ГУАП

КАФЕДРА № 6

ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКОЙ ПРЕПОДАВАТЕЛЬ

доцент, канд. техн. наук

должность, уч. степень, звание

July 2

Т. П. Мишура подпись, дата инициалы, фамилия

ОТЧЕТ О ЛАБОРАТОРНОЙ РАБОТЕ № 1

ИССЛЕДОВАНИЕ ПАРАМЕТРОВ МЕТЕОРОЛОГИЧЕСКИХ УСЛОВИЙ В ПРОИЗВОДСТВЕННЫХ ПОМЕЩЕНИЯХ

по курсу:

БЕЗОПАСНОСТЬ ЖИЗНЕДЕЯТЕЛЬНОСТИ

РАБОТУ ВЫПОЛНИЛ

СТУДЕНТ гр. №

4326

35.11.73

подпись, дата

Г. С. Томчук

инициалы, фамилия

Протокол лабораторной работы №1 «ИССЛЕДОВАНИЕ ПАРАМЕТРОВ МЕТЕОРОЛОГИЧЕСКИХ УСЛОВИЙ В ПРОИЗВОДСТВЕННЫХ ПОМЕЩЕНИЯХ»

Группа: 4326 Студенты: Тасичук Г., Васман Е., Теоргов О., Коноранных Д., Кратов Р., Якупов Р.	(ПОДПИСЬ РЕПОДАВАТЕЛЯ)
Вариант № 2 Категория выполняемых работ по варианту \underline{I}^a	
 заполняется при проведении измерений. заполняется при оформлении отчета. 	

Наименование параметра	Измерительный прибор	Измеренные или расчетные параметры		Нормируемые параметры	
		Условное обозначение	Численное значение	Оптимальные	Допустимые
Температура наружного воздуха	Спиртовой термометр				2,011,017mmic
Температура воздуха внутри помещения	Ртутный термометр	T, °C	22	23-25 °C	22-28 °C
	Термоанемометр ТАМ-1	T, °C		23 23 0	22-26 C
Относительная влажность	Аспирационный	T, °C	22		15-75 %
	психрометр	T _B , ⁰ C	18		
		φ,%	68	40-60 %	
	Гигрометр "Волна-1М"	φ,%	70		
Скорость движения воздуха	Кататермометр	τ _{CP} , c	115		0,1-0,2 м/с
		С _к , (мДж / см ² •с • град)	1,63		
		V , m/c	0,14	≤0,1 м/с	
	Анемометр	V , m/c	0,4		
	Термоанемометр ТАМ-1	V , m/c			

1 Исходные данные

Вариант: 2. Категория работ: I^a.

2 Цель работы

Цель работы заключается в ознакомлении с санитарными нормами на метеорологические условия в производственных помещениях и механизмами теплового взаимодействия организма человека с внешней средой; изучении методов и приборов, применяемых для контроля параметров микроклимата; ознакомлении с методикой расчета теплопотерь организма человека.

3 Расчетные формулы

$$C_{\kappa} = \frac{B}{\tau_{cp} \times \left(\frac{T_1 + T_2}{2} - T\right)} = \frac{B}{\tau_{cp} \times (36, 5 - T)},$$

где C_{κ} — параметр охлаждения, B — постоянная кататермометра (B=2700 мДж/см²), T — температура воздуха по показаниям сухого термометра аспирационного психрометра, τ_{cp} — среднее время охлаждения кататермометра в исследуемой точке.

$$P_{\rm II} = P_{\rm H} \times \varphi/100$$
,

где P_{π} — парциальное давление водяного пара в окружающем воздухе (кПа), P_{π} — парциальное давление насыщенных паров воды при температуре T, ϕ — относительная влажность.

$$Q_{\scriptscriptstyle \rm H3J} = K_{\scriptscriptstyle \rm H3J} \times S_{\scriptscriptstyle \rm H3J} \times (T_{\scriptscriptstyle \rm T} - T_{\scriptscriptstyle \rm II}),$$

где $Q_{\rm изл}$ — теплоотдача излучением, $K_{\rm изл}$ — приведенный коэффициент взаимоизлучения одежды и окружающих поверхностей (кДж/(м²×ч×град)), $S_{\rm изл}$ — площадь излучающей поверхности тела человека (м²), $T_{\rm T}$ — температура тела человека, $T_{\rm n}$ — температура поверхностей.

$$Q_{\text{\tiny KOH}} = \alpha \times S_{\text{\tiny KOH}} \times ($$
 $T_{\text{\tiny T}}$ - T),

где $Q_{\text{кон}}$ — теплоотдача конвекцией, α — коэффициент конвективного теплообмена (кДж/м²×ч×град), $S_{\text{кон}}$ — площадь обдуваемой поверхности тела, $T_{\text{т}}$ — температура тела человека, T — температура окружающего воздуха. При малых скоростях воздуха ($V \le 4$ м/с) значение α может быть определено как

 $\alpha = 6.31 \times V^{0.654} + 3.25 \times e^{-1.91V}$.

$$Q_{\text{исп}} = K_{\text{исп}} \times S_{\text{исп}} \times (P_{\text{\tiny T}} - P_{\text{\tiny \Pi}}),$$

где $Q_{\text{исп}}$ — теплоотдача испарением, $K_{\text{исп}}$ — коэффициент испарительного теплообмена (кДж/(м²×ч×Па)), $S_{\text{исп}}$ — площадь поверхности тела, участвующей в испарении; $P_{\text{т}}$ — парциальное давление насыщенного водяного пара при температуре тела человека (кПа); $P_{\text{п}}$ — парциальное давление водяного пара в окружающем воздухе (кПа).

