Pumping Lemma Closure properties Decision problems Automata minimization

Automata, Languages and Computation

Chapter 4: Properties of Regular Languages

Master Degree in Computer Engineering
University of Padua
Lecturer: Giorgio Satta

Lecture based on material originally developed by : Gösta Grahne, Concordia University

Properties of regular languages

Pumping Lemma Closure properties Decision problems Automata minimization

- 1 Pumping Lemma: every regular language satisfies this property; useful to show that some languages are not regular
- Closure properties : how to combine automata using specific operations
- 3 Decision problems : algorithms for the solution of problems based on automata/regex and their complexity
- Automata minimization : reduce number of states to a minimum

Introduction to pumping lemma

Suppose $L_{01} = \{0^n 1^n \mid n \geqslant 1\}$ were a regular language

Then L_{01} must be recognized by some DFA A; let k be the number of states of A

Assume A reads 0^k . Then A must go through the following transitions:

fence notation
$$\epsilon$$
 p_0
 $0 p_1$
 $0 p_2$
 $0 p_2$
 $0 p_k$
 $0 p_k$

By the **pigeonhole principle**, there must exist a pair i, j with $i < j \le k$ such that $p_i = p_j$. Let us call q this state

Introduction to pumping lemma

ofter reading or we are ing and be of (i+i) we are again on a for proposable Now you can fool A: • if $\hat{\delta}(q, 1^i) \notin F$, then the machine will foolishly reject $0^{i}1$

- if $\hat{\delta}(q, 1^i) \in F$, then the machine will foolishly accept $0^{i}1^i$

In other words: state q would represent inconsistent information about the count of occurrences of 0 in the string read so far

Therefore A does not exists, and L_{01} is not a regular language

Pumping lemma for regular languages

n is defferent for each **Theorem** Let L be any regular language. Then $\exists n \in \mathbb{N}$ depending on L, $\forall w \in L$ with $|w| \ge n$, we can factorize w = xyz with: • $y \neq \epsilon$ |xy| ≤ n ← the cuts are in the beginning of the string " • $\forall k \geqslant 0$, $xy^k z \in L$ is finite not into back if H then C H=>C = USC]

Chapter 4

Pumping lemma for regular languages

L is not regular proof: show that L does not have the p. lams proporty

Proof

Suppose L is a regular language Then L comot be regular I

Then L is recognized by some DFA A with, say, n states

Let
$$w = a_1 a_2 \cdots a_m \in L$$
 with $m \geqslant n$

Let
$$p_i = \hat{\delta}(q_0, a_1 a_2 \cdots a_i)$$
, for each $i = 0, 1, \dots, n$

Be caroful

There exists
$$i < j \le n$$
 such that $p_i = p_j$

P does NOT imply C, showing that p. lone hold does not meen t it's a regular language

Pumping lemma for regular languages

Let us write w = xyz, where

•
$$x = a_1 a_2 \cdots a_i$$

$$y = a_{i+1}a_{i+2}\cdots a_j$$

$$z = a_{j+1}a_{j+2}\dots a_m$$

Evidently, $xy^kz \in L$, for any $k \ge 0$

Let Σ be some alphabet, and let $w \in \Sigma^*$, $a \in \Sigma$. We write $\#_a(w)$ to denote the number of occurrences of a in w

We define

$$L_{eq} = \{ w \mid w \in \{0,1\}^*, \#_0(w) = \#_1(w) \}$$

In words, L_{eq} is the language whose strings have an equal number of 0's and 1's

Use the pumping lemma to show that L is not regular

Proof Suppose L_{eq} were regular. Then $L(A) = L_{eq}$ for some DFA A

Let *n* be the number of states of *A* and let $w = 0^n 1^n \in L(A)$

By the pumping lemma we can factorize w = xyz with

- $|xy| \leq n$
- $y \neq \epsilon$

and state that for each $k \ge 0$, we have $xy^kz \in L(A)$

we count cit whole there is a 1 because we would have |xy|7n

$$w = 000\cdots00^{-1}\cdots0111\cdots11$$

It is not enough to show there exists a cut where the plemma is not tre, we need to show the plemma is false her prayect (lemma says

