Липецкий государственный технический университет

Факультет автоматизации и информатики Кафедра автоматизированных систем управления

Лабораторная работа №1

По дисциплине

«Основы теории управления»

Передаточная функция

Выполнил: Станиславчук С.М.

Группа АС-21-1

Проверил:

Старший преподаватель Болдырихин О.В.

Цель работы и рассматриваемые вопросы

Цель работы — рассмотрение моделей системы управления в виде дифференциальных уравнений и в виде передаточной функции и их сопоставление.

Рассматриваемые вопросы:

- 1. Модель системы управления в виде дифференциального уравнения.
- 2. Модель системы управления в виде передаточной функции.
- 3. Переход от дифференциального уравнения к передаточной функции и обратно.

Задание кафедры

Задание 1. Исследование системы первого порядка.

Создать схему системы из одного звена первого порядка (рисунок 1).

Рисунок 1 - Пример схемы со звеном типа фильтра нижних частот На вход системы подать гармонический сигнал:

$$x_1 = Asin \omega t$$
.

Произвести измерения значений входного и выходного сигналов. Поскольку выходной сигнал содержит гармоническую составляющую и переходный процесс, полный интервал измерений должен быть равен сумме времени переходного процесса (приблизительно три постоянных времени) и одного периода гармонической составляющей. Временной интервал между измерениями необходимо подобрать так, чтобы проявилась гармоническая составляющая. По передаточной функции звена написать дифференциальное уравнение, получить его полное решение и сопоставить теоретические и экспериментальные результаты. Результаты представить в виде таблицы (табл.1) и графиков входного и выходного сигналов.

Задание 2. Исследование системы второго порядка

Создать схему системы из двух звеньев первого порядка (рисунок 2).

Рисунок 2 - Пример схемы с двумя звеньями типа фильтра нижних частот

На вход системы подать гармонический сигнал. Произвести измерения значений входного и выходного сигналов.

По передаточным функциям звеньев написать систему дифференциальных уравнений, получить ее полное решение и сопоставить теоретические и экспериментальные результаты.

Результаты представить, как и в предыдущем задании, в виде таблицы (см. табл.1) и графиков входного и выходного сигналов.

Вариант: 8.

1. Задание 1.

Передаточная функция:
$$W(s) = k_{\rm H} \frac{1}{\tau_{S+}}$$
, $k_{\rm H} = 1.5$; $\tau = 0.4$.

1.1. Схема системы

Схема системы представлена на рисунке 3.

Рисунок 3 - схема системы первого порядка

1.2. Получение дифференциального уравнения системы по передаточной функции.

$$\begin{cases} W(s) = k_{\rm H} \frac{1}{\tau s + 1} \\ W(s) = \frac{Y}{X} \end{cases} => (\tau s + 1)Y = k_{\rm H}X$$

$$\tau s Y + Y = k_{\rm H}X$$

$$\tau \dot{y} + Y = k_{\rm H}X(t)$$

$$\tau \dot{y} + Y = k_{\rm H}Asin(\omega t)$$

$$\dot{y} + \frac{y}{\tau} = \frac{k_{\rm H}Asin(\omega t)}{\tau}$$

Примем A=1, $\omega=2\pi$, тогда, подставив коэффициенты, получим:

$$\dot{y} + 2.5y = \frac{1.5sin(2\pi t)}{0.4}$$

1.3. Получение полного решения дифференциального уравнения Решим однородное уравнение:

$$\dot{y} + 2.5y = 0$$

$$2\dot{y} + 5y = 0; \ 2\dot{y} = -5y; \ \frac{2dy}{dt} = -5y; \ 2dy = -5ydt; \ \frac{dy}{dt} = -\frac{5dt}{2};$$
$$\int \frac{1}{y} dy = \int -\frac{5}{2} dt$$
$$\ln(y) = C - \frac{5t}{2};$$

Решение ОДУ:
$$y = \frac{c}{e^{\frac{5t}{2}}}$$

$$C = u(t); y = \frac{u}{e^{\frac{5t}{2}}}; \dot{y} = \frac{\dot{u}}{e^{\frac{5t}{2}}} - \frac{5u}{2e^{\frac{5t}{2}}};$$

