

25 W, 6.0 - 12.0 GHz, GaN MMIC, Power Amplifier

## **Description**

The CMPA601C025F is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit (MMIC) on a Silicon Carbide (SiC) substrate, using a 0.25  $\mu$ m gate length fabrication process. The semiconductor offers 25 Watts of power from 6 to 12 GHz of instantaneous bandwidth. The GaN HEMT MMIC is housed in a thermally-enhanced, 10-lead 25 mm x 9.9 mm metal/ceramic flanged package. It offers high gain and superior efficiency in a small footprint package at 50 ohms.



PN: CMPA601C025F Package Type: 440213

#### Typical Performance Over $6.0 - 12 \text{ GHz} (T_c = 25^{\circ}\text{C})$

| Parameter                                   | 6.0 GHz | 7.5 GHz | 9.0 GHz | 10.5 GHz | 12.0 GHz | Units |
|---------------------------------------------|---------|---------|---------|----------|----------|-------|
| Small Signal Gain                           | 35      | 34      | 34      | 37       | 31       | dB    |
| P <sub>OUT</sub> @ P <sub>IN</sub> = 22 dBm | 34      | 51      | 49      | 45.9     | 36.5     | W     |
| Power Gain @ P <sub>IN</sub> = 22 dBm       | 23      | 25      | 25      | 25       | 23.5     | dB    |
| PAE @ P <sub>IN</sub> = 22 dBm              | 21      | 36      | 35      | 33       | 27       | %     |

Note: All data CW

#### **Features**

- 34 dB Small Signal Gain
- 40 W Typical P<sub>SAT</sub>
- Operation up to 28 V
- High Breakdown Voltage
- High Temperature Operation
- Size 0.172 x 0.239 x 0.004 inches

#### **Applications**

- Jamming Amplifiers
- Test Equipment Amplifiers
- · Broadband Amplifiers



# Absolute Maximum Ratings (not simultaneous) at 25°C

| Parameter                                         | Symbol            | Rating    | Units    | Conditions                      |
|---------------------------------------------------|-------------------|-----------|----------|---------------------------------|
| Drain-Source Voltage                              | V <sub>DSS</sub>  | 84        | $V_{DC}$ | 2506                            |
| Gate-Source Voltage                               | V <sub>GS</sub>   | -10, +2   |          | 25°C                            |
| Storage Temperature                               | T <sub>STG</sub>  | -40, +150 | °C       |                                 |
| Operating Junction Temperature                    | TJ                | 225       |          |                                 |
| Maximum Forward Gate Current                      | I <sub>GMAX</sub> | 23        | mA       | 25°C                            |
| Soldering Temperature <sup>1</sup>                | T <sub>STG</sub>  | 245       | °C       |                                 |
| Screw Torque                                      | τ                 | 40        | in-oz    |                                 |
| Thermal Resistance, Junction to Case <sup>2</sup> | R <sub>θJC</sub>  | 0.85      | °C/W     | 85°C @ P <sub>DISS</sub> = 116W |
| Case Operating Temperature <sup>2</sup>           | T <sub>C</sub>    | -40, +150 | °C       |                                 |

# Electrical Characteristics (Frequency = 6.0 GHz to 12.0 GHz unless otherwise stated; T<sub>C</sub> = 25°C)

| Characteristics                                  | Symbol            | Min. | Тур. | Max. | Units | Conditions                                                                                                |
|--------------------------------------------------|-------------------|------|------|------|-------|-----------------------------------------------------------------------------------------------------------|
| DC Characteristics <sup>1,2</sup>                |                   |      |      |      |       |                                                                                                           |
| Gate Threshold                                   | V <sub>TH</sub>   | -3.8 | -2.8 | -2.3 | V     | V <sub>DS</sub> = 10 V, I <sub>D</sub> = 23 mA                                                            |
| Saturated Drain Current                          | I <sub>DS</sub>   | 10.6 | 13.0 |      | А     | $V_{DS} = 6 \text{ V}, I_{GS} = 2 \text{ V}$                                                              |
| Drain-Source<br>Breakdown Voltage                | V <sub>BD</sub>   | 84   | 100  | _    | V     | V <sub>GS</sub> = -8 V, I <sub>DS</sub> = 23 mA                                                           |
| RF Characteristics <sup>3</sup>                  |                   |      |      |      |       |                                                                                                           |
| Small Signal Gain at 6.0 - 10.5 GHz              | C21               | 28   | 31   | _    | dB    | V = 20 V L = 2 A D = 20 dDm                                                                               |
| Small Signal Gain at 10.5 - 12 GHz               | S21               | 25   | 28   | _    | ав    | $V_{DD} = 28 \text{ V}, I_{DQ} = 2 \text{ A}, P_{IN} = -30 \text{ dBm}$                                   |
| Output Power at 6 GHz <sup>3,4</sup>             | P <sub>OUT1</sub> | 45.5 | 47.2 | _    |       |                                                                                                           |
| Output Power at 9.5 GHz <sup>3,4</sup>           | P <sub>OUT2</sub> | 45.5 | 47.1 | _    | dBm   |                                                                                                           |
| Output Power at 12 GHz <sup>3,4</sup>            | P <sub>OUT3</sub> | 43.0 | 44.8 | _    | ]     | V 20VI 2.4 B 22 IB                                                                                        |
| Power Added Efficiency at 6 GHz <sup>3,4</sup>   | PAE <sub>1</sub>  | 23   | 33.2 | _    |       | $V_{DD} = 28 \text{ V}, I_{DQ} = 2 \text{ A}, P_{IN} = 22 \text{ dBm}$                                    |
| Power Added Efficiency at 9.5 GHz <sup>3,4</sup> | PAE <sub>2</sub>  | 26   | 32.3 | _    | %     |                                                                                                           |
| Power Added Efficiency at 12 GHz <sup>3,4</sup>  | PAE <sub>3</sub>  | 15.5 | 26.5 | _    | ]     |                                                                                                           |
| Input Return Loss                                | S11               | _    | _    | _    |       | V 00VI 04 D 00 ID                                                                                         |
| Output Return Loss                               | S22               | _    | -5   | _    | dB    | $V_{DD} = 28 \text{ V}, I_{DQ} = 2 \text{ A}, P_{IN} = -30 \text{ dBm}$                                   |
| Output Mismatch Stress                           | VSWR              | _    | _    | 5:1  | Ψ     | No damage at all phase angles,<br>V <sub>DD</sub> = 28 V, I <sub>DQ</sub> = 2 A, P <sub>IN</sub> = 22 dBm |

