Chapitre 15

Table des matières

Ι	Définition et premières propriétés	2
II	Sous-espaces vectoriels	6
TTT	Familles de vecteurs	18

Première partie

Définition et premières propriétés

Soit E un ensemble muni d'une loi <u>interne</u> + et d'une loi · définie sur $\mathbb{K} \times E$ à valeurs dans E où \mathbb{K} est un corps.

On dit que $(E, +, \cdot)$ est un K-espace vectoriel (ou un espace vectoriel sur K) si

- 1. (E, +) est un groupe abélien
- 2.(a)

$$\forall u \in E, \forall (\lambda, \mu) \in \mathbb{K}^2,$$
$$\mu \cdot (\lambda \cdot u) = (\mu \underbrace{\times}_{\times} \lambda) \cdot u$$
$$\times \operatorname{de} \mathbb{K}$$

- (b) $\forall u \in E, 1_{\mathbb{K}} \cdot u = u$
- 3.(a)

$$\forall u \in E, \forall (\lambda, \mu) \in \mathbb{K}^2$$

$$(\lambda \cdot u) + (\mu \cdot u) = (\lambda + \mu) \cdot u$$

$$+ \det E + \det \mathbb{K}$$

(b)

$$\forall \lambda \in \mathbb{K}, \forall (u, v) \in E^2,$$
$$\lambda \cdot (u + v) = (\lambda \cdot u) + (\lambda \cdot v)$$

Les éléments de E sont alors appelés <u>vecteurs</u> et les éléments de $\mathbb K$ sont dits scalaires.

Par convention, \cdot est prioritaire sur +.

Exemple

Soit K corps, K est un K-espace vectoriel

Exemple

Soit $\vec{\mathscr{P}}$ l'ensemble des vecteurs du plan. $\vec{\mathscr{P}}$ est un \mathbb{R} -espace vectoriel.

Exemple

 $\mathbb C$ est un $\mathbb R\text{-espace}$ vectoriel.

En généralisant, tout corps $\mathbb K$ est un $\mathbb L\text{-espace}$ vectoriel pour $\mathbb L$ un sous-corps de $\mathbb K$

Exemple

$$(\mathbb{K}^n, +, \cdot)$$
 avec

$$(x_1, \dots, x_n) + (y_1, \dots, y_n) = (x_1 + y_1, \dots, x_n + y_n)$$

 $\lambda \cdot (y_1, \dots, y_n) = (\lambda \cdot y_1, \dots, \lambda \cdot y_n)$

est un espace vectoriel.

Exemple

Soient $(E,+,\cdot)$ un \mathbb{K} -espace vectoriel et \mathscr{D} un ensemble non vide. $(E^{\mathscr{D}},+,\cdot)$ est un \mathbb{K} -espace vectoriel où pour $f,g\in E^{\mathscr{D}}$ et $\lambda\in\mathbb{K}$

$$f + g : \mathscr{D} \longrightarrow E$$

 $x \longmapsto f(x) + g(x)$

$$\lambda f: \mathscr{D} \longrightarrow \mathbb{K}$$
 $x \longmapsto \lambda \cdot f(x)$

Par exemple, $\mathbb{C}^{\mathbb{N}}$ est un \mathbb{R} -espace vectoriel $\mathscr{C}^0(\mathcal{D},\mathbb{R})$ est un \mathbb{R} -espace vectoriel

Exemple

- \mathbb{R}^+ n'est pas un \mathbb{R} -espace vectoriel
- $\{(x,0)\mid x\in\mathbb{R}\}\cup\{(0,y)\mid y\in\mathbb{R}\}$ n'est pas un \mathbb{R} -espace vectoriel pour les lois usuelles

Proposition

Soit $(E,+,\cdot)$ un \mathbb{K} -espace vectoriel.

- 1. $\forall u \in E, 0_{\mathbb{K}} \cdot u = 0_E$
- 2. $\forall \lambda \in \mathbb{K}, \lambda \cdot 0_E = 0_E$
- 3. $\forall \lambda \in \mathbb{K}, \forall u \in E, \lambda \cdot u = 0_E \implies \lambda = 0_{\mathbb{K}} \text{ ou } u = 0_E$

Preuve

1. Soit $u \in E$.

$$0_{\mathbb{K}} \cdot u = (0_{\mathbb{K}} + 0_{\mathbb{K}}) \cdot u$$
$$= 0_{\mathbb{K}} \cdot u + 0_{\mathbb{K}} \cdot u$$

(E,+) est un groupe donc $0_E = 0_{\mathbb{K}} \cdot u$

2. Soit $\lambda \in \mathbb{K}$.

$$\lambda \cdot 0_E = \lambda \cdot (0_E + 0_E) = \lambda \cdot 0_E + \lambda \cdot 0_E$$

 $\lambda \cdot 0_E$ est régulier pour + :

$$0_E = \lambda \cdot 0_E$$

3. Soit $\lambda \in \mathbb{K}$ et $u \in E$ tel que $\lambda \cdot u = 0_E$

Cas 1 $\lambda = 0_{\mathbb{K}}$ Cas 2 $\lambda \neq 0_{\mathbb{K}}$ Alors, $\lambda^{-1} \in \mathbb{K}$ et donc

$$\begin{split} \lambda \cdot u &= 0_E \implies \lambda^{-1}(\lambda \cdot u) = \lambda^{-1} \\ &\implies (\lambda^{-1} \times \lambda) \cdot u = 0_E \text{ d'après 2.} \\ &\implies 1_{\mathbb{K}} \cdot u = 0_E \\ &\implies u = 0_E \end{split}$$

Proposition

Soit $(E, +, \cdot)$ un K-espace vectoriel et $u \in E$. Alors, $-u = (-1_K) \cdot u$

Preuve

$$u + (-1_{\mathbb{K}}) \cdot u = (1_{\mathbb{K}} \cdot u) + (-1_{\mathbb{K}}) \cdot u$$

