Homework 6

Introduction to Model Theory

Due 2021-11-4

If the homework is turned in n days late, the grade will be scaled by a factor of (1 - n/5). If you have questions about the homework, please ask them in office hours or in the class WeChat group.

Some of the problems below make use of *cardinal numbers* from set theory. For an introduction to cardinal and ordinal numbers, see Chapter 8 of the textbook (Poizat's *Course in Model Theory*), especially Sections 8.1 and 8.3.

- 1. Recall that a linear order (M, \leq) is well-ordered if every non-empty subset $S \subseteq M$ has a minimum. Show that the class of well-ordered linear orders is not an elementary class. In other words, show that there is no theory T whose models are exactly the well-ordered linear orders. Hint: use compactness to get a descending sequence $x_1 > x_2 > x_3 > x_4 > \cdots$.
- 2. Let κ be an infinite cardinal. A theory T is said to be κ -categorical if there is a model $M \models T$ of size κ , and any two models of size κ are isomorphic. For example, DLO is \aleph_0 -categorical: any two countable dense linear orders are isomorphic, as we proved in the first lecture. Prove the following statement:

Suppose T is κ -categorical for some infinite $\kappa \geq |L|$. Suppose T has no finite models. Then T is complete: if $M_1, M_2 \models T$, then $M_1 \equiv M_2$.

(This is called Vaught's test or the $Lo\acute{s}$ -Vaught criterion.) Hint: use the Löwenheim-Skolem theorem to change the sizes of the models to κ .

- 3. Let M be an infinite L-structure. Let κ be a cardinal with $\kappa \geq |M|$ and $\kappa \geq |L|$. Show that there is an elementary extension $N \succeq M$ with $|N| = \kappa$. (This fact is called the *Upward Löwenheim-Skolem Theorem.*) *Hint:* apply the Löwenheim-Skolem theorem to a certain relevant theory.
- 4. Let M be an L-structure and A be a subset of M. For i = 1, 2, let N_i be an elementary extension of M and let \bar{b}_i be an n-tuple in N_i (i.e., $\bar{b}_i \in (N_i)^n$). Show that the following are equivalent:
 - (a) \bar{b}_1 realizes $\operatorname{tp}(\bar{b}_2/A)$.

- (b) $\operatorname{tp}(\bar{b}_1/A) \supseteq \operatorname{tp}(\bar{b}_2/A)$.
- (c) $tp(\bar{b}_1/A) = tp(\bar{b}_2/A)$.

(As a consequence, this implies that \bar{b} realizes $p \in S_n(A)$ if and only if $p = \operatorname{tp}(\bar{b}/A)$, which is Exercise 10 in the notes.)