подставив в исходное выражение, получим:

$$\frac{\dot{u}}{e^{\frac{5t}{2}}} - \frac{5u}{2e^{\frac{5t}{2}}} + \frac{5u}{2e^{\frac{5t}{2}}} = \frac{15\sin(2\pi t)}{4};$$

$$\frac{\dot{u}}{e^{\frac{5t}{2}}} = \frac{15sin(2\pi t)}{4}; \ 4\dot{u} = 15e^{\frac{5t}{2}}sin(2\pi t); \ \frac{4du}{dt} = 15e^{\frac{5t}{2}}sin(2\pi t);$$

$$du = \frac{15e^{\frac{5t}{2}}sin(2\pi t)}{4}dt,$$

$$\int du = \int \frac{15e^{\frac{5t}{2}}sin(2\pi t)}{4}dt,$$

$$u = \frac{75e^{\frac{5t}{2}}\sin(2\pi t) - 60\pi e^{\frac{5t}{2}}\cos(2\pi t)}{32\pi^2 + 50} + C,$$

$$y = \frac{75\sin(2\pi t) - 60\pi\cos(2\pi t)}{32\pi^2 + 50} + \frac{C}{e^{\frac{5t}{2}}}.$$

$$0 = C - \frac{30\pi}{16\pi^2 + 25}, => C = \frac{30\pi}{16\pi^2 + 2},$$
$$y = \frac{75\sin(2\pi t) - 60\pi\cos(2\pi t)}{32\pi^2 + 50} + \frac{30\pi}{(16\pi^2 + 25)e^{\frac{5t}{2}}}.$$

1.4. Таблица с теоретическими и экспериментальными результатами Результаты расчётов и измерений представлены в таблице 1.

Таблица 1 – Результаты исследования системы первого порядка

Nº	Время от начала процесса	Значение входного сигнала	Измеренное значение выходного сигнала	Рассчитанное значение выходного сигнала	Разность между измеренным и рассчитанным значениями
	t, c	<i>x</i> ₁ , B	<i>х</i> _{2и} , В	x_{2p} , B	выходного сигнала $x_{2u} - x_{2p}$, В
1	0	0	0	0	0,0000
2	0,05	0,31	0,0466178	0,04671189	-0,0001
3	0,1	0,58	0,174409	0,174892488	-0,0005
4	0,15	0,81	0,361162	0,361884478	-0,0007
5	0,2	0,95	0,579398	0,580461642	-0,0011
6	0,25	1	0,799902	0,801354367	-0,0015
7	0,3	0,95	0,99416	0,995991565	-0,0018
8	0,35	0,81	1,13704	1,139188701	-0,0021
9	0,4	0,58	1,20916	1,211517092	-0,0024
10	0,45	0,31	1,1987	1,201121055	-0,0024
11	0,5	0	1,10248	1,104803706	-0,0023
12	0,55	-0,31	0,926203	0,928273959	-0,0021
13	0,6	-0,58	0,683857	0,685529503	-0,0017
14	0,65	-0,81	0,396272	0,397435265	-0,0012

15	0,7	-0,95	0,0890513	0,089635678	-0,0006
16	0,75	-1	-0,209984	-0,20999556	0,0000
17	0,8	-0,95	-0,473547	-0,47411925	0,0006
18	0,85	-0,81	-0,677591	-0,678638	0,0010
19	0,9	-0,58	-0,80369	-0,80508252	0,0014
20	0,95	-0,31	-0,840864	-0,84244381	0,0016
21	1	0	-0,786681	-0,78827214	0,0016
22	1,05	0,31	-0,647506	-0,64893584	0,0014
23	1,1	0,58	-0,437902	-0,43901448	0,0011
24	1,15	0,81	-0,179213	-0,17988652	0,0007
25	1,2	0,95	0,102508	0,102350418	0,0002
26	1,25	1	0,37904	0,379422693	-0,0004
27	1,3	0,95	0,622742	0,623638169	-0,0009
28	1,35	0,81	0,809258	0,810587983	-0,0013
29	1,4	0,58	0,919889	0,921527976	-0,0016
30	1,45	0,31	0,943412	0,945206558	-0,0018
31	1,5	0	0,877181	0,878959955	-0,0018
32	1,55	-0,31	0,727374	0,728967548	-0,0016
33	1,6	-0,58	0,508386	0,509642213	-0,0013
34	1,65	-0,81	0,241417	0,242215276	-0,0008
35	1,7	-0,95	-0,0476114	-0,04734548	-0,0003
36	1,75	-1	-0,330591	-0,33088101	0,0003
37	1,8	-0,95	-0,579985	-0,58080028	0,0008
38	1,85	-0,81	-0,771524	-0,77278368	0,0013
39	1,9	-0,58	-0,886587	-0,88816579	0,0016
40	1,95	-0,31	-0,914023	-0,91576454	0,0017
41	2	0	-0,851245	-0,85297746	0,0017
42	2,05	0,31	-0,704485	-0,70603808	0,0016
43	2,1	0,58	-0,488186	-0,48940703	0,0012

