Mathematics for Computer Science Linear Algebra (Part 2) Linear Regression

Karl Southern

Durham University

March 3rd, 2025

Thanks to Andrei Krokhin and William Moses for use of slides.

Outline

- Plan for Today
- 2 Linear Regression
- Why QR Decomposition is Useful

Wrapping Things Up

Roadmap for Lectures 5 - 8

- End Goal: Application linear regression.
- **Using:** QR decomposition.
- Requires knowledge of some basics: Inner product spaces.

Roadmap for Lectures 5 - 8

- End Goal: Application linear regression.
- **Using:** QR decomposition.
- Requires knowledge of some basics: Inner product spaces.

Now we recap last lecture & look at what we'll cover today.

Last Lecture Reminder

Definition (Least Squares Problem)

Given a linear system $A\mathbf{x} = \mathbf{b}$ with m equations and n variables, find a vector \mathbf{x} that minimises $||\mathbf{b} - A\mathbf{x}||$ (w.r.t. the Euclidean inner product on \mathbb{R}^m).

- We call such a vector \mathbf{x} a least squares solution to the system, the vector $\mathbf{b} A\mathbf{x}$ is the least squares error vector, and the number $||\mathbf{b} A\mathbf{x}||$ is the least squares error.
- Let $W = \{A\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n\}$ be the column space of A.
- $A^T A \mathbf{x} = A^T \mathbf{b}$ is the normal equation (or normal system) associated with $A \mathbf{x} = \mathbf{b}$.
- The solution to $A^T A \mathbf{x} = A^T \mathbf{b}$ is the least squares solution to $A \mathbf{x} = \mathbf{b}$.

Today's Lecture Contents

- Application: Least squares fitting to data (aka linear regression)
- The benefit of a QR decomposition

Outline

- Plan for Today
- 2 Linear Regression
- 3 Why QR Decomposition is Useful
- Wrapping Things Up

 Assume that you want to determine, possibly approximately, the (quantitative) dependency between two parameters x and y in some process.

- Assume that you want to determine, possibly approximately, the (quantitative) dependency between two parameters x and y in some process.
- You perform some experiments and get data: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$.
- You want to fit a curve y = f(x) in the plane to this data (to some accuracy).

- Assume that you want to determine, possibly approximately, the (quantitative) dependency between two parameters x and y in some process.
- You perform some experiments and get data: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$.
- You want to fit a curve y = f(x) in the plane to this data (to some accuracy).
- The simpler the curve, the better. So try a straight line y = a + bx first. (The method extends to more than 2 variables and to more complex curves)

- Assume: you want the (quantitative) dependency between two parameters x and y in some process.
- You perform some experiments and get data: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$.
- You want to fit a curve y = f(x) in the plane to this data (to some accuracy).
- The simpler the curve, the better. So try a straight line y = a + bx first.

- **Assume:** you want the (quantitative) dependency between two parameters x and y in some process.
- You perform some experiments and get data: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$.
- You want to fit a curve y = f(x) in the plane to this data (to some accuracy).
- The simpler the curve, the better. So try a straight line y = a + bx first.

- Assume: you want the (quantitative) dependency between two parameters x and y in some process.
- You perform some experiments and get data: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$.
- You want to fit a curve y = f(x) in the plane to this data (to some accuracy).
- The simpler the curve, the better. So try a straight line y = a + bx first.
- This can then be written as a series of equations

$$a + bx_1 = y_1$$

$$\vdots$$

$$a + bx_n = y_n$$

• Or in matrix form
$$\begin{pmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_n \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

- Assume: you want the (quantitative) dependency between two parameters x and y in some process.
- You perform some experiments and get data: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$.
- You want to fit a curve y = f(x) in the plane to this data (to some accuracy).
- The simpler the curve, the better. So try a straight line y = a + bx first.
- This can then be written as a series of equations

$$a + bx_1 = y_1$$

$$\vdots$$

$$a + bx_n = y_n$$

• Or in matrix form
$$\begin{pmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_n \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

Example

$$a + bx_1 = y_1$$

 $a + bx_2 = y_2$
 $a + bx_3 = y_3$
 $a + bx_4 = y_4$

$$\left(\begin{array}{cc} 1 & 0 \\ 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{array}\right) \left(\begin{array}{c} a \\ b \end{array}\right) = \left(\begin{array}{c} 1 \\ 3 \\ 4 \\ 4 \end{array}\right)$$

Need to find a least squares solution to the system $A\mathbf{v} = \mathbf{y}$:

$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 4 \\ 4 \end{pmatrix}.$$

Matrix A has linearly independent columns, so least squares solution is unique.

