2 Discrete Mathematics Predicates for automata Predicate Logic means Oall by State

o a 1 by State that a propositional statement depends on one or more variables x, y, Z. We assume that Reachability predicate these variables take Values from a domain Pn(x): x=1 V x=2 V V x=6 <=> 12 = { an a2, ..., and but 1 <× < 6 <=> × ≠ 0 Coreachability predicate states, (gaing backward from marked) ofkh 2= N={0,1,2,...} P_(x): 0 < x < 4 < 0 < x ≠ 5 1 x ≠ 6

Forbidden state predicate Quantifiers in predicate logic $P_{f}(x) = P_{r}(x) \wedge {}^{7}P_{c}(x) \Leftrightarrow$ IX: There exists an X. Yx: For all x <>> 1 < × < 6 1 7 (0 < × < 4) when 2 is finite (5<×<6) 3× P(x) = P(an) V P(an) V... V P(an) <>> 5≤ x ≤ 6 <>> x = 5 ∨ x = 6 YXP(X) def P(an) 1 P(az) 1 ... 1 P(an) Acceptable state predicate Producate equivalences $P_{\alpha}(x) \stackrel{\text{def}}{=} P_{r}(x) 1 P_{\beta}(x)$ 7] x [P(x)] <=> \forall x [7P(x)] 15×56105×54(=) 7(P(9n) V... V P(9n)) (7P(9n) 1 ... 1 P(9n)) 1 < × < 4 (=) \(\tau \(\tau \) \(\tau \) \(\tau \)

Predicate Equivalences

Table 2.10 Equivalences and implications including predicates and quantifiers.

Q_1	$\forall x[p(x)] \Rightarrow \exists x[p(x)]$
Q_2	$\neg \exists x [p(x)] \Leftrightarrow \forall x [\neg p(x)]$
Q_3	$\neg \forall x [p(x)] \Leftrightarrow \exists x [\neg p(x)]$
Q_4	$\exists x[p(x) \lor q(x)] \Leftrightarrow \exists x[p(x)] \lor \exists x[q(x)]$
Q_5	$\exists x[p(x) \land q(x)] \Rightarrow \exists x[p(x)] \land \exists x[q(x)]$
Q_6	$\forall x[p(x)] \lor \forall x[q(x)] \Rightarrow \forall x[p(x) \lor q(x)]$
Q_7	$\forall x[p(x) \land q(x)] \Leftrightarrow \forall x[p(x)] \land \forall x[q(x)]$

Set theory A= { ans a2s ..., any ai ∈ A bi € A set of states in an aut oma ton Q = { 90, 92, --, 90} A= {x | x < N/1 x < 5}= = {0,1,2,3,4,5} Generally a set A can be defined as $A = \{ \times | p_A(x) \}$

A sed is unordered without repeated elements $\{a_{1}, a_{2}, a_{2}\} = \{a_{1}, a_{2}\} = \{a_{2}, a_{1}\}$ Basic opportions on sets AUB = {x | x ∈ A V x ∈ B} ANB={X | XEA 1 XEB}

 $A \setminus B = \{ \times \mid \times \in A \land \times \notin B \}$ $\sim A = \{ \times \mid \times \notin A \}$

1 special sets. Ex A= {1, 2, 3}, B= {2, 3, 9} Subset: ASB (=) 1= {x(0 < x < 5} F YX [XEA -> XEB] AUB= {1,2,3,9} Equal sots! AMB= {2,3} A=B & A SBABSA $A \setminus B = 21$ Empty set: ~A = [0, 4,5] &= {x | b(x) 1 = b(x)} Relations between set algebra and predicate cogic Universal set set algebra: Un NS2 Ø = = $-\Omega = \{x \mid p(x) \vee p(x)\}$ predicate (ogic: V17 TF => <=>

Power set: set of all Proof of set expressions possible subsets of a set A: is performed by predicate cogic 2" = [X | X = A] E_{x} : $A = \{1, 2, 3\}$ 2 = {0, [1], {2}, {3}, {1,2}, {2,3}, {1,3}, A} Proper subsets: ACB = A = B 1 A + B

EX ASB => ANC S BNC (*) A≤B (=> ∀x {x∈A → x∈B} $\forall x ((x \in A \land x \in C) \rightarrow (x \in B \land x \in C)) \Rightarrow$ YX [] (XEANXEC) V (XEBNXEC) (E) X & A V X & C ' Yx {(x & A v x & c v x e B) / (x & A V X & C V X & C)) (S) Yx { X € A V X ∈ B" V X € C) XEA ->XEB, TI since ASB Ebat (*) is valid