= $(1_{\mathbb{K}} + (-1_{\mathbb{K}})) \cdot u$
= $0_{\mathbb{K}}u$
= 0_{E}

 $Donc -u = (-1_{\mathbb{K}}) \cdot u \qquad \Box$

Deuxième partie Sous-espaces vectoriels

Soit $(E, +, \cdot)$ un \mathbb{K} -espace vectoriel. Soit $F \subset E$. On dit que F est un sous- \mathbb{K} -espace vectoriel de E si

- 1. $F \neq \emptyset$
- 2. $\forall (u, v) \in F^2, u + v \in F$
- 3. $\forall \lambda \in \mathbb{K}, \forall u \in F, \lambda u \in F$

Proposition

Avec les notations précédentes, $(F,+,\cdot)$ est un \mathbb{K} -espace vectoriel

Preuve

- D'après 2., + est interne dans F
- (E,+) est un groupe abélien donc + est associative et commutative dans E donc dans F
- $F \neq \emptyset$. Soit $u \in F$. D'après 3.,

$$0_{\mathbb{K}} \cdot u \in F$$

Comme $u \in E$ et $(E, +, \cdot)$ est un K-espace vectoriel,

$$0_{\mathbb{K}} \cdot u = 0_E$$

- Donc, $0_E \in F$
- Soit $u \in F$. Comme $u \in E$,

$$-u = -(1_{\mathbb{K}}) \cdot u \in F$$
 d'après 3.

— Les autres axiomes sont aisément vérifiés.

Proposition

Soit $(E, +, \cdot)$ un \mathbb{K} -espace vectoriel et $F \subset E$. F est un sous-espace vectoriel de $(E, +, \cdot)$ si et seulement si

- 1 $F \neq \emptyset$
- 2. $\forall (\lambda, \mu) \in \mathbb{K}^2, \forall (u, v) \in F^2, \lambda \cdot u + \mu \cdot v \in F$

Preuve

" \Longrightarrow " On sait déjà que F est non vide.

$$\forall u, v \in F, \forall \lambda, \mu \in \mathbb{K}, \quad \begin{cases} \lambda u \in F \\ \mu v \in F \end{cases} \text{ donc } \lambda u + \mu v \in F$$

" <<= " — On sait déjà que F est non-vide

— Soient
$$u, v \in F$$

$$u + v = 1_{\mathbb{K}} \cdot u + 1_{\mathbb{K}} \cdot v \in F$$

— Soit
$$u \in F, \lambda \in \mathbb{K}$$
.

$$\lambda \cdot u = \lambda \cdot u + 0_{\mathbb{K}} \cdot u \in F$$

Definition

Soient
$$(E, +, \cdot)$$
 un \mathbb{K} -espace vectoriel et $(u_1, \dots, u_n) \in E^n$. Une combinaison linéaire de (u_1, \dots, u_n) est un vecteur de E de la forme $\sum_{i=1}^n \lambda_i u_i$ où $(\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n$

Remarque

On peut aussi démontrer que F est un sous-espace vectoriel de E si et seulement si

$$F \neq \emptyset$$
 et $\forall u, v \in F, \forall \lambda \in \mathbb{K}, \lambda u + v \in F$

Exemple

- 1. $F = \{z \in \mathbb{C} \mid \mathfrak{Re}(z) + \mathfrak{Im}(z) = 1\} \subset \mathbb{C}$ F est un sous- \mathbb{R} -espace vectoriel de \mathbb{C} ? Non car $0 \notin F$
- 2. $F=\{z\in\mathbb{C}\mid \mathfrak{Re}(z)+\mathfrak{Im}(z)=0\}$ est un sous- \mathbb{R} -espace vectoriel de \mathbb{C} mais pas un sous- \mathbb{C} -espace vectoriel. En effet, $1-i\in F$ $i(1-i)=i+1\not\in F$
- 3. $E = \mathbb{R}^{\mathbb{N}}$ est un \mathbb{R} -espace vectoriel. $F = \{u \in \mathbb{R}^{\mathbb{N}} \mid \forall n \in \mathbb{N}, u_{n+1} = 3u_n\}$ est un sous-espace vectoriel de E. $G = \{u \in \mathbb{R}^{\mathbb{N}} \mid \forall n \in \mathbb{N}, u_{n+1} = 3u_n + 2\}$ n'est pas un sous-espace vectoriel de E puique $0_E \notin G$.
- 4. $E=\mathbb{R}^D$ est un \mathbb{R} -espace vectoriel $F=\mathscr{C}^0(D,\mathbb{R})$ est un sous-espace vectoriel de E (fonctions continues) $G=\mathscr{D}(D,\mathbb{R})$ est un sous-espace vectoriel de E (fonctions dérivables) Si D=]-a,a[avec $a\in\mathbb{R},\ H=\{f\in E\mid f \text{ impaire }\}$ est un sous-espace vectoriel de E Si $D=\mathbb{R},\ L=\{f\in E\mid f \text{ 1-périodique }\}$ est un sous-espace vectoriel de
 - $M = \{ f \in E \mid f \text{ périodique } \}$ n'est pas un sous-ensemble vectoriel de E
- 5. L'ensemble des solutions sur un intervalle I d'une équation différentielle linéaire est un sous-espace vectoriel de \mathbb{R}^I

Exemple

Exercice

Trouver tous les sous- \mathbb{R} -espaces vectoriels de \mathbb{R}^2

- $\{(0,0)\}$ est un sous-espace vectoriel de \mathbb{R}^2 Les droites passant par O sont des sous-espaces vectoriels de \mathbb{R}^2
- \mathbb{R}^2 est un sous-espace vectoriel de \mathbb{R}^2 et rien d'autre!

Proposition

Soit $(E, +, \cdot)$ un K-espace vectoriel et \mathscr{F} une famille non vide de sous-espaces vectoriels de E. Alors $\bigcap_{F\in\mathscr{F}}F$ est un sous-espace vectoriel de E.

