Python Assignment Report

Ayushmaan Jay Singh (220276) 12 April 2024

1 Methodology

1.1 Data Preprocessing Steps

1.1.1 Loading Datasets

We load the training and test datasets using the Pandas library, allowing us to work with the data in a structured format within Python.

```
import pandas as pd

train_df = pd.read_csv('/content/train.csv')
test_df = pd.read_csv('/content/test.csv')
```

1.1.2 Handling Missing Values

```
train_df = train_df.dropna(axis=0)
test_df = test_df.dropna(axis=0)
```

To ensure the integrity of our data, we address any missing values by removing rows containing missing values from both the training and test datasets. This ensures that our datasets are complete and ready for subsequent analysis and modeling.

1.1.3 Feature Selection

```
features = ['Party', 'Criminal Case', 'Total Assets', 'Liabilities', 'state']
```

We begin by selecting the features for our analysis. The selected features include:

- Party
- Criminal Case
- Total Assets
- Liabilities
- State

Almost all ID, Candidate (names) and Consistuency in train.csv are unique, there's no need to include them in predicting education.

Explanation of why these features were selected:

- 1. Party: Reflects political affiliation, which can influence candidate qualifications and selection processes.
- 2. Criminal Case: Indicates legal history and potential societal biases, impacting candidate opportunities.
- 3. Total Assets: Reflects socioeconomic status and financial resources, influencing access to education.
- 4. Liabilities: Reflects financial stability and potential barriers to education and political participation.
- 5. **State:** Captures regional variations in education, politics, and socioeconomic conditions, providing context for candidate backgrounds and opportunities.

1.1.4 Encoding Categorical Columns

```
columns_to_encode = ['Party', 'state']
```

By encoding the categorical columns before using them in the modeling process, we ensure that the data is properly prepared for analysis, thereby improving the effectiveness of our predictive model.

To facilitate modeling, we encode categorical columns ('Party' and 'State') into numeric values. We utilize LabelEncoder from the scikit-learn library to transform categorical variables into numeric representations.

This step ensures consistency in encoding and prevents data leakage.

1.1.5 Extracting Numerical Values

```
def extract_numerical_value(asset_str):
    if 'Crore' in asset_str:
        return int(float(asset_str.replace('Crore+', '')) * 10000000)
    elif 'Lac' in asset_str:
        return int(float(asset_str.replace('Lac+', '')) * 100000)
    elif 'Thou' in asset_str:
        return int(float(asset_str.replace('Thou+', '')) * 1000)
    elif 'Hund' in asset_str:
        return int(float(asset_str.replace('Hund+', '')) * 100)
    else:
        return 0
```

We define a custom function, extract_numerical_value, to convert string representations of asset values into numerical format. This function identifies the unit of measurement ('Crore', 'Lac', 'Thou', 'Hund') and converts the values accordingly, taking into account the appropriate multiplier for each unit.

1.1.6 Processing Train Data

```
X['Total Assets'] = X['Total Assets'].apply(extract_numerical_value)
X['Liabilities'] = X['Liabilities'].apply(extract_numerical_value)
```

We update the feature matrix (X) with encoded columns and replace the 'TotalAssets' and 'Liabilities' columns with their corresponding numerical values using the extract_numerical_value function.

1.1.7 Encoding Target Variable

```
Y = label_encoder.fit_transform(train_df['Education'])
```

We encode the target variable, 'Education', using LabelEncoder() to transform it into numerical labels (Y). This step is essential for classification tasks.

1.2 Processing Test Data

Similarly, we process the test data using the same encoding techniques applied to the training data. We encode the categorical columns and replace 'Total Assets' and 'Liabilities' with numerical values.