Automata, Languages and Computation Chapter 4

For k = 0 we have $xz \in L(A)$

This is a **contradiction**, since $|y| \ge 1$ and then xz has fewer 0's than 1's

We therefore conclude that $L(A) \neq L_{eq}$

Comment of the if-then formulation of the pumping lemma: many students wrongly state that if the pumping lemma holds, then the language must be regular

if we choose W= 101010 ... it's impossible to dispose the p.lownow, it's important to choose the right w!

Proof (alternative) We can see the application of the pumping lemma as a game between two players

Player P2 states that L_{eq} is regular, and player P1 wants to establish a **contradiction**

- P2 picks *n* (number of states of DFA, if it exists)
- P1 picks string $w = 0^n 1^n \in L_{eq}$, with $|w| \ge n$
- P2 picks a factorization w = xyz, with $|xy| \le n$, $y \ne \epsilon$ and $xy^kz \in L_{eq}$ (assuming L_{eq} is regular)
- P1 picks k such that $xy^kz \notin L$, which is a violation of the pumping lemma. Specifically, P1 picks k=0: $xz \notin L_{eq}$, since y contains just 0's, $y \neq \epsilon$, and thus $\#_0(xz) < \#_1(xz) = n$
- P1 concludes that L_{eq} cannot be regular

Let $L_{pr}=\{1^p\mid p \text{ prime}\}$. Using the pumping lemma, show that L_{pr} is not regular

Proof Let n be as in the pumping lemma, and let $p \ge n+2$ be some prime number. Thus $1^p \in L_{pr}$

By the pumping lemma we can write w = xyz with

- $|xy| \leq n$,
- $y \neq \epsilon$

such that, for each $k \ge 0$, we have $xy^kz \in L(A)$

Let
$$|y| = m \geqslant 1$$

$$w = \underbrace{111\cdots \underbrace{y}_{y}}_{|y|=m\geqslant 1}\underbrace{1111\cdots 11}_{z}$$

Choose k = p - m, so that $xy^{p-m}z \in L_{pr}$ and then $|xy^{p-m}z|$ is a prime number

We can write
$$|xy^{p-m}z| = |xz| + (p-m)|y| = p - m + (p-m)m = (1+m)(p-m)$$

Let us verify that none of the two factors is a 1 :

- $y \neq \epsilon$, thus 1 + m > 1
- $m = |y| \le |xy| \le n$, $p \ge n + 2$, thus $p m \ge n + 2 m \ge n + 2 n = 2$

We have derived a contradiction

Exercise

For a string w, we write w^R to denote the **reverse** of w. Example: $01011^R = 11010$ and $(w^R)^R = w$

Consider the language

$$L = \{ww^R \mid w \in \{0,1\}^*\}$$

Using the pumping lemma, show that L is not regular

Closure properties of regular languages

Let L and M be regular languages over Σ . Then the following languages are all regular

- Union: *L* ∪ *M*
- Intersection: L ∩ M
- Complement: $\overline{L} = \Sigma^* \setminus L$
- Difference: $L \setminus M$
- Reversal: $L^R = \{ w^R \mid w \in L \}$
- Kleene closure: L*
- Concatenation: L.M
- Homomorphism: $h(L) = \{h(w) \mid w \in L\}$
- Inverse homomorphism: $h^{-1}(L) = \{ w \in \Sigma^* \mid h(w) \in L \}$

Closure under union

Theorem For any regular languages $L \in M$, $L \cup M$ is regular

Proof Let E and F be regular expressions such that L = L(E) and M = L(F). Then $L \cup M$ is generated by E + F, and is regular by definition

