ANALISIS KOORDINASI SETTING RELAY PENGAMAN AKIBAT UPRATING TRANSFORMATOR DI GARDU INDUK GIANYAR

I P. G. Eko Putra,¹ G. D. Arjana,² C. G. I. Partha.³

1,2,3 Jurusan Teknik Elektro, Fakultas Teknik, Universitas Udayana

Email: PutuGedeEkoPutra@gmail.com¹, dyanaarjana@ee.unud.ac.id², cokindra@ee.unud.ac.id³

ABSTRAK

Seiring dengan pertumbuhan beban yang semakin meningkat di Gardu Induk Gianyar maka transformator tenaga dengan kapasitas 30 MVA akan diganti dengan transformator yang berkapasitas 60 MVA untuk meningkatkan kontinyunitas aliran daya kepada konsumen melalui penyulang-penyulang. Pada uprating transformator yang sudah dilakukan, terjadi perubahan arus nominal pada sisi primer dengan nilai 230,94 A dan sisi sekunder 1.732 A, arus hubung singkat 3 phasa pada tegangan 150/20 kV dengan nilai 1.535 A dan 6.488 A dan arus hubung singkat 2 phasa pada tegangan 150/20 kV dengan nilai 749,148 A dan 1,329 A. Sedangkan nilai setting waktu di OCR pada sisi sekunder mendapatkan nilai 0,786 detik, pada sisi penyulang didapatkan hasil 0,37 detik dan pada sisi kopel dengan nilai setting 0,499 detik. Sedangkan nilai dari arus hubung singkat 1 phasa pada pengaman GFR 288.675 A dan nilai setting waktu pada sisi sekunder 2,083 detik dan pada sisi kopel sebesar 1,601 detik. Hasil grafik pada transformator 30 MVA dan 60 MVA mempunyai koordinasi setting pengaman yang baik karena tidak ada persilangan antara penyulang, kopel, sekunder, primer 150 kV. Pada grafik koordinasi setting relay OCR tersebut, yang menyebabkan koordinasi berjalan sempurna dengan nilai arus gangguan pada sisi sekunder 20 kV sebesar 5650 A dan 6720 A yang membutuhkan waktu untuk menangani gangguan 1,3 detik dan 1,2 detik dan nilai arus gangguan 2980 A dan 2310 A membutuhkan waktu untuk mengamankan gangguan 1,3 detik dan 1,7 detik.

Kata kunci: Uprating, OCR, GFR.

1. PENDAHULUAN

Seiring dengan pertumbuhan beban yang semakin meningkat untuk daerah Gianyar maka trasformator tenaga dengan kapasitas 30 MVA akan diganti dengan transformator yang berkapasitas 60 MVA, dalam rangka meningkatkan keandalan transformator dalam melayani kebutuhan daya listrik penyulang (feeder) 20 kV.

System pengaman transformator 30 MVA menggunakan relay deferensial, sementara pada sisi primer 150 kV, sekunder 20 kV penyulang (feeder) 20 kV dan kopel 20 kV menggunakan OCR (Over Current Relay) dan GFR (Ground Fault Relay) sebagai pengaman utama yang berfungsi sebagai pengaman akibat arus gangguan yang terdapat di Gardu Induk Gianyar. Pengaman OCR dan GFR mempunyai nilai setting arus dan waktu di masing-masing zona pengaman dimana nilai dari zona I, zona II, zona III, zona

IV yang terdapat pada transformator 30 MVA akan mempunyai nilai setting yang berbeda dengan transformator yang menggunakan kapasitas 60 MVA karena masing-masing transformator mempunyai kapasitas yang berbeda.

Penggantian (Uprating) transformator MVA meniadi 60 MVA akan mempengaruhi arus hubung singkat di masing-masing Bus Bar, nilai setting OCR (Over Current Relay) dan GFR (Ground Fault Relay) di transformator 30 MVA, koordinasi setting OCR dan GFR pada sisi primer 150 kV, sekunder 20 kV, penyulang 20 kV dan kopel 20 kV yang terdapat di transformator 30 MVA yang akan di uprating menjadi 60 MVA[1]. Berikut merupakan gambar single line diagram untuk daerah atau zona pengaman pada Gardu Induk Gianyar.

