Presented by Tasneem Samy

## Global Terrorism Data Analysis Introduce to Eng: Ibrahim El-Shal



## Table Of Content

01.

Performing Data
Cleaning, Exploration
and Visualization
using Pandas

02.

Gathering all insights in Dash board using power bi

03.

Dive into using Dask and performing similar steps on it, and make the comparisons

Note That with each section it mentioned the challenges that I faced

# 1- Reading Dataset

#### 1- Starting with importing used libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px

✓ 1.3s
```

#### 2- Try to read csv file (first challenge find the right encoding type)

```
Using chardet library to know the exact encoding type for the CSV file

import chardet
with open('globalterrorismdb_0718dist.csv','rb') as obj:
    result=chardet.detect(obj.read(20000))
    print(result)

v 0.1s

'encoding': 'ISO-8859-1', 'confidence': 0.73, 'language': ''}
```

Chardet library is the easiest way to Detecting files encoding

#### 3- Load csv file to data frame

```
df=pd.read_csv('globalterrorismdb_0718dist.csv',encoding='ISO-8859-1')
pd.set_option('display.max_columns', None)
```

### set options to show all columns in df

#### 4- Display head of data frame

| df.head(10)  ✓ 0.0s |              |       |        |      |            |          |            |         |                       |        |                                   |           |                  |
|---------------------|--------------|-------|--------|------|------------|----------|------------|---------|-----------------------|--------|-----------------------------------|-----------|------------------|
|                     | eventid      | iyear | imonth | iday | approxdate | extended | resolution | country | country_txt           | region | region_txt                        | provstate | city             |
| 0                   | 197000000001 | 1970  | 7      | 2    | NaN        | 0        | NaN        | 58      | Dominican<br>Republic | 2      | Central<br>America &<br>Caribbean | NaN       | Santo<br>Domingo |
| 1                   | 197000000002 | 1970  | 0      | 0    | NaN        | 0        | NaN        | 130     | Mexico                | 1      | North<br>America                  | Federal   | Mexico city      |
| 2                   | 197001000001 | 1970  | 1      | 0    | NaN        | 0        | NaN        | 160     | Philippines           | 5      | Southeast<br>Asia                 | Tarlac    | Unknown          |

#### 5- Show info of data frame

Using verbose to print the full summary

```
0.0s
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 181691 entries, 0 to 181690
Data columns (total 135 columns):
      Column
                          Dtype
      eventid
                          int64
0
                          int64
      iyear
      imonth
                          int64
      iday
                          int64
      approxdate
                          object
      extended
                          int64
      resolution
                          object
                          int64
      country
                          object
      country txt
      region
                          int64
9
      region_txt
                          object
10
      provstate
                          object
11
                          object
      city
12
      latitude
                          float64
13
      longitude
                          float64
14
      specificity
                          float64
15
      vicinity
                          int64
```

df.info(verbose = True)

## 2- Cleaning Dataset



#### 1- Show the duplicates row in data (it has no duplicates)

```
df[df.duplicated()]

<a href="mailto:velocity-color: blue;">df[df.duplicated()]</a>

<a href="mailto:velocity-color: blue;">velocity-color: blue;</a>

eventid iyear imonth iday approxdate extended resolution country country_txt region region_txt provstate city
```

#### 2- Show the percentage of null values