44	2,15	0,81	-0,22359	-0,22435779	0,0008
45	2,2	0,95	0,063344	0,063104659	0,0002
46	2,25	1	0,344475	0,344788432	-0,0003
47	2,3	0,95	0,592238	0,593073541	-0,0008
48	2,35	0,81	0,782338	0,783614793	-0,0013
49	2,4	0,58	0,896131	0,89772422	-0,0016
50	2,45	0,31	0,922445	0,924199817	-0,0018
51	2,5	0	0,858678	0,860421571	-0,0017
52	2,55	-0,31	0,711044	0,712607482	-0,0016
53	2,6	-0,58	0,493975	0,495204506	-0,0012
54	2,65	-0,81	0,228699	0,229474043	-0,0008
55	2,7	-0,95	-0,0588354	-0,05858958	-0,0002
56	2,75	-1	-0,340496	-0,34080389	0,0003
57	2,8	-0,95	-0,588726	-0,58955719	0,0008
58	2,85	-0,81	-0,779239	-0,78051163	0,0013
59	2,9	-0,58	-0,893396	-0,89498569	0,0016
60	2,95	-0,31	-0,920032	-0,92178307	0,0018
61	3	0	-0,856548	-0,8582888	0,0017
62	3,05	0,31	-0,709165	-0,71072532	0,0016
63	3,1	0,58	-0,492316	-0,4935435	0,0012
64	3,15	0,81	-0,227235	-0,22800821	0,0008
65	3,2	0,95	0,0601275	0,059883171	0,0002
66	3,25	1	0,341636	0,341945479	-0,0003
67	3,3	0,95	0,589733	0,590564644	-0,0008
68	3,35	0,81	0,780127	0,781400699	-0,0013
69	3,4	0,58	0,89418	0,895770288	-0,0016
70	3,45	0,31	0,920723	0,922475478	-0,0018

1.5. Графики теоретических и экспериментальных значений входного и выходного сигналов.

Графики теоретических и экспериментальных значений входного и выходного сигналов приведены на рисунке 4.

Рисунок 4 - График теоретических и экспериментальных значений входного и выходного сигналов

2. Задание 2.

Передаточная функция:

$$W(s) = k_{\rm H} \frac{1}{\tau_{S+1}}, k_{\rm H} = 1.5; \ \tau = 0.4; W(s) = k_{\rm A} s, \ k_{\rm A} = 2.$$

2.1. Схема системы

Схема системы представлена на рисунке 5.

Рисунок 5 - схема системы второго порядка

2.2. Получение дифференциального уравнения системы по передаточной функции.

$$\begin{cases} W(s) = k_{\rm H} \frac{1}{\tau s + 1} \cdot k_{\rm A} s \\ W(s) = \frac{Y}{X} \end{cases} => (\tau s + 1) Y = k_{\rm H} k_{\rm A} s X, \\ TsY + Y = k_{\rm H} k_{\rm A} s X, \\ \tau \dot{y} + y = k_{\rm H} k_{\rm A} \dot{x}, \text{ tak kak } x = A sin(\omega t), \text{ to:} \\ \tau \dot{y} + y = k_{\rm H} k_{\rm A} A \omega cos(\omega t) \end{cases}$$

Примем A=1, $\omega=2\pi$, тогда, подставив коэффициенты, получим:

$$0.4\dot{y} + y = 6\pi\cos(2\pi t)$$

2.3. Получение полного решения дифференциального уравнения

$$\dot{y} + 2.5y = \frac{60\pi\cos(2\pi t)}{4},$$

Решим однородное уравнение:

$$\dot{y} + 2.5y = 0$$

$$2\dot{y} + 5y = 0; \ 2\dot{y} = -5y; \ \frac{2dy}{dt} = -5y; \ 2dy = -5ydt; \ \frac{dy}{dt} = -\frac{5dt}{2};$$
$$\int \frac{1}{y} dy = \int -\frac{5}{2} dt$$
$$\ln(y) = C - \frac{5t}{2};$$

