Bayesian Estimation in Linear Models

STA521 Linear Models Duke University

Merlise Clyde

February 19, 2017

Bayesian Estimation

Model $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ with $\boldsymbol{\epsilon} \sim \mathsf{N}(\mathbf{0}_n, \sigma^2 \mathbf{I}_n)$ is equivalent to

$$\mathbf{Y} \sim \mathsf{N}(\mathbf{X}\boldsymbol{\beta}, \mathbf{I}_n/\phi)$$

 $\phi = 1/\sigma^2$ is the precision.

In the Bayesian paradigm describe uncertainty about unknown parameters using probability distributions

- ▶ Prior Distribution $p(\beta, \phi)$ describes uncertainty about parameters prior to seeing the data
- ▶ Posterior Distribution $p(\beta, \phi \mid \mathbf{Y})$ describes uncertainty about the parameters after updating believes given the observed data
- updating rule is based on Bayes Theorem

$$p(\beta, \phi \mid \mathbf{Y}) \propto \mathcal{L}(\beta, \phi) p(\beta, \phi)$$

reweight prior beliefs by likelihood of parameters under observed data

Posterior

Posterior is obtained by conditional distribution theory Let $\theta = (\beta, \phi)^T$

$$\rho(\theta \mid \mathbf{Y}) = \frac{p(\mathbf{Y} \mid \theta)p(\theta)}{\int_{\Theta} p(\mathbf{Y} \mid \theta)p(\theta) d\theta} \\
= \frac{p(\mathbf{Y}, \theta)}{p(\mathbf{Y})}$$

 $p(\mathbf{Y})$, the normalizing constant, is the marginal distribution of the data.

Easiest to work with Bayes Theorem in proportional form and then identify the normalizing constant.

Prior Distributions

Factor joint prior distribution

$$p(\boldsymbol{\beta}, \phi) = p(\boldsymbol{\beta} \mid \phi)p(\phi)$$

Convenient choice is to take

▶ $\beta \mid \phi \sim \mathsf{N}(b_0, \Phi_0^{-1}/\phi)$ where b_0 is the prior mean and Φ^{-1}/ϕ is the prior covariance of β

$$p(\beta \mid \phi) = (2\pi)^{-p/2} \phi^{p/2} |\Phi_0|^{1/2} \exp\left(-\frac{\phi}{2} (\beta - b_0)^T \Phi_0 (\beta - b_0)\right)$$

• $\phi \sim \mathbf{G}(\nu_0/2, \mathsf{SS}_0/2)$ with $\mathsf{E}(\sigma^2) = \mathsf{SS}_0/(\nu_0-2)$

$$p(\phi) = \frac{1}{\Gamma(\nu_0/2)} \left(\frac{\mathsf{SS}_0}{2}\right)^{\nu_0/2} \phi^{\nu_0/2 - 1} e^{-\phi \mathsf{SS}_0/2}$$

- \triangleright $(\beta, \phi)^T \sim \mathsf{NG}(\mathbf{b}_0, \Phi_0, \nu_0, \mathsf{SS}_0)$
- Conjugate "Normal-Gamma" family implies

$$(\boldsymbol{\beta}, \phi)^T \mid \mathbf{Y} \sim \mathsf{NG}(\mathbf{b}_n, \Phi_n, \nu_n, \mathsf{SS}_n)$$

