

B.Sc., VI SEMESTER
(NEP-2020 Batch)
Python Commands for
MATHEMATICS
PAPER 6.2

LAB MANUAL

Topic:

Algebraic and Transcendental equations,
System of linear algebraic equations,
Polynomial interpolation, Numerical
Differentiation and integration.

Contents

SI.No.	Title
	PART A: Algebraic and Transcendental Equations
Lab 1	Program to find root of an equation using Bisection and
	Regula-Falsi methods.
Lab 2	Program to find root of an equation using Newton-
	Raphson.
	Part B: System of Linear Algebraic Equations
Lab 3	Program to solve system of algebraic equations using
	Gauss-elimination method.
Lab 4	Program to solve system of algebraic equations using
	Gauss-Jordan method.
Lab 5	Program to solve system of algebraic equations using
	Gauss-Jacobi method.
Lab 6	Program to solve system of algebraic equations using
	Gauss-Seidel method.
Lab 7	Program to solve system of algebraic equations using
	Successive Over Relaxation (SOR) method.
	Part C: Polynomial Interpolations
Lab 8	Program to find the sums of powers of successive natural
	numbers using Newton-Gregory technique.
	Part D: Numerical Differentiation and Integration
Lab 9	Program to find differentiation at specified point using
	Newton-Gregory interpolation method.
Lab 10	Program to find the missing value of table using Lagrange
	method.
Lab 11	Program to evaluate integral using Simpson's 1/3 rd and
	3/8 th rules.
Lab 12	Program to evaluate integral using Trapezoidal and Weddle
	rules.

PART A: Algebraic and Transcendental Equations

<u>Lab 1</u>: <u>Program to find root of an equation using</u> Bisection and Regula-Falsi methods.

"Bisection Methods"

Example 1: Find a root of the equation x^3 -4x-9=0 in (2,3) using bisection method, correct to 3 decimal places.

Python Command:

```
from sympy import *
def f(x):
    return x**3-4*x-9;
a=2
b=3
step=1
while(step<=11):
    x=(a+b)/2
    print("Iterations=%d, x=%0.3f, f(x)=%0.3f"%(step,x,f(x)))
    if f(a)*f(x)<0:
        b=x
    else:
        a=x
        step=step+1
print("\n The required approximation root is = %0.3f ' %x)</pre>
```

Output:

```
Iterations=1, x=2.500, f(x)=-3.375

Iterations=2, x=2.750, f(x)=0.797

Iterations=3, x=2.625, f(x)=-1.412

Iterations=4, x=2.688, f(x)=-0.339

Iterations=5, x=2.719, f(x)=0.221

Iterations=6, x=2.703, f(x)=-0.061

Iterations=7, x=2.711, f(x)=0.079

Iterations=8, x=2.707, f(x)=0.009

Iterations=10, x=2.705, f(x)=-0.026

Iterations=11, x=2.706, f(x)=-0.009
```

The required approximation root is = 2.707

Example 2: Use bisection method in six stages to obtain a root of the equation $f(x)=\cos(x)-xe^x=0$ in (0,1), correct to 4 decimal places.

Example 3: Use bisection method in four stages to find the real root of the equation $x\log_{10}(x)-102=0$ in (57,58), correct to 3 decimal places.

"Regula-Falsi methods"

Example 1: Find the real root of the equation cos(x) = 3x-1 using Regula-Falsi Method.

Python Command:

```
from sympy import *
def f(x):
  return (\cos(x)+1-3*x)
a=float(input('Enter the value of a='))
b=float(input('Enter the value of b='))
if f(a)*f(b)>0.0:
  print('The root of f(x) does not lies between the a and b')
else:
  print('The root of f(x) lies between the a and b')
  print('\n\n ******REGULA-FALSI METHOD******')
  i=int(input('Enter no. of iterations='))
  step=1
  while (step<=i):
     x=(a*f(b)-b*f(a))/(f(b)-f(a))
    print('lteration:%d, x=\%0.6f and f(x)=\%0.6f' %(step,x,f(x)))
     if f(a)*f(x)<0:
       b=x
     else:
       a=x
     step=step+1
  print('\n Required root is = %0.6f'%x)
```

Enter the value of a=0
Enter the value of b=1
The root of f(x) lies between the a and b

*****REGULA-FALSI METHOD*****

Enter no. of iterations=5

Iteration: 1, x=0.578085 and f(x)=0.103255

Iteration:2, x=0.605959 and f(x)=0.004081

Iteration:3, x=0.607057 and f(x)=0.000159

Iteration:4, x=0.607100 and f(x)=0.000006

Iteration: 5, x=0.607102 and f(x)=0.000000

Required root is = 0.607102

Example 2. Find a real root of the equation $x^3 - 4x + 1 = 0$ by Regula falsi method.

