Случайные величины и мат.ожидание

 $\xi:\Omega\to\mathbb{R}$ - **случайная величина** (численное выражение события) Пример: $p(\xi=3)=\sum\limits_{\omega:\xi(\omega)=3}p(\omega)$

Пусть $\Omega \to \xi_1, \ \Omega \to \xi_2$ - случайные величины. Они **независимы**, если $\forall A, B \subset \mathbb{R}$ независимы $\xi_1 \subset A$ и $\xi_1 \subset B$.

A - событие. Тогда **индикаторная случайная величина** определяется следующим образом:

$$I_a(\omega) = \begin{cases} 1, \ \omega \in A \\ 0, \ \omega \in A \end{cases}$$

 $E(\xi) = \sum\limits_{\omega \in \Omega} \xi(\omega) p(w)$ - мат.
ожидание (среднее значение случайной величины)

Свойства мат.ожидания

$$E(c\xi) = cE(\xi)$$

$$E(\alpha \xi_1 + \beta \xi_2) = \alpha E(\xi_1) + \beta E(\xi_2)$$

Доказательство. По определению:
$$E(\alpha \xi_1 + \beta \xi_2) = \sum_{\omega \in \Omega} (\alpha \xi_1(\omega) + \beta \xi_2(\omega)) = \alpha E(\xi_1) + \beta E(\xi_2)$$

$$E(\xi_1\xi_2) = E(\xi_1)E(\xi_2)$$
, если ξ_1, ξ_2 независимы.

Доказательство.

Доказательство.
$$E(\xi) = \sum_{x \in \mathbb{R}} x \cdot p(\xi = x)$$

$$E(\xi_1 \xi_2) = \sum_{x \in \mathbb{R}} x \cdot p(\xi_1 \xi_2 = x) = \sum_{y \in \mathbb{R}} \sum_{z \in \mathbb{R}} yz \cdot p(y \cap z) = \sum_{y \in \mathbb{R}} \sum_{z \in \mathbb{R}} yz \cdot p(y)p(z) = \sum_{y \in \mathbb{R}} p(\xi_1 = y) + \sum_{z \in \mathbb{R}} p(\xi_2 = z)$$

$$D(\xi) = \sum_{\omega \in \Omega} (\xi(\omega - E(\xi)))^2 p(\omega) = E(\xi - E(\xi))$$
 - дисперсия (разброс значений)

Примеры

1. Есть n рабочих стоимостью c_1, c_2, \cdots, c_n за единицу времени, и n работ занимающие t_1, t_2, \cdots, t_n времени. Сколько ожидаемо мы заплатим случайной перестановке рабочих?

$$E(\xi \rho) = E \sum_{i=1}^n c(\rho_i) t_i = \sum_{i=1}^n t_i E(c_{\rho_i}) = \sum_{i=1}^n t_i \frac{\sum c_i}{n} = \frac{\sum t_i \sum c_i}{n}$$
 (из линейности мат.ожидания, раскладываем на n функций)

2. Пусть задан граф G = (V,E), и $A \subset V$. Тогда разрез U_A - это все ребра, соединяющие вершины из А с вершинами не из А. Каково мат.ожидание его размера?

$$E|U_A|=E\sum_{e\in E}I_{e\in U_A}=\sum_{e\in E}p(e\in U_A)=\frac{|E|}{2}$$
 (т.к. каждая вершина относится к A с вероятностью $\frac{1}{2}$)

3. Каково мат.ожидание len в жадном поиске $HB\Pi$?

 $E(\xi(\rho)) = E \sum_{i=1}^n I_{\rho_i = max(\rho_1, \cdots, \rho_i)} = \sum_{i=1}^n \frac{1}{i}$ (т.к. вероятность, что максимум в последовательности из i элементов будет на i-м месте, равна $\frac{1}{i}$)

Оценка дисперсии

Неравенство Маркова
$$p(\xi>kE(\xi)) \leq \tfrac{1}{k} \text{ при } \xi(w) \geq 0, \, E(\xi) \geq 0$$

Неравенство Чебышева
$$p(|\xi-E(\xi)|>a) \leq \frac{D(\xi)}{a^2}$$