Parameters: Our goal is to generate k hidden-bits. $N = \Theta(k^{\delta}), \delta \in (0, 1)$. The exact weight w is specifically chosen to ensure a proper minimum distance in exact-LPN. Denote Gaussian noise distribution with \mathcal{B}^N_{μ} and exact-weight noise distribution with X^N_w .

• Setup (1^k) :

- 1. $\forall i \in [k], A_i \stackrel{\$}{\leftarrow} \{0, 1\}^{N \times N}, \ s_i \stackrel{\$}{\leftarrow} \{0, 1\}^N, \ e_i \leftarrow \mathcal{B}_u^N.$
- 2. Decide w, weight parameter for exact-LPN.
- 3. Compute $b_i := A_i \cdot s_i + e_i$.
- 4. Sample $\alpha \stackrel{\$}{\leftarrow} \{0,1\}^{N \times N}$ (for hiding seed)
- 5. $\operatorname{crs} := \{ \{ (A_i, b_i) \mid i \in [k] \}, w, \alpha \}, \operatorname{td} := \{ s_i \mid i \in [k] \}.$

• Genbits $(1^k, crs)$:

- 1. $seed \stackrel{\$}{\leftarrow} \{0,1\}^N, \epsilon \leftarrow \mathcal{B}^N_\mu$, hide seed as $\beta := \alpha \cdot seed + \epsilon$.
- 2. $\forall i \in [k], e'_i \leftarrow \{0,1\}^N$, compute $b'_i := A_i \cdot seed + e'_i$.
- 3. Compute hidden-bits $r_i := hc(b_i; seed), \forall i \in [k].$
- 4. Sample $x \stackrel{\$}{\leftarrow} \{0,1\}^{N-1}, \ \forall i \in [k], \ \eta_i \leftarrow X_w^N \text{ s.t. } |\eta_i| = w.$
- 5. Compute $B_i := A_i \cdot (x || r_i) + \eta_i$.
- 6. com := $\{x, \beta\}, \ \pi_i := \{b'_i, B_i\}, \ \forall i \in [k].$
- Verify(1^k , crs, com, i, π_i , r, td_i):
 - 1. Check $r = hc(\pi_{i,1}; td_i)$ i.e. $r = hc(b'_i; s_i)$.
 - 2. Check $|\pi_{i,2} \oplus A_i \cdot (\mathsf{com}_1 || r)| = w$ i.e. $|B_i \oplus A_i \cdot (x || r)| = w$
 - 3. But how do we validate $com_2 = \beta$? Or can we prove cheating β will not hurt binding?
 - 4. Accept if and only if all the above hold.
- Open(1^k, crs, com): Inefficiently solve LPN sample β to get seed, then compute all hidden bits from $r_i := \mathsf{hc}(b_i; seed), \ \forall i \in [k].$

There is an error probability because of hardcore computation, which can be reduced to negligible by limiting noise rate.