CS590 homework 4 – Dynamic Programming, Greedy Algorithms

The due date for this assignment is Friday, November 8th, at 11.59pm. This assignment is worth 10% of your final grade.

Any sign of collaboration will result in a 0 and being reported to the Graduate Academic Integrity Board. Late submission policy described in the syllabus will be applied.

The class random_generator has been updated (random_generator.h and random_generator.cc) by a member function which generates random strings of a fixed length using the a given number of characters from the alphabet, starting with "a".

char* random_string_m(int n, int no_ch)

The function allocates n+1 characters. The first n characters (0...n-1) are chosen at random using the first no_ch characters from the alphabet starting with "a" (e.g., for $no_ch = 4$ the characters are randomly chosen out of $\{"a","b","c","d"\}$). The n-th character is set to 0 in order to mark the end of the string.

Dynamic programming (70 points)

The dynamic programming Smith-Waterman algorithm is matching sequences recursively defined as follows, given $X = x_1, \ldots, x_n$ (along table rows) and $Y = y_1, \ldots, y_m$ (along table columns).

$$\begin{split} M(i,0) &= 0, \text{ for all } 0 \leq i \leq n \\ M(0,j) &= 0, \text{ for all } 0 \leq j \leq m \\ M(i,j) &= \max \left\{ \begin{array}{l} M(i-1,j-1) + 2 \text{ if } x_i = y_j \\ M(i-1,j-1) - 1 \text{ if } x_i \neq y_j \\ M(i-1,j) - 1 \text{ if "-" is inserted into } Y \\ M(i,j-1) - 1 \text{ if "-" is inserted into } X \end{array} \right. \end{split}$$

The function M(i, j) defines a so called matching score for the partial sequences X_i and Y_j . If in the recursive definition of M the maximum value is due to the third or fourth line, you have to insert the character "-" into either X or Y in order to reconstruct the matching sequences X' and Y'. Similar to the LCS problem we need only need a table to store the M(i, j) values, but an additional table that allows us to later generate X' and Y' from X and Y.

	$Example_1$	$Example_2$	Example ₃
X	abababda		cdbaabbdca
X'	a-bababda		c-dba-abbdca
Y'	acbabab-a		cadcacca-bd-
Y	acbababa	bccadaadcc	cadcaccabd
M(n,m)	12	4	5

- Implement the bottom-up version of the Smith-Waterman algorithm given by the recursive definition of the function M (as seen on the slides).
- Implement the top-down with memoization version of the Smith-Waterman algorithm given by the recursive definition of the function M.

Notes:

- How do you initialize the necessary tables given the definition of M. Keep in mind that you have to able to determine whether or not you already computed a table value (memoization).
- Values could be negative, but is there a limit for how small they can get?
- 3. Implement the function void PRINT-SEQ-ALIGN-X(...) that takes a number of parameters and then recursively prints the matching sequence that is derived from X. Implement a separate function void PRINT-SEQ-ALIGN-Y(...) that recursively prints the matching sequence that is derived from Y.
- 4. Find the maximum alignment for X = dcdcbacbbb and Y = acdccabdbb by using the Smith-Waterman algorithm (see slides). Execute the pseudocode algorithm and fill the necessary tables H and P in a bottom-up fassion. Reconstruct the strings X' and Y' using the tables H and P. (7+20+8+15 = 50 points)
- Exercise 15.1-2 Show, by means of a counterexample, that the following "greedy" strategy does not always determine an optimal way to cut rods. Define the density of a rod of length i to be $\frac{p_i}{i}$, that is, its value per inch. The greedy strategy for a rod of length n cuts off a first piece of length i, where $1 \le i \le n$, having maximum density. It then continues by applying the greedy strategy to the remaining piece of length n-i. (7 points)
- Exercise 15.1-5 The Fibonacci numbers are defines by recurrence (3.22). Give an O(n) time dynamic-programming algorithm to compute the n-th Fibonacci number. Draw the subproblem graph. How many vertices and edges are in the graph?

 (8 points)

Exercise 15.4-1 Determine an LCS of
$$(1,0,0,1,0,1,0,1)$$
 and $(0,1,0,1,1,0,1,1,0)$. (5 points)

Remarks:

- You are not allowed to use code from online resources. Your submission will be tested against that, and will receive a 0, and a report to the Graduate Academic Integrity Board if it is detected.
- Your report has to be typed, and submitted in a pdf file.
- No additional libraries are allowed to be used

- A Makefile is provided for both problems to build the code in the Virtual Box.
- Your code has to compile, and will be graded on the Virtual Box.
- The programming, and testing will take some time. Start early.
- Feel free to use the provided source code for your implementation. You have to document your code.