Need to find a least squares solution to the system $A\mathbf{v} = \mathbf{y}$:

$$\left(\begin{array}{cc} 1 & 0 \\ 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{array}\right) \left(\begin{array}{c} a \\ b \end{array}\right) = \left(\begin{array}{c} 1 \\ 3 \\ 4 \\ 4 \end{array}\right).$$

Matrix A has linearly independent columns, so least squares solution is unique.

From the associated normal system $A^T A \mathbf{v} = A^T \mathbf{y}$, we get

$$\begin{pmatrix} a \\ b \end{pmatrix} = \left(\begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{pmatrix} \right)^{-1} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \\ 4 \\ 4 \end{pmatrix}.$$

Need to find a least squares solution to the system $A\mathbf{v} = \mathbf{y}$:

$$\left(\begin{array}{cc} 1 & 0 \\ 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{array}\right) \left(\begin{array}{c} a \\ b \end{array}\right) = \left(\begin{array}{c} 1 \\ 3 \\ 4 \\ 4 \end{array}\right).$$

Matrix A has linearly independent columns, so least squares solution is unique.

From the associated normal system $A^T A \mathbf{v} = A^T \mathbf{y}$, we get

$$\begin{pmatrix} a \\ b \end{pmatrix} = \left(\begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{pmatrix} \right)^{-1} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \\ 4 \\ 4 \end{pmatrix}.$$

From this,
$$\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 1.5 \\ 1 \end{pmatrix}$$
 so $y = 1.5 + x$ is the least squares straight line fit

(aka the regression line)

Outline

- Plan for Today
- 2 Linear Regression

- Why QR Decomposition is Useful
- Wrapping Things Up

When are Least Squares Solutions Unique?

Equivalently: when does a normal system $A^T A \mathbf{x} = A^T \mathbf{b}$ have a unique solution?

Theorem

For any $m \times n$ matrix A, A has linearly independent columns iff A^TA is invertible.

When are least squares solutions unique?

Equivalently: when does a normal system $A^T A \mathbf{x} = A^T \mathbf{b}$ have a unique solution?

Theorem

For any $m \times n$ matrix A, A has linearly independent columns iff A^TA is invertible.

When are least squares solutions unique?

Equivalently: when does a normal system $A^T A \mathbf{x} = A^T \mathbf{b}$ have a unique solution?

Theorem

For any $m \times n$ matrix A, A has linearly independent columns iff A^TA is invertible.

Proof.

- The columns of A are linearly indep iff Ax = 0 has only the trivial solution.
- $A^T A$ is square, so it is invertible iff $A^T A \mathbf{x} = \mathbf{0}$ has only the trivial solution.
- Each solution of $A\mathbf{x} = \mathbf{0}$ is a solution of $A^T A\mathbf{x} = \mathbf{0}$.
- Let \mathbf{x}_0 be a solution of $A^T A \mathbf{x} = \mathbf{0}$, i.e., $A^T A \mathbf{x}_0 = \mathbf{0}$.
 - Then $A\mathbf{x}_0$ is both in the column space of A and in the null space of A^T (which are orthogonal complements of each other). Hence, $A\mathbf{x}_0 = \mathbf{0}$.
- Thus $A\mathbf{x} = \mathbf{0}$ has only the trivial solution iff the same is true for $A^T A\mathbf{x} = \mathbf{0}$.

Assume that A is an $m \times n$ matrix with linearly independent column vectors.