Preuve

On pose
$$G = \bigcap_{F \in \mathscr{F}} F$$
.

- $\forall F \in \mathscr{F}, 0_E \in F$ car F est un sous espace vectoriel de E donc $0_E \in G$.
- Soient $u, v \in G$ et $\lambda, \mu \in \mathbb{K}$. On pose $w = \lambda u + \mu v$.

$$\forall F \in \mathscr{F}, \quad \begin{array}{l} u \in F \\ v \in F \end{array} \} \text{ donc } w \in F$$

donc $w \in G$

Remarque

 $Attention \land$

Une réunion de sous-espaces vectoriels n'est pas un sous-espace vectoriel en général.

Exemple

 $F \cup G$ est un sous-espace vectoriel de $E \iff F \subset G$ ou $G \subset F$

Definition

Soient F et G deux sous-espaces vectoriels de E. On définit leur somme F + G

$$F + G = \{x + y \mid x \in F, y \in G\}$$

Proposition

Avec les notations précédentes, F+G est le plus petit sous-espace vectoriel de E contenant $F \cup G$.

Preuve

$$\begin{array}{l} ----0_E = \underbrace{0_E}_{\in F} + \underbrace{0_E}_{\in G} \in F + G \\ --\text{Soient } u \in F + G, v \in F + G, \lambda, \mu \in \mathbb{K} \\ \text{On pose} \end{array}$$

$$\begin{cases} u = x + y \text{ avec } \begin{cases} x \in F \\ y \in G \end{cases} \\ v = a + b \text{ avec } \begin{cases} a \in F \\ b \in G \end{cases}$$

Donc,

$$\begin{split} \lambda u + \mu v &= \lambda (x+y) + \mu (a+b) \\ &= \lambda x + \lambda y + \mu a + \mu b \\ &= \underbrace{(\lambda x + \mu a)}_{\in F} + \underbrace{\lambda y + \mu b}_{\in G} \in F + G \end{split}$$

Ainsi F + G est un sous-espace vectoriel de E.

Soit
$$x \in F \cup G$$
.
Si $x \in F$ alors $x = \underbrace{x}_{\in F} + \underbrace{O_E}_{\in G} \in F + G$
Si $x \in G$ alors $x = \underbrace{0_E}_{\in F} + \underbrace{x}_{\in G} \in F + G$

Donc, $F \cup G \subset F + G$ Soit H un sous-espace vectoriel de E tel que $F \cup G \subset H$

Soit
$$u \in F + G$$
. On pose $u = x + y$ avec
$$\begin{cases} x \in F \\ y \in G \end{cases}$$
$$\begin{cases} x \in F \subset F \cup G \subset H \\ y \in G \subset F \cup G \subset H \end{cases}$$

H est un sous-espace vectoriel de E donc $x + y \in H$. On a montré que $F+G\subset H$

Definition

Soit $(E, +, \cdot)$ un K-espace vectoriel et $(F_i)_{i \in I}$ une famille quelconque non vide

de sous-espaces vectoriels de E. On définit $\sum_{i\in I}F_i$ par

$$\sum_{i \in I} F_i = \left\{ \sum_{i \in I} x_i \mid (x_i)_{i \in I} \in \prod_{i \in I} F_i; (x_i) \text{ presque nulle } \right\}$$

$$= \left\{ \sum_{i \in I} x_i \mid (x_i) \in \prod_{i \in I} F_i; \{i \in I \mid x_i \neq 0_E\} \text{ est fini } \right\}$$

$$\sum_{i \in I} F_i$$
 est l'ensemble de sommes finies obtenues à partir d'éléments de $\prod_{i \in I} F_i$

Exemple

$$\begin{split} E &= \mathbb{R}^{\mathbb{R}} \\ \forall i \in \mathbb{N}, F_i &= \{x \mapsto ax^i \mid a \in \mathbb{R}\} \\ \sum_{i \in \mathbb{N}} F_i \text{ est l'ensemble des fonctions polynomiales} \end{split}$$

Proposition

Une somme quelconque de sous-espaces vectoriels est le plus petit sous-espace vectoriel contenant leur réunion. \Box

Definition

Soient F et G deux sous-espaces vectoriels de E. On dit qu'ils sont en somme directe si

$$\forall u \in F + G, \exists ! (x, y) \in F \times G, u = x + y$$

Dans ce cas, l'espace F+G est noté $F\oplus G$

Exemple

$$\begin{split} E &= \mathbb{R}^3 \\ F &= \{(x,0,x) \mid x \in \mathbb{R}\} \\ G &= \left\{ (x,y,z) \mid (S) : \begin{cases} x+y+z=0 \\ y-z=0 \end{cases} \right. \\ F \oplus G? \\ & - (0,0,0) \in F \text{ car } 0 \in \mathbb{R} \\ & \text{Soient } x,y \in \mathbb{R}, \begin{cases} u=(x,0,x) \\ v=(y,0,y) \end{cases} \\ & \text{Soient } \lambda, \mu \in \mathbb{R} \end{split}$$

$$\lambda u + \mu v = \lambda(x, 0, 0) + \mu(y, 0, y)$$
$$= (\lambda x, 0, \lambda x) + (\mu y, 0, \mu y)$$
$$= (\lambda x + \mu y, 0, \lambda x + \mu y) \in F$$

Donc F est un sous-espace vectoriel de E $(0,0,0) \in G \text{ car } (S) \text{ est homogène}$ $\begin{cases} u = (x,y,z) \in G \\ v = (a,b,c) \in G \end{cases}$ Soient $\lambda, \mu \in \mathbb{R}$

$$\begin{split} \lambda u + \mu v \in G &\iff \lambda(x,y,z) + \mu(a,b,c) \in G \\ &\iff (\lambda x + \mu a, \lambda y + \mu b, \lambda z + \mu c) \in G \\ &\iff \begin{cases} (\lambda x + \mu a) + (\lambda y + \mu b) + (\lambda z + \mu c) = 0 \\ (\lambda y + \mu b) - (\lambda z + \mu c) = 0 \end{cases} \\ &\iff \begin{cases} \lambda \underbrace{(x + y + z)}_{=0} + \mu \underbrace{(a + b + c)}_{=0} \\ \lambda \underbrace{(y - z)}_{=0} + \mu \underbrace{(b - c)}_{=0} = 0 \end{cases} \\ &\iff \begin{cases} 0 = 0 \\ 0 = 0 \end{cases} \end{split}$$

