

مهلت تحویل ۱۴۰۴/۳/۰۱

ستاد درس: دکتر مهدی مهدوی

تکلیف سری ششم درس سیگنالها و سیستمها

توجه: فقط سوالات قرمز رنگ را تحویل دهید. مابقی برای تمرین بیشتر بوده و تحویل آنها نمره بیشتر ندارد.

سوال ۱) اگر  $m_1[n]$  باسخ ضربه یک فیلتر پایین گذر ایده آل با فرکانس قطع  $m=rac{\pi}{3}$  باشد، آنگاه  $m_2(\omega)$  را برای فیلتری با پاسخ ضربه زیر رسم کنید.

$$h_2[n] = \begin{cases} h_1 \left[ \frac{n}{2} \right], & n \text{ is even} \\ 0, & n \text{ is odd} \end{cases}$$

سوال ۲) از سیگنال به وسیله قطار ضربه  $\delta(t-nT_s)$  فراند و سیگنال نمونهبرداری می شود و سیگنال نمونهبرداری شده  $p(t)=\sum_{n=-\infty}^{+\infty}\delta(t-nT_s)$  به وسیله قطار ضربه  $\chi(t)$  به وسیله قطار ضربه  $\chi(t)$  به وسیله قطار خربه و می شود. مقدار  $\chi(t)$  و حداکثر  $\chi(t)$  و حداکثر تعیین کنید که  $\chi(t)=\chi(t)$  و حداکثر  $\chi(t)=\chi(t)$  به می شود. مقدار  $\chi(t)=\chi(t)$  و حداکثر تعیین کنید که به می شود. مقدار  $\chi(t)=\chi(t)$  به می شود و سیگنال ورودی داده شده است.)





سوال  $\mathbf{x}(t)$  نرخ نایکوئیست برای سیگنال  $\mathbf{x}(t)$  کدام است؟

توجه: اگر بالاترین فرکانس سیگنال  $\omega_M$  باشد، نرخ نایکوئیست مساوی  $2\omega_M$  می شود که یعنی فرکانس نمونه برداری با قطار ضربه و با تناوب T انجام گردید، بتوان از روی نمونه ها سیگنال را بدرستی بدست آورد. ضمنا به  $\omega_M$  پهنای باند سیگنال نیز می گویند.

$$x(t) = \left(\frac{\sin(4000\pi t)}{\pi t}\right)^2$$

سوال ۴) نرخ نایکوئیست سیگنال زیر را محاسبه نمایید:

$$x(t) = \frac{\sin(t)\sin\left(\frac{t}{2}\right)}{\pi t^2}$$

سوال ۵) در شکل زیرحداکثر تناوب نمونهبرداری برای آنکه بتوان  $\omega_p(t)$  را از روی  $\omega_p(t)$  بازیابی کرد کدام است؟



سوال  $^{9}$ ) سیگنال  $\chi(t)$  با حداقل فر کانس  $f_L=100kHz$  و حداکثر فر کانس  $f_H=200kHz$  در را در نظر بگیرید. حداقل فر کانس  $\chi(t)$  با حداقل فر کانس لازم برای آنکه بتوان بدون خطا سیگنال  $\chi(t)$  را از روی نمونه هایش بازسازی کرد چقدر است؟ ضمنا به این نوع سیگنال ها سیگنال همیان گذر می گویند.

سوال ۷) یک سیگنال باند پایه m(t) با پهنای باند B با نرخ نایکوئیست نمونهبرداری می شود تا سیگنال زیر را ایجاد کند:

$$m_1(t) = \sum_{l=-\infty}^{+\infty} (-1)^l m(lT_s) \delta(t - lT_s)$$

الف) تبدیل فوریه  $m_1(t)$  را بر اساس  $M(\omega)$  بیابید.

ب) آیا می توان از سیگنال  $m_1(t)$  سیگنال پیام m(t) را بازیابی کرد؟ توضیح دهید.

سوال ۸) یک فیلتر بالاگذر ایده آل با پاسخ فرکانسی زیر درنظر بگیرید:

$$H(\omega) = \begin{cases} 1, |\omega| > \omega_c \\ 0, & o. w \end{cases}$$

الف) پاسخ ضربه h(t) این فیلتر را بیابید.

ب) با افزایش  $\omega_c$  پاسخ ضربه حول مبدا متمر کزتر می شود یا منبسط تر؟

پ)  $s(\infty)$  و  $(\infty)$  را بیابید. (s(t)) پاسخ پله فیلتر است.

سوال ۹) اگر تبدیل فوریه سیگنالهای  $x_1(t)$  و  $x_2(t)$  را به ترتیب با  $x_1(\omega)$  و  $x_1(\omega)$  نمایش دهیم حداکثر  $x_2(t)$  را به گونهای بیابید تا بتوان  $x_2(t)$  را از روی  $x_2(t)$  بازیابی کرد؟





موفق باشید.