Importación de librerías

```
In [2]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')

from scipy import stats
from sklearn.metrics import mean_squared_error, r2_score, classification_report, confusion_mar

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression, Ridge, Lasso, LogisticRegression
from sklearn.preprocessing import StandardScaler
```

Entendimiento contextual del proyecto a desarrollar

La empresa: RETAIL PLUS

RetailPlus, una cadena de tiendas desenvolviendo dentro del sector minorista peruano. Nació como un modesto distribuidor de abarrotes, la empresa ha sabido adaptarse a las cambiantes dinámicas del mercado, diversificando su oferta y expandiendo su huella geográfica. Hoy, su modelo de negocio se caracteriza por una doble vertiente: la venta mayorista a un portafolio diversificado de clientes institucionales y la venta minorista a través de sus propias sucursales y un creciente canal online.

Principales características de la empresa

- Diversidad en su cartera de clientes, clasificados de la siguiente manera:
 - Tradicional o empresa: pequeñas bodegas y restaurantes.
 - Alimento.
 - Química.
 - Textil.
 - Laboratorio.
 - Distribuidor.

Cada uno de ellos en un SECTOR CLIENTE y RUBRO DE CLIENTE definido.

- La gestión del inventario y la logística: desde productos perecederos hasta bienes duraderos, con centros de despacho estratégicamente ubicados ("PE20", "PE21", "PE22", entre otros). La relación entre el centro de despacho y la ubicación geográfica del cliente podría revelar patrones de demanda regional o costos logísticos asociados.
- Diversas condiciones de pago. Identificar si ciertas condiciones de pago están correlacionadas con mayores volúmenes de compra u otra correlación existente.

El problema:

- Excesos de Inventario y Quiebres de Stock.
- Decisiones de Precios No Óptimas: No existe una comprensión profunda de la elasticidad de la demanda por tipo de cliente o producto.

 Gestión de Crédito y Cobranza: La extensión de plazos de pago puede generar problemas de liquidez.

Las variables se describen de la siguiente manera:

- FECHA_FACTURA: Fecha en que se emitió la factura para la transacción.
- COD_CLIENTE: Identificador único del cliente que realizó la compra.
- SECTOR_CLIENTE: Sector económico al que pertenece el cliente.
- RUBRO_CLIENTE: Rubro específico del negocio del cliente, más detallado que el sector.
- COD_MATERIAL: Identificador único del material o producto vendido.
- MARCA: Marca del producto vendido.
- REGION: Región geográfica donde se encuentra el cliente o se realizó la entrega.
- PROVINCIA: Provincia donde se encuentra el cliente o se realizó la entrega.
- DISTRITO: Distrito donde se encuentra el cliente o se realizó la entrega.
- CIUDAD: Ciudad donde se encuentra el cliente o se realizó la entrega.
- CENTRO_DESPACHO: Código del centro de despacho desde donde se envió el producto.
- CONDICION_PAGO: Término de pago acordado para la transacción.
- FACTURA: Número de factura único para la transacción.
- UNIDAD_MEDIDA: Unidad de medida utilizada para la cantidad del producto (ej. litros, kilogramos, unidades).
- Cantidad: Cantidad de unidades del producto vendido en esta transacción.
- Monto USD: Monto total de la transacción en dólares estadounidenses

Lectura de archivo

```
In [3]: df = pd.read_csv("/content/dataset_module2.txt", encoding='latin1', sep=',')
```

EDA

Información general del data set

 Se realizará en análisis general de los datos: descriptivos, identificación de datos faltantes, así como ouliers.

```
In [4]: #INFORMACION GENERAL DEL TXT.
    df.shape

Out[4]: (16749, 17)

In [5]: # Eliminamos Las variables identificadores
    df = df.drop(['COD_CLIENTE', 'COD_MATERIAL', 'FACTURA'], axis=1)
    df.head()
```

LA VICTORIA	LIMA	Lima	А	ALIMENTO	EMPRESA	2020-01-02	0
LA VICTORIA	LIMA	Lima	В	ALIMENTO	EMPRESA	2020-01-02	1
SAN ISIDRO	LIMA	Lima	В	QUIMICA	EMPRESA	2020-01-02	2
ATE	LIMA	Lima	В	ALIMENTO	EMPRESA	2020-01-02	3
ATE	LIMA	Lima	В	TEXTIL	EMPRESA	2020-01-02	4

