

É obrigatório justificar as respostas em cálculos ou argumentos físicos, senão a resposta será anulada!

8) (UFJF-MG) Uma gotícula de óleo, de massa $m=9.6\cdot 10^{-15}\,\mathrm{kg}$ e carregada com carga elétrica $q=-3.2\cdot 10^{-19}\,\mathrm{C}$, cai verticalmente no vácuo. Num certo instante, liga-se nessa região um campo elétrico uniforme, vertical e apontando para baixo. O módulo desse campo elétrico é ajustado até que a gotícula passe a cair com movimento retilíneo e uniforme. Nessa situação, qual o valor do módulo do campo elétrico?

- A) $3.0 \cdot 10^5 \,\text{N/C}$
- B) $1.0 \cdot 10^5 \, \text{N/C}$
- C) $3.0 \cdot 10^4 \,\text{N/C}$
- D) $1.0 \cdot 10^4 \,\text{N/C}$
- E) $1.0 \cdot 10^3 \,\text{N/C}$

7) (Unaerp-SP) Um campo elétrico uniforme existe na região entre duas placas planas paralelas com cargas de sinais opostos. Um elétron de massa $m=9\cdot 10^{-31}\,\mathrm{kg}$ e carga $q=-1.6\cdot 10^{-19}\,\mathrm{C}$ é abandonado em repouso junto à superfície da placa carregada negativamente e atinge a superfície da placa oposta, a 12 cm de distância da primeira, em um intervalo de tempo de $3\cdot 10^{-7}\,\mathrm{s}$. Determine a intensidade do campo elétrico e a velocidade do elétron no momento em que atinge a segunda placa. Identifique a opção correta.

- A) $E = 15 \text{ N/C}; v = 8 \cdot 10^5 \text{ m/s}$
- B) $E = 200 \,\text{N/C}; v = 4 \,\text{km/h}$
- C) $E = 100 \text{ N/C}; v = 2 \cdot 10^6 \text{ m/s}$
- D) $E = 10^5 \,\text{N/C}; v = 2 \cdot 10^6 \,\text{m/s}$
- E) E = 5 N/C; $v = 8 \cdot 10^5 \text{ m/s}$

11) (Uerj) Uma partícula carregada penetra em um campo elétrico uniforme existente entre duas placas planas e paralelas A e B, A figura mostra a trajetória curvilínea descrita pela partícula. A alternativa que aponta a causa correta dessa trajetória é:

- A) A partícula tem carga negativa, e a placa A tem carga positiva.
- B) A partícula tem carga positiva, e a placa A tem carga negativa.
- C) A partícula tem carga negativa, e a placa B tem carga positiva.
- D) A partícula tem carga positiva, e a placa B tem carga negativa.
 - **17**) nan
 - **16**) nan
- 2) (UCSal-BA) Uma esfera condutora eletrizada com carga $Q=6,00\,\mu C$ é colocada em contato com outra, idêntica, eletrizada com carga $q=-2,00\,\mu C$. Admitindo-se que haja troca de cargas apenas entre essas duas esferas, o número de elétrons que passa de uma esfera para a outra até atingir o equilíbrio eletrostático é: Dado: carga elementar $e=1,60\times 10^{-19}\,\mathrm{C}$
 - A) $5,00 \times 10^{19}$
 - B) $2,50 \times 10^{16}$
 - C) $5,00 \times 10^{14}$
 - D) $2,50 \times 10^{13}$
 - E) 1.25×10^{13}
- 1) (PUC-SP) Duas esferas A e B, metálicas e idênticas, estão carregadas com cargas respectivamente iguais a $16\,\mu C$ e $4\,\mu C$. Uma terceira esfera C, metálica e idêntica às anteriores, está inicialmente descarregada. Coloca-se C em contato com A. Em seguida, esse contato é desfeito e a esfera C é colocada em contato com B. Supondo que não haja troca de cargas elétricas com o meio exterior, a carga final de C é de:
 - A) $8\mu C$
 - B) $6 \mu C$
 - C) $4\mu C$
 - D) $3\mu C$
 - E) nula

12) (UFG-GO) Em uma impressão jato de tinta, as letras são formadas por pequenas gotas de tinta que incidem sobre o papel, À figura a seguir mostra os principais elementos desse tipo de impressora. As gotas, após serem eletrizadas na unidade de carga, têm suas trajetórias modificadas no sistema de deflexão (placas carregadas), atingindo o papel em posições que dependem de suas cargas elétricas. Suponha que uma gota, de massa m e de carga elétrica q, entre no sistema de deflexão com velocidade v, ao longo do eixo x, Considere a diferença de potencial, V, entre as placas, o comprimento, L, das placas e a distância, d, entre elas. Se a gota descrever a trajetória mostrada na figura, pode-se afirmar que:

- A) () o módulo de sua aceleração é qV/md
- B) () L/v_0 é o tempo necessário para ela atravessar o sistema de deflexão
- C) () sua carga elétrica é positiva
- D) () ocorre um aumento de sua energia potencial elétrica
- 6) (UFSM-RS) Uma partícula com carga de $8\cdot 10^{-7}\,\mathrm{C}$ exerce uma força elétrica de módulo $1,6\cdot 10^{-2}\,\mathrm{N}$ sobre outra partícula com carga de $2\cdot 10^{-7}\,\mathrm{C}$. A intensidade do campo elétrico no ponto onde se encontra a segunda partícula é, em N/C:
 - A) $3.2 \cdot 10^{-9}$
 - B) $1.28 \cdot 10^{-8}$
 - C) $1.6 \cdot 10^4$
 - D) $8 \cdot 10^4$
 - E) $1.0 \cdot 10^4$

13) (UFPI) Uma partícula, com carga elétrica $q=2\cdot 10^{-9}\mathrm{C}$, é liberada do repouso numa região onde existe um campo elétrico externo. Após se afastar alguns centímetros da posição inicial, a partícula já adquiriu uma energia cinética, dada por $E_c=4\cdot 10^{-6}$ J. Qual a diferença de potencial ($\Delta V=V_t-V_i$) entre essas duas posições?

- A) -2kV
- B) -4kV
- C) 0
- D) +4 kV
- E) +2kV
- 3) (Vunesp) Identifique a alternativa que apresenta o que as forças dadas pela lei da gravitação universal de Newton e pela lei de Coulomb têm em comum.
 - A) Ambas variam com a massa das partículas que interagem.
 - B) Ambas variam com a carga elétrica das partículas que interagem.
 - C) Ambas variam com o meio em que as partículas interagem.
 - D) Ambas variam com o inverso do quadrado da distância entre as partículas que interagem.
 - E) Ambas podem ser tanto de atração como de repulsão entre as partículas que interagem.
- 14) (Acafe-SC) A tabela mostra as energias cinéticas final e inicial, respectivamente, nos pontos A e B de Sabendo-se que a ddp nos três casos é a mesma, a relação entre as três cargas é:
 - A) $q_1 < q_2 < q_3$
 - B) $q_1 = q_2 = q_3$

- C) $q_1 > q_2 > q_3$
- D) $q_1 = q_2 > q_3$
- E) $q_1 > q_2 = q_3$

15) (PUC-SP) Um elétron-volt (eV) é, por definição, a energia cinética adquirida por um elétron quando acelerado, a partir do repouso, por uma diferença de potencial de 1,0 V. Considerando a massa do elétron 9,0 · 10^{-31} kg e sua carga elétrica em valor absoluto $1,6 \cdot 10^{-19}$ C, a velocidade do elétron com energia cinética 1,0 eV tem valor aproximado de:

Energia cinética inicial (J)	Energia cinética final (J)	Carga (µC)
0,40	0,95	q_1
0,15	0,70	q_2
0,35	0,75	q_3

- A) $6.0 \cdot 10^5 \text{ m/s}$
- B) $5.0 \cdot 10^5 \text{ m/s}$
- C) $4.0 \cdot 10^5 \text{ m/s}$
- D) $5.0 \cdot 10^4 \text{ m/s}$
- E) $6.0 \cdot 10^4 \text{ m/s}$

 ${\bf 10})$ (Uniube-MG) Em uma região de campo elétrico uniforme de intensidade E = 20.000 N/C, uma carga $q=4\cdot 10^{-8}$ C é levada de um ponto A, onde V_A = 200 V, para um ponto B, onde $V_B=$ 80 V.O trabalho realizado pela força elétrica no deslocamento da carga entre A e B a distância entre os pontos A e B são, respectivamente, iguais a:

- A) $4.8 \cdot 10^{-6} \text{N } 6 \cdot 10^{-3} \text{m}$
- B) $4.8 \cdot 10^{-6} \text{J } 6 \cdot 10^{-3} \text{m}$
- C) $2.4 \cdot 10^{-5} \text{J } 6 \cdot 10^{-3} \text{m}$
- D) $2.4 \cdot 10^{-5} \text{N } 6 \cdot 10^{-3} \text{m}$
- E) $0 e 8 \cdot 10^{-3} \text{m}$

5) (PUC-SP) Uma carga de prova negativa q é colocada num ponto A, onde há um campo elétrico \vec{E} gerado por uma carga Q positiva, ficando, então, sujeita a uma força $\vec{F_e}$ de intensidade 10 N. Sendo $q=-50\,\mathrm{mC}$, identifique a opção que fornece o valor correto da intensidade do vetor campo elétrico em A, bem como as orientações corretas dos vetores \vec{E} e $\vec{F_e}$:

- A) $2.0 \cdot 10^{-1} \,\text{N/C}$
- B) $2.0 \cdot 10^2 \, \text{N/C}$
- C) $2.0 \cdot 10^5 \,\text{N/C}$
- D) $2.0 \cdot 10^2 \, \text{N/C}$
- E) $2.0 \cdot 10^5 \, \text{N/C}$