BENCHTEMP: A General Benchmark for Evaluating Temporal Graph Neural Networks

Authors' Response to Reviewer Uv1K

Opportunities For Improvement: This work has a limitation in that it focuses solely on datasets with a small number of nodes. It has been acknowledged that certain Dynamic Graph Neural Networks (GNNs) struggle to handle large-scale graphs efficiently in terms of both runtime and numerical performance. Notably, the largest dataset considered in this study is Taobao, which comprises 82,566 nodes. However, real-world temporal graphs typically consist of significantly larger node counts, presenting a potential challenge for the applicability of these benchmarks w.r.t. real-world scenarios. To make the setting more realistic, you can add large-scale datasets, such as the DGraph dataset from [1] and YouTube-Reddit dataset from [2].

- [1] DGraph: A Large-Scale Financial Dataset for Graph Anomaly Detection.
- [2] Predicting Information Pathways Across Online Communities.

2 General Response:

- 3 We appreciate your great feedback! we have included new datasets with up to several million edges
- 4 and nodes. We have carefully thought your comments and added six datasets (eBay-Small, eBay-
- ${\tt 5} \quad Large, \, Taobal\text{-}Large, \, DGraphFin, \, YouTubeReddit\text{-}Small, \, YouTubeReddit\text{-}Large), \, including \, four \, the property of the$
- 6 large-scale datasets (eBay-Large, Taobao-Large, DGraphFin, YouTubeReddit-Large) and correspond-
- 7 ing experiments and detailed discussions in the updated paper. The eBay datasets are a collection
- 8 of the user transactions on eBay e-commerce platform. We thank eBay company for sharing their
- 9 datasets in our research.
- After a discussion with our industrial partner eBay, we are working on sharing the eBay-Small and
- eBay-Large datasets in a way that ensures availability and justifies the research purpose. We provide
- 12 a Google form for the applicants: https://forms.gle/bP1RmyVJ1C6pgyS66 (the applicants can
- 13 remain anonymous).
- 14 For easy access, all datasets have been hosted on the open-source platform zenodo (https://
- 15 zenodo.org/) with a Digital Object Identifier (DOI) 10.5281/zenodo.8267846 (https://zenodo.
- 16 org/record/8267846).
- 17 We have conducted extensive experiments on the six newly added temporal graph datasets, including
- the dynamic link prediction task and dynamic node classification task, diverse workloads (transduc-
- 19 tive, inductive, inductive New-Old, and inductive New-New scenarios), and efficiency comparison
- 20 (inference time). We have added Average Rank metric shown in Table 2 and Table 4 for ranking
- 21 model performances on the newly added large-scale datasets for evaluating TGNN models.
- We provide our response to each individual comment below:

Comment 1

This work has a limitation in that it focuses solely on datasets with a small number of nodes.

23

Submitted to the 37th Conference on Neural Information Processing Systems (NeurIPS 2023) Track on Datasets and Benchmarks. Do not distribute.

Table 1: Dataset statistics of the new datasets.

	Domain	# Nodes	# Edges
eBay-Small	E-commerce	38,427	384,677
YouTubeReddit-Small [1]	Social	264,443	297,732
eBay-Large	E-commerce	1,333,594	1,119,454
DGraphFin [2]	E-commerce	3,700,550	4,300,999
Youtube-Reddit-Large [1]	Social	5,724,111	4,228,523
Taobao-Large [3, 4]	E-commerce	1,630,453	5,008,745

Response:

34

37

- We thank the reviewer for the strong support! We have added six datasets (eBay-Small, eBay-25 Large, Taobal-Large, DGraphFin, YouTubeReddit-Small, YouTubeReddit-Large), including four 26 large-scale datasets (eBay-Large, Taobao-Large, DGraphFin, YouTubeReddit-Large). The statis-27 tics of the new datasets are shown in Table 1. For easy access, all datasets have been hosted on 28 the open-source platform zenodo (https://zenodo.org/) with a Digital Object Identifier (DOI) 29 10.5281/zenodo.8267846 (https://zenodo.org/record/8267846). 30
- eBay-Small is a subset of the eBay-Large dataset. We sample 38,427 nodes and 384,677 edges 31 from eBay-Large graph according to edge timestamps. 32
- YouTubeReddit-Small is a collection of massive visual contents on YouTube and long-term 33 community activity on Reddit. This dataset covers a 3-month period from January to March 2020. Each row in the dataset represents a YouTube video v_i being shared in a subreddit s_i by some 35 user u_k at time t [1]. Nodes are YouTube videos and subreddits, edges are the users' interactions 36 between videos and subreddits. This dynamic graph has 264,443 nodes and 297,732 edges.
- **eBay-Large** is a million-scale dataset consisting of 1.3 million nodes and 1.1 million edges, which 38 comprises the selected transaction records from the eBay e-commerce platform over a two-month 39 period. eBay-Large is modeled as a user-item graph, where items are heterogeneous entities which 40 include information such as phone numbers, addresses, and email addresses associated with a 41 transaction. We selecte one month of transactions as seed nodes and then expand each seed node 42 two hops back in time to enrich the topology while maintaining consistency in the distribution of 43 seed nodes. 44
- **DGraphFin** is a collection of large-scale dynamic graph datasets, consisting of interactive objects, 45 events and labels that evolve with time. It is a directed, unweighted dynamic graph consisting 46 of millions of nodes and edges, representing a realistic user-to-user social network in financial 47 industry. Nodes are users, and an edge from one user to another means that the user regards the 48 other user as the emergency contact person [2]. 49
- Youtube-Reddit-Large dataset covers 54 months of YouTube video propagation history from 50 January 2018 to June 2022 [1]. This dataset has 5,724,111 nodes and 4,228,523 edges. 51
- Taobao-Large is a collection of the Taobao user behavior dataset intercepted based on the period 52 8:00 to 18:00 on 26 November 2017 [4]. Nodes are users and items, and edges are behaviors 53 between users and items, such as favor, click, purchase, and add an item to shopping cart. This 54 public dataset has 1,630,453 nodes and 5,008,74 user-item interaction edges. 55

Experiments

We have conducted extensive experiments on the six newly added temporal graph datasets, including 57 the dynamic link prediction task and dynamic node classification task, diverse workloads (transduc-58 tive, inductive, inductive New-Old, and inductive New-New scenarios), and efficiency comparison 59 (inference time). We have added Average Rank metric shown in Table 2 and Table 4 for ranking model performances on the newly added large-scale datasets for evaluating TGNN models.

Table 2: ROC AUC results of new datasets on the *dynamic link prediction task*. The best and second-best results are highlighted as **bold red** and <u>underlined blue</u>. **Average Rank** are computed by the experimental results of models on four large-scale datasets (eBay-Large, Taobao-Large, DGraphFin, YouTubeReddit-Large). We do not highlight the second-best if the gap is > 0.05 compared with the best result.

