

Microwave Circuits Project

Semester: Fall 2025

Course: ECE 433s: Microwave Circuits and Systems

<u>Name</u>	<u>Code</u>	Group	
Marina Ebraam	2001149	Group 44 Freq = 14.5 GHz Rogers 6010	
Abdallah karim motwea	2000993		
Mariam Badie Wanis	2001253		
Abdelrahman Abdelfattah Ragab	2000463		

Contents

Microwave Circuits Project	1
Hand Analysis	2
Specs	2
Analysis:	2
Simulation Results	4
Case 1: Without T-Junction	4
Case 2: With T-Junction (Unoptimized)	
Case 3: With T-Junction (Optimized)	10
Summary of Length and Widths of all transmission lines	
Layout Schematic	
Case 1: Without T-Junction	
Case 2: With T-Junction (Unoptimized)	
Case 3: With T-Junction (Optimized)	16

Hand Analysis:

	Hand Analysis;	
- Centra frequen Devrice	Type: Rogers 6010 -> F: 14.5 GHZ cy. Quadrature (90°) hybrid	Thickness , 635 Mm Dielectric Constant-y Er. 10.2 + 0.25 Dielectric loss , 4 tan8 = 0.0025 at 10GHz
	Analysis. S 8 e A e 2 - 2	Copper thickness : 1 ounce per square foot or 34 jun
2 7 2 2		Sh(B-1) +0.39 -0.61 2) 40
	B = 377TT 26 VEr	

$$C = \frac{3 \times 10^{3}}{4 \times 14.5 \times 10^{9}} \sqrt{\frac{1.25 \times 114}{10.2 \times 11}} = \frac{1.921 \text{ mm}}{10.23 \times \frac{0.11}{10.2}}$$

$$= \frac{3.16981}{2 \times 50 + \sqrt{10.2}} = \frac{3.70244}{2 \times 50 + \sqrt{10.2}} = \frac{3.70244}{2 \times 50 + \sqrt{10.2}}$$

$$= \frac{8e^{4}}{2^{14} - 2} = \frac{0.938062}{2 \times 11 \times 12} = \frac{6.8386}{2 \times 11 \times 12}$$

$$= \frac{6.8386}{2 \times 11 \times 12} = \frac{3.86}{2 \times 11 \times 12} = \frac{6.8386}{2 \times 11 \times 12} = \frac{3.86}{2 \times 11 \times 12} = \frac{3.886}{2 \times 11 \times 12} = \frac{3.886}{2 \times 11 \times 11 \times 11 \times 11} = \frac{3.886}{2 \times 11 \times 11 \times 11 \times 11} = \frac{3.878}{2 \times 11 \times 11 \times 11 \times 11} = \frac{3.878}{2 \times 11 \times 11 \times 11 \times 11} = \frac{3.878}{2 \times 11 \times 11 \times 11} = \frac{3.886}{2 \times 11 \times 11 \times 11} = \frac{3.886}{2 \times 11 \times 11 \times 11} = \frac{3.878}{2 \times 11 \times 11 \times 11} = \frac{3.886}{2 \times 11$$

 $w_1 = 1126.96 \,\mu m$ $w_2 = 595.6693 \,\mu m$ $l_1 = 1.921 \,m m$ $l_2 = 1.978 \,m m$

Case 1: Without T-Junction:

Schematic:

Magnitude Of S-Parameters:

Phase of S-Parameters:

Phase and Magnitude comparison from Port 2 and 3

→ We can see that while the magnitude resonance frequency is shifted from the 14.5GHz (-3dB is shifted to 3GHz approximately), the phase shift is approximately equals to 90 degrees (179.999-90=89.8)

Bandwidth (from S11) = 16.81 - 12.16 = 4.65 GHz

Bandwidth (from S21) = $17.83 - 11.08 = 6.75 \ GHz$

Bandwidth (from S31) = 14.49-5.278 = 9.212 GHz

Bandwidth (from S41) = $17.39-11.57 = 5.82 \ GHz$

Case 2: With T-Junction (Unoptimized)

Magnitude Of S-Parameters:

Phase of S-Parameters:

Phase and Magnitude comparison from Port 2 and 3

→ We can see that while the magnitude resonance frequency is shifted from the 14.5GHz (-3dB is shifted to 3GHz approximately), the phase shift is more than 90 degrees between both ports m it needs optimization..

Bandwidth (from S11) = $13.77 - 10.05 = 3.75 \ GHz$ Bandwidth (from S21) = $14.84 - 9.364 = 5.476 \ GHz$ Bandwidth (from S31) = $15.53 - 7.362 = 8.168 \ GHz$

Comment:

- The difference between the two bandwidth values is because each method has a different idea of what power level is acceptable.
- In the first method (signal below -10 dB), it means that more than 90% of the input power is still being passed through. Most of the power makes it to ports 2 and 3, either as the main output or as a coupled signal.
- In the second method (signal above -6 dB), it assumes that half of the power is already lost before reaching the receiving port. Since the signal starts weaker, this method sets the acceptable level at about a quarter of the original input power. This shows that some power may be lost to the isolated port or used up inside the circuit.

Case 3: With T-Junction (Optimized)

Schematic:

Magnitude of S-Parameters:

Phase of S-Parameters:

Phase and Magnitude comparison from Port 2 and 3:

- \rightarrow We can see that the optimization moved the resonance to the required frequency (14.5GHz) and the phase shift is kept 90 degrees.(179.508-89.495=90.013)
- → However, the S31 parameter isn't exactly on the desired frequency, it's shifted up.

Bandwidth (from S11) = $18.75 - 11.33 = 7.42 \, GHz$ Bandwidth (from S21) = $18.31 - 8.427 = 9.883 \, GHz$

Bandwidth (from S31) = $21.88 - 12.73 = 9.15 \ GHz$

Comment:

It's important to mention that the S21 value going above -3 dB could be because of double reflections. Some of the power that was reflected back from port 2 toward port 1 got reflected again from port 1 back to port 2. This second reflection adds more power to what was already reflected, causing interference.

Most of the power went this way: $P1 \rightarrow P2$

Some of the power went this way: $P1 \rightarrow P2 \rightarrow P1 \rightarrow P2$

Summary of Length and Widths of all transmission lines

Parameter	Hand Analysis	Case 1 (without T) and Case 2 (With T – Unoptimized)	Case 3 (With T – Optimized)
L1_50	1.978 mm	1.929320 mm	1.297592 mm
L2_35.355	1.921 mm	1.844950 mm	1.660455 mm
W1_50	0.5956693 mm	0.601344 mm	0.601344 mm
W2_35.355	1.12696 mm	1.164240 mm	0.99696 mm
L	0.989 mm	0.96466 mm	0.648796 mm

Layout Schematic

Case 2: With T-Junction (Unoptimized)

Layout:

S-Parameters:

Discrete Frequencies vs. Fitted (AFS or Linear)

Comments:

At Operating frequency 14.5 GHz, Figures show how the power is divided equally between the other two ports and get isolated at the adjacent port to input port

- Figures show recioprical characteristic.
- At Operating frequency 14.5 GHz, figure of S21 and S31 shows how power divided between ports 2,3 but it need optimization to adjust it to be equal -3 dB.
- At Operating frequency 14.5 GHz, figure of S41 show isolation between port 1 and port 4
- Figure of S11, S22, S33, S44 as expected as it is matched at all ports so only small fraction of input return back at the input port Phase:

Phase of S-Parameters:

Comment:

The difference between the phase of S21 and S31 = 108.1-8.253 = 99.847°

– It's expected to be 90° so we need optimization.

The Bandwidth equal to range of frequencies where $S11 < -10 \; db$

- The Bandwidth = 13.77 - 10.06 = 3.71 GHz

Case 3: With T-Junction (Optimized)

Layout:

Magnitude of S-Parameters:

Comments:

-S21 and S31 values are more close to -3db

Phase of S-Parameters:

Comments:

- Phase difference between S21 and S31 = 179.508 89.495 = 90.013
- Approximately 90 degrees

Bandwidth where frequencies range of S11 < -10db

Bandwidth = 16.21 Ghz - 12.68 Ghz = 3.53 Ghz