Gambar 1 Singel line diagram untuk daerah atau zona pengaman di Gardu Induk Gianyar

2. TINJAUAN PUSTAKA

2.1. Prinsip dasar Perhitungan Arus Lebih (OCR)

Relay arus lebih tidak boleh bekerja pada keadaan beban maksimum. Dalam beberapa hal, nominal transformator arus CT merupakan arus maksimumnya, sehingga setting arusnya adalah [2]:

$$|\text{Iset(primer)} = \frac{1,2 \cdot I_p}{C_T}$$
 (1)

Dimana:

I set = Setting arus

lр = Arus nominal pada sisi primer Ст = Rasio transformator arus

2.2. **Prinsip** dasar Perhitungan hubung tanah (GFR)

Relay hubung tanah yang lebih dengan GFR pada dasarnya mempunyai prinsip kerja yang sama dengan relay arus lebih namun memiliki perbedaan dalam kegunaannya.

Berikut rumus dari setting arus pada relay GFR[3]:

$$I_{gfr} = \frac{0.2 \cdot I_{nom}}{C_T}$$
 (2)

Dimana:

= Arus pada relay GFR I_{afr} = Arus nominal pada trafo Inom = Rasio transformator Ст

2.3. Prinsip dasar perhitungan Penyetelan Waktu

Setting arus pada relay arus lebih pada umumnya didasarkan pada setting batas minimumnya, dengan demikian adanva gangguan hubung singkat di beberapa seksi berikutnya, relay arusnya akan bekerja. Mendapatkan pengamanan yang selektif. setting waktunya dibuat secara maka bertingkat.

Rumus yang digunakan menghitung Td (Time dial) atau TMS (Time multiple setting) adalah[4]:

$$T_{d} = \frac{\left(\frac{I_{f}}{I_{S}}\right)^{0.02} - 1}{0.14} \cdot 1.2 \quad T_{act} = \frac{0.14}{\left(\frac{I_{f}}{I_{S}}\right)^{0.02} - 1} \cdot T_{d} \cdot \dots (3)$$

Dimana:

 T_d = Time dial I_f = Arus gangguan Is = Arus setting = Waktu actual T_{act}

2.4. Prinsip dasar perhitungan Arus **Hubung Singkat 150/20 kV**

Gangguan hubung singkat yang mungkin terjadi di dalam jaringan (system kelistrikan) ada 3, yaitu:

- 1. Gangguan hubung singkat 3 phasa
- 2. Gangguan hubung singkat 2 phasa, dan
- 3. Gangguan hubung singkat 1 phasa ke

Ketiga macam gangguan hubung singkat di atas, arus gangguannya dihitung dengan menggunakan rumus[5]:

- 1. Gangguan hubung singkat 3 phasa
 - a. Gangguan hubung singkat 150 kV

$$I_{3\emptyset(150\,)} = \frac{v_{p\,.10^{\,3}}}{\sqrt{3}.(\,Z_{hs} + Z_{tr})}.....(4)$$
 b. Gangguan hubung singkat 20 kV

$$I_{3\emptyset}$$
 (20) = $I_{3\emptyset(150)}$ $\frac{V_p}{V_s}$ (5)

- Gangguan hubung singkat 2 phasa
 - a. Gangguan hubung singkat 150 kV

$$I_{2\emptyset(150\,)}=\frac{\sqrt{3}}{2}\cdot I_{3\emptyset(150)}......(6)$$
 b. Gangguan hubung singkat 20 kV

$$I_{2\emptyset(20)} = \frac{\sqrt{3}}{2} \cdot I_{3\emptyset(20)}$$
....(7)