$$Q_T = Q_{\text{изл}} + Q_{\text{кон}} + Q_{\text{исп}},$$

где $Q_{\scriptscriptstyle T}$ – теплопотери организма (кДж/ч), $Q_{\scriptscriptstyle \rm ИЗЛ}$ – теплоотдача излучением, $Q_{\scriptscriptstyle \rm KOH}$ – теплоотдача конвекцией, $Q_{\scriptscriptstyle \rm ИСП}$ – теплоотдача испарением.

$$E_{\pi} = Q_{\pi p} - Q_{\tau}$$

где E_{π} – комплексный показатель дискомфорта, определяемый по уравнению теплового баланса организма человека, Q_{np} – энергозатраты организма человека (кДж/ч) (зависит от категории сложности работы, среднее знач. в диапазоне энергозатрат), Q_{τ} – теплопотери организма (кДж/ч).

4 Результаты исследования параметров микроклимата

Таблица 1 – Результаты исследования параметров микроклимата

Наименование	Иоматуратура	Измеренные или расчетные параметры		Нормируемые параметры	
параметра	Измерительный прибор	Условное обозначение	Численное значение	Оптимальные	Допустимые
Температура наружного воздуха	Спиртовой термометр	Т _н , ⁰ С	18		
Температура воздуха внутри	Ртутный термометр	T, °C	22	23-25 °C	22-28 °C
помещения	Термоанемометр ТАМ-1	T, °C		23-23 C	
	Аспирационный	T, °C	22	40-60 %	15-75 %
Относительная влажность	психрометр	T _B , ⁰ C	18		
		φ,%	68		
	Гигрометр "Волна-1М"	φ , %	70		
	Кататермометр	τ _{СР} , с	115		0,1-0,2 м/с
Скорость движения		С _к , (мДж / см ² •с • град)	1,63		
воздуха		V , m/c	0,14	≤0,1 м/с	
	Анемометр	V , m/c	0,4		
	Термоанемометр ТАМ-1	V , m/c			

По таблице для определения относительной влажности воздуха аспирационным психрометром: $\phi = 68~\%$.

$$C_K = \frac{2700 \text{ мДж/см}^2}{(115*(36.5 \text{ °C} - 22 \text{ °C}))} \approx 1.63 \text{ мДж/(см}^2*c*^{\circ}C)$$

По таблице определения скорости движения воздуха кататермометром: V = 0.14 m/c.

5 Результаты расчета теплопотерь организма

Таблица 2 – Параметры микроклимата и их производные

T, ⁰ C	V, M/c	arphi,%	Р₁, кПа	P_{π} , к Π а	T_{π} , ${}^{0}C$
22	0,14	68	2,642	1,8	22

Таблица 3 – Исходные данные для расчета

$S_{\text{изл}}, M^2$	S_{koh} , M^2	$S_{\text{исп}}, M^2$	$K_{\text{изл}}$,кДж/м 2 ×ч×град	$K_{\text{исп}}$,кДж/м 2 ×ч \times Па
1,725	1,5	1,725	13,35	15,95

 $T_T = 31,5$ °C; $P_T = 4,61$ кПа.

$$Q_{\text{изл}} = 13,35 * 1,725 * (31,5 - 22) = 218,77$$
 $\pmb{\alpha} = 6,31*0,14^{0,654} + 3,25 * e^{-1,91*0,14} = 4,23$ $Q_{\text{кон}} = 4,23 * 1,5 * (31,5 - 22) = 60,3$ $P_{\text{п}} = 2,642 * 0,68 = 1,8$ $Q_{\text{исп}} = 15,95 * 1,725 * (4,61 - 1,8) = 77,31 \text{ кДж/ч}$ $Q_{\text{т}} = 218,77 + 60,3 + 77,31 = 356,38$

Таблица 4 – Теплопотери организма

Q _{изл} , кДж/ч	Q _{кон} , кДж/ч	$\mathrm{Q}_{\scriptscriptstyle ext{ iny HCH}}$, кДж/ч	Q _т , кДж/ч
218,77	60,3	77,31	356,38

6 Выводы

- 1) При проведении опыта по исследованию параметров метрологических исследований в производственном помещении практически было установлено, что температура воздуха, влажность воздуха и скорость воздуха соответствуют допустимым санитарным нормам.
- 2) Основываясь на расчётах, теплопотери организма соответствуют требованиям санитарных норм по энергозатратам. Категория работ I^a (Легкая): 356,38 < 500,5 кДж/ч.
- 3) Комплексный показатель дискомфорта отрицателен: $E_{\pi} = 250,25 356,38 = -106,13$. Это означает, что человек, работающий в данных условиях, будет испытывать неудобства, связанные с пониженной температурой. Рекомендуется улучшить систему отопления для поддержания

оптимальной температуры на рабочем месте, т.к. температура, хоть и находится в рамках допустимой, не является оптимальной.

Необходимо также урегулировать скорость воздуха в помещении, то есть устранить сквозняк, т.к. скорость воздуха не лежит в оптимальном диапозоне. Для этого необходимо закрыть окно и дверь, либо устранить другие причины появления сквозняка. Эти меры помогут снизить скорость воздуха и урегулировать температуру в помещении в холодное время года.