Algèbre linéaire - Chapitre 2 Espaces vectoriels

Résumé des idées

À retenir dans une semaine :

- Un espace vectoriel est un ensemble avec deux lois : une addition interne et une multiplication par un scalaire.
- Un vecteur est un élément d'un espace vectoriel.
- Pour vérifier qu'un ensemble est un espace vectoriel :
 - Possède-t-il un vecteur nul?
 - L'addition est-elle une loi interne?
 - La multiplication par un scalaire est-elle une loi externe?
 - Les règles de calcul de l'addition et de la multiplication par un scalaire sont-elles vérifiées ?

C Ce que je dois savoir

- Que signifie qu'une loi soit interne à un ensemble?
- Quelles sont les règles de calculs pour les espaces vectoriels?
- Qu'est-ce que le vecteur nul d'un espace vectoriel?

2.1 Exercices

2.1.1 Les espaces vectoriels dans \mathbb{R}^n

- 1. Quels sont les espaces vectoriels inclus dans \mathbb{R} ?
- 2. Quels sont les espaces vectoriels inclus dans \mathbb{R}^2 ?
- 3. Quels sont les espaces vectoriels inclus dans \mathbb{R}^3 ?

2.1.2 parties de \mathbb{R}^2

Les parties suivantes sont-elles des sous-espaces vectoriels de \mathbb{R}^2 ?

1.
$$A = \{(x, y) \in \mathbb{R}^2 \mid x \leq y\}$$

3.
$$C = \{(x, y) \in \mathbb{R}^2 \mid x = y\}$$

2.
$$B = \{(x, y) \in \mathbb{R}^2 \mid xy = 0\}$$

4.
$$D = \{(x, y) \in \mathbb{R}^2 \mid x + y = 1\}$$

2.1.3 Dans un espace de fonctions

Soit E le \mathbb{R} -espace vectoriel des applications de [0,1] dans \mathbb{R} muni des opérations usuelles. Soit F l'ensemble des applications de [0,1] dans \mathbb{R} vérifiant l'une des conditions suivantes :

1.
$$f(0) + f(1) = 0$$

4.
$$\forall x \in [0,1], f(x) + f(1-x) = 0$$

2.
$$f(0) = 0$$

5.
$$\forall x \in [0, 1], f(x) \ge 0$$

3.
$$f\left(\frac{1}{2}\right) = \frac{1}{4}$$

6.
$$2f(0) = f(1) + 3$$

Dans quel cas F est-il un espace vectoriel inclus dans E?

2.1.4 Dans \mathbb{R}^n

On munit \mathbb{R}^n des lois usuelles. Parmi les sous-ensembles suivants F de \mathbb{R}^n , lesquels sont des espaces vectoriels?

1.
$$F = \{(x_1, \dots, x_n) \in \mathbb{R}^n / x_1 = 0\}$$

4.
$$F = \{(x_1, \dots, x_n) \in \mathbb{R}^n / x_1 + \dots + x_n = 0\}$$

2.
$$F = \{(x_1, \dots, x_n) \in \mathbb{R}^n / x_1 = 1\}$$

5.
$$F = \{(x_1, \dots, x_n) \in \mathbb{R}^n / x_1 \times x_2 = 0\}$$

3.
$$F = \{(x_1, \dots, x_n) \in \mathbb{R}^n / x_1 = x_2\}$$

2.1.5 Dans $\mathbb{R}[X]$

Les ensembles suivants sont-ils des espaces vectoriels?

- 1. A_1 est l'ensemble des polynômes réels P vérifiant P(0) = 1.
- 2. A_2 est l'ensemble des polynômes réels ayant a comme racine. ($a \in \mathbb{R}$ fixé).
- 3. A_3 est l'ensemble des polynômes réels ayant au moins une racine réelle.
- 4. A_4 est l'ensemble des polynômes réels de degré 3.

2.1.6 Dans l'espace des suites réelles

Les ensembles suivants sont-ils des espaces vectoriels?

