Course: BCT 2408 COMPUTER ARCHITECTURE

Student: MURAGURI JOEL KARIUKI — SCT 212-0042/2020

A. Direct-Mapped Cache with Consecutive Allocation

System Configuration:

• Cache size: 16 KB = 16,384 bytes

• Cache type: Direct-mapped

• Line size: 64 bytes

Addressing: Physical

Array element size: 4 bytes (single-precision float)

Arrays X and Y: 4096 elements each, stored consecutively in memory

Loop Behavior:

- Iterates 4096 times
- Each iteration performs:
 - Load X[i]
 - Load Y[i]
 - Store X[i]
- Total memory operations: 3 × 4096 = 12,288

Memory Layout & Cache Mapping:

X: 4096 × 4 = 16 KB

• Y: 16 KB

• Total: 32 KB (exceeds cache size)

• Cache lines: 16 KB / 64 = 256 lines

• Each cache line holds: 64 / 4 = 16 elements

• Both X and Y span 256 cache lines

Since the cache is direct-mapped and the arrays are stored back-to-back, X[i] and Y[i] map to the **same cache lines**, leading to **conflict misses**.

Cache Miss Analysis:

• Compulsory Misses:

- 256 blocks for X + 256 for Y = 512 misses
- Conflict Misses:
 - Every access after the first causes a miss:
 - Load X[i]: miss (conflicted by Y[i])
 - Load Y[i]: miss (conflicted with X[i])
 - Store X[i]: miss (block evicted by Y[i])
 - Total: 3 × 4096 = 12,288 accesses
 - Subtract compulsory: 12,288 512 = 11,776 conflict misses
- Capacity Misses: None active working set is only two elements at any time

Final Stats:

• Total cache misses: 12,288

Miss rate: 100% (1.0)

B. Optimization: Padding to Avoid Conflicts

Goal: Eliminate conflict misses by ensuring X and Y map to different cache lines

Strategy:

- Introduce a **padding array** between X and Y in memory
- Offset Y's base address by at least 16 KB so it no longer shares lines with X
- Result: X and Y occupy disjoint cache regions

Mapping:

- X: occupies cache lines 0–255
 Padding: occupies lines 256–511 (unused)
- Y: mapped to different cache lines, avoiding overlap

Cache Miss Analysis:

- Compulsory Misses:
 - o X: 256
 - o Y: 256
 - o Total: **512**
- Conflict Misses: Eliminated (no line overlap)
- Capacity Misses: None only a few elements used at once

Final Stats:

• Total cache misses: 512

Miss rate: 512 / 12,288 ≈ 4.17%

C. Hardware-Based Optimization: 2-Way Set-Associative Cache

Upgrade:

- Cache remains 16 KB with 64-byte lines
- Switch from direct-mapped to 2-way set-associative

New Configuration:

- Total cache lines: 16 KB / 64 B = 256
- 2 lines per set → 128 sets
- X[i] and Y[i] can now reside in the same set without eviction

Impact:

- Reduces conflict misses: X and Y can coexist
- No added capacity issues since working set is still minimal

Cache Miss Analysis:

- Compulsory Misses:
 - o X: 256
 - o Y: 256
 - o Total: **512**
- Conflict Misses: None (2-way associativity resolves mapping conflict)
- Capacity Misses: None

Final Stats:

• Total cache misses: **512**

• Miss rate: 512 / 12,288 ≈ **4.17%**

Summary Comparison

Scenario	Compulsory Misses	Conflict Misses	Capacity Misses	Total Misses	Miss Rate
A. Direct-Mapped (No Padding)	512	11,776	0	12,288	100%
B. With Padding	512	0	0	512	4.17%
C. 2-Way Set-Associative	512	0	0	512	4.17%