

NPTEL Online Certification Courses

Deep Learning

Assignment-Week 2

TYPE OF QUESTION: MCQ/MSQ

Number of questions: 10 Total mark: $10 \times 2 = 20$

QUESTION 1:

Suppose if you are solving ann-class problem, how many discriminant function you will need for solving?

a. n-1

b. n

c. n+1

d. n-2

Correct Answer: b

Detailed Solution: For n class problem we need n number of discriminant function.

QUESTION 2:

If we choose the discriminant function $g_i(x)$ as a function of posterior probability. i.e. $g_i(x) = f(p(w_i/x))$. Then which of following cannot be the function f(x)?

a. log()

b. sin()

c. exp()

d. None of above.

Correct Answer: b

Detailed Solution:

The function f () should be a monotonic increasing function.

NPTEL Online Certification Courses

Indian Institute of Technology Kharagpur

QUESTION 3:

What will be the nature of decision surface when the covariance matrices of different classes are equal and diagonal matrix? (Given all the classes has equal class probabilities)

- a. Always orthogonal to two surfaces
- b. Generally not orthogonal to two surfaces
- c. Orthogonal to two surfaces and bisector of the line joining two mean.
- d. Arbitrary

Correct Answer: c

Detailed Solution:

Options are self-explanatory.

QUESTION 4:

The mean and variance of all the samples of two different normally distributed class ω_1 and ω_2 are given

$$\mu_1 = \begin{bmatrix} 3 \\ 6 \end{bmatrix}$$
; $\Sigma_1 = \begin{bmatrix} 1/2 & 0 \\ 0 & 2 \end{bmatrix}$ and $\mu_2 = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$; $\Sigma_2 = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$

What will be the value expression of decision boundary between these two classes if both the class has equal class probability 0.5? For the input sample $x=\begin{bmatrix}x_1\\x_2\end{bmatrix}$ consider $g_i(x)=x^t-\frac{1}{2}\Sigma_i^{-1}x+\Sigma_i^{-1}\mu_ix-\frac{1}{2}\mu_i^t\Sigma_i^{-1}\mu_i-\frac{1}{2}\ln|\Sigma_i|+\ln|P(\omega_i)|$

a.
$$x_2 = 3.514 - 1.12x_1 + 0.187x_1^2$$

b.
$$x_1 = 3.514 - 1.12x_2 + 0.187x_2^2$$

c.
$$x_1 = 0.514 - 1.12x_2 + 0.187x_2^2$$

d.
$$x_2 = 0.514 - 1.12x_2 + 0.187x_2^2$$

Correct Answer: a

Detailed Solution:

This is the most general case of discriminant function for normal density. The inverse matrices are

NPTEL Online Certification Courses Indian Institute of Technology Kharagpur

$$\Sigma_1^{-1} = \begin{bmatrix} 2 & 0 \\ 0 & 1/2 \end{bmatrix}$$
, and $\Sigma_2^{-1} = \begin{bmatrix} 1/2 & 0 \\ 0 & 1/2 \end{bmatrix}$

Setting $g_1(x) = g_2(x)$ we get the decision boundary as $x_2 = 3.514 - 1.12x_1 + 0.187x_1^2$

QUESTION 5:

For a two class problem, the linear discriminant function is given by $g(x) = a^t y$. What is the updating rule for finding the weight vector a. Here y is augmented feature vector.

- a. Adding the sum of all augmented feature vector which are misclassified multiplied by the learning rate to the current weigh vector.
- b. Subtracting the sum of allaugmented feature vector which are misclassified multiplied by the learning rate from the current weigh vector.
- c. Adding the sum of the all augmented feature vector belonging to the positive class multiplied by the learning rate to the current weigh vector.
- d. Subtracting the sum of allaugmented feature vector belonging to the negative class multiplied by the learning rate from the current weigh vector.

Correct Answer: a

Detailed Solution:

$$a(k+1) = a(k) + \eta \sum y$$

For derivation refer to video lectures.

QUESTION 6:

For minimum distance classifier which of the following must be satisfied?

- a. All the classes should have identical covariance matrix and diagonal matrix.
- b. All the classes should have identical covariance matrix but otherwise arbitrary.
- c. All the classes should have equal class probability.
- d. None of above.

NPTEL Online Certification Courses

Indian Institute of Technology Kharagpur

Correct Answer: c

Detailed Solution: Options are self-explanatory.

QUESTION 7:

Which of the following is the updating rule of gradient descent algorithm? Here ∇ is gradient operator and η is learning rate.

a.
$$a_{n+1} = a_n - \eta \nabla F(a_n)$$

b.
$$a_{n+1} = a_n + \eta \nabla F(a_n)$$

c.
$$a_{n+1} = a_n - \eta \nabla F(a_{n-1})$$

d.
$$a_{n+1} = a_n + \eta \nabla F(a_{n-1})$$

Correct Answer: a

Detailed Solution:

Gradient descent is an optimization algorithm used to minimize some function by iteratively moving in the direction of steepest descent as defined by the negative of the gradient.

QUESTION 8:

The decision surface between two normally distributed class ω_1 and ω_2 is shown on the figure. Can you comment which of the following is true?

NPTEL Online Certification Courses Indian Institute of Technology Kharagpur

- a. $p(\omega_1) = p(\omega_2)$
- b. $p(\omega_2) > p(\omega_1)$
- c. $p(\omega_1) > p(\omega_2)$
- d. None of the above.

Correct Answer: c

Detailed Solution:

If the prior probabilities are not equal, the optimal boundary hyperplane is shifted away from the more likely mean.

QUESTION 9:

In k-nearest neighbour's algorithm (k-NN), how we classify an unknown object?

- a. Assigning the label which is most frequent among the *k* nearesttraining samples.
- b. Assigning the unknown object to the class of its nearest neighbour among training sample.
- c. Assigning the label which is most frequent among the all training samples except the k farthest neighbor.
- d. None of this.

Correct Answer: a

NPTEL Online Certification Courses Indian Institute of Technology Kharagpur

Detailed	Colution
Detailed	Solution:

Optionsare self-explanatory.

QUESTION 10:

What is the direction of weight vector w.r.t. decision surface for linear classifier?

- a. Parallel
- b. Normal
- c. At an inclination of 45
- d. Arbitrary

Correct Answer: b

Detailed Solution:

Options are self-explanatory.