Example 3. Compute the real root of $xlog_{10}x - 1.2 = 0$ by the method of false position.

Example 4. Find the real root of the equation $xe^x-3=0$ by Regula-Falsi method correct to four decimal places.

Lab 2: Program to find root of an equation using Newton-Raphson method.

Example 1: Using Newton-Raphson method, find the real root of the equation $3x=\cos(x)+1$, near 0.5.

Python Command:

```
from sympy import *
def f(x):
    return 3*x-cos(x)-1
def g(x):
    return 3+sin(x)
x0=0.5
step=1
while(step<=3):
    x=x0-(f(x0)/g(x0))
    print("Iterations=%d, x=%0.3f, f(x)=%0.3f"%(step,x,f(x)))
    x0=x
    step=step+1
print( '\n The required approximation root is=%0.3f ' %x)</pre>
```

Output:

```
Iterations=1, x=0.609, f(x)=0.005
Iterations=2, x=0.607, f(x)=0.000
Iterations=3, x=0.607, f(x)=0.000
The required approximation root is=0.607
```

Example 2: Using Newton-Raphson method to find a real root of the equation x^3 -2x-5=0, near 2.

Example 3: Using Newton-Raphson method, find a real root of the equation sin(x)=1-x (near x=0.5).

Example 4. Using Newton-Raphson method to find the fourth root of 32.

```
Part B: System of Linear Algebraic Equations
                       to
Lab
           Program
                            solve
                                      system
                                                     algebraic
equations using Gauss-elimination method.
Example 1. Solve the system of equations
     x + y + z = 9; 2x - 3y + 4z = 13; 3x + 4y + 5z = 40
     using the Gauss-elimination method.
Python Command:
import numpy as np
import sys
n = int(input('Enter number of unknowns: '))
a = np.zeros((n,n+1))
x = np.zeros(n)
# Reading augmented matrix coefficients
print('Enter Augmented Matrix Coefficients:')
for i in range(n):
  for j in range(n+1):
     a[i][j]=float(input('a['+str(i)+']['+str(j)+']='))
# Applying Gauss Elimination
for i in range(n):
  if a[i][i] == 0.0:
    sys.exit('Divide by zero detected!')
  for j in range(i+1, n):
    ratio = a[j][i]/a[i][i]
    for k in range(n+1):
      a[i][k] = a[i][k] - ratio * a[i][k]
# Back Substitution
x[n-1] = a[n-1][n]/a[n-1][n-1]
for i in range(n-2,-1,-1):
  x[i] = a[i][n]
  for j in range(i+1,n):
    x[i] = x[i] - a[i][j]*x[j]
  x[i] = x[i]/a[i][i]
# Displaying solution
print('\nRequired solution is: ')
for i in range(n):
  print('X\%d = \%0.2f' \%(i,x[i]), end = '\t')
```

Enter number of unknowns: 3

Enter Augmented Matrix Coefficients:

- a[0][0]=1
- a[0][1]=1
- a[0][2]=1
- a[0][3]=9
- a[1][0]=2
- a[1][1]=-3
- a[1][2]=4
- a[1][3]=13
- a[2][0]=3
- a[2][1]=4
- a[2][2]=5
- a[2][3]=40

Required solution is:

$$X0 = 1.00 \quad X1 = 3.00 \quad X2 = 5.00$$

Example 2. Solve the system of equations

$$x + 10y - z = 3$$
; $2x + 3y + 20z = 7$; $10x - y + 2z = 4$ using the Gauss-elimination method.