Closure under concatenation and Kleene

The proof of closure under union is rather **immediate**, since regular expressions use the union operator

Similarly, we can immediately prove the closure under

- concatenation
- Kleene operator

Closure under complement

Theorem If L is a regular language over Σ , then so is $\overline{L} = \Sigma^* \setminus L$

Proof Let L be recognized by a DFA

$$A = (Q, \Sigma, \delta, q_0, F).$$

Let
$$B = (Q, \Sigma, \delta, q_0, Q \setminus F)$$
. Now $L(B) = \overline{L}$

Let L be recognized by the DFA

Then \overline{L} is recognized by the DFA

Closure under intersection

Theorem If L and M are regular, then so is $L \cap M$

Proof By De Morgan's law,
$$L \cap M = \overline{\overline{L} \cup \overline{M}}$$

We already know that regular languages are closed under complement and union

Intersection automaton

Proof (alternative) Let $L = L(A_L)$ and $M = L(A_M)$ for automata A_L and A_M with

$$A_L = (Q_L, \Sigma, \delta_L, q_L, F_L)$$

$$A_M = (Q_M, \Sigma, \delta_M, q_M, F_M)$$

Without any loss of generality, we assume that both automata are deterministic

We shall construct an automaton that simulates A_L and A_M in parallel, and accepts if and only if both A_L and A_M accept

Intersection automaton

Idea: If A_L goes from state p to state s upon reading a, and A_M goes from state q to state t upon reading a, then $A_{L \cap M}$ will go from state (p,q) to state (s,t) upon reading a

Intersection automaton

Formally

$$A_{L\cap M} = (Q_L \times Q_M, \Sigma, \delta_{L\cap M}, (q_{L,0}, q_{M,0}), F_L \times F_M),$$

where

$$\delta_{L\cap M}((p,q),a)=(\delta_L(p,a),\delta_M(q,a))$$

We can show by induction on |w| that

$$\hat{\delta}_{L\cap M}((q_{L,0},q_{M,0}),w) = \left(\hat{\delta}_L(q_{L,0},w),\hat{\delta}_M(q_{M,0},w)\right)$$

Then $A_{L \cap M}$ accepts if and only if A_L and A_M accept

Exercise

Build an automaton that accepts strings with at least one 0 and at least one 1. Let's build **simpler** automata and take the intersection

Closure under set difference

Theorem If L and M are regular languages, so is $L \setminus M$

Proof Observe that $L \setminus M = L \cap \overline{M}$

We already know that regular languages are closed under complement and intersection

Closure under reverse operator

Theorem If L is regular, so is L^R

Proof Let L be recognized by FA A. Turn A into an FA for L^R by

- reversing all arcs
- make the old start state the new sole accepting state
- create a new start state p_0 such that $\delta(p_0, \epsilon) = F$, F the set of accepting states of old A

Closure under reverse operator

Proof (alternative) Let E be a regular expression. We shall construct a regular expression E^R such that $L(E^R) = (L(E))^R$

We proceed by structural induction on E

Base If E is ϵ , \emptyset , or a, then $E^R = E$ (easy to verify)

Closure under reverse operator

Induction

- E = F + G: We need to reverse the two languages. Then $E^R = F^R + G^R$
- E = F.G: We need to reverse the two languages and also reverse the order of their concatenation. Then $E^R = G^R.F^R$
- $E=F^*$: $w\in L(F^*)$ means $\exists k: w=w_1w_2\cdots w_k,\ w_i\in L(F)$ then $w^R=w_k^Rw_{k-1}^R\cdots w_1^R,\ w_i^R\in L(F^R)$ then $w^R\in L(F^R)^*$ Same reasoning for the inverse direction. Then $E^R=(F^R)^*$

Thus
$$L(E^R) = (L(E))^R$$

Test

State whether the following claims hold true, and motivate your answer

- the intersection of a non-regular language and a finite language is always a regular language
- the intersection of a non-regular language L_1 and an infinite regular language L_2 is never a regular language
- every subset of a non-regular language is a non-regular language

