Warm-Up for $\pi + 2$ Day, 2022

Dr. Jordan Hanson - Whittier College Dept. of Physics and Astronomy March 16, 2022

1 Memory Bank

1. The dipole moment:

$$\mathbf{p} = \int \mathbf{r}' \rho(\mathbf{r}') d\tau' = \int \mathbf{r}' dq' \tag{1}$$

2. The potential from the dipole term of the multipole expansion:

$$V_{\text{dipole}}(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \frac{\mathbf{p} \cdot \hat{\mathbf{r}}}{r^2} \tag{2}$$

2 Multipole Expansions

1. Suppose there is a line charge along the \hat{z} -direction, with density $\pm \lambda$. For a length L/2 below the origin, the density is $-\lambda$, and for a length L/2 above the origin, the density is $+\lambda$. (a) Find the dipole moment, \mathbf{p} . (b) Insert \mathbf{p} into Eq. 2 to find the potential. (c) Calculate the \mathbf{E} -field. Is the result resonable? Why doesn't the field limit to something like $\approx Q/r^2$?

Figure 1: Suppose there is a positive line charge to the right, and a negative line charge to the left. Assume the charge distribution is along the \hat{z} -direction, not the \hat{x} -direction.