

Machine Learning

¿Qué está haciendo mi modelo?

C. Molnar. (2018). Interpretable Machine Learning: A Guide for Making Black Box Models Explainable. Accessed: Jun. 6, 2018.

www.iic.uam.es

C. Molnar. (2018). Interpretable Machine Learning: A Guide for Making Black Box Models Explainable. Accessed: Jun. 6, 2018.

www.iic.uam.es

Permutation importance

Importancia de una variable = Aumento en el error de predicción al permutar la variable.

del conocimiento

Gráficas de dependencias parciales

Impacto de una variable sobre las predicciones del modelo

LIME

Entrena modelos sustitutos locales para explicar las predicciones individuales.

- Se asigna importancia en función en función de la distancia al punto amarillo.
- Ajustamos un modelo lineal para el dato de interés.
- Problema: Es muy inestable.

Valores de Shapley

Es un método para asignar valor a los jugadores en función de su contribución al resultado total. Los jugadores cooperan en una coalición y reciben una cierta ganancia de esta cooperación.

¿Qué jugador es más importante?

Importancia de un jugador = cuánto aporta al resultado cuando se une.

Valores de Shapley

Propiedades

Eficiencia:

La suma de los valores de Shapley de todos los jugadores es igual al

valor total del juego.

Simetría:

Si dos jugadores son equivalentes, su valor de Shapley es el mismo.

Aditividad:

Si el beneficio del juego se puede descomponer linealmente, los

Jugador nulo: Si un jugador nunca aporta nada, su valor de Shapley es 0.

Los valores de Shapley son la única manera de asignar valor a los jugadores de forma que se cumplan estas 4 propiedades simultáneamente.

¿Cómo lo medimos en modelos predictivos?

SHAP (SHapley Additive exPlanations)

SHAP

Es un método para calcular coeficientes de Shapley en un modelo de explicación local.

Cada jugador es una variable y el beneficio que nos da el modelo es su rendimiento.

"Cuánto aporta cada variable al resultado del modelo"

Original data

Librería SHAP

SHAP values

www.iic.uam.es

www.iic.uam.es

Paloma Megías

Data Scientist

in https://www.linkedin.com/in/palomam-39075b176 Puedes consultar los artículos de innovación en nuestro Blog: www.iic.uam.es/blog/

C/ Francisco Tomás y Valiente, nº 11 EPS, Edificio B, 5ª planta UAM Cantoblanco. 28049 Madrid Tel.: (+34) 91 497 2323

Elementos gráficos de apoyo obtenidos en: designed by freepik.com

pixabay 📸