CMSC 330: Organization of Programming Languages

DFAs, and NFAs, and Regexps (Oh my!)

Types of Finite Automata

- Deterministic Finite Automata (DFA)
 - Exactly one sequence of steps for each string
 - All examples so far
- Nondeterministic Finite Automata (NFA)
 - May have many sequences of steps for each string
 - Accepts if any path ends in final state at end of string
 - More compact than DFA
 - > But more expensive to test whether a string matches

Comparing DFAs and NFAs

NFAs can have more than one transition leaving a state on the same symbol

- DFAs allow only one transition per symbol
 - I.e., transition function must be a valid function
 - DFA is a special case of NFA

Comparing DFAs and NFAs (cont.)

- NFAs may have transitions with empty string label
 - May move to new state without consuming character

- DFA transition must be labeled with symbol
 - DFA is a special case of NFA

DFA for (a|b)*abb

CMSC 330 Spring 2017 5

NFA for (a|b)*abb

- ba
 - Has paths to either S0 or S1
 - Neither is final, so rejected
- babaabb
 - Has paths to different states
 - One path leads to S3, so accepts string

NFA for (ab|aba)*

- ▶ aba
 - Has paths to states S0, S1
- ababa
 - Has paths to S0, S1
 - Need to use ε-transition

Comparing NFA and DFA for (ab|aba)*

CMSC 330 Spring 2017

8

Quiz 1: Which DFA matches this regexp?

ba+(a|b)

D. None of the above

Quiz 1: Which DFA matches this regexp?

ba+(a|b)

D. None of the above

CMSC 330 Spring 2017

How NFA Acceptance Works

- When NFA processes a string s
 - NFA must keep track of several "current states"
 - Due to multiple transitions with same label
 - > ε-transitions
 - If any current state is final when done then accept s
- Example

• After processing "a"

Relating REs to DFAs and NFAs

Regular expressions, NFAs, and DFAs accept the same languages!

CMSC 330 Spring 2017

Formal Definition

- A deterministic finite automaton (DFA) is a 5-tuple (Σ, Q, q₀, F, δ) where
 - Σ is an alphabet
 - Q is a nonempty set of states
 - $q_0 \in Q$ is the start state
 - F
 Q is the set of final states
 - $\delta: Q \times \Sigma \rightarrow Q$ specifies the DFA's transitions
 - \triangleright What's this definition saying that δ is?
- A DFA accepts s if it stops at a final state on s

Formal Definition: Example

•
$$\Sigma = \{0, 1\}$$

•
$$Q = \{S0, S1\}$$

•
$$q_0 = S0$$

or as { (S0,0,S0),(S0,1,S1),(S1,0,S0),(S1,1,S1) }

Nondeterministic Finite Automata (NFA)

- ► An NFA is a 5-tuple (Σ , Q, q_0 , F, δ) where
 - Σ, Q, q0, F as with DFAs
 - $\delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times Q$ specifies the NFA's transitions

An NFA accepts s if there is at least one path via s from the NFA's start state to a final state

Reducing Regular Expressions to NFAs

- Goal: Given regular expression *A*, construct NFA: $\langle A \rangle = (\Sigma, Q, q_0, F, \delta)$
 - Remember regular expressions are defined recursively from primitive RE languages
 - Invariant: |F| = 1 in our NFAs
 - Recall F = set of final states
- ▶ Will define $\langle A \rangle$ for base cases: σ , ϵ , \varnothing
 - Where σ is a symbol in Σ
- ▶ And for inductive cases: AB, AB, AB, A*

Reducing Regular Expressions to NFAs

Base case: σ

 $<\sigma> = ({\sigma}, {S0, S1}, {S0, {S1}, {(S0, \sigma, S1)}})$

Reduction

Base case: ε

$$<\epsilon> = (\emptyset, \{S0\}, S0, \{S0\}, \emptyset)$$

▶ Base case: ∅

Reduction: Concatenation

▶ Induction: AB

- $\langle A \rangle = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $\langle B \rangle = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)$

Reduction: Concatenation

▶ Induction: AB

- $\langle A \rangle = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $\langle B \rangle = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)$
- $\langle AB \rangle = (\Sigma_A \cup \Sigma_B, Q_A \cup Q_B, q_A, \{f_B\}, \delta_A \cup \delta_B \cup \{(f_A, \epsilon, q_B)\})$

Reduction: Union

▶ Induction: A|B

- $\langle A \rangle = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $\langle B \rangle = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)$

CMSC 330 Spring 2017

Reduction: Union

▶ Induction: A|B

- $\langle A \rangle = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $\langle B \rangle = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)$
- $\langle A|B \rangle = (\Sigma_A \cup \Sigma_B, Q_A \cup Q_B \cup \{S0,S1\}, S0, \{S1\}, \delta_A \cup \delta_B \cup \{(S0,\epsilon,q_A), (S0,\epsilon,q_B), (f_A,\epsilon,S1), (f_B,\epsilon,S1)\})$

Reduction: Closure

▶ Induction: A*

• $\langle A \rangle = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$

Reduction: Closure

▶ Induction: A*

- $\langle A \rangle = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $<A^*> = (\Sigma_A, Q_A \cup \{S0,S1\}, S0, \{S1\},$ $\delta_A \cup \{(f_A,\epsilon,S1), (S0,\epsilon,q_A), (S0,\epsilon,S1), (S1,\epsilon,S0)\})$

CMSC 330 Spring 2017

Quiz 2: Which NFA matches a*?

