

# **DIGITAL DESIGN**

# **ASSIGNMENTREPORT**

**ASSIGNMENT ID: III** 

Student Name: 郑鑫颖

Student ID: 11912039



# PART 1: DIGITAL DESIGN THEORY

Provide your answers here:











# PART 2: DIGITAL DESIGN LAB (TASK1)

#### **DESIGN**

Describe the design of your system by providing the following information:

## 3-8 decoder

Verilog design (provide the Verilog code)



#### 2-4 decoder

```
module decoder_24(
    input i1,
    input i0,
   input EI,
    output reg[3:0] y
    always@#
    begin
    if(~EI)
    casex({i1, i0})
       2' b00: y=4' b0001;
       2' b01: y=4' b0010;
       2' b10: y=4' b0100;
        2' b11: y=4' b1000;
        endcase
    else y=4' b0000;
    end
endmodule
```

## • Truth-table for

| i2 | i1 | i0 | oout[7] | oout[6] | oout[5] | oout[4] | oout[3] | oout[2] | oout[1] | oout[0] |
|----|----|----|---------|---------|---------|---------|---------|---------|---------|---------|
| 0  | 0  | 0  | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 1       |
| 0  | 0  | 1  | 0       | 0       | 0       | 0       | 0       | 0       | 1       | 0       |
| 0  | 1  | 0  | 0       | 0       | 0       | 0       | 0       | 1       | 0       | 0       |



| 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

## 4-16 decoder

```
| module decoder4_16(
    input i0,
    input i1,
    input i2,
    input i3,
    output reg [15:0] out
    );

    wire[15:0] out0;
    decoder_38_wrapper v(i0, i1, i2, {out0[7], out0[6], out0[5], out0[4], out0[3], out0[2], out0[1], out0[0]});

| always @* begin
    if(~i3)
    out={8' b0, out0[7], out0[6], out0[5], out0[4], out0[3], out0[2], out0[1], out0[0]};
    else
    out={out0[7], out0[6], out0[5], out0[4], out0[3], out0[2], out0[1], out0[0], 8' b0};
    end
endmodule
```

