Orbital and Attitude Dynamics Simulation for Nano- and Picosatellites

Murray L Ireland

6th November 2016

ABSTRACT

CONTENTS

List of Figures			3
List of Tables			4
1	Intro	ODUCTION	8
2	Orbital Dynamics		9
	2.1	Kepler Stuff	9
	2.2	Orbital Elements	9
	2.3	Frames of Reference	9
	2.4	More Complex Stuff	9
Bı	BLIOGR	АРНУ	10

LIST OF FIGURES

LIST OF TABLES

LIST OF NOTES

NOMENCLATURE

UNITS

All units of measurement throughout this thesis conform to the *Système Internationale*, with deviations from this rule noted where appropriate.

NOTATION

This section describes the general form of notation for properties such as scalars, vectors and matrices and their derivatives.

TIME DERIVATIVES

- \dot{x} first derivative of x with respect to time
- \ddot{x} second derivative of x with respect to time
- $x^{(n)}$ nth derivative of x with respect to time

SCALARS, VECTORS AND MATRICES

- x scalar
- x vector or matrix
- \mathbf{x}^T transpose of vector or matrix
- x_i ith element of vector **x**
- f(x) function of scalar x
- $f(\mathbf{x})$ function of vector or matrix \mathbf{x}
- $f_{\mathbf{x}}$ Jacobian of $f(\mathbf{x})$ with respect to \mathbf{x}

SYMBOLS

The following symbols are used throughout this thesis. Where a symbol is used only briefly, it is defined at the appropriate point in the text.

LATIN

 C_d aerodynamic drag coefficient [–]

 F, \mathbf{F} force [N]

g acceleration due to gravity $[m s^{-2}]$

i current [A]

L, M, N rotational forces [N m]

M moment [N m] m mass [kg] R resistance [Ω]

u, v, w surge, sway and heave velocities [m s⁻¹]

V magnitude of velocity [m s⁻¹] V_a voltage applied to circuit [V]

X, Y, Z linear forces [N]

x, y, z components of position [m]

GREEK

 β slip angle [rad]

 ϕ , θ , ψ roll, pitch and yaw displacements [rad]

 ρ atmospheric density [kg m⁻³]

 σ friction coefficient [–]

 ω rotational speed [rad s⁻¹]

 ω angular velocity vector [rad s⁻¹]

SUBSCRIPTS

k iteration of inverse simulation

n iteration of Newton-Raphson method

ABBREVIATIONS

FDIR fault detection, isolation and reconfiguration

InvSim inverse simulation NED north-east-down

1

INTRODUCTION

Put stuff in here at some point, including:

- Previous work
- Taxonomy of rovers
- Inverse simulation

2

ORBITAL DYNAMICS

- 2.1 KEPLER STUFF
- 2.2 ORBITAL ELEMENTS
- 2.3 FRAMES OF REFERENCE
- 2.4 MORE COMPLEX STUFF

BIBLIOGRAPHY