In [6]: df.describe(include="all")

in [0]. disdescribe(include= all

Out[6]:

•	FECHA_FACTURA	SECTOR_CLIENTE	RUBRO_CLIENTE	COD_MARCA	REGION	PROVINCIA	DIST
coun	16749	16682	16682	16748	16748	16748	
uniqu	e 448	6	24	4	21	52	
to	p 2020-02-29	TRADICIONAL	DISTRIBUIDOR	С	Lima	LIMA	
fre	q 461	9059	8456	9288	10185	9335	
mea	n NaN	NaN	NaN	NaN	NaN	NaN	
st	d NaN	NaN	NaN	NaN	NaN	NaN	
mi	n NaN	NaN	NaN	NaN	NaN	NaN	
259	% NaN	NaN	NaN	NaN	NaN	NaN	
509	% NaN	NaN	NaN	NaN	NaN	NaN	
759	% NaN	NaN	NaN	NaN	NaN	NaN	
ma	x NaN	NaN	NaN	NaN	NaN	NaN	

Se observará la variable Unidad de Medida, ya que se tiene que considerar una misma unidad de mediad para todo los datos, en todo caso se hará un conversión

In [7]: df.groupby('UNIDAD_MEDIDA').count()

Out[7]: FECHA_FACTURA SECTOR_CLIENTE RUBRO_CLIENTE COD_MARCA REGION PROVII

UNIDAD_MEDIDA

TO 16748 16682 16682 16748 16748 1

Se detectó una inconsistencia en la unidad de medida ('C/U'), por lo que se eliminará este registro para no sesgar los resultados.

In [8]: df = df[df['UNIDAD_MEDIDA'] != 'C/U']
df.groupby('UNIDAD_MEDIDA').count()

UNIDAD_MEDIDA

TO 16748 16682 16682 16748 16748 In [9]: df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 16749 entries, 0 to 16748 Data columns (total 14 columns): Non-Null Count Dtype Column --- ----------0 FECHA_FACTURA 16749 non-null object 1 SECTOR_CLIENTE 16682 non-null object RUBRO_CLIENTE 16682 non-null object
COD_MARCA 16748 non-null object 2 3 16748 non-null object 16748 non-null object 16748 non-null object 16682 non-null object 4 REGION 5 PROVINCIA DISTRITO 6 7 CIUDAD 8 CENTRO_DESPACHO 16632 non-null object CONDICION_PAGO 16748 non-null object 10 UNIDAD_MEDIDA 16748 non-null object 11 Cantidad 16748 non-null float64

13 Monto USD 16748 no dtypes: float64(3), object(11) memory usage: 1.8+ MB

12 Flete

-Se observa que existen variables con un porcentaje de valores faltantes: SECTOR_CLIENTE, RUBRO_CLIENTE, CIUDAD y CENTRO_DESPACHO. Analizamos el porcentaje da valores nulos por cada una de ellas

```
In [10]: df.isnull().sum().sum()
Out[10]: np.int64(327)
```

Hay presencia de un total de 530 datos null. A continuación se observará el porcentaje de representación por cada variable.

16748 non-null float64

16748 non-null float64

Identificación de NULOS

```
In [11]: #Vemos el porcentaje de valores faltantes por cada variable

# Missing data:

total = df.isnull().sum().sort_values(ascending = False)
percent = (df.isnull().sum() / df.isnull().count()).sort_values(ascending = False)
missing_data = pd.concat([total, percent], axis = 1, keys = ['Total', 'Percent'])

missing_data = missing_data[missing_data['Total'] > 0]
missing_data
```

	Total	Percent
CENTRO_DESPACHO	117	0.006985
SECTOR_CLIENTE	67	0.004000
CIUDAD	67	0.004000
RUBRO_CLIENTE	67	0.004000
REGION	1	0.000060
COD_MARCA	1	0.000060
UNIDAD_MEDIDA	1	0.000060
PROVINCIA	1	0.000060
DISTRITO	1	0.000060
CONDICION_PAGO	1	0.000060
Flete	1	0.000060
Cantidad	1	0.000060
Monto USD	1	0.000060

Out[11]:

• Las variables SECTOR_CLIENTE, RUBRO_CLIENTE, CIUDAD y CENTRO_DESPACHO tienen menos del 1% de valores faltantes.

