

US012385429B2

(12) United States Patent Tittl et al.

(54) **POWERTRAIN FOR A UTILITY VEHICLE**

(71) Applicant: **Polaris Industries Inc.**, Medina, MN (US)

(72) Inventors: Steven M. Tittl, Lino Lakes, MN (US);
Andrew C. Schleif, Stacy, MN (US);
Stephen L. Nelson, Osceola, WI (US);
Kevin J. Rodel, Isanti, MN (US);
William L. Barbrey, Lino Lakes, MN (US); Paul W. Barton, Warwickshire (GB); Oliver Young, Birmingham

(GB); Andrew P H Statham, Leicestershire (GB)

(73) Assignee: **Polaris Industries Inc.**, Medina, MN (US)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

(21) Appl. No.: 18/207,565

(22) Filed: Jun. 8, 2023

(65) **Prior Publication Data**

US 2023/0399975 A1 Dec. 14, 2023

Related U.S. Application Data

- (60) Provisional application No. 63/351,574, filed on Jun. 13, 2022.
- (51) **Int. Cl. F02B 37/02** (2006.01) **B60K 13/02** (2006.01)

 (Continued)

(10) Patent No.: US 12,385,429 B2

(45) **Date of Patent:** Aug. 12, 2025

(58) Field of Classification Search

CPC .. F02B 37/02; F02B 29/0406; F02B 29/0425; B60K 13/02; B60K 13/04; B60K 5/00; (Continued)

(56) References Cited

U.S. PATENT DOCUMENTS

1,031,497 A 7/1912 West 1,461,711 A 7/1923 Bull (Continued)

FOREIGN PATENT DOCUMENTS

CA 1163510 A 3/1984 CA 2746655 A1 7/2010 (Continued)

OTHER PUBLICATIONS

International Preliminary Report on Patentability issued by the International Bureau of WIPO, dated Jul. 14, 2020, for International Patent Application No. PCT/US2019/012958; 19 pages.

(Continued)

Primary Examiner — Loren C Edwards (74) Attorney, Agent, or Firm — Faegre Drinker Biddle & Reath LLP

(57) ABSTRACT

A utility vehicle including a plurality of ground-engaging members, a frame supported by the ground-engaging members, and a powertrain assembly supported by the frame and including an engine supported by the frame, the engine including an exhaust side and a turbocharger operably coupled to the engine, the turbocharger having a turbine housing supporting a turbine and a compressor housing supporting a compressor, the turbocharger being positioned on the exhaust side of the engine and rearward of the engine, a space between the turbocharger and the engine being less than 9 inches.

13 Claims, 33 Drawing Sheets

(51)	Int. Cl.		4,098,414 A		Abiera
	B60K 13/04	(2006.01)	4,109,751 A		Kabele
	F02B 29/04	(2006.01)	4,114,713 A 4,136,756 A	9/1978	Mery Kawamura
(52)	U.S. Cl.		4,150,655 A		Forlai et al.
	CPC F02B 29/0	0425 (2013.01); F02B 29/0481	4,155,333 A		Maggiorana
		3.01); <i>B60Y 2200/20</i> (2013.01)	4,159,835 A	7/1979	Leja et al.
(58)	Field of Classificatio	n Search	4,217,970 A	8/1980	
()		05/006; B60Y 2200/20; F02M	4,236,492 A 4,254,746 A	12/1980	Chiba et al.
		7; F02M 35/162; F02M 35/164	4,284,158 A		Schield
		or complete search history.	4,284,408 A		Boer et al.
	**		4,294,073 A	10/1981	
(56)	Referen	nces Cited	4,313,728 A 4,321,896 A		Prasad Kasting
	II O DATEDIT	DOCID FINES	4,337,406 A		Binder
	U.S. PATENT	DOCUMENTS	4,340,123 A		Fujikawa
	1,521,976 A 1/1925	Swain	4,344,718 A	8/1982	
		Bigelow	4,366,878 A 4,404,936 A	1/1983	Warf Tatebe et al.
	D119,377 S 3/1940	Cadwallader	4,425,976 A		Kimura
		Brock et al.	4,427,087 A *		Inoue F02B 67/10
	2,525,131 A 10/1950 2,553,795 A 5/1951	Staude			180/219
		John et al.	4,429,588 A		Emundts et al.
		Scheiterlein	4,434,755 A 4,434,934 A		Kazuta et al. Moser et al.
		MacPherson	4,458,491 A *		Deutschmann F02B 37/02
		MacPherson	-,,		60/605.1
		Hohmes Matthias et al.	4,464,144 A		Kobayashi
	2,795,962 A 6/1957		4,467,747 A		Braatz et al.
	2,833,366 A 5/1958		4,470,389 A 4,474,162 A	9/1984 10/1984	Mitadera et al.
		Middlebrooks, Jr.	4,483,686 A		Kobayashi et al.
	2,986,130 A 5/1961 3,007,726 A 11/1961	McMillan Parkin	4,505,169 A	3/1985	Ganoung
		Crain et al.	4,515,221 A *	5/1985	van der Lely A01B 69/008
	3,193,302 A 7/1965	Hill	4 507 517 A	7/1005	73/178 R
		Dangauthier	4,527,517 A 4,529,244 A		Mezger et al. Zaydel
		Vittone	4,561,323 A		Stromberg
		Musser et al.	4,575,363 A	3/1986	Burgess et al.
		Beasley et al.	4,577,716 A		Norton
		Dobson et al.	4,592,316 A 4,598,687 A		Shiratsuchi et al. Hayashi
		Fenton	4,600,072 A	7/1986	
	3,560,022 A 2/1971 3,597,987 A 8/1971	Kiekhaefer	D286,760 S		Ooba et al.
		Romanzi et al.	4,630,446 A *	12/1986	Iwai F02B 33/44
	3,603,422 A 9/1971	Cordiano	4.629.172. A	1/1007	60/314 W:11:
		Deschene	4,638,172 A 4,641,854 A		Williams Masuda et al.
	· · · · · · · · · · · · · · · · · · ·	Minowa Swanson et al.	4,650,210 A		Hirose et al.
		Deschene et al.	4,671,521 A		Talbot et al.
	3,733,918 A 5/1973	Domaas	4,681,178 A		Brown
		Christensen et al.	4,685,430 A 4,686,433 A	8/1987 8/1987	Ap Shimizu
		Hoff et al. Domaas	4,688,529 A		Mitadera et al.
		Laughlin	4,699,234 A		Shinozaki et al.
	3,791,482 A 2/1974	Sykora	4,705,128 A	11/1987	
		Perreault	4,708,105 A 4,708,699 A		Leydorf et al. Takano et al.
	3,800,910 A 4/1974 3,841,841 A 10/1974	Rose Torosian et al.	4,712,629 A		Takahashi et al.
		Howells et al.	4,714,126 A	12/1987	Shinozaki et al.
	3,861,229 A 1/1975	Domaas	4,722,548 A		Hamilton et al.
		Bessette	4,732,244 A 4,733,639 A		Verkuylen Kohyama et al.
	3,916,707 A 11/1975	Wells Johnson	4,756,280 A		Tamba et al.
		Aaen et al.	D297,132 S		Ryuzoji et al.
		Beaudoin et al.	4,773,675 A		Kosuge
	3,958,461 A 5/1976	Aaen et al.	4,779,895 A	10/1988	Rubel Ito et al.
		Tremblay et al.	4,779,905 A D298,811 S	10/1988	
		Beaudoin et al. Gowing	4,793,297 A		Fujii et al.
		Beaudoin et al.	4,798,399 A	1/1989	Cameron
	3,971,263 A 7/1976	Beaudoin et al.	4,817,985 A		Enokimoto et al.
		White	4,821,825 A 4,826,205 A	4/1989 5/1989	Somerton-Rayner Kouda et al.
		Horton Miller	4,826,203 A 4,826,467 A		Reese et al.
	4,022,272 A 5/1977 4,027,892 A 6/1977		4,827,416 A		Kawagoe et al.
		Yoshida	4,828,017 A	5/1989	Watanabe et al.
	4,061,187 A 12/1977	Rajasekaran et al.	D301,849 S	6/1989	Oba et al.

(56)		Referen	ces Cited	5,473,990 5,475,596			Anderson et al. Henry et al.
	U.	S. PATENT	DOCUMENTS	5,483,448			Liubakka et al.
	0.		DOCOMENTO	5,507,510			Kami et al.
	4,848,294 A		Yamamoto	5,528,148		6/1996	Rogers
	4,867,474 A			5,529,544 D373,099		6/1996 8/1996	Berto Molzon et al.
	4,890,510 A 4,890,586 A		Inui Fujii et al.	5,546,901		8/1996	Acker et al.
	D305,999 S		Ueda et al.	5,549,153			Baruschke et al.
	4,898,261 A		Winberg et al.	5,549,428			Yeatts
	4,907,551 A	3/1990	Sakono et al.	5,550,445		8/1996	
	4,907,552 A			5,550,739 5,558,057			Hoffmann et al. Everts
	4,924,959 A 4,927,170 A		Handa et al.	D374,416			Miyamoto et al.
	4,934,737 A		Nakatsuka	5,562,066			Gere et al.
	4,941,784 A	7/1990	Flament	5,562,555			Peterson
	D312,441 S		Guelfi et al.	5,597,060 5,614,809			Huddleston et al. Kiuchi et al.
	4,967,944 A 4,969,661 A		Omura et al.	5,621,304			Kiuchi et al.
	4,973,082 A		Kincheloe	5,647,534			Kelz et al.
	D312,989 S		Murata et al.	5,647,810			Huddleston
	4,974,697 A			5,653,304 D383,095		8/1997 9/1997	Renfroe Miyamoto et al.
	5,010,970 A 5,015,009 A		Yamamoto Ohyama et al.	5,676,292		10/1997	Miller
	5,016,728 A		Zulawski	5,678,847			Izawa et al.
	5,016,903 A	5/1991	Kijima et al.	5,692,983			Bostelmann
	5,018,490 A			5,697,633 D391,911		12/1997	Lee Lagaay et al.
	5,020,616 A 5,021,721 A		Yagi et al. Oshita et al.	5,738,062			Everts et al.
	5,021,721 A 5,024,460 A		Hanson et al.	5,738,471		4/1998	Zentner et al.
	5,027,761 A		Fujii et al.	5,752,791			Ehrlich
	5,027,915 A		Suzuki et al.	5,776,568 5,788,597		7/1998	Andress et al. Boll et al.
	5,036,939 A		Johnson et al.	5,795,255			Hooper
	5,038,582 A 5,044,614 A		Takamatsu Rau	5,797,816			Bostelmann
	5,048,860 A		Kanai et al.	5,816,650			Lucas, Jr.
	5,062,654 A		Kakimoto et al.	5,819,702 5,820,114		10/1998	Mendler Tsai
	5,062,657 A			5,820,114		10/1998 10/1998	Archer et al.
	5,063,811 A 5,074,374 A		Smith et al. Ohtake et al.	5,839,397		11/1998	Funabashi et al.
	5,076,383 A		Inoue et al.	5,842,534		12/1998	
	5,078,223 A		Ishiwatari et al.	5,855,386		1/1999	Atkins
	5,078,225 A		Ohmura et al.	5,860,403 5,863,277		1/1999 1/1999	Hirano et al. Melbourne
	5,080,392 A 5,083,827 A		Bazergui Hollenbaugh, Sr.	D405,029		2/1999	Deutschman
	5,086,858 A		Mizuta et al.	5,867,009		2/1999	Kiuchi et al.
	D327,237 S	6/1992	Miyamoto et al.	5,883,496		3/1999	Esaki et al.
	5,129,700 A		Trevisan et al.	5,887,671 5,895,063		3/1999 4/1999	Yuki et al. Hasshi et al.
	5,163,538 A 5,167,433 A		Derr et al.	5,921,343		7/1999	Yamakaji
	5,174,622 A			5,947,075		9/1999	Ryu et al.
	5,181,696 A			5,950,590		9/1999	Everts et al.
	5,189,615 A		Rubel et al.	5,950,750 5,954,364		9/1999	Dong et al. Nechushtan
	5,191,859 A 5,195,607 A	3/1993	Fujiwara Shimada et al.	5,957,252	A		Berthold
	5,201,562 A		Dorsey	D414,735	S	10/1999	Gerisch et al.
	5,203,585 A			5,960,764		10/1999	Araki
	5,205,371 A		Karnopp	5,961,106 5,961,135		10/1999 10/1999	Shaffer Smock
	5,209,703 A 5,212,431 A		Mastine et al. Origuchi et al.	5,971,290		10/1999	Echigoya et al.
	5,251,588 A		Tsujii et al.	5,975,573		11/1999	Belleau
	5,251,713 A		Enokimoto	5,976,044		11/1999	Kuyama
	5,251,718 A		Inagawa et al.	5,992,926 6,000,702		11/1999 12/1999	Christofaro et al. Streiter
	5,253,730 A 5,255,733 A		Hayashi et al. King	D421,934		3/2000	Hunter et al.
	5,264,764 A			D421,935		3/2000	Fujieda
	5,279,265 A	1/1994	Matsuo et al.	6,032,752 6,041,744		3/2000	Karpik et al.
	5,306,044 A		Tucker	6,047,678		3/2000 4/2000	Oota et al. Kurihara et al.
	5,326,330 A 5,327,989 A	7/1994	Bostelmann Furuhashi et al.	6,056,077	Ā	5/2000	Kobayashi
	5,342,023 A	8/1994	Kuriki et al.	6,062,024	A	5/2000	Zander et al.
	5,358,450 A	10/1994	Robert	6,067,078			Hartman
	5,359,247 A		Baldwin et al.	6,068,295		5/2000	Skabrond et al.
	D354,264 S 5,382,833 A		McCoy Wirges	6,070,681 6,070,689		6/2000 6/2000	Catanzarite et al. Tanaka et al.
	5,390,121 A			6,078,252		6/2000	Kulczycki et al.
	5,401,056 A		Eastman	D428,363	S	7/2000	Sugimoto et al.
	5,407,130 A		Uyeki et al.	6,086,158		7/2000	Zeoli
	5,408,965 A	4/1995	Fulton et al.	6,092,877	A	7/2000	Rasidescu et al.

(56)	Referen	ces Cited	6,557,515 6,561,315			Furuya et al. Furuya et al.
U.	S. PATENT	DOCUMENTS	6,581,716	B1	6/2003	Matsuura
D420 (62 G	0/2000	T1:1	6,582,002 6,582,004		6/2003	Hogan et al.
D429,663 S 6,095,275 A		Tamashima et al. Shaw	D476,935		7/2003	
6,098,739 A	8/2000	Anderson et al.	6,588,536		7/2003	
6,109,221 A		Higgins et al. Boichot et al.	6,591,896 6,604,034		7/2003 8/2003	Speck et al.
6,112,866 A 6,113,328 A		Claucherty	6,622,804	B2	9/2003	Schmitz et al.
6,114,784 A	9/2000	Nakano	6,622,806 6,622,968			Matsuura St. Clair et al.
6,119,636 A 6,120,399 A		Okeson et al.	6,626,256			Dennison et al.
6,142,123 A		Galasso et al.	6,626,260			Gagnon et al.
6,149,540 A 6,152,098 A		Johnson et al. Becker et al.	D480,991 6,640,766			Rondeau et al. Furuya et al.
6,152,253 A		Monaghan	6,644,709	B2	11/2003	Inagaki et al.
D436,557 S	1/2001	Selby et al.	6,648,569 6,651,768			Douglass et al. Fournier et al.
D436,559 S 6,176,796 B		Fujieda Lislegard	6,655,717		12/2003	
6,184,603 B		Hamai et al.	6,659,566	B2	12/2003	Bombardier
6,186,547 B		Skabrond et al.	6,661,108 6,675,562			Yamada et al. Lawrence
6,196,168 B 6,196,634 B		Eckerskorn et al. Jurinek	6,682,118	B2	1/2004	Ryan
6,198,183 B	1 3/2001	Baeumel et al.	6,685,174 6,691,767			Behmenburg et al. Southwick et al.
6,199,894 B 6,202,993 B		Anderson Wilms et al.	6,695,566			Rodriguez Navio
6,203,043 B		Lehman	6,702,052	B1	3/2004	Wakashiro et al.
6,213,079 B		Watanabe	6,722,463 6,725,905		4/2004 4/2004	Reese Hirano et al.
6,213,081 B 6,216,660 B		Ryu et al. Ryu et al.	6,725,962		4/2004	Fukuda
6,216,809 B	1 4/2001	Etou et al.	D490,018			Berg et al.
6,217,758 B 6,224,046 B		Lee Miyamoto	6,732,830 6,733,060			Gagnon et al. Pavkov et al.
6,227,160 B		Kurihara et al.	6,745,862	B2		Morii et al.
6,247,442 B		Bedard et al.	6,752,235 6,752,401			Bell et al. Burdock
6,249,728 B 6,260,609 B		Streiter Takahashi	D492,916			Rondeau et al.
6,293,588 B	1 9/2001	Clune	6,761,748			Schenk et al.
6,293,617 B 6,301,993 B		Sukegawa Orr et al.	6,767,022 D493,749			Chevalier Duncan
6,309,024 B			D493,750	S		Crepeau et al.
6,309,317 B			D494,890 6,769,391		8/2004 8/2004	Lee et al.
6,311,676 B 6,314,931 B		Oberg et al. Yasuda et al.	6,772,824	B1	8/2004	Tsuruta
6,328,004 B			6,777,846 D496,308		8/2004 9/2004	Feldner et al.
6,328,364 B 6,333,620 B		Darbishire Schmitz et al.	6,786,187			Nagai et al.
6,334,269 B			6,786,526	B1		Blalock
6,338,688 B 6,352,142 B		Minami et al.	D497,324 D497,327		10/2004	Chestnut et al.
6,353,786 B		Yamada et al.	6,799,779	B2	10/2004	Shibayama
6,359,344 B		Klein et al.	6,799,781 6,809,429		10/2004 10/2004	Rasidescu et al.
6,362,602 B 6,370,458 B		Kozarekar Shal et al.	D498,435			Saito et al.
6,378,478 B	1 4/2002	Lagies	6,810,667			Jung et al.
6,394,061 B2 6,397,795 B2		Ryu et al.	6,810,977 6,820,583		11/2004 11/2004	
6,412,585 B		DeAnda	6,820,708	B2	11/2004	Nakamura
D461,151 S			6,822,353 6,825,573			Koga et al. Suzuki et al.
6,453,868 B 6,467,787 B		McClure Marsh	6,827,184		12/2004	
D467,200 S	12/2002	Luo et al.	6,834,736			Kramer et al.
6,502,886 B: 6,504,259 B:		Bleau et al. Kuroda et al.	D500,707 D501,570		1/2005 2/2005	Tandrup et al.
6,507,778 B			6,851,679		2/2005	Downey et al.
6,510,829 B		Ito et al.	6,857,498 6,860,826			Vitale et al. Johnson
6,510,891 B2 6,520,133 B3		Anderson et al. Wenger et al.	6,868,932			Davis et al.
6,520,878 B	1 2/2003	Leclair et al.	D503,657		4/2005	
6,523,627 B2 6,523,634 B		Fukuda Gagnon et al.	D503,658 D503,905		4/2005 4/2005	Lu Saito et al.
RE38,012 E		Ochab et al.	6,880,875		4/2005	McClure et al.
D472,193 S		Sinkwitz	6,883,851			McClure et al.
6,528,918 B2 6,530,730 B2		Paulus-Neues et al. Swensen	D504,638 6,892,842			Tanaka et al. Bouffard et al.
6,543,523 B		Hasumi	6,892,844	B2		Atsuumi
6,547,224 B	2 4/2003	Jensen et al.	6,895,318		5/2005	Barton et al.
6,553,761 B2	2 4/2003	Beck	6,901,992	B2	6/2005	Kent et al.

