

# Departamento de Matemática

**FCTUC** 

# Relatório

# Visualização Computacional

Professor: José Carlos Teixeira (teixeira@mat.uc.pt)

Trabalho 1 – Editor de curvas

# **Autores:**

Ana Catarina Quitério Lourenço catarinaql@gmail.com
Israel Campiotti
israelcampiotti@gmail.com

## Data:

06-11-2016



# ÍNDICE

| 1. | SUM  | ÁRIO                                  | 3  |
|----|------|---------------------------------------|----|
| 2. | INTR | ODUÇÃO                                | 4  |
| 3. | PRO  | GRAMA                                 | 5  |
|    | 3.1  | "AXES.H"                              | 5  |
|    | 3.2  | "CURVES.H"                            | 5  |
|    | 3.3  | "AUXF.H"                              | 7  |
|    | 3.4  | "NEWMAIN.C"                           | 9  |
| 4. | APRE | ESENTAÇÃO DE UMA SESSÃO DE UTILIZAÇÃO | 11 |
| 5. | CON  | CLUSÕES                               | 14 |
| 6  | RIRI | IOGRAFIA                              | 15 |



## 1. SUMÁRIO

O presente trabalho tem por objectivo a utilização dos recursos disponibilizados pela linguagem C e pelo OpenGL no desenvolvimento de um editor de curvas, considerando, pelo menos, as seguintes curvas: astroide, cardioide, epicicloide e lemniscata de Bernoulli.

O editor deve permitir definir e visualizar as curvas e alterar os seus atributos de visualização (cor das curvas, espessura da linha, raio, centro, etc.). Deve, ainda, ser original e ergonómico, disponibilizando instruções que facilitem a sua utilização.

O trabalho foi realizado recorrendo às várias bibliotecas da linguagem C e, especialmente, à biblioteca glut.h.

O presente relatório explica pormenorizadamente a construção do programa criado e o modo de utilização do mesmo.

# 2. INTRODUÇÃO

Este trabalho tem por objectivo utilizar os recursos disponibilizados pela linguagem C e pelo OpenGL na implementação de um programa modular e eficiente que funcione como um editor de curvas, considerando, pelo menos, as seguintes curvas:

a. Astroide, com equações paramétricas

$$x = \frac{r}{4} \left( 3\cos t + \cos 3t \right)$$

$$y = \frac{r}{4} (3\sin t - \sin 3t)$$

b. Cardioide, com equações paramétricas

$$x = r (2\cos t - \cos 2t)$$

$$y = r (2 \sin t - \sin 2t)$$

c. Epicicloide, com equações paramétricas

$$x = r(k+1)\cos t - r\cos((k+1)t)$$

$$y = r(k+1)\sin t - r\sin((k+1)t)$$

d. Lemniscata de Bernoulli, com equações paramétricas

$$x = \frac{r\sqrt{2}\cos t}{\sin^2(t) + 1}$$

$$y = \frac{r\sqrt{2}\cos t\sin t}{\sin^2(t) + 1}$$

O editor deve permitir definir e visualizar as curvas e alterar os seus atributos de visualização (cor das curvas, espessura da linha, raio, centro, etc.) e deve ser ergonómico, tendo a ajuda necessária para uma fácil utilização, e original.



## 3. PROGRAMA

O editor de curvas foi construído através da criação das bibliotecas "axes.h", "auxf.h" e "curves.h" e do programa "newmain.c".

#### 3.1 "axes.h"

#### Declaração de variáveis globais

Figura 1 - Variáveis globais de axes.h

 mult – variável do tipo double usada para definir o comprimento dos eixos em relação ao valor da variável normalizer.

#### Funções

void displayAxes(const double normalizer, const int n) – imprime os eixos coordenados, com x ε [-mult\*normalizer, mult\*normalizer], y ε [-mult\*normalizer, mult\*normalizer], e cada semieixo dividido em n partes. Nesta função desenha-se as rectas dos eixos, as setas de cada eixo e as linhas que os dividem.

