

VIREL:

A Variational Inference Framework for Reinforcement Learning

Matthew Fellows

Talk Structure

- Background in Reinforcement Learning
- Existing RL as Inference Methods
- VIREL: a new framework

Reinforcement Learning **A** Primer

 $r_t := r(a_t, s_t)$ $s_{t+1} \sim p(\cdot \mid s_t, a_t)$ \mathcal{A}_t

Sample action from a policy

$$a_t \sim \pi(\cdot \mid s_t)$$

Currently in state

$$s_t \in \mathcal{S}$$

Agent

Environment

$$S_{t+1}$$

Reinforcement Learning A Primer

 $r_{10} = 1$

Reinforcement Learning A Primer

Define the return as
$$R_{t,N} := \sum_{i=t}^{N-1} \gamma^{i-t} r_t$$

Discount factor $\gamma \in [0,1)$

Returns are specific to a particular trajectory

$$\tau_{t,N} := \{s_t, a_t, r_t, s_{t+1}, a_{t+1}, r_{t+1}, \dots s_{t+N-1}, a_{t+N-1}, r_{t+N-1}\}$$

Reinforcement Learning Objective

Denote the probability of a trajectory starting from S_0 :

$$p^{\pi}(\tau_N) = p_0(s_0)\pi(a_0 \mid s_0) \prod_{i=1}^{N-1} p(s_i \mid s_{i-1}, a_{i-1})\pi(a_i \mid s_i)$$

GOAL: Find an optimal policy that maximises the overall expected return over all trajectories:

RL OBJECTIVE: $\pi^* \in \arg_{\pi} \max J_N^{\pi} := \arg_{\pi} \max \mathbb{E}_{p^{\pi}(\tau_N)} \left[R_{N,0} \right]$

Reinforcement Learning Objective

More general to work with *infinite horizon* problems:

$$J^{\pi} := \lim_{N \to \infty} J_N^{\pi} = \lim_{N \to \infty} \mathbb{E}_{p^{\pi}(\tau_N)} \left[R_{N,0} \right]$$

Proof of existence, see, for example, Reinforcement Learning and Optimal Control, Bertsekas

Action-Value Functions

Denote the probability of a trajectory given:

Starting state-action pair,
$$s_t, a_t$$
 $p^{\pi}(\tau_t | s_t, a_t) = \prod_{i=1}^{\infty} p(s_{t+i} | s_{t+i-1}, a_{t+i-1}) \pi(a_{t+i} | s_{t+i})$

Averaging return over all possible trajectories starting in S_t taking action a_t under π

Action-value (Q) function: $Q^{\pi}(s_t, a_t) := \mathbb{E}_{p^{\pi}(\tau_t | s_t, a_t)} \left[R_t \right]$

Re-write RL objective for Q: $J^\pi = \mathbb{E}_{p_0(s)\pi_\theta(a|s)}\left[Q^\pi(a,s)\right]$

Q-Functions as 'Quality' Functions

$$Q_{N=11}^{\pi}(s_0, \mathbf{Bamboo}) = 10.21$$

Bellman Equations and Function Approximators:

Consider the Bellman operator:

$$\mathcal{T}^{\pi}Q^{\pi}(a,s) := r(a,s) + \gamma \mathbb{E}_{p(s'|s,a)\pi(a'|s')} \left[Q^{\pi}(s',a') \right]$$

Any Q-function will satisfy a Bellman equation:

$$\mathcal{T}^{\pi}Q^{\pi}(a,s) - Q^{\pi}(a,s) = 0 \quad \forall \ s, a \in S \times A$$

For any approximate $\hat{Q}_{\omega}(a,s)$ Q-function parametrised by $\omega \in \Omega$ we define the residual error as:

$$\|\mathcal{F}^{\pi}\hat{Q}_{\omega}(a,s) - \hat{Q}_{\omega}(a,s)\|_{p}^{p}$$

$$\|\mathcal{T}^{\pi}\hat{Q}_{\omega}(a,s) - \hat{Q}_{\omega}(a,s)\|_{p}^{p} = 0 \implies \hat{Q}_{\omega}(\,\cdot\,\,) = Q^{\pi}(\,\cdot\,\,)$$

