МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАВЧАЛЬНО-НАУКОВИЙ КОМПЛЕКС «ІНСТИТУТ ПРИКЛАДНОГО СИСТЕМНОГО АНАЛІЗУ» НАЦІОНАЛЬНОГО ТЕХНІЧНОГО УНІВЕРСИТЕТУ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ ІМЕНІ ІГОРЯ СІКОРСЬКОГО» КАФЕДРА МАТЕМАТИЧНИХ МЕТОДІВ СИСТЕМНОГО АНАЛІЗУ

Лабораторна робота №3 з курсу: «Аналіз економічних та фінансових ризиків»

Виконали: Байбара Ангеліна Костенко Максим Калініченко Назар Ципаренко Ілля

Прийняла: Гуськова В.Г.

Базуючись на лабораторній роботі 1 та лабораторній роботі 2 для обраних початкових даних побудувати прогноз (за **одним** із наведених підходів) при розбитті вибірки на навчальну та перевірочну для співвідношеннь 50/50, 60/40, 70/30, 80/20 та 90/10.

Заміна середнім значенням та експоненційне зглажування.

Прогнозування регресійною моделю.

Програма реалізована на Python.

Пропуски

Таблиця результатів

2	dw	Se2	mse	mae	mape	theil	
							50/50
							Без
							заповнення
.4062735	1.1319398	27291977	1186.6077	20.261453	7.1215678	0.06424901	пропусків
							I₃
							заповнення
3.4863236	1.1664948	39273243	1240.3513	20.860344	7.0693135	0.089848404	пропусків
							Без
3.3759309	1.1498327	31806735	1272.2694	20.153169	7.0399882	01003	фільтрації
						0.087574840	3
.1765133	0.6203582	12575214	546.74842	13.822399	0.3731905	3884	фільтрацією
							60/40
							Без
							эаповнення заповнення
.3938066	1.1260611	21567255	1172.1334	20.185592	7.0205056	0.082341047	monvekis
		22007200	227272007	201200002		0.002541047	I3
							~
490557832	1 179184012	31936793.54	1260.779	20.864205	6.9298743	0.073866941	заповнення
	1.1444149		1222 6562	20 401716	7.1945932	0.073000341	TIPOTY COS
.1682215	0.615388				0.3704417		
7.1002213	0.613366	3346/13.3	340.36237	15.712545	0.3704417	0.000990//0	
							70/30
							Без
							заповнення
.4009141	1.1266019	16186511	1172.8506	20.421096	7.107729	0.066954402	
							IJ
							заповнення
	1.1818496				7.1450711	0.060784749	пропусків
3.3872536	1.16205		1267.8893		7.6863136	0.050616471	фільтрації
0.1653843	0.6224595	7727026.7	559.8889	13.857726	0.3722068	0.045616716	фільтрацією
							80/20
							Без
							заповнення
.4035334	1.116884	10460540	1137.0153	20.061986	7.1950467	0.039435863	пропусків
							I₃
							заповнення
.4578803	1.1724376	16455228	1299.1653	21.055643	7.5183609	0.035312534	пропусків
.3890894	1.1698186	12842690	1284.269	20.830372	7.8800973	0.031680179	фільтрації
1593171	0.6059561	4981180.3	541.43265	13.70167	0.3643254	0.030466984	diametraniem
						0.000100001	90/10
							Без
						0.017612533	
.3586613	1.131696	5731447.6	1245.9669	20.205628	6.967652		
	1.131030	010144110	12701000	201203020	0.007002	J-1-133/	пропусків Із
						0.017690179	
1202122	1.1570218	0200200 2	1321.5516	21 000020	6.584692	0.017680178	заповнення
7.4203132	1.13/0218	0303300.3	1321,3316	21.000336	0.304032		пропусків
2464050	1 1700774	CE00710 F	1017 0400	20 000440	0.0400000	0.017666984	~~~
		6586719.5					фільтрації
J.1/51971	0.5901442	2442446	530.96651	13.53085458	U.3516719	0.017622109	фільтрацією

Лістинг

```
import pandas as pd
import sys
import os
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy import stats
from sklearn import metrics
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeClassifier
from statsmodels.stats.stattools import durbin_watson
#from aif360.metrics import ClassificationMetric
from\ statsmodels.tsa.api\ import\ Exponential Smoothing,\ Simple Exp Smoothing,\ Holt
from sklearn.model selection import train test split
df = pd.read_csv("Data/travel_insurance.csv")
df = df[:50000]
df.head()
df["Distribution Channel"] = np.where(df["Distribution Channel"] == "Offline", 0., 1.)
df["Agency Type"] = np.where(df["Agency Type"] == "Travel Agency", 0., 1.)
df["Claim"] = np.where(df["Claim"] == "No", 0., 1.)
df['Age'] = df['Age'].astype(float)
df.head()
\#df\_final = pd.DataFrame(columns=['Partition','R2','DW','E2','MSE','MAE','MAPE','Theil'])
X_NetSales = df.loc[:,df.columns.drop(['NetSales'])]
y_NetSales = df.NetSales
X_NetSales.head()
for i in range(5,10):
   print(i/10)
```

```
X_train, X_test, y_train, y_test = train_test_split(X_NetSales, y_NetSales, test_size=1-i/10,
      random_state=42)
regressor = LinearRegression()
regressor.fit(X_train, y_train) #training the algorithm
#To retrieve the intercept:
print(regressor.intercept_)
#df final = df final.append([[i/10,i/10,i/10,i/10,i/10,i/10,i/10]], ignore index = True)
#For retrieving the slope:
print(regressor.coef_)
y_pred = regressor.predict(X_test)
y_test.to_numpy()
df_res = pd.DataFrame({'Actual': y_test.to_numpy().flatten(), 'Predicted': y_pred.flatten()})
df res
   df_final = df_final.append([[i/10,metrics.r2_score(y_test,
      y_pred) ,durbin_watson(y_test),np.sum(np.square(y_pred -y_test)),
#
             metrics.mean_squared_error(y_test, y_pred), metrics.mean_absolute_error(y_test,
      y_pred),metrics.mean_absolute_percentage_error(y_test, y_pred),0]],
      columns=['Partition','R2','DW','SE2','MSE','MAE','MAPE','Theil'])
print('R2:', metrics.r2_score(y_test, y_pred))
print('DW:', durbin_watson(y_test))
print('sum e 2:',np.sum(np.square(y_pred -y_test)))
print('MSE:', metrics.mean_squared_error(y_test, y_pred))
print('MAE:', metrics.mean_absolute_error(y_test, y_pred))
print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, y_pred)))
print('MAPE:', metrics.mean_absolute_percentage_error(y_test, y_pred))
```

```
print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred))
print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred))
print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred)))
print('MAPE:', metrics.mean_absolute_percentage_error(y_test, y_pred))
print('R2:', metrics.r2_score(y_test, y_pred))
print('DW:', durbin_watson(y_test))
print('sum e 2:',np.sum(np.square(y_pred -y_test)))
#print('sum e 2:',ClassificationMetric(y_pred -y_test))
```