Temperature and Heat transfer

Particle model of "hot" and "cold"

Celsius, Fahrenheit, and Kelvin Temperature Scales Units: C°, F°, K°

Conduction Through a Ceramic Mug

Coffee particles with a higher average kinetic energy collide with the container wall and transmit their energy to the surroundings.

Measuring Temperature

Celsius, Fahrenheit, and Kelvin Temperature Scales Units: C°, F°, K°

Celsius: water at $0^{\circ}C$ – Freezing, $100^{\circ}C$ – Boiling

$$T_F = T_C \times 1.8 + 32^{\circ}F$$

$$\Delta T_F = \Delta T_C \times 1.8$$

Absolute Temperature Scale

$$T = T_C + 273.15$$
°K

$$\Delta T = \Delta T_C$$

0 Kelvin is -273.15°C or -459.67°F

Measuring Temperature

$$T_F = T_C \times 1.8 + 32^{\circ}F$$

At what temperature do Celsius and Fahrenheit scale have the same value?

- $A. 0 \, {}^{o}C$
- B. 100 °C
- C. -273.15 °C
- D. -32 °C
- E. -40 °C
- F. Not possible

When hot meets cold – heat transfer

In thermal contact

Temperature and Heat

- What is temperature?
 - A measure of how warm or cold an object is with respect to some standard
 - Related to the random thermal motion of the molecules in a substance
- What is heat?
 - The energy transferred between objects due to a temperature difference
 - Energy in transit
- How are the two concepts related?
 - Heat always flows from hotter to colder objects and heat flow changes the temperature of the object.

Temperature and Heat

Heat flows out, temperature decreases

Heat flows in, temperature increases

Heat conductivity

• How can people walk on carbon fire without getting hurt?

Heat conductivity

- How fast does heat flows through materials?
- Name some materials that conduct heat Fast

• Applications of these materials: e.g., insulator

How to measure heat?

- SI unit is Joules
 - 4.18 Joules to change 1 gram of water +1 K
 - 1 calorie to change 1 gram of water +1 K

```
(note 1000 calories = 1 Calorie)
so 1 peanut contains 10 Calories or 10,000 calories
```

 Our bodies metabolize (burn) food to keep us warm, to do useful work, or just goof off

Thermal Expansion of Solids and Liquids

$$\Delta L = L_f - L_i = \alpha L_i \Delta T$$

$$\Delta L$$

$$\Delta L$$

α: average coefficient of linear expansion

Material (Solids)	Average Linear Expansion Coefficient (α)(°C) ⁻¹	Material (Liquids and Gases)	Average Volume Expansion Coefficient (β)(°C) ⁻¹
Aluminum	24×10^{-6}	Acetone	1.5×10^{-4}
Brass and bronze	19×10^{-6}	Alcohol, ethyl	1.12×10^{-4}
Concrete	12×10^{-6}	Benzene	1.24×10^{-4}
Copper	17×10^{-6}	Gasoline	9.6×10^{-4}
Glass (ordinary)	9×10^{-6}	Glycerin	4.85×10^{-4}
Glass (Pyrex)	3.2×10^{-6}	Mercury	1.82×10^{-4}
Invar (Ni–Fe alloy)	0.9×10^{-6}	Turpentine	9.0×10^{-4}
Lead	29×10^{-6}	Air ^a at 0°C	3.67×10^{-3}
Steel	11×10^{-6}	Helium ^a	3.665×10^{-3}

$$\Delta L = \alpha L_i \Delta T$$

α: average coefficient of linear expansion

Thermal Expansion of Solids and Liquids

$$\frac{\Delta V}{V_i} = 3\alpha \Delta T + 3(\alpha \Delta T)^2 + (\alpha \Delta T)^3$$

$$\Delta V \approx 3\alpha V_i \Delta T$$

$$\Delta V \approx (\alpha \cdot x_i) y_i z_i \Delta T + (\alpha \cdot y_i) x_i z_i \Delta T + (\alpha \cdot z_i) x_i y_i \Delta T$$

Why Does Ice Float? - Because I said so

Unlike most materials, H_2O expands as it freezes – Ice is less dense than liquid water => flotation

- Due to crystalline structure of ice Greater spacing between molecules than in the liquid phase

Copyright © 2006 Paul G. Hewitt, printed courtesy of Pearson Education Inc., publishing as Addison Wesley.

The Unusual Behavior of Water

This blown-up portion of the

