

### Optimization algorithms

Quiz, 10 questions



## **Congratulations! You passed!**

Next Item



1/1 point

1.

Which notation would you use to denote the 3rd layer's activations when the input is the 7th example from the 8th minibatch?

 $a^{[8]\{3\}(7)}$ 

 $\bigcirc \quad a^{[3]\{8\}(7)}$ 

Correct

 $a^{[8]\{7\}(3)}$ 

 $a^{[3]\{7\}(8)}$ 



1/1 point

2.

Which of these statements about mini-batch gradient descent do you agree with?

- Training one epoch (one pass through the training set) using mini-batch gradient descent is faster than training one epoch using batch gradient descent.
- You should implement mini-batch gradient descent without an explicit for-loop over different mini-batches, so that the algorithm processes all mini-batches at the same time (vectorization).
- One iteration of mini-batch gradient descent (computing on a single mini-batch) is faster than one iteration of batch gradient descent.

Correct

1/1 point

3.

Why is the best mini-batch size usually not 1 and not m, but instead something in-between?





If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than mini-batch gradient  ${\bf Qptimization\ algorithms}$ 

Quiz, 10 questions

Un-selected is correct

|  | If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch. |
|--|--------------------------------------------------------------------------------------------------------|
|--|--------------------------------------------------------------------------------------------------------|

Correct

| If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole training set before making |
|--------------------------------------------------------------------------------------------------------------------------------|
| progress.                                                                                                                      |

Correct

**Un-selected is correct** 



1/1 point

4.

Suppose your learning algorithm's cost J, plotted as a function of the number of iterations, looks like this:



Which of the following do you agree with?

Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.



12/27/2018

Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.

## <u>/</u>

### Optimization algorithms

டு முடியுள்ளுள்ள்-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.



Correct

If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.



1/1 point

5.

Suppose the temperature in Casablanca over the first three days of January are the same:

Jan 1st:  $heta_1=10^oC$ 

Jan 2nd:  $heta_2 10^o C$ 

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with  $\beta=0.5$  to track the temperature:  $v_0=0$ ,  $v_t=\beta v_{t-1}+(1-\beta)\theta_t$ . If  $v_2$  is the value computed after day 2 without bias correction, and  $v_2^{corrected}$  is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)



$$v_2=7.5$$
 ,  $v_2^{corrected}=10$ 

Correct



$$v_2=10$$
,  $v_2^{corrected}=10$ 

$$igcup v_2=10$$
,  $v_2^{corrected}=7.5$ 



1/1 point

6.

Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

$$lpha = 0.95^t lpha_0$$

$$igcap lpha = rac{1}{1+2*t}lpha_0$$

$$igcap lpha = e^t lpha_0$$

Correct



# $\alpha = \frac{1}{t} \frac{\alpha_0}{m}$ Optimization algorithms

Quiz, 10 questions



1/1 point

7.

You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature:  $v_t = \beta v_{t-1} + (1-\beta)\theta_t$ . The red line below was computed using  $\beta = 0.9$ . What would happen to your red curve as you vary  $\beta$ ? (Check the two that apply)



Decreasing  $\beta$  will shift the red line slightly to the right.

#### **Un-selected is correct**

#### Correct

True, remember that the red line corresponds to  $\beta=0.9$ . In lecture we had a green line \$\$\beta=0.98\$) that is slightly shifted to the right.

Decreasing eta will create more oscillation within the red line.

oscillations. 10 questions

Increasing  $\beta$  will create more oscillations within the red line.

Un-selected is correct



1/1 point

Consider this figure:



These plots were generated with gradient descent; with gradient descent with momentum ( $\beta$  = 0.5) and gradient descent with momentum ( $\beta$  = 0.9). Which curve corresponds to which algorithm?

(1) is gradient descent. (2) is gradient descent with momentum (small  $\beta$ ). (3) is gradient descent with momentum (large  $\beta$ )

### Correct

|  | (1) is | gradient | descent. | (2) is g | gradient | descent w | ith moment | um (large | $\beta$ ). | (3) is g | gradient | descent with | momentum ( | small | $\beta$ ) |
|--|--------|----------|----------|----------|----------|-----------|------------|-----------|------------|----------|----------|--------------|------------|-------|-----------|
|  |        |          |          |          |          |           |            |           |            |          |          |              |            |       |           |

- (1) is gradient descent with momentum (small  $\beta$ ). (2) is gradient descent. (3) is gradient descent with momentum (large  $\beta$ )
- (1) is gradient descent with momentum (small  $\beta$ ), (2) is gradient descent with momentum (small  $\beta$ ), (3) is gradient descent



1/1 point

9.

Suppose batch gradient descent in a deep network is taking excessively long to find a value of the parameters that achieves a small value for the copyright A[g,O,f] A[g,O,f] A[g,O,f] Which of the following techniques could help find parameter values that attain a small value for A[g,G,f] that apply)

|              | Try better random initialization for the weights                                                                                                    |  |  |  |  |  |  |  |  |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Corr         | ect                                                                                                                                                 |  |  |  |  |  |  |  |  |
| Corr         | Try using Adam                                                                                                                                      |  |  |  |  |  |  |  |  |
| Un-s         | Try initializing all the weights to zero                                                                                                            |  |  |  |  |  |  |  |  |
|              | Try mini-batch gradient descent                                                                                                                     |  |  |  |  |  |  |  |  |
| Corr         | ect                                                                                                                                                 |  |  |  |  |  |  |  |  |
|              | Try tuning the learning rate $lpha$                                                                                                                 |  |  |  |  |  |  |  |  |
| Corr         | Correct                                                                                                                                             |  |  |  |  |  |  |  |  |
| <b>~</b>     | 1/1<br>point                                                                                                                                        |  |  |  |  |  |  |  |  |
| 10.<br>Which | of the following statements about Adam is False?                                                                                                    |  |  |  |  |  |  |  |  |
|              | The learning rate hyperparameter $lpha$ in Adam usually needs to be tuned.                                                                          |  |  |  |  |  |  |  |  |
|              | We usually use "default" values for the hyperparameters $eta_1,eta_2$ and $arepsilon$ in Adam ( $eta_1=0.9$ , $eta_2=0.999$ , $arepsilon=10^{-8}$ ) |  |  |  |  |  |  |  |  |
|              | Adam combines the advantages of RMSProp and momentum                                                                                                |  |  |  |  |  |  |  |  |
| 0            | Adam should be used with batch gradient computations, not with mini-batches.                                                                        |  |  |  |  |  |  |  |  |
| Corr         | Correct                                                                                                                                             |  |  |  |  |  |  |  |  |
|              |                                                                                                                                                     |  |  |  |  |  |  |  |  |



## Optimization algorithms

Quiz, 10 questions