

Linear and Discrete Optimization

The simplex method

- Adjacent vertices
- Basic idea of simplex algorithm

Recap

Adjacent vertices

Two distinct vertices x_1 and x_2 of $P = \{x \in \mathbb{R}^n : Ax \le b\}$ are *adjacent*, if there exist n-1 *linearly independent inequalities* of $Ax \le b$ active at both x_1 and x_2 .

ore linearly indep. if an,..., are are lin indep.

**EP is vertex => 3 n lm. andp. inequalities of Ax = 6

that are active at x*

Adjacent vertices

Theorem

 $x_1 \neq x_2 \in P$ are adjacent iff there exists $c \in \mathbb{R}^n$ such that set of optimal solutions of $\max\{c^Tx \colon x \in P\}$ is $\{\partial x_1 + (1-\partial)x_2 \colon \partial x_1 \in \mathbb{R}, 0 \leq \partial x_2 \leq 1\}$.

line segment spanned by X1 and X2

=2 x. xx+(1-x)xe: Xe1R 0EX = 1 }

Proof:

Similar to proof of Vartex and Basic

Cessible solution are equivalent concepts.

Quiz

$$P = \{x \in \mathbb{R}^3 : \mathbf{0} \le x \le \mathbf{1}\}$$

Which pairs of vertices of P are adjacent?

Simplex algorithm

George Dantzig (1914 - 2005)

Basic idea:

Start with vertex x^*

P= <xer": Axeb}

while x^* is not optimal

Find vertex x' adjacent to x^* with $c^Tx' > c^Tx^*$ update $x^* := x'$

Or assert that LP is unbounded.