(56)			Referen	ces Cited	7,168,709 7,172,232			Niwa et al. Chiku et al.
	Ţ	J.S.	PATENT	DOCUMENTS	7,172,232		2/2007	Suzuki
					7,185,732		3/2007	
	6,907,916			Koyama	D539,705			Ichikawa et al.
	6,908,108 6,909,200		6/2005	Scarla Bouchon	7,204,219 7,208,847		4/2007 4/2007	Sakurai Taniguchi
	D507,766			McMahan et al.	D542,186			Lai et al.
	6,915,770		7/2005		D542,188			Miwa et al.
	6,916,142			Hansen et al.	7,213,669			Fecteau et al.
	6,921,077		7/2005		7,216,733 7,224,132			Iwami et al. Cho et al.
	D508,224 6,923,507			Mays et al. Billberg et al.	7,234,707			Green et al.
	6,935,297		8/2005	Honda et al.	D546,246			Crepeau et al.
	6,938,508		9/2005		7,237,789 7,239,032			Herman Wilson et al.
	6,942,050		9/2005 9/2005	Honkala et al.	7,239,032			Chonan et al.
	6,945,541 6,951,240		10/2005		7,243,632		7/2007	
	RE38,895			McLemore	D548,662			Markefka
	D511,317			Tanaka et al.	D549,133 7,258,355		8/2007 8/2007	LePage
	D511,717 6,966,395		11/2005	Lin Schuehmacher et al.	7,238,333			Hio et al.
	6,966,399			Tanigaki et al.	7,275,512	B2		Deiss et al.
	6,976,720			Bequette	7,281,753			Curtis et al.
	6,978,857			Korenjak	7,286,919 7,287,508			Nordgren et al. Kurihara
	D513,718 6,988,759			Itaya et al. Fin et al.	7,287,619			Tanaka et al.
	6,997,239		2/2006		D555,036	S	11/2007	Eck
	7,000,931	В1		Chevalier	D561,064			Crepeau Miwa et al.
	7,004,134			Higuchi	D562,189 7,325,526			Kawamoto
	7,004,137 D516,467		3/2006	Kunugi et al. Wu	D563,274	S	3/2008	
	D517,951		3/2006		7,347,296	B2		Nakamura et al.
	D517,952		3/2006		7,357,207 7,357,211		4/2008 4/2008	Vaeisaenen
	7,011,174		3/2006	James Toyota et al.	7,359,787			Ono et al.
	7,014,241 7,017,542			Wilton et al.	7,363,961	B2		Mori et al.
	D518,759			Kettler et al.	7,367,247			Horiuchi et al.
	D519,439			Dahl et al.	7,367,417 7,370,724			Inui et al. Saito et al.
	7,032,895 7,035,836			Folchert Caponetto et al.	7,374,012			Inui et al.
	D520,912			Knight et al.	7,377,351	B2		Smith et al.
	D520,914	S	5/2006	Luh	7,380,622			Shimizu
	D521,413		5/2006		7,380,805 7,386,378		6/2008 6/2008	Lauwerys et al.
	7,040,260 7,040,437			Yoshimatsu et al. Fredrickson et al.	7,387,180			Konno et al.
	7,044,203			Yagi et al.	7,395,804			Takemoto et al.
	7,051,824			Jones et al.	7,401,794 7,401,797		7/2008	Laurent et al.
	D522,924 D523,782		6/2006 6/2006	Yokoyama et al.	7,401,797			Berg et al.
	7,055,454			Whiting et al.	7,412,310			Brigham et al.
	7,070,527	В1	7/2006	Saagge	7,416,234			Bequette
	7,073,482			Kirchberger	7,421,954 7,427,072		9/2008 9/2008	
	7,076,351 7,077,233			Hamilton et al. Hasegawa	7,427,248			Chonan
	7,089,737		8/2006		D578,433	S		Kawaguchi et al.
	7,096,988			Moriyama	D578,934 7,431,024		10/2008	Tanaka et al. Buchwitz et al.
	7,097,166 7,100,562			Folchert Terada et al.	7,431,024			Kato et al.
	7,100,302			Nishi et al.	7,438,153	B2	10/2008	Kalsnes et al.
	D529,414	S		Wu et al.	7,441,789			Geiger et al.
	D531,088		10/2006		7,449,793 7,451,808			Cho et al. Busse et al.
	7,114,585 7,117,927			Man et al. Kent et al.	7,455,134		11/2008	Severinsky et al.
	7,118,151			Bejin et al.	7,458,593		12/2008	Saito et al.
	7,124,853	В1	10/2006		D584,661 7,481,287		1/2009 1/2009	Tanaka et al. Madson et al.
	7,125,134 D532,339	B1		Hedlund et al.	7,481,287			Ogawa et al.
	7,136,729	Б2.	11/2006 11/2006	Salman et al.	7,483,775		1/2009	Karaba et al.
	7,137,764		11/2006		D585,792		2/2009	Chao et al.
	7,140,619			Hrovat et al.	D586,694			Huang et al.
	7,143,861 7,147,075		12/2006	Chu Tanaka et al.	7,490,694 7,497,299		2/2009 3/2009	Berg et al. Kobayashi
	7,147,073			Pichler et al.	7,497,299		3/2009	Kobayashi
	D535,215				7,497,472		3/2009	Cymbal et al.
	7,156,439	B2	1/2007	Bejin et al.	7,503,610	B2	3/2009	Karagitz et al.
	7,159,557				7,506,712		3/2009	Kato et al.
	7,165,522		1/2007	Malek et al. Nozaki et al.	7,506,714 7,510,060		3/2009	Davis et al. Izawa et al.
	7,168,516	DΖ	1/200/	NOZAKI EL AL	7,510,000	DZ	3/2009	ızawa El äl.

(56) R	References Cited	7,802,816 B2		McGuire
II C DA	ATENT DOCUMENTS	D625,662 S 7,810,818 B2	10/2010 10/2010	
U.S. FA	ATENT DOCUMENTS	7,819,220 B2		Sunsdahl et al.
7,510,199 B2	3/2009 Nash et al.	7,828,098 B2		Yamamoto et al.
	5/2009 Nash et al. 5/2009 Mehra	7,832,770 B2		Bradley et al.
	5/2009 Mehra	D628,520 S	12/2010	
	5/2009 Woodard et al.	7,845,452 B2		Bennett et al.
	5/2009 Davis et al.	7,857,334 B2 D631,395 S	1/2010	Seki Tandrup et al.
	5/2009 Maslov et al.	7,862,061 B2		
	6/2009 Sanschagrin et al. 6/2009 Tandrup	7,874,391 B2		Dahl et al.
	6/2009 Saito et al.	D631,792 S	2/2011	Sanschagrin
	6/2009 Lan et al.	D633,006 S		Sanschagrin et al.
D595,613 S	7/2009 Lai et al.	7,882,912 B2		Nozaki et al.
	7/2009 Lai et al.	7,884,574 B2 7,885,750 B2		Fukumura et al.
	7/2009 Matsuda et al. 7/2009 Sakamoto et al.	7,885,750 B2 7,891,684 B1		Luttinen et al.
	7/2009 Okada et al.	7,899,594 B2		Messih et al.
	8/2009 Lai et al.	7,912,610 B2		Saito et al.
7,571,039 B2	8/2009 Chen et al.	7,913,505 B2		Nakamura
	8/2009 Mir et al.	7,913,782 B1 D636,295 S		Foss et al. Eck et al.
, ,	8/2009 Andritter	D636,704 S		Yoo et al.
	9/2009 Hirano 9/2009 Yin et al.	D636,787 S		Luxon et al.
	9/2009 Mochizuki et al.	D636,788 S	4/2011	Luxon et al.
	9/2009 Kinjyo et al.	7,926,822 B2		Ohletz et al.
7,597,385 B2 1	10/2009 Shibata et al.	7,931,106 BI		Suzuki et al.
	10/2009 Okada et al.	D637,623 S D638,446 S		Luxon et al. Luxon et al.
	10/2009 Yasui et al. 10/2009 Bessho et al.	D638,755 S		Bracy et al.
	10/2009 Dessilo et al.	7,942,427 B2		
	10/2009 Takahashi et al.	7,942,447 B2		Davis et al.
7,610,132 B2 1	10/2009 Yanai et al.	7,950,486 B2		Van et al.
	11/2009 Kawaguchi et al.	D640,171 S D640,598 S	6/2011	Danisi Zhang
	11/2009 Delaney 11/2009 Fujimoto et al.	D640,604 S		Lai et al.
	11/2009 Tujimoto et al.	D640,605 S	6/2011	Lai et al.
7,623,327 B2 1	11/2009 Ogawa	7,954,679 B2		Edwards
	2/2009 Tanaka et al.	7,954,853 B2		Davis et al. Beno et al.
	2/2009 Flores	7,959,163 B2 7,962,261 B2		Bushko et al.
	12/2009 Yao 12/2009 Rouhana et al.	7,963,529 B2		Oteman et al.
	12/2009 Yoshimura et al.	7,967,100 B2		Cover et al.
D607,377 S	1/2010 Shimomura et al.	7,970,512 B2		Lu et al.
	1/2010 Barron et al.	D641,288 S 7,984,780 B2	7/2011	Sun Hirukawa
	1/2010 Davis et al. 1/2010 Mizuta	7,984,915 B2		Post et al.
7,645,452 B2	1/2010 Wilzuta 1/2010 Thompson et al.	D642,493 S	8/2011	Goebert et al.
	1/2010 Kato et al.	D643,781 S		Nagao et al.
	2/2010 Renchuan	8,002,061 B2		Yamamura et al. Lu et al.
	2/2010 Eck	8,005,596 B2 8,011,342 B2		Bluhm
* * * * * * * * * * * * * * * * * * *	2/2010 Denney 3/2010 Nakamura	8,011,420 B2		Mazzocco et al.
	3/2010 INAKAHUTA 3/2010 Jay et al.	8,027,775 B2	9/2011	Takenaka et al.
7,684,911 B2	3/2010 Seifert et al.	8,029,021 B2	* 10/2011	Leonard B62D 55/04
	4/2010 McGuire	e 022 201 D2	10/2011	Bujak et al.
	4/2010 Wilson et al. 4/2010 Best et al.	8,032,281 B2 8,037,959 B2		Yamamura et al.
	4/2010 Best et al. 4/2010 German	D648,745 S		Luxon et al.
7,708,103 B2	5/2010 Okuyama et al.	D649,162 S		Luxon et al.
7,708,106 B1	5/2010 Bergman et al.	8,047,324 B2		Yao et al.
7,712,562 B2	5/2010 Nozaki	8,047,451 B2 8,050,818 B2		McNaughton
	5/2010 Leonard et al. 6/2010 Fujishima et al.	8,050,851 B2		Aoki et al.
	6/2010 Bender	8,050,857 B2		Lu et al.
	6/2010 Sasajima	8,051,842 B2		Hagelstein et al.
	6/2010 Davis	8,052,202 B2		Nakamura
	6/2010 Hisada et al.	8,056,392 B2 8,056,912 B2		Ryan et al. Kawabe et al.
	7/2010 Wu et al. 7/2010 Boon et al.	8,065,054 B2		Tarasinski et al.
	7/2010 Yamamura et al.	D650,311 S	12/2011	
	8/2010 Nakanishi et al.	8,074,753 B2	12/2011	Tahara et al.
	8/2010 Lai et al.	8,075,002 B1		Pionke et al.
	8/2010 Rask et al.	8,079,602 B2		Kinsman et al.
	8/2010 Rao et al. 8/2010 Maruyama et al.	8,086,371 B2 8,087,676 B2		Furuichi et al. McIntyre
	8/2010 Martyania et al. 8/2010 Beckmann et al.	8,095,268 B2		Parison et al.
	9/2010 Leonard et al.	8,100,434 B2		

(56)		Referen	ces Cited	8,496,079 B2 8,517,136 B2		Wenger et al. Hurd et al.
	U.S.	PATENT	DOCUMENTS	8,517,395 B2	8/2013	Knox et al.
				D689,396 S 8,522,911 B2	9/2013	Wang Hurd et al.
	8,104,524 B2 8,108,104 B2		Manesh et al. Hrovat et al.	8,538,628 B2		Backman
	8,116,938 B2		Itagaki et al.	D691,519 S	10/2013	Fisher
	8,121,757 B2		Song et al.	D691,924 S	10/2013	
	8,122,988 B2		Obayashi et al.	8,548,678 B2 8,548,710 B1		Ummethala et al. Reisenberger
	D657,720 S D657,721 S		Eck et al. Miyanishi	8,550,221 B2		Paulides et al.
	8,152,880 B2		Matschl et al.	8,555,851 B2	10/2013	Wenger et al.
	8,157,039 B2		Melvin et al.	8,556,015 B2		Itoo et al.
	8,162,086 B2		Robinson	8,561,403 B2 8,567,541 B2		Vandyne et al. Wenger et al.
	D660,746 S 8,167,325 B2	5/2012 5/2012	Lee et al.	8,567,847 B1		King et al.
	8,170,749 B2	5/2012		D693,370 S		Randhawa
	8,176,957 B2		Manesh et al.	8,573,348 B2 8,573,605 B2		Cantemir et al. Di Maria
	8,186,333 B2 8,191,930 B2		Sakuyama Davis et al.	8,579,060 B2		George et al.
	8,205,910 B2		Leonard et al.	8,590,651 B2		Shigematsu et al.
	8,209,087 B2	6/2012	Haegglund et al.	D694,668 S	12/2013	
	D662,855 S	7/2012		D694,671 S 8,596,398 B2	12/2013	Lai et al. Bennett
	8,214,106 B2 8,215,427 B2		Ghoneim et al. Rouaud et al.	8,596,405 B2		Sunsdahl et al.
	8,215,694 B2		Smith et al.	8,613,335 B2		Deckard et al.
	8,219,262 B2	7/2012		8,613,336 B2 8,613,337 B2		Deckard et al. Kinsman et al.
	8,229,642 B2		Post et al.	8,626,388 B2		Oikawa
	8,231,164 B2 D665,309 S		Schubring et al. Lepine et al.	8,626,389 B2		Sidlosky
	D665,705 S		Lepine et al.	D699,627 S	2/2014	
	8,235,155 B2		Seegert et al.	8,640,814 B2 8,641,052 B2		Deckard et al. Kondo et al.
	8,260,496 B2 8,269,457 B2		Gagliano Wenger et al.	8,645,024 B2		Daniels
	8,271,175 B2		Takenaka et al.	8,646,555 B2	2/2014	
	8,272,685 B2		Lucas et al.	8,651,557 B2	2/2014	
	D668,184 S	10/2012		8,657,050 B2 D700,869 S		Yamaguchi Sato et al.
	8,281,891 B2 8,296,010 B2	10/2012	Hirao et al.	D701,143 S	3/2014	
	D670,198 S	11/2012		D701,469 S		Lai et al.
	D671,037 S		Wu et al.	8,668,623 B2 8,671,919 B2		Vuksa et al. Nakasugi et al.
	8,302,711 B2 8,308,170 B2		Kinsman et al. Van et al.	8,672,106 B2		Laird et al.
	8,315,764 B2		Chen et al.	8,672,337 B2	3/2014	Van et al.
	8,321,088 B2	11/2012	Brown et al.	D703,102 S		Eck et al.
	8,322,497 B2		Marjoram et al.	8,689,925 B2 8,700,260 B2		Ajisaka Jolly et al.
	8,323,147 B2 8,328,235 B2		Wenger et al. Schneider et al.	8,708,359 B2	4/2014	
	D674,728 S		Matsumura	8,712,599 B1		Westpfahl
	8,352,143 B2		Lu et al.	8,712,639 B2 D705,127 S		Lu et al. Patterson et al.
	8,353,265 B2 8,355,840 B2		Pursifull Ammon et al.	8,718,872 B2		Hirao et al.
	8,356,472 B2		Hiranuma et al.	8,725,351 B1		Selden et al.
	8,374,748 B2	2/2013		8,731,774 B2 8,746,719 B2	5/2014	Yang Safranski et al.
	8,376,373 B2 8,376,441 B2		Conradie Nakamura et al.	8,763,739 B2		Belzile et al.
	8,381,855 B2		Suzuki et al.	8,781,705 B1	7/2014	Reisenberger
	8,382,125 B2	2/2013	Sunsdahl et al.	8,783,396 B2		Bowman
	8,386,109 B2		Nicholls	8,783,400 B2 D711,778 S		Hirukawa Chun et al.
	8,387,594 B2 8,396,627 B2		Wenger et al. Jung et al.	D712,311 S		Morgan et al.
	D679,627 S		Li et al.	8,827,019 B2		Deckard et al.
	D680,468 S		Li et al.	8,827,020 B2 8,827,025 B2	9/2014	Deckard et al.
	D680,469 S 8,417,417 B2		Li et al. Chen et al.	8,827,028 B2	9/2014	
	8,424,832 B2		Robbins et al.	8,827,856 B1		Younggren et al.
	D682,737 S		Li et al.	8,834,307 B2		Itoo et al.
	D682,739 S 8,434,774 B2		Patterson et al. Leclerc et al.	8,840,076 B2 8,864,174 B2		Zuber et al. Minami et al.
	8,439,019 B1		Carlson et al.	8,869,525 B2		Lingenauber et al.
	8,442,720 B2	5/2013	Lu et al.	D717,695 S		Matsumura
	8,444,161 B2		Leclerc et al.	D719,061 S	12/2014	Tandrup et al.
	8,447,489 B2 8,457,841 B2		Murata et al. Knoll et al.	D721,300 S D722,538 S		Li et al. Song et al.
	8,464,824 B1		Reisenberger	8,944,449 B2		Hurd et al.
	8,465,050 B1	6/2013	Spindler et al.	8,960,347 B2	2/2015	Bennett
	8,473,157 B2		Savaresi et al.	8,960,348 B2	2/2015	
	8,479,854 B1 8,485,303 B2		Gagnon Yamamoto et al.	8,973,693 B2 D727,794 S	3/2015 4/2015	Kinsman et al. Tandrup et al.
	0, 1 03,303 D2	1/2013	ramamoto et al.	D141,194 3	4/2013	ranurup et ai.