```
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
missing_values_percentage = (df.isnull().sum() / len(df)) * 100
missing_values_df = missing_values_percentage.reset_index()
missing_values_df.columns = ['Column', 'Missing Percentage']
print(missing_values_df)
```

## Challenge2: Handling Null Values and Choose Features:

Choosing Features (Columns) was based on:

1- Percentage of null (I can't choose columns that has more than 70 % of null even if it's important because I can't make insights from it )

2- Related to Success of Attack

| 40 | пастсут          | שכשטכטיט  |
|----|------------------|-----------|
| 41 | natlty1 txt      | 0.858050  |
| 42 | targtype2        | 93.866510 |
| 43 | targtype2 txt    | 93.866510 |
| 44 | targsubtype2     | 94.119136 |
| 45 | targsubtype2_txt | 94.119136 |
| 46 | corp2            | 94.431755 |
| 47 | target2          | 93.934757 |
| 48 | natlty2          | 94.040431 |
| 49 | natlty2_txt      | 94.040431 |
| 50 | targtype3        | 99.352747 |
| 51 | targtype3_txt    | 99.352747 |
| 52 | targsubtype3     | 99.396228 |
| 53 | targsubtype3_txt | 99.396228 |
| 54 | corp3            | 99.435305 |
| 55 | target3          | 99.353298 |
| 56 | natlty3          | 99.368708 |
| 57 | natlty3_txt      | 99.368708 |
| 58 | gname            | 0.000000  |
| 59 | gsubname         | 96.758232 |
| 60 | gname2           | 98.892075 |
| 61 | gsubname2        | 99.911938 |
| 62 | gname3           | 99.821675 |
| 63 | gsubname3        | 99.988992 |
| 64 | motive           | 72.171984 |
| 65 | guncertain1      | 0.209146  |
| 66 | guncertain2      | 98.923997 |
| 67 | guncertain3      | 99.823877 |
| 68 | individual       | 0.000000  |
| 69 | nperps           | 39.140629 |
| 70 | nnorncan         | 20 245702 |

#### Choosing columns that I will continue with

## Rename Some columns to be Clear to use

#### Challenge3: Validity of Numeric Columns

#### cleaned\_df.describe()

|    | vicinity    | doubtterr     | nperps        | nperpcap      | claime_dresp  |
|----|-------------|---------------|---------------|---------------|---------------|
| 18 | 1691.000000 | 181690.000000 | 110576.000000 | 112202.000000 | 115571.000000 |
|    | 0.068297    | -0.523171     | -65.361154    | -1.517727     | 0.049666      |
|    | 0.284553    | 2.455819      | 216.536633    | 12.830346     | 1.093195      |
|    | -9.000000   | -9.000000     | -99.000000    | -99.000000    | -9.000000     |
|    | 0.000000    | 0.000000      | -99.000000    | 0.000000      | 0.000000      |
|    | 0.000000    | 0.000000      | -99.000000    | 0.000000      | 0.000000      |
|    | 0.000000    | 0.000000      | 1.000000      | 0.000000      | 0.000000      |
|    | 1.000000    | 1.000000      | 25000.000000  | 406.000000    | 1.000000      |
|    |             |               |               |               |               |

and so on

## Cleaning was based on Knowing it original value (0 or 1) and know rows that have invalid value and replace it with zero

and so on

#### Validity of Categorical Columns like (country, region, weopon...

```
print(cleaned_df['country'].nunique())
        print(cleaned_df['country'].str.lower().str.strip().nunique())
         0.0s
     205
     205
D ~
        cleaned_df['region'].unique()
         0.0s
[53]
     array(['Central America & Caribbean', 'North America', 'Southeast Asia',
            'Western Europe', 'East Asia', 'South America', 'Eastern Europe',
            'Sub-Saharan Africa', 'Middle East & North Africa',
            'Australasia & Oceania', 'South Asia', 'Central Asia'],
           dtype=object)
        cleaned_df['attack_type'].unique()
     array(['Assassination', 'Hostage Taking (Kidnapping)',
            'Bombing/Explosion', 'Facility/Infrastructure Attack',
            'Armed Assault', 'Hijacking', 'Unknown', 'Unarmed Assault',
            'Hostage Taking (Barricade Incident)'], dtype=object)
```

it was already valid

## 3-Data Analysis



## 1- Choosing the most frequent Value of categorical columns using Numpy

```
def get_most_frequent(values):
   values = np.array(values)
   unique, counts = np.unique(values, return_counts=True)
    max count_index = np.argmax(counts)
   return unique[max count index]
categorical columns = [
    'country', 'region', 'provstate', 'city', 'attack_type', 'target_type',
    'targsubtype1_txt', 'corp1', 'target1', 'nationality_of_victom',
    'organisation', 'motive', 'weaptype1', 'weapon_type', 'weapsubtype1_txt',
    'weapdetail', 'propextent desc', 'propcomment', 'scite1', 'scite2', 'dbsource'
frequent values = {}
for col in categorical columns:
    frequent_values[col] = get_most_frequent(cleaned_df[col].dropna())
frequent_values_df = pd.DataFrame(frequent values, index=['Most Frequent'])
frequent values df.head()
```

We see that most attack happened in **Iraq**, most of targets with attacking **civilians**, Most of the attacks were with **explosives** and most cases wasn't knowing exactly what was the motive of terrorists

|                  | country | region                              | provstate | attack_type       | target_type                       | target_subtype                  | organisation | motive  | weapon_type |
|------------------|---------|-------------------------------------|-----------|-------------------|-----------------------------------|---------------------------------|--------------|---------|-------------|
| Most<br>Frequent | Iraq    | Middle<br>East &<br>North<br>Africa | Baghdad   | Bombing/Explosion | Private<br>Citizens &<br>Property | Unnamed<br>Civilian/Unspecified | Unknown      | Unknown | Explosives  |

## 2- Making insights with Pandas Knowing numbers of attacks over years

```
attacks_per_year = cleaned_df.groupby('year').size().reset_index(name='num_attacks').sort_values(by='num_attacks',ascending=False)

attacks_per_year

0.0s

| year | num_attacks |
| 2014 | 16903 |
| 2015 | 14965 |
| 2016 | 13587 |
| 2013 | 12036 |
| 2017 | 10900
```

We notice that Maximum number of attacks happen in 2014 with 16903 attacks and the terrorist attacks have increased in recent years.

#### Knowing numbers of attacks over countries

