Crypto: DS du 3 mars 2008

Durée : 1h30. Sans document. Les exercices sont indépendants.

– EXERCICE 1. On considère le système de chiffrement donné par le tableau suivant, où l'espace des messages en clair est $\mathcal{M} = \{a, b, c, d\}$, l'espace des messages chiffrés $\mathcal{C} = \{1, 2, 3, 4\}$ et l'espace des clés est $\mathcal{K} = \{K_1, K_2, K_3, k_4\}$.

$\mathcal{K}^{\mathcal{M}}$	a	b	c	d
K_1	1	2	3	4
K_2	2	1	4	3
K_3	3	4	2	1
K_4	1	3	4	2

- a) Montrer qu'en général ce système n'est pas à confidentialité parfaite. On expliquera précisément pourquoi.
- b) Trouver les lois de probabilité sur l'ensemble des messages en clair qui rendent tout de même la confidentialité parfaite.
- EXERCICE 2. On considère le système de signature défini par le tableau suivant, où l'ensemble des messages en clair est $\mathcal{M} = \{a, b, c\}$, l'ensemble des clés $\mathcal{K} = \{K_1, K_2, K_3, k_4\}$, et les six signatures possibles $\{1, 2, 3, 4, 5, 6\}$.

$\mathcal{K}^{\mathcal{M}}$	a	b	c
K_1	2	5	3
K_2	2	1	4
K_3	6	1	3
K_4	6	5	4

Le cryptogramme C est constitué du couple $(M, S_K(M))$ où $S_K(M)$ est la signature du message M, définie par la clé K et le tableau ci-dessus. Quelles sont les probabilités de substitution et d'imposture du système?

- EXERCICE 3. Soit f_K la fonction de chiffrement d'un chiffre par blocs, par exemple l'AES. On rappelle que le mode CBC chiffre une suite de blocs $M_1 \dots M_n$

en convenant d'un vecteur d'initialisation C_0 et, pour $i=1\ldots n$, en définissant la suite des chiffrés

$$C_i = f_K(C_{i-1} + M_i).$$

On suppose que le i-ième bloc chiffré C_i est reçu de manière erronée, c'est-à-dire qu'un bloc différent, C'_i , est reçu à la place de C_i . Montrer que deux blocs de clair sont corrompus.

– Exercice 4. On considère la suite $(a_i)_{i\geqslant 0}$ engendrée par la récurrence linéaire :

$$a_{i+7} = a_{i+6} + a_{i+5} + a_{i+4} + a_{i+3} + a_i$$

et par les conditions initiales $(a_0, a_1, a_2, a_3, a_4, a_5, a_6) = (1000001)$.

- a) Quel est le polynôme de rétroaction h(X) de cette récurrence?
- b) Trouver la complexité linéaire de la suite, en déduire une nouvelle récurrence linéaire satisfaite par la suite, et un autre polynôme de rétroaction k(X). Montrer que k(X) divise h(X).
- c) Calculer la période de la suite et l'ordre des racines de k(X)? Qu'observet-on? Commentaire?