

ELF74 – Sistemas Embarcados Gabriela Ross

Lab 4

1. Introdução

O objetivo desse laboratório é elaborar um projeto no IAR cuja funcionalidade é receber dados pela porta serial (UART) do processador da Tiva, processar estes dados e enviá-los pela mesma porta serial. A comunicação será feita com um emulador de terminal (TeraTerm ou similar) executando no PC. O processamento de dados consiste em converter os caracteres maiúsculos (A-Z) nos correspondentes minúsculos (a-z) sem alterar os demais bytes recebidos. A taxa de comunicação deve ser de 115200 bps no formato 8N1.

2. Estudo da plataforma de HW.

Para um entendimento maior sobre as necessidades desse laboratório, foi necessário um estudo sobre o comportamento das funções UART da placa Tiva, bem como suas interrupções, além da utilização de funções presentes nos laboratórios anteriores.

3. Estudo da plataforma de SW.

Para realizar esta prática foi necessário estudar outras funções disponíveis na TivaWare e também entender o funcionamento do Tera Term, emulador de terminal. Esse programa era de uso desconhecido, sendo que apenas o PuTTy haveria sido utilizado previamente, mas foi resolvido a necessidade de familiarização com o Tera Term também.

4. Design da solução.

O problema consiste, basicamente, em transformar caracteres maiúsculos em minúsculos, sem alterar os outros bytes que forem recebidos. Para que isso pudesse ser resolvido, se fez necessário a utilização de um terminal, no caso o Tera Term, para que pudessem haver entradas externas do usuário para verificar o correto funcionamento do programa. Resumidamente, o programa inicia, verifica o buffer e se ele foi alterado, além de verificar se é um caractere ASCII válido, caso sim, transforma-se em minúsculo. Se ele for um caractere minúsculo, ele se mantém e é reimpresso.

Para isso, foram inicializados os periféricos. Depois foi utilizado o protocolo de comunicação UART, um receptor e transmissor assíncrono universal. Ele é utilizado para transferir dados serialmente entre dois dispositivos em aplicativos de sistemas embarcados. Apenas dois pinos são usados para transferir e receber dados, como um pino de transmissão (Tx) e um pino do receptor (Rx). Outros dois pinos são apenas pinos de fonte de alimentação, como aterramento e Vcc (geralmente uma fonte de alimentação do dispositivo). Utilizando o manual da placa, podemos verificar na tabela abaixo na qual o GPIO PortA 0 possui a função de receptor (U0Rx) e o GPIO PortA 1 possui a função de transmissor (U0Tx):

Table	Table 26-5. GPIO Pins and Alternate Functions															
		Analog		Digital Function (GPIOPCTL PMCx Bit Field Encoding) ^b												
Ю	Pin	or Special Function ^a	1	2	3	4	5	6	7	8	11	13	14	15		
PA0	33	-	U0Rx	I2C9SCL	TOCCPO	-	-	-	CAN0Rx	-	-	-	-	-		
PA1	34	-	UOTx	I2C9SDA	TOCCP1	-	-	-	CAN0Tx	-	-	-	-	-		

Também existe uma porta UARTO que trabalha por meio de uma porta USB, que é conectada ao computador. De modo a utilizar essas funções, as configurações e funções que devemos utilizar são encontradas no manual do TivaWare.

Na interrupção UARTO se verificam os caracteres recebidos na FIFO, e caso seu valor seja entre 65 e 90 ele é um caractere maiúsculo, seguindo a tabela ASCII, somando 32 ao seu valor, pois as letras minúsculas são representadas entre 97 e 122. Se ele for transformado, é retransmitido em letra minúscula, e caso já esteja assim, é só enviado novamente. Podemos verificar esses caracteres na tabela abaixo:

$\overline{}$																
	Λ (\sim	и.	Tab	.1~											
	A.	\sim	ш	เลม	ııe											
	Doo	Hear	Oct	Chan	Doo	Have	Och	Chan	Doo	Hass	Oak	Chan	Doo	Hear	Ook	Chan
	Dec	Hex	0ct	Char	Dec	Hex	0ct	Char	Dec	Hex	0ct	Char	Dec	Hex	0ct	Char
	0	0	0		32	20	40	[space]	64	40	100	@	96	60	140	
	1	1	1		33	21	41	!	65	41	101	A.	97	61	141	a
	2	2	2		34	22	42		66	42	102	В	98	62	142	b
	3	3	3		35	23	43	#	67	43	103	C	99	63	143	c
	4	4	4		36	24	44	\$	68	44	104	D	100	64	144	d
	5	5	5		37	25	45	%	69	45	105	E	101	65	145	e
ı	6	6	6		38	26	46	61	70	46	106	F	102	66	146	f
ı	7	7	7		39	27	47	'	71	47	107	G	103	67	147	g
	8	8	10		40	28	50	(72	48	110	н	104	68	150	h
	9	9	11		41	29	51)	73	49	111	1	105	69	151	1
	10	A	12		42	2A	52	*	74	4A	112	J.	106	6A	152	1
	11	В	13		43	28	53	+	75	48	113	K	107	68	153	k
	12	C	14		44	2C	54		76	4C	114	L	108	6C	154	1
	13	D	15		45	2D	55	-	77	4D	115	м	109	6D	155	m
	14	E	16		46	2E	56	1	78	4E	116	N	110	6E	156	n
	15	F	17		47	2F	57	/	79	4F	117	0	111	6F	157	0
	16	10	20		48	30	60	0	80	50	120	P	112	70	160	P
	17	11	21		49	31	61	1	81	51	121	Q	113	71	161	q
	18	12	22		50	32	62	2	82	52	122	R	114	72	162	r
	19	13	23		51	33	63	3	83	53	123	S	115	73	163	8
	20	14	24		52	34	64	4	84	54	124	T	116	74	164	t
1	21	15	25		53	35	65	5	85	55	125	U	117	75	165	u
ı	22	16	26		54	36	66	6	86	56	126	V	118	76	166	v
1	23	17	27		55	37	67	7	87	57	127	w	119	77	167	w
ı	24	18	30		56	38	70	8	88	58	130	×	120	78	170	×
ı	25	19	31		57	39	71	9	89	59	131	Y	121	79	171	y
ı	26	1A	32		58	3A	72	;	90	5A	132	Z	122	7A	172	2
ı	27	1B	33		59	38	73	÷	91	58	133	[123	7B	173	{
ı	28	1C	34		60	3C	74	<	92	5C	134	1	124	7C	174	1
ı	29	1D	35		61	3D	75	-	93	5D	135	1	125	7D	175	}
1	30	1E	36		62	3E	76	>	94	5E	136	^	126	7E	176	~
1	31	1F	37		63	3F	77	7	95	5F	137	_	127	7F	177	
1												_				

Também foi necessário setar o baud rate em 115200 bps, tanto no IAR quanto nos emuladores, para que seu funcionamento ocorresse corretamente.

5. Configuração do projeto na IDE (IAR).

Como esse projeto possuía a mesma configuração que o Lab2, na IDE ele foi tranquilo de ser configurado e deixado no mesmo modelo. A diferença foram as configurações necessárias de serem feitas no Tera Term, que podem ser vistas abaixo:

Como ele foi testado no PuTTy também, as mesmas configurações foram necessárias:

6. Teste e depuração.

Para realizar o teste, foram digitados diversos caracteres no terminal desses emuladores, e, quando letras maiúsculas, eram transformados em minúsculos e reimpressos. Quando minúsculos, eram apenas impressos novamente no terminal.