Planar Seponators. It time: Dense eigensolve algorillas.

> C5 292 F Lecture 7 April 26, 2021

CHEEGER:
$$v_2/2 = \phi_G = \sqrt{2}v_2$$

$$\phi_G = \min_{S} \phi(S) = \frac{1351}{\min_{S} (d(S), d(V-S))}$$

ESOPERIM: $\lambda_2/2 = \Theta_G$

$$\Theta_G = \min_{S \in \mathbb{Z}} \Theta(S) = \frac{1351}{151}$$

$$\Phi_G = \min_{S \in \mathbb{Z}} \Theta(S) = \frac{1351}{151}$$

EG Grid groph: washmed 7=0(1) S HILL IN Also 2) = 0(1). (6.th tight) Thus $\exists S \phi(s) \leq \frac{\epsilon}{\sqrt{n}}$. Sure | S = top half 1251 = Va = 0(1) (5)= (1(5),1(1-5)) = ~2n win (3(5),1(1-5)) The n-vertex grid groph has a va-separator of edges. APPLICATION: solving spanse livear systems of equations.

LIPTON PLANAR SEPARATOR THEORES TARJAN Let G be an n-ventex planar 1977 graph of bounded ventex deque. Then 7 set of O(on) edges whose removal leaves no connected component with more than [=] vertices. (Note: if Jegree = 1) size is O(Jan) PROOF: Very combinatorial. Application: all 2D finite element systems can be solved in O(n) time. SPECTRAL PARTITION/NG
HEURISTIC (1970s; 1990s in scientific) Fieldler vector Lwz=Azwz Embed the graph is the reallisize

Embed the googh in the ven (line: $\omega_{1}(\alpha_{1})$ $\omega_{2}(\alpha_{2})$ $\omega_{3}(\alpha_{1})$ $\omega_{4}(\alpha_{1})$ $\omega_{5}(\alpha_{2})$ $\omega_{5}(\alpha_{2})$ $\omega_{6}(\alpha_{1})$ $\omega_{7}(\alpha_{2})$ $\omega_{8}(\alpha_{1})$ $\omega_{1}(\alpha_{2})$ $\omega_{1}(\alpha_{2})$ $\omega_{2}(\alpha_{2})$ $\omega_{3}(\alpha_{1})$ $\omega_{4}(\alpha_{1})$ $\omega_{5}(\alpha_{2})$ $\omega_{5}(\alpha_{2})$ $\omega_{6}(\alpha_{1})$ $\omega_{7}(\alpha_{2})$ $\omega_{7}(\alpha_{1})$ $\omega_{7}(\alpha_{1})$ $\omega_{7}(\alpha_{2})$ $\omega_{7}(\alpha_{2})$ $\omega_{7}(\alpha_{1})$ $\omega_{7}(\alpha_{1})$ $\omega_{7}(\alpha_{2})$ $\omega_{7}(\alpha_{2})$ $\omega_{7}(\alpha_{1})$ ω_{7 In 1997, Spielman + Teng used speetrd graph theory to proce the placer sep Dan. BIGTHEOREM: If G is planar with maximum degree A, then $7_2(G) \leq 80$ (72=0(2) was known) Prot: See Spielman.

EIGENVALUE + EIGENVECTOR ALGORITHMS (Symmetric real matrices) A=AT A=A Aw:= 1:w: 7.=72= -- = 7. 116:11 = 1 = Jiag (7,, ..., 7n) WTAW=1 WTW=I W=[w, v2 ... wn] matrix factorisson A = WAWT All eigenvalue algorithms ave itentive. Because: The worts of any day see- n proposiare the evals of some nxn matrix. BUT that san't he love with ABEL)
+,-,x,:,5,5,5,etc. (GAESIS)
=> need iferention.

If max degree = 1 Then LG ANG so upper bounds on Az imply upper bounds
of on 22. So S-Timplies 3 senall conductance
conts. In fact, you can get $O_G = \frac{C}{\ln}$ for all planar G (some $C = C(\Delta)$) Therefore 35 with 1251 = 0(s) < 5 151 and in fact you can get it ly a Fiedler vector cut (a ratio cut).

Therefore 35 with 1351 = 0(s) < 5 151 ALGORITHM to find a labured ent: Goal: divide vertices into 2 parts A, B with $\leq \lceil \frac{n}{2} \rceil$ each, and $O(J_n)$ edges between them. I constant depends on \triangle . Notation: Set A = V mean both the set of vertices and the induced subjust of G (which is planar). Method:

At each iteration
$$\frac{|\partial F|}{|F|} \leq \frac{c}{|D|}$$

So we cut at most $c|F| \cdot \frac{1}{|D|} = dyes$.

 $cut(i) \leq \frac{c|F|}{|D|} = \frac{|F|}{|D|} \cdot \frac{1}{|F|} \cdot \frac{1}{|D|}$
 $cut(i) \leq \frac{c|F|}{|D|} = \frac{|F|}{|D|} \cdot \frac{1}{|F|} \cdot \frac{$

How many total edges cut?