ΤΕΣΤ ΣΤΟ ΔΙΑΦΟΡΙΚΟ ΛΟΓΙΣΜΟ 2.1.-2.4

- 1α) Να σημειώσετε Σ ή Λ, ανάλογα:
 - i) Av $f(x)=x^2+2x-3$, τότε f'(2)=6
 - ii) Η εξίσωση της εφαπτομένης της C_f , όπου $f(x)=2\cdot\sqrt{x}$ στο σημείο A(1,f(1)) είναι η y=x+1
 - iii) Av $f(x)=e^x$, τότε $f'(\ln 7)=7$
 - iv) Av f(5)=0 και η f είναι παραγωγίσιμη στο $x_0 = 5$, τότε f'(5)=0
 - v) Η μοναδική ρίζα της εξίσωσης f'(x)=0, όπου $f(x)=x\cdot e^{-x}$, είναι η x=1
 - vi) Av f, g, h παραγωγίσιμες συναρτήσεις στο R, τότε: $(f \cdot q \cdot h)' = f' \cdot q' \cdot h'$
 - vii) Αν $f(x) = \frac{\alpha}{g(x)}$, τότε $f'(x) = -\frac{\alpha \cdot g'(x)}{g^2(x)}$, όπου $g(x) \neq 0$, g παραγωγίσιμη συνάρτηση και $\alpha \in \mathbb{R}$
- 1β) Να κυκλώσετε το γράμμα της σωστής απάντησης
 - i) Η f παραγωγίζεται στο x_o , όταν:

$$\text{A.} \lim_{x \to x_o} \frac{f(x) - f(x_o)}{x - x_o} = +\infty \ \, \acute{\eta} - \infty \qquad \text{B.} \lim_{h \to 0} \frac{f(x_o + h) - f(x_o)}{h} \in \mathbb{R} \qquad \Gamma. \lim_{\Delta x \to 0} \frac{\Delta f(x_o)}{\Delta x} = 0$$

B.
$$\lim_{h \to 0} \frac{f(x_o + h) - f(x_o)}{h} \in \mathbb{R}$$

$$\Gamma$$
. $\lim_{\Delta x \to 0} \frac{\Delta f(x_o)}{\Delta x} = 0$

Δ. δεν ορίζεται

$$\Delta. \lim_{x \to x_{o}^{-}} \frac{f(x) - f(x_{o})}{x - x_{o}} = \lim_{x \to x_{o}^{+}} \frac{f(x) - f(x_{o})}{x - x_{o}} \qquad \text{E. } \lim_{x \to x_{o}} f(x) = f(x_{o})$$

E.
$$\lim_{x \to x_o} f(x) = f(x_o)$$

- ii) Αν η f παραγωγίζεται στο 1 και η C_f περνά από το σημείο A(1,3), τότε:
- A. f'(3) = 1
- B. F(3)=1
- Γ. η εφαπτόμενη της C_f στο A είναι η ευθεία x = 1
- E. $\lim_{x \to 1} f(x) = 3$ η εφαπτομένη της C_f στο A
- iii) Η εξίσωση της εφαπτομένης της C_f με $f(x) = \ln x$, στο σημείο A(1,f(1)) είναι η:
- A. y=0
- B. x=1
- Γ . y=x-1
- Δ . y=2x-3
- E. y = -x + 2
- iv) Αν f'(2)=1 τότε το $\lim_{h \to 0} \frac{f(2+3h)-f(2)}{h}$ είναι:
- B. -3
- Γ . $\sqrt{3}$
- Δ. 5
- v) Av $f(x)=(x^2-3)\cdot e^x$, τότε οι ρίζες της f' είναι:

- A. -3, 1 B. 2, 3 Γ . -2, 1 Δ . 1, 4 E. -4, 5
- vi) Η παράγωγος της (fog)(x) είναι:
- A. f'(g(x))

- B. f'(g'(x)) Γ . f(g'(x)) Δ . f'(g(x)) + g'(f(x)) E. f'(g(x))g'(x)
- vii) Αν η f είναι παραγωγίσιμη στο \mathbb{R} και αν ισχύει ότι: $f(\eta \mu x) = e^{-x} \cdot \sigma v \cdot 2x$, $x \in \mathbb{R}$, τότε η κλίση της f στο $x_0=0$, είναι:
- A. -1
- B. 2

- Γ . e Δ . 0 E. $-\frac{2}{\alpha}$