Contact and friction

Code_Aster, Salome-Meca course material GNU FDL licence (http://www.gnu.org/copyleft/fdl.html)

Outline

- Introduction
- Frictional Contact problems : Definition
- Numerical treatment
 - Pairing operations
 - Formulations
 - Solution algorithmic for quasi-static
- General recommendations
 - Choice of Master or Slave
 - Choice of algorithm & formulation
 - STAT_NON_LINE/DYNA_NON_LINE
- Summary

Introduction

- Frictional-contact problems are involved in many structural mechanical problems.
- code_aster offers differents manners to deal with it. DEFI_CONTACT is one of the possibilities.
- Contact problems remains one of the difficult subject in the field of computational contact mechanic.

Tap problems

Wind turbine soil-structure problems

Turbine blade problems

Introduction

Context of the presentation

- Continuum mechanics applied to deformable solid bodies with non linear materials
- The evolution of the structure can be in quasi-static or in dynamic
- Finite element framework is assumed

Goal of the presentation

- To show different manners to treat contact problems with Code_Aster with DEFI_CONTACT and STAT(DYNA)_NON_LINE
- To get over some difficulties induced by numerical treatment of frictional contact
- To show how to make robust and reliable computations of some problems

Outline

- **♦** Introduction
- Frictional Contact problems : Definition
- Numerical treatment
 - Pairing operations
 - Formulations
 - Solution algorithmic for quasi-static
- General recommendations
 - Choice of Master or Slave
 - Choice of algorithm & formulation
 - STAT_NON_LINE /DYNA_LINE
- Summary

Unilateral Contact – Definition (1)

Contact conditions

 Geometrical condition: « non-penetrability » of the matter (Signorini)

> g≥0 g>0 no contact g=0 contact (continuity of matter)

■ **Mechanical** condition: « no tension » (Hertz)

p≤0 p=0 no contact p<0 contact (compression)

■ Energetic condition : complementarity or exclusion (Moreau)

p.g=0 p=0 separation g=0 contact

Bord F2

No tension

Complementarity

Bord_U2

Non-associated Friction law – Definition (2)

Friction conditions

Geometrical condition :sliping or sticking

■ **Mechanical** condition: « no tension » (Hertz)

```
p\leq0 p=0 no contact p<0 contact (compression) if (Vt=0, Stick) then | T | < \mu*p else (Vt = alpha * T and | T |= \mu*p)
```

Non associativity: the sliding speed is non colinear to the friction cone in the space of contact forces.

Problem formulation – Definition (3)

$$\begin{cases} Sd * M.\ddot{\mathbf{u}} + \mathbf{K.u} + F(\mathbf{u}_{n}, \lambda_{n}) + F(\mathbf{u}_{n}, \lambda_{n}, v_{t}, \lambda_{t}) = \mathbf{F} \\ \mathbf{u}_{n} \le d_{0}, \lambda_{n} \ge 0, (\mathbf{u}_{n} - d_{0}) .\lambda_{c} = 0 \end{cases}$$

$$\frac{\mathbf{A}_{t} \cdot \mathbf{V}_{t}}{\|\mathbf{A}_{t} \cdot \mathbf{V}_{t}\|} = \frac{\lambda_{t}}{\|\lambda_{t}\|} \quad \text{and} \quad \|\lambda_{t}\| = \mu \lambda_{c} \quad \text{and} \quad \mathbf{A.u}_{n} - d_{0} = 0,$$

$$\left\{ v_{t} = 0 \text{ and } \left\| \lambda_{t} \right\| \prec \mu \lambda_{c} \right\}$$

 $Sd = 0 \rightarrow quasi - static, Sd = 1 \rightarrow dynamic$

 $F(u_n, \lambda_n) \rightarrow contribution$ of contact force

 $F_t\!(u_{n},\lambda_{n},v_{t},\lambda_{t}) \to {\rm contribution} \quad {\rm of} \quad {\rm friction} \quad {\rm force}$

A discrete formulation

Mechanical problem

Equilibrium problems

Quasi-static (STAT_NON_LINE)

Dynamic (DYNA_NON_LINE)

Boundary conditions : Dirichlet, Neuman,...

