

Dr. A. Alldridge:

Mathematik für Physiker C (WS 2008/9), Blatt 10

Aufgabe 1 (Konjugiert harmonische Funktionen — 5 Punkte) Sei $D \subset \mathbb{C} = \mathbb{R}^2$ offen.

(a) Sei $f: D \to \mathbb{C}$ eine holomorphe Funktion, als f(x+iy) = u(x,y) + iv(x,y) zerlegt, wobei $u,v:D\to\mathbb{R}$ sind. Zeigen Sie: Die Funktionen u,v sind harmonisch. Die Funktion v heißt zu u konjugiert harmonische Funktion.

Hinweis: Benutzen Sie die Cauchy-Riemann-Differentialgleichungen.

(b) Sei $u: D \to \mathbb{R}$ harmonisch und D ein einfach zusammenhängendes Gebiet. Zeigen Sie, dass es ein holomorphes f mit f = u + iv gibt. (D.h. $u = \operatorname{Re} f$.) **Hinweis:** Sei $g(x+iy) = u_x(x,y) - iu_y(x,y)$. Man zeige, dass g holomorph ist und benutze, dass g eine holomorphe Stammfunktion hat (Satz 16.22).

Aufgabe 2 (Harmonische und nicht harmonische Funktionen — 5 Punkte) Bestimmen Sie mit Hilfe von direkten Rechnungen oder mit Aufgabe 1, welche der folgenden Funktionen $h : \mathbb{R}^2 \to \mathbb{R}$ harmonisch sind und welche nicht.

(a)
$$h(x,y) = x^2 - y^2$$
 (b) $h(x,y) = \text{Im}(\sin^{12}(x - iy) + e^{\cos^4(x + iy)})$
(c) $h(x,y) = \sin(xy) + \cos(xy)$ (d) $h(x,y) = \text{Re}(e^{(x+iy)(x-iy)} + \cos^7(x+iy))$.

Aufgabe 3 (Niveaumengen konjugiert harmonischer Funktionen — 5 Punkte)

Seien $D \subset \mathbb{C} = \mathbb{R}^2$ offen, $f: D \to \mathbb{C}$ holomorph, sowie $u, v: D \to \mathbb{R}$ definiert durch f(x+iy) = u(x,y) + iv(x,y). Man betrachte das Vektorfeld $F = \nabla u$. Zeigen Sie, dass die Niveaumengen $\Gamma: v(x,y) = a$, $a \in \mathbb{R}$, Trajektorien von F sind.

Hinweis: Zeigen Sie, dass aus den Cauchy–Riemann-Differentialgleichungen folgt, dass $\langle \nabla u, \nabla v \rangle = 0$ gilt.

Aufgabe 4 (Mehr zu Trajektorien und Niveaumengen — mündlich)

Benutzen Sie Aufgabe 3, um die Trajektorien von ∇u für die folgenden harmonischen Funktionen $u:U\to\mathbb{R}$ zu bestimmen:

(a)
$$u(x,y) = x^2 - y^2$$
, $U: x^2 + y^2 > 0$.

(b)
$$u(x,y) = e^x \cos y$$
, $U = \mathbb{R}^2$.

(c)
$$u(x,y) = \frac{x}{x^2+y^2}$$
, $U: x^2+y^2 > 0$.

Bitte geben Sie die Übungsaufgaben am *Montag*, 5.1.2008, vor der Vorlesung ab. Bereiten Sie die mündliche Aufgabe zur Übung am *Mittwoch*, 14.1.2009, vor.

Ich wünsche Ihnen ein Frohes Fest und einen guten Start ins Neue Jahr!