Chapter 11 I/O Management and Disk Scheduling

(based on original slides by Pearson)

Categories of I/O Devices

Human readable

- Used to communicate with the user
- Printers and terminals
- Machine readable
 - Used to communicate with electronic equipment
 - Disk drives, USB keys, Sensors, Controllers, Actuators
- Communication
 - Used to communicate with remote devices
 - Digital line drivers, modems

Data rate

 May be differences of several orders of magnitude between the data transfer rates

I/O Device Data Rates

Figure 11.1 Typical I/O Device Data Rates

Application

- The use of the device affects the management software
- Example:
 - Disk used to store files requires file management software
 - Disk used to store virtual memory pages needs special hardware and software to support it
 - Terminal used by system administrator may have a higher priority than the regular user's one

- Complexity of control
 - Simple one line on/off
 - Time dependent interaction: duty cycle of stepper motors
 - Complex, protocol-based interaction: most communication devices
- Unit of transfer
 - Data may be transferred as a stream of bytes for a terminal or in larger blocks for a disk

- Data representation
 - Encoding schemes, parity

- Error conditions
 - Devices respond to errors differently
 - Motor loses it's torque
 - CAN does simply not transmit

Performing I/O

- Programmed I/O
 - Process is busy-waiting for the operation to complete
- Interrupt-driven I/O
 - I/O command is issued
 - Processor continues executing instructions
- Direct Memory Access (DMA)
 - DMA module controls exchange of data between main memory and the I/O device
 - Processor interrupted only after entire block has been transferred

Relationship Among Techniques

Table 11.1 I/O Techniques

	No Interrupts	Use of Interrupts
I/O-to-memory transfer through processor	Programmed I/O	Interrupt-driven I/O
Direct I/O-to-memory transfer		Direct memory access (DMA)

Evolution of the I/O Function

- Processor directly controls a peripheral device
- Controller or I/O module is added
 - Processor uses programmed I/O without interrupts
 - Processor does not need to handle details of external devices

Evolution of the I/O Function

- Controller or I/O module with interrupts
 - Processor does not spend time waiting for an I/O operation to be performed
- Direct Memory Access
 - Blocks of data are moved into memory without involving the processor
 - Processor involved at beginning and end only

Evolution of the I/O Function

- I/O module is a separate processor
- I/O processor
 - I/O module has its own local memory
 - It is a computer in its own right

Direct Memory Address

- Processor delegates I/O operation to the DMA module
- DMA module transfers data directly to or from memory
- When transfer is complete, DMA module sends an interrupt signal to the processor

DMA

Figure 11.2 Typical DMA Block Diagram

DMA Configurations

(a) Single-bus, detached DMA

DMA Configurations

(b) Single-bus, Integrated DMA-I/O

DMA Configurations

DMA Real World

STM32F1xx MCU ~0.30\$/unit

OS Design Issues wrt I/O

Efficiency

- Most I/O devices are extremely slow compared to main memory
- Use of multiprogramming allows interleaving of I/O and processing
- Even in the future: I/O will not keep up with processor throughputs
- Swapping is used to bring in additional Ready processes; swapping is an I/O operation

OS Design Issues wrt I/O

- Generality
 - Desirable to handle all I/O devices in a uniform manner
 - Hide most of the details of device I/O in lowerlevel routines

I/O Buffering

Reasons for buffering

- Processes must wait for I/O to complete before proceeding
- Certain pages must remain in main memory during I/O

Risk of deadlock:

- Process calls an I/O routine and blocks
- Process is swapped out
- Process waits for I/O completion, but I/O waits for the process to be swapped in to access the memory

I/O Buffering

- Block-oriented
 - Information is stored in fixed sized blocks
 - Transfers are made a block at a time
 - Used for disks and USB keys
- Stream-oriented
 - Transfer information as a stream of bytes
 - Used for terminals, printers, communication ports, mouse and other pointing devices, and most other devices that are not secondary storage
- The kernel (I/O routines) handle buffering

- Operating system assigns a buffer in main memory for an I/O request
- Block-oriented
 - Input transfers made to buffer
 - Block moved to user space when needed
 - Another block is moved into the buffer
 - Read ahead

Block-oriented

- User process can process one block of data while next block is read in
- Swapping can occur since input is taking place in system memory, not user memory
- Operating system keeps track of assignment of system buffers to user processes

- Stream-oriented
 - Use a line at a time
 - User input from a terminal is one line at a time with carriage return signaling the end of the line
 - Output to the terminal is one line at a time

- Flush() call in C

Double Buffer

- Use two system buffers instead of one
- A process can transfer data to or from one buffer while the operating system empties or fills the other buffer

Process does not have to wait for I/O

Circular Buffer

- More than two buffers are used
- Each individual buffer is one unit in a circular buffer

Good for bursty I/O

Disk Performance Parameters

- To read or write, the disk head must be positioned at the desired track and at the beginning of the desired sector
- Seek time
 - Time it takes to position the head at the desired track
- Rotational delay or rotational latency
 - Time its takes for the beginning of the sector to reach the head

Timing of Disk I/O Transfer

Figure 11.6 Timing of a Disk I/O Transfer

Disk Performance Parameters

- Access time
 - Sum of seek time and rotational delay
 - The time it takes to get in position to read or write

 There can be a huge difference between sequential read access and random read access.