



# ULL-CloudIDE Plataforma de entornos de desarrollo para la docencia

Alberto Gabriel Ruiz Pérez

Tutor: Alberto Hamilton Castro

Cotutor: Vicente José Blanco Pérez

## Índice

- Introducción
  - Estado actual
  - Motivos principales
- Objetivos
- Tecnologías utilizadas
- Desarrollo
- ULL-CloudIDE
  - Alumnos
  - Profesores
- Demostración
- Conclusions
- Future Work
- Bibliografía

## Introducción

Cloud Computing





#### Introducción - Estado actual

IDEs en la nube:





- ✓ Ventajas
- O Desventajas





# Introducción - Motivos principales

- Alumnos desarrollan/implantan proyectos informáticos.
- Dificultad de acceso a servicios de desarrollo externos.
  - Inseguro.
  - Sin privacidad.
  - Limitación de funcionalidades.
- Fuera del control docente.

# Objetivos

- Desarrollar una plataforma que ofrezca IDEs.
- Enfocado al ámbito docente.
- Privacidad y control de usuarios para acceder a los IDEs.
- Estable y escalable.
- ULL-CLoudIDE.





# Tecnologías utilizadas (1)



- Código libre.
- IDE en la nube.
- Multiplataforma.
- Compatibilidad con Docker.
- No tiene privacidad ni control de usuarios.



# Tecnologías utilizadas (2)

- Docker para la ejecución de Eclipse Che.
- Node.js para el desarrollo del backend.
- Express.js para el servidor web (motor de vistas EJS).
- SDK de oVirt (laaS ULL).
- MySQL y Redis.
- Servicio de Autenticación Centralizada (ULL CAS).
- Iptables, para la redirección del tráfico.
- Websockets.



#### Desarrollo (1)



- No tiene control de usuarios.
- No tiene privacidad (accesible para todos en la red).
- Sin escalabilidad de usuarios

- Autenticación CAS ULL.
- Utilización de subredes y firewall.
- Granja de servidores, apoyándonos en oVirt.

#### Desarrollo (2)

DIAGRAMA DE RED

ALBERTO GABRIEL RUIZ PEREZ



- Red de servicio (vpn, aulas, wifi, etc), ips y usuarios únicos.
- Portal intermediario con dos interfaces (redes PDI1 y DOCINT3).
- Máquinas backend en red aislada, conseguimos así privacidad.



#### Desarrollo (3)

#### Máquinas backend:

- Creación de plantilla en oVirt.
- Proporcionar acceso a internet a través de la máquina portal.
- Montaje de almacenamiento remoto centralizado.
- Ejecución continua de un proceso, el cual escuchará las acciones a realizar desde el servidor central (encender o apagar IDEs).



## Desarrollo (4)

Modo de funcionamiento:



#### Desarrollo (5)

#### SDK oVirt:

- Lenguaje de programación Python.
- Crear nuevas máquinas virtuales en base a una template.
- Preconfigurar máquinas (cloud-init).
- Encender, apagar y eliminar VMs.



#### Desarrollo (6)

Redirección del tráfico







#### Características y configuraciones:

- Número de usuarios por máquina backend.
- Número de IDEs encendidos por usuario.
- Número de máquinas backend de reserva.
- Dos tipos de roles, profesores y alumnos.





- Similitud al pool de recursos de oVirt.
- Crear nuevos servicios.
  - Escoger nombre.
  - Añadir usuarios.
- Administrar los servicios creados.
  - Listar usuarios.
  - Añadir usuarios.
  - Eliminar usuarios.
  - Eliminar servicio.
- Administrar los servicios asignados.



- Administrar servicios asignados.
  - Encender IDE.
  - Apagar IDE.
- Acceder al IDE específico.



# Demostración



## Conclusions

- Cloud computing is becoming one of the purposes in the current technological field.
- ULL-CloudIDE offers both teachers and students a system focused on teaching that allows them to manage and access IDEs through a web browser.
- Internal platform to the ULL, the use of external services won't be necessary.

#### Future Work

- Improve the detection and treatment of errors.
- Add more features for teachers.
- Email notifications.
- Add new version of Eclipse Che that develop over time.



# Bibliografía

- Node.js: <a href="https://nodejs.org/es/">https://nodejs.org/es/</a>
- Express.js: <a href="http://expressjs.com/es/">http://expressjs.com/es/</a>
- Eclipse Che: <a href="https://www.eclipse.org/che">https://www.eclipse.org/che</a>
- Socket.io: https://socket.io/
- Docker: <a href="https://www.docker.com/get-docker">https://www.docker.com/get-docker</a>
- SDK oVirt : <a href="https://www.ovirt.org/develop/sdk/sdk/">https://www.ovirt.org/develop/sdk/sdk/</a>
- Iptables : <a href="https://wiki.archlinux.org/index.php/lptables">https://wiki.archlinux.org/index.php/lptables</a>
- ULL-CloudIDE : <a href="http://cloudide.iaas.ull.es">http://cloudide.iaas.ull.es</a>





# Gracias por su atención

Alberto Gabriel Ruiz Pérez

Tutor: Alberto Hamilton Castro

Cotutor: Vicente José Blanco Pérez