Superset and subset

Assume L is a regular language. We cannot say anything about languages L' and L'' with $L' \subset L$ and $L'' \supset L$

More precisely

- L' could be regular or non-regular
- L" could be regular or non-regular

Often student gets confused about this, thinking that adding strings to L makes it 'more difficult' and removing strings from L makes it 'less difficult'. But this is **not true in general**

Homomorphisms

Let Σ and Δ be two alphabets. A **homomorphisms** over Σ is a function $h: \Sigma \to \Delta^*$

Informally, a homomorphism is a function which replaces each symbol with a string

Example: Let $\Sigma = \{0,1\}$ and define $h(0) = ab, \ h(1) = \epsilon; \ h$ is a homomorphism over Σ

Homomorphisms

We extend h to Σ^* : if $w = a_1 a_2 \cdots a_n$ then

$$h(w) = h(a_1)h(a_2)\cdots h(a_n)$$

Equivalently, we can use a recursive definition :

$$h(w) = \begin{cases} \epsilon, & \text{if } w = \epsilon; \\ h(x)h(a) & \text{if } w = xa, \ x \in \Sigma^*, \ a \in \Sigma. \end{cases}$$

Example: Using *h* from previous example on string 01001 results in *ababab*

Homomorphisms

For a language $L \subseteq \Sigma^*$

$$h(L) = \{h(w) \mid w \in L\}$$

Example: Let L be the language associated with the regular expression $\mathbf{10^*1}$. Then h(L) is the language associated with the regular expression $(\boldsymbol{ab})^*$

Closure under homomorphism

Theorem Let $L \subseteq \Sigma^*$ be a regular language and let h be a homomorphisms over Σ . Then h(L) is a regular language

Proof Let E be a regular expression generating L. We define h(E) as the regular expression obtained by substituting in E each symbol a with $a_1 a_2 \cdots a_k$, under the assumption that

- a ∈ Σ
- $h(a) = a_1 a_2 \cdots a_k, \ k \geqslant 0$

We now prove the statement

$$L(h(E)) = h(L(E)),$$

using structural induction on E

Base
$$E = \epsilon$$
 or else $E = \emptyset$. Then $h(E) = E$, and $L(h(E)) = L(E) = h(L(E))$

$$E = \mathbf{a} \text{ with } \mathbf{a} \in \Sigma. \text{ Let } h(\mathbf{a}) = a_1 a_2 \cdots a_k, \ k \geqslant 0. \text{ Then } L(\mathbf{a}) = \{a\} \text{ and thus } h(L(\mathbf{a})) = \{a_1 a_2 \cdots a_k\}$$
The regular expression $h(\mathbf{a})$ is $a_1 a_2 \cdots a_k$. Then $L(h(\mathbf{a})) = \{a_1 a_2 \cdots a_k\} = h(L(\mathbf{a}))$

