AMENDMENTS TO THE CLAIMS

1. (ORIGINAL) A method of making a compound of formula (Ia)

$$\begin{array}{c|c} R_4O_2C & N \\ \hline & NR_2R_3 \\ \hline & (R_1)_n & (Ia) \end{array}$$

wherein R₁ is carboxy, cyano, deuterium, (C₁-C₆)alkyl, (C₁-C₆)alkoxy, (C₁-C₆)acyl, (C₁-C₆)alkylamino, amino(C₁-C₆)alkyl, (C₁-C₆)alkoxy-CO-NH, (C₁-C₆)alkylamino-CO-, (C₂-C₆)alkenyl, (C₂-C₆) alkynyl, (C₁-C₆)alkylamino, amino(C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, nitro, cyano(C₁-C₆)alkyl, nitro(C₁-C₆)alkyl, trifluoromethyl, trifluoromethyl(C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)acylamino, (C₁-C₆)acylamino(C₁-C₆)alkyl, (C₁-C₆)alkoxy(C₁-C₆)acylamino, amino(C₁-C₆)acyl, amino(C₁-C₆)acyl(C₁-C₆)alkyl, (C₁-C₆)alkylamino(C₁-C₆)acyl, ((C₁-C₆)alkyl)₂amino(C₁-C₆)acyl, R₁₅R₁₆N-CO-O-, R₁₅R₁₆N-CO-(C₁-C₆)alkyl, (C₁-C₆)alkyl-S(O)_m, R₁₅R₁₆NS(O)_m, R₁₅R₁₆NS(O)_m (C₁-C₆)alkyl, R₁₅S(O)_mR₁₆N, R₁₅S(O)_mR₁₆N(C₁-C₆)alkyl or a group of the formula (VII)

$$(CR_6R_7)_a \xrightarrow{(X)_b} (CR_9R_{10})_d \xrightarrow{(Y)_e} (R_{11})_{N \downarrow_f} (Z)_g (VII);$$

R₂ is hydrogen, (C₁-C₆)alkyl, (C₁-C₆)alkylsulfonyl, (C₂-C₆)alkenyl, or (C₂-C₆)alkynyl wherein the alkyl, alkenyl and alkynyl groups are optionally substituted by deuterium, hydroxy, trifluoromethyl, (C₁-C₄)alkoxy, (C₁-C₆)acyloxy, (C₁-C₆)alkylamino, ((C₁-C₆)alkyl)₂amino, cyano, nitro, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl or (C₁-C₆)acylamino; or R₂is (C₃-C₁₀)cycloalkyl wherein the cycloalkyl group is optionally substituted by deuterium, hydroxy, trifluoromethyl, (C₁-C₆)acyloxy, (C₁-C₆)acylamino, (C₁-C₆)alkylamino, ((C₁-C₆)alkyl)₂amino, cyano, cyano(C₁-C₆)alkyl, trifluoromethyl(C₁-C₆)alkyl, nitro, nitro(C₁-C₆)alkyl or (C₁-C₆)acylamino;

 R_3 is hydrogen, (C_1-C_6) alkyl, (C_3-C_{10}) cycloalkyl, (C_2-C_6) alkenyl, or (C_2-C_6) alkynyl wherein the alkyl, alkenyl and alkynyl groups are optionally substituted by

deuterium, hydroxy, halogen, trifluoromethyl, (C_1-C_4) alkoxy, (C_1-C_6) acyloxy, (C_1-C_6) alkylamino, (C_1-C_6) acylamino, $((C_1-C_6)$ alkyl)₂amino, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, cyano, cyano (C_1-C_6) alkyl, trifluoromethyl (C_1-C_6) alkyl, nitro, or nitro (C_1-C_6) alkyl;

 R_4 is (C_1-C_6) alkyl, (C_3-C_{10}) cycloalkyl, (C_2-C_6) alkenyl, or (C_2-C_6) alkynyl wherein the alkyl, alkenyl and alkynyl groups are optionally substituted by deuterium, hydroxy, halogen, amino, trifluoromethyl, (C_1-C_4) alkoxy, (C_1-C_6) acyloxy, (C_1-C_6) alkylamino, (C_1-C_6) acylamino, $((C_1-C_6)$ alkyl)₂amino, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, cyano, cyano (C_1-C_6) alkyl, trifluoromethyl (C_1-C_6) alkyl, nitro, or nitro (C_1-C_6) alkyl;