Conditions for Optimality

Definite the optimal Q-function as: $Q^*(\cdot) = Q^{\pi^*}(\cdot)$

Howard (1960): For infinite horizon MDPS, there always exists at least one stationary, deterministic policy:

$$\pi^*(a \mid s) = \delta \left(a \in \arg_{a'} \max Q^*(a', s) \right)$$

Consider the optimal Bellman operator:

$$\mathcal{T}^*Q^{\pi}(a,s) := r(h) + \gamma \mathbb{E}_{p(s'|s,a)} \left[\max_{a'} Q^{\pi}(a',s') \right]$$

Any optimal Q-Function satisfies the optimal Bellman equation:

$$\mathcal{T}^*Q^*(s,a) - Q^*(s,a) = 0 \quad \forall \ s,a \in S \times A$$

Actor-Critic

Probably the most successful class of RL algorithms

Parametrise policy $\pi_{\theta}(a \mid s)$ with $\theta \in \Theta$ and use function approximator $\hat{Q}_{\omega}(\cdot) \approx Q^{\pi}(\cdot)$

ACTOR:
$$\theta \leftarrow \theta + \alpha_{ac} \nabla_{\theta} J(\theta)$$

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\rho^{\pi}(s)\pi(a|s)} \left[\hat{Q}_{\omega}(a,s) \nabla_{\theta} \log \pi_{\theta}(a|s) \right]$$

Like policy improvement, updates heta in direction of increasing rewards

CRITIC:
$$\omega \leftarrow \omega - \frac{1}{2} \alpha_{cr} \nabla_{\omega} \mathbb{E}_{d(s)} \left[\left(\mathscr{T}^{\pi} \hat{Q}_{\omega}(a,s) - \hat{Q}_{\omega}(a,s) \right)^{2} \right]$$

$$\frac{1}{2}\nabla_{\omega}\mathbb{E}_{d(s)}\left[\left(\mathcal{T}^{\pi}\hat{Q}_{\omega}(a,s)-\hat{Q}_{\omega}(a,s)\right)^{2}\right]\approx-\mathbb{E}_{d(s)}\left[\left(\mathcal{T}^{\pi}\hat{Q}_{\omega}(a,s)-\hat{Q}_{\omega}(a,s)\right)\nabla_{\omega}\hat{Q}_{\omega}(h)\right]$$

Like policy evaluation, updates ω to minimiser error between $\hat{Q}_{\omega}(\,\cdot\,)$ and $Q^{\pi_{new}}(\,\cdot\,)$

Reinforcement Learning as Inference-Motivation

- Powerful methods from variational inference literature can be applied to RL
- Bayesian interpretation of RL problem can be exploited for uncertainty driven exploration
- Deeper theoretical understanding of RL can highlight key problems in existing algorithms

Reinforcement Learning as Inference-A Brief Review

Introduce a binary variable $\mathcal{O}_t \in \{0,1\}$

 $\mathcal{O}_t = 1$ is the event that agent is behaving 'optimally'

However, semantics of \mathcal{O}_t are not formally defined

We write \mathcal{O}_t for $\mathcal{O}_t = 1$ and introduce a new restriction, $r(\cdot) \leq 0$

The distribution over \mathcal{O}_t is defined as: $p(\mathcal{O}_t | s_t, a_t) := \exp(r_t)$

Likelihood is defined as:
$$p(\mathcal{O} \mid \tau) = \prod_{t=0}^{N-1} p(\mathcal{O}_t \mid s_t, a_t) = \exp\left(\sum_{t=0}^{N-1} r_t\right)$$

Two approaches follow:

 θ = Model parameters

Maximum Likelihood Problem

 θ = Variational parameters
Inference Problem

Approach i: Pseudo-Likelihood Methods: θ as model parameters

Introducing a prior over trajectories: $p_{\theta}(\tau) := p_0(s_0)\pi_{\theta}(a_0 \mid s_0) \prod_{i=1}^{N-1} p(s_i \mid s_{i-1}, a_{i-1})\pi_{\theta}(a_i \mid s_i)$

The joint follows as:
$$p_{\theta}(\tau, \mathcal{O}) = P(\mathcal{O} \mid \tau) p_{\theta}(\tau) = \exp\left(\sum_{i=0}^{N-1} r_i\right) p_{\theta}(\tau)$$

Approach i: Pseudo-Likelihood Methods

The marginal-likelihood is thus the expected exponential return:

$$p_{\theta}(\mathcal{O}) = \int P(\mathcal{O} \mid \tau) p_{\theta}(\tau) d\tau = \mathbb{E}_{p_{\theta}(\tau)} \left[\exp\left(\sum_{i=0}^{N-1} r_i\right) \right]$$

Compare to the (episodic, undiscounted) reinforcement learning objective:

$$J(\theta) = \mathbb{E}_{p_{\theta}(\tau)} \left[\sum_{i=0}^{N-1} r_i \right]$$

Finding maximum marginal likelihood equivalent to solving MDP with transformed rewards-solved using (V)EM!

