更深的网络

概览

- 1. 计算机视觉与卷积神经网络
- 2. AlexNet
- 3. VggNet

1. 计算机视觉与 卷积神经网络

神经网络的应用领域

- ▶计算机视觉 (最为成功的应用领域)
- ▶自然语言处理(较为成功的应用领域)
- ▶智能博弈 (较为成功的应用领域)
- **其它**

计算机视觉简史

- ▶ 20世纪50年代归入模式识别——主要集中在二维图像分析与识别上, 例如光学字符识别等。
- ▶ 20世纪60年代MIT的Roberts通过计算机程序从数字图像中提取出诸如立方体、棱柱体等多面体结构。其开创了三维计算机视觉。
- ▶ 20世纪80年代中期, 计算机视觉获得了蓬勃发展, 出现了很多新概念、新方法、新理论, 例如主动视觉框架、视觉集成理论框架等。
- ▶ 2012年起,人工神经网络在计算机视觉应用中取得重大成果,开启 计算机视觉新时代,到目前为止计算机视觉在多种任务中的精度等 指标中已远远超过人类。

- 超过1500万张图片
- 超过2200类别

ILSVRC classification

- 120万张图片用于训练1000分类
- 使用Top-5 error评价模型

EntleBucher Appenzeller

Codename	CLS	Insitutions	
Hminmax	54.4	Massachusetts Institute of Technology	
IBM	70.1	IBM research [†] , Georgia Tech [‡]	
ISIL	44.6	Intelligent Systems and Informatics Lab., The University of Tokyo	
ITNLP	78.7	Harbin Institute of Technology	
LIG	60.7	Laboratoire d'Informatique de Grenoble	
NEC	28.2	NEC Labs America [†] , University of Illinois at Urbana- Champaign [‡] , Rutgers [∓]	
NII	74.2	National Institute of Informatics, Tokyo, Japan [†] , Hefei Normal Univ. Heifei, China [‡]	
NTU	58.3	CeMNet, SCE, NTU, Singapore	
Regularities	75.1	SRI International	
UCI	46.6	University of California Irvine	
XRCE	33.6	Xerox Research Centre Europe	

Codename	CLS	LOC	Institutions	
ISI	36.0	-	Intelligent Systems and Informatics lab,	University of Tokyo
NII	50.5	-	National Institute of Informatics, Japan	
UvA	31.0	42.5	University of Amsterdam [†] , University of	f Trento [‡]
XRCE	25.8	56.5	Xerox Research Centre Europe [†] , CIII [‡]	

Codename	CLS	LOC	Institutions
ISI	26.2	53.6	University of Tokyo [†] , JST PRESTO [‡]
LEAR	34.5	-	LEAR INRIA Grenoble [†] , TVPA Xerox Research Centre Europe [‡]
VGG	27.0	50.0	University of Oxford
SuperVision	16.4	34.2	University of Toronto
UvA	29.6	-	University of Amsterdam
XRCE	27.1	-	Xerox Research Centre Europe [†] , LEAR INRIA [‡]

AlexNet大幅领先第二名26.2%的错误率

卷积神经网络结构演化史

2. AlexNet

2.1 AlexNet 简介

简介

AlexNet在ILSVRC-2012的1000分类竞赛上获得了第一名的成绩, AlexNet将

TOP-5错误率降低到了15.3%, 大幅领先第二名的26.2%的错误率。

8张ILSVRC-2010测试图片结果

2.2 AlexNet 模型结构

AlexNet模型总体结构

17

- 1. 输入层:输入 227*227*3 图片。
- 2. 卷积层: 96个11*11卷积核, 步长为4, 局部响应归一化。[输出尺寸为55*55*96]
- 3. 池化层: 3*3的滑动窗最大池化, 步长为2。[输出尺寸为27*27*96]
- 4. 卷积层: 256个5*5卷积核, 步长为1, 局部响应归一化。[输出尺寸为27*27*256]
- 5. 池化层: 3*3的滑动窗最大池化, 步长为2。[输出尺寸为13*13*256]
- 6. 卷积层: 384个3*3卷积核, 步长为1。[输出尺寸为13*13*384]
- 7. 卷积层: 384个3*3卷积核, 步长为1。[输出尺寸为13*13*384]
- 8. 卷积层: 256个3*3卷积核, 步长为1。[输出尺寸为13*13*256]
- 9. 池化层: 3*3的滑动窗最大池化, 步长为2。[输出尺寸为6*6*256]
- 10.全连接层: 4096个神经元; 接ReLU激活函数。
- 11.全连接层: 4096个神经元; 接ReLU激活函数。
- 12.全连接层: 1000个神经元; 接softmax激活函数。