— Soit $w \in E$. On pose w = (x, y, z)

$$w \in F + G \iff \exists (u, v) \in F \times G, w = u + v$$

$$\iff \exists x' \in \mathbb{R}, \exists (a, b, c) \in \mathbb{R}^3, \begin{cases} w = (x', 0, x') + (a, b, c) \\ a + b + c = 0 \\ b - c = 0 \end{cases}$$

$$\iff \exists (x', a, b, c) \in \mathbb{R}^4, \begin{cases} (x, y, z) = (a + x', b, c + x') \\ a + b + c = 0 \\ b - c = 0 \end{cases}$$

$$\iff \exists (x', a, b, c) \in \mathbb{R}^4, (S') : \begin{cases} a + x' = x \\ b = y \\ c + x' = z \\ a + b + c = 0 \\ b - c = 0 \end{cases}$$

(S') est un système linéaire à 4 inconnues (x',a,b,c), 5 équations, 3 paramètres (x,y,z)

$$(S') \iff \begin{cases} b = y \\ c = y \\ x' = z - y \\ a = x - z + y \\ x + 3y - z = 0 \end{cases}$$

Si $x+3y-z\neq 0$ alors (S') n'a pas de solutions et donc $w\not\in F+G$ Si x + 3y - z = 0 alors (S') a une unique solution alors

$$\exists ! (u, v) \in F \times G, w = u + v$$

On a montré que

$$F \oplus G = \{(x, y, z) \in \mathbb{R}^3 \mid x + 3y - z = 0\}$$

Proposition

Soient $(E, +, \cdot)$ un K-espace vectoriel, F et G deux sous-espaces vectoriels de E F et G sont en somme directe si et seuelement si $F \cap G = \{0_E\}$

Preuve

" \Longrightarrow " On suppose la somme directe.

Soit $x \in F \cap G$.

Soit $x \in F \cap G$. D'une part, $0_E = \underbrace{0_E}_{\in F} + \underbrace{0_E}_{\in G}$ D'autre part, $0_E = \underbrace{x}_{\in F} + \underbrace{(-x)}_{\in G}$

Par unicité, $x = 0_E$

 \iff " On suppose $F \cap G = \{0_E\}$

Soit $x \in F + G$ et on supoise que x a deux décompositions :

$$\begin{cases} x = u + v, & u \in F, v \in G \\ x = u' + v', & u' \in F, v' \in G \end{cases}$$

D'où,
$$u-u'=v'-v$$

Or,
$$\begin{cases} u-u' \in F \\ v-v' \in G \end{cases}$$

Donc, $u-u' \in F \cap G = \{0_E\}$
donc $u-u'=0_E$ donc $u=u'$ donc $v'=v$

Remarque

Ce résultat est inutile pour l'instant (en l'absence d'arguments dimensionnels) pour prouver un resultat de la forme $E = F \oplus G$

Exemple

$$E=\mathbbm{R}^{\mathbbm{R}}$$
 $F=\{f\in E\mid f \text{ paire}\}$ et $F=\{f\in E\mid f \text{ impaire}\}$ Prouvons que $E=F\oplus G$

Soit
$$f \in F \cap G$$
 donc

$$\forall x \in \mathbb{R}, f(-x) = f(x) = -f(x)$$

Donc

$$\forall x \in \mathbb{R}, f(x) = -f(x)$$

et donc

$$\forall x \in \mathbb{R}, f(x) = 0$$

donc $f = 0_E$

Ainsi, la somme de F est G est directe

$$F + G = F \oplus G$$

Montrons que E = F + G. Soit $f \in E$.

Analyse Soient $g \in G$ et $g \in F$ telles que

$$f = g + h$$

Donc

$$\forall x \in \mathbb{R}, \begin{cases} f(x) = g(x) + h(x) \\ f(-x) = -g(x) + h(x) \end{cases}$$

et donc

$$\begin{cases} h(x) = \frac{1}{2}(f(x) + f(-x)) \\ g(x) = \frac{1}{2}(f(x) - f(-x)) \end{cases}$$

Donc $F + G = F \oplus G$.

Synthèse On pose

$$\begin{cases} g: x \longmapsto & \frac{1}{2}(f(x) - f(-x)) \\ h: x \longmapsto & \frac{1}{2}(f(x) + f(-x)) \end{cases}$$

On vérifie que
$$\begin{cases} g \in F \\ h \in F \\ g+h=f \end{cases}$$
 On a prouvé que $E=F+G$

Exemple

$$E = \mathscr{M}_2(\mathbb{C})$$

$$F = S_2(\mathbb{C}) = \left\{ \begin{pmatrix} a & b \\ b & c \end{pmatrix} \mid a, b, c \in \mathbb{C} \right\}$$

$$G = A_2(\mathbb{C}) = \left\{ \begin{pmatrix} 0 & a \\ -a & 0 \end{pmatrix} \mid a \in \mathbb{C} \right\}$$

$$E=F\oplus G$$

Soit $(E,+,\cdot)$ un $\mathbbm{K}\text{-espace}$ vectoriel. On dit que F et G sont $\underline{\text{supplémentaires}}$ dans E si

$$E = F \oplus G$$

en d'autres termes,

$$\forall x \in E, \exists !(y, z) \in F \times G, x = y + z$$

Exemple

$$E = \mathbb{R}^2$$

$$F = \{(x, y) \in \mathbb{R}^2, y = x\}$$

$$G_1 \oplus F = E$$
 et $G_2 \oplus F = E$
Soit $(x, y) \in E$

$$(x,y) = \underbrace{(x,x)}_{\in F} + \underbrace{(0,y-x)}_{\in G_1}$$
$$= \underbrace{\left(\frac{x+y}{2}, \frac{x+y}{2}\right)}_{\in F} + \underbrace{\left(\frac{x+y}{2}, \frac{x+y}{2}\right)}_{\in G_2}$$