State of the art: MPO (ish!) [Abdolmaleki et al 18]

Critical Problem with Pseudo-Likelihood

The (V) E-step infers posterior $q(\tau) \approx p_{\theta}(\tau \mid \mathcal{O})$ which characterises return in MDP

The M-step minimises the *forward* (mass-covering) KL divergence for $\, heta$:

Pseudo-likelihood:
$$KL(q(\tau)||p_{\theta}(\tau|\mathcal{O}))$$

Target distribution, proportional to exponential return

Distribution containing policy to be improved

Classic RL optimises the reverse (mode-seeking) form of KL divergence:

Classic RL:
$$KL(p_{\theta}(\tau \mid \mathcal{O}) || q(\tau))$$

Critical Problem with Pseudo-Likelihood

See [Neumann 11] for examples of this in practice

Approach ii: Maximum Entropy RL (MERL)

For MERL, the prior is independent of θ : $p(\tau) := p_0(s_0) \prod_{i=1}^n p(s_i \mid s_{i-1}, a_{i-1}) \mathcal{U}(a_i)$

The joint follows as:
$$p(\tau, \mathcal{O}) = P(\mathcal{O} \mid \tau) p_{\theta}(\tau) = \exp\left(\sum_{i=0}^{N-1} r_i\right) p(\tau)$$

See [Levine 18] for a full overview

Approach ii: Maximum Entropy RL (MERL)

The posterior distribution is derived as: $p(\tau \mid \mathcal{O}) = \frac{\exp\left(R_N\right)p(\tau)}{\int \exp\left(R_N\right)p(\tau)d\tau}$

The variational distribution is defined as: $q_{\theta}(\tau) := p_0(s_0) \prod_{i=1}^{N-1} p(s_i \mid s_{i-1}, a_{i-1}) \pi_{\theta}(a_i \mid s_i)$

Maximum Entropy RL Objective

Optimising the *reverse* KL divergence:

$$\arg_{\theta} \min KL \left(q_{\theta}(\tau) || p(\tau | \mathcal{O}) \right) = \arg_{\theta} \max \mathcal{L}(\theta)$$

The ELBO can be derived as: Temperature parameter $\mathcal{L}(\theta) = \mathbb{E}_{q_{\theta}(\tau)} \left[\sum_{i=0}^{N-1} \left(r_i - \log \pi_{\theta}(a_i | s_i) \right) \right] = \mathbb{E}_{q_{\theta}(\tau)} \left[\sum_{i=0}^{N-1} r_i \right] + c \sum_{i=0}^{N-1} \mathbb{E}_{p(s_i | s_{i-1}, a_{i-1})} \left[\mathcal{H} \left(\pi_{\theta}(\cdot | s_i) \right) \right]$

Again, compare to the (episodic, undiscounted) reinforcement learning objective:

$$J(\theta) = \mathbb{E}_{p_{\theta}(\tau)} \left[\sum_{i=0}^{N-1} r_i \right]$$

Inferring $q_{\theta}(\tau)$ closest in KL Divergence to the posterior is equivalent to solving the maximum entropy RL objective

State of the art: Soft Actor Critic [Haarnoja et al 18]

Problems with MERL

Discounting and infinite horizon MDPs are complicated (see [Thompson 14])

Defining $\pi_{\theta^*}^{merl}(a \mid s)$ as the optimal policy under $\mathcal{L}(\theta)$

 $\pi_{\theta^*}^{merl}(a \mid s)$ is not deterministic and in general, $\arg_{a'} \max \pi_{\theta^*}^{merl}(a' \mid s) \neq \arg_{a'} \max Q^*(a', s)$

Restricting to deterministic policies renders inference intractable [Rawlik 10]

