1.34501 e-09
L2 Error	4.07741e-04	1.01930e-04	2.54820e-05
Time/s	1.02915e-01	3.85292e-01	1.69065e+00

The L2 errors confirm second order convergence. And compare results from case n=128,256,512, we'll see multigird method has a rapid convergence rate which is irrelavent with the problem size.