#### Notes:

<sup>&</sup>lt;sup>1</sup> Refer to the Application Note on soldering at wolfspeed.com/rf/document-library <sup>2</sup> See also, the Power Dissipation De-rating Curve on page 5

<sup>&</sup>lt;sup>1</sup> Measured on-wafer prior to packaging

<sup>&</sup>lt;sup>2</sup> Scaled from PCM data

<sup>&</sup>lt;sup>3</sup> Measured in CMPA601C025F-AMP with 12.4 GHz low pass filter

<sup>&</sup>lt;sup>4</sup> Fixture loss de-embedded using the following offsets. The offset is subtracted from the input offset value and added to the output offset value.

a) 6.0 GHz - 0.13 dB

b) 9.50 GHz - 0.26 dB

c) 12.0 GHz - 0.35 dB

## **CMPA601C025F Typical Performance**



**Figure 1.** Small Signal S-Parameters vs. Frequency  $V_{DD} = 28 \text{ V}$ ,  $I_{DO} = 2.0 \text{ A}$ ,  $P_{IN} = -30 \text{ dBm}$ 



**Figure 2.** Output Power, Gain and Power Added Efficiency vs. Input Power  $V_{DD} = 28 \text{ V}$ ,  $I_{DO} = 2.0 \text{ A}$ ,  $P_{IN} = 22 \text{ dBm}$ 

# CMPA601C025F Typical Performance



Figure 3. Power Added Efficiency vs. Input Power  $V_{DD} = 28 \text{ V}, I_{DO} = 2.0 \text{ A}$ 



Figure 4. Output Power vs. Input Power  $V_{DD} = 28 \text{ V}, I_{DQ} = 2.0 \text{ A}$ 

# **CMPA601C025F Typical Performance**



**Figure 5.** Gain vs Input Power  $V_{DD} = 28 \text{ V}, I_{DO} = 2.0 \text{ A}$ 



Figure 6. Power Dissipation Derating Curve

#### Notes:

<sup>&</sup>lt;sup>1</sup> Area exceeds Maximum Case Operating Temperature (See Page 2)

# CMPA601C025F-AMP Demonstration Amplifier Circuit Bill of Materials

| Designator               | Description                                                       | Qty |
|--------------------------|-------------------------------------------------------------------|-----|
| C2, C4, C5, C7, C9, C12  | CAP, 33000pF, 0805, 100V, X7R                                     | 6   |
| C1, C3, C6, C8, C10, C13 | CAP, 1.0μF, 100V, 10%, X7R, 1210                                  | 6   |
| C11,C14                  | CAP ELECT 3.3μF 80V FK SMD                                        | 2   |
| R1, R2                   | RES 0.0 OHM 1/16W 0402 SMD                                        | 2   |
| J1, J2                   | CONN, SMA, PANEL MOUNT JACK, FLANGE,<br>4-HOLE, BLUNT POST, 20MIL | 2   |
| J3                       | HEADER RT>PLZ .1CEN LK 9POS                                       | 1   |
| W1                       | WIRE, BLACK, 22 AWG ~ 1.50"                                       | 1   |
| W2                       | WIRE, BLACK, 22 AWG ~ 1.75"                                       | 1   |
| Q1                       | CMPA601C025F                                                      | 1   |

# CMPA601C025F-AMP Demonstration Amplifier Circuit



## **CMP601C025F-AMP Demonstration Amplifier Circuit Schematic**



# **CMPA601C025F-AMP Demonstration Amplifier Circuit Outline**



#### **Product Dimensions CMPA601C025F**



PIN 1: GATE BIAS 6: DRAIN BIAS 2: GATE BIAS 7: DRAIN BIAS 3: RF IN 8: RF DUT 4: GATE BIAS 9: DRAIN BIAS 5: GATE BIAS 10: DRAIN BIAS 11: SDURCE

#### NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M  $-\,$  1994.
- 2. CONTROLLING DIMENSION: INCH.
- 3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020' BEYOND EDGE OF LID.
- 4. LID MAY BE MISALIGNED TO THE BODY OF PACKAGE BY A MAXIMUM OF 0.008' IN ANY DIRECTION.

|     | INC       | HES   | MILLIM   | ETERS | NOTES       |
|-----|-----------|-------|----------|-------|-------------|
| DIM | MIN       | MAX   | MIN      | MAX   |             |
| Α   | 0.155     | 0.175 | 3.94     | 4.45  |             |
| A1  | 0.055     | 0.065 | 1.40     | 1.65  |             |
| A2  | 0.035     | 0.045 | 0.89     | 1.14  |             |
| b   | 0.01      | TYP   | 0.254    | TYP   | 10x         |
| С   | 0.007     | 0.009 | 0.18     | 0.23  |             |
| D   | 0.995     | 1.005 | 25.27    | 25.53 |             |
| D1  | 0.835     | 0.845 | 21.21    | 21.46 |             |
| D2  | 0.623     | 0.637 | 15.82    | 16.18 |             |
| Ε   | 0.653     | TYP   | 16.59    | TYP   |             |
| E1  | 0.380     | 0.390 | 9.65     | 9.91  |             |
| E2  | 0.355     | 0.365 | 9.02     | 9.27  |             |
| E3  | 0.120     | 0.130 | 3.05     | 3.30  |             |
| E4  | 0.035     | 0.045 | 0.89     | 1.14  | 45° CHAMFER |
| е   | 0.20      | 0 TYP | 5.08 TYP |       | 4x          |
| e1  | 0.15      | 0 TYP | 3.81     | TYP   | 4x          |
| L   | 0.115     | 0.155 | 2.92     | 3.94  | 10x         |
| r   | 0.025 TYP |       | .635 TYP |       | 3x          |

| Pin Number | Qty                          |  |
|------------|------------------------------|--|
| 1          | Gate Bias for Stage 1, 2 & 3 |  |
| 2          | Gate Bias for Stage 1, 2 & 3 |  |
| 3          | RF <sub>IN</sub>             |  |
| 4          | Gate Bias for Stage 1, 2 & 3 |  |
| 5          | Gate Bias for Stage 1, 2 & 3 |  |
| 6          | Drain Bias                   |  |
| 7          | Drain Bias                   |  |
| 8          | RF <sub>OUT</sub>            |  |
| 9          | Drain Bias                   |  |
| 10         | Drain Bias                   |  |



#### **Part Number System**

# CMPA601C025F Package Power Output (W) Upper Frequency (GHz) Lower Frequency ■ Wolfspeed GaN High Voltage

Table 1.

| Parameter                    | Value   | Units |
|------------------------------|---------|-------|
| Lower Frequency              | 6.0     | GHz   |
| Upper Frequency <sup>1</sup> | 12.0    | GHz   |
| Power Output                 | 25      | W     |
| Package                      | Flanged | _     |

Table 2.

| Character Code | Code Value                     |
|----------------|--------------------------------|
| A              | 0                              |
| В              | 1                              |
| С              | 2                              |
| D              | 3                              |
| E              | 4                              |
| F              | 5                              |
| G              | 6                              |
| Н              | 7                              |
| J              | 8                              |
| К              | 9                              |
| Examples:      | 1A = 10.0 GHz<br>2H = 27.0 GHz |

## **Electrostatic Discharge (ESD) Classifications**

| Parameter           | Symbol | Class | Classification Level           | Test Methodology    |
|---------------------|--------|-------|--------------------------------|---------------------|
| Human Body Model    | НВМ    | 1A    | ANSI/ESDA/JEDEC JS-001 Table 3 | JEDEC JESD22 A114-D |
| Charge Device Model | CDM    | С3    | ANSI/ESDA/JEDEC JS-002 Table 3 | JEDEC JESD22 C101-C |

Note: 

<sup>1</sup> Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

# **Product Ordering Information**

| Order Number     | Description                        | Unit of Measure | Image          |
|------------------|------------------------------------|-----------------|----------------|
| CMPA601C025F     | GaN HEMT                           | Each            | CMP NEWSCOOLER |
| CMPA601C025F-AMP | Test board with GaN HEMT installed | Each            |                |

#### For more information, please contact:

4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 www.wolfspeed.com/RF

Sales Contact RFSales@wolfspeed.com

RF Product Marketing Contact RFMarketing@wolfspeed.com

#### Notes & Disclaimer

Specifications are subject to change without notice. "Typical" parameters are the average values expected by Wolfspeed in large quantities and are provided for information purposes only. Wolfspeed products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death. No responsibility is assumed by Wolfspeed for any infringement of patents or other rights of third parties which may result from use of the information contained herein. No license is granted by implication or otherwise under any patent or patent rights of Wolfspeed.

© 2014-2022 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. PATENT: https://www.wolfspeed.com/legal/patents

The information in this document is subject to change without notice.