	Transductive							
Model Dataset	JODIE	DyRep	TGN	TGAT	CAWN	NeurTW	NAT	
eBay-Small YouTubeReddit-Small eBay-Large DGraphFin Youtube-Reddit-Large Taobao-Large	0.9946 ± 0.0002 0.8519 ± 0.0007 0.9614 ± 0.0 0.8165 ± 0.0024 0.8532 ± 0.0003 0.7726 ± 0.0005	0.9941 ± 0.0006 0.8499 ± 0.0012 0.9619 ± 0.0001 0.8171 ± 0.0016 0.8529 ± 0.0006 0.7724 ± 0.001	0.9984 ± 0.0003 0.8432 ± 0.0032 0.9642 ± 0.0003 0.8683 ± 0.0023 0.8458 ± 0.0025 <u>0.8464 ± 0.0008</u>	0.9838 ± 0.0006 0.8441 ± 0.0014 0.5311 ± 0.0003 0.6112 ± 0.0165 0.8536 ± 0.0026 0.5567 ± 0.0047	0.9985 ± 0.0 0.7586 ± 0.0031 0.9442 ± 0.0003 0.5466 ± 0.0103 0.7466 ± 0.0012 0.7771 ± 0.0068	0.9991 ± 0.0 0.9003 ± 0.0031 0.9608 ± 0.0 0.8611 ± 0.0035 0.916 ± 0.0025 0.859 ± 0.0091	$\begin{array}{c} 0.9978 \pm 0.0003 \\ 0.8259 \pm 0.005 \\ \textbf{0.9658} \pm \textbf{0.0002} \\ 0.8258 \pm 0.0001 \\ 0.8605 \pm 0.0009 \\ 0.8188 \pm 0.001 \end{array}$	
Average Rank	4.5	4.5	2.75	5.75	6	2.25	2.25	
				Inductive				
eBay-Small YouTubeReddit-Small eBay-Large DGraphFin Youtube-Reddit-Large Taobao-Large	0.9696 ± 0.0007 0.7582 ± 0.0003 0.7536 ± 0.0014 0.6884 ± 0.0051 0.7539 ± 0.0005 0.7075 ± 0.0009	0.9674 ± 0.0018 0.7545 ± 0.0009 0.7515 ± 0.0006 0.6876 ± 0.001 0.7554 ± 0.0003 0.7042 ± 0.0006	0.9913 ± 0.0004 0.7276 ± 0.0033 0.7657 ± 0.0026 0.6439 ± 0.0089 0.7243 ± 0.0016 0.6812 ± 0.0032	0.9698 ± 0.0006 0.7436 ± 0.0006 0.5224 ± 0.0003 0.5677 ± 0.0184 0.7501 ± 0.0019 0.5222 ± 0.0041	0.9964 ± 0.0001 0.7533 ± 0.0016 0.9459 ± 0.0001 0.5479 ± 0.009 0.7327 ± 0.0016 0.7787 ± 0.0103	0.9982 ± 0.0 0.8978 ± 0.0032 0.9608 ± 0.0 0.8635 ± 0.0021 0.9128 ± 0.0031 0.869 ± 0.010	0.9998 ± 0.0001 0.9876 ± 0.0049 0.9999 ± 0.0001 0.7955 ± 0.0201 0.9863 ± 0.006 0.9933 ± 0.0008	
Average Rank	4	4.5	5.5	6.25	4.75	1.75	1.25	
				Inductive New-Old				
eBay-Small YouTubeReddit-Small eBay-Large DGraphFin Youtube-Reddit-Large Taobao-Large	0.9862 ± 0.0003 0.7695 ± 0.001 0.6109 ± 0.0244 0.5768 ± 0.0071 0.7844 ± 0.0015 0.7023 ± 0.0015	0.9836 ± 0.0016 0.7655 ± 0.0018 0.5906 ± 0.0087 0.5735 ± 0.0007 0.7894 ± 0.0017 0.6953 ± 0.0022	0.9947 ± 0.0009 0.7396 ± 0.0034 0.8134 ± 0.0105 0.5564 ± 0.0021 0.7623 ± 0.0031 0.6771 ± 0.0055	0.9712 ± 0.002 0.7242 ± 0.0004 0.6363 ± 0.0605 0.5742 ± 0.013 0.7457 ± 0.0062 0.5104 ± 0.0106	0.9985 ± 0.0 0.7573 ± 0.0022 0.9569 ± 0.0007 0.5646 ± 0.0244 0.7511 ± 0.0022 0.7674 ± 0.005	$\begin{array}{c} 0.9988 \pm 0.0 \\ 0.922 \pm 0.0002 \\ \hline 0.8973 \pm 0.0 \\ 0.7702 \pm 0.0043 \\ 0.9356 \pm 0.0004 \\ \hline 0.8458 \pm 0.0043 \end{array}$	0.9999 ± 0.0 0.9967 ± 0.0014 1.0 ± 0.0 0.8693 ± 0.0066 0.9958 ± 0.0025 0.9965 ± 0.0005	
Average Rank	4.25	5	5.5	5.75	4.25	2.25	1	
I				Inductive New-New	7			
eBay-Small YouTubeReddit-Small eBay-Large DGraphFin Youtube-Reddit-Large Taobao-Large	0.9388 ± 0.0009 0.7436 ± 0.0015 0.7526 ± 0.0013 0.7307 ± 0.0007 0.6932 ± 0.0026 0.7243 ± 0.0001	0.9366 ± 0.0037 0.7436 ± 0.0018 0.7500 ± 0.0005 0.7323 ± 0.0002 0.7022 ± 0.0007 0.7247 ± 0.0001	0.9838 ± 0.0007 0.7265 ± 0.0055 0.7639 ± 0.0027 0.6843 ± 0.0131 0.6703 ± 0.0024 0.6885 ± 0.0024	0.9556 ± 0.0007 0.749 ± 0.0011 0.5196 ± 0.0002 0.5649 ± 0.0248 0.7269 ± 0.0 0.5256 ± 0.0054	0.9937 ± 0.0 0.7479 ± 0.004 0.9542 ± 0.0003 0.5417 ± 0.0099 0.6942 ± 0.0028 0.7922 ± 0.0118	$\begin{array}{c} 0.9975 \pm 0.0 \\ \hline 0.864 \pm 0.0071 \\ \hline 0.9615 \pm 0.0 \\ \hline \textbf{0.9051} \pm \textbf{0.0028} \\ \hline 0.8716 \pm 0.0077 \\ \hline 0.8906 \pm 0.0088 \\ \hline \end{array}$	0.9997 ± 0.0004 0.9868 ± 0.0049 0.9999 ± 0.0001 0.7584 ± 0.0323 0.9796 ± 0.0103 0.9969 ± 0.0002	
Average Rank	5	4.25	5.5	5.75	4.5	1.75	1.25	
	JODIE	DyRep	TGN	TGAT	CAWN	NeurTW	NAT	