Induction Let E = F + G. We can write

$$L(h(E)) = L(h(F+G))$$

$$= L(h(F) + h(G)) \qquad h \text{ defined over regex}$$

$$= L(h(F)) \cup L(h(G)) \qquad + \text{ definition}$$

$$= h(L(F)) \cup h(L(G)) \qquad \text{inductive hypothesis for } F, G$$

$$= h(L(F) \cup L(G)) \qquad h \text{ defined over languages}$$

$$= h(L(F+G)) \qquad + \text{ definition}$$

$$= h(L(E))$$

Let E = F.G. We can write

$$L(h(E)) = L(h(F.G))$$

$$= L(h(F).h(G)) h defined over regex$$

$$= L(h(F)).L(h(G)) . definition$$

$$= h(L(F)).h(L(G)) inductive hypothesis for F, G$$

$$= h(L(F).L(G)) h defined over languages$$

$$= h(L(F.G)) . definition$$

$$= h(L(E))$$

Let $E = F^*$. We can write

```
\begin{array}{lll} L(h(E)) & = & L(h(F^*)) \\ & = & L([h(F)]^*) & h \text{ defined over regex} \\ & = & \bigcup_{k \geqslant 0} \left[L(h(F))\right]^k & * \text{ definition} \\ & = & \bigcup_{k \geqslant 0} \left[h(L(F))\right]^k & \text{inductive hypothesis for } F \\ & = & \bigcup_{k \geqslant 0} h([L(F)]^k) & h \text{ definition over languages} \\ & = & h(\bigcup_{k \geqslant 0} \left[L(F)\right]^k) & h \text{ definition over languages} \\ & = & h(L(F^*)) & * \text{ definition} \\ & = & h(L(E)) & \end{array}
```

Conversion complexity

We can convert among DFA, NFA, ϵ -NFA, and regular expressions

What is the computational complexity of these conversions?

We investigate the computational complexity as a function of

- number of states n for an FA
- number of operators *n* for a regular expressions
- ullet we assume $|\Sigma|$ is a constant

From ϵ -NFA to DFA

Suppose an ϵ -NFA has n states. To compute ECLOSE(p) we visit at most n^2 arcs. We do this for n states, resulting in time $\mathcal{O}(n^3)$

The resulting DFA has 2^n states. For each state S and each $a \in \Sigma$ we compute $\delta(S, a)$ in time $\mathcal{O}(n^3)$. In total, the computation takes $\mathcal{O}(n^3 \cdot 2^n)$ steps, that is, **exponential time**

If we compute δ just for the **reachable** states

- we need to compute $\delta(S, a)$ s times only, with s the number of reachable states
- in total the computation takes $\mathcal{O}(n^3 \cdot s)$ steps

Other conversions

From NFA to DFA : computation takes exponential time

From DFA to NFA:

- put set brackets around the states
- computation takes time $\mathcal{O}(n)$, that is, **linear time**

From FA to regular expression via state elimination construction: computation takes **exponential time**

Other conversions

From regular expression to ϵ -NFA :

- construct a tree representing the structure of the regular expression in time $\mathcal{O}(n)$
- ullet at each node in the tree, we build new nodes and arcs in time $\mathcal{O}(1)$ and use **pointers** to previously built structure, avoiding copying
- grand total time is $\mathcal{O}(n)$, that is, **linear time**

Decision problems

In the problem instances below, languages L and M are expressed in any of the four representations introduced for regular languages

- $L = \emptyset$?
- $w \in L$?
- L = M?

Empty language

 $L(A) \neq \emptyset$ for FA A if and only if at least one final state is **reachable** from the initial state of A

Algorithm for computing reachable states:

Base The initial state is reachable

Induction If q is reachable and there exists a transition from q to p, then p is reachable

Computation takes time proportional to the number of arcs in A, thus $\mathcal{O}(n^2)$

We already saw this idea in the lazy evaluation for translating NFA into DFA

Empty language

Given a regular expression E, we can decide $L(E) \stackrel{?}{=} \emptyset$ by structural induction

Base

- $E = \epsilon$ or else E = a. Then L(E) is non-empty
- $E = \emptyset$. Then L(E) is empty

Induction

- E = F + G. Then L(E) is empty if and only if both L(F) and L(G) are empty
- E = F.G. Then L(E) is empty if and only if either L(F) or L(G) are empty
- $E = F^*$. Then L(E) is not empty, since $\epsilon \in L(E)$

Language membership

We can test $w \in L(A)$ for DFA A by simulating A on w. If |w| = n this takes $\mathcal{O}(n)$ steps

If A is an NFA with s states, simulating A on w requires $\mathcal{O}(n \cdot s^2)$ steps

Language membership

If A is an ϵ -NFA with s states, simulating A on w requires $\mathcal{O}(n \cdot s^3)$ steps