1.3 Transformation

In summary, the following transformations are encoding categorical variables into numeric labels using label encoding and then decoding them back into their original categorical values when needed.

```
train_df[col + '_encoded_into_numeric'] = label_encoders[col].fit_transform(train_df[col])

Y= label_encoder.fit_transform(train_df['Education'])

test_df[col + '_encoded_into_numeric'] = label_encoder_test[col].fit_transform(test_df[col])

answers = label_encoder.inverse_transform(guess)
```

2 Experiment Details

Table 1: Model Performance (Random Forest)

Model	Parameters Used	Approx. Accuracy and F1 Score
Random Forest	Number of trees: 100	Training Accuracy: 0.625242718446602
	Max depth: 10	Testing Accuracy: 0.6709844559585493
	Minimum samples split: 5	Testing f1 Score: 0.3951556580466389
Random Forest	Number of trees: 100	Training Accuracy: 0.2757281553398058
	Max depth: 1	Testing Accuracy: 0.25194300518134716
	Minimum samples split: 2	Testing f1 Score: 0.040248318675633735
Random Forest	Number of trees: 300	Training Accuracy: 0.8660194174757282
	Max depth: 15	Testing Accuracy: 0.883419689119171
	Minimum samples split: 5	Testing f1 Score: 0.7501981215968693
Random Forest	Number of trees: 350	Training Accuracy: 0.8718446601941747
	Max depth: 15	Testing Accuracy: 0.883419689119171
	Minimum samples split: 5	Testing f1 Score: 0.7869642123359104
Random Forest	Number of trees: 400	Training Accuracy: 0.9611650485436893
	Max depth: 17	Testing Accuracy: 0.9585492227979274
	Minimum samples split: 3	Testing f1 Score: 0.9466228065515278
Random Forest	Number of trees: 400	Training Accuracy: 0.9669902912621359
	Max depth: 17	Testing Accuracy: 0.9682642487046632
	Minimum samples split: 3	Testing f1 Score: 0.9702557897265336
Random Forest	Number of trees: 200	Training Accuracy: 0.8252427184466019
	Max depth: 11	Testing Accuracy: 0.8018134715025906
	Minimum samples split: 2	Testing f1 Score: 0.6263394706649843
Random Forest	Number of trees: 250	Training Accuracy: 0.9223300970873787
	Max depth: 15	Testing Accuracy: 0.9397668393782384
	Minimum samples split: 3	Testing f1 Score: 0.9016612991081242
Random Forest	Number of trees: 550	Training Accuracy: 0.9514563106796117
	Max depth: 21	Testing Accuracy: 0.9527202072538861
	Minimum samples split: 4	Testing f1 Score: 0.9346638911884202
Random Forest	Number of trees: 450	Training Accuracy: 0.9281553398058252
	Max depth: 19	Testing Accuracy: 0.9119170984455959
	Minimum samples split: 5	Testing f1 Score: 0.841324263838386

Table 2: Model Performance (KNeighborsClassifier)

Model	Parameters Used	Approx. Accuracy and F1 Score
KNeighborsClassifier	Number of Neighbors: 41	Training Accuracy: 0.2854368932038835
		Testing Accuracy: 0.28950777202072536
		Testing f1 Score: 0.12229399331626234
KNeighborsClassifier	Number of Neighbors: 81	Training Accuracy: 0.287378640776699
		Testing Accuracy: 0.2713730569948187
		Testing f1 Score: 0.10069567548809724
KNeighborsClassifier	Number of Neighbors: 3	Training Accuracy: 0.5300970873786408
		Testing Accuracy: 0.5194300518134715
		Testing f1 Score: 0.38352707509420725
KNeighborsClassifier	Number of Neighbors: 31	Training Accuracy: 0.3048543689320388
		Testing Accuracy: 0.29468911917098445
		Testing f1 Score: 0.13021575021834703
KNeighborsClassifier	Number of Neighbors: 21	Training Accuracy: 0.3262135922330097
		Testing Accuracy: 0.32124352331606215
		Testing f1 Score: 0.1495914844091728
KNeighborsClassifier	Number of Neighbors: 15	Training Accuracy: 0.36893203883495146
		Testing Accuracy: 0.32966321243523317
		Testing f1 Score: 0.16492239065885245
KNeighborsClassifier	Number of Neighbors: 10	Training Accuracy: 0.4174757281553398
		Testing Accuracy: 0.36139896373056996
		Testing f1 Score: 0.197966505003024
KNeighborsClassifier	Number of Neighbors: 7	Training Accuracy: 0.38058252427184464
	(In Keggle, this actually	Testing Accuracy: 0.3957253886010363
	showed lesser score)	Testing f1 Score: 0.2373491457950884
KNeighborsClassifier	Number of Neighbors: 12	Training Accuracy: 0.3572815533980582
		Testing Accuracy: 0.35751295336787564
		Testing f1 Score: 0.19969301626592967
KNeighborsClassifier	Number of Neighbors: 11	Training Accuracy: 0.37087378640776697
		Testing Accuracy: 0.3639896373056995
		Testing f1 Score: 0.19512077256174779