(56)		Referen	ces Cited	9,884,647			Peterson et al.
	U.S.	PATENT	DOCUMENTS	9,895,946 9,908,577	B2	3/2018	Schlangen et al. Novak et al.
				9,944,177			Fischer et al. Sunsdahl et al.
	8,997,908 B2		Kinsman et al.	10,011,189 10,017,090			Franker et al.
	8,998,253 B2		Novotny et al.	10,036,311			Kaeser et al.
	9,010,768 B2		Kinsman et al. Kuroda et al.	10,066,729			Aitcin et al.
	9,016,760 B2 D730,239 S		Gonzalez	D832,149			Wilcox et al.
	9,027,937 B2		Ryan et al.	10,099,547			Bessho et al.
	9,061,711 B2		Kuroda et al.	10,112,555		10/2018	Aguilera et al.
	D734,689 S		Hashimoto	10,124,709			Bohnsack et al.
	D735,077 S		Sato et al.	D835,545			Hanten et al.
	9,091,468 B2		Colpan et al.	10,154,377	B2		Post et al.
	D735,615 S		Itaya et al.	10,160,497 10,183,605			Wimpfheimer et al. Weber et al.
	9,102,205 B2		Kvien et al.	10,183,603			Schafer et al.
	D737,724 S		Schroeder et al.	10,202,149			Johnson et al.
	D739,304 S 9,133,730 B2	9/2015	Joergl et al.	10,207,555			Mailhot et al.
	9,146,061 B2		Farlow et al.	10,221,727			Walter et al.
	9,162,561 B2		Marois et al.	10,239,571	B2	3/2019	Kennedy et al.
	9,186,952 B2	11/2015		10,246,153			Deckard et al.
	9,187,083 B2	11/2015	Wenger et al.	10,259,507			Johnson et al.
	9,194,278 B2		Fronk et al.	10,294,877			Arima et al.
	9,194,282 B2	11/2015	Serres et al.	10,300,786 10,323,568			Nugteren et al. Kaeser et al.
	9,211,924 B2	12/2015		D852,674			Wilcox et al.
	9,217,501 B2		Deckard et al.	10,359,011			Dewit et al.
	9,221,508 B1 9,228,644 B2		De Haan Tsukamoto et al.	10,369,861			Deckard et al.
	9,266,417 B2		Nadeau et al.	10,371,249		8/2019	Bluhm et al.
	D751,467 S		Lai et al.	10,399,401			Schlangen et al.
	D756,845 S	5/2016	Flores	10,428,705			Bluhm et al.
	9,327,587 B2		Spindler et al.	10,479,422			Hollman et al.
	9,328,652 B2		Bruss et al.	10,486,748 10,550,754			Deckard et al. Nugteren et al.
	D758,281 S		Galloway Safranski et al.	10,589,621		3/2020	McKoskey et al.
	9,365,251 B2 D761,698 S		Umemoto	10,639,985			Battaglini et al.
	9,381,803 B2		Galsworthy et al.	10,655,536		5/2020	Mueller et al.
	9,382,832 B2		Bowers	10,697,532			Schleif et al.
	9,393,894 B2		Steinmetz et al.	10,718,238			Wenger et al.
	D762,522 S		Kinoshita	10,723,190 D896,125			Hu et al. Hashimoto et al.
	D763,732 S		Okuyama et al.	D896,702			Dunshee et al.
	D764,973 S 9,421,860 B2		Mikhailov et al. Schuhmacher et al.	D896,703			Dunshee et al.
	9,421,800 B2 9,428,031 B2		Kuwabara et al.	10,766,533			Houkom et al.
	9,434,244 B2		Sunsdahl et al.	10,767,745			Zauner et al.
	9,440,671 B2		Schlangen et al.	10,800,250			Nugteren et al.
	9,469,329 B1	10/2016	Leanza	D904,227		12/2020	
	D772,755 S		Tandrup et al.	10,864,828 10,876,462		12/2020	Sunsdahl et al. Draisey et al.
	9,499,044 B2	11/2016		10,876,462		2/2020	Deckard et al.
	9,500,264 B2 D774,955 S		Aitcin et al. Lai et al.	10,926,664			Sunsdahl et al.
	D774,957 S		Umemoto	10,926,799			Houkom et al.
	9,512,809 B2		Tsumiyama et al.	D913,847			Hashimoto et al.
	9,540,052 B2		Burt, ÍI et al.	10,933,932			Spindler et al.
	9,566,858 B2		Hicke et al.	10,946,736			Fischer et al. Endrizzi et al.
	9,573,561 B2		Muto et al.	10,960,941 10,967,694			Brady et al.
	9,592,713 B2 D784,199 S		Kinsman et al. Dunshee et al.	11,104,194		8/2021	
	9,623,912 B2		Schlangen	11,173,808		11/2021	
	D785,502 S		Dunshee et al.	11,220,147	B2		Hu et al.
	D787,985 S		Wilcox et al.	11,235,814		2/2022	
	9,638,070 B2	5/2017	Kaeser	11,285,807		3/2022	
	9,644,717 B2	5/2017		11,293,540		4/2022	Leclair et al.
	9,649,928 B2		Danielson et al.	11,306,809 11,391,361			Leclair et al.
	9,650,078 B2 9,713,976 B2		Kinsman et al. Miller et al.	11,607,920		3/2023	Schlangen et al.
	9,718,351 B2		Ripley et al.	11,624,427		4/2023	Itoo et al.
	9,719,463 B2		Oltmans et al.	11,628,722		4/2023	Rasa et al.
	9,725,023 B2		Miller et al.	11,680,635		6/2023	
	9,752,489 B2	9/2017		11,691,674		7/2023	Schleif et al.
	9,776,481 B2		Deckard et al.	11,752,860			Fields et al.
	9,789,909 B2		Erspamer et al.	11,780,326		10/2023	Schlangen et al.
	9,802,605 B2 9,809,102 B2		Wenger et al. Sunsdahl et al.	11,787,251 11,884,148		10/2023 1/2024	Schlangen et al. Nelson et al.
	D804,993 S	11/2017	Eck et al.	11,884,148		3/2024	Schlangen et al.
	D805,009 S		Eck et al.	2001/0005803		6/2001	Cochofel et al.
	D805,009 S		Eck et al.	2001/0007396		7/2001	Mizuta
	9,856,817 B2		Nicosia et al.	2001/0013433		8/2001	Szymkowiak
	,,						<i>y</i>

(56)		Referen	ces Cited	2005/0014582			Whiting et al.
	II S	PATENT	DOCUMENTS	2005/0045414 2005/0052080		3/2005 3/2005	Takagi et al. Maslov et al.
	0.5.	IMILINI	DOCUMENTS	2005/0055140		3/2005	
2001/00205	54 A1	9/2001	Yanase et al.	2005/0056472		3/2005	Smith et al.
2001/00218			Obradovich et al.	2005/0073187		4/2005 4/2005	
2001/00311		10/2001	Swensen	2005/0077098 2005/0098964		5/2005	Takayanagi et al. Brown
2001/00356 2001/00411			Gotz et al. Morin et al.	2005/0103558		5/2005	Davis et al.
2001/00411			Matsunaga et al.	2005/0131604		6/2005	
2002/00002			Shinpo et al.	2005/0173177		8/2005	Smith et al.
2002/00237			Bouffard et al.	2005/0173180 2005/0205319		8/2005 9/2005	Hypes et al. Yatagai et al.
2002/00320 2002/00332			Korenjak et al. Korenjak et al.	2005/0206111		9/2005	
2002/00332		4/2002	3	2005/0231145		10/2005	Mukai et al.
2002/00569			Sawai et al.	2005/0235767		10/2005	
2002/00634		5/2002	1	2005/0235768 2005/0242677		10/2005 11/2005	Shimizu et al. Akutsu et al.
2002/00747 2002/00827			Eshelman Obradovich	2005/0242077			Coleman et al.
2002/00827			Gagnon et al.	2005/0248116	A1	11/2005	
2002/00924			Fegg et al.	2005/0248173			Bejin et al.
2002/01198			Kitai et al.	2005/0257989 2005/0257990		11/2005	Iwami et al. Shimizu
2002/01217 2002/01234			Murray Younggren et al.	2005/0257550		12/2005	
2002/01254		9/2002		2005/0269141		12/2005	Davis et al.
2002/01470			Goodell et al.	2005/0279244		12/2005	
2002/01789			Christensen	2005/0279330 2005/0280219		12/2005	Okazaki et al.
2002/01793 2003/00014		12/2002 1/2003		2006/0000458			Dees et al.
2003/00014		1/2003	1	2006/0006010			Nakamura et al.
2003/00294		2/2003		2006/0006623			Leclair
2003/00341			Hisada et al.	2006/0006696			Umemoto et al.
2003/00577			Inagaki et al.	2006/0017240 2006/0017301			Laurent et al. Edwards
2003/00666 2003/00708			Nakamura Whittaker	2006/0022619			Koike et al.
2003/01049		6/2003	Takahashi et al.	2006/0032690			Inomoto et al.
2003/01258			Madau et al.	2006/0032700			Vizanko
2003/01320			Drivers	2006/0042862 2006/0055139			Saito et al. Furumi et al.
2003/01371 2003/01534		8/2003	Lenz et al.	2006/0065472			Ogawa et al.
2003/01682			Borroni-Bird et al.	2006/0071441		4/2006	
2003/01737		9/2003		2006/0075840		4/2006	
2003/02000		10/2003		2006/0076180 2006/0108174		4/2006 5/2006	
2003/02058 2003/02136			Coelingh et al. Rioux et al.	2006/0112695			Neubauer et al.
2004/00103			Lu et al.	2006/0130888			Yamaguchi et al.
2004/00189		1/2004	Takagi	2006/0131088			Pawusch et al. Rauch et al.
2004/00314		2/2004	Atschreiter et al.	2006/0131102 2006/0151970			Kauch et al. Kaminski et al.
2004/00413 2004/00635		3/2004 4/2004	Hrovat et al. Ibaraki	2006/0162990		7/2006	
2004/00795			Ozawa et al.	2006/0169525		8/2006	
2004/00837		5/2004	Wizgall et al.	2006/0175124		8/2006	Saito et al.
2004/00900			Braswell	2006/0180383 2006/0180385			Bataille et al. Yanai et al.
2004/00949 2004/01075		6/2004	Niwa et al.	2006/0181104			Khan et al.
2004/01073			Rondeau et al.	2006/0185741			McKee
2004/01294	89 A1		Brasseal et al.	2006/0185927		8/2006	
2004/01302		7/2004		2006/0191734 2006/0191735			Kobayashi Kobayashi
2004/01537 2004/01684			Fukui et al. Nakamura	2006/0191737		8/2006	Kobayashi
2004/01693		9/2004		2006/0191739		8/2006	
2004/01778			Hoyte et al.	2006/0196721		9/2006	
2004/01881		9/2004	Yatagai et al.	2006/0196722 2006/0197331			Makabe et al. Davis et al.
2004/01950 2004/01950			Inui et al. Kato et al.	2006/0201270			Kobayashi
2004/01950		10/2004		2006/0207823			Okada et al.
2004/01957		10/2004		2006/0207824		9/2006	Saito et al.
2004/02065			Kato et al.	2006/0207825 2006/0208564		9/2006 9/2006	Okada et al. Yuda et al.
2004/02065 2004/02071			Davis et al. Nakagawa et al.	2006/0212200		9/2006	Yanai et al.
2004/02071		10/2004	Takano	2006/0219452			Okada et al.
2004/02216	69 A1	11/2004	Shimizu et al.	2006/0219463			Seki et al.
2004/02248		11/2004		2006/0219469			Okada et al.
2004/02263 2004/02267		11/2004 11/2004		2006/0219470 2006/0220330		10/2006 10/2006	Imagawa et al. Urquidi et al.
2004/02267		11/2004		2006/0220330		10/2006	Seki et al.
2004/02319		11/2004	Tanaka et al.	2006/0236980		10/2006	Maruo et al.
2005/00061	68 A1	1/2005	Iwasaka et al.	2006/0255610		11/2006	Bejin et al.
2005/00124	21 A1	1/2005	Fukuda et al.	2006/0270503	Al	11/2006	Suzuki et al.

(56)		Referen	ces Cited	2009/0000849			Leonard et al.	
	II S	DATENT	DOCUMENTS	2009/0001748 2009/0014246		1/2009 1/2009	Brown et al.	
	0.5.	IMILIVI	DOCOMENTS	2009/0014977			Molenaar	
2006/027819			Takamatsu et al.	2009/0015023			Fleckner	
2006/027845			Takahashi et al.	2009/0037051 2009/0064642		2/2009 3/2009		
2006/028880 2007/000071			Mukai et al. Denney	2009/0065285			Maeda et al.	
2007/001318		1/2007		2009/0071737			Leonard et al.	
2007/001841			Kinouchi et al.	2009/0071739 2009/0078082			Leonard et al. Poskie et al.	
2007/002322 2007/002356			Okuyama et al. Howard	2009/0078082		3/2009	Tsutsumikoshi et al.	
2007/002330			Shimizu	2009/0090575	A1	4/2009	Nagasaka	
2007/007346			Fielder	2009/0091101 2009/0091137			Leonard et al. Nishida et al.	
2007/007458 2007/007458			Harata et al. Harata et al.	2009/0091137			Getman et al.	
2007/007492			Okada et al.	2009/0108546			Ohletz et al.	
2007/007492			Okada et al.	2009/0108617 2009/0121518			Songwe, Jr. Leonard et al.	
2007/008000 2007/009560			Yamaguchi Okada et al.	2009/0121318			Bailey et al.	
2007/009500			Okada et al.	2009/0152035		6/2009	Okada et al.	
2007/011965		5/2007		2009/0152036 2009/0177345			Okada et al. Severinsky et al.	
2007/012033 2007/014480		5/2007 6/2007	Bushko et al.	2009/017/343		7/2009		
2007/015480			Delaney	2009/0179509			Gerundt et al.	
2007/016998	9 A1	7/2007	Eavenson et al.	2009/0183939 2009/0184531		7/2009		
2007/017569 2007/018135			Saito et al. Nakagaki et al.	2009/0184331		7/2009	Yamamura et al. Schramm et al.	
2007/018133			Pantow	2009/0205891	A1		Parrett et al.	
2007/021481	8 A1	9/2007	Nakamura	2009/0227404		9/2009		
2007/021540		9/2007 9/2007	Lan et al.	2009/0240427 2009/0261542			Siereveld et al. McIntyre	
2007/022143 2007/022779			Nozaki et al.	2009/0286643	A1	11/2009	Brown	
2007/024239	8 A1	10/2007	Ogawa	2009/0295113			Inoue et al.	
2007/025174			Matsuzawa	2009/0301830 2009/0302590			Kinsman et al. Van et al.	
2007/025546 2007/025688		11/2007 11/2007	Bedard et al.	2009/0314462			Yahia et al.	
2007/025747	9 A1	11/2007	Davis et al.	2010/0012412			Deckard et al.	
2007/026190			Fecteau et al.	2010/0017059 2010/0019539			Lu et al. Nakamura et al.	
2008/002298 2008/002324			Keyaki et al. Sunsdahl et al.	2010/0019722	A1	1/2010	Sanchez	
2008/002324		1/2008	Sunsdahl et al.	2010/0019729			Kaita et al.	
2008/002860			Takegawa et al.	2010/0031902 2010/0031935			Alyanak et al. VanDyne	F02B 39/04
2008/004133 2008/004842			Buchwitz et al. Eriksson et al.				•	475/196
2008/005373	8 A1	3/2008	Kosuge et al.	2010/0057297			Itagaki et al.	
2008/005374 2008/005903		3/2008 3/2008	Tomita	2010/0078240 2010/0078256		4/2010 4/2010	Miura Kuwabara et al.	
2008/003303			Kurihara et al.	2010/0090797		4/2010	Koenig et al.	
2008/008409			Nakamura et al.	2010/0120565			Kochidomari et al. Takahashi et al.	
2008/009388 2008/010611			Shibata et al. Hughes	2010/0121512 2010/0121529			Savaresi et al.	
2008/012525			Murayama et al.	2010/0152969	A1		Li et al.	
2008/014350			Maruyama et al.	2010/0155013			Braun et al. Melvin et al.	
2008/015759 2008/017215			Bax et al. Takamatsu et al.	2010/0155170 2010/0162989			Aamand et al.	
2008/017882			Ochiai et al.	2010/0163324	A1		Jyoutaki et al.	
2008/017883			Sposato	2010/0181134 2010/0187032			Sugiura Yamamura et al.	
2008/018335 2008/019925			Post et al. Okada et al.	2010/0187032			Hayashi et al.	
2008/020248			Procknow	2010/0194086	A1	8/2010	Yamamura et al.	
2008/022757		9/2008		2010/0194087 2010/0211242			Yamamura et al. Kelty et al.	
2008/024084 2008/024333		10/2008	Fitzgibbons	2010/0211242			Sasaki et al.	
2008/025673	8 A1	10/2008		2010/0230876	A1		Inoue et al.	
2008/025762			Stranges	2010/0252972 2010/0253018			Cox et al. Peterson	
2008/025763 2008/027193			Takeshima et al. King et al.	2010/0293018			Van et al.	
2008/027560			Tarasinski et al.	2010/0311529			Ochab et al.	
2008/028332			Bennett et al.	2010/0314184			Stenberg et al. Deckard et al.	
2008/028412 2008/028979			Brady et al. Sasano et al.	2010/0314191 2010/0317484			Gillingham et al.	
2008/028989			Kosuge et al.	2010/0317485			Gillingham et al.	
2008/029607			Murayama et al.	2011/0012334			Malmberg	
2008/029688 2008/029944			Rouhana et al. Buck et al.	2011/0035089 2011/0035105		2/2011 2/2011	Hirao et al.	
2008/030323			Mc Cann	2011/0033103			Kaita et al.	
2008/030833	4 A1	12/2008	Leonard et al.	2011/0074123	A1	3/2011	Fought et al.	
2008/030833	7 A1	12/2008	Ishida	2011/0092325	Al	4/2011	Vuksa et al.	