- 1. A_1 est l'ensemble des suites réelles convergentes vers 1.
- 2. A_2 est l'ensemble des suites réelles négligeables devant n^2
- 3. A_3 est l'ensemble des suites réelles équivalentes à n^2 .
- 4. A_4 est l'ensemble des suites réelles $(u_n)_{n\in\mathbb{N}}$ vérifiant :

$$\forall n \in \mathbb{N}, u_{n+1} = 5u_n - 3$$

- 5. A_5 est l'ensemble des suites réelles arithmétiques.
- 6. A_6 est l'ensemble des suites réelles géométriques.

2.1.7 Mélange

Déterminer si les ensembles suivants sont ou ne sont pas des espaces vectoriels :

- 1. $E_1 = \{ P \in \mathbb{R}[X]; P(0) = P(2) \};$
- 2. $E_2 = \{ P \in \mathbb{R}[X]; P'(0) = 2 \};$
- 3. Pour $A \in \mathbb{R}[X]$ non-nul fixé, $E_3 = \{P \in \mathbb{R}[X]; A \mid P\}$;
- 4. D l'ensemble des fonctions de \mathbb{R} dans \mathbb{R} qui sont dérivables;
- 5. E_4 , l'ensemble des solutions de l'équation différentielle y' + a(x)y = 0, où $a \in \mathcal{D}$.
- 6. E_5 , l'ensemble des solutions de l'équation différentielle y' + a(x)y = x, où $a \in \mathcal{D}$.

Bases

2.1.8 Dans \mathbb{R}^2

- 1. Montrer que les vecteurs $v_1 = (0, 1), v_2 = (1, 1)$ forment une base de \mathbb{R}^2 . Trouver les composantes du vecteur w = (1, 2) dans cette base (v_1, v_2) .
- 2. Montrer que les vecteurs $v_1 = (1, 2), v_2 = (3, 4)$ forment une base de \mathbb{R}^2 . Trouver les composantes des vecteurs $e_1 = (1, 0)$ et $e_2 = (0, 1)$ dans cette base (v_1, v_2, v_3) .
- 3. Dans \mathbb{R}^2 , donner un exemple de famille libre qui n'est pas génératrice.
- 4. Dans \mathbb{R}^2 , donner un exemple de famille génératrice qui n'est pas libre.

2.1.9 Dans \mathbb{R}^3

- 1. Montrer que les vecteurs $v_1 = (0, 1, 1), v_2 = (1, 0, 1)$ et $v_3 = (1, 1, 0)$ forment une base de \mathbb{R}^3 . Trouver les composantes du vecteur w = (1, 1, 1) dans cette base (v_1, v_2, v_3) .
- 2. Montrer que les vecteurs $v_1 = (1, 1, 1), v_2 = (-1, 1, 0)$ et $v_3 = (1, 0, -1)$ forment une base de \mathbb{R}^3 . Trouver les composantes du vecteur $e_1 = (1, 0, 0), e_2 = (0, 1, 0), e_3 = (0, 0, 1)$ et w = (1, 2, -3) dans cette base (v_1, v_2, v_3) .
- 3. Dans \mathbb{R}^3 , donner un exemple de famille libre qui n'est pas génératrice.
- 4. Dans \mathbb{R}^3 , donner un exemple de famille génératrice qui n'est pas libre.

2.1.10 avec un paramètre

Déterminer pour quelles valeurs de $t \in \mathbb{R}$ les vecteurs

$$\{(1,0,t),(1,1,t),(t,0,1)\}$$

forment une base de \mathbb{R}^3 .

Considérons la famille $B = (Q_1, Q_2, Q_3)$ où

$$\begin{cases} Q_1 = X^2 + 1 \\ Q_2 = 3X^2 - X + 3 \\ Q_3 = X^2 - X - 1 \end{cases}$$

B est-elle une base de $\mathbb{R}_2[X]$? Sioui, déterminer les coordonnées de X.

Auteur : M. Berger