Example 3. Solve the system of equations

$$3x + 3y + 4z = 20$$
; $2x + y + 3z = 13$; $x + y + 3z = 6$ using the Gauss-elimination method.

```
Lab
                             solve
      4:
                       to
                                      system
                                                 of
                                                      algebraic
           Program
equations using Gauss-Jordan method.
Example 1. Solve the system of equations
     x + y - z = 7; x - y + 2z = 3; 2x + y + z = 9
     Using the Gauss-Jordan method.
Python Command:
import numpy as np
import sys
n = int(input('Enter number of unknowns: '))
a = np.zeros((n,n+1))
x = np.zeros(n)
for i in range(n):
  for j in range(n+1):
    a[i][j] = float(input( 'a['+str(i)+']['+ str(j)+']='))
# Applying Gauss Jordan Elimination
for i in range(n):
  if a[i][i] == 0.0:
    sys.exit('Divide by zero detected!')
  for j in range(n):
    if i != j:
       ratio = a[j][i]/a[i][i]
      for k in range(n+1):
         a[j][k] = a[j][k]-ratio*a[i][k]
# Obtaining Solution
for i in range(n):
  x[i] = a[i][n]/a[i][i]
# Displaying solution
print('\n Required solution is: ')
for i in range(n):
     print('X%d = %0.2f' %(i,x[i]), end = '\t')
```

```
Enter number of unknowns: 3
```

Enter Augmented Matrix Coefficients:

- a[0][0]=1
- a[0][1]=1
- a[0][2]=-1
- a[0][3]=7
- a[1][0]=1
- a[1][1]=-1
- a[1][2]=2
- a[1][3]=3
- a[2][0]=2
- a[2][1]=1
- a[2][2]=1
- a[2][3]=9

Required solution is:

$$x0 = 6.00$$
 $x1 = -1.00$ $x2 = -2.00$

Example 2. Solve the system of equations

$$x + y + z = 1$$
; $4x + 3y - z = 6$; $3x + 5y + 3z = 4$ using the Gauss-Jordan method.

Example 3. Solve the system of equations

$$2x + y + z = 10$$
; $3x + 2y + 3z = 18$; $x + 4y + 9z = 16$ using the Gauss-Jordan method.

```
algebraic
Lab
      5:
           Program
                       to
                             solve
                                      system
                                                of
equations using Gauss-Jacobi method.
Example 1: Solve 10x+2y+z=9, x+10y-z=-22, -2x+3y+10z=22.
Python Command:
from sympy import *
f1=lambda x,y,z:(9-2*y-z)/10
f2=lambda x,y,z:(-22-x+z)/10
f3=lambda x,y,z:(22+2*x-3*y)/10
#Initial conditions
x0=0;y0=0;z0=0
itr=1 #iterations
e=float(input('Enter the tolerable error:'))
condition=True
print('\n itr \tx \ty \tz \n')
while condition:
 x1=f1(x0,y0,z0)
 y1=f2(x0,y0,z0)
 z1=f3(x0,y0,z0)
 print('%d\t%0.4f\t%0.4f\n'%(itr,x1,y1,z1))
 e1=abs(x0-x1);e2=abs(y0-y1);e3=abs(z0-z1)
 itr +=1
 x0=x1
 y0=y1
 z0=z1
 condition =e1>e and e2>e and e3>e
print('\n Solution: x=\%0.4f, y=\%0.4f, z=\%0.4f\n'\%(x1,y1,z1))
Output:
Enter the tolerable error:0.0001
itr
                -2.2000
1
     0.9000
                            2.2000
2
     1.1200
                -2.0700
                            3.0400
                -2.0080
     1.0100
                            3.0450
     0.9971
                -1.9965
                            3.0044
5
     0.9989
               -1.9993
                            2.9984
                            2.9996
6
     1.0000
                -2.0000
     1.0001
7
                -2.0000
                            3.0000
Solution: x=1.0001, y=-2.0000, z=3.0000
```

Solve the following system of equations by Gauss-Jacobi method.