Tratamiento valores null

• Dado que los valores nulos representan menos del 1% de los datos, se completarán con la moda correspondiente a la cada variable.

```
In [12]:
         moda_ciudad = df['CIUDAD'].mode()[0]
         moda rubro = df['RUBRO CLIENTE'].mode()[0]
         moda_sector_cliente = df['SECTOR_CLIENTE'].mode()[0]
         moda_centro = df['CENTRO_DESPACHO'].mode()[0]
                            = df['CIUDAD'].fillna(moda ciudad)
         df['RUBRO_CLIENTE'] = df['RUBRO_CLIENTE'].fillna(moda_rubro)
         df['SECTOR_CLIENTE'] = df['SECTOR_CLIENTE'].fillna(moda_sector_cliente)
         df['CENTRO_DESPACHO'] = df['CENTRO_DESPACHO'].fillna(moda_centro)
In [13]: #df = df.dropna(subset=['CIUDAD', 'RUBRO_CLIENTE', 'SECTOR_CLIENTE', 'CENTRO_DESPACHO'])
In [14]: #Vemos el porcentaje de valores faltantes por cada variable
         # Missing data:
         total = df.isnull().sum().sort_values(ascending = False)
         percent = (df.isnull().sum() / df.isnull().count()).sort_values(ascending = False)
         missing_data = pd.concat([total, percent], axis = 1, keys = ['Total', 'Percent'])
         missing_data = missing_data[missing_data['Total'] > 0]
         missing_data
```

	Total	Percent
REGION	1	0.00006
COD_MARCA	1	0.00006
PROVINCIA	1	0.00006
Cantidad	1	0.00006
CONDICION_PAGO	1	0.00006
DISTRITO	1	0.00006
Flete	1	0.00006
Monto USD	1	0.00006

Dataset completo

UNIDAD MEDIDA

In [15]: df.describe()

Out[15]:

Out[14]:

	Cantidad	Flete	Monto USD
count	16748.000000	16748.000000	16748.000000
mean	15.491938	278.490604	2230.710048
std	13.320534	495.899254	2675.423198
min	-31.200000	0.000000	-7812.990000
25%	2.500000	0.000000	298.550000
50%	12.000000	49.100000	1444.125000
75%	30.000000	330.865000	4932.465000
max	156.000000	2861.100000	27152.880000

1 0.00006

- Se observa una alta dispersión en las variables Flete y Monto USD, ya que la desviación estandar es mayor que la media.
- Posibles valores outliers para las varibales Cantidad, Flete y Monto USD, ya qye se observa que los valores máximos distan mucho del tercer cuartil.
- Se observa que las variables Cantidad y monto USD presentan valores negativos, por lo que se realizará el filtrado correspondiente.

In [16]: #Transformamos variable FECHA_FACTURA de tipo de dato OBJECT a DATETIME
df['FECHA_FACTURA'] = pd.to_datetime(df['FECHA_FACTURA'])

ANALISIS DE VARIABLE OBJETIVO

```
In [17]: df['Monto USD'].describe()
```

```
      Monto USD

      count
      16748.000000

      mean
      2230.710048

      std
      2675.423198

      min
      -7812.990000

      25%
      298.550000

      50%
      1444.125000

      75%
      4932.465000

      max
      27152.880000
```

Out[17]:

dtype: float64

```
In [18]: df = df[df['Cantidad'] > 0]
         df = df[df['Monto USD'] > 0]
         # Visualización para explorar patrones y detectar outliers
         plt.figure(figsize=(16, 10))
         # Histograma de Monto total USD
         plt.subplot(2, 2, 1)
         sns.histplot(df["Monto USD"], bins=30, kde=True, color="blue")
         plt.title("Distribución de Monto USD")
         # Boxplot de Monto total USD
         plt.subplot(2, 2, 2)
         sns.boxplot(x=df["Monto USD"], color="orange")
         plt.title("Boxplot de Monto USD")
         # Relación Cantidad vs Monto total USD
         plt.subplot(2, 2, 3)
         sns.scatterplot(x="Cantidad", y="Monto USD", data=df, alpha=0.6)
         plt.title("Cantidad vs Monto total USD")
         # Relación Flete vs Monto total USD
         plt.subplot(2, 2, 4)
         sns.scatterplot(x="Flete", y="Monto USD", data=df, alpha=0.6, color="green")
         plt.title("Flete vs Monto total USD")
         plt.tight_layout()
         plt.show()
```