Direct imposition with AFFE_CHAR_CINE Lagrange reinforcement with imposition with AFFE_CHAR_MECA

Frictional-contact conditions

Various method in DEFI_CONTACT which will be explained later

Difficulties of the numerical treatment

- Non-smooth mechanics : severe discontinuities due to frictional-contact status
- Contact forces depend on the pairing
- Friction depend on the contact pressure
- High coefficient of friction induce loss of unicity such that algorithms can fail to converge
- In dynamics, optimal dissipative schemes must be used
- Non linear materials such as Large transformations or plasticity increase the cost of the computation

You say DEFI_CONTACT?

Outline

- Introduction
- ▶ Frictional Contact problems : Definition
- Numerical treatment
 - Pairing operations
 - Formulations
 - Solution algorithmic for quasi-static
- General recommendations
 - Choice of Master or Slave
 - Choice of algorithm & formulation
 - STAT_NON_LINE / DYNA_NON_LINE
- Summary

Numerical treatment – General procedure

- Step 1 : preliminary treatments which consist to build the contact element according to the the user parametrization in DEFI_CONTACT.
 - Node-To-Node contact element (FORMULATION=DISCRETE only)
 - Node-To-Segment contact element (FORMULATION=DISCRETE or CONTINUE)
 - Segment-To-Segment contact element (FORMULATION=CONTINUE with Local Average Contact method)
- Step 2 : Computational contact mechanic treatment in STAT_NON_LINE.
 - Step 2.1 : Pairing technique : this step is important for the computation of the gap at each Newton iteration
 - Step 2.2 : Contact initializations
 - Step 2.3 : Formulations : Contact matrix and contact vectors calculation
 - Step 2.4 : Specific treatments of mechanical quantities according to adaptation method
- Step 3 : Extract contact mechanics quantities
 - CALC_PRESSION : to compute contact pressure using the stress fields
 - CONT_NOEU : default field generated by code_asterwhich contains contact mechanics quantities
 - Avalaible with all type of resolution except Local Average Contact method
 - CONT_ELEM: default field generated by code_asterwhich contains contact mechanics quantities
 - Avalaible with only resolution withLocal Average Contact method

Numerical treatment – Pairing (1)

- ▶ Node-to-facet pairing: APPARIEMENT / DEFI CONTACT
 - Search the closest master node M to the slave node P (distance)
 - Search for all master facets containing M, the closest one for wich PP' is minimum.
 - Selection of the master element that minimizes the distance to the slave node (PM)
 - Compute the projection M and the distance
 - Correction of the projection if it is out of the current master facet (M' to B).

■ Within the deformation process, it is necessary to compute by Newton Method the parametrization of the projection $P'(\xi)$

Outline

- Introduction
- Frictional Contact problems : Definition
- Numerical treatment
 - Pairing operations
 - Formulations
 - Solution algorithmic for quasi-static

General recommendations

- Choice of Master or Slave
- Choice of algorithm & formulation
- Avoid frictional status cycling
- Influence of the time integration schemes in dynamics
- General recommendations

Summary

Numerical treatment – Formulations (1)

In General

- Frictional contact problems are called constrained opitmization problems
 - Problem consists to find u(x) = Argmin F(u(x)) with u(x) in C(x)
 - The constraints C(x) can be removed using Lagrange multiplier or penalty function
 - Solution algorithms depend strongly to the formulation

Two families of formulations in Code_Aster

- FORMULATION= 'DISCRETE'
 - Suits to mathematical programming approaches in the litterature (Like flexibility method)
 - Use Lagrange multiplier or penalization to reinforce constraints on contact nodes
 - Frictional-contact status depend on the gap
 - Theoretical documentation: R3.05.50
- FORMULATION= 'CONTINUE'
 - Suits to continuum mechanical approaches
 - Use augmented Lagrange multiplier or penalization to reinforce constraints on slave contact surface
 - Need numerical integration techniques to compute contact forces
 - Frictional-contact status depend a combination of gap and force
 - Theoretical documentation: R3.05.52

