SET Printback=On

LEADZERO=No. THREADS=AUTO DIGITGROUPING=No Small=0.0001

LEADZERO=No. Small=0.0001 THREADS=AUTO DIGITGROUPING=No RNG=MC TLook='C:\PROGRA~1\IBM\S S SUMMARY=None Format=F8.2 STATIS~1\27\Looks\CompactBoxed.stt' FOOTNOTE=ON CALEMIN=24 TFit=Both FUZZBITS=6 TABLERENDER=light. CTemplate=None Epoch=Automatic SIGLESS=YES

FOOTNOTE =0 SET TLook='C:\PROGRA~1\IBM\SPSS\STATIS~1\27\Looks\CompactBoxed.stt' SUMMARY=None SIGLESS=YES TFit=Both TABLERENDER=light. EXTENSION /SPECIFICATION COMMAND='C:\ProgramData\IBM\SPSS\Statistics\27\extens ions\SPSSINC RECODEEX.xml '. EXTENSION /SPECIFICATION COMMAND='C:\ProgramData\IBM\SPSS\Statistics\27\extens ions\STATS_PACKAGE_INSTALL.xml '. EXTENSION /SPECIFICATION COMMAND='C:\ProgramData\IBM\SPSS\Statistics\27\extens ions\STATS VALLBLS FROMDATA.xml' EXTENSION /SPECIFICATION COMMAND='C:\ProgramData\IBM\SPSS\Statistics\27\extens ions\SETSMACRO.xml' EXTENSION /SPECIFICATION COMMAND='C:\ProgramData\IBM\SPSS\Statistics\27\extens ions\STATS DATASET.xml' COMMAND='C:\ProgramData\IBM\SPSS\Statistics\27\extens ions\STATS CONVERT PYTHON.xml ' EXTENSION /SPECIFICATION

- COMMAND='C:\ProgramData\IBM\SPSS\Statistics\27\extens ions\STATS CORRELATIONS.xml ' EXTENSION /SPECIFICATION
- COMMAND='C:\ProgramData\IBM\SPSS\Statistics\27\extens EXTENSION /SPECIFICATION ions/propor.xml'
- COMMAND='C:\ProgramData\IBM\SPSS\Statistics\27\extens EXTENSION /SPECIFICATION OPTBINEX.xml ions\STATS
- COMMAND='C:\ProgramData\IBM\SPSS\Statistics\27\extens EXTENSION / SPECIFICATION ions\SPSSINC ANON.xml'.
- EXTENSION /SPECIFICATION COMMAND='C:\ProgramData\IBM\SPSS\Statistics\27\extens PMML_DISPLAY.xml' ions\STATS
- EXTENSION /SPECIFICATION COMMAND='C:\ProgramData\IBM\SPSS\Statistics\27\extens ions\STATS WEIGHTED KAPPA.xml '.
- COMMAND='C:\ProgramData\IBM\SPSS\Statistics\27\extens ions\SPSSINC PROGRAM.xml' EXTENSION /SPECIFICATION
- EXTENSION /SPECIFICATION COMMAND='C:\ProgramData\IBM\SPSS\Statistics\27\extens OPEN PROJECT.xml ' ions\STATS
- COMMAND='C:\ProgramData\IBM\SPSS\Statistics\27\extens ions\SPSSINC COMPARE DATASETS.xml EXTENSION /SPECIFICATION
- EXTENSION /SPECIFICATION COMMAND='C:\ProgramData\IBM\SPSS\Statistics\27\extens ions\STATS NTILE ANALYSIS.xml '.
- COMMAND='C:\ProgramData\IBM\SPSS\Statistics\27\extens EXTENSION /SPECIFICATION ions\STATS BENCHMRK.xml
- COMMAND='C:\ProgramData\IBM\SPSS\Statistics\27\extens ions\SPSSINC MODIFY OUTPUT.xml' EXTENSION /SPECIFICATION

- COMMAND='C:\ProgramData\IBM\SPSS\Statistics\27\extens EXTENSION /SPECIFICATION ions/LSMON.xml'
- COMMAND='C:\ProgramData\IBM\SPSS\Statistics\27\extens EXTENSION /SPECIFICATION ions/CWD.xml
- COMMAND='C:\ProgramData\IBM\SPSS\Statistics\27\extens ions\SPSSINC PROCESS FILESORIG.xml EXTENSION /SPECIFICATION
- COMMAND='C:\ProgramData\IBM\SPSS\Statistics\27\extens EXTENSION / SPECIFICATION ions\STATS FIND FILE.xml
- COMMAND='C:\ProgramData\IBM\SPSS\Statistics\27\extens EXTENSION /SPECIFICATION SOUND.xml '. ions\STATS
- COMMAND='C:\ProgramData\IBM\SPSS\Statistics\27\extens ions\STATS FLEISS KAPPA.xml' EXTENSION /SPECIFICATION
- COMMAND='C:\ProgramData\IBM\SPSS\Statistics\27\extens ions\STATS_POWERCHISQUARE.xml' EXTENSION /SPECIFICATION
- EXTENSION /SPECIFICATION COMMAND='C:\ProgramData\IBM\SPSS\Statistics\27\extens ions\SPSSINC MODIFY TABLES.xml'
- EXTENSION /SPECIFICATION COMMAND='C:\ProgramData\IBM\SPSS\Statistics\27\extens ions\STATS GET TRIPLES.xml'
- EXTENSION /SPECIFICATION COMMAND='C:\ProgramData\IBM\SPSS\Statistics\27\extens ions\STATS CARTPROD.xml'
- EXTENSION /SPECIFICATION COMMAND='C:\ProgramData\IBM\SPSS\Statistics\27\extens ions\STATS MAKE CATALOG.xml'
- EXTENSION /SPECIFICATION COMMAND='C:\ProgramData\IBM\SPSS\Statistics\27\extens ions\STATS IF.xml'

- COMMAND='C:\ProgramData\IBM\SPSS\Statistics\27\extens /SPECIFICATION ions\SCRIPTEX.xml EXTENSION
- /SPECIFICATION COMMAND='C:\ProgramData\IBM\SPSS\Statistics\27\extens ions\STATS_GETSET_DATASET.xml ' EXTENSION
- EXTENSION /SPECIFICATION COMMAND='C:\ProgramData\IBM\SPSS\Statistics\27\extens ions\SPSSINC_TRANSLATE_OUTPUT.xml
- COMMAND='C:\ProgramData\IBM\SPSS\Statistics\27\extens EXTENSION / SPECIFICATION ions\STATS DATA DATE.xml
- EXTENSION /SPECIFICATION COMMAND='C:\ProgramData\IBM\SPSS\Statistics\27\extens ions\STATS MCSET CONVERT.xml'
- EXTENSION /SPECIFICATION COMMAND='C:\ProgramData\IBM\SPSS\Statistics\27\extens ions\STATS OUTPUT ATTRS.xml'
- COMMAND='C:\ProgramData\IBM\SPSS\Statistics\27\extens ions\STATS_MAKE_CASES.xml EXTENSION /SPECIFICATION
- EXTENSION /SPECIFICATION COMMAND='C:\ProgramData\IBM\SPSS\Statistics\27\extens ions\STATS PSM.xml'.
- EXTENSION /SPECIFICATION COMMAND='C:\ProgramData\IBM\SPSS\Statistics\27\extens ions\STATS PREPROCESS.xml'
- COMMAND='C:\ProgramData\IBM\SPSS\Statistics\27\extens EXTENSION /SPECIFICATION ions\STATS UPDATE.xml'.
- COMMAND='C:\ProgramData\IBM\SPSS\Statistics\27\extens ions\STATS IMBALANCED.xml EXTENSION /SPECIFICATION
- COMMAND='C:\ProgramData\IBM\SPSS\Statistics\27\extens ions\STATS TEXTANALYSIS.xml' EXTENSION /SPECIFICATION