Table 3: Model Performance (SVM)

Model	Parameters Used	Approx. Accuracy and F1 Score
SVM	C=1.0	Training Accuracy: 0.27184466019417475
		Testing Accuracy: 0.25582901554404147
		Testing f1 Score: 0.04325454573513015
SVM	kernel=rbf	Training Accuracy: 0.287378640776699
	C=1.0	Testing Accuracy: 0.2506476683937824
		Testing f1 Score: 0.04201508181100017
SVM	kernel=poly	Training Accuracy: 0.23495145631067962
	C=1.0	Testing Accuracy: 0.2661917098445596
	degree=2	Testing f1 Score: 0.04260018408049281
SVM	kernel=sigmoid	Training Accuracy: 0.22330097087378642
	C=1.0	Testing Accuracy: 0.2260362694300518
	coef0=0.0	Testing f1 Score: 0.07321408612065834
SVM	kernel=rbf	Training Accuracy: 0.26796116504854367
	C=1.0	Testing Accuracy: 0.2603626943005181
		Testing f1 Score: 0.05293342558683114

Based on the experiments conducted, it is evident that Random Forest outperformed both KNN and SVM classifiers in terms of classification performance. The highest F1 score was achieved by Random Forest with a configuration of 400 trees, a max depth of 17, and a minimum samples split of 3, resulting in a testing F1 score of approximately 0.970.

KNN performed relatively well but was slightly inferior to Random Forest, while SVM exhibited the poorest performance with an average F1 score around 0.05. This indicates that the decision boundary learned by SVM might not have been able to effectively separate the classes in the dataset.

The highest accuracy achieved on the testing set by Random Forest was approximately 96.83 percent, which demonstrates its robustness and effectiveness in classifying the data. Overall, Random Forest proved to be the most suitable model for the given dataset, providing superior performance compared to KNN and SVM.

2.1 Data Insights

2.1.1 Graphs and Plots

- \bullet The percentage distribution of parties with candidates having the most criminal records.
 - 1. For this plot , in the excel I sorted the list by the number of criminal cases.
 - 2. Then I made the criteria for most criminal record as ≥ 5 .
 - 3. Then there were 221 such candidates.
 - 4. Then , I just simply plotted the data chart for the data , party-wise.

Table 4: Count of Criminal Candidates (≥ 5 Cases)

Party	Count (%)	Total Count
BJP	24.09	53
INC	20.45	45
DMK	17.73	39
SP	5.45	12
YSRCP	5.45	12
RJD	4.55	10
AITC	4.55	10
CPI(M)	4.55	10
BJD	3.64	8
SHS	2.27	5
IND	2.27	5
JD(U)	1.36	3
AAP	1.36	3
JMM	0.91	2
NCP	0.91	2
JD(S)	0.45	1
Grand Total	100.00	220

The data provided reveals a concerning reality regarding the prevalence of serious criminal charges among political candidates. Among the major political parties, the BJP leads with 53 candidates facing serious criminal allegations, closely followed by the INC with 45 candidates. Other prominent parties like the DMK, SP, and YSRCP also have significant numbers of candidates with serious criminal charges against them, ranging from 12 to 39.