# Truth-table for4-16

| <i>I</i><br>0↔ | <i>I</i> 1₽ | <i>1</i> 2₽ | <i>1</i> | Out0                  | Out0                    | Out0                    | Out0       | Out0<br>[11]↓         | Out0                  | Out<br>0[9]           | Out<br>0[8]↓          | Out<br>0[7]↓ | Out<br>0[6]↓          | Out<br>0[5] | Out<br>0[4]           | Out                   | Out<br>0[2]↓          | Out 0[1].             | Out0                  |
|----------------|-------------|-------------|----------|-----------------------|-------------------------|-------------------------|------------|-----------------------|-----------------------|-----------------------|-----------------------|--------------|-----------------------|-------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| <b>O</b> +     | <b>0</b> .  | 0+          | 0.       | <b>0</b> 4            | <b>0</b> 4              | <b>O</b> <sub>4</sub>   | <b>0</b> . | <b>0</b>              | <b>O</b> <sub>4</sub> | <b>0</b> 4            | <b>0</b> ₽            | <b>0</b> 4   | O.                    | <b>0</b> ↔  | <b>0</b> 4            | <b>0</b> ₽            | <b>0</b> 4            | <b>0</b> 4            | 1.                    |
| <b>O</b> .     | <b>O</b> .  | 0.          | 1.       | <b>0</b>              | <b>0</b> ₊              | <b>0</b> ₽              | <b>0</b> ₽ | <b>0</b> ₊            | <b>O</b> <sub>←</sub> | <b>O</b> <sub>4</sub> | <b>0</b> ₊            | <b>0</b> ₊   | <b>O</b> ₊            | <b>0</b> ₊  | <b>O</b> <sub>←</sub> | <b>0</b> ₽            | <b>O</b> ₊            | 1.                    | <b>0</b> <sub>←</sub> |
| <b>O</b> +     | <b>0</b> .  | 1.          | 0.       | <b>0</b> 4            | <b>0</b> ←              | <b>0</b> ↔              | <b>0</b> ₽ | <b>0</b> ₽            | <b>O</b> ←            | <b>0</b> ₊            | <b>0</b> <sub>←</sub> | <b>0</b> ₽   | <b>0</b> ₽            | <b>0</b> ↔  | <b>O</b> ↔            | <b>0</b> ₽            | 1.                    | <b>0</b> ₊            | <b>0</b> ↔            |
| <b>O</b> +     | <b>0</b> ₊  | 1.          | 1.       | <b>0</b> <sub>4</sub> | <b>0</b> ₽              | <b>0</b> <sub>+</sub> / | <b>0</b> ₊ | <b>0</b> ₽            | <b>O</b> <sub>4</sub> | <b>O</b> ↓            | <b>O</b> ↓            | <b>0</b> ₊   | <b>O</b> <sub>↓</sub> | <b>0</b> ₊  | <b>O</b> ↓            | 1.                    | <b>0</b> ₊            | <b>O</b> ₊            | <b>0</b> ₊            |
| <b>O</b> +     | 1.          | <b>O</b> .  | 0.       | <b>0</b> +            | <b>O</b> <sub>4</sub> , | <b>0</b> ↔              | <b>0</b> ₽ | <b>0</b> <sub>+</sub> | <b>O</b> <sub>←</sub> | <b>0</b> ₊            | <b>0</b> ₽            | <b>0</b> ₊   | <b>O</b> <sub>←</sub> | <b>0</b> ₊  | 1.                    | <b>O</b> <sub>←</sub> | <b>0</b> ↓            | <b>0</b> ₊            | <b>0</b> ₽            |
| <b>O</b> +     | 1↔          | 0.          | 1.       | <b>0</b> 4            | <b>0</b> ₄              | <b>0</b> ₽              | <b>0</b> ₽ | <b>0</b> ₽            | <b>O</b> <sub>4</sub> | <b>0</b> ↓            | <b>0</b> ₊            | <b>0</b> ↓   | <b>0</b> ₽            | 1.          | <b>0</b> ↓            | <b>0</b> ₽            | <b>0</b> ↓            | <b>0</b> ↓            | <b>0</b> ₊            |
| <b>O</b> +     | 1.          | 1.          | 0.       | <b>O</b>              | <b>O</b> <sub>4</sub> J | <b>0</b>                | <b>O</b> . | <b>O</b> .            | <b>O</b> <sub>4</sub> | <b>0</b> ↓            | <b>O</b> <sub>←</sub> | <b>0</b> ↓   | 1.                    | <b>0</b> ↓  | <b>O</b> <sub>+</sub> | <b>O</b> ₊            | <b>O</b> <sub>+</sub> | <b>O</b> <sub>←</sub> | <b>O</b> ₊            |
| <b>O</b> +     | <b>1</b> ₽  | 1.          | 1.       | <b>0</b> ↔            | <b>0</b> ₽              | <b>0</b> ↔              | <b>0</b> ₽ | <b>0</b> ₽            | <b>O</b> ↔            | <b>0</b> ₽            | <b>0</b> ↓            | 1.           | <b>O</b> <sub>←</sub> | <b>0</b> ↔  | <b>O</b> ↔            | <b>0</b> ↓            | <b>0</b> ↔            | <b>0</b> ₽            | <b>O</b> <sub>←</sub> |