2.3 AlexNet 主要贡献

ReLU激活函数

$$f(x) = \max(0, x)$$

优点:

- 1. 与logistic、tanh相比 ,计算量更小。
- 2. 导数值稳定,相对其 他激活函数对神经网 络梯度不稳定问题更 加鲁棒。

分布式GPU运算

分布式GPU运算

图为第一层2*48个卷积核可视化结果

- 。上面48个在 GPU#1 上的卷积核只对边界感兴趣。
- 下面48个在 GPU#2 上的卷积核对颜色感兴趣。

分布式GPU运算的优点

- ▶使用GPU运算速度大大加快。
- ▶ 多GPU使得复杂模型得以训练。
- ▶文献中提到,与使用单GPU一半神经元相比,Top-1和Top5 error分别降低了1.7%与1.2%

LRN

局部响应归一化(Local Response Normalization, LRN) 是AlexNet中提出的配合ReLU激活函数使用提高泛化能力的方法。文献中指出LRN使得Top-1 error与Top-5 error 分别减少了1.4%与1.2%。部分实验证明LRN并没有作用。

$$b_{x,y}^{i} = a_{x,y}^{i} / \left(k + \alpha \sum_{j=\max(0,i-n/2)}^{\min(N-1,i+n/2)} (a_{x,y}^{j})^{2} \right)^{\beta}$$

其中a表示经过激活函数的卷积特征图,N表示卷积之后的特征图数量,n表示近邻的特征图数量。k、α、β、n/2均为超参数,通常k=2, $\alpha=1e-4$, $\beta=0.75$ 、n=5。

重叠池化

重叠池化(Overlapping Pooling)即使池化窗的步长小于池化层的大小,在池化时产生重叠。文献中提到使用重叠池化Top-1和Top-5 error分别减少了0.4%和0.3%。

重叠池化:窗口长3、步长2

《深度学习》

25

2.4 AlexNet 正则化方法

数据集增强

- ▶样本缩放与裁剪;
- ▶随机改变图片亮度。

数据集增强一

- ▶首先,将图片等比缩放,使得最小边缩放为256。
- ▶其次,在缩放后的图片中部取一块[256,256,3]的图片。
- ▶再次,将取出的图片滑动裁剪出[224,224,3]的图片。
- >最后,随机对裁剪后的图片进行水平翻转。

训练时: 使得数据集扩大了(256-224)^2*2=2048倍

数据集增强一

测试时:

将原图按照训练时的方法,得到[256,256,3]图片,再分别取四个角与中部共5张大小为[224,224,3]的图片,再进行翻转,共得到10张图片,送入模型进行预测,取10次结果的平均值作为预测结果。

Dropout

Standard Neural Net

After applying dropout.

- 在两个4096个神经元的全连接层中使用Dropout。
- 保留神经元的概率 (keep prob) 为: 0.5

2.5 AlexNet 训练方法

Momentum

在2块 NVIDIA GTX 580 3GB 上训练5-6天

2.6 AlexNet 参数 数量与计算性能

Layer 1

- 输入图片: 224 * 224 * 3
- 边界填充: 3*3
- 卷积核: 11 * 11
- 步长: 4
- 激活函数: ReLU
- 输出: 55 * 55 * 96

34

Layer 1

- 特征图: 55 * 55 * 96=290400
- 参数量: (11 * 11 * 3 + 1) * 96 = 34944
- 每个卷积核计算量: 11 * 11 * 3 = 363
- 总计算量: 290400 * 363 = 105415200

35

模型结构

计算量

2.7 使用Pytorch 实现 AlexNet 模型

AlexNet模型实现要求

- ▶无需实现与加入LRN层(虽然TensorFlow有相关API);
- ▶ 无需实现多GPU分布式计算,但需要实现AlexNet在多GPU 上的模型结构;
- ▶实现其代价函数(但无需训练);
- ▶輸出模型参数数量。

