Digital Filters & Spectral Analysis Lecture 4

Sampling
Problem sheet - Solutions

- 1. Consider the signal : $x(t) = \cos(\omega_1 t) \cos(\omega_2 t)$ where $\omega_2 > \omega_1$
 - a. Sketch the spectrum $X(\omega)$ of the signal
 - b. The signal is sampled with a sampling period T_s resulting in the discrete time signal: $x[n] = x(nT_s)$. Sketch the spectrum for the sampled signal, assuming that the sampling frequency $\omega_s = 2\pi/T >> \omega_2$.
 - c. What is the minimum sampling frequency $\omega_s = 2\pi/T$ required to avoid aliasing?
 - d. Sketch the spectrum obtained when the sampling frequency is just below this value.
 - e. Show that at a certain sampling frequency the sampled signal x[n] will be 0.

1a. Original spectrum before sampling:

1b. For $\omega_s = 2\pi/T >> \omega_2$ the spectrum of the sampled signal looks like this:

1c. To avoid aliasing we require $\omega_s > 2\omega_2$.

1d. For $\omega_s < 2\omega_2$ (aliasing) the spectrum looks like this:

1d. If $\omega_s - \omega_2 = \omega_1$ then the aliased component of ω_2 will cancel the ω_1 component.

2. The signal $x_c(t) = \sin(2\pi 100t)$ was sampled with sampling period T=1/400 second to obtain a discrete-time signal x[n]. What is the resulting sequence x[n]?

$$x[n] = x_c(nT) = \sin(2\pi(100)n\frac{1}{400}) = \sin(\frac{\pi}{2}n)$$

3. The sequence $x[n] = \cos(\frac{\pi}{4}n)$ was obtained by sampling the continuous-time signal $x_c(t) = \cos(\omega_0 t)$ at a sampling rate of 1000 samples/sec. What are two possible positive values of ω_0 that could have resulted in the sequence x[n]

$$x[n] = \cos(\Omega_0 n) = \cos(\frac{\pi}{4}n) \Rightarrow \Omega_0 = \frac{\pi}{4}$$

$$\Omega_0 = \omega_0 T \Rightarrow \omega_0 = \frac{\Omega_0}{T} = \frac{\pi}{4} \times 1000 = 250\pi \ rads / \sec t$$

or possibly
$$\omega_0 = (2\pi + \frac{\pi}{4}) \times 1000 = 2250\pi \, rads / \sec^2$$

- 4. The continuous-time signal $x_c(t) = \cos(4000\pi t)$ is sampled with a sampling period T to obtain the discrete-time signal $x[n] = \cos(\frac{\pi n}{3})$
 - a. Determine a choice of T consistent with this information
 - b. Is your choice for T in part (a) unique? If so explain why. If not specify another choice of T consistent with the information given.

4a.
$$\Omega_0 = \omega_0 T \Rightarrow \frac{\pi}{3} = 4000\pi \times T \Rightarrow T = \frac{\pi}{12000\pi} = \frac{1}{12000} \sec \theta$$

4b. No. For example :
$$x[n] = \cos(\frac{\pi n}{3}) = \cos((\frac{\pi}{3} + 2\pi)n) = \cos(\frac{7\pi n}{3})$$
 in which case $T = \frac{7}{12000}$

5. Consider the system shown below with the discrete time system being an ideal low pass filter with cut-off frequency $\pi/8$ rads/sec

- a. If $x_c(t)$ is band-limited to 5kHz what is the maximum value of T that will avoid aliasing in the A/D converter?
- b. If 1/T = 10kHz what will the cut-off frequency of the effective continuous-time filter be?
- c. Repeat part b for 1/T = 20kHz

Frequency response of ideal low pass filter with cut-off of $\pi/8$

5a. Nyquist rate is 2 x f_{max} => $\frac{1}{T}$ = 10000 \Rightarrow maximum period $T = \frac{1}{10000}$ sec

5b.
$$\Omega_c = \omega_c T \Rightarrow \omega_c = \frac{\Omega_c}{T} = 10000 \frac{\pi}{8} = 1250 \pi = 2\pi \, 625 \, rad \, / \sec \, (2\pi f_c = 2\pi \, 625 \Rightarrow f_c = 625 Hz)$$

5c.
$$\Omega_c = \omega_c T \Rightarrow \omega_c = \frac{\Omega_c}{T} = 20000 \frac{\pi}{8} = 2500 \pi = 2\pi 1250 \, rad \, / \sec \left(2\pi f_c = 2\pi 1250 \Rightarrow f_c = 1250 Hz \right)$$

Lecture 4: Sampling Problem Sheet - Solutions

6. A continuous time signal $x_a(t)$ is composed of a linear combination of sinusoidal signals of frequencies 250 Hz, 450 Hz, 1.0 k Hz, 2.75 k Hz and 4.05 kHz. The signal $x_a(t)$ is sampled at a 1.5 kHz rate and the sampled sequence is passed through an ideal low pass filter with a cut-off frequency of 750Hz, generating a continuous time signal $y_a(t)$. What are the frequency components present in $y_a(t)$?

 $X_c(t)$ consists of sinusoids at frequencies f_i and its spectrum $X_c(f)$ is given by:

$$X_c(f) = \frac{1}{2} \sum_{i=0}^{5} \delta(f - f_i) + \delta(f + f_i)$$
, where $f_0 = 250$ Hz, $f_1 = 450$ Hz, $f_2 = 1000$ Hz,....

The spectrum of the sampled signal $X_s(f)$ will contain multiple copies of the spectrum of the continuous-time signal $X_c(f)$ centred at $\pm f_s$. $f_s = 1500$ Hz.

$$X_{s}(f) = f_{s} \sum_{k=-\infty}^{\infty} X_{c}(f - kf_{s}) = \frac{f_{s}}{2} \sum_{k=-\infty}^{\infty} \sum_{i=0}^{5} \delta(f - f_{i} - kf_{s}) + \delta(f + f_{i} - kf_{s})$$

f ₀ (Hz)	k=0		k=-1		k=1		k=-2		k=2		k=-3		k=3	
250	250	-250	-1250	-1750	1750	1250	-2750	-3250	3250	2750	-4250	-4750	4750	4250
450	450	-450	-1050	-1950	1950	1050	-2550	-3450	3450	2550	-4050	-4950	4950	4050
1000	1000	-1000	-500	-2500	2500	500	-2000	-4000	4000	2000	-3500	-5500	5500	3500
2750	2750	-2750	1250	-4250	4250	-1250	-250	-5750	5750	250	-1750	-7250	7250	1750
4050	4050	-4050	2550	-5550	5550	-2550	1050	-7050	7050	-1050	-450	-8550	8550	450