Posterior Distribution

$$p(\beta, \phi \mid \mathbf{Y}) \propto \mathcal{L}(\beta, \phi) p(\beta \mid \phi) p(\phi)$$

$$= c_{\mathbf{Y}} \phi^{n/2} e^{-\frac{\phi}{2} (\mathbf{Y} - \mathbf{X}\beta)^{T} (\mathbf{Y} - \mathbf{X}\beta)}$$

$$c_{\beta} |\phi \Phi_{0}|^{1/2} e^{-\frac{\phi}{2} (\beta - \mathbf{b}_{0})^{T} \Phi_{0} (\beta - \mathbf{b}_{0})}$$

$$c_{\phi} \phi^{\frac{nu_{0}}{2} - 1} e^{-\phi SS_{0}/2}$$

Write
$$\Phi_0 = \mathbf{X}_0^T \mathbf{X}_0$$
 (by Spectral Theorem $\Phi = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^T$ take $\mathbf{X}_0 = \mathbf{\Lambda}^{1/2} \mathbf{U}^T$)

$$p(\beta \mid \phi) \propto \phi^{p}/2e^{-\frac{\phi}{2}(\beta-\mathbf{b}_{0})^{T}\mathbf{X}_{0}^{T}\mathbf{X}_{0}(\beta-\mathbf{b}_{0})}$$
$$= \phi^{p/2}e^{-\frac{\phi}{2}(\mathbf{X}_{0}\beta-\mathbf{X}_{0}\mathbf{b}_{0})^{T}(\mathbf{X}_{0}\beta-\mathbf{X}_{0}\mathbf{b}_{0})}$$

Looks like the likelihood from a prior sample of size p with prior design \mathbf{X}_0 and $\mathbf{Y}_0 = \mathbf{X}_o \mathbf{b}_0$

Prior Data

Let

$$\tilde{\mathbf{Y}} = \begin{bmatrix} \mathbf{Y} \\ \mathbf{Y}_0 \end{bmatrix} \in \mathbb{R}^{n+p} \qquad \tilde{\mathbf{X}} = \begin{bmatrix} \mathbf{Y} \\ \mathbf{X}_0 \end{bmatrix} (n+p \times p)$$

then

$$p(\boldsymbol{\beta}, \phi \mid \mathbf{Y}) \propto p(\tilde{\mathbf{Y}} \mid \boldsymbol{\beta}, \phi) p(\phi)$$

where $\tilde{\mathbf{Y}} \sim \mathsf{N}(\tilde{\mathbf{X}}\boldsymbol{\beta}, \mathbf{I}_{n+p}/\phi)$

Likelihood proportional to sampling model of "augmented" data

$$\begin{split} \rho(\boldsymbol{\beta}, \boldsymbol{\phi} \mid \mathbf{Y}) & \propto & \phi^{\frac{n}{2}} e^{-\frac{\phi}{2} (\mathbf{Y} - \mathbf{X} \boldsymbol{\beta})^T (\mathbf{Y} - \mathbf{X} \boldsymbol{\beta})} |\phi \boldsymbol{\Phi}_0|^{\frac{1}{2}} e^{-\frac{\phi}{2} (\mathbf{X}_0 \boldsymbol{\beta} - \mathbf{X}_0 \mathbf{b}_0)^T (\mathbf{X}_0 \boldsymbol{\beta} - \mathbf{X}_0 \mathbf{b}_0)} \\ & \phi^{\frac{n u_0}{2} - 1} e^{-\phi \mathsf{SS}_0/2} \\ & \propto & \phi^{\frac{n+p}{2}} e^{-\frac{\phi}{2} (\tilde{\mathbf{Y}} - \tilde{\mathbf{X}} \boldsymbol{\beta})^T (\tilde{\mathbf{Y}} - \tilde{\mathbf{X}} \boldsymbol{\beta})} \phi^{\frac{n u_0}{2} - 1} e^{-\phi \frac{\mathsf{SS}_0}{2}} \end{split}$$