Example 2.
$$5x + 2y + z = 12$$
; $x + 4y + 2z = 15$; $x + 2y + 5z = 0$

Example 3.
$$10x - 2y + z = 12$$
; $x + 9y - z = 10$; $2x - y + 11z = 20$

Example 4.
$$10x + y + z = 12$$
; $2x + 10y + z = 13$; $2x + 2y + 10z = 14$

```
Lab
      6:
                          solve
                                   system
                                            of
                                                 algebraic
          Program
                     to
equations using Gauss-Seidel method.
Example 1: Solve 10x+2y+z=9, x+10y-z=22, 2x+3y+10z=22.
Python Command:
from sympy import *
var('x,y,z')
f1=lambda x,y,z:(9-2*y-z)/10
f2=lambda x,y,z:(-22-x+z)/10
f3=lambda x,y,z:(22+2*x-3*y)/10
x0=0;y0=0;z0=0
step=1
while (step<=5):
  x1=f1(x0,y0,z0)
  y1=f2(x1,y0,z0)
  z1=f3(x1,y1,z0)
  print("Iterations=%d,x=%0.3f,y=%0.3f,z=%0.3f "%(step,x1,y1,z1))
 x0=x1;y0=y1;z0=z1
  step=step+1
print('\n Solution: x=\%0.3f, y=\%0.3f, z=\%0.3f \n ' \%(x1,y1,z1))
Output:
Iterations=1, x=0.900, y=-2.290, z=3.067
Iterations=2, x=1.051, y=-1.998, z=3.010
Iterations=3, x=0.999, y=-1.999, z=2.999
Iterations=4, x=1.000, y=-2.000, z=3.000
Iterations=5, x=1.000, y=-2.000, z=3.000
Solution: x=1.000, y=-2.000, z=3.000
Example 2: Solve
           5x-2y+z = -4, x+6y-2z = -1, 3x+y+5z = 13.
Example 3: Solve
           9x+2y+4z = 20, x+10y+4z = 6, 2x - 4y + 10z = -15.
Example 4: Solve
           x+y+54z = 110, 27x+6y-z = 85, 6x + 15y + 2z = 72.
```

```
Lab
      7:
                         to
                              solve
                                                   of
                                                         algebraic
            Program
                                        system
equations using Successive Over Relaxation
                                                               (SOR)
method.
Example 1: Solve the system of equations
          3x - y + z = -1; -x + 3y - z = 7; x - y + 3z = -7
          using Successive Over Relaxation method.
Python Command:
from sympy import *
f1 = lambda x,y,z: (-1+y-z)/3
f2 = lambda x,y,z: (7+x+z)/3
f3 = lambda x,y,z: (-7-x+y)/3
# Initial setup
x0 = 0; y0 = 0; z0 = 0
count = 1
# Reading tolerable error
e = float(input('Enter tolerable error: '))
# Reading relaxation factor
w = float(input("Enter relaxation factor: "))
# Implementation of successive over-relaxation
print('\nCount\tx\ty\tz\n')
condition = True
while condition:
  x1 = (1-w) * x0 + w * f1(x0,y0,z0)
  y1 = (1-w) * y0 + w * f2(x1,y0,z0)
  z1 = (1-w) * z0 + w * f3(x1,y1,z0)
  print('%d\t%0.4f\t%0.4f\n' %(count, x1,y1,z1))
  e1 = abs(x0-x1);
  e2 = abs(y0-y1);
  e3 = abs(z0-z1);
  count += 1
  x0 = x1
 y0 = y1
  z0 = z1
  condition = e1>e and e2>e and e3>e
print('\nSolution: x = \%0.3f, y = \%0.3f and z = \%0.3f\n'\% (x1,y1,z1))
```

Enter tolerable error: 0.0001

Enter relaxation factor: 1.25

Cou	nt x	У	z
1	-0.4167	2.7431	-1.6001
2	1.4972	2.1880	-2.2288
3	1.0494	1.8782	-2.0141
4	0.9428	2.0007	-1.9723
5	1.0031	2.0126	-2.0029
6	1.0057	1.9980	-2.0025
7	0.9988	1.9990	-1.9993
8	0.9996	2.0004	-1.9998
9	1.0002	2.0001	-2.0001
10	1.0000	2.0000	-2.0000

Solution: x = 1.000, y = 2.000 and z = -2.000

Example 2: Solve the system of equations

$$10x + 2y - z = 7$$
; $x + 8y + 3z = -4$; $-2x - y + 10z = 9$ using Successive Over Relaxation method.

Part C: Polynomial Interpolations

```
Lab 8: Program to find the sums of powers of
successive natural numbers using Newton-Gregory
technique.
          Newton's Forward Interpolation Formula
1) If y(75)=246, y(80)=202, y(85)=118, y(90)=40. Find y(79).
Python Command:
from sympy import *
x=[75,80,85,90]
y=[246,202,118,40]
print("X values:",x)
print("Y values:",y)
X=79;h=5;sum1=y[0];term=1;k=1;n=len(x)
p=(X-x[0])/h
print("\n Difference table")
print(*x,sep="\t")
print("-"*40)
print(*y,sep="\t")
for i in range(0,n-1):
  z=[]
  for j in range(0,n-i-1):
    y[i]=y[i+1]-y[i]
    z.append(y[j])
  print(*z,sep="\t")
  term=term*(p-i)/k
  k=k+1
  sum1=sum1+term*y[0]
print("\n y(79)=",round(sum1,3))
Output:
X values: [75, 80, 85, 90]
Y values: [246, 202, 118, 40]
Difference table
75 80 85 90
246 202 118 40
-44 -84 -78
-40 6
46
y(79) = 215.472
```