#### 3.2 "curves.h"

#### Inclusão de bibliotecas necessárias

Figura 2 - Bibliotecas de curves.h



#### Definição de constantes

Figura 3 - Constantes de curves.h

#### Declaração de variáveis globais

Figura 4 - Variáveis globais de curves.h

- radius variável do tipo double que corresponde ao raio de uma curva de qualquer tipo. É
  inicializada atribuindo o valor 100;
- k variável do tipo double que corrensponde a uma das constantes das equações paramétricas do epicicloide. É inicializada atribuindo o valor 4;
- nWidth variável do tipo double usada para definir a largura da janela em relação ao valor da variável normalizer. É inicializada atribuindo o valor 1.2;
- nHeight variável do tipo double usada para definir a altura da janela em relação ao valor da variável normalizer. É inicializada atribuindo o valor 0.7;
- normalizer número inteiro utilizado para definir a largura e altura da janela;
- lineSize número inteiro que corresponde à espessura da linha das curvas. É inicializado atribuindo o valor 1;
- dCurv variável do tipo char que corresponde ao tipo de curva a desenhar;
- cColors[4][3] matriz do tipo double que define as cores utilizadas para desenhar os quatro tipos de curvas.



#### Funções

- void astroide(const double radius, int Ox, int Oy, const int region) desenha um astroide de raio radius e centro (Ox, Oy) com a cor definida pela linha 0 de cColors. Apenas são desenhados os pontos que estão entre os limites do gráfico;
- void cardioide(const double radius, int Ox, int Oy, const int region) desenha um cardioide de raio radius e centro (Ox, Oy) com a cor definida pela linha 1 de cColors. Apenas são desenhados os pontos que estão entre os limites do gráfico;
- void epicloide(const double radius, const double k, int Ox, int Oy, const int region) desenha um epicicloide de raio radius e e constante k double k e centro (Ox, Oy) com a cor definida pela linha 2 de cColors. Apenas são desenhados os pontos que estão entre os limites do gráfico;
- void bernoulli(const double radius, int Ox, int Oy, const int region) desenha uma lemniscata de Bernoulli de raio radius e centro (Ox, Oy) com a cor definida pela linha 3 de cColors. Apenas são desenhados os pontos que estão entre os limites do gráfico.

## 3.3 "auxf.h"

#### Protecção dos ficheiros de interface

Figura 5 - Protecção dos ficheiros de interface em auxf.h

#### Funções

- int clean\_stdin lê caracteres até encontrar um parágrafo. Esta função é usada para ler e eliminar o excesso de caracteres introduzido pelo utilizador ou caracteres do tipo errado;
- void displayText(const double x, const double y, const char \*string, double r, double g, double b) imprime o texto \*string na posição (x,y) com a cor [r g b];
- void displayBlackRegion() imprime um quadrado preto do lado esquerdo da imagem, que corresponde ao gráfico
  - $\{(x, y) : x \in [-\text{mult*normalizer}, \text{mult*normalizer}], y \in [-\text{mult*normalizer}, \text{mult*normalizer}]\};$

- void zeraVetor(int n, int\*v) inicializa o vector \*v, atribuindo zero a cada elemento;
- void resetColor(double cColors[4][3]) redefine as cores a usar em cada tipo de curva para as cores padrão;
- void txtAstroide(double xi, double yi) imprime o texto "Astroide a" na posição (xi\*normalizer, yi\*normalizer) e desenha um astroide de raio 60 com centro

((xi + 0.10)\*normalizer, (yi-0.07)\*normalizer), usando a cor definida pela linha 0 de cColors;

void txtCardioide(double xi, double yi) – imprime o texto "Cardioide - c" na posição (xi\*normalizer, yi\*normalizer) e desenha um cardioide de raio 40 com centro

((xi + 0.10)\*normalizer, (yi-0.09)\*normalizer), usando a cor definida pela linha 1 de cColors;

- void txtEpicloide(double xi, double yi) imprime o texto "Epicicloide a" na posição (xi\*normalizer, yi\*normalizer) e desenha um epicicloide de raio 20 e k 4 com centro
- ((xi + 0.10)\*normalizer, (yi-0.09)\*normalizer), e um epicicloide de raio 20 e k 3.8 com centro
   ((xi + 0.28)\*normalizer, (yi-0.09)\*normalizer), usando a cor definida pela linha 2 de cColors;
- void txtAstroide(double xi, double yi) imprime o texto "Leminiscata de Bernoulli b" na posição (xi\*normalizer, (yi-0.05)\*normalizer) e desenha uma lemniscata de Bernoulli de raio 60 com centro

((xi + 0.10)\*normalizer, (yi-0.1)\*normalizer), usando a cor definida pela linha 3 de cColors;

void printaCurva(char cC, double radius) – o utilizador indica o tipo de curva que pretende desenhar (introduzindo o caracter correspondente), as coordenadas do centro, o raio e a constante k (no caso do epicicloide), sendo desenhada a curva correspondente, caso a informação introduzida seja válida.