EXTENSION /SPECIFICATION COMMAND='C:\ProgramData\IBM\SPSS\Statistics\27\extens ions\STATS R36 CONFIGURATION.xml'

COMMAND='C:\ProgramData\IBM\SPSS\Statistics\27\extens ions\STATS EXTENSION REPORT.xml '. EXTENSION /SPECIFICATION

Dialog(s) for STATS EXTENSION REPORT extension installed to: STATS EXTENSION REPORT bundle successfully installed. Extensions>Installed Extensions Report

Dialog(s) for STATS R36 CONFIGURATION extension installed STATS R36 CONFIGURATION bundle successfully installed. Extensions>R3.6 Configuration

Dialog(s) for STATS TEXTANALYSIS extension installed to: STATS TEXTANALYSIS bundle successfully installed. Analyze>Descriptive Statistics>Text Analysis

STATS_IMBALANCED bundle successfully installed.

Dialog(s) for STATS_IMBALANCED extension installed to:

Data>Imbalanced Resample

STATS_UPDATE bundle successfully installed.

Dialog(s) for STATS_UPDATE extension installed to:

Data>Merge Files>Update

Dialog(s) for STATS PREPROCESS extension installed STATS PREPROCESS bundle successfully installed.

Transform>Preprocess Variables

STATS_PSM bundle successfully installed.

Dialog(s) for STATS_PSM extension installed to:

Data>Propensity Score Matching...

STATS MAKE CASES bundle successfully installed.

Dialog(s) for STATS MAKE CASES extension installed to:

File>New>Data with Cases

Dialog(s) for STATS OUTPUT ATTRS extension installed to: STATS OUTPUT ATTRS bundle successfully installed. File>Set Viewer Output Options (Syntax)..

t0: Dialog(s) for STATS MCSET CONVERT extension installed STATS MCSET CONVERT bundle successfully installed. Analyze>Tables>Convert Multiple Category Set

STATS_DATA_DATE bundle successfully installed.

Dialog(s) for STATS_DATA_DATE extension installed to:
Data>Define Date from Data...

SPSSINC TRANSLATE OUTPUT bundle successfully installed.

t : Dialog(s) for STATS GETSET DATASET extension installed STATS GETSET DATASET bundle successfully installed. File>SPSS Data with DS Name

t0: Dialog(s) for STATS QUOTE SQLTEXT extension installed STATS QUOTE SQLTEXT bundle successfully installed Utilities>Quote Text File Contents

SCRIPTEX bundle successfully installed.

STATS IF bundle successfully installed.

Dialog(s) for STATS IF extension installed to:
Utilities>Conditionally Execute Code Blocks

Dialog(s) for STATS_MAKE_CATALOG extension installed to: STATS_MAKE_CATALOG bundle successfully installed. File>Make Variable Catalog

STATS CARTPROD bundle successfully installed.

Dialog(s) for STATS CARTPROD extension installed to:
Data>Cartesian Product

t : Dialog(s) for STATS GET TRIPLES extension installed STATS GET TRIPLES bundle successfully installed. Triple-S Data File>Read

generalopen bundle successfully installed.

Dialog(s) for generalopen extension installed to:

File>General Open

null

to: Dialog(s) for SPSSINC_MODIFY_TABLES extension installed SPSSINC MODIFY TABLES bundle successfully installed. Utilities>Modify Table Appearance

Dialog(s) for Select Predictors extension installed to: Select Predictors bundle successfully installed Analyze>Dimension Reduction>Predictor Selection

Dialog(s) for STATS_POWERCHISQUARE extension installed to: STATS POWERCHISQUARE bundle successfully installed. Analyze>Power Analysis>Proportions>Chi-Square

Dialog(s) for STATS FLEISS KAPPA extension installed to: STATS FLEISS KAPPA bundle successfully installed. Analyze>Scale>Fleiss Kappa

STATS SOUND bundle successfully installed.

Dialog(s) for STATS SOUND extension installed to:
Utilities>Play Sound

STATS FIND FILE bundle successfully installed.

Dialog(s) for STATS FIND FILE extension installed to:

File>Find File

Dialog(s) for FormatCorrelations extension installed FormatCorrelations bundle successfully installed.

Utilities>Format Correlation Matrix

extension installed SPSSINC PROCESS FILESORIG bundle successfully installed. Dialog(s) for SPSSINC PROCESS FILESORIG Utilities>Process Data Files Original

CWD bundle successfully installed.

LSMON bundle successfully installed.
Dialog(s) for LSMON extension installed to:
Utilities>Monitor License Usage

to: Dialog(s) for SimulateActiveDataset extension installed SimulateActiveDataset bundle successfully installed. Data>Simulate Active Dataset

t 0: Dialog(s) for SPSSINC MODIFY OUTPUT extension installed SPSSINC MODIFY OUTPUT bundle successfully installed. Utilities>Modify Output Titles

Frequency Analysis Analyze>Descriptive Statistics>Configural Dialog(s) for CFA extension installed to: CFA bundle successfully installed.

STATS BENCHMRK bundle successfully installed.

Dialog(s) for STATS BENCHMRK extension installed to:
Utilities>Benchmark

t 0: Dialog(s) for STATS NTILE ANALYSIS extension installed STATS NTILE ANALYSIS bundle successfully installed.

Analyze>Classify>Ntile Analysis null SPSSINC COMPARE DATASETS bundle successfully installed.

t0: Dialog(s) for SPSSINC COMPARE DATASETS extension installed

Data>Compare Datasets

STATS OPEN PROJECT bundle successfully installed.

Dialog(s) for STATS OPEN PROJECT extension installed to:

File>Open>Project

Descriptive Statistics Example bundle successfully installed

t0: Dialog(s) for Descriptive Statistics Example extension installed

Extensions>Descriptive Statistics Example

SPSSINC PROGRAM bundle successfully installed.

Dialog(s) for SPSSINC PROGRAM extension installed to:

Utilities>Run Python Program

STATS WEIGHTED KAPPA bundle successfully installed.

t : Dialog(s) for STATS WEIGHTED KAPPA extension installed

Analyze>Scale>Weighted Kappa

STATS PMML DISPLAY bundle successfully installed.

