

DEM generation

Rüdiger Gens

Data ingest

64.5°

- ingest of STF data
- can handle precision state vectors for ERS data
- allows latitude constraint

63.5°

Average Doppler

- getting both images into the same geometry
- works fine for ERS imagery
- Radarsat imagery requires zero Doppler processing (currently under development)

Co-registration

- initial offset estimated from state vectors (pixels)
- fine co-registration for sub-pixel accuracy
- baseline estimate as side product Bn = -61.829628Bp = 19.505440
- exit condition with maximum offset (default 3 pixels)

Interferogram

- single-look interferogram
- color-coded multilooked interferogram

Coherence image

- exit condition with minimum coherence level (default value: 0.3)
- statistics
 - maximum: 0.975
 - average: 0.747

Offset matching

- improves geolocation by refining shifts in time and range
- matches real and simulated amplitude (derived from reference DEM) until no offset can be measured

Offset matching

real amplitude

simulated amplitude

Simulated phase / seeds points

- derived from reference DEM
- simulated phase
 - used for removal of topographic phase (optional)
- seed points
 - equally distributed
 - selection criteria: minimum slope in reference DEM
 - potential seed points: 10000
 - final number of seed points: 2321

Seed point distribution

X XXX X XXX XX X XXXXX XXX XX XXXXX X X XX X X XX XX X X XX XX XXXXXXXX X XX XXXXXXX XXXXXXXXXXXXX XXXXXXXXXX XXX XXXXXXXXX XXXXXXXXXXXXX XXXXXXXXXXXXX XX XXXXXX XXXX XX XXXXXX XXXXX

Phase unwrapping

- multilooking of interferogram
- unwrapping with
 - escher (branch cut algorithm)
 - snaphu (minimum cost flow algorithm)
- unwrapped phase related to height

Phase unwrapping

wrapped phase

unwrapped phase

Baseline refinement

- information used
 - unwrapped phase
 - baseline estimate
 - seed points
- iterative process

Bn: -61.829628, Δ: 5.643837, Bp: 19.505440, Δ: -2.099306

Bn: -61.527863, Δ: 5.565868, Bp: 19.777119, Δ: -2.117374

Bn: -61.549664, Δ: 5.693950, Bp: 19.776737, Δ: -2.112025

Elevation

Slant range elevation

Ground range elevation

Elevation error

estimate base on

- initial height error estimate
- baseline induced height
- baseline
- "flat earth" look deviation
- coherence

$$dH = \sqrt{dH_{init}^{2} + \left(\frac{h_{baseline}}{-B_{N} \cdot \cos \theta - B_{P} \cdot \sin \theta} \cdot \sqrt{\frac{1 - \gamma}{\gamma}}\right)^{2}}$$

Geocoding

- final product
- map projected
 - Universal Transverse Mercator (UTM)
 - Albers Conic Equal Area
 - Polar Stereographic
 - Lambert Conformal Conic
 - Lambert Equal Area

ESA Tandem Mission: Descending Coverage

ESA Tandem Mission: Ascending Coverage

