C. Big Secret

time limit per test: 2 seconds memory limit per test: 256 megabytes

input: standard input output: standard output

Vitya has learned that the answer for The Ultimate Question of Life, the Universe, and Everything is not the integer 54 42, but an increasing integer sequence $a_1, ..., a_n$. In order to not reveal the secret earlier than needed, Vitya encrypted the answer and obtained the sequence $b_1, ..., b_n$ using the following rules:

- $b_1 = a_1$;
- $b_i = a_i \oplus a_{i-1}$ for all i from 2 to n, where $x \oplus y$ is the bitwise XOR of x and y.

It is easy to see that the original sequence can be obtained using the rule $a_i = b_1 \oplus ... \oplus b_i$.

However, some time later Vitya discovered that the integers b_i in the cypher got shuffled, and it can happen that when decrypted using the rule mentioned above, it can produce a sequence that is not increasing. In order to save his reputation in the scientific community, Vasya decided to find some permutation of integers b_i so that the sequence $a_i = b_1 \oplus ... \oplus b_i$ is strictly increasing. Help him find such a permutation or determine that it is impossible.

Input

The first line contains a single integer n ($1 \le n \le 10^5$).

The second line contains n integers $b_1, ..., b_n (1 \le b_i < 2^{60})$.

Output

If there are no valid permutations, print a single line containing "No".

Otherwise in the first line print the word "Yes", and in the second line print integers $b_{i1}, ..., b_{in}$ — a valid permutation of integers b_{i} . The unordered multisets $\{b_{1}, ..., b_{n}\}$ and $\{b_{i1}, ..., b_{in}\}$ should be equal, i. e. for each integer x the number of occurrences of x in the first multiset should be equal to the number of occurrences of x in the second multiset. Apart from this, the sequence $a_{i} = b_{i1} \oplus ... \oplus b_{in}$ should be strictly increasing.

If there are multiple answers, print any of them.

Examples

```
input
3
1 2 3

output
No
```

```
input

6
4 7 7 12 31 61

output

Yes
4 12 7 31 7 61
```

Note

In the first example no permutation is valid.

In the second example the given answer lead to the sequence $a_1 = 4$, $a_2 = 8$, $a_3 = 15$, $a_4 = 16$, $a_5 = 23$, $a_6 = 42$.