Dialog(s) for STATS PMML DISPLAY extension installed to: Utilities>Display PMML Models

SPSSINC ANON bundle successfully installed.

Dialog(s) for SPSSINC ANON extension installed to:

Transform>Anonymize Variables

STATS OPTBINEX bundle successfully installed.

Dialog(s) for STATS OPTBINEX extension installed to:

Transform>Extended Optimal Binning

RegBestSubsets bundle successfully installed.
Dialog(s) for RegBestSubsets extension installed to:
Analyze>Regression>Regression Best Subsets

PROPOR bundle successfully installed.

Dialog(s) for PROPOR extension installed to:

Analyze>Compare Means>Proportion Confidence Intervals

t : Dialog(s) for RegBoxCoxTransforms extension installed RegBoxCoxTransforms bundle successfully installed Analyze>Regression>Box-Cox Transformations

ColPropTest bundle successfully installed.

Dialog(s) for ColPropTest extension installed to:
Analyze>Descriptive Statistics>Column proportions test

Analyze>Correlate>Bivariate with Confidence Intervals... Dialog(s) for STATS CORRELATIONS extension installed STATS CORRELATIONS bundle successfully installed.

Dialog(s) for Naive Bayes Classifier extension installed Naive Bayes Classifier bundle successfully installed. Analyze>Classify>Naive Bayes

t : Dialog(s) for STATS CONVERT PYTHON extension installed STATS CONVERT PYTHON bundle successfully installed. Utilities>Python2 Conversion

RegCompResPlots bundle successfully installed.
Dialog(s) for RegCompResPlots extension installed to:
Analyze>Regression>Component+Residual Plots

STATS DATASET bundle successfully installed.
Dialog(s) for STATS DATASET extension installed to:
File>Manage Datasets

SETSMACRO bundle successfully installed.

Dialog(s) for SETSMACRO extension installed to:
Utilities>Generate Syntax from Sets

Dialog(s) for STATS VALLBLS FROMDATA extension installed STATS VALLBLS FROMDATA bundle successfully installed. Data>Create Value Labels from Data

Dialog(s) for STATS_PACKAGE_INSTALL extension installed to: STATS_PACKAGE_INSTALL bundle successfully installed. Extensions>Install Python and R Modules

Dialog(s) for STATS QUADE ANCOVA extension installed to: Analyze>Nonparametric Tests>Quade Nonparametric ANCOVA STATS QUADE ANCOVA bundle successfully installed.

Dialog(s) for SPSSINC RECODEEX extension installed to: SPSSINC_RECODEEX bundle successfully installed. Transform>Extended Recode null null

Extension file(s) installed to:
C:\ProgramData\IBM\SPSS\Statistics\27\extensions
Dialog file(s) installed to:

C:\ProgramData\IBM\SPSS\Statistics\27\CustomDialogs\spss.enhanced

GET

SPSS/W Files CTU\2024\RES814\Data ı - Careered FILE='C:\Users\stefa\OneDrive eek 1\schools.sav'.

ALTER TYPE ALL (A=AMIN).

Alter Type

Þ

Altered Types

AMIN
A60
School name

DATASET NAME DataSet1 WINDOW=FRONT.

SPSS/W Files CTU\2024\RES814\Data ı Careered FILE='C:\Users\stefa\OneDrive eek 1/electric.sav'.

DATASET NAME DataSet2 WINDOW=FRONT.

GET

SPSS/W FILE='C:\Users\stefa\OneDrive - Careered - CTU\2024\RES814\Data Files

eek 1/gss.sav'.

DATASET NAME DataSet3 WINDOW=FRONT.

DATASET ACTIVATE DataSetl.

T-TEST PAIRS=act94 WITH act93 (PAIRED)

/ES DISPLAY (TRUE) STANDARDIZER (SD)

/CRITERIA=CI(.9500)

/MISSING=LISTWISE.

T-Test

[DataSet1] C:\Users\stefa\OneDrive - Careered - CTU\2024\RES814\Data Files SPSS\Week \schools.sav

Paired Samples Statistics

		Mean	Z	Std. Deviation	Std. Error Mean
Pair 1	average ACT score 1994	15.861	64	1.8351	.2294
	average ACT score 1993	15.986	64	1.8401	.2300

Paired Samples Correlations

		Z	Correlation	Sig.
Pair 1	average ACT score 1994 &	64	.972	000
	average ACT score 1993			

Paired Samples Test

		Sig. (2-tailed)	.025
		df	£9
		t	-2.303
	95% Confidence Interval of the Difference	Upper	0165
es	95% Confidenc Diffe	Lower	2335
Paired Differences		Std. Error Mean	.0543
		Std. Deviation Std. Error Mean	.4342
		Mean	1250
			average ACT score 1994 - average ACT score 1993
			Pair 1

Paired Samples Effect Sizes

					95% Confide	95% Confidence Interval
			Standardizer ^a	Point Estimate	Lower	Upper
Pair 1	average ACT score 1994 -	Cohen's d	.4342	288	537	037
	average ACT score 1995	Hedges' correction	.4369	286	534	036

a. The denominator used in estimating the effect sizes.
 Cohen's d uses the sample standard deviation of the mean difference.
 Hedges' correction uses the sample standard deviation of the mean difference, plus a correction factor.

DATASET ACTIVATE DataSet2.

BY vitall0 EXAMINE VARIABLES=chol58 /PLOT BOXPLOT STEMLEAF HISTOGRAM NPPLOT SPREADLEVEL (0)

```
/MESTIMATORS HUBER(1.339) ANDREW(1.34) HAMPEL(1.7,3.4,8.5) TUKEY(4.685)
                                                                             /PERCENTILES (5,10,25,50,75,90,95) HAVERAGE
                                                                                                                       /STATISTICS DESCRIPTIVES EXTREME
/COMPARE GROUPS
                                                                                                                                                                                                      /MISSING REPORT
                                                                                                                                                              /CINTERVAL 95
                                                                                                                                                                                                                                              /NOTOTAL.
```

Explore

[DataSet2] C:\Users\stefa\OneDrive - Careered - CTU\2024\RES814\Data Files SPSS\Week \electric.sav

Status at Ten Years

Case Processing Summary

				Ca	Cases		
		>	Valid	Mis	Aissing	ř	Total
	Status at Ten Years	z	Percent	Ν	Percent	Z	Percent
Serum Cholesterol 58 Mg Alive	Alive	641	100.0%	0	%0'0	179	100.0%
per DL	Dead	61	100.0%	0	%0.0	61	100.0%