Numerical treatment – Formulation (3)

	Perf	Reliability	DOFs	Robustness
DISCRETE/	+++	+	Hundreds	++
'CONTRAINTE'	Schur			no_friction
DISCRETE/	+++	+	Limitless	+
'GCP'				no_friction
DISCRETE/	+++	+	Thousands	++
'PENALISATION'				with_friction
'CONTINUE'/	++	++	Limitless	+++
'STANDARD'/				(with friction)
'PENALISATION'				
'CONTINUE'/	+	++++	Limitless	++
`LAC'		Suits for incompatible mesh		(without friction)

Outline

- Introduction
- Frictional Contact problems : Definition
- Numerical treatment
 - Pairing operations
 - Formulations
 - Solution algorithmic for quasi-static
- General recommendations
 - Choice of Master or Slave
 - Choice of algorithm & formulation
 - STAT_NON_LINE / DYNA_NON_LINE
- Summary

Numerical treatment – Solution Algorithms(1)

```
FORMULATION='DISCRETE'

ZONE=_F(
...

ALGO_RESO_GEOM='POINT_FIXE' or 'NEWTON'
ALGO_RESO_FROT='POINT_FIXE' or 'NEWTON'
ALGO_RESO_CONT='POINT_FIXE' or 'NEWTON'
ALGO_RESO_CONT='POINT_FIXE' or 'NEWTON'
ZONE=_F(
...

ALGO_CONT="STANDARD"/"PENALISATION"/"LAC",
...

ALGO_FROT="STANDARD"/"PENALISATION",
)
```

General remarks:

- Friction is complex to solve due to the dependence on contact and additional cycling problems (slip back/slip forward or stick/slip)
- Friction coefficient is supposed to be constant (no dynamic friction coefficient)
- For Large slip problem and non linear material this family of method seems to be less robust
- Friction matrices induce non-symmetric problems
- More recommendations in the next sections
- For incompatible mesh use LAC method

Numerical treatment – Solution Algorithms(2)

What is ALGO_RESO_GEOM: 'POINT_FIXE' Vs 'NEWTON'

FORMULATION='CONTINUE'

ALGO_RESO_GEOM='POINT_FIXE' or 'NEWTON'

Only avalaible for 'STANDARD' and 'PENALISATION' methods not for 'LAC' method.

- Help for small sliding problems
- If small variation of normals
 USE ALGO_RES_GEOM='POINT_FIXE' +
 REAC_GEOM='CONTROLE'

Numerical treatment – Solution Algorithms(1)

Formulations	Status	Geometry	Friction	Robustness
<pre>`CONTINUE': `STANDARD' / `PENALISATION '</pre>	POINT_FIXE or NEWTON Use GLISSIERE if necessary	POINT_FIXE or NEWTON Use LISSAGE if necessary	POINT_FIXE or NEWTON	+ Small perturbation, + Large sliding with plastic behaviors - Mesh compatibility in contact zones
`CONTINUE' / `LAC'	NEWTON	NEWTON Use LISSAGE if necessary	Does not exists	+ Small perturbation, + Mesh incompatibility in contact zones - Large sliding with plastic behaviors → TYPE_JACOBIEN could help.
'DISCRETE'	Use GLISSIERE if necessary	Use LISSAGE if necessary		+ Only hundreds contact dofs

Outline

- Introduction
- ▶ Frictional Contact problems : Definition
- Numerical treatment
 - Pairing operations
 - Formulations
 - Solution algorithmic for quasi-static

General recommendations

- Choice of Master or Slave
- Choice of algorithm & formulation
- STAT_NON_LINE/DYNA_NON_LINE
- Summary

General recommandations on DEFI_CONTACT

General recommendations – master/slave

- Master slave should be the most rigid surface and slave should be the most curved one

- Use LISSAGE='OUI' for non-smooth surfaces
- For structural element such as beam/shells use **DIST POUTRE** or **DIST COQUE**
- It is possible to add extra gap DIST_MAIT, DIST_ESCL, DIST_POUTRE or DIST_COQUE