#### 3.4 "newmain.c"

#### Inclusão das bibliotecas necessárias

Figura 6 - Bibliotecas em newmain.c

#### Declaração de variáveis globais

Figura 7 - Variáveis globais em newmain.c

- iColor número inteiro que corresponde à linha da matriz cColor. É inicializada atribuindo o valor -1;
- xTxt coordenada x da posição para imprimir informação sobre os tipos de curva;
- yTxt coordeneda y da posição para imprimir informação sobre os tipos de curva.

#### Funções

- void display() função vazia;
- void init() imprime as condições iniciais da janela. Define o fundo branco, define as coordenadas globais como
- $\{(x,y): x \in [-mult*normalizer, normalizer*(nWidht mult)], y \in [-mult*normalizer, mult*normalizer]\}$ , usa as funções displayBlackRegion e displayAxes para imprimir o fundo preto do lado esquerdo da janela e desenhar os eixos, respectivamente, e usa as funções txtAstroide, txtCardioide, txtEpicloide e txtBernoulli para imprimir as informações sobre as curvas que o utilizador pode desenhar;
  - void controlaMouse(GLint button, GLint state, GLint x, GLint y) caso o utilizador carregue
     numa das teclas a que corresponde uma curva (a, c, e, b), é desenhada uma curva desse tipo



com centro na posição do gráfico em que o cursor se encontra quando se carrega no botão esquerdo do rato. Quando se carrega no botão direito do rato, todas as curvas desenhadas são apagadas;

- void changeColor() permite que o utilizador introduza novos valores r, g, b para definir a cor de determinado tipo de curva. Esses valores são guardados na linha adequada para esse tipo de curva na matriz cColor;
- void controlaKeyboard(unsigned char key, GLdouble x, GLdouble y) define a acção a ocorrer quando se pressiona uma tecla key correspondente a uma letra;
- void controlaEspessura(GLint key) define a alteração relativa à espessura da linha da curva quando se pressiona uma tecla do tipo Fi, I = 1, 2, 3, 4;
- int main(int argc, char\*\*argv) imprime informação sobre o funcionamento do programa. Recorre às funções anteriores para permitir que o utilizador altere as cores, espessura da linha e o raio das curvas (e k, no caso do epicicloide), desenhe curvas indicando o tipo de curva e carregando no ponto do gráfico que quer usar como centro, desenhe curvas indicando o tipo de curva, as coordenadas do centro e o raio (e k no caso do epicicloide) e apague todas as curvas já desenhadas.



# 4. APRESENTAÇÃO DE UMA SESSÃO DE UTILIZAÇÃO

```
C:\Users\Catarina\Dropbox\VC\trab1\Release - ecurvas\ecurvas.exe

Este programa pode gerar as seguintes curvas:

Astroide: - 'a'

    x = (r / 4) * (3*cos(t) + cos(3*t))
    y = (r / 4) * (3*sin(t) - sin(3*t))

Cardioide: - 'c'

    x = r * (2*cos(t) + cos(2*t))
    y = r * (2*sin(t) - sin(2*t))

Epicicloide: - 'e'

    x = r*(k + 1)*cos(t) - r*cos((k + 1)*t))

y = r*(k + 1)*sin(t) - r*sin((k + 1)*t))

Lemniscata de Bernoulli: - 'b'

    x = (r*(2^(1/2))*cos(t))/(sin^2(t) + 1)

y = (r*(2^(1/2))*cos(t)*sin(t))/(sin^2(t) + 1)
```