Set Table

S_1	$\sim \sim A = A$	
S_2	$\sim (A \cup B) = \sim A \cap \sim B$	$S_3 \sim (A \cap B) = \sim A \cup \sim B$
S_4	$A \cup B = B \cup A$	$S_5 \qquad A \cap B = B \cap A$
S_6	$A \cup (B \cup C) \ = \ (A \cup B) \cup C$	$S_7 A \cap (B \cap C) = (A \cap B) \cap C$
S_8	$A \cap (B \cup C) = (A \cap B) \cup (A \cap B)$	$C)$ S_9 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
S_{10}	$A \cup A = A$	$S_{11} \qquad A \cap A = A$
S_{12}	$A \cup \varnothing = A$	S_{13} $A \cap \Omega = A$
S_{14}	$A \cup \Omega = \Omega$	S_{15} $A \cap \varnothing = \varnothing$
S_{16}	$A \cup \sim A = \Omega$	S_{17} $A \cap \sim A = \varnothing$
S_{18}	$A \cup (A \cap B) = A$	$S_{19} A \cap (A \cup B) = A$
S_{20}	$A \cap B \subseteq A$	$S_{21} \qquad A \cap B \subseteq B$
S_{22}	$A \subseteq A \cup B$	S_{23} $B \subseteq A \cup B$

Equivalence Table

 Table 2.6
 Equivalence relations.

Synchronous composition of automata G, and Gz with ordered sets also called tuples_ state sets Q, and Qz $\langle a_1, a_2, a_3 \rangle \neq \langle a_1, a_3, a_2 \rangle$ Gill Gz generales the state also ordinary parenthesis Set $Q_1 \times Q_2$ (a1, a2, a3) can be used Special rules for cross product cross products eg. $X = \{ \times_{1}, \times_{2}, \dots, \times_{n} \}$ $(A \cap B) \times C = (A \times C) \cap (B \times C)$ Y= { Y9, Y2, --, Ym} $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$ XxY={<x1, y1), (x1, y2), ..., <x1, ym), < x2, y1>, (xe, sm), Note that AxB # BxA $\times \times Y = \{(x,y) \mid x \in \mathbb{Z} \land y \in Y\}$

Cross Product Examples

Example 2.19 — Show that $A \times B \neq B \times A$.

Assume that
$$A = \{1, 2, 3\}$$
 and $B = \{a, b\}$.

$$\begin{split} A\times B &= \{\langle 1,a\rangle, \langle 1,b\rangle, \langle 2,a\rangle, \langle 2,b\rangle, \langle 3,a\rangle, \langle 3,b\rangle\} \\ B\times A &= \{\langle a,1\rangle, \langle a,2\rangle, \langle a,3\rangle, \langle b,1\rangle, \langle b,2\rangle, \langle b,3\rangle\} \end{split}$$

Hence, $A \times B \neq B \times A$

Example 2.20 — Show that $(A \cup B) \times C = (A \times C) \cup (B \times C)$.

$$\begin{split} (A \cup B) \times C &= \{ \langle x, y \rangle | x \in (A \cup B) \land y \in C \} \\ &= \{ \langle x, y \rangle | (x \in A \lor x \in B) \land y \in C \} \\ &= \{ \langle x, y \rangle | (x \in A \land y \in C) \lor (x \in B \land y \in C) \} \\ &= (A \times C) \cup (B \times C) \end{split}$$

3 Automata, Formal Languages $q_2 = S(q_1, a), q_3 = S(q_2, b), q_4 = S(q_3, c)$ and Petri Nets bef. of an automaton $A = \langle Q, \leq, S, q_i \rangle$ Q = { 90 92, -- , 90 } = SEt of states $\leq = \{ \mathcal{T}_1, \mathcal{T}_2, ..., \mathcal{T}_m \} = set of events$ $\delta: Q \times \Sigma \rightarrow Q = transition function$ qi = initial state $A = \{ q_1, q_2, q_3, q_4 \}, Z = \{ a_1 b_1 c \}$

Note that S(92,9) is not defined \Rightarrow $\delta(q,\sigma)$ is a partial function. A total function is obtained by introducing salt'-loops for those events that are not defined e.g. 8(42,9)=8(925)=92 Gonerally a transition function is written $q = \delta(q, q)$ cotate q = source state, q = torget

Alternatively a transition can also be defined 95 a transition relation $\langle 9, 9, 9' \rangle \in Q \times Z \times Q$ This is common for non-deterministic automata

Alternatively this nondeterministic choice can also be defined by the following transition function $S(q_1, a) = \{q_2, q_3\}$ $S: Q \times Z \longrightarrow 2^Q$

Automata Examples

Formal languages Automaton A generates the string E, a, ab, abc empty string The (anguage for A is denoted $L(A) = \{ \mathcal{E}, a, ab, abc \}$ The set of all strings for a given set of events / $a(phabef Z= \{a,b,c\} is$

denoted $\Sigma^* = \{ \varepsilon, a, b, c, aa, ab, ac, ba, bb, bc,$ ca, cb, cc, aaa, aab, aac,) Any language L for an automaton is a subset of 5x L(A) 5 2*