CMSC 330 Spring 2017 25

Quiz 2: Which NFA matches a*?

CMSC 330 Spring 2017 26

Quiz 3: Which NFA matches a|b*?

Quiz 3: Which NFA matches a|b*?

RE-> NFA

Draw NFAs for the regular expression (0|1)*110*

CMSC 330 Spring 2017 29

RE-> NFA

Draw NFAs for the regular expression (ab*c|d*a|ab)d

CMSC 330 Spring 2017 30

Reduction Complexity

▶ Given a regular expression A of size n...

Size = # of symbols + # of operations

- How many states does <A> have?
 - Two added for each |, two added for each *
 - O(n)
 - That's pretty good!

Recap

- Finite automata
 - Alphabet, states...
 - $(\Sigma, Q, q_0, F, \delta)$
- Types
 - Deterministic (DFA)

Non-deterministic (NFA)

- Reducing RE to NFA
 - Concatenation

Closure

CMSC 330

Reducing NFA to DFA

CMSC 330 Spring 2017 33

Reducing NFA to DFA

- NFA may be reduced to DFA
 - By explicitly tracking the set of NFA states
- Intuition
 - Build DFA where
 - > Each DFA state represents a set of NFA "current states"
- Example

CMSC 330

Algorithm for Reducing NFA to DFA

- Reduction applied using the subset algorithm
 - DFA state is a subset of set of all NFA states
- Algorithm
 - Input
 - \rightarrow NFA (Σ , Q, q₀, F_n, δ)
 - Output
 - > DFA (Σ , R, r₀, F_d, δ)
 - Using two subroutines
 - > ε-closure(p)
 - > move(p, a)

ε-transitions and ε-closure

- We say p [€] q
 - If it is possible to go from state p to state q by taking only ε-transitions
 - If \exists p, p₁, p₂, ... p_n, q \in Q such that \triangleright {p, ϵ ,p₁} \in δ , {p₁, ϵ ,p₂} \in δ , ..., {p_n, ϵ ,q} \in δ
- ε-closure(p)
 - Set of states reachable from p using ε-transitions alone
 - > Set of states q such that $p \xrightarrow{\epsilon} q$
 - \triangleright ϵ -closure(p) = {q | p $\stackrel{\epsilon}{\longrightarrow}$ q }
 - Note
 - ε-closure(p) always includes p
 - > ε-closure() may be applied to set of states (take union)

ε-closure: Example 1

Following NFA contains

- S1 $\stackrel{\epsilon}{\rightarrow}$ S2
- S2 $\stackrel{\varepsilon}{\rightarrow}$ S3
- S1 $\stackrel{\epsilon}{\rightarrow}$ S3
 - ightharpoonup Since S1 $\stackrel{\mathcal{E}}{\rightarrow}$ S2 and S2 $\stackrel{\mathcal{E}}{\rightarrow}$ S3

ε-closures

- ϵ -closure(S1) = { S1, S2, S3 }
- ϵ -closure(S2) = { S2, S3 }
- ϵ -closure(S3) = {S3}
- ϵ -closure({ S1, S2 }) = { S1, S2, S3 } \cup { S2, S3 }

ε-closure: Example 2

Following NFA contains

- S1 $\stackrel{\varepsilon}{\rightarrow}$ S3
- S3 $\stackrel{\varepsilon}{\rightarrow}$ S2
- S1 $\stackrel{\epsilon}{\rightarrow}$ S2
 - > Since S1 $\stackrel{\mathcal{E}}{\rightarrow}$ S3 and S3 $\stackrel{\mathcal{E}}{\rightarrow}$ S2

ε-closures

- ϵ -closure(S1) = { S1, S2, S3 }
- ε-closure(S2) = { S2 }
- ϵ -closure(S3) = { S2, S3 }
- ε-closure({ S2,S3 }) = { S2 } ∪ { S2, S3 }

Calculating move(p,a)