(56)	Referer	nces Cited	2013/0334394 A1		Parison et al.	
11.0	DATENIT	C DOCLIMENTS	2013/0338869 A1 2013/0341143 A1	12/2013 12/2013	Tsumano Brown	
0.5.	PATENT	DOCUMENTS	2013/0341143 A1 2013/0345933 A1		Norton et al.	
2011/0094225 A1	4/2011	Kistner et al.	2014/0001717 A1		Giovanardi et al.	
2011/0094223 A1 2011/0094813 A1		Suzuki et al.	2014/0004984 A1	1/2014		
2011/0094816 A1		Suzuki et al.	2014/0005888 A1		Bose et al.	
2011/0094818 A1	4/2011	Suzuki et al.	2014/0008136 A1		Bennett	
2011/0133438 A1		Haines et al.	2014/0012467 A1		Knox et al. Nakamura et al.	
2011/0147106 A1		Wenger et al.	2014/0034409 A1 2014/0046539 A1		Wijffels et al.	
2011/0153158 A1 2011/0155082 A1		Acocella Takano	2014/0058606 A1	2/2014		
2011/0155087 A1		Wenger et al.	2014/0060954 A1		Smith et al.	
2011/0155497 A1		Kobayashi et al.	2014/0062048 A1		Schlangen et al.	
2011/0168126 A1	7/2011	Fujikawa	2014/0065936 A1		Smith et al.	
2011/0209937 A1		Belzile et al.	2014/0067215 A1 2014/0090935 A1		Wetterlund et al. Pongo et al.	
2011/0240250 A1		Azuma Hurd et al.	2014/0095022 A1		Cashman et al.	
2011/0240393 A1 2011/0297462 A1		Grajkowski et al.	2014/0102819 A1		Deckard et al.	
2011/0298189 A1		Schneider et al.	2014/0102820 A1		Deckard et al.	
2011/0309118 A1	12/2011		2014/0103627 A1		Deckard et al.	
2012/0029770 A1		Hirao et al.	2014/0109627 A1		Lee et al.	
2012/0031688 A1		Safranski et al.	2014/0113766 A1 2014/0124279 A1		Yagyu et al. Schlangen et al.	
2012/0031693 A1 2012/0031694 A1*		Deckard et al. Deckard F16H 57/0489	2014/0125018 A1		Brady et al.	
2012/0031094 A1	2/2012	29/402.03	2014/0129083 A1		O'Connor et al.	
2012/0053790 A1	3/2012	Oikawa	2014/0131971 A1	5/2014		
2012/0053791 A1		Harada	2014/0136048 A1	5/2014	Ummethala et al.	
2012/0055728 A1		Bessho et al.	2014/0156143 A1 2014/0167372 A1		Evangelou et al. Kim et al.	
2012/0055729 A1		Bessho et al.	2014/0107572 A1 2014/0203533 A1		Safranski et al.	
2012/0073527 A1 2012/0073537 A1		Oltmans et al. Oltmans et al.	2014/0217774 A1		Peterson et al.	
2012/0073337 A1 2012/0078470 A1		Hirao et al.	2014/0224561 A1		Shinbori et al.	
2012/0085588 A1		Kinsman et al.	2014/0230797 A1		Meshenky et al.	
2012/0119454 A1	5/2012	Di Maria	2014/0235382 A1 2014/0262584 A1		Tsukamoto et al. Lovold et al.	
2012/0125022 A1		Maybury et al.	2014/0202384 A1 2014/0288763 A1		Bennett et al.	
2012/0152632 A1 2012/0161468 A1		Azuma Tsumiyama et al.	2014/0294195 A1		Perez et al.	
2012/0168268 A1		Bruno et al.	2014/0311143 A1		Speidel et al.	
2012/0193163 A1	8/2012	Wimpfheimer et al.	2014/0349792 A1	11/2014		
2012/0212013 A1		Ripley et al.	2014/0353956 A1 2014/0358373 A1		Bjerketvedt et al. Kikuchi et al.	
2012/0214626 A1	8/2012		2014/0360794 A1		Tallman	
2012/0217078 A1 2012/0217116 A1		Kinsman et al. Nishimoto	2015/0002404 A1		Hooton	
2012/02277110 A1		Kinsman et al.	2015/0029018 A1		Bowden et al.	
2012/0247888 A1	10/2012	Chikuma et al.	2015/0039199 A1		Kikuchi	
2012/0265402 A1		Post et al.	2015/0041237 A1 2015/0047917 A1		Nadeau et al. Burt et al.	
2012/0277953 A1		Savaresi et al.	2015/0057885 A1		Brady et al.	
2012/0283930 A1 2012/0297765 A1	11/2012	Venton-Walters et al. Vigild et al.	2015/0061275 A1		Deckard et al.	
2013/0009350 A1		Wolf-Monheim	2015/0071759 A1		Bidner et al.	
2013/0018559 A1	1/2013	Epple et al.	2015/0165886 A1		Bennett et al.	
2013/0030650 A1		Norris et al.	2015/0210137 A1 2015/0210319 A1		Kinsman et al. Tiramani	
2013/0033070 A1		Kinsman et al.	2015/0259011 A1		Deckard et al.	
2013/0041545 A1 2013/0060423 A1	3/2013	Baer et al.	2015/0260123 A1	9/2015	Knollmayr	
2013/0060444 A1		Matsunaga et al.	2015/0267792 A1		Hochmayr et al.	
2013/0062909 A1		Harris et al.	2015/0275742 A1		Chekaiban et al.	
2013/0074487 A1		Herold et al.	2015/0375614 A1 2015/0377341 A1	12/2015	Renner et al.	
2013/0075183 A1		Kochidomari et al.	2016/0059660 A1		Brady et al.	
2013/0079988 A1 2013/0087396 A1		Hirao et al. Itoo et al.	2016/0061088 A1		Minnichsoffer et al.	
2013/0103259 A1		Eng et al.	2016/0061314 A1		Kuhl et al.	
2013/0157794 A1	6/2013	Stegelmann et al.	2016/0084146 A1		Almkvist et al.	
2013/0158799 A1		Kamimura	2016/0108866 A1 2016/0160989 A1		Dewit et al. Millard et al.	
2013/0161921 A1		Cheng et al. Kvien et al.	2016/0167715 A1		Kosuge et al.	
2013/0175779 A1 2013/0190980 A1		Ramirez Ruiz	2016/0176283 A1		Hicke et al.	
2013/0197732 A1		Pearlman et al.	2016/0176284 A1*	6/2016	Nugteren	
2013/0197756 A1		Ramirez Ruiz	2016/0222522	11/2016	FF: -1 1	180/68.3
2013/0199097 A1	8/2013	Spindler et al.	2016/0332533 A1 2016/0332553 A1		Tistle et al. Miller et al.	
2013/0218414 A1 2013/0226405 A1		Meitinger et al. Koumura et al.	2016/0332553 A1 2016/0339960 A1		Leonard et al.	
2013/0226403 A1 2013/0261893 A1	10/2013		2016/0341148 A1		Maki et al.	
2013/0304319 A1		Daniels	2017/0013336 A1		Stys et al.	
2013/0307243 A1	11/2013	Ham	2017/0029036 A1	2/2017	Proulx et al.	
2013/0319784 A1		Kennedy et al.	2017/0106747 A1		Safranski et al.	
2013/0319785 A1		Spindler et al.	2017/0120946 A1		Gong et al.	
2013/0328277 A1	12/2013	Ryan et al.	2017/0131095 A1	5/2017	Kim	

(56)	Referei	nces Cited		CN CN	2544987 Y 1654239 A	4/2003 8/2005
U	S. PATENT	DOCUMENTS		CN	1660615 A	8/2005
				CN CN	1746803 A 1749048 A	3/2006 3/2006
2017/0152810 A 2017/0166255 A		Wicks Peterson et al.		CN	1792661 A	6/2006
2017/0175621 A	6/2017			CN	1810530 A	8/2006
2017/0199094		Duff et al.		CN CN	1982110 A 200940501 Y	6/2007 8/2007
2017/0233022		Marko Reisenberger et al.		CN	101424200 A	5/2009
2017/0268200 A	1* 9/2017	Todokoro B	60K 11/08	CN CN	101445044 A 101511664 A	6/2009
2017/0334500 A 2018/0022391 A		Jarek et al. Lutz et al.		CN	101511604 A 101549626 A	8/2009 10/2009
2018/0065465 A				CN	101701547 A	5/2010
2018/0118053 A		Sunsdahl et al.		CN CN	101708694 A 201723635 U	5/2010 1/2011
2018/0142609 A 2018/0178677 A		Seo et al. Swain et al.		CN	102069813 A	5/2011
2018/0281764 A	10/2018	Pongo et al.		CN	102121415 A	7/2011
2018/0312025 A 2018/0326843 A		Danielson et al. Danielson et al.		CN CN	102168732 A 201914049 U	8/2011 8/2011
2019/0078679 A		Leclair et al.		CN	102226464 A	10/2011
2019/0110161 A		Rentz et al.		CN CN	102256825 A 202040257 U	11/2011 11/2011
2019/0118883 <i>A</i> 2019/0118884 <i>A</i>		Spindler et al. Spindler et al.		CN	102616104 A	8/2012
2019/0143871 A		Weber et al.		CN	102627063 A	8/2012
2019/0193501 A		Brady et al.		CN CN	102678808 A 102729760 A	9/2012 10/2012
2019/0210457 <i>F</i> 2019/0210668 <i>F</i>		Galsworthy et al. Endrizzi et al.		CN	202468817 U	10/2012
2019/0217909 A	1 7/2019	Deckard et al.		CN	102840265 A	12/2012
2019/0248227 /		Nugteren et al. Baba et al.		CN CN	202879243 U 103075278 A	4/2013 5/2013
2019/0256010 A 2019/0264635 A		Oltmans et al.		CN	202986930 U	6/2013
2019/0265064 A	1 8/2019	Koenig et al.		CN CN	103370221 A 203702310 U	10/2013 7/2014
2019/0285159 A 2019/0285160 A		Nelson et al. Nelson et al.		CN	104321241 A	1/2014
2019/0299737 A				CN	104608825 A	5/2015
2019/0306599 A				CN CN	105555558 A 106515851 A	5/2016 3/2017
2019/0367117 A 2019/0375463 A		Fischer et al. Upah et al.		CN	106740079 A	5/2017
2020/0001673 A	1/2020	Schlangen et al.		CN	212690200 U	3/2021
2020/0010120 A 2020/0010125 A		Kinsman et al. Peterson et al.		CN DE	215292711 U 0037435	12/2021 10/1886
2020/0010123 F		Weber et al.		DE	0116605	2/1900
2020/0122776 A				DE DE	1755101 2210070	4/1971 9/1973
2020/0217236 A 2020/0262285 A		Hudgens et al. Sunsdahl et al.		DE	2752798 A1	6/1978
2020/0346542 A	11/2020			DE	3007726 A1	9/1981
2021/0023936 A 2021/0024007 A		Marietta Fredrickson et al.		DE DE	3033707 3825349 A1	4/1982 2/1989
2021/0024007 F		Wenger et al.		DE	3914124 A1	11/1989
2021/0088138 A		Yoshino		DE DE	4129643 A1 4427322 A1	3/1993 2/1996
2021/0094627 <i>F</i> 2021/0206219 <i>F</i>		Clark et al. Stieglitz et al.		DE	19508302 A1	9/1996
2021/0213822 A	1 7/2021	Ripley et al.		DE	4447138	12/1997
2021/0300472 A				DE DE	19735021 A1 19949787 A1	2/1999 4/2000
2021/0331543 A 2021/0354542 A		Zock et al. Schleif	B60K 5/02	DE	19922745 A1	12/2000
2021/0354760 A	11/2021	Schleif et al.		DE DE	10306392 A1 202005017990 U1	8/2004 3/2006
2021/0370737 <i>A</i> 2022/0024354 <i>A</i>		Zock et al. Fredrickson et al.		DE	102005003077 A1	8/2006
2022/0055434 A		Hansen et al.		DE	202005005999 U1	8/2006
2022/0105795 A		Nelson et al.		DE DE	102007024126 102010020544 A1	12/2008 1/2011
2022/0120340 A 2022/0266645 A		Nichols et al. Badino et al.		DE	102014000450 A1	8/2014
2022/0339984 A	10/2022	Starik et al.		DE	102016012781 A1	4/2017
2022/0355659 A 2023/0191904 A		Purdy et al. Rasa et al.		EP EP	0047128 0237085	3/1982 9/1987
2023/0322305 A				EP	0238077 A2	9/1987
2023/0331081 A				EP EP	0398804 A1 0403803 A1	11/1990 12/1990
2023/0415558 A	12/2023	Schleif et al.		EP	0403803 A1 0471128 A1	2/1992
FOR	EIGN PATE	NT DOCUMENTS		EP	0511654 A2	11/1992
				EP EP	0544108 A1 0546295 A1	6/1993 6/1993
CA CA	2794236 A1 2903511 A1	4/2014 12/2016		EP EP	0346295 A1 0405123	10/1993
CH	317335	11/1956		EP	0568251 A1	11/1993
CN	2255379 Y	6/1997		EP	0575962 A1	12/1993
CN CN	1268997 1284603 A	10/2000 2/2001		EP EP	0473766 0691226 A1	2/1994 1/1996
	0.000 11					