Figura 8 - Informação inicial sobre as curvas

```
C:\Users\Catarina\Dropbox\VC\trab1\Release - ecurvas\ecurvas.exe

Raio inicial = 100.000

Para alterar o raio pressione 'r'.

Para aumentar o raio pressione:

1: +5, 2: *2

Para diminuir o raio pressione:

3: -5, 4: /2

K inicial = 4.00

Para alterar o K pressione 'k'.
```

Figura 9 - Informação sobre os comandos para alterar o raio e k

```
C:\Users\Catarina\Dropbox\VC\trab1\Release - ecurvas\ecurvas.exe

Espessura inicial = 1

Para alterar a espessura pressione 'l'.

Para aumentar a espessura da linha pressione:

F1: +1, F2: *2

Para diminuir a espessura da linha pressione:

F3: -1, F4: /2

Para mudar a cor da curva selecionada pressione 'z'.

Para redefinir as cores para as padroes pressione 'x'.

Para escolher qual e onde gerar a curva pressione 'p'.

Para apagar as curvas desenhadas pressione o botao direito do rato

Para sair pressionar 'q'.
```

Figura 10 - Informação sobre os comandos para alterar a cor e a espessura da linha, apagar curvas desenhadas e sair do programa

```
C\Users\Catarina\Dropbox\VC\trab1\Release - ecurvas\ecurvas.exe — — X

Para gerar uma curva, usando os valores predefinidos ou os
alterados, indique o tipo de curva pretendida e, de seguida,coloque o cursor em cima do ponto do grafico que vai servir
de centro e carregue no botao esquerdo do rato.

Alternativamente, pressione 'p' e indique o tipo de curva, as coordenadas do centro, o raio e k, se necessario.

Quando se pretende alterar a cor ou a espessura da linha,
indique as alteracoes antes de gerar a curva.

-----Listagem de Comandos-----
```

Figura 11 - Informação sobre o funcionamento do programa



Figura 12 - Curva desenhada com os atributos predefinidos pressionando 'a' e carregando no botão esquerdo do rato em cima do centro



Figura 13 - Curva verde desenhada com os atributos predefinidos e curva rosa desenhada após os comandos: 'F2', 'F2', 'z', 'r', 'b'



Figura 14 - Cardioide desenhado recorrendo ao comando 'p'



# 5. CONCLUSÕES

A realização deste trabalho permitiu a consolidação dos conhecimentos adquiridos nas aulas de Visualização Computacional, bem como o aprofundamento de algumas áreas do OpenGL, já que, até ao momento, foi o trabalho mais complexo em que tivemos que recorrer à biblioteca glut.h.

Um dos maiores desafios com que nos deparámos neste trabalho está relacionado com o facto de algumas funções da linguagem C que usamos frequentemente não terem o mesmo resultado quando utilizamos o Microsoft Visual Studio.

Consideramos que conseguimos cumprir, de forma original, todos os objectivos do trabalho, criando uma aplicação de fácil de utilização.



# 6. BIBLIOGRAFIA

Apontamentos das aulas

Wikipedia contributors, "Astroid", Wikipedia, The Free Encyclopedia

URL: <a href="https://en.wikipedia.org/w/index.php?title=Astroid&oldid=717759872">https://en.wikipedia.org/w/index.php?title=Astroid&oldid=717759872</a> (Conferido em: 28 de Outubro de 2016)

Wikipedia contributors, "Cardioid", Wikipedia, The Free Encyclopedia

URL: <a href="https://en.wikipedia.org/w/index.php?title=Cardioid&oldid=744573112">https://en.wikipedia.org/w/index.php?title=Cardioid&oldid=744573112</a> (Conferido em: 28 de Outubro de 2016)

Wikipedia contributors, "Epicycloid", Wikipedia, The Free Encyclopedia

URL: <a href="https://en.wikipedia.org/w/index.php?title=Epicycloid&oldid=721339475">https://en.wikipedia.org/w/index.php?title=Epicycloid&oldid=721339475</a> (Conferido em: 28 de Outubro de 2016)

Wikipedia contributors, "Lemniscate of Bernoulli", Wikipedia, The Free Encyclopedia

URL: <a href="https://en.wikipedia.org/w/index.php?title=Lemniscate">https://en.wikipedia.org/w/index.php?title=Lemniscate</a> of Bernoulli&oldid=739712834

(Conferido em: 28 de Outubro de 2016)