3. Gangguan hubung singkat 1 phasa ke tanah

$$I_{1\emptyset(20)} = \frac{V_{\text{S}.1000}}{\sqrt{3}.\text{NGR}}$$
 (8)

Dimana:

 $I_{3\varnothing(150)}$:Arus hubung singkat tiga phasa di sisi 150 kV

 $I_{3\emptyset(20)}$:Arus hubung singkat tiga phasa di sisi 20 kV

 $I_{2\emptyset(150)}$:Arus hubung singkat dua phasa di sisi 150kV

 $I_{2\varnothing(20)}\;$:Arus hubung singkat dua phasa di sisi 20 kV

 $I_{1\varnothing(20)}$:Arus hubung singkat satu ke tanah phasa di sisi 20 kV

 $\begin{array}{ll} I_{hs} & : Arus \ hubung \ singkat \\ V_p & : Tegangan \ pada \ sisi \ primer \\ V_s & : Tegangan \ pada \ sisi \ sekunder \\ Z_{hs} & : Impedansi \ sumber \end{array}$

 Z_{tr} : Impedansi trafo

Menghitung arus hubung singkat pada sistem diatas, pertama hitung impedansi sumber (reaktansi) dalam hal ini diambil dari data hubung singkat pada bus 150 kV[6].

A. Menghitung Impedansi Sumber

Menghitung impedansi sumber data yang diperlukan adalah data hubung singkat pada bus primer trafo dengan persamaan sebagai berikut[6]:

$$Z_{hs} = \frac{V_p}{\sqrt{3} \cdot I_f}$$
 (9)

Dimana:

 Z_{hs} = Impedansi sumber

V_p = Tegangan pada transformator

I_f = Arus gangguan total

B. Menghitung Impedansi Transformator

Perhitungan Impedansi suatu transformator yang diambil adalah nilai reaktansinya, sedangkan nilai R diabaikan karena nilainya kecil. Untuk mencari nilai reaktansi dari transformator dalam Ohm dapat dihitung dengan cara sebagai berikut [4]:

$$Z_{tr} = \frac{v_p^2 \cdot z_t}{\frac{s}{1000}}....(10)$$

Dimana:

Z_t = Impedansi transformator

V_p = Tegangan pada transformator

 Z_t = Impedansi

S = daya transformator

3. METODOLOGI PENELITIAN

Adapun tahapan yang dilakukan pada penelitian ini adalah sebagai berikut :

- Pengumpulan data arus hubung singkat 150/20 kV di bus 20 kV GI Gianyar, pengumpulan data transformator terpasang di GI Gianyar, data name plate transformator yang terpasang maupun yang akan di uprating.
- Analisa arus hubung singkat 150/20 kV yang terdapat di bus 20 KV akibat uprating transformator 30 MVA menjadi 60 MVA.
- Analisa kordinasi setting relay OCR dan GFR dari hasil perhitungan arus hubung singkat di bus 20 KV akibat uprating transformator 30 MVA menjadi 60 MVA
- 4. Hasil perhitungan arus hubung singkat 150/20 kV di bus 20 KV dan analisis kordinasi setting relay dan GFR akibat uprating transformator 30 MVA menjadi 60 MVA, jika hasil analisa tidak sesuai dengan analisa kordinasi setting relay maka kembali menganalisa kordinasi setting relay dari hasil perhitungan arus hubung singkat 150/20 kV di bus 20 KV akibat uprating transformator 30 MVA menjadi 60 MVA

4. ANALISIS DAN PEMBAHASAN

4.1 Perhitungan setting pengaman

Perhitungan pada zona I, zona II, zona III dan zona IV di pengaman OCR dan GFR menggunakan persamaan 1, 2 dan 3 untuk mendapatkan nilai arus dan waktu di transformator 30 MVA yang belum di *uprating* dan transformator 60 MVA yang sudah di *uprating*. Berikut adalah contoh penyelesaian perhitungan arus dan waktu pada sisi sekunder 20 kV untuk pengaman OCR dan GFR di transformator 60 MVA:

1. Perhitungan arus dan waktu pada pengaman OCR.

A. Setting Arus OCR pada sisi 20kV
$$I_{ss} = \frac{1.2 \cdot I_S}{CT_S} = \frac{1.2 \cdot 866.025}{200/5} = 5,196$$

B. Setting waktu OCR pada sisi 20 kV

$$T_{d} = \frac{\left(\frac{I_{3020}}{I_{ss}}\right)^{0.02} - 1}{0,14} \cdot 0.7$$

$$= \frac{\left(\frac{1.151 \times 10^{3}}{2 \times 10^{3}}\right)^{0.02} - 1}{0,14} \cdot 0.7 = 0.186 \text{ SI}$$

Waktu *actual*:
$$T_{act} = \frac{0.14}{\left(\frac{I_{3020}}{I_{SS}}\right)^{0.02} - 1} \cdot T_d$$

$$= \frac{0.14}{\left(\frac{1.151 \times 10^3}{2 \times 10^3}\right)^{0.02} - 1} \cdot 0.2 = 0.786 \text{ detik.}$$
hituagan arus dan waktu pada

2. Perhitungan arus dan waktu pada pengaman GFR.

A. Setting arus GFR pada sisi 20 kV

$$Issg = \frac{0.2.110/20}{CT_s} = \frac{0.2.288,675}{2000/5}$$

 $I_{ssg} = 0.144 \text{ A}$

B. Setting waktu GFR pada sisi 20 kV

Setting waktu GFR pada sisi 20
$$T_d = \frac{\left(\frac{I1\emptyset20}{I_{Sp}}\right)^{0.02} - 1}{0.14} \cdot 2$$

$$= \frac{\left(\frac{288,675}{280}\right)^{0.02} - 1}{0.14} \cdot 2 = 0,456 \text{ SI}$$

$$T_{act} = \frac{0,14}{\left(\frac{I1\emptyset20}{I_{Sp}}\right)^{0.02} - 1} \cdot T_d$$

$$= \frac{0,14}{\left(\frac{288,675}{280}\right)^{0.02} - 1} \cdot 0,475 \text{ SI}$$

$$= 2,083 \text{ detik}$$

Perhitungan yang sudah dilakukan di atas hasil dapat dilihat pada tabel di bawah ini :

Tabel 1 Hasil perhitungan OCR pada zone I (primer 150 kV)

No	Perhitungan	Transformator	
INO		30 MVA	60 MVA
1	Isp	3,5 A	3,5 A
2	Td1	0,3 SI	0,3 SI
3	Tact	1,231	1,231
		detik	detik
4	Ipmomen act	1,124 x	1,994 x
		10 ³ A	10 ³
5	Ipmoment	28 A	25 A
	set		

Tabel 2 Hasil perhitungan OCR pada zone II (sekunder 20 kV)

sekuluel 20 kV)				
No	Perhitungan	Transformator		
	1 omitarigan	30 MVA	60 MVA	
1	Iss	5,196 A	5,2 A	
2	Td2	0,19 SI	0,2 SI	
3	Tact	0,713	0,786	
		detik	detik	
4	Ismomenact	3,464 x	6,928 x	
		10 ³ A	10 ³ A	
5	Ismomenset	17,321 A	17,321 A	

Tabel 3 Hasil perhitungan GFR pada zona II (sekunder 20 kV)

_	seranaci zo kv j				
	No	Doubit	Transformator		
		Perhitungan	30 MVA 60 MV	60 MVA	
	1	Issg	0,3 A	0,15 A	
	2	Td2	0,46 SI	0,475 SI	
	3	Tact	2,18	2,083 detik	
ı				actin	

Tabel 4 Hasil perhitungan OCR pada zona III

(penyulang 20 kV)

No	Keterangan	Transformator	
110	rtotorangan	30 MVA 60 MVA	60 MVA
1	Isetpeny	3,75 A	3,75 A
2	Td3	0,13 SI	0,2 SI
3	Tact	0,287	0,37 detik
		detik	
4	Ipenymom	2,085 x	3,441 x
	act	10 ₃ A	10 ₃ A
5	Ipenymom	26,063 A	43,013 A
	set		

Tabel 5 Hasil perhitungan GFR pada zone III (penyulang 20 kV).

