DPP-9 FUNCTIONAL EQUATION

1.	If $f: R \to R$	satisfies	f(x+y) = f(x) + f(y)	, for	all	$x, y \in R$	and	f(1) = 7	ther
	$\sum_{r=1}^{n} f(r)$ is-								

- (A) $\frac{7n(n+1)}{2}$ (B) $\frac{7n}{2}$ (C) $\frac{7(n+1)}{2}$ (D) 7n(n+1)

2. The value of b and c for which the identity f(x+1) - f(x) = 8x + 3 is satisfied, where $f(x) = bx^2 + cx + d$, are

- (A) b=2, c=1 (B) b=4, c=-1 (C) b=-1, c=4 (D) None.

Let $f\left(x + \frac{1}{x}\right) = x^2 + \frac{1}{x^2}(x \neq 0)$, then $f(x) = x^2 + \frac{1}{x^2}(x \neq 0)$

- (B) $x^2 1$ (C) $x^2 2$ (D) None of these.

If f(x+ay, x-ay) = axy, then f(x, y) equals-4.

- (A) $\frac{x^2 + y^2}{4}$ (B) $\frac{x^2 y^2}{4}$ (C) x^2 (D) y^2 .

If $f(x) = \cos(\log x)$, then $\frac{f(xy) + f(x/y)}{f(x)f(y)}$ equals-(A) 1 (B) -1 (C) 0

- (D) 2

If f(x) = |x| + |x-1|, then for 0 < x < 1, f(x) equals-6.

- (B) −1
- (C) 2x + 1 (D) 2x 1

f(2x+3y, 2x-7y) = 20x then f(x, y) equals to – 7.

- (A) 7x 3y
- (B) 7x + 3y
- (C) 3x 7y
- (D) x 10v

8. If $f(x) = \log_a x$, then f(ax) equals-

- (A) f(a)f(x) (B) 1+f(x) (C) f(x)

- (D) a f(x)

If f(x) = (ax - c)/(cx - a) = y, then f(y) equals-9.

- (A) x
- (B) 1/x
- (C) 1
- (D) 0

The function f satisfies the functional equation $3f(x) + 2f\left(\frac{x+59}{x-1}\right) = 10x + 30$ for all real 10.

- $x \neq 1$. The value of f(7) is
- (B) 4
- (C) -8
- (D) 11

If $f(x) = \frac{\alpha x}{x+1}$, $x \neq -1$, for what value of α is f(f(x)) = x. 11.

- (A) $\sqrt{2}$
- (B) $-\sqrt{2}$ (C) -1
- (D) 2

12. A real valued function f(x) satisfies the function equation f(x-y) = f(x)f(y) - f(a-x)f(a+y) where a is a given constant and f(0) = 1, f(2a - x) is equal to

- (A) f(a)+f(a-x)
- (B) f(-x)

(C) -f(x)

(D) f(x).

- 13. The value of b and c for which the identity f(x+1) - f(x) = 8x + 3 is satisfied, where $f(x) = bx^2 + cx + d$, are –
 - (A) b = 2, c = 1
- (B) b = 4, c = -1 (C) b = -1, c = 4 (D) None
- If f(1) = 1 and f(n+1) = 2f(n) + 1 if $n \ge 1$, then f(n) is-14.
- (B) 2^n (C) $2^n 1$
- (D) $2^{n-1}-1$.
- 15. If $f(x) = \frac{2^x + 2^{-x}}{2}$, then $f(x+y) \cdot f(x-y)$ is equal to -
 - (A) $\frac{1}{2} [f(x+y) + f(x-y)]$ (B) $\frac{1}{2} [f(2x) + f(2y)]$
 - (C) $\frac{1}{2} [f(x+y).f(x-y)]$ (D) None of these

1.	2.	3.	4.	5.
Α	В	Α	В	D
6.	7.	8.	9.	10.
Α	В	В	Α	С
11.	12.	13.	14.	15.
С	С	В	С	В