Descriptives

Std. Error	3.960											.182	.361	6.633											.306	.604
Statistic	264.87	257.05	272.68	262.57	260.00	2806.993	52.981	154	515	361	99	.913	2.205	261.80	248.53	275.07	262.48	264.00	2683.927	51.807	106	375	269	09	217	.538
		Lower Bound	Upper Bound												Lower Bound	Upper Bound										
Status at Ten Years	Mean	95% Confidence Interval for	Mean	5% Trimmed Mean	Median	Variance	Std. Deviation	Minimum	Maximum	Range	Interquartile Range	Skewness	Kurtosis	Mean	95% Confidence Interval for	Mean	5% Trimmed Mean	Median	Variance	Std. Deviation	Minimum	Maximum	Range	Interquartile Range	Skewness	Kurtosis
Status at	Alive													Dead												
	Serum Cholesterol 58 Mg	per DL																								

M-Estimators

	Status at Ten Years	Huber's M- Estimator ^a	Tukey's Biweight ^b	Hampel's M- Estimator ^c	Andrews' Wave ^d
Serum Cholesterol 58 Mg	Alive	260.18	258.85	260.26	258.81
per DL	Dead	262.00	262.85	262.76	262.83

- a. The weighting constant is 1.339.
 b. The weighting constant is 4.685.
 c. The weighting constants are 1.700, 3.400, and 8.500
 d. The weighting constant is 1.340*pi.

Percentiles

						Percentiles			
		Status at Ten Years	5	10	25	20	75	90	92
Weighted Average(Definition	Serum Cholesterol 58 Mg Alive	Alive	188.00	205.00	228.00	260.00	294.00	330.00	358.00
1)	per DL	Dead	176.70	194.80	233.00	264.00	292.50	327.80	350.80
Tukey's Hinges	Serum Cholesterol 58 Mg	Alive			228.00	260.00	294.00		
	per DL	Dead			235.00	264.00	292.00		

Extreme Values

Value	515	425	393	388	373	154	169	175	176	177	375	368	351	349	338	106	157	176	183	191
Case Number	29	52	137	92	139	94	236	133	87	172	40	47	19	14	42	51	12	89	120	112
	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
Status at Ten Years	Highest					Lowest					Highest					Lowest				
Status at	Alive										Dead									
	Serum Cholesterol 58 Mg	per DL																		

Tests of Normality

		Koln	nogorov-Smim	nov ^a		Shapiro-Wilk	
	Status at Ten Years	Statistic	df	Sig.	Statistic	df	Sig.
Serum Cholesterol 58 Mg	Alive	.072	179	.026	196.	179	000
per DL	Dead	.057	61	.200	066	61	.903

^{*.} This is a lower bound of the true significance. a. Lilliefors Significance Correction

Test of Homogeneity of Variance

		Levene Statistic	df1	df2	Sig.
Serum Cholesterol 58 Mg Based on Mean	Based on Mean	.101	1	238	.751
per DL	Based on Median	.037	1	238	.847
	Based on Median and with	.037	-	224.938	.847
	adjusted df				
	Based on trimmed mean	.057	1	238	.811

Serum Cholesterol 58 -- Mg per DL

Histograms

Stem-and-Leaf Plots

Serum Cholesterol 58 -- Mg per DL Stem-and-Leaf Plot for vital10= Alive

Leaf	Ŋ	7777	88889999	00000000001111111	222222222222333333333333333	4444444444445555555555555	<i>CLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL</i>	88888888888999999	0000011111111	2222223333	4444555	6677	68	(>=425)
ঙ														
Stem	\vdash	\leftarrow	Н	N	N	N	N	N	M	M	M	\mathcal{C}	\mathcal{C}	Extremes
Frequency	1.00	5.00	8.00	19.00	29.00	27.00	29.00	20.00	14.00	12.00	7.00	4.00	2.00	2.00

Stem width: 100

Each leaf: 1 case(s)

Serum Cholesterol 58 -- Mg per DL Stem-and-Leaf Plot for vital10= Dead

Frequency Stem & Leaf

5556666667777788889999 0011122333344444 0011222234 (=<106)578999 567 H 0 0 m m 1.00 Extremes 6.00 24.00 10.00

100 Stem width:

1 case(s) Each leaf:

Normal Q-Q Plots

Detrended Normal Q-Q Plots

T-TEST GROUPS=vital10(12) /MISSING=LISTWISE

```
/VARIABLES=cho158
/ES DISPLAY(TRUE)
/CRITERIA=CI(.95).
```

T-Test

Warnings

The Independent Samples table is not produced.

The Independent Samples Effect Sizes table is not produced.

Group Statistics

	Status at Ten Years	z	Mean	Std. Deviation	Std. Error Mean	
Serum Cholesterol 58 Mg	Dead	61	261.80	51.807	6.633	
per DL	2	0				

a. t cannot be computed because at least one of the groups is empty.

DATASET ACTIVATE DataSet3.

ONEWAY rincdol BY ndegree

/ES=OVERALL

/MISSING ANALYSIS

/CRITERIA=CILEVEL (0.95)

/POSTHOC=BONFERRONI ALPHA (0.05).

Oneway

[DataSet3] C:\Users\stefa\OneDrive - Careered - CTU\2024\RES814\Data Files SPSS\Week 1 /gss.sav

ANOVA

Respondent's income; ranges recoded to midpoints

	Sum of Squares	df	Mean Square	Ь	Sig.
Between Groups	69070941438	2	34535470719	68.102	000'
Within Groups	4.635E+11	914	507116092.0		
Total	5.326E+11	916			

ANOVA Effect Sizes^a

			95% Confidence Interval	ence Interval
		Point Estimate	Lower	Upper
Respondent's income;	Eta-squared	.130	100.	169
ranges recoded to midpoints	Epsilon-squared	.128	.089	191.
	Omega-squared Fixed-effect	.128	680.	.167
	Omega-squared Random-	.068	.047	.091
	effect			

a. Eta-squared and Epsilon-squared are estimated based on the fixed-effect model.

Post Hoc Tests

Multiple Comparisons

Dependent Variable: Respondent's income; ranges recoded to midpoints

Sonferro

		Mean			95% Confidence Interval	nce Interval
(I) Degree	(J) Degree	Difference (I-J)	Std. Error	Sig.	Lower Bound	Lower Bound Upper Bound
Less than high school	High school	-9006.727	2397.441	.001	-14756.74	-3256.72
	Junior college or more	-24252.154	2474.337	000	-30186.59	-18317.72
High school	Less than high school	9006.727*	2397.441	.001	3256.72	14756.74
	Junior college or more	-15245.427*	1601.619	000	-19086.74	-11404.11
Junior college or more	Less than high school	24252.154	2474.337	000	18317.72	30186.59
	High school	15245.427	1601.619	.000	11404.11	19086.74

^{*.} The mean difference is significant at the 0.05 level.

DATASET ACTIVATE DataSet2.

T-TEST GROUPS=vital10(12)

/MISSING=LISTWISE

/VARIABLES=chol58

/ES DISPLAY (TRUE)

/CRITERIA=CI(.95).

T-Test

[DataSet2] C:\Users\stefa\OneDrive - Careered - CTU\2024\RES814\Data Files SPSS\Week \electric.sav

Warnings

The Independent Samples table is not produced.

