CLAIMS

W	hat	10	\sim	21r	na	~	ıc.
V V I	IIai	10	U	ап	116	•	IJ.

1	A torque converter comprising:
2	a pump wheel;
3	a turbine wheel comprising a turbine wheel shell and a turbine wheel base
4	connected to said shell, said turbine wheel being supported axially and radially with
5	respect to a turbine wheel hub by a first bearing;
6	a stator provided between the pump wheel and the turbine wheel, said
7	stator being mounted on a stator hub which is supported axially against said turbine
8	wheel base by a second bearing located radially inside of the first bearing, said pump
9	wheel, said turbine wheel, and said stator forming a hydrodynamic circuit,
10	a primary damper element which is acted on by the turbine wheel by way
11	of an intermediate element; and
12	a secondary damper element which is fixed against rotation with respect
13	to said turbine wheel hub and is connected to said primary damper element in a
14	rotationally elastic manner by a set of springs.
1	 A torque converter as in claim 1 wherein the intermediate element,
2	the turbine wheel shell, and the turbine wheel base are connected to each other by
3	common connecting elements.
1	A torque converter as in claim 2 wherein said connecting elements
2	are rivets.

- 4. A torque converter as in claim 1 wherein said turbine wheel has a part against which the intermediate element rests, said part having a shape, said intermediate element conforming to said shape.
- 5. A torque converter as in claim 1 wherein the turbine wheel shell has an area of maximum axial dimension, said intermediate element being located radially inward of said area of maximum axial dimension.
 - 6. A torque converter as in claim 1 wherein the intermediate element and the primary damper element each comprise teeth, the teeth of the intermediate element engaging the teeth of the primary damper element.

1

2

3

1

2

1

2

3

- 7. A torque converter as in claim 1 further comprising a bridging clutch connecting the pump wheel to the primary damper element.
- 8. A torque converter as in claim 7 wherein the bridging clutch comprises a plurality of axially aligned clutch disks.
 - 9. A torque converter as in claim 1 wherein the primary damper element engages the secondary damper element to form a rotational angle limiter, said limiter being located radially inward of said first bearing.
- 1 10. A torque converter as in claim 9 wherein said primary damper 2 element and said secondary damper element have teeth which engage with 3 circumferential play to form said rotational angle limiter.

- 1 11. A torque converter as in claim 1 wherein the turbine wheel hub 2 comprises a radial web having a radially outer end provided with an axially extending 3 flange having a radially outside surface, said first bearing being located on the radially 4 outside surface of the flange.
- 1 12. A torque converter as in claim 11 wherein said turbine wheel base 2 extends radially inward from said turbine wheel shell, said base having a bent section 3 which extends axially under said flange and a radially inner end, said second bearing 4 lying against said radially inner end.
- 1 13. A torque converter as in claim 1 wherein said first bearing is a plain 2 bearing having an L-shaped cross-section.
 - 14. A torque converter as in claim 1 wherein the second bearing is a roller bearing.

1

2

1 15. A torque converter as in claim 14 wherein the roller bearing is a ball 2 bearing.