Table of Laplace and z-transforms *

No.	Continuous time	Laplace transform	Discrete time	z-transform
1	$\delta(t)$	1	$\delta(k)$	1
2	1(<i>t</i>)	1/s	1(<i>k</i>)	$\frac{z}{z-1}$
3	t	$\frac{1}{s^2}$	kT**	$\frac{zT}{(z-1)^2}$
4	t^2	2! s ³	$(kT)^2$	$\frac{z(z+1)T^2}{(z-1)^3}$
5	t^3	3! s ⁴	$(kT)^3$	$\frac{z(z^2+4z+1)T^3}{(z-1)^4}$
6	$e^{-lpha t}$	$\frac{1}{s+\alpha}$	$a^{k^{***}}$	$\frac{z}{z-a}$
7	$1-e^{-\alpha t}$	$\frac{\alpha}{s(s+\alpha)}$	$\begin{vmatrix} 1 - a^k \\ a^k - b^k \end{vmatrix}$	$\frac{(1-a)z}{(z-1)(z-a)}$
8	$e^{-lpha t} - e^{-eta t}$	$\frac{\beta - \alpha}{(s + \alpha)(s + \beta)}$	$a^k - b^k$	$\frac{(a-b)z}{(z-a)(z-b)}$
9	$te^{-\alpha t}$	$\frac{1}{(s+\alpha)^2}$	kTa ^k	$\frac{azT}{(z-a)^2}$
10	$\sin(\omega_n t)$	$\frac{\omega_n}{s^2 + \omega_n^2}$	$sin(\omega_n kT)$	$\frac{\sin(\omega_n T)_z}{z^2 - 2\cos(\omega_n T)z + 1}$
11	$\cos(\omega_n t)$	$\frac{s}{s^2 + \omega_n^2}$	$\cos(\omega_n kT)$	$\frac{z[z-\cos(\omega_n T)]}{z^2-2\cos(\omega_n T)z+1}$
12	$e^{-\varsigma\omega_n t} \sin(\omega_d t)$	$\frac{\omega_d}{(s+\varsigma\omega_n)^2+\omega_d^2}$	$e^{-\varsigma\omega_nkT}\sin(\omega_dkT)$	$\frac{e^{-\varsigma \omega_n T} \sin(\omega_d T) z}{z^2 - 2e^{-\varsigma \omega_n T} \cos(\omega_d T) z + e^{-2\varsigma \omega_n T}}$
13	$e^{-\varsigma\omega_n t}\cos(\omega_d t)$	$\frac{s + \varsigma \omega_n}{\left(s + \varsigma \omega_n\right)^2 + \omega_d^2}$	$e^{-\varsigma\omega_nkT}\cos(\omega_dkT)$	$\frac{z[z - e^{-\varsigma \omega_n T} \cos(\omega_d T)]}{z^2 - 2e^{-\varsigma \omega_n T} \cos(\omega_d T)z + e^{-2\varsigma \omega_n T}}$
14	$\sinh(eta t)$	$\frac{\beta}{s^2 - \beta^2}$	$\sinh(\beta kT)$	$\frac{\sinh(\beta T)_z}{z^2 - 2\cosh(\beta T)z + 1}$
15	$\cosh(eta t)$	$\frac{s}{s^2 - \beta^2}$	$\cosh(\beta kT)$	$\frac{z[z-\cosh(\beta T)]}{z^2-2\cosh(\beta T)z+1}$

^{*} The discrete time functions are generally sampled forms of the continuous time functions.

** Sampling t gives kT, whose transform is obtained by multiplying the transform of k by T.

*** The function $e^{-\alpha kT}$ is obtained by setting $a = e^{-\alpha T}$.