The Independent Samples Effect Sizes table is not produced.

Group Statistics

	Status at Ten Years	z	Mean	Std. Deviation	Std. Error Mean
Serum Cholesterol 58 Mg	Dead	61	261.80	51.807	6.633
per DL	2	0 _a		•	•

a. t cannot be computed because at least one of the groups is empty.

T-TEST GROUPS=vital10(12)

/MISSING=LISTWISE

```
/VARIABLES=cho158
/ES DISPLAY(TRUE)
/CRITERIA=CI(.95).
```

T-Test

Warnings

The Independent Samples table is not produced.

The Independent Samples Effect Sizes table is not produced.

Group Statistics

			$_{\rm e}^0$	2	per DL
6.633	51.807	261.80	19	Dead	Serum Cholesterol 58 Mg
Std. Error Mean	Std. Deviation	Mean	Z	Status at Ten Years	

a. t cannot be computed because at least one of the groups is empty.

*Nonparametric Tests: Independent Samples. NPTESTS /INDEPENDENT TEST (cho158) GROUP (vital10)
/MISSING SCOPE=ANALYSIS USERMISSING=EXCLUDE
/CRITERIA ALPHA=0.05 CILEVEL=95.

Nonparametric Tests

Hypothesis Test Summary

	Null Hypothesis	Test	Sig. ^{a,b}	Decision
1	The distribution of Serum Cholesterol 58	Independent-Samples Mann-Whitney U	.918	.918 Retain the null hypothesis.
	Mg per DL is the same across categories	Test		
	of Status at Ten Years.			

a. The significance level is .050.

b. Asymptotic significance is displayed.

Independent-Samples Mann-Whitney U Test

Serum Cholesterol 58 -- Mg per DL across Status at Ten Years

Independent-Samples Mann-Whitney U Test Summary

.918	Asymptotic Sig.(2-sided test)
.104	Standardized Test Statistic
468.236	Standard Error
5508.000	Test Statistic
7399.000	Wilcoxon W
5508.000	Mann-Whitney U
240	Total N

Status at Ten Years

Import the spss and spssaux modules, which are installed by default with SPS

BEGIN PROGRAM PYTHON3.

```
comman
                                                                                                                                                                                                                                                                                                                                                                                                                                                          the measurement
                                                                                                                        Create a Python dictionary that is used in retrieving information about
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 a FREQUENCIES
                                                                                                                                                                                                                                                to analyze" control to
                                        Statistics
                                                                                                                                                                                                                                                                                                                                                                                                                                                               OD
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                elif vardict[var].VariableLevel in ['nominal','ordinal']:
                                                                                                                                                                                                                                                                                                                                                                                                                                                          based
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Use the Submit function from the spss module to execute
                                        interact with SPSS
                                                                                                                                                                                                                                                                                                                                                                                                                                                       Build lists of the scale and categorical variables
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  command for the scale variables
                                                                                                                                                                                                                                                                                          that
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      categoricalVars=categoricalVars + var + " "
Statistics (as part of Essentials for Python).
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  " + categoricalVars
                                                                                                                                                                                                                                                Convert the run-time value of the "Variables
                                                                                                                                                                                                                                                                                        The run-time value is a blank-separated string
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               if vardict[var].VariableLevel == 'scale':
                                                                                                                                                                                                                                                                                                                                consists of the variables in the control.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        scaleVars=scaleVars + var + " "
                                        that
                                                                                                                                                                                                                                                                                                                                                                                                               scaleVars=""; categoricalVars=""
                                                                                                                                                                variables in the active dataset.
                                                                                                                                                                                                        vardict = spssaux.VariableDict()
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      for the categorical variables
                                                                                                                                                                                                                                                                                                                                                                  vars = "dbp58 vital10".split()
                                        These modules provide API's
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               spss.Submit ("FREQUENCIES
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        if len(categoricalVars):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 level of each variable.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  and a DESCRIPTIVES
                                                                                 spss, spssaux
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          if len(scaleVars):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           for var in vars:
                                                                              import
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           b
```

spss.Submit("DESCRIPTIVES " + scaleVars + ".")

END PROGRAM.

Frequencies

Statistics

Status at Ten Years

N Valid 240
Missing 0

Status at Ten Years

ı					
	Cumulative	Percent	74.6	100.0	
		Valid Percent	74.6	25.4	100.0
		Percent	74.6	25.4	100.0
		Frequency	179	61	240
			Alive	Dead	Total
			Valid		

Descriptives

Descriptive Statistics

	z	Minimum	Maximum	Mean	Std. Deviation
Average Diast Blood Pressure 58	239	59	160	62'88	13.050
Valid N (listwise)	239				

null

Extension file(s) installed to:

C:\ProgramData\IBM\SPSS\Statistics\27\extensions

Dialog file(s) installed to:

C:\ProgramData\IBM\SPSS\Statistics\27\CustomDialogs\spss.enhanced

DATASET ACTIVATE DataSet3.

ONEWAY rincdol BY ndegree
/STATISTICS DESCRIPTIVES EFFECTS HOMOGENEITY
/PLOT MEANS
/MISSING LISTWISE
/CRITERIA=CILEVEL(0.95).

Oneway

[DataSet3] C:\Users\stefa\OneDrive - Careered - CTU\2024\RES814\Data Files SPSS\Week \gss.sav

Descriptives

Between-Component Variance 125920580.1 100000 110000 110000 110000 Maximum 500 500 500 500 Minimum 95% Confidence Interval for Mean 32693.31 32590.05 62234.01 Upper Bound 20660.29 44604.82 Lower Bound 14257.14 24683.58 38816.92 29567.87 27.17 29671.13 1615.182 906.747 1471.336 796.266 743.651 7228.894 Std. Error 16862.993 19510.865 27328.846 24112.524 22519.238 Std. Deviation 41710.87 17458.72 26465.44 Mean 31130.59 Respondent's income; ranges recoded to midpoints 109 463 345 917 Random Effects Fixed Effects Less than high school Junior college or more High school Model Total

Tests of Homogeneity of Variances

		Levene Statistic	df1	df2	Sig.
Respondent's income;	Based on Mean	28.211	2	914	000'
ranges recoded to midpoints	Based on Median	25.046	2	914	000
	Based on Median and with	25.046	2	837.555	000
	adjusted df				
	Based on trimmed mean	27.691	2	914	000

ANONA

Respondent's income; ranges recoded to midpoints

	Sum of Squares	df	Mean Square	ч	Sig.	
Between Groups	69070941438	2	34535470719	68.102	000	_
Vithin Groups	4.635E+11	914	507116092.0			
	5.326E+11	916				_

Post Hoc Tests

Multiple Comparisons

Dependent Variable: Respondent's income; ranges recoded to midpoints Bonferroni

		Mean			95% Confidence Interval	ince Interval
(I) Degree	(J) Degree	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Less than high school	High school	-9006.727	2397.441	.001	-14756.74	-3256.72
	Junior college or more	-24252.154	2474.337	000	-30186.59	-18317.72
High school	Less than high school	9006.727	2397.441	.001	3256.72	14756.74
	Junior college or more	-15245.427	1601.619	000	-19086.74	-11404.11
Junior college or more	Less than high school	24252.154	2474.337	000.	18317.72	30186.59
	High school	15245.427	1601.619	000	11404.11	19086.74

^{*.} The mean difference is significant at the 0.05 level.

