Experiment - 2 ARDUNO SOLUTION SOLUTI

Serial_Plotter_Monitor_by Dr.GVP

Experiment - 2

PART - A:

Plotting the Serial data from LDR

sensor

PART - B:

Serial Plotter Sine waveforms

Syntax

1. Serial.begin()

This function use for start Serial communication

Serial Plotter Monitor by Dr.GVP

2. Serial.print()

Contd....

 For printing data by serial print function that data must be written inside " "

Contd.....

• For printing the value of a variable

That variable must be written inside serial.print function without (" ") sign Serial.print(j)

3. Serial.println()

•This function is use for print any data or value of variables (vertically)

Contd.....

- For printing data by serial printing function that data must be written inside " "sign
- For printing the value of a variable, the variable written inside serial.println without "sign

Serial.print()

```
Void setup()
Int i = 0;
For (i=0; i<=1000; i++)
                               10,50,101
         Serial.print(i)
```

Serial.println()

Circuit diagram

Apparatus

- 1.PC with Arduino IDE
- 2. Arduino UNO Board
- 3.USB cable
- 4.Light Dependent Resistor(photoresistor)
- 5.Bread board
- 6.220Ω resistor
- 7. Jumper wires

Implementation

ARDUINO Program

```
// PART-A: Serial print & plot of voltage across LDR
void setup()
Serial.begin(9600);
void loop()
 Serial println(analogRead(A0));
```

ARDUINO - IDE

Results

Serial_Plotter_Monitor_by Dr.GVP

Part-B

```
//PART-B: printing of sine wave plot
void setup()
Serial.begin(9600);
void loop()
 for(int i = 0; i \le 360; i \ne 360
                      $\sin(i * M_PI / 180);
          Serral print(i);
          Serial.print(", ");
          Serial.println(y1);
          delay(200);
```

ARDUINO - IDE

Result

PROJECTS ADVANCED

LDR based Projects

- 1.Arduino with LDR Project Using LED Schematics
- 2.Arduino with LDR Project Using Relay Schematics
- 3. Automatic Curtain Operation Using LDR
- 4. LDR Plus GSM Based Security System
- 5. LDR-Based DC Motor Speed Control

1.Arduino with LDR Project Using LED Schematics

Program code

```
int LDRInput=A0; //Set Analog Input A0 for LDR.
int LED=2;
void setup() {
Serial.begin(9600);
pinMode(LDRInput,INPUT);
pinMode(LED,OUTPUT);
void loop() {
int value=analogRead(LDRInput);//Reads the Value of LDR\light).
Serial.println("LDR value is :");//Prints the value of LDR to Serial Monitor.
Serial.println(value);
LDR Threshold=300;
if(value<LDR_Threshold)
  digitalWrite(LED,HIGH); The LED turns ON in Dark.
 else
          Yrite(LED,LOW);//The LED turns OFF in Light.
```

2. Arduino with LDR Project Using Relay Schematics

3. Automatic Curtain Operation Using LDR

https://www.electronicsforu.com/electronics-projects/prototypes/automatic-curtain-operation-using-ldr

4. LDR Plus GSM Based Security System

https://www.electronicsforu.com/electronics-projects/ldr-plus-gsm-based-security-system

5. LDR-Based DC Motor Speed Control

https://www.electronicsforu.com/buyers-guides/hardware-buyers-guide/ldr-based-dc-motor-speed-control

