Homework #1

Assigned: 09/15/2022, Due: 09/23/2022

You have been assigned to a group working on the design of an airplane. Your lead engineer has asked you to help with the design of the wing.

Data given to you:

NACA 0012 airfoil coefficient of lift and drag data (Re = 1.8x10^6, from NACA technical note 3361)

Alpha (deg.)	cl
-2.025902479	-0.20812679
0.038772741	0.00652805
2.05982177	0.22331494
6.017645346	0.62902511
9.932239783	1.03258364
14.16254093	1.30984164
14.36464087	1.00359647
17.98442351	0.83948681
22.07932961	0.70332889
26.01754869	0.85200745
27.87918097	0.91454208
31.99647093	1.00542989

Alpha (deg.)	cd
-2.089976895	0.01461567
1.992422036	0.0133942
5.944140922	0.01642706
10.02673838	0.01306375
14.36712245	0.03974506
14.9687569	0.10842129
16.05107354	0.1450775
18.04576819	0.17765562
20.03113208	0.31090063
21.98200201	0.34775267
26.01005432	0.46432308
28.08664113	0.550467
31.93899752	0.68841673

Aircraft design cruise speed = 120 knots (at sea level, standard day)

Design chord = 1.5 ft

Kinematic viscosity =>
$$\nu = \frac{\mu}{\rho} = 1.46 \text{x} 10^-5 \text{ m}^2/\text{sec}$$

Reynolds number =>
$$Re = \frac{\rho Vc}{\mu}$$

Viscosity => μ , Density ==> ρ = 0.002378 slug/ft³

- 1.) What is the angle of attack required to get a lift distribution of 64 lbs/ft?
- 2.) What is the drag distribution at that angle of attack?
- 3.) What is the magnitude of the resultant force distribution acting on the system? What is the normal and axial force distribution (along airfoil mean chord line) acting on the body?
- 4.) If the vehicle were to see a descent rate of 2000 ft/min (everything else the same as above) what would be the lift and drag distribution
- 5.) If the chord were to be increased by 20% what would the required angle of attack be for cruise (for the same lift distribution of 64 lbs/ft)? Is the airfoil data still valid for this calculation? Why? (you need to convince your lead engineer)