Soit $(F_i)_{i\in I}$ une famille non vide de sous-espaces vectoriels de $(E,+,\cdot)$. On dit qu'ils sont en somme directe si

$$\forall x \in \sum_{i \in I} F_i, \exists ! (x_i)_{i \in I} \in \prod_{i \in I} F_i \text{ presque nulle telle que } x = \sum_{i \in I} x_i$$

Dans ce cas, on écrit $\bigoplus_{i \in I} F_i$ à la place de $\sum_{i \in I} F_i$

Exemple

E: l'espace des fonctions polynomiales

$$\forall i \in \mathbb{N}, F_i = \{x \mapsto ax^i \mid a \in \mathbb{K}\}$$

$$E = \bigoplus_{i \in \mathbb{N}} F_i$$

 ${\bf Exemple}$

$$E = \mathbb{R}^2$$

$$\begin{cases} F = \{(x, x) \mid x \in \mathbb{R}\} \\ G = \{(0, x) \mid x \in \mathbb{R}\} \\ F = \{(x, -x) \mid x \in \mathbb{R}\} \end{cases}$$

On a $F\cap G\cap H=\{0_E\}$ mais leur somme n'est pas directe

$$(0,0) = \underbrace{(1,1)}_{\in F} + \underbrace{(0,-2)}_{\in G} + \underbrace{(-1,1)}_{\in H}$$
$$= \underbrace{(2,2)}_{\in F} + \underbrace{(0,-4)}_{\in G} + \underbrace{(-2,2)}_{\in H}$$

Troisième partie Familles de vecteurs

Soit $(E, +, \cdot)$ un \mathbb{K} -espace vectoriel et $A \in \mathscr{P}(E)$. Le sous-espace vectoriel engendré par A est le plus petit sous espace vectoriel V de E tel que $A \subset V$. On le note $\mathrm{Vect}(A)$

Exemple

$$\begin{split} E \text{ un } \mathbb{K}\text{-espace vectoriel.} \\ &- \operatorname{Vect}\left(\{0_E\}\right) = \{0_E\} \\ &- \operatorname{Vect}(\varnothing) = \{0_E\} \\ &- \operatorname{Vect}(E) = E \\ &- \operatorname{Soit}\ u \in E \setminus \{0_E\} \\ &\operatorname{Vect}(\{u\}) = \{\lambda u \mid \lambda \in \mathbb{K}\} = \mathbb{K}u \\ &- \operatorname{Soient}\ u, v \in \exists \setminus \{0_E\} \\ &\operatorname{Vect}(\{u, v\}) = \{\lambda u + \mu v \mid (\lambda, \mu) \in \mathbb{K}^2\} = \mathbb{K}u + \mathbb{K}v \end{split}$$

Definition

Soit $(E,+,\cdot)$ un \mathbb{K} -espace vectoriel et $u\in E\setminus\{0_E\}$. La droite (vectorielle) engendrée par u est $\mathbb{K}u=\mathrm{Vect}(u)=\mathrm{Vect}(\{u\})$. Soit $v\in E$. On dit que u et v sont colinéaires si $v\in \mathbb{K}u$. Si v n'est pas colinéaire à u alors, $\mathrm{Vect}(u,v)=\mathbb{K}u+\mathbb{K}v$ est appelé plan (vectoriel) engendré par u et v.

Exemple

L'ensemble des solutions d'une équation différentielle linéaire homogène d'ordre 1 est une droite vectorielle.

L'ensemble des solutions d'une équation différentielle linéaire homogène d'ordre 2 à coefficiants constants est un plan vectoriel.

$$\{y \in \mathscr{C}^2(\mathbb{R}) \mid y'' + y = 0\} = \text{Vect}(\cos, \sin)$$

Proposition

Soit $(e_i)_{i\in I}$ un famille non vide de vecteurs d'un K-espace vectoriel $(E, +, \cdot)$. Alors,

$$\operatorname{Vect}((e_i)_{i \in I}) = \left\{ \sum_{i \in I} \lambda_i e_i \mid (\lambda_i)_{i \in I} \in \mathbb{K}^I \text{ et } (\lambda_i) \text{ presque nulle } \right\}$$
$$= \sum_{i \in I} \mathbb{K} e_i$$

Preuve

On pose
$$F = \sum_{i \in I} \mathbb{K}e_i$$

F est un sous espace vectoriel de E.

$$\forall i \in I, e_i = \underbrace{\sum_{j \in I} \lambda_j e_j}_{\in F} \text{ où } \lambda_j = \begin{cases} 0 & \text{si } i \neq j \\ 1 & \text{si } i = j \end{cases}$$
$$= \delta_{i,j} \text{ (symbole de Kronecker)}$$

Soit G un sous espace vectoriel de E tel que

$$\forall i \in I, e_i \in G$$

Soit $u \in F$. Soit $(\lambda_i)_{i \in I}$ une famille presque nulle de scalaires telle que $u = \sum_{i i \in I} \lambda_i e_i$ Soit $\{i_1, \dots, i_k\} = \{i \in I \mid \lambda_i \neq 0_{\mathbb{K}}\}$

$$u = \sum_{j=1}^{k} \underbrace{\lambda_{ij} e_{ij}}_{\in G} \in G$$

Donc $F \subset G$

Definition

On dit que $(e_i)_{i\in I}$ est une famille génératrice de E si

$$E = \text{Vect}((e_i)_{i \in I})$$

Exemple

$$E = \mathbb{R}^3$$

$$\begin{cases} e_1 &= (1,0,1) \\ e_2 &= (0,1,1) \\ e_3 &= (1,1,1) \\ e_4 &= (1,0,0) \\ e_5 &= (0,1,2) \end{cases}$$