Simple Counterexample

$$r(s_0, a_2) = 1$$

r = 0 everywhere else

Deterministic state transitions

Optimal policy has $\pi^*(a_2 | s_0) = 1$

Optimal MERL policy has

$$\pi_{merl}^*(a_1 \mid s_0) = \frac{1}{k_1^{-\gamma} \exp(\frac{1}{c}) + 1}$$

For any
$$k_1^{-\gamma} \exp\left(\frac{1}{c}\right) < 1 \implies \pi_{merl}^*(a_1 | s_0) > \frac{1}{2}$$

 π^* cannot be recovered from π^*_{merl}

Goals for a General RL Inference Framework

Naturally learns optimal deterministic policies

Variational distribution is a policy, not trajectory

Optimises the reverse form of KL divergence

Temperature not a hyperparameter

Discounting easily incorporated

Function approximators explicitly used

Stochastic policies used for learning

VIREL

A Variational Inference Framework for Reinforcement Learning

M Fellows A Mahajan T G J Rudner S Whiteson

For simplicity of notation, define hidden variables: $h := \langle a, s \rangle$

ASSUMPTION I: Optimal Q-function is finite and positive $0 < Q^*(\cdot) < \infty$

Introducing an approximate Q-function: $\hat{Q}_{\omega}(\,\cdot\,), \quad \omega \in \Omega$

ASSUMPTION II: $\exists \ \omega^* \in \Omega \ s.t. \ \hat{Q}_{\omega^*}(\,\cdot\,) = Q^*(\,\cdot\,)$ i.e. Optimal Q-function can be represented by an approximator

(A II relaxed using projected Bellman errors, extending [Bhatnagar et al 09])

ASSUMPTION III: $\hat{Q}_{\omega^*}(\,\cdot\,)$ has unique maximum and is a locally \mathbb{C}^2 smooth about that maximum.

Model Specification

Define the residual error as
$$\epsilon_{\omega} := \frac{1}{p|H|} \|\mathcal{T}_{\omega} \hat{Q}_{\omega}(h) - \hat{Q}_{\omega}(h)\|_p^p$$

Which is the temperature of a Boltzmann policy:

Temperature defined explicitly
$$\pi_{\omega}(a \,|\, s) = \frac{\exp\left(\frac{\hat{Q}_{\omega}(h)}{\varepsilon_{\omega}}\right)}{\int \exp\left(\frac{\hat{Q}_{\omega}(h)}{\varepsilon_{\omega}}\right) da}$$
 Function approximators explicitly used

Theorem 1: In the limit $\varepsilon_{\omega} \to 0$, $\pi_{\omega}(a \mid s)$ tends towards a Dirac-delta distribution centred on $\arg_{a'} \max \hat{Q}_{\omega}(a', s)$, that is:

$$\lim_{\varepsilon_{\omega} \to 0} \int \varphi(a) \pi_{\omega}(a \mid s) da = \varphi(a = \arg_{a'} \max \hat{Q}_{\omega}(a', s)) \quad \forall \ \varphi(\cdot) \in \mathbb{C}_0^{\infty}(A)$$

Model Specification

Define the residual error as
$$\epsilon_{\omega} := \frac{1}{p|H|} \|\mathcal{T}_{\omega} \hat{Q}_{\omega}(h) - \hat{Q}_{\omega}(h)\|_p^p$$

 $\mathcal{T}_\omega \cdot$ any operator which recovers the optimal Bellman operator when $\,\varepsilon_\omega \to 0\,$

$$\mathcal{T}_{\omega} \cdot \in \mathbb{T} := \left\{ \left. \mathcal{T}_{\omega} \cdot \, \middle| \, \lim_{\varepsilon_{\omega} \to 0} \mathcal{T}_{\omega} \hat{Q}_{\omega}(\, \cdot \,) = \mathcal{T}^* \hat{Q}_{\omega}(\, \cdot \,) \right\}$$

e.g.
$$\mathcal{T}_{\omega}\hat{Q}_{\omega}(\,\cdot\,):=r(\,\cdot\,)+\gamma\mathbb{E}_{p(s'|\cdot)\pi_{\omega}(a'|s')}\left[\hat{Q}_{\omega}(h')\right]\in\mathbb{T}$$
 (note: constrains Ω)

$$\text{e.g.}\quad \mathcal{T}^*\hat{Q}_{\omega}(\,\cdot\,\,) := r(\,\cdot\,\,) + \gamma \mathbb{E}_{p(s'|\cdot)}\left[\max_{a'}\hat{Q}_{\omega}(a',s')\right] \in \mathbb{T}$$
 Discounting easily incorporated