Assume that A is an $m \times n$ matrix with linearly independent column vectors.

• From the previous theorem, for every column $\mathbf{b} \in \mathbb{R}^m$, the least squares solution to $A\mathbf{x} = \mathbf{b}$ (i.e. a solution to $A^T A \mathbf{x} = A^T \mathbf{b}$) is unique:

$$\mathbf{x} = (A^T A)^{-1} A^T \mathbf{b}.$$

Assume that A is an $m \times n$ matrix with linearly independent column vectors.

• From the previous theorem, for every column $\mathbf{b} \in \mathbb{R}^m$, the least squares solution to $A\mathbf{x} = \mathbf{b}$ (i.e. a solution to $A^T A \mathbf{x} = A^T \mathbf{b}$) is unique:

$$\mathbf{x} = (A^T A)^{-1} A^T \mathbf{b}.$$

For the last item, substitute A = QR into the first equation above and simplify:

$$\mathbf{x} = (A^{T}A)^{-1}A^{T}\mathbf{b} = ((QR)^{T}(QR))^{-1}(QR)^{T}\mathbf{b} = (R^{T}Q^{T}QR)^{-1}R^{T}Q^{T}\mathbf{b}$$
$$= (R^{T}IR)^{-1}R^{T}Q^{T}\mathbf{b} = (R^{T}R)^{-1}R^{T}Q^{T}\mathbf{b} = R^{-1}(R^{T})^{-1}R^{T}Q^{T}\mathbf{b} = R^{-1}Q^{T}\mathbf{b}.$$

The simplification uses $Q^TQ = I$ — true because Q has orthonormal columns.

Assume that A is an $m \times n$ matrix with linearly independent column vectors.

• From the previous theorem, for every column $\mathbf{b} \in \mathbb{R}^m$, the least squares solution to $A\mathbf{x} = \mathbf{b}$ (i.e. a solution to $A^T A \mathbf{x} = A^T \mathbf{b}$) is unique:

$$\mathbf{x} = (A^T A)^{-1} A^T \mathbf{b}.$$

For the last item, substitute A = QR into the first equation above and simplify:

$$\mathbf{x} = (A^{T}A)^{-1}A^{T}\mathbf{b} = ((QR)^{T}(QR))^{-1}(QR)^{T}\mathbf{b} = (R^{T}Q^{T}QR)^{-1}R^{T}Q^{T}\mathbf{b}$$
$$= (R^{T}IR)^{-1}R^{T}Q^{T}\mathbf{b} = (R^{T}R)^{-1}R^{T}Q^{T}\mathbf{b} = R^{-1}(R^{T})^{-1}R^{T}Q^{T}\mathbf{b} = R^{-1}Q^{T}\mathbf{b}.$$

The simplification uses $Q^TQ = I$ — true because Q has orthonormal columns.

• If A = QR is a QR decomposition (which exists under our assumption), then

$$\mathbf{x} = R^{-1}Q^T\mathbf{b}$$
 (or, equivalently, $R\mathbf{x} = Q^T\mathbf{b}$)

We showed before: for any column vector \mathbf{b} , if $W = \mathcal{C}(A)$ is the column space of a matrix A and \mathbf{x} is the least squares solution to $A\mathbf{x} = \mathbf{b}$, then $\operatorname{proj}_W \mathbf{b} = A\mathbf{x}$.

We showed before: for any column vector \mathbf{b} , if $W = \mathcal{C}(A)$ is the column space of a matrix A and \mathbf{x} is the least squares solution to $A\mathbf{x} = \mathbf{b}$, then $\operatorname{proj}_W \mathbf{b} = A\mathbf{x}$.

If A has linearly independent column vectors, then we can use the first formula from the previous slide:

$$\operatorname{proj}_{W}\mathbf{b} = A\mathbf{x} = A(A^{T}A)^{-1}A^{T}\mathbf{b}.$$

We showed before: for any column vector \mathbf{b} , if $W = \mathcal{C}(A)$ is the column space of a matrix A and \mathbf{x} is the least squares solution to $A\mathbf{x} = \mathbf{b}$, then $\operatorname{proj}_W \mathbf{b} = A\mathbf{x}$.

