Unit 3: Electric Force, Field, and Potential

3.1 - Electric Systems

- · Bohr model generally represents an atom
 - electrons don't move on tracks as represented in the Bohr model
 - ullet protons are positively charged and represented by p^+
 - neutrons are neutral and are represented by n^0
 - ullet electrons are negatively charged and represented by e^-
 - located outside of the nucleus and are highly mobile
 - conductors allow electrons to freely move through the material
 - microscopic properties show that the electrons surrounding the atoms that make up the material are allowed to move around
- insulators do not allow free motion of electrons

- Protons are positive, neutrons are neutral, and electrons are negative.
- Conductors allow electrons to move throughout the material

3.2 - Electric Charge

- ullet charge: represented by Q and measured in $\operatorname{Coulombs}$
 - **coulomb:** SI unit of charge, represented by C , equivalent to $I \cdot s$ where s is seconds
 - comes from protons and electrons, which are called "charge carriers"
 - when an object is neutral, it has an equal amount of protons and electrons
 - negatively charged: more electrons
 - positively charged: more protons
 - electrons and protons carry the same amount of charge, called the elementary charge
 - $e = 1.60 \times 10^{-19} \text{ C}$
 - all charges must be multiples of the elementary charge
 - · like charges repel, opposite charges attract
 - charge cannot be created or destroyed
- electric current: represented by I and measured in Amperes, calculated by $I=rac{\Delta Q}{\Delta t}$, is the quantity of charge flow per unit of time
 - ampere: SI unit of current, represented by A, equivalent to $\frac{C}{s}$ where s is seconds

Charge (C): represented by QCurrent (I): represented by A

3.3 - Conservation of Electric Charge

- the net charge in an isolated system remains constant
 - objects can exchange electrons through contant
 - electrons move around to create a positive or negative charge, but the system is still neutral
 - · protons do not move
 - electrons will spread out from high concentration to low concentration to maintain equilibrium

- Charge is conserved in a closed system
- Electrons move to maintain equilibrium, but not protons

3.4 - Charge Distribution - Friction, Conduction, and Induction

- · when observing charges of two objects
 - · repulsion: both objects are charged
 - no reaction: both objects are neutral
 - attraction: both objects are charged or one object is charged and the other is neutral
- neutral objects can be attracted to charged objects
 - electrons are still capable of moving within neutral objects
 - a charged object can push like electrons away, creating a polarized object
 - if the object is grounded during polarization, the object becomes charged
 - induction is when an object picks up a charge without being touched
 - the quantity of charge on the polarized object is the same quantity of charge from the object used to induce the charge
- · when materials slide past each other, electrons travel between them
 - dissimilar materials have different electronegativities, which prompt some materials to "steal" electrons
 - conduction is when two objects start out charged and balance their charges through physical contact
 - electrons shift from high concentration to low concentration
 - friction is when two objects start out neutral and charge each other through physical contact
 - · end up with same magnitude of charge
- when charge is added to insulators, the charge stays at where it was added because the electrons aren't allowed to move around
 - net charge stays in one place
- when charge is added to conductors, the electrons spread out through the material away from other electrons
 - net charge moves towards outside of the object
- polarization is when electrons shift in a neutral object

- in conductors, electrons are allowed to move and can shift towards one side of the object, making polarization comparatively strong
- in insulators, electrons shift only towards one side of the atom, and polarization is comparatively weak

- 🜓 Charging by induction means that the object is not being touched, but instead wired to ground and polarized
 - Charging by conduction means two already-charged objects balance through contact
 - Charging by friction means two neutral objects charge each other through contact
 - Charge added to insulators stay in one place, while charge added to conductors tend to move around
 - Polarization in insulators are weak because electrons only shift on the atom, while polarization in conductors are strong because electrons shift in the object

3.5 - Electric Permittivity

- electric permittivity: represented by ϵ and measured in $\frac{C^2}{N \cdot m^2}$, calculated by $\epsilon=\kappa\epsilon_0$ is the measure of resistance to the propagation of electric field
 - κ is the dielectric constant of a material
 - ullet vacuum permittivity: $\epsilon_0=8.85 imes10^{-12}rac{C^2}{N\cdot m^2}$, is the resistance of a vacuum to the travel of an electric field
- electric permittivity refers to the measure of matter's resistance, while vacuum permittivity refers to free space

Figure 1.1 Electric Permittivity ($rac{C^2}{N\cdot m^2}$ **):** represented by ϵ and calculated by $\epsilon=\kappa\epsilon_0$, is how resistant a material is to an electric field passing through it

Vacuum Permittivity: a constant value denoted as $\epsilon_0 = 8.85 imes 10^{-12} rac{C^2}{N \cdot m^2}$

3.6 - Introduction to Electric Forces

- Newton's Second Law: $a=rac{\Sigma F}{m}$
 - for the same amount of force, bigger objects have more inertia and less acceleration
 - electrons are more likely to move because they are less massive and experience more acceleration despite experiencing the same force as a proton
- Newton's Third Law: all actions have an equal and opposite reaction
 - forces experienced in an interaction are equal in magnitude and opposite in direction
- positive objects aren't attracted to neutral objects but could polarize them, creating a small charge