Решение ОДУ:
$$y = \frac{c}{e^{\frac{5t}{2}}}$$

$$C = u(t); y = \frac{u}{e^{\frac{5t}{2}}}; \dot{y} = \frac{\dot{u}}{e^{\frac{5t}{2}}} - \frac{5u}{2e^{\frac{5t}{2}}};$$

$$\frac{\dot{u}}{e^{\frac{5t}{2}}} - \frac{5u}{2e^{\frac{5t}{2}}} + \frac{5u}{2e^{\frac{5t}{2}}} = \frac{60\pi\cos(2\pi t)}{4};$$

$$\frac{\dot{u}}{e^{\frac{5t}{2}}} = \frac{60\pi\cos(2\pi t)}{4}; 4\dot{u} = 60\pi e^{\frac{5t}{2}}\cos(2\pi t); \frac{4du}{dt} = 60\pi e^{\frac{5t}{2}}\cos(2\pi t);$$

$$4du = 60\pi e^{\frac{5t}{2}}cos(2\pi t)dt;$$

$$\int du = \int \frac{60\pi e^{\frac{5t}{2}} cos(2\pi t)}{4} dt;$$

$$u = \frac{240\pi^2 e^{\frac{5t}{2}} \sin(2\pi t) - 300\pi e^{\frac{5t}{2}} \cos(2\pi t)}{32\pi^2 + 50} + C;$$

$$y = \frac{240\pi^2 e^{\frac{5t}{2}} \sin(2\pi t) - 300\pi e^{\frac{5t}{2}} \cos(2\pi t)}{32\pi^2 + 50} + \frac{C}{e^{\frac{5t}{2}}};$$

$$0 = C + \frac{300\pi}{32^{-2} + 50}$$
, $= > C = -\frac{300\pi}{32^{-2} + 50}$

$$y = \frac{240\pi^2 e^{\frac{5t}{2}} \sin(2\pi t) - 300\pi e^{\frac{5t}{2}} \cos(2\pi t)}{32\pi^2 + 50} - \frac{300\pi}{(32\pi^2 + 50)e^{\frac{5t}{2}}}$$

2.4. Таблица с теоретическими и экспериментальными результатами Результаты расчётов и измерений представлены в таблице 2.

Таблица 2 – Результаты исследования системы второго порядка

No	Время от начала процесса t, с	Значение входного сигнала x_1 , В	Измеренное значение выходного сигнала x_{2u} , В	Рассчитанное значение выходного сигнала x_{2p} , В	Разность между измеренным и рассчитанным значениями выходного сигнала $x_{2u} - x_{2p}$, В
1	0	0	0	0	0
2	0,05	0,31	4,5347	4,536441	0,001741
3	0,1	0,58	8,09062	8,091067	0,000447
4	0,15	0,81	10,3806	10,37911	-0,00149
5	0,2	0,95	11,2363	11,23237	-0,00393
6	0,25	1	10,6232	10,61654	-0,00666
7	0,3	0,95	8,64465	8,635311	-0,00934
8	0,35	0,81	5,53253	5,520961	-0,01157
9	0,4	0,58	1,62524	1,612163	-0,01308
10	0,45	0,31	-2,66494	-2,67862	-0,01368
11	0,5	0	-6,8918	-6,90502	-0,01322
12	0,55	-0,31	-10,6191	-10,6301	-0,011
13	0,6	-0,58	-13,4578	-13,4687	-0,0109
14	0,65	-0,81	-15,1178	-15,1249	-0,00706
15	0,7	-0,95	-15,417	-15,4205	-0,00348
16	0,75	-1	-14,3128	-14,3125	0,000272
17	0,8	-0,95	-11,9008	-11,897	0,003787
18	0,85	-0,81	-8,4061	-8,3994	0,006697

19	0,9	-0,58	-4,16122	-4,15238	0,008841
20	0,95	-0,31	0,426894	0,436883	0,009989
21	1	0	4,91665	4,926701	0,010051
22	1,05	0,31	8,87521	8,88424	0,00903
23	1,1	0,58	11,9209	11,92799	0,007085
24	1,15	0,81	13,7609	13,76518	0,004281
25	1,2	0,95	14,2172	14,22057	0,003368
26	1,25	1	13,2543	13,25361	-0,00069
27	1,3	0,95	10,966	10,96252	-0,00348
28	1,35	0,81	7,58024	7,574716	-0,00552
29	1,4	0,58	3,43052	3,424595	-0,00593
30	1,45	0,31	-1,07152	-1,07915	-0,00763
31	1,5	0	-5,48758	-5,4935	-0,00592
32	1,55	-0,31	-9,37794	-9,38444	-0,0065
33	1,6	-0,58	-12,3658	-12,3694	-0,00361
34	1,65	-0,81	-14,1534	-14,1547	-0,00134
35	1,7	-0,95	-14,5659	-14,5643	0,001551
36	1,75	-1	-13,5616	-13,557	0,004606
37	1,8	-0,95	-11,2368	-11,2303	0,006544
38	1,85	-0,81	-7,81858	-7,81099	0,007587
39	1,9	-0,58	-3,64268	-3,63311	0,009572
40	1,95	-0,31	0,884546	0,895138	0,010592
41	2	0	5,32055	5,331109	0,010559
42	2,05	0,31	9,23165	9,241129	0,009479
43	2,1	0,58	12,2355	12,24294	0,007438
44	2,15	0,81	14,0384	14,04313	0,004727
45	2,2	0,95	14,4644	14,46585	0,001454
46	2,25	1	13,472	13,47007	-0,00193
47	2,3	0,95	11,1587	11,15355	-0,00515
					