Alternatively, we can pre-process A by calculating ECLOSE(p) for s states, in time $\mathcal{O}(s^3)$. Afterwards, the simulation of each symbol a from w is carried out as follows

- from the current states, find the successor states under a in time $\mathcal{O}(s^2)$
- ullet compute the ϵ -closure for the successor states in time $\mathcal{O}(s^2)$

This takes time $\mathcal{O}(n \cdot s^2)$

Pumping Lemma Closure properties Decision problems Automata minimization

Language membership

If L = L(E), for some regular expression E of length s, we first convert E into an ϵ -NFA with 2s states. Then we simulate w on this automaton, in $\mathcal{O}(n \cdot s^3)$ steps

Language membership

We can convert an NFA or an ϵ -NFA into a DFA, and then simulate the input string in time $\mathcal{O}(n)$

The time required by the conversion could be **exponential** in the size of the input FA

This method is used

- when the FA has small size
- when one needs to process several strings for membership with the same FA

Equivalent states

Let
$$A=(Q,\Sigma,\delta,q_0,F)$$
 be a DFA, and let $p,q\in Q$. We define $p\equiv q \iff \forall w\in \Sigma^*\,:\, \hat{\delta}(p,w)\in F$ if and only if $\hat{\delta}(q,w)\in F$

In words, we require p, q to have equal response to input strings, with respect to acceptance

If $p \equiv q$ we say that p and q are equivalent states

If $p \neq q$ we say that p and q are **distinguishable** states

Equivalently: p and q are distinguishable if and only if

 $\exists w : \hat{\delta}(p, w) \in F \text{ and } \hat{\delta}(q, w) \notin F, \text{ or the other way around}$

$$\begin{split} \hat{\delta}(C,\epsilon) \in \mathcal{F}, \ \hat{\delta}(G,\epsilon) \notin \mathcal{F} \ \Rightarrow \ C \not\equiv G & (\mathcal{F} \text{ finale states}) \\ \hat{\delta}(A,01) = C \in \mathcal{F}, \ \hat{\delta}(G,01) = E \notin \mathcal{F} \ \Rightarrow \ A \not\equiv G \end{split}$$

We prove
$$A \equiv E$$

$$\hat{\delta}(A,1)=F=\hat{\delta}(E,1).$$
 Thus $\hat{\delta}(A,1x)=\hat{\delta}(E,1x)=\hat{\delta}(F,x),$ $\forall x\in\{0,1\}^*$

$$\hat{\delta}(A,00)=G=\hat{\delta}(E,00).$$
 Thus $\hat{\delta}(A,00x)=\hat{\delta}(E,00x)=\hat{\delta}(G,x),$ $\forall x\in\{0,1\}^*$

$$\hat{\delta}(A,01)=C=\hat{\delta}(E,01).$$
 Thus $\hat{\delta}(A,01x)=\hat{\delta}(E,01x)=\hat{\delta}(C,x),$ $\forall x\in\{0,1\}^*$

State equivalence algorithm

We can compute distinguishable state pairs using the following recursive relation

Base If $p \in F$ and $q \notin F$, then $p \not\equiv q$

Induction If $\exists a \in \Sigma : \delta(p, a) \not\equiv \delta(q, a)$, then $p \not\equiv q$

We compute distinguishable states by backward propagation

State equivalence algorithm

Apply the recursive relation using an **adjacency table** and the following dynamic programming algorithm

- ullet initialize table with pairs that are distinguishable by string ϵ
- for all not yet visited pairs, try to distinguish them using one symbol string: if you reach a pair of already distinguishable states, then update table
- iterate until no new pair can be distinguished

$$\exists a \in \Sigma : \delta(p, a) \not\equiv \delta(q, a)$$

 $\Rightarrow p \not\equiv q$

В	х							
C	x	x						
D	х	х	х					
E		х	х	х				
F	x	x	x		x			
G	х	х	х	х	х	х		
Н	x		x	х	x	x	x	