- For the same net force, smaller objects have a higher acceleration than larger objects
- All forces in an interaction are equal in magnitude and opposite in direction
- Neutrons can't be polarized, but neutral objects can be

3.7 - Electric Forces and Free Body Diagrams

- draw diagrams that accurately communicate forces
 - draw the object as a single dot
 - draw forces as arrows pointing away from the dot with the length of the arrow corresponding to force magnitude
 - forces that don't cancel out in opposing directions represent acceleration
- · direction of force between two objects depends on their charge

- Simplify the system to draw free body diagrams
- Opposite forces attract and like forces repel

3.8 - Describing Electric Force

- Inverse-Square Law: phenomena that spread out radially, in a sphere shape, from a point source
- Coulomb's Law: $F_E = k rac{q_1 q_2}{r^2}$, calculates the magnitude of force between two charges
 - ullet k is Coulomb's constant, equal to $9 imes 10^9 rac{N \cdot m^2}{C^2}$
 - because Coulomb's constant uses meters, all other values must be converted to meters
- to take ratio of a new value compared to an old value, divide the new equation by the old equation with their respective multiplied values
- · determine net forces of charges in one dimension
 - 1. draw a free body diagram
 - 2. set up a net force equation
 - 3. substitute equations for forces into the net force equation
 - 4. simplify and solve
- · determine net forces of charges in two dimensions
 - 1. draw a free body diagram
 - 2. determine size of individual forces on point
 - 3. break forces into x and y components using $\sin \theta$ and $\cos \theta$
 - 4. vector addition

 $m{q}$ - **Coulomb's Law:** $F_E=krac{q_1q_2}{r^2}$, calculates the magnitude of force between two charges

3.9 - Gravitational and Electromagnetic Forces

- · electric force is for microscopic, gravitational force is for macroscopic
 - electric force is much greater than gravitational force when calculating forces between protons and electrons, enough for gravity to be negligible
- ullet Law of Universal Gravitation: $F_g=Grac{m_1m_2}{r^2}$, calculates the magnitude of gravitational attraction between two objects
 - ullet G is the gravitational constant, equal to $6.67 imes10^{-11}rac{m^2N}{ka^2}$

- Gravitational force is negligible at microscopic levels
 - Law of Universal Gravitation: $F_g=Grac{m_1m_2}{r^2}$, calculates the magnitude of gravitational attraction between two objects

3.10 - Vector and Scalar Fields in Electricity

- fields show the effect that an object has on the space around it
- electric field diagrams show the size and direction of force that a positive charge would experience if placed in that location
 - if vectors point inwards, the charge is negative, because the vectors always reference a positive charge
- ullet electric potential: represented by V and measured in Volts , calculated by $V=krac{q}{r}$, is the energy per unit of charge at a specific point
 - ullet volt: SI unit of electric potential, equal to $rac{J}{C}$ where J is in joules and C is in Coulombs
 - scalar quantity with no direction
- ullet electric field: represented by E and measured in $rac{N}{C}$, calculated by $E=krac{q}{r^2}$, is the force per unit of charge at a specific point
 - vector quantity with positive and negative directions

- **Electric Potential (**V**):** calculated by $V=krac{q}{r}$, is the amount of energy per unit of charge at a specific point - **Electric Field (** $rac{N}{C}$ **):** calculated by $E=krac{q}{r^2}$ or $E=krac{F_E}{q}$, is the amount of force per unit of charge at a specific point

3.11 - Electric Charges and Fields

- ullet use $E=krac{q}{r^2}$ when describing a field by the charge creating that field
- ullet use $E=krac{F_E}{q}$ when describing a field by the charge experiencing the field, where F_E is the force felt by the charge
- when calculating net electric field between vectors, break them down into components to calculate final vector
 - electric field also exists whether a charge is present or not
- electric field inside a conductor is always zero
- parallel plate capacitor is a pair of large, conducting plates at different electric potentials
 - creates a uniform electric field facing towards the negative plate
 - isolines are evenly spaced lines between two plates

- Parallel plate capacitors are a pair of plates with opposite electric charges and the electric potential is constantly decreasing from the positive to negative plate

3.12 - Isolines and Electric Fields

isolines represent distortion of space due to a charge

- all electric potential charges on an isoline are equal and are drawn in equal intervals
- electric fields are perpendicular to isolines and point towards the negative charge
- potential difference is calculated by subtracting two potential values
 - negative value is like losing potential and "going downhill
- magnitude of electric field is the sum of the electric fields divided by the distance
- electric fields are uniform between parallel plate capacitors or when a sphere is big enough to seem flat

- All points on an isoline are equal
- The vector perpendicular to an isoline is the motion towards or away from the charge

3.13 - Conservation of Electric Energy

- ullet electric potential energy: measured in ${
 m Joules}$, calculated by $U_E=qV$ and $U_E=qEr$, is energy stored in the arrangement of charged objects
 - ullet $U_E=qV$ is for energy per charge
 - ullet $U_E=qEr$ is for between two locations or at a specific location
- work must be done to move a charge against the direction it would naturally go

- **Electric Potential Energy (**J**):** calculated by $U_E=qV$, $U_E=qEr$, or $U_E=q(\frac{kQ}{r_2}-\frac{kQ}{r_1})$, is the amount of energy stored in a system