(56)	Reference	es Cited	JP	2898949 B2	6/1999
	FOREIGN PATEN	T DOCUMENTS	JP JP	11-334447 A 2000-161138 A	12/1999 6/2000
			JP	2000-177434 A	6/2000
EP	0697306 A1	2/1996	JP JP	2001-018623 A 3137209 B2	1/2001 2/2001
EP EP	0709247 A2 0794096 A2	5/1996 9/1997	JP	2001-097255 A	4/2001
EP	0794090 A2 0856427 A1	8/1998	JP	2001-121939 A	5/2001
EP	0893618 A2	1/1999	JP	2001-130304 A	5/2001
EP	0898352 A1	2/1999	JP JP	2002-168146 A 2002-219921 A	6/2002 8/2002
EP EP	1013310 A1 1077149 A2	6/2000 2/2001	JP	2003-237530 A	8/2003
EP	1172239 A2	1/2002	JP	2004-243992 A	9/2004
EP	1215107 A1	6/2002	JP JP	2004-308453 A 2005-130629 A	11/2004 5/2005
EP EP	1219475 A1 0928885 B1	7/2002 4/2003	JP	2005-186911 A	7/2005
EP	1382475 A1	1/2004	JP	2005-193788 A	7/2005
EP	1433645 A2	6/2004	JP JP	2005-299469 A 2006-232058 A	10/2005 9/2006
EP EP	1449688 A2 1481834 A2	8/2004 12/2004	JP	2006-232038 A 2006-232061 A	9/2006
EP EP	1493624 A1	1/2005	JP	2006-256579 A	9/2006
EP	1164897	2/2005	JP	2006-256580 A	9/2006
EP	1557345 A2 1564123 A2	7/2005	JP JP	2006-281839 A 2007-064080 A	10/2006 3/2007
EP EP	1504123 A2 1697646	8/2005 9/2006	JP	2007-078080 A	3/2007
EP	2033878 A1	3/2009	JP	2007-083864 A	4/2007
EP	2055520 A2	5/2009	JP JP	2007-106319 A 2007-278228 A	4/2007 10/2007
EP EP	2057060 A2 2123933 A2	5/2009 11/2009	JP	2007-532814	11/2007
EP	2145808 A1	1/2010	JP	2008-013149 A	1/2008
EP	1520978 B1	4/2010	JP JP	2008-185007 A 2009-035220 A	8/2008 2/2009
EP EP	2236395 A1 1980741 B1	10/2010 9/2011	JP	2009-033220 A 2009-160964 A	7/2009
EP EP	2517904 A1	10/2012	JP	2009-173147 A	8/2009
EP	2589785 A1	5/2013	JP	2009-220765 A	10/2009
EP	2923926 A2	9/2015	JP JP	2009-241872 A 2009-250216 A	10/2009 10/2009
FR FR	2460797 A1 2907410 A1	1/1981 4/2008	JP	2009-281330 A	12/2009
FR	2914597 A1	10/2008	JP	2010-053698 A	3/2010
FR	2935642	3/2010	JP JP	2010-064744 A 2010-095106 A	3/2010 4/2010
FR FR	2936028 A1 2941424 A1	3/2010 7/2010	JP	2010-053100 A 2010-112278 A	5/2010
GB	2036659 A	7/1980	$\overline{ m JP}$	2011-126405 A	6/2011
GB	2081191 A	2/1982	JP KR	2017-043130 A 10-2008-0028174 A	3/2017 3/2008
GB GB	2192430 A 2316923 A	1/1988 3/1998	WO	92/10693 A1	6/1992
GB	2347398 A	9/2000	WO	98/04431 A1	2/1998
GB	2349483 A	11/2000	WO WO	98/30430 A1 00/15455 A2	7/1998 3/2000
GB GB	2423066 A 2431704 A	8/2006 5/2007	WO	00/13433 A2 00/53057 A1	9/2000
GB GB	2454349 A	5/2009	WO	03/70543 A1	8/2003
GB	2505767 A	3/2014	WO	2004/085194 A1	10/2004
JP ID	53-101625 U	8/1978	WO WO	2005/059382 A1 2007/103197 A2	6/2005 9/2007
JP JP	58-126434 59-039933	7/1983 3/1984	WO	2008/005131 A2	1/2008
JP	60-067206	4/1985	WO	2008/013564 A1	1/2008
JР	60-067268 A	4/1985	WO WO	2008/016377 A2 2008/115459 A1	2/2008 9/2008
JP JP	60-067269 A 60-209616 A	4/1985 10/1985	WO	2009/059407 A1	5/2009
JP	61-019612 A	1/1986	WO	2009/096998 A1	8/2009
JP	61-135910	6/1986	WO WO	2010/074990 A2 2010/081979 A1	7/2010 7/2010
JP JP	62-007925 A 63-186906 A	1/1987 8/1988	wo	2010/081979 A1 2010/148014 A1	12/2010
JР	01-110815 A	4/1989	WO	2012/018896 A2	2/2012
JР	01-103706 U	7/1989	WO WO	2012/040553 A2 2012/109546 A1	3/2012 8/2012
JP JP	02-155815 A 02-184711 A	6/1990 7/1990	WO	2012/109346 A1 2012/174793 A1	12/2012
JP JP	02-184711 A 04-368211 A	12/1992	WO	2013/166310 A1	11/2013
JP	05-149443 A	6/1993	WO	2013/174662 A1	11/2013
JP ID	05-178055 A	7/1993	WO WO	2014/039432 A2 2014/039433 A2	3/2014 3/2014
JP JP	06-156036 A 06-325977 A	6/1994 11/1994	WO	2014/039433 A2 2014/047488 A1	3/2014
JP	07-040783	2/1995	WO	2014/059258 A1	4/2014
JР	07-091273 A	4/1995	WO	2014/143953 A2	9/2014
JP ID	07-117433	5/1995	WO	2014/193975 A1	12/2014
JP JP	07-174007 A 09-242510 A	7/1995 9/1997	WO WO	2015/036984 A1 2015/036985 A1	3/2015 3/2015
JР	10-176601 A	6/1998	wo	2015/050505 A1 2015/159571 A1	10/2015
JP	10-280968 A	10/1998	WO	2016/038591 A1	3/2016

(56)	References Cited
	FOREIGN PATENT DOCUMENTS
WO WO WO WO WO WO	2016/099770 A2 6/2016 2016/186942 A1 11/2016 2018/118176 A1 6/2018 2018/118508 A2 6/2018 2019/140026 A1 7/2019 2019/183051 A1 9/2019 2020/223379 A1 11/2020

OTHER PUBLICATIONS

International Preliminary Report on Patentability issued by the International Bureau of WIPO, dated May 12, 2015, for International Application No. PCT/US2013/068937; 7 pages.

International Preliminary Report on Patentability issued by the International Bureau of WIPO, dated Nov. 9, 2010, for International Patent Application No. PCT/US2009/042985; 13 pages.

International Preliminary Report on Patentability issued by the International Searching Authority, dated May 6, 2021, for International Patent Application No. PCT/US2020/030518; 27 pages.

International Preliminary Report on Patentability issued by the International Searching Authority, dated Nov. 15, 2022, for International Patent Application No. PCT/US2021/031782; 9 pages.

International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US10/49167, mailed on Oct. 18, 2012, 30 pages.

International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2015/061272, mailed on May 12, 2017, 22 pages.

International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2016/031992, mailed on Nov. 30, 2017, 15 pages.

International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2017/065724, mailed on Jan. 7, 2019. 16 pages.

International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2021/031804, mailed on Nov. 24, 2022. 6 pages.

International Preliminary Report on Patentability, dated May 28, 2013, for related International Patent Application No. PCT/US2011/046395, 31 pages.

International Search Report and Written Opinion issued by the European Patent Office, dated Aug. 27, 2008, in related International Patent Application No. PCT/US2008/003485; 15 pages.

International Search Report and Written Opinion issued by the European Patent Office, dated Feb. 18, 2014, for International Application No. PCT/US2013/068937; 11 pages.

International Search Report and Written Opinion issued by the European Patent Office, dated Jan. 14, 2014, for International Patent Application No. PCT/US2013/064516; 24 pages.

International Search Report and Written Opinion issued by the European Patent Office, dated Jul. 31, 2013, for International Patent Application No. PCT/US2013/039304; 11 pages.

International Search Report and Written Opinion issued by the European Patent Office, dated Jun. 28, 2012, for International PCT Application No. PCT/US2012/024664; 19 pages.

International Search Report and Written Opinion issued by the European Patent Office, dated Oct. 2, 2008, in related International Patent Application No. PCT/US2008/003483; 18 pages.

International Search Report and Written Opinion issued by the European Patent Office, dated Oct. 9, 2014, for International Patent Application No. PCT/US2014/028152; 20 pages.

International Search Report and Written Opinion issued by the European Patent Office, mailed Dec. 18, 2009, for International Patent Application No. PCT/US2009/042986; 15 pages.

International Search Report and Written Opinion issued by the European Patent Office, mailed Sep. 4, 2009, for International Patent Application No. PCT/US2009/042985; 18 pages.

International Search Report and Written Opinion issued by the International Searching Authority, dated Oct. 21, 2020, for International Patent Application No. PCT/US2020/42787; 18 pages.

International Search Report and Written Opinion received for PCT Patent Application No. PCT/US10/49167, mailed on Jul. 6, 2011, 9 pages.

International Search Report and Written Opinion received for PCT Patent Application No. PCT/US14/39824, mailed on Sep. 19, 2014, 9 pages.

International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/061272, mailed on Aug. 12, 2016, 13 pages.

International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2016/031992, mailed on Sep. 19, 2016, 20 pages.

International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2017/065724, mailed on Jun. 18, 2018, 14 pages.

International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2019/012958, mailed on Jul. 3, 2019, 27 pages.

International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2020/030518, mailed on Sep. 11, 2020, 14 pages.

International Search Report and Written Opinion received for PCT Patent Application No. PCT/US21/31782, mailed on Aug. 5, 2021, 11 pages.

International Search Report and Written Opinion received for PCT Patent Application No. PCT/US21/31804, mailed on Aug. 9, 2021, 6 pages.

International Search Report issued by the European Patent Office, dated Jun. 3, 2008, in related International Patent Application No. PCT/US2008/003480; 5 pages.

International Search Report of the International Searching Authority, dated Sep. 4, 2012, for related International Patent Application No. PCT/US2011/046395; 6 pages.

Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2017/065724, mailed on Apr. 10, 2018, 10 pages.

Kawasaki Mule the Off-Road Capable 610 4 .times. 4 XC Brochure 2011, .COPYRGT. 2010, 6 pages.

Kawasaki Mule Utility Vehicle Brochure 2009, .COPYRGT. 2008; 10 pages.

Kawasaki Teryx 750 F1 4×4 Sport Brochure 2011, (Copyrights) 2010; 6 pages.

Kawasaki Teryx Recreation Utility Vehicle Brochure 2009, .COPYRGT. 2008; 8 pages.

Letter Exam Report issued by the State Intellectual Property Office (SIPO), dated Mar. 18, 2015, for related Chinese Application No. 201080046628.5; 20 pages.

Lijun, P., "Differential steering six a review of the current status of wheel vehicle suspension systems.", A Mechanical Engineer, Issue No. 04, Apr. 10, 2016, pp. 1-70.

MTX (IMTX Audio Thunder Sports RZRPod65-owners-manual, 2016); 8 pages.

New Arctic Cat Side by Side, youtube.com, https://www.youtube.com/watch?-gQGAYSz1bME&fs=1&hl=en_US, posted Mar. 9, 2011; 1 page.

Office Action issued by the Canadian Intellectual Property Office, dated Apr. 1, 2021, for Canadian Patent Application to. 2,985,632; 4 pages.

Office Action issued by the Canadian Intellectual Property Office, dated May 2, 2023, for Canadian Patent Application No. 3152773, 5 pages.

Office Action issued by the Canadian Intellectual Property Office, dated Oct. 27, 2020, for Canadian Patent Application No. 3,044,002; 4 pages.

Office Action issued by the U.S. Patent and Trademark Office, dated Oct. 1, 2018, for U.S. Appl. No. 15/751,403; 7 pages.

Outlander X mr 850, available at https://can-am.brp.com/off-road/atv/outlander/outlander-x-mr-850.html; . COPYRGT. 2003-2017; 3 pages.

(56) References Cited

OTHER PUBLICATIONS

Patent Examination Report issued by the Australian Government IP Australia, dated Apr. 7, 2016, for Australian Patent Application No. 2013329090; 3 pages.

Photo, Facebook.com, Jake Brattain, https://www.facebook.com/photo.php?fbid=412473845198&set=pb.512920198.-2207520000. 1541691407.&type=3&theater, post dated Mar. 30, 2010;1 page. Photo, Facebook.com, Jake Brattain, https://www.facebook.com/photo.php?fbid=412473865198&set=pb.512920198.-2207520000. 1541691407.&type=3&theater, post dated Mar. 30, 2010;1 page. Photo, Facebook.com, Jake Brattain, https://www.facebook.com/photo.php?fbid=412474325198&set=pb.512920198.-2207520000. 1541691407.&type=3&theater, post dated Mar. 30, 2010; 1 page. "2012 Arctic Cat Wildcat 1000i H.O. Preview," ATV.Com, https://www.atv.com/manufacturers/arctic-cat/2012-arctic-cat-wildcat-1000i-ho-preview-2014.html, dated Jul. 26, 2011; 10 pages.

"Arctic Cat Unleashes a Wild Cat at Recent Dealer Show", UTVGuide. net, https://www.utvguide.net/arctic-cat-unleashes-a-wild-cat-at-recent-dealer-show/, posted Mar. 29, 2011; 5 pages.

"Arctic Cat Unleashes a Wildcat at Recent Dealer Show", Dirt Toys, https://www.dirttoysmag.com/2011/05/arctic-cat-unleashes-a-wildcat, May 2011 Issue; 4 pages.

"Artie Cat Breaks Silence on New Side-by-Side," Lucas Cooney, https://www.atv.com/blogi2011/03/arctic-cat-breaks-silence-on-new-side-by-side.html, dated Mar. 24, 2011; 5 pages.

"Commander Performance Modifications: Radiator Relocate for Mud", commanderforums.org, https://www.commanderforums.org/forums/commander-performance-modifications/7059-radiator-relocate-mud-3.html, Aug. 28, 2012; 7 pages.

"Custom Weber Intercooler Bed Mount with Dual 5.2" Spal Fans", RZRForums.net, https://www.rzrforums.net/forced-induction/19182-custom-weber-intercooler-bed-mount-w-dual-5-2-spal-fans.html, Oct. 30, 2009; 10 pages.

"Engine firing change '13 850", PolarisATVForums.com internet forum discussion thread dated Nov. 21, 2012.

"Honda develps a powerful, fuel-efficient 700cc engine for midsize motorcycle", Honda news release from www.world.honda.com; dated Sep. 26, 2011.

"Modified RedLine Revolt," RDC Race-deZert.com, https://www.race-dezert.com/forum/threads/modified-redline-revolt.92038/, dated Mar. 10, 2011; 5 pages.

"National Guard/Coastal Racing Polaris RZR XP 900 UTV Race Test," JeffM. Vanasdal, ATVriders.com, http://www.atvriders.com/atvreviews/polaris-2012-coastal-racing-rzr-xp-900-sxs-utv-worcs-race-review-p4.html; Feb. 25, 2012; 8 pages.

"Rad Relocation Kit", RZRFarums.net, https://www.rzrforums.net/engine-drivetrain/93153-rad-relocation-kit.html, Nov. 9, 2012; 8 pages.

"Radiator in the back", RZRForums.net, https://www.rzrforums.net/rzr-xp-900/63047-radiator-back.html, Nov. 14, 2011; 4 pages.

"Radiator Relocate", RZRForums.net, https://www.rzrforums.net/muddin/14716-radiator-relocate.html, Jul. 23, 2009; 7 pages.

"Radiator relocation", RZRForums.net, https://www.rzrforums.net/general-rzr-discussion/8440-radiator-relocation.html, Feb. 4, 2009; 7 pages.

"Relocated Radiator?", RZRForums.net, https://www.rzrforums.net/muddin/75562-relocated-radiator.html, Apr. 6, 2012; 7 pages.

"Rhino Radiator Relocation", HighLifter Forum, http://forum.highlifter.com/Rhino-Radiator-Relocation-m2180231.aspx, Aug. 30, 2007; 5 pages.

"RZR Radiator Relocation?", RZRForums.net, https://www.rzrforums.net/general-rzr-discussion/13963-rzr-radiator-relocation.html, Jul. 3, 2009; 5 pages.

"Sporty New Artie Cat Side-by-Side," Lucas Cooney, https://www.atv.com/blog/2011/03/sporty-new-arctic-cat-side-by-side-video. html, dated Mar. 10, 2011; 4 pages.

"Straight-twin engine", Wikipedia.org internet encyclopedia entry. "Who makes the best turbo kit for the Polarsis RZR??", RZRforums. net internet forum discussion thread dated Jun. 25, 2010. 1989 Honda Pilot f1400, Powersports Log, http://powersportslog.com/asp/Item.asp?soldid=29871&makeHonda&theday=4%2F16%2F2011, posted Apr. 16, 2011; 2 page.

2009 Honda Big Red, ATV Illustrated at http://www.atvillustrated.com/?q=node/6615/20/2008, 6 pgs.

2012 Arctic Cat Wildcat with 95-hp & 16-in. Travel, ArcticInsider.com, http://www.arcticinsider.com/Article/2012-Arctic-Cat-Wildcat-with-95-hp--16-in-Travel; 4 pages.

2012 Coastal Racing Polaris XP 900 UTV, photograph, http://www.atvriders.com/images/polaris/2012-coastal-racing-polaris-xp-900-utv-race-review/2012-polaris-rzr-xp-900-utv-sxs-jeff-vanasdal.jpg; 1 page.

2015 Polaris Owner's Manual for Maintenance and Safety, RZR (Registered) XP 1000 EPS High Lifter Edition, (Copyright) 2015; 151 pages.

2016 MUDPRO 700 Limited, Artic Cat, http://www.articcat.com/dirt/atvs/model/2016-en-mudpro-700-limited/, copyright 2015, 23 pages.

2nd Written Opinion of the International Searching Authority in PCT/US2011/046395, Mar. 1, 2013, 9 pages.

53 Series Aerocharger RZR XP 900 Turbocharger kit, retrieved from www.sidebysidesports.com/53seaerzxp9.html on Jan. 10, 2019, Internet Wayback Machine capture dated Apr. 26, 2011 (Year: 2011).

Arctic Cat, company website, Prowler XT 650 H1, undated, 9 pgs. Boss Plow System for Ranger, at http://www.purepolaris.com/Detail.aspx?ItemID=2876870(PolarisPGACatalog), May 14, 2008, 2 pgs. Boss Smarthitch 2 at http://www.bossplow.com/smarthitch.html, May 14, 2008, 13 pgs.

BRP Can-Am Commander photo, undated; 1 page.

Buyer's Guide Supplement, 2006 Kart Guide, Powersports Business Magazine; 6 pages.

Can-Am Maverick Sport 60" (front deflector panel for hot radiator air, 2019.

Club Car, Company Website, product pages for XRT 1500 SE, undated: 2 pages.

Diver Down Snorkel for Polaris Scrambler 850/1000, High Lifter, last accessed Nov. 4, 2015, http://www.highlifter.com/p-4687-diverdown-snorkel-for-polaris-scrambler-8501000-see-apps.aspx; 1 page. DuneGuide.com, "Product Review 2009 Honda Big Red MUV," retrieved from http://www.duneguide.com/ProductReview.sub.--Honda.sub.--BigRed.htm, May 20, 2008, 3 pgs.

Eulenbach, Dr.Ing. Dieter, Nivomat: The Automatic Level Control System with Spring Function and Damping Function, Lecture given as part of the course "Springing and damping systems for road and rail vehicles" at the Technical Academy of Esslingen, Oct. 11, 2000, 18 pgs.

Excerpts from Honda Service Manual 89 FL400R Pilot, Honda Motor Co., Ltd., copyright 1988; 24 pages.

Fang et al., Research on Generator Set Control of Ranger Extender Pure Electric Vehicles, Power and Energy Conference (APPEEC), 2010 Asia-Pacific, Mar. 31, 2010.