| 1. | 0. | <b>O</b> . | <b>O</b> & | <b>0</b> ₊ | <b>0</b>   | <b>0</b> ₊ | <b>0</b> ↔            | <b>0</b> ₽ | <b>O</b> <sub>4</sub> / | <b>O</b> ₊              | <b>1</b> ₽            | <b>0</b> ₽            | <b>0</b> ₽            | <b>0</b> ₊              | <b>0</b> ₊            | <b>0</b> ₽            | <b>0</b> <sub>←</sub>   | <b>0</b> ₊            | <b>0</b> ↔ |
|----|----|------------|------------|------------|------------|------------|-----------------------|------------|-------------------------|-------------------------|-----------------------|-----------------------|-----------------------|-------------------------|-----------------------|-----------------------|-------------------------|-----------------------|------------|
| 1₊ | 0. | <b>O</b> + | 1.         | <b>O</b> ↓ | <b>0</b> ₊ | <b>0</b> 4 | <b>0</b> ↔            | <b>0</b> ↔ | <b>O</b> +              | 1₽                      | <b>0</b> ₽            | <b>0</b> ₽            | <b>0</b> ₽            | <b>0</b> ₽              | <b>0</b> ₊            | <b>0</b> ₽            | <b>0</b> ₽              | <b>0</b> ₽            | <b>0</b> + |
| 1. | 0. | 1.         | <b>0</b>   | <b>O</b> ₊ | <b>0</b> . | <b>0</b> . | 0.                    | <b>0</b> 4 | 1.                      | <b>O</b>                | <b>O</b> <sub>4</sub> | <b>O</b> <sub>4</sub> | <b>O</b>              | <b>0</b> ₊              | <b>O</b> <sub>4</sub> | <b>O</b> <sub>4</sub> | <b>O</b>                | <b>O</b> ₊            | <b>0</b> 4 |
| 1₊ | 0. | 1.         | 1.         | <b>0</b> ↓ | <b>0</b> € | <b>0</b> ↓ | <b>0</b> ₊            | 1.         | <b>0</b> &              | <b>O</b> <sub>←</sub>   | <b>0</b> ₽            | <b>0</b> ₽            | <b>0</b> ₽            | <b>0</b> ₄              | <b>0</b> ₽            | <b>0</b> ↓            | <b>0</b> ↓              | <b>O</b> <sub>4</sub> | <b>0</b> € |
| 1. | 1. | <b>O</b> + | <b>O</b> + | <b>0</b> ₊ | <b>0</b> ₽ | <b>0</b> √ | 1↔                    | <b>0</b> 4 | <b>O</b> +              | <b>O</b> <sub>4</sub>   | <b>O</b> <sub>←</sub> | <b>0</b> ₽            | <b>0</b> ₽            | <b>0</b> ↔              | <b>0</b> ↓            | <b>0</b> ←            | <b>0</b> ↓              | <b>0</b> ₽            | <b>0</b> ₽ |
| 1. | 1. | <b>O</b> + | 1.         | <b>0</b> ₊ | <b>0</b>   | 1₊         | <b>0</b> <sub>←</sub> | <b>0</b> . | <b>O</b> <sub>4</sub>   | <b>O</b> <sub>4</sub>   | <b>0</b> ₽            | <b>O</b> <sub>4</sub> | <b>O</b> <sub>√</sub> | <b>O</b> <sub>4</sub> . | <b>0</b> ₽            | <b>O</b> <sub>4</sub> | <b>O</b> <sub>+</sub>   | <b>O</b> <sub>4</sub> | <b>O</b> + |
| 1. | 1. | 1.         | <b>O</b> 4 | <b>0</b> ↓ | 1.         | <b>0</b> ↔ | <b>0</b> ↔            | <b>0</b> ↔ | <b>O</b> &              | <b>O</b> <sub>←</sub>   | <b>0</b> ₽            | <b>0</b> ₽            | <b>0</b> ₽            | <b>0</b> ₽              | <b>0</b> ₊            | <b>0</b> ₊            | <b>O</b> <sub>4</sub> J | <b>0</b> ₊            | <b>0</b> + |
| 1. | 1. | 1.         | 1.         | 1.         | <b>0</b> ↔ | 0↔         | <b>0</b> ↓            | <b>0</b> ₽ | <b>O</b> 4              | <b>0</b> <sub>4</sub> , | <b>0</b> ₊            | <b>O</b> 4            | <b>0</b> ₄₁           | <b>0</b> ₊              | <b>O</b> ₊            | <b>O</b>              | <b>0</b> ₊              | <b>0</b> ₊            | <b>0</b> ↔ |

# **SIMULATION**

Describe how you build the test bench and do the simulation.

• Using Verilog (provide the Verilog code)

3-8decoder



#### 4-16decoder

```
module decoder_sim();
 reg i0;
 reg il;
 reg i2;
 reg i3;
  wire[15:0] y;
 /*decoder_38_wrapper v(i0,
     i1,
     i2,
    y);*/
     decoder4_16 *(i0, i1, i2, i3, y);
  initial begin
   {i0, i1, i2, i3}=0;
  repeat(15) #10{i0, i1, i2, i3}={i0, i1, i2, i3}+1;
 #10 $finish;
  end
endmodule
```

- Wave form of simulation result (provide screen shots)
- 3-8decoder



| Name          | Value | 0 ns | 10 ns | 20 ns | 30 ns | 40 ns |
|---------------|-------|------|-------|-------|-------|-------|
| 1 <u>6</u> i0 | 1     |      |       |       |       |       |
| ™ i1          | 1     |      |       |       |       |       |
| ¼ i2          | 1     |      |       |       |       |       |
| > 🛂 y[7:0]    | 80    | 01   | 10    | 04    | 40    | 02    |
|               |       |      |       |       |       |       |
|               |       |      |       |       |       |       |



# 4-16decoder





 The description on whether the simulation result is same as the truth-table, is the function of the design meet the expectation.

the simulation result is same as the truth-table and meet the expectation

#### CONSTRAINT FILE AND THE TESTING

Describe how you test your design on the Minisys Practice platform.

