Heartbeat Classification

General Assembly
Data Science Immersive 13 Capstone
Ng Gim Pei

Summary Topics

- 1. Problem Statements
- 2. Project Framework
- 3. Exploratory Data Analysis
- 4. Preprocessing
- 5. Audio Feature Extraction Techniques
- 6. Classification Models
- 7. Model Evaluation, Results and Discussions
- 8. Summary and Recommendations

Problem Statements

Singapore Statistics:

Every day, 17 people die from cardiovascular disease (heart diseases and stroke) in Singapore. Cardiovascular disease accounted for 29.2% of all deaths in 2018. This means that almost 1 out of 3 deaths in Singapore, is due to heart diseases or stroke.

Source: Singapore Heart Foundation, Ministry of Health

Problem Statements

Stethoscope is an instrument that is widely used in medical field to diagnose heart disease.

Doctors can find heart diseases from listening to the heartbeat by using the stethoscope.

Though, digital stethoscope is available for consumer, but to distinguish whether or not it is abnormal heartbeat requires experienced or trained clinical persons with stethoscope hearings.

Problem Statements

Goal: Build a Machine Learning Model to classify heartbeat audio from stethoscope into normal versus various non-normal heartbeat category.

Target audience:

General consumer.

We only seek medical attention when we feel ill. The success of this project would be handy to complement with the digital stethoscope where consumer can monitor their heartbeat condition at their convenient and seek medical attention soonest possible, if abnormal heartbeat is detected.

Project Framework:

Exploratory Data Analysis (EDA)

- Data type
- Distribution of categories
 - Audio length

Recorded by	Sources	Categories	Number of Categories	Dataset
iStethoscope Pro iPhone app	general public	Normal, Murmur, Extra Heart Sound, Artifact	4	Α
digital stethoscope	clinic trial in hospitals	Normal, Murmur, Extrsystole	3	В

Data Type

Audio wav:

- Set a: mono channel, bit-depth= 16, sampling rate = 44.1kHz
- Set b: mono channel, bit-depth= 16, sampling rate = 4kHz

Distribution of categories

Imbalance Class

Majority:

Normal

Minority:

 Extra heart sound, Extrasystole

Audio length

	min	max	mean	count
label				
artifact	9.000000	9.00000	9.000000	40
extrahls	0.936372	9.00000	6.872237	19
extrastole	1.874500	13.38075	5.858043	46
murmur	0.856750	24.16000	7.774043	129
normal	0.763250	27.86700	6.318183	351

Preprocessing

- Denoise
- Train Test Split
- Imbalanced Class

Categories at a glance

Denoise

Technique

Discrete Wavelet Transformation (DWT)

Settings:

- Wavelet family: 'Daubechies' ('db')
- Subcategories: 'db6'
- Level = 10
- Threshold = 0.3*max(x)

Denoise

Metrics:

Wavelet sub-categories decided based on:

Signal-to-Noise Ratio (SNR)

Imbalance Class

- Models work best when each class (heartbeat category) has similar sized in the training dataset.
- Imbalance class with majority category at 60%

Heartbeat (Train) Categories Distribution (Systhesizes new samples + Oversampling)

Audio Feature Extraction

MFCC

(Mel Frequency Cepstral Coefficients)

• CWT

(Continuous Wavelet Transform

Audio Feature

Audio signal can be represented in time domain and frequency domain

MFCC (Mel Frequency Cepstral Coefficients)

Popular techniques to extract features from audio signals is computing the MFCC from the raw audio signal.

MFCC

There are patterns on each audio way, which, can use it to train deep learning model to classify the heartbeat category based on the pattern!

CWT (Continuous Wavelet Transform)

Wavelet transform an 1D signal to 2D. The output of CWT is time-pitch-power representation of the signal in the form of a **scalogram**.

$$cwt(\tau,s) = \frac{1}{\sqrt{|s|}} \int_{-\infty}^{+\infty} x(t)\psi\left(\frac{t-\tau}{s}\right) dt$$

 $\tau = translation, s = scale, \Psi(t) = mother wavelet, \left(\frac{t-\tau}{s}\right) = sale \ factor$

scaling

translation

Scalogram

Similarly, there are patterns on each audio wav, which, can use it to train deep learning model to classify the heartbeat category based on the pattern!

Classification Model

(Multiclass classifier)

2D Convolutional Neural Networks

XGBOOST

Building CNN Model

Raw audio file (44.1kHz, mono)	
Resampling (22050 Hz) + Denoise (DWT)	
Fix audio duration to 3 sec via zero padding or post truncating	
MFCC extraction + Normalization	
Conv2D (filters = 16, kernel_size =3, activation = 'relu', padding = 'same')	
MaxPool2D (pool_size = ())	
Conv2D(filters = 32, kernel_size =3, activation = 'relu', padding = 'same')	
MaxPool2D(pool_size =())	
Dropout(0.2)	
Conv2D(filters = 32, kernel_size =5, activation = 'relu', padding = 'same')	
MaxPool2D(pool_size =())	
Dropout(0.2)	
Flatten()	Same CNN
Dense (128, activation = 'relu', kernel_regularizer= regularizers.l2(0.0001)	architech for
BatchNormalization()	
Dropout (0.5)	MFCC & CWT, k
Dense (5)	with varying
Softmax Output	hyperparamete

Building Model using PCA on CWT + XGBOOST

Model Evaluation Results Discussions

Metrics:

- 1. Precision
- 2. f1
- 3. Accuracy
- 4. Youden's Index
- 5. Discriminant Power

Data:

- 1. TEST set
- 2. Unlabel set_a, set_b

Results

$$Precision = \frac{TP}{FP + TP}$$

Example: Murmur category

Among all predicted murmur heartbeat, how many did I predict correctly?

Results: Precision

Results

$$f1 = 2\frac{Precision * Recall}{Precision + Recall}$$

f1 is weighted average for precision and recall

Results

TEST set

from label data

set_a un-label data

set b un-label data

CWT_CNN6 appears in BOTH unlabel set_a and set_b!

Reference Performance

Summary and Recommendations

Proposed approaches

- Imbalance class treatment
- Feature extraction using CWT
- Scalogram pattern detection using CNN
- Hyperparameter optimization using RandomizedSearchCV

Classifier efficiency still need improvement!

- More data. Train dataset of 585 audio wav is simply too little
- Segmentation approach in preprocessing could be improve by first detect the position of heartbeat (S1, S2), segment it into smaller chunk by locating the beginning of the heartbeat and ensuring x amount of heartbeat cycles in it.
- Explore RNN (improve model efficiency in heartbeat classification) and XGBOOST (reduce computational time)

Thank You