Heitner, Range extender hybrid vehicle, Intersociety Energy Conversion Engineering Conference Proceedings, vol. 4, pp. 323-338,

High-Performance "Truck Steering" Automotive Engineering, Society of Automotive Engineers. Warrendale, Us, vol. 98. No. 4, Apr. 1, 1990, pp. 56-60.

Honda Hippo 1800 New Competition for Yamaha's Rhino, Dirt Wheels Magazine, Apr. 2006, pp. 91-92.

http://revistamoto.com/inicio/rm/prueba-xrbull-xr500-spider.html. Images for rear radiator, https://www.google.com/search?q=rear+radiator+site%3Arzrforums.net&lr=&hl=en&as_qdr=all&source_Int&tbs=cdr%3A1%2Ccd_min%3A%2Ccd_max%3A2012&tmb; available before Dec. 31, 2012; 2 page.

Improved Fox Shox, Motocross Action, Mar. 1977 issue, 1 pg. International Preliminary Report on Patentability issued by the European Patent Office, dated Aug. 31, 2010, for International Patent Application No. PCT/US2009/042986; 14 pages.

International Preliminary Report on Patentability issued by the European Patent Office, dated Mar. 8, 2013, for International PCT Application No. PCT/US2012/024664; 24 pages.

(56) References Cited

OTHER PUBLICATIONS

International Preliminary Report on Patentability issued by the European Patent Office, dated May 11, 2009, in related International Patent Application No. PCT/US2008/003483; 21 pages.

International Preliminary Report on Patentability issued by the International Bureau of WIPO, dated Apr. 14, 2015, for International Patent Application No. PCT/US2013/064516; 18 pages.

Photo, Facebook.com, Jake Brattain, https://www.facebook.com/photo.php?fbid=412474575198&set=pb.512920198.-2207520000. 1541691407.&type=3&theater, post dated Mar. 30, 2010; 1 page. Photo, Facebook.com, Jake Brattain, https://www.facebook.com/photo.php?fbid=412474695198&set=pb.512920198.-2207520000. 1541691407.&type=3&theater, post dated Mar. 30, 2010; 1 page. Photo, Facebook.com, Jake Brattain, https://www.facebook.com/photo.php?fbid=412474765198&set=pb.512920198.-2207520000. 1541691407.&type=3&theater, post dated Mar. 30, 2010; 1 page. Photo, Facebook.com, Jake Brattain, https://www.facebook.com/photo.php?fbid=412474765198&set=pb.512920198.-2207520000. 1541691407.&type=3&theater, post dated Mar. 30, 2010; 1 page. Photobucket "https://photobucket.com/p/error?type=404&path=/gallery/er/ben8225/media/cGF0aDovRFNDRjE0ODkuanBn/", Retrived on Apr. 1, 2024, 2 pages.

Polaris Ranger Brochure 2009, copyright 2008; 32 pages.

Polaris Ranger Brochure ATVs and Side .times. Sides Brochure 2010, COPYRGT. 2009, 26 pages.

Polaris Ranger Off-Road Utility Vehicles Brochure 2004, .COPYRGT. 2003; 20 pages.

Polaris Ranger RZR Brochure 2011, .COPYRGT. 2010; 16 pages. Polaris Ranger Welcome to Ranger Country Brochure 2006, .COPYRGT. 2005, 24 pages.

Polaris Ranger Work/Play Only Brochure 2008, .COPYRGT. 2007, 28 pages.

Polaris RZR XP 1000 Radiator Relocation Kit, https://abffabrication.com/shop/polaris-rzr-xp-1000-radiator-relocation-kit/.

Polaris RZR XP 900 Review, retrieved from www.world-of-atvs. com/polaris-rzr-xp-900.html on Jan. 10, 2019, Internet Wayback Machine capture dated Mar. 12, 2012 (Year: 2012).

Radiator Relocation Kit for Polaris Scrambler, High Lifter, http://www.highlifter.com/p-4598-radiator-relocation-kit-for-polaris-scra-mbler-8501000-see-apps.aspx, last accessed Nov. 4, 2015, 1 page.

Radiator Relocation Kit-Polaris Sportsman 550/850, High Lifter, http://www.highlifter.com/p-2686-radiator-relocation-kit-polaris-sportsma- n-550850-see-apps.aspx, last accessed Nov. 4, 2015, 2 pages.

Ranger XP 900 High Lifter Ground Clearance Demo-Polaris Ranger, Youtube.com, https://www.youtube.com/watch?v=jfGho4ESvyY, published Jul. 27, 2015; 1 page.

Ray Sedorchuk, New for 2004, Yamaha Rhino 660 4×4, ATV Connection Magazine, (Copyrights) 2006; 3 pages.

Redline Specs, copyright 2008, available at www.RedlinePerforms. com., 2 pages.

Renegade X MR 1000R, Can-Am, http://can-am.brp.com/off-road/atv/renegade/renegade-x-mr-1000R.html, copyright 2003-2015, 12

Response to Office Action filed with the U.S. Patent and Trademark Office, filed Dec. 19, 2018, for U.S. Appl. No. 15/751,403; 9 pages. RideNow Powersports, "2017 Can-Am Maverick X3 Walk Around", Sep. 14, 2016, YouTube.com. https://www.youtube.com/watch?v=510slScF-y4 (Year: 2016).

RZR Pro XP Sport, Published date unavailable [online], [retrieved on Jul. 25, 2021], Retrieved from the Internet: https://rzr.polaris.com/en-us/rzr-pro-xp-sport-rockford-fosgate-le/build-color/ (Year: 2021), 1 page.

RZR XP (Registered) 1000 High Lifter Edition Stealth Black, https://rzr.polaris.com/en-us/2015/high-performance/rzr-xp-1000-eps-high-lifter-edition-stealth-black-2015-rzr/; 4 pages.

RZR XP 100 EPS, High Lifter Velocity Blue, http://www.polaris.com/en-us/rzr-side-by-side/rzr-xp-1000-eps-high-lifter-edition.

RZR XP 1000 High Lifter Edition-Polaris RZR Sport Side by Side ATV, Youtube.com, https://www.youtube.com/watch?-RKRVulGlzuo, published Jul. 27, 2014; 1 page.

Sal & Barbara at S&B's, Particle Separator for 2014-16 Polaris RZR 100, http://www.sbfilters.com/particle-separator-2014-17-polaris-rzr-1000.

Second Office Action issued by the China National Intellectual Property Administration, dated Jul. 3, 2020, for Chinese Patent Application No. 201680028024.5; 7 pages.

Select Increments 2007-2018 Compatible With Jeep Wrangler JK and Unlimited With Infinity or Alpine Premium Factory Systems Pillar Pods with Kicker speakers PP0718-IA-K (Select), Dec. 14, 2018; 6 pages.

Shock Owner's Manual: Float ATV Front Applications—Fox Racing Shox, 2004, 21 pgs.

Shock Owner's Manual: Float ATV+Snowmobile—Fox Racing Shox, 2006, 18 pgs.

Shock Owner's Manual: Float MXR—Fox Racing Shox, 2006, 16

Shock Owner's Manual: Float X Evol—Snowmobile Applications, 2006, 32 pgs.

Suzuki; 1991 Suzuki GSX1100G Cylinder OEM Parts Diagram; retrieved Mar. 17, 2022; https://www.revzilla.com/oem/suzuki/1991-suzuki-gsx1100g/cylinder?submodel=gsx1100gp (Year: 2017).

Troy Merrifield & Damon Flippo, Rise of the Machine: Let the "Revolution" Begin. One Seat at a Time., CartWheelin' Magazine, published at least as early as Jan. 2008, available at http://www. Iredline.com/news.sub.-events/PDF/cart.sub.-wheelin.sub.-ar-ticle. pdf, last accessed on Feb. 15, 2012, pp. 14-19.

Troy Merrifield, Redline's Rockin' Riot, UTV Off-Road Magazine, published in vol. 4, Issue 1, Feb./Mar. 2009, available at http://www.1redline.com/news.sub.-events/PDF/Redline.sub.-Riot.sub.-Ar-ticle.sub.-01.sub.-2009.pdf., last accessed on Feb. 15, 2012, pp. 16-19.

Welcome to Ranger Country brochure, .COPYRGT. 2005, Polaris Industries Inc., 24 pgs.

Welcome to Ranger Country brochure, .COPYRGT. 2006, Polaris Industries Inc., 20 pgs.

Wild Boar ATV Parts, Airaid Intake XP 900 Polaris, Snorkel Kit, https://www.wildboaratvparts.com/airaid-intake-xp-900-polaris-snorkel-kit-free-shipping-529-00/.

Work/Play Only Ranger brochure, .COPYRGT. 2007, Polaris Industries Inc., 28 pgs.

Written Opinion of the International Searching Authority, dated Feb. 3, 2013, for related International Patent Application No. PCT/US2011/046395; 7 pages.

XR Bull Spaider 500 MOD 2011, anuncios ya, https://mexicali.anunciosya.com.mx/xr-bull-spaider-500-mod-2011-en-mexicali-SWqi, May 24, 2011; 4 pages.

XR Bull Spider 500CC 4x4 360° .AVI, youtube.com, https://www.youtube.com/watch?v=-jSzDvute8Q, posted Feb. 8, 2010; 1 page. Yamaha, Company Website, 2006 Rhino 450 Auto 4 .times. 4, .COPYRGT. 2005, 3 pages.

Yamaha, Company Website, 2006 Rhino 660 Auto 4×4, (Copyrights) 2006; 4 pages.

Yamaha, company website, 2006 Rhino 660 Auto 4.times.4 Special Edition, Copyright 2006, 4 pgs.

Yamaha, Company Website, Rhino 660 Auto 4×4 Exploring Edition Specifications, (Copyrights) 2006; 3 pages.

English Translation of Office Action issued by the Japanese Patent Office, dated Mar. 13, 2018, for related Japanese Patent Application No. 2016-502927; 7 pages.

Examination Report No. 1 issued by the Australian Government IP Australia, dated Jan. 3, 2019, for Australian Patent Application No. 2018214090; 5 pages.

Examination report No. 1 issued by the Australian Government IP Australia, dated Oct. 11, 2017, for related Australian patent application No. 2016204751; 3 pages.

Examination Report No. 2 issued by the Australian Government IP Australia, dated Jan. 29, 2018, for related Australian Patent Application No. 2016204751; 4 pages.

(56) References Cited

OTHER PUBLICATIONS

International Preliminary Report on Patentability issued by the European Patent Office, dated Jan. 26, 2016, for corresponding International Patent Application No. PCT/US2014/028857; 12 pages. International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/028857, mailed on Jan. 5, 2016, 19 pages.

Office Action issued by the Japanese Patent Office, dated Mar. 13, 2018, for related Japanese Patent Application No. 2016-502927; 5 pages.

pages.
Office Action issued by the State Intellectual Property Office of China, dated Jun. 26, 2017, for Chinese Patent Application No. 201480011350.6; 8 pages.

^{*} cited by examiner

Fig. 14

Fig. 15

Fig. 16

Fig. 17

Fig. 32

Fig. 33

POWERTRAIN FOR A UTILITY VEHICLE

CROSS-REFERENCE TO RELATED APPLICATION

The present application claims priority to U.S. Patent Application Ser. No. 63/351,574, filed Jun. 13, 2022, the complete disclosure of which is incorporated herein by reference.

FIELD OF THE DISCLOSURE

The present invention relates generally to a vehicle and, in particular, to a vehicle with a turbocharged powertrain assembly.

BACKGROUND THE DISCLOSURE

Generally, all-terrain vehicles ("ATVs") and utility vehicles ("UVs") are used to carry one or more passengers and a small amount of cargo over a variety of terrains.

Power output and the powertrain system is important for providing such vehicles with the ability to move across various terrain. What are needed are improvements to the 25 powertrain system for assuring increased and reliable power.

SUMMARY OF THE DISCLOSURE

A utility vehicle is provided with an engine and turbo- 30 charger positioned on the hot side of the engine.

According to one example, a utility vehicle includes a plurality of ground-engaging members, a frame supported by the ground-engaging members, and a powertrain assembly supported by the frame and including an engine supported by the frame, the engine including an exhaust side and a turbocharger operably coupled to the engine, the turbocharger having a turbine housing supporting a turbine and a compressor housing supporting a compressor, the turbocharger being positioned on the exhaust side of the engine and rearward of the engine, a space between the turbocharger and the engine being less than 9 inches.

According to another example, the utility vehicle further includes an operator area and a cargo area supported by the frame, wherein the turbocharger is positioned vertically below at least a portion of the cargo area.

According to another example, the powertrain assembly of the utility vehicle further includes a transmission operably coupled to the engine, wherein the turbocharger is positioned vertically higher than the transmission.

According to another example, the muffler of the utility vehicle is coupled to the engine via an exhaust conduit, the exhaust conduit being less than two feet.

According to another example, the powertrain assembly 55 of the utility vehicle further includes an exhaust conduit positioned fluidically between the engine and the muffler, and wherein the frame defines a frame envelope, the turbocharger being positioned within the frame envelope and the exhaust conduit extending at least partially outside of the 60 frame envelope.

According to another example, the powertrain assembly of the utility vehicle further includes a continuously variable transmission (CVT) operably coupled to the engine, the turbocharger being positioned laterally adjacent to the CVT. 65

According to another example, the turbocharger of the utility vehicle is outside an envelope defined by the CVT.

2

According to another example, the powertrain assembly of the utility vehicle further includes an intercooler, the intercooler being positioned laterally adjacent to the turbocharger.

According to another example, the powertrain assembly of the utility vehicle further includes an air intake and an air filter fluidically coupled to the engine via the turbocharger, the air filter being positioned on a non-exhaust side of the engine.

According to another example, a portion of the intercooler of the utility vehicle includes an air intake and an air exhaust, the air exhaust being positioned longitudinally forward of the turbocharger.

According to another example, the powertrain assembly of the utility vehicle further includes an engine intake manifold operably coupled to the engine, and wherein the air exhaust of the intercooler is laterally adjacent at least a portion of the engine intake manifold.

A utility vehicle is provided with an engine and an oil management system.

According to one example, a utility vehicle includes a plurality of ground-engaging members, a frame supported by the ground-engaging members, and a powertrain assembly supported by the frame and including an engine supported by the frame a turbocharger operably coupled to the engine, and an oil management system fluidically coupled to the engine and the turbocharger, the oil management system including an oil pan defining a staging reservoir, a staging oil pick up member including an opening positioned proximate the staging reservoir, an engine oil pump fluidically coupled to the staging oil pick up member and operable to pump oil from the staging reservoir to the engine, and a turbo drain through which oil from the turbocharger is operable to drain from the turbocharger, the turbo drain operable to deliver the oil to be picked up by the staging oil pick up member.

According to another example, the oil management system of the utility vehicle is a wet sump.

According to another example, the staging oil pickup member of the utility vehicle includes an auxiliary opening, the auxiliary opening being fluidically coupled to the turbo drain.

According to another example, the oil management system of the utility vehicle includes a channel in fluid communication with the turbo drain and the staging oil pick up member at the second opening, such that oil is drained from the turbocharger directly to the auxiliary opening of the staging oil pickup member.

According to another example, the oil management system of the utility vehicle includes a delivery reservoir adjacent the staging reservoir and a delivery oil pickup member with an opening proximate the delivery reservoir, wherein the oil pump is operable to deliver oil from the staging reservoir to the delivery reservoir.

According to another example, the oil management system of the utility vehicle includes a de-aerating member fluidically between the staging reservoir and the delivery reservoir.

According to another example, the oil management system of the utility vehicle includes a delivery reservoir cover, wherein the delivery reservoir is a pressurized chamber when the delivery reservoir cover is installed and the oil pump is active.

According to another example, the staging oil pickup member of the utility vehicle is positioned vertically above a portion of the staging reservoir.

According to another example, the portion of the staging reservoir above which the staging oil pickup member of the utility vehicle is positioned defines a low pressure zone during operation.

According to another example, the turbocharger of the 5 utility vehicle drains into the low pressure zone of the staging reservoir.

An off-road recreational vehicle is provided with an engine and a water cooling system.

According to one example, an off-road recreational ¹⁰ vehicle includes a plurality of ground-engaging members, a frame supported by the ground-engaging members, and a powertrain assembly supported by the frame and including an engine supported by the frame an air intake system fluidically coupled to the engine to provide air to the engine ¹⁵ and including a throttle blade positioned fluidically upstream from the engine, and a water cooling system including a nozzle interfacing with the air intake system upstream from the throttle blade.

According to another example, the nozzle of the off-road 20 of FIG. **18**; recreational vehicle interfaces with the air intake system within 8 inches from the throttle blade upstream from the throttle blade. FIG. **20** if FIG. **20** if FIG. **20** if FIG. **21** if the off-road 20 of FIG. **20** if FIG. **21** if the off-road 20 of FIG. **20** if FIG. **21** if the off-road 20 of FIG. **20** if FIG. **21** if the off-road 20 of FIG. **20** if FIG. **21** if the off-road 20 of FIG. **20** if FIG. **21** if the off-road 20 of FIG. **20** if FIG. **21** if the off-road 20 of FIG. **20** if FIG. **21** if the off-road 20 of FIG. **20** if FIG. **21** if the off-road 20 of FIG. **20** if FIG.

According to another example, the nozzle of the off-road recreational vehicle is operable to atomize water.

According to another example, the nozzle of the off-road recreational vehicle is positioned perpendicular to flow of air through the air intake system.

According to another example, the water cooling system of the off-road recreational vehicle further includes a controller operable to activate the nozzle in predetermined conditions

According to another example, the predetermined conditions of the off-road recreational vehicle include one of high temperatures, wide open throttle, and increased power ³⁵

According to another example, the water cooling system of the off-road recreational vehicle further includes a water reservoir supported by the frame.

According to another example, the off-road recreational 40 vehicle further includes a continuously variable transmission (CVT), wherein the CVT is fluidically coupled to the water reservoir.