Soit $(x, y, z) \in \mathbb{R}^3$. On cherche $(\lambda_1, \dots, \lambda_5) \in \mathbb{R}^5$ tels que

(E):
$$(x, y, z) = \sum_{i=1}^{5} \lambda_i e_i$$

$$(E) \iff (x, y, z) = (\lambda_1 + \lambda_3 + \lambda_4, \lambda_2 + \lambda_3 + \lambda_5, \lambda_1 + \lambda_2 + \lambda_3 + 2\lambda_5)$$

$$\iff \begin{cases} \lambda_1 + \lambda_3 + \boxed{\lambda_4} = x \\ \lambda_2 + \boxed{\lambda_3} + \lambda_5 = y \\ \boxed{\lambda_1} + \lambda_2 + \lambda_3 + 2\lambda_5 = z \end{cases}$$

$$\iff \begin{cases} \lambda_4 = x - \lambda_1 - \lambda_3 \\ \lambda_3 = y - \lambda_2 - \lambda_5 \\ \lambda_1 = z - \lambda_2 - \lambda_3 - 2\lambda_5 \end{cases}$$

Par exemple, $(\lambda_1=z-y,\lambda_2=0,\lambda_3=y,\lambda_4=x-z,\lambda_5=0)$ est solution Donc

$$Vect(e_1, e_2, e_3, e_4, e_5) = E$$

Exemple

 $E = \mathbb{R}^4$

$$\begin{cases}
e_1 = (1,0,1,0) \\
e_2 = (0,1,0,1) \\
e_3 = (1,1,1,1) \\
e_4 = (1,-1,1,-1) \\
e_5 = (1,1,0,0)
\end{cases}$$

Soit $(x, y, z, t) \in \mathbb{R}^4$, $(\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5) \in \mathbb{R}^5$

$$(E) \quad (x, y, z, t) = \sum_{i=1}^{5} \lambda_i e_i \iff \begin{cases} x = \lambda_1 + \lambda_3 + \lambda_4 + \lambda_5 \\ y = \lambda_2 + \lambda_3 - \lambda_4 + \lambda_5 \\ z = \lambda_1 + \lambda_3 + \lambda_4 \\ t = \lambda_2 + \lambda_3 - \lambda_4 \end{cases}$$

$$\iff L_2 \leftarrow L_2 - L_4 \\ L_1 \leftarrow L_1 - L_3 \end{cases} \begin{cases} \lambda_5 = x - z \\ \lambda_5 = y - t \\ \lambda_1 + \lambda_3 + \lambda_4 = z \\ \lambda_2 + \lambda_3 - \lambda_4 = t \end{cases}$$

$$\iff L_2 \leftarrow L_2 - L_1 \end{cases} \begin{cases} \lambda_5 = x - z \\ 0 = y - t - x + z \\ \lambda_1 + \lambda_3 + \lambda_4 = z \\ \lambda_1 + \lambda_3 - \lambda_4 = t \end{cases}$$

Par exemple; $(1,0,0,0) \notin \text{Vect}(e_1, e_2, e_3, e_4, e_5)$

Proposition

Soit $(e_i)_{i\in I}$ une famille génératrice de E et $(u_j)_{j\in J}$ une surfamille de $(e_i)_{i\in I}$

III

constituée de vecteurs de E:

$$\forall i \in I, \exists j \in J, e_i = u_i$$

Alors, $(u_j)_{j\in J}$ engendre E.

Proposition

Soit $(e_i)_{i \in I}$ une famille génératrice de E et $i_0 \in I$

$$(e_i)_{i \in I \setminus \{i_0\}}$$
 engendre $E \iff e_{i_0} \in \text{Vect}\left((e_i)_{i \in I \setminus \{i_0\}}\right)$
 $\iff e_{i_0} \text{ est une combinaison linéaire des } e_i \ (i \in I, i \neq i_0)$

Preuve

" \Longrightarrow " $E = \text{Vect}((e_i)_{i \neq i_0})$ et $e_{i_0} \in E$ " Soit $u \in E$. Soit $(\lambda_i)_{i \in I}$ une famille presque nulle de scalaires telle que

$$u = \sum_{i \in I} \lambda_i e_i$$

Soit $(\mu_i)_{i\neq i_0}$ une famille de scalaires telle que

$$e_{i_0} = \sum_{i \in I \setminus \{i_0\}} \mu_i e_i$$

D'où,

$$u = \lambda_{i_0} e_{i_0} + \sum_{i \in I \setminus \{i_0\}} \lambda_i e_i$$

$$= \lambda_{i_0} \sum_{i \in I \setminus \{i_0\}} \mu_i e_i + \sum_{i \in I \setminus \{i_0\}} \lambda_i e_i$$

$$= \sum_{i \in I \setminus \{i_0\}} (\lambda_{i_0} \mu_i + \lambda_i) e_i$$

$$\in \text{Vect} \left((e_i)_{i \in I \setminus \{i_0\}} \right)$$

Proposition

Soit $(e_i)_{i\in I}$ une famille génératrice de $E,\,i_0\in I.$ $1. \text{ On pose } u_i = \begin{cases} e_i & \text{si } i\neq i_0 \\ \lambda e_{i_0} & \text{sinon} \end{cases} \text{ où } \lambda\in \mathbb{K}\setminus\{0_\mathbb{K}\}$ Alors, $(u_i)_{i\in I}$ engendre E

2. Soit $v \in \text{Vect}((e_i)_{i \in I \setminus \{i_0\}})$. On pose $u_i = \begin{cases} e_i & \text{si } i \neq i_0 \\ e_{i_0} + v & \text{sinon} \end{cases}$ où $\lambda \in \mathbb{K} \setminus \{0_{\mathbb{K}}\}$ Alors, $(u_i)_{i \in I}$ engendre E

