Delegatable Anonymous Credentials from Mercurial Signatures

Elizabeth Crites and Anna Lysyanskaya

Brown University

Aug. 22, 2017

Usual Signatures

$$\begin{aligned} &\mathsf{Sign}(\mathsf{pk},\mathsf{sk},M) \to \sigma \\ &\mathsf{Verify}(\mathsf{pk},M,\sigma) \to \mathsf{Accept/Reject} \end{aligned}$$

Correctness: M = M, $Verify(pk, M, \sigma) = Accept.$

Security: Usual.

Signatures on Equivalence Classes

$$\begin{aligned} &\mathsf{Sign}(\mathsf{pk},\mathsf{sk},M) \to \sigma \\ &\mathsf{Verify}(\mathsf{pk},M,\sigma) \to \mathsf{Accept/Reject} \end{aligned}$$

Correctness: $M \approx_R M$, Verify(pk, M, σ) = Accept.

Security:

FHS14 Construction: $(A, B, C) \approx (rA, rB, rC)$

Mercurial Signatures (Our Work)

$$\begin{aligned} &\mathsf{Sign}(\mathsf{pk},\mathsf{sk},M) \to \sigma \\ &\mathsf{Verify}(\mathsf{pk},M,\sigma) \to \mathsf{Accept/Reject} \end{aligned}$$

Correctness: $M \approx_R M$, pk \approx_R pk,

 $\mathsf{Verify}(\mathsf{pk}, M, \sigma) = \mathsf{Accept}.$

Security:

Our Results

1. Mercurial signatures for this equivalence class that are secure in the generic group model.

Our Results

Why? Allow delegatable anonymous credentials:

Our Results

2. (certain) Mercurial sigs \Longrightarrow Del. creds

First direct construction.