BRIEF DESCRIPTION OF THE DRAWINGS

The above mentioned and other features of this invention, and the manner of attaining them, will become more apparent and the invention itself will be better understood by reference to the following description of embodiments of the 50 invention taken in conjunction with the accompanying drawings, where:

- FIG. 1 is a front perspective view of a utility vehicle of the present disclosure;
- FIG. 2 is a rear perspective view of the utility vehicle of 55 FIG. 1;
 - FIG. 3 is a left side view of the utility vehicle of FIG. 1;
 - FIG. 4 is a right side view of the utility vehicle of FIG. 1;
 - FIG. 5 is a top view of the utility vehicle of FIG. 1;
 - FIG. 6 is a front side view of the utility vehicle of FIG. 1; 60
 - FIG. 7 is a rear side view of the utility vehicle of FIG. 1;
- FIG. **8** is a perspective view of a powertrain assembly of the vehicle of FIG. **1**;
- FIG. 9 is a side view of the powertrain assembly of FIG. 3.
- FIG. 10 is a top view of the powertrain assembly of FIG.

4

- FIG. 11 is a view of a powertrain assembly having an engine in an lateral or east-west configuration;
- FIG. 12 is a view of a powertrain assembly having an engine in a longitudinal or north-south configuration;
- FIG. 13 is a view of an alternative powertrain assembly having an engine in a longitudinal or north-south configuration;
- FIG. 14 is a top perspective view of a powertrain assembly with an engine and a turbocharger;
- FIG. 15 is a side view of the engine and turbocharger of FIG. 14;
- FIG. 16 is a top view of the engine and turbocharger of FIG. 14;
- FIG. 17 is a bottom perspective view of the engine and 15 turbocharger of FIG. 14;
 - FIG. 18 is a bottom perspective view of an oil management system of an engine with a drain line from a turbocharger;
 - FIG. 19 is a bottom view of the oil management system of FIG. 18:
 - FIG. 20 is a top perspective view of the oil management system of FIG. 18;
 - FIG. 21 is a top perspective view of an interior of an oil pan of the oil management system of FIG. 18;
 - FIG. 22 is a side perspective view of the oil management system of FIG. 18;
 - FIG. 23 is a side section view of the oil management system of FIG. 18;
 - FIG. 24 is a front section view of the oil management system of FIG. 18;
 - FIG. 25 is a top view of the oil management system of FIG. 18:
 - FIG. 26 is a front section view of reservoirs and pickup members of the oil management system of FIG. 18;
 - FIG. **27** is a section view of the oil management system of FIG. **18** positioned in a condition of high angularity;
 - FIG. 28 is a section view of the oil management system of FIG. 18 positioned in another condition of high angularity;
 - FIG. 29 is a view of an alternative embodiment of an oil management system;
 - FIG. 30 is a section view of another alternative embodiment of an oil management system;
 - FIG. 31 is a top view of an oil pan of the oil management system of FIG. 30;
 - FIG. **32** is a schematic of a water injection system; and FIG. **33** is an alternative schematic of a water injection system.

Corresponding reference characters indicate corresponding parts throughout the several views. Unless stated otherwise the drawings are proportional.

DETAILED DESCRIPTION OF THE DRAWINGS

The embodiments disclosed below are not intended to be exhaustive or to limit the invention to the precise forms disclosed in the following detailed description. Rather, the embodiments are chosen and described so that others skilled in the art may utilize their teachings. While the present disclosure is primarily directed to a utility vehicle, it should be understood that the features disclosed herein may have application to other types of vehicles such as other all-terrain vehicles, motorcycles, snowmobiles, and golf carts.

With reference first to FIGS. 1-7, the vehicle of the present invention will be described. As shown, a vehicle 10 is generally depicted which includes front ground-engaging members 12 and rear ground-engaging members 14. The

ground-engaging members 12, 14 support a vehicle frame 16 (FIG. 3), which supports an operator or seating area 20 comprised of a driver's seat 22 and a passenger seat 24. A cab frame 26 generally extends over the seating area 20. As best shown in FIG. 3, the vehicle 10 further includes a 5 steering assembly 30 for steering the front ground-engaging members 12 whereby the steering assembly 30 includes a steering wheel 32 which could be both tiltable and longitudinally movable.

In some embodiments, the vehicle 10 is a four-wheel 10 drive vehicle. As shown, the vehicle 10 may also include an outer body 41 including a hood 43, side panels 44, doors 45, a cargo area 46 (e.g., a utility bed), and rear panels 48, which are illustrated throughout FIGS. 1-7. The vehicle 10 further includes a front suspension 40 and a rear suspension 42.

As seen in FIGS. 2-4 and 8-13, the vehicle 10 include a powertrain assembly 100. The component parts of the powertrain assembly 100 are discussed hereafter in greater detail with respect to FIGS. 8-10. Illustratively, the powertrain assembly 100 is comprised of an engine 102, a transmission 20 124 (e.g., a continuously variable transmission (CVT) 104, and/or a shiftable transmission 106), an exhaust assembly 108, and a turbocharger 110. The powertrain assembly 100 is supported by the vehicle frame 16. The powertrain assembly 100 described herein may be further configured as shown in U.S. patent application Ser. No. 16/875,448 with a filing date of May 15, 2020 and/or U.S. patent application Ser. No. 16/875,494 with a filing date of May 15, 2020, the subject matter of which are incorporated herein by reference in their entireties.

With reference now to FIGS. **8-10**, the powertrain assembly **100** will be described in greater detail. The powertrain assembly **100** provides power to the ground-engaging members **12**, **14** of the vehicle **10** (FIGS. **1-7**). The powertrain assembly **100** is supported on at least longitudinal frame 35 members **17** and an engine mount **18** of the vehicle frame **16**. In one embodiment, the longitudinal frame members **17** are generally parallel to a centerline C_L of the vehicle **10** (FIG. **5**) and the engine mount **18** extends transversely to the centerline C_L and the longitudinal frame members **17**.

Referring to FIGS. 11-13, the engine 102 is positioned at the rear of the vehicle 10 behind the seating area 20. The engine 102 includes an engine or cylinder block 112 with at least one cylinder 114 (e.g., including a twin cylinder configuration, three cylinder configuration, other cylinder 45 configurations). Illustratively, the engine 102 is an in-line, three-cylinder engine having a first, second, and a third cylinder 114. In addition to the engine 102, the powertrain assembly 100 includes an engine intake manifold assembly 120 providing air to the engine 102, the exhaust assembly 50 108 routing exhaust from the engine 102 out of vehicle 10, the transmission 124 operably coupled to the engine 102, and a drivetrain having a drive shaft coupled to the transmission 124. The engine 102 may be oriented either in lateral orientation (FIG. 11) or in a longitudinal orientation 55 (FIG. 12). In the lateral orientation of FIG. 11, a crankshaft (not shown) extends laterally or generally transverse to the centerline C_L , whereas, in the longitudinal orientation of FIG. 12, the crankshaft (not shown) extends parallel to or colinear with centerline C_L .

The engine 102 of powertrain assembly 100 may be placed in the vehicle 10 in a plurality of different configurations, with the present application illustrating at least two of these different configurations. In the first illustrative configuration, shown in FIG. 11, the engine 102 is positioned in the vehicle 10 in a lateral orientation, where the cylinders 114 of the engine 102 are aligned from a right side

6

2 of the vehicle 10 to a left side of the vehicle 10 and the crankshaft (not shown) extends laterally between the right side and left side of the vehicle 10 such that the engine 102 is perpendicular to a centerline C_L of the vehicle 10. When the engine 102 is in the lateral orientation, the engine intake manifold assembly 120, which includes an intake manifold 129, at least one throttle body 130, and/or intake manifold runners 132, is positioned generally forward of the engine 102 and rearward of the seating area 20 such that a majority of engine intake manifold assembly 120 is between seating area 20 and a forwardmost point of the engine 102 and all of engine intake manifold assembly 120 is longitudinally between the seating area 20 and a centerline E_L of the engine 102. The centerline E_L of the engine 102 is defined, in the first illustrative embodiment, as the laterally-extending centerline of the cylinders 114 such that the centerline E₁ intersects the midpoint or the vertically-extending reciprocation axis (e.g., reciprocation of a piston (not shown) therein) of each cylinder 114.

The exhaust assembly 108 of the first illustrative configuration (FIG. 11), which includes an exhaust manifold 134, at least one exhaust conduit 136, and/or a muffler or silencer 138, is positioned generally rearward of the engine 102 and forward of a rear of the vehicle 10 such that at least the exhaust manifold 134 and muffler 138 of the exhaust assembly 108 are longitudinally between the engine 102 and the rearward most point of the vehicle 10. It may be appreciated that a portion of a tail pipe of the exhaust assembly 108 may extend rearwardly from the rear of the vehicle 10 without departing from the description and understanding of the exhaust assembly 108 disclosed herein.

The transmission 124 of the first illustrative configuration (FIG. 11) is laterally positioned between the engine 102 and the right side or left side of the vehicle 10 such that the transmission 124 extends along a right side or a left side of the engine 102. The transmission 124 also may be positioned rearward of at least a portion of the engine intake manifold assembly 120 and forward of at least a portion of the exhaust assembly 122. Illustratively, the transmission 124 is positioned laterally between the engine 102 and the left side 4 of the vehicle 10.

The configuration of the powertrain assembly 100 of the first illustrative configuration (FIG. 11) allows for the powertrain assembly 100 to have a hot side and a cold side. More particularly, a hot side of the engine 102, or the side of the engine 102 which contains more heat producing components, is generally defined as the rearward portion of the engine 102 (e.g., may be defined as the portion of at least the engine 102 positioned rearward of the engine centerline E_L). The hot side of the engine 102 includes heat-producing components such as the exhaust manifold 134 which contains hot air exhaust from the engine 102 and other such components that may experience elevated temperatures during operation of the engine 102 compared to other components. Additionally, a cool/cold side of the engine 102, or the side of the engine 102 which generates less heat, is generally defined as the forward portion of the engine 102 adjacent the seating area 20 (e.g., may be defined as the portion of at least the engine 102 positioned forward of engine centerline E_I). 60 The cool side of the engine 102 includes components that generate no or less heat such as the engine intake manifold assembly 120 which receives ambient air and other such components that do not experience elevated temperatures during operation of the engine 102. Because the cool side of the engine 102 does not generate heat or generate as much heat as the hot side of the engine 102, various heat sensitive components of the powertrain assembly 100 and/or the

vehicle 10 may be positioned within or adjacent to the cool side of the engine 102, such as electronics like sensors, controllers, etc. In addition to the strategic positioning of a hot and cold side of the engine 102, this first illustrative configuration allows for throttle body 130 to be closer to the 5 intake manifold 129 resulting in a shorter engine intake manifold assembly 120.

In the second illustrative configuration, shown in FIGS. 12 and 13, the engine 102 is positioned in the vehicle 10 in a longitudinal configuration, where the cylinders 114 of the engine 102 are aligned in the fore/aft direction of the vehicle 10 and the crankshaft 116 extends longitudinally such that engine centerline EL of the engine 102 may be at least parallel to centerline C_L of the vehicle 10. In other embodiments, the engine centerline E_L may be colinear with the centerline C_L . As shown in FIGS. 12 and 13, when the engine 102 is in the longitudinal/second illustrative configuration, longitudinal centerline E_L of the engine 102 may be offset to the right of the centerline C_L of the vehicle 10 in order to allow an output shaft (not shown) of shiftable 20 transmission 106 and the drive shaft (not shown) of the drivetrain to be properly aligned. When the engine 102 is in the second or longitudinal configuration, the engine intake manifold assembly 120 is positioned laterally between the right side of the vehicle 10 and the engine 102, portions of 25 the exhaust assembly 122 extend along the left side of the vehicle 10 to a position rearward of the engine 102, and the transmission 124 may be positioned longitudinally forward of the engine 102. In various embodiments, at least a portion of the transmission 124 may be positioned below the seating area 20 and/or rearward of the seating area 20. As such, the transmission 124 may be longitudinally intermediate a portion of the seating area 20 and a portion of the engine 102.

In either the first or second illustrative configurations, the powertrain assembly 100 may further include the turbo- 35 charger 110, which may be positioned behind the engine 102 in the transverse configuration of FIG. 11 or behind or to the side of the engine 102 in the longitudinal configuration of FIGS. 12 and 13. However, in various embodiments, the turbocharger 110 may be positioned at any location along 40 exhaust conduit 136 between the exhaust manifold 134 and muffler 138. In some embodiments, the turbocharger 110 may be integrated within a portion of the exhaust manifold 134 and/or positioned immediately adjacent the exhaust manifold 134. The exhaust manifold 134 may include a run 45 that is less than 12 inches, for example, less than 9 inches, less than 6 inches, less than 4 inches, less or than 2 inches. This places the turbocharger 102 in close proximity to the engine 102, for example the space between the turbocharger 110 and the engine 102 may be less than 9 inches, less than 50 6 inches, less than 5 inches, less than 4 inches, less than 3 inches, less than 2 inches, or less than 1 inch. Be having the run between the engine 102 and the turbocharger 110 being shortened, the responsiveness of the turbocharger 110 is increased. The configuration of the inlets and outlets of the 55 turbocharger 110 discussed below also facilitates the placement of the turbocharger 110 in such close proximity with the engine 102.

Referring to FIGS. 14-17, the turbocharger 110 is positioned on the hot or exhaust side of the engine 102 and is in 60 parallel with the engine 102. When the engine 102 is provided in the East/West configuration, the turbocharger 110 is positioned rearward of the engine 102. The turbocharger 110 is coupled to the engine block 112. It is understood that the turbocharger 110 may be provided as a 65 single integral unit with the exhaust manifold 134 or may be provided as a separate component that can be coupled to the

8

exhaust manifold 134. Accordingly, in some embodiments, the turbocharger 110 is coupled to the engine block 112 via the exhaust manifold 134 which is separate from the turbocharger 110 or in some embodiments is coupled to the engine block 112 via the exhaust manifold 134 that is integral with the turbocharger 110. The turbocharger 110 is in fluid communication with the exhaust ports 123 of the engine 102. Various turbochargers may be implemented, including but not limited to those shown in U.S. Pat. No. 10,300,786 issued May 28, 2019 and entitled "Utility Vehicle", the subject matter of which is incorporated herein by reference in its entirety. In some embodiments, the exhaust manifold 134 includes a short run from the engine 102 to the turbocharger 110 (e.g., less than one foot, such as less than 8 inches or less than 6 inches). By having a shorter run from between the turbocharger 110 and the engine 102, other air delivery components such as the second and third conduits 168, 172 (which are discussed hereafter) have shorter segments exposed to the hot side of the engine 102 and therefore heat transfer is limited to those components which deliver air to the engine for combustion.

The turbocharger 110 includes a turbine portion 140 and a compressor portion 150. The turbine portion 140 includes a turbine housing 142, a turbine (not shown), a turbine inlet 146, and a turbine outlet 148. In some embodiments, the turbine inlet 146 receives exhaust from the exhaust manifold 134 (e.g., the turbine inlet 146 is coupled to the exhaust manifold 134 or is integral with the exhaust manifold 134). The compressor portion 150 includes a compressor housing 152, a compressor (not shown), a compressor inlet 156, and a compressor outlet 158. A shaft (not shown) extends between turbine and the compressor.

As shown in FIG. 16, the compressor outlet 158 is aligned parallel to the engine centerline E_L . The compressor inlet 156 is also aligned parallel to the engine centerline E_{I} . By aligning the compressor inlet and outlet 156, 158, the turbocharger 110 includes a narrower profile extending away from the engine 102. For example, when the engine 102 has an East/West configuration, the turbocharger 110 includes the compressor inlet and outlet 156, 158 each facing towards the left side of the vehicle 10 (FIG. 8). This reduces the profile of the turbocharger 110 in the longitudinal direction of the vehicle 10 when installed. The compressor inlet and outlet 156, 158 are positioned on the same side of the compressor housing 152. For example, the compressor inlet 156 may be positioned along or near a center of a side of the compressor housing 152 (e.g., along a compressor axis C_4 of the compressor 154, see FIG. 16) and the compressor outlet 158 is positioned at the periphery of the side of the compressor housing 152 (e.g., at an outer edge of the compressor 154 having an outlet axis O_A that is substantially parallel to the compressor axis C_A). Furthermore, by placing the compressor inlet and outlet 156, 158 as described, thermal transfer of the turbocharger 110 and its corresponding components (e.g., conduits) is reduced. By having the compressor inlet 156 and the compressor outlet 158 parallel to each other, both the compressor inlet and outlet 156, 158 extend laterally away from the engine 102 and therefore are oriented to limit heat transfer to the conduits which couple to each of the compressor inlet and outlet 156, 158. This also facilitates the close placement of the turbocharger 110 with the engine 102 as described above.

More specifically, by placing the compressor inlet and outlet **154**, **156** as shown and described (e.g., FIGS. **10** and **16**), the conduits through which the air is travelling have a shortened length and their exposure to the hot side of the engine **102** is reduced. Referring to FIGS. **8-10**, for example,

the vehicle 10 may include an air intake system 160 that includes an air intake inlet 162, an air filter 164, a first conduit 166 extending between the air intake inlet 162 and the air filter 164, a second conduit 168 extending between the air filter 164 and the compressor inlet 156, an intercooler 5 170, a third conduit 172 extending between the compressor outlet 158, and a fourth conduit 174 extending between the intercooler 170 and the engine intake manifold assembly 120. The second and third conduits 168, 172 are short segments on the hot side of the engine 102 in order to reduce 10 thermal transfer to the air that moves through those conduits. For example, the portions of the second and third conduits 168, 172 that are positioned on the hot side of the engine 102 are less than two to three feet, including less than one foot. Because the turbocharger 110 includes shorter conduits 15 (e.g., first, second, third, and fourth conduits 166, 168, 172, 174), and because the turbocharger 110 is arranged to include a compact profile (e.g., the alignment of the compressor inlet and outlet 156, 158), the turbocharger 110 is able to limit thermal transfer and therefore increase the 20 thermal efficiency of the turbocharger 110 and the powertrain assembly 100, generally.

