Phil 120, Review Notes

Stuff

May 23, 2021

Contents

1	References					
	1.1 Basic Logic Operators	3				
	1.3 Tableaux Identities	4				
2	Notable Definitions from Part 1	5				
	2.1 Consequences	5				
	2.2 Language					
	2.3 Basics of Set Theory					
	2.4 Pairs and Relations	6				
3 Classical Logics						
	3.1 Turntile(\vdash) vs Double turntile(\models)	7				

1 References

1.1 Basic Logic Operators

The followings are for A * B, where '*' is an operator, A is top row, B is left column.

\wedge	$T \mid$	F	
\overline{T}	Т	F	AND. Conjuction. $A \wedge B$ is true only when both A and B are true.
F	F	F	

1.2 Some Logic Identities

$A \vee \neg A = T$	Excluded Middle, either A or not A must be true.
$\neg(A \land \neg A)$	Non-contradiction. It is true that not both A and not A hold at the same time.
$A \to B, A \implies B$	Modus ponenes, to prove. If A implies and B and A is true, then B is true.
$A \to B, \neg B \implies \neg A$	Modus tollens, to disprove. If the conclusion is false, then the premise is false also.
$A \vee B, \neg A \implies B$	Disjunctive syllogism. If at least one of A or B is true, then if one of them is false, the other must be true.
$(A \to B) \iff (\neg B \to \neg A)$	Contrapositive. Similar to Modus tollens.
$A, \neg A \implies B$	Explosion. From a false premise you can arrive at any conclusion.
$ \neg(A \lor B) \iff \neg A \land \neg B \neg(A \land B) \iff \neg A \lor \neg B $	De Morgan's Law.

$$\begin{array}{c} A \vee (B \wedge C) \iff (A \vee B) \wedge (A \vee C) \\ A \wedge (B \vee C) \iff (A \wedge B) \vee (A \wedge C) \end{array} \text{ Distributability}$$

1.3 Tableaux Identities

Note:

- Use De Morgan's Law to deal with negations (\neg) , also, $\neg(A \to B) = (\neg B \land A)$.
- To prove a consequence, set the premise to true, conclusion to false. This proves that there is no possible counter example, since the negation is never satisfied.
 - If there are atomic branches left open, then those are valid counter examples.
- A branch is closed any of following pairs occurs in a branch: $\{(\mathfrak{f}A,\mathfrak{t}A),(\mathfrak{f}A,\mathfrak{f}\neg A),(\mathfrak{t}A,\mathfrak{t}\neg A)\}$, use a '×' to indicate a closed branch.

Example: Use tableaux to prove $(E \to D) \vdash_1 ((D \land E) \leftrightarrow E)$

Since all branches are closed, the negation of the conclusion is never satisfied, thus the relation always holds for all values D and E might take on.

2 Notable Definitions from Part 1

2.1 Consequences

Logical Consequence: $A_1
ldots A_n$ implies B, and B is a consequence of $A_1
ldots A_n$, means when $A_1
ldots A_n$ are all true, then B must be true also.

Case: A case be loosely interpreted a particular combination of values for variables.

Valid Argument: An argument consist of a set of premises and a single conclusion, this argument is *valid* if the conclusion is a *logical consequence* of the premises.

Counter Example: A counter example to an argument is a case where all premises are truth, but the conclusion is false.

Sound Argument: An argument is sound if the premises are true in *all* cases, and the arugment is valid. An argument cannot be sound if its not already valid.

2.2 Language

Syntax: Syntax consist of a basic set of symbols, and a rule set to create more complex words & sentences from symbols. Syntax is not concerned with *meaning* of any symbols or sentences

Semantics: Semantics of a language assigns meaning to a sentence in the language.

Atom, Connectives, Molecules: An atomic sentence is the mostly basic sentence that cannot be reduced further, like 'sky is blue' or 'Bob is eating', atomic sentence do not have connectives. A molecular sentences is made with a number of atomic sentences linked with connectives, like 'Bob is sleeping or eating', 'Sun is bright and hot'.

