FICHE DE COURS 12

ÉQUILIBRES D'OXYDORÉDUCTION

Ce que je dois être capable de faire après avoir appris mon cours

Donner la définition d'un oxydant et d'un réducteur.
Calculer le nombre d'oxydation de chaque élément chimique d'un espèce chimique donnée.
Établir la demi-équation électronique de réduction associée à un couple oxydant-réducteur.
Donner les couples d'oxydoréduction associée à l'eau.
Définir par une équation de réaction simple un équilibre d'oxydoréduction.
Décrire le principe de fonctionnement d'une pile sur l'exemple de la pile Daniell.
Déterminer la quantité de charge électrique ayant traversé le circuit d'une pile pendant une durée donnée.
Définir la notion de force électromotrice (fém) associée à une pile.
Décomposer une pile en deux demi-piles et exprimer le potentiel d'oxydoréduction de chacune à l'aide de la formule de Nernst.
Connaître le potentiel associé à l'électrode standard à hydrogène et décrire le principe de fonctionnement de l'électrode au calomel saturé.
Déterminer la polarité d'une pile et associé les termes d'anode et de cathode aux pôles correspondants.
Exprimer la constante thermodynamique d'une réaction d'oxydodréduction à l'aide des potentiels standards des couples mis en jeu.
Déterminer le potentiel standard d'un couple à partir de ceux de deux autres couples.
Décrire le principe de fonctionnement d'une pile de concentration.
Discuter l'influence de la complexation ou de la précipitation sur le fonctionnement d'une pile.

Les relations sur lesquelles je m'appuie pour développer mes calculs

 $\hfill \square$ Demi-équation électronique de réduction :

$$\alpha Ox + \beta H^{+}(aq) + n e^{-} \longrightarrow \gamma Red + \delta H_2 O(l)$$

 \Box Formule de Nernst :

$$E = E^{\circ} - \frac{RT}{n\mathcal{F}} \ln \left(\frac{a(\mathrm{Red})^{\gamma} a(\mathrm{H_2O})^{\delta}}{a(\mathrm{Ox})^{\alpha} a(H^+)^{\beta}} \right) \underset{25 \, ^{\circ}\mathrm{C}}{=} E^{\circ} - \frac{0,059}{n} \log \left(\frac{a(\mathrm{Red})^{\gamma} a(\mathrm{H_2O})^{\delta}}{a(\mathrm{Ox})^{\alpha} a(H^+)^{\beta}} \right)$$

 \square Constante d'équilibre (réduction du couple 2 et oxydation du couple 1) :

$$K^{\circ} = 10 \frac{\text{ppcm}(n_1, n_2) \times (E_2^{\circ} - E_1^{\circ})}{0,06}$$

□ Potentiel standard (cas simple):

$$E^{\circ}\left(\mathbf{C/A}\right) = \frac{n_{AB}E^{\circ}\left(\mathbf{B/A}\right) + n_{BC}E^{\circ}\left(\mathbf{C/B}\right)}{n_{AB} + n_{BC}}$$