IESTI01 - TinyML

Embedded Machine Learning

14. Fundamentals wrap-up and Application's preview

Prof. Marcelo Rovai
UNIFEI

Tiny Machine Learning (TinyML)

What we learned so far

What is Tiny Machine Learning (TinyML)?

- Fast-growing field of machine learning
- Algorithms, hardware, and software
- On-device sensor data analytics
- Extreme low power consumption
- Always-on ML use-cases
- Battery-operated devices

What we already learned?

So far in the Part 1, we introduced ML with TensorFlow. Was all about talking about what is the language of machine learning.

Total Recall from Part 1

Training Data

Neural Network

Training

Features

Validation Data

Classification

Gradient Descent

Inference

Test Data

Loss Function

Kernels

Filters

Overfitting

Regression

CNNs

DNNs

Data augmentation

1 44

Responsible Al

Preprocessing

Training Data

Neural Network

Training

Validation Data

Gradient Descent

Inference

Test Data

Loss Function

Kernels

Features

Classification

Filters

Overfitting

Regression

CNNs

DNNs

Data augmentation

Responsible Al

Preprocessing

Training Data

Neural Network

Training

Validation Data

Classification

Gradient Descent

Inference

Test Data

Loss Function

Filters

Overfitting

Features

Regression

Kernels

Data augmentation

CNNs

DNNs

Preprocessing

Responsible Al

Training Data

Neural Network

Training

Validation Data

Gradient Descent

Inference

Test Data

Loss Function

Filters

Features

Classification

Kernels

Overfitting

Regression

CNNs

DNNs

Data augmentation

Preprocessing

Responsible Al

What we will learn?

In Part 2, we will get a sneak peek into the variety of different TinyML applications, as keyword spotting ("Alexa"), gesture recognition, understand how to leverage the sensors, and so forth.

10

What we will learn?

In Part 2, we will also learn how to deploy models on a real microcontroller. Along the way we will explore the challenges unique to and amplified by TinyML (e.g., preprocessing, post-processing, dealing with resource constraints).

Train a model

Convert model

Optimize model Deploy model at Edge Make inferences at Edge

Train a model

Convert model

Optimize model

Deploy model at Edge Make inferences at Edge

Tiny Machine Learning (TinyML)

Applications

TinyML Application Areas

TinyML Application Areas

Questions

- How do we capture the data to feed into the neural network?
- How do you design the neural network to take in the speech signal?
- What dataset does the neural network need to be trained?
- How do we pre-process the data for neural network inference?
- How do you post-process the neural network output?
- How do you make sure there is no bias in the dataset?
- How do you deploy this on the microcontroller?

Endpoints Have **Sensors**, Tons of Sensors

Motion Sensors

Gyroscope, Radar, Accelerometer **Acoustic Sensors**

Ultrasonic, Microphones, Geophones, Vibrometers

Environmental Sensors

Temperature, Humidity, Pressure, IR, etc.

Touchscreen Sensors

Capacitive, IR

Image Sensors

Thermal, Image

Biometric Sensors

Fingerprint, Heart rate, etc.

Force Sensors

Pressure, Strain

Rotation Sensors

Encoders

Sensors Metrics

Models

Acoustic Sensors
Ultrasonic, Microphones,
Geophones, Vibrometers

Image Sensors Thermal, **Image**

Motion Sensors
Gyroscope, Radar,
Accelerometer

End-to-end TinyML application design

Datasets Preprocessing

Quantization Pruning

Resource constraints

Sound

Vision

Vibration

End-to-end **TinyML** application design

Sound

Vibration

Vision

TinyML Application Example

Sound

Vibration

Vision

Personal Assistant

"Cascade" Detection: multi-stage model

KeyWord Spotting (KWS)

Sound Image

KeyWord Spotting (KWS) - Model

KeyWord Spotting (KWS) – Create Model (Training)

KeyWord Spotting (KWS) - Create Model (Training)

KeyWord Spotting (KWS) – Create Model (Training)

Reading Material

Main references

- Harvard School of Engineering and Applied Sciences CS249r: Tiny Machine Learning
- Professional Certificate in Tiny Machine Learning (TinyML) edX/Harvard
- Introduction to Embedded Machine Learning Coursera/Edge Impulse
- Computer Vision with Embedded Machine Learning Coursera/Edge Impulse
- Fundamentals textbook: "Deep Learning with Python" by François Chollet
- Applications & Deploy textbook: <u>"TinyML" by Pete Warden, Daniel Situnayake</u>
- Deploy textbook <u>"TinyML Cookbook" by Gian Marco Iodice</u>

I want to thank Shawn Hymel and Edge Impulse, Pete Warden and Laurence Moroney from Google, Professor Vijay Janapa Reddi and Brian Plancher from Harvard, and the rest of the TinyMLedu team for preparing the excellent material on TinyML that is the basis of this course at UNIFEI.

The IESTI01 course is part of the <u>TinyML4D</u>, an initiative to make TinyML education available to everyone globally.

Thanks

