

IIC1253 — Matemáticas Discretas — 1' 2019

TAREA 2

Publicación: Viernes 22 de Marzo.

Entrega: Viernes 29 de Marzo hasta las 10:15 horas.

Indicaciones

■ Debe entregar una solución para cada pregunta (sin importar si esta en blanco).

■ Cada solución debe estar escrita en LATEX. No se aceptarán tareas escritas a mano ni en otro sistema de composición de texto.

 Responda cada pregunta en una hoja separada y ponga su nombre, sección y número de lista en cada hoja de respuesta.

• Si usa más de una hoja para una misma pregunta corchetelas.

 Debe entregar una copia escrita durante la ayudantía asignada y una copia digital por el buzón del curso, ambas antes de la fecha/hora de entrega.

• Se penalizará con 1 punto en la nota final de la tarea por cada regla que no se cumpla.

■ La tarea es individual.

Pregunta 1

1. Sea Σ un conjunto de fórmulas en lógica proposicional y φ una formula proposicional cualquiera. Recuerde que si φ es consecuencia lógica de Σ escribimos $\Sigma \models \varphi$. En cambio, si φ no es consecuencia lógica escribiremos $\Sigma \not\models \varphi$. Demuestre que si Σ es satisfacible, entonces para toda fórmula proposicional φ se tiene que:

$$\Sigma \not\models \varphi$$
 o $\Sigma \not\models \neg \varphi$.

2. Dado un conjunto finito de variables proposicionales $P = \{p_1, p_2, ..., p_n\}$, decimos que un conjunto de fórmulas proposicionales Σ es una cadena de P si es de la forma:

$$\Sigma = \{p_1, p_1 \to p_2, p_2 \to p_3, ..., p_{n-1} \to p_n\}.$$

Demuestre que dado un conjunto de variables proposicionales P y Σ una cadena de P, entonces para toda fórmula φ con variables en P, se cumple que $\Sigma \models \varphi$ o $\Sigma \models \neg \varphi$.

Pregunta 2

Suponga \mathcal{S} un dominio de seres de la misma especie donde se cuenta con el siguientes predicado sobre \mathcal{S} :

C(x,y,z) := z es la "concepción" entre x e y donde x es la madre y y el padre, respectivamente.

En otras palabras, para tres seres m, p, y h del dominio se tiene que C(m, p, h) = 1 si, y solo si, h es un hijo de la unión entre m y p donde m es la madre y p es el padre. Este predicado es definido sobre el conjunto de seres \mathcal{S} que tiene uno o más seres (posiblemente infinito). También se cuenta con un predicado E(x, y) sobre \mathcal{S} tal que E(a, b) = 1 si, y solo si, a = b. En otras palabras, a es exactamente el mismo ser que b. Notar que el predicado C se define según "la especie" que se desea modelar. Por ejemplo, \mathcal{S} puede ser el dominio de todos los perros y se tiene que C(dama, golfo, laika) = 1, C(laika, pluto, odie) = 1, C(dama, laika, odie) = 0, C(pluto, pluto, pluto) = 0, etc. En cambio, E siempre representa la igualdad de un ser consigo mismo, o sea, en nuestro ejemplo E(dama, dama) = 1, E(dama, laika) = 0, E(laika, dama) = 0, E(dama, odie) = 0, etc.

Usando lógica de predicados, uno puede definir afirmaciones sobre esta especie de seres S. Por ejemplo, la afirmación "todo ser fue concebido por una madre y un padre" se puede definir con la siguiente fórmula en lógica de predicados:

$$\forall x. \exists y. \exists z. \ C(y, z, x)$$

Defina las siguientes afirmaciones en lógica de predicados explicando brevemente su correctitud.

- 1. "Todo ser es padre o madre de algún ser".
- 2. "Existe un ser que es madre o padre de algún otro ser".
- 3. "Existe un ser que es padre y madre, simultáneamente, de todos los seres (incluido el mismo)".
- 4. "Existen seres que no concibieron hijos".
- 5. "No existe un ser que es concebido por si mismo, esto es, que es padre y madre de si mismo".
- 6. "Todo ser fue concebido por un único padre y madre".
- 7. "Los seres de la especie son monógamos: cada ser, si concibe hijos, es con un único ser".
- 8. "Toda madre o padre no puede haber sido concebido por sus hijos".
- 9. "Existe un ser que concibió exactamente dos hijos".

Hint: Recuerde que el orden y la posición de los cuantificadores $\forall x \ y \ \exists x$ en las formulas de lógica de predicados es muy importante. Por ejemplo, si $\alpha(x,y)$ es una formula en lógica de predicados no es lo mismo escribir $\forall x. \exists y. \ \alpha(x,y)$ que escribir $\exists y. \forall x. \ \alpha(x,y)$ (pueden significar distinto dependiendo del dominio). Tampoco es lo mismo escribir $\forall x. ((\exists y. \ \alpha(x,y)) \rightarrow \beta(x))$ que escribir $\forall x. \exists y. \ (\alpha(x,y) \rightarrow \beta(x))$ donde $\beta(x)$ es una formula en lógica predicados.

Evaluación y puntajes de la tarea

Cada item de cada pregunta se evaluará con un puntaje de:

- 0 (respuesta incorrecta),
- 3 (con errores menores),
- 4 (correcta).

Todas las preguntas tienen la misma ponderación en la nota final.