教材10-11页2,7,8; 16页7,9. 求F_p^n中二维子空间的个数.

10-2

lf

$$A = \begin{pmatrix} 3 & -1 & 2 \\ 2 & 1 & 1 \\ 1 & -3 & 0 \end{pmatrix}$$

find all solutions of $\boldsymbol{A}\boldsymbol{X}=0$ by row-reducing \boldsymbol{A} . Solution:

$$\begin{pmatrix} 3 & -1 & 2 \\ 2 & 1 & 1 \\ 1 & -3 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 8 & 2 \\ 0 & 7 & 1 \\ 1 & -3 & 0 \end{pmatrix}$$

hence the three rows are linearly independent (8 \cdot 1 - 7 \cdot 2 \neq 0), and the only solution is (0, 0, 0).

11-7

Prove that the interchange of two rows of a matrix can be accomplished by a finite sequence of elementary row operations of the other two types.

Solution: To interchange rows i,j, denote the k-th row by r_k . Let $r_i \to r_i + r_j$, $r_j \to r_j - r_i$, $r_j \to -r_j$, $r_i \to r_i - r_j$, then these operations interchange r_i, r_j .

11-8

Consider the system of equations AX=0 where

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

is a 2×2 matrix over the field F. Prove the following

- (a) If every entry if A is 0, then every pair (x_1, x_2) is a solution of AX = 0.
- (b) If $ad-bc \neq 0$, the system AX=0 has only the trivial solution $x_1=x_2=0$.
- (c) If ad-bc=0 and some entry of A is not 0, then there is a solution (x_1^0,x_2^0) such that (x_1,x_2) is a solution iff there is a scalar y such that $x_1=yx_1^0,x_2=yx_2^0$.

Proof: (a) is trivial. (b): If $ax_1+bx_2=0$ and $cx_1+dx_2=0$, then

 $0=c(ax_1+bx_2)-a(cx_1+dx_2)=-(ad-bc)x_2$ so $x_2=0$. Likewise $x_1=0$ so the only solution is (0,0).

(c) Proof: Suppose $b \neq 0$, let $(x_0, y_0) = (b, -a)$, then the solutions of AX = 0 are exactly $\mathrm{Span}(x_0, y_0)$.

16-7

Find all solutions of

$$2x_1 - 3x_2 - 7x_3 + 5x_4 + 2x_5 = -2$$
 $x_1 - 2x_2 - 4x_3 + 3x_4 + x_6 = -2$
 $2x_1 + 0x_2 - 4x_3 + 2x_4 + x_5 = 3$
 $x_1 - 5x_2 - 7x_3 + 6x_4 + 2x_5 = -7$.

Solution: Apply elementary row operations to the matrix:

$$\begin{pmatrix} 2 & -3 & -7 & 5 & 2 & -2 \\ 1 & -2 & -4 & 3 & 1 & -2 \\ 2 & 0 & -4 & 2 & 1 & 3 \\ 1 & -5 & -7 & 6 & 2 & -7 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 1 & 1 & -1 & 0 & 2 \\ 1 & -2 & -4 & 3 & 1 & -2 \\ 0 & 4 & 4 & -4 & -1 & 7 \\ 0 & -3 & -3 & 3 & 1 & -5 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 0 & 1 & 1 & -1 & 0 & 2 \\ 1 & 0 & -2 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 & -1 & -1 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -2 & 1 & 0 & 1 \\ 0 & 1 & 1 & -1 & 0 & 2 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Hence all solutions are:

$$\{(x_1,x_2,x_3,x_4,x_5): x_1=1+2x_3-x_4, x_2=2-x_3+x_4, x_5=1\}.$$

16-9

Let

$$A = egin{pmatrix} 3 & -6 & 2 & -1 \ -2 & 4 & 1 & 3 \ 0 & 0 & 1 & 1 \ 1 & -2 & 1 & 0 \end{pmatrix}.$$

For which (y_1,y_2,y_3,y_4) does the system of equations AX=Y have a solution? Proof: Since A map each base $(0,\cdots,1,0,\cdots,0)$ to its corresponding column, the answer is $\mathrm{Span}\langle (3,-2,0,1),(-6,4,0,2),(2,1,1,1),(-1,3,1,0)\rangle$ which is $\mathrm{Span}\langle (3,-2,0,1),(-1,3,1,0)\rangle$.

Ex1

求 F_p^n 中二维子空间的个数.

Solution: Any subspace $W\subset F_p^n$ such that $\dim W=2$ corresponds to a 2 imes n non-zero row-reduced echelon matrix. Hence there are

$$\begin{split} \sum_{1\leqslant i < j\leqslant n} p^{n-i-1} \cdot p^{n-j} &= \sum_{i=1}^{n-1} p^{n-i-1} \sum_{j=i+1}^n p^{n-j} = \sum_{i=1}^{n-1} p^{n-i-1} \cdot \frac{p^{n-i}-1}{p-1} = \frac{1}{p-1} \Biggl(\sum_{i=1}^{n-1} p^{2(n-i)-1} - p^{n-i-1} \Biggr) \\ &= \frac{1}{p-1} \Biggl(p \frac{p^{2(n-1)}-1}{p^2-1} - \frac{p^{n-1}-1}{p-1} \Biggr) = \frac{(p^n-1)(p^{n-1}-1)}{(p-1)(p^2-1)} \end{split}$$

distinct subspaces.

Actually, change 2 to m, and the answer becomes the Gauss binomial coefficient $\begin{bmatrix} n \\ m \end{bmatrix}_p$.