2) Evaluate $y=e^{2x}$ for x=0.05 from the following table:

×	0	0.10	0.20	0.30	0.40
У	1.00	1.22	1.49	1.82	2.26

3) Estimate y at x=4.2 from the following table:

×	4	6	8	10
У	1	3	8	16

Newton's Backward Interpolation Formula

Example 1. Estimate f(7.5) from the following table:

X	1	2	3	4	5	6	7	8
Y	1	8	27	64	125	216	343	512

Python Command:

```
from sympy import *
x=[1,2,3,4,5,6,7,8]
y=[1,8,27,64,125,216,343,512]
print("X values:",x)
print("Y values:",y)
X=7.5; h=1; n=len(x); sum1=y[n-1]; term=1; k=1
p=(X-x[n-1])/h
print("\n Difference table")
print(*x,sep="\t")
print("-"*60)
print(*y,sep="\t")
for i in range(0,n-1):
  z=[]
  for j in range(0,n-i-1):
     y[i]=y[i+1]-y[i]
     z.append(y[j])
  print(*z,sep="\t")
  term=term*(p+i)/k
  k=k+1
  sum1=sum1+term*y[n-i-2]
print("\n y(7.5)=",round(sum1,3))
```

X values: [1, 2, 3, 4, 5, 6, 7, 8]

Y values: [1, 8, 27, 64, 125, 216, 343, 512]

Difference table 1 2 3 4 5 6 7 8

1 8 27 64 125 216 343 512

7 19 37 61 91 127 169

12 18 24 30 36 42

66666

0000

000

00

0

y(7.5) = 421.8752

Example 2. Estimate f(1.28) from the following table:

×	1.15	1.20	1.25	1.30
f(x)	1.0723	1.0954	1.1180	1.1401

Example 3. The population of the town is as follows,

Year	1921	1931	1941	1951	1961	1971
Population	20	24	29	36	46	51
in Lakhs						

Estimate the population in the year 1955.

Part D: Numerical Differentiation and Integration

<u>Lab 9</u>: <u>Program to find differentiation at specified point</u> using Newton-Gregory interpolation method.

Newton's Forward Interpolation Formula

Example 1. Find y' and y'' at x = 1 from the following data

X	1.00	1.05	1.10	1.15	1.20	1.25	1.30
Y	1.00	1.0247	1.0488	1.0723	1.0954	1.1180	1.1401

```
Python command:
from sympy import *
from numpy import *
x=[1.00,1.05,1.10,1.15,1.20,1.25,1.30]
y=[1.00,1.0247,1.0488,1.0723,1.0954,1.1180,1.1401]
X=1;h=0.05;n=len(x)
d=zeros((n,n+1))
for i in range(0,n):
  d[i][0]=x[i]
  d[i][1]=y[i]
for i in range(1,n):
  for j in range(0,n-i):
    d[j][i+1]=d[j+1][i]-d[j][i]
print("\n Forward Difference Table \n")
for i in range(n):
  print(x[i],end="\t")
  for i in range(n-i):
    print(d[i][j+1].round(4),end="\t")
  print("")
sum1=d[0][2]-(1/2)*d[0][3]+(1/3)*d[0][4]-(1/4)*d[0][5]+(1/5)*
      d[0][6]-(1/6)*d[0][7]
sum2=d[0][3]-d[0][4]+(11/12)*d[0][5]-(5/6)*d[0][6]+(137/180)*
      d[0][7]
print("\n y'(1)=",round((sum1/h),4))
print("\n y"(1)=",round((sum2/(h**2)),4))
Output:
Forward Difference Table
1.0
          0.0247 -0.0006 0.0
                                    0.0002
                                             -0.0005
                                                       0.0009
     1.0
1.05 1.0247 0.0241 -0.0006 0.0002
                                    -0.0003 0.0004
     1.1
1.15 1.0723 0.0231 -0.0005
                              -0.0
1.2
     1.0954 0.0226 -0.0005
1.25 1.118
             0.0221
1.3
     1.1401
y'(1) = 0.494 y''(1) = 0.274
```

