

Métodos Numéricos - MAT 1105

EGR. EDDY CAEL MAMANI CANAVIRI

Oruro - 2020

METODO DE LA BISECCION

Sea la ecuación: $\cos(x) - x$ DATOS INICIALES

$$a_0 = 0$$

$$b_0 = 2$$

$$f(a_0) = f(0) = \cos(0) - 0 = 1$$

$$f(b_0) = f(2) = \cos(2) - 2 = -2.416146837$$

$$tol = 0.00001$$

GRAFICANDO:

Ambos extremos tienen signo distinto, entonces podemos aplicar el metodo de la biseccion. HAREMOS 5 ITERACIONES MANUALES

1 ITERACION:

$$a_1 = 0$$

$$b_1 = 2$$

$$f(a_1) = f(0) = \cos{(0)} - 0 = 1$$

$$f(b_1) = f(2) = \cos{(2)} - 2 = -2.416146837$$
 Calculamos el punto medio entre a_1 y b_1 :

$$p_1 = \frac{a_1 + b_1}{2} = \frac{0+2}{2} = 1$$

Ahora comparemos los valores de $f(a_1)$ y $f(p_1)$.

$$f(a_1) = f(0) = \cos(0) - 0 = 1$$
$$f(p_1) = f(1) = \cos(1) - 1 = -0.459697694$$

Esos valores tienen signos opuestos. Entonces el valor de b_2 sera el valor de p_1 . El valor de a_2 se mantiene igual que a_1 .

2 ITERACIÓN:

$$a_2 = 0$$

$$b_2 = 1$$

$$f(a_2) = f(0) = \cos(0) - 0 = 1$$

$$f(b_2) = f(1) = \cos(1) - 1 = -0.459697694$$

Calculamos el punto medio entre a_2 y b_2 :

$$p_2 = \frac{a_2 + b_2}{2} = \frac{0+1}{2} = 0.5$$

Ahora comparemos los valores de $f(a_2)$ y $f(p_2)$.

$$f(a_2) = f(0) = \cos(0) - 0 = 1$$

$$f(p_2) = f(0.5) = \cos(0.5) - 0.5 = 0.377582562$$

Esos valores tienen signos iguales. Entonces el valor de a_3 sera el valor de p_2 . El valor de b_3 se mantiene igual que b_2 .

3 ITERACION:

$$a_3 = 0.5$$

$$b_3 = 1$$

$$f(a_3) = f(0.5) = \cos(0.5) - 0.5 = 0.377582562$$

$$f(b_3) = f(1) = \cos(1) - 1 = -0.459697694$$

Calculamos el punto medio entre a_3 y b_3 :

$$p_3 = \frac{a_3 + b_3}{2} = \frac{0.5 + 1}{2} = 0.75$$

Ahora comparemos los valores de $f(a_3)$ y $f(p_3)$.

$$f(a_3) = f(0.5) = \cos(0.5) - 0.5 = 0.377582562$$

$$f(p_3) = f(0.75) = \cos(0.75) - 0.75 = -0.018311131$$

Esos valores tienen signos opuestos. Entonces el valor de b_4 sera el valor de p_3 . El valor de a_4 se mantiene igual que a_3 .

4 ITERACION:

$$a_4 = 0.5$$

$$b_4 = 0.75$$

$$f(a_4) = f(0.5) = \cos(0.5) - 0.5 = 0.377582562$$

$$f(b_4) = f(0.75) = \cos(0.75) - 0.75 = -0.018311131$$

Calculamos el punto medio entre a_4 y b_4 :

$$p_4 = \frac{a_4 + b_4}{2} = \frac{0.5 + 0.75}{2} = 0.625$$

Ahora comparemos los valores de $f(a_4)$ y $f(p_4)$.

$$f(a_4) = f(0.5) = \cos(0.5) - 0.5 = 0.377582562$$

 $f(p_4) = f(0.625) = \cos(0.625) - 0.625 = 0.18596312$

Esos valores tienen signos iguales. Entonces el valor de a_5 sera el valor de p_4 . El valor de b_5 se mantiene igual que b_4 .