	No	Keterangan	Transformator	
		1101011111111111	30 MVA 60 MVA	
	1	Igpeny	O,625 A	0,625 A
	2	Td3	0,25 SI	0,2 SI
	3	Tact	0,98 detik	0,37 detik

Tabel 6 Hasil perhitungan OCR pada zona IV (kopel 20 kV).

No	Keterangan	Transformator	
.,,	rtotorangan	30 MVA	60 MVA
1	Isetkpl	2,5 A	5 A
2	Td4	0,19 SI	0,127 SI
3	Tact	0,505	0,499
		detik	detik
4	Ikplmom	3,25 x	6 x 10 ³ A
		10 ³ A	

Tabel 7 Hasil perhitungan GFR pada zona IV (kopel 20 kV).

110 01 01 01 01 01 01 01				
No Keterai	Keterangan	Transformator		
	rtotorarigari	30 MVA	60 MVA	
1	Igkpl	0,3 A	0,15 A	
2	Td4	0,34 SI	0,365 SI	
3	Tact	I,491 detik	1,601 detik	

4.2. Perhitungan Arus hubung singkat dan Impedansi

Hasil perhitungan yang sudah dilakukan maka digunakan persamaan 4 sampai 8 untuk perhitungan arus hubung singkat dan persamaan 9 digunakan untuk menghitung sumber. Sedangkan impedansi impedansi trafo menghitung digunakan persamaan 10 di masing-masing Bus Bar 150 kV dan 20 kV pada transformator30 MVA dan 60 MVA. Berikut adalah contoh penyelesaian perhitungan di arus hubung singkat 3 phasa :

1. Ihs 3 pada sisi 150 kV

$$\begin{split} &I_{3\varnothing150} = \frac{v_{p.10^3}}{\sqrt{3}.(Z_{hs} + Z_{tr}} = \frac{_{150.1000}}{\sqrt{3}.(8.908 + 47,513)} \\ &= 1,535 \times 10^3 \text{ A} \end{split}$$

Ihs 3 pada sisi 20 kV

Ihs 3 pada sisi 20 kV
$$I_{3\varnothing20} = I_{3f150} \cdot \frac{v_p}{v_s} = 1,535 \times 10^3 \ A \cdot \frac{_{150000}}{_{20000}} = 1,151 \times 10^4 \ A$$

3. Impedansi sumber

$$Z_{hs} = \frac{V_p}{\sqrt{3}.~I_{hs}} = \frac{150}{\sqrt{3}.9.72156} = 8,908~\Omega$$
 Impedansi Transformator

$$Z_{tr} = \frac{V_p^2 \cdot Z_t}{\frac{P}{1000}} = \frac{\frac{150^2 \cdot 0,1216}{30.000}}{\frac{10000}{1000}} = 47.513 \Omega$$

Perhitungan yang sudah dilakukan di atas maka hasil dapat dilihat pada tabel di bawah

Tabel 8 Hasil perhitungan dari Arus hubung

singkat dan Impedansi

ingkat dan impedansi				
No	Perhitungan	Transformator		
110		30 MVA	60 MVA	
1	I _{3Ø(150)}	865,041 A	1,535 x 10 ³ A	
	I _{3Ø(20)}	6,488 x 10 ³ A	1,151 x 10 ⁴ A	
2	I _{2Ø(150)}	749,148 A	1,329 x 10 ³ A	
	I _{2Ø(20)}	5,619 x 10 ³ A	9,97 x 10 ³ A	
3	I _{1Ø(20)}	288,675 A	288,675 A	
4	Zhs	8,914 Ω	8,908 Ω	
	Ztr	91,2 Ω	47,513 Ω	