General recommendations – pairing

Advanced options for the user :

■ The user can activate the initial gap PM.N with DIST_MAIT/ZONE/DEFI_CONTACT

- Specific case of pairing techniques: Node-to-Node pairing,
 - APPARIEMENT = 'NODAL' only for FORMULATION = 'DISCRETE'
 - It suits for beam contact problems for example

General recommendations – Optimization of the resolution (1)

- Contact without resolution (RESOLUTION= 'NON')
 - Simply check for interpenetration without imposing contact
 - Really cheap (only pairing)
 - Useful for checking the interpenetration of the lips of a crack
 - Tolerance to detect interpenetration TOLE INTERP
 - Optional stop when interpenetration detected STOP_INTERP

This potential contact zone should be declared with RESOLUTION='NON'

This potential contact zone should be declared with RESOLUTION='OUI'

General recommendations – Optimization of the resolution (2)

Bi-lateral contact

- Option GLISSIERE= 'OUI' with the active set or the continuum-based methods
- Contact is kept active as soon as the interpenetration is detected
- The two surfaces can slide over each other
- Generate tension when the surfaces should normally separate

General recommandations – Optimization of the resolution (3)

- Compatibility with Dirichlet boundary conditions
 - Adding Lagrange multipliers on the slave nodes: possibility of zero pivots in the case of redundancy
 - For the discrete formulations with Lagrange multipliers, an algorithm for automatic elimination is active (message "ZERO PIVOT OTE" in the .mess file)
 - The automatic algorithm mainly detects the redundancy along the reference axis
 - The redundant nodes can be excluded by **SANS_NOEUD** / **SANS_GROUP_NO**

General recommandations – USE OF LAC METHOD

- Pre-treatment of the mesh incompatibility with DECOUPE_LAC
 - This step help the code to prepare a suit treatment for mesh incompatibility in contact zone : use DECOUPE_LAC

The initial slave contact zone is modified with DECOUPE LAC

With FORMULATION='CONTINUE' use ALGO_CONT='LAC'

General recommandations – *_NON_LINE (1)

- Contact is solved in STAT NON LINE/DYNA NON LINE
 - Contact definition is given with the keyword **CONTACT**
 - Line search may be used in conjunction with the discrete contact formulation but its efficiency in this case is not proven
 - In dynamics choose : HHT schemes

- In friction, use ADAPTAPTION='ADAPT_COEF' in DEFI_CONTACT
- If incompatible mesh in contact zone, use INTEGRATION='SIMPSON'/NEWTON-COTES in DEFI_CONTACT
- The option INFO=2 of STAT_NON_LINE provides a lot of information when contact is present and should therefore be avoided.

General recommandations - *_NON_LINE (2)

- Read the manual!
 - DEFI_CONTACT User command [U4.44.11]
 - « instructions for the use of contact with Code_Aster » [U2.04.04]
- Outward normal vectors?
- Is STAT_NON_LINE OK without using contact? (mainly for the discrete formulation)
- Are there redundant Dirichlet boundary conditions with contact?
- Is the model OK in linear elasticity?
- If the Quasi-static problem can't be solved, someone can use slow dynamic framework to come over difficulties.

Ex: ring on block

General recommandations – Post-processing

Post-processing of contact

- CALC_CHAMP: compute the nodal forces (FORC_NODA) and the nodal reactions (REAC_NODA)
- Contact forces: RESULTANTE of the FORC_NODA with POST_RELEVE_T. Caution if a node is submitted to kinematic constraints
- The data structure **CONT_NOEU** or **CONT_ELEM** provided by **STAT_NON_LINE** contains information on the contact status (gaps, contact status, forces, ...)
- In the continuum-based method, the LAGS_C dof is the contact pressure if there is small transformations otherwise use CALC_PRESSION

End of presentation

Is something missing or unclear in this document?

Or feeling happy to have read such a clear tutorial?

Please, we welcome any feedbacks about Code_Aster training materials. Do not hesitate to share with us your comments on the Code_Aster forum dedicated thread.

