

Représentations numériques et codes

Exercices Conception numérique

Solution vs. Hints:

Toutes les réponses fournies ici ne sont pas des solutions complètes. Certaines ne sont que des indices pour vous aider à trouver la solution vous-même. Dans d'autres cas, seule une partie de la solution est fournie.

1 | NUM - Systèmes de numération

- 1.1 Déterminer jusqu'à quelle valeur on peut compter avec des nombres codés sur:
 - a) 0 to 15
 - b) 0 to 255
 - c) 0 to 1023

- d) 0 to 65535
- e) 0 to 4'294'967'295 (4 Gbit)

num/number-systems-01

- 1.2 Déterminer jusqu'à quelle valeur on peut compter avec des nombres hexadécimaux codés sur:
 - a) 0 to 65535

b) 0 to 4'294'967'295 (4 Gbit)

 $num/number\hbox{-} systems\hbox{-} 02$

2 | NUM - Conversion d'un systèmes de numération à un autre

2.1	Effectuer la conv	version des nomb	res binaires pur	s suivants en	format dé-
cim	al:				

a)	6_{10}

c)
$$74_{10}$$

e) 255_{10}

b) 15₁₀

d) 11₁₀

num/conversion-01

2.2 Effectuer la conversion des nombres décimaux suivants en format binaire:

c) 1111 1110 0101 1001₂

e) 1001₂

b) 1 0000₂

d) 1 0000 0000₂

num/conversion-02

2.3 Effectuer la conversion des nombres hexadécimaux suivants en format binaire:

a) 1110₂

c) 1010 1011 0011 1101₂ e) 10 0011 0100 0110₂

b) 1 0101 1100₂

d) 1001 1111 0111₂

num/conversion-03

2.4 Effectuer la conversion des nombres binaires purs suivants en format hexadécimal:

a) A_{16}

c) EB₁₆

e) C_{16}

b) 6₁₆

d) $2F_{16}$

num/conversion-04

2.5 Effectuer la conversion des nombres hexadécimaux suivants en format décimal:

a) 13₁₀

c) 564_{10}

e) 42681₁₀

b) 348₁₀

d) 254₁₀

num/conversion-05

2.6 Effectuer la conversion des nombres décimaux suivants en format hexadécimal:

1. 80₁₆

3. FE59₁₆

5. 9₁₆

2. 10₁₆

4. D1₁₆

num/conversion-06

3 NUM - Opération sur les nombres logiques

3.1 Effectuer dans le système binaire les additions suivantes:

 $1.\ \ 0010\ \ 1010_2$

 $3.\ \ 1011\ \ 0011_2$

2. 0110 1001₂

4. 1000 00002

num/operation-01

3.2 Effectuer dans le système binaire les soustractions suivantes:

 $1.\ \ 0011\ \ 1010_2$

3. 0000 1100₂

 $2. \ 0011 \ 1010_2$

4. 0111 1111₂

num/operations-02

3.3 Effectuer dans le système binaire les multiplications suivantes:

1. 0011 1100₂

3. 0011 0000₂

2. 0011 1100₂

4. $0110\ 0010_2$

num/operation-03

3.4 Effectuer dans le système hexadécimal les additions suivantes:

1. 1300₁₆

3. 1333₁₆

2. 8984₁₆

4. 13534₁₆

num/operation-04

3.5 Déterminer l'expression binaire de:

1. 1001₂

3. 11100001₂

2. 110001₂

4. 111110000001_2 ; $(2^{n-1}-1)*2^{n+1}+1$

num/operation-05

4 | NUM - Codes

- 4.1 Effectuer les additions sur les nombres BCD suivants:
 - 1. 0100 0100 0100 $_{\mathrm{BCD}}$

3. $1001\ 0010_{\mathrm{BCD}}$

2. 0110 0011 0011 $_{\rm BCD}$

4. 0001 0000 0000_{BCD}

num/codes-01

4.2 Convertir à l'aide de la formule de récurrence du polycopié le code de Gray $1001_{\rm Grav}$ en nombre binaire.

 1110_{2}

num/codes-02

5 | NUM - Représentation des nombres signés

5.1 Donner la représentation en signe-amplitude, complément à 1 et complément à 2 sur huit bits des nombres décimaux et binaires purs suivants:

1.	0001	0010_s
	0001	$0010_{\rm 1cl}$
	0001	$0010_{\rm 2cl}$
2.	1000	0011_{s}
	1111	$1100_{\rm 1cl}$
	1111	$1101_{\rm 2cl}$
3.	0000	$0000_s; 1000\ 0000_s$
	0000	$0000_{1cl};1111\ 1111_{1cl}$
	0000	$0000_{\rm 2cl}$

4.	0001	1010_s
	0001	$1010_{\rm 1cl}$
	0001	$1010_{\rm 2cl}$
5.	0000	1010_s
	0000	$1010_{\rm 1cl}$
	0000	$1010_{\rm 2cl}$
6.	1110	0100_s
	1001	$1011_{\rm 1cl}$
	1001	$1100_{\rm 2cl}$

num/representation-01

5.2 Effectuer un changement de signe sur les nombres suivants codés en complément à 2:

$$1. \ 1111 \ 1111_2 \\ 2. \ 1000 \ 1000_2$$

$$3.\ 0001\ 0000_2$$

6.
$$7F_{16}$$

num/representation-02

5.3 Soit les nombres arithmétiques binaires 0001_2 et 1001_2 exprimés en complément à 2 sur 4 bits. Représenter ces même nombres en complément à 2 sur 8 bits.

0000 0001;1111 1001

num/representation-03