```
tacks_per_country = cleaned_df.groupby('country').size().reset_index(name='num_attacks').sort_values(by='num_attacks',ascending=False tacks_per_country.head(20)
.0s

| country | num_attacks |
| Iraq | 24636 |
| Pakistan | 14368 |
| Afghanistan | 12731 |
| India | 11960 |
| Colombia | 8306
```

We notice that Maximum number of attacks happen in Iraq with 24636 attacks, next was Pakistan with 14368 attacks followed by Afghanistan with 12731.

#### Knowing numbers of attacks over regions

attacks\_per\_region = cleaned\_df.groupby('region').size().reset\_index(name='num\_attacks').sort\_values(by='num\_attacks',ascending=False)
attacks\_per\_region

| region                     | num_attacks |
|----------------------------|-------------|
| Middle East & North Africa | 50474       |
| South Asia                 | 44974       |
| South America              | 18978       |
| Sub-Saharan Africa         | 17550       |
| Western Europe             | 16639       |
| Southeast Asia             | 12485       |
|                            |             |

| Central America & Caribbean | 10344 |
|-----------------------------|-------|
| Eastern Europe              | 5144  |
| North America               | 3456  |
| East Asia                   | 802   |
| Central Asia                | 563   |
| Australasia & Oceania       | 282   |

We notice that Maximum number of attacks happen in Middle East & North Africa with 50474 attacks next South Asia and the least region was Australasia & Oceania

#### **Most Attack types**

| <pre>attacks_per_attack_type = clea attacks_per_attack_type  0.0s</pre> | ned_df.groupby('at | ttack_type').size().reset_index(name='num_attacks').sort_values(by='num_attacks',ascending=False) Pyth |
|-------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------|
| attack_type                                                             | num_attacks        |                                                                                                        |
| Bombing/Explosion                                                       | 88255              |                                                                                                        |
| Armed Assault                                                           | 42669              |                                                                                                        |
| Assassination                                                           | 19312              |                                                                                                        |
| Hostage Taking (Kidnapping)                                             | 11158              |                                                                                                        |
| Facility/Infrastructure Attack                                          | 10356              |                                                                                                        |

We notice that Most attacks was Bombing/Explosion with 88255 attacks next was Armed Assault with 42669 attacks.

## 4- Data Visualization with python



#### Trend of Terrorist Attacks over years



#### Number of Terrorist Attacks by Country







#### Geographic Distribution of Terrorist Attacks



#### Time series animation showing the spread of terrorism over the years

#### Global Terrorism Over Time



## 5<u>-Power Bl</u> Dash Board



#### Global Terrorism











412K

Total Number Killed

524K

Total Number Wounded

# 6- Working With Dask

#### 1- Importing Libraries

```
import pandas as pd
import numpy as np
import dask.dataframe as dd
import time
```

#### 2- Comparing read csv file (challenge1: Facing problems in reading with dask)

```
import warnings
warnings.filterwarnings('ignore')
```

we used it filter warning

#### Dask was faster in reading csv file

#### 3- Comparing Memory Usage

## Dask consume more memory

#### 4- Comparing Summarizing Data

```
Comparing summerizing data
    start time = time.time()
    df.describe()
    end_time = time.time()
    print(f"Pandas time: {end_time - start_time}")
  ✓ 0.3s
 Pandas time: 0.3373904228210449
    start_time = time.time()
    dask_df.describe()
    end_time = time.time()
    print(f"Dask time: {end_time - start_time}")
  ✓ 0.2s
 Dask time: 0.2223215103149414
```

#### Dask Faster

#### 5-Comparing Aggregation operations

```
start time = time.time()
   attacks_per_weapon_type = df.groupby('iyear').size()
   attacks per weapon type = df.groupby('country txt').size()
   attacks per weapon type = df.groupby('region txt').size()
   attacks per weapon type = df.groupby('weaptype1 txt').size()
   end time = time.time()
   print(f"Pandas time: {end_time - start_time}")

√ 14.6s

Pandas time: 14.692779064178467
   start_time = time.time()
   attacks_per_weapon_type = dask_df.groupby('iyear').size().compute()
   attacks_per_weapon_type = dask_df.groupby('country_txt').size().compute()
   attacks_per_weapon_type = dask_df.groupby('region_txt').size().compute()
   attacks_per_weapon_type = dask_df.groupby('weaptype1_txt').size().compute()
   end_time = time.time()
   print(f"Dask time: {end_time - start_time}")
 ✓ 0.1s
Dask time: 0.10119462013244629
```

#### Dask was faster

# Thank youvery much!

