CHAPTER 15

REDUCTION OF STATE TABLES STATE ASSIGNMENT

Contents

- 15.1 Elimination of Redundant States
- 15.2 Equivalent States
- 15.3 Determination of State Equivalence Using an Implication Table
- 15.4 Equivalent Sequential Circuits
- 15.5 Incompletely Specified State Tables
- 15.6 Derivation of Flip-Flop Input Equations
- 15.7 Equivalent State Assignments
- 15.8 Guidelines for State Assignment
- 15.9 Using a One-Hot State Assignment

Objectives

- 1. Define equivalent states, state several ways of testing for state equivalence, and determine if two states are equivalent.
- 2. Define equivalent sequential circuits and determine if two circuits are equivalent.
- 3. Reduce a state table to a minimum number of rows.
- 4. Specify a suitable set of state assignments for a state table, eliminating those assignments which are equivalent with respect to the cost of realizing the circuit
- State three guidelines which are useful in making state assignments, and apply these to making a good state assignment for a given state table
- 6. Given a state table and assignment, form the transition table and derive flip-flop input equations
- 7. Make a one-hot state assignment for a state graph and write the next state and output equations by inspection.

15.1 Elimination of Redundant States

Table 15-1. State Table for Sequence Detector

Input	Present	Next	State	Presen	t Output
Sequence	State	X=0	X=1	X=0	X=1
reset	А	В	С	0	0
0	В	D	Е	0	0
1	С	F	G	0	0
00	D	Н		0	0
01	E	J	K	0	0
10	F	L	М	0	0
11	G	Ν	Р	0	0
000	Η	А	Α	0	0
001	I	А	А	0	0
010	J	А	А	0	1
011	K	А	А	0	0
100	L	А	А	0	1
101	М	А	А	0	0
110	Ν	А	А	0	0
111	Р	А	А	0	0

15.1 Elimination of Redundant States

Table 15-2. State Table for Sequence Detector

Present	Next	State	Present Output			
State	X=0	X=0	X=1			
А	В	С	0	0		
В	D	Е	0	0		
С	RE	Ø D	0	0		
D	Н	ХH	0	0		
Е	J	χH	0	0		
- F	×J.	M H	0	0		
-G	NH	RH	0	0		
Н	А	А	0	0		
	A	A	0	0		
J	А	А	0	1		
-K -	A	A	0	0		
	A	A	0	1		
	A	A	0	0		
-N	A	A	0	0		
	А	A	0	0		

15.1 Elimination of Redundant States

Fig 15-1. Reduced State Table and Graph for Sequence Detector

Present	Next	State	Present Output			
State	X=0	X=1	X=0	X=1		
Α	В	С	0	0		
В	D	Е	0	0		
С	E	D	0	0		
D	Н	Н	0	0		
Е	J	Н	0	0		
Н	А	А	0	0		
J	А	Α	0	1		

15.2 Equivalent States

Fig 15-2.

Definition 15.1

Let N_1 and N_2 be sequential circuits(not necessarily different). Let \underline{X} represent a sequence of inputs of arbitrary length. Then state p in N_1 is equivalent to state q in N_2 iff $\lambda_1(p,\underline{X}) = \lambda_2(q,\underline{X})$ for every possible input sequence \underline{X} .

Theorem 15.1

Two states p and q of a sequential circuit are equivalent iff for every single input X, the outputs are the same and the next states are equivalent, that is,

$$\lambda(p,X) = \lambda(q,X)$$
 and $\delta(p,X) = \delta(q,X)$

15.3 Determination of State Equivalence Using an Implication Table

Table 15-3.

Present	Next	State	Present Output
State	X=0	1	X=0
а	d	С	0
b	f	h	0
С	е	d	1
d	а	е	0
е	С	а	1
f	f	b	1
g	b	h	0
h	С	g	1

By Theorem 15.1

Fig 15-3. Implication Chart for Table 15-3

$$a \equiv b$$
 iff $d \equiv f$ and $c \equiv h$
 $a \equiv d$ iff $a \equiv d$ and $c \equiv e$
 $a \equiv g$ iff $b \equiv d$ and $c \equiv h$

15.3 Implication Chart After First Pass

Fig 15-4. Implication Chart After First Pass

15.3 Implication Chart After First Pass

Fig 15-5. Implication Chart After Second Pass

Table 15-4.

Present	Next S	State	
State	X=0	1	Output
а	а	С	0
b	f	h	0
С	С	а	1
f	f	b	1
g	b	h	0
h	С	g	1
		9	l '

15.4 Equivalent Sequential Circuits

Definition 15.2

Sequential circuit N_1 is equivalent to sequential circuit N_2 if for each state p in N_1 , there is a state q in N_2 such that $p\equiv q$, and conversely, for each state s in N_2 , there is a state t in N_1 such that $s\equiv t$

15.4 Equivalent Sequential Circuits

Fig 15-6. Tables and Graphs for Equivalent Circuits

		N_1				
	X=0	X=1	X=0	X=1		X=0
А	В	А	0	0	S ₀	S ₃
В	С	D	0	1	S ₁	S_3
С	А	С	0	1	S_2	S_0
D	С	В	0	0	S_3	S_2

		N_2		
	X=0	X=1	X=0	X=1
S ₀	S ₃	S ₁	0	1
S_1	S ₃	S ₀	0	0
S_2	S ₀	S_2	0	0
S_3	S ₂	S_3	0	1

15.4 Equivalent Sequential Circuits

Fig 15-7. Implication Tables for Determining Circuit Equivalence

$$A \equiv S_2$$
 $B \equiv S_0$ $C \equiv S_3$ $D \equiv S_1$

15.5 Incompletely Specified State Tables

Fig 15-8.