Main Theoretical Result

Theorem 2: For any $\omega^* s.t. \varepsilon_{\omega^*} = 0$, it follows that:

- i) the corresponding approximator is optimal, i.e. $\hat{Q}_{\omega^*}(\,\cdot\,) = Q^*(\,\cdot\,)$
- ii) the corresponding Boltzmann policy is optimal, i.e.

$$\pi_{\omega^*}(a \mid \cdot) = \delta(a = \arg_{a'} \max Q^*(a', \cdot))$$

OBJECTIVE: $\arg_{\omega} \min \varepsilon_{\omega}$ Naturally learns optimal deterministic policies

Corollary 1: $\varepsilon_{\omega}=0$ is also a necessary condition for i) and ii), hence $\varepsilon_{\omega}>0$ for any non-optimal $\hat{Q}_{\omega}(\,\cdot\,)$ and π_{ω}

IMPLIES: π_{ω} stochastic whenever $\varepsilon_{\omega} > 0$ Stochastic policies used for learning

Probabilistic Interpretation

Introduce binary variable $\emptyset \in \{0,1\}$

$$p_{\omega}(\mathcal{O} \mid h) := y_{\omega}(h)^{\mathcal{O}} (1 - y_{\omega}(h))^{1 - \mathcal{O}}$$

$$y_{\omega}(h) := \exp\left(\frac{\hat{Q}_{\omega}(h) - \max_{a'} \hat{Q}_{\omega}(a', s)}{\varepsilon_{\omega}}\right) \qquad \text{(well defined for } \varepsilon_{\omega} > 0\text{)}$$

 $\mathcal{O}=1$ event that samples are optimal under $\hat{Q}_{\omega}(\cdot)$ i.e. greedy under $\hat{Q}_{\omega}(\cdot)$:

Given $s \in S$ and $a^* \in \arg_{a'} \max \hat{Q}_{\omega}(a', s)$, $\mathcal{O} = 1$ with complete certainty,

$$p_{\omega}(\mathcal{O} = 1 \mid a^{\star}, s) = \exp\left(\frac{\hat{Q}_{\omega}(a^{\star}, s) - \max_{a'} \hat{Q}_{\omega}(a', s)}{\varepsilon_{\omega}}\right) = 1$$

Probabilistic Interpretation

Writing \mathcal{O} for $\mathcal{O} = 1$ and defining:

$$y_{\omega}(s) := \exp\left(\frac{-\max_{a'}\hat{Q}_{\omega}(a', s)}{\varepsilon_{\omega}}\right)$$

we have
$$p_{\omega}(\mathcal{O} \mid h) = \exp\left(\frac{\hat{Q}_{\omega}(h)}{\varepsilon_{\omega}}\right) y_{\omega}(s)$$
 (well defined for $\varepsilon_{\omega} > 0$)

Defining a prior to be uniform $p(h) = \mathcal{U}(h)$ the state-conditional action posterior is:

$$p_{\omega}(a \mid s, \mathcal{O}) = \frac{\exp\left(\frac{\hat{Q}_{\omega}(h)}{\varepsilon_{\omega}}\right)}{\int \exp\left(\frac{\hat{Q}_{\omega}(h)}{\varepsilon_{\omega}}\right) da} = \pi_{\omega}(a \mid s)$$

We recover our Boltzmann distribution!

Probabilistic Interpretation

Model not confident about optimal policy

Model confident about optimal policy

Sampling from $p_{\omega}(a \mid s, \mathcal{O}) = \pi_{\omega}(a \mid s)$ affords uncertainty driven exploration

Inferring the Action Posterior

Sampling directly from the action posterior is not possible in general

Optimises the reverse form of KL divergence Full posterior is
$$p_{\omega}(h \mid \mathcal{O}) = \frac{\exp\left(\frac{\hat{Q}_{\omega}(h)}{\varepsilon_{\omega}}\right)y_{\omega}(s)}{\int \exp\left(\frac{\hat{Q}_{\omega}(h)}{\varepsilon_{\omega}}\right)y_{\omega}(s)dh}$$

