Computer System Review

INF 551 Wensheng Wu

REVIEWS

ALR MicroFlex 7000 AST Bravo/286 Sysgen's Removable Hard Disk HyperPAD

THE **WORLD'S**

Fresh from the U.K. Apricot's VX FT Server Leads the Pack

Lotus 1-2-3 release 3.0

Database Trends, In Depth

Bonus LAN Supplement

Bus Wars

PC in 1980

Laptop Technologies

Graphics Formats

7 Short Takes

£1.95 U.K./A \$6.50 AUSTRALIA Lit. 8,000 ITALY/\$3.50 U.S.A. 0360-5280

CPU (central processing unit)

Exposed die of Intel i486

Computer architecture

Components

- Control unit: brain of CPU
 - Load instructions & data from memory
 - Execute them using registers and ALU
- Registers: storing data from memory
 - Faster than memory
- ALU: arithmetic logic unit
 - Perform arithmetic and bitwise operations

Logic gate

- Building block for
 - Register
 - ALU
 - Computer memory

Logic gate

- Perform a boolean function
 - AND, OR, NOT
 - NAND, NOR, XOR

Made of transistors

Example: NOR gate

When A = 0, output depends on B (= complement of B)
When A = 1, output = 0 (no matter what B is)

INPUT		OUTPUT
Α	В	A NOR B
0	0	1
0	1	0
1	0	0
1	1	0

Flip-flop (built from NOR gates)

- Store information
- R: reset; S: set

- R = S = 0:
 - state of outputs maintained by feedback
- S = 1, R = 0:
 - Q is forced to 1
- R = 1, S = 0:
 - Q is forced to 0

Another example: NAND gate

- When A = 1
 - output depends on B (= complement of B)
- When A = 0
 - output = 1 (no matter what B is)

INPUT		OUTPUT
Α	В	A NAND B
0	0	1
0	1	1
1	0	1
1	1	0

Flip-flop (made of NAND gates)

- Similar to NOR flip-flop
 - But set and reset require low signals now
- R = S = 1:
 - state of outputs maintained by feedback
- S = 0, R = 1:
 - Q is forced to 1
- R = 0, S = 1:
 - Q is forced to 0

Half adder (adding two bits)

• S: sum = A XOR B

C: carry = A AND B

Operating system

- Manage resources (CPU, memory, disk)
- Run programs
 - Maintaining program state
 - Multi-tasking
- Provide API (system calls)
 - For using system services
 - E.g., accessing CPU, memory, disk

OS components

- Kernel
 - Program execution
 - Memory management
 - Disk access & file system
 - Multi-tasking: schedule CPU for multiple programs

- Networking
- Security

Shell: user interface to OS

Command line interface (e.g., cmd & bash)

- Graphical user interface
 - Gnome (linux)
 - KDE (linux)
 - MS Windows
 - Aqua (Mac OS)

Process: a running program

- OS loads on-disk program into memory
- 2. Allocate memory
 - Run-time stack
 - Heap
- 3. Create file descriptors
 - stdin, stdout, stderr
- 4. Start executing main()

fib.c

```
#include <stdio.h> // printf
#include <stdlib.h> // atoi defined here
int fib(int n)
  if (n == 0)
          return 0;
  else if (n == 1)
          return 1;
  else
          return fib(n - 1) + fib(n - 2);
int main(int argc, char* argv[])
  int n = atoi(argv[1]);
  printf("fib of %d = %d", n, fib(n));
```

Compile and run

• gcc fib.c -out fib

• fib 6

=> fib of 6 = 8

Common Linux user commands

- |s
 - List directory contents
- cd
 - Change directory
- pwd
 - Print current/working directory
- rm
 - Remove file or directory

Common Linux user commands

- mkdir
 - Make directory
- rmdir
 - Remove empty directory
- cat
 - Display content of a file
- man
 - Display usage of a command/program

Common Linux user commands

- cp
 - Copy a file

Common programs

- Compiler & interpreter
 - gcc, javac, python
- Text editor
 - vi, emacs
- Networking
 - ssh, sftp
- Web
 - wget (download from a URL)

Bit & byte

- Binary number
 - A sequence of 1 or 0's

• 8 bits in a byte

1000 0101 = how many in decimal?

Hexadecimal number

- Base 16
- Indicated by a prefix '0x'

- Alphabet: 0, 1, ..., 9, A, B, C, D, E, F
 - A is 10 in decimal, F is 15 in decimal

Example: 1000 1101 => 0x8D

Resources

- Intro to Computer Architecture (youtube)
 - https://www.youtube.com/watch?v=HEjPopaK w&list=PLAPTMtRxw27aMpAaIH1ZZU6U1Gwk XAJC-

References

- The Abstraction: The Process. Chapter 4 of Book "Operating Systems: 3 easy pieces"
- Adding 6+7 at logic gate level
 - http://improve.dk/adding-67-at-the-logic-gate-level/