 Constraint file (provide the screen shots on the feature of a pin and the binding info between pins and the input /output ports)

```
set property IOSTANDARD LVCMOS33 [get ports {i0}]
set_property IOSTANDARD LVCMOS33 [get_ports {i1}]
set property IOSTANDARD LVCMOS33 [get ports {i2}]
set_property IOSTANDARD LVCMOS33 [get_ports {i3}]
set_property IOSTANDARD LVCMOS33 [get_ports {out[0]}]
set_property IOSTANDARD LVCMOS33 [get_ports {out[1]}]
set_property IOSTANDARD LVCMOS33 [get_ports {out[2]}]
set_property IOSTANDARD LVCMOS33 [get_ports {out[3]}]
set_property IOSTANDARD LVCMOS33 [get_ports {out[4]}]
set_property IOSTANDARD LVCMOS33 [get_ports {out[5]}]
set_property IOSTANDARD LVCMOS33 [get_ports {out[6]}]
set_property IOSTANDARD LVCMOS33 [get_ports {out[7]}]
set_property IOSTANDARD LVCMOS33 [get_ports {out[8]}]
set_property IOSTANDARD LVCMOS33 [get_ports {out[9]}]
set_property IOSTANDARD LVCMOS33 [get_ports {out[10]}]
set_property IOSTANDARD LVCMOS33 [get_ports {out[11]}]
set_property IOSTANDARD LVCMOS33 [get_ports {out[12]}]
set_property IOSTANDARD LVCMOS33 [get_ports {out[13]}]
set_property IOSTANDARD LVCMOS33 [get_ports {out[14]}]
set_property IOSTANDARD LVCMOS33 [get_ports {out[15]}]
set_property PACKAGE_PIN Y8 [get_ports {i0}]
set property PACKAGE PIN Y7 [get ports {i1}]
set_property PACKAGE_PIN W9 [get_ports {i2}]
set_property PACKAGE_PIN Y9 [get_ports {i3}]
set_property PACKAGE_PIN A21 [get_ports {out[0]}]
set_property PACKAGE_PIN E22 [get_ports {out[1]}]
set_property PACKAGE_PIN D22 [get_ports {out[2]}]
```



```
set_property PACKAGE_PIN E21 [get_ports {out[3]}]
set_property PACKAGE_PIN D21 [get_ports {out[4]}]
set_property PACKAGE_PIN G21 [get_ports {out[5]}]
set_property PACKAGE_PIN G22 [get_ports {out[6]}]
set_property PACKAGE_PIN F21 [get_ports {out[7]}]
set_property PACKAGE_PIN J17 [get_ports {out[7]}]
set_property PACKAGE_PIN J17 [get_ports {out[8]}]
set_property PACKAGE_PIN L14 [get_ports {out[9]}]
set_property PACKAGE_PIN L15 [get_ports {out[10]}]
set_property PACKAGE_PIN L16 [get_ports {out[11]}]
set_property PACKAGE_PIN K16 [get_ports {out[12]}]
set_property PACKAGE_PIN M15 [get_ports {out[13]}]
set_property PACKAGE_PIN M16 [get_ports {out[14]}]
set_property PACKAGE_PIN M16 [get_ports {out[14]}]
set_property PACKAGE_PIN M17 [get_ports {out[15]}]
```

 The testing result (provide the screen shots (at least 3 testing scene) to show state of inputs and outputs along with the related descriptions.

15 0





3 7







### THE DESCRIPTION OF OPERATION

Describe the problem occurred while in the lab and your solution. Any suggestions are welcomed.