Apartir de los graficos de observa lo siguiente:

MONTO_USD:

- La mayoria de montos estan entre 0 y 10 mil dolares, que es donde más se repiten ese monto de venta.
- Hay unos cuantos valores muy altos, pero son pocos, se puede ver por la cola larga a la derecha.
- Cantidad vs Monto Total: Se observa la existencia de una relación lineal positiva entre las variables Cantidad y Monto Total
- En Flete vs Monto Total: Existe un relación lineal debil, se verá a más detalle en la Matriz de correlación.
- Se observa la prescencia de datos atípicos.

```
TRATAMIENTO DE OUTLIERS
          Q1 = df["Monto USD"].quantile(0.25)#calcular los cuartiles
In [19]:
          Q3 = df["Monto USD"].quantile(0.75)
           IQR = Q3 - Q1
           limite_inferior = Q1 - 1.5 * IQR#definimos Los limites
In [20]:
           limite superior = Q3 + 1.5 * IQR
           df = df[(df["Monto USD"] >= limite_inferior) & (df["Monto USD"] <= limite_superior)]# filtral</pre>
In [21]:
         # Histograma de Monto total USD
         plt.subplot(2, 2, 1)
         sns.histplot(df["Monto USD"], bins=30, kde=True, color="blue")
         plt.title("Distribución de Monto USD")
         # Boxplot de Monto total USD
         plt.subplot(2, 2, 2)
         sns.boxplot(x=df["Monto USD"], color="orange")
```

```
plt.title("Boxplot de Monto USD")

# Relación Cantidad vs Monto total USD
plt.subplot(2, 2, 3)
sns.scatterplot(x="Cantidad", y="Monto USD", data=df, alpha=0.6)
plt.title("Cantidad vs Monto total USD")

# Relación Flete vs Monto total USD
plt.subplot(2, 2, 4)
sns.scatterplot(x="Flete", y="Monto USD", data=df, alpha=0.6, color="green")
plt.title("Flete vs Monto total USD")

plt.tight_layout()
plt.show()
```


OBSERVACIONES: Se muestra que los datos estan ajustado a la distribución general despues del tratamiento de outliers.

Manejo de Outliers

Revisando las variables explicativas cuantitativas:

- Para la variable cantidad, los valores con mayores frecuencia se encuentran entre menos a 50.
- Las variables Flete y Monto USD tienen una distribución con cola hacia la derecha.

In [24]: # realizamos diagramas de cajas para revisar la distribución de cada variable cuantitativa
for var in lista_cuantitativas:
 df[var].plot(kind='box', title=var)
 plt.show()

 La variable cantidad presenta valores atipicos aproximadamente entre 60 y 200. Los datos se concentran en valores menores a 50, pues la media se aproxima a cero. -Para la variable Flete, se observa outliers en un rango de 1000 a 3000. -Para la variable Monto USD, Se observa muchos valores atípicos mayores a 10000. Los valores para Monto USD se encuentran concentrados menores a 5000.

Revisando las variables explicactivas cualitativas:

df.groupby(var)['Monto USD'].count().plot.bar()
plt.show()

- En el gráfico de la variable SECTOR_CLIENTE, se observa que el MONTO USD se encuentra concentrado en EMPRESA y TRADICIONAL.
- RUBRO_CLIENTE: El gráfico muestra que el rubro DISTRIBUIDOS tiene mayor monto de ventas.

- MARCA: Las marcas B y D tienen valores mayores de MONTO USD.
- CIUDAD: Los valores mayores para MONTO USD se encuentra concentrado en Lima.
- CENTRO DE DESPACHO: los centros de despacho con mayor monto de ventas son PE22 y PE23.
- CONDICION DE PAGO: los valores mayores para MONTO USD se concentran en la condición de pago: al contado y factura a 30 días y a 45 días.