If A has linearly independent column vectors, then we can use the first formula from the previous slide:

$$\operatorname{proj}_{W}\mathbf{b} = A\mathbf{x} = A(A^{T}A)^{-1}A^{T}\mathbf{b}.$$

• A matrix of the form $P = A(A^TA)^{-1}A^T$ is called a projection matrix.

We showed before: for any column vector \mathbf{b} , if $W = \mathcal{C}(A)$ is the column space of a matrix A and \mathbf{x} is the least squares solution to $A\mathbf{x} = \mathbf{b}$, then $\operatorname{proj}_W \mathbf{b} = A\mathbf{x}$.

If A has linearly independent column vectors, then we can use the first formula from the previous slide:

$$\operatorname{proj}_{W}\mathbf{b} = A\mathbf{x} = A(A^{T}A)^{-1}A^{T}\mathbf{b}.$$

- A matrix of the form $P = A(A^TA)^{-1}A^T$ is called a projection matrix.
- For any column vector \mathbf{b} , the vector $P\mathbf{b}$ is the orthogonal projection of \mathbf{b} onto $W = \mathcal{C}(A)$, the column space of A.

We showed before: for any column vector \mathbf{b} , if $W = \mathcal{C}(A)$ is the column space of a matrix A and \mathbf{x} is the least squares solution to $A\mathbf{x} = \mathbf{b}$, then $\operatorname{proj}_W \mathbf{b} = A\mathbf{x}$.

If A has linearly independent column vectors, then we can use the first formula from the previous slide:

$$\operatorname{proj}_{W} \mathbf{b} = A\mathbf{x} = A(A^{T}A)^{-1}A^{T}\mathbf{b}.$$

- A matrix of the form $P = A(A^TA)^{-1}A^T$ is called a projection matrix.
- For any column vector \mathbf{b} , the vector $P\mathbf{b}$ is the orthogonal projection of \mathbf{b} onto $W = \mathcal{C}(A)$, the column space of A.
- Such matrices P are used in ML and Data Science to map vectors \mathbf{b} from a high-dimensional space to a suitably chosen small-dimensional space W.

Given the data points: (1,-1), (2,2), (0,-6), (3,6), (1,0), (2,3), where we weight the experiments as (4,4,3,3,1,1), fit the data to a curve of the form $y = a + bx + cx^2$.

This is equivalent to finding the least squares solution to the system $A\mathbf{x} = \mathbf{y}$:

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 0 & 0 \\ 1 & 3 & 9 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ -6 \\ 6 \\ 0 \\ 3 \end{pmatrix}$$

Example 18.2 ... Gram-Schmidt

N.B inner product is weighted Euclidean dot product with weights (4, 4, 3, 3, 1, 1).

- $\mathbf{v}_1 = (1, 1, 1, 1, 1, 1)$
- $\mathbf{v}_2 = \frac{1}{2}(-1, 1, -3, 3, -1, 1)$
- $\mathbf{v}_3 = \frac{1}{4}(-3, -3, 5, 5, 3, -3)$

Normalising to

- $\mathbf{q}_1 = \frac{1}{4}(1, 1, 1, 1, 1, 1)$
- $\mathbf{q}_2 = \frac{1}{8}(-1, 1, -3, 3, -1, 1)$
- $\mathbf{q}_3 = \frac{1}{4\sqrt{15}}(-3, -3, 5, 5, -3, -3)$

Example 18.2 ... QR decomp

N.B inner product is weighted Euclidean dot product with weights (4, 4, 3, 3, 1, 1).