Means Plots

DATASET ACTIVATE DataSet2. T-TEST GROUPS=vital10(12)

```
/MISSING=ANALYSIS
/VARIABLES=chol58
/ES DISPLAY (TRUE)
/CRITERIA=CI (.95).
```

T-Test

[DataSet2] C:\Users\stefa\OneDrive - Careered - CTU\2024\RES814\Data Files SPSS\Week \electric.sav

Warnings

The Independent Samples table is not produced.

The Independent Samples Effect Sizes table is not produced.

Group Statistics

	Status at Ten Years	Z	Mean	Std. Deviation	Std. Error Mean	
Serum Cholesterol 58 Mg	Dead	61	261.80	51.807	6.633	
per DL	2	09			-	

a. t cannot be computed because at least one of the groups is empty.

T-TEST PAIRS=chol58 WITH vital10 (PAIRED)

/ES DISPLAY (FALSE)

/CRITERIA=CI(.9500)

/MISSING=ANALYSIS.

T-Test

Paired Samples Statistics

		Mean	Z	Std. Deviation	Std. Error Mean
Pair 1	Serum Cholesterol 58 Mg per DL	264.09	240	52.594	3.395
	Status at Ten Years	.25	240	.436	.028

Paired Samples Correlations

		Z	Correlation	Sig.	
Pair 1	Serum Cholesterol 58 Mg	240	025	969.	
	per DL & Status at Ten				
	Years				

Paired Samples Test

				Paired Differences	Se				
					95% Confidenc Diffe	95% Confidence Interval of the Difference			
		Mean	Std. Deviation Std. Error Mean	Std. Error Mean	Lower	Upper	t	df	Sig. (2-tailed)
Pair 1	Serum Cholesterol 58 Mg 263.833 per DL - Status at Ten Years	263.833	52.607	3.396	257.144	270.523	269'22	239	000'

BAYES ANOVA chol58 BY vital10

/CRITERIA CILEVEL=95 TOL=0.000001 MAXITER=2000

/INFERENCE ANALYSIS=BOTH

/PRIOR TYPE=REFERENCE

/ESTBF COMPUTATION=JZS

/PLOT MEANS=0 1 ERRORVAR=FALSE.

Bayesian ANOVA

ANOVA

Serum Cholesterol 58 Mg per DL	Sum of Squares	đ	Mean Square	ш	Sig	Bayes Factor ^a
Botton Groups	172 367	-	175 744	154	909	066
Mithin Course	420.74	- 000	420.741	5	060.	660.
Within Gloups	000000.421	730	2113.900			
lotal	501.7U/.T63	239				

a. Bayes factor: JZS

Bayesian Estimates of Coefficients^{a,b,c}

	•	Posterior		95% Credible Interval	ole Interval
Parameter	Mode	Mean	Variance	Lower Bound	ower Bound Upper Bound
Status at Ten Years = Alive	264.866	264.866	15.640	257.108	272.624
Status at Ten Years = Dead	261.803	261.803	45.893	248.514	275.093

a. Dependent Variable: Serum Cholesterol 58 -- Mg per DL

b. Model: Status at Ten Years

c. Assume standard reference priors.

Bayesian Estimates of Error Variance^a

		Posterior		95% Credil	35% Credible Interval
Parameter	Mode	Mean	Variance	Lower Bound	Upper Bound
Error variance	2752.835	2799.493	66984.297	2337.674	3350.931

a. Assume standard reference priors.

*Nonparametric Tests: One Sample.

NPTESTS

/ONESAMPLE TEST (caseid firstchd age dbp58 eduyr cgt58 ht58 wt58 dayofwk fam hxcvr chd hist educcat)

/MISSING SCOPE=ANALYSIS USERMISSING=EXCLUDE

/CRITERIA ALPHA=0.05 CILEVEL=95 SEED=2000000.

