CHEM202

Stereochemistry

Lecture 4

Anchor Groups and Fused Ring Systems

Favorskii Rearrangement

Suggest a mechanism for the following reaction:

Br
$$\rightarrow$$
 $COOEt$ $Et = C_2H_5$

Cyclohexane

- Rapidly interconverting system
- 2 dominant chair conformations

- Various boat and twist forms
- Each chair has two unique sets of C-H bonds:
 - axial
 - equatorial

Monosubstituted Cyclohexanes

- The 2 chair forms can be distinguished
- That with the equatorial group has fewer steric interactions
- The system rapidly interconverts, with the equatorial form predominating

- Analysis of a chemical reaction on a changing system is very difficult - common to lock the conformation in some way:
 - use of anchor groups
 - fused ring systems

Anchor Groups

- An anchor group is a large substituent, such as a tert-butyl group, -C(CH₃)₃
- It restricts the system to the chair form with the big group equatorial
- When tert-butyl group is present another smaller group can be forced into an axial orientation

Axial Vs Equatorial (NEF)

$$K = [eq]/[ax]$$

X	K	Energy diff. kJ/mol	% eq
Н	1	0	50
OMe	2.7	2.5	73
Me	19	7.3	95
Et	20	7.5	95
<i>i</i> -Pr	42	9.3	98
<i>t</i> -Bu	>3000	>20	>99.9
Ph	110	11.7	99

Fused Cyclohexanes

- 2 Rings are fused when they share a bond
- 2 Cyclohexane rings can be fused 2 ways i.e. get 2 geometric isomers
 - The cis-isomer can flip from chair to chair
 - The trans-isomer cannot flip
 - each ring constrains the other so that it cannot orient itself to have 2 bonds axial the bonding linkage is too short to allow this
- Trans-fusion is common in the steroids

Steroids

Fused system with 3 x 6-membered rings and 1 x 5-membered

ring:

Note:

- Rings are labelled A, B, C, and D
- Carbons are labelled by *position numbers*
- Usually have:
 - trans-fused rings
 - methyl groupings at C-10 and C-13

Androstane Skeleton

Note:

- The ring system is relatively flat
- The side to which methyls point is called the β -face
- The other side is the α -face

Shorthand Conventions

For simplicity, abbreviated structures are often drawn:

- CH₃ groups are represented as lines
- Focus is directed to the part of the molecule of interest by the use of partial structures

e.g. androstan- 3α -ol:

Epimers

- A typical steroid has several chiral carbons carbons with each of the 4 bonds attached to something different
- Epimers are isomers that differ at only one of these chiral carbons
- *E.g.* the 3-epimer of androstan- 3α -ol is androstan- 3β -ol

- Epimers are diastereoisomers
 - they are not related as mirror images
 - they have different physical properties

Important – *Trans*-fused Steroids Cannot Flip

- The 6-membered rings of a trans-fused steroid are fixed in one chair form
- Therefore it is possible to say with certainty whether an individual grouping is axial or equatorial
- E.g. androstan- 2α -ol must have an equatorial OH group

What about 7α -bromoandrostane?

Use of NMR

Two of the features of NMR that provide useful information about the stereochemistry of groups are:

- 1. Analysis of coupling patterns
- Note –CH-CH₂- gives a triplet in simple compounds (n+1 rule)
- In ring systems the two CH₂ signals are often non-equivalent and a double-doublet is observed:

2. Comparison of chemical shifts

1. Analysis of Coupling Patterns

Coupling constant, *J*, depends on the dihedral angle (**Karplus**

Androstan-3*β*-ol

- The OH is equatorial so H-3 α is axial
- Build a splitting tree by considering each coupling in turn
 - $J_{3\alpha,2\beta}$ axial/axial (~10 Hz)
 - $J_{3\alpha.4\beta}$ axial/axial (~10 Hz)
 - $J_{3\alpha,2\alpha}$ axial/equatorial (~5 Hz)
 - $J_{3\alpha.4\alpha}$ axial/equatorial (~5 Hz)
- Predictions:
 - a 7 line pattern
 - a bandwidth ~30 Hz

Exercise – the 3a-epimer exhibits a 5 line pattern with band width ~20 Hz. Verify this using J values of 5 Hz for eq/eq and eq/ax couplings

2. Comparison of Chemical Shifts

 1,3-diaxial interactions are deshielding - result in downfield shifts (away from TMS) - e.g. epimeric 2-bromoandrostanes

equatorial Br

CH₃ signal not deshielded

axial Br

CH₃ signal deshielded