A.1 Link Prediction Task

We run the link prediction task on 7 TGNN models and the new datasets under different settings (Transductive, Inductive New-Old, and Inductive New-New). The AUC and AP results for each new datasets are shown in Table 2 and Table 3, respectively. For the four large-scale datasets (eBay-Large, Taobao-Large, DGraphFin, YouTubeReddit-Large), we observe the similar results as in the paper. Specifically, NAT and NeurTW achieve the top-2 performance on almost all datasets under transductive and inductive settings.

A.2 Node Classification Task

The eBay-Small and eBay-Large datasets have node labels, so we conduct dynamic node classification experiments on both the eBay-Small and eBay-Large datasets. The AUC results are shown in Table 4. We can observe the similar results as in the paper. NeurTW achieves the best performance on both eBay-Small and eBay-Large datasets. NAT performs poorly on the node classification task.

A.3 Efficiency - the inference time

Considering many real world applications, we add **the inference time** metric to evaluate the efficiency of methods. The inference time comparison per 100,000 edges is shown in Figure 1. According to the figure, we can observe the similar model efficiency results as in the paper. In terms of the inference time, JODIE, DyRep, TGN and TGAT are faster, while CAWN and NeurTW are much slower. NAT

Table 3: AP results of new datasets on the *dynamic link prediction task*. The best and second-best results are highlighted as **bold red** and <u>underlined blue</u>. We do not highlight the second-best if the gap is > 0.05 compared with the best result.