22

III

Preuve

1. Soit $u \in E$. On pose

$$u = \sum_{i \in I} \lambda_i e_i$$

où $(\lambda_i) \in \mathbb{K}^I$ presque nulle

$$u = \lambda_{i_0} e_{i_0} + \sum_{i \in I \setminus \{i_0\}} \lambda_i e_i$$
$$= \lambda_{i_0} \lambda^{-1} u_{i_0} + \sum_{i \in I \setminus \{i_0\}} \lambda_i u_i$$
$$\in \text{Vect} ((u_i)_{i \in I})$$

2. Soit $u = \sum_{i \in I} \lambda_i e_i \in E$

$$u = \lambda_{i_0} e_{i_0} + \sum_{i \in I \setminus \{i_0\} \lambda_i e_i}$$

= $\lambda_{i_0} (u_{i_0} - v) + \sum_{i \in I \setminus \{i_0\}} \lambda_i u_i$

Or,
$$v = \sum_{i \in I \setminus \{i_0\}} \mu_i e_i = \sum_{i \in I \setminus \{i_0\}} \mu_i u_i$$
 où $(\mu_i)_{i \in I} \in \mathbb{K}^I$ presque nulle Donc, $u = \lambda_{i_0} + \sum_{i \in I \setminus \{i_0\}} (\lambda_i - \lambda_{i_0} \mu_i) u_i \in \text{Vect}((u_i)_{i \in I})$

Definition

Soit $(e_i)_{i\in I}$ une famille de vecteurs. On dit que $(e_i)_{i\in I}$ est <u>libre</u> si aucun vecteur de cette famille n'est une combinaison linéaire des autres vecteurs de cette famille :

$$\forall i \in I, e_i \notin \text{Vect}\left((e_j)_{j \in I \setminus \{i\}}\right)$$

On dit aussi que les e_i sont linéairement indépendants

Proposition

$$(e_i)_{i \in I}$$
 est libre $\iff \forall (\lambda_i) \in \mathbb{K}^I$ presque nulle , $\left(\sum_{i \in I} \lambda_i e_i = 0_E \implies \forall i \in I, \lambda_i = O_{\mathbb{K}}\right)$

Preuve

" \implies " Soit $(\lambda_i) \in \mathbb{K}^I$ presque nulle. On suppose que

$$\sum_{i \in I} \lambda_i e_i = 0_E$$

On suppose aussi qu'il existe $i_0 \in I$ tel que $\lambda_{i_0} \neq 0_{\mathbb{K}}$ On a alors

$$\lambda_{i_0} e_{i_0} = -\sum_{i \in I \setminus \{i_0\}} \lambda_i e_i$$

 $\lambda_{i_0} \neq 0_{\mathbb{K}}$ donc il a un inverse $\lambda_{i_0}^{-1}$ donc

$$e_{i_0} = \sum_{i \in I \setminus \{i_0\}} \left(-\lambda_i \lambda_{i_0}^{-1} \right) e_i \in \text{Vect} \left((e_i)_{i \in I \setminus \{i_0\}} \right)$$

une contradiction &

" ← " On suppose que $(e_i)_{i\in I}$ n'est pas libre. On considère $i_0\in I$ tel que e_{i_0} soit une combinaison linéaire des $e_i, i\in I\setminus\{i_0\}$

$$e_{i_0} = \sum_{i \in I \setminus \{i_0\}} \mu_i e_i$$

avec $(\mu_i)_{i\in I\setminus\{i_0\}}$ famille presque nulle de scalaires.

Alors,
$$1_{\mathbb{K}}e_{i_0} - \sum_{i \in I \setminus \{i_0\}} \mu_i e_i = 0_E$$
 Par hypothèse

$$\begin{cases} 1_{\mathbb{K}} = 0_{\mathbb{K}} \\ \forall i \neq i_0, -\mu_i = 0_{\mathbb{K}} \end{cases}$$

une contradiction &

Exemple

$$E = \mathbb{R}^3 \text{ On pose} \begin{cases} e_1 = (1, 1, 0) \\ e_2 = (1, 0, 1) \end{cases}$$

Soit $(\lambda_1, \lambda_2) \in \mathbb{R}^2$.

$$\lambda_1 e_1 + \lambda_2 e_2 = 0_E \iff (\lambda_1 + \lambda_2, \lambda_1, \lambda_2) = (0, 0, 0)$$

$$\iff \begin{cases} \lambda_1 + \lambda_2 = 0 \\ \lambda_1 = 0 \\ \lambda_2 = 0 \end{cases}$$

$$\iff \lambda_1 = \lambda_2 = 0$$

Donc, (e_1, e_2) est libre.

Exemple

$$E = \mathbb{R}^{\mathbb{R}}, e_1 = \cos, e_2 = \sin$$

III

Soit $(\lambda_1, \lambda_2) \in \mathbb{R}^2$.

$$\begin{split} \lambda_1 e_1 + \lambda_2 e_2 &= 0_E \iff \forall x \in \mathbb{R}, \lambda_1 \cos(x) + \lambda_2 \sin(x) = 0 \\ &\implies \begin{cases} \lambda_1 = 0 & (x = 0) \\ \lambda_2 = 0 & (x = 0 \text{ dans la dérivée}) \end{cases} \end{split}$$

Donc (e_1, e_2) est libre.

Proposition

Soit $(e_i)_{i \in I}$ une famille libre de E. Alors

$$\sum_{i \in I} \mathbb{K}e_i = \bigoplus_{i \in I} \mathbb{K}e_i$$

i.e.

$$\forall u \in \sum_{i \in I} \mathbb{K} e_i, \exists ! (\lambda_i) \in \mathbb{K}^I \text{ presque nulle telle que } u = \sum_{i \in I} \lambda_i e_i$$

En d'autres termes, tout vecteur de E a <u>au plus</u> une décomposition en combinaisons linéaires des $e_i, i \in I$

Preuve

Soit
$$u \in \sum_{i \in I} \mathbb{K}e_i$$

On suppose que u a au plus 2 décompositions

$$u = \sum_{i \in I} \lambda_i e_i = \sum_{i \in I} \mu_i e_i$$

avec (λ_i) et (μ_i) presque nulles.