48	2,35	0,81	7,75114	7,743298	-0,00784
49	2,4	0,58	3,58316	3,573368	-0,00979
50	2,45	0,31	-0,937065	-0,94786	-0,01079
51	2,5	0	-5,3669	-5,37763	-0,01073
52	2,55	-0,31	-9,27255	-9,28219	-0,00964
53	2,6	-0,58	-12,2716	-12,2792	-0,00757
54	2,65	-0,81	-14,0703	-14,0751	-0,0048
55	2,7	-0,95	-14,4925	-14,4941	-0,00157
56	2,75	-1	-13,4968	-13,495	0,001824
57	2,8	-0,95	-11,1806	-11,1755	0,005074
58	2,85	-0,81	-7,76908	-7,76269	0,006387
59	2,9	-0,58	-3,599	-3,59048	0,008516
60	2,95	-0,31	0,923093	0,932754	0,009661
61	3	0	5,35457	5,364305	0,009735
62	3,05	0,31	9,26167	9,270424	0,008754
63	3,1	0,58	12,262	12,26879	0,006791
64	3,15	0,81	14,0619	14,06594	0,004042
65	3,2	0,95	14,4851	14,48599	0,000888
66	3,25	1	13,4895	13,48784	-0,00166
67	3,3	0,95	11,1731	11,16923	-0,00387
68	3,35	0,81	7,76268	7,757136	-0,00554
69	3,4	0,58	3,59334	3,58558	-0,00776
70	3,45	0,31	-0,928082	-0,93708	-0,009
71	3,5	0	-5,35897	-5,36812	-0,00915
72	3,55	-0,31	-9,26241	-9,27379	-0,01138
73	3,6	-0,58	-12,2638	-12,2718	-0,00797
74	3,65	-0,81	-14,0634	-14,0686	-0,00517
75	3,7	-0,95	-14,4864	-14,4883	-0,0019
76	3,75	-1	-13,4914	-13,4899	0,001515
					

77	3,8	-0,95	-11,175	-11,171	0,003967
78	3,85	-0,81	-7,76529	-7,75873	0,006562
79	3,9	-0,58	-3,59563	-3,58699	0,008645
80	3,95	-0,31	0,92608	0,935841	0,009761
81	4	0	5,35721	5,36703	0,00982
82	4,05	0,31	9,26399	9,272828	0,008838
83	4,1	0,58	12,264	12,27091	0,006914
84	4,15	0,81	14,0636	14,06781	0,004215
85	4,2	0,95	14,4866	14,48764	0,001041

2.5. Графики теоретических и экспериментальных значений входного и выходного сигналов.

Графики теоретических и экспериментальных значений входного и выходного сигналов представлены на рисунке 6.

Рисунок 6 - График теоретических и экспериментальных значений входного и выходного сигналов

Вывод

В данной лабораторной работе была рассмотрена модель системы управления. Суть этой модели системы управления заключается в том, чтобы менять входной сигнал требуемым образом с целью достижения установленной цели.

Передаточная функция является отношением преобразования Лапласа выходной величины к преобразованию Лапласа входной при нулевых начальных условиях. Передаточная функция выражает связь между входом и выходом, а также служит математическим описанием динамической системы. По передаточной функции, зная входной сигнал, можно вывести дифференциальное уравнение состояния для выходного сигнала.

По результатам выполнения лабораторной работы видим, что теоретические и экспериментальные значения, полученные из решения дифференциального уравнения и передаточной функции, совпали, а, следовательно, дифференциальное уравнение и передаточная функция состояния несут одинаковую информацию о системе.