Seaman.h.zhang

博客园:: 首页:: 新随笔:: 联系:: 订阅 XML :: 管理 34 Posts:: 0 Stories:: 2 Comments:: 0 Trackbacks

公告

昵称: seaman.kingfall

园龄: 4年3个月

粉丝: 4 关注: 1 +加关注

搜索

常用链接

我的随笔 我的评论 我的参与 最新评论 我的标签

我的标签

练习题(6)

合一(3)

递归(3)

中断(2)

类型变量(2)

数字(2)

列表(2)

Haskell(2)

recursive(2)

比较(2)

更多

随笔分类

Haskell(2) Prolog(32)

随笔档案

2015年8月 (7) 2015年7月 (22) 2015年6月 (5)

最新评论

1. Re:Learn Prolog Now 翻译 - 第一章 - 事实, 规则 和查询 - 第一节, 一些简单的例子 学习!

--深蓝医生

2. Re:Learn Prolog Now 翻译 - 第一章 - 事实, 规则和查询 - 第一节, 一些简单的例子

翻译了这么多了,而且每天一篇,不能望其项背啊。

Learn Prolog Now 翻译 - 第三章 - 递归 - 第四节,更多的实践和练习

在学习了前三章内容后,我们应该对Prolog编程有了直观和理性的认识。由于合一、变量初始化、证明搜索和递归都是Prolog的核心概念,所以有如下更多的一些实践和练习。

这里我会先录入题目,后期再给出我自己的程序代码和一些思考。

实践1

试想有如下的描述迷宫的知识库。其中的事实描述了点和点之间的联通关系,即connected/2谓词逻辑给出了这样的事实:迷宫中能从参数1的点,直接到达参数2的点。而且,

联通关系是有方向的、单向不能往返的:

请写出一个谓词逻辑path/2,给出迷宫中哪些点是能够联通(直接或者间接)的。比如,点5是否能够达到点10?当起点是1时,能够到达哪些点?

实践2

有如下的交通信息知识库:

```
byCar(auckland, hamilton).
byCar(hamilton, raglan).
byCar(valmont, saarbruecken).
```

--Benjamin Yan

阅读排行榜

- 1. Learn Prolog Now 翻译 第三章 递归 第一节, 递归的定义(1168)
- 2. Learn Prolog Now 翻译
- 第一章 事实, 规则和查询
- 第一节, 一些简单的例子 (1087)
- 3. Learn Prolog Now 翻译
- 第一章 事实, 规则和查询
- 第二节, Prolog语法介绍 (781)
- 4. Haskell学习笔记二: 自定 义类型(767)
- 5. Learn Prolog Now 翻译 第六章 列表补遗 第一节, 列表合并(753)

评论排行榜

1. Learn Prolog Now 翻译 - 第一章 - 事实, 规则和查询 - 第一节, 一些简单的例子 (2)

推荐排行榜

- 1. Haskell学习笔记二: 自定 义类型(1)
- 2. Learn Prolog Now 翻译 第三章 递归 第四节, 更多的实践和练习(1)

```
byCar(valmont, metz).
```

byTrain(metz, frankfurt).

byTrain(saarbruecken, frankfurt).

byTrain(metz, paris).

byTrain(saarbruecken, paris).

byPlane(frankfurt, bangkok).

byPlane(frankfurt, singapore).

byPlane(paris, losAngeles).

byPlane(bangkok, auckland).

byPlane(singapore, auckland).

byPlane(losAngeles, auckland).

请写出一个谓词逻辑travel/2,可以描述从一个地点到达另外一个地点(间接或者直接),可以通过car、train和plane进行换乘。比如,如果查询:

?- travel(valmont, raglan).

Prolog会回答true。

实践3

所以,通过实践2中的谓词逻辑travel/2,可以知道Valmont可以达到Raglan。 这很有用,但是当你计划一段旅行的时候,你希望更确切的一些信息,比如其中 详细的路途是

怎么样的。请写一个谓词逻辑trave1/3,可以告诉具体的路径,比如,如果查询:

?- travel(valmont, losAngeles, X).

X = go(valmont, metz, go(metz, paris, go(paris, losAngeles)))

实践4

扩展实践3中的谓词逻辑trave1/3,使其不仅能够给出从一个地方到另一个地方的路由,并且能够给出如何到达的方式。即,新的程序可以让我们知道,在旅行的每一段,是

使用的car, train还是plane作为交通工作的。

实践5

写出一个3元谓词combine1/3,将头两个参数的列表,合并为第三个参数的列表,例如:

?- combine1([a, b, c], [1, 2, 3], X).

X = [a, 1, b, 2, c, 3]

?- combine2([f, b, yip, yup], [glu, gla, gli, glo], Result).

X = [f, glu, b, gla, yip, gli, yup, glo]

写出一个3元谓词combine2/3,将头两个参数的列表,合并为第三个参数的列表,例如:

?- combine2([a, b, c], [1, 2, 3], X).

X = [[a, 1], [b, 2], [c, 3]]

?- combine2([f, b, yip, yup], [glu, gla, gli, glo], Result).

X = [[f, glu], [b, gla], [yip, gli], [yup, glo]]

写一个3元谓词combine3/3,将头两个参数的列表,合并为第三个参数的列表,例如:

?- combine3([a, b, c], [1, 2, 3], X).

X = [j(a, 1), j(b, 2), j(c, 3)]

?- combine3([f, b, yip, yup], [glu, gla, gli, glo]).

X = [j(f, glu), j(b, gla), j(yip, gli), j(yup, glo)]

今后的学习中,我会找更多的一些实践题目,包括著名的数独问题,四色地图问题,八皇后问题,汉诺塔问题等等,一一分析。关于这章实践的答案,会陆续附上。

我的答案和解释:

实践1的path/2定义如下:

path(X, Y) := connected(X, Y).

path(X, Y) := connected(X, Z), path(Z, Y).

思路:首先考虑直接连通的情况,作为基础子句;然后考虑递归:设置一个中间变量Z,X和Z直接连通,然后Z和Y递归调用Path。

分类: Prolog

+加关注

«上一篇: Learn Prolog Now 翻译 - 第三章 - 递归 - 第三节, 练习题和答案

» 下一篇:Learn Prolog Now 翻译 - 第四章 - 列表 - 第一节,列表定义和使用

posted on 2015-07-09 08:19 seaman.kingfall 阅读(468) 评论(0) 编辑 收藏 刷新评论 刷新页面 返回顶部

注册用户登录后才能发表评论,请登录或注册,访问网站首页。

【推荐】超50万C++/C#源码: 大型实时仿真组态图形源码

【活动】看雪2019安全开发者峰会,共话安全领域焦点

【培训】Java程序员年薪40W,他1年走了别人5年的路

最新新闻:

- ·一线 | "美团配送"品牌发布: 对外开放配送平台 共享配送能力
- · 苍蝇落在食物上会发生什么? 让我们说的仔细一点
- · 科学家研究板块构造变化对海洋含氧量影响
- ·日本程序员节假日全员加班?都是"令和"惹的祸
- ·深度|挺过创新困境:微软正经历"纳德拉复兴"
- » 更多新闻...

Copyright @ seaman.kingfall Powered by: .Text and ASP.NET Theme by: .NET Monster