	Transductive								
Model Dataset	JODIE	DyRep	TGN	TGAT	CAWN	NeurTW	NAT		
eBay-Small	0.9938 ± 0.0004	0.9936 ± 0.0006	0.9983 ± 0.0003	0.9819 ± 0.0009	0.9981 ± 0.0	0.9991 ± 0.0	0.9975 ± 0.0002		
YouTubeReddit-Small	0.8612 ± 0.0009	0.8594 ± 0.0012	0.8421 ± 0.0041	0.8515 ± 0.0012	0.7625 ± 0.0042	0.9112 ± 0.0021	0.8325 ± 0.0068		
eBay-Large	0.9318 ± 0.0002	0.9322 ± 0.0002	0.9357 ± 0.0006	0.5239 ± 0.0002	0.9144 ± 0.0004	0.9307 ± 0.0	0.9398 ± 0.0004		
DGraphFin	0.7705 ± 0.0009	0.7705 ± 0.0024	0.8571 ± 0.0009	0.6441 ± 0.0123	0.5431 ± 0.0095	0.8637 ± 0.0014	0.7956 ± 0.0012		
Youtube-Reddit-Large	0.8622 ± 0.0007	0.8632 ± 0.0004	0.8476 ± 0.0022	0.8591 ± 0.0026	0.7475 ± 0.0017	0.9222 ± 0.0013	0.8628 ± 0.0015		
Taobao-Large	0.7164 ± 0.0003	0.7142 ± 0.0008	0.844 ± 0.0011	0.5761 ± 0.0023	0.7616 ± 0.0069	0.8568 ± 0.016	0.7904 ± 0.0008		
Inductive									
eBay-Small	0.9638 ± 0.0007	0.9619 ± 0.0017	0.9898 ± 0.0005	0.9675 ± 0.0007	0.9953 ± 0.0002	0.9982 ± 0.0	0.9998 ± 0.0001		
YouTubeReddit-Small	0.7866 ± 0.0007	0.7833 ± 0.0009	0.7387 ± 0.0069	0.7551 ± 0.0002	0.7568 ± 0.0031	0.9086 ± 0.0022	0.9872 ± 0.0056		
eBay-Large	0.6989 ± 0.0018	0.6973 ± 0.0007	0.7096 ± 0.0030	0.518 ± 0.0002	0.9174 ± 0.0001	0.9308 ± 0.0	0.9999 ± 0.0001		
DGraphFin	0.6563 ± 0.002	0.6567 ± 0.0009	0.624 ± 0.006	0.5866 ± 0.0123	0.5428 ± 0.0082	0.8626 ± 0.0012	0.7053 ± 0.0185		
Youtube-Reddit-Large	0.7796 ± 0.0009	0.7818 ± 0.0009	0.73 ± 0.0029	0.7587 ± 0.0025	0.7353 ± 0.0022	0.9192 ± 0.0022	0.9849 ± 0.0071		
Taobao-Large	0.6763 ± 0.0011	0.6746 ± 0.0011	0.6664 ± 0.0012	0.5315 ± 0.0027	0.7533 ± 0.011	0.8596 ± 0.0205	0.9941 ± 0.0007		
				Inductive New-Old	I				
eBay-Small	0.9849 ± 0.0007	0.9836 ± 0.0013	0.9931 ± 0.0008	0.9682 ± 0.0028	0.9985 ± 0.0001	0.999 ± 0.0	0.9999 ± 0.0		
YouTubeReddit-Small	0.7963 ± 0.0013	0.7937 ± 0.0014	0.729 ± 0.0086	0.7296 ± 0.0013	0.762 ± 0.0041	0.9244 ± 0.0015	0.9966 ± 0.0016		
eBay-Large	0.5670 ± 0.0186	0.5870 ± 0.0074	0.8024 ± 0.0060	0.6504 ± 0.0385	0.9592 ± 0.0008	0.8458 ± 0.0	1.0 ± 0.0		
DGraphFin	0.6005 ± 0.0048	0.5872 ± 0.0059	0.5753 ± 0.0062	0.5927 ± 0.0058	0.5669 ± 0.0269	0.7572 ± 0.0025	0.8184 ± 0.0088		
Youtube-Reddit-Large	0.808 ± 0.0014	0.8142 ± 0.0019	0.7472 ± 0.0043	0.7526 ± 0.0097	0.7553 ± 0.0025	0.9368 ± 0.0009	0.9953 ± 0.0028		
Taobao-Large	0.7009 ± 0.0013	0.698 ± 0.0014	0.6879 ± 0.0008	0.5254 ± 0.0074	0.7597 ± 0.0053	0.8459 ± 0.0103	0.9969 ± 0.0004		
Inductive New-New									
eBay-Small	0.923 ± 0.001	0.9226 ± 0.0024	0.98 ± 0.0007	0.9505 ± 0.0009	0.991 ± 0.0001	0.9973 ± 0.0	0.9997 ± 0.0004		
YouTubeReddit-Small	0.7578 ± 0.0015	0.7582 ± 0.0021	0.7564 ± 0.0043	0.7718 ± 0.0023	0.7498 ± 0.004	0.8868 ± 0.0034	0.9861 ± 0.0063		
eBay-Large	0.6976 ± 0.0016	0.6957 ± 0.0007	0.7078 ± 0.0031	0.5154 ± 0.0001	0.93 ± 0.0003	0.9318 ± 0.0	0.9999 ± 0.0001		
DGraphFin	0.6802 ± 0.0005	0.6811 ± 0.0002	0.6526 ± 0.0098	0.5831 ± 0.0184	0.5379 ± 0.0071	0.8977 ± 0.0014	0.6529 ± 0.0249		
Youtube-Reddit-Large	0.7038 ± 0.0024	0.7115 ± 0.0007	0.6979 ± 0.002	0.7414 ± 0.0012	0.6965 ± 0.004	0.8848 ± 0.0023	0.9761 ± 0.0134		
Taobao-Large	0.6738 ± 0.0005	0.6742 ± 0.0005	0.6611 ± 0.0011	0.53 ± 0.0023	0.7521 ± 0.0127	0.8738 ± 0.0145	0.9973 ± 0.0001		