Alors,

$$0_E = u - u = \sum_{i \in I} \lambda_i e_i - \sum_{i \in I} \mu_i e_i = \sum_{i \in I} (\lambda_i - \mu_i) e_i$$

Or, $(e_i)_{i \in I}$ est libre donc

$$\forall i \in I, \lambda_i \mu_i = 0_{\mathbb{K}}$$

Proposition

Soit $(e_i)_{i \in I}$ une famille libre de E.

- 1. Toute sous famille de (e_i) est encore libre
- 2. Soit $u \in E$, $\mathscr{F} = (e_i \mid i \in I) \cup \{u\}$.

$$\mathscr{F}$$
 est libre $\iff u \not\in \operatorname{Vect}(e_i \mid i \in I)$

- 3. (a) Quand on remplace un vecteur e_i par λe_i avec $\lambda \neq 0_{\mathbb{K}}$, la famille obtenue est libre.
 - (b) Quand on remplace un vecteur e_i par $v + e_i$ avec $v \in \text{Vect}(e_j \mid j \neq i)$, la famille obtenue est libre.

Soit $(e_i)_{i\in I}$ une famille de vecteurs de E. On dit que (e_i) est une <u>base</u> de E si c'est à la fois une famille libre et génératrice de E; i.e. si

$$E = \bigoplus_{i \in I} \mathbb{K}e_i$$

i.e. si

III

$$\forall u \in E, \exists ! (\lambda_i) \in \mathbb{K}^I$$
 presque nulle telle que $u = \sum_{i \in I} \lambda_i e_i$

Dans ce cas, on dit que les λ_i sont les coordonnées de u dans la base $(e_i)_{i\in I}$

Exemple

1. (1,i) est une base de $\mathbb C$ en tant que $\mathbb R$ -espace vectoriel

2. (1) est une base de $\mathbb C$ en tant que $\mathbb C$ -espace vectoriel

3.

$$\begin{cases} u = 1 + i \\ v = 1 - i \end{cases}$$

(u,v)est une $\mathbbm{R}\text{-base}$ de \mathbbm{C}

En effet, soit $z = a + ib \in \mathbb{C}$ avec $(a, b) \in \mathbb{R}^2$. Soient $\lambda, \mu \in \mathbb{R}$.

$$z = \lambda u + \mu v \iff a + ib = \lambda + \mu + i(\lambda - \mu)$$

$$\iff \begin{cases} a = \lambda + \mu \\ b = \lambda - \mu \end{cases}$$

$$\iff \begin{cases} \lambda = \frac{a + b}{2} \\ \mu = \frac{a - b}{2} \end{cases}$$

Autre méthode

$$(1,i)$$
 base donc $(1,1+i)$ base donc $(1-(1+i),1+i)$ base donc $(-2i,1+i)$ base donc $(1+i-2i,1+i)$ base donc $(1-i,1+i)$ base

Exemple Bases canoniques

1. La <u>base canonique</u> de \mathbb{K}^n est (e_1, \dots, e_n) où $\forall i, e_i = (0_{\mathbb{K}}, \dots, 0_{\mathbb{K}}, \underbrace{1_{\mathbb{K}}}, 0_{\mathbb{K}}, \dots, 0_{\mathbb{K}})$ en $i \ge meposition$

$$\forall u \in \mathbb{K}^{n}, \exists ! (x_{1}, \dots, x_{n}) \in \mathbb{K}^{n}, u = (x_{1}, \dots, x_{n}) = x_{1}(1_{\mathbb{K}}, 0_{\mathbb{K}}, \dots, 0_{\mathbb{K}}) + x_{2}(0_{\mathbb{K}}, 1_{\mathbb{K}}, \dots, 0_{\mathbb{K}})$$

$$\vdots \qquad \vdots \qquad \vdots + x_{n}(0_{\mathbb{K}}, 0_{\mathbb{K}}, \dots, 1_{\mathbb{K}})$$

$$= \sum_{i=1}^{n} x_{i} e_{i}$$

2. E l'ensemble des fonctions polynomiales de $\mathbb K$ dans $\mathbb K$ à coefficiants dans \mathbb{K} où \mathbb{K} est <u>infini</u>.

La <u>base canonique</u> de E est $(x\mapsto x^n)_{n\in\mathbb{N}}$ car

$$\forall P \in E, \exists ! n \in \mathbb{N}, \exists ! (a_0, \dots, a_n) \in \mathbb{K}^{n+1}, \forall x \in \mathbb{K}, P(x) = \sum_{i=0}^{n} a_i x^i$$

3. $E = \mathcal{M}_{n,p}(\mathbb{K})$

La <u>base canonique</u> de E est $(E_{i,j})_1 \leq i \leq n$ où $1 \leq j \leq p$

$$\forall i \in \llbracket 1, n \rrbracket, \forall j \in \llbracket 1, p \rrbracket, E_{i,j} = \begin{pmatrix} \sigma_{i,j}^{k,\ell} \end{pmatrix}_{\substack{1 \leqslant k \leqslant n \\ 1 \leqslant \ell \leqslant p}}$$

i.e.

$$E_{i,j} = \begin{pmatrix} 0_{\mathbb{K}} & \dots & 0_{\mathbb{K}} \\ \vdots & 1_{\mathbb{K}} & \vdots \\ 0_{\mathbb{K}} & \dots & 0_{\mathbb{K}} \end{pmatrix} \leftarrow i$$

$$\forall A = (a_{i,j}) \in \mathcal{M}_{n,p}, A = \sum_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}} a_{i,j} E_{i,j}$$