- move(p,a)
 - Set of states reachable from p using exactly one transition on a
 - > Set of states q such that $\{p, a, q\} \in \delta$
 - \triangleright move(p,a) = {q | {p, a, q} $\in \delta$ }
 - Note: move(p,a) may be empty Ø
 - > If no transition from p with label a

move(a,p): Example 1

Following NFA

•
$$\Sigma = \{ a, b \}$$

Move

- move(S1, a) = { S2, S3 }
- move(S1, b) = Ø
- move(S2, a) = Ø
- move(S2, b) = { S3 }
- move(S3, a) = \emptyset
- $move(S3, b) = \emptyset$

move(a,p): Example 2

Following NFA

•
$$\Sigma = \{ a, b \}$$

Move

- move(S1, a) = { S2 }
- move(S1, b) = { S3 }
- move(S2, a) = { S3 }
- move(S2, b) = Ø
- move(S3, a) = Ø
- $move(S3, b) = \emptyset$

NFA → DFA Reduction Algorithm ("subset")

- ▶ Input NFA (Σ , Q, q₀, F_n, δ), Output DFA (Σ , R, r₀, F_d, δ)
- Algorithm

```
Let r_0 = \varepsilon-closure(q_0), add it to R
                                                         // DFA start state
While \exists an unmarked state r \in R
                                                         // process DFA state r
                                                         // each state visited once
     Mark r
     For each a \in \Sigma
                                                         // for each letter a
          Let S = \{s \mid q \in r \& move(q,a) = s\} // states reached via a
          Let e = \varepsilon-closure(S)
                                                         // states reached via ε
          If e ∉ R
                                                         // if state e is new
               Let R = R \cup \{e\}
                                                         // add e to R (unmarked)
          Let \delta = \delta \cup \{r, a, e\}
                                                         // add transition r→e
Let F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\}
                                                         // final if include state in F<sub>n</sub>
```

NFA → DFA Example 1

Start = ε-closure(S1) = { {S1,S3} }
R = { {S1,S3} }
r ∈ R = {S1,S3}
Move({S1,S3},a) = {S2}
≥ e = ε-closure({S2}) = {S2}
≥ R = R ∪ {{S2}} = { {S1,S3}, {S2} }
⇒ δ = δ ∪ {{S1,S3}, a, {S2}}
Move({S1,S3},b) = Ø
√{1,3}
42}

CMSC 330 43

NFA → DFA Example 1 (cont.)

- R = { {S1,S3}, {S2} }
- $r \in R = \{S2\}$
- Move({S2},a) = Ø
- $Move({S2},b) = {S3}$
 - \triangleright e = ϵ -closure({S3}) = {S3}
 - > R = R \cup {{S3}} = { {S1,S3}, {S2}, {S3} }
 - $> \delta = \delta \cup \{\{S2\}, b, \{S3\}\}\}$

DFA

NFA → DFA Example 1 (cont.)

- R = { {S1,S3}, {S2}, {S3} }
- $r \in R = \{S3\}$
- Move($\{S3\},a$) = Ø
- Move($\{S3\}$,b) = Ø
- Mark {S3}, exit loop
- F_d = {{S1,S3}, {S3}}
 Since S3 ∈ F_n
- Done!

CMSC 330 45

NFA → DFA Example 2

NFA

DFA

$$R = \{ \{A\}, \{B,D\}, \{C,D\} \}$$

CMSC 330 46

Quiz 4: Which DFA is equiv to this NFA?

CMSC 330 Spring 2017 47

Quiz 4: Which DFA is equiv to this NFA?

CMSC 330 Spring 2017

48

Actual Answer

NFA → DFA Example 3

$$R = \{ \{A,E\}, \{B,D,E\}, \{C,D\}, \{E\} \}$$

NFA → DFA Example

CMSC 330 Spring 2017

NFA → DFA Practice

CMSC 330 Spring 2017 52

NFA → DFA Practice

CMSC 330 Spring 2017 53

Analyzing the reduction

- Any string from {A} to either {D} or {CD}
 - Represents a path from A to D in the original NFA

NFA

DFA

Analyzing the Reduction

- Can reduce any NFA to a DFA using subset alg.
- How many states in the DFA?
 - Each DFA state is a subset of the set of NFA states
 - Given NFA with n states, DFA may have 2ⁿ states
 - > Since a set with n items may have 2ⁿ subsets
 - Corollary
 - Reducing a NFA with n states may be O(2n)

CMSC 330 55

Reducing DFA to RE

CMSC 330 Spring 2017 56

Reducing DFAs to REs

General idea

- Remove states one by one, labeling transitions with regular expressions
- When two states are left (start and final), the transition label is the regular expression for the DFA

CMSC 330 Spring 2017

DFA to RE example

Language over $\Sigma = \{0,1\}$ such that every string is a multiple of 3 in binary

CMSC 330 Spring 2017 58

DFA to RE example

Language over $\Sigma = \{0,1\}$ such that every string is a multiple of 3 in binary