 $R_6, R_7, R_8, R_9, R_{10} \text{ and } R_{11} \text{ are each independently hydrogen or } (C_1\text{-}C_6)\text{alkyl} \text{ optionally substituted by deuterium, hydroxy, trifluoromethyl, } (C_1\text{-}C_6)\text{acyloxy, } (C_1\text{-}C_6)\text{acylamino, } ((C_1\text{-}C_6)\text{alkyl})\text{-}2\text{amino, cyano, cyano, cyano}(C_1\text{-}C_6)\text{alkyl, trifluoromethyl}(C_1\text{-}C_6)\text{alkyl, nitro, nitro}(C_1\text{-}C_6)\text{alkyl or } (C_1\text{-}C_6)\text{acylamino; } R_{12} \text{ is carboxy, cyano, amino, oxo, deuterium, hydroxy, trifluoromethyl, } (C_1\text{-}C_6)\text{alkyl, trifluoromethyl}(C_1\text{-}C_6)\text{alkyl, } (C_1\text{-}C_6)\text{alkoxy, } (C_1\text{-}C_6)\text{acyl, } (C_1\text{-}C_6)\text{alkylamino, } ((C_1\text{-}C_6)\text{alkyl)})\text{-}2\text{ amino, amino}(C_1\text{-}C_6)\text{alkyl, } (C_1\text{-}C_6)\text{alkoxy-CO-NH, } (C_1\text{-}C_6)\text{alkylamino-CO-, } (C_2\text{-}C_6)\text{alkenyl, } (C_2\text{-}C_6)\text{ alkynyl, } (C_1\text{-}C_6)\text{alkylamino, hydroxy}(C_1\text{-}C_6)\text{alkyl, } (C_1\text{-}C_6)\text{alkyl, } (C_1\text{-}C_6)\text{alk$

```
R_{15} and R_{16} are each independently hydrogen or (C_1\text{-}C_6)alkyl; X is S(O)_p, oxygen, carbonyl or -C(=N\text{-}cyano)-; Y is S(O)_p or carbonyl; Z is S(O)_p, carbonyl, C(O)O-, or C(O)NR-; Z is Z
```

wherein the method comprises reacting NHR₂R₃, N(CH₃)R₂H, or N(CH₂CH₃)R₂H with a compound of formula (IIa)

$$R_4O_2C$$
 N $(R_1)_n$ (IIa)

and reducing the compound so formed with a reducing agent.

2. (ORIGINAL) The method of claim 1, wherein the method further comprises formation of the compound of the formula (IIa) by reacting a compound having the formula R₄OH, water, or R₄NH₂ and a compound of the formula (IIIa)

wherein R_5 is $CO(C_1-C_6)$ alkyl.

3. (ORIGINAL) The method of claim 2, wherein the method further comprises formation of the compound of the formula (IIIa) by heating a compound having the formula (IVa)

$$R_4O_2C$$
 OR_5
 OR_5
 OR_5
 OR_5
 $OR_1)_n$ (IVa)

with a compound having the formula(C₁-C₆)alkyl-(C=O)-O-(C=O)-(C₁-C₆)alkyl.

4. (ORIGINAL) The method of claim 3, wherein the method further comprises formation of the compound of the formula (IVa) by oxidizing a compound having the formula (Va)

$$R_4O_2C$$
 $(R_1)_n$ (Va)

under oxidizing conditions.

5. (ORIGINAL) The method of claim 4, wherein the method further comprises formation of the compound of the formula (Va) by reacting a compound having the formula WCO₂R₄ and a compound having the formula (VIa)

$$H$$
 $(R_1)_n$ (VIa)

wherein W is halogen.