Table 4: ROC AUC results for the *dynamic node classification task* on the eBay datasets. The top-2 results are highlighted as **bold red** and <u>underlined blue</u>.

Dataset	JODIE	DyRep	TGN	TGAT	CAWN	NeurTW	NAT
eBay-Small eBay-Large	0.9274 ± 0.0017 0.7244 ± 0.0002	0.8677 ± 0.0356 0.7246 ± 0.0	0.913 ± 0.0025 0.6586 ± 0.0129	$\frac{0.9342 \pm 0.0002}{0.672 \pm 0.0016}$	$0.9305 \pm 0.0001 \\ 0.7710 \pm 0.0002$	0.9529 ± 0.0002 0.7859 ± 0.0	0.6797 ± 0.0115 0.5304 ± 0.0011
Average Rank	4	4.5	5.5	3.5	<u>2.5</u>	1	7

Figure 1: Inference time comparison per 100,000 edges.

is relatively faster than temporal walk-based methods through caching and parallelism optimizations, achieving a good trade-off between model quality and efficiency.

A.4 Efficiency - Runtime, RAM, GPU

We have added model efficiency results for the newly added datasets as follows. We will add all these results to the Appendix (https://openreview.net/attachment?id=rnZm2vQq31&name= supplementary_material).

Since many real-world graphs are extremely large, we believe efficiency is a vital issue for TGNNs in practice. We thereby compare the efficiency of the evaluated models on the newly added datasets (eBay-Small, eBay-Large, Taobal-Large, DGraphFin, YouTubeReddit-Small, YouTubeReddit-Large), and present the results for dynamic link prediction task in Table 5, while dynamic node classification

The Runtime in Table 5 and Table 6 shows that NAT is always trained much faster than the others and need a low RAM and GPU Memory. TGAT obtains the second-best efficiency performance on the newly added datasets. JODIE, DyRep, TGN achieve similar efficiency performance. We observe similar results as the main paper, NeurTW performs poorly on model efficiency.

94 95

89

task Table 6.

Table 5: Model efficiency for the newly added datasets on *the link prediction task*. We report seconds per epoch as **Runtime**, the maximum RAM usage as **RAM**, and the maximum GPU memory usage as **GPU Memory**, respectively. The best and second-best results are highlighted as **bold red** and <u>underlined blue</u>.

	Runtime (second)									
Model Dataset	JODIE	DyRep	TGN	TGAT	CAWN	NeurTW	NAT			
eBay-Small	749.80	801.58	905.19	61.05	1,385.54	1,556.32	25.12			
YouTubeReddit-Small	213.92	227.99	214.17	85.59	378.94	7,459.92	29.51			
eBay-Large	28,203.53	30,151.18	30,286.88	791.86	52,116.62	58,540.48	117.38			
DGraphFin	4,579.52	4,210.48	4,397.32	1,708.71	30,144.25	81,653.89	904.38			
Youtube-Reddit-Large	4,630.49	4,935.05	4,635.91	1,852.67	8,202.50	161,476.80	638.77			
Taobao-Large	3,108.45	2,931.87	2,860.83	2,658.34	12,143.02	148,922.55	6654.56			
	RAM (GB)									
eBay-Small	7.8	6.2	6.8	4.3	9.1	7.8	4.3			
YouTubeReddit-Small	6.8	7.2	6.6	5.3	13.1	8.1	4.5			
eBay-Large	20.2	18.3	19.1	5.2	17.1	10.1	5.5			
DGraphFin	17.5	15.3	17.5	8.3	23.2	24.3	6.9			
Youtube-Reddit-Large	26.3	16.6	18.9	7.9	18.5	21.3	6.3			
Taobao-Large	14.3	12.1	13.4	<u>7.5</u>	18.1	20.7	6.2			
		GPU Memory (GB)								
eBay-Small	2.0	1.9	2.0	1.9	1.8	1.6	2.2			
YouTubeReddit-Small	1.3	1.4	2.1	1.3	1.8	1.1	1.1			
eBay-Large	29.7	24.6	30.9	5.8	5.7	3.0	5.9			
DGraphFin	19.3	18.5	16.1	6.3	6.9	<u>6.1</u>	6.0			
Youtube-Reddit-Large	22.1	23.0	23.4	7.8	6.3	7.2	<u>7.1</u>			
Taobao-Large	20.3	21.8	19.6	7.7	7.3	<u>6.8</u>	5.6			

Table 6: Model efficiency for the newly added datasets on *the node classification task*. We report seconds per epoch as **Runtime**, the maximum RAM usage as **RAM**, and the maximum GPU memory usage as **GPU Memory**, respectively. The best and second-best results are highlighted as **bold red** and <u>underlined blue</u>.

	Runtime (second)								
Model Dataset	JODIE	DyRep	TGN	TGAT	CAWN	NeurTW	NAT		
eBay-Small eBay-Large	765.05 29,153.28	794.03 29,867.17	718.56 27,028.53	55.05 629.52	226.56 8,522.04	583.08 25,693.71	13.05 97.54		
	RAM (GB)								
eBay-Small eBay-Large	6.5 41.8	6.8 39.2	6.7 20.5	4.2 5.2	6.9 15.1	7.2 7.4	4.1 <u>5.8</u>		
GPU Memory (GB)									
eBay-Small eBay-Large	1.8 31.7	1.2 31	<u>1.5</u> 31.4	1.8 <u>5.8</u>	1.9 <u>5.8</u>	1.8 2.9	2.3 5.9		

References

- 97 [1] Yiqiao Jin, Yeon-Chang Lee, Kartik Sharma, Meng Ye, Karan Sikka, Ajay Divakaran, and Srijan Kumar.
 98 Predicting information pathways across online communities. arXiv preprint arXiv:2306.02259, 2023.
- [2] Xuanwen Huang, Yang Yang, Yang Wang, Chunping Wang, Zhisheng Zhang, Jiarong Xu, Lei Chen, and
 Michalis Vazirgiannis. Dgraph: A large-scale financial dataset for graph anomaly detection. Advances in
 Neural Information Processing Systems, 35:22765–22777, 2022.
- 102 [3] Ming Jin, Yuan-Fang Li, and Shirui Pan. Neural temporal walks: Motif-aware representation learning on continuous-time dynamic graphs. In *Advances in Neural Information Processing Systems*, 2022.
- [4] Han Zhu, Xiang Li, Pengye Zhang, Guozheng Li, Jie He, Han Li, and Kun Gai. Learning tree-based deep
 model for recommender systems. In *Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, pages 1079–1088, 2018.