## KADI SERVA VISHWAVIDHYALAYA,

## BE Semester-3(May-2023)

| Discrete Mathematics (CC320B-N) Max M |                                                                                          |                                                                                                                          | ks: 70 |
|---------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------|
| Date: 09/05/2023 Duration             |                                                                                          |                                                                                                                          | : 3hr  |
| Instruc                               | ction:                                                                                   | 1) Answer each section in separate answer sheet                                                                          |        |
|                                       | 2                                                                                        | 2) Use of scientific calculator is permitted                                                                             |        |
|                                       | 3                                                                                        | 3) All questions are compulsory                                                                                          |        |
|                                       | 4). Indicate clearly, the option you attempted along with its respective question number |                                                                                                                          |        |
| 1                                     | 5                                                                                        | 5) use the last page of main supplementary for rough work.                                                               |        |
|                                       |                                                                                          |                                                                                                                          |        |
|                                       |                                                                                          | Section-1                                                                                                                |        |
| Q.1                                   | (a)                                                                                      | Draw the Hasse diagram of $P(A)$ , $\subseteq$ where $A = \{a, b, c\}$ also find cover of element.                       | [5]    |
|                                       | (b)                                                                                      | Show that cube roots of unity form an abelian group under multiplication.                                                | [5]    |
|                                       | (c)                                                                                      | Let f: $Z \to Z$ be a function define by $f(x) = 9x + 5$ . Then check whether the function f is one-one and onto or not. | [5]    |
|                                       |                                                                                          | OR                                                                                                                       |        |
|                                       | (c)                                                                                      | Define cyclic group. Show that $(z_7, +_7)$ is a cyclic group also find the generator of this group.                     | [5]    |
| Q.2                                   | (a)                                                                                      | Expressed the Boolean expression $x_1 * x_2$ in an equivalent sum of products canonical form of three variable.          | [5]    |
|                                       | (b)                                                                                      | Define Right and Left coset. Let $G=(z, +)$ and $H=(5z, +)$<br>Then find all the possible left and right coset.          | [5]    |
|                                       |                                                                                          | OR                                                                                                                       |        |
|                                       | (a)                                                                                      | Show that $< \{1, 3, 6, 15\}, \le >$ is not a sub lattice of $< s_{30}, D >$ .                                           | [5]    |
|                                       | (b)                                                                                      | Define Boolean algebra. Show that $\langle s_{30}, D \rangle$ is a Boolean algebra.                                      | [5]    |

Q.3 (a) Define Handshaking Lemma and verify it for the following [5] graph. **(b)** Prove that  $< \{1, 3, 3^2, 3^3, \dots, D > \text{ are Poset and chain.}$ [5] OR (a) Define the following terms of undirected graph with example. [5] 1) Simple graph (2) Multiple Graph (3) Bipartite Graphs 4) Walk (b) Define Join-irreducible elements, Meet-irreducible elements, [5] Atom and Anti-atoms. Find the Join-irreducible elements, Meet-irreducible elements, Atom and Anti-atoms for the lattice  $< s_{30}, D>.$ Section-2 Q.4 (a) Prove that the set  $G = \{0, 1, 2, 3, 4\}$  is an abelian group under [5] addition modulo 5. (b) Show that  $\langle s_{30}, D \rangle$  is bounded and complemented lattice. [5] (c) A relation is defined on set Z is [5]  $R = \{(x, y)/x - y \text{ divided by } 7\}$  then Prove that the relation R is an equivalence relation. (c) Let p, q and r be the statement then construct the truth table for [5] the statement formula A, A:  $(\sim p \land q) \rightarrow r$ Q.5 (a) Prove that the set  $G = \{1, i, -1, -i\}$  is a group under the operation [5] multiplication. (b) Define the following term with graph. [5] 1) degree 2) in degree 3) out degree

OR

[5]

(a) Show that  $(s_2, o)$  is an abelian group under the operation

composition.

- (b) Expressed the Boolean expression  $(x_1 \oplus x_2)' * x_3$  in an [5] equivalent products of sum canonical form.
- Q.6 (a) Define the following term with graph.

  1) Tree 2) Spanning Tree 3) Rooted Tree
  - (b) Find an Incident Matrix of a following Graph. [5]



- (a) Define Graph isomorphism with example. [5]
- (b) If p and q are any two statement then verify  $\sim (p \leftrightarrow q) = \sim p \leftrightarrow q = p \leftrightarrow \sim q$  [5]

## **Best of Luck**