- 6. (ORIGINAL) The method of claim 4, wherein the oxidizing conditions are an electrochemical oxidation.
- 7. (ORIGINAL) A method of making a compound having the formula (Ib)

$$R_{13}$$
 N
 $(R_1)_n$
(Ib)

wherein R_1 is carboxy, amino, deuterium, hydroxy, $(C_1\text{-}C_6)$ alkyl, $(C_1\text{-}C_6)$ alkoxy, $(C_1\text{-}C_6)$ alkylamino, amino $(C_1\text{-}C_6)$ alkyl, $(C_2\text{-}C_6)$ alkenyl, $(C_2\text{-}C_6)$ alkynyl, $(C_1\text{-}C_6)$ alkylamino, amino $(C_1\text{-}C_6)$ alkyl, hydroxy $(C_1\text{-}C_6)$ alkyl, $(C_1\text{-}C_6)$ alkoxy $(C_1\text{-}C_6)$ alkyl, nitro, nitro $(C_1\text{-}C_6)$ alkyl, trifluoromethyl, trifluoromethyl $(C_1\text{-}C_6)$ alkyl, $(C_1\text{-}C_6)$ alkyl- $S(O)_m$, $R_{15}R_{16}NS(O)_m$, $R_$

$$(CR_6R_7)_a \xrightarrow{(X)_b} (CR_9R_{10})_d \xrightarrow{(Y)_e} (R_{11})_{(Y)_e} R_{12}$$

$$(VII);$$

 R_2 is hydrogen, (C_1-C_6) alkyl, (C_1-C_6) alkylsulfonyl, (C_2-C_6) alkenyl, or (C_2-C_6) alkynyl wherein the alkyl, alkenyl and alkynyl groups are optionally substituted by deuterium, hydroxy, amino, trifluoromethyl, (C_1-C_4) alkoxy, (C_1-C_6) alkylamino, $((C_1-C_6)$ alkyl)₂amino, nitro, (C_2-C_6) alkenyl, or (C_2-C_6) alkynyl; or R_2 is (C_3-C_{10}) cycloalkyl wherein the cycloalkyl group is optionally substituted by deuterium, hydroxy, amino,

trifluoromethyl, (C_1-C_6) alkylamino, $((C_1-C_6)$ alkyl)₂amino, trifluoromethyl (C_1-C_6) alkyl, nitro, or nitro (C_1-C_6) alkyl;

 R_3 is hydrogen, (C_1-C_6) alkyl, (C_3-C_{10}) cycloalkyl, (C_2-C_6) alkenyl, or (C_2-C_6) alkynyl wherein the alkyl, alkenyl and alkynyl groups are optionally substituted by deuterium, hydroxy, amino, trifluoromethyl, (C_1-C_4) alkoxy, (C_1-C_6) alkylamino, $((C_1-C_6)$ alkyl)₂amino, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, trifluoromethyl (C_1-C_6) alkyl, nitro, or nitro (C_1-C_6) alkyl;

 R_6 , R_7 , R_8 , R_9 , R_{10} and R_{11} are each independently hydrogen or $(C_1\text{-}C_6)$ alkyl optionally substituted by deuterium, hydroxy, amino, trifluoromethyl, $(C_1\text{-}C_6)$ alkyl)₂amino, trifluoromethyl($C_1\text{-}C_6$)alkyl, nitro, or nitro($C_1\text{-}C_6$)alkyl; R_{12} is carboxy, amino, deuterium, hydroxy, trifluoromethyl, $(C_1\text{-}C_6)$ alkyl, trifluoromethyl($C_1\text{-}C_6$)alkyl, $(C_1\text{-}C_6)$ alkyl, $(C_1\text{-}C_6)$ alkylamino, $((C_1\text{-}C_6)$ alkyl)₂ amino, amino($C_1\text{-}C_6$)alkyl, $(C_2\text{-}C_6)$ alkyl, $(C_2\text{-}C_6)$ alkyl, $(C_1\text{-}C_6)$ alkylamino, hydroxy($C_1\text{-}C_6$)alkyl, $(C_1\text{-}C_6)$ alkyl, $(C_1\text{-}C_6)$ alkyl, trifluoromethyl, trifluoromethyl($(C_1\text{-}C_6)$ alkyl, $(C_1\text{-}C_6)$ alkyl, or $(C_1\text{-}C_6)$ alkyl- $(C_1\text{-}C_6)$ alkyl, $(C_1\text{-}C_6)$ alkyl, or $(C_1\text{-}C_6)$ alkyl, or $(C_1\text{-}C_6)$ alkyl, or $(C_1\text{-}C_6)$ alkyl;