4.3. Analisis hasil grafik dari koordinasi setting relay pada transformator 30 MVA di up rating menjadi 60 MVA.

Hasil grafik 2 dan 3 dapat kita jelaskan untuk koordinasi relay pada sisi sekunder di transformator 30 MVA dimana nilai dari arus gangguan di sekunder 20 kV adalah sebesar 5650 A sedangkan waktu yang dibutuhkan untuk menangani gangguan (clearing time) adalah 1.3 detik. Sedangkan untuk koordinasi relay pada sisi sekunder di transformator 60 MVA didapatkan nilai arus gangguan sebesar 2980 A dengan waktu yang dibutuhkan untuk menangani gangguang sebesar 1,3 detik.

Gambar 2 Hasil grafik koordinasi setting relay pada transformator 30 MVA

. **Gambar 3** Hasil grafik koordinasi *setting* relay pada transformator 60 MVA

5. SIMPULAN

Berdasarkan pembahasan yang telah dilakukan, maka dapat ditarik kesimpulan sebagai berikut :

- 1. Analisis dari hasil perhitungan OCR terjadi perubahan arus nominal di transformator 60 MVA disebabkan oleh perbedaan besar arus yang mengalir dengan kapasitas rasio di primer sebesar CT_p 400/5 dan rasio di sekunder sebesar CT_s 2000/5 dengan nilai arus nominal sebesar 230,94 A dan 1.732 A. Sedangkan prangkat yang terdapat di transformator 30 MVA mempunyai kapasitas di primer sebesar CTp 200/5 dan di sekunder sebesar CT_s 1000/5 dengan nilai arus nominal 115,47 A dan 866,025 A.
- Pada hasil analisis dari hasil perhitungan GFR di transformator yang di uprating menjadi 60 MVA menghasilkan nilai arus gangguan yang sama sebesar 288,675 A dan membutuhkan waktu yang sama, sebesar 0,456 SI (standar *Invers*) untuk memproteksi arus gangguan yang terjadi walaupun ada pergantian rasio CT di pengaman GFR.
- 3. Hasil grafik pada transformator 30 MVA dan 60 MVA mempunyai koordinasi setting pengaman yang baik karena tidak ada persilangan antara penyulang, kopel, sekunder dan primer 150 kV pada grafik tersebut yang menyebabkan koordinasi berjalan sempurna.

6. DAFTAR PUSTAKA

- [1] Hasbullah, 2009. Analisis Up Rating Transformator Distribusi Terhadap Kinerja Proteksi Penyulang. Jurnal Seminal Nasional Electrical. Jurusan Pendidikan Teknik Elektro FPTK UPI. Bandung.
- [2] Kurnain, J , Felienty, S. 2001. Proteksi Sistem Tenaga Listrik Jawa Bali. Materi Kursus Sistem Proteksi Jawa Bali Jakarta, PT. PLN
- [3] Komari, S. Soekarto, Wirawan. 1995. Kaidah Umum Penyetelan Rele. Semarang: PT. PLN Pusdiklat.
- [4] Kurniawati, A., dkk. 1997. Evaluasi Koordinasi Proteksi Pada Feeder Distribusi Terhadap Terhadap Kemungkinan Gangguan Symphathetic Tripping Pada Gangguan Satu Saluran Ke Tanah. Jurnal Jurusan Teknik Elektro FT. Semarang: Universitas Diponogoro.
- [5] Anonim". 1995. Pengantar Rele Proteksi. Semarang: PT. PLN (PERSERO) Pusdiklat.
- [6] "Anonim"."t.t". Data Transformator 30 MVA dan 60 MVA Gardu Induk Gianyar dan Perhitungan setting pengaman OCR dan GFR Bali: PT PLN (PERSERO) APP Bali.

.

I P. G. Eko Putra, G. D. Arjana, C. G. I . Partha.