Rank-73753 over GF(4)

January 15, 2021

The equation

The equation of the surface is:

$$X_1^3 + X_2^3 + X_0^2 X_1 + X_0 X_3^2 + X_0 X_1 X_2 = 0$$

(0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0)The point rank of the equation over GF(4) is 1498764909

General information

Number of lines	5
Number of points	29
Number of singular points	0
Number of Eckardt points	1
Number of double points	2
Number of single points	18
Number of points off lines	8
Number of Hesse planes	0
Number of axes	0
Type of points on lines	5^{5}
Type of lines on points	$3, 2^2, 1^{18}, 0^8$

Singular Points

The surface has 0 singular points:

The 5 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{345} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{345} = \mathbf{Pl}(0, 1, 0, 1, 0, 0)_{13}$$

$$\ell_1 = \begin{bmatrix} 0 & 1 & \omega^2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{355} = \begin{bmatrix} 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{355} = \mathbf{Pl}(0, 3, 0, 1, 0, 0)_{15}$$

$$\ell_{2} = \begin{bmatrix} 1 & 0 & \omega^{2} & 1 \\ 0 & 1 & 1 & \omega^{2} \end{bmatrix}_{160} = \begin{bmatrix} 1 & 0 & 3 & 1 \\ 0 & 1 & 1 & 3 \end{bmatrix}_{160} = \mathbf{Pl}(1, 1, 3, 2, 1, 1)_{234}$$

$$\ell_{3} = \begin{bmatrix} 0 & 1 & \omega & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{350} = \begin{bmatrix} 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{350} = \mathbf{Pl}(0, 2, 0, 1, 0, 0)_{14}$$

$$\ell_{4} = \begin{bmatrix} 1 & 0 & \omega & 1 \\ 0 & 1 & 1 & \omega \end{bmatrix}_{135} = \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 1 & 2 \end{bmatrix}_{135} = \mathbf{Pl}(1, 1, 2, 3, 1, 1)_{225}$$

Rank of lines: (345, 355, 160, 350, 135)

Rank of points on Klein quadric: (13, 15, 234, 14, 225)

Eckardt Points

The surface has 1 Eckardt points: $0: P_3 = \mathbf{P}(0, 0, 0, 1) = \mathbf{P}(0, 0, 0, 1).$

Double Points

The surface has 2 Double points: The double points on the surface are:

$$P_{61} = (0, 2, 2, 1) = \ell_0 \cap \ell_2$$

 $P_{81} = (0, 3, 3, 1) = \ell_0 \cap \ell_4$

Single Points

The surface has 18 single points: The single points on the surface are:

 $\begin{array}{l} 0: \ P_{11} = (0,1,1,0) \ \text{lies on line} \ \ell_0 \\ 1: \ P_{15} = (0,2,1,0) \ \text{lies on line} \ \ell_1 \\ 2: \ P_{16} = (1,2,1,0) \ \text{lies on line} \ \ell_2 \\ 3: \ P_{19} = (0,3,1,0) \ \text{lies on line} \ \ell_3 \\ 4: \ P_{20} = (1,3,1,0) \ \text{lies on line} \ \ell_4 \\ 5: \ P_{28} = (2,1,0,1) \ \text{lies on line} \ \ell_2 \\ 6: \ P_{29} = (3,1,0,1) \ \text{lies on line} \ \ell_4 \\ 7: \ P_{42} = (0,1,1,1) \ \text{lies on line} \ \ell_0 \\ 8: \ P_{45} = (0,2,1,1) \ \text{lies on line} \ \ell_1 \\ 9: \ P_{47} = (2,2,1,1) \ \text{lies on line} \ \ell_4 \end{array}$