 R_{13} is (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, (C_6-C_{10}) aryl, (C_1-C_6) carboalkoxy, (C_5-C_9) heteroaryl, (C_6-C_{10}) aryl (C_1-C_6) alkyl, or (C_5-C_9) heteroaryl (C_1-C_6) alkyl wherein the R_{13} group is optionally substituted by deuterium, hydroxy, amino, trifluoromethyl,, (C_1-C_6) alkyl, (C_1-C_6) alkylamino, $((C_1-C_6)$ alkyl)₂amino, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, trifluoromethyl (C_1-C_6) alkyl, nitro, or nitro (C_1-C_6) alkyl;

```
R_{15} and R_{16} are each independently hydrogen or (C_1\text{-}C_6)alkyl; X is S(O)_p; Y is S(O)_p; Z is Z is
```

wherein the method comprises reducing a compound of formula (IIb)

$$R_{13}$$
 N
 CO_2R_{14}
 $(R_1)_n$
(IIb)

with a reducing agent, wherein R_{14} is (C_1-C_6) alkyl, (C_3-C_{10}) cycloalkyl, (C_2-C_6) alkenyl, or (C_2-C_6) alkynyl wherein the alkyl, alkenyl and alkynyl groups are optionally substituted by deuterium, hydroxy, halogen, amino, trifluoromethyl, (C_1-C_4) alkoxy, (C_1-C_6) alkylamino, $((C_1-C_6)$ alkyl)₂amino, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, trifluoromethyl (C_1-C_6) alkyl, nitro, or nitro (C_1-C_6) alkyl.

8. (ORIGINAL) The method of claim 7, wherein the method further comprises formation of the compound of the formula (IIb) by reacting a compound having the formula (IIIb)

$$R_2$$
 N
 CO_2R_{14}
 $(R_1)_n$ (IIIb)

with an aldehyde of formula R₁₃-(C=O)-H and reducing the compound so formed with a reducing agent.

9. (ORIGINAL) The method of claim 8, wherein the method further comprises formation of the compound of the formula (IIIb) by hydrogenating a compound having the formula (IVb)

$$\begin{array}{c}
R_2 \\
N \longrightarrow CO_2R_{14} \\
(R_1)_n
\end{array}$$
(IVb)

in the presence of a catalyst.

10. (ORIGINAL) The method of claim 9, wherein the method further comprises formation of the compound of the formula (IVb) by reacting a compound having the formula (Vb)

$$\begin{picture}(0,0) \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}$$

with $(R_{14}\text{-O-}(C=O))2O$ or $R_{14}\text{-O-}(C=O)$ -X wherein X is halo.

11. (CURRENTLY AMENDED) The method of claim 1, wherein the compound of formula (Ia) has the relative stereochemistry of formula (Ia-1)

$$R_4O_2C$$
 N
 $(R_1)_n$
 $(Ia-1);$

 R_1 is (C_1-C_6) alkyl; n is one; R_2 and R_3 are each hydrogen or (C_1-C_6) alkyl; and R_4 is (C_1-C_6) alkyl.

12. (CURRENTLY AMENDED) The method of claim 7, wherein the compound of formula (Ib) has the relative stereochemistry of formula (Ib-1)

$$R_{13}$$
 N
 $(R_1)_n$
 $(Ib-1);$

 R_1 is $(C_1$ - $C_6)$ alkyl; n is one; R_2 and R_3 are each hydrogen or $(C_1$ - $C_6)$ alkyl; and R_{13} is $(C_6$ - $C_{10})$ aryl.

- 13. (ORIGINAL) The method of claim 1, wherein the reducing agent is a borohydride.
- 14. (ORIGINAL) The method of claim 7, wherein the reducing agent is lithium aluminum hydride.
- 15. (ORIGINAL) The method of claim 9, wherein the catalyst is Rh/alumina or Rh/C.