Jeśli $\sin \alpha \ge \frac{4}{5}$, to jest jedno rozwiązanie P_2 , a jeśli α rozwarty i $\sin \alpha < \frac{4}{5}$, to brak rozwiązań.

22.5.
$$\left(0, \frac{1}{4}\right] \cup [16, \infty).$$

22.6.
$$\cos \alpha = \frac{\sqrt{7}}{14}$$
, obwód $\frac{1}{6}(9 + \sqrt{12} + \sqrt{21})a$.

22.7.
$$\frac{\pi}{4} + k \frac{2\pi}{3}, \ k \in \mathbf{Z}.$$

22.8.
$$\sqrt{2}x + 2y - 3 = 0$$
.

23.1. Tak. W obu przypadkach liczba "słów" wynosi 210.

23.3.
$$\frac{3}{8}a$$
.

23.4.
$$\frac{1}{12}b^2(3a-b)$$
tg α .

23.5.
$$\left[-\sqrt{5},0\right) \cup (1,2).$$

23.7. Punkt
$$Q(1,1)$$
.

23.8.
$$\left(\frac{5\pi}{4} + 2k\pi, \frac{3\pi}{2} + 2k\pi\right) \cup \left(\frac{3\pi}{2} + 2k\pi, \frac{7\pi}{4} + 2k\pi\right), k \in \mathbf{Z}.$$

24.1.
$$2 + \frac{3}{2}\sqrt{2}$$
.

24.2.
$$\frac{7}{18} \approx 0,389.$$

24.3. Dla $m \neq 10$ jedno rozwiązanie $x=\frac{m}{m-10}, \ y=\frac{m-15}{m-10}.$ Dla m=10 układ sprzeczny. Rozwiązania tworzą prostą x+2y-3=0 bez punktu P(1,1).

24.4.
$$\sqrt{\frac{6-6\cos\alpha}{5-4\cos\alpha}}$$
, $\alpha \in (0, \frac{\pi}{3})$.