Referring again to FIGS. 8-10, the turbocharger 110 is packaged within the vehicle 10 in order to optimize the ability of the powertrain assembly 100 to deliver power to 25 the ground-engaging members 12, 14. As illustrated in FIG. 9, the turbocharger 110 is positioned longitudinally rearward of the engine 102, vertically below the cargo area 46, longitudinally forward of the muffler 138, vertically above at least a portion of the transmission 124, laterally adjacent to 30 the CVT 106 (see FIG. 11), and laterally between rear frame members 19. The turbocharger 110 is positioned below and spaced from the cargo area 46 such that it is not contacting or directly adjacent to the cargo area 46 to limit heat transfer to the cargo area 46 (e.g., when a utility bed includes a 35 plastic body) and outside of an envelope formed by the CVT 106. The turbocharger 110 is protected between the rear frame members 19 and is also positioned spaced from the rear ground-engaging members 14 and an envelope defined by the rear ground-engaging members 14. As illustrated, the 40 exhaust conduit 136 is coupled to the turbine outlet 148 and extends to the muffler 138. In some embodiments, the exhaust conduit 136 is routed to the muffler 138 such that at least a portion of the exhaust conduit 136 extends beyond (e.g., outboard of) one of the rear frame members 19. Thus, 45 the turbocharger 110 is positioned within a frame envelope defined by the rear frame members 19 envelope and the exhaust conduit 136 extends at least partially outside of the frame envelope. In some embodiments, the turbocharger 110 is within 4 feet (e.g., within 2 feet) of the rear suspension 42. 50 The turbocharger 110 may be packaged inboard of the rear suspension 42, the positioning being operable to mitigate heat transfer to the components of the rear frame members **19** and the rear suspension **42**.

Referring now to FIGS. 17-29, the powertrain assembly 55 100 also includes an oil management system 180. The oil management system 180 includes an oil pan 182 coupled to the engine 102 (FIGS. 17-20), an oil pump 184 (FIG. 20), at least one oil pickup member 186 (FIG. 20), and a deaerator 188 (FIG. 20). The oil pan 182 defines at least one reservoir into which oil is drained. Oil that is in the reservoir is pumped from the reservoir, through the oil pickup member 186 via the oil pump 184, and into the engine 102 (e.g., a wet sump). The reservoir is also operable to receive oil drained from the turbocharger 110. For example, the turbocharger 65 110 may include a drain 111 that is coupled to an oil drain line 190 that coupled to an oil drain line connector 192 on

10

the oil pan 182 (FIG. 20). The drain line connector 192 includes a channel 194 through which oil drains from the turbocharger 110 into the reservoir of the oil management system 180.

The oil pan 182 with the turbo drain line connector 192 allows the turbocharger 110 to continue to operate in conditions of high vehicle angularity. For example, the turbocharger 110 will continue to drain in conditions of 50 degree and greater angularity of the vehicle 10, which can be caused in certain operating conditions of the vehicle 10 including climbing, rock crawling, accelerations, and so forth. The turbocharger 110 will continue to drain into the oil pan 182 in the high angularity conditions because a low pressure zone is formed where the oil from the turbocharger 110 is drained in the oil management system 180. In some embodiments, the oil pan 182 includes a deep profile that is facilitated, in part, by the raising of the engine 102 from the frame 16, which is discussed more fully in U.S. patent application Ser. No. 16/875,494, which is incorporated by reference herein. By having a deeper profile, the oil pan 182 and reservoir are able to hold oil even when the vehicle 10 is in high angularity and/or high acceleration situations (e.g., longitudinal, lateral, and compound angularity). The angle of the drain lines (i.e., the drain line connector 192 and channel for the turbocharger 110) may be angled relative to a vertical axis such that even at high angularity or acceleration, oil does not travel backward through the oil management system 180.

Referring to FIG. 21, the oil management system 180 including the oil pan 182 includes a pan bottom 200 and outer side walls 202. The oil pan 182 defines a staging reservoir 204 and a delivery reservoir 206 and are separated from each other by a wall 208. The oil pan 182 is formed such that oil from the engine 102 drains into and pools in the staging and delivery reservoirs 204, 206. In some embodiments, the oil pan 182 is formed to direct oil substantially to the staging reservoir 204 by including an interior side wall 210 that extends substantially around the delivery reservoir 206. The pan bottom 200 and the interior side wall 210 are formed to facilitate oil draining and pooling to the staging reservoir 204. The interior side walls 210 may include gaps 212 that allow the oil to drain or enter into the delivery reservoir 206, however, the majority of the oil draining into the oil pan 182 from the engine 102 will be directed to the staging reservoir 204 when the engine 102 is in a neutral orientation (i.e., not on an incline, etc.). Referring to FIG. 20, the delivery reservoir 206 is covered with a covering member 214 which allows the delivery reservoir 206 to retain oil supply to the engine 102 during certain angularity operations. The covering member 214 couples to the interior side wall 210 to form the partially pressurized chamber. It is noted that the gaps 212 in the interior side walls 210 are not sealed by the covering member 214, thus allowing oil to enter or exit the delivery reservoir 206 through the gaps 212. In some embodiments, the gaps 212 are positioned on one side of the interior side walls 210 which facilitates the delivery reservoir 206 to retain oil supply to the engine 102 during certain angularity operations (e.g., when the vehicle 10 is angled in such a way that the gaps 212 are vertically higher than other portions of the interior side walls 210).

Referring to FIG. 20, the oil management system 180 includes a first pickup member 186 that is positioned with the staging reservoir 204 and a second pickup member 187 positioned with the delivery reservoir 206 (see FIG. 25). The first and second pickup members 186, 187 are operable to uptake oil that is positioned in the respective reservoirs 204, 206. Each of the oil pickup members 186, 187 may include

a first opening 216 and a second opening 218 and a main lumen 220 defined within the oil pickup members 186, 187 (see FIG. 26). Oil is picked up by the oil pickup members 186, 187 at the first opening 216 by creating a lower pressure zone in the lumen of the oil pickup members 186, 187 (e.g., via the oil pump 184 which is in fluid communication with the oil pickup members 186, 187 by way of the second opening 218). The oil picked up by the first pickup member 186 is ejected from the oil pump 184 into the deaerator 188 which includes a spiral profile. The deaerator 188 removes air that may have been introduced into the oil collected in the staging reservoir 204 when taken up by the first oil pickup member 186. This may also occur when the first opening 216 of the oil pickup member 186 is not submerged in oil (e.g., 15 when the vehicle 10 is in configurations of high angularity such as when climbing, etc.) (see FIG. 27). The deaerator 188 receives oil from the oil pump 184 and the oil travels through the deaerator 188 around a spiral portion 189 which forces air from the oil, and the deaerated oil is dumped into 20 the delivery reservoir 206. Oil can then be picked up by the second pickup member 187 and cycled back through the appropriate mechanical systems of the powertrain assembly 100 (e.g., the engine 102 and turbocharger 110).

Referring to FIGS. 27 and 28, the oil management system 25 180 is shown in positions of high angularity. FIG. 27 depicts the oil management system 180 in a position such that the delivery reservoir 206 is in a vertically lower position than the staging reservoir 204. When this occurs, the first opening 216 of the first oil pickup member 186 may not be sub- 30 merged in oil and thus may pick up both oil and air from the staging reservoir 204. Oil from the staging reservoir 204 is transferred to the delivery reservoir 206 via the deaerator 188. Oil is picked up from the delivery reservoir 206 via the second pickup member 187 and delivered to the engine 102. 35 When the vehicle 10 is in a position that places the oil management system 180 in the configuration shown in FIG. 28, the first opening 216 of the first oil pickup member 186 is submerged in oil and picks up oil from the staging reservoir 204 and transfers it to the delivery reservoir 206. 40 The first opening 216 of the second pickup member 187 remains submerged in oil because the oil being transferred from the staging reservoir 204 to the delivery reservoir 206.

Referring again to FIGS. 23 and 24, the oil pickup members 186, 187 may include an auxiliary arm 222. The 45 auxiliary arm 222 includes an auxiliary lumen 224 and an auxiliary opening 226. The auxiliary lumen 224 is in fluid communication with the main lumen 220. Oil drained from the turbocharger 110 is operable to be drained to a position proximate the auxiliary opening 226 of the oil pickup 50 members 186, 187 such that the oil is picked up at the auxiliary opening 226 and travels through the auxiliary lumen 224 into the main lumen 220. This allows oil to be drained directly from the turbocharger 110 and picked up without pooling in the reservoirs 204, 206. The low pressure 55 zone formed at the auxiliary opening 226 of the oil pickup members 186, 187 pulls the oil through and reduces clogging or backup of oil in the oil drain line 190 and channel 194 of the drain line connector 192. For example, in one embodiment, the channel 194 of the drain line connector 192 can extend through the oil pan 182 (or in other embodiments through another conduit separate from the oil pan 182) to a position proximate the auxiliary opening 226 of the oil pickup members 186, 187. In another embodiment the channel 194 of the drain line connector 192 may drain into 65 one of the reservoirs 204, 206. These embodiments are discussed in more detail herein.

12

Referring to the embodiment in which the channel 194 of the drain line connector 192 extend through the oil pan 182, the channel 194 is integrally formed in the oil pan 182. For example, FIGS. 23-25 depict the channel 194 extending through the pan bottom 200. An orifice 228 is provided proximate the channel 194. Oil in the channel 194 can exit the channel 194 at the orifice 228. The auxiliary opening 226 of one of the oil pickup members 186, 187 is positioned at or proximate the orifice 228 such that oil is taken up directly into the oil pickup member. The orifice 228 may be sized to include various diameters, which can result in various velocity of oil being pulled through the orifice 228 and various volumes per unit time being pulled through the orifice 228. In the embodiment depicted, the channel 194 is a pressurized system which allows oil to be pulled through the channel 194 and limits oil from backing up in the oil drain line 190. This is important when the vehicle 10 is in positions of high angularity where a gravity turbo drain system would be backed up and oil would not be able to drain from the turbocharger 110. It is understood that the channel 194 may be formed to fluidly connect with the auxiliary opening 226 of either the first oil pickup member 186 (see FIG. 29) or the second oil pickup member 187 (see FIG. 24).

Referring to FIG. 26, a drain channel 229 may be formed through the wall 208 which connects the staging reservoir 204 and the delivery reservoir 206, the drain channel 229 also extending down through the pan bottom 200. This allows for a single access point when changing the oil of the powertrain assembly 100. As is further depicted in FIG. 26, the channel 194 for the turbo drain line connector 192 extends through the wall 208.

Referring to embodiments in which the channel 194 drains directly into one of the reservoirs 204, 206, in order to reduce clogging or backup of oil in the oil drain line 190 and channel 194 of the drain line connector 192, the oil pickup member 186 is positioned proximate the opening to the channel 194 at the staging reservoir 204 of the oil pan 182 (see FIGS. 30-31). The oil pickup member 186 is in fluid communication with the oil pump 184. Because the opening of the pickup member 186 which receives oil from the staging reservoir 204 is positioned proximate the opening to the channel 194 of the drain line connector 192, a low pressure zone is created in the reservoir 204 which causes oil to be pulled from the channel 194 and into the reservoir 204, from the staging reservoir 204 into the oil pickup member 186, and up into the oil pump 184. This keeps the opening of the channel 194 clear (or maintains movement of oil through the channel 194) and reduces the occurrence of oil backups or clogs from oil draining from the turbocharger 110.

Once the oil from the staging reservoir 204 is picked up, the oil can be recirculated into the engine 102 (e.g., via the deaerator 188). The oil pickup member 186 can be integral with the oil pan 182 or can be a separate member that is coupled to the oil pan 182. For example, is some embodiments, the oil pickup members 186, 187 are formed from a stable polymer that is coupled to the oil pan 182 (e.g., via bolts).

Referring now to FIGS. 32-33, a water injection system 250 is provided with the powertrain assembly 100. More specifically, the water injection system 250 is operable to cool the air intake tract, e.g., the air intake inlet 162. The water injection system 250 includes an injector 252, a water reservoir 254, a pump 256, and a controller 258. The water injection system 250 cools the air intake 162 fluidically prior to a throttle blade 260 of the throttle body 130 (see FIG. 11). In some embodiments, the water injection system 250 inter-

faces with the air intake 162 (e.g., the injection 252 is positioned with the air intake 162) at a distance of about 5 inches or less from the throttle blade 252 (e.g., 3-4 inches pre-throttle blade). The injector 252 is mounted to the air intake 162 at about a 90 degree angle such that that injector 252 is substantially perpendicular to the flow of air through the air intake 162. The injector 252 is optimized to atomize the water to provide increased surface area for cooling the air intake 162.

By cooling the air prior to the throttle blade **260**, only one 10 interface with the air intake inlet **162** is required as the cooled air is distributed to each of the cylinders while allowing the throttle blade **260** to remain close to the cylinders to provide a responsive engagement. The lower intake air temperatures increase the octane rating of the fuel 15 and help sustain the target horsepower. The water injection system **250** is operable to remove heat from the air to provide about a 10-15 degree Celsius temperature drop. The water injection system **250** may be mounted on the frame **16** of the vehicle **10** (e.g., an off road vehicle). The water injection system **250** is positioned on the CVT-side of the powertrain assembly **100**.

The water cooling system 250 may be activated in various conditions. For example, the controller 258 may activate based on sensed conditions such as certain operating tem- 25 perature, increased power demands, and so forth. For example, when the vehicle 10 is being operated in wide open throttle, a predetermined boost threshold is met, the water cooling system 250 is activated and water is pumped through to the injector 252 intake and the water contacting 30 the air intake 162 is operable to remove heat from the air (10-15° C. of temperature drop) flowing into the engine **102**. The water is operable to add a high octane level and changes the knock propensity. That decreases the occurrence of the engine 102 de-rating and allows the engine 102 to continue 35 to make power. In some embodiment, the water injection system 250 is operable to initialize in de-rate conditions. This allows the powertrain assembly 100 to maintain higher levels of performance in high temperature internal engine

In some embodiments, the water injection system **250** and the CVT **104** may be at least partially integrated. For example, controller **258** may be operable to control the operation of the water injection system **250** and operation of the CVT **104**. Furthermore, the CVT and the water injection 45 system **250** may be fluidically coupled to the water reservoir **254** (e.g., a common reservoir).

While this invention has been described as having an exemplary design, the present invention may be further modified within the spirit and scope of this disclosure. This 50 application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains.

What is claimed is:

- 1. A utility vehicle, comprising:
- a forward portion of the vehicle, a rearward portion of the vehicle, and a longitudinal direction of the vehicle 60 extending between the forward portion and the rearward portion;
- a plurality of ground-engaging members;
- a frame supported by the ground-engaging members, the frame including a cab frame;
- an operator area and a cargo area supported by the frame, wherein the cargo area is rearward of the operator area

14

in the longitudinal direction of the vehicle and vertically lower than an upper portion of the cab frame, the cargo area including at least a first upstanding wall and a second upstanding wall positioned laterally opposite each other forming a partially enclosed compartment with a floor extending between the first and the second upstanding walls; and

- a powertrain assembly supported by the frame and including:
- an engine supported by the frame, the engine including an exhaust side, the engine being positioned rearward of the operator area in the longitudinal direction of the vehicle;
- a turbocharger operably coupled to the engine, the turbocharger having a turbine housing supporting a turbine and a compressor housing supporting a compressor, the turbocharger being positioned on the exhaust side of the engine and rearward of the engine in the longitudinal direction of the vehicle, a space between the turbocharger and the engine being less than 9 inches;
- wherein the powertrain assembly includes a muffler coupled to the engine via an exhaust conduit, the exhaust conduit being less than two feet; and
- wherein the exhaust conduit is positioned fluidically between the engine and the muffler, and wherein the frame defines a frame envelope, the turbocharger being positioned within the frame envelope and the exhaust conduit extending at least partially outside of the frame envelope.
- 2. The utility vehicle of claim 1, wherein the powertrain assembly further comprises a transmission operably coupled to the engine, wherein the turbocharger is positioned vertically higher than the transmission.
- 3. The utility vehicle of claim 1, wherein the powertrain assembly further includes a continuously variable transmission (CVT) operably coupled to the engine, the turbocharger being positioned laterally adjacent in a lateral direction to the CVT.
- **4**. The utility vehicle of claim **3**, wherein the turbocharger is outside an envelope defined by the CVT.
- 5. The utility vehicle of claim 1, wherein the powertrain assembly further includes an intercooler, the intercooler being positioned laterally adjacent in a lateral direction to the turbocharger.
- **6**. The utility vehicle of claim **5**, wherein the powertrain assembly further includes an air intake and an air filter fluidically coupled to the engine via the turbocharger, the air filter being positioned on a non-exhaust side of the engine.
- 7. The utility vehicle of claim 6, wherein a portion of the intercooler includes an intercooler air intake and an air exhaust, the air exhaust being positioned longitudinally forward of the turbocharger.
- **8**. The utility vehicle of claim 7, wherein the powertrain assembly further includes an engine intake manifold operably coupled to the engine, and wherein the air exhaust of the intercooler is laterally adjacent in a lateral direction to at least a portion of the engine intake manifold.
- **9**. The utility vehicle of claim **1**, further comprising a steering assembly including a steering wheel, wherein the plurality of ground engaging members includes a plurality of front wheels, and wherein the steering assembly is configured to steer the plurality of front wheels.
- 10. The utility vehicle of claim 1, wherein the space between the turbocharger and the engine is greater than one inch

11. The utility vehicle of claim 1, wherein an exhaust conduit is greater than one inch.

- 12. The utility vehicle of claim 1, further comprising a suspension system including a trailing arm hingedly coupled to the frame.
- 13. The utility vehicle of claim 12, wherein rear ground engaging members of the plurality of ground engaging members are coupled to the trailing arm.

* * * * *