Nonparametric Tests

Hypothesis Test Summary

1 The categories of First Debabilities. 2 The categories of First Debabilities. 3 The categories of First Debabilities. 3 The categories of First Debabilities. 4 The categories of First Debabilities. 4 The categories of First Debabilities. 5 The categories of First Debabilities. 5 The categories of First Debabilities. 6 Coronary Heart Disease = chd and none occur with probabilities .500 and .500. 6 The categories of fine by Family History of CHD = Yes and No occur with probabilities .500 and .500. 7 The categories of fine by Family History of CHD = Yes and none occur with probabilities .500 and .500. 6 The categories of fine by Family History of CHD = Yes and none occur with probabilities .500 and .500. 7 The categories defined by family history of CHD = Sample Binomial Test Occur with probabilities .500 and .500. 8 The categories of Highest Level of CHD = Yes and none occur with probabilities .500 and .500. 9 The categories of Highest Level of CHD = Yes and standard deviation of Age at Enry is normal with mean 48 and standard deviation of Yes are CHD evaluated to the Of Cigarettee of Highest CHD evaluation of Yes at CHD evaluation of Yes and Standard deviation of Yes and Standard deviation of Yes and Standard deviation at 2.74. 11 The clasticular of the Sample Kolmogorov-Smirnov Test Opy in 998; incomal with mean 12 and standard deviation 12.24. 11 The clasticular of Age at Enry is normal with mean 12 and standard deviation at 2.74. 11 The clasticular of Age at Enry is normal with mean 12 and standard deviation 12.24. 11 The clasticular of Age at Character of Sample Kolmogorov-Smirnov Test Opy in 998; incomal with mean 12 and standard deviation 12.24. 12 The clasticular of Age of Character Sample Kolmogorov-Smirnov Test Opy in 998; incomal with mean 12 and standard deviation 12.24. 13 The clasticular of Age of Character Specification is all the Sample Kolmogorov-Smirnov Test Opy in 998; incomal with mean 12 and standard deviation 12.24. 14 The clasticular of Age of Character Specification in 12.84. 15 The Char		Null Hypothesis	Test	Sig. ^a	Decision
The categories of First CHD Event occur with equal probabilities. The categories defined by Family History of Coronary Heart Disease = chd and none occur with probabilities. 500 and 500. The categories defined by Incidence of Coronary Heart Disease = chd and none occur with probabilities. 500 and 500. The categories defined by Incidence of Coronary Heart Disease = chd and none occur with probabilities. 500 and 500. The categories defined by family history of CHD = family instory and no family history of CHD = family instory and no family history of CHD = family instory and no family history of Schooling occur with equal probabilities. The categories of Highest Level of Schooling occur with equal probabilities. The distribution of Average Diast Blood Pressure 58 is normal with mean 89 and standard deviation of Years of Education is standard deviation of Years of Education is a fandard deviation 2774. The distribution of Near of Education is normal with mean 12 and standard deviation 12.258. The distribution of No of Olgarettes per standard deviation 12.258.	-	The categories of Case Identification Number occur with equal probabilities.	One-Sample Chi-Square Test	1.000	Retain the null hypothesis.
The categories of Day of Death occur with recategories defined by Family History of CHD = Yes and No occur with probabilities. 500 and .500. The categories defined by Family History of CHD = Yes and No occur with probabilities .500 and .500. The categories defined by Incidence of Coronary Heart Disease = chd and none occur with probabilities .500 and .500. The categories defined by Jamily history of Coronary Heart Disease = chd and none occur with probabilities .500 and .500. The categories defined by Jamily history of CHD = family history and no family history occur with probabilities .500 and .500. The categories of Highest Level of Schooling occur with aqual probabilities. The distribution of Age at Entry is normal with mean 48 and standard deviation of Average Diast Blood Pressure 88 is normal with mean 12 and standard deviation is normal with mean 12 and standard deviation of Age at Entry is normal with mean 12 and standard deviation 2.774. The distribution of Orears of Education is normal with mean 12 and standard deviation 12.258. The distribution of Age at Entry is normal with mean 12 and standard deviation 12.258. The distribution of Average Diast Blood deviation 12.258. The distribution of Age at Entry is normal with mean 12 and standard deviation 2.774. The distribution of Age at Entry is normal with mean 12 and standard deviation 2.774. The distribution of Age at Entry is normal with mean 12 and standard deviation 12.258.	2	The categories of First CHD Event occur with equal probabilities.	One-Sample Chi-Square Test	000.	Reject the null hypothesis.
The categories defined by Family History of Coronary Heart Disease = chd and none occur with probabilities .500 and .500. The categories defined by Incidence of Coronary Heart Disease = chd and none occur with probabilities .500 and .500. The categories defined by Incidence of Coronary Heart Disease = chd and none occur with probabilities .500 and .500. The categories defined by family history of CHD = family history and no family history and no family history of CHD = family history and no family history and no family history of CHD = family history and no family history of CHD = family history and no family history of CHD = family history and no family history of CHD = family history and no family history of CHD = family history and no family history of CHD = family history and no family history of CHD = family history and no family history of Schooling occur with probabilities. The distribution of Age at Entry is normal with mean 48 and standard deviation is 3 and and standard deviation is 2.74. The distribution of Years of Education is normal with mean 12 and standard deviation is 2.774. The distribution of Years of Education is normal with mean 12 and standard deviation is 3 and 1988 is normal with mean 12 and standard deviation is 2.774. The distribution of Vears of Education is at andard deviation 12.258. The distribution of Vears of Education is at andard deviation 12.258.	3	The categories of Day of Death occur with equal probabilities.	One-Sample Chi-Square Test	757.	Retain the null hypothesis.
The categories defined by Incidence of Coronary Heart Disease = chd and none occur with probabilities .500 and .500. The categories defined by family history of CHD = family history and no family history occur with probabilities .500 and .500. The categories defined by family history of CHD = family history and no family history occur with probabilities .500 and .500. The categories defined by family history of CHD = family history and no family history on the categories of Highest Level of Schooling occur with equal probabilities. The distribution of Average Diast Blood standard deviation of Years of Education is normal with mean 12 and standard deviation of No of Cigarettes per deviation of No of Cigarettes per Day in 1986 is normal with mean 12 and standard deviation 12.258.	4	The categories defined by Family History of CHD = Yes and No occur with probabilities .500 and .500.	One-Sample Binomial Test	000.	Reject the null hypothesis.
The categories defined by family history of CHD = family history and no family history occur with probabilities .500 and .500. The categories of Highest Level of Schooling occur with equal probabilities. The distribution of Age at Entry is normal with mean 48 and standard deviation 4.129. The distribution of Average Diast Blood Pressure 58 is normal with mean 89 and standard deviation of Years of Education is normal with mean 12 and standard deviation 2.774. The distribution of No of Cigarettes per Day in 1958 is normal with mean 12 and standard deviation 12.258.	2	The categories defined by Incidence of Coronary Heart Disease = chd and none occur with probabilities .500 and .500.	One-Sample Binomial Test	1.000	Retain the null hypothesis.
The distribution of Age at Entry is normal with mean 12 and standard deviation 2.774. The distribution of No of Cigarettes per Day in 1958 is normal with mean 12 and standard deviation 12.258. The categories of Highest Level of Schooling occur with equal probabilities. Choe-Sample Kolmogorov-Smirnov Test (1.5quare Te	9	The categories defined by family history of CHD = family history and no family history occur with probabilities .500 and .500.	One-Sample Binomial Test	000	Reject the null hypothesis.
The distribution of Age at Entry is normal with mean 48 and standard deviation 4.129. The distribution of Average Diast Blood Pressure 88 is normal with mean 12 and standard deviation of Yof One-Sample Kolmogorov-Smirnov Test One-Sample Kolmogorov-Smirnov Tes	2	The categories of Highest Level of Schooling occur with equal probabilities.	One-Sample Chi-Square Test	000.	Reject the null hypothesis.
The distribution of Average Diast Blood Pressure 58 is normal with mean 89 and standard deviation 2.774. The distribution of No of Cigarettes per Day in 1958 is normal with mean 12 and standard deviation 12.258.	_∞	The distribution of Age at Entry is normal with mean 48 and standard deviation 4.129.	One-Sample Kolmogorov-Smirnov Test	9000·	Reject the null hypothesis.
The distribution of Years of Education is normal with mean 12 and standard deviation 2.774. The distribution of No of Cigarettes per Day in 1958 is normal with mean 12 and standard deviation 12.258.	6	The distribution of Average Diast Blood Pressure 58 is normal with mean 89 and standard deviation 13.050.	One-Sample Kolmogorov-Smirnov Test	9000.	Reject the null hypothesis.
igarettes per One-Sample Kolmogorov-Smirnov Test .000 ^b	10	The distribution of Years of Education is normal with mean 12 and standard deviation 2.774.	One-Sample Kolmogorov-Smirnov Test	9000.	Reject the null hypothesis.
	=	The distribution of No of Cigarettes per Day in 1958 is normal with mean 12 and standard deviation 12.258.	One-Sample Kolmogorov-Smirnov Test	d000.	Reject the null hypothesis.

Hypothesis Test Summary

	Null Hypothesis	Test	Sig. ^a	Decision
12	The distribution of Stature, 1958 – To	One-Sample Kolmogorov-Smirnov Test	.004 ^b	.004 ^b Reject the null hypothesis.
	Nearest 0.1 Inch is normal with mean 68.5			
	and standard deviation 2.6689.			
13	The distribution of Body Weight, 1958	One-Sample Kolmogorov-Smirnov Test	_q 800.	.008 ^b Reject the null hypothesis.
	LBS is normal with mean 173 and			:
	standard deviation 24.728.			

a. The significance level is .050.

