Rebuttal

Table 1: Node Classification Results with Conformal Baselines (Coverage \uparrow / Inefficiency \downarrow)

Dataset	CF-GNN [1]		DAPS [2]		RR-GNN (Ours)		Cluster-RR-GNN (Ours)	
Model	Cover	Ineff	Cover	Ineff	Cover	Ineff	Cover	Ineff
Cora GraphSAGE SGC GCN GAT	$0.9456^{\pm0.0569}$ $0.9461^{\pm0.0603}$ $0.9473^{\pm0.0556}$ $0.9464^{\pm0.0702}$		$\begin{array}{c} 0.9453^{\pm 0.0535} \\ 0.9452^{\pm 0.0538} \\ 0.9435^{\pm 0.053} \\ 0.9480^{\pm 0.065} \end{array}$		$ \begin{vmatrix} 0.9460^{\pm 0.0542} \\ 0.9462^{\pm 0.0581} \\ 0.9432^{\pm 0.0573} \\ 0.9475^{\pm 0.0624} \end{vmatrix} $	$ \begin{array}{c} 1.6100^{\pm0.0415} \\ 1.6297^{\pm0.0428} \\ 1.6251^{\pm0.0367} \\ 1.6146^{\pm0.0351} \end{array} $	$\begin{array}{c} \textbf{0.9463}^{\pm 0.0509} \\ \textbf{0.9468}^{\pm 0.0662} \\ \textbf{0.9476}^{\pm 0.0732} \\ \textbf{0.9491}^{\pm 0.0539} \end{array}$	$ \begin{array}{c} 1.6076^{\pm 0.0397} \\ 1.6017^{\pm 0.0465} \\ 1.6315^{\pm 0.0303} \\ 1.6254^{\pm 0.0396} \end{array} $
DBLP GraphSAGE SGC GCN GAT	$0.9501^{\pm0.0523}$ $0.9451^{\pm0.0617}$ $0.9473^{\pm0.0596}$ $0.9467^{\pm0.0717}$		$\begin{array}{c} 0.9500^{\pm0.0420} \\ 0.9427^{\pm0.0526} \\ 0.9458^{\pm0.0565} \\ 0.9455^{\pm0.0685} \end{array}$	$ \begin{array}{c} 1.6436^{\pm0.0627} \\ 1.6020^{\pm0.0317} \\ 1.6384^{\pm0.0703} \\ 1.6493^{\pm0.0455} \end{array} $			$\begin{array}{c} \textbf{0.9503}^{\pm 0.0510} \\ \textbf{0.9443}^{\pm 0.0462} \\ \textbf{0.9430}^{\pm 0.0713} \\ \textbf{0.9491}^{\pm 0.0539} \end{array}$	$ \begin{array}{c} 1.5607^{\pm 0.0487} \\ 1.3921^{\pm 0.0624} \\ 1.5491^{\pm 0.0278} \\ 1.5720^{\pm 0.0322} \end{array} $
CiteSeer GraphSAGE SGC GCN GAT	$\begin{array}{c} 0.9528^{\pm0.0203} \\ 0.9525^{\pm0.0257} \\ 0.9496^{\pm0.0392} \\ 0.9508^{\pm0.0309} \end{array}$	$ \begin{array}{c} 1.1680^{\pm0.0439} \\ 1.1827^{\pm0.0552} \\ 1.2310^{\pm0.0332} \\ 1.2396^{\pm0.0416} \end{array} $	$\begin{matrix} 0.9501^{\pm0.0195} \\ 0.9513^{\pm0.0245} \\ \textbf{0.9520}^{\pm0.036} \\ 0.9513^{\pm0.0291} \end{matrix}$	$ \begin{array}{c} 1.3425^{\pm0.0412} \\ 1.3578^{\pm0.0525} \\ 1.4026^{\pm0.0327} \\ 1.4152^{\pm0.039} 3 \end{array} $	$\begin{array}{c} 0.9538^{\pm0.0853} \\ 0.9579^{\pm0.0536} \\ 0.9512^{\pm0.0358} \\ 0.9535^{\pm0.0447} \end{array}$	$\begin{array}{c} 1.1621^{\pm0.0552} \\ 1.1782^{\pm0.0415} \\ 1.2189^{\pm0.0276} \\ 1.2085^{\pm0.0361} \end{array}$	$\begin{array}{c} \textbf{0.9540}^{\pm 0.0926} \\ \textbf{0.9594}^{\pm 0.0926} \\ \textbf{0.9518}^{\pm 0.0373} \\ \textbf{0.9548}^{\pm 0.0491} \end{array}$	$\begin{matrix} 1.1679^{\pm 0.0605} \\ 1.1898^{\pm 0.0399} \\ 1.2153^{\pm 0.0290} \\ 1.2020^{\pm 0.0392} \end{matrix}$

Coverage (†): Empirical coverage rate (target: $1 - \alpha = 0.95$)

Table 2: Conditional Coverage Evaluation of RR-GNN (Subgroups with Small Variations)

Condition Type	Subgroup	$\alpha = 0.1$	$\alpha = 0.2$	$\alpha = 0.3$
3*Cluster-Conditional	Cluster 1 Cluster 2 Cluster 3	0.9023 0.9015 0.8967	0.8041 0.8034 0.7945	0.7124 0.7085 0.6845
4*Class-Conditional	Class A Class B Class C Class D	0.9018 0.8986 0.9047 0.8935	0.8075 0.7914 0.8035 0.7942	0.7064 0.6947 0.7016 0.6964

Table 3: Overall Coverage at Different α Values on Edge Weight Prediction Task on Cora(Close to $1-\alpha$, within $\pm 5\%$)

α Value	Ineff
0.05	1.6315
0.10	1.5576
0.15	1.5528
0.20	1.2468
0.25	1.1178
0.30	1.0373

Table 4: Coverage Across Different Set Sizes (Close to $1-\alpha$, within $\pm 1\%$)

Set Size	Node Count	Coverage ($\alpha = 0.1$)
Small (2: DatasetTwitter)	81,306	0.8957
Medium (5: Dataset: CiteSeer)	$3,\!327$	0.9036
Large (10: Dataset: OGBN-Arxiv)	169,343	0.9014