Build an end-to-end QA system in machine learning approach

Wenxin Han 8701130 whan035@uottawa.ca

CSI 5180 Topics in AI: Virtual Assistants

Project Summary

• Build a QA system to help users to extract information from a long news article

• Easy for users to find answers

• Implement a extracting QA system in machine learning models

Resources

• Microsoft newsQA dataset: contain question-answer pairs from news article

• Transformer Library: provide thousands of pre-trained models and multiple datasets

• Pycharm: Python IDE, easy for understanding

• GitHub: the project code repository

Methodology

- Data cleaning
 - Extend character ranges to have complete words
 - Select a single answer for a question
- Baseline model (Cosine Similarity)
 - Compare cosine similarity in each sentence
 - Each sentence is tokenized and any stop words or URLs are removed
 - Taking average the Glove embedding to calculate an embedding for each sentence

Methodology

- Advanced model (Machine learning approach)
 - The data require pre-processing to store details
 - Use BERT model for training
 - Only linear layers were fine-tuning because the BERT model is huge
- Evaluation Metric
 - F1 score: harmonic mean of precision and recall
 - Calculate the number of overlapping characters between actual and predicted answers
 - Accuracy: the percentage of answers that are correctly predicted
 - At least one token overlapped, which is seen as correct

Activity table

• Processing data in right format spent more time

• Training models was time consuming

Activity	Why	Time Planned	Time Taken	Deliverable
Find related	Find multiple	3h	3h	
work	models and			
	make			
	comparison			
Explore dataset	For know the	2h	3h	Choose newsQA
	format and find			dataset
	ways to testing			
Project	To create	3h	3h	
environment	environment to			
setup	implement			
Training	To get the	4h	4h	Using cosine
baseline model	performance			similarity
	results on			approach
	baseline model		100	
Training	To get the	3h	7h	The Bert model
advanced model	performance			is huge
	results on			
	advanced model	170		
Evaluation	Get results for	2h	3h	
between two	comparison			
approaches				
Analyze the	Analyze the	6h	6h	Make the result
results	results			tables
Writing report	Make the	7h	7h	
	presentation			
	video and write			
	report			
	Total	30h	36h	

Results I

- Baseline model
 - F1 Score is extremely low because the actual answer does not span entire sentence
 - Predict the sentence with correct answer in 12.7% of the time

Cosine Similarity	F1 Score	Accuracy
	0.0501	0.127

Results II

- Advanced model
 - DERT model has better F1 Score and higher accuracy
 - After fine-tuning model has better performance
 - BERT model can predict correct answers in more than 50% of the time

BERT model	F1 Score	Accuracy
Before fine-tuning	0.2750	0.425
After fine-tuning	0.345	0.536

Challenges

• Training models are time-consuming

• Data cleaning is required, otherwise it is hard to implement

• In processing data, the data exceeds the BERT maximum length => find the parts of text has answers

What have you learned?

• How to build an end-to-end QA system

- Learn Transformer Library in NLP
 - Transformer library has many pretrained models to perform tasks, such as text classification, image detection and speech recognition

- Learn fine-tuning in NLP
 - Re-train a pre-trained language model
 - The weights of the original model are updates and results may perform well

Conclusion

• How to build an end-to-end QA system

• How to compare models in two approaches to train based on the same dataset

Machine learning approach in QA system

• Fine-tuning of models could achieve better performance

References

1. Microsoft's NewsQA dataset: https://www.microsoft.com/en-us/research/project/newsqa-dataset/

- 2. BERT model for QA: https://huggingface.co/docs/transformers/model_doc/bert?highlight=bertforquestionanswering#transformers.Bert ForQuestionAnswering
- 3. Data processing: https://github.com/smitkiri/news-qa

4. My GitHub Link: https://github.com/han0807/CSI-5180-Project