Problems and solutions

# PART 2: DIGITAL DESIGN LAB (TASK2)

#### **DESIGN**

Describe the design of your system by providing the following information:

• Verilog design while using data flow (provide the Verilog code)

# Design of 74151

```
module mutiplexer74151(
     input EN,
     input s2,
      input s1,
     input s0,
      input d7,
      input d6,
     input d5,
      input d4,
      input d3,
      input d2,
     input d1,
      input do,
      output reg y,
      output w
     ):
     always@*
     if(~EN)
     case({s2, s1, s0})
         3' b000: y=d0;
         3' b001: y=d1:
         3' b010: y=d2;
          3' b011: y=d3;
          3' b100: y=d4;
          3' b101: y=d5:
          3' b110: y=d6;
          3' b111: y=d7;
```

```
endcase
else
y=1'b0;
assign w=~y;
endmodule
```

# Truth table

| EN | S2 | S1 | S0 | у  |
|----|----|----|----|----|
| 0  | 0  | 0  | 0  | d0 |
| 0  | 0  | 0  | 1  | d1 |
| 0  | 0  | 1  | 0  | d2 |
| 0  | 0  | 1  | 1  | d3 |
| 0  | 1  | 0  | 0  | d4 |
| 0  | 1  | 0  | 1  | d5 |
| 0  | 1  | 1  | 0  | d6 |
| 0  | 1  | 1  | 1  | d7 |
| 1  | 0  | 0  | 0  | 0  |
| 1  | 0  | 0  | 1  | 0  |
| 1  | 0  | 1  | 0  | 0  |
| 1  | 0  | 1  | 1  | 0  |
| 1  | 1  | 0  | 0  | 0  |

| 1 | 1 | 0 | 1 | 0 |
|---|---|---|---|---|
| 1 | 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 | 0 |
|   |   |   |   |   |

# **Function design**

endmodule

# **Truth-table**

| А | В | С | D | Y1 | Y2 |
|---|---|---|---|----|----|
| 0 | 0 | 0 | 0 | 1  | 1  |
| 0 | 0 | 0 | 1 | 1  | 1  |
| 0 | 0 | 1 | 0 | 0  | 0  |
| 0 | 0 | 1 | 1 | 0  | 0  |
| 0 | 1 | 0 | 0 | 0  | 0  |



| 0 | 1 | 0 | 1 | 1 | 1 |
|---|---|---|---|---|---|
| 0 | 1 | 1 | 0 | 0 | 0 |
| 0 | 1 | 1 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 1 | 0 | 0 |
| 1 | 0 | 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 | 1 | 1 |
| 1 | 1 | 0 | 0 | 0 | 0 |
| 1 | 1 | 0 | 1 | 1 | 1 |
| 1 | 1 | 1 | 0 | 0 | 0 |
| 1 | 1 | 1 | 1 | 1 | 1 |

# **SIMULATION**

Describe how you build the test bench and do the simulation.

Using Verilog (provide the Verilog code)



```
module funsim();
reg A, B, C, D;
wire y1, y2;

functions f(A, B, C, D, y1, y2);

initial begin

{A, B, C, D}=4'b0;

repeat(15) #10 {A, B, C, D}={A, B, C, D}+1;

#10 $finish;
end
endmodule
```

• Wave form of simulation result (provide screen shots)



The description on whether the simulation result is same as the truth-table, is
the function of the design meet the expectation
the simulation result is same as the truth-table, the function of the design
meet the expectation.

#### CONSTRAINT FILE AND THE TESTING

Describe how you test your design on the Minisys Practice platform.

 Constraint file (provide the screen shots on the feature of a pin and the binding info between pins and the input /output ports)

```
set_property IOSTANDARD LVCMOS33 [get_ports {A}]
set_property IOSTANDARD LVCMOS33 [get_ports {B}]
set_property IOSTANDARD LVCMOS33 [get_ports {C}]
set_property IOSTANDARD LVCMOS33 [get_ports {D}]
set_property IOSTANDARD LVCMOS33 [get_ports {y1}]
set_property IOSTANDARD LVCMOS33 [get_ports {y2}]
set_property PACKAGE_PIN Y9 [get_ports {A}]
set_property PACKAGE_PIN W9 [get_ports {B}]
set_property PACKAGE_PIN Y7 [get_ports {C}]
set_property PACKAGE_PIN Y8 [get_ports {D}]
set_property PACKAGE_PIN G22 [get_ports {y1}]
set_property PACKAGE_PIN F21 [get_ports {y2}]
```

 The testing result (provide the screen shots (at least 3 testing scene)) to show state of inputs and outputs along with the related descriptions.











# THE DESCRIPTION OF OPERATION

Describe the problem occurred while in the lab and your solution. Any suggestions are welcomed.

• Problems and solutions