Objective: $\arg_{\theta} \min KL(q_{\theta}(h) || p_{\omega}(h | \mathcal{O})) = \arg_{\theta} \max \mathcal{L}_{\omega}(\theta)$

$$\mathcal{L}_{\omega}(\theta) = \mathbb{E}_{d(s)} \left[\mathbb{E}_{\pi_{\theta}(a|s)} \left[\frac{\hat{Q}_{\omega}(h)}{\varepsilon_{\omega}} \right] + \mathcal{H}(\pi_{\theta}(\cdot \mid s)) \right] + \mathbb{E}_{d(s)} \left[\log \left(\frac{y_{\omega}(s)}{d(s)} \right) \right]$$

Inferring the Action Posterior

Theorem 3: For any
$$\varepsilon_{\omega} > 0$$
, $\max_{\theta} \mathscr{L}_{\omega}(\theta) = \min_{\theta} \mathbb{E}_{d(s)} \left[KL(\pi_{\theta}(\,\cdot\,|\,s) \| \pi_{\omega}(\,\cdot\,|\,s)) \right]$

What about when $\varepsilon_{\omega} = 0$?

To prevent ill conditioning, we maximise $\varepsilon_{\omega} \mathcal{L}_{\omega}(\theta)$ anyway:

$$\varepsilon_{\omega} \mathcal{L}_{\omega}(\theta) = \mathbb{E}_{d(s)} \left[\hat{Q}_{\omega}(h) \right] + \varepsilon_{\omega} \mathcal{H}(\pi_{\theta}(\cdot \mid s)) \right]$$
 Reduces influence of entropy
$$\varepsilon_{\omega} = 0 \implies \hat{Q}_{\omega}(\cdot) = Q^{*}(\cdot)$$
 (Theorem 2)

$$\lim_{\varepsilon_{\omega} \to 0} \varepsilon_{\omega} \mathcal{L}_{\omega}(\theta) = \mathbb{E}_{d(s)\pi_{\theta}(a|s)} \left[Q^{*}(h) \right] = J(\theta)$$

Hence $\pi^*(a \mid s)$ can still be found using e.g. classic policy gradient updates

Comparing MERL and VIREL

In VIREL, $q_{\theta}(h)$ approximates the posterior for a single interaction, $\hat{Q}_{\omega}(h)$ models all future interactions

In MERL, $q_{\theta}(\tau)$ needs to model underlying long-term dynamics of the MDP

For high dimensional MDPs, expressiveness of $q_{\theta}(\tau)$ could be a bottleneck to performance (see experiments...)

A Simple Algorithm:

ELBO Objective:
$$\mathscr{L}_{\omega}(\theta) = \mathbb{E}_{d(s)} \left[\mathbb{E}_{\pi_{\theta}(a|s)} \left[\frac{\hat{Q}_{\omega}(h)}{\varepsilon_{\omega}} \right] + \mathscr{H}(\pi_{\theta}(\cdot \mid s)) \right]$$

 $\mathscr{L}_{\omega}(\theta) \to \infty$ whenever $\varepsilon_{\omega} \to 0$ therefore treat $\mathscr{L}_{\omega}(\theta)$ as overall objective or, even simpler:

VEM/AC-style algorithm:

E-step (actor): $\theta_{k+1} \leftarrow \arg_{\theta} \max \mathcal{L}_{\omega_k}(\theta)$

Using gradient based optimisation: $\theta_{i+1} \leftarrow \theta_i + \alpha_{ac} \left(\varepsilon_{\omega_k} \nabla_{\theta} \mathcal{L}_{\omega_k}(\theta) |_{\theta = \theta_i} \right)$

$$\varepsilon_{\omega_{k}} \nabla_{\theta} \mathcal{L}(\omega_{k}, \theta) \big|_{\theta = \theta_{i}} = \mathbb{E}_{d(s)} \left[\mathbb{E}_{\pi_{\theta}(a|s)} \left[\hat{Q}_{\omega_{k}}(h) \nabla_{\theta} \log \pi_{\theta}(a|s) \right] + \varepsilon_{\omega_{k}} \nabla_{\theta} \mathcal{H}(\pi_{\theta}(\cdot | s)) \right]$$

M-step (critic): Sample $\pi_{\theta_{k+1}}$ and update ω_{k+1} using gradient based optimisation:

$$\omega_{k+1} \leftarrow \omega_k - \alpha_{cr} \nabla_{\omega} \varepsilon_{\omega} |_{\omega = \omega_k}$$

Results

Higher dimensional task

Highest dimensional tasks