One-Sample Chi-Square Test

Case Identification Number

One-Sample Chi-Square Test Summary

240	.000	239	1.000
Total N	Test Statistic	Degree Of Freedom	Asymptotic Sig.(2-sided test)

a. There are 240 cells (100%) with expected values less than 5. The minimum expected value is 1.

b. Lilliefors Corrected. Asymptotic significance is displayed.

First CHD Event

One-Sample Chi-Square Test Summary

000	Asymptotic Sig.(2-sided test)
7	Degree Of Freedom
196.875 ^a	Test Statistic
240	Total N

a. There are 0 cells (0%) with expected values less than 5. The minimum expected value is 48.

Day of Death

One-Sample Chi-Square Test Summary

757.	Asymptotic Sig.(2-sided test)
9	Degree Of Freedom
3.400 ^a	Test Statistic
OLL	lotal IN

a. There are 0 cells (0%) with expected values less than 5. The minimum expected value is 15.714.

Highest Level of Schooling

One-Sample Chi-Square Test Summary

000	Asymptotic Sig.(2-sided test)
7	Degree Of Freedom
45.434 ^a	Test Statistic
212	Total N

a. There are 0 cells (0%) with expected values less than 5. The minimum expected value is 70.667.

One-Sample Binomial Test

Family History of CHD

One-Sample Binomial Test Summary

-7.423	Standardized Test Statistic
7.746	Standard Error
62.000	Test Statistic
240	Total N

Incidence of Coronary Heart Disease

One-Sample Binomial Test Summary

1.000	Asymptotic Sig.(2-sided test)
000:	Standardized Test Statistic
7.746	Standard Error
120.000	Test Statistic
240	Total N

family history of CHD

One-Sample Binomial Test Summary

Total N	240
Test Statistic	62.000
Standard Error	7.746
Standardized Test Statistic	-7.423
Asymptotic Sig.(2-sided test)	000.

One-Sample Kolmogorov-Smirnov Normal Test

Age at Entry

One-Sample Kolmogorov-Smirnov Normal Test Summary

Total N		240
Most Extreme Differences	Absolute	.102
	Positive	.084
	Negative	102
Test Statistic		.102
Asymptotic Sig.(2-sided test) ^a	· ·	000'

Average Diast Blood Pressure 58

One-Sample Kolmogorov-Smirnov Normal Test Summary

Total N		239
Most Extreme Differences	Absolute	760.
	Positive	760.
	Negative	062
Test Statistic		760.
Asymptotic Sig.(2-sided test) ^a		000

Years of Education

One-Sample Kolmogorov-Smirnov Normal Test Summary

ו סומו וא		717
Most Extreme Differences	Absolute	131
	Positive	131
	Negative	092
Test Statistic		131
Asymptotic Sig.(2-sided test) ^a	в	000.

No of Cigarettes per Day in 1958

One-Sample Kolmogorov-Smirnov Normal Test Summary

Total N		539
Most Extreme Differences	Absolute	.254
	Positive	.254
	Negative	172
Test Statistic		.254
Asymptotic Sig.(2-sided test) ^a	· ·	000

Stature, 1958 -- To Nearest 0.1 Inch

One-Sample Kolmogorov-Smirnov Normal Test Summary

Total N		240
Most Extreme Differences	Absolute	.072
	Positive	.072
	Negative	029
Test Statistic		.072
Asymptotic Sig.(2-sided test) ^a	E.	.004

Body Weight, 1958 -- LBS

One-Sample Kolmogorov-Smirnov Normal Test Summary

Total N		240
Most Extreme Differences	Absolute	690'
	Positive	690'
	Negative	080'-
Test Statistic		690'
Asymptotic Sig.(2-sided test) ^a	E.	800.

a. Lilliefors Corrected

Average Diast Blood Pressure 58

STATS PACKAGE INSTALL
PYTHON=python essentials "*".

```
python into C:\ProgramData\IBM\SPSS\Statistics\2
*** Installing Python package
                                         7\extensions for spss270 ***
                                                                                  Collecting python
```

```
essentials into C:\ProgramData\IBM\SPSS\Statisti
                                                cs/27\extensions for spss270 ***
*** Installing Python package
```

Collecting essentials

Downloading https://files.pythonhosted.org/packages/c4/aa/194b6b99b4689ac699 98585d8d70aa5e0dab7c5dbf1d8e948fa9cd54dfb4/essentials-1.1.5-py3-none-any.whl Installing collected packages: essentials Successfully installed essentials-1.1.5

```
T-TEST GROUPS=vital10(01)
/MISSING=ANALYSIS
/VARIABLES=chol58
/ES DISPLAY(FALSE)
/CRITERIA=CI(.95).
```

T-Test

Group Statistics

	Status at Ten Years	z	Mean	Std. Deviation	Std. Error Mean
Serum Cholesterol 58 Mg	Alive	179	264.87	52.981	3.960
per DL	Dead	61	261.80	51.807	6.633

Independent Samples Test

		Levene's Test Varia	Levene's Test for Equality of Variances			t-test for	t-test for Equality of Means		
		ц	Ö	+	ţ	Sia (2-tailed)	Mean	Std. Error Difference	95% Confidence Interval of the Lower
Serum Cholesterol 58 Mg Equal variances assumed per DL	Equal variances assumed	.054	.817	.392	238	969:	3.063	7.811	-12.325
	Equal variances not assumed			396	105.858	.693	3.063	7.725	-12.254

Independent Samples Test

t-test for Equality of Means	95% Confidence	Interval of the	Upper	18.451	18.379	
t-tes	<u> </u>	Int		Equal variances assumed	Equal variances not	assumed
				Serum Cholesterol 58 Mg oer DL		

/MISSING=LISTWISE

/VARIABLES=chol58

/ES DISPLAY (FALSE)

/CRITERIA=CI(.95).

T-Test

Group Statistics

6.633	51.807	261.80	61	Dead	per DL
3.960	52.981	264.87	641	Alive	Serum Cholesterol 58 Mg
Std. Error Mean	Std. Deviation	Mean	z	Status at Ten Years	

Independent Samples Test

	95% Confidence Interval of the	Lower	-12.325	-12.254
	Std. Error	Difference	7.811	7.725
t-test for Equality of Means	Mean	Difference	3.063	3.063
t-test for		Sig. (2-tailed)	969.	.693
		df	238	.396 105.858
		t	.392	.396
Levene's Test for Equality of Variances		Sig.	.817	
Levene's Test Vari		F	920'	
			Equal variances assumed	Equal variances not assumed
			Serum Cholesterol 58 Mg	

Independent Samples Test

ı						
	t-test for Equality	95% Confidence	Interval of the	Upper	18.451	18.379
					Equal variances assumed	Equal variances not assumed
					Serum Cholesterol 58 Mg per DL	