- 1. Время до прихода автобуса в i-й день случайная величина x_i , имеющая равномерное распределение на отрезке [0,a], где a неизвестно. Величины x_i независимы. Если время ожидания оказывается меньше 3-х минут, то я записываю число 3 вместо фактического времени. При большем времени ожидания, я точно фиксирую его в вектор y.
 - а) [4] Найдите оценку a методом максимального правдоподобия по выборке y = (5, 3, 6, 3).
 - б) [4] Найдите оценку a методом максимального правдоподобия по произвольной выборке y.
 - в) [2] Оцените методом максимального правдоподобия вероятность того, что автобус придёт быстрее, чем за 5 минут по произвольной выборке y.
- 2. Величины (x_i) независимы и экспоненциально распределены с параметром λ .
 - а) [4] Найдите $\mathbb{E}(y_i^2)$ и $\mathbb{E}(y_i^3)$.
 - б) [3] Постройте оценку метода моментов параметра λ для произвольной выборки $y_1, y_2, ..., y_n$, используя второй момент.
 - в) [3] Постройте оценку метода моментов параметра λ для произвольной выборки $y_1, y_2, ..., y_n$, используя третий момент.
- 3. Величины (X_i) независимы и распределены по пуассону с интенсивностью λ .

Рассмотрим оценку неизвестного параметра $a=\exp(-\lambda)$:

$$\hat{a} = N_0/(n+1),$$

где n — размер выборки, а N_0 — количество наблюдений (X_i) , оказавшихся равными нулю.

- а) [5] Является ли оценка несмещённой?
- б) [5] Является ли оценка состоятельной?
- 4. Величины (X_i) независимы и одинаково распределены с ожиданием 2a и дисперсией a^2 . Известно, что оценка $\hat{b}=(2+3\bar{X})/(3+\bar{X})$ является состоятельной для параметра b. По выборке из 1000 наблюдений оказалось, что $\bar{X}=4$.

а) [7] Найдите стандартную ошибку $se(\hat{b})$ с помощью дельта-метода.

- б) [3] Постройте 95% асимптотический доверительный интервал для b.
- 5. Илон Маск оценивает один неизвестный параметр a методом максимального правдоподобия. По выборке из 4000 наблюдений оказалось, что $\hat{a}=30$, а вторая производная лог-правдоподобия равна $\ell''(\hat{a})=-900$.
 - а) [2] Оцените информацию Фишера.
 - б) [5] Постройте 95% асимптотический доверительный интервал для a.
 - в) [3] Постройте 95% асимптотический доверительный интервал для 1/a любым способом.

6. У 50 случайно выбранных рептилоидов средний рост равен 5 метрам с выборочной оценкой дисперсии 100. У 50 случайно выбранных зелёных человечков средний рост равен 6 метрам с выборочной оценкой дисперсии 169.

Обозначим соответствующие математические ожидания роста как μ_a и μ_b .

Постройте 99%-й доверительный интервал для разницы $\mu_a - \mu_b$ двумя способами:

- а) [5] Используя асимптотически нормальное распределение.
- б) [5] Используя статистику Уэлча.

Уточнение: в ответе можно оставить квантиль распределения, достаточно чётко указать, какой квантиль, какого распределения нужен.