The possible input-output sequence for circuit B

(- is a don't care output)

Table 15-5. Incompletely Specified State Table

	X=0	X=1	0	1
S ₀	_	S ₁	-	_
S_1	S ₂	S_3	_	_
S_2	S ₀	_	0	_
S ₃	S ₀	_	1	

	X=0	X=1	0	1
S ₀	(S ₀)	S ₁	(0)	_
S_1	S ₂ S ₀	S_3	(1)	_
S_2	S ₀	(S_1)	0	_
S_3	S ₀	(S_3)	1	_

$$S_0 \equiv S_2, S_1 \equiv S_3$$

The procedure to drive the flip-flop input equations:

- 1. Assign flip-flop state values to correspond to the states in the reduced table
- 2. Construct a transition table which gives the next states of the flip-flops as a function of the present states and inputs
- 3. Derive the next-state maps from the transition table
- 4. Find flip-flop input maps from the next-state maps using the techniques developed in Unit 12 and find the flip-flop input equations from maps

Table 15-6

	X=0	X=1	0	1
S ₀	S ₁	S_2	0	0
S_1	S_3	S_2	0	0
S_2	S ₁	S_4	0	0
S_3	S_5	S_2	0	0
S_4	S ₁	S_6	0	0
S_5	S ₅	S_2	1	0
S_6	S ₁	S_6	0	1

	A ⁺ B	S+C+	- 4	Z
ABC	X=0	X=1	0	1
000	110	001	0	0
110	111	001	0	0
001	110	011	0	0
111	101	001	0	0
011	110	010	0	0
101	101	001	1	0
010	110	010	0	1

$$S_0 = 000$$
, $S_1 = 110$, $S_2 = 001$, $S_3 = 111$, $S_4 = 011$, $S_5 = 101$, $S_6 = 010$

Fig. 15-9 Next-State Maps for Table 15-6

(a) Derivation of D flip-flop input equations

(b) Derivation of J-K flip-flop input equations

Table 15-7

	Next State Output(Z ₁ Z ₂)						А	+B+			Output	(Z_1Z_2)					
DO	$X_1X_2=$			$X_1X_2=$		$X_1X_2=$			$X_1X_2=$								
PS	00	01	11	10	00	01	11	10	AB	00	01	11	10	00	01	11	10
S ₀	S ₀	S ₀	S ₁	S ₁	00	00	01	01	00	00	00	01	01	00	00	01	01
S ₁	S ₁	S_3	S_2	S_1	00	10	10	00	01	01	10	11	01	00	10	10	00
S_2	S ₃	S_3	S_2	S_2	11	11	00	00	11	10	10	11	11	11	11	00	00
S_3	S ₀	S_3	S_2	S_0	00	00	00	00	10	00	10	11	00	00	00	00	00

(a) State table

(b) Transition table

Fig.15-10 Next-State Maps for Table 15-7

Fig.15-11 Derivation of S-R Equations for Table 15-7

Table 15-8. State Assignments for 3-Row Tables

			3										
S ₀	00	00	00	00	00	00	01	 11	11	11	11	11	11
S ₁	01	01	10	10	11	11	00	00	00	01	01	10	11
S ₂	10	11	01	11	01	10	10	01	10	00	10	00	01

Fig. 15-12 Equivalent Circuits Obtained by Complementing Q_k

Fig. 15-13 Equivalent Circuits Obtained by Complementing Q_k

Table 15-9

Assignments			Present	Next 9	State	Output	
A_3	B_3	C_3	State	X=0	1	0	1
00	00	11	S ₁	S ₁	S_3	0	0
01	10	10	S ₂	S ₂	S ₁	0	1
10	01	01	S ₃	S_2	S_3	1	0

The resulting J and K input equations

Assignment A	Assignment B	Assignment C
$J_1 = XQ_2'$	$\boldsymbol{J}_2 = \boldsymbol{X} \boldsymbol{Q}_1'$	$K_1 = XQ_2$
$K_1 = X'$	$K_2 = X'$	$J_1 = X'$
$J_2 = X'Q_1$	$J_1 = X'Q_2$	$K_2 = X'Q_1'$
$K_2 = X$	$K_1 = X$	$J_2 = X$
$Z = X'Q_1 + XQ_2$	$Z = X'Q_2 + XQ_1$	$Z = X'Q_1' + XQ_2$
$D_1 = XQ_2'$	$D_2 = XQ_1'$	$D_1 = X' + Q_2'$
$D_2 = X'(Q_1 + Q_2)$	$D_1 = X'(Q_2 + Q_1)$	$D_2 = X + Q_1 Q_2$

