Bouye Romain
Delmaire Matthieu
Dufour Alexis

PROJET DE CALCUL NUMÉRIQUE

SYSTÈMES DE TYPE LOKTA VOLTERRA - APPLICATION À LA PROPAGATION D'ÉPIDÉMIE

SOMMAIRE

- INTRODUCTION
- LES ÉQUATIONS
- PRÉSENTATION ET EXPLICATION DES RÉSULTATS OBTENUS
- CONCLUSION

INTRODUCTION

BUT DU PROJET

- Résolution des équations différentielles avec différentes méthodes
- Interprétation des résultats
- Interface graphique permettant de visualiser le problème

LES ÉQUATIONS

Modèle simple:

$$\frac{dS}{dt} = -rIS$$

$$\frac{dI}{dt} = rIS - aI$$

$$\frac{dM}{dt} = aI$$

Constantes:

- r : Vitesse de contamination
- · a : létalité de la maladie

LES ÉQUATIONS

Modèle plus évolué avec facteur de guérison et de croissance:

$$\frac{\partial S}{\partial t} = -rIS + BS(1 - \frac{S}{So})$$

$$\frac{\partial I}{\partial t} = rIS - aI - \lambda I$$

$$\frac{\partial M}{\partial t} = aI$$

$$\frac{\partial G}{\partial t} = \lambda I$$

Constantes:

λ : facteur de guérison

Croissance de la

population

• B : Facteur de natalité

LES ÉQUATIONS

Modèle plus évolué avec diffusion:

$$\frac{\partial S}{\partial t} = -rIS + BS(1 - \frac{S}{So})$$

$$\frac{\partial I}{\partial t} = rIS - aI + D\Delta I$$

Les personnes infectées se déplacent

$$\frac{\partial M}{\partial t} = aI$$

Constante:

• D: facteur de diffusion

Résultats sous FlexPDE

Dans le cas d'un modèle simple avec aucun infecté:

$$\frac{\partial S}{\partial t} = 0 \Rightarrow S(t) = \beta$$

$$\frac{\partial I}{\partial t} = 0 \Rightarrow I(t) = \mu$$

$$\frac{\partial M}{\partial t} = 0 \Rightarrow M(t) = \tau$$

Résultats sous FlexPDE

Dans le cas d'un modèle simple avec variation de a:

Avec a = 1:

Avec a = 10:

Résultats sous FlexPDE

Dans le cas d'un modèle simple avec variation de r:

Avec r = 1:

Avec r = 5:

Résultats sous FlexPDE

Dans le cas d'un modèle plus évolué avec variation de B:

Avec B = 2:

Avec B = 30:

Résultats sous FlexPDE

Dans le cas d'un modèle plus évolué avec diffusion:

Avec
$$D = 0$$
:

$$\frac{\partial S}{\partial t} = -rIS + BS(1 - \frac{S}{So})$$

$$\frac{\partial I}{\partial t} = rIS - aI$$

$$\frac{\partial M}{\partial t} = aI$$

Résultats sous FlexPDE

Dans le cas d'un modèle plus évolué avec diffusion:

Avec D = 5:

Avec D = 50:

Résultats sous FlexPDE

Dans le cas d'un modèle plus évolué avec diffusion:

Avec D = 50, r = 0.2, a = 2:

Avec D = 50, r = 2, a = 20:

Résultats avec la librairie GSL utilisant l'algorithme de Runge Kutta

Comparaison avec FlexPDE

Résultats avec la librairie GSL utilisant l'algorithme de Runge Kutta

Observation d'un point d'attraction

Résultats avec la librairie GSL utilisant l'algorithme de Runge Kutta

Evolution du point d'attraction en fonction de la population

IMPLÉMENTATION D'ÉPIDEMIX

Résolution en JavaScript

Rappel des équations:

$$\frac{\partial S}{\partial t} = -rIS + BS(1 - \frac{S}{So})$$

$$\frac{\partial I}{\partial t} = rIS - aI - \lambda I$$

$$\frac{\partial M}{\partial t} = aI$$

$$\frac{\partial G}{\partial t} = \lambda I$$

Résolution avec Euler:

$$S_{t+1} = S_t + \frac{\partial S_t}{\partial t} \times \tau$$

$$I_{t+1} = I_t + \frac{\partial I_t}{\partial t} \times \tau$$

$$M_{t+1} = M_t + \frac{\partial M_t}{\partial t} \times \tau$$

$$G_{t+1} = G_t + \frac{\partial G_t}{\partial t} \times \tau$$

IMPLÉMENTATION D'ÉPIDEMIX

Résolution en JavaScript

IMPLÉMENTATION D'ÉPIDEMIX

Exemple d'une courbe épidémique d'un cas concret

source Wikipédia

CONCLUSION

Les évolutions possibles

- Interactions entre les pays : Flux de population
- Intégrer les algorithmes de Runge Kutta à notre interface graphique (Serveur C)
- Étude plus approfondie des constantes en fonction des « univers »