Linear Regression: Multivariate Linear Regression

Hypothesis

Below is our *hypothesis* for *univariate* linear regression with a single feature value denoted by the variable x.

$$h_{ heta}(x) = heta_0 + heta_1 x$$

For multiple features we would represent them in our equation in the form of x_1, x_2, x_3 all the way to x_n . For example, the below would be three features of x_1 to x_3 .

```
Features: stock price = x_1, date sold = x_2, sale price = x_3
```

To denote a single value in example i, feature j we would write:

$$x_j^{(i)}$$

Therefore to get the 5th feature in the 3rd example we would write it as:

$$x_5^{(3)}$$

To support n features the hypothesis function has to change to the following.

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \dots + \theta_n x_n$$

This can be written using vectors. Note, however, that $x_0^{(i)}$ will be a constant of 1. This can be thought of as adding an additional 0 feature and our vectors are now 0-indexed. The below is an example with 3 examples and 3+ features in each example:

$$ec{X} = egin{bmatrix} 1 & x_1^{(1)} & x_2^{(1)} & x_3^{(1)} & x_n^{(1)} \ 1 & x_1^{(2)} & x_2^{(2)} & x_3^{(2)} & x_n^{(2)} \ 1 & x_1^{(3)} & x_2^{(3)} & x_3^{(3)} & x_n^{(3)} \end{bmatrix}, ec{ heta} = egin{bmatrix} heta_0 \ heta_1 \ heta_2 \ heta_3 \ heta_n \end{bmatrix}$$

So, our hypothesis function can be written as the below where $heta_0 x_0 = 1 \cdot 1 = 1$

$$h_{ heta}(x) = heta_0 x_0 + heta_1 x_1 + heta_2 x_2 + heta_3 x_3 + \dots + heta_n x_n$$

In order to multiply the two vectors, θ and X, we need to *transpose* the theta vector which will then be labeled as θ^T which is now an $(n \times 1) \times 1$ matrix or *row vector*.

$$\theta^T = \begin{bmatrix} \theta_0 & \theta_1 & \theta_2 & \theta_3 & \theta_n \end{bmatrix}$$

Now, the hypothesis function can be re-written as simply:

$$h_{ heta}(x) = heta^T X$$

The function below visually illustrates our new hypothesis function.

Gradient Descent

Our cost function for Gradient Descent is slightly different for multivariate linear regression. Here we are passing in not one, but multiple features, that range from θ_0 to θ_n .

$$J(heta_0, \; heta_1, \cdot \cdot \cdot, heta_n) = rac{1}{2m} \sum\limits_{i=1}^m \left(h_ heta\left(x^{(i)}
ight) - y^{(i)}
ight)^2$$

For simplicity we can just write the function as $J(\theta)$.

$$J(heta) = rac{1}{2m} \sum_{i=1}^m \left(h_ heta\left(x^{(i)}
ight) - y^{(i)}
ight)^2$$

The Gradient Descent algorithm now looks like the following:

repeat until convergence {

$$heta_j := heta_j - lpha rac{\partial}{\partial heta_j} J(heta)$$

} (Simultaneously updated for every $j=0,\ldots,n$)

Finding the partial derivative of the expression $\alpha \frac{\partial}{\partial \theta_1} J(\theta)$ yields the below:

repeat until convergence {

$$heta_j := heta_j - lpha rac{1}{m} \sum\limits_{i=1}^m \left(h_ heta\left(x^{(i)}
ight) - y^{(i)}
ight) x_j^{(i)}$$

} (Simultaneously updated for every $j=0,\ldots,n$)