$$Q = \begin{pmatrix} \frac{1}{4} & \frac{-1}{8} & \frac{-3}{4\sqrt{15}} \\ \frac{1}{4} & \frac{1}{8} & \frac{-3}{4\sqrt{15}} \\ \frac{1}{4} & \frac{3}{8} & \frac{5}{4\sqrt{15}} \\ \frac{1}{4} & \frac{3}{8} & \frac{5}{4\sqrt{15}} \\ \frac{1}{4} & \frac{-1}{8} & \frac{-3}{4\sqrt{15}} \\ \frac{1}{4} & \frac{1}{8} & \frac{-3}{4\sqrt{15}} \end{pmatrix} R = \begin{pmatrix} 4 & 6 & 13 \\ 0 & 4 & 12 \\ 0 & 0 & \sqrt{15} \end{pmatrix}$$

$$\mathbf{x} = R^{-1}Q^{T}\mathbf{y} = \frac{1}{160} \begin{pmatrix} -315 \\ 306 \\ -32 \end{pmatrix} \approx \begin{pmatrix} 1.97 \\ 1.91 \\ -0.2 \end{pmatrix}$$

Outline

- Plan for Today
- 2 Linear Regression
- Why QR Decomposition is Useful
- Wrapping Things Up

Exam Question

(d) Given the following points, use the least squares method to find the straight line and quadratic polynomial that best approximate them.

$$P = (0, -1), (0, 0), (1, -1), (1, -2), (2, 0), (2, 2).$$

. . .

(e) Which of the two polynomials is the best approximation? Justify your answer. [3 Marks]

Wrapping Things Up

Today:

- Least squares solutions for inconsistent linear systems
- Least squares fitting to data (aka linear regression)
- Benefit of a QR decomposition

Next time:

• Orthogonal matrices and spectral decomposition

The End

Theorem

For any $m \times n$ matrix A, A has linearly independent columns iff A^TA is invertible.

Theorem

For any $m \times n$ matrix A, A has linearly independent columns iff A^TA is invertible.

Proof.

• The columns of A are linearly indep iff $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.

Theorem

For any $m \times n$ matrix A, A has linearly independent columns iff A^TA is invertible.

Proof.

- The columns of A are linearly indep iff $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
 - A^TA is square, so it is invertible iff $A^TAx = 0$ has only the trivial solution.

Theorem

For any $m \times n$ matrix A, A has linearly independent columns iff A^TA is invertible.

Proof.

- The columns of A are linearly indep iff $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- A^TA is square, so it is invertible iff $A^TAx = 0$ has only the trivial solution.
- Each solution of $A\mathbf{x} = \mathbf{0}$ is a solution of $A^T A \mathbf{x} = \mathbf{0}$.

Theorem

For any $m \times n$ matrix A, A has linearly independent columns iff A^TA is invertible.

Proof.

- The columns of A are linearly indep iff $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- A^TA is square, so it is invertible iff $A^TA\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- Each solution of $A\mathbf{x} = \mathbf{0}$ is a solution of $A^T A \mathbf{x} = \mathbf{0}$.
- Let \mathbf{x}_0 be a solution of $A^T A \mathbf{x} = \mathbf{0}$, i.e., $A^T A \mathbf{x}_0 = \mathbf{0}$.

Then $A\mathbf{x}_0$ is both in the column space of A and in the null space of A^T (which are orthogonal complements of each other). Hence, $A\mathbf{x}_0 = \mathbf{0}$.

Theorem

For any $m \times n$ matrix A, A has linearly independent columns iff A^TA is invertible.

Proof.

- The columns of A are linearly indep iff $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- $A^T A$ is square, so it is invertible iff $A^T A \mathbf{x} = \mathbf{0}$ has only the trivial solution.
- Each solution of $A\mathbf{x} = \mathbf{0}$ is a solution of $A^T A \mathbf{x} = \mathbf{0}$.
- Let \mathbf{x}_0 be a solution of $A^T A \mathbf{x} = \mathbf{0}$, i.e., $A^T A \mathbf{x}_0 = \mathbf{0}$.
 - Then $A\mathbf{x}_0$ is both in the column space of A and in the null space of A^T (which are orthogonal complements of each other). Hence, $A\mathbf{x}_0 = \mathbf{0}$.
- Thus $A\mathbf{x} = \mathbf{0}$ has only the trivial solution iff the same is true for $A^T A \mathbf{x} = \mathbf{0}$.