5 ITERACION:

$$a_5 = 0.625$$

$$b_5 = 0.75$$

$$f(a_5) = f(0.625) = \cos(0.625) - 0.625 = 0.18596312$$

$$f(b_5) = f(0.75) = \cos(0.75) - 0.75 = -0.018311131$$

Calculamos el punto medio entre a_5 y b_5 :

$$p_5 = \frac{a_5 + b_5}{2} = \frac{0.625 + 0.75}{2} = 0.6875$$

Ahora comparemos los valores de $f(a_5)$ y $f(p_5)$.

$$f(a_5) = f(0.625) = \cos(0.625) - 0.625 = 0.18596312$$

$$f(p_5) = f(0.6875) = \cos(0.6875) - 0.6875 = 0.085334946$$

Esos valores tienen signos iguales. Entonces el valor de a_6 sera el valor de p_5 . El valor de b_6 se mantiene igual que b_5 .

FIN DE ITERACIONES MANUALES

Se encontro la solucion en 17 iteraciones

Raiz = 0.739089966, y la funcion evaluada en ese punto es:

$$\cos(0.625) - 0.625 = -0.000008088$$

Tabulando estos resultados se tiene la siguiente tabla TABLA DE ITERACIONES

i	a_i	b_i	p_i	$f(p_i)$
1	0	2	1	-0.459697694
2	0	1	0.5	0.377582562
3	0.5	1	0.75	-0.018311131
4	0.5	0.75	0.625	0.18596312
5	0.625	0.75	0.6875	0.085334946
6	0.6875	-0.75	0.71875	0.033879372
7	0.71875	0.75	0.734375	0.007874725
8	0.734375	0.75	0.7421875	-0.005195712
9	0.734375	0.7421875	0.73828125	0.00134515
10	0.73828125	0.7421875	0.740234375	-0.001923873
11	0.73828125	0.740234375	0.739257812	-0.000289009
12	0.73828125	0.739257812	0.738769531	0.000528158
13	0.738769531	0.739257812	0.739013672	0.000119597
14	0.739013672	0.739257812	0.739135742	-0.000084701
15	0.739013672	0.739135742	0.739074707	0.000017449
16	0.739074707	0.739135742	0.739105225	-0.000033625
17	0.739074707	0.739105225	0.739089966	-0.000008088

METODO DE LA FALSA POSICION

Sea la ecuación: $\cos(x) - x$

DATOS INICIALES

$$a_0 = 0$$

$$b_0 = 2$$

$$f(a_0) = f(0) = \cos(0) - 0 = 1$$

$$f(b_0) = f(2) = \cos(2) - 2 = -2.416146837$$

$$tol = 0.00001$$

GRAFICANDO:

Ambos extremos tienen signo distinto, entonces podemos aplicar el metodo de la biseccion.

HAREMOS 5 ITERACIONES MANUALES

1 ITERACION:

$$a_1 = 0$$

$$b_1 = 2$$

$$f(a_1) = f(0) = \cos(0) - 0 = 1$$

$$f(b_1) = f(2) = \cos(2) - 2 = -2.416146837$$

Calculamos el punto entre a_1 y b_1 :

$$p_1 = \frac{f(a_1) * b_1 - f(b_1) * a_1}{f(a_1) - f(b_1) *} = \frac{1 * 2 + -2.416146837 * 0}{1 - -2.416146837} = 0.585454928$$

Ahora comparemos los valores de $f(a_1)$ y $f(p_1)$.

$$f(a_1) = f(0) = \cos(0) - 0 = 1$$

$$f(p_1) = f(0.585454928) = \cos(0.585454928) - 0.585454928 = 0.248005861$$

Esos valores tienen signos iguales. Entonces el valor de a_2 sera el valor de p_1 . El valor de b_2 se mantiene igual que b_1 .

2 ITERACION:

$$a_2 = 0.585454928$$

$$b_2 = 2$$

$$f(a_2) = f(0.585454928) = \cos(0.585454928) - 0.585454928 = 0.248005861$$

$$f(b_2) = f(2) = \cos(2) - 2 = -2.416146837$$

Calculamos el punto entre a_2 y b_2 :

$$p_2 = \frac{f(a_2) * b_2 - f(b_2) * a_2}{f(a_2) - f(b_2) *} = \frac{0.248005861 * 2 + -2.416146837 * 0.585454928}{0.248005861 - -2.416146837} = 0.717134868$$

Ahora comparemos los valores de $f(a_2)$ y $f(p_2)$.

$$f(a_2) = f(0.585454928) = \cos(0.585454928) - 0.585454928 = 0.248005861$$

$$f(p_2) = f(0.717134868) = \cos(0.717134868) - 0.717134868 = 0.036556996$$

Esos valores tienen signos iguales. Entonces el valor de a_3 sera el valor de p_2 . El valor de b_3 se mantiene igual que b_2 .

