Report page ExoTIC-ISM

W17_G102_lc_8394.txt - 8394_clipped

Input parameters:

Number of systematic models: 50 Wavelength mid point = 8388.056724083122 Wavelength half width = 95.09852813007092

Planet parameters:

Rp/R* = 0.1255 Epoch (MJD) = 58021.48064883803 Inclination (deg) = 86.93051272857655 Eccentricity = 0.0 Omega (deg) = 0.0 Period (days) = 3.7354850226 a/R* = 7.025

Stellar parameters:

FeH (dex) = -0.25Teff (K) = 6550.0 $\log(g) (cgs) = 4.2$

Output parameters:

Limb-darkening coefficients:

C1 = 0.8806581715011236 C2 = -0.779873434971138 C3 = 0.7746326278802015 C4 = -0.2814458084061633

Top five systematic models by their weight

Check the chi-squared values and the AIC evidence for reasonable fits.

If the chi-squared values far exceed the DOF then it is likely that the input data contains additional noise, double check the spectral extraction.

Model numbers = $[43 \ 48 \ 44 \ 49 \ 18]$

DOF = [43. 42. 42. 41. 44.]

Chi-squared = [55.21251574 54.51747463 54.69435791 54.42825686 59.45888288]

AIC evidence = [321.32220746 321.16972802 321.08128638 320.7143369 319.69902389]

Weights = [0.2128319992913125 0.18273256162573176 0.16726544404631158

0.11588896758428059 0.04198529965357732]

SDNR = [364.64158411 362.25104782 362.90666745 361.96718263 378.75519265]

Top model Noise Statistics:

White noise = 0.0Red noise = 0.0

Beta = 1.0

If the red-noise is significant it means the data is poorly fit by any of the systematic models. It is recommended that the input lightcurves are checked for additional noise sources.

Marginalised parameters:

If None, parameter was not fit for.

 $Rp/R* = 0.12186107048769095 + /- 0.0005709117687999982 \\ Epoch (MJD) = 58021.47931037062 + /- 0.0006789188604006046 \\ Inclination (rad) = None + /- None \\ Inclination (deg) = None + /- None \\ System density (Ms+Mp/R^3) = None + /- None \\ a/R* = None + /- None$

Systematics

Marginalisation results

Top: Evidence-based weight associated with each systematic model when fit with the data. *Middle:* Standard deviation of the residuals after correcting for each systematic model. *Bottom:* Radius ratio

measured from the transit depth when the light curve has been corrected using each systematic model. *If present, grey crosses mark discarded systematic models (poor AIC evidence)*.

Lightcurves

First vs. best model

Top: Input lightcurve with no systematic model correction applied. *Middle:* Lightcurve corrected by highest weight systematic model plotted with the smooth planetary transit model centred on the mid-transit time. *Bottom:* Residuals and uncertainties associated with the middle panel lightcurve. The upper and lower standard deviation bounds are shown in dotted lines relative to zero.