Routing-Algorithmen im Internet

Nikolay Paleshnikov, Markus Witt

RWTH Aachen

January 30, 2015

Was ist Routing?

Routing-Hierarchie Prinzipien der Netzwerkanalyse

Interior Gateway Protocols

Distance-Vector Routing Link-State Routing Open Shortest Paths First

Exterior Gateway Protocol

Netzwerkhierarchie Border Gateway Protocol

Zusammenfassung und offene Probleme

Was ist Routing?

Schlüsselbegriffe

- Router
- Datagramm
- dynamisches Routing
- Routing-Algorithmus
- Routingtabelle

Routing-Hierarchie

- lacktriangleright autonomes System (AS) ightarrow IGP
- lacktriangle Verbindung einzelner AS ightarrow EGP

Prinzipien der Netzwerkanalyse

Netzwerkmodell als gewichteter Graph

Optimalitätsprinzip

Wenn der optimale Pfad von Router X nach Router Y über Router Z läuft, dann ist der optimale Pfad von Z nach Y ein Teilpfad davon.

zwei Hauptklassen von Routing-Algorithmen

- Distance-Vector
- Link-State

Bellman-Ford-Gleichung

$$d_{x}(y) = min_{v}\{c(x, v) + d_{v}(y)\}$$

$$d_{x}(y) \qquad \text{kosteng\"{u}instigste Route von x nach y}$$

$$v \qquad \text{beliebiger Nachbar von x}$$

$$c(x, v) \qquad \text{Kantengewicht zwischen x und v}$$

$$d_{v}(y) \qquad \text{kosteng\"{u}instigste Route von v nach y}$$

Zeitkomplexität: $\mathcal{O}(|v|)$

Zeitpunkt T=1

Distance Vector of A

Destination	Cost
В	2

Distance Vector of B

Destination	Cost
A	2
C	3
D	1

Distance Vector of C

Destination	Cost
В	3
D	1

Distance Vector of D

Destination	Cost
В	1
С	1

Zeitpunkt T=2

Distance Vector of A

Destination	Cost
В	2
С	5
D	3

Distance Vector of B

Destination	Cost
A	2
С	2
D	1

Distance Vector of C

Destination	Cost
A	5
В	2
D	1

Distance Vector of D

Destination	Cost
A	3
В	1
С	1

Zeitpunkt T=3

Distance Vector of A

Destination	Cost
В	2
С	4
D	3

Distance Vector of B

Destination	Cost
A	2
С	2
D	1

Distance Vector of C

Destination	Cost
A	4
В	2
D	1

Distance Vector of D

Destination	Cost
A	3
В	1
С	1

Vorteile

- geringer Platzbedarf zur Speicherung der Routingtabellen
- geringer Kommunikationsaufwand

Distance-Vector Routing Nachteile

Figure: Bouncing Effect

Figure: Count-to-infinity Problem

Algorithmus von Dijkstra

Gegeben:

- Startknoten s
- Knotenmenge N aus Knoten mit bereits zugewiesenem kürzetsen Pfad
- Tabelle mit zur Zeit bekannten optimalen Pfaden D(s,x) vom Startknoten s zu einem beliebigen Knoten x

Algorithmus von Dijkstra

Iterationsschritt:

- Wähle $t \in V \setminus N$ mit kleinster Distanz zum Startknoten D(s,t)
- Aktualisiere die Distanz von s zu jedem Nachbar v von t gemäß:

$$D(s,v) = min\{D(s,v), D(s,t) + c(t,v)\}$$

▶ Füge t in N hinzu

Zeitkomplexität: $\mathcal{O}(|V|^2 + |E|)$

Vorteile

- schnelle Konvergenz
- loop-free
- keine Weitergabe von Rechenfehlern
- Unterstützung von mehreren optimalen Pfaden möglich

Nachteile

- hoher Kommunikationsaufwand
- komplizierte Berechnungen

Lösung

Aufteilung in areas

- ▶ innerhalb von areas → Link-State Routing
- ▶ dazwischen → zusammengefasste Routinginformation wie beim Distance-Vector Routing

Protokollaufbau

- Eindeutige RouterID
- Router verbunden über Link oder Netzwerk
- interne-/AS-Grenzrouter (ASBR)
- Informationsaustausch über Linkstatus und Kosten

Paketinhalte

- 5 Pakettypen:
 - 2: database description
 - 3: link state request
 - 4: link state update
- 5 Advertisementtypen:
 - 1: router link advertisement
 - 5: AS external link advertisement

Paketaustausch

- A: database description
- B: link state acknowledgement
- B: link state request
- A: link state update
- B verteilt Updates zu seinen Nachbarn (flooding)

Entwicklung

▶ RFC 2178: MD5, flooding update, MTU

▶ OSPFv3: IPv6

Netzwerkhierarchie

Border Gateway Protocol

Protokollaufbau

- ▶ RouterID, AS#
- NLRI
- Statemachine f
 ür den Verbindungsstatus
- 4 Pakettypen
- Aufbau auf TCP

Border Gateway Protocol

Pakettypen

- OPEN
- ▶ UPDATE
- NOTIFICATION
- ► KEEPALIVE

Border Gateway Protocol

Austausch von NLRI

- ► NLRI:
 - Netzwerk in CIDR-Notation
 - AS-Pfad
 - next Hop
- local routing information base (loc-RIB)
- Pro Peer: Adj-RIB-In, Adj-RIB-Out
- Erzeugung der Routingtabelle

Zusammenfassung und offene Probleme

State-of-art

- lue OSPF ightarrow IGP ightarrow Link-State
- ightharpoonup BGP ightharpoonup EGP ightharpoonup Distance-Vector

Ungeeignet bei

- hoher Mobilität von Hosts
- nicht vorhandener Netzwerkinfrastruktur
- unstabiler Netzwerktopologie