3 ITERACION:

$$a_3 = 0.717134868$$

$$b_3 = 2$$

$$f(a_3) = f(0.717134868) = \cos(0.717134868) - 0.717134868 = 0.036556996$$

$$f(b_3) = f(2) = \cos(2) - 2 = -2.416146837$$

Calculamos el punto entre a_3 y b_3 :

$$p_3 = \frac{f(a_3) * b_3 - f(b_3) * a_3}{f(a_3) - f(b_3) *} = \frac{0.036556996 * 2 + -2.416146837 * 0.717134868}{0.036556996 - -2.416146837} = 0.736255683$$

Ahora comparemos los valores de $f(a_3)$ y $f(p_3)$.

$$f(a_3) = f(0.717134868) = \cos(0.717134868) - 0.717134868 = 0.036556996$$

$$f(p_3) = f(0.736255683) = \cos(0.736255683) - 0.736255683 = 0.004732441$$

Esos valores tienen signos iguales. Entonces el valor de a_4 sera el valor de p_3 . El valor de b_4 se mantiene igual que b_3 .

4 ITERACION:

$$a_4 = 0.736255683$$

$$b_4 = 2$$

$$f(a_4) = f(0.736255683) = \cos(0.736255683) - 0.736255683 = 0.004732441$$

$$f(b_4) = f(2) = \cos(2) - 2 = -2.416146837$$

Calculamos el punto entre a_4 y b_4 :

$$p_4 = \frac{f(a_4) * b_4 - f(b_4) * a_4}{f(a_4) - f(b_4) *} = \frac{0.004732441 * 2 + -2.416146837 * 0.736255683}{0.004732441 - -2.416146837} = 0.738726106$$

Ahora comparemos los valores de $f(a_4)$ y $f(p_4)$.

$$f(a_4) = f(0.736255683) = \cos(0.736255683) - 0.736255683 = 0.004732441$$

 $f(p_4) = f(0.738726106) = \cos(0.738726106) - 0.738726106 = 0.000600825$

Esos valores tienen signos iguales. Entonces el valor de a_5 sera el valor de p_4 . El valor de b_5 se mantiene igual que b_4 .

5 ITERACION:

$$a_5 = 0.738726106$$

$$b_5 = 2$$

$$f(a_5) = f(0.738726106) = \cos(0.738726106) - 0.738726106 = 0.000600825$$

$$f(b_5) = f(2) = \cos(2) - 2 = -2.416146837$$

Calculamos el punto entre a_5 y b_5 :

$$p_5 = \frac{f(a_5) * b_5 - f(b_5) * a_5}{f(a_5) - f(b_5) *} = \frac{0.000600825 * 2 + -2.416146837 * 0.738726106}{0.000600825 - -2.416146837} = 0.73903967$$

Ahora comparemos los valores de $f(a_5)$ y $f(p_5)$.

$$f(a_5) = f(0.738726106) = \cos(0.738726106) - 0.738726106 = 0.000600825$$

$$f(p_5) = f(0.73903967) = \cos(0.73903967) - 0.73903967 = 0.000076088$$

Esos valores tienen signos iguales. Entonces el valor de a_6 sera el valor de p_5 . El valor de b_6 se mantiene igual que b_5 .

FIN DE ITERACIONES MANUALES

Se encontro la solucion en 6 iteraciones

Raiz = 0.739079378, y la funcion evaluada en ese punto es:

$$\cos(0.739079378) - 0.739079378 = 0.000009633$$

Tabulando estos resultados se tiene la siguiente tabla TABLA DE ITERACIONES

i	a_i	b_i	p_i	$f(p_i)$
1	0	2	0.585454928	0.248005861
2	0.585454928	2	0.717134868	0.036556996
3	0.717134868	2	0.736255683	0.004732441
4	0.736255683	2	0.738726106	0.000600825
5	0.738726106	2	0.73903967	0.000076088
6	0.73903967	2	0.739079378	0.000009633