习题课材料(七)

习题 1. 设 \mathcal{M} , \mathcal{N} 是 \mathbb{R}^n 的两个线性子空间, $\dim \mathcal{M} = \dim \mathcal{N} = m$. 假设 m < n, 且存在 $u \in \mathcal{M}$, 满足 $u \perp a$, $\forall a \in \mathcal{N}$, 证明, 存在 $b \in \mathcal{N}$, $b \perp v$, $\forall v \in \mathcal{M}$.

习题 2. 设平面上四个点 (x_i, y_i) 分别是 (0,0), (1,8), (3,8), (4,20).

- 1. 求 k, b, 使得直线 y = kx + b 满足 $\sum_{i=1}^{4} |y_i (kx_i + b)|^2$ 最小.
- 2. 求 a,b,c,使抛物线 $y=f(x)=ax^2+bx+c$ 满足 $\sum_{i=1}^4|y_i-(ax_i^2+bx_i+c)|^2$ 最小.

习题 3. 设 \mathcal{M} 是 \mathbb{R}^3 中由方程 $x_1 - x_2 + x_3 = 0$ 所决定的平面. 求 $\boldsymbol{b} = [1, 1, 2]^T$ 在 \mathcal{M} 上的正交投影.

习题 4. 若 n 阶方阵 P 满足 $P^2 = P$, 则称 P 为斜投影矩阵. 给定 n 阶斜投影矩阵 P.

- 1. 证明 $I_n P$ 也是斜投影矩阵.
- 2. 证明 $\mathcal{R}(P) = \mathcal{N}(I_n P)$, $\mathcal{R}(I_n P) = \mathcal{N}(P)$.
- 3. 对 $v \in \mathbb{R}^n$, 证明存在唯一分解 $v = v_1 + v_2$, 其中 $v_1 \in \mathcal{R}(P)$, $v_2 \in \mathcal{R}(I_n P)$
- 4. 构造二阶斜投影方阵, 且它不是正交投影.

习题 5. 证明 $(\mathcal{M} + \mathcal{N})^{\perp} = \mathcal{M}^{\perp} \cap \mathcal{N}^{\perp}, \ (\mathcal{M} \cap \mathcal{N})^{\perp} = \mathcal{M}^{\perp} + \mathcal{N}^{\perp}.$

习题 $\mathbf{6}$ (\heartsuit). 给定子空间 $\mathcal{M}_1, \mathcal{M}_2 \subset \mathbb{R}^m, \ \mathcal{N}_1, \mathcal{N}_2 \subset \mathbb{R}^n$. 何时存在 $m \times n$ 矩阵 A, 使得 $\mathcal{R}(A) = \mathcal{M}_1, \ \mathcal{N}(A^{\mathrm{T}}) = \mathcal{M}_2, \ \mathcal{R}(A^{\mathrm{T}}) = \mathcal{N}_1, \ \mathcal{N}(A) = \mathcal{N}_2$ 同时成立?

习题 7. 给定矩阵 $A = \begin{bmatrix} 3 & 6 & 6 \\ 4 & 8 & 8 \end{bmatrix}$.

- 1. 求向 A 的列空间的正交投影 P_1 ,
- 2. 求向 A 的行空间的正交投影 P_2 ,
- 3. 计算 P₁AP₂.

习题 8. 设 n 阶实方阵 A 满足 $A = -A^{T}$.

- 1. 证明 $I_n + A$, $I_n A$ 可逆.
- 2. 证明 $(I_n A)(I_n + A)^{-1}$ 是正交方阵.