 $(0 + 1(0 1^{*} 0)1)^{*}$

Other Topics

- Minimizing DFA
 - Hopcroft reduction
- Complementing DFA
- Implementing DFA

Minimizing DFAs

- Every regular language is recognizable by a unique minimum-state DFA
 - Ignoring the particular names of states
- In other words
 - For every DFA, there is a unique DFA with minimum number of states that accepts the same language

61

J. Hopcroft, "An n log n algorithm for minimizing states in a finite automaton," 1971

Minimizing DFA: Hopcroft Reduction

Intuition

- Look to distinguish states from each other
 - > End up in different accept / non-accept state with identical input

Algorithm

- Construct initial partition
 - Accepting & non-accepting states
- Iteratively split partitions (until partitions remain fixed)
 - Split a partition if members in partition have transitions to different partitions for same input
 - Two states x, y belong in same partition if and only if for all symbols in Σ they transition to the same partition
- Update transitions & remove dead states

Splitting Partitions

- No need to split partition {S,T,U,V}
 - All transitions on a lead to identical partition P2
 - Even though transitions on a lead to different states

Splitting Partitions (cont.)

- Need to split partition {S,T,U} into {S,T}, {U}
 - Transitions on a from S,T lead to partition P2
 - Transition on a from U lead to partition P3

Resplitting Partitions

- Need to reexamine partitions after splits
 - Initially no need to split partition {S,T,U}
 - After splitting partition {X,Y} into {X}, {Y} we need to split partition {S,T,U} into {S,T}, {U}

DFA

Initial partitions

Split partition

DFA

- Accept {R}
- Reject { S, T }
- Split partition? → Not required, minimization done
 - $move(S,a) = T \in P2$ $move(S,b) = R \in P1$

- $move(T,a) = T \in P2$ $-move(T,b) = R \in P1$

CMSC 330 Spring 2017 68

DFA

- Initial partitions
 - Accept { R }
 - Reject { S, T }
- = P1
- = P2
- Split partition? → Yes, different partitions for B

 - $move(S,a) = T \in P2$ $move(S,b) = T \in P2$
 - $move(T,a) = T \in P2$ $-move(T,b) = R \in P1$

DFA

already

minimal

CMSC 330 Spring 2017 70

CMSC 330 Spring 2017 71

Complement of DFA

- Given a DFA accepting language L
 - How can we create a DFA accepting its complement?
 - Example DFA

$$> \Sigma = \{a,b\}$$

Complement of DFA

- Algorithm
 - Add explicit transitions to a dead state
 - Change every accepting state to a non-accepting state
 & every non-accepting state to an accepting state
- Note this only works with DFAs
 - Why not with NFAs?

Implementing DFAs (one-off)

It's easy to build a program which mimics a DFA


```
cur state = 0;
while (1) {
  symbol = getchar();
  switch (cur state) {
    case 0: switch (symbol) {
              case '0': cur state = 0; break;
              case '1': cur state = 1; break;
              case '\n': printf("rejected\n"); return 0;
                         printf("rejected\n"); return 0;
              default:
           break:
    case 1: switch (symbol) {
              case '0': cur state = 0; break;
              case '1': cur state = 1; break;
              case '\n': printf("accepted\n"); return 1;
                         printf("rejected\n"); return 0;
              default:
            break:
    default: printf("unknown state; I'm confused\n");
             break:
```

CMSC 330 74

Implementing DFAs (generic)

More generally, use generic table-driven DFA

```
given components (\Sigma, Q, q_0, F, \delta) of a DFA: let q = q_0 while (there exists another symbol s of the input string) q := \delta(q, s); if q \in F then accept else reject
```

- q is just an integer
- Represent δ using arrays or hash tables
- Represent F as a set

CMSC 330 75

Running Time of DFA

- How long for DFA to decide to accept/reject string s?
 - Assume we can compute $\delta(q, c)$ in constant time
 - Then time to process s is O(|s|)
 - Can't get much faster!
- Constructing DFA for RE A may take O(2|A|) time
 - But usually not the case in practice
- So there's the initial overhead
 - But then processing strings is fast

Regular Expressions in Practice

- Regular expressions are typically "compiled" into tables for the generic algorithm
 - Can think of this as a simple byte code interpreter
 - But really just a representation of $(\Sigma, Q_A, q_A, \{f_A\}, \delta_A)$, the components of the DFA produced from the RE
- Regular expression implementations often have extra constructs that are non-regular
 - I.e., can accept more than the regular languages
 - Can be useful in certain cases
 - Disadvantages
 - Nonstandard, plus can have higher complexity

Summary of Regular Expression Theory

- Finite automata
 - DFA, NFA
- Equivalence of RE, NFA, DFA
 - RE → NFA
 - > Concatenation, union, closure
 - NFA → DFA
 - > ε-closure & subset algorithm
- DFA
 - Minimization, complement
 - Implementation