2.3 Basics of Set Theory

Set: A set is an arbitrary, unordered *collection* of unique *things*, depending on context, duplicates are usually ignored. 2 sets are equal if they contain indentical items. For example:

$$Food := \{apple, cookie, burger\} = \{apple, apple, apple, burger, cookie\}$$

Membership(\in , \notin): For any set it is possible to tell if an item belongs in the set. For exmaple:

$$cookie \in Food, dirt \notin Food$$

Which means that 'cookie' is in the set of Food(cookie is a member of Food), but dirt is not.

Set builder notation: A notation used to contruct sets from definitions. For exmaple:

$$L = \{ n \in \mathbb{N} : n > 44 \}$$

Here the ':' means 'such that', so the set L is the set all natural numbers, n, such that n is larger than 44.

Union(\cup): The union of 2 sets is a set containing items from either sets:

$$\{1,3,7\} \cup \{2,3,2\} = \{1,2,7,3\}$$

Intersec(\cap): The intersection of 2 sets is a contain items that belongs to both sets:

$$\{1,3,7\} \cup \{1,2,3,4\} = \{1,3\}$$

Subsets(\subseteq): $A \subseteq B$ if A is contained in B, that is, every item in A is also in B. Note: $A = B \iff (A \subseteq B) \land (B \subseteq A)$.

Proper Subset(\subset): A is a proper subset of B if A \subseteq B, and B is strictly bigger, that is, contains at least one item A does not.

2.4 Pairs and Relations

Ordered Pair: Unlike sets, ordered pairs/n-tuple are ordered. So $\{a,b\} = \{b,a\}$, however, $\langle a,b\rangle \neq \langle b,a\rangle$. N-tuples contains n ordered items.

Cartesian Product: $A \times B$ is the cartesian product of A and B, which is a set containing all possible ordered pairs $\langle a, b \rangle, a \in A, b \in B$. \times can be applied more than 2 times. For exmaple:

$$\{a, b, c\} \times \{1, 2\} = \{\langle a, 1 \rangle, \langle a, 2 \rangle, \langle b, 1 \rangle, \langle b, 2 \rangle, \langle c, 1 \rangle, \langle c, 2 \rangle\}$$

$$D \times E \times F = \{\langle d_1, e, f_1 \rangle, \langle d_1, e, f_2 \rangle, \langle d_1, e, f_3 \rangle, \langle d_2, e, f_1 \rangle, \langle d_2, e, f_2 \rangle, \langle d_2, e, f_3 \rangle\}$$
Where $D = \{d_1, d_2\}, E = \{e\}, F = \{f_1, f_2, f_3\}$

Relations: A relation \mathcal{R} on sets A and B, is a way to relate elements of A and B. For $a \in A, b \in B$, a and b are in relation $\mathcal{R} \iff \langle a, b \rangle \in \mathcal{R}$, and we can write $a\mathcal{R}b$. Note: $\mathcal{R} \subseteq A \times B$.

Reflexivity: A relation \mathcal{R} is reflexive when $x\mathcal{R}x$ for all x.

Symmetry: \mathcal{R} is symmetric when $x\mathcal{R}y \iff y\mathcal{R}x$

Transitivity: \mathcal{R} is transitive when $x\mathcal{R}y, y\mathcal{R}z \implies x\mathcal{R}z$.

Equivalence: \mathcal{R} is an equivalence relation if \mathcal{R} is reflexive, symmetric, and transitive.

Function: Like functions in calculus, $f: x \to y$ sends each x to 1 y only, that is, the value of f(x) is not ambiguous.

3 Classical Logics

For logic operators and tableaux references, see Section 1.

3.1 $Turntile(\vdash)$ vs Double $turntile(\models)$

Turntile: ' \vdash ' denotes *syntatic* implication. $A \vdash_1 B$ means with only information from A, it is possible to prove B. Or alternatively, it is possible to obtain B from 'rearranging' symbols of A.

Double turntile: ' \models ', denotes *semantic* implication, or models. $A \models_1 B$ means that B is true whenever A is true.

Notes: A logic system is *sound* if $A \vdash B \implies B$, is *complete* if $A \models B \implies A \vdash B$. Classical logics is sound and complete so there isn't a big difference between the two symbols used.