 $A\quad B\quad C\quad D\quad E\quad F\quad G$

Correctness

Theorem If p and q are not distinguished by the algorithm, then $p \equiv q$

Proof

Suppose to the contrary that there is a bad pair $\{p,q\}$ such that

- $\exists w : \hat{\delta}(p, w) \in F, \ \hat{\delta}(q, w) \notin F$, or the other way around
- the algorithm does not distinguish between p and q

Each bad pair can be distinguished by some string w

We choose the bad pair p, q with the shortest distinguishing string w. Let $w = a_1 a_2 \cdots a_n$

Correctness

Now $w \neq \epsilon$, since otherwise the algorithm would distinguish p from q at the basis step. Thus $n \geqslant 1$

Let us consider states $r = \delta(p, a_1)$ and $s = \delta(q, a_1)$

r, s cannot be a bad pair, otherwise r, s would be identified by a string shorter than w

therefore the algorithm must have correctly discovered that r and s are distinguishable. But then the algorithm would distinguish p from q in the inductive part

We conclude that there are no bad pairs, and the theorem holds true

Regular language equivalence

Let L and M be regular languages (specified by means of some representation)

To test $L \stackrel{?}{=} M$:

- convert L and M representations into DFAs
- construct the union DFA (never mind if there are two start states)
- apply state equivalence algorithm
- if the two start states are distinguishable, then $L \neq M$, otherwise L = M

The state equivalence algorithm produces the table

We have $A \equiv C$, thus the two DFAs are equivalent

Both DFAs recognize language $L(\epsilon + (\mathbf{0} + \mathbf{1})^*\mathbf{0})$

Pumping Lemma Closure properties Decision problems Automata minimization

DFA minimization

Important application of the equivalence algorithm : given DFA as input, produces equivalent DFA with minimum number of states

Minimal DFA is unique, up to renaming of the states

Idea:

- eliminate states that are unreachable from the initial state
- merge equivalent states into an individual state

State partition based on the equivalence relation : $\{\{A, E\}, \{B, H\}, \{C\}, \{D, F\}, \{G\}\}$

State partition based on the equivalence relation : $\{\{A,C,D\},\{B,E\}\}$

Transitivity

Theorem If $p \equiv q$ and $q \equiv r$, then $p \equiv r$

Proof

Suppose to the contrary that $p \not\equiv r$

- Then $\exists w$ such that $\hat{\delta}(p,w) \in F$ and $\hat{\delta}(r,w) \notin F$ or the other way around
- Case 1 : $\hat{\delta}(q, w)$ is accepting. Then $q \not\equiv r$
- Case 2 : $\hat{\delta}(q, w)$ is not accepting. Then $p \not\equiv q$

Therefore it must be that $p \equiv r$

Relation \equiv is reflexive, symmetric and transitive : thus \equiv is an equivalence relation

We can talk about equivalence classes

DFA minimization

To minimize DFA $A=(Q,\Sigma,\delta,q_0,F)$, construct DFA $B=(Q/_{\equiv},\Sigma,\gamma,q_0/_{\equiv},F/_{\equiv})$, where

- ullet elements of $Q/_{=}$ are the equivalence classes of \equiv
- elements of $F/_{\equiv}$ are the equivalence classes of \equiv composed by states from F
- $ullet q_0/_{\equiv}$ is the set of states that are equivalent to q_0
- $\gamma(p/_{\equiv},a) = \delta(p,a)/_{\equiv}$

DFA minimization

In order for B to be well defined we have to show that

If
$$p \equiv q$$
 then $\delta(p, a) \equiv \delta(q, a)$

If $\delta(p,a) \not\equiv \delta(q,a)$, then the equivalence algorithm would conclude that $p \not\equiv q$. Thus B is well defined

Minimize

We obtain

Automata minimization

We cannot apply the algorithm to NFAs

Example: To minimize

we simply remove state C. However, $A \not\equiv C$