Example 2. Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x = 1 from the following data

X	1	2	3	4	5	6
Y	1	8	27	64	125	216

Example 3. Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x = 51 from the following data

X	50	60	70	80	90
Y	19.96	36.65	58.81	77.21	94.61

Newton's Backward Interpolation Formula

Example 1. Find y' and y'' at x = 1.6 from the following data

X	1.0	1.1	1.2	1.3	1.4	1.5	1.6
Y	7.989	8.403	8.781	9.129	9.451	9.750	10.031

```
Python command:
from sympy import *
from numpy import *
x=[1.0,1.1,1.2,1.3,1.4,1.5,1.6]
y=[7.989,8.403,8.781,9.129,9.451,9.750,10.031]
X=1.6;h=0.1;n=len(x)
d=zeros((n,n+1))
for i in range(0,n):
  d[i][0]=x[i]
  d[i][1]=y[i]
for i in range(2,n):
  for j in range(n-1,i-2,-1):
     d[j][i]=d[j][i-1]-d[j-1][i-1]
print("Backward Difference Table")
for i in range(n):
  print(x[i],end="\t")
  for j in range(i+1):
     print(d[i][j+1].round(3),end="\t")
  print("")
sum1=d[6][2]+(1/2)*d[6][3]+(1/3)*d[6][4]+(1/4)*d[6][5]+(1/5)
      *d[6][6]+(1/6)*d[6][7]
sum2=d[6][3]+d[6][4]+(11/12)*d[6][5]+(5/6)*d[6][6]+(137/180)
      *d[6][7]
print("\n y'(1.6)=",round((sum1/h),4))
print("\n y"(1.6)=",round((sum2/(h**2)),4))
```

Backward Difference Table

7.989

1.1 8.403 0.414

 1.2
 8.781
 0.378
 -0.036

 1.3
 9.129
 0.348
 -0.03
 0.006

1.4 9.451 0.322 -0.026 0.004 -0.002 1.5 9.75 0.299 -0.023 0.003 -0.001 0.001

1.6 10.031 0.281 -0.018 0.005 0.002 0.003 0.0

y'(1.6)= 2.7477

y"(1.6)= -0.8667

Example 2. Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x = 54 from the following table.

X	50	51	52	53	54
Y	3.6840	3.7084	3.7325	3.7563	3.7798

Lab 10: Program to find the missing value of table using Lagrange method.

Example 1. Find f(9) from the following data

x	5	7	11	13	17
y	150	392	1452	2366	5202

Using Lagrange's interpolation formula.

Python Command:

```
import numpy as np
n = int(input('Enter number of data points: '))
x = np.zeros((n))
y = np.zeros((n))
# Reading data points
print('Enter data for x and y: ')
for i in range(n):
  x[i] = float(input('x['+str(i)+']='))
  y[i] = float(input( 'y['+str(i)+']='))
# Reading interpolation point
xp = float(input('Enter interpolation point: '))
# Set interpolated value initially to zero
yp = 0
# Implementing Lagrange Interpolation
for i in range(n):
  p = 1
  for j in range(n):
    if i != j:
       p = p * (xp - x[j])/(x[i] - x[j])
  yp = yp + p * y[i]
# Displaying output
print('Interpolated value at %.3f is %.3f.' % (xp, yp))
```

Enter number of data points: 5

Enter data for x and y:

x[0]=5

y[0]=150

x[1]=7

y[1]=392

x[2]=11

y[2]=1452

x[3]=13

y[3]=2366

x[4]=17

y[4]=5202

Enter interpolation point: 9

Interpolated value at 9.000 is 810.000.

Example 2. Find f(10) from the following data

x	5	6	9	11
y	12	13	14	16

Using Lagrange's interpolation formula.