 $\begin{array}{l} 10:\ P_{49}=(0,3,1,1)\ \mathrm{lies}\ \mathrm{on}\ \mathrm{line}\ \ell_3\\ 11:\ P_{52}=(3,3,1,1)\ \mathrm{lies}\ \mathrm{on}\ \mathrm{line}\ \ell_2\\ 12:\ P_{54}=(1,0,2,1)\ \mathrm{lies}\ \mathrm{on}\ \mathrm{line}\ \ell_4\\ 13:\ P_{57}=(0,1,2,1)\ \mathrm{lies}\ \mathrm{on}\ \mathrm{line}\ \ell_3\\ 14:\ P_{65}=(0,3,2,1)\ \mathrm{lies}\ \mathrm{on}\ \mathrm{line}\ \ell_1\\ 15:\ P_{70}=(1,0,3,1)\ \mathrm{lies}\ \mathrm{on}\ \mathrm{line}\ \ell_2\\ 16:\ P_{73}=(0,1,3,1)\ \mathrm{lies}\ \mathrm{on}\ \mathrm{line}\ \ell_1\\ 17:\ P_{77}=(0,2,3,1)\ \mathrm{lies}\ \mathrm{on}\ \mathrm{line}\ \ell_3\\ \end{array}$

The single points on the surface are:

Points on surface but on no line

The surface has 8 points not on any line: The points on the surface but not on lines are:

```
\begin{array}{lll} 0: \, P_0 = (1,0,0,0) & 5: \, P_{62} = (1,2,2,1) \\ 1: \, P_5 = (1,1,0,0) & 6: \, P_{75} = (2,1,3,1) \\ 2: \, P_{12} = (1,1,1,0) & 7: \, P_{82} = (1,3,3,1) \\ 3: \, P_{39} = (1,0,1,1) & & \\ 4: \, P_{60} = (3,1,2,1) & & \end{array}
```

Line Intersection Graph

	0	1	2	3	4
0	0	1	1	1	1
1	1	0	0	1	0
2	1	0	0	0	0
3	1	1	0	0	0
0 1 2 3 4	1	0	0	0	0

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2	ℓ_3	ℓ_4
in point	P_3	P_{61}	P_3	P_{81}

 ${\bf Line~1~intersects}$

Line	ℓ_0	ℓ_3
in point	P_3	P_3

Line 2 intersects

Line	ℓ_0
in point	P_{61}

Line 3 intersects

Line	ℓ_0	ℓ_1
in point	P_3	P_3

Line 4 intersects

Line	ℓ_0
in point	P_{81}

The surface has 29 points:

The points on the surface are:

$0: P_0 = (1,0,0,0)$	$10: P_{29} = (3, 1, 0, 1)$	$20: P_{61} = (0, 2, 2, 1)$
$1: P_3 = (0,0,0,1)$	$11: P_{39} = (1,0,1,1)$	$21: P_{62} = (1, 2, 2, 1)$
$2: P_5 = (1, 1, 0, 0)$	$12: P_{42} = (0, 1, 1, 1)$	$22: P_{65} = (0, 3, 2, 1)$
$3: P_{11} = (0, 1, 1, 0)$	13: $P_{45} = (0, 2, 1, 1)$	23: $P_{70} = (1,0,3,1)$
$4: P_{12} = (1, 1, 1, 0)$	$14: P_{47} = (2, 2, 1, 1)$	$24: P_{73} = (0, 1, 3, 1)$
$5: P_{15} = (0, 2, 1, 0)$	$15: P_{49} = (0,3,1,1)$	$25: P_{75} = (2, 1, 3, 1)$
$6: P_{16} = (1, 2, 1, 0)$	$16: P_{52} = (3, 3, 1, 1)$	$26: P_{77} = (0, 2, 3, 1)$
$7: P_{19} = (0, 3, 1, 0)$	17: $P_{54} = (1,0,2,1)$	$27: P_{81} = (0, 3, 3, 1)$
$8: P_{20} = (1, 3, 1, 0)$	18: $P_{57} = (0, 1, 2, 1)$	$28: P_{82} = (1,3,3,1)$
$9: P_{28} = (2, 1, 0, 1)$	$19: P_{60} = (3, 1, 2, 1)$	