CLAIMS

What is claimed is:

1	1. A method, comprising:
2	receiving an optimized library via a network, the optimized library including at
3	least one optimized routine for a processing system; and
4	providing the optimized routine for use by an application executing on the
5	processing system to interact with a hardware entity of the processing system.
1	2. The method of claim 1 wherein the optimized routine comprises updated code
2	for use by the application to increase interaction efficiency with the hardware entity of
3	the processing system.
1	3. The method of claim 1 wherein the receiving the optimized library via the
2	network comprises receiving the optimized library via the network during an operating
3	system ("OS") runtime of the processing system.
1	4. The method of claim 3, further comprising:
2	receiving an optimization header packet via the network; and
3	determining that the optimization library is suitable for the processing system
4	based on a module type field within the optimization header packet.

1 5. The method of claim 4 wherein the module type field includes a globally 2 unique identifier ("GUID") for determining that the optimization library is suitable for 3 the processing system. 1 6. The method of claim 4, further comprising: 2 ignoring other optimized libraries broadcast on the network if corresponding other 3 optimization packets are determined to be unsuitable for the processing system based on 4 the module type filed. 1 7. The method of claim 3, further comprising: 2 storing the optimized library to a nonvolatile storage device of the processing 3 system; and 4 inserting a entry into a pointer table of the processing system, the entry pointing 5 to the optimized library. 1 -8. The method of claim 7 wherein the pointer table comprises one of a Secondary 2 System Description Table ("SSDT") defined by an Advanced Configuration and Power 3 Interface ("ACPI") and an Extensive Firmware Interface ("EFI") configuration table. 1 9. The method of claim 7 wherein providing the optimized routine for use by the 2 application, comprises: 3 executing an optimization extension bound to the application, the optimization extension to request a load of the optimized library; 4

5	querying the pointer table for the entry pointing to the optimized library stored
6	within the nonvolatile storage device; and
7	loading the optimized library into system memory of the processing system.
1	10. The method of claim 9 where providing the optimized routine for use by the
2	application further comprising:
3	advertising the entry point for the optimized routine of the optimized library to the
4	application, the entry point referencing a location within the system memory of the
5	optimized routine.
1	11. The method of claim 9 wherein the optimized library is further loaded into a
2	user mode space of the processing system.
1	12. The method of claim 1 wherein the processing system comprises a
2	management module of a rack of blade servers, and further comprising forwarding the
3	optimized library to one or more of the blade servers via an out-of-band channel.
1	13. A machine-accessible medium that provides instructions that, if executed by a
2	machine, will cause the machine to perform operations comprising:
3	identifying that an optimized library transmitted over a network is intended for the
4	machine, the optimized library including at least one optimized routine for interacting
5	with a hardware entity of the machine;
6	receiving the optimized library via the network; and

- advertising the optimized routine for use by an application executing in a user
 mode space of the machine to interact with the hardware entity.
- 1 14. The machine-accessible medium of claim 13 wherein identifying the
 2 optimized library, receiving the optimized library, and advertising the optimized library
 3 are to be performed during an operating system ("OS") runtime of the machine.
- 1 15. The machine-accessible medium of claim 14 wherein the optimized routine 2 comprises updated code to increase interaction efficiency with the hardware entity of the 3 machine.
- 1 16. The machine-accessible medium of claim 15 wherein the hardware entity 2 comprises a processor of the machine.
- 1 17. The machine-accessible medium of claim 13 wherein identifying that the optimized library transmitted over the network is intended for the machine further comprises performing operations, including:
- 4 receiving an optimization header packet via the network; and
- 5 determining that the optimization library is suitable for the machine based on a
- 6 module type field within the optimization header packet.

1	18. The machine-accessible medium of claim 13, further providing instructions
2	that, if executed by the machine, will cause the machine to perform further operations,
3	comprising:
4	storing the optimized library to a nonvolatile storage device of the machine; and
5	inserting an entry into a pointer table of the machine, the entry to point to the
6	optimized library.
1	19. The machine-accessible medium of claim 18, further providing instructions
2	that, if executed by the machine, will cause the machine to perform further operations,
3	comprising:
4	executing an optimization extension bound to the application, the optimization
5	extension to request a load of the optimized library;
6	querying the pointer table for the entry pointing to the optimized library stored
7	within the nonvolatile storage device; and
8	loading the optimized library into the user mode space of the machine.
1	20. A processing system, comprising:
- ว	
2	a processor;
3	a network link communicatively coupled to the processor; and
4	a storage device communicatively coupled to the processor, the storage device
5	including instructions which when executed by the processor perform operations,
6	comprising:

7	monitoring traffic on the network link for an optimized library including at
8	least one optimized routine intended for the processing system;
9	receiving the optimized library via the network link; and
10	advertising the optimized routine to a user mode space of the processing
11	system for use by an application to interact with a hardware entity of the
12	processing system.
1	21. The processing system of claim 20 wherein the instructions are to be
2	executed by the processing system during an operating system runtime of the processing
3	system.
1	22. The processing system of claim 20 wherein execution of the instructions
2	further performs operations comprising:
3	parsing an optimization header packet received via the network link; and
4	recognizing whether the optimized library is intended for the processing system
5	based on a module type field of the of the optimization header packet.
1	23. The processing system of claim 20 wherein the application includes an
2	optimization extension to request a load of the optimized library upon execution of the
3	application.
1	24. The processing system of claim 20 wherein the hardware entity is the
2	processor.

1 25. The processing system of claim 24 wherein the optimized routine comprises 2 updated code for interacting with the processor in a more efficient manner. 26. A system, comprising: 1 2 a chassis having a plurality of slots to receive a plurality of blade servers; and 3 a management module mounted to the chassis and communicatively coupled to 4 each of the plurality of slots to communicate with the plurality of blade servers, the 5 management module to receive an optimized library via a network, the optimized library 6 including at least one optimized routine for interacting with a hardware entity, the 7 management module to forward the optimized library to one or more of the plurality of 8 blade servers. 1 27. The system of claim 26 wherein the management module is configured to 2 receive the optimized library during an operating system ("OS") runtime and to forward 3 the optimized library during OS runtimes of the plurality of blade servers. 1 28. The system of claim 26 wherein the management module includes a network 2 agent to monitor traffic on the network to identify the optimized library as intended for 3 the one or more of the plurality of blade servers.

- 1 29. The system of claim 26 wherein the management module forwards the
- 2 optimized library to the plurality of blade servers via an out-of-band communication
- 3 channel.
- 1 30. The system of claim 26 wherein the optimized routine comprises updated
- 2 code for an application executing on the one or more of the plurality of blade servers to
- 3 interact with the hardware entity in a more efficient manner and wherein the hardware
- 4 entity comprises a processor of each of the one or more plurality of blade servers.