Introduction to VLSI Design Assignment 1: Study of CMOS Inverter

Name - Pushkal Mishra Roll- EE20BTECH11042

Specs of the devices used -

Both PMOS and NMOS are from the TSMC 180 nm technology library which has Length as 180 nm and Width as 2 $\mu m.$

Implementation of CMOS

DC Simulations -

Voltage Transfer Characteristics

 $V_{\mbox{\scriptsize DD}} = 1.2 V$ and input voltage sweep is upto 1.2 V

VTC by varying V_{DD} from 0.1V to 1.9V

Gain for $V_{\text{DD}} = 1.2V$

Noise margins (both NM_H and NM_L) can be calculated using the gain plots to find out the frequency crossings at which gain is -1 and then subtracting V_{OL} and V_{OH} to find NM_L and NM_H respectively.

Gains for varying $V_{\scriptscriptstyle \rm DD}$

Table for calculated Noise Margins and Peak gains

$ m V_{DD}$	Noise Margin Low	Noise Margin High	Peak Gain
0.1 V	19.97 mV	52.28 mV	-5.515
0.25V	89.66 mV	$125.69~\mathrm{mV}$	-20.705
$0.5\mathrm{V}$	$208.15~\mathrm{mV}$	$249.75~\mathrm{mV}$	-30.008
0.75V	$325.85~\mathrm{mV}$	$374.40~\mathrm{mV}$	-34.686
1 V	434 mV	$498.57~\mathrm{mV}$	-34.651
1.2V	499.27 mV	601.27 mV	-30.849
1.6 V	591.9 mV	$818.65~\mathrm{mV}$	-24.122
1.8V	$628.36~\mathrm{mV}$	930.83 mV	-21.652
1.9 V	644.91 mV	987.79 mV	-20.705

From the above graph and table, the peak gain first increases when $V_{\rm DD}$ is swept from $0.1\,V$ to $0.75\,V$ and then decreases.

 $V_{\rm DD}$ = 1.8V and width of PMOS is varied

Clearly from the plot, the ideal CMOS inverter has PMOS width around 5.4 μm for NMOS width at 2 $\mu m.$

Transient Simulations -

Here we provide a pulse at the input with a time period of 10 ns and rise time and fall time of 1 ns with duty cycle of 50% to observe the propagation delay.

Transient Plot

Load Capacitance of 50 fF

Propagation delay can be written as:
$$t_p = \frac{t_{pHL} + t_{pLH}}{2}$$

From the above plot,
$$t_{pHL}=115.4\,ps$$
 and $t_{pLH}=292.59\,ps$
So propagation delay, $t_p=203.995\,ps$

Now we can also calculate the resistance of mosfets by the formula-

$$R_{PMOS} = \frac{t_{pLH}}{0.693 * C_{L}} = 8.44 \text{ k}\Omega$$

$$R_{NMOS} = \frac{t_{pHL}}{0.693 * C_L} = 3.33 \text{ k}\Omega$$

Transient plot by varying width of PMOS

 $V_{\mbox{\tiny DD}} = 1.8 V$ and width is varied between 2 μm and 4 μm

Observe that t_{pHL} increases (almost insignificant) as width increases and t_{pLH} reduces as width increases.

Conclusions from DC simulation plots -

- $\bullet~VTC$ is not exactly symmetrical about V_{DD} / 2 but slightly shifted left for regular parameters.
- \bullet From the gain plots, we can say that as we increase V_{DD} , at first the peak gain increases till $V_{DD}=0.75V$ and then peak gain reduces upon further increasing V_{DD} .
- The noise margin increases upon increasing V_{DD} but observe that NM_H and NM_L are not equal. This is due to VTC not being centered at V_{DD} / 2.
- For an ideal CMOS, the output voltage at applied input voltage of V_{DD} / 2 must be V_{DD} / 2 , for which the width of PMOS must be around 5.4 μm (width of NMOS is 2 μm).

Conclusions from Transient plots -

- The propagation delay in CMOS with load capacitance of 50 fF is 203.995 ps.
- Resistance of NMOS and PMOS are 3.33 $k\Omega$ and 8.44 $k\Omega$ respectively.
- Due to the lower mobility of holes, the current provided by PMOS is lower than that of NMOS which is indicated by higher value of $t_{\rm pLH}$ with respect to $t_{\rm pHL}$.
- To overcome this we can increase the width of PMOS which reduces t_{pLH} which is evident from the last graph. There is also a slight increase in t_{pHL} but this is insignificant when compared to the change in t_{pLH} and so in effect the overall delay (t_p) of the system reduces.