Syllabus 2nd Internal CSEN2203 Module 2:

Array and vector processors, SIMD-Hwang and Briggs — Chapter 5- upto page 343, Superscalar, Superpipelined and VLIW processor architectures.

Interconnection networks:

Crossbar, Delta, Omega, Shuffle-Exchange, Banyan , Hypercube, Butterfly Networks. (Hwang and Briggs pages 350-358,)

Module 3:

Measuring and reporting performance:

CPI,MIPS etc. Amdahl's Law & Gustafson's Law.

Hierarchical memory technology

Inclusion, Coherence and locality properties;

Cache memory organizations,

Cache Miss Penalty, Techniques for reducing cache misses;

Virtual memory organization, mapping and management techniques, memory replacement policies.

Multiprocessor architecture:

Taxonomy of parallel architectures;

Centralized shared- memory architecture,

Distributed shared-memory architecture.

Cluster computers.

Hwang Chapter 1.2,1.3-NUMA, cc-NUMA, UMA, COMA, UMA clusters, NORMA

Module 4:

Issues with Multiprocessor Architectures:

Synchronization,

memory consistency; Cache Coherence protocols (brief discussion only);

Non von Neumann architectures:

Data flow computers, RISC architectures, Systolic architectures.

References:

- 1) **Kai Hwang:** Advanced Computer Architecture Parallelism, etc.
- 2) **Hennessey & Patterson :** Computer Architecture A Quantitative Approach
- 3) **Hamacher et el:** Computer Organization (5th Ed) & above
- 4) Kai Hwang & Briggs: Computer Architecture & Parallel Processing