Additionally, smaller parties such as RJD, AITC, and CPI(M) each have 10 candidates with serious criminal cases. This data underscores the widespread issue across the political spectrum, where candidates from various parties have serious criminal allegations against them. Despite efforts to address this issue, the presence of candidates with criminal backgrounds remains a significant concern in the electoral landscape.

The total count of candidates with serious criminal charges stands at 220, highlighting the scale of the issue. It emphasizes the need for stricter scrutiny and measures to ensure the integrity of the electoral process and the accountability of those seeking public office. Addressing this challenge is crucial for upholding the principles of democracy and fostering public trust in the political system.

Here, the Field 1 is Count of Criminal Candidates (5 Cases)

- The percentage distribution of parties with the most wealthy candidates.
 - The percentage distribution of parties with candidates having the most wealth (= Assets- Liabilities).
 - 1. For this plot , in the excel I sorted the list by the Wealth Column.
 - 2. Then I made the criteria for Wealthy Candidate as Wealth \geq 15 Crores.
 - 3. Then there were 259 such candidates.
 - $4.\ \,$ Then , I just simply plotted the data chart for the data , party-wise.

Table 5: Count of Parties			
Party	Count	Percentage	
BJP	94	36.29%	
INC	78	30.12%	
YSRCP	21	8.11%	
IND	12	4.63%	
DMK	10	3.86%	
NCP	8	3.09%	
SHS	7	2.70%	
TDP	6	2.32%	
BJD	5	1.93%	
AAP	5	1.93%	
AITC	3	1.16%	
NPP	3	1.16%	
SP	2	0.77%	
NDPP	1	0.39%	
JD(U)	1	0.39%	
AIADMK	1	0.39%	
RJD	1	0.39%	
JD(S)	1	0.39%	
Grand Total	259	100.00%	

This table represents the distribution of the most wealthy candidates by party. It displays the count and percentage of wealthy candidates for each party. The data shows that the BJP and INC have the highest number of wealthy candidates, with 36.29 percent and 30.12 percent respectively, followed by YSRCP, IND, and DMK.

2.1.2 Insights

I have also analysed the Candidate Distribution Across Parties

Table	6.	Count	of P	arties

Table 6: Count of Parties			
Party	Percentage		
BJP	41.86%		
INC	17.73%		
AITC	6.31%		
AAP	4.57%		
YSRCP	4.18%		
DMK	3.55%		
BJD	3.16%		
SP	3.01%		
CPI(M)	2.09%		
RJD	2.04%		
IND	1.85%		
AIADMK	1.65%		
NCP	1.65%		
JD(U)	1.55%		
SHS	1.41%		
NPP	0.97%		
JMM	0.68%		
NDPP	0.44%		
TDP	0.39%		
JD(S)	0.34%		
Sikkim Krantikari Morcha	0.24%		
CPI	0.19%		
Tipra Motha Party	0.15%		
Grand Total	100.00%		

3 Results and F1 Score

Public LeaderBoard

Rank = 187

Private LeaderBoard

4 References

Getting started tutorials — pandas 2.2.1 documentation

Citing

A Gentle Visual Intro to Data Analysis in Python Using Pandas – Jay Alammar

Citing

 ${\bf DataFrame-- pandas~2.2.1~documentation}$

Citing

NumPy

Citing

A Visual Intro to NumPy and Data Representation – Jay Alammar

Citing

Scikit-learn

Citing

Matplotlib

Citing

Seaborn

Citing

5 GitHub Link

Link for Repository

https://github.com/aruj1207/Python-Assignment-CS253