Output:

Enter number of data points: 4

Enter data for x and y:

x[0]=5

y[0]=12

x[1]=6

y[1]=13

x[2]=9

y[2]=14

x[3]=11

y[3]=16

Enter interpolation point: 10

Interpolated value at 10.000 is 14.667.

```
Lab
       11:
                             to
                                   evaluate
                                                  integral
               Program
                                                                 using
Simpson's 1/3<sup>rd</sup> and 3/8<sup>th</sup> rules.
                  "Simpson's 1/3<sup>rd</sup> rule"
Example 1. Evaluate \int_{1}^{1} \left[ \sqrt{1+x^3} \right] dx, taking n = 10 using
Simpson's 1/3rd rule.
Python Command:
from sympy import *
var('x,y')
f=lambda x:sqrt(1+x**3)
x0=0; xn=1; n=10; h=(xn-x0)/n
soln=f(x0)+f(xn)
for i in range(1,n):
  if i%2==0:
     yn=2*f(x0+i*h)
  else:
     yn=4*f(x0+i*h)
  soln=soln+yn
soln=round(h/3*soln,4)
print("\n Estimated value of given integration:",soln)
Output:
Estimated value of given integration: 1.1114
Example 2. Evaluate \int_{0}^{1} \left[ \frac{1}{1+x} \right] dx, taking n = 6 using
Simpson's 1/3rd rule.
Example 3. Evaluate \int_{0}^{6} \left[ \frac{1}{1+x^{2}} \right] dx using Simpson's 1/3<sup>rd</sup>
rule by taking n = 6.
```

"Simpson's 3/8th rule"

Example 1. Evaluate $\int_{0}^{1} \left[\frac{1}{1+x} \right] dx$ using Simpson's 3/8th rule taking n = 6.

Python Command:

```
from sympy import *
var('x,y')
f=lambda x:1/(1+x)
x0=0; xn=1; n=6; h=(xn-x0)/n
soln=f(x0)+f(xn)
for i in range(1,n):
    if i%3==0:
        yn=2*f(x0+i*h)
    else:
        yn=3*f(x0+i*h)
    soln=soln+yn
soln=round(3*h/8*soln,4)
print("\n Estimated value of I =",soln)
```

Output:

Estimated value of I = 0.6932

Example 2. Evaluate $\int_0^6 \left[\frac{1}{1+x^2} \right] dx$ using Simpson's $3/8^{th}$ rule taking n = 6. Example 3. Evaluate $\int_0^3 \left[\frac{1}{(1+x)^2} \right] dx$ using Simpson's $3/8^{th}$ rule taking n = 3. Lab 12: Program to evaluate integral using

Trapezoidal and Weddle rules.

"Trapezoidal rule"

Example 1. Evaluate: $\int_{0}^{1} \left[\sqrt{1+x^3} \right] dx$, taking n = 10 using

trapezoidal rule.

Python Command:

from sympy import *

var('x,y')

f=lambda x:sqrt(1+x**3)

x0=0; xn=1; n=10; h=(xn-x0)/n

soln=f(x0)+f(xn)

for i in range(1,n):

soln=soln+2*f(x0+i*h)

soln=round(h/2*soln,4)

print("\n Estimated value of given integration:",soln)

Output:

Estimated value of given integration: 1.1123

Example 2. Evaluate: $\int_{0}^{1} \left[\frac{1}{1+x} \right] dx$ using trapezoidal rule

by taking n = 6.

Example 3. Evaluate: $\int_{0}^{6} \left[\frac{1}{1+x^2} \right] dx$ using trapezoidal rule

by taking n = 6.

```
"Weddle rule"
```

Example 1. Evaluate: $\int_{0}^{6} \left[\frac{1}{1+x^2} \right] dx$ using weddle's rule by

taking n = 6.

Python Command:

```
def f(x):
  return 1/(1+x*x)
def accept():
  global x0,xn,n
  x0=float(input("Enter the lower limit:"))
  xn=float(input("Enter the upper limit:"))
  n=int(input("Enter the number of intervals:"))
def weddle():
  s=0
  h=(xn-x0)/n
      if n%6==0:
            s=s+((3*h/10)*(f(x0)+f(x0+2*h)+5*f(x0+h)+6*f(x0+3*h)+
            f(x0+4*h)+5*f(x0+5*h)+f(x0+6*h))
            print("The value after calculation is: ",round(s,6))
     else:
            print("The integration can not be done using Weddle's Rule")
#calling the functions to perform the integration using weddle's formula
x0,xn,n=0.0,0.0,0
accept()
```

Output:

weddle()

Enter the lower limit:0

Enter the upper limit:6

Enter the number of intervals:6

The value after calculation is: 1.373447

Example 2. Evaluate: $\int_{0.2}^{0.3} e^x \sin 2x \, dx$ using weddle's rule by

taking n = 6.

Example 3. Evaluate: $\int_{1}^{3.2} \log x \, dx$ using trapezoidal rule by

taking n = 6.