Table 15-10 Nonequivalent Assignments for Three and Four States

	3-Sta	te Assign	ments	4-Sta	te Assign	ments
States	1	2	3	1	2	3
a	00	00	00	00	00	00
b	01	01	11	01	01	11
С	10	11	01	10	11	01
d	-	-	_	11	10	10

Table 15-11 Number of Distinct(Nonequivalent)State Assignments

Number of States	Minimum Number of State Variables	Number of Distinct Assignments	
2	1	1	
3	2	3	
4	2	3	
5	3	140	
6	3	420	
7	3	840	
8	3	840	
9	4	10,810,800	
16	4	≈ 5.5×10 ¹⁰	

Guidelines for state assignment

- 1. States which have the same next state for a given input should be given adjacent assignments
- 2. States which are the next states of the same state should be given adjacent assignments
- 3. States which have the same output for a given input should be given adjacent assignments

Fig. 15-14

ABC		X=0	1	0	1	
000	S ₀	S ₁	S ₂	0	0	
110	S ₁	S ₃	S_2	0	0	
001	S_2	S ₁	S ₄	0	0	
111	S_3	S ₅	S_2	0	0	
011	S_4	S ₁	S_6	0	0	
101	S_5	S ₅	S_2	1	0	
010	S_6	S ₁	S_6	0	1	

BC	0	1
00	S_0	
01	S_2	S_5
11	S_4	S_3
10	S_6	S_1

(a) State table

(b) Assignment maps

The sets of adjacent states specified by Guidelines 1 and 2

$$1.(S_0, S_1, S_3, S_5) (S_3, S_5) (S_4, S_6) (S_0, S_2, S_4, S_6)$$

$$2.(S_1, S_2) (S_2, S_3) (S_1, S_4) (S_2, S_5)2x (S_1, S_6)2x$$

Fig. 15-15 Next-State Maps for Figure 15-14

Fig. 15-16 State Table and Assignments

	X=0	1	X=0	1	
а	а	С	0	0	
b	d	f	0	1	
С	С	а	0	0	
d	d	b	0	1	
е	b	f	1	0	
f	С	е	1	0	
		(a)			

The sets of adjacent states specified by each Guidelines

Table 15-12 Transition Table for Figure 15-16(a)

	Q_1^+Q	2 ⁺ Q ₃ ⁺		
$Q_1Q_2Q_3$	X=0	1	X=0	1
1 0 0	100	000	0	0
1 1 1	011	010	0	1
000	000	100	0	0
0 1 1	011	111	0	1
1 0 1	111	010	1	0
0 1 0	000	101	1	0

Fig. 15-17 Next-State and Output Maps for Table15-12

The D flip-flop input equations

$$D_{1} = Q_{1}^{+} = X'Q_{1}Q'_{2} + XQ'_{1}$$

$$D_{2} = Q_{2}^{+} = Q_{3}$$

$$D_{3} = Q_{3}^{+} = XQ'_{1}Q_{2} + X'Q_{3}$$

The output equations

$$Z = XQ_2Q_3 + X'Q_2'Q_3 + XQ_2Q_3'$$

15.9 Using a One-Hot State Assignment

Fig. 15-18 Partial State Graph

The One-hot assignment example

$$S_0: Q_0Q_1Q_2Q_3 = 1000, S_1: 0100, S_2: 0010, S_3: 0001$$

The next-state equation for Q₃

$$Q_3^+ = X_1 (Q_0 Q_1' Q_2' Q_3') + X_2 (Q_0' Q_1 Q_2' Q_3') + X_3 (Q_0' Q_1' Q_2 Q_3') + X_4 (Q_0' Q_1' Q_2' Q_3)$$

Because $Q_0=1$ implies $Q_1=Q_2=Q_3=0$,

$$Q_3^+ = X_1 Q_0 + X_2 Q_1 + X_3 Q_2 + X_4 Q_3$$

15.9 Using a One-Hot State Assignment

The One-hot assignment example by replacing Q₀ with Q'₀

$$S_0: Q_0Q_1Q_2Q_3 = 0000, S_1:1100, S_2:1010, S_3:1001$$

The modified equations

$$Q_3^+ = X_1 Q_0' + X_2 Q_1 + X_3 Q_2 + X_4 Q_3$$

$$Z_1 = X_1 Q_0' + X_3 Q_2, \quad Z_2 = X_2 Q_1 + X_4 Q_3$$

The next-state equations

$$Q_0^+ = F'R'Q_0 + FQ_2 + F'RQ_1$$

$$Q_1^+ = F'R'Q_1 + FQ_0 + F'RQ_2$$

$$Q_2^+ = F'R'Q_2 + FQ_1 + F'RQ_0$$

The output equations

$$Z_1 = Q_0, \quad Z_2 = Q_1, \quad Z_3 = Q_2$$