Relación de variables numéricas continuas con numericas discretas

```
In [26]:
         def plot_boxplot_subplots(df):
             variables = [
                 'SECTOR CLIENTE',
                 'RUBRO_CLIENTE',
                  'COD_MARCA',
                 'CENTRO_DESPACHO',
                 'CONDICION_PAGO',
                 'REGION',
                 'PROVINCIA',
                 'DISTRITO',
                 'CIUDAD',
             y_col = 'Monto USD'
             fig, axes = plt.subplots(2, 3, figsize=(18, 12))
             axes = axes.flatten()
             for ax, var in zip(axes, variables):
                 sns.boxplot(x=var, y=y_col, data=df, ax=ax)
                 ax.set_ylim(0, 40000)
                 ax.set_title(f'{var} / {y_col}')
                 ax.tick_params(axis='x', rotation=90)
             for ax in axes[len(variables):]:
                 ax.axis('off')
             plt.tight_layout()
             plt.show()
         # Uso:
         plot_boxplot_subplots(df)
```


Se considerará las siguientes Variables:

- SECTOR_CLIENTES
- COD_MARCA

```
In [27]: df_ohe = df.copy()
    lista_cualitativas_new = list(df_ohe.select_dtypes(include='object').columns)
    df_ohe = pd.get_dummies(df_ohe, columns=lista_cualitativas_new, dtype=float)
    lista_cuantitativas_new = list(df_ohe.select_dtypes(include=['int64', 'float64']).columns)

In [28]: import seaborn as sns
    import matplotlib.pyplot as plt

    df_numeric = df_ohe.select_dtypes(include=['number'])
    corrmat = df_numeric.corr()
    corrmat[['Monto USD']].sort_values(by = 'Monto USD',ascending = False).head(10).style.background.
```

Monto USD		Out[28]:
1.000000	Monto USD	
0.870147	Cantidad	
0.607000		

Monto USD	1.000000
Cantidad	0.870147
COD_MARCA_C	0.627233
SECTOR_CLIENTE_TRADICIONAL	0.496034
Flete	0.487090
CENTRO_DESPACHO_PE23	0.344875
RUBRO_CLIENTE_DISTRIBUIDOR	0.302316
RUBRO_CLIENTE_BROKER	0.267366
DISTRITO_TARAPOTO	0.266666
PROVINCIA_SAN MARTIN	0.266666

```
corrmat = df_ohe[['Cantidad', 'COD_MARCA_C','Flete','SECTOR_CLIENTE_TRADICIONAL','COD_MARCA_B
In [29]:
         corrmat
         plt.figure(figsize=(12,8))
         sns.heatmap(corrmat, annot=True, fmt=".2f", cmap='Blues')
         plt.title("MATRIZ DE CORRELACION : VARIABLES CUANTITATIVAS Y CUALITATIVAS")
         plt.show()
```


Variables a considerar:

- Cantidad
- Flete

- SECTOR_CLIENTE_TRADICIONAL
- SECTOR_CLIENTE_EMPRESA
- CENTRO DESPACHO PE20

Selección de variables

```
df_ohe = df_ohe[['Cantidad', 'CENTRO_DESPACHO_PE20', 'SECTOR_CLIENTE_EMPRESA', 'Flete', 'Monto |
         X = df_ohe.drop(['Monto USD'], axis=1)
         df_ohe.head()
         y = df_ohe['Monto USD']
In [31]: X.shape, y.shape
Out[31]: ((13671, 5), (13671,))
         Construción del modelo (Regresión o Clasificación)
         #DIVISION EN TRAIN Y TEST
In [32]:
         from sklearn.model_selection import train_test_split
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
         X_train.info()
        <class 'pandas.core.frame.DataFrame'>
       Index: 10936 entries, 14704 to 9123
       Data columns (total 5 columns):
        # Column
                                       Non-Null Count Dtype
        0 Cantidad
                                      10936 non-null float64
                                      10936 non-null float64
        1 CENTRO_DESPACHO_PE20
        2 SECTOR_CLIENTE_EMPRESA
                                     10936 non-null float64
                                      10936 non-null float64
        4 SECTOR_CLIENTE_TRADICIONAL 10936 non-null float64
        dtypes: float64(5)
       memory usage: 512.6 KB
In [33]: from sklearn.linear_model import LinearRegression
         modelo = LinearRegression()
         modelo.fit(X_train, y_train)
         LinearRegression
Out[33]:
```

```
Evaluación del modelo (Regresión o Clasificación)
```

```
In [35]: from sklearn.metrics import mean_squared_error, r2_score

mse = mean_squared_error(y_test, y_pred)

r2 = r2_score(y_test, y_pred)

print(f'Error cuadrático medio (MSE): {mse:.2f}')
print(f'R²: {r2:.2f}')
```