Decompose

Let $P_{\tilde{\mathbf{X}}} = \tilde{\mathbf{X}} (\tilde{\mathbf{X}}^T \tilde{\mathbf{X}})^{-1} \tilde{\mathbf{X}}^T$ - this is an orthogonal projection on $C(\tilde{\mathbf{X}})$ $\tilde{\mathbf{Y}}^T \tilde{\mathbf{Y}} = \tilde{\mathbf{Y}}^T P_{\tilde{\mathbf{X}}} \tilde{\mathbf{Y}} + \tilde{\mathbf{Y}}^T (\mathbf{I}_{n+p} - P_{\tilde{\mathbf{X}}}) \tilde{\mathbf{Y}}$

$$\begin{split} p(\boldsymbol{\beta}, \boldsymbol{\phi} \mid \mathbf{Y}) & \propto & \phi^{\frac{n+p}{2}} e^{-\frac{\phi}{2} (\tilde{\mathbf{Y}} - \tilde{\mathbf{X}} \boldsymbol{\beta})^T (\tilde{\mathbf{Y}} - \tilde{\mathbf{X}} \boldsymbol{\beta})} \phi^{\frac{nu_0}{2} - 1} e^{-\phi^{\frac{SS_0}{2}}} \\ & = & \phi^{\frac{n+p}{2}} e^{-\frac{\phi}{2} (\tilde{\mathbf{Y}} - \tilde{\mathbf{X}} \boldsymbol{\beta})^T P_{\tilde{\mathbf{X}}} (\tilde{\mathbf{Y}} - \tilde{\mathbf{X}} \boldsymbol{\beta})} \\ & & e^{-\frac{\phi}{2} (\tilde{\mathbf{Y}} - \tilde{\mathbf{X}} \boldsymbol{\beta})^T (\mathbf{I}_{n+p} - P_{\tilde{\mathbf{X}}}) (\tilde{\mathbf{Y}} - \tilde{\mathbf{X}} \boldsymbol{\beta})} \\ & & \phi^{\frac{nu_0}{2} - 1} e^{-\phi^{\frac{SS_0}{2}}} \\ & = & \phi^{\frac{p}{2}} e^{-\frac{\phi}{2} (P_{\tilde{\mathbf{X}}} \tilde{\mathbf{Y}} - \tilde{\mathbf{X}} \boldsymbol{\beta})^T (P_{\tilde{\mathbf{X}}} \tilde{\mathbf{Y}} - \tilde{\mathbf{X}} \boldsymbol{\beta})} \\ & & \phi^{\frac{n+nu_0}{2} - 1} e^{-\frac{\phi}{2} \tilde{\mathbf{Y}}^T (\mathbf{I}_{n+p} - P_{\tilde{\mathbf{X}}}) \tilde{\mathbf{Y}}} e^{-\phi^{\frac{SS_0}{2}}} \end{split}$$

Continued

 $P_{\tilde{\mathbf{X}}}\tilde{\mathbf{Y}} = \tilde{\mathbf{X}}\tilde{\boldsymbol{eta}}$ Maximum a Posteriori (MAP) estimator

$$\begin{split} \rho(\boldsymbol{\beta}, \boldsymbol{\phi} \mid \mathbf{Y}) & \propto & \phi^{\frac{\rho}{2}} e^{-\frac{\phi}{2} (\tilde{\mathbf{X}} \tilde{\boldsymbol{\beta}} - \tilde{\mathbf{X}} \boldsymbol{\beta})^T (\tilde{\mathbf{X}} \tilde{\boldsymbol{\beta}} - \tilde{\mathbf{X}} \boldsymbol{\beta})} \\ & \phi^{\frac{n+\nu_0}{2} - 1} e^{-\phi} \frac{\tilde{\mathbf{Y}}^T (\mathbf{I}_{n+\rho} - \mathbf{P}_{\tilde{\mathbf{X}}}) \tilde{\mathbf{Y}} + \mathsf{SS}_0}{2} \\ & \propto & \phi^{\frac{\rho}{2}} e^{-\frac{\phi}{2} (\boldsymbol{\beta} - \tilde{\boldsymbol{\beta}})^T \tilde{\mathbf{X}}^T \tilde{\mathbf{X}} (\boldsymbol{\beta} - \tilde{\boldsymbol{\beta}})} \, \phi^{\frac{n+\nu_0}{2} - 1} e^{-\phi} \frac{\tilde{\mathbf{Y}}^T (\mathbf{I}_{n+\rho} - \mathbf{P}_{\tilde{\mathbf{X}}}) \tilde{\mathbf{Y}} + \mathsf{SS}_0}{2} \end{split}$$