TensorFlow实现

```
num_classes = 1000
```

```
inputs_img = tf.placeholder(shape=[None, 227, 227, 3], dtype=tf.float32)
labels = tf.placeholder(shape=[None, num_classes], dtype=tf.int32)
```

```
net GPU 0 = slim.conv2d(inputs img, 48, [11, 11], stride=4, padding='VALID')
net GPU 1 = slim.conv2d(inputs img, 48, [11, 11], stride=4, padding='VALID')
net GPU 0 = slim.max pool2d(net GPU 0, [3, 3], stride=2, padding='VALID')
net GPU 1 = slim.max pool2d(net GPU 1, [3, 3], stride=2, padding='VALID')
net GPU 0 = slim.conv2d(net GPU 0, 128, [5, 5], stride=1, padding='VALID')
net GPU 1 = slim.conv2d(net GPU 1, 128, [5, 5], stride=1, padding='VALID')
net GPU 0 = slim.max pool2d(net GPU 0, [3, 3], stride=2, padding='VALID')
net GPU 1 = slim.max pool2d(net GPU 1, [3, 3], stride=2, padding='VALID')
net = tf.concat([net GPU 0, net GPU 1], 3)
net GPU 0 = slim.conv2d(net, 192, [3, 3], stride=1, padding='VALID')
net GPU 1 = slim.conv2d(net, 192, [3, 3], stride=1, padding='VALID')
net GPU 0 = slim.conv2d(net GPU 0, 192, [3, 3], stride=1, padding='VALID')
net GPU 1 = slim.conv2d(net GPU 1, 192, [3, 3], stride=1, padding='VALID')
net GPU 0 = slim.conv2d(net GPU 0, 128, [3, 3], stride=1, padding='VALID')
net GPU 1 = slim.conv2d(net GPU 1, 128, [3, 3], stride=1, padding='VALID')
net GPU 0 = slim.max pool2d(net GPU 0, [3, 3], stride=2, padding='VALID')
net GPU 1 = slim.max pool2d(net GPU 1, [3, 3], stride=2, padding='VALID')
net = tf.concat([net GPU 0, net GPU 1], 3)
net = slim.flatten(net)
net = slim.fully connected(net, 4096)
net = slim.fully connected(net, 4096)
outputs = slim.fully connected(net, num classes, activation fn=tf.nn.softmax)
```

Pytorch实现

```
class AlexNet(nn.Module):
    def init (self, num classes=1000):
        super(AlexNet, self). init ()
        self.features = nn.Sequential(
            nn.Conv2d(3, 64, kernel size=11, stride=4, padding=2),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel size=3, stride=2),
            nn.Conv2d(64, 192, kernel size=5, padding=2),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel size=3, stride=2),
            nn.Conv2d(192, 384, kernel size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(384, 256, kernel size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 256, kernel size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel size=3, stride=2),
        self.avgpool = nn.AdaptiveAvgPool2d((6, 6))
        self.classifier = nn.Sequential(
            nn.Dropout(),
            nn.Linear(256 * 6 * 6, 4096),
            nn.ReLU(inplace=True),
            nn.Dropout(),
            nn.Linear(4096, 4096),
            nn.ReLU(inplace=True),
            nn.Linear(4096, num classes),
    def forward(self, x):
        x = self.features(x)
        x = self.avgpool(x)
        x = x.view(x.size(0), 256 * 6 * 6)
        x = self.classifier(x)
        return x
```

3. VggNet

3.1 VggNet 简介

简介

VggNet在ILSVRC-2014中获得了定位第一、分类第二的好成绩, top-5 error

降低至7.3%。VggNet的特点是足够深。参数层达到了16层与19层之多。

3.2 VggNet 模型结构

卷积层全部使用3*3小卷积核,共16个参数层,Vgg19又增加了3个卷积层。

Vgg-n

3.3 VggNet 主要贡献

使用更小的卷积核

使用更大的卷积核的意义是什么?

2*2卷积核"探测"面积小

3*3卷积核"探测"面积大

实验:使用CNN在MNIST识别任务中,观察不同大小卷积核对模型性能的影响。

使用更小的卷积核

1个5*5 卷积核的参数数量:

$$5*5*C^2$$

2个3*3卷积核的参数数量:

$$2*3*3*C^2$$

其中C表示输入输出通道数。

使用2个3 * 3卷积核的"探测"面积等价于1一个5 * 5卷积核的"探测"面积。

《深度学习》

51

使用更小的卷积核

1个7*7卷积核的参数数量:

$$7*7*C^2$$

3个3*3卷积核的参数数量:

$$3*3*3*C^2$$

使用3个3*3卷积核的"探测"面积等价于1一个7*7卷积核的"探测"面积。

		ConvNet C				
A	A-LRN	В	C	D	E	
 11 weight	11 weight	13 weight	16 weight	16 weight	19 weight	
layers	layers	layers	layers	layers	layers	
	i	nput (224 × 2				
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	
Contrate service and an artist and a service	LRN	conv3-64	conv3-64	conv3-64	conv3-64	
	•	max	pool			1
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	■ といてF*F* 毎
		conv3-128	conv3-128	conv3-128	conv3-128	→ 近似于5 * 5卷积
		max	pool			
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	20my2 256	── 近似于7*7卷积
			conv1-256	conv3-256	conv3-256	
			100000000000000000000000000000000000000	Marious Laurence	conv3-256	
	•	max	pool			1
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	といて0 * 0 * 位
Name	030000000000000000000000000000000000000	Van Descoura Processes	conv1-512	conv3-512	conv3-512	→ 近似于9*9卷积
					conv3-512	1
		max	pool			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
			conv1-512	conv3-512	conv3-512	
				3-50-00-00-00-00-00-00-00-00-00-00-00-00-	conv3-512	
maxpool						
	FC-4096 FC-4096					
	FC-1000					
soft-max					53	

小的卷积核的优点

- ▶小卷积核堆叠可达到同大卷积核一样的"探测面积";
- ▶相比大卷积核,小卷积核堆叠使用更少的参数;
- ▶相比大卷积核,小卷积核堆叠使用更少的计算量;
- ▶相比大卷积核,小卷积核堆叠的非线性表达能力更强。

更深的模型

ConvNet Configuration								
A	A A-LRN B C D E							
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight			
layers	layers	layers	layers	layers	layers			

Table 3: ConvNet performance at a single test scale.

ConvNet config. (Table 1)	smallest image side		top-1 val. error (%)	top-5 val. error (%)	
	train(S)	test (Q)			
A	256	256	29.6	10.4	
A-LRN	256	256	29.7	10.5	
В	256	256	28.7	9.9	
	256	256	28.1	9.4	
C	384	384	28.1	9.3	
	[256;512]	384	27.3	8.8	
	256	256	27.0	8.8	
D	384	384	26.8	8.7	
	[256;512]	384	25.6	8.1	
	256	256	27.3	9.0	
E	384	384	26.9	8.7	
	[256;512]	384	25.5	8.0	

VggNet通过实验证明: 更深的模型性能更好。

3.4 VggNet 训练方法

Mutil-Scale 数据预处理

Table 4: ConvNet performance at multiple test scales.

There is constituted by manifely the second							
ConvNet config. (Table 1)	smallest image side		top-1 val. error (%)	top-5 val. error (%)			
	train(S)	test(Q)					
В	256	224,256,288	28.2	9.6			
	256	224,256,288	27.7	9.2			
C	384	352,384,416	27.8	9.2			
	[256; 512]	256,384,512	26.3	8.2			
	256	224,256,288	26.6	8.6			
D	384	352,384,416	26.5	8.6			
	[256; 512]	256,384,512	24.8	7.5			
	256	224,256,288	26.9	8.7			
E	384	352,384,416	26.7	8.6			
	[256; 512]	256,384,512	24.8	7.5			

方法: 随机等比缩放图片, 使图片最小边在一个范围内, 然后裁剪出224* 224的训练图片。

Momentum

类似于AlexNet,使用动量梯度下降法训练模型。批次大小为256,动量大小为0.9

使用4个NVIDIA Titan Black GPU训练模型2-3周,每个GPU分别计算同一批次中的一部分数据的梯度,求平均值进行更新参数,速度提高了3.75倍。

3.5 VggNet 参数 数量与计算性能

Vgg19 参数数量

总共大约1.44亿个参数,其中全连接层大约有1.24亿个参数。

VggNet 参数数量

Table 2: Number of parameters (in millions).

Network	A,A-LRN	В	С	D	E
Number of parameters	133	133	134	138	144

Vgg19 计算量

总共大约196亿Flops, 计算量主要来自于各个卷积层。

3.6 使用Pytorch 实现 Vgg19 模型

小结

- ▶人工神经网络与计算机视觉中的关系。
- ▶AlexNet主要贡献: ReLU激活函数、分布式GPU计算、LRN、 重叠最大池化。
- ▶VggNet主要贡献:使用较小卷积核堆叠近似较大卷积核, 降低模型参数;验证了更深的层拥有更好的性能。

THANKS