Error cuadrático medio (MSE): 920982.03 R²: 0.82

LinearRegression()

In [34]: y_pred = modelo.predict(X_test)

```
import matplotlib.pyplot as plt

plt.figure(figsize=(6,6))
plt.scatter(y_test, y_pred, alpha=0.5)
plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], '--r')
plt.xlabel('Valores reales')
plt.ylabel('Predicciones')
plt.title('Real vs Predicho')
plt.show()
```


OBSERVACIONES:

- La mayoría de puntos reflejan estar alrededor de la línea roja, lo cual indica que el modelo generaliza bien en los datos de prueba.
- Se observa la presencia de puntos alejados, sobre todo en montos altos, lo que puede deberse a valores atípicos o casos especiales.
- El modelo tiene un comportamiento aceptable, pero se puede mejorar para ajustar mejor los extremos.

Mejora del modelo (Regresión o Clasificación)

```
In [37]: from sklearn.preprocessing import StandardScaler
    from sklearn.linear_model import LinearRegression, Ridge, Lasso
    from sklearn.metrics import mean_squared_error, r2_score
    from sklearn.ensemble import RandomForestRegressor
```

```
scaler = StandardScaler()
 X_train_scaled = scaler.fit_transform(X_train)
 X_test_scaled = scaler.transform(X_test)
 modelo_rforest = RandomForestRegressor().fit(X_train_scaled, y_train)
 y_pred_rforest = modelo_rforest.predict(X_test_scaled)
 modelo_lin = LinearRegression().fit(X_train_scaled, y_train)
 y_pred_lin = modelo_lin.predict(X_test_scaled)
 modelo_ridge = Ridge(alpha=1.0).fit(X_train_scaled, y_train)
 y_pred_ridge = modelo_ridge.predict(X_test_scaled)
 modelo_lasso = Lasso(alpha=0.1, max_iter=5000).fit(X_train_scaled, y_train)
 y_pred_lasso = modelo_lasso.predict(X_test_scaled)
 print(f"RandomForestRegressor: MSE: {mean_squared_error(y_test, y_pred_rforest):.2f}, R2: {r2}
 print(f"Regresión lineal: MSE: {mean_squared_error(y_test, y_pred_lin):.2f}, R2: {r2_score(y_
 print(f"Ridge:
                    MSE: {mean_squared_error(y_test, y_pred_ridge):.2f}, R2: {r2_score()
 print(f"Lasso:
                           MSE: {mean_squared_error(y_test, y_pred_lasso):.2f}, R2: {r2_score()
RandomForestRegressor: MSE: 313031.05, R2: 0.94
```

Regresión lineal: MSE: 920982.03, R2: 0.82
Ridge: MSE: 920981.07, R2: 0.82
Lasso: MSE: 920981.62, R2: 0.82

OBSERVACIONES:

El modelo Random Forest, muestra mayor valor de determinación R²: 0.91 (explica el 91% de la variabilidad del Monto Toral). La diferencia en los MSE es de apenas unas pocas unidades sobre un millón (menos de un 0.001 %), excepto a comparación del Modelo Random Forest.

Evaluación del modelo (Regresión o Clasificación)

```
In [38]: plt.figure(figsize=(6,6))
   plt.scatter(y_test, y_pred_rforest, alpha=0.5)
   plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], '--r')
   plt.xlabel('Valores reales')
   plt.ylabel('Predicciones')
   plt.title('Real vs Predicho - Modelo Lineal')
   plt.show()
```


OBSERVACIONES:

- Al volver a con el nuevo modelo (Random Forest), los resultados mejoraron significativamente, al mostrarse el compartiento de los datos pegados a la linea respecto al modelo, sin embargo los predicción están un poco alejadas a la realidad.
- Esto confirma que el modelo Random Forest es el más adecuado para explicar la relación entre las variables y el Monto USD.

Comentario o Recomendaciones (De acuerdo al modelo elaborado)

- Los factores más importantes que impactan en el Monto Total USD son el **Sector Cliente y Ciudad**.
- Con la variable fecha se podría predecir en un futuro los picos más altos de ventas para cada temporada.
- Podría analizarle de forma estratificada, ya que la mayor concentración de las ventas se registraron en la Región de Lima.