Read off distributions!

$$\beta \mid \phi, \mathbf{Y} \sim \mathsf{N}(\tilde{\beta}, (\phi \tilde{\mathbf{X}}^T \tilde{\mathbf{X}})^{-1})$$

$$\phi \mid \mathbf{Y} \sim \mathbf{G}\left(\frac{n + \nu_0}{2}, \frac{\tilde{\mathbf{Y}}^T (\mathbf{I}_{n+p} - \mathsf{P}_{\tilde{\mathbf{X}}})\tilde{\mathbf{Y}} + \mathsf{SS}_0}{2}\right)$$

Simplify Distribution of β

Posterior Precision $\phi \tilde{\mathbf{X}}^T \tilde{\mathbf{X}}$

$$\tilde{\mathbf{X}}^T \tilde{\mathbf{X}} = \mathbf{X}^T \mathbf{X} + \mathbf{X}_0^T \mathbf{X}_0
= \mathbf{X}^T \mathbf{X} + \Phi_0
\Phi_n = \mathbf{X}^T \mathbf{X} + \Phi_0$$

sum of precision from data plus prior precision

$$\tilde{\boldsymbol{\beta}} = (\tilde{\mathbf{X}}^T \tilde{\mathbf{X}})^{-1} \tilde{\mathbf{X}}^T \tilde{\mathbf{Y}}
= (\mathbf{X}^T \mathbf{X} + \Phi_0)^{-1} (\mathbf{X}^T \mathbf{Y} + \mathbf{X}_0^T \mathbf{X}_0 \mathbf{b}_0)
= (\mathbf{X}^T \mathbf{X} + \Phi_0)^{-1} [(\mathbf{X}^T \mathbf{X}) (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y} + \Phi_0 \mathbf{b}_0]
= (\mathbf{X}^T \mathbf{X} + \Phi_0)^{-1} [(\mathbf{X}^T \mathbf{X}) \hat{\boldsymbol{\beta}} + \Phi_0 \mathbf{b}_0]
\mathbf{b}_n = (\mathbf{X}^T \mathbf{X} + \Phi_0)^{-1} [(\mathbf{X}^T \mathbf{X}) \hat{\boldsymbol{\beta}} + \Phi_0 \mathbf{b}_0]$$

Conditional Posterior for $\beta \mid \phi, \mathbf{Y} \sim \mathsf{N}(\mathbf{b}_n, \phi^{-1} \Phi_n^{-1})$

Simplify Posterior Distribution for ϕ

$$\phi \mid \mathbf{Y} \sim \mathbf{G} \left(\frac{n + \nu_0}{2}, \frac{\tilde{\mathbf{Y}}^T (\mathbf{I}_{n+p} - \mathbf{P}_{\tilde{\mathbf{X}}}) \tilde{\mathbf{Y}} + \mathbf{S} \mathbf{S}_0}{2} \right)$$

$$\tilde{\mathbf{Y}}^T (\mathbf{I}_{n+p} - \mathbf{P}_{\tilde{\mathbf{X}}}) \tilde{\mathbf{Y}} = \|\tilde{\mathbf{Y}} - \tilde{\mathbf{X}} \mathbf{b}_n\|^2$$

$$= \|\mathbf{Y} - \mathbf{X} \mathbf{b}_n\|^2 + \|\mathbf{Y}_0 - \mathbf{X}_0 \mathbf{b}_n\|^2$$

$$= \|\mathbf{Y} - \mathbf{X} \mathbf{b}_n\|^2 + (\mathbf{X}_0 \mathbf{b}_0 - \mathbf{X}_0 \mathbf{b}_n)^T (\mathbf{X}_0 \mathbf{b}_0 - \mathbf{X}_0 \mathbf{b}_n)$$

$$= \|\mathbf{Y} - \mathbf{X} \mathbf{b}_n\|^2 + (\mathbf{b}_0 - \mathbf{b}_n)^T (\mathbf{X}_o^T \mathbf{X}_0) (\mathbf{b}_0 - \mathbf{b}_n)$$

$$= \|\mathbf{Y} - \mathbf{X} \mathbf{b}_n\|^2 + (\mathbf{b}_0 - \mathbf{b}_n)^T \Phi_o(\mathbf{b}_0 - \mathbf{b}_n)$$

$$\nu_n = n + \nu_0$$

Posterior for ϕ

$$\phi \mid \mathbf{Y} \sim \mathbf{G}\left(\frac{\nu_n}{2}, \frac{\|\mathbf{Y} - \mathbf{X}\mathbf{b}_n\|^2 + (\mathbf{b}_0 - \mathbf{b}_n)^T \Phi_o(\mathbf{b}_0 - \mathbf{b}_n) + \mathsf{SS}_0}{2}\right)$$

Marginal Distribution from Normal-Gamma

Theorem

Let $\theta \mid \phi \sim N(m, \frac{1}{\phi}\Sigma)$ and $\phi \sim \mathbf{G}(\nu/2, \nu \hat{\sigma}^2/2)$. Then θ $(p \times 1)$ has a p dimensional multivariate t distribution

$$oldsymbol{ heta} \sim t_{
u}(m, \hat{\sigma}^2 \Sigma)$$

with density

$$p(oldsymbol{ heta}) \propto \left[1 + rac{1}{
u} rac{(oldsymbol{ heta} - oldsymbol{m})^T \Sigma^{-1} (oldsymbol{ heta} - oldsymbol{m})}{\hat{\sigma}^2}
ight]^{-rac{oldsymbol{ heta} + oldsymbol{ heta}}{2}}$$

Derivation

Marginal density $p(\theta) = \int p(\theta \mid \phi) p(\phi) d\phi$

$$\begin{split} p(\boldsymbol{\theta}) & \propto & \int |\Sigma/\phi|^{-1/2} e^{-\frac{\phi}{2}(\boldsymbol{\theta}-\boldsymbol{m})^T \Sigma^{-1}(\boldsymbol{\theta}-\boldsymbol{m})} \phi^{\nu/2-1} e^{-\phi\frac{\nu\hat{\sigma}^2}{2}} \, d\phi \\ & \propto & \int \phi^{p/2} \phi^{\nu/2-1} e^{-\phi\frac{(\boldsymbol{\theta}-\boldsymbol{m})^T \Sigma^{-1}(\boldsymbol{\theta}-\boldsymbol{m})+\nu\hat{\sigma}^2}{2}} \, d\phi \\ & \propto & \int \phi^{\frac{p+\nu}{2}-1} e^{-\phi\frac{(\boldsymbol{\theta}-\boldsymbol{m})^T \Sigma^{-1}(\boldsymbol{\theta}-\boldsymbol{m})+\nu\hat{\sigma}^2}{2}} \, d\phi \\ & = & \Gamma((p+\nu)/2) \left(\frac{(\boldsymbol{\theta}-\boldsymbol{m})^T \Sigma^{-1}(\boldsymbol{\theta}-\boldsymbol{m})+\nu\hat{\sigma}^2}{2}\right)^{-\frac{p+\nu}{2}} \\ & \propto & \left((\boldsymbol{\theta}-\boldsymbol{m})^T \Sigma^{-1}(\boldsymbol{\theta}-\boldsymbol{m})+\nu\hat{\sigma}^2\right)^{-\frac{p+\nu}{2}} \\ & \propto & \left(1+\frac{1}{\nu}\frac{(\boldsymbol{\theta}-\boldsymbol{m})^T \Sigma^{-1}(\boldsymbol{\theta}-\boldsymbol{m})}{\hat{\sigma}^2}\right)^{-\frac{p+\nu}{2}} \end{split}$$

Marginal Posterior Distribution of $oldsymbol{eta}$

$$\begin{split} \boldsymbol{\beta} \mid \phi, \mathbf{Y} &\sim & \mathsf{N}(\mathbf{b}_n, \phi^{-1} \Phi_n^{-1}) \\ \phi \mid \mathbf{Y} &\sim & \mathbf{G}\left(\frac{\nu_n}{2}, \frac{\mathsf{SS}_n}{2}\right) \\ &\sim & \mathbf{G}\left(\frac{\nu_n}{2}, \frac{\nu_n \hat{\sigma}^2}{2}\right) \text{ where } \hat{\sigma}^2 = \mathsf{SS}_n/\nu_n \text{ (Bayesian MSE)} \end{split}$$

Then the marginal posterior distribution of β is

$$\boldsymbol{\beta} \mid \mathbf{Y} \sim t_{\nu_n}(\mathbf{b}_n, \hat{\sigma}^2 \Phi_n^{-1})$$

Any linear combination $\lambda^T \beta$

$$\lambda^T \boldsymbol{\beta} \mid \mathbf{Y} \sim t_{\nu_n} (\lambda^T \mathbf{b}_n, \hat{\sigma}^2 \lambda^T \Phi_n^{-1} \lambda)$$

has a univariate t distribution with \mathbf{v}_n degrees of freedom

Posterior Distribution of $\mu_i = \mathbf{x}_i^T \boldsymbol{\beta}$

• Use a limiting prior distribution: $p(\beta, \phi) \propto \phi^{-1}$

$$b_0 = 0, SS_0 = 0, \Phi_0 = 0, \nu_0 = -(p+1)$$

joint posterior distribution depends on MLE's

$$eta \mid \phi, \mathbf{Y} \sim \mathsf{N}\left(\hat{eta}, \phi^{-1}(\mathbf{X}^T\mathbf{X})^{-1}\right)$$

$$\phi \mid \mathbf{Y} \sim \mathbf{G}((n-p-1)/2, (n-p-1)\hat{\sigma}^2/2)$$

$$\mu_i \mid \mathbf{Y} \sim t_{n-p-1}(\mathbf{x}_i^T\hat{eta}, \hat{\sigma}^2\mathbf{x}_i^T(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{x}_i)$$

Same distribution as frequentists:

$$P(\mu \in (\mathbf{x}_i^T \hat{\boldsymbol{\beta}} \pm t_{\alpha/2} \hat{\sigma}^2 h_{ii}) \mid \mathbf{Y}) = 1 - \alpha$$

Predictive Distribution

Suppose $\mathbf{Y}^* \mid \boldsymbol{\beta}, \phi \sim \mathsf{N}(\mathbf{X}^*\boldsymbol{\beta}, \mathbf{I}_f/\phi)$ and is conditionally independent of \mathbf{Y} given $\boldsymbol{\beta}$ and ϕ

What is the predictive distribution of $\mathbf{Y}^* \mid \mathbf{Y}$?

$$\mathbf{Y}^* = \mathbf{X}^*oldsymbol{eta} + oldsymbol{\epsilon}^*$$
 and $oldsymbol{\epsilon}^*$ is independent of \mathbf{Y} given ϕ

$$\begin{split} \mathbf{X}^*\boldsymbol{\beta} + \boldsymbol{\epsilon}^* \mid \mathbf{Y}, \phi &\sim & \mathsf{N}(\mathbf{X}^*\mathbf{b}_n, (\mathbf{X}^*\boldsymbol{\Phi}_n^{-1}\mathbf{X}^{*T} + \mathbf{I})/\phi) \\ \mathbf{Y}^* \mid \phi, \mathbf{Y} &\sim & \mathsf{N}(\mathbf{X}^*\mathbf{b}_n, (\mathbf{X}^{*T}\boldsymbol{\Phi}_n^{-1}\mathbf{X}^{*T} + \mathbf{I})/\phi) \\ \phi \mid \mathbf{Y} &\sim & \mathbf{G}\left(\frac{\nu_n}{2}, \frac{\hat{\sigma}^2\nu_n}{2}\right) \\ \mathbf{Y}^* \mid \mathbf{Y} &\sim & t_{\nu_n}(\mathbf{X}^*\mathbf{b}_n, \hat{\sigma}^2(\mathbf{X}^*\boldsymbol{\Phi}_n^{-1}\mathbf{X})) \end{split}$$

Under limiting prior same as frequentist predictive interval

Conjugate Priors

Definition

A class of prior distributions \mathcal{P} for $\boldsymbol{\theta}$ is conjugate for a sampling model $p(y \mid \boldsymbol{\theta})$ if for every $p(\boldsymbol{\theta}) \in \mathcal{P}$, $p(\boldsymbol{\theta} \mid \mathbf{Y}) \in \mathcal{P}$.

Advantages:

- Closed form distributions for most quantities; bypass MCMC for calculations
- Simple updating in terms of sufficient statistics "weighted average"
- Interpretation as prior samples prior sample size
- Elicitation of prior through imaginary or historical data
- ▶ limiting "non-proper" form recovers MLEs

Some Default Choices

- ▶ Independent Jeffreys Prior $p(\beta, \phi) \propto 1/\phi$
- ▶ Unit information prior $\beta \mid \phi \sim N(\hat{\beta}, n(\mathbf{X}^T\mathbf{X})^{-1}/\phi)$
- ► Zellner's g-prior(s) $\beta \mid \phi \sim \mathsf{N}(\mathbf{b}_0, g(\mathbf{X}^T\mathbf{X})^{-1}/\phi)$

$$oldsymbol{eta} \mid \mathbf{Y}, \phi \sim \mathsf{N}\left(rac{g}{1+g}\hat{oldsymbol{eta}} + rac{1}{1+g}\mathbf{b}_0, rac{g}{1+g}(\mathbf{X}^T\mathbf{X})^{-1}\phi^{-1}
ight)$$

▶ Independent Priors on β_j

$$\beta_j \mid \phi, \lambda_j \stackrel{\text{ind}}{\sim} N(0, s_j^2/(\phi \lambda_j))$$

Disadvantages

Disadvantages:

 Results may have be sensitive to prior "outliers" due to linear updating

► Cannot capture all possible prior beliefs

Mixtures of Conjugate Priors

Theorem (Diaconis & Ylivisaker 1985)

Given a sampling model $p(y \mid \theta)$ from an exponential family, any prior distribution can be expressed as a mixture of conjugate prior distributions

- ▶ Prior $p(\theta) = \int p(\theta \mid \omega)p(\omega) d\omega$
- Posterior

$$p(\theta \mid \mathbf{Y}) \propto \int p(\mathbf{Y} \mid \theta) p(\theta \mid \omega) p(\omega) d\omega$$

$$\propto \int \frac{p(\mathbf{Y} \mid \theta) p(\theta \mid \omega)}{p(\mathbf{Y} \mid \omega)} p(\mathbf{Y} \mid \omega) p(\omega) d\omega$$

$$\propto \int p(\theta \mid \mathbf{Y}, \omega) p(\mathbf{Y} \mid \omega) p(\omega) d\omega$$

$$p(\theta \mid \mathbf{Y}) = \frac{\int p(\theta \mid \mathbf{Y}, \omega) p(\mathbf{Y} \mid \omega) p(\omega) d\omega}{\int p(\mathbf{Y} \mid \omega) p(\omega) d\omega